

CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO

NÚCLEO DE ENGENHARIA

ENGENHARIA ELÉTRICA

Projetos de Sistemas Elétricos

Projeto Final - Instalações Elétricas

Nome completo	RA
Carlos Henrique de Araújo	109640
Erick Henrique Gonçalves	108968
José Carlos Franchini Junior	109535
Paulo Ijano Motta Junior	109302

Araras

Junho 2025

1. INTRODUÇÃO

Este trabalho tem como objetivo desenvolver o projeto completo de uma subestação elétrica, desde o ponto de alimentação até a entrega final da energia, aplicando os conhecimentos adquiridos tanto nas aulas teóricas quanto nas atividades práticas. Foram considerados aspectos essenciais como: cálculos de curto-circuito (na entrada, na transmissão e na carga), dimensionamento dos cabos condutores nas diferentes áreas (subestação, QGF, área 1, área 2 e área 3), levando em conta fatores de potência, demanda e segurança, além da escolha adequada dos disjuntores de proteção, garantindo assim a confiabilidade e segurança da instalação.

A realização deste estudo contribuiu para uma compreensão mais profunda sobre o funcionamento e os passos necessários na elaboração de um projeto elétrico dessa escala, abordando também os desafios enfrentados, como a queda no fator de potência causada pelo uso de cargas indutivas (motores) e sua compensação através da instalação de bancos de capacitores.

Este documento se mostra relevante para a sociedade atual, especialmente diante do crescimento acelerado do consumo de energia e da evolução tecnológica dos equipamentos. Por isso, torna-se fundamental considerar sistemas de proteção modernos, condutores adequados, disjuntores corretos e, principalmente, a garantia da qualidade da energia fornecida.

Com base nos resultados obtidos, que foram compatíveis com o que se esperava, e validados por meio do uso de softwares especializados, é possível afirmar que o projeto foi bem-sucedido em alcançar os objetivos propostos.

2. DESENVOLVIMENTO

A elaboração deste projeto contou com o apoio de softwares especializados para atender às demandas técnicas da proposta. Foram utilizados: Microsoft Excel, Planilha de Curto Circuito, DCE, AutoCAD Plant 3D e Dialux, além da consulta às normas técnicas em vigor, como a ABNT NBR 5419, que trata da proteção contra descargas atmosféricas, e a catálogos de fabricantes reconhecidos, como motores WEG, cabos Prysmian, bancos de capacitores e disjuntores da Siemens.

O ponto de partida foi a definição dos motores que seriam instalados nas diferentes áreas da planta industrial. Após análise técnica, o modelo mais compatível com a demanda operacional foi o W22 IR3 Premium de 4 polos, conforme especificado no catálogo da WEG, destacando-se pelo elevado rendimento e eficiência energética.

Com os dados dos motores e demais cargas, foram feitos os cálculos de corrente usando o Excel. Esses cálculos consideraram a potência aparente de base (100 MVA) e as tensões do transformador, tanto no primário quanto no secundário. Para refletir melhor a realidade do funcionamento simultâneo dos equipamentos, foi aplicado um fator de demanda de 0,85 sobre a soma das correntes. Esse valor ajudou a obter uma estimativa mais próxima do consumo real do sistema.

Com base nesses resultados, foi possível dimensionar corretamente os bancos de capacitores, especialmente nas áreas com grande presença de cargas indutivas, garantindo a correção do fator de potência e a qualidade da energia distribuída.

2.1. LEVANTAMENTO DE DADOS

Os dados de Fator de Potência (FP) e Rendimento foram encontrados em catálogos da WEG, após as potências dos motores serem disponibilizadas pelo cliente (exercício).

Quadro 1 – Dados das cargas

Aréa	Carga	Potência Mecânica (CV)	Fator de Potência	Rendimento	Potência Ativa (kW)
	Motor 1	60	0.85	0.95	45
1	Motor 2	150	0.86	0.958	110
•	Motor 3	20	0.81	0.93	15
	Motor 4	150	0.86	0.958	110
	Motor 5	20	0.81	0.93	15
2	Motor 6	20	0.81	0.93	15
	Motor 7	30	0.81	0.936	22
	Auxiliar	-	0.92	-	80
	Auxiliar	-	0.92	-	80
3	Aquecimento 1	-	1	-	30
	Aquecimento 2	-	1	-	30
	Aquecimento 3	-	1	-	30
Total	-	-	-	-	582

2.2. DIMENSIONAMENTO DO TRANSFORMADOR DE POTÊNCIA

2.2.1. Dimensionamento

Com os dados obtidos foi possível determinar a potência aparente de cada carga e ao final, a soma de todas as cargas resultou em uma potência total de 643,74 kVA.

Quadro 2 – Cálculo de Potência Total Aparente

Aréa	Carga	Potência Mecânica (CV)	FP	Rendimento	Potência Ativa (kW)	Ângulo (°)	Potência Reativa (kVAr)	Potência Aparente (kVA)
	Motor 1	60	0.85	0.95	45	31.79	27.89	52.94
	Motor 2	150	0.86	0.958	110	30.68	65.27	127.91
•	Motor 3	20	0.81	0.93	15	35.90	10.86	18.52
	Motor 4	150	0.86	0.958	110	30.68	65.27	127.91
	Motor 5	20	0.81	0.93	15	35.90	10.86	18.52
2	Motor 6	20	0.81	0.93	15	35.90	10.86	18.52
	Motor 7	30	0.81	0.936	22	35.90	15.93	27.16
	Auxiliar	-	0.92	-	80	23.07	34.08	86.96
	Auxiliar	-	0.92	-	80	23.07	34.08	86.96
3	Aquecimento 1	-	1	-	30	0.00	0.00	30.00
	Aquecimento 2	-	1	-	30	0.00	0.00	30.00
	Aquecimento 3	-	1	-	30	0.00	0.00	30.00
Total	-	-		-	582	-	275.10	643.74

Fonte: o autor.

Considerando um fator de demanda conservador de 0,85, a potência aplicada resultou em 574,21 kVA.

Quadro 3 – Dimensionamento do Transformador

Tensão de Entrada TF =	13800	V	
Tensão de Saída TF =	380	V	
Fator de demanda =	0.85	-	* Fator de demanda considerado conservador
Potência Aparente Minima do TF =	574.21	KVA	
Potência Aparente Corrigida do TF =	746.47	KVA	* Foi dimensionado com 30% a mais da corrente minima considerando futuras expansões

Tendo nossa potência de operação definida, consideramos um aumento de 30% em relação a ela para futuras instalações e dimensionamos um transformador. Como o valor calculado foi de 746,47 kVA, o próximo transformador tabelado acima era de 750 kVA.

2.2.2. Modelo de Transformador Escolhido

Transformador Seco 750.0kVA 13.8/0.38kV CST IP-23 NA.

2.2.3. Especificações Sumárias

Figura 1 – Folha de Dados do Transformador

Fonte: Site da WEG.

2.3. CÁCULO DE CURTO-CIRCUITO

2.3.1. Valores Iniciais

Para iniciar o cálculo de nível de curto-circuito, é fundamental dispor de alguns valores iniciais que servem como base para todas as etapas subsequentes. No nosso caso, o exercício forneceu os seguintes dados:

- Tensão Primária (Vp): Esta é a tensão do lado de alta tensão do transformador ou do ponto de alimentação principal do sistema elétrico. Ela é geralmente especificada em kV (quilovolts) e representa o nível de tensão da rede antes da transformação ou do ponto de curto-circuito. No contexto de cálculos de curto-circuito, a tensão primária é crucial para determinar os valores base no lado primário do sistema e, consequentemente, as correntes de curto-circuito.
- Tensão Secundária (Vs): Refere-se à tensão do lado de baixa tensão do transformador ou do ponto onde o curto-circuito está sendo analisado, após a transformação. Também especificada em kV (quilovolts), a tensão secundária é essencial para estabelecer os valores base no lado secundário do sistema e para calcular as correntes de curto-circuito que fluirão nesse nível de tensão.
- Impedância de Sequência Positiva (Z1): A impedância de sequência positiva representa a oposição ao fluxo de corrente para correntes balanceadas em um sistema trifásico. É um valor fundamental para o cálculo de curto-circuito trifásico (simétrico), pois define a impedância do sistema para a corrente de curto-circuito que flui de forma equilibrada pelas três fases. É expressa em ohms (Ω) ou em pu (por unidade). Para equipamentos como transformadores, a impedância de sequência positiva é geralmente fornecida pelo fabricante. Para linhas de transmissão, é calculada com base nas características físicas da linha (resistência e reatância).
- Impedância de Sequência Zero (Z0): A impedância de sequência zero é utilizada para cálculos de curto-circuito assimétricos, como o curto-circuito fase-terra. Ela representa a

oposição ao fluxo de correntes de sequência zero, que são as correntes que fluem de forma desequilibrada e retornam pela terra ou por outros caminhos de retorno. Assim como a impedância de sequência positiva, é expressa em ohms (Ω) ou em pu. Seu valor é particularmente importante para transformadores e linhas de transmissão, e seu cálculo pode envolver considerações sobre o aterramento do sistema.

- Potência Base (Sbase): Uma potência de referência escolhida arbitrariamente para o sistema, utilizada para converter valores de ohms para por unidade (pu) e vice-versa.
- Corrente Base Primária (Ibase,p): A corrente de referência no lado primário do sistema, correspondente à potência base e à tensão primária.

 $I_{base,p}=rac{S_{base}}{\sqrt{3} imes V_p}$ (para sistemas trifásicos, onde V_p é a tensão de linha-linha).

 Corrente Base Secundária (Ibase,s): A corrente de referência no lado secundário do sistema, correspondente à potência base e à tensão secundária.

$$I_{base,s} = rac{S_{base}}{\sqrt{3} imes V_s}$$
 (para sistemas trifásicos, onde V_s é a tensão de linha-linha).

• Impedância Base Primária (Zbase,p): Representa: A impedância de referência no lado primário do sistema.

$$Z_{base,p}=rac{V_{p}^{2}}{S_{base}}$$
 (onde V_{p} é a tensão de linha-linha).

• Impedância Base Secundária (Zbase,s): Representa: A impedância de referência no lado secundário do sistema.

$$Z_{base,s} = rac{V_s^2}{S_{base}}$$
 (onde V_s é a tensão de linha-linha).

Quadro 4 – Resumo de Valores Iniciais para Cálculo de Curto-Circuito

ETAPAS	VALOR	UNIDADE	OBSERVAÇÃO

		VALORES B.	ASE	
	Tensão base - MT - VB	13800	V	13,8 kV
	Potência base	10000000	VA	100 MVA
	Impedância base - Zb	1.9044	Ohms	
	Corrente base - Ib	4183.697603	A	4,18 kA
VALORES	tensão base - BT - Vbbt	380	V	
VAL	Corrente base - Ibbt	151934.2814	A	151,93kA
		IMPEDÂNO	CIA	
	Seq positiva - Zps	0.1+0.5j		
	Rps	0.1	PU NA BAS	SE DE 100MVA e 13,8kV
	Xps	0.5		
	Seq zero - Zps	0.2+0.8j		
	Rp0	0.2	PU NA BAS	SE DE 100MVA e 13,8kV
	Xp0	0.8		

2.3.2. Tipos de Curto-Circuito

Curto-Circuito Trifásico (Simétrico): O tipo de curto-circuito mais grave e geralmente o que resulta nas maiores correntes.
 Ocorre quando as três fases de um sistema trifásico são conectadas simultaneamente. É considerado "simétrico" porque as correntes nas três fases mantêm uma relação de magnitude e defasagem de 120 graus, como em condições normais, mas com valores muito elevados.

$$I_{cc3\phi} = rac{V_{LL}}{\sqrt{3} imes Z_{1.total}}$$

- → VLL é a tensão de linha-linha nominal no ponto de entrega.
- → Z1,total é a soma das impedâncias de sequência positiva de todos os componentes (fonte,

transformadores, linhas, etc.) desde a fonte até o ponto de entrega, tudo referido à mesma base de tensão (ou impedância base, se estiver em pu).

• Curto-Circuito Monofásico Assimétrica(fase-terra): O tipo de curto-circuito mais comum em sistemas elétricos. Ocorre quando uma fase entra em contato com o "terra". É "assimétrico" porque as correntes nas três fases não são balanceadas.

$$I_{cc1\phi} = rac{3 imes V_{LN}}{Z_{1,total} + Z_{2,total} + Z_{0,total}}$$

- + VLN é a tensão de fase-neutro nominal no ponto de entrega.
- → Z1,total, Z2,total, Z0,total são as impedâncias de sequência positiva, negativa e zero totais, respectivamente, de todos os componentes desde a fonte até o ponto de entrega.
- Curto-Circuito Monofásico Assimétrica(fase-fase): A corrente de curto-circuito fase-fase assimétrica ocorre quando duas fases de um sistema trifásico entram em contato uma com a outra, sem envolvimento direto com o terra.

$$I_{cc2\phi,pu} = rac{\sqrt{3} imes V_{pre-falta,pu}}{Z_{1,total,pu} + Z_{2,total,pu}}$$

2.3.3. Cálculos de Curto-Circuito realizados em Excel

Quadro 5 – Resumo de Valores Iniciais para Cálculo de Curto-Circuito

4
Ū
ш
~
\vdash
Z
ш
ш
0
느
5
Q

CURTO CIRCUITO						
	TRIFÁSICO					
Ics	1609.114462624378045.57231312187j	A (cartesiano)				
Módulo de Ics	8.20	KA				
Fase de Ics	-78.69	Graus				
	MONOFÁSICO					
Zeq até este ponto (até lado de alta do trafo)	0.4+1.8j					
Icft	1476.599153937666644.69619271948j	A (cartesiano)				
Módulo de Icft	6.81	KA				
Fase de Icft	-77.47	Graus				
	POTÊNCIA CURTO CIR	CUITO				
Pcc	0.20	MVA				
	ASSIMÉTRICO					
relação X/R	-5.00					
			*Não tem valor tabelado			
Fator de assimetria	2.18	tabelado (aproximado)	*Valor utilizado é o mesmo que o calculado			
corrente de curto circuito assimétrico - Ics	17.89					
Impulso da corrente de	25.30					
curto circuito Cálculo do fator de assimetria	2.18	Valor real				
assilieti lä						

Tau	-0.013262912	
Corrente de curto	17.87	
circuito assimétrico - Ica		
Impulso da corrente de	25.28	
curto circuito - Icim	23.20	

Quadro 6 - Resumo de Valores Iniciais para Cálculo de Curto-Circuito

	IMPEDÂNCIA		
Pot nominal do trafo	750	kVA	1000 Kva
Perdas cobre	12000	W	12kW
Res. percentual Rpt	1.6	%	0.12%
Res. pu Rut	0.016	pu	na base de 100 MV
Res. pu Rut	1.6	pu	na base de 100 MV
Imp. percentual Zpt	0.06	pu	6% - dado de placa
Imp. p.u. Zut	8	pu	na base de 100 MV
Reatância pu Xut	7.838367177	pu	na base de 100 MV
Imp. Dotrafo	1.6+7.83836717690617j	pu	1,6 + j7,84 pu
	CURTO CIRCUI TRIFÁSICO		
zeg até o ponto -			
zeq até o ponto - APENAS SEO	TRIFÁSICO		
zeq até o ponto - APENAS SEQ POSITIVA			
APENAS SEQ	TRIFÁSICO	A (cartesiano)	
APENAS SEQ POSITIVA	TRIFÁSICO 1.7+8.33836717690617j		
APENAS SEQ POSITIVA Ics	TRIFÁSICO 1.7+8.33836717690617j 3566.6128413351117493.9573228946j	A (cartesiano)	

			T	
Zeq	até este ponto - Lado			
de				
SECUNDÁRIO DO TRANSFORMADOR	BT			
\$				
<u>~</u>				
Ō				
SF				
Ž				
≾				
"		5.2+25.3151015307185j		
0		,		
۵				
0				
Ξ				
Ā				
\Box				
_				
ರ				
Щ				
	Icft	3548.7270318456-	A (cartesiano)	
	icit	17276.2279069186j	A (cartesiano)	
	Módulo de Icft	17.63693608	KA	
	Wiodulo de leit	17.05075000	11.1	
	F 1. I. G	79 20227745	C	
	Fase de Icft	-78.39227745	Graus	
		ASSIMÉTRICO		
	relação X/R	4.90		
	reiação A/K	4.90		
Į.	ator de assimetria	1.43	tabelado	
•	ator ut assimetria	1.13	(aproximado)	
cori	rente de curto circuito			
	assimétrico - Ics	25.53		
T				
Im	pulso da corrente de	36.11		
	curto circuito			
	Cálculo do fator de	1.42	***	
	assimetria	1.43	Valor real	
	Tau	0.013010709		
	Tau	0.015010/09		
	Corrente de curto	25.59		
circ	cuito assimétrico - Ica	45.57		
Im	pulso da corrente de			
	eurto circuito - Icim	36.20		
·	ur to Circuito - ICIII			

Quadro 7 – Curto-Circuito no QGF

		IMPEDÂNCIA	\	
	Lc	10	M	Comprimento dos cabos
	Nc	2		Condutores por fase
	Sc	240	mm ²	Seção dos condutores
	R_Cabo	0.0801	mOhms/m	Tabelado
	R_CaboPos_ohm	0.0004005	Ohms	
	R_CaboPos_pu	0.277354571	pu	
	X_Cabo	0.1099	mOhms/m	Tabelado
	X_CaboPos_ohm	0.0005495	Ohms	
	X_CaboPos_pu	0.380540166	pu	
		0.277254570627110+0.2005		
	Z_CaboPos_pu	0.277354570637119+0.3805	pu	
		40166204986j Sequência zero		
		Sequencia zero		
	R_Cabo	0.0801	mOhms/m	Tabelado
	R_CaboPos_ohm	0.0004005	Ohms	
	R_CaboPos_pu	0.277354571	pu	
	X_Cabo	0.1099	mOhms/m	Tabelado
	X_CaboPos_ohm	0.0005495	Ohms	
	X_CaboPos_pu	0.380540166	pu	
	Z_CaboPos_pu	0.277354570637119+0.3805 40166204986j	pu	
		CURTO CIRCUI	ТО	
	_	TRIFÁSICO		
QGF	zeq até o ponto -	1.97735457063712+8.71890		
ď	APENAS SEQ	734311116j		
	POSITIVA			
	Ics	3758.6721585926216573.4131705784j	A (cartesiano)	
	Módulo de Ics	16.99	KA	

Fase de Ics	-77.22	Graus				
	MONOFÁSICO)				
Zeq até este ponto - Lado	5.75470914127424+26.0761					
de	818631285j					
ВТ						
Ieft	3678.4067825415116667.8804911553j	A (cartesiano)				
Módulo de Icft	17.07	A				
Fase de Icft	-77.55	Graus				
ASSIMÉTRICO						
relação X/R	4.41					
Fator de assimetria	1.4	tabelado				
corrente de curto circuito assimétrico - Ics	23.79	(aproximado)				
Impulso da corrente de	33.65					
curto circuito						
Cálculo do fator de	1.41	Valor real				
assimetria	1.41	valui icai				
Tau	0.011696243					
Corrente de curto circuito assimétrico - Ica	23.92					
Impulso da corrente de curto circuito - Icim	33.84					

Quadro 8 – Curto-Circuito no QGF

	IMPEDÂNCIA					
_	Lc	25	m	Comprimento dos cabos		
	Nc	1		Condutores por fase		
	Sc	185	mm²	Seção dos condutores		
	Sequência positiva					
	R_Cabo	0.106	mOhms/m	Tabelado		

	R_CaboPos_ohm	0.00265	Ohms	
	R_CaboPos_pu	1.835180055	pu	
	X_Cabo	0.141	mOhms/m	Tabelado
	X_CaboPos_ohm	0.003525	Ohms	
	X_CaboPos_pu	2.441135734	pu	
	Z_CaboPos_pu	1.83518005540166+2.44113	pu	
		573407202j Sequência zero		
		Sequencia zero		
	R_Cabo	0.106	mOhms/m	Tabelado
	R_CaboPos_ohm	0.00265	Ohms	
_	R_CaboPos_pu	1.835180055	pu	
	X_Cabo	0.141	mOhms/m	Tabelado
	X_CaboPos_ohm	0.003525	Ohms	
		0.4440.7704		
	X_CaboPos_pu	2.441135734	pu	
	Z_CaboPos_pu	1.83518005540166+2.44113	pu	
		573407202j		
		CURTO CIRCUIT	ГО	
Ī		TRIFÁSICO	_	_
⊣	zeq até o ponto -	3.81253462603878+11.1600		
0	APENAS SEQ	430771832j		
Z	POSITIVA	·		
ME				
\\				
BARRAMENTO				
BA				
	Ics	4164.8436502103612191.3212875847j	A (cartesiano)	
	Módulo de Ics	12.88	KA	
	Fase de Ics	-71.14	Graus	
		MONOFÁSICO		
	Zeq até este ponto -	7.86724376731302+28.8978		

Módulo de Icft Fase de Icft -74.77 Graus ASSIMÉTRICO relação X/R 2.93 Fator de assimetria 1.3 tabelado (aproximado) corrente de curto circuito assimétrico - Ics Impulso da corrente de curto circuito Cálculo do fator de assimetria Tau 0.009743431 Corrente de curto circuito assimétrico - Ica Impulso da corrente de	Icft	3997.7627733719614684.5303658612j	A (cartesiano)	
relação X/R 2.93 Fator de assimetria 1.3 tabelado (aproximado) corrente de curto circuito assimétrico - Ics Impulso da corrente de curto circuito Cálculo do fator de assimetria Tau 0.009743431 Corrente de curto circuito assimétrico - Ica Impulso da corrente de	Módulo de Icft	15.22	KA	
relação X/R Fator de assimetria 1.3 tabelado (aproximado) corrente de curto circuito assimétrico - Ics Impulso da corrente de curto circuito Cálculo do fator de assimetria Tau 0.009743431 Corrente de curto circuito assimétrico - Ica Impulso da corrente de	Fase de Icft	-74.77	Graus	
Fator de assimetria 1.3 tabelado (aproximado) corrente de curto circuito assimétrico - Ics Impulso da corrente de curto circuito Cálculo do fator de assimetria Tau 0.009743431 Corrente de curto circuito assimétrico - Ica Impulso da corrente de	_	ASSIMÉTRICO		
Fator de assimetria 1.3 (aproximado) corrente de curto circuito assimétrico - Ics Impulso da corrente de curto circuito Cálculo do fator de assimetria Tau 0.009743431 Corrente de curto circuito assimétrico - Ica Impulso da corrente de	relação X/R	2.93		
assimétrico - Ics Impulso da corrente de curto circuito Cálculo do fator de assimetria Tau Corrente de curto circuito assimétrico - Ica Impulso da corrente de	Fator de assimetria	1.3		
Calculo do fator de assimetria Tau Corrente de curto circuito assimétrico - Ica Impulso da corrente de		16.75		
assimetria Tau 0.009743431 Corrente de curto circuito assimétrico - Ica Impulso da corrente de		23.69		
Corrente de curto circuito assimétrico - Ica Impulso da corrente de		1.36	Valor real	
circuito assimétrico - Ica Impulso da corrente de	Tau	0.009743431		
Impulso da corrente de		17.53		
curto circuito - Icim	Impulso da corrente de curto circuito - Icim	24.79		

Quadro 9 – Curto-Circuito no QGF

Quadro	9 – Curio-Circuito no Q	OI					
	IMPEDÂNCIA						
Le	35	m	Comprimento dos cabos				
Nc	1		Condutores por fase				
Sc	25	mm²	Seção dos condutores				
	Sequência pos	sitiva					
R_Cabo	0.554	mOhms/m	Tabelado				
R_CaboPos_ohm	0.01939	Ohms					
R_CaboPos_pu	13.42797784	pu					
X_Cabo	0.707	mOhms/m	Tabelado				
X_CaboPos_ohm	0.024745	Ohms					
X_CaboPos_pu	17.13642659	pu					

	Z_CaboPos_pu	13.4279778393352+17.1364	pu	
		265927978j Sequência zero		
		Sequencia zero		
	R_Cabo	0.554	mOhms/m	Tabelado
	R_CaboPos_ohm	0.01939	Ohms	
	R_CaboPos_pu	13.42797784	pu	
	X_Cabo	0.707	mOhms/m	Tabelado
	X_CaboPos_ohm	0.024745	Ohms	
	X_CaboPos_pu	17.13642659	pu	
	Z_CaboPos_pu	13.4279778393352+17.1364 265927978j	pu	
		CURTO CIRCUIT	ГО	
		TRIFÁSICO		
2	zeq até o ponto -	15.4053324099723+25.8553		
70	APENAS SEQ	33935909j		
BARRAMENTO 2	POSITIVA			
BARR				
	Ics	2583.947688324974336.7340980786j	A (cartesiano)	
	Módulo de Ics	5.05	A	
	Fase de Ics	-59.21	Graus	
		MONOFÁSICO		
	Zeq até este ponto -	19.4600415512466+43.5931		
	CCM	486221313j		
	Icft	3891.937262802228718.47056844951j	A (cartesiano)	
	Módulo de Icft	9.55	A	
	Fase de Icft	-65.94395	Graus	
		ASSIMÉTRICO		

relação X/R CCM	1.68		
Fator de assimetria	1.13	Tabelado	
		(: 1)	
corrente de curto circuito	5.70	(aproximado)	
assimétrico - Ics			
Impulso da corrente de	8.07		
curto circuito	0.07		
Cálculo do fator de	1.14	Valor real	
assimetria	1.17	valor rear	
Tau	0.004451926225		
Corrente de curto	5.77		
circuito assimétrico - Ica	3.11		
Impulso da corrente de	8.17		
curto circuito- Icim	0.17		
7			

Quadro 10 – Resumo do Cálculo de Corrente de Curto-Circuito

IMPEDÂNCIA					
Lc	30	m	Comprimento dos cabo		
Nc	1		Condutores por fase		
Sc	150	mm²	Seção dos condutores		
	Sequência positiv	a			
R_Cabo	0.129	mOhms/m	Tabelado		
R_CaboPos_ohm	0.00387	Ohms			
R_CaboPos_pu	2.680055402	pu			
X_Cabo	0.169	mOhms/m	Tabelado		
X_CaboPos_ohm	0.00507	Ohms			
X_CaboPos_pu	3.511080332	pu			
Z_CaboPos_pu	2.68005540166205+3.51108 033240997j	pu			
	Sequência zero				
R_Cabo	0.129	mOhms/m	Tabelado		
R_CaboPos_ohm	0.00387	Ohms			

AENTO 3
BARRAMENTO 3

R_CaboPos_pu	2.680055402	pu	
V. Caba	0.169	mOhms/m	Tabelado
X_Cabo	0.169	Ohms	Tabelado
X_CaboPos_ohm	0.00507	Onms	
X_CaboPos_pu	3.511080332	pu	
Z_CaboPos_pu	2.68005540166205+3.51108	pu	
	033240997j		
	CURTO CIRCUIT	го	
	TRIFÁSICO	_	
	4 (27 4000 7000 47 40 0000		
zeq até o ponto -	4.65740997229917+12.2299		
APENAS SEQ	876755211j		
POSITIVA			
	4131.7496010360310849.6454036802j		
Ics	+131.7+700103003100+7.0+3+030002j	A (cartesiano)	
Módulo de Ics	11.61	KA	
Fase de Ics	-69.15	Graus	
	MONOFÁSICO		
	MONOFASICO		
Zeq até este ponto -	8.71211911357341+29.9678		
CCM	023617434j		
Icft	4077.1357058761214024.4635596571j	A (cartesiano)	
M(d.l. J. T.G	1471	TZ A	
Módulo de Icft	14.61	KA	
Fase de Icft	-73.79	Graus	
	ASSIMÉTRICO		
relação X/R CCM	2.63		
Fator de assimetria	1.26	Tabelado	
		(aproximado)	
corrente de curto circuito	14.63		
assimétrico - Ics			
Impulso da corrente de	20.69		
curto circuito			

Cálculo do fator de assimetria	1.27	Valor real	
Tau	0.00696547009350		
Corrente de curto circuito assimétrico - Ica	14.71		
Impulso da corrente de curto circuito - Icim	20.81		

2.3.4. Resumo dos Cálculos de Curto-Circuito

Quadro 10 - Resumo do Cálculo de Corrente de Curto-Circuito

	Corrente de curto-circuito			
Setor	Trifásico (Ics) - kA	Monofásico franco (Icft) - kA	Fator de assimetria	Corrente de curto assimétrica (Ica) - kA
Ponto de entrega	8.20	6.81	2.18	17.87
Secundário do transformador	17.85	17.64	1.43	25.59
QGF	16.99	17.07	1.41	23.92
Barramento área 1	12.88	15.22	1.36	17.53
Barramento área 2	5.05	9.55	1.14	5.77
Barramento área 3	11.61	14.61	1.27	14.71

Fonte: o autor.

2.4. DIMENSIONAMENTO DOS CONDUTORES E DISJUNTORES DE BT

Os dados levantados referem-se especificamente aos níveis de curtocircuito no transformador, tanto no lado primário (rede de média tensão) quanto no lado secundário (rede de baixa tensão). Esses valores foram inicialmente calculados com o auxílio do Excel, onde se consideraram as características do sistema e os parâmetros de base do projeto.

A partir desses resultados, foi possível iniciar o dimensionamento dos condutores

elétricos. Para essa etapa, utilizou-se o DCE, software desenvolvido pela Prysmian, reconhecido no setor elétrico pela precisão e confiabilidade, além de ser uma ferramenta gratuita amplamente adotada em projetos profissionais. O programa permitiu simular a instalação dos cabos conforme as configurações específicas da rede de média e baixa tensão do projeto.

Vale destacar que, por medida de segurança, o valor de corrente de curto-circuito inserido no DCE foi ligeiramente superior ao calculado no Excel. Enquanto o cálculo realizado para o QGF indicava uma corrente de 17,85kA, no DCE foi adotado um valor de 18 kA, incorporando assim um fator de segurança ao projeto.

Para o projeto de distribuição elétrica, foi adotado um critério de limite máximo de queda de tensão conforme estabelece a norma ABNT NBR 5410, que recomenda uma queda total não superior a 7% entre a origem da instalação e os pontos de consumo final em instalações alimentadas por rede pública.

O projeto foi dividido em trechos distintos, sendo atribuída uma margem de queda específica para cada um:

- 2% de queda de tensão do transformador até o QDF (Quadro de Distribuição Final);
- 2% de queda entre o QDF e as áreas internas da planta industrial (Áreas 1, 2 e 3);
- 3% de queda de tensão até o campo externo, onde estão instalados os motores e aquecedores.

A soma desses valores totaliza **7% de queda de tensão admissível**, atendendo integralmente os limites estabelecidos pela norma e garantindo o funcionamento adequado dos equipamentos, com eficiência energética e segurança operacional.

Figura 2 – Dados do circuito DCE

No projeto dos circuitos, escolhemos dispor os cabos de forma contígua e em apenas uma camada sobre os leitos. Essa escolha foi feita pensando numa melhor organização dos condutores, facilitando tanto a instalação quanto futuras manutenções.

Além de deixar o layout mais limpo e bem distribuído, essa configuração também ajuda na **dissipação do calor** gerado pelos cabos durante o funcionamento, o que contribui para a segurança e o bom desempenho do sistema. Essa prática segue as recomendações técnicas e ainda garante mais eficiência na hora de distribuir a fiação pelos caminhos definidos no projeto.

Figura 3 – Dados do circuito DCE

Todos os cálculos realizados levaram em consideração o fator de agrupamento, garantindo que o dimensionamento dos circuitos fosse feito de forma correta e segura. Essa prática é fundamental para assegurar que os condutores suportem as condições reais de instalação, evitando sobreaquecimento e possíveis falhas, especialmente quando vários cabos estão instalados juntos em leitos ou eletrocalhas.

Figura 4 – Dados do circuito DCE

A seguir, são apresentados os cálculos de dimensionamento dos condutores aplicados aos principais circuitos do projeto elétrico, abrangendo o Quadro de Distribuição Final (QDF), os motores, os circuitos auxiliares e os aquecedores. Todos os cálculos foram realizados considerando os parâmetros definidos em projeto e seguindo as exigências das normas técnicas vigentes, em especial a ABNT NBR 5410.

Figura 5 – Dados do circuito DCE

DIMENSIONAMENTO DE C	CIRCUITOS ELÉTRICOS 4.0	Página:1 03/06/2025	
Projeto: CABOS ALIMENTADORES DOS BARRAMENTOS			
Circuito: TR_QGF			
Dados de entrada			
Maneira de instalar:	Leito		
Sistema:	Trifásico+Terra(3F+N+T)(Equil)		
Cabo:	Cabo GSETTE IRISTECH 0,6/1kV unipolar		
Número de condutores por fase :	Automático		
Seção nominal do condutor imposta :	240 mm2		
Seção mínima de cada condutor:	2.5 mm2		
Temperatura ambiente:	35 oC		
Conteúdo de harmônicas:	0 %		
Dispensada verificação contra contatos indiretos			
Dispensada verificação contra sobrecarga			
Comprimento do circuito	10.0 m		
Queda de tensão máxima admitida :	2.00 %		
Tensão fase/fase :	380 V		
Tensão fase/neutro :	219.39 V		
Fator de correção de agrupamento :	Automático		
Corrente c.c. presumida (Ikmax):	18.0 kA		
Número de camadas de cabos	Uma		
Número de circuitos ou de cabos multipolares	1		
Disposição dos cabos	Contíguos		
Corrente do circuito :	872.5 A		
Fator de potência do circuito :	0.91		
Fator de demanda :	1.00		
Valores calculados			
Seção nominal dos condutores :	2 x 240 mm2		
Critério de dimensionamento:	Capacidade de corrente		
Capacidade de condução de corrente :	2 x 529.5 A		
Fator de correção de agrupamento :	0.87		
Fator de correção de temperatura :	0.96		
Resistência em CA de cada condutor :	0.0978 ohm/km		
Reatância indutiva de cada condutor :	0.1673 ohm/km		
Queda de tensão efetiva :	0.31 %		
Icc presumida mínima ponto extremo (Ikmin) :	6.24e+004 A		
I2t de cada condutor para Ikmax :	1.24e+009 A		
I2t de cada condutor para Ikmin :	1.19e+009 A		
Tempo máximo para atuação da proteção para Ikmax :	3.82e+000 s		
Seção nominal do condutor neutro :	2 x 120 mm2		

Figura 7 – Dimensionamento de Cabos QGF-AREA 1

Página:1 DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0 03/06/2025 CABOS ALIMENTADORES DOS BARRAMENTOS Circuito: QGF_AREA1 Dados de entrada Maneira de instalar: Leito Sistema: Trifásico+Terra(3F+N+T)(Equil) Cabo: Cabo GSETTE IRISTECH 0,6/1kV unipolar Número de condutores por fase : Automático Seção nominal do condutor : Automática Seção mínima de cada condutor: 2.5 mm2 Temperatura ambiente: 35 oC Conteúdo de harmônicas: 0 % Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga Comprimento do circuito 25.0 m Queda de tensão máxima admitida : 2.00 % Tensão fase/fase: 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático 17.0 kA Corrente c.c. presumida (Ikmax): Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 1 Disposição dos cabos Contíguos Corrente do circuito: 520.9 A Fator de potência do circuito: 0.86 Fator de demanda: 1.00 Valores calculados 1 x 240 mm2 Seção nominal dos condutores : Critério de dimensionamento: Capacidade de corrente Capacidade de condução de corrente : 1 x 608.6 A Fator de correção de agrupamento : 1.00 Fator de correção de temperatura : 0.96 Resistência em CA de cada condutor : 0.0978 ohm/km Reatância indutiva de cada condutor : 0.1673 ohm/km Queda de tensão efetiva: 1.01 % Icc presumida mínima ponto extremo (Ikmin): 2.50e+004 A 12t de cada condutor para Ikmax : 1.24e+009 A I2t de cada condutor para Ikmin : 1.22e+009 A

4.29e+000 s

1 x 120 mm2

Fonte: o autor.

Tempo máximo para atuação da proteção para Ikmax :

Seção nominal do condutor neutro :

Figura 8 – Dimensionamento de Cabos QGF-AREA 2

	DIMENSIONAMENTO DE C	CIRCUITOS ELÉTRICOS 4.0	Página:1 03/06/2025
Projeto :	CABOS ALIMENTADORES DOS BARRAMENTOS		
Circuito :	QGF_AREA2		
Dados de	e entrada		
Maneir	ra de instalar:	Leito	
Sistem	a:	Trifásico+Terra(3F+N+T)(Equil)	
Cabo:		Cabo GSETTE IRISTECH 0,6/1kV unipolar	
Númer	o de condutores por fase :	Automático	
Seção	nominal do condutor :	Automática	
Seção	mínima de cada condutor:	2.5 mm2	
Tempe	eratura ambiente:	35 oC	
Conteú	ído de harmônicas:	0 %	
Dispen	sada verificação contra contatos indiretos		
Dispen	sada verificação contra sobrecarga		
Compr	rimento do circuito	35.0 m	
Queda	de tensão máxima admitida :	2.00 %	
Tensão	o fase/fase :	380 V	
Tensão	o fase/neutro :	219.39 V	
Fator	de correção de agrupamento :	Automático	
Corren	te c.c. presumida (Ikmax):	17.0 kA	
Númer	o de camadas de cabos	Uma	
Númer	o de circuitos ou de cabos multipolares	1.	
Dispos	ição dos cabos	Contíguos	
Corren	te do circuito :	104.5 A	
Fator	de potência do circuito :	0.81	
Fator	de demanda :	1.00	
Valores o	calculados		
Seção	nominal dos condutores :	1 x 25 mm2	
Critério	o de dimensionamento:	Capacidade de corrente	
Capaci	idade de condução de corrente :	1 x 135.4 A	
Fator	de correção de agrupamento :	1.00	
Fator	de correção de temperatura :	0.96	
Resisté	ência em CA de cada condutor :	0.9272 ohm/km	
Reatâr	ncia indutiva de cada condutor :	0.1854 ohm/km	
Queda	de tensão efetiva :	1.43 %	
Icc pre	esumida mínima ponto extremo (Ikmin) :	2.32e+003 A	
I2t de	cada condutor para Ikmax :	1.30e+007 A	
I2t de	cada condutor para Ikmin :	1.45e+007 A	
Tempo	máximo para atuação da proteção para Ikmax :	4.49e-002 s	
Seção	nominal do condutor neutro :	1 x 25 mm2	

Figura 9 – Dimensionamento de Cabos QFG-AREA 3

117

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DOS BARRAMENTOS

Circuito: QGF_AREA3

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra(3F+N+T)(Equil)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV unipolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 30.0 m Queda de tensão máxima admitida : 2.00 % Tensão fase/fase : 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 1 Disposição dos cabos Contíguos

Corrente do circuito : 401.0 A
Fator de potência do circuito : 0.95
Fator de demanda : 1.00

Valores calculados

Seção nominal dos condutores : 1 x 150 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : $1 \times 445.4 \text{ A}$ Fator de correção de agrupamento : 1.00 Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.1591 ohm/km Reatância indutiva de cada condutor : 0.1694 ohm/km Queda de tensão efetiva : 1.12 % Icc presumida mínima ponto extremo (Ikmin): 1.41e+004 A I2t de cada condutor para Ikmax : 4.79e+008 A I2t de cada condutor para Ikmin : 4.83e+008 A Tempo máximo para atuação da proteção para Ikmax : 1.66e+000 s Seção nominal do condutor neutro: 1 x 70 mm2

Figura 10 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 1

ii =

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA1_MOTOR 1

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m

Queda de tensão máxima admitida em regime : 3.00 %

Queda de tensão máxima admitida na partida : 10.00 %

Tensão fase/fase : 380 V

Fator de correção de agrupamento : Automático

Corrente c.c. presumida (Ikmax): 17.0 kA

Número de camadas de cabos Uma

Número de circuitos ou de cabos multipolares 4

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(ev)	(A)	na partida
1	84,70	0,85	SIM	60,00	635,00	0,30

Corrente do circuito em regime: 84.7 A

Fator de potência do circuito em regime: 0.85

Corrente do circuito na partida: 635.0 A

Fator de potência do circuito na partida: 0.30

Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 25 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 97.5 A
Fator de correção de agrupamento : 0.80
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.9274 ohm/km
Reatância indutiva de cada condutor : 0.0978 ohm/km

Figura 11 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 2

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA1_MOTOR 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m

Queda de tensão máxima admitida em regime : 3.00 %

Queda de tensão máxima admitida na partida : 10.00 %

Tensão fase/fase : 380 V

Fator de correção de agrupamento : Automático

Corrente c.c. presumida (Ikmax): 17.0 kA

Número de camadas de cabos Uma

Número de circuitos ou de cabos multipolares 4

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(ev)	(A)	na partida
1	203,00	0,86	SIM	150,00	1.603,00	0,30

Corrente do circuito em regime: 203.0 A
Fator de potência do circuito em regime: 0.86
Corrente do circuito na partida: 1603.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 95 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 228.9 A
Fator de correção de agrupamento : 0.80
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.2479 ohm/km
Reatância indutiva de cada condutor : 0.0903 ohm/km

Figura 12 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 3

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA1_MOTOR 3

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m

Queda de tensão máxima admitida em regime: 3.00 %

Queda de tensão máxima admitida na partida: 10.00 %

Tensão fase/fase: 380 V

Fator de correção de agrupamento: Automático

Corrente c.c. presumida (Ikmax): 17.0 kA

Número de camadas de cabos Uma

Número de circuitos ou de cabos multipolares 4

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(ev)	(A)	na partida
1	30,20	0,81	SIM	20,00	257,00	0,30

Corrente do circuito em regime: 30.2 A
Fator de potência do circuito em regime: 0.81
Corrente do circuito na partida: 257.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 4 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 32.3 A
Fator de correção de agrupamento : 0.80
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 5.8782 ohm/km
Reatância indutiva de cada condutor : 0.1153 ohm/km

Figura 13 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 4

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA1_MOTOR 4

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor :
 2.5 mm2

 Temperatura ambiente :
 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m

Queda de tensão máxima admitida em regime : 3.00 %

Queda de tensão máxima admitida na partida : 10.00 %

Tensão fase/fase : 380 V

Fator de correção de agrupamento : Automático

Corrente c.c. presumida (Ikmax): 17.0 kA

Número de camadas de cabos Uma

Número de circuitos ou de cabos multipolares 4

Motores considerados

Quantidade de	corrente nominal (A)	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais		em regime	partida ?	(ev)	(A)	na partida
1	203,00	0,86	SIM	150,00	1.603,00	0,30

Corrente do circuito em regime: 203.0 A
Fator de potência do circuito em regime: 0.86
Corrente do circuito na partida: 1603.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 95 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : $1 \times 228.9 \text{ A}$ Fator de correção de agrupamento : 0.80 Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.2479 ohm/km
Reatância indutiva de cada condutor : 0.0903 ohm/km

Figura 14 – Dimensionamento de Cabos - ÁREA 2 - MOTOR 5

Página:1 DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0 03/06/2025 CABOS ALIMENTADORES DAS CARGAS Circuito: AREA2_MOTOR 5 Dados de entrada Maneira de instalar: Leito Sistema: Trifásico+Terra (3F+T) Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar Número de condutores por fase : Automático Seção nominal do condutor : Automática Seção mínima de cada condutor: 2.5 mm2 Temperatura ambiente: 35 oC Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga Comprimento do circuito 5.0 m Queda de tensão máxima admitida em regime : 3.00 % Queda de tensão máxima admitida na partida : 10.00 % Tensão fase/fase : 380 V Fator de correção de agrupamento: Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3 Motores considerados Quantidade de Fator de potência Considera na Potência Corrente na partida Fator de potência corrente nominal motores iguais (A) partida? (cv) (A) na partida em regime 20,00 30,20 0,81 257,00 0,30 1 SIM Corrente do circuito em regime: 30.2 A Fator de potência do circuito em regime: 0.81 Corrente do circuito na partida: 257.0 A Fator de potência do circuito na partida: 0.30 Fator de demanda: 1.00 Valores calculados Seção nominal dos condutores : 1 x 4 mm2 Critério de dimensionamento: Capacidade de corrente Capacidade de condução de corrente : 1 x 33.1 A Fator de correção de agrupamento : 0.82 Fator de correção de temperatura : 0.96 Resistência em CA de cada condutor : 5.8782 ohm/km Reatância indutiva de cada condutor : 0.1153 ohm/km

Figura 15 – Dimensionamento de Cabos - ÁREA 2 - MOTOR 6

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA2_MOTOR 6

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida em regime : 3.00 % Queda de tensão máxima admitida na partida : 10.00 % Tensão fase/fase : 380 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(ev)	(A)	na partida
1	30,20	0,81	SIM	20,00	257,00	0,30

Corrente do circuito em regime: 30.2 A
Fator de potência do circuito em regime: 0.81
Corrente do circuito na partida: 257.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 4 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 33.1 A
Fator de correção de agrupamento : 0.82
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 5.8782 ohm/km
Reatância indutiva de cada condutor : 0.1153 ohm/km

Figura 16 – Dimensionamento de Cabos - ÁREA 2 - MOTOR 7

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA2_MOTOR 7

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida em regime : 3.00 % Queda de tensão máxima admitida na partida : 10.00 % Tensão fase/fase: 380 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(cv)	(A)	na partida
1	44,10	0,81	SIM	30,00	353,00	0,30

Corrente do circuito em regime: 44.1 A
Fator de potência do circuito em regime: 0.81
Corrente do circuito na partida: 353.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 59.0 A

Fator de correção de agrupamento : 0.82
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 2.3336 ohm/km
Reatância indutiva de cada condutor : 0.1041 ohm/km

Figura 17 – Dimensionamento de Cabos - ÁREA 3 - AUXILIAR 1

Página:1 DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0 03/06/2025 CABOS ALIMENTADORES DAS CARGAS Circuito: AREA3_AUXILIAR 1 Dados de entrada Maneira de instalar: Leito Sistema: Trifásico (3F+N)(Equilibrado) Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar Número de condutores por fase : Automático Seção nominal do condutor: Automática Seção mínima de cada condutor: 2.5 mm2 Temperatura ambiente: 30 oC Conteúdo de harmônicas: 0 % Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V Tensão fase/neutro: 219.39 V Automático Fator de correção de agrupamento : Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares Corrente do circuito: 132.2 A Fator de potência do circuito : 0.92 Fator de demanda: 1.00 Valores calculados Seção nominal dos condutores : 1 x 35 mm2 Critério de dimensionamento: Capacidade de corrente Capacidade de condução de corrente : 1 x 137.5 A Fator de correção de agrupamento : 0.87 Fator de correção de temperatura : 1.00 Resistência em CA de cada condutor : 0.6688 ohm/km Reatância indutiva de cada condutor : 0.0943 ohm/km Queda de tensão efetiva: 0.20 % Icc presumida mínima ponto extremo (Ikmin): 2.28e+004 A I2t de cada condutor para Ikmax : 2.55e+007 A I2t de cada condutor para Ikmin: 2.54e+007 A Tempo máximo para atuação da proteção para Ikmax : 8.84e-002 s Seção nominal do condutor neutro: 1 x 35 mm2 Ver condições para redução do condutor neutro

Figura 18 – Dimensionamento de Cabos - ÁREA 3 - AUXILIAR 2

Ni =

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AUXILIAR 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 30 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V 219.39 V Tensão fase/neutro: Fator de correção de agrupamento: Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 2 Corrente do circuito: 132.2 A Fator de potência do circuito: 0.92 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 35 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 137.5 A

Fator de correção de agrupamento : 0.87
Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 0.6688 ohm/km

Reatância indutiva de cada condutor : 0.0943 ohm/km

Queda de tensão efetiva : 0.20 %

Icc presumida mínima ponto extremo (Ikmin):

2.28e+004 A

I2t de cada condutor para Ikmax:

2.55e+007 A

I2t de cada condutor para Ikmin:

2.54e+007 A

Tempo máximo para atuação da proteção para Ikmax:

8.84e-002 s

Seção nominal do condutor neutro:

1 x 35 mm2

Ver condições para redução do condutor neutro

Figura 19 – Dimensionamento de Cabos - ÁREA 3 – AQUECIMENTO 1

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AQUECIMENTO 1

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 30 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3 Corrente do circuito: 45.6 A

Valores calculados

Fator de demanda:

Fator de potência do circuito:

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

1.00

1.00

Capacidade de condução de corrente : 1 x 61.5 A
Fator de correção de agrupamento : 0.82
Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 2.3336 ohm/km Reatância indutiva de cada condutor : 0.1041 ohm/km Queda de tensão efetiva: 0.24 % Icc presumida mínima ponto extremo (Ikmin): 6.50e+003 A I2t de cada condutor para Ikmax : 2.07e+006 A 12t de cada condutor para Ikmin : 2.10e+006 A Tempo máximo para atuação da proteção para Ikmax : 7.15e-003 s Seção nominal do condutor neutro : 1 x 10 mm2

Ver condições para redução do condutor neutro

Figura 20 – Dimensionamento de Cabos - ÁREA 3 – AQUECIMENTO 2

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AQUECIMENTO 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 30 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V 219.39 V Tensão fase/neutro: Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3 Corrente do circuito: 45.6 A Fator de potência do circuito: 1.00 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 61.5 A

Fator de correção de agrupamento : 0.82
Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 2.3336 ohm/km Reatância indutiva de cada condutor : 0.1041 ohm/km Queda de tensão efetiva: 0.24 % Icc presumida mínima ponto extremo (Ikmin): 6.50e+003 A I2t de cada condutor para Ikmax : 2.07e+006 A 12t de cada condutor para Ikmin : 2.10e+006 A Tempo máximo para atuação da proteção para Ikmax : 7.15e-003 s Seção nominal do condutor neutro: 1 x 10 mm2

Ver condições para redução do condutor neutro

Figura 20 – Dimensionamento de Cabos - ÁREA 3 – AQUECIMENTO 3

11

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AQUECIMENTO 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

Número de condutores por fase : Automático
Seção nominal do condutor : Automática
Seção mínima de cada condutor: 2.5 mm2
Temperatura ambiente: 30 oC
Conteúdo de harmônicas: 0 %

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V 219.39 V Tensão fase/neutro: Fator de correção de agrupamento: Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma 3 Número de circuitos ou de cabos multipolares Corrente do circuito: 45.6 A Fator de potência do circuito: 1.00 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 61.5 A

Fator de correção de agrupamento : 0.82

Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 2.3336 ohm/km

Reatância indutiva de cada condutor : 0.1041 ohm/km

Queda de tensão efetiva : 0.24 %

Icc presumida mínima ponto extremo (Ikmin) : 6.50e+003 A

I2t de cada condutor para Ikmax : 2.07e+006 A

12t de cada condutor para Ikmax : 2.07e+006 A

12t de cada condutor para Ikmin : 2.10e+006 A

Tempo máximo para atuação da proteção para Ikmax : 7.15e-003 s

Seção nominal do condutor neutro : 1 x 10 mm2

Ver condições para redução do condutor neutro

Quadro 11 – Resumo do Dimensionamento de Cabos

					Cabo (m	ım²)		Capacidade de	Modelo de disjuntor	
								Corrente do cabo (A)	Sugerido (Siemens)	
Aréa	Carga	Potência Mecânica (CV)	Potência Aparente (KVA)				Corrente(A)			Disjuntor (A)
				3F+N	PE	Cabo Gsette VFD				
						(Inversor)				
	Motor 1	60	52.94	-	-	1x(3x25+16)	84.70	97.5	3VM1116-3ED32-0AA0	80 – 160
1	Motor 2	150	127.91	-	-	1x(3x95+50)	203.00	228.9	3VM1216-3ED32-0AA0	160 – 250
•	Motor 3	20	18.52	-	-	1x(3x4+4)	30.20	32.3	3VM1016-3ED32-0AA0	16 – 63
	Motor 4	150	127.91	-	-	1x(3x95+50)	203.00	228.9	3VM1216-3ED32-0AA0	160 – 250
	Motor 5	20	18.52	-	-	1x(3x4+4)	30.20	32.3	3VM1016-3ED32-0AA0	16 – 63
2	Motor 6	20	18.52	-	-	1x(3x4+4)	30.20	32.3	3VM1016-3ED32-0AA0	16 – 63
	Motor 7	30	27.16	-	-	1x(3x6+6)	44.10	59	3VM1016-3ED32-0AA0	16 – 63
	Auxiliar	-	86.96	1x(4x35,0mm ²)	1x16,0mm ²		132.12	137.5	3VM1116-3ED32-0AA0	80 – 160
	Auxiliar	-	86.96	1x(4x35,0mm²)	1x16,0mm ²	-	132.12	137.5	3VM1116-3ED32-0AA0	80 – 160
3	Aquecimento 1	-	30.00	1x(4x10,0mm²)	1x10,0mm ²	1	45.58	61.5	3VM1016-3ED32-0AA0	16 – 63
	Aquecimento 2	-	30.00	1x(4x10,0mm²)	1x10,0mm ²	-	45.58	61.5	3VM1016-3ED32-0AA0	16 – 63
	Aquecimento 3	-	30.00	1x(4x10,0mm ²)	1x10,0mm ²	-	45.58	61.5	3VM1016-3ED32-0AA0	16 – 63
Total	-	-	655.38	-	-	-	1026.37	-	-	
Aréa	Carga	Potência Mecânica (CV)	Potência Aparente (KVA)		Cabo (m	ım²)	Corrente(A)	Capacidade de	Modelo de disjuntor	Disjuntor (A)
								Corrente do cabo (A)	Sugerido (Siemens)	
				3F+N	PE	Cabo Gsette VFD				
						(Inversor)				
-	TRAFO_QGF	-	TRAFO 750	8x(1x240,0mm²)	2x(1x120,0mm²)	-	872.42	2 x 529,5	3VA2612-6HN32-0AA0	500 - 1250
1	QGF_Area1	-	327.27	4x(1x240,0mm²)	1x120,0mm ²	-	520.90	608.6	3VM1463-5EE32-0AA0	441 – 630
2	QGF_Area2	-	64.20	1x(4x25,0mm²)	1x16,0mm ²	-	104.50	135.4	3VM1112-3EE32-0AA0	88 – 125
3	QGF_Area2	-	263.91	1x(4x150,0mm ²)	1x95,0mm ²		400.97	445.4	3VM1450-4EE32-0AA0	350 – 500

2.5. METODO DE PARTIDA DOS MOTORES

No projeto, foi adotado o inversor de frequência como método de partida dos motores por oferecer maior controle, segurança e eficiência. Diferente da partida direta, o inversor realiza a aceleração de forma suave, evitando picos de corrente e reduzindo o desgaste mecânico.

Comparando com o soft starter, ambos oferecem partida suave, mas o inversor se destaca por controlar a velocidade durante toda a operação, enquanto o soft starter atua apenas na partida e parada. Além disso, o inversor permite ajustes finos de velocidade conforme a demanda, gerando economia de energia e mais flexibilidade no processo.

O inversor também possui mais funções de proteção integradas, garantindo maior segurança ao sistema. Por isso, sua escolha representa uma

solução mais completa e eficiente para aplicações que exigem controle contínuo e desempenho otimizado.

Utilizei o inversor CFW110024T4SZ no meu projeto porque ele oferece controle eficiente de motores trifásicos de até 2,2 kW (3 CV), possui interface de operação simples, comunicação via Modbus, e é ideal para aplicações industriais de pequeno e médio porte. Além disso, seu tamanho compacto e boa relação custo-benefício o tornam adequado para otimizar o desempenho e a economia de energia do sistema.

Foram utilizados dois modelos de inversores de frequência da linha CFW11 da WEG. O primeiro, aplicado ao motor de menor potência (20 CV – 15 kW), possui corrente nominal de 30,2 A, e por isso foi utilizado um modelo da linha compatível com essa corrente, como o CFW110036T4SZ, que suporta até 36 A. O segundo, destinado ao motor de maior potência (150 CV – 110 kW), foi o CFW110180T4ODBZ, com capacidade para até 180 A.

A escolha desses inversores foi baseada na compatibilidade com a corrente nominal dos motores, garantindo funcionamento seguro e eficiente. Os inversores CFW11 oferecem controle vetorial e escalar, com ajuste automático de parâmetros, partida suave, proteção contra sobrecargas e integração com sistemas de automação via protocolos como Modbus, Profibus e DeviceNet.

A escolha da marca WEG se justifica por sua reconhecida qualidade no mercado nacional e internacional, ampla rede de suporte técnico, disponibilidade de peças de reposição e facilidade de integração com outros equipamentos industriais. Além disso, a padronização de soluções com equipamentos da mesma marca facilita a manutenção, operação e confiabilidade do sistema como um todo.

2.6. CORREÇÃO DO FATOR DE POTÊNCIA

2.6.1. Dimensionamento dos Capacitores

Potência Ativa (kW): Esta é a potência ativa da carga, que é consumida pelo equipamento para realizar trabalho. Este valor é geralmente conhecido ou medido para cada "Área".

Potência Aparente (kVA): Esta é a potência total, incluindo tanto a potência ativa quanto a reativa. É calculada a partir da potência ativa e do fator de potência inicial (ou ângulo).

Potência Reativa (kVAr): Esta é a potência reativa inicial da carga. É a potência que circula entre a fonte e a carga, não realizando trabalho útil, mas necessária para a operação de cargas indutivas (como motores, transformadores). Este valor é calculado utilizando a potência ativa e o fator de potência inicial.

Fator de Potência Antigo: Este é o fator de potência inicial do sistema para cada área antes da correção. É o cosseno do "Ângulo antigo (°)".

Ângulo antigo (°): Este é o ângulo de fase entre a tensão e a corrente antes da correção do fator de potência. É derivado do "Fator de Potência Antigo" utilizando a função arco cosseno (cos-1(FPantigo)).

Ângulo novo (°): Este é o ângulo de fase alvo após a correção do fator de potência. É derivado do "Novo Fator de Potência" utilizando a função arco cosseno (cos-1(FPnovo)). O "Novo Fator de Potência" é o fator de potência desejado, geralmente próximo de 0,92 ou 0,95, conforme regulamentações ou metas de eficiência.

Multiplicador do Fator de Potência: Este é um fator utilizado nos cálculos para determinar a potência reativa necessária. Ele é derivado das tangentes dos ângulos antigo e novo:

Quadro 11 – Resumo de Correção de Fator de Potência

						BANCO DE CAPAC	CITORES			
	Ängulo	Ängulo	Potência	Potência Aparente	Potência	Fator de	Multiplicador	Potência Necessária	Potência	Novo Fator de
	antigo (°)	novo (°)	Ativa (kW)	(kVA)	Reativa (kVAr)	Potência Antigo	do Fator de	Nova (kVAr) - Tabelada	Necessária Nova	Potência
							Potência		(kVAr) -	
									Calculada	
Área 1	31.18	23.07	280.00	327.27	169.43	0.86	0.198	55.44	50.15	0.92
Área 2	35.90	23.07	52.00	64.20	37.65	0.81	0.298	15.50	15.50	0.92
Área 3	18.69	-	250.00	263.91	84.56	0.95	-	-	-	-
Total	24.49	19.95	582.00	643.74	275.10	0.91	0.093	54.13	63.86	0.94

Potência Necessária Nova (kVAr) - Calculada: Esta é a parte mais crucial. A nova potência reativa necessária do banco de capacitores para corrigir o fator de potência é calculada multiplicando a potência ativa pelo "Multiplicador do Fator de Potência":

$$Q_c = P imes (tan(heta_{antigo}) - tan(heta_{novo}))$$

- Qc é a potência reativa necessária do banco de capacitores (Potência Necessária Nova).
- P é a potência ativa (Potência Ativa).
- θantigo é o ângulo antigo.
- θnovo é o novo (alvo) ângulo.

2.6.2. Capacitores Escolhidos

Figura 21 – Dimensionamento dos Bancos de Capacitores

20 00 00 00 00 00 00 00 00 00 00 00 00 0	BANCO DE CAPACITORES						
	Capacitor (Siemens)						
Área 1	2x 5kVar - B32343 - C3051 - Z080 / 2x 10kVar - B32344 - E3101 - Z080 / 2x 15kVar - B32344 - E3151 - Z080						
Área 2	4x 2,5kVar - B32343 - C3021 - Z580 / 2x 5kVar - B32343 - C3051 - Z080						
Total	2x 5kVar - B32343 - C3051 - Z080 / 2x 10kVar - B32344 - E3101 - Z080 / 2x 20kVar - B32344 - E3201 - Z080						

Fonte: o autor.

Na tabela de capacitores escolhidos, vemos apenas o dimensionamento dos bancos de capacitores apenas para as áreas 1 e 2, pois a área 3 já possui um fator de potência aceitável (mais próximo de 1). Como uma solução mais viável financeiramente para o cliente na linha "Total" está sendo dimensionado um painel de banco de capacitores para o seu sistema como um todo, se acaso cliente deseje realizar a correção de fator de potência em um único painel, o qual será localizado ao lado do transformador, em vez de fazer a correção individualmente por área.

2.7. PROJETO LUMINOTÉCNICO

De acordo com a NBR ISO/CIE 8995-1:2013, que estabelece os requisitos de iluminância para ambientes de trabalho interiores, foi adotado o valor de 300 lux como iluminância média mantida no plano de trabalho, considerando as atividades desempenhadas no setor industrial de papel. O ambiente em estudo trata-se de um galpão com dimensões de 20x15 metros e pé-direito de 3,5 metros.

As luminárias foram instaladas a 0,8 metro abaixo do teto, com o objetivo de garantir uma distribuição uniforme da luz e evitar ofuscamentos diretos ou reflexos indesejados. A superfície de cálculo luminotécnico foi definida a 0,75 metro do piso, conforme recomendado pela norma para postos de trabalho em pé ou sentados, representando a zona visual relevante das atividades operacionais.

Foram realizados dois estudos distintos: um utilizando luminárias fluorescentes com 4 lâmpadas de 32W, cujo cálculo foi realizado manualmente com base nos métodos tradicionais da engenharia luminotécnica; e outro com luminárias LED de 75W da marca OplusLED, modelo Suriname, calculado por meio do software DIALux, permitindo simulação tridimensional e análise conforme os critérios técnicos da norma vigente.

Estudo 01:

Indice local

$$hm=$$
 Pé direiro $-$ (hluminaria $+$ Area de Trabalho) $hm=3.5-(0.8+0.75)$ $hm=1.95$

$$K = \frac{lc}{hm(l+c)} = K = \frac{20x15}{1,95(20+15)}$$
$$K = 4,35$$

• Teto branco = 7

• Parede Clara = 5

• Piso Escuro = 1

• Refletância: 751

• Coeficiente: 0,72

Figura 22 – Tabela 13.8 – Livro Instalações Eletricas - Helio Creder - 15 edição

Tabela 13.8 Índice de reflexão típica

Índice	Reflexão	Significado
1	10 %	Superfície escura
3	30 %	Superfície média
5	50 %	Superficie clara
7	70 %	Superficie branca

Fonte: Livro Instalações Eletricas - Helio Creder - 15 edição

Fator de depreciação: 0,67.

Figura 23 – Tabela D.2 – ABNT NBR ISO/CIE 8995-1:2013

Tabela D.2 – Exemplos de fatores de manutenção para sistemas de iluminação de interiores com lâmpadas fluorescentes

Fator de manutenção	Exemplo					
0,80	Ambiente muito limpo, ciclo de manutenção de um ano, 2.000 h/ano de vida até a queima com substituição da lâmpada a cada 8.000 h, substituição individual, luminárias direta e direta/indireta com uma pequena tendência de coleta de poeira, FMFL = 0,93; FSL = 1,00; FML = 0,90; FMSS = 0,96					
0,67	Carga de poluição normal no ambiente, ciclo de manutenção de três anos, 2.000 h/ano de vida até a queima com substituição da lâmpadaa cada 12.000 h, substituição individual, luminárias direta e direta/indireta com uma pequena tendência de coleta de poeira, FMFL = 0,91; FSL = 1,00; FML = 0,80; FMSS = 0,90					
0,57	Carga de poluição normal no ambiente, ciclo de manutenção de três anos, 2.000 h/ano de vida até a queima com substituição da lâmpada a cada 12.000 h, substituição individual, luminárias com uma tendência normal de coleta de poeira, FMFL = 0,91; FSL = 1,00; FML = 0,74; FMSS = 0.83					
0,50	Ambiente sujo, ciclo de manutenção de três anos, 8.000 h/ano de vida até a queima com substituição da lâmpada a cada 8.000 h, LLB, substituição em grupo, luminárias com uma tendência normal de coleta de poeira, FMFL = 0,93; FSL = 0,93; FML = 0,65; FMSS = 0,94					

Fonte: ABNT NBR ISO/CIE 8995-1:2013

Figura 24 – Tabela 5.5 – Livro Instalações Eletricas - Helio Creder - 15 edição

Fonte: Livro Instalações Eletricas - Helio Creder - 15 edição

Figura 25 – Pagina 14 – ABNT NBR ISO/CIE 8995-1:2013

Tipo de ambiente, tarefa ou atividade	E _m	UGRL	Ra	Observações
Processamento da madeira ou fibra, moagem	200	25	80	Para montagem alta: ver também 4.6.2.
Processo e fabricação de papel, máquinas de papel, papel canelado, fábrica de papelão	300	25	80	Para montagem alta: ver também 4.6.2.
Trabalho de encardenação de livros padrões, por exemplo: dobra, triagem, colagem, corte, gravação em relevo, costura	500	22	60	

Fonte: ABNT NBR ISO/CIE 8995-1:2013

Quantidade de Lumens:

$$\emptyset = \frac{SEm}{coefxdepreciação} =$$

$$\emptyset = \frac{20x15x300}{0,72x0,67} = 194678,78 lumens$$

Usando lâmpadas de 32 W com fluxo luminoso de 2 950 lumens (Tabela 5.3)

$$\varphi=4\times2~950=11~800$$
 lumens por luminária
$$n=\frac{194678,78}{11~800}=15,81~Luminarias=\frac{16~luminarias}{16~luminarias}$$

Detalhamento de medidas da planta de iluminação:

Figura 26 – Página 16 – Vista lateral da iluminação

Estudo 2: Cálculo DIALux

Figura 27 – Simulação DIAlux

Figura 28 – Estudo Luminotécnico

Figura 29 – Estudo Luminotécnico (Mapa de Calor)

Figura 30 – Estudo Luminotécnico (ponto a ponto)

Figura 31 – Estudo Luminotécnico (Industrial)

- Teto branco = 7
- Parede Clara = 5
- Piso Escuro = 1

Figura 32 – Estudo Luminotécnico (Graus de Reflexão)

Fonte: o autor.

Após a realização dos dois estudos luminotécnicos, foi possível comprovar que, independentemente do tipo de luminária utilizada, ambos os projetos exigiram a instalação de 16 luminárias para alcançar o nível de 300 lux no ambiente, conforme determinado pela NBR ISO/CIE 8995-1:2013.Com as informações dos dois estudos finalizados, realizamos uma representação em 3D utilizando o AutoCAD Plant 3D. O modelo inclui o leito aramado e as descidas dos interruptores em paralelo, proporcionando uma visualização mais clara e realista do projeto luminotécnico, facilitando o entendimento da disposição das luminárias e da instalação elétrica.

Figura 34 – Instalação Elétrica Maquete 3D

Figura 35 – Instalação Elétrica Maquete 3D

Fonte: o autor.

Para a representação em 3D, utilizamos as luminárias OplusLED modelo Suriname. Além disso, foi prevista a instalação de uma tomada em cada circuito, facilitando futuras manutenções e garantindo praticidade no serviço.

Figura 35 – Instalação Elétrica Maquete 3D

DIAGRAMA UNIFILAR

O diagrama unifilar mostra, de forma simples, como a parte elétrica do projeto está ligada, desde a entrada de energia até os circuitos finais. Ele ajuda a entender o caminho da energia, os equipamentos usados e onde estão as proteções. Esse desenho facilita a montagem e a manutenção da instalação elétrica, seguindo as normas técnicas.

CONTINUES OF THE PROPERTY OF THE PROPERTY

Figura 35 – Instalação Elétrica Maquete 3D

2.8. ESPECIFICAÇÃO DA SUBESTAÇÃO

2.8.1. ALIMENTAÇÃO EM MÉDIA TENSÃO, CABOS, TC, TP E ESTRUTURA

Cálculo e as escolhas técnicas referentes à alimentação em média tensão (MT) para o projeto de uma indústria de papel, abordando a seleção do transformador, dimensionamento dos cabos, corrente do sistema, bem como a escolha dos transformadores de corrente (TC) e de potencial (TP), com respectivas fontes e justificativas.

2.8.2. DADOS BÁSICOS DO SISTEMA

Parâmetro	Valor	Fonte
Tensão de fornecimento (MT)	13,8 kV	Normas da Energisa Paraíba
Tensão de uso (BT)	380 V	Projeto

Potência do transformador	750 kVA	Definido pelo grupo
Impedância do transformador	6% (0,06 pu)	Definido pelo grupo
Fator de demanda	0,85	Definido pelo grupo (conservador)
Potência corrigida (S)	724,2 kVA	Cálculo: 582 / 0,85

2.8.3. CÁLCULO DAS CORRENTES

• Corrente no lado de média tensão (MT):

$$I_{MT} = \frac{S}{\sqrt{3} \cdot V} = \frac{750000}{\sqrt{3} \cdot 13800} \approx 31,4A$$

• Corrente no lado de baixa tensão (BT):

$$I_{BT} = \frac{750000}{\sqrt{3} \cdot 380} \approx 1139, 5A$$

Fonte: Fórmula padrão trifásica; confirmada em catálogos e normas ABNT (ex. NBR 14039).

2.8.4. CABO DE MÉDIA TENSÃO - SELEÇÃO E AMPACIDADE

• Cabo selecionado: Alumínio 50 mm² XLPE 15 kV

• Instalação: Rede compacta aérea protegida (estrutura CE3-TR)

• Corrente máxima suportada: 179 A

• Corrente do projeto: 31,4 A

Figura 36 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p.122).

Ramal de Ligação e Ramal de Entrada - Cabo Protegido

_	CAPACIDADE DE MÁXIMA	kVA MÁXIMO ADMISSÍVEL					
SEÇÃO VOMINAL (mm2)	DE CORRENTE (A)	11,4 kV	13,8 kV	22 kV	34,5 kV		
S & E	XLPE	XLPE	XLPE	XLPE	XLPE		
50	179	3.534	4.279	6.821	10.696		
120	317	6.259	7.577	12.079	18.942		
185	416	8.214	9.943	15.852	24.858		

Fonte: NDU 002.

2.8.5. ELO FUSÍVEL

Conforme tabela da energisa (NDU 002), para um transformador de $750~\mathrm{kVA}$ em $13.8\mathrm{kV}$:

• Corrente Nominal: 31,4 A

• Elo Fusível especificado: 30 K

Portanto, adota-se o elo fusível 30 K para proteção do transformador.

Figura 36 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p.29).

Elos-fusíveis para transformadores trifásicos

	ELO- FUSÍVEL								
POTÊNCIA EM kVA	11,4 kV		13,8 kV		22 kV		34,5 kV		
	IN (A)	ELO	IN (A)	ELO	IN (A)	ELO	IN (A)	ELO	
15	0,76	1H	0,63	0,5H	0,39	0,5H	0,25	0,5H	
30	1,52	2H	1,26	1H	0,79	1H	0,50	0,5H	
45	2,28	2H	1,88	2H	1,18	1H	0,75	1H	
75	3,80	3H	3,14	3H	1,97	2H	1,26	1H	
112.5	5,70	5H	4,71	5H	2,95	зн	1,88	2H	
150	7,60	8K	6,28	6K	3,94	5H	2,51	ЗН	
225	11,40	12K	9,41	10K	5,90	5H	3,77	5H	
300	15,19	15K	12,55	12K	7,87	8K	5,02	5H	
400	19,26	20K	16,73	15K	10,50	10K	6,69	6K	
500	25,32	25K	19,92	25K	13,12	12K	8,37	10K	
750	37,98	40K	31,38	30K	19,68	20K	12,55	12K	
1000	x	x	41,84	40K	26,24	25K	16,73	15K	

Fonte: NDU 002.

2.8.6. TRANSFORMADORES DE MEDIÇÃO (TC E TP)

2.8.6.1. Transformador de Corrente (TC)

• Relação: 50/5 A

• Classe: 10P10 (proteção) ou 0,5 (medição)

• **Justificativa:** Corrente de projeto (31,4 A) exige TC com primário acima de 31 A. 50/5 A é o modelo mais próximo e seguro para uma corrente de 31,4 A.

• Modelo de TC: KTA12

• Fonte: Catálogo técnico da Kron.

2.8.6.2. Transformador de Potencial (TP)

• **Relação:** 13.800 V / 115 V

• Classe de exatidão: 0,3%

• VA mínimo: 100 VA

Modelo de TP: TPB15

• Fonte: ABNT NBR 6856 e Catálogo técnico TPB15 – Mult Inst /

Eletrotrafo.

Obs: Inicialmente foi considerado o valor mínimo de 100 VA. No entanto, o modelo TPB15 da Mult Inst, adotado como referência para este projeto, possui potência nominal de 500 VA, proporcionando ampla margem de segurança para os medidores e relés.

2.8.7. ESTRUTURA DA SUBESTAÇÃO – TRANSFORMADOR EM BASE DE CONCRETO

A estrutura da subestação foi projetada para instalação do transformador de 750 kVA em base de concreto (subestação tipo externa), seguindo a NBR 14039 e as práticas técnicas da Energisa Paraíba. A configuração adotada proporciona robustez, segurança operacional e atende integralmente aos requisitos normativos para fornecimento em média tensão.

2.8.7.1. Estrutura Física da Subestação:

O transformador será instalado ao solo sobre uma base elevada de concreto (altura mínima de 30 cm em relação ao piso), com mureta cortafogo (altura ≥ 0.5 m), cercamento metálico com altura ≥ 2.0 m e portão trancado. O piso será revestido com brita e sistema de drenagem, conforme recomendações da NBR 14039.

2.8.7.2. Equipamentos da Subestação:

- Transformador trifásico 750 kVA 13,8 kV / 380 V
- Painel de proteção, seccionamento e manobra
- Medição indireta por meio de transformadores de corrente (TCs) e de potencial (TPs)

- Malha de aterramento com hastes de 5/8" interligadas aos equipamentos
- Acessos com espaço mínimo para manutenção segura

2.8.7.3. Distâncias Técnicas e de Segurança:

- Transformador à mureta corta-fogo: ≥ 0.5 m
- Transformador ao painel elétrico: ≥ 1,2 m
- Transformador ao cercado: ≥ 1.5 m
- Distância ao limite do terreno: ≥ 3.0 m (recomendado)
- Altura da cerca de proteção: ≥ 2,0 m com portão trancado

2.8.7.4. Ramal de Ligação em Média Tensão:

O ramal de ligação é aéreo, com aproximadamente 10 metros de extensão, interligando o ponto de entrega da Energisa (poste com chave fusível tipo E-9 e para-raios tipo E-29) até a entrada da subestação. Será utilizado cabo de alumínio com isolação XLPE para 15 kV, seção de 50 mm², conforme Catálogo Prysmian. A capacidade do cabo excede 120 A, suficiente para suportar com folga a corrente nominal do transformador. O ramal será devidamente identificado, instalado com isoladores apropriados e contará com aterramento em ambas as extremidades, conforme NDU 002 e NBR 14039.

Justificativa:

A escolha por transformador em base ao tempo é tecnicamente válida, conforme a NBR 14039, desde que respeitadas as condições de acesso, distanciamento, proteção contra incêndio e segurança. A mureta corta-fogo foi incluída por precaução e com base na NDU 054.2, que exige barreira física quando a distância entre o transformador e o eletrocentro for inferior a

15 metros. O distanciamento mínimo de 0,5 m entre o transformador e a mureta segue a mesma norma. Essas escolhas garantem conformidade com a ABNT e viabilidade junto à Energisa Paraíba.

Impermeavel Desnivel 2%

Figura 37 – Subestação Abrigada acima de 300 kVA Ramal Aéreo

Figura 38 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p. 188).

Figura 39 – Subestação Abrigada acima de 300 kVA Ramal Aéreo 50cm

Figura 39 - NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p. 187).

Fonte: NDU 002.

Figura 39 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p. 38).

Fonte: NDU 002.

3. CONCLUSÃO

A realização deste projeto possibilitou a consolidação dos conhecimentos teóricos e práticos adquiridos ao longo da disciplina, por meio da aplicação efetiva das etapas envolvidas na elaboração de uma instalação elétrica industrial de média e baixa tensão. Desde o levantamento das cargas, passando pelo cálculo da potência total, dimensionamento do transformador, escolha de condutores, disjuntores, correção do fator de potência e projeto luminotécnico, todas as fases foram conduzidas com base nas normas técnicas vigentes, especialmente a ABNT NBR 5410, NBR 14039 e ISO/CIE 8995-1.

Os resultados obtidos demonstraram a eficiência das metodologias adotadas e a viabilidade técnica das soluções propostas. A escolha do transformador de 750 kVA mostrou-se adequada tanto para a demanda atual quanto para possíveis expansões futuras. O dimensionamento dos cabos e disjuntores foi realizado com margens de segurança apropriadas, garantindo a proteção do sistema contra sobrecargas e curtos-circuitos, conforme os valores calculados e os critérios normativos. A utilização de softwares como Excel, DCE, AutoCAD e DIALux contribuiu significativamente para a precisão dos cálculos e a representação fiel do sistema projetado.

Além disso, o projeto contemplou aspectos essenciais para o bom desempenho e a eficiência da instalação, como a correção do fator de potência através da instalação de bancos de capacitores, que minimizaram o impacto das cargas indutivas, e o estudo luminotécnico, que garantiu níveis adequados de iluminância nos ambientes de trabalho, promovendo conforto visual e segurança operacional.

Conclui-se, portanto, que os objetivos propostos foram plenamente alcançados. O projeto foi capaz de integrar teoria e prática de forma coerente e técnica, desenvolvendo competências essenciais para a atuação profissional em engenharia elétrica. A experiência proporcionou não apenas a aplicação de ferramentas de dimensionamento e simulação, mas também a reflexão crítica sobre as boas práticas e as exigências normativas que regem os sistemas de fornecimento e distribuição de energia elétrica em ambientes industriais.

4. REFERÊNCIAS

ABNT. **NBR ISO/CIE 8995-1:2013** – Iluminação de ambientes de trabalho – Parte 1: Interior. Rio de Janeiro: ABNT, 2013.

ABNT. **NBR 14039:2005** – Instalações elétricas de média tensão. Rio de Janeiro: ABNT, 2005.

ABNT. **NBR 5410** – Instalações elétricas de baixa tensão. Rio de Janeiro: ABNT, 2004.

ABNT. **NBR IEC 60947** – Dispositivos de manobra e comando de baixa tensão. Rio de Janeiro: ABNT, 2011.

ABNT. **NBR 8995** – Iluminação de ambientes de trabalho – Parte 1: Internos. Rio de Janeiro: ABNT, 2013.

ABNT. **NDU 002** – Fornecimento de energia elétrica em tensão primária. Rio de Janeiro: ABNT, 2001.

ABNT. **NDU 054.2** – Critérios para elaboração de projetos de subestações tipo 02. Rio de Janeiro: ABNT, 2003.

BRASIL. **NR 10** – Segurança em Instalações e Serviços em Eletricidade. Ministério do Trabalho e Emprego. Brasília, 2004.

ABNT. **004.1** – Instalações básicas para construção de redes compactas de média tensão de distribuição. Rio de Janeiro: ABNT, 2008.