

modulo di Laboratorio del corso di Programmazione 1 prof. Marco Roveri marco.roveri@unitn.it

Programmazione 1 - LAB

03 - Esercitazione

Martina Battisti martina.battisti-1@unitn.it

Giovanna Varni giovanna.varni@unitn.it

Andrea E. Naimoli <u>andrea.naimoli@unitn.it</u>

Anno Accademico 2024/2025

Feedback Programmazione I

https://forms.gle/wPqgTQZrDPoCAmue9

Le risposte inviate attraverso questo form vengono registrate in modo anonimo. Nessuna vostra informazione personale verrà conservata. Il sondaggio è accessibile soltanto se in possesso di credenziali unitn.

Moodle

https://didatticaonline.unitn.it/dol/course/view.php?id=39241

Nelle puntate precedenti

• Operatori misti aritmetica/assegnazione

```
x += y; x -= y; x *= y; x /= y; x %= y;
```

Operatori di (pre/post)-incremento/decremento unitario

```
x++; ++x; x--; --x;
int valore = 6;
int i = valore++; // j = 6, valore = 7
int j = ++valore; // j = 8, valore = 8
```


Nelle puntate precedenti

I commenti

Singolo

```
// Questo è un commento
```

Multi-riga

```
/*
Questo è un commento su
più righe.
```


00 - Let's begin

• Operazioni booleane (&&, ||, >, <, >=, <=, !, ==, !=)

```
bool maggiore = 5 > 6;
bool and = true && false;
```


00 - Let's begin

```
#include <iostream>
     using namespace std;
 3.
     int main() {
 5.
        int a = 0;
 6.
 7.
        a += 1;
           cout << a << " " << ++a << " " << a++ << endl;
8.
 9.
10.
           bool vero = true, falso = false;
11.
           cout << vero << " " << falso << endl;</pre>
12.
           cout << (vero && falso) << endl;</pre>
13.
14.
           int vero int = 12, falso int = 0;
15.
           cout << "Bool int: " << (vero int && falso int) << endl;</pre>
16.
           return 0;
17. }
```


1 - AND e OR

Scrivere un programma che stampi a video la tabella di verità dell'operatore AND (&&) e dell'operatore OR (||).

AND gate

Input A	Input B	Output			
0	0	0			
1	0	0			
0	1	0			
1	1	1			

OR gate

Input A	Input B	Output				
0	0	0				
1	0	1				
0	1	1				
1	1	1				

2a - XOR

Definite due variabili booleane, stampate a video la tabella di verità dell'operazione XOR.

Inp	out	Output					
Α	В	A xor B					
0	0	0					
0	1	1					
1	0	1					
1	1	0					

2b - XOR

Definite due variabili booleane, stampate a video la tabella di verità dell'operazione XOR.

((not A) and B) or ((not B) and A)

Inp	out	Output					
Α	В	A xor B					
0	0	0					
0	1	1					
1	0	1					
1	1	0					

2c - XOR

Definite due variabili booleane, stampate a video la tabella di verità dell'operazione XOR.

Inp	out	Output					
Α	В	A xor B					
0	0	0					
0	1	1					
1	0	1					
1	1	0					

00 - Let's continue

• Il tipo char

- Sottoinsieme del tipo int (è definita un aritmetica);
- Codifica ASCII;
- Definite le relazioni di <u>precedenza</u> e <u>consecutività</u>;

```
char carattere = 'a';
cout << (int) 'a' << endl; // 97
carattere += 5; // f</pre>
```


00 - Let's continue

ASCII Table

, ,,	ASCH TABLE														
Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	`
1	1	1		33	21	41	!	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	c
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	I	105	69	151	i
10	Α	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54	,	76	4C	114	L	108	6C	154	ı
13	D	15		45	2D	55	-	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	p
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	Т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Υ	121	79	171	У
26	1A	32		58	3A	72	:	90	5A	132	Z	122	7A	172	Z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	\	124	7C	174	ļ
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	

3a - Secondo Grado

Dati in input tre numeri reali, a, b e c, scrivere un programma che calcoli le soluzioni dell'equazione di secondo grado (assumete che il delta sia positivo).

$$ax^2 + bx + c = 0$$

$$\Delta = b^2 - 4ac \qquad x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

3b - Secondo Grado

Dati in input tre numeri reali, a, b e c, scrivere un programma che calcoli le soluzioni dell'equazione di secondo grado (assumete che il delta sia positivo).

```
#include <cmath>
float f = sqrt(2); // radice quadrata
```

Reference alla libreria <cmath>
http://www.cplusplus.com/reference/cmath/

4 - IVA

Dati in input due numeri reali "prezzo" e "iva", scrivere due programmi che calcolino rispettivamente:

- il prezzo lordo considerando gli input come prezzo netto e percentuale d'iva
- il prezzo netto considerando gli input come prezzo lordo e percentuale d'iva

PrezzoLordo = PrezzoNetto + PrezzoNetto*(PercentualeIVA/100)

VARIANTE: valutare la fattibilità ed eventualmente implementare in un unico programma entrambe le funzionalità SENZA usare costrutti condizionali e chiedendo in input all'utente quale calcolo si desidera effettuare

5 - Maiuscole/Minuscole - II+

(recap) dato in input un carattere maiuscolo, ritorna lo stesso carattere minuscolo... e viceversa SENZA costrutti condizionali

VARIANTE: risolvere il problema SENZA usare espressioni booleane (nessun operatore), o l'operatore ternario

SUPERSFIDA: implementare anche il controllo dell'input sotto gli stessi vincoli

6 - Divisione precisione arbitraria (int)

Utilizzando solo variabili di tipo "int", dati in input un dividendo, un divisore e il numero di cifre decimali desiderate per la precisione (con troncamento), realizzare un programma che calcola il risultato della divisione tra dividendo e divisore con la precisione scelta.

7a - Un semplice scambio di variabili

Date in input due variabili (scegliete voi il loro tipo), a e b, scrivere un programma che scambi il valore di a al valore di b e viceversa.

7b - Un semplice scambio di variabili

Date in input due variabili (scegliete voi il loro tipo), a e b, scrivere un programma che scambi il valore di a al valore di b e viceversa.

(senza utilizzare una variabile temporanea)

8 - Trova l'errore...

Valutare i codici successivi ipotizzando cosa potrebbe succedere in fase di compilazione/esecuzione.

NOTA: tenere conto dell'opzione di compilazione -wall

8a - Trova l'errore...

```
#include <iostream>
using namespace std;

int main() {
   int numero = 10;
   bool flag = numero;
   string testo = numero;
   cout << "Il testo è: " << testo << endl;
   return 0;
}</pre>
```


8b - Trova l'errore...

```
#include <iostream>
using namespace std;

int main() {
   int x;
   cout << "Il valore di x è: " << x << endl;
   return 0;
}</pre>
```


8c - Trova l'errore...

```
#include <iostream>
using namespace std;

int main() {
   int numeratore = 10;
   int denominatore = 0;
   int risultato = numeratore / denominatore;
   cout << "Il risultato è: " << risultato << endl;
   return 0;
}</pre>
```


9 - Vari...

Senza utilizzare funzioni di libreria o istruzioni if-else:

- Scrivere un programma che chiede all'utente di inserire un numero intero e determina se il numero è pari o dispari
- Scrivere un programma che prende un numero intero a tre cifre e calcola la somma delle sue cifre senza usare cicli
- Scrivere un programma che chiede all'utente di inserire tre numeri e i rispettivi pesi, e poi calcola la media ponderata.
- Scrivere un programma che determina se un numero è un multiplo di un altro usando solo operatori aritmetici e logici (senza cicli o condizioni).
- Scrivere un programma che scambia il valore di due variabili intere utilizzando solo l'operatore XOR e senza usare variabili temporanee.

Usa la formula per la media ponderata: $media_ponderata = \frac{n_1 \cdot p_1 + n_2 \cdot p_2 + n_3 \cdot p_3}{p_1 + p_2 + p_3}$

