SHARP GL382

GL382

IrDA-Based SIR System-Conforming Infrared Emitting Diode

■ Features

1. Compact 3 φ resin mold package

Peak emitting wavelength conforming to SIR system based on IrDA
 (λ p=880 nm [I _F=50mA])

3. Narrow beam angle

(Half intensity angle : TYP. $\pm 17^{\circ}$)

4. High speed response

(Cut-off frequency fc : TYP.12MHz)

■ Applications

1. Portable information terminal equipment

2. Personal computers

3. Printers

■ Absolute Maximum Ratings

(Ta-	-053	m
(1a-	-23	U)

Parameter	Symbol	Rating	Unit	
Forward current	IF	60	mA	
*1 Peak forward current	I _{FM}	0.5	A	
Reverse voltage	VR	4	V	
Operating temperature	T opr	- 25 to + 85	°C	
Storage temperature	T stg	- 40 to + 85	°C	
*2 Soldering temperature	T sol	260	°C	

Outline Dimensions

(Unit:mm)

- *1 Pulse width <= 100 a s. Duty ratio=0.01
- *2 For 3 seconds at the position of 2.6 mm from the resin edge

■ Electro-optical Characteristics

(Ta=25 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	VF	$I_F = 50 \text{mA}$	-	1.5	1.7	V
Peak forward voltage	V _{FM}	$I_{FM} = 0.5A$	-	2.2	3.8	V
Reverse voltage	Ir	$V_R = 3V$	-	-	10	σA
*3 Radiant intensity	ΙE	$I_F = 50 \text{mA}$	6	18	-	mW/sr
Peak emission wavelength	λp	$I_F = 50 \text{mA}$	-	880	-	nm
Half intensity wavelength	Δλ	$I_F = 50 \text{mA}$	-	40	-	nm
Response frequency	fc	I _F =50mA+10mA _{p-p}	-	12	-	MHz
Half intensity angle	Δθ	$I_F = 20 \text{mA}$	-	± 17	-	۰

^{*3} I E: Value obtained by converting the value in power of radiant fluxes emitted at the solid angle of 0.01 sr (steradian) in the direction of mechanical axis of the lens portion into 1 sr or all those emitted from the light emitting diode.

Fig. 1 Forward Current vs. Ambient Temperature

Fig. 3 Spectral Distribution

Fig. 5 Forward Current vs. Forward Voltage

Fig. 2 Peak Forward Current vs. Duty Ratio

Fig. 4 Peak Emission Wavelength vs.
Ambient Temperature

Fig. 6 Relative Radiant Flux vs. Ambient Temperature

Fig. 7 Radiant Intensity vs. Forward Current

Fig. 8 Radiation Diagram

• Please refer to the chapter "Precautions for Use". (Page 78 to 93)