Homework 1 solutions

1. Exercise T2.9 (a).

Solution.

$$||x - x_0||_2 \le ||x - x_i||_2 \iff (x - x_0)^T (x - x_0) \le (x - x_i)^T (x - x_i)$$

$$\iff x^T x - 2x_0^T x + x_0^T x_0 \le x^T x - 2x_i^T x + x_i^T x_i$$

$$\iff 2(x_i - x_0)^T x \le x_i^T x_i - x_0^T x_0.$$

This linear inequality defines a halfspace (if $x_i \neq x_0$). Therefore we can express V as a polyhedron $\{x \mid Ax \leq b\}$ by defining

$$A = 2 \begin{bmatrix} (x_1 - x_0)^T \\ (x_2 - x_0)^T \\ \vdots \\ (x_K - x_0)^T \end{bmatrix}, \qquad b = \begin{bmatrix} x_1^T x_1 - x_0^T x_0 \\ x_2^T x_2 - x_0^T x_0 \\ \vdots \\ x_K^T x_K - x_0^T x_0 \end{bmatrix}.$$

2. Exercise T2.12 (d, e, g).

Solution.

(d) Convex. For fixed y, the set $\{x \mid ||x - x_0||_2 \leq ||x - y||_2\}$ is a halfspace. Squaring both sides of the inequality and expanding the norms gives

$$||x||^2 - 2x_0^T x + ||x_0||_2^2 \le ||x||^2 - 2y^T x + ||y||_2^2.$$

This is a linear inequality

$$2(y-x_0)^T x \le ||y||_2^2 - ||x_0||_2^2$$

Therefore the set in the assignment is an intersection of halfspaces (one for each $y \in S$).

(e) In general this set is not convex. A simple counterexample in **R** is $S = \{-1, 1\}$ and $T = \{0\}$. We have

$$\{x \mid \mathbf{dist}(x, S) \le \mathbf{dist}(x, T)\} = \{x \in \mathbf{R} \mid x \le -1/2 \text{ or } x \ge 1/2\}$$

which clearly is not convex.

(g) Convex. We have

$$||x - a||_2 \le \theta ||x - b||_2 \iff ||x - a||_2^2 \le \theta^2 ||x - b||_2^2$$

$$\iff (1 - \theta^2) x^T x - 2(a - \theta^2 b)^T x + (a^T a - \theta^2 b^T b) \le 0.$$

If $\theta = 1$, this defines a halfspace (see part (d)). If $\theta < 1$, it defines a ball

$$\{x \mid (x - x_0)^T (x - x_0) \le R^2\},\$$

with center x_0 and radius R given by

$$x_0 = \frac{a - \theta^2 b}{1 - \theta^2}, \qquad R = \left(\frac{\theta^2 \|b\|_2^2 - \|a\|_2^2}{1 - \theta^2} + \|x_0\|_2^2\right)^{1/2}.$$

3. Exercise A2.10.

Solution.

(a) Define $I = \{k \mid y_k \ge 0\}$ and $J = \{k \mid y_k < 0\}$. These two sets are nonempty because y is nonzero and $\sum_k y_k = 0$. Define

$$\lambda = \sum_{k \in I} y_k = -\sum_{k \in J} y_k, \qquad \theta_k = \begin{cases} y_k/\lambda & k \in I \\ -y_k/\lambda & k \in J. \end{cases}$$

The coefficients θ_k are nonnegative and satisfy

$$\sum_{k \in I} \theta_k x_k = \sum_{k \in I} \theta_k x_k, \qquad \sum_{k \in I} \theta_k = \sum_{k \in I} \theta_k = 1.$$

This shows that the point

$$x = \sum_{k \in I} \theta_k x_k = \sum_{k \in J} \theta_k x_k$$

is in the intersection of the convex hulls of $S = \{x_k \mid k \in I\}$ and $T = \{x_k \mid k \in J\}$.

(b) We apply the result of (a) to the points x_1, \ldots, x_m defined in the hint. There exists an index set $I \subseteq \{1, 2, \ldots, m\}$, with $1 \le |I| \le m - 1$, and a point

$$x \in \mathbf{conv} \{ x_k \mid k \in I \} \cap \mathbf{conv} \{ x_k \mid k \notin I \}.$$

From the definition of the points x_k we see that if $k \in I$, then $x_k \in S_j$ for all $j \notin I$. Therefore

$$x_k \in \bigcap_{j \notin I} S_j$$
 for all $k \in I$.

Since x is a convex combination of the points x_k , $k \in I$, and the intersection of convex sets is convex, it follows that

$$x \in \bigcap_{j \notin I} S_j. \tag{1}$$

Similarly, if $k \notin I$, then $x_k \in S_j$ for all $j \in I$. Therefore

$$x_k \in \bigcap_{j \in I} S_j$$
 for all $k \notin I$.

Since x is also a convex combination of the points x_k , $k \notin I$, we have

$$x \in \bigcap_{j \in I} S_j. \tag{2}$$

Combining (1) and (2), we see that x is in the intersection of all sets S_1, \ldots, S_m .

4. Schur complements and positive semidefinite matrices. Let X be a symmetric matrix partitioned as

$$X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}. \tag{3}$$

If A is nonsingular, the matrix $S = C - B^T A^{-1} B$ is called the *Schur complement* of A in X. It A is positive definite, then it can be shown that $X \succeq 0$ (X is positive semidefinite) if and only if $S \succeq 0$ (see page 650 of the textbook). In this exercise we prove the extension of this result to singular A mentioned on page 651 of the textbook.

- (a) Suppose A=0 in (3). Show that $X\succeq 0$ if and only if B=0 and $C\succeq 0$.
- (b) Let A be a symmetric $n \times n$ matrix with eigendecomposition

$$A = Q\Lambda Q^T,$$

where Q is orthogonal $(Q^TQ = QQ^T = I)$ and $\Lambda = \mathbf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Assume the first r eigenvalues λ_i are nonzero and $\lambda_{r+1} = \dots = \lambda_n = 0$. Partition Q and Λ as

$$Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} \Lambda_1 & 0 \\ 0 & 0 \end{bmatrix}$$

with Q_1 of size $n \times r$, Q_2 of size $n \times (n-r)$, and $\Lambda_1 = \operatorname{diag}(\lambda_1, \ldots, \lambda_r)$. The matrix

$$A^{\dagger} = Q_1 \Lambda_1^{-1} Q_1^T$$

is called the *pseudo-inverse* of A. Verify that

$$AA^{\dagger} = A^{\dagger}A = Q_1Q_1^T, \qquad I - AA^{\dagger} = I - A^{\dagger}A = Q_2Q_2^T.$$

The matrix–vector product $AA^{\dagger}x = Q_1Q_1^Tx$ is the orthogonal projection of the vector x on the range of A. The matrix–vector product $(I - AA^{\dagger})x = Q_2Q_2^Tx$ is the orthogonal projection on the nullspace of A.

(c) Show that the block matrix X in (3) is positive semidefinite if and only if

$$A \succeq 0$$
, $(I - AA^{\dagger})B = 0$, $C - B^T A^{\dagger}B \succeq 0$.

The second condition means that the columns of B are in the range of A.

Hint. Let $A = Q\Lambda Q^T$ be the eigenvalue decomposition of A. Partition Q and Λ as in part (b). The matrix X in (3) is positive semidefinite if and only if the matrix

$$\begin{bmatrix} Q^T & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} \Lambda & Q^T B \\ B^T Q & C \end{bmatrix} = \begin{bmatrix} \Lambda_1 & 0 & Q_1^T B \\ 0 & 0 & Q_2^T B \\ B^T Q_1 & B^T Q_2 & C \end{bmatrix}$$

is positive semidefinite. Using the observation in part (a) we see that this matrix is positive semidefinite if and only if $Q_2^T B = 0$ and the matrix

$$\left[\begin{array}{cc} \Lambda_1 & Q_1^T B \\ B^T Q_1 & C \end{array}\right]$$

is positive semidefinite. Apply the Schur complement characterization for 2×2 block matrices with a positive definite 1,1 block (page 650 of the textbook) to show the result.

Solution.

(a) Suppose A = 0. The matrix X is positive semidefinite if and only if

$$\begin{bmatrix} u \\ v \end{bmatrix}^T \begin{bmatrix} 0 & B \\ B^T & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 2u^T B v + v^T C v \ge 0 \quad \text{for all } u, v.$$

Clearly, a sufficient condition is that B=0 and C is positive semidefinite. Taking u=0 shows that positive semidefiniteness of C is also necessary. To see that B=0 is necessary, assume $B\neq 0$. Take any v with $Bv\neq 0$ and choose u=-tBv. The quadratic form then reduces to

$$2u^T B v + v^T C v = -2t v^T B^T B v + v^T C v = -2t \|Bv\|_2^2 + v^T C v,$$

which is negative for sufficiently large t.

(b) We have

$$AA^{\dagger} = Q_{1}\Lambda_{1}Q_{1}^{T}Q_{1}\Lambda_{1}^{-1}Q_{1}^{T}$$

$$= Q_{1}Q_{1}^{T}$$

$$I - AA^{\dagger} = Q_{1}Q_{1}^{T} + Q_{2}Q_{2}^{T} - AA^{\dagger}$$

$$= Q_{2}Q_{2}^{T}.$$

The proofs of the identities $A^{\dagger}A = Q_1Q_1^T$ and $I - A^{\dagger}A = Q_2Q_2^T$ are similar.

(c) Every principal submatrix of a positive semidefinite matrix is positive semidefinite. Therefore $A \succeq 0$ is a neccessary condition for X to be positive semidefinite

Suppose we sort the eigenvalues of A so that its eigenvalue decomposition can be written as

$$A = Q \Lambda Q^T = \left[egin{array}{cc} Q_1 & Q_2 \end{array}
ight] \left[egin{array}{cc} \Lambda_1 & 0 \ 0 & 0 \end{array}
ight] \left[egin{array}{cc} Q_1 & Q_2 \end{array}
ight]^T$$

with Λ_1 positive diagonal. Following the hint, the question can be reduced to showing that the block matrix

$$\begin{bmatrix} \Lambda_1 & 0 & Q_1^T B \\ 0 & 0 & Q_2^T B \\ B^T Q_1 & B^T Q_2 & C \end{bmatrix}$$

is positive semidefinite. By the result in part (a), the matrix is positive semidefinite if and only if

$$Q_2^T B = 0, \qquad \left[\begin{array}{cc} \Lambda_1 & Q_1^T B \\ B^T Q_1 & C \end{array} \right] \succeq 0.$$

The first condition is equivalent to $(I - AA^{\dagger})B = 0$. Since Λ_1 is positive definite, we can apply the Schur complement result for nonsingular 1,1 block to the 2×2 block matrix. This gives the equivalent condition

$$C - B^T Q_1 \Lambda^{-1} Q_1^T B = C - B^T A^{\dagger} B \succeq 0.$$

5. This problem is an introduction to the software packages CVX (cvxr.com) and CVXPY (cvxpy.org).

We consider the illumination problem of lecture 1. We take $I_{\text{des}} = 1$ and $p_{\text{max}} = 1$, so the problem is

minimize
$$f_0(x) = \max_{k=1,\dots,m} |\log(a_k^T x)|$$

subject to $0 \le x_j \le 1, \quad j = 1,\dots,n,$ (4)

with variable $x \in \mathbb{R}^n$. As mentioned in the lecture, the problem is equivalent to

minimize
$$\max_{k=1,\dots,m} h(a_k^T p)$$

subject to $0 \le p_j \le 1, \quad j=1,\dots,n,$ (5)

where $h(u) = \max\{u, 1/u\}$ for u > 0. The function h, shown in the figure below, is nonlinear, nondifferentiable, and convex.

To see the equivalence between (4) and (5), we note that

$$\begin{split} f_0(x) &= \max_{k=1,\dots,m} |\log(a_k^T x)| \\ &= \max_{k=1,\dots,m} \max \left\{ \log(a_k^T x), \log(1/a_k^T x) \right\} \\ &= \log \max_{k=1,\dots,m} \max \left\{ a_k^T x, 1/a_k^T x \right\} \\ &= \log \max_{k=1,\dots,m} h(a_k^T x), \end{split}$$

and since the logarithm is a monotonically increasing function, minimizing $f_0(x)$ is equivalent to minimizing $\max_{k=1,\dots,m} h(a_k^T x)$.

We consider a small example with n=10 lamps and m=20 patches. The $m\times n$ matrix A with rows a_k^T is given in the files illum_data.m and illum_data.py on the course website (in the folder Files/Homework/Data files).

Use the following methods to compute three approximate solutions and the exact solution, and compare the answers (the vectors x and the corresponding values of $f_0(x)$).

(a) Least squares with saturation. Solve the least squares problem

minimize
$$\sum_{k=1}^{m} (a_k^T x - 1)^2 = ||Ax - \mathbf{1}||_2^2$$
.

If the solution has negative coefficients, set them to zero; if some coefficients are greater than 1, set them to 1.

(b) Regularized least squares. Solve the regularized least squares problem

minimize
$$\sum_{k=1}^{m} (a_k^T x - 1)^2 + \rho \sum_{j=1}^{n} (x_j - 0.5)^2 = ||Ax - \mathbf{1}||_2^2 + \rho ||x - (1/2)\mathbf{1}||_2^2,$$

where $\rho > 0$ is a parameter. Increase ρ until all coefficients of x are in the interval [0,1].

(c) Chebyshev approximation. Solve the problem

minimize
$$\max_{k=1,\dots,m} |a_k^T x - 1| = ||Ax - \mathbf{1}||_{\infty}$$
subject to $0 \le x_j \le 1, \quad j = 1,\dots,n.$

We can think of this problem as obtained by approximating the nonlinear function h(u) by a piecewise-linear function |u-1|+1. As shown in the figure below, this is a good approximation around u=1.

(d) Exact solution. Solve

minimize
$$\max_{k=1,\dots,m} \max(a_k^T x, 1/a_k^T x)$$

subject to $0 \le x_j \le 1, \quad j = 1,\dots,n$.

Use the function inv_pos in CVX/CVXPY to express the function f(u) = 1/u with domain \mathbf{R}_{++} .

Solution.

(a) Least squares with saturation. We compute x as

$$x = A \setminus ones(n,1).$$

All coefficients of x are outside the feasible interval [0,1] and need to be rounded.

- (b) Regularized least squares. We compute x by solving a least squares problem $x = [A; sqrt(rho)*eye(m)] \setminus [ones(n,1); sqrt(rho)*.5*ones(m,1)].$ The smallest ρ that gives a feasible p is $\rho = 0.2190$.
- (c) Chebyshev approximation. We solve this problem using CVX.

```
cvx_begin
    variable x(n)
    minimize (norm(A*x-b, inf))
    subject to
        x >= 0
        x <= 1
    cvx_end
(d) Exact solution.
    cvx_begin
        variable x(n)
        minimize (max([A*x; inv_pos(A*x)]))
    subject to
        x >= 0
        x <= 1
    cvx_end</pre>
```

The results are summarized in the following table.

	Saturated LS	Weighted LS	Chebyshev	Exact
$\overline{x_1}$	1	0.5004	1	1
x_2	0	0.4778	0.1165	0.2023
x_3	1	0.0833	0	0
x_4	0	0.0000	0	0
x_5	0	0.4561	1	1
x_6	1	0.4354	0	0
x_7	0	0.4598	1	1
x_8	1	0.4307	0.0249	0.1882
x_9	0	0.4034	0	0
x_{10}	1	0.4526	1	1
$f_0(x)$	0.8628	0.4439	0.4198	0.3575