Kvantum-bonyolultságelméleti szeparáció relációs osztályokra

Csatári Jakab

2023.05.19.

Referencia

- A Qubit, a Coin, and an Advice String Walk Into a Relational Problem Scott Aaronson, Harry Buhrman, William Kretschmer
- https://arxiv.org/pdf/2302.10332.pdf
- 2023. Feb 20.

A cikk első eredménye: FBQP/poly ≠ FBQP/qpoly

Kvantum analógok klasszikus bonyolultsági osztályokra?

P BPP NP

Csatári Jakab

• Kvantum analógok klasszikus bonyolultsági osztályokra?

• Kvantum analógok klasszikus hanvalultsági osztályakra?

P: klasszikus, determinisztikus, poly(n) időben, mindig jól válaszol

EQP (Exact Quantum Polynomial): kvantum, poly(n)
időben, mindig jól válaszol
FÜGG A KAPUKTÓL!

Kvantum analógok klasszikus bonvolultsági osztálvokra?

BPP: klasszikus, randomizált, poly(n) időben, korlátos hibával (< 1/3)

BQP: kvantum, poly(n) időben, korlátos hibával (Nem függ a kapuktól)

Csatári Jakab

Kvantum-bonyolultságe

Kvantum analógok klasszikus bo

NP: klasszikus, nemdeterminisztikus, poly(n) időben $(\forall x \exists y \text{ poly(n) méretű tanú:}$ A(x,y)=1)

QMA (Quantum Merlin-Arthur): kvantum, $\forall x \exists y$ kv. állapot: A(x,y) = 1korlátos hibával

BPP

Def: Azon $L \subseteq \{0,1\}^*$ nyelvek osztálya, melyekre $\exists A$ polinomiális randomizált algoritmus, hogy:

$$Pr[A(x) = L(x)] \ge \frac{2}{3}$$

BPP

Def: Azon $L \subseteq \{0,1\}^*$ nyelvek osztálya, melyekre $\exists A$ polinomiális randomizált algoritmus, hogy:

$$Pr[A(x) = L(x)] \geq \frac{2}{3} \boxed{1 - \epsilon}$$

$$0 < \epsilon < \frac{1}{2}$$

BQP

Def: Azon $L \subseteq \{0,1\}^*$ nyelvek osztálya, melyekre $\exists A$ polinomiális kvantum algoritmus, hogy:

$$Pr[A(x) = L(x)] \ge 1 - \epsilon$$

Relációs probléma

Döntési problémáknál:

$$x \stackrel{?}{\in} L$$
 $A: \{0,1\}^* \to \{0,1\}$

Relációs problémáknál:

$$R \subseteq \{0,1\}^* \times \{0,1\}^*$$

 $A: \{0,1\}^* \to \{0,1\}^*$ $(x,y) \in R$
 x

Relációs probléma

Példa:

$$R := \{(x, y) \mid x + y \text{ páros}\}\$$

FBQP

Function Bounded-Error Quantum Polynomial

Def: Azon $R \subseteq \{0,1\}^* \times \{0,1\}^*$ relációk osztálya, melyekre $\exists A$ polinomiális kvantum algoritmus, hogy:

$$Pr[(x, A(x)) \in R] \ge 1 - \epsilon$$

FBQP

Function Bounded-Error Quantum Polynomial

Def: Azon $R\subseteq\{0,1\}^* imes\{0,1\}^*$ relációk osztálya, melyekre $\exists A$

polinomiális kvantum algoritmus, hogy:

$$Pr[\frac{(x, A(x|0^{1/\epsilon}))}{Pr[\frac{(x, A(x|0^{1/\epsilon}))}{ER}] \ge 1 - \epsilon}$$

Súgás

• Input hosszától függő additional input: $\{s_n\}_{n\geq 1}$

• Ha
$$|x|=n$$
 : $A(x|s_n)=y$

Súgás mérete?
 Randomizált vagy determinisztikus?
 Klasszikus vagy kvantum?

FBQP/poly

Def: Azon $R\subseteq\{0,1\}^* imes\{0,1\}^*$ relációk osztálya, melyekre $\exists A$ polinomiális kvantum algoritmus és polinomiális méretű (klasszikus) súgás $\{s_n\}_{n\geq 1}$, hogy:

$$Pr[(x, A(x|s_{|x|})) \in R] \ge 1 - \epsilon$$

FBQP/rpoly

Def: Azon $R\subseteq\{0,1\}^* imes\{0,1\}^*$ relációk osztálya, melyekre $\exists A$ polinomiális kvantum algoritmus és polinomiális méretű (klasszikus) súgások eloszlása $\{D_n\}_{n\geq 1}$, hogy:

$$\Pr_{r \sim D_n}[(x, A(x|r)) \in R] \ge 1 - \epsilon$$

FBQP/qpoly

Def: Azon $R\subseteq\{0,1\}^* imes\{0,1\}^*$ relációk osztálya, melyekre $\exists A$ polinomiális kvantum algoritmus és polinomiális méretű kvantum súgás $\{|\psi_n\rangle\}_{n\geq 1}$, hogy:

$$Pr[(x, A(x||\psi_n))) \in R] \ge 1 - \epsilon$$

FBQP/qpoly

Def: Azon $R\subseteq\{0,1\}^* imes\{0,1\}^*$ relációk osztálya, melyekre $\exists A$ polinomiális kvantum algoritmus és polinomiális méretű kvantum súgás $\{|\psi_n\rangle\}_{n\geq 1}$, hogy:

$$Pr[(x, A(x||\psi_n\rangle)) \in R] \ge 1 - \epsilon$$

 $|\psi_n\rangle$: poly(n) qubit szuperpozíciója

FBQP súgásokkal

FBQP súgásokkal

FBQP/rpoly ≠ FBQP/qpoly

ullet R_F reláció megfogalmazása

• $\forall F:R_F\in ext{FBQP/qpoly}$

• $\exists F: R_F \not\in \mathsf{FBQP/poly} = \mathsf{FBQP/rpoly}$

R_F reláció

Boole függvény sereg:

$$F = \{f_n\}_{n>1}$$
 $f_n : \{0,1\}^n \to \{0,1\}$

$$R_F := \{(x,(y,b)) \mid f_n(y) \oplus f_n(y \oplus x) = b\}$$
 ahol $x,y \in \{0,1\}^n, b \in \{0,1\}$

R_F reláció

Miért nem triviális?

$$f_n(y) \oplus f_n(y \oplus x) = b$$

- Megkapjuk ${\mathcal X}$ -et
- Kiszámoljuk $f_n(y)$ és $f_n(y\oplus x)$ értékeket, tetszőleges y-ra
- b = a mod 2 összegük

R_F reláció

Miért nem triviális?

$$f_n(y) \oplus f_n(y \oplus x) = b$$

 f_n : Ha a legjobb módszerünk kiszámolni a hozzá tartozó igazságtáblát, az exponenciális méret $O(2^n)$

Tfh. poly sok input eredményét beleprogramozzuk (pl. $f_n(y)$ -t is) Tetsz. x-re valószínű, hogy nem tudjuk $f_n(y \oplus x)$ -et

Szeretnénk algoritmust, ami $|\psi_n\rangle$ súgás mellett megoldja R_F -et Ekkor $\forall F:R_F\in {\sf FBPQ/qpoly}$

mérés speciális bázisban

$$|\psi_n\rangle := \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{f_n(y)} |y\rangle$$

• 0. lépés: Ha $x=|0^n\rangle$, akkor tetszőleges y-ra return((y,0))

$$f_n(y) \oplus f_n(y \oplus x) = b$$

$$|\psi_n\rangle := \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{f_n(y)} |y\rangle$$

Ekkor
$$O_A:=|\psi_n\rangle \to \frac{1}{\sqrt{2^n}}\sum_{y\in\{0,1\}^n}(-1)^{f_n(y)}|y\rangle|Ay\rangle$$

Például
$$n=3$$
 $x=001$

$$001 \rightarrow 00$$

Például
$$n=3$$
 $x=001$

$$\begin{array}{c} 001 \rightarrow 00 \\ 010 \rightarrow 10 \\ 100 \rightarrow 01 \end{array}$$

Például
$$n=3$$
 $x=001$

$$\begin{array}{c} 001 \rightarrow 00 \\ 010 \rightarrow 10 \\ 100 \rightarrow 01 \end{array}$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Például
$$n=3 \quad x=001$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{cccc} 000 \to 00 & 100 \to 01 \\ 001 \to 00 & 101 \to 01 \\ 010 \to 10 & 110 \to 11 \\ 011 \to 10 & 111 \to 11 \end{array}$$

Például
$$n=3 \quad x=001$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{cccc} 000 \to 00 & 100 \to 01 \\ 001 \to 00 & 101 \to 01 \\ 010 \to 10 & 110 \to 11 \end{array}$$

Vagy, ha például $\,x=101\,$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Vagy, ha például $\,x=101\,$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Vagy, ha például $\,x=101\,$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{cccc} 000 \to 00 & 100 \to 11 \\ 001 \to 11 & 101 \to 00 & Ay = A(x+y) \\ 010 \to 01 & 110 \to 10 \\ 011 \to 10 & 111 \to 01 \end{array}$$

$$A0 = Ax = 0$$

$$A(x+y) = Ax + Ay = Ay$$

Vagy, ha például $\,x=101\,$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{cccc} 000 \to 00 & 100 \to 11 \\ 001 \to 11 & 101 \to 00 & Ay = A(x+y) \\ 010 \to 01 & 110 \to 10 \\ 011 \to 10 & 111 \to 01 \end{array}$$

Indirekt:
$$z \notin \{y, y+x\}$$

$$Ay = Az$$

De ekkor:

$$0 = Ay - Az = A(y - z)$$

$$O_A(|\psi_n\rangle) = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{f_n(y)} |y\rangle |Ay\rangle$$

• 2. lépés: Mérjük meg az $|Ay\rangle$ regisztert a számítási bázisban Így az $|y\rangle$ regiszter összeomlik:

$$\frac{1}{\sqrt{2}}((-1)^{f_n(y)}|y\rangle + (-1)^{f_n(y\oplus x)}|y\oplus x\rangle)$$

$$\frac{1}{\sqrt{2}}((-1)^{f_n(y)}|y\rangle + (-1)^{f_n(y\oplus x)}|y\oplus x\rangle)$$

• 3. lépés: Mérjük meg az $\{|y\rangle\pm|y\oplus x\rangle\}$ bázisban

Mérés (1 val)	$ y\rangle + y \oplus x\rangle$	$ y\rangle - y \oplus x\rangle$	$ y\rangle - y \oplus x\rangle$	$ y\rangle + y \oplus x\rangle$
$f_n(y)$	0	0	1	1
$f_n(y \oplus x)$	0	1	0	1

Kvantum algoritmus példa

1.
$$x = 101$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Kvantum algoritmus példa

1.
$$x = 101$$
$$A = \begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 1 \end{pmatrix}$$

^{2.} $|01\rangle$ -et mérünk

$$\frac{1}{\sqrt{2}}((-1)^{f_n(010)}|010\rangle + (-1)^{f_n(111)}|111\rangle)$$

Kvantum algoritmus példa

1.
$$x = 101$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

^{2.} $|01\rangle$ -et mérünk

$$\frac{1}{\sqrt{2}}((-1)^{f_n(010)}|010\rangle + (-1)^{f_n(111)}|111\rangle)$$

3.
$$f_n(010) = 1$$
 $f_n(111) = 1$
$$\frac{1}{\sqrt{2}}(-|010\rangle - |111\rangle) \longrightarrow |010\rangle + |111\rangle$$

Mérés a speciális bázisban

$$(y,b) = (z_1 z_2 z_3 z_4 z_5 0, z_6)$$

Mérés a speciális bázisban

$$(y,b) = (z_1 z_2 z_3 z_4 z_5 0, z_6)$$

$$\frac{1}{\sqrt{2}}(-|010101\rangle + |0011110\rangle)$$

$$\downarrow^{\text{CNOT}}$$

$$\frac{1}{\sqrt{2}}(-|001111\rangle + |001110\rangle)$$

$$\downarrow^{\text{H}}$$

$$\frac{1}{2}(-|001111\rangle + |001110\rangle$$

$$-|001111\rangle - |001110\rangle)$$

A Hadamard miatt megtudjuk a relatív állapotukat

Tehát $R_F \in \mathsf{FBQP/qpoly}$

Ha A az előbbi kvantum algoritmus

$$Pr[(x, A(x||\psi_n)) \in R_F] = 1 > 1 - \epsilon$$

Kvantum kommunikációs bonyolultság

Egyirányú kommunikációs probléma:

(x) Alice inputja, (y) Bob inputja

T: $(x,y) \rightarrow * feladat$

Alice kommunikálhat Bob-nak, de Bob-nak kell megoldani

D(T): min (determinisztikusan) küldött bitek száma, hogy tetsz (x,y)-ra meg tudja oldani Bob

Kvantum kommunikációs bonyolultság

D(T): (determinisztikusan) küldött bitek száma

R(T): (hiba korlátos) randomizált protokollal küldött – shared randomness

Q(T): (hiba korlátos) kvatum protokollal küldött

 $D(T) \ge R(T) \ge Q(T)$

- Exponential Separation of Quantum and Classical One-Way Communication Complexity
 Ziv Bar-Yossef, T. S. Jayram, Iordanis Kerenidis (2006)
- https://www.irif.fr/~jkeren/jkeren/CV Pubs files/BJK04.pdf

Def (HM_N) :

Legyen $z \in \{0,1\}^N$ Alice inputja, $M \in \mathcal{M}_N$ teljes párosítás Bob inputja, ekkor Bob célja:

Output: (i,j,b) , ahol ullet $(i,j)\in M$

$$\bullet$$
 $(i,j) \in M$

$$\bullet$$
 $b = z_i \oplus z_j$

$$i, j \in \{1, ..., N\} \ b \in \{0, 1\}$$

$$\mathcal{M}_N = \{M_1, M_2, ..., M_m\}$$
 páronként éldiszjunkt teljes párosítások, ahol $m = \Omega(N)$

Kérdés: mennyit kell Alice-nak (randomizáltan) kommunikálnia?

Kell: \bullet $(i,j) \in M$ ———— wlog. feltehető, hogy teljesül

$$\bullet$$
 $b = z_i \oplus z_j$

Kérdés milyen hiba korlátot szeretnénk? 1/2 val. jó output triviális

A birthday paradox argument:

Alice rand választ $c \cdot \sqrt{N}$ indexet, megfelelő biteket átküldi

$$E[\text{Élek száma } T \text{ db random index közt}] = {T \choose 2} \frac{1}{N-1} \approx \frac{T^2}{2N}$$

$$\frac{T^2}{2N} \to \frac{c^2N}{2N} = \frac{c^2}{2}$$

$$T \geq 2\sqrt{N}$$
-re pl. már elég valószínű

Tétel (Yossef-Jayram-Kerenidis):

Bármely egyirányú randomizált protokollhoz, mely megoldja HM_N -et $\leq \frac{1}{8}$ hibával, szükség van $\Omega(\sqrt{N})$ bit kommunikációra.

Láttuk, hogy $\Theta(\sqrt{N})$ -ről van szó igazából.

$$x \neq 0^n$$

$$M_x := \{(y, y \oplus x) | y = 1, ..., 2^n\}$$
 $\mathcal{M}_n := \{M_1, M_2, ..., M_{2^n - 1}\}$

Alice ismeri f_n igazságtábláját ($\{0,1\}^{2^n}$), Bob ismeri x-et, így M_x -et is

Alice kommunikációja megfelel a súgásnak: Tehát */rpoly \iff randomizált egyirányú kommunikáció És most $N=2^n$

Előző Tétel miatt:

Alice-nak $\,\Omega(2^{n/2})\,$ bitet kell küldeni, hogy $\frac{7}{8}\,$ val. jól válaszoljon

Előző Tétel miatt:

Alice-nak $\Omega(2^{n/2})$ bitet kell küldeni, hogy $\frac{7}{8}$ val. jól válaszoljon

Ha
$$F' \sim \{F \mid F = \{f_n\}_{n \geq 1}\}$$
 , akkor

$$Pr[\exists s_n \text{ poly}(n) \text{ súgás } \forall x \in \{0,1\}^n : (x, A(x|s_n)) \in R_{F'}] \le \frac{7}{8}$$

Előző Tétel miatt:

Alice-nak $\Omega(2^{n/2})$ bitet kell küldeni, hogy $\frac{7}{8}$ val. jól válaszoljon

Ha
$$F' \sim \{F \mid F = \{f_n\}_{n \geq 1}\}$$
, akkor

 $Pr[poly(n) \text{ méretű } s_n \text{ súgás mellett } x \in \{0,1\}^n \text{ inputra } (x,A(x|s_n)) \in R_{F'}] \leq \frac{7}{8}$

De ez minden n-re független, így

 $Pr[poly(|x|) \text{ méretű } \{s_n\}_{n\geq 1} \text{ súgások mellett } x \in \{0,1\}^* \text{ inputra } (x,A(x|s_n)) \in R_{F'}] \leq \prod_{n=1}^{\infty} \frac{7}{8} = 0$

Tehát: $\exists F:R_F \not\in \mathsf{FBQP/poly} = \mathsf{FBQP/rpoly}$

Meg lehet gondolni

ullet $R_F
ot\in FBQP/poly -nál nem használtuk ki, hogy FBQP az algoritmus$

Ha C uniform: $R_F \not\in$ C/poly

• $R_F \in FEQP/qpoly$

Meg lehet gondolni

FBQP_U/poly = FBQSIZE_{NU}(poly(n))

```
" \supseteq": FBQSIZE<sub>NU</sub>(poly(n)) programja belekódolható a súgásba
```

"
$$\subseteq$$
 ": FBQP_U/poly \subseteq FBQP_{NU}/poly \subseteq FBQSIZE_{NU}(poly(n))

$$FBQP_U/qpoly \supseteq FBQSIZE_{NU}(poly(n)),$$

sőt
$$FBQP_U/qpoly \supseteq FBQSIZE_{NU}(2^{O(n)})$$

Nyitott kérdés

Hány klasszikus bitre van szükség randomizált súgás esetén, olyan problémára, amire elég n qubit?

Láttuk, hogy R_F esetén $\Omega(2^{n/2})$ -re szükség van.

Van-e relációs probléma, melyre többre is szükség van?

Milyen erős a szeparáció $\Omega(2^{n/2})$ és $\Omega(2^n)$ között?

Köszönöm a figyelmet!

