Claims:

A process for the isomerisation of the Z-isomer I-Z of a compound of the general 1. formula I into its E-isomer I-E

5

10

15

20

$$(R^{1})_{m}$$

$$O$$

$$(R^{3})_{q}$$

$$(R^{2})_{p}$$

$$(R^{2})_{p}$$

$$(R^{2})_{p}$$

$$(R^{3})_{q}$$

$$(R^{3})_{q}$$

wherein

m, p and q

are each independently an integer of 0, 1, 2, 3 or 4

 R^{1} , R^{2} , R^{3}

are each independently halogen; OH; CN; NO2;

C₁-C₆-alkyl, optionally substituted with C₁-C₄-alkoxy, C₁-C₄-

haloalkoxy or C₃-C₆-cycloalkyl;

C₁-C₆-haloalkyl;

C₃-C₆-cycloalkyl;

C₁-C₆-alkoxy optionally substituted with C₁-C₄-alkoxy or C₃-C₆-

cycloalkyl;

C₁-C₆-haloalkoxy;

C₁-C₆-alkylcarbonyl;

C₃-C₆-cycloalkoxy;

C₁-C₆-alkoxycarbonyl or

C₁-C₆-alkoxycarbonyloxy;

which is characterized in that the Z isomer I-Z or a mixture of the stereoisomers I-Z and I-E is reacted in the presence of iodine.

25

- 2. The process as claimed in claim 1, wherein iodine is used in amounts from 0,1 to 10% by weight, based on the total amount of the compound of the general formula I.
- The process as claimed in claim 1, wherein the isomerisation is performed in an 30 3. inert solvent or diluent.
 - The process as claimed in claim 1, wherein the isomerisation is performed in the 4. absence of a solvent or diluent.

35

The process as claimed in claim 1, wherein a mixture of the isomers I-Z and I-E 5. having an E/Z ratio ranging from 15:1 to 2:1 is reacted.

10

- 6. The process as claimed in claim 1, wherein the isomerisation is performed at a temperature ranging from 40 to 150°C.
- 7. The process as claimed in claim 1, where in formula 1

 m, p and q are each 1 and R¹, R², R³ are each independently halogen, CN, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy.
- 8. The process as claimed in claim 7, where in formula I R¹ is CF₃ located in the 310 position of the phenyl ring, R² is CN located in the 4-position of the phenyl ring and R³ is OCF₃ located in the 4-position of the phenyl ring.