Insper

Lógica da Computação - 2021/1

Aula 05/T03 - 08/Mar/2021

Maciel Calebe Vidal - macielcv@insper.edu.br

Objetivos

- 1. Consolidar o conhecimento sobre Gramáticas Regulares.
- 2. Apresentar o Pumping Lemma.

Cenário

Um engenheiro desenvolveu um protocolo de comunicação entre um Aplicativo e um IoT. O IoT envia os dados dos sensores via Bluetooth, contudo não há como saber quantos bytes serão enviados por cada sensor. É sabido que existem alguns valores reservados que os sensores não transmitem. Portanto o engenheiro estabeleceu que:

- Há um byte de início de transmissão representado por 0xFA.
- Há um byte que separa os dados entre dois sensores distintos: 0xFB. Neste caso, cada sensor transmite pelo menos 1 byte.
- Finalmente há um byte que representa o fim da transmissão: 0xFC.
- A transmissão pode terminar sem que nenhum sensor transmita.

Exemplo: '0xFA 0x24 0x12 0x1D 0x00 0xFB 0x16 0xFB ... 0xFB 0x23 0x0A 0x04 0xFC'

1. Escreva uma gramática linear à direita que representa o protocolo de comunicação acima.

2. Demonstre que essa gramática é linear à direita.

3. Converta a gramática para um autômato finito.

4. Justifique se o autômato finito é determinístico ou não determinístico.

5. Escreva a expressão regular equivalente à gramática acima.

 $6.\$ Finalmente escreva a linguagem correspondente à gramática acima.

$$L = \left\{ AC \mid AH^{m}(BH^{n})^{pC} \mid m \ge 1, n \ge 1, p \ge 0 \right\}$$

7. Se ainda não o fez, escreva o AFD correspondente.

Etapa de Manutenção

Devido à problemas na comunicação do dispositivo, havia uma grande perda de dados. Então delegaram ao estagiário implementar um *checksum* no final da transmissão. Em um ímpeto de otimização e produtividade o estagiário desenhou o *checksum* da seguinte maneira:

- após o byte final 0xFC iria colocar um byte 0xFF para cada byte enviado, exceto os bytes de controle.
- Exemplo: 0xFA 0x01 0x0D 0x04 0xFB 0x20 0x10 0xFC 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
- 1. Explique quais as consequências dessa decisão.

A linguagem deixon de ser regular.

2. Prove formalmente que a nova linguagem ${\bf n\~{a}o}$ $\acute{\bf e}$ regular.

Não sei ainda

Pumping Lemma

Teorema: Seja L uma linguagem regular infinita. Então, existe uma constante n (que depende de L) tal que, para todo string w em L tal que $|w| \ge n$, podemos dividir w em três strings, w = xyz, tais que:

>> Ver Cap. 3.9 Ramos et al

Exemplo: $L = \{a^m b^m | m \ge 0\}$

3. Como se prova que uma linguagem é regular?

 \mathbf{TGF} : Ramos et al. Pag. 239-254

Propriedades de Fechamento

As linguagens regulares são fechadas em relação às seguintes operações:

- União, concatenação e fecho
- Complemento
- Intersecção

Teorema: "A classe das linguagens regulares é fechada em relação à operação de intersecção."

Verificação: Considere L_1 sobre Σ_1 e L_2 sobre Σ_2 , sendo $\Sigma_1, \Sigma_2 \subseteq \Sigma$. Através da Lei de Morgan, a seguinte relação é verdadeira:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

Como as linguagens regulares são fechadas em relação à união e complemento, a intersecção duas linguagens regulares também é uma linguagem regular.

- Substituição
- Homomorfismo e homomorfismo inverso
- Quociente
- Reversão

Questões Decidíveis

1. As linguagens são idênticas?

Teorema: "Sejam $L(G_1)$ e $L(G_2)$ duas linguagens regulares quaisquer. Então, a questão $L(G_1)=L(G_2)$ é **decidível**"

Verificação: Seja $L_1=L(M_1)$ e $L_2=L(M_2)$, onde M_1 é um AFD que representa L_1 e M_2 é um AFD que representa L_2 . Portanto, se $L_1=L_2$, então:

$$(L_1\cap \overline{L_2})\cup (\overline{L_1}\cap L_2)=\emptyset$$

- 2. A linguagem é vazia?
- 3. A linguagem é infinita?
- 4. A linguagem é finita?
- 5. Uma cadeia pertence à uma linguagem?
- 6. A lingugem é Σ^*
- 7. A linguagem é um subconjunto de outra linguagem?

Lista de Exercícios

Ramos et al Cap. 3.13: Exercícios 4, 6, 7, 14, 25, 34, 37, 41 e 82.

Próxima aula:

- EBNF
- Precedência de Operadores
- Melhorias no Compilador:
 - Multiplicação e Divisão
 - Comentários

Referências:

• J. J. Neto - Cap. 5