THONG TIN

1 cho nguồn tin rời rạc $\Omega_{\xi} = \{x_1, x_2...\}$, x_i là các xung chữ nhật có cùng biên độ với các độ rộng khác nhau: t_1 =10ms, t_2 =5ms, t_3 =20ms, t_4 =15ms.

Biết rằng : $p_{\xi}(x_1)=0.5$, $p_{\xi}(x_2)=0.25$, $p_{\xi}(x_3)=0.125$, $p_{\xi}(x_4)=0.125$.

Nguồn phát đi liên tục các xung. Hãy tính entropy cua nguon H_ξ (bit/tt), và tốc độ phat tin của nguồn R(bit/s).

- 2. cho nguon tin co đặc trưng thống kê: p(x1)=0.01, px2=0.02, px3=0.03, px4=0.11, px5=0.18, px6=0.04, px7=0.12, px8=0.07, px9=0.09, px10=0.02, px11=0.13, px12=0.04, px13=0.02, px14=0.06, px15=0.03, px16=0.04. Thực hiện:
- -Mã Huffman, tính hệ số nén.
- -Mã Shannon, tính hệ số nén
- 3. cho nguồn tin rời rạc $\Omega_{\xi} = \{x_1, x_2...\}$, x_i là các xung chữ nhật có cùng biên độ với các độ rộng khác nhau: $t_1=1$ s, $t_2=10$ s, $t_3=60$ s.

Biết rằng : $p_{\xi}(x_1)=0.8$, $p_{\xi}(x_2)=0.15$, $p_{\xi}(x_3)=0.05$.

Nguồn phát đi liên tục các xung. Hãy tính H_{ξ} (bit/tt), và tốc độ tạo tin của nguồn R(bit/s).

4. cho nguồn tin rời rạc của biến ngẫu nhiên ξ : $\Omega_{\xi} = \{x_1, x_2...\}$. x_i , i=1, 2, 3, 4, 5, 6 là các xung chữ nhật có cùng biên độ và cùng độ rộng t=20ms.Biết rằng : $p_{\xi}(x_i) = C_5^{i-1}. \left(\frac{1}{3}\right)^{i-1}. \left(\frac{2}{3}\right)^{6-i}.$

Nguồn phát đi liên tục các xung. Hãy tính H_{ξ} (bit/tt), và tốc độ tạo tin của nguồn R(bit/s).

5. Cho kênh rời rạc với đặc trưng thống kê là ma trận xác xuất có điều kiện:

$$\left[p_{\frac{\eta}{2}}(y_k/x_i)\right]_{(5,5)} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0,5 & 0 & 0 & 0 \\
0 & 0,5 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

Biết rằng : $p_{\xi}(x_i) = C_4^{i-1}.(b)^{i-1}.(1-b)^{5-i}$. Ở đây b là số thực 0 < b < 1. hãy tính entôpi có điều kiện $H_{\eta_{\xi}}$ và xác định giá trị của b để entrôpi này là cực đại.

6. Cho kênh rời rạc với đặc trưng thống kê là ma trận xác xuất có điều kiện:

$$\left[p_{\gamma/\xi}(y_k/x_i)\right]_{(3,3)} = \begin{bmatrix}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{bmatrix}_{(3,3)}$$

Biết rằng : $p_{\xi}(x_1) = p_{\xi}(x_2)$ =b. Ở đây b là số thực 0 < b < 0,5. Hãy tính lượng tin tương hỗ $I_{\xi\eta}$ và khảo sát nó như hàm của b. Tinh C: dung luong kenh truyen

7. Cho kênh rời rạc với đặc trưng thống kê là ma trận xác xuất có điều kiện:

$$\left[p_{\gamma/\xi}(y_k/x_i) \right]_{(3,3)} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.2 & 0.5 & 0.25 \\ 0.3 & 0.25 & 0.5 \end{bmatrix}_{(3,3)}$$

và đặc trưng thống kê của nguồn $p_{\xi}(x_1) = 2p_{\xi}(x_2)$ và $p_{\xi}(x_3) = 3p_{\xi}(x_2)$.

- . Hãy tính lượng tin tương hỗ I_{ε_n} ,
- 8. Cho hệ thống thông tin rời rạc với đặc trưng thống kê $\left\{p_{\xi\eta}(x_i,y_k)\right\}$:

			(),
ξ	y 1	y ₂	у з
X_1	0	0,08	0,02
X_2	0,3	0,2	0,1
X ₃	0,15	0,12	0,03

Hãy tính $I_{\xi\eta}$.

9. Cho kênh rời rạc với đặc trưng thống kê là ma trận xác xuất có điều kiện:

$$\left[p_{\eta_{\xi}}(y_k/x_i) \right]_{(3,3)} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}_{(3,3)}$$

Hãy tính dung lượng kênh truyền .

10. Hãy xác định dung lượng kênh truyền của kênh trong hình vẽ :

MA TOI UU

- 1. nguồn tin của tín biệu ngẫu nhiên ξ có tập các tin tức Ω_{ξ} ={ x_i }, i=1,2,3,4,5,6 . Với đặc trưng thống kê $p_{\xi}(x_1) = p_{\xi}(x_2) = 0,2; \; p_{\xi}(x_3) = 0,18; \; p_{\xi}(x_4) = 0,17; \; p_{\xi}(x_5) = 0,15; \; p_{\xi}(x_6) = 0,1.$ hãy thiết kế mã shanno-Fano,huffman, tính hệ số nén.
- 2. nguồn tin của tín hiệu ngẫu nhiên ξ có tập các tin tức Ω_{ξ} ={ x_i }, i=1,2,3,4,5 . Với đặc trưng thống kê $p_{\xi}(x_1) = p_{\xi}(x_2) = 0,2$; $p_{\xi}(x_3) = 0,18$; $p_{\xi}(x_4) = 0,17$; $p_{\xi}(x_5) = 0,15$; $p_{\xi}(x_6) = 0,1$. hãy thiết kế mã shanno-Fano, hoặc mã huffman .tính hệ số nén, xác định hiệu quả của mã hoá.
- 3. nguồn tin của tín hiệu ngẫu nhiên ξ có tập các tin tức Ω_{ξ} ={ x_i }, i=1,2,3,4,5,....17 . Với đặc trưng thống kê : $p(x_1)$ = 0,05; $p(x_2)$ = 0,09; $p(x_3)$ =0,23; $p(x_4)$ = 0,005; $p(x_5)$ =0,07 ; $p(x_6)$ =0,001 ; $p(x_7)$ =0,005 ; $p(x_8)$ =0,007 ; $p(x_9)$ =0,03 ; $p(x_{10})$ =0,01 ; $p(x_{11})$ =0,07 ; $p(x_{12})$ =0,08 ; $p(x_{13})$ =0,13 ; $p(x_{14})$ =0,05 ; $p(x_{15})$ =0,17 ; $p(x_{16})$ =0,001; $p(x_{17})$ =0,001 ; hãy thiết kế mã Huffman, tính hệ số nén.
- 4. Cho nguồn tin $\Omega_{\xi} = \{x_i\}$, i=1, 2, 3, 4, 5, 6 với đặ trưng thống kê: $p_{\xi}(x_1) = p_{\xi}(x_2) = 0,2$, $p_{\xi}(x_3) = 0,18$, $p_{\xi}(x_4) = 0,17$, $p_{\xi}(x_5) = 0,15$, $p_{\xi}(x_6) = 0,1$ Thiết kế mã nhị phân shanno-fanno

MA KHOI

- 1. nguồn tin của tin của tín hiệu ngẫu nhiên ξ có tập các tin tức Ω_{ξ} ={ x_i }, i=1,2...,24. Hãy thiết kế mã nhi phân có thể phát hiện và sửa sai được 1 lỗi trên cơ sở kiểm tra chẵn lẻ
- 2. nguồn tin của tin của tín hiệu ngẫu nhiên ξ có tập các tin tức Ω_{ξ} ={ x_i }, i=1,2...,12. Hãy thiết kế mã Hamming và kiểm tra hoạt động của mã được thiết kế.
- 3. Ma trận sinh của mã nhị phân tuyến tinh sau:

$$\begin{bmatrix} G \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- a) biểu diễn G ở dạng hệ thống
- b) xác đinh ma trận kiểm tra H.
- c) hãy minh hoạ từ mã với tin =101, va kiểm tra nó là trực giao với H
- d) xác định khoảng cách min của mã.
- $\overline{4}$. xây dựng ma trận H_1 và H_2 tương ứng với ma trận sinh

$$\begin{bmatrix} G_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} G_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- -
- a)Chuyển ma trận kiểm tra chẵn lẻ H của mã haming (7,4) thành dạng hệ thống
- b) tìm ma trận sinh G của mã này
- c) d min của mã haming này, giải thích làm thế nào đạt được nó từ H
- e) lập bảng giải mã cho các syndrom giải mã.
- f) giả sử véc tơ mã v=[0001101] được gửi, và véc tơ lỗi là e=[1001000], hãy quyết định từ mã được chữa.
- 6. Hãy tìm đa thức sinh G dưới dạng chuẩn khi biết matrận kiểm tra chẵn lẻ H:
- $\bullet \quad \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$

$$\bullet \quad \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

- 7. Cho nguồn tin $\Omega_{\xi} = \{x_i\}$, i=1,2....,24. hãy thiết kế mã khối phát hiện và sửa sai 1 lỗi.
- 8. Cho nguồn tin $\Omega_{\xi} = \{x_i\}$, i=1, 2, 3....,12. Hãy thiết kế mã Hamming phát hiện và sửa sai 1 lỗi.

Kiểm tra hoạt động của mã thiết kế

- 9. Cho nguồn tin $\Omega_{\xi} = \{x_i\}$, i=1, 2, 3.....24. Hãy thiết kế mã khối Hamming phát hiện và sửa sai 1 lỗi.
- 10. Mã Haming.
- a) Hãy xác định từ mã Haming [u_1], [u_2] tương ứng với các tin tức [i_1]= [0100], và [i_2]= [0101].
- b) Hãy tiến hành giải mã (sửa sai, và lọc tin) cho những từ mã nhận được sau: $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} 0000111 \end{bmatrix}, \begin{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} 11111100 \end{bmatrix}, \begin{bmatrix} u_3 \end{bmatrix} = \begin{bmatrix} 1000011 \end{bmatrix}.$

11. cho ma trận H
$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
.

- Xác đinh ma trân Ght?
- có bao nhiêu từ mã? dmin?
- chứng minh ràng: 2 từ mã bất kỳ là trực giao với nhau
- 12. a) giả sử (n,k) mã khối tuyến tính mà mỗi bit trong nó được truyền qua kenh nhi phân đối xứng vơi xx chéo p<<0,5. cm rằng giải mã max likehood dẫn đến min khoảng cách hamming giải mã.
- 13. a) cấu trúc ma trận H kiểm tra chẵn lẻ của ma h amming (15,11). giải thích làm thế nào nó có thể chữa các sai 1 lỗi.
- c) mã hamming (15,11) giả sử nhận [10010000001100], tính véc tơ đúng.
- 1. cho mã C(6,3) với ma trận sinh

- liêt kê các từ mã của C
- Tìm dmin

- Mã có khả năng sửa bao nhiều lỗi
- Tìm ma trân kiểm tra

MA VONG

- 1. hệ thống với đa thức sinh $g(x)=x^3+x^2+1$:
- a) Hãy xác định từ mã [u_1], [u_2] tương ứng với các tin tức [i_1]=[0100], và [i_2]=[0101].
- b) Hãy tiến hành giải mã (sửa sai, và lọc tin) cho những từ mã nhận được sau: $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} 0000111 \end{bmatrix}, \begin{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} 11111100 \end{bmatrix}, \begin{bmatrix} u_3 \end{bmatrix} = \begin{bmatrix} 1001011 \end{bmatrix}$.
- 2. Mã vòng không hệ thống với đa thức sinh $g(x)=x^3+x^2+1$:
- a) Hãy xác định từ mã [u_1], [u_2] tương ứng với các tin tức [i_1]=[0100], và [i_2]=[0101].
- b) Hãy tiến hành giải mã (sửa sai, và lọc tin) cho những từ mã nhận được sau: $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} 0000111 \end{bmatrix}, \begin{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} 11111100 \end{bmatrix}, \begin{bmatrix} u_3 \end{bmatrix} = \begin{bmatrix} 1001011 \end{bmatrix}$.
- 3. Mã vòng hệ thống với đa thức sinh $g(x)=x^3+x+1$:
- a) Hãy xác định từ mã [u_1], [u_2] tương ứng với các tin tức [i_1]=[0100], và [i_2]=[0101].
- b) Hãy tiến hành giải mã (sửa sai, và lọc tin) cho những từ mã nhận được sau: $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} 0001111 \end{bmatrix}, \begin{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} 1111100 \end{bmatrix}, \begin{bmatrix} u_3 \end{bmatrix} = \begin{bmatrix} 1001110 \end{bmatrix}.$
- 4. Mã vòng không hệ thống với đa thức sinh $g(x)=x^3+x+1$:
- a) Hãy xác định từ mã [u_1], [u_2] tương ứng với các tin tức [i_1]= [0100], và [i_2]= [0101].
- b) Hãy tiến hành giải mã (sửa sai, và lọc tin) cho những từ mã nhận được sau: $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} 0001111 \end{bmatrix}, \begin{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} 1111100 \end{bmatrix}, \begin{bmatrix} u_3 \end{bmatrix} = \begin{bmatrix} 1001110 \end{bmatrix}.$
- 5. Tìm tất cả các đa thức sinh monic đối với các Ideal sau đây:
 - A. $I = \langle 1 + x + x^3 \rangle \subset F_2[x]/(x^7 1);$
 - B. $I = \langle 1 + x^2 \rangle \subset F_3[x]/(x^4 1);$
- 6. xác định liệu những đa thức sau đây có là đa thức sinh của của các mã vòng có chiều dài đã cho?
 - $\mathbf{g}(\mathbf{x}) = 1 + \mathbf{x} + \mathbf{x}^2 + \mathbf{x}^3 + \mathbf{x}^4$ đối với mã có chiều dài =7
 - $\mathbf{g}(\mathbf{x}) = 2 + 2\mathbf{x} + \mathbf{x}^3$ cho mã vòng tam phân , với n=8.
 - 7. cho mã vòng nhị phân với chiều dài n=9. với đa thức sinh $g(x)=1+x^3$.
 - tìm đa thức kiểm tra h(x) (ds=x6+x3+1)
 - dùng h(x) để xác nhận 010100110 là từ mã
 - 8. Xác định chiều dài nhỏ nhất cho ma nhị phân với đa thức sinh như sau:
 - $\mathbf{g}(\mathbf{x}) = 1 + \mathbf{x}^4 + \mathbf{x}^5$

- $g(x) = 1 + x + x^2 + x^4 + x^6$
- 9. xác định đa thức sinh, và kích thước của của mã vòng nhỏ nhất có chứa 1 trong các từ mã sau:
- A. $1000111 \in F_2^7$
- B. $(1,0,2,0,2,0,1,1) \in F_3^8$
- 10. cho mã C={[0 0 0 0 0 0], [1 0 1 1 1 0], [001010], [110111], [100100],[011001],[111101],[010011]}, tim ma trận sinh và ma trận kiểm tra.
- 11. đa thức sinh $g(x)=x^4+x+1$ là đa thức sinh chủa mã Haming nhị phân C(n=15, k=11).
 - a) xác định ma trận G của mã hệ thông
 - b) Xác định đa thức sinh của mã đối ngẫu, và viết ma trận sinh của mã (không hệ thống)
- 12. Mã vòng nhị phân C(15,11) với đa thức sinh g(x)=x⁴+x+1. Mã C(8,4) là mã shortening của mã C(15,11).
 - a) Tạo và liệt kê các từ mã của mã C(8,4).
 - b) Xác đinh dmin của mã C(8,4)
- 13. Đa thức $x^{15} + 1$ được khai triển thành các đa thức thành phần $x^{15} + 1 = (x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)(x^4 + x + 1)(x^2 + x + 1)(x + 1)$
 - a) xác định ma trận sinh của mã hệ thống với đa thức sinh $g(x) = (x^4 + x^3 + x^2 + x + 1)(x^4 + x + 1)(x^2 + x + 1)$ của mã C(15,5)
 - b) xác đinh dmin của mã này, mã có thể sửa được bao nhiều lỗi?.
 - c) mã có thể phất hiện được bao nhiều lỗi?
- 14. Cho đa thức sinh của mã C(15,2) với đa thức sinh $g(x) = (x^{15}+1)/(x^2+x+1)$.
 - a) tìm các từ mã?
 - b) xác định dmin và mã có khả năng sửa bao nhiều lỗi.
- 15. Cho mã vòng với đa thức sinh $g(x) = x^8 + x^6 + x^4 + x^2 + 1$;
 - a) tìm mã vòng có tỷ lệ mã (R=k/n) là nhỏ nhất với đa thức sinh trên. xác định R?
 - b) xác định dmin, và mã chữa được bao nhiệu lỗi.

chu thich
$$g(x) = (x^4 + x^3 + x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1).$$

- 16. Xác định đa thức sinh và tỷ lệ mã của mã BCH có khả năng chữa 2 lỗi, với n=31 ?; Nếu nhận được r= 00000000000000000011001001001, dùng thuật toán Berlekamp-Massey để xác định error location.
- 17. Cho mã BCH C(15,7) từ đó tạo ra mã shorted C(12,4). Xác định đa thức sinh của mã này.
- 18. Xác định mã RS với n=7, chữa được 2 lỗi. g(x)? R? xác định hàm phân bố trọng lượng (weigh distribution function)
- 19. CMR product code có dmin=dmin1*dmin2 dmin1,2 là dmin của các mã thành phần

- 20. Mã vòng hệ thống C(n=7, k=3) với đa thức sinh $g(x)=x^4+x^3+x^2+1$:
 - a) Mã phát hiện được bao nhiều lỗi ?, phát hiện và sửa sai được bao nhiều lỗi
 ?. Xác định d_{min}?
 - b) Hãy xác định từ mã [u_1], [u_2] tương ứng với các tin tức [i_1]=[010], và [i_2]=[110].
 - b) Hãy tiến hành giải mã (sửa sai, và lọc tin) cho những từ mã nhận được sau: $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} 0110010 \end{bmatrix}, \begin{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} 0101111 \end{bmatrix}$.
- 21. Mã vòng không hệ thống C(n=7, k=3) với đa thức sinh $g(x)=x^4+x^2+x+1$:
 - c) Mã phát hiện được bao nhiều lỗi ?, phát hiện và sửa sai được bao nhiều lỗi ?. Xác định d_{min}?
 - d) Hãy xác định từ mã [u_1], [u_2] tương ứng với các tin tức [i_1]=[101], và [i_2]=[110].
 - b) Hãy tiến hành giải mã (sửa sai, và lọc tin) cho những từ mã nhận được sau: $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} 00111111 \end{bmatrix}, \begin{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} 0001110 \end{bmatrix}$.

MA TICH CHAP

- 1. giả sử tỷ lệ r=1/3, constraint-length 4 bộ mã hoá với generator (15,13,11) in octal notation.
- b) vẽ diagram chỉ ra cấu trúc bộ mã hoá.
- c) cấu trúc giản đồ trạng thái của mã
- d) giả sử chuỗi nhận được do việc truyền 4 bit thông tin đầu tiên là r=[110001011110]. sử dụng thuật toán veterbi quuyeest định những giá trị nào là giống nhất 4 bit thông tin dầu vào được truyền . giả sử trạng thái đầu vào của bộ mã hoá bắt đầu là trạng thái zero
- 2. Mã chập được mô tả bởi g₁=[101], g₂=[111], g₃=[111]
- a) vẽ bô mã hoá tương ứng với với mã này.
- b) xây dựng lưu đồ chuyển đổi trạng thái của mã.
- c) hãy tìm hàm truyền và khoảng cách tư do của mã này.
- d) Vẽ sơ đồ lưới của mã.
- 3. cho ma

a) dựng giản đồ trạng thái của mã.

- b) tìm hàm truyền của mã này.
- c) tìm min khoảng cách tự do cảu mã và chỉ ra path tương ứng in trong trellis
- 4. Mã chập được mô tả bởi g₁=[100], g₂=[101], g₃=[111]
- a) vẽ bộ mã hoá tương ứng với với mã này.
- b) xây dựng lưu đồ chuyển đổi trạng thái của mã.
- c) hãy tìm hàm truyền và khoảng cách tự do của mã này.
- d) Vẽ sơ đồ lưới của mã.
- e) Mã này được dùng để truyền trên kênh ĂGN với giải mã xác định cứng. Đầu ra của giải điều chế là dãy ký hiệu (101001011110111...) . Sử dụng thuật toán Viterbi tìm dãy đã truyền đi.
- 5. cho mã tích chập nhị phân C(n=2, k=1) với sơ đồ mã hóa:

- a. Vẽ sơ đồ trạng thái dùng.
- b. Tính hàm truyền và xác định d_{free}.
- c. xác định chuỗi từ mã tương ứng chuỗi thông tin u=(01011)
- 6. Giả xử mã nhị phân memory -3. tỷ lệ ½ mã convolution với bộ mã hóa có generator (15,17)
 - a. Phác họa mạch mã hóa, sơ đồ trạng thái của nó.
 - b. Tìm T(x,y,z), xác định dfree.
 - c. Truyền dẫn qua kênh BSC, đánh giá hiệu xuất (performance) của bộ mã hóa này và so sánh với bô mã hóa memory-2 với đa thức (5,7).

- 7. cho bo mã hóa tich chập (n=2, k=1, m=2) có đáp ưng xung g1=[1 1 0], g2=[0 1 1].
 - vẽ sơ đồ trạng thái?
 - tìm dfree?
 - xác định ma trận G(D). Có tồn tại matran nghịch đảo G¹(D)?
 - thực hiện giải mã theo thuật toán viterbi khi nhận được chuỗi r=10 01 11
 01 và giải thích
- 8. Cho bộ mã háo tích chập n=3, k=1 được mô tả bởi đáp ứng xung g1=[1 0 1], g2=[1 1 1], g3=[1 1 1].
 - vẽ mạch mã hóa?
 - vẽ sơ đồ trạng thái?
 - Xác định hàm truyền và dfree
 - giải mã theo thuật Viterbi cho chuỗi nhận được r= 101 001 011 110 111.
- 9. cho mã tich chập C(n=2, k=1, m=2). Biết giá trị đầu ra bộ mã, và giá tri vào bô mã như sau:

- a) Hãy vẽ sơ đồ mạch thực hiện mã hóa
- b) Xác định chuỗi từ mã khi chuỗi vào x= 101101
- c) Thực hiện giải mã theo thuật toán Viterbi (quyết định cứng) nếu chuỗi nhận được 10 00 00 10 10 00.
- d) Xác định hàm truyền, và dfree
- 10) Cho bộ mã hóa tich chập C(n=3, k=1) có đáp ứng xung được mô tả bởi g_1 =[101], g_2 =[111], g_3 =[111]
- a) Vẽ bộ mã hoá tương ứng với với mã này.
- b) Xây dựng lưu đồ chuyển đổi trạng thái của mã.
- c) Hãy tìm hàm truyền và khoảng cách tự do (d_{free}) của mã này.
- d) Thực hiện giải mã theo thuật toán Viterbi cho chuỗi nhận được: r= 111 001 000 100 011

Tin	Ma ha ming	Ma vong $g=x^3+x^2+1$		Ma vong $g=x^3+x+1$ [1101]	
1234	1234567	[1011]			
		Khong HT	HT	Khong HT	HT
0000	0000000	0000000	0000000	0000000	0000000
0001	1101001	0001011	0111011	0001101	1010001
0010	0101010	0010110	1100010	0011010	1110010
0011	1000011	0011101	1010011	0010111	0100011
0100	1001100	0101100	1110100	0110100	0110100
0101	0100101	0100111	1000101	0111001	1100101
0110	1100110	0111010	0010110	0101110	1000110
0111	0001111	0110001	0100111	0100011	0010111
1000	1100000	1011000	1011000	1101000	1101000
1001	0011001	1010011	1101001	1100101	0111001
1010	1011010	1001110	0111010	1110010	0011010
1011	0110011	1000101	0001011	1111111	1001011
1100	0111100	1110100	0101100	1011100	1011100
1101	1010101	1111111	0011101	1010001	0001011
1110	0010110	1100010	1001110	1000110	0101110
1111	1111111	1101001	0101111	1001011	1111111

Bài tậptín hiệu

- 1. sử dụng tích chất của tích chập để tính phổ của tín hiệu $x(t)=\sin(\omega_1 t)\cos(\omega_2 t)$
- 2. tính phổ của dạng sóng tam giác x(t)=At (khi 0<t<To) và =0 với t còn lại.
- 3. nếu y(t) có ảnh Y= $\frac{j\omega t}{1+j\omega t}$

tìn X cho

$$x(t)=y(2t+2)$$
 $x(t)=e^{-jt}$ $y(t-1)$ $x(t)=y(1-t)$

- 4. Tìm X và Y để $w(t)=u(t)e^{-at}\sin(\omega_1 t)$, u(t) là hàm đơn vị, a>0, W=X+jY
- 5. Tính phổ của xung hình thang
- 6. cho chuỗi xung tam giác, tính phổ biện đô
- 7. cho chuỗi xung rặng cưa, tính phổ biên độ.
- 8. cho dạng sóng 20+sin(500t+30°)được lấy mẫu tuần hòan và tạo lại từ các giá trị mẫu này. A tính khỏang thời gian cực đại cho phép giữa các mẫu b/) cần bao nhiều mẫu để tạo lại 1 giây dạng sóng trên.
- 9. máy đọc đĩa compac dùng pcm 16 bit có 1 bit chẵn le, , dải thông tín hiệu tương tự 20khz, dai thông rỗng đầu tiên của pcm là bao nhiều.
- 10. tính tần số bit thấp nhất và tốc đô bit thấp nhất cho tín hiệu sau :

$$x(t) = 7\cos(\pi 10^3 t + 30^\circ) + 2\sin(\pi 1.5 * 10^3 t + 120^\circ) - 5\cos(\pi 3 * 10^6 t + 10^\circ)$$

lấy mẫu đồng đều với bứơc lượng tử hóa : q=0,1.

11. tính phổ biên đô của các tín hiệu sau: