LATEX Course 2011

Part 1: Short Introduction

Arho Virkki

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

LATEX—distribution packages

The very same LATEX in different packages:

- TeXLive (Linux, Mac OS X, Windows)
- MacTeX (Mac OS X)
- MikTeX (Windows)
- ...

LATEX on Ubuntu Linux through Synaptic

LATEX on Mac OS X

LATEX on Windows

http://miktex.org/2.9/setup

Document structure

An example document preamble:

```
\documentclass[a4paper,10pt]{article} % style
\usepackage[latin1]{inputenc} % or [ansinew]
\usepackage[finnish]{babel} % hyphenation
\usepackage{graphicx} % for images

\begin{document}
\section{Introduction}
During the last few decades, the amount of digital
content has increased enormously
\dots
\end{document}
```


Compilation: Linux & Mac command line

Just call LaTeX or PDFLaTeX directly

```
$ latex myfile.tex; dvipdf myfile # or
$ pdflatex myfile
```

and then inspect the content:

```
$ gnome-open myfile.pdf # Linux
$ open myfile.pdf # Mac
```


Compilation: Windows

Point and click - depending on the chosen interface

Mathematics

Equations are written between the \$ -characters. For example,

$$\xim x^3$$
 \mapsto $\sqrt{x^3}$

or separately as

or using

```
\begin{equation}
\sqrt{x^3}
\end{equation}
```

where the latter gives the equation also a number.

Mathematics...

Examples:

```
\begin{equation}\label{eq:gammaf}
  \Gamma (n) :=
  \int_0^\infty x^{n-1}e^{-x} dx
\end{equation}
Observe that (\ref{eq:gammaf}) does not converge
when $n=0$
```

$$\Gamma(n) := \int_0^\infty x^{n-1} e^{-x} dx \tag{1}$$

Observe that (1) does not converge when n = 0.

Mathematics...

\[\neg A := X \setminus A \]
$$\neg A := X \setminus A$$
 \[\zeta(s) := \sum_{k=1}^\infty \frac{1}{k^s} \]
$$\zeta(s) := \sum_{k=1}^\infty \frac{1}{k^s}$$

Mathematics...

It is best to learn the basic commands

```
\frac{}{}
\int
\sum
\dots
```

by heart. There are just a few of them and they are rather logical.

```
(Observe that \int = integral, not an integer...)
```


Structures

Structures define how the text is displayed.

Examples:

```
\begin{enumerate}
\item Firstly,
\item Secondly\dots
\end{enumerate}
```

- Firstly,
- 2 Secondly...

Structures...

```
\begin{itemize}
\item gloves
\item shoes
\end{itemize}
```

- gloves
- shoes

Structures...

```
My maths teaches was a genius to explain things: 
\begin{quote}
We define the determinant like a civil service department would, in a rather boring way: It is just thrown to your face with the motivation being "learn it or die".
\end{quote}
```

My maths teaches was a genius to explain things:

We define the determinant like a civil service department would, in a rather boring way: It is just thrown to your face with the motivation being "learn it or die".

Graphics

In LATEX, everything can be thought of being composed of boxes, aligned with respect to each other, and the distances between them.

Examples:

```
\begin{center}
\fbox{
\rotatebox{-30}{
\fbox{
\includegraphics[width=2cm]
{/img/vttplain}}}
\vspace*{1cm}
```


Graphics...

```
\reflectbox{
\rotatebox{30}{
\resizebox{!}{5mm}{Tricky stuff}
}}
\vspace*{1cm}
\rule{3cm}{1ex}
```

Muse kyoin

Summary

- The LaTeX manuscript file consists of plain text. It takes only a little amount of disk space and it is simple to send to others.
- The manuscript always begins with the "\documentclass[<params>] {<class>}" command¹.
- The text consists of the commands (called tags in HTML) and the actual text.
- This is not harder that writing HTML5 / CSS3 by hand. To be honest, LaTeX is much easier!

¹I suggest to copy the preamble from an existing template. Try to avoid the ancient templates from the early 80's, as things have changes since that.

