

Falcon9 Launch Cost Prediction

Xiaoyu Chen 2022-07-12

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

Falcon 9 rocket can re-use the first stage (and hence reduce cost)

- Predict first stage success rate
 - Use historical data
 - ML techniques

INTRODUCTION

- Falcon 9 claims a cost per launch 62 million USD
- Competitors: 165 million USD
- An accurate prediction cost per launch for Falcon9 based on historical data
- What we took into consideration:
 - Launch sites
 - Payload Mass
 - Orbitals
 - Year

Launch-site Info

All launch sites are close to the sea and can be easily reached by road and railway

METHODOLOGY

- Collect data
 - SpaceX API
 - Wikipedia
 - SQL Database
- Exploratory Data Analysis (EDA)
 - Determine what would be the label to train our models
- EDA prediction
 - Visualise relationship between independent variables*
- Train machine learning models
 - Logistic regression
 - Support vector machines
 - KNN
 - Decision tree

RESULTS - Data Wrangling

Launches at each sites:

CCAFS SLC 40 55 22 KSC LC 39A VAFB SLC 4E 13

Success Rate:

0.67

Launches per Orbital:

GT0	27
ISS	21
VLE0	14
P0	9
LE0	7
SS0	5
MEO	3
ES-L1	1
HE0	1
S0	1
GE0	1

RESULTS - EDA

We see correlation for Launch Site, Payload Mass, Orbital and Year

Success Rate per Orbital:

Success Rate vs. Year

RESULTS - SQL Database

Additional data in a SQL database was also analysed

```
Mission Success Rate: 97% (98/101)
```

Landing Success Rate: 65% (66/101)

Launch Site info:

CCAFS SLC-40	34
CCAFS LC-40	26
KSC LC-39A	25
VAFB SLC-4E	16

* Launch Site info from API + wikipedia

CCAFS SLC 40	55
KSC LC 39A	22
VAFB SLC 4E	13

RESULTS - Summary

Launch Site info:

```
CCAFS SLC-40 89
CCAFS LC-40 26
KSC LC-39A 47
VAFB SLC-4E 29
```

Mission Success Rate: 82% (159/192)

Independent Variables used for model training: Launch Site, PayloadMass, Orbital, Year

DASHBOARD

DASHBOARD

0

v1.0
 v1.1
 Success rate vs. Payloads for different booster versions

FT

4k

2k

Payload Mass (kg)

6k

10k

8k

Machine Learning Models

Logistic Regression:

Accurancy Socre: 0.83

Support Vector Machine:

Accurancy Socre: 0.83

Machine Learning Models

Decision Tree:

Accurancy Socre: 0.61

KNN:

Accurancy Socre: 0.83

CONCLUSION

• Success Rate at 82% based on historical Data

 Model training reveils that Logistic Regression, Support Vector Machine and KNN all have the same level of accuracy

Analysation & Further Work

- Launch Sites, PayLoadMass, Orbitals and Year all have impacts on success rate. Detailed analysation on Launch Site is required as the other factors can't be easily modified.
- See if it's the facilities at one Launch Site improved success rate, or if it's because it only launches easier missions.
- Train the models again by using different selection of training and testing data to see if we obtain the same results.