Human Computer Interaction

The Interaction

Lecture # 4b

Imran Siddiqi imran.siddiqi@gmail.com

Today's Interface Hall of Shame

- Problem?
- Dialogs are far too similar
- Heavy red icon

Error in CD creation

CD creating successful

Introduction 2

Today's Interface Hall of Shame

- In/Out Whiteboard application
- Is the individual 'in' or 'out'?

- Given the bright green color and the raised appearance of the 'In' button, one gets the impression that the individual is 'in'
- Actually, the individual is 'out'

Introduction 3

Today's Interface Hall of Shame

- Improper use of colour
- Color combination particularly hurtful on the eyes
- Use of 3D Font even harder to read

Introduction 4

Contents

- Introduction
- Models of Interaction
- Ergonomics
- Interaction Styles
- Interactivity
- Experience, Engagement & Fun

Introduction

What is Interaction

Machine is capable of doing the job Humans need to get the job done from the system

User must communicate his requirements to the system

Contents

- Introduction
- Models of Interaction
- Ergonomics
- Interaction Styles
- Interactivity
- Experience, Engagement & Fun

Models of Interaction

- Communication: Complex Human Complex Systems
- Models of Interaction
 - Help Understand what is going on in the Interaction
 - Identify the likely root of difficulties
- Two Models
 - Norman's Model (The execution-evaluation cycle)
 - Abowd and Beale framework

Some Terms of Interaction

Domain

- The area of work under study
- Graphic design → Graphic shapes, drawing surface, drawing utensils

 Concepts of Domain

Goal

- What you want to achieve
- **e.g**. create a solid red triangle

Some Terms of Interaction

Task

- How you go about doing it Ultimately in terms of operations or actions
- **e.g**. ... select fill tool, click over triangle

Task Analysis

 Identification of problem space for user of an interactive system in terms of the domain, goals and tasks

Some Terms of Interaction

Task Language

 User's language: Describes attributes of domain relevant to the User state

Core Language

 System's Language: Describes attributes of domain relevant to the System state

Norman's Model of Interaction

- Based on Execution Evaluation Cycle
- Two major stages: Execution & Evaluation
- Execution
 - Establishing the goal
 - Forming the intention
 - Specifying the action sequence
 - Executing the action

Evaluation

- Perceiving the system state
- Interpreting the system state
- Evaluating the system state with respect to the goals and intentions

Norman's Model of Interaction

Execution – Evaluation Cycle

- Example Switching on the Light
 - Evening falls while reading

Execution – Evaluation Cycle

- Establishing the goal
- Forming the intention
- Specifying the action sequence
- Executing the action
- Perceiving the system state
- Interpreting the system state
- Evaluating the system state

- You decide you need more light. Goal: Get more light
- Intention: Switch on the lamp
- Specify the Action Sequence to reach over an press the lamp switch
- Action executed Perceive the results: Light is on or not
- Interpret e.g. No light: Bulb has blown, Lamp not plugged in -> New Intentions
- Light comes out Evaluate the new state according to your goal
 - If the light is enough Cycle Completes
 - If NOT, formulate a new intention of switching on the ceiling light for example

Using Norman's Model

- Some Systems are harder to use than others
- Gulf of Execution Difference b/w
 - User's formulation of actions & Actions allowed by the system
 - I can't accomplish my goal using the Interface
 - AIM: Reduce this gulf
- Gulf of Evaluation Difference b/w
 - Presentation of the system state & User Expectation
 - I can't figure out whether I accomplished my goal or not
 - More effort required to interpret presentation: Less effective
 Interaction

Human Error – Slips & Mistakes

Slip

- Understand system and goal
- Correct formulation of action
- Incorrect action

Mistake

May not even have right goal!

Example

Slip: Mistype, accidental mouse press

Mistake: Magnifying glass icon – Find/Zoom

Human Error – Slips & Mistakes

- Fixing Errors
- Slips
 - Better interface design
 - E.g. Putting more space b/w buttons
- Mistakes
 - Better understanding of the system
 - Improved training, radical redesigning

- Interaction framework Four parts
 - User
 - Input
 - System
 - Output

- Each part has its own unique language
- Interaction = Translation b/w languages
- Input + Output = Interface
- Interface sits b/w User and System

Interactive Cycle

- User begins with formulation of a Goal/Task
- Task articulated within the input language
- Input language is translated to core language as operations to be performed

System transforms itself

System is in a new State

- Interactive Cycle (Contd...)
 - System attribute values rendered to Output
 - User observes the output and asses the result of interaction w.r.t the Goal

Problems in interaction = Problems in translation

- Example: Video Recording using a remote control
- Ineffective Interaction: User not sure VCR is set to record properly
- Articulation: User pressed the keys on the remote in the wrong order
- Performance: VCR may record any channel but remote control lacks the channel selection
- Presentation: VCR display does not indicate the setting of program
- Observation: User does not interpret the feedback properly

Contents

- Introduction
- Models of Interaction
- Ergonomics
- Interaction Styles
- Interactivity
- Experience, Engagement & Fun

Ergonomics

Physical Aspects of Interaction

Ergonomics

- Ergonomics is the science of designing the job equipment, and workplace to fit the worker
- Ergonomics involves arranging the environment to 'fit' the person in it
- Ergonomic Design/Products
 - Easy to use and comfortable
 - Reduce fatigue, strain
 - Enhance productivity

Ergonomics Examples

- Arrangement of Controls & Displays
 - Grouped according to: Function,
 Sequence, Frequency
- Surrounding Environment
 - Design of work Environment
 - Where will the system be used?
 - Who will use it?
 - For how long will it be used?
 - Seated users: Comfort, Back support etc.

Bar counter stool

Ergonomics Examples

- Health Issues
 - Lighting, Noise, Temperature, Time Spent etc.

Lighting Ergonomics

Ergonomics Examples

- Use of Colour
 - An indicator Not the only Cue
 - Color use Coherent with common conventions
 - Red for Warning etc.

References

- Chapter 3 Human Computer Interaction by Dix et al.
- User Interface Hall of Fame/Shame

