Discrete differential geometry of surfaces. Variational principles, algorithms, and implementation

Stefan Sechelmann

November 6, 2012

CONTENTS CONTENTS

Contents

1	Inti	roduction	5		
Ι	Di	screte Uniformization	5		
2	Discrete Uniformization				
	2.1	Discrete conformal equivalence	5		
	2.2	Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2	5		
	2.3	Realization	6		
3	Uniformization of surfaces of higher genus				
	3.1	The cut-graph and fuchsian groups	6		
	3.2	Minimal presentation	7		
4	Canonical fundamental domains of fuchsian groups				
	4.1	Separated handles	7		
	4.2	Opposite sides identified	7		
5	Uniformization of tori				
	5.1	Elliptic Functions	7		
	5.2	The modul space	7		
	5.3	Numerical convergence analysis	7		
	5.4	The modulus of the Wente torus	7		
6	Uni	formization of hyperelliptic surfaces	7		
	6.1	Construction	7		
	6.2	Weierstrass points on hyperelliptic surfaces	7		
	6.3	Canonical domains	8		
	6.4	Lawsons surface	8		
7	Conformal Mapping to $\hat{\mathbb{C}}$ (Planned)				
	7.1	Selection of Branch Data	8		
	7.2	Examples	8		
8	Simply and multiply connected domains				
	8.1	Variation of edge length	8		
	8.2	Examples	8		
	8.3	Comparison with Examples of the Schwarz-Christoffel community	8		

CONTENTS

II	D	iscrete Surface Parameterization	8
9 Discrete quasiisothermic parametrizations			
	9.1	Discrete quasiisothermic parameterizations	9
	9.2	Formulation as boundary value problem	9
	9.3	Global approach	9
	9.4	Variational principle for S-isothermic surfaces	9
	9.5	Constructing the associated family $\ldots \ldots \ldots \ldots \ldots \ldots$	9
	9.6	A discrete ellipsoid and its dual surface	9
	9.7	Applications in architecture	9
10	Grie	dshells and Applications in Architecture	9
11	Ref	erences	9

LIST OF FIGURES

LIST OF FIGURES

List of Figures

1	Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyper-
	bolic motions

1 Introduction

Part I

Discrete Uniformization

2 Discrete Uniformization

2.1 Discrete conformal equivalence

Definition 1. Two Euclidean triangulations T and \tilde{T} are discretely conformally equivalent if there is a map $u: V \to \mathbb{R}$ such that for any edge ij it is

$$l_{ij} = e^{u_i + u_j} \tilde{l}_{ij}$$

where l_{ij} is the length of the edge ij.

Definition 2. A discrete flat Euclidean metric is a map $l: E \to \mathbb{R}_+$ such that triangle inequalities are satisfied and angle sums around each inner vertex are equal to 2π .

2.2 Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2

Construction of discrete flat metrics. A discrete Euclidean flat metric is the minimizer of a convex functional.

$$\lambda_{ij} := 2\log l_{ij} \tag{1}$$

$$\tilde{\lambda}_{ij} := \lambda_{ij} + u_i + u_j \tag{2}$$

$$f_{Euc}(u_i, u_j, u_k) := \alpha_i \tilde{\lambda}_{jk} + \alpha_j \tilde{\lambda}_{ki} + \alpha_k \tilde{\lambda}_{ij} + 2(\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k))$$
(3)

Definition 3.

$$E_{Euc}(u) := \sum_{ijk \in F} \left(f_{Euc}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i \tag{4}$$

This definition and the derivatives can be found in [BPS10]

For the hyperbolic case λ and $\tilde{\lambda}$ are defined as before. Further define

$$\beta_i := \frac{1}{2} (\pi + \alpha_i - \alpha_j - \alpha_k) \tag{5}$$

$$\beta_j := \frac{1}{2} (\pi - \alpha_i + \alpha_j - \alpha_k) \tag{6}$$

$$\beta_k := \frac{1}{2} (\pi - \alpha_i - \alpha_j + \alpha_k) \tag{7}$$

$$f_{Hyp}(u_i, u_j, u_k) := \beta_i \tilde{\lambda}_{jk} + \beta_j \tilde{\lambda}_{ki} + \beta_k \tilde{\lambda}_{ij}$$
 (8)

$$+\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k) + \Pi(\beta_i) + \Pi(\beta_j) + \Pi(\beta_k)$$
(9)

$$+\Pi\left(\frac{1}{2}(\pi - \alpha_i - \alpha_j - \alpha_k)\right) \tag{10}$$

Figure 1: Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyperbolic motions.

Definition 4.

$$E_{Hyp}(u) := \sum_{ijk \in F} \left(f_{Hyp}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i$$
 (11)

2.3 Realization

3 Uniformization of surfaces of higher genus

Triangulated surfaces of genus $g \geq 2$ without boundary can be equipped with a discretely conformally equivalent flat hyperbolic metric [BPS10]. By flat hyperbolic metric we mean that the edge length are hyperbolic and for any vertex the angle sum is 2π . To realize this metric in the hyperbolic plane e.g. in the Poicaré disk model one has to introduce cuts along a basis of the homotopy. This creates a simply connected domain in \mathbb{H}^2 . Matching cut paths are realated by a hyperbolic motion i.e. the Möbius transformations that leave the unit disk invariant (Figure 1).

3.1 The cut-graph and fuchsian groups

Want so say here: the number of transformations generated by the mapping of corresponding edges equals the number of path segments in the homotopy-cut-graph. They generate a fuchsian group with #vertices relations

Proposition 1.

3.2 Minimal presentation

4 Canonical fundamental domains of fuchsian groups

- 4.1 Separated handles
- 4.2 Opposite sides identified
- 5 Uniformization of tori
- 5.1 Elliptic Functions
- 5.2 The modul space
- 5.3 Numerical convergence analysis
- 5.4 The modulus of the Wente torus

6 Uniformization of hyperelliptic surfaces

6.1 Construction

Any hyperelliptic Riemann surface can be expressed as an algebraic curve of the form

$$\mu^2 = \prod_{i=1}^n (\lambda - \lambda_i)^2 \qquad n \ge 3, \quad \lambda_i \ne \lambda_j \forall i \ne j.$$

Here λ_i are the branch points of the doubly covered Riemann sphere.

6.2 Weierstrass points on hyperelliptic surfaces

A hyperelliptic surface comes together with a holomorphic involution h called the hyperelliptic involution. The branch points are fixed points under this transformation. For a hyperelliptic algebraic curve it is $h(\mu, \lambda) = (-\mu, \lambda)$

- 6.3 Canonical domains
- 6.4 Lawsons surface
- 7 Conformal Mapping to $\hat{\mathbb{C}}$ (Planned)
- 7.1 Selection of Branch Data
- 7.2 Examples
- 8 Simply and multiply connected domains
- 8.1 Variation of edge length
- 8.2 Examples
- 8.3 Comparison with Examples of the Schwarz-Christoffel community

Part II

Discrete Surface Parameterization

9 Discrete quasiisothermic parametrizations

The notion of quasiconformal parameterizations

- 9.1 Discrete quasiisothermic parameterizations
- 9.2 Formulation as boundary value problem
- 9.3 Global approach
- 9.4 Variational principle for S-isothermic surfaces
- 9.5 Constructing the associated family
- 9.6 A discrete ellipsoid and its dual surface
- 9.7 Applications in architecture
- 10 Gridshells and Applications in Architecture

11 References

[BPS10] Alexander I. Bobenko, Ulrich Pinkall, and Boris Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Preprint; http://arxiv.org/abs/1005.2698, 2010.