Main Groups Comparison

		H_f	S					C	C_p (cal/m	nol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
CICITA	This work	-10.16	30.34	6.01	7.68	9.24	10.51	12.69	14.45	17.28	18.78	19.59	20.09	21.36
C/C/H3	Benson	-10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77	17.58				
C/C2/III2	This work	-4.91	9.74	5.63	7.05	8.38	9.56	11.35	12.60	14.47	15.38	15.90	16.18	16.89
C/C2/H2	Benson	-4.93	9.42	5.50	6.95	8.25	9.35	11.07	12.34	14.25				
C/C2/II	This work	-1.58	-13.84	5.28	7.03	8.41	9.59	10.95	11.52	12.03	12.10	12.29	12.32	12.42
C/C3/H	Benson	-1.90	-12.07	4.54	6.00	7.17	8.05	9.31	10.05	11.17				
CICA	This work	0.45	-34.05	4.38	6.16	7.53	8.71	9.76	9.85	9.37	8.84	8.69	8.47	7.95
C/C4	Benson	0.50	-35.10	4.37	6.13	7.36	8.12	8.77	8.76	8.12				

Main Groups Comparison

~		H_f	S					С	$_p$ (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
C/II2/00	This work	-9.01	29.65	7.31	8.53	9.67	10.65	12.22	13.39	15.24	16.21	16.74	17.05	17.88
C/H3/OO	Burke et al.	-8.30	30.30	6.19	7.84	9.40	10.79	13.02	14.77	17.58				
CICITIZIOO	This work	-8.20	6.65	7.34	8.40	9.41	10.23	11.56	12.49	13.84	14.51	14.88	15.14	15.68
C/C/H2/OO	Burke et al.	-8.20	6.62	3.85	4.84	6.52	7.45	9.28	10.60	12.24				
CICATIOO	This work	-6.97	-15.20	7.11	8.38	9.23	9.98	10.96	11.64	12.44	12.84	13.05	13.19	13.45
C/C2/H/OO	Burke et al.	-7.03	-15.46	4.43	5.32	6.63	7.23	7.94	8.74					
CICZIOO	This work	-6.91	-34.20	7.13	8.40	9.40	10.16	10.82	11.02	11.13	11.12	11.19	11.20	11.18
C/C3/OO	Burke et al.	-5.80	-34.64	3.53	4.61	5.83	5.96	6.70	6.53					

00/C/H

CH₃OOH

OOH

OO/ME/H

OO/CP/H

OO/CS/H

OO/CT/H

		H_f	S					C	_p (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
	This work	-21.37	37.49	7.31	8.53	9.67	10.65	12.22	13.39	15.24	16.21	16.74	17.05	17.88
OO/ME/H	Burke et al.	-20.60	38.54	9.52	11.05	11.56	12.53	13.40	14.05					
OO/CD/II	This work	-20.24	39.71	7.34	8.40	9.41	10.23	11.56	12.49	13.84	14.51	14.88	15.14	15.68
ОО/СР/Н	Burke et al.	-20.60	38.54	9.52	11.05	11.56	12.53	13.40	14.05					
OO/CS/H	This work	-19.75	40.15	7.11	8.38	9.23	9.98	10.96	11.64	12.44	12.84	13.05	13.19	13.45
OO/CS/H	Burke et al.	-20.60	38.54	9.52	11.05	11.56	12.53	13.40						
OO/CT/H	This work	-18.99	35.73	7.13	8.40	9.40	10.16	10.82	11.02	11.13	11.12	11.19	11.20	11.18
OO/CT/H	Burke et al.	-20.60	38.54	9.52	11.05	11.56	12.53	13.40						

ALPEROX

		H_f	S					С	_p (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
MEDEDOV	This work	85.45	-1.84	-2.59	-2.93	-3.13	-3.26	-3.48	-3.69	-4.12	-4.43	-4.57	-4.65	-4.97
MEPEROX	Burke et al.	85.40	-1.15	-2.05	-2.84	-3.55	-4.09	-4.72	-4.97	-5.08				
A L DEDOV/D	This work	85.22	-1.39	-2.98	-3.14	-3.43	-3.21	-3.74	-4.18	-4.72	-4.80	-5.02	-5.25	-5.49
ALPEROX/P	Burke et al.	85.40	-1.15	-2.05	-2.84	-3.55	-4.09	-4.72	-4.97	-5.08				
A L DEDOV/C	This work	84.47	-1.34	-2.41	-2.99	-3.43	-3.46	-3.64	-4.11	-4.59	-4.92	-5.11	-5.26	-5.49
ALPEROX/S	Burke et al.	85.40	-1.15	-2.05	-2.84	-3.55	-4.09	-4.72	-4.97	-5.08				
AI DEDON/E	This work	84.14	-0.80	-1.89	-2.50	-3.27	-3.50	-4.10	-4.45	-4.93	-5.17	-5.38	-5.58	-5.97
ALPEROX/T	Burke et al.	85.40	-1.15	-2.05	-2.84	-3.55	-4.09	-4.72	-4.97	-5.08				

Old Special Groups

C		H_f	S					С	_p (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
C2115	This work	101.09	2.04	-0.17	-0.57	-1.27	-1.66	-2.42	-3.14	-4.29	-4.92	-5.21	-5.42	-5.96
C2H5	Burke et al.	100.77	2.27	-0.21	-0.77	-1.33	-1.89	-2.80	-3.48	-4.60				
ІС4Н9	This work	101.71	4.68	-0.20	-1.08	-1.94	-2.52	-3.44	-4.06	-4.86	-5.19	-5.46	-5.59	-5.96
1С4Н9	Burke et al.	101.60	1.64	-0.23	-0.90	-1.54	-2.09	-3.01	-3.60	-4.66				
NEO C5	This work	102.38	4.81	-0.18	-0.31	-1.16	-1.79	-2.83	-3.64	-4.69	-5.14	-5.44	-5.57	-5.96
NEO-C5	Burke et al.	101.50	3.03	-0.59	-1.32	-2.05	-2.65	-3.50	-4.06	-4.87				
CCC	This work	98.18	5.70	-1.22	-2.09	-2.71	-2.99	-3.47	-3.90	-4.71	-5.17	-5.43	-5.56	-5.96
CC.C	Burke et al.	98.45	4.51	-1.30	-2.36	-3.02	-3.44	-3.98	-4.36	-4.99				

New Special Groups

TC4H9

		H_f	S					C	_p (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
ТС4Н9	This work	96.59	8.98	-1.35	-3.18	-4.27	-4.73	-5.13	-5.26	-5.42	-5.49	-5.65	-5.72	-5.96
T	Burke et al.	96.14	5.14	-2.81	-4.19	-4.84	-5.10	-5.33	-5.36	-5.39				

P, S and T for Alkyl Radicals

β-corrections for P, S and T of Alkyl Radicals

 $P/BETA \times 1$

 $P/BETA \times 2$

 $P/BETA \times 3$

S/BETA \times 1

 $S/BETA \times 2$

S/BETA
$$\times$$
 3

 $T/BETA \times 1$

 $T/BETA \times 2$

β-corrections for P, S and T of QOOH

P/QOOH/C-BETA × 1

$$\frac{\alpha}{\beta}$$
OOH

 $P/QOOH/C-BETA \times 2$

$$\beta$$
 α
 β
OOH

S/QOOH/C-BETA × 1 S/QOOH/O-BETA × 1

S/QOOH/C-BETA \times 2 S/QOOH/O-BETA \times 1

S/QOOH/C-BETA × 3 S/QOOH/O-BETA × 1

T/QOOH/C-BETA × 2 T/QOOH/O-BETA × 1

T/QOOH/C-BETA × 3 T/QOOH/O-BETA × 1

Comparison

		H_f	S					С	_p (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
D	This work	101.16	2.82	-0.54	-0.83	-1.40	-1.90	-2.70	-3.36	-4.57	-5.08	-5.33	-5.54	-5.96
P	Burke et al.	101.15	2.51	-1.14	-1.64	-2.14	-2.60	-3.32	-3.89	-4.66				
S	This work	98.14	2.50	-1.30	-1.80	-2.33	-2.76	-3.43	-3.96	-4.82	-5.22	-5.57	-5.65	-5.94
S	Burke et al.	98.07	4.26	-1.78	-2.98	-3.49	-3.81	-4.40	-4.78	-5.20				
T	This work	96.77	12.24	-0.92	-3.23	-4.77	-5.24	-5.91	-6.52	-6.67	-6.54	-6.51	-6.46	-5.96
1	Burke et al.	96.14	5.14	-2.81	-4.19	-4.84	-5.10	-5.33	-5.36	-5.39				
P/QOOH	This work	100.87	2.92	0.67	0.01	-0.46	-0.89	-2.00	-2.96	-4.40	-4.92	-5.29	-5.43	-5.92
S/QOOH	This work	97.66	3.51	0.34	-0.99	-1.32	-1.70	-2.64	-4.08	-5.23	-5.69	-5.76	-5.98	-6.05
T/QOOH	This work	95.74	6.88	-0.03	-2.32	-2.62	-3.56	-4.18	-5.80	-5.91	-5.92	-5.89	-6.02	-5.89

Group		H_f	S					C_p	(cal/mol	/ K)				
Gloup		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
P/BETA	This work	0.37	-0.76	0.34	0.23	0.19	0.16	0.10	0.02	0.01	0.01	0.00	-0.02	0.00
S/BETA	This work	0.45	1.11	-0.10	-0.08	-0.06	-0.04	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02
T/BETA	This work	0.53	-2.22	-0.44	-0.15	0.11	0.10	0.21	0.25	0.31	0.20	0.10	0.12	-0.02
P/QOOH/C-BETA	This work	0.44	-1.13	-0.07	-0.06	0.03	-0.05	-0.10	-0.16	-0.08	-0.05	-0.01	-0.02	-0.03
S/QOOH/C-BETA	This work	0.60	0.26	-0.46	-0.09	0.00	0.00	0.05	0.20	0.25	0.26	0.21	0.16	0.06
S/QOOH/O-BETA	This work	0.73	-1.32	1.50	0.55	0.24	0.10	0.09	0.19	0.21	0.10	0.10	0.10	0.14
T/QOOH/C-BETA	This work	0.84	0.10	0.04	0.00	-0.03	-0.01	0.11	0.20	0.17	0.10	0.08	0.05	-0.03
T/QOOH/O-BETA	This work	0.04	-0.42	0.23	0.06	0.08	0.10	0.12	0.17	0.22	0.21	0.23	0.26	0.30

Group		H_f	S					С	_p (cal/m	ol/K)				
Отоир		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
AG	This work	0.70	0.30	0.15	0.10	0.03	-0.02	-0.10	-0.13	-0.05	0.05	0.03	0.02	0.00
RG1	This work	0.09	0.93	-0.11	-0.16	-0.21	-0.24	-0.28	-0.20	-0.03	0.13	0.13	0.10	0.02
RG2	This work	0.21	1.81	0.08	-0.02	-0.20	-0.51	-0.72	-0.57	-0.26	-0.15	-0.06	-0.06	0.00

Group		H_f	S					C	_p (cal/m	ol/K)				
Отопр		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
G/COOH	This work	0.91	-0.64	0.72	0.67	0.65	0.64	0.63	0.61	0.57	0.50	0.37	0.20	0.10
RG1/COOH	This work	0.59	0.77	0.88	0.52	0.24	0.18	0.13	0.06	0.01	0.03	0.02	0.01	-0.04
RG2/COOH	This work	0.24	-0.62	0.41	0.05	-0.31	-0.26	-0.22	-0.20	-0.12	0.04	0.01	-0.05	-0.07

Group		H_f	S					C	_p (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
G/OOH	This work	0.60	-0.36	0.74	0.55	0.38	0.25	0.07	-0.03	-0.07	-0.07	-0.07	-0.07	-0.07
RG1/OOH	This work	0.30	-0.29	-0.38	-0.25	-0.16	-0.09	-0.06	-0.04	-0.08	-0.16	-0.20	-0.23	-0.25
RG2/OOH	This work	0.45	-1.43	0.70	0.50	0.04	-0.16	0.00	0.11	0.12	0.09	-0.04	-0.04	-0.05
G/OOJ	This work	0.30	-0.60	0.42	0.45	0.52	0.21	0.14	0.16	0.10	0.05	0.02	0.02	0.00

Group		H_f	S					C	_p (cal/m	ol/K)				
Group		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF
G/OH	This work	-0.12	0.00	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.00	0.00	0.00
RG2/OH	This work	-0.01	-0.55	0.25	0.61	0.23	0.07	0.09	0.03	0.02	0.02	0.01	0.00	0.00
G/OJ	This work	-0.09	-0.19	0.08	0.06	0.04	0.05	0.07	0.11	0.19	0.24	0.29	0.37	0.45

H/15/1J

H/15/2J

H/15/3J

Group		H_f	S (cal/mol/K)	C_p (cal/mol/K)											
		(kcal/mol)		300	400	500	600	800	1000	1500	2000	2500	3000	INF	
H/15/1J	This work	1.10	-1.00	0.74	0.87	1.03	1.19	1.44	1.45	0.90	0.48	0.18	-0.02	0.00	
H/15/2J	This work	-0.23	-1.62	-0.28	0.22	0.42	0.75	1.02	1.09	0.76	0.68	0.49	0.38	0.00	
H/15/3J	This work	0.02	-3.38	2.66	2.42	1.95	1.40	0.65	0.15	-0.27	-0.59	-0.49	-0.41	-0.21	

Group		H_f	S	C_p (cal/mol/K)											
		(kcal/mol)	(cal/mol/K)	300	400	500	600	800	1000	1500	2000	2500	3000	INF	
СЈСООН	This work	103.27	3.23	-0.78	-1.20	-1.75	-2.13	-3.09	-3.83	-4.85	-5.32	-5.53	-5.70	-6.03	
	Burke et al.	101.10	2.73	-0.66	-1.28	-1.86	-2.35	-3.14	-3.72	-4.65					
С2ЈСООН	This work	102.73	0.68	1.39	0.17	-0.52	-1.00	-2.16	-3.21	-4.48	-5.11	-5.40	-5.67	-5.97	
	Burke et al.	101.10	2.76	-0.65	-1.28	-1.88	-2.38	-3.16	-3.75	-4.67					
СЗЈСООН	This work	103.24	-0.65	1.43	0.56	-0.17	-0.85	-1.04	-1.98	-3.90	-4.65	-5.24	-5.41	-5.96	
	Burke et al.	101.10	3.15	-0.48	-1.24	-2.00	-2.60	-3.47	-4.04	-4.87					
ССЈСООН	This work	99.52	4.43	-0.71	-1.31	-1.91	-2.35	-3.23	-3.86	-4.69	-5.01	-5.22	-5.40	-5.78	
	Burke et al.	98.45	3.07	-0.61	-1.55	-2.28	-2.81	-3.54	-4.05	-4.84					
СССЈСООН	This work	99.83	-2.10	2.68	1.03	-0.07	-0.71	-1.36	-1.86	-4.21	-4.58	-4.85	-5.20	-5.78	
	Burke et al.	98.45	4.19	0.40	-0.83	-1.79	-2.47	-3.35	-3.93	-4.79					
С2СЈСООН	This work	97.13	6.19	-0.88	-2.34	-3.37	-4.29	-5.36	-5.85	-5.96	-5.76	-5.78	-5.81	-5.49	
	Burke et al.	96.30	4.59	-0.49	-2.12	-3.22	-3.88	-4.53	-4.87	-5.31					

 $C/C/H3 \times 3$

C/C/H3 × 3 C/C2/H2 × 2

C/C/H3 × 3 C/C2/H2 × 2 C/C4 × 1


```
C/C/H3 × 3
C/C2/H2 × 2
C/C4 × 1
C/C/H2/O0 × 1
```



```
C/C/H3 × 3
C/C2/H2 × 2
C/C4 × 1
C/C/H2/OO × 1
OO/CP/H × 1
```

BDE

S/QOOH

BDE

S/QOOH/C-BETA × 4

 $RG1 \times 1$

This can be avoided

Select the lower energy structure

$$G/OH \times 1 = -0.21$$

ALL

```
C/C/H3 \times 3
C/C2/H2 × 2
C/C4 \times 1
C/C/H2/OO × 1
OO/CP/H \times 1
S/QOOH
S/QOOH/C-BETA \times 4
G/OOH \times 2
AG \times 2
G/OH×1
 OI \times 1
```


GO/OH/CQJ

GO/OJ/CQ

C2 – C5
Rules:
OOJ – 1° (gauche)
OOJ – 2° and 3° (trans)

Gauche orientation (OOJ at 1° position)

Trans orientation (OOJ at 2°/3° position)

