PROFESSORA FABIANA PIMENTA DE SOUZA

PRODUTO ESCALAR, VETORIAL E MISTO

PRODUTO ESCALAR

Chama-se produto escalar de dois vetores $\vec{u}=(x,y,z)$ e $\vec{v}=(a,b,c)$, e se representa por $\vec{u}.\vec{v}$, ao número real

$$\vec{u}.\vec{v} = xa + yb + zc$$

O produto escalar de \vec{u} por \vec{v} também é indicado por $\langle \vec{u}, \vec{v} \rangle$ e se lê " \vec{u} escalar \vec{v} ".

Sejam os vetores $\vec{u} = (3,2,1)$ e $\vec{v} = (-1,-4,-1)$, calcule:

i.
$$(\vec{u} + \vec{v}) \cdot (2\vec{u} - \vec{v}) =$$

$$(\vec{u} + \vec{v}) \cdot (2\vec{u} - \vec{v}) = (2, -2, 0) \cdot (7, 8, 3) = 14 - 16 + 0 = -2$$

ii.
$$\vec{u}.\vec{u} =$$

$$\vec{u}.\vec{u} = 9 + 4 + 1 = 14$$

iii.
$$\vec{0}.\vec{u} =$$

$$\vec{0}.\vec{u}=0$$

Dados os vetores $\vec{u} = (4, a, -1)$ e $\vec{v} = (a, 2, 3)$ e os pontos A(4,-1,2) e B(3,2,-1), determine o valor de \vec{u} tal que \vec{u} . $(\vec{v} + \vec{B}\vec{A}) = 5$.

i.
$$\overrightarrow{BA} = A - B = (1, -3, 3);$$

ii.
$$\vec{v} + \overrightarrow{BA} = (a + 1, -1, 6);$$

iii.
$$\vec{u} \cdot (\vec{v} + \vec{B}\vec{A}) = 5 \Longrightarrow 4a + 4 - a - 6 = 5 \Longrightarrow a = \frac{7}{3}$$

PROPRIEDADES DO PRODUTO ESCALAR

Para quaisquer vetores \vec{u} , \vec{v} e \vec{w} e o número real k, temos:

i.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
 (comutatividade)

ii.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u}\vec{w}$$

iii.
$$k(\vec{u}.\vec{v}) = (k\vec{u}).\vec{v} = \vec{u}.(k\vec{v})$$

iv.
$$\vec{u} \cdot \vec{u} > 0$$
 se $\vec{u} \neq \vec{0}$ e $\vec{u} \cdot \vec{u} = 0$ se $\vec{u} = \vec{0}$

$$v. \vec{u}.\vec{u} = |\vec{u}|^2$$

Sendo $|\vec{u}| = 4$, $|\vec{v}| = 2$ e \vec{u} . $\vec{v} = 3$, calcule $(3\vec{u} - 2\vec{v})$. $(-\vec{u} + 4\vec{v})$.

$$(3\vec{u} - 2\vec{v}) \cdot (-\vec{u} + 4\vec{v}) = -3\vec{u} \cdot \vec{u} + 12\vec{u} \cdot \vec{v} + 2\vec{u} \cdot \vec{v} - 8\vec{v} \cdot \vec{v}$$
$$(3\vec{u} - 2\vec{v}) \cdot (-\vec{u} + 4\vec{v}) = -3 \cdot 4^2 + 14 \cdot 3 - 8 \cdot 2^2$$
$$(3\vec{u} - 2\vec{v}) \cdot (-\vec{u} + 4\vec{v}) = -48 + 42 - 32 = -38$$

1. Mostre que $|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$;

$$|\vec{u} + \vec{v}|^2 = (\vec{u} + \vec{v}). (\vec{u} + \vec{v}) = \vec{u}. \vec{u} + \vec{u}. \vec{v} + \vec{v}. \vec{u} + \vec{v}. \vec{v};$$
$$|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + 2\vec{u}. \vec{v} + |\vec{v}|^2.$$

- 2. Mostre que $|\vec{u} \vec{v}|^2 = |\vec{u}|^2 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$; RESOLVER
- 3. Mostre que $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = |\vec{u}|^2 |\vec{v}|^2$. RESOLVER

EXERCÍCIOS

- 1) Sendo $|\vec{u}| = 2$, $|\vec{v}| = 3$ e 120° o ângulo entre \vec{u} e \vec{v} , calcule:
- a) $\vec{u} \cdot \vec{v}$

- b) $|\vec{u} + \vec{v}|$ c) $|\vec{u} \vec{v}|$
- 2) Sabendo que o vetor $\vec{v} = (2,1,-1)$ forma ângulo de 60° com o vetor \vec{AB} determinado pelos pontos A(3,1,-2) e B(4,0,m), calcule m.
- 3) Determine os ângulos internos ao triângulo ABC, sendo A(3,-3,3), B(2,-1,2) e C(1,0,2).
- 4) Mostre que os seguintes pares de vetores são ortogonais:
- a) $\vec{u} = (1, -2, 3) e \vec{v} = (4, 5, 2)$
- b) $\vec{i} \in \vec{j}$

DEFINIÇÃO GEOMÉTRICA DE PRODUTO ESCALAR

Sejam \vec{u} e \vec{v} vetores não nulos e θ o ângulo entre eles, então

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$
.

Pela Lei dos co-senos e do produto escalar, temos:

$$(\vec{u} - \vec{v})^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\theta$$

$$(\vec{u} - \vec{v})^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u}.\vec{v}$$

$$|\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\theta = |\vec{v}|^2 + |\vec{v}|^2 - 2\vec{u}.\vec{v}$$

$$\vec{u}.\vec{v} = |\vec{u}||\vec{v}|\cos\theta$$

Calcule o ângulo entre os vetores

$$\vec{u} = (1,1,4) e \vec{v} = (-1,2,2)$$

i.
$$\vec{u} \cdot \vec{v} = -1 + 2 + 8 = 9$$
;

ii.
$$|\vec{u}| = \sqrt{1+1+16} = \sqrt{18} = 3\sqrt{2}$$
;

iii.
$$|\vec{v}| = \sqrt{1+4+4} = \sqrt{9} = 3$$
;

iv.
$$\cos \theta = \frac{\vec{u}.\vec{v}}{|\vec{u}||\vec{v}|} = \frac{9}{3\sqrt{2}.3} = \frac{\sqrt{2}}{2} \Longrightarrow \theta = 45^{\circ}.$$

PRODUTO VETORIAL

Sejam $\vec{u}=(x_1,y_1,z_1)$ e $\vec{v}=(x_2,y_2,z_2)$, chama-se produto vetorial de \vec{u} por \vec{v} , ao vetor

$$\vec{u} \times \vec{v} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \vec{k}$$

Maneira prática

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Calcule $\vec{u} \times \vec{v}$ e $\vec{v} \times \vec{u}$, onde $\vec{u} = (5,4,3)$ e $\vec{v} = (1,0,1)$.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 4 & 3 \\ 1 & 0 & 1 \end{vmatrix} = (4 - 0, 3 - 5, 0 - 4)$$
$$\vec{u} \times \vec{v} = (4, -2, -4);$$
$$\vec{v} \times \vec{u} = (-4, 2, 4).$$

PROPRIEDADES DO PRODUTO VETORIAL

Para quaisquer vetores \vec{u} e \vec{v} , temos:

i.
$$\vec{v} \times \vec{u} = -(\vec{u} \times \vec{v})$$
.

ii.
$$\vec{u} \times \vec{v} = \vec{0}$$
 se, e somente se, $\vec{u} \parallel \vec{v}$.

iii.
$$\vec{u} \times \vec{u} = \vec{0}$$
.

iv.
$$\vec{u} \times \vec{0} = \vec{0}$$
.

CARACTERÍSTICA DO PRODUTO VETORIAL

Sejam
$$\vec{u} = (x_1, y_1, z_1)$$
 e $\vec{v} = (x_2, y_2, z_2)$

i. Direção de $\vec{u} \times \vec{v}$

O vetor $\vec{u} \times \vec{v}$ é simultaneamente ortogonal a \vec{u} e \vec{v} .

ii. O sentido de $\vec{u} \times \vec{v}$ pode ser determinado utilizando-se a "regra da mão direita".

CARACTERÍSTICA DO PRODUTO VETORIAL

iii. O comprimento de $\vec{u} \times \vec{v}$

Se θ é o ângulo entre os vetores \vec{u} e \vec{v} não nulos, então:

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| sen \theta$$

Esse resultado é imediato quando se conhece a identidade de Lagrange.

$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u}.\vec{v})^2$$

CARACTERÍSTICA DO PRODUTO VETORIAL

Sabemos a identidade de Lagrange

$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u}.\vec{v})^2$$

Além disso, $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$

Logo,
$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (|\vec{u}||\vec{v}|\cos\theta)^2$$

$$|\vec{u} \times \vec{v}|^2 = (1 - \cos^2 \theta) |\vec{u}|^2 |\vec{v}|^2$$

$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 \operatorname{sen}^2 \theta$$

Portanto, $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| sen \theta$.

INTERPRETAÇÃO GEOMÉTRICA DO MÓDULO DO PRODUTO VETORIAL

Observando que no paralelogramo determinado pelos vetores não nulos \vec{u} e \vec{v} .

A área A do paralelogramo é

A = (base).(altura) =
$$|\vec{u}| |\vec{v}| sen \theta = |\vec{u} \times \vec{v}|$$

EXERCÍCIOS

- 1) Determine o vetor \vec{x} , tal que \vec{x} seja ortogonal ao eixo do y e $\vec{u} = \vec{x} \times \vec{v}$, sendo $\vec{u} = (1,1,-1)$ e $\vec{v} = (2,-1,1)$.
- 2) Sejam os vetores $\vec{u}=(1,-1,4)$ e $\vec{v}=(3,2,-2)$. Determine um vetor que seja ortogonal a \vec{u} e \vec{v} e unitário.
- 3) Seja um triângulo equilátero ABC de lado 10. Calcule $|\overrightarrow{AB} \times \overrightarrow{AC}|$.
- 4) Dados os vetores $\vec{u}=(2,1,-1)$ e $\vec{v}=(1,-1,a)$, calcule o valor de a para que a área do paralelogramo determinado por \vec{u} e \vec{v} seja igual a $\sqrt{62}$.

PRODUTO MISTO

Chama-se produto misto dos vetores $\vec{u}=(x_1,y_1,z_1)$, $\vec{v}=(x_2,y_2,z_2)$ e $\vec{w}=(x_3,y_3,z_3)$ ao número real

$$\vec{u}.(\vec{v}\times\vec{w})=(\vec{u},\vec{v},\vec{w}).$$

Método Prático

$$\vec{u}.(\vec{v} \times \vec{w}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

Calcule o produto misto dos vetores

$$\vec{u} = (2,3,5), \vec{v} = (-1,3,3) \text{ e } \vec{w} = (4,-3,2).$$

$$\vec{u}.(\vec{v} \times \vec{w}) = \begin{vmatrix} 2 & 3 & 5 \\ -1 & 3 & 3 \\ 4 & -3 & 2 \end{vmatrix}$$

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = 12 + 36 + 15 - 60 + 18 + 6 = 27$$

PROPRIEDADES DO PRODUTO MISTO

Para quaisquer vetores \vec{u} , \vec{v} e \vec{w} e o número real k, temos:

•
$$\vec{u}$$
. $(\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v})$. \vec{w} ;

$$\bullet \ (\vec{u} + \vec{x}, \vec{v}, \vec{w}) = (\vec{u}, \vec{v}, \vec{w}) + (\vec{x}, \vec{v}, \vec{w})$$

•
$$(k\vec{u}, \vec{v}, \vec{w}) = (\vec{u}, k\vec{v}, \vec{w}) = (\vec{u}, \vec{v}, k\vec{w}) = k(\vec{u}, \vec{v}, \vec{w})$$

• $(\vec{u}, \vec{v}, \vec{w}) = 0$ se, e somente se, os três vetores forem coplanares.

Verifique se são coplanares os vetores $\vec{u}=(2,-1,1)$, $\vec{v}=(1,0,-1)$ e $\vec{w}=(2,-1,4)$.

• SOLUÇÃO:

$$\vec{u}.(\vec{v} \times \vec{w}) = \begin{vmatrix} 2 & -1 & 1 \\ 1 & 0 & -1 \\ 2 & -1 & 4 \end{vmatrix} = 0 + 2 - 1 - 0 - 2 + 4 = 3 \neq 0$$

Os vetores não são coplanares.

INTERPRETAÇÃO GEOMÉTRICA DO MÓDULO DO PRODUTO MISTO

Considere os vetores não coplanares \vec{u} , \vec{v} e \vec{w} .

O volume V do paralelepípedo é

 $V = (\text{área da base}) \times \text{altura}$

$$V = |\vec{u} \times \vec{v}|. |\vec{w}| |\cos \theta|$$

$$V = |\vec{u}| . |\vec{v} \times \vec{w}| . |\cos \theta|$$

$$V = |\vec{u}.(\vec{v} \times \vec{w})|.$$

