PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2004-112089

(43) Date of publication of application: 08.04.2004

(51)Int.CI.

HO4N 1/405

B41J 2/01 B41J 2/205

B41J GO6T

HOAN

(21)Application number: 2002-268861

(71)Applicant : RICOH CO LTD

(22)Date of filing:

13.09.2002

(72)Inventor: OGAWA TAKESHI

(54) IMAGE PROCESSING APPARATUS. IMAGE RECORDING APPARATUS. AND PROGRAM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a content editing apparatus capable of simultaneously completing reproduction of connected moving image and sound signals.

SOLUTION: The apparatus is provided with a means for outputting corrected data in which multi-value image data of a target pixel are added with an error dispersed from a quantized pixel around the target pixel, a means for setting a quantization threshold on the basis of an input density value of the multi-value image data of the target pixel, and a means for comparing the multi-value data of the target pixel with the quantization threshold to output N-value image data. The i-th threshold Thi (i being an integer of 0<i≤N-1) in sections Oa to Ob of the input value is set on the basis of Thi=Ki × In+(Oa+Ob) × (1-Ki)/2-(Oa-Oi):(Ki being a real number equal to or more than 0 and i being an integer of 0<i≤N-1), where the input density value is In, and where quantization values are 1, 2 and so on, a, b to N, and the gradation of quantization values are O1, O2 and so on, Oa, Ob to ON.

LEGAL STATUS

Date of request for examination

13.09.2002

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3732470

[Date of registration]

21.10.2005

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-112089 (P2004-112089A)

(43) 公開日 平成16年4月8日 (2004.4.8)

(51) Int.C1.7		F I					テーマコード (参考)				
HO4N	1/405	HO4N	1/40	I	В		2 C C	056			
B41J	2/01	GOGT	5/00	2	OOA		2 C C	057			
B41J	2/205	· HO4N	1/40	1	03B		2 C 2	262			
B41J	2/52	B41J	3/04	. 1	0 1 Z		5 B (057			
GOST	5/00	B41J	3/04	1	03X		5 C (377			
		審查請求	有!	青水項(の数 12	OL	(全 17	7 頁)	最終員	質に続く	
(21) 出願番号		特願2002-268861 (P2002-268861)	(71) 出	願人	0000067	47					
(22) 出願日		平成14年9月13日 (2002.9.13)			株式会社	±リコー	-				
				東京都大田区中馬込1丁目3番6号							
			(74) 代	理人	1000842	50					
•					弁理士	丸山	隆夫				
			(72) 発	明者	小川	士					
•			東京都大田区中馬込1丁目3番6号								
							株式会社リコー内				
			Fター	ム (参	考) 2C05	6 EA01	EA04	EA24	EB58	EB59	
						EC25	EC76	EC79	ED01	ED05	
						ED07	FA02	FA10			
					2005	7 AF01	AF39	AM15	CA01	CA05	
						CA07					
					2C26			BB01	BB08	BC11	
			l			BC17	EA06				
								最終頁に続く			

(54) 【発明の名称】画像処理装置、画像記録装置、及びプログラム

(57)【要約】

【課題】多値誤差拡散処理によると出力装置の持つ階調 近辺(量子化レベル)の濃度を出力する際に擬似輪郭が 発生する問題がある。

【選択図】

図 1

10

20

【特許請求の範囲】

【請求項1】

多値(M値)画像データを、多値誤差拡散処理または多値平均誤差最小法を用いてN値(M>N>2)に量子化し、該N値の夫々に対応したドットを用いて記録を行う画像処理装置であって、

注目画素の多値画像データに、周辺の既に量子化済みの画素から拡散された誤差を加えた 補正データを出力する手段と、

前記注目画素の多値画像データに基づいて量子化閾値を設定する手段と、

前記補正データと前記量子化閾値とを比較して、N値画像データを出力する手段と、

前記N値画像データの生成に伴って発生する誤差を算出する手段と、を備え、

量子化値を $1 \cdot 2 \cdot \dots \cdot a \cdot b \cdot \dots \cdot N$ とし、量子化値の階調を $O1 \cdot O2 \cdot \dots \cdot O$ a $\cdot Ob \cdot \dots \cdot ON$ とするとき、

入力値の区間 O a \sim O b における i 番目の閾値 T h i (i は 0 < i \leq N - 1 の整数) は、入力濃度値を I n としたとき、

Thi=Ki ×In+(Oa +Ob)・(1-Ki)/2-(Oa -Oi): (Ki は0以上の実数、iは0<i \leq N-1の整数)、に基づき設定される値であることを特徴とする画像処理装置。

【請求項2】

前記Ki は、Ki ≦1であることを特徴とする請求項1記載の画像処理装置。

【請求項3】

前記入力値に応じて逐次処理で前記閾値を求めることを特徴とする請求項1記載の画像処 理装置。

【請求項4】

前記入力値に応じてLUTより前記閾値を求めることを特徴とする請求項1記載の画像処理装置。

【請求項5】

多値(M値)画像データを、多値誤差拡散処理または多値平均誤差最小法を用いてN値(M>N>2)に量子化し、該N値の夫々に対応したドットを用いて記録を行う画像記録装置であって、

注目画素の多値画像データに、周辺の既に量子化済みの画素から拡散された誤差を加えた 30 補正データを出力する手段と、

前記注目画素の多値画像データの入力濃度値に基づいて量子化閾値を設定する手段と、 前記補正データと、前記量子化閾値とを比較して、N値画像データを出力する手段と、 前記N値画像データの生成に伴って発生する誤差を算出する手段と、を備え、

量子化値を 1 ・ 2 ・ ··· ・ a ・ b ・ ··· ・ N とし、量子化値の階調を O 1 ・ O 2 ・ ··· ・ C a ・ O b ・ ··· ・ O N とするとき、

入力値の区間 O a \sim O b における i 番目の閾値 T h i (i は $0 < i \le N-1$ の整数) は、入力濃度値を I n としたとき、

Thi=Ki ×In+(Oa +Ob)・(1-Ki)/2-(Oa -Oi) : (Ki は0以上の実数、iは0<i \le N-1の整数)、に基づき設定される値である 40 ことを特徴とする画像記録装置。

【請求項6】

前記Ki は、Ki ≦1であることを特徴とする請求項5記載の画像記録装置。

【:請求項7】

前記入力値に応じて逐次処理で前記閾値を求めることを特徴とする請求項 5 記載の画像記 録装置。

【請求項8】

前記入力値に応じてLUTより前記閾値を求めることを特徴とする請求項 5 記載の画像記録装置。

【請求項9】

同系色で濃度の異なるインクを用いることで3値以上の階調表現を行うことを特徴とする 請求項5記載の画像記録装置。

【請求項10】

前記濃度の異なるインクにおいて、濃度の薄いインクは濃度の濃いインクを 1 / 3 以下に 希釈したインクであることを特徴とする請求項 9 記載の画像記録装置。

【請求項11】

吐出するインク量を制御することで3値以上の階調表現を行うことを特徴とする請求項5 記載の画像記録装置。

【請求項12】

多値(M値)画像データを、多値誤差拡散処理または多値平均誤差最小法を用いてN値(10 M>N>2)に量子化し、該N値の夫々に対応したドットを用いて記録を行う画像記録装置の記録制御処理をコンピュータに実行させるプログラムであって、

注目画素の多値画像データに、周辺の既に量子化済みの画素から拡散された誤差を加えた 補正データを出力する工程のコードと、

前記注目画素の多値画像データの入力濃度値に基づいて量子化閾値を設定する工程のコードと、

前記補正データと、前記量子化閾値とを比較して、N値画像データを出力する工程のコー ドと、

N値画像データの生成に伴って発生する誤差を算出する工程のコードと、を備え、

量子化値を 1 ・ 2 ・ …・ a ・ b ・ …・ N とし、量子化値の階調を O 1 ・ O 2 ・ …・ O a ・ O b ・ …・ O N とするとき、

入力値の区間 O a \sim O b における i 番目の閾値 T h i (i は 0 < i \leq N - 1 の整数) は、入力濃度値を I n としたとき、

Thi=Ki ×In+(Oa +Ob)・(1-Ki)/2-(Oa -Oi) : (Ki は0以上の実数、iは0<i \le N-1の整数)、に基づき設定される値であることを特徴とするプログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、多値画像データを高精細かつ高階調に印刷処理するための画像処理装置、画像 記録装置(画像形成装置)、及びプログラムに関する。

[0002]

【従来の技術】

スキャナやディジタルカメラ等の入力装置で読み取った多値画像データをプリンタやディスプレイ等の出力装置に出力する画像入出力システムが存在する。その際に、入力装置で読み取った多値(例えば8ビット精度ならば256階調)の画像データを出力装置が出力可能な階調数の画像データに変換し、擬似的に連続階調を表現する方法として、擬似中間調処理というものが存在する。

[0003]

中でも出力装置がドットのON/OFFのみの2値しか表現できないときには2値化処理が従来から行われている。この2値化処理の中で解像性と階調性に共に優れたものとして 誤差拡散処理や平均誤差最小法が存在する。誤差拡散法と平均誤差最小法は、誤差の拡散 作業をいつ行うかが異なるだけであり、論理的には等価なものである。

[0004]

さらにこの誤差拡散処理を2値だけでなく、3値以上の階調数にも適用したものとして、 多値誤差拡散処理が存在する。2値誤差拡散処理と同様に、階調性と解像性に優れた処理 が可能である。

[0005]

出力装置における3値以上の階調数を確保するために各種の方式がある。インクジェットプリンタにおいては射出するインク量を制御することにより小・中・大ドットとドット径 50

を変化させる方式、ドットの重ね打ちを行う方式、濃度の異なるインク・濃淡インクを用いる方式等により3値化以上の階調数を再現している。一般的には淡インクの濃度を濃インクの $1/2\sim1/6$ に希釈してある。電子写真においては書込みの露光をパルス幅分割して1ドットの形成する露光量を制御させることや、露光で用いるレーザー光の強度に強弱を加えることでドット径を変調させること等が行われている。

[0006]

また、最近のインクジェット方式を用いた画像記録装置のように、高解像度の2値出力装置では、より滑らかな中間調の画像を高速処理するために、多値誤差拡散法(「インデックス法」)が利用されている。インデックス法の一例を、600×600dpiの解像度のインクジェット記録装置を例に採り説明する。

[0007]

図13は、多階調で表現する誤差拡散法の処理の流れを示す図である。図示するように、ホストのアプリケーション101から出力された多値データはホスト内にある制御部102に送られる。この際、受け取る多値データの解像度は出力装置107の解像度600×600dpiよりも低い解像度300×300dpiとする。制御部102内では、出力装置固有の色処理が色処理部103で施され、5値化処理部104で誤差拡散法によって5値化される。そして、"0"~"4"の整数に5値化されたデータが圧縮処理部105で圧縮処理され、インターフェース106を介して出力装置107に転送される。出力データは、出力装置107内の制御部に用意されているインデックスパターン(その一例を図14、15に示す)に変換処理され(インデックスパターンによる展開処理部108)、展開されたデータに基づき記録へッド109で出力される。この方法では、量子化処理を600×600dpiでなく300×300dpiで行うことにより、誤差拡散の処理時間をおよそ4分の1とし、更にドットオン/オフの2階調でしか表現できなかった各画素を拡張することによって5階調の表現を可能としている。

[0008]

濃淡インクを用いたインクジェット記録装置では、図15に示すような9値のインデック ス法を利用することにより、粒状性の目立たない9階調の高品位の出力が実現可能である

[0009]

階調性に優れた多値誤差拡散処理の一つの問題点として、出力装置の持つ階調近辺(量子 化レベル)の濃度を出力する際に、擬似輪郭が発生するという問題があった。

[0010]

擬似輪郭が発生する原因は、原画信号が量子化レベル近傍の場合にディザパターンが生じないためテクスチャ変化が目立つことによる。

[0011]

このような擬似輪郭発生の問題点を解決する手段として、ランダムノイズのようなノイズを重畳して擬似輪郭を目立たなくさせる方法がある。このノイズ重畳の方法としては、入力画像も元データに付加する方法と、誤差拡散処理に用いる閾値自体をランダムに分散させる方法がある。このノイズを重畳させることで擬似輪郭自体はほとんど目立たなくすることができる一方、画像の輪郭部が不鮮明になるという問題が発生する。

[0012]

[0013]

【特許文献1】

10

20

30

特開2000-270210号公報

[0.014]

【発明が解決しようとする課題】

上記特許文献1に記載の技術は、濃淡インクを用いて3値化するインクジェットプリンタ において、淡インクの濃度を濃インクの1/2に希釈し3値(0・1・2)にしたときの 2.5.6 階調が0・1.2.8・2.5.5 のように階調値の間隔がほぼ均等な値を出力可能であれ ば非常に有効な技術である。淡インクの濃度を通常インクの約1/2に希釈したインクな らば、γ補正などであたかも通常インクを1/2に希釈したインクとして利用しても大き な課題はなかった。しかしながら、ハイライト部の粒状性を良好にするために淡インクの 濃度を通常インクの1/3以下に希釈したことで新たな課題が生じてきた。

[0015]

濃淡インクを用いて3値化するインクジェットプリンタにおいて、ハイライト部の粒状性 を良好にするために淡インクの濃度を濃インクの1/4に希釈したものであれば3値の階 調を0・64・255と階調値の間隔が不均等になり、特許文献1記載の式にて閾値を設 定することができず、擬似輪郭が発生してしまう。同様に、淡インクの濃度を濃インクの 1/4に希釈してあり9値誤差拡散して図3のような9インデックスパターンを用いる場 合も9値の階調値の間隔は不均等になってしまう。さらに射出するインク量を制御するこ とによりドット径を変化させることで多値化する場合、ドット径から階調値を求められる 。この場合はインクの粘性、インク射出制御レベルから階調値の間隔が均等に割り当てら れない場合がある。加えて、電子写真における出力の階調値はドットゲインや現像特性な どにより階調値の間隔を均等にできない場合がある。

[0016]

このように階調の間隔が不均等である場合において出力装置の持つ階調近辺(量子化レベ ル)の濃度を出力する際に、擬似輪郭が発生するという問題が生じてきた。

[0017]

本発明は、かかる問題点に鑑みてなされたものであり、多値誤差拡散処理により出力装置 の持つ階調䜣辺(量子化レベル)の濃度を出力する際に擬似輪郭が発生する問題を解決で きる画像処理装置、画像記録装置及びプログラムを提供することを目的とする。

[0018]

特に請求項1、5、12記載の発明は、入力濃度値に対応して最適な量子化しきい値を設 定することにより、量子化値近辺で発生する擬似輪郭を目立たなくさせ、良好な画質の出 力画像結果を得ることを目的とする。

[0019]

また請求項2、6記載の発明は、最適な定数を設定することにより、量子化値近辺で発生 する擬似輪郭を目立たなくすることができ、良好な画質の出力画像結果を得ることを目的 とする。

[0020]

また請求項3、7記載の発明は、閾値を逐次処理で求めることで閾値を保持するLUTを 必要とせず、省メモリ化することを目的とする。

[0021]

また請求項4、8記載の発明は、閾値をLUTで求めることで処理を高速化することを目 的とする。

[0022]

また請求項9記載の発明は、同系色で濃度の異なるインクを用いることで3値以上の階調 表現を可能とする装置において、量子化値近辺で発生する擬似輪郭を目立たなくさせ、良 好な画質の出力画像結果を得ることを目的とする。

[0023]

また請求項10記載の発明は、濃度の異なるインクは、濃度の薄いインクは濃度の濃いイ ンクを1/3以下に希釈したインクを用いることで3値以上の階調表現を可能とする装置 において、量子化値近辺で発生する擬似輪郭を目立たなくさせ、良好な画質の出力画像結 50

10

果を得ることを目的とする。

[0024]

また請求項11記載の発明は、吐出するインク量を制御することで3値以上の階調表現を可能とする装置において、量子化値近辺で発生する擬似輪郭を目立たなくさせ、良好な画質の出力画像結果を得ることを目的とする。

[0025]

【課題を解決するための手段】

上記課題を解決するため、本発明にかかる画像処理装置、画像記録装置及びプログラムでは、中間濃度に対する領域の感度を向上させ、その輪郭を明確にするために最適な閾値を設定してN値多値画像データを出力するものである。

[0026]

かかる目的を達成するために、請求項1記載の発明は、多値(M値)画像データを、多値 誤差拡散処理または多値平均誤差最小法を用いてN値(M>N>2)に量子化し、N値の 夫々に対応したドットを用いて記録を行う画像処理装置であって、注目画素の多値画像データに周辺の既に量子化済みの画素から拡散された誤差を加えた補正データを出力する手段と、注目画素の多値画像データに基づいて量子化閾値を設定する手段と、補正データと 量子化閾値とを比較してN値画像データを出力する手段と、N値画像データの生成に伴って発生する誤差を算出する手段と、を備え、量子化値を $1 \cdot 2 \cdot \cdots \cdot a \cdot b \cdot \cdots \cdot N$ とし、量子化値の階調を $01 \cdot O2 \cdot \cdots \cdot Oa \cdot Ob \cdot \cdots \cdot ON$ とするとき、入力値の区間 $0a \cdot Ob$ におけるi番目の閾値 $Thi(iは0 < i \le N-1$ の整数)は、入力濃度値をInとしたとき、 $Thi=Ki \times In+(Oa +Ob) \cdot (1-Ki)/2-(Oa -Oi) : (Ki は0以上の実数、iは0 < i \le N-1 の整数)、に基づき設定される値であることを特徴としている。$

[0027]

請求項2記載の発明は、請求項1記載の発明において、Ki は、Ki ≦1であること を特徴としている。

[0028]

請求項3記載の発明は、請求項1記載の発明において、入力値に応じて逐次処理で前記閾 値を求めることを特徴としている。

[0029]

請求項4記載の発明は、請求項1記載の発明において、入力値に応じてLUTより前記閾値を求めることを特徴としている。

[0030]

請求項5記載の発明は、多値(M値)画像データを、多値誤差拡散処理または多値平均誤差最小法を用いてN値(M>N>2)に量子化し、N値の夫々に対応したドットを用いて記録を行う画像記録装置であって、注目画素の多値画像データに周辺の既に量子化済みの画素から拡散された誤差を加えた補正データを出力する手段と、注目画素の多値画像データの入力濃度値に基づいて量子化閾値を設定する手段と、補正データと量子化閾値とを比較してN値画像データを出力する手段と、N値画像データの生成に伴って発生する誤差を算出する手段と、を備え、量子化値を $1 \cdot 2 \cdot \cdots \cdot a \cdot b \cdot \cdots \cdot N$ とし、量子化値の階調を $01 \cdot O2 \cdot \cdots \cdot Oa \cdot Ob \cdot \cdots \cdot ON$ とするとき、入力値の区間 $0a \sim Ob$ におけるi番目の閾値Thi(iは $0 < i \le N-1$ の整数)は、入力濃度値をInとしたとき、Thi=Ki ×In+(0a + Ob) $\cdot (1-Ki)/2-(0a - Oi)$: (Ki は0以上の実数、iは $0 < i \le N-1$ の整数)、に基づき設定される値であることを特徴としている。

[0031]

請求項6記載の発明は、請求項5記載の発明において、Ki は、Ki ≤ 1 であることを特徴としている。

[0032]

請求項7記載の発明は、請求項5記載の発明において、入力値に応じて逐次処理で前記閾

10

20

30

値を求めることを特徴としている。

[0033]

請求項8記載の発明は、請求項5記載の発明において、入力値に応じてLUTより前記閾値を求めることを特徴としている。

[0034]

請求項9記載の発明は、請求項5記載の発明において、同系色で濃度の異なるインクを用いることで3値以上の階調表現を行うことを特徴としている。

[0035]

請求項10記載の発明は、請求項9記載の発明において、濃度の異なるインクにおいて、 濃度の薄いインクは濃度の濃いインクを1/3以下に希釈したインクであることを特徴と している。

[0036]

請求項11記載の発明は、請求項5記載の発明において、吐出するインク量を制御することで3値以上の階調表現を行うことを特徴としている。

[0037]

請求項12記載の発明は、多値(M値)画像データを、多値誤差拡散処理または多値平均誤差最小法を用いてN値(M>N>2)に量子化し、N値の夫々に対応したドットを用いて記録を行う画像記録装置の記録制御処理をコンピュータに実行させるプログラムであって、注目画素の多値画像データに周辺の既に量子化済みの画素から拡散された誤差を加えた補正データを出力する工程のコードと、注目画素の多値画像データの入力濃度値に基づいて量子化閾値を設定する工程のコードと、補正データと量子化閾値とを比較してN値画像データを出力する工程のコードと、N値画像データの生成に伴って発生する誤差を算出する工程のコードと、を備え、量子化値を1・2・…・a・b・…・Nとし、量子化値の階調を01 ・02 ・…・Oa ・Ob ・…・ON とするとき、入力値の区間Oa ~Ob におけるi番目の閾値Thi(iは0<i \leq N-1の整数)は、入力濃度値をInとしたとき、Thi=Ki ×In+(Oa +Ob)・(1-Ki) /2-(Oa -Oi):(Ki は0以上の実数、iは0<i \leq N-1の整数)、に基づき設定される値であることを特徴としている。

[0038]

【発明の実施の形態】

以下、本発明の好適な実施の形態を添付図面を参照しながら詳細に説明する。構成要素には記号を付与して区別する。図1は、本発明の実施の形態における画像処理装置のブロック構成を示す図である(特に本発明に特徴的な画像処理を行う画像処理部のブロック構成を示す)。また、図2は、本発明の実施の形態における画像記録装置の構成を示す図である。

[0039]

図4は、本発明の実施の形態の画像処理装置を用いて構成される画像入出力システムの構成を示す。画像入力装置401はスキャナやディジタルカメラ等の入力デバイスを示し、入力画像について例えば8ビット精度ならば256階調の画像データとして取り込まれる。この多値画像データが本実施形態の画像処理装置402に入力される。

[0040]

画像処理装置(画像処理部)402では、画像入力装置401から入力された256階調の画像データに対し、この後段の画像出力装置403で出力可能な階調数に変換する処理を行う。この階調数変換処理では多値誤差拡散処理を用いてもよい。画像出力装置403が、図3に示すように1ドット単位で3階調表現ができるとすると、3値の誤差拡散処理を行うことになる。ここで、図3の"0", "1", "2"は、画像処理装置402で3値化した後の情報を表し、この画像データが図2に構成を示すような画像記録装置(画像形成装置、画像出力装置)403に送られる。

[0041]

図2において、画像出力装置403は、フレーム1に横架したガイドレール2,3に移動

20

30

可能に載設されたキャリッジにインクジェット記録へッド5 (以下、単に「記録ヘッド」 と称す)を搭載し、図示しないモータ等の駆動源によってキャリッジをガイドレール方向 に移動して走査(主走査)可能とするとともに、ガイド板6にセットされる用紙7を、図 示しない駆動源によってドライブギヤ8及びスプロケットギヤ9を介して回動される送り ノブ10aを備えたプラテン10にて取込み、プラテン10周面とこれに圧接するプレッ シャローラ11とによって搬送し、記録ヘッド5によって用紙7に印字記録する。

[0042]

記録ヘッド5は、図5に示すブラック(K)、イエロー(Y)、マゼンタ(M)及びシア ン (C) の各インクをそれぞれ吐出するための 4 個のインクジェットヘッド {5 K、5 Y 、5M、5C〉や、図6に示すブラック(K)、イエロー(Y)、マゼンタ(M)、シア ン(C)、ライトイエロー(LY)、ライトマゼンタ(LM)及びライトシアン(LC) の各インクをそれぞれ叶出するための7個のインクジェットヘッド {5 K、5 Y、5 M、 5 C、 5 L Y、 5 L M、 5 L M を主走査方向の同一線上に配置して構成している。商品 構成によってはインクの数を増減させても何ら構わない。具体的にはハイライト部でイエ ローのドットは目視し難い特性を持つのでライトイエローを省いてコストダウンを行った 構成としても良いし、また、ライトブラックや、シアン・マゼンタ・イエロー・ブラック の各色の濃度を3段・4段に分けた構成にして高画質を実現した記録ヘッドとしてもよい

[0043]

ト記の各インクジェットヘッドは、例えば圧電素子、気泡発生用ヒータ等のエネルギー発 20 牛手段であるアクチュエータを選択的に駆動して、液室内のインクに圧力を与えることに よって、この液室に連通するノズルからインク滴を吐出飛翔させて、用紙7に付着させる ことで画像記録(画像形成)する。ここでアクチュエータの駆動信号を多数用意すること により1ノズルから吐出されるインク量を制御することが可能となり、用紙上で大小ドッ ト、大中小ドットなど多階調表現が可能となる。

[0044]

画像記録装置403は、図3に示すように出力の対象となっているドットの制御を行う。 "O"はドットを打たないことを示し(以下、「ドットoff」)、"2"は通常のイン ク濃度(以下、「通常インク」)によるドットを打つことを示し、"1"は2における通 常インクを希釈した淡い濃度インク(以下、「淡インク」)のドットを打つことを示す。 ここでは、図3に示すように画像出力装置が濃度変調できる場合を示したが、本発明が適 用される範囲はこれに限定されるものではない。例えば、図14、15に示すように2値 のドットを複数個集めて多値の階調を表現する場合、射出するインク量を制御することに より多値の階調を表現する場合、書込みの露光をパルス幅分割して1ドットの露光量を制 御させることにより多値の階調を表現する場合、露光で用いるレーザー光の強度に強弱を 加えることにより多値の階調を表現する場合等でも本発明にかかる処理方法が適用可能で ある。

[0045]

また、図4のシステム構成図では、処理に応じてそれぞれの装置を独立したものとして示 したが、この限りではなく、画像処理装置402の機能が画像入力装置401中に存在す る形態や、画像出力装置403中に存在する形態等もある。

[0046]

図1は、図4に示す本実施形態の画像処理装置402の構成を示すブロック図である。入 力端子906からは画像入力装置401より多値画像データが入力される。ここで、2次 元の画像データを表わすために、In(x,y)として表わす(xは画像の主走査方向の アドレス、yは副走査方向のアドレスを示す)。

[0047]

次に、このIn(x, y)が加算器903に入力される。加算器903には、誤差メモリ 904に格納されている、現画素以前の誤差拡散処理により拡散・蓄積されてきた誤差の うち、現画素に割り当てられた誤差成分 E (x, y) が入力され、In(x, y) と加算 50

され、その結果が出力される。この出力信号を補正データC(x、v)とする。 [0048]

また、入力データIn(x,y)は閾値設定部901に入力され、本発明にかかわる多値 誤差拡散処理に用いる閾値Th(x,y)の設定を行う。ここで閾値は以下のような式に 則って設定される。説明を単純化するため、ここでは出力装置403の出力可能な階調数 が3値の場合で説明する(もちろんこの階調数以外にも同様に適用することが可能である)。淡インクは通常インクを1/4に希釈したものを用いた場合における、図3のドット off・淡インクドット・通常インクドットの階調値はO・64・255として説明する

```
[0049]
```

Th 1 $(x, y) = K1 \times In (x, y) + 32 \times (1 - K1)$ $0 \le I n (x, y) \le 64 \cdots (1)$

Th 2 $(x, y) = K1 \times In (x, y) + 32 \times (1 - K1) + 64$

 $0 \le I n (x, y) \le 64 \cdots (2)$

Th 1 $(x, y) = K2 \times I n (x, y) + 160 \times (1 - K2) - 64$

 $6.5 \le I \text{ n (x, y)} \le 2.5.5 \cdots (3)$

Th 2 $(x, y) = K2 \times In (x, y) + 160 \times (1 - K2)$

 $6.5 \le I \ n \ (x, y) \le 2.5.5 \cdots (4)$

上式中、K1, K2は0以上の実数である。

[0050]

式(1)~(4)に基づき設定される閾値をもとに3値量子化が図1に示す画像処理部に て実行される。

[0051]

閾値設定部901は入力データIn (x, y)が0 \leq In (x, y) \leq 64であれば、式 (1)と入力データIn(x, y)で設定された閾値Thl(x, y)、式(2)と入力 データ I n (x, y)で設定された閾値Th2(x, y)を比較判定部902へ出力する 。入力データIn(x, y)が65≦In(x, y)≦255であれば、式(3)と入力 データIn(x,y)で設定された閾値Th1(x,y)、式(4)と入力データIn(x, y)で設定された閾値Th2(x, y)を比較判定部902へ出力する。

[0052]

比較判定部 902は、入力データ In(x, y) に誤差 E(x, y) が加算された補正デ ータC(x, y)と、閾値設定部901で設定された閾値Th1(x, y)及び閾値Th 2(x, y)に基づいて下記のように出力する濃度値Out(x, y)を決定する。

[0053]

If (C(x, y) < Thl(x, y)...(5)then Out(x, y) = 0

Else If (C(x, y) < Th2(x, y)

then Out (x, y) = 64

Else

...(7)then Out (x, y) = 255

[0054]

このOut(x,y)が出力端子907から画像出力装置403に対して出力される。

[0055]

また、出力値Out(x,y)は減算器905に入力され、補正データC(x,y)から 減算されて、現画素で発生した誤差 e (x, y)が算出される。

[0056]

次に誤差拡散部908では予め設定された拡散係数に基づいて、誤差e(x, y)を配分 して誤差メモリ904に蓄積されている誤差データE(x, y)に加算していく。ここで 例えば拡散係数として図7に示したような係数を用いた場合、誤差拡散部908では下記 のような処理を行う。

10

20

30

[0057]

E (x, y+1) = E (x, y+1) + e $(x, y) \times 7/16 \cdot \cdot \cdot (8)$ E (x+1, y-1) = E (x+1, y-1) + e $(x, y) \times 3/16 \cdot \cdot \cdot (9)$ E (x+1, y) = E (x+1, y) + e $(x, y) \times 5/16 \cdot \cdot \cdot (10)$ E (x+1, y+1) = E (x+1, y+1) + e $(x, y) \times 1/16 \cdot \cdot \cdot (11)$

[0058]

この誤差拡散処理で発生した誤差データは誤差メモリ904に格納される。

[0059]

以上のように図 1 の構成によって、画像処理部における多値誤差拡散処理が行われる。 【 0 0 0 0

次に、このような処理によりなぜ擬似輪郭が低減されるかについて説明する。図8は、入力画像が0から255のグラデーションの時に、従来の方法による3値(0,64,255)の誤差拡散処理を施した結果を示したもので(※グラデーションは疑似的に示した)、64の濃度近辺で、64のドットのみで形成される領域が発生する。この部分が擬似輪郭として知覚される。

[0061]

この原因としては、各階調ごとの粒状度をグラフに表してみるとわかりやすい。今、0から255までの濃度のパッチ(ただし各濃度値を十分表現できるのに十分な面積を持つ)を3値誤差拡散処理で示すと図9のように64濃度近辺の粒状度が急激に少なくなっている。これは入力濃度値が64に近い値だったときには或る領域で見たときの64によるドットの占める割合が非常に高く、粒状度の値としては小さくなる。それに対して入力濃度値が32や192であったときには、ほとんど2 画素に1 回の割合で2 種類の濃度のドットが交互に発生する形になるため、粒状度の値としては非常に高くなっている。

[0062]

ただしこれらの0から25500256個のパッチのまま並べてみても擬似輪郭としては見えにくいが、これを幅の小さいグラデーションとして出力すると、それぞれの入力濃度値に相当する微視的な領域の粒状度は図10のようになり、濃度64を中心としてかなりの幅で粒状度の値がほぼ0となる。すなわちその領域では64のドットしか発生していない。これは各濃度領域におけるドット発生に対する感度の違いが出ているものである。先ほど述べたように、0, 64, 25503値のドットを用いる場合、濃度32を表現するためには、平均的に見て0と64のドットが1ドットずつ、12ドット存在すればよい。これに対して濃度63を表現しようとすれば、平均的に見ると、10のドットが11ドットと11ドットが11ドットが11ドットを11ドットが11ドットが11ドットと12 ドットが13 を表現しようとすれば、平均的に見ると、13 でのドットが14 ドットを存在しなければならない。そこで今出力しようとしているグラデーションの幅が各濃度値に対して例えば11ドットしかないような場合には、中間濃度13 年間の濃度は平均的に見ればほとんど13 の濃度で表現されてしまい、グラデーションの幅に比較して、大きな幅の均一パターンとなるため、その均一パターンと、それ以外の領域との境界が擬似輪郭として見えている。

[0063]

この現象は多値誤差拡散だけではなく、多値ディザでも起こる。ただし多値ディザとの差はこの均一パターンの幅の広さにある。同一のグラデーションの幅を3値の誤差拡散処理とディザ処理を行ったときの出力結果を見ると、明らかに誤差拡散処理の方が均一パターンの領域の幅が広い。これは誤差拡散処理特有のはき寄せ現象によるものである。64の入力濃度から255に向かうグラデーションにおいて255のドット発生を行うためには、正の誤差が蓄積されていく必要がある。しかし64に非常に近い領域では誤差の絶対値も小さく、255のドット出力を行う閾値160を超えるまでには94以上の誤差が蓄積されなければならない。これに対して多値のディザについては、そのディザの閾値マトリクスと画素位置によってドットが発生する/しないが決まり、画像中のある画素位置によっては、入力濃度値が65であっても、255のドット発生が行われる可能性はある。よって多値ディザに比較して、多値誤差拡散は出力濃度値近辺ではドット発生が遅れる傾向にあり、そのために中間濃度部での均一パターンの幅も広くなってしまう。

10

10

30

[0064]

この問題点を解決するために、本発明では式(1)、(4)のように入力濃度値に応じて 閾値の変更を行う。こうすることで、均一パターンの幅を小さくすることができる。これ は出力濃度値近辺でのドット発生に対する感度を上げることが目的である。例えば式(1)、(4)のKの値が0. 5であるとし、入力濃度値が65の場合、従来の固定化された 閾値では255のドット発生のためには誤差加算後の補正データの値が160よりも大きくなければならなかったが、本実施形態の式(1)、(4)によれば、112. 52となる。従って処理画素が進んで誤差の蓄積が112. 565=47. 572を超えた時点で255のドット発生が行われる。すなわち誤差拡散処理特有のはき寄せ現象による均一パターンの幅の広さを狭くすることができ、擬似輪郭として目立ちにくくなる。

[0065]

ここで、式(1)、(4)の中の定数Kについては、これらを調整することで、均一パターンの幅を制御することが可能である。この定数を変化させたときの閾値の特性をグラフに示したものを図11に示す。図11でK1, K2の値が0の時とは、従来の固定閾値の場合である。K1, K2を0. $25 \cdot 0$. $5 \cdot 1$ と変化させていくと直線の傾きが増していく。そして、中間濃度値64近辺での2つの閾値の差が縮まってくる。これはこの近辺で、0や25500濃度のドットが発生しやすくなっていることを示す。ただしこの定数の値をあまり大きくすると逆に悪影響が発生してしまう。グラデーションを出力するとその出力濃度値近辺にドットが並びそれが線となって見えてしまう現象が発生する。従ってこれら定数の値は実験により $K \le 1$ で擬似輪郭として目立ちにくく、かつ悪影響を起こさない最適な値となる。もちろんこれは画像によって多少異なる値を用いた方が良好な結果をもたらす場合もあり得るため、各画像にて最適な処理を施したい場合には、それぞれの画像によって所望の値を用いれば良い。

[0066]

本発明の他の実施形態として、図11では2つの定数に同じ値を用いていたが、異なる値を用いることでさらに最適な閾値特性を選択することが可能である。実際の出力装置においては、ドットゲイン等が存在し、同じドットを打つ場合でも、出力媒体上にドットをまばらに打つ低濃度部と、ドットを密に打つ高濃度部では明らかに特性が異なる。従ってそれぞれの濃度に応じた最適な定数を別個に選択すれば良い。

[0067]

また、式(1)~(4)では入力濃度による1次関数で定義されていたが、本発明はこれに限るものではなく、必要に応じて高次の関数を用いて、閾値の特性を非線型にとることも可能である。また、図12に示すように中間濃度部近辺のみ閾値を濃度によって変えても良い。0や255の濃度においては誤差拡散のはき寄せ現象は同様に発生するが、擬似輪郭としては知覚されない。従って擬似輪郭解決のためだけであれば、中間濃度のみの対策を行うことでも十分である。

[0068]

また、上記実施形態では式(1)~(4)と入力値から逐次処理により閾値Th1(x,y)・閾値Th2(x,y)を求めたが、入力値256階調に対して閾値Th1・Th2を事前に計算しておき、計算結果をLUT(LookUp Table)に保持してこれ 40を使用することにより高速化する形態としても構わない。

[0069]

また、本発明は多値誤差拡散処理に対するものであったが、同じように多値平均誤差最小法にも適用できる。

[0070]

なお、本発明は、複数の機器(例えばホストコンピュータ,インタフェース機器,リーダ,プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機,ファクシミリ装置など)に適用してもよい。

[0071]

また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコ

ードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(CPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。この場合、記憶媒体から読出されたプログラムコード自体が前述した実施形態の機能を実現することになる。

[0072]

プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

[0073]

また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0074]

さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わる CPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0075]

以上により本発明の実施の形態について説明した。なお、上述した実施形態は、本発明の 好適な実施形態の一例を示すものであり、本発明はそれに限定されるものではなく、その 要旨を逸脱しない範囲内において、種々変形実施が可能である。

[0076]

【発明の効果】

以上の説明から明らかなように、本発明によれば、入力濃度値に対応して最適な量子化閾値を設定することにより、多値誤差拡散法により発生する量子化レベル付近の擬似輪郭を最小限に抑えることができ、画質への悪影響を解消することができる。

[0077]

請求項1、5、12記載の発明では、入力濃度値に対応して最適な量子化しきい値を設定することにより、量子化値近辺で発生する擬似輪郭を目立たなくすることができ、良好な画質の出力画像結果を得ることができ、画質への悪影響を解消する。

[0078]

請求項2、6記載の発明では、最適な定数を設定することにより、量子化値近辺で発生する擬似輪郭を目立たなくすることができ、良好な画質の出力画像結果を得ることができ、 画質への悪影響を解消する。

[0079]

請求項3、7記載の発明では、閾値を逐次処理で求めることで閾値を保持するLUTを必要とせず、省メモリとすることができる。

[0080]

請求項4、8記載の発明では、閾値をLUTで求めることで、処理を高速化することができる。

[0081]

請求項9記載の発明では、同系色で濃度の異なるインクを用いることで3値以上の階調表現を可能とする装置において、量子化値近辺で発生する擬似輪郭を目立たなくすることができ、良好な画質の出力画像結果を得ることができ、画質への悪影響を解消する。

[0082]

請求項10記載の発明では、濃度の異なるインクは、濃度の薄いインクは濃度の濃いインクを1/3以下に希釈したインクを用いることで3値以上の階調表現を可能とする装置に

30

40

おいて、量子化値近辺で発生する擬似輪郭を目立たなくすることができ、良好な画質の出 力画像結果を得ることができ、画質への悪影響を解消する。

[0083]

請求項11記載の発明では、吐出するインク量を制御することで3値以上の階調表現を可能とする装置において、量子化値近辺で発生する擬似輪郭を目立たなくすることができ、 良好な画質の出力画像結果を得ることができ、画質への悪影響を解消する。

【図面の簡単な説明】

- 【図1】本発明の実施の形態における画像処理装置の画像処理部のブロック構成を示す図である。
- 【図2】本発明の実施の形態における画像記録装置の構成を示す図である。
- 【図3】画像記録装置における、ドットoff・淡インク・通常濃度インクの3階調の濃度変調を行う場合の出力ドットを示す図である。
- 【図4】本発明の実施の形態における画像処理装置及び画像記録装置を含んで構成される画像入出力システムの構成を示す図である。
- 【図5】インクジェットヘッド(4色)の構成を示す図である。
- 【図6】インクジェットヘッド(7色)の構成を示す図である。
- 【図7】拡散係数の例を示す図である。
- 【図8】入力画像が0から255のグラデーションの場合における、3値(0,64,255)の誤差拡散処理を施した結果を示した図である。
- 【図9】入力値の階調ごとの粒状度を示すグラフである。
- 【図10】入力濃度値に相当する微視的な領域の粒状度を示すグラフである。
- 【図11】定数Kを変化させたときの閾値の特性を示すグラフである。
- 【図12】中間濃度部近辺のみ閾値を濃度によって変える場合の閾値特性を示すグラフである。
- 【図13】ホストから出力装置への多値画像データの処理の流れについて示す図である。
- 【図14】インデックスパターンの例(その1)について示す図である。
- 【図15】インデックスパターンの例(その2)について示す図である。

【符号の説明】

- 401 画像入力装置
- 402 画像処理装置
- 403 画像記録装置
- 1 フレーム
- 2、3 ガイドレール
- 5 記録ヘッド
- 6 ガイド板
- 7 用紙
- 8 ドライブギヤ
- 9 スプロケットギヤ
- 10 プラテン
- 10a 送りノブ
- 11 プレッシャローラ
- 5Y、5M、5C、5K、5LY、5LM、5LC インクジェットヘッド
- 901 閾値設定部
- 902 比較判定部
- 903 加算器
- 904 誤差メモリ
- 905 減算器
- 906 入力
- 907 出力
- 908 誤差拡散部

20

10

30

10

In(x, y) 入力データ
Out(x, y) 出力データ
C(x, y) 補正データ
Thl(x, y), Th2(x, y) 閾値
e(x, y) 誤差
E(x, y) 誤差成分データ
K1, K2 定数
101 アプリケーション
102 制御部
103 色処理部
104 5値化処理部
105 圧縮処理部
106 インタフェース
107 出力装置
108 展開部

109 記録ヘッド

フロントページの続き

(51) Int. Cl. ' H O 4 N 1/40

F 1

B 4 1 J 3/00 A

テーマコード(参考)

F ターム(参考) 5B057 CA01 CA02 CA08 CA12 CA16 CB01 CB02 CB07 CB12 CB16 CC01 CE11 CE13 CH08

5C077 LL19 MP01 MP08 NN02 NN13 PP68 PQ12 PQ23 RR08 TT02

TT06