WOOD CHARLESTEE TO	61/2/2000		and and			100	1					5		1
Reg. No.	R	A	2	Ø	11	0	2	a	10	1	0	13	4	5

B. Tech. DEGREE EXAMINATION, DECEMBER 2022

Fifth Semester

18CSE356T - DISTRIBUTED OPERATING SYSTEMS

For the candidates admitted from the academic year 2018-2019 to 2021-2022)

(ii)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute. Part - B should be answered in answer booklet.	shoul	d be	hanc	led
(ime: 2)	Hours	Max.	Mari	ks: 7	5
	PART – A (25 × 1 = 25 Marks) Answer ALL Questions	Marks 1	81. 1	60	P()
1.	The transparency that enables multiples instances of resources to be used, is called	,	,	,	,
	(A) Performance transparency (B) Scaling transparency (C) Concurrency transparency (D) Replication transparency				
2.	A set of highly integrated machine that runs the same process in parallel is known to be	1	1	1	1
	(A) Space based (B) Loosely based (C) Tightly couples (D) Peer-to-peer				
3.	There are four requirements in the design of distributed system. Choose the correct combination from the list below (A) Network performance, quality (B) Network dependency, quality of of service, caching and replication, dependability issues (C) Network integrity, quality of (D) Network accessibility, quality software, caching and alteration, dependability issues (D) Network accessibility, quality of hardware, caching and replication, dependability issues	1	2	1	1
4.	What is not a major reason for building distributed systems? (A) Resource sharing (B) Computation speedup (C) Reliability (D) Simplicity	1	2	1	1
5.	Distributed operating systems woks on the principles. (A) File foundation (B) Multi system image (C) Single system image (D) Networking image	1	2	1	1
. 6	A process that is based on IPC mechanism which executes on different system and can communicate with other process using message based communication, is called (A) Local procedure call (B) Inter process communication (C) Remote procedure call (D) Remote machine invocation	_ 1 \	İ	2	1
7	Which of the following two operations are provided by the IPC facility? (A) Write and delete message (B) Delete and receive message (C) Send and delete message (D) Receive and send message	1 09DA5/1	8CSE	2 356T	1

8.	. ATI	M standard defines layers			1	1	2	1
	(A)	2	(B)	3				
	(C)		(D)	5				
9	. A ty	program creates some objects accessible and waits for	ne rei r clie	mote objects, make references to ents to invoke methods on these	1	1	2	1
		Server	(B)	Client				
		Thread		Concurrent				
10.	The pack	local operating system on the ets to the	serve	er machine passes the incoming	1	2	2	1
	(A)	Server stub	(B)	Client stub				
	(C)	Client operating system	(D)	Client process				
11.	Elec	tion message is always sent to the	proc	ess with	1	2	3	1
		Lower numbers		Waiting processes				
	(C)	Higher numbers		Requesting lower number of resources				
12.	Defi	ine the clock skew as			1	1	3	í
		The difference in time values between any two clocks	(B)	The period of time between two consecutive clock synchronization actions				
1	(C)	The rate by which the value of a clock drifts from the ideal time	. ,	made to a clock so that its value				
150.00	and the same	une		achieves the average time			17820	
13.		he token passing approach of nized in a ring structure	1 d	listributed systems, process are	1	2	3	1
	(A)	Logically	(B)	Physically				
	(C)	Logically and physically	(D)	Physiologically				
14.	Whi	ch of the following is not a proper	rty of	transactions?	1	2	3	1
	(A)	Atomicity	(B)	Concurrency				
	(C)	Isolation	(D)	Durability				
15.	The	request and release of the resourc	es ar	e	1	2	3	1
	(A)	Command line statements	(B)	Interrupts				
	(C)	System calls	(D)	Special programs				
16		et of primitives available to the use			1	2	4	4
	(A)	Thread package	(B)	Process package				
	(C)	Line package	(D)	String package				
17.	Whi	ch algorithm does not require any	adva	ance information	ı	2	4	1
		Deterministic algorithm		Centralized algorithm				
	- ,	Hierarchical algorithm		Bidding algorithm				

		stributed systems with types.	,,,,	uniprocessor and manifecinpater				
	h F	(xplain the hardware concep	OR)	ultiprocessor and multicomputer	10	2	1	1
26.	a. De	escribe the various issues in de	signing o	f distributed systems.	10	1	1	3
		PART – B (5 × Answer A)		,	Marks	81.	со	PO
	(C) Virtual memory	(D)	Primary memory				
) Distributed shared memory	, ,	Local memory				
		thout using inter processes con						
2:				s processes and access shared data	1	2	5	1
	(0	,	(D)	Location nota				
) Vand bit) Home bit	` ,	Location field				
24	me	nich bit telling whether the mnet device? Valid bit		present in cache block table in Exclusive bit	1	1	5	1
	(C)	Dirty	(D)	Write through				
	10/20	Invalid Dirty	, ,	Clean Write through				
23		ich of the following is not a s			1	1	5	1
		and a						
	before (A)	ore M' if and only if Q received Consistent ordering Casual ordering	es M befor (B)	re M', the order delivery is Absolute ordering Fifo ordering				
22.	If p	rocess P and Q both receive	e message	s M and M', then P receives M	1	I	5	¥
		Casual	` '	Sequential				
		ll process Strict	(B)	Weak				
21.	In v	which of the following consist	ency mod	el all writes becomes perceptible	1	2	5	Ī
	(C)	Physical redundancy		Logical redundancy				
20.	garl	which redundancy approach e bled bits Information redundancy		re added to allow recovery from Time redundancy	Ī	1	4	1
	(C)	Location polity	(D)	State information exchange policy				
	(A)	Load estimation policy		Process transfer policy				
19.	How	to exchange load information			. 1	1	4	1
	(C)	racuity tolerance	(D)	Tanness of service				
	` '	Stability Faculty tolerance	, ,	Scalability Fairness of service				
		e system	(75)	Carl Live				

(OR)

	_	1	2	1
b.i. Explain ATM networks in detail.	5	1	۷	,1
ii. Write short notes on buffered primitives vs unbuffered primitives.	5	1	2	1
28. a. Discuss any two algorithms for ensuring the mutual exclusion in distributed systems.	10	3	3	1
(OR) b. Explain about the distributed deadlock prevention algorithm with example.	10	2	3	I
29. a. Describe the design issues for thread packages in distributed systems.	10	2	4	3
(OD)				
b. Describe the design issues for processor allocation algorithm.	10	1	4	3
30. a. Explain the different types of consistency models in distributed shared memory.	10	2	5	1
(OR) b. Explain about object based distributed shared memory.	10	3	5	1