In the Claims:

This listing of claims will replace all prior versions, and listings of the claims in the application.

Please amend claim 53, as follows:

1-40. (**canceled**).

41. (previously presented) A compound of general formula (A)

in which:

 R^2 and R^3 are independently hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) hydroxylalkyl, hydroxyl, (C_1-C_{10}) haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) alkyloxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10})

alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl, or R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous;

 R_4 is hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5 to 10 membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)sulfonylamino, aminosulfonyl, C_1 - C_{10} alkylsufinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by O, S, NR, CO, C(NR), $C(R)SO_2$, or OC(O)O, wherein R is as defined above and the saturated or unsaturated hydrocarbon chain is optionally substituted as defined above;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl; and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl;

in which V and W are as follows:

a single carbon-carbon bond;

V is CR and W is N, saturated or unsaturated;

V is N and W is CR, saturated or unsaturated;

a linkage of the form VW or WV = RRC-O or RRC-S, wherein V and W are each optionally substituted (C_1-C_6) alkyl, C_6 aryl or heterocycle; and in which each R is independently defined.

42. (previously presented) A compound of general formula (B1)

$$\begin{array}{c}
X \\
S \\
Z
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_1
\end{array}$$

$$\begin{array}{c}
(B1)
\end{array}$$

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkenyl, $(C_1$ - $C_{10})$ alkynyl, $(C_1$ - $C_{10})$ alkoxy, $(C_1$ - $C_{10})$ thioalkoxy, hydroxyl, $(C_1$ - $C_{10})$ hydroxylalkyl, halo, $(C_1$ - $C_{10})$ haloalkyl, amino, amido, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylcarbonyloxy, $(C_1$ - $C_{10})$ alkoxycarbonyl, $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl,

 R^3 is hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, (C_1-C_{10}) alkylsulfinyl, or (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) hydroxylalkyl, hydroxyl, (C_1-C_{10}) haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10})

alkylsulfonylamino, aminosulfonyl, or (C₁-C₁₀) alkylsulfonyl,

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl; and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl; and

Z is a one atom linkage of N, CH, or CR or a two-atom linkage of varying combinations of atoms of CH, CR, O, N, S, SO, SO₂, wherein R is C₁-C₆ alkyl or substituted C₁-C₆ alkyl.

43. (previously presented) A compound of general formula (B2)

$$R_1 R_2 N$$
(B2)

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkenyl, $(C_1$ - $C_{10})$ alkynyl, $(C_1$ - $C_{10})$ alkoxy, $(C_1$ - $C_{10})$ thioalkoxy, hydroxyl, $(C_1$ - $C_{10})$ hydroxylalkyl, halo, $(C_1$ - $C_{10})$ haloalkyl, amino, amido, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, alkylamino, aminosulfonyl, $(C_1$ - $C_{10})$ alkylsulfonylamino, aminosulfonyl, $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, $(C_1\text{-}C_{12})$ alkyl, substituted $(C_1\text{-}C_{12})$ alkyl, or unsaturated $(C_2\text{-}C_{12})$ comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_1\text{-}C_{10})$

alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylamino, aminosulfonyl, (C_1-C_{10}) alkylamino, aminosulfonyl, (C_1-C_{10}) alkylsulfinyl, or (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) hydroxylalkyl, hydroxyl, (C_1-C_{10}) haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl; or

 R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; or

 R^1 and R^2 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R 2 N, with R^1 and R^2 as defined above,

n is equal to 0, 1 or 2,

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl, and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

and Z is a one atom linkage of N, CH or CR, or a two-atom linkage of varying combinations of atoms of CH, CR, O, N, S, SO, SO₂, and in which each R is independently C₁-C₆ alkyl or

substituted C_1 - C_6 alkyl.

44. (previously presented) A compound of general formula (C)

$$R_4$$
 R_5 (C)

in which:

 R^3 is hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or $C\equiv C$ bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, eyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), OC(

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C₁-C₆ alkyl

or substituted C₁-C₆ alkyl; and

 R^4 and R^5 are each independently hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5- to 10-membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)carbonyloxy, $(C_1$ - C_{10} alkoxy)carbonyl, $(C_1$ - C_{10} alkyl)carbonyl, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)suflonylamino, aminosulfonyl, C_1 - C_{10} alkylsulfinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by C_1 - C_1 -

- 45. (**previously presented**) A compound as claimed in claim 41, in which R² and R³ are both Hydrogen.
- 46. (**previously presented**) A compound as claimed in claim 41, in which R² is methyl (CH₃) and R³ is Hydrogen.
- 47. (**previously presented**) A compound as claimed in claim 41, in which R^2 is Hydrogen and R^3 is methyl (CH₃).
- 48. (**previously presented**) A compound as claimed in claim 41, in which R^2 and R^3 are both methyl (CH₃).
- 49. (**previously presented**) A compound as claimed in claim 41, in which X is -OH, -OC₂H₅, -OCH₃, or NHOH.
- 50. (**previously presented**) A compound as claimed in claim 41, in which Y is represented by one or two oxygen atoms.

- 51-52. (canceled).
- 53. (currently amended) A compound of general formula (Ia)

wherein:

R² and R³ are both Hydrogen (H);

Y is two oxygen atoms;

n is 1;

 R^1 is

X is -OH, -CH₃, -OC₂H₅ or NHOH.

54. (previously presented) A compound of general formula (B)

wherein:

R² and R³ are both methyl (CH₃);

Y is zero oxygen atoms;

n is zero;

 R_1 is

X is $-OCH_3$, $-OC_2H_5$ or -OH.

55. (previously presented) A compound which is:

6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6d),

6-(4-Methoxy-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6e),

6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7b),

6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7c),

6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8b),

6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8c),

6-Benzenesulfinyl-hexa-2,4-dienoic acid (8d),

6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9a),

6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9b),

6-Benzenesulfonyl-hexa-2,4-dienoic acid (10a),

6-Benzenesulfonyl-hexa-2,4-dienoic acid methyl ester (10b),

6-Benzenesulfonyl-hexa-2,4-dienoic acid hydroxyamide (11a),

6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid methyl ester (13b),

6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (14a),

4-(4-Dimethylamino-phenylsulfanyl)-2-methyl-pent-2-enoic acid methyl ester (21b),

6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid ethyl ester (24c),

6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid hydroxyamide (25c),

- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid methyl ester (28b),
- 7-(4-Chloro-phenylsulfanyl)-heptanoic acid ethyl ester (28c),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid methyl ester (28e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28f),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28g),
- 6-(4-Bromo-phenylylsulfanyl)-hexanoic acid methyl ester (28h),
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid methyl ester (28i),
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid hydroxyamide (29b),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid hydroxamide (29c),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid hydroxamide (29g),
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid hydroxamide (29i),
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid methyl ester (30b),
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid ethyl ester (30c),
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid methyl ester (30e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid methyl ester (30f),
- 6-(4'-Chloro-biphenyl-4-ylsulfinyl)-hexanoic acid methyl ester (30i),
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid hydroxyamide (31a),
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid hydroxyamide (31c),
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid hydroxyamide (31e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid hydroxamide (31f),
- 6-(4'-Chloro-biphenyl-4-sulfinyl)-hexanoic acid hydroxyamide (31i),
- (2E,4E)-5-(5-Dimethylamino-benzo[b]thiophen-2-yl)-penta-2,4-dienoic acid ethyl ester (41a),
- (2E,4E)-5-(5-Dimethylaminobenzo[b]thiophen-2-yl)-penta-2,4-dienoic acid hydroxamide (42a),

- (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-acrylic acid ethyl ester (51a.), or (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-*N*-hydroxy-acrylamide (52a).
- 56. (**previously presented**) A pharmaceutical composition comprising a compound of claims 41 to 50, and 53 to 55, and optionally a pharmaceutically acceptable adjuvant and/or diluent.
- 57. (**previously presented**) A method of inhibiting HDAC activity in an individual comprising administering to said individual a therapeutically effective amount of a compound of general formula (I):

$$R_1$$
 R_2 R_3 Q X (I)

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkenyl, $(C_1$ - $C_{10})$ alkynyl, $(C_1$ - $C_{10})$ alkoxy, $(C_1$ - $C_{10})$ thioalkoxy, hydroxyl, $(C_1$ - $C_{10})$ hydroxylalkyl, halo, $(C_1$ - $C_{10})$ haloalkyl, amino, amido, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, alkylamino, aminosulfonyl, $(C_1$ - $C_{10})$ alkylsulfonylamino, aminosulfonyl, $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, $(C_1\text{-}C_{12})$ alkyl, unsaturated $(C_2\text{-}C_{12})$ comprising one or more C=C bond or C=C bond, $(C_1\text{-}C_{10})$ alkoxy, $(C_1\text{-}C_{10})$ thioalkoxy, hydroxyl, $(C_1\text{-}C_{10})$ hydroxylalkyl, halo, or $(C_1\text{-}C_{10})$ haloalkyl; or

 R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8)

cycloalkene ring, (C₅-C₈) cycloalkyl, (C₅-C₈) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous; or

 R^1 and R^2 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R 2 N, with R^1 and R^2 as defined above;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl;

Q represents

$$\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}_m$$
 or $\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}$

wherein:

m is an integer from 1 to 4;

n is an integer from 1 to 8; and

 R^4 and R^5 each independently represent hydrogen, or unsubstituted or substituted $C_1\text{-}C_{10}$ alkyl;

or a pharmaceutically acceptable salt thereof.

58-63. (canceled).

64. (previously presented) A compound of claim 43, wherein:

X is NHOH, OH, NROR, or CRROH; and Z is CR or N.

65. (previously presented) The method of claim 57, wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, optionally substituted by $(C_1\text{-}C_{10})$ alkoxy, halo or $(C_1\text{-}C_{10})$ alkylamino;

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a C_6 aryl;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently selected from hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl;

Y is O, 1, or 2 oxygen atoms;

Q represents

$$\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}_m$$
 or $\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}_n$

wherein:

m is an integer from 1 to 4;

n' is an integer from 1 to 8; and

R⁴ and R⁵ each independently represent hydrogen or methyl.

66. (**previously presented**) The method of claim 57, wherein said compound of general formula (I) is:

6-Phenylsulfanyl-hexa-2,4-dienoic acid (6a),

6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6b), or

6-Phenylsulfanyl-hexa-2,4-dienoic acid methyl ester (6c).

67. (**previously presented**) A method of stimulating hematopoietic cells *ex vivo*, comprising administering an effective amount of a compound of general formula (I).

68-69. (canceled).

70. (previously presented) A compound of general formula (Ib)

$$R_1 \xrightarrow{X} R_2 \xrightarrow{R_3} X$$

wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkenyl, $(C_1$ - $C_{10})$ alkynyl, $(C_1$ - $C_{10})$ alkoxy, $(C_1$ - $C_{10})$ thioalkoxy, hydroxyl, $(C_1$ - $C_{10})$ hydroxylalkyl, halo, $(C_1$ - $C_{10})$ haloalkyl, amino, amido, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, alkylamino, aminosulfonyl, $(C_1$ - $C_{10})$ alkylaulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl;

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a (C_6 or C_{10}) aryl;

n is 0, 1 or 2;

X is hydroxamate (-NHOH); and

Y is 0, 1 or 2 oxygen atoms;

or a pharmaceutically acceptable salt thereof.

71. (**previously presented**) The method of claim 57, wherein the compound of formula (I) has a structure of general formula (Ia):

$$R_1 \xrightarrow{Y} R_2 \xrightarrow{R_3} X$$

wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkenyl, $(C_1$ - $C_{10})$ alkynyl, $(C_1$ - $C_{10})$ alkoxy, $(C_1$ - $C_{10})$ thioalkoxy, hydroxyl, $(C_1$ - $C_{10})$ hydroxylalkyl, halo, $(C_1$ - $C_{10})$ haloalkyl, amino, amido, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylamino, alkylamino, aminosulfonyl, $(C_1$ - $C_{10})$ alkylsulfinyl, or $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, or (C_1-C_{10}) haloalkyl; or

 R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; or

 R^1 and R^2 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, (C_6 or C_{10}) heteroaryl, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkene ring, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R²N, with R^1 and R^2 as defined above;

n is 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or

SR, wherein each R is independently hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl; and Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl;

or a pharmaceutically acceptable salt thereof.