Descriptive Statistics

- Describing data with tables and graphs
- Describing center of the data
- Describing variability of the data
- Bivariate descriptive statistics

Describing data with tables and graphs:

We organize raw data in frequency tables showing classes, frequencies, relative frequencies and cumulative frequencies. Then we draw graphs.

Example 1: Categorical (nominal) data

Ten people (n = 10) were asked about their marital status.

Data: Single, Single, Divorced, Divorced, Widowed,

Single, Married, Married, Widowed, Single

Class	Frequency	Relative	Percentage
		Frequency	
Divorced	2	2/10 = 0.2	20%
Married	2	0.2	20%
Single	4	0.4	40%
Widowed	2	0.2	20%
Total	10	1	100%

Example 2: Categorical (ordinal) data

Respondents in a study are categorized as young (Y), middle-aged (M) and old (O). Data for 20 respondents are given below.

Data: M, M, Y, O, O, M, M, Y, Y, M, Y, M, O, O, M, M, M, Y, O, M

Class	Frequency	Relative Frequency	Cumulative Frequency
Y	5	5/20 = 0.25	5
M	10	0.50	15
О	5	0.25	20
Total	20	1	

Example 3: Discrete data

Data were collected from an industrial plant.

X = Number of spots in a metal sheet.

Data: 3, 2, 0, 4, 1, 1, ..., 3.

X	Number of sheets	Relative Frequency	Cumulative Frequency
0	10	0.125	10
1	27	0.338	37
2	15	0.188	52
3	18	0.225	70
4	10	0.125	80

Example 4: Continuous data

X =Duration (minutes) of production halt due to machine failure.

Sample size, n = 100.

Data: 49.2, 89.7, 41.3, 50.0, ···, 60.9

X	Frequency	Relative	Cumulative
		Frequency	Frequency
40-50	10	0.10	10
50-60	20	0.20	30
60-70	40	0.40	70
70-80	20	0.20	90
80-90	10	0.10	100

Here, the class '40-50' means $40 \le X < 50$ and '50-60' means $50 \le X < 60$. If data contain the value 50.0, it is counted in '50-60'. That is, the classes are non-overlapping. Another option: '40-50' means $40 < X \le 50$, and so on.

Remarks on Frequency distribution:

- The classes should be non-overlapping.
- Helps view how the data are distributed among different classes.

Graphs

• For Categorical variables: Bar chart and Pie chart

• For **Discrete** variables: Bar Chart

• For Continuous variables: Histogram

Bar Chart for Example 1 (Marital Status)

Pie Chart for Example 1 (Marital Status)

Bar chart and pie chart can also be drawn for Example 2 (Ordinal data)

Bar chart for Example 3 (Discrete)

Histogram for Example 4 (Continuous)

Difference between bar chart and histogram

- 1. In a bar chart, bars are separate. In a histogram, bars are attached to each other.
- 2. In a bar chart, height of bar represents frequency. In a histogram, area of bar represents frequency.

Shape of a distribution

A histogram can have different shapes:

Positively skewed (rightward skewed)

Negatively skewed (leftward skewed)