

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 8

Franco Bruña y Dante Pinto 5 de Noviembre, 2021

Pregunta 1

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto en CNF. Dé un algoritmo que decida si $\mathcal{L}(\mathcal{G})$ es infinito o no.

Pregunta 2

Sea $\Sigma = \{0,1\}^*$ y $L \subseteq \Sigma$. Construya gramáticas en CNF y GNF para los siguientes lenguajes.

- $\bullet \ L = \{w \mid w = w^r\}$
- $L = \{w = 0^n 10^n 1 \mid n \ge 0\}$
- $L = \{w \in \{0,1\}^* \mid |w|_0 = |w|_1 \}$, dónde $|w|_a$ representa el número de símbolos a en w.

Pregunta 3

Sea Σ un alfabeto. Para un lenguaje L sobre Σ se define SUFFIX(L) como:

$$\mathtt{SUFFIX}(L) = \{ u \in \Sigma^* \mid \exists v \in \Sigma^*. \ vu \in L \}$$

Demuestre que si L es un lenguaje libre de contexto, entonces SUFFIX(L) también es libre de contexto.

Pregunta 4

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto, $\mathcal{G}_c = (V_c, \Sigma, P_c, S_c)$ una gramática libre de contexto en CNF y $\mathcal{G}_g = (V_g, \Sigma, P_g, S_g)$ una gramática libre de contexto en GNF, tal es que $\mathcal{L}(G) = \mathcal{L}(G_c) = \mathcal{L}(G_g)$. Demuestre:

- Si \mathcal{G} no tiene reglas unitarias ni en vacío, entonces \mathcal{G}_c es de tamaño polinomial con respecto a \mathcal{G} .
- El tamaño de \mathcal{G}_g es exponencial con respecto al tamaño de \mathcal{G} .