ECE 595

M02B-CELLULAR NETWORK EVOLUTION

Xiang Sun

The University of New Mexico

- □ Code Division Multiple Access (CDMA)
 - > Use of orthogonal codes to separate different transmissions
 - Each symbol of bit is transmitted as a larger number of bits using the user specific code -Spreading
 - ✓ Spreading bandwidth is much greater than the original signal bandwidth
 - ✓ But all users use the same frequency band together

□ Example of CDMA in downlink

> Assume that there are three MSs, i.e., A, B, and C. The spreading codes for the three mobile users are:

```
\checkmark C_A = (1,1,1,1,1,1,1,1)

\checkmark C_B = (1,-1,1,-1,1,-1,1,-1)

\checkmark C_C = (1,1,1,1,-1,-1,-1,-1)
```

- \triangleright If the base station tries to send "0" to A, "1" to B, and "0" to C, what kind of signal will be transmitted in a channel?
- > How do the MSs recover the data from the received signals?

☐ How to generate spreading codes

- > Walsh Codes are most used in generating orthogonal codes for CDMA.
 - ✓ For a set of Walsh codes of length n, it consists of n lines to form a square matrix of n × n Walsh codes.
 - ✓ Each line in the square matrix is orthogonal to another line.
- > How to generate the square matrix?

$$H_{2n} = \left[egin{array}{cc} H_n & H_n \ H_n & \overline{H_n} \end{array}
ight]$$

- \checkmark H_n is the square matrix of n × n Walsh codes.
- \checkmark $\overline{H_n}$ complimentary of H_n (switching 1 and -1).

☐ Apply CDMA in uplink

- > In CDMA uplink, multiple MSs may transmit the spread signals at the same time. The received power at the base station for all MSs should be close to each other.
- > However, CDMA incurs near-far problem
 - ✓ MSs near the base station have high received power.
 - ✓ MSs far from the base station have low received power.
- Power control: enables MSs to adjust power when they transmit signal in order to ensure the base station receives all the signals at the appropriate power.

☐ Apply CDMA in uplink

Power control

3rd Generation (3G)

□ 3G Evolution Path

□ WCDMA (Wideband-CDMA)

- ✓ WCDMA is the main third generation air interface.
- ✓ 3G network is also called UMTS

 (Universal Mobile Telecommunications
 Service).

 UMTS Frame Structure

Carrier Spacing	5 MHz (nominal)
Chip Rate	3.84 Mcps
Frame Length	10 ms (38400 chips)
No. of slots/frame	15
No. of chips/slot	2560 chips (Max. 2560 bits)
Uplink SF	4 to 256
Downlink SF	4 to 512
Channel Rate	7.5 Kbps to 960 Kbps

- □ 3G system overview (Universal Mobile Telecommunications Service-UMTS)
 - UTRAN (UMTS Terrestrial Radio Access Network)
 - ✓ NodeB: CDMA-based BTS
 - ✓ Radio Network Controller: control radio resource in its domain, similar with BSC

□ UTRAN Registration Area (URA)

> An area coverer by a number of cells

□ UE working mode

- > Two basic working modes
 - ✓ Idle
 - UE stands by without any data service. There's no connection between UE and URAN
 - ✓ Connected
 - UE transferred to the connected mode after accomplishing RRC (Radio Resource Control) connection setup
 - There are 4 states under the connected mode
 - Cell-DCH (dedicated channel)
 - Cell-FACH (Forward Access Channel)
 - Cell-PCH (Paging channel)
 - URA-PCH (UTRAN Registration Area Paging Channel)

□ UE working mode

- CELL-DCH
 - ✓ A dedicated link is set up to enable the UE to transmit/receive a large volume of data or voice calls
 - ✓ UTRAN knows exactly which cell the UE is in
- CELL-FACH
 - ✓ There is some but not too much data, and so there's no need to assign a dedicated channel to the UE.
 - ✓ UTRAN knows exactly which cell the UE is in
- CELL-PCH
 - There is no data related to the UE, but the UE have to listen to the page channel (PCH) for paging information.
 - ✓ UTRAN knows exactly which cell the UE is in
- URA-PCH
 - There is no data related to the UE, but the UE have to listen to the page channel (PCH) for paging information.
 - ✓ UTRAN knows exactly which URA the UE is in

□ UE working mode

☐ Handoff

- > Hard handoff (break before make)
 - ✓ The UE communicates with only one NodeB
 - ✓ Connection with the old NodeB is broken before the new NodeB connection is established.

☐ Handoff

- > Soft handoff (make before break)
 - ✓ The UE communicates with more than one NodeBs .
 - ✓ When a call is in a state of soft handover,
 - in the downlink scenario, the UE will combine all the signals from the NodeBs.
 - in the uplink scenario, the RNC may compare the signals from different NodeBs frame-by-frame, and select the best candidate after each interleaving period.

