

GPU Acceleration

Tutorial on High-Performance & Accelerated Computing at IEEE ICIAfS 2016

Dec. 18, 2016

Hasindu Gamaarachchi hasindu2008@gmail.com

Graphics Processing Unit (GPU)

GPU is the Specialized hardware that renders the graphics output to a display on a computer

- Modern graphics(such as games) include 3D motion, light effects, object transformations, etc.
- CPU is for general purpose calculations, and so cannot efficiently handle them.
- GPU is a hardware specially designed to handle them

Dedicated Graphics

Some modern dedicated graphics cards

NVIDIA GTX 1080

AMD Radeon R9 280X

NVIDIA Graphics Processors

Geforce

For gaming

Tesla

For high performance computing

NVIDIA graphics cards

Quadro

For computeraided design Tegra

Graphics for mobile devices

NVS

Multi display

GPGPU

 GPGPU is General Purpose Computation using Graphics processing Units.

- Bioinformatics
- Computational chemistry and physics
- Numerical analysis
- Machine learning
- Computational finance
- Imaging and computer vision
- Weather and climate
- Medical imaging
- Digital signal processing
- And many more

How to do GPGPU

- CUDA C
- OpenCL
- Matlab (Parallel Computing Toolbox)

We focus on CUDA C. CUDA C is for NVIDIA GPUs only. But for NVIDIA GPUs this is the most efficient method.

CPU vs GPU

Intel Xeon Processor E7-8890 v4

- 24 cores
- 48 threads
- 3.4 GHz clock rate
- 60MB cache memory
- 165W TDP

NVIDIA Tesla K40

- 2880 cores
- 30720 threads
- 875MHz clock rate
- 1.536 MB cache memory
- 235W TDP

CPU vs GPU

CPU	GPU
Small number of cores /threads	Very large number of cores/threads
Large clock rate	Less than the clock rate of CPU
Large cache	Very small cache
Powerful cores (With respect to: pipelining, branch prediction, forwarding, ALU)	Less powerful cores

Improved latency Good for serial algorithms Improved throughput Good for parallel algorithms

CPU vs GPU: What each is good at?

```
for (i=0;i<1024;i++){
    num = num % randint();
}</pre>
```

- Next result is dependent on the previous result
- Serial algorithm.
- Faster the clock rate is better.
- No use of threads or cores.
- Good for CPU.

```
for (i=0;i<1024;i++){
    C[i] = A[i] + B[i];
}
```

- Each operation is independent of the other
- Parallelizable algorithm
- If there are 1024 threads each thread can handle each operation
- Good for GPU

CUDA

CUDA stands for Compute
 Unified Device Architecture

•

 Parallel computing platform and programming model invented by NVIDIA.

 Enables using NVIDIA GPUs for GPGPU.

CUDA Toolkit

Provides a development environment for C and C++ developers building GPU-accelerated applications.

Contains

- compiler for NVIDIA GPUs
- CUDA libraries
- Debugging tools
- Visual Profiler
- Nsight integrated development environment

Available for Windows, Linux and Mac OS

OUDA° C/C++

CUDA C

- For programming the GPU, C language has been extended by NVIDIA to include GPU specific features. This is called CUDA C.
- Include special syntax
- Include high level functions for GPU tasks such as GPU memory allocation, memory copying from CPU to GPU and vice versa

CUDA C

Standard C Code

```
void addVector(int *C, int *A, int *B)
{
    for(int i=0;i<SIZE;i++){
        C[i]=A[i]+B[i];
    }
}
addVector(C,A,B)</pre>
```

CUDA C Code

```
<u>global</u> void addVector(int *C, int *A, int *B)
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if(tid<SIZE) C[tid]=A[tid]+B[tid];
cudaMemcpy(A, A RAM, size of (int)*SIZE, cudaMemcpyHostToDevice);
cudaMemcpy(B,B_RAM,sizeof(int)*SIZE,cudaMemcpyHostToDevice);
int numBlocks = ceil(SIZE/(float)256); int threadsPerBlock = 256;
addVector<<<numBlocks,threadsPerBlock>>>(C, A, B);
cudaMemcpy(C RAM,C,sizeof(int)*SIZE,cudaMemcpyDeviceToHost);
```

CPA Algorithm

Finding Power Model Statistics

Finding Power Trace Statistics

Finding Mey

Finding Mey

Finding Mey

Finding Mey

Correlation

- Algorithm of huge computational complexity
- Needs to process lot of power traces
- Hence takes a lot of time on a CPU
- But highly parallelizable

Phase 1: Finding Power Model Statistics

Key in AES

128 bits

| Byte |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

- Consists of 16 bytes (let's call byte position)
- > each byte can take values from 0 to 255 (let's call subkey)
- There are 256x16 combinations

In CPU

For each byte position from 0 to 15

For each subkey from 0 to 255

 H_i for all traces i, $\sum_{i=0}^N H_i$, $\sum_{i=0}^N H_i^2$

Phase 1 in GPU

- > Assign a thread for each combination
- >Thread structure is 2D

CUDA kernel with 2D thread indexing model

 H_i for all traces i , $\sum_{i=0}^N H_i$, $\sum_{i=0}^N H_i^2$

Phase 2: Finding power trace statistics

- \triangleright A power trace has m number of samples (m is large as 100 000)
- > Must calculate power trace statistics for each sample point for all sub keys for all byte positions

In CPU

For each byte position from 0 to 15

For each subkey from 0 to 255

For each samplepoint from 0 to m-1

$$\sum_{i=0}^{N} W_{i,j}, \sum_{i=0}^{N} W_{i,j}^{2}, \sum_{i=0}^{N} W_{i,j} H_{i}$$

Phase 2 in GPU

- >A thread is assigned to each combination
- ➤ Thread structure is a 3D

This is the most compute intensive phase Therefore CUDA kernel with 3D thread indexing model

Phase 3: Finding maximum correlation

For each combination of sub key and byte position find maximum Pearson correlation coefficient.

In CPU

For each byte position from 0 to 15

For each subkey from 0 to 255

$$\hat{\rho} = \frac{N \sum_{i=0}^{N} W_{i,j} H_i - \sum_{i=0}^{N} W_{i,j} \sum_{i=0}^{N} H_i}{\sqrt{N \sum_{i=0}^{N} W_{i,j}^2 - (\sum_{i=0}^{N} W_{i,j})^2} \sqrt{N \sum_{i=0}^{N} H_i^2 - (\sum_{i=0}^{N} H_i)^2}}$$

Phase 3 in GPU

>Thread model is 2D

CUDA kernel with 2D thread indexing model

Phase 4: Deriving the round key

- For each byte position, sub key with maximum correlation is selected
- ▶1D thread model : Not much complexity. So done on CPU

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14	Byte 15
$\hat{ ho}0$	$\hat{ ho}0$	$\hat{ ho}0$	$\hat{ ho}0$	$\hat{ ho}0$											
$\hat{ ho}$ 1	$\hat{ ho}$ 1	$\hat{ ho}$ 1	$\hat{ ho}$ 1	$\hat{ ho}$ 1											
				•••	•••				•••	•••			•••		
	nax ::	nax :	nax i	max :	nax	nax :	max :	max :	max	max 	⊤ax .:	max 	nax ::	۳ 	ax
		:													
				•••			•••	•••	•••						•••
$\hat{ ho}$ 255	$\hat{ ho}$ 255_	$\hat{ ho}$ 255	$\hat{ ho}$ 255_	$\hat{ ho}$ 255	$\hat{ ho}$ 255_										

Optimization we achieved ...

CUDA kernel	Consumed time as a percentage	Performance Limiter				
Phase1 (Power model statistics)	00.0%	Instruction and Memory Latency				
Phase2 (power trace statistics)	85.8%	Computation				
Phase3 (maximum correlation)	14.2%	Computation				

- ➤ Phase 2 is most compute intensive phase
- > Limitation is caused by computation which is mostly a hardware limitation

Results

CPA on NVIDIA Tesla C2075 is,

 More than 1300 faster than a single threaded CPU

Results

CPA on NVIDIA Tesla C2075 is,

 More than 60 times faster than a 32 threaded high performance server

More info

CUDA

https://feels.pdn.ac.lk/course/view.php?id=476

https://feels.pdn.ac.lk/course/view.php?id=426

Login as guest

Accelerating Correlation Power Analysis using Graphics Processing Units (GPUs)

Hasindu Gamaarachchi, Roshan Ragel, and Darshana Jayasinghe, Information and Automation for Sustainability (ICIAfS), 2014 7th International Conference on, 22-24 Dec. 2014

More info

Download the slides from:

http://tesla.ce.pdn.ac.lk/iciafs/gpu.pdf

CPA implementations:

https://github.com/hasindu2008/PowerAnalysis/tree/master/4.analysis

NVIDIA Research Center in Peradeniya

https://tesla.ce.pdn.ac.lk/

NVIDIA Tesla K40

448 cores

30720 threads

• 2880 cores

21504 threads

Temporary account for 1 week

SSH server : tesla.ce.pdn.ac.lk

User : iciafs

Password: Ic1Af32016

NVIDIA Tesla C2075

Contact: roshanr@pdn.ac.lk

hasindu2008@gmail.com

Questions?

