

CHRONIC KIDNEY DISEASE

An Al-powered predictive system that analyzes routine clinical and laboratory data to identify patients at risk of chronic kidney disease for early intervention.

Presented to

Hope Al

Presented by

Madhu

TABLE OF CONTENTS

Problem
Statement and
Objective

4 Datesets overview

7 Data Preprocessing

Model
Development &
Evaluation

Final Model Selection & Justification

Project Structure and GIT Hub Repo

Contact Information

PROBLEM STATMENT AND OBJECTIVE

Problem Statement

A hospital management needs an automated tool to flag patients at risk of Chronic Kidney Disease (CKD) early, based on routine lab and clinical parameters.

Objective

Build a binary classifier that predicts CKD (1) vs. Non-CKD (0).

DATASET OVERVIEW

Size

PATIENT RECORDS

399

FEATURES

25

Class balance / Target

CKD - YES

250 records (62.7%)

CKD - NO

149 records (37.3%)

Feature types

Continuous numeric (11):

age, bp, bgr, bu, sc, sod, pot, hrmo, pcv, wc, rc

Ordinal categorical (3):

sg, al, su

Nominal categorical (11):

rbc, pc, pcc, ba, htn, dm, cad, appet, pe, ane, classification

Data-Type & Cardinality Summary

Numerical Data

FEATURES	TYPE	UNIQUE LEVELS
Age, Bp, Bgr, Bu, Sc		
Sod, Pot, Hrmo, Pcv,	Numeric	
Wc, Rc		

Ordinal Data

FEATURES	TYPE UNIQUE LEVELS		
Sg (1–5)Sod, Pot	Mapped	5 levels (a→1e→5)	
AI (0-5)	Numeric	6 levels	
SU (0-5)	Numeric		

DATASET OVERVIEW

Nominal Data

FEATURES	ТҮРЕ	UNIQUE LEVELS	
Rbc	Binary	Normal, Abnormal Normal, Abnormal Present, Not Present Present, Not Present	
Pc	Binary		
pcc	Binary		
Ва	Binary		
Htn, Dm, Cad, pe, Ane, Classification	Binary	Yes, No	
Appet	Binary	Good, Poor	

DATA PRE-PROCESSING

Loaded raw CSV

Read in the CKD.csv file and inspected each column for type and missing values.

Mapped ordinal variables to integers

sg: a-e \rightarrow 1-5 al, su: "0"-"5" \rightarrow 0-5 integers

Cast continuous features to numeric

age, bp, bgr, bu, sc, sod, pot, hrmo, pcv, wc, rc
→ floats

One-hot encoded nominal categoricals

one-hot encoded, retaining all levels (no dummy drop)

MODEL DEVELOPMENT AND EVALUATION

MODEL DEVELOPMENT AND EVALUATION

Evaluation Metrics

ACCURACY

PRECISION, RECALL, F1-SCORE

AUC-ROC

CONFUSION MATRIX

Algorithms Tried

LOGISTIC REGRESSION

DECISION TREE

SUPPORT VECTOR MACHINE

RANDOM FOREST

MODEL DEVELOPMENT AND EVALUATION

Parameter Grids

solver: ["liblinear"]

Decision Tree

max_features:
["auto", "sqrt"]

splitter: ["best", "random"]

Random Forest

n_estimators: ["10", "100","200"] max_depth: ["5", "10"]

min_samples_split :
["2", "5"]

SVM

```
criterion: ["gini",
"entropy"]
```

max_features: ["auto", "sqrt"]

splitter:["best", "random"]

Minimal Code Snippet

```
param_grid = {
    'solver': ['newton-cg', 'lbfgs', 'liblinear', 'saga'],
    'penalty': ['ll', 'l2', 'elasticnet', 'none'], # Not all solvers support all penalt
    'C': [0.01, 0.1, 1, 10, 100], # Inverse of regularization strength
    'max_iter': [100, 200, 500], # Maximum iterations for the solver
    'fit_intercept': [True, False], # Whether to fit the intercept (bias
    'll_ratio': [0, 0.5, 1] # Used only if penalty='elasticnet'
}
```


After preprocessing, feature engineering, and hyperparameter tuning via 5-fold GridSearchCV, we evaluated four candidate models on the 20% hold-out test set. The key metrics are:

Performance Comparsion

Algorithm	Accuracy	ROC AUC	F1 Score
Logistic Regression	0.97	0.97	0.97
Random Forest	0.98	0.99	0.98
Decision Tree	0.97	0.97	0.97
SVM	0.96	0.99	0.96

Key takeaway: Random Forest achieved the best balance of sensitivity and specificity, with the highest F1-Score (0.98) and ROC-AUC (0.99) on unseen data.

Confusion Matrix(Random Forest)

FINAL RESULTS

In a powerful study of Chronic Kidney Disease prediction, four models—Logistic Regression, Decision Tree, SVM, and Random Forest—were rigorously tuned via 5-fold GridSearchCV. Random Forest dominated with 98 % accuracy, 0.99 ROC AUC, and 0.98 F1-score, delivering exceptional sensitivity and specificity. Future work: external validation and ensemble stacking for impactful clinical insights.

PROJECT STRUCTURE AND GITHUB REPO

Access the full code, notebooks, and report at: <a href="https://chen.com/c

FOR INQUIRIES, CONTACT ME

www.madhusudhanan.online

+1-972-946-6351

madhusudhanan.jayaram@gmail.com

