Computer Science & IT

Discrete Mathematics

Combinatorics

Lecture No. 03

Recap of Previous Lecture

Formation of recurrence relation

Solution of recurrence relation using substitution method

Topics to be Covered

Topic

Topic

Solution of recurrence relation using method of characteristic roots

Method of undetermined coefficient for particular solution

Topic: Substitution method

In this method we use recurrence relation repetitively for n=0,1,2,....., then we solve the expression to obtain the solution of recurrence relation.

$$a_n = n \ a_{n-1}$$
, where $a_0 = 1$
 $Q_0 = 1$
 $Q_1 = 1 \cdot Q_0 = 1 \cdot 1 = 1$
 $Q_2 = 2 \cdot Q_1 = 2 \cdot 1 \cdot 1 = 2$
 $Q_3 = 3 \cdot Q_2 : 3 \cdot 2 \cdot 1 \cdot 1 = 6$
 $Q_{m-1} \cdot q \cdot Q_3 : q \cdot 3 \cdot 2 \cdot 1 \cdot 1 = 12$
 $Q_n = n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1 \cdot 1 = n$
 $Q_n = n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1 \cdot 1 = n$
 $Q_n = n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1 \cdot 1 = n$

$$a_n = a_{n-1} + 3^{n-1}$$
, where $a_1 = 2$

$$Q_1 = 2$$

$$Q_2 = Q_1 + 3^{2-1} = 2 + 3^{1}$$

$$Q_3 = Q_2 + 3^{3-1} = 2 + 3^{1} + 3^{2}$$

$$Q_4 : Q_3 + 3^{1-1} = 2 + 3^{1} + 3^{2} + 3^{3}$$

$$Q_{11} : Q_{12} + 3^{1} + 3^{1} + 3^{2} + 3^{2} + 3^{3}$$

$$Q_{12} : Q_{13} + 3^{1} + 3^{1} + 3^{2} + 3^{2} + 3^{3} + 3^{3}$$

$$Q_{14} : Q_{15} + 3^{1} + 3^{1} + 3^{2} + 3^{3} + \cdots + 3^{n-1}$$

$$Q_{17} : Q_{17} + 3^{1} + 3^{1} + 3^{2} + \cdots + 3^{n-1}$$

an-1+3+3+32+--+3n-1 =1+[1.(3-1)]

$$a_n = a_{n-1} + (2n+1)$$
, where $a_0 = 1$
 $Q_0 = 1$
 $Q_1 = Q_0 + (2\cdot 1 + 1) = 1 + (2\cdot 1 + 1)$
 $Q_2 = Q_1 + (2\cdot 2 + 1) = 1 + (2\cdot 1 + 1) + (2\cdot 2 + 1)$
 $Q_3 = Q_2 + (2\cdot 3 + 1) = 1 + (2\cdot 1 + 1) + (2\cdot 2 + 1) + (2\cdot 3 + 1)$
 $a_1 = 1 + (2\cdot 1 + 1) + (2\cdot 2 + 1) + (2\cdot 3 + 1) + - - - + (2\cdot n + 1)$

$$Q_{n} = 1 + (2.1+1) + (2.2+1) + (2.3+1) + - - - + (2.n+1)$$

$$= 1 + 3 + 5 + 7 + 9 + - \cdot \cdot \cdot (2n+1)$$

$$= (n+1)^{2}$$

$$= (n+1)^{2}$$

$$Q_{n} = 1 + (2.1+1) + (2.2+1) + (2.3+1) + - - - + (2.n+1)$$

$$= 1 + 3 + 5 + 7 - - \cdot \cdot \cdot + (2n+1)$$

$$= (n+1)^{2}$$

$$a_n = a_{n-1} + \frac{1}{n(n+1)}$$
, where $a_0 = 1$

$$a_1 = a_0 + \left(\frac{1}{1} - \frac{1}{2}\right) = 1 + \left(\frac{1}{1} - \frac{1}{2}\right)$$

$$Q_2 = Q_1 + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right)$$

$$G_3 = G_2 + (\frac{1}{3} - \frac{1}{4}) = 1 + (\frac{1}{4} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4})$$

$$a_{n} = 2 - \frac{1}{(n+1)}$$
 $a_{n} = \frac{2}{(n+1)}$
 $a_{n} = \frac{2}{(n+1)}$

Topic: Solution of recurrence relation

- 1) Substitution method
- Topic 2) Method of characteristic roots
 - 3) Using concept of generating function

$$Q_{n+k} = E^{k} \cdot Q_{n}$$

$$Q_{n+(k-1)} = E^{k-1} \cdot Q_{n}$$

$$Q_{n+1} = E^{1} \cdot Q_{n}$$

$$Q_{n} = E^{0} \cdot Q_{n} = Q_{n}$$

Consider the following linear recurrence relation.

 $\lambda_0 \cdot \alpha_n + \lambda_1 \cdot \alpha_{n-1} + \lambda_2 \cdot \alpha_{n-2} + \cdots + \lambda_k \cdot \alpha_{n-k} = f(n) - eq^n \square$

Put n-k=n.

it. n= n+K,

o's Equation becomes,

It is the new functions obtain after replacing h by (M+K) in find.

 $\lambda_0. \alpha_{n+k} + \lambda_1. \alpha_{n+k-1} + \lambda_2. \alpha_{n+k-2} + \cdots + \lambda_k \alpha_n = F(n) - eq^n 2$

Use shift operator in eq. ② i.e.
$$a_{n+i} = E^{i}.a_{n}$$
, 1

 $\lambda_{o}.(E^{K}.a_{n}) + \lambda_{1}.(E^{K-1}.a_{n}) + \lambda_{2}(E^{K-2}.a_{n}) + \dots + \lambda_{k}.(E^{k}.a_{n}) = F(n)$
 $E^{K}.\lambda_{o}.a_{n} + E^{K-1}.\lambda_{1}.a_{n} + E^{K-2}.\lambda_{2}.a_{n} + \dots + \lambda_{k}.a_{n} = F(n)$
 $(E^{K}.\lambda_{o} + E^{K-1}.\lambda_{1} + E^{K-2}.\lambda_{2} + \dots + E^{k}.\lambda_{k}).a_{n} = F(n)$

(it is a polynomial of degree K; lets coll if $\emptyset(E)$

i.e., $\emptyset(E).a_{n} = F(n)$ $f(E)$
 $f(E)$


```
Characteristic Equation: -
        Ø(E) is a Polynomial of degree = K
       Ø(t)=0; is called characteristic Equation
      Roots al Characteristic Equation are Called Characteristic roots.
```

Let the Characteristic roots are.

Let the Characteristic roots are.

L1. t2. t3. ---, tk

'K' characteristic roots, wist. polynomial of degree=K


```
Complementary Function (C.F.)
    Complementary function is the solution with homogeneous part of linear recurrence relation.
Particular Solution: -
         Particular Solution is the Solution west
   non-homogeneous part al linear recurrence relation
Complete Solution at = Complementary Tunction + Particular Solution
```

If given recurrence relation is a nomogeneous linear recurrence relation file fins =0}, then Complementary Punction alone gives the Complete solution al the homogeneous linear decurrence relation

$$3\frac{Q_{n}+5Q_{n-1}+Q_{n-2}}{Q_{n}} = 2^{n}$$

$$3\frac{Q_{n}+5Q_{n-1}+Q_{n-2}}{Q_{n}} = 0$$

$$3\cdot (Q_{n}+Q_{n}) + 5(Q_{n-1}+Q_{n-1}) + (Q_{n-2}+Q_{n-2})$$

$$3\cdot Q_{n} + 5(Q_{n-1}+Q_{n-2}) + (3\cdot Q_{n}+5Q_{n-1}+Q_{n-2}) = 2^{n}$$

Topic . Wiethou of character	ISLIC TOOLS
Kules to write complementary function	
Characteristic roots	Complementary Punction
1) When all roots are real 4 distinct	$C_{1}(t_{1})^{n} + C_{2}(t_{2})^{n} + C_{3}(t_{3})^{n} + \cdots + C_{K}(t_{K})^{N}$
ie, ts. t2, t3,, tk	C1.C2,Ck and Unknown Constants
1) When all roots are real and	$(C_1+C_2n)\cdot(t_1)_n+C_3(t_3)_{1+\cdots+k}\cdot(t_k)_n$
two roots are equal. Let. t1. t1. t3. t4 tk	(1. C2CK One Constants
3 when roots are real 4 three roots are equal.	$(C_1 + C_2 n + C_3 n^2)(t_1)^n + C_4 (t_4)^n + \cdots + C_k (t_k)^n$
les tititi.tutx	(1. (2 Cx are Constants.

Note: We can write the Complementary Punction in the presence of Complex root as well.

Not required for GATE?

Note: - In eq (1) if fin) = 0, then it becomes homogeneous linear recurrence relation, and Complementary Punction alone will give us the Complete solution of that linear recurrence relation.

18 defined os, an = Complementary + Particular Function + Solution Solution wit_ homogeneous part Solution Wirt. non-homogeneous Part ie, if f(n) = 0, then we need to Obtain the Particular Rolution as Well.

$$\emptyset(E) \cdot a_n = F(n)$$

i.e.,
$$Q_n = \frac{F(n)}{\varnothing(E)}$$

tor writing Particular Solution Kules

F(n) =

When

Particular = Solution
$$\left(\frac{F(n)}{\varnothing(E)}\right) = \frac{Solution}{\varnothing(E)}$$

Care 1 When b' is not a Characteristic root. i.e, when $\varnothing(b) \neq 0$

then Solution
$$\left(\frac{b^n}{\varnothing(E)}\right) = \frac{b^n}{\varnothing(b)}$$

F(n) =

When

Particular = Solution
$$\left(\frac{F(n)}{\varnothing(E)}\right) = Solution \left(\frac{b}{\varnothing(E)}\right)$$

Case 2: When b' is the characteristic root with multiplicity 'm'.

i.e., $\emptyset(b) = 0$, and $\emptyset(E) = (E-b)$. Y(E)

then Particular Solution $(a_h^P) = Solution \left(\frac{b^N}{\varnothing(E)}\right) = Solution \left(\frac{b^N}{(E-b)^m}, \psi(E)\right) = \frac{1}{\psi(b)} \left\{ n_{Cm}(b) \right\}$

recurrence relation, the solution $\overline{\mathcal{O}}$: $Q_n = 3 \cdot Q_{n-1}$ Where Solun. homogeneous $a_{n-3}a_{n-1}=0$ Put n-1=n { step-1 put, n-K=n} an+1-3an=0 Operator Le anti-Elan E1. an - 3. E. an = 0 E.an-3.an= 0 (E-3). On = 0 Ø(E)

 $\emptyset(E) = E - 3$ is t-3=0 (ch. egn) Chacacteristic voot is t=3 in Complementary function (C.F.) = (1(3)) Constant Given recurrence relation is homogeneous linear recurrence relation à Parfecular Solut = D we know a = 1 Hence Hence, Complete Solution On= C.F+ Ps. .. 0° = C1.(3)0 $O^{M}=7(3)_{d}$ 1 = (1 · (3)2 CT=11 0"=3"

9: Find solution

$$Q_{n} = 2 \cdot Q_{n-1} = -1$$
 $Q_{n} - 2 \cdot Q_{n-1} = -1$
 $Q_{n+1} - 2 \cdot Q_{n} = -1$

Shift operator

 $E \cdot Q_{n} - 2 \cdot Q_{n} = -1$

(E-2) $Q_{n} = -1$
 $Q(E) = E-2$

One of is

$$t-2=0$$

i. (h soot is

 $t=2$.

Hence,

Complementary

Punchon (C.F)=C₁(2)

C.F = C₁(2)

On

 $t=2$

i.e. $t=2$

relation.

recurrence

Complete Solution, $Q_n: Q_n^H + Q_n^P$ = C.F + P.S. On = (1.(2)" + 1 Q1 = 2 01=2=(1.(2)+1

Soluh ap the Â. $Q_n = 2.Q_{n-1} + 2 - fin$ $a_n - 2a_{n-1} = 2^n$ Put n-1=n, (n+1)=n an+1-20n=2n+1 using shift operator $E \cdot Q_{N} - 2 \cdot Q_{N} = 2^{N+1}$ $(E-2)\cdot Q_N = 2^{N+1}$ ØE)=(E-2) $\emptyset(E)\cdot Q_n: \mathcal{Q}(2)^n$

recurrence relation,

```
= 2. {Soluh (2)
       ) a Ø(E)=(E-2)
           6=2. $ (6)= 0(2)=2-2:0
       Know 2' is ch-root with multiplicity
           Ø(E): E-2 = (E-2)11
         \emptyset(E) = (E-2)^{1} \ \psi(E)
                (E-2)1. PEE
   \circ \cdot \beta \cdot S \cdot (0_{b}^{h}) : 3 \cdot \beta \cdot \frac{1}{4} \cdot (U(5)_{U-1})
b.e. (0") = 1.5"
```

Complete Soluh

an = Cf + P.S

= G.27+ n.2n

Q₀=1 : G₀=1=C₁·20+0.20 [(1=1)] Hence

 $G_{N} = (N+1) \cdot 5_{N}$ $= (N+1) \cdot 5_{N}$

find the solution of recurrence an -7. an-1 + 12. an-2= 0 an+2-7 an+1+12 an = 0 E2. an-7.E.an+12an-0 (E2-7E+12). an=0 Ch. eq is t2-7++12 =0 4 Ch. 2007 au, t1=3, t2=4 i. Complementary tunction C.F= C1.(3)"+ G.(4)"

Complete Soluh an= CF7 P.S. $Q^{N} = \left(C^{1} \cdot (3)_{\lambda} + (5 \cdot (A)_{\lambda}) + \frac{1}{2}\right)$

relation

Q0=1

C1=2 4 C2=-1 : $Q_n = 2 \cdot (3)^n - 1 \cdot (4)^n$ $Q_n = 2(3)^n - 4^n$

Find the solution of recurrence relation.

$$T(3^{k}) = 2 \cdot T(3^{k-1}) + 1$$

From $(E-2) \cdot Q_k = 1$

i. $T(3^{k-1}) = Q_{k-1}$

i.e., $Q_k = 2 \cdot Q_{k-1} + 1$

$$(E-2) \cdot Q_k = 1$$

Ch. root is $t = 2$

$$CF = C_1 \cdot (2)^k$$

recurrence relation.

$$(E-2) \cdot Q_k = 1$$

$$Ch. root$$

i. $T(3^{k-1}) = Q_{k-1}$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$Ch. root$$

i. $T(3^{k-1}) = Q_{k-1}$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $PS = Solur \cdot (1)^k$

$$T(3^{k-1}) = Q_{k-1}$$

i. $Q_{k-1} = Q_{k-1}$

i. Q_{k-

From
$$(E-2) \cdot Q_{k} = 1$$

$$Q_{k} = \frac{(1)^{k}}{(E-2)}$$

$$Q_{k} = \frac{(1)^{k}}{(1-2)}$$

Complete Soluh ak = CF+P.S. $= C_1 \cdot 2^{K} + (-1)$ ak = C1.2K-1 ak = I(3k) : T(3k) = (1.2K-1 T(0:1 3K=1 at K=0. $T(1) = T(3^{\circ}) = (1.2^{\circ} - 1)$ 1= (1-1=> | (1=2 : $T(3k) = 2 \cdot 2^{k-1} = 1$ $T(3k) = 2^{k+1}$

g. Find the solut of recurrence relation
$$Q_{n} = 2Q_{n-1} + Q_{n-2} = 0$$

$$E^{2} \cdot Q_{n} - 2 \cdot E \cdot Q_{n} + Q_{n} = 0$$

$$Q(E) = (E^{2} - 2E + 1)$$

$$Q_{n} \cdot Q_{n} \cdot Q_{n$$

$$Q_0 = 1 = C_1 = 1$$
 $Q_1 = 2 = C_1 + C_2 \cdot 1$
 $Q_1 = 2 = 1 + C_2 = 1$
 $Q_n = 1 + 1 \cdot n$
 $Q_n : n + 1$

find the solution of the recurrence relation. $a_{n} - 3a_{n-1} + 2a_{n-2} = 2^{n}$ $E^{2}a_{n}-3.E.a_{n}+2a_{n}=2$ n=n+2 n=n+2(E²-3E+2). Qn= 4(2) Oh eqn is t2-3++2=0 :. Ch root are, t=2, t2=1 Complementary tunction [(.f: (1.(2))+ (2.(1))

= 4. of Solut (2) n 2' is a root with multiplicity = 1 $\phi(E) = (E-2)^{-1}(E-1)$

P.S: 4 Solun (2) (E-1) $=4*\frac{1}{\psi(2)} \left\{ n_{(1)}(2)^{n-1} \right\}$ $=4*\left[\frac{1}{(2-1)}*\left\{n(2)^{n-1}\right\}\right]$ Ps = 2.1.2 Complete Solus 0, CF+PS $= (1.(5)_{N} + C^{2} + 3.4.5_{N}$ an=-3.2"+ n.2"+1

find the solution cel securrence relation, $Q_n^2 - 2 Q_{n-1}^2 = 1$ it is not a linear recurrence rel but it can be convented into one or putting Qh= bn i.e. egh be comes

Find the solution of recurrence $\sqrt{a_{n}} - \sqrt{a_{n-1}} - 2\sqrt{a_{n-2}} = 0$ $\sqrt{a_{n-1}} - 2\sqrt{a_{n-2}} = 0$ Put $\int a_n = b_n$ $\int a_n = b_n$

relation

2 mins Summary

Topic

Solution of recurrence relation using method of characteristic roots

Topic

Method of undetermined coefficient for particular solution

THANK - YOU