Activity Based VRP With Automatic Link and Node Generation

Python 使用说明

目录

1,	问题说明	2
	问题的底层网络结构	
	模型说明	
	输入说明	
	输出说明	
6.	程序操作说明	9

1、问题说明

本算法适用于两辆车辆基于乘客活动时间窗的 VRP 问题,将问题分解为乘客子问题和车辆子问题,基于商攀学长 space_time_network code,利用拉格朗日松弛算法和动态规划求解。

输入: 乘客网中的节点信息、弧信息和乘客活动信息 车辆网中的节点信息、弧信息和车辆活动信息

输出:乘客和车辆的时空路径,上下界 GAP,乘客上界以及 volume 矩阵

约束: 流平衡约束

目标:活动 benefit 最大

2、问题的底层网络结构

(1) 网络的节点

网络中有几种类型的节点:运输(物理)节点,乘客接、送节点以及车辆的车站节点。

乘客的时间窗表示在接、送节点(乘客的起始地和目的地)旁边的括号中。例如,接乘客 1 的时间窗是 4-7,那就是说,车辆必须在[4,7]这一时间段内接到乘客 1,否则乘客会取消这次服务。同样,车辆必须在[11,14]之间将乘客 1 送到节点 \mathbf{d}_1 。

图 1 VRPPDTW 网络的节点

(2) 网络的弧

对于乘客子网而言,弧可分类 2 类: 只有乘客能走的弧以及车和乘客都可以走的弧。

对于车辆子网而言,弧可以分为两类,只有车能走的弧以及车和乘客都可以 走的弧。

此外弧也被分为等待弧、入库出库弧以及运输弧。

在运输弧上, cost 的更新与拉格朗日乘子有关, 在其他两个弧上, cost 的更新与拉格朗日乘子无关。

需要额外注意的是,在该问题中我们不考虑运输的费用,因此在车辆子问题中 cost 用于描述车辆在某弧段上的 benefit。

3. 模型说明

Objective function:

$$\operatorname{Min} Z = \sum_{a} \sum_{(i,j,t,t') \in E_{na}} \left(c_{i,j,t,t'} \times x_{i,j,t,t'}^{a} \right) \tag{1}$$

Subject to:

Passenger flow balance constraint:

$$\sum_{i,t:(i,j,t,t')\in E_{pa}} x_{i,j,t,t'}^{a} - \sum_{i,t:(j,i,t',t)\in E_{pa}} x_{j,i,t',t}^{a} = \begin{cases} 1 & j = o(a), t' = DT(a) \\ -1 & j = d(a), t' = T \\ 0 & otherwise \end{cases} (2)$$

Vehicle flow balance constraint:

$$\sum_{i,t:(i,j,t,t')\in E_{tr}} y_{i,j,t,t'}^{q} - \sum_{i,t:(j,i,t',t)\in E_{tr}} y_{j,i,t',t}^{q} = \begin{cases} 1 & j = o(q), t' = 1 \\ -1 & j = d(q), t' = T \ \forall q \in Q \\ 0 & otherwise \end{cases}$$
(3)

Passenger flow and vehicle flow coupling constraint:

$$\sum_{a} x_{i,j,t,t'}^{a} \leq \sum_{q} y_{i,j,t,t'}^{q} \times Cap \ \forall (i,j,t,t') \in E_{pa}^{s}$$

$$\tag{4}$$

Minimum headway constraint for dispatching adjacent vehicles:

$$\sum_{(i,j,\tau,\tau')\in\Phi(i,j,t,t')} \sum_{q} y_{i,j,\tau,\tau'}^{q} \le 1 \ \forall (i,j,t,t') \in E_{tr}^{s}$$
 (5)

Binary variable definition:

$$x_{i,j,t,t'}^a \in \{0,1\} \tag{6}$$

$$y_{i,j,t,t'}^q \in \{0,1\}$$
 (7)

对约束 4 进行拆分得到约束 8 和 9:

$$x_{i,j,t,t'}^{a} \le \sum_{q} y_{i,j,t,t'}^{q} \quad \forall a \in A, \forall (i,j,t,t') \in E_{pa}^{s}$$

$$\tag{8}$$

$$\sum_{a} x_{i,j,t,t'}^{a} \le Cap \ \forall (i,j,t,t') \in E_{pa}^{s}$$

$$\tag{9}$$

把约束8这一耦合约束利用拉格朗日松弛将原问题分解成两个问题:

问题1是对于人(把约束9也进行松弛):

Objective function:

$$\operatorname{Min} L_{X} = \sum_{a} \sum_{(i,j,t,t') \in E_{pa}} \left\{ c_{i,j,t,t'} \times x_{i,j,t,t'}^{a} \right\} + \sum_{a} \sum_{(i,j,t,t') \in E_{pa}^{s}} \left\{ \pi_{i,j,t,t'}(a) \times x_{i,j,t,t'}^{a} \right\} + \\
\sum_{(i,j,t,t') \in E_{pa}^{s}} \left\{ \lambda_{i,j,t,t'} \times \sum_{a} x_{i,j,t,t'}^{a} \right\} = \sum_{a} \sum_{(i,j,t,t') \in E_{pa}} \left\{ \hat{c}_{i,j,t,t'}^{a} \times x_{i,j,t,t'}^{a} \right\}$$
(10)

Subject to:

Passenger flow balance constraint:

$$\sum_{i,t:(i,j,t,t')\in E_{pa}} x_{i,j,t,t'}^{a} - \sum_{i,t:(j,i,t',t)\in E_{pa}} x_{j,i,t',t}^{a} = \begin{cases} 1 & j = o(a), t' = DT(a) \\ -1 & j = d(a), t' = T \quad \forall a \in A \\ 0 & otherwise \end{cases}$$
(2)

$$x_{i,j,t,t'}^a \in \{0,1\}$$
 (6)

$$\begin{split} \hat{c}^a_{i,j,t,t'} = \begin{cases} c_{i,j,t,t'} + \pi_{i,j,t,t'}(a) + \lambda_{i,j,t,t'} & \forall (i,j,t,t') \in E^s_{pa} \\ c_{i,j,t,t'} & \forall (i,j,t,t') \in E^w_{pa} \cup E^d_{pa} \end{cases} \\ & \text{在求解这个问题 1 时用的是拉格朗日松弛,有两个拉格朗日乘子} \end{split}$$

问题 2 是对于车 (对约束 5 进行增广拉格朗日, 然后运用 ADMM 求解):

Objective function:

$$Min L_Y(q) = \sum_{(i,j,t,t') \in E_{tr}} \hat{c}_{i,j,t,t'}^q \times y_{i,j,t,t'}^q$$
(17)

Subject to: Eqs. (3) and (7), where the general arc cost $\hat{c}_{i,i,t,t}^q$ is defined by Eq. (15), and $y_{i,i,t,t}^{\bar{q}}$ is defined by Eq. (19).

$$\hat{c}_{i,i,t,t'}^q =$$

$$\begin{cases}
0 & (i,j,t,t') \in E_{tr}^{c} \cup E_{tr}^{h} \cup E_{tr}^{t} \\
-\sum_{a} \pi_{i,j,t,t'}(a) + \mu_{i,j,t,t'} + \rho \left\{ y_{i,j,t,t'}^{\bar{q}} - 1/2 \right\} & (i,j,t,t') \in E_{tr}^{s}, y_{i,j,t,t'}^{\bar{q}} \neq 0 \\
-\sum_{a} \pi_{i,j,t,t'}(a) + \mu_{i,j,t,t'} & (i,j,t,t') \in E_{tr}^{s}, y_{i,j,t,t'}^{\bar{q}} = 0
\end{cases} \tag{18}$$

$$y_{i,j,t,t'}^{\bar{q}} = \sum_{(i,j,t,t') \in \Phi(i,j,\tau,\tau')} \sum_{q' \in Q/\{q\}} y_{i,j,t,t'}^{q'}$$
(19)

4. 输入说明

在该程序中,对于乘客的接送弧和虚拟接送节点采用自动生成的方式。由此 数据分为初始输入数据,和运行后写入的数据。

1)乘客

Table 1.Input passenger

								-	
passengerfrom	n node to	node idep	arturcarr	ival tvolume	availabl∈ini	tial ptravel	travel budget de	parturearr	ival time windo
1	2	3	6	12	1 1:2:3:4:5	1	6	3	3
9	2	3	Q	15	1 1 2 - 3 - 4 - 5	1	6	9	3

分别对应:

乘客ID 起点 终点 出发时间 到达时间 乘客数量 可行点 初始价值 预计旅行时间

针对乘客起点终点的修改放在了程序中,可行点 list 中添加虚拟节点也同样在程序中实现

②乘客弧

Table 2.original Input passenger link

link_id	from_node	to_node_id	type	cost	travel_time	coupled_train_link_ic
1	1	2	1	0	2	1
2	2	1	1	0	2	2
3	1	3	1	0	2	3
4	3	1	1	0	2	4
5	2	4	1	0	2	5
6	4	2	1	0	2	6
7	2	5	1	0	1	7
8	3	4	1	0	2	8
9	4	3	1	0	2	9
10	1	5	1	0	1	10
11	5	6	1	0	1	11
12	6	3	1	0	1	12
13	6	4	1	0	1	13
14	1	1	2	0	1	-1
15	2	2	2	0	1	-1
16	3	3	2	0	1	-1
17	4	4	2	0	1	-1
18	5	5	2	- 0	1	-1
19	6	6	2	0	1	-1

分别对应:

弧ID 弧起点 弧终点 弧类型 费用 旅行时间 是否车人共用

其中:

类型1表示:运输弧,类型2表示等待弧

是否车人共用中-1表示仅人使用,其他数值表示车人共有

在运行过程中,虚拟弧的添加被写入 input link 文件

Table 3. revised Input passenger link

link_	id	from_node	to_node_id	type	cost	travel_time	coupled_train_link_id
	1		2	1	0	2	1
	2		1	1	0	2	2
	3		3	1	0	2	3
	4		1	1	0	2	4
	5	2	4	1	0	2	5
	6		2	1	0	2	6
	7	2	5	1	0	1	7
	8	3	4	1	0	2	8
	9	4	3	1	0	2	9
	10		5	1	0	1	10
	11	5	6	1	0	1	11
	12	6	3	1	0	1	12
	13	6	4	1	0	1	13
	14		1	2	0	1	-1
	15		2	2	0	1	-1
	16	3	3	2	0	1	-1
	17	4	4	2	0	1	-1
	18	5	5	2	0	1	-1
	19	6	6	2	0	1	-1
	1002	501	2	100	0	1	1002
	1012	2	501	100	0	1	1012
	1052	501	501	2	0	1	1052
	1003	3	601	200	0	1	1003
	1013	601	3	200	0	1	1013
	1053	601	601	2	0	1	1053
	2002	502	2	100	0	1	2002
	2012	2	502	100	0	1	2012
	2052	502	502	2	0	1	2052
	2003	3	602	200	0	1	2003
	2013	602	3	200	0	1	2013
	2053	602	602	2	0	1	2053

其中:

新增乘客 1 的接弧 1002、1012,送弧 1003、1013;乘客 2 接弧 2002、2012,送弧 2003、2013,其中四个虚拟节点新增等待弧 1052、1053、2052、2053。

命名规则为:乘客编号*1000+乘客虚拟节点所连接的节点编号

乘客编号*1000+10+乘客虚拟节点所连接的节点编号

等待弧:乘客编号*1000+50+乘客虚拟节点所连接的节点编号

Type 100 表示接乘客 200 表示送乘客 2表示等待弧

3乘客节点

Table 3.Input passenger node

	description
1	station1
2	station2
3	station3
4	station4
5	station5
6	station6
	2 3 4 5

Table 4. Revised Input passenger node

node_id	description
1	station1
2	station2
3	station3
4	station4
5	station5
6	station6
501	
601	
502	
602	

其中

新增乘客 1 接节点 501,乘客 1 送节点 601,乘客 2 接节点 502,乘客 2 送节点 602

④车辆

Table 5.Input train

train_id	from_no	le to_:	node_i	departure	arrival_t	volume	available_node_lsit
1		4	1	1	20	1	1;2;3;4;5;6
2		4	1	1	20	1	1;2;3;4;5;6

同理对于车辆起终点的修改和可行节点 list 的更新在程序中实现

⑤车辆弧

Table 6.Input train link

link_id	from_node	to_node_id	type	cost	travel_time	coupled_pa	assenger_	link_id
1	1	2	1	0	2	1		
2	2	1	1	0	2	2		
3	1	3	1	0	2	3		
4	3	1	1	0	2	4		
5	1	5	1	0	1	5		
6	2	4	1	0	2	6		
7	4	2	1	0	2	7		
8	2	5	1	0	2	8		
9	3	4	1	0	2	9		
10	4	3	1	0	2	10		
11	5	6	1	0	1	11		
12	6	3	1	0	1	12		
13	6	4	1	0	1	13		
14	1	1	2	0	1	-1		
15	2	2	2	0	1	-1		
16	3	3	2	0	1	-1		
17	4	4	2	0	1	-1		
18	5	5	2	0	1	-1		
19	6	6	2	0	1	-1		

type 1 表示: 运输弧,类型 2 表示等待

coupled_passenger_link_id 中-1 表示仅车使用,其他数值表示车人共有

Table 7.Revised Input train link

ink_id	from_node	to_node_id	type	cost	travel_time	coupled_pa	ssenger_link_i
1	1	2	1	0	2	1	
2	2	1	1	0	2	2	
3	1	3	1	0	2	3	
4	3	1	1	0	2	4	
5	1	5	1	0	1	5	
6	2	4	1	0	2	6	
7	4	2	1	0	2	7	
8	2	5	1	0	2	8	
9	3	4	1	0	2	9	
10	4	3	1	0	2	10	
11	5	6	1	0	1	11	
12	6	3	1	0	1	12	
13	6	4	1	0	1	13	
14	1	1	2	0	1	-1	
15	2	2	2	0	1	-1	
16	3	3	2	0	1	-1	
17	4	4	2	0	1	-1	
18	5	5	2	0	1	-1	
19	6	6	2	0	1	-1	
1002	501	2	100	0	1	1002	
1012	2	501	100	0	1	1012	
1052	501	501	2	0	1	1052	
1003	3	601	200	0	1	1003	
1013	601	3	200	0	1	1013	
1053	601	601	2	0	1	1053	
2002	502	2	100	0	1	2002	
2012	2	502	100	0	1	2012	
2052	502	502	2	0	1	2052	
2003	3		200	0	1	2003	
2013	602		200	0	1	2013	
2053	602		2	0	1	2053	
10004	701	4	1000	0	1	10004	
10014	4	701	1000	0	1	10014	
10054	701	701	2	0	1	10054	
10001	1	801	2000	0	1	10001	
10011	801	1	2000	0	1	10011	
10051	801	801	2	0	1	10051	
20004	702		1000	0	1	20004	
20014	4		1000	0	1	20014	
20054	702		2	0	1	20054	
20001	1 1	802	2000	0	1	20001	
20011	802		2000	0	1	20011	
20051	802		2	0	1	20051	

其中

新增乘客 1、2 的接送弧及虚拟节点等待弧,与乘客网中的新增弧相同新增车 1 出库 link 10004、10014 入库 link 10001、100011、车辆 2 出库 20004、20014 和 入库 20001、200011,此外还有虚拟节点等待弧 10054、10051、20054、20051 type 100 表示乘客接、200 表示乘客送、2 表示等待 type 1000 表示车出库、2000 表示车入库

6年辆节点

Table 8.Input train node

node_id		description
	1	station1
	2	station2
	3	station3
	4	station4
	5	station5
	6	station6

Table 8. Revised Input train node

node id	description
1	station1
2	station2
3	station3
4	station4
5	station5
6	station6
501	
601	
502	
602	
701	
801	
702	
802	

其中新增乘客 1、2 的接送节点 501、601、502、602 新增车辆 1 出库节点 701、入库节点 801 车辆 2 出库节点 702、入库节点 802

5. 输出说明

Table 7 output summary

文件名	数据内容						
out_put_passenger_results	put_passenger_results passenger_node_sequence 1 501:2:5:6:3:601:601		volume 1	departure	arrival_ 12	total_trav	el_time
	2 502;2;5;6;3;602;602 9;10;11;12;13;14;15		1	9	15	6	
out_put_train_results	train_id_node_sequence 1701:4:2:502:2:501:501:501:501:2:502:2:50 2702:4:2:502:2:501:501:501:501:2:502:2:50				volume depar	turearrival_ttotal 1 20 1 20	_travel_time 19 19
out_put_upper_bound	暂无						
Out_put_gap	暂无						
Out_put_volume	详见输出						

6. 程序操作说明

第一步,将初始数据文件夹中的六个输入文件复制到当前文件夹,并替换当前文件夹与之同名的六个文件。

▶ 初始数据	2019/5/9 18:51	文件夹	
input_passenger.xlsx	2019/4/23 20:45	Microsoft Excel <u></u> ⊥	9 KB
input_passenger_link.xlsx	2019/5/9 18:40	Microsoft Excel <u></u> ⊥	6 KB
input_passenger_node.xlsx	2019/5/9 18:40	Microsoft Excel <u>⊥</u>	6 KB
input_train.xlsx	2019/4/23 20:45	Microsoft Excel <u></u> ⊥	9 KB
input_train_link.xlsx	2019/5/9 18:40	Microsoft Excel <u></u> ⊥	10 KB
input_train_node.xlsx	2019/5/9 18:40	Microsoft Excel <u>⊥</u>	6 KB
output_gap.xlsx	2019/5/9 18:40	Microsoft Excel <u></u> ⊥	5 KB
output_passenger_results.xlsx	2019/5/9 18:40	Microsoft Excel <u></u> ⊥	5 KB
output_train_results.xlsx	2019/5/9 18:40	Microsoft Excel <u>⊥</u>	5 KB
output_upper_bound.xlsx	2019/5/9 18:40	Microsoft Excel <u></u> ⊥	5 KB
output_volume.csv	2019/5/9 18:40	Microsoft Excel 逗	3 KB
vrp_generate_network.py	2019/5/9 18:39	PY 文件	107 KB

第二步,打开 vrp_generate_nework.py,并运行程序。

第三步,查看以 output 命名的输出文件,此时由于版本兼容问题,若出现无法打开文件的形式,请将文件后缀修改为.xls。

参考文献:

[1] Integrated optimization of urban rapid transit timetabling and circulation planning: A multi-commodity flow formulation and decomposition schemes based on coupled network representations[商攀师兄姚宇师姐尚未发表的论文]

.