0.1 Cauchy 不等式的应用

例题 0.1 设 $f \in C^1[0,1]$, 解决下列问题.

1. 若 f(0) = 0, 证明:

$$\int_0^1 |f(x)|^2 dx \leqslant \frac{1}{2} \int_0^1 |f'(x)|^2 dx.$$

2. 若 f(0) = f(1) = 0, 证明:

$$\int_0^1 |f(x)|^2 dx \leqslant \frac{1}{8} \int_0^1 |f'(x)|^2 dx.$$

注 牛顿莱布尼兹公式也可以看作带积分余项的插值公式 (插一个点).

证明

1. 由牛顿莱布尼兹公式可知

$$f(x) = f(0) + \int_0^x f'(y)dy = \int_0^x f'(y)dy.$$

从而

$$|f(x)|^2 = \left| \int_0^x f'(y) dy \right|^2 \leqslant \int_0^x 1^2 dy \int_0^x |f'(y)|^2 dy = x \int_0^x |f'(y)|^2 dy \leqslant x \int_0^1 |f'(y)|^2 dy.$$

于是对上式两边同时积分可得

$$\int_0^1 |f(x)|^2 dx \le \int_0^1 x dx \int_0^1 |f'(y)|^2 dy = \frac{1}{2} \int_0^1 |f'(y)|^2 dy.$$

2. 由牛顿莱布尼兹公式(带积分型余项的插值公式)可得

$$f(x) = \int_0^x f(y)dy, x \in \left[0, \frac{1}{2}\right]; \quad f(x) = \int_x^1 f'(y)dy, x \in \left[\frac{1}{2}, 1\right].$$

从而

$$|f(x)|^{2} = \left| \int_{0}^{x} f'(y) dy \right|^{2} \leqslant \int_{0}^{x} 1^{2} dy \int_{0}^{x} |f'(y)|^{2} dy = x \int_{0}^{x} |f'(y)|^{2} dy \leqslant x \int_{0}^{\frac{1}{2}} |f'(y)|^{2} dy, x \in \left[0, \frac{1}{2}\right].$$

$$|f(x)|^{2} = \left| \int_{x}^{1} f'(y) dy \right|^{2} \leqslant \int_{0}^{x} 1^{2} dy \int_{x}^{1} |f'(y)|^{2} dy \leqslant (1 - x) \int_{\frac{1}{2}}^{1} |f'(y)|^{2} dy, x \in \left[\frac{1}{2}, 1\right].$$

于是对上面两式两边同时积分可得

$$\int_0^{\frac{1}{2}} |f(x)|^2 dx \le \int_0^{\frac{1}{2}} x dx \int_0^{\frac{1}{2}} |f'(y)|^2 dy = \frac{1}{8} \int_0^{\frac{1}{2}} |f'(y)|^2 dy.$$

$$\int_{\frac{1}{2}}^1 |f(x)|^2 dx \le \int_{\frac{1}{2}}^1 (1-x) dx \int_{\frac{1}{2}}^1 |f'(y)|^2 dy = \frac{1}{8} \int_0^{\frac{1}{2}} |f'(y)|^2 dy.$$

将上面两式相加得

$$\int_0^1 |f(x)|^2 dx \leqslant \frac{1}{8} \int_0^1 |f'(y)|^2 dy.$$

例题 0.2 opial 不等式

特例:

1. 设 $f \in C^1[a,b]$ 且 f(a) = 0, 证明

$$\int_a^b |f(x)f'(x)|dx \leqslant \frac{b-a}{2} \int_a^b |f'(x)|^2 dx.$$

2. 设 $f \in C^1[a,b]$ 且 f(a) = 0, f(b) = 0, 证明

$$\int_a^b |f(x)f'(x)|dx \leqslant \frac{b-a}{4} \int_a^b |f'(x)|^2 dx.$$

一般情况:

1. 设 $f \in C^1[a,b], p \ge 0, q \ge 1$ 且 f(a) = 0. 证明

$$\int_{a}^{b} |f(x)|^{p} |f'(x)|^{q} dx \leqslant \frac{q(b-a)^{p}}{p+q} \int_{a}^{b} |f'(x)|^{p+q} dx. \tag{1}$$

2. 若还有 f(b) = 0. 证明

$$\int_{a}^{b} |f(x)|^{p} |f'(x)|^{q} dx \leqslant \frac{q(b-a)^{p}}{(p+q)2^{p}} \int_{a}^{b} |f'(x)|^{p+q} dx. \tag{2}$$

Ŷ 笔记 说明了证明的想法就是注意变限积分为整体凑微分.

证明 特例

1.
$$\diamondsuit F(x) \triangleq \int_{a}^{x} |f'(y)| dy$$
, 则 $F'(x) = |f'(x)|$, $F(a) = 0$. 从而

$$f(x) = \int_0^x f'(y)dy \Rightarrow |f(x)| \leqslant \int_a^x |f'(y)|dy = F(x).$$

于是

$$\int_{a}^{b} |f(x)f'(x)| dx \leqslant \int_{a}^{b} F(x)F'(x) dx = \frac{1}{2}F^{2}(x) \Big|_{a}^{b} = \frac{1}{2}F^{2}(b) = \frac{1}{2} \left(\int_{a}^{b} |f'(y)| dx \right)^{2}$$

$$\leqslant \frac{1}{2} \int_{a}^{b} 1^{2} dx \int_{a}^{b} |f'(y)|^{2} dx = \frac{b-a}{2} \int_{a}^{b} |f'(y)|^{2} dx.$$

2. 由第1问可知

$$\int_{a}^{\frac{a+b}{2}} |f(x)f'(x)| dx \leqslant \frac{\frac{a+b}{2} - a}{2} \int_{a}^{\frac{a+b}{2}} |f'(y)|^{2} dy = \frac{b-a}{4} \int_{a}^{\frac{a+b}{2}} |f'(y)|^{2} dy.$$

$$\int_{\frac{a+b}{2}}^{b} |f(x)f'(x)| dx \leqslant \frac{\frac{a+b}{2} - a}{2} \int_{\frac{a+b}{2}}^{b} |f'(y)|^{2} dy = \frac{b-a}{4} \int_{\frac{a+b}{2}}^{b} |f'(y)|^{2} dy.$$

将上面两式相加可得

$$\int_a^b |f(x)f'(x)|dx \leqslant \frac{b-a}{4} \int_a^b |f'(y)|^2 dy.$$

一般情况:

1. 只证 q > 1. q = 1 可类似得到. 考虑

$$f(x) = \int_{a}^{x} f'(y)dy, F(x) = \int_{a}^{x} |f'(y)|^{q} dy.$$

则由 Holder 不等式, 我们知道

$$|f(x)|^p \leqslant \left(\int_a^x |f'(y)| dy\right)^p \leqslant \left(\int_a^x |f'(y)|^q dy\right)^{\frac{p}{q}} \left(\int_a^x 1^{\frac{q}{q-1}} dy\right)^{\frac{p(q-1)}{q}} = F^{\frac{p}{q}}(x)(x-a)^{\frac{p(q-1)}{q}},$$

这里 $\frac{1}{p} + \frac{1}{a} = 1$. 于是

$$\int_{a}^{b} |f(x)|^{p} |f'(x)|^{q} dx \leq \int_{a}^{b} F^{\frac{p}{q}}(x)(x-a)^{\frac{p(q-1)}{q}} |f'(x)|^{q} dx = \int_{a}^{b} F^{\frac{p}{q}}(x)(x-a)^{\frac{p(q-1)}{q}} dF(x)
\leq (b-a)^{\frac{p(q-1)}{q}} \int_{a}^{b} F^{\frac{p}{q}}(x) dF(x) = \frac{q}{q+p} (b-a)^{\frac{p(q-1)}{q}} F^{\frac{p+q}{q}}(b)
= \frac{q}{q+p} (b-a)^{\frac{p(q-1)}{q}} \left(\int_{a}^{b} |f'(y)|^{q} dy \right)^{\frac{p+q}{q}}
\leq \frac{q}{q+p} (b-a)^{\frac{p(q-1)}{q}} \left(\int_{a}^{b} |f'(y)|^{q(\frac{p+q}{q})} dy \right)^{\frac{q}{q+p}} \left(\int_{a}^{b} 1^{(\frac{p+q}{q-1})} dy \right)^{\frac{q-1}{q+p}}
= \frac{q(b-a)^{p}}{p+q} \int_{a}^{b} |f'(y)|^{p+q} dy,$$

这就证明了不等式(1).

2. 由第一问得

$$\int_{a}^{\frac{a+b}{2}} |f(x)|^{p} |f'(x)|^{q} dx \leqslant \frac{q(b-a)^{p}}{(p+q)2^{p}} \int_{a}^{\frac{a+b}{2}} |f'(x)|^{p+q} dx,$$

对称得

$$\int_{\frac{a+b}{2}}^{b} |f(x)|^p |f'(x)|^q dx \leqslant \frac{q(b-a)^p}{(p+q)2^p} \int_{\frac{a+b}{2}}^{b} |f'(x)|^{p+q} dx.$$

故上面两式相加得到(??)式.

例题 **0.3** 设 $f \in C[0,1]$ 满足 $\int_0^1 f(x)dx = 0$, 证明:

$$\left(\int_0^1 x f(x) dx\right)^2 \leqslant \frac{1}{12} \int_0^1 f^2(x) dx.$$

拿 笔记 从条件 $\int_0^1 f(x)dx = 0$ 来看, 我们待定 $a \in \mathbb{R}$, 一定有

$$\int_0^1 x f(x) dx = \int_0^1 (x - a) f(x) dx.$$

然后利用 Cauchy 不等式得

$$\left(\int_0^1 (x-a)f(x)dx\right)^2 \le \int_0^1 (x-a)^2 dx \int_0^1 f^2(x)dx.$$

为了使得不等式最精确, 我们自然希望 $\int_0^1 (x-a)^2 dx$ 达到最小值. 读者也可以直接根据对称性猜测出 $a=\frac{1}{2}$ 就是 达到最小值的 a.

证明 利用 Cauchy 不等式得

$$\frac{1}{12} \int_0^1 f^2(x) dx = \int_0^1 \left(x - \frac{1}{2} \right)^2 dx \int_0^1 f^2(x) dx$$
$$\geqslant \left(\int_0^1 \left(x - \frac{1}{2} \right) f(x) dx \right)^2$$
$$= \left(\int_0^1 x f(x) dx \right)^2,$$

这就证明了(??)式.

例题 **0.4** 设 $f \in C^1[0,1], \int_{\frac{1}{3}}^{\frac{2}{3}} f(x) dx = 0$, 证明

$$\int_0^1 |f'(x)|^2 dx \ge 27 \left(\int_0^1 f(x) dx \right)^2.$$

筆记 为了分部积分提供 0 边界且求导之后不留下东西,设 g(0) = g(1) = 0 且 g 是一次函数,这不可能,于是只能是分段函数 $g(x) = \begin{cases} x-1, & c \leqslant x \leqslant 1 \\ x, & 0 \leqslant x \leqslant c \end{cases}$. 为了让 g 连续会发现 c = c-1,这不可能.结合 $\int_{\frac{1}{3}}^{\frac{2}{3}} f(x) dx = 0$,所以我们插入一段来使得连续,因此真正构造的函数为

$$g(x) = \begin{cases} x - 1, & \frac{2}{3} \leqslant x \leqslant 1\\ 1 - 2x, & \frac{1}{3} \leqslant x \leqslant \frac{2}{3}\\ x, & 0 \leqslant x \leqslant \frac{1}{3} \end{cases}$$

证明 令

$$g(x) = \begin{cases} x - 1, & \frac{2}{3} \le x \le 1\\ 1 - 2x, & \frac{1}{3} \le x \le \frac{2}{3}\\ x, & 0 \le x \le \frac{1}{3} \end{cases}$$

于是由 Cauchy 不等式, 我们有

$$\int_{0}^{1} |f'(x)|^{2} dx \int_{0}^{1} |g(x)|^{2} dx \geqslant \left(\int_{0}^{1} f'(x)g(x)dx\right)^{2} \xrightarrow{\underline{\mathcal{H}} \oplus \mathcal{H} \xrightarrow{\widehat{\mathcal{H}}}} \left(\int_{0}^{1} f(x)g'(x)dx\right)^{2}$$

$$= \left(\int_{0}^{\frac{1}{3}} f(x)dx - 2\int_{\frac{1}{3}}^{\frac{2}{3}} f(x)dx + \int_{\frac{2}{3}}^{1} f(x)dx\right)^{2}$$

$$= \left(\int_{0}^{\frac{1}{3}} f(x)dx + \int_{\frac{1}{3}}^{\frac{2}{3}} f(x)dx + \int_{\frac{2}{3}}^{1} f(x)dx\right)^{2} = \left(\int_{0}^{1} f(x)dx\right)^{2},$$

结合 $\int_0^1 |g(x)|^2 dx = \frac{1}{27}$, 这就完成了证明.

例题 0.5 设 $f \in C[a,b] \cap D(a,b)$ 且 f(a) = f(b) = 0 且 f 不恒为 0, 证明存在一点 $\xi \in (a,b)$ 使得

$$|f'(\xi)| > \frac{4}{(b-a)^2} \left| \int_a^b f(x) dx \right|.$$

注 不妨设 $\int_a^b f(x)dx > 0$ 的原因: 若 $\int_a^b f(x)dx < 0$ 则用 -f 代替 $f, \int_a^b f(x)dx = 0$ 是平凡的.

证明 反证, 若 $|f'(x)| \leq \frac{4}{(b-a)^2} \left| \int_a^b f(x) dx \right| \triangleq M$, 则不妨设 $\int_a^b f(x) dx > 0$, 由 Hermite 插值定理可知, 存在 $\theta_1 \in (a,x), \theta_2 \in (x,b)$, 使得

$$f(x) = f(a) + f'(\theta_1)(x - a) \leqslant M(x - a), \forall x \in \left[a, \frac{a + b}{2}\right].$$

$$f(x) = f(b) + f'(\theta_2)(x - b) \leqslant -M(x - b) = M(b - x), \forall x \in \left[\frac{a + b}{2}, b\right].$$

从而

$$\int_{a}^{b} |f(x)| dx \leqslant \int_{a}^{\frac{a+b}{2}} M(x-a) dx + \int_{\frac{a+b}{2}}^{b} M(b-x) dx = \frac{M(b-a)^2}{4} = \int_{a}^{b} |f(x)| dx.$$

于是结合 f 的连续性可得

$$\int_{a}^{\frac{a+b}{2}} f(x)dx = \int_{a}^{\frac{a+b}{2}} M(x-a)dx \Rightarrow f(x) = M(x-a), \forall x \in \left[a, \frac{a+b}{2}\right].$$

$$\int_{\frac{a+b}{2}}^{b} f(x)dx = \int_{\frac{a+b}{2}}^{b} M(b-x)dx \Rightarrow f(x) = M(b-x), \forall x \in \left[\frac{a+b}{2}, b\right].$$

故 f 在 $x = \frac{a+b}{2}$ 处不可导, 这与 $f \in D(a,b)$ 矛盾!