

ELECTRICAL TEAM TRAINING

TASK 10

Individual Tasks

Task 10.1: Data Analysis of the Titanic

The **Autobots** have intercepted the Titanic's passenger data to uncover survival patterns. Optimus Prime wants you to lead the **data analysis mission** to reveal hidden truths that may help humanity.

Requirements

You are required to write both your code and your analysis report inside Google Colab. After each data analysis step, include a conclusion or interpretation explaining your findings in your own words. using ai tools to generate your report is highly discouraged and if caught ,you will receive a penalty

Dataset Overview

- Load the Titanic dataset, link for the dataset
- Display the first 10 rows.

Electrical Training 2025/26

- Summarize the dataset using info and describe.
- Report the number of **missing values** in each column.

Demographics Analysis

- Find the average age of passengers.
- Find the **age distribution** (histogram).
- Find the youngest and oldest passenger.

Survival Analysis

- Calculate the overall survival rate.
- Compare survival rate by:
 - **■** Gender
 - Passenger class (Pclass)
 - **■** Embarkation port (Embarked)
- Show these comparisons using bar plots or pie charts.

Family and Fare Analysis

- Analyze survival rate for passengers traveling alone vs with family
- Explore how Fare relates to survival (e.g., average fare of survivors vs non-survivors).
- Plot the fare distribution (histogram/boxplot).

Age Group Analysis

- Create age groups:
 - Children (0–12)
 - Teenagers (13–19)
 - Adults (20-59)
 - Seniors (60+)
- Compare survival rates across these groups.
- Plot with a bar chart.

Conclusions

Write a short summary of key insights (e.g., "Women and

Electrical Training 2025/26

children had higher survival rates of about xx%).

Remember: Autobots value clarity and visuals, your analysis should include tables, plots, and concise insights.

Task 10.2 Heart Disease classification

You will explore the Heart Disease dataset and evaluate how well different machine learning classifiers can predict the presence of heart disease.

1. Dataset Preparation

- Load the Heart Disease dataset , link for the dataset.
- Perform basic data cleaning (check for missing values, encode categorical variables).
- Split the dataset into training (80%) and testing (20%) sets.
- Standardize/normalize features (especially for distance-based models like KNN).

2. Model Training

Train both the logistic regression classifier and K-Nearest Neighbors (KNN) classifier

3. Model Evaluation

- For each classifier, compute and report the following metrics:
 - Accuracy
 - **■** Precision, Recall, F1-score
 - **■** Confusion Matrix
- Resource for Model evaluation: <u>Confusion matrix</u>
- BONUS: Try to improve the logistic regression classifier using gradient descent, <u>Link for ai's gradient descent session</u>

4. Visualization

- Plot confusion matrices as heatmaps for each classifier.
- Create a bar chart comparing classifier accuracies.

Electrical Training 2025/26

5. Analysis & Conclusion

- After each result, write a short interpretation of how the classifier performed.
- In your final conclusion, answer:
 - Which classifier performed best overall?
 - Did different models excel in different metrics?

Submission

- You will submit your reports as **google colab** links for Task 10.1 and 10.2
- The Task's deadline is at monday, 1/9 11:59 PM.
- Submission link: https://forms.gle/GDYUQ4eUkfLLQjzs6