

LSD4WN-2N717M91 产品规格书

文件版本: Rev02

最近更新: 2018年07月06日

利尔达科技集团股份有限公司

文件修订历史

版本	修订日期	修订说明
1. 0. 0	2016-04-14	初始版本
2. 0. 1	2016-06-02	增订部分参数,修改部分描述
2. 0. 2	2016-07-06	修改部分逻辑状态描述、增加视图说明
2. 0. 3	2016-11-10	增加模块引脚的缺省状态
2. 1. 0	2016-12-30	更新产品实物、引脚定义、增加天线设计建议
2. 2. 0	2017-01-06	增加参数指标说明
2. 3. 0	2017-08-24	增加 "6.1 回流焊作业参考" 增加 "6.2 产品包装信息"
2. 3. 1	2018-07-06	增加增加 CLAA 协议版本 修改模块标签内容,删去 DEVEUI 增加 CLASS B 功能 删去 BOM 图片\deveui 描述 增加休眠功耗 调整功能模式说明

目录

1	概述	•••••		5
2	产品	技术参	数	7
3	产品	功能说	·明······	9
	3.1	功能征	简述	9
		3.1.1	命令模式	10
		3.1.2	透传模式	11
4	机械	特性…		13
	4.1	产品	外观	13
	4.1	模块	装配图	13
	4.2	模块:	主板 PCB 封装尺寸图	14
5	接口	说明····		15
	5.1	引脚	定义	15
	5.2	硬件	接口描述	16
		5.2.1	外部电源	16
		5.2.2	复位	16
		5.2.3	模式控制	17
		5.2.4	UART 接口	17
		5.2.5	模块状态指示	19
		5.2.6	睡眠控制	20
		5.2.6	扩展 GPIO	20
	5.3	典型	应用电路	21

		5.3.1	天线设计建议	21
6	产品	焊接与	f包装······	23
	6.1	产品	回流焊作业指导	23
	6.2	产品作	包装	.24
荷·	告用户			26

1 概述

LSD4WN-2N717M91 是利尔达科技集团股份有限公司研制的一款 LoRaWAN End Node 模块。本模块集成了 LoRaWAN™ 协议栈,符合 LoRa Alliance 发布的 LoRaWAN™ Specification 1.0.2 Class A 标准,支持 CLAA 对 LoRaWAN 的应用扩展。硬件支持 470~510MHz 超宽频段(使用不同频段时,需要选择合适天线)。

模块采用串口与用户设备进行数据、指令交互,可以方便地为用户提供快速 LoRaWAN 网络接入和无线数据等业务。

LSD4WN-2N717M91 模块具有功耗低、传输距离远、抗干扰能力强,适用于多种应用场合:物联网低功耗应用(IoT)、自动抄表、智慧城市、工业自动化、智能家居等。

产品特点

- ▶ 工作电压: 2.5~ 3.6 V;
- ▶ 频段:470~510MHz;
- ➤ 最大发射功率: 19±1 dBm(max);
- ▶ 超高接收灵敏度: -136±1dBm(@SF=12);
- 》 超远通讯距离:5Km (城市公路环境,非旷野环境);
- ➤ 符合 LoRaWANTM Specification 1.0.2 标准,支持 CLAA 协议等;
- ▶ 内部集成 LoRaWAN™ 协议栈,支持 Class A\Class B\Class C 设备类型;
- ▶ 低功耗:待机电流 ≤ 2 uA;
- ▶ UART 通信,对外接口为邮票孔,简易指令配置模块参数;

LSD4WN-2N717M91 模块适用于多种应用场合:

- ▶ 自动抄表,特别适用于水表、气表、热表等无线抄表场合;
- ➤ 物联网(IoT)
- ▶ 智慧城市
- ▶ 智能家居
- ▶ 智慧物流
- ▶ 工业自动化
- ▶

2 产品技术参数

下文描述模块的技术参数,主要包括遵循的协议标准、接口特性、机械特性、直流特性参数、射频特性参数、环境特性参数等。

表 2-1 模块技术参数

主要参数		内容	
		描述	备注
	协议版本	LoRaWAN™ Specification 1.0.2final	更新时间2017年8月
	物理层	符合CLAA 1.3.9定义	更新时间2018年6月
协议标准	网络拓扑	Star	接入LoRaWAN网关,形成星 -星型网络拓扑
	设备类型	Class A\Class B\Class C	
	网络接入方式	OTAA\ABP	
	发送寻址模式	广播	
	调制方式	LoRa\FSK	
	数据速率	SF12~SF7、50Kbps(FSK)	
	串口接口	2线UART	兼容3.3V TTL\CMOS
接口特性	串口波特率	2400\4800\9600\38400\1920 0\115200bps	用户可配置透传模式的串口波特率,命令模式固定使用9600bps
	主天线接口	邮票孔50Ω输出	
机械特性	接口封装类型	邮票孔(2×11pin×2.0mm)	
	PCBA尺寸	25(L) ×21.5(W) ×3 (H) mm	(GB/T1804-c)

表 2-2 直流特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作电压	-	2. 5	3. 3	3. 6	V	保证最大输 出功率20dBm
工作电流						
平均电流	串口正常工作, 9600Bps	_	2. 4	_	mA	
峰值电流	最大输出	-	_	130	mA	

休眠电流						
睡眠1	RTC打开	-	2	_	uA	
睡眠2	RTC关闭		0.6		uA	

表 2-3 射频特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作频段	测试电压: 3.3V	400		F40		
	测试温度:室温	433	_	510	MHz	
发射特性	00K ⁷	模式,载波	输出,PA_I	BOOST ON, 2	25°C环境〗	温度
最大发射功率						
	PA_B00ST输出,功					
	率满负荷,使用	18	19	20	dBm	
	9020A频谱仪测试					
二次谐波			-40		dBm	
发射电流	射频最大发送功率				_	实际使用时,电流
(射频部分)	输出,仪器负载		120		mA	与天线环境有关
接收特性	PER = 1%, CR = 4	/6, CRC 0	N, Preambl	e Length	= 12, Pa	cket Length = 10
接收灵敏度	SF12	-	-136	-	dBm	71040
	SF7	-	-123	-	dBm	平坦度<0.5dB
接收电流						
(射频部分)		_	12	_	mA	
频率特性	频率稳	急定度: 15p	pm@-40°C~	85°C		

表 2-4 环境特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作温度	_	-40	-	~85	°C	
存储温度	-	-40	-	125	°C	
工作湿度	-	5	-	95	%	
ESD防护	_	-	-	TBD	٧	

3 产品功能说明

本模块与用户主板连接时,主要包括串口、复位、唤醒(WAKE)、模式控制(MODE)、 状态输出(STAT)、忙信号(BUSY)及供电接口等。模块应用框图,如图 3-1 所示。

图 3-1 模块应用框图

3.1 功能简述

本模块集成了 LoRaWANTM 协议栈,符合 LoRa Alliance 发布的 LoRaWANTM Specification 1.0.2,符合中国 LoRa 应用联盟的 CLAA 规范,支持 Class A\Class B\Class C 设备类型,从空口支持的频段与用户接口来看,模块功能包括:

a) LoRaWAN CLAA 应用

b)模块通过串口与用户进行数据/指令交互。

模块分为激活状态与睡眠状态。用户通过控制 WAKE 引脚来进入或者退出睡眠状态。激活状态细分为两种子模式,用户通过 MODE 引脚选择子模式(透传模式与命令模式),子模式具体定义如表 3-1 所示。

表 3-1 模块激活状态的子模式

工作模式	描述
透传模式	转发用户数据。可以选择详细信息输出等,方便调试
命令模式	通过AT指令读取状态或配置参数,有些参数需要使用保存指令,并复位才生效

用户在命令模式下,通过AT指令配置LoRaWAN网络、系统等相关参数。

模块在透传模式转发用户数据。串口收到一帧数据后,BUSY 引脚拉低(忙),直到这一帧数据传输完成(成功或失败)。如果传输失败,在BUSY 引脚回到高电平(不忙)的同时,STAT 引脚拉低,当用户写新的一帧数据或者通过命令模式读取传输失败信息时,STAT 引脚回到高电平状态。同时,用户也可以配置模块输出更多详细信息(RSSI、SNR等)

用户首次使用,需要配置模块必要的网络参数,执行保存命令后,复位模块(模块 将以新参数来初始化),然后切换为透传模式。

缺省情况下,模块进入透传模式后,会自动加入指定的 LoRaWAN 网络,并启动运行。用户可以通过判断 STAT 引脚状态,或者进入命令模式查询当前 JOIN 状态等详细信息,以获取模块入网结果等信息。

3.1.1 命令模式

在命令模式下,用户可以通过串口发送 AT 指令来访问模块。用户端发送指令给模块,模块解析接收到的命令,立即返回一个命令响应帧,指示所接收命令的执行结果。

3.1.2 透传模式

在透传模式下,模块直接转发用户数据。

如果开启 LoRaWAN 网络的 ADR 机制,由于每个空口数据包的最大数据长度可能会动态变化,为了保证数据传输可靠性与完整性,引入一种简单的流控机制。

1) 流控机制

用户自行决定一帧数据的长度。当串口超过 10ms 未接收到新的串口数据数据或者达到物理分包上限时,判定一帧数据传输完成,立即拉低 BUSY 引脚(忙),关闭串口接收,进行发送操作。发送完成后(成功或失败),BUSY 引脚重新拉高,如果WAKE 引脚仍为高电平,则重新开启模块的串口接收。

2) 物理分包

实际的物理分包参照《LoRaWAN Regional Parameter V1.0.2》,用户可以通过AT 指令查询响应参数,或者要求详细信息输出,来获取分包情况。

通常情况下,不同速率对应的最大负载值 N,如表 3-2 所示:

SF	N (MAX)
7	222
8	222
9	115
10	51
11	51
12	51

表 3-2 不同速率对应的最大负载值

3)服务器响应

根据 LoRaWAN 网络 Class A 运行特点,任何一包数据,用户服务器都可以给出

响应,如果模块收到用户服务器数据,会立即通过串口输出。

4 机械特性

4.1 产品外观

产品实物图如 4-1 与 4-2 所示,标签中的 S\N 等仅供参考,具体以实际产品为准,

标签的小黑点标识为模块的 Pin1:

Pin12 (GND)

图 4-1 LSD4WN-2N717M91 TOP 面

4.1 模块装配图

模块装配图如图 4-2 所示(单位:mm),注:左图视角为 Top View

图 4-2 模块装配图

4.2 模块主板PCB封装尺寸图

用户主板的模块 PCB 封装 , 请根据图 4-2 进行设计 , 我司可提供本模块的 PCB 封装供用户参考。

5 接口说明

5.1 引脚定义

所有 I\O 口为 CMOS 与 TTL 兼容。模块引脚功能如表 5-1 所示:

表 5-1 引脚定义

引脚	功能定义	端口类型	缺省值 ³	描述
1	GND	Power	-	接系统地
2	GND	Power	-	接系统地
3	P1	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC
4	P2	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC
5	Р3	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC
6	GND	Power	-	接系统地
7	WAKE	Input	Float	唤醒\关闭模块
8	STAT	0uptut	Low	状态指示
9	NC	NC	-	悬空处理
10	NC	NC	-	悬空处理
11	P0	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC
12	GND	Power	-	接系统地
13	VCC	Power	-	系统供电,供电范围2.5~3.6V
14	NRST	Reset	PULL-UP	复位模块,内部弱上拉,低电平有效,用户若不
				使用,可以悬空处理
15	BUSY	0utput	Low	模块忙信号输出
16	MODE	Input	Low	工作模式控制,根据用户控制电平,内部自动上
				\下拉
17	GND	Power	-	接系统地
18	TXD	0utput	High	串口发送端(TX)
19	RXD	Input	High-impendance	串口接收端(RX)
20	GND	Power	=	接系统地
21	GND	Power	-	接系统地
22	ANT	RF	-	射频出口. 注意使用50Ω阻抗线

注1:扩展功能用于开放 IO 的操作。

注 2:淡蓝色标注是客户系统最小使用的引脚

注 3: 缺省值, 描述的是用户尚未对模块进行任何配置、首次上电后的引脚状态

5.2 硬件接口描述

使用 LSD4WN-2N717M91 模块进行硬件设计时,根据实际应用,需要合理选择与设计所需接口及其外围电路。

LSD4WN-2N717M91 模块应用接口包括以下:

- 外部电源
- 复位
- 模式控制
- UART接口
- 模块状态指示
- 睡眠控制
- 扩展 GPIO

5.2.1 外部电源

用户在使用本模块时,首先需要保证外部电源能够充足的供电带载能力,并且供电范围需要严格控制在 2.5V~3.6V 之间。高于模块供电范围,会导致模块的主芯片损坏;低于模块供电范围,会影响射频电路工作,无法保证输出最大功率。

5.2.2 复位

用户给模块 NRST 引脚提供一个至少 1ms 低脉冲(或者直接拉低),会复位模块。模块复位后,需要等待复位延时时间为 150ms,保证模块系统初始化完成。模块复位

引脚功能如表 5-2 所示:

表 5-2 复位引脚功能

接口	引脚	定义	1/0		描述		
复位	14	NRST	Input			模块复位后,用	
				高电平	模块正常运行	户需要等待复位	
				低电平	模块保持复位状态(复位MCU)	延时时间, 才可	
						以操作模块	

5.2.3 模式控制

模块有在两种工作模式,用户通过 MODE 引脚来选择工作在哪种模式。用户如果不知道模块当前的工作模式,可以通过读取该引脚的状态来获取。模块模式控制引脚功能如表 5-3 所示:

表 5-3 模式控制引脚功能

接口	引脚	定义	1/0		备注			
模式	16	MODE	Input		若模块检测信号:			
控制				高电平	检测到高电平脉冲(上升沿&高电平)进			
				低电平				
				入并驻留在透传模式				

5.2.4 UART接口

模块提供一个 UART 接口,结合自定义的软件流控制,来完成串口通信,缺省串口设置为 9600N81,对外接口电平为 3.3V TTL\CMOS 电平。

用户每次发送数据前,拉高 WAKE 引脚,等待 10ms 后,唤醒模块(以便模块准备好串口等)。用户拉低 WAKE 引脚,则模块进入睡眠模式。串口接口功能如表 5-4

所示:

表 5-4 串口接口

接口	引脚	定义	1/0		备注		
UART	18	TXD	Output	串口发送端(TX)			模块的TX
					信号方向		
	19	RXD	Input		串口接收端(RX)		
							信号方向
	15	BUSY	Output		模块忙	信号输出。	空口速率
				模块初	① 上	上电后, BUSY默认为低电平。	所指定的
				始化(复	② 核	莫块初始化完成后,输出高	最大数据
				位或者	电平。		包大小请
				WAKE唤	③ 止	比时, 若模块处于透传模式,	见表3.2
				醒)	BUSY会立即	P拉低,开始执行加入网络	
					等操作;		
					④ 君	吉模块处于指令模式, BUSY	
					输出高后,	则用户可以开始执行AT指	
					令操作。		
				数据通			
				信阶段	高电平	模块空闲。指示用户	
						MCU可以继续向模块写	
						入数据。	
					低电平	模块忙。指示用户MCU	
						暂停向模块写入数据。	
	7	WAKE	Input		模块吗	唤醒\睡眠	1
				高电平		技据前,必须拉高WAKE引脚,	
					并等待10ms	s时间,唤醒模块	
				低电平	模块进入时	眠模式。	

5.2.5 模块状态指示

模块的 STAT 引脚目前定义两种功能:

(1)模块在首次接入 LoRaWAN 网络时,首先执行加入网络操作,在 JOIN 过程中,STAT 引脚始终保持为低电平,直到模块成功加入网络,此时 STAT 输出高电平,模块可以正常处理用户的串口数据。用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。

注:在搜索网络过程中,用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。用户查询完成后,立即切换会透传模式。

(2)模块在接入 LoRaWAN 网络后,会动态更新模块的网络状态,状态变化通过 STAT 引脚输出。如果模块模块本次数据操作异常,STAT 引脚输出为低电平,用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。

状态指示引脚功能如表 5-6 所示:

表 5-6 状态指示引脚

接口	引脚	定义	1/0		描述			备注
状态	8	STAT	Output		若模块处于			具体异常
输出				入网阶段	STAT	引脚表示入网状态		状态可以
					高电平	模块入网成功		特定AT命
					低电平	模块未入网,等待入网		令读取
						成功		
				数据通信	STAT引脚表	示本次数据通信的结果。		
				阶段	高电平	本次空口数据通信发\		
						收成功		
					低电平	本次空口数据通信发\		
						收失败		
				注: 确	认帧情况下,	高电平表示接收ACK		

北海江乾桂四丁 古山亚丰二华兴武村
1 非佣从顺信水下,高电平表示发达以从 1

在数据通信阶段,建议用户在每次与模块完成一次数据交互后,判断 STAT 引脚状态,已获得当前数据包的空口处理结果。每次用户发送新的数据或者查询 AT+STATUS?会清除 STAT 引脚状态(拉回到高电平)。

5.2.6 睡眠控制

为了满足低功耗应用场景,用户在不需要使用的时候,可以通过拉低睡眠引脚 WAKE,并至少保持 5ms,控制模块进入睡眠状态。在睡眠状态,模块将不进行任何数 据操作,但仍然会保存入网信息等。用户通过拉高 WAKE 引脚,并至少保持 5ms,可以唤醒模块,唤醒后可以便进行正常的数据操作。睡眠控制如表 5-7 所示:

接口 引脚 定义 1/0 描述 备注 睡眠 7 WAKE 若WAKE引脚处于 Input 引脚 高电平 唤醒模块,模块处于正常工作状态 低电平 控制模块进入休眠

表 5-7 睡眠引脚

5.2.6 扩展 GPIO

模块提供了 PO-P3 扩展 GPIO 口,用户当前可以通过 AT+GPIO 指令,控制指定的 GPIO 口输出高\低电平。扩展 GPIO 说明,如表 5-8 所示:

表 5-8 扩展 GPIO

接口	引脚	定义	1/0	描述	备注
GP10	11	P0	Output	通过AT+GP10指令控制输出高电平或者低电平	
GP10	3	P1	Output	通过AT+GP10指令控制输出高电平或者低电平	
GP10	4	P2	Output	通过AT+GP10指令控制输出高电平或者低电平	
GP10	5	Р3	Output	通过AT+GPIO指令控制输出高电平或者低电平	

5.3 典型应用电路

用户接口:串口、GPIO、电源等

天线接口:50Ω邮票孔输出

图 5-1 LSD4WN-2N717M91 典型应用电路

说明:

1:加粗 Trace 为系统所需连接(推荐)。

2:天线出口(ANT<->PIN22)的绿色 Trace 要求 50Ω阻抗匹配。

- 3、R1、C1、C2 参数的具体取值,由产品进行天线匹配后确定。
- 4、缺省情况下,建议 R1 为 0Ω, C1, C2 为空贴。C4 空贴(只做预留)
- 5、天线部分的 Layout 设计,请参考我司《射频 PCB LAYOUT 设计规则(适用 sub-1GHZ 及蓝牙模块)_WSN_160824》。

5.3.1 天线设计建议

天线设计直接关系到产品的通信性能。不同终端根据天线大小、成本、性能会选择不同类型的天线,短距离天线中比较常见的有 PCB 天线、芯片(陶瓷)天线、弹簧天线、鞭状天线等。选择天线时,需要主要考虑如下几个最重要的参数:在天线周围不同方向上的辐射变化、天线效率、天线工作时需要的带宽以及需要提供给天线的功率等。其中,天线带宽的典型定义是反射波衰低于-10dB或者 VSWR 小于 2 的频率范围,

即天线反射功率小于10%的频率范围。

目前面向 LoRa 表类应用,我司主要提供弹簧天线与折线天线两种形式参考。

结合 CLAA 规范的频率分布,天线设计特别需要注意模块的工作频段。目前 CLAA 规范支持 5 种模式(A\B\C\D\E 模式),其中 A\B\C 为收发同频, D\E 为收发异频模式。CLAA 频段规划,如表 5-9 所示:

CLAA模式 描述 上行 MODE A 482M~500M 482M~500M 收发同频 MODE B 470M~490M 470M~490M 收发同频 MODE C 490M~510M 490M~510M 收发同频 MODE D 480M~490M 500M~506M 收发异频 MODE E 470M~480M 490M~496M 收发异频

表 5-9 CLAA 频段规划

理想情况下,客户的天线带宽设计在470~510MHz,可以满足所有CLAA模式。但在实际应用中,受限于天线大小、成本等因素,天线带宽有限制,因此必须根据实际情况来选择。一种解决方式是根据基站部署所采用的CLAA模式,来最终确定天线的工作带宽。

6 产品焊接与包装

6.1 产品回流焊作业指导

注:此回流焊作业指导仅适用于无铅作业,仅供参考。

6.2 产品包装

本产品采用卷带包装,载带材料:黑色 PS,卷带包装规格如图 6.1 所示:

图 6.1 卷带包装规格

图 6.3 载带胶轮

敬告用户

1、欢迎您使用利尔达科技有限公司的产品,在使用我公司产品前,请先阅读此敬

告;如果您已开始使用说明您已阅读并接受本敬告。

利尔达科技有限公司保留所配备全部资料的最终解释和修改权,如有更改恕不另行通知。

编制:利尔达科技集团股份有限公司 无线传感网

2018年7月