

- 1 -

Ionenleitende thermoplastische Zusammensetzungen für elektrochrome Verglasungen.

Die Erfindung betrifft eine ionenleitende, thermoplastische
5 Zusammensetzung aus teilacetalisiertem Polyvinylalkohol, mindestens einem Leitsalz und mindestens einem Weichmacher und die Verwendung von hieraus hergestellten Folien in elektrochromen Verbundverglasungen.

10 Technisches Gebiet

Verbundverglasungen, deren Transparenz bzw. Farbe durch Anlegen einer elektrischen Spannung verändert werden können, werden in der Literatur als elektrochrome Verglasungen bezeichnet. Typischerweise sind elektrochrome Verglasungen gemäß Figur 1
15 wie folgt aufgebaut: Glasscheibe (a) - transparente elektrisch leitende Schicht (b) - elektrochrome Schicht (c) - Festelektrolyt (d) - redoxfähige Ionenspeicherschicht oder zu (c) komplementäre elektrochrome Schicht (e) - transparente elektrisch leitende Schicht (f) - Glasscheibe (g).

20

Die Schichten c) und e) sind durch einen Festelektrolyten (d) von einander getrennt. Bei Anlegen einer Spannung an die Elektroden b) und f) werden die Schichten c) und e) elektrochemisch oxidiert bzw. reduziert, wobei im Falle, dass
25 Schicht c) und/oder e) elektrochrome Schichten sind, deren Farbe und Lichtdurchlässigkeit geändert wird. Die Oxidation und Reduktion der Schichten c) und e) ist von einem Austausch von Ionen mit dem Festelektrolyten d) begleitet. Dieser muss daher eine ausreichend hohe Ionenkonzentration aufweisen. Weiterhin
30 ist für einen schnellen Schaltvorgang eine entsprechend hohe Ionenleitfähigkeit des Festelektrolyten erforderlich.

Ein Festelektrolyt für elektrochrome Verglasungen muss neben einer ausreichend hohen Ionenleitfähigkeit auch chemische und
35 elektrochemische Stabilität sowie optische Transparenz aufweisen.

- 2 -

Zur Herstellung von Festelektrolyten für elektrochrome Verglasungen sind bereits viele Materialien vorgeschlagen worden.

5 Stand der Technik

In EP 1 056 097 sind zur Herstellung eines Festelektrolyten Homo- oder Copolymeren von Acryl-, Methacryl- oder Styrolverbindungen in Kombination mit Weichmachern und Leitsalzen sowie mit Partikeln eines anorganischen oder 10 polymeren Füllstoffs offenbart.

US 5,244,557, EP 392 839, EP 461 685 und EP 499 115 beschreiben Festelektrolyte auf Basis von Polyethylenoxid.

15 In handelsüblichen Verbundverglasungen ohne elektrochrome Eigenschaften werden häufig Zwischenfolien aus Polyvinylbutyral (PVB), d.h. einem teilacetalisierten Polyvinylalkohol eingesetzt. Polyvinylbutyralfolien besitzen den Vorteil einer hohen Transparenz und verleihen den hieraus hergestellten 20 Glaslaminaten eine gute mechanische Festigkeit.

Die Verwendung von Polyvinylbutyralfolien in elektrochromen Verbundverglasungen ist daher auch bekannt und z.B. in EP 1 227 362 und EP 0 657 897 offenbart. Die in diesen Anmeldungen 25 vorgeschlagenen ionenleitenden Polyvinylbutyralfolien werden aus herkömmlichem PVB-Harz, Weichmachern und Leitsalzen sowie ggf. weiteren Zusätzen hergestellt. Um eine ausreichend hohe Ionenleitfähigkeit zu gewährleisten, ist hier allerdings ein höherer Weichmachergehalt, als in herkömmlichen, nicht 30 ionenleitenden PVB-Folien notwendig. Ein erhöhter Weichmachergehalt verschlechtert die mechanischen Eigenschaften der Folie. Polyvinylbutyralfolien in elektrochromen Verglasungen besitzen daher entweder eine nicht ausreichende Ionenleitfähigkeit bei guter mechanischer Stabilität oder - bei 35 erhöhtem Weichmachergehalt - eine verbesserte Ionenleitfähigkeit bei verringelter mechanischer Stabilität.

Aufgabe

Aufgabe der vorliegenden Erfindung war es, die in Verbundverglasungen häufig eingesetzten Mischungen auf Basis

5 von teilacetalisierten Polyvinylalkoholen so zu modifizieren, dass eine ausreichende Langzeitstabilität, eine gute Ionenleitfähigkeit und ein befriedigendes Schaltverhalten bei hinreichend guten mechanischen Eigenschaften von hieraus hergestellten elektrochromen Verglasungen resultiert.

10

Teilacetalisierte Polyvinylalkohole, hier insbesondere Polyvinylbutyral, werden großtechnisch hergestellt, indem Polyvinylacetat verseift und anschließend mit einem Aldehyd (Butanal) acetalisiert wird. Es entstehen dabei ternäre

15 Polymere, die in der Regel Restacetatgehalte von bis zu 5 Gew.%, Polyvinylalkoholgehalte von 15 bis 30 Gew.% und einen Acetalisierungsgrad von 40 bis 80 % aufweisen.

Darstellung der Erfindung

20 Überraschenderweise wurde gefunden, dass Mischungen aus mindestens einem Leitsalz, mindestens einem Weichmacher und einem säurefunktionalisierten teilacetalisierten Polyvinylalkohol eine erhöhte Ionenleitfähigkeit und in hieraus hergestellten elektrochromen Verglasungen ein verbessertes
25 Schaltverhalten und eine verbesserte Langzeitstabilität aufweisen.

Gegenstand der Erfindung ist daher eine Ionenleitende thermoplastische Zusammensetzung, enthaltend einen

30 teilacetalisierten Polyvinylalkohol, mindestens ein Leitsalz und mindestens einen Weichmacher, wobei der teilacetalisierte Polyvinylalkohol ein Copolymer, enthaltend die Monomereinheiten

- Vinylacetat
- Vinylalkohol

- 4 -

- Acetal I aus Vinylalkohol und mindestens einem Aldehyd der Formel I

mit R^1 : verzweigter oder unverzweigter Alkylrest
5 mit 1 bis 10 Kohlenstoffatomen

- Acetal II aus Vinylalkohol und einer Carbonylverbindung der Formel II

mit R^2 = H, verzweigter oder unverzweigter Alkylrest mit 1 bis 10 Kohlenstoffatomen,
15 R^3 = direkte Verbindung, verzweigter oder unverzweigter Alkylrest mit 1 bis 10 Kohlenstoffatomen, Arylrest mit 6 bis 18 Kohlenstoffatomen, und
 $\text{Y} = -\text{CO}_2\text{H}, -\text{SO}_3\text{H}, -\text{PO}_3\text{H}_2$

20 ist.

Die erfindungsgemäßen Zusammensetzungen enthalten bevorzugt:

- 50 - 90 Gew.% insbesondere 50 - 70 Gew.% des beschriebenen teilacetalisierten Polyvinylalkohols
- 10 bis 50 Gew.% insbesondere 20 - 40 Gew.% mindestens eines Weichmachers und
- 0,1 bis 25 Gew.% insbesondere 2 - 10 Gew.% mindestens eines Leitsalzes.

30 Der in der vorliegenden Erfindung eingesetzte teilacetalisierte Polyvinylalkohol enthält mindestens zwei verschiedene Acetaleinheiten I und II, von denen die Acetaleinheit II bevorzugt aus Vinylalkohol bzw. Vinylalkoholeinheiten von Polyvinylalkohol und einem säurefunktionalisierten Aldehyd gewonnen wird. Als säurefunktionalisierter Aldehyd kann insbesondere Glyoxylsäure (hier steht R^3 für eine direkte Verbindung zwischen der Säurefunktion Y und dem

- 5 -

Carbonylkohlenstoffatom) oder Brenztraubensäure eingesetzt werden.

Die Acetale I werden bevorzugt durch Umsetzen von Vinylalkohol bzw. Vinylalkoholeinheiten von Polyvinylalkohol mit mindestens einem Aldehyd der Gruppe Formaldehyd, Acetaldehyd, Propanal, n-Butanal (Butyraldehyd), Isobutanal Pentanal, Hexanal, Heptanal, Octanal und/oder Nonanal, jeweils als Reinstoff oder Isomerengemisch hergestellt. Besonders bevorzugt wird n-Butanal verwendet, das auch bei der Herstellung von handelsüblichem Polyvinylbutyral zum Einsatz kommt.

Das Zahlenverhältnis der Monomereinheiten des teilacetalierten Polyvinylalkohols aus Acetal I und Acetal II kann in weiten Bereichen eingestellt werden und liegt bevorzugt bei 1:1 bis 10.0000:1, insbesondere bei 10:1 bis 1000:1 bzw. 100:1 bis 1000:1.

Die Herstellung des teilacetalierten Polyvinylalkohols kann analog zu der des handelüblichen Polyvinylbutyrals erfolgen; wobei eine Coacetalisierung von Polyvinylalkohol mit mindestens zwei unterschiedlichen Aldehyden bzw. Carbonylverbindungen unter Erhalt der Acetalgruppen I und II erfolgt. Alternativ kann gemäß DE 10 143 190 eine zusätzliche Acetalisierung eines bereits hergestellten Polyvinylbutyrals erfolgen.

Weiterhin ist es möglich, eine Mischung aus mehreren teilacetalierten Polyvinylalkoholen, z.B. mit handelsüblichem PVB einzusetzen.

30

Es sei darauf hingewiesen, dass die funktionalisierten Acetaleinheiten II mit den im teilacetalierten Polyvinylalkohol noch vorhandenen Vinylalkoholeinheiten unter Vernetzung reagieren können. Die Vernetzungsreaktion ist u.a. von der thermischen Behandlung des Materials bei der

- 6 -

Folienerstellung abhängig und kann daher zu sehr unterschiedlichen Vernetzungsgraden führen.

Erfnungsgemäße Zusammensetzungen enthalten bevorzugt einen

5 teilacetalisierten Polyvinylalkohol mit den Repetiereinheiten
 - 0,01 bis 5 Gew.% Vinylacetat
 - 10 bis 40 Gew.%, bevorzugt 15 bis 35 Gew.% Vinylalkohol und
 - 40 bis 80 Gew.%, bevorzugt 45 bis 75 Gew.% Acetale I und II

10 Als Leitsalz können Salze mit Kationen wie Li^+ , K^+ , Na^+ , Cs^+ , Rb^+ , NH_4^+ , Mg^{2+} , Sr^{2+} , Ca^{2+} , La^{3+} und/oder Zn^{2+} und Anionen der Gruppe PF_6^- , SbF_6^- , AsF_6^- , F^- , Cl^- , Br^- , CF_3SO_3^- , ClO_4^- , ClO_3^- , BF_4^- , $\text{N}(\text{SO}_2\text{CF}_3)_2^-$, CF_3CO_2^- , $\text{B}_4\text{O}_7^{2-}$, Pentaborat, Oxalat, Bisoxalatoborat ($\text{C}_4\text{B}_0_8^-$), AlCl_4^- und/oder Anionen organischer Sulfonsäuren

15 eingesetzt werden.

Bevorzugte Leitsalze sind LiClO_4 , LiPF_6 , LiSbF_6 , LiAsF_6 , $\text{Li}(\text{CF}_3\text{COO})$, LiBF_4 , LiCF_3SO_3 , $\text{Li}_2\text{C}_2\text{O}_4$, $\text{LiN}(\text{SO}_2\text{CF}_3)_2$ oder Lithium-bisoxalatoborat (LiC_4B_0_8).

20 Als Weichmacher bzw. Weichmacherkomponente für die erfungsgemäßen Zusammensetzungen werden bevorzugt Verbindungen der Formel III

eingesetzt, wobei R^4 , R^5 für gleiche oder verschiedene, verzweigte oder unverzweigte, cyclische oder acyclische, aliphatische, und/oder aromatische Kohlenwasserstoffreste mit 1

30 bis 15 Kohlenstoffatomen oder H und n für eine ganze Zahl zwischen 1 und 5 steht.

Zusätzlich können alle Weichmacher, die üblicherweise mit Polyvinylbutyral eingesetzt werden, verwendet werden. Hierzu

35 zählen Ester von mehrwertigen aliphatischen oder aromatischen Säuren, mehrwertige aliphatische oder aromatische Alkohole oder

- 7 -

Oligoetherglykole mit 1 bis 10, bevorzugt 1 bis 4 Etereinheiten mit einem oder mehreren unverzweigten oder verzweigten aliphatischen oder aromatischen Substituenten, wie z.B. Dialkyladipat, Dialkylsebazat, Ester von Di-, Tri- oder 5 Tetraglykolen mit linearen oder verzweigten aliphatischen Carbonsäuren.

Insbesondere geeignet sind Tri- oder Tetraethylen-glykoldimethylether insbesondere in Kombination mit 10 Triethylenglycol-di-2-ethyl-hexanoat (3G8), Triethylenglycol-di-n-heptanoat (3G7) und/oder Glycolester der Benzoesäure.

Die Bestandteile der erfindungsgemäßen Zusammensetzungen können in handelsüblichen Knetern, Mischern oder Extrudern miteinander 15 vermischt werden. Es ist insbesondere möglich, die bei der Bearbeitung von Polyvinylbutyralen zu Folien verwendeten Extrusionsstraßen einzusetzen. Für eine weitere Verarbeitung der Zusammensetzungen haben sich Foliendicken analog den üblicherweise verwendeten Polyvinylbutyralfolien (0,38, 0,76, 20 1,14 und 1,5 mm) bewährt.

Ein Verfahren zur Herstellung von ionenleitenden Folien ist ebenfalls Gegenstand der Erfindung, wobei eine Mischung der beschriebenen, teilacetalisierten Polyvinylalkohole mit 25 mindestens einem Weichmacher und mindestens einem Leitsalz jeweils mit den genannten Anteilen und bevorzugten Ausführungsformen zu einer Folie extrudiert wird.

Das erfindungsgemäße Extrusionsverfahren kann, um eine 30 aufgerautete Folie zu erhalten, unter Schmelzebruchbedingungen wie z.B. in EP 0 185 863 beschrieben, durchgeführt werden.

Alternativ kann eine Prägung einer nicht aufgerauten Folie mit entsprechenden Walzen oder Bändern unter Erhalt einer ein- oder 35 beidseitigen Rauheit von 40 - 120 µm erfolgen.

- 8 -

Bevorzugt wird die Oberflächenstruktur im Extrusionsprozess unmittelbar vor Austritt der Kunststoffschnmelze aus der Extrusionsdüse durch das genannte Schmelzbruchverfahren entsprechend der EP 0 185 863 B1, auf deren Inhalt hier 5 ausdrücklich hingewiesen wird, aufgebracht. Unterschiedliche Rauhigkeitsniveaus können durch Variation der Austrittsspaltweite und der Düsen-Lippentemperaturen unmittelbar am Düsenaustritt gezielt erzeugt werden. Dieses Verfahren führt zu einer unregelmäßigen, (stochastischen) 10 annähernd isotropen Rauhigkeit (random roughness). Das heißt, der Messwert der Rauhigkeit ist über alle Richtungen gemessen annähernd gleich, die einzelnen Erhebungen und Vertiefungen jedoch unregelmäßig in ihrer Höhe und Verteilung angeordnet sind.

15

Die Messung der Oberflächenrauhigkeit der Folie, d.h. des Rauhigkeitswerts R_z erfolgt nach DIN 4768 oder DIN EN ISO 4287 und DIN ISO 4288. Die zur Messung der Oberflächenrauhigkeit verwendeten Messgeräte müssen der EN ISO 3274 genügen. Die 20 eingesetzten Profilfilter müssen der DIN EN ISO 11562 entsprechen.

Weiterhin ist Gegenstand der Erfindung ein elektrochromes Verbundsystem, aufgebaut aus zwei mit Elektroden beschichteten 25 Körpern, von denen mindestens einer transparent ist, und mindestens einer einen elektrochromen Film aufweist, wobei die mit Elektroden beschichteten Körper durch eine Folie, die aus der erfindungsgemäßen, ionenleitenden thermoplastischen Zusammensetzung besteht, getrennt ist.

30

Zur Herstellung der erfindungsgemäßen Verbundglassysteme werden insbesondere zwei transparente Körper (a und g in Fig. 1), besonders bevorzugt zwei Glasscheiben mit leitfähigen transparenten Schichten (b und f in Fig. 1) als Elektroden, 35 beschichtet.

- 9 -

Bevorzugt wird als transparentes Elektrodenmaterial Indiumdotiertes Zinnoxid (ITO), aluminiumdotiertes Zinkoxid, fluor- oder antimondotiertes Zinndioxid (FTO bzw. ATO) verwendet.

5

Auf mindestens eine dieser Elektroden (b in Fig.1) wird ein elektrochromer Film (c) aufgetragen, der bei anodischer Oxidation oder katodischer Reduktion die Farbe bzw. die Transparenz ändert. Bevorzugt werden hierzu

10 Metallpolycyanometallate wie Eisenhexacyanoferrat, Übergangsmetalloxide wie Wolframtrioxid oder leitfähige Polymere, wie Polyanilin, Polythiophen oder deren Derivate verwendet.

15 Auf die andere Elektrode (f) wird eine redoxfähige Ionenspeicherschicht oder vorzugsweise eine zu (c) komplementäre elektrochrome Schicht (e) aufgetragen.

Bevorzugt enthalten die erfindungsgemäßen elektrochromen
20 Verbundglassysteme als elektrochrome Beschichtungen Eisenhexacyanoferrat (auch als Preußisch Blau bezeichnet, c in Fig. 1) und Wolframtrioxid (e in Fig. 1).

Die folgenden Beispiele sollen die Erfindung näher erläutern,
25 nicht aber den Schutzbereich, wie in den Ansprüchen definiert, einschränken.

Beispiele

1. Vergleichsbeispiel: Ionenleitende PVB-Folie und damit
30 hergestelltes elektrochromes Element nach dem Stand der Technik
Es wurde eine ionenleitende PVB-Folie der Zusammensetzung:
- 65 Masse-% PVB mit einem Polyvinylbutyral-Gehalt von 77,5 Gew.%, einem PVOH-Gehalt von 20,5% und einem Polyvinylacetatgehalt von 2 % und

- 10 -

- 35 Masse-% des Weichmachers Tetraethylenglykoldimethylether enthaltend Lithiumtrifluormethansulfonat als Leitsalz (7,33 Masse-%) sowie den UV-Absorber Tinuvin 571 (0,15 Masse-%) auf einem Doppelschneckenextruder mit gleichlaufenden Schnecken 5 (Hersteller: Fa. Leistritz, Typ LSM 30.34), ausgerüstet mit Schmelzepumpe und Breitschlitzdüse, bei einer MasseTemperatur von 160 °C extrudiert.

Mit dieser Folie wurde ein elektrochromes Element hergestellt.
10 Dazu wurde eine K-Glas-Scheibe (FTO-beschichtetes Floatglas) elektrochemisch mit Wolframtrioxid und eine zweite K-Glas-Scheibe mit Preußisch Blau beschichtet. Diese beiden, mit den genannten elektrochromen Filmen versehenen Scheiben, wurden mit der oben beschriebenen ionenleitenden PVB-Folie (vorher bei 23°C 15 und 50% relativer Luftfeuchtigkeit klimatisiert) nach dem Stand der Technik in einem Standardautoklavenprozess für Verbundsicherheitsglas zusammenlaminiert. Die aktive schaltbare Fläche dieses Elementes betrug 7,5 cm x 18,5 cm (213,75 cm²). Nach der Laminierung erfolgten die Kontaktierung und die 20 Abdichtung des elektrochromen Elementes mit einem Epoxidharz. Die Ionenleitfähigkeit der Folie im fertigen Element wurde aus dem Wechselstromwiderstand bei 40 kHz bestimmt. Es wurde ein Wert von $3,3 \cdot 10^{-6}$ S/cm erhalten.

25 2. Ausführungsbeispiel: Erfindungsgemäße ionenleitende PVB-Folie

Es wurde eine ionenleitende PVB-Folie mit der Zusammensetzung:
- 65 Masse-% PVB mit einem PVOH-Gehalt von 20,2 %, einem Polyvinylacetatgehalt von 1,8 %, einem Gehalt an Acetal aus 30 Glyoxylsäure von 0,5 % und einem Polyvinylbutyralgehalt von 77,5 % und
- 35 Masse-% des Weichmachers Tetraethylenglykoldimethylether enthaltend Lithiumtrifluormethansulfonat als Leitsalz (7,33 Masse-%) sowie den UV-Absorber Tinuvin 571 (0,15 Masse-%)
35 wie in Beispiel 1 beschrieben, hergestellt.

- 11 -

Mit dieser Folie wurde ein elektrochromes Element, wie in Beispiel 1 beschrieben, hergestellt. Die aktive schaltbare Fläche dieses Elementes betrug 9 cm x 30 cm (270 cm^2). Nach der Laminierung erfolgten die Kontaktierung und Abdichtung des
5 elektrochromen Elementes wie in Beispiel 1 beschrieben. Die Ionenleitfähigkeit der Folie im fertigen Element wurde aus dem Wechselstromwiderstand bei 40 kHz bestimmt. Es wurde ein Wert von $6,9 \cdot 10^{-6} \text{ S/cm}$ ermittelt.

10 Der Einbau der Glyoxylsäuregruppen in die Polymerkette des PVB führt also bei sonst gleicher Folienzusammensetzung zu einer Erhöhung der Ionenleitfähigkeit um den Faktor 2.

3. Vergleich der elektrischen Schaltcharakteristik
15 elektrochromer Elemente nach Ausführungsbeispiel 1 und 2
Von elektrochromen Elementen der Größe 10 cm x 30 cm, welche mit einer ionenleitenden Folie der Leitfähigkeit von $3,3 \cdot 10^{-6} \text{ S/cm}$ (Vergleichsbeispiel 1) bzw. $6,9 \cdot 10^{-6} \text{ S/cm}$ (Ausführungsbeispiel 2) hergestellt wurden, wurde die
20 elektrische Schaltcharakteristik bei Schaltung mit einer Gleichspannung von 1,4 V aufgenommen. Dabei ist die mit Wolframtrioxid beschichtete Scheibe negativ und die mit Preußisch Blau beschichtete Scheibe positiv gepolt. Bei Entfärbung wurde eine Gleichspannung umgekehrter Polarität
25 angelegt.

Figur 2 zeigt Stromdichte-Zeit-Kurven beider Elemente im Vergleich. Mit 1 ist die Stromdichte-Zeit-Kennlinie eines Elementes nach dem Stand der Technik und mit 2 eine mit dem
30 erfindungsgemäßen Polymerelektrolyten gekennzeichnet. Die höhere Schaltgeschwindigkeit des erfindungsgemäßen elektrochromen Elementes ist klar an den wesentlich höheren sowohl bei der Färbung als auch bei der Entfärbung fließenden Strömen zu erkennen. Bei Element 2 fließt innerhalb von 3
35 Minuten bei der Färbung eine elektrische Ladung von $12,48 \text{ mC/cm}^2$. Beim Element 1 sind nach 3 Minuten bei der Färbung erst

- 12 -

5,87 mC/cm² und auch nach 5 Minuten erst 8 mC/cm² geflossen. Da die Färbungstiefe proportional der geflossenen Ladung ist, ergibt sich aus diesem Ausführungsbeispiel, dass das erfindungsgemäße elektrochrome Element wesentlich schneller schaltet, als eines nach dem Stand der Technik.

4. Vergleich der Dauerschaltstabilität elektrochromer Elemente nach den Beispielen 1 und 2 unter Temperaturwechselbelastung

Mit elektrochromen Elementen der Größe 10 cm x 10 cm, welche mit einer ionenleitenden Folie nach Vergleichsbeispiel 1 bzw. Ausführungsbeispiel 2 hergestellt wurden, erfolgten Dauerschaltversuche unter Temperaturwechselbelastung, um die Langzeitstabilität der elektrochromen Elemente zu untersuchen. Dabei wurden die Scheiben mit einer temperaturabhängigen Gleichspannung gefärbt und mit derselben temperaturabhängigen Spannung umgekehrter Polarität entfärbt (Polung wie in Beispiel 3 beschrieben).

Die Temperaturabhängigkeit der Spannung U ist durch folgende Gleichung gegeben:

$$20 \quad U = 2,05V - 0,0145V/K \cdot \Delta T$$

mit U: Spannung bei der entsprechenden Scheibentemperatur T in V, ΔT : Temperaturdifferenz T + 20°C in K.

Die Färbe- und Entfärbeschritte folgen jeweils unmittelbar nacheinander, wobei die Färbe- und Entfärbezeit jeweils 3 min betrug, so dass pro Stunde 10 Schaltzyklen bzw. 240 Schaltzyklen pro Tag durchlaufen wurden.

Die Temperaturwechselbelastung während der Schaltung wurde in einem Klimaschrank realisiert. Ein Temperaturzyklus dauert dabei jeweils einen Tag. Die Temperatur wird bei diesem Temperaturzyklus 4 h bei +30° gehalten, dann innerhalb 4 h von +30°C auf +80°C erhöht, dann 4 h bei +80°C gehalten, danach

- 13 -

innerhalb von 4 h von +80°C auf -25°C abgesenkt, 4 h bei -25°C gehalten und schließlich wiederum innerhalb von 4 h von -25°C auf +30°C erhöht.

Vor Beginn der Dauerschalttests unter
5 Temperaturwechselbelastung wurde die schaltbare Ladungskapazität der Proben bei einer Färbe- bzw. Entfärbezeit von jeweils 3 min und einer Spannung von 1,4 V bei etwa 20°C Scheibentemperatur bestimmt. Diese Bestimmung wurde nach 4, 11, 18, 32, 60 bzw. 88 Temperaturzyklen (= Tagen) wiederholt. Nach
10 88 Temperaturzyklen (entsprechend 21.120 Färbe-/Entfärbezyklen) betrug die schaltbare Ladungskapazität und damit der erreichbare optische Schalthub der Probe nach Vergleichsbeispiel 1 nur noch 26% der Ausgangskapazität, hat sich also in etwa auf ein Viertel des Ausgangswertes
15 verringert. Dagegen betrug die schaltbare Ladungskapazität der Probe nach Ausführungsbeispiel 2 noch 69% des Ausgangswertes. Das erfindungsgemäße elektrochrome Element weist also eine wesentlich höhere Langzeitstabilität als ein Element nach dem Stand der Technik auf.

20

Patentansprüche

1. Ionenleitende thermoplastische Zusammensetzung, enthaltend einen teilacetalierten Polyvinylalkohol, mindestens ein Leitsalz und mindestens einen Weichmacher, **dadurch gekennzeichnet, dass** der teilacetalierte Polyvinylalkohol ein Copolymer, enthaltend die Monomereinheiten

- Vinylacetat
- Vinylalkohol
- Acetal I aus Vinylalkohol und mindestens einem Aldehyd der Formel I

mit R^1 : verzweigter oder unverzweigter Alkylrest mit 1 bis 10 Kohlenstoffatomen

- Acetal II aus Vinylalkohol und einer Carbonylverbindung der Formel II

20

mit R^2 = H, verzweigter oder unverzweigter Alkylrest mit 1 bis 10 Kohlenstoffatomen, R^3 = direkter Verbindung, verzweigter oder unverzweigter Alkylrest mit 1 bis 10 Kohlenstoffatomen, Arylrest mit 6 bis 18 Kohlenstoffatomen, und $\text{Y} = -\text{CO}_2\text{H}, -\text{SO}_3\text{H}, -\text{PO}_3\text{H}_2$

ist.

30 2. Ionenleitende thermoplastische Zusammensetzung nach Anspruch 1, **dadurch gekennzeichnet, dass** das Verhältnis der Monomereinheiten im teilacetalierten Polyvinylalkohol von Acetal I zu Acetal II 1:1 bis 10.000:1 beträgt.

3. Ionenleitende thermoplastische Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der teilacetalisierte Polyvinylalkohol
 - 0,01 bis 5 Gew.% Vinylacetat
 - 10 bis 40 Gew.% Vinylalkohol und
 - 40 bis 80 Gew.% Acetale I und IIenthält.
4. Ionenleitende thermoplastische Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Carbonylverbindung der Formel II säurefunktionalisierte Aldehyde eingesetzt werden.
5. Elektrochromes Verbundsystem aufgebaut aus zwei mit Elektroden beschichteten Körpern, von denen mindestens einer transparent ist und mindestens einer einen elektrochromen Film aufweist, die durch eine Folie mit einer Zusammensetzung gemäß einer der Ansprüche 1 bis 4 getrennt sind.
6. Elektrochromes Verbundsystem nach Anspruch 5, dadurch gekennzeichnet, dass mindestens einer der elektrochromen Filme ein bei katodischer Reduktion die Farbe änderndes Metallpolycyanometallat, Übergangsmetallocid oder leitfähiges Polymer enthält.
7. Elektrochromes Verbundsystem nach Anspruch 5, dadurch gekennzeichnet, dass mindestens einer der elektrochromen Filme ein bei anodischer Oxidation die Farbe änderndes Metallpolycyanometallat, Übergangsmetallocid oder leitfähiges Polymer enthält.

8. Verfahren zur Herstellung einer ionenleitenden Folie durch Extrusion einer Mischung von

a) 50 – 90 Gew.% eines teilacetalierten Polyvinylalkohols
5 enthaltend die Monomereinheiten

- Vinylacetat
- Vinylalkohol
- Acetal I aus Vinylalkohol und einem Aldehyd der Formel I

10

mit R^1 : verzweigter oder unverzweigter Alkylrest mit 1 bis 10 Kohlenstoffatomen

- Acetal II aus Vinylalkohol und einer Carbonylverbindung der Formel II

15

20

mit $\text{R}^2 = \text{H}$, verzweigter oder unverzweigter Alkylrest mit 1 bis 10 Kohlenstoffatomen,
 $\text{R}^3 = \text{verzweigter oder unverzweigter Alkylrest}$
 mit 1 bis 10 Kohlenstoffatomen, Arylrest mit 6 bis 18 Kohlenstoffatomen und

25

$\text{Y} = -\text{CO}_2\text{H}, -\text{SO}_3\text{H}, -\text{PO}_3\text{H}_2$

b) 10 bis 50 Gew.% mindestens eines Weichmachers und

c) 0,1 bis 25 Gew.% mindestens eines Leitsalzes.

30

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Extrusion unter Schmelzebruchbedingungen durchgeführt wird.

10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Folie ein- oder beidseitig mit einer Rauigkeit von R_z 40 – 120 μm geprägt wird.

35

Zeichnungen

5

10

15

Fig. 1

Fig. 2

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/051141

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01B1/12 C09K9/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H01B C09K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 657 897 A (FORD WERKE AG ; FORD FRANCE (FR); FORD MOTOR CO (GB)) 14 June 1995 (1995-06-14) cited in the application the whole document	1,5,8
A	EP 1 227 362 A (GESIMAT GMBH) 31 July 2002 (2002-07-31) cited in the application claims	1,5

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

18 October 2004

Date of mailing of the International search report

28/10/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Authorized officer

Puetz, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/051141

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
EP 0657897	A	14-06-1995	US 6087426 A DE 69427572 D1 DE 69427572 T2 EP 0657897 A1		11-07-2000 02-08-2001 18-10-2001 14-06-1995
EP 1227362	A	31-07-2002	EP 1227362 A1		31-07-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/051141

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H01B1/12 C09K9/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H01B C09K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, COMPENDEX

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 657 897 A (FORD WERKE AG ; FORD FRANCE (FR); FORD MOTOR CO (GB)) 14. Juni 1995 (1995-06-14) in der Anmeldung erwähnt das ganze Dokument -----	1,5,8
A	EP 1 227 362 A (GESIMAT GMBH) 31. Juli 2002 (2002-07-31) in der Anmeldung erwähnt Ansprüche -----	1,5

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

18. Oktober 2004

Absendedatum des Internationalen Recherchenberichts

28/10/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Bevollmächtigter Bediensteter

Puetz, C

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/051141

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
EP 0657897	A 14-06-1995	US 6087426 A	DE 69427572 D1	DE 69427572 T2	11-07-2000 02-08-2001 18-10-2001
		EP 0657897 A1			14-06-1995
EP 1227362	A 31-07-2002	EP 1227362	A1		31-07-2002