# manipulação de dados

Sara Mortara, Andrea Sánchez-Tapia, Diogo Rocha

11 fev 2020

#### sobre a aula

1. dados de biodiversidade

2. bases de dados relacionais

3. manipulação de dados em R

#### 1. dados de biodiversidade

#### dados & conhecimento



#### dados & conhecimento



Each step up
the pyramid
answers
questions
about and
adds value
to the initial data.

#### dados de biodiversidade

museus & herbários





### dados de biodiversidade

amostragem



espécies (informação taxonômica)

- espécies (informação taxonômica)
- atributos das espécies

- espécies (informação taxonômica)
- atributos das espécies
- localidades

- espécies (informação taxonômica)
- atributos das espécies
- localidades
- ocorrências

- espécies (informação taxonômica)
- atributos das espécies
- localidades
- ocorrências
- variáveis: altura, peso...

# padronização de dados em biodiversidade

**Darwin Core** 

facilitar o compartilhamento da informação sobre diversidade biológica



# padronização de dados em biodiversidade

#### **Darwin Core**



#### 2. bases de dados relacionais

diferentes dados são organizados em diferentes tabelas

- diferentes dados são organizados em diferentes tabelas
- tabelas são integradas

- diferentes dados são organizados em diferentes tabelas
- tabelas são integradas
- identificador comum para cada tabela

- diferentes dados são organizados em diferentes tabelas
- tabelas são integradas
- identificador comum para cada tabela
- em geral organizadas em SQL (Structured Query Language)

tipicamente análises de dados em diferentes tabelas

- tipicamente análises de dados em diferentes tabelas
- relações entre as tabelas são feitas aos pares

- tipicamente análises de dados em diferentes tabelas
- relações entre as tabelas são feitas aos pares
- relações de três ou mais tabelas são sempre propriedades das relações de cada par

- tipicamente análises de dados em diferentes tabelas
- relações entre as tabelas são feitas aos pares
- relações de três ou mais tabelas são sempre propriedades das relações de cada par
- usamos verbos para trabalhar com pares de tabelas

mutating

- mutating
- filtering

- mutating
- filtering
- set operations

- mutating
- filtering
- set operations
- no R manipulação de bases pode ser feita dentro dos pacotes base e dplyr



construído a partir da lógica de bases relacionais

mais fácil que SQL porque é voltado para análise de dados



construído a partir da lógica de bases relacionais

- mais fácil que SQL porque é voltado para análise de dados
- gramática para manipulação de dados



construído a partir da lógica de bases relacionais

- mais fácil que SQL porque é voltado para análise de dados
- gramática para manipulação de dados
- mutate()



construído a partir da lógica de bases relacionais

- mais fácil que SQL porque é voltado para análise de dados
- gramática para manipulação de dados
- mutate()
- ▶ filter()

#### estrutura de dados







Each **variable** is in its own **column** 

Each **observation**, or **case**, is in its own **row** 

| Foreign Keys |                  |   |         |          |       |          |          |                   |
|--------------|------------------|---|---------|----------|-------|----------|----------|-------------------|
| students:    |                  |   | grades: |          |       | Courses: |          |                   |
| id           | name             | 7 | student | course   | grade | (        | id       | name              |
| 1            | Anna Malli       |   | 4       | MATH 201 | A-    |          | C 5100   | Intro Comp Sci    |
| 2            | Anders Andersen  |   | E)      | CS413    | A     |          | MATH ZOI | Calculus          |
| 3            | Pierre Untel     |   | 3       | CSIDO    | B+    |          | ARTHZIS  | Surrealism        |
| 4            | Erika Mustermann |   | 6       | B10301   | В     |          | CS 413   | Purely Functional |
| 5            | Juan Pérez       |   | 1       | PHYZZZ   | Α     |          | B10301   | Anatomy           |
| 6            | Fulano de Tal    |   | 2       | ARTHZIS  | ß     |          | PH4222   | Electromagnetism  |
| :            | :                | l | :       |          |       | l        | -        |                   |

**chave** primária  $\rightarrow$  identifica uma observação em sua própria tabela

- **chave** primária  $\rightarrow$  identifica uma observação em sua própria tabela
- Chave estrangeira → identifica uma observação em uma outra tabela

- **chave** primária  $\rightarrow$  identifica uma observação em sua própria tabela
- ► chave estrangeira → identifica uma observação em uma outra tabela
- uma variável pode ser uma chave primária em uma tabela e uma chave estrangeira em outra

#### chaves

- **chave** primária  $\rightarrow$  identifica uma observação em sua própria tabela
- ► chave estrangeira → identifica uma observação em uma outra tabela
- uma variável pode ser uma chave primária em uma tabela e uma chave estrangeira em outra
- toda chave primária deve conter uma informação única!

#### chaves

- **chave** primária  $\rightarrow$  identifica uma observação em sua própria tabela
- ► chave estrangeira → identifica uma observação em uma outra tabela
- uma variável pode ser uma chave primária em uma tabela e uma chave estrangeira em outra
- toda chave primária deve conter uma informação única!
- toda tabela deve ter uma chave primária

é dada pela chave primária e sua respectiva chave estrangeira

► 1-para-muitas

é dada pela chave primária e sua respectiva chave estrangeira

- ► 1-para-muitas
- 1-para-1

é dada pela chave primária e sua respectiva chave estrangeira

- ► 1-para-muitas
- 1-para-1
- usamos as chaves para combinar tabelas

é dada pela chave primária e sua respectiva chave estrangeira

- ► 1-para-muitas
- 1-para-1
- usamos as chaves para combinar tabelas
- usamos merge() (base) ou join() (dplyr)

# usando relações para juntar dados



# equivalências entre dplyr e base

| dplyr                      | merge                                   |
|----------------------------|-----------------------------------------|
| inner_join(x, y)           | merge(x, y)                             |
| <pre>left_join(x, y)</pre> | merge(x, y, all.x = TRUE)               |
| right_join(x, y)           | merge(x, y, all.y = TRUE) ,             |
| full_join(x, y)            | merge(x, y, all.x = TRUE, all.y = TRUE) |

# 3. manipulação de dados em R

#### base de dados CESTES



Jeliazkov et al 2020 Sci Data

#### dados e código aberto

```
####### DATA PREPARATION FOR THE META-STUDY #######
########### Date: 09/03/2018 | Revision: 26/07/2019
############# Author: Alienor Jeliazkov
####
## Associated publication:
## Jeliazkov A., [78 co-authors] & J. Chase. A global database
for metacommunity ecology:
## species, traits, environment and space. Nature's Scientific
Data.
```

#### dados e código aberto

```
########## Load packages #####
library(doBy)
library(readxl)
library(plyr)
library(dplyr)
library(gdata)
library(cellranger)
########## Set working directory and load packages #####
setwd("Path to CESTES data dir") # directory where ONLY the DATA
Excel files are stored
setwd("C:/AJ/POSTDOC iDIV/PROJECTS/DB CESTES REV/xCESTES")
datfiles <- list.files() # list the files in the directory</pre>
```

### dados e código aberto

https://www.tidyverse.org/blog/2017/12/workflow-vs-script/

If the first line of your R script is

setwd("C:\Users\jenny\path\that\only\I\have")

I will come into your office and SET YOUR COMPUTER ON FIRE 🔥.

If the first line of your R script is

$$rm(list = ls())$$

I will come into your office and SET YOUR COMPUTER ON FIRE 🐠.



#### um fluxo de trabalho no R

começamos carregando os pacotes necessários

```
library("reshape2")
library("tidyverse")
```

#### explorando os dados

species vs. sites

```
files path <- list.files("data",
                         pattern = ".csv",
                         full.names = TRUE)
files_path
## [1] "data/comm.csv" "data/coord.csv" "data/envir.csv"
                                                              "da
## [5] "data/traits.csv"
files path[3]
## [1] "data/envir.csv"
```

#### lendo o dado no R

criando objetos 'data.frame'

```
comm <- read.csv(files_path[1])
coord <- read.csv(files_path[2])
envir <- read.csv(files_path[3])
splist <- read.csv(files_path[4])
traits <- read.csv(files_path[5])</pre>
```

#### outra opção de leitura do dado

criando objetos 'list'

```
data <- sapply(files_path, read.csv)
length(data)
## [1] 5
head(data[[4]])</pre>
```

```
##
              TaxonName Taxon TaxCode
## 1
       Arisarum vulgare
                         Arvu
                                  sp1
## 2
        Alisma plantago Alpl
                                  sp2
      Damasonium alisma Daal
##
                                  sp3
##
   4 Asphodelus aetivus
                        Asae
                                  sp4
##
  5
      Narcissus tazetta
                        Nata
                                   sp5
## 6
      Narcissus elegans
                         Nael
                                   sp6
```

#### ainda outra opção usando um ciclo

criando objetos 'list'

```
length(files_path)

data <- list()

for (i in 1:length(files_path)) {
   data[[i]] <- read.csv(files_path[i])
}</pre>
```

# inspecionando os dados da comunidade

# inspecionando os dados de atributos

#### traits[1:9, 1:7]

| ## |   | Sp  | ${\tt Anemo}$ | Auto | ${\tt Entomo}$ | Annual | Biennial | ${\tt Perennial}$ |
|----|---|-----|---------------|------|----------------|--------|----------|-------------------|
| ## | 1 | sp1 | 0             | 0    | 1              | 0      | 0        | 1                 |
| ## | 2 | sp2 | 0             | 0    | 1              | 0      | 0        | 1                 |
| ## | 3 | sp3 | 0             | 0    | 1              | 1      | 1        | 1                 |
| ## | 4 | sp4 | 0             | 0    | 1              | 0      | 0        | 1                 |
| ## | 5 | sp5 | 0             | 0    | 1              | 0      | 0        | 1                 |
| ## | 6 | sp6 | 0             | 0    | 1              | 0      | 0        | 1                 |
| ## | 7 | sp7 | 0             | 0    | 1              | 0      | 0        | 1                 |
| ## | 8 | sp8 | 0             | 0    | 1              | 0      | 0        | 1                 |
| ## | 9 | sp9 | 1             | 0    | 0              | 0      | 0        | 1                 |

#### inspecionando os dados ambientais

#### head(envir)

# inspecionando os dados de coordenadas

#### head(coord)

```
## Sites X Y
## 1 1 365.80 181.20
## 2 2 349.60 185.00
## 3 3 333.40 185.40
## 4 4 373.86 161.43
## 5 5 380.25 179.50
## 6 6 354.40 168.60
```

### inspecionando os dados da lista de espécies

## [1] 56

```
head(splist)
##
              TaxonName Taxon TaxCode
## 1
       Arisarum vulgare
                         Arvu
                                   sp1
## 2
        Alisma plantago Alpl
                                  sp2
##
      Damasonium alisma Daal
                                  sp3
                        Asae
                                  sp4
##
   4 Asphodelus aetivus
      Narcissus tazetta
## 5
                        Nata
                                   sp5
##
      Narcissus elegans
                         Nael
                                   sp6
# quantas especies?
nrow(splist)
```

# adicionando as coordenadas na planilha dos sites

```
# info sobre coord
names(coord)
## [1] "Sites" "X"
                       пУп
dim(coord)
## [1] 97 3
# info sobre envir
names(envir)
## [1] "Sites" "Clay" "Silt" "Sand"
                                                    "Mg"
                                           "K20"
                                                             "Na
## [9] "Elev"
dim(envir)
## [1] 97 9
```

# usando merge e uma coluna comum

coluna comum é chave primária e estrangeira

## [1] 97 11

# checando o merge

```
names(envir.coord)
## [1] "Sites" "Clay" "Silt" "Sand" "K20" "Mg" "]
## [8] "K" "Elev" "X" "Y"
```

# transformando a matriz espécie vs. area em tabela de dados

#### usando o pacote reshape

```
# transformando matriz em tabela de dado
comm.df <- reshape2::melt(comm[, -1])</pre>
## No id variables; using all as measure variables
# checando se funcionou
head(comm.df)
##
    variable value
## 1
          sp1
## 2
          sp1
## 3
          sp1
## 4
          sp1
## 5
          sp1
          sp1
## 6
```

#### usando o pacote reshape

##

##

# quantas vezes a especie se repete

97 97

```
table(comm.df$variable)
##
##
   sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 s
    97
        97
            97 97 97 97 97
                                      97
##
                                           97
                                               97
                                                   97
## sp16 sp17 sp18 sp19 sp20 sp21 sp22 sp23 sp24 sp25 sp26 sp27 s
##
    97
        97
            97
                 97
                     97 97
                              97
                                  97
                                      97
                                           97
                                               97
                                                   97
```

## sp31 sp32 sp33 sp34 sp35 sp36 sp37 sp38 sp39 sp40 sp41 sp42 s

## sp46 sp47 sp48 sp49 sp50 sp51 sp52 sp53 sp54 sp55 sp56

97 97 97 97

97 97

#### criando a variável "Sites"

```
# quantas especies?
n.sp <- nrow(splist)</pre>
n.sp
## [1] 56
# vetor contendo todos os Sites
Sites <- envir$Sites
length(Sites)
## [1] 97
comm.df$Sites <- rep(Sites, each = n.sp)</pre>
```

# checando se a primeira coluna foi criada

#### head(comm.df)

#### alterando o nome das colunas

```
names(comm.df)
## [1] "variable" "value" "Sites"
names(comm.df)[1:2] <- c("TaxCode", "Abundance")</pre>
head(comm.df)
##
     TaxCode Abundance Sites
## 1
         sp1
## 2
         sp1
         sp1
         sp1
         sp1
## 6
         sp1
```

### usando os pacote dplyr e tidyr

vamos adicionar uma coluna com o nome das espécies ao nosso objeto comm. df

#### usando os pacote dplyr e tidyr

comm.sp <- inner join(x = comm.df,

## to character vector

vamos adicionar uma coluna com o nome das espécies ao nosso objeto comm.df

```
y = splist[, c(1, 3)])
## Joining, by = "TaxCode"
## Warning: Column `TaxCode` joining factors with different leve
```

#### checando a nossa nova coluna

#### head(comm.sp)

| ## |   | ${\tt TaxCode}$ | ${\tt Abundance}$ | ${\tt Sites}$ | Ta               | axonName |
|----|---|-----------------|-------------------|---------------|------------------|----------|
| ## | 1 | sp1             | 0                 | 1             | Arisarum         | vulgare  |
| ## | 2 | sp1             | 0                 | 1             | ${\tt Arisarum}$ | vulgare  |
| ## | 3 | sp1             | 0                 | 1             | Arisarum         | vulgare  |
| ## | 4 | sp1             | 0                 | 1             | Arisarum         | vulgare  |
| ## | 5 | sp1             | 0                 | 1             | Arisarum         | vulgare  |
| ## | 6 | sp1             | 0                 | 1             | Arisarum         | vulgare  |

# usando o pacote tidyr

```
comm.tidy <- tidyr::gather(comm[, -1])</pre>
head(comm.tidy)
## key value
## 1 sp1
## 2 sp1 0
## 3 sp1 0
## 4 sp1 0
## 5 sp1
## 6 sp1
dim(comm.tidy)
## [1] 5432 2
```

#### juntando todas as variáveis em uma única tabela

juntando 'comm.sp', com 'envir.coord'

```
comm.envir <- inner_join(x = comm.sp,</pre>
                          v = envir.coord,
                          by = "Sites")
dim(comm.sp)
## [1] 5432 4
dim(envir.coord)
## [1] 97 11
dim(comm.envir)
## [1] 5432
              14
```