Ch. 5 Computation

1 Programs

1.1 Logical Instructions

Define \mathcal{L} ; an ordered set of logical operations s_i

$$\mathcal{L} := \{s_1, s_2, ..., s_N\}$$

1.2 Memory

Define Memory \mathcal{M} ; a set of elements, magnitudes, or sets b_i

$$\mathcal{M} := \{b_1, b_2, ..., b_M\}$$

1.3 State

Define state; the memory utilized to perform program P

$$P := \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M\} = \{s_1, s_2, ..., s_N, b_1, b_2, ..., b_M\}$$

1.4 Boolean Programs

Define a boolean program; boolean programs can represent functions with inputs x_i , input set C, and boolean output y_o

$$X = \{x_1, ..., x_n, C\}; \quad C = \{u_1, u_2, ..., u_c\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \{\mathbb{T}, \mathbb{F}\}$$

1.5 Void Programs

Define a void program; a program with inputs x_i , input set C, and no output

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M\}$$

1.6 Numerical Programs

Define a numerical program; a program with inputs x_i , input set C, and real, rational output y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \mathbb{Q} \ y_o \geqslant 0$$

1.7 System Programs

Define a system program; a program with inputs x_i , input set C, and real, output set Y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, Y_o\} =$$

$$P[X] \to Y_o = \{y_1, y_2, ..., y_K\}$$

1.8 Mathematical Programs

Define a mathematical program; a program with inputs x_i , input set C and numerical output y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \mathbb{Q}$$

- 2 No-op;
- 2.1 Definition

$$;:=\varnothing$$

2.2 Property of No-op

No-op can be inserted into any set with equality

$$S = \{s_1, s_2, ..., s_N\}$$

$$S_{;} = insert[S, ;, i]$$

$$S_{;} = S_1 \ \forall i$$

$$|S_{;}| = |S| \ \forall i$$

2.3 Proof

by definition of magnitude of null = 0 with Set And

3 Decision Problems

3.1 Definition

Define decision problem; a function with inputs x_i and boolean output "answer" a_o

$$X_i = \{x_1, ..., x_n, C\}$$
$$D := f[X_i] \to a_o \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_i$$

4 General Solutions

4.1 Definition

Program P is a general solution s^+ to decision problem D if

- 1. P outputs answer a_o for all inputs $X_i \ \forall i$ and
- 2. $s^+[X_i]$ is a subset of $s^+[\hat{X}_i]$

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$P[X_{i}] = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\}$$

$$s^{+} = P[X_{i}] = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} \quad \forall X_{i}$$

4.1.1 Property of No-op;

No-op; can be added to any solution S_i without modifying the output y_o

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$
$$\hat{s}^{+} \rightarrow \hat{y}_{o} = insert[s^{+}, ;, k]$$
$$\hat{y}_{o} = y_{o} \quad \forall k$$

4.2 Definition of S^+

Define S^+ ; the set of solutions to decision problem D

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s_{j}^{+} = s_{j}^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$S^{+} := \{s_{j}^{+}, ...\} \quad \forall j$$

4.3 Definition of Solvable

Define solvable

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$solvable := solvable[D] \rightarrow b_{o} \in \{\mathbb{T}, \mathbb{F}\} =$$

$$\exists P : (P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

5 The set of all Decision Problems \mathbb{D}

5.1 Definition

Define the set of decision problems \mathbb{D}

$$X_i = \{x_1, ..., x_n, C\}$$

$$D_j := f_j[X_i] \to a_o \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_i$$

$$\mathbb{D} := \{D_j, ...\} \quad \forall j$$

6 Instruction and Memory Notation

Define \mathcal{L} a set of logical operations Define \mathcal{M} a set of memory elements, magnitudes, and sets

$$X_{i} = \{x_{1}, ..., x_{n}, C\};$$

$$P[X_{i}] \rightarrow y_{o} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$\mathcal{L} := \{s_{1}, s_{2}, ..., s_{O_{T}[n]}\}$$

$$\mathcal{M} := \{b_{1}, b_{2}, ..., b_{O_{S}[n]}\}$$

$$P[X_{i}] = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

7 Complexity

7.1 Time Complexity of a Decision Problem $O_T[n]$

Define Time Complexity $O_T[n]$ of solution s^+ to Decision Problem D as the total number of logical operations

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O_{T}[n] := |\mathcal{L}| = N$$

7.2 Space Complexity $O_S[n]$

Define Space Complexity $O_S[n]$ of solution s^+ to Decision Problem D as the total number of memory elements

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O_{S}[n] := |\mathcal{M}| + |y_{o}|^{*} = M + 1$$

8 Definition of Complexity

Define Complexity O[n] as a vector of dimension Y

^{*}It is convention to reserve one memory element for output y_o . Void programs do not require the y_o memory element for output

$$\mathbf{O}[n] := \langle O_T[n], O_S[n], O_3[n], O_4[n]..., O_V[n] \rangle$$

9 Total Complexity

$$O[n] := O_T[n] + O_S[n] + \sum_{i=3}^{V} O_i[n]$$

10 Simple Computational Complexity

The remainder of this chapter assumes simple computational complexity of dimension 2

10.1 Definition

Define simple computational complexity of dimension 2

$$\mathbf{O}[n] := \langle O_T[n], O_S[n] \rangle$$

10.2 Time Complexity

Restate definition of Time Complexity $O_T[n]$ of solution s^+

$$s^+ = \{\mathcal{L}, \mathcal{M}, y_o\}$$

$$O_T[n] := |\mathcal{L}| = N$$

10.3 Space Complexity

Restate definition of Time Complexity $O_S[n]$ of solution s^+

$$s^+ = \{\mathcal{L}, \mathcal{M}, y_o\}$$

$$O_S[n] := |\mathcal{M}| + |y_o| = M + 1$$

10.4 Total Complexity

$$O[n] := O_T[n] + O_S[n]$$

= $|\mathcal{L}| + |\mathcal{M}| + |y_o| = N + M + 1$

10.5
$$O_S[n] \neq 0$$

10.5.1 Proof

By definition of decision problem; Proof by contradiction; y_o must be set to TF by definition; Suppose yo = 0; then yo is empty set; contradicts definition of D

10.6 $O_T[n] \neq 0$

10.6.1 **Proof**

By definition of decision problem; Proof by contradiction; y_o must be set to TF by definition; Suppose $|\mathbf{L}|=0$; yo <- TF cap L is null by definition of empty set; implies yo emptyset (doesnt exist)

10.7 $O[n] = O_T[n] + O_S[n] \neq 0$

10.7.1 Proof

10.8 $O[n] > O_T[n]$

10.8.1 **Proof**

10.9 $O[n] > O_S[n]$

10.9.1 **Proof**

10.10 $O[n+1] \geqslant O[n]$

11 Polynomial Complexity

11.1 Definition

Decision problem D with solution s^+ has polynomial total complexity O[n] if

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

11.2 Polynomial Problems

Define \mathbb{P} , the set of Decision Problems that can be solved with Polynomial Complexity

$$\mathbb{P} := \{D_1, D_2, \dots\} :$$

$$\exists K, C, \lambda_1 \dots \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \quad \forall n, D_i \in \mathbb{P}$$

11.3 Polynomial Order of Complexity

Solution s^+ with total complexity O[n] is said to be of order n^K

$$O[n] \sim n^K$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \quad \forall n$$

11.4 Property of Polynomial Complexity 1

Solutions with polynomial complexity have convergent complexity

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$$

11.4.1 Proof WIP

FIX!!! Show there exists no constant satisfying the decreasing limit condition

$$O[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

$$O[n+1] < (\lambda_K (n+1))^K + (\lambda_{K-1} (n+1))^{K-1} \dots + \lambda_1 (n+1) + C$$

$$O[n] \sim (\lambda n)^K; \quad O[n+1] \sim (\lambda n)^K$$

$$\lim_{n \to \infty} \frac{(\lambda n)^K}{(\lambda n)^K} = 1$$

11.5 Property of Polynomial Complexity 2

$$\exists K, C, \lambda_1, ..., \lambda_K :$$

$$(O[n+1] - O[n]) = f_{n+1}[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

11.5.1 Proof FIX!!!

$$O[n+1] < (\lambda_K(n+1))^K + (\lambda_{K-1}(n+1))^{K-1} \dots + \lambda_1(n+1) + C$$
$$O[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

11.6 Total Polynomial Complexity Implies Time bounded Polynomial Complexity

$$D \in \mathbb{P} \Longrightarrow O_T[n] < \dots$$

11.6.1 **Proof FIX!!!**

$$O[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$$

$$O[n] := O_T[n] + O_S[n]; \ O_T[n] < O[n]$$

$$\therefore O_T[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$$

11.7 Total Polynomial Complexity Implies Space bounded Polynomial Complexity

$$D \in \mathbb{P} \Longrightarrow O_S[n] < \dots$$

11.7.1 Proof FIX!!!

$$O[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \ \forall n$$

$$O[n] := O_T[n] + O_S[n]; \ O_S[n] < O[n]$$

$$\therefore O_S[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \ \forall n$$

11.8 Total Polynomial Complexity iff Time and Space bounded by Polynomial Complexity

Use limit definition

11.9 Order of Complexity

ERROR in second condition

Total Complexity is said to be on the order of K_{max}

$$O[n] \sim K_{max}$$

$$K_{max} := K :$$

$$O[n] < (\lambda_{K_{max}} n)^{K_{max}} + (\lambda_{K_{max}-1} n)^{K_{max}-1} \dots + \lambda_1 n + C \quad \forall n$$

$$\nexists O[n] < (\lambda_{\hat{K}_{max}} n)^{\hat{K}_{max}} + (\lambda_{\hat{K}_{max}-1} n)^{\hat{K}_{max}-1} \dots + \lambda_1 n + C \quad \forall n, \hat{K} < K_{max}$$

11.10 Theorem Either OT or OS is on the order of Oopt

Proof by contradiction

12 Polynomial Time Complexity

12.1 Definition

Decision problem D with (optimal) Time Complexity $O_T[n]$ is bounded by polynomial time complexity if

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O_T[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

12.2 Polynomial Time Solutions

Define \mathbb{S}_{time}^+ , the set of solutions that can be solved with polynomial time complexity

$$\mathbb{S}_{time}^{+} := \{s_{1}^{+}, s_{2}^{+}, ...\} : \\ \exists K, C, \lambda_{1} ... \lambda_{K} : \\ O_{T}[n] < (\lambda_{K}n)^{K} + (\lambda_{K-1}n)^{K-1} ... + \lambda_{1}n + C \quad \forall n, s_{i} \in \mathbb{S}_{time}^{+}$$

12.3 Property of Polynomial Time Complexity 1

$$\lim_{n\to\infty} \frac{O_T[n+1]}{O_T[n]} = 1$$

12.3.1 Proof

12.4 Property of Polynomial Time Complexity 2

$$\exists K, C, \lambda_1, ..., \lambda_K :$$

$$(O_T[n+1] - O_T[n]) < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \ \forall n$$

12.4.1 Proof

12.5 Order of Complexity

Time complexity $O_T[n]$ is said to be on the order of K_{max}

$$O_T[n] < (\lambda_{K_{max}} n)^{K_{max}} + (\lambda_{K_{max}-1} n)^{K_{max}-1} \dots + \lambda_1 n + C$$

$$O_T[n] \sim K_{max}$$

12.6 Proof of the existence of $O_{T_{opt}}$

13 Polynomial Space Complexity

13.1 Defintion

Decision problem D with (optimal) Time Complexity $O_S[n]$ is bounded by polynomial time complexity if

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O_S[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

13.2 Polynomial Space Problems

Define \mathbb{S}_{space}^+ , the set of solutions that can be solved with polynomial time complexity

$$\mathbb{S}^{+}_{space} := \{s_{1}, s_{2}, ...\} : \\ \exists K, C, \lambda_{1} ... \lambda_{K} : \\ O_{S}[n] < (\lambda_{K}n)^{K} + (\lambda_{K-1}n)^{K-1} ... + \lambda_{1}n + C \quad \forall n, s_{i} \in \mathbb{S}^{+}_{time}$$

- 13.3 Total Polynomial Complexity Implies Space bounded Polynomial Complexity
- 13.4 Space Bounded Polynomial Complexity Implies Total Polynomial Complexity
- 13.5 Polynomial Space Complexity iff Polynomial Complexity
- 13.6 Property of Polynomial Space Complexity 1

$$\lim_{n\to\infty} \frac{O_S[n+1]}{O_S[n]} = 1$$

13.6.1 Proof

13.7 Property of Polynomial Space Complexity 2

$$\exists K, C, \lambda_1, ..., \lambda_K : (O_S[n+1] - O_S[n]) < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \ \forall n \ \forall n$$

13.7.1 Proof

13.8 Order of Complexity

Space complexity $O_S[n]$ is said to be on the order of K_{max}

$$O_S[n] < (\lambda_{K_{max}} n)^{K_{max}} + (\lambda_{K_{max}-1} n)^{K_{max}-1} \dots + \lambda_1 n + C$$

 $O_S[n] \sim K_{max}$

13.9 Proof of the existence of $O_{S_{opt}}$

14 Non-Polynomial Complexity

14.1 Definition

Decision problem \tilde{D} with solution s^+ has non-polynomial total complexity O[n] if

$$\sharp K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

14.2 Non-Polynomial Problems

Define \mathcal{N} , the set of Decision Problems that cannot be solved with Polynomial Complexity

$$\mathcal{N} := \{ \tilde{D}_1, \tilde{D}_2, \ldots \} :$$

$$\sharp K, C, \lambda_1 \ldots \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \ldots + \lambda_1 n + C \quad \forall n, \tilde{D} \in \mathcal{N}$$

14.3 \mathbb{P} and \mathcal{N} are disjoint

$$\mathbb{P} \cap \mathcal{N} = \varnothing$$

14.3.1 Proof

Proof by contradiction

15 Divergent Complexity

15.1 Defintion

Decision problem \hat{D} with solution s^+ has divergent total complexity O[n] if

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]} \ diverges \ \forall n$$

15.2 Divergent Problems

$$\hat{\mathcal{D}} := \{\hat{D}_1, \hat{D}_2, ...\} :$$

$$\lim_{n \to \infty} \frac{O[n+1]}{O[n]} \ diverges \ \forall \hat{D} \in \hat{\mathcal{D}}$$

15.3 Derivative Property of Divergent Solutions

$$\lim_{n\to\infty} O[n+1] - O[n]$$
 diverges

15.3.1 **Proof**

15.4 The Set of Polynomial Solutions and the Set of Divergent Solutions are disjoint

$$\mathbb{P} \cap \hat{D} = \emptyset$$

15.5 Proof

Proof by contradiction; Let $s^+ \in \mathbb{P}$, \hat{D} ; $s^+ \in \mathbb{P} \cap \hat{D}$

$$X_i = \{x_1, ..., x_n\}$$
$$D := f[X_i] \to a_o \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_i$$

Let
$$D \in \mathbb{P}$$

$$s^{+} := P[X_{i}] \to y_{o} : y_{o} = a_{o} \quad \forall X_{i}$$

$$O[n] = O_{T}[n] + O_{S}[n] < (\lambda_{K}n)^{K} + (\lambda_{K-1}n)^{K-1} \dots + \lambda_{1}n + C \quad \forall n$$

16 Inductive Functions

16.1 Inductive Function f_{n+1}

$$O[n] := O_T[n] + O_S[n]$$
 $O[n+1] = O_T[n+1] + O_S[n+1]$
 $f_{n+1}[n] := f[n] :$
 $O[n+1] = f[n] + O[n] \quad \forall n$

16.1.1 Proof of existence

Algebraic Proof

16.2 Inductive Space and Time Formulas

$$f_{n+1}^{T} := O_{T}[n+1] - O_{T}[n]$$

$$O_{T}[n+1] = O_{T}[n] + f_{n+1}^{T}$$

$$f_{n+1}^{S} := O_{S}[n+1] - O_{S}[n]$$

$$O_{S}[n+1] = O_{S}[n] + f_{n+1}^{S}$$

16.2.1 Proof of existence

Algebraic Proof

16.3 Inductive Function Expressions

Relate $f_{n+1}[n]$ to equivalence functions

$$D \in \mathbb{P}$$

$$O[n] := O_T[n] + O_S[n]$$

$$O[n+1] = O_T[n+1] + O_S[n+1] = O[n] + f_{n+1}[n]$$

$$O_T[n] = O[n] - O_S[n]$$

$$O_S[n] = O[n] - O_T[n]$$

$$f_{n+1} = O[n+1] - O[n]$$

$$f_{n+1} = O_T[n+1] + O_S[n+1] - O[n]$$

$$f_{n+1} = O_T[n+1] - O_T[n] + O_S[n+1] - O_S[n]$$

$$f_{n+1} = O[n+1] - O_T[n] - O_S[n]$$

$$f_{n+1}[n] = f_{n+1}^T[n] + f_{n+1}^S[n]$$

16.4 Zero Order Inductive Function

$$Let \ O_S[n] \sim n^0$$

$$f_{n+1} = O_T[n+1] - O_T[n] + O_S[n+1] - O_S[n] = O_T[n+1] - O_T[n]$$

16.5 Property of Polynomial Complexity

 $f_{n+1}[n]$ has order less than O[n] $f_{n+1}[n]$ is bound by K_{max} - 1

16.5.1 **Proof**

Proof by contradiction; limit doesn't converge

17 Subfunctions

17.1 Restate the subfunction condition of general solutions

Recall the definition of general solution s^+

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

The subfunction condition is one of two conditions for a general solution

$$P[\hat{X}_i] \supseteq P[X_i] \ \forall X_i, \hat{X}_i$$

17.2 Prove O[n] is a non-decreasing function

Consider solution s^+ with complexity O[n]

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O[n] := O_{T}[n] + O_{S}[n]$$

$$O_{T}[n] := |\mathcal{L}| = N$$

$$O_{S}[n] := |\mathcal{M}| + |y_{o}| = M + 1$$

O[n+1] denotes the total complexity for solution $s^+[\hat{X}_i]$

$$s^+[\hat{X}_i] = \hat{s}^+$$

Let

$$O[n+1] < O[n]$$

$$\Rightarrow \hat{N} + \hat{M} < N + M$$

$$\hat{s}^+ = \{s_1, s_2, ..., s_{\hat{N}} | b_1, b_2, ..., b_{\hat{M}}, y_o\}$$

$$\Rightarrow \hat{s}^+ \not \supseteq s^+$$

$$P[\hat{X}_i] \not\supseteq P[X_i] \quad \forall X_i, \hat{X}_i$$

 $\therefore O[n+1] < O[n]$ contradicts the definition of solution s^+ $O[n+1] \geqslant O[n]$

17.3 Definition of Subfunction

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub[X_{i}] := S = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S$$

17.3.1 $s^+[X_i]$ is a subfunction of $s^+[\hat{X}_i]$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$\hat{s}^{+} = \{s_{1}, s_{2}, ..., s_{N}, ..., s_{\hat{N}} | b_{1}, b_{2}, ..., b_{M}, ..., b_{\hat{M}}, y_{o}\}; \quad \hat{N} + \hat{M} \geqslant N + M$$

By definition of solution

$$\begin{split} \hat{s}^+ &= P[\hat{X}_i] \supseteq P[X_i] = s^+ \quad \forall X_i, \hat{X}_i \\ &\Rightarrow s_j, b_k \in \hat{s}^+ \quad \forall s_j, b_k \in s^+ \end{split}$$

17.4 Subfunction Decomposition of Solutions

Solutions s^+ can be written as the union of subfunctions $Sub_k[X_i]$

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$s^{+} = Sub_{1}[X_{i}] \cup Sub_{2}[X_{i}] \cup ... \cup Sub_{z}[X_{i}]$$

$$= \{\mathcal{L}_{1} | \mathcal{M}_{1}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}_{2}, y_{o}\} \cup ... \cup \{\mathcal{L}_{z} | \mathcal{M}_{z}, y_{o}\} :$$

$$\mathcal{L}_{j} \cap \mathcal{L}_{k} = \emptyset \quad \forall j, k \neq j$$

$$s^{+} = \{s_{1}^{1}, ..., s_{N_{1}}^{1} | b_{1}^{1}, ..., y_{o}\} \cup \{s_{1}^{2}, ..., s_{N_{2}}^{2} | b_{1}^{2}, ..., y_{o}\} \cup ... \cup \{s_{1}^{z}, ..., s_{N_{z}}^{z} | b_{1}^{z}, ..., y_{o}\} :$$

$$\sum_{l=1}^{z} N_{l} = N = O_{T}[n]$$

18 Subfunction Complexity

18.1 Disjoint Subfunction Operations

$$\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$$

18.2 Shared Subfunction Memory

$$|\mathcal{M}_i \cap \mathcal{M}_i| \geqslant 0 \ \forall i, j \neq i$$

18.2.1 Time Complexity of Subfunctions

Subfunction time complexity is additive

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, \dots | b_{k}, \dots, y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}_{1}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}_{2}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}_{z}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$\mathcal{L} = \bigcup_{i=1}^{z} \mathcal{L}_{i}$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \ \forall i, j \neq i$$

$$O_{T}[n] = |\mathcal{L}| = N$$

$$O_{T}[n] = | \cup_{i=1}^{z} \mathcal{L}_{i}| = \sum_{i=1}^{z} |\mathcal{L}_{i}|^{*} = |\mathcal{L}_{1}| + |\mathcal{L}_{2}| + \dots + |\mathcal{L}_{z}|$$

$$= O_{T_{1}}[n] + O_{T_{2}}[n] + \dots + O_{T_{z}}[n] = N_{1} + N_{2} + \dots + N_{z}$$

*Due to the disjoint condition of subfunction operations $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$

18.2.2 Space Complexity of Subfunctions

Subfunctions can access the full memory \mathcal{M} with no added space complexity

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, \dots | b_{k}, \dots, y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}_{1}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}_{2}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}_{z}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$\mathcal{M} = \cup_{i=1}^{z} \mathcal{M}_{i} = \cup_{i=1}^{z} \mathcal{M}$$

$$O_{S}[n] = |\mathcal{M}| = M$$

$$O_{S}[n] = |\cup_{i=1}^{z} \mathcal{M}_{i}| = |\cup_{i=1}^{z} \mathcal{M}| = M$$

18.2.3 Shared State Notation

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}, y_{o}\} \cup ... \cup \{\mathcal{L}_{z} | \mathcal{M}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

19 Subfunction Theorems

Might be for subfunctions of polynomial and divergent

19.1 Restate Definition of Subfunction

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub[X_{i}] := S = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S$$

19.2 The Union of Two Converging Subfunctions is Convergent

Let

$$Sub_1[X]$$
 with total complexity $O_1[n]$

$$O_1[n]$$
:
 $limit_{n\to\infty} \frac{O_1[n+1]}{O_1[n]} = c_1$

 $Sub_2[X]$ with total complexity $O_2[n]$

$$O_2[n]$$
:
$$limit_{n\to\infty} \frac{O_2[n+1]}{O_2[n]} = c_2$$

$$Sub_{1;2}[X] = Sub_1[X] \cup Sub_2[X]$$
 with complexity $O[n]$
$$limit_{n\to\infty} \frac{O[n+1]}{O[n]} = c$$

19.2.1 Proof

Show

$$\begin{split} limit_{n\to\infty} \frac{O[n+1]}{O[n]} &= c \\ Sub_{1;2}[X] &= Sub_{1}[X] \cup Sub_{2}[X] \text{ with complexity } O[n] \\ O_{1}[n] &= O_{T_{1}}[n] + O_{S}[n] \\ O_{2}[n] &= O_{T_{2}}[n] + O_{S}[n] \\ O[n] &= O_{T_{1}}[n] + O_{T_{2}}[n] + O_{S}[n] \\ \\ \frac{O[n]}{O[n]} &= \frac{O_{T_{1}}[n+1] + O_{T_{2}}[n+1] + O_{S}[n+1]}{O_{T_{1}}[n] + O_{T_{2}}[n] + O_{S}[n]} \\ \\ \frac{O[n+1]}{O[n]} &= \frac{O_{T_{1}}[n+1] + O_{S}[n+1]}{O_{T_{1}}[n] + O_{T_{2}}[n] + O_{S}[n]} + \frac{O_{T_{2}}[n+1]}{O_{T_{1}}[n] + O_{T_{2}}[n] + O_{S}[n]} \end{split}$$

For all non-decreasing functions f[n], g[n]

$$f_{n+1}$$
 goes to 0 faster

19.3 The Union of Two Divergent Subfunctions is Divergent

Let

$$Sub_1[X]$$
 with total complexity $O_1[n]$
$$O_1[n]:$$

$$limit_{n\to\infty} \frac{O_1[n+1]}{O_1[n]} diverges$$

$$Sub_2[X]$$
 with total complexity $O_2[n]$

$$O_2[n]$$
:
$$limit_{n\to\infty} \frac{O_2[n+1]}{O_2[n]} diverges$$

$$Sub_{1;2}[X] = Sub_1[X] \cup Sub_2[X]$$
 with complexity $O[n]$
$$limit_{n\to\infty} \frac{O[n+1]}{O[n]} diverges$$

19.3.1 Proof

Show

$$limit_{n\to\infty} \frac{O[n+1]}{O[n]} diverges$$

19.4 The Union of a convergent and divergent subfunction is Divergent

Let

$$Sub_1[X]$$
 with total complexity $O_1[n]$

$$O_1[n]$$
:
$$limit_{n\to\infty} \frac{O_1[n+1]}{O_1[n]} = c_1$$

 $Sub_2[X]$ with total complexity $O_2[n]$

$$O_2[n]$$
:
$$limit_{n\to\infty} \frac{O_2[n+1]}{O_2[n]} = diverges$$

$$Sub_{1:2}[X] = Sub_1[X] \cup Sub_2[X]$$
 with complexity $O[n]$

Show

$$limit_{n\to\infty} \frac{O[n+1]}{O[n]} diverges$$

19.4.1 Proof

19.5 Theorem of Divergent Subfunctions

$$\begin{array}{ll} \textbf{19.5.1} & limit_{n\to\infty} \frac{O[n+1]}{O[n]} \ \textbf{diverges} \Rightarrow \\ & \exists Sub_h[X_i] : limit_{n\to\infty} \frac{O_h[n+1]}{O_h[n]} \ \textbf{diverges} \end{array}$$

If any subfunction of s^+ diverges, then O[n+1]/O[n] diverges, $f_{n+1}/O[n]$ diverges Consider solution s^+ with polynomial total complexity O[n] containing z subfunctions $Sub_k[X_i]$ k = 1..z

FIX!!! concerns about OS memory complexity; $c_h = c_{T_h} + c_{S_h}$; c_{S_h} is the same for all subfunctions

$$\begin{split} X_i &= \{x_1,...,x_n,C\}; \ \ \hat{X}_i = \{x_1,...,x_{n+1},C\} \\ s^+ &= s^+[X_i] := P: \\ (P[X_i] \to y_o == a_o \quad \forall X_i) \quad \cap \quad (P[\hat{X}_i] \supseteq P[X_i] \quad \forall X_i,\hat{X}_i) \\ s^+ &= \{s_1,s_2,...,s_N|b_1,b_2,...,b_M,y_o\} = \{s_1,s_2,...,s_{O_T[n]},b_1,b_2,...,b_{O_S[n]},y_o\} \\ &= \{\mathcal{L},\mathcal{M},y_o\} \end{split}$$

$$Sub_{h}[X_{i}] := S_{h} = \{s_{j}, \dots | b_{k}, \dots, y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{h}$$

$$s^{+} = Sub_{1}[X_{i}] \cup Sub_{2}[X_{i}] \cup \dots \cup Sub_{z}[X_{i}]$$

$$O[n] = O_{T_{1}}[n] + O_{T_{2}}[n] + \dots + O_{T_{z}}[n] + |O_{S_{1}}[n] \cup O_{S_{2}}[n] \cup \dots \cup O_{S_{z}}[n]|$$

$$= O_{T_{1}}[n] + O_{T_{2}}[n] + \dots + O_{T_{z}}[n] + O_{S}[n]$$

By defintion of divergent complexity

$$limit_{n\to\infty} \frac{O[n+1]}{O[n]}$$
 diverges

Suppose there does not exist a diverging subfunction $Sub_h[X_i]$ for all h

$$\sharp Sub_h[X_i]:$$

$$limit_{n\to\infty} \frac{O_h[n+1]}{O_h[n]} \text{ diverges} \quad \forall h$$

$$\Rightarrow limit_{n\to\infty} \frac{O_h[n+1]}{O_h[n]} = c_h \quad \forall h$$

$$limit_{n\to\infty} \frac{O_1[n+1] + O_2[n+1] + \dots + O_z[n+1]}{O_1[n] + O_2[n] + \dots + O_z[n]}$$

Let

$$\begin{split} g_h[n] &= \sum_{i \neq h} O_i[n] \geqslant 0^* \\ &\Rightarrow 0 \leqslant limit_{n \to \infty} \frac{O_h[n+1]}{O_h[n] + g_h[n]} \leqslant c_h \\ &limit_{n \to \infty} \frac{O_1[n+1]}{O_1[n] + g_1[n]} + \frac{O_2[n+1]}{O_2[n] + g_2[n]} + \dots + \frac{O_z[n+1]}{O_1[n] + g_z[n]} \\ 0 \leqslant limit_{n \to \infty} \frac{O_1[n+1]}{O_1[n] + g_1[n]} + \frac{O_2[n+1]}{O_2[n] + g_2[n]} + \dots + \frac{O_z[n+1]}{O_1[n] + g_z[n]} \leqslant \sum_{i=1}^z c_i \\ \Rightarrow limit_{n \to \infty} \frac{O_1[n+1]}{O_1[n] + g_1[n]} + \frac{O_2[n+1]}{O_2[n] + g_2[n]} + \dots + \frac{O_z[n+1]}{O_1[n] + g_z[n]} = \tilde{C} \\ 0 \leqslant \tilde{C} \leqslant \sum_{i=1}^z c_i \end{split}$$

 $*O_i[n] \ge 0$ is a non-decreasing function

Assuming

$$\sharp Sub_h[X_i]:$$

$$limit_{n\to\infty} \frac{O_h[n+1]}{O_h[n]} \text{ diverges} \quad \forall h$$

$$\Rightarrow limit_{n\to\infty} \frac{O_[n+1]}{O_1[n]} = \tilde{C}$$

Contradicting the definition of divergent solution

$$\therefore \exists Sub_h[X_i]:$$

$$limit_{n\to\infty} \frac{O_h[n+1]}{O_h[n]} \text{ diverges}$$

19.5.2
$$\exists Sub_h[X_i] : limit_{n \to \infty} \frac{O_h[n+1]}{O_h[n]} \text{ diverges} \Rightarrow limit_{n \to \infty} \frac{O[n+1]}{O[n]} \text{ diverges}$$

FIX!!! SPACE OS portion

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{h}[X_{i}] := S_{h} = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{h}$$

$$s^{+} = Sub_{1}[X_{i}] \cup Sub_{2}[X_{i}] \cup ... \cup Sub_{z}[X_{i}]$$

$$O[n] = O_{T_{1}}[n] + O_{T_{2}}[n] + ... + O_{T_{z}}[n] + O_{S_{1}}[n]$$

$$= O_{T_{1}}[n] + O_{T_{2}}[n] + ... + O_{T_{z}}[n] + O_{S_{1}}[n]$$

Suppose

$$\exists Sub_h[X_i] : limit_{n\to\infty} \frac{O_h[n+1]}{O_h[n]}$$
 diverges

$$\frac{O_h[n+1]}{O_h[n]} \geqslant 1^* \quad \forall h$$

 ${}^*O_h[n]$ is a positive non-decreasing function

$$\begin{split} limit_{n \to \infty} \frac{O[n+1]}{O[n]} \\ &= limit_{n \to \infty} \frac{O_1[n+1] + O_2[n+1] + \ldots + O_z[n+1]}{O_1[n] + O_2[n] + \ldots + O_z[n]} \\ limit_{n \to \infty} \frac{O_1[n+1]}{O[n]} + \ldots + \frac{O_h[n+1]}{O[n]} + \ldots + \frac{O_z[n+1]}{O[n]} \end{split}$$

$$limit_{n\to\infty} \frac{O_h[n+1]}{O[n]} = limit_{n\to\infty} \frac{O_h[n+1]}{O_h[n] + g_h[n]}$$

$$\begin{split} &= limit_{n \to \infty} \big(\frac{O_h[n+1]}{O_h[n]]} - \frac{g_h[n]O_h[n+1]}{O_h[n](O_h[n] + g_h[n])} \big) \\ &= limit_{n \to \infty} \big(\frac{O_h[n+1]}{O_h[n]]} - \frac{(O[n] - O_h[n])(O_h[n] + f_{n+1}[n])}{O_h[n]O[n]} \big) \\ &= limit_{n \to \infty} \big(\frac{O_h[n+1]}{O_h[n]]} + \frac{-O_h[n]O[n] - f_{n+1}[n]O[n] + O_h^2[n] + f_{n+1}O_h[n]}{O_h[n]O[n]} \big) \\ &= limit_{n \to \infty} \big(\frac{O_h[n+1]}{O_h[n]]} - 1 - \frac{f_{n+1}^h[n]}{O_h[n]} + \frac{O_h[n]}{O[n]} + \frac{f_{n+1}^h[n]}{O[n]} \big) \end{split}$$

19.6 Sum of convergent, divergent, and constant subfunctions

Let

$$s^+ = \cup_{i=1}^z Sub_i[X]$$

20 Sum to N Problem with 2 integers

20.1 State formal definition of Sum to N: $x_i + x_j == N$

$$X_{i} = \{x_{1}, ..., x_{n}, N\}$$

$$D := f[X_{i}] \to a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+} = P :$$

$$(P[X_{i}] \to y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$D = f[X_{i}] = \exists x_{i}, x_{k} \in X_{i} : x_{i} + x_{k} == N$$

20.2 Express a formal solution : $O_S[n] \sim n^0$

$$\begin{split} s^+ &= \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} = \{\mathcal{L}, \mathcal{M}, y_o\} \\ s_1 &= y_o \leftarrow \mathbb{F}; \\ \forall i, j > i \end{split}$$

$$\begin{split} s_2, s_3, s_8, s_9, \dots, s_{3ij-4}, s_{3ij-3} \dots, s_{3n(n-1)-4}, s_{3n(n-1)-3} &= b_1 \leftarrow x_i + x_j \\ s_4, s_5, s_{10}, s_{11}, \dots, s_{3ij-2}, s_{3ij-1} \dots, s_{3n(n-1)-2}, s_{3n(n-1)-1} &= b_1 \leftarrow b_1 == N \\ s_6, s_7, s_{12}, s_{13} \dots, s_{3ij}, s_{3ij+1} \dots, s_{3n(n-1)}, s_{3n(n-1)+1} &= y_o \leftarrow y_o \lor b_1 \\ s^+ &= \{y_o \leftarrow \mathbb{F}, y_o \leftarrow y_o \lor (x_i + x_j == N) \ \ \, \forall i, j > i \mid b_1, y_o \} \end{split}$$

20.3 Show s^+ satisfies the subfunction condition of solutions: $P[\hat{X}_i] \supseteq P[X_i] \ \ \forall \hat{X}_i, X_i$

$$X_{i} = \{x_{1}, ..., x_{n}, N\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, N\}$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$s^{+}_{n+1} = s^{+} \cup \hat{s}^{+}$$

$$s_{1} = y_{o} \leftarrow \mathbb{F};$$

$$\forall i, j > i$$

$$s_2, s_3, s_8, s_9, ..., s_{3ij-4}, s_{3ij-3}..., s_{3n(n-1)-4}, s_{3n(n-1)-3} = b_1 \leftarrow x_i + x_j$$

$$s_4, s_5, s_{10}, s_{11}, ..., s_{3ij-2}, s_{3ij-1}..., s_{3n(n-1)-2}, s_{3n(n-1)-1} = b_1 \leftarrow b_1 == N$$

$$s_{6}, s_{7}, s_{12}, s_{13}..., s_{3ij}, s_{3ij+1}..., s_{3n(n-1)}, s_{3n(n-1)+1} = y_{o} \leftarrow y_{o} \vee b_{1}$$

$$\forall k$$

$$s... = b_{1} \leftarrow x_{k} + x_{n+1}$$

$$s... = b_{1} \leftarrow b_{1} == N$$

$$s... = y_{o} \leftarrow y_{o} \vee b_{1}$$

$$s^{+} = \{y_{o} \leftarrow \mathbb{F}, y_{o} \leftarrow y_{o} \vee (x_{i} + x_{j} == N) \quad \forall i, j > i \mid b_{1}, y_{o}\}$$

$$\hat{s}^{+} = \{y_{o} \leftarrow y_{o} \vee (x_{k} + x_{n+1} == N) \quad \forall k < n+1 \mid b_{1}, y_{o}\}$$

$$s_{n+1}^{+} = \{y_{o} \leftarrow \mathbb{F}, y_{o} \leftarrow y_{o} \vee (x_{i} + x_{j} == N) \quad \forall i, j > i \mid b_{1}, y_{o}\} \cup \{s_{n+1}^{+} = s_{n+1}^{+} =$$

$$s_{n+1}^+ = P[\hat{X}_i] \supseteq P[X_i] = s^+$$

 $\{y_o \leftarrow y_o \lor (x_k + x_{n+1} == N) \ \forall k < n+1 | b_1, y_o\}$

20.4 Determine $O[n], O_S[n], O_T[n], \hat{O}[n], \hat{O}_T[n], \hat{O}_S[n]$ for the above solution

$$O_S[n] = |y_o| + |b_1| = 2$$

$$O_T[n] = 3n(n-1) + 1 = 3n(n-1) - 1 + O_S[n]$$

$$O[n] = 3n(n-1) + 3 = 3n^2 - 3n + 3$$

$$\hat{O}_S[n] = 0$$

$$\hat{O}_T[n] = 6n$$

$$\hat{O}[n] = \hat{O}_S[n] + \hat{O}_T[n]$$

20.5 Verify
$$O[n+1] = O[n] + \hat{O}[n]$$

$$O[n+1] = O[n] + \hat{O}[n]$$

$$3(n+1)^2 - 3(n+1) + 3 = 3n^2 - 3n + 3 + 6n$$

$$3n^2 + 6n + 3 - 3n - 3 + 3 = 3n^2 + 3n + 3$$

$$3n^2 + 3n + 3 = 3n^2 + 3n + 3$$

20.6 Show s^+ has Polynomial Complexity by the definition of Total Polynomial Complexity

$$O[n] = 3n^2 - 3n + 3$$

20.7 Show s^+ has Polynomial Complexity by showing $\liminf_{n \to \infty} \frac{O[n+1]}{O[n]} = 1$

$$\begin{split} limit_{n\to\infty} \frac{O[n+1]}{O[n]} = \\ limit_{n\to\infty} \frac{3n^2 + 3n + 3}{3n^2 - 3n + 3} = \\ limit_{n\to\infty} (\frac{3n^2 - 3n + 3}{3n^2 - 3n + 3} + \frac{6n}{3n^2 - 3n + 3}) = \\ limit_{n\to\infty} (1 + \frac{6n}{3n^2 - 3n + 3}) = 1 \end{split}$$

Traveling Salesman Problem of Dimension 2

21 Proof of the existence of $\hat{\mathcal{D}}$

21.1 The Traveling Salesman Problem of Dimension 2

English description

21.2 Formal Definition

$$X_i = \{l_1, l_2, ..., l_n, C\}$$

$$l_i = \{x_i, y_i\} \ \forall i$$

 l_i denotes the 2D coordinates of location i

$$C = \{d_{proposed}, p_{decimal}\}$$

 $d_{proposed}$ denotes the suggested shortest distance $p_{decimal}$ is the decimal precision

$$L[l_i, l_j] := \sqrt{(y_i - y_i)^2 + (x_j - x_i)^2}$$

Let $L[l_i, l_j]$ denote the distance between location l_i and l_j

 $\tilde{L}[l_i, l_j] := d_{trunc} : -p_{decimal} < d_{trunc} - L[l_i, l_j] < p_{decimal}$ Let $\tilde{L}[l_i, l_j]$ denote a truncated decimal representation of $L[l_i, l_j]$

$$R_i := \{r_1, r_2, ..., r_n, r_1\} : r_i \in X_i \ \forall i; \ r_i \neq r_j$$

Let R_i denote route i

$$L_{Total}[R_i] := (\sum_{i=1}^{n-1} \tilde{L}[r_i, r_{i+1}]) + \tilde{L}[r_n, r_1]$$

Let $L_{Total}[R_i]$ denote the sum of truncated lengths of route R_i

$$D := f[X_i] \to a_o \in \{ \mathbb{T}, \mathbb{F} \} \ \forall X_i$$
$$a_o =$$

 $(\exists R_k : L_{total}[R_k] == d_{proposed}) \cap (\nexists R_j : L_{total}[R_j] < d_{proposed})$

Traveling Salesman Problem of Dimension 2

21.3 Define subpath, subpath distance, subpath storage

 $\tilde{L}[l_i, l_j]$ denotes "the distance of a subpath of length 1"

$$\tilde{L}[l_i, l_j] := d_{trunc} : -p_{decimal} < d_{trunc} - L[l_i, l_j] < p_{decimal}$$

$$= abs(d_{trunc} - L[l_i, l_j]) < p_{decimal}$$

 \tilde{R} denotes a subpath of length k

$$\tilde{R} = \{\tilde{r}_1, \tilde{r}_2, ..., \tilde{r}_k\} : \tilde{r}_i \in X_i \ \forall i, r_i \neq r_j$$

 $\tilde{L}_k[\tilde{R}]$ denotes "the distance of a subpath of length k"

$$\tilde{L}_k[\tilde{R}] := \sum_{i=1}^k \tilde{L}[\tilde{r}, \tilde{r}_{i+1}]$$

Let \mathcal{M}_1 denote the memory reserved for subpaths distances of length 1

$$\mathcal{M}_1 = \{\hat{b}_{1;1}, \hat{b}_{1;2}, \hat{b}_{1;3}, ..., \hat{b}_{startindex;finishindex}, ..., \hat{b}_{n-1;n}\}^*$$

$$\mathcal{M} \supseteq \mathcal{M}_1$$

* Note
$$\hat{b}_{i;j} = \hat{b}_{j;i}$$

 $\sqrt{(y_j - y_i)^2 + (x_j - x_i)^2} = \sqrt{(y_i - y_j)^2 + (x_i - x_j)^2}$

21.4 Define the following functions

21.4.1
$$sqrt[x, p_{decimal}] = \sqrt{x}$$
 [1]

21.4.2
$$pow[x, 2, p_{decimal}] = x^2$$
 [2]

21.5 Define the following subfunctions

21.5.1 loadM1Subpaths [X]

// Computes all subpaths of length 1 and stores in $\mathcal{M}_1 = \{\hat{b}_{1;1}, \hat{b}_{1;2}, ..., \hat{b}_{n-1;n}\}$

$$//X_i = \{l_1, l_2, ..., l_n, C\}$$

 $//l_i = \{x_i, y_i\} \ \forall i$

$$//\mathcal{M} = \{b_1, b_2, ..., b_M, \hat{b}_{1;1}, \hat{b}_{1;2}, ..., \hat{b}_{n-1;n}, y_o\} = \{b_1, b_2, ..., b_M, \mathcal{M}_1, y_o\} = \{\mathcal{M}, \mathcal{M}_1, y_o\}$$

$$\forall i, j > i$$

$$b_3 \leftarrow y_i - y_j$$

$$b_4 \leftarrow x_i - x_j$$

$$b_3 \leftarrow b_3^2$$

$$b_4 \leftarrow b_4^2$$

$$b_3 \leftarrow b_3 + b_4$$

$$\hat{b}_{i:j} \leftarrow \sqrt{b_3}^*$$

$$*\hat{b}_{i;j} = \tilde{L}[l_i, l_j]$$

21.5.2 compute All Routes [X]

// Computes all complete routes, checks for a route $==d_{proposed}$, sets y_o to false if the current route is shorter than $d_{proposed}$

$$\forall i, j \neq i, k \neq i, j, ..., q \neq i, j, ..., m$$

$$b_{3} \leftarrow \hat{b}_{1;j} + \hat{b}_{j;k}$$

$$b_{3} \leftarrow b_{3} + \hat{b}_{k;l}$$

$$...$$

$$b_{3} \leftarrow b_{3} + \hat{b}_{m;q}$$

$$b_{3} \leftarrow b_{3} + \hat{b}_{q;1}$$

$$b_{4} \leftarrow b_{3} == b_{2}$$

$$b_{1} \leftarrow b_{1} \vee b_{4}$$

$$b_{4} \leftarrow b_{2} \leqslant b_{3}$$

$$y_{o} \leftarrow y_{o} \wedge b_{4}$$

21.6 Express a solution using subfunctions, storing subpaths of length 1 in memory

// $d_{proposed}$ is the shortest path

$$y_o \leftarrow \mathbb{T}$$

$$//d_{proposed} \text{ exists as a total path length}$$

$$b_1 \leftarrow \mathbb{F}$$

$$// \text{ shortest path register}$$

$$b_2 \leftarrow d_{proposed}$$

$$loadM1Subpaths[X]$$

$$computeAllRoutes[X]$$

21.7 Show each subfunction satisfies the subfunction condition of solutions : $P[\hat{X}_i] \supseteq P[X_i] \ \forall \hat{X}_i, X_i, \ \hat{X}_i \supseteq X_i$

Let

$$\mathcal{M}_0 = \{b_1, b_2, b_3, b_4, y_o\}$$
$$\mathcal{M}_1 = \{\hat{b}_{1;1}, \hat{b}_{1;2}, ..., \hat{b}_{n-1;n}\}$$

21.7.1 $loadM1Subpaths[X] \rightarrow \mathcal{M}_1$

Let

$$//X = \{l_1, l_2, ..., l_n, C\}; \quad \hat{X} = \{l_1, l_2, ..., l_n, l_{n+1}, C\}$$
$$loadM1Subpaths[X, \mathcal{M}] \to \mathcal{M}_1 = Sub_1[X, \mathcal{M}] \to \mathcal{M}_1$$

$$Sub_{1}[X, \mathcal{M}] = \{\mathcal{L}, \mathcal{M}\}$$

$$= \{\hat{b}_{i;j} \leftarrow \tilde{L}[l_{i}, l_{j}] \ \forall i, j > i | b_{3}, b_{4}, \hat{b}_{1;1}, \hat{b}_{1;2}, ..., \hat{b}_{n-1;n}\}$$

$$Sub_{1}[X_{i}, \mathcal{M}] = \{\hat{b}_{i;j} \leftarrow \tilde{L}[l_{i}, l_{j}] \ \forall i, j > i | b_{3}, b_{4}, \mathcal{M}_{1}\}$$

$$Sub_{1}[\hat{X}, \mathcal{M}] = \{\hat{\mathcal{L}}, \hat{\mathcal{M}}\}$$

$$= \{\hat{b}_{i;j} \leftarrow \tilde{\mathcal{L}}[l_{i}, l_{j}] \ \forall i, j > i | b_{3}, b_{4}, \hat{b}_{1;1}, \hat{b}_{1;2}, ..., \hat{b}_{n;n+1}\}$$

$$= \{\mathcal{L}, \hat{b}_{i;j} \leftarrow \tilde{\mathcal{L}}[l_{i}, l_{j}] \ \forall i, j = n+1 | \mathcal{M}, \hat{b}_{1;n+1}, \hat{b}_{2;n+1}, ..., \hat{b}_{n;n+1}\}$$

$$Sub_{1}[\hat{X}, \mathcal{M}] = \{\mathcal{L}, \mathcal{L}_{n+1} | \mathcal{M}, \mathcal{M}_{n+1}\}$$

$$Sub_{1}[\hat{X}, \mathcal{M}] = \{\mathcal{L}, \mathcal{L}_{n+1} | \mathcal{M}, \mathcal{M}_{n+1}\} \supseteq \{\mathcal{L} | \mathcal{M}\} = Sub_{1}[X, \mathcal{M}]$$

21.7.2 computeAllRoutes[X]

Let

$$computeAllRoutes[X] = Sub_{2}[X]$$

$$Sub_{2}[X] = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$= \{\hat{b}_{1;i_{2}} + \hat{b}_{i_{2};i_{3}} + \hat{b}_{i_{3};i_{4}} + \dots + \hat{b}_{i_{n};1} \ \forall i_{2}, i_{3} \neq i_{2}, i_{4} \neq i_{2}, i_{3}...i_{n} \neq i_{2}, i_{3}..., i_{n-1} \\ |b_{1}, b_{2}, b_{3}, b_{4}, \mathcal{M}_{1}, y_{o}\}$$

$$Sub_{2}[\hat{X}] = \{\hat{\mathcal{L}}, \hat{\mathcal{M}}, y_{o}\}$$

$$= \{\hat{b}_{1;i_{2}} + \hat{b}_{i_{2};i_{3}} + \hat{b}_{i_{3};i_{4}} + \dots + \hat{b}_{i_{n+1};1} \ \forall i_{2}, i_{3} \neq i_{2}, i_{4} \neq i_{2}, i_{3}...i_{n+1} \neq i_{2}, i_{3}..., i_{n}\}$$

Let

$$insert_subpath[\mathcal{L}] =$$

 $[\mathcal{M}, \mathcal{M}_{n+1}, y_o]$

$$Sub_2[\hat{X}] = \{insert_subpath[\mathcal{L}, \hat{b}_{i_{n+1};j}, j] \ \forall j \neq n+1 | \mathcal{M}, \mathcal{M}_{n+1}, y_o\}$$

- 21.7.3 Show the overall solution storing subpaths of length 1 satisfies the subfunction condition of solutions : $P[\hat{X}_i] \supseteq P[X_i] \ \forall \hat{X}_i, X_i$
- 21.8 Express O[n] in terms of subfunction complexities

$$\begin{split} O_{sub1}[n] &= O_{T_{sub1}}[n] + O_{S_{sub1}}[n] \\ O_{sub2}[n] &= O_{T_{sub2}}[n] + O_{S_{sub2}}[n] \\ O[n] &= O_{sub1}[n] + O_{sub2}[n] + 3 \end{split}$$

21.9 $Sub_{+}[X]$

Let $Sub_+[X]$ denote a subfunction that adds all subpaths of length 1 Let $O_+[n]$ denote the total complexity of subfunction $Sub_+[X]$

21.9.1 Find an expression for $O_+[n] :=$ the number of $\tilde{L}[l_i, l_j] + \tilde{L}[l_j, l_k]$ length 1 subpath additions

$$O_{+}[n] = (\sum_{i=1}^{n} 1) \frac{(nP(n-1))}{2}$$

$$O_{+}[n] = \frac{n(n-1)!}{2}$$

$$O_{+}[n] = \frac{n!}{2}$$

21.10 Prove $Sub_+[X]$ is a subfunction of all s^+ by contradiction

suppose not all subpaths are considered there could exist subpath resulting in an incorrect solution contradicts definition of solution

21.11 Show the solution storing subpaths of length 1 contains $Sub_{+}[X]$

$$//\ d_{proposed}$$
 is the shortest path $y_o \leftarrow \mathbb{T}$
$$//d_{proposed} \text{ exists as a total path length}$$

$$b_1 \leftarrow \mathbb{F}$$

$$// \text{ shortest path register}$$

$$b_2 \leftarrow d_{proposed}$$

$$loadM1Subpaths[X]$$

$$computeAllRoutes[X]$$

21.12 Express O[n] in terms of subfunction complexities including $O_+[n]$ as a subfunction complexity

$$O[n] = O_{sub1}[n] + O_{sub2}[n] + 3$$

$$O_{sub2}[n] = O_{+}[n] + 8\frac{nP(n-1)}{2}$$

$$O_{sub2}[n] = O_{+}[n] + 8\frac{(n-1)!}{2}$$

$$O[n] = O_{sub1}[n] + O_{+}[n] + 8\frac{(n-1)!}{2} + 3$$

21.13 Show $limit_{n\to\infty} \frac{O_{+}[n+1]}{O_{+}[n]}$ diverges

$$limit_{n\to\infty} \frac{O_+[n+1]}{O_+[n]}$$

$$= limit_{n\to\infty} \frac{(n+1)!}{2} \frac{2}{n!}$$
$$= limit_{n\to\infty} n$$

There does not exist ... therefore $limit_{n\to\infty} \frac{O_+[n+1]}{O_+[n]}$ diverges

- 21.14 Prove D diverges by the theorem of divergent subfunctions
- 21.15 Connection to "P \neq NP"

Citations

- [1] chatgpt
- $[2] \ https://stackoverflow.com/questions/3518973/floating-point-exponentiation-without-power-function$
- $[3] \ https://stackoverflow.com/questions/27086195/linear-index-upper-triangular-matrix$
- $[4]\ http://www.math.uchicago.edu/\ may/VIGRE/VIGRE2011/REUPapers/Riffer-Reinert.pdf$