第1章习题解答

1-1 画出无线通信收发信机的原理框图,并证明各部分的作用。

【解】

图1-2-2 调幅方式的中波广播发射机组成框图

图1-2-3 调幅方式的无线广播接收机组成框图

1-2, 1-3 略

1-4 无线通信为什么要进行调制?如何进行调制?什么是解调?

【解】

调制就是把图像和声音信息装载到载波上的过程。而解调则是调制的逆过程,即从已调制的高频振荡中取出原调制信号。调制的原因有两点:

- ①为了天线易于实现。无线通信是利用天线向空中辐射电磁波来传送信息的,而天线长度必须和电磁波的波长可以比拟(波长的 1/10),才能有效地把电振荡辐射出去。而声音信号的频率约为 20Hz~20kHz 即其波长范围 15×103~15×109m,要制造出与此尺寸相当的天线显然是很困难的。因此直接将音频信号辐射到空中去是不可能的。
- ②为了区分不同的电台信号。因为各种声音信号频率都在 20Hz~20kHz, 如果不调制则它们在空中混在一起, 收听着也无法选择所要接受的信号。因此, 有必要将不同的信息调制到不同的高频载波上去。
- 1-5 无线电信号的频段或波段是如何划分的? 各具体频段的传播特性和应用情况如何?

【解】

波段名称	波长范	频率范围	频段名称	主要传播方式和用途
长波 (LW)	围 10 ³ ~10 ⁴	30~300KHz	低频(LF)	地波;远距离通信
	m			
中波 (MW)	10 ² ~10 ³ m	300KHZ~3MH z	中频(MF)	地波、天波;广播、通信、 导航
短波 (SW)	10~100	3~30MHz	高频(HF)	地波、天波; 广播、通信
	m			
超短波	1~10m	30~300MHz	甚高频	直线传播、对流层的散射通
(VSW)			(VHF)	信; 电视广播、调频广播、雷达
分米波	10~100	300MHz~3GHz	特高频	直线传播、散射传播;通信、
(USW)	cm		(UHF)	中继与卫星通信、雷达、电视广
				播
厘米波	1~10cm	3~30GHz	超高频	直线传播; 中继与卫星通
(SSW)			(SHF)	信、雷达
毫米波	1~10m	30~300GHz	极高频	直线传播; 微波通信、雷达
(SESW)	m		(EHF)	

1-6 超外差式接收机里"混频"的作用是什么?如果接收信号的频率是 2100MHz,希望把它变成 70MHz 的中频,该怎么办?画出方框图并标明有关频率。

【解】

"混频"的作用是将接受的已调信号的载波频率变为一固定中频信号。如果接受信号的频率是 2100MHz, 希望把它变成 70MHz 的中频则需要加一个振荡频率为 2170MHz (或 2030MHz) 的本地振荡器。将接收信号和本地振荡信号同时加到某一非线性器件上, 经过频率变换后再通过一个谐振频率为 70MHz 的选频网络即可。其实现框图如下所示。

