Day 2, Lecture 2

Targeting: Changing the target

Targeted learning framework

In this lecture, our goal is to:

 Summarize the steps involved in analyzing and constructing Targeted Minimum Loss-based Estimation (TMLE) estimators for a new estimation problem, using a specific example as a reference point.

Targeted learning framework

Targeted learning framework

Changing the target

ATE: Statistical estimation problem

 $O_1, \ldots, O_n \stackrel{iid}{\sim} P_0$, O_i is the observation for individual i of the dataset, consists of

- Covariates: $X_i \in \mathcal{X} \subseteq \mathbb{R}^d$
- Exposure/treatment: $A_i \in \{0, 1\}$
- ▶ Outcome: $Y_i \in \{0, 1\}$ or $Y \in \mathbb{R}$

We are interested in:

$$\Psi(P) = \tilde{\Psi}(f, \mu_X) = \int_{\mathbb{D}} (f(1, x) - f(0, x)) d\mu_X(x),$$

where
$$f(a, x) = \mathbb{E}_P[Y \mid A = a, X = x]$$
.

A plug-in estimator requires an estimator \hat{f}_n for f:

$$\hat{\psi}_n = \tilde{\Psi}(\hat{f}_n, \mathbb{P}_n) = \frac{1}{n} \sum_{i=1}^n (\hat{f}_n(1, X_i) - \hat{f}_n(0, X_i)).$$

Changing the target

What is the interpretation?

Causal interpretation: The risk difference, had everyone in the population been treated versus had everyone in the population been untreated.

Changing the target

In an observational study, the de facto treated and the de facto untreated groups may differ quite a lot.

Sometimes we may be interested in the effect averaged with respect to the distribution of covariates *in the treated population*.

⇒ the average treatment effect among the treated.

Causal interpretation: The risk difference, had everyone in the treated population been treated versus had everyone in the treated population been untreated.

Average treatment effect (ATE)

- $O = (X, A, Y) \in \mathbb{R}^d \times \{0, 1\} \times \{0, 1\}$
- ▶ The ATE is defined for $P \in \mathcal{M}$ as

$$\Psi(P) = \mathbb{E}_{P}[\mathbb{E}_{P}[Y \mid A = 1, X] - \mathbb{E}_{P}[Y \mid A = 0, X]]$$

Under causal assumptions:

$$\Psi(P) = \mathbb{E}_P[Y^1] - \mathbb{E}_P[Y^0]$$

Average treatment effect among the treated (ATT)

- $O = (X, A, Y) \in \mathbb{R}^d \times \{0, 1\} \times \{0, 1\}$
- ▶ The ATT is defined for $P \in \mathcal{M}$ as

$$\Psi(P) = \mathbb{E}_{P}[\mathbb{E}_{P}[Y \mid A=1, X] - \mathbb{E}_{P}[Y \mid A=0, X] \mid A=1]$$

Under causal assumptions:

$$\Psi(P) = \mathbb{E}_P[Y^1 \mid A = 1] - \mathbb{E}_P[Y^0 \mid A = 1]$$

This changes the statistical estimation problem and thus the TMLE.

We can identify the causal parameter under the causal assumptions (consistency, exchangeability and positivity):

$$\begin{split} \Psi(P) &= \mathbb{E}[Y^{1} \mid A = 1] - \mathbb{E}[Y^{0} \mid A = 1] \\ &= \mathbb{E}_{P}[\mathbb{E}_{P}[Y \mid A = 1, X] - \mathbb{E}_{P}[Y \mid A = 0, X] \mid A = 1] \\ &= \int_{\mathbb{R}^{d}} (f(1, x) - f(0, x)) d\mu_{X|A}(x \mid 1) \\ &= \int_{\mathbb{R}^{d}} (f(1, x) - f(0, x)) \frac{\pi(1 \mid x)}{\bar{\pi}(1)} d\mu_{X}(x) \\ &= \tilde{\Psi}(\mu_{X}, \bar{\pi}, \pi, f) \end{split}$$

Thus, the ATT can be identified as the statistical parameter:

$$\begin{split} \Psi(P) &= \mathbb{E}_{P} \big[\mathbb{E}_{P} \big[Y \mid A = 1, X \big] - \mathbb{E}_{P} \big[Y \mid A = 0, X \big] \mid A = 1 \big] \\ &= \int_{\mathbb{R}^{d}} \big(f(1, x) - f(0, x) \big) \frac{\pi(1 \mid x)}{\overline{\pi}(1)} d\mu_{X}(x) \\ &= \tilde{\Psi}(\mu_{X}, \overline{\pi}, \pi, f) \end{split}$$

where:

$$f(a,x) = \mathbb{E}_P[Y \mid A = a, X = x]$$

$$\pi(a | x) = P(A = a | X = x)$$

$$\bar{\pi}(a) = P(A = a)$$
 is the marginal distribution of A

• μ_X is the marginal distribution of X

A substitution estimator:

$$\hat{\psi}_n = \tilde{\Psi}(\hat{\mu}_X, \hat{\bar{\pi}}_n, \hat{\pi}_n, \hat{f}_n) = \frac{1}{n} \sum_{i=1}^n \frac{1\{A_i = 1\}}{\hat{\bar{\pi}}_n(1)} (\hat{f}_n(1, X_i) - \hat{f}_n(0, X_i)),$$

where,
$$\hat{\pi}_n(1) = \frac{1}{n} \sum_{i=1}^n A_i$$
.

EXAMPLE: Average treatment effect (ATE)

- Step 1 Construct initial estimators \hat{f}_n , $\hat{\pi}_n$ for f, π
- Step 2 Update the estimator $\hat{f}_n \mapsto \hat{f}_n^*$ for f such that \hat{f}_n^* for the fixed $\hat{\pi}_n$ solves the efficient influence curve equation

For the ATE, Step 2 is simply just an additional logistic regression step.

EXAMPLE: Average treatment effect among the treated (ATT)

- Step 1 Construct initial estimators \hat{f}_n , $\hat{\pi}_n$ for f, π
- Step 2 Update the estimator $\hat{f}_n \mapsto \hat{f}_n^*$ for f and the estimator $\hat{\pi}_n \mapsto \hat{\pi}_n^*$ for π such that $\hat{f}_n^*, \hat{\pi}_n^*$ solves the efficient influence curve equation

For the ATE, Step 2 is simply just an additional logistic regression step.

For the ATT, Step 2 is an iterative algorithm with recursive steps of additional logistic regressions.

EXAMPLE: Average treatment effect among the treated (ATT)

$$\tilde{\phi}^{*}(f,\pi,\bar{\pi})(O) = \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1|X)}{\bar{\pi}(1)\pi(0|X)}\right) (Y - f(A,X)) + \frac{A}{\bar{\pi}(1)} (f(1,X) - f(0,X) - \Psi(P))$$

EXAMPLE: Average treatment effect among the treated (ATT)

$$\begin{split} \tilde{\phi}^*(f,\pi,\bar{\pi})(O) &= \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1\mid X)}{\bar{\pi}(1)\pi(0\mid X)}\right) \left(Y - f(A,X)\right) \\ &+ \frac{A}{\bar{\pi}(1)} \left(f(1,X) - f(0,X) - \Psi(P)\right) \\ &= \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1\mid X)}{\bar{\pi}(1)\pi(0\mid X)}\right) \left(Y - f(A,X)\right) \\ &+ \frac{f(1,X) - f(0,X) - \Psi(P)}{\bar{\pi}(1)} \left(A - \pi(1\mid X)\right) \\ &+ \frac{\pi(1\mid X)}{\bar{\pi}(1)} \left(f(1,X) - f(0,X) - \Psi(P)\right) \end{split}$$

EXAMPLE: Average treatment effect among the treated (ATT)

$$\begin{split} \tilde{\phi}^{*}(f,\pi,\bar{\pi})(O) &= \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1\mid X)}{\bar{\pi}(1)\pi(0\mid X)}\right) \left(Y - f(A,X)\right) \\ &+ \frac{A}{\bar{\pi}(1)} \left(f(1,X) - f(0,X) - \Psi(P)\right) \\ &= \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1\mid X)}{\bar{\pi}(1)\pi(0\mid X)}\right) \left(Y - f(A,X)\right) \\ &+ \frac{f(1,X) - f(0,X) - \Psi(P)}{\bar{\pi}(1)} \left(A - \pi(1\mid X)\right) \\ &+ \frac{\pi(1\mid X)}{\bar{\pi}(1)} \left(f(1,X) - f(0,X) - \Psi(P)\right) \end{split}$$

EXAMPLE: Average treatment effect among the treated (ATT)

$$\begin{split} \tilde{\phi}^*(f,\pi,\bar{\pi})(O) &= \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1\mid X)}{\bar{\pi}(1)\pi(0\mid X)}\right) \left(Y - f(A,X)\right) \\ &+ \frac{A}{\bar{\pi}(1)} \left(f(1,X) - f(0,X) - \Psi(P)\right) \\ &= \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1\mid X)}{\bar{\pi}(1)\pi(0\mid X)}\right) \left(Y - f(A,X)\right) \\ &+ \frac{f(1,X) - f(0,X) - \Psi(P)}{\bar{\pi}(1)} \left(A - \pi(1\mid X)\right) \\ &+ \frac{\pi(1\mid X)}{\bar{\pi}(1)} \left(f(1,X) - f(0,X) - \Psi(P)\right) \end{split}$$

We need:

- (i) Parametric submodel $\{f_{\varepsilon}, \pi_{\varepsilon} : \varepsilon \in \mathbb{R}\} \subset \mathcal{M}$
- (ii) Loss function $(O,(f,\pi)) \mapsto \mathcal{L}(f,\pi)(O)$

such that

(1)
$$f_{\varepsilon=0} = f, \pi_{\varepsilon} = \pi$$
 (2) $\frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \mathscr{L}(f_{\varepsilon}, \pi_{\varepsilon})(O) = \tilde{\phi}^*(f, \pi, \bar{\pi})(O)$

$$logit(p) = expit^{-1}(p) = log\left(\frac{p}{1-p}\right)$$

15/23

(i) Sum loss function $\mathcal{L}(f,\pi) = \mathcal{L}_1(f) + \mathcal{L}_2(\pi)$, where

$$\mathcal{L}_1(f)(O) = -(Y \log(f(A, X)) + (1 - Y) \log(1 - f(A, X)))$$

$$\mathcal{L}_2(\pi)(O) = -(A \log(\pi(1 \mid X)) + (1 - A) \log(1 - \pi(1 \mid X)))$$

(ii) Logistic regression models:

$$\begin{split} f_{\varepsilon}(A,X) &= \mathrm{expit} \big(\mathrm{logit}(f(A,X)) + \varepsilon H_1(\pi,\bar{\pi})(A,X) \big) \\ \pi_{\varepsilon}(X) &= \mathrm{expit} \big(\mathrm{logit}(\pi(1\mid X)) + \varepsilon H_2(f,\pi,\bar{\pi})(A,X) \big) \end{split}$$

with the "clever covariates":

$$H_{1}(\pi,\bar{\pi})(A,X) = \left(\frac{A}{\bar{\pi}(1)} - \frac{(1-A)\pi(1\mid X)}{\bar{\pi}(1)\pi(0\mid X)}\right), \text{ and},$$

$$H_{2}(f,\pi,\bar{\pi})(A,X) = \frac{f(1,X) - f(0,X) - \Psi(P)}{\bar{\pi}(1)}$$

Iterative algorithm:

- 1. Given initial estimators $\hat{f}_n^0, \hat{\pi}_n^0$:
 - Obtain estimate $\hat{\varepsilon}_{Y}^{0}$ for ε :

$$f_{\varepsilon}(A,X) = \operatorname{expit}\left(\operatorname{logit}(\hat{f}_{n}^{0}(A,X)) + \varepsilon H_{1}(\hat{\pi}_{n}^{0},\bar{\pi})(A,X)\right)$$

(i.e., regress Y on covariate $H_{1}(\hat{\pi}_{n}^{0},\bar{\pi})(A,X)$ with offset $\operatorname{logit}(\hat{f}_{n}^{0}(A,X))$

- Update: $\hat{f}_n^1 \coloneqq \hat{f}_{n,\hat{\varepsilon}_Y^0}^0$.
- Obtain estimate $\hat{\varepsilon}_A^0$ for ε :

$$\pi_{\varepsilon}(X) = \operatorname{expit}\left(\operatorname{logit}(\hat{\pi}_{n}^{0}(1\mid X)) + \varepsilon H_{2}(\hat{f}_{n}^{1}, \hat{\pi}_{n}^{0}, \bar{\pi})(A, X)\right)$$
(i.e., regress A on covariate $H_{2}(\hat{f}_{n}^{1}, \hat{\pi}_{n}^{0}, \bar{\pi})(A, X)$ with offset $\operatorname{logit}(\hat{\pi}_{n}^{0}(1\mid X))$

• Update: $\hat{\pi}_n^1 \coloneqq \hat{\pi}_{n,\hat{\varepsilon}_A^0}^0$.

Iterative algorithm:

- 2. Iteratively from k to k+1, given current estimators $\hat{f}_n^k, \hat{\pi}_n^k$:
 - Obtain estimate $\hat{\varepsilon}_Y^k$ for ε :

$$f_{\varepsilon}(A,X) = \operatorname{expit}\left(\operatorname{logit}(\hat{f}_{n}^{k}(A,X)) + \varepsilon H_{1}(\hat{\pi}_{n}^{k},\bar{\pi})(A,X)\right)$$

- (i.e., regress Y on covariate $H_1(\hat{\pi}_n^k, \bar{\pi})(A, X)$ with offset $\operatorname{logit}(\hat{f}_n^k(A, X))$
- Update: $\hat{f}_n^{k+1} := \hat{f}_{n,\hat{\varepsilon}_Y^k}^k$.
- Obtain estimate $\hat{\varepsilon}_A^k$ for ε :

$$\pi_{\varepsilon}(X) = \operatorname{expit}\left(\operatorname{logit}(\hat{\pi}_{n}^{k}(1\mid X)) + \varepsilon H_{2}(\hat{f}_{n}^{k+1}, \hat{\pi}_{n}^{k}, \bar{\pi})(A, X)\right)$$
 (i.e., regress A on covariate $H_{2}(\hat{f}_{n}^{k+1}, \hat{\pi}_{n}^{k}, \bar{\pi})(A, X)$ with offset $\operatorname{logit}(\hat{\pi}_{n}^{k}(1\mid X))$

• Update: $\hat{\pi}_n^{k+1} := \hat{\pi}_{n,\hat{\varepsilon}_A^k}^k$.

This is continued until we solve:

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{A_i}{\hat{\pi}_n(1)} - \frac{(1 - A_i) \hat{\pi}_n^{k^*}(1 \mid X_i)}{\hat{\pi}_n(1) \hat{\pi}_n^{k^*}(0 \mid X_i)} \right) (Y - \hat{f}_n^{k^*}(A_i, X_i)) \approx 0$$

and,

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\hat{f}_{n}^{k^{*}}(1,X_{i}) - \hat{f}_{n}^{k^{*}}(0,X_{i}) - \tilde{\Psi}(\hat{\mu}_{X},\hat{\bar{\pi}}_{n},\hat{\pi}_{n}^{k^{*}},\hat{f}_{n}^{k^{*}})}{\hat{\bar{\pi}}_{n}(1)} \Big(A_{i} - \hat{\pi}_{n}^{k^{*}}(1\mid X_{i})\Big) \approx 0;$$

These are the different parts of the efficient influence curve equation.

This is continued until we solve:

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{A_{i}}{\hat{\pi}_{n}(1)} - \frac{(1-A_{i})\hat{\pi}_{n}^{k^{*}}(1\mid X_{i})}{\hat{\pi}_{n}(1)\hat{\pi}_{n}^{k^{*}}(0\mid X_{i})} \right) \left(Y - \hat{f}_{n}^{k^{*}}(A_{i}, X_{i}) \right) \approx 0$$

and,

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\hat{f}_{n}^{k^{*}}(1,X_{i}) - \hat{f}_{n}^{k^{*}}(0,X_{i}) - \tilde{\Psi}(\hat{\mu}_{X},\hat{\bar{\pi}}_{n},\hat{\pi}_{n}^{k^{*}},\hat{f}_{n}^{k^{*}})}{\hat{\bar{\pi}}_{n}(1)} \Big(A_{i} - \hat{\pi}_{n}^{k^{*}}(1\mid X_{i})\Big) \approx 0;$$

note that we already solve:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\hat{\pi}_{n}^{k^{*}}(1\mid X_{i})}{\hat{\pi}_{n}(1)}\left(\hat{f}_{n}^{k^{*}}(1,X_{i})-\hat{f}_{n}^{k^{*}}(0,X_{i})-\tilde{\Psi}(\hat{\mu}_{X},\hat{\pi}_{n},\hat{\pi}_{n}^{k^{*}},\hat{f}_{n}^{k^{*}})\right)=0.$$

These are the different parts of the efficient influence curve equation.

This was the targeting step: What we need procedurally to carry out the TMLE estimation.

This was the targeting step: What we need procedurally to carry out the TMLE estimation.

To finish the analysis, it remains to analyze the remainder term:

$$R(P, P_0) = \Psi(P) - \Psi(P_0) + P_0 \phi^*(P).$$

This was the targeting step: What we need procedurally to carry out the TMLE estimation.

To finish the analysis, it remains to analyze the remainder term:

$$R(P, P_0) = \Psi(P) - \Psi(P_0) + P_0 \phi^*(P).$$

To derive this: Start from $P_0\phi^*(P) = \mathbb{E}_{P_0}[\phi^*(P)(O)]$ and show that this can be written as [something] plus $\Psi(P_0) - \Psi(P)$. This [something] is the remainder term.

For the ATT we can derive that:

$$\begin{split} \tilde{R}(f,\pi,\bar{\pi},f_{0},\pi_{0},\bar{\pi}_{n}) &= \frac{1}{\bar{\pi}(1)} \left(\frac{\pi_{0}(1\mid X) - \pi(1\mid X)}{1 - \pi(1\mid X)} \right) \left(f_{0}(0,X) - f(0,X) \right) \\ &\quad + \left(\frac{\bar{\pi}_{0}(1) - \bar{\pi}(1)}{\bar{\pi}(1)} \right) \left(\Psi(P_{0}) - \Psi(P) \right) \end{split}$$

Again we see the double robust structure.

For the ATT we can derive that:

$$\begin{split} \tilde{R}(f,\pi,\bar{\pi},f_{0},\pi_{0},\bar{\pi}_{n}) &= \frac{1}{\bar{\pi}(1)} \left(\frac{\pi_{0}(1\mid X) - \pi(1\mid X)}{1 - \pi(1\mid X)} \right) \left(f_{0}(0,X) - f(0,X) \right) \\ &+ \left(\frac{\bar{\pi}_{0}(1) - \bar{\pi}(1)}{\bar{\pi}(1)} \right) \left(\Psi(P_{0}) - \Psi(P) \right) \end{split}$$

Again we see the double robust structure.

For the ATT we can derive that:

$$\begin{split} \tilde{R}(f,\pi,\bar{\pi},f_{0},\pi_{0},\bar{\pi}_{n}) &= \frac{1}{\bar{\pi}(1)} \left(\frac{\pi_{0}(1\mid X) - \pi(1\mid X)}{1 - \pi(1\mid X)} \right) \left(f_{0}(0,X) - f(0,X) \right) \\ &+ \left(\frac{\bar{\pi}_{0}(1) - \bar{\pi}(1)}{\bar{\pi}(1)} \right) \left(\Psi(P_{0}) - \Psi(P) \right) \end{split}$$

Again we see the double robust structure.

This is a particularly nice result, since the parameter depends on both the outcome regression f and the propensity score π .

It depends very much on the target parameter and the structure of its efficient influence function how easy/hard estimation, and particularly targeting, becomes.

For many target parameters, all this work has already been done!

The average treatment effect among the treated is implemented in the tmle package:

```
set.seed(15)
sim.data <- sim.fun(n=1000)</pre>
```

```
Additive Effect
```

Parameter Estimate: 0.066263 Estimated Variance: 0.00085811

p-value: 0.023694

95% Conf Interval: (0.0088482, 0.12368)

Additive Effect among the Treated Parameter Estimate: 0.072104

Estimated Variance: 0.0009739

p-value: 0.020862

95% Conf Interval: (0.010938, 0.13327)

Additive Effect among the Controls Parameter Estimate: 0.059976

Estimated Variance: 0.0009839

p-value: 0.055869

95% Conf Interval: (-0.0015039, 0.12146)

Relative Risk

Parameter Estimate: 1 0054

Many other (!!) interesting parameters¹

- Controlled and natural direct and indirect effects (mediation analysis parameters)
- Effects among groups defined by specific covariate characteristics (effect modification)
- Dynamic interventions, stochastic interventions

:

We get back to examples of target parameters in longitudinal settings.

¹Newer software ecosystem: https://tlverse.org/.