Math 321 Lecture 18

Yuchong Pan

February 13, 2019

1 Functions of Bounded Variation

1.1 Jordan's Theorem

Definition 1. $\alpha:[a,b]\to\mathbb{R}$ is in BV[a,b] if $V_a^b\alpha=\sup_{P \text{ partition}}V_a^b(\alpha,P)=\sup_{P}\sum_{i=1}^n|\alpha(x_i)-\alpha(x_{i-1})|<\infty$.

Theorem 1 (Jordan's theorem). $\alpha \in BV[a,b]$ if and only if α can be written as $\alpha = \beta - \gamma$, with β, γ nondecreasing.

Proof. " \Leftarrow ": Assume $\alpha = \beta - \gamma$ with $\beta, \gamma \xrightarrow{\text{nondecreasing}} \mathbb{R}$. Let $P = \{a = x_0 < x_1 < \ldots < x_n = b\}$. Then,

$$\begin{split} V_a^b(\alpha,P) &= \sum_{i=1}^n |\alpha(x_i) - \alpha(x_{i-1})| \\ &= \sum_{i=1}^n |[\beta(x_i) - \beta(x_{i-1})] - [\gamma(x_i) - \gamma(x_{i-1})]| \\ &\leq \sum_{i=1}^n |\beta(x_i) - \beta(x_{i-1})| + \sum_{i=1}^n |\gamma(x_i) - \gamma(x_{i-1})| \\ &\underbrace{\sum_{i=1}^n |\beta(x_i) - \beta(x_{i-1})| + \sum_{i=1}^n |\gamma(x_i) - \gamma(x_{i-1})|}_{\text{triangular inequality}} \\ &= V_a^b(\beta,P) + V_a^b(\gamma,P) \leq V_a^b\beta + V_a^b\gamma \\ &= \underbrace{[\beta(b) - \beta(a)] + [\gamma(b) - \gamma(a)]}_{\text{independent of }P} < \infty. \end{split}$$

Hence, $V_a^b \alpha = \sup_P V_a^b(\alpha, P) \le [\beta(b) - \beta(a)] + [\gamma(b) - \gamma(a)] < \infty$.

Exercise: If $f, g \in BV[a, b]$, then $V_a^b(f \pm g)leqV_a^bf + V_a^bg$.

"\Rightarrow": Assume that $\alpha \in BV[a,b]$; need to find β, γ nondecreasing such that $\underbrace{\alpha = \beta - \gamma}_{\Rightarrow \gamma = \beta - \alpha}$. Introduce

the variation function $v(x) = V_a^x \alpha = \text{total variation of } \alpha \text{ on } [a, x].$

Exercise: v(x) is well-defined because $V_a^b \alpha \geq V_a^c \alpha$ for any interval $[c,d] \subseteq [a,b]$.

Question: Is v nondecreasing? Yes.

Let x < y. Need to verify if $\underbrace{v(x)}_{=V_a^x \alpha} \leq \underbrace{v_y(y)}_{=V_a^y \alpha}$.

True by Exercise above since $[a, x] \subseteq [a, y]$.

Math 321 Lecture 18 Yuchong Pan

Question: Is $v(\cdot) - \alpha(\cdot)$ nondecreasing? Yes.

Let x < y; need to verify if

$$v(x) - \alpha(x) \le v(y) - \alpha(y),$$

$$\alpha(y) - \alpha(x) \le \underbrace{v(y) - v(x)}_{V_a^y \alpha - V_a^x \alpha = V_x^y \alpha = \sup_{P \text{ partition of } [x, y]} V_x^y(\alpha, P)}_{}.$$

Note: $|\alpha(y) - \alpha(x)| = V_x^y \alpha(x, P_0)$, where $P_0 = \{x, y\}$. Thus,

$$\alpha(y) - \alpha(x) \le |\alpha(y) - \alpha(x)| = V_x^y(\alpha, P_0) \le V_x^y(\alpha) = v(y) - v(x).$$

Exercise: Check that for any $c \in (a, b)$ and any $f \in BV[a, b]$,

$$V_a^c f + V_c^b f = V_a^b f.$$

Remark. Jordan's theorem suggests that BV[a,b] could be a good source of Riemann-Stieltjes integrators, with respect to which continuous functions on [a,b] can be integrated.

$$\int f d\underbrace{\alpha}_{\in BV} = \int f d(\beta - \gamma) \stackrel{?}{=} \int f d\beta - \int f d\gamma.$$

1.2 Interchanging Integrands and Integrators

Recall:

$$\int_{a}^{b} \left(\underbrace{udv}_{=u(x)v'(x)dx} + \underbrace{vdu}_{=v(x)u'(x)dx}\right) = u(b)v(b) - u(a)v(a). \longrightarrow \text{integration by parts}$$

Theorem 2 (Integration by parts for Riemann-Stieltjes integrals). Let $f, \alpha \to \mathbb{R}$ be arbitrary functions. Then,

$$\underbrace{f \in \mathcal{R}_{\alpha}[a,b]}_{\exists I \text{ s.t. } \forall \epsilon > 0, \exists a \text{ partition } P_0 \text{ s.t. } |S_{\alpha}(f,P,T)-I| < \epsilon }_{\text{for } P \supseteq P_0 \text{ and any selection of points } T \text{ subordinate to } P$$

In either case,

$$\int_{a}^{b} f d\alpha + \int_{a}^{b} \alpha df = \alpha(b)f(b) - \alpha(a)f(a).$$

Corollary 1. $C[a,b] \subseteq \mathcal{R}_{\alpha}[a,b]$ for all $\alpha \in BV[a,b]$.

Yuchong Pan Math 321 Lecture 18

Proof. Use Jordan's theorem to write $\alpha = \beta - \gamma$ with β, γ nondecreasing.

Note by a previous theorem, $C[a,b] \subseteq \mathcal{R}_{\beta}[a,b] \cap \mathcal{R}_{\gamma}[a,b]$. This implies that if $f \in C[a,b]$, then

There by a previous effective, $\mathcal{E}[a,b] \subseteq \mathcal{H}[a,b]$. This implies that if $f \in \mathcal{E}[a,b]$, then $\int_a^b f d\beta$ and $\int_a^b f d\gamma$ are well-defined.

By IBP, $\int_a^b \beta df$ and $\int_a^b \gamma df$ are well-defined too; i.e., $\beta, \gamma \in \mathcal{R}_f[a,b]$. But it is easy to see that $\mathcal{R}_f[a,b]$ is a vector space, with

$$\int_{a}^{b} (\beta \pm \gamma) df = \int_{a}^{b} \beta df \pm \int_{a}^{b} \gamma df.$$

This implies $\beta \pm \gamma \in \mathcal{R}_f[a,b]$; in particular, $\alpha = \beta - \gamma \in \mathcal{R}_f[a,b]$. Use IBP again; get $f \in \mathcal{R}_{\alpha}[a,b]$.