

Ear Centering for Near-Distance

Head-Related Transfer Functions

Ayrton Urviola

Perception Research Lima, Peru

aurviola@perception3d.com

Shuichi Sakamoto

Tohoku University Sendai, Japan

saka@ais.riec.tohoku.ac.jp

César D. Salvador

Perception Research Lima, Peru

salvador@perception3d.com

Outline

- 1. Introduction
- Ear centering for near-distance head-related transfer functions (HRTFs)
- Evaluation of plane-wave (PW) and spherical-wave (SW) ear centering
- Considerations for practical implementations
- 5. Conclusion

1. Introduction

I3DA 2021

- Necessity: HRTFs for nearfield auditory displays
- Method: The spherical Fourier transform (SFT) is widely used in near-distance HRTF synthesis
- Problem: Mismatch between the SFT center (head center) and the measurement positions (ears)

1. Introduction: Review of ear centering methods

I3DA 2021

Reference	Distance	Translation point	Domain	Translation operator
Richter, 2014	Yes	Optimized point around the ear	SFT	Ratio of hankel functions
Zaunschirm, 2018	No	Y axis with 8.5 cm radius	Unit sphere	Plane-wave
Ben-hur, 2019	No	Y axis with 8.75 cm radius	Unit sphere	Plane-wave
Porschmann, 2020	No	Y axis with 9.19 cm radius	Unit sphere	Plane-wave with rigid sphere
Arend, 2021	No	Y axis with 9.19 cm radius	Unit sphere	Plane-wave with rigid sphere

Proposal: Include distance information using a free-field spherical-wave translation operator

1. Introduction: Near-distance HRTF synthesis

- Input: distribution of freefield HRTFs from a to rear
- Output: synthesized freefield HRTF from b to rear
- Our proposal focuses on translation operators
- Intermediate steps are similar to conventional methods

1. Introduction: PW and SW ear centering

13DA 2021

[1] Z. Ben-Hur et al., IEEE Trans. Audio, Speech, Language Process., 2019.

Proposal

2. Ear centering for near-distance HRTFs

I3DA 2021

- 0 : Origin, head center
- $\mathbf{r_{ear}}$: Ear position
- $\mathbf{a} = (a, \theta_a, \phi_a)$: Point in a continuous, spherical distribution at a fardistance a.
- $\mathbf{b} = (b, \theta_b, \phi_b)$: Arbitrary point at a near-distance b.

3. Evaluation of PW and SW ear centering: Conditions

I3DA 2021

Region of interest

Head Models

3. Evaluation of PW and SW ear centering: Conditions

I3DA 2021

- Initial positions
 - Icosahedral grids
 - Distance: 100 cm
 - 12 points $(N_{grid} = 2)$
 - 252 points $(N_{grid} = 14)$
- Final positions
 - Icosahedral grids
 - Distance: 20 100 cm
 - 642 points $(N_{grid} = 24)$

Maximum frequency

$$f_{
m max} = rac{cN_{
m grid}}{2\pi r_{
m h}}$$

- $r_h = 16 \ cm$
- Maximum SFT order

$$N = \min(\lceil kr_{\rm h} \rceil, N_{\rm grid})$$

3. Evaluation of PW and SW ear centering: Conditions

I3DA 2021

Svnthesis error

$$E(b_i, f_{\kappa}) = \underset{s_{\ell}}{\text{RMS}} \left\{ \frac{\underset{\Omega_j}{\text{RMS}} \{ \boldsymbol{H} - \hat{\boldsymbol{H}} \}}{\underset{\Omega_j}{\text{RMS}} \{ \boldsymbol{H} \}} \right\}$$

Target HRTF

$$\boldsymbol{H}(b_i,\Omega_j,f_\kappa,s_\ell)$$

Synthesized HRTF

$$\hat{\boldsymbol{H}}(b_i,\Omega_j,f_\kappa,s_\ell)$$

Parameters

- b_i 81 radial distances
- Ω_i 642 directions
- $f_{\rm K}$ 257 frequency bins
- s_l 2 head models

3. Evaluation of PW and SW ear centering: Results

- Number of initial HRTF points: P = 252
- SFT order of initial HRTF grid: $N_{grid} = 14$
- Dashed line: f_{max}
- Dashed curve: -15 dB

PW ear centering

SW ear centering

3. Evaluation of PW and SW ear centering: Results

- Number of initial HRTF points: P = 12
- SFT order of initial HRTF grid: $N_{grid} = 2$
- Dashed line: f_{max}
- Dashed curve: -15 dB

PW ear centering

SW ear centering

3. Evaluation of PW and SW ear centering: Summary

I3DA 2021

- Below f_{max} , SW ear centering outperforms No ear centering across all distances, overall improvement of 6 dB
- Below f_{max} , SW ear centering outperforms PW ear centering across all distances, overall improvement of 3 dB
- Below 30 cm, 3 dB enhancement holds beyond f_{max}

4. Considerations for practical implementations

13DA 2021

Off-line analysis

- FFT, direct ear centering, and SFT
- $O(N_{grid}^4 N^2)$

On-line synthesis

- DVFs, order truncation and scaling window, ISFT, and IFFT
- $O(N^2)$

5. Conclusion

- Synthesis accuracy increased consistently when comparing SW to PW translation operators
- Enhancements at near distances within the frequency range of operation and even beyond f_{max}
- Extensions to this work might include:
 - Regularization techniques to optimize the bandwidth of the SFT
 - Perceptual evaluations by means of detectability of differences, and localization tests

Thanks for your attention

I3DA 2021

PERCEPTION

IMMERSIVE 3D EXPERIENCES

http://perception3d.com

