

Unfitted mixed FEM for Poisson's equation with Dirichlet boundary conditions

CPDE Oberseminar

Guosheng Fu, Christoph Lehrenfeld, <u>Tim van Beeck</u>

June 1, 2022

Institut für Numerische und Angewandte Mathematik

Unfitted FEM - Motivation

Unfitted FEM - Challenges

- stability is no longer independent of the cut position
- condition numbers depend on the cut position
- → Stabilization, e.g. ghost penalty

Mixed Poisson formulation

Consider Poisson's equation:

$$-\operatorname{div}(\nabla u)=f \text{ in } \Omega.$$

Mixed Poisson formulation

Consider Poisson's equation:

$$-\operatorname{div}(\nabla u)=f$$
 in Ω .

Rewrite the equation as a mixed problem

$$\sigma - \nabla u = 0 \text{ in } \Omega,$$

 $\operatorname{div} \sigma = -f \text{ in } \Omega.$

→ Mass conservation

Weak formulation

Let $\Sigma = H(\operatorname{div}, \Omega)$ and $Q = L^2(\Omega)$. The weak formulation is given by: Find $(\sigma, u) \in \Sigma \times Q$ such that

$$egin{aligned} \overbrace{\int_{\Omega} \sigma \cdot au dx}^{a(\sigma, au)} + \overbrace{\int_{\Omega} \operatorname{div}(au) u dx}^{b(au,u)} &= \int_{\partial\Omega} au \cdot n u_D ds \qquad orall au \in \Sigma, \ \underbrace{\int_{\Omega} \operatorname{div}(\sigma) v dx}_{b(\sigma,v)} &= -\int_{\Omega} au v dx \qquad orall v \in Q. \end{aligned}$$

Mass conversation

Lemma

If $f_h \in Q$ and $\operatorname{div} \Sigma \subset Q$, the solution σ satisfies

$$\operatorname{div} \sigma + f_h = 0.$$

Can we put them together?

unfitted FEM \rightarrow ? \leftarrow mixed FEM

Overview

Unfitted discretization

Error Analysis

Post-processing

Numerical results

Conclusion and Outlook

Unfitted discretization

Notation

- Ω is the unfitted domain inside of the active mesh \mathcal{T}_h ,
- Ω^{τ} is the domain of the active mesh,
- T_hⁱ is the set of interior uncut elements,
- \mathcal{T}_h^{Γ} is the set of cut elements.

Discretization

Assume that $f \in L^2(\Omega)$ exists a suitable approximation f_h defined on Ω^{τ} that is piecewise polynomial. Define the following spaces

- $\Sigma_h \subset H(\operatorname{div}, \Omega^{\tau})$ the Raviart-Thomas space of order k,
- $Q_h \subset L^2(Q)$ the space of (discontinuous) piecewise polynomials of degree k.

Discretization

Assume that $f \in L^2(\Omega)$ exists a suitable approximation f_h defined on Ω^{τ} that is piecewise polynomial. Define the following spaces

- $\Sigma_h \subset H(\operatorname{div},\Omega^{\tau})$ the Raviart-Thomas space of order k,
- $Q_h \subset L^2(Q)$ the space of (discontinuous) piecewise polynomials of degree k.

The discrete problem: Find $(\sigma_h, u_h) \in \Sigma_h \times Q_h$ such that

$$a(\sigma_h, \tau_h) + b(\tau_h, u_h) = \int_{\partial\Omega} \tau_h \cdot nu_D ds =: g(\tau_h) \qquad \forall \tau_h \in \Sigma, \ b(\sigma_h, v_h) = -\int_{\Omega} f_h v_h dx =: h(v_h) \qquad \forall v_h \in Q_h.$$

Well-posedness?

To apply standard saddle-point theory, we need

- coercivity of $a(\cdot, \cdot)$ on the kernel of $b(\cdot, \cdot)$,
- inf-sup stability of $b(\cdot, \cdot)$.

Well-posedness?

To apply standard saddle-point theory, we need

- coercivity of $a(\cdot, \cdot)$ on the kernel of $b(\cdot, \cdot)$,
- inf-sup stability of $b(\cdot, \cdot)$.

Lemma (Kernel-ellipticity)

On the kernel of $b(\cdot, \cdot)$, we have that $a(\sigma_h, \sigma_h) = \|\sigma_h\|_{\Sigma}^2$.

Inf-sup stability

We have that

$$\inf_{v_h \in \mathcal{Q}_h} \sup_{\sigma \in \Sigma_h} \frac{b(\sigma_h, v_h)}{\|\sigma_h\|_{\Sigma} \|v_h\|_{Q}} > 0.$$

BUT: We have no lower bound on the inf-sup constant!

Furthermore: condition numbers depend on the cut position!

Our Approach - Motivation I

Split $\sigma_h = \sigma_h^0 \oplus_{\mathcal{A}} \sigma_h^{\perp}$ with $\sigma_h^0 \in \Sigma_h^0 := \{ \sigma_h \in \Sigma_h \mid b(\sigma_h, v_h) = 0 \forall v_h \in Q_h \} = \ker b$. The problem reduces to three subproblems:

$$(1) \ \mathsf{Find} \ \sigma_h^0 \in \Sigma_h^0 \ \mathsf{s.t.} \ a(\sigma_h^0, \tau_h^0) = g(\tau_h^0) \qquad \forall \tau_h^0 \in \Sigma_h^0,$$

Our Approach - Motivation I

Split $\sigma_h = \sigma_h^0 \oplus_{a} \sigma_h^{\perp}$ with $\sigma_h^0 \in \Sigma_h^0 := \{ \sigma_h \in \Sigma_h \mid b(\sigma_h, v_h) = 0 \forall v_h \in Q_h \} = \ker b$. The problem reduces to three subproblems:

$$(1) \ \mathsf{Find} \ \sigma_h^0 \in \Sigma_h^0 \ \mathsf{s.t.} \ \ \mathit{a}(\sigma_h^0, \tau_h^0) = \mathit{g}(\tau_h^0) \qquad \forall \tau_h^0 \in \Sigma_h^0,$$

(2) Find
$$\sigma_h^{\perp} \in \Sigma_h^{\perp}$$
 s.t. $b(\sigma_h^{\perp}, v_h) = h(v_h) \quad \forall v_h \in Q_h$,

Our Approach - Motivation I

Split $\sigma_h = \sigma_h^0 \oplus_{\mathbf{a}} \sigma_h^{\perp}$ with $\sigma_h^0 \in \Sigma_h^0 := \{ \sigma_h \in \Sigma_h \mid b(\sigma_h, v_h) = 0 \forall v_h \in Q_h \} = \ker b$. The problem reduces to three subproblems:

$$(1) \ \mathsf{Find} \ \sigma_h^0 \in \Sigma_h^0 \ \mathsf{s.t.} \ a(\sigma_h^0, \tau_h^0) = g(\tau_h^0) \qquad \forall \tau_h^0 \in \Sigma_h^0,$$

(2) Find
$$\sigma_h^{\perp} \in \Sigma_h^{\perp}$$
 s.t. $b(\sigma_h^{\perp}, v_h) = h(v_h)$ $\forall v_h \in Q_h$,

(3) Find
$$u_h \in Q_h$$
 s.t. $b(\tau_h^{\perp}, u_h) = g(\tau_h^{\perp}) - a(\sigma_h^{\perp}, \tau_h^{\perp})$ $\forall \tau_h^{\perp} \in \Sigma_h^{\perp}$.

Our Approach - Motivation II

Let
$$\bar{b}(\sigma_h, v_h) := \int_{\Omega^{\tau}} \operatorname{div} \sigma_h v_h dx$$
.

Lemma

It holds that $\Sigma_h^0 = \ker \bar{b}$.

Our Approach - Motivation II

Let
$$\bar{b}(\sigma_h, v_h) := \int_{\Omega^{\tau}} \operatorname{div} \sigma_h v_h dx$$
.

Lemma

It holds that $\Sigma_h^0 = \ker \bar{b}$.

Proof.

Choose $v_h=\operatorname{div}\sigma_h$. Then $\int_\Omega (\operatorname{div}\sigma_h)^2 dx=0 \Rightarrow \operatorname{div}\sigma_h=0 \text{ on }\Omega. \text{ For cut elements } T \text{ with meas}_d T\cap\Omega>0, \text{ the only polynomial that vanishes is the zero polynomial.}$ Hence $\operatorname{div}\sigma_h=0 \text{ on }\Omega^\tau.$

Modified discrete problem

Find $(\bar{\sigma}_h, \bar{u}_h) \in \Sigma_h \times Q_h$ such that

$$a(\bar{\sigma}_h, \tau_h) + \bar{b}(\tau_h, \bar{u}_h) = \int_{\partial \Omega} \tau_h \cdot n u_D ds = g(\tau_h) \qquad \forall \tau_h \in \Sigma_h,$$

$$\bar{b}(\bar{\sigma}_h, v_h) = -\int_{\Omega^{\tau}} f_h v_h dx = h(v_h) \qquad \forall v_h \in Q_h.$$
(2)

Inf-sup stability - revisited

Now, we fulfil the inf-sup condition for a constant c not depending on the mesh size or the cut position:

$$\inf_{v_h \in \mathcal{Q}_h} \sup_{\sigma \in \Sigma_h} \frac{\bar{b}(\sigma_h, v_h)}{\|\sigma_h\|_{\Sigma} \|v_h\|_{Q}} \geq c > 0.$$

 \Rightarrow the modified problem (2) has a unique solution $(\bar{\sigma}_h, \bar{u}_h)$.

Inf-sup stability - revisited

Now, we fulfil the inf-sup condition for a constant c not depending on the mesh size or the cut position:

$$\inf_{v_h \in \mathcal{Q}_h} \sup_{\sigma \in \Sigma_h} \frac{\bar{b}(\sigma_h, v_h)}{\|\sigma_h\|_{\Sigma} \|v_h\|_{Q}} \geq c > 0.$$

 \Rightarrow the modified problem (2) has a unique solution $(\bar{\sigma}_h, \bar{u}_h)$.

Lemma

It holds that $\bar{\sigma}_h = \sigma_h$, where (σ_h, u_h) is the solution to (1). Furthermore, for $T \in \mathcal{T}_h^i$, we have that $\bar{u}_h = u_h$.

Error Analysis

Ghost penalty

Introduce ghost penalty term:

$$j_h(\sigma, au) := \sum_{F \in \mathcal{F}_h^n} j_{h,F}^{\mathsf{dir}}(\sigma, au) \text{ with } j_{h,F}^{\mathsf{dir}}(\sigma, au) := \int_{\omega_F} (\sigma_1 - \sigma_2)(au_1 - au_2) dx,$$

Ghost penalty

Introduce ghost penalty term:

$$j_h(\sigma,\tau) := \sum_{F \in \mathcal{F}_h^n} j_{h,F}^{\mathsf{dir}}(\sigma,\tau) \text{ with } j_{h,F}^{\mathsf{dir}}(\sigma,\tau) := \int_{\omega_F} (\sigma_1 - \sigma_2)(\tau_1 - \tau_2) dx,$$

For $\gamma \geq 0$, we now consider:

$$\underbrace{a(\sigma_h, au_h) + \gamma j_h(\sigma_h, au_h)}_{=:A_h(\sigma_h, au_h)} + \bar{b}(au_h, ar{u}_h) = \int_{\partial\Omega} au_h \cdot n \ u_D \ ds \quad orall au_h \in \Sigma_h, \ ar{b}(\sigma_h, v_h) = -\int_{\Omega} f_h v_h \ dx \quad orall v_h \in Q_h.$$

Coercivity

Define the following norm

$$\|\sigma_h\|_{A_h}^2 := \|\sigma_h\|_{\Omega}^2 + \|\operatorname{div}\sigma_h\|_{\Omega^\tau}^2 + \gamma |\sigma_h|_j^2,$$

where $|\sigma_h|_j^2 := j_h(\sigma_h, \sigma_h)$.

Coercivity

Define the following norm

$$\|\sigma_h\|_{A_h}^2 := \|\sigma_h\|_{\Omega}^2 + \|\operatorname{div}\sigma_h\|_{\Omega^\tau}^2 + \gamma |\sigma_h|_j^2,$$

where $|\sigma_h|_j^2 := j_h(\sigma_h, \sigma_h)$.

Lemma (Coercivity revisited)

The bilinear form $A_h(\cdot,\cdot)$ is coercive on Σ_h^0 with respect to the $\|\cdot\|_{A_h}$ -norm.

Weak Galerkin orthogonality

Lemma (Weak Galerkin orthogonality)

There holds

$$a(\sigma - \sigma_h, \tau_h) = \gamma j_h(\sigma_h, \tau_h) \qquad \forall \tau_h \in \Sigma_h^0.$$

Proof.

As $au_h \in \Sigma_h^0$, we have that $ar{b}(au_h, ar{u}) = ar{b}(au_h, ar{u}_h) = 0$. Hence

$$a(\sigma - \sigma_h, \tau_h) = g(\tau_h) - \bar{b}(\tau_h, \bar{u}) - g(\tau_h) + \bar{b}(\tau_h, \bar{u}_h) + \gamma j_h(\sigma_h, \tau_h) = \gamma j_h(\sigma_h, \tau_h).$$

σ -error estimates

Lemma

There exists an unique solution $\sigma_h \in \Sigma_h^0$ such that

$$A_h(\sigma_h, \tau_h) = g(\tau_h) \qquad \forall \tau_h \in \Sigma_h^0.$$

Furthermore, there holds

$$\|\sigma - \sigma_h\|_{A_h} \lesssim \inf_{\tau_h \in \Sigma_h^f} \|\sigma - \tau_h\|_{A_h}$$

Proof of the σ **-error estimates**

Existence and uniqueness:

 A_h is coercive on $\Sigma_h^0 \Rightarrow \exists$ unique solution σ_h (Lax-Milgram).

Proof of the σ **-error estimates**

Error estimate:

For $\tau_h \in \Sigma_h^f$, we have that

$$\begin{split} \|\sigma_h - \tau_h\|_{A_h}^2 &= A_h(\sigma_h - \tau_h, \sigma_h - \tau_h) \\ &= A_h(\sigma - \tau_h, \sigma_h - \tau_h) + \underbrace{A_h(\sigma_h - \tau_h, \sigma_h - \tau_h)}_{=0 \text{ as } \sigma_h - \tau_h \in \Sigma_h^0} \\ &\lesssim \|\sigma - \tau_h\|_{A_h} \|\sigma_h - \tau_h\|_{A_h}. \end{split}$$

Divide by $\|\sigma_h - \tau_h\|_{A_h}$, apply the triangle inequality and take the infimum.

L^2 -error estimate and Interpolation

In addition:

•
$$\|\sigma - \sigma_h\|_{L^2(\Omega^\tau)} \le \|\sigma - \tau_h\|_{L^2(\Omega^\tau)} + \underbrace{\|\tau_h - \sigma_h\|_{L^2(\Omega^\tau)}}_{\simeq \|\tau_h - \sigma_h\|_{A_h}} \to L^2$$
 estimate

L^2 -error estimate and Interpolation

In addition:

•
$$\|\sigma - \sigma_h\|_{L^2(\Omega^\tau)} \le \|\sigma - \tau_h\|_{L^2(\Omega^\tau)} + \underbrace{\|\tau_h - \sigma_h\|_{L^2(\Omega^\tau)}}_{\simeq \|\tau_h - \sigma_h\|_{A_h}} \to L^2$$
 estimate

• $\|\sigma - \sigma_h\|_{A_h} \lesssim h^{k+1} \|\sigma\|_{H^{k+1}(\Omega)}$ with the help of a BDM interpolator

\bar{u}_h error estimates

Define an interpolation operator $\pi_h: L^2(\Omega) \to Q_h$ s.t.

$$(\pi_h u, q_h)_{\Omega^{\tau}} = (u, q_h)_{\Omega} \qquad \forall q_h \in Q_h.$$

Lemma (\bar{u}_h error estimate)

It holds that

$$\|\pi_h u - \bar{u}_h\|_{L^2(\Omega^\tau)} \leq \frac{C_a}{c} \inf_{\tau_h \in \Sigma_h} \|\sigma - \tau_h\|_{\Sigma} + \left(1 + \frac{C_b}{c}\right) \inf_{\bar{v}_h \in Q_h} \|\pi_h u - \bar{v}_h\|_{L^2(\Omega^\tau)}.$$

Proof of the \bar{u}_h error estimate

Proof.

For $\gamma = 0$, we have due to the inf-sup condition:

$$c\|\bar{u}_{h} - \bar{v}_{h}\|_{L^{2}(\Omega^{\tau})}\|\tau_{h}\|_{\Sigma} \leq \bar{b}(\tau_{h}, \bar{u}_{h} - \bar{v}_{h}) = g(\tau_{h}) - g(\tau_{h}) + \bar{b}(\tau_{h}, \bar{u}_{h} - \bar{v}_{h})$$

$$= a(\sigma, \tau_{h}) + \underbrace{b(\tau_{h}, u)}_{=\bar{b}(\tau_{h}, \pi_{h}u)} - a(\sigma_{h}, \tau_{h}) - \bar{b}(\tau_{h}, \bar{u}_{h}) + \bar{b}(\tau_{h}, \bar{u}_{h} - \bar{v}_{h})$$

$$= a(\sigma - \sigma_{h}, \tau_{h}) + \bar{b}(\tau_{h}, \pi_{h}u - \bar{v}_{h})$$

$$\leq C_{a}\|\sigma - \sigma_{h}\|_{\Sigma}\|\tau_{h}\|_{\Sigma} + C_{b}\|\tau_{h}\|_{\Sigma}\|\pi_{h}u - \bar{v}_{h}\|_{L^{2}(\Omega^{\tau})}$$

23 / 27

Post-processing

Post-processing scheme

Solve the following local problems: Find $u_h^* \in \mathcal{P}^{k+1}(T)$ s.t.

$$\begin{split} \int_{T} \nabla u_{h}^{*} \cdot \nabla v_{h} dx &= \int_{T} \sigma_{h} \cdot \nabla v_{h} dx \qquad \forall v_{h} \in \mathcal{P}_{0}^{k+1}(T), \\ \int_{T} u_{h}^{*} dx &= \int \bar{u}_{h} dx \text{ if } T \in \mathcal{T}_{h}^{i}, \\ \int_{T \cap \partial \Omega} u_{h}^{*} ds &= \int_{T \cap \partial \Omega} u_{D} ds \text{ if } T \in \mathcal{T}_{h}^{\Gamma}. \end{split}$$

Superconvergence

Lemma

Post-processing error estimate

$$||u-u_h^*||_{L^2(\Omega^{\tau})} \lesssim h^{k+2}||u||_{H^{k+2}(\Omega^{\tau})}.$$

Superconvergence

Lemma

Post-processing error estimate

$$||u-u_h^*||_{L^2(\Omega^{\tau})} \lesssim h^{k+2}||u||_{H^{k+2}(\Omega^{\tau})}.$$

Main idea: Split the error. For $T \in \mathcal{T}_h^i$:

$$||u - u_h^*||_T \le ||u - \tilde{u}||_T + ||Q_T(\tilde{u} - u_h^*)||_T + ||(I - Q_T)(\tilde{u} - u_h^*)||_T.$$

For $T \in \mathcal{T}_h^{\Gamma}$:

$$||u - u_h^*||_T \le ||u - \tilde{u}||_T + ||Q_{T \cap \Omega}(\tilde{u} - u_h^*)||_T + ||(I - Q_{T \cap \Omega})(\tilde{u} - u_h^*)||_T.$$

Superconvergence

Lemma

Post-processing error estimate

$$||u-u_h^*||_{L^2(\Omega^{\tau})} \lesssim h^{k+2}||u||_{H^{k+2}(\Omega^{\tau})}.$$

Main idea: Split the error. For $T \in \mathcal{T}_h^i$:

$$||u - u_h^*||_T \le ||u - \tilde{u}||_T + ||Q_T(\tilde{u} - u_h^*)||_T + ||(I - Q_T)(\tilde{u} - u_h^*)||_T.$$

For $T \in \mathcal{T}_h^{\Gamma}$:

$$\|u - u_h^*\|_T \le \|u - \tilde{u}\|_T + \|Q_{T \cap \Omega}(\tilde{u} - u_h^*)\|_T + \|(I - Q_{T \cap \Omega})(\tilde{u} - u_h^*)\|_T.$$

For the result, we have to bound $\|\sigma - \sigma_h\|_T \rightarrow$ Ghost penalty!

Numerical results

Mixed Poisson on a ring

Conclusion and Outlook

Conclusion

Achievements:

- Circumvent polluting the mass balance
- ullet Recover higher order convergence for u_h with post-processing

Conclusion

Achievements:

- Circumvent polluting the mass balance
- Recover higher order convergence for u_h with post-processing

Possible extensions:

- Other boundary conditions
- Stokes problem: Find u, p with $u = u_D$ in $\partial \Omega$, s.t.

$$-\Delta u + \nabla p = f \text{ in } \Omega,$$

 $\text{div } u = 0 \text{ in } \Omega.$