Math 240: Discrete Structures I (W18) - Assignment 1

1. Use a truth table to determine if each statement is a tautology, contradiction, or contingency.

[3] (a)
$$(P \lor Q) \Rightarrow \neg P$$

Solution. Contingency

P	Q	$P \lor Q$	$\neg P$	$P \lor Q \Rightarrow \neg P$
\overline{T}	Т	Т	F	F
${ m T}$	\mathbf{F}	Т	F	F
\mathbf{F}	Т	Т	Τ	${ m T}$
\mathbf{F}	\mathbf{F}	F	T	${ m T}$

[4] (b)
$$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R) \Rightarrow (P \Leftrightarrow R)$$

Solution. Tautology

P	Q	R	$P \Leftrightarrow Q$	$Q \Leftrightarrow R$	$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)$	$P \Leftrightarrow R$	$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R) \Rightarrow (P \Leftrightarrow R)$
T	Т	Т	Т	Т	T	Т	T
\mathbf{T}	Γ	F	Т	F	F	F	${ m T}$
${ m T}$	F	${ m T}$	F	F	F	${ m T}$	${ m T}$
${ m T}$	F	F	F	T	F	F	${ m T}$
\mathbf{F}	Γ	${ m T}$	F	T	F	F	${ m T}$
\mathbf{F}	Γ	F	F	F	F	${ m T}$	${ m T}$
\mathbf{F}	F	${ m T}$	T	F	F	F	${ m T}$
\mathbf{F}	F	F	T	Γ	m T	Τ	Γ

[4] (c)
$$[(P \oplus Q) \oplus \neg Q] \Leftrightarrow P$$
, where $P \oplus Q$ is defined by the following truth table:

$$\begin{array}{c|cccc} P & Q & P \oplus Q \\ \hline T & T & F \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

Solution. Contradiction

P	Q	$P \oplus Q$	$\neg Q$	$(P \oplus Q) \oplus \neg Q$	$[(P \oplus Q) \oplus \neg Q] \Leftrightarrow P$
Т	Т	F	F	F	F
Τ	F	Т	Τ	F	F
\mathbf{F}	Т	Т	F	m T	F
\mathbf{F}	F	F	T	m T	F

2. Verify the following statements using only identities (see the list posted on MyCourses). Show all of your work and name the identity or identities used in each step.

[4] (a)
$$[(P \Rightarrow Q) \land P] \Rightarrow Q$$
 is a tautology

$$\begin{aligned} \mathbf{Solution.} \Big[(P \Rightarrow Q) \land P \Big] &\Rightarrow Q \equiv \Big[(\neg P \lor Q) \land P \Big] \Rightarrow Q \qquad (conditional) \\ &\equiv \Big[(\neg P \land P) \lor (Q \land P) \Big] \Rightarrow Q \qquad (distributive) \\ &\equiv \Big[\mathbb{F} \lor (Q \land P) \Big] \Rightarrow Q \qquad (complement) \\ &\equiv (Q \land P) \Rightarrow Q \qquad (identity) \\ &\equiv \neg (Q \land P) \lor Q \qquad (conditional) \\ &\equiv (\neg Q \lor \neg P) \lor Q \qquad (DeMorgan) \\ &\equiv (\neg Q \lor Q) \lor \neg P \qquad (associative \ \ensuremath{\mathscr{C}} \ commutative) \\ &\equiv \mathbb{T} \lor \neg P \qquad (complement) \\ &\equiv \mathbb{T} \qquad (domination) \end{aligned}$$

[4] (b)
$$\neg (P \land Q) \land (Q \Rightarrow P) \equiv \neg Q$$

$$\begin{aligned} \mathbf{Solution} & (Q \Rightarrow P) \equiv (\neg P \vee \neg Q) \wedge (\neg Q \vee P) & (conditional) \\ & \equiv \left[(\neg P \vee \neg Q) \wedge \neg Q \right] \vee \left[(\neg P \vee \neg Q) \wedge P \right] & (distributive) \\ & \equiv \neg Q \vee \left[(\neg P \wedge P) \vee (\neg Q \wedge P) \right] & (absorption) \\ & \equiv \neg Q \vee \left[\mathbb{F} \vee (\neg Q \wedge P) \right] & (complement) \\ & \equiv \neg Q \vee (\neg Q \wedge P) & (identity) \\ & \equiv \neg Q & (absorption) \end{aligned}$$

[4] (c)
$$\neg [(P \lor Q) \lor [(Q \lor \neg R) \land (P \lor R)]] \equiv \neg P \land \neg Q$$

Solution.

$$\neg \Big[(P \lor Q) \lor \big[(Q \lor \neg R) \land (P \lor R) \big] \Big] \equiv \neg \Big[\big[(P \lor Q) \lor (Q \lor \neg R) \big] \land \big[(P \lor Q) \lor (P \lor R) \big] \Big] \quad (distributive)$$

$$\equiv \neg \Big[\big[P \lor Q \lor Q \lor \neg R \big] \land \big[P \lor Q \lor P \lor R \big] \Big] \quad (associative)$$

$$\equiv \neg \Big[\big[P \lor Q \lor \neg R \big] \land \big[P \lor Q \lor R \big] \Big] \quad (associative)$$

$$\equiv \neg \Big[\big[(P \lor Q) \lor \neg R \big] \land \big[(P \lor Q) \lor R \big] \Big] \quad (associative)$$

$$\equiv \neg \Big[(P \lor Q) \lor (\neg R \land R) \big] \quad (distributive)$$

$$\equiv \neg \Big[(P \lor Q) \lor \mathbb{F} \Big] \quad (complement)$$

$$\equiv \neg (P \lor Q) \quad (identity)$$

$$\equiv \neg P \land \neg Q \quad (DeMorgan)$$

- 3. Of the following conditional and biconditional statements, which are true and which are false? Briefly justify your answers.
- [2] (a) π is an integer if and only if $\sqrt{e+3}$ is a vowel.

Solution. This statement is $F \Leftrightarrow F$ and is thus true.

[2] (b) 0 > 1 whenever 2 + 2 = 4.

Solution. This statement is $(2+2=4) \Rightarrow (0>1)$, which is $T \Rightarrow F$, which is false.

[3] (c) If (a) implies (b), then pigs cannot fly.

Solution. Since (a) is true and (b) is false, we have $(T \Rightarrow F) \Rightarrow T$, or $F \Rightarrow T$, which is true.

- 4. Symbolize the following English sentences in logic, using the abbreviation scheme provided.
- [2] (a) "Thunder only happens when it's raining."

T: thunder happens; R: it's raining

Solution. "T only if R" gives $T \Rightarrow R$

[4] (b) "For every positive integer n there is a prime number that is bigger than n but at most 2n." I(x): x is a positive integer; P(x): x is a prime number; B(x,y): x is bigger than y.

Solution. $\forall n \exists p (I(n) \Rightarrow (P(p) \land B(p,n) \land \neg B(p,2n))) \ OR \ \forall n (I(n) \Rightarrow \exists p(P(p) \land B(p,n) \land \neg B(p,2n)))$

NOTE: $\neg B(p,2n)$ is not the same as B(2n,p). The former says p is NOT bigger than 2n, or $p \le 2n$. The latter say 2n is bigger than p, or p < 2n.

[4] (c) "Goldbach's Conjecture is true if every even integer greater than 2 can be written as the sum of two primes."

G: Goldbach's Conjecture is true; E(x): x is an even integer; T(x): x is greater than 2; P(x): x is the sum of two primes.

Solution. $\forall x [(E(x) \land T(x)) \Rightarrow P(x)] \Rightarrow G$