Thes<u>ios</u>: Synthesizing Accurate Counterfactual I/O Traces from Factual I/O Samples

Phitchaya Mangpo Phothilimthana*, Saurabh Kadekodi*, Soroush Ghodrati, Selene Moon, Martin Maas

^{*} equal contribution

Can we reduce energy consumed by disks in data centers?

Idea: create cold data disks running in low power

Motivation

- Representative I/O traces are critical to the designs of storage systems
- Understand the system and analyze proposed changes on
 - Latency (SLO)
 - Power consumption
- Enable sharing realistic traces from large-scale data centers with academia and vendors

Sampled I/O Disk Traces

- Distributed storage system
- Sampling system maintains downsampled I/O traces
 - Collect telemetry from 1-in-n RPCs
 - n is between 100 and 10,000

Sampled I/O Disk Traces

- Distributed storage system
- Sampling system maintains downsampled I/O traces
 - Collect telemetry from 1-in-n RPCs
 - n is between 100 and 10,000
- What cannot be understood from sampled traces:
 - I/O request interarrival distribution
 - Evaluate latency, utilization, etc. due to placement policy changes
 - Evaluate impact of new hardware such as low RPM, HAMR disks

Thesios: Synthesizing Full I/O traces

Key idea: combine I/O samples from multiple disks to synthesize full-resolution trace

- Representative full-resolution trace mimics current workload
- Counterfactual full-resolution trace for "what-if" scenarios

Samples from which disks?

Sever-Level & Disk-Level Traces

- The server reorders requests according to their priorities.
- Some reads are served from buffer cache.
- All writes are written to buffer cache, which is a write-back cache.

Validation: Number & Breakdown of I/O Requests

Counterfactual Analysis

I. Hot & Cold Data Segregation

- Thesios supports filtering by age, encoding, and application
- **f** = fraction of files that meet the filtering criteria (by size)

I. Hot & Cold Data Segregation

Synthesized trace shows (as expected) older files → colder

- Utilization reduces from 52% to 8%
- 50th and 95th percentile request interarrival increases by >10x
 for cold trace

I. Hot & Cold Data Segregation

Synthesized trace shows (as expected) older files → colder

- Utilization reduces from 52% to 8%
- 50th and 95th percentile request interarrival increases by >10x
 for cold trace
- Still enough to turn off disks

II. Low-RPM Disk

Simulate impact of low-RPM disks on individual requests

- T_d (disk time) = T_s (seek time) + T_r (rotational latency) + T_t (transfer time)
- Low-RPM increases T_r and T_t wrt RPM slowdown
- Evaluate 5400 RPM and 4200 RPM against 7200 RPM (current)

RPM	Latency (ms)			Average Power (W)
	L_{95}	L_{99}	TP_{mean}	()
7200	39	57	23	1×
5400	51	76	32	0.79×
4200	66	98	50	0.73×

Validation with real low-RPM disk

Summary

- Thesios synthesizes representative traces with high accuracy
- Thesios enables risk-free "what-if" evaluations of policy and hardware changes

Summary

- Thesios synthesizes representative traces with high accuracy
- Thesios enables risk-free "what-if" evaluations of policy and hardware changes
- Release 2-month-long synthesized traces
 from Google storage clusters:
 <u>qithub.com/qoogle-research-datasets/thesios</u>

