線形代数学・同演習 B

12 月 20 日分 演習問題*1

1.
$$(1)$$
 $D=\begin{pmatrix}3&0\\0&1\end{pmatrix},$ $P=\begin{pmatrix}1&1\\2&1\end{pmatrix},$ (2) 対角化できない,

(3)
$$D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, (4) $D = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}$, $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$,

(7)
$$D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}, P = \begin{pmatrix} -1 & -1 \\ 2 & 1 \end{pmatrix}, (8) D = \begin{pmatrix} -5 & 0 \\ 0 & 2 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}.$$

2. (1)
$$A^n = \begin{pmatrix} 2-3^n & -1+3^n \\ 2-2\cdot 3^n & -1+2\cdot 3^n \end{pmatrix}$$
, (2) 対角化できない

2. (1)
$$A^n = \begin{pmatrix} 2-3^n & -1+3^n \\ 2-2\cdot 3^n & -1+2\cdot 3^n \end{pmatrix}$$
, (2) 対角化できない,
$$(3) A^n = \begin{pmatrix} 2(-1)^n - 2^n & 2((-1)^n + 2^n) \\ (-1)^n - 2^n & (-1)^{n+1} + 2^{n+1} \end{pmatrix}$$
, (4) $A^n = \begin{pmatrix} (-1)^n + 2\cdot 4^n & 2((-1)^n - 4^n) \\ (-1)^{n+1} + 4^n & 2(-1)^n - 4^n \end{pmatrix}$

$$(7) \begin{pmatrix} 2(-2)^n - 3^n & (-2)^n - 3^n \\ (-2)^{n+1} + 2 \cdot 3^n & -(-2)^n + 2 \cdot 3^n \end{pmatrix}, \quad (8) A^n = \begin{pmatrix} 2^{n+1} - (-5)^n & -2^n + (-5)^n \\ 2^{n+1} - 2(-5)^n & -2^n + 2(-5)^n \end{pmatrix}$$

(5) 対角化できない (6) 対角化できない (7)
$$\begin{pmatrix} 2(-2)^n - 3^n & (-2)^n - 3^n \\ (-2)^{n+1} + 2 \cdot 3^n & -(-2)^n + 2 \cdot 3^n \end{pmatrix}$$
 (8) $A^n = \begin{pmatrix} 2^{n+1} - (-5)^n & -2^n + (-5)^n \\ 2^{n+1} - 2(-5)^n & -2^n + 2(-5)^n \end{pmatrix}$ (7) $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (9) 対角化できない $P = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ (1) $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (2) 対角化できない $P = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ (2) 対角化できない

$$(3) D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} -2 & 0 & 1 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix},$$

$$(4) D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} -4 & -3 & -2 \\ 1 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

$$(3) D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} -2 & 0 & 1 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix},$$

$$(4) D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} -4 & -3 & -2 \\ 1 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix},$$

$$(5) D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}, (6) 対角化できない.$$

4. (1) 行列 $\mathring{\mathsf{o}}$ トレース $\mathring{\mathsf{o}}$ 次の性質 $\mathring{\mathsf{tr}}(AB) = \mathsf{tr}(BA)$ を用いる . $A = PDP^{-1}$ (D は対角行列 で, λ_1 が m_1 個, $\cdots \lambda_r$ が m_r 個並んでいるもの)と書けるが,

$$\operatorname{tr} A = \operatorname{tr}(PDP^{-1}) = \operatorname{tr}(P^{-1}PD) = \operatorname{tr}(D)$$

となることより.

(2) これも $\det(AB) = \det(BA)$ となることを用いれば , (1) と同様に示すことができる .

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.

5. これも det(XY) = det(YX) を用いる.

$$g_{AB}(t) = \det(tE - AB) = \det(A(tA^{-1} - B))$$

= $\det((tA^{-1} - B)A) = \det(tE - BA) = g_{BA}(t)$. \square

 6^{\dagger} A の固有多項式は $g_A(t)=t^2-t-1$. $g_A(t)=0$ の 2 解を α,β とする.ただし $\alpha>\beta$ とする. α,β は A の固有値であるが,対応する固有ベクトルはそれぞれ $\binom{\alpha}{1}$, $\binom{\beta}{1}$ となる.そこで $P=\binom{\alpha}{1}$ とおけば,

$$P^{-1}AP = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \quad P^{-1} = \frac{1}{\alpha - \beta} \begin{pmatrix} \alpha & \beta \\ 1 & 1 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \alpha & \beta \\ 1 & 1 \end{pmatrix}$$

となる.これより

$$A^{n} = P^{-1} \begin{pmatrix} \alpha^{n} & 0 \\ 0 & \beta^{n} \end{pmatrix} P = \frac{1}{\sqrt{5}} \begin{pmatrix} \alpha^{n+1} - \beta^{n+1} & \alpha^{n} - \beta^{n} \\ \alpha^{n} - \beta^{n} & \alpha^{n-1} - \beta^{n-1} \end{pmatrix}$$

となる.さて, $\left(egin{array}{c} f_{n+1} \\ f_n \end{array}
ight) = A^{n-1}\left(egin{array}{c} f_2 \\ f_1 \end{array}
ight)$ であることより,

$$\begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \alpha^n - \beta^n & \alpha^{n-1} - \beta^{n-1} \\ \alpha^{n-1} - \beta^{n-1} & \alpha^{n-2} - \beta^{n-2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \alpha^{n+1} - \beta^{n+1} \\ \alpha^n - \beta^n \end{pmatrix}$$

となるので,結局 f_n は以下のようになる:

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$

なお,以上の変形では $\alpha\beta=-1$ や $\alpha^2=\alpha+1$ などのような関係式を用いている.

 7^* $n_i=\dim W(\lambda_i;T)$ とし, $W(\lambda_i;T)$ の基底を $[m{u}_1^{(i)},\ldots,m{u}_{n_i}^{(i)}]$ とする.次のベクトルの組が線形独立であればよい:

$$[\boldsymbol{u}_1^{(1)}, \dots, \boldsymbol{u}_{n_1}^{(1)}, \boldsymbol{u}_{n_2}^{(2)}, \dots, \boldsymbol{u}_1^{(r)}, \dots, \boldsymbol{u}_{n_r}^{(r)}].$$
 (1)

線形独立かどうかを確かめるために,上のベクトルの組の線形結合を考える:

$$a_1^{(1)} \boldsymbol{u}_1^{(1)} + \dots + a_{n_1}^{(1)} \boldsymbol{u}_{n_1}^{(1)} + a_1^{(2)} \boldsymbol{u}_{n_2}^{(2)} + \dots + a_1^{(r)} \boldsymbol{u}_1^{(r)} + \dots + a_{n_r}^{(r)} \boldsymbol{u}_{n_r}^{(r)} = \mathbf{0}.$$

簡単のため $m{w}^{(i)} = a_1^{(i)}m{u}_1^{(i)} + \cdots + a_{n_i}^{(i)}m{u}_{n_i}^{(i)}$ とおけば , 上式は

$$\boldsymbol{w}^{(1)} + \dots + \boldsymbol{w}^{(r)} = \boldsymbol{0} \tag{2}$$

となる.ここで講義中の補題 9.1 より各固有空間同士の共通部分は $\{\mathbf{0}\}$ のみである.したがって同じく講義中の補題 9.2 を適用することができて,式 (2) より各 i に対して

$$\mathbf{0} = \mathbf{w}^{(i)} = a_1^{(i)} \mathbf{u}_1^{(i)} + \dots + a_{n_i}^{(i)} \mathbf{u}_{n_i}^{(i)}$$

となる.ここで $[u_1^{(i)},\dots,u_{n_i}^{(i)}]$ は $W(\lambda_i;T)$ の基底であるので,上式を満たす $a_1^{(i)},\dots,a_{n_i}^{(i)}$ は 'すべて 0' しかありえない.よって,式 (1) のベクトルの組は線形独立であることが示された.次元とはその空間における線形独立なベクトルの最大個数であったため,少なくとも $n_1+\dots+n_r=\sum_{i=1}^r \dim W(\lambda_i;T)$ 以上であることがわかる.