

BLM3620 Digital Signal Processing

Dr. Ali Can KARACA

ackaraca@yildiz.edu.tr

Yıldız Technical University – Computer Engineering

Course Materials

Important Materials:

- James H. McClellan, R. W. Schafer, M. A. Yoder, *DSP First Second Edition*, Pearson, 2015.
- Lizhe Tan, Jean Jiang, *Digital Signal Processing: Fundamentals and Applications*, Third Edition, Academic Press, 2019.

Auxilary Materials:

- Prof. Sarp Ertürk, Sayısal İşaret İşleme, Birsen Yayınevi.
- Prof. Nizamettin Aydin, DSP Lecture Notes.
- J. G. Proakis, D. K. Manolakis, *Digital Signal Processing Fourth Edition*, Peason, 2014.
- J. K. Perin, *Digital Signal Processing, Lecture Notes,* Standford University, 2018.

Syllabus

Week	Lectures
1	Introduction to DSP and MATLAB
2	Sinuzoids and Complex Exponentials
3	Spectrum Representation
4	Sampling and Aliasing
5	Discrete Time Signal Properties and Convolution
6	Convolution and FIR Filters
7	Frequency Response of FIR Filters
8	Midterm Exam
9	Discrete Time Fourier Transform and Properties
10	Discrete Fourier Transform and Properties
11	Fast Fourier Transform and Windowing
12	z- Transforms
13	FIR Filter Design and Applications
14	IIR Filter Design and Applications
15	Final Exam

For more details -> Bologna page: http://www.bologna.yildiz.edu.tr/index.php?r=course/view&id=5730&aid=3

Lecture #8 – Frequency Response of FIR Filters

- Frequency Response
- Digital Filtering
- Frequency Scaling
- Exercises
- FIR Filter Application

Remember: Classification of Impulse Response h[n]

FIR – Finite Impulse Response:

- Number of impulses are limited.
- Always stable.

For example:
$$h[n] = \delta[n-1] + 5\delta[n-5]$$

IIR – Infinite Impulse Response:

- Number of impulses are infinite.
- Sometimes these systems are not stable.

For example:
$$h[n] = u[n-1] + 5u[n-5]$$

Finite impulse response (FIR):

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$

Infinite impulse response (IIR):

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

Another example:

DOMAINS: Time & Frequency

- CONCENTRATE on the <u>SPECTRUM</u>
- SINUSOIDAL INPUT
 - INPUT x[n] = SUM of SINUSOIDS
 - Then, OUTPUT y[n] = SUM of SINUSOIDS

- <u>Time-Domain: "n" = time</u>
 - x[n] discrete-time signal
 - x(t) continuous-time signal

Example FIR Filters

3-point AVERAGER

$$y_3[n] = \sum_{k=0}^{2} (\frac{1}{3})x[n-k]$$

• 7-point AVERAGER

$$y_7[n] = \sum_{k=0}^{6} (\frac{1}{7})x[n-k]$$

But...

How can I calculate the effects of this filter on digital frequency?

$$x[n] = Ae^{j\varphi}e^{j\hat{\omega}n} - \infty < n < \infty$$

$$x[n] \text{ is the input signal} - a \text{ complex exponential}$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} h[k]x[n-k]$$
FIR DIFFERENCE EQUATION
$$H(e^{j\varphi}) - H(e^{j\varphi})$$

$$= \sum_{k=0}^{M} b_k x[n-k]$$

• Use the FIR "Difference Equation"

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k A e^{j\varphi} e^{j\hat{\omega}(n-k)}$$
$$= \left(\sum_{k=0}^{M} b_k e^{j\hat{\omega}(-k)}\right) A e^{j\varphi} e^{j\hat{\omega}n}$$
$$= H(\hat{\omega}) A e^{j\varphi} e^{j\hat{\omega}n}$$

New Term: Frequency Response $H(e^{j\widehat{\omega}})$

• At each frequency, we can DEFINE

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$
FREQUENCY RESPONSE

- Complex-valued formula
 - Has MAGNITUDE vs. frequency
 - And PHASE vs. frequency
- Notation: $H(e^{j\hat{\omega}})$ in place of $H(\hat{\omega})$

$$H(e^{j\hat{\omega}}) = h[0] + h[1]e^{-j\hat{\omega}} + h[2]e^{-j2\hat{\omega}} + h[3]e^{-j3\hat{\omega}} + \cdots$$
$$= |H(e^{j\hat{\omega}})|e^{j\angle H(e^{j\hat{\omega}})}$$

Complex Number:

- 1- A Phase Component
- 2- A Magnitude Component

Example

 $H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$ $\{b_k\} = \{1, 2, 1\}$ $(a) = 1 + 2e^{-j\hat{\omega}k}$

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

What does this filter do in frequency domain?

Example -2: For the previous system...

Find
$$y[n]$$
 when $x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$

One Step - evaluate $H(e^{j\hat{\omega}})$ at $\hat{\omega} = \pi/3$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

$$H(e^{j\hat{\omega}}) = 3e^{-j\pi/3}$$
 $(\hat{\omega}, \hat{\omega}) = \pi/3$

$$y[n] = (3e^{-j\pi/3}) \times 2e^{j\pi/4}e^{j(\pi/3)n} = 6e^{-j\pi/12}e^{j(\pi/3)n}$$

Example - 3: For the previous system...

Find
$$y[n]$$
 when $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$

_ jw Q . (2.05w ~

$$2\cos(\frac{\pi}{3}n + \frac{\pi}{4}) = e^{j(\pi n/3 + \pi/4)} + e^{-j(\pi n/3 + \pi/4)}$$

$$\Rightarrow x[n] = x_1[n] + x_2[n]$$

Use Linearity
$$y_1[n] = H(e^{j\pi/3})e^{j(\pi n/3 + \pi/4)}$$
 $y_2[n] = H(e^{-j\pi/3})e^{-j(\pi n/3 + \pi/4)}$ $y_2[n] = y_1[n] + y_2[n]$

Example - 3: For the previous system...

Find
$$y[n]$$
 when $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

$$y_1[n] = H(e^{j\pi/3})e^{j(\pi n/3 + \pi/4)} = 3e^{-j(\pi/3)}e^{j(\pi n/3 + \pi/4)}$$

$$y_2[n] = H(e^{-j\pi/3})e^{-j(\pi n/3 + \pi/4)} = 3e^{j(\pi/3)}e^{-j(\pi n/3 + \pi/4)}$$

$$y[n] = 3e^{j(\pi n/3 - \pi/12)} + 3e^{-j(\pi n/3 - \pi/12)}$$

$$\Rightarrow y[n] = 6\cos(\frac{\pi}{3}n - \frac{\pi}{12})$$

htn]= { [n] - { [n-1] -> } & h[k] = 1 - = -jw = H(ejw) (>1-cosû+j.sinú A- \(1-(05\hat{a})^2 + (-5:2\hat{a})^7 $\omega = 0$; e = 0 $\frac{1}{2} = \frac{1}{1}$ $\frac{1}{1} = \frac{1}{1} = \frac{1}$

DLTI Demo with Sinuzoids

https://dspfirst.gatech.edu/matlab/#dltidemo

Summary over Block Diagrams

Equivalent Representations

Cascaded LTI Systems

Example – 4: Unit Delay System

Find
$$h[n]$$
 and $H(e^{j\hat{\omega}})$ for $y[n] = x[n-1]$

Example – 5: Freq. Domain to Time

Digital Filtering

Frequency Scaling

- TIME SAMPLING:
 - IF <u>NO</u> ALIASING:
 - FREQUENCY SCALING

$$t = nT_s$$

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$

11-pt Averager

D-A Frequency Scaling

• TIME SAMPLING:

$$t = nT_s \Rightarrow n \leftarrow tf_s$$

• RECONSTRUCT up to 0.5f_s

$$\omega = \hat{\omega} f_{s}$$

Summary

$$t = nTs = n/1000$$

$$cos(2pi250t) \rightarrow cos(2.pi.250.\frac{n}{100}) = cos(0.5pi)$$

Magnitude of Frequency Response

Magnitude of Frequency Response

Remember: 17-pt Centralized Average filter to Noisy Audio


```
clc; clear all;
%% Load Sound
load ('piano2.mat');
x = x(1:16000);
soundsc(x, Fs);
%% Add noise
K = awgn(x, 40);
soundsc(K, Fs);
%% Filter
N = 17;
h = 1/N*ones(1,N);
%% Apply Convolution
y = conv(K,h,'same');
soundsc(y, Fs);
응응
plot(x,'r'); hold on; plot(y,'b');
```

LOAD THE SIGNAL

ADD A NOISE TO SIGNAL

FILTER THE SIGNAL

But How it works? What is the frequency response?

17-pt Averager

$$y(n) = \frac{1}{17} \sum_{k=0}^{16} x(n-k)$$

$$y(n) = \frac{1}{17} \sum_{k=0}^{16} x(n-k)$$

$$h(n) = \frac{1}{17} \sum_{k=0}^{16} \delta(n-k) = \frac{1}{17} \delta(n) + \dots + \frac{1}{17} \delta(n-16)$$

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

```
wHat = linspace(-pi,pi,Fs);
b = (1/17) * ones (1,17);
응응
H = zeros(1, Fs);
for k = 1:17
   H = H + b(k) *exp(-1j*wHat*k);
end
plot (wHat, abs(H));
xlabel('wHat');
ylabel('Freq. Response');
```


Let's make a deep analysis

```
Response Xnoise
     clc; clear all;
      %% Load Sound
     load ('piano2.mat');
     x = x(1:16000);
                                                       Input
     X = fftshift(fft(x,Fs));
                                                                  Freq.
                                                                    50
     wHat = linspace(-pi,pi,Fs);
     plot(wHat, abs(X));
                                                                                 -2
                                                                                            0
                                                                                                        2
                                                                           -3
                                                                                       -1
     xlabel('wHat');
                                                                                           wHat
                                                         Χ
     ylabel('Freq. Response X');
                                                                    0.8
      %% Add Noise
                                                                  Freq. Response
     Xnoise = awqn(x, 40);
                                                       Filter
     Xnoisef = fftshift(fft(Xnoise,Fs));
     figure(2);
     plot(wHat,abs(Xnoisef));
                                                                    0.2
     xlabel('wHat');
     ylabel('Freq. Response Xnoise');
                                                                                           wHat
                                                                    25
                                                                  Filter
     N = 17; h = 1/N*ones(1,N);
     y = conv(Xnoise,h,'same');
                                                      Output
     yf = fftshift(fft(y,Fs));
     figure(3);
     plot(wHat,abs(yf));
     xlabel('wHat');
     ylabel('Freq. Response Y');
BLM3620 Digital Signal Processing
```

28

3

Hearing Test – Audiometry Test (Try it at home)

Conduct a test of your hearing, and present the results as a frequency response plot.

Define a sampling frequency (Fs)

From 20 Hz to 22000 Hz with 100 Hz step do:

Play a tone with the selected frequency

Did you hear it: Give a score from 0-100.

Save this value for the last plot

Continue loop.

https://dspfirst.gatech.edu/chapters/06firfreq/labs/HearingTestFreqResponse/HearingTestFreqResponse.pdf

http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/maxsens.html

Use the hearing test to determine the frequency where your hearing sensitivity starts to drop significantly.

- Plot analog frequency vs. |H|. (Freq in logspace)
- Plot digital frequency vs. |H|. (Freq in logspace)

Exercise - 1

A linear time-invariant system is described by the FIR difference equation

$$y[n] = x[n] - 3x[n-1] + 9x[n-2] - 3x[n-3] + x[n-4]$$

- (a) Write a simple formula for the magnitude of the frequency response $|H(e^{j\hat{\omega}})|$. Express your answer in terms of real-valued functions only. (b) Derive a simple formula for the phase of the frequency response $\angle H(e^{j\hat{\omega}})$.

$$H(e^{j\hat{\omega}}) = 1 - 3e^{-j\hat{\omega}} + 9e^{-j2\hat{\omega}} - 3e^{-j3\hat{\omega}} + e^{-j4\hat{\omega}}$$

$$= e^{-j2\hat{\omega}} \left(e^{j2\hat{\omega}} - 3e^{j\hat{\omega}} + 9 - 3e^{-j\hat{\omega}} + e^{-j2\hat{\omega}} \right)$$

$$= e^{-j2\hat{\omega}} \left(2\cos 2\hat{\omega} - 6\cos \hat{\omega} + 9 \right)$$

$$= A \cos 2\hat{\omega} - 6\cos \hat{\omega} + 9$$

Exercise - 2

PROBLEM:

The following FIR filter is specified by the filter coefficients $\{b_k\} = \{2, 0, -4, 0, 2\}$

(a) Determine the impulse response: give your answer as a plot of h[n] vs. n.

(b) Determine the frequency response, $\mathcal{H}(\hat{\omega})$, and select one of the following as the correct answer:

(A)
$$(4 - 4\cos(2\hat{\omega}))e^{-j(2\hat{\omega}-\pi)}$$
 (B) $2\cos\hat{\omega} + 4e^{-j(2\hat{\omega}+\pi)}$ (C) $(4\cos(2\hat{\omega}) - 4)e^{-j\hat{\omega}}$

(B)
$$2\cos\hat{\omega} + 4e^{-j(2\hat{\omega} + \pi)}$$

(C)
$$(4\cos(2\hat{\omega}) - 4)e^{-j\hat{\omega}}$$

(D)
$$2\cos(2\hat{\omega}) - 4$$

(c) Determine the magnitude of $\mathcal{H}(\hat{\omega})$ and present your answer as a a plot of the magnitude vs. fre-

Solution

The following FIR filter is specified by the filter coefficients $\{b_k\} = \{2, 0, -4, 0, 2\}$

(a) Determine the impulse response: give your answer as a $\boxed{\mathrm{plot}}$ of h[n] vs. n.

(c) Determine the magnitude of $\mathcal{H}(\hat{\omega})$ and present your answer as a a plot of the magnitude vs. frequency. Label important features.

$$|\mathcal{H}(\hat{\omega})| = |4 - 4\cos 2\hat{\omega}| = 4 - 4\cos 2\hat{\omega}$$

$$|\hat{\omega} = 0| \Rightarrow 4 - 4 = 0$$

$$\hat{\omega} = \pi \Rightarrow 4 - 4 = 0$$

$$\hat{\omega} = \pi/2 \Rightarrow 4 - 4(-1) = 8$$

$$\hat{\omega} = \pi/4 \Rightarrow 4 - 4(0) = 1$$

(b) Determine the frequency response, $\mathcal{H}(\hat{\omega})$, and select one of the following as the correct answer:

(A)
$$(4 - 4\cos(2\hat{\omega}))e^{-j(2\hat{\omega} - \pi)}$$
 (B) $2\cos\hat{\omega} + 4e^{-j(2\hat{\omega} + \pi)}$ (C) $(4\cos(2\hat{\omega}) - 4)e^{-j\hat{\omega}}$ (D) $2\cos(2\hat{\omega}) - 4$

$$\mathcal{H}(\hat{\omega}) = 2 - 4e^{-j2\hat{\omega}} + 2e^{-j4\hat{\omega}}$$

$$= e^{-j2\hat{\omega}} (2e^{+j2\hat{\omega}} - 4 + 2e^{-j2\hat{\omega}})$$

$$= e^{-j2\hat{\omega}} (4\cos 2\hat{\omega} - 4)$$

$$= e^{-j2\hat{\omega}} e^{j\pi} (4 - 4\cos 2\hat{\omega})$$

Exercise - 3

The input to the C-to-D converter in the figure below is

$$x(t) = 3 + 2\cos(6000\pi t - \pi/4) + 11\cos(12000\pi t - \pi/3)$$

The frequency response for the digital filter (LTI system) is

If $f_s = (10000)$ samples/second, determine an expression for y(t), the output of the D-to-C converter.

$$H(\hat{\omega}) = \frac{\text{Ain}(5\hat{\omega})}{\text{Ain}(\pm\hat{\omega})} e^{-\int 5\hat{\omega}}$$

$$H(0) = 10$$

$$H(0.67) = \frac{\sin 37}{\sin 0.37} e^{-j37} = 0$$

$$H(0.67) = \frac{\Delta \text{in } 37}{\Delta \text{in } 0.37} e^{-j37} = 0$$

$$H(0.87) = \frac{\Delta \text{in } 47}{\Delta \text{in } 0.47} e^{-j47} = 0$$

$$3[h] = (0 \times 3 = 30, y(t) = 30)$$