CS685: Data Mining Clustering

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2020-21 Mon 1030-1200 (online)

Clustering

- A dataset of n objects O_i , $i = 1, \ldots, n$
- Partitioning of the dataset into k clusters or groups
- Can be
 - Crisp: Each object belongs to one and only one cluster
 - Fuzzy: An object belongs to a cluster with a probability; such probabilities add up to 1
- Unsupervised learning
- Sometimes very useful to learn structures in the data

Clustering

- A dataset of n objects O_i , $i = 1, \ldots, n$
- Partitioning of the dataset into k clusters or groups
- Can be
 - Crisp: Each object belongs to one and only one cluster
 - Fuzzy: An object belongs to a cluster with a probability; such probabilities add up to 1
- Unsupervised learning
- Sometimes very useful to learn structures in the data
- Five main types
 - Partitioning-based
 - Hierarchical
 - Agglomerative or bottom-up
 - Divisive or top-down
 - Density-based
 - Grid-based
 - Model-based

- Scalability
 - Dealing with large datasets

- Scalability
 - Dealing with large datasets
- Types of objects
 - Vectors
 - Images
 - Documents
 - Sets

- Scalability
 - Dealing with large datasets
- Types of objects
 - Vectors
 - Images
 - Documents
 - Sets
- Measure of similarity
 - Euclidean distance
 - Similarity (or equivalently, distance) matrix

- Scalability
 - Dealing with large datasets
- Types of objects
 - Vectors
 - Images
 - Documents
 - Sets
- Measure of similarity
 - Euclidean distance
 - Similarity (or equivalently, distance) matrix
- Shape of cluster
 - Convex versus arbitrary

- Scalability
 - Dealing with large datasets
- Types of objects
 - Vectors
 - Images
 - Documents
 - Sets
- Measure of similarity
 - Euclidean distance
 - Similarity (or equivalently, distance) matrix
- Shape of cluster
 - Convex versus arbitrary
- Incremental
 - Ability to handle new data objects

- Scalability
 - Dealing with large datasets
- Types of objects
 - Vectors
 - Images
 - Documents
 - Sets
- Measure of similarity
 - Euclidean distance
 - Similarity (or equivalently, distance) matrix
- Shape of cluster
 - Convex versus arbitrary
- Incremental
 - Ability to handle new data objects
- Data input order
 - Sensitivity to order of input

- Scalability
 - Dealing with large datasets
- Types of objects
 - Vectors
 - Images
 - Documents
 - Sets
- Measure of similarity
 - Euclidean distance
 - Similarity (or equivalently, distance) matrix
- Shape of cluster
 - Convex versus arbitrary
- Incremental
 - Ability to handle new data objects
- Data input order
 - Sensitivity to order of input
- Noise
 - Detection of outliers
 - Noise objects as separate cluster

 When ground truth is known, extrinsic methods or supervised methods are used

- When ground truth is known, extrinsic methods or supervised methods are used
- Extrinsic methods evaluate based on four criteria

- When ground truth is known, extrinsic methods or supervised methods are used
- Extrinsic methods evaluate based on four criteria
 - Cluster homogeneity: A purer cluster is better

- When ground truth is known, extrinsic methods or supervised methods are used
- Extrinsic methods evaluate based on four criteria
 - Cluster homogeneity: A purer cluster is better
 - Cluster completeness: A more complete cluster, i.e., one that contains more points from the same category, is better

- When ground truth is known, extrinsic methods or supervised methods are used
- Extrinsic methods evaluate based on four criteria
 - Cluster homogeneity: A purer cluster is better
 - Cluster completeness: A more complete cluster, i.e., one that contains more points from the same category, is better
 - Rag bag: It is better to cluster "heterogeneous" points in a separate "others" cluster

- When ground truth is known, extrinsic methods or supervised methods are used
- Extrinsic methods evaluate based on four criteria
 - Cluster homogeneity: A purer cluster is better
 - Cluster completeness: A more complete cluster, i.e., one that contains more points from the same category, is better
 - Rag bag: It is better to cluster "heterogeneous" points in a separate "others" cluster
 - Small cluster preservation: Smaller clusters should be preserved more as otherwise they break into noise pieces

- When ground truth is known, extrinsic methods or supervised methods are used
- Extrinsic methods evaluate based on four criteria
 - Cluster homogeneity: A purer cluster is better
 - Cluster completeness: A more complete cluster, i.e., one that contains more points from the same category, is better
 - Rag bag: It is better to cluster "heterogeneous" points in a separate "others" cluster
 - Small cluster preservation: Smaller clusters should be preserved more as otherwise they break into noise pieces
- When no "ground" truth is available, i.e, the actual clusters are not known,

- When ground truth is known, extrinsic methods or supervised methods are used
- Extrinsic methods evaluate based on four criteria
 - Cluster homogeneity: A purer cluster is better
 - Cluster completeness: A more complete cluster, i.e., one that contains more points from the same category, is better
 - Rag bag: It is better to cluster "heterogeneous" points in a separate "others" cluster
 - Small cluster preservation: Smaller clusters should be preserved more as otherwise they break into noise pieces
- When no "ground" truth is available, i.e, the actual clusters are not known, use silhouette coefficient
- These are called intrinsic methods or unsupervised methods

Neighboring Cluster of an Object

- Suppose object O_i is in cluster A, i.e., $O_i \in A$
- Define a; as the average distance of O; to A

$$a_i = \frac{\sum_{p \in A} d(o_i, p)}{|A|}$$

• Similarly, define $d_i(C)$ to be the average distance of O_i to any other cluster C

$$d_i(C) = \frac{\sum_{q \in C} d(o_i, q)}{|C|}$$

Neighboring Cluster of an Object

- Suppose object O_i is in cluster A, i.e., $O_i \in A$
- Define a_i as the average distance of O_i to A

$$a_i = \frac{\sum_{p \in A} d(o_i, p)}{|A|}$$

• Similarly, define $d_i(C)$ to be the average distance of O_i to any other cluster C

$$d_i(C) = \frac{\sum_{q \in C} d(o_i, q)}{|C|}$$

• Suppose B is the cluster that minimizes this distance and b_i be the corresponding distance, i.e.,

$$b_i = \min d_i(C)$$

 $B = \arg \min d_i(C)$

Neighboring Cluster of an Object

- Suppose object O_i is in cluster A, i.e., $O_i \in A$
- Define a_i as the average distance of O_i to A

$$a_i = \frac{\sum_{p \in A} d(o_i, p)}{|A|}$$

• Similarly, define $d_i(C)$ to be the average distance of O_i to any other cluster C

$$d_i(C) = \frac{\sum_{q \in C} d(o_i, q)}{|C|}$$

• Suppose B is the cluster that minimizes this distance and b_i be the corresponding distance, i.e.,

$$b_i = \min d_i(C)$$

 $B = \arg \min d_i(C)$

- In a sense, cluster B is the "neighbor" of O_i
- O_i could have been in cluster B instead of A

• Silhouette index or silhouette coefficient of object O_i captures the difference of these two distances

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 Silhouette index or silhouette coefficient of object O_i captures the difference of these two distances

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

- $-1 < s_i < +1$
 - If $s_i \to +1$, $b_i \gg a_i$ and O_i is in a good cluster
 - If $s_i \approx 0$, $b_i \approx a_i$ and O_i could have been in B as well
 - If $s_i < 0$, $b_i < a_i$ and O_i is better in B than current cluster

 Silhouette index or silhouette coefficient of object O_i captures the difference of these two distances

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

- $-1 < s_i < +1$
 - If $s_i \to +1$, $b_i \gg a_i$ and O_i is in a good cluster
 - If $s_i \approx 0$, $b_i \approx a_i$ and O_i could have been in B as well
 - If $s_i < 0$, $b_i < a_i$ and O_i is better in B than current cluster
- Using these, average silhouette width of a cluster and of the entire dataset can be defined

• Silhouette index or silhouette coefficient of object O_i captures the difference of these two distances

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

- $-1 < s_i < +1$
 - If $s_i \to +1$, $b_i \gg a_i$ and O_i is in a good cluster
 - If $s_i \approx 0$, $b_i \approx a_i$ and O_i could have been in B as well
 - If $s_i < 0$, $b_i < a_i$ and O_i is better in B than current cluster
- Using these, average silhouette width of a cluster and of the entire dataset can be defined
- ullet Choose k that maximizes average silhouette width of the dataset, $ar{s}_k$

• Silhouette index or silhouette coefficient of object O_i captures the difference of these two distances

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

- $-1 \le s_i \le +1$
 - If $s_i \to +1$, $b_i \gg a_i$ and O_i is in a good cluster
 - If $s_i \approx 0$, $b_i \approx a_i$ and O_i could have been in B as well
 - If $s_i < 0$, $b_i < a_i$ and O_i is better in B than current cluster
- Using these, average silhouette width of a cluster and of the entire dataset can be defined
- Choose k that maximizes average silhouette width of the dataset, \bar{s}_k
- Different ranges of silhouette index
 - > 0.75: strong clustering
 - 0.5 0.75: reasonable clustering
 - 0.25 − 0.5: weak clustering
 - < 0.25: no structure

BCubed Measures

- ullet C is a clustering on D
- Labels $I(O_i)$ are given as ideal (ground truth) for each $O_i \in D$
- For points O_i and O_j , correctness is agreement in ground truth

$$correctness(O_i, O_j) = \begin{cases} 1 & \text{if } I(O_i) = I(O_j) \Leftrightarrow C(O_i) = C(O_j) \\ 0 & \text{otherwise} \end{cases}$$

BCubed Measures

- C is a clustering on D
- Labels $I(O_i)$ are given as ideal (ground truth) for each $O_i \in D$
- ullet For points O_i and O_j , correctness is agreement in ground truth

$$correctness(O_i, O_j) = \begin{cases} 1 & \text{if } I(O_i) = I(O_j) \Leftrightarrow C(O_i) = C(O_j) \\ 0 & \text{otherwise} \end{cases}$$

 BCubed precision measures fraction of same-cluster points that agree in ground truth

$$bcprecision = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{O_j, i \neq j, C(O_i) = C(O_j)} correctness(O_i, O_j)}{|\{O_j, i \neq j, C(O_i) = C(O_j)\}|}$$

BCubed Measures

- C is a clustering on D
- Labels $I(O_i)$ are given as ideal (ground truth) for each $O_i \in D$
- ullet For points O_i and O_j , correctness is agreement in ground truth

$$correctness(O_i, O_j) = \begin{cases} 1 & \text{if } I(O_i) = I(O_j) \Leftrightarrow C(O_i) = C(O_j) \\ 0 & \text{otherwise} \end{cases}$$

 BCubed precision measures fraction of same-cluster points that agree in ground truth

$$bcprecision = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{O_j, i \neq j, C(O_i) = C(O_j)} correctness(O_i, O_j)}{|\{O_j, i \neq j, C(O_i) = C(O_j)\}|}$$

 BCubed recall measures fraction of same-ground truth points that agree in clustering

$$bcrecall = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{O_j, i \neq j, I(O_i) = I(O_j)} correctness(O_i, O_j)}{|\{O_j, i \neq j, I(O_i) = I(O_j)\}|}$$

Can define BCubed F-measure using these

RAND Index

- RAND Index or RAND Measure measures how similar two cluster outputs are
- If ideal clusters are known, this measures quality of a cluster output

RAND Index

- RAND Index or RAND Measure measures how similar two cluster outputs are
- If ideal clusters are known, this measures quality of a cluster output
- Suppose (ideal) clustering is $I = I_1, \ldots, I_m$ where I_i are partitions
- Cluster to be measured is $C = C_1, \dots, C_k$
- Consider pairs of objects
 - a: Number of object pairs that are in the same cluster in both I and C
 - b: Number of object pairs that are in different clusters in both I and C
 - c: Number of object pairs that are in the same cluster in I but not in C
 - d: Number of object pairs that are in the same cluster in C but not in I

RAND Index

- RAND Index or RAND Measure measures how similar two cluster outputs are
- If ideal clusters are known, this measures quality of a cluster output
- Suppose (ideal) clustering is $I = I_1, \dots, I_m$ where I_i are partitions
- Cluster to be measured is $C = C_1, \dots, C_k$
- Consider pairs of objects
 - a: Number of object pairs that are in the same cluster in both I and C
 - b: Number of object pairs that are in different clusters in both I and C
 - c: Number of object pairs that are in the same cluster in I but not in C
 - d: Number of object pairs that are in the same cluster in C but not in I
- RAND Index is

$$R = \frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{n}{2}} = \frac{TP+TN}{D}$$

Adjusted RAND Index (ARI) guards against random matches

Adjusted RAND Index (ARI) guards against random matches

$$\textit{ARI} = \frac{\text{RAND Index} - \text{Expected RAND Index}}{\text{Maximum RAND Index} - \text{Expected RAND Index}}$$

Adjusted RAND Index (ARI) guards against random matches

$$\textit{ARI} = \frac{\text{RAND Index} - \text{Expected RAND Index}}{\text{Maximum RAND Index} - \text{Expected RAND Index}}$$

Contingency table of common objects

3						
Clusters	C_1	• • •	C_k	Total		
I_1	n ₁₁		n_{1k}	i_1		
:	:	٠	:	:		
l _m	n_{m1}		n _{mk}	i _m		
Total	c_1		Ck	n		

Adjusted RAND Index (ARI) guards against random matches

$$ARI = \frac{\mathsf{RAND\ Index} - \mathsf{Expected\ RAND\ Index}}{\mathsf{Maximum\ RAND\ Index} - \mathsf{Expected\ RAND\ Index}}$$

Contingency table of common objects

Clusters	C_1		C_k	Total
I_1	n ₁₁		n_{1k}	i_1
:		٠	•	:
I _m	n_{m1}		n_{mk}	i _m
Total	c_1		Ck	n

 Expected number of pair matches assuming the same total distribution is

$$E\left[\sum_{i,j} \binom{n_{ij}}{2}\right] = \left[\sum_{i} \binom{n_{i\cdot}}{2} \cdot \sum_{j} \binom{n_{\cdot j}}{2}\right] / \binom{n}{2}$$

Adjusted RAND Index

ARI can be written as

$$ARI = \frac{\sum_{i,j} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{n_{i\cdot}}{2} \cdot \sum_{j} \binom{n_{\cdot j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{n_{i\cdot}}{2} + \sum_{j} \binom{n_{\cdot j}}{2}\right] - \left[\sum_{i} \binom{n_{i\cdot}}{2} \cdot \sum_{j} \binom{n_{\cdot j}}{2}\right] / \binom{n}{2}}$$

- RAND Index is always between 0 and 1
- ullet ARI is between -1 and +1
- ARI is negative when clustering is worse than random

Clusters	C_1	C_2	<i>C</i> ₃	Total
I_1	1	1	0	2
I_2	1	2	1	4
I_3	0	0	4	4
Total	2	3	5	10

• Number of pairs agreeing, i.e., $a = \binom{1}{2} + \cdots + \binom{4}{2} = 7$

Clusters	C_1	C_2	<i>C</i> ₃	Total
<i>I</i> ₁	1	1	0	2
I_2	1	2	1	4
I_3	0	0	4	4
Total	2	3	5	10

- Number of pairs agreeing, i.e., $a = {1 \choose 2} + \cdots + {4 \choose 2} = 7$
- Number of pairs agreeing in *I* but not in *C*, i.e., $c = \binom{2}{2} + \binom{4}{2} + \binom{4}{2} 7 = 13 7 = 6$
- Number of pairs agreeing in *C* but not in *I*, i.e., $d = \binom{2}{2} + \binom{3}{2} + \binom{5}{2} 7 = 14 7 = 7$

Clusters	C_1	C_2	<i>C</i> ₃	Total
I_1	1	1	0	2
I_2	1	2	1	4
I_3	0	0	4	4
Total	2	3	5	10

- Number of pairs agreeing, i.e., $a = {1 \choose 2} + \cdots + {4 \choose 2} = 7$
- Number of pairs agreeing in *I* but not in *C*, i.e., $c = \binom{2}{2} + \binom{4}{2} + \binom{4}{2} 7 = 13 7 = 6$
- Number of pairs agreeing in *C* but not in *I*, i.e., $d = \binom{2}{2} + \binom{3}{2} + \binom{5}{2} 7 = 14 7 = 7$
- Therefore, number of pairs not agreeing, i.e., $b = \binom{10}{2} 7 6 7 = 45 20 = 25$

Clusters	C_1	C_2	<i>C</i> ₃	Total
I_1	1	1	0	2
I_2	1	2	1	4
I_3	0	0	4	4
Total	2	3	5	10

- Number of pairs agreeing, i.e., $a = {1 \choose 2} + \cdots + {4 \choose 2} = 7$
- Number of pairs agreeing in *I* but not in *C*, i.e., $c = \binom{2}{2} + \binom{4}{2} + \binom{4}{2} 7 = 13 7 = 6$
- Number of pairs agreeing in *C* but not in *I*, i.e., $d = \binom{2}{2} + \binom{3}{2} + \binom{5}{2} 7 = 14 7 = 7$
- Therefore, number of pairs not agreeing, i.e., $b = \binom{10}{2} 7 6 7 = 45 20 = 25$
- RAND Index is $\frac{7+25}{45} = 0.71$

Clusters	C_1	C_2	<i>C</i> ₃	Total
<i>I</i> ₁	1	1	0	2
I_2	1	2	1	4
<i>I</i> ₃	0	0	4	4
Total	2	3	5	10

- Number of pairs agreeing, i.e., $a = \binom{1}{2} + \cdots + \binom{4}{2} = 7$
- Number of pairs agreeing in *I* but not in *C*, i.e., $c = \binom{2}{2} + \binom{4}{2} + \binom{4}{2} 7 = 13 7 = 6$
- Number of pairs agreeing in *C* but not in *I*, i.e., $d = \binom{2}{2} + \binom{3}{2} + \binom{5}{2} 7 = 14 7 = 7$
- Therefore, number of pairs not agreeing, i.e., $b = \binom{10}{2} 7 6 7 = 45 20 = 25$
- RAND Index is $\frac{7+25}{45} = 0.71$
- ARI is $\frac{7-(13\times14)/45}{(13+14)/2-(13\times14)/45}=0.31$

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution
- Hopkin's statistic
- Generate p uniformly random points from the data space
- \bullet For each point, measure its distance u_i to nearest neighbor

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution
- Hopkin's statistic
- Generate *p* uniformly random points from the data space
- \bullet For each point, measure its distance u_i to nearest neighbor
- Sample *p* points from the dataset
- For each point, measure its distance w_i to nearest neighbor

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution
- Hopkin's statistic
- Generate *p* uniformly random points from the data space
- For each point, measure its distance u_i to nearest neighbor
- Sample p points from the dataset
- For each point, measure its distance w_i to nearest neighbor
- Hopkin's statistic is

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution
- Hopkin's statistic
- Generate p uniformly random points from the data space
- \bullet For each point, measure its distance u_i to nearest neighbor
- Sample *p* points from the dataset
- For each point, measure its distance w_i to nearest neighbor
- Hopkin's statistic is

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

• If $H \approx 0.5$,

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution
- Hopkin's statistic
- Generate p uniformly random points from the data space
- \bullet For each point, measure its distance u_i to nearest neighbor
- Sample p points from the dataset
- For each point, measure its distance w_i to nearest neighbor
- Hopkin's statistic is

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

- If $H \approx 0.5$, then data is mostly uniform
- If $H \rightarrow 0$.

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution
- Hopkin's statistic
- Generate p uniformly random points from the data space
- \bullet For each point, measure its distance u_i to nearest neighbor
- Sample p points from the dataset
- For each point, measure its distance w_i to nearest neighbor
- Hopkin's statistic is

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

- If $H \approx 0.5$, then data is mostly uniform
- If $H \rightarrow 0$, then data is clustered
- If $H \rightarrow 1$,

- Uniform data is poorly clustered
- Clustering tendency measures how likely that clusters exist
- Measures how close it is to the uniform distribution
- Hopkin's statistic
- Generate p uniformly random points from the data space
- \bullet For each point, measure its distance u_i to nearest neighbor
- Sample p points from the dataset
- For each point, measure its distance w_i to nearest neighbor
- Hopkin's statistic is

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

- If $H \approx 0.5$, then data is mostly uniform
- If $H \rightarrow 0$, then data is clustered
- If $H \rightarrow 1$, then data is regular or sparse

Subspace Clustering

- Clustering is typically applied on all the dimensions
- May miss out structures present in lower dimensional subspaces
- Clusters in lower dimensional spaces are not identified in higher dimensions due to randomness in other values

Subspace Clustering

- Clustering is typically applied on all the dimensions
- May miss out structures present in lower dimensional subspaces
- Clusters in lower dimensional spaces are not identified in higher dimensions due to randomness in other values
- \bullet \diamond , \square and \triangle points cluster
- O points weakly cluster

Clusters in xy Subspace

- In x space: \Diamond , \Box and \triangle points cluster but \bigcirc acts as noise
- In y space: \square separate, \bigcirc separate, \diamondsuit and \triangle together
- In xy space: \Diamond , \Box and \triangle points cluster and \bigcirc points weakly cluster

Clusters in xz Subspace

- In x space: \Diamond , \Box and \triangle points cluster but \bigcirc acts as noise
- In z space: \bigcirc separate, \square , \diamondsuit and \triangle together
- In xz space: \Diamond , \Box and \triangle points cluster and \bigcirc points weakly cluster

Clusters in yz Subspace

- In y space: \bigcirc separate, \square separate, \diamondsuit and \triangle together
- In z space: \bigcirc separate, \square , \diamondsuit and \triangle together
- In yz space: \bigcirc separate, \square separate, \diamondsuit and \triangle together

