

1	Hello World (Week 0 & 1)	5
1.1	Lecture Notes Chapter B	5
1.2	Twice the Sum	5
1.3	Letter C	5
1.4	Lecture Notes Chapter C	6
1.5	++a++	6
1.6	Randomness	6
1.7	Lecture Notes Chapter D	7
1.8	find_max	7
1.9	Loving Oddness	7
1.10	Lecture Notes Chapter E	7
1.11	Hailstone	7
1.12	Primes	7
1.13	Triangles	8
1.14	Lecture Notes Chapter F	8
1.15	Unit Circle	8
1.16	Time Flies	8

```
Lecture Notes Chapter B
Twice the Sum
                             istdlib.h>
Letter C
Lecture Notes Chapter C
                              stdio.h>
Randomness
Lecture Notes Chapter D
find max
Loving Oddness
                             (biov
Lecture Notes Chapter E
                            "Hello, World!\n");
Triangles
Lecture Notes Chapter F
Unit Circle
Time Flies
```

1. Hello World (Week 0 & 1)

The exercises in this Chapter are largely taken from the book "C by Dissection".

1.1 Lecture Notes Chapter B

Exercise 1.1 Once you've studied Chapter *B* of the lecture notes (*Hello World*), compile and run the examples given in the handout.

1.2 Twice the Sum

Here is part of a program that begins by asking the user to input three integers:

```
#include <stdio.h>

int main(void)
{
   int a, b, c;
   printf("Input three integers: ");
```

. . .

Exercise 1.2 Complete the program so that when the user executes it and types in 2, 3, and 7, this is what appears on the screen:

```
Input three integers: 2 3 7
Twice the sum of integers plus 7 is 31 !
```

1.3 Letter C

Execute this program so you understand the output:

```
#include <stdio.h>
```

```
#define HEIGHT 17

int main(void)
{
    int i = 0;
    printf("\n\nIIIIII\n");
    while(i < HEIGHT){
        printf(" III\n");
        i = i + 1;
    }
    printf("IIIIII\n\n\n");
    return 0;
}</pre>
```

Exercise 1.3 Write a similar program that prints a large letter C on the screen (it doesn't need to be curved!).

1.4 Lecture Notes Chapter C

Exercise 1.4 Once you've studied Chapter C of the lecture notes (*Grammar*), compile and run the examples given in the handout.

1.5 ++q++

Study the following code and write down what you think it prints.

```
int a, b = 0, c = 0;
a = ++b + ++c;
printf("%d %d %d\n", a, b, c);
a = b++ + c++;
printf("%d %d %d\n", a, b, c);
a = ++b + c++;
printf("%d %d %d\n", a, b, c);
a = b-- + --c;
printf("%d %d %d\n", a, b, c);
```

Exercise 1.5 Then write a test program to check your answers.

1.6 Randomness

The function rand() returns values in the interval [0, RAND_MAX]. If we declare the variable median and initialise it to have the value RAND_MAX/2, then rand() will return a value that is sometimes larger than median and sometimes smaller.

Exercise 1.6 Write a program that calls rand(), say 500 times, inside a for loop, increments the variable minus_cnt every time rand() returns a value less than median. Each time through the for loop, print out the value of the difference of plus_cnt and minus_cnt. You might think that this difference should oscillate near zero. Does it?

1.7 Lecture Notes Chapter D

Exercise 1.7 Once you've studied Chapter *D* of the lecture notes (*Flow Control*), compile and run the examples given in the handout.

1.8 find_max

Exercise 1.8 Write a program that finds the largest number entered by the user. Executing the program will produce something like:

How many numbers **do** you wish to enter ? 5 Enter 5 real numbers: $1.01 - 3 \ 2.2 \ 7.0700 \ 5$

Maximum value: 7.07

1.9 Loving Oddness

Suppose that you detest even integers but love odd ones.

Exercise 1.9 Modify the find_max program so that all variables are of type int and that only odd integers are processed. Explain all this to the user via appropriate printf() statements.

1.10 Lecture Notes Chapter E

Exercise 1.10 Once you've studied Chapter *E* of the lecture notes (*Functions*), compile and run the examples given in the handout.

1.11 Hailstone

The next number in a hailstone sequence is n/2 if the current number n is even, or 3n+1 if the current number is odd. If the initial number is 77, then the following sequence is produced:

```
77
232
116
58
29
88
44
22
11
```

Exercise 1.11 Write a program that, given a number typed by the user, prints out the sequence of *hailstone* numbers. The sequence terminates when it gets to 1.

1.12 Primes

A prime number can only be exactly divided by itself or 1. The number 17 is prime, but 16 is not because the numbers 2, 4 and 8 can divide it exactly. (Hint 16%4 == 0).

Exercise 1.12 Write a program that prints out the first n primes, where n is input by the user. The first 8 primes are:

```
2
3
5
7
11
13
7
19

What is the 3000<sup>th</sup> prime?
```

1.13 Triangles

A triangle can be equilateral (all three sides have the same length), isosceles (has two equal length sides), scalene (all the sides have a different length), or right angled where if the three sides are a, b and c, and c is the longest, then : $c = \sqrt{a^2 + b^2}$

Exercise 1.13 Write a program so that you can process a number of triples of side lengths in a single run of your program using a suitable unlikely input value for the first integer in order to terminate the program. e.g. -999.

Think hard about the test data for your program to ensure that all possible cases are covered and all invalid data results in a sensible error message. Such cases can include sides of negative length, and impossible triangles (e.g. one side is longer than the sum of the other two).

1.14 Lecture Notes Chapter F

Exercise 1.14 Once you've studied Chapter F of the lecture notes ($Data\ Storage$), compile and run the examples given in the handout.

1.15 Unit Circle

In mathematics, for all real x, it is true that:

$$sin^{2}(x) + cos^{2}(x) = 1$$

i.e. $sin(x) * sin(x) + cos(x) * cos(x) = 1$.

Exercise 1.15 Write a program to demonstrate this for values of x input by the user.

1.16 Time Flies

Exercise 1.16 Write a program which allows the user to enter two times in 24-hour clock format, and computes the length of time between the two, e.g.:

```
Enter two times: 23:00 04:15
Difference is: 5:15

Or,
```

1.16 Time Flies 9

Enter two times : 23:40 22:50 Difference is : 23:10