VECTORES

TRABAJO PRÁCTICO Nº 3

A- Producto escalar - Aplicaciones

1. Sean los vectores

i)
$$\vec{u} = \vec{j} + 4\vec{t}$$
 y $\vec{v} = 3\vec{t} - 2\vec{j}$, ii) $\vec{u} = -\vec{t} + \vec{j} - 4\vec{k}$ y $\vec{v} = \frac{3}{2}\vec{t} + 2\vec{j} - \frac{1}{2}\vec{k}$

Realizar los cálculos indicados y responder los interrogantes planteados justificando, en ambos casos.

- a) El producto escalar entre \vec{u} y \vec{v} . $\vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{u}$?
- b) El ángulo determinado por los mismos. $\[\vec{u} \] \vec{v}$?
- c) La proyección escalar de \vec{u} en la dirección de \vec{v} e interprete gráficamente.
- d) La proyección vectorial de \vec{u} en la dirección de \vec{v} e interprete gráficamente.
- 2. Sean los vectores $\vec{m} = -2\vec{\imath} + 3\vec{\jmath} + \vec{k}$ y $\vec{p} = \vec{\imath} + c \vec{k}$. Halle el valor de c para que resulten perpendiculares. Para el valor hallado, grafique ambos vectores en un mismo sistema.
- 3. Dados $\vec{u} = -2\vec{t} + 9\vec{j}$ y $\vec{v} = -\vec{t} + \vec{j}$. Encuentre:
 - a) $\vec{v} \cdot \vec{u}$, b) $proy_{\vec{u}} \vec{v}$ c) $\overline{proy_{\vec{v}}} \vec{v}$ d) $proy_{\vec{v}} \vec{u}$ e) $\overline{proy_{\vec{v}}} \vec{u}$.

Verifique sus soluciones analíticas usando herramientas gráficas y algebraicas del software GeoGebra.

- 4. Sabiendo que $\vec{u}=(2;3,-1)$ y $\vec{v}=(-4;b,2)$, determine el valor de "b" tal que:
 - a) \vec{u} y \vec{v} sean ortogonales
 - b) \vec{u} y \vec{v} sean paralelos
 - c) El ángulo entre \vec{u} y \vec{v} sea $\frac{\pi}{4}$.

B- Producto vectorial - Aplicaciones

- 5. a) Determine analíticamente las componentes de un vector perpendicular a los vectores $\overrightarrow{m} = -\overrightarrow{l} + 3\overrightarrow{k}$ y $\overrightarrow{p} = 2\overrightarrow{l} \overrightarrow{k} + \overrightarrow{l}$.
 - b) Represente la solución hallada en el ítem a) usando el software **GeoGebra** y verifique la perpendicularidad de vectores \vec{m} x \vec{p} respecto a los vectores \vec{m} y \vec{p} calculando los ángulos convenientes entre los vectores.
- 6. Sean los vectores $\vec{u}=2\vec{\imath}+3\vec{\jmath}-k$, $\vec{v}=-2\vec{\imath}+\vec{\jmath}-2k$ y $\vec{w}=\vec{\imath}-2\vec{\jmath}+3k$.
 - a) Calcular:
 - a.1) $\vec{u} \times \vec{v}$
- a.2) $\vec{w} \times \vec{v}$
- a.3) $(\vec{u} \times \vec{v}) \cdot \vec{w}$
- a.4) $(\vec{u} \times \vec{v}) \times \vec{w}$
- **b)** Determine el área del paralelogramo que forman los vectores: \vec{u} y \vec{w}
- c) Hallar un vector \vec{n} que sea perpendicular a \vec{v} y \vec{w} .
- 7. Sean los vectores $\vec{r}=(1,-1,2)$ y $\vec{a}=(0,1,-1)$ halle las componentes de un vector perpendicular a \vec{r} y a \vec{a} de módulo 5.

C- Producto mixto - Aplicaciones

- 8. Analice si los siguientes vectores están contenidos en un mismo plano o no: $\vec{a}=(1;2;0)$, $\vec{b}=(-1;-2;0)$ y $\vec{c}=(0;1;0)$.
- 9. Encuentre el valor de la tercer componente de \vec{w} , "c", para que los siguientes vectores sean coplanares: \vec{u} = (-3; 2; 5), \vec{v} = (1; -2; 3) y \vec{w} = (3; 4; c).
- 10. Calcule el volumen del paralelepípedo que tiene por aristas a los vectores: $\vec{a}=(1;-1;3)$, $\vec{b}=(-2;2;1)$ y $\vec{c}=(3;-2;5)$.
- 11. Halle el volumen del tetraedro cuyos vértices son P(1, 1, 1), Q (1, 2, 3), R(1, 1, 2) y S(3, -1, 2). Grafique el tetraedro.

D- Realice las siguientes actividades:

- 12. Los puntos $A\left(-\frac{1}{6}, \frac{1}{3}, -\frac{1}{2}\right)$, $B\left(-\frac{1}{3}, 0, -\frac{1}{6}\right)$, y $C\left(0, \frac{2}{3}, 0\right)$, son las coordenadas de los vértices de un triángulo. Calcule: a) el área, b) el perímetro, c) los ángulos interiores. d) Halle un versor con sentido opuesto a \overrightarrow{AB} .
- 13. Sean $\vec{u} = (2, 4, 0)$ y $\vec{w} = 3\vec{t} + \vec{j} \vec{k}$. Halle los vectores \vec{v} y \vec{t} tales que: \vec{t} sea ortogonal a \vec{u} , \vec{v} sea paralelo a \vec{u} y $\vec{w} = \vec{v} + \vec{t}$.
- 14. Dados los vectores: $\vec{a} = (3; 1; 0), \vec{b} = (4; 2; -1) \text{ y } \vec{c} = (2; 1; -2).$ Halle un vector \vec{v} ortogonal a \vec{a} y a \vec{b} , y tal que $proy_{\vec{c}} \vec{v} = 6$.
- 15. Responda a los siguientes interrogantes justificando sus respuestas.
 - a) ¿El resultado de un producto escalar puede ser una cantidad negativa? De ser así, ¿en qué casos?
 - b) ¿Cómo son los vectores $\vec{a} = (a_1, a_2, a_3)$ y $\vec{b} = (b_1, b_2, b_3)$ sabiendo que $\vec{a} \times \vec{b} = 0$?
 - c) Sean los vectores $\vec{a} = (a_1, a_2, a_3)$ y $\vec{b} = (b_1, b_2, b_3)$ demuestre que:
 - c.1) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$ ¿A qué es igual este producto si $\vec{a} = \vec{b}$?
 - c.2) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
 - c.3) $-(a^{-} \times b^{-}) = -a^{-} \times b^{-} = a^{-} \times (-b^{-})$
- 16. a) Analice si se pueden realizar las siguientes operaciones. De no ser así, explique por qué. De ser así, establezca si son vectores o escalares:
- **a.1)** $\vec{a} \cdot (\vec{b} \times \vec{c})$ **a.2)** $\vec{a} \times (\vec{b} \cdot \vec{c})$ **a.3)** $\vec{a} \times (\vec{b} \times \vec{c})$

- **a.4)** $(\vec{a} \cdot \vec{b}) \times \vec{c}$ **a.5)** $(\vec{a} \cdot \vec{b}) \times (\vec{c} \cdot \vec{d})$ **a.6)** $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$
- **b)** Sean los versores fundamentales l, j y k, calcule:
- **b.1)** $(i \times j) \times k$
- **b.2)** $l \times (l \times k)$ ¿Qué conclusiones se pueden sacar?
- c) Determine $(l \times l)$, $(l \times l)$ y $(-l \times l)$. De acuerdo al resultado obtenido, ¿qué proposición verdadera puede formular?

Profesorado en Matemática - Profesorado en Física

Para pensar

- 1. ¿Del producto escalar entre vectores resulta otro vector?
- 2. Considerando el vector $\vec{w} = (a, b)$, es cierta la siguiente igualdad $\vec{w} \cdot \vec{w} = |\vec{w}|^2$
- 3. Si el producto escalar \vec{w} . \vec{v} =0, ¿cuál es el ángulo entre los vectores? Explicar.
- 4. Explicar la proyección escalar y vectorial de un vector sobre la dirección del otro.
- 5. El producto vectorial entre vectores permite obtener otro vector, ¿Qué características tiene ese vector?
- 6. ¿El producto vectorial es conmutativo?
- 7. Explicar por qué la longitud del producto vectorial es el área del paralelogramo determinado por estos vectores.
- 8. El producto mixto entre vectores permite saber si los vectores son coplanares. Explicar. ¿Qué significa que sean coplanares?