

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月26日

出 願 番 号 Application Number:

特願2002-377636

[ST. 10/C]:

[JP2002-377636]

出 願
Applicant(s):

人

日東紡績株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH
RULE 17.1(a) OR (b)

RECEIVED 12 FEB 2004

WIPO

PCT

特許庁長官 Commissioner, Japan Patent Office 2004年 1月 8日

【書類名】 特許願

【整理番号】 DA-03399

【提出日】 平成14年12月26日

【あて先】 特許庁長官殿

【国際特許分類】 G01N 33/50

【発明者】

【住所又は居所】 福島県郡山市富久山町福原字塩島1 日東紡績株式会社

バイオケミカル研究所内

【氏名】 大橋 建也

【発明者】

【住所又は居所】 福島県郡山市富久山町福原字塩島1 日東紡績株式会社

バイオケミカル研究所内

【氏名】 三浦 俊英

【発明者】

【住所又は居所】 栃木県下都賀郡壬生町大字北小林880 獨協医科大学

生物学教室内

【氏名】 五十嵐 吉彦

【発明者】

【住所又は居所】 千葉県千葉市中央区亥鼻1-8-1 千葉大学大学院医

学研究院内

【氏名】 野村 文夫

【発明者】

【住所又は居所】 千葉県千葉市中央区亥鼻1-8-1 千葉大学大学院医

学研究院内

【氏名】 朝長 毅

【発明者】

【住所又は居所】 福島県郡山市富久山町福原字塩島1 日東紡績株式会社

メディカル開発センター内

【氏名】 片山 勝博

【特許出願人】

【識別番号】 000003975

【氏名又は名称】 日東紡績株式会社

【代理人】

【識別番号】

100066692

【弁理士】

【氏名又は名称】 浅村 皓

【選任した代理人】

【識別番号】 100072040

【弁理士】

【氏名又は名称】 浅村 肇

【選任した代理人】

【識別番号】 100088926

【弁理士】

【氏名又は名称】 長沼 暉夫

【選任した代理人】

【識別番号】 100102897

【弁理士】

【氏名又は名称】 池田 幸弘

【手数料の表示】

【予納台帳番号】 002901

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】明細書

【発明の名称】 免疫測定法およびそれに用いるキット

【特許請求の範囲】

【請求項1】 検体中の目的物質を2種類の抗体を用いて測定する免疫測定法であって、

(i)第一抗体が目的物質と競合物質に親和性があり、(ii)第一抗体が競合物質より目的物質に親和性があり、(iii)第二抗体が目的物質より競合物質に親和性があり、かつ(iv)第二抗体の競合物質への親和性が、第一抗体の目的物質への親和性より大きい、第一抗体および第二抗体の2種類の抗体を用い、

担体に吸着している第一抗体と、第二抗体とに、検体中の目的物質および競合 物質を結合させ、

次いで、結合した目的物質のレベルを測定することにより、該検体中の目的物質を測定する免疫測定法。

【請求項2】 さらに、第二抗体の目的物質への親和性が、第一抗体の競合物質への親和性より大きい請求項1記載の免疫測定法。

【請求項3】 目的物質が活性型酵素であり、かつ結合した目的物質のレベルを測定することが該活性型酵素の酵素活性を測定する請求項1または2記載の免疫測定法。

【請求項4】 競合物質が該酵素活性のない物質である請求項3記載の免疫 測定法。

【請求項5】 競合物質が酵素分解産物である請求項3または4記載の免疫 測定法。

【請求項6】 活性型酵素が酒石酸抵抗性酸性ホスファターゼ 5b (TRACP 5bである請求項3から5のいずれかに記載の免疫測定法。

【請求項7】 担体が不溶性固相支持体である請求項1から6のいずれかに 記載の免疫測定法。

【請求項8】 第一抗体を吸着させる担体が固相支持体であり、かつ第二抗体が溶液中に分散している担体に吸着しているか、または溶解している請求項1から7のいずれかに記載の免疫測定法。

【請求項9】 検体中の目的物質を2種類の抗体を用いて免疫測定するためのキットであって、

(i)第一抗体が目的物質と競合物質に親和性があり、(ii)第一抗体が競合物質より目的物質に親和性があり、iii)第二抗体が目的物質より競合物質に親和性があり、かつ(iv)第二抗体の競合物質への親和性が第一抗体の目的物質への親和性より大きい、第一抗体および第二抗体の2種類の抗体を含むキット。

【請求項10】 第一抗体と第二抗体が担体に吸着されている請求項9記載のキット。

【請求項11】 第一抗体が固相支持体に吸着されており、かつ第二抗体が 溶液中に分散可能な担体に吸着されているか、または溶解している請求項9また は10に記載のキット。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】

本発明は、検体中の目的物質を2種類の特徴ある抗体を用いて正確に測定することができる免疫測定法およびそれに用いるキットに関する。更に詳細には、競合物質より目的物質に親和性がある第一抗体と、目的物質より競合物質に親和性がある第二抗体の2種類の抗体を用い、これらの2種類の抗体に検体を作用させることにより、まず検体中の競合物質が第二抗体に先に結合し、そのため検体中で競合物質に対する目的物質の比が大きくなることにより、目的物質が第一抗体に結合しやすくなり、その結果、目的物質の反応性が第一抗体を単独で用いるより大きくなるため、正確に目的物質を測定できる免疫測定法およびそれに用いるキットに関する。

[0002]

【従来の技術】

測定目的物を含む検体中には様々な様態の物質が存在するが、あるものでは測定目的物質とそれと競合する物質が同時に存在することがある。例えば血清中の酒石酸抵抗性酸性ホスファターゼ(TRACP: Tartrate Resistant acid Phosphata se)はその大部分が破骨細胞由来の酸性ホスファターゼとされ、その測定は破骨

細胞の機能を評価する指標として有用とされており、骨吸収マーカーとして興味 が持たれている物質である(骨代謝マーカー、福永仁夫、中村利孝、松本俊夫編 ,メディカルレビュー社,1995)が、血清中においては酵素活性を持つ酵素 の他に酵素分解産物であるフラグメントが同時に存在することがわかっている(J Bone Miner Res. 15:1337-1345, 2000) (Clin Chem. 47:74-80. 2001)

[0003]

ところで、血清中酸性ホスファターゼは、ポリアクリルアミドゲル電気泳動に よって、原点より 0~5 の 6 つのバンドに分けられ、その中で 5 番目が酒石酸 抵抗性であり、Band 5 酒石酸抵抗性酸性ホスファターゼ(TRACP 5:Tartrate Re sistant Acid Phosphatase 5)と呼ばれている。これはさらに電気泳動により糖 鎖へのシアル酸結合の多い 5a と、ほとんどシアル酸結合のない 5b に分けられ る。そして、5a は血小板やその他からの酵素であって血中値が変動しないのに 対して、5b のみが骨吸収に伴い変動するため、5b が破骨細胞由来酒石酸耐性酸 性ホスファターゼの本体であると考えられている。また Clinical Chemistry 誌 (Clin.Chem.47:1497.2001) でも破骨細胞由来の ACP を、TRACP 5b と略記す ることを勧めている。よって本明細書においても破骨細胞由来で骨吸収の指標と なる ACP を意味するものは TRACP 5b として、また破骨細胞由来酒石酸耐性酸 性ホスファターゼと酒石酸耐性酸性ホスファターゼ 5b(TRACP 5b)は同義とし てすべて TRACP 5b と表記する。

[0004]

検体中には ACP として、TRACP 5b 以外に赤血球由来や血小板由来酸性ホスフ ァターゼが存在する。すなわち、検体の採取により溶血が生じたとき、赤血球由 来酸性ホスファターゼは検体中に含まれてくるし、検体として血清を用いる場合 、血清製造時の血液凝固過程で血小板が破壊されて血小板由来酸性ホスファター ゼが検体中に含まれてくる。そのため、従来の TRACP 活性測定法は、破骨細胞 特異的 TRACP 5b 活性を測定しているとは言えない。この測定法の改善法として は、血清を 5 倍に希釈した液を 37℃で 1 時間インキュベートする前処理をし た後、残りの TRACP 活性を、酒石酸存在下、基質としてp-ニトロフェニルリ ン酸(pNPP)を用いて測定する方法が知られている(日大医誌.49:904-911.1990

[0005]

免疫的測定法では、Marius E や Sari L らのポリクローナル抗体を用いる測定方法(J Clin Endocrinol Metab.71:442-451.1990; Clin Chem.46:1751-1754.2000)および Jussi M.Halleen や Heather Bull らのモノクローナル抗体を用いる方法(J Bone Miner Res.13:683-687.1998; Immunol Lett.70:143-149.1999; J Bone Miner Res.14:464-469.1999; Clin Chem.45:2150-2157.1999; Clin Chem.46:1751-1754.2000)では、Band 5 全体を測定してしまうため、TRACP 5a の影響を無視できない。また、TRACP 5b を特異的に測定しているとしている Hall een らの方法は、より破骨細胞由来 TRACP 5b 活性に特異的であるが、健常者検体と骨吸収が亢進している患者検体での差が小さく、骨吸収マーカーとして感度は十分とは言えない。これらはこれまで作製されたポリクローナル抗体、モノクローナル抗体の TRACP 5b に対する特異性が低いことがひとつの原因であったと思われる。また、TRACP は血清中に酵素活性を持たないフラグメントを活性酵素の10 倍量も大量に含むとの報告があることからも、このフラグメントが血清中で活性型酵素と競合しているため、これまでは反応系に問題があるため特異性が低かったとも考えられるのである。

[0006]

このような場合でも、これまでは酵素活性を持つ完全な物質:活性型酵素 (In tact Enzyme) と酵素分解産物 (Enzyme Degradation Products) に共通な抗原を利用して免疫測定法などによって定量を行ってきた。しかしこの結果モノクロー

ナル抗体のようにエピトープが限定された場合、測定できる分解フラグメントとできないフラグメントが現れたりするため、同一の目的物を測っても各キットによって相関性がなくなるなどの問題があると考えられる。また、先に例を挙げたTRACP はフラグメント量が臨床的に骨吸収を反映しないという報告もあり(J. Bone Miner. Res., 15:1337-1345, 2000; Clin. Chem. 47:74-80, 2001)、酵素活性体だけを測定することが求められる良い例と考えられる。このような場合フラグメントを取り除き、酵素量だけを測定する必要があるが、一般的に活性測定法によるTRACP の測定は、この活性のないフラグメントが酵素と競合するため測定が正確に行われなかったと考えられる。また、これまでは明確な蛋白質フラグメント分離を行うためのフラグメント特異的抗体が存在せず、手段自体が存在しなかった。

[0007]

【発明が解決しようとする課題】

本明細書で説明する TRACP はその精密測定が臨床的に有意な意義を持つと言われながら長く不可能であった。その理由には 2 つが考えられる。1点目は破骨細胞の活性を表す TRACP 5b に対する特異性の高い抗体がなかったことである。2点目は血清中に TRACP 酵素分解蛋白質フラグメントが活性酵素以上に大量に存在することである。

よって本発明では TRACP 活性酵素に結合定数値の高い第一抗体と、酵素とは ほとんど反応せず不活性分解酵素と結合する第二抗体を開発し、同一反応系中で 利用することによって、分解物の影響を回避して酵素活性量のみを正確に測定しようとするものである。

[0008]

【課題を解決するための手段】

本発明はかかる問題に鑑み、まず測定対象目的物質と反応性の高い第一抗体と、不活性フラグメントなど競合する物質と強く反応する第二抗体を組み合わせて使用することで反応系中の競合物質の影響を除き、活性酵素等の目的物質を特異的に精密測定する免疫測定法を提供する。

しかして、本発明は、検体中の目的物質を2種類の抗体を用いて測定する免疫

測定法であって、

(i)第一抗体が目的物質と競合物質に親和性があり、(ii)第一抗体が競合物質より目的物質に親和性があり、(iii)第二抗体が目的物質より競合物質に親和性があり、かつ(iv)第二抗体の競合物質への親和性が第一抗体の目的物質への親和性より大きい、第一抗体および第二抗体の2種類の抗体を用い、

担体に吸着している第一抗体と、第二抗体とに、検体中の目的物質および競合物質を結合させ、

次いで、結合した目的物質のレベルを測定することにより、該検体中の目的物質を測定する免疫測定法である。

更に本発明は、検体中の目的物質を2種類の抗体を用いて免疫測定するための キットであって、

(i)第一抗体が目的物質と競合物質に親和性があり、(ii)第一抗体が競合物質より目的物質に親和性があり、(iii)第二抗体が目的物質より競合物質に親和性があり、かつ(iv)第二抗体の競合物質への親和性が第一抗体の目的物質への親和性より大きい、第一抗体および第二抗体の2種類の抗体を含むキットである

[0009]

【発明の実施の形態】

本発明の免疫測定法では、検体中の測定対象物である目的物質を測定するために第一抗体と第二抗体の2種類の抗体を用いる。第一抗体と第二抗体とは、(i)第一抗体が目的物質と競合物質に親和性があり、(ii)第一抗体が競合物質より目的物質に親和性があり、(ii)第二抗体が目的物質より競合物質に親和性があり、かつ(iv)第二抗体の競合物質への親和性が第一抗体の目的物質への親和性より大きいものである。ここで競合物質とは、測定対象物である目的物質と類似の抗原性を有し、目的物質に対する抗体を作成した場合に目的物質と競合してその抗体と結合する性質を有する物質を指す。例えば、目的物質が蛋白質や酵素である場合には、その競合物質としては、それら蛋白質や酵素の断片フラグメント、それらを構成するアミノ酸配列においてアミノ酸残基が置換、欠失もしくは付加した変異体、それらにリン酸エステル基が付加したり糖鎖部分が変化した修飾

体などが挙げられる。

本発明では、測定対象である目的物質の代表的なものとして活性型酵素が挙げられ、目的物質が活性型酵素の場合の競合物質としては、該酵素活性のない物質、例えば酵素が分解された産物、即ち、酵素分解産物が代表的なものとして挙げられる。

本発明における第一抗体および第二抗体は、抗血清、ポリクローナル抗体、モノクローナル抗体のいずれであってもよい。

[0010]

本発明で用いる第一抗体および第二抗体は、例えば、測定対象である目的物質 を抗原として動物に免疫し、その脾臓細胞とミエローマ細胞とを融合させてハイ ブリドーマを作成し、それらのハイブリドーマが産生する各種のモノクローナル 抗体から、第一抗体と第二抗体の2種類の抗体として、 (i)第一抗体が目的物質 と競合物質に親和性があり、 (ii)第一抗体が競合物質より目的物質に親和性が あり、(iii)第二抗体が目的物質より競合物質に親和性があり、かつ (iv)第二 抗体の競合物質への親和性が第一抗体の目的物質への親和性より大きい、2種類 のモノクローナル抗体を選択することにより、作成することができる。本発明に おいては、第二抗体は目的物質と競合物質とのいずれにも親和性のある抗体であ っても構わない。目的物質と競合物質に対して上記した4つの条件を満たす2種 類のモノクローナル抗体を得るためには、例えば、各種モノクローナル抗体の目 的物質および競合物質に対する結合性を、ELISA法などによって測定し、その測 定結果から上記4つの条件を満たす2種類のモノクローナル抗体を選択すればよ い。あるいは、目的物質と競合物質に対するモノクローナル抗体の結合定数を公 知の方法(蛋白質・酵素基礎実験法.南江堂)に従って測定し、その結果から 2 種類のモノクローナル抗体を選択することもでき、また、モノクローナル抗体を 用いたアフィニティークロマトカラムを作成し、それらに吸着する目的物質と競 合物質を検定することによっても2種類のモノクローナル抗体を選択することが できる。

第一抗体と第二抗体の2種類の抗体が、抗血清あるいはポリクローナル抗体の 場合には、例えば、測定対象である目的物質で、アジュバントを変えたり免疫条

件を変えたりして各種条件下に動物を免疫し、得られる抗血清あるいはポリクロ ーナル抗体について、上記したモノクローナル抗体と同様の方法で目的物質や競 合物質との結合性を測定し、上記4つの条件を満たす2種類の抗体を選択すれば よい。

[0011]

本発明で用いる2種類の抗体の代表例として、破骨細胞由来 TRACP 5b 測定に 用いることができる2種類のモノクローナル抗体を挙げることができる。本発明 により得られた TRACP 5b についての2種類のモノクローナル抗体は、これまで 報告されてきたモノクローナル抗体よりも更に TRACP 5b と反応性が高くフラグ メントとほとんど反応しない第一のモノクローナル抗体と、不活性酵素フラグメ ントと反応し活性酵素とほとんど反応しない第二のモノクローナル抗体である。 これら2種類の抗体を利用して、TRACP 不活性フラグメントとその他の血中アイ ソザイム(赤血球、血小板、好中球、マクロファージ)の影響を殆ど受けない破 骨細胞由来 TRACP 5b 特異的免疫測定法が可能となった。

以下に、これらのモノクローナル抗体を例として、本発明で用いる2種類の抗 体について更に詳細に説明する。

[0012]

上記モノクローナル抗体はヒト破骨細胞由来精製 TRACP 5b を免疫原として使 用することにより得ることができる。以下に説明する方法では正常破骨細胞によ る抗原により免疫を行ったが、これに限らず破骨細胞腫瘍などの TRACP 5b も抗 原として用いることができる。

上記モノクローナル抗体は精製ヒト TRACP 5b を免疫原として動物を免疫し、 その抗ヒト TRACP 5b 抗体産生細胞と骨髄腫瘍細胞とを融合させることによって えられるハイブリドーマによって産生される。

上記ハイブリドーマは以下の方法によって得ることができる。即ち上述のよう にして得たヒト TRACP 5b をフロイントの完全、不完全アジュバント、水酸化ア ルミニウムアジュバント、百日咳アジュバント等既に公知のものを用いてともに 混和し、感作用アジュバント液を作製して数回に分けてマウス、ラット等の動物 に 1~3 週間おきに腹腔内皮下、または尾静脈投与することによって免疫する。

[0013]

上記融合法としては、既にそれ自体公知であるケーラーとミルスタインの定法 (Nature. 256, 495. 1975) によってポリエチレングリコール (PEG) を用いること で融合できる。またセンダイウィルス、電気融合法によっても融合を行うことが できる。

融合した細胞からヒト TRACP 5b を認識する抗体を産生するハイブリドーマを選択する方法としては以下のようにして行うことができる。即ち、上記融合した細胞から限界希釈法によってHAT培地及びHT培地で生存している細胞により作られるコロニーからハイブリドーマを選択するのである。96 穴ウェルなどにまかれた融合細胞からできたコロニー培養上清中にヒト TRACP 5b に対する抗体が含まれている場合には、ヒト TRACP 5b をプレート上に固定化したアッセイプレート上に上清をのせ、反応後に抗マウスイムノグロブリン-HRP 標識抗体等、2 次標識抗体を反応させる ELISA 法により、ヒト TRACP 5b に対するモノクローナル抗体産生クローンを選択できる。標識抗体の標識物質には HRP の他、アルカリ性ホスファターゼなどの酵素、蛍光物質、放射性物質等を用いることができる。またコントロールとしてプロッキング剤である BSA のみを結合したアッセイプレートによる ELISA を同時に行うことでヒト TRACP 5b 特異的抗体のスクリーニングができることになる。つまりヒト TRACP 5b プレートで陽性であり、BS A による ELISA で陰性のクローンを選択するのである。

また、同時に抗マウスイムノグロブリン抗体をマイクロタイタープレートにまき、ここに融合細胞培養上清を加えて反応させ、更に精製 TRACP 5b を加えて活性酵素を結合させて免疫複合体を作製し、この結合酵素活性を pNPP のような発色基質を利用して測定することもできる。

[0014]

本発明の第一のモノクローナル抗体としては、ヒト TRACP 5b を特異的に認識するモノクローナル抗体のうち、特に活性型ヒト TRACP 5b と反応し、かつ赤血球、血小板、好中球、前立腺由来の酸性ホスファターゼ及びポテト ACP と交差反応しないもので、更に不活性フラグメントとの反応性が低いものが含まれる。たとえば本発明者が樹立したハイブリドーマ Trk62 が産生するモノクローナル抗体が挙げられる。また、第二のモノクローナル抗体としては、ヒト TRACP 5b 不活性フラグメントを特異的に認識するモノクローナル抗体のうち、特に活性ヒト TRACP 5b とほとんど反応せず、かつ赤血球、血小板、好中球、前立腺由来の酸性ホスファターゼ及びポテト ACP と交差反応しないものが含まれる。たとえば本発明者が樹立したハイブリドーマ Trk49 が産生するモノクローナル抗体が挙げられる。

[0015]

また特に本発明に使用する第一抗体としては活性酵素を特異的に結合するために不活性ヒト TRACP 5b フラグメントよりも活性ヒト TRACP 5b に親和性が高い抗体が好ましく、特に好ましくは第二抗体の活性ヒト TRACP 5b 結合定数よりも高い結合定数を持つものがあげられる。また第二抗体としては第一抗体の活性ヒト TRACP 5b 結合定数よりも高い不活性型フラグメント結合定数を持つものがふさわしい。第一抗体としてはたとえば本発明者が確立したハイブリドーマ Trk62が産生するモノクローナル抗体が挙げられる。また第二抗体としては本発明者が確立したハイブリドーマ Trk49が産生するモノクローナル抗体が挙げられる。上記ハイブリドーマ Trk49が産生するモノクローナル抗体が挙げられる。上記ハイブリドーマ Trk49 および Trk62 は工業技術院生命工学工業技術研究所にそれぞれ、受託番号 FERM BP-8249(平成 14 年 11 月 27 日)と FERM BP-78 90(平成 14 年 2 月 14 日)として寄託されている。

[0016]

上記ハイブリドーマは通常細胞培養に用いられる培地、例えば α -MEM、RPMI1 640、ASF、S-clone などで培養し、その培養上清よりモノクローナル抗体を回収 することができる。またハイブリドーマが由来する動物、ヌードマウスをあらか じめプリスタン処理しておき、その動物に細胞を腹腔内注射することによって腹 水を貯留させ、その腹水からモノクローナル抗体を回収することもできる。

上記の上清、腹水よりモノクローナル抗体を回収する方法としては、通常法を 用いることができる。たとえば硫酸アンモニウム、硫酸ナトリウムなどによる塩 析法やクロマトグラフィー、イオン交換クロマトグラフィー、プロテインAなど によるアフィニティクロマトグラフィーなどが挙げられる。

[0017]

上記方法によって精製された本発明によるモノクローナル抗体によって血清検体中の TRACP 5b を精密測定することができる。以下に本発明の免疫測定法について説明する。

本発明の免疫測定法は、例えば、以下のようにして行える。まず、第一抗体及び第二抗体をプレート等の不溶性固相支持体に吸着させておき、それ以外は、通常の ELISA 法と同様の操作で実施できる。まず、2種抗体が吸着しているその支持体に、測定すべき検体を加える。この場合、結合定数の違いから、検体中の競合物質は、主に、支持体に吸着している第二抗体と抗原抗体反応し、次いで、検体中の目的物質は、主に、支持体に吸着している第一抗体と有利に抗原抗体反応する。次いで、その固相支持体を、場合により洗浄した後、固相に結合した目的物質のレベルを測定することにより、検体中の目的物質を測定することができる。このとき、目的物質が TRACP5b のような活性型酵素の場合、pNPP(パラニトロフェニルリン酸)のような対応する基質溶液をその固相支持体に加えて酵素反応させ、固相に結合した目的物質のレベルを測定することにより、検体中の目的物質を精密に測定できる。

[0018]

また、本発明においては、第一抗体を吸着させる担体が不溶性固相支持体であり、第二抗体は、ラテックス等の溶液中で分散できる担体に吸着させるか、溶解させてもよく、その場合は、例えば、以下のようにして目的物質を測定できる。まず、第二抗体をラテックス等の溶液に分散しうる担体に感作させておくか溶解させておき、一方、第一抗体を固相支持体に吸着させておく。次いで、その固相支持体に、その第二抗体を含む溶液と測定すべき検体とを加えることにより、検体中の競合物質を主に第二抗体と抗原抗体反応させ、また、目的物質を主に第一抗体と抗原抗体反応させ、場合により洗浄した後

、固相に結合した目的物質のレベルを測定することにより、検体中の目的物質を測定することができる。このとき、目的物質が TRACP5b のような活性型酵素の場合、pNPP(パラニトロフェニルリン酸)のような対応する基質溶液をその固相支持体に加え、固相に結合した目的物質を測定することにより、検体中の目的物質を正確に測定できる。

[0019]

以上に説明した通り、通常、第一抗体を吸着させる担体は、不溶性固相支持体である。第二抗体は、不溶性固相支持体に吸着させておくか、ラテックス等の溶液中に分散させておくか、溶解させておいて使用される。

不溶性固相支持体とは、ELISA 法等の固相免疫測定法に用いるものであれば限定されない。例えばポリスチレン、ポリプロピレン、ポリカーボネート、ポリエチレン、ナイロン、ポリメタクリレートなどが挙げられる。これらのそれ自体公知である固相に直接、または間接的に物理結合や化学結合、アフィニティーを利用して本発明によるモノクローナル抗体を結合させる。感作抗体量は lng~100mg/ml の範囲であることが多い。物理結合や化学結合、アフィニティーなどによって固相に結合したモノクローナル抗体にヒト TRACP 5b を測定する検体を加えて反応させる。一定時間反応させた後、固相を洗浄し発色基質を加え反応させる。基質には既知の pNPP などを用いることができる。

[0020]

第二抗体を吸着する溶液中に分散できる担体とは、ラテックス粒子、磁性粒子、脂質粒子等を例示できる。更に化学合成ポリマー、天然ポリマー、例えば、デキストランなどに第二抗体を結合させて溶液中に分散させたおいたものも使用できる。この場合、ELISA法の緩衝液試薬中に競合物質を結合する第二抗体を添加することによって固相プレート上の目的物質の測定を有利にすることができる。不溶化担体に第二抗体を結合させて固相プレートに吸着した第一抗体と競合させ、目的物質測定を有利にすることができる。また化学合成もしくは天然ポリマー、例えばデキストランなどに第二抗体を結合させて緩衝液試薬中に添加することで目的物質の測定を有利にすることができる。

[0021]

本発明の免疫測定法を行うためのキットは、上記した第一抗体と第二抗体との 2 種類の抗体を含むものであり、これらは、必要に応じて、上記したように、不 溶性固相支持体あるいはラテックス等の溶液中で分散できる担体に吸着されていてもよい。また更に必要に応じて、抗体に結合した目的物質を測定するための試薬を含んでいてもよい。

[0022]

【実施例】

以下に好ましい実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例等により何ら限定されるものではない。

実施例1

(1) モノクローナル抗体作製用抗原の選択と準備

抗ヒト TRACP モノクローナル抗体作成のための抗原として、ヒト破骨細胞由来の TRACP 5b を準備した。以下に精製法を述べる。

インフォームド・コンセントを行った後、外科的手術により摘出されることに なったヒト大腿骨骨頭部 130g を液体窒素中で凍結させ、ハンマーで粉砕後、プ ロテアーゼインヒビターを含む緩衝液(50mM Tris-HCl, 0.3M KCl, 1mM PMSF, 1 mM EDTA・2Na, 0.1% Triton X-100, 0.02% NaN3, 1 unit/ml アプロチニン pH7. 5) 200mL 中に懸濁させ、超音波ホモジナイザーにてホモジナイズした。4℃一晩 攪拌後、10,000rpm, 20 分遠心分離し、その上清を 10mM トリス緩衝液 pH8.2 に透析後 CM-Sepharoseカラム (φ40mm×40cm) (SIGMA) にアプライし、吸着 したタンパク質を NaCl を含む上記トリス緩衝液の直線濃度勾配 (0-0.5M NaCl)で溶出した。酒石酸耐性酸性ホスファターゼ活性は、基質パラニトロフェニル リン酸を用い測定し、活性の高い部分をプールした。それを濃縮後、0.7M NaCl を含む 20mM トリス緩衝液 pH7.2に透析し、Superdex 200カラム (φ16mm×60cm (Amersham Pharmacia Biotech) にアプライし、同様に溶出したフラクション の酒石酸耐性酸性ホスファターゼ活性を測定し、活性部分をプールした。それを 20mM トリス緩衝液 pH7.2 で2 倍に希釈し、HiTrap Heparin HP カラム (5mL) (Amersham Pharmacia Biotech) にアプライし、吸着したタンパク質を NaCl を 含む上記 20mM トリス緩衝液 pH7.4 の直線濃度勾配 (0.35M-1M NaCl) 塩濃度

勾配をかけ溶出した。酒石酸耐性酸性ホスファターゼ高活性フラクションをプールし、濃縮することにより、精製破骨細胞由来酸性ホスファターゼを 0.4mg 得た。

なお、タンパク量は A_{280} により確認し、純度は SDS-PAGE (TIFCO) を行い銀染色の結果、分子量 35,000 付近でシングルバンドであることにより確認した。 単一バンドになった酵素は精製 TRACP 5b として免疫抗原とした。

[0023]

(2) 免疫

精製ヒト破骨細胞由来酒石酸耐性酸性ホスファターゼ(TRACP 5b)を $250\mu g/ml$ となるように 50mM クエン酸緩衝液(pH5.5)で希釈し、 $25\mu g$ ($100\mu l$)を とってフロインド完全アジュバンド(WAKO) $100\mu l$ と乳化するまでよく混和した。調製した懸濁液を Balb/c 6 週齢 雌マウス(日本クレアー)にジエチルエーテル麻酔下にて腹腔内投与した。2週間後には同量の TRACP 5b($25\mu g/ml$)を フロインド不完全アジュバンド(WAKO)と混和してフロインド完全アジュバンド の時と全く同様の操作により乳化懸濁液とし、それぞれマウスに感作した。以降 2週間後に同様の操作を行い、4回目には最終免疫として TRACP 5b $25\mu g/ml$ を 50mM クエン酸緩衝液(pH5.5)で調製しマウス尾静脈注射により投与した。

[0024]

(3) ハイブリドーマの確立

最終免疫より3日後に TRACP 5b により感作済みのマウスよりジエチルエーテル麻酔下に外科的摘出された脾臓を無菌的に分散し脾臓細胞を調製した。融合はケーラーとミルスタインの方法(Nature.256,495.1975)に従って行われ、ポリエチレングリコール(PEG4000)(MERK)を用いて脾細胞と骨髄腫細胞 P3-X63-Ag8-U1(P3U1)を融合した。その融合比率は脾臓細胞数 8×10^7 個に対して骨髄腫細胞 P3-X63-Ag8-U1(P3U1) 2×10^7 個で、4:1であった。融合細胞は 10%FCS(INVITROGEN) α -MEM(IRVINE) HAT(コスモバイオ)培地に分散し 96 穴マイクロタイターカルチャープレート(住友ベークライト)に分注して37℃、5%C02条件にて培養した。

[0025]

(4) スクリーニング

約 2 週間後にコロニーの生育を確認してスクリーニングを実施した。スクリーニングの実施法を以下に述べる。

スクリーニング用プレートを作製するために上記(1)にて精製した TRACP 5b を 50mM クエン酸緩衝液中に溶解し、 $0.5\mu g/100\mu l/wel1$ となるように 96 穴ウエル(Nunc)に分注した。プレートを $4\mathbb{C}$ で 2 晩静置した後に 0.05% Twee n 20 を含むトリス緩衝液で3回洗浄し、非特異的反応を抑えるために1.5%BSA溶液を $200\mu l$ 分注して、更に $4\mathbb{C}$ で 1 晩静置した。完成したプレートを 0.05% Twee en 20 を含むトリス緩衝液で 3 回洗浄した後に培養上清 $100\mu l$ を反応させ、更に洗浄を行った後に 2 次抗体であるHRP標識抗マウスイムノグロブリン抗体(2 ymed)を加えて反応させた。洗浄後に HRP の発色基質である 3mg/ml 0-フェニレンジアミン(OPD)(Nakalai)クエン酸発色溶液を $100\mu l$ 加えて一定時間の発色後、1N 硫酸を停止液として更に $100\mu l$ 添加し、測定波長 492m にて吸光度を測定した。上記のようにして陽性になったクローンは限界希釈法によって再クローニングされ上清を再度チエックした。

[0026]

(5) 抗体の確認

ELISAによって精製 TRACP 5b との反応性を確認すると、クローン Trk49、Trk 62 ではアフィニティーに差があったが、プレートと感度よく反応した。その結果、クローン Trk49、Trk62 を TRACP 5b を認識したものとして選択したのである。得られた抗体をモノクローナル抗体タイピングキット(Amersham Pharmacia Biotech)にて検定した結果、以下の表 1 のような結果であった。

[0027]

【表1】

	<u>クラス</u>	軽鎖
クローン Trk49	IgG1	κ
クローン Trk62	IgG1	κ

[0028]

(6) モノクローナル抗体の作製及び精製

上記 (5) で得られたハイブリドーマ TrK49、TrK62 1×10⁷ 細胞個をプリスタン (アルドリッチ) 0.5ml 投与後 2 週間の Balb/c マウス (日本クレアー)、10 週齢、雌性に腹腔内投与し、約2週間後にマウス腹腔内に貯留した腹水をジエチルエーテル麻酔下にて外科的に採取した。上記 (4) のスクリーニングで行った ELISA 法により、腹水をサンプルとして段階希釈して確認すると高濃度のモノクローナル抗体が含まれていた。この腹水を硫安 40% で処理し、PBSに透析した後、プロテイン G カラム (Amersham Pharmacia Biotech) により精製して SDS-PAGE により確認した。すると TrK27、TrK62 ともに非還元では分子量約 150,000 に単一の、メルカプトエタノール還元では分子量約 50,000 のバンドと 25,000 の 2 本のバンドが確認された。精製された抗体は TrK49、TrK62 ともにマウス 1 匹あたり約 15mg またはそれ以上であって工業的利用を行うには十分量であった。

[0029]

(7) 特異性検定

モノクローナル抗体 Trk49、Trk62 の特異性を調べるためにさまざまなアイソフォーム (TRACP 5b、赤血球、血小板、PAP (SIGMA)、ポテトACP (SIGMA社)) を用いて下記の実験を行った。測定方法は簡単には以下のとおりである。

固相プレート(Nunc)上に Protein G を利用して精製したモノクローナル抗体を 2μ g/well になるように分注し、 $4\mathbb{C}$ で 2 日間静置した。0.05%Tween 20を含む 20mM Tris (pH7.0)洗浄液にて3回洗浄した後、1.5%BSA Tris (pH7.0)を 200μ L 加ええて $4\mathbb{C}$ で一晩ブロッキングした。このようにして作製したプレートを先の洗浄液で1回洗浄して、各種アイソフォームの酵素活性を全て 10IU 几にあわせ、その 100μ l を抗体結合プレート上に加えた。室温で 2 時間反応させ、反応終了後、前出の洗浄液にて3回洗浄して 100μ l の酸性ホスファターゼ基質を加えて、 $37\mathbb{C}$ 、1時間反応させて抗体が捕らえた酵素が基質を発色させることから検体中酵素量の定量を行った。測定は反応停止液 50μ l を加えた後に測光波長 405nm で行った。

結果として Trk49、Trk62 は TrACP 5b としか反応せず、他アイソフォームとの交差性を示さないことから非常に特異性の高いモノクローナル抗体であることがわかった。

[0030]

(8) アフィニティーカラム作製

TRACP に対して反応することが確認されたクローン TrK49、TrK62 の腹水から精製されたモノクローナル抗体をプレパックカラムである HiTrap NHS-activa ted HP (Amersham Pharmacia Biotech) に結合させ、抗 TRACP カラムを作製した。以下、簡単に実験方法を示す(リガンドカップリングハンドブック. Amersham Pharmacia Biotechに詳しい)。

はじめに未使用カラムを開封し 5mL の氷冷した 1mM 塩酸溶液を流速 1mL/min で送液した。次に 1mL のモノクローナル抗体溶液(15mg/mL)を送液し、ドムナットで密閉して 4℃、4時間静置した。放置後、カップリングバッファー(0.2M炭酸水素ナトリウム緩衝液 0.5M NaCl pH8.3)を 3mL 流して、6mL のブロッキングバッファー(0.5M モノエタノールアミン溶液 0.5M NaCl pH8.3)にてプロッキングした。6mL の洗浄液(0.1M酢酸ナトリウム緩衝液 0.5M NaCl pH4.0)にて洗浄後、再び 6mL のブロッキングバッファー(0.5M モノエタノールアミン溶液 0.5M NaCl pH8.3)を通して、室温にて 30 分間放置した。その後 6mL の洗浄液、ブロッキング液、洗浄液と交互に流して最後に 20mM Tri s緩衝液 pH8.0 にてカラムを平衡化した。

[0031]

(9)<u>アフィニティーカラムによる血清中反応物の精製</u>

完成した 2 種 (Trk49、Trk62) の HiTrap NHS-activated HP カラムを用いて血清中反応物を精製した。はじめにボランティアより得た成人血清 40mL を 4 ℃、流速 0.2mL/min で一晩、カラムに環流させた。その後 20mM Tris 緩衝液 pH8.0 にてカラムを洗浄し、100mM グリシン緩衝液 pH2.7 で溶出させた。溶 出フラクションには 1/10 量の 1M Tris 緩衝液 pH9.0 を加えて中和した。

[0032]

(10) <u>SELDI法を利用したフラグメント確認</u>

近年、surface enhanced laser desorption ionization (SELDI)と飛行型質量 分析計を組み合わせたプロテインチップテクノロジーが米国 Ciphergen 社により開発され、新規腫瘍マーカーの検出などへ臨床応用が始まっている。本テクノロジーを応用し、樹立したハイブリドーマ Trk49、Trk62 のモノクローナル抗体を利用して血清中 TRACP フラグメントを実際にとらえることを試みた。実験は(i)抗体を利用したアフィニティチップ実験、及び(ii)疎水結合を利用したH4 チップ実験にわけられる。

[0033]

(i) <u>PS20 チップによる実</u>験

はじめに PS20 プロテインチップアレイ (Ciphergen Biosystems, Inc) を用いて Trk49、Trk62 と反応する血清中の TRACP、またはフラグメントを検索した。PS20チップ は抗体結合チップのことであり、初めに金属上に結合させた抗体と検体中の反応物質を抗体に結合させ、レーザーによって抗体から解離した抗体反応物が真空中を飛行することから、その量と分子量を決定するという特徴を持っている。以下にプロテインチップアレイ実験操作法を簡単に述べる。

はじめに合成培地 S-clone (三光純薬) に馴化させた Trk49、Trk62 を培養し、Protein G カラム (Amersham Pharmasia) によって抗体を精製した。この抗体 濃度を $500\,\mu\,\mathrm{g/mL}$ にあわせてその $2\,\mu\,\mathrm{L}$ をチップにアプライし、室温にて 1 時間反応させた後 $5\,\mu\,\mathrm{L}$ のプロッキングバッファー (1M エタノールアミン PBS pH 8.0) (WAKO) を加え室温 $10\,\mathrm{O}$ 間反応させた。プロッキング後 $8\,\mathrm{mL}$ の洗浄バッファー ($0.5\,\mathrm{W}$ Triton 100 PBS) にて室温、 $5\,\mathrm{O}$ 間洗浄した。これを $2\,\mathrm{G}$ 回繰り返し PBS で軽くすすいだ。反応スポットの周りを軽く拭いて $3\,\mu\,\mathrm{L}$ の健常人ボランティア血清をアプライし、 $4\,\mathrm{C}$ 一晩反応させた。反応終了後、キムワイプ ($100\,\mathrm{C}$ +体キンバリー) にてサンブルを吸収し、 $100\,\mathrm{C}$ を加え $100\,\mathrm{C}$ で軽くすすぎ、キムワイプ ($100\,\mathrm{C}$ やいバリー) にて水滴を拭き取り $100\,\mathrm{C}$ で軽くすすぎ、キムワイプ ($100\,\mathrm{C}$ やいバリー) にて水滴を拭き取り $100\,\mathrm{C}$ の飽和シナピン酸 ($100\,\mathrm{C}$ 中間の $100\,\mathrm{C}$ を加え $100\,\mathrm{C}$ で軽くするで軽くするのでででである。これを $100\,\mathrm{C}$ の飽和シナピン酸 ($100\,\mathrm{C}$ でででででである。これを $100\,\mathrm{C}$ の飽和シナピン酸 ($100\,\mathrm{C}$ ででででである。 $100\,\mathrm{C}$ でででである。 $100\,\mathrm{C}$ ででである。 $100\,\mathrm{C}$ ででである。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ である。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ である。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でする。 $100\,\mathrm{C}$ である。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でである。 $100\,\mathrm{C}$ でである。 $1000\,\mathrm{C}$ である。 $1000\,\mathrm{C}$ でである。 $1000\,\mathrm{C}$ である。 $1000\,\mathrm{C}$ である

Inc)によって読み取った。

[0034]

(ii) <u>H4 チップによる実験</u>

H4 プロテインチップアレイとは蛋白質などの測定物の疎水性を利用して金属チップ上に結合をさせ、レーザーによってはじかれた被測定物が真空中を飛行する時間からその量と分子量を測定するものである。サンプルは先の HiTrap NHS-activated HP カラムによるアフィニティ精製フラクションである。

はじめに H4 チップ(Ciphergen Biosystems , Inc)のスポットを PAPen(Zym ed)によって囲み、サンプルが拡散しないようにする。次にサンプル 2μ L とアセトニトリル 1μ L をのせて反応させ、乾くまで待つ。乾燥後にスポットへ 5μ Lの $20\,\mathrm{mM}$ PBS pH7.0 をのせて軽くピペッティングし、スポットを洗う。この操作を 2 回行った後に蒸留水でスポットを洗い、 $0.5\,\mu$ L の飽和シナピン酸(Ciphergen Biosystems , Inc)/50% アセトニトリル(Wako)/0.5%TFA(Wako)溶液を 2 回添加して乾燥後に測定した。作製したプロテインチップアレイは、プロテイン・バイオロジー・システムII・マス・スペクトロメーター(Ciphergen Biosystems , Inc)によって読み取った。

[0035]

図1に測定データを示す。このデータフォーマットでは、PS20、H4 プロテインチップから脱着されたサンプルのタンパク質の分子量を横軸に、その分子量で検出器に到達した分析物の量を反映するピークを縦軸で表すことができる。この時の縦軸の単位は Arbitrary Units (AU) とする。本実験では HiTrap NHS-activated HP Trk49 及び Trk62 カラムにより精製されたフラクション蛋白質と PS2 0 抗体チップ実験により結合するものは同一のものであるはずである。つまり H 4 実験と PS20 実験は別実験による表裏の関係にある再現性確認であり、2 つのデータが同一であることは実験の正確性を示すものである。結果的に図1から明らかなように、Trk49 を用いた H4 実験のデータと PS20 実験のピーク波形は完全に一致した。またこれまで知られていなかった全く新規の TRACP フラグメント数種類を同定することに成功した。このフラグメント結合量は各抗体の結合定数とよく相関していた。特に注目すべきは Trk62 の反応性である。Trk62は Trk

49 によって結合するフラグメントとは殆ど反応せず、活性酵素に対する特異性が高いことが証明された。逆に Trk49 はフラグメントと非常によく反応していた。

[0036]

(11) モノクローナル抗体結合定数の測定

抗原に対する結合定数を求めるため下記の実験を行った。方法は(蛋白質・酵 素基礎実験法.南江堂)に従って行った。2 種類の抗原溶液(A)精製 TRACP 5b 及び(B)Trk49 アフィニティカラム精製 TRACP フラグメントを 5μg/mL 20mM クエン酸緩衝液となるように調製し、 50μ L づつ 96 穴プレート(Nunc)に感 作させた。4℃、一晩静置した後、0.05%Tween 20 を含む 20mM トリス緩衝液 2 00μL でプレートを 3 回洗浄し、ブロッキング剤(1.5%BSA 10% サッカロ ースを含む 20mM トリス緩衝液) を 100μL づつ加えて 4℃ 一晩静置した。 再び 0.05%Tween 20 を含む 20mM トリス緩衝液 200μL でプレートを 3 回洗 浄し、12 段階に希釈した抗体溶液(0、0.1、0.15、0.20、0.25、0.3、0.35、0. 4、0.45、0.5、0.75、1.0μg/mL) を 20μL づつ加えて条件(i) 37℃、(ii) 4 ℃でそれぞれ 2 時間反応させた。1 次反応後 0.05%Tween 20 を含む 20mMトリ ス緩衝液 200 µ L でプレートを 3 回洗浄し、1/1000 希釈標識 2 次抗体(抗マ ウスIgG-HRP標識抗体:Zymed)50μL を加えて 37℃で 2 時間反応させ、0.05 %Tween 20 を含む 20mM トリス緩衝液 200μL でプレートを 3 回洗浄した後 に 3mg/mL OPD 溶液 100μL を加えて発色させ、0.1N 硫酸溶液 100μL で停止 後 492nm にて比色した。

[0037]

この結果から初めに条件(i) で 1M あたりの A_{492} における抗体結合量を求める。例えば TRACP 5b プレートの抗体 $0.05\mu g$ では $A_{492}=0.250$ であったので、抗体の分子量を 14.6 万とすると次のように求められる。

[0038]

【数1】

$$0.25/\{0.05/(0.146\times10^{-9})\} = 0.731\times10^{-9}$$
 (1)

[0039]

次に(1)で求めた値から条件(ii)の各抗体濃度における結合抗体濃度 [PL]を求める。

[0040]

【数2】

$$[PL]$$
 = 条件(ii) における $A_{492}/1$ M濃度あたりの A_{492} (2)

[0041]

そして加えた抗体濃度から遊離抗体濃度 [PF]を求める。

[0042]

【数3】

[0043]

結合抗体濃度に対して [PL]/[PF] をプロットしてその勾配 (-nK) より結合 定数 (Ka) を求める。

[0044]

【数4】

$$Ka = -$$
勾配 $/n$ (4)

[0045]

上記方法より結果として 2 種類のモノクローナル抗体 Trk49、Trk62 の結合 定数 (Ka) は下記の表 2 のとおりであった。

[0046]

【表2】

		結合定数
Trk49	(TRACP 5b)	$Ka = 0.94 \times 10^9$
	(TRACP フラグメント)	$Ka = 5.25 \times 10^9$
Trk62	(TRACP 5b)	$Ka=3.73\times10^9$
	(TRACP フラグメント)	$Ka = 0.69 \times 10^9$

[0047]

これを反応系中で考えると反応の強さ、即ち親和性は以下のようになることが

わかった。

[0048]

【数5】

Trk49とフラグメントとの反応性>Trk62と酵素との反応性

>Trk49と酵素との反応性>Trk62とフラグメントとの反応性

[0049]

よってモノクローナル抗体 Trk49 は TRACP 酵素自体よりも TRACP 抗体フラグメントと反応性が高く、その上 Trk62 の TRACP 酵素との結合定数よりも反応性が高いため、はじめに反応系中で選択的に Trk49 と TRACP フラグメントが結合し、競合フラグメントの減少した反応系中で Trk62 はより有利に TRACP 酵素と反応することができることがわかった。この結果はプロテインチップ実験結果を裏付けるものである。

[0050]

(12) ELISA による測定実験

そこで $Trk49\ 1\mu g/we11/100\mu L$ 、 $Trk49\ 2\mu g/we11/100\mu L$ 、 $Trk62\ 1\mu g/we11/100\mu L$ 、 $Trk62\ 2\mu g/we11/100\mu L$ 、 $(Trk49\ 1\mu g+Trk62\ 1\mu g)/we11/100\mu L$ の5種類のプレートを作製した。プレート作成法は上記(7)のモノクローナル抗体の特異性検定で作製したのと同様である。ただし感作抗体液を $100\mu L$ に、ブロッキング溶液量を $200\mu L$ に、サンプル量を $100\mu L$ に変更して行った。また、1次反応は、プレートに吸着した抗体に、サンプルとして TRACP5b 高値プール血清を加え、室温にて、振とう条件下で1時間抗原抗体反応を行った。次いで、洗浄操作を行い、合成基質溶液 $100\mu L$ を添加し、37℃で 1 時間、酵素反応をさせた。0.2N の NaOH 溶液を加えて反応を停止させ比色定量し、酵素活性を求めた。結果を図2 に示す。

結合定数から酵素に反応性が弱く、フラグメントと強い反応性を示す Trk49 は酵素との結合活性が弱く測定に必要な感度が得られなかった。一方結合定数より酵素に強い反応性を持つと考えられた Trk62 は良好な直線性を示した。更に Trk49 と Trk62 を混合したプレートではより直線性が長くなり感度も向上していた。抗体量を $1\mu g$ から $2\mu g$ に増量しても直線性、感度には殆ど向上しなか

ったことから反応に関与する抗体量は $1\mu g/$ well でほぼ十分であったと考えられた。つまり結合定数実験の理論どおり Trk49 は反応系中でフラグメントをほぼ優先的に結合させ、次に Trk62 が Intact な酵素を結合させるため直線性、感度が改善されたと考えられるのである。

[0051]

(13) <u>ラテックス試薬を利用したフラグメント吸収法</u>

フラグメントをほぼ特異的に吸収することがわかったモノクローナル抗体 Trk 49、またコントロールに Trk62 を使用して、2 種類のモノクローナル抗体をラテックスに感作し、ラテックス試薬を作製した。ラテックス試薬作製は下記のように行った。

1% ラテックス懸濁液 2mL と、0.1mg/mL Trk49 及び Trk62 抗体溶液 2m L とを混合し、約1時間攪拌した。遠心後、沈殿を1%BSA 溶液に懸濁し、再度約1時間攪拌した。再び遠心後、沈殿を PBS 溶液中に懸濁し、ラテックス試薬を得た。このラテックス試薬を 0.15% 及び 0.1% から 1/2 倍づつ希釈して合計 8 段階のラテックス試薬(0.1、0.05、0.025、0.0125、0.00625、0.00313、0.00156%)を作成した。以下 ELISA 法における手技について説明する。

はじめにこのラテックス試薬を Trk62($2\mu g/well$)でまいたプレートに 50μ L つつ分注した。次にインフォームド・コンセントを行った TRACP 高値プール血清(8U/mL)を 100μ L つつ加えて、室温、振とうを行いながら 1 時間反応させた。反応後 0.05% Tween 20 を含む 20mM Tris 緩衝液(pH7.0)で 3 回洗浄し合成基質溶液を加えた。37 $\mathbb C$ 、1 時間インキュベートを行った後、反応停止液(0.2N NaOH溶液)を 50μ L 添加して、405/490nm で測定した。結果を図 3 に示す。Trk62 感作ラテックス試薬添加実験ではプレート上のモノクローナル抗体と競合してしまい、添加ラテックス試薬機度依存的に酵素発色が低下していた。しかし、Trk49 では $0.1\sim0.15\%$ ラテックス試薬添加実験で有意に酵素発色値が上昇するなど、競合フラグメント吸収にプレートへの抗体同時感作に限らずこのようなラテックスなどの抗体吸着用担体を用いる吸収法も有効であることが示された。また、Trk49 をラテックッスに感作せず、溶液に溶解させたものを用いても有効であった。

[0052]

【発明の効果】

以上に詳細に説明した通り、本発明の免疫測定法では、測定対象目的物質と反応性の高い第一抗体と、目的物質の不活性フラグメントなど競合する物質と強く 反応する第二抗体を組み合わせて使用することで反応系中の競合物質の影響を除き、活性酵素等の目的物質を特異的に精密測定することができる。

【図面の簡単な説明】

【図1】

図1は、サイファージェン社のプロテインチップシステムを用いた解析結果の簡易図面を示す。(1) HiTrap NHS-activated HP Trk49 カラムの溶出物質と(2) PS20 抗体チップを用いた血清からのピークは一致しており、実験が正確であること及び Trk49 と酵素分解物との反応性が大きいことがわかった。また(3) から Trk62 抗体の酵素分解物との反応が少ないことがわかった。

【図2】

図 2 は、同一濃度の抗体 Trk49 と Trk62 を利用した ELISA の結果を示す。Trk49 は弱い反応性しか示さなかった。しかし Trk49 と Trk62 を同時に利用したプレートでは Trk62 を単独で使用した場合よりも反応性が向上している。

【図3】

図3は、抗体 Trk62 をプレートに吸着させ、抗体 Trk62、Trk49 のいずれかをラテックス粒子に吸着させて ELISA を行った結果を示す。プレートと競合する Trk62 抗体感作ラテックス試薬では添加ラテックス試薬濃度が高くなるにつれて発色が弱くなっている。しかし Trk49 感作ラテックス試薬では 0.1%~0.15% 実験区では逆に酵素の発色値が強くなった。よって Trk49 抗体感作ラテックス試薬はプレートに吸着された Trk62 と併用することで効果をあげられることがわかった。

図面

【図1】

Protein Chip 実験結果

- ① H4 Chip HiTrap NHS-activated HP Trk49 カラム溶出フラクション
- ② PS20 Chip (抗体: Trk49 サンプル:健常人血清)
- ③ PS20 Chip (抗体: Trk62 サンプル: 健常人血清)

【図2】

ELISA法による測定結果

【図3】

LATEX試薬添加ELISA実験結果

【書類名】 要約書

【要約】

【課題】 試料中に含まれる競合物質の影響を除去して目的物質を測定する新たな免疫測定法を提供することを課題とする。

【解決手段】 競合物質より目的物質に親和性がある第一抗体と、目的物質より 競合物質に親和性がある第二抗体の2種類の抗体を用い、これらの2種類の抗体 に検体を作用させることにより、まず検体中の競合物質が第二抗体に先に結合し 、そのため検体中で競合物質に対する目的物質の比が大きくなることにより、目 的物質が第一抗体に結合しやすくなり、その結果、目的物質の反応性が第一抗体 を単独で用いるより大きくなるため、正確に目的物質を測定できる。

【選択図】 なし

出願人履歴情報

識別番号

[000003975]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月29日

里由] 新規登録

福島県福島市郷野目字東1番地

日東紡績株式会社