

L19 ANSWER 1 OF 1 WPIX COPYRIGHT 2010 THOMSON REUTERS on STN
AN 1981-60560D [198134] WPIX Full-text
TI Electrode, especially cathode for electrolysis of brine - has
active coating of
 iron with specified nickel and/or cobalt content to reduce
hydrogen
 overvoltage
DC E36; J03; M11; X25
IN HABERMANN W; HAMMES P; WINTERMANN K
PA (BADI-C) BASF AG
CYC 1
PI DE 3003819 A 19810813 (198134)* DE 11
<--
ADT DE 1980-3003819 19800202; DE
1981-3102306 19810124
PRAI DE 1981-3102306 19810124
DE 1980-3003819 19800202
IC IC C25B0001-34; C25B0011-04; C25D0003-56; C25D0007-00
EPC C25B0011-04D4
AB DE 3003819 A UPAB: 20050419
 Electrodes, especially cathodes for alkali chloride electrolysis
 cells, consist of an electrically conducting support with active
 layers containing Ni and/or Co in addition to Fe, the Ni and/or Co
 content being 10-20 weight%. The electrodes have a low H₂
 overvoltage and can be made reproducibly without deforming the
 support.
 The active layers are produced electrolytically on the
 cathodically polarised support using an acetate-buffered acetic
 acid electrolyte containing Fe and also Ni and/or Co salts. The
 electrolyte pref. contains 1.5-10 (weight)% acetic acid, 1.0-12%
 acetate and 0.5-20 g/l Fe, Co and/or Ni salts (w.r.t. the metal
 content of the salts).
FS CPI; EPI
MC CPI: E31-B01; E33-A; J03-B01; M11-C
EPI: X25-R01B

ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN

AN 1981:558804 CAPLUS full-text

DN 95:158804

OREF 95:26401a,26404a

ED Entered STN: 12 May 1984

TI Cathodes for alkali metal chloride electrolysis cells

IN Habermann, Wolfgang; Hammes, Peter; Wintermantel, Klaus

PA BASF A.-G. , Fed. Rep. Ger.

SO Ger. Offen., 11 pp.

CODEN: GWXXBX

DT Patent

LA German

CC 72-10 (Electrochemistry)

Section cross-reference(s): 49

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI DE 3003819	A1	19810813	DE 1980-3003819	
19800202 <--				
DE 3102306	A1	19820114	DE 1981-3102306	
19810124				
DE 3102306	C2	19891109		
PRAI DE 1980-3003819	A1	19800202		

CLASS

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
DE 3003819	IPCI	C25B0011-04 [ICM]; C25B0011-00 [ICM,C*]; C25B0001-34 [ICS]; C25B0001-00 [ICS,C*]; C25D0003-56 [ICS]; C25D0007-00 [ICS]
	IPCR	C25B0011-00 [I,C*]; C25B0011-04 [I,A]
	ECLA	C25B011/04D4
DE 3102306	IPCI	C25B0011-04 [ICM]; C25B0011-00 [ICM,C*]; C25B0001-46 [ICS]; C25B0001-00 [ICS,C*]
	IPCR	C25B0011-00 [I,C*]; C25B0011-04 [I,A]
	ECLA	C25B011/04D4

AB The title cathodes especially for brine electrolysis have an active surface containing electrodeposited Fe-group alloys. Thus, an Fe plate was etched in acid, washed, and electroplated in an acetate bath containing: HOAc 30, NH4OAc 38.5, FeCl2.4H2O 25.5 and NiCl2.6H2O in 930 mL of H2O. The plating was done for 10 min at 82° using a c.d. of 300 mA/cm2. The resulting plate contained Fe 86 and Ni 13.8%. The overvoltage as determined at 0.15 to 2.8 kA/m2 was 18-27 mV. In a similar bath containing no Fe salt the resulting electroplate had an overvoltage of 230 mV at 1.5 kA/m2.

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 30 03 819 A 1

⑯ Int. Cl. 3:
C 25 B 11/04
C 25 B 1/34
C 25 D 3/56
C 25 D 7/00

⑯ Aktenzeichen: P 30 03 819.8
⑯ Anmeldetag: 2. 2. 80
⑯ Offenlegungstag: 13. 8. 81

DE 30 03 819 A 1

⑯ Anmelder:
BASF AG, 6700 Ludwigshafen, DE

⑯ Erfinder:
Habermann, Wolfgang, 6500 Mainz, DE; Hammes,
Dipl.-Ing. Dr., Peter, 6715 Lambsheim, DE; Wintermantel,
Dipl.-Ing. Dr., Klaus, 6940 Weinheim, DE

⑯ Elektroden

DE 30 03 819 A 1

ORIGINAL INSPECTED

BUNDESDRUCKEREI BERLIN 06.81 130 033/52

6/80

Patentansprüche

1. Elektroden, insbesondere Kathoden für Chloralkali-Elektrolysezellen, bestehend aus einem Träger aus einem elektrisch leitenden Material und darauf aufgebrachten Aktivschichten, die neben Eisen Nickel und/oder Kobalt enthalten, dadurch gekennzeichnet, daß der Nickel- und/oder Kobaltgehalt 10 bis 20 Gew.% beträgt.
- 10 2. Verfahren zur Aufbringung der Aktivschichten nach Anspruch 1, dadurch gekennzeichnet, daß man die Schichten elektrolytisch auf den kathodisch polarisierten Träger unter Verwendung eines Eisen- sowie Nickel und/oder Kobaltsalze enthaltenden acetatgepufferten essigsauren Elektroyten abscheidet.
- 15 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Essigsäuregehalt im Elektrolyten 1,5 bis 10 Gew.%, der Acetatgehalt 1,0 bis 12 Gew.% und der Gehalt an Eisen, Kobalt und/oder Nickelsalzen 0,5 bis 20 g/l, bezogen auf den Metallgehalt der Salze, beträgt.

25

30

35/ 226/79 Ki/G1 01.02.1980

130033/0052

-2-

Elektroden

Technische Elektrolysen, insbesondere die Chloralkalielektrolysen nach dem Diaphragmen- und Membranverfahren, bei 5 denen kathodisch Wasserstoff entwickelt wird, erfordern Kathodenmaterialien mit geringen Wasserstoffüberspannungen, um kostengünstig arbeiten zu können.

10 Zur Zeit verwendet man für die Chloralkalielektrolyse nach dem Diaphragmaverfahren Eisenkathoden, welche bei technischen Stromdichten von 1 bis $2,8 \text{ KA/m}^2$ Überspannungen von 250 bis 400 mV aufweisen.

15 Zur Herabsetzung der Überspannung, insbesondere bei der Elektrolyse wässriger Salzsäure, ist es bekannt, bei Verwendung von Graphitkathoden den Elektrolyten Salze bestimmter Metalle zuzusetzen. Diese Metalle scheiden sich während der Elektrolyse auf den Kathoden ab, wobei durch die so gebildeten Schichten die Wasserstoffüberspannung 20 herabgesetzt wird. Gemäß der französischen Patentschrift 1 208 508 werden zu diesem Zwecke Kupfer, Nickel, Antimon, Silber, Gold, Kobalt, Eisen- und Platin-Salze zugesetzt (vgl. auch DL-Patentschrift 3 725). Gemäß der DE-AS 12 16 852 wird den Elektrolyten während der Elektrolyse ein Palladiumsalz zugesetzt. Um jedoch ausreichende 25 Wirkungen zu erzielen, ist es erforderlich, erhebliche Mengen dieser Salze einzusetzen. Darüber hinaus haben diese Zusätze den weiteren Nachteil, daß die Wasserstoffüberspannung nur temporär unmittelbar nach ihrer Zugabe 30 herabgesetzt wird, d.h., daß man während der Dauer der Elektrolyse periodisch oder kontinuierlich diese Zusätze zugeben muß, um die Wasserstoffüberspannung auf einen konstant niedrigeren Wert zu halten.

BASF Aktiengesellschaft

- 2 -

O.Z. 0050/034265

- 3 -

In der britischen Patentschrift 1 004 380 werden Elektroden beschrieben, die aus einem Substrat aus einem leitenden Material bestehen, das mit einer Legierung beschichtet ist, die neben Molybdän und Wolfram mindestens eines der 5 Elemente Eisen, Kobalt und Nickel enthält. Diese Schichten, die auf die verschiedensten Weisen auf das Substrat aufgebracht werden können, haben den Nachteil, daß sie in der Zelle in unbelastetem Zustand gegenüber dem Elektrolyten nicht korrosionsbeständig sind und daher unter Herauslösung des Wolframs und des Molybdäns von der Elektrodenoberfläche abbröckeln. Abgesehen von diesem Nachteil ist es bei Verwendung dieser Elektroden auch nicht möglich, Diaphragmen- und Amalgamzellen im Verbund zu betreiben, da das in der Diaphragmenzelle in Lösung gegangene Molybdän und Wolfram in der Amalgamzelle zu Störungen durch 10 15 Herabsetzung der Wasserstoffüberspannung an der Quecksilber-Kathode führen würde.

In der DE-AS 12 73 498 ist ein Verfahren zur Herstellung 20 von Elektroden für elektrolytische Wasserzersetzer beschrieben, bei der eine die Überspannung herabsetzende Aktivierungsschicht auf Elektrodenoberflächen durch galvanische Abscheidung von porösem und eingelagerte Nickelverbindungen enthaltendem Nickel mit Hilfe eines Mattnickelbades bei pH-Werten von oberhalb 5,8 und Stromdichten von 10 bis 40 A/dm² erzeugt wird. Die Abscheidung 25 derartiger Nickelschichten mit der gezielten Einlagerung von Nickelhydroxid ist aber nur schwer steuerbar, so daß hohe Ausschußquoten auftreten und solche Elektroden technisch bisher nicht verwendet worden sind.

In der US-PS 4 049 841 schließlich sind Kathoden beschrieben, die aus einem Träger aus Eisen bestehen auf dessen Oberfläche durch Flamm- oder Plasmaspritzen ein Metallpulver aufgebracht worden ist, das eine geringere Wasserstoff- 35

- 4 -

Überspannung als Eisen besitzt. Als solche Metalle werden beispielsweise Kobalt, Nickel, Platin, Molybdän, Wolfram, Mangan, Eisen, Tantal, Niob, ihre Carbide, Nitride oder ihre Legierungen und Mischungen genannt. Nachteilig bei 5 dieser Methode ist es, daß der Träger beim Beschichtungsprozeß nicht formstabil ist, daß hohe Pulververluste bis zu 65 % auftreten und daß die Wasserstoffüberspannungen dieser Elektroden etwa 180 bis 200 mV betragen. Ähnliche Elektroden sind in der DE-AS 20 02 298 beschrieben, die 10 ebenfalls aus einer porösen Nickelschicht bestehen, die oberflächlich auf einer metallischen Unterlage aufgebracht sind.

Der vorliegenden Erfindung lag die Aufgabe zugrunde, Elektroden anzugeben, die insbesondere als Kathoden für Chloralkali-Elektrolyse-Zellen eingesetzt werden können, und die sich durch eine niedrige Wasserstoffüberspannung auszeichnen. Der vorliegenden Erfindung lag die weitere Aufgabe zugrunde, ein Verfahren zur Herstellung solcher 20 Elektroden anzugeben, das jederzeit reproduzierbar ist und gemäß dem man Elektroden herstellen kann, ohne daß hierbei Verformungen des Trägers auftreten.

Es wurde nun gefunden, daß diese Aufgabe bei Elektroden, 25 insbesondere Kathoden für Chloralkali-Elektrolyse-Zellen, bestehend aus einem Träger aus einem elektrisch leitenden Material und darauf aufgebrachten Aktivschichten, die neben Eisen Nickel und/oder Kobalt enthalten, dadurch gelöst werden kann, daß der Nickel und/oder Kobalt-Gehalt 10 bis. 30 20 Gew.% beträgt.

BASF Aktiengesellschaft

- 4 -

O.Z. 0050/034265

- 5 -

darüber beträgt, eine außerordentlich niedrige Wasserstoff-
Überspannung.

Als Träger kommen praktisch alle elektrisch leitenden
5 Materialien, die gegenüber dem geeigneten Elektrolyten
beständig sind, vorzugsweise aber Eisen in Betracht.

Die Aufbringung der erfindungsgemäßen aktiven Schichten
kann erfolgen durch Kathodenerstäubung, Bedampfung,
10 Plasmabeschichtung, Flammspritzbeschichtung oder durch
chemische Reduktion von auf dem Substrat aufgebrachten
Verbindungen der genannten Metalle.

Besonders vorteilhaft werden jedoch die Aktivschichten
15 elektrolytisch aus wässrigen Lösungen abgeschieden, da
hierbei Elektroden mit besonders niedrigen Wasserstoff-
Überspannungen erhalten werden und gegenüber anderen Ver-
fahren, wie Flamm- oder Plamaspritzen nicht verformte Elek-
troden erhalten werden. Hierzu haben sich insbesondere
20 acetatgepufferte, essigsäure Elektrolyte bewährt. Als
Acetat eignet sich insbesondere Ammoniumacetat. Der Essig-
säuregehalt im Elektrolyten sollte 1,5 bis 10 Gew.% betra-
gen. Die Konzentration an Eisensalzen bzw. Nickel- und
Kobaltsalzen soll in etwa dem Verhältnis von Eisen : Ko-
25 balt und/oder Nickel der auf dem Träger aufzubringenden
Aktivschicht entsprechen. Die Gesamtmetallsalzkonzentra-
tion im Elektrolyten sollte 0,5 bis 20 g/l, vorzugsweise ⁴
bis 10 g/l, jeweils bezogen auf den Metallgehalt des
Salzes ausmachen. Als Metallsalze kommen die in den genann-
30 ten Bereichen lösbar Salze in Frage, z.B. die Chloride,
Nitrate, Sulfate, Acetate, Citrate und Tartrate.

Die elektrolytische Abscheidung erfolgt zweckmäßig bei
erhöhten Temperaturen von z.B. 50°C, vorzugsweise 80 bis
35 95°C. Um drucklos arbeiten zu können, sollte die Abschei-

- 5 -

- 6 -

dung unterhalb des Siedepunktes des Elektrolyten erfolgen. Bei Anwendung erhöhter Temperaturen werden besonders gut haftende Aktivschichten mit besonders geringer Wasserstoff-Überspannung erhalten. Die elektrolytrische Abscheidung 5 erfolgt bei Stromdichten von 10 bis 2 500 mA/cm², vorzugsweise 50 bis 750 mA/cm².

Beispiel 1

10 Ein Eisenblech mit den Abmessungen von 20 x 150 x 2 mm wird in 10 gew.%iger wässriger Salzsäure abgebeizt und mit dest. Wasser gewaschen. Das gereinigte Eisenblech beschichtet man anschließend kathodisch in einem Elektrolytbad, welches 30 g Essigsäure, 38,5 g Ammoniumacetat, 25,5 g 15 FeCl₂ · 4H₂O und 4,5 g NiCl₂ · 6H₂O in 930 ml Wasser gelöst enthält, 10 Minuten bei einer Stromdichte von 300 mA/cm² und Temperatur von + 82°C. Nach der Beschichtung wird die fertige Kathode, deren Aktivschicht 86 Gew.% Eisen und 13,8 Gew.% Nickel enthält, in 20 13 gew.%iger wässriger Natronlauge eingesetzt und die kathodische Stromspannungskurve bei + 80°C aufgenommen. Es werden folgende Überspannungen in Abhängigkeit von der Stromdichte ermittelt:

25 Stromdichte KA/m² 0,15 1,0 1,5 1,6 2,3 2,8
Überspannung mV 18. 21 22 23 26 27

30 Verwendet man zur Beschichtung ein Bad, welches nur 30 g NiCl₂ · 6H₂O und kein Eisensalz zur Beschichtung enthält, so beträgt die Überspannung bei 1,5 KA/m² unter sonst gleichen Bedingungen etwa 230 mV.

- 7 -

Beispiel 2

Ein Eisenblech wird wie in Beispiel 1 vorbereitet und in einem Elektrolyten, der 32 g Essigsäure, 40 g Ammoniumacetat, 24 g $\text{FeCl}_2 \cdot 4\text{H}_2\text{O}$, 3 g $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ sowie 3 g $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$ in 930 ml Wasser gelöst enthält, 3 Minuten bei $+80^\circ\text{C}$ und einer kathodischen Stromdichte von 300 mA/cm² beschichtet. Die Aktivschicht der Elektrode enthält 85,8 Gew.% Eisen, 6,8 Gew.% Kobalt und 7,3 Gew.% Nickel. In 13 gew.%iger wässriger Natronlauge werden folgende Überspannungen bei $+80^\circ\text{C}$ erhalten:

Stromdichte KA/m ²	0,15	1,0	1,5	2,3	2,8
Überspannung mV	5	12	20	23	25

15

Beispiel 3

Ein Eisenblech mit den Abmessungen wie in Beispiel 1 wird durch Korundstrahlung oberflächlich gereinigt. Anschließend trägt man mit Hilfe des Plasmabrenners eine ca. 60,um dicke Schicht einer Eisennickellegierung auf, die 83 Gew.% Eisen und 17 Gew.% Nickel enthält. Für die Beschichtung wird ein Nickel-Eisen-Pulver der Korngröße $<40,\mu\text{m}>25,\mu\text{m}$ verwendet. Als Trägergas kommt ein Argon-Wasserstoffgemisch (70 Vol.% Wasserstoff) zum Einsatz. In 13 gew.%iger wässriger Natronlauge erhält man bei $+80^\circ\text{C}$ die folgenden kathodischen Überspannungswerte:

Stromdichte KA/m ²	0,15	1,0	1,5	2,3	2,8
Überspannung mV	22	27	30	33	35

35

BASF Aktiengesellschaft

- 7 -

O.Z. 0050/034265

- 8 -

Beispiel 4

9 Eisenbleche mit den Abmessungen 150 x 20 x 2 mm werden in 10 gew.%iger wässriger Salzsäure abgebeizt und mit 5 destilliertem Wasser gewaschen. Die Beschichtung erfolgt in einem acetatgepufferten Elektrolysebad (30 g/l Essigsäure, 38,5 g/l Ammoniumacetat) mit wachsenden, in der folgenden Tabelle angegebenen Metallsalzkonzentrationen bei Stromdichten von 3000 kA/m² und Temperaturen von 80°C 10 (Dauer der Abscheidung jeweils ca. 10 min).

In der folgenden Tabelle sind die Wasserstoffüberspannungen, gemessen in 13 gew.%iger Natronlauge, in Abhängigkeit von der jeweiligen Zusammensetzung des Beschichtungsbandes 15 und der daraus resultierenden Aktivschicht aufgeführt.

20	Elektrode	Elektrolyt		Aktivschicht % Ni	Wasserstoff- überspannung bei 80°C mV bei 1,5 KA/m ²
		g FeCl ₂ 4 H ₂ O/I	g NiCl ₂ 6 H ₂ O/I		
25	1	26,0	4,0	13,4	20
	2	25,0	5,0	14,2	22
	a)	-	30	100	230
	b)	30	-	0	220
	c)	27,5	2,5	7,0	77
	d)	20,0	10	29,7	50
	e)	15	15	44,0	56
	f)	10	20	62,8	86
30	g)	5	25	70,4	140

Aus der Tabelle ist zu ersehen, daß Aktivschichten (Elektroden 1 und 2), deren Nickelgehalt innerhalb des beanspruchten Bereiches von 10 bis 20 Gew.% liegt, eine deutlich niedrigere Wasserstoffüberspannung aufweisen als 35

-9-

Aktivschichten, deren Nickelgehalt außerhalb dieses Bereiches liegt (Vergleichselektroden c)-g) und eine ganz erheblich niedrigere Wasserstoffüberspannung gegenüber Aktivschichten aufweisen, deren Aktivschicht nur aus Nickel oder Eisen besteht (Vergleichselektroden a) und b)).

5

Beispiel 5

9 Eisenbleche werden unter den Bedingungen des Beispiels 4 mit einer Aktivschicht versehen, die anstelle von Nickel Kobalt enthält.

In der folgenden Tabelle sind die Überspannungswerte der einzelnen Elektroden angegeben.

15

	Elektrode	Elektrolyt g FeCl ₂ . 4 H ₂ O	g CoCl ₂ . 6 H ₂ O/I	Aktivschicht % Co	Wasserstoff- überspannung bei 80°C mV bei 1,5 KA/m ²
20	1	26,2	3,8	13	18
	2	25	5	14,2	17
	a)	-	30	100	250
	b)	30	-	0	220
	c)	27,5	2,5	7,0	60
	d)	20	10	30,0	26
	e)	15	15	44,2	38
	f)	10	20	62,8	82
	g)	5	25	69,3	138

30

Aus der Tabelle ist zu ersehen, daß Aktivschichten, deren Kobaltgehalt 10 bis 20 Gew.% beträgt (Elektroden 1 und 2), eine deutlich geringere Wasserstoffüberspannung gegenüber Aktivschichten aufweisen, deren Kobalt/Eisen-Gehalt außerhalb dieses Bereiches liegt (Vergleichselektroden c)-g))

3003819

BASF Aktiengesellschaft

- 9 -

O.Z. 0050/034265

- 10 -

und die Wasserstoffüberspannung ganz erheblich unterhalb
derjenigen von Aktivschichten liegt, die reines Eisen bzw.
Kobalt enthalten (Vergleichselektroden a) und b)).

5

10

15

20

25

30

35

130033/0052