

Principles of Computer Communication: ECE3030

Allen Ben Philipose – 18BIS0043 LAB TASKS

Comparison of Voice Codecs

<u>Aim</u>

To simulate Networks using various voice codecs in Netsim and compare their performance.

Tools Required

Netsim Software

Circuit Diagram

Graphs

"Custom" given as a separate graph and table

<u>Tables</u>

G.711		Throughput	Delay
	APP1_VOICE	0.063872	67.86
	APP2_VOICE	0.063744	67.86
	APP3_VOICE	0.063872	67.86
	APP4_VOICE	0.063872	67.86
	Average	0.06384	67.86

G.729		Throughput	Delay
	APP1_VOICE	0.007989	45.46
	APP2_VOICE	0.007979	45.46
	APP3_VOICE	0.007989	45.46
	APP4_VOICE	0.007989	45.46
	Average	0.0079865	45.46

G.723		Throughput	Delay
AF	PP1_VOICE	0.006387	46.1
AF	PP2_VOICE	0.006374	46.1
AF	PP3_VOICE	0.006387	46.1
AF	PP4_VOICE	0.006387	46.1
Av	verage	0.00638375	46.1

Custom		Throughput (X100)	Delay
APP:	1_VOICE	59.5307	280.038111
APP	2_VOICE	59.6064	279.956343
APP:	B_VOICE	59.92	280.1
APP	4_VOICE	59.7643	280.105668
Avei	age	59.70535	280.0500305

Calculations - G.711

Base Band frequency $f_m = 4KHz$

 $Bitrate = n x f_s$

 $f_s = 2 \times f_m = 8 \text{ KHz}$

Bitrate=8 x 8KHz = 64kbps

Transmission Time = X = L/R

 $= (160 \times 8) / 64 \text{ kbps}$

=20 ms

Packet Size = (Data Rate x Transmission Time)/8

 $= (64 \times 20)/8$

= 160 bytes

Payload = (Packet Transmitted x Packet Size)

 $= 499 \times 160$

= 79840

Throughput = $(Payload \times 8)/(10 \times 106)$

= 64 kbps

Calculations - G.723

Base Band frequency $f_m = 400 \text{ Hz}$

 $Bitrate = n x f_s$

 $f_s = 2 x f_m = 800 Hz$

Bitrate = 10 *x* 800Hz = 8 *kbps*

Transmission Time = X = L/R

 $= (24 \times 8)/8 \text{ kbps}$

= 24 ms

Packet Size = (Data Rate x Transmission Time)/8

 $=(8 \times 24)/8$

= 24 bytes

Payload = (Packet Transmitted x Packet Size)

= 333 x 24

= 7992

Throughput = $(Payload \times 8) / (10 \times 10^6)$

= 6.394 kbps

Calculations - G.729

Base Band frequency f_m = 500 Hz

 $Bitrate = n x f_s$

$$f_s = 2 x f_m = 1000 Hz$$

Bitrate = 8 x 1000Hz = 8 kbps

Transmission Time = X = L/R

- $= (20 \times 8) / 8 \text{ kbps}$
- = 20 ms

Packet Size = (Data Rate x Transmission Time)/8

- $= (8 \times 20)/8$
- *= 20 bytes*

Payload = (Packet Transmitted x Packet Size)

- $=499 \times 20$
- = 9980

Throughput = $(Payload \times 8) / (10 \times 10^6)$

= 7.984 kbps

Inference

Higher the throughput and the lower delay shows which is the better codec. The 'custom' codec has a significant difference of throughput when compared to the other codecs, but the delay increase it has also is very high. Hence, the best alternative that we have is the G.711 codec.

Voice codec G.711 has a very high throughput value and the delay, despite being high, is very comparable with the other codecs.

Custom:

Case 1: Data Rate = 200kbps

Assume,

Transmission Time = 20ms

X = L/R

 $L = 20 \text{ ms } \times 200 \text{ kbps} = 4000 \text{ bits}$

Packet size = 4000/8 = 500 bytes

Case 2: Data Rate = 60kbps

Assume,

Transmission Time = 20ms

X = L/R

L = 20 ms x 60 kbps = 1200 bits

Packet size = 1200/8 = 150 bytes

Demonstration of switches and hubs

<u>Aim</u>

To simulate Networks using switches and hubs in Netsim and compare their performance.

Tools Required

Netsim Software

Important Formulae

- i. Payload Received = Packet Received x Packet Size
- ii. Throughput (Mbps) = (Payload Received x 8) / (Simulation Time x 10^6)

Abstract and Inference

From the previous experiment, it can be inferred that the hub connections have more collision of packets and hence the delay is very high. Also, the structure reduces the throughput, which essentially makes the switch a much efficient system in comparison among the both.

Hub works on a physical layer while the switch works on a data link layer. So, the hub transmits the data to all the destinations and the receivers must decide whether to accept the data or not. Switches on the other hand can control the channel of the message transmission.

Circuit Diagram with SWITCH - 4 Nodes

Circuit Diagram with SWITCH - 8 Nodes

Circuit Diagram with HUB - 4 Nodes

Circuit Diagram with HUB - 8 Nodes

SPANNING TREE - 1

<u>Aim</u>

To simulate Networks using switch priorities in Netsim and compare their performance.

Tools Required

Netsim Software

Network Diagram - 1111

Switch E:

- 1. D560 H
- 2. 1241 F Root Port
- 3. 1F41 Node A

Switch F:

- 1. 62C2 E
- 2. D67C G
- 3. 3611 Node C Root Port

Switch G:

- 1. B4A1 H
- 2. 1CB6 F Root port
- 3. FC01 Node D

Switch H: - Root switch

- 1. 0140 E Root port
- 2. 28D9 G
- 3. 8E99 Node B

Inference:

Smallest MAC address of each switch shows their root port

And the smallest MAC address among the root ports, show the root switch

SPANNING TREE - 2

<u>Aim</u>

To simulate Networks using switch priorities in Netsim and compare their performance.

Tools Required

Netsim Software

Inference:

Smallest MAC address of each switch shows their root port

And the smallest MAC address among the root ports, show the root switch

The message packet is transferred usually through the ports which has the lowest MAC address for switches of **equal priority**, but since the priority of the switches have been changed manually – new routes of packet transmission is made automatically.

Hence, the following experiment has been observed with multiple sequences of priority arrangement among the switches. This changes the root switch, the root ports and the blocked ports.

So, "1234" means that switch 'E' has been given **1**st priority, 'F' got the **2**nd priority, 'G' got the **3**rd priority and 'H' got the **4**th priority. 4 different sequences have been listed below.

Network Diagram - 1234

Root switch: E

Root ports: G(7), F(4), H(6)

Designated ports: E(4), E(6), F(7)

Blocked ports: H(5), G(5)

Forward paths: 4, 6, 7

Network Diagram - 4312

Root switch: G

Root ports: F(7), H(5), E(6)

Designated ports: G(7), G(5), H(6)

Blocked ports: E(4), F(4)

Forward paths: 5, 6, 7

Network Diagram - 3124

Root switch: F

Root ports: E(4), H(5), G(7)

Designated ports: F(7), F(4), G(5)

Blocked ports: H(5), G(5)

Forward paths: 4, 5, 7

Network Diagram - 2431

Root switch: H

Root ports: E(6), G(5), F(4)

Designated ports: H(5), H(6), E(4)

Blocked ports: H(5), G(5)

Forward paths: 4, 5, 6

SIMPLE AND BUSY NETWORKS

Aim

To study performance comparison between busy and simple networks

Tools Required

Netsim Software

Network Diagram

1:

Fast network: 100 Mbps

Throughput: 0.582832

Delay: 26737

2:

Simple network: 10 Mbps

Throughput: 0.582832

Delay: 32816

3:

Busy network: 1 Mbps

Throughput: 0.462528

Delay: 1222234

Inference

From the given graphs, we understand the fact that the delay is very high for a busy network with a lower uplink and downlink speed. As an additional measure, I have also calculated the same for 100 Mbps and found nearly similar results to 10 Mbps, implying that the increase in speed results in a logarithmic decrease in the delay time.

Graphs

UDP & TCP

<u>Aim</u>

A study of performance between TCP and UDP busy and simple networks

Tools Required

Netsim Software

Network Diagram

<u>UDP</u>:

Packet Transmitted	Packet Received	Payload Transmitted	Payload Receiverd	Throughput (Mbps)	Delay (microsec)
1089	1085	1064250	1060250	0.08482	525.575742

TCP:

Packet Transmitted	Packet Received	Payload Transmitted	Payload Receiverd	Throughput (Mbps)	Delay (microsec)
1089	1085	1064250	1064250	0.08514	885.27056

Graphs

Inference:

TCP is a connection-oriented protocol while UDP is a connectionless protocol. So, the delay should be more in TCP as, it takes some extra time to establish connection. This can be inferred from the Delay graph above. On the other hand, even the throughput of TCP is greater, showing that the extra delay makes it more reliable. But the difference is very minute when comparing with UDP

IP ADDRESSING

<u>Aim</u>

To understand IPv4Addressing with classes A and B

Tools Required

Netsim Software

Network Diagram

Observations

CLASS A WITH SUBNETTING

Router A:

IP Address: 11.1.1.1 (Interface with B), 11.2.1.1 (Interface with C)

Subnet Mask: 255.255.0.0

Wired Node B:

IP Address: 11.1.1.2

Subnet Mask: 255.255.0.0

Default Gateway: 11.1.1.1

Wired Node C:

IP Address: 11.2.1.2

Subnet Mask: 255.255.0.0

Default Gateway: 11.2.1.1

IP_Address	MAC_Address	Туре
11.1.1.1	43522E199F12	STATIC
11.2.1.1	890F23F5A261	STATIC
192.2.1.2	24203B32BB36	STATIC
11.2.1.2	3C09E34C40A6	STATIC
11.1.1.1	43522E199F12	STATIC
11.2.1.1	890F23F5A261	STATIC
192.2.1.2	24203B32BB36	STATIC
11.2.1.2	3C09E34C40A6	STATIC
11.1.1.1	43522E199F12	STATIC
11.2.1.1	890F23F5A261	STATIC
192.2.1.2	24203B32BB36	STATIC
11.2.1.2	3C09E34C40A6	STATIC
	11.1.1 11.2.1.1 192.2.1.2 11.2.1.2 11.1.1.1 11.2.1.1 192.2.1.2 11.1.1.1 11.2.1.1	11.1.1.1 43522E199F12 11.2.1.1 890F23F5A261 192.2.1.2 24203B32BB36 11.2.1.2 3C09E34C40A6 11.1.1.1 43522E199F12 11.2.1.1 890F23F5A261 192.2.1.2 24203B32BB36 11.2.1.2 3C09E34C40A6 11.1.1.1 43522E199F12 11.2.1.2 3C09E34C40A6 11.1.1.1 43522E199F12 11.2.1.2 3C09E34C40A6

CLASS B WITH SUBNETTING

Router A:

IP Address: 190.1.1.1 (Interface with B),

190.2.1.1 (Interface with C)

Subnet Mask: 255.255.255.0

Wired Node B:

IP Address: 190.1.1.2

Subnet Mask: 255.255.255.0

Default Gateway: 190.1.1.1

Wired Node C:

IP Address: 190.2.1.2

Subnet Mask: 255.255.255.0

Default Gateway: 190.2.1.1

DeviceId	IP_Address	MAC_Address	Туре
1	190.1.1.1	F683FEC92A83	STATIC
	190.2.1.1	49E615E9C226	STATIC
	190.1.1.2	D61B67CDD181	STATIC
	190.2.1.2	6A11FFA324BC	STATIC
2	190.1.1.1	F683FEC92A83	STATIC
	190.2.1.1	49E615E9C226	STATIC
	190.1.1.2	D61B67CDD181	STATIC
	190.2.1.2	6A11FFA324BC	STATIC
3	190.1.1.1	F683FEC92A83	STATIC
	190.2.1.1	49E615E9C226	STATIC
	190.1.1.2	D61B67CDD181	STATIC
	190.2.1.2	6A11FFA324BC	STATIC

Results:

Case 1: Throughput and Delay are more than zero

Case 2: Throughput and Delay are zero

Case 3: Throughput and Delay are more than zero

Inference:

Networks in which the IP address of the nodes are of the same class, have an established connection as seen by the positive values of throughput and delay. When the class of one of the nodes is changed, by changing its IP address, there is no established connection or the server crashes, as seen by the zero value of the throughput or delay