BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS SECOND SEMESTER, 2019-2020 COURSE HANDOUT PART-II

Date: 06-01-2020

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : ME F344 / MF F344
Course Name : Engineering Optimization

Instructors : AK GUPTA, Deepak Nabapure, V Venkateswara Rao, V Muralidhar

1. Scope and Objective of the Course:

Engineers, scientists, analysts and managers are often faced with the challenge of making trade-offs between different factors in order to achieve desirable outcomes. Optimization is the process of choosing these trade-offs in the best way. Optimization problems, having reached a degree of maturity over the past several years, are encountered in physical sciences, engineering, economics, industry, planning, and many other areas of human activity. Objective of the course is set to familiarize the students with standard methods of solving optimization problems.

This course deals with details of various aspects associated with optimization. These include description of optimization techniques, namely, Linear programming methods, simplex method, transportation model and its variants, PERT/CPM, inventory models, queuing systems, nonlinear optimization algorithms and evolutionary algorithms.

2. Text Book:

T1 HA Taha, Operations Research: An Introduction, Pearson Education/PHI, 8/E, 2007.

3. Reference Books:

- **R1** SS Rao, *Engineering Optimization: Theory and Practice*, New Age International (P) Limited, Third Edition, 1996
- **R2** FS Hillier and GJ Lieberman, *Introduction to Operations Research*, TMH, 8/E, 2006.
- **R3** WL Winston, Operations Research: Applications and Algorithms, Thomson Learning, 4th Ed., 2004
- **R4** A Ravindran, DT Philips and JJ Solberg, *Operations Research: Principles and Practice*, John Wiley & Sons, Singapore, Second Edition, 1987
- **R5** GC Onwubolu and BV Babu, *New Optimization Techniques in Engineering*, Springer-Verlag, Heidelberg, Germany, First Edition, 2004.

4. Course Plan:

Learning Objectives	Topics to be Covered		Chapter in the Text Book
Introduction	Introduction to optimization	1	
Modeling with Linear Programming	Two variable LP model, Graphical LP solution (Problem solving: Selected LP applications)	2-3	T1 (2.1-3)
Simplex Method	LP model in equation form, Transition from graphical to algebraic solution	4	T1 (3.1-2,
	The Simplex Method, Generalized simplex tableau in matrix form, artificial starting solution,	5-8	3.3-5)

	(Problem solving: Simplex, Big-M, 2-phase, TORA)		
Transportation	Definition of transportation problem, The transportation	9-11	T1 (5.1,
Model and its	Algorithm, The Assignment Model		5.3-4)
Variants	(Problem solving: transportation, assignment, TORA)		
Network Models	Definition, Minimal Spanning tree Algorithm, Shortest	12-14	T1 (6.1-3,
	route Problem, CPM and PERT		6.5)
	(Problem solving: Network, CPM, PERT, TORA)		
Inventory Models	Deterministic Inventory Models	15-17	T1 (11.1-
	(Problem solving: inventory)		3)
Review of Basic	Random variables, Poisson, Exponential and Normal	18	T1 (12.2-
Probability Distribution			4)
Queuing Systems	Definition, Birth and Death process, Role of Exponential	19-22	T1 (15.1-6)
	Distribution, Generalized Poisson Queuing Models,		, ,
	Specialized Poisson Queues.		
	(Problem solving: M/M/1 and M/M/c with infinite and		
	finite system capacities, TORA)		
Nonlinear Programming	Unconstrained problems, Unconstrained Algorithms Karush-Kuhn-Tucker (KKT) Conditions, Quadratic Programming	23-24	T1 (18.1,
			19.1)
Algorithms		25-26	T1 (18.2.2,
7115011011113	1 Togramming		19.2.2)
Evolutionary	Introduction to Nontraditional Optimization Techniques	27-28	-
Algorithms	(Genetic Algorithms, Simulated Annealing, etc.)		

5. Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Nature of Component			
Mid-Sem. Test	1.5 hours	25 %	5/3 9.00 - 10.30AM	Closed Book			
Tutorial assignments		25 %		Open Book			
Surprise quizzes		10 %		Open Book			
Comprehensive Exam	3 hours	40 %	09/05AN	Closed Book			

6. Chamber Consultation Hour: To be announced in the class.

7. Notices: Notices will be displayed on CMS.

8. Make up Policy:

Make-up will be granted only to genuine cases with prior permission from the IC. For cases related to illness, proper documentary evidence is essential. No makeup is allowed for assignments, etc.

Instructor-In-Charge (ME F344 / MF F344)