COMS W3261

Computer Science Theory Lecture 10

CNF, Pumping Lemma, CYK Algorithm

Alexander Roth

2014 - 09 - 29

Outline

- 1. Eliminating ϵ -productions from a CFG
- 2. Eliminating unit productions from a CFG
- 3. Putting a CFG into Chomsky normal form
- 4. Pumping lemma for CFL's
- 5. Cocke-Younger-Kasami algorithm

1 Eliminating ϵ -productions from a CFG

- If a language L has a CFG, then $L \{\epsilon\}$ has a CFG without any ϵ -productions.
- A nonterminal A in a grammar is nullable if $A \stackrel{*}{\Rightarrow} \epsilon$.
- The nullable nonterminals can be determined iteratively.
- We can eliminate all ϵ -productions in a grammar as follows:
 - Eliminate all productions with ϵ bodies.
 - Suppose $A \to X_1 X_2 \dots X_k$ is a production and m of the $k X_i$'s are nullable. Then add the 2^m versions of this production where the nullable X_i 's are present or absent. (But if all symbols are nullable, do not add an ϵ -production.)

• Let us eliminate the ϵ -productions from the grammar G

$$S \to AB$$

$$A \to aAA \mid \epsilon$$

$$B \to bBB \mid \epsilon$$

S, A, and B are nullable.

For the production $S \to AB$ we add the productions $S \to A \mid B$ For the production $A \to aAA$ we add the productions $A \to aA \mid a$ For the production $B \to bBB$ we add the productions $B \to bB \mid b$ The resulting grammar $B \to bB \mid b$

$$S \to AB \mid A \mid B$$
$$A \to aAA \mid aA \mid a$$
$$B \to bBB \mid bB \mid b$$

We can prove that $L(H) = L(G) - \{\epsilon\}.$

2 Eliminating Unit Productions from a CFG

- A unit production is one of the form $A \to B$ where both A and B are nonterminals.
- Let us assume we are given a grammar G with no ϵ -productions.
- From G we can create an equivalent grammar H with no unit productions as follows.
 - Define (A, B) to be a unit pair if $A \stackrel{*}{\Rightarrow} B$ in G.
 - We can inductively construct all unit pairs for G.
 - For each unit pair (A, B) in G, we add to H the productions $A \to \alpha$ where $B \to \alpha$ is a nonunit production of G.
- ullet Consider the standard grammar G for arithmetic expressions:

$$E \to E + T \mid T$$
$$T \to T * F \mid F$$
$$F \to (E) \mid a$$

The unit pairs are (E, E), (E, T), (E, F), (T, T), (T, F), (F, F). The equivalent grammar H with no unit productions is:

$$E \to E + T \mid T * F \mid (E) \mid a$$
$$T \to T * F \mid (E) \mid a$$
$$F \to (E) \mid a$$

3 Putting a CFG into Chomsky Normal Form

- ullet A grammar G is in Chomsky Normal Form if each production in G is one of two forms:
 - 1. $A \to BC$ where A, B, and C are nonterminals, or
 - 2. $A \rightarrow a$ where a is a terminal.
- \bullet We will further assume G has no useless symbols.
- \bullet Every context-free language without ϵ can be generated by a Chomsky Normal Form grammar.
- Let us assume we have a CFG G with no useless symbols, ϵ productions, or unit productions. We can transform G into an equivalent Chomsky Normal Form grammar as follows:
 - Arrange that all bodies of length two or more consist only of nonterminals.
 - Replace bodies of length three or more with a cascade of fproductions, each with a body of two nonterminals.
- \bullet Applying these two transformations to the grammar H above, we get:

$$E \rightarrow EA \mid TB \mid LC \mid a$$

$$A \rightarrow PT$$

$$P \rightarrow +$$

$$B \rightarrow MF$$

$$M \rightarrow *$$

$$L \rightarrow ($$

$$C \rightarrow ER$$

$$R \rightarrow)$$

$$T \rightarrow TB \mid LC \mid a$$

$$F \rightarrow LC \mid a$$

4 Pumping Lemma for CFL's

- For every nonfinite context-free language L, there exists a constant n that depends on L such that for all z in L with $|z| \geq n$, we can write z as uvwxy where
 - 1. $vx \neq \epsilon$,
 - 2. $|vwx| \leq n$, and

- 3. for all $i \geq 0$, the string uv^iwx^iy is in L.
- Proof: See HMU, pp 281 282.
- One important use of the pumping lemma is to prove certain languages are not context free.
- Example: The language $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context free.
 - The proof will be by contradiction. Assume L is context free. Then by the pumping lemma there is a constant n associated with L such that for all z in L with $|z| \ge n$, z can be written as uvwxy such that
 - 1. $vx \neq \epsilon$,
 - 2. $|vwx| \leq n$, and
 - 3. for all $i \geq 0$, the string uv^iwx^iy is in L.
 - Consider the string $z = a^n b^n c^n$.
 - From condition (2), vwx cannot contain both a's and c's.
 - Two cases arise:
 - 1. vwx has no c's. But then uwy cannot be in L since at least one of v or x is nonempty.
 - 2. vwx has no a's. Again, uwy cannot be in L.

In both cases we have a contradiction, so we must conclude L cannot be context free. The details of the proof can be found in HMU, p. 284.

5 Cocke-Younger-Kasami Algorithm for Testing Membership in a CFL

- Input: a Chomsky normal form CFG G = (V, T, P, S) and a string $w = a_1 a_2 \dots a_n$ in T^* .
- Output: "yes" if w is in L(G), "no" otherwise.
- Method: The CYK algorithm is a dynamic programming algorithm that fils in a triangular table x_{ij} with nonterminals A such that $A \stackrel{*}{\Rightarrow} a_i a_i + j \dots a_j$.
- The algorithm adds nonterminal A to x_{ij} iff there is a production $A \to BC$ in P where $B \stackrel{*}{\Rightarrow} a_i a_{i+1} \dots a_k$ and $C \stackrel{*}{\Rightarrow} a_{k+1} a_{k+2} \dots a_j$.
- To compute entry x_{ij} , we examine at most n pairs of entries: $(x_{ii}, x_{i+1}, j), (x_{i,i+1}, x_{i+2}, j),$ and so on until $(x_{i,j-1}, x_{j,j})$.
- The running time of the CYK algorithm is $O(n^3)$.

```
for i = 1 to n do if A \rightarrow a_i is in P then add A to X_{ii} fill in the table, row-by-row, from row 2 to row n fill in the cells in each row from left-to-right if (A \rightarrow BC \text{ is in P}) and for some i \leq k < j (B is in X_{ik}) and (C is in X_{k+1,j}) then add A to X_{ij} if S is in X_{1n} then output "yes" else output "no"
```

Figure 1: The CYK Algorithm in Pseudocode