How unconstructive is the Cantor-Bernstein theorem?

Cécilia Pradic

⊇ j.w.w. Chad E. Brown

Continuity, Computability, Constructivity 2025 – Swansea

Constructivity (1/3)

Theorem

 $\pi + e$ is transcendental or $e \cdot \pi$ is transcendental (or both are).

Constructivity (1/3)

Theorem

 $\pi + e$ is transcendental or $e \cdot \pi$ is transcendental (or both are).

- we do not know whether $\pi + e$ is transcendental or not. . .
- nor do we know that for $e \cdot \pi$

Constructivity (1/3)

Theorem

 $\pi + e$ is transcendental or $e \cdot \pi$ is transcendental (or both are).

- we do not know whether $\pi + e$ is transcendental or not. . .
- nor do we know that for $e \cdot \pi$

Morality

→ Not all mathematical arguments are equally informative.

Constructivity (2/2)

In broad strokes

Reject excluded middle and reductio ad absurdum.

$$A \lor \neg A \qquad \neg \neg A \Rightarrow A$$

- \bullet Large amounts of mathematics can still be formalized (abstract nonsense, finitary combinatorics, (Q, <))
- \bullet Some stuff breaks down $\mbox{(analysis, infinitary combinatorics, ordinals, $(\mathbb{R},<)$)}$
- Still expressive: classical logic through ¬¬-translation (caveat: sets and function spaces not necessarily left untouched)

Some non-constructive axioms

The limited principle of omniscience (LPO)

"For every
$$p \in 2^{\mathbb{N}}$$
, either $p = 0^{\omega}$ or $\exists n \in \mathbb{N}$. $p(n) = 1$."

 \sim excluded middle for Σ_1^0 formulas

The lesser limited principle of omniscience (LLPO)

"For every
$$p\in 2^\mathbb{N}$$
 s.t. $\exists^{\leq 1}k.$ $p(k)=1$, either $p(2\mathbb{N})=\{0\}$ or $p(2\mathbb{N}+1)=\{0\}$."

Equivalent statements in analysis:

LPO	$\forall x, y \in \mathbb{R}$. either $x = y$ or $ x - y \ge 2^{-n}$ for some $n \in \mathbb{N}$
LLPO	\leq is a total order over \mathbb{R} : $\forall x,y\in\mathbb{R}$. $x\leq y\vee x\geq y$

A more constructive axiom

Markov's principle (MP)

"For every $p\in 2^{\mathbb{N}}$ such that $p\neq 0^{\omega}$, $\exists n\in\mathbb{N}.\ p(n)=1$."

- Postulated by some constructivists
- Corresponds to unbounded search in realizability models
- LPO \Rightarrow LLPO \land MP, separations otherwise

In analysis:

LPO	$\forall x, y \in \mathbb{R}$. either $x = y$ or $ x - y \ge 2^{-n}$ for some $n \in \mathbb{N}$
LLPO	\leq is a total order over \mathbb{R} : $\forall x,y\in\mathbb{R}$. $x\leq y\vee x\geq y$
MP	$\forall x, y \in \mathbb{R}. \ \neg\neg(x = y) \Rightarrow x = y$

Some non-classical consistent statements

- All functions $\mathbb{N} \to \mathbb{N}$ are computable.
- All functions $\mathbb{N}^{\mathbb{N}} \to 2$ are continuous.
- All functions $\mathbb{N}^{\mathbb{N}} \to 2$ are Borel and LPO.

The CB theorem

If there exists injection $f:A\to B$ and $g:B\to A$, then there exists a bijection $h:A\cong B$.

The CB theorem

If there exists injection $f:A\to B$ and $g:B\to A$, then there exists a bijection $h:A\cong B$.

The CB theorem

If there exists injection $f:A\to B$ and $g:B\to A$, then there exists a bijection $h:A\cong B$.

The theorem

If there exists injections $f:A\to B$ and $g:B\to A$, then there exists a bijection $h:A\cong B$.

 \longrightarrow excluded middle used to define h by cases

Why isn't this constructive

- We can ask for the successor of a node in the graph
 - given some $x \in A$, apply f; vice-versa for B and g.
- ... but not predecessor

Main question our function cannot ask

Does my input have a finite and odd number of predecessors?

Failures of Cantor-Bernstein

Idea: adding structure to the map makes CB fail:

Topological and recursion-theoretic failures

- [0,1] and (0,1) inject continuously into one another, but aren't homeomorphic!
- ullet $\mathbb N$ and the following set computably inject into one another

 $\{e \in \mathbb{N} \mid \text{the eth Turing machine doesn't halt}\}$

but they are not computably isomorphic!

Failures of Cantor-Bernstein

Idea: adding structure to the map makes CB fail:

Topological and recursion-theoretic failures

- [0,1] and (0,1) inject continuously into one another, but aren't homeomorphic!
- ullet $\mathbb N$ and the following set computably inject into one another

 $\{e \in \mathbb{N} \mid \text{the eth Turing machine doesn't halt}\}$

but they are not computably isomorphic!

Consequence: Cantor-Bernstein fails in a number of models

Failures of Cantor-Bernstein

Idea: adding structure to the map makes CB fail:

Topological and recursion-theoretic failures

- [0,1] and (0,1) inject continuously into one another, but aren't homeomorphic!
- ullet $\mathbb N$ and the following set computably inject into one another

 $\{e \in \mathbb{N} \mid \text{the eth Turing machine doesn't halt}\}$

but they are not computably isomorphic!

Consequence: Cantor-Bernstein fails in a number of models

How bad it is?

Banaschewski and Brümmer's reversal (1/2)

A strengthening of Cantor-Bernstein (CBBB)

If there exists injection $f:A\to B$ and $g:B\to A$, then there exists $h:A\cong B$ with $h\subseteq f\cup g^{-1}$

In pictures: we force the bijection to be a subgraph

Theorem (Banaschewski and Brümmer 1986)

Over IZ, CBBB implies excluded middle.

Banaschewski and Brümmer's reversal (2/2)

Theorem (Banaschewski and Brümmer 1986)

Over IZ, CBBB implies excluded middle.

Fix $A \subseteq \{\bullet\}$ and build maps $f : \mathbb{N} \to A \cup \mathbb{N}$ and $g : A \cup \mathbb{N} \to \mathbb{N}$

$$f(n) := n$$
 $g(\bullet) := 0$ $g(n) := n + 1$

Banaschewski and Brümmer's reversal (2/2)

Theorem (Banaschewski and Brümmer 1986)

Over IZF, CBBB implies excluded middle.

Fix $A \subseteq \{\bullet\}$ and build maps $f : \mathbb{N} \to A \cup \mathbb{N}$ and $g : A \cup \mathbb{N} \to \mathbb{N}$

$$f(n) := n$$
 $g(\bullet) := 0$ $g(n) := n + 1$

Banaschewski and Brümmer's reversal (2/2)

Theorem (Banaschewski and Brümmer 1986)

Over IZF, CBBB implies excluded middle.

Fix $A \subseteq \{\bullet\}$ and build maps $f : \mathbb{N} \to A \cup \mathbb{N}$ and $g : A \cup \mathbb{N} \to \mathbb{N}$

$$f(n) := n$$
 $g(\bullet) := 0$ $g(n) := n + 1$

For general Cantor-Bernstein

- h(0) might be uninformative
- But asking "Is $\in h(\mathbb{N})$?" would be enough

(trivial corollary: CB \land LPO \Rightarrow EM)

For general Cantor-Bernstein

- *h*(0) might be uninformative
- But asking "Is $\in h(\mathbb{N})$?" would be enough

(trivial corollary: CB \land LPO \Rightarrow EM)

Idea

Find some other set \mathbb{N}_{∞} for which we can ask our question

"For any $h: \mathbb{N}_{\infty} \to A \cup \mathbb{N}_{\infty}$, is $\bullet \in h(\mathbb{N}_{\infty})$?"

The conatural numbers \mathbb{N}_{∞}

Definition as a subset of $2^{\mathbb{N}}$

$$\mathbb{N}_{\infty} := \{ p \in 2^{\mathbb{N}} \mid \exists^{\leq 1} n \in \mathbb{N}. \ p(n) = 1 \}$$

- Universal property: final coalgebra for $X \mapsto 1 + X$
- Call ∞ the sequence $n \mapsto 0$
- Embedding $\mathbb{N} \to \mathbb{N}_{\infty}$: let's write it $n \mapsto \underline{n}$.

The conatural numbers \mathbb{N}_{∞}

Definition as a subset of $2^{\mathbb{N}}$

$$\mathbb{N}_{\infty} := \{ p \in 2^{\mathbb{N}} \mid \exists^{\leq 1} n \in \mathbb{N}. \ p(n) = 1 \}$$

- Universal property: final coalgebra for $X \mapsto 1 + X$
- Call ∞ the sequence $n \mapsto 0$
- Embedding $\mathbb{N} \to \mathbb{N}_{\infty}$: let's write it $n \mapsto \underline{n}$.
- LPO \iff $\mathbb{N}_{\infty} = \underline{\mathbb{N}} \cup \{\infty\}.$
- \bullet Can constructively define addition, but not subtraction or an equality map $\mathbb{N}_{\infty}^2 \to 2$

\mathbb{N}_{∞} is searchable

Constructive theorem (Escardó 2013)

There is a map $\varepsilon: 2^{\mathbb{N}_{\infty}} \to \mathbb{N}_{\infty}$ that picks witnesses

$$\forall p \in 2^{\mathbb{N}_{\infty}}. \ (\exists n \in \mathbb{N}_{\infty}. \ p(n) = 1) \Longrightarrow p(\varepsilon(p)) = 1$$

Idea: $\varepsilon(p)$ outputs 0s until it finds some $n \in \mathbb{N}$ s.t. $p(\underline{n}) = 1$.

Definition by co-recursion:

$$\varepsilon(p) = \begin{cases} \frac{0}{\text{Succ}}(\varepsilon(p \circ \text{Succ})) & \text{if } p(\underline{0}) = 1\\ \frac{\text{Succ}}{\text{Succ}}(\varepsilon(p \circ \text{Succ})) & \text{otherwise} \end{cases}$$

Cantor-Bernstein implies excluded middle

- Define $p \in 2^{\mathbb{N}_{\infty}}$ by $p(n) := "h(n) = \bullet"$
- Conclude using $p(\varepsilon(p)) = 1 \iff \bullet \in A$

Corollary (Brown, P. 2017)

Cantor-Bernstein implies excluded middle.

Is this actually informative?

The argument relies one making one of the set horrible dependent on some arbitrary proposition we want to decide.

- Gives only lousy concrete counter-examples in non 2-valued models (afaik)
- Does not speak to what we could know if we limit the complexity of A, B, f and g...

The Myhill isomorphism theorem

A sort of ambiantal version of Cantor-Bernstein

Reduction

 $A \subseteq \mathbb{N}$ reduces to $B \subseteq \mathbb{N}$ via $f : \mathbb{N} \to \mathbb{N}$ iff $f^{-1}(B) = A$.

Constructive theorem (Myhill 1955)

If $A, B \subseteq \mathbb{N}$ are inter-reducible via injections $\mathbb{N} \to \mathbb{N}$, then there exists a bijection $h : \mathbb{N} \to \mathbb{N}$ with h(A) = B.

- Official original version: insert two "computable" above
- A and B could be arbitrarily horrible

The Myhill isomorphism theorem

A sort of ambiantal version of Cantor-Bernstein

Reduction

 $A \subseteq \mathbb{N}$ reduces to $B \subseteq \mathbb{N}$ via $f : \mathbb{N} \to \mathbb{N}$ iff $f^{-1}(B) = A$.

Constructive theorem (Myhill 1955)

If $A, B \subseteq \mathbb{N}$ are inter-reducible via injections $\mathbb{N} \to \mathbb{N}$, then there exists a bijection $h : \mathbb{N} \to \mathbb{N}$ with h(A) = B.

- Official original version: insert two "computable" above
- A and B could be arbitrarily horrible
- \Rightarrow h can be built only with info from the injections

Towards a proof of the Myhill isomorphism theorem

Let's call this the strong Myhill isomorphism theorem

Given two injections $f, g : \mathbb{N} \to \mathbb{N}$, \exists a bijection $h : \mathbb{N} \to \mathbb{N}$ s.t.

$$h\subseteq\bigcup_{m\in\mathbb{Z}}(f\circ g)^m\circ f$$

- Compare and contrast with CBBB (when both sets are \mathbb{N}):
 - CBBB says $h \subseteq f \cup g^{-1}$ $(m \in \{-1, 0\})$
 - ullet Pictures: we can only use **edges** in the graph given by f and g
 - Relaxation: we can use paths
- Implies the Myhill isomorphism theorem
 - If f, g are reductions between A and B, then the connected components are either in A + B or outside.

Proof: a back-and-forth argument

Question: other ambiance than N? (Bauer 2025, fediverse)

Definition

Say that X has the **Myhill property** if:

For all $A, B \subseteq X$ are inter-reducible via injections, there exists a bijection $h: X \to X$ with h(A) = B.

Questions

Is/does the class of sets with the Myhill property

- 1. closed under $+, \times, \rightarrow$?
- 2. contain \mathbb{N}_{∞} ?

(constructively; classically, that's a corollary of CBBB)

Before we discuss this

Strong Myhill property: defined analogously

Definition

Say that X has the **strong** Myhill property if: For any injections $f, g: X \to X$

there exists a bijection $h: X \to X$ with $h \subseteq \bigcup_{m \in \mathbb{Z}} (f \circ g)^m \circ f$.

- Clearly implies the Myhill property.
- Converse: not clear (to me).

Closure under $+, \times, \rightarrow$ is not reasonable

Observation (†)

For $n \in \mathbb{N}$, any $A \subseteq \{0, \dots, n\}$ has the strong Myhill property.

Proof:
$$g^{-1} = (f \circ g)^{n!-1} \circ f$$

Closure under $+, \times, \rightarrow$ is not reasonable

Observation (†)

For $n \in \mathbb{N}$, any $A \subseteq \{0, ..., n\}$ has the strong Myhill property.

Proof: $g^{-1} = (f \circ g)^{n!-1} \circ f$

Corollary of (†) and the Myhill isomorphism theorem

LPO and the closure of the Myhill property under either $+,\times,\rightarrow$ or subsets imply excluded middle.

Proof idea: essentially the same as CBBB \land LPO \Rightarrow EM

\mathbb{N}_{∞} does not have the Myhill property

- ullet Assume \mathbb{N}_{∞} has the strong Myhill property
- Assume \mathbb{N}_{∞} -choice: every surjection $A \to \mathbb{N}_{\infty}$ has a section
- (valid in Kleene-Vesley realizability)

Straightforward consequence of all of that

For injections $f,g:\mathbb{N}_\infty\to\mathbb{N}_\infty$, there is $\iota:\mathbb{N}_\infty\to\mathbb{Z}$ such that

$$h(x) = (f \circ g)^{\iota(x)}(f(x))$$
 is a bijection

(ι tells us how to travel in the graph to define h)

\mathbb{N}_{∞} does not have the Myhill property

- ullet Assume \mathbb{N}_{∞} has the strong Myhill property
- Assume \mathbb{N}_{∞} -choice: every surjection $A \to \mathbb{N}_{\infty}$ has a section
- (valid in Kleene-Vesley realizability)

Straightforward consequence of all of that

For injections $f,g:\mathbb{N}_{\infty}\to\mathbb{N}_{\infty}$, there is $\iota:\mathbb{N}_{\infty}\to\mathbb{Z}$ such that

$$h(x) = (f \circ g)^{\iota(x)}(f(x))$$
 is a bijection

(ι tells us how to travel in the graph to define h)

 $\iota: \mathbb{N}_{\infty} \to \mathbb{Z}$ is continuous iff it is eventually constant.

Forcing ι to oscillate between positive and negative (boom)

Formally

Theorem

If \mathbb{N}_{∞} has the strong Myhill property, MP holds and \mathbb{N}_{∞} -choice holds, then LPO holds.

Technical lemma, in Kleene-Vesley realizability

If X is a partitioned modest set and has the Myhill property, then it has the strong Myhill property.

Proof: given f and g, make $A, B \subseteq \mathbb{N}_{\infty}$ horrible enough.

Theorem

 \mathbb{N}_{∞} does not have the Myhill property in KV realizability.

But...

- We have not really shown that a reasonable bijection is impossible to build from f and g alone.
- Only that it is not induced by a continuous $\iota: \mathbb{N}_{\infty} \to \mathbb{Z}$

Fix by inserting ¬¬

```
Say that X has the strong \neg\neg-Myhill property if:
 For any injections f,g:X\to X
 there exists a bijection h:X\to X such that
 \neg\neg (\exists m\in\mathbb{Z}.\ h(x)=(f\circ g)^m(f(x))) for every x\in X
```

But...

- We have not really shown that a reasonable bijection is impossible to build from f and g alone.
- Only that it is not induced by a continuous $\iota: \mathbb{N}_{\infty} \to \mathbb{Z}$

Fix by inserting ¬¬

```
Say that X has the strong \neg \neg-Myhill property if:
 For any injections f,g:X\to X
 there exists a bijection h:X\to X such that
 \neg \neg (\exists m\in\mathbb{Z}.\ h(x)=(f\circ g)^m(f(x))) for every x\in X
```

Theorem

If MP holds, \mathbb{N}_{∞} has the strong $\neg\neg$ -Myhill property.

Very rough proof idea

Assume $f, g : \mathbb{N}_{\infty} \to \mathbb{N}_{\infty}$ injective.

Observation

If
$$f, g$$
 are continuous, $f(\infty) = g(\infty) = \infty$

Start an optimistic back-and-forth on the elements $<\infty$

- If we need the value of $f(\underline{n})$, actually query $\min(f(\infty), f(\underline{n}))$.
- If $\min(f(\infty), f(\underline{n})) = f(\infty)$, f is discontinuous and LPO holds \implies we have $\mathbb{N}_{\infty} \cong \mathbb{N}$ (all becomes easy)
- Otherwise $f(\underline{n}) < \infty$; we're happy and we carry on.
- (completely analogous for g queries)

Some subtleties, but h can be built from that and the $\neg\neg$ in the correctness criterion allows the use of classical logic there.

The $\neg\neg\text{-Myhill}$ property beyond \mathbb{N}_{∞} ?

Strong counter-examples

If MP holds and any of

$$\mathbb{N} + \mathbb{N}_{\infty} \quad \mathbb{N} \times \mathbb{N}_{\infty} \quad \mathbb{N}_{\infty}^{2} \quad 2^{\mathbb{N}} \quad \text{or} \quad \mathbb{N}^{\mathbb{N}}$$

have the strong ¬¬-Myhill property, then LPO holds.

Boils down to finding easy injections f, g such that no continuous bijection h can do the job.

Remaining conjecture for converses (easy?)

 $2^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}$ have the property $\Longrightarrow \Sigma_1^1\text{-excluded}$ middle.

The $\neg\neg\text{-Myhill}$ property beyond \mathbb{N}_{∞} ?

Strong counter-examples

If MP holds and any of

$$\mathbb{N} + \mathbb{N}_{\infty} \quad \mathbb{N} \times \mathbb{N}_{\infty} \quad \mathbb{N}_{\infty}^{2} \quad 2^{\mathbb{N}} \quad \text{or} \quad \mathbb{N}^{\mathbb{N}}$$

have the strong ¬¬-Myhill property, then LPO holds.

Boils down to finding easy injections f, g such that no continuous bijection h can do the job.

Remaining conjecture for converses (easy?)

 $2^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}$ have the property $\Longrightarrow \Sigma_1^1\text{-excluded}$ middle.

Missing $k \times \mathbb{N}_{\infty}$ for $k \in \mathbb{N} \setminus \{0, 1\}$?

$2 \times \mathbb{N}_{\infty}$: h can be continuous

A positive result

Assuming LPO, given uniformly continuous injections $f,g:2\times\mathbb{N}_{\infty}\to 2\times\mathbb{N}_{\infty}$, there exists a continuous bijection $h:2\times\mathbb{N}_{\infty}\to 2\times\mathbb{N}_{\infty}$ such that $h\subseteq\bigcup_{m\in\mathbb{Z}}(f\circ g)^m\circ f$.

B/c continuous injections $2 \times \mathbb{N}_{\infty} \to 2 \times \mathbb{N}_{\infty}$ look like that:

$2 \times \mathbb{N}_{\infty}$: h cannot be continuously computed from f and g

Theorem

In KV realizability, $2\times\mathbb{N}_{\infty}$ does not have the $\neg\neg\text{-Myhill}$ property.

$2 \times \mathbb{N}_{\infty}$: h cannot be continuously computed from f and g

Theorem

In KV realizability, $2 \times \mathbb{N}_{\infty}$ does **not** have the $\neg \neg$ -Myhill property.

Quantifying the obstruction via modalities

For any two injections $f,g: 2 \times \mathbb{N}_{\infty} \to 2 \times \mathbb{N}_{\infty}$, there LLPO* \star LPO8-exists a suitable bijection h such that $\forall x \in 2 \times \mathbb{N}_{\infty}$. $\bigcirc_{\mathsf{LPO}} (\exists m \in \mathbb{Z}. \ h(x) = (f \circ g)^m (f(x)))$.

- LPO 8 can be dropped when f and g are continuous
- Plausible conjecture: then LLPO* is optimal

So, where do we end up at? (assuming MP)

• For operators:

$$(\mathsf{Closure}\ \mathsf{under}\ +, \times, \to) \qquad \Longrightarrow \qquad \mathsf{excluded}\ \mathsf{middle}$$

• For simple sets:

having the ¬¬-Myhill property	is equivalent to
\mathbb{N} subfinite sets \mathbb{N}_{∞}	Т
$\mathbb{N}_{\infty} \times 2 \mathbb{N}_{\infty} \times 3 \dots$	$? \in [LLPO, LPO]$
$\mathbb{N} + \mathbb{N}_{\infty} \mathbb{N} \times \mathbb{N}_{\infty} \mathbb{N}_{\infty}^{2}$	LPO
$2^{\mathbb{N}}$ $\mathbb{N}^{\mathbb{N}}$	$\mathbf{\Sigma}_1^1 - EM$?

Some takeaways

- KV realizability useful for intuitions!
- As well as oracle modalities/functors
 - can be used in a model-agnostic way in the logic
 - connecting Weihrauch complexity to higher-order problems
- Frivolous, but reasonably fun??
- Does not speak much to other CB-flavored works out there?

(Gowers 1996, Goodrick 2001, ...)

Some questions

- What is the complexity of $\neg\neg$ -CBBB for \mathbb{N} ? \mathbb{N}_{∞} ? $k \times \mathbb{N}_{\infty}$?
- Can a univalent universe have the Myhill property?
 (not sure if that was one of the questions of Andrej)
- Can we say something about "set divison" theorems?

$$X \times k \cong Y \times k \implies X \cong Y$$
 $(k \in \mathbb{N})$

Some questions

- What is the complexity of $\neg\neg$ -CBBB for \mathbb{N} ? \mathbb{N}_{∞} ? $k \times \mathbb{N}_{\infty}$?
- Can a univalent universe have the Myhill property?
 (not sure if that was one of the questions of Andrej)
- Can we say something about "set divison" theorems?

$$X \times k \cong Y \times k \implies X \cong Y$$
 $(k \in \mathbb{N})$

Thanks for listening! Questions? :)

Modalities associated to problems

Definition

Given an $F: I \to \mathcal{P}(O)$, define

$$\bigcirc_{F}: \Omega \longrightarrow \Omega$$

$$\varphi \longmapsto \exists i \in I. \ \forall o \in F(i). \ \varphi$$

- Intuition for proving $\bigcirc_F \varphi$: if someone has an answer to a F-question of my choosing, I can prove φ .
- We always $\varphi \Rightarrow \bigcirc_{\mathcal{F}} \varphi$ if \mathcal{I} is inhabited.
- Only one call; $\bigcirc_F \bigcirc_F \varphi \not\Rightarrow \bigcirc_F \varphi$ in general
- number of other sanity checks can be made

$$\bigcirc_F \varphi \land (\forall i \in I. \exists o \in F(i)) \Rightarrow \varphi \qquad \forall i \in I. \bigcirc_F (\exists o \in F(i)) \quad \dots$$

Endofunctors associated to problems

Definition

Given an $F: I \to \mathcal{P}(O)$, define

$$\bigcirc_F:$$
 Set \longrightarrow Set $X \mapsto \{f: F(i) \to X \mid f \text{ constant, } i \in I\}/\sim$

- Having an $\tilde{x} \in \bigcirc_F X$: should you be able to solve an arbitrary F-challenge, you can get an $x \in X$!
- (any solution → same result)
- (identify things that ultimately yield the same $x \in X$)
- Modalities: functorial action on injections into 1.

Modalities in action

LPO(
$$p$$
) = { $n + 1 \mid p(n) = 1$ } \cup {0 | $p = 0^{\omega}$ } ...

Memento $2 \times \mathbb{N}_{\infty}$

For any two injections $f,g:2\times\mathbb{N}_{\infty}\to 2\times\mathbb{N}_{\infty}$, there LLPO* \star LPO8-exists a suitable bijection h such that $\forall x\in 2\times\mathbb{N}_{\infty}.\ \bigcirc_{\mathsf{LPO}}\ (\exists m\in\mathbb{Z}.\ h(x)=(f\circ g)^m(f(x))).$

An endofunctor in action

The problem $C_{\omega+1,2}$

- Input: a decreasing sequence $s \in (\omega + 1)^{\omega}$
- Output: $b \in 2$ equal to the parity of $\min(s)$ if $\min(s) \neq \omega$

Call η the canonical map $2^{\mathbb{N}} o \bigcirc_{\mathsf{C}_{\omega+1,2}}(2^{\mathbb{N}})$

CBBB for $2^{\mathbb{N}}$ and continuous maps (Neumann, Pauly, P.)

In KV-realizability, for any injections $f,g:2^{\mathbb{N}}\to 2^{\mathbb{N}}$, there is a "bijection" $h:2^{\mathbb{N}}\to \bigcirc_{\mathsf{C}_{\omega+1,2}}(2^{\mathbb{N}})$ such that, for every $p\in 2^{\mathbb{N}}$,

$$\bigcirc_{\mathsf{C}_{\omega+1,2}} \left(h(x) = \eta(f(x)) \quad \lor \quad h(x) = \eta(g^{-1}(x)) \right)$$