Homework due Thursday, November 15, at noon.

- (1) (a) Let $\sigma_1 = (123)(4567)$ and $\sigma_2 = (1256)(347)$ be two permutations in S_9 . Find a permutation τ so that $\sigma_1 = \tau \sigma_2 \tau^{-1}$.
 - (b) (Bonus problem) Let $\sigma, \tau \in S_n$. Further, assume that $\sigma = (i_1, i_2, \dots, i_\ell)$ is a cycle of length ℓ . Prove that

$$\tau \sigma \tau^{-1} = (\tau(i_1), \tau(i_2), \dots, \tau(i_\ell)).$$

In particular, $\tau \sigma \tau^{-1}$ is also a cycle of length ℓ .

- (2) List all the elements of the group A_4 .
- (3) Define $\operatorname{sgn}: S_n \to \mathbb{Z}_2$ by

$$\operatorname{sgn}(\sigma) = \begin{cases} 0 & \text{if } \sigma \text{ is even} \\ 1 & \text{if } \sigma \text{ is odd} \end{cases}$$

Prove that sgn is a homomorphism.

- (4) (a) Let $\sigma = (1234)(567)$ be an element in S_8 . Find the order of σ . (Recall: the order of an element g in a finite group G is the smallest positive integer m so that $g^m = e$.)
 - (b) Generalize your observation from part (a) as follows. Suppose $\sigma = \tau \mu$ is an element in S_n where τ and μ are disjoint cycles of length t and m respectively. Assume that g.c.d.(t,m)=1. Find the order of σ . (Hint: Use the fact that τ and μ are disjoint to show that if $\sigma^k=\iota$, then k is divisible both by t and m.)
- (5) (a) Show that S_5 is generated by the following list of transpositions.

$$\{(1,2),(2,3),(3,4),(4,5)\}.$$

(b) (Bonus problem) Show that S_n is generated by the following list of transpositions.

$$\{(1,2),(2,3),(3,4),\ldots,(i,i+1),\ldots,(n-1,n)\}.$$

- (6) Let G be a group and let $H \leq G$ be a subgroup.
 - (a) Define $N_G(H)=\{g\in G|gHg^{-1}=H\}$. Prove that $N_G(H)$ is a subgroup of G.
 - (b) Define $Z_G(H) = \{g \in G | gh = hg, \forall h \in H\}$. Prove that $Z_G(H)$ is a subgroup of G.
 - (c) Let $g_1, g_2 \in G$. Prove that $g_1 H g_1^{-1} = g_2 H g_2^{-1}$ if and only if $g_1 N_G(H) = g_2 N_G(H)$.
- (7) Exercise 10 page 101: 3, 6, 15, 28, 29, 36, 39