Transactional data

MARKET BASKET ANALYSIS IN R

Christopher Bruffaerts
Statistician

What is a transaction?

Transaction: Activity of buying or selling something.

Transactional data: List of all items bought by a *customer* in a *single purchase*.

Example of one transaction:

```
TID Product

1  1  Bread

2  1  Cheese

3  1  Cheese

4  1  Cheese
```

The transactional class in R

Transactions-class: represents transaction data used for mining itemsets or rules.

Coercion from:

- lists
- matrices
- dataframes

However, you will need to prepare your data first.

Important when considering transactional data

- Field/column used to identify a product
- Field/column used to identify a transaction

Back to the grocery store (1)

Transactional data from the store

Transaction glimpse

```
TID Product

1    1    Bread

2    1    Butter

3    1    Cheese

4    1    Wine

5    2    Bread

6    2    Butter

7    2    Wine

8    3    Bread

9    3    Butter

10    4   Butter
```

Back to the grocery store (2)

Create lists with the split function

data_list

```
$`1`
[1] Bread Butter Cheese Wine
Levels: Bread Butter Cheese Wine
$`2`
[1] Bread Butter Wine
Levels: Bread Butter Cheese Wine
$`3`
[1] Bread Butter
Levels: Bread Butter Cheese Wine
```

Back to the grocery store (3)

Transforming to transaction class

```
# Transform to transactional dataset
data_trx = as(data_list,"transactions")

# Inspect transactions
inspect(data_trx)
```

Inspection of the transactional data

```
items transactionID

[1] {Bread, Butter, Cheese, Wine} 1

[2] {Bread, Butter, Wine} 2

[3] {Bread, Butter} 3

[4] {Butter, Cheese, Wine} 4

[5] {Butter, Cheese} 5

[6] {Cheese, Wine} 6

[7] {Butter, Wine} 7
```

More inspections of transactions

Overview of transactions

```
inspect(head(data_trx))
```

	items	transactionID
[1]	{Bread, Butter, Cheese, Wine}	1
[2]	{Bread, Butter, Wine}	2
[3]	{Bread,Butter}	3
[4]	{Butter,Cheese,Wine}	4
[5]	{Butter,Cheese}	5
[6]	{Cheese, Wine}	6

Accessing specific transactions

```
inspect(data_trx[1])
inspect(data_trx[1:3])
```

Summary of the transactional object

```
summary(data_trx)
```

Overview of transactions

Plotting the ItemMatrix

image(data_trx)

Warning: use the function on a limited number of transactions

Useful to identify:

- Patterns in the transactions
- Sparsity in the data

Density = 18/28 = 0.64

Let's inspect transactions!

MARKET BASKET ANALYSIS IN R

Metrics in market basket analysis

MARKET BASKET ANALYSIS IN R

Christopher BruffaertsStatistician

Metrics used for rule extraction

TID	Transaction
1	{Bread, Butter, Cheese, Wine}
2	{Bread, Butter, Wine}
3	{Bread, Butter}
4	{Butter, Cheese, Wine}
5	{Butter, Cheese}
6	{Cheese, Wine}
7	{Butter, Wine}

Goal: Extract association rules

Examples:

- $\{ \mathsf{Bread} \} \rightarrow \{ \mathsf{Butter} \}$
 - o Bread = "Antecedent"
 - Butter = "Consequent"
- {Butter, Cheese} → {Wine}

Metrics: Support, confidence, lift,...

Support measure

TID	Transaction
1	{Bread, Butter, <i>Cheese</i> , Wine}
2	{Bread, Butter, Wine}
3	{Bread, Butter}
4	{Butter, Cheese, Wine}
5	{Butter, Cheese}
6	{Cheese, Wine}
7	{Butter, Wine}

Support: "popularity of an itemset"

- **supp(X)** = Fraction of transactions that contain itemset X.
- $supp(X \cup Y)$ = Fraction of transactions with both X and Y.

Examples:

- $supp(\{Bread\}) = 3/7 = 42\%$
- $supp(\{Bread\} \cup \{Butter\}) = 3/7 = 42\%$

Confidence measure

TID	Transaction
1	{Bread, Butter, Cheese, Wine}
2	{Bread, Butter, Wine}
3	{Bread, Butter}
4	{Butter, Cheese, Wine}
5	{Butter, Cheese}
6	{Cheese, Wine}
7	{Butter, Wine}

Confidence: "how often the rule is true"

$$conf(X \rightarrow Y) = supp(X \cup Y) / supp(X)$$

Confidence shows the percentage in which Y is bought with X.

Example:

$$X = \{Bread\}$$

$$Y = \{Butter\}$$

conf(X
$$\rightarrow$$
 Y) = $\frac{3/7}{3/7}$ = 100%

Lift measure

TID	Transaction
1	{Bread, Butter, Cheese, Wine}
2	{Bread, Butter, Wine}
3	{Bread, Butter}
4	{Butter, Cheese, Wine}
5	{Butter, Cheese}
6	{Cheese, Wine}
7	{Butter, Wine}

Lift: "how strong is the association"

$$\mathsf{lift}(\mathsf{X} o \mathsf{Y}) = rac{supp(X \cup Y)}{supp(X) imes supp(Y)}$$

- Lift > 1: Y is likely to be bought with X
- Lift < 1: Y is unlikely to be bought if X is bought

Example:

$$X = \{Bread\}; Y = \{Butter\}$$

lift(X
$$\rightarrow$$
 Y) = $\frac{3/7}{(3/7)*(6/7)} = \frac{7}{6} \sim 1.16$

The apriori function for frequent itemsets

```
library(arules)
# Frequent itemsets
supp.cw = apriori(trans, # the transactional dataset
                  # Parameter list
                  parameter=list(
                    # Minimum Support
                    supp=0.2,
                    # Minimum Confidence
                    conf=0.4,
                    # Minimum length
                    minlen=2,
                    # Target
                    target="frequent itemsets"),
                  # Appearence argument
                  appearance = list(
                    items = c("Cheese", "Wine"))
```

The apriori function for rules

```
library(arules)
# Rules
rules.b.rhs = apriori(trans, # the transactional dataset
                  # Parameter list
                  parameter=list(
                    # Minimum Support
                    supp=0.2,
                    # Minimum Confidence
                    conf=0.4,
                    # Minimum length
                    minlen=2,
                    # Target
                    target="rules"),
                  # Appearence argument
                   appearance = list(
                     rhs = "Butter",
                    default = "lhs")
```

Frequent itemsets with the apriori

TID	Transaction
1	{Bread, Butter, Cheese, Wine}
2	{Bread, Butter, Wine}
3	{Bread, Butter}
4	{Butter, Cheese, Wine}
5	{Butter, Cheese}
6	{Cheese, Wine}
7	{Butter, Wine}

Retrieve the frequent itemsets

```
items support count
[1] {Butter} 0.8571429 6
[2] {Wine} 0.7142857 5
[3] {Cheese} 0.5714286 4
```

Inspect confidence and lift measures

TID	Transaction
1	{Bread, Butter , Cheese, Wine}
2	{Bread, Butter , Wine}
3	{Bread, Butter }
4	{Butter, Cheese, Wine}
5	{Butter, Cheese}
6	{Cheese, Wine}
7	{Butter, Wine}

Retrieve the rules

Inspect confidence and lift measures

TID	Transaction
1	{Bread, Butter , Cheese, Wine}
2	{Bread, Butter , Wine}
3	{Bread, Butter }
4	{Butter, Cheese, Wine}
5	{Butter, Cheese}
6	{Cheese, Wine}
7	{Butter, Wine}

Retrieve the rules

	lhs		rhs	support	confidence	lift	count
[1]	{Bread}	=>	{Butter}	0.42	1.0	1.16	3
[2]	{Bread,Cheese}	=>	{Butter}	0.14	1.0	1.16	1
[3]	{Bread,Wine}	=>	{Butter}	0.28	1.0	1.16	2
[4]	{Bread,Cheese,Wine}	=>	{Butter}	0.14	1.0	1.16	1
[5]	{Wine}	=>	{Butter}	0.57	0.8	0.93	4

Let's practice!

MARKET BASKET ANALYSIS IN R

The apriori algorithm

MARKET BASKET ANALYSIS IN R

Christopher BruffaertsStatistician

Association rule mining

Association rule mining allows to discover interesting relationships between items in a large transactional database.

This mining task can be divided into two subtasks:

- **Frequent itemset generation**: determine all frequent itemsets of a potentially large database of transactions. An itemset is said to be frequent if it satisfies a *minimum support threshold*.
- Rule generation: from the above frequent itemsets, generate association rules with confidence above a minimum confidence threshold.

The **apriori algorithm** is a classic and fast mining algorithm belonging to the class of association rule mining algorithms.

Idea behind the apriori algorithm

The apriori algorithm:

- Bottom-up approach
- Generates candidate itemsets by exploiting the apriori principle

Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent.
 - o e.g. if {A,B} is frequent, then both {A} and {B} are frequent
- For an infrequent itemset, all its super-sets are infrequent.
 - o e.g. if {A} is infrequent, then {A,B}, {A,C} and {A,B,C} are infrequent.

¹ Agrawal and Srikant (1994)

Example: 1-itemset

Itemset lattice for the 4 items A, B, C and D

TID	Transaction
1	{A, B, C, D}
2	{A, B, D}
3	{A, B}
4	{B, C, D}
5	{B, C}
6	{C, D}
7	{B, D}

¹ Minimum support threshold = 3/7 = 0.42

Example: 2-itemsets

Itemset lattice for the 4 items A, B, C and D

TID	Transaction
1	{A, B, C, D}
2	{A, B, D}
3	{A, B}
4	{B, C, D}
5	{B, C}
6	{C, D}
7	{B, D}

¹ Minimum support threshold = 3/7 = 0.42

Example: 3-itemsets

TID	Transaction
1	{A, B, C, D}
2	{A, B, D}
3	{A, B}
4	{B, C, D}
5	{B, C}
6	{C, D}
7	{B, D}

¹ Minimum support threshold = 3/7 = 0.42

Example: frequent itemsets

Itemset	Count	Support
{A}	3	0.42
{B}	6	0.85
{C}	4	0.57
{D}	5	0.71
{A,B}	3	0.42
{B,C}	3	0.42
{B,D}	4	0.57

¹ Minimum support threshold = 3/7 = 0.42

Apriori: rule generation

After the computationally expensive frequent itemset generation, apriori generates rules:

- Start with high-confidence rules with single precedent
 - \circ e.g. $\{A,C\} \rightarrow \{B\}$
- Build more complex rules, with more items on the right hand side
 - \circ e.g. $\{A,C\} \rightarrow \{B,D\}$

Trick: pruning of association rule

e.g.: if the rule $\{B,C,D\} \to \{A\}$ has low confidence, all rules containing item A in its consequent can be discarded (such as the rule $\{B,D\} \to \{A,C\}$ or $\{D\} \to \{A,B,C\}$).

A first try with the apriori

Transactional data

```
inspect(head(trans,2))

items transactionID
[1] {A,B,C,D} 1
[2] {A,B,D} 2
```

First call to the apriori function - frequent itemsets

Output of the apriori - frequent itemsets

Frequent itemsets

```
inspect(support.all)
```

```
items support count
[1] {A} 0.4285714 3
[2] {C} 0.5714286 4
[3] {D} 0.7142857 5
[4] {B} 0.8571429 6
[5] {A,B} 0.4285714 3
[6] {C,D} 0.4285714 3
[7] {B,C} 0.4285714 3
[8] {B,D} 0.5714286 4
```

Itemset lattice for 4 items

Extracting rules with the apriori function

Parameter: the mining parameters change the characteristics of the mined itemsets or rules.

- Support = 3/7
- Confidence = 60%
- Minimum length of rule = 2

Call to the apriori function for rule generation with specific arguments

Extracting rules: output

Inspecting the rules

```
inspect(rules.all)
```

```
lhs rhs support confidence lift count
[1] {A} => {B} 0.4285714 1.0000000 1.1666667 3
[2] {C} => {D} 0.4285714 0.7500000 1.0500000 3
[3] {D} => {C} 0.4285714 0.6000000 1.0500000 3
[4] {C} => {B} 0.4285714 0.7500000 0.8750000 3
[5] {D} => {B} 0.5714286 0.8000000 0.9333333 4
[6] {B} => {D} 0.5714286 0.6666667 0.9333333 4
```

Let's practice!

MARKET BASKET ANALYSIS IN R

"If this then that" with the apriori

MARKET BASKET ANALYSIS IN R

Christopher BruffaertsStatistician

Recap of extracted rules (1)

TID	Transaction	
1	{Bread, Butter, Cheese, Wine}	
2	{Bread, Butter, Wine}	
3	{Bread, Butter}	
4	{Butter, Cheese, Wine}	
5	{Butter, Cheese}	
6	{Cheese, Wine}	
7	{Butter, Wine}	

Apply apriori on transactions:

Recap of extracted rules (2)

Create dataframe with extracted rules

```
df_rules = as(rules, "data.frame")
df_rules
```

```
rules support confidence lift count

1 {Bread} => {Butter} 0.4285714 1.0000000 1.1666667 3

2 {Cheese} => {Wine} 0.4285714 0.7500000 1.0500000 3

3 {Wine} => {Cheese} 0.4285714 0.6000000 1.0500000 3

4 {Cheese} => {Butter} 0.4285714 0.7500000 0.8750000 3

5 {Wine} => {Butter} 0.5714286 0.8000000 0.9333333 4

6 {Butter} => {Wine} 0.5714286 0.6666667 0.9333333 4
```

Appearance of frequent itemsets

Frequent itemsets for Cheese and Wine

```
supp_cheese_wine =
    apriori(trans,
        parameter = list(
        target = "frequent itemsets",
        supp = 3/7),
        appearance = list(
        items = c("Cheese", "Wine"))
)
```

```
inspect(supp_cheese_wine)
```

```
items support count
[1] {Cheese} 0.5714286 4
[2] {Wine} 0.7142857 5
[3] {Cheese, Wine} 0.4285714 3
```

Appearance of extracted rules

Specific rules for Cheese

```
inspect(rules_cheese_rhs)
```

Redundant rules

What is a redundant rule?

A rule is redundant if a more general rule with the same or a higher confidence exists.

Super-rule:

A rule is more general if it has the same RHS but one or more items removed from the LHS.

Example:

Super-rules of $\{A\} \rightarrow \{C\}$:

- $\{A, B\} \rightarrow \{C\}$
- $\{A, B, D\} \rightarrow \{C\}$

Non-redundant rules are defined as:

- all other rules are super-rules of that rule
- all other rules have a lower confidence

Rule redundancy (1)

Set of generated rules

Set of pruned rules (non-redundant)

```
redundant_rules = is.redundant(rules)
non_redundant_rules = rules[!redundant_rules]
```

Rule redundancy (2)

Comparing extracted rules and non-redundant rules

```
inspect(rules)
```

```
inspect(non_redundant_rules)
```

```
lhs rhs support confidence lift count
[1] {Butter} => {Bread} 0.4285714 0.5 1.166667 3
```

Let's follow the rules!

MARKET BASKET ANALYSIS IN R

