FORM FOUR END TERM 2 2024

PAPER 2 MARKING SCHEME

$ \begin{array}{c c} 1 & (2x - y)^5 = 32x^5 - 80x^4y + 80x^3y^2 - 40x^2y^3 + 10xy^4 - y^5 \\ \text{(a)} & \end{array} $	M1
(a)	M1
$2x + y)^5 = 32x^5 + 80x^4y + 80x^3y^2 + 40x^2y^3 + 10xy^4 + y^5$	A1
$2x + y)^2 = 32x^2 + 60x + y + 60x + y + 16x $	
$(2x - y)^5 + (2x + y)^5 = 64x^5 + 160x^3y^2 + 20xy^4$	
(b) $3.75 = 2(2) - 0.25$	M1
x = 2, $y = 0.25$	
$3.75^5 + 4.25^5 = 64(2^5) + 160(2^3)(0.25^2) + 20(2)(0.25^4)$	
= 2048 + 80 + 0.15625	
= 2128.15625	A1
2 3 -75) + 1 (-11) = (-35.5)	M1 A1
(4 -11 4 4	
4 -11 4 4 -8	
	B1
$N = (5, -3.5, -8)$ $3 x^2 - x - 6 = 0$	
$\begin{vmatrix} 3 & x^2 - x - 6 = 0 \\ x^2 - 3x + 2x - 6 = 0 \end{vmatrix}$	M1
(x-3)(x+2) = 0	M1
x = 3 or x = -2	A1
4	
$x = \sqrt[3]{c - h^3b}$	M1
$x = \sqrt[3]{c - h^3 b}$ $x^3 = c - h^3 b$	
$c - x^3 h^3$	M1
	M1
$\frac{\overline{c-x^3}}{c-x^3}$	
$\frac{c-x}{c}$	A1
$h = \sqrt[3]{}$	
h = V b	

5	n_{i}	
3	$S_n = \frac{n}{2}(2a + (n-1)d)$	M1
	$253 = \frac{11}{2} ((2 \times 3) + (11 - 1)d)$	
	46 = 6 + 10d	M1
	d=4	A 1
6	(100)	A1 B1
0	$\log\left(\frac{100}{50^2}\right)$	DI
	$\log\left(\frac{1}{25}\right)$	B1
7	$W = 10 \pm (0.05 \times 10) \Rightarrow 10 \pm 0.5$	
		M1
	$L = 15 \pm (0.05 \times 15) \Longrightarrow 15 \pm 0.75$	
	Max area = $15.75 \times 10.5 = 165.375 \ cm^2$	
	Min area = $14.25 \times 9.5 = 135.375 \ cm^2$	M1
		IVII
	A.E in area = $\frac{165.375 - 135.375}{2} = 15$	
	% error = $\frac{15}{150} \times 100\% = 10\%$	A1
8	$AB = \sqrt{(6-2)^2 + (2-4)^2}$	
	$=\sqrt{16+4}=\sqrt{20}$	
	$=2\sqrt{5}$	
	$r = \frac{1}{2}(2\sqrt{5}) = \sqrt{5}$	
		2.61
	Centre $(\frac{2+6}{2}, \frac{2+4}{2}) = (4,3)$	M1
	$(x-4)^2 + (y-3)^2 = (\sqrt{5})^2$	M1
	$x^2 - 8x + 16 + y^2 - 6y + 9 = 5$	
	$x^2 + y^2 - 8x - 6y + 20 = 0$	
		A1
9	(a) Possible outcomes: HTH, HTT, HHH, THT, THH, TTT, TTH, HHT	B1 B1
	1(b) P(HHH) =	
	8	

10		M1
	54x + 54y = 50x + 60y	
	x: y = 3: 2	M1 A1
11	$A = 18200 + (\underline{\hspace{1cm}})$	
12	$-3\sin^2 x + 8\cos x = 0$	
	$-3(1 - \cos^2 x) + 8\cos x = 0$	M1
	$-3 + 3\cos^2 x + 8\cos x = 0$ Let $\cos x = k$	
	$3k^2 + 8k - 3 = 0$	
	$3k^2 - k + 9k - 3 = 0$	
	(k+3)(3k-1) = 0	
	$k = -3 \text{ or } k = \frac{1}{3}$	M1
	$\cos x = \frac{1}{3}$ $x = \cos^{-1}() = 70.52^{\circ}, 289.47^{\circ} 3$	A1
13	$AP. PB = PT^2$ $2(2 + x) = 6^2$ 36 - 4	M1
	$x = \frac{16 \text{ cm}}{2}$ Radius = $16 \div 2 = 8 \text{ cm}$	M1 A1

	1125 $x = 40 + 60 \times \cos$									A1		
	= 71.45°	Ε										
17	(a)											
	x°	0	30	60	90	120	150	180	210	240	270	
	$3\cos 2x + 2$	5	3.5	0.5	-1	0.5	3.5	5	3.5	0.5	-1	
	$\sin(2x)^{\circ}$	0	0.87	0.87	0	-0.87	-0.87	0	0.87	0.87	0	
	(c) At the points of intersection, values of x are; 55°, 106° and 235°											

$$(i) \frac{dy}{dx} = 3x^2 + 2x - 1$$

(ii) At stationary points, $\frac{dy}{dx} = 0$

$$3x^2 + 2x - 1 = 0$$

$$3x^{2} + 2x - 1 = 0$$

$$3x^{2} + 3x - x - 1 = 0$$

$$(3x - 1)(x + 1) = 0$$

$$x = \frac{1}{3}, x = -1$$

$$(3x-1)(x+1)=0$$

$$x = \frac{1}{3}, x = -1$$

(iii) At (-1,0) is a maximum turning point and $(\frac{1}{3}, -1\frac{5}{27})$ is a minimum turning point

	(i)	
	$m^2 = Kt^2 + hr^3$	
	$27^2 = K(3)^2 + h(5)^3$	N/1 1 4
	$729 = 9K + 125h \dots (i)$	M1 both eqns
	Also,	cqns
	$78^2 = K(\sqrt{114})^2 + h(10)^3$	
	$6084 = 114K + 1000h \dots (ii)$	
	solving eqn (i) and (ii) simultaneously;	
	6084 = 114K + 1000h	
	-5832 = 72K + 1000h	
	252 = 42K	
	K=6	
		A1 both h
	$9(6) + 125h = 729$ $h = \frac{729 - 54}{125} = 5.4$	and K
	$h = \frac{729 - 34}{125} = 5.4$	
	Thus;	
	$m^2 = 6t^2 + 5.4r^3$	
	when $t = 8$ and $r = 15$	
	$m^2 = 6(8)^2 + 5.4(15)^3$	
	= 384 + 18225	M1
	$m^2 = 18609$	
	$m = \sqrt{18609} = \pm 136.4$	
		A1
	$(ii) hr^3 = m^2 - Kt^2$	
	$r = \sqrt[3]{\frac{m^2 - Kt^2}{m^2 - Kt^2}}$	
	h	
	New value of $r = \sqrt[3]{\frac{(0.9m)^2 - K(0.9t)^2}{h}} = \sqrt[3]{0.81} \times \sqrt[3]{\frac{m^2 - Kt^2}{h}}$	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	$= 0.93217 \left(\frac{3}{3} \frac{m^2 - Kt^2}{h} \right)$	M1
	(\sqrt{n})	
	Percentage change in $r = (1 - 0.93217) \times 100\% = 6.783\%$	
		M1 A1

20	(a) $600 = 60 \times \alpha \Longrightarrow \alpha = 10^{\circ}$	B1
		B1
	$C(70^{\circ}N, 17^{\circ}E)$	
	(b) $d = 60 \times \alpha \times \cos \theta$	
	$d = 60 \times 12 \times \cos 60 = 360 \ nm$	M1 A1
	(c) Time taken = $\left(\frac{360}{300}\right) + \left(\frac{600}{300}\right) = 3h \ 12min$	M1 A1
	(d) Arrival time at $C = 9.20 \ a. \ m + 3h \ 12 \ min = 1232 \ p. \ m.$	M1 A1
	(e) $d = \frac{40}{360} \times 2 \times \frac{22}{7} \times 6370 = 4448.89 \text{ km}$	M1 A1
21	(a) $QS = \sqrt{16^2 + 12^2} = 20 \ cm$	M1 A1
	(b) $h^2 + 10^2 = 13^2$	
	$h = \sqrt{13^2 - 10^2}$	M1
	h = 8.3 cm	
	n – 6.5 cm	A1
		M1
	(c) $13^2 = 13^2 + 20^2 - 2 \times 20 \times 13 \times \cos \theta$ $169 = 169 + 400 - 520 \cos \theta$	
	$\cos\theta = 0.7692$	
	$\theta = \cos^{-1}(0.7692) = 39.72^{\circ}$	A1
		Al
	(d) Height of ΔVQR	
	$h^2 + 6^2 = 13^2$	
	$n^2 + 6^2 = 13^2$	

-3a + 2b = -8	M1
a = 2 and $b = -2$	
4c + 3d = 9	M1
-3c + 2d = 6	
c = 0 and $d = 3$	
Thus matrix $M = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$	
	A1
ii. $(2 -1)(^{x}y) = (-612)$	
2x - y = 6	
$3y = -12 \Longrightarrow y = -4$	
2x - (-4) = 6	
	D.1
$2x = 2 \Rightarrow x = 1$	B1
R(1,-4)	

b)

i.
$$\binom{1}{k} \binom{0}{1} \binom{-8}{6} = \binom{-8}{30}$$
 $-8 - 8$
 $\binom{1}{2} = \binom{-8}{30} = \binom{-8}{30}$
 $-8k + 6 = 30 \Rightarrow k = -3$
 $1 = 0$
 $-8k + 6 = 30 \Rightarrow k = -3$

ii. $\binom{10}{5} \binom{5}{6} = \binom{5}{6} = \binom{5}{6}$
 $-3 = 1 = 9 - 12 - 6 - 30$

A1

iii. $\binom{1}{3} \binom{2}{5} \binom{6}{3} = \binom{2}{-6} \binom{-1}{6}$
 $\binom{1}{3} \binom{2}{0} \binom{2}{3} = \binom{2}{-6} \binom{-1}{6}$

Determinant $= (2 \times 6) - (-1 \times -6) = 12 - 6 = 6$

Inverse $= \frac{1}{6} \binom{6}{6} \binom{1}{2} = \binom{1}{6} \binom{1}{\frac{1}{6}} \binom{1}{1} \binom{1}{\frac{1}{3}}$

A1

23	(a) 10								B1	
	(b) $Q_1 = 2.9$	$5 + \left(\frac{10-6}{5}\right)$	$(1) \times 1 =$	3.75					M1	
	$Q_3 = 5.95 + \left(\frac{30-28}{6}\right) \times 1 = 6.283$									
	$Q.D = \frac{6.3}{2}$	` `	,	0.200					M1	
		2	- 1.2/					_	M1 A1	
	(c) (i)		I			1			MIAI	
	Class	x	f	t = x - A	ft	t2	ft^2			
	1.0 - 9. 1	1.45	2	-3	-6	9	18			
	2.0 - 9. 2	2.45	4	-2	-8	4	16			
	3.0 - 9.	3.45	5	-1	-5	1	5	Y		
	4.09	4.45	7	0	0	0	0		$B1 - \sum ft B1$	
	5.09 5	5.45	10	1	10	1	10		$-\sum ft^2$	
	6.09	6.45	6	2	12	4	24			
	7.09	7.45	3	3	9	9	27			
	8.09	8.45	2	4	8	16	32			
	9.09	9.45	1	5	5	25	25			
			40		25		157			
			Y	I		1		_		
		157	25	2					M1	
	variance =	$\sqrt{-}($) 40							
									A1	
	$=\sqrt{3.534375}$									
	≘	≤ 1.9							B1	
	(ii) Standard deviation = $\sqrt{1.9} = 1.4$									

(a) (i) Angle ADB = $\frac{1}{2}$ of $(180 - 48) = 66^{\circ}$ B1 B1 Angle at the center is twice angle at the circumference. Angle CBA = 90° (ii) B1 Angle subtended by the diameter on the circumference is a right angle. Angle BDE = $\frac{48}{2} + 36 = 60^{\circ}$ Angles in alternate segment. (iii) B1 B1 Angle CED = $180 - (36 + 66 + 60) = 18^{\circ}$ (iv) B1B1 Angle sum of triangle B1(b) Let DX be y cm, $12 \times 4 = y(14 - y)$ 48 = $14y - y^2$ M1 (y-6)(y-8) = 0y = 6 cm or 8 cm**A**1