Dynamics of quasi-particle states in a finite one-dimensional Bose gas

Geert Kapteijns

ITFA Bachelor's thesis

June 26, 2014

Introduction

Motivations

The Lieb-Liniger model

Excitations of the ground state

Quasi-particle state

Results

Density profile: collapse of quasi-particle

 t^{-1} decay behaviour and lifetime parameter au

Introduction

Motivations

The Lieb-Liniger model

Excitations of the ground state

Quasi-particle state

igaulia

Density profile: collapse of quasi-particle

 t^{-1} decay behaviour and lifetime parameter τ

Motivations

J. Sato, E. Kaminishi, and T. Deguchi, Exact quantum dynamics of yrast states in the finite 1D Bose gas, arXiv:1401.4262 [cond-mat.quant-gas]

Motivations

J. Sato, E. Kaminishi, and T. Deguchi, Exact quantum dynamics of yrast states in the finite 1D Bose gas, arXiv:1401.4262 [cond-mat.quant-gas]

"Japanese guys" demonstrate dynamics of a quasi-particle state in 1D Bose gas

Decay of quasi-particle

Take a closer look at decay. Can we find an expression for it?

Introduction

Motivations

The Lieb-Liniger model

Excitations of the ground state

Quasi-particle state

Density profile: collapse of quasi-particle

t⁻¹ decay behaviour and lifetime parameter -

The Lieb-Liniger model

N bosons on a ring with contact interaction (a delta peak.)

The Lieb-Liniger model

N bosons on a ring with contact interaction (a delta peak.)

The Lieb-Liniger model

N bosons on a ring with contact interaction (a delta peak.)

$$H = -\sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + 2c \sum_{i < j} \delta(x_i - x_j)$$

Bethe Ansatz

Solvable through Bethe Ansatz: assume product of plane waves.

Bethe Ansatz

Solvable through Bethe Ansatz: assume product of plane waves.

Leads to Bethe equations for bosons' pseudo-momenta:

$$k_j L = 2\pi I_j - 2\sum_{l=1}^N \arctan(\frac{k_j - k_l}{c})$$
 $j = 1, \dots, N$

Bethe Ansatz

Solvable through Bethe Ansatz: assume product of plane waves.

Leads to Bethe equations for bosons' pseudo-momenta:

$$k_j L = 2\pi I_j - 2\sum_{l=1}^N \arctan(\frac{k_j - k_l}{c})$$
 $j = 1, \dots, N$

We label eigenstates by integers I_j .

Ground State

Ground State

Ground state for N = 5 labeled by:

$$\{I_j\} = \{-2, -1, 0, 1, 2\}$$

Momentum

Momentum given by:

$$P = \frac{2\pi}{L} \sum_{j=1}^{N} I_j$$

Momentum

Momentum given by:

$$P = \frac{2\pi}{L} \sum_{j=1}^{N} I_j$$

Groundstate: l_i 's sum to zero:

$$P = 0$$

Introduction

Motivations

The Lieb-Liniger model

Excitations of the ground state

Quasi-particle state

Density profile: collapse of quasi-particle

 t^{-1} decay behaviour and lifetime parameter τ

Excitations of the ground state

One-hole excitations: create a hole somewhere.

Excitations of the ground state

One-hole excitations: create a hole somewhere.

Labeled by:

$$\{I_j\} = \{-2, -1, 0, 1, 3\}$$

Excitations of the ground state

One-hole excitations: create a hole somewhere.

Labeled by:

$$\{I_j\} = \{-2, -1, 0, 1, 3\}$$

For hole position m (here m = 1):

$$P=\frac{2\pi}{L}m$$

Introduction

Motivations

The Lieb-Liniger model

Excitations of the ground state

Quasi-particle state

Density profile: collapse of quasi-particle

 t^{-1} decay behaviour and lifetime parameter τ

Quasi-particle state

Sum all one-hole excitations (**momentum eigenstates**) to get a state that is localized in **position**.

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{m=-N}^{N} |P\rangle$$

Quasi-particle state

Sum all one-hole excitations (**momentum eigenstates**) to get a state that is localized in **position**.

$$|\Psi\rangle = rac{1}{\sqrt{N}} \sum_{m=-N}^{N} |P
angle$$

 $|P\rangle$ represents the one-hole excitation with momentum $\frac{2\pi}{L}m$.

All one-hole excitations for N = 3.

Introduction

Motivations

The Lieb-Liniger model

Excitations of the ground state

Quasi-particle state

Results

Density profile: collapse of quasi-particle

Density Profile

Make Titles Informative.

Theorem In left column.

Make Titles Informative.

Theorem *In left column.*

Corollary In right column. New line

Introduction

Motivations

The Lieb-Liniger model

Excitations of the ground state

Quasi-particle state

Results

Density profile: collapse of quasi-particle

 t^{-1} decay behaviour and lifetime parameter au

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

- Outlook
 - What we have not done yet.
 - Even more stuff.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal on This and That. 2(1):50-100, 2000.