Aalto University School of Science Master's Programme in Life Science Technologies

Bent Ivan Oliver Harnist

Probabilistic Precipitation Nowcasting with Bayesian Convolutional Neural Networks

Master's Thesis Espoo, July 20th, 2022

DRAFT! — April 21, 2022 — DRAFT!

Supervisor: Professor Arno Solin

Advisor: Terhi Mäkinen D.Sc. (Tech.)

Seppo Pulkkinen D.Sc.

Aalto University School of Science Master's Programme in Life Science Technologies

ABSTRACT OF MASTER'S THESIS

Author:	Bent Ivan Oliver Harnist			
Title:	Title:			
Probabilistic Pre	cipitation Nowcasting with Bayesian Co	onvolutional	Neural Net-	
works				
Date:	July 20th, 2022	Pages:	17	
Major:	Complex Systems	Code:	SCI3060	
Supervisor:	Professor Arno Solin			
Advisor:	Advisor: Terhi Mäkinen D.Sc. (Tech.)			
	Seppo Pulkkinen D.Sc.			
!Fixme This is an example how to use fixme: add your abstract here.				
FIXME!				
Keywords:	Precipitation nowcasting,			
Language:	English			

Aalto-yliopisto

Perustieteiden korkeakoulu

DIPLOMITYÖN TIIVISTELMÄ

Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

Tekijä:	Bent Ivan Oliver Harnist				
Työn nimi:	Työn nimi:				
Probabilistinen S	Probabilistinen Sateen Nowcasting käyttäen Bayesilaisia Konvolutiivisia Neuro-				
verkkoja					
Päiväys:	20. heinäkuuta 2022	Sivumäärä:	17		
Pääaine:	Complex Systems Koodi: SCI		SCI3060		
Valvoja:	Professori Arno Solin				
Ohjaaja:	Terhi Mäkinen D.Sc. (Tech.)				
	Seppo Pulkkinen D.Sc.				
joku					
Asiasanat:	siasanat: Sateen ennustaminen,				
Kieli:	Englanti				

Acknowledgements

 $! \\ FIXME \ \mathbf{My} \ \mathbf{acknowledgements} \ FIXME!$

Espoo, July 20th, 2022

Bent Ivan Oliver Harnist

Abbreviations and Acronyms

DL

Deep learning

Contents

Abbreviations and Acronyms				5
1	Intr	oducti	on	8
	1.1	Proble	m statement	8
	1.2		ure of the Thesis	8
2	Bac	kgroun	$^{\mathrm{nd}}$	9
	2.1	_	itation Nowcasting	9
		2.1.1	Weather radar and radar products, other observations	
		0.1.0	and data	9
		2.1.2	Weather prediction at different scales (NWP, etc)	9
		2.1.3	Classical Nowcasting	9
	2.2	2.1.4	Machine learning based Nowcasting	9
	2.2		bilistic Machine Learning	9
		2.2.1	From deterministic to probabilistic	9
		2.2.2	Intractable integrals and ways to deal with them	9
			2.2.2.1 Variational methods	9
			2.2.2.2 MCMC based stuff	9
			2.2.2.3 MC dropout	9
		2.2.3	Existing methods	9
			2.2.3.1 Non- DL	9
			2.2.3.2 DL based	9
	2.3	Probab	bilistic approaches to atmospheric science ML	10
3	Me	thods		11
	3.1	Datase	et	11
	3.2	verifica	ation methods	11
		3.2.1	Metrics	11
		3.2.2	Models to compare to	11
		3.2.3	Evaluation of nowcast uncertainty	11
	3.3	Model		11

A First appendix			16
6	Conclusions		
	5.3	What would have to be improved, potential problems in the study?	13
		What could we learn from uncertainty; did we achieve goals? .	13
	5.1	Validity of results, how good are they?	13
5	Discussion		
	4.4	uncertainty estimation	12
	4.3	Prediction skill probabilistic metrics	
	4.2	Prediction skill deterministic metrics	
	4.1	Nowcast case studies	
4	Res		12
	3.4	Experiments	11
		3.3.2 Bayesian extension to RainNet	11
		3.3.1 RainNet	

Introduction

- 1.1 Problem statement
- 1.2 Structure of the Thesis

Background

2.1	Preci	pitation	Nowcast	ing

- 2.1.1 Weather radar and radar products, other observations and data
- 2.1.2 Weather prediction at different scales (NWP, etc..)
- 2.1.3 Classical Nowcasting
- 2.1.4 Machine learning based Nowcasting
- 2.2 Probabilistic Machine Learning
- 2.2.1 From deterministic to probabilistic
- 2.2.2 Intractable integrals and ways to deal with them
- 2.2.2.1 Variational methods
- 2.2.2.2 MCMC based stuff
- 2.2.2.3 MC dropout
- 2.2.3 Existing methods
- 2.2.3.1 Non- DL
- 2.2.3.2 DL based

VAE, BCNN, etc

Lit review

Methods

- 3.1 Dataset
- 3.2 verification methods
- 3.2.1 Metrics
- 3.2.2 Models to compare to
- 3.2.3 Evaluation of nowcast uncertainty
- 3.3 Model
- 3.3.1 RainNet
- 3.3.2 Bayesian extension to RainNet
- 3.4 Experiments

Results

- 4.1 Nowcast case studies
- 4.2 Prediction skill deterministic metrics
- 4.3 Prediction skill probabilistic metrics
- 4.4 uncertainty estimation

Discussion

- 5.1 Validity of results, how good are they?
- 5.2 What could we learn from uncertainty; did we achieve goals?
- 5.3 What would have to be improved, potential problems in the study?

Conclusions

Bibliography

Appendix A

First appendix

This is the first appendix. You could put some test images or verbose data in an appendix, if there is too much data to fit in the actual text nicely. For now, the Aalto logo variants are shown in Figure A.1.

(a) In English

(b) Suomeksi

(c) På svenska

Figure A.1: Aalto logo variants