Рубежный контроль №1: Методы обработки данных

Выполнил: Чжан Чжибо Группа: ИУ5И-21М Вариант 18

Задача №1

Для набора данных проведите масштабирование данных для одного (произвольного) числового признака на основе Z-оценки

Подключим необходимые библиотеки:

In [1]:

```
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
color = sns.color_palette()
sns.set_style('darkgrid')

pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x))
```

Возьмём набор данных:

In [2]:

```
dataset=pd.read_csv(r'D:/MMO_data/heart-attack/heart.csv')
dataset.head(10)
```

Out[2]:

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.300	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.500	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.400	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.800	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.600	2	0	2	1
5	57	1	0	140	192	0	1	148	0	0.400	1	0	1	1
6	56	0	1	140	294	0	0	153	0	1.300	1	0	2	1
7	44	1	1	120	263	0	1	173	0	0.000	2	0	3	1
8	52	1	2	172	199	1	1	162	0	0.500	2	0	3	1
9	57	1	2	150	168	0	1	174	0	1.600	2	0	2	1

Посмотрим на наборы данных перед масштабированием:

In [3]:

```
sns. scatterplot(x='age', y='chol', data=dataset)
```

Out[3]:

 ${\tt matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0x1b15ee425b0}$

Масштабирование на основе Z-оценки:

In [4]:

```
import sklearn.preprocessing
scaler=sklearn.preprocessing.StandardScaler()
dataset['chol']=scaler.fit_transform(dataset[['chol']])
sns.scatterplot(x='age', y='chol', data=dataset)
```

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b17beef400>

Задача №2

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте класс SelectKBest для 10 лучших признаков, и метод, основанный на взаимной информации

Разделим набор данных на X и у:

```
In [5]:
```

```
X=dataset.drop('output', axis = 1)
y=dataset.output
```

Размерность перед отбором признаков:

```
In [6]:
```

```
X. shape
```

Out[6]:

(303, 13)

Отбор признаков с помощью класса SelectKBest и метода "mutual_info_regression"

In [7]:

```
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
```

In [8]:

```
selector=SelectKBest(mutual_info_classif, k=10)
selector.fit(X, y)
X_selected=selector.transform(X)
X_selected.shape
```

Out[8]:

(303, 10)

In [9]:

```
selector.get_support(indices=False)
```

Out[9]:

```
array([False, True, True, False, True, True, False, True, True, True, True, True, True])
```

Признаки, выбранные селектором: 'sex','cp','chol','fbs','thalachh','exng','oldpeak','slp','caa','thall'