THE THEORF OF RELATIVITY HAS BECOME WIDELY KNOWN, BUT IT WOULD BE RASH TO SAY THAT IT HAS REEN WIDELT UNDERSTOND _ John Stachel.

ARGUMENTS AGAINST TACHYONS (T)

IP = Invaniance Principle
PIP = Philosophically-gisunded vension
FSP = First Signal Principle

- (1) Einstein's Angument

 IP → FSP

 T→ 2FSP → 2IP
- Guinbaum's Angument

 PIP→ FSP

 T→ NFSP → NPIP
- (3) Counal Panadox Angument

 IP NT -> Contradiction

 IP NT N S -> Contradiction

 ON IPNTNS -> Contradiction

 T -> (NIP) V N S

 Where S = Tackyon Signal Hypothesis

ENERGY AND MOMENTUM OF A TACHTON

For Bradyons
$$E = \frac{m_0 e^2}{\sqrt{1 - u^2/c^2}}, k = \frac{E u}{c^2}$$
For Tackyons $m_0 \rightarrow i \mu$

$$So \quad E = \frac{\mu c^2}{\sqrt{u^2/c^2 - 1}}, k = \frac{E u}{c^2}$$

$$E^{2} - p^{2}c^{2} = m^{3}c^{4} \quad u \times c$$

$$E^{2} - p^{2}c^{2} = -\mu^{3}c^{4} \quad u \neq c$$

N.B. U= dE

ENERGY AND TIME-OADER
CHANGE SIGN TOGETHER
ON A TACHTON TRATECTORY

 $E' = \frac{E}{\sqrt{1-v^2/c^2}} \left(1 - \frac{\sqrt{u_x}}{c^2}\right)$ $changes sign when <math>\sqrt{2} - \frac{c^2}{u_x}$ $t_2' - t_1' = \frac{t_2 - t_1}{\sqrt{1-v^2/c^2}} \left(1 - \frac{\sqrt{u_x}}{c^2}\right)$ $plso changes sign when <math>\sqrt{2} - \frac{c^2}{u_x}$

THE REINTERPETATION PRINCIPLE (RIP)

CONVENTIONALITY OF SIMULTANEITY

Space

CONVENTIONA LITT OF SIMULTANEITY. CONTE

G= Variable ranging over Complète genidentical sets S = Naniable nanging over Continuous gonidentical Sets So VS]G (S⊆G) We Write e, EG N e2 EG N ... as G(e, e2 --) Betweenness e3Be, e2 iff 3G[G(e,e2,e3) N YS (S = G - E e33 -) ~ S(P, P)) Sunultanoily . e3524 iff Ye5 #G (n G(e3, e4, e5)).

(6a)

THE FIRST SIGNAL PRINCIPLE

 $\exists e, \exists e_a [e_3 B e, e_2 \land \forall e_4]$ $(e_4 B e, e_2 \rightarrow e_3 \sum_{R} e_4]$ CP Griin & aum's detn & Dimultaneity $e_3 \sum_{G} e_4 \text{ iff } \forall G(\mathcal{L} G(e_3, e_4))$ $e_3 \sum_{G} e_4 \rightarrow e_3 \sum_{R} e_4$

THE REICHENBACH E- PARAMETER

$$t_3 = t_1 + \varepsilon (t_2 - t_1)$$

$$c = \frac{x}{t_3 - t_1} = \frac{c}{2\varepsilon}$$

$$c = \frac{x}{t_3 - t_3} = \frac{c}{2(1 - \varepsilon)}$$
where $c = \frac{2x}{t_3 - t_1}$
with $\varepsilon = \frac{1}{2}$, $c' = c' = c' = c$

3

TRANSFORMATION BETWEEN MOVING REFERENCE FRAMES

x' = Ax + Bt t' = ct + DxFin $\chi'=0$, $\chi=\nu t$ So $B=-A\vartheta$ Define m = - D/C Then $\chi'=A(x-vt)$ t'=c(t-mx)The Duppose moving sod is contracted by a factor G clock is dilated by a factor G

Then
$$A = 1/F$$
 $C = \frac{1}{G(1-mv)}$

So $x' = \frac{1}{F}(x-vF)$
 $t' = \frac{1}{G(1-mv)}(F-mx)$
 $t' = 0$ Ran locus $t = mx$ in T

so T s

ACOUSTIC SYNCHRONIZATION

$$Ux' = A/e \frac{Ux - N}{1 - mUx}.$$
Put $Ux = \pm \omega$ and equals
magnitudes of Ux

$$= N/\omega^{2}$$

$$= N/\omega^{2}$$

$$= V' = V' = V(x - vt)$$

$$= V' = \frac{1}{6(1 - v^{2}/v^{2})} \left(t - \frac{vx}{\omega^{2}}\right)$$

(10)

ACOUSTIC

Newtonian world
$$F=G=1$$

So $x'=x-\nu t$
 $t'=\frac{1}{1-\nu^2/\omega^2}(t-\nu x/\omega^2)$
 $Einsteinian world F=G=\sqrt{1-\nu^2/c^2}$
 $x'=\frac{1}{\sqrt{1-\nu^2/c^2}}(x-\nu t)$
 $t'=\frac{1}{1-\nu^2/\omega^2}(t-\nu x/\omega^2)$

BIZARRE SYNCHRONIZATION

A choice of Dynch. in K'is said to the Wizame is it makes motrically simultaneous in K' events which are not topologically simult-

THEOREM The Einstein Convention for Optical Relativity is never

Cizanne.

Pine do Simultanio

Simultanio

X/2

Pine do Simultanio

Simultanio

X/2

Pine do Simultanio

Simultanio

No. 15

VX/cr LX/c

Theonem

The Einstein Convention for Acoustic Relativity is bizanne for V

(i.e. when 2x > 2)

(12)

$$\frac{\mathcal{E} - RELATIVITY}{\chi'' = \chi'}$$

$$t'' = \chi' + \frac{\chi'}{\omega'} (2\mathcal{E} - 1)$$

$$So \chi'' = \frac{1}{\sqrt{1 - v^2} e^2} (\chi - v^2)$$

$$t'' = \frac{\sqrt{1 - v^2} e^2}{1 - v^2 / \omega^2} \left[t (1 - v/\omega (2\mathcal{E} - 1)) + \chi/\omega (2\mathcal{E} - 1 - v/\omega) \right]$$

$$+ \chi/\omega (2\mathcal{E} - 1 - v/\omega)$$

$$- \chi/\omega (2\mathcal{E} - 1 -$$

(3)

THE SJODIN - TANGHERLINI - TRANSFORMATION

$$\chi'' = \frac{1}{\sqrt{1-v^2/c^2}} (x-vt)$$

TACHYON STNCHRONIZATION

ONE - DIMENSIONAL TACHTONS

Particles moving to the right are A, B }

BRADYON ANTIPARTICLES

Particles moving to the right are A, B }

GENIDENTITY AND SPATIO - TEMPORAL CONTINUITY