Nichtlineare Optimierung Zusammenfassung WS17/18

Manuel Lang

17. Februar 2018

1 Einführung

1.1 Begriffe

- \bar{x} heißt *lokaler Minimalpunkt* von f auf M, falls eine Umgebung U von \bar{x} mit $\forall x \in U \cap M$: $f(x) \ge f(\bar{x})$ existiert.
- \bar{x} heißt *globaler Minimalpunkt* von f auf M, falls man obig $U = \mathbb{R}^n$ wählen kann.
- Ein lokaler oder globaler Minimalpunkt heißt *strikt*, falls obig für $x \neq \bar{x}$ sogar die strikte Ungleichung > gilt.
- Zu jedem globalen Minimalpunkt \bar{x} heißt $f(\bar{x}) (= v = \min_{x \in M} f(x))$ globaler Minimalwert, und zu jedem lokalen Minimalpunkt \bar{x} heißt $f(\bar{x})$ lokaler Minimalwert.
- ullet Funktion nicht differenzierbar \Longrightarrow nichtglattes Optimierungsproblem
- Euklidsche Norm lässt sich durch Quadrieren (Weglassen der Wurzel) zu glattem Problem umformen (optimale Punkte bleiben erhalten)

1.2 LÖSBARKEIT

- $\alpha \in \mathbb{R}$ wird als *untere Schranke* für f auf M bezeichnet, falls $\forall x \in M : \alpha \leq f(x)$ gilt.
- Das Infimum von f auf M ist die *größte* untere Schranke von f auf M, es gilt also $v = inf_{x \in M} f(x)$ falls $v \le f(x)$ für alle $x \in M$ gilt (d.h. v ist selbst untere Schranke von f auf M) und $\alpha \le$ für alle unteren Schranken α von f auf M gilt.

- Definition Lösbarkeit: Das Minimierungsproblem P heißt $l\ddot{o}sbar$, falls es ein \bar{x} mit $inf_{x\in M}f(x)=f(\bar{x})$ existiert.
- Satz: Das Minimierungsproblem P ist genau dann lösbar, wenn es einen globalen Minimalpunkt besitzt.
- Satz von von Weierstraß: Die Menge $M \subseteq \mathbb{R}^n$ sei nichtleer und kompakt, und die Funktion $f: M \to \mathbb{R}$ sei stetig. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt und einen globalen Maximalpunkt.
- Definition untere Niveamenge: Für $\subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}$ und $\alpha \in \mathbb{R}$ heißt $lev_{\leq}^{\alpha}(f, X) = \{x \in X | f(x) \leq \alpha\}$ untere Niveaumenge von f auf X zum Niveau α . Im Fall $X = \mathbb{R}^n$ schreiben wir auch kurz $f_{<}^{\alpha} := lev_{<}^{\alpha}(f, \mathbb{R}^n) (= \{x \in \mathbb{R}^n | f(x) \leq \alpha\})$.
- Wir führen die Menge der globalen Punkte $S = \{\bar{x} \in M | \forall x \in M : f(x) \ge f(\bar{x})\}$ von P ein.
- Lemma: Für ein $\alpha \in \mathbb{R}$ sei $lev_{\leq}^{\alpha}(f, M) \neq \emptyset$. Dann gilt $S \subseteq lev_{\leq}^{\alpha}(f, M)$.
- Verschärfter Satz von Weierstraß: Für eine (nicht notwendiger beschränkte oder abgeschlossene) Menge $M \subseteq \mathbb{R}^n$ sei $f: M \to \mathbb{R}$ stetig, und mit einem $\alpha \in \mathbb{R}$ set $lev_{\leq}^{\alpha}(f, M)$ nichtleer und kompakt. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt.
- Korollar (Verschärfter Satz von Weierstraß für unrestringierte Probleme): *Die Funktion* $f: \mathbb{R}^n \to \mathbb{R}$ sei stetig, und mit einem $\alpha \in \mathbb{R}$ sei lev^{α}_{\leq} nichtleer und kompakt. Dann besitzt f auf \mathbb{R}^n (mindestens) einen globalen Minimalpunkt.
- Definition Koerzivität: Gegeben sei eine abgeschlossene Menge $X \subseteq \mathbb{R}^n$ und eine Funktion $f: X \to \mathbb{R}$. Falls für alle Folgen $(x^k) \subseteq X$ mit $\lim_k ||x^k|| = +\infty$ auch $\lim_k f(x^k) = +\infty$ gilt, dann heißt f *koerziv* auf X.
- Lemma: Die Funktion $f: X \to \mathbb{R}$ sei stetig und koerziv auf der (nicht notwendigerweise beschränkten) abgeschlossenen Menge $X \subseteq \mathbb{R}^n$. Dann ist die Menge $lev^{\alpha}_{\leq}(f,X)$ für jedes Niveau $\alpha \in \mathbb{R}$ kompakt.
- Korollar: Es sei M nichtleer und abgeschlossen, aber nicht allsectionsfont beschränkt. Fernser sei die Funktion $f: M \to \mathbb{R}$ stetig und koerziv auf M. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt.

1.3 RECHENREGELN UND UMFORMUNGEN

- Skalare Vielfache und Summen
 - $\ \forall \alpha \geq 0, \beta \in \mathbb{R}: \min_{x \in M} (\alpha f(x) + \beta) = \alpha (\min_{x \in M} f(x)) + \beta.$
 - $\ \forall \alpha \leq 0, \beta \in \mathbb{R} \colon min_{x \in M}(\alpha f(x) + \beta) = \alpha (max_{x \in M} f(x)) + \beta.$
 - $\ min_{x \in M}(f(x) + g(x)) \geq min_{x \in M}f(x) + min_{x \in M}g(x).$
 - In obiger Ungleichung kann der strikte Fall > auftreten.

- In den ersten beiden Zeilen stimmen die lokalen bzw. globalen Optimalpunkte der Optimierungsprobleme überein.
- · Separable Zielfunktion auf kartesischem Punkt
 - Es seien $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$, $f: X \to \mathbb{R}$ und $g: Y \to \mathbb{R}$. Dann gilt $\min_{(x,y) \in XxY} (f(x) + g(y)) = \min_{x \in X} f(x) + \min_{y \in Y} g(y)$
- · Vertauschung von Minima und Maxima
 - Es seien $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$, M = XxY und $f: M \to \mathbb{R}$ gegeben. Dann gilt:
 - $min_{(x,y)\in M} f(x,y) = min_{x inX} min_{y\in Y} f(x,y) = min_{y\in Y} min_{x\in X} f(x,y).$
 - $\max_{(x,y)\in M} f(x,y) = \max_{x \in X} \max_{x\in X} f(x,y) = \max_{y\in Y} \max_{x\in X} f(x,y).$
 - $min_{x \in X} max_{y \in Y} f(x, y) \ge max_{y \in Y} min_{x \in X} f(x, y)$.
 - In obiger Ungleichung kann der strikte Fall > auftreten.
- Monotone Transformation: Zu $M \subseteq \mathbb{R}^n$ und einer Funktion $f: M \to Y$ mit $Y \subseteq \mathbb{R}$ sei $\psi: Y \to \mathbb{R}$ eine streng monoton wachsende Funktion. Dann gilt $\min_{x \in M} \psi(f(x)) = \psi(\min_{x \in M} f(x))$, und die lokalen bzw. globalen Minimalpunkte stimmen überein.
- Epigrahumformulierung: Gegeben seien $M \subseteq \mathbb{R}^n$ und eine Funktion $f: M\mathbb{R}$. Dann sind die Probleme $P: \min_{x \in \mathbb{R}^n} f(x)$ s.t. $x \in M$ und $P_{epi}: \min_{x,\alpha \in \mathbb{R}^n x \mathbb{R}} \alpha$ s.t. $f(x) \le \alpha, x \in M$ in folgendem Sinne äquivalent.
 - Für jeden lokalen bzw. globalen Minimalpunkt x^* von P ist $(x^*, f(x^*))$ lokaler bzw. globaler Minimalpunkt von P_{epi} .
 - Für jeden lokalen bzw. globalen Minimalpunkt (x^*, α^*) von P_{epi} ist x^* lokaler bzw. globaler Minimalpunkt von P.
 - Die Minimalwerte von P und P_{epi} stimmen überein.
- Definition Parallelprojektion: Es sei $M \subseteq \mathbb{R}^n x \mathbb{R}^m$. Dann heißt $pr_x M = \{x \in \mathbb{R}^n | \exists y \in \mathbb{R}^m : (x, y) \in M\}$ Parallelprojektion von M auf den "x-Raum " \mathbb{R}^n .
- Projektionsumformulierung: Gegeben seien $M \subseteq \mathbb{R}^n x \mathbb{R}^m$ und eine Funktion $f : \mathbb{R}^n \to \mathbb{R}$, die nicht von den Variablen aus \mathbb{R}^m abhängt. Dann sind die Probleme $P : \min_{(x,y) \in \mathbb{R}^n x \mathbb{R}^m} f(x)$ s.t. $(x,y) \in M$ und $P_{proj} : \min_{x \in \mathbb{R}^n} f(x)$ s.t. $x \in pr_x M$ in folgendem Sinne äquivalent:
 - Für jeden lokalen bzw. globalen Minimalpunkt (x^*, y^*) von P ist x^* lokaler bzw. globaler Minimalpunkt von P_{proj} .
 - Für jeden lokalen bzw. globalen Minimalpunkt x^* von P_{proj} existiert ein $y^* \in \mathbb{R}^n$, sodass (x^*, y^*) lokaler bzw. globaler Minimalpunkt von P ist.
 - Die Minimalwerte von P und P_{proj} stimmen überein.

2 Unrestringierte Optimierung

2.1 Optimalitätsbedingungen

2.1.1 Abstiegsrichtungen

- Definition Abstiegsrichtung: Es seien $f: \mathbb{R}^n \to \mathbb{R}$ und $\bar{x} \in \mathbb{R}^n$. Ein Vektor $d \in \mathbb{R}^n$ heißt *Abstiegsrichtung* für f in \bar{x} falls $\exists \check{t} > 0 \forall t \in (0, \check{t}) : f(\bar{x} + td) < f(\bar{x})$ gilt.
- Definition eindimensionale Einschränkung: Gegeben seien $f : \mathbb{R}^n \to \mathbb{R}$, ein Punkt $\bar{x} \in \mathbb{R}^n$ und ein Richtungsvektor $d \in \mathbb{R}^n$. Die Funktion $\phi_d : \mathbb{R}^1 \to \mathbb{R}^1$, $t \mapsto f(\bar{x} + td)$ heißt *eindimensionale Einschränkung* von f auf die durch \bar{x} in Richtung d verlaufende Gerade.

2.1.2 Optimimalitätsbedingung erster Ordnung

- Definition einseitige Richtungsbleitung: Eine Funktion $f:\mathbb{R}^n \to \mathbb{R}$ heißt an $\bar{x} \in \mathbb{R}^n$ in eine Richtung $d \in \mathbb{R}^n$ einseitig richtungsdifferenzierbar, wenn der Grenzwert $f'(\bar{x},d):=\lim_{t \to 0} \frac{f(\bar{x}+td)-f(\bar{x})}{t}$ existiert. Der Wert $f'(\bar{x},d)$ heißt dann einseitige Richtungsableitung. Die Funktion f heißt an \bar{x} einseitig richtungsdifferenzierbar, wenn f an \bar{x} in jede Richtungsd einseitung richtungsdifferenzierbar ist, und f heißt einseitig richtungsdifferenzierbar, wenn f an jedem $\bar{x} \in \mathbb{R}^n$ einseitig richtungsdifferenzierbar ist.
- Lemma: Die Funktion $f: \mathbb{R}^n \to R$ sei an $\bar{x} \in \mathbb{R}^n$ in Richtung $d \in \mathbb{R}^n$ einseitig richtungsdifferenzierbar mit $f'(\bar{x}, d) < 0$. Dann ist d Abstiegsrichtung für f in \bar{x} .
- Lemma: Die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ sei an einem lokalen Minimalpunkt $\bar{x} \in \mathbb{R}^n$ einseitig richtungsdifferenzierbar. Dann gilt $f'(\bar{x}, d) \ge 0$ für jede Richtung $d \in \mathbb{R}^n$.
- Definition Abstiegsrichtung erster Ordnung: Für eine am Punkt $\bar{x} \in \mathbb{R}^n$ in Richtung $d \in \mathbb{R}^n$ einseitig richtungsdifferenzierbare Funktion $f : \mathbb{R}^n \to \mathbb{R}$ heißt d Abstiegsrichtung erster Ordnung, falls $f'(\bar{x}, d) < 0$ gilt.
- Definition stationärer Punkt: Die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ sei an $\bar{x} \in \mathbb{R}^n$ einseitig richtungsdifferenzierbar. Dann heißt \bar{x} stationärer Punkt von f, falls $f'(\bar{x}, d) \geq 0$ für jede Richtung $d \in \mathbb{R}^n$ gilt.

- Als *erste Ableitung* einer partiell differenzierbaren Funktion $f: \mathbb{R}^n \to \mathbb{R}$ an \bar{x} betrachtet man den Zeilenvektor $Df(\bar{x}) := (\partial_{x_1} f(\bar{x}), ..., \partial_{x_n} f(\bar{x}))$ oder auch sein Transponiertes $\nabla f(\bar{x}) := (Df(\bar{x}))^T$.
- Für eine vektorwertige Funktion $f:\mathbb{R}^n \to \mathbb{R}^m$ mit partiell differenzierbaren Komponenten $f_1,...,f_m$ definiert man die erste Ableitung als $Df(\bar{x}):=\begin{pmatrix} Df_1(\bar{x})\\ \vdots\\ Df_m(\bar{x}) \end{pmatrix}$. Diese (m,n)-Matrix heißt Jacobi-Matrix oder Funktionalmatrix von f an \bar{x} .
- Satz Kettenregel: Es seien $g: \mathbb{R}^n \to \mathbb{R}^m$ differenzierbar an $\bar{x} \in \mathbb{R}^n$ und $f: \mathbb{R}^m \to \mathbb{R}^k$ differenzierbar an $g(\bar{x}) \in \mathbb{R}^m$. Dann ist $f \circ g: \mathbb{R}^n \to \mathbb{R}^k$ differenzierbar an \bar{x} mit $D(f \circ g)(\bar{x}) = Df(g(\bar{x})) \cdot Dg(\bar{x})$.
- Bei der Anwendung der Kettenregel auf die Funktion $\phi_d(t) = f(\bar{x} + td)$ gilt k = m = 1 und $g(t) = \bar{x} + td$. Als Jacobik-Matrix von g erhält man Dg(t) = d und damit $\phi'_d(0) = Df(\bar{x})d$. Das Matrixprodukt aus der Kettenregel wird in diesem Spezialfall also zum Produkt des Zeilenvektors $Df(\bar{x})$ mit dem Spaltenvektor d. Für zwei allgemeine (Spalten) Vektoren $a, b \in \mathbb{R}^n$ nennt man den so definierten Term $a^Tb = \sum_{i=1}^n a_ib_i$ auch (Standard) Skalarprodukt von a und b. Eine alternative Schreibweise dafür ist $\langle a,b\rangle := a^Tb$. Wir erhalten also $\phi'_d(0) = \langle \nabla f(\bar{x}), d \rangle$ und können damit zunächst Lemma 2.1.5 umformulieren.
- Lemma 2.1.10: Die Funktion $f : \mathbb{R}^n \to \mathbb{R}$ sei am Punkt $\bar{x} \in \mathbb{R}^n$ differenzierbar, und für die Richtung $d \in \mathbb{R}^n$ gelte $\langle f(\bar{x}), d \rangle < 0$. Dann ist d Abstiegsrichtung für f in \bar{x} .
- Für zwei Vektoren $a, b \in \mathbb{R}^n$ besitzt das Skalarprodukt $\langle a, b \rangle$ neben der algebraischen Definition zu a^Tb auch die geometrische Darstellung $\langle a, b \rangle = ||a||_2 \cdot ||b||_2 \cdot cos(\angle(a, b))$.
- Satz 2.1.13 Notwendige Optimalitätsbedingung erster Ordnung Fermat'sche Regel: Die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ sei differenzierbar an einem lokalen Minimalpunkt $\bar{x} \in \mathbb{R}^n$. Dann gilt $\nabla f(\bar{x}) = 0$.
- Die Fermat'sche Regel wird als *Optimalitätsbedingung erster Ordnung* bezeichnet, da sie von der ersten Ableitung der Funktion *f* Gebrauch macht. Sie motiviert die folgende Definition.
- Definition kritischer Punkt: Die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ sei an $\bar{x} \in \mathbb{R}^n$ differenzierbar. Dann heißt \bar{x} kritischer Punkt von f, wenn $\nabla f(\bar{x})$ gilt.
- In dieser Terminologie ist nach der Fermat'schen Regel jeder lokale Minimalpunkt einer differenzierbaren Funktion notwendingerweise kritischer Punkt.
- Definition Sattelpunkt: Die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ sei an $\bar{x} \in \mathbb{R}^n$ differenzierbar. Dann heißt \bar{x} Sattelpunkt von f, falls \bar{x} zwar kritischer Punkt von f, aber weder lokaler Minimalnoch Maximalpunkt ist.

• Da die Fermat'sche lediglich eine notwendige, nicht aber eine hinreichende Bedingung ist, sind kritische Punkt lediglich Kandidaten für Minimalpunkt von f, können aber auch Maximal- oder Sattelpunkten entsprechen.

2.1.3 GEOMETRISCHE EIGENSCHAFTEN VON GRADIENTEN

- Um die geometrische Interpretation des Gradienten $\nabla f(\bar{x})$ vollzuständig zu verstehen, bringen wir ihn mit der unteren Niveaumenge $f_{\leq}^{f(\bar{x})} = \{x \in \mathbb{R}^n | f(x) \leq f(\bar{x})\}$ in Verbindung. Sie ist für Minimierungsverfahren von grundlegender Bedeutung, da einerseits offensichtlich $\bar{x} \in f_{\leq}^{f(\bar{x})}$ gilt und im Vergleich zu \bar{x} "bessere " Punkte x gerade solche sind, die die strikte Ungleichung $f(x) < f(\bar{x})$ erfüllen.
- Cauchy-Schwarz-Ungleichgung: $-||\nabla f(\bar{x})||_2 = -||\nabla f(\bar{x})||_2 \le \langle f(\bar{x}), d \rangle \le ||\nabla f(\bar{x})||_2 \cdot ||d||_2 = ||\nabla f(\bar{x})||_2$
- Die kleinstmögliche Steigung $-||\nabla f(\bar{x})||_2$ wird wegen $\nabla f(\bar{x}) \neq 0$ mit $d = -\frac{\nabla f(\bar{x})}{||\nabla f(\bar{x})||_2}$ realisiert und die größtmögliche $+||\nabla f(\bar{x})||_2$ mit $d = +\frac{\nabla f(\bar{x})}{||\nabla f(\bar{x})||_2}$.
- Insbesondere entspricht die Länge $||\nabla f(\bar{x})||_2$ des Gradienten genau dem größtmöglichen Anstieg der Funktion f von \bar{x} aus, und die Richtung des Gradienten zeigt in die zugehörige Richtung des steilsten Anstiegs.

2.1.4 Optimalitätsbedingungen zweiter Ordnung

- univariat = betrachtete Funktion hängt nur von einer Variablen ab
- Satz 2.1.19 (Entwicklungen erster und zweiter Ordnung per univariatem Satz von Taylor)
 - Es sei $\phi : \mathbb{R} \to \mathbb{R}$ differenzierbar an \bar{t} . Dann gilt für alle $t \in \mathbb{R}$: $\phi(t) = \phi(\bar{t}) + \phi'(\bar{t})(t \bar{t}) + o(|t \bar{t}|)$, wobei $o(|t \bar{t}|)$ einen Ausdruck der Form $\omega(t) \cdot |t \bar{t}|$ mit $\lim_{t \to \bar{t}} \omega(t) = \omega(\bar{t}) = 0$ bezeichnet.
 - Es sei $\phi: \mathbb{R} \to \mathbb{R}$ zweimal differenzierbar an \bar{t} . Dann gilt für alle $t \in \mathbb{R}$: $\phi(t) = \phi(\bar{t}) + \phi'(\bar{t})(t-\bar{t}) + \frac{1}{2}\phi''(\bar{t})(t-\bar{t})^2 + o(|t-\bar{t}|^2)$, wobei $o(|t-\bar{t}|^2)$ einen Ausruck der Form $\omega(t) \cdot |t-\bar{t}|^2$ mit $\lim_{t \to \bar{t}} \omega(t) = w(\bar{t}) = 0$ bezeichnet.
- Lemma 2.1.20: Für $f: \mathbb{R}^n \to \mathbb{R}$, einen Punkt $\bar{x} \in \mathbb{R}^n$ und eine Richtung $d \in \mathbb{R}^n$ seien $\phi'_d(0) = 0$ und $\phi''_d(0) < 0$. Dann ist d Abstiegsrichtung für f in \bar{x} .
- Lemma 2.1.21: Für $f: \mathbb{R}^n \to \mathbb{R}$ sei \bar{x} ein lokaler Minimalpunkt. Dann gilt $\nabla(\bar{x}) = 0$, und jede Richtung $d \in \mathbb{R}^n$ erfüllt $\phi_d''(0) \ge 0$.
- Die (n,n)-Matrix $D^2f(\bar{x}) := D\nabla f(\bar{x}) = := \begin{pmatrix} \partial_{x_1}\partial_{x_1}f(\bar{x}) & \cdots & \partial_{x_n}\partial_{x_1}f(\bar{x}) \\ \vdots & & \vdots \\ \partial_{x_1}\partial_{x_n}f(\bar{x}) & \cdots & \partial_{x_n}\partial_{x_n}f(\bar{x}) \end{pmatrix}$ heißt Hesse-

Matrix von f an \bar{x} . Als zweite Ableitung sind in ihr Krümmungsinformationen von f and \bar{x} codiert.

- Lemma 2.1.22: Für $f : \mathbb{R}^n \to \mathbb{R}$, einen Punkt $\bar{x} \in \mathbb{R}^n$ und eine Richtung $d \in \mathbb{R}^n$ seien $\langle \nabla f(\bar{x}), d \rangle = 0$ und $d^T D^2 f(\bar{x}) d < 0$. Dann ist §d§ Abstiegsrichtung für f in \bar{x} .
- Definition Abstiegsrichtung zweiter Ordnung: Zu $f: \mathbb{R}^n \to \mathbb{R}$ und $\bar{x} \in \mathbb{R}^n$ heißt jeder Richtungsvektor $d \in \mathbb{R}^n$ mit $\langle \nabla f(\bar{x}), d \rangle = 0$ und $d^T D^2 f(\bar{x}) d < 0$ Abstiegsrichtung zweiter Ordnung für f in \bar{x} .
- Satz 2.1.27 Notwendige Optimalitätsbedingung zweiter Ordnung: Die Funktion $f : \mathbb{R}^n \to \mathbb{R}$ sei zweimal differenzierbar an einem lokalen Minimalpunkt $\bar{x} \in \mathbb{R}^n$. Dann gilt $\nabla f(\bar{x}) = 0$ und $D^2 f(\bar{x}) \geq 0$.
- Eine symmetrische Matrix ist genau dann positiv semidefinit, wenn ihre sämtlichen Eigenwerte nichtnegativ sind.
- Demnach dürfen wir für jede C^2 -Funktion (zwei mal stetig differenzierbar) f die Bedingung $D^2f(\bar{x})\geq 0$ verifizieren, indem wir die n Eigenwerte der Matrix $D^2f(\bar{x})$ berechnen und auf Nichtnegativität überprüfen.
- Positive Definitheit bedeutet, dass alle Eigenwerte von $D^2 f(\bar{x})$ strikt positiv sind.
- Satz 2.1.30 Enticklungen erster und zweiter Ordnung per multivariatem Satz von Taylor
 - Es sei $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar in \bar{x} . Dan gilt für alle $x \in \mathbb{R}^n$: $f(x) = f(\bar{x}) + \langle \nabla f(\bar{x}), x \bar{x} \rangle + o(||x \bar{x}|||,$ wobei $o(||x \bar{x}|||$ einen Ausdruck der Form $ω(x) \cdot ||x \bar{x}||$ $mitlim_{x \to \bar{x}}ωx = ω\bar{x} = 0$ bezeichnet.
 - Es sei $f: \mathbb{R}^n \to \mathbb{R}$ zweimal differenzierbar in \bar{x} . Dann gilt für alle $x \in \mathbb{R}^n$: $f(x) = f(\bar{x}) + \langle \nabla f(\bar{x}), x \bar{x} \rangle + \frac{1}{2} (x \bar{x})^T D^2 f(\bar{x}) (x \bar{x}) + o(||x \bar{x}||^2)$, wobei $o(||x \bar{x}||^2)$ einen Ausruck der Form $\omega(x) \cdot ||x \bar{x}||^2$ mit $\lim_{x \to \bar{x}} \omega(x) = \omega(\bar{x}) = 0$ bezeichnet.
- Satz 2.1.31 Hinreichende Optimalitätsbedingung zweiter Ordnung: Die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ sei an $\bar{x} \in \mathbb{R}$ zweimal differenzierbar, und es gelte $\nabla f(\bar{x}) = 0$ und $D^2 f(\bar{x}) > 0$. Dann ist \bar{x} ein strikter lokaler Minimalpunkt von f.
- Definition 2.1.35 Nichtdegenerierte kritische und Minimalpunkte: Die Funktion $f : \mathbb{R}^n \to \mathbb{R}$ sei an \bar{x} zweimal differenzierbar mit $\nabla f(\bar{x}) = 0$. Dann heißt \bar{x}
 - nichtdegenerierter kritischer Punkt, falls $D^2 f(\bar{x})$ nichsingulär ist,
 - nichtdegenerierter lokaler Minimalpunkt, falls \bar{x} lokaler Minimalpunkt und nichtdegenerierter kritischer Punkt ist.
- Lemma 2.1.36: Der Punkt \bar{x} ist genau dann nichtdegenerierter lokaler Minimalpunkt von f, wenn $\nabla f(\bar{x}) = 0$ und $D^2 f(\bar{x}) > 0$ gilt.
- Wir definieren $\mathscr{F} = \{ f \in C^2(\mathbb{R}^n, \mathbb{R}) | \text{ alle kritischen Punkte von } f \text{ sind nichtdegeneriert } \}$
- Satz 2.1.37: \mathscr{F} ist C_s^2 -offen und -dicht in $C^2(\mathbb{R}^n,\mathbb{R})$.

2.1.5 Konvexe Optimierungsprobleme

- Definition konvexe Menge und Funktionen
 - Eine Menge $X \subseteq \mathbb{R}^n$ heißt konvex, falls $\forall x, y \in X, \lambda \in (0,1): (1-\lambda)x + \lambda y \ in X$ gilt (d.h. die Verbindungsstrecke von je zwei beliebigen Punkten in X gehört komplett zu X.)
 - Für eine konvexe Menge $X \subseteq \mathbb{R}^n$ heißt eine Funktion $f: X \to \mathbb{R}$ konvex (auf X), falls $\forall x, y \in X, \lambda \in (0,1): f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y)$ gilt (d.h. der FUnktionsgraph von f verläuft unter jeder seiner Sekanten).
- Satz 2.1.40 C^1 -Charakterisierung von Konvexität: Auf einer konvexen Menge $X \subseteq \mathbb{R}^n$ ist eine Funktion $f \in C^1(X,\mathbb{R})$ genau dann konvex, wenn $\forall x,y \in X: f(y) \geq f(x) + \langle \nabla f(x),y-x\rangle$ gilt.
- Korollar 2.1.41: Die Funktion $f \in C^1(\mathbb{R}^n, \mathbb{R})$ sei konvex. Dann sind die kritischen Punkte von f genau die globalen Minimalpunkt von f.
- Satz 2.1.42 C^2 -Charakterisierung von Konvexität: Eine Funktion $f \in C^2(\mathbb{R}^n, \mathbb{R})$ ist genau dann konvex, wenn $\forall x \in \mathbb{R}^n : D^2 f(x) \ge 0$ gilt.

2.2 Numerische Verfahren

- hier "glatte " Funktion: Stetigkeits- und Differenzierbarkeitsvoraussetzungen sind erfüllt
- Verfahren gehen von Startpunkt x^0 aus und erzeugen Folge (x^k) , deren Häufungspunkte zumindest kritische Punkte von f sind, also Nullstellen des Gradienten
- Meist lokale Minima

2.2.1 Abstiegsverfahren

- Bedingung: untere Niveaumenge $f_{\leq}^{f(x^0)}$ zum Startpunkt $x^0 \in \mathbb{R}^n$ beschränkt, da sonst Konvergenzbeweise nicht durchführbar sind. Dies ist nach Lemma 1.2.26 immer erfüllt, wenn f auf \mathbb{R}^n koerziv ist.
- Zunächst Verfahren, die in jedem Iterationsschritt einen Abstieg im Zielfunktionswert erzeugen, also $\forall k \in \mathbb{N}_0$: $f(x^{k+1}) < f(x^k)$ gilt.
- Verschiedene Abstiegsverfahren unterscheiden sich in der Wahl von x^{k+1} vom gezeigten Algorithmus.
- Häufig wird dieser Algorithmus mit einer Notbremse versehen, d.h. er bricht nach einer gewissen Anzahl an Iterationen ab.
- Man erwartet nicht, dass der Gradient direkt 0 wird, sondern approximiert einen optimalen Punkt über den Schwellwert.

Algorithm 1 Allgemeines Abstiegsverfahren

Input: C^1 -Optimierungsproblem P

Output: Approximation \bar{x} eines kritischen Punkts von f (falls das Verfahren terminiert)

- 1: Wähle eines Startpunkt x^0 , eine Toleranz $\epsilon > 0$ und setze k = 0.
- 2: **while** $||\nabla f(x^k)|| > \epsilon$ **do**
- 3: Wähle x^{k+1} mit $f(x^{k+1}) < f(x^k)$.
- 4: Ersetze k durch k + 1.
- 5: end while
- 6: Setze $\bar{x} = x^k$.
 - Lemma 2.2.3: Für beschränktes $f_{\leq}^{f(x^0)}$ bricht die vom Algorithmus (Allgemeines Abstiegsverfahren) mit $\epsilon = 0$ erzeugte Folge (x^k) entweder nach endlich vielen Schritten mit einem kritischen Punkt ab, oder sie besitzt mindestens einen Häufungspunkt in $f_{\leq}^{f(x^0)}$, und die Folge der Funktionswerte $(f(x^k))$ ist konvergent.
 - Jedoch folgt aus Lemma 2.2.3 noch nicht, dass ein Häufungspunkt der Iterierten x^k existiert, der auch kritischer Punkt von f ist.
 - Klassische Optimierungsverfahren bestimmen erst Suchrichtung d^k und anschließend Schrittweite t^k .
 - Definition 2.2.5 Effiziente Schrittweiten: Es sei (d^k) eine Folge von Abstiegsrichtungen erster Ordnung, und (t^k) erfülle $\exists c > 0 \forall k \in \mathbb{N} : f(x^k + t^k d^k) f(x^k) \le -c \cdot (\frac{\langle \nabla f(x^k), d^k \rangle}{||d^k||^2})^2$. Dann heißt (t^k) effiziente Schrittweitenfolge (für (d^k)).
 - Satz 2.2.6: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt, (d^k) sei eine Folge von Abstiegsrichtungen erster Ordnung, und (t^k) sei eine effiziente Schritweitenfolge. Dann gilt $\lim_k \frac{\langle \nabla f(x^k), d^k \rangle}{||d^k||_2} = 0$ (2.6).
 - Definition 2.2.7 Gradientenbezogene Suchrichtungen: Die Folge von Suchrichtungen (d^k) heißt gradientenbezogen, falls $\exists c > 0 \, \forall k \in \mathbb{N} : \frac{\langle \nabla f(x^k), d^k \rangle}{||d^k||_2} \leq -c \cdot ||\nabla f(x^k)||_2$ gilt.
 - Satz 2.2.9: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt und in Algorithmus Allgemeines Abstiegsverfahren sei $x^{k+1} = x^k + t^k d^k$ mit einer gradientenbezogenen Suchrichtungsfolge (d^k) und einer effizienten Schrittweitenfolge (t^k) gewählt. Für $\epsilon = 0$ stoppt dann das Verfahren entweder nach endlich vielen Schritten mit einem kritischen Punkt, oder die Folge (x^k) besitzt einen Häufungspunkt, und für jeden solchen Punkt x^* gilt $\nabla f(x^*) = 0$.
 - Korollar 2.2.10: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt, und in Algorithmus Allgemeines Abstiegsverfahren sei $x^{k+1} = x^{\overline{k}} + t^k d^k$ mit einer gradientenbezogenen Suchrichtungsfolge (d^k) und einer effizienten Schrittweitenfolge (t^k) gewählt. Dann terminiert das Verfahren für jedes $\epsilon > 0$ nach endlich vielen Schritten.

2.2.2 Schrittweitensteuerung

- Eine Funktion $F: D \to \mathbb{R}^m$ heißt Lipschitz-stetig auf $D \subseteq \mathbb{R}^n$ (bezüglich der euklidischen Norm), falls $\exists L > 0 \, \forall x, y \in D: ||F(x) F(y)||_2 \le L \cdot ||x y||_2$ gilt.
- Da C^1 -Funktionen auf kompakten Mengen immer Lipschitz-stetig sind, ist ∇f bei beschränkter Menge $f_{\leq}^{f(x^0)}$ zum Beispiel für jede C^2 -Funktion f Lipschitz-stetig auf $f_{\leq}^{f(x^0)}$.
- Lemma 2.2.13: Auf einer konvexen Menge $D \subseteq \mathbb{R}^n$ sei f differenzierbar mit Lipschitzstetigem Gradienten ∇f und zugehöriger Lipschitz-Konstante L > 0. Dann gilt $\forall \bar{x}, x \in D: |f(x) f(\bar{x}) \langle \nabla f(\bar{x}), x \bar{x} \rangle| \leq \frac{L}{2} ||x \bar{x}||_2^2$.

• Exakte Schrittweiten

- Zu $x \in f_{\leq}^{f(x^0)}$ sei eine Abstiegsrichtung erster Ordnung d für f in x gegeben. Wegen $\phi_d'(0) = \langle \nabla f(x), d \rangle < 0$ gilt $\phi_d(t) < \phi_d(0)$ für kleine positive t. Für beschränktes $f_{\leq}^{f(x^0)}$ besitzt ϕ_d nach dem Satz von Weierstraß sogar globale Minimalpunkte $t_e > 0$, die exakte Schrittweiten genannt werden.
- Satz 2.2.15: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt, die Funktion ∇f sei Lipschitz-stetig auf $conv(f_{\leq}^{f(x^0)})$, und (d^k) sei eine Folge von Abstiegsrichtungen erster Ordnung. Dann ist jede Folge von exakten Schrittweiten (t_e^k) effizient.
- Exakte Schrittweiten existieren, sind aber meist schwierig zu berechnen.

• Konstante Schrittweiten

- Falls die Funktion f keine besondere Struktur aufweist, lohnt sich üblicherweise der Aufwand nicht, in jedem Iterationsschritt eine exakte Schrittweite t_e^k zu berechnen
- Eine zunächst naheliegend erscheinende Möglichkeit dafür besteht darin, anstelle von t_e^k die im Beweis von Satz 2.2.15 aufgetretenen und leicht berechnenbaren Hilfsgrößen $t_c^k = -\frac{\langle \nabla f(x^k), d^k \rangle}{L \cdot ||d^k||_2^2}$ als Schrittweiten zu benutzen, denn dort wurde insbesondere auch die Effizienz der Folge (t_c^k) gezeigt. Im speziellen Fall $d^k = -\nabla f(x^k)$ gilt sogar $t_c^k = \frac{1}{L}$, so dass die Folge der Schrittweiten dann konstant ist. Jedoch muss eine Lipschitz-Konstante L > 0 explizit bekannt sein.

• Armijo-Schrittweiten

- Zu $x \in f_{\leq}^{f(x^0)}$ seien d eine Abstiegsrichtung erster Ordnung und $\sigma \in (0,1)$. Dann existiert ein $\check{t} > 0$, so dass für alle $t \in (0,\check{t})$ die Werte $\phi_d(t)$ unter der nach oben gedrehten Tange $\phi_d(0) + t\sigma\phi_d'(0)$ liegen, so dass also $f(x+td) \leq f(x) + t\sigma\langle\nabla f(x), d\rangle$ gilt.
- Satz 2.2.16: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt, die Funktion ∇f sei Lipschitz-stetig auf $conv(f_{\leq}^{f(x^0)})$, und (d^k) sei eine Folge von Abstiegsrichtungen erster Ordnung. Dann ist die Folge der Armijo-Schrittweiten (t_a^k) aus Algorithmus Armijo-Regel (mit unabhängig von k gewählten Parametern σ, ρ und γ) wohldefiniert und effizient.

Algorithm 2 Armijo-Regel

```
Input: C^1-Funktion f und x, d \in \mathbb{R}^n mit \langle \nabla f(x), d \rangle < 0
```

Output: Armijo-Schrittweite t_a

- 1: Wähle $\sigma, \rho \in (0, 1)$ sowie $\gamma > 0$ (alle unabhängig von x und d).
- 2: Wähle eine Startschrittweite $t^0 \ge -\gamma \langle \nabla f(x), d \rangle / ||d||_2^2$ und setze $\ell = 0$.
- 3: **while** $f(x + t^{\ell}d) > f(x) + t^{\ell}\sigma\langle\nabla f(x), d\rangle$ **do**
- 4: Setze $t^{\ell+1} = \rho t^{\ell}$.
- 5: Ersetze ℓ durch $\ell + 1$.
- 6: Ersetze k durch k + 1.
- 7: end while
- 8: Setze $t_a = t^{\ell}$.

2.2.3 Gradientenverfahren

- · auch als Cauchy-Verfahren bekannt
- Grundidee: Verfahren des steilsten Abstiegs

Algorithm 3 Gradientenverfahren

Input: C^1 -Optimierungsproblem P

Output: Approximation \bar{x} eines kritischen Punkts von f (falls das Verfahren terminiert)

- 1: Wähle einen Startpunkt x^0 , eine Toleranz $\epsilon > 0$ und setze k = 0.
- 2: **while** $||\nabla f(x^k)|| > \epsilon$ **do**
- 3: Setze $d^k = -\nabla f(x^k)$.
- 4: Bestimme eine Schrittweite t^k .
- 5: Ersetze k durch k+1
- 6: end while
- 7: Setze $\bar{x} = x^k$.
 - Satz 2.2.18: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt, die Funktion ∇f sei Lipschitz-stetig auf $conv(f_{\leq}^{f(x^0)})$, und exakte Schrittweiten t_e^k oder Armijo-Schrittweiten t_a^k seien gewählt. Dann terminiert Algorithmus Gradientenverfahren für jedes $\epsilon > 0$ nach endlich vielen Schritten. Falls eine Lipschitz-Konstante L > 0 zur Lipschitz-Stetigkeit von ∇f auf $conv(f_{\leq}^{f(x^0)})$ bekannt ist, dann gilt dieses Ergebnis auch für die dann berechnenbaren konstanten Schrittweiten $t_c^k = L^{-1}, k \in \mathbb{N}$.
 - Definition 2.2.21 Konvergenzgeschwindigkeiten: Es sei (x^k) eine konvergente Folge mit Grenzpunkt x^* . Sie heißt
 - linear konvergent, falls $\exists 0 < c < 1, k_0 \in \mathbb{N} \forall k \ge k_0 : ||x^{k+1} x^*|| \le c \cdot ||x^k x^*||$,
 - superlinear konvergent, falls $\exists c^k \setminus 0, k_0 \in \mathbb{N} \forall k \geq k_0 : ||x^{k+1} x^*|| \leq c \cdot ||x^k x^*||$,
 - quadratisch konvergent, falls $\exists c > 0, k_0 \in \mathbb{N} \forall k \ge k_0 : ||x^{k+1} x^*|| \le c \cdot ||x^k x^*||^2$.

- Quadratische Konvergenz beinhaltet superlineare Konvergenz und diese beinhaltet lineare Konvergenz
- Lemma 2.2.22 Kantorowitsch-Ungleich: Es sei $A = A^T > 0$ mit maximalem und minimalem Eigenwert λ_{max} bzw. λ_{min} . Dann gilt für jedes $v \in \mathbb{R} \setminus \{0\}$ $\frac{v^T A^{-1} v \cdot v^T A v}{||v||_2^4} \leq \frac{(\lambda_{max} + \lambda_{min})^2}{4\lambda_{max}\lambda_{min}}$.
- Satz 2.2.23: Auf die konvex-quadratische Funktion $q(x) = \frac{1}{2}x^TAx + b^Tx$ mit $A = A^T > 0$ und $b \in \mathbb{R}^n$ werde das Gradientenverfahren mit exakten Schrittweiten und $\epsilon = 0$ angewendet. Dann gilt für alle $k \in \mathbb{N}$ $|q(x^{k+1}) q(x^*)| \le (\frac{\lambda_{max} \lambda_{min}}{\lambda_{max} + \lambda_{min}})^2 |q(x^k) q(x^*)|$.

2.2.4 VARIABLE-METRIK-VERFAHREN

- Satz 2.2.23 zur langsamen Konvergenz des Gradientenverfahrens und seine geometrische Interpretation legen die Idee nahe, die Abstiegsrichtung $d^k = -\nabla f(x^k)$ durch eine Richtung zu ersetzen, die Krümmungsinformationen über f berücksichtigt.
- Die geometrische Hauptidee der folgenden Verfahren ist es, bei der Minimierung einer (nicht notwendigerweise konvex-quadratischen) C^1 -Funktion f an jeder Iterierten x^k ein jeweils neues Koordinatensystem so einzuführen, dass f um x^k in den neuen Koordinaten möglichst sphärenförmige Niveaumengen besitzt. In den neuen Koordinaten ist folglich ein Abstieg in die negative Gradientenrichtung sinnvoll.
- Definition 2.2.27 Gradient bezüglich einer positiv definiten Matrix: Für $f \in C^1(\mathbb{R}^n, \mathbb{R})$ und eine (n, n)-Matrix $A = A^T > 0$ heißt $\nabla_A f(x) := A^{-1} \nabla f(x)$ Gradient von f bezüflich A an x.
- Verschiedene Variable-Metrik-Verfahren unterscheiden sich durch die Wahl der Matrix A.
- Lemma 2.2.33: Es sei $\nabla f(x) \neq 0$. Dann löst der Vektor $d = -\frac{\nabla_A f(x)}{||\nabla_A f(x)||_A}$ das Problem $\min \langle \nabla f(x), d \rangle$ s.t. $||d||_A = 1$, und zwar mit optimalem Wert $-||\nabla_A f(x)||_A$.

Algorithm 4 Variable-Metrik-Verfahren

Input: C^1 -Optimierungsproblem P

Output: Approximation \bar{x} eines kritischen Punkts von f (falls das Verfahren terminiert)

- 1: Wähle einen Startpunkt x^0 , eine Matrix $A^0 = (A^0)^T > 0$, eine Toleranz $\epsilon > 0$ und setze k = 0.
- 2: **while** $||\nabla f(x^k)||_2 > \epsilon$ **do**
- 3: Setze $d^k = -\nabla_{A^k} f(x^k)$.
- 4: Bestimme eine Schrittweite t^k .
- 5: Wähle $A^{k+1} = (A^{k+1})^T > 0$.
- 6: Ersetze k durch k+1
- 7: end while
- 8: Setze $\bar{x} = x^k$.

- Definition 2.2.34 Gleichmäßig positiv definite und beschränkte Matrizen: Eine Folge (A^k) symmetrischer (n,n)-Matrizen heißt gleichmäßig positiv definit und beschränkt, falls $\exists 0 < c_1 \le c_2 \forall d \in B_=(0,1), k \in \mathbb{N} : c_1 \le d^T A^k d \le c_2$ gilt.
- Satz 2.2.36: Die Folge (A^k) sei gleichmäßig positiv definit und beschränkt. Dann ist die Folge (d^k) mit $d^k = -(A^k)^{-1}\nabla f(x^k), k \in \mathbb{N}$, gradientenbezogen.
- Satz 2.2.37: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt, die Funktion ∇f sei Lipschitz-stetig auf $conv(f_{\leq}^{f(x^0)})$, die Folge (A^k) sei gleichmäßig positiv definit und beschränkt und im Algorithmus seien exakte Schrittweiten (t_e^k) oder Armijo-Schrittweiten (t_a^k) gewählt. Dann terminiert der Algorithmus für jedes $\epsilon > 0$ nach endlich vielen Schritten.

2.2.5 NEWTON-VERFAHREN MIT UND OHNE DÄMPFUNG

- Wählt man in Algorithmus Variable Metrik Verfahren für $f \in C^{(\mathbb{R}^n,\mathbb{R})}$ in jedem Schritt $A^k = D^2 f(x^k)$, so erhält man das Newton-Verfahren, sofern die Matrizen $D^2 f(x^k)$ positiv definit sind.
- Die Newton-Schritte werden durch den Faktor t^k gedämpft \rightarrow gedämpftes Newton-Verfahren
- Die Dämpfung hat den Vorteil, dass der Konvergenzradius (also der mögliche Abstand von x^0 zu x^*) etwas größer wird.
- Satz 2.2.39 Quadratische Konvergenz des Newton-Verfahrens: Die durch $x^{k+1} = x^k (D^2 f(x^k))^{-1} \nabla f(x^k)$ definierte Folge (x^k) konvergiere gegen einen nichtdegenerierten lokalen Minimalpunkt x^* , und $D^2 f$ sei Lipschitz-stetig auf einer konvexen Umgebung von x^* . Dann konvergiert die Folge (x^k) quadratisch gegen x^* .

2.2.6 SUPERLINEARE KONVERGENZ

- Falls im Newton-Verfahren x^0 zu weit von einem nichtdegenerierten Minimalpunkt entfernt liegt, ist $D^2 f(x^k)$ nicht notwendigerweise positiv definit und die Newton-Richtung $d^k = -(D^2 f(x^k))^{-1} \nabla f(x^k)$ entweder nicht definiert oder nicht notwendigerweise eine Abstiegsrichtung.
- Man versucht daher, das Newton-Verfahren zu globalisieren, d.h. Konvergenz im Sinne von Satz 2.2.9 gegen einen lokalen Minimalpunkt von jedem Startpunkt $x^0 \in \mathbb{R}^n$ aus zu erzwingen.
- Ein erster Ansatz dazu besteht darin, im Variable-Metrik Algorithmus $A^0 = E$ zu wählen sowie später $A^{k+1} = D^2 f(x^{k+1}) + \sigma^{k+1} \cdot E$ mit einem so großen Skalar σ^{k+1} , dass A^{k+1} positiv definit ist.
- Nachteil: Bestimmung von σ^k kann sehr aufwendig sein.
- Folgend Verfahren, die nicht nach endlich vielen Schritten, sondern nur asymptotisch in das gedämpfte Newton-Verfahren übergehen.

- Definition $H^k := t^k (A^k)^{-1}$. Damit ergibt sich im Algorithmus $x^{k+1} = x^k H^k \nabla f(x)$.
- Lemma 2.2.46: Die Folge x^k sei nach Vorschrift 2.12 gebildet und gegen x^* konvergent. Ferner seien die Folgen $(||H^k||_2)$ und $(||(H^k)^{-1}||_2)$ beschränkt. Dann gilt
 - $\nabla f(x^*) = 0$
 - $-\lim \sup_{k} ||x^{k+1} x^*||_2 / ||x^k x^*||_2 \le \lim \sup_{k} ||E H^k D^2 f(x^*)||_2$
- Lemma 2.2.47: Für zwei (n, n)-Matrizen A und B sei $L := ||E AB||_2 < 1$. Dann gilt
 - *A* und *B* sind nichtsingulär.
 - $||A||_2 \le (1+L) \cdot ||B^{-1}||_2$
 - $||A^{-1}||_2 \le ||B||_2/(1-L)$
- Satz 2.2.48: Die Folge (x^k) sei nach der Vorschrift 2.12 gebildet und gegen x^* konvergenz. Ferner sei $L:=limsup_k||E-H^kD^2f(x^*)||_2<1$. Dann gelten die folgenden Aussagen
 - $D^2 f(x^*)$ ist nichtsingulär
 - $\nabla f(x^*) = 0$
 - (x^k) konvergiert mindestens linear gegen x^*
 - Es gilt L=0 genau im Fall von $\lim_k H^k=(D^2f(x^*))^{-1}$, und in diesem Fall konvergiert (x^k) superlinear gegen x^* .

2.2.7 QUASI-NEWTON-VERFAHREN

- Das vorherig vorgeschlage Verfahren ist aber nicht effizient.
- Problem: Woher die Matrizen A^k mit $\lim_k A^k = D^2(f^*)$ nehmen?
- Idee: Sekantenverfahren
- Quasi-Newton-Bedingung: $\nabla f(x^{k+1}) \nabla f(x^k) = A^{k+1}(x^k + 1 x^k)$
- Grundidee der folgenden Verfahren: Matrix A^{k+1} nicht in jedem Schritt komplett neu berechnen, sondern als möglichst einfaches Update der Matrix A^k auffassen. Dafür: $A^{k+1} = A^k + \alpha_k(u^k)(u^k)^T + \beta_k(v^k)(v^k)^T$.
- Mit den Abkürzungen $s^k := x^{k+1} x^k$ und $y^k := \nabla f(x^{k+1}) \nabla f(x^k)$ lautet die Sekantengleichung für die so definierte Matrix $A^{k+1} : y^k = (A^k + \alpha_k(u^k)(u^k)^T + \beta_k(v^k)(v^k)^T) \cdot s^k$.
- Im folgenden sei $k \in \mathbb{N}$ fest und unterschlagen. Dann folgt $y As = (\alpha \cdot u^T s) \cdot u + (\beta \cdot v^T s) \cdot v$.
- Lemma 2.2.51: Es sei $\theta \ge 0$ beliebig. Dann gilt unter den Bedingungen B > 0 und $s^T y > 0$ auch $B_{\theta}^+ > 0$

2.2.8 KONJUGIERTE RICHTUNGEN

- Motivation: Speichern der vielen Variablen und Matrizen sorgt für Speicherprobleme
- Definition 2.2.52 Konjugiertheit bezüglich einer positiv definiten Matrix: Es sei A eine (n, n)-Matrix mit $A = A^T > 0$. Zwei Vektor $v, w \in \mathbb{R}^n$ heißen konjugiert bezüglich A, falls $\langle v, w \rangle_A = 0$ gilt.
- Lemma 2.2.54: Für $k \in \mathbb{N}$ seien $d^0,...,d^k$ paarweise konjugiert bezüglich A. Dann gilt $\forall 0 \le l \le k : \langle \nabla q(x^{k+1}), d^l \rangle = 0$.
- Satz 2.2.55: Die Vektoren $d^0, ..., d^{n-1}$ seien paarweise konjugiert bezüglich A und sämtlich ungleich null. Dann ist x^n der globale Minimalpunkt von q.
- Satz 2.2.56: Für $\theta \ge 0$ werde Algorithmus Variable-Metrik mit $t^k = t_e^k$ und $B^{k+1} = B_\theta^{k+1}$ auf $q(x) = \frac{1}{2}x^TAx + b^Tx$ mit $A = A^T > 0$ angewendet, und für ein $k \in \mathbb{N}$ seien die Iterierten $x^0, ..., x^k$ paarweise verschieden. Dann sind die Richtungen $d^0, ..., d^{k-1}$ paarweise konjugiert bezüglich A und sämtlich von null verschieden.

2.2.9 Konjugierte-Gradienten-Verfahren

- Lemma 2.2.57: Es seien $d^0,...,d^{k-1}$ paarweise konjugiert bezüglich A und $x^1,...,x^k$ schon generiert mit $x^\ell \neq x^{\ell-1}$ für $\leq l \leq k$. Dann ist d^k genau dann konjugiert zu einem d^ℓ mit $0 \leq l$ k-1, wenn $\langle \nabla q(x^{\ell+1}) \nabla q(x^\ell), d^k \rangle = 0$ erfüllt ist.
- Satz 2.2.58: Unter den Vorraussetzungen von Lemma 2.2.57 ist die Richtung $d^k = -\nabla q(x^k) + \alpha_k \cdot d^{k-1}$ genau dann für $\alpha_k = \frac{||\nabla q(x^k)||_2^2}{||\nabla q(x^{k-1})_2^2|}$ konjugiert zu den Vektoren $d^0,...,d^{k-1}$

Algorithm 5 CG-Verfahren von Fletcher-Reeves

Input: C^1 -Optimierungsproblem P

Output: Approximation \bar{x} eines kritischen Punkts von f (falls das Verfahren terminiert)

- 1: Wähle einen Startpunkt x^0 , eine Toleranz $\epsilon > 0$ und setze $d^0 = -\nabla f(x^0)$ sowie k = 0.
- 2: **while** $||\nabla f(x^k)|| > \epsilon$ **do**
- 3: Setze $x^{k+1} = x^k + t_e^k d^k$.
- 4: Setze $d^{k+1} = -\nabla f(x^{k+1} + (||\nabla f(x^{k+1})||_2^2/||\nabla f(x^k)||_2^2) \cdot d^k$.
- 5: Ersetze k durch k + 1.
- 6: end while
- 7: Setze $\bar{x} = x^k$.

2.2.10 Trust-Region-Verfahren

- Erst Suchradius t und dann die Suchrichtung d
- Nach dem Satz von Taylor gilt $f(x^k + d) \approx f(x^k) + \langle \nabla f(x^k), d \rangle + \frac{1}{2} d^T D^2 f(x^k) d$.

- Mit $c^k := f(x^k)$, $b^k = \nabla f(x^k)$ und einer symmetrischen Matrix A^k nennt man die Funktion $m^k(d) := c^k + \langle b^k, d \rangle + \frac{1}{2} d^T A^k d$ ein lokales quadratisches Modell für f um x^k .
- Man betrachtet m^k nur für $||d||_2 \le t^k$ mit einem hinreichend kleinen Suchradius t^k . Falls das Verhalten von m^k auf $B_{\le}(0,t^k)$ gut ist, nennt man $B_{\le}(0,t^k)$ eine vetrauenswürdige Umgebung, also eine Trust Region. Um hierbei den Begriff gut zu quantifizieren, bestimmt man einen optimalen Punkt d^k des Trust-Region-Hilfproblems TR^k : $\min_{d \in \mathbb{R}^n} m^k(d)$ s.t. $||d||_2 \le t^k$.
- Der Quotient $r^k := \frac{f(x^k) f(x^k + d^k)}{m^k(0) m^k(d^k)}$ aus tatsächlichem und erwartetem Abstieg im Zielfunktionswert gibt dann ein Maß für die Güte des lokalen Modells an.
- Matrizen A^k müssen nicht positiv definit sein

Algorithm 6 Trust-Region-Verfahren

Input: C^1 -Optimierungsproblem P

Output: Approximation \bar{x} eines kritischen Punkts von f (falls das Verfahren terminiert)

1: Wähle einen Startpunkt x^0 , eine Matrix $A^0 = (A^0)^T$, eine Toleranz $\epsilon > 0$, einen Maximalradius t > 0, einen Stratradius $t^0 \in (0, t)$, einen Parameter $\eta \in [0, 1/4]$ und setze k = 0.

```
2: while ||\nabla f(x^k)||_2 > \epsilon do
         Berechne einen (inexakten) Optimalpunkt d^k von TR^k und setze r^k = \frac{f(x^k) - f(x^k + d^k)}{m^k(0) - m^k(d^k)}.
         if r^k < \frac{1}{4} then
 4:
              Setze t^{k+1} = \frac{1}{4}||d^k||_2.
 5:
 6:
              if r^k > \frac{3}{4} and ||d^k||_2 = t^k then
Setze t^{k+1} = min\{2t^k, \check{t}\}.
 7:
 8:
 9:
                   Setzet^{k+1} = t^k.
10:
              end if
11:
         end if
12:
         if r^k > \eta then
13:
              Setze x^{k+1} = x^k + d^k.
14:
         else
15:
              Setze x^{k+1} = x^k.
16:
         end if
17:
         Wähle A^{k+1} = (A^{k+1})^T.
18:
         Ersetze k durch k + 1.
19:
20: end while
21: Setze \bar{x} = x^k.
```

• Definition 2.2.60 Cauchy-Punkt: Der Punkt $x_C^{k+1} = x^k + d_C^k$ heißt Cauchy-Punkt zu x^k und t^k .

- Satz 2.2.63: Die Menge $f_{\leq}^{f(x^0)}$ sei beschränkt, die Funktion ∇f sei Lipschitz-stetig auf $conv(f_{\leq}^{f(x^0)})$, die Folge ($||A^k||_2$) sei beschränkt, und die Folge (d^k) der inexakten Lösung von TR^k erfülle 2.24 mit c>0. Dann gilt im gezeigten Algorithmus
 - Für $\eta=0$ ist $\liminf_k ||\nabla f(x^k)||_2=0$, d.h. (x^k) besitzt einen Häufungspunkt x^* mit $\nabla f(x^*)=0$
 - Für $\eta \in (0,1/4)$ ist $\lim_k \nabla f(x^k) = 0$, d.h. alle Häufungspunkte von (x^k) sind kritisch

3 RESTRINGIERTE OPTIMIERUNG

3.1 Eigenschaften der zulässigen Menge

3.1.1 TOPOLOGISCHE EIGENSCHAFTEN

- Aktivität von Ungleichungsrestriktion, wenn Gleichheit erfüllt ist
- Definition 3.1.1 Aktive-Index-Menge: Zu $\bar{x} \in M$ heißt $I_0(\bar{x}) = \{i \in I | g_i(\bar{x}) = 0\}$ Menge der aktiven Indizes oder auch Aktive-Index-Menge
- Satz 3.1.3: Für jedes $\bar{x} \in M$ existiert eine Umgebung U von \bar{x} mit $U \cap M = U \cap \{x \in \mathbb{R}^n | g_i(x) \le 0, i \in I_0(\bar{x}), h_i(x) = 0, j \in J\}$.
- Definition 3.1.4 Zulässige Abstiegsrichtung: Gegeben sei das Problem P: minf(x) s.t. $x \in M$ mit (nicht notwendigerweise in funktionaler Beschreibung vorliegender) zulässiger Menge $M \subseteq \mathbb{R}^n$. Dann heißt ein Vektor $d \in \mathbb{R}^n$ zulässige Abstiegsrichtung für P in $\bar{x} \in M$, falls $\exists \check{t} > 0 \forall t \in (0, \check{t}): f(\bar{x} + td) < f(\bar{x}), \bar{x} + td \in M$ gilt.

3.1.2 APPROXIMATIONEN ERSTER ORDNUNG

- Definition 3.1.7 Äußerer Linearisierungskegel: Für $\bar{x} \in \mathbb{R}^n$ heißt $L_{\leq}(\bar{x}, M) = \{d \in \mathbb{R}^n | \langle \nabla g_i(\bar{x}), d \rangle \leq 0, i \in I_0(\bar{x}) \}$ äußerer Linearisierungskegel an M in \bar{x} .
- Definition 3.1.11 Innerer Linearisierungskegel: Für $\bar{x} \in \mathbb{R}^n$ heißt $L_{<}(\bar{x}, M) = \{d \in \mathbb{R}^n | \langle \nabla g_i(\bar{x}), d \rangle < 0, i \in I_0(\bar{x}) \}$ innerer Linearisierungskegel an M in \bar{x} .
- Definition 3.1.12 Nichtdegenerierte funktionale Beschreibung einer Menge: Die Funktionale Beschreibung von M heißt an \bar{x} nichtdegeneriert, wenn $\mathrm{cl} L_{<}(\bar{x},M) = L_{\leq}(\bar{x},M)$ gilt. Ansonsten heißt sie degeneriert.
- Satz 3.1.15 Die funktionale Beschreibung von M ist an \bar{x} genau dann nichtdegeneriert, wenn $L_{<}(\bar{x},M)=\emptyset$ gilt.
- Definition 3.1.17 Innerer und äußerer Tangentialkegel: Es seien $\bar{x} \in \mathbb{R}^n$ und $M \subseteq \mathbb{R}^n$. Eine Richtung $\bar{d} \in \mathbb{R}^n$ liegt im
 - inneren Tangentialkegel $T(\bar{x}, M)$ an M in \bar{x} , falls ein $\check{t} > 0$ und eine Umgebung D von \bar{d} existieren mit $\forall t \in (0, \check{t}), d \in D : \bar{x} + td \in M$,

- äußeren Tangentialkegel $C(\bar{x}, M)$ an M in \bar{x} , falls Folgen (t^k) und (d^k) existieren mit $t^k \setminus 0$, $d^k \to \bar{d}$, $\forall k \in \mathbb{N} : \bar{x} + t^k d^k \in M$.
- Lemma 3.1.18: Es seien $\bar{x} \in \mathbb{R}^n$ und $M \subseteq \mathbb{R}^n$. Dann gilt
 - * $T(\bar{x}, M) \subseteq C(\bar{x}, M)$.
 - * $T(\bar{x}, M)^c = C(\bar{x}, M^c)$.
 - * $T(\bar{x}, M)$ ist ein offener und $C(\bar{x}, M)$ ein abgeschlossener Kegel.
 - * Definition 3.1.19 Nichtdegenerierte Geometrie einer Menge: Die Geometrie von M heißt an \bar{x} nichtdegeneriert, wenn $\operatorname{cl} T(\bar{x},M)=C(\bar{x},M)$ gilt. Ansonsten heißt sie degeneriert.
 - * Satz 3.1.24 Für alle $\bar{x} \in M$ gilt die Inklusionskette $L_{<}(\bar{x}, M) \subseteq T(\bar{x}, M) \subseteq C(\bar{x}, M) \subseteq C(\bar{x}, M)$.
 - * Korollar 3.1.26: Die funktionale Beschreibung der Menge M sei an \bar{x} nichtdegeneriert. Dann ist auch die Geometrie von M an \bar{x} nichtdegeneriert.

3.2 Optimalitätsbedingungen

3.2.1 STATIONARITÄT

- Definition 3.2.1 Stationärer Punkt restringierter Fall: Die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ sei an $\bar{x} \in M$ differenzierbar. dann heißt \bar{x} stationärer Punkt von P, falls $\langle f(\bar{x}), d \rangle \geq 0$ für jede Richtung $d \in C(\bar{x}, M)$ gilt.
- Satz 3.2.2: Die Funktion $f : \mathbb{R}^n \to \mathbb{R}$ sei an einem lokalen Minimalpunkt \bar{x} von P differenzierbar. Dann ist \bar{x} stationärer Punkt im Sinne von Definition 3.2.1.

3.2.2 Constraint Qualifications

- Definition 3.2.3 Abadie- und Mangasarian-Fromowitz-Bedingung für $J=\emptyset$: An $\bar{x}\in M$ gilt
 - die Abadie-Bedingung AB für $J=\emptyset$, falls $C(\bar{x},M)=L_{\leq}(\bar{x},M)$ erfüllt ist.
 - die Mangasarian-Fromowitz-Bedingung (MFB) für $J = \emptyset$, falls $L_{\leq}(\bar{x}, M) \neq \emptyset$ gilt.
 - Korollar 3.2.4: An einem lokalen Minimalpunkt \bar{x} von P seien f und die Funktionen $g_i, i \in I_0(\bar{x})$, differenzierbar.
 - * Dann ist das System $\langle \nabla f(\bar{x}), d \rangle < 0, \langle \nabla g_i(\bar{x}), d \rangle < 0, i \in I_0(\bar{x})$, mit keinem $d \in \mathbb{R}^n$ lösbar.
 - * Falls an \bar{x} die AB gilt, dann ist sogar das System $\langle \nabla f(\bar{x}), d \rangle < 0, \langle \nabla g_i(\bar{x}), d \rangle \le 0, i \in I_0(\bar{x})$, mit keinem $d \in \mathbb{R}^n$ lösbar.
 - Satz 3.2.8: An jedem $\bar{x} \in M$ impliziert die MFB die AB.

3.2.3 ALTERNATIVSÄTZE

- Satz 3.2.13 Lemma von Gordan: Für Vektoren $a^k \in \mathbb{R}^n$, $1 \le k \le r$, mit $r \in \text{gilt genau eine}$ der beiden folgenden Alternativen
 - Das System $\langle a^k, d \rangle < 0, 1 \le k \le r$, hat eine Lösung $d \in \mathbb{R}^n$
 - Es gilt 0 ∈ $conv(\{a^1, ..., a^r\})$.
- Satz 3.2.14 Trennungssatz: Es seien $X \subseteq \mathbb{R}^n$ eine nichtleere, abgeschlossene und konvexe Menge sowie $z \in X^c$. Dann existieren ein $a \in \mathbb{R}^n \setminus \{0\}$ und ein $b \in \mathbb{R}$, so dass für alle $x \in X$ die Ungleichungen $\langle a, x \rangle \leq b < \langle a, z \rangle$ erfüllt sind.
- Satz 3.2.15 Lemma von Farkas: Für Vektoren $a^k \in \mathbb{R}^n$, $0 \le k \le r$, mit $r \in \mathbb{N}$ gilt genau eine der beiden folgenden Alternativen.
 - Das System $\langle a^0, d \rangle$ < 0, $\langle a^k, d \rangle$ ≤ 0, 1 ≤ $k \le r$, hat eine Lösung $d \in \mathbb{R}^n$.
 - Es gilt - a^0 ∈ $cone(\{a^1, ..., a^r\})$.
- Satz 3.2.16 Satz von Carathéodory: Für jede Menge $A \subseteq \mathbb{R}^n$ gelten die folgenden Aussagen:
 - Zu jedem $\bar{x} \in cone(A) \setminus \{0\}$ existieren ein $r \le n$ und linear unabhängige $x^k \in A$ sowie $\lambda_k > 0, 1 \le k \le r$, mit $\bar{x} = \sum_{k=1}^r \lambda_k x^k$
 - Zu jedem $\bar{x} \in conv(A)$ existieren ein $r \le n+1$ und $x^1,...,x^r \in A$, so dass die Vektoren $x^2-x^1,...,x^r-x^1$ linear unabhängig sind und dass $\bar{x} \in conv(\{x^1,...,x^r\})$ gilt.
- Korollar 3.2.17
 - In Satz 3.2.13b lassen sich Gewichte λ_k mit |{1 ≤ k ≤ $r|\lambda_k > 0$ }| ≤ n + 1 wählen.
 - In Satz 3.2.15b lassen sich Gewichte λ_k mit |{1 ≤ k ≤ $r|\lambda_k > 0$ }| ≤ n wählen.

3.2.4 Optimalitätsbedingungen erster Ordnung ohne Gleichungsrestriktionen

- Satz 3.2.18 Satz von Fritz John für $J=\emptyset$: Es sei \bar{x} ein lokaler Minimalpunkt von P, an dem die Funktionen f und $g_i, i \in I_0(\bar{x})$, differenzierbar sind. Dann existieren Multiplikatoren $\kappa \geq 0, \lambda_i \geq 0, i \in I_0(\bar{x})$, nicht alle null, mit $\kappa \nabla f(\bar{x}) + \sum_{i \in I_0(\bar{x})} \lambda_i \nabla g_i(\bar{x}) = 0$. Dabei kann man κ und die λ_i so wählen, dass entweder $\kappa > 0$ und $|\{i \in I_0(\bar{x})|\lambda_i > 0\}| \leq n$ gilt oder $\kappa = 0$ und $|\{i \in I_0(\bar{x})|\lambda_i > 0\}| \leq n + 1$.
- Lemma 3.2.21: Es sei \bar{x} ein lokaler Minimalpunkt von P, an dem die Funktionen f und $g_i, i \in I_0(\bar{x})$, differenzierbar sind. Dann ist (3.3) gendau dann mit $\kappa = 0$ erfüllbar, wenn die MFB an \bar{x} verletzt ist.
- Satz 3.2.22 Satz von Karush-Kuh-Tucker für $J=\emptyset$ unter MFB: Es sein \bar{x} ein lokaler Minimalpunkt von P, an dem die Funktionen f und $g_i, i \in I_0(\bar{x})$, differenzierbar sind, und an \bar{x} gelte die MFB. Dann existieren Multiplikatoren $\lambda_i \geq 0, i \in I_0(\bar{x})$, mit $\nabla f(\bar{x}) + \sum_{i \in I_0(\bar{x})} \lambda_i \nabla g_i(\bar{x}) = 0$. Dabei kann man die λ_i so wählen, dass $|\{i \in I_0(\bar{x}) | \lambda_i > 0\}| \leq n$ gilt.

- Satz 3.2.23 Satz von Karush-Kuhn-Tucker für $J = \emptyset$ unter AB: Die Aussage von Satz 3.2.22 bleibt richtig, wenn man dort MFB durch AFB ersetzt.
- Korollar 3.2.24: Es seien $g_i(x) = a_i^T x + b_i, 1 \le i \le p$, und \bar{x} sei ein lokaler Minimalpunkt von P, an dem f differenzierbar ist. Dann existieren Multiplikatoren $\lambda_i \ge 0, i \in I_0(\bar{x})$, mit $\nabla f(\bar{x}) + \sum\limits_{i \in I_0(\bar{x})} \lambda_i a_i = 0$. Dabei kann man die λ_i so wählen, dass $|\{i \in I_0(\bar{x}) | \lambda_i > 0\}| \le n$ gilt.