JZ4740 Mobile Application Processor

Data Sheet

Release Date: Jul. 28, 2011

JZ4740 Mobile Application Processor

Data Sheet

Copyright © 2005-2007 Ingenic Semiconductor Co., Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this

document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Room 108, Building A, Information Center, Zhongguancun Software Park

8 Dongbeiwang West Road, Haidian District, Beijing, China,

Tel: 86-10-82826661 Fax: 86-10-82825845

Http://www.ingenic.cn

CONTENTS

1	Ove	erview	1
1	.1	Block Diagram	2
1	.2	Features	3
	1.2.1	CPU Core	3
	1.2.2	2 Memory Sub-systems	3
	1.2.3	System Devices	4
	1.2.4	Audio/Display/UI Interfaces	4
	1.2.5	On-chip Peripherals	5
	1.2.6	Bootrom	6
1	.3	Characteristic	7
2	Pac	ckaging and Pinout Information	8
_			
2		Overview	
		Solder Process	
		Package	
2	.4	Pin Description [1][2]	11
3	Ele	ctrical Specifications	20
3	.1	Absolute Maximum Ratings	20
3		Recommended operating conditions	
3	.3	DC Specifications	23
3	.4	Characteristics of CODEC	25
3	.5	Power Consumption Specifications	26
3	.6	Oscillator Electrical Specifications	28
	3.6.1	32.768KHz Oscillator Specifications	28
	3.6.2	2 EXCLK Oscillator Specifications	28
3	.7	Power On, Reset and BOOT	29
	3.7.1	Power-On Timing	29
	3.7.2	Reset procedure	30
	3.7.3	3 BOOT	30

1 Overview

JZ4740 is a highly integrated SOC solution for multimedia rich and general embedded products like PMP, GPS navigator and smart phone.

At the heart of JZ4740 is XBurst CPU core. XBurst is an industry leading microprocessor core which delivers superior high performance and best-in-class low power consumption.

The SIMD instruction set implemented by XBurst core, in together with the video post processing unit, provides RMVB, MPEG-1/2/4 decoding capability up to D1 resolution.

The memory interface of JZ4740 supports a variety of memory types that allow flexible design requirements, including glueless connection to SLC NAND flash memory or 4-bit ECC MLC NAND flash memory for cost sensitive applications.

On-chip modules such as LCD controller, audio CODEC, multi-channel SAR-ADC, AC97/I2S controller and camera interface offer designers a rich suite of peripherals for multimedia application. WLAN, Bluetooth and expansion options are supported through the USB 1.1 and MMC/SD/SDIO host controllers. Other peripherals such as USB 2.0 device, UART, SPI and general system resources provide enough computing and connectivity capability for many applications.

1.1 Block Diagram

Figure 1-1 JZ4740 Diagram

1.2 Features

1.2.1 **CPU Core**

- XBurst CPU
 - XBurst® RISC instruction set to support Linux and WinCE
 - XBurst® SIMD instruction set to support multimedia acceleration
 - XBurst[®] 8-stage pipeline micro-architecture up to 360MHz
- MMU
 - 32-entry dual-pages joint-TLB
 - 4 entry Instruction TLB
 - 4 entry data TLB
- Cache
 - 16K instruction cache
 - 16K data cache
- Hardware debug support through JTAG interface

1.2.2 Memory Sub-systems

- Static memory interface
 - Direct interface to SRAM, ROM, Burst ROM, and NOR Flash
 - Four chip-select pin for static memory, each can be configured separately
 - Support 8, 16 or 32 bits data width
 - The size and base address of static memory banks are programmable
- NAND flash interface
 - Support MLC NAND as well as SLC NAND
 - Support all 8-bit/16-bit NAND Flash devices regardless of density and organization
 - Hamming and Reed-Solomon Hardware ECC for error detection and correction
 - Support automatic boot up from NAND Flash devices
- Synchronous DRAM interface
 - 1 banks with programmable size and base address
 - 32-bit and 16-bit data bus width
 - Multiplexes row/column addresses according to SDRAM capacity
 - Two-bank or four-bank SDRAM is supported
 - Supports auto-refresh and self-refresh functions
 - Supports power-down mode to minimize the power consumption of SDRAM
 - Supports page mode
- Direct memory access controller
 - Six independent DMA channels
 - Descriptor supported
 - Transfer data units: 8-bit, 16-bit, 32-bit, 16-byte or 32-byte
 - Transfer requests can be: auto-request within DMA; and on-chip peripheral module request
 - Interrupt on transfer completion or transfer error

- Supports two transfer modes: single mode or block mode
- The XBurst processor system supports little endian only

1.2.3 System Devices

- Clock generation and power management
 - On-chip oscillator circuit for an 32768Hz clock and an 12MHz clock
 - On-chip phase-locked loops (PLL) with programmable multiple-ratio. Internal counter are used to ensure PLL stabilize time
 - PLL on/off is programmable by software
 - ICLK, PCLK, SCLK, MCLK and LCLK frequency can be changed separately for software by setting division ratio
 - Supports six low-power modes and function: NORMAL mode; DOZE mode; IDLE mode;
 SLEEP mode; HIBERNATE mode; and MODULE-STOP function
- RTC (Real Time Clock)
 - 32-bit second counter
 - 1Hz from 32768hz
 - Alarm interrupt
 - Independent power
 - A 32-bits scratch register used to indicate whether power down happens for RTC power
- Interrupt controller
 - Total 28 maskable interrupt sources from on-chip peripherals and external request through GPIO ports
 - Interrupt source and pending registers for software handling
 - Unmasked interrupts can wake up the chip in sleep or standby mode
- Timer and counter unit with PWM output
 - Provide eight separate channels
 - 16-bit A counter and 16-bit B counter with auto-reload function every channel
 - Support interrupt generation when the A counter underflows
 - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK
 (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
 - PWM output supported
- Watchdog timer
 - 16-bit counter in RTC clock with 1, 4, 16, 64, 256 and 1024 clock dividing selected
 - Generate power-on reset

1.2.4 Audio/Display/UI Interfaces

- LCD controller
 - Single-panel display in active mode, and single- or dual-panel displays in passive mode
 - 2, 4, 16 grayscales and up to 4096 colors in STN mode
 - 2, 4, 16, 256, 4K, 32K, 64K, 256K and 16M colors in TFT mode
 - 18 bit data bus support 1,2,4,8 pins STN panel, 16bit and 18bit TFT and 8bit I/F TFT

- Display size up to 800×600 pixels
- 256×16 bits internal palette RAM
- Support ITU601/656 data format
- Support smart LCD (SRAM-like interface LCD module)
- Image process unit
 - Video frame resize
 - Color space conversion: 420/444/422 YUV to RGB convert
- Camera interface module
 - Input image size up to 2048×2048 pixels
 - Supports CCIR656 data format
 - 32×32 image data receive FIFO with DMA support
- On-chip audio CODEC
 - 18-bit DAC, SNR: 88dB
 - 16-bit ADC, SNR: 85dB
 - Sample rate: 8/11.025/12/16/22.05/24/32/44.1/48kHz
 - L/R channels line input
 - MIC input
 - L/R channels headphone output amplifier support up to 32ohm load
- AC97/I2S controller
 - Supports 8, 16, 18, 20 and 24 bit for sample for AC-link and I2S/MSB-Justified format
 - DMA transfer mode support
 - Support variable sample rate mode for AC-link format
 - Power down mode and two wake-up mode support for AC-link format
 - Programmable Interrupt function support
 - Support the on-chip CODEC
- SADC
 - 12-bit, 2Mbps, SNR@500kHz is 61dB, THD@500kHz is -71dB
 - XP/XN, YP/YN inputs for touch screen
 - Battery voltage input
 - 1 generic input Channel

1.2.5 On-chip Peripherals

- General-Purpose I/O ports
 - Total GPIO pin number is 124
 - Each pin can be configured as general-purpose input or output or multiplexed with internal chip functions
 - Each pin can act as a interrupt source and has configurable rising/falling edge or high/low level detect manner, and can be masked independently
 - Each pin can be configured as open-drain when output
 - Each pin can be configured as internal resistor pull-up
- I2C bus interface
 - Only supports single master mode

- Supports I2C standard-mode and F/S-mode up to 400 kHz
- Double-buffered for receiver and transmitter
- Supports general call address and START byte format after START condition
- Synchronous serial interface
 - Supports three formats: TI's SSP, National Microwire, and Motorola's SPI
 - Configurable 2 17 (or multiples of them) bits data transfer
 - Full-duplex/transmit-only/receive-only operation
 - Supports normal transfer mode or Interval transfer mode
 - Programmable transfer order: MSB first or LSB first
 - 17-bit width, 128-level deep transmit-FIFO and receive-FIFO
 - Programmable divider/prescaler for SSI clock
 - Back-to-back character transmission/reception mode
 - Up to 60M bps
- USB 1.1 host interface
 - Open Host Controller Interface (OHCI)-compatible and USB Revision 1.1-compatible
- USB 2.0 device interface
 - Compliant with USB protocol revision 2.0
 - High speed and full speed supported
 - Embedded USB 2.0 PHY
- MMC/SD/SDIO controller
 - Compliant with "The MultiMediaCard System Specification version 3.3"
 - Compliant with "SD Memory Card Specification version 1.01" and "SDIO Card Specification version 1.0" with 1 command channel and 4 data channels
 - 20~80 Mbps maximum data rate
 - Supports up to 10 cards (including one SD card)
 - Maskable hardware interrupt for SD I/O interrupt, internal status, and FIFO status
- Two UARTs
 - 5, 6, 7 or 8 data bit operation with 1 or 1.5 or 2 stop bits, programmable parity (even, odd, or none)
 - 16x8bit FIFO for transmit and 16x11bit FIFO for receive data
 - Interrupt support for transmit, receive (data ready or timeout), and line status
 - Supports DMA transfer mode
 - Provide complete serial port signal for modem control functions
 - Support slow infrared asynchronous interface (IrDA)
 - IrDA function up to 115200bps baudrate
 - UART function up to 921.6Kbps baudrate

1.2.6 Bootrom

8kB Boot ROM

1.3 Characteristic

Item	Characteristic
Process Technology	0.16um CMOS
Power supply voltage	I/O: 3.3 ± 0.3V
	Core: 1.8 ± 0.2
Package	193 BGA
	13mm * 13mm
Operating frequency	360MHz

2 Packaging and Pinout Information

2.1 Overview

JZ4740 processor is offered in a 193-pin LFBGA package, which is 13mm x 13mm outline, 15 x 15 matrix ball grid array and 0.8mm pitch, show in Figure 2-1.

The JZ4740 pin to ball assignment is show in Figure 2-2. The detailed pin description is listed in Table $2-1 \sim \text{Table } 2-14$.

2.2 Solder Process

JZ4740 package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in <u>J-STD-020C</u>.

2.3 Package

NOTES:

- Dimension is measured at the maximum solder ball diameter, parallel to primary datum C
- 2. A Primary datum C and seating plane are defined by the spherical crowns of the solder balls
- Package outline 15 x 15 matrix, 13.00mm x 13.00mm x 1.34mm, 0.70mm mold cap, 0.46mm ball, 0.80mm pitch, laminate substrate

Figure 2-1 JZ4740 package

						_	Top V	Top View BGA193	3A193							
	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	
Α	LCD_D0	LCD_D1	LCD_D3	LCD_D5	RO_DS	LCD_D12	LCD_D15	TCD_DE	LCD_PS	CIM_MCLK	CIM_D0	CIM_D3	CIM_D7	TRST	TMS	A
В	LCD_PCLK	LCD_D2	LCD_D4	PCD_D6	60 ⁻ 001	LCD_D13	LCD_D16	LCD_HSYN	LCD_REV	CIM_HSYN	CIM_D1	CIM_D4	CIM_D6	IOT	TCK	В
ပ	D26	D25	D24	LCD_D7	LCD_D10	LCD_D14	LCD_D17	LCD_VSYN	CD_CLS	CIM_PCLK	CIM_D2	CIM_D5	BSEL1	BSEL0	TDO	ပ
۵	D30	D29	D28	D27	LCD_D11	LCD_D11 VDDCOR	VDDIO	VDDIO	LCD_SPL	CIM_VSYN	VDDCDC	LLINEIN	RLINEIN	MICIN	TEST_TE	D
ш	D18	D17	D16	D31								VREF	HPRO	HPLO	MICBIAS	Е
щ	D21	D20	D19	VDDIO			VSSIO		VSSCDC			VDDRTC	PPRST	WKUP	PWRON	щ
ღ	A3	D23	D22	VDDIO		VSSIO	VSSIO	VSSCORE VSSCORE	VSSCORE	HPVSS		HPVDD	RREF	RTCLK	RTCLKO	უ
Ξ	A0	A1	A2	VDDCOR			VSSCORE	VSSCORE VSSCORE	VSSUSB			VDDUSB	VDDA	DM0	DP0	I
7	RAS	DCS	A10	VDDCOR		VSSIO	VSSIO	VSSCOREVSSCORE	VSSCORE	VSSPLL		VDDPLL	NX	DM1	DP1	ſ
×	WE2	WE3	SDWE	CAS			VSSIO		VSSADC			ADIN1	ХР	γP	ΥN	×
_	CKE	СКО	WE1	WEO								VDDADC	SSI_DT	SSI_DR	PBAT	٦
Σ	A8	A9	A11	A12	D14	VDDCOR	VDDCOR	VDDIO	A15	CS4	WAIT	PWM3	SSI_CE1	EXCLK	EXCLKO	M
Z	A5	A6	A7	D11	D15	D2	D5	PWM5	WR	FWE	CS2	PWM6	PWM0	SSLCE0	SSLCLK	z
۵	A13	A4	D9	D12	D0	D3	D6	PWM4	RD	FRE	CS1	PWM2	MSC_D3	MSC_D1	MSC_CMD	Ф
œ	A14	D8	D10	D13	D1	D4	D7	A16	CS3	GPC30	PWM7	PWM1	MSC_D2	MSC1_D0	MSC1_D0 MSC_CLK	Я
	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	

Figure 2-2 JZ4740 pin to ball assignment

2.4 Pin Description [1][2]

Table 2-1 EMC Pins (69; all GPIO shared)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
D0 PA0	10 10	P5	8mA, pullup-pe	D0: Memory data bus bit 0 PA0: GPIO group A bit 0	VDDIO
D1 PA1	10 10	R5	8mA, pullup-pe	D1: Memory data bus bit 1 PA1: GPIO group A bit 1	VDDIO
D2 PA2	10 10	N6	8mA, pullup-pe	D2: Memory data bus bit 2 PA2: GPIO group A bit 2	VDDIO
D3 PA3	10 10	P6	8mA, pullup-pe	D3: Memory data bus bit 3 PA3: GPIO group A bit 3	VDDIO
D4 PA4	10 10	R6	8mA, pullup-pe	D4: Memory data bus bit 4 PA4: GPIO group A bit 4	VDDIO
D5 PA5	10 10	N7	8mA, pullup-pe	D5: Memory data bus bit 5 PA5: GPIO group A bit 5	VDDIO
D6 PA6	10 10	P7	8mA, pullup-pe	D6: Memory data bus bit 6 PA6: GPIO group A bit 6	VDDIO
D7 PA7	10 10	R7	8mA, pullup-pe	D7: Memory data bus bit 7 PA7: GPIO group A bit 7	VDDIO
D8 PA8	10 10	R2	8mA, pullup-pe	D8: Memory data bus bit 8 PA8: GPIO group A bit 8	VDDIO
D9 PA9	10 10	P3	8mA, pullup-pe	D9: Memory data bus bit 9 PA9: GPIO group A bit 9	VDDIO
D10 PA10	10 10	R3	8mA, pullup-pe	D10: Memory data bus bit 10 PA10: GPIO group A bit 10	VDDIO
D11 PA11	10 10	N4	8mA, pullup-pe	D11: Memory data bus bit 11 PA11: GPIO group A bit 11	VDDIO
D12 PA12	10 10	P4	8mA, pullup-pe	D12: Memory data bus bit 12 PA12: GPIO group A bit 12	VDDIO
D13 PA13	10 10	R4	8mA, pullup-pe	D13: Memory data bus bit 13 PA13: GPIO group A bit 13	VDDIO
D14 PA14	10 10	M5	8mA, pullup-pe	D14: Memory data bus bit 14 PA14: GPIO group A bit 14	VDDIO
D15 PA15	10 10	N5	8mA, pullup-pe	D15: Memory data bus bit 15 PA15: GPIO group A bit 15	VDDIO
D16 PA16	10 10	E3	8mA, pullup-pe	D16: Memory data bus bit 16 PA16: GPIO group A bit 16	VDDIO
D17 PA17	10 10	E2	8mA, pullup-pe	D17: Memory data bus bit 17 PA17: GPIO group A bit 17	VDDIO
D18 PA18	10 10	E1	8mA, pullup-pe	D18: Memory data bus bit 18 PA18: GPIO group A bit 18	VDDIO
D19 PA19	10 10	F3	8mA, pullup-pe	D19: Memory data bus bit 19 PA19: GPIO group A bit 19	VDDIO
D20 PA20	10 10	F2	8mA, pullup-pe	D0: Memory data bus bit 20 PA0: GPIO group A bit 20	VDDIO
D21 PA21	10 10	F1	8mA, pullup-pe	D0: Memory data bus bit 21 PA0: GPIO group A bit 21	VDDIO
D22 PA22	10 10	G3	8mA, pullup-pe	D0: Memory data bus bit 22 PA0: GPIO group A bit 22	VDDIO
D23 PA23	10 10	G2	8mA, pullup-pe	D0: Memory data bus bit 23 PA0: GPIO group A bit 23	VDDIO
D24 PA24	10 10	С3	8mA, pullup-pe	D0: Memory data bus bit 24 PA0: GPIO group A bit 24	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
D25 PA25	10 10	C2	8mA, pullup-pe	D0: Memory data bus bit 25 PA0: GPIO group A bit 25	VDDIO
D26 PA26	10 10	C1	8mA, pullup-pe	D0: Memory data bus bit 26 PA0: GPIO group A bit 26	VDDIO
D27 PA27	10 10	D4	8mA, pullup-pe	D0: Memory data bus bit 27 PA0: GPIO group A bit 27	VDDIO
D28 PA28	10 10	D3	8mA, pullup-pe	D0: Memory data bus bit 28 PA0: GPIO group A bit 28	VDDIO
D29 PA29	10 10	D2	8mA, pullup-pe	D0: Memory data bus bit 29 PA0: GPIO group A bit 29	VDDIO
D30 PA30	10 10	D1	8mA, pullup-pe	D0: Memory data bus bit 30 PA0: GPIO group A bit 30	VDDIO
D31 PA31	10 10	E4	8mA, pullup-pe	D0: Memory data bus bit 31 PA0: GPIO group A bit 31	VDDIO
A0 PB0	0 10	H1	12mA, pullup-pe	A0: Static/SDRAM memory address bit 0 PB0: GPIO group B bit 0	VDDIO
A1 PB1	0 10	H2	12mA, pullup-pe	A1: Static/SDRAM memory address bit 1 PB1: GPIO group B bit 1	VDDIO
A2 PB2	0 10	НЗ	12mA, pullup-pe	A2: Static/SDRAM memory address bit 2 PB2: GPIO group B bit 2	VDDIO
A3 PB3	0 10	G1	12mA, pullup-pe	A3: Static/SDRAM memory address bit 3 PB3: GPIO group B bit 3	VDDIO
A4 PB4	0 10	P2	12mA, pullup-pe	A4: Static/SDRAM memory address bit 4 PB4: GPIO group B bit 4	VDDIO
A5 PB5	0 10	N1	12mA, pullup-pe	A5: Static/SDRAM memory address bit 5 PB5: GPIO group B bit 5	VDDIO
A6 PB6	0 10	N2	12mA, pullup-pe	A6: Static/SDRAM memory address bit 6 PB6: GPIO group B bit 6	VDDIO
A7 PB7	0 10	N3	12mA, pullup-pe	A7: Static/SDRAM memory address bit 7 PB7: GPIO group B bit 7	VDDIO
A8 PB8	0 10	M1	12mA, pullup-pe	A8: Static/SDRAM memory address bit 8 PB8: GPIO group B bit 8	VDDIO
A9 PB9	0 10	M2	12mA, pullup-pe	A9: Static/SDRAM memory address bit 9 PB9: GPIO group B bit 9	VDDIO
A10 PB10	0 10	J3	12mA, pullup-pe	A10: Static/SDRAM memory address bit 10 PB10: GPIO group B bit 10	VDDIO
A11 PB11	0 10	МЗ	12mA, pullup-pe	A11: Static/SDRAM memory address bit 11 PB11: GPIO group B bit 11	VDDIO
A12 PB12	0 10	M4	12mA, pullup-pe	A12: Static/SDRAM memory address bit 12 PB12: GPIO group B bit 12	VDDIO
A13 PB13	0 10	P1	12mA, pullup-pe	A13: Static/SDRAM memory address bit 13 PB13: GPIO group B bit 13	VDDIO
A14 PB14	0 10	R1	12mA, pullup-pe	A14: Static/SDRAM memory address bit 14 PB14: GPIO group B bit 14	VDDIO
A15 CL PB15	0 0 10	M9	2mA, pullup-pe	A15: Static memory address bit 15 CL: NAND flash command latch PB15: GPIO group B bit 15	VDDIO
A16 AL PB16	0 0 IO	R8	2mA, pullup-pe	A16: Static memory address bit 16 AL: NAND flash address latch PB16: GPIO group B bit 16	VDDIO
DCS_ PB19	0 10	J2	8mA, pullup-pe	DCS_: SDRAM chip select PB19: GPIO group B bit 19	VDDIO
RAS_ PB20	0 10	J1	8mA, pullup-pe	RAS_: SDRAM row address strobe PB20: GPIO group B bit 20	VDDIO
CAS_ PB21	0 10	K4	8mA, pullup-pe	CAS_: SDRAM column address strobe PB21: GPIO group B bit 21	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SDWE_ & BUFD_ PB22	0 10	K3	12mA, pullup-pe	SDWE_: SDRAM write enable BUFD_: Select CPU to SRAM chip direction in data bi-direction buffer PB22: GPIO group B bit 22	VDDIO
CKE PB23	0 10	L1	8mA, pullup-pe	CKE: SDRAM clock enable PB23: GPIO group B bit 23	VDDIO
CKO PB24	0 10	L2	12mA, pullup-pe	CKO: SDRAM clock PB24: GPIO group B bit 24	VDDIO
CS1_ PB25	0 10	P11	2mA, pullup-pe	CS1_: Static memory chip select 1 PB25: GPIO group B bit 25	VDDIO
CS2_ PB26	0 10	N11	2mA, pullup-pe	CS2_: Static memory chip select 2 PB26: GPIO group B bit 26	VDDIO
CS3_ PB27	0 10	R9	2mA, pullup-pe	CS3_: Static memory chip select 3 PB27: GPIO group B bit 27	VDDIO
CS4_ PB28	0 10	M10	2mA, pullup-pe	CS4_: Static memory chip select 4 PB28: GPIO group B bit 28	VDDIO
RD_ PB29	0 10	P9	2mA, pullup-pe	RD_: Static memory read strobe PB29: GPIO group B bit 29	VDDIO
WR_ PB30	0 10	N9	2mA, pullup-pe	WR_: Static memory write strobe PB30: GPIO group B bit 30	VDDIO
WE0_ PB31	0 10	L4	8mA, pullup-pe	WE0_: SDR/Static memory byte 0 write enable PB31: GPIO group B bit 31	VDDIO
WE1_ PC24	0 10	L3	8mA, pullup-pe	WE1_: SDR/Static memory byte 1 write enable PC24: GPIO group C bit 24	VDDIO
WE2_ PC25	0 10	K1	8mA, pullup-pe	WE2_: SDR/Static memory byte 2 write enable PC25: GPIO group C bit 25	VDDIO
WE3_ PC26	0 10	K2	8mA, pullup-pe	WE3_: SDR/Static memory byte 3 write enable PC26: GPIO group C bit 26	VDDIO
WAIT_ PC27	I IO	M11	2mA, Schmitt, pullup-pe	WAIT_: Slow static memory/device wait signal PC27: GPIO group C bit 27	VDDIO
FRE_ PC28	0 10	P10	2mA, pullup-pe	FRE_: NAND flash read enable PC28: GPIO group C bit 28	VDDIO
FWE_ PC29	0 10	N10	2mA, pullup-pe	FWE_: NAND flash write enable PC29: GPIO group C bit 29	VDDIO
PC30 (FRB)	Ю	R10	2mA, pullup-pe	PC30: GPIO group C bit 30. If NAND flash is used, it should connect to NAND FRB (NAND flash ready/busy)	VDDIO

Table 2-2 LCDC Pins (26; all GPIO shared)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
LCD_CLS A21 PB17	000	C9	4mA, pullup-pe	LCD_CLS: LCD CLS output A21: Static memory address bit 21 PB17: GPIO group B bit 17	VDDIO
LCD_SPL A22 PB18	0 0 10	D9	4mA, pullup-pe	LCD_SPL: LCD SPL output A22: Static memory address bit 22 PB18: GPIO group B bit 18	VDDIO
LCD_D0 PC0	0 10	A1	4mA, pullup-pe	LCD_D0: LCD data bit 0 PC0: GPIO group C bit 0	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
LCD_D1 PC1	0 10	A2	4mA, pullup-pe	LCD_D1: LCD data bit 1 PC1: GPIO group C bit 1	VDDIO
LCD_D2 PC2	0 10	B2	4mA, pullup-pe	LCD_D2: LCD data bit 2 PC2: GPIO group C bit 2	VDDIO
LCD_D3 PC3	0 10	A3	4mA, pullup-pe	LCD_D3: LCD data bit 3 PC3: GPIO group C bit 3	VDDIO
LCD_D4 PC4	0 10	В3	4mA, pullup-pe	LCD_D4: LCD data bit 4 PC4: GPIO group C bit 4	VDDIO
LCD_D5 PC5	0 10	A4	4mA, pullup-pe	LCD_D5: LCD data bit 5 PC5: GPIO group C bit 5	VDDIO
LCD_D6 PC6	0 10	B4	4mA, pullup-pe	LCD_D6: LCD data bit 6 PC6: GPIO group C bit 6	VDDIO
LCD_D7 PC7	0 10	C4	4mA, pullup-pe	LCD_D7: LCD data bit 7 PC7: GPIO group C bit 7	VDDIO
LCD_D8 PC8	0 10	A5	4mA, pullup-pe	LCD_D8: LCD data bit 8 PC8: GPIO group C bit 8	VDDIO
LCD_D9 PC9	0 10	B5	4mA, pullup-pe	LCD_D9: LCD data bit 9 PC9: GPIO group C bit 9	VDDIO
LCD_D10 PC10	0 10	C5	4mA, pullup-pe	LCD_D10: LCD data bit 10 PC10: GPIO group C bit 10	VDDIO
LCD_D11 PC11	0 10	D5	4mA, pullup-pe	LCD_D11: LCD data bit 11 PC11: GPIO group C bit 11	VDDIO
LCD_D12 PC12	0 10	A6	4mA, pullup-pe	LCD_D12: LCD data bit 12 PC12: GPIO group C bit 12	VDDIO
LCD_D13 PC13	0 10	В6	4mA, pullup-pe	LCD_D13: LCD data bit 13 PC13: GPIO group C bit 13	VDDIO
LCD_D14 PC14	0 10	C6	4mA, pullup-pe	LCD_D14: LCD data bit 14 PC14: GPIO group C bit 14	VDDIO
LCD_D15 PC15	0 10	A7	4mA, pullup-pe	LCD_D15: LCD data bit 15 PC15: GPIO group C bit 15	VDDIO
LCD_D16 PC16	0	В7	4mA, pullup-pe	LCD_D16: LCD data bit 16 PC20: GPIO group C bit 16	VDDIO
LCD_D17 PC17	0 10	C7	4mA, pullup-pe	LCD_D17: LCD data bit 17 PC17: GPIO group C bit 17	VDDIO
LCD_PCLK PC18	10 10	B1	4mA, pullup-pe	LCD_PCLK: LCD pixel clock PC18: GPIO group C bit 18	VDDIO
LCD_HSYNC PC19	10 10	В8	4mA, pullup-pe	LCD_HSYNC: LCD line clock/horizontal sync PC19: GPIO group C bit 19	VDDIO
LCD_VSYNC PC20	10 10	C8	4mA, pullup-pe	LCD_VSYNC: LCD frame clock/vertical sync PC20: GPIO group C bit 20	VDDIO
LCD_DE PC21	0 10	A8	4mA, pullup-pe	LCD_DE: STN AC bias drive/non-STN data enable PC21: GPIO group C bit 21	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
LCD_PS A19 PC22	0 0 10	A9	4mA, pullup-pe	LCD_PS: LCD PS output for special TFT A19: Static memory address bit 19 PC22: GPIO group C bit 22	VDDIO
LCD_REV A20 PC23	0 0 10	В9	4mA, pullup-pe	LCD_REV: LCD REV output for special TFT A20: Static memory address bit 20 PC23: GPIO group C bit 23	VDDIO

Table 2-3 USB device 2.0 and host 1.1 Pins (8)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
DP0	AIO	H15		DP0: USB 2.0 device data plus	VDD _{USB}
DM0	AIO	H14		DM0: USB 2.0 device data minus	VDD _{USB}
RREF	AIO	G13		RREF: External Reference for USB 2.0 device. Connect a $2.5k\Omega$ external reference resistor, with 5% tolerance to analog ground VSSUSB	VDD _{USB}
VDDA	AIO	H13		VDDA: For USB 2.0 device. Connect a 0.1µF capacitor to analog ground VSSUSB	VDD _{USB}
VDDUSB	Р	H12		VDDUSB: USB analog power, 3.3V	-
VSSUSB	Р	H9		VSSUSB: USB analog ground	-
DP1	AIO	J15		DP1: USB 1.1 host data plus	VDD _{USB}
DM1	AIO	J14		DM1: USB 1.1 host data minus	VDD _{USB}

Table 2-4 SSI/AIC Pins (5; all GPIO shared)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SSI_CLK SCLK_RSTN PD18	000	N15	4mA, pullup-pe	SSI_CLK: SSI clock output SCLK_RSTN: I2S system clock output or AC97 reset output PD18: GPIO group D bit 18	VDDIO
SSI_CE0_ BCLK PD19	000	N14	4mA, pullup-pe	SSI_CE0_: SSI chip enable 0 BCLK: AC97/I2S bit clock PD19: GPIO group D bit 19	VDDIO
SSI_DT SDATO PD20	000	L13	4mA, pullup-pe	SSI_DT: SSI data output SDATO: AC97/I2S serial data output PD20: GPIO group D bit 20	VDDIO
SSI_DR SDATI PD21	- - 10	L14	2mA, pullup-pe	SSI_DR: SSI data input SDATI: AC97/I2S serial data input PD21: GPIO group D bit 21	VDDIO
SSI_CE1G PC SYNC PD22	0 0 0	M13	2mA, pullup-pe	SSI_CE1GPC: SSI chip enable 1 or general-purpose control signal SYNC: AC97 frame SYNC or I2S Left/Right PD22: GPIO group D bit 22	VDDIO

Table 2-5 TCU/I2C/UART Pins (8; all GPIO shared)

Pin Names	D Loc IO Cell Char.	PIN DESCRIPTION	Power	
--------------	------------------------	-----------------	-------	--

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PWM0 I2C_SDA PD23	0 10 10	N13	4mA, pullup-pe	PWM0: PWM 0 output I2C_SDA: I2C serial data PD23: GPIO group D bit 23	VDDIO
PWM1 I2C_SCK PD24	0 10 10	R12	4mA, pullup-pe	PWM1: PWM 1 output I2C_SCK: I2C serial clock PD24: GPIO group D bit 24	VDDIO
PWM2 UART0_TxD PD25	0 0 10	P12	2mA, pullup-pe	PWM2: PWM 2 output UART0_TxD: UART 0 transmitting data PD25: GPIO group D bit 25	VDDIO
PWM3 UART0_RxD PD26	0 	M12	2mA, pullup-pe	PWM3: PWM 3 output UART0_RxD: UART 0 Receiving data PD26: GPIO group D bit 26	VDDIO
PWM4 A17 PD27	0 0 IO	P8	2mA, pullup-pe	PWM4: PWM 4 output A17: Static memory address bit 17 PD27: GPIO group D bit 27	VDDIO
PWM5 A18 PD28	0 0 10	N8	2mA, pullup-pe	PWM5: PWM 5 output A18: Static memory address bit 18 PD28: GPIO group D bit 28	VDDIO
PWM6 UART0_CTS UART1_RxD PD30	0 	N12	2mA, pullup-pe	PWM6: PWM 6 output UART0_CTS_: UART 0 CTS_ input UART1_RXD: UART 1 Receiving data PD30: GPIO group D bit 30	VDDIO
PWM7 UART0_RTS UART1_TxD PD31	0 0 0 0	R11	2mA, pullup-pe	PWM7: PWM 7 output UART0_RTS_: UART 0 RTS_ output UART1_TxD: UART 1 transmitting data PD31: GPIO group D bit 31	VDDIO

Table 2-6 SAR ADC Pins (8)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
XP	ΑI	K13		XP: Touch screen X+ input	VDD_{ADC}
XN	ΑI	J13		XN: Touch screen X- input	VDD_{ADC}
YP	ΑI	K14		YP: Touch screen Y+ input	VDD _{ADC}
YN	ΑI	K15		YN: Touch screen Y- input	VDD _{ADC}
PBAT/ADIN0	Al	L15		ADIN0: Battery voltage input or ADC general purpose input 0	VDD _{ADC}
ADIN1	Al	K12		ADIN1: ADC general purpose input 1	VDD _{ADC}
VDDADC	Р	L12		VDDADC: ADC analog power, 3.3 V	-
VSSADC	Р	K9		VDDADC: ADC analog ground	-

Table 2-7 Audio CODEC Pins (11)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
LHPO	AO	E14		LHPO: Left headphone out	VDD _{CDC}
RHPO	АО	E13		RHPO: Right headphone out	VDD_{CDC}
MICIN	ΑI	D14		MICIN: Microphone input	VDD _{CDC}

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MICBIAS	AO	E15		MICBIAS: Microphone bias	VDD_{CDC}
LLINEIN	Al	D12		LLINEIN: Left line input	VDD _{CDC}
RLINEIN	Al	D13		RLINEIN: Right line input	VDD_{CDC}
VREF	AO	E12		VREF: Voltage Reference Output. An electrolytic capacitor more than 10µF in parallel with a 0.1µF ceramic capacitor attached from this pin to VSSCDC eliminates the effects of high frequency noise	
VDDHP	Р	G12		VDDHP: Headphone amplifier power, 3.3V	-
VSSHP	Р	G10		VSSHP: Headphone amplifier ground	-
VDDCDC	Р	D11		VDDCDC: CODEC analog power, 3.3V	-
VSSCDC	Р	F9		VSSCDC: CODEC analog ground	-

Table 2-8 CIM Pins (12; all GPIO shared)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
CIM_D0 PD00	П	A11	4mA, pullup-pe	CIM_D0: CIM data input bit 0 PD00: GPIO group D bit 0	VDDIO
CIM_D1 PD01	I 10	B11	4mA, pullup-pe	CIM_D1: CIM data input bit 1 PD01: GPIO group D bit 1	VDDIO
CIM_D2 PD02	I 10	C11	4mA, pullup-pe	CIM_D2: CIM data input bit 2 PD02: GPIO group D bit 2	VDDIO
CIM_D3 PD03	10	A12	4mA, pullup-pe	CIM_D3: CIM data input bit 3 PD03: GPIO group D bit 3	VDDIO
CIM_D4 PD04	П	B12	4mA, pullup-pe	CIM_D4: CIM data input bit 4 PD04: GPIO group D bit 4	VDDIO
CIM_D5 PD05	I 10	C12	4mA, pullup-pe	CIM_D5: CIM data input bit 5 PD05: GPIO group D bit 5	VDDIO
CIM_D6 PD06	П	B13	4mA, pullup-pe	CIM_D6: CIM data input bit 6 PD06: GPIO group D bit 6	VDDIO
CIM_D7 PD07	Ю	A13	4mA, pullup-pe	CIM_D7: CIM data input bit 7 PD07: GPIO group D bit 7	VDDIO
CIM_MCLK PD14 ^[3]	0 10	A10	4mA, pullup-pe	CIM_MCLK: CIM master clock output PD14: GPIO group D bit 14	VDDIO
CIM_PCLK PD15	I Ю	C10	4mA, pullup-pe	CIM_PCLK: CIM pixel clock input PD15: GPIO group D bit 15	VDDIO
CIM_VSYNC PD16	I Ю	D10	4mA, pullup-pe	CIM_VSYNC: CIM VSYNC input PD16: GPIO group D bit 16	VDDIO
CIM_HSYNC PD17	I IO	B10	4mA, pullup-pe	CIM_HSYNC: CIM HSYNC input PD17: GPIO group D bit 17	VDDIO

Table 2-9 MSC (MMC/SD) Pins (6; all GPIO shared)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC_D0	Ю	R14	4mA,	MSC_D0: MSC data bit 0	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PD10	Ю		pullup-pe	PD10: GPIO group D bit 10	
MSC_D1 PD11	10 10	P14	4mA, pullup-pe	MSC_D1: MSC data bit 1 PD11: GPIO group D bit 11	VDDIO
MSC_D2 PD12	10 10	R13	4mA, pullup-pe	MSC_D2: MSC data bit 2 PD12: GPIO group D bit 12	VDDIO
MSC_D3 PD13	10 10	P13	4mA, pullup-pe	MSC_D3: MSC data bit 3 PD13: GPIO group D bit 13	VDDIO
MSC_CMD PD08	10 10	P15	4mA, pullup-pe	MSC_CMD: MSC command PD08: GPIO group D bit 8	VDDIO
MSC_CLK PD09	0 10	R15	4mA, pullup-pe	MSC_CLK: MSC clock output PD09: GPIO group D bit 9	VDDIO

Table 2-10 CPM Pins (4)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
EXCLK	ΑI	M14		EXCLK: OSC input or 12MHz clock input	VDDIO
EXCLKO	АО	M15	Oscillator, OSC on/off	EXCLKO: OSC output	VDDIO
VDDPLL	Р	J12		VDDPLL: PLL analog power, 1.8V	-
VSSPLL	Р	J10		VSSPLL: PLL analog ground	-

Table 2-11 RTC Pins (6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
RTCLK	Al	G14	32768Hz	RTCLK: OSC input	VDD_{RTC}
RTCLKO	AO	G15	Oscillator	RTCLKO: OSC output or 32768Hz clock input	VDD _{RTC}
PWRON_	AO	F15	~2mA, open-drain	PWRON_: Power on/off control of main power	VDD _{RTC}
WKUP_ PD29	AI AI	F14	Schmitt	WKUP_: Wake signal after main power down PD29: GPIO group D bit 29, input/interrupt only	VDD _{RTC}
PPRST_	Al	F13	Schmitt	PPRST_: RTC power on reset and RESET-KEY reset input	VDD_{RTC}
VDDRTC	Р	F12		VDDRTC: 3.3V power for RTC and hibernating mode controlling that never power down	-

Table 2-12 JTAG/UART Pins (5)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
TRST_	Ι	A14	Schmitt, pull-down	TRST_: JTAG reset	VDDIO
TCK	Ι	B15	Schmitt, pull-down	TCK: JTAG clock	VDDIO
TMS	I	A15	Schmitt, pull-up	TMS: JTAG mode select	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
TDI UART0_RxD	1	B14	Schmitt, pull-up	TDI: JTAG serial data input UART0_RxD: UART 0 Receiving data, PC31 is used to select between JTAG and UART	VDDIO
TDO UART0_TxD	0	C15	4mA	TDO: JTAG serial data output UART0_TxD: UART 0 transmitting data, PC31 is used to select between JTAG and UART	VDDIO

Table 2-13 System Pins (3)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	
BOOT_SEL0	I	C14	Schmitt	BOOT_SEL0: Boot select bit 0	VDDIO
BOOT_SEL1	I	C13	Schmitt	BOOT_SEL1: Boot select bit 1	VDDIO
TEST_TE	I	D15	Schmitt, pull-down	TEST_TE: Manufacture test enable, program readable	VDDIO

Table 2-14 IO/Core power supplies (22)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
VDDIO	Р	D7 D8 F4 G4 M8		VDDIO: 5 IO digital power, 3.3V	-
VSSIO	Р	F7 G6 G7 J6 J7 K7		VSSIO: 6 IO digital ground	-
VDDCORE	Р	D6 H4 J4 M6 M7		VDDCORE: 5 CORE digital power, 1.8V	-
VSSCORE	Р	G8 G9 H7 H8 J8 J9		VSSCORE: 6 CORE digital ground	-

NOTES:

- 1 The meaning of phases in IO cell characteristics are:
 - a 2/4/8/12mA out: The IO cell's output driving strength is about 2/4/8/12Ma.
 - b Pull-up: The IO cell contains a pull-up resistor.
 - c Pull-down: The IO cell contains a pull-down resistor.
 - d Pullup-pe: The IO cell contains a pull-up resistor and the pull-up resistor can be enabled or disabled by setting corresponding register.
 - e Schmitt: The IO cell is Schmitt trig input.
- 2 For any GPIO shared pin except WAIT_/PC27 and CKO/PB24, the reset state is GPIO input with internal pull-up. The WAIT_/PC27 and CKO/PB24 are initialed to WAIT_ and CKO functions with internal pull-up.
- 3 PD14 is output 0 during reset (PPRST_, WDT-reset and hibernating-reset). After reset, it will be input with internal pull-up.

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

Table 3-1 Absolute Maximum Ratings

Parameter	Min	Max	Unit
Storage Temperature	-65	150	°C
Operation Temperature	-40	125	°C
VDDIO power supplies voltage	-0.5	4.6	V
VDDUSB power supplies voltage	-0.3	3.9	V
VDDCDC power supplies voltage	-0.3	4.0	V
VDDHP power supplies voltage	-0.3	4.0	V
VDDADC power supplies voltage	-0.3	4.0	V
VDDRTC power supplies voltage	-0.3	4.0	V
VDDcore power supplies voltage	-0.2	2.2	V
VDDPLL power supplies voltage	-0.5	2.5	V
Input voltage to VDDIO supplied non-supply pins	-0.5	4.6	V
Input voltage to VDDUSB supplied non-supply pins	-0.5	5.0	V
Input voltage to VDDADC supplied non-supply pins except PBAT	-0.5	4.0	V
Input voltage of PBAT	-0.5	6.0	V
Input voltage to VDDCDC supplied non-supply pins	-0.5	4.0	V
Input voltage to VDDRTC supplied non-supply pins	-0.5	4.0	V
Output voltage from VDDIO supplied non-supply pins	-0.5	4.6	V
Output voltage from VDDUSB supplied non-supply pins	-0.5	5.0	V
Output voltage from VDDADC supplied non-supply pins	-0.5	4.0	V
Output voltage from VDDCDC supplied non-supply pins	-0.5	4.0	V
Output voltage from VDDRTC supplied non-supply pins	-0.5	4.0	V
Maximum ESD stress voltage, Human Body Model; Any pin to			
any supply pin, either polarity, or Any pin to all non-supply pins		2000	V
together, either polarity. Three stresses maximum.			

3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

Symbol	Description	Min	Typical	Max	Unit
V _{IO}	VDDIO voltage	2.97	3.3	3.63	V
V _{USB}	VDDUSB voltage	3.0	3.3	3.6	V
V _{CDC}	VDDCDC voltage	3.0	3.3	3.6	V
V _{HP}	VDDHP voltage	3.0	3.3	3.6	V
V _{ADC}	VDDADC voltage	3.0	3.3	3.6	V
V _{RTC}	VDDRTC voltage	3.0	3.3	3.6	V
V _{CORE}	VDDcore voltage	1.62	1.8	1.98	V
V _{PLL}	VDDPLL analog voltage	1.62	1.8	1.98	V

Table 3-3 Recommended operating conditions for VDDIO supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
$V_{\text{IH-IO}}$	Input high voltage	2.0		3.6	V
V _{IL-IO}	Input low voltage	-0.3		0.8	٧

Table 3-4 Recommended operating conditions for USB 2.0 Device DP/DM pins

Symbol	Description	Min	Typical	Max	Unit
$V_{I\text{-}UF}$	Input voltage range for full speed applications	0		V_{USB}	V
V _{I-UH}	Input voltage range for high speed applications	120		400	mV

Table 3-5 Recommended operating conditions for USB 1.1 Host pins

Symbol	Description	Min	Typical	Max	Unit
V _{I-U11}	Input voltage range	0		V_{USB}	V

Table 3-6 Recommended operating conditions for ADC pins

Symbol	Description	Min	Typical	Max	Unit
V _{I-PBAT1}	PBAT input voltage range when measuring low	0		2.5	\ \
	voltage battery	U		2.5	V
V	PBAT input voltage range when measuring high	0		5	\/
$V_{I-PBAT2}$	voltage battery	U		5	V
V _{I-ADIN1}	ADIN1 input low voltage range	0		V_{ADC}	V
V _{I-TSC}	XN/XP/YN/YP input voltage range	0		V_{ADC}	

Table 3-7 Recommended operating conditions for VDDRTC supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
V _{IH-RTC}	Input high voltage	2.0		3.6	V
$V_{\text{IL-RTC}}$	Input low voltage	-0.3		0.8	V

Table 3-8 Recommended operating conditions for others

Symbol	Description	Min	Typical	Max	Unit
T_A	Ambient temperature	0		85	°C

3.3 DC Specifications

The DC characteristics for each pin include input-sense levels and output-drive levels and currents. These parameters can be used to determine maximum DC loading, and also to determine maximum transition times for a given load. All DC specification values are valid for the entire temperature range of the device.

Table 3-9 DC characteristics for VDDIO supplied pins

Symbol	Parameter		Min	Typical	Max	Unit
V _T	Threshold point			1.59	1.75	V
V _{T+}	Schmitt trig low to high threshold point	1.44	1.50	1.56	V	
V _{T-}	Schmitt trig high to low threshold point	0.88	0.94	0.99	V	
I <u>L</u>	Input Leakage Current				±10	μA
I _{OZ-IO}	Tri-State output leakage current				±10	μA
R _{PU}	Pull-up Resistor		50	65	100	kΩ
R _{PD}	Pull-down Resistor		40	56	107	kΩ
C _{IO}	Capacitance of the pins		4	5	10	pF
$V_{\text{OL-IO}}$	Output low voltage @I _{OL-IO} =2, 4, 8, 12mA				0.4	V
V_{OH-IO}	Output high voltage @I _{OH-IO} =2, 4, 8, 12r	nΑ	2.4			V
		2mA	2.2	3.7	4.6	mA
1	Low level output current	4mA	4.4	7.4	9.2	mA
I _{OL-IO}	0 V _{OL-IO} = 0.4V for cells of	8mA	8.9	14.7	18.4	mA
		12mA	13.3	22.1	27.5	mA
		2mA	2.5	5.1	1.75 1.56 0.99 ±10 ±10 100 107 10 0.4 4.6 9.2 18.4	mA
1	High level output current	4mA	5.0	10.2	15.9	mA
I _{OH-IO}	@ V _{OH-IO} = 2.4V for cells of	8mA	10.0	20.4	31.7	mA
		12mA	15.0	30.6	47.6	mA

Table 3-10 DC characteristics for USB 2.0 Device DP/DM pins

Symbol	Description	Min	Typical	Max	Unit
V_{OH-U20}	Output high voltage	1.5		V_{USB}	V
V _{OL-U20}	Output low voltage	0		0.4	V

Table 3-11 DC characteristics for USB 1.1 Host pins

Symbol	Description	Min	Typical	Max	Unit
V _{O-U11}	Output voltage range	0		V_{USB}	٧
V_{DIS}	Differential input sensitivity	0.2			٧
V _{CM}	Differential common mode range	0.8		2.5	٧
V _{SE}	Single ended receiver threshold	0.8		2.0	V
I _{OZ-U11}	Tri-State leakage current			±10	μA

Z_{DRV}	Driver output resistance, including damping resistor	24	44	Ω
V _{OL-U11}	Static output low voltage		0.3	V
V _{OH-U11}	Static output high voltage	2.8		V

Table 3-12 DC characteristics for ADC pins

Symbol	Description	Min	Typical	Max	Unit
V _{OH-ADC}	XN/XP/YN/YP output high voltage	0.9 * V _{ADC}		V_{ADC}	V
V _{OL-ADC}	XN/XP/YN/YP output low voltage	0		0.1 * V _{ADC}	V
R _{BAT}	BAT input resister		9.3		kΩ
R _{PDADC}	Internal pull down resister		10.4		kΩ

Table 3-13 DC characteristics for VDDRTC supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
V _{OH-RTC}	Output high voltage	2.0		3.6	V
V _{OL-RTC}	Output low voltage	-0.3		0.8	V

3.4 Characteristics of CODEC

Table 3-14 CODEC characteristics

Parameter	Conditions	Min	Typical	Max	Unit
S/N (A-weighted)-DAC	NOTE 1		90		dB
S/N (A-weighted)-ADC	NOTE 1		85		dB
Dynamic range (A-weighted) @-60dB	Fin@1kHz		90		dB
THD+N (A-weighted) @-6dB-DAC	NOTE 2				dB
THD+N (A-weighted) @-6dB-ADC	NOTE 3	70			dB
Inter-channel isolation	Fin@1kHz		60		dB
Inter-channel gain mismatch			0.1	0.2	dB
Closed loop gain			0		dB
Load resistance for HPOUTL & HPOUTR		32			Ω
Power supply rejection @ 200Hz			60		dB
Passband		0		0.42	fs
Passband ripple				±0.1	dB
Stopband		0.58			fs
Stopband attenuation		76			dB
LLINEIN/MIC resistance			40		ΚΩ
LLINEIN/MIC input range			1.6		Vp-p
MICBIAS voltage			2/3Avd		V
MICBIAS drive current			2		mA
HPOUT output peak value			1.8	2.4	Vp-p
Analog supply voltage		3.0	3.3	3.6	V
Digital supply voltage		1.62	1.8	1.98	V
Standby current			3		uA
	DAC enable		28		mW
Power Consumption (no tone)	ADC enable		34		mW
Fower Consumption (no tone)	ADC/DAC		62		mW
	enable		02		11100

NOTES:

- 1 The ratio of the rms output level with 1KHz full-scale input to the rms output noise level. Measured "A-weighted" over a 20Hz to 0.44Fs bandwidth.
- 2 The ratio of the rms value of the signal to the rms sum of all the spectral components less than 0.44Fs bandwidth, including distortion components, tested at -6dB input. The headphone output THD+N>= 70dB under 32Ohm/16Ohm loading.

3.5 Power Consumption Specifications

Power consumption depends on the operating frequency, operating voltage, program used which determines internal and external switching activities, external loading and even environment ambient. The typical power consumption of both dynamic and static for the JZ4740 processor are provided here.

Table 3-15 PLL (VDD_{PLL}) Dynamic Power Consumption

Conditions	PLL out	Typical	Unit
VDDPLL = 1.8V, Temperature = room, PLL input clock = 12MHz	240MHz	6.1	mA
	360MHz	9.1	mA

Table 3-16 PLL (VDD_{PLL}) Static Power Consumption

Conditions	Typical	Unit
VDDPLL = 1.8V, Temperature = room, PLL is in suspend mode	0.1	uA

Table 3-17 RTC (VDD_{RTC}) Dynamic Power Consumption

Conditions	Typical	Unit
VDDRTC = 3.3V, RTCLK = 32768Hz oscillator, Temperature = room	1.8	uA

Table 3-18 IO (VDD_{IO}) Dynamic Power Consumption

Conditions	SDRAM Clock	Typical	Unit
VDDIO = 3.3V, VDDcore = 1.8V, Temperature = room,	80MHz	13.5	mA
32-bit SDRAM, CIM is not run, LCD run in 480 x 272 x 60,	OOIVII IZ	10.0	111/4
EXCLK = 12MHz oscillator, CPU clock is 3 times of SDRAM	120MHz	20	mA
clock, run GCC or media program in Linux	120101112	20	111/4

NOTE: IO dynamic power is greatly depends on the software environment and the hardware (board and other components) environment.

Table 3-19 IO (VDD_{IO}) Static Power Consumption

Conditions	Typical	Unit
VDDIO = 3.3V, VDDcore = 1.8V, Temperature = room, oscillator stopped,	0.05	
No input floating, the pull-up/down is in same direction as the driving	0.05	uA

Table 3-20 CORE (VDD_{CORE}) Dynamic Power Consumption

Conditions	CPU Clock	Typical	Unit
VDDcore = 1.8V, Temperature = room, 32-bit SDRAM, CIM	240MHz	70	mA

is not run, LCD run in 480 x 272 x 60, EXCLK = 12MHz			
oscillator, SDRAM clock is 1/3 of CPU clock, run GCC or	360MHz	110	mA
media program in Linux			

NOTE: CORE dynamic power is greatly depends on the software environment.

Table 3-21 CORE (VDD_{CORE}) Static Power Consumption

Conditions		Unit
VDDcore = 1.8V, Temperature = room,	75	
EXCLK oscillator stopped, all clocks exception RTCLK are stopped	75	uA

Table 3-22 CODEC (VDD_{CDC} + VDD_{HP}) Dynamic Power Consumption

Conditions			Unit
VDDCDC = VDDHP = 3.3V,	Replay all zero samples	11.8	mA
Temperature = room,	Replay full scale 1k sine wave	36.3	mA
220uF capacitors, 32Ωheadphone load,	Typical replay	17.7	mA
48k sample rate, stereo	Typical record	11.4	mA

Table 3-23 CODEC (VDD_{CDC} + VDD_{HP}) Static Power Consumption

Conditions		Unit
VDDCDC = VDDHP = 3.3V, Temperature = room, CODEC is in suspend mode	0.03	uA

Table 3-24 USB (VDD_{USB}) Dynamic Power Consumption

Conditions	Typical	Unit
TBD	TBD	mA

Table 3-25 USB (VDD_{USB}) Static Power Consumption

Conditions		Unit
VDDUSB = 3.3V, Temperature = room,	= 3.3V, Temperature = room,	
USB 2.0 device and USB 1.1 host are in suspend mode	0.03	uA

Table 3-26 ADC (VDD_{ADC}) Dynamic Power Consumption

Conditions			Unit
VDDADC = 3.3V, Temperature = room,	2 / 4	4.0	^
Resister between XP and XN, between YP and YN is	3 measure / 1ms	1.9	mA
440Ω , pen touch in center of the touch screen,	E / 40	0.0	^
measure X, Y, Z values on every measurement	5 measure / 10ms	0.9	mA

Table 3-27 ADC (VDD_{ADC}) Static Power Consumption

Conditions		Unit
VDDADC = 3.3V, Temperature = room, ADC is in suspend mode		uA

3.6 Oscillator Electrical Specifications

The processor contains two oscillators, each for a specific crystal: a 32.768KHz oscillator and a EXCLK oscillator. When choosing a crystal, match the crystal parameters as closely as possible.

3.6.1 32.768KHz Oscillator Specifications

3.6.2 EXCLK Oscillator Specifications

3.7 Power On, Reset and BOOT

3.7.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the JZ4740 processor with a specific sequence of power and resets to ensure proper operation. Figure 3-1 shows this sequence and is detailed in Table 3-28.

On the processor, it is important that the power supplies be powered up in a certain order to avoid high current situations. The required order is:

- 1 VDDRTC
- 2 VDDA: VDDCDC, VDDHP
- 3 All other 3.3V VDDs (VDD33): VDDIO, VDDADC, VDDUSB
- 4 All 1.8V VDDs (VDD18): VDDCORE, VDDPLL

Figure 3-1 Power-On Timing Diagram

Table 3-28 Power-On Timing Parameters

Symbol	Parameter	Min	Typical	Max	Unit
t _{R_VDDRTC}	VDDRTC rise/stabilization time	0	_	100	ms
t _{D_VDD33}	Delay between VDDRTC stable and VDD33 applies	-t _{R_VDDRTC}	_	_	ms ^[1]

t _{R_VDD33}	VDD33 rise/stabilization time	0	-	100	ms
t _{D_VDD18}	Delay between VDD33 stable and VDD18 applies	-t _{R_VDD33} /2	-	10	ms ^[2]
t _{R_VDD18}	VDD18 rise/stabilization time 0 –		100	ms	
t _{D_18A}	Delay between VDD18 (actually VDDcore) arriving 1.5V and VDDA arriving 1V	0.01	_	10	ms
t _{R_VDDA}	VDDA rise/stabilization time	0	-	100	ms
t _{D_PPRST_}	Delay between VDDA stable and PPRST_deasserted	20	_	_	ms

NOTES:

- 1 VDD33 can be applied before VDDRTC stable. But the time of VDD33 arriving 50%, 90% voltage level should later than that of VDDRTC arriving the same level.
- 2 VDD18 can be applied before VDD33 stable. But the time of VDD18 arriving 50%, 90% voltage level should later than that of VDD33 arriving the same level.

3.7.2 Reset procedure

There 3 reset sources: 1 PPRST_ pin reset; 2 WDT timeout reset; and 3 hibernating reset when exiting hibernating mode. After reset, program start from boot.

1 PPRST pin reset.

This reset is trigged when PPRST_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is a few RTCLK cycles after rising edge of PPRST_.

2 WDT reset.

This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles.

3 Hibernating reset.

This reset happens in case of wakeup the main power from power down. The reset keeps for about 0ms ~ 125ms programable, start after WKUP_ signal is recognized.

After reset, all GPIO shared pins, except WAIT_ pin, are put to GPIO input function with the internal pull-up set to on. The WAIT_ pin is set to wait function with the internal pull-up set to on. The PWRON_ is output 0. The 32768Hz/12MHz oscillators are on. The JTAG/UART is put to JTAG function and the TDO is output high-Z (suppose TRST_ is 0). The analog devices, the USB 2.0 PHY, USB 1.1 PHY, the CODEC DAC/ADC and the SAR-ADCs, are put in suspend mode.

3.7.3 BOOT

JZ4740 support 3 different boot sources depending on BOOT_SEL0 and BOOT_SEL1 pin values. Table 3-29 lists them.

Table 3-29 Boot from 3 boot sources

BOOT_SEL1	BOOT_SEL0	Boot Source	
0	0	Boot from NOR flash at CS4	
0	1	Boot from USB device	
1	0	Boot from 512 page NAND flash at CS1	
1	1	Boot from 2k page NAND flash at CS1	

When JZ4740 BOOT from NOR at CS4_ or from NAND at CS1_, some of the memory interface pins are set to function pin from the default GPIO pin and are used in executing BOOT ROM instructions. When BOOT from USB, none of any pins are used. Table 3-30 lists the cases.

Table 3-30 Pins are used and are set to function pins during BOOT

Boot Source Condition	GPIO pin state changed from RESET
USB	None
8-bits NOR flash at CS4_	A0~A22 (PB0~PB16, PC22, PD27, PD28, PC23, PB17, PB18);
	CS4_ (PB28); RD_ (PB29); WR_ (PB30); SDWE_/BUFD_ (PB22);
	D0~D7(PA0~PA7)
16-bits NOR flash at CS4_	A0~A22 (PB0~PB16, PC22, PD27, PD28, PC23, PB17, PB18);
	CS4_ (PB28); RD_ (PB29); WR_ (PB30); SDWE_/BUFD_ (PB22);
	D0~D16(PA0~PA15)
32-bits NOR flash at CS4_	A0~A22 (PB0~PB16, PC22, PD27, PD28, PC23, PB17, PB18);
	CS4_ (PB28); RD_ (PB29); WR_ (PB30); SDWE_/BUFD_ (PB22);
	D0~D31(PA0~PA31)
8-bits NAND flash at CS1_	CLE(PB15); ALE(PB16); CS1_(PB25); FRE(PC28); FEW(PC29);
	FRB(PC30); SDWE_/BUFD_ (PB22); D0~D7(PA0~PA7)
16-bits NAND flash at CS1_	CLE(PB15); ALE(PB16); CS1_(PB25); FRE(PC28); FEW(PC29);
	FRB(PC30); SDWE_/BUFD_ (PB22); D0~D15(PA0~PA15)