

SPM对铁电的探测与调控

董建宇 2023.12.13

Outline

- 1 铁电背景介绍
- 2 SPM对铁电的探测与调控
- 3 总结与展望

铁电性(Ferroelectric)

宏观性质

微观解释 (软模理论)

◆ 软模: 晶格振动的光学横模频率降低至零, 离子不能恢复到最初的平衡位置。

◆ 相变: 离子位移导致自发极化, 产生铁电性。

- 空间反演对称性破缺
- 正负离子位移
- 存在净电偶极矩
- 极化可翻转

CuInP₂S₆ In₂Se₃ Bi₂O₂Se TMDs(WTe₂)

扫描探针铁电性的探测与调控

4

扫描探针铁电性的探测与调控

BP-Bi探测电荷分布:

扫描探针铁电性的探测与调控

BP-Bi调控铁电反转:

水平电场分量

6

总结与展望

- 研究铁电性的综合设备 (SPM+Light)
- 同时具备时间、空间、光子以及声子的探测能力