2D ディジタル回路

2025/4/14 第1回

本日の流れ

- ・授業の流れ
 - 理解度チェック→座学→演習→課題
- シラバスの説明
- 授業内容
 - 2進数, 10進数

自己紹介

- 苅米 志帆乃(かりこめ しほの)
- メールアドレス:s_karikome@tokyo-ct.ac.jp
- 教員室: 3棟4階

計算機の世界

- 「0」と「1」の2つで表現されている
 - $8 \to 1000$
 - A→ 0100 0001
- Q. なぜ? A. 仕組みが簡単だから
 - 0-9の数字で表すと
 - 10通りの電気の強弱をつける必要がある

 - [2] · · · 0.2V
 - 0-1の数字で表すと
 - ON/OFFで表現できる

数の表現

- N進数
 - N種類の数字を用いて表現すること
- 我々が普段使用しているのは「**10**進数 |
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- 計算機では「2進数」
 - 0, 1

実際に見てみよう

10進数	2進数
0	Ó
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1,000
9	1001
10	1010
11	1011

2進数→10進数へ

• 各位に重みをかけて総和をとる

• 10進数の場合

• 例. 1145

1	1	4	5
しるの仕	1020位	(00位	しの位
(000	100	10	

$$1145 = 1 \times 10^{3} + 1 \times 10^{2} + 4 \times 10 + 5 \times 1$$

2進数の場合

• 例. (1101)₂

1	1	0	1
23	22	2	20

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 13

10進数→2進数へ

• 2で繰り返し割っていき、その余りを下位から 上位に並べる

• 例. 13

