Análisis post-óptimo:

¿Cómo pueden cambiar valores del problema sin cambiar la solución?

 $B^{-1} = Columnas de las variables con las que iniciamos el simplex, en la tabla final (Primeras variables del simplex, en la ultima tabla)$

Cambio en un coeficiente de la función objetivo: A) De una variable que no es parte de la solución, x_2 :

			0	0	1	0	-M
			x_1	x_2	x_3	x_4	x_5
1	x_3	3	0	2	1	1	-1
0	x_1	3	1	1	0	1	0
		3	0	2	1	1	-1
			0	2	0	1	M-1

Cambio en un coeficiente de la función objetivo: A) De una variable que no es parte de la solución, x_2 :

			0	Δ	1	0	-M
			x_1	x_2	x_3	x_4	x_5
1	x_3	3	0	2	1	1	-1
0	x_1	3	1	1	0	1	0
		3	0	2	1	1	-1
			0	2-Δ	0	1	M-1

Cambio en un coeficiente de la función objetivo:

A) De una variable que no es parte de la solución, x_2 : $Si \Delta \le 2$, la solución seguirá siendo la misma

			0	Δ	1	0	-M
			x_1	x_2	x_3	x_4	x_5
1	x_3	3	0	2	1	1	-1
0	x_1	3	1	1	0	1	0
		3	0	2	1	1	-1
			0	2-Δ	0	1	M-1

Cambio en un coeficiente de la función objetivo: B) De una variable que es parte de la solución, x_1 :

			0	0	1	0	-M
			x_1	x_2	x_3	x_4	x_5
1	x_3	3	0	2	1	1	-1
0	x_1	3	1	1	0	1	0
		3	0	2	1	1	-1
			0	2	0	1	M-1

Cambio en un coeficiente de la función objetivo: B) De una variable que es parte de la solución, x_1 :

			Δ	0	1	0	-M
			x_1	x_2	x_3	x_4	x_5
1	x_3	3	0	2	1	1	-1
Δ	x_1	3	1	1	0	1	0
		3	Δ	2+Δ	1	1+Δ	-1
			0	2+∆	0	1+∆	M-1

Cambio en un coeficiente de la función objetivo:

B) De una variable que es parte de la solución, x_1 : Si $\Delta \ge -1$, la solución seguirá siendo la misma

			Δ	0	1	0	-M
			x_1	x_2	x_3	x_4	x_5
1	x_3	3	0	2	1	1	-1
Δ	x_1	3	1	1	0	1	0
		3	Δ	2+Δ	1	1+Δ	-1
			0	2+∆	0	1+∆	M-1

Cambio en un término independiente de alguna restricción:

$$b^{actualizada} = B^{-1} b > 0$$

Tendrá que seguir siendo mayor que 0 para que se mantenga la solución

$$Maximizar$$
 x_3

$$s. a: \begin{cases} x_1 + x_2 \le 3 & x_1 + x_2 \le 3 + \Delta \\ x_1 - x_2 - x_3 = 0 & \rightarrow & x_1 - x_2 - x_3 = 0 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 & x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

$$\begin{pmatrix} b & b \\ {3 \choose 0} \rightarrow {3 + \Delta \choose 0} \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$B^{-1}b = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 + \Delta \\ 0 \end{pmatrix} = \begin{pmatrix} 3 + \Delta \\ 3 + \Delta \end{pmatrix}$$

$$\Delta \ge -3$$

Cambio en un término independiente de alguna restricción:

$$b^{actualizada} = B^{-1} b > 0$$

Tendrá que seguir siendo mayor que 0 para que se mantenga la solución

$$Maximizar$$
 x_3

$$s. a: \begin{cases} x_1 + x_2 \le 3 \\ x_1 - x_2 - x_3 = 0 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases} \rightarrow \begin{cases} x_1 + x_2 \le 3 \\ x_1 - x_2 - x_3 = \Delta \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

$$\begin{pmatrix} b & b \\ 3 & \rightarrow \begin{pmatrix} 3 \\ \Delta \end{pmatrix} \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$B^{-1}b = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ \Delta \end{pmatrix} = \begin{pmatrix} 3 - \Delta \\ 3 \end{pmatrix}$$

$$\Delta \le 3$$

Nueva variable en el problema

$$\begin{pmatrix}
 x_6 & x_6 \\
 \begin{pmatrix} 0 \\
 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\
 -2 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & -1 \\
 1 & 0 \end{pmatrix}$$

$$B^{-1}x_6 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Si en la última fila todos siguen siendo positivos: No hace falta hacer más tablas

			0	0	1	0	-M	1
			x_1	x_2	x_3	x_4	x_5	x_6
1	x_3	3	0	2	1	1	-1	2
0	x_1	3	1	1	0	1	0	0
		3	0	2	1	1	-1	2
			0	2	0	1	M-1	1

Nueva restricción:

Si con la solución ya obtenida se cumple la nueva restricción: no hay que hacer nada.

Si no se cumple la nueva restricción: Rehacer todo el simplex.

Nueva restricción:

No se cumpliría: Habría que rehacer el simplex con la nueva restricción

- 23.- Un joven dispone de 74 € para ocio cada 4 semanas, que se gasta en su totalidad. Todo su gasto se realiza en cervezas, ir al cine o ir a cenar. El coste de una cerveza es 1€, el de la entrada de cine 6 € y cada vez que va a cenar se gasta 10 €. Por costumbre, va al menos una vez al cine por semana y nunca va a cenar más de una vez en las 4 semanas. La satisfacción que obtiene por ir al cine es similar a la de 5 cervezas y la de ir a cenar es equivalente a 15 cervezas. Advertencia: notar que el dinero disponible se gasta en su totalidad.
 - a) Obtener el problema de programación lineal que permite maximizar la satisfacción y resolverlo por el método del simplex.
 - b) Hallar el problema dual del problema inicialmente planteado, y sus soluciones.
 - c) Ver en que rango se puede mover la satisfacción obtenida con cada cerveza para que no cambien sus costumbres.
 - d) ¿Cuánto debe variar su disponibilidad monetaria para que deje de gastar en las tres alternativas de ocio?

$$Maximizar$$
 $x_1 + 5x_2 + 15x_3$

$$\begin{cases} x_1 + 6x_2 + 10x_3 = 74 \\ x_2 \ge 4 \\ x_3 \le 1 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

Minimizar $74y_1 + 4y_2 + y_3$

$$\begin{cases} y_1 \ge 1 \\ 6y_1 + y_2 \ge 5 \\ 10y_1 + y_3 \ge 15 \\ y_2 \le 0, y_3 \ge 0 \end{cases}$$

$$Maximizar$$
 $x_1 + 5x_2 + 15x_3$

$$\begin{cases} x_1 + 6x_2 + 10x_3 = 74 \\ x_2 - x_4 = 4 \\ x_3 + x_5 = 1 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0 \end{cases}$$

		1	5	15	0	0	
		x_1	x_2	x_3	x_4	x_5	
x_1	74	1	6	10	0	0	
	4	0	1	0	-1	0	
x_5	1	0	0	1	0	1	

			1	5	15	0	0	-M
			x_1	x_2	x_3	x_4	x_5	x_6
1	x_1	74	1	6	10	0	0	0
-M	x_6	4	0	1	0	-1	0	1
0	x_5	1	0	0	1	0	1	0
		74-4M	1	6-M	10	M	0	-M
			0	1-M	-5	M	0	0

		1	5	15	0	0	-M
		x_1	x_2	x_3	x_4	x_5	x_6
1	x_1						
5	x_2						
0	x_5						

			1	5	15	0	0	-M
			x_1	x_2	x_3	x_4	x_5	x_6
1	x_1	50	1	0	10	6	0	-6
5	x_2	4	0	1	0	-1	0	1
0	x_5	1	0	0	1	0	1	0
		70	1	5	10	1	0	-1
			0	0	-5	1	0	-1+M

		1	5	15	0	0	-M
		x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
1	x_1						
5	x_2						
15	x_3						

			1	5	15	0	0	-M
			x_1	x_2	x_3	x_4	x_5	x_6
1	x_1	40	1	0	0	6	-10	-6
5	x_2	4	0	1	0	-1	0	1
15	x_3	1	0	0	1	0	1	0
		75	1	5	15	1	5	-1
			0	0	0	1	5	-1+M

Solución del Primal: $x_1 = 40$, $x_2 = 4$, $x_3 = 1$

Solución del Dual: $y_1 = 1$, $y_2 = -1$, $y_3 = 5$

			1+Δ	5	15	0	0	-M
			x_1	x_2	x_3	x_4	x_5	x_6
1+∆	x_1	40	1	0	0	6	-10	-6
5	x_2	4	0	1	0	-1	0	1
15	x_3	1	0	0	1	0	1	0
		75	1+∆	5	15	1+6∆	5-10Δ	-1-6Δ
			0	0	0	1+6∆	5-10Δ	-1- 6Δ+M

$$1+6\Delta \ge 0 \to \Delta \ge -\frac{1}{6}$$

$$5-10\Delta \ge 0 \to \Delta \le \frac{1}{2}$$

$$\rightarrow -\frac{1}{6} \le \Delta \le \frac{1}{2}$$

Si la satisfacción varía en ese rango, la solución se mantendrá

Términos independientes antes del cambio: $\begin{pmatrix} 74\\4\\1 \end{pmatrix}$

Si cambian la renta
$$\rightarrow \begin{pmatrix} 74 + \Delta \\ 4 \\ 1 \end{pmatrix}$$

En la tabla inicial aparecerá
$$\begin{pmatrix} 74 + \Delta \\ 4 \\ 1 \end{pmatrix}$$
. En la final: $B^{-1} \begin{pmatrix} 74 + \Delta \\ 4 \\ 1 \end{pmatrix}$

$$B^{-1} = \begin{pmatrix} 1 & -6 & -10 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to B^{-1} \begin{pmatrix} 74 + \Delta \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & -6 & -10 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 74 + \Delta \\ 4 \\ 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 74 + \Delta - 24 - 10 \\ 4 \end{pmatrix} = \begin{pmatrix} 40 + \Delta \\ 4 \end{pmatrix}.$$

Cuando los valores sean positivos, se mantiene la solución:

$$\Delta \ge -40$$

Si la renta cae en más de 40 unidades, la solución cambiará y dejará de gastar en las tres alternativas