Transformações Projetiva

Caio Santiago caio.rafael@unasp.edu.br

Computação gráfica Engenharia da Computação UNASP

Sistemas de Referências

Problema

Como expressar um objeto de 3 dimensões em apenas duas dimensões?

Alyssa Monks

Projeção

Tipos de projeção

Projeção paralela

Múltiplas visões ortogonais

Múltiplas visões ortogonais

Múltiplas visões ortogonais

Projeção em XY

Projeção em YZ

Projeção em XZ

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & T_z & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ T_{\times} & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & T_z & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ T_x & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & T_y & 0 & 1 \end{bmatrix}$$

Projeção oblíqua

Projeção oblíqua

A projeção **cavaleira** distorce a perspectiva, pois retas paralelas dos eixos são representadas com o mesmo comprimento em tela.

A projeção cabinet não distorce a perspectiva.

Projeção axonométrica

Projeção axonométrica

A projeção **isométrica** os planos dos eixos são apresentados com a mesma angulação.

A projeção **dimétrica** dois planos dos eixos são apresentados com a mesma angulação.

A projeção trimétrica nenhum dos planos dos eixos têm o mesmo angulo.

Simcity 2000 - Visão isométrica

Age of Empires II

Lara Croft Go

Monument Valley

$$\begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} \cos \delta & 0 & -\sin \delta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \delta & 0 & \cos \delta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \beta & \sin \beta & 0 \\ 0 & -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} =$$

$$\begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} \cos \delta & \sin \delta \sin \beta & 0 & 0 \\ 0 & \cos \beta & 0 & 0 \\ \sin \delta & -\cos \delta \sin \beta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \delta & \sin \delta \sin \beta & 0 & 0 \\ 0 & \cos \beta & 0 & 0 \\ \sin \delta & -\cos \delta \sin \beta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \delta & \sin \beta \sin \delta & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \delta & \sin \delta \sin \beta & 0 & 0 \\ 0 & \cos \beta & 0 & 0 \\ \sin \delta & -\cos \delta \sin \beta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \cos \beta & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \delta & \sin \delta \sin \beta & 0 & 0 \\ \sin \delta & -\cos \delta \sin \beta & 0 & 0 \\ 0 & \cos \beta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \sin \delta & -\sin \beta \cos \delta & 0 & 1 \end{bmatrix}$$

Posição

Comprimento

$$\sqrt{(\cos^2 \delta + \sin^2 \beta \sin^2 \beta)}$$

$$\sqrt{\cos^2 \beta}$$

$$\sqrt{\sin^2 \delta + \sin^2 \beta \cos^2 \delta}$$

Para ser isométrico :

$$\begin{split} &\sqrt{\left(\cos^2\delta + \sin^2\beta\sin^2\beta\right)} = \sqrt{\cos^2\beta} \\ &\sqrt{\left(\cos^2\delta + \sin^2\beta\sin^2\beta\right)} = \sqrt{\sin^2\delta + \sin^2\beta\cos^2\delta} \end{split}$$

Logo,
$$\beta\cong 35.26^\circ$$
 ($\sin\beta=5.77~{\rm e}~\cos\beta=0.816$) e $\delta=45^\circ$ ($\sin\delta=\cos\delta=0.707$).

$$\begin{bmatrix} 0.707 & 0.408 & 0 & 0 \\ 0 & 0.816 & 0 & 0 \\ 0.707 & -0.408 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1 ponto de fuga

2 pontos de fuga

3 pontos de fuga

$$\frac{y'}{y} = \frac{f}{z} \longrightarrow y' = \frac{f}{z}y$$

Se o plano de projeção está no ponto z=0 e portanto o centro de projeção estiver em z=-f, então :

$$\frac{y'}{f} = \frac{y}{z+f}$$

$$y' = \frac{y*f}{z+f}$$

$$y' = \frac{y}{(z/f)+1}$$

Ponto de fuga em X

Ponto de fuga em Y

Ponto de fuga em Z

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{f_x} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{f_y} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{f_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cliping e normalização em 2D

Precisa levar os pontos do Sistema de Coordenadas do Mundo para o Sistema de Coordenadas Normalizadas, isto é, fazer com que os pontos dentro a área a ser exibida seja estejam entre $-1 \le x \ge 1$ e $-1 \le y \ge 1$.

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ u_{min} & v_{min} & 1 \end{bmatrix} \begin{bmatrix} \frac{u_{max} - u_{min}}{x_{max} - x_{min}} & 0 & 0 \\ 0 & \frac{v_{max} - v_{min}}{y_{max} - y_{min}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -x_{min} & -y_{m}in & 1 \end{bmatrix}$$

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} \frac{u_{max} - u_{min}}{x_{max} - x_{min}} & 0 & 0 \\ 0 & \frac{v_{max} - v_{min}}{y_{max} - y_{min}} & 0 \\ u_{min} \left(\frac{u_{max} - u_{min}}{x_{max} - x_{min}} \right) & v_{min} \left(\frac{v_{max} - v_{min}}{y_{max} - y_{min}} \right) & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -x_{min} & -y_{min} & 1 \end{bmatrix}$$

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} \frac{u_{max} - u_{min}}{x_{max} - x_{min}} & 0 & 0 \\ 0 & \frac{v_{max} - v_{min}}{y_{max} - y_{min}} & 0 \\ 0 & \frac{v_{max} - v_{min}}{y_{max} - y_{min}} & 0 \\ -x_{min} + u_{min} \left(\frac{u_{max} - u_{min}}{x_{max} - x_{min}} \right) & -y_{min} v_{min} \left(\frac{v_{max} - v_{min}}{y_{max} - y_{min}} \right) & 1 \end{bmatrix}$$

Cliping e normalização em 3D

- 1 Transladar o plano de projeção para a origem.
- 2 Rotacionar o plano de projeção de modo que fique sobre o plano XY.
- Fazer um cisalhamento para que o direção da projeção fique paralela ao eixo Z.
- Transladar para que o centro de projeção fique na origem.
- Fazer um cisalhamento para que a linha central da projeção fique no eixo Z.
- 6 Escalar de modo que o volume visualizado seja canônico.