

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 6

Дискретные случайные величины и дискретные случайные векторы

Функция распределения случайной величины

Отображение $\xi:\Omega o\mathbb{R}$ называется случайной величиной, если для каждого $x\in\mathbb{R}$ событие $\{\omega\in\Omega|\,\xi(\omega)\leq x\}\in\mathcal{A},$ т.е. является элементом σ -алгебры \mathcal{A} .

Функция распределения случайной величины ξ определяется равенством $F_{\mathcal{E}}(x) = P(\xi \leq x)$.

Свойства функции распределения: 1) для всех $x \in \mathbb{R} : 0 \le F_{\xi}(x) \le 1$;

- 2) если $x_1 < x_2$, то $F_{\xi}(x_1) \le F_{\xi}(x_2)$; 3) $\lim_{x \to \infty} F_{\xi}(x) = 0$;
- 4) $\lim_{x \to +\infty} F_{\xi}(x) = 1$; 5) для каждого $a \in \mathbb{R}$ $\lim_{x \to a+0} F_{\xi}(x) = F_{\xi}(a)$.

Дискретные случайные величины

Отображение $\xi:\Omega \to M_{\xi} \subseteq \mathbb{R}$, $M_{\xi}=\{x_1,...,x_k,...\}$, называется дискретной случайной величиной (д.с.в.).

События $\{H_k = (\xi = x_k)\}$ образуют полную группу.

Ряд распределения дискретной случайной величины 🗲 имеет вид

Š	x_1	•••	x_k
P	p_1	•••	p_k

где $p_k = P(H_k)$ обладают следующими свойствами:

1)
$$0 < p_k \le 1$$
;

2)
$$\sum p_k = 1$$
 – свойство нормировки;

3)
$$p_k = F_{\xi}(x_k) - F_{\xi}(x_k - 0)$$
.

Функция распределения д.с.в.

Функция дискретной случайной величины

Дана дискретная случайная величина ξ с рядом распределения

ξ	x_1	•••	x_k
P	p_1	•••	p_k

и функция $y = \varphi(x)$.

Ряд распределения случайной величины $\eta\!=\!arphi(\xi)$

$$\begin{array}{c|ccccc} \eta & y_1 & \dots & y_j \\ \hline P & q_1 & \dots & q_j \end{array}$$

Определяется по формулам $y_j = \varphi(x_{i_1}) = \varphi(x_{i_2})...,$

$$q_j = P(\eta = y_j) = \sum_{\varphi(x_i) = y_j} p_i$$
.

Дискретные случайные векторы

Дискретный случайный вектор $\overline{\xi} = (\xi_1, ..., \xi_n)$, где

 $\xi_i:\Omega \to M_i \subseteq \mathbb{R}$ – дискретные случайные величины.

Двумерный дискретный случайный вектор (ξ,η)

$$\xi:\Omega \to M_{\xi} = \{x_1,...,x_i,...\}, \eta:\Omega \to M_{\eta} = \{y_1,...,y_j,...\},$$

 $\{H_{ij} = (\xi = x_i; \eta = y_j)\}$ — полная группа событий.

Совместные вероятности $p_{ij} = P(H_{ij})$ обладают свойствами:

- 1) $0 \le p_{ij} \le 1$;
- $2) \sum_{i} \sum_{j} p_{ij} = 1;$
- 3) $\sum\limits_{j}p_{ij}=p_{i}$, $\sum\limits_{i}p_{ij}=q_{j}$ одномерные (частные) вероятности.

Дискретные случайные векторы

Дискретные случайные величины ξ и η называются

независимыми, если для всех i, j

$$P(\xi = x_i, \eta = y_j) = P(\xi = x_i)P(\eta = y_j).$$

Для проверки независимости по таблице совместного распределения д.с.в. ξ и η сначала находим одномерные вероятности для ξ и η,

_				
	$\xi \setminus \eta$	y_1		y_j
p_1	x_1	p_{11}	• • •	p_{1j}
p_2				
p_i	x_i	p_{i1}		p_{ij}
		q_1	• • •	q_{j}

затем для всех i,j проверяем равенство $p_{ij} = p_i q_j$. Если оно верно для всех i,j, случайные величины ξ и η будут независимы. Если для каких-либо i,j равенство неверно, то случайные величины ξ и η зависимы.