Zadanie: POD Podzielność

XXIV OI, etap I. Plik źródłowy pod.* Dostępna pamięć: 128 MB.

17.10-14.11.2016

Ostatnio na lekcji informatyki Bajtuś uczył się o pozycyjnych systemach liczbowych. Dowiedział się m.in., że ludzie najczęściej korzystają z naturalnego dla nich dziesiątkowego systemu liczbowego, a komputery zapisują liczby w systemie dwójkowym. Jednak dowolna liczba naturalna B większa od 1 może stać się podstawą systemu liczbowego. W takim systemie dysponujemy cyframi $0,1,2,\ldots,B-2,B-1$, a k-cyfrowy zapis złożony z kolejnych cyfr $c_{k-1}c_{k-2}\ldots c_2c_1c_0$ oznacza liczbę

$$c_{k-1} \cdot B^{k-1} + c_{k-2} \cdot B^{k-2} + \dots + c_2 \cdot B^2 + c_1 \cdot B + c_0.$$

Przykładowo, w trójkowym systemie pozycyjnym zapis 201 oznacza liczbę $2 \cdot 3^2 + 0 \cdot 3 + 1$, czyli 19 w systemie dziesiętnym (w skrócie możemy to zapisać jako $201_3 = 19_{10}$).

Bajtuś wybrał pewną liczbę B jako podstawę systemu liczbowego i napisał na karteczkach wszystkie możliwe cyfry w tym systemie, niektóre być może wielokrotnie: dla $i=0,1,\ldots,B-1$ ma on a_i karteczek z cyfrą i. Chciałby ułożyć z nich jak największą liczbę podzielną przez B-1. Napisz program, który mu w tym pomoże. Szukana liczba może być bardzo duża, jednak Bajtusiowi wystarczy, że podasz tylko niektóre jej cyfry. Przyjmujemy, że zapis liczby dodatniej nie może zaczynać się od zer wiodących, a jedyny zapis zera to 0.

Uwaga: Zakładamy, że w przypadku systemów pozycyjnych o podstawie większej niż 10, cyfry w zapisie liczby są rozdzielone np. odstępami, dzięki czemu nie ma problemu z podziałem liczby na poszczególne cyfry.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite B oraz q ($B \ge 2$, $q \ge 1$) oddzielone pojedynczym odstępem, oznaczające podstawę systemu liczbowego i liczbę pytań o cyfry szukanej przez Bajtusia liczby.

Drugi wiersz zawiera ciąg B liczb całkowitych $a_0, a_1, \ldots, a_{B-1}$ ($a_i \ge 1$) pooddzielanych pojedynczymi odstępami, oznaczających liczby karteczek z kolejnymi cyframi, które są w posiadaniu Bajtusia.

Następne q wierszy zawiera pytania: i-ty z tych wierszy zawiera jedną liczbę całkowitą k_i ($0 \le k_i \le 10^{18}$).

Wyjście

Na standardowe wyjście należy wypisać dokładnie q wierszy; i-ty z nich musi zawierać k_i -tą cyfrę największej liczby w systemie o podstawie B podzielnej przez B-1, którą może ułożyć Bajtuś, wykorzystując posiadane karteczki. Cyfry numerujemy według wzoru podanego powyżej: od prawej strony (czyli od najmniej znaczących cyfr) i począwszy od 0. Jeśli szukana liczba ma mniej niż k_i cyfr, w i-tym wierszu należy wypisać -1.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest: 3 3 0

1 1 1 2 2 -1 1

Wyjaśnienie do przykładu: Mając po jednej cyfrze 0, 1 i 2 w trójkowym systemie liczbowym, Bajtuś może ułożyć liczby $0_3 = 0_{10}$, $1_3 = 1_{10}$, $2_3 = 2_{10}$, $10_3 = 3_{10}$, $12_3 = 5_{10}$, $20_3 = 6_{10}$, $21_3 = 7_{10}$, $102_3 = 11_{10}$, $120_3 = 15_{10}$, $201_3 = 19_{10}$ oraz $210_3 = 21_{10}$. Przez 2 podzielne są jedynie 0_3 , 0_3 oraz 0_3 , zatem szukana liczba to 0_3 .

Testy "ocen":

1ocen: B = 10, $a_i = 1$; q = 10, $k_i = i - 1$;

2ocen: B = 2, $a_0 = 10\,000$, $a_1 = 1$; $q = 10\,001$, $k_i = i - 1$;

3ocen: $B = 1\,000\,000, \, a_i = 1; \, q = 1, \, k_1 = 999\,999.$

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Warunki	Liczba punktów
1	$B, a_i, q \le 100$	30
2	$B, a_i \le 100, q \le 100000$	25
3	$B \le 1000, \ a_i \le 1000000, \ q \le 1000$	25
4	$B, a_i \le 1000000, \ q \le 100000$	20