L14- 1

λ_S : A Lambda Calculus with Side-effects

Arvind

delivered by Jacob Schwartz

Laboratory for Computer Science

M.I.T.

Lecture 14

http://www.csg.lcs.mit.edu/6.827

L14-2 Arvind

M-Structures and Barriers

- Some problems cannot be expressed functionally
 - Input / Output
 - Gensym: Generate unique identifiers
 - Gathering statistics
 - Graph algorithms
 - Non-deterministic algorithms
- Once side-effects are introduced, barriers are needed to control the execution of some operations
- The λ_S calculus
 - λ_C + side-effects and barriers

L14-3 Arvind

The λ_B Calculus : λ_C + Barriers

- Even adding barriers to a purely functional calculus (without side-effects) is significant
 - Observability of Termination
- Using λ_B as a stepping stone to λ_S allows us to analyze the semantic effects of barriers separate from side-effects, simplifying the analysis
 - $\lambda_S = \lambda_B$ + side-effects

http://www.csg.lcs.mit.edu/6.827

L14-4

Outline

- Background
- The λ_C calculus: λ + letrecs
- Observable values
- The λ_B calculus: λ_C + barriers
- Garbage collection
- The λ_S calculus: λ_B + side-effects

L14-5

λ + Let : A way to model sharing

Instead of the normal β -rule

$$(\lambda x.e) e_a \Rightarrow e [e_a/x]$$

use the following β_{let} rule

$$(\lambda x.e) e_a \Rightarrow \{ let t = e_a in e[t/x] \}$$

where t is a new variable

and only allow the substitution of *values* and *variables* to preserve sharing

http://www.csg.lcs.mit.edu/6.827

I 14-6

Previous work on Sharing

Differences are mainly regarding

- where variables can be instantiated
- the source language

or λ + let or λ + letrec

- Graph reduction and lazy evaluation Wadsworth (71), Launchbury (POPL93)
- Environments and Explicit Substitution
 Abadi, Cardelli, Curien & Levy (POPL 92, JFP)
- Letrecs but no reductions inside λ -abstractions *Ariola, Felleisen, Wadler, ...(POPL 95)*
- Letrecs

 Ariola et al. (96)

L14-7 Arvind

λ_{C} Syntax

```
\begin{split} E ::= & x \mid \lambda x.E \mid E E \mid \{ S \textit{ in } E \} \\ & \mid Cond \ (E, E, E) \\ & \mid PF_k(E_1, ..., E_k) \\ & \mid CN_0 \mid CN_k(E_1, ..., E_k) \mid \underline{CN}_k(SE_1, ..., SE_k) \end{split}
```

 $\mathsf{PF}_1 \quad ::= \mathsf{negate} \mid \mathsf{not} \mid \dots \mid \mathsf{Prj}_1 \mid \mathsf{Prj}_2 \mid \dots$

...

 CN_0 ::= Number | Boolean

 CN_2 ::= Cons | ...

 $S ::= \varepsilon \mid x = E \mid S; S$

Not in initial expressions

http://www.csg.lcs.mit.edu/6.827

λ_{C} Syntax

Values

 $V ::= \lambda x.E \mid CN_0 \mid \underline{CN}_k(SE_1,...,SE_k)$

Simple expressions $SE ::= x \mid V$

L14-9 Arvind

Equivalence Rules

• α-renaming

$$\lambda x.e \equiv \lambda x'.(e[x'/x])$$

 $\{x=e; S \text{ in } e_0\} \equiv \{x'=e; S \text{ in } e_0\}[x'/x]$

• Properties of ";"

$$\varepsilon ; S \equiv S$$

$$S_1 ; S_2 \equiv S_2 ; S_1$$

$$S_1 ; (S_2 ; S_3) \equiv (S_1 ; S_2) ; S_3$$

http://www.csg.lcs.mit.edu/6.827

L14-10 Arvind

λ_{let} Instantiation Rules

a is a Simple Expression; [x] is a free occurrence of x in C[x] or SC[x]

• Instantiation Rule 1

$$\{ x = a ; S \text{ in } C[x] \} \Rightarrow \{ x = a ; S \text{ in } C'[a] \}$$

• Instantiation Rule 2

$$(x = a ; SC[x]) \Rightarrow (x = a ; SC'[a])$$

• Instantiation Rule 3

$$x = C[x] \Rightarrow x = C'[C[x]]$$

where $C[x]$ is simple

L14-11 Arvind

λ_{C} Rules

• Cond-rules

Cond (True,
$$e_1$$
, e_2) \Rightarrow e_1
Cond (False, e_1 , e_2) \Rightarrow e_2

Constructors

$$CN_k(e_1,...,e_k) \Rightarrow \{t_1 = e_1;...; t_k = e_k \text{ in } \underline{CN}_k(t_1,...,t_k)\}$$

δ-rules

$$\begin{array}{l} \mathsf{PF}_k(\mathsf{v}_1, \dots, \mathsf{v}_k) \ \Rightarrow \ \mathsf{pf}_k(\mathsf{v}_1, \dots, \mathsf{v}_k) \\ \mathsf{Prj}_i(\underline{\mathsf{CN}}_k(\mathsf{x}_1, \dots, \mathsf{x}_i, \dots, \mathsf{x}_k)) \ \Rightarrow \ \mathsf{x}_i \end{array}$$

http://www.csg.lcs.mit.edu/6.827

L14-12

Need for Lifting Rules

{f = {
$$S_1$$
 in $\lambda x.e_1$ };
y = f a ;
in
({ S_2 in $\lambda x.e_2$ } e_3) }

How do we juxtapose

$$(\lambda x.e_1)$$
 a or $(\lambda x.e_2)$ e_3

λ_C Block Flattening and Lifting Rules

- Block Flatten
 x = { S in e } ⇒ (x = e'; S')

{ S' in e' } is the α -renaming of { S in e } to avoid name conflicts

http://www.csg.lcs.mit.edu/6.827

Non-confluence

L14-14 Arvind

```
odd = \lambdan.Cond(n=0, False, even (n-1)) ---- (M)

even = \lambdan.Cond(n=0, True, odd (n-1))

substitute for even (n-1) in M

odd = \lambdan.Cond(n=0, False,

Cond(n-1 = 0, True, odd ((n-1)-1))) ---- (M<sub>1</sub>)

even = \lambdan.Cond(n=0, True, odd (n-1))

substitute for odd (n-1) in M

odd = \lambdan.Cond(n=0, False, even (n-1)) ---- (M<sub>2</sub>)

even = \lambdan.Cond(n=0, True,

Cond( n-1 = 0, False, even ((n-1)-1)))
```

 M_1 and M_2 cannot be reduced to the same expression! Ariola & Klop (LICS 94)

L14-15 Arvind

Printable Values

Printable values are trees and can be infinite

We will compute the printable value of a term in 2 steps:

 $\begin{array}{lll} \text{Info:} & & E & \text{-->} & T_P \text{ (trees)} \\ \text{Print:} & & E & \text{-->} & \{T_P\} \end{array}$

(downward closed sets of trees)

where

$$T_P ::= \perp | \lambda | CN_0 | CN_k(T_{P1},...,T_{Pk})$$

$$\begin{array}{ccccc} \bot & \leq & t & \textit{(bottom)} \\ t & \leq & t & \textit{(reflexive)} \\ CN_k(v_1, \ldots, v_i, \ldots, v_k) & \leq & CN_k(v_1, \ldots, v_i', \ldots, v_k) \\ & & \textit{if} & v_i \leq v_i' \end{array}$$

http://www.csg.lcs.mit.edu/6.827

Info Procedure

L14-16 Arvind

```
\begin{array}{rcl} & \text{Info}: \ E \dashrightarrow T_P \\ \\ & \text{Info} \ [ \ \{ \ S \ \textit{in} \ E \ \} \ ] & = \ \text{Info} \ [E] \\ & \text{Info} \ [\lambda x.E] & = \ \lambda \\ & \text{Info} \ [CN_0] & = \ CN_0 \\ & \text{Info} \ [CN_k(a_1,...,a_k)] & = \ CN_k(\text{Info}[a_1],...,\text{Info}[a_k]) \\ & \text{Info} \ [E] & = \ \Omega \\ & \textit{otherwise} \end{array}
```

 $\begin{array}{ll} \textit{Proposition} & \text{Reduction is monotonic wrt Info:} \\ & \text{If } e \text{-}{>} e_1 \text{ then Info}[e] \leq \text{Info}[e_1]. \end{array}$

Proposition Confluence wrt Info: If $e \rightarrow e_1$ and $e \rightarrow e_2$ then $\exists e_3 \text{ s.t. } e_1 \rightarrow e_3 \text{ and } Info[e_2] \leq Info[e_3].$

L14-17

Print Procedure

Print : $E \longrightarrow \{T_P\}$

Print[e] = { i | i \le Info[e₁] and e $\stackrel{i}{\longrightarrow} >> e_1$ }

 $\frac{i}{}$ > is simple instantiation:

let
$$x = v$$
; S in $C[x] \xrightarrow{i} > let x = v$; S in $C[v]$

Unwind the value as much as possible Keep track of all the unwindings

Terms with infinite unwindings lead to infinite sets.

http://www.csg.lcs.mit.edu/6.827

L14-18 Arvind

Print*: Maximum Printable Info

 $Print*[e] = \{ U_i Print[s_i] \mid s \in PRS(e) \}$

where

Definition: Reduction Sequence

 $RS(e) = \{ s \mid s_0 = e, s_{i-1} -> s_i, 0 < i < |s| \}$

Definition: Progressive Reduction Sequence

 $PRS(e) = \{ s \mid s \in RS(e), \text{ and } \}$

 $\exists i \ \forall j > i \ . \ s_i ->> t \ \Rightarrow \exists k \ . \ \mathsf{Print}[t] \leq \mathsf{Print}[s_k] \ \}$

Proposition:

if $e \rightarrow e_1$ then Print*[e] = Print*[e₁]. Print*[e] has precisely one element.

L14-19 Arvind

λ_B Syntax

```
\begin{split} E ::= & x \mid \lambda x.E \mid E E \mid \{ \text{ S in } E \} \\ & \mid \text{Cond } (E, E, E) \\ & \mid \text{PF}_k(E_1, ..., E_k) \\ & \mid \text{CN}_0 \mid \text{CN}_k(E_1, ..., E_k) \mid \underline{\text{CN}}_k(x_1, ..., x_k) \end{split} PF_1 ::= \text{negate} \mid \text{not} \mid ... \mid \text{Prj}_1 \mid \text{Prj}_2 \mid ... ... CN_0 ::= \text{Number} \mid \text{Boolean}
```

 $S ::= \varepsilon | x = E | S; S | S >>> S$

Not in initial expressions

http://www.csg.lcs.mit.edu/6.827

L14-20

Barriers

Barriers discharge when all the bindings in the pre-region *terminate*, i.e., all expressions become *values*.

L14-21 Arvind

Stability and Termination

Definition: Expression e is said to be stable if when $e \rightarrow e_1$, $Print[e] = Print[e_1]$

In general, an expression cannot be tested for stability.

Terminated Terms

Proposition: All terminated terms are stable.

http://www.csg.lcs.mit.edu/6.827

L14-22

Values and Heap Terms

Values

$$V ::= \lambda x.E \mid CN_0 \mid \underline{CN}_k(x_1,...,x_k)$$

Simple expressions

Terminated Terms

$$E^{T} ::= V | \{H \text{ in } SE\}$$

H ::= x = V | H; H

L14-23 Arvind

Barrier Rules

Barrier discharge

$$(\epsilon >>> S) \Rightarrow S$$

• Barrier equivalence

$$((H; S_1') >>> S_2) \equiv (H; (S_1 >>> S_2))$$

$$(H >>> S) \Rightarrow (H ; S)$$
 (derivable)

http://www.csg.lcs.mit.edu/6.827

L14-24 Arvind

λ_{C} Versus λ_{B}

In λ_{B} termination of a term is observable. Thus,

$$5 \neq \{x = \bot in 5\}$$

Consider the context:

 \Rightarrow equality in λ_C does not imply equality in λ_B

However, barriers can only make a term less defined.

L14-25 Arvind

Properties of λ_B

Proposition Barriers are associative:

S1 >>> (S2 >>> S3) = (S1 >>> S2) >>> S3 in all contexts.

Proposition Barriers reduce results:

Every reduction in C[S1 >>> S2] can be modeled by a reduction in C[S1 ; S2].

Proposition Postregions can be postponed:

If C1[S1 >>> S2] ->> C3[S3 >>> S4] where the barrier is the same in both terms, there is a C2 such that:

C1[S1 >>> S2] ->> C2[S3 >>> S2] ->> C3[S3 >>> S4]

http://www.csg.lcs.mit.edu/6.827

Garbage Collection

L14-26 Arvind

A Garbage collection rule erases part of a term.

Definition:

A garbage collection rule, GC, is said to be *correct* if for all e, Print*(e) = Print*(GC(e))

24

L14-27 Arvind

λ_B Garbage Collection Rule

only the GC_v -rule is correct for λ_B .

http://www.csg.lcs.mit.edu/6.827

L14-28

λ_S Syntax

```
\begin{split} E ::= & x \mid \lambda x.E \mid EE \mid \{ S \text{ in } E \} \\ & \mid Cond (E, E, E) \\ & \mid PF_k(E_1, ..., E_k) \\ & \mid CN_0 \mid CN_k(E_1, ..., E_k) \mid \underline{CN}_k(x_1, ..., x_k) \\ & \mid allocate() \\ & \mid o_i \qquad \qquad object \ descriptors \\ \\ PF_1 ::= negate \mid not \mid ... \mid Prj_1 \mid Prj_2 \mid ... \mid ifetch \mid mfetch \\ ... \\ CN_0 ::= Number \mid Boolean \mid () \\ S ::= & \epsilon \mid x = E \mid S; S \\ & \mid S >>> S \\ & \mid sstore(E,E) \\ & \mid allocator \mid empty(o_i) \mid full(o_i,E) \mid error(o_i) \\ \end{split}
```

L14-29 Arvind

Values and Heap Terms

```
Values V ::= \lambda x.E \mid CN_0 \mid \underline{CN_k}(x_1,...,x_k) \mid o_i Simple expressions SE ::= x \mid V Heap Terms H ::= x = V \mid H; H \mid \text{allocator} \quad \mid \text{empty}(o_i) \mid \text{full}(o_i,V) Terminal Expressions E^T ::= V \mid \text{let H in SE}
```

http://www.csg.lcs.mit.edu/6.827

I 14-30

Side-effect Rules

```
    Fetch and Take rules
        (x=ifetch(o); full(o,v)) ⇒ (x=v; full(o,v))
        (x=mfetch(o); full(o,v)) ⇒ (x=v; empty(o))
```

Store rules
 (sstore(o,v); empty(o)) ⇒ full(o,v)
 (sstore(o,v); full(o,v')) ⇒ (error(o); full(o,v'))

• Lifting rules sstore($\{ S \text{ in } e \}, e_2$) $\Rightarrow (S ; sstore(e,e_2))$ sstore($e_1, \{ S \text{ in } e \}$) $\Rightarrow (S ; sstore(e_1,e))$

L14-31 Arvind

Nondeterministic Choice

```
\lambda x. \{ m = allocate(); 
choose =
                  sstore(m, True);
                  (y = mfetch(m))
                   >>>
                    sstore(m, False));
                  (z = mfetch(m))
                   >>>
                    sstore(m,True) )
                 in z }
choose 100
             ?
```