Robusna stabilnost

Strukturna neizvjesnost sustava

prof. dr. sc. Željko Ban

e-mail: zeljko.ban@fer.hr

Robusna stabilnost

- Opis dinamičkog sustava
 - Nominalni matematički model
 - Neizvjesnost
 - Uzrok neizvjesnosti
 - Matematički model točno ne opisuje sustav
 - Model sustava se mijenja s vremenom
 - □ Vrste
 - Strukturirana neizvjesnost
 - Nestrukturirana neizvjesnost
 - Robusni regulator
 - ☐ Regulator koji interno stabilizira svaki model u familiji
 - konačan broj specifičnih modela sustava
 - nominalni model sustava i opis neizvjesnosti u modelu
 - strukturni model sustava i opis neizvjesnosti u iznosu parametara modela

Strukturirana neizvjesnost

- Polinomska struktura neizvjesnosti
 - Neizvjesnost parametara poznate prijenosne funkcije sustava
- Opis sustava
 - Umjesto uobičanjenih prijenosnih funkcija G(s), i polinoma p(s), α(s)
 - gdje je s Laplaceova varijabla
 - Uvodi se opis prijenosnim funkcijama G(s,q), i polinomima p(s,q), α(s,q)
 - ☐ gdje je q **vektor**
 - neizvjesnih realnih parametara sustava
 - neizvjesnih koeficijenata polinoma

Skup ograničenja neizvjesnosti

- Vektor neizvjesnih parametara i koeficijenata q
 - uključuje se kao 2. argument prijenosne funkcije ili polinoma
 - Definiranje
 - □ Skupom
 - članovi skupa ograničenja neizvjesnosti ne moraju biti nužno međusobno povezani
 - Područjem
 - elementi vektora q se opisuju donjim i gornjim granicama
 - kontinuirana promjena parametra unutar područja

Skup ograničenja neizvjesnosti

Skup ograničenja neizvjesnosti Q je skup

$$Q = \left\{q \in \mathbb{R}^{\ell} \mid q_i \in \mathbb{R} \, \forall i = 1, 2, ..., \ell\right\}$$

□ q_i – ne moraju biti međusobno povezani

Skup ograničenja neizvjesnosti

uz opis vektora Q granicama

Skup ograničenja neizvjesnosti Q opisan granicama elemenata q

Primjer područja za 2 neizvjesna parametra određena područjem

$$Q = \left\{q \in \mathbb{R}^{\ell} \mid q_i^- < q_i < q_i^+ \forall i = 1, 2, ..., \ell\right\}$$

 q_1

parametri koji tvore vektor neizvjesnosti mijenjaju se kontinuirano unutar ograničenog intervala na realnoj liniji

Familija neizvjesnosti

☐ Familija neizvjesnosti

 Funkcija neizvjesnosti zajedno sa njenim skupom ograničenja neizvjesnosti

$$\mathbb{F}(\bullet, Q) = \{f(\cdot, q) \mid q \in Q\}$$

- Objedinjuje sve matematičke modele procesa kojem se parametri mijenjaju unutar poznatih ograničenja
- Razlika neizvjesnog sustava i familije sustava
 - Neizvjestan sustav
 - Ograničenja parametara nisu poznata
 - Familija sustava
 - Neizvjestan sustav s poznatim ograničenjima (skupom ograničenja)

Primjer:

Neizvjestan proces G(s,**q**) sa skupom ograničenja neizvjesnosti Q tvori familiju procesa

$$\mathbb{G}\left(s,Q\right)=\left\{ G\!\left(s,q\right) \mid q\in Q\right\}$$

Familije brojnika i nazivnika prijenosnih funkcija određene su sa:

$$\mathbb{N}\left(s,Q\right) = \left\{N\left(s,q\right) \mid q \in Q\right\}$$

$$\mathbb{D}\left(s,Q\right) = \left\{D\left(s,q\right) \mid q \in Q\right\}$$

DC motor s nezavisnom i konstantnom uzbudom i neizvjesnim parametrima

Istosmjerni elektro motorni pogon s nezavisnom i konstantnom uzbudom upravljan armaturnim naponom prikazan je nadomjesnom shemom na slici.

Pogon ima dva neizvjesna parametra:

- -J₁ moment inercije tereta
- K konstantu motora

Parametri elektromotornog pogona su

- -b_m=2·10⁻⁵ [Nms] koeficijent viskoznog trenja motora
- -b_t=2·10⁻⁵ [Nms] koeficijent viskoznog trenja tereta
- $-J_m$ =0.0002 [kgm²] moment inercije motora na osovini
- -L_a=0.02 [H] induktivitet armaturnog kruga
- $-R_a=1 [\Omega]$ otpor armaturnog kruga

Izvori neizvjesnosti

 $10^{-5} \le J_t \le 3 \cdot 10^{-5} \text{ [kgm}^2\text{]} - moment inercije tereta na osovini } 0.2 \le K \le 0.6 \text{ [Vs]} - konstanta motora$

DC motor s nezavisnom i konstantnom uzbudom i neizvjesnim parametrima

Iz nadomjesne sheme elektromotornog pogona dobije se blokovska shema kod koje je

U_a – napon armature – ulazni signal Ω - brzina vrtnje – izlazni signal

Prijenosna funkcija sustava ima oblik

$$\begin{split} G(s) = & \frac{\Omega(s)}{U_a(s)} = \frac{K}{\left(R_a + L_a s\right) \left[\left(J_m + J_t\right) s + b_m + b_t\right] + K^2} = \\ & \frac{K}{L_a \left(J_m + J_t\right) s^2 + \left[R_a \left(J_m + J_t\right) + L_a \left(b_m + b_t\right)\right] s + R_a \left(b_m + b_t\right) + K^2} \end{split}$$

DC motor s nezavisnom i konstantnom uzbudom i neizvjesnim parametrima

$$\begin{split} G\left(s\right) = & \frac{\Omega\left(s\right)}{U_{a}\left(s\right)} = \frac{K}{\left(R_{a} + L_{a}s\right)\left[\left(J_{m} + J_{t}\right)s + b_{m} + b_{t}\right] + K^{2}} = \\ & \frac{K}{L_{a}\left(J_{m} + J_{t}\right)s^{2} + \left[R_{a}\left(J_{m} + J_{t}\right) + L_{a}\left(b_{m} + b_{t}\right)\right]s + R_{a}\left(b_{m} + b_{t}\right) + K^{2}} \end{split}$$

Uvrštenjem konstantnih prametara prijenosna funkcija poprima oblik

$$G\!\left(s\right)\!=\!\frac{\Omega\!\left(s\right)}{U_{a}\!\left(s\right)}\!=\!\frac{K}{\left(0.02J_{t}+4\cdot10^{-6}\right)\!s^{2}+\!\left[J_{t}+2\cdot10^{-4}\right]\!s+4\cdot10^{-5}+K^{2}}$$

Označavanjem neizvjesnih parametara sa

$$q_1=K$$

 $q_2=J_t$

familija funkcija prijenosa

$$\mathbb{G}(s,Q) = \{G(s,q) \mid q \in Q\}$$

određena je sa

$$G\!\left(s\right) = \frac{\Omega\!\left(s\right)}{U_a\!\left(s\right)} = \frac{q_1}{\left(0.02q_2 + 4\cdot10^{-6}\right)\!s^2 + \left[q_2 + 2\cdot10^{-4}\right]\!s + 4\cdot10^{-5} + q_1^2}$$

Skup ograničenja neizvjesnosti Q je tipa pravokutnika

$$\begin{array}{ll} q_1^- = 0.2 & q_1^+ = 0.6 \\ q_2^- = 10^{-5} & q_2^+ = 3 \cdot 10^{-5} \end{array}$$

Polinomi

Opći slučaj – strukture neizvjesnosti

Familija polinoma

$$p(s,\underline{q}) = \sum_{i=0}^{n} a_{i}(\underline{q})s^{i}$$

gdje su:

 $a_i(\underline{q})$ – koeficijenti familije polinoma

$$a_i(q) = f_i(q)$$

<u>q</u> – vektor neizvjesnih parametara

$$\mathbf{q} = \begin{bmatrix} \mathbf{q}_1 \\ \mathbf{q}_2 \\ \vdots \\ \mathbf{q}_l \end{bmatrix}$$

Q – skup ograničenja neizvjesnosti svih neizvjesnih parametara

☐ Strukture neizvjesnosti

- Nezavisna struktura neizvjesnosti
- Intervalska struktura neizvjesnosti
- Povezana linearna struktura neizvjesnosti
- Višelinearna struktura neizvjesnosti
- Polinomska struktura neizvjesnosti

Nezavisna struktura neizvjesnosti

Familija polinoma

$$p(s,\underline{q}) = \sum_{i=0}^{n} a_{i}(\underline{q})s^{i}$$

gdje su:

a_i(<u>q</u>) – koeficijenti familije polinoma

$$a_i(\underline{q}) = f_i(\underline{q})$$

<u>q</u> – vektor neizvjesnih parametara

$$\mathbf{q} = \begin{bmatrix} \mathbf{q}_1 \\ \mathbf{q}_2 \\ \vdots \\ \mathbf{q}_l \end{bmatrix}$$

Q – skup ograničenja neizvjesnosti svih neizvjesnih parametara

Nezavisna struktura neizvjesnosti

Neizvjestan polinom

$$p(s,\underline{q}) = \sum_{i=0}^{n} a_{i}(\underline{q})s^{i}$$

Nezavisna struktura neizvjesnosti

svaka kompnenta q_i vektora <u>q</u> ulazi u samo jedan koeficijent

Primjer:

$$p(s,\underline{q}) = (3q_3 + 2)s^3 + (q_2 + 1)s^2 + (q_1 - 1)s + (2q_0 + 3)$$

Nezavisna struktura neizvjesnosti je idealizirana stvarnost

U stvarnosti neizvjesni parametri sustava ulaze u više od jednog koeficijenta neizvjesnog polinoma (nelinearne funkcije)

Polinomi

Opći slučaj – Intervalska familija polinoma

Intervalska familija polinoma

$$\mathbb{P} \left(s, Q \right) = \left\{ p \left(s, \underline{q} \right) = \sum_{i=0}^{n} a_{i} \left(\underline{q} \right) s^{i} \mid \underline{q} \in Q \right\}$$

Familija polinoma je intervalska familija polinoma ako

- neizvjesni polinom p(s,q) ima nezavisnu strukturu neizvjesnosti
- svaki koeficijent ovisi kontinuirano o vektoru <u>q</u> i ako je
- skup njegovih ograničenja neizvjesnosti Q tipa n-dimenzionalne kocke

Intervalska familija polinoma P(s,Q) zove se **intervalski polinom**

Familija neizvjesnih procesa

$$\mathbb{G}\left(s,Q\right) = \left\{G\left(s,\underline{q}\right) = N\left(s,\underline{q}\right)/D\left(s,\underline{q}\right) \mid \underline{q} \in Q\right\}$$

je familija intervalskih polinoma ako su **polinom brojnika i polinom nazivnika intervalski polinomi**

Primjer Intervalska familija polinoma

Primjer:

Karakteristični polinom 3. reda

$$\alpha_{cl}(s) = s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0$$

sa ograničenjima

$$\alpha_0 \in \begin{bmatrix} 38,58 \end{bmatrix}$$
 $\alpha_1 \in \begin{bmatrix} 25,39 \end{bmatrix}$ $\alpha_2 \in \begin{bmatrix} 8,12 \end{bmatrix}$ $\alpha_3 = 1$

Bilo koja točka unutar kocke ili na njenom plaštu predstavlja valjan skup koeficijenata za ovaj karakteristični polinom

(trostruko beskonačan skup karakterističnih polonoma)

Povezana linearna struktura

neizviesnosti (Affine linear uncertainty structure)

Povezana linearna struktura neizvjesnosti

Svi koeficijenti $\alpha_i(\underline{q})$ familije polinoma $p(s,\underline{q})$ su oblika:

$$\alpha_{i}\left(\underline{q}\right) = \beta_{i}^{\mathsf{T}}\underline{q} + \gamma_{i}$$

β_i – stupčani vektor γ_i - skalar

Za povezane linearne strukture neizvjesnosti skup ograničenja je konveksna ljuska od konačnog broja točaka (politop a ne kocka)

Primjer

$$p(s,q) = (3q_1 + 4q_2 + 6)s^3 + (2q_1 - 3q_2)s^2 + (q_1 + q_2)s + (q_2 - 5)$$

Sustav se sastoji od regulatora i procesa. Prijenosna funkcija **regulatora** ima oblik:

$$G_r(s) = \frac{N(s)}{D(s)} = \frac{s+2}{s^2+2s+2}$$

Prijenosna funkcija procesa ima oblik:

$$G_{p}(s) = \frac{B(s,\underline{b})}{A(s,\underline{b})} = \frac{b_{0}}{a_{3}s^{3} + a_{2}s^{2} + a_{1}s + a_{0}}$$

Poznate su granice parametara

$$b_0 \in [3,5]$$
 $a_3 \in [1,1.1]$
 $a_2 \in [4,4.2]$ $a_1 \in [6,8]$ $a_0 \in [10,20]$

Karakteristični polinom zatvorenog kruga (s jediničnom negativnom povratnom vezom) ima oblik:

$$\alpha_{cl} = (a_3 s^3 + a_2 s^2 + a_1 s + a_0)(s^2 + 2s + 2) + b_0(s + 2)$$
$$= \alpha_5 s^5 + \alpha_4 s^4 + \alpha_3 s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0$$

gdje su:

$$\alpha_5 = a_3$$
,
 $\alpha_4 = a_2 + 2a_3$
 $\alpha_3 = a_1 + 2a_2 + 2a_3$
 $\alpha_2 = a_0 + 2a_1 + 2a_2$
 $\alpha_1 = 2a_0 + 2a_1 + b_0$
 $\alpha_0 = 2a_0 + 2b_0$

Koeficijenti karakterističnog polinoma se mijenjaju u granicama

$$\alpha_{5} \in [1,1.1]$$
 $\alpha_{4} \in [6,6.4]$
 $\alpha_{3} \in [16,18.6]$ $\alpha_{2} \in [30,40.4]$
 $\alpha_{1} \in [35,61]$ $\alpha_{0} \in [26,50]$

Vektor neizvjesnih parametara

$$\underline{\alpha} = \begin{bmatrix} \alpha_5 & \alpha_4 & \alpha_3 & \alpha_2 & \alpha_1 & \alpha_0 \end{bmatrix}^\mathsf{T}$$

Može poprimiti bilo koju vrijednost iz R⁶ unutar granica

Struktura neizvjesnosti

- Višelinearna struktura neizvjesnosti
 - koeficijenti a_i(<u>q</u>) neizvjesnog polinoma p(s,<u>q</u>)
 - višelinearne funkcije po komponentama vektora q
 - ako se svi osim jednog neizvjesnog parametra drže konstantnim
 - koeficijenti familije polinoma a_i(q)
 - povezani linearno po preostalim kompnentama vektora g

- Polinomska struktura neizvjesnosti
 - svi koeficijenti a_i(<u>q</u>) familije polinoma p(s,<u>q</u>)
 - tvore multivarijablini polinom po komponentama g

Koncepti analize robusne stabilnosti

- Nepormjenjivost reda
- Prolazak kroz granicu
- □ Isključenje nule
- ☐ Skup iznosa

Nepormjenjivost reda

Pretpostavka

- Postoji karakteristični polinom zatvorenog kruga n-tog reda s a_n=1
- Nezavisne promjene koeficijenata
 - \square A={ $a_{n-1}, ..., a_1, a_0$ }

Posljedica

- Kako koeficijent uz najvišu potenciju a_n nikad nije nula
- svi polinomi familije su n-tog reda

Prolazak kroz granicu

Pretpostavka

postoji jedan skup koeficijenata

$$A^{a} = \left\{a_{n-1}^{a}, ..., a_{1}^{a}, a_{0}^{a}\right\}$$

- □ zatvoreni krug stabilan
- polovi karakterističnog polinoma u lijevoj poluravnini
- postoji drugi skup koeficijanata

$$A^b = \left\{a^b_{n-1}, ..., a^b_1, a^b_0\right\}$$

barem jedan pol zatvorenog kruga u desnoj poluravnini

Tada posoji

skup koeficijenata

$$A^{c} = \{a_{n-1}^{c}, ..., a_{1}^{c}, a_{0}^{c}\}$$

- karakteristični polinom zatvorenog kruga
 - nema polova u desnoj poluravnini
 - ima barem jedan pol na imaginarnoj osi

Satabilan sustav

- ima sve polove u stabilnom području (lijeva poluravnina)
- □ da bi postao nestabilan
 - barem jedan pol mora prijeći u nestabilno područje (desnu poluravninu)
- tijekom prijelaza
 - mora prijeći kroz stanje u kojem je barem jedan pol na granici stabilnosti (imaginarna os)

☐ Fenomen prolaska kroz granicu

prolazak kroz granicu

Sustav s neizvjesnim parametrom pojačanja q = K određen je prijenosnom funkcijom otvorenog kruga:

$$G(s) = \frac{K}{(s+1)(s+2)(s+3)}$$

Karakteristični polinom zatvorenog kruga (uz jediničnu povratnu vezu)

$$p(s,q) = s^3 + 6s^2 + 11s + 6 + q$$

KMK se giba i za K>0 i za K<0 iz stabilnog u nestabilno područje

prolazak kroz granicu

Sustav s neizvjesnim parametrom pojačanja q = K određen je prijenosnom funkcijom otvorenog kruga:

$$G(s) = \frac{K(s-1)}{(s+1)}$$

Karakteristični polinom zatvorenog kruga (uz jediničnu povratnu vezu)

$$p(s,q) = (1+q)s + 1 - q$$

Krivulje mjesta korjena

KMK se giba za K>0 iz stabilnog u nestabilno područje i prelazi preko imaginarne osi.

KMK se giba za K<0 iz stabilnog u nestabilno ne prelazeći preko imaginarne osi.

Za K<0 → mijenja se red sustava (K=-1)

Isključenje nule

- Ako postoji barem jedan stabilan polinom u familiji α_{cl}(s)
 - detektiranje gubitka robusne stabilnosti
 - \square proračun svih polinoma iz familije duž j ω osi
 - \square polinom s iznosom 0 na frekvenciji ω = ω_1
 - ako je $\alpha_{cl}(j\omega_1) = 0$ za neki skup koeficijenata A^c
 - \square taj polinom ima jedan ili više korjena na j ω osi
 - sustav nije robusno stabilan
- □ Test robusne stabilnosti je
 - proračun svakog polinoma familije duž granice stabilnosti
 - provjera jednakosti polinoma s 0
 - □ ako 0 nije prisutna ni u kojem od proračuna (*nula isključena*)
 - ☐ → familija polinoma je robusno stabilna

Pretpostavka

- Svaki polinom familije je n-tog reda
- svaki polinom familije moguće je proračunati duž granice stabilnosti
- U svakoj točki na granici svaki izračun polinoma daje kompleksan broj
 - \square na frekvenciji $\omega = \omega_1$ polinom s koeficijentima Aa dat će rezultat

$$\alpha_{cl}(j\omega_1) = \mathbf{x}_1^{\mathsf{a}} + j\mathbf{y}_1^{\mathsf{a}}$$

- Promjena frekvencije
 - promjena koeficijenata polinoma
 - promjena kompleksnog broja
- Prikaz skupa kompleksnih brojeva u kompleksnoj ravnini (nije s ravnina)
 - Skup iznosa →skup svih kompleksnih brojeva genereranih na frekvenciji ω=ω₁ od familije polinoma αcl(jω₁) kad se koeficijenti polinoma mijenjaju unutar dozvoljenih granica

Definicija

- Skup iznosa je podskup kompleksne ravnine koja sadrži sve moguće iznose neizvjesnog polinoma p(jω,q) kad se q mijenja unutar skupa ograničenja neizvjesnosti Q (frekvencija ω je konstantna)
- Moguć prikaz skupa iznosa → poligonom u kompleksnoj ravnini
 - skup iznosa se giba kompleksnom ravninom promjenom frekvencije

Svojstvo

- Skup iznosa preslikao analizu stabilnosti familije polinoma n-tog reda u kompleksnu ravninu (dvodimenzionalnu)
 - preslikan I-dimenzijski skup parametara u dvodimenzijski skup iznosa
 - mogućnost grafičkog prikaza u ravnini

Skup iznosa

- ☐ Teorem uvjeta isključenja nule
 - Familija polinoma sa svojstvima
 - polinomi nepromjenjivog (konstantnog) reda
 - pridruženi skup ograničenja neizvjesnosti Q
 - po rubovima povezankontinuiranim funkcijama po koeficijentima familije polinoma a_i(q), za i=1,2,...,n
 - □ najmanje jedanstabilni član p(s,q)
 - je robusno stabilna ako i samo ako je
 - □ ishodište kompleksne ravnine isključeno iz skupa iznosa za sve nenegativne frekvencije

$$0\not\in p\big(j\omega,\underline{q}\big)\forall\omega<0\land\underline{q}\in Q$$

- Teorem upotrebljiv za testiranje stabilnosti neizvjesnih polinoma
 - ako postoji alat za generiranje skupa iznosa

Robusna stabilnost

Definicija

Neizvjestan sustav s karakterističnim polinomom p(s, \underline{q}) je robusno stabilan ako i samo ako je p(s, \underline{q}) stabilan za sve $q \in Q$ gdje je Q skup ograničenja neizvjesnosti

Ako je familija polinoma n-tog reda robusno stabilna

- → skupovi iznosa će se gibati obrnuto od kazaljke na satu kroz n kvadranata kompleksne ravnine
- → pri tom nikad neće dirati ishodište ravnine niti proći kroz njega

Provjera robusne stabilnosti svodi se na provjeru kriterija:

- prolazak kroz granicu
- promjena reda
- provjera da li je nula isključena iz svih skupova iznosa dobivenih proračunom svih polinoma familije na iznosima frekvencije duž granice stabilnosti

Analiza robusne stabilnosti

- Metode analize robusne stabilnosti
 - Teorem Karitonova
 - Primjenjiv za intervalske strukture neizvjesnosti
 - Teorem brida
 - primjena na:
 - intervalske strukture neizvjesnosti
 - povezane linearne strukture neizvjesnosti
 - Područje neizvjesnosti Q
 - kvadar za intervalske strukture
 - konveksna ljuska od konačnog broja točaka (POLITOP) za povezane linearne strukture

- Krivulja Cipkin-Poljaka
 - grafički postupak za analizu robusne BIBO stabilnosti
 - Određivanje relativne stabilnosti familije polinoma

Opis sustava s intervalskom strukturom

neizvjesnosti (za potrebe analize robusnosti)

Susta se sastoji od regulatora C(s) s nepromjenjivim parametrima i procesa G(s,q) s neizvjesnim parametrima s intervalskom strukturom neizvjesnosti

Vremenski nepromjenjivi regulator

$$C(s) = \frac{N(s)}{D(s)}$$

n≥m

Neizvjestan proces s intervalskom strukturom neizvjesnosti parametara

$$G(s,\underline{q}) = \frac{B(s,\underline{b})}{A(s,\underline{a})} = \frac{\left[b_m^-,b_m^+\right]s^m + \ldots + \left[b_1^-,b_1^+\right]s + \left[b_0^-,b_0^+\right]}{\left[a_n^-,a_n^+\right]s^n + \ldots + \left[a_1^-,a_1^+\right]s + \left[a_0^-,a_0^+\right]}$$

Skup svih mogućih funkcija prijenosa procesa

$$\begin{split} G(s,\underline{q}) &= G_{b,a} = \frac{B(s,\underline{b})}{A(s,\underline{a})} = \\ &= \left\{ \frac{b_m s^m + ... + b_1 s + b_0}{a_n s^n + ... + a_1 s + a_0}; b_i \in \left[b_i^-, b_i^+\right] \right\} \end{split}$$

Granice donjih i gornjih parametara određene vektorom q^T

$$\mathbf{q}^{\mathsf{T}} = \left[b_{0}^{\scriptscriptstyle{-}}, b_{0}^{\scriptscriptstyle{+}}, \ldots, b_{m}^{\scriptscriptstyle{-}}, b_{m}^{\scriptscriptstyle{+}}, a_{0}^{\scriptscriptstyle{-}}, a_{0}^{\scriptscriptstyle{+}}, \ldots, a_{n}^{\scriptscriptstyle{-}}, a_{n}^{\scriptscriptstyle{+}} \right]$$

Zatvoreni sustav prema slici bit će robusno stabilan ako su svi korjeni karakterističnog polinoma zatvorenog kruga

$$\alpha_{cl}(s,\alpha) = A(s,\underline{a})D(s) + B(s,\underline{b})N(s)$$

u lijevoj poluravnini s ravnine za sve G iz G_{b.a}

Krivulja stabilnosti Mihajlova

Objašnjenje teorema Karitonova

- Sustav bez neodređenosti stabilan ako
 - krivulja prolazi oko ishodišta bez diranja ishodišta
 - giba se u smjeru obrnutom od kazaljke na satu
 - prolazi kroz onoliko kvadranata koliki je red zatvorenog sustava
- ☐ Krivulja se dobije
 - računanjem karakterističnog polinoma zatvorenog kruga duž imaginarne osi (s=jω)
- Što sa sustavom s intervalskom neizvjesnosti parametara?
- ☐ U što se pretvara točka krivulje?

- Određuju se 4 polinoma za 4 vrha pravokutnika
 - K₁ minimum realnog i minimu imaginarnog dijela
 - K₂ maksimum realnog i maksimum imaginarnog dijela
 - K₃ maksimum realnog i minimum imaginarnog dijela
 - K₄ minimum realnog i maksimum imaginarnog dijela
- Za familiju polinoma s intervalskom neodređenošću

$$\mathbb{P} \left(s, Q \right) = \left\{ p \left(s, \underline{q} \right) = \sum_{i=0}^n a_i \left(\underline{q} \right) s^i \mid \underline{q} \in Q \right\}$$

Kako odrediti

$$\begin{split} & \underset{q \in Q}{\text{min}} \Big(\text{Re} \big(p(j\omega_0, q) \big) \Big) \\ & \underset{q \in Q}{\text{max}} \Big(\text{Re} \big(p(j\omega_0, q) \big) \Big) \\ & \underset{q \in Q}{\text{min}} \Big(\text{Im} \big(p(j\omega_0, q) \big) \Big) \\ & \underset{q \in Q}{\text{max}} \Big(\text{Im} \big(p(j\omega_0, q) \big) \Big) \end{split}$$

Uvjet Karitonova četverokuta

Četiri vrha Karitonova četverokuta određena su izrazima.

$$\min_{\boldsymbol{q} \in Q} \operatorname{Re} p(j\omega_0, \boldsymbol{q}) = \underline{q_0} - \overline{q_2}\omega_0^2 + \underline{q_4}\omega_0^4 + \dots = \operatorname{Re} K_1(j\omega_0)$$

$$\max_{\boldsymbol{q} \in Q} \operatorname{Re} p(j\omega_0, \boldsymbol{q}) = \overline{q}_0 - \underline{q}_2 \omega_0^2 + \overline{q}_4 \omega_0^4 + \dots = \operatorname{Re} K_2(j\omega_0)$$

$$\min_{\boldsymbol{q} \in Q} \operatorname{Im} p(j\omega_0, \boldsymbol{q}) = \underline{q_1}\omega_0 - \overline{q_3}\omega_0^3 + \underline{q_5}\omega_0^5 + \dots = \operatorname{Im} K_3(j\omega_0)$$

$$\max_{\boldsymbol{q} \in Q} \operatorname{Im} p(j\omega_0, \boldsymbol{q}) = \overline{q}_1 \omega_0 - \underline{q}_3 \omega_0^3 + \overline{q}_5 \omega_0^5 + \dots = \operatorname{Im} K_4(j\omega_0)$$

Teorem Karitonova

Umjesto **beskonačno polinoma** (*koliko se može dobiti promjenom pojedinog parametra u intervalu*) na isključenje nule se testiraju **samo 4 polinoma**.

Za intervalsku familiju polinoma

$$\mathbb{P} \big(s, Q \big) = \left\{ p \Big(s, \underline{q} \Big) = \sum_{i=0}^{n} a_{i} \Big(\underline{q} \Big) s^{i} \mid \underline{q} \in Q \right\}$$

Postoje 4 fiksna K polinoma

$$K_1(s) = \underbrace{a_0^- + a_1^- s}_{0} + \underbrace{a_2^+ s^2 + a_3^+ s^3}_{0} + \underbrace{a_4^- s^4 + a_5^- s^5}_{0} + \dots$$

$$K_2(s) = \underline{a_0^+ + \underline{a_1^+ s}} + \underline{a_2^- s^2 + \underline{a_3^- s^3}} + \underline{a_4^+ s^4 + \underline{a_5^+ s^5}} + \dots$$

$$K_3(s) = a_0^+ + \underline{a_1^- s} + \underline{a_2^- s}^2 + \underline{a_3^+ s}^3 + \underline{a_4^+ s}^4 + \underline{a_5^- s}^5 + \dots$$

$$K_4(s) = a_0^- + a_1^+ s + a_2^+ s^2 + a_3^- s^3 + a_4^- s^4 + a_5^+ s^5 + \dots$$

Koeficijenti K polinoma ovise samo o **donjim i gornjim** granicama koeficijenata familije polinoma

Neophodan i dovoljan uvjet stabilnosti

Familija polinoma

$$\mathbb{P} \left(s, Q \right) = \left\{ p \left(s, \underline{q} \right) = \sum_{i=0}^{n} a_{i} \left(\underline{q} \right) s^{i} \mid \underline{q} \in Q \right\}$$

je **stabilna** ako je **svaki od polinoma Karitonova** (**K**₁, **K**₂, **K**₃ i **K**₄) **stabilan** tj. *korjeni tih polinoma leže u lijevoj poluravnini (realni dijelovi korjena su negativni)*

Određivanje robusne stabilnosti

intervalske familije polinoma

- Postupak
 - Formiranje 4 polinoma Karitonova, K₁, K₂, K₃ i K₄
 - Faktorizacija polinoma (traženje korijena polinoma)
 - Ispitivanje položaja korjena polinoma
- Rezultat
 - Ako su svi korijeni polinoma u lijevoj poluravnini → intervalska familija polinoma je robusno stabilna
 - Ako je bilo koji od korijena na imaginarnoj (jω) osi ili u desnoj poluravnini → intervalska familija polinoma nije stabilna

- Proačun K polinoma duž jω osi
 - Vrijednosti polinomi Karitonova,
 K₁, K₂, K₃ i K₄ na istoj frekvenciji
 jω čine četverokut u kompleksnoj ravnini
 - \square $K_1(j\omega)$ donji lijevi kut
 - \square K₂ (j ω) gornji desni kut
 - \square K₃ (j ω) donji desni kut
 - \square K_4 (j ω) gornji lijevi kut

Određivanje robusne stabilnosti polinomima Karitonova

Zatvoreni sustav opisan je karakterističnim polinomom 3. reda

$$\alpha_{cl} = s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0$$

Intervali neizvjesnosti koeficijenata određeni su izrazima:

$$\alpha_0 \in [38,58], \alpha_1 \in [25,39],$$

 $\alpha_2 \in [8,12], \alpha_3 = 1$

K polinomi imaju oblik

$$K_1(s) = 38 + 25s + 12s^2 + s^3$$

$$K_2(s) = 58 + 39s + 8s^2 + s^3$$

$$K_3(s) = 58 + 25s + 8s^2 + s^3$$

$$K_4(s) = 38 + 39s + 12s^2 + s^3$$

	S ₁	S _{2.3}
K ₁	-9.8544	-1.0728 + 1.6448i
K_2	-2.2149	-2.8926 + 4.2213i
<i>K</i> ₃	-5.3539	-1.3230 + 3.0138i
K ₄	-7.4495	-2.5505 -2.0000

Određivanje robusne stabilnosti polinomima Karitonova

Crtanjem četverokuta određenih vrijednostima polinoma Karitonova

$$K_1(s) = 38 + 25s + 12s^2 + s^3$$

$$K_2(s) = 58 + 39s + 8s^2 + s^3$$

$$K_3(s) = 58 + 25s + 8s^2 + s^3$$

$$K_4(s) = 38 + 39s + 12s^2 + s^3$$

za iznose polinoma na imaginarnoj osi u rasponu frekvencija $\omega \in [0,7]$

Određivanje robusne stabilnosti polinomima Karitonova

Potrebno je odrediti stabilnost karakterističnog polinoma oblika

$$p(s,\underline{q}) = q_3 s^3 + q_2 s^2 + q_1 s + q_0$$

čiji su parametri određeni skupom ograničenja neizvjesnosti

$$Q = \{q \mid q_0 \in [46,50], q_1 \in [50,54], q_2 \in [18,20], q_3 \in [1,2]\}$$

Familija intervalskih polinoma može se prikazati u formi:

$$p(s,q) = [1,2]s^3 + [18,20]s^2 + [50,54]s + [46,50]$$

K polinomi imaju oblik

$$K_1(s) = 2s^3 + 20s^2 + 50s + 46$$

 $K_2(s) = s^3 + 18s^2 + 54s + 50$
 $K_3(s) = 2s^3 + 18s^2 + 50s + 50$
 $K_4(s) = s^3 + 20s^2 + 54s + 46$

```
'Korijeni K3'
'Korijeni K1'
                      'Korijeni K2'
                                                                   'Korijeni K4'
                                   -14.5176]
                                                          -5.0000]
              -6.8345]
                                                                                -16.9792
                          [-1.7412+ 0.6421i]
    [-1.5828+ 0.9274i]
                                                [-2.0000+1.0000i]
                                                                       [-1.5104 + 0.6541i]
    [-1.5828 - 0.9274i]
                          [-1.7412 - 0.6421i]
                                                [-2.0000- 1.0000i]
                                                                       [-1.5104 - 0.6541i]
```


Određivanje robusne stabilnosti polinomima Karitonova

Za familiju intervalskih polinoma

$$p(s,q) = [1,2]s^3 + [18,20]s^2 + [50,54]s + [46,50]$$

i pripadnih K polinoma


```
K_1(s) = 2s^3 + 20s^2 + 50s + 46

K_2(s) = s^3 + 18s^2 + 54s + 50

K_3(s) = 2s^3 + 18s^2 + 50s + 50

K_4(s) = s^3 + 20s^2 + 54s + 46
```

```
'Korijeni K1'
                       'Korijeni K2'
                                               'Korijeni K3'
                                                                      'Korijeni K4'
              -6.8345]
                                     -14.5176]
                                                             -5.0000]
                                                                                    -16.9792
    [-1.5828 + 0.9274i]
                           [-1.7412 + 0.6421i]
                                                   [-2.0000+1.0000i]
                                                                          [-1.5104 + 0.6541i]
    [-1.5828 - 0.9274i]
                           [-1.7412 - 0.6421i]
                                                   [-2.0000- 1.0000i]
                                                                          [-1.5104- 0.6541i]
```


Određivanje robusne stabilnosti polinomima Karitonova

Dinamički sustav s jediničnom povratnom vezom prema slici određen je prijenosnim funkcijama regulatora i procesa

$$G_r(s,q) = \frac{4(s+3)}{s+8}, \quad G_p(s,q) = \frac{4}{s(s+2)}$$

Sustav je projektiran kao sustav s poznatim parametrima, no u eksploataciji može postojati

neizvjesnost i parametara regulatora i parametara procesa izražena u postotku od nominalne vrijednosti.

Treba razmotriti neizvjesnost parametara karakterističnog polinoma u iznosu od ±10%, ±20%, ±50%, ±60% u odnosu na nominalni iznos te odrediti robusnu stabilnost.

Prijenosna funkcija zatvorenog kruga sustava s nominalnim parametrima

$$G_z(s) = \frac{16(s+3)}{(s+6)(s^2+4s+8)}$$

Karakteristični polinom

$$\alpha_{cl}(s) = s^3 + 10s^2 + 32s + 48$$

Polovi zatvorenog nominalnog sustava

$$s_1 = -6.0000$$

$$s_2 = -2.0000 + 2.0000i$$

$$s_3 = -2.0000 - 2.0000i$$

Polovi nominalnog zatvorenog sustava su u lijevoj poluravnini → sustav je stabilan

Određivanje robusne stabilnosti polinomima Karitonova

Karakteristični polinom nominalnog zatvorenog sustava

$$\alpha_{cl}(s) = s^3 + 10s^2 + 32s + 48$$

Granice neizvjesnosti parametara u odnosu na nominalni iznos ±10%, ±20%, ±50%, ±60%
Familija intervalskih polinoma ima oblik

 $\alpha_{cl}(s) = s^3 + a_2 s^2 + a_1 s + a_0$

Intervali neizvjesnosti za pojedine koeficijente određeni su izrazima

Polinomi Karitonova

a

$$K_{1a}(s) = s^3 + 11s^2 + 28.8s + 43.2$$

 $K_{2a}(s) = s^3 + 9s^2 + 35.2s + 52.8$
 $K_{3a}(s) = s^3 + 9s^2 + 28.8s + 52.8$
 $K_{4a}(s) = s^3 + 11s^2 + 35.2s + 43.2$

$$K_{1b}(s) = s^{3}+12s^{2}+25.6s+38.4$$

$$K_{2b}(s) = s^{3}+8s^{2}+38.4s+57.6$$

$$K_{3b}(s) = s^{3}+8s^{2}+25.6s+57.6$$

$$K_{4b}(s) = s^{3}+12s^{2}+38.4s+38.4$$

b

С

$$K_{1c}(s) = s^3 + 15s^2 + 16s + 24$$
 $K_{2c}(s) = s^3 + 5s^2 + 48s + 72$
 $K_{3d}(s) = s^3 + 5s^2 + 16s + 72$
 $K_{4b}(s) = s^3 + 15s^2 + 48s + 72$

d

$$\begin{split} & K_{1d}(s) = s^3 + 16s^2 + 12.8s + 19.2 \\ & K_{2d}(s) = s^3 + 4s^2 + 51.2s + 76.8 \\ & K_{3d}(s) = s^3 + 4s^2 + 12.8s + 76.8 \\ & K_{4d}(s) = s^3 + 16s^2 + 51.2s + 19.2 \end{split}$$

a)
$$a_i = a_{in} \pm 10\% a_{in}$$
 $a_0 \in [43.2,52.8]$ $a_1 \in [28.8,35.2]$ $a_2 \in [9,11]$

b)
$$a_i = a_{in} \pm 20\% a_{in}$$
 $a_0 \in [38.4,57.6]$ $a_1 \in [25.6,38.4]$ $a_2 \in [8,12]$

c)
$$a_i = a_{in} \pm 50\% a_{in}$$
 $a_0 \in [24.0,72.0]$ $a_1 \in [16.0,48.0]$ $a_2 \in [5,15]$

d)
$$a_i = a_{in} \pm 60\% a_{in}$$
 $a_0 \in [19.2,76.8]$ $a_1 \in [12.8,51.2]$ $a_2 \in [4,16]$

Polovi polinoma Karitonova za 4 slučaja

Primjer 3 Polovi polinoma Karitonova za 4 slučaja

Polovi polinoma Karitonova za 4 slučaja

- ☐ Za neizvjesnost promjene parametara od 60%
 - krivulja se giba u smjeru suprotnom od kazaljke na satu
 - neke krivulje od 1. do 3. kvadranta mogu proći kroz ishodište ili 4. kvadrant
 - kvadrati obuhvaćaju ishodište i 4. kvadrant.
- Nema robusne stabilnosti za ovu neizvjesnost parametara

Važnost analize robusne stabilnosti

- Niti jedan model ne daje pravu sliku stvarnog sustava
- Regulator mora dati tražene performanse realnog sustava, a ne samo njegovog matematičkog modela
- Ne bi trebalo koristiti regulator koji nije u stanju osigurati stabilnost uz malu promjenu parametara sustava
 - analizom robusne stabilnosti mogu se odrediti maksimalne dozvoljene promjene parametara da bi sustav ostao stabilan

Problem numeričke nestabilnosti

- Analizom robusnosti se analizira utjecaj neizvjesnosti parametara procesa i regulatora na stabilnost procesa
- ☐ Realizacija regulatora na digitalnom računalu
 - Problem
 - Točnost računanja (cjelobrojna aritmetika)
 - Stabilnost algoritama
 - nije dozvoljeno upotrebljavati degeneričke i skoro degeneričke vektore i matrice
 - Različita točnost sa različitim realizacijama prijnosne funkcije u diskretnom obliku (serijski paralelni, ...)
 - Imati na umu broj bitova kod računanja i potrebu za cjelobrojnim računanjem
 - Primjer računanje korijena polinoma u Matlabu i faktorizacija korištenjem simboličkih varijabli

$$\alpha_{cl}(s) = s^6 - 12s^5 + 59s^4 - 152s^3 + 216s^2 - 160s + 48$$