3장 Correlation Analysis & Visualization

CONTENTS

- 3.1 서론
- 3.2 상관계수
- 3.3 R을 이용한 시각화

3.1 서론

- 다중선형회귀분석을 비롯한 여러 가지 분석을 수행하기에 앞서 여러 변수들 간(종속변수와 예측변수, 예측변수들 간)의 상관관계를 파악하는 것은 매우 중요하다.
- 예를 들어, 예측변수들 간의 높은 상관은 회귀모형의 성능을 떨어뜨리는 요인으로 작용할 수 있으므로 미리 제거될 필요가 있다. 또한, 반응변수에 미치는 예측변수의 영향을 파악하고 이 를 모형구축에 활용할 수 있다.
- 이 장에서는 변수들 간의 다양한(모수적, 비모수적) 상관계수를 소개하고, R에서 이를 시각화하는 방법을 소개한다.

- 표본상관계수(이하 상관계수)는 두 변수 간의 선형적인(또는 직선적인) 관계를 나타내는 측도이다. 상관계수는 -1과 1 사이의 값을 가지며, 1또는 -1에 가까울수록 선형적인 관계가 강하며, 0에 가까울수록 그 관계가 약하다고 할 수 있다.
- 상관계수의 종류에는 피어슨 상관계수, 스피어만 상관계수, 켄달의 타우 등이 있다. 이 가운데 피어슨 상관계수는 모수적, 나머지는 비모수적 상관계수로 구분된다.
- or() 함수는 상관분석을 수행한다. cor() 함수의 일반 형식은 다음과 같다.

```
cor(x, y=NULL, use="everything", method=c("pearson", "kendall", "spearman")) # 디폴트는 "pearson"임
```

(a) 피어슨 상관계수

• 피어슨(Pearson) 상관계수 r은 두 개의 데이터 셋 $\{x_1, x_2, ..., x_n\}$ 과 $\{y_1, y_2, ..., y_n\}$ 으로부터 다음과 같이 정의된다.

$$r = r_{xy} = \frac{\sum\limits_{i \, = \, 1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum\limits_{i \, = \, 1}^{n} (x_i - \overline{x})^2} \, \sqrt{\sum\limits_{i \, = \, 1}^{n} (y_i - \overline{y})^2}} \, .$$

참 고

Karl Pearson(1895)이 제안한 피어슨 상관계수는 '교차적률(product-moment) 상관계수' 또는 '이변량 상관'으로도 불린다. 모집단 버전은 다음과 같다.

$$\rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} = \frac{E(X - \mu_X)(Y - \mu_Y)}{\sigma_X \sigma_Y}.$$

예제 1

longley 자료에 대해 상관분석을 수행한다.

```
> data(longley)
> str(longley)
'data.frame': 16 obs. of 7 variables:
$ GNP.deflator : num 83 88.5 88.2 89.5 96.2 ...
$ GNP
                : num 234 259 258 285 329 ...
$ Unemployed
               : num 236 232 368 335 210 ...
$ Armed.Forces : num
                     159 146 162 165 310 ...
$ Population
               : num 108 109 110 111 112 ...
$ Year
                : int 1947 1948 1949 1950 1951 1952 1953 1954 ...
$ Employed
                : num 60.3 61.1 60.2 61.2 63.2 ...
```

> cor(longley) GNP.deflator GNP Unemployed Armed. Forces Population Year Employed GNP.deflator 1.000 0.991 0.621 0.465 0.979 0.991 0.971 **GNP** 0.992 1.000 0.604 0.446 0.991 0.995 0.984 0.502 Unemployed 0.621 0.604 -0.177 0.687 0.668 1.000 0.457 Armed.Forces 0.465 0.446 -0.177 1.000 0.364 0.417 Population 0.687 0.364 0.960 0.979 0.991 1.000 0.994 0.417 0.971 Year 0.991 0.995 0.668 0.994 1.000 Employed 0.971 0.984 0.502 0.457 0.960 0.971 1.000

> pairs(longley)

(b) 스피어만 상관계수

- 스피어만(Spearman) 상관계수 r_s 는 일종의 비모수적 상관계수로 다음과 같이 구해진다. 먼저두 개의 데이터 셋(원자료)을 각각 순위(rank) 자료로 전환한 뒤, 전환된 자료로부터 피어슨 상관계수를 구한 것으로 정의된다.
- 즉, 전환된 순위자료를 각각 $\{r_1, r_2, ..., r_n\}$ 과 $\{s_1, s_2, ..., s_n\}$ 이라고 할 때,

$$r_{s} = \frac{\sum\limits_{i=1}^{n} (r_{i} - \overline{r})(s_{i} - \overline{s})}{\sqrt{\sum\limits_{i=1}^{n} (r_{i} - \overline{r})^{2}} \sqrt{\sum\limits_{i=1}^{n} (s_{i} - \overline{s})^{2}}}$$

으로 정의된다.

- 스피어만 상관계수는 원자료 대신 순위자료를 사용하므로 피어슨 상관계수보다 이상치 자료에 대해 덜 민감하게 반응한다. 따라서 스피어만 상관계수는 이상치가 포함된 자료에 대해 피어슨 상관계수보다 선호될 수 있다.
- 자료분석과정에서 두 상관계수의 차이가 클 경우에는 두 변수 간의 비선형성을 의심해 볼 필요
 가 있다. 예를 들어, 다음의 [그림 3.1]과 같이 비선형성이 강한 자료에 대해 스피어만 상관계수
 는 피어슨 상관계수에 비해 훨씬 큰 값을 제공한다.

[그림 3.1] 피어슨과 스피어만 상관계수

● 위의 longley 자료에 대해 스피어만 상관계수를 구하면 다음과 같다.

<pre>> cor(longley, method="spearman")</pre>							
	${\tt GNP.deflator}$	GNP	Unemployed	Armed.Forces	Population	Year	Employed
GNP.deflator	1.000	0.997	0.664	0.220	0.997	0.997	0.982
GNP	0.997	1.000	0.638	0.223	0.994	0.994	0.985
Unemployed	0.664	0.638	1.000	-0.341	0.685	0.685	0.564
Armed.Forces	0.220	0.223	-0.341	1.000	0.226	0.226	0.226
Population	0.997	0.994	0.685	0.226	1.000	1.000	0.976
Year	0.997	0.994	0.685	0.226	1.000	1.000	0.976
Employed	0.982	0.985	0.564	0.226	0.976	0.976	1.000

(c) 켄달의 타우

• 켄달의 타우(Kendall's tau) au 역시 일종의 비모수적 상관계수로 다음과 같이 정의된다. 원자료 셋으로부터 부합인 쌍(concordant pairs)의 수를 P , 비부합인 쌍(disconcordant pairs)의 수를 Q 라고 할 때 $au = \frac{P-Q}{P+Q}$

으로 정의된다([그림 3.2]). 여기서 P 와 Q 는 각각 다음의 그림에서 기울기가 양인 직선과 음인 직선의 수를 의미한다.

• 즉, 기울기가 양(또는 음)인 직선의 수 P(또는 Q)는 x 값이 증가할 때, y 값도 따라 증가하는(또는 감소하는) 점의 쌍이 몇 개인지를 나타내는 즉, 부합인(또는 비부합인) 직선의 수가 몇 개인가를 나타내는 값으로 이해될 수 있다.

[그림 3.2] 켄달의 타우(r = 0.4; P = 7, Q = 3)

● 위의 longley 자료에 대해 켄달의 타우(τ)를 구하면 다음과 같다.

```
> cor(longley, method="kendall")
          GNP.deflator
                        GNP Unemployed Armed. Forces Population Year Employed
GNP.deflator
                1.0000 0.983
                                0.450
                                           0.0333
                                                      0.983 0.983
                                                                   0.916
GNP
                0.9833 1.000
                                0.433
                                           0.0500
                                                      0.966 0.966
                                                                   0.933
Unemployed
                                          -0.2166
                                                                   0.366
                0.4500 0.433
                                1.000
                                                      0.466 0.466
Armed.Forces
                0.0333 0.050
                               -0.216
                                           1.0000
                                                      0.050 0.050
                                                                   0.050
Population
                                0.466
                                           0.0500
                                                                   0.900
                0.9833 0.966
                                                      1.000 1.000
Year
                0.9833 0.966
                                0.466
                                           0.0500
                                                      1.000 1.000
                                                                   0.900
Employed
                0.9166 0.933
                                0.366
                                           0.0500
                                                      0.900 0.900
                                                                    1.000
```

(d) 상관계수에 대한 검정

앞서 소개한 세 가지 종류의 상관계수에 대한 검정은 cor.test() 함수를 이용한다. 이 함수의 일
 반 형식은 다음과 같다.

ullet 이 가운데 피어슨 상관계수에 대한 검정은 다음의 t — 검정을 이용한다. 모집단이 이변량 정규분포를 따른다는 가정하에서 다음의 가설

$$H_0: \rho = 0, \qquad H_1: \rho \neq 0$$

에 대한 검정은 표본상관계수를 이용한 다음의 검정통계량

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

이 귀무가설하에서 자유도가 (n-2)인 t -분포를 따르는 사실에 기초한다.

예제 2

cats 자료에 대해 상관분석을 수행한다. cats 자료는 144마리 성인 고양이의 몸무게(kg)와 심장의 무게(g)를 측정한 자료이다.

```
> library("MASS")
> data(cats)
> str(cats)
'data.frame': 144 obs. of 3 variables:
    $ Sex: Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 1 ...
    $ Bwt: num 2 2 2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 ...
    $ Hwt: num 7 7.4 9.5 7.2 7.3 7.6 8.1 8.2 8.3 8.5 ...
```

```
> summary(cats)
Sex
            Bwt
                          Hwt
F:47 Min. :2.000
                      Min.
                          : 6.30
M:97 1st Qu. :2.300
                     1st Qu.: 8.95
      Median :2.700
                     Median :10.10
       Mean :2.724
                     Mean :10.63
                     3rd Qu.:12.12
       3rd Qu. :3.025
              :3.900
                      Max.
                            :20.50
       Max.
```

● 위의 자료는 결측값을 가지는 변수가 없으며, 산점도는 다음과 같다.

```
> with(cats, plot(Bwt, Hwt)) # with(cats, plot(Hwt ~ Bwt))과 동일
> title(main="Heart Weight (g) sv. Bost Weight (kg)\nof Dosmetic
Cats")
```

Heart Weight (g) sv. Bost Weight (kg) of Dosmetic Cats

• cor() 함수를 통해 두 변수 간의 피어슨 상관계수와 결정계수를 구하면 다음과 같다.

```
> with(cats, cor(Bwt, Hwt))
[1] 0.8041274

> with(cats, cor(Bwt, Hwt))^2 # 단순회귀에서는 결정계수=(상관계수의 제곱)임
[1] 0.6466209
```

• cor.test() 함수를 통해 상관계수에 대한 검정을 수행한다.

```
> with(cats, cor.test(Bwt, Hwt)) # with(cats, cor.test(~ Bwt + Hwt))과 동일

Pearson's product-moment correlation

data: Bwt and Hwt

t = 16.119, df = 142, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
    0.7375682    0.8552122

sample estimates:
    cor
    0.8041274
```

or.test() 함수는 다음과 같이 공식을 사용할 수도 있다. 이 경우에는 subset= 옵션을 지원한다.

• 이 결과(cor ≈ 0.53)는 전체자료의 결과(cor ≈ 0.80)와 큰 차이를 보인다. 그 차이를 산점도를 통해 확인해 보면 다음과 같다.

Heart Weight vs. Body WEight of Cats

3.3.1 {psych} 패키지

● 상관행렬의 시각화를 위해 R 패키지 {psych}의 pairs.panel() 함수와 cor.plot() 함수를 이용한다.

(a) pairs.panels{psych} 함수

- pairs.panels() 함수는 산점도와 함께 모든 변수들 간의 상관계수를 보여 준다. 변수의 수가 6~10개 이내인 경우 효과적이다.
- pairs.panels()의 일반형식과 주요 옵션은 다음과 같다.

- x는 데이터프레임 또는 행렬
- smooth= loess 평활곡선그림
- scale= 상관계수값을 절댓값의 크기에 비례하게 폰트를 사용함
- method= "pearson", "spearman", "kendall"
- pch= 점의 형태 지정. 0~25까지 가능
- jiggle= 플롯에 흐트림(jitter) 적용 여부
- factor= 흐트림에 대한 인자(1-5)

- > # pairs.panels() 함수의 적용 예: iris 자료 이용
- > data(iris)
- > pairs.panels(iris[1:4], scale=T)

(a) scale=FALSE(디폴트)

(b) scale=TRUE

(b) cor.plot{psych} 함수

cor.plot()는 변수의 수가 많을 경우에 유용한 방법으로 상관 또는 요인행렬에 대해 이미지 플롯을 제공한다.

- > # cor.plot() 함수의 적용 예: mtcars 자료 이용
- > cor.plot(cor(mtcars))

corrplot{corrplot} 함수

corrplot{corrplot} 함수는 상관행렬과 신뢰구간을 시각적으로 보여 준다. 일반 행렬의 시각화에도 사용될 수 있으며, 이 경우 is.corr=FALSE로 지정한다. 이 함수는 매우 다양한 옵션을 지원한다.

- method= "circle"(default), "square", "ellipse", "number", "shade", "color", "pie"
- type= "full"(default), "upper" or "lower" (layout type 지정)

```
> # corrplot() 함수의 적용 예
> library(corrplot)
> M <- cor(mtcars)
> corrplot(M, method="ellipse", type="lower")
```


(b) corrplot.mixed{corrplot} 함수

● corrplot.mixed{corrplot} 함수는 상관행렬에 대해 혼합된 방법으로 시각화를 제공한다.

lower=, upper= "circle"(upper default), "square", ellipse", "number"(lower default), "shade", "color", "pie"

```
> # corrplot.mixed(corrplot)의 적용 예
> corrplot.mixed(M) # corrplot.mixed(M, lower="number", upper="circle")와 동일
```

