# Cost Register Automata

2019.12.20

## Overview

- 1 Introduction
- 2 Data Transductions

- 3 Syntax and Semantics of CRAs
- **4** Examples

## Contents

1 Introduction

- 2 Data Transductions
- **3** Syntax and Semantics of CRAs
- 4 Examples

### Introduction

## A Cost Register Automaton (CRA)

- process a data word (a sequence of tagged values) and outputs a value in a data set that is computed using a given set of operations over the data set;
- provides a machine-based characterization of the class of regular transductions from strings to costs.

### Contents

- 1 Introduction
- 2 Data Transductions

- **3** Syntax and Semantics of CRAs
- 4 Examples

#### **Notations**

- lacksquare  $\Sigma$  is a finite alphabet whose elements are called tags;
- D is a data set of data values.

### Notations

- $lue{\Sigma}$  is a finite alphabet whose elements are called tags;
- D is a data set of data values.

### Definition

A data word is a sequence of tagged values, i.e. a word over the alphabet  $\Sigma \times D.$ 

#### **Notations**

- $lue{\Sigma}$  is a finite alphabet whose elements are called tags;
- D is a data set of data values.

#### Definition

A data word is a sequence of tagged values, i.e. a word over the alphabet  $\Sigma \times D.$ 

### Example

Suppose  $\Sigma = \{a, \#\}, D = \mathbb{N}$ . Then

$$(a,0)(a,2)(\#,0)(a,1)(\#,2)$$

is a data word.



## Definition

A data transduction is a partial function of type

$$(\Sigma \times D)^* \rightharpoonup D.$$

### Definition

A data transduction is a partial function of type

$$(\Sigma \times D)^* \rightharpoonup D.$$

### Definition

A multi-valued transduction is a partial function of type

$$(\Sigma \times D)^* \to \mathcal{P}(D),$$

where  $\mathcal{P}$  is the powerset operator.

#### Definition

For a data word  $w\in (\Sigma\times D)^*$ ,  $w|_{\Sigma}$  denotes the elementwise projection of w to the tag component. Formally,

$$(a_1, d_1)(a_2, d_2) \cdots (a_n, d_n)|_{\Sigma} = a_1 a_2 \cdots a_n$$

### Definition

For a data word  $w \in (\Sigma \times D)^*$ ,  $w|_{\Sigma}$  denotes the elementwise projection of w to the tag component. Formally,

$$(a_1, d_1)(a_2, d_2) \cdots (a_n, d_n)|_{\Sigma} = a_1 a_2 \cdots a_n$$

#### Definition

The rate of f is the language  $R(f) \subseteq \Sigma^*$  defined as follows:

$$\mathsf{R}(f) = \{ \sigma \in \Sigma^* | \forall w \text{ with } w|_{\Sigma} = \sigma, f(w) \text{ is defined} \}.$$



## Contents

1 Introduction

2 Data Transductions

- 3 Syntax and Semantics of CRAs
- 4 Examples

#### **Notations**

- X is a set of variables;
- O is a family of constants and operations that are allowed on the data set D;
  - lacksquare  $\mathcal{O}_n$  denotes the set of n-ary operations that are contained in  $\mathcal{O}$ ;
  - lacksquare  $\mathcal{O}_0$  is the set of constants in  $\mathcal{O}$ , in particular.

#### **Notations**

- X is a set of variables;
- O is a family of constants and operations that are allowed on the data set D;
  - lacksquare  $\mathcal{O}_n$  denotes the set of n-ary operations that are contained in  $\mathcal{O}$ ;
  - lacksquare  $\mathcal{O}_0$  is the set of constants in  $\mathcal{O}$ , in particular.

#### Definition

 $\mathbb{E}_{\mathcal{O}}[X]$  denotes the set of expressions over X, defined by the following rules:

- $c \in \mathbb{E}_{\mathcal{O}}[X]$ , if constanc  $c \in \mathcal{O}$ ;
- $x \in \mathbb{E}_{\mathcal{O}}[X]$ , if variable  $x \in X$ ;
- $op(t_1, ..., t_n) \in \mathbb{E}_{\mathcal{O}}[x]$ , if n-ary operation  $op \in \mathcal{O}$ ,  $t_i \in \mathbb{E}_{\mathcal{O}}[X]$  for all i = 1, ..., n.

## Definition (CRA)

A (nondeterministic, copyful) Cost Register Automaton (NCRA) over the tag alphabet  $\Sigma$ , data values D, and data operations  $\mathcal{O}$  is a tuple

$$\mathcal{A} = (Q, X, \Delta, I, F),$$

#### where

- Q is a finite set of states,
- X is a finite set of registers,
- $\Delta \subseteq Q \times \Sigma \times U_{\mathcal{O}} \times Q$  is the set of transitions with  $U_{\mathcal{O}}$  the set of register updates  $X \to \mathbb{E}_{\mathcal{O}}[X \cup \{\text{val}\}]$ ,
- $lacksquare I:Q 
  ightharpoonup (X 
  ightarrow \mathbb{E}_{\mathcal{O}}[\emptyset])$  is the initialization function, and
- $F: Q \rightharpoonup \mathbb{E}_{\mathcal{O}}[X]$  is the finalization function.



## Branches

|   | abbreviations    | NCRA             | UCRA        | DCRA          |
|---|------------------|------------------|-------------|---------------|
| - | the automaton is | nondeterministic | unambiguous | deterministic |

### **Branches**

| abbreviations    | NCRA             | UCRA        | DCRA          |
|------------------|------------------|-------------|---------------|
| the automaton is | nondeterministic | unambiguous | deterministic |

### **Definition**

A CRA is said to be copyless if

- I  $\forall (p, a, \theta, q) \in \Delta, \forall x \in X$ , there is at most one occurrence of x in the list of expressions  $\theta(x_1), \ldots, \theta(x_n)$ , where  $x_1, \ldots, x_n$  is an enumeration of X, and
- 2  $\forall q \in \text{dom}(F), \forall x \in X$ , there is at most one occurrence of x in the expression F(q).

### Definition

A function  $\alpha:X\to D$  is called a variable assignment. It extends uniquely to a homomorphism  $\hat{\alpha}:\mathbb{E}_{\mathcal{O}}[X]\to D.$ 

#### Definition

A function  $\alpha:X\to D$  is called a variable assignment. It extends uniquely to a homomorphism  $\hat{\alpha}:\mathbb{E}_{\mathcal{O}}[X]\to D.$ 

#### **Notations**

- val is a special symbol, referring to the value of the current data item;
- lacksquare  $\alpha[ ext{val} \mapsto d]$  means the extension of  $\alpha$  that maps  $ext{val}$  to d.

### Definition

A function  $\alpha:X\to D$  is called a variable assignment. It extends uniquely to a homomorphism  $\hat{\alpha}:\mathbb{E}_{\mathcal{O}}[X]\to D.$ 

### **Notations**

- val is a special symbol, referring to the value of the current data item;
- lacksquare  $\alpha[ ext{val}\mapsto d]$  means the extension of lpha that maps  $ext{val}$  to d.

### Definition

An expression  $t \in \mathbb{E}_{\mathcal{O}}[X]$  denotes a function  $[\![t]\!]: D^X \to D$ , defined as: for a variable assignment  $\alpha: X \to D$ , put  $[\![t]\!](\alpha) = \hat{\alpha}(t)$ .

### Definition

A function  $\alpha:X\to D$  is called a variable assignment. It extends uniquely to a homomorphism  $\hat{\alpha}:\mathbb{E}_{\mathcal{O}}[X]\to D.$ 

#### **Notations**

- val is a special symbol, referring to the value of the current data item;
- lacksquare  $\alpha[ ext{val} \mapsto d]$  means the extension of  $\alpha$  that maps  $ext{val}$  to d.

#### Definition

An expression  $t \in \mathbb{E}_{\mathcal{O}}[X]$  denotes a function  $[\![t]\!]: D^X \to D$ , defined as: for a variable assignment  $\alpha: X \to D$ , put  $[\![t]\!](\alpha) = \hat{\alpha}(t)$ .

An expression  $t \in \mathbb{E}_{\mathcal{O}}[X \cup \{\text{val}\}]$  denotes a function  $[\![t]\!]: D^X \times D \to D$ ,

$$[\![t]\!](\alpha,d)=\hat{\beta}(t)$$
 where  $\beta=\alpha[\mathrm{val}\mapsto d]:X\cup\{\mathrm{val}\}\to D$ 

#### Definition

For an input sequence  $w=(a_1,d_1)(a_2,d_2)\cdots(a_n,d_n)\in(\Sigma\times D)^*$ , we define a w-run in  $\mathcal A$  to be a sequence

$$(q_0, \alpha_0) \xrightarrow{(a_1, d_1)} (q_1, \alpha_1) \xrightarrow{(a_2, d_2)} (q_2, \alpha_2) \xrightarrow{(a_3, d_3)} \cdots \xrightarrow{(a_n, d_n)} (q_n, \alpha_n)$$

with  $q_i \in Q$  and  $\alpha_i : X \to D$  for all i so that:

- I Initialization:  $q_0 \in \text{dom}(I)$  and  $\alpha_0(x) = \llbracket I(q_0)(x) \rrbracket$  for every register  $x \in X$ ;
- **2** Transition:  $\forall (p, \alpha) \xrightarrow{(a,d)} (q, \beta), \exists \theta \in U_{\mathcal{O}} \text{ with } (p, a, \theta, q) \in \Delta \text{ s.t.}$

$$\forall x \in X, \ \beta(x) = \llbracket \theta(x) \rrbracket (\alpha, d);$$

**3** Finalization:  $q_n \in dom(F)$ .

The value of the run is  $[F(q_n)](\alpha_n)$ .

## Contents

1 Introduction

- 2 Data Transductions
- **3** Syntax and Semantics of CRAs
- 4 Examples

## Suppose

$$\Sigma = \{a, b\}, D = \mathbb{N}, \mathcal{O} = \{0, +\}$$

#### Transduction

 $f:(\Sigma \times D)^* \rightharpoonup D$ , defined on all nonempty sequences.

If a sequence ends with an a-labeled (b-labeled) value, then f outputs the sum of all a-labeled (b-labeled) values in the sequence.

## Copyless DCRA



$$\theta = \begin{cases} x := 0 \\ y := 0 \end{cases} \qquad \theta_a = \begin{cases} x := x + \mathrm{val} \\ y := y \end{cases} \qquad \theta_b = \begin{cases} x := x \\ y := y + \mathrm{val} \end{cases}$$

## Copyless UCRA



## Suppose

$$\Sigma = \{a, \#\}, D = \mathbb{N}, \mathcal{O} = \{0, +, \max\}.$$

#### Transduction

$$f:(\Sigma \times D)^* \rightharpoonup D$$
, rate:  $(a^+\#)^*$ 

f outputs the maximum cost over all input blocks, where

- **a** a block is a maximal subsequence of the input that is of the form  $aa \dots a\#$ ,
- the cost of a block is the sum of the a-labeled values.

### Copyless DCRA



$$\theta = \begin{cases} x := 0 \\ y := 0 \end{cases} \qquad \theta_a = \begin{cases} x := x + \text{val} \\ y := y \end{cases} \qquad \theta_\# = \begin{cases} x := 0 \\ y := \max(y, x) \end{cases}$$

### Suppose

$$\Sigma = \{a, b\}, D = \mathbb{N}, \mathcal{O} = \{0, \ominus\}. \ x \ominus y = \max(x - y, 0).$$

#### Transduction

$$f: (\Sigma \times D)^* \rightharpoonup D,$$

defined on sequences that contain at least one a-labeled value. f outputs the maximum drawdown in the input signal after the last occurrence of a b-labeled value.

## Copyful UCRA



$$\theta_0 = \begin{cases} x := 0 \\ y := 0 \end{cases} \qquad \theta = \begin{cases} x := \max(x, \mathtt{val}) \\ y := \max(y, \max(x, \mathtt{val}) \ominus \mathtt{val}) \end{cases}$$

Cost Register Automata

## Suppose

$$\Sigma = \{a\}, D = \mathbb{Q}, \mathcal{O} = \{0, op\}.$$

$$op(x,y) = \lambda \cdot x + y, \quad \lambda \in (0,1).$$

#### Transduction

For w with  $w|_D = d_1 d_2 \dots d_n \in D^*$ , f outputs

$$\lambda^{n-1} \cdot d_1 + \dots + \lambda \cdot d_{n-1} + d_n.$$

## **CRA**

## Transduction

$$g(w_1w_2\ldots w_n)=f(w_n\ldots w_2w_1).$$

#### Transduction

$$g(w_1w_2\dots w_n)=f(w_n\dots w_2w_1).$$

#### CRA with a hole

$$\underline{\qquad \qquad } x := \square \qquad \boxed{ p \mid x[0/\square] \qquad \qquad } a \mid x := x[op(\square, \mathtt{val})/\square]$$

 $x[t/\square]$  denotes the result of substituting t for  $\square$  in the term that x holds.