

Processing of SENTINEL-1 GRD Time Series with ISP/DIFF&GEO/LAT

Gamma Remote Sensing AG
Worbstrasse 225
3073 Gümligen
Switzerland

santoro@gamma-rs.ch

http://www.gamma-rs.ch

Launch Dates:

Sentinel-1A - 03 April 2014 Sentinel-1B - Scheduled for 2016

Operational lifespan: 7 years (With consumables for 12)

Mission Objectives:

Land monitoring of forests, water, soil and agriculture
Emergency mapping support in the event of natural disasters
Marine monitoring of the maritime environment
Sea ice observations and iceberg monitoring
Production of high resolution ice charts
Forecasting ice conditions at sea
Mapping oil spills
Sea vessel detection
Climate change monitoring

Mission Orbit:

Orbit Type: Sun-synchronous, near-polar, circular

Orbit Height: 693 km Inclination: 98.18°

Repeat Cycle: 175 orbits in 12 days

Payload:

C-SAR (C-band Synthetic Aperture Radar) Resolution and Swath Width (Four modes):

Strip Map Mode: 80 km Swath, 5 x 5 m spatial resolution

Interferometric Wide Swath: 250 km Swath, 5x20 m spatial resolution Extra-Wide Swath Mode: 400 km Swath, 25 x 100 m spatial resolution

Wave-Mode: 20 km x 20 km, 5 x 20 m spatial resolution

SENTINEL-1

S1A IW GRDH 1SDV 20160104T052528 20160104T052553 009340 00D80F 124D vh ml.mli S1A IW GRDH 1SDV 20160104T052528 20160104T052553 009340 00D80F 124D vh ml.mli par S1A IW GRDH 1SDV 20160116T052528_20160116T052553_009515_00DD0D_67D8_vh_ml.mli S1A_IW_GRDH_1SDV_20160116T052528_20160116T052553_009515_00DD0D_67D8_vh_ml.mli_par S1A IW GRDH 1SDV 20160128T052527 20160128T052552 009690 00E237 E032 vh ml.mli S1A IW GRDH 1SDV 20160128T052527 20160128T052552 009690 00E237 E032 vh ml.mli par S1A IW GRDH 1SDV 20160209T052527 20160209T052552 009865 00E736 BFA2 vh ml.mli S1A_IW_GRDH_1SDV_20160209T052527_20160209T052552_009865_00E736_BFA2_vh_ml.mli_par S1A IW GRDH 1SDV 20160221T052527 20160221T052552 010040 00EC72 C493 vh ml.mli S1A IW GRDH 1SDV 20160221T052527 20160221T052552 010040 00EC72 C493 vh ml.mli par S1A IW GRDH 1SDV 20160304T052527 20160304T052552 010215 00F15A B5A2 vh ml.mli S1A_IW_GRDH_1SDV_20160304T052527_20160304T052552_010215_00F15A_B5A2_vh_ml.mli_par S1A_IW_GRDH_1SDV_20160316T052527_20160316T052552_010390_00F654_14C5_vh_ml.mli S1A IW GRDH 1SDV 20160316T052527 20160316T052552 010390 00F654 14C5 vh ml.mli par S1A IW GRDH 1SDV 20160409T052528 20160409T052553 010740 01007E 1778 vh ml.mli S1A IW GRDH 1SDV 20160409T052528 20160409T052553 010740 01007E 1778 vh ml.mli par S1A IW GRDH 1SDV 20160503T052529 20160503T052554 011090 010B55 C010 vh ml.mli S1A_IW_GRDH_1SDV_20160503T052529_20160503T052554_011090_010B55_C010_vh_ml.mli_par S1A IW GRDH 1SDV 20160714T052524 20160714T052549 012140 012CF8 8F0D vh ml.mli S1A IW GRDH 1SDV 20160714T052524 20160714T052549 012140 012CF8 8F0D vh ml.mli par S1A IW GRDH 1SDV 20160726T052525 20160726T052550 012315 0132A1 54F5 vh ml.mli S1A_IW_GRDH_1SDV_20160726T052525_20160726T052550_012315_0132A1_54F5_vh_ml.mli_par S1A_IW_GRDH_1SDV_20160807T052526_20160807T052551_012490_013882_969B_vh_ml.mli S1A IW GRDH 1SDV 20160807T052526 20160807T052551 012490 013882 969B vh ml.mli par S1A IW GRDH 1SDV 20160819T052527 20160819T052552 012665 013E40 E96D vh ml.mli S1A IW GRDH 1SDV 20160819T052527 20160819T052552 012665 013E40 E96D vh ml.mli par S1A_IW_GRDH_1SDV_20160831T052527_20160831T052552_012840_014434_9ADB_vh_ml.mli S1A_IW_GRDH_1SDV_20160831T052527_20160831T052552_012840_014434_9ADB_vh_ml.mli_par S1A IW GRDH 1SDV 20160912T052527 20160912T052552 013015 0149CC F1E5 vh ml.mli S1A IW GRDH 1SDV 20160912T052527 20160912T052552 013015 0149CC F1E5 vh ml.mli par srtm srtm.par

Import of GRDs: (already done)

```
par_S1_GRD
*** Generate MLI and GRD images and parameter files from a Sentinel-1 GRD product ***
*** Copyright 2016, Gamma Remote Sensing, v2.8 17-Aug-2016 awi/clw/ts ***
usage: par_S1_GRD <GeoTIFF> <annotation_XML> <calibration_XML> <noise_XML> <MLI_par> <MLI>
[GRD_par] [GRD] [eflg] [rps] [noise_pwr]
input parameters:
 GeoTIFF
               (input) image data file in GeoTIFF format (*.tiff)
 annotation_XML (input) Sentinel-1 L1 XML annotation file
 calibration_XML (input) Sentinel-1 L1 radiometric calibration XML file (enter - for no radiometric
calibration)
                (input) Sentinel-1 L1 noise XML file (enter - to not add back thermal noise)
 noise_XML
          NOTE: The L1 GRD product has thermal noise subtracted, enter noise XML to add back
thermal noise
 MLI_par
              (output) MLI parameter file (example: yyyymmdd pp.mli.par)
 MLI
            (output) MLI data file in slant range geometry (example: yyyymmdd_pp.mli)
 GRD_par
               (output) GRD parameter file (example: yyyymmdd_pp.grd.par, enter - for none)
 GRD
              (output) GRD data file (example: yyyymmdd_pp.grd, enter - for none)
            GR-SR grid extrapolation flag:
 eflg
            0: no extrapolation of the GR-SR grid beyond the grid boundaries
            1: permit extrapolation of the GR-SR grid to cover the entire image (default)
          NOTE: extrapolation of the GR-SR grid may introduce geocoding errors
            slant range pixel spacing (m) (enter - for default: calculated from ground-range parameters)
 rps
               noise intensity for each MLI sample in slant range using data from noise_XML
noise_pwr
          NOTE: when the noise_pwr file is specified, noise power correction will NOT be applied to the
MLI data values
```

→ par_SLC_GRD already applies absolute calibration to sigma nought !!!

more S1A_IW_GRDH_1SDV_20160104T052528_20160104T052553_009340_00D80F_124D_vh_ml.mli_par

Gamma Interferometric SAR Processor (ISP) - Image Parameter File

title: s1a-iw-grd-vh-20160104t052528-20160104t052553-009340-00d80f-002.tiff S1A-IW-IW-VH-9340 (software: Sentinel 002.60)

sensor: S1A

date: 2016 1 4 5 25 28.5934 start_time: 19528.596362 s center_time: 19541.092287 s end_time: 19553.588212 s azimuth line time: 7.4825898e-03 s

line_header_size:0range_samples:6433azimuth_lines:3341range_looks:25azimuth_looks:5image_format:FLOAT

SLANT RANGE image_geometry: range_scale_factor: 1.0000000e+00 azimuth_scale_factor: 1.0000000e+00 center latitude: 50.6050916 degrees center_longitude: 11.5504814 degrees heading: -164.9024248 degrees 25.000000 m range_pixel_spacing: azimuth_pixel_spacing: 50.000000 m near_range_slc: 800238.1166 m center_range_slc: 880638.1166 m far_range_slc: 961038.1166 m

first_slant_range_polynomial: 0.00000 0.00000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 s m 1 m^

Define reference image for co-registration

ref=S1A_IW_GRDH_1SDV_20160104T052528_20160104T0 52553_009340_00D80F_124D_vh_ml.mli

Create geocoding lookup table for reference image

gc_map \${ref}_par - srtm.par srtm gcdem.par gcdem geo2rdc 0.5 0.5 - - - inc - - ls_map - 2

2 arcsec resolution of final products

map dimensions

```
mli_width=`awk '$1 == "range_samples:" {print $2}' ${ref}_par` mli_lines=`awk '$1 == "azimuth_lines:" {print $2}' ${ref}_par` dem_width=`awk '$1 == "width:" {print $2}' gcdem.par`
```

Estimate pixel scattering area based on DEM and ellipsoid

pixel_area \${ref}_par gcdem.par gcdem geo2rdc ls_map
inc pix_dem - - - pix

Refinement of geocoding lookup table

create_diff_par \${ref}_par - diff_par 1 0

offset_pwrm pix_dem \${ref} diff_par offs snr 128 64 offsets 2 64 24 0.2

offset_fitm offs snr diff_par coffs coffsets 0.2 4

Updating of the look-up table gc_map_fine geo2rdc \$dem_width diff_par geo2rdc.fine 1 /bin/mv geo2rdc.fine geo2rdc

Reproduce pixel area estimate pixel_area \${ref}_par gcdem.par gcdem geo2rdc ls_map inc pix_dem - - - pix

```
# Co-registration of all MLIs to selected refernce image
# Resample dem to rdc geometry
geocode geo2rdc gcdem $dem_width gcdem.rdc $mli_width $mli_lines 0 0
i=S1A_IW_GRDH_1SDV_20160128T052527_20160128T052552_009690_00E237_E032
_vh_ml.mli
# Pixel dimensions of image to be coregistered
mli_width_t=`awk '$1 == "range_samples:" {print $2}' ${i}_par`
mli_lines_t=`awk '$1 == "azimuth_lines:" {print $2}' ${i}_par`
rdc_trans ${ref}_par gcdem.rdc ${i}_par ${i}.lt
geocode ${i}.lt ${ref} $mli_width ${i}.sim $mli_width_t $mli_lines_t 0 0
create_diff_par ${i}_par - ${i}.diff_par 1 0
offset_pwrm ${i}.sim ${i} ${i}.diff_par ${i}.offs ${i}.snr 128 128 ${i}.offsets 2 12 12 0.2
offset_fitm ${i}.offs ${i}.snr ${i}.diff_par ${i}.coffs ${i}.coffsets 0.2 1
→ final model fit std. dev. (samples) range: 0.0488 azimuth: 0.0524
gc_map_fine ${i}.lt $mli_width ${i}.diff_par ${i}.lt_fine 1
MLI_interp_lt ${i} ${ref}_par ${i}_par ${i}.lt_fine ${ref}_par ${i}_par ${i}.diff_par
$(basename ${i} mli)rmli $(basename ${i} mli)rmli_par
dis2pwr $ref $(basename ${i} mli)rmli $mli_width $mli_width # After coregistration
```

Co-registration of all MLIs to selected refernce image

```
for i in $(ls *ml.mli); do
  if [ ${i} != ${ref} ]; then
     # Pixel dimensions of image to be coregistered
     mli_width_t=`awk '$1 == "range_samples:" {print $2}' ${i}_par`
     mli lines t=`awk '$1 == "azimuth lines:" {print $2}' ${i} par`
     rdc_trans ${ref}_par gcdem.rdc ${i}_par ${i}.lt
     geocode ${i}.lt ${ref} $mli_width ${i}.sim $mli_width_t $mli_lines_t 0 0
     create_diff_par ${i}_par - ${i}.diff_par 1 0
     offset_pwrm ${i}.sim ${i} ${i}.diff_par ${i}.offs ${i}.snr 128 128 ${i}.offsets 2 12 12 0.2
     offset_fitm ${i}.offs ${i}.snr ${i}.diff_par ${i}.coffs ${i}.coffsets 0.2 1
     gc map fine ${i}.lt $mli width ${i}.diff par ${i}.lt fine 1
     MLI_interp_lt ${i} ${ref}_par ${i}_par ${i}.lt_fine ${ref}_par ${i}_par ${i}.diff_par
$(basename ${i} mli)rmli $(basename ${i} mli)rmli_par
  fi
done
```

Compensate pwr images for pixel area variations

product \${ref} pix \$(basename \${ref} mli)s0 \$mli_width 1 1 0
for i in \$(ls *rmli); do
 product \${i} pix \$(basename \${i} rmli)s0 \$mli_width 1 1 0

done

dis2pwr

S1A_IW_GRDH_1SDV_20160409T052528_20160409T052553_010740_01007E_1778_vh _ml.s0

\$1A_IW_GRDH_1\$DV_20160409T052528_20160409T052553_010740_01007E_1778_vh _ml.rmli \$mli_width \$mli_width

Why Filtering?

Gamma distributed speckle:

$$p(I) = \frac{1}{\Gamma(L)} \left(\frac{L}{\sigma}\right)^{L} I^{L-1} e^{\frac{-LI}{\sigma}}$$

L (or ENL) = Equivalent Number of Looks

Multichannel Filtering

Linear Combination of k channels increases ENL with reduced cost of resolution (Quegan & Yu, 2001):

$$egin{aligned} oldsymbol{J}_k &= \sum_{i=1}^M A_{ki} oldsymbol{I}_i & A_{ki} &= \left\langle oldsymbol{I}_k
ight
angle rac{C_I^{-1} \sigma}{\sigma^t C_I^{-1} \sigma} \end{aligned}$$

A=weighting coefficient, C=covariance matrix, σ =mean vector (spatial estimate), J=filtered image

When ignoring ENL differences & correlation between channels :

$$J_k = \frac{\sigma_k^0}{M} \sum_{i=1}^M \frac{I_i}{\sigma_i^0}$$

Spatial estimate of RCS required:

Tested: Spatial average vs. Adaptive Frost RCS reconstruction

Expected increase of ENL with M images and N samples used for spatial estimate of σ^0 (L=initial ENL):

$$ENL = \frac{MNL}{M + N - 1} \qquad N' = \frac{N}{(1 + 2\rho_{I,a}[1] + 2\rho_{I,r}[1] + 4\rho_{I,a}[1]\rho_{I,r}[1])}$$

Filtering

temp_filt

ANSI-C programs: temp_filt.c and temp_filt_ad.c

NAME

 $temp_filt - Multi-temporal\ filtering\ of\ co-registered\ data\ sets\ of\ format\ float.$ $temp_filt_ad - Multi-temporal\ filtering\ of\ co-registered\ data\ sets\ of\ format\ float\ using\ adaptive\ spatial\ mean\ estimate.$

SYNOPSIS

temp_filt <data_tab> <width> [waz] [wr] [wt_flag] [zero_flag] [loffset] [nlines]

<data_tab></data_tab>	(input) two column list of the names of input and output data files (float) input file 1 output file 1 input file 2 output file 2
<width></width>	number of samples/row
[waz]	spatial averaging filter width in azimuth pixels (default=1.0)
[wr]	spatial averaging filter width in range pixels (default=1.0)
[wt_flag]	weighting function flag (default=0: uniform; 1: linear; 2: gaussian)
[zero_flag]	default: zero_flag=0 => 0.0 interpreted as missing value zero_flag=1 => 0.0 interpreted as valid data value
[loffset]	number of lines offset to starting line (default=0)
[nlines]	number of lines to process (default: 0=entire file)

```
# Apply multi-temporal filter
for i in $(ls *s0); do
  echo "$i $(basename $i .s0)_mtfil.s0" >> optfile_filt
done
temp_filt optfile_filt $mli_width 5 5
dis2pwr
S1A_IW_GRDH_1SDV_20160316T052527_20160316T052552_010390_00F654_
14C5_vh_ml_mtfil.s0
S1A_IW_GRDH_1SDV_20160316T052527_20160316T052552_010390_00F654_
14C5_vh_ml.s0 $mli_width $mli_width
```

Multi-temporal metrics

```
temp lin var
*** Land Application Tools: Program temp_lin_var ***
*** Copyright 2012 Gamma Remote Sensing, v4.0 8-Mar-2013 clw/uw ***
*** Calculation of temporal mean and variability (defined as stdev/pow(mean, norm_pow) of multiple data
sets ***
usage: temp_lin_var <data_tab> <mean> <stdev> <width> [waz] [wr] [wt_flag] [zero_flag] [loff] [nlines]
[norm_pow]
input parameters:
 data_tab (input) single column list of the names of input data files (float)
           (output) temporal mean (linear scale) (float)
 mean
 stdev
          (output) temporal variability (stdev/pow(mean,norm_pow))(float)
          number of samples/row
 width
          spatial averaging filter width in azimuth pixels (default = 1.0)
 waz
         spatial averaging filter width in range pixels (default = 1.0)
 wr
 wt_flag weighting function
         0: uniform (default)
         1: linear
         2: gaussian)
 zero flag zero flag
         0: data value 0.0 interpreted as missing data (default))
         1: data interpreted
 loff
        offset to starting line (default = 0)
          number of lines to process (0:entire file (default))
 nlines
 norm_pow temporal stdev is normalized with POW(mean,norm_pow)
         0.0: normalized with 1.0
```

1.0: normalized with backscatter intensity (default)

Calculate multitemporal metrics

ls *_mtfil.s0 > optfile_mt
temp_lin_var optfile_mt mtmean mtstdev \$mli_width

dis2pwr mtmean \$mli_width

dis_linear mtstdev \$mli_width

```
Geocode intensity images
########
for i in $(ls *mtfil.s0); do
  geocode_back ${i} $mli_width geo2rdc $(basename ${i} .s0)_geo.s0 $dem_width
done
geocode_back mtmean $mli_width geo2rdc mtmean_geo.s0 $dem_width
geocode_back mtstdev $mli_width geo2rdc mtstdev_geo.s0 $dem_width
#########
# Sigma to gamma conversion --> reduces incidence angle dependence of backscatter
########
for i in $(ls S*geo.s0); do
  sigma2gamma ${i} inc $(basename ${i} s0)g0 $dem_width
done
```

Summary:

We have learned how to calculate:

- a differential repeat-pass interferogram
- displacement
- coherence
- backscatter intensity

from a 12-day repeat-pass pair of S1 TOPS IW SLCs

Note: S1 imagery can also be downloaded in detected ground range format, in which case no interferometry is possible. The sequence of programs needed to process GRDs is:

par_S1_GRD

multilook

gc_map_grd

pixel_area

geocode_back