Air quality trends from long-term Earth observations over tropical megacities of the future

Karn Vohra (kxv745@bham.ac.uk), E. A. Marais, S. Suckra, L. Kramer, W. J. Bloss, R. Sahu, A. Gaur, S. N. Tripathi, M. Van Damme, L. Clarisse, P. F. Coheur

Air Quality and Climate are inter-linked

Tropics are the next frontier in air pollution

51 cities within the tropics will be megacities by 2100 [Hoornweg & Pope, 2016]

Tropics are the next frontier in air pollution

51 cities within the tropics will be megacities by 2100 [Hoornweg & Pope, 2016]

Currently, limited routine monitoring across the tropics

Satellites are the only solution!!!

Sensors in space have been providing us with petabytes of data for more than 2 decades

Validation of satellite observations

Satellite versus surface NO₂ in London

Satellite versus surface NH₃ in Harwell

In our previous work for the UK we showed that the satellite observations reproduce monthly variability in surface pollutant concentrations

[Vohra et al., submitted, ACP]

Megacity NO₂ trends from OMI for 2005-2018

NO₂ is a precursor of tropospheric ozone, inorganic & organic nitrate aerosol

NASA OMI Level-2 Tropospheric column NO₂ version 3.0

NO₂ has increased in 46 out of 51 cities

Year-round sources include anthropogenic sources like fossil fuel combustion, with large seasonal contributions from biomass burning

Megacity NH₃ trends from IASI for 2008-2018

NH₃ is a precursor of inorganic nitrate aerosol

BIRA IASI Level-2 Total column NH₃ version 3R

NH₃ has increased in 40 out of 51 cities

Year-round sources include agriculture, fertilizer industry, urban sources like cars and seasonal contributions are from biomass burning

Megacity HCHO trends from OMI for 2005-2018

HCHO is a precursor of tropospheric ozone & carbon dioxide

QA4ECV OMI Level-2 Total column HCHO version 1.2

HCHO (reactive NMVOCs) has increased in 37 out of 51 cities

Year-round sources include anthropogenic sources (industry and domestic combustion) and biogenic sources, with seasonal contributions from biomass burning

Megacity AOD trends from MODIS for 2005-2018

Aerosols can be either absorbing or scattering

AOD has increased in 25 out of 33 cities

-2.5 0.0 2.5 5.0 7.5 10.0

Dominant sources are many: secondary sources from NO_x, NH₃, NMVOCs, primary sources of windblown dust, crop and trash burning, residential and open fires

Conclusion and Next Steps

✓ Preliminary results show rapid increases in precursors of short-lived climate forcers for most future tropical megacities

Next, we will:

- Interpret the drivers of these trends, for example, increased fertiliser use in Africa driving increases in NH₃
- Tease out biomass burning contribution to the trends
- Compare trends to widely used global emission inventories like CEDS/EDGAR to see if the information to calculate radiative forcing has been correctly applied

Any Questions? Contact Karn (kxv745@bham.ac.uk)