Cálculo diferencial e integral II

Tarea 1

- 1. Si A=(a,b), probar que A no tiene mínimo y sí tienen ínfimo, $inf\ A=a$.
 - Demostración: De que A no tiene mínimo.

Si $x\in A$ entonces existe c y es el mínimo, minA=c, entonces $c\in (a,b)$ y $c\leq x\ \forall x\in (a,b).$

Como $c \in (a,b)$ y a < c por lo tanto podemos encontrar un elemento medio en a y c , tenemos que:

$$a < (a+c)/2 < c$$

Esto además es menor a b

$$a < (a+c)/2 < c < b$$

Como (a+b)/2 pertenece al conjunto A , es decir, $(a+c)/2 \in (a,b)$ y además

$$(a+c)/2 < c$$

Contradicción, porque existe otro elemento del conjunto A que es menor a C, y nosotros habíamos considerado c cómo el mínimo, por lo tanto no tiene mínimo.

• Demostración: De que A tiene infimo inf A = a.

Si $x \in A$ entonces a < x < b, y se encuentra acotado superiormente por b e inferiormente por a.

Supongamos que existe otra cota inferior de A, que llamaremos α , por lo tanto $\alpha \leq x \ \forall x \in A \ y$ además $\alpha > a$.

Tenemos que $a < \alpha < b$, ahora consideremos un elemento medio en a y α

$$a < (a + \alpha)/2 < \alpha < b$$

Como $(a + \alpha)/2 \in A$ y además $(a + \alpha)/2 < \alpha$ encontramos otra cota inferior, lo cual es una contradicción ya que α era cota inferior.

Por lo tanto $\alpha \leq a$ y es la mayor cota inferior. Por lo tanto $inf\ A=a$.

- 2. Si A=(a,b), probar que A no tiene máximo y sí tiene supremo, $sup\ A=b$.
 - Demostración de que A no tiene máximo.

Si $x \in A$ entonces a < x < b se encuentra acotado inferiormente por a y superiormente por b.

Supongamos que existe c y es el máximo, $max \ A = c$ entonce $c \ge x \ \forall x \in (a,b)$.

Como $c \in (a, b)$ por lo tanto c < b, podemos encontrar un elemento medio en c y b, por lo tanto tenemos que:

$$c < (c+b)/2 < b$$

Además a < c < (c + b)/2 < b

Como $(c+b)/2 \in A$ y además encontramos (c+b)/2 > c, lo cual es una contradicción por que existe otro elemento del conjunto A que es mayor a c, y se había considerado a c como el máximo.

Por lo tanto A no tiene máximo.

• Demostración de que A tiene supremo, $sup\ A = b$

Si $x \in A$ entonces a < x < b, donde A se encuentra acotado inferiormente por a y superiormente por b.

Supongamos que existe una cota superior en A que llamaremos β , por lo tanto $\beta \geq x \ \forall x \in A$ y además beta < b.

Tenemos que $a < \beta < b$, ahora consideramos un elemento medio en β y b,

$$a < \beta < (\beta + b)/2 < b$$

Como $(\beta + b)/2 \in A$ y además $(\beta + b)/2 > \beta$ encontramos otra cota superior.

Lo anterior es una contradicción, ya que β era cota superior.

Por lo tanto $\beta > b$ y es la mínima cota superior, $sup\ A = b$.

3. Probar que si S tienen mínimo entonces S tiene ínfimo y $inf\ S=min\ S$.

• Demostración de que inf S = min S

Si $x \in S$ y además $a \le x \le b$, como a = min S, entonces $a \in S$ y $x \ge a \ \forall x \in S$.

Supongamos que existe c que es inf S es decir, inf S = c, como es el ínfimo cumple que:

- \circ c es una cota inferior de S
- \circ ningún número mayor que c es cota inferior para A

Por lo tanto tenemos que, $x \ge c \ \forall x \in S \ y \ c \in S$, entonces,

 $x \ge a$ y $x \ge c$, por lo tanto a, c debe de ser los mismo.

a = c

Tenemos que el inf S = a y a = min S. Por lo tanto queda demostrado que inf S = min S.

4. Probar que el ínfimo de un conjunto es único.

• Demostración

Sean a y a' dos extremos inferiores(ínfimos) para el conjunto L por lo tanto cumple que ningún número mayor que a es cota inferior para L, $a \le a'$

Pero también cumple que ningún número mayor que a' es cota inferior para L, $a' \leq a$.

Por lo tanto a = a'

5. Probar que el axioma de ínfimo implica el teorema del supremo

- Axioma del ínfimo: Todo conjunto $L \in \mathbb{R}, L \neq \emptyset$ acotado inferiormente tiene ínfimo, es decir, existe $a \in \mathbb{R}$ tal que a = Inf L.
- **Teorema del supremo:** Todo conjunto no vacío $L \in \mathbb{R}$, acotado superiormente tiene supremo, es decir, existe c tal que $c \in \mathbb{R}$, $c = \sup L$.

• Demostración:

Sea $-L = \{x | x \in L\}$ y $L \neq \emptyset$, como L está acotado superiormente existe $N \in \mathbb{R}$ tal que

$$\begin{aligned} N &\geq x \ \forall x \in L \\ -N &\leq -x \ \forall x \in L \end{aligned}$$

El conjunto -L está acotado inferiormente por el axioma del ínfimo existe β es el ínfimo de -L, es decir $\beta = inf(-L)$.

Por demostrar $-\beta = \sup L$

Como $\beta = inf(-L)$ entonces

$$-x \ge \beta \ \forall x \in L$$

 $x < -\beta \ \forall x \in L$

Es decir $-\beta$ es cota superior de L. Por probar que es la mínima cota superior

Sea α una cota superior de L, entonces

$$\begin{array}{l} \alpha \geq x \ \forall x \in L \\ -\alpha \leq -x \ \forall x \in L \end{array}$$

Es decir, $-\alpha$ es cota inferior de -L. Como $\beta = inf(-L)$ entonces β es la mayor de las cotas inferiores de -L.

$$\beta \ge \alpha \\ -\beta \le -\alpha$$

Entonces $-\beta$ es la menor de las cotas superiores, es decir $-\beta = \sup L$

Entonces $-\beta$ es la c que buscábamos, $c = \sup L$.

6. Probar que:

• inf(A+B) = inf A + inf B

Si $x \in C$ entonces x = a + b con $a \in A$ y $b \in B$ por lo tanto tenemos que $infA \leq a$ y $infB \leq b$

$$infA+infB\leq a+b=x$$

Es decir $inf \ A + inf \ B$ es cota inferior de C por lo tanto C tiene ínfimo y además

$$inf A + inf B \le inf C$$
 (1)

Sea ahora n un número positivo cualquiera, según el teorema que dice: *Sea* h un número positivo dado y S un conjunto de números reales.

• Si S tiene ínfimo, para un cierto x de S se tiene $x \leq \inf S + h$

Tenemos un h = 1/n y existe un a en A y un b en B tales que

$$a < inf A + 1/n$$
 , $b < inf B + 1/n$

Sumando las desigualdades

$$a+b < \inf A + \inf B + 2/n$$

Es igual a

$$\begin{array}{l} -2/n + \inf C \leq -2/n + a + b < \inf A + \inf B \\ -2/n + \inf C < -2/n + a + b < \inf A + \inf B \\ -2/n < \inf A + \inf B - \inf C \end{array} (2)$$

Utilizando la ecuación (1) y (2) tenemos que

$$-2/n < \inf A + \inf B - \inf C \leq 0$$

Es igual a

$$0 \leq -inf \: A - inf \: B + inf \: C < 2/n$$

Para todo $n \in \mathbb{N}$ y n > 1

Por lo tanto inf C = inf A + inf B

• inf cA = cinf A si c > 0

Sea c > 0,

$$a \geq \inf A \ \forall a \in A \ ca \geq c\inf A \ \forall a \in A$$

cinf A es una cota inferior de cA por lo tanto $inf cA \ge cinf A$ (1)

Como

$$ca \geq inf \ cA \ a \geq 1/c \ inf \ cA$$

Tenemos que 1/c inf cA es una cota inferior de A, por lo tanto

$$inf \ A \ge 1/cinf \ cA$$
 $c \ inf \ A \ge inf \ cA$ (2)

Por lo tanto inf cA = c inf A

• inf cA = cinf A si c > 0

Sea c < 0,

$$sup\ A \geq a\ \forall a \in A \ c\ sup\ A \leq ca\ \forall a \in A$$

Donde $c \sup A$ es cota inferior de cA, entonces

$$inf \ c \ A \ge c \ sup \ A$$
 (1)

Tenemos que

$$ca \geq inf \ cA \ orall a \in A \ a \leq 1/c \ inf \ cA$$

Donde 1/c inf cA es cota superior de A, entonces

$$1/c\inf cA$$

$$\inf cA \le c\sup A \quad (2)$$

De la desigualdad (1) y (2) tenemos que

$$\inf \, cA \geq c \, \sup \, A \inf \, cA \leq c \, \sup \, A$$

Por lo tanto inf cA = c sup A

7. Sea $S=\{\frac{1}{n}-1\mid n\in\mathbb{N}\}$. Encontrar, si existen: el máximo, el mínimo, el supremo y el ínfimo. Probar las afirmaciones.

• Demostración $\max S = 0 = \sup 0$

Como
$$S=\{0,-1/2,-2/3,-3/4,\dots\}$$
 para $n\in\mathbb{N}$

Por lo tanto
$$-1 < 1/n - 1 \le 0$$

La cota superior es 0 y como $0 \in S$ entonces $max \ S = 0 = sup \ S$

• Demostración que S no tiene mínimo

Supongamos que $\alpha = min S$, por lo tanto

$$lpha \leq 1/n - 1 \ orall n \in \mathbb{N}, \quad lpha \in S$$

Entonces existe $m \in \mathbb{N}$ tal que $\alpha = 1/m$

Como

$$m+1>m$$
$$1/(m+1)<1/m=\alpha$$

Pero $1/(m+1) \in S$, por lo que contradice que α sea el mínimo, por lo tanto no tiene mínimo.

• Demostrar que inf S = -1

Como
$$-1 < 1/n - 1 \ \forall n \in \mathbb{N}$$

Entonces -1 es la cota inferior de S

Sea β cualquier cota inferior de S por demostrar $\beta \leq -1$

Supongamos que $\beta > -1$. Por ser cota inferior de S tenemos $\beta < 1/n - 1 \ \forall n \in \mathbb{N}$

Por el principio de Arquímides tenemos que existe $m \in \mathbb{N}$ tal que $1/\beta < m$ donde $-1 < 1/m < \beta$, pero $1/m \in S$, lo cual contradice que β sea cota inferior de S.

Entonces $\beta \leq -1$ por lo tanto tenemos que $\inf S = -1$