CARDIOVASCULAR DISEASE

Group 5 - Azfar, Pei Yu, Shi Wen, Zheng Nan

Presentation Outline

- 1. Problem statement/Goal
- 2. Background
- 3. Data Features/Preparation
- 4. Data Visualisation
- 5. Machine Learning
- 6. Conclusion

CARDIOVASCULAR DISEASE (CVD)

a disease of the heart or blood vessels

1 out of 3 deaths in Singapore is due to cardiovascular diseases

17.9 million people die from CVDs, which estimates to 32% worldwide

PROBLEM STATEMENT

What are the daily habits that might contribute to the chances of getting cardiovascular disease.

Typical Stereotypes Habits of CVD

Smoking

Smoke directly goes to your lungs

Alcohol

If taken excessively, can cause health complications

Activeness

Inactive = Weak Lungs = Prone to CVD

Diet

Fatty Diet can cause complications

OUR GOAL

- Find out the daily habits that contribute to the chances of getting cardiovascular diseases
- Solutions to reduce the death
 rate from cardiovascular diseases
 by reducing the chance of
 Cardiovascular disease.

Data Features

- 1. Age | Objective Feature | age | int (days)
- 2. Height | Objective Feature | height | int (cm) |
 3. Weight | Objective Feature | weight | float (kg) |
- 4. Gender | Objective Feature | gender | categorical code |
- 5. Systolic blood pressure | Examination Feature | ap_hi | int |
- 6. Diastolic blood pressure | Examination Feature | ap_lo | int |
- 7. Cholesterol | Examination Feature | cholesterol | 1: normal, 2: above normal, 3: well above normal
- 8. Glucose | Examination Feature | gluc | 1: normal, 2: above normal, 3: well above normal
- 9. Smoking | Subjective Feature | smoke | binary |
- 10. Alcohol intake | Subjective Feature | alco | binary |
- 11. Physical activity | Subjective Feature | active | binary |
- 12. Presence or absence of cardiovascular disease | Target Variable | cardio | binary |

All of the dataset values were collected at the moment of medical examination.

Data description

data.describe()

	age	gender	height	weight	ap_hi	ap_lo
count	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000
mean	53.339358	1.349571	164.359229	74.205690	128.817286	96.630414
std	6.759594	0.476838	8.210126	14.395757	154 011419	188 472530
min	29.583562	1.000000	55.000000	10.000000	-150.000000	-70.000000
25%	48.394521	1.000000	159.000000	65.000000	120.000000	80.000000
50%	53.980822	1.000000	165.000000	72.000000	120.000000	80.000000
75%	58.430137	2.000000	170.000000	82.000000	140 000000	90.000000
max	64.967123	2.000000	250.000000	200.000000	16020.000000	11000.000000

Can be seen that there are unreasonable blood pressure values (negative values) as well as height and weight values.

Basic information

BMI Ranges

BMI =	weight in kg				
DIVII -	(height in m) ²				
BMI	Weight status				
Below 18.5	Underweight				
18.5-24.9	Normal weight				
25.0-29.9	Overweight				
30.0-34.9	Obesity class I				
35.0-39.9	Obesity class II				
Above 40	Obesity class III				

Blood Pressure Range

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)		
NORMAL	LESS THAN 120	and	LESS THAN 80		
ELEVATED	120 - 129	and	LESS THAN 80		
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	130 – 139	or	80 – 89		
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	140 OR HIGHER	or	90 OR HIGHER		
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 180	and/or	HIGHER THAN 120		

Data comparison (BMI)

Data comparison (Blood Pressure)

Before

After

Correlation Heatmap

					Co	relati	on Be	tween	Facto	ors				
id	1	0.0036	0.0031	-0.0026	-0.00068	0.0013	-9.2e-05	0.0057	0.0014	-0.0039	-8.4e-06	0.0037	0.0038	0.00034
age	0.0036	1	-0.023	-0.085	0.058	0.21	0.16	0.15	0.098	-0.047	-0.028	-0.01	0.24	0.11
gender	0.0031	-0.023	1	0.52	0.18	0.066	0.07	-0.035	-0.02	0.34	0.17	0.0058	0.0085	-0.1
height	-0.0026	-0.085	0.52	1	0.34	0.022	0.039	-0.054	-0.02	0.2	0.098	-0.0098	-0.01	-0.19
weight	-0.00068	0.058	0.18	0.34	1	0.27	0.25	0.14	0.1	0.073	0.071	-0.019	0.18	0.85
ap_hi	0.0013	0.21	0.066	0.022	0.27	1	0.73	0.19	0.092	0.029	0.036	-0.00061	0.43	0.27
ap_lo	-9.2e-05	0.16	0.07	0.039	0.25	0.73	1	0.16	0.072	0.026	0.038	-0.00045	0.34	0.24
cholesterol	0.0057	0.15	-0.035	-0.054	0.14	0.19	0.16	1	0.45	0.01	0.036	0.0091	0.22	0.17
gluc	0.0014	0.098	-0.02	-0.02	0.1	0.092	0.072	0.45	1	-0.006	0.0099	-0.0074	0.089	0.11
smoke	-0.0039	-0.047	0.34	0.2	0.073	0.029	0.026	0.01	-0.006	1	0.34	0.025	-0.016	-0.032
alco	-8.4e-06	-0.028	0.17	0.098	0.071	0.036	0.038	0.036	0.0099	0.34	1	0.025	-0.0083	0.019
active	0.0037	-0.01	0.0058	-0.0098	-0.019	-0.00061	-0.00045	0.0091	-0.0074	0.025	0.025	1	-0.038	-0.015
cardio	0.0038	0.24	0.0085	-0.01	0.18	0.43	0.34	0.22	0.089	-0.016	-0.0083	-0.038	1	0.19
bmi	0.00034	0.11	-0.1	-0.19	0.85	0.27	0.24	0.17	0.11	-0.032	0.019	-0.015	0.19	1
	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio	bmi

- 0.6

- 0.2

- 0.0

Main Features with high correlation against CVD

	Features	Correlation			
1	ap_hi (Systolic blood pressure)	0.43			
2	ap_lo (Diastolic blood pressure)	0.34			
3	Cholesterol	0.22			
4	Age	0.24			
5	BMI	0.19			

Cardio vs Age & BMI

Pie chart is produced using Plotly

Cardio vs Gender

Cardio vs Blood Pressure

Higher ap_hi and ap_lo results in higher incidence of CVDs

Decision Tree

Logistic Regression

- A logit function is used to predict the likelihood of occurrence of a binary event
- Estimates the relationship between one dependent binary variable and independent variables.
- Estimation is done by Maximum
 Likelihood

Logistic Regression Graph - BMI vs Cardio

Probability of Getting Cardio (BMI) - Logistic Regression

Probability of Getting Cardio - Logistic Regression

ROC Curve

- Shows the performance of machine learning model
- The sharper the angle of the curve the better the model
- AUC determines the performance of the machine learning model

ROC Curve with AUC

Confusion Matrix

Logistic Regression

Accuracy: <u>0.7240278926840799</u>
Precision: <u>0.7533204205866076</u>
Recall: 0.6535045607297167

Decision Tree

Accuracy: <u>0.7242642713627231</u> Precision: <u>0.7197436827469471</u> Recall: 0.717142512950247 Random Forest

Accuracy: <u>0.7259189221132254</u> Precision: <u>0.7582172701949861</u> Recall: <u>0.6522885214473999</u>

Random Forest

- Uses multiple decision trees for prediction
- Final result is based on majority voting/Averaging
- Train data is used to create the decision trees
- Can perform both regression and classification tasks
- Handle large dataset efficiently
- Produces good predictions

Comparison of the models used

Model	Accuracy
Decision Tree	0.724
Logistic Regression	0.724
Random Forest	<u>0.725</u>

Conclusion

- Not all typical stereotype habits have significant impact to CVD
- Blood Pressure and BMI have the strongest relationship with the presence of CVD
- Having a healthy diet would significantly reduce the chances of CVD

Our Team

Azfar Decision Tree Logistic Regression Data Preparation Data Exploratory

Zheng Nan

- Data Preparation
- Data Exploratory
- RandomForest

- Data preparation
- Data Exploratory
- Decision Tree

Pei Yu

- Logistic Regression
- Plotly
- Data Preparation
- Data Exploratory

Thanks!

Q8,A

Reference

Shafi, A. (2018, May 16). Random Forest classification with Scikit-Learn. DataCamp. Retrieved April 13, 2023, from https://www.datacamp.com/tutorial/random-forests-classifier-python

Navlani, A. (2018, December 28). Python decision tree classification tutorial: Scikit-Learn Decisiontreeclassifier. DataCamp. Retrieved April 13, 2023, from https://www.datacamp.com/tutorial/decision-tree-classification-python

Ulianova, S. (2019, January 20). Cardiovascular disease dataset. Kaggle. Retrieved April 13, 2023, from https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

Navlani, A. (2019, December 16). Python logistic regression tutorial with Sklearn & DataCamp. Retrieved April 13, 2023, from

https://www.datacamp.com/tutorial/understanding-logistic-regression-python?utm_source=google&utm_medium=paid_search&utm_campaignid=19589720821&utm_adgroupid=143216588577&utm_device=c&utm_keyword=&utm_matchtype=&utm_network=g&utm_adpostion=&utm_creative=652967469592&utm_targetid=aud-299261629574%3Adsa-1947282172981&utm_loc_interest_ms=&utm_loc_physical_ms=9062499&utm_content=dsa~page~community-tuto&utm_campaign=230119_1-sea~dsa~tutorials_2-b2c_3-row-p1_4-prc_5-na_6-na_7-le_8-pdsh-go_9-na_10-na_11-na&gclid=CjwKCAjw0N6hBhAUEiwAXab-TXFJKgP_JbRAIJRfup3lfRQGTzUa7z95YUnPynmE72joHXr-7N3o9BoCJNIQAvD_BwE

Pie. Pie charts in Python. (n.d.). Retrieved April 13, 2023, from https://plotly.com/python/pie-charts/