AUDIT A++ LOGISTICS

Titre du projet			Réf du projet
	Audit d'architecture		
Historique			
Version	Auteur	Description	Date
1.0	MESSOLO Jules		20/01/21

Table des matières

1. Introduction	3
2. Objectifs de l'entreprise	
3. Objectifs de l'audit	3
4. Les besoins d' A++ Logistics	
5. Architecture du système existant	
6.Avantages et inconvenients	
7. Hypothèse de performance du système actuel	
8. Audit du système ERP de chaque region	
9. Solution proposée	
10. Architecture Multi-tenant, les avantages	
13. Recommandation	
14. Risaues et limites	

1. Introduction

Description de l'entreprise

A++ Logistics est une entreprise de Logistique, qui dispose des bureaux à l'international :

- Londres
- Francfort
- Hong-Kong
- New Delhi
- Dubaï

et un siège à Boston.

2. Objectifs de l'entreprise

A++ Logistics à besoin d'un système ERP qui lui permette d'atteindre ses objectifs à l'échelle internationale :

- Efficacité maximale dans la gestion des ressources, des transports et des entrepôts.
- Interconnexion et coordination maximale entre les fonctions interdépartementales (ressources, transports, entrepôts).
- Transparence maximale entre les bureau régionales et les centres de distribution satellite.

pour gérer toutes les opérations de logistiques notamment la gestion des transports, la gestion des colis et la gestion des stocks.

3. Objectifs de l'audit

- Étudier la faisabilité du projet qui consiste à installer un nouveau système ERP pour maximiser la gestion des services logistiques des différents sites et bureaux dans le monde.
- Permettre à l'entreprise d'atteindre ses objectifs
- Analyser le risque et le niveau de complexité d'un tel projet

4. Les besoins d' A++ Logistics

Les besoins exprimés par A++ Logistics

Objectifs	Besoins
Transparence maximale entre les bureau régionales et les centres de distribution satellite.	 Fonctionnalités de reporting et systèmes de veille économique pertinents pour les méthodologies A++ Logistics
	 Évolutivité pour d'éventuels futurs systèmes d'analyse et de suivi
	 Outils simples de création de tableaux et de graphiques
	Toutes les données sont affichées d'une manière compatible avec la région
	Interface Web
	Planification à canaux multiples
Interconnexion et coordination maximale entre les fonctions interdépartementales (ressources, transports, entrepôts).	
Efficacité maximale dans la gestion des	Système de gestion d'entrepôt intégré
ressources, des transports et des entrepôts.	Suivi GPS pour toutes les ressources internes
	Lecture de codes à barres et RFID pour tous les services de colis
	Gestion de la production et des importations
	Référentiel de données unique
	Fonctionnalités TMS et PTMS spécifiques aux méthodologies A++ Logistics
	Achat et réception

5. Architecture du système existant

Le systeme actuel chez A++ Logistics qui comprend plusieurs infrastructures, toutes indépendantes les une des autres. Qui pourraient etre representé par le schéma ci-dessous :

Celle- ci peut etre qualifiée de '*Architecture Single tenant*', qu'on peut traduire par « chaque locataire sans sa propre maison » . En effet ici chaque bureau dont dispose la société possede son infrastructure.

Les différentes maisons correspondes aux differents bureaux que possède la société à l'international. Bureaux qui disposent chacun de son serveur local. Il existe autant de bureau que d'installation de CHERP.

Chaque bureau dispose de sa propre application CHERP, indépendante et séparé des autres applications du système, et de sa propre base de donnée ORACLE ainsi que de son serveur d'application.

Chaque bureau (excepté New Delhi), possède un client Cherp, recevant des données provenant de logiciels sous licence sur le Cloud. Les progiciels sont essentiellement utilisés dans le domaine de la logistique (TMS, PTMS et WMS) ne possèdent pas d'API, mais peuvent échanger des données au format XML pour la plupart.

Chaque client CHERP alimente en données, avec une connexion SFTP un serveur local FTP CHERP qui lui meme alimente une base de donnée Oracle qui lui est propre.

6. Avantages et inconvenients

Avantages et inconvénients du système actuel

	Point positifs	Points négatifs
Sécurité des données		3
	 l'isolation de la base de données. Pas d'interaction entre les bases de données. Mélange des données clients impossible 	possibles des entités de données.
	Exportation des données rendu facile.	6 serveurs CHERP districts.6 serveurs de BDD CHERP différents.
Degré de personnalisation	L'isolation de l'application CHERP, en locale, facilite la personnalisation à la demande du client (Interfaces graphiques, Web Services, nouvelle fonctionnalité)	L'évolution de l'application demande une vigilance accrue, en cas de multiplication des personnalisations et des versions.
Administration du système, Maintenance et Mise à jour		 Nécessité de tester et de mettre à jours le système après chaque modification La compléxité du systeme et sa taille sont proportionnels au nombre de bureau ouvert par A++ Logistics. La complexité des mises à jours est proportionnelle au nombre de bureau (au nombre d'instance)
Ressources	Les ressources ne sont pas mutualisés	 Une licence, un appareil. Gestion des ressources limitées L'utilisateur ne peut pas accéder à partir de n'importe quel type d'appareil.
Logiciels		 CHERP est conçu pour être utilisé dans les entreprises du secteur de l'habillement et non de la Logistique Utilisation de Logiciels sous licence Difficulté de faire evoluer les solutions
Flexibilité de l'architecture		 La flexibilité du systeme decroit avec l'augmentation du nombre d'instance(de bureau) Architecture non orientée services, manque de souplesse dans l'ajout ou la suppression de fonctionnalités

7. Hypothèse de performance du système actuel

Y a-t-il des éléments de l'architecture actuelle qui entravent ou pourraient entraver les performances globales du système ?

L'architecture Globale et single tenant : L'aggregation de plusieurs infrastructures cloisonnées, n'ayant aucune intéraction entre elles contribue au faible performance globale du système mis en place chez A++ Logistics. Contraint l'entreprise à multiplier les taches de mise à jours. Ne permet pas une aggrégation et une exploitation en temps réel des données des différents bureaux.

Cette architecture ne permet pas ou rend difficile un Scale out (accroissement horizontal), du fait de l'isolation des applications. Un accroissement de la gamme de serveur (Scale up) est envisageable en cas d'insuffisance de puissance.

L'usage des API: Les logiciels sous licences utilisés par A++ Logistics pour la plupart ne disposent pas d'API à exploiter. L'utilisation d'API est une pratique répandue dans les systèmes d'informations actuels. Hors mis New-Delhi avec LogiStax, aucun des bureaux n'exploitent d'API.

La Technologie FTP: L'architecture actuelle comporte plusieurs technologies, dont l'utilisation de serveur FTP, pour la remonté des données issues des différents Logiciels Cloud. L'utilisation de cette technologie désuète, ne permet pas la remonté en temps réél des données externes et rend difficile une potentielle agrégation et exploitation de celle-ci.

Un ERP 'On Promise' et des Logiciels sur le Cloud : Avoir un S.I avec un ERP 'On promise' récupérant des données provenant de logiciels sur le cloud, réduit la performance des échanges entre composant du système. L'association des deux modes « on promise » et « cloud » ne facilite pas les échanges entre les composants et est source de baisse de performances.

Quelles sont les inefficacités et peut-on y remédier ?

Architecture qui mutualise les données : La présence des différents bureau de A++ Logistics necessite de pouvoir mutualiser les données et permettre une interactions plus fortes entre les differents composant du systéme. Pour cela adopté une architecture multi-tenant est nécessaire.

Un ERP full Cloud: De « on promise » vers du « full cloud ». Migrer toutes les solutions exploitées par A++ Logistics sur un meme cloud, permettrait de faciliter les échanges entre ces dernières et donc d'améliorer significativement les performances du système.

L'usage des API: Priviliger l'utilisation de logiciels possédant des API. Cela facilite les echanges entre ces derniers et permet des échanges entre application en temps réel. L'utilisation de la technologie FTP s'avère des lors inutile.

inefficacité du système existant	Préconisation
 Chaque bureau régional utilise son propre système de gestion logistique CHERP 	 Uniformiser, aligner les technologies utilisées et le système de gestion logistique Mutualiser les ressources
Chaque bureau régional a sa propre façon de modéliser les entités de données au sein de CHERP	
Le serveur CHERP est une installation locale pour chaque bureau régional et ces installations ne sont PAS connectées à d'autres installations du serveur CHERP	améliorer l'agrégation et l'exploitation des données .
Chaque serveur CHERP a son propre serveur de base de données local ORACLE	
➤ Architecture Single tenant	Architecture multi-tenant orientée services
Chacune des solutions supplémentaires couplées à CHERP possède sa propre base de données	Réduire le nombre de BDD utilisé, mutualisé le référentiel de données.
Solutions stockées dans des emplacements Cloud distincts.	➤ Heberger le système dans un Cloud. Eviter de multiplier les environnements Cloud.
➤ Toutes modifications de CHERP ou d'un des progiciels qui lui est associée risque d'impacter l'ensemble du système	Le système doit pouvoir supporter toutes les modifications nécessaires et désirées
La plupart des processus du système sont assez lents en raison des multiples intégrations nécessaires à l'exécution de tâches, même élémentaires.	➤ Identifier plus clairement les processus et limité les intégrations.

8. Audit du système ERP de chaque region

8.1 Bureau de Boston

Région	Fonctionne / Points positifs	Ne fonctionne pas / Points négatifs
USA-Boston	✓ Jugé confortable	 x Un peu lent x 3 Clouds distincts x fonctionne la plupart du temps x Logiciel sous licence payante x Absence d'API sur les trois logiciels ,TMS, WMS et PTMS x Chaque logiciel possède sa propre base de données. x Technologie FTP

Estimation des coûts de fonctionnement hors ERP CHERP à Boston

Région	TMS	PTMS	WMS	Total
USA -Boston (siège)	9 990,00 €	3 995,00 €	11 900,00 €	21 743,00 €

Estimation des coûts de fonctionnement à Boston sur une année

Région	Total CHERP	Total hors CHERP	Total
USA – Boston(siège)	201 600,00 €	21 743,00 €	223 343,00 €

Logiciels utilisés à Boston

Région	CHERP base	TMS	PTMS	WMS
USA – Boston(siège)	Oui	A-Plus TMS	CodeScanDoc	PachyDerm WMS

8.2 Bureau de New Delhi

Région	Fonctionne / Points positifs	Ne fonctionne pas / Points négatifs
Asie Occidentale – New Delhi	 ✓ 1 environnement Cloud ✓ API Python ✓ Exportation de Données JSON / XML ✓ Fonctionne correctement ✓ LogiStax 3 en 1 (Transport, Colis, Entrepôt) ✓ Peuvent se passer de CHERP ✓ Utilise une seule base de données sur le cloud 	x Logiciel sous licence payante

Estimation des coûts de fonctionnement hors ERP CHERP à New Delhi

Région	TMS	PTMS	WMS	Total
Asie Occidentale -New	Néant	Néant	Néant	138 642,00 €
Delhi				

Estimation des coûts de fonctionnement à New Delhi sur une année

Région	Total CHERP	Total hors CHERP	Total
Asie Occidentale - New Delhi	138 600,00 €	138 642,00 €	277 242,00 €

Logiciel utilisé à New Delhi

Région	CHERP base	TMS	PTMS	WMS
Asie Occidentale - New Delhi	Oui	LogiStax	LogiStax	LogiStax

8.3 Bureau de Hong-Kong

Région	Fonctionne / Points positifs	Ne fonctionne pas / Points négatifs
Est Asie – Hong Kong	 ✓ Échange TMS et WMS ✓ Système jugé plutôt efficace 	 x PTMS imbriqué dans deux couches TMS et WMS x Chaque logiciel possède sa propre base de données. x Absence d'API x Logiciels sous licence payante

Estimation des coûts de fonctionnement hors ERP CHERP à Hong-Kong

Région	TMS	PTMS	WMS	Total
Est Asie – Hong Kong	5 017,00 €	Néant	80 407,00 €	85 424,00 €

Estimation des coûts de fonctionnement à Hong-Kong sur une année

Région	Total CHERP	Total hors CHERP	Total
Est Asie – Hong Kong	138 600,00 €	85 424,00 €	224 024,00 €

Logiciels utilisés à Hong-Kong

Région	CHERP base	TMS	PTMS	WMS
Est Asie – Hong Kong	Oui	TruTMS	Néant	ScanMagix WMS

8.4 Bureau de Dubai

Région	Fonctionne / Points positifs	Ne fonctionne pas / Points négatifs
Dubaï	✓ Exportations des rapports XML✓ API C++	 x PTMS imbriqué dans deux couches TMS et WMS x Chaque logiciel possède sa base de données x Logiciels sous licence payante

Estimation des coûts de fonctionnement hors ERP CHERP à Dubai sur une année

TMS PTMS	WMS	Total
61,00 € Néant	17 486,00 €	26 447,00 €

Estimation des coûts de fonctionnement à Dubai sur une année

Région	Total CHERP	Total hors CHERP	Total
Dubaï	126 000,00 €	26 447,00 €	152 447,00 €

Logiciel utilisé à Dubai

	Région	CHERP base	TMS	PTMS	WMS
Dubaï		Oui	A-Plus TMS	Néant	ScanMagix WMS

8.5 Bureau de Londres et Francfort

Région	Fonctionne / Points positifs	Ne fonctionne pas / Points négatifs
Europe Centrale – Londres Europe du nord –		x PTMS imbriqué dans deux couches TMS et
Francfort		WMS x Chaque logiciel possède sa propre base de données.
		x Absence d'API sur les logiciels exploités x Logiciels sous licence payante

Estimation des coûts de fonctionnement hors ERP CHERP à Francfort et Londres sur une année

Région	TMS	PTMS	WMS	Total
Europe centrale - Londres	5 200,00 €	Néant	11 055,00 €	16 255,00 €
Europe du Nord - Francfort	Néant		Néant	15 885,00 €

Logiciels utilisés à Londres et Francfort

Région	CHERP base	TMS	PTMS	WMS
Europe centrale - Londres	Oui	TruTMS	Néant	PachyDerm WMS
Europe du Nord - Francfort	Oui	TruTMS	Néant	PachyDerm WMS

Région	Total CHERP	Total hors CHERP	Total
Europe centrale - Londres	163 800,00 €	16 255,00 €	196 310,00 €
Europe du Nord – Francfort	163 800,00 €	15 885,00 €	210 885,00 €

Après audit des infrastructures installés dans les différents bureaux de A++ Logistics, il en ressort que l'utilisation des logiciels sous licences n'ayant pas d'API à exploiter reduit considérablement l'optimisation et l'exploitation en temps réelle des données qui transitent dans le système.

L'utilisation de cloud disctinct dans un meme systeme reduit les performances de celui-ci, il est préférable d'opter pour une solution qui puissent offrir les trois services logistiques et des API exploitables.

Au vu des remontés d'information, le siège de New-Delhi, semble disposer d'une solution offrant des API pour les services logistiques :le transport , les colis , le stockage. LogiStax devrait donc etre exploité davantage. Son utilisation permettrai d'atteindre l'objectif d'interconnexion et coordination maximale entre les différents services et départements.

La technologie FTP n'a plus lieu d'etre, et restreint considérablement l'exploitation des données en temps réelle.

L'architecture avenir « full cloud » pourra donc s'appuyer sur la solution LogiStax et d'autres services nécessaires au besoin de A++ Logistics.

Une nouvelle base de données ORACLE sera mise en place et servira de réferentiel unique au sein de l'architecture, comme souhaité par A++ Logistics.

La solution ERP CHERP se limitant au reporting et l'agrégation de données, pourra etre remplacer par le développement d'un back-end evolutif aux besoinx de la société, un outil qui exploiterai des API. Le budget consacré à celui-ci étant très important, il est preférable d'opter une pour solution de moindre cout.

La transparence entre les différents bureaux de la société,qui est un des objectifs visés par la société A++ Logistics, passe par plus de mutualisation et d'échanges des données. L'utilisation d'un outil en commun pour les différents bureaux et differents departements est necessaire.

9. Solution proposée

Architecture Multi-tenant orientée services

Architecture Multi-tenant ou mutualisation des ressources.

L'architecture multi-tenant propose une infrastructure globale, au lieu de plusieurs infrastructures isolées, pour une meilleur interconnexion entre les composants du système. C'est une infrastructure dont l'architecture est entierement hébergée sur le Cloud et accessible par tous les bureaux de la société uniquement à l'aide d'un navigateur.

Cette solution sera composée de :

Une interface utilisateur qui permettra aux utilisateurs aprés une double authentification et une prise en compte du rôle, d'acceder à différents services.

Pour une interconnexion et une coordination maximale entre les différents services

Logistax solution qui donne satisfaction et qui contient les différents services logistiques dont a besoin A++ Logistics, à savoir:

- la gestion d'entrepôt (WMS)
- ♦ la gestion des colis (PTMS)
- la gestion du transport(TMS)
- ◆ Planification à canaux multiples
- Gestion financière
- Achat et réception

- Gestion de la production et des importations
- ◆ Gestion prévisionnelle des coûts Comparaison des coûts réels et prévisionnels

...LogiStax dispose d'une API Python qui pourra etre exploiter en temps réels pour écrire un outil de reporting, des tableaux graphiques et construire des rapports personnalisés. Cet outil servira aussi de Back-end au systeme.

Une base de donnée sera associée au Back-end afin de servir de **référentiel unique** à tous les bureaux d'A++ Logistics, qui pourront y retrouver les données qui leurs sont propres, sans avoir accées aux données des autres bureaux par filtrage. Pour cela un Identifiant (IdTenant) sur le bureau sera nécessaire.

Les fonctionnalités qui seront affectés au back-end seront :

- ➤ Le reporting
- ➤ Creation de Graphique et tableaux
- > Système d'analyse et de suivi

L'utilisation d'API permettra de faire evoluer notre solution en fonction des besoin de l'entreprise.

10. Architecture Multi-tenant, les avantages

Architecture Multi-tenant: Avantages

	Point positifs
Sécurité des données	 Centralisation des données clients dans un unique entrepot. Mutualisation des données entre bureau . Facilite l'agrégationet exploitation des données.
Degré de personnalisation	 Possibilité de mettre en place un MarketPlace (Exploiter la mise à disposition de plugins)
Administration du système, Maintenance et Mise à jour Ressources	 Cout de maintenance moins important Mutualisation et centralisation des mises à jours Adaptabilité rapide des besoins en matière de calcul de stockage. Plus grande flexibilité, l'accès au S.I requiert qu'une simple authentification et l'accès à un navigateur. L'utilisateur peut à partir de n'importe quelle appareil
Flexibilité de l'architecture	 avoir accès a son espace de travail. Accessibilité via Mobile Optimisation de la gestion des ressources possible Forte décomposition des fonctionnalités l'approche par services permet de cibler l'augmentation ou la diminution de puissance des serveurs utilisées.

11. Budget et Planning

Le délai de déploiement prévu devra être inférieur à 18 mois. ● Le coût estimé du déploiement devra être inférieur de 25 % aux coûts fixes totaux de tous les systèmes régionaux actuels sur une période de 60 mois.

Estimation des coûts de fonctionnement par sites sur une année

Région	Total CHERP	Total hors CHERP	Total
USA – Boston(siège)	201 600,00 €	21 743,00 €	223 343,00 €
Europe centrale - Londres	163 800,00 €	16 255,00 €	196 310,00 €
Europe du Nord - Francfort	163 800,00 €	15 885,00 €	210 885,00 €
Dubaï	126 000,00 €	26 447,00 €	152 447,00 €
Asie Occidentale - New Delhi	138 600,00 €	138 642,00 €	277 242,00 €
Est Asie – Hong Kong	138 600,00 €	85 424,00 €	224 024,00 €
TOTAL	932 400,00 €	304 396,00 €	1 284 251,40 €

Le coût fixe sur une année de l'ensemble des S.I régionaux (Cherp + Progiciel Hors cherp) : 1 284 251,40€

Sur 60 mois ce coût fixe s' élève à : 6 421 255 €. 25 % de ce montant corresponds à **1 605 313,75** €

Cout de LogiStax sur 12 Mois : 138 642,00€ ⇒ 207 963€ sur 18 mois qui permettra d'assurée toutes les fonctionnalités logistiques indispensables à A++ Logistics et de mettre en place d'éventuels besoins spécifiques.

Reste 1466 671 ,58 € pour le déploiement et les couts relatif à l'hebergement sur Cloud.

Dans le domaine de l'hebergement Cloud trois leader se détache actuellement sur le marché mondial .

Le leader du marché : **Amazon Web Services** (AWS) La solution Cloud de Microsoft : **Microsoft Azure** La solution Coud computing de Google : **Google Gloud**

Choix de la catégorie de services Cloud

Compte tenu des compétences en interne déjà existante, il est préferable de les mobiliser et de choisir une offre IaaS ou Paas afin d'asseoir l'architecture proposée.

IaaS est bien adapté pour les équipes ayant des connaissances sur la gestion d'une infrastructure Cloud et des ressources humaines pour s'occuper de ces taches.

Un ou plusieurs administrateurs systèmes seront nécessaires afin de configurer de facon optimale l'environnement IaaS en fonction du besoin spécifique : machines virtuelles, Processeur, memoire, réseaux et stockage.

PaaS est envisageable dans le cas où il n'y a pas ou peu de ressources avec des connaissances de type Opérationnel, de personnes compétentes dans la gestion d'une infrastructure Cloud. Le choix d'une solution PaaS permet de combler ce manque avec un environnement managé pour la partie Opérationnel.

Choix du fournisseurs Cloud

Pour obtenir des estimations d'offres Cloud nous allons retenir ici quelques paramètres de configuration :

➤ Nombre d'instance : 1

CPU Virtuel: 4Nbr de RAM: 16

Capacité de Stockage : 1 To SSDSystème d'exploitation : Window

AWS: 1655€/ mois

sur une periode de 18 mois cela nous donne : 24725 €

En cas d'utilisation de la plateforme Microsoft pour la partie developpement back-end, il est préférable d'utiliser Azure Cloud.

Microsoft : 1237€/ mois ⇒ 22276 € sur 18 mois

Estimer une infrastructure hébergée sur le cloud public (Google, AWS, Azure) est une tache laborieuse compte tenu des multiples paramètres à prendre en compte.

Une étude plus poussée des besoins est nécessaire, pour obtenir une meilleur estimation.

Reste le cout du developpement du Back-end, la solution qui nous permettra d'etablir les tableaux graphique et autre reporting, mais aussi d'implémenter des services supplémentaires en fonction du besoin de l'entreprise.

Les compétences à mobiliser sont essentiellement des compétences de développeurs logiciels, architecte systeme, architecte Cloud, Chef de projet , Scrum Master .

On peut estimer les couts liés aux developpements de la solution à :

2 développeurs : (3300 € X 2) / mois
1 Architecte Cloud : 4500€ / mois
1 Architecte Système : 5400€ / mois
1 Chef de projet : 3500€ / mois
1 Scrum Master : 3500€ / mois

Rapporteé sur 18 mois : 423 000€

	Cout
LogiStax	207 963,00 €
Cloud (estimations)	30 000,00 €
Developpement	423 000,00 €
Total	663 963,00 €

11.2 Planning de déploiement

12. Etude de faisabilité

Option	Intérêt métier	Avantages	Inconvénient et Limites	Opex	Capex
Option 1 : Conserver le système actuel (ne rien faire)	 Aucune dépenses supplémentaires Utilisateurs déjà formés Connaissances avancées des solutions Locale et Cloud en place. 	1	 Objectifs A++ Logistics non ateint et non atteignables Croissances des dépenses (augmentation du nombre de bureau) Demande en ressources serveurs et capacité de stockage Dependance vis à vis des éditeurs des solutions exploités Flexibilité de l'architecture actuel : faible (en cas de nouveau besoin) 		
Option 2 : Evolution du système vers du Multi- tenant orientée services	 Optimiser les coûts d'exploitation actuels Agrégation des données des différents bureaux facilité. Transparences entre les différents bureaux Réferentiel unique, mutualisation des ressources Optimisation de la gestion des ressources Simplification et centralisation des mises à jours Objectifs A++ Logistics atteignable 		 Temps de la refonte de l'architecture Sécurité des données mutualiser à renforcer 	10000\$	< 1,6 M\$ < 18Mois

12.1 Comparaison des couts

Nombre de bureau ouvert	Cout de la Solution existante Architecture Single tenant	Cout de la Solution proposée Architecture Multi-tenant
1 Bureau	214 000,00€	663 963,00€
3 Bureaux	642 000,00€	663 963,00€
4 Bureaux	856 000,00€	663 963,00€
6 Bureaux	1 284 251,00€	663 963,00€

Au dela de trois bureau ouvert, les dépenses liés au maintient du systeme existant sont supérieures à la mise en place d'une solution ERP full Cloud.

En l'état avec six bureaux ouvert il sera bénèfique à la société A++ Logistics, de changer d'architecture.

13. Recommandation

Le passage à l'architecture multi-tenant orientée service est vivement recommandée et va permettre à la société A++ Logistics de realiser bon nombre de ses objectifs.

- → D'optimiser ses couts d'utilisation du Cloud, en faisant des économies d'echelles (un utilisateur supplémentaire ne coute rien). Optimiser l'utilisation des ressources (Dimensionnement, montée en charge)
- → Simplifier et accélerer l'ouverture de bureau supplémentaire.
- → Réduire et optimiser ses dépenses consacrés à la gestion du materiel et l'achat des licences .
- → La possibilité de mensualiser, trimestrialiser ou annualiser les dépenses, bénéficier d'une plus grande fléxibilité sur la tarification.
- → Simplifier et centraliser les mises à jours.
- → Faciliter l'agrégation et l'exploitation des données des différents bureaux.

14. Risques et limites

Typologie de Risque	Risque	Probabilité d'occurrence	Impact (1 à 4) 4: Très Important 3: Important 2:Faible 1:Très Faibles	Criticité	Plan de secours
	Panne Matériel (Ordinateur, Périphérique)	10	1	10	Chgt de materiel , le systeme est accessible de n'importe quel ordinateur
Risques Techniques	Problème Serveur Base de données	10	1	10	En environnement Cloud (PaaS, IaaS) la gestion des serveurs est délégué en partie à l'hebergeur. Mettre en place un outils de gestion des instances
	Panne Extérieur (Électricité, Grève,Travaux)	5	3	15	télétravail
	Monté en Charge (Scalabilité) Gestion des Performances	15	1	15	Environnement paramétré en temps et en heure, redimensionné selon le besoin de la société et en temps réelle par l'hebergeur. Outils de supervisions ,réferencer les valeurs pré-migration et post-migration
Riques Juridiques	Conformité réglementaire	10	2	20	Respect de RGPD
liés à l'organisation – Risque humain	Absence d'un membre de l'équipe	5	1	5	Possibilité d'accéder au système à distance, via un navigateur. Le travail est accessible par tout le monde (Gestion des authentification)
Risques Sécurité	Sécurité - Virus Piratage	10	2	20	Sécurité en partie délegué à l'hebergeur du Cloud
	J				Accessibilité aux fichiers de Logs Mettre en place des outils de supervision et analyses des comportements utilisateurs

ANNEXES