13.021 – Marine Hydrodynamics, Fall 2004 Lecture 9

Copyright © 2004 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics Lecture 9

Vorticity Equation

Return to viscous incompressible flow.

N-S equation:
$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\nabla \left(\frac{p}{\rho} + gy\right) + \nu \nabla^2 \vec{v}$$

$$\nabla \times () \longrightarrow \frac{\partial \vec{\omega}}{\partial t} + \nabla \times (\vec{v} \cdot \nabla \vec{v}) = \nu \nabla^2 \vec{\omega} \text{ since } \nabla \times \nabla \phi = 0 \text{ for any } \phi \text{ (conservative forces)}$$

Now:

$$(\vec{v} \cdot \nabla)\vec{v} = \frac{1}{2}\nabla\left(\vec{v} \cdot \vec{v}\right) - \vec{v} \times \left(\nabla \times \vec{v}\right)$$

$$= \nabla\left(\frac{v^2}{2}\right) - \vec{v} \times \vec{\omega} \text{ where } v^2 \equiv \left|\vec{v}\right|^2 = \vec{v} \cdot \vec{v}$$

$$\nabla \times \left(\vec{v} \cdot \nabla\right)\vec{v} = \nabla \times \nabla\left(\frac{v^2}{2}\right) - \nabla \times \left(\vec{v} \times \vec{\omega}\right) = \nabla \times \left(\vec{\omega} \times \vec{v}\right)$$

$$= (\vec{v} \cdot \nabla)\vec{\omega} - (\vec{\omega} \cdot \nabla)\vec{v} + \underbrace{\vec{\omega}\left(\nabla \cdot \vec{v}\right)}_{=0} + \underbrace{\vec{v}\left(\nabla \cdot \vec{\omega}\right)}_{=0}$$

$$= 0 \text{ since incompressible}$$

$$\nabla \cdot \left(\nabla \times \vec{v}\right) = 0$$
fluid

Therefore,

$$\frac{\partial \vec{\omega}}{\partial t} + (\vec{v} \cdot \nabla) \vec{\omega} = (\vec{\omega} \cdot \nabla) \vec{v} + \nu \nabla^2 \vec{\omega}$$
or
$$\frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \nabla) \vec{v} + \underbrace{\nu \nabla^2 \vec{\omega}}_{\text{diffusion}}$$

• Kelvin's Theorem revisited.

If $\nu \equiv 0$, then $\frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \nabla) \vec{v}$, so if $\vec{\omega} \equiv 0$ everywhere at one time, $\vec{\omega} \equiv 0$ always.

• ν can be thought of as diffusivity of (momentum) and vorticity, i.e., $\vec{\omega}$ once generated (on boundaries only) will spread/diffuse in space if ν is present.

• Diffusion of vorticity is analogous to the heat equation: $\frac{\partial T}{\partial t} = K \nabla^2 T$, where K is the heat diffusivity

Also since $\nu \sim 1$ or $2 \text{ mm}^2/\text{s}$, in 1 second, diffusion distance $\sim O\left(\sqrt{\nu t}\right) \sim O\left(mm\right)$, whereas diffusion time $\sim O\left(L^2/\nu\right)$. So for a diffusion distance of L = 1cm, the necessary diffusion time needed is O(10)sec.

• For 2D, $\vec{v} = (u, v, 0)$ and $\frac{\partial}{\partial z} \equiv 0$. So, $\vec{\omega} = \nabla \times \vec{v}$ is \perp to \vec{v} (parallel to z-axis). Then,

$$(\vec{\omega} \cdot \nabla) \vec{v} = \left(\underbrace{\omega_x}_0 \frac{\partial}{\partial x} + \underbrace{\omega_y}_0 \frac{\partial}{\partial y} + \omega_z \underbrace{\frac{\partial}{\partial z}}_0\right) \vec{v} \equiv 0,$$

so in 2D we have

$$\frac{D\vec{\omega}}{Dt} = \nu \nabla^2 \vec{\omega}.$$

If $\nu = 0$, $\frac{D\vec{\omega}}{Dt} = 0$, i.e. in 2D, following a particle, the angular velocity is conserved. **Reason**: in 2D, the length of a vortex tube cannot change due to continuity.

• For 3D,

$$\frac{D\omega_i}{Dt} = \underbrace{\omega_j \frac{\partial v_i}{\partial x_j}}_{\text{vortex turning and stretching}} + \underbrace{\nu \frac{\partial^2 \omega_i}{\partial x_j \partial x_j}}_{\text{diffusion}}$$

e.g.

$$\frac{D\omega_2}{Dt} = \underbrace{\omega_1 \frac{\partial u_2}{\partial x_1}}_{\text{vortex turning}} + \underbrace{\omega_2 \frac{\partial u_2}{\partial x_2}}_{\text{vortex stretching}} + \underbrace{\omega_3 \frac{\partial u_2}{\partial x_3}}_{\text{vortex turning}} + \text{diffusion}$$

Example: Pile on a River

What really happens as length of the vortex tube L increases?

IFCF is no longer a valid assumption.

Why?

Ideal flow assumption implies that the inertia forces are much larger than the viscous effects (Reynolds number).

$$R_e \sim \frac{UL}{\nu}$$

Length increases \Rightarrow diameter becomes really small $\Rightarrow R_e$ is not that big after all.

Therefore IFCF is no longer valid.

3.3 Potential Flow - ideal (inviscid and incompressible) and irrotational flow

If $\vec{\omega} \equiv 0$ at some time t, then $\vec{\omega} \equiv 0$ always for ideal flow under conservative body forces by Kelvin's theorem.

Given a vector field \vec{v} for which $\vec{\omega} = \nabla \times \vec{v} \equiv 0$, then there exists a potential function (scalar) - the velocity potential - denoted as ϕ , for which

$$\vec{v} = \nabla \phi$$

Note that $\vec{\omega} = \nabla \times \vec{v} = \nabla \times \nabla \phi \equiv 0$ for any ϕ , so irrotational flow guaranteed automatically. At a point \vec{x} and time t, the velocity vector $\vec{v}(\vec{x},t)$ in cartesian coordinates in terms of the potential function $\phi(\vec{x},t)$ is given by

$$\vec{v}(\vec{x},t) = \nabla\phi(\vec{x},t) = \left(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z}\right)$$

The velocity vector \vec{v} is the gradient of the potential function ϕ , so it always points towards higher values of the potential function.

Governing Equations:

Continuity:

$$\nabla \cdot \vec{v} = 0 = \nabla \cdot \nabla \phi \Rightarrow \nabla^2 \phi = 0$$

Number of unknowns $\rightarrow \phi$

Number of equations $\rightarrow \nabla^2 \phi = 0$

Therefore the problem is closed. ϕ and p (pressure) are decoupled. ϕ can be solved independently first, and after it is obtained, the pressure p is evaluated.

$$p = f(\vec{v}) = f(\nabla \phi) \rightarrow \text{Solve for } \phi$$
, then find pressure.

3.4 Bernoulli equation for potential flow (steady or unsteady)

Euler eq:

$$\frac{\partial \vec{v}}{\partial t} + \nabla \left(\frac{v^2}{2} \right) - \vec{v} \times \vec{\omega} = -\nabla \left(\frac{p}{\rho} + gy \right)$$

Substitute $\vec{v} = \nabla \phi$ into the Euler's equation above, which gives:

$$\nabla \left(\frac{\partial \phi}{\partial t} \right) + \nabla \left(\frac{1}{2} \left| \nabla \phi \right|^2 \right) = -\nabla \left(\frac{p}{\rho} + gy \right)$$

or

$$\nabla \left\{ \frac{\partial \phi}{\partial t} + \frac{1}{2} \left| \nabla \phi \right|^2 + \frac{p}{\rho} + gy \right\} = 0,$$

which implies that

$$\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^2 + \frac{p}{\rho} + gy = f(t)$$

everywhere in the fluid for unsteady, potential flow. The equation above can be written as

$$p = -\rho \left[\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^2 + gy \right] + F(t)$$

which is the Bernoulli equation for unsteady or steady potential flow.

Summary: Bernoulli equation for ideal flow.

• Steady rotational or irrotational flow along streamline.

$$p = -\rho \left(\frac{1}{2}v^2 + gy\right) + C(\psi)$$

• Unsteady or steady irrotational flow everywhere in the fluid.

$$p = -\rho \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^2 + gy \right) + F(t)$$

• For hydrostatics, $\vec{v} \equiv 0, \frac{\partial}{\partial t} = 0.$

$$p = -\rho gy + c \leftarrow \text{ hydrostatic pressure (Archimedes' principle)}$$

• Steady and no gravity effect $(\frac{\partial}{\partial t} = 0, g \equiv 0)$

$$p = -\frac{\rho v^2}{2} + c = -\frac{\rho}{2} |\nabla \phi|^2 + c \leftarrow \text{Venturi pressure (created by velocity)}$$

• Inertial, acceleration effect

$$p \sim -\rho \frac{\partial \phi}{\partial t} + \cdots$$
$$\nabla p \sim -\rho \frac{\partial}{\partial t} \vec{v} + \cdots$$

3.5 - Boundary Conditions

• KBC on an impervious boundary

$$\underline{\vec{v}} \cdot \hat{n} = \underline{\vec{u}} \cdot \hat{n}$$
 no flux across boundary $\Rightarrow \frac{\partial \phi}{\partial n} = U_n$ given

• DBC: specify pressure at the boundary, i.e.,

$$-\rho \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^2 + gy\right) = \text{given}$$

Note: On a free-surface $p = p_{atm}$.

3.6 - Stream function

- continuity: $\nabla \cdot \vec{v} = 0$; irrotationality: $\nabla \times \vec{v} = \vec{\omega} = 0$
- velocity potential: $\vec{v} = \nabla \phi$, then $\nabla \times \vec{v} = \nabla \times (\nabla \phi) \equiv 0$ for any ϕ , i.e. irrotationality is satisfied automatically. Required for continuity:

$$\nabla \cdot \vec{v} = \nabla^2 \phi = 0$$

• Stream function $\vec{\psi}$ defined by

$$\vec{v} = \nabla \times \vec{\psi}$$

Then $\nabla \cdot \vec{v} = \nabla \cdot \left(\nabla \times \vec{\psi}\right) \equiv 0$ for any $\vec{\psi}$, i.e. satisfies continuity automatically.

Required for irrotationality:

$$\nabla \times \vec{v} = 0 \Rightarrow \nabla \times \left(\nabla \times \vec{\psi}\right) = \underbrace{\nabla \left(\nabla \cdot \vec{\psi}\right) - \nabla^2 \vec{\psi}}_{\text{still 3 unknowns}} = 0 \tag{1}$$

• For 2D and axisymmetric flows, $\vec{\psi}$ is a scalar ψ (so stream functions are more useful for 2D and axisymmetric flows).

For 2D flow: $\vec{v} = (u, v, 0)$ and $\frac{\partial}{\partial z} \equiv 0$.

$$\vec{v} = \nabla \times \vec{\psi} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \psi_x & \psi_y & \psi_z \end{vmatrix} = \left(\frac{\partial}{\partial y}\psi_z\right)\hat{i} + \left(-\frac{\partial}{\partial x}\psi_z\right)\hat{j} + \left(\frac{\partial}{\partial x}\psi_y - \frac{\partial}{\partial y}\psi_x\right)\hat{k}$$

Set $\psi_x = \psi_y \equiv 0$ and $\psi_z = \psi$, then $u = \frac{\partial \psi}{\partial y}$; $v = -\frac{\partial \psi}{\partial x}$

So, for 2D:

$$\nabla \cdot \vec{\psi} = \frac{\partial}{\partial x} \psi_x + \frac{\partial}{\partial y} \psi_y + \frac{\partial}{\partial z} \psi_z \equiv 0$$

Then, from the irrotationality (see (1)) \Rightarrow $\nabla^2 \psi = 0$ and ψ satisfies Laplace's equation.

• 2D polar coordinates: $\vec{v} = (v_r, v_\theta)$ and $\frac{\partial}{\partial z} \equiv 0$.

$$\vec{v} = \nabla \times \vec{\psi} = \frac{1}{r} \begin{vmatrix} \hat{e}_r & r\hat{e}_\theta & \hat{e}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} \end{vmatrix} = \underbrace{\frac{1}{r} \frac{\partial \psi_z}{\partial \theta}}_{v_r} \hat{e}_r - \underbrace{\frac{v_\theta}{\partial \psi_z}}_{\theta} \hat{e}_\theta + \underbrace{\frac{v_z}{r} \frac{\partial}{\partial r} v_\theta - \frac{\partial}{\partial \theta} \psi_r}_{v_z} \hat{e}_z$$

Again let
$$\psi_r = \psi_\theta \equiv 0$$
 and $\psi_z = \psi$, then $v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$ and $v_\theta = -\frac{\partial \psi}{\partial r}$.

- For 3D but axisymmetric flows, $\vec{\psi}$ also reduces to ψ (read JNN 4.6 for details).
- Physical Meaning of ψ .

In 2D:
$$u = \frac{\partial \psi}{\partial y}$$
 and $v = -\frac{\partial \psi}{\partial x}$.

We define

$$\psi(\vec{x},t) = \psi(\vec{x}_0,t) + \underbrace{\int_{\vec{x}_0}^{\vec{x}} \vec{v} \cdot \hat{n} dl}_{\text{total volume flux from left to right accross a curve C}}_{\text{between } \vec{x} \text{ and } \vec{x}_0} = \psi(\vec{x}_0,t) + \int_{\vec{x}_0}^{\vec{x}} (u dy - v dx)$$

For ψ to be single-valued, \int must be path independent.

$$\int_{C} = \int_{C'} \text{ or } \int_{C} - \int_{C'} = 0 \longrightarrow \oint_{C-C'} \vec{v} \cdot \hat{n} \ dl = \iint_{S} \underbrace{\nabla \cdot \vec{v}}_{continuity} ds = 0$$

Therefore, ψ is unique because of continuity.

Let \vec{x}_1, \vec{x}_2 be two points on a given streamline $(\vec{v} \cdot \hat{n} = 0 \text{ on streamline})$

$$\underbrace{\psi\left(\overrightarrow{x}_{2}\right)}_{\psi_{2}} = \underbrace{\psi\left(\overrightarrow{x}_{1}\right)}_{\psi_{1}} + \int_{\overrightarrow{x}_{1}}^{\overrightarrow{x}_{2}} \underbrace{\overrightarrow{\psi} \cdot \hat{n}}_{\text{along}} dt$$

$$= 0$$
along
$$\text{streamline}$$

Therefore, $\psi_1 = \psi_2$,i.e., ψ is a constant along any streamline. For example, on an impervious stationary body $\vec{v} \cdot \hat{n} = 0$, so $\psi = \text{constant}$ on the body is the appropriate boundary condition. If the body is moving $\vec{v} \cdot \hat{n} = U_n$

$$\psi = \psi_0 + \int \underbrace{U_n}_{given} dl$$
 on the boddy

$$\psi = constant \equiv \frac{\partial \phi}{\partial n} = 0$$

Flux
$$\Delta \psi = -v\Delta x = u\Delta y$$
. Therefore, $u = \frac{\partial \psi}{\partial y}$ and $v = -\frac{\partial \psi}{\partial x}$

Summary: Potential formulation vs. Stream-function formulation for ideal flows

	potential	stream-function	
definition	$\vec{v} = \nabla \phi$	$\vec{v} = \nabla imes \vec{\psi}$	
continuity $\nabla \cdot \vec{v} = 0$	$\nabla^2 \phi = 0$	automatically satisfied	
irrotationality $\nabla \times \vec{v} = 0$	automatically satisfied	$\nabla \times \left(\nabla \times \vec{\psi}\right) = \nabla \left(\nabla \cdot \vec{\psi}\right) - \nabla^2 \vec{\psi} = 0$	
In 2D: $w = 0, \frac{\partial}{\partial z} = 0$			
	$\nabla^2 \phi = 0$ for continuity	$\psi \equiv \psi_z : \nabla^2 \vec{\psi} = 0$ for irrotationality	
Cauchy-Riemann equations for $(\phi, \psi) = (\text{real, imaginary})$ part of an analytic complex function of $z = x + iy$			
Cartesian (x, y)	$u = \frac{\partial \phi}{\partial x}$ $v = \frac{\partial \phi}{\partial y}$	$u = \frac{\partial \psi}{\partial y}$ $v = -\frac{\partial \psi}{\partial x}$	
Polar (r,θ)	$v_r = \frac{\partial \phi}{\partial \Gamma}$ $v_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$	$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$ $v_\theta = -\frac{\partial \psi}{\partial r}$	

For irrotational flow	use	ϕ
For incompressible flow	use	ψ
For both flows	use	ϕ or ψ

Given ϕ or ψ for 2D flow, use Cauchy-Riemann equations to find the other:

e.g.
$$\phi = xy \psi = ?$$

$$\frac{\partial \phi}{\partial \mathbf{X}} = y = \frac{\partial \psi}{\partial y} \longrightarrow \psi = \frac{1}{2}y^2 + f_1(x)$$

$$\frac{\partial \phi}{\partial y} = x = -\frac{\partial \psi}{\partial x} \longrightarrow \psi = -\frac{1}{2}x^2 + f_2(y)$$

$$\psi = \frac{1}{2}(y^2 - x^2) + const$$