Neural Network and Backpropagation Questions

Xintian Han

CDS, NYU

Question 1: Step Activation Function ¹

Suppose we have a neural network with one hidden layer.

$$f(x) = w_0 + \sum_i w_i h_i(x); \quad h_i(x) = g(b_i + v_i x),$$

where activation function g is defined as

$$g(z) = \begin{cases} 1 & \text{if } z \geqslant 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Which of the following functions can be exactly represented by this neural network?

- polynomials of degree one: I(x) = ax + b
- hinge loss: I(x) = max(1-x,0)
- polynomials of degree two: $I(x) = ax^2 + bx + c$
- piecewise constant functions

¹From CMU

[Solution] Question 1: Step Activation Function

Suppose we have a neural network with one hidden layer.

$$f(x) = w_0 + \sum_i w_i h_i(x); \quad h_i(x) = g(b_i + v_i x),$$

where activation function g is defined as

$$g(z) = \begin{cases} 1 & \text{if } z \geqslant 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Which of the following functions can be exactly represented by this neural network?

- polynomials of degree one: I(x) = ax + b No

 If g can be identity function, then the answer is **Yes**
- hinge loss: I(x) = max(1-x,0) No
- polynomials of degree two: $I(x) = ax^2 + bx + c$ **No**
- piecewise constant functions **Yes** $(-c) \cdot g(x-b) + (c) \cdot g(x-a)$ can represent I(x) = c, $a \le x < b$.

Question 2: Power of ReLU ²

Consider the following small NN:

$$w_2^{\top} \text{ReLU}(W_1 x + b_1) + b_2$$

where the data is 2D, W_1 is 2 by 2, b_1 is 2D, w_2 is 2D and b_2 is 1D.

$$x_1 = (1,1)$$
 $y_1 = 1$; $x_2 = (1,-1)$ $y_2 = -1$; $x_3 = (-1,1)$ $y_3 = -1$; $x_4 = (-1,-1)$ $y_4 = 1$

Find b_1, b_2, W_1, w_2 to solve the problem. (Separate points from class y = 1 and y = -1.)

²From Harvard

[Solution] Question 2: Power of ReLU ³

$$w_2^{\top} \operatorname{\mathsf{ReLU}} (W_1 x + b_1) + b_2$$

One choice is

$$W_1=egin{pmatrix}1&1\-1&-1\end{pmatrix}$$
 , $b_1=egin{pmatrix}0\0\end{pmatrix}$ $w_2=egin{pmatrix}1\1\end{bmatrix}$, $b_2=-1$

Question 3: Backpropagation 4

Suppose we have a one hidden layer network and computation is:

$$\begin{split} h &= \mathsf{RELU}(\mathit{Wx} + b1) \\ \hat{y} &= \mathsf{softmax}(\mathit{Uh} + b_2) \\ J &= \mathsf{Cross\ entropy}(y, \hat{y}) = -\sum_i y_i \log \hat{y}_i \end{split}$$

The dimensions of the matrices are:

$$W \in \mathbb{R}^{m \times n}$$
 $x \in \mathbb{R}^n$ $b_1 \in \mathbb{R}^m$ $U \in \mathbb{R}^{k \times m}$ $b_2 \in \mathbb{R}^k$

Use backpropagation to calculate these four gradients

$$\frac{\partial J}{\partial b_2}$$
 $\frac{\partial J}{\partial U}$ $\frac{\partial J}{\partial b_1}$ $\frac{\partial J}{\partial W}$

⁴From Stanford

[Solution] Question 3: Backpropagation

$$z_{2} = Uh + b2 \quad \delta_{1} = \frac{\partial J}{\partial z_{2}} = \hat{y} - y$$

$$\frac{\partial J}{\partial b_{2}} = \delta_{1}$$

$$\frac{\partial J}{\partial U} = \delta_{1}h^{T}$$

$$\frac{\partial J}{\partial h} = U^{T}\delta_{1}$$

$$z_{1} = Wx + b_{1} \quad \delta_{2} = \frac{\partial J}{\partial z_{1}} = U^{T}\delta_{1} \circ 1\{h > 0\}$$

$$\frac{\partial J}{\partial b_{1}} = \delta_{2}$$

$$\frac{\partial J}{\partial W} = \delta_{2}x^{T}$$

Question 4: Backpropagation in RNN

Suppose we have a recurrent neural network (RNN). The recursive function is:

$$egin{aligned} oldsymbol{z}_{t-1} &= oldsymbol{W} oldsymbol{x}_{t-1} + oldsymbol{U} oldsymbol{h}_{t-1}, \ oldsymbol{h}_t &= oldsymbol{g}(oldsymbol{z}_{t-1}), \end{aligned}$$

where h_t is the hidden state and x_t is the input at time step t. W and U are the weighted matrix. g is an element-wise activation function. And h_0 is a given fixed initial hidden state.

- Assume loss function \mathcal{L} is a function of \boldsymbol{h}_T . Given $\partial \mathcal{L}/\partial \boldsymbol{h}_T$, calculate $\partial \mathcal{L}/\partial \boldsymbol{U}$ and $\partial \mathcal{L}/\partial \boldsymbol{W}$.
- Suppose g' is always greater than λ and the smallest singular value of U is larger than $1/\lambda$. What will happen to the gradient $\partial \mathcal{L}/\partial \boldsymbol{U}$ and $\partial \mathcal{L}/\partial \boldsymbol{W}$?
- Suppose g' is always smaller than λ and the largest singular value of U is smaller than $1/\lambda$. What will happen to the gradient $\partial \mathcal{L}/\partial \boldsymbol{U}$ and $\partial \mathcal{L}/\partial \boldsymbol{W}$?

[Solution] Question 4: Backpropagation in RNN

$$\frac{\partial \mathcal{L}}{\partial U} = \sum_{t=1}^{T} \left(\prod_{k=t-1}^{T-1} (\boldsymbol{U}^{T} D_{k}) \right) \boldsymbol{h}_{t-1}^{T}$$
$$\frac{\partial \mathcal{L}}{\partial W} = \sum_{t=1}^{T} \left(\prod_{k=t-1}^{T-1} (\boldsymbol{U}^{T} D_{k}) \right) \boldsymbol{x}_{t-1}^{T}$$

 $D_k = \operatorname{diag}(g'(z_k))$ is the Jacobian matrix of the element-wise activation function.

- The smallest singular value of the U^TD_{k-1} will be greater than one. So the smallest singular value of the gradient $\frac{\partial h_s}{\partial h_t}$ will be larger than a^{s-t} for some a>1. So the gradient is going to be exponentially large. This is called exploding gradient.
- The largest singular value of the U^TD_{k-1} will be smaller than one. So the largest singular value of the gradient $\frac{\partial h_s}{\partial h_t}$ will be smaller than a^{s-t} for some a < 1. So the gradient is going to be exponentially small. This is called vanishing gradient.