Chapitre 15. Suites et séries de fonctions

1 Modes de convergence d'une suite de fonctions

X un ensemble non vide et *E*, *F* evn.

1.1 Convergence simple

Définition 1.1. Soit $f_n: X \to \mathbb{K}$ et $f: X \to \mathbb{K}$ ($n \in \mathbb{N}$)

On dit que $(f_n)_{n\geq 0}$ converge simplement vers f si pour tout $x\in X\lim_{x\to +\infty}f_n(x)=f(x)$ ie.

$$(\forall x \in X)(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(|f_n(x) - f(x)| \le \varepsilon)$$

f est alors unique et appelée limite simple de $(f_n)_{n\geq 0}$. On écrit $\lim_{n\to +\infty} f_n=f$

1.2 Convergence uniforme

Définition 1.2. Soit $f_n: X \to \mathbb{K} \ (n \in \mathbb{N})$ et $f: X \to \mathbb{K}$

On dit que $(f_n)_{n\geq 0}$ converge uniformément vers f si $\lim_{n\to +\infty} ||f-f_n||_{\infty}=0$ ie.

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad ||f - f_n||_{\infty} \le \varepsilon$$

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad \forall x \in X \quad |f(x) - f_n(x)| \le \varepsilon$$

f est appelée limite uniforme des f_n

Proposition 1.3. Soit $f_n: X \to \mathbb{K}$ et $f: X \to \mathbb{K}$ ($n \ge 0$)

On suppose qu'il existe $N \ge 0$ et $(\alpha_n)_{n>N}$ suite de \mathbb{R}_+ avec

1.
$$\forall x \in X, n \in N \quad |f_n(x) - f(x)| \le \alpha_n$$

$$2. \lim_{n \to +\infty} \alpha_n = 0$$

Alors $(f_n)_{n>0}$ converge uniformément vers f

Proposition 1.4. Soit $f_n, g_n : X \to \mathbb{K}$ $(n \ge 0)$

Si (f_n) (resp. (g_n)) converge uniformément vers f (resp. g) alors $(f_n + g_n)$ (resp. λf_n) converge uniformément vers f + g (resp. λf)

1.3 Étude des exemples

Exemple 1:

$$f_n: \begin{cases} \mathbb{R}_+ \to \mathbb{R} \\ x \mapsto n^{\lambda} x e^{-nx} \end{cases} \quad (n \ge 1, \lambda \in \mathbb{R})$$

 f_n converge simplement vers 0 et converge uniformément sur \mathbb{R}_+ ssi $\lambda < 1$ Si $\lambda > 1$ il y a convergence uniforme sur $[a, +\infty[$ (a>0)

Exemple 2:

$$f_n: \begin{cases} \mathbb{R}_+ \to \mathbb{R} \\ x \mapsto e^{-x} \sum_{k=0}^n \frac{(-1)^k x^k}{k!} \end{cases}$$

Il y a convergence simple vers $f: x \mapsto e^{-2x}$

Il y a convergence uniforme sur \mathbb{R}_+

2 Continuité des limites uniformes

2.1 Caractérisation de la continuité par limite uniforme

Ici *X* est une partie non vide d'un evn.

Proposition 2.1. Soit $f_n: X \to \mathbb{K}$, $a \in X$ ($n \in \mathbb{N}$)

On suppose:

- 1. $\forall n \in \mathbb{N}$, f_n est continue en a
- 2. $(f_n)_{n>0}$ converge uniformément vers f

Alors *f* est continue en *a*

Corollaire 2.2. Les limites uniformes de fonctions continues sont continues.

2.2 Théorème de la double limite

Théorème 2.3 (Théorème de la double limite ou d'interversion des limites).

Soit $f_n: X \to \mathbb{K}$ avec $X \subset E$, $X \neq \emptyset$, E evn ($n \geq 0$), $a \in E$ adhérent à X (a peut être dans $\overline{\mathbb{R}}$ si $X \subset \mathbb{R}$) et $f: X \to \mathbb{K}$

- 1. Pour tout $n \in \mathbb{N}$, $\lim_{x \to a} f_n(x) = l_n \in \mathbb{K}$
- 2. $(f_n)_{n>0}$ converge uniformément vers f

Alors la suite $(f_n)_{n\in\mathbb{N}}$ converge dans \mathbb{K} vers un élément $l\in\mathbb{K}$ et de plus $\lim_{x\to a}f(n)=l$ Autrement dit :

$$l = \lim_{n \to +\infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} \lim_{n \to +\infty} f_n(x)$$

3 Modes de convergence des séries de fonctions

3.1 Convergence simple, absolue, uniforme

Définition 3.1. Soit $f_n: X \to \mathbb{K}$ ($n \ge 0$)

On dit que $\sum f_n$ converge simplement si pour tout $x \in X$, $\sum f_n(x)$ converge.

On note alors

$$\sum_{n=0}^{+\infty} f_n : x \mapsto \sum_{n=0}^{+\infty} f_n(x)$$

On dit que $\sum f_n$ converge uniformément si $S_N = \sum\limits_{n=0}^N f_n$ converge uniformément.

Corollaire 3.2 (Théorème de la double limite).

- 1. Si les f_n sont C^0 et si $\sum f_n$ converge uniformément alors $\sum_{n=0}^{+\infty} f_n$ est continue.
- 2. Soit $f_n: X \to \mathbb{K}$ ($X \subset E$, a adhérent à X)

On suppose:

- $\sum f_n$ converge uniformément.
- $\lim_{n \to \infty} f_n(x) = l_n$

Alors $\sum l_n$ converge et

$$\lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x) = \sum_{n=0}^{+\infty} l_n$$

2

3.2 Convergence normale

Définition 3.3. Soit $f_n(x): X \to \mathbb{K}$ ($n \in \mathbb{N}$)

On dit que $\sum f_n$ converge normalement si à partir d'un certain rang N les f_n sont bornés et si $\sum\limits_{n>N}\|f_h\|_{\infty}<+\infty$

Proposition 3.4. Si $\sum f_n$ converge normalement sur X alors $\sum f_n$ converge uniformément et absolument sur X

Proposition 3.5. Soit $f_n: X \to \mathbb{K}$ ($n \ge 0$)

On suppose qu'il existe $N \ge 0$ et $(\alpha_n)_{n \ge N}$ suite dans \mathbb{R}_+ avec :

- 1. $\forall n \geq N, \forall x \in X, |f_n(x)| \leq \alpha_n$
- 2. $\sum \alpha_n$ converge ie. $(\alpha_n)_{n\geq N}$ sommable.

Alors il y a convergence normale de $\sum f_n$

3.3 Cas des séries non normalement convergentes

Dans le cas où la série n'est pas normalement convergente on peut utiliser :

- Le critère spécial des séries alternées.
- La transformation D'Abel.

3.4 Exemples des séries trigonométriques

Définition 3.6. Les séries trigonométriques sont les séries de fonctions

$$x \mapsto \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

avec $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 1}$ suites de $\mathbb K$ Ou encore

$$x \mapsto \sum_{n=-\infty}^{n=+\infty} c_n e^{inx}$$

avec $(c_n)_{n\in\mathbb{Z}}$ suite de \mathbb{C}

4 Intégration et dérivation d'une suite ou série de fonctions

4.1 Interversion limite et intégrale

Théorème 4.1. Soit $f_n : [a, b] \to \mathbb{K}$ ($n \in \mathbb{N}$)

On suppose les f_n continues et <u>convergentes uniformément</u> vers f

Alors f est continue et

$$\int_{a}^{b} f = \lim_{n \to +\infty} \int_{a}^{b} f_{n}$$

Autrement dit

$$\int_{a}^{b} \lim_{n \to +\infty} f_{n} = \lim_{n \to +\infty} \int_{a}^{b} f_{n}$$

Corollaire 4.2. Soit $f_n : [a, b] \to \mathbb{K}$ continues ($n \ge 0$)

Si $\sum f_n$ converge uniformément, on a

$$\int_{a}^{b} \left(\sum_{n=0}^{+\infty} \right) = \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}$$

4.2 Dérivation d'une limite d'une suite de fonctions

Théorème 4.3 (Théorème de dérivation). Soit $f_n : I \to \mathbb{K}$ C^1 ($n \in \mathbb{N}$) avec I intervalle de \mathbb{R} On suppose :

- 1. $(f_n)_{n\geq 0}$ converge simplement vers $f:I\to \mathbb{K}$
- 2. $(f'_n)_{n\geq 0}$ converge uniformément sur tout segment de I vers une fonction $g:I\to \mathbb{K}$ Alors $(f_n)_{n\geq 0}$ converge uniformément sur tout segment de I, f est \mathcal{C}^1 et f'=f

$$\left(\lim_{n\to+\infty}f_n\right)'=\lim_{n\to+\infty}f_n'$$

Corollaire 4.4. Soit $f_n: I \to \mathbb{K} \ \mathcal{C}^k$ ($n \in \mathbb{N}$)

On suppose:

- 1. $\forall i \in [0, k-1]$ $f_n^{(i)}$ converge simplement.
- 2. $\sum f_n^{(k)}$ converge uniformément sur tout segment de I

Alors $\sum f_n^{(i)}$ converge uniformément sur tout segment de I

De plus, $\sum_{n=0}^{+\infty} f_n$ est de classe C^k et $\forall i \in [0, k]$

$$\left(\sum_{n=0}^{+\infty} f_n\right)^{(i)} = \sum_{n=0}^{+\infty} f_n^{(i)}$$

Corollaire 4.5. Soit $f_n: I \to \mathbb{K} \mathcal{C}^{\infty}$ ($n \in \mathbb{N}$)

On suppose que pour tout $i \in \mathbb{N}\left(f_n^{(i)}\right)$ converge uniformément sur tout segment de I Alors $\lim_{n \to +\infty} f_n = f$ est de classe \mathcal{C}^{∞} et

$$\forall i \in \mathbb{N} \quad \left(\lim_{n \to +\infty} f_n\right)^{(i)} = \lim_{n \to +\infty} f_n^{(i)}$$

De même, $\sum_{n=0}^{+\infty} f_n$ est de classe C^{∞} et

$$\forall i \in \mathbb{N} \quad \left(\sum_{n=0}^{+\infty} f_n\right)^{(i)} = \sum_{n=0}^{+\infty} f_n^{(i)}$$

4.3 Extension des résultats aux fonctions vectorielles

On peut tout généraliser aux suite / série de fonctions d'un evn de dimension finie.

5 Exemples d'approximation uniforme

5.1 Approximation des fonctions continues par des fonctions en escalier

Théorème 5.1. Soit $f:[a,b] \to \mathbb{K}$ (ou E evn de dim finie) continue par morceaux. Alors pour tout $\varepsilon > 0$ il existe $l_n:[a,b] \to \mathbb{K}$ en escalier telle que $||f-h||_{\infty} \le \varepsilon$ Il existe $(h_n)_{n \ge 0}$ suite de $\mathcal{E}([a,b],\mathbb{K})$ qui converge uniformément vers f

5.2 Théorème de Weierstrass

Théorème 5.2 (Théorème de Weierstrass). Soit $f:[a,b]\to \mathbb{K}$ continue. Pour tout $\varepsilon>0$ il existe $P\in \mathbb{K}[X]$ tel que $\|f-P\|_{\infty}\leq \varepsilon$ Il existe une suite $(P_n)_{n>0}$ de $\mathbb{K}[X]$ qui converge uniformément vers f

5.3 Densité des polynômes trigonométriques

Théorème 5.3 (Théorème de Weierstrass trigonométrique). Soit $f: \mathbb{R} \to \mathbb{K}$ continue 2π -périodique Pour tout $\varepsilon > 0$ il existe P polynôme trigonométrique (de période 2π) tel que $||f - P|| \le \varepsilon$ Il existe donc une suite de polynômes trigonométrique (P_n) qui converge uniformément vers f

6 Exercices classiques

6.1 Suite des fonctions *M*-lipschitziennes

- 1. Soit $f_n : [a, b] \to \mathbb{K}$ ($n \in \mathbb{N}$) M-lipschitzienne (M > 0) qui converge simplement vers f Montrer que f est M-lipschitzienne et que la convergence des f_n est uniforme.
- 2. Extension : Soit K un compact, $f_n: K \to K$ M-lipschitzienne convergente simplement vers f Montrer que la convergence est uniforme.

6.2 Le théorème de Dini (Le prémier)

Soit K un compact, $f_n: K \to \mathbb{R}$ ($n \in N$) continues. On suppose :

- 1. $\forall n \in N \ f_n \leq f_{n+1}$
- 2. $(f_n)_{n>0}$ converge simplement vers f continue sur K

Mq $(f_n)_{n\geq 0}$ converge uniformément vers f