→ How many different ways (patterns) are there to color the squares of a 2x2 chessboard using only the black and white colors?

* Definition:

$$0 \text{ orbit} \longrightarrow x, y \in X$$

$$0_X = 0_Y \iff x \approx Y$$

$$\star O_X = \{g.x \mid g \in G_i\}$$

2 Stabilizer
$$\longrightarrow$$
 Stabilizer of $\times \in X$ \Rightarrow $S_{cl} = \{e, a, b, c, p, q, r, s\} \longrightarrow example$
 $S_{x} = \{g \in G: g. x = x\}$

Element of X	Orbit	Stabilizers
C1	{C1}	{e, a, b, c, p, q, r, s}
C2		{e, r}
C3	{C2, C3, C4,	{e, s}
C4	C5}	{e, r}
C5		{e, s}
C6		{e, q}
C7	{C6, C7, C8,	{e, p}
C8	C9}	{e, q}
C9		{e, p}
C10	{C10, C11}	{e, b, r, s}
C11	{C10, C11}	{e, b, r, s}
C12		{e, s}
C13	{C12, C13,	{e, r}
C14	C14, C15}	{e, s}
C15		{e, r}
C16	{C16}	{e, a, b, c, p, q, r, s}

-> apply stabilizer to wlouring to get the same wlouring

* Orbit - Stabilizer Theorem:

Let G be a group acting on set X:

$$|O_X|.|S_X| = |G|$$

$$\Rightarrow \frac{|S \times I|}{|G|} = |O \times I|$$

$$\Rightarrow \frac{1}{|G_1|} \sum_{x \in O_x} |G_x| = \frac{|O_x|}{|O_x|} = 1$$

$$= \frac{1}{8} (8 \times 1 + 2 \times 4 + 2 \times 4 + 4 \times 2 + 2 \times 4 + 8 \times 1)$$

 $= \underline{6}$ $\Rightarrow \# \text{ of orbits} = \frac{||\nabla ||}{||\nabla ||} = \frac{||\nabla ||}{||\nabla |$

Where $Fix(g) = \{x \in X \mid g.x = x\}$ $eg \rightarrow |Fix(e)| = 16$

* Necklace with m beads

* Cycles - (14)(25)(36)

90°

000

0

0

>Reflect

0

000000

along Diagonal