## Title

D. Zack Garza

## **Contents**

| 1 | Frid | Friday, November 06        |   |
|---|------|----------------------------|---|
|   | 1.1  | Good $(p,r)$ - Filtrations | 2 |
|   | 1.2  | Strong Linkage             | 5 |

# **1** Friday, November 06

### **1.1** Good (p,r)- Filtrations

Last time:  $G_rT$  and  $G_rB$  modules. We roughly know the category of  $G_r$  modules, and we think of  $G_rT$  as graded  $G_r$ -modules. We defined

$$\begin{split} \widehat{Z}'_r(\lambda) &\coloneqq \operatorname{Ind}_B^{G_rB}(\lambda) \\ \widehat{Z}'_r(\lambda) &\coloneqq \operatorname{Coind}_{B^+}^{G_rB^+}(\lambda). \end{split}$$

We can use these for classification since we have a correspondence

$$\left\{ \text{Simple } G_r T\text{-modules} \right\} \iff \left\{ X(T) \right\}$$
 
$$\widehat{L}_r(\lambda) = \widehat{L}_r(\lambda_0) \otimes p^r \lambda \longleftrightarrow \lambda = \lambda_0 + p^r \lambda_1,$$

where  $\widehat{L}_r(\lambda_0)$  is a simple  $G_r$ -module and  $\lambda_0 \in X_r(T)$ .

#### Proposition 1.1.1(?).

For each  $\lambda \in X(T)$  and  $i \in \mathbb{N}$ , there exists an isomorphism of G-modules

$$\{X(T)\}$$
  $\hat{L}_H^i(\lambda) = R^i \operatorname{Ind}_{G_rB}^G \hat{Z}_r'(\lambda).$ 

Proof (?).

We can compose the two functors to get a Grothendieck-type spectral sequence

$$E_2^{m,n} = R^m \operatorname{Ind}_{G_r B}^G \left( R^n \operatorname{Ind}_B^{G_r B}(\lambda) \right) \Rightarrow R^{m+n} \operatorname{Ind}_B^G(\lambda),$$

which follows from induction being transitive. Note that  $\operatorname{Ind}_B^{G_rB}(\cdot)$  is exact, since coinduction is given by  $\operatorname{dist}(G_rB) \otimes_{\operatorname{Dist}(B)} \lambda \cong \operatorname{Dist}(U_r^+) \otimes_k \lambda$  is tensoring over a field, and this is dual to induction. Thus  $R^{>0}$   $\operatorname{Ind}_B^{G_rB}(\lambda) = 0$  and the spectral sequence collapses to yield

$$R^m\operatorname{Ind}_{G_rB}^GR^0\operatorname{Ind}_B^{G_rB}=R^m\operatorname{Ind}_{G_rB}^G\operatorname{Ind}_B^{G_rB}=R^m\operatorname{Ind}_B^G(\lambda),$$

where we can just note that  $\operatorname{Ind}_B^{G_rB}(\lambda) = \widehat{Z}'_r(\lambda)$ .

Contents 2

Recall Kempf's vanishing theorem: if  $\lambda \in X(T)_+$  is a dominant weight, then  $H^{>0}(\lambda) = 0$ .

#### **Definition 1.1.1** (*p*-filtration, due to Steve Donkin).

Let  $M \in G$ -mod, then M has a (good) (p,r)-filtration iff there exists a sequence of G-modules

$$0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_s = M$$

such that  $M_i/M_{i+1} \cong L(\lambda_0) \otimes H^0(\lambda_1)^{(r)}$  where  $\lambda_0 \in X_r(T)$  (so the first time is irreducible) and  $\lambda_1 \in X(T)_+$ , so the second term is twisted.

Remark 1.1.1: Question due to Jantzen: let  $\lambda \in X(T)_+$ . Does  $H^0(\lambda)$  have a good (p,r)-filtration?

This question was open for a while, until the following was found:

#### Proposition 1.1.2 (Parshall-Scott, 2013).

If  $p \geq 2(h-1)$  and Lusztig's character formula holds for G, then  $H^0(\lambda)$  has a good (p,r) filtration.

#### Proposition 1.1.3 (Bendell-Nakano-Pillen-Sobaje, 2019).

There are counterexamples to Jantzen's question. Example:  $\Phi = G_2$  and p = 2.

Later: we'll see how to construct these filtrations by factoring induction into intermediate inductions.

#### Theorem 1.1.1(?).

Let  $\lambda \in X(T)_+$  and assume every composition factor of the baby Verma  $\widehat{Z}'_r(\lambda)$  has the form  $\widehat{L}_r(\mu_0 + p^r \mu_1) = \widehat{L}_r(\mu_0) \otimes p^r \mu_1$  where  $\mu_0 \in X_r(T)$  and  $\mu_1 \in X(T)$  is any weight. Suppose further that  $\langle \mu_1 + \rho, \beta^{\vee} \rangle \geq 0$  for all  $\beta \in \Delta$  (so it's "pretty dominant"). Then  $H^0(\lambda)$  has a good (p, r) filtration, and moreover

$$[\widehat{Z}'_r(\lambda):\widehat{L}_r(\mu_0)\otimes p^r\mu_1] = [H^0(\lambda):L(\mu_0)\otimes H^0(\mu_1)^{(r)}].$$

#### Proof(?).

Suppose  $\widehat{L}_r(\mu_0 + p^r \mu_1)$  is a composition factor of  $\widehat{Z}'_r$ . Then since we have G-modules, we can use the tensor identity to write

$$R^{i}\operatorname{Ind}_{G_{r}B}^{G}L_{r}(\mu_{0})\otimes p^{r}\mu_{1} = L_{r}(\mu_{0})\otimes R^{i}\operatorname{Ind}_{G_{r}B}^{G}p^{r}\mu_{1}$$
$$= L_{r}(\mu_{0})\otimes H^{i}(\mu_{1})^{(r)},$$

where the last equality follows from a theorem we won't prove here. We can set i = 0 to yield

$$\operatorname{Ind}_{G_rB}^G L_r(\mu_0) \otimes p^r \mu_1 \cong L_r(\mu_0) \otimes H^0(\mu_1)^{(r)}.$$

Recall that  $H^0(\lambda) = \operatorname{Ind}_{G_r B}^G \widehat{Z}'_r(\lambda)$ , so we'll take a composition series for  $\widehat{Z}'_r(\lambda)$  and apply the

induction functor to it. So let such a composition series be given by

$$0 \subseteq N_0 \subseteq N_1 \subseteq \cdots \subseteq N_s = \widehat{Z}'_r(\lambda),$$

where  $N_i/N_{i-1} \cong L(\mu_0) \otimes p^r \mu_1$  for some  $\mu_0 \in X_r(T)$  and  $\mu_1 \in X(T)$ . Now apply the functor  $\operatorname{Ind}_{G_rB}^G(\cdot)$  which yields

$$0 \subseteq \cdots \subset \operatorname{Ind}_{G_n B}^G N_i \subseteq \cdots \subseteq H^0(\lambda).$$

Question: is this a good (p, r) filtration?

 $\triangle$  Warning 1.1: Note that if we have

$$0 \to N_1 \to N_2 \to N_2/N_1 \to 0$$

this yields

$$0 \to \operatorname{Ind} N_1 \to \operatorname{Ind} N_2 \to \operatorname{Ind}(N_2/N_1) \to R^1 \operatorname{Ind} N_1 \to \cdots$$

Here we need  $\operatorname{Ind}(N_2/N_1) \cong \operatorname{Ind} N_2/\operatorname{Ind} N_1$ , so we need to show  $R^1 \operatorname{Ind} N_1 = 0$ . Using the tensor identity we can write

$$R^{1} \operatorname{Ind} N_{1} = R^{1} \operatorname{Ind}_{G_{r}B}^{G} L_{r}(\sigma_{0}) \otimes p^{r} \sigma_{0}$$
$$= L_{r}(\sigma_{0}) \otimes \left(R^{1} \operatorname{Ind}_{G_{r}B}^{G} \sigma_{1}\right)^{(r)}$$

and  $\langle \sigma_1 + \rho, \beta^{\vee} \rangle \geq 0$ , so  $R^1 \operatorname{Ind}_{G_r B}^G \sigma_1 = 0$ . Thus we can extend the region from Kempf's vanishing slightly:



Finding composition factors for the  $\hat{Z}'_r$  is in general a hard problem: if we had this, we'd have the characters of the irreducibles. Some combinatorics can be used here.

## 1.2 Strong Linkage

 $\sim$ 

Note that strong linkage for  $H^0(\lambda)$  implies strong linkage for  $\widehat{Z}'_r(\lambda)$ .

Theorem 1.2.1(?). Let  $\lambda, \mu \in X(T)$ , then if  $[\widehat{Z}'_r(\lambda) : \widehat{L}(\mu)] \neq 0$ , then  $\mu \uparrow \lambda$  and  $\mu \in W_p \cdot \lambda + p^r X(T)$ .

Proof (?).

Note that  $\widehat{Z}'_r(\lambda)$  is finite dimensional. Idea: tensor by a 1d rep to make all composition factors

1.2 Strong Linkage 5



I.e., we can tensor by  $p^r v$  for v large so that  $\widehat{Z}'_r(\lambda) \otimes p^r v$  has composition factors if the form  $L(\mu_0)\otimes p^r\mu_1$  with  $\langle \mu_1+\rho,\ \beta^\vee\rangle\geq 0$  for all  $\beta\in\Delta$ . Then  $\mu+p^rv\uparrow\lambda p^rv$ , which implies  $\mu\uparrow\lambda$ , and so using strong linkage we have a p-filtration on  $H^0(\lambda+p^rv)$ .

Next time: extensions in  $G_rT$ -mod and the Steinberg module (very important in representation theory, has some nice properties).

1.2 Strong Linkage