Ontology-driven model of security patterns. Common description

<u>Property</u>	Range and predefined values	<u>Description</u>	<u>Example</u>
Class: Pattern			pattern_SecureDistributedPublishSubscribI
			oT

Metadata:

This section contains properties, used to identify a particular pattern, its authors, the idea of it. Also, it holds links to an original documents.

In many cases it is impossible to put a full description of the pattern because of copyright and trademark, so the "textreview*" fields retell a content of the pattern in own words.

The most valuable thing is an original pattern's document, so it should be a way to get access to it, locally or remotely.

textName	xsd:String	Pattern's primary name	Secure Distributed Publish/Subscribe (P/S) pattern for IoT
textAKAName	xsd:String	Pattern's alternative name(s)	
textAuthor	xsd:String	Pattern's author(s)	Eduardo B. Fernandez Nobukazu Yoshioka Hironori Washizaki
textURL	xsd:String	URL(s) of webpage that describes a pattern	https://www.researchgate.net/publication/3 39103887_Secure_Distributed_PublishSub scribe_PS_pattern_for_IoT
textPDF	xsd:String	Downloadable URL(s) of pattern's PDF	
textReference	xsd:String	Reference to a paper, describing a pattern	E.B.Fernandez, N. Yoshioka, H. Washizaki, "Secure Distributed Publish/Subscribe (P/S) for IoT, 2020. Procs. Asian PLoP'20, March 4 6, Taipei, Taiwan. 9 pages.
textIntent	xsd:String	Pattern's Intent (full text)	In an IoT system, decouple the publishers of events from those interested in the events (subscribers). Subscription and publication are performed securely.
textReviewContext	xsd:String	Brief text description of pattern's context	Something like that: Information exchange between IoT/IIoT devices (e.g. smart thermostats or sprinkler systems, different sensors) with minimal security control and cloud/fog applications.

textReviewProblem	xsd:String	Brief text description of pattern's problem	Something like that: Subscribers (S) register and receive messages of their interest sent by a publisher (P). The main concerns are how to organize the interactions between them securely, avoiding rogue participants, insecure communications, unwanted P/S operations.
textReviewSolution	xsd:String	Brief text description of pattern's solution	In addition of the standard P/S functions it is possible to use secure channels for protected communications, access control for restricting the actions of publishers and subscribers, security logging, and digital signatures.

Organizational and scope aspects:

This section describes organizational aspects of a pattern (type, used template) and its scope, i.e. relation to other patterns.

It has to be given only information about a particular pattern, without worrying about dependent patterns, because the automatic reasoning procedures allow to create a full "network" of pattern relations, thanks to the inverse and symmetric properties.

hasType	Pattern	Type of a pattern, like security pattern, misuse pattern, or threat pattern.	The first option: hasType value type_SecurityPattern
	Predefined instances: Class: SecurityPattern type_SecurityPattern Class: ThreatPattern type_ThreatPattern Class: MisusePattern type_MisusePattern	It is possible to define this with the class assertion, e.g. <pattern> is an instance the SecurityPattern class.</pattern>	The second option is to tell it is an instance of the <i>SecurityPattern</i> class
hasTemplate	Template	Template, used to describe a pattern. It can be POSA or GOF.	hasTemplate value template_POSA
	<u>Predefined instances</u> :		
	template_POSA	POSA stands from "Pattern Oriented	
	template_GOF	Software Architecture".	
	template_ESP ???	GOF stands from "Gang of Four".	
hasGroup	Group	Tells to which group a pattern belongs to.	hasGroup value
(inverse: isGroupOf)			patterngroup_SecureMiddleware
		It can be possible to use the class assertion here, e.g. create a hierarchy with abstract	

		patterns on the top and concrete ones at the bottom.	
usesPattern (inverse: isUsedByPattern)	Pattern	Enumerates patterns that are used by this one. For the POSA template it should be taken from "Description" and "Class Diagram".	pattern_RoleBasedAccessControl pattern_Authenticator pattern_SecurityLoggerAuditor pattern_SecureChannel
relatesToPattern (symmetric)	Pattern	Enumerates patterns that are related to this one. For the POSA template it should be taken from "Related patterns".	pattern_SecurePS pattern_Broker pattern_SecureChannel pattern_EnterpriseServiceBus pattern_Authorizer pattern_IoTSegmentation
isChildOf (inverse: isParentOf)	Pattern	For a concrete pattern shows from which abstract pattern it has been made. It can be possible to use the class assertion here, e.g. create a hierarchy with abstract patterns on the top and concrete ones at the bottom.	IsChildOf value pattern_SecurePublishSubscirbe

This section contains common labels, used to characterize a pattern.

hasDomain	Domain	Tells to which domain(s) a pattern belongs	hasDomain value domain_InternetOfThings
(inverse: isDomainOf)		to.	
	<u>Predefined instances</u> :		
	domain_FogComputing	Domain is a large functional field of	
	domain_EdgeComputing	Information Technologies (IT), like Cloud	
	domain_InternetOfThings	Computing, Internet of Things. It might be	
	domain_SCADA	less gigantic, like IaaS or NVF.	
	domain_Military		
	domain_Ecommerce		
	domain_GridComputing		
	Class: CloudComputingDomain		
	domain_CloudComputing		
	domain_IaaS		
	domain_SaaS		
	domain_PaaS		

	domain_NVF		
hasArchitecturalLayer	Predefined instances: Class: ApplicationArchitecturalLayer al_ApplicationLayer al_ClientLayer al_LogicLayer al_DataLayer al_PlatformAndOperatingSystemLayer Class: CommunicationArchitecturalLayer al_CommunicationLayer al_DistributionLayer al_TransportLayer al_NetworkLayer	"Architectural layer provides another useful dimension, since problems and their solutions in different layers of the architecture differ, yet all are important. Roughly the same architecture continuum has been divided in different ways for communication protocols, business systems, and execution environments, but always with an ordering from low to high level of abstraction, and from network to platform to application." [VanHilst, 2009]	hasArchitecturalLayer value al_ApplicationLayer hasArchitecturalLayer value al_ClientLayer hasArchitecturalLayer value al_CommunicationLayer
hasConstraintLevel	Predefined instances: cl_RegulatoryLevel cl_OrganizationalLevel cl_HumanLevel cl_MechanismLevel	"Leveson defines four levels of constraint: mechanism, human (operator or developer), organizational, and regulatory. In Leveson's work on system safety (Leveson, 2004), each level of constraint plays an important role in safety failures and their prevention. By extension, we use the same levels for security with an axis with levels from thing to society. While most security patterns describe mechanisms, the National Training Standard for Information Systems Security (INFOSEC) Professionals (National Security Agency, 1994) is mostly concerned with practices, policies, and regulations. The Common Criteria has functional requirements that apply at the level of mechanisms (Common Criteria Sponsoring Organizations, 2006). But it also has assurance requirements that concern organizational processes to document actions taken. The development of a configuration management plan is a Common Criteria assurance requirement that applies at the	

		organizational level in the lifecycle stage of domain analysis. The Common Criteria and other standards such as SOX and SSE-CMM (Systems Security Engineering - Capability Maturity Model, 2003) themselves belong at the regulatory level." [VanHilst, 2009] Instances are taken from [VanHilst, 2009]	
hasResponseType	Predefined instances: rt_Avoidance rt_Deterrence rt_Prevention rt_Detection rt_Mitigation rt_Recovery rt_Forensics	"The response axis based on whether or not and attack happens and the extent, from not happening at all (avoidance), to completely happened and in the past (forensics)." [VanHilst, 2009] Instances are taken from [VanHilst, 2009]	hasResponseType value rt_Avoidance
hasLifecycleStage	Predefined instances: lc_ArchitectureAndDesign lc_BuildAndCompilation lc_Implementation lc_Installation lc_Operations lc_Requirements lc_SystemConfiguration lc_Deployment	Tells which which system's lifecycle stage a pattern is applicable. Frankly, most of the patterns are applicable on the Design (Architecture) stage, but it might be possible to have a few exceptions. Instances are taken from [CAPEC].	hasLifecycleStage value lc_ArchitectureAndDesign
hasSecurityLevel	SecurityLevel Predefined instances: sl_PhysicalSecurity sl_PersonnelSecurity sl_CommunicationAndDataSecurity sl_OperationalSecurity	Tells to which field of security a pattern belongs to. https://en.wikipedia.org/wiki/Physical_security https://en.wikipedia.org/wiki/Secure_communication https://en.wikipedia.org/wiki/Communicatio	

	ns_security	
	https://en.wikipedia.org/wiki/Operations_security	

Context characteristics:

The "context characteristics" and "context security characteristics" (see below) sections include a set of labels that allow to put a pattern to a context.

Here, "context" means a possibility to use the pattern as a part of an architecture of a particular computer system.

In particular, this set of labels can be used to support a decision, like "Is the pattern suitable for the system design or not?".

The idea of the context approach is that each computer system can be describe in two ways.

Firstly, it is possible to find some unique features, i.e. *functions* that build a coherent model of this system.

Secondly, most of the computer systems are created from common *components*, independent from system functions, like hardware servers, operating systems, software services and applications.

For example, what functions make a hypervisor (IaaS component) unique? An answer might include "Management of VMs", "VM migration", "Virtual networking" etc. Which common components does it consist of? It might be "Hardware server", "Operating system", "System service", "Network service", "CLI interface", "API interface".

In many cases security problems of common components are known and described well, and security problems of functions are in focus of research of a new type of computer system.

Considering abstract (common) patterns, it is better to describe more components and less functions.

Considering domain specific patterns, it is better to describe more functions and less components.

More details are in the schema functions components.pdf file.

hasAffectedFunction	Function	Tells which system function(s) a pattern affects.	hasAffectedFunction value function_DistributeEventInformation
	see schema_functions_components.pdf		
hasAffectedComponent	Component	Tells which common component(s) a pattern affects.	hasAffectedComponent value component_IoTApplication
	see schema_functions_components.pdf		hasAffectedComponent value component_IIoTApplication
			hasAffectedComponent value component_CloudApplication
			hasAffectedComponent value component_FogApplication

Context security characteristics:

After suitable patterns have been found for a system design (see above), the next step is to correlate them to security challenges.

A relevant question, which this set of characteristics allows to answer, is "Does this security pattern solve a particular security problem, valuable for its context?"

hasThreat	1 1111 1 1 1 1	Lieus what threats a nattern describes with	I"SI: An impostor impersonates a subscriber
1	Threat	Tells what threats a pattern describes with connection to component(s) and function(s),	"S1: An impostor impersonates a subscriber and subscribes to receive information that
1	Predefined instances:	figured out on the previous stage.	will be billed to somebody
	see schema threats.pdf	inguiva out on the previous stage.	else or which will give her access to
	500 senemu_imeus.puj	For security patterns defines the possible	sensitive information." so
	Class: Communications Threat	threats, met by a pattern.	hasThreat value
	Class: CommunicationsThreat	For attack pattern defines the possible	threat PriviledgeEscalation
	threat_ManInTheMiddle	threats, produced by an implementation of	car_1
	threat_Interception threat Flooding	pattern.	"S2: The publisher is an impostor and
	threat_rooding threat_ContentSpoofing	7	collects information (and maybe money)
	threat_IdentitySpoofing	The idea has taken from [Guan, 2016]	from potential subscribers."
	threat Footprinting	Instances are taken from [CAPEC]	hasThreat value threat IdentitySpoofing
	(=threat_InformationGathering)		
	threat ProtocolAnalysis		"S3: The subscription messages are
	tiii cat_i i utucul/xiiaiysis		intercepted and read or modified by an
	Class: SoftwareThreat		attacker. The attacker may obtain in this
	threat_SessionManipulation		way credit or other personal information
	threat_SessionWampulation threat_BruteForce		from the subscriber.", so
	threat AuthenticationAbuse		hasThreat value threat Interception
	threat AuthenticationBypass		
	threat PriviledgeAbuse		"P2: A publisher publishes erroneous
	threat PriviledgeEscalation		information. This action can inject data or
	threat Excavation		commands to a device thus disturbing
	threat CodeInjection		its operation;"
	threat BufferManipulation		hasThreat value threat ContentSpoofing
	threat ExcessiveAllocation		
	threat ManipulationAPI		"P4. An attacker floods subscribers with
	threat InputDataManipulation		fake messages thus stopping the subscribers
	threat EnvironmentManipulation		from doing any useful work; this
	threat_SharedDataManipulation		is a Denial of Service attack.", so
	threat_Malware		hasThreat value threat_Flooding
hasSecurityConcern	SecurityConcern	Tells which security concern(s) a pattern	hasSecurityConcern value

Predefined instances: concern AccessControl A security concern represents some security hasSecurityConcern value concern AttackDetection feature(s) [Guan, 2016], xxx concern EventLogging concern AttackPrevention concern Audit Instances are taken from [VanHilst, 2009], hasSecurityConcern value concern Authentication concern MessageIntegrity [Vale, 2019]. concern Authorization hasSecurityConcern value concern Containment concern Coordination concern SecureCommunictations concern EventLogging concern Identification concern InformationHiding concern KeyDistribution concern MessageAuthentication concern MessageAuthenticity concern MessageIntegrity concern Monitoring concern ProcessIsolation concern Sandboxing concern Realibility concern ResourceManagement concern RightsManagement concern SecureDataStream concern SecureCommunictations concern SecureSystemIntegration concern SecureSystemAdministration concern SecurityArchitecture concern SecurityPolicy concern TrafficMonitoring concern TrafficFiltration

Inferred characteristics:

There is no need to define these properties. Automatic reasoning procedures will assign them from the context properties.

STRIDE and security objectives depend of each other. Either of them can be obtain from the hasThreatImpact and hasThreat properties.

To create lists of attacks the CAPEC enumeration can be used, to create lists of weaknesses the CWE enumeration can be used. CAPEC and CWE are connected to each other.

hasThreatImpact	ThreatImpact	Tells which negative impact(s) the threats,	
		described by a pattern, have to component(s)	
	<u>Predefined instances</u> :	and function(s). It obtains from the CAPEC	

	ti_AlterExecutionLogic ti_BypassProtectionMechanism ti_ExecuteUnauthorizedCommands ti_GainPrivileges ti_HideActivities ti_ModifyData ti_ReadData ti_ResourceConsumption ti_UnreliableExecution	attack descriptions (the hasThreat property here). It is not so far from the CAPEC/CWE approach, used to describe consequences of their attack patterns (but with some improvements). This allows to map attacks from CAPEC and weaknesses from CWE to the ThreatImpact items.	
hasSTRIDE	Predefined instances: STRIDE_Spoofing STRIDE_Tampering STRIDE_Repudiation STRIDE_Information_Disclosure STRIDE_Denial_of_Service STRIDE_Elevation_of_Privilege	Tells which STRIDE item(s) a pattern touches.	
hasSecurityObjective	SecurityObjective Predefined instances: SO_AccessControl SO_Accountability SO_Authentication SO_Authorization SO_Availability SO_Confidentiality SO_Integrity SO_NonRepudiation	Tells which security objective(s) a pattern touches.	
hasPossibleAttack	Attack	Will be taken from [CAPEC] and other attacks' classifications.	

hasPossibleWeakness	Weakness	Will be taken from [CWE] and other	
		weaknesses'/vulnerabilities' classifications.	

References:

[Guan, 2016] H. Guan, H. Yang, and J. Wang, "An ontology-based approach to security pattern selection," Int. J. Autom. Comput., vol. 13, pp. 168–182, Apr. 2016.

[Vale, 2019] A.P. Vale, E. B. Fernández, "An Ontology for Security Patterns". Conference paper. 2019.

[VanHilst, 2009] VanHilst M. et al. A multi-dimensional classification for users of security patterns //Journal of Research and Practice in Information Technology. -2009. -T. 41. - N = 2. -C. 87.

[CAPEC] https://capec.mitre.org/

[CWE] https://cwe.mitre.org/