Ejercicio 1

Sea $\phi \sim Ga(\alpha, \beta)$.

- 1. Obtener la distribución de $\sigma^2 = 1/\phi$.
- 2. Para $\alpha = \beta = 1$, dibujar la densidad de ϕ y σ^2 en figuras distintas.
- 3. Simular 10,000 realizaciones de ϕ y usarlas para obtener valores simulados de σ^2 . Luego dibujar histogramas de cada conjunto de simulaciones por separado.
- 4. Repetir el procedimiento para $\alpha = \beta = 2$ y $\alpha = \beta = 0.5$.

Ejercicio 2

Supongamos que $Y_i \stackrel{iid}{\sim} Po(\lambda)$ con $\lambda \sim Ga(a,b)$, esto es:

$$p(\lambda) = b^a \lambda^{a-1} e^{-b\lambda} / \Gamma(a).$$

Por otro lado, sea $\tilde{y} \sim Po(\lambda)$, es decir una observación futura, que suponemos condicionalmente independiente respecto a y, dado λ .

- 1. Encuentre la posterior $p(\lambda|y)$ donde $y = (y_1, \dots, y_n)$.
- 2. For y = (4, 4, 5, 8, 3) y a = b = 1, dibujar previa y posterior de λ .
- 3. Derivar $p(\tilde{y})$ y $p(\tilde{y}|y)$, la distribución predictiva previa y posterior respectivamente. Dibujar ambas distribuciones en el mismo plot.

Recordar que:

$$p(\lambda|y) \propto p(y|\lambda)p(\lambda)$$
 usar proporcional

$$p(\tilde{y}|y) = \int p(\tilde{y}|\lambda)p(\lambda|y)d\lambda$$
 (porque?)