

Mathematical Foundations

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul

SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH

Marginalization

If we are given a joint distribution, what if we are only interested in the distribution of one of the variables?

We can compute the distribution of P(X) from P(X, Y, Z) through *marginalization*:

$$\sum_{y} \sum_{z} P(X, Y = y, Z = z) = \sum_{y} \sum_{z} P(X) P(Y = y, Z = z | X)$$

$$= P(X) \sum_{y} \sum_{z} P(Y = y, Z = z | X)$$

$$= P(X)$$

Joint distribution			
temperature (T) and weather (W)			')
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

- Marginalize out weather
- Marginalize out temperature

Joint distribution			
temperature (T) and weather (W)			
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather
T=Hot T=Mild T=Cold

Marginalize out temperature

Joint distribution			
temperature (T) and weather (W)			
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather
T=Hot T=Mild T=Cold

Marginalize out temperature

Joint distribution			
temperature (T) and weather (W)			
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

- Marginalize out weather
 T=Hot T=Mild T=Cold
 .15
- Marginalize out temperature

Joint distribution			
temperature (T) and weather (W)			
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

D	Marginalize out weather			
	T=Hot	T=Mild	T=Cold	
	.15	.55	.30	

Marginalize out temperature

Joint distribution			
temperature (T) and weather (W)			
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather		
T=Hot	T=Mild	T=Cold
.15	.55	.30

Marginalize out temperature
 W=Sunny
 W=Cloudy

Joint distribution			
temperature (T) and weather (W)			
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather		
T=Hot	T=Mild	T=Cold
.15	.55	.30

Marginalize out temperature
W=Sunny
W=Cloudy

Joint distribution			
temperature (T) and weather (W)			')
	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather		
T=Hot T=Mild T=Cold		
.15	.55	.30

Marginalize out temperature
W=Sunny .40
W=Cloudy

Joint distribution						
temperature (T) and weather (W)						
	T=Hot	T=Mild	T=Cold			
W=Sunny	.10	.20	.10			
W=Cloudy	.05	.35	.20			

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather				
T=Hot	T=Mild	T=Cold		
.15	.55	.30		

•	Marginalize out temperature			
	W=Sunny	.40		
	W=Cloudy	.60		