1

Digital Signal Processing

I Sai Pradeep

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT and FFT	8
7	FFT	9
8	Exercises	15

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/Sound Noise.way

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? **Solution:** There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the

- synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('Sound Noise.wav'
#sampling frequency of Input signal
sampl freq=fs
#order of the filter
order=4
#cutoff frquency 4kHz.
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and denominator
   polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
output signal = signal.filtfilt(b, a,
   input signal)
#output \ signal = signal.lfilter(b, a,
   input signal)
#write the output signal into .wav file
sf.write('Sound With ReducedNoise.wav',
    output signal, fs)
```

2.4 The output of the python script Problem 2.3 is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ \begin{array}{l} 1, 2, 3, 4, 2, 1 \\ \uparrow \end{array} \right\} \tag{3.1}$$

Sketch x(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/Pradeep8802/ EE3900-Digital-Signal-Processing/blob/main/ Assignment1/codes/3.1.py

Fig. 3.1

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch v(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/3.2.py

3.3 Repeat the above exercise using a C code. **Solution:** The following c code is used to find y(n)

Fig. 3.2

wget https://github.com/Pradeep8802/ EE3900-Digital-Signal-Processing/blob/main/ Assignment1/codes/3.3.c

The following code yields Fig. 3.3.

wget https://github.com/Pradeep8802/ EE3900-Digital-Signal-Processing/blob/main/ Assignment1/codes/3.3.py

Fig. 3.3

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$\mathcal{Z}\lbrace x(n-1)\rbrace = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$
(4.4)

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.5)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem 3.1. **Solution:** Z-transform of x(n),X(z) is given by

$$\mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.7)

$$=\sum_{n=0}^{5} x(n)z^{-n}$$
 (4.8)

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.10}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.11)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.12}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (4.15)

Solution: The *Z*-transform of $\delta(n)$ is defined as

$$\mathcal{Z}\{\delta(n)\} = \sum_{n=-\infty}^{\infty} \delta(n) z^{-n}$$
 (4.16)

$$= \delta(0)z^{-0} \tag{4.17}$$

$$= 1 \tag{4.18}$$

Hence we can say that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.19}$$

and from (4.14),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.20)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.21}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.22}$$

Solution:

$$\mathcal{Z}\lbrace a^n u(n)\rbrace = \sum_{n=-\infty}^{\infty} a^n u(n) z^{-n}$$
 (4.23)

$$=\sum_{n=0}^{\infty}a^{n}z^{-n}$$
 (4.24)

$$=\sum_{n=0}^{\infty} (z^{-1}a)^n \tag{4.25}$$

$$= \frac{1}{1 - az^{-1}}, \quad \left| z^{-1}a \right| < 1 \quad (4.26)$$

$$= \frac{1}{1 - az^{-1}}, \quad |z| > |a| \tag{4.27}$$

using the fomula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.28)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution:

wget https://github.com/Pradeep8802/EE3900

-Digital-Signal-Processing/blob/main/ Assignment1/codes/4.5.py

 $H(e^{jw})$ is given by

Fig. 4.6: $|H(e^{j\omega})|$

$$H(e^{jw}) = \frac{1 + (e^{jw})^{-2}}{1 + \frac{1}{2}(e^{jw})^{-1}}$$
(4.29)

$$= 2\frac{1 + \cos(-2\omega) + j\sin(-2\omega)}{2 + \cos(-\omega) + j\sin(-\omega)}$$
(4.30)

$$= 2\frac{1 + \cos(2\omega) - j\sin(2\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.31)

$$= 2\frac{2\cos^{2}(\omega) - 2j\sin(\omega)\cos(\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.32)

$$= 4\cos(\omega)\frac{\cos(\omega) - j\sin(\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.33)

$$= 4|\cos(\omega)|\frac{e^{jw}}{2 + e^{jw}}$$
(4.34)

So,

$$|H(e^{jw})| = 4|\cos(\omega)| \frac{|e^{jw}|}{|2 + e^{jw}|}$$

$$= \frac{|4\cos(\omega)|}{\sqrt{5 + 4\cos(\omega)}}$$
(4.35)

(4.34)

The period of $|\cos(\omega)|$ is π . The period of $5 + 4\cos(\omega)$ is 2π . Hence $|H(e^{j\omega})|$ is periodic with period 2π . (The LCM of the period of $|\cos(\omega)|$ and $5 + 4\cos(\omega)$ is 2π) The graph of $|H(e^{j\omega})|$ is symmetric with respect to y-axis. It is continuous over ω . The following code plots Fig. 4.6.

4.7 Express h(n) in terms of $H(e^{j\omega})$.

Solution: We know that

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
 (4.37)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \tag{4.38}$$

$$=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{k=-\infty}^{\infty}h(k)e^{-j\omega k}e^{j\omega n}d\omega \quad (4.39)$$

$$=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}h(k)\int_{-\pi}^{\pi}e^{j\omega(n-k)}d\omega \qquad (4.40)$$

(4.41)

case-1:If $(n \neq k)$

$$= \frac{1}{2\pi} \sum_{k \neq n} h(k) \frac{e^{j\omega(n-k)}}{j(n-k)} \bigg]_{-\pi}^{\pi}$$
 (4.42)

$$= \frac{1}{2\pi} \sum_{k \neq n} h(k) \frac{2\sin(\pi(n-k))}{(n-k)}$$
 (4.43)

$$=0 (4.44)$$

case-2:If(n = k)

$$=\frac{1}{2\pi}h(n)\int_{-\pi}^{\pi}d\omega\tag{4.45}$$

$$=h(n) \tag{4.46}$$

Hence, we can say,

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.47)$$

5 Impulse Response

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.12).

Solution: H(z) is given by

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} = \frac{2 + 2z^{-2}}{2 + z^{-1}}$$
 (5.2)

$$2z^{-1} - 4 (5.3)$$

$$z^{-1} + 2 \overline{) 2z^{-2} + 2}$$
 (5.4)

$$2z^{-2} + 4z^{-1} (5.5)$$

$$-4z^{-1} + 2 \tag{5.6}$$

$$-4z^{-1} - 8 (5.7)$$

$$\overline{10} \qquad (5.8)$$

So,

$$H(z) = 2z^{-1} - 4 + \frac{10}{z^{-1} + 2}$$
 (5.9)

$$=2z^{-1}-4+\frac{5}{\frac{1}{2}z^{-1}+1}$$
 (5.10)

$$=2z^{-1}-4+5\sum_{n=0}^{\infty}\left(-\frac{z^{-1}}{2}\right)^{n}$$
 (5.11)

$$= 1 - \frac{1}{2}z^{-1} + 5 \times \sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^n z^{-n} \quad (5.12)$$

So,h(n) will be given by

$$h(n) = \begin{cases} 5 \times \left(-\frac{1}{2}\right)^n & n \ge 2\\ \left(-\frac{1}{2}\right)^n & 2 > n \ge 0\\ 0 & n < 0 \end{cases}$$
 (5.13)

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z)$$
 (5.14)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.12),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.15)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.16)

using (4.22) and (4.6).

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution: The following code plots Fig. 5.3.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/5.3.py on simplfying we get h(n) as

$$\begin{cases} 5 \times \left(-\frac{1}{2}\right)^n & n \ge 2\\ \left(-\frac{1}{2}\right)^n & 2 > n \ge 0\\ 0 & n < 0 \end{cases}$$
 (5.17)

$$: 5 \times \left(-\frac{1}{2}\right)^n \to 0 \quad \text{for} \quad n \to \infty$$
 (5.18)

So, we can conclude that h(n) is bounded.

Fig. 5.3: h(n) wrt n

5.4 Convergent? Justify using the ratio test. **Solution:** We can say a given real sequence $\{x_n\}$ is convergent if

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| < 1 \tag{5.19}$$

This is known as Ratio test. In this case the limit will become,

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \lim_{n \to \infty} \left| \frac{5\left(\frac{-1}{2}\right)^{n+1}}{5\left(\frac{-1}{2}\right)^n} \right| \tag{5.20}$$

$$=\lim_{n\to\infty} \left| \frac{-1}{2} \right| \tag{5.21}$$

$$=\frac{1}{2}$$
 (5.22)

As $\frac{1}{2} < 1$, from root test we can say that h(n) is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.23}$$

Is the system defined by (3.2) stable for the

impulse response in (5.14)?

Solution: For system of 3.2 h(n) is defined in (5.13) So,

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=2}^{\infty} 5 \times \left(-\frac{1}{2}\right)^n + \sum_{n=0}^{1} \left(-\frac{1}{2}\right)^n + \sum_{n=-\infty}^{-1} 0$$
(5.24)

$$= 5 \times \frac{1}{6} + \frac{1}{2} \tag{5.25}$$

$$=\frac{4}{3}$$
 (5.26)

Since the sum is finite so the system is stable for impulsive response

5.6 Verify the above result using a python code. **Solution:** The above result is verified using the below python code

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ Assignment1/codes/5.6.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.27)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 3.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ Assignment1/codes/5.7.py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.28)

Comment. The operation in (5.28) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ Assignment1/codes/5.4.py

Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Toeplitz matrix.

Solution:

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ Assignment1/codes/5.9.py

From (5.28), we express y(n) as

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.29)

To understand how we can use a Toeplitz matrix, we will see what we are doing in (5.28)

$$y(0) = x(0)h(0) \tag{5.30}$$

$$y(1) = x(0)h(1) + x(1)h(0)$$
 (5.31)

$$y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0)$$
(5.32)

.

Fig. 5.9: Convolution of x(n) and h(n) using toeplitz matrix

The same thing can be written as,

$$y(0) = \begin{pmatrix} h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ . \\ x(5) \end{pmatrix} (5.33)$$

$$y(1) = \begin{pmatrix} h(1) & h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ . \\ x(5) \end{pmatrix} (5.34)$$

$$y(2) = \begin{pmatrix} h(2) & h(1) & h(0) & 0 & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix} (5.35)$$

it as,

$$y(n) = \begin{pmatrix} h(0) & 0 & 0 & \dots & 0 \\ h(1) & h(0) & 0 & \dots & 0 \\ h(2) & h(1) & h(0) & \dots & 0 \\ & & \dots & & & \\ 0 & 0 & 0 & \dots & h(m-1) \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$
(5.36)

Now from (3.1) we will take n

$$x(n) = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix}$$
 (5.37)

And from (5.13) we will take some values of n,

$$h(n) = \begin{pmatrix} 1\\ -0.5\\ 1.25\\ .\\ . \end{pmatrix}$$
 (5.38)

Now using (5.36),

$$y(n) = x(n) * h(n)$$

$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -0.5 & 1 & 0 & \dots & 0 \\ 1.25 & -0.5 & 1 & \dots & \dots & 0 \\ & & & & & & \\ 0 & 0 & 0 & \dots & \dots & \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$

$$(5.40)$$

$$= \begin{pmatrix} 1\\1.5\\3.25\\ .\\ .\\ .\\ . \end{pmatrix}$$
 (5.41)

The above equation (5.41) is the convolution of x(n) and h(n)

5.10 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.42)

Using Toeplitz matrix of h(n) we can simplify

Solution: From (5.28),

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.43)

Replacing n - k with a, we get

$$y(n) = \sum_{n-a=-\infty}^{\infty} x(n-a)h(a)$$
 (5.44)

$$=\sum_{-a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.45)

$$=\sum_{a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.46)

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

Solution: Run the following codes to compute X(k) which is plotted in 6.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.1.py

Run the following codes to compute H(k).

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.1 2.py

Fig. 6.1: DFT of x(k)

Fig. 6.1: H(n)

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Solution: Run the following codes to compute Y(k) respectively.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.2.py

Fig. 6.2: DFT of *xyn*)

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 6.2. Note that this is the same as

y(n) in Fig. 3.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.3.py

Fig. 6.3: y(n)

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Run the following code to plot

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.4.py

Fig. 6.4: y(n)

7 FFT

1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the *N*-point *DFT matrix* is defined as

$$\mathbf{F}_N = \begin{bmatrix} W_N^{mn} \end{bmatrix} \tag{7.3}$$

where W_N^{mn} are the elements of \mathbf{F}_N .

3. Let

$$\mathbf{I}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^2 & \mathbf{e}_4^3 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.4}$$

be the 4×4 identity matrix. Then the 4 point *DFT permutation matrix* is defined as

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.5}$$

4. The 4 point DFT diagonal matrix is defined as

$$\mathbf{D}_4 = diag \left(W_8^0 \quad W_8^1 \quad W_8^2 \quad W_8^3 \right) \tag{7.6}$$

5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution: Given

$$W_N = e^{-j2\pi/N} \tag{7.8}$$

$$\implies W_N^2 = e^{2(-j2\pi/N)} \tag{7.9}$$

$$= e^{-j2\pi/(N/2)} \tag{7.10}$$

$$= W_{N/2} (7.11)$$

Therefore, hence proved that,

$$W_N^2 = W_{N/2} (7.12)$$

6. Show that

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.13}$$

Solution: I_2 is a 2×2 identity matrix, for any 2×2 A, we have

$$\mathbf{I}_2 \mathbf{A} = \mathbf{A} \mathbf{I}_2 = \mathbf{A} \tag{7.14}$$

Consider

$$\begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{F}_2 & \mathbf{D}_2 \mathbf{F}_2 \\ \mathbf{F}_2 & -\mathbf{D}_2 \mathbf{F}_2 \end{bmatrix}$$
(7.15)

where

$$\mathbf{F}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \tag{7.16}$$

$$\mathbf{D}_2 = diag(W_4^0, W_4^1) = \begin{vmatrix} 1 & 0 \\ 0 & -j \end{vmatrix}$$
 (7.17)

Since $W_4 = e^{-j2\pi/4}$ As,

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.18}$$

$$\implies \mathbf{P}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{7.19}$$

$$\mathbf{F}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$
 (7.20)

$$\mathbf{D}_{2}\mathbf{F}_{2} = \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 (7.21)
$$= \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$$
 (7.22)

$$\begin{bmatrix} \mathbf{F}_2 & \mathbf{D}_2 \mathbf{F}_2 \\ \mathbf{F}_2 & -\mathbf{D}_2 \mathbf{F}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -j & j \\ 1 & 1 & -1 & -1 \\ 1 & -1 & j & -j \end{bmatrix}$$
(7.23)

Using (7.19) and (7.23) in (7.13)

$$\begin{bmatrix} \mathbf{I}_{2} & \mathbf{D}_{2} \\ \mathbf{I}_{2} & -\mathbf{D}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{2} & 0 \\ 0 & \mathbf{F}_{2} \end{bmatrix} \mathbf{P}_{4} = \begin{bmatrix} \mathbf{F}_{2} & \mathbf{D}_{2} \mathbf{F}_{2} \\ \mathbf{F}_{2} & -\mathbf{D}_{2} \mathbf{F}_{2} \end{bmatrix} \mathbf{P}_{4}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -j & j \\ 1 & 1 & -1 & -1 \\ 1 & -1 & j & -j \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(7.25)$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$

The RHS of the equation (7.26) is \mathbf{F}_4 , from

(7.20).

$$\therefore \mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.27}$$

7. Show that

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.28)$$

Solution:

Consider the following properties:

$$W_N^{k(2n+1)} = W_N^k W_{N/2}^{kn} (7.29)$$

$$W_N^{k+N/2} = e^{-j2\pi[k+N/2]/N} = e^{-j2\pi k/N} e^{-j\pi}$$
 (7.30)

$$=-W_N^k$$
 (7.31)

Consider X[k],

$$X[k] = \sum_{n=0}^{N-1} W_N^{kn} x[n]$$

$$= \sum_{n=0}^{N/2-1} \left[x[2n] W_N^{k(2n)} + x[2n+1] W_N^{k(2n+1)} \right]$$
(7.32)

$$k = 0, \cdots, N-1$$

which is gathering odd and even terms seperately which allows us to write

$$X[k] = \sum_{n=0}^{N/2-1} x[2n] W_{N/2}^{kn} + W_N^k \sum_{n=0}^{N/2-1} x[2n+1] W_{N/2}^{kn}$$

$$= Y[k] + W_N^k Z[k] k = 0, \dots, N-1$$
(7.35)

where Y[k] and Z[k] are DFTs of length N/2 of even numbered sequence $\{x[2n]\}$ and of the odd numbered sequence $\{x[2n+1]\}$, respectively. Here, we cannot proceed for $k \ge N/2$. So, for $k \ge N/2$:

$$X[k+N/2] = Y[k+N/2] + W_N^{k+N/2}Z[k+N/2]$$
(7.36)

Using the periodicity of Y[k] and Z[k] and (7.30),

$$X[k+N/2] = Y[k+N/2] - W_N^k Z[k]$$
 (7.37)

Using (7.35) and (7.37), and linear transforma-

tion upon them

$$\mathbf{X}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{N/2} \\ \mathbf{Z}_{N/2} \end{bmatrix}$$
(7.38)

where $\mathbf{I}_{N/2}$ is a unit matrix and $\mathbf{D}_{N/2}$ is a diagonal matrix with elements as $\left\{W_N^k, k=0,\cdots,N/2-1\right\}$, both of dimension $N/2\times N/2$. Whereas

 $Y_N/2=$ DFT of even terms of $X_N=F_{N/2}x_{even}$ $Z_N/2=$ DFT of odd terms of $X_N=F_{N/2}x_{odd}$ which gets us to

$$\begin{bmatrix} \mathbf{Y}_{N/2} \\ \mathbf{Z}_{N/2} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{x}$$
 (7.39)

which is permuting into combinations of even and odd terms of a sequence. As we have permuted it into odd and even parts, we have to reverse this process. So, a permutation matrix is multiplied.

$$\begin{bmatrix} \mathbf{Y}_{N/2} \\ \mathbf{Z}_{N/2} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \mathbf{x}$$
 (7.40)

Replacing in (7.38),

$$\mathbf{X}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{\mathbf{N}} \mathbf{x} \quad (7.41)$$

As $X_N = F_N x$,

$$\mathbf{F}_{\mathbf{N}}\mathbf{x} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{\mathbf{N}}\mathbf{x} \quad (7.42)$$

Applying x^{-1} ,

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.43)$$

8. Find

$$\mathbf{P}_{4}\mathbf{x} \tag{7.44}$$

Solution: From (7.19),

$$\mathbf{P}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{7.45}$$

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix} \tag{7.46}$$

After proper zero padding of P_4 ,

$$= \begin{pmatrix} 1\\3\\2\\4\\0\\0 \end{pmatrix} \tag{7.49}$$

9. Show that

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.50}$$

where \mathbf{x}, \mathbf{X} are the vector representations of x(n), X(k) respectively.

Solution: Given x, X are the vector represen-

tations of x(n), X(k) respectively.

$$\mathbf{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$
 (7.51)

$$\mathbf{X} = \begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix}$$
 (7.52)

$$\mathbf{F}_{N} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix}$$

$$(7.53)$$

As

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$
 (7.54)

Here, we have,

$$X(0) = \sum_{n=0}^{N-1} x(n)e^{0}$$
 (7.55)

$$=\sum_{n=0}^{N-1} x(n) \tag{7.56}$$

$$X(1) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi n/N}$$
 (7.57)

$$=\sum_{n=0}^{N-1} x(n)W_N^n \tag{7.58}$$

$$\vdots \qquad (7.59)$$

$$X(N-1) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi(N-1)n/N}$$
 (7.60)

$$= \sum_{n=0}^{N-1} x(n) W_N^{n \times (N-1)}$$
 (7.61)

Representing the above equations in matrix

form as matrix multiplication, we get,

$$\begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & W_N & \cdots & W_N^{(N-1)} \\ 1 & W_N^2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{N-1} & \cdots & W_N^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$

$$\vdots$$

$$(7.62)$$

$$\therefore \mathbf{X} = \mathbf{F}_N \mathbf{x}$$

$$(7.63)$$

10. Derive the following Step-by-step visualisation of 8-point FFTs into 4-point FFTs and so on

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} + \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$

$$(7.64)$$

$$\begin{bmatrix} X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} - \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$

$$(7.65)$$

4-point FFTs into 2-point FFTs

$$\begin{bmatrix} X_1(0) \\ X_1(1) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.66)

$$\begin{bmatrix} X_1(2) \\ X_1(3) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.67)

$$\begin{bmatrix} X_2(2) \\ X_2(3) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.69)

$$P_{8} \begin{vmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{vmatrix} = \begin{vmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \\ x(1) \\ x(3) \\ x(5) \\ x(7) \end{vmatrix}$$
 (7.70)

$$P_{4} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \end{bmatrix}$$
 (7.71)

$$P_{4} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$
 (7.72)

Therefore,

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.73)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.74)

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.75)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.76)

11. For

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix} \tag{7.77}$$

compte the DFT using (7.50)

Solution:

$$\mathbf{F}_{6} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-j\pi/3} & e^{-j2\pi/3} & e^{-j\pi} & e^{-j4\pi/3} & e^{-j5\pi/3} \\ 1 & e^{-j2\pi/3} & e^{-j4\pi/3} & e^{-j2\pi} & e^{-j8\pi/3} & e^{-j10\pi/3} \\ 1 & e^{-j\pi} & e^{-j2\pi} & e^{-j3\pi} & e^{-j4\pi} & e^{-j5\pi} \\ 1 & e^{-j4\pi/3} & e^{-j8\pi/3} & e^{-j4\pi} & e^{-j16\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j5\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \end{bmatrix}$$

$$\mathbf{F}_{2} = \begin{bmatrix} \mathbf{I}_{1} & \mathbf{D}_{1} \\ \mathbf{I}_{1} & -\mathbf{D}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{1} \\ 0 & \mathbf{I}_{2} \end{bmatrix}$$

$$\mathbf{F}_{3} = \begin{bmatrix} \mathbf{I}_{1} & \mathbf{D}_{1} \\ \mathbf{I}_{1} & -\mathbf{D}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{1} \\ 0 & \mathbf{I}_{2} \end{bmatrix}$$

$$\mathbf{F}_{4} = \begin{bmatrix} \mathbf{F}_{1} & \mathbf{D}_{1} \\ \mathbf{I}_{1} & -\mathbf{D}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{1} \\ 0 & \mathbf{I}_{2} \end{bmatrix}$$

$$\mathbf{F}_{5} = \begin{bmatrix} \mathbf{I}_{1} & \mathbf{D}_{1} \\ \mathbf{I}_{1} & -\mathbf{D}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{1} \\ 0 & \mathbf{I}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{F$$

Using (7.77),

$$\mathbf{X} = \mathbf{F}_6 \mathbf{x} \tag{7.79}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-j\pi/3} & e^{-j2\pi/3} & e^{-j\pi} & e^{-j4\pi/3} & e^{-j5\pi/3} \\ 1 & e^{-j2\pi/3} & e^{-j4\pi/3} & e^{-j2\pi} & e^{-j8\pi/3} & e^{-j10\pi/3} \\ 1 & e^{-j\pi} & e^{-j2\pi} & e^{-j3\pi} & e^{-j4\pi} & e^{-j5\pi} \\ 1 & e^{-j4\pi/3} & e^{-j8\pi/3} & e^{-j4\pi} & e^{-j16\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j5\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \end{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \end{pmatrix}$$

$$(7.80)$$

$$\implies X = \begin{bmatrix} 13 \\ -4 - \sqrt{3}j \\ 1 \\ -1 \\ 1 \\ -4 + \sqrt{3}j \end{bmatrix}$$
 (7.81)

12. Repeat the above exercise using the FFT after zero padding x.

Solution: After padding, x becomes an 8×1 matrix, as shown below

$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} \tag{7.82}$$

Using (7.43),

$$\mathbf{F}_8 = \begin{bmatrix} \mathbf{I}_4 & \mathbf{D}_4 \\ \mathbf{I}_4 & -\mathbf{D}_4 \end{bmatrix} \begin{bmatrix} \mathbf{F}_4 & 0 \\ 0 & \mathbf{F}_4 \end{bmatrix} \mathbf{P}_8 \tag{7.83}$$

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.84}$$

$$\mathbf{F}_2 = \begin{bmatrix} \mathbf{I}_1 & \mathbf{D}_1 \\ \mathbf{I}_1 & -\mathbf{D}_1 \end{bmatrix} \begin{bmatrix} \mathbf{F}_1 & 0 \\ 0 & \mathbf{F}_1 \end{bmatrix} \mathbf{P}_2 \tag{7.85}$$

(7.86)

$$\mathbf{F_1} = [1] \tag{7.87}$$

Value of $\mathbf{F_2}$ is,

$$\mathbf{F_2} = \begin{bmatrix} \mathbf{F_1} & \mathbf{D_1}\mathbf{F_1} \\ \mathbf{F_1} & -\mathbf{D_1}\mathbf{F_1} \end{bmatrix} \mathbf{P_2}$$
 (7.88)

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \tag{7.89}$$

value of F_4 is,

$$\mathbf{D}_2 = diag(W_4^0, W_4^1) \quad (7.90)$$

= $diag(1, -j) \quad (7.91)$

$$= \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix} \quad (7.92)$$

$$\mathbf{D_2F_2} = \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad (7.93)$$

$$= \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix} \quad (7.94)$$

$$\mathbf{F_4} = \begin{bmatrix} \mathbf{F_2} & \mathbf{D_2}\mathbf{F_2} \\ \mathbf{F_2} & -\mathbf{D_2}\mathbf{F_2} \end{bmatrix} \mathbf{P_4} \quad (7.95)$$

$$\mathbf{F_4} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -j & j \\ 1 & 0 & -1 & -1 \\ 0 & 1 & j & -j \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(7.96)

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -j & 1 & j \\ 1 & -1 & 0 & j \\ 0 & j & 1 & -j \end{bmatrix}$$
 (7.97)

value of F_8 is,

$$\mathbf{D_4} = diag(1, W_8, W_8^2, W_8^3)$$

$$(7.98)$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1-j}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} \end{bmatrix}$$

$$(7.99)$$

$$\mathbf{D_4F_4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1-j}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -j & 1 & j \\ 1 & -1 & 0 & j \\ 0 & j & 1 & -j \end{bmatrix}$$
(7.100)

$$= \begin{bmatrix} 1 & 1 & 0 & 1\\ 0 & \frac{-1-j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}}\\ -1 & 1 & 0 & -j\\ 0 & \frac{1-j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}} \end{bmatrix}$$
(7.101)

 $F_8 = \mathbf{ABP_8}$ where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}} \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & -j \\ 0 & 0 & 0 & 1 & 0 & \frac{1-j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}} \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{1+j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}} \\ 0 & 0 & 1 & 0 & 1 & -1 & 0 & j \\ 0 & 0 & 0 & 1 & 0 & \frac{-1+j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} \end{bmatrix}$$

$$(7.102)$$

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -j & 1 & j & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & j & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & j & -1 & j \\ 0 & 0 & 0 & 0 & 0 & -j & -1 & j \end{bmatrix}$$

 $F_8 = (7.104)$

(7.103)

And P_8 is a permutation matrix.

$$\mathbf{X} = \begin{bmatrix} 13 \\ -4 - 8j \\ j \\ 2 - 2j \\ -1 \\ 2 + 2j \\ -j \\ -4 + 8j \end{bmatrix}$$
 (7.105)

13. Write a C program to compute the 8-point FFT. **Solution:**

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/7 13.c

FFT matrix multiplication code:

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/FFTmul.py

Time Complexity comparision between FFT-IFFT and convolution:

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/time.c The figure 7.13 is ploted using below code:

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/time.py

Fig. 7.13: Time Complexity

8 Exercises

Answer the following questions by looking at the python code in Problem 2.3

8.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (8.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify. **Solution:** On taking the *Z*-transform on both sides of the difference equation

$$\sum_{m=0}^{M} a(m) z^{-m} Y(z) = \sum_{k=0}^{N} b(k) z^{-k} X(z)$$
 (8.2)

$$\implies H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{N} b(k) z^{-k}}{\sum_{m=0}^{M} a(m) z^{-m}}$$
 (8.3)

For obtaining the discrete Fourier transform, put $z = \int_{I}^{2\pi i} t$ where I is the length of the input signal and i = 0, 1, ..., I - 1

Download the following Python code that does the above

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/8.1.py

8.2 Repeat all the exercises in the previous sections for the above *a* and *b*

Solution: The polynomial coefficients obtained are

$$\mathbf{a} = \begin{pmatrix} 1.000 \\ -2.519 \\ 2.561 \\ -1.206 \\ 0.220 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 0.003 \\ 0.014 \\ 0.021 \\ 0.014 \\ 0.003 \end{pmatrix} \tag{8.4}$$

The difference equation is then given by

$$\mathbf{a}^{\mathsf{T}}\mathbf{y} = \mathbf{b}^{\mathsf{T}}\mathbf{x} \tag{8.5}$$

where

$$\mathbf{y} = \begin{pmatrix} y(n) \\ y(n-1) \\ y(n-2) \\ y(n-3) \\ y(n-4) \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x(n) \\ x(n-1) \\ x(n-2) \\ x(n-3) \\ x(n-4) \end{pmatrix}$$
(8.6)

We have

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{N} b(k) z^{-k}}{\sum_{m=0}^{M} a(m) z^{-m}}$$
(8.7)

By using partial fraction decomposition, we can write this as

$$H(z) = \sum_{i} \frac{r(i)}{1 - p(i)z^{-1}} + \sum_{j} k(j)z^{-j}$$
 (8.8)

On taking the inverse Z-transform on both sides by using (4.22)

$$H(z) \stackrel{\mathcal{Z}}{\rightleftharpoons} h(n) \tag{8.9}$$

$$\frac{1}{1 - p(i)z^{-1}} \stackrel{\mathcal{Z}}{\rightleftharpoons} (p(i))^n u(n) \tag{8.10}$$

$$z^{-j} \stackrel{\mathcal{Z}}{\rightleftharpoons} \delta(n-j) \tag{8.11}$$

Thus

$$h(n) = \sum_{i} r(i) (p(i))^{n} u(n) + \sum_{j} k(j) \delta(n-j)$$
(8.12)

Download the following Python code

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/8.2.py

Run the code by executing The above code outputs the values of r(i), p(i), k(i)

$$h(n) = \Re ((0.24 - 0.71)(0.56 + 0.14)^n) u(n)$$

+ $\Re ((0.24 + 0.71)(0.56 - 0.14)^n) u(n)$
+ $0.016\delta(n)$ (8.13)

Fig. 8.2: Plot of y(n)

Fig. 8.2: Plot of $|H(e^{j\omega})|$

8.3 What is the sampling frequency of the input signal?

Solution: Sampling frequency(fs)=44.1kHZ.

8.4 What is type, order and cutoff-frequency of the above butterworth filter

Fig. 8.2: Plot of h(n)

Solution: The given butterworth filter is low pass with order=4 and cutoff-frequency=4kHz.

8.5 Modifying the code with different input parameters and to get the best possible output. **Solution:** Order: 10 Cutoff frequency: 3000 Hz