Лабораторная работа 2(ФТТ)

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ СОПРОТИВЛЕНИЯ ПОЛУПРОВОДНИКОВ ОТ ТЕМПЕРАТУРЫ

- 1. Прочитать в методичке 22-50: стр. 5-18.
- 2. Прочитать в файле: «ФТТ Лр1 Лр3»: «Лабораторная работа 2»
- 3. Пункт: «2.5. Обработка экспериментальных результатов» выполнить, используя ПК и приложение Excel в редакции, приведенной ниже.

(Самостоятельно выполненный отчет будет оценен до 4-х баллов вместо обычных 2-х.)

2.5. Обработка экспериментальных результатов

2.5.1. Создать в *Excel* таблицу (ячейки не объединять!) и внести экспериментальные данные: *Для лабораторной установки* N21:

21а Иванов Иван Лр2(ФТТ)						$tg\alpha = p =$		К, q=	
					x_i	y_i			
№ п/п	<i>T</i> , K	<i>I</i> , мА	U, B	R, Om	$1/T, \text{ K}^{-1}$	ln R	$(x_i)^2$	$\ln R_{\rm reop}$	$(\Delta y_i)^2$
1									
2									
3									
N									
				$\sum x_i =$		$\Sigma(x_i)^2 =$		$\Sigma(\Delta y_i)^2 =$	
						$\Delta_{pq} =$		$\Delta y =$	

- внести значения температуры, тока и напряжения;
- в ячейку «1-R» (1-я строка колонки «R, Oм») набрать формулу: = U/I/1e-3, где вместо U поставить ссылку на ячейку «1-I»; затем заполнить колонку «R», для чего «протянуть» ячейку «1-R» за нижний правый угол до жирной линии.

Дальнейшие шаги, одинаковые в обеих лабораторных установках, см. ниже с 2.5.2.

Для лабораторной установки №2:

21р Петров Петр Лр2(ФТТ)					$tg\alpha = p =$		$\mathbf{K}, q =$	
				x_i	y_i			
№ п/п	<i>I</i> , мкА	<i>T</i> , K	R, Om	$1/T, K^{-1}$	ln R	$(x_i)^2$	$\ln R_{\text{Teop}}$	$(\Delta y_i)^2$
1								
2								
3								
N								
			$\sum x_i =$		$\Sigma(x_i)^2 =$		$\Sigma(\Delta y_i)^2 =$	
					$\Delta_{pq} =$		$\Delta y =$	

- внести значения тока и сопротивления;
- в ячейку «1-T» (1-я строка колонки «T, К») набрать формулу из подписи к рис. 1.4 файла «ФТТ_Лр1-Лр3»: = $-6e-5*I^2+0.115*I+277.07$, где вместо I поставить ссылку на ячейку «1-I»; затем «протянуть» ячейку за нижний правый угол до жирной линии.
- 2.5.2. Аналогичным образом заполнить колонки (1/T)» и $(\ln R)$ », набрав формулы: =1/T, где вместо T поставить ссылку на ячейку (1-T)», и $=\ln(R)$, где вместо R поставить ссылку на ячейку (1-R)», соответственно; затем $(\ln R)$ 0 жирной линии.

- 2.5.3. Построить график и аппроксимировать его *методом наименьших квадратов*. Для этого выделить одним прямоугольником <u>значения</u> двух колонок «1/T» и « $\ln R$ », в меню «Вставка», «Диаграммы» выбрать «График», «Все типы диаграмм», «Точечная», «ОК». Навести мышку на любую точку (кружок, квадратик) точечного графика и нажать правую кнопку мыши. В выпадающем меню выбрать «Добавить линию тренда» и в открывшемся окне выбрать «Линейная» и поставить «галочки» внизу окна в двух нижних квадратиках: «показывать уравнение на диаграмме» и «поместить на диаграмму величину достоверности аппроксимации (R^2)». Нажать «Закрыть».
- 2.5.4. Внести в ячейки $\langle q \rangle$ и $\langle q \rangle$ в первой строке таблицы (выделены желтым цветом) значения, взяв их из формулы, показанной на графике (на графике показана формула $\langle y = p \ x + q \rangle$ с вычисленными программой значениями $\langle q \rangle$ и $\langle q \rangle$. Величина $\langle q \rangle$ из формулы линейной аппроксимации $y = p \ x + q$ очевидно является тангенсом угла наклона прямой: $tg \ \alpha = p$.
- 2.5.5. Справа от графика выделить рамками две строки по шесть ячеек в каждой и заполнить их по образцу:

p = (±) К,	$\varepsilon_p =$	
$\Delta W = ($	±) э В ,	$\varepsilon_{\Delta W} =$	

- 2.5.6. Для вычислим погрешности параметра «p» необходимо сначала заполнить оставшиеся три <u>столбца</u> таблицы (до жирной линии):
- $-(x_i)^2$ вычисляется по формуле: $=(x_i)^2$, где вместо x_i поставить ссылку на ячейку «1-1/T»;
- $-\ln R_{\text{теор}}$ по формуле: $= p \ x + q$, где вместо $\langle x \rangle$ ссылка на ячейку $\langle 1-1/T \rangle$, а вместо $\langle p \rangle$ и $\langle q \rangle$ ссылки на соответствующие $\langle x \rangle$ ячейки в первой строке таблицы;

(Важно: ссылки на «р» и «q» должны быть набраны как фиксированные (неподвижные).)

- $-(\Delta y_i)^2$ по формуле: =($\ln R \ln R_{\text{теор}}$)^2, где вместо $\ln R$ и $\ln R_{\text{теор}}$ поставить ссылки на ячейки «1- $\ln R$ » и «1- $\ln R_{\text{теор}}$ » соответственно,
- затем заполним оставшиеся 3 «зеленых» <u>ячейки</u> (Σx_i , $\Sigma (x_i)^2$ и $\Sigma (\Delta y_i)^2$) суммами расположенных над ними N чисел, и, наконец, заполнить последние две «синие» ячейки:
- $-\Delta_{pq}$ вычисляется по формуле (37) из 22-50, а входящие в них величины уже вычислены и вставляются в формулу ссылками на «красную» и две «зеленых» ячейки;
- Δy вычисляется по формуле (44) из 22-50, а входящие в них величины уже вычислены и вставляются в формулу ссылками на третью «зеленую» ячейку ($S = \Sigma (\Delta y_i)^2$) и «красную» (N).
 - 2.5.7. Осталось записать ответы в уже созданных «рамочках»:
- вставить ссылку на «желтую» ячейку «p»;
- $-\Delta p$ вычисляется по формуле (42) из 22-50, а входящие в них величины уже вычислены и вставляются в формулу ссылками на «красную» и две «синих» ячейки;
- ε_p вычисляется по хорошо известной формуле: $= \Delta p / \langle p \rangle$, а входящие в них величины только что вписаны в ответ и вставляются в формулу в виде соответствующих ссылок; чтобы результат был представлен в процентах, нужно на вкладке «Главная» «Число» нажать на кнопку «%»;
- $-<\Delta W>$ вычисляется по расчетной формуле: = 2*1,38066E–23*<p>>/1,602E–19, а <p> вставляется ссылкой на соответствующую ячейку;
- $-\Delta(\Delta W)$ вычисляется по формуле: $=<\Delta W>^* \varepsilon_p$, поскольку расчетная формула такова, что относительные погрешности p и ΔW совпадают;
- $\ \epsilon_{\Delta W} = \epsilon_p.$
- 2.5.8. Результат внести в отчет, сравнить с табличным значением *ширины запрещенной зоны* германия (кремния), и сделать вывод.

При сдаче отчета предъявить файл с расчетами!