

Übungen zur Quantentheorie 1, Sommersemester 2023

Dr. J. M. Link, Prof. Dr. C. Timm

Blatt 13

Präsenzübungen

Aufgabe 1:

Der Dichteoperator eines Drehimpulses der Länge j (halb- oder ganzzahlig) sei

$$\hat{\rho} = \frac{\mathbb{1} + \vec{P} \cdot \hat{\vec{J}}/\hbar}{2j+1},$$

wobei \vec{P} ein Vektor aus \mathbb{R}^3 ist. *Hinweis*: Aufgrund der Isotropie des Raumes ist es ausreichend, den Fall $\vec{P} = P\hat{z}$ zu betrachten.

- (a) Welche Eigenschaften muss $\hat{\rho}$ haben, um ein Dichteoperator zu sein? Prüfen Sie diese nach! Welche Bedingung muss \vec{P} dafür erfüllen?
- (b) Unter welcher Bedingung für \vec{P} beschreibt $\hat{\rho}$ einen reinen Zustand? Kann dies vorkommen? *Hinweis*:

$$\sum_{m=-j}^{j} m^2 = \frac{j(j+1)(2j+1)}{3}.$$

Aufgabe 2:

Ein Strahl aus Teilchen mit dem Spin 1/2 durchläuft eine drehbare Stern-Gerlach-Apparatur, mit der ein Zustand $|\varphi\rangle$ aus dem zweidimensionalen Spin-Hilbert-Raum ausgewählt wird.

- (a) Die Teilchen im Zustand $|\varphi\rangle$ treffen nun auf eine zweite Stern-Gerlach-Apparatur, mit der \hat{S}_z gemessen wird. Mit welchen Wahrscheinlichkeiten liefert die Messung die Werte $+\hbar/2$ bzw. $-\hbar/2$?
- (b) Der Teilstrahl zum Messwert $+\hbar/2$ von \hat{S}_z trifft auf eine dritte Stern-Gerlach-Apparatur, mit der die Komponente $\hat{n} \cdot \hat{\vec{S}}$ gemessen wird, wobei $\hat{n} = (n_x, n_y, n_z)$ ein Einheitsvektor ist. Mit welchen Wahrscheinlichkeiten liefert die Messung die Werte $+\hbar/2$ bzw. $-\hbar/2$?
- (c) Die beiden Teilstrahlen am Ausgang der dritten Stern-Gerlach-Apparatur werden ohne Messung und ohne Phasendifferenz wieder zusammengeführt. Was ist der resultierende Spin-Zustand?