

Term End Examination - November 2012

Course : MAT101 - Multivariable Calculus and Differential Slot: E1+TE1

Equations

Class NBR : 4555

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> the Questions

1. If
$$u = x^2 - y^2$$
, $v = 2xy$ find $\frac{\partial(u, v)}{\partial(x, y)}$.

- 2. Verify Euler's theorem for the function $u = \sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$
- 3. Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy dx$
- 4. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.
- 5. Find the directional derivative of $f(x,y,z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of vector $\hat{i} + 2\hat{j} + 2\hat{k}$
- 6. Find the value of the constants a, b, c so that the vector $\vec{F} = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k}$ is irrotational.
- 7. Find the solution of $\frac{d^3y}{dx^3} + y = 0$
- 8. Reduce the differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$ into a differential equation with constant coefficients.
- 9. Find the Laplace transforms of t^3e^{-3t} .
- 10. If $L\{e^{-t}\cos^2 t\} = F(s)$, find $\lim_{s \to 0} [sF(s)]$ and $\lim_{s \to \infty} [sF(s)]$.

PART - B (5 X 14 = 70 Marks)

Answer any **FIVE** Questions

- a) Expand the Taylor's series expansion of $e^x \log(1+y)$ at the point (0, 0) to third degree terms.
 - b) Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- 12. a) Change the order of integration in $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{x^2+y^2} dx dy$ and hence evaluate it. [7]
 - b) Find the area of astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ using gamma function. [7]
- 13. a) Using Divergence theorem evaluate $\int_{S} \vec{F} \cdot \vec{ds}$ where $\vec{F} = 4x\hat{i} 2y^2 \hat{j} + z^2\hat{k}$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3.
 - b) Use Green's theorem to evaluate $\int_{c} [(xy+y^{2}) dx + x^{2} dy]$ where C is bounded [7] by y = x and $y = x^{2}$.
- 14. a) Solve $(D^2 2D + I)y = xe^x \sin x$, where $D = \frac{d}{dx}$. [7]
 - b) Solve by the method of variation of parameters $y'' 6y' + 9y = \frac{e^{3x}}{x^2}$
- 15. a) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dt} 3y = \sin t$ using Laplace transform, given that $y = \frac{dy}{dt} = 0$ [7] when t = 0.
 - b) Use convolution theorem to evaluate $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$. [7]
- 16. a) Solve the differential equation $(3x+1)^2 \frac{d^2y}{dx^2} 2(3x+1)\frac{dy}{dx} 12y = 96x$ [7]
 - b) Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} + 4y = 5\sin 5x$
- 17. a) Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z \, dz dy dx$ [7]
 - b) Show that the vector $\vec{F} = (6xy + z^3)\hat{\imath} + (3x^2 z)\hat{\jmath} + (3xz^2 y)\hat{k}$ is irrotational and find its scalar potential. [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

[7]