Correction

Partie I

- 1.a Pas de difficultés.
- 1.b Idem, sans oublier de signaler que ces fonctions sont de classe C^1 .
- 2.a Puisque f est \mathcal{C}^2 , $\frac{\partial f}{\partial x}$ est de classe \mathcal{C}^1 sur Ω .

En dérivant $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \lambda f(x,y)$ par rapport à x on obtient :

$$x\frac{\partial^2 f}{\partial x^2}(x,y) + y\frac{\partial^2 f}{\partial x \partial y}(x,y) = (\lambda - 1)\frac{\partial f}{\partial x}(x,y) \text{ ce qui permet de voir } \frac{\partial f}{\partial x} \text{ solution de } E_{\lambda - 1}.$$

Même démarche pour étudier $\frac{\partial f}{\partial y}$.

2.b $fg \text{ est } \mathcal{C}^1 \text{ sur } \Omega \text{ et } x \frac{\partial (fg)}{\partial x}(x,y) + y \frac{\partial (fg)}{\partial y}(x,y) = \ldots = (\lambda + \mu)f(x,y)g(x,y)$.

Donc $fg \in F_{\lambda + \mu}(\Omega)$.

2.c $(f^{\alpha})(x,y) = e^{\alpha \ln(f(x,y))}$ donc f^{α} est C^{1} par opération sur les fonctions C^{1} .

$$x\frac{\partial (f^{\alpha})}{\partial x}(x,y)+y\frac{\partial (f^{\alpha})}{\partial y}(x,y)=\ldots=(\alpha\lambda)(f^{\alpha})(x,y)g(x,y) \text{ d'où } f^{\alpha}\in F_{\alpha\lambda}(\Omega) \ .$$

- 3.a $r_{\lambda}=(p_{x}^{2}+p_{y}^{2})^{\lambda/2}$ appartient à $F_{\lambda}(\Omega)$ compte tenu des études précédentes.
- 3.b $\lim_{(x,y)\to(0,0)} r_{\lambda}(x,y) = \begin{cases} +\infty & \text{si } \lambda < 0 \\ 1 & \text{si } \lambda = 0 \\ 0 & \text{si } \lambda > 0 \end{cases}$

Un prolongement par continuité en (0,0) est possible seulement pour $\lambda \ge 0$.

Partie II

- 1.a $\Omega = \{(x,y) \in \mathbb{R}^2 / y > 0\}$ est ouvert car défini à partir d'une inégalité stricte.
- 1.b L'application Φ est bien définie sur Ω et est à valeurs dans Ω .

Considérons $\Psi:(x,y)\mapsto \left(\frac{x}{y},y\right)$, elle aussi est définie sur Ω et à valeurs dans Ω .

Puisque $\Phi \circ \Psi = \Psi \circ \Phi = \mathrm{Id}_0$, on peut affirmer Φ bijective et $\Phi^{-1} = \Psi$.

2.a Puisque f et Φ sont C^1 , g l'est aussi par composition.

$$\frac{\partial g}{\partial u}(u,v) = \frac{\partial}{\partial u} \Big(f(uv,v) \Big) = \frac{1}{v} \frac{\partial f}{\partial x}(uv,v) \quad \text{et} \quad \frac{\partial g}{\partial v}(u,v) = \frac{\partial}{\partial v} \Big(f(uv,v) \Big) = u \frac{\partial f}{\partial x} \Big(uv,v \Big) + \frac{\partial f}{\partial y}(uv,v) \; .$$

$$f \in F_{\lambda}(\Omega) \Leftrightarrow \forall (x,y) \in \Omega, x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \lambda f(x,y)$$

2.b
$$\Leftrightarrow \forall (u,v) \in \Omega, uv \frac{\partial f}{\partial x}(uv,v) + v \frac{\partial f}{\partial y}(uv,v) = \lambda f(uv,v)$$

 $\Leftrightarrow \forall (u,v) \in \Omega, v \frac{\partial g}{\partial v}(u,v) = \lambda g(u,v)$

2.c Résolvons l'équation $v \frac{\partial g}{\partial v}(u, v) = \lambda g(u, v)$.

Soit g une solution sur Ω de cette équation.

Pour u fixé, l'application partielle $v\mapsto g(u,v)$ est solution sur \mathbb{R}^{+*} de l'équation différentielle $xy'=\lambda y$

dont les solutions sont $y(x) = Cx^{\lambda}$.

Par suite, $\exists C : \mathbb{R} \to \mathbb{R}$ telle que $g(u, v) = C(u)v^{\lambda}$.

Or puisque g est \mathcal{C}^1 , $C: u \mapsto \frac{g(u,v)}{v^{\lambda}}$ l'est aussi et donc C est une fonction de classe \mathcal{C}^1 .

Ainsi g est de la forme $g(u,v)=C(u)v^{\lambda}$ avec C fonction de classe \mathcal{C}^1 de \mathbb{R} vers \mathbb{R} . La réciproque est immédiate.

$$\text{Par suite } F_{\boldsymbol{\lambda}}(\Omega) = \left\{ (x,y) \mapsto C \bigg(\frac{x}{y} \bigg) y^{\boldsymbol{\lambda}} / C \in \mathcal{C}^1(\mathbb{R},\mathbb{R}) \right\}.$$

Partie III

- 1.a $t \mapsto (tx, ty)$ est \mathcal{C}^1 et donc φ l'est par composition. $\varphi'(t) = x \frac{\partial f}{\partial x}(tx, ty) + y \frac{\partial f}{\partial y}(tx, ty)$.
- 1.b Si $f \in F_0(\Omega)$ alors $\forall t > 0, t \varphi'(t) = 0$ et donc $\varphi'(t) = 0$.

 Par suite φ est constante égale à $\varphi(1)$ ce qui permet d'écrire $\forall t > 0, f(tx, ty) = f(x, y)$.

 Inversement si $\forall (x,y) \in \Omega, \forall t > 0, f(tx,ty) = f(x,y)$ alors, en dérivant cette relation par rapport à t: $x \frac{\partial f}{\partial x}(tx,ty) + y \frac{\partial f}{\partial y}(tx,ty) = 0$ puis en évaluant en t = 1, $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = 0$. Ainsi $f \in F_0(\Omega)$.
- 1.c Si f est solution de E_0 sur Ω alors $f(x,y)=f\left(\frac{x}{\sqrt{x^2+y^2}},\frac{y}{\sqrt{x^2+y^2}}\right)$ (en prenant $t=\frac{1}{\sqrt{x^2+y^2}}$). Donc f est de la forme proposée (avec $\varphi=f$).

Inversement, si f est de la forme : $f(x,y) = \varphi\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$ avec $\varphi \in \mathcal{C}^1(\Omega, \mathbb{R})$, alors f est \mathcal{C}^1

sur Ω par composition et satisfait au critère énoncé en 1.b. On peut donc conclure.

- $\begin{array}{ll} \text{2.a} & (\Rightarrow) \text{ Si } f \in F_{\boldsymbol{\lambda}}(\Omega) \text{ alors } g = f \times r_{-\boldsymbol{\lambda}} \in F_{\boldsymbol{0}}(\Omega) \,. \\ & (\Leftarrow) \text{ Si } g \in F_{\boldsymbol{0}}(\Omega) \text{ alors } f = g \times r_{\boldsymbol{\lambda}} \in F_{\boldsymbol{\lambda}}(\Omega) \,. \end{array}$
- 2.b Les solutions de E_{λ} sur Ω sont les fonctions de la forme :

$$(x,y) \mapsto \left(\sqrt{x^2 + y^2}\right)^{\lambda/2} \varphi\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

avec φ fonction réelle \mathcal{C}^1 définie sur Ω .