1. The graph of a function f is shown below. Find the following:





c) the range of f

d) For which value of x is f(x) =







2. Let  $f(x) = 3x^2 - x + 2$ . Find and simplify the following expressions.

(a) 
$$f(2) = 3 \cdot 2^2 - 2 + 2 = 12$$

(b) 
$$f(a^2) = 3(a^2)^2 - a^2 + 2 = 3a^4 - a^2 + 2$$

(c) 
$$[f(a)]^2 = (3a^2 - a + 2)^2 = 9a^4 - 6a^3 + (12a^2 + (-a)^2) - 4a + 4$$
  
=  $9a^4 - 6a^3 + 13a^2 - 4a + 4$ 

(d) 
$$\frac{f(2+h)-f(2)}{h} = \frac{3(2+h)^2 - (2+h) + 2 - (3(2)^2 - 2 + 2)}{h}$$

$$= \frac{3(4+4h+h^2) - 2 - h + 2 - 12 + 2 - 2}{h} = \frac{11 \cdot h + 3h^2}{h} = 11 + 3h$$

(e) 
$$\frac{f(a+h)-f(a)}{h} = \frac{3(a^2+2ah+h^2)-(a+h)+2-(3a^2-a+2)}{h}$$

$$= \frac{6ah+3h^2-h}{h} = 6a-1+3h$$

3. Find the domain of each of the following functions. Use interval notation.

1. 
$$f(x) = \frac{1}{x^4 - 16}$$
 Need  $x^4 - 16 \neq 0$   
  $x^4 \neq 16$   
  $x \neq \pm 2$ 

2. 
$$f(x) = \sqrt{x} + \sqrt{11-x}$$
 Need  $x \ge 0$   $|1-x| \ge 0$   $|1| \ge x$ 

3. 
$$g(x) = \ln(x-4)$$
 Need  $x-4>0$   $x>4$ 

4. 
$$h(x) = \frac{1}{\sqrt{x^2 - 5x - 6}}$$
 Need  $x^2 - 5x - 6 \ge 0$   $(x - 6)(x + 1) > 0$ 

4. Graph each of the following piecewise defined functions. (-@,-)v(6, ∞)

a) 
$$f(x) = \begin{cases} -1 & \text{if } x \ge 2\\ 7 - 2x & \text{if } x < 2 \end{cases}$$

b) 
$$f(x) = \begin{cases} x+1 & \text{if } x \le -1 \\ x^2 & \text{if } x > -1 \end{cases}$$

