Objektiv mit Kristall-Linsen

Die Erfindungsmeldung betrifft ein Objektiv mit Kristall-Linsen. Derartige Objektive sind seit über hundert Jahren als Apochromat-Mikroskopobjektive von Carl Zeiss mit Flußspat (CaF₂)-Linsen bekannt.

In jungerer Zeit werden refraktive Projektionsobjektive für die Mikrolithographie im DUV bei 248 oder 193 nm Wellenlänge realisiert, die Linsen aus Quarzglas und CaF₂ enthalten.

Aus DD 222 426 B5 ist ein optisches System mit optischen Gläsern und BaF_2 -Einkristall als optische Medien bekannt, das für Wellenlängen von 150 bis 10^4 nm eingesetzt werden kann. Das Ausführungsbeispiel ist ein Planapochromat für 480 bis 800 nm mit mehreren verschiedenen Gläsern und BaF_2 .

Die Materialauswahl für UV-Mikrolithographieobjektive - mit Schwerpunkt auf der Wellenlänge 248 nm - ist in G. Roblin, J. Optics (Paris), <u>15</u> (1984) pp. 281-285 beschrieben. Im Ergebnis werden nur Kombinationen von Quarzglas mit CaF₂ oder LiF - als brauchbar eingestuft.

In K.F. Walsh et al., SPIE Vol. <u>774</u> (1987), 155-159 werden u.a. die Excimer-Laser für 248/193 und 157 nm Wellenlänge vorgestellt und für 248 nm Quarzglas, CaF₂, BaF₂ und MgF₂ als einzig brauchbare Linsenmaterialien benannt. Für Wellenlängen unter 248 nm wird Quarzglas als einzig brauchbares Material erwartet.

In US 5,031,977 wird ein katadioptrisches 1:1 Projektionsobjektiv für die Mikrolithographie bei 248 nm beschrieben, das einen Konkavspiegel, eine Quarzglaslinse, eine LiF-Linse und zwei Umlenkprismen aus CaF₂ enthält. Argumente zur Materialauswahl sind ebensowenig angegeben wie Hinweise zu Abwandlungen der speziellen Konstruktion.

Zwischen 193 nm und 157 nm liegt jedoch die Absorptionskante von Quarzglas. CaF₂ transmittiert bei 157 nm noch brauchbar, hat aber eine zu hohe Dispersion für ein reines CaF₂-Objektiv der Mikrolithographie, auch für einen spektral eingeengten F₂-Excimer-Laser. Bisher sind daher Objektive für Wellenlängen unter 193 nm nur als katadioptrische- vgl. US Prov. Appln. Ser. No. 60/094,579 vom 29. Juli 1998 - oder katoptrische - vgl. US 5,686,728 - Systeme bekannt.

Aufgabe der Erfindung ist die Angabe eines alternativen Objektivkonzepts mit einer Materialzusammenstellung, die neue Anwendungsmöglichkeiten, insbesondere in der Mikrolithographie bei niedrigen Wellenlängen eröffnet.

Gelöst wird diese Aufgabe durch ein Objektiv nach Anspruch 1, ein Projektionsobjektiv der Mikrolithographie nach Anspruch 4 oder 9 und eine Projektionsbelichtungsanlage nach Anspruch 11 oder 12. Vorteilhafte Ausführungsformen sind Gegenstand der Unteransprüche 2, 3, 5-8 und 10, 13.

Ein Verfahren zur Herstellung mikrostrukturierter Bauteile gemäß Anspruch 14 sieht vor, daß ein mit einer lichtempfindlichen Schicht versehenes Substrat mittels einer Maske und einer Projektionsbelichtungsanlage nach mindestens einem der Ansprüche 11 bis 13 - und damit mit einem Objektiv nach einem der vorangehenden Ansprüche - durch ultraviolettes Licht belichtet wird und gegebenenfalls nach Entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthaltenen Muster strukturiert wird.

Die Erfindung geht aus von der Erkenntnis, daß sich durch die Verwendung zweier verschiedener Kristalle in einem Objektiv neuartige Objektiveigenschaften bereitstellen lassen. Insbesondere gehört dazu die Möglichkeit der Achromatisierung bei niedrigen Wellenlängen, bei denen jedes bekannte Glas, auch Quarzglas, stark absorbiert. Die in der Mikrolithographie gegen BaF₂ vorhandenen Vorbehalte beziehen sich auf 248 nm und Quarzglas als Partner.

I,

Mit der Paarung CaF₂ / BaF₂ kann erstmals ein Materialpaar zur Achromatisierung von

157 nm-Optiken angegeben werden. Beide Materialien sind bereits in der Optik-Fertigung bekannt, wie der angegebene Stand der Technik belegt. Bariumfluorid wird dabei entsprechend Anspruch 6 vorzugsweise für Negativlinsen verwendet, und zwar nur für einzelne, weil das genügen kann. Kalziumfluorid findet dann gemäß Anspruch 7 nicht nur für die Positivlinsen, sondern auch für die restlichen Negativlinsen Verwendung.

Besonders vorteilhaft ist es gemäß Anspruch 8, daß numerische Aperturen über 0,5, auch bei 157 nm, erreicht werden. Das folgende Beispiel mit der numerischen Apertur von 0,8 belegt dies deutlich.

Das Stitching-Verfahren (zeilenweises Belichten des Chips) gemäß Anspruch 13, welches neuerdings in der Mikrolithographie bei sehr niedrigen Wellenlängen ins Gespräch kommt, erlaubt verkleinerte Bildfelder als Rechtecke mit mäßigem Aspektverhältnis und sorgt so für eine drastische Verkleinerung der Objektive. Letzteres entspannt die Herstellungsproblem für die Linsenkristalle drastisch.

Eine ganz andere Ausführungsart der Erfindung gemäß den Ansprüchen 9 und 10 wurde überraschend gefunden:

Bei der DUV-Mikrolithographie mit 248 nm oder 193 nm tritt im Dauerbetrieb ein als "Compaction" bezeichneter Alterungsprozeß bei Quarzglas auf, durch den das Material verdichtet wird und in Folge Brechungsindex und Form der Linse verändert werden. Dies verschlechtert natürlich die Abbildungsleistung des Objektivs. Neben der Kompensation durch stellbare Glieder wurde erkannt, daß die am höchsten belasteten und betroffenen bildseitigen Linsen statt aus Quarzglas aus Kristall, nämlich vorzugsweise CaF₂ oder BaF₂ gefertigt werden können, die wesentlich stabiler gegen UV-Strahlung sind.

Ĺ

In der Patentanmeldung "Projektionsobjektiv" des Anmelders vom gleichen Anmeldetag sind mehrere Ausführungsbeispielen mit derartigem Einsatz von Kalziumfluorid-Linsen enthalten, welche Teil der Offenbarung auch dieser Anmeldung sein sollen.

Dabei hat BaF₂ an dieser Stelle nach Anspruch 9 den - im Umfeld der Achromatisierung als Nachteil geltenden - Vorteil, sich in seinen optischen Eigenschaften wesentlich weniger von Quarzglas zu unterscheiden als CaF₂ (vgl. Roblin am angegebenen Ort). Die Designänderungen eines Projektionsobjektivs bei Austausch von Quarzlinsen gegen BaF₂-Linsen in Bildnähe sind daher minimal. Das Projektionsobjektiv wird so durch den Einsatz von zwei kristallinen Materialien - CaF₂ für die Achromatisierung, BaF₂ gegen die Compaction - optimiert.

Für ein 157 nm-Objektiv, rein refraktiv und aus einem Material, also CaF₂, wären Laserbandbreiten bis hinunter zu 0,1 pm notwendig, abhängig von Apertur und Bildfeldgröße.

Es ist nicht zu erwarten, daß diese Werte einfach erreicht werden können beim Wechsel von 193 auf 157 nm. Alles wird nochmals anspruchsvoller, Materialdurchlässigkeit, Schichtverfügbarkeit, Gitter für die Laserkomponenten.

Erfindungsgemäß wurde mit BaF₂ ein Material gefunden, welches bei 157 nm transparent und isotrop ist, welches eine merklich höhere Dispersion bei 157 nm als CaF₂ besitzt und sich mit diesem zum Achromaten ergänzen läßt. BaF₂ absorbiert erst bei etwa 130 nm vollständig. Die Nähe zu 157 nm ist verantwortlich für den raschen Verlauf der Brechzahländerung (starke Dispersion) bei 157 nm.

Bei 193 nm bietet sich eine Achromatisierung durch die Kombination von CaF₂ und Quarzglas an. Andere Materialien sind hier bedeutungslos. LiF hat nur unwesentlich geringere Dispersion als CaF₂, BaF₂ eine nur unwesentlich höhere Dispersion als CaF₂ und liegt in der Dispersion sozusagen nutzlos zwischen der Dispersion von CaF₂ und Quarzglas. Für 157 nm ändert sich die Situation, da Quarzglas nicht mehr durchlässig ist. Nach bisheriger allgemeiner Meinung gab es nun für CaF₂ keinen geeigneten Partner zur Achromatisierung.

Ĺ

Dies ist nicht der Fall: Der Dispersionsabstand zwischen CaF₂ und BaF₂ bei 157 fällt zwar kleiner aus als zwischen CaF₂ und Quarzglas bei 193 nm, aber es läßt sich unter moderatem Einsatz von BaF₂ immer noch sehr gut teilachromatisieren, auf ähnlichem Niveau wie bei 193 nm, z.B. 50% Farblängsfehlerreduktion.

Bei 193 nm wird allgemein nur eine Teilachromatisierung durchgeführt, um das eingesetzte CaF₂ Volumen aus Gründen der Kosten, der Verfügbarkeit und der Materialeigenschaften klein zu halten. Bei 157 nm wird man den Partner BaF₂ im Volumen kleinhalten wollen, da er ein höheres spezifisches Gewicht hat und sich die BaF₂-Linsen dadurch unter der Schwerkraft stärker durchbiegen.

Bei 193 nm möchte man möglichst alles aus Quarzglas machen, bei 157 nm möglichst alles aus CaF₂. Da die Zahl der positiven Linsen im refraktiven Lithographie-Objektiv deutlich größer ist als die der negativen, wäre es vorteilhaft bei 193 nm, wenn Quarzglas eine kleine Dispersion hätte. Es ist aber umgekehrt, CaF₂ hat die kleinere Dispersion und kann nicht bzw. soll nicht in allen positiven Linsen eingesetzt werden. Es werden also positive Linsen aus Quarzglas gemacht, was den Grad der Achromatisierung drückt.

Bei 157 nm ist es ebenfalls wünschenswert, daß das bevorzugte Material, hier CaF₂, eine kleinere Dispersion als der Partner hat.

Im Gegensatz zu 193 nm ist dies bei 157 nm mit BaF_2 der Fall. Fast alle Linsen, sicher alle positiven Linsen, können aus dem Kron, nämlich CaF_2 , sein. Einige wenige Negativlinsen werden aus BaF_2 gemacht.

Natürlich gelten die obigen Aussagen auch für Linsen in einem katadioptrischen Objektiv, insbesondere auch für dabei verwendete refraktive Teilobjektive. Das erfindungsgemäße Objektiv kann also auch katadioptrisch sein. Wichtig ist, daß Linsen, und nicht nur optische Hilfselemente wie Umlenkprismen oder Planplatten aus Kristall bestehen.

Näher erläutert wird die Erfindung anhand der Zeichnung, deren

Figur 1 einen Linsenschnitt eines 157 nm Projektionsobjektivs zeigt.

Zu dem in Figur 1 im Linsenschnitt gezeigten Ausführungsbeispiel gibt Tabelle 1 die Daten an.

Es handelt sich um ein Mikrolithographie-Projektionsobjektiv für den F_2 -Excimer-Laser bei 157 nm. Durch den Einsatz von CaF_2 und BaF_2 (für die Linsen 17, 18, 21, 24, 26, 28, 30) gelang es, bei einer Bandbreite von 0,5 nm, einem Stitching-gerechten Bildfeld von 8,0 x 13,0 mm², einem Reduktionsfaktor von 4,0 : 1, einem Abstand Objekt Ob zu Bild Im von 1000 mm und bei beidseitiger Telezentrie eine numerische Apertur von 0,8 zu verwirklichen. Eine weitere Erhöhung der numerischen Apertur ist durchaus möglich. Der Farblängsfehler wird um Faktor 3 gegenüber einem reinen CaF_2 Objektiv reduziert. Er beträgt noch CHL (500 pm) = 0,095mm. Dieser Faktor kann durch zusätzliche CaF_2 - BaF_2 Linsenpaare noch gesteigert werden. Der gesamte RMS-Fehler der Wellenfront im Bild IM liegt für alle Bildhöhen bei RMS < 13 m λ , wobei ja die deutlich reduzierte Wellenlänge als Bezugsmaß λ dient.

Die Brechzahlen bei der Hauptwellenlänge $\lambda_0 = 157,63$ nm des F_2 -Excimer-Lasers und in 500 pm Abstand bei $\lambda_1 = 158, 13$ nm sind

$$n_0 = 1,558$$
 $n_1 = 1,557$ für CaF₂
 $n_0 = 1,650$ $n_1 = 1,648$ für BaF₂

Daraus ergibt sich eine Abbe-Zahl (invers zur Dispersion)

(

$$v \text{ CaF}_2 = 1219$$
 $v \text{ BaF}_2 = 874.$

Damit hat bei 157 nm BaF₂ eine um 40% höhere Dispersion als CaF₂. Im Vergleich hat bei 193 nm Quarzglas eine um 54% höhere Dispersion als CaF₂.

Das Projektionsobjektiv nach Figur 1 und Tabelle 1 hat insgesamt 39 Linsen und eine planparallele Abschlußplatte P. Sieben Negativlinsen 17, 18, 21, 24, 26, 28 und 30 sind zur Achromatisierung aus BaF₂ gemacht. Die Konstruktion steht in direkter Verwandtschaft zu dem in der obengenannten nicht vorveröffentlichten Patentanmeldung (EM98042) (deren Inhalt auch Teil dieser Anmeldung sein soll) beschriebenen Design.

Im Bereich der Systemblende AS ist eine - nicht stark eingeschnürte - dritte Taille T3 bei der Linse 26 ausgebildet, folgend auf die schon klassische Folge von Bauch B1 an Linse 5, Taille T1 an Linse 10, Bauch B2 an Linse 15, Taille 2 an Linse 18 und Bauch B3 an Linse 22, sowie gefolgt von Bauch B4. Besonders hoch entwickelt ist die Linsengruppe von Linse 20 bis 39 mit dem Doppelbauch B3, B4.

Mehrere sphärisch überkorrigierende Lufträume mit größerer Dicke in der Mitte als am Rand sind im Bereich der Blende AS zwischen den Linsen 23/24, 26/27 und 29/30, 30/31 als wesentliches Korrektionsmittel vorgesehen. Dieser Aufbau begrenzt auch bei größter numerischer Apertur die Linsendurchmesser. Die in Tabelle 1 angegebenen Linsenradien - entsprechend den jeweils größten Strahlhöhen - zeigen, daß der Linsendurchmesser maximal 190 mm am Bauch B4 beträgt. Auch sind die Linsendurchmesser ziemlich gleichmäßig verteilt, von Linse 13 im Bereich des zweiten Bauchs B2 bis Linse 34 nahe dem Bild IM liegen alle Linsendurchmesser zwischen 140 mm und 190 mm.

Die negativen BaF₂-Linsen 21, 24, 26, 28, 30 sind in klassischen + - Paaren mit positiven CaF₂-Linsen 22, 23, 25, 27, 29 abwechselnd im Bereich des Doppelbauchs B3, B4 vorwiegend vor der Blende AS angeordnet und werden durch zwei negative BaF₂-Linsen 17, 18 im Bereich der zweiten Taille T2 ergänzt. Damit gibt sich ein sehr wirksamer Einsatz des zweiten Kristallmaterials zur Achromatisierung.

(

Der den Ansprüchen 9 oder 10 gemäße Einsatz zweier Kristall-Linsenwerkstoffe ergibt sich .

ausgehend von den beispielsweise aus den Patentanmeldungen "Mikrolithographischs

Reduktionsobjektiv, Projektionsbelichtungs-Anlage und -Verfahren" und
"Projektionsobjektiv" des Anmelders vom gleichen Anmeldetag und aus anderen Quellen

bekannten Objektivdesigns dadurch, daß bei einem DUV-Objektiv (300-180 nm) mit überwiegend Quarzglas-Linsen und vorwiegend blendennahen, der Achromatisierung dienenden CaF₂-Linsen die dem Bild IM nächsten Linsen - entsprechend in Figur 1 Linsen 39, 38 usw. - aus Quarzglas oder CaF₂, jetzt durch BaF₂-Linsen ersetzt werden. Die nur wenig anderen optischen Eigenschaften des BaF₂ gegenüber Quarzglas erfordern nur routinemäßige Designänderungen mit einem Optik-Design-Programm. Natürlich kann auch die Planplatte P sinnvoll aus BaF₂ gemacht werden. Wird sie jedoch - als Verschleiß- und Schutzelement - ohnedies öfters gewechselt, kann sie auch aus Quarzglas bleiben (im oben genannten Wellenlängenbereich)

Der erfindungsgemäße Einsatz von Kristall-Linsen bringt auch bei katadioptrischen Systemen die gleichen Vorteile.

Eine Projektionsbelichtungsanlage mit erfindungsgemäßem Objektiv entspricht zum Beispiel den aus den genannten Patentanmeldungen und anderen Quellen bekannten Aufbauten, jetzt allerdings mit dem erfindungsgemäßen Objektiv.

Für 157 nm Systeme ist ein F₂-Excimer-Laser mit moderatem Aufwand zur Bandbreitenbegrenzung, ein angepaßtes Beleuchtungssystem z.B. nach der Patentanmeldung "Beleuchtungssystem für die VUV-Mikrolithographie" (Erfinder Johannes Wangler internes Zeichen 98047P des Anmelders vom gleichen Anmeldetag), jedenfalls mit CaF₂ und/oder Spiegel-Optik, aber auch z.B. mit erfindungsgemäßem CaF₂ / BaF₂ Objektiv, vorzusehen. Dazu kommen Masken- und Wafer-Positionier- und Handlingssysteme usw..

Ċ

Tabelle 1

Element	Krümmungsradius	Dicke	Material	Linsenradius
ОЪ	∞	8,646		
1	-89,212	4,219	CaF ₂	34,52
	-16234,578	5,440	Car 2	38,01
2	-264,742	5,333	CaF ₂	36,01
	252,387	7,720	Our 2	43,32
3	-660,451	17,777	CaF ₂	75,52
	-140,998	,752	Out 2	50,10
4	1064,631	16,556	CaF ₂	30,10
	-158,471	,750	Cui 2	57,46
5	334,549	20,500	CaF ₂	37,40
	-185,783	,750	J 2	61,97
6	123,299	18,438	CaF ₂	60,05
	6416,942	,250	2	00,02
7	80,830	6,933	CaF ₂	52,10
	59,684	29,393	2	,
8	-270,673	7,923	CaF ₂	45,95
	-138,947	1,854	2	,-,,,,
9	-4994,395	6,686	CaF ₂	42,27
	100,936	20,795	-	,
10	-77,364	5,536	CaF ₂	38,79
	_{.5} 138,364	18,752		,
.11	-102,745	16,748	CaF ₂	
	-267,729	7,811		52,63
12	-130,631	24,060	CaF ₂	·
	-118,058	,755		63,21
13	-17113,629	30,658	CaF ₂	
	-185,673	,550		77,37

14	-763,483	14,068	CaF ₂	
	-257,169	,450		81,41
15	538,062	17,501	CaF ₂	
	-524,097	,450		83,64
16	225,158	28,126	CaF ₂	82,00
	-455,940	,450		
17	288,200	5,280	BaF ₂	73,64
	116,070	43,999		
18	-136,780	5,899	BaF ₂	٠
	596,541	30,232		70,04
19	-126,579	12,715	CaF ₂	
	-160,434	,450		77,54
20	1476,691	23,253	CaF ₂	
	-252,721	,450		86,85
21	-2817,234	11,778	BaF_2	
	231,190	1,794		90,96
22	231,573	53,989	CaF ₂	
	-192,300	,453		93,26
23	362,633	20,787	CaF ₂	88,11
	-787,951	9,876		
24	-299,764	10,937	BaF_2	86,45
	190,174	,750		
25	183,395	50,343	CaF ₂	83,31
	-174,748	2,226		
26	-164,440	10,352	BaF ₂	82,14
	168,479	5,874		81,42
27	206,740	50,425	CaF ₂	
	-153,785	1,751		82,83
28	-154,941	8,763	BaF ₂	
	-1457,609	,700		84,91
29	254,394	43,058	CaF ₂	87,38

AS	Blende	,000		87,38
	-217,033	9,211		
30	-162,604	12,000	BaF ₂	
	-511,982	32,352		89,88
31	-179,731	19,652	CaF ₂	
	-150,853	1,959		83,87
32	357,035	16,035	CaF ₂	92,29
	2402,661	,935		
33	141,252	27,158	CaF ₂	86,94
	445,801	,751		
34	121,230	20,012	CaF ₂	75,94
	251,005	,750		
35	89,189	18,534	CaF ₂	62,04
	183,720	7,397		
36	490,596	13,526	CaF ₂	58,00
	255,332	,750		48,00
37	77,348	8,959	CaF ₂	39,69
	53,255	7,818		
38	115,034	2,770	CaF ₂	30,44
	27,832	1,250		
39	27,548	14,863	CaF ₂	22,66
	193,984	2,347		
P	∞	1,211	CaF ₂	18,16
IM	∞			17,43
	D .			

Patentansprüche:

- 1. Objektiv mit Linsen aus mindestens zwei verschiedenen Kristallen.
- Objektiv nach Anspruch 1, dadurch gekennzeichnet, daß die Linsen aus zwei verschiedenen Alkalihalogeniden, insbesondere aus CaF₂ und BaF₂ bestehen.
- 3. Objektiv nach Anspruch 1 oder 2 mit zusätzlichen Linsen aus glasartigem Material, insbesondere Quarzglas.
- 4. Projektionsobjektiv der Mikrolithographie, korrigiert für die Beleuchtung mit einem F₂-Excimer-Laser bei 157 nm, dadurch gekennzeichnet, daß es rein refraktiv ist und Linsen aus BaF₂ enthält.
- Projektionsobjektiv nach Anspruch 4, dadurch gekennzeichnet, daß als weiteres Kristall-Linsenmaterial CaF₂ eingesetzt ist.
- 6. Projektionsobjektiv nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß einzelne Negativlinsen aus BaF₂ gefertigt sind.
- 7. Projektionsobjektiv nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß alle Positivlinsen und einzelne Negativlinsen aus CaF₂ gefertigt sind.
- 8. Projektionsobjektiv nach mindestens einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die bildseitige numerische Apertur über 0,5 beträgt.
- 9. Refraktives Projektionsobjektiv der Mikrolithographie, korrigiert für die Beleuchtung mit Wellenlängen unter 360 nm, enthaltend Linsen aus Quarzglas, dadurch gekennzeichnet, daß mindestens eine der beiden der Bildebene des Objektivs nächsten Linsen aus Kristall, vorzugsweise CaF₂ oder BaF₂, ausgeführt ist.

- 10. Objektiv nach Anspruch 3 oder 9, dadurch gekennzeichnet, daß es ein mikrolithographisches Projektionsobjektiv, korrigiert für die Laser-Beleuchtung mit einer Wellenlänge unter 360 nm, ist und die meisten Linsen aus Quarzglas, mehrere positive Linsen in Blendennähe zur Achromatisierung aus CaF₂ und eine oder mehrere objektseitige Linsen zum Verhindern des Compaction-Einflusses aus BaF₂ gefertigt sind.
- Projektionsbelichtungsanlage mit 157 nm Lichtquelle und refraktivem Projektionsobjektiv.
- Projektionsbelichtungsanlage, insbesondere nach Anspruch 11, dadurch gekennzeichnet, daß das Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 10 ausgeführt ist.
- 13. Projektionsbelichtungsanlage nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß sie für das Stitching-Verfahren ausgelegt ist.
- 14. Verfahren zur Herstellung mikrostrukturierter Bauteile, bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat mittels einer Maske und einer Projektionsbelichtungsanlage nach mindestens einem der Ansprüche 11 bis 13 durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach Entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthaltenen Muster strukturiert wird.

Э

Zusammenfassung:

Objektiv mit Kristall-Linsen

(Figur)

ĺ,

Ein Objektiv mit Linsen aus zwei verschiedenen Kristallen, insbesondere CaF₂ und BaF₂, eignet sich besonders als refraktives Projektionsobjektiv der Mikrolithographie bei 157 nm. Derartige Projektionsobjektive für 193/248 nm mit Quarzglas und Achromatisierung mit CaF₂ werden mit BaF₂ Compaction-resistent.

14

98053 P