Addiction - Additive Multinomial Logit Models

February 1, 2012

First the "Addiction"-Data from "catdata" are loaded and attached.

- > library(catdata)
- > data(addiction)
- > attach(addiction)

For the fitting of GAMs the library "mgcv" is used.

> library(mgcv)

Now we create two data frames that will be used to predict the probabilities along the range of age, the columns are "age", "gender" and "university". We create one data frame for women and one for men.

```
> minage <- min(na.omit(age))
> maxage <- max(na.omit(age))
> ageindex <- seq(minage, maxage, 0.1)
> n <- length(ageindex)

> gender1 <- rep(1, n)
> gender0 <- rep(0, n)
> university1 <- rep(1, n)
> university0 <- rep(0, n)
> datamale <- as.data.frame(cbind(gender=gender0,age=ageindex,university=university1))
> datafemale <- as.data.frame(cbind(gender=gender1,age=ageindex,university=university1))</pre>
```

For the hierarchical model a new reponse "ill01" is created.

```
> ill01 <-ill
> ill01[ill==1] <- 0
> ill01[ill==2] <- 1</pre>
```

Now the two GAMs for the hierarchical model are fitted, "gam1" models category "0" and category "1" versus category "2", "gam2" models category "0" versus category "1".

```
> gam1 <- gam(as.factor(ill01) ~ s(age) + gender + university, family=binomial())
> gam2 <- gam(as.factor(ill) ~ s(age) + gender + university, family=binomial(), data=addic
```

Then the corresponding summaries are printed.

> summary(gam1)

```
Family: binomial
Link function: logit
Formula:
as.factor(ill01) ~ s(age) + gender + university
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
                      0.1486 -7.77
(Intercept) -1.1545
                                         8e-15 ***
                        0.1835
                               0.14
                                         0.89
gender
             0.0256
                                -0.62
                        0.2098
university
           -0.1306
                                          0.53
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
       edf Ref.df Chi.sq p-value
s(age) 3.53 4.41 21.4 0.00039 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0266
                     Deviance explained = 3.17%
UBRE score = 0.093898 Scale est. = 1
                                           n = 682
> summary(gam2)
Family: binomial
Link function: logit
Formula:
as.factor(ill) ~ s(age) + gender + university
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
                                 -1.1 0.2702
(Intercept)
            -0.175
                        0.159
gender
              0.604
                         0.208
                                  2.9
                                       0.0037 **
              1.376
                         0.265
                                  5.2
                                        2e-07 ***
university
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
       edf Ref.df Chi.sq p-value
            5 50.4 1.2e-09 ***
s(age) 4.02
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.196
                    Deviance explained = 16.3%
UBRE score = 0.14577 Scale est. = 1
                                           n = 516
  Now the smoothed effects for age are plotted.
```

> plot(gam1)

> plot(gam2)

For predicting the probabilities for the respective categories the probabilities from both GAMs are needed. These can be computed by the "predict"—function. First we use the data frame for men for prediction.

```
> predmale1 <- predict(gam1, newdata=datamale, type="response")
> predmale2 <- predict(gam2, newdata=datamale, type="response")
> predfemale1 <- predict(gam1, newdata=datafemale, type="response")
> predfemale2 <- predict(gam2, newdata=datafemale, type="response")</pre>
```

Then we compute the probabilities for each category, first for men, afterwards for women.

```
> p2 <- predmale1
> p1 <- predmale2 * (1-predmale1)
> p0 <- (1-predmale2) * (1-predmale1)</pre>
```

```
> pf2 <- predfemale1
> pf1 <- predfemale2 * (1-predfemale1)
> pf0 <- (1-predfemale2) * (1-predfemale1)</pre>
```

Now finally the probabilities for the respective categories can be plotted.

```
> par(mfrow=c(1,2), cex=1.8)
```

- > plot(ageindex, p0, type="l", lty=1, ylim=c(0,1), main="men with university degree", ylab
- > lines(ageindex, p1, lty="dotted")
- > lines(ageindex, p2, lty="dashed")
- > legend("topright", legend=c("Weak-willed", "diseased", "both"), lty=c("solid", "dotted",
- > plot(ageindex, pf0, type="1", lty=1, ylim=c(0,1), main="women with university degree", y
- > lines(ageindex, pf1, lty="dotted")
- > lines(ageindex, pf2, lty="dashed")
- > legend("topright", legend=c("Weak-willed", "diseased", "both"), lty=c("solid", "dotted",

The models "gam3" and "gam4" compare category 0 versus 1 and category 0 versus 2 respectively.

```
> gam3 <- gam(as.factor(ill)~ s(age) + gender + university, data=addiction[addiction$ill!=
> gam4 <- gam(as.factor(ill)~ s(age) + gender + university, data=addiction[addiction$ill!=
```

> summary(gam3)

Family: binomial Link function: logit

Formula:

as.factor(ill) ~ s(age) + gender + university

Parametric coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
              -0.175
                           0.159
                                    -1.1
                                            0.2702
gender
               0.604
                           0.208
                                     2.9
                                            0.0037 **
university
               1.376
                           0.265
                                     5.2
                                             2e-07 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

```
edf Ref.df Chi.sq p-value
s(age) 4.02 5 50.4 1.2e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.196 Deviance explained = 16.3%
UBRE score = 0.14577 Scale est. = 1
> summary(gam4)
Family: binomial
Link function: logit
Formula:
as.factor(ill) ~ s(age) + gender + university
Parametric coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.572 0.179 -3.20 0.0014 **
gender
           0.344
                     0.231 1.49 0.1363
university
           0.784
                     0.304 2.58 0.0098 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
      edf Ref.df Chi.sq p-value
s(age) 3.9 4.86 38.5 2.5e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.141 Deviance explained = 12.2%
```