Design Theory for Relational Databases

August 7, 2022

Abstract

These notes have been written and sourced from the textbook, "Database Systems - The Complete Book" (Garcia-Molina et al.) The details have just been compressed to the most important definitions and constituent, high-level descriptions for you.

Contents

1	Fun	actional Dependencies	•
	1.1	Functional Dependencies	;
	1.2	The Splitting / Combining Rule	,
	1.3	Keys of Relations	
	1.4	Superkeys	
	1.5	Finding Keys	
	1.6	Implied FDs	4
		1.6.1 Inference Test	4
		1.6.2 Closure Test	2
		1.6.3 Closure Test Algorithm	2
	1.7		4
2	Relation Schema Design		
	2.1	Introduction	ļ
	2.2	Boyce-Codd Normal Form	ļ
	2.3	Decomposition into BCNF	ļ
	2.4	Projecting Functional Dependencies	(
	2.5		(
		2.5.1 Benefits of 3NF and BCNF	(
	2.6	Putting Relations into 3NF (Synthesis Algorithm)	,

1 Functional Dependencies

1.1 Functional Dependencies

• A functional dependency (FD) on a relation R is a statement of the form, "If two tuples of R agree on all the attributes $A_1, A_2, ..., A_n$, then they must also agree on all of another list of attributes $B_1, B_2, ..., B_m$

We write this FD formally as $A_1A_2...A_n \to B_1B_2...B_m$ and say that $A_1A_2...A_n$ functionally determine $B_1B_2...B_m$.

• Short-Hand Conventions:

- 1. X, Y, Z represent sets of attributes
- 2. A, B, C represent single attributes

1.2 The Splitting / Combining Rule

- Splitting Rule: $A_1A_2...A_n \rightarrow B_1B_2...B_m \Leftrightarrow \{A_1A_2...A_n \rightarrow B_i\} \text{ for } i=1,2,...,m$
- The <u>combining rule</u> is really just the opposite of the splitting rule.
- Do note that there does not exist any splitting rules for left sides. In addition, we'll generally express FD's with singleton right sides.

1.3 Keys of Relations

- We say that a set of one or more attributes $\{A_1, A_2, ..., A_n\}$ is a **key** for a relation R, if:
 - 1. The attributes of the key <u>functionally determine</u> all other attributes of the relation. That is, it is impossible for two distinct tuples of R to agree on all of $A_1, A_2, ..., A_n$
 - 2. No <u>proper subset</u> of $\{A_1, A_2, ..., A_n\}$ functionally determines all other attributes of R. That is, a key must be <u>minimal</u>.

1.4 Superkeys

- A set of attributes that contains a key is called a superkey, short for, "superset of a key."
- Every key is a superkey, but not every superset is a key.
- Superkeys satisfy condition (1) of a key, but not (2)

1.5 Finding Keys

We can generally find keys by:

- 1. Randomly asserting a key, k (i.e., Artifically Created Keys)
- 2. Asserting FD's, and using the principle of deduction to find the other key components through systematic exploration

1.6 Implied FDs

FD's often can be presented in several different ways, without changing the set of legal instances of the relation. We say:

- 1. Two sets of FD's S and T are **equivalent** if the set of relation instances satisfying S is exactly the same as the set of relation instances satisfying T.
- 2. More generally, a set of FD's <u>follows from</u> a set of FD's T if every relation instance that satisfies all the FD's in T also satisfies all the FD's in S.

TLDR - Transitivity Rule: $((A \to B), (B \to C))$ implies $(A \to C)$

1.6.1 Inference Test

- 1. To test if $Y \to B$, start by assuming two tuples agree in all attributes of Y.
- 2. Use the given FD's to infer that these tuples must also agree in certain other attributes.

1.6.2 Closure Test

- Suppose $\{A_1,A_2,...,A_n\}$ is a set of attributes and S is a set of FD's . Then, the closure of $\{A_1,A_2,...,A_n\}$ under the FD's in S is the set of attributes B such that every relation that satisfies all the FD's in set S also satisfies $A_1A_2...A_n \to B$. That is, $A_1A_2...A_n \to B$ follows from the FD's of S.
- We denote the closure of a set of attributes $A_1A_2...A_n$ by $\{A_1, A_2, ..., A_n\}^+$
- Do note that $\{A_1A_2...A_n\} \subseteq \{A_1, A_2, ..., A_n\}^+$

1.6.3 Closure Test Algorithm

- 1. If necessary, split the FD's of S, so each FD in S has a single attribute on the right.
- 2. Let X be a set of attributes that eventually will become the closure.
- 3. Repeatedly search for some FD $B_1B_2...B_m \to C$ such that all of $B_1B_2,...,B_m$ are in the set of attributes X, but C is not. Add C to the set X and repeat the search. Since X can only grow, and the number of attributes of any relation schema must be finite, eventually nothing more can be added to X, and this step ends.
- 4. The set X, after no more attributes can be added to it, is the correct value of $\{A_1, A_2, ..., A_n\}^+$

1.7 Trivial FDs

A constraint of any kind on a relation is said to be trivial if it holds for every instance of the relation, regardless of what other constraints are assumed. One example of a trivial FD is where the right side is a subset of its left side.

Every trivial FD holds in every relation, since it says that "two tuples that agree in all of $A_1, A_2, ..., A_n$ agree in a subset of them.

2 Relation Schema Design

2.1 Introduction

- The goal of a relational schema design is to avoid **anomalies** and **redundancy**.
 - 1. **Update Anomaly:** One occurrence of a fact is changed, but not all occurrences.
 - 2. **Deletion Anomaly:** Valid facts are lost when a tuple is deleted.

2.2 Boyce-Codd Normal Form

- A feature that a relation may have. it is a condition under which
 the previously discussed anomalies can be guaranteed not to exist.
- A relation R is in BCNF if and only if whenever there is a non-trivial FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$ for R, it is the case that $\{A_1, A_2, ..., A_n\}$ is a superkey of R. That is, the left side of every nontrivial FD must be a superkey.
- If a relation is not in any form of BCNF, we must do something about it.

2.3 Decomposition into BCNF

- By repeatedly choosing suitable decompositions, we can break any relation schema into a collection of subsets of its attributes, with the following important properties:
 - 1. These subsets are the schemas of relations in BCNF.
 - 2. We need to be able to reconstruct the original relation instance exactly from the decomposed relation instances.
- To decompose a relation into BCNF, we must:
 - 1. Identify a given FD, $X \to Y$, which violates BCNF.
 - 2. Compute X^+
 - 3. Replace R by relations with schemas:
 - a) $R_1 = X^+$
 - b) $R_2 = (R X^+) + X$
 - 4. Recursively decompose R_1 and R_2 using this algorithm. Return the union of the results of these decompositions.

Do note that we may assume that every two-attribute relation is in BCNF. The proof is in the textbook. It's not necessary to read, but good for an overall understanding of the said mechanical processes.

2.4 Projecting Functional Dependencies

- Suppose we have a relation R with a set of FD's S, and we project R by computing $R_1 = \pi_R(R)$, for some list of attributes R.
- The FDs that will hold in R_1 are:
 - 1. For all the attributes in R_1 , compute their closure.
 - 2. Add to the set of FD's, all nontrivial FD's $X \to A$, such that A is in both X^+ and an attribute of R_1
- In general, we project FD's, because once we decompose a table into two sub-relations, we need to find which FDs hold for the new sub-tables. Looking at the original FDs may not be enough.

2.5 The Third Normal Form

- A more relaxed version of BCNF. It's used to decompose a troublesome relation where the lossless join property cannot be held accordingly.
- A relation R is in the third normal form (3NF) if:
 - 1. $\{A_1, A_2, ..., A_n\}$ is a superkey.
 - 2. Those of $B_1,B_2,...,B_m$ that are not among the A's, are each a member of some key (not necessarily the same key. Recall, An attribute that is a member of some key is often said to be prime.
- In general, we prefer 3NF, however, there are very minal problems with redundancy in practice.

2.5.1 Benefits of 3NF and BCNF

- The following properties are important of a decomposition:
 - 1. <u>Lossless Join:</u> It should be possible to project the original relations onto the decomposed schema, and then reconstruct the original.

The decomposition of R into X and Y is a lossless-join with relation to F, if and only if the closure of F contains $X \cap Y \to X$ and $X \cap Y \to Y$. In particular, the decomposition of R into UV and R - V is lossless-join if $U \to V$ holds over R.

- 2. **Dependency Preservation:** It should be possible to check in the projected relations whether all the given FD's are satisfied.
- We may get a lossless-join decomposition with a BCNF decomposition.
- We <u>can</u> get both lossless-join and dependency preservation with 3NF.

2.6 Putting Relations into 3NF (Synthesis Algorithm)

- Prerequisite (Pre-Conditions):
 - 1. Split Right Sides
 - $2. \ \,$ Repeatedly try to remove an FD and see if the remaining FDs are equivalent to the original
 - 3. Repeatedly try to remove an attribute from a left side and see if the resulting FD's are equivalent to the original.
- We need a minimum basis for the FD's:
 - 1. One relation for each FD in the minimal basis.
 - a) Schema is the union of the left and right sides.
 - 2) If no key is contained in an FD, then add one relation whose schema is some key.