$\mathrm{Day}\ 10$

More on integration

If $f:\Omega\to\mathbb{C}$ is a function and $\gamma:[a,b]\to\Omega$ is a curve, then $\int_{\gamma}f(z)dz=\int_{a}^{b}f(\gamma(t))\gamma'(t)dt$

Definition we say two curves are *equivalent* if

$$\gamma_1: [a,b] \to \mathbb{C}$$

 $\gamma_2: [c,d] \to \mathbb{C}$

and there exists a continuous function $u:[a,b] \to [c,d]$ with u(a)=c and u(b)=d differentiable with u'(t)>0 such that $\gamma_1(t)=\gamma_2(u(t))$. In this situation, γ_1 and γ_2 define the same curves, just parametrized differently.

Proposition if γ_1, γ_2 are equivalent, then $\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$.

Definition the length of a curve γ is given by:

length
$$\gamma = \int_{a}^{b} |\gamma'(t)| dt$$

Example $\gamma:[0,2]\to\mathbb{C}$ such that $\gamma(t)=(1+3i)t$ (a straight line).

length
$$\gamma = \int_0^2 |1 + 3i| dt$$

= $\sqrt{10}t \Big|_0^2$
= $2\sqrt{10}$

Properties of path integrals

- 1. $\int_{\gamma} (af(z) + bg(z))dz = \int_{\gamma} af(z)dz + \int_{\gamma} bg(z)dz$ i.e. integration is linear
- 2. if $-\gamma$ denotes the path γ traversed in opposite direction, then $\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$.
- 3. if $\gamma_1:[a,b]\to\mathbb{C}$ and $\gamma_2:[c,d]\to\mathbb{C}$ with $\gamma_1(b)=\gamma_2(c)$ then if γ_3 is obtained by γ_1 then γ_2 we have:

$$\int_{\gamma_3} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$$

4. $|\int_{\gamma} f(z)dz| \leq \max\{|f(z)|\ z \in \gamma\} \cdot \operatorname{length}(\gamma)$. Think of bounding an integral by making a square with its maximum value i.e. $|\int_a^b f(x)dx| \leq M(b-a)$.

1