MATH 304 - Numerical Analysis and Optimization

Project ---Least Squares Regression

Xi Chen

xc166

Video Link

Outline

- Introduction
- Methodology
- Result
- Discussion

Introduction

In this project, we will try to use least square regression to find out the curve that fit the data.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0$$

We need to find out the best set of a_n to fit the curve. The process is basically solving the overdetermined function:

$$Ax = B$$

Figure 1. Ax=B with regularization

Regularization is used to minimize the overfitting influence which is caused by too inappropriate coefficient for the least square regression. Sometimes, the model is trained too well to fit some train data. In this case, this model will lose some capacity to be generalized to deal with other data like the test data. A common feature of overfitting is that there are many obvious distortions and the coefficients are very large in the fitting curve. To solve this problem, we introduce the concept of regularization which means adding a penalty for this kind of situation to make the coefficient not outstanding in the training. The general format for the regularization is:

$$||A \cdot \alpha - B||_2^2 + \lambda \cdot ||\alpha||_2^2$$

We set up one array to store the x value for the data which is called a. Based on this array, we create a new matrix b:

$$b = [a^1 \quad \dots \quad a^{degree}]$$

Then we will splice a column matrix which stand for the coefficient for a^0 that is all 1 with b adduction from the left.

$$b = [ones \ b]$$

Then we create a new matrix c degree \times degree whose the main diagonal is $\sqrt{\lambda}$:

$$c = \begin{bmatrix} \sqrt{\lambda} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{\lambda} \end{bmatrix}$$

Matrix A is the combination of Matrix c and Matrix b from vertical direction:

$$A = \begin{bmatrix} b \\ c \end{bmatrix}$$

Picture 1. Composition of A matrix

Meanwhile, we need to deal with the y values of the data points as well. We set up one array to store the y value for the data which is called y. To carry out the matrix calculation, y should be an $\# \ of \ data \ points \ \times \ degree$ matrix. So we need to provide enough zeros for it:

$$B = \vdots$$

So by calculation:

$$X = A \backslash B$$

We can find out the solution for this least square problem.

Picture 2. Example of 4-fold cross validation

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
Training	0.855	0.853	0.270	0.243	0.168	0.153	0.110	0.074	1.18E
Error	951	836	23	957	454	101	869	539	-20
	0.156	0.146	0.148	0.161	0.259	0.302	0.398	0.413	4.979
Test Error	486	281	816	313	01	324	575	903	396

Table 1. Small Data Error without regularization

Figure 2. Training Data and Test Data for Task1

Figure 3. Data and Fitting Curve with smallest error

From a., we can see that when n = 2, we have the smallest Test Error:

$$a_0 = 0.9464$$
 $a_1 = -1.7276$
 $a_2 = -0.5127$

When n = 9, we have the smallest Training Error:

$$a_0 = 0.0000$$
 $a_1 = -0.0004$
 $a_2 = 0.0104$
 $a_3 = -0.0935$
 $a_4 = 0.4348$
 $a_5 = -1.1689$
 $a_6 = 1.8835$
 $a_7 = -1.7944$
 $a_8 = 0.9318$
 $a_9 = -0.2032$

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
Training	0.386	0.386	0.215	0.215	0.209	0.206	0.205	0.202	0.200
Error	532	018	725	499	562	802	401	191	51
	0.181	0.178	0.004	0.004	0.000	0.002	0.005	0.009	0.007
Test Error	946	101	612	618	477	946	07	12	493

Table 2. Large Data Error without regularization

Figure 4. Training Data and Test Data for Task2

Figure 5. Large Data and Fitting Curve with smallest error

From a., we can see that when n = 5, we have the smallest Test Error:

$$a_0 = 0.0212$$
 $a_1 = 4.8355$
 $a_2 = 14.6874$
 $a_3 = -108.8702$
 $a_4 = 150.4993$
 $a_5 = -61.4130$

When n = 9, we have the smallest Train Error:

$$a_0 = 0.0000$$
 $a_1 = -0.0011$
 $a_2 = 0.0142$
 $a_3 = 0.0022$
 $a_4 = -0.4917$
 $a_5 = 2.2966$
 $a_6 = -4.9279$
 $a_7 = 5.6457$
 $a_8 = -3.3434$
 $a_9 = 0.8053$

Model	10^-6	10^-3	1	10^3	10^6
Training Error	0.156036	0.229233	0.839931	1.370526	1.376684
Test Error	0.280026	0.139054	0.192366	0.538351	0.541034

Table 3. Regularization Error

Figure 6. Training Data and Test Data for Task3

Figure 7. Fitting Curve and Data

when $\lambda = 10^{-3}$, the coefficients are:

$$a_0 = 0.1566$$
 $a_1 = 8.0897$
 $a_2 = -13.1951$
 $a_3 = -9.4143$
 $a_4 = 0.4092$
 $a_5 = 6.9911$
 $a_6 = 8.4356$
 $a_7 = 5.6119$
 $a_8 = -0.0217$
 $a_9 = -7.1864$

when $\lambda = 10^{-6}$, the coefficients are: $a_0 = 0.1754$ $a_1 = 0.0994$ $a_2 = 42.5976$ $a_3 = -93.6615$ $a_4 = -41.5986$ $a_5 = 92.0527$ $a_6 = 84.5541$ $a_7 = -29.4705$ $a_8 = -92.7029$ $a_9 = 37.7115$

Weight	10^-6	10^-3	10^-0	10^3	10^6
average validation error	0.061266	0.021855	0.064627	0.179386	0.136178

Table 4. Cross Validation

 $Test\ Error = 0.27119115012813369557673835053065$

Coefficient:

$$a_0 = -0.0185$$
 $a_1 = 7.8914$
 $a_2 = -15.8554$
 $a_3 = -4.7887$
 $a_4 = 5.6510$
 $a_5 = 7.6883$
 $a_6 = 4.8984$
 $a_7 = 0.8601$
 $a_8 = -2.4331$
 $a_9 = -4.1180$

Best regularization weight:

$$\lambda = 10^{-3}$$

Training errors decrease with the increase of degree

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	0.8559	0.8538	0.2702	0.2439	0.1684	0.1531	0.1108	0.0745	1.18E-
Training Error	51	36	3	57	54	01	69	39	20

Small Data

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	0 3865	0 3860	O 2157	0 2154	0 2095	0 2068	0 2054	0 2021	0.2005
Training Error							0.2094	91	1

Large Data

Test errors do not have this tendency

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	0.1564	0.1462	0.1488	0.1613	0.2590	0.3023	0.3985	0.4139	4.9793
Test Error	86	81	16	13	1	24	75	03	96

Small Data

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	0.1819	0.1781	0.0046	0.0046	0.0004	0.0029	0.0050	0.0091	0.0074
Test Error	46	01	12	18	77	46	7	2	93

Training errors decrease with the increase of dataset

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	0.8559	0.8538	0.2702	0.2439	0.1684	0.1531	0.1108	0.0745	1.18E-
Training Error	51	36	3	57	54	01	69	39	20

Small Data

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	n 3865	n 386n	ი 2157	∩ 215 <i>/</i> I	n 2095	n 2068	0 205 <i>4</i>	n 2021	0.2005
Training Error			25		62		0.2034	91	1

Large Data

Test errors do have this tendency

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	0.1564	0.1462	0.1488	0.1613	0.2590	0.3023	0.3985	0.4139	4.9793
Test Error	86	81	16	13	1	24	75	03	96

Small Data

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
	0.1819	0.1781	0.0046	0.0046	0.0004	0.0029	0.0050	0.0091	0.0074
Test Error	46	01	12	18	77	46	7	2	93

Value of N=9 is weird

Model	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9
Training	0.855	0.853	0.270	0.243	0.168	0.153	0.110	0.074	1.18E
Error	951	836	23	957	454	101	869	539	-20
	0.156	0.146	0.148	0.161	0.259	0.302	0.398	0.413	4.979
Test Error	486	281	816	313	01	324	575	903	396

Table 1. Small Data Error without regularization

Thanks