АлГем

Сергей Григорян

18 сентября 2024 г.

Содержание

1	Декартова система коор-т	•
2	Скалярное произведение	6
3	Выр-е скалярного произведения в ОНБ и произвольном базисе	8
4	Ориентация на пл-ти	10

1 Декартова система коор-т

$$G = \begin{pmatrix} \overline{e_1} & \overline{e_2} \end{pmatrix}$$

- ОНБ

$$G'\text{-} \ G \ \text{повёрнутый на } \alpha$$

$$\overline{e_1}' = \cos\alpha\overline{e_1} + \sin\alpha\overline{e_2}$$

$$\overline{e_2}' = -\sin\alpha\overline{e_1} + \cos\alpha\overline{e_2}$$

$$\Rightarrow S = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} = R(\alpha) \text{ - Rotation - поворот.}$$

Утверждение 1.1. Пусть $S = S_{G \to G'}$. Пусть $T = S_{G' \to G''}$. Тогда:

$$ST = S_{G \to G''}$$

Доказательство.

$$G' = GS$$
, $G'' = G'T \Rightarrow G'' = G'T = GST$

Утверждение 1.2. Пусть S - матрица перехода от G κ G'. T - матр. перехода от G' κ G. Тогда:

$$ST = TS = E$$
 - единичная матрица

Доказательство.

$$G''=G\Rightarrow ST$$
 - матрица перехода от G к $G\Rightarrow ST=E$
$$TS$$
 - матрица перехода от G' к $G'\Rightarrow TS=E$

<u>Обозначение</u>. **Единичная матрица** E - диагональная матрица c единицами на главной диагонали.

$$E = \begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 1 \end{pmatrix}$$

Определение 1.1. Если выполняется рав-во ST = TS = E, то матрица T называется обратной к S.

Определение 1.2. Матрица наз-ся **обратимой**, если у неё есть обратная матрица.

Утверждение 1.3. Если обратная матрица сущ-ет, то она единственная

Доказательство. От. прот. Пусть $A^{-1}, \overline{A}^{-1}$ - обратные матрицы к матр. A.

$$A^{-1} = EA^{-1} = (\overline{A}^{-1}A)A^{-1} = \overline{A}^{-1}(AA^{-1}) = \overline{A}^{-1}E = \overline{A}^{-1}$$

<u>Следствие</u>. Матрица перехода от одного базиса к другому **всегда об**ратима.

Задача 1.1. Док-ть, что $R(\alpha)$ обладает св-вами:

- 1) $R(\alpha)R(\beta) = R(\alpha + \beta)$
- 2) $R(\alpha)^{-1} = R(-\alpha) = R(\alpha)^T$

 ${\bf \underline{3aдaчa}}$ **1.2.** Пусть $\overline{a}=\begin{pmatrix} \alpha_1\\ \alpha_2 \end{pmatrix}$ (отн. ОНБ G) - вектор, выход. из нач. коор-т. \overline{b} - вектор \overline{a} повернутый на α , тогда:

$$\overline{b} = R(\alpha), \overline{a} = R(\alpha) \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

Определение 1.3. Пусть т. O - фикс. точка, начало коор-т. G базис в $\overline{V_i}$. Тогда: (O,G) - ДСК

Определение 1.4. ДСК наз-ся прямоугольной, если G - ОНБ.

Определение 1.5. A - точка. Тогда коор-ты вектора \overline{OA} наз-ся коор-тами точки A в ДСК (O,G):

$$A \underset{(O,E)}{\longleftrightarrow} \alpha \iff \overline{OA} = G\alpha = \begin{pmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$$

Утверждение 1.4.
$$A \underset{(O,E)}{\longleftrightarrow} \alpha, B \underset{(O,E)}{\longleftrightarrow} \beta \Rightarrow$$

$$\overline{AB} = \overline{OB} - \overline{OA} = G\beta - G\alpha = G(\beta - \alpha)$$

Итого: чтобы найти вектор по его концам, нужно из коор-ты конца вычесть коор-ту начала.

Утверждение 1.5 (О делении отрезка в данном соотношении).

$$A \longleftrightarrow_{(O,E)} \alpha, B \longleftrightarrow_{(O,E)} \beta$$

Пусть т. C делит отрезок [A,B] в отношении $\frac{\lambda}{\mu}$. Тогда:

$$C \underset{(O,E)}{\longleftrightarrow} \frac{\mu\alpha + \lambda\beta}{\lambda + \mu} \iff$$
 $\iff \overline{c} = \frac{\mu}{\lambda + \mu} \overline{a} + \frac{\lambda}{\lambda + \mu} \overline{b}$ - выпуклая ЛК

Доказательство.

$$\overline{OC} = \overline{OA} + \overline{AC}$$

$$\overline{AC} = \frac{\lambda}{\lambda + \mu} \overline{AB} = \frac{\lambda}{\lambda + \mu} (\overline{b} - \overline{a})$$

$$\overline{c} = \alpha + \frac{\lambda}{\lambda + \mu} (\overline{b} - \overline{a}) = (1 - \frac{\lambda}{\lambda + \mu}) \overline{a} + \frac{\lambda}{\lambda + \mu} \overline{b} = \frac{\mu}{\lambda + \mu} \overline{a} + \frac{\lambda}{\lambda + \mu} \overline{b}$$

Теорема 1.1 (Об изменении коор-т точки при замене ДСК). *Пусть в* $\overline{V_i} \ \phi u \kappa c.: (O,G) \ (I \ \mathcal{A}CK) \ u \ (O',G') \ (II \ \mathcal{A}CK).$

Доказательство.

$$\overline{OA} = \overline{OO'} + \overline{O'A}$$

$$\overline{OA} = G\alpha$$

$$\overline{OO'} + \overline{O'A} = G\gamma + G'\alpha' = G\gamma + GS\alpha' = G(S\alpha' + \gamma)$$

2 Скалярное произведение

Определение 2.1. V_i . Скалярное произведение векторов \overline{a} и \overline{b} обозначаем $(\overline{a}, \overline{b})$ (в физике $\overline{a} \cdot \overline{b}$). Это число, равное:

$$(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos \alpha$$

$$\alpha = \angle (\overline{a}, \overline{b})$$

Если хотя бы один из векторов нулевой, то скал. произ. = 0.

Обозначение.

$$(\overline{a},\overline{a})=|\overline{a}|^2$$
 - скалярный квадрат \overline{a}

Замечание.

$$(\overline{a}, \overline{b}) = 0 \iff \overline{a} \perp \overline{b}$$

Определение 2.2. (***Картинка***)

Вектор, порождаемые напр. отр-ом $\overline{OA'}$ наз-ся проекцией вектора \overline{a} на вектор \overline{b} :

$$pr_{\overline{b}}\overline{a} = \overline{OA'}$$
$$(pr_{\overline{b}}\overline{a} = 0 \Rightarrow (\overline{a}, \overline{b}) = 0)$$

Утверждение 2.1. (Линейность векторной проекции)

- a) $pr_{\overline{b}}(\overline{a_1}+\overline{a_2})=pr_{\overline{b}}(\overline{a_1})+pr_{\overline{b}}(\overline{a_2})(\overline{b}\neq \overline{o})$ ассоциативность
- b) $\forall \lambda \in \mathbb{R} \colon pr_{\overline{b}}(\lambda \overline{a}) = \lambda pr_{\overline{b}}(\overline{a})$ однородность

Доказательство. а) (***Картинка***)

$$pr_{\overline{b}}(\overline{a_1} + \overline{a_2}) = \overline{OA_2'} = \overline{OA_1'} + \overline{A_1'A_2'} = pr_{\overline{b}}(\overline{a_1}) + pr_{\overline{b}}(\overline{a_2})$$

b) Для $\lambda > 0$: (****Картинка***)

$$pr_{\overline{b}}(\lambda \overline{a}) = \overline{OA'} = \lambda \overline{OA'} = \lambda pr_{\overline{b}}(\overline{a})$$

Утверждение 2.2. Пусть $\bar{b} \neq \bar{o}$. Тогда:

$$(pr_{\overline{b}}(\overline{a}), \overline{b}) = (\overline{a}, \overline{b})$$

Доказательство.

$$\angle(\overline{a}, \overline{b}) = \phi.$$

- ullet Если $\phi=rac{\pi}{2}$ рав-во верно.
- ullet Если $\overline{a}=\overline{o}$ рав-во верно
- Пусть $\phi \neq \frac{\pi}{2} \Rightarrow \cos \alpha \neq 0$.

$$|pr_{\overline{b}}(\overline{a})| = |\overline{a}||\cos\phi| = \begin{cases} |\overline{a}|\cos\phi, \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \uparrow \overline{b} \\ -|\overline{a}|\cos\phi, \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \downarrow \overline{b} \end{cases}$$

$$\Rightarrow (pr_{\overline{b}}(\overline{a}), \overline{b}) = \begin{cases} |\overline{a}|\cos\phi|\overline{b}| * 1, \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \uparrow \overline{b} \\ -|\overline{a}|\cos\phi|\overline{b}| * (-1), \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \downarrow \overline{b} \end{cases} = (\overline{a}, \overline{b})$$

- 2. Аддитивность по I арг-ту: $(\overline{a_1} + \overline{a_2}, \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b})$
- 3. Однородность по I арг-ту: $(\lambda \overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b})$
- 4. Полож. onpedeлённость: $(\overline{a},\overline{a}) \geq 0, \forall \overline{a} \ u \ (\overline{a},\overline{a}) \iff \overline{a} = \overline{o}$

Доказательство. 3) При $\lambda=0$ и $\lambda=-1$ очев. При $\lambda>0$:

$$\angle(\lambda \overline{a}, \overline{b}) = \angle(\overline{a}, \overline{b})$$

$$(\lambda \overline{a}, \overline{b}) := |\lambda \overline{a}| |\overline{b}| \cos(\lambda \overline{a}, \overline{b}) = \lambda |\overline{a}| |\overline{b}| \cos \angle(\overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b})$$

2)

$$\begin{split} (\overline{a_1} + \overline{a_2}, \overline{b}) &= (pr_{\overline{b}}(\overline{a_1} + \overline{a_2}), \overline{b}) = (pr_{\overline{b}}(\overline{a_1}) + pr_{\overline{b}}(\overline{a}), \overline{b}) = \begin{bmatrix} pr_{\overline{b}}(\overline{a_1}) = \lambda_1 \overline{b} \\ pr_{\overline{b}}(\overline{a_2}) = \lambda_2 \overline{b} \end{bmatrix} = \\ &= ((\lambda_1 + \lambda_2)\overline{b}, \overline{b}) = (\lambda_1 + \lambda_2)(\overline{b}, \overline{b}) = \lambda_1(\overline{b}, \overline{b}) + \lambda_2(\overline{b}, \overline{b}) = (\lambda_1 \overline{b}, \overline{b}) + (\lambda_2 \overline{b}, \overline{b}) = \\ &= (pr_{\overline{b}}(\overline{a_1}), \overline{b}) + (pr_{\overline{b}}(\overline{a_2}), \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b}) \end{split}$$

Утверждение 2.3. Пусть $\bar{b} \neq \bar{o}$. Тогда:

$$pr_{\overline{b}}(\overline{a}) = \frac{(\overline{a}, \overline{b})}{|\overline{b}|^2} * \overline{b}$$

Доказательство.

$$pr_{\overline{b}}(\overline{a}) = \lambda \overline{b} \mid \cdot \overline{b}$$

$$(pr_{\overline{b}}(\overline{a}), \overline{b}) = \lambda (\overline{b}, \overline{b}) = \lambda |\overline{b}|^{2}$$

$$\lambda = \frac{(pr_{\overline{b}}(\overline{a}))}{|\overline{b}|^{2}} = \frac{(\overline{a}, \overline{b})}{|\overline{b}|^{2}}$$

3 Выр-е скалярного произведения в ОНБ и произвольном базисе

<u>Утверждение</u> 3.1. G - OHB. $\overline{a} \underset{G}{\longleftrightarrow} \alpha$. $Tor\partial a \ \alpha_i = (\overline{a}, \overline{e_i})$

Доказательство.

$$\overline{a} = \sum_{s=1}^{n} \alpha_s \overline{e_s}$$

$$(\overline{a}, \overline{e_i}) = (\sum_{s=1}^{n} \alpha_s \overline{e_s}, \overline{e_i}) = \sum_{s=1}^{n} \alpha_s (\overline{e_s}, \overline{e_i}) = \alpha_i = 1$$

$$(\overline{e_i}, \overline{e_i}) = |\overline{e_i}|^2 = 1$$

Теорема 3.1. (Выраж. ск. произ. в ОНБ) G - ОНБ, $\overline{a} \longleftrightarrow_{G} \alpha, \overline{b} \longleftrightarrow_{G} \beta$. Тогда $(\overline{a}, \overline{b}) = \sum_{i=1}^{n} \alpha_{i}\beta_{i} = \alpha^{T}\beta$

Доказательство.

$$\overline{a} = \sum_{i=1}^{n} \alpha_{i} \overline{e_{i}}, \overline{b} = \sum_{j=1}^{n} \beta_{j} \overline{e_{j}}$$

$$(\overline{a}, \overline{b}) = (\sum_{i} \alpha_{i} \overline{e_{i}}, \sum_{j} \beta_{j} \overline{e_{j}}) = \sum_{i} \sum_{j} \alpha_{i} \beta_{j} (\overline{e_{i}}, \overline{e_{j}}) = \sum_{i=1}^{n} \alpha_{i} \beta_{i} = \alpha^{T} \beta$$

Замечание. $V_3:(\overline{a},\overline{b})=\alpha_1\beta_1+\alpha_2\beta_2+\alpha_3\beta_3$

V - лин. пр-во, $G=(\overline{e_1},\overline{e_2},\ldots,\overline{e_n})$ - базис в V.

Определение 3.1. Матрицей Грама базиса G наз-ся матрица:

$$\Gamma = \begin{pmatrix} (\overline{e_1}, \overline{e_1}) & (\overline{e_1}, \overline{e_2}) & \dots & \overline{e_1}, \overline{e_n} \\ & \dots & & \\ (\overline{e_n}, \overline{e_1}) & (\overline{e_n}, \overline{e_2}) & \dots & (\overline{e_n}, \overline{e_n}) \end{pmatrix}$$

Теорема 3.2. Пусть V - лин. пр-во, G - произ. базис c матр. Грама Γ .

$$\overline{a} \longleftrightarrow_{G} \alpha, \overline{b} \longleftrightarrow_{G} \beta \Rightarrow (\overline{a}, \overline{b}) = \alpha^{T} \Gamma \beta$$

Доказательство.

$$\overline{a} = \sum_{i} \alpha_i \overline{e_i}$$

$$\overline{b} = \sum_{i} \beta_{j} \overline{e_{j}}$$

$$(\overline{a}, \overline{b}) = \sum_{i} \sum_{j} \alpha_{i} \beta_{j} (\overline{e_{i}}, \overline{e_{j}}) = \sum_{i} \sum_{j} \alpha_{i} [\Gamma]_{ij} \beta_{j} = \sum_{i} \alpha_{i} \sum_{j} [\Gamma]_{ij} \beta_{j} = \sum_{i} \alpha_{i} [\Gamma \beta]_{i} = \alpha^{T} [\Gamma] \beta$$

Определение 3.2. Матрица $S_{n \times n}$ наз-ся ортогональной, если:

$$S^T S = E$$

Утверждение 3.2. ПУсть в V_i , G - OHB u F - произвольный базис u nycmb $S = S_{G \to F}$. Тогда базис F явл. OHB \iff S - ортогональная.

Доказательство.

$$S = \begin{pmatrix} F_1^{\uparrow} & F_2^{\uparrow} & \dots & F_n^{\uparrow} \end{pmatrix}, S^T S = \begin{pmatrix} F_1^{\rightarrow} \\ F_2^{\rightarrow} \\ \vdots \\ F_n^{\rightarrow} \end{pmatrix} \begin{pmatrix} F_1^{\uparrow} & F_2^{\uparrow} & \dots & F_n^{\uparrow} \end{pmatrix} =$$

$$=\begin{pmatrix} (F_1,F_1) & (F_1,F_2) & \dots & (F_1,F_n) \\ & \dots & & \\ (F_n,F_1) & (F_n,F_2) & \dots & (F_n,F_n) \end{pmatrix} = \Gamma_F$$

$$F \text{ - OHB} \iff \Gamma_f = E \iff S^TS = E \iff S \text{ - opt.}$$

Задача 3.1. Д-ть, что Γ_G и Γ_F - матр. грамма двух произв. базисов в $\overline{V_i}$, то если $S = S_{G \to F}$, то:

$$\Gamma_F = S^T \Gamma_G S$$

Утверждение 3.3. Пусть в V_i G - OHE. Тогда:

a)
$$|\overline{a}| = \sqrt{(\overline{a}, \overline{a})} = \sqrt{\alpha^T \alpha} = \sqrt{\sum_{s=1}^n \alpha_s^2} \ (\overline{a} \longleftrightarrow_G \alpha)$$

b) Ecnu $\overline{a} \neq \overline{o}$ u $\overline{b} \neq 0$. Torda:

$$\cos \phi = \frac{(\overline{a}, \overline{b})}{|\overline{a}||\overline{b}|} = \frac{\alpha^T \beta}{\sqrt{\alpha^T \alpha} \sqrt{\beta^T \beta}} = \frac{\sum_{i=1}^n \alpha_i \beta_i}{\sqrt{\sum \alpha_i^2} \sqrt{\sum \beta_i^2}}$$

Следствие.
$$V_3$$
. $A \underset{(O,G)}{\longleftrightarrow} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$, $B \underset{(O,G)}{\longleftrightarrow} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$, $\overline{AB} = \begin{pmatrix} \beta_1 - \alpha_1 \\ \beta_2 - \alpha_2 \\ \beta_3 - \alpha_3 \end{pmatrix}$:

$$|\overline{AB}| = \sqrt{(\overline{AB}, \overline{AB})} = \sqrt{\sum_{i=1}^{3} (\beta_i - \alpha_i)^2}$$

4 Ориентация на пл-ти

Определение 4.1. Упорядоченная пара векторов $\overline{a}, \overline{b}(\overline{a} / | \overline{b})$ наз-ся положительно ориентированной, если при взгляде из фиксир. полупрва кратчайший поворот первого вектора (\overline{a}) в вектор, сонаправленный второму вектору (\overline{b}) кажется совершающим против. часовой стрелки.

Определение 4.2. Упорядоченная тройка некомпл. векторов $(\overline{a}, \overline{b}, \overline{c})$ наз-ся правой тройкой (положит. ориент), если $(\overline{a}, \overline{b})$ из конца вектора \overline{c} каж-ся положит. ориентированной. Иначе - наз-ся левой тройкой (отриц. ориент.)

Утверждение 4.1. а) Если на пл-ти V_2 , $(\overline{a}, \overline{b})$ - положит. ориент., то пара $(\overline{b}, \overline{a})$ - отриц. ориент. и наоборот.

b) в V_3 : $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{b}, \overline{a}, \overline{c})$ всегда прот. ориент. $(\overline{a}, \overline{b}, \overline{c})$ всегда одинаково ориент.

Доказательство. а) Очев.

b)

Определение 4.3. Транспозиция - перемещ. мест двух векторов.

Определение 4.4. 3-цикл: $(\overline{a},\overline{b},\overline{c})\mapsto (\overline{b},\overline{c},\overline{a})\mapsto (\overline{c},\overline{a},\overline{b})$

<u>Замечание</u>. \Rightarrow Всякая **транспозиция меняет** ориентацию, а всякий **3-цикл - сохраняет**.

Определение 4.5. V_2 - с фикс. ориентацией. Тогда ор. площадью упор. пары $(\overline{a}, \overline{b})$ наз-ся число S:

$$S(\overline{a},\overline{b})=\pm S_{\text{пар-м, порожд.}a\ \text{и}\ b}$$

(Знак +/- зависит от положит./отриц. ориентации $(\overline{a},\overline{b})$)

Определение 4.6. V_3 - с фикс. ор. Тогда ориентированным объёмом упор. тройки $(\overline{a}, \overline{b}, \overline{c})$ наз-ся число:

$$V(\overline{a},\overline{b},\overline{c})=\pm V$$
 - объём параллелипипеда, порожд. $(\overline{a},\overline{b},\overline{c})$

(+/- зависит от полож./отриц. ориентации тройки)

Замечание.
$$E$$
сли $\overline{a}||\overline{b}, \ mo\ S(\overline{a},\overline{b})=0$
 E сли $\overline{a},\overline{b},\overline{c}$ - комплан., $mo\ V(\overline{a},\overline{b},\overline{c})=0$

 $\underline{\bf 3aмечание}.\ V(\overline{a},\overline{b},\overline{c})$ наз-ся также смешанным произведением векторов.

Утверждение 4.2. a) Если $(\overline{a}, \overline{b})$ - ОНБ в V_2 , то

$$S(\overline{a},\overline{b})=\pm 1,$$

в зависимости от ориентации $(\overline{a},\overline{b})$

b) $Ec_{\Lambda}u$ $(\overline{e_1}, \overline{e_2}, \overline{e_3})$ $e_{\Lambda}V_3$, mo:

$$V(\overline{e_1}, \overline{e_2}, \overline{e_3}) = \pm 1,$$

в зависимости от ориентации $(\overline{e_1}, \overline{e_2}, \overline{e_3})$

- ${
 m {f Teopema}}$ 4.1 (О св-вах ориент. объёма). а) Ориент. объём $V(\overline{a},\overline{b},\overline{c})$ меняет знак на противоположный при любой транспозиции арг-ов. $V(\overline{a},\overline{b},\overline{c})$ не меняет знак при 3-цикле.
 - b) Аддитивность на III аргументах: $V(\overline{a}, \overline{b}, \overline{c_1} + \overline{c_2}) = V(\overline{a}, \overline{b}, \overline{c_1}) + V(\overline{a}, \overline{b}, \overline{c_2})$
 - c) Однородность на III аргументах: $V(\overline{a}, \overline{b}, \lambda \overline{c}) = \lambda V(\overline{a}, \overline{b}, \overline{c})$

 \mathcal{A} оказательство. b) Если $\overline{a}||\overline{b},$ то очев. Пусть $\overline{a}\not{||}\overline{b}.$ α - образована \overline{a} и \overline{b}

$$\overline{n}\colon \overline{n}\perp \overline{a}, \overline{b}, |\overline{n}|=1, (\overline{a}, \overline{b}, \overline{n})$$
- правая

Лемма 4.2.
$$V(\overline{a}, \overline{b}, \overline{c}) = S(\overline{a}, \overline{b}) * (\overline{n}, \overline{c})$$
 л. ч. $|V(\overline{a}, \overline{b}, \overline{c})| = V_{nap.}$ $|S(\overline{a}, \overline{b})(\overline{n}, \overline{c})| = S(\overline{a}, \overline{b})|\overline{c}||\cos \angle(\overline{n}, \overline{c})|$

$$V(\overline{a},\overline{b},\overline{c})>0\iff (\overline{a},\overline{b},\overline{c})$$
 - правая \iff

концы \overline{n} и \overline{c} лежат в одном полупр-ве от $\alpha \iff \cos \angle(\overline{n},\overline{c}) > 0$

$$V(\overline{a}, \overline{b}, \overline{c_1} + \overline{c_2}) = S(\overline{a}, \overline{b})(\overline{n}, \overline{c_1} + \overline{c_2}) = S(\overline{a}, \overline{b})(\overline{n}, \overline{c_1}) + S(\overline{a}, \overline{b})(\overline{n}, \overline{c_2}) = V(\overline{a}, \overline{b}, \overline{c_1}) + V(\overline{a}, \overline{b}, \overline{c_2})$$

Теорема 4.3 (О св-вах ориент площади). a) $S(\overline{a}, \overline{b}) = -S(\overline{b}, \overline{a})$ - ко-

- b) $S(\overline{a}, \overline{b_1} + \overline{b_2}) = S(\overline{a}, \overline{b_1}) + S(\overline{a}, \overline{b_2})$ аддитивность по II арг-ту.
- c) $S(\overline{a}, \lambda \overline{b}) = \lambda S(\overline{a}, \overline{b})$

Утверждение 4.3. Пусть
$$\overline{a} \longleftrightarrow_{G} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}, \overline{b} \longleftrightarrow_{G} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$
 Тогда $S(\overline{a}, \overline{b}) = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} S(\overline{e_1}, \overline{e_2})$

$$S(\overline{a}, \overline{b}) = S(\alpha_1 \overline{e_1} + \alpha_2 \overline{e_2}, \beta_1 \overline{e_1} + \beta_2 \overline{e_2}) = \alpha_1 \beta_2 S(\overline{e_1}, \overline{e_2}) + \alpha_2 \beta_1 S(\overline{e_2}, \overline{e_1}) = S(\overline{e_1}, \overline{e_2})(\alpha_1 \beta_2 - \alpha_2 \beta_1) =$$

$$= \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} S(\overline{e_1}, \overline{e_2})$$