CHAPITRE EA3

L'amplificateur opérationnel l Circuits de base, non-idéalités

SOMMAIRE

- 1. Introduction
- 2. L'amplificateur opérationnel idéal
- 3. Circuits d'application linéaires
- 4. Mise en œuvre
- 5. Principales non-idéalités et leurs effets
- 6. Circuits non-linéaires: comparateurs

1. Introduction – L'amplificateur opérationnel, la contre-réaction

Qu'est-ce qu'un amplificateur opérationnel ?

C'est un **amplificateur de tension** qui réalise la fonction $V_S = A(V^+ - V^-)$

Particularité: le gain A est très grand (typiquement $> 10^5$)

Qu'est-ce que la contre-réaction ?

C'est lorsque l'on prélève une image de la grandeur de sortie (S_0) pour la soustraire à la grandeur d'entrée (S_e) dans le but de faire tendre l'erreur ε vers 0

$$\varepsilon = \frac{S_0}{A} = S_e - F.S_0$$

$$\frac{S_0}{S_e} = \frac{A}{1 + A.F} \text{ et pour } A.F \gg 1, \frac{S_0}{S_e} \approx \frac{1}{F}$$

1 La valeur exacte de A est sans importance!

• Que fait un amplificateur opérationnel dans un circuit contre-réactionné?

Il **tente** d'ajuster sa tension de sortie Vs de telle façon que :

$$\varepsilon = V^+ - V^- \rightarrow 0$$

2. L'AMPLIFICATEUR OPÉRATIONNEL IDÉAL — <u>Tensions, courants, hypothèses de fonctionnement</u>

• Superposition d'un régime statique (DC) et d'un régime dynamique (signal)

2. L'AMPLIFICATEUR OPÉRATIONNEL IDÉAL — Régime dynamique: schéma aux variations (signal)

in out R_{in} ${\cal E}$ $V_{in} = \pm \delta V_{in}$ $V_{out} = \pm \delta V_{out}$ R_1 R_2 7///

$$\varepsilon = \frac{V_{out}}{A} \to 0$$

$$i_{\varepsilon} = \frac{\varepsilon}{R_{in}} \to 0$$

2. L'AMPLIFICATEUR OPÉRATIONNEL IDÉAL — Modèle et règles d'utilisation

• Règle d'or N°1: SI (contre-réaction ET zone linéaire ET A très grand) ALORS arepsilon=0 ET $i_e=0$

• Règle d'or N°2: il est IMPERATIF de prévoir un chemin continu (DC) entre les entrées de l'amplificateur et une source de tension présente dans le circuit

3. CIRCUITS D'APPLICATION LINÉAIRES — Amplificateurs de tension et de transrésistance

• Le plus simple possible ... suiveur de tension

$$V_{in} + \varepsilon = V_{out}$$
 $Av = \frac{V_{out}}{V_{in}} = 1$ $Z_{in} = \frac{V_{in}}{i_{\varepsilon}}$ $Z_{out} \approx 0$

• Un peu plus compliqué... convertisseur courant-tension (transrésistance)

$$\varepsilon - R_F \times I_{in} = V_{out}$$
 $R_T = \frac{V_{out}}{I_{in}} = -R_F$ $Z_{in} = \frac{\varepsilon}{I_{in}} \to 0$ $Z_{out} \approx 0$

3. CIRCUITS D'APPLICATION LINÉAIRES – Amplificateurs de tension (suite)

Amplificateur de tension « universel »

$$V_{out} = \frac{-R_F}{R_S} \times V_{in1} + \left(1 + \frac{R_F}{R_S}\right) V_{in2}$$

$$Z_{in1} = \frac{V_{in1}}{I_{in}} = R_S \qquad Z_{out} \approx 0$$

$$Z_{in2} = \frac{V_{in2}}{i_{\varepsilon}} \to \infty$$

Amplificateur sommateur pondéré inverseur

$$V_{out} = \cdots$$

$$Z_{inj} = \frac{V_{inj}}{I_{inj}} = \cdots$$

$$Z_{out} \approx 0$$

3. CIRCUITS D'APPLICATION LINÉAIRES — Amplificateurs de courant

$$I_{out} = ?$$
 $Z_{in} = ?$
 $Z_{out} = ?$

$$I_{out} = ?$$
 $Z_{in} = ?$
 $Z_{out} = ?$

3. CIRCUITS D'APPLICATION LINÉAIRES — Amplificateurs de transconductance

$$G_m = \frac{I_L}{V_i} = \frac{1}{R}$$

3. CIRCUITS D'APPLICATION LINÉAIRES — Circuits multi-étages : calcul du gain global

diviseur de tension avec Z_{in1}

$$V_{in} = V_g \frac{Z_{in1}}{Z_{in1} + R_g}$$

$$V_1 = V_{in} A_{V1} \frac{Z_{in2}}{Z_{in2} + Z_{out1}}$$

 $V_{out} = V_1 A_{V2} \frac{R_L}{R_L + Z_{out2}}$

C'est le gain en charge

3. CIRCUITS D'APPLICATION LINÉAIRES — Circuits multi-étages : adaptation

• Adaptation en tension: transfert maximal de la tension V_g vers la charge R_L

• Adaptation en courant: transfert maximal du courant I_g vers la charge R_L

$$i_L = \frac{R_g}{R_L + R_g} I_g$$
 il faut $R_g \gg R_L$

• Adaptation en puissance: transfert maximal de puissance vers la charge

$$R_L = R_S$$
 pour P_{RL} maximal

4. MISE EN ŒUVRE – Alimentation symétrique (Split-Supply)

• Exemple : amplificateur non-inverseur de gain 10

4. MISE EN ŒUVRE – Alimentation asymétrique (Single-Supply)

• Exemple : amplificateur inverseur de gain 10 sans décalage

4. MISE EN ŒUVRE – Alimentation asymétrique (Single-Supply)

• Exemple : amplificateur inverseur de gain 10 avec décalage du point de polarisation

- $V_{CC} = 1.5 \text{ à } 30 \text{ Vet } V_{EE} = 0$
- Permet maintenant de traiter directement les signaux bipolaires

dynamique pour

Point de polarisation :

$$V_{out} = \frac{V_{CC}}{2}$$

Région non utilisable

-15 V -

5. Principales non-idéalités et leurs effets — Limitation en tension et en courant

• En réalité, la dynamique en sortie est inférieure à $V_{CC}-V_{EE}$: tensions de déchet

5. Principales non-idéalités et leurs effets — Limitation en tension et en courant

 I_0 : limitation pour protection contre les court-circuits (et pas uniquement les court-circuits à la masse!!)

5. Principales non-idéalités et leurs effets — Tension de décalage (offset)

Pour
$$V_i = 0$$
:
$$V_0 = \left(1 + \frac{R_2}{R_1}\right) V_{io}$$

electrical characteristics, $V_{CC} = \pm 15 \text{ V}$, $R_L = 150 \Omega$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
V _{IO} Input offset voltage	T _A = 25°C	±15 V,		2	8	mV
	T _A = full range	±5 V			10	mv
	$T_{\Lambda} = 25^{\circ}C$	1 +15 \/		26	5	

Effet induit: peut éventuellement réduire la dynamique utilisable de façon importante

Exemple: un amplificateur de gain 1000 alimenté en ± 5V

Polarité et valeur de V_{io} aléatoires

5. PRINCIPALES NON-IDÉALITÉS ET LEURS EFFETS —

Courant de polarisation (bias) & de décalage (offset)

Courant de polarisation en entrée = Input Bias Current (I_b) Courant de décalage = Offset Current (I_{OS})

$$I_b = \frac{I_{b_{moins}} + I_{b_{plus}}}{2}$$

$$I_{os} = I_{b_{moins}} - I_{b_{plus}}$$

Pour
$$V_i = 0$$
:

$$V_0 = -R_2 \left(\frac{I_{os}}{2} + I_b \right)$$

Effet induit: peut éventuellement réduire la dynamique utilisable de façon importante

Exemple: un amplificateur de transrésistance $R_T = 10^6 \ V/A$ alimenté en $\pm 5 V$

5. Principales non-idéalités et leurs effets – Slew-rate & temps d'établissement

• Slew-rate: valeur maximale du dV/dt en sortie de l'amplificateur opérationnel.

Effet induit : limite la capacité d'un circuit à suivre des signaux à évolution rapide, d'où apparition de distorsion.

5. Principales non-idéalités et leurs effets – Slew-rate & temps d'établissement

exemple de distorsion par limitation du slew-rate

• Temps d'établissement (settling time)

6. CIRCUITS NON-LINÉAIRES: COMPARATEURS — Comparateur simple

6. CIRCUITS NON-LINÉAIRES: COMPARATEURS — Comparateur à hystérésis (trigger de Schmitt)

Intérêt si l'hystérésis est supérieur au bruit (crête-crête) sur V_i

6. CIRCUITS NON-LINÉAIRES: COMPARATEURS — Aspects de réalisation pratique

Un comparateur est un circuit en boucle ouverte donc pas de contre-réaction

Utiliser des circuits dédiés à la fonction de comparateur de préférence à un OPA classique à cause des diodes de protection

