

Expanding the Boundaries of the Al Revolution:

An In-depth Study of High Bandwidth Memory

Nayoung Lee & Sung Lee | March 2018

Table of Contents

- 1 THE MEMORY CHALLENGES of DEEP LEARNING
- 2 WHY HBM?
- 3 HIGH BANDWIDTH MEMORY DEEP-DIVE

Deep Neural Network Fundamental Concepts

Source: Standford

The Need for High Bandwidth Memory

1) In-Datacenter Performance Analysis of a Tensor Processing Unit, Norm P. Jouppi et. al, (Google)

HBM, What's the difference?

GDDR/DDR/LPDDR

> FBGA

Soldered on PCB directly
Or
Use as DIMM Type

HBM

> KGSD

> HBM in 2.5D SiP

High Bandwidth Memory Delivers Small Form Factor

HBM provides highest bandwidth compare to other DRAM memories per unit area

To Achieve 1TB Bandwidth ...

High Bandwidth Memory Delivers Small Form Factor

GDDR5(X)

Density	8Gb x 12 = 12GB
IO speed	8Gbps - 11Gbps
# of 10	384 bits
Bandwidth	384 – 528GB

HBM2

Density	8GB x 4 = 32GB
IO speed	2Gbps
# of 10	1024*4 = 4096
Bandwidth	1TB

High Bandwidth Memory Delivers Unprecedented Bandwidth

HBM overcomes all DRAM bandwidth challenges

High Bandwidth Memory Delivers Power Efficiency

HBM low speed per pin & Cio reduces power consumption and increases power efficiency

Next Generation System Architectures Leveraging HBM

HBM and 2.5D integration unlock new system architectures

HPC & Server (B/W & Capacity)

Solution Capacity Solution

Network & Graphics (B/W)

HBM

Client-DT & NB (B/W & Cost)

3

HIGH BANDWIDTH MEMORY DEEP-DIVE

- 1) Innovative Design
- 2) Revolutionary Technological Features
- 3) Next Generation Line-up Considerations

Introduction

Did You Know?

HBM standard adopted by the Joint Electron Device Engineering Council(JEDEC) in 2013, and the current 2nd generation HBM in 2016.

High bandwidth, high power efficiency and compact form factors have propelled HBM collaboration engagements covering all IT sectors.

e.g. Graphics, AI/Deep Learning, HPC, SVR, NTW Router/Switches etc.

Total HBM (+HMC) market expected to increase from \$922.7M in 2018 to \$3,842.5M by 2023, resulting in CAGR 33%. (Source: RESEARCH AND MARKETS)

HBM KGSD Architecture

- **11.87x7.75x0.72mm PKG dimension**
- 9Gb per cell array (Optional 1Gb ECC cell)
- 4/8GB density per mKGSD stack
- Max 2.4Gbps data transmission speed enabling 307GB/s B/W performance

Innovative Design

HBM Gen2 Core Die

- 10.63mm x 6.65mm
- Supports Pseudo CH mode
- 2 individual sub-CH of 64bits I/O,
 16 banks
- Two seamless array access w/ Burst Length 4
- 256b Prefetch per PCH

Innovative Design

HBM Gen2 Base Die

- 11.87mm x 8.87mm
- Programmable Memory Built-In Self Test
- Direct Access
- IEEE1500
- PHY

PKG Stacking & Interconnection

PKG Stacking & Interconnection

Wire Bonding

Through Silicon Via

Wafer & KGSD PKG Level Reliability

Wafer-level Process Qualification	PKG-level Product Qualification
Time Dependent Dielectric Breakdown	EFR, HTOL, LTOL (Lifetime)
Hot Carrier Injection	TC, THB, HAST, uHAST, HTS w/ Preconditioning (Environmental)
Negative Bias Temp Instability	Electrostatic Discharge
Electro Migration	Latch-up
Stress Migration	Package Construction Analysis
TSV, uBump Electromigration	Electrical Characterization

Wafer & KGSD PKG Level Reliability

Туре	Direction	TO.1% Lifetime	Criteria
Core Die	VDD		
Core Die	VSS	>> 10 years	• $\Delta R/R_0 \times 100 > 20\%$
Base Die	VDD		
Base Die	VSS		• F(10yrs) < 0.1%
TSV	VDD		@ use condition
134	VSS		

Wafer & KGSD PKG Level Reliability

Direct Access Bump

Method	Target
Human Body Model	≥ 2,000V
Charged Device Model	≥ 500V

PHY Bump

VF-TLP(CDM like): 1.25ns

Method	Target
VF-TLP (CDM-like)	lt2 ≥ ~ 1.xA

* Very Fast Transmission Line Pulse

Wafer & KGSD PKG Level Reliability

KGSD HBM Test Flow

Core Die	Base Die	
WFBI		
Hot & Cold Test	Logic Test	
Repair		
KGSD		
TSV Scan		
Built-In Stress		
Hot & Cold Test		
Speed Test		

Wafer & KGSD PKG Level Reliability

KGSD HBM Test Coverage

Area	Туре	Comment
PHY	Function Test	RD/WT,CL,BL
	Margin Test	Speed, VDD, Setup/Hold Timing
TSV Function Test OS Check	RD/WT,CL,BL,TSV interface	
	OS Check	TSV Open/Short Check
Logic	Function Test	IEEE1500, Function, BIST, Repair
	Margin Test	VDD, Speed, Setup/Hold
Core	Function Test	RD/WT, Self Ref, Power Down
	Margin Test	Speed, VDD, Async, Refresh
	Repair	Cell Repair

Key Performance Considerations

- Transistor performance between DRAM process and Logic Process (2.8Gbps~3Gbps may be the realistic max speed on DRAM)
- TSV lines to be doubled to secure valid window
- Speed increasing makes worse power consumption
- All possible solution should be considered for power reduction
- Additional HBM cubes
- DRAM density and process are limited by SiP size
- Higher DRAM stack has to be considered to increase density

Next Generation Line-up

Key Performance Considerations

Cost Effective Solutions

TSVless Si-Interposer

Removing Si to expose BEoL layer (as RDL)

2.1D SiP

 Fine pitch organic substrate allows direct interconnection w/o interposer

Fan Out SiP on Sub.

 Removing Si-interposer thanks to fine pitch RDL trace of Fan Out Package

High Speed Signal Transmission

Si Photonics in 2.5D SiP

 Chip to chip optical signal transmission through embedded wave guide in Si-interposer Source: CEA-Leti

Low Power and Small Form Factor

Hetero-generous 3D Stack

More chips in a package with TSV stack

Thank you

Come visit us at Booth #711 and learn more about SK hynix memory solutions

