RICERCA OPERATIVA - PARTE I

ESERCIZIO 1. (11 punti) Sia dato il seguente problema di PL

$$\max \frac{-\frac{3}{2}x_1 + x_2}{-x_1 + x_2 + x_3 = 5}$$
$$-2x_1 + x_2 + x_4 = 3$$
$$x_1, x_2, x_3, x_4 \ge 0.$$

Si eseguano i seguenti punti:

- se ne derivi il duale e lo si risolva per via grafica;
- si risolva il primale utilizzando le condizioni di complementarità;
- si risolva di nuovo il primale con l'algoritmo del simplesso più opportuno;
- si esegua l'analisi di sensitività sui coefficienti di x_1 e x_2 nell'obiettivo, visualizzando graficamente cosa succede agli estremi degli intervalli individuati;
- si spieghi cosa succede se nel primale si aggiunge la variabile x_5 con coefficiente 0 nell'obiettivo e -1 sia nel primo che nel secondo vincolo (si risponda ragionando sul duale).

ESERCIZIO 2. (8 punti) Sia dato il seguente problema di PL

$$\max -x_1 + \alpha x_2$$

$$-\frac{1}{2}x_1 + x_2 + x_3 = \alpha$$

$$-x_1 + x_2 + x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Lo si risolva spiegando come varia la soluzione al variare di α .

ESERCIZIO 3. (5 punti) Si dimostri che l'illimitatezza dell'obiettivo del problema primale sulla propria regione ammissibile implica che il duale ha regione ammissibile vuota. Si dica, giustificando la risposta, se è vero anche il viceversa, ovvero che un duale con regione ammissibile vuota implica che il primale abbia obiettivo illimitato.

ESERCIZIO 4. (5 punti) Sia dato un problema di PL in forma standard con base ottima B^* . Si dica se le seguenti affermazioni sono vere o false, **motivando la risposta**:

- se si modifica un coefficiente nell'obiettivo di una variabile che si trova nella base ottima, l'intervallo in cui tale modifica mantiene l'ottimalità di B^* ha sempre due estremi finiti;
- se si modifica un coefficiente nell'obiettivo di una variabile che si trova al di fuori della base ottima, l'intervallo in cui tale modifica mantiene l'ottimalità di B^* ha sempre un solo estremo finito;
- se si modifica un coefficiente in un vincolo di una variabile che si trova al di fuori della base ottima, l'intervallo in cui tale modifica mantiene l'ottimalità di B^* ha sempre almeno un estremo finito.