

ABSTRACT OF THE DISCLOSURE

A video imaging system includes a master video camera for producing video images of a moving object of interest, a plurality of additional video cameras each positioned at a different location for producing additional video images of the object of interest from different spatial perspectives, and a control system for controlling the additional video cameras to track the object of interest imaged by the master video camera. The system generates video images using a method comprising the steps of producing a master video image of a moving object of interest, producing additional video images of the object of interest from different spatial perspectives, and controlling size of the object of interest in the additional video images in response to the size of the object of interest in the master video image. The invention further encompasses a method of presenting a video image comprising the steps of producing a plurality of video images of an object of interest from a plurality of spatial perspectives, displaying one of said video images for a period of time, selecting a frame in the displayed video image, and switching the displayed video image among a plurality of corresponding frames of said plurality of video images to display the object of interest from multiple spatial perspectives, giving the illusion of a single camera moving around the frozen object(s). This invention further encompasses the recording of point sound source by placing microphones at the cameras such that the microphones receive sound waves from the direction of the field of view of the cameras, and processing audio signals produced by these microphones to produce an audio output signal representative of sound being produced at a particular location in the area occupied by an event being recorded.