

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE INFORMÁTICA INF330 - Teoria e Modelo de Grafos Primeira prova -- 25/09/2018 Prof. Salles Magalhaes

Aluno:

Matricula:

Obs:

- Nesta prova assuma que o uso de "includes" e de diretivas do tipo "using namespace std;" não seja necessário.
- A não ser que a questão afirme de forma explícita o contrário, assuma que os grafos são simples)

1 (20%) - Prove que um grafo G é uma árvore se, e somente se, G possui um componente conexo e a remoção de qualquer aresta de G faz com que o grafo possua dois componentes. (não utilize nenhum teorema já visto em sala -- ou seja, você deverá provar tudo)

2 (20%) - (questão adaptada de uma entrevista da Amazon) Considere uma classe *TreeVertex* (conforme implementada abaixo). Implemente a função *ancestralMaisBaixo* que, dados dois ponteiros

para nodos a,b de uma árvore com raiz, retorna um ponteiro para o ancestral comum a a e b que estiver mais baixo na árvore (ou seja, o do maior nível). Se necessário, você pode implementar outras funções (mas não modifique a classe *TreeVertex* e nem a interface da função *ancestralMaisBaixo*).

```
class TreeVertex {
public:
    vector<TreeVertex *> filhos;
    TreeVertex *pai;
    string nodeld; //rotulo do vertice
};

TreeVertex * ancestralMaisBaixo(TreeVertex *a, TreeVertex *b) {
}
```

^{3 (16%) -} Considere o grafo G abaixo. Mostre a sequência de inserção arestas feita pelo algoritmo de Kruskal e pelo de Prim. O algoritmo de Prim deverá comecar pelo vértice "a". Em cada passo indique a aresta e seu peso (se o algoritmo terminar antes de realizar 8 passos deixe os restantes em branco).

Por exemplo, se a primeira e segunda aresta a ser inserida forem, respectivamente, (e,d) e (g,f), você deverá escrever:

Passo 1: e,d (6) Passo 2: g,f (50)

a) Algoritmo de Kruskal	b) Algoritmo de Prim
Passo 1:	Passo 1:
Passo 2:	Passo 2:
Passo 3:	Passo 3:
Passo 4:	Passo 4:
Passo 5:	Passo 5:
Passo 6:	Passo 6:
Passo 7:	Passo 7:
Passo 8:	Passo 8:

4 (6%) - (Poscomp 2015) Considere os grafos, a seguir.

Pela análise desses grafos, assinale a alternativa correta:

- (A) G3 e G4 são grafos completos.
- (B) G1 e G2 são grafos isomorfos.
- (C) G3 e G1 são grafos bipartidos.
- (D) G2 e G3 são grafos planares.
- (E) G4 e G1 são multigrafos.

5 - Abaixo é apresentada a matriz de adjacência de um grafo G.

	Α	В	С	D	Ε	F	G
Α	0	0	1	0	1	0	0
В	0	0	1	0	1	0	0
С	1	1	0	0	0	1	0
D	0	0	0	0	1	1	1
E	1	1	0	1	0	0	1
F	0	0	1	1	0	0	1
G	0	0	0	1	1	1	0

Matriz de adjacência de G

b) (8%) Apresente uma vantagem e uma desvantagem da representação (não especificamente do grafo desta questão) usando lista de adjacência em relação a matriz de adjacência. Vantagem:

Desvantagem:

6 (10%) - Seja G um grafo 3-regular com 15 vértices. Resolva (pelo menos) uma das 4 alternativas abaixo.

