Priority Queues ADT

- (i) insert /add add new elements
- 111) Delete Min/Extract Min/remove
 remove element with max printy

Binary heap - implementation of PQ.

Complete binary free - structure property

Value of node < value - order property

Parent has higher priority

512 | Size elevents | Size - 1] | Size

```
remove ():

min < p9 To7
```

min < pq[0] pq[0] < pq[size--] percolateDown (0) return min

Percolate Down (i): // Heap order may be violated

X

Pq[i]

C

2

it children

While

C

Size - I do

(if

C

Size - I and

Pq[c] > Pq[c+1] the

C++

//

if

X

Pq[c] then break

Pq[i]

Pq[c] // move()

i

c

C

| c < 2*i+1 | ipq[i] < x // move (...) | Peek(): vetur pq[o] Implementation of operations:

Heap occupies pq[o..n-i]

Height of tree = log_n RT of each op = D(logn).

helper function: parent(i) = (2-1)/2

add(x):

if size K = pq.length then

(a) resize to bigger away

(b) throw exception — We do this.

pq [size] < X
percolateUp (size)
Size11

percolately (i): // Heap order may be videted

X = pq[i] at pq[i] wite respect to

powert y i.

While i > 0 and x < pq[powent(i)] do

pq[i] = pq[powent(i)]

i = parent(i) t move(pq, i, pq[powent(i)])

pq[i] = x

move(pq, i, pq[powent(i)])

Minimum spanning Trees (MST): Prim's alsoith.

Indexed priority queues:

PQ + index of each element is stored in the element.

move (pq, i, x): $pq[i] \leftarrow x$ $x \cdot pul Tudex(i)$

percolateUp (index of ving):

percolateUp (v.get Index())

Priority Queues: Each element has a priority. Elements are removed in the order of their priorities. Traditionally, smaller the value of priority, higher its priority. Duplicates are allowed, but not null values.

Operation	Traditional name	Java method
Insert a new element	Insert (x)	add (x), offer (x)
Remove element with maximum priority	DeleteMin (), ExtractMin ()	remove (), poll ()
Element with maximum priority	Min ()	peek ()

Java's PriorityQueue is iterable, but the iteration order is not in order of priority. There is a contains() operation, but it is inefficient. There is no operation to remove arbitrary elements.

Implementation of priority queues: Binary heaps (usually stored in arrays).

Parent's index: (i-1)/2. Index of Children: $\{2i+1, 2i+2\}$.

Heaps are binary trees in which each node stores one element, satisfying the following properties:

- 1. Order property: priority of node ≤ priority of its children, i.e., it has higher priority than its children,
- 2. Structure property: complete binary trees (all but last levels are full; last level is packed from left). Operations will restore structure property first, and then ensure order property, using percolate Up/Down.

```
Heap occupies pq [0 \cdots size - 1].
Height of tree is log(size).
Running time of each operation: O(log(size)).
parent (i): return (i -1)/2
add (x):
  if size = pq.length then // can resize pq here
     throw Exception "Priority queue is full"
  pq [ size ] \leftarrow x
                         把新加的放在最后然后向上调整
  percolateUp ( size )
  size++
percolateUp ( i ):
  [i]pq \rightarrow x
  while i > 0 and x < pq [parent(i)] do
     pq[i]←pq[parent(i)] 把parent放下来
     i ← parent(i)
                          更新i
  pq[i] \leftarrow x
```

```
remove ():
  min \leftarrow pq [0]
                               存好最顶上的值,然后把最后个值放在最顶上,然后向下调整
  pq[0] \leftarrow pq[--size]
  percolateDown (0)
  return min
percolateDown ( i ):
  [i]pq \rightarrow x
  c = 2 * i + 1 左孩子
  while c < size - 1 do
     if c < size - 1 and pq [c] > pq [c + 1] then
                         c得到左右孩子中较小的那个
     if x \le pq [c] then break
                               比左右孩子都小就调整宪成
     pq[i] ← pq[c] 把孩子中较小的放到parent位置
               更新i位置(当前调整的位置)
     c \leftarrow 2 * i + 1
                      更新c位置(调整位置的孩子位置)
  pq[i] \leftarrow x
peek(): return pq[0]
```

Minimum spanning trees (MST)

Input: Undirected, connected graph G = (V, E), weights on edges $w : E \to \mathbb{Z}$.

Output: Spanning tree $T \subseteq E$, such that $w(T) = \sum_{e \in T} w(e)$ is a minimum among all spanning trees of G.

```
Prim1( G, src ): // Implementation #1 using a priority queue of edges for u ∈ V do { u.seen ← false; u.parent ← null } src.seen ← true; wmst ← 0; Create a priority queue q of edges for( Edge e: src ) { q.add(e) } while q is not empty do e ← q.remove(). Let e = (u, v), with u.seen = true. 找到weight最小的那条 if v.seen then continue // skip this edge 访问过了就跳过 v.seen ← true; v.parent ← u; wmst ← wmst + w(e) 没访问过就访问(u,v) for( Edge e2: v ): if ! e2.otherEnd( v ).seen then q.add( e2 ) 把新加入的顶点连着的没有访问过的顶点的边 return // MST is implicitly stored by parent pointers 加入队列
```

```
Prim2( G, src ): // Implementation #2 using indexed priority queue of vertices // Node v \in V-S stores in v.d, the weight of a smallest edge that connects v to some u \in S for u \in V do \{u.seen \leftarrow false; u.parent \leftarrow null; u.d \leftarrow \infty\} src.d \leftarrow 0; wmst \leftarrow 0 q \leftarrow new priority queue of vertices with u.d as priority of u while q is not empty do u \leftarrow q.remove(); u.seen \leftarrow true; wmst \leftarrow wmst + u.d for( Edge e: u ) do v \leftarrow e.otherEnd(u) if ! v.seen and e.weight < v.d then v.d \leftarrow e.weight; v.parent \leftarrow u; percolateUp( index of v in q ) // How do we find the index of v in q? return
```

```
class PrimVertex implements Comparator<PrimVertex>, Index {
  int d, index;
  public int compare( PrimVertex u, PrimVertex v ) {
     if ( u.d < v.d ) return -1; else if ( u.d == v.d ) return 0; else return 1; }
  public void putIndex( int i ) { index = i; }
  public int getIndex( ) { return index; }
}</pre>
```