Automatic Chord Recognition from Audio

Alex Ray Emmons

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

November 21, 2014

The big picture

- Automatic chord recognition: extracting chord information from audio
- Feature extraction: extracting harmonic features - note values and timing
- Pattern matching: Assigning chord labels based on pre-defined or stochastic chord models
- Issues: Noise in recordings, determining where chords change, complex music

- Feature Extraction
- Pattern Matching
- Research Cases
- Conclusions

- Feature Extraction
 - Pitch Class Profile
 - Preprocessing
- Pattern Matching
- Research Cases
- Conclusions

Pitch Class Profile

Pitch Class Profile (PCP) measures energy in the 12 frequency regions where musical notes occur (cite).

Each row represents a pitch class, or note, and each column represents a frame, or period of time.

Preprocessing

- Feature Extraction
- Pattern Matching
 - Hidden Markov Models
 - Gaussian Mixture Models
- Research Cases
- Conclusions

Hidden Markov Models

Gaussian Mixture Models

- Feature Extraction
- Pattern Matching
- Research Cases
 - Effects of Proper Signal Processing
 - HMM Trained with Audio-From-Symbolic Data
 - Importance of Individual Components
- 4 Conclusions

Effects of Proper Signal Processing

HMM Trained with Audio-From-Symbolic Data

Importance of Individual Components

- Feature Extraction
- Pattern Matching
- Research Cases
- Conclusions

Conclusions

Thanks!

Thank you for your time and attention!

Contact:

• emmon046@morris.umn.edu

Questions?

References

