Mode jumping MCMC
Particle MCMC
Reversible jump MCMC
Non-reversible MCMC
Continuous time Markov processes
Additional topics in MCMC
Practice

Additional topics on Monte Carlo

Geir Storvik

Geilo Winter school 2023

Mode jumping MCMC
Particle MCMC
Reversible jump MCMC
Non-reversible MCMC
Continuous time Markov processes
Additional topics in MCMC
Practice

Outline

- Mode jumping MCMC
- Particle MCMC
- Reversible jump MCMC
- Non-reversible MCMC
- Continuous time Markov processes
- Additional topics in MCMC
- Practice

- MCMC: Work reasonable well for unimodal distributions
 - Struggle more with multimodal distributions

- Several possible approaches:
 - Simulated tempering: Use $\pi_k(\mathbf{x}) = \pi_k(\mathbf{x})^{T_k}$, $T_k \leq 1$, move between differet "models"
 - SMC: Similar sequence
- Here: Mode jumping MCMC Tjelmeland and Hegstad (2001)

3/23

Mode jumping MCMC

- Aim: Allow for large changes
- Main problem: Large move in space will typically result in low density value
 - M-H: Very low acceptance rate
- Main idea
 - Make a large change $\mathbf{x} \to \mathbf{x}_0^*$
 - 2 Perform a local optimization $\mathbf{x}_0^* \to \mathbf{x}_k^*$
 - Possibly through k steps of some optimization routine
 - **3** Small perturbation: $\mathbf{x}_k^* \to \mathbf{x}^*$
 - Accept x* through an M-H step
- M-H: Detailed balance require possibility for moving backwards as well
 - The small perturbation in step 3 makes this possible

Algorithm

Algorithm 1 MJMCMC step from current state x

- 1: Generate $\mathbf{x}_0^* = \mathbf{x}^* + \varepsilon^*, \, \varepsilon^* \sim \textit{N}(\mathbf{0}, \sigma_L^2 \mathbf{R}), \, \sigma_L \, \text{large}$
- 2: Optimize $\mathbf{x}_0^* \to \mathbf{x}_k^*$
- 3: Small perturbation: $\mathbf{x}^* \sim g_S(\mathbf{x}^* | \mathbf{x}_k^*)$
- 4: Generate $\mathbf{x}_0 = \mathbf{x}^* \varepsilon^*$
- 5: Optimize $\mathbf{x}_0 \rightarrow \mathbf{x}_k$
- 6: Calculate

$$r = \frac{\pi(\mathbf{x}^*)q_r(\mathbf{x}|\mathbf{x}_k)}{\pi(\mathbf{x})q_r(\mathbf{x}^*|\mathbf{x}_k^*)}$$

7: Accept x^* with probability min{1, r}

MJMCMC - graphical illustration

MCMCMC for model selection

Consider a model

$$egin{align} y_i \sim & f(y_i; \eta_i, \phi) \ & \eta_i = & eta_0 + \sum_{j=1}^p \gamma_j eta_j z_{i,j} \ & \gamma_j \sim & \mathsf{Bern}(q) \ & eta_j | \gamma_j = 1 \sim & \mathsf{N}(0, \sigma_eta^2) \ \end{pmatrix}$$

- Aim: $p(\gamma|y)$.
- 2^p possible models, in addtion unknown β_j 's
- Possible: $p(\gamma, \beta|y)$ through Reversible jump MCMC
- Pseudo-Marginal MCMC:
 - lacktriangle Generate proposal $oldsymbol{\gamma}^*$ from $oldsymbol{\gamma}$
 - ② Accept γ^* with probability min{1, r} where

$$r = \frac{p(\boldsymbol{\gamma}^*|\boldsymbol{y})g(\boldsymbol{\gamma}|\boldsymbol{\gamma}^*)}{p(\boldsymbol{\gamma}|\boldsymbol{y})g(\boldsymbol{\gamma}^*|\boldsymbol{\gamma})}$$

- Hubin and Storvik (2018): Linear models
- Hubin et al. (2021): Neural network type modes

Particle MCMC

- Andrieu et al. (2010)
- Ideal MCMC $(p(\theta|\mathbf{y}) \propto p(\theta)L(\theta))$:
 - **1** Sample $\theta^* \sim g(\theta^*|\theta)$
 - 2 Calculate M-H ratio $r = \frac{p(\theta^*)L(\theta^*)g(\theta|\theta^*)}{p(\theta)L(\theta)g(\theta^*|\theta)}$
 - **3** Accept θ^* with prob min $\{1, r\}$

Particle MCMC

- Andrieu et al. (2010)
- Ideal MCMC $(p(\theta|\mathbf{y}) \propto p(\theta)L(\theta))$:
 - **1** Sample $\theta^* \sim g(\theta^*|\theta)$
 - 2 Calculate M-H ratio $r = \frac{p(\theta^*)L(\theta^*)g(\theta|\theta^*)}{p(\theta)L(\theta)a(\theta^*|\theta)}$
 - **3** Accept θ^* with prob min $\{1, r\}$
- Pseudo-Marginal algorithm:
 - **1** Sample $\theta^* \sim g(\theta^*|\theta)$
 - ② Calculate $\hat{L}(\theta^*)$
 - **3** Calculate M-H ratio $\hat{r} = \frac{\pi(\theta^*)p(\theta|\theta^*)}{\pi(\theta)p(\theta^*|\theta)}$
 - 4 Accept θ^* with prob min $\{1, \hat{r}\}$
- Particle MCMC: Use SMC to calculate $\hat{L}(\theta^*)$

Lemmings - AR(2) process

Now:
$$x_t = a_1 x_{t-1} + a_2 x_{t-2} + \varepsilon_t$$

a.M

Lemmings - AR(2) process

Now:
$$x_t = a_1 x_{t-1} + a_2 x_{t-2} + \varepsilon_t$$

a.M

Non-reversible MCMC
Continuous time Markov processes
Additional topics in MCMC
Practice

Reversible jump MCMC

- Examples of changing dimensions
 - $Y_i = \beta_0 + \sum_{i=1}^p \gamma_i \beta_i x_{ii} + \varepsilon_i$
 - Neural networks with some weights put to zero.
- Reversible Jump MCMC
 - Assume several models M₁, ..., M_K
 - Corresponding parameters $\theta_1, ..., \theta_K$ of different dimensions!
 - Aim: Simulate $\mathbf{x} = (\mathcal{M}, \theta_{\mathcal{M}})$
 - RJMCMC: Green (1995)
 - RJMCMC: M-H method for moving between spaces of different dimensions
 - Main challenge: When changing $\mathcal{M} \to \mathcal{M}^*$, how to propose $\theta_{\mathcal{M}^*}$?

Non-reversible MCMC Continuous time Markov processes Additional topics in MCMC

Reversible jump MCMC

- Examples of changing dimensions
 - $Y_i = \beta_0 + \sum_{i=1}^p \gamma_i \beta_i x_{ii} + \varepsilon_i$
 - Neural networks with some weights put to zero.
- Reversible Jump MCMC
 - Assume several models M₁, ..., M_K
 - Corresponding parameters $\theta_1, ..., \theta_K$ of different dimensions!
 - Aim: Simulate $\mathbf{x} = (\mathcal{M}, \theta_{\mathcal{M}})$
 - RJMCMC: Green (1995)
 - RJMCMC: M-H method for moving between spaces of different dimensions
 - Main challenge: When changing $\mathcal{M} \to \mathcal{M}^*$, how to propose $\theta_{\mathcal{M}^*}$?

Non-reversible MCMC Continuous time Markov processes Additional topics in MCMC Practice

Changing dimensions

- Assume several models $\mathcal{M}_1, ..., \mathcal{M}_K$
- Corresponding parameters $\theta_1, ..., \theta_K$ of different dimensions!
- Aim: Simulate $\mathbf{x} = (\mathcal{M}, \boldsymbol{\theta}_{\mathcal{M}})$
- RJMCMC: M-H method for moving between spaces of different dimensions
- Main challenges:
 - When changing dimensions, how to compare densities on different spaces?
 - When changing $\mathcal{M} \to \mathcal{M}^*$, how to propose $\theta_{\mathcal{M}^*}$?

Non-reversible MCMC Continuous time Markov processes Additional topics in MCMC

Practice

Reversible jump MCMC

- Green (1995): Include auxiliary variables to match dimensions.
- \bullet Consider change (\mathcal{M}_1,θ_1) to (\mathcal{M}_2,θ_2) with $|\theta_1|<|\theta_2|$
 - $j(1 \rightarrow 2)$ probability for moving from \mathcal{M}_1 to \mathcal{M}_2
- Algorithm
 - Generate \mathbf{u}_1 such that $|\theta_1| + |\mathbf{u}_1| = |\theta_2|$
 - 2 Propose $\theta_2 = \theta_2(\theta_1, \mathbf{u}_1)$ (bijective)
 - Calculate acceptance ratio

$$r = \frac{\pi(\mathcal{M}_2, \theta_2)q(2 \to 1)}{\pi(\mathcal{M}_1, \theta_1)q(1 \to 2)q(\mathbf{u}_1)} \left| \frac{\partial(\theta_2)}{\partial(\theta_1, \mathbf{u}_1)} \right|$$

- Accept with probability min{1, r}.
- Use 1/r for opposite move
- More general settings possible

Non-reversible MCMC

Continuous time Markov processes

Additional topics in IviCivi

Practice

Logistic regression

Assume model

$$Y_i \sim \mathsf{Binom}(p_i)$$
 $\mathsf{logit}(p_i) = eta_0 + \sum_{j=1}^p \gamma_j eta_j x_{ij}$ $\mathsf{Pr}(\gamma_j = 1) = q$ $eta_j | \gamma_j = 1 \sim \mathcal{N}(0, \sigma_eta^2)$

- Assume $\gamma_i = 0$, want to change to $\gamma_i^* = 1$
- Generate $u_1 \sim g_j()$
- Put

$$\beta_k^* = \begin{cases} \beta_k & k \neq j; \\ u_1 & k = j. \end{cases}$$

Accept with probabilty min{1, r} where

$$r = \frac{\pi(\boldsymbol{\beta}^*, \boldsymbol{\gamma}^*)}{\pi(\boldsymbol{\beta}, \boldsymbol{\gamma})g_j(\boldsymbol{\beta}_i^*)} \times 1$$

Script Log_reg_RJ.R

Continuous time Markov processes Additional topics in MCMC

Practice

Non-reversible MCMC

• Main criterion (π -invariance)

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

Sufficient criterion for stationarity

$$\pi(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = \pi(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$
 Detailed balance

 Results in a reversible MCMC (moving backwards is similar to moving forwards) Continuous time Markov processes

Additional topics in MCMC

Practice

Non-reversible MCMC

Main criterion (π-invariance)

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

Sufficient criterion for stationarity

$$\pi(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = \pi(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$
 Detailed balance

- Results in a reversible MCMC (moving backwards is similar to moving forwards)
- Assume now $x \in \mathcal{Z}$
- Introduce $v \in \{-1, 1\}$ and consider extended distribution $\bar{\pi}(x, v) = 0.5\pi(x)I(v \in \{-1, 1\})$.
- Define Markov chain

$$P(x^*, v|x, w) = \alpha(x, v)I(x^* = x + v, w = v) + (1 - \alpha(x, v))I(x^* = x, w = -v)$$

with $\alpha(x, v) = \min\{1, \pi(x + v)/\pi(x)\}$

Additional topics in MCMC Practice

The zig-zag process

- Continuous-time Markov process
- Can use sub-sampling with an exact approximate scheme
- Can be super-efficient when combined with control-covariate ideas
- References: Bierkens et al. (2019) (and references therein)
- Main idea:
 - Move all components lineary in a given direction: $x_i(t) = x_i^k + z_i^k t$
 - Change direction of z_i^k at random (continuous) time points

Additional topics in MCMC

Practice

Algorithm

Let
$$(T^0, \mathbf{x}^0, \boldsymbol{\theta}^0) = (0, \xi, \theta)$$
 for $k = 1, 2, \cdots$ do

Let $\boldsymbol{\xi}^k(t) \equiv \mathbf{x}^{k-1} + \boldsymbol{\theta}^{k-1}t, t \geq 0$
For $i = 1, ..., p$, let τ_i^k be distributed according to

$$\Pr(\tau_i^k \geq t) = \exp\left(-\int_0^t \lambda_i(\boldsymbol{\xi}^k(s), \mathbf{z}^{k-1})ds\right)$$
Let $i_0 \equiv \arg\min_{i \in \{1, ..., p\}} \tau_i^k$
Let $T^k \equiv T^{k-1} + \tau_{i_0}^k$
Let $\mathbf{x}^k \equiv \boldsymbol{\xi}^k(T^k)$
Let
$$z_i^k = \begin{cases} z_i^{k-1} & \text{if } i \neq i_0 \\ -z_i^{k-1} & \text{if } i = i_0 \end{cases}$$

end for

Trajectories

• Piecewise deterministic trajectories ($\mathbf{x}(t)$, $\theta(t)$):

$$(\mathbf{x}(t), \theta(t)) = (\mathbf{x}^k + \mathbf{z}^k(t - T^k), \mathbf{z}^k)$$
 for $t \in [T^k, T^{k+1}), k = 0, 1, 2 \cdots$

Monte Carlo estimate:

$$\hat{\mu}_{i} = \frac{1}{T} \int_{0}^{T} x_{i}(t)dt$$

$$= \frac{1}{T} \sum_{k=0}^{K} \int_{T^{k}}^{T^{k+1}} [x_{i}^{k} + z_{i}^{k}(t - T^{k})]dt$$

$$= x_{i}^{k} (T^{k+1} - T^{k}) + 0.5z_{i}^{k} (T^{k+1} - T^{k})^{2}$$

Additional topics in MCMC Practice

What does it converge to?

- Distribution depending om the functions $\lambda_i(\xi, \mathbf{z})$.
- **●** Assume θ_i ∈ {−1, 1}
- Assume a Bayesian setting:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{x})p(\mathbf{y}|\mathbf{x})$$

Define

$$\Psi(\mathbf{x}) = -\log p(\mathbf{x}) - \log p(\mathbf{y}|\mathbf{x})$$

$$\lambda_i(\boldsymbol{x}, \boldsymbol{\theta}) = (\theta_i \partial_i \Psi(\boldsymbol{x}))^+ + \gamma_i(\boldsymbol{x}, \boldsymbol{\theta})$$

where γ_i is non-negative and $\gamma_i(\mathbf{x}, \theta) = \gamma_i(\mathbf{x}, \theta_{-i})$ with θ_{-i} is equal to θ except for the *i*th component which is flipped.

- Then (under some regularity conditions)
 - The Zig-Zag process has p(x|y) as invariant distribution
 - The process is ergodic:

$$\lim_{t\to\infty}\int_0^t f(\boldsymbol{x}(s))ds = \int f(\boldsymbol{x})\pi(\boldsymbol{x}|\boldsymbol{y})d\boldsymbol{x}$$

Practice

Additional topics in MCMC

- Adaptive MCMC: Automatic tuning of proposal distributions
 - Main challenge: Specifying proposal based on history of chain breaks down the Markov property
 - Solution: Reduce the amount of tuning as the number of iterations increases

Additional topics in MCMC

- Adaptive MCMC: Automatic tuning of proposal distributions
 - Main challenge: Specifying proposal based on history of chain breaks down the Markov property
 - Solution: Reduce the amount of tuning as the number of iterations increases
- Simulated tempering
 - Define $f^i(\mathbf{x}) \propto \pi(\mathbf{x})^{1/\tau_i}$, $1 = \tau_1 < \tau_2 < \cdots < \tau_m$
 - Simulate (x, I), where I changes distribution
 - Easier to move around when $\tau_i > 1$
 - Keep samples for which I = 1

Additional topics in MCMC

- Adaptive MCMC: Automatic tuning of proposal distributions
 - Main challenge: Specifying proposal based on history of chain breaks down the Markov property
 - Solution: Reduce the amount of tuning as the number of iterations increases
- Simulated tempering
 - Define $f^i(\mathbf{x}) \propto \pi(\mathbf{x})^{1/\tau_i}$, $1 = \tau_1 < \tau_2 < \cdots < \tau_m$
 - Simulate (x, I), where I changes distribution
 - Easier to move around when $\tau_i > 1$
 - Keep samples for which I = 1
- Multiple-Try M-H
 - Generate k proposals \mathbf{x}_1^* , ..., \mathbf{x}_k^* from $g(\cdot|\mathbf{x}^{(t)})$
 - Select \pmb{x}_j^* with probability $w(\pmb{x}^{(t)}, \pmb{x}_j^*) = \pi(\pmb{x}^{(t)})g(\pmb{x}_j^*|\pmb{x}^{(t)})\lambda(\pmb{x}^{(t)}, \pmb{x}_j^*)$, λ symmetric
 - Sample $\mathbf{x}_1^{**},...,\mathbf{x}_{k-1}^{**}$ from $g(\cdot|\mathbf{x}_i^*)$, put $\mathbf{x}_k^{**}=\mathbf{x}^{(t)}$
 - Use Generalized M-H ratio

$$R_g = \frac{\sum_{i=1}^{k} w(\mathbf{x}^{(t)}, \mathbf{x}_i^*)}{\sum_{i=1}^{k} w(\mathbf{x}_i^*, \mathbf{x}_i^{**})}$$

Implement your SMC algorithm

- Consider the model for lemmings data
- Model

$$\begin{aligned} & \mathbf{y}_{t} \sim & \mathsf{Binom}\left(1, \frac{\exp(\mathbf{x}_{t})}{1 + \exp(\mathbf{x}_{t})}\right) \\ & \mathbf{x}_{t} = & \mathbf{a}\mathbf{x}_{t-1} + \varepsilon_{t}, \quad \varepsilon_{t} \sim N(0, \sigma^{2}) \\ & a \sim & \mathsf{Uniform}[0, 1] \end{aligned}$$

Use
$$a = 0.5$$
, $\sigma = 1$

• Some data are missing: How to handle this?

Implement your MCMC algorithm

- Consider the model for lemmings data
- Model

$$\begin{aligned} & \mathbf{y}_{t} \sim & \mathsf{Binom}\left(1, \frac{\exp(\mathbf{x}_{t})}{1 + \exp(\mathbf{x}_{t})}\right) \\ & \mathbf{x}_{t} = & \mathbf{a}\mathbf{x}_{t-1} + \varepsilon_{t}, \quad \varepsilon_{t} \sim \textit{N}(0, \sigma^{2}) \\ & a \sim & \mathsf{Uniform}[0, 1] \end{aligned}$$

Use
$$a = 0.5$$
, $\sigma = 1$

• Note: if only changing $x_t \to x_t^*$:

$$\frac{\pi(\mathbf{x}^*)}{\pi(\mathbf{x})} = \frac{p(x_t^*|x_{t-1})p(x_{t+1}|x_t^*)p(y_t|x_t^*)}{p(x_t|x_{t-1})p(x_{t+1}|x_t)p(y_t|x_t)}$$

Mode jumping MCMC
Particle MCMC
Reversible jump MCMC
Non-reversible MCMC
Continuous time Markov processes
Additional topics in MCMC
Practice

References

- C. Andrieu, A. Doucet, and R. Holenstein. Particle markov chain monte carlo methods. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 72(3):269–342, 2010.
- J. Bierkens, P. Fearnhead, and G. Roberts. The zig-zag process and super-efficient sampling for bayesian analysis of big data. *The Annals of Statistics*, 47(3):1288–1320, 2019.
- P. J. Green. Reversible jump markov chain monte carlo computation and bayesian model determination. *Biometrika*, 82(4):711–732, 1995.
- A. Hubin and G. Storvik. Mode jumping mcmc for bayesian variable selection in glmm. *Computational Statistics & Data Analysis*, 127:281–297, 2018.
- A. Hubin, G. Storvik, and F. Frommlet. Flexible bayesian nonlinear model configuration. *Journal of Artificial Intelligence Research*, 72:901–942, 2021.
- H. Tjelmeland and B. K. Hegstad. Mode jumping proposals in mcmc. *Scandinavian journal of statistics*, 28(1):205–223, 2001.