Tutorial Business Analytics

Homework 11 – Solution

Exercise 11.4 - Collaborative Filtering

The following ratings of the users 1, 2, 3, and the active user 4 are given for the products A to J. The ratings can assume values in {1, 2, ..., 10}.

Product	User			Active User
	1	2	3	4
Α	5	7	9	10
В	Χ	9	7	10
С	1	10	2	
D	8	8	9	9
E	Χ	X	5	1
F	7	X	X	3
G	9	9	8	
Н	Χ	7	8	6
	10	2	8	1
J	1	4	6	6

x: no rating available

For the significance weight of user a and i, $s_{a,i}$, and the number of co-rated items, m, we set:

$$s_{a,i} = 1$$
, if $m \ge 7$
 $s_{a,i} = \frac{m}{7}$, else

- a) Determine the **weighted correlations**, $w_{i,4}$, between the users $i \in \{1,2,3\}$ and the active user a = 4.
- b) Determine the **rating predictions**, $p_a(product)$, for product C and product C, taking into account the two users most similar to the active user.
- c) What problems are associated with the application of collaborative filtering in practice? Name at least three.
- d) What alternative recommending technique is there where these problems do not occur?

Solution:

a) The weighted correlation for users 1 and 4 is given by

$$w_{1,4} = s_{1,4} \cdot c_{1,4},$$

where the set of co-rated items is $I_{1,4} = \{A, D, F, I, J\}$. Let r_1 and r_4 be the ratings of users 1 and 4 for $I_{1,4}$, respectively. Then we get

$$w_{1,4} = \frac{5}{7} \cdot \frac{\text{cov}(r_1, r_4)}{\sigma_{r_1} \cdot \sigma_{r_4}}$$

\$\approx -0.2832.

Analogously, we get $I_{2,4} = \{A, B, D, H, I, J\}$, $I_{3,4} = \{A, B, D, E, H, I, J\}$, and therefore $s_{2,4} = 6/7$ and $s_{3,4} = 1$. Thus,

$$w_{2,4} \approx 0.7687$$
, $w_{3,4} \approx 0.5261$.

Note: Due to symmetry we have $w_{i,j} = w_{j,i}$.

b) Here, we denote $r_i(C)$ as the rating of user i for product C and \bar{r}_i as the average rating of user i.

The two most similar users to the active user are users 2 and 3. The rating forecast for product C of user 4, based on these users, then is

$$p_4(C) = \bar{r}_4 + \frac{\sum_{i=2}^3 w_{4,u} (r_i(C) - \bar{r}_i)}{\sum_{i=2}^3 |w_{4,i}|}$$

$$\approx 5.75 + \frac{0.7687(10 - 7) + 0.5261(2 - 6.8889)}{1.2948}$$

$$\approx 5.5446.$$

Analogously, for product G we get

$$p_4(G) \approx 5.75 + \frac{0.7687(9-7) + 0.5261(8-6.8889)}{1.2948}$$

 $\approx 7.3888.$

- c) Problems with the application of collaborative filtering
 - i. Cold Start: Enough users and ratings are needed to generate recommendations.
 - ii. **Sparsity:** Even with a very large number of users one has the problem that with a very large number of possible products the product-user-matrix is sparsely populated, so that it is difficult to find users who have rated the same products.
 - iii. **First Rater:** With a new product, there must first be consumers who test and then evaluate it.
 - iv. **Popularity Bias:** Users with unique tastes are not considered by the existing similarity measure. Only popular products are recommended.
- d) Alternative recommending technique: Content-based recommending.