Зачетное задание

Тема: МНР, машины Тьюринга

Студента группы МФ-21 Чистякова Артема

Вариант №1

1) Условие

Постройте МНР-программу, которая вычисляет функцию $f(x)=(2x)!!=2\cdot 4\cdot ...\cdot 2x (f(0)=1)$ Результат должен быть записан в первом регистре.

1.2) Описание алгоритма

Алгоритм работает следующим образом. В программе 3 цикла: внешний, который бежит по количеству слагаемых в факториале, и два вложенных для умножения ответа. На каждой внешней итерации мы увеличиваем внешний счетчик и сохраняем значение (текущий четный факториал), на который нужно умножить ответ. Далее запускаются циклы умножения ответа на переменную четного факториала. Умножение происходит путем разложения на суммы.

1.3) Код программы

```
1.
        S (3) // тут храним ответ
2.
        Ј (1, 2, 18) // внешний цикл по слагаемым
3.
                S (2) // внешний итератор
4.
                S (4) // число на которе нужно умножить ответ
5.
                Z (5) // тут храним внешний итератор для умножения
6.
7.
                S(5) // один раз ответ уже взяли
8.
                T(3, 7)
                J (4, 5, 17) // внешний цикл умножения
9.
10.
                         S(5)
                         Z (6) // тут храним вложенный итератор для умножения
11.
12.
                         J (7, 6, 16) // вложенный цикл умножения
13.
                                 S (3)
                                 S(6)
14.
                         J (1, 1, 12)
15.
16.
                J (1, 1, 9)
17.
        J (1, 1, 2)
18.
        T(3, 1) // переместить ответ в 1 регистр
```


2) Условие

На ленте задано произвольное слово (возможно, пустое) в алфавите $A = \{a,b,c\}$ (остальные символы ленты пустые). Напишите программу для машины Тьюринга, которая в данном слове меняет местами последние две буквы (например, из abca делает abac). Считайте, что первоначально головка смотрит на первую букву слова.

2.2) Описание алгоритма

Сначала пройдем до конца вводимого слова (об этом нам сообщит пустой символ). Далее подвинемся на 1 влево и рассмотрим 3 ситуации: считали *а b* или *c* . Из каждой буквы запустим свое состояние, которое отвечает за запись этой буквы в ячейку ленты левее. Повторим те же действия для новой ячейки, только с продвижением на 1 вправо.

2.3) Код программы

	_	a	b	С
1	_Л2	a∏1	ЬП1	сП1
2	_H9	аЛ3	ЬЛ4	сЛ5
3	_H9	аП6	aΠ7	аП8
4	_H9	bΠ6	bΠ7	ВП 8
5	_H9	сП6	сП7	сП8
6	_H9	a H 9	a H 9	a H 9
7	_H9	b H 9	b H 9	ьн9
8	_H9	c H 9	c H 9	c H 9
9	_H0	a H 0	b H 0	c H 0

3) Условие

Умножения числа в унарной системе счисления

Напишите программу для машины Тьюринга, которая правильно вычисляет функцию f(x) = 4x .

3.2) Описание алгоритма

Будем действовать следующим образом. Пройдем до конца данного числа (останавливаемся на пустом символе). Помечаем последнюю цифру (она равна единице) решеточкой (#). Запускаем цикл, который найдет первый пустой символ за новым числом. Начиная с него записываем 3 единички подряд. Запускаем новый цикл, который найдет первую слева решеточку.

Слева от нее будет либо цифра, либо пустота. Если цифра – повторяем (со второго предложения), а если пустота – заменяем все решеточки на единички.

3.3) Код программы

	_	1	#
1	_Л2	1П1	# H 8
2	_П7	#П3	#Л2
3	_ H 4	1П3	#П3
4	1П5	1 H 8	# H 8
5	1П6	1 H 8	# H 8
6	1 H 6	1Л6	# H 2
7	_ H 8	1П7	1П7
8	_ H 0	1 H O	# H 0

4) Условие

Умножения числа в десятичной системе счисления ($x \ge 0$)

Напишите программу для машины Тьюринга, которая правильно вычисляет функцию f(x) = 4x .

4.2) Описание алгоритма

Пройдем до конца данного числа (об этом нам сообщит пустой символ). Далее будет двигаться влево по ленте, умножая числа на 4 и прибавляя переносимый разряд. Чтобы запомнить разряд, создадим 4 дополнительные состояния: разряд равен 0, разряд равен 1, разряд равен 2 и разряд равен 3.

4.3) Код программы

	_	0	1	2	3	4	5	6	7	8	9
1	_Л2	0П1	1П1	2Π1	3П1	4Π1	5 Π1	6П1	7П1	8П1	9П1
2	_H6	0Л2	4Л2	8Л2	2Л3	6Л3	0Л4	4Л4	8Л4	2Л5	6Л5
3	1 H 6	1Л2	5Л2	9Л2	3Л3	7Л3	1Л4	5Л4	9Л4	3Л5	7Л5
4	2 H 6	2Л2	6Л2	0Л3	4Л3	8Л3	2Л4	6Л4	0Л5	4Л5	8Л5
5	3 H 6	3Л2	7Л2	1Л3	5Л3	9Л3	3Л4	7Л4	1Л5	5Л5	9Л5
6	_ H 0	0 H 0	1 H O	2 H 0	3 H 0	4 H 0	5 H 0	6 H O	7 H O	8 H 0	9 H O

