Chapter 1: Outcomes, Events, and Sample Spaces

Meike Niederhausen and Nicky Wakim 2023-09-25

Class Overview

- Tossing One Coin (Outcomes, Events, and Sample Space)
- Tossing Two Coins (Outcomes, Events, and Sample Space)
- Set Theory

Tossing One Coin (Outcomes, Events, and Sample Space)

Coin Toss Example: 1 coin (1/3)

Suppose you toss one coin.

• What are the possible outcomes?

• What is the sample space?

• What are the possible events?

Coin Toss Example: 1 coin (2/3)

Suppose you toss one coin.

- What are the possible outcomes?
 - Heads (H)
 - Tails (T)

Note This is not necessarily an event!

When something happens at random, such as a coin toss, there are several possible outcomes, and *exactly one* of the outcomes will occur.

Coin Toss Example: 1 coin (3/3)

math not.

Definition: Sample Space

The sample space *S* is the set of all outcomes

Definition: Event

An event is a collection of son proticomes. The event was include multiple outcomes or no outcomes.

What is the sample space?

• What are the possible events

•

of Outcomes in Sample When thinking about events, think about outcomes that you might be asking the probability of.

Tossing Two Coins (Outcomes, Events, and Sample Space)

for each S= {H,T}

What combo

of H&T's

Suppose you toss two coins H T, TH

- What is the sample space! Assume the coins are distinguishable
 - · § = @ least one +=

- What are some possible events?
 - \bullet A = exactly one H =
 - \blacksquare B = at least one H =

if you are giving the event a letter

More info on events and sample spaces

• We usually use capital letters from the beginning of the alphabet to denote events. However, other letters might be chosen to be more descriptive.

• We use the notation |S| to denote the **size** of the sample space.

• The total number of possible events is $2^{|S|}$, which is the total number of possible subsets of S. We will prove this later in the course.

• The **empty set**, denoted by \emptyset , is the set containing no outcomes.

Suppose you keep sampling people until you have someone with high blood pressure (BP)

What is the sample space?

• Let $H^C = \text{denotes a negative the normalistic bulb of pressure, such as low or regular BP.}$

• Then,
$$S = (97)$$

Set Theory

ux square to I denote SS

circles for events

14

Set Theory (1/2)

Definition: Union

The **union** of events A and B, denoted by $A \cup B$, contains all outcomes that are in A or B or both

Definition: Intersection

The intersection of events A and B , denoted by $A\cap B$, contains all outcomes that are both in A and B .

Set Theory (2/2)

The **complement** of event A, denoted by A^C or A^\prime , contains all outcomes in the sample space S that are *not* in A.

Definition: Mutually Exclusive

Events A and B are mutually exclusive, or disjoint, if they have no outcomes in continuous. In this case $A \cap B = \emptyset$, where \emptyset is the empty set.

pressure (for person i)

BP example variation (1/3)

- Suppose you have n subjects in a study.
- Let H_i be the event that person i has high BP, for $i = 1 \dots n$.

Use set theory notation to denote the following events:

- 1. Event subject i does not have high BP
- 2. Event all n subjects have high BP
- 3. Event at least one subject has high BP
- 4. Event all of them do not have high BP
- 5. Event at least one subject does not have high BP

17

BP example variation (2/3) H.

- Stropost You have n strojects in a strony. UHn = UH;
- Let H_i be the event that person i has high BP, for $i=1,\ldots n$.

Use set theory notation to denote the following events:

- 1. Event subject i does not have high BP
- 2. Event all n subjects have high BP

1&2: H; k H2 → H; A H2 → H; A H2 A ... A Hn = AH;

3. Event at least one subject has high BP

C Chapter 1 Slide

i=1 X,+X2T--+Xh BP example variation (3/3)

A How : draw and taken the base has been do not have high BP

5. Event at least one subject does not have high BP

one H; & all else H;

De Morgan's Laws

nis can also be so

Theorem: De Morgan's 1st Law

For a collection of events (sets) A_1, A_2, A_3, \dots

$$\bigcap_{i=1}^{n} A_{i}^{C} = \left(\bigcup_{i=1}^{n} A_{i}\right)^{C} \quad \text{intersection of compensat}$$
of the union

"all not A = (at least one event A) $^{\mathbb{C}}$ "

Theorem: De Morgan's 2nd Law

For a collection of events (sets) A_1 , A_2 , A_3 , ...

$$\bigcup_{i=1}^{n} A_{i}^{C} = \Big(\bigcap_{i=1}^{n} A_{i}\Big)^{C}$$

 $\bigcup_{i=1}^n A_i^C = \Big(\bigcap_{i=1}^n A_i\Big)^C \qquad \text{is the complement}$ of the complement of

[&]quot;at least one event not $A = (all A)^{C}$ "

Remarks on De Morgan's Laws

• These laws also hold for infinite collections of events.

• Draw Venn diagrams to convince yourself that these are true! -> We did for

- These laws are very useful when calculating probabilities.
 - This is because calculating the probability of the intersection of events is often much easier than the union of events.
 - This is not obvious right now, but we will see in the coming chapters why.

