线性代数-6

主讲: 吴利苏

wulisu@sdust.edu.cn

2024年9月8日

本次课内容

1. 逆矩阵的定义和性质

2. 逆矩阵的应用

• 在数的乘法运算中,对于数 $a \neq 0$,存在唯一的数 b,使得

$$ab = ba = 1$$

• 在数的乘法运算中,对于数 $a \neq 0$,存在唯一的数 b,使得

$$ab = ba = 1$$

• 在计算一次方程 ax = b 时,等号两边同乘 $\frac{1}{a}$,可解得 $x = \frac{b}{a}$.

• 在数的乘法运算中,对于数 $a \neq 0$,存在唯一的数 b,使得

$$ab = ba = 1$$

- 在计算一次方程 ax = b 时,等号两边同乘 $\frac{1}{a}$,可解得 $x = \frac{b}{a}$.
- 一个自然的问题: 对于矩阵 A 能不能给出一个类似 $\frac{1}{A}$ 的概念? 在求线性方程 AX = β 时,能不能用

$$X = \frac{\beta}{A}$$

求解?

• 在数的乘法运算中,对于数 $a \neq 0$,存在唯一的数 b,使得

$$ab = ba = 1$$

- 在计算一次方程 ax = b 时,等号两边同乘 $\frac{1}{a}$,可解得 $x = \frac{b}{a}$.
- 一个自然的问题:对于矩阵 A 能不能给出一个类似 $\frac{1}{A}$ 的概念? 在求线性方程 $AX = \beta$ 时,能不能用

$$X = \frac{\beta}{A}$$

求解?

● ⇒ 逆矩阵

定义 (逆矩阵)

对于

A, 如果存在一个

B, 使得

$$AB = BA = E$$

则称 B 为 A 的逆矩阵.

定义 (逆矩阵)

对于n 阶方阵A, 如果存在一个n 阶方阵B, 使得

$$AB = BA = E$$

则称 B 为 A 的逆矩阵.

定义 (逆矩阵)

对于n 阶方阵A, 如果存在一个n 阶方阵B, 使得

$$AB = BA = E$$

则称 B 为 A 的逆矩阵.

性质

如果矩阵 A 可逆,则 A 的逆矩阵唯一.

定义 (逆矩阵)

对于n 阶方阵A, 如果存在一个n 阶方阵B, 使得

$$AB = BA = E$$

则称 B 为 A 的逆矩阵.

性质

如果矩阵 A 可逆,则 A 的逆矩阵唯一.

• 将 A 的唯一逆矩阵记为 A^{-1} .

矩阵可逆的判定: A 可逆 $\Leftrightarrow |A| \neq 0$

"⇒"

定理

如果矩阵 A 可逆,则 $|A| \neq 0$.

"⇐"

定理

 $\ddot{A} | A | \neq 0$, 则矩阵 A 可逆, 且

$$A^{-1} = \frac{A^*}{|A|}.$$

矩阵可逆的判定: A 可逆 $\Leftrightarrow |A| \neq 0$

"⇒"

定理

如果矩阵 A 可逆, 则 $|A| \neq 0$.

"⇐"

定理

若 $|A| \neq 0$, 则矩阵 A 可逆, 且

$$A^{-1} = \frac{A^*}{|A|}.$$

- 若 AB = E, 则 $B = A^{-1}$. (定义的简化!)
- 若 A 可逆,则 $A^* = |A|A^{-1}$.

- |A| = 0, 则称 A 为奇异的, 否则称为非奇异的.
- A可逆 $\leftrightarrow A$ 非奇异 $\leftrightarrow A$ 对应的线性变换非退化($\leftrightarrow A$ 满秩).

性质

- 若 A 可逆,则 A^{-1} 也可逆,且 $(A^{-1})^{-1} = A$;
- 若 A 可逆, $\lambda \neq 0$,则 λA 可逆,且 $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$;
- 若 A, B 为同阶方阵且都可逆, 则 AB 可逆, 且

$$(AB)^{-1} = B^{-1}A^{-1};$$

- 若 A 可逆,则 A^T 也可逆,且 $(A^T)^{-1} = (A^{-1})^T$;
- P 可逆时, $PA = PB \Rightarrow A = B$ (左消去律), $AP = BP \Rightarrow A = B$ (右消去律).

例题
$$\left(A^{-1} = \frac{A^*}{|A|}\right)$$

求二阶矩阵
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的逆矩阵.

例题
$$\left(A^{-1} = \frac{A^*}{|A|}\right)$$

求二阶矩阵
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

例题
$$\left(A^{-1} = \frac{A^*}{|A|}\right)$$

求二阶矩阵
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

例

求方阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 的逆矩阵.

例题
$$\left(A^{-1} = \frac{A^*}{|A|}\right)$$

求二阶矩阵
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

例

求方阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ -\frac{3}{2} & -3 & \frac{5}{2} \\ 1 & 1 & -1 \end{pmatrix}$

5/14

例题
$$\left(A^{-1} = \frac{A^*}{|A|}\right)$$

求二阶矩阵
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

例

求方阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ -\frac{3}{2} & -3 & \frac{5}{2} \\ 1 & 1 & -1 \end{pmatrix}$

例

A 为三阶方阵, $|A| = \frac{1}{2}$,求 $|(2A)^{-1} - 5A^*|$.

例题
$$\left(A^{-1} = \frac{A^*}{|A|}\right)$$

求二阶矩阵
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

求方阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 的逆矩阵. $A^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ -\frac{3}{2} & -3 & \frac{5}{2} \\ 1 & 1 & -1 \end{pmatrix}$

例

$$A$$
 为三阶方阵, $|A| = \frac{1}{2}$,求 $|(2A)^{-1} - 5A^*|$. -16

逆矩阵的应用-矩阵方程求解

例

求解矩阵方程
$$AXB = C$$
, 其中
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{pmatrix}.$$

逆矩阵的应用-求矩阵多项式

性质

A 为 n 阶方阵, 若存在可逆阵 P, 使得 $A = P \cdot diag(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_n) \cdot P^{-1}$, 则矩阵多项式

$$f(A) = P \cdot diag(f(\lambda_1), \cdots, f(\lambda_n)) \cdot P^{-1}.$$

逆矩阵的应用-求矩阵多项式

性质

A 为 n 阶方阵, 若存在可逆阵 P, 使得 $A = P \cdot diag(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_n) \cdot P^{-1}$, 则矩阵多项式

$$f(A) = P \cdot diag(f(\lambda_1), \cdots, f(\lambda_n)) \cdot P^{-1}.$$

• 对于 n 阶方阵 A, B, 若存在可逆矩阵 P, 使得

$$PAP^{-1} = B$$

则称 A 和 B 是相似的.

性质的证明

• 如果
$$A = P \wedge P^{-1}$$
,则 $A^k = P \wedge^k P^{-1}$,故
$$f(A) = a_0 E + a_1 A + \dots + a_m A^m$$
$$= a_0 P E P^{-1} + a_1 P \wedge P^{-1} + \dots + a_m P \wedge^m P^{-1}$$
$$= P(a_0 E + a_1 \wedge + \dots + a_m \wedge^m) P^{-1}$$
$$= P f(\wedge) P^{-1}$$

性质的证明

• 如果
$$A = P \wedge P^{-1}$$
,则 $A^k = P \wedge^k P^{-1}$,故
$$f(A) = a_0 E + a_1 A + \dots + a_m A^m$$
$$= a_0 P E P^{-1} + a_1 P \wedge P^{-1} + \dots + a_m P \wedge^m P^{-1}$$
$$= P(a_0 E + a_1 \wedge + \dots + a_m \wedge^m) P^{-1}$$
$$= P f(\wedge) P^{-1}$$

• 若
$$\Lambda = \mathsf{diag}(\pmb{\lambda}_1, \pmb{\lambda}_2, \cdots, \pmb{\lambda}_n)$$
 为对角矩阵,则 $\pmb{\Lambda}^k = \mathsf{diag}(\pmb{\lambda}_1^k, \pmb{\lambda}_2^k, \cdots, \pmb{\lambda}_n^k).$

从而

$$f(\Lambda) = diag(f(\lambda_1), f(\lambda_2), \cdots, f(\lambda_n)).$$

逆矩阵的应用-求矩阵多项式

例

设
$$P = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. $AP = P\Lambda$, 求 A^n .

逆矩阵的应用-求矩阵多项式

例

设
$$P = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. $AP = P\Lambda$, 求 A^n .

例

求矩阵多项式
$$f(A) = A^3 + 2A^2 - 3A$$
, 其中 $PA = AP$,

$$P = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{pmatrix}, \quad \mathbf{\Lambda} = \begin{pmatrix} 1 & & \\ & 2 & \\ & & -3 \end{pmatrix}.$$

逆矩阵的应用-求解线性方程组

● n 个方程 n 个未知量的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

矩阵表示

$$AX = \boldsymbol{\beta}.$$

• 若系数矩阵 A 可逆,对上式两边同时左乘 A^{-1} ,则解得

$$X = A^{-1} \boldsymbol{\beta}$$

0/14

Carmer 法则

定理 (Carmer 法则)

n 个方程 n 个未知量的线性方程组 $AX = \beta$ 的系数行列式 $|A| \neq 0$,则方程组存在一个唯一解

$$x_1 = \frac{|A_1|}{|A|}, x_2 = \frac{|A_2|}{|A|}, \dots, x_n = \frac{|A_n|}{|A|}$$

其中 A_i 是将系数矩阵 A 的第 i 列替换为常数列得到的方阵, i.e.

$$A_{i} = \begin{pmatrix} a_{11} & \cdots & a_{1,j-1} & b_{1} & a_{1,j+1} \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & b_{n} & a_{n,j+1} \cdots & a_{nn} \end{pmatrix}_{n \times n}$$

11/14

练习

例

用 Carmer 法则和逆矩阵方法求解线性方程组

$$\begin{cases} x_1 - x_2 - x_3 &= 2\\ 2x_1 - x_2 - 3x_3 &= 1\\ 3x_1 + 2x_2 - 5x_3 &= 0. \end{cases}$$

小结

- 逆矩阵的定义
- A 可逆 $\Leftrightarrow |A| \neq 0$
- 逆矩阵的应用
 - 解矩阵方程,
 - 求矩阵多项式
 - 解线性方程组 \Rightarrow Carmer 法则 (系数矩阵为可逆方阵: n 个方程 n 个变量, 系数行列式非零.)

作业

• Page53-Page54. 9-(3)(4)、13、14-(1)、22.

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2024年9月8日