LemonNFV: Consolidating Heterogeneous Network Functions at Line Speed

Hao Li, Yihan Dang et. al. Xian Jiaotong University

NSDI23

VNF and SFC

- Virtualized Network Function (VNF)
- Service Function Chain (SFC)

Difficulties in NFs' Interoperation

- Heterogeneous NFs Are Not Interoperable
 - Programming language
 - Execution model
 - State & Packet Abstraction

Solution 1: Virtualization

• Dilemma: Context Switch vs Inter-Core Traffic

Scheduling instances on the same core

- Pinning instances on dedicated cores
- Virtualization approaches are hard to reach line rate

Solution 2: Consolidation

Problem 1: Namespace Conflict

Problem 2: Private Control Flow

Problem 3: Illegal Memory Access

Takeaways on Existing Solutions

- Solution 1: Virtualization
 - Good: No modification to NFs' codes
 - Bad: Virtualization approaches are hard to reach line rate!

- Solution 2: Consolidation
 - Good: High performance
 - Bad: Direct Consolidation Forces Huge Code Modification!

LemonNFV's Solution

• Insights: exploit the advantages of the two methods

LemonNFV Overview

The LEMON Abstraction (LEast Modified network function)

Detect and Prevent Illegal Memory Accesses

Find and Schedule Infinite Loops

Scheduling the LEMONs with Customized I/O

- By default, NFs process packets in an infinite loop
 - RX/TX talks directly to NIC
- Customized I/O does not modify the loop but schedules it
 - Using RX/TX as scheduling points
 - Calling TX saves context and returns to the trampolines
 - The trampolines select the next LEMON and restore its (post-TX) context

Preventing Illegal Memory Accesses

- The design of LEMON creates bounded memory regions
 - Private heap, stack and dependencies instead of shared ones
 - Accesses outside its own region is illegal
- Bounded memory is efficiently isolated by domain switching
 - LemonNFV uses Intel Protection Key for Userspace (PKU)
 - Restrict access before switching to LEMONs, and relax it before switching back to trampolines

Design Takeaway

Evaluation

• Effort of LemonNFV to consolidate heterogeneous NFs

Performance compared with State-Of-The-Art NFV systems

Evaluation

Minimum LOC Modification to Interoperation

Heterogeneity	of Real	World	NFs
ricterogeneity	, oi iteai	VVOITG	1413

Huge Code Base Effort of Of Real World NFs LemonNFV

NF	Framework	Language	I/O	NF LOC	Framework	Modified
					LOC	LOC
IDS	Rubik	С	DPDK	337	31K	2
NAT	FastClick	C++	DPDK	94	331K	2
ACL	NetBricks	Rust	DPDK	401	58K	8
СТ	mOS	С	libpcap	325	139K	4
DPI	nDPI	С	libpcap	4498	121K	2

LemonNFV consolidates heterogeneous NFs without much effort (LOC)

Evaluation

Comparing Performance with State-Of-The-Art

LemonNFV consolidates heterogeneous NFs with minor overhead

Summary

- Virtualization nor direct consolidation achieves heterogeneous NF interoperation
 - Virtualization overhead
 - Effort of code modification

Summary

- LemonNFV consolidates NFs with minor overhead and effort
 - Designs a unique abstraction LEMON
 - Schedules and isolates LEMONs inside one process