EE101 Tutorial 12

Topics: RC, RL and RLC Circuits

Q1. Assuming that the switch in Fig. 1 has been in position A for a long time and is moved to position B at t=0 find $v_o(t)$ for $t\ge 0$.

Q2. For the circuit in Fig. 2, find $v_o(t)$ for t>0. Determine the time necessary for the capacitor Voltage to decay to one-third of its value at t=0.

Q3. For the circuit in Fig. 3, find i_0 for t > 0.

Q4. In the circuit of Fig.4

$$v(t) = 20e^{(-10^3 t)}V, t > 0$$

 $i(t) = 4e^{(-10^3 t)} \text{ mA}, t > 0$

- (a) Find R, L, and τ .
- (b) Calculate the energy dissipated in the resistance for 0 < t < 0.5 ms.

Fig. 4

Q5. Determine the time constant for each of the circuits in Fig. 5.

Q6. In the circuit of Fig. 6, find i(t) for t > 0 if i(0) = 2 A.

Q7. Calculate the capacitor voltage for t < 0 and t > 0 for each of the circuits in Fig. 7.

Fig. 7

Q8. Find v(t) for t < 0 and t > 0 in the circuit of Fig. 8.

Fig. 8

Q9. For the network shown in Fig. 9, find v(t) for t > 0.

- **Q10.** For the circuit in Fig. 10, find:
 - (a) $i(0^+)$ and $v(0^+)$
 - (b) $di(\theta^+)/dt$ and $dv(\theta^+)/dt$,
 - (c) $i(\infty)$ and $v(\infty)$.

Fig. 10

Q11. The switch in Fig. 11 moves from position A to position B at t=0 (please note that the switch must connect to point B before it breaks the connection at A, a make-before-break switch). Find v(t) for t>0.

Fig. 11

Q12. The switch in Fig. 12 moves from position A to position B at (please note that the switch must connect to point B before it breaks the connection at A, a make-before-break switch). Determine i(t) for t > 0.

Fig. 12