Data Processing and Analysis Experiment Report

1. Dataset: PISA (Programme for International Student Assessment)

PISA is an international assessment that measures the abilities of **15-year-old students**, covering three subject areas: **Mathematics**, **Science**, **and Reading**.

In this study, we focus on the **2018 assessment results**, which include the scores of **hundreds of thousands of students worldwide**.

2. Research Objectives

- To demonstrate that national gender inequality has a greater impact on academic performance than other national variables (e.g., international Gini coefficient, national GDP per capita). The hypothesis suggests that the greater the gender imbalance in a country, the lower the student performance.
- To explore whether a growth mindset can mitigate the negative impact of gender inequality, examining the interaction between a growth mindset and national gender imbalance.

3. Data Analysis Requirements

- Feature importance ranking will be conducted using Lasso, Random Forest,
 Permutation Feature Importance, and XGBoost.
- Given the inherent uncertainty in machine learning methods, the results should be interpreted as one possible scenario, serving as a supplementary analysis for conclusions.

4. Experiment Results

4.1 Data Overview

- Two levels of data were used: school level and student level.
- The dependent variable (academic performance) was measured using PV2, PV5, and PV9.

Initial dataset size: 612,004 records

After data cleaning: 444,238 records

Male students: 221,826

Female students: 222,412

4.2 Correlation Analysis

• GII (Gender Inequality Index) and GINI (Gini coefficient) both have a negative impact on academic performance, with GII showing the strongest negative correlation.

4.2.1 Lasso Regression Method

(a) Introduction

Lasso (Least Absolute Shrinkage and Selection Operator) is a **regularization method** that **adds a penalty term to the empirical risk function** to control model complexity. When the penalty

term is an **L1 norm**, it forces certain feature coefficients to become zero, effectively performing feature selection.

$$\widehat{\beta}_{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p |\beta_j| \right\}$$

As α decreases, the predictive power of the model improves, indicating that all seven feature variables contribute to student performance.

(b) Feature Importance Ranking (Lasso method)

- As λ increases, coefficients shrink, and features are dropped one by one.
- The last remaining features are the most important ones.

Table: Overall Feature Importance Ranking (Mixed-Gender Analysis)

Experiment	Feature Importance Ranking (Most important → Least important)
Lasso-PV2-Math	GII, Gender, gmc, ESCS, GDP, GINI
Lasso-PV5-Math	GII, Gender, gmc, ESCS, GDP, GINI
Lasso-PV9-Math	GII, Gender, gmc, ESCS, GDP, GINI
Lasso-PV2-Reading	GII, ESCS, gmc, Gender, GINI, GDP
Lasso-PV5-Reading	GII, ESCS, gmc, Gender, GINI, GDP
Lasso-PV9-Reading	GII, ESCS, gmc, Gender, GINI, GDP
Lasso-PV2-Science	GII, gmc, ESCS, GDP, Gender, GINI
Lasso-PV5-Science	GII, gmc, ESCS, GDP, Gender, GINI
Lasso-PV9-Science	GII, gmc, ESCS, GDP, Gender, GINI

(c) Conclusion:

 GII (Gender Inequality Index) has a stronger influence than GINI (Gini coefficient) and GDP. • GII negatively affects academic performance, as indicated by negative coefficients.

(d) Gender-Specific Analysis

- Male Students
- Top Influencing Features: GII, gmc, ESCS, GDP, GINI (Consistently ranked highest across different subjects)
- Female Students
- Top Influencing Features: GII, ESCS, gmc, GDP, GINI
- GII remains the most critical factor, showing that gender inequality significantly impacts female students' academic performance.

4.2.2 Random Forest Method

(a) Introduction

Random Forest (RF) is an **ensemble learning method** based on the **Bagging** approach. It introduces **random feature selection** during training to enhance model robustness.

(b) Feature Importance in Random Forest

- GII ranked among the top three important features across all subjects.
- Gender-based analysis revealed that GII had a greater impact on female students than male students.

4.2.3 XGBoost Method

(a) Introduction

XGBoost (Extreme Gradient Boosting) is an **optimized gradient boosting algorithm** widely used in machine learning competitions. It is an improved version of **GBDT** (**Gradient Boosting Decision Trees**), designed for high efficiency.

(b) Feature Importance in XGBoost

- Similar to Random Forest, XGBoost identified GII as one of the top influencing factors.
- GII consistently ranked high across both male and female student analyses.

(c) Experimental Conclusion

This experiment utilized Lasso regression, Random Forest, and XGBoost to evaluate the impact of multiple independent variables (ESCS, Gender, gmc, GII, GDP, GINI) on student performance.

- Across different methods, Gender Inequality Index (GII) consistently ranked as a highly
 influential factor, confirming that national gender inequality has a more significant
 impact on academic performance than GDP or the Gini coefficient.
- Countries with higher gender inequality tend to have lower student performance.
- Both male and female students are negatively affected by gender inequality, with female students experiencing a stronger impact.

5. Final Thoughts

The results reinforce the argument that reducing gender inequality at the national level could improve academic outcomes. Additionally, fostering a growth mindset may help mitigate the negative impact of gender inequality on student performance.

Appendix

Dataset details

Student Variables

Variable (English)	Variable
CNTSCHID	International School ID
CNTRYID	Country Identifier
CNT	Country/Region Code (Three Letters)
CNTSTUID	International Student ID
gender	Student Gender (1 = Male, 2 = Female)
growth_mindset_origin	Growth Mindset Dimension

Variable (English)	Variable
ESCS	Economic, Social, and Cultural Status Index
W_FSTURWT, W_FSTURWT1- 80	81 Base Grade Weight
W_SCHGRNRABWT	GRADE NONRESPONSE ADJUSTED SCHOOL BASE WEIGHT
W_FSTUWT_SCH_S	Sum of W_FSTUWT (W_FSTUWT 的总和)
SENWT	Senate Weight (5000 per country)
PV1MATH – PV10MATH	10 math grade
PV1READ – PV10READ	10 read grade
growth_mindset_Continuous	0-4 from small to big, represent the student's growth mind extent

National Variables

Variable (English)	Variable (Chinese)
CNTRYID	Country Identifier
GDP per capita	GDP per capita (Unit: USD
GII	Gender Inequality Index
GINI	Gini Coefficient