讨论4: 图示各电路属于哪种功放?

讨论5: 实际功放应用-单电源双声道音频功放LM4755

$$A_u = 1 + \frac{R_{\rm f}}{R_{\rm 1}} = 51$$

音频功放性能指标

	LM386N-3	LM4755	LM4293
电路类型	单通道OTL	双通道OTL或	单通道BTL
	通用低频功放	BTL,音频功放	音频功放
电源V。范围(V)	4~12	9~40	2.4 ~ 5.5
典型输出功率(W)	0.7	4	1.1
		$(V_{\rm S}=20{\rm V}, R_{\rm L}=8\Omega, THD+N=10\%)$. 5
静态电流(mA)			. 5
静态电流(mA) 电压增益	THD = 10%	$\overrightarrow{THD+N} = 10\%)$	THD+N=1%)
	THD = 10%)	THD+N = 10% 10	THD+N=1%)

第九章要求

要求:

- •掌握OCL功率放大电路的组成、工作原理、 最大输出功率和效率的求解;了解功放管的参 数和选择方法。
- · 了解变压器耦合单管功率放大电路、变压器 耦合乙类推挽功率放大电路、OTL、BTL

第九章基本电路、基本分析方法总结

电路总结(请自己将电路特点列表对比细化):

OCL功率放大电路,消除交越失真的 OCL功率放大电路, OTL, BTL。

方法总结:

• 最大输出电压、最大输出功率和效率的求解方法。

第九章常见题型

- (1) 功率放大电路的特点和最大输出功率、效率的有关概念。
 - (2) 功率放大电路类型的识别。
- (3) OCL、OTL最大输出功率和效率的估算、功放管的选择。
 - (4) 功率放大电路中反馈的分析、估算和引入。
 - (5) 功率放大电路的故障分析。

由于实用的功率放大电路常为引入深度负反馈的多级放大电路,除涉及功放自己的特殊问题外,还涉及关于基本放大电路、集成运放、反馈等多方面的知识,因而题目往往具有一定的综合性,也就具有一定的难度。

第十章 直流稳压电源

10.1 直流电源的组成及各部分的作用

直流稳压电源的

10.2 整流电路

一、单相半波整流

1. 工作原理

设D为理想二极管

$$u_2 = \sqrt{2}U_2 \sin \omega t$$

2. 主要参数

$$u_{0} = \sqrt{2}U_{2} \sin \omega t \quad u_{2} > 0$$

$$U_{0(AV)} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U_{2} \sin \omega t d(\omega t) = \frac{\sqrt{2}U_{2}}{\pi} \approx 0.45U_{2}$$

$$I_{0(AV)} = \frac{U_{0(AV)}}{R_{L}} \approx \frac{0.45U_{2}}{R_{L}}$$
脉动系数 $S = \frac{U_{01M}}{U_{0(AV)}} = \frac{U_{2}}{U_{0(AV)}} = \frac{\pi}{2} \approx 1.57$

3. 二极管的选择

考虑电网电压波动
$$\left\{ \begin{aligned} I_{\mathrm{F}} > 1.1 \times I_{\mathrm{O(AV)}} &= 1.1 \frac{0.45 U_{2}}{R_{\mathrm{L}}} \\ (\pm 10\%) & U_{\mathrm{R}} > 1.1 \times U_{\mathrm{Rmax}} = 1.1 \times \sqrt{2} U_{2} \end{aligned} \right.$$

单相桥式整流

2. 工作原理

3. 主要参数

$$u_{\rm O} = \sqrt{2}U_2 \mid \sin \omega t \mid$$

$$\begin{split} U_{\mathrm{O(AV)}} &= \frac{1}{\pi} \int_0^{\pi} \sqrt{2} U_2 \sin \omega t \mathrm{d}\omega t & I_{\mathrm{O(AV)}} &= \frac{U_{\mathrm{O(AV)}}}{R_{\mathrm{L}}} \approx \frac{0.9 U_2}{R_{\mathrm{L}}} \\ &= \frac{2\sqrt{2} U_2}{R_{\mathrm{L}}} \approx 0.9 U_2 \end{split}$$

$$I_{\mathrm{O(AV)}} = \frac{U_{\mathrm{O(AV)}}}{R_{\mathrm{L}}} \approx \frac{0.9U_{2}}{R_{\mathrm{L}}}$$

脉动系数
$$S = \frac{U_{\text{O1M}}}{U_{\text{O(AV)}}} = \frac{4\sqrt{2}U_2}{U_{\text{O(AV)}}} = \frac{2}{3} \approx 0.67$$

4. 二极管的选择

$$I_{\mathrm{D(AV)}} = \frac{I_{\mathrm{O(AV)}}}{2} \approx \frac{0.45U_{2}}{R_{\mathrm{L}}}$$

$$U_{\mathrm{Rmax}} \approx \sqrt{2}U_{2}$$

考虑电网电压波动(生 10%)

$$I_{\rm F} > 1.1 I_{\rm D(AV)} = 1.1 \frac{0.45 U_2}{R_{\rm L}}$$
 $U_{\rm R} > 1.1 U_{\rm Rmax} = 1.1 \times \sqrt{2} U_2$

与半波整流相同

利用桥式整流电路实现正、负电源

10.3 滤波电路

充电时间常数: $2r_d*C$

放电时间常数: R_L*C

整流二极管导通 角 θ 小于半周

- 无滤波电容时 $\theta = \pi$ 。
- 有滤波电容时 $\theta < \pi$,且 $U_{O(AV)} \uparrow$,二极管平均电 流 $i_D \uparrow$,故其峰值很大!

 $R_{\rm L}C\uparrow$, $U_{{
m O(AV)}}\uparrow$, 但整流 二极管导通角 $\theta\downarrow$, $i_{
m D}\uparrow$

 θ 小到一定程度时,难于选择二极管!

$$\frac{\sqrt{2}U_2 - U_{\text{omin}}}{\sqrt{2}U_2} = \frac{T/2}{R_{\text{L}}C}$$

$$U_{\text{O(AV)}} = \frac{U_{\text{omax}} + U_{\text{omin}}}{2}$$

$$=\sqrt{2}U_2(1-\frac{T}{4R_{\rm L}C})$$

 $R_{\rm L}$ 开路时: $U_{\rm O}=U_{\rm C}=\sqrt{2}U_2$

 $R_{\rm L}$ *C = (3~5) T/2时:

$$U_{\mathrm{O(AV)}} \approx 1.2 U_2$$

实际应用时选择:

• $R_{\rm L}^*C = (3\sim 5) T/2$

• 电容耐压值: $U_{\rm C} > 1.1 \cdot \sqrt{2}U_{2}$

●整流二极管: I_F>(2~3)I_{O(AV)}

电容滤波适合于输出电流小且变化较小的情况

讨论1

已知变压器副边电压有效值为10V,电容足够大,判断下列情况下输出电压平均值 $U_{O(AV)} \approx ?$

- 1. 正常工作;
- 2. C开路;
- 3. R_L开路;
- 4. D_1 和C同时开路;
- 5. D₁开路。

