

We draw AC perpendicular to x-axis.

$$= \int_0^1 x \, dx - \int_0^1 x^2 \, dx$$

$$= \left[\frac{x^2}{2} \right]_0^1 - \left[\frac{x^3}{3} \right]_0^1$$

$$= \frac{1}{2} - \frac{1}{3}$$

$$= \frac{1}{6} \text{ units}$$

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y=4x^2$, x=0, y=1 and y=4

Answer

The area in the first quadrant bounded by $y = 4x^2$, x = 0, y = 1, and y = 4 is represented by the shaded area ABCDA as

$$\therefore \text{ Area ABCD} = \int_1^4 x \, dx$$

$$= \int_1^4 \frac{\sqrt{y}}{2} dx$$

$$= \frac{1}{2} \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_1^4$$

$$= \frac{1}{3} \left[(4)^{\frac{3}{2}} - 1 \right]$$

$$= \frac{1}{3} [8 - 1]$$

$$= \frac{7}{3} \text{ units}$$

Question 4:

Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{6} |x+3| dx$ Answer

The given equation is y = |x+3|

The corresponding values of x and y are given in the following table.

x	- 6	- 5	- 4	- 3	- 2	- 1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of y = |x+3| as follows.

It is known that, $(x+3) \le 0$ for $-6 \le x \le -3$ and $(x+3) \ge 0$ for $-3 \le x \le 0$

$$\therefore \int_{-6}^{0} |(x+3)| dx = -\int_{-6}^{-3} (x+3) dx + \int_{-3}^{0} (x+3) dx$$

$$= -\left[\frac{x^{2}}{2} + 3x \right]_{-6}^{-3} + \left[\frac{x^{2}}{2} + 3x \right]_{-3}^{0}$$

$$= -\left[\left(\frac{(-3)^{2}}{2} + 3(-3) \right) - \left(\frac{(-6)^{2}}{2} + 3(-6) \right) \right] + \left[0 - \left(\frac{(-3)^{2}}{2} + 3(-3) \right) \right]$$

$$= -\left[-\frac{9}{2} \right] - \left[-\frac{9}{2} \right]$$

$$= 9$$

Question 5:

Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$

Answer

The graph of $y = \sin x$ can be drawn as

∴ Required area = Area OABO + Area BCDB

$$= \int_0^{\pi} \sin x \, dx + \left| \int_{\pi}^{2\pi} \sin x \, dx \right|$$

$$= \left[-\cos x \right]_0^{\pi} + \left| \left[-\cos x \right]_{\pi}^{2\pi} \right|$$

$$= \left[-\cos \pi + \cos 0 \right] + \left| -\cos 2\pi + \cos \pi \right|$$

$$= 1 + 1 + \left| \left(-1 - 1 \right) \right|$$

$$= 2 + \left| -2 \right|$$

$$= 2 + 2 = 4 \text{ units}$$

Question 6:

Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx

The area enclosed between the parabola, $y^2=4ax$, and the line, y=mx, is represented by the shaded area OABO as

The points of intersection of both the curves are (0, 0) and $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$. We draw AC perpendicular to x-axis.

 \therefore Area OABO = Area OCABO - Area (\triangle OCA)

$$\begin{split} &= \int_{m^{2}}^{4a} 2\sqrt{ax} \, dx - \int_{0}^{4a} mx \, dx \\ &= 2\sqrt{a} \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{4a^{2}} - m \left[\frac{x^{2}}{2} \right]_{0}^{4a^{2}} \\ &= \frac{4}{3}\sqrt{a} \left(\frac{4a}{m^{2}} \right)^{\frac{3}{2}} - \frac{m}{2} \left[\left(\frac{4a}{m^{2}} \right)^{2} \right] \\ &= \frac{32a^{2}}{3m^{3}} - \frac{m}{2} \left(\frac{16a^{2}}{m^{4}} \right) \\ &= \frac{32a^{2}}{3m^{3}} - \frac{8a^{2}}{m^{3}} \\ &= \frac{8a^{2}}{3m^{3}} \text{ units} \end{split}$$

Question 7:

Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12

The area enclosed between the parabola, $4y = 3x^2$, and the line, 2y = 3x + 12, is represented by the shaded area OBAO as

The points of intersection of the given curves are A (-2, 3) and (4, 12). We draw AC and BD perpendicular to x-axis.

∴ Area OBAO = Area CDBA - (Area ODBO + Area OACO)

$$= \int_{2}^{1} \frac{1}{2} (3x+12) dx - \int_{2}^{1} \frac{3x^{2}}{4} dx$$

$$= \frac{1}{2} \left[\frac{3x^{2}}{2} + 12x \right]_{-2}^{4} - \frac{3}{4} \left[\frac{x^{3}}{3} \right]_{-2}^{4}$$

$$= \frac{1}{2} \left[24 + 48 - 6 + 24 \right] - \frac{1}{4} \left[64 + 8 \right]$$

$$= \frac{1}{2} \left[90 \right] - \frac{1}{4} \left[72 \right]$$

$$= 45 - 18$$

$$= 27 \text{ units}$$

Question 8:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$

Answer

The area of the smaller region bounded by the ellipse, $\frac{x^2}{9} + \frac{y^2}{4} = 1$, and the line, $\frac{x}{3} + \frac{y}{2} = 1$, is represented by the shaded region BCAB as

******* END *******