

Table 15-1. [X]_i, [X]_o and E_{Nernst} for Cardiac Muscle Cells

lon	[] _o , mM	[] _i , mM	E _N , mV
Na⁺	145	10	70
K ⁺	4	135	-94
Ca ²⁺	2	1.10-4	132

© Elsevier Ltd. Berne et al: Physiology 5E www.studentconsult.com

$$E_{m} = \frac{g_{K}}{\Sigma g} E_{K} + \frac{g_{Na}}{\Sigma g} E_{Na} + \frac{g_{Ca}}{\Sigma g} E_{Ca}$$

For cardiac cells ...

$$g_{K, resting} \approx 100X g_{Na, resting}$$

$$g_{K, resting} \approx 100 X g_{Ca, resting}$$

Figure 16-3 Principal ionic currents and channels that generate the various phases of the action potential in a cardiac cell. **Phase 0:** The chemical and electrostatic forces both favor the entry of Na⁺ into the cell through fast Na⁺ channels to generate the upstroke. **Phase 1:** The chemical and electrostatic forces both favor the efflux of K⁺ through i_{to} channels to generate early, partial repolarization. **Phase 2:** During the plateau, the net influx of Ca⁺⁺ through Ca⁺⁺ channels is balanced by the efflux of K⁺ through i_{to} channels. **Phase 3:** The chemical forces that favor the efflux of K⁺ through i_{to} and i_{to} channels predominate over the electrostatic forces that favor the influx of K⁺ through these same channels. **Phase 4:** The chemical forces that favor the efflux of K⁺ through i_{to} and i_{to} channels very slightly exceed the electrostatic forces that favor the influx of K⁺ through these same channels.

END

Video 2, Module 6