Fused Optimal Transport

Junhyoung Chung*

Department of Statistics Seoul National University Seoul National University, Seoul 08826, Republic of Korea junhyoung0534@gmail.com

Abstract

The abstract paragraph should be indented ½ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. The word **Abstract** must be centered, bold, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

1 Introduction

2 Fused Optimal Transport

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $(\mathbb{F}, \mathcal{B}(\mathbb{F}))$ be a measurable space, where $\mathbb{F} \subset L^2(\mathcal{X}; dx)$ and $L^2(\mathcal{X}; dx)$ is a space of square integrable real-valued functions over a compact region $\mathcal{X} \subset \mathbb{R}^d$. The *norm* on \mathbb{F} is defined as $||f|| := (\int_{\mathcal{X}} |f(x)|^2 dx)^{1/2}$. A measurable mapping $X : \Omega \to \mathbb{F}$ is called a *random function* and $\mathbb{P}_X := \mathbb{P} \circ X^{-1}$ a *distribution* of X.

For two random functions X and Y, we say a measurable map $T: \mathbb{F} \to \mathbb{F}$ pushes forward \mathbb{P}_X to \mathbb{P}_Y , or simply X to Y, if $\mathbb{P}_X(T^{-1}(A)) = \mathbb{P}_Y(A)$ for all $A \in \mathcal{B}(\mathbb{F})$. We denote $T_\#\mathbb{P}_X = \mathbb{P}_Y$ or $T(X) \stackrel{d}{=} Y$ if T pushes forward X to Y.

 $FGW(\mathbb{P}_X, \mathbb{P}_Y)$

$$\coloneqq \inf_{\pi \in \Pi(\mathbb{P}_X, \mathbb{P}_Y)} \left(\int_{\mathcal{X} \times \mathcal{X}} \left[(1 - \alpha)(X(x) - Y(y))^2 + \alpha \int_{\mathcal{X} \times \mathcal{X}} \left| d(x, x') - d(y, y') \right|^2 \right] d\pi(x, y) d\pi(x', y') \right)^{1/2}.$$

$$\tag{1}$$

^{*}https://junhyoung-chung.github.io/