Heurísticas, ou "o que fazer quando não se sabe o que fazer"

Heurística

- "Heurística" deriva do grego heuriskein, Que significa "encontrar" ou "descobrir";
- Objetivos principais para o algoritmo:
 - Reduzir tempos de execução;
 - Encontrar boas soluções, geralmente a ótima.
- Uma heurística é um algoritmo atende pelo menos um desses objetivos:
- Não há garantia para obter a solução ideal (ou solução ótima), mas sim boas soluções;
- Heurística de construção:
 - Vai-se adicionando gradualmente componentes individuais para a solução;
 - Algoritmos "gulosos" (greedy): a cada passo, escolhe a melhor opção
 - Exemplo: algoritmo KNN aplicado ao problema do caixeiro viajante.

• Métodos de busca local

- Explorando soluções "vizinhas", a passando de uma solução à outra que seja melhor;
- Provável que estacione em ótimos locais;
- Portanto, dependendo do ponto inicial, pode apresentar diferentes resultados;
- Na busca cega, nenhuma informação coletada é utilizada durante a execução do algoritmo.

- Nas heurísticas podem ser incorporados mecanismos aleatórios de construção para "escapar" de ótimos locais;
- Razões para utilização de heurística:
 - Resolução de problemas complexos:
 - Grandes Problemas;
 - Problemas não-lineares;
 - Problemas combinatórios.
 - Ausência, ou ineficácia, de algoritmos ótimos;
 - Evitar ficar preso em ótimos locais.

Algoritmos de busca local

- Hill-Climbing: Subida pela Encosta mais Íngrime (ou Busca Local Gulosa)
 - Só faz modificações que melhoram o estado atual.
- Simulated Annealing: Têmpera Simulada
 - Pode fazer modificações que pioram o estado no momento, para possivelmente melhorá-lo no futuro.
- Local Beam Search: Busca em feixe local
 - Mantém k estados em vez de um único.
- Algoritmos Genéticos (GA)
 - É uma busca subida da encosta, estocástica, na qual uma grande população de estados é mantida e novos estados são gerados por mutação ou cruzamento.

Subida de Encosta pela Trilha mais íngreme

- Considera todos os movimento já feitos a partir do estado corrente selecionando o melhor como próximo estado;
- Algoritmo:
 - Avalie o estado inicial. Se ele também for um estado meta, retorne-o e encerre, caso contrário, continue com o estado inicial como estado corrente;
 - 2. Repita o processo até encontrar uma solução ou até que uma iteração completa não produza nenhuma mudança no estado corrente:

- a) atribua a sucessor um estado;
- b) para cada operador que se aplique ao estado corrente faça o seguinte:
 - aplique o operador e gere um estado novo;
 - avalie o novo estado. Se for um estado-meta, retorne-o e encerre. Senão, compare-o a sucessor, se for melhor, então atribua-o a sucessor, caso contrário deixe o sucessor como está.
- Hill Climbing Exemplos:
 - Cubos coloridos neste método, precisamos considerar todas as alterações do estado inicial e escolher a melhor;
 - Neste problema isto é difícil pois temos muitos movimentos possíveis (explosão combinatória);
 - Sempre há perdas e ganhos entre o tempo exigido para escolher um movimento e o número de movimentos necessários para chegar a uma solução;

- Os métodos vistos até então podem não encontrar uma solução, qualquer um dos algoritmos pode terminar, não porque o estadometa foi encontrado, mas porque chegou-se a um estado que não há nenhum estado melhor que ele, isto ocorre quando um programa tiver alcançado o máximo local, um platô ou uma cordilheira;
 - máximo local: estado melhor que todos os seus vizinhos, mas não melhor que estados mais distantes;
 - platô: área dentro do espaço de busca onde o grupo de estados vizinhos tem o mesmo valor, não sendo possível determinar a melhor direção através de comparações locais;
 - cume: um tipo de máximo local. Área do espaço de busca mais alta que seus vizinhos que não permite atravessar a cordilheira num único movimento;

- modos para lidar com estes problemas:
 - Volte a um nó anterior e siga uma heurística diferente (máximos locais);
 - De um salto grande em alguma direção para tentar chegar a uma nova seção do espaço de busca (platôs);
 - Aplique duas ou mais regras, move-se em várias direções ao mesmo tempo (cordilheiras);
- Apesar de todos estas estratégias a subida de encosta não é muito eficiente

Têmpera Simulada

- · Variação da subida de encosta;
- No início do processo podem ser feitos movimentos descendentes (morro abaixo) explorando suficientemente o espaço do problema, para que a solução final não fique presa a um máximo local, platô ou cordilheira;
- Utilizada em processos físicos de recozimento, onde substâncias físicas como os metais são fundidas (altos níveis de energia) e depois gradualmente resfriados até alcançar um estado sólido;

- Objetivo: produzir um estado final com um mínimo de energia (estado-meta);
- A função-objetivo (função heurística) é o nível de energia;
- A velocidade com que o sistema é resfriado é chamado de cronograma de têmpera;
- · Algoritmo:
 - Avalie o estado inicial. Se for também um estadometa, então retorne-o e encerre. Caso contrário, continue com o estado inicial como estado corrente;
 - 2. Inicialize *melhor-até-o-momento* como igual ao estado corrente;

- 3. Inicialize T de acordo com o cronograma de têmpera;
- 4. Repita o processo até ser encontrada uma solução ou até não haver mais nenhum operador que possa ser aplicado no estado corrente:
 - a) selecione um operador que ainda não tenha sido aplicado ao estado corrente e aplique-o para produzir um estado novo;
 - b) avalie o estado novo. Calcule
 - ΔE = valor do estado corrente valor do estado novo (mudança de energia)
 - se o estado novo for um estado meta, retorne-o e encerre;

- se não for um estado meta, mas for melhore que o estado corrente, então torne-o o estado corrente com a probabilidade p' (definido aleatoriamente um número entre [0,1] se for menor que p' então o movimento é aceito, senão, não faz nada;
- c) retorne melhor-até-o-momento como resposta;

Problema do Caixeiro Viajante

- Problema do caixeiro viajante ou "Traveling Salesman Problem (TSP)":
- Encontrar um caminho por um determinado conjunto de cidades de modo que:
 - Cada cidade deve ser visitada apenas uma vez;
 - A distância total percorrida deve ser minimizada;
 - Ou seja, o caixeiro viajante:
 - Sai de casa
 - Visita n cidades
 - Retorna à sua casa
 - Deve visitar cada cidade uma única vez
 - Objetivo: Encontrar o caminho mais curto

Tempo estimado de solução do problema

Função de	Tamanho da Instância do Problema						
complexidade	10	20	30	40	50	60	
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006	
	segundos	segundos	segundos	segundos	segundos	segundos	
n^2	0,0001	0,0004	0,0009	0,0016	0,0025	0,0036	
	segundos	segundos	segundos	segundos	segundos	segundos	
n^3	0,001	0,008	0,027	0,064	0,125	0,216	
	segundos	segundos	segundos	segundos	segundos	segundos	
n 5	0,1	3,2	24,3	1,7	5,2	13,0	
	segundos	segundos	segundos	minutos	minutos	minutos	
2 ⁿ	0,001	1,0	17,9	12,7	35,7	366	
	segundos	segundos	segundos	dias	anos	séculos	
3 ⁿ	0,059	58	6,5	3855	2 × 10 ⁸	1,3 × 10 ¹³	
	segundos	minutos	anos	séculos	séculos	séculos	

Fonte: Garey & Johnson

Computador mais rápido resolve?

Maior instância que um computador resolve em 1 hora							
Função de complexidade	Computador Atual	Computador 100x mais rápido	Computador 1000x mais rápido				
n	N	100 N	1000 N				
n^2	М	10 M	31,6 M				
n^3	Z	4,64 Z	10 Z				
n^{5}	W	2,5 W	3,98 W				
2 ⁿ	Х	X + 6,64	X + 9,97				
3 ⁿ	Υ	Y + 4,19	Y + 6,29				

Fonte: Garey & Johnson

Metaheurísticas

- Heurística é qualquer método desenvolvido para resolver um determinado tipo de problema;
- As metaheurísticas são definidas como heurísticas de uso mais geral ou uma "heurísticas das heurísticas";
- Exemplo de heurísticas:
 - Algoritmos genéticos ;
 - Simulated Annealing;

Metaheurísticas

- O sufixo meta significa a mais alta, ou um nível superior;
- São de uso geral;
- Simples de implementar;
- Possuem mecanismos que possibilitam escapar de soluções de baixa qualidade (ótimo local);
- Baixo tempo computacional;
- São robustas (instâncias de tamanho variado)

Metaheurísticas

- Produzem ótimos globais, ou ótimos locais, de qualidade superior aos ótimos produzidos por uma heurística;
- Iterativamente melhorar um conjunto de soluções
- · Pouco conhecimento do problema;
- Precisa poder distinguir boas soluções;
- Geralmente encontra boas soluções possivelmente não o ótimo;
- · Adaptáveis: parâmetros ajustáveis

