music information retrieval

Santa Cruz Artificial Intelligence

alexander lerch

education

- Electrical Engineering (Technical University Berlin)
- Tonmeister (music production, University of Arts Berlin)

professional

- Associate Professor at the School of Music, Georgia Institute of Technology
- 2000-2013: CEO at zplane.development

background

- audio algorithm design (20+ years)
- commercial music software development (10+ years)
- entrepreneurship (10+ years)

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

Santa Cruz Artificial Intelligence

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - · editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- **■** distribution & listening
 - music recommendation and discovery

Santa Cruz Artificial Intelligence

introduction

musical communication and Al

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition
- performance
 - interactive music education systems
 - generation of 'human' performance
- production
 - auto-edit and auto-mix
- distribution
 - match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

example:

DeepBach 🛡

Georgia Center for Music Tech Technology

intro

introduction

musical communication and Al

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance
- production
 - auto-edit and auto-mix
- distribution
 - match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

example:

Hatsune Miku (🕨

Georgia | Center for Music Tech || Technology

introduction

musical communication and Al

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance

production

- auto-edit and auto-mix
- distribution
 - match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

Georgia Center for Music Tech Technology intro

introduction

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance

production

auto-edit and auto-mix

distribution

- match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

Georgia Center for Music

introduction

Georgia Center for Music Tech ☐ Technology

musical communication and Al

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance

production

• auto-edit and auto-mix

distribution

match music style and consumer

consumption

• intelligent music discovery & adaptable music

introduction audio classification — traditional

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

no. 7/8, pp. 724-739, 2004. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

 $\verb|content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf.|$

¹ J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," Journal of the Audio Engineering Society (JAES), vol. 52,

introduction <u>audio classification</u> — traditional

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

 $\verb|content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf.|$

Santa Cruz Artificial Intelligence

¹J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," Journal of the Audio Engineering Society (JAES), vol. 52,

no. 7/8, pp. 724-739, 2004. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

introduction <u>audio classification</u> — traditional

5 / 21

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

 $\verb|content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf.|$

Santa Cruz Artificial Intelligence

¹J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," Journal of the Audio Engineering Society (JAES), vol. 52,

 $no.\ 7/8,\ pp.\ 724-739,\ 2004.\ [Online].\ Available:\ {\tt http://www.musicinformatics.gatech.edu/wp-properties}.$

introduction neural network based approaches

Georgia | Center for Music Tech | Technology

- no custom-designed features anymore
- learn features from basic inputs (like spectrograms)

- less required expert-knowledge, more complex systems
- less expert-tweaking, more rigorous experimental requirement
- much higher data requirements

introduction neural network based approaches

- no custom-designed features anymore
- learn features from basic inputs (like spectrograms)

- less required expert-knowledge, more complex systems
- less expert-tweaking, more rigorous experimental requirement
- much higher data requirements

out intro audio analysis **overview data r**eprogramming east conclusion thank ○○○ ○○ ○○ ○○ ○○

overview research interests

Georgia Center for Music Tech Tech College of Design

- tasks of interest
 - audio classification
 - genre, instrument, auto-tagging, . . .
 - music transcription
 - pitch, chord, performance data, . . .
 - music processing
 - separation, . . .
 - sound and music generation
 - controllability
- technical areas of interest
 - representation learning
 - machine learning with insufficient data
 - evaluation of generative systems

out intro audio analysis **overview d**ata reprogramming east conclusion thank ○○○ ○○ ○○ ○○ ○○

overview research interests

Georgia de Center for Music Tech de Technology
College of Design

- tasks of interest
 - audio classification
 - ▶ genre, instrument, auto-tagging, . . .
 - music transcription
 - pitch, chord, performance data, . . .
 - music processing
 - separation, . . .
 - sound and music generation
 - controllability
- technical areas of interest
 - representation learning
 - machine learning with insufficient data
 - evaluation of generative systems

overview structure

1 data

• introducing the data challenge in music

2 reprogramming

utilize pre-trained model to improve classification

3 embeddings as teachers

utilize pre-trained features to improve classification

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- model success largely depends on training data
- general challenges concerning data
 - subjectivity
 - noisiness
 - imbalance & bias
 - diversity & representativeness
 - amount

data importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- **general challenges** concerning data
 - subjectivity

 - imbalance & bias
 - diversity & representativeness

data importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- general challenges concerning data
 - subjectivity
 - noisiness
 - imbalance & bias
 - diversity & representativeness
 - amount

- mapping function is learned from patterns and characteristics **from data**
- ⇒ model success largely depends on training data

■ general challenges concerning data

- subjectivity
- noisiness
- imbalance & bias
- diversity & representativeness
- amount

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections
- detailed musical annotations are hard to come by, because
 - time consuming & tedious annotation process
 - experts needed for annotations

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections
- detailed musical annotations are hard to come by, because
 - time consuming & tedious annotation process
 - experts needed for annotations

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections
- detailed musical annotations are hard to come by, because
 - time consuming & tedious annotation process
 - experts needed for annotations

data previous work on insufficient data

- literature proposes many ways of dealing with insufficient data
 - data synthesis
 - data augmentation²
 - transfer learning
 - semi- and self-supervised approaches
 - . . .

 $\verb|content_nondefault/uploads/2019/04/Qin-and-Lerch-2019-Tuning-Frequency-Dependency-in-Music-Classificatio.pdf.|$

²Y. Qin and A. Lerch, "Tuning Frequency Dependency in Music Classification," en, in *Proceedings of the International Conference on Acoustics Speech and Signal Processing (ICASSP)*, Brighton, UK: Institute of Electrical and Electronics Engineers (IEEE), 2019, pp. 401–405. DOI:

^{10.1109/}ICASSP.2019.8683340. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

data
previous work on insufficient data

- literature proposes many ways of dealing with insufficient data
 - data synthesis
 - data augmentation
 - transfer learning²
 - semi- and self-supervised approaches
 - . . .

²S. Gururani, M. Sharma, and A. Lerch, "An Attention Mechanism for Music Instrument Recognition," in *ISMIR*, Delft, 2019.

data previous work on insufficient data

- literature proposes many ways of dealing with insufficient data
 - data synthesis
 - data augmentation
 - transfer learning
 - semi- and self-supervised approaches²³
 - . . .

Santa Cruz Artificial Intelligence 11 / 21

²C.-W. Wu and A. Lerch, "Automatic drum transcription using the student-teacher learning paradigm with unlabeled music data," in *ISMIR*, Suzhou. 2017.

³S. Gururani and A. Lerch, "Semi-Supervised Audio Classification with Partially Labeled Data," in *Proceedings of the IEEE International Symposium on Multimedia (ISM)*, online: Institute of Electrical and Electronics Engineers (IEEE), 2021. [Online]. Available: https://arxiv.org/abs/2111.12761.

reprogramming introduction

observation

 pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

■ idea

re-using pre-trained models for a new task without re-training

goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

reprogramming introduction

observation

 pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

■ idea

re-using pre-trained models for a new task without re-training

goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

reprogramming overview

Georgia Center for Music Tech Technology

- inspired by
 - transfer learning
 - adversarial learning

allows for small trainable model (input and output processing)

reprogramming experimental setup: baselines

Georgia | Center for Music Tech | Technology

- Baseline AST:
 - good performance on audio event classification⁴
- data
 - OpenMic:
 - 20 classes of musical instruments
 - ► 10 s audio snippets (20000)
- ablation study:
 - CNN only
 - U-Net only
 - CNN + AST + FC
 - U-Net + AST + FC

⁴Y. Gong, Y.-A. Chung, and J. Glass, "AST: Audio Spectrogram Transformer," in *Proceedings of Interspeech*, arXiv: 2104.01778, Brno,

Czechia, Jul. 2021. [Online]. Available: http://arxiv.org/abs/2104.01778 (visited on 04/17/2022).

Santa Cruz Artificial Intelligence

reprogramming results: classification metrics

method	F1 (macro)	train. param. (M)
AST + simple output mapping	62.03	0.001
CNN	60.77	0.017
U-Net	62.73	0.017
CNN + AST + FC	78.08	0.017
$U extsf{-}Net + AST + FC$	81.60	0.018

- a powerful model trained on a different task cannot easily be used directly
- proper input and output processing can significantly improve performance
- re-programming can beat the state-of-the-art at a fraction of trainable parameters (at least factor 10)

Santa Cruz Artificial Intelligence 15 / 21

⁵H.-H. Chen and A. Lerch, "Music Instrument Classification Reprogrammed," in *Proceedings of the International Conference on Multimedia Modeling (MMM)*, Bergen, Norway, 2023. [Online]. Available: https://arxiv.org/abs/2211.08379.

question:

• how can we provide extra training information without additional data labels

idea:

• use proven pre-trained embeddings (e.g., VGGish, OpenL3, ...)

goals:

- impart knowledge of pre-trained deep models
- improve model generalization by utilizing pre-trained embeddings
- reduce model complexity

■ general approach:

combine transfer learning and knowledge distillation ideas

question:

• how can we provide extra training information without additional data labels

■ idea:

• use proven pre-trained embeddings (e.g., VGGish, OpenL3, ...)

■ goals:

- impart knowledge of pre-trained deep models
- improve model generalization by utilizing pre-trained embeddings
- reduce model complexity

■ general approach:

combine transfer learning and knowledge distillation ideas

question:

• how can we provide extra training information without additional data labels

■ idea:

• use proven pre-trained embeddings (e.g., VGGish, OpenL3, ...)

■ goals:

- impart knowledge of pre-trained deep models
- improve model generalization by utilizing pre-trained embeddings
- reduce model complexity

■ general approach:

combine transfer learning and knowledge distillation ideas

embeddings as teachers method overview

- **■** transfer learning
 - use embeddings from a different task for the target task
- **■** knowledge distillation
 - use a teacher to train a less complex student on the same task

Santa Cruz Artificial Intelligence 17 / 21

oout intro audio analysis overview data reprogramming east conclusion thanks ○○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○

embeddings as teachers experimental setup

Georgia Center for Music Tech Technology

- task: auto-tagging
 - MagnaTagATune (MTAT) dataset:
 - ► 50 music tags
 - ▶ 30 s audio snippets (≈ 21000)

systems:

- baseline: student without teacher
- teacher: embedding plus logistic regression
 - ▶ VGGish
 - ► OpenL3
 - ► PaSST
 - ► PANNs
- KD: student trained with soft targets from teacher
- EAsT: student regularized with teacher embeddings

- student model consistently outperforms baseline
- student model consistently outperforms knowledge distillation
- student model outperforms teacher for "old" embeddings
- modern embeddings are powerful but complex

Santa Cruz Artificial Intelligence 19 / 21

⁶Y. Ding and A. Lerch, "Audio Embeddings as Teachers for Music Classification," in *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, Milan, Italy, 2023. DOI: 10.48550/arXiv.2306.17424. [Online]. Available: http://arxiv.org/abs/2306.17424 (visited on 07/03/2023).

conclusion data challenge

- we presented **2 recent approaches** to address the challenge of insufficient training data
 - a novel self-supervised regularization loss
 - reprogramming for audio classification
- all approaches perform at or above the state-of-the-art with different trade-offs between
 - training complexity
 - inference complexity
 - classification accuracy
- **but:** maybe we should address the data problems directly

out intro audio analysis overview data reprogramming east conclusion thanks

thank you!

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

music informatics group: musicinformatics.gatech.edu

