Zadanie 8. (1 pkt)

Wyrażenie $\log_4(2x-1)$ jest określone dla wszystkich liczb x spełniających warunek

A.
$$x \le \frac{1}{2}$$

B.
$$x > \frac{1}{2}$$

C.
$$x \le 0$$

D.
$$x > 0$$

Zadanie 9. *(1 pkt)*

Dane są funkcje liniowe f(x) = x - 2 oraz g(x) = x + 4 określone dla wszystkich liczb rzeczywistych x. Wskaż, który z poniższych wykresów jest wykresem funkcji $h(x) = f(x) \cdot g(x)$.

A.

Zadanie 10 *(1 pkt)*

Funkcja liniowa określona jest wzorem $f(x) = -\sqrt{2}x + 4$. Miejscem zerowym tej funkcji jest liczba

A.
$$-2\sqrt{2}$$

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$-\frac{\sqrt{2}}{2}$$

D.
$$2\sqrt{2}$$

Zadanie 11. *(1 pkt)*

Dany jest nieskończony ciąg geometryczny (a_n) , w którym $a_3 = 1$ i $a_4 = \frac{2}{3}$. Wtedy

A.
$$a_1 = \frac{2}{3}$$

B.
$$a_1 = \frac{4}{9}$$
 C. $a_1 = \frac{3}{2}$ **D.** $a_1 = \frac{9}{4}$

C.
$$a_1 = \frac{3}{2}$$

D.
$$a_1 = \frac{9}{4}$$

Zadanie 12. (1 pkt)

Dany jest nieskończony rosnący ciąg arytmetyczny (a_n) o wyrazach dodatnich. Wtedy

A.
$$a_4 + a_7 = a_{10}$$

B.
$$a_4 + a_6 = a_3 + a_8$$

A.
$$a_4 + a_7 = a_{10}$$
 B. $a_4 + a_6 = a_3 + a_8$ **C.** $a_2 + a_9 = a_3 + a_8$ **D.** $a_5 + a_7 = 2a_8$

D.
$$a_5 + a_7 = 2a_8$$

Zadanie 13. *(1 pkt)*

Kąt α jest ostry i $\cos \alpha = \frac{5}{13}$. Wtedy

A.
$$\sin \alpha = \frac{12}{13}$$
 oraz $\operatorname{tg} \alpha = \frac{12}{5}$
B. $\sin \alpha = \frac{12}{13}$ oraz $\operatorname{tg} \alpha = \frac{5}{12}$
C. $\sin \alpha = \frac{12}{5}$ oraz $\operatorname{tg} \alpha = \frac{12}{13}$
D. $\sin \alpha = \frac{5}{12}$ oraz $\operatorname{tg} \alpha = \frac{12}{13}$

B.
$$\sin \alpha = \frac{12}{13}$$
 oraz $tg\alpha = \frac{5}{12}$

C.
$$\sin \alpha = \frac{12}{5}$$
 oraz $tg\alpha = \frac{12}{13}$

D.
$$\sin \alpha = \frac{5}{12}$$
 oraz $tg\alpha = \frac{12}{13}$