National University of Singapore Department of Electrical & Computer Engineering

EE2023 Signals and Systems Assignment 1

- 1. Is the complex exponential signal $x(t) = e^{j3t}$ periodic? If so, what is its fundamental frequency?
- 2. Is the complex exponential signal $x(t) = e^{-(2+j3)t}$ periodic? If so, what is its fundamental frequency?
- 3. Let x(t) be a periodic signal with period T_0 . What is the period of the signal $x(\alpha t)$ where $\alpha > 0$?

 Ans: T_0/α
- 4. Determine the complex exponential form of the Fourier series of the full wave rectified sinusoidal signal, y(t), shown in Figure 1. Is y(t) a power or energy signal?

Figure 1: Full-wave rectified sinusoidal signal

5. Show that the Fourier transform of $y(t) = x(t) \cos 2\pi f_0 t$ is given by

$$Y(f) = \frac{1}{2} \left[X(f + f_0) + X(f - f_0) \right].$$

Using this result, find the Fourier transform of

$$v(t) = \operatorname{rect}\left(\frac{t}{\epsilon}\right) \cos 2\pi f_0 t.$$

Sketch its spectrum.

Ans:
$$V(f) = 0.5\epsilon [sinc((f - f_0)\epsilon) + sinc((f + f_0)\epsilon)]$$

6. Suppose the Fourier transform of a signal is given by :

$$X(f) = 0.5 \left[\operatorname{rect} \left(\frac{f-5}{100} \right) + \operatorname{rect} \left(\frac{f+5}{100} \right) \right].$$

Find the corresponding time domain signal x(t).

$$Ans: x(t) = 100 sinc(100t) cos(10\pi t)$$