Name:

Autoencoder

4. (14 points) Otto N. Coder is exploring different autoencoder architectures. Consider the following autoencoder with input $x \in \mathbb{R}^d$ and output $y^{pred} \in \mathbb{R}^d$. The autoencoder has one hidden layer with m hidden units: $z^{(1)}$, $a^{(1)} \in \mathbb{R}^m$.

$$\begin{split} z^{(1)} &= W^{(1)}x + b^{(1)} \\ a^{(1)} &= f^{(1)}(z^{(1)}) \ \text{ element-wise} \\ z^{(2)} &= W^{(2)}a^{(1)} + b^{(2)} \\ y^{pred} &= f^{(2)}(z^{(2)}) \ \text{ element-wise} \end{split}$$

(a) Assume $x, z^{(2)}$, and y^{pred} have dimensions $d \times 1$. Also let $z^{(1)}$ and $a^{(1)}$ have dimensions $m \times 1$. What are the dimensions of the following matrices?

$W^{(1)}$	$b^{(1)}$	$W^{(2)}$	$b^{(2)}$
$m \times d$	$m \times 1$	$d \times m$	$d \times 1$

Name:

Otto trains the autoencoder with back-propagation. The loss for a given datapoint x, y is:

$$J(x,y) = \frac{1}{2}||y^{pred} - y||^2 = \frac{1}{2}(y^{pred} - y)^T(y^{pred} - y).$$

Compute the following intermediate partial derivatives. For the following questions, write your answer in terms of x, y, y^{pred} , $W^{(1)}$, $b^{(1)}$, $W^{(2)}$, $b^{(2)}$, $f^{(1)}$, $f^{(2)}$ and any previously computed or provided partial derivative. Also note that:

- 1. Let $\partial f^{(1)}/\partial z^{(1)}$ be an $m \times 1$ matrix, provided to you.
- 2. Let $\partial f^{(2)}/\partial z^{(2)}$ be a $d \times 1$ matrix, provided to you.
- 3. If Ax = y where A is a $m \times n$ matrix and x is $n \times 1$ and y is $m \times 1$, then let $\partial y / \partial A = x$.
- 4. In your answers below, we will assume multiplications are matrix multiplication; to indicate element-wise multiplication, use the symbol *.
- (b) Find $\partial J/\partial y^{pred}$, a $d \times 1$ matrix.

Solution:

$$\frac{\partial J}{\partial y^{pred}} = (y^{pred} - y)$$

(c) Find $\partial J/\partial z^{(2)}$, a $d \times 1$ matrix. You may use $\partial J/\partial y^{pred}$ and * for element-wise multiplication.

Solution:

$$\begin{split} \frac{\partial J}{\partial z^{(2)}} &= \frac{\partial J}{\partial y^{pred}} \frac{\partial y^{pred}}{\partial z^{(2)}} \\ &= \frac{\partial J}{\partial y^{pred}} * \frac{\partial f^{(2)}}{\partial z^{(2)}} \end{split}$$

Check: $(d \times 1) = (d \times 1) * (d \times 1)$ dimensioned arrays; element-wise multiplication.

(d) Find $\partial J/\partial W^{(2)}$, a $d \times m$ matrix. You may use $\partial J/\partial z^{(2)}$.

Solution:

$$\begin{split} \frac{\partial J}{\partial W^{(2)}} &= \frac{\partial J}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial W^{(2)}}^T \\ &= \frac{\partial J}{\partial z^{(2)}} \ a^{(1)}^T = \frac{\partial J}{\partial z^{(2)}} \ f^{(1)} (W^{(1)} x + b^{(1)})^T \end{split}$$

Check: $(d \times m) = (d \times 1)(1 \times m)$ dimensioned arrays. Note that we also accept $a^{(1)}$ even though it was not explicitly provided.

Name:	
i idilic.	_

(e) Write the gradient descent update step for just $W^{(2)}$ for one datapoint (x, y) given learning rate η and $\partial J/\partial W^{(2)}$.

Solution:

$$W^{(2)} := W^{(2)} - \eta \frac{\partial J(x, y)}{\partial W^{(2)}}$$

(f) Otto's friend Bigsby believes that bigger is better. He takes a look at Otto's neural network and tells Otto that he should make the number of hidden units m in the hidden layer very large: m = 10d. (Recall that $z^{(1)}$ has dimensions $m \times 1$.) Is Bigsby correct? What would you expect to see with training and test accuracy using Bigsby's approach?

Solution: No; training accuracy might be high, but this would likely be due to over-fitting and lead to worse test accuracy.

(g) Otto's other friend Leila says having more layers is better. Let m be much smaller than d. Leila adds 10 more hidden layers all with linear activation before Otto's current hidden layer (which has sigmoid activation function $f^{(1)}$) such that each hidden layer has m units. What would you expect to see with your training and test accuracy, compared to just having one hidden layer with activation $f^{(1)}$?

Solution: The intermediary hidden layers do not add any expressivity to the network, and we would expect similar training and test accuracy as compared to the single $f^{(1)}$ hidden layer network. This may, however, require different number of training iterations with the same available data, in order to achieve similar accuracy.

Name:	

(h) Another friend Neil suggests to have several layers with non-linear activation function. He says Otto should regularize the number of active hidden units. Loosely speaking, we consider the average activation of a hidden unit j in our hidden layer 1 (which has sigmoid activation function $f^{(1)}$) to be the average of the activation of $a_j^{(1)}$ over the points x_i in our training dataset of size N:

$$\hat{p}_j = \frac{1}{N} \sum_{i=1}^{N} a_j^{(1)}(x_i) .$$

Assume we would like to enforce the constraint that the average activation for each hidden unit \hat{p}_j is close to some hyperparameter p. Usually, p is very small (say p < 0.05).

What is the best format for a regularization penalty given hyperparameter p and the average activation for all our hidden units: \hat{p}_j ? Select one of the following:

- \bigcirc Hinge loss: $\Sigma_j \max(0, (1-\hat{p}_j)p)$
- $\sqrt{\mathbf{NLL}}$: $\Sigma_j \left(-p \log \frac{p}{\hat{p}_j} (1-p) \log \frac{(1-p)}{(1-\hat{p}_j)} \right)$
- $\sqrt{$ Squared loss: $\Sigma_j(\hat{p}_j-p)^2$
- \bigcirc l2 norm: $\Sigma_i(\hat{p}_i)^2$

Solution: Either NLL or squared loss should work, encouraging p and \hat{p}_j to be close. NLL loss might better handle wide range in the magnitudes of \hat{p}_j .

- (i) Which pass should Otto compute \hat{p}_j on? Select one of the following:
 - $\sqrt{}$ Forwards pass
 - O Backwards pass
 - \bigcirc Gradient descent step (weight update) pass