

Hilti HIT-HY 200 with HIT-V

Injection mortar system **Benefits** - Suitable for non-cracked and Hilti HITcracked concrete HY 200-A C 20/25 to C 50/60 500 ml foil pack - Suitable for dry and water (also available as 330 ml saturated concrete Hilti HIT-HY 200 foil pack) High loading capacity, excellent handling and fast curing Small edge distance and anchor Hilti HITspacing possible HY 200-R - Large diameter applications 500 ml foil pack - Max In service temperature range (also available up to 120℃ short term/ as 330 ml 72℃ long term Hilti HIT-HY 200 foil pack) Manual cleaning for borehole diameter up to 20mm and $h_{ef} \le$ 10d for non-cracked concrete Static mixer only - Embedment depth range: from 60 ... 160 mm for M8 to 120 ... 600 mm for M30 HIT-V rods HIT-V-R rods Two mortar (A and R) versions HIT-V-HCR rods available with different curing times and same performance

Concrete

Tensile

zone

Small edge distance and spacing

Variable embedment depth

Corrosion resistance

High corrosion resistance

European **Technical** Approval

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical approval ^{a)}		ETA-11/0493 / 2012-08-08
	DIBt, Berlin	(Hilti HIT-HY 200-A)
	,	ETA-12/0084 / 2012-08-08 (Hilti HIT-HY 200-R)
		(1 III I 111 - 111 200-N)
Fire test report	IBMB, Brunswick	3501/676/13 / 2012-08-03

a) All data given in this section according ETA-11/0493 and ETA-12/0084, issue 2012-08-08.

510 09 / 2012

For details see Simplified design method

Basic loading data (for a single anchor)

All data in this section applies to

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- One typical embedment depth, as specified in the table
- One anchor material, as specified in the tables
- Concrete C 20/25, f_{ck.cube} = 25 N/mm²
- Temperate range I
 - (min. base material temperature -40°C, max. long ter m/short term base material temperature: +24°C/40°C)
- Installation temperature range -10℃ to +40℃

Embedment depth ^{a)} and base material thickness for the basic loading data. Mean ultimate resistance, characteristic resistance, design resistance, recommended loads.

Anchor size	M8	M10	M12	M16	M20	M24	M27	M30
Typical embedment depth h _{ef} [mm]	80	90	110	125	170	210	240	270
Base material thickness h [mm]	110	120	140	165	220	270	300	340

a) The allowed range of embedment depth is shown in the setting details. The corresponding load values can be calculated according to the simplified design method.

Mean ultimate resistance: concrete C 20/25, anchor HIT-V 5.8

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked of	oncrete									
Tensile N _{Ru,m}	HIT-V 5.8	[kN]	18,9	30,5	44,1	83,0	129,2	185,9	241,5	295,1
Shear V _{Ru,m}	HIT-V 5.8	[kN]	9,5	15,8	22,1	41,0	64,1	92,4	120,8	147,0
Cracked concr	ete									
Tensile N _{Ru,m}	HIT-V 5.8	[kN]	16,0	22,5	44,0	66,7	105,9	145,4	177,7	212,0
Shear V _{Ru,m}	HIT-V 5.8	[kN]	9,5	15,8	22,1	41,0	64,1	92,4	120,8	147,0

Characteristic resistance: concrete C 20/25, anchor HIT-V 5.8

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked	concrete									
Tensile N _{Rk}	HIT-V 5.8	[kN]	18,0	29,0	<i>4</i> 2,0	70,6	111,9	153,7	187,8	224,0
Shear V _{Rk}	HIT-V 5.8	[kN]	9,0	15,0	21,0	39,0	61,0	88,0	115,0	140,0
Cracked conc	rete									
Tensile N _{Rk}	HIT-V 5.8	[kN]	12,1	17,0	33,2	50,3	79,8	109,6	133,9	159,7
Shear V _{Rk}	HIT-V 5.8	[kN]	9,0	15,0	21,0	39,0	61,0	88,0	115,0	140,0

Design resistance: concrete C 20/25, anchor HIT-V 5.8

				,						
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked	concrete									
Tensile N _{Rd}	HIT-V 5.8	[kN]	12,0	19,3	28,0	39,2	62,2	85,4	104,3	124,5
Shear V _{Rd}	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
Cracked cond	rete									
Tensile N _{Rd}	HIT-V 5.8	[kN]	6,7	9,4	18,4	27,9	44,3	60,9	74,4	88,7
Shear V _{Rd}	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0

Recommended loads a): concrete C 20/25, anchor HIT-V 5.8

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked	concrete									
Tensile N _{rec}	HIT-V 5.8	[kN]	8,6	13,8	20,0	28,0	44,4	61,0	74,5	88,9
Shear V _{rec}	HIT-V 5.8	[kN]	5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0
Cracked conc	rete									
Tensile N _{rec}	HIT-V 5.8	[kN]	4,8	6,7	13,2	19,9	31,7	43,5	53,1	63,4
Shear V _{rec}	HIT-V 5.8	[kN]	5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0

a) With overall partial safety factor for action $\gamma = 1,4$. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Service temperature range

Hilti HIT-HY 200 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 ℃ to +40 ℃	+24 ℃	+40 ℃
Temperature range II	-40 ℃ to +80 ℃	+50 ℃	+80 ℃
Temperature range III	-40 ℃ to +120 ℃	+72 ℃	+120 ℃

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Materials

Mechanical properties of HIT-V

Anchor size	е		M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8	[N/mm²]	500	500	500	500	500	500	500	500
Nominal	HIT-V 8.8	[N/mm²]	800	800	800	800	800	800	800	800
tensile strength f _{uk}	HIT-V-R	[N/mm²]	700	700	700	700	700	700	500	500
ou ongur ruk	HIT-V-HCR	[N/mm²]	800	800	800	800	800	700	700	700
	HIT-V 5.8	[N/mm²]	400	400	400	400	400	400	400	400
Yield	HIT-V 8.8	[N/mm²]	640	640	640	640	640	640	640	640
strength f _{yk}	HIT-V -R	[N/mm²]	450	450	450	450	450	450	210	210
	HIT-V-HCR	[N/mm²]	640	640	640	640	640	400	400	400
Stressed cross- section A _s	HIT-V	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Moment of resistance W	HIT-V	[mm³]	31,2	62,3	109	277	541	935	1387	1874

512 09/2012

Material quality

Part	Material
Threaded rod	Strength class 5.8, A ₅ > 8% ductile
HIT-V(F)	steel galvanized ≥ 5 µm,
	(F) hot dipped galvanized ≥ 45 μm,
Threaded rod	Strength class 8.8, A₅ > 8% ductile
HIT-V(F)	steel galvanized ≥ 5 µm,
	(F) hot dipped galvanized ≥ 45 μm,
Threaded rod	Stainless steel grade A4, A ₅ > 8% ductile
HIT-V-R	strength class 70 for ≤ M24 and class 50 for M27 to M30, 1.4401; 1.4404;
1111-4-14	1.4578; 1.4571; 1.4439; 1.4362
Threaded rod	High corrosion resistant steel, 1.4529; 1.4565
HIT-V-HCR	strength \leq M20: R _m = 800 N/mm ² , R _{p 0.2} = 640 N/mm ² , A ₅ > 8% ductile
1111-1-11010	M24 to M30: $R_m = 700 \text{ N/mm}^2$, $R_{p 0.2} = 400 \text{ N/mm}^2$, $A_5 > 8\%$ ductile
Washer	Steel galvanized, hot dipped galvanized,
ISO 7089	Stainless steel, 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
150 7009	High corrosion resistant steel, 1.4529; 1.4565
	Strength class 8,
	steel galvanized ≥ 5 μm,
Nut	hot dipped galvanized ≥ 45 μm,
EN ISO 4032	Strength class 70, stainless steel grade A4,
EN 130 4032	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
	Strength class 70, high corrosion resistant steel,
	1.4529; 1.4565

Anchor dimensions

Anchor size	M8	M10	M12	M16	M20	M24	M27	M30
Anchor rod HIT-V, HIT-V-R, HIT-V-HCR	Aı	nchor rods	s HIT-V (-I	R / -HCR)	are availa	able in var	riable leng	jth

Setting

installation equipment

Anchor size	M8	M10	M12	M16	M20	M24	M27	M30	
Rotary hammer	TE 2 – TE 16				TE 40 – TE 70				
Other tools, hammer drilling	compre	compressed air gun or blow out pump, set of cleaning brushes, dispe						spenser	

Setting instruction

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling method properly cleans the borehole and removes dust while drilling. After drilling is complete, proceed to the "injection preparation" step in the instructions for use.
Drill Hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

Bore hole cleaning Just before setting an anchor, the bore hole must be free of dust and debris.

a) Manual Cleaning (MC) non-cracked concrete only

for bore hole diameters $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d

The Hilti manual pump may be used for blowing out bore holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10d$. Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust

Brush 4 times with the specified brush size by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the bore hole -- if not the brush is too small and must be replaced with the proper brush diameter

Blow out again with manual pump at least 4 times until return air stream is free of noticeable dust.

b) Compressed air cleaning (CAC)

for all bore hole diameters do and all bore hole depth ho

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust. Bore hole diameter \geq 32 mm the compressor must supply a minimum air flow of 140 m³/hour.

Brush 2 times with the specified brush size by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the bore hole -- if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Injection preparation

Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle. Observe the instruction for use of the dispenser. Check foil pack holder for proper function. Do not use damaged foil packs / holders. Swing foil pack holder with foil pack into HIT-dispenser.

Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded.

Discard quantities are:

- 2 strokes for 330 ml foil pack,
- 3 strokes for 500 ml foil pack,
- 4 strokes for 500 ml foil pack ≤ 5℃.

Inject adhesive from the back of the borehole without forming air voids

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

Overhead installation and/or installation with embedment depth $h_{\rm ef} > 250$ mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug. Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the bore hole by the adhesive pressure.

Setting the element

Before use, verify that the element is dry and free of oil and other contaminants.

Mark and set element to the required embedment depth untill working time t_{work} has elapsed.

For overhead installation use piston plugs and fix embedded parts with e.g. wedges

Loading the anchor:

After required curing time $t_{\hbox{\scriptsize cure}}$ the anchor can be loaded.

The applied installation torque shall not exceed T_{max}.

For detailed information on installation see instruction for use given with the package of the product.

Working time, curing time

Temperature	Hilti HIT-I	HY 200-R
of the base material	Working time in which anchor can be inserted and adjusted twork	Curing time before anchor can be loaded t _{cure}
-10 ℃ to -5 ℃	3 hour	20 hour
-4 ℃ to 0 ℃	2 hour	7 hour
1 ℃ to 5 ℃	1 hour	3 hour
6 ℃ to 10 ℃	40 min	2 hour
11 ℃ to 20 ℃	15 min	1 hour
21 ℃ to 30 ℃	9 min	1 hour
31 ℃ to 40 ℃	6 min	1 hour

Temperature	Hilti HIT-	HY 200-A
of the base material	Working time in which anchor can be inserted and adjusted twork	Curing time before anchor can be loaded t _{cure}
-10 ℃ to -5 ℃	1,5 hour	7 hour
-4 ℃ to 0 ℃	50 min	4 hour
1 ℃ to 5 ℃	25 min	2 hour
6 ℃ to 10 ℃	15 min	1 hour
11 ℃ to 20 ℃	7 min	30 min
21 ℃ to 30 ℃	4 min	30 min
31 ℃ to 40 ℃	3 min	30 min

Setting details

Setting details

Octing actails										
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	22	28	30	35
Effective embedment and drill hole depth range ^{a)}	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
for HIT-V	$h_{\text{ef},\text{max}}$	[mm]	160	200	240	320	400	480	540	600
Minimum base material thickness	h _{min}	[mm]	h	l _{ef} + 30 mi	m			h _{ef} + 2 d ₀		
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26	30	33
Torque moment	$T_{\text{max}}^{ b)}$	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150
Critical spacing for splitting failure	S _{cr,sp}	[mm]	2 c _{cr,sp}							
			1,0 · h _{ef}	for	h / h _{ef} ≥ 2	2,0	h/h _{ef}			
Critical edge distance for splitting failure c)	C _{cr,sp}	[mm]	4,6 h _{ef} -	1,8 h for	2,0 > h / l	h _{ef} > 1,3	1,3			
			2,26 h _{ef}	for	h / h _{ef} ≤ 1	,3	-	1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Critical spacing for concrete cone failure	S _{cr,N}	[mm]				2 0	cr,N			
Critical edge distance for concrete cone failure d)	C _{cr,N}	[mm]				1,5	h _{ef}			
C S										

For spacing (or edge distance) smaller than critical spacing (or critical edge distance) the design loads have to be reduced.

- a) Embedment depth range: $h_{ef,min} \le h_{ef} \le h_{ef,max}$
- b) Maximum recommended torque moment to avoid splitting failure during installation with minimum spacing and/or edge distance.
- c) h: base material thickness ($h \ge h_{min}$), h_{ef} : embedment depth
- d) The critical edge distance for concrete cone failure depends on the embedment depth h_{ef} and the design bond resistance. The simplified formula given in this table is on the safe side.

Simplified design method

Simplified version of the design method according ETAG 001, TR 029. Design resistance according data given in ETA-11/0493 issued 2012-08-08 for HIT-HY 200-A and ETA-12/0084 issued 2012-08-08 for HIT-HY 200-R. Both mortars possess identical technical load performance.

- Influence of concrete strength
- Influence of edge distance
- Influence of spacing
- Valid for a group of two anchors. (The method may also be applied for anchor groups with more than two anchors or more than one edge distance. The influencing factors must then be considered for each edge distance and spacing. The simplified calculated design loads take a conservative approach: They will be lower than the exact values according to ETAG 001, TR 029. For an optimized design, anchor calculation can be performed using PROFIS anchor design software.

The design method is based on the following simplification:

No different loads are acting on individual anchors (no eccentricity)

The values are valid for one anchor.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

TENSION loading

The design tensile resistance is the lower value of

- Steel resistance: **N**_{Rd}

- Combined pull-out and concrete cone resistance:

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$$

- Concrete cone resistance: $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$

Concrete splitting resistance (only non-cracked concrete):

$$N_{Rd,sp} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$$

Basic design tensile resistance

Design steel resistance N_{Rd.s}

Ancho	or size		M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8	[kN]	12,0	19,3	28,0	52,7	82,0	118,0	153,3	187,3
N	HIT-V 8.8	[kN]	19,3	30,7	44,7	84,0	130,7	188,0	244,7	299,3
$N_{Rd,s}$	HIT-V-R	[kN]	13,9	21,9	31,6	58,8	92,0	132,1	80,4	98,3
	HIT-V-HCR	[kN]	19,3	30,7	44,7	84,0	130,7	117,6	152,9	187,1

Design combined pull-out and concrete cone resistance

 $N_{Rd,p} = N^0_{Rd,p} \cdot f_{B,p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$

Anchor size	M8	M10	M12	M16	M20	M24	M27	M30
Typical embedment depth hef = hef,typ [mm]	80	90	110	125	170	210	240	270
Non-cracked concrete	<u>'</u>	•						
N ⁰ _{Rd,p} Temperature range I [kN]	22,3	31,4	46,1	69,8	118,7	175,9	169,6	212,1
N ⁰ _{Rd,p} Temperature range II [kN]	19,0	26,7	39,2	59,3	100,9	149,5	135,7	169,6
N ⁰ _{Rd,p} Temperature range III [kN]	15,6	22,0	32,3	48,9	83,1	123,2	124,4	155,5
Cracked concrete								
N ⁰ _{Rd,p} Temperature range I [kN]	6,7	9,4	18,4	27,9	47,5	70,4	90,5	113,1
N ⁰ _{Rd,p} Temperature range II [kN]	5,0	7,1	15,0	22,7	38,6	57,2	73,5	91,9
N ⁰ _{Rd,p} Temperature range III [kN]	4,5	6,3	12,7	19,2	32,6	48,4	62,2	77,8

Design concrete cone resistance $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$ Design splitting resistance ^{a)} $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$

Anchor size		M8	M10	M12	M16	M20	M24	M27	M30	
$N_{Rd,c}^0$	Non-cracked concrete	[kN]	20,1	24,0	32,4	39,2	62,2	85,4	104,3	124,5
N ⁰ _{Rd,c}	Cracked concrete	[kN]	14,3	17,1	23,1	28,0	44,3	60,9	74,4	88,7

a) Splitting resistance must only be considered for non-cracked concrete.

Influencing factors

Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
f _{B.D.} =	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Influence of embedment depth on combined pull-out and concrete cone resistance

$$f_{h,p} = h_{ef}/h_{ef,typ}$$

Influence of concrete strength on concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{0.5 a}$	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of edge distance a)

c/c _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$\begin{array}{ll} f_{1,N} = & 0.7 + 0.3 \cdot c/c_{cr,N} \leq 1 \\ \\ f_{1,sp} = & 0.7 + 0.3 \cdot c/c_{cr,sp} \leq 1 \end{array}$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
$f_{2,N} = 0.5 \cdot (1 + c/c_{cr,N}) \le 1$ $f_{2,sp} = 0.5 \cdot (1 + c/c_{cr,sp}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

a) The edge distance shall not be smaller than the minimum edge distance c_{min} . These influencing factors must be considered for every edge distance smaller than the critical edge distance.

Influence of anchor spacing a)

s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
s/s _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,0	0,7	0,0	0,9	- '
$f_{3,N} = 0,5 \cdot (1 + s/s_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1
$f_{3,sp} = 0.5 \cdot (1 + s/s_{cr,sp}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,60	0,65	0,90	0,95	'

a) The anchor spacing shall not be smaller than the minimum anchor spacing s_{min}. This influencing factor must be considered for every anchor spacing.

Influence of embedment depth on concrete cone resistance

$$f_{h,N} = (h_{ef}/h_{ef,typ})^{1,5}$$

Influence of reinforcement

h _{ef} [mm]	60	70	80	90	≥ 100
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$	0,8 ^{a)}	0,85 ^{a)}	0,9 ^{a)}	0,95 ^{a)}	1

a) This factor applies only for dense reinforcement. If in the area of anchorage there is reinforcement with a spacing \geq 150 mm (any diameter) or with a diameter \leq 10 mm and a spacing \geq 100 mm, then a factor $f_{re,N} = 1$ may be applied.

SHEAR loading

The design shear resistance is the lower value of

- Steel resistance: V_{Rd.s}

. Concrete pryout resistance: $V_{Rd,cp} = k \cdot \text{lower value of } N_{Rd,p} \text{ and } N_{Rd,c}$

- Concrete edge resistance: $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_b \cdot f_b \cdot f_4 \cdot f_{hef} \cdot f_c$

Basic design shear resistance

Design steel resistance V_{Rd.s}

Ancho	or size		M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2
$V_{Rd,s}$	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	110,3

Design concrete pryout resistance $V_{Rd,cp}$ = lower value^{a)} of $k \cdot N_{Rd,p}$ and $k \cdot N_{Rd,c}$

k = 2

a) N_{Rd,p}: Design combined pull-out and concrete cone resistance, N_{Rd,c}: Design concrete cone resistance

Design concrete edge resistance $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_b \cdot f_4 \cdot f_{hef} \cdot f_c$

			,-						
Anchor size		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete									
V ⁰ _{Rd,c}	[kN]	5,9	8,6	11,6	18,7	27,0	36,6	44,5	53,0
Cracked concrete									
$V^0_{Rd,c}$	[kN]	4,2	6,1	8,2	13,2	19,2	25,9	31,5	37,5

Influencing factors

Influence of concrete strength

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2 a}$	1	1,1	1,22	1,34	1,41	1,48	1,55

a) $f_{ck,cube}$ = concrete compressive strength, measured on cubes with 150 mm side length

Influence of angle between load applied and the direction perpendicular to the free edge

Angle ß	0°	10°	20°	30°	40°	50°	60°	70°	80°	≥ 90°
$f_{\beta} = \sqrt{\frac{1}{(\cos \alpha_{V})^{2} + \left(\frac{\sin \alpha_{V}}{2,5}\right)^{2}}}$	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

Influence of base material thickness

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \le 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

Influence of anchor spacing and edge distance ^{a)} for concrete edge resistance: $f_4 = (c/h_{ef})^{1.5} \cdot (1 + s / [3 \cdot c]) \cdot 0.5$

	, ,		_	2/												
c/h _{ef}	Single						Grou	up of t	wo an	chors	s/h _{ef}					
Officer	anchor	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

a) The anchor spacing and the edge distance shall not be smaller than the minimum anchor spacing s_{min} and the minimum edge distance c_{min} .

Influence of embedment depth

h _{ef} /d	4	4,5	5	6	7	8	9	10	11
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	0,51	0,63	0,75	1,01	1,31	1,64	2,00	2,39	2,81
h _{ef} /d	12	13	14	15	16	17	18	19	20
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	3,25	3,72	4,21	4,73	5,27	5,84	6,42	7,04	7,67

Influence of edge distance a)

c/d	4	6	8	10	15	20	30	40
$f_c = (d / c)^{0,19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

a) The edge distance shall not be smaller than the minimum edge distance c_{min}.

Combined TENSION and SHEAR loading

For combined tension and shear loading see section "Anchor Design".

Precalculated values - design resistance values

All data applies to:

- non-cracked concrete C $20/25 f_{ck,cube} = 25 \text{ N/mm}^2$
- temperature range I (see service temperature range)
- minimum thickness of base material
- no effects of dense reinforcement

Recommended loads can be calculated by dividing the design resistance by an overall partial safety factor for action $\gamma = 1,4$. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

522 09/2012

Design resistance: concrete C 20/25 $- f_{ck,cube} = 25 \text{ N/mm}^2 - \text{minimum embedment depth}$

Anchor si	ize		M8	M10	M12	M16	M20	M24	M27	M30
Embedment	depth $h_{ef} = h_{ef,min}$	[mm]	60	60	70	80	90	96	108	120
Base materia	al thickness h = h _{min}	[mm]	90	90	100	116	138	152	168	190
	Tensile N _{Rd} : singl	e ancho	or, no edo	ge effects	;					
	Non-cracked concr	ete								
	HIT-V 5.8	[kN]	12,0	13,0	16,4	20,1	24,0	26,4	31,5	36,9
	HIT-V 8.8	[kN]	13,0	13,0	16,4	20,1	24,0	26,4	31,5	36,9
	HIT-V-R	[kN]	13,0	13,0	16,4	20,1	24,0	26,4	31,5	36,9
	HIT-V-HCR	[kN]	13,0	13,0	16,4	20,1	24,0	26,4	31,5	36,9
1	Cracked concrete									
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	5,0	6,3	11,7	14,3	17,1	18,8	22,4	26,3
	Shear V _{Rd} : single	anchor	, no edge	effects,	without le	ever arm				
	Non-cracked concr	ete								
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	63,3	75,6	88,5
	HIT-V 8.8	[kN]	12,0	18,4	27,2	48,2	57,5	63,3	75,6	88,5
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	63,3	48,3	58,8
	HIT-V-HCR	[kN]	12,0	18,4	27,2	48,2	57,5	63,3	75,6	88,5
	Cracked concrete									
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	41,0	45,1	53,9	63,1
	HIT-V 8.8	[kN]	12,0	15,1	27,2	34,3	41,0	45,1	53,9	63,1
-	HIT-V-R	[kN]	8,3	12,8	19,2	34,3	41,0	45,1	48,3	58,8
	HIT-V-HCR	[kN]	12,0	15,1	27,2	34,3	41,0	45,1	53,9	63,1

Design resistance: concrete C 20/25 $- f_{ck,cube} = 25 \text{ N/mm}^2 - \text{minimum embedment depth}$

Anchor si	ze		M8	M10	M12	M16	M20	M24	M27	M30
Embedment	depth $h_{ef} = h_{ef,min}$	[mm]	60	60	70	80	90	96	108	120
Base materia	al thickness h = h _{min}	[mm]	90	90	100	116	134	152	168	190
Edge distance	ce c = c _{min}	[mm]	40	50	60	80	100	120	135	150
	Tensile N _{Rd} : singl	e ancho	or, min. e	dge dista	nce (c =	C _{min})				
	Non-cracked concr	ete								
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	7,1	7,8	9,7	12,8	16,5	20,7	24,2	28,9
	Cracked concrete									
Cmin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	3,0	4,2	8,0	10,7	13,7	16,4	19,5	22,9
	Shear V _{Rd} : single	anchor	, min. ed	ge distan	ce (c = c _n	_{nin}), witho	ut lever a	arm		
	Non-cracked concr	ete								
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	3,5	4,9	6,6	10,2	13,9	17,9	21,5	25,9
	Cracked concrete									
Cmin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	2,5	3,5	4,7	7,2	9,9	12,7	15,3	18,3

Design resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm² - minimum embedment depth (load values are valid for single anchor)

Anchor si	ze		M8	M10	M12	M16	M20	M24	M27	M30
Embedment	depth hef = hef,min	[mm]	60	60	70	80	90	96	108	120
Base materia	al thickness h = h _{min}	[mm]	90	90	100	116	134	152	168	190
Spacing	S = Smin	[mm]	40	50	60	80	100	120	135	150
	Tensile N _{Rd} : doub	le anch	or, no ed	ge effect	s, min. sp	pacing (s	= S _{min})			
	Non-cracked concr	ete								
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	7,7	7,9	10,0	12,6	15,4	17,9	21,2	25,0
	Cracked concrete									
Smin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	3,5	4,4	7,5	9,5	11,7	13,3	15,9	18,6
	Shear V _{Rd} : double	ancho	r, no edg	e effects,	min. spa	cing (s =	s _{min}), wit	hout leve	r arm	
	Non-cracked concr	ete								
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	39,4	44,9	53,5	62,7
	HIT-V 8.8	[kN]	12,0	18,4	25,4	32,1	39,4	44,9	53,5	62,7
	HIT-V-R	[kN]	8,3	12,8	19,2	32,1	39,4	44,9	48,3	58,8
	HIT-V-HCR	[kN]	12,0	18,4	25,4	32,1	39,4	44,9	53,5	62,7
	Cracked concrete									
Smin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	7,2	9,6	16,8	22,9	28,1	32,0	38,2	44,7

Design resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm² - typical embedment depth

	Sistanioc. Contorcto		CK,CU	be - 20 14/		ioui ciiib		- Г		
Anchor s	ize		M8	M10	M12	M16	M20	M24	M27	M30
Embedment	depth $h_{ef} = h_{ef,typ}$	[mm]	80	90	110	125	170	210	240	270
Base materi	al thickness h = h _{min}	[mm]	110	120	140	161	214	266	300	340
	Tensile N _{Rd} : singl	e ancho	or, no edo	ge effects	1					
	Non-cracked conc	rete								
	HIT-V 5.8	[kN]	12,0	19,3	28,0	39,2	62,2	85,4	104,3	124,5
	HIT-V 8.8	[kN]	19,3	24,0	32,4	39,2	62,2	85,4	104,3	124,5
	HIT-V-R	[kN]	13,9	21,9	31,6	39,2	62,2	85,4	80,4	98,3
	HIT-V-HCR	[kN]	19,3	24,0	32,4	39,2	62,2	85,4	104,3	124,5
1	Cracked concrete									
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	6,7	9,4	18,4	27,9	44,3	60,9	74,4	88,7
	Shear V _{Rd} : single	anchor	, no edge	effects,	without le	ever arm				
	Non-cracked conc	rete								
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	110,3
	Cracked concrete									
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2
-	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	110,3

Design resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm² - typical embedment depth

Anchor si	ze		M8	M10	M12	M16	M20	M24	M27	M30
Embedment	depth $h_{ef} = h_{ef,typ}$	[mm]	80	90	110	125	170	210	240	270
Base materia	al thickness h = h _{min}	[mm]	110	120	140	161	214	266	300	340
Edge distance	ce c = c _{min}	[mm]	40	50	60	80	100	120	135	150
	Tensile N _{Rd} : singl	e ancho	or, min. e	dge dista	nce (c =	C _{min})			•	
	Non-cracked concr	ete								
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	9,6	11,6	15,5	19,9	30,5	41,5	50,5	60,0
T	Cracked concrete									
Cmin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	3,6	5,2	10,2	16,5	25,2	34,2	41,5	49,3
	Shear V _{Rd} : single	anchor	, min. ed	ge distan	ce (c = c _n	_{nin}) , witho	out lever	arm		
	Non-cracked concr	ete								
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	3,7	5,3	7,3	11,5	17,2	23,6	29,0	34,8
	Cracked concrete									
Cmin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	2,6	3,8	5,2	8,1	12,2	16,7	20,5	24,7

Design resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm² - typical embedment depth (load values are valid for single anchor)

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30			
Embedment depth $h_{ef} = h_{ef,typ}$ [mm]			80	90	110	125	170	210	240	270			
Base materia	al thickness h = h _{min}	[mm]	110	120	140	161	214	266	300	340			
Spacing	S	[mm]	40	50	60	80	100	120	135	150			
	Tensile N _{Rd} : doub	nsile N_{Rd} : double anchor, no edge effects, min. spacing (s = s_{min})											
	Non-cracked concrete												
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	11,2	13,5	18,1	22,4	35,1	48,1	58,6	69,9			
	Cracked concrete												
Smin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	4,6	6,4	11,6	17,0	26,5	36,2	44,2	52,6			
	Shear V_{Rd} : double anchor, no edge effects, min. spacing (s = s_{min}), without lever arm												
	Non-cracked conc	ete											
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0			
	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	177,0			
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8			
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	110,3			
	Cracked concrete												
Smin	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0			
	HIT-V 8.8	[kN]	9,4	13,4	26,1	40,7	63,6	86,9	106,0	126,2			
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8			
	HIT-V-HCR	[kN]	9,4	13,4	26,1	40,7	63,6	70,9	92,0	110,3			

Design resistance: concrete C 20/25 $- f_{ck,cube} = 25 \text{ N/mm}^2 - \text{embedment depth} = 12 d^{a)}$

Anchor size		M8	M10	M12	M16	M20	M24	M27	M30			
Embedment depth h _{ef} = 12 d a) [mm]			96	120	144	192	240	288	324	360		
Base material thickness h = h _{min} [mm]			126	150	174	228	284	344	384	430		
	Tensile N _{Rd} : single	e ancho	or, no edo	ge effects		•	•					
	Non-cracked concrete											
	HIT-V 5.8	[kN]	12,0	19,3	28,0	52,7	82,0	118,0	153,3	187,3		
	HIT-V 8.8	[kN]	19,3	30,7	44,7	74,6	104,3	137,1	163,6	191,6		
	HIT-V-R	[kN]	13,9	21,9	31,6	58,8	92,0	132,1	80,4	98,3		
	HIT-V-HCR	[kN]	19,3	30,7	44,7	74,6	104,3	117,6	152,9	187,1		
1	Cracked concrete											
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	8,0	12,6	24,1	42,9	67,0	96,5	116,6	136,6		
	Shear V _{Rd} : single	anchor	, no edge	effects,	without l	ever arm						
	Non-cracked concrete											
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0		
	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2		
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8		
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	110,3		
	Cracked concrete											
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0		
	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2		
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8		
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	110,3		

a) d = element diameter

Design resistance: concrete C 20/25 - $f_{ck,cube}$ = 25 N/mm² - embedment depth = 12 d $^{a)}$

Designic	ick,cube = 23 iviliii = cilibcament acptil = 12 a											
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30		
Embedment depth hef = 12 d a) [mm]		96	120	144	192	240	288	324	360			
Base material thickness h = h _{min} [mm]		126	150	174	228	284	344	384	430			
Edge distance c = c _{min} [mm]		40	50	60	80	100	120	135	150			
	Tensile N _{Rd} : single	e ancho	or, min. e	min. edge distance ($c = c_{min}$)								
	Non-cracked concrete											
	HIT-V 5.8	[kN]	11,8	16,5	21,7	33,4	46,7	61.3	73.2	85,7		
	HIT-V 8.8	[kN]	11,8	16,5	21,7	33,4	46,7	61.3	73.2	85,7		
	HIT-V-R	[kN]	11,8	16,5	21,7	33,4	46,7	61.3	73.2	85,7		
	HIT-V-HCR	[kN]	11,8	16,5	21,7	33,4	46,7	61.3	73.2	85,7		
	Cracked concrete											
Cmin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	4,2	6,5	12,5	22,2	34,7	48,9	58,4	68,4		
	Shear V _{Rd} : single	anchor	, min. ed	ge distan	ce (c = c _n	_{nin}) , witho	out lever	arm				
	Non-cracked concr	ete										
	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	3,9	5,7	7,8	12,9	18,9	25,9	31,8	38,1		
	Cracked concrete											
Cmin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	2,8	4,0	5,5	9,1	13,4	18,4	22,5	27,0		

a) d = element diameter

Design resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm² - embedment depth = 12 d ^{a)} (load values are valid for single anchor)

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30				
Embedment depth hef = 12 d a) [mm]			96	120	144	192	240	288	324	360				
Base material thickness h = h _{min} [mm]			126	150	174	228	284	344	384	430				
Spacing	S=S _{min}	[mm]	40	50	60	80	100	120	135	150				
	Tensile N _{Rd} : doub	le anch	or, no ed	no edge effects, min. spacing (s = s _{min})										
	Non-cracked concr	Non-cracked concrete												
	HIT-V 5.8	[kN]	12,0	19,3	26,5	40,8	57,0	74,9	89,4	104,6				
	HIT-V 8.8	[kN]	14,4	20,1	26,5	40,8	57,0	74,9	89,4	104,6				
	HIT-V-R	[kN]	13,9	20,1	26,5	40,8	57,0	74,9	80,4	98,3				
	HIT-V-HCR	[kN]	14,4	20,1	26,5	40,8	57,0	74,9	89,4	104,6				
	Cracked concrete													
Smin	HIT-V 5.8 / 8.8 HIT-V-R / -HCR	[kN]	5,5	8,5	15,4	26,5	40,1	55,7	66,4	77,8				
	Shear V _{Rd} : double	ancho	r, no edg	e effects,	min. spa	cing (s =	s _{min}) , wi	thout leve	er arm					
	Non-cracked concr	ete												
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0				
	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2				
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8				
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	110,3				
	Cracked concrete													
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0				
Smin	HIT-V 8.8	[kN]	11,0	17,2	27,2	50,4	78,4	112,8	147,2	179,2				
- Innin	HII-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8				
	HIT-V-HCR	[kN]	11,0	17,2	27,2	50,4	78,4	70,9	92,0	110,3				

a) d = element diameter