ĐỘ ỔN ĐỊNH VÀ TUỔI THỌ CỦA THUỐC

DỰ ĐOÁN TUỔI THỌ THUỐC

CƠ SỞ TÍNH TUỔI THỌ THUỐC

- ĐỘNG HỌC PHẢN ỨNG PHÂN HỦY
- ẢNH HƯỞNG CỦA NHIỆT ĐỘ

Động học phản ứng phân hủy

• Tốc độ phản ứng

Cho phản ứng

$$mA + nB \rightarrow qP$$

Tốc độ v của phản ứng được xác định theo định luật Van't Hoff:

$$V = -\frac{dC}{dt}$$

Động học phản ứng phân hủy

• Hằng số tốc độ phản ứng

$$V = -\frac{dC}{dt} = k[A]^m [B]^n$$

k: phụ thuộc vào bản chất phản ứng, nhiệt độ phản ứng – không phụ thuộc vào nồng độ

Động học phản ứng phân hủy

- Phản ứng bậc không
- Là phản ứng không phụ thuộc vào nồng độ chất tham gia phản ứng
- phụ thuộc: độ hấp thụ ánh sáng trong p/ư
 quang hóa, sự tiếp xúc bề mặt trong hệ dị thể

$$v = -\frac{dC}{dt} = k_0$$

Đường biểu diễn C = f(t) là một đường thẳng

Động học phản ứng phân hủy

- Bậc của phản ứng
- Phản ứng bậc không
- Phản ứng bậc nhất
- Phản ứng bậc hai

Động học phản ứng phân hủy

• Phản ứng bậc nhất

$$v = -\frac{dC}{dt} = k_1. C$$

Động học phản ứng phân hủy

• Phản ứng bậc hai

$$\mathbf{v} = -\frac{d\mathbf{C}}{d\mathbf{t}} = \mathbf{k}_2. \ \mathbf{C}^2$$

$$\longrightarrow \frac{1}{C} - \frac{1}{C_0} = k_2.t$$

Động học phản ứng phân hủy

• Phản ứng bậc cao

$$v = -\frac{dC}{dt} = k_n$$
. C^n

Với n>2

Trong thực tế: hiếm gặp phản ứng phân hủy thuốc bậc 2, bậc >2 hầu như không có – thường xảy ra theo bậc 1, bậc 0

Động học phản ứng phân hủy

• Phản ứng bậc 0

$$t_{1/2} = 0.5C_0/k$$

 $t_{0.9} = 0.1C_0/k$

• Phản ứng bậc 1

$$t_{1/2} = 0.693 / k$$

$$t_{0,9} = 0.105 / k$$

Thứ nguyên của hằng số k là t -1

Động học phản ứng phân hủy

Để tính thời gian phân hủy đến nồng độ mong muốn:

- Thời gian bán hủy $t_{1/2}$ (t_{50}) (half life)
- Tuổi thọ: thời gian thuốc còn lại 90% hàm lượng t_{0.9} (t₉₀) (shelf life)

Ví dụ

- 1. Thuốc X bị phân hủy theo phản ứng bậc không với hằng số tốc độ 0,2 mg/ml.năm ở nhiệt độ phòng. Nếu bảo quản dung dịch 1% (g/ml)
- Nồng độ dung dịch sau 18 tháng?
- Thời gian bán hủy của thuốc?

Ví dụ

- 2. Dung dịch thuốc X 5mg/100ml bảo quản trong ống hàn kín ở 25°C. Nếu hằng số tốc độ phản ứng phân hủy là 0,05 năm⁻¹, hãy tính:
- Thời gian bán hủy thuốc
- Tuổi thọ thuốc
- Thời gian hàm lượng thuốc còn 3,5mg/100ml

Xác định bậc phân hủy

• Ví dụ:

Phản ứng phân hủy của Decarboxymoxalactam

Thời gian (phút)	% còn lại
0	100
10	78
20	50
30	38
40	27
50	17

Xác định bậc phân hủy

Ảnh hưởng của nhiệt độ

Khi nhiệt độ tăng, hằng số k tăng theo.

Phương trình Arrhenius:

 $k = A e^{(-E_0/RT)}$

k: hằng số tốc độ phản ứng

A: hằng số phụ thuộc bản chất chất khảo sát

 E_0 : nặng lượng hoạt hóa (cal/mol) của một phản ứng (hằng số)

T: nhiệt độ tuyệt đối ($K={}^{\circ}C + 273,15$)

 $(hay lnk = C_1 - E_0/RT) với C_1 = lnA$

Quy tắc Van't Hoff: khi nhiệt độ tăng lên 10^oC hằng số tốc độ k tăng lên xấp xỉ 2 lần.

 $\ln k = C - \Delta H^0 / (RT)$

Phương pháp chung tính tuổi thọ thuốc

Tuổi thọ của thuốc:

- t_{0,9:} thời gian hàm lượng thuốc còn 90%
- t_x: thời gian hàm lượng tạp chất do phân hủy còn trong quy định

Hạn dùng = tuổi thọ + thời điểm xuất xưởng

Phương pháp chung tính tuổi thọ thuốc

• Phương pháp dài hạn

- Bảo quản thuốc ở nhiệt độ thường
- Định kỳ đánh giá chất lượng theo tiêu chuẩn quy định
- Dựa vào kết quả phân tích để xác định tuổi thọ thuốc

y = -0.0146x + 98.4537 $R^{2} = 1.0000$ 88 86 0 200 400 $t_{0,9}$ 800 Thời gian (ngày)

Phương pháp chung tính tuổi thọ của thuốc

• Phương pháp dài hạn

Ví dụ: Theo dõi hàm lượng Vitamin C 500mg ở điều kiện 25°C, RH 60%, có kết quả:

Thời gian (ngày)	Hàm lượng (%)
0	98,47
210	95,39
315	93,83
525	90,74
735	87,74

Tính tuổi thọ

1	C1-T	C2	C3	C4	C5	C6	C7.T	C8-T	C9
	Batch	Time	Assay (%)	pН	Impurities (%)		Specification limits		
1	Batch1	0	103 7	5 90	0 10		Assay	90 - 110%	
2	Batch1	3	102.9	5.67	0.14		pH	5 - 7	
3	Batch1	6	101.5	5.22	0.14		Impurities	NMT 1%	
4	Batch1	9	100.5	5.39	0.24				
5	Batch1	12	99.4	5.49	0.28				
6	Batch1	18	97.6	6.18	0.28				
7	Batch2	0	103.5	5.89	0.10				
8	Batch2	3	101.9	5.25	0.13				
9	Batch2	6	101.0	5.21	0.15				
10	Batch2	9	100.6	5.38	0.17				
11	Batch2	12	99.6	5.37	0.21				
12	Batch2	18	98.2	5.97	0.25				
13	Batch3	0	103.4	5.46	0.14				
14	Batch3	3	102.2	5.50	0.15				
15	Batch3	6	101.9	6.09	0.20				
16	Batch3	9	100.8	5.44	0.23				
1/	Batch3	12	99.7	5.32	0.24				
18	Batch3	18	98.5	6.09	0.26				
19									

Phương pháp chung tính tuổi thọ của thuốc

• Phương pháp lão hóa cấp tốc

Tính tuổi thọ dựa theo:

- Phương trình Arrhenius
- Quy tắc Van't Hoff

$$t_{90}(T_2)=K. t_{90}(T_1)$$

K: hệ số Van't Hoff - $2^{\Delta t/10}$ ($\Delta t = T1-T2$)

Ví dụ

Nghiên cứu một chế phẩm có hàm lượng theo công thức là 100mg. Hàm lượng ban đầu là 105mg, thử cấp tốc thời gian 9 tháng ở nhiệt độ 45° C hàm lượng dược chất còn 94mg. Biết phản ứng phân hủy dược chất là bậc nhất, tính tuổi thọ của chế phẩm đó ở 30° C? Biết E_{o} =6,35.10⁴ J/mol, R = 8,314 J/mol.K)

Phương pháp chung tính tuổi thọ của thuốc

• Phương pháp cấp tốc

Ví dụ: khảo sát đô ổn định của viên nén Aspirin 500mg ở 45°C

Thời gian (ngày)	Hàm lượng acid salicylic tự do(%)
0	0,05
43	0,21
98	0,42
151	1,04
254	6,15

Tính tuôi thọ ở 25°C biết giới hạn acid salicylic tự do trong viên bao không được quá 3%