

Degenerated PCR with GoTaq Hot Start

Eduardo Dupim¹, Antonio Bernardo de Carvalho¹

¹Universidade Federal do Rio de Janeiro

Sep 20, 2018 dx.doi.org/10.17504/protocols.io.szyef7w

Working

ABSTRACT

Degenerated PCR to test Y-linkage of genes in several Drosophila species. The reactions are made separately for males and females of 400 species and subspecies of Drosophila and related genera.

TAGS

Drosophila

PCR

Show tags

PROTOCOL STATUS

Working

We use this protocol in our group and it is working

MATERIALS

NAME	CATALOG #	
GoTaq(R) Hot Start Polymerase, 500u	M5005	by Promega
dNTP Mix, 10mM, 1000ul	U1515	by Promega
DEPC-Treated Water	#AM9906	by Ambion

Pre-Mix Preparation

1 Usually, we performing PCR tests in large-scale, testing several DNA samples from different species at once. We prepared a pre-mix stock to economy time in PCR experiments.

Reagent	1	1000
	reaction	reactions
DEPC-	11.6 uL	11.6mL
Treated		
Water		
5x Green	4.0 uL	4.0 mL
GoTaq		
Flexi		
Buffer		
$MgCl_2$	2.0 uL	2.0 mL
25mM		
dNTP	0.4 uL	0.4 mL
10mM		
TOTAL	18 uL	18 mL
VOLUME		

We divide the pre-mix solution in 1 mL aliquots and stocked at -20°C.

Final Degenerated PCR preparation

Normally, the DNA template concentration is 10 ug/uL or higher.

Reagent	1 reaction (20.1 uL)
Template	1 uL
Forward degenerated primer 40mM	0.5 uL
Reverse degenerated primer 40mM	0.5 uL
Premix	18 uL
GoTaq Hot Start Polymerase	0.1 uL

PCR Programs

- 3 We used different thermocyle programs, according to the primers. In all programs, the GoTaq Hot Start Polymerase was previous incubated for 2 minutes to be activated. The PCRs were performed in a Applied Biosystems Veriti™ 96-Well Thermal Cycler (Cat#4375786).
 - 1) Degenerated PCR Program: Differently of the normal PCR thermocycler programs, the degenerated PCR have more time for annealing.

cycles	Denaturation	Annealing	Polymerization
1x	95°C, 2:00 min		
40x	95°, 0:30 min	x°C, 1:30 min	72°C, 1:00 min /1000 pb of template
1x			72°C, 7:00 min

 $x^{\circ}C$ = optimal annealing temperature for the pair of primers.

2) Degenerated Touchdown PCR (TD-PCR) Program: In TD-PCR, we screen a range of annealing temperatures to try optimize the reaction in different species samples. So, we have a stage where the annealing temperature decrease -0.2°C by cycle, in the end of this stage, the annealing temperature decreased -4°C.

cycles	Denaturation	Annealing	Polymerization
1x	95°C, 2:00 min		
20x	95°, 0:30 min	X°C, 1:30 (Δ -0.2°C by cycle)	72°C, 1:00 min /1000 pb of template
25x	95°, 0:30 min	x°C, 0:30 min	72°C, 1:00 min /1000 pb of template
1x			72°C, 7:00 min

 $x^{\circ}C$ = optimal annealing temperature for the pair of primers.

References:

Sambrook, J. & Russell, D. W. (2001) 'Chapter 8. Protocol 11. Mixed Oligonucleotide-primed Amplification of cDNA' in *Molecular cloning: a laboratory manual.* Cold Spring Harbor: Cold Spring Harbor Laboratory, p. 8.66-8.71.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited