Closest pair

Abhiram Ranade

7 January 2016

Closest pair in the plane

Input: *n* points in the plane.

Output: Pair of points that are closest among those given.

Closest = smallest Euclidean distance.

Useful in graphics, geographical information systems, air traffic control..

Brute force: Check all pairs. Report closest. Time = $\theta(n^2)$.

One dimensional version: Points on a line.

Easy $O(n \log n)$ time algorithm = Sort, take minimum distance between consecutive points.

Two dimensions: Nice divide and conquer algorithm.

How should we apply divide and conquer?

Idea 1:

Subproblem 1 = first n/2 points in given order.

Subproblem 2 = last n/2.

Idea 2:

Subproblem 1 = Points falling in "left half" of region.

Subproblem 2 = Points falling in "right half" of region.

Width of left half = width of right half

Idea 3:

Subproblem 1 = Leftmost n/2 points

Subproblem 2 = Rightmost n/2 points

Assume all *x* coordinates are distinct.

How to decide: Equal sized problems? Overhead of splitting?

Which will be easier to combine? Try all?

The algorithm

We only discuss how to find the distance between the closest pair. The closest pair can be found with minor additional bookkeeping.

- 1. Divide: Draw vertical line Sep with n/2 points on each side.
- 2. Conquer: Recursively find δ_L : closest distance between points to left of Sep. δ_R : closest distance between points to right of Sep.
- 3. Combine: Check if there can be points closer than $\delta = \min(\delta_L, \delta_R)$. Return appropriately.

Details soon.

$$T(n) = T_{divide} + 2T(n/2) + T_{combine}$$

Divide: sorting. $T_{divide} = O(n \log n)$.

The combine step

We must somehow find the minimum over all pairs of points.

The conquer steps considered pairs such that

- ▶ both points are to the left of Sep
- ▶ both points are to the right of Sep

What remains: pairs in which one point is on either side of Sep.

We could find δ_B = the closest distance between p_i, p_j s.t. p_i is on left, and p_j is on right.

Do we really need to?

If $\delta_B \geq \delta = \min(\delta_L, \delta_R)$, we dont need to know its value.

Observation: We only need to consider points which are within distance δ of Sep.

Observation: This vertical strip problem is almost one dimensional.

The combine step (contd.)

- 1. Sort the points in the vertical strip by their *y* coordinate.
- 2. For i = 1 to number of points
- 3. $\delta_i = \text{minimum distance between } p_i \text{ and } p_{i+1}, \dots, p_{i+11}.$
- 4. Report $\delta_c = \min_i \delta_i$

Thm: If distance $(p_i, p_j) < \delta$ then $|i - j| \le 11$.

Proof: Divide the strip into squares of width $\delta/2$.

Every such square can contain at most 1 point.

If distance $(p_i, p_j) < \delta$, then they can be separated by at most one rows of squares.

 p_i, p_j together belong to 3 consecutive rows.

There must be < 10 points between them.

The number 11 can be reduced with better analysis...

$$T_{combine} = O(n \log n)$$

Summary

$$T(n) = O(n \log n) + 2T(n/2)$$

Solves to: $T(n) = O(n \log^2 n)$

Improvements Possible: Can sort points once for all into array X by x coordinate and array Y by y coordinate. Pass these arrays to recursive calls and eliminate sorting.

$$T(n) = T_{presort} + T_{rec}(n)$$

 $T_{rec}(n) = O(n) + 2T_{rec}(n/2)$
 $T_{rec}(n) = O(n \log n)$

$$T(n) = O(n \log n)$$