Review

DECISION BOUNDARIES

Non-linear Decision Boundary

Suppose we use polynomial features...

$$h(x) = (w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2)$$

Suppose we are able to train a model an get the following weights...

$$W = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Predict
$$y = 1$$
, if $-1 + x_1^2 + x_2^2 \ge 0$

Predict
$$y = 1$$
, if $x_1^2 + x_2^2 \ge 1$

This means by controlling the weights, we can build complex decision boundaries!

Or simpler boundaries from complex features!

Non-linear Decision Boundary

$$h(x) = (w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_1^2x_2 + w_5x_2^2 + w_6x_2^2 + w_7x_1^3x_2 + \dots)$$

Verify on https://www.desmos.com/calculator

This means by controlling the weights, we can build complex decision boundaries!

Recall that more complex boundaries can cause overfitting (i.e., high variance)

Hard VS Soft Boundaries Classifiers

https://livebook.manning.com/concept/machine-learning/sigmoid-function

https://machinelearningmastery.com/plot-a-decision-surface-for-machine-learning/https://stackoverflow.com/questions/29360872/fitting-3d-sigmoid-to-data

Logistic Regression: Summary

Training Set:
$$\{(X^{(1)},y^{(1)}),(X^{(2)},y^{(2)}),\dots,(X^{(m)},y^{(m)})\}$$

$$m \text{ examples: } x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \ x_0 = 1, y \in \{0, 1\}$$

$$h(x) = \frac{1}{1 + e^{-W^T X}}$$

What should be the cost function now?

Cost/Loss Function

☐ Linear Regression:

$$J(W) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h(x^{(i)}) - y^{(i)} \right)^{2}$$

☐ Logistic Regression

$$J(W) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(\frac{1}{1 + e^{-w^{T} x^{(i)}}} - y^{(i)} \right)^{2}$$

It's plausible to have a cost function that is convex (to avoid many many local minimas)

Our Goal for the Cost Function

- Differentiable
- **□**Convex

$$h(x) = \frac{1}{1 + e^{-w^T x(i)}}$$
 varies between 0 and 1

- ☐ Punish **incorrect** answers with **high cost**
 - $y = 1, h(x) \to 0$
 - $y = 0, h(x) \rightarrow 1$

$$log_{10}(0) = ?$$

 $log_{10}(1) = ?$

$$log_{10}(0) = -\infty$$

 $log_{10}(1) = 0$

- Reward **correct** answers with a **low cost**
 - $y = 1, h(x) \to 1$
 - $y = 0, h(x) \to 0$

How can we use these two relations in designing our cost function?

Remember, now y is either 0 or 1, but prediction would be a real number between 0 and 1

Logistic Regression Cost Function

$$J(W) = \frac{1}{m} \sum_{i=1}^{m} Cost(h(x^{(i)}), y^{(i)})$$

$$Cost(h(x), y) = \begin{cases} -log(h(x)) & \text{if } y = 1 \\ -log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

Can we combine these and create a switch that turns on the correct cost values for the values of y?

Note: y = 0 or y = 1 always! (Recall Bernoulli Distribution)

We can combine summations and products using interpolation:

If
$$y \in \{0, 1\}$$
:

$$Cost = a^y b^{(1-y)}$$

Chooses
$$a$$
 if $y = 1$ and b if $y = 0$

$$Cost = y \times a + (1 - y) \times b$$

$$Cost = y \times a + (1 - y) \times b$$
 Chooses a if $y = 1$ and b if $y = 0$

Logistic Regression Cost Function

$$J(W) = \frac{1}{m} \sum_{i=1}^{m} Cost(h(x^{(i)}), y^{(i)})$$

$$Cost(h(x), y) = \begin{cases} -log(h(x)) & \text{if } y = 1 \\ -log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

Can we combine these and create a switch that turns on the correct cost values for the values of y?

$$Cost(h(x), y) = -y \log(h(x)) - (1 - y) \log(1 - h(x))$$

if
$$y = 1$$
: $cost(h(x), y) = -log(h(x))$

if
$$y = 0$$
: $cost(h(x), y) = -log(1 - h(x))$

Logistic Regression Cost Function

$$Cost(h(x), y) = -y \log(h(x)) - (1 - y) \log(1 - h(x))$$

- We have created a loss function that prefers the correct class labels of the **training examples** to be more likely.
 - It **estimates** the model parameters to **maximize the likelihood** of the training set
 - This is called maximum likelihood estimation (MLE)
- \square We choose the parameters w_j that maximize the log probability of the true y labels in the training data, given the observations X.
- ☐ The resulting loss function is the negative log likelihood loss (log loss), generally called cross-entropy loss.

LR Cost Function: Summary

$$J(W) = \frac{1}{m} \sum_{i=1}^{m} Cost(h(x^{(i)}), y^{(i)})$$

$$J(W) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}) \right) \right]$$

To fit parameters W:

$$\min_{\boldsymbol{W}} \boldsymbol{J}(\boldsymbol{W})$$

To make a prediction for a new x:

Output:
$$h(x) = \frac{1}{1 + e^{-W^T x}}$$

Gives
$$P(y = 1|x; W)$$

Note: This gives you probability of y=1

How would gradient descent work now?

Gradient Descent

$$J(W) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}) \right) \right]$$

Repeat {

$$w_j \coloneqq w_j - \alpha \frac{\partial}{\partial w_j} J(W)$$

(simultaneously update all w_i)

After a very long math, you will end up having the following derivative!

$$\frac{\partial}{\partial w_j} (J(W)) = \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(see Jurafksy SLP3 for derivation)

Same as MSE from Linear Regression!

Batch Gradient Descent

$$J(W) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}) \right) \right]$$

Epsilon is the weights change threshold...

Repeat until
$$W_{t+1}-W_t \geq \epsilon$$
 {
$$w_j\coloneqq w_j-\alpha\frac{1}{m}\sum_{i=1}^m \bigl(h\bigl(x^{(i)}\bigr)-y^{(i)}\bigr).x_j^{(i)}$$
 }

(Simultaneously update all w_i)

Stochastic Gradient Descent

$$J(W) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}) \right) \right]$$

```
Repeat until W_{t+1}-W_t\geq \epsilon { Repeat for each training instance \left(x^{(i)},y^{(i)}\right), in random order { w_j\coloneqq w_j-\alpha\big(\left.h(x^{(i)}\right)-y^{(i)}\big)\,x_j^{(i)} } }
```

(Simultaneously update all w_i)

Mini Batch Gradient Descent

$$J(W) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}) \right) \right]$$

```
Repeat until W_{t+1} - W_t \ge \epsilon {
```

Repeat for each randomly selected mini batch of size k {

$$w_j \coloneqq w_j - \alpha \frac{1}{k} \sum_{i=1}^k (h(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

(Simultaneously update all w_i)

Multiclass Classification

■ What if we have more than two classes?

Multiclass (Multinomial) Classification

Binary Classification (Instance belongs to one of two classes)

 x_1

Multiclass Classification (Instance belongs to one of many classes)

Note: Multiclass classification is different than multilabel classification

Multiclass Classification

□ Logistic Regression inherently models binary classification and needs meta-strategies for multiclass classification

■ Multiclass classification

Multiple class labels are present in the dataset

□Binary classifiers for multiclass classification

- One VS Rest (aka One Vs All)
 - · Splits a multiclass classification into one binary classification problem per class
 - n —class instances then create n binary classifiers

One VS One

- Splits a multiclass classification into one binary classification problem per each pair of classes
- n -class instances then have $\binom{n}{2} = \frac{n \times (n-1)}{2}$ binary classifier models

One VS All (One VS Rest)

- □ Train one classifier per class $(x \in class_i \ vs \ x \notin class_i)$ for all n classes
- \square In the scoring phase, all the n classifiers predict the probability of each class and the class with highest probability is selected.

Create Separate Datasets for Training

Main Dataset

	Classes					
x1	x1 x2 x3					
x4	x5	х6	В			
x7	х8	х9	R			
x10	×11	x12	G			
x13	×14	x15	В			
x16	x17	x18	R			

Class 1:- Green Class 2:- Blue Class 3:- Red

Training Dataset 2 Class :- Blue

	Blue				
×1	x1 x2 x3				
x4	х5	х6	+1		
x7	x8	х9	-1		
×10	x11	x12	-1		
x13	x14	x15	+1		
x16	×17	x18	-1		

Training Dataset 1 Class:- Green

	Green				
×1	x1 x2 x3				
x4	x5	х6	-1		
x7	х8	х9	-1		
×10	×11	x12	+1		
x13	×14	x15	-1		
×16	x17	x18	-1		

Training Dataset 3 Class :- Red

	Red				
x1	x1 x2 x3				
x4	х5	х6	-1		
x7	x8	х9	+1		
x10	x11	x12	-1		
x13	x14	x15	-1		
x16	×17	x18	+1		

One VS All Pipeline

One VS One

 \square For n classes, we must generate $\frac{n\times(n-1)}{2}$ binary classifier models

☐ Using this classification approach, we split the primary dataset into

One VS One

- ☐ Each binary classifier predicts one class label and the model with the most predictions or votes is predicted by the one-vs-one strategy
- ☐ If the binary classification models predict a numerical class membership, such as probability
 - then the *argmax* of the sum of the scores (class with the largest sum score) is predicted as the class label.
 - Classifier 1:- Green VS Blue
 - Classifier 2:- Green VS Red
- Classifier 3: Blue VS Red

- $Score(r) = P_2(r) + P_3(r)$
- $Score(b) = P_1(b) + P_3(b)$
- $Score(g) = P_1(g) + P_2(g)$

Take argmax of scores for final prediction.

oVr vs oVo

□oVr trains fewer classifiers and is faster overall

□oVo is less prone to imbalance in datasets

<i>C</i> 1	<i>C</i> 2	<i>C</i> 3
10	10	10

 OVr
 C1 rest
 C2 rest
 C3 rest

 10 20
 10 20
 10 20

Evaluating Performance of Multiclass Classification

☐ How to evaluate the performance of classifiers in case of multiclass classification?

Recall: Binary Classification Evaluation

Actual Labels/Ground Truth

Predicted Labels/Predictions

	Spam (1)	Not Spam (0)
Spam (1)	TP = 8	FP = 30
Not Spam (0)	FN = 2	TN = 960

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \times (Precision \times Recall)}{(Precision + Recall)}$$

Confusion Matrix for 3-class Classification

		g	old labels	Ţ.	
		urgent	normal	spam	
	urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
	spam	3	30	200	precision s= $\frac{200}{3+30+200}$
		recallu =	recalln=	recalls =	
		8	60	200	
		8+5+3	10+60+30	1+50+200	

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \times (Precision \times Recall)}{(Precision + Recall)}$$

What's the Accuracy?

Now we have three values of Precision and Recall!! How to get single value?

Combining P/R from 3 Classes to Get One Metric

■ Macro-averaging

Computer the performance (P/R) for each class, and then take average

■ Micro-averaging

- Collect decisions (TP, TN, FP, FN) for all classes into one confusion matrix
- Compute Precision and Recall from this new matrix

Macro-Averaging

Micro-Averaging

		gold labels					
		urgent normal spam					
	urgent	8	10	1			
system output	normal	5	60	50			
	spam	3	30	200			

Similarly, you can calculate Macro and Micro Recall and then F1.

Class 1: Urgent Class 2: Normal Class 3: Spam						Spam		
	true urgent	true not		true normal	true not		true spam	true not
system urgent	8	11	system normal	60	55	system spam	200	33
system not	8	340	system not	40	212	system not	51	83
precision	precision = $\frac{8}{8+11}$ = .42 precision = $\frac{60}{60+55}$ = .52 precision = $\frac{200}{200+33}$ = .86							
$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$								

Evaluation

- □A micro-average is dominated by the more frequent class (in this case, spam)
 - As the counts are pooled

- ☐ The macro-average better reflects the statistics of the smaller classes
 - Is more appropriate when performance on all the classes is equally important

Assignment 3: Task 2

- ☐ Train logistic regression classifier for "me" and "not me" labels in your images dataset
 - Compare the performance with decision tree in terms of F1-score, on the test split
 - Make sure you are using the same train and test splits that you used in training the decision tree
- ☐ Train multinomial logistic regression classifier for your "expressions" labels
 - Computer the macro averaging precision, recall, and f1-score
- ☐ In both models, make sure you are using "log loss" and appropriate "penalty" (i.e., regularization).
- Now, use the trained logistic regression model for your webcam script and also show the probability along with the class label on webcam stream.
- ■Build a GUI using "Gradio" that takes an image as input, and predicts the class and displays the probability.

Quiz 3

- ☐Thursday 27th April
- Lectures 15, 16

Book Reading

- ☐ Murphy Chapter 8
- □ Jurafsky Chapter 5, Chapter 4