Законы Ньютона. Сила упругости. Сила трения

- 1. Какая из названных ниже величин скалярная? 1) Масса 2) Сила
 - **А)** Только 1
- **Б)** Только 2
- **В)** 1 и 2
- Г) Ни 1, ни 2
- **2.** Из приведенных величин: скорость, сила, ускорение, перемещение при механическом движении всегда совпадают по направлению:
- А) сила и перемещение;
- В) сила и ускорение;
- **Б)** ускорение и перемещение;
- Γ) сила и скорость.
- **3.** Тело массой m = 400 г движется с ускорением a = 2 м/с². Чему равна равнодействующая сила F, действующая на тело?
- **4.** Чему равна масса m тела, если под действием силы F = 12 H оно движется с ускорением a = 2 м/с²?
- **5.** Под действием некоторой силы F скорость тела массой $m=800~{\rm F}$ увеличилась от $\upsilon_0=2~{\rm m/c}$ до $\upsilon=20~{\rm m/c}$ за время $t=0,15~{\rm muh}.$ Определите модуль силы F.
- **6.** Тело массой m=2 кг имело начальную скорость $\upsilon_0=36$ км/ч. Какую скорость υ приобретет тело, если на него в течение t=5 с действует сила равная F=4 H в направлении движения тела?
- 7. Покоящийся мяч массой $m=400~\Gamma$ после удара, длящегося $t=0{,}05~c$, летит со скоростью $\upsilon=25~\text{м/c}.$ Найти силу F удара.
- **8.** На покоящееся тело массой m = 20 кг действует сила F = 60 Н. Какой путь s пройдет тело за t = 4 с от начала движения?
- **9.** Тело массой m=4 кг движется со скоростью $\upsilon_0=28,8$ км/ч. С какой скоростью υ будет двигаться тело, если на него в течение времени t=10 с будет действовать сила F=2,4 Н направленная противоположно начальной скорости тела.
- **10.** Определить силу F, под действием которой тело массой m=0.5 кг будет двигаться по закону $x=A+Bt+Ct^2$, где A=0 м, B=2 м/с, C=3 м/с.
- **11.** Тело под действием силы F=8 Н изменяет свою скорость по закону $\upsilon=At+B$, где A=0.5 м/с², B=1 м/с. Чему равна масса m тела?
- **12.** Тело движется прямолинейно под действием равнодействующей силы F = 300 H по закону $x = A + Bt + Ct^2$, где A = 4 м, B = 5 м/с, C = 0.6 м/с². Определить массу m тела.
- **13.** С каким ускорением a движется тело массой m = 0,1 ц под действием двух противоположно направленных сил $F_1 = 12$ H и $F_2 = 38$ H.
- **14.** Тело массой m = 2,5 кг движется с ускорением a = 8 м/с² под действием двух одинаково направленных сил F_1 и F_2 . Чему равен модуль силы F_2 , если $F_1 = 12$ H?
- **15.** Тело массой m=250 г движется с ускорением a=40 м/с 2 под действием двух взаимно перпендикулярных сил F_1 и F_2 . Чему равен модуль силы F_1 , если $F_2=8$ H?

16. На рисунке изображены силы \vec{F}_1 и \vec{F}_2 , действующие на тело массой m=2 кг. Определите модуль ускорения a, с которым движется тело, под действием этих сил, если модуль первой силы $F_1=7.8~\rm H.$

- **17.** Под действием двух взаимно перпендикулярных сил, модули которых равны $F_1 = 3$ H и $F_2 = 4$ H, тело из состояния покоя за промежуток времени $\Delta t = 4$ с прошло путь s = 16 м по направлению равнодействующей этих сил. Определите массу m тела.
- 18. Сила трения зависит
- А) Только от силы давления на поверхность, по которой движется тело.
- Б) От относительной скорости движения тела.
- В) От силы давления и состояния соприкасающихся поверхностей.
- Г) От ускорения, с которым движется тело.
- **18.** На левом рисунке представлены векторы скорости и ускорения тела. Какой из четырех векторов на правом рисунке указывает направление вектора равнодействующей всех сил, действующих на это тело в инерциальных системах отсчета?

- **1**) 1
- **2**) 2
- **3**) 3
- **4**) 4
- **19.** Тело скользит по горизонтальной поверхности. Модуль силы трения при этом равен $F_{\tau p}=20$ Н. Коэффициент трения $\mu=0,4$. Чему равна сила реакции опоры N?
- **20.** Определить удлинение Δl пружины жесткостью $k=500~{\rm H/m}$ при возникновении силы упругости ${\rm F_{ynp}}=40~{\rm H.}$
- **21.** Тело скользит по горизонтальной поверхности. Модуль силы трения при этом равен $F_{\tau p}=4$ H. Чему равен коэффициент трения μ , если сила нормальной реакции опоры N=20 H?
- **22.** Чему равна жесткость k пружины, если под действием силы F = 6 H она удлинилась на $\Delta l = 3$ см?
- **23.** На тело массой m=800 г, лежащее на горизонтальной поверхности, подействовали вертикальной силой, модуль которой $F_1=6$ Н. Сделайте рисунок, укажите все силы действующие на тело. Найдите модули этих сил.

- 24. Полосовой магнит массой т поднесли к массивной стальной плите массой M. Сравните силу действия магнита на плиту $\mathbf{F_1}$ с силой действия плиты на магнит \mathbf{F}_2 .
- 1) $F_1 = F_2$ 2) $F_1 < F_2$ 3) $F_1 > F_2$ 4) $\frac{F_1}{F_2} = \frac{m}{M}$
- 25. Автомобиль тормозит, двигаясь вдоль оси Ох (см. рис. 1). Направление равнодействующей всех приложенных к автомобилю. на рисунке 2 обозначено цифрой:
 - 1) 1; 2) 2;
- 3) 3;
- 5) 5. 4) 4;
- 26. На рисунке 2 представлен график зависимости модуля силы упругости, возникающей при растяжении пружины, от значения её деформации. Определите жесткость пружины.

- **27.** Найдите удлинение Δl рыболовной лески жесткостью k = 0.5 кH/м, если на ней будет висеть рыба массой т = 350 г? Сделайте рисунок и укажите силы, действующие на рыбу.
- 28. При помощи динамометра ученик перемещал равномерно деревянный брусок массой т = 200 г по горизонтальной доске. Каков коэффициент трения µ, если динамометр показывал F = 0,6 H? Сделайте рисунок и укажите силы, действующие на брусок.
- **29.** На тело массой m = 600 г, лежащее на горизонтальной поверхности, подействовали вертикальной силой, модуль которой $F_1 = 2$ H. Сделайте рисунок, укажите все силы действующие на тело. Найдите модули этих сил.
- 30. На рисунке дан график зависимости скорости тела массой m=0.5 кг от времени для прямолинейного движения. Определите результирующую силу F, действующую на тело в момент времени t = 2 с.

- 31. Тело массой m = 400 г тянут по горизонтальной поверхности. прикладывая горизонтальную силу F, с ускорением $a = 2 \text{ м/c}^2$. Сила трения скольжения при движении $F_{rp} = 2$ H. Определите модуль силы F.
- 32. Груз массой m = 50 г опускают вертикально вниз на резиновом жгуте с направленным вверх ускорением, модуль которого $a = 1 \text{ м/c}^2$. Определите жесткость k жгута, если при подъеме он удлинился на $\Delta l = 1$ см.
- 33. Трактор массой m = 4 т начинает двигаться по горизонтальной поверхности с ускорением $a = 0.2 \text{ м/c}^2$. Горизонтальная сила тяги двигателя составляет F = 5 кH. Определите силу сопротивления F_c при движении.
- **34.** Груз массой m = 200 г поднимают вертикально вверх на резиновом жгуте с направленным вниз ускорением $a = 1 \text{ m/c}^2$. Определите жесткость k жгута. если при подъеме он удлинился на $\Delta l = 2$ см.
- **35.** Тело массой m = 900 г тянут по горизонтальной поверхности прикладывая горизонтальную силу F = 6 H. Сила трения скольжения $F_{TD} = 4.2$ H. Определите ускорение а движения тела.
- **36.** Найти удлинение Δl буксировочного троса жесткостью k = 50 кH/м при буксировке автомобиля массой m = 2 т с ускорением a = 0.5 м/с². Сила сопротивления при движении $F_c = 4 \text{ кH}$.
- 37. Тело массой m = 400 г тянут по горизонтальной поверхности, прикладывая горизонтальную силу F = 2 H, с ускорением a = 2 м/с². Определите коэффициент трения μ тела о поверхность.
- 38. К вертикальной стене прижали брусок горизонтальной силой, модуль которой $F_2 = 5$ H. Масса бруска m = 200 г. Брусок начал скользить вниз. Определите скорость у бруска через время t = 2 с, если коэффициент трения скольжения $\mu = 0.16$.
- 39. Груз массой т поднимают вертикально вверх на резиновом жгуте жесткостью k = 190 H/м с направленным вниз ускорением a = 0.5 м/с². Определите массу тела, если при подъеме жгут удлинился на $\Delta l = 2$ см.
- 40. Тело массой m = 300 г лежит на полу лифта и давит на него с силой $F_{\pi} = 3.6$ Н. Лифт движется вниз равноускоренно, с начальной скоростью $v_0 = 10 \text{ м/c}$. Определите скорость v лифта через время t = 2 c.

Ответы

4. m = 6 kg; **5.** F = 1.6 H; **6.** v = 20 m/c; **7.** F = 200 H; **3.** F = 0.8 H**8.** s = 24 m; **9.** v = 2 m/c; **10.** F = 3 H; **11.** F = 16 H; **12.** $m = 500 \ кг$ **13.** $a = 2.6 \text{ m/c}^2$; **14.** $F_2 = 8 \text{ H}$; **15.** $F_1 = 6 \text{ H}$; **16.** $a = 6.5 \text{ m/c}^2$; **17.** m = 2.5 kg**19.** N = 50 H; **20.** $\Delta l = 8$ cm; **21.** $\mu = 0.2$; **23.** $F_T = 8 \text{ H}$; N = 14 H; **27.** $\Delta l = 7 \text{ MM}$; **28.** $\mu = 0.2$; **29.** $F_T = 6 \text{ H}$; N = 4 H; **30.** F = 5 H; **31.** F = 2.8 H; **32.** k = 55 H/m; **33.** $F_c = 4200 \text{ H}$; **34.** k = 90 H/m; **35.** $a = 2 \text{ m/c}^2$; **36.** $\Delta l = 10 \text{ cm}$; **37.** $\mu = 0.3$; **38.** $\nu = 12 \text{ m/c}$; **39.** m = 0.4 kg**40.** v = 6 m/c.