Representaciónes irreducibles del grupo de Poincaré

Rafael Córdoba Lopez

Universidad de los Andes

16 de octubre de 2022

Tabla de contenidos

Motivación

El espacio-tiempo

El grupo de Lorentz

El grupo de Poincaré

Representaciónes

Los grupos actúan sobre un conjunto \implies simetrias

1. Cristales

- 1. Cristales
- 2. Invariantes \implies Teorema de Noether

- 1. Cristales
- 2. Invariantes \implies Teorema de Noether
- 3. Mecanica cuántica

- 1. Cristales
- 2. Invariantes \implies Teorema de Noether
- 3. Mecanica cuántica
- 4. Relatividad

- 1. Cristales
- 2. Invariantes \implies Teorema de Noether
- 3. Mecanica cuántica
- 4. Relatividad
- 5. Partículas elementales

- 1. Cristales
- 2. Invariantes \implies Teorema de Noether
- 3. Mecanica cuántica
- 4. Relatividad
- 5. Partículas elementales

El espacio tiempo de Minkowski

Un evento bajo un sistema de referencia **inercial** tiene como coordenadas:

$$X^{\mu} \equiv X = (x^0, x^1, x^2, x^3) = (ct, \vec{x})$$

El espacio tiempo de Minkowski

Un evento bajo un sistema de referencia **inercial** tiene como coordenadas:

$$X^{\mu} \equiv X = (x^0, x^1, x^2, x^3) = (ct, \vec{x})$$

Definición

El **Espacio-tiempo de Minkowski** es una variedad cuatro dimensional con metrica g=diag(-1,1,1,1) con $(\Delta s)^2=g_{\mu\nu}X^{\mu}X_{\nu}$

$$(\Delta s)^2 = (\Delta s')^2 = ||X|| \tag{1}$$

En cualquier sistema de referencia intercial X'.

¿Como se relaciona X con X'?

Definición

Las transformaciónes lineales Λ que preservan (1) forman el **grupo** de Lorentz \mathcal{L} . i.e Si $\Lambda \in \mathcal{L}$

$$X' = \Lambda X \implies (\Delta s)^2 = (\Delta s')^2$$

Λ tambien es llamada boost de Lorentz.

El grupo de Poincaré

Definición

El grupo de Poincaré $\mathcal P$ son todas las isometrías del espacio-tiempo de Minkowski i.e. $\mathcal L+$ traslaciónes. Tenemos entonces que $g\in\mathcal P$ es tal que:

$$X' = g \cdot X = \Lambda X + A, \qquad \Lambda \in \mathcal{L}, A \in \mathbb{R}^4$$

ad de

El grupo de Poincaré

Definición

El **grupo de Poincaré** \mathcal{P} son todas las isometrías del espacio-tiempo de Minkowski i.e. \mathcal{L} + traslaciónes. Tenemos entonces que $g \in \mathcal{P}$ es tal que:

$$X' = g \cdot X = \Lambda X + A, \qquad \Lambda \in \mathcal{L}, A \in \mathbb{R}^4$$

Equivalentemente, el espacio 'físico' admisible es:

$$\mathcal{P} = \left\{ (\Lambda, a) | \Lambda \in \mathcal{L}_+^{\uparrow}, a \in \mathbb{R}^4
ight\}$$

con la regla de multiplicación:

$$(\Lambda', a') \cdot (\Lambda, a) = (\Lambda' \Lambda, \Lambda' a + a'), \quad \Lambda, \Lambda' \in L^{\uparrow}_{+}, A \in \mathbb{R}^4$$

Representaciónes

Definición

Sea G un grupo, una **representación** del grupo G en el espacio vectorial V es un homomorfismo $D: G \to GL(V)$.

• $\forall a, b \in G$ D(a)D(g) = D(ag)

Consideraremos el caso $V \simeq \mathbb{C}^n$

Representaciónes

Definición

Sea G un grupo, una **representación** del grupo G en el espacio vectorial V es un homomorfismo $D: G \to GL(V)$.

•
$$\forall a, b \in G$$
 $D(a)D(g) = D(ag)$

Consideraremos el caso $V \simeq \mathbb{C}^n$

Una representación D de G sobre V es **unitaria** si V tiene un producto interno hermitico tal que:

$$\langle v|w\rangle = \langle D(g)(v)|D(g)(w)\rangle, \quad \forall v, w \in V, g \in G$$

Representaciónes

Definición

Sea G un grupo, una **representación** del grupo G en el espacio vectorial V es un homomorfismo $D: G \to GL(V)$.

•
$$\forall a, b \in G$$
 $D(a)D(g) = D(ag)$

Consideraremos el caso $V \simeq \mathbb{C}^n$

Una representación D de G sobre V es **unitaria** si V tiene un producto interno hermitico tal que:

$$\langle v|w\rangle = \langle D(g)(v)|D(g)(w)\rangle, \quad \forall v, w \in V, g \in G$$

La representación D sobre W es **irreducible** si sus unicos espacios invariantes son W y $\{0\}$

¿Por que usar una representación?

El grupo Dihedral $D_8 \iff$ Símetrias del cuadrado Representación:

$$\begin{pmatrix}1&0\\0&1\end{pmatrix} \quad \begin{pmatrix}-1&0\\0&-1\end{pmatrix} \quad \begin{pmatrix}0&1\\1&0\end{pmatrix} \quad \begin{pmatrix}0&-1\\-1&0\end{pmatrix}$$

¿Por que usar una representación?

El grupo Dihedral $D_8 \iff$ Símetrias del cuadrado Representación:

$$\begin{pmatrix}1&0\\0&1\end{pmatrix}&\begin{pmatrix}-1&0\\0&-1\end{pmatrix}&\begin{pmatrix}0&1\\1&0\end{pmatrix}&\begin{pmatrix}0&-1\\-1&0\end{pmatrix}$$

Trabajamos con matrices!

El concepto de partícula de Wigner

¿Como clasificar las particulas elementales? Modelo de Wigner (1931):

'Teoría de grupos y su aplicaciónes a la mecanica cuantica de espectros atomicos'

Mecanica cuantica + Relatividad especial.

El concepto de partícula de Wigner

¿Como clasificar las particulas elementales? Modelo de Wigner (1931):

'Teoría de grupos y su aplicaciónes a la mecanica cuantica de espectros atomicos'

Mecanica cuantica + Relatividad especial.

1. **Diferenciar** partículas ⇒ grupos

El concepto de partícula de Wigner

¿Como clasificar las particulas elementales? Modelo de Wigner (1931):

'Teoría de grupos y su aplicaciónes a la mecanica cuantica de espectros atomicos'

Mecanica cuantica + Relatividad especial.

- 1. **Diferenciar** partículas ⇒ grupos
- 2. Partículas **elementales** \implies Irreducibilidad

Teorema

En el espacio de Hilbert del sistema de particulas cualquier transformación de simetría S de un estado Ψ se puede representar en el espació de Hilbert de estados por un operador lineal y unitario ó antilineal y antiunitario.

Teorema

En el espacio de Hilbert del sistema de particulas cualquier transformación de simetría S de un estado Ψ se puede representar en el espació de Hilbert de estados por un operador lineal y unitario ó antilineal y antiunitario.

1. Cualquier partícula es una representación irreducible de ${\cal G}$

Teorema

En el espacio de Hilbert del sistema de particulas cualquier transformación de simetría S de un estado Ψ se puede representar en el espació de Hilbert de estados por un operador lineal y unitario ó antilineal y antiunitario.

- 1. Cualquier partícula es una representación irreducible de ${\cal G}$
- 2. El grupo \mathcal{G} es $s\ell(2,\mathbb{C}) \otimes \mathbb{R}^{1,3} := s\ell(2,\mathbb{C}) \times translaciones$

Teorema

En el espacio de Hilbert del sistema de particulas cualquier transformación de simetría S de un estado Ψ se puede representar en el espació de Hilbert de estados por un operador lineal y unitario ó antilineal y antiunitario.

- 1. Cualquier partícula es una representación irreducible de ${\cal G}$
- 2. El grupo \mathcal{G} es $s\ell(2,\mathbb{C}) \otimes \mathbb{R}^{1,3} := s\ell(2,\mathbb{C}) \times translaciones$
- 3. Las irreps se parametrizan por $s=0,1/2,1,3/2,\ldots$ y $m\geq 0$

Las partículas se definen por dos parametros! Spin s y masa m!

Veamos la relación de $s\ell(2,\mathbb{C})$ con el grupo de Lorentz.

$$X = \begin{pmatrix} x_0 + x_3 & x_1 - ix_2 \\ x_1 + ix_2 & x_0 - x_3 \end{pmatrix}$$
 representa $\tilde{X} = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^4$

Note: $\det X = (\Delta s)^2$.

Si definimos:

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \quad \sigma_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$$

Entonces tenemos $X = x_0e + x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3$

• Si $M \in s\ell(2,\mathbb{C})$ entonces $||MXM^*|| = (detM)^2||X|| = ||X||$

- Si $M \in s\ell(2,\mathbb{C})$ entonces $||MXM^*|| = (detM)^2||X|| = ||X||$
- $\phi: s\ell(2,\mathbb{C}) \to \mathcal{L}$ representa una transformación de Lorentz.

- Si $M \in s\ell(2,\mathbb{C})$ entonces $||MXM^*|| = (detM)^2||X|| = ||X||$
- $\phi: s\ell(2,\mathbb{C}) \to \mathcal{L}$ representa una transformación de Lorentz.
- Note $\phi(M) = \phi(-M)$ Por tanto, la representación no es 1-1

- Si $M \in s\ell(2,\mathbb{C})$ entonces $||MXM^*|| = (detM)^2||X|| = ||X||$
- $\phi: s\ell(2,\mathbb{C}) \to \mathcal{L}$ representa una transformación de Lorentz.
- Note $\phi(M) = \phi(-M)$ Por tanto, la representación no es 1-1
- $s\ell(2,\mathbb{C})$ es un grupo continuo con det > 0.

- Si $M \in s\ell(2,\mathbb{C})$ entonces $||MXM^*|| = (detM)^2||X|| = ||X||$
- $\phi: s\ell(2,\mathbb{C}) \to \mathcal{L}$ representa una transformación de Lorentz.
- Note $\phi(M) = \phi(-M)$ Por tanto, la representación no es 1-1
- $s\ell(2,\mathbb{C})$ es un grupo continuo con det > 0.
- det Λ puede ser negativo $\implies \mathcal{L}_+^{\uparrow}$ es espacio físicamente admisible.

Simetrías, carga, color, etc.

Grupo de Poincaré \implies Spin s y masa m. Simetrias internas:

- Carga electrica
- Carga de color \implies irreps SU(3)
- isospin \implies irreps SU(2)
- Extrañeza

Bibliografía I

Y. Ohnuki

Unitary representations of the Poincaré group and relativistic wave equations

Nagoya University, 1988.

B. Simon

Representations of finite and compact groups AMS, 1996.

S. Sternberg

Group theory and physics Cambridge University press, 1994.

Bibliografía II

S. Mitchell

Why representation theory?

https://sites.math.washington.edu/ mitchell/Algf/whyrep.pdf, 2014.

