This weeks problem set provides some review questions in the lead up to the second midterm. A question marked with a \dagger is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 3: due Tuesday 26 May: questions 3 and 6 below.

- 1. From section 5.2, problems 1, $3a, d, e, 8, 9, 10, 11, 18^*, 19, 20^{\dagger}$.
- 2. From section 6.1, problems 1, 2, 3, 4, 8*, 9, 12, 16, 17*, 23, 29.
- 3. We say that two linear operators S and T commute if $S \circ T = T \circ S$. Let $T: V \longrightarrow V$ be a diagonalisable linear operator. Define

$$C(T) = \{ S \in \text{Hom}(V, V) \mid S \text{ and } T \text{ commute} \}.$$

- (a) If T has $n = \dim V$ distinct eigenvalues, show that any $S \in C(T)$ is diagonalisable.
- (b) Describe explicitly C(T) in the case $T = x \frac{d}{dx} : \mathbb{C}_1[x] \longrightarrow \mathbb{C}_1[x]$.
- (c) Show that part (a) does not necessarily hold if T does not have n distinct eigenvalues.
- 4. Suppose U, W are subspaces of a finite dimensional vector space V and that U + W = V. Show that $U \oplus W = V$ if and only if $\dim U + \dim W = \dim V$.

The previous question, motivates the following definition.

Definition: If U_i , for $1 \le i \le k$, are subspaces of a vector space V, then we say $V = U_1 \oplus U_2 \dots \oplus U_k$ if $V = U_1 + U_2 + \dots + U_k$, i.e. every vector $v \in V$ can be written as a sum $v = \sum_{i=1}^k u_i$ with $u \in U_i$, and dim $V = \sum_{i=1}^k \dim U_i$.

5.* Suppose that V is a finite dimensional vector space over \mathbb{F} and $T:V\longrightarrow V$ is a linear operator, with distinct eigenvalues $\lambda_1,\ldots,\lambda_k$. Prove that

$$V = E_{\lambda_1} \oplus E_{\lambda_2} \oplus \cdots \oplus E_{\lambda_k}$$

if and only if T is diagonalisable.

- 6.* Let V be a vector space and $\mathcal{A} \subset \operatorname{Hom}(V, V)$ a subset such that every $X \in \mathcal{A}$ is diagonalisable. We say \mathcal{A} is diagonalisable if there exists a basis B of V such that B is an eigenbasis for all $X \in \mathcal{A}$.
 - (a) Show that if \mathcal{A} is diagonalisable then for every pair of elements $X, Y \in \mathcal{A}$, we have $X \circ Y = Y \circ X$. (In fact, the other direction is true as well, but a little more difficult to prove.)
 - (b) Give an example of a set \mathcal{A} that is *not* diagonalisable. Every element of \mathcal{A} must be diagonalisable, it must contain at least two elements.
- 7* Suppose (A, B) is a pair of linear operators on V. We say $v \in V$ is a (λ, μ) -eigenvector if

$$A(v) = \lambda v$$
 and $B(v) = \mu v$

Let $E_{(\lambda,\mu)}$ be the set of all (λ,μ) -eigenvectors. We say (A,B) has *simple spectrum* if $\{A,B\}$ is diagonalisable (see previous question) and all the $E_{(\lambda,\mu)}$ are one dimensional (or zero).

Now consider the linear maps $S_{12}, S_{23}, S_{13} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ given by

$$S_{12} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} b \\ a \\ c \end{pmatrix}, \quad S_{23} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ c \\ b \end{pmatrix}, \text{ and } S_{13} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} c \\ b \\ a \end{pmatrix}$$

And let $H_1 = uS_{12} + S_{13}$ and $H_2 = (1 - u)S_{12} + S_{23}$ for any $u \in \mathbb{R}$.

- (a) Show that $\{H_1, H_2\}$ is diagonalisable.
- (b) Show that (H_1, H_2) has simple spectrum.