Probing

We want to know what information is captured in a neural network. Try to predict that information from the network's representations

▶ Given a simple, fixed class of model (e.g., one-layer FFNN), how well can we predict various things from word representations?

Probing: Results

- Lex: baseline built on context-independent vectors
- Large gains from contextualization, and BERT beats ELMo

	BERT-base			
	F1 Score			Abs. Δ
	Lex.	cat	mix	ELMo
Part-of-Speech	88.4	97.0	96.7	0.0
Constituents	68.4	83.7	86.7	2.1
Dependencies	80.1	93.0	95.1	1.1
Entities	90.9	96.1	96.2	0.6
SRL (all)	75.4	89.4	91.3	1.2
Core roles	74.9	91.4	93.6	1.0
Non-core roles	76.4	84.7	85.9	1.8
OntoNotes coref.	74.9	88.7	90.2	6.3
SPR1	79.2	84.7	86.1	1.3
SPR2	81.7	83.0	83.8	0.7
Winograd coref.	54.3	53.6	54.9	1.4
Rel. (SemEval)	57.4	78.3	82.0	4.2
Macro Average	75.1	84.8	86.3	1.9

Probing: Results

- Purple: BERT-large
 performance on each task
 (as delta from mean) using
 representations from that
 layer of BERT
- Earlier layers of the network: better at POS and low-level tasks. Later layers are better at higher-level tasks like coreference

