STAT430 Homework #7: Due Friday, April 15, 2022.

Name: KEY

Submit this homework as a pdf file to Canvas.

Question 1

Let Y_1, \ldots, Y_n be i.i.d. Uniform $(0, \theta)$. Show that $Y_{(n)} = \max(Y_1, \ldots, Y_n)$ is sufficient for θ . Hint: The Uniform $(0, \theta)$ density can be written $f(y) = \theta^{-1} \cdot \mathbb{1}_{\{0 < y < \theta\}}$, where $\mathbb{1}_{\{A\}}$ is an indicator function which equals 1 if A is true and equals 0 otherwise.

Answer:

The likelihood function is

$$\mathcal{L}(\theta \mid \boldsymbol{y}) = \prod_{i=1}^{n} \frac{1}{\theta} \mathbb{1}_{\{0 < y_i < \theta\}} = \frac{1}{\theta^n} \mathbb{1}_{\{y_{(n)} < \theta\}} \mathbb{1}_{\{y_{(1)} > 0\}}$$

We see that $\mathcal{L}(\theta \mid \boldsymbol{y})$ can be written as a product of $g(\theta, Y_{(n)}) = \frac{1}{\theta^n} \mathbb{1}_{\{y_{(n)} < \theta\}}$ and $h(\boldsymbol{y}) = \mathbb{1}_{\{y_{(1)} > 0\}}$, So by the factorization theorem, $Y_{(n)}$ is a sufficient statistic for θ .

Question 2

Let Y_1, \ldots, Y_n be i.i.d. random variables with density

$$f(y) = \frac{\alpha y^{\alpha - 1}}{\beta^{\alpha}} \qquad 0 < y < \beta.$$

If β is known, find a one-dimensional sufficient statistic for α .

Answer:

The likelihood function is

$$\mathcal{L}(\alpha, \beta \mid \boldsymbol{y_i}) = \prod_{i=1}^{\infty} \frac{\alpha y^{\alpha-1}}{\beta^{\alpha}} \mathbb{1}_{\{0 < y_i < \beta\}} = \left(\frac{\alpha}{\beta^{\alpha}}\right)^n \left(\prod_{i=1}^n y_i\right)^{\alpha-1} \mathbb{1}_{\{y_{(1)} > 0\}} \mathbb{1}_{\{y_{(n)} < \beta\}}.$$

which can be factored into a product of $g(\alpha, T(\boldsymbol{y})) = \left(\frac{\alpha}{\beta^{\alpha}}\right)^n \left(\prod_{i=1}^n y_i\right)^{\alpha-1}$ and $h(\boldsymbol{y}) = \mathbb{1}_{\{y_{(1)} > 0\}} \mathbb{1}_{\{y_{(n)} < \beta\}}$, so $T(\boldsymbol{Y}) = \prod_{i=1}^n Y_i$ is a sufficient statistic for α .

Question 3

Let $X_1, \ldots X_n$ be an observation from the pdf

$$P(X = x; \theta) = \left(\frac{\theta}{2}\right)^{|x|} (1 - \theta)^{1 - |x|}, \qquad x = -1, 0, 1 \qquad 0 \le \theta \le 1.$$

a) Show $T_1 = T(X_1)$ is an unbiased estimator of θ , where T(X) is defined

$$T(X) = \begin{cases} 2 & \text{if } x = 1\\ 0 & \text{otherwise} \end{cases}$$

Show $T_n = \frac{1}{n} \sum_{i=1}^n T(X_i)$ is unbiased for θ .

Answer:

$$E(T_1) = T_1(-1)P(X_1 = -1) + T_1(0)P(X_1 = 0) + T_1(1)P(X_1 = 1) = 2\left(\frac{\theta}{2}\right) = \theta$$

Since $ET_1 = \theta$, T_1 is an unbiased estimator for θ . Similarly, we can show that T_n is an unbiased estimator of θ

$$ET_n = \frac{1}{n} \sum_{i=1}^{n} ET(X_i) = \frac{n\theta}{n} = \theta$$

Since $ET_n = \theta$, T_n is an unbiased estimator for θ .

b) Find the MVUE of θ and show this estimator is better than T_n .

Answer:

This was fun to figure out, but definitely a bit tricky. The UMVUE for θ can be found by taking the expectation of an unbiased estimator of θ conditioned on a sufficient (and complete) statistic. A sufficient statistic for θ is $S = \sum_{i=1}^{n} |X_i|$. I am just going to assume it is complete as well, so the UMVUE for θ is

$$E(T_n \mid S = s) = \frac{1}{n} \sum_{i=1}^n E(T(X_i) \mid S = s)$$

The expectation $E(T(X_i)|S)$ is

$$E(T(X_i)|S = s) = T(-1)P(X_i = -1 | S = s) + T(0)P(X_i = 0 | S = s) + T(1)P(X_i = 1 | S = s)$$

$$= 2P(X_i = 1 | S = s)$$

$$= \frac{2P(X_i = 1, S = s)}{P(S = s)}$$

$$= \frac{2P(X_i = 1, \sum_{j \neq i} |X_j| = s - 1)}{P(S = s)}$$

$$= \frac{2P(X_i = 1)P(\sum_{j \neq i} |X_j| = s - 1)}{P(S = s)}$$

$$= \frac{2(\theta/2) \binom{n-1}{s-1} \theta^{s-1} (1 - \theta)^{n-s}}{\binom{n}{s} \theta^s (1 - \theta)^{n-s}}$$

$$= \frac{\binom{n-1}{s-1}}{\binom{n}{s}} = \frac{(n-1)!}{(s-1)!(n-s)!} \frac{s!(n-s)!}{n!} = \frac{s}{n}$$

Try figuring my reasoning out on that.

So the expectation $E(T_n|S) = \frac{S}{n} = \frac{1}{n} \sum_{i=1}^{n} |X_i|$ is the UMVUE for θ . To show that this is a "better" estimator that T_n , we have to show that the variance of the UMVUE is smaller than the variance of T_n . The variance of T_n is

$$VarT_{n} = \frac{1}{n^{2}} \sum_{i=1}^{n} VarT(X_{i})$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} (ET(X_{i})^{2} - (ET(X_{i}))^{2})$$

$$= \frac{n(4(\theta/2) - (\theta)^{2})}{n^{2}}$$

$$= \frac{\theta(2 - \theta)}{n}$$

and the variance of $\frac{1}{n}S$ is

$$Var \frac{1}{n}S = \frac{1}{n^2} \sum_{i=1}^{n} Var |X_i|$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} (E|X_i|^2 - (E|X_i|)^2)$$

$$= \frac{n(\theta/2 + \theta/2 - (\theta/2 + \theta/2)^2)}{n^2}$$

$$= \frac{\theta(1-\theta)}{n}$$

and it should be easy to see that $\frac{\theta(2-\theta)}{n} > \frac{\theta(1-\theta)}{n}$, so S/n is better than T_n , as it should be.

Question 4

Let X_1, \ldots, X_n be i.i.d. Geometric(p).

- a) Find the MoM estimator of p.
- b) Prove that your estimator in part (a) is consistent for p.

Answer:

Question 5

Suppose $Y_1, ..., Y_n$ are i.i.d. according to density

$$f(y) = e^{-(y-\theta)}, y \ge \theta, \theta > 0.$$

- a) Find the MoM estimator of θ .
- b) Is the MoM estimator of θ unbiased? If no, compute the bias.
- c) Find the variance of the MoM estimator of θ .
- d) Find a sufficient statistic for θ .
- e) Find the MVUE of θ .
- f) Compare the mean squared error of the MoM estimator and the MVUE. Which one has the smallest MSE?
- g) Find the MoM estimator of $(log(\theta))^{1/4}$.

Answer:			

Question 6

Let X_1, \ldots, X_n be i.i.d. Unit	form $(-\theta, \theta)$.	
a) Find the MoM estima	ator of θ .	
b) Find a one-dimensional	al sufficient statistic for θ .	
c) Is the MoM estimator	you found in part (a) the MVUE? Explain.	
_		
Answer:		
-		
Question 7		
	ate whether the statement is TRUE or FALSE. (Note: Although I do not as ment is true/false, for an exam you should understand the material well er	-
1) Suppose $Y_1,,Y_n$ are i $V[Y_i] < \infty$. The MoM	i.i.d. from distribution with parameter θ , which is a function of $\mu = E[Y_i]$ I estimator of $\theta^{-2/5}$ is a consistent estimator.	, and
2) Suppose X is a random	om variable and g is a function. Then $E[g(X)] = g(E[X])$.	
3) The MVUE and MLE	E are always functions of a minimal sufficient statistic.	
4) MoM estimators are a	always unbiased.	
5) MLEs are always unbi	iased.	
6) MVUEs are always un	nbiased.	
-		
Answer:		