Business Analytics Prescriptive Models

Based on

Business Analytics
With
Management Science
Models and Methods
by
Arben Asllani

Chapter 4

Business Analytics with Nonlinear Programming

Business Analytics with Management Science Models and Methods

Chapter Outline

- Chapter Objectives
- Introduction
- Challenges to NLP Models
 - Local optimum versus global optimum
 - The solution is not always found at an extreme point
 - Multiple feasible areas
- Example1: World Class furniture
- Example2: Optimizing an Investment Portfolio
- Exploring Big Data with Nonlinear Programming
- Wrap up

Chapter Objectives

- Explain what are nonlinear programming models and why they are more difficult to solve than LP models
- Demonstrate how to formulate nonlinear programming models
- Show how to use Solver to reach solution for nonlinear programming models
- Explain how to read the answer report and how to perform sensitivity analysis for nonlinear programming models
- Offer practical recommendations when using nonlinear models in the era of big data

Introduction

- Linear Programming
 - The objective function and constraints are linear equations
 - Both proportional and additive
- Nonlinear Programming (NLP)
 - To deal with not proportional or additive business relationships
 - Same structure: objective function and a set of constraints
 - More challenging to solve
- Necessity of using NLP
 - Difficult to use
 - But more accurate than linear programming

Challenge to NLP Models

NLP Models

- Represented with curved lines or curved surface
- Complicated to represent relationship with a large number of decision variables

Local Optimum versus Global Optimum

Area of Feasible Solution with Local and Global Maximum

The Solution Is Not Always Found at an Extreme Point

Possible Optimal Solution For NLP Model

Multiple Feasible Areas

Challenge to NLP Models

- Three Challenges NLP is Facing:
 - Local Optimum versus Global Optimum
 - The Solution Is Not Always Found at and Extreme Point
 - Multiple Feasible Areas
- Solutions developed to deal with the challenges
 - Advanced heuristics such as genetic algorithms
 - Simulated annealing
 - Generalized reduced gradient (GRG) method
 - Quadratic programming
 - Barrier methods
- However, these algorithms often are not successful

Example1: World Class Furniture

(ch4_Furniture.xlsx)

- Stores five different furniture categories
- Economic Order Quantity (EOQ) model
 - Allow to optimally calculate the amount of inventory with the goal of minimizing the total inventory cost
 - Does not consider:
 - Storage capacity (200,000 cubic feet)
 - purchasing budget (\$1.5 million)

Warehouse Capacity (cubic feet)	200,000				
Average Inventory Budget	\$1,500,000				
	Tables	Chairs	Beds	Sofas	Bookcases
Weekly Demand (units)	1125	2750	3075	3075	750
Purchase Price per Unit	\$45	\$85	\$125	\$155	\$125
Holding Cost (per unit, period)	\$2	\$3	\$3	\$3	\$4
Ordering Cost (per order)	\$100	\$225	\$135	\$135	\$100
Storage Space Required (cubic feet per	r u 84	106	140	70	100

EOQ Model

 Solution for EOQ model (without constraints), for each furniture category:

$$EOQ_j = \sqrt{\frac{2o_j D_j}{h_j}}$$

But we have to include constraints!
 So we'll use NI P model

Formulation of NLP Model

Define decision variables:

We want to "...calculate the weekly order quantity for each furniture category...", so:

- $x_1 = number\ of\ tables\ to\ be\ ordered\ every\ week$
- $x_2 = number of chairs to be ordered every week$
- $x_3 = number\ of\ beds\ to\ be\ ordered\ every\ week$
- $x_4 = number\ of\ sofas\ to\ be\ ordered\ every\ week$
- $x_5 = number\ of\ bookcases\ to\ be\ ordered\ every\ week$

Formulation of NLP Model

- Formulate the objective function
 - Holding cost: $H = \sum_{j=1}^{5} h_j \frac{x_j}{2} = 2 \frac{x_1}{2} + 3 \frac{x_2}{2} + 3 \frac{x_3}{2} + 3 \frac{x_4}{2} + 4 \frac{x_5}{2}$
 - Ordering cost:

$$O = \sum_{j=1}^{5} o_j \frac{D_j}{x_j} = 100 \frac{1125}{x_1} + 225 \frac{2750}{x_2} + 135 \frac{3075}{x_3} + 135 \frac{3075}{x_4} + 100 \frac{750}{x_5}$$

■ Total cost: $Z = H + O = \sum_{j=1}^{5} \left(h_j \frac{x_j}{2} + o_j \frac{D_j}{x_j} \right)$

Formulation of NLP Model

- Step 3: Identify a set of constraints
 - Warehouse Capacity: $\sum_{i=1}^{5} s_i x_i \le C$
 - Purchasing budget: $\sum_{j=1}^{5} (h_j \frac{x_j}{2} + o_j \frac{D}{x_i} + p_j D_j) \le P$
- Step 4: Identify a set of non-negativity constraints

Minimize
$$Z = \sum_{j=1}^{5} (h_j \frac{x_j}{2} + o_j \frac{D_j}{x_j})$$
 (nonlinear objective function)

Subject to:

$$\sum_{j=1}^{5} s_j x_j \le C \text{ (linear constraint)}$$

$$\sum_{j=1}^{5} (h_j \frac{x_j}{2} + o_j \frac{D}{x_i} + p_j D_j) \le P \text{ (nonlinear constraint)}$$

$$x_i \ge 0$$
 for all $j=1, 2, 3, 4, 5$ (non-negativity constraint)

Solving NLP Model with Solver

◆ Step 1: Create an Excel Template

	A	В	С	D	Е	F	G
1	Operational Data for the In	nventory	Managem	ent Syste	m at FV	VC	
2							
3	Warehouse Capacity (cubic feet)	200,000					
4	Average Inventory Budget	\$1,500,000					
5							
6		Tables	Chairs	Beds	Sofas	Bookcases	
7	Weekly Demand (units)	1125	2750	3075	3075		
8	Purchase Price per Unit	\$45	\$85	\$125	\$155		
9	Holding Cost (per unit, period)	\$2	\$3	\$3	\$ 3		
10	Ordering Cost (per order)	\$100	\$225	\$135	\$135	\$100	
11	Storage Space Required (cubic feet per	84	106	140	70	100	
12							
13	Calculations and Results						
	Calculations and Results						
	Calculations and Results	Tables	Chairs	Beds	Sofas	Bookcases	Totals
13	Calculations and Results Economic Order Quantity (EOQ)	Tables 335	Chairs 642	Beds 526	Sofas 526	Bookcases 194	Totals
13						194	Totals
13 14 15	Economic Order Quantity (EOQ)	335	642	526	526	194	Totals
13 14 15 16	Economic Order Quantity (EOQ) Optimized Order Quantity	335 289	642 575	526 457	526 469	194 180 90	Totals
13 14 15 16 17	Economic Order Quantity (EOQ) Optimized Order Quantity Average Inventory	335 289 144	642 575 287	526 457 229	526 469 235	194 180 90 4.18	Totals
13 14 15 16 17 18	Economic Order Quantity (EOQ) Optimized Order Quantity Average Inventory Average Number of Orders per period Total Supply Available Maximum Cubic Foot Storage Required	335 289 144 3.90	642 575 287 4.78	526 457 229 6.73	526 469 235 6.55	194 180 90 4.18 750	200,000
13 14 15 16 17 18 19	Economic Order Quantity (EOQ) Optimized Order Quantity Average Inventory Average Number of Orders per period Total Supply Available	335 289 144 3.90 1125	642 575 287 4.78 2750	526 457 229 6.73 3075	526 469 235 6.55 3075	194 180 90 4.18 750 17953	
13 14 15 16 17 18 19 20	Economic Order Quantity (EOQ) Optimized Order Quantity Average Inventory Average Number of Orders per period Total Supply Available Maximum Cubic Foot Storage Required	335 289 144 3.90 1125 24250	642 575 287 4.78 2750 60942	526 457 229 6.73 3075 64010	526 469 235 6.55 3075 32844	194 180 90 4.18 750 17953 \$418	200,000 \$3,676 \$2,900
13 14 15 16 17 18 19 20 21	Economic Order Quantity (EOQ) Optimized Order Quantity Average Inventory Average Number of Orders per period Total Supply Available Maximum Cubic Foot Storage Required Ordering Cost per period	335 289 144 3.90 1125 24250 \$390	642 575 287 4.78 2750 60942 \$1,076	526 457 229 6.73 3075 64010 \$908	526 469 235 6.55 3075 32844 \$885	194 180 90 4.18 750 17953 \$418 \$359	200,000 \$3,676

Solving NLP Model with Solver

Step2: Apply Solver

Solving NLP Model with Solver

- Step3: Interpret Solver Solution
 - Objective Cell
 - Variable Cells
 - Constraints

1	А В	С	D	Е	F	G
14	Objective	e Cell (Min)				
15	Cell		Original Value	Final Value		
16	\$H\$23		\$163,725	\$6,576		
17						
18						
19	Variable (Cells				
20	Cell	Name	Original Value	Final Value	Integer	
21	\$B\$16	Optimized Order Quantity Tables	10	289	Contin	
22	\$C\$16	Optimized Order Quantity Chairs	10	575	Contin	
23	\$D\$16	Optimized Order Quantity Beds	10	457	Contin	
24	\$E\$16	Optimized Order Quantity Sofas	10	469	Contin	
25	\$F\$16	Optimized Order Quantity Bookcases	10	180	Contin	
26						
27						
28	Constrain	ts				
29	Cell	Name	Cell Value	Formula	Status	Slack
30	\$H\$20		200000	\$H\$20<=\$B\$3	Not Binding	0.00011507
31	\$H\$24		\$1,245,701	\$H\$24<=\$B\$4	Not Binding	254298.8745

Sensitivity Analysis for NLP Model

	1			
5				
6	Variable	Cells		
7			Final	Reduced
8	Cell	Name	Value	Gradient
9	\$B\$16	Optimized Order Quantity Tables	288.694089	0
10	\$C\$16	Optimized Order Quantity Chairs	574.9289799	0
11	\$D\$16	Optimized Order Quantity Beds	457.2136075	0
12	\$E\$16	Optimized Order Quantity Sofas	469.2041824	0
13	\$F\$16	Optimized Order Quantity Bookcases	179.5302673	0
14				
15	Constrair	nts		
16			Final	Lagrange
17	Cell	Name	Value	Multiplier
18	\$G\$20	Maximum Cubic Foot Storage Required Totals	199999.9999	-0.003470152
19	\$G\$24	Average Inventory Value Totals	\$1,245,701.13	0

- Reduced Cost → Reduced gradient
- ◆ Shadow Price → Lagrange multiplier
- Valid only at the point of the optimal solution

Example2: Optimizing an Investment Portfolio

- Trade-off between return on investment and risk is an important aspect in financial planning
- Smart Investment Services (SIS) designs investment products
- Prepare a portfolio as a mix of eight mutual funds that maximizes average return rate and keeps moderate risk level (variance ≤ 15)

Mutal Funds	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
Large-cap U.S. Growth	17%	9%	7%	-2%	-2%	8%	8%	16%	2%	8%
Mid-cap U.S. Growth	11%	13%	-2%	10%	4%	14%	4%	-4%	-9%	-4%
Small-cap U.S. Growth	8%	-13%	-3%	4%	18%	10%	13%	11%	10%	1%
Large-cap U.S. Value	13%	3%	-1%	7%	10%	13%	-6%	6%	8%	17%
Mid-cap U.S. Value	6%	-3%	-7%	18%	1%	5%	12%	12%	-5%	8%
Small-cap U.S. Value	13%	17%	12%	7%	14%	2%	2%	-2%	6%	2%
International Stock	6%	4%	9%	9%	3%	5%	5%	7%	10%	11%
Specialty Funds	8%	1%	6%	8%	8%	8%	-6%	-5%	6%	8%

Investment Portfolio Problem Formulation

(ch4_Portfolio.xlsx)

1. Define decision variables

 $x_j = propotrion \ of \ portfolio \ invested \ in \ j - th \ fund$ (j = 1, ..., 8)

Investment Portfolio Problem Formulation

2. Formulate objective function

(to maximize the average return rate over 10 years)

return from fund j in year i: r_{ij}

average return in year *i*: $R_i = \sum_{j=1}^8 r_{ij} x_j$

average return in 10 years: $\bar{R} = \frac{1}{10} \sum_{i=1}^{10} R_i$

$$Z = \bar{R} = \frac{1}{10} \sum_{i=1}^{10} \sum_{j=1}^{8} r_{ij} x_j$$

Investment Portfolio Problem Formulation

- Step 3: Identify a set of constraints
 - that the sum of the proportions must equal to one
 - The variance of the return: $Var = \frac{1}{10} \sum_{i=1}^{10} (R_i \overline{R})^2$
 - The risk constraint: $\frac{1}{10}\sum_{i=1}^{10}(R_i \overline{R})^2 \le 15$
- Step 4: Identify a set of non-negativity constraints

Maximize
$$Z = \frac{R_1 + R_2 + \dots + R_{10}}{10}$$
 (linear objective function)

Subject to:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1$$
 (linear constraint)
 $\frac{1}{10} \sum_{i=1}^{10} (R_i - \overline{R})^2 \le 15$ (nonlinear constraint)

$$\sum_{j=1}^{8} r_{ij} x_j = R_i \text{ for all } i=1,2,...10 \text{ (linear constraint)}$$

$$x_i > 0$$
 for all $i=1$ 2 10 (non-negativity constraint)

Solving the Portfolio Problem

The what-if template for this investment problem

Solving the Portfolio Problem

	А В	С	D	Е	F	G
13			'			'
14	Objectiv	e Cell (Max)				
15	Cell	Name	Original Value	Final Value		
16	\$L\$13	Rate of Return Average	5.85	7.22		
17						
18						
19	Variable	Cells				
20	Cell	Name	Original Value	Final Value	Integer	
21	\$L\$3	Large-cap U.S. Growth Decision Variables	12.50	32.03	Contin	
22	\$L\$4	Mid-cap U.S. Growth Decision Variables	12.50	-	Contin	
23	\$L\$5	Small-cap U.S. Growth Decision Variables	12.50	-	Contin	
24	\$L\$6	Large-cap U.S. Value Decision Variables	12.50	5.85	Contin	
25	\$L\$7	Mid-cap U.S. Value Decision Variables	12.50	-	Contin	
26	\$L\$8	Small-cap U.S. Value Decision Variables	12.50	62.12	Contin	
27	\$L\$9	International Stock Decision Variables	12.50	-	Contin	
28	\$L\$10	Specialty Funds Decision Variables	12.50	-	Contin	
29						
30						
31	Constrai	nts				
32	Cell	Name	Cell Value	Formula	Status	Slack
33	\$L\$11	Decision Variables	100	\$L\$11=100	Binding	0
34	\$L\$14	Variance Average	15.00	\$L\$14<=15	Binding	0
35	\$L\$3	Large-cap U.S. Growth Decision Variables	32.03	\$L\$3>=0	Not Binding	32.03
36	\$L\$4	Mid-cap U.S. Growth Decision Variables	-	\$L\$4>=0	Binding	-
37	\$L\$5	Small-cap U.S. Growth Decision Variables	-	\$L\$5>=0	Binding	-
38	\$L\$6	Large-cap U.S. Value Decision Variables	5.85	\$L\$6>=0	Not Binding	5.85
39	\$L\$7	Mid-cap U.S. Value Decision Variables	-	\$L\$7>=0	Binding	-
40	\$L\$8	Small-cap U.S. Value Decision Variables	62.12	\$L\$8>=0	Not Binding	62.12
41	\$L\$9	International Stock Decision Variables	-	\$L\$9>=0	Binding	-
42	\$L\$10	Specialty Funds Decision Variables	-	\$L\$10>=0	Binding	-

Exploring Big data with NLP

- Volume
 - The availability of more data allows organization to explore, formulate and solve previously unsolvable problem
- Variety and Velocity
 - Offer significant challenges for optimization models
- Advanced software programs
 - Used to navigate trillions of permutations, variables and constraints
 - Such as Solver

Wrap up

- The NLP formulation shares the same with LP model
- GRG algorithm is best suited for NLP models
- A risk that the algorithm will result in a local optimum
- Provide a good starting point in the trial template
- Add a non-negativity constraint for decision variables
- Pay close attention when selecting Solver parameters

Wrap up

Consider Potential Challenges of NLP Models

- Choose between LP models and NLP models
- Nonlinear models are more difficult to solve
- Nonlinear models offer better representation of nonlinear business relationships

Formulate NLP Models

- Step 1: Define decision variables
- Step 2: Formulate the objective function
- Step 3: Identify constraints
- Step 4: Identify non-negativity constraints

Solve NLP Models with Solver

- Step 1: Create an Excel template
- Step 2: Apply Solver
- Step 3: Interpret Solver solution

Perform Sensitivity Analysis for NLP Models

- Reduced cost vs. Reduced gradient
- Shadow price vs. Lagrange multiplier
- Upper & Lower limits vs. Valid only at point of optimal solution

End of The Lecture

Thank You