CHORD

Classifier of HOmologous Recombination Deficiency

Training

Training samples

Group	No. samples
BRCA1	25
BRCA2	65
none	1042
Sum	1132/3124

Samples originate from the Hartwig Medical Foundation (HMF)

BRCA1/2 deficient	BRCA proficient ('none')
 For BRCA1 or BRCA2: Complete loss of the gene region, or LOH + pathogenic somatic mutation, or LOH + pathogenic germline mutation 	 For BRCA1 and BRCA2: No complete loss of the gene region, and No LOH, and
Mutations:Known pathogenic in ClinVar/ENIGMA; orFrameshift	 Mutations: Benign somatic mutation or lower, or Germline missense mutation or lower

Random forest

- Building one decision tree:
 - Random subset of donors
 - Random subset of features
 - Determine feature value cutoffs for branching
 - Repeat until terminal nodes are pure
- Repeat for n trees
- Prediction for a new sample:
 - Run feature values through each tree
 - Each tree votes BRCA1/BRCA2/none
 - Probability = $\frac{\text{class votes}}{\text{Total votes}}$
 - Probability of HRD = P_{BRCA1 deficient} + P_{BRCA2 deficient}

Features

Тур	Contexts	Features	No. features
SNV	Base substitution	C.A, C.G, C.T, T.A, T.C, T.G	6
Inde	Indels within repeat regionsIndels with flanking microhomologyOther indels	 ins.<u>rep</u>, del.<u>rep</u>: (within repeats) ins.<u>mh</u>, del.<u>mh</u>: (flanking microhomology) ins.none, del.none: (other) 	6
SV	SV type/length	DEL_0e00_1e03_bp DEL_1e03_1e04_bp DEL_1e04_1e05_bp DEL_1e05_1e06_bp DEL_1e06_1e07_bp DEL_1e07_Inf_bp same for DUP and INV TRA (has no length)	16

Used relative contribution (per variant type) to correct for differences in total mutational load across patients

Training procedure

Univariate (t-test) feature selection

- Keep positively correlated features with t-test p-value <
 0.01 (BRCA1/2 vs none)
- Remove negatively correlated features

Boruta feature selection

Up/downsample to deal with class imbalance

Try all combinations (with repeated 10-fold CV):

- BRCA1: 1.00x (=no resampling), 0.50x, 0.25x
- none: 1.00x, 1.50x, 2.00x

Pick the best based on AUC-PR

Train model with <u>selected features</u> and resampling parameters

(Nested) Cross-validation

Assessing model performance

Predicting on 10 'fake' new datasets

Performance assessed by cross-validation

HRD prediction

Top to bottom, left to right

- True positive/true negative rates
- ROC curve
- Feature importance
- Precision, recall, F1 curves
- Precision-recall curve

BRCA2 deficiency prediction

BRCA1 deficiency prediction

Predictions on datasets

Hartwig Medical Foundation dataset

External dataset (BRCA-EU)

- All samples annotated as BRCA1/2 deficient from HRDetect paper above cutoff
- BRCA1/2 deficiency prediction matches annotations

BRCA1/BRCA2 annotations from HRDetect paper