

TERM END EXAMINATIONS (TEE) – August - September 2021

Programme	:	B.Tech. [BAI,BCE, BCG,BHI,MIM]	Semester	: Interim 2021-22
Course Name	:	Applied Linear Algebra	Course Code	: MAT3002
Faculty Name	:	Dr. A.Manickam	Slot / Class No	B11 / 0151
Time	:	1½ hours	Max. Marks	: 50

Answer ALL the Questions

Q. No.	Question Description	Marks	Module No.	RBT Level	со		
PART - A (30 Marks)							
1	(a) Decrypt the following Message "GOOD MORNING TO ALL". By using key matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.	10	1 st Module	KL4	CO1		
	(b) Let $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} -3 \\ 4 \\ 7 \end{bmatrix}$ and let $W = span\{v_1, v_2, v_3\}$ Show that v_3 is linear combination of v_4 and v_2 . Show that $span\{v_1, v_2\} = W$ Show that v_4 and v_2 are linearly independent.	10	2 nd Module	KL4	CO2		
2	 (a) Suppose the x and y -axes in the plane R² are rotated counter clockwise 45°, so that x' and y' -axes are along the line y = x and y = -x respectively. (a) Find the change of basis matrix P. (b) Find the coordinate of the point A (5,6) under the given rotation. 	10	3 rd Module	KL3	CO3		
	OR						
	(b) Define an inner product on $V = C[a, b]$ by $\langle f, g \rangle = \int_a^b f(x)g(x)dx$. Also verify that the set of vectors given below are orthogonal. (1) $\{1, \cos x, \sin x\}$; $a = -\pi$, $b = \pi$. (2) $\{1, 2x - 1, -x^2 + x - \frac{1}{6}\}$; $a = 0, b = 1$	10	First half of 4 th Module	KL3	CO4		

3	(a)	Find an orthonormal basis for the solution space of the homogenous system of linear Equations $x_1+x_2+7x_4=0\\2x_1+x_2+2x_3+6x_4=0$	10	Second half of 4 th Module	KL4	CO4			
		OR							
	(b)	Let C be equation $2x^2 - 4xy - y^2 - 4x - 8y + 14 = 0$. Describe the conic section of C.	10	5 th Module	KL3	CO5			
	_1	PART - B (20 Marks)				I			
4	1	Determine the currents I_1, I_2, I_3 in the following network: $\begin{matrix} i_1 & & & & & & \\ & i_1 & & & & & \\ & & & & & & \\ & & & & & & $	10	1 st Module	KL3	CO1			
5	5	Let $A = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}$. , find the orthogonal matrix P such that $P^{-1}AP$ is a diagonal matrix.	10	5 th Module	KL4	CO5			
		⇔⇔		•		•			