Math 3501 - Probability and Statistics I

1.1 - Properties of Probability

A and B are mutually exclusive events if $A \cap B = \emptyset$.

Let:

* A be the event

"Sum of the two die in 6"

* B be the event 'Sum of the two die is 7"

 $A = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$

 $\mathcal{B} = \left\{ (1, L), (2, 5), (3, 4), (4, 3), (5, 12), (6, 1) \right\}$

Lime ANB = of them A and B are mutually exclusive

Coin hom {H} {T}

 $S = \{ (i,j) : i,j \in \{1,2,3,4,5,6\} \}$ EXAMPLE : Roll two 6-face die. Sample opa 4 5={ (1,1), (1,2), (1,3), (1,1),... (6,1), (6,2) .---condimality of the set 5 is 31 # of demonts of 5

Roll a die {13, {23, {3},...

Commutative Laws

Associative Laws

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = \underline{A \cap (B \cap C)}$$

Distributive Laws

De Morgan's Laws

$$(A \cup B)' = A' \cap B'$$

Mutually exclusive events

 A_1, A_2, \ldots, A_k are mutually exclusive events if $A_i \cap A_j = \emptyset$ whenever $i \neq j$. for $i, j \in \{1, \ldots, \kappa\}$

A, Az,..., A5 are mutually excluse

Exhaustive events

 A_1, A_2, \dots, A_k are exhaustive events if $A_1 \cup A_2 \cup \dots \cup A_k = S$

Example:

Roll two nix-nided die

A = sum in odd

B = sum in a multiple of 3

C = sum in even

A, B, C are exhaustive

If A_1, A_2, \ldots, A_k are mutually exclusive and exhaustive events, then

$$\rightarrow$$
 $A_i \cap A_j = \emptyset$ whenever $i \neq j$

$$\longrightarrow$$
 $A_1 \cup A_2 \cup \cdots \cup A_k = S$

EXAMPLE :

Roll two nix-faced die.

Consider the events

Ai = "Sum of the two die is i"

i = 2,3,..., 12

Az, Az, Ay, ..., Az ne methally exclusive and exhaustive events.

Empirical definition of probability

To access the probability of a certain event A occurring when performing a given random experiment:

- 1) Repeat the experiment a number of times: say, n times.
- 2) Count the number of times that the event A actually occurred throughout these n repetitions:
 - this number is called the *frequency of event A* and is denoted by $\mathcal{N}(A)$.
- 3) Evaluate the ratio $\mathcal{N}(A)/n$ called the *relative frequency of event A* in these *n* repetitions of the experiment.
- 4) Define the probability p of the event A as the limit of the relative frequency of event A as the number of repetitions n increases to ∞ .

Note:

- simulation can sometimes be used to assign probability empirically
- not always practical

Note: sometimes intuition can be used to assign probability

Example

A circle of radius 1 is inscribed on a square.

If a point is selected at random from such square, assign a probability to the event that the point is also inside the circle.

A 4 event

his inside the ancle.

Area of square in $L^2 = 4$ Area of aracle in $\Pi \Pi^2 = \Pi$ We may think of the probability of A

as bury the nation here of ancle = $\frac{\pi}{4}$ Area of square = $\frac{\pi}{4}$

Axiomatic definition of probability

We would like for the definition of probability to be consistent with any intuition gained from the empirical definition:

In particular, we observe that:

- 1) the relative frequency $\underbrace{\frac{\mathcal{N}(A)}{n}}$ is always nonnegative; 2) if $\underline{A} = \underline{S}$, then the outcome will always belong to S, and thus

$$\mathcal{N}(S) = M$$
 $\frac{\mathcal{N}(S)}{n} = 1$.

3) if A and B are two mutually exclusive events, then

$$\frac{\mathcal{N}(A \cup B)}{n} = \frac{\mathcal{N}(A)}{n} + \frac{\mathcal{N}(B)}{n}$$

Definition (Axiomatic definition of probability)

Probability is a real-valued set function P that assigns, to each event A in the sample space S, a number P(A), called the probability of the event A, such that the following properties are satisfied:

(a)
$$P(A) \ge 0$$

(b)
$$P(S) = 1$$

5 A1, Az, A3, ... mutually exclusive

(c) if A_1, A_2, A_3, \ldots are events such that $A_i \cap A_j = \emptyset$ whenever $i \neq j$, then

$$P(A_1 \cup A_2 \cup \cdots \cup A_k) = P(A_1) + P(A_2) + \cdots + P(A_k)$$

for each positive integer
$$k$$
, and
$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$

for an infinite, but countable, number of events.

Properties of probability

Theorem (v my mful)

For each event A, it holds that

$$P(A')=1-P(A).$$

Proof:

$$S = A \cup A'$$
 and $A \cap A' = 4$
A and A' are mutually exclusive
and exhaustive

$$P(S) = P(A \cup A')$$

$$1 = P(A) + P(A')$$

$$= P(A') = 1 - P(A)$$

Example

Knowing that P(A') = 0.65, find P(A).

Sim 4
$$P(A') = 1 - P(A)$$

We get $0.65 = 1 - P(A)$
Mut in $P(A) = 1 - 0.65 = 0.35$

$$P(\emptyset) = 0$$
.

S

Proof:

Note that
$$\phi = S'$$

$$P(\phi) = P(S')$$

$$= 1 - P(S)$$

$$= 1 - 1$$

$$= 0$$

1

If events A and B are such that $A \subset B$, then $P(A) \leq P(B)$.

For each event A, we have $P(A) \leq 1$.

Proof:

In a A C S
$$P(A) \leq P(s)$$

$$P(A) \leq 1$$

If A and B are any two events, then

I mbhad me of the interection to avoid "conting" it twice"

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) .$$

the repor green repor

not recensive muhally excluses

