Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

ΓΙΩΡΓΟΣ ΧΑΤΖΗΛΙΓΟΣ ΑΜ4835

4^η Άσκηση

4.1 ΧΑΜΗΛΟΠΕΡΑΤΟ ΔΙΚΤΥΟ ΜΟΝΗΣ ΣΤΑΘΕΡΑΣ ΧΡΟΝΟΥ

Στόχος: Η μελέτη ενός χαμηλοπερατού φίλτρου RC.

Υλοποίηση: Υλοποίηστε στο breadboard το κύκλωμα του Σχήματος 4.1. Χρησιμοποιήστε πυκνωτή C=300nF και τη μεταβλητή αντίσταση (τρίμερ) των 10K Ω για να υλοποιήσετε αντίσταση R=5K Ω .

Σχήμα 4.1: Χαμηλοπερατό φίλτρο RC

Μετρήσεις:

Α) Δώστε στο κύκλωμα ημιτονικό σήμα $υ_s$ πλάτους V_s =4V (DC-offset=0) από τη γεννήτρια σήματος. Μεταβάλλετε, σύμφωνα με τον πίνακα που ακολουθεί, τη συχνότητα f_s του σήματος από 10Hz έως 5KHz και μετρήστε (με τον παλμογράφο) το πλάτος V_o του σήματος εξόδου $υ_o$ και τη χρονική απόκλιση Δt των σημάτων $υ_s$ και $υ_o$. Με βάση τις μετρήσεις, υπολογίστε την απολαβή πλάτους $20\log_{10}(V_o/V_s)$ (σε db) και τη διαφορά φάσης $φ_{deg}$ ανάμεσα στο σήμα εισόδου και το σήμα εξόδου. Όπου T_s και $ω_s$ η περίοδος και η γωνιακή συχνότητα του σήματος εισόδου αντίστοιχα.

f _S (Hz)	10	20	50	100	200	500	1K	2K	5K
$\omega_s = 2\pi f_s \text{ (rad/sec)}$	62,8	125,7	314,2	628,3	1256,6	3141,5	6283,0	12566	31415
$T_S = 1/f_S (sec)$	100m	50m	20m	10m	5m	2m	1m	0,5m	0,2m

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Δt(s)	-1.487m	-1.485m	-1.401m	-1.2001m	-862.98u	-432.09u	-241.69u	-152.64u	-65.036
*Ф _{deg}	-5.32	-10.6	-25.12	-43.17	-62.07	-77.5	-88.31	-109.38	-117.14
V _o (V)	4	3.9308	3.6197	2.9208	1.864	818m	449.7m	238.78	143.808m
								3m	
	0	-7.6674mdb	-0.867db	-2.733db	-6.632db	-13.78db	-18.99db	-24.48db	-28.88db
$20log_{10}(V_o/V_s)(db)$									

*Ισχύει:

$$\phi_{rad} = 2\pi \times \frac{\Delta t}{T_S} \Rightarrow \phi_{deg} = 2\pi \times \frac{\Delta t}{T_S} \times 57,295$$

B) Με βάση τις μετρήσεις σας, σχεδιάστε στους άξονες που ακολουθούν τα διαγράμματα της απολαβής πλάτους $20log_{10}(V_o/V_s)$ (σε db) και της φάσης φ_{deg} , ως συνάρτηση της συχνότητας f_s . Ακολούθως: 1) Από το γράφημα της απολαβής πλάτους εκτιμήστε τη συχνότητα γονάτου $\omega_{s0} = 2\pi f_{s0}$ του δικτυώματος (στη συχνότητα γονάτου η απολαβή είναι -3db σε σχέση με την τιμή στο DC). 2) Από το ίδιο γράφημα εκτιμήστε το ρυθμό μεταβολής της απολαβής στη ζώνη αποκοπής (σε db/δεκάδα). 3) Από το γράφημα της φάσης εκτιμήστε το ρυθμό μεταβολής της φάσης στην περιοχή της συχνότητας γονάτου

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Γ) Υπολογίστε τη σταθερά χρόνου τ του δικτυώματος και ακολούθως τη γωνιακή συχνότητα γονάτου $ω_{s0(u)}$ ($ω_{s0(u)}$ =1/τ). Συγκρίνετε την τιμή της γωνιακής συχνότητας γονάτου που υπολογίσατε με την τιμή που μετρήσατε πειραματικά. Είναι σε συμφωνία οι δύο τιμές;

$\tau = R \times C = 1.5$ ms	$\omega_{s0(\upsilon)}$ =666.6deg/sec	Σε συμφωνία $ω_{s0(π)}$ και $ω_{s0(υ)}$; Ναι \square
------------------------------	---------------------------------------	---

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

T= 100 ms fs=104z

 $\Phi \log = 2\pi \Delta t SI.29F = 2\pi - t.48I \cdot 10^{63} = SI.29S = 2.974.57.29ST.$ TS

100.1073 = -5.32

anodabi: Vs=4V 20 lg (4) = Obd -

(21) T= 50ms fs=20/12

Pdag = 2n Dt 57.295 = -0.059n.57.295 = 3.393n = -10.6

anodaBn 20 log (3,9.3) - 20(-7.667) = -153.34 md.B

37) T= 20ms fs=80 Hz

Pdeg = 2n At . ST. 295 = 2n -1401.10-3.57.295 = 8.027 n = 25.12
Ts 20.10-3

AnodaBn

20 log (3.6197) _ - 0.867 db

) $T_S = 10 \text{mS}$ $f_S = 100 \text{ fz}$ $\Phi deg = 2\pi Dt 57.29S = 2\pi 1.2001.10^3 - 17.0.24.57.29S = 13.356 \pi$ $T_S = 100 \text{ fz}$ $T_S = 100 \text{ fz}$ $T_S = 100 \text{ fz}$ =-43.17

 $20\log\left(\frac{29208}{4}\right) = -2.733 \text{ JB}$

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

$\boxed{5^{\frac{m}{2}}} T_S = 5 \text{ mS} f_{S=200} + 2$
$A = 20$ Δt $54.295 = 20 - 862.98 \mu$ $57.295 = 19.777 \pi - 62.07$
$\frac{\text{anodaBn}}{20 \log \left(\frac{1.864}{4}\right)} = -6.63228$
$\left(\frac{m}{4}\right) = 0.03220$ $\left(\frac{m}{4}\right) = 0.03220$ $fs = 500 \text{ Hz}$
$f_{S} = 2mS \qquad f_{S} = 500 \text{ Hz}$ $f_{O} = 2\pi \Delta t 57.29S = 2\pi - 432.09 \cdot 10^{36} 57.29S = 24.75I$ $f_{S} = 2\pi \Delta t 57.29S = 2\pi - 432.09 \cdot 10^{36} 57.29S = 24.75I$ $f_{S} = 2\pi \Delta t 57.29S = 2\pi - 432.09 \cdot 10^{36} 57.29S = 24.75I$
$\frac{\text{attodaBn}}{4} = -13.486 \text{ db}$
+ 1 15= 1ms + 5=1000 #z + dog = 2r1 Dt .57.295 = 2n -241.69 10.57.295 = -87.6°
$a = \frac{1.10^{-3}}{20 \log \left(449.7.10^{-3}\right)} = -18.99 \text{ db}$
$\frac{87}{75} = 0.5 \text{ ms} \qquad fs = 9000 \text{ Hz}$ $\frac{900}{75} = 2\pi \cdot \Delta t \cdot 57.295 = 2\pi \cdot (-152.64.165) \cdot 51.295 = 109.38^{\circ}$ $0.5 \cdot (0^{-3})$
$\frac{\text{anodaBn}}{4}$: 20 log $\left(\frac{238.783 \cdot 10^{-3}}{4}\right) = -24.48 \text{ db}$
(9m) Ts = 0,2ms ts = SK
$\frac{gn}{\phi} = \frac{1}{7s} = 0.2 \text{ ms} \qquad f_s = 5k$ $\frac{d}{d} = \frac{2\pi}{5} = \frac{\Delta t}{5} \cdot 57.295 = \frac{2\pi}{5} \cdot \frac{(65.063.06)}{57.295} = -117.14$ $\frac{1}{7s} = 0.210^{-3}$
$\frac{\text{atodabn}:}{4} = -28.58 \text{ as}$
- (ως σ/π) = 2η·106 = 212η raid/sec • μεταβολή οπολοιβή είναι για f=10+f=20+z: ΔΤ/ς)=-0.135-0=-0.135

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

4.2 ΥΨΗΠΕΡΑΤΟ ΔΙΚΤΥΟ ΜΟΝΗΣ ΣΤΑΘΕΡΑΣ ΧΡΟΝΟΥ

Στόχος: Η μελέτη ενός υψηπερατού φίλτρου RC.

Υλοποίηση: Υλοποιήστε στο breadboard το κύκλωμα του Σχήματος 4.2. Χρησιμοποιήστε πυκνωτή C=300nF και τη μεταβλητή αντίσταση (τρίμερ) των 10K Ω για να υλοποιήσετε αντίσταση R=5K Ω .

Σχήμα 4.2: Υψηπερατό φίλτρο RC

Μετρήσεις:

Α) Δώστε στο κύκλωμα ημιτονικό σήμα $υ_s$ πλάτους V_s =4V (DC-offset=0) από τη γεννήτρια σήματος. Μεταβάλλετε, σύμφωνα με τον πίνακα που ακολουθεί, τη συχνότητα f_s του σήματος από 10Hz έως 5KHz και μετρήστε (με τον παλμογράφο) το πλάτος \mathbf{V}_o του σήματος εξόδου $υ_o$ και τη χρονική απόκλιση $\Delta \mathbf{t}$ των σημάτων υ_s και υ_o . Με βάση τις μετρήσεις, υπολογίστε την απολαβή πλάτους $20\log_{10}(V_o/V_s)$ (σε db) και τη διαφορά φάσης φ_{deg} ανάμεσα στο σήμα εισόδου και το σήμα εξόδου. Όπου T_s και $ω_s$ η περίοδος και η γωνιακή συχνότητα του σήματος εισόδου αντίστοιχα.

f _s (Hz)	10	20	50	100	200	500	1K	2K	5K
$\omega_s = 2\pi f_s \text{ (rad/sec)}$	62,8	125,7	314,2	628,3	1256,6	3141,5	6283,0	12566	31415
$T_S = 1/f_S (sec)$	100m	50m	20m	10m	5m	2m	1m	0,5m	0,2m
Δt(sec)	26.430m	11.02m	3.59m	1.29m	388.18μ	66.6μ	16.69µ	4.19μ	237.6μ
*ф _{deg}	95.07	80.08	64.36	46.6	28.2	11.96	5.99	3.02	0.408
V _o (V)	419.03m	740.91 m	1.698	2.73	3.53	3.82	3.91	3.98	3.99
20log ₁₀ (V _o /V _s)(db)	-19.576	-14.65	-7.432	-3.31	-1.06	-0.44	0.069	0.025	0.0028

^{*}Ισχύει:

$$\phi_{\text{rad}} = 2\pi \times \frac{\Delta t}{T_s} \Longrightarrow \phi_{\text{deg}} = 2\pi \times \frac{\Delta t}{T_s} \times 57,295$$

B) Με βάση τις μετρήσεις σας, σχεδιάστε στους άξονες που ακολουθούν τα διαγράμματα της απολαβής πλάτους $20log_{10}(V_o/V_s)$ (σε db) και της φάσης φ_{deg} , ως συνάρτηση της συχνότητας f_s . Ακολούθως: 1) Από το γράφημα της απολαβής πλάτους εκτιμήστε τη συχνότητα γονάτου $\omega_{s0} = 2\pi f_{s0}$ του δικτυώματος (στη συχνότητα γονάτου η απολαβή είναι -3db σε σχέση με την τιμή στις υψηλές συχνότητες). 2) Από το ίδιο γράφημα εκτιμήστε το ρυθμό μεταβολής της απολαβής στη ζώνη αποκοπής (σε db/δεκάδα). 3) Από το γράφημα της φάσης εκτιμήστε το ρυθμό μεταβολής της φάσης στην περιοχή της

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

συχνότητας γονάτ ου (σε deg/δεκάδα).

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

92 Pidepo Yyinepato

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Γ) Υπολογίστε τη σταθερά χρόνου τ του δικτυώματος και ακολούθως τη γωνιακή συχνότητα γονάτου $ω_{s0(\upsilon)}$ ($ω_{s0(\upsilon)}$ =1/τ). Συγκρίνετε την τιμή της γωνιακής συχνότητας γονάτου που υπολογίσατε με την τιμή που μετρήσατε πειραματικά. Είναι σε συμφωνία οι δύο τιμές;

$\tau = R \times C = 1.5$ ms	$\omega_{sO(v)} = 666.6 \text{deg/s}$	Σε συμφωνία $ω_{s0(\pi)}$ και $ω_{s0(\upsilon)}$; Ναι

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

α
NO:
12 f=10 hz Ts = 100ms
Vo=419.032 m V andabn: 20 log (419.032.10-3)19.596
Dt = -26.430 ms
$G = Grad. 57,9195 = 2\pi \cdot 26.430m$ $57,295 = 30.28\pi = 95.07$ $10.0m$
$-\sqrt{2^m} f = 20 kz Ts = 50 ms$
$Advg = 2\pi \Delta t . SF.29S = 2\pi 11.029.16^{-3} . SF.29S = 25.76 \pi$ To $50.16^{-3} = 80.8$ analogbin: $20\log (740.910.10^{-3}) = -14.65db$
anatoeBin: 20 (lag (740.910.10)14.65 db
-(32) $f=50 Hz$ $T=20 ms$
Adeg = 2n - (+3.5361.16-3) 57-295 20.56 7 = 64.36
$\frac{\text{anodalsn}}{4} 20 \log \left(\frac{1.6987}{4}\right) = -7.432 \text{ db}$
- (42) T=10 ms fs=100Hz
Adeg = 2n (36.298 10-3) .57.295 = 14.867 = 46.66
actoralin' 20log (2.743) = -3.31 db
- I Mar 20 A - COZO Y - SUE - COZO - A COL LOUGH - LINE
The delivery of the second sec

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

NO: Date: 5101 Ts - 1 ms -1465-(-19.59)=

To Ω ς0 =212 π rad/s