EXP NO : 04	
DATE: 05-09-2022	DATA PREPROCESSING

AIM:

To pre process the existing and created dataset.

DATA PREPROCESSING:

Created dataset:

Step - 1: Import the dataset

```
#Import the dataset
data1 = read.csv("DataSet1.csv")
#View the dataset
View(data1)
```

•	Age [‡]	Salary [‡]	Graduate [‡]	Buys.Laptop [‡]
1	37	67000	No	Yes
2	50	83000	No	No
3	48	79000	Yes	Yes
4	44	52000	No	Yes
5	NA	58000	Yes	No
6	30	NA	Yes	Yes
7	NA	54000	No	No
8	40	48000	Yes	Yes
9	38	72000	Yes	No
10	27	61000	No	Yes
11	35	NA	No	Yes

Step – 2: Handle the missing data

•	Age [‡]	Salary [‡]	Graduate [‡]	Buys.Laptop [‡]
1	37.00000	67000.00	No	Yes
2	50.00000	83000.00	No	No
3	48.00000	79000.00	Yes	Yes
4	44.00000	52000.00	No	Yes
5	38.77778	58000.00	Yes	No
6	30.00000	63777.78	Yes	Yes
7	38.77778	54000.00	No	No
8	40.00000	48000.00	Yes	Yes
9	38.00000	72000.00	Yes	No
10	27.00000	61000.00	No	Yes
11	35.00000	63777.78	No	Yes

```
#round off the values
data1$Age = as.numeric(format(round(data1$Age,0)))
data1$Salary = as.numeric(format(round(data1$Salary,0)))
```

_	Age [‡]	Salary [‡]	Graduate [‡]	Buys.Laptop [‡]
1	37	67000	No	Yes
2	50	83000	No	No
3	48	79000	Yes	Yes
4	44	52000	No	Yes
5	39	58000	Yes	No
6	30	63778	Yes	Yes
7	39	54000	No	No
8	40	48000	Yes	Yes
9	38	72000	Yes	No
10	27	61000	No	Yes
11	35	63778	No	Yes

Step – 3: Encode the categorical data

```
#Encoding categorical values data1$Graduate = factor(data1$Graduate, levels = c("Yes","No"), labels = c(1,0)) data1$Buys.Laptop = factor(data1$Buys.Laptop, levels = c("Yes","No"), labels = c(1,0))
```

^	Age [‡]	Salary [‡]	Graduate [‡]	Buys.Laptop
1	37	67000	0	1
2	50	83000	0	0
3	48	79000	1	1
4	44	52000	0	1
5	39	58000	1	0
6	30	63778	1	1
7	39	54000	0	0
8	40	48000	1	1
9	38	72000	1	0
10	27	61000	0	1
11	35	63778	0	1

Step – 4: Split the dataset into training and test sets

```
# required library for data split
library(caTools)
set.seed(123)
# returns true if observation goes to the Training set
#and false if observation goes to the test set.
split = sample.split(data1$Buys.Laptop, SplitRatio = 0.8)
#Creating the training set and test set separately
training_set = subset(data1, split == TRUE)
test_set = subset(data1, split == FALSE)
training_set
test_set
```

```
> training_set
  Age Salary Graduate Buys.Laptop
           0 1
   37 67000
2
   50 83000
               0
                                 > test_set
3
  48 79000
               1
                                  Age Salary Graduate Buys.Laptop
4
  44 52000
               0
                                 8 40 48000
               1
                        0
5
  39 58000
                                 9 38 72000
                                                 1
                                                          0
6
                         1
   30 63778
               1
7
   39 54000
               0
                         0
10 27 61000
                         1
                0
                0
                          1
11 35 63778
```

Step – 5: Feature Scaling (only scaling the non-factors which are the age and the salary)

```
#Feature Scaling
training_set[, 1:2] = scale(training_set[, 1:2])
test_set[, 1:2] = scale(test_set[, 1:2])
training_set
test_set
> training_set
                     Salary Graduate Buys.Laptop
           Age
1 -0.2315560 0.22709209 0
2 1 4616972 1.75205298 0
                                               1
1
0
                                                           > test_set
                                  1
3 1.2011967 1.37081276
   0.6801957 -1.20255874
0.0289445 -0.63069841
                                  0
                                                                          Salary Graduate Buys.Laptop
                                                                   Age
                                    1
                                                           8 0.7071068 -0.7071068 1
                                                                                                1
                                  1 0
6 -1.1433077 -0.07999691
                                                1
                                                           9 -0.7071068 0.7071068
                                                                                    1
   0.0289445 -1.01193863
10 -1.5340585 -0.34476824
11 -0.4920565 -0.07999691
                                   0
0
                                                1
```

Existing dataset:

Step - 1: Import the dataset

```
#Import dataset
data2 = read.csv("DataSet2.csv")

#View the dataset
View(data2)
```

^	age [‡]	workclass	occupation	race	sex [‡]	hours_per_week	income.greater.than.50K
1	39	State-gov	Adm-clerical	White	Male	40	No
2	50	Self-emp-not-inc	Exec-managerial	White	Male	13	No
3	NA	Private	Handlers-cleaners	White	Male	40	No
4	53	Private	Handlers-cleaners	Black	Male	NA	No
5	28	Private	Prof-specialty	Black	Female	40	No
6	NA	Private	Exec-managerial	White	Female	40	No
7	49	Private	Other-service	Black	Female	16	No
8	52	Self-emp-not-inc	Exec-managerial	White	Male	45	Yes
9	NA	Private	Prof-specialty	White	Female	50	Yes
10	42	Private	Exec-managerial	White	Male	40	Yes
11	37	Private	Exec-managerial	Black	Male	80	Yes
12	30	State-gov	Prof-specialty	Asian-Pac-Islander	Male	40	Yes
13	NA	Private	Adm-clerical	White	Female	30	No
14	32	Private	Sales	Black	Male	50	No
15	40	Private	Craft-repair	Asian-Pac-Islander	Male	NA	Yes

Step - 2: Handle the missing data

^	age [‡]	workclass	occupation	race [‡]	sex [‡]	hours_per_week	income.greater.than.50K
1	39.00000	State-gov	Adm-clerical	White	Male	40.00000	No
2	50.00000	Self-emp-not-inc	Exec-managerial	White	Male	13.00000	No
3	41.09091	Private	Handlers-cleaners	White	Male	40.00000	No
4	53.00000	Private	Handlers-cleaners	Black	Male	40.30769	No
5	28.00000	Private	Prof-specialty	Black	Female	40.00000	No
6	41.09091	Private	Exec-managerial	White	Female	40.00000	No
7	49.00000	Private	Other-service	Black	Female	16.00000	No
8	52.00000	Self-emp-not-inc	Exec-managerial	White	Male	45.00000	Yes
9	41.09091	Private	Prof-specialty	White	Female	50.00000	Yes
10	42.00000	Private	Exec-managerial	White	Male	40.00000	Yes
11	37.00000	Private	Exec-managerial	Black	Male	80.00000	Yes
12	30.00000	State-gov	Prof-specialty	Asian-Pac-Islander	Male	40.00000	Yes
13	41.09091	Private	Adm-clerical	White	Female	30.00000	No
14	32.00000	Private	Sales	Black	Male	50.00000	No
15	40.00000	Private	Craft-repair	Asian-Pac-Islander	Male	40.30769	Yes

```
#round off the values
```

```
data2$age = as.numeric(format(round(data2$age,0)))
data2$hours_per_week = as.numeric(format(round(data2$hours_per_week,0)))
```

_	age [‡]	workclass	occupation	race ‡	sex [‡]	hours_per_week	income.greater.than.50K
1	39	State-gov	Adm-clerical	White	Male	40	No
2	50	Self-emp-not-inc	Exec-managerial	White	Male	13	No
3	41	Private	Handlers-cleaners	White	Male	40	No
4	53	Private	Handlers-cleaners	Black	Male	40	No
5	28	Private	Prof-specialty	Black	Female	40	No
6	41	Private	Exec-managerial	White	Female	40	No
7	49	Private	Other-service	Black	Female	16	No
8	52	Self-emp-not-inc	Exec-managerial	White	Male	45	Yes
9	41	Private	Prof-specialty	White	Female	50	Yes
10	42	Private	Exec-managerial	White	Male	40	Yes
11	37	Private	Exec-managerial	Black	Male	80	Yes
12	30	State-gov	Prof-specialty	Asian-Pac-Islander	Male	40	Yes
13	41	Private	Adm-clerical	White	Female	30	No
14	32	Private	Sales	Black	Male	50	No
15	40	Private	Craft-repair	Asian-Pac-Islander	Male	40	Yes

Step – 3: Encode the categorical data

```
#Encoding categorical values data2$income.greater.than.50K, levels = c("Yes","No"), labels = c(1,0))
```

•	age [‡]	workclass	occupation	race ‡	sex [‡]	hours_per_week	income.greater.than.50K
1	39	State-gov	Adm-clerical	White	Male	40	0
2	50	Self-emp-not-inc	Exec-managerial	White	Male	13	0
3	41	Private	Handlers-cleaners	White	Male	40	0
4	53	Private	Handlers-cleaners	Black	Male	40	0
5	28	Private	Prof-specialty	Black	Female	40	0
6	41	Private	Exec-managerial	White	Female	40	0
7	49	Private	Other-service	Black	Female	16	0
8	52	Self-emp-not-inc	Exec-managerial	White	Male	45	1
9	41	Private	Prof-specialty	White	Female	50	1
10	42	Private	Exec-managerial	White	Male	40	1
11	37	Private	Exec-managerial	Black	Male	80	1
12	30	State-gov	Prof-specialty	Asian-Pac-Islander	Male	40	1
13	41	Private	Adm-clerical	White	Female	30	0
14	32	Private	Sales	Black	Male	50	0
15	40	Private	Craft-repair	Asian-Pac-Islander	Male	40	1

Step - 4: Split the dataset into training and test sets

```
# required library for data split
library(caTools)
set.seed(123)
# returns true if observation goes to the Training set
#and false if observation goes to the test set.
split = sample.split(data2$income.greater.than.50K, SplitRatio = 0.8)
#Creating the training set and test set separately
training_set = subset(data2, split == TRUE)
test_set = subset(data2, split == FALSE)
training_set
test_set
```

> training_set

-	CI GIII	1118_200					
	age	workclass	occupation	race	sex	hours_per_week	income.greater.than.50K
1	39	State-gov	Adm-clerical	White	Male	40	0
2	50	Self-emp-not-inc	Exec-managerial	White	Male	13	0
3	41	Private	Handlers-cleaners	White	Male	40	0
4	53	Private	Handlers-cleaners	Black	Male	40	0
6	41	Private	Exec-managerial	White	Female	40	0
7	49	Private	Other-service	Black	Female	16	0
8	52	Self-emp-not-inc	Exec-managerial	White	Male	45	1
10	42	Private	Exec-managerial	White	Male	40	1
11	37	Private	Exec-managerial	Black	Male	80	1
12	30	State-gov	Prof-specialty	Asian-Pac-Islander	Male	40	1
14	32	Private	Sales	Black	Male	50	0
15	40	Private	Craft-repair	Asian-Pac-Islander	Male	40	1

> test_set

	age	workclass	occupation	race	sex	hours_per_week	income.greater.than.50K
5	28	Private	Prof-specialty	Black	Female	40	0
9	41	Private	Prof-specialty	White	Female	50	1
13	41	Private	Adm-clerical	White	Female	30	0

Step – 5: Feature Scaling (only scaling the non-factors which are the age and hours per week)

```
#Feature Scaling
training_set[, c(1,6)] = scale(training_set[, c(1,6)])
test_set[, c(1,6)] = scale(test_set[, c(1,6)])
training_set
test_set
> training_set
                 workclass
                              occupation
                                                    race
                                                           sex hours per week income.greater.than.50K
        age
1 -0.4225923
                              Adm-clerical
                                                   White
                                                                 -0.02008859
                 State-gov
                                                           Male
                                                                                            0
                                                  White
                                                           Male
2 1.0453600 Self-emp-not-inc Exec-managerial
                                                                                            0
                                                                 -1.64726398
3 -0.1556919 Private Handlers-cleaners
                                                  White Male -0.02008859
                                                                                            0
4 1.4457106
                  Private Handlers-cleaners
                                                  Black Male -0.02008859
                                                                                            0
6 -0.1556919
                   Private Exec-managerial
                                                  White Female -0.02008859
                                                                                            0
                                                   Black Female
7 0.9119098
                                                                                            0
                  Private
                           Other-service
                                                                -1.46646671
8 1.3122604 Self-emp-not-inc Exec-managerial
                                                   White Male
                                                                 0.28124019
                                                                                            1
10 -0.0222417
                  Private Exec-managerial
                                                   White Male -0.02008859
                                                                                            1
11 -0.6894927
                  Private Exec-managerial
                                                   Black Male 2.39054163
                                                                                            1
12 -1.6236442
                State-gov Prof-specialty Asian-Pac-Islander
                                                          Male -0.02008859
                                                                                            1
14 -1.3567438
                                                   Black
                  Private
                                   Sales
                                                          Male 0.58256897
                                                                                            0
15 -0.2891421
                   Private
                              Craft-repair Asian-Pac-Islander Male -0.02008859
                                                                                            1
> test_set
          age workclass
                                                  sex hours_per_week income.greater.than.50K
                           occupation
                                         race
5 -1.1547005 Private Prof-specialty Black Female
                                                                 0
                Private Prof-specialty White Female
                                                                                          1
9 0.5773503
                                                                  1
13 0.5773503 Private Adm-clerical White Female
                                                                 -1
                                                                                          0
```

RESULT:

Thus, the data pre-processing steps has been implemented.