ÁLGEBRA LINEAL

1. Los Números Complejos

1.1. Halla el módulo y el argumento de los números complejos:

4-3i, $(3-4i)^{-1}$, $(2-i)^5$ y $\frac{1-i}{1+i}$

1.2. Dibuja los conjuntos de números complejos que verifican las siguientes condiciones:

a) $\operatorname{Re} z - \operatorname{Im} z = 2$ b) $\operatorname{Re} \frac{z-1}{z-3} = 0$ c) $\left| \frac{z-3}{z+3} \right| = 2$

d) |z+2|=2 e) |z-1|=|z+1| f) $\overline{z}=z^{-1}$

1.3. Prueba las siguientes igualdades:

a) $|z| = |\overline{z}|$ b) $\overline{\overline{z}} = z$ c) $\overline{z+w} = \overline{z} + \overline{w}$ d) $\overline{zw} = \overline{z} \, \overline{w}$ e) $\overline{-z} = -\overline{z}$ f) $\overline{z^{-1}} = (\overline{z})^{-1}$

- 1.4. Para cualquier número complejo $z\in\mathbb{C}\setminus\{0\},$ prueba que: $z,-z,\overline{1/z},\overline{-1/z}$ y 0 están alineados (o lo que es lo mismo, están sobre una misma recta).
- 1.5. a) Sea $z \neq 1, -1$ y con |z| = 1. Prueba que $\frac{1+z}{1-z}$ es un complejo imaginario puro.
 - b) Sea z un complejo de módulo 1. Prueba que $z+z^{-1}$ es un número real.
- 1.6. Determina los números complejos z que verifican:

a) $z^2 - 3z + 4 = 0$ b) $z^3 - 3z^2 + 4z - 2 = 0$ c) $z^4 - 2z^2 + 4 = 0$

- 1.7. a) Demuestra que si $z \in \mathbb{C}$ tiene parte real igual a -1, entonces el número complejo $\frac{z}{|z|^2}$ pertenece a la circunferencia de centro $-\frac{1}{2}$ y radio $\frac{1}{2}$.
 - b) Describe geométricamente la aplicación $f: \mathbb{C} \to \mathbb{C}, z \mapsto \left(\cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)\right)z$.
 - c) Describe geométricamente la aplicación $g: \mathbb{C} \to \mathbb{C}, z \mapsto \left(\cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)\right)z + (1+i).$
- 1.8. Calcula: a) $\sqrt[3]{-i}$ b) $\sqrt[3]{-8i}$ c) $\sqrt[5]{-1-i}$ d) $\sqrt[4]{-1+\sqrt{3}i}$

- e) Determina los números complejos tales que su cuadrado coincide con alguna de sus raíces cuadradas.
- a) Demuestra que las raíces n-ésimas de un número complejo no nulo se obtienen mul-1.9. tiplicando una de ellas por las raíces n-ésimas de 1.
 - b) Prueba que el producto de dos raíces n-ésimas de la unidad es de nuevo una raíz n-ésima de la unidad.
 - c) Prueba que la inversa multiplicativa de una raíz n-ésima de la unidad es de nuevo una raíz n-ésima de la unidad.

- 1.10. Si $1, z_1$ y z_2 son las tres raíces cúbicas distintas de 1, ¿cuál de las siguientes afirmaciones es verdadera?
 - a) $z_1^{-1} = 1$, b) $z_1^{-1} = z_1$, c) $z_1^{-1} = z_2$, d) $z_1^{-1} \neq 1$ y $z_1^{-1} \neq z_2$.
- 1.11. a) Prueba que para cualquier número natural n, el polinomio z-1 divide al polinomio z^n-1 .
 - b) Demuestra que las raíces n-ésimas de 1 distintas de 1 son las soluciones de la ecuación polinómica $z^{n-1} + z^{n-2} + \cdots + z + 1 = 0$. (Pista: ¿Cuál es el cociente de la división del apartado a)?)
 - c) Prueba que si m y n son dos números naturales y m divide a n, entonces el polinomio z^m-1 divide al polinomio z^n-1 .
- 1.12. Sea n un número natural tal que $n \ge 2$. Usando el Ejercicio 11.b), prueba que:

a)
$$\cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \dots + \cos \frac{2(n-1)\pi}{n} = -1$$
. b) $\sin \frac{2\pi}{n} + \sin \frac{4\pi}{n} + \dots + \sin \frac{2(n-1)\pi}{n} = 0$.

- 1.13. Expresa $\cos 3t$ y sen 3t como polinomios de sen t y $\cos t$.
- 1.14.* Sea $\sum_{n=1}^{\infty} z_n$ una serie de números complejos. Decimos que la serie es *convergente* si las series de números reales $\sum_{n=1}^{\infty} \operatorname{Re} z_n$ y $\sum_{n=1}^{\infty} \operatorname{Im} z_n$ son convergentes. Se dice que la serie converge a:

$$\sum_{n=1}^{\infty} z_n = \sum_{n=1}^{\infty} \operatorname{Re} z_n + i \sum_{n=1}^{\infty} \operatorname{Im} z_n.$$

- a) Si $\sum_{n=1}^{\infty} |z_n|$ es convergente, prueba que $\sum_{n=1}^{\infty} z_n$ también lo es.
- b) Prueba que $e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$ converge para todo $z \in \mathbb{C}$.
- c) Comprueba que $e^{it} = \cos t + i \sin t$ para todo $t \in \mathbb{R}$. Deduce que $-1 = e^{i\pi}$.
- 1.15.* Para $t \in \mathbb{R}$, prueba las siguientes igualdades: a) $e^{i(t+2\pi)} = e^{it}$ b) $|e^{it}| = 1$ c) $\overline{e^{it}} = e^{-it}$ d) $\cos nt = \frac{e^{int} + e^{-int}}{2}$ e) $\sin nt = \frac{e^{int} e^{-int}}{2i}$ f) $\int_{-\pi}^{\pi} e^{int} dt = \frac{e^{int}}{in} \Big|_{-\pi}^{\pi}$
 - (Indicación: Se define $\int f(t) + ig(t)dt := \int f(t)dt + i \int g(t)dt$).
- 1.16. a) Si $w \in \mathbb{C}$ es una raíz del polinomio con coeficientes reales $z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$, prueba que \overline{w} también lo es.
 - b) Utiliza la ecuación $z^2 + zi + 2 = 0$, para ver que el apartado anterior no es cierto en general si los coeficientes son complejos.
- 1.17. Encuentra las soluciones de la ecuación $z^3 (1-2i)z^2 z + (1-2i) = 0$, si se sabe que 1-2i es una solución de la misma.

1.18. Se pide descomponer el polinomio z^4+1 como

- a) producto de polinomios (no constantes) con coeficientes en $\mathbb Q$ y de grado lo menor posible.
- b) producto de polinomios (no constantes) con coeficientes en \mathbb{R} y de grado lo menor posible.
- c) producto de polinomios (no constantes) con coeficientes en $\mathbb C$ y de grado lo menor posible. Haz lo mismo para los polinomios: z^3+z^2-z+2 y $z^4+2z^3+2z^2+2z+1$.