Combining/ Merging of P.P. 2 ind. P.P. $N(t) = N_1(t) + N_2(t) \sim P(\lambda t)$ $N(t) \sim P(\lambda, t)$ 7=2,+22 $N_2(t) \sim P(\lambda_2 t)$ $M_{\nu}(s) = \mathbb{E}\left[e^{\nu(s)}\right] - \mathbb{E}\left[e^{\nu(s)}\right]$ $= \bigcap_{s=1}^{2} [e^{s}]$ $= e^{s} e^{s} = [\lambda_{1} + \lambda_{2}](e^{s})$ $= e^{s} e^{s} = [\lambda_{1} + \lambda_{2}](e^{s})$ $= P((\lambda_1 + \lambda_2)t)$ (mg/dPoisson) NEV~P(26) みーカットか $P(\lambda t) = P((\lambda_1 + \lambda_2 - \lambda_k)t)$ P(7t) -> humo PP P()tt) > no hono P.P. Splitting of P.P. $N(t) \sim P(\lambda t)$ ith amival

2 2 (-P)2 was from Po with proof

Theorem: - For a Poisson process of rate $\frac{\pi}{N(t)}$ for any t > 0The prof for $\frac{\pi}{N(t)}$ is boisson prof given by $\frac{\pi}{N(t)}$ (n) = $\frac{\pi}{N(t)}$ (n) = $\frac{\pi}{N(t)}$ Proof. 5, ~ Eslang (n, 7) $P(t < S_{n+1} \leq t + S) = P(n \text{ arminab} \text{ in } (0,t] \text{ } | \text{ arminal in } (t,t + S))$ $= P(N(t) = n) \cdot P(\tilde{N}(t,t + S) = 1)$ = P(N(t)=n), (75+0(5))+ O(5) (i) $p(t < S_{hH} \leq t + S) = f_{S_{hH}}(t)(S + O(S))$ (11) fin is in $P(N(t)=n)(AS+O(8))+O(8)=f_{S_{n+1}}(t)(S+O(8))$ div. by S & lt 0(8) →0

 $P(N(t)=h) = f_{ShH}/g = \frac{2^{n+1} + n - 2t}{n!}$ $P(N(t)=h) = f_{ShH}/g = \frac{2^n + n - 2t}{n!}$

