

でルフ某大学 THWESTERN POLYTECHNICAL UNIVERSITY

徐爽

第一节 一维随机变量 及其分布(2)

- 三、离散型随机变量
- 四、典型的离散型随机变量及其分布

随机变量: $\omega \to X(\omega)$

分类:

离散型随机变量: X的取值有限或无限可列个。如 人数、产品数等。

连续型随机变量: X的取值为无限不可列个。如速度、候车时间、降水量等。

三、离散型随机变量

1. 离散型随机变量的分布律

定义

若随机变量X所有可能取值为 x_1,x_2,\cdots 且

或记为

$$P\{X = x_i\} = p_i \quad (i = 1, 2, \cdots)$$

X	x_1 x_2	x_n
p_i	p_1 p_2	p_n

称上面两式为离散型随机变量X 的 \mathcal{Y} 的分布律或分布列.

相同条件下射击n次,命中k次的概率

 B_k :5次射击,命中k次

X:投中的次数 $\in [0,n]$

X的分布律为

X 0 1 2 3 4 5

0.168; 0.36; 0.308; 0.132; 0.0283; 0.00243

性质

分布律中的 p_i 必须满足:

(1)
$$0 \le p_i \le 1$$
, $(i = 1, 2, \cdots)$;

(2)
$$\sum_{i=1}^{\infty} p_i = 1.$$

$$e^x = \sum_{n=0}^{\infty} rac{1}{n!} x^n \; (-\infty < x < +\infty)$$

例1 设随机变量的分布律为

$$P\{X=k\} = \frac{a\lambda^k}{k!} \quad (k=0,1,2,\cdots)$$

 $\lambda > 0$ 为常数,试确定常数 a.

$$\mathbf{m} \quad \dot{\mathbf{m}} \sum_{k=0}^{\infty} p_k = 1,$$

$$\sum_{k=0}^{\infty} a \frac{\lambda^k}{k!} = a \left(\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \right) = a e^{\lambda} = 1$$

所以
$$a = e^{-\lambda}$$
.

2.离散型随机变量分布律与分布函数的关系

(1) 若已知X 的分布律:

$$p_k = P\{X = x_k\} \quad (k = 1, 2, \cdots)$$

则X的分布函数

$$F(x) = P\{X \le x\} = P\{X = x_1 \cup X = x_2 \dots\} (x_i \le x)$$

$$= \sum_{x_k \le x} P\{X = x_k\} \quad (x \in R)$$

: 分布函数为分布律的累积概率

X的分布律

$$= F(x_k) - F(x_k^-)$$

或
$$= F(x_k) - F(x_{k-1})$$
 $(k = 1, 2, \cdots)$

: 分布律为分布函数的概率增量

例2 一盒内装有5个乒乓球,其中2个旧的, 3个新的,从中任取2个,求取得的新球 个数X的分布律与分布函数,并计算:

$$P\{0 < X \le 2\}, P\{0 \le X < 2\}.$$

解 $X=\{$ 取得的新球个数 $\}$,其分布律为

$$P\{X=k\} = \frac{C_3^k \cdot C_2^{2-k}}{C_5^2} \qquad (k=0,1,2)$$

或 $\frac{X}{P}$ 0.1 0.6 0.3

X的分布函数为

$$F(x) = P\{X \le x\}$$
$$= \sum_{k \le x} P\{X = k\}$$

	$k \leq x$
0,	x < 0,
0.1,	$0 \le x < 1,$
0.7,	$1 \le x < 2,$
1	v > 2

	\
	$x \ge 2$
L 9	<i>N</i> = -

X	0	1	2
P	0.1	0.6	0.3

分布律 一分布函数

概率

方法1 $P{0 < X \le 2}$

$$= P{X = 1} + P{X = 2}$$

$$= 0.6 + 0.3 = 0.9$$

$$P\{0 \le X < 2\}$$

$$= P{X = 0} + P{X = 1}$$

$$= 0.1 + 0.6 = 0.7$$

X	0	1	2	
P	0.1	0.6	0.3	

方法2
$$P{0 < X \le 2} = F(2) - F(0) = 1 - 0.1 = 0.9$$

$$P\{0 \le X < 2\} = F(2^{-}) - F(0^{-}) = 0.7 - 0 = 0.7$$

四、典型的离散型随机变量及其分布

1.退化分布(单点分布)

若随机变量X取常数值C的概率为1,即

$$P\{X = C\} = 1$$
 则称X服从退化分布.

2.两点分布 B(1,p)

若
$$X$$
的分布律为 $P\{X=k\}=p^k(1-p)^{1-k}(k=0,1)$

或记为
$$X$$
 0 1 p_k $1-p$ p

则称 X 服从 (0-1) 分布或两点分布.记为 $X\sim B(1,p)$.

0-1分布描述只有两种结果的随机现象

部分外国教材中也称之为伯努利分布。

3.离散型均匀分布

若X的分布律为

$$P{X = x_k} = \frac{1}{n} (k = 1, 2, \dots, n)$$

则称X服从离散型均匀分布,这里要求Xk各不相同。

虽然没有严格证明,但是发现圆周率小数点后数字的分布近似服从均匀分布。

4. 二项分布

若X的分布律为

$$(p+q)^n = C_n^k p^k q^{n-k}$$

$$P{X = k} = C_n^k p^k (1-p)^{n-k}$$

则称X服从参数为n和p的二项分布,记作 $X \sim B(n,p)$.

其中
$$n \in N, k = 0, 1, \dots, n; 0 \le p = P(A) \le 1.$$

n重伯努利试验中,随机事件发生的次数

$$\Rightarrow \sum_{k=0}^{n} C_{n}^{k} p^{k} (1-p)^{n-k} = (p+1-p)^{n} = 1$$

参数的影响

$$P{X = k} = C_n^k p^k (1-p)^{n-k} \sim B(n,p)$$

n越多,或p越高,A发生较多次数的概率越大!

例3 交通事故评估

已知某路口平均每周发生2次交通事

故,估计该路口每周发生k次事故的概

率?

二项分布:

描述n重伯努里试验,事件A发生k次的概率。

一段时间内,事件A发生k次的概率。

划分为n段时间,表示做n次试验

X: 交通事故A发生的次数 $\sim B(n,p)$

$$P{X = k} = C_n^k p^k (1-p)^{n-k}$$

$$\overline{X} = 2 \approx n \times p$$

$$P(A) = p \approx \frac{2}{r}; \quad P(\overline{A}) = 1 - p \approx 1 - \frac{2}{r}$$

$$P(X=k) = C_n^k \times p^k \times (1-p)^{n-k}$$

$$= \frac{n!}{k!(n-k)!} \times (\frac{2}{n})^k \times (1-\frac{2}{n})^{n-k}$$

$$=1(1-\frac{1}{n})...(1-\frac{k-1}{n})\times\frac{2^{k}}{k!}\times\frac{(1-\frac{2}{n})^{n}}{(1-\frac{2}{n})^{k}}$$

故当 $n \to \infty$ 时,

$$\lim_{n\to\infty} P(X=k) = 1 \times \frac{2^k}{k!} \times \lim_{n\to\infty} (1-\frac{2}{n})^n$$

$$:: \lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$$

$$\therefore \lim_{n \to +\infty} (1 - \frac{2}{n})^n = \lim_{n \to +\infty} \left[(1 + \frac{2}{-n})^{-\frac{n}{2}} \right]^{-2}$$

已知某路口平均每周发生2次交通事故,

该路口每周发生k次事故的概率为

$$\lim_{n\to\infty} P\{X=k\} = \frac{2^k}{k!} e^{-2} \qquad (k=0,1,2...)$$

定义

若随机变量X的分布律为

$$P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda} \quad (k=0,1,\cdots)$$

则称X服从参数为 λ 的泊松分布,记作 $X\sim P(\lambda)$,

其中 $\lambda > 0$ 表示X的平均值。

公交车站等车人数

来电次数

电子器件的故障数

泊松分布

泊松定理

若 $X \sim B(n, p_n)$,即

$$P\{X=k\}=C_n^kp_n^k(1-p_n)^{n-k},$$

且满足: $\lim_{n\to+\infty} np_n = \lambda > 0$

则对任意非负整数 k,有

$$\lim_{n\to\infty} P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}.$$

$$\Rightarrow \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = 1$$

法国数学家 西莫恩·德尼·泊松 (S.-D. Poisson) (1781-1840)

泊松分布是二项分布的极限分布

$$B(n,p_n) \xrightarrow{n \to \infty, p_n = \frac{\lambda + o(1)}{n} \to 0} P(\lambda)$$

$$C_{1000}^{k} 0.05^{k} 0.95^{1000-k} \approx \frac{5^{k}}{k!} e^{-5}$$

描述了单位时间内,小概率事件发生的次数, 是离散性随机变量的一种重要分布。

例 4 面向对象: 30-40岁健康人群

保险费:每年1月1日缴纳1200元

赔偿金:死亡理赔20万元

统计一年中该人群的死亡的概率为0.002,

假设有2500人购买此款人寿保险。求:

- (1) 保险公司亏本的概率;
- (2) 保险公司每年获利不少于100万元的概率.

Insuraice

解 (1) 保险公司每年的总收入为:

 $1200 \times 2500 = 300 (万元)$.

X:一年内死亡的人数,则

 $X \sim B(2500, 0.002)$

保险公司在这1年中的总支出: 20X(万元)

设 $A=\{$ 保险公司亏本 $\}$,则

$$A$$
发生 \Longrightarrow $20X > 300 \Longrightarrow X > 15$

$$\therefore P(A) = P\{X > 15\}$$

$$= P\{X = 16 \bigcup X = 17 \bigcup \cdots X = 2500\}$$

$$= \sum_{k=16}^{2500} C_{2500}^{k} (0.002)^{k} \times (1 - 0.002)^{2500 - k}$$

面向对象: 30~40岁健康人群

保险评估 保险费:每年1月1日缴纳1200元

赔偿金:死亡理赔20万元

统计一年中该人群的死亡概率为0.002,

现有2500人购买此款人寿保险,

求:保险公司每年获利不少于100万元的概率

: n = 2500很大,p = 0.002很小,所以可用

.: 可用 $p(\lambda)(\lambda = np = 5)$ 近似代替B(2500, 0.002),

即有
$$P{X > 15} = 1 - P{X \le 15}$$

 $= 1 - \sum_{k=0}^{15} C_{2500}^{k} (0.002)^{k} \times (1 - 0.002)^{2500 - k}$
 $\approx 1 - \sum_{k=0}^{15} \frac{5^{k} e^{-5}}{k!} \approx 0.000069.$

保险公司亏本的概率约为0.0069%.

B

(2) 保险公司获利不少于100万元的概率.

$$P(B) = P\{300 - 20X \ge 100\}$$

 $A=\{保险公司获利不少于100万元\}$

X: 一年内死亡的人数~B(2500,0.002)

$$= P\{X \le 10\}$$

$$=\sum_{k=0}^{10}C_{2500}^{k}(0.002)^{k}\times(1-0.002)^{2500-k}$$

$$\approx \sum_{k=0}^{10} \frac{5^k e^{-5}}{k!} \approx 0.9864$$

即保险公司获利不少于100万元的概率接近于98.64%。

保险公司可以大力推广这种险种!

6.几何分布

若B_k表示伯努利试验中事件A首次发生在

第k次,则k的可能取值:1,2,…

$$P(B_k) = P(A_1 A_2 \cdots A_{k-1} \overline{A_k})$$

$$= P(A_1) \cdot P(A_2) \cdot \cdots \cdot P(A_{k-1}) \cdot P(\overline{A_k})$$

$$= (1-p)^{k-1} p$$

几何公式

X: 伯努利试验中事件 A 首次发生的次数

若随机变量X的分布律为

$$P{X = k} = (1-p)^{k-1}p$$
 $(k = 1,2,\cdots)$

则称 X服从几何分布.

等比数列

注 几何分布可作为描述某个试验 "首次成功" 的概率模型.

$$\sum_{k=1}^{\infty} (1-p)^{k-1} p = 1$$

$$P{X = k} = (1-p)^{k-1}p$$
 $(k = 1,2,\cdots)$

例 5 已知患色盲者占0.25%,试求为发现一

例患色盲者至少要检查25人的概率?

解设X表示恰好发现一例患色盲者所需要检查的

人数,则X服从p = 0.0025的几何分布.

$$P\{X \ge 25\} = \sum_{k=25}^{\infty} (1-p)^{k-1}p$$

$$= 1 - \sum_{k=1}^{24} (1-p)^{k-1}p$$

$$= 1 - p \frac{1 - (1-p)^{24}}{1 - (1-p)} = (1-p)^{24}$$

7. 超几何分布

设X的分布律为

$$P\{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \quad (k = 0,1,2,\dots,\min\{M,n\})$$

这里n < N, k < M, M < N, 则称X服从超几何分布.

表示N件产品中有M件次品,从中任取n件,其中的次品数为X。超几何分布在关于废品的记件检验中经常用到。

拓展阅读: 二项分布 泊松分布 几何分布 超几何分布 应该怎么区分?

西北工业大学概率统计教研室

$$P\{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \quad (k = 0,1,2,\dots,\min\{M,n\})$$

课后思考

假设某家小杂货店,平均每天售出4个水果罐头。请问该店水果罐 头的最佳库存量是多少?

内容小结

1. 离散型随机变量 X 的分布律(分布列)

$$P(X = x_i) = p_i$$
 $(i = 1, 2, \cdots)$

$$0 < p_i < 1; \sum_{i=1}^{\infty} p_i = 1$$

分布律和分布函数的关系

$$x_{k-1}x_k x_{k+1}$$

$$F(x) = P\{X \le x\} = \sum_{x_k \le x} P\{X = x_k\} \quad (x \in R)$$

. 分布率为分布函数的概率增量

2、描述离散型随机变量的统计特性

(1) 分布律

$$P(X = x_i) = p_i$$
 $(i = 1, 2, \cdots)$

(2) 分布函数

$$F(x) = P(X \le x)$$

$$= \sum_{x_i \le x} P(X = x_i)$$

(3) 概率

$$P\{a < X \le b\} = F(b) - F(a)$$

$$= \sum_{x_i \in (a,b]} P(X = x_i)$$

$$P\{X \in D\} = \sum_{x_k \in D} P\{X = x_k\}$$

3. 常见的离散型分布及其应用背景.

分布名称	记号	分布律	背景
退化分布(单点分布)		$P\{X=c\}=1$	必然事件
两点分布 (或 0–1分布)	X ~B(1,p) (0 <p<1)< td=""><td>$P{X = k}$ $= p^{k} (1-p)^{1-k}$ $(k = 0,1)$</td><td>伯努利事件</td></p<1)<>	$P{X = k}$ $= p^{k} (1-p)^{1-k}$ $(k = 0,1)$	伯努利事件

注: 随机变量的所有可能取值范围

西北工业太学概率统计教研室

分布名称	记号	分布律	背景
离散型均 匀分布	POLY	$P\{X = x_k\} = \frac{1}{n}$ $(k = 1, 2, \dots, n)$	古典概型
二项分布	$X \sim B(n,p)$ $(0$	$P\{X = k\}$ $= C_n^k p^k (1-p)^{n-k}$ $(k = 0, 1, \dots, n)$	n重伯努利 概型中,事 件发生k次 的概率
泊松分布	<i>X</i> ~ <i>P</i> () (>0)	$P\{X = k\}$ $= \frac{\lambda^k}{k!} e^{-\lambda}$ $(k = 0, 1, 2, \dots)$	稀有事件 发生 <i>k</i> 次 的概率

西北工业大学概率统计教研室

分布名称	记号	分布律	背景
几何分布		$P{X = k}$ $= (1 - p)^{k-1}p$ $(k = 1,2,\cdots)$	E_n 次伯努利 试验中, A 首 次发生的试验 次数为 X .
超几何分布		$P\{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$ $(k = 0,1,\dots,l)$ $l = \min\{M,n\}$ $n \le N, M < N$	设 <i>N</i> 件产品中有 <i>M</i> 件次品,从中任取 <i>n</i> 件, 其中的次品数为 <i>X</i> . (古典概型)

4. 泊松定理

泊松分布是二项分布的极限分布

$$B(n,p_n) \xrightarrow{n\to\infty, p_n = \frac{\lambda}{n}\to 0} P(\lambda)$$

西北工業大學

NORTHWESTERN POLYTECHNICAL UNIVERSITY

备用题

例1-1 设随机变量的分布律为

$$P\{X = k\} = \frac{a}{N}$$
 $(k = 1, 2, \dots, N)$

试确定常数 a.

解 由
$$\sum_{k=1}^{N} p_k = 1$$
,得

$$\sum_{k=1}^{N} \frac{a}{N} = N \times \frac{a}{N} = 1$$

所以
$$a=1$$
.

解 依题意, X可取值0, 1, 2, 3.

设 $A_i = \{ \hat{\pi}i \cap B \cup B \cup I \}, i = 1,2,3 \}$

$$P(X=0)=P(A_1)=1/2,$$

$$P(X=1) = P(\overline{A}_1 A_2) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

$$P(X = 2) = P(\overline{A}_1 \overline{A}_2 A_3) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

$$P(X = 3) = P(\overline{A}_1 \overline{A}_2 \overline{A}_3) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

THE THEORY OF THE THE THEORY OF THE THEORY O

例2-2 两名蓝球队员轮流投篮,直到某人投中为止,若第一名队员投中的概率为0.4,第二名队员投 的概率为0.6,求每一名队员投篮次数的概率分布列(设由第一名队员先投).

解 设X,Y分别表示第一、二名队员的投篮次数. X的可能取值为 $1,2,\cdots,Y$ 的可能取值为 $0,1,2,\cdots,X=k$ 表示第一名运动员和第二名运动员在前k-1次都未投中,而第一名运动员的第k次投中,或者第一名运动员在自己的前k次中未投中及第二名运动员在自

己的前k-1次中未投中,但在第k次时投中,故

$$P(X = k) = 0.6^{k-1} \times 0.4^{k-1} \times 0.4 + 0.6^{k} \times 0.4^{k-1} \times 0.6$$
$$= 0.76 \times 0.24^{k-1}, \quad k = 1, 2, \dots,$$

仿上述分析,可得

$$P(Y = 0) = 0.4$$

$$P(Y = k) = 0.6^{k} \times 0.4^{k-1} \times 0.6 + 0.6^{k} \times 0.4^{k} \times 0.4$$
$$= 0.76 \times 0.6^{k} \times 0.4^{k-1}, \quad k = 1, 2, \cdots.$$

例3 某人进行射击,设每次射击的命中率为0.02,独立射击 400次,试求至少击中两次的概率.解设击中的次数为X,则 $X \sim B(400,0.02)$.X的分布律为

$$P\{X=k\} = C_{400}^{k}(0.02)^{k}(0.98)^{400-k},$$

其中 $k = 0,1,\dots,400$.

因此
$$P\{X \ge 2\} = 1 - P\{X = 0\} - P\{X = 1\}$$

$$= 1 - (0.98)^{400} - 400(0.02)(0.98)^{399}$$
$$= 0.9972.$$

品放回这批产品中.

例3-1从一批含有10件正品及3件次品的产品中一件、一件地取产品.设每次抽取时,所面对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为止所需次数 *X* 的分布律.

(1)每次取出的产品经检定后又放回 这批产品中去在取下一件产品;(2)每 次取出的产品都不放回这批产品中; (3)每次取出一件产品后总以一件正

 \mathbf{M} (1) X 所取的可能值是 1, 2, 3, ...,

$$P\{X=1\} = \frac{10}{13}, \ P\{X=2\} = \frac{3}{13} \cdot \frac{10}{13}, \ P\{X=3\} = \left(\frac{3}{13}\right)^2 \frac{10}{13},$$

...,
$$P\{X=k\} = \left(\frac{3}{13}\right)^{k-1} \cdot \frac{10}{13}, \dots$$

故X的分布律为

(2) 若每次取出的产品都不放回这批产品中时,

X 所取的可能值是 1, 2, 3, 4.

$$P\{X=1\}=\frac{10}{13}, \qquad P\{X=2\}=\frac{3}{13}\cdot\frac{10}{12},$$

$$P\{X=3\} = \frac{3}{13} \cdot \frac{2}{12} \cdot \frac{10}{11}, \quad P\{X=4\} = \frac{3}{13} \cdot \frac{2}{12} \cdot \frac{1}{11} \cdot \frac{10}{10},$$

故X的分布律为

X	1	2		85	3		4	L
n	$\frac{10}{13}$	3 10	3	2	10	3	2	1
p	13	$\overline{13}$ $\overline{12}$	13	12	11	13	12	11

(3) 每次取出一件产品后总以一件正品放回这批产品中.

X 所取的可能值是 1, 2, 3, 4.

$$P\{X = 1\} = \frac{10}{13}, \qquad P\{X = 2\} = \frac{3}{13} \cdot \frac{11}{13},$$

$$P\{X = 3\} = \frac{3}{13} \cdot \frac{2}{13} \cdot \frac{12}{13}, \qquad P\{X = 4\} = \frac{3}{13} \cdot \frac{2}{13} \cdot \frac{1}{13} \cdot \frac{13}{13},$$

故X的分布律为

\boldsymbol{X}	1	2	3	4
	$\frac{10}{13}$	3 11	3 2 12	3 2 1
p	13	$\overline{13}$ $\overline{13}$ $\overline{1}$	3 13 13	13 13 13

例3-2 某射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.

解 记X为三次射击中命中10环的次数,则

 $X \sim B(3,0.7)$. 因为"所得的环数不少于29环"相当于

"射击三次至少二次命中10环",故所求概率为

$$P(X \ge 2) = P(X = 2) + P(X = 3)$$
$$= 3 \times 0.7^{2} \times 0.3 + 0.7^{3} = 0.784$$

例3-3 经验表明: 预定餐厅座位而不来就餐的顾客比例为20%. 如今餐厅有50个座位, 但预定给了52位顾客, 问到时顾客来到餐厅而没有座位的概率是多少?

解 记X为预定的52位顾客中不来就餐的顾客数,则 $X \sim B(52,0.2)$. 因为"顾客来到就餐没有座位"相当于"52位顾客中最多1位顾客不来就餐",所以所求概率为

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

= $0.8^{52} + 52 \times 0.8^{51} \times 0.2 = 0.0001279$.

例4-1 在保险公司里有2500名同龄和同社会阶层的人参加了人寿保险,在一年中每个人的死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领取20000元赔偿金.求:

- (1) 保险公司亏本的概率;
- (2) 保险公司获利不少于200000元的概率.
- 解(1) 以"年"为单位,在1年的1月1日,保险公司的总收入为: 2500×120 = 300000(元).

设1年中死亡的人数为X,则

 $X \sim B(2500, 0.002)$

保险公司在这一年中,应付出:20000X(元) 设 $A=\{$ 保险公司亏本 $\}$,则

A发生 \Leftrightarrow 20000X > 300000 即 X > 15 (人)

$$P(A) = P\{X > 15\}$$

$$= \sum_{k=16}^{2500} C_{2500}^{k} (0.002)^{k} \times (1 - 0.002)^{2500-k}$$

因为 n = 2500很大, p = 0.002很小, 所以可用 参数 $\lambda = np = 5$ 的 泊松分布近似代替二项分布,

即有
$$P{X > 15} = 1 - P{X \le 15}$$

 $= 1 - \sum_{k=0}^{15} C_{2500}^{k} (0.002)^{k} \times (1 - 0.002)^{2500 - k}$
 $\approx 1 - \sum_{k=0}^{15} \frac{5^{k} e^{-5}}{k!}$ ≈ 0.000069.

保险公司亏本的概率约为0.0069%.

(2) 保险公司获利不少于200000元的概率.

$$P(B) = P\{300000 - 20000 X \ge 200000\}$$

$$= P\{X \le 5\}$$

$$= \sum_{k=0}^{5} C_{2500}^{k} (0.002)^{k} \times (1 - 0.002)^{2500 - k}$$

$$\approx \sum_{k=0}^{5} \frac{5^{k} e^{-5}}{k!} \approx 0.615961$$

即保险公司获利不少于200000元的概率接近于62%.

例6-1 某射手连续向一目标射击,直到命中为止,已知他每发命中的概率是p,求所需射击发数X的分布律.

解显然, X 可能取的值是1,2,..., 为计算 P(X=k), k=1,2,..., 设 $A_k = \{ \Re k \& \Leftrightarrow h \}, k=1,2,...$

于是
$$P(X=1) = P(A_1) = p$$
,

$$P(X=2)=P(\overline{A_1}A_2)=(1-p)\cdot p$$

$$P(X=3)=P(\overline{A_1}\overline{A_2}A_3) = (1-p)^2 \cdot p$$

$$P(X = k) = (1-p)^{k-1} p, k = 1, 2, \cdots$$

这就是求所需射击发数X的分布律.

不难验证

$$\sum_{k=1}^{+\infty} (1-p)^{k-1} p = 1$$

例6-2 已知患色盲者占0.25%,试求:(1)为发现一例患色盲者至少要检查25人的概率;(2)为使发现色盲者的概率不小于0.9,至少要对多少人的辩色力进行检查?

解 设X表示恰好发现一例患色盲者所需要检查的人数,则X服从 p=0.0025的几何分布.

$$(1)P\{X \ge 25\} = \sum_{k=25}^{\infty} p(1-p)^{k-1}$$

$$= (1-p)^{24} \sum_{k-24=1}^{\infty} p(1-p)^{k-24-1} = (0.9975)^{24} \approx 0.94.$$

(2)设至少对n个人的辩色力进行检查,于是

$$P\{X \le n\} \ge 0.9$$

$$P\{X \le n\} = \sum_{k=1}^{n} p(1-p)^{k-1}$$
$$= 1 - \sum_{k=n+1}^{\infty} p(1-p)^{k-1}$$

$$=1-(1-p)^{n}\sum_{k-n=1}^{\infty}p(1-p)^{k-1-n}$$

$$=1-(1-p)^n$$

由
$$1-(1-p)^n \ge 0.9$$
,得 $n \ge \frac{\lg 0.10}{\lg 0.9975} = 919.8827.因此,$

至少要检查920人才能使发现一例色盲患者的概率 不少于0.9.

注 从本题可看出根据概率分布律求事件的概率,

- 一般要分两步进行:一是要求随机变量X的分布,
- 二是求相应事件的概率.