

	D "I	1	A.U
	Dogpile	Lancio	Attivo, Aggregatore
	Inktomi	Fondazione	Inattivo, acquisito da Yahoo!
	HotBot	Fondazione	Attivo
1996	■ Arianna	Fondazione	Inattivo, inglobato in Libero
	■ ■ Multisoft	Fondazione	Inattivo
	■ Virgilio	Fondazione	Attivo, risultati Google
	Ask Jeeves	Fondazione	Attivo (rimarchiato in ask.com)
1997	Northern Light	Lancio	Inattivo
1997	Yandex	Lancio	Attivo
	Google	Lancio	Attivo
1998	Ixquick	Lancio	Attivo anche come Startpage
1990	MSN Search	Lancio	Inattivo, diventato Bing
	empas	Lancio	Inattivo (fusa con NATE)
	## Alltheweb	Lancio	Inattivo (URL reindirizzato a Yahoo!)
	■◆■ GenieKnows	Lancio	Inattivo
1999	: Naver ₽	Lancio	Attivo
1999	Teoma	Fondazione	Inattivo, reindirizza Ask.com
	Vivísimo	Fondazione	Inattivo, IMB
	■ superEva	Lancio	Inattivo, solo analisi trend

2000	Baidu	Fondazione	Attivo
	■ ■ Exalead	Lancio	Attivo
	Gigablast	Lancio	Attivo
2001	■ Kartoo	Lancio	Inattivo
2003	+ Info.com	Lancio	Attivo, risultati Bing
	Scroogle	Lancio	Inattivo
2004	Yahoo! Search	Lancio finale	Attivo (Solamente un'interfaccia per Bing)
	A9.com	Lancio	Inattivo
	Sogou	Lancio	Attivo
2005	Windows Live Search	Lancio finale	Inattivo
	GoodSearch	Lancio	Inattivo (cerca coupon con Google)
	SearchMe	Lancio	Inattivo
2006	Soso	Lancio	Attivo
	Quaero	Fondazione	Inattivo
	Search.com	Fondazione	Attivo
	Ask.com	Lancio	Attivo
	Windows Live Search	Lancio	Inattivo
	■ ChaCha	Lancio beta	Inattivo
	Guruii com	Lancio beta	Inattivo

2007	Wikiseek	Lancio	Inattivo
	Sproose	Lancio	Inattivo
	Wikia Search	Lancio	Inattivo
	Blackle.com	Lancio	Inattivo (Solamente tema scuro di Google)
	Cuil	Lancio (chiuso)	Inattivo
	Powerset	Lancio	Inattivo
	Picollator	Lancio	Inattivo
	■ Viewzi	Lancio	Inattivo
2008	Boogami	Lancio	Inattivo
	LeapFish	Lancio	Inattivo
	Forestle	Lancio	Inattivo (reindirizza a Ecosia)
	Ecocho Ecocho	Lancio	Inattivo
	■ DuckDuckGo	Lancio	Attivo
2009	→ Wolfram Alpha	Lancio	Attivo
	Bing	Lancio	Attivo
	Yebol	Lancio	Inattivo
	Mugurdy	Lancio	Inattivo
	Scout (Goby)	Lancio	Inattivo
	Coozila!	Lancio	Inattivo
	Ecosia Ecosia	Lancio	Attivo (Bing + Algoritmi proprietari)
	: NATE	Lancio	Attivo

	Dogpile	Lancio	Attivo, Aggregatore
	Inktomi	Fondazione	Inattivo, acquisito da Yahoo!
	■ HotBot	Fondazione	Attivo
1996	■ Arianna	Fondazione	Inattivo, inglobato in Libero
	■ ■ Multisoft	Fondazione	Inattivo
	■ ■ Virgilio	Fondazione	Attivo, risultati Google
	Ask Jeeves	Fondazione	Attivo (rimarchiato in ask.com)
1997	Northern Light	Lancio	Inattivo
1997	- Yandex	Lancio	Attivo
	Google	Lancio	Attivo
1998	Ixquick	Lancio	Attivo anche come Startpage
1998	MSN Search	Lancio	Inattivo, diventato Bing
	:empas	Lancio	Inattivo (fusa con NATE)
	## Alltheweb	Lancio	Inattivo (URL reindirizzato a Yahoo!)
	I ◆ I GenieKnows	Lancio	Inattivo
	See Naver	Lancio	Attivo
		Fondazione	Inattivo, reindirizza Ask.com
1999	Teoma	TOTIGAZIONE	mater of romanization roma
1999	Teoma Vivísimo	Fondazione	Inattivo, IMB

Perchè Google è il "migliore"? L'ordine dei risultati è fondamentale, in alto ci deve essere ciò che cerco. I creatori si sono basati sulla modellazione con probabilità, l'algoritmo usato è PageRank, con un'idea semplice dietro.

7

8

Devo evitare però dei "trucchi", potrei creare tante pagine che puntano alla mia per metterla in evidenza.

catena di markov a tempo discreto, esso è un grafo con nodi (stato del processo stocastico che attraversa, qui ad ogni pagina web ho uno stato) connessi con link (pagina che punta ad altra pagina)

- 1. Create a DTMC transition diagram where there is one state for each web page with connections for linked pages
- 2. If page i has k > 0 links, state each probability to 1/k (uniforme)
- 3. Solve the DTMC; page are ranked based on their limit probabilities

Prof. Vittoria de Nitto Personè

9

9

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Markov Process

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

Processo stocastico

collezione di variabili random, che variano nel tempo

$$\{X(t_1),X(t_2),\ldots\}$$

Spazio degli stati

$$E = \{s_0, s_1, s_2, \ldots\}$$

s0,s1 non hanno riferimento al tempo. E' solo lo spazio dei valori possibili.

Se tale insieme è finito, parlo di Catena di Markov

Catena di Markov ha memoryless property, stato futuro dipende solo dal presente, non da come ci arrivo.

$$\begin{split} P\left\{X\left(t_{n+1}\right) = \underbrace{x_{n+1}}_{\text{SO},\text{S1},...} \left| X\left(t_{n}\right) = x_{n}, \underbrace{X\left(t_{n-1}\right) = x_{n-1},...,X\left(t_{0}\right) = x_{0}}_{\text{SO},\text{S1},...} \right\} = \\ &= P\left\{X\left(t_{n+1}\right) = x_{n+1} \left| X\left(t_{n}\right) = x_{n} \right\} \end{split}$$

dimostrazione di ciò che abbiamo appena detto.

Prof. Vittoria de Nitto Personè

11

11

Probabilità stazionaria

Distribuzione di probabilità istantanea

$$P\left\{X(t) = s_i\right\} = \pi(s_i, t)$$

- Spazio finito spazio dei valori possibili finito
- Processo irriducibile e ergodico

Prof. Vittoria de Nitto Personè

12

s0,s1,...

irriducibile: posso sempre raggiungere in un tot di passi uno stato partendo da un altro stato, non rimango mai bloccato.

ergodico: tempo in cui ritorno negli stati sono finiti, non periodici, quindi non capita che con periodi fissi torno in un determinato stadio. Passo per tutti i punti possibili di lavoro.

equazione di bilanciamento globale

$$\pi_0 \lambda = \pi_1 \mu \implies \pi_1 = \frac{\lambda}{\mu} \pi_0$$

è stazionario perchè ha capacità finita, non può mai esplodere.

 $\pi_0 \lambda = \pi_1 \mu \qquad \qquad \pi_1 = \frac{\lambda}{\mu} \pi_0$ esco da stato1 = entro in stato1 $\pi_1 (\lambda + \mu) = \pi_0 \lambda + \pi_2 \mu$ prob. stato 1 in funzione di stato 0.

$$\pi_0 \lambda + \pi_2 \mu$$

$$\pi_2 \mu = \frac{\lambda}{\mu} (\lambda + \mu) \pi_0 - \pi_0 \lambda \quad \dots \quad \Longrightarrow \quad \pi_2 = \left(\frac{\lambda}{\mu}\right)^2 \pi_0$$

$$\pi_C = \left(\frac{\lambda}{\mu}\right)^C \pi_0 \qquad \qquad \pi_i = \left(\frac{\lambda}{\mu}\right)^i \pi_0$$

NON E' RHO, perchè non entra tutto lambda.

Prof. Vittoria de Nitto Personè

15

15

il grafo è dipendente, c+1 variabili, equazioni dipendenti.

$$\sum_{i=0}^{C} \pi_i = 1$$

$$\sum_{i=0}^{C} \left(\frac{\lambda}{\mu}\right)^i \pi_0 = 1 \quad \Longrightarrow \quad \pi_0 = \frac{1}{\sum_{i=0}^{C} \left(\frac{\lambda}{\mu}\right)^i}$$

Prof. Vittoria de Nitto Personè

La probabilità di perdita coincide con la probabilità di stare nell'ultimo stato, perchè li se arrivano altri li perdo sicuri.

ploss =
$$\pi_C = \left(\frac{\lambda}{\mu}\right)^C \pi_0 = \frac{\left(\frac{\lambda}{\mu}\right)^C}{\sum_{i=0}^C \left(\frac{\lambda}{\mu}\right)^i}$$

Prof. Vittoria de Nitto Personè

17

17

$$\lambda'=X$$

$$\mu$$

probabilità di stare nello stato C

 $\rho = \lambda' / \mu$

se avesse coda infinita esplode perchè rho = 1

Es.:

$$\alpha_{i} = \alpha_{i} = \alpha_{i$$

 $\pi_1 = \pi_2 = \pi_3 = \pi_4 = \pi_0 = \frac{1}{5}$ ρ

ho = 0.8 perchè uso lambda' e non lambda

Serve processo di markov, in questo caso si parla di processo di nascita e morte, e ha una soluzione chiusa (una sola formula).

Prof. Vittoria de Nitto Personè

18

18

Le distribuzioni generali, modellabili con esponenziali, ci permettono di ricadere sempre in Markov.

Per risolvere la catena finita, ci vuole Markov. La erlang è la soluzione che si ottiene risolvendo un processo di Markov.

The Erlang-B formula

Se lo confronto con quello con 'coda', quest ultimo ha maggior probabilità di essere pieno, perchè la coda è come un 'buffer' di arrivi pronti a chiedere servizio. Senza coda, dovrei trovarmi nel caso che, appena un servizio termina, arrivi un altro job a prenderne il posto (nella 'coda' invece li accumulo).

Prof. Vittoria de Nitto Personè

21

21

The *Erlang*-C formula The *Erl*

The *Erlang-B* formula

$$P_{Q} = \frac{(m\rho)^{m}}{m!(1-\rho)}p(0)$$

$$= \frac{\left(\frac{\lambda}{\mu}\right)^{m}}{m!(1-\rho)}p(0)$$

$$\Rightarrow \qquad \pi_{m} = \left(\frac{\lambda}{\mu}\right)^{m}\frac{1}{m!}r_{0}$$

$$p(0) \qquad < \qquad \pi_{0}$$

probabilità che sia vuoto con coda è più piccola, perchè la 'coda' è come un buffer.

Prof. Vittoria de Nitto Personè

esempio esercizio esame

Consider a single-core server hosting a web service. Requests arrive to the server according to a Poisson, with an average inter-arrival time of 200 ms. Knowing that the maximum buffer size is N = 4 (including the jobs in service) and that each request requires on average 200 ms of processing time,

- 1. State if the system is stationary and explain the reason
- 2. compute the system utilization
- 3. compute the system throughput. 4 paralleli. Consider a CPU upgrade to a slower quad-core processor, which can process a request in 300 ms using one of its processor cores. Compute the throughput of the upgraded system.

servente singolo che ospita web server, arrivo Poisson con interrarrivo 200ms, N = C (noi l'abbiamo chiamata cosi) = 4, incluso job in servizio. E[S] = 200 ms.

- 1 Essendo a capacità finita è stazionario (anche calcolando lambda si vede).
- 3 il throughput è semplicemente quello che entra, se il sistema è stabile come in questo caso.

Prof. Vittoria de Nitto Personè

25