Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

Лабораторная работа №4 «Построение стохастической модели пассажирского потока пражского метро»

по курсу «Моделирование»

Выполнила: студентка 4 курса, группы ИУ9-82 Козлова А. А. Проверила:

Цель работы:

Целью работы является повышение дохода от Пражского метро без изменения стоимости поездки.

Постановка задачи:

Оценить реальный доход метрополитена в текущем году.

Доход оценивается в зависимости от количества автоматических турникетов на станциях, которые фиксируют сколько прошло пассажиров, оплативших билет, и количества людей, прошедших в общем потоке. Для выполнения поставленной задачи необходимо моделировать поток в Пражском метрополитене.

1. Теоретические сведения.

Стохастическая модель — такая модель, в которой параметры, условия функционирования и характеристики состояния моделируемого объекта представлены случайными величинами и связаны стохастическими (т.е. случайными, нерегулярными) зависимостями, либо исходная информация также представлена случайными величинами.

Методика построения стохастической модели:

- 1. Выполняется описание предметной области на естественном языке. Такое описание дается в общей форме, выделяются входные, выходные данные и параметры системы.
- 2. Рисуется схема сложной системы с указанием входных, выходных данных и субъективных параметров.
- 3. Этап формального описания модели. Формулируется статистическая гипотеза относительно распределений потоков входных и выходных данных. Проверка выдвинутых гипотез. На основе функций распределения случайных величин виды связей между ними, если связь достаточно тесная, выбирается вид функциональной зависимости, в предельном случае описывающий эту связь.
- 4. Оценивается возможность реализации модели. При наличии избыточных данных модель упрощается. При недостатке данных изыскивается возможность их получения.
 - 5. Формируется общее уравнение, связывающее входные и выходные данные.
- 6. По результатам эксперимента оцениваются параметры уравнения, полученного на этапе 5.
- 7. Оценивается применимость полученной модели на основе контрольных выборок натурного эксперимента для возможности повышения адекватности построенной модели.
- 8. Построение концептуальной модели на основе формального описания для проведения натурного эксперимента.

1. Описание предметной области.

1) Схема метро: 3 ветки «зелёная» (А), «жёлтая» (В), «красная» (С), 61 станция.

2) Стоимость билетов:

	Взрослый (F)	Детский (D)	Льготный (L)
30 мин	24 крон	12 крон	12 крон
90 мин	32 крон	16 крон	16 крон
24 ч	110 крон	55 крон	55 крон
72 ч	310 крон	310 крон	310 крон

Таблица 1. Стоимость билетов.

- 3) Имеются статистические данные Пражского метро. Данные представлены в 3 таблицах:
- \bullet th X количество людей, вошедших на станцию X в течение дня, как среднестатистическое за месяц;
- \bullet rX \bullet количество прошедший через турникеты на станции X в течение дня, как среднестатистическое за месяц;
- IIX количество билетов, купленных на станции X за месяц;

m/s	thA0	rA0	thA1	rA1	thB0	rB0	thB1	rB1	thC0	rC0	thC1	rC1
1	16.551	14.899	30.746	27.320	32.822	29.553	21.002	18.793	17.084	15.365	4.544	3.118
2	16.810	14.292	22.558	20.155	25.314	22.567	40.022	35.436	29.096	25.876	17.519	16.162
3	14.434	13.046	28.001	24.916	36.918	32.720	35.118	31.145	38.639	34.226	38.841	34.819
4	20.891	18.696	32.958	29.255	46.677	41.259	20.283	18.164	23.690	21.145	37.324	33.492
5	13.773	12.468	28.277	25.159	16.909	15.212	41.746	36.944	29.087	25.868	16.717	15.461
6	14.739	13.313	36.763	32.398	21.889	19.569	40.458	35.817	21.993	20.494	40.099	35.920
7	24.713	22.040	34.650	30.735	34.998	31.040	19.478	17.460	30.082	26.738	42.244	37.797
8	10.127	9.278	33.590	29.808	23.285	20.791	22.974	21.353	18.776	17.263	22.099	20.170
9	14.689	13.269	12.239	11.126	21.561	19.282	25.348	23.430	34.808	31.290	40.895	36.617
10	13.047	11.833	35.848	31.784	37.778	33.472	25.336	22.586	26.192	23.751	17.519	16.162
11	16.487	14.843	38.451	34.061	29.376	26.120	23.743	22.025	18.230	16.784	38.841	34.819
12	14.345	12.968	18.573	16.668	32.822	29.553	29.751	27.282	37.085	33.283	37.324	33.492
E	15.884	14.245	29.388	26.115	30.029	26.762	28.772	25.870	27.064	24.340	29.497	26.502
S	190.60	170.94	352.65	313.38	360.34	321.13	345.25	310.43	324.76	292.08	353.96	
	6	5	4	5	9	8	9	5	2	3	6	318.029

Таблица 2.

14031	ица 2.										
thA0	IIA0	thA1	IIA1	thB0	IIBO	thB1	IIB1	thC0	IIC0	thC1	IIC1
16,551	4,252	30,746	4,902	32,822	6,965	21,002	4,070	17,084	4,344	4,544	1,164
	5,158		6,006		7,195		3,840		5,574		1,394
	4,907	<u> </u>	5,252	25,314	5,088	40,022	8,825	29,096	8,348	17,519	5,489
16,81	4,349	22,558	3,275		5,318	<u> </u>	8,595		9,578		5,719
	5,242		4,278	36,918	7,989	35,118	7,599	38,639	11,529	38,841	12,594
	4,995		3,570		8,219		7,369		12,759		12,827
14,434	3,550	28,001	4,369	46,677	10,429	20,283	3,8907	23,69	6,546	37,324	12,091
	4,458		5,365		10,659		3,6607		7,776		12,321
	4,209		4,663	16,909	2,987	41,746	9,256	29,087	8,345	16,717	5,222
20,891	5,704	32,958	5,350		3,217		9,026		9,575		5,452
	6,605		6,659	21,889	4,232	40,458	8,934	21,993	5,985	40,099	13,016
	6,357		5,804		4,462		8,704		7,211		13,242
13,773	3,348	28,277	4,419	34,998	7,509	19,478	3,689	30,082	8,672	42,244	10,211
	4,239		5,418		7,739		3,459		9,907		10,441
	3,984		4,713	23,285	4,581	22,974	4,563	18,776	4,908		10,526
14,739	3,654	36,763	6,119		4,811		4,333		6,138	22,099	5,178
	4,556		7,117	21,561	4,150	25,348	5,156	34,808	10,252		5,404
	4,309		6,416		4,380		4,927		11,482		5,489
24,713	6,973	34,65	5,695	37,778	8,204	25,336	5,154	26,192	7,382	40,895	9,873
	7,872		6,692		8,434		4,923		8,610		10,103
	7,626		5,991	29,376	6,104	23,743	4,755	18,23	4,726		10,188
10,127	2,113	33,59	5,434		6,334		4,525		5,956	17,519	4,029
	3,018		6,475	32,822	6,965	29,751	6,257	37,085	11,011		4,252
	2,762		5,778		7,195		6,021		12,241		4,344
14,689	3,636	12,239	1,209							38,841	9,360
	4,532		2,212								9,592
	4,286		1,504								9,675
13,047	3,089	35,848	5,929							37,324	8,981
	3,989		6,929								9,211
	3,739		6,229								9,296
16,487	4,235	38,451	6,450								
	5,135		7,454								
	4,885		6,750								
14,345	3,521	18,573	2,474								
	4,421		3,474								
	4,171		2,772								
Таблиц	. 2										

Таблица 3.

IIA0		IIA1		IIBO		IIB1		IIC0		IIC1		
4,252	2,215	4,902	2,540	6,965	3,511	4,070	2,063	4,344	2,200	1,164	0,671	F
	1,197		1,359		1,635		0,912		0,980		0,425	D
	0,841		1,003		1,819		1,095		1,164		0,069	L
5,158	2,668	6,006	3,092	7,195	3,626	3,840	1,948	5,574	2,815	1,394	0,725	F
	1,423		1,635		1,693		0,854		1,288		0,243	D
	1,067		1,279		1,877		1,038		1,471		0,426	L
4,907	2,543	5,252	2,715	5,088	2,572	8,825	4,441	8,348	4,202	5,489	2,773	F
	1,360		1,447		1,166		2,100		1,981		1,266	D
	1,004		1,091		1,350		2,284		2,165		1,450	L
4,349	2,264	3,275	1,727	5,318	2,687	8,595	4,326	9,578	4,817	5,719	2,888	F
	1,221		0,952		1,224		2,043		2,289		1,324	D
	0,865		0,596		1,407		2,227		2,472		1,508	L
5,242	2,710	4,278	2,228	7,989	4,023	7,599	3,828	11,529	5,793	12,594	6,325	F
	1,444		1,203		1,891		1,794		2,776		3,043	D
	1,088		0,847		2,075		1,978		2,960		3,226	L
4,995	2,587	3,570	1,874	8,219	4,138	7,369	3,713	12,759	6,408	12,827	6,442	F
	1,382		1,026		1,949		1,736		3,084		3,101	D
	1,026		0,670		2,133		1,920		3,268		3,285	L
3,550	1,864	4,369	2,274	10,429	5,243	3,891	1,973	6,546	3,301	12,091	6,074	F
	1,021		1,226		2,501		0,867		1,531		2,917	D
	0,665		0,870		2,685		1,051		1,714		3,101	L
4,458	2,318	5,365	2,772	10,659	5,358	3,661	1,858	7,776	3,916	12,321	6,189	F
	1,248		1,475		2,559		0,809		1,838		2,974	D
	0,892		1,119		2,743		0,993		2,022		3,158	L
4,209	2,194	4,663	2,421	2,987	1,522	9,256	4,656	8,345	4,201	5,222	2,639	F
	1,186		1,299		0,641		2,208		1,980		1,200	D
	0,830		0,943		0,825		2,392		2,164		1,383	L
5,704	2,941	5,350	2,764	3,217	1,637	9,026	4,541	9,575	4,816	5,452	2,754	F
	1,560		1,471		0,698		2,151		2,288		1,257	D
	1,204		1,115		0,882		2,334		2,472		1,441	L
6,605	3,392	6,659	3,419	4,232	2,144	8,934	4,495	5,985	3,021	13,016	6,536	F
	1,785		1,798		0,952		2,128		1,390		3,148	D
	1,429		1,442		1,136		2,311		1,574		3,332	L
6,357	3,268	5,804	2,991	4,462	2,259	8,704	4,380	7,211	3,634	13,242	6,649	F
	1,723		1,585		1,010		2,070		1,697		3,205	D
	1,367		1,229		1,193		2,254		1,881		3,388	L
3,348	1,696	4,419	2,232	7,509	3,783	3,689	1,873	8,672	4,364	10,211	5,134	F
	0,716		0,984		1,771		0,816		2,062		2,447	D
	0,936		1,204		1,955		1,000		2,246		2,631	L
4,239	2,142	5,418	2,731	7,739	3,898	3,459	1,758	9,907	4,982	10,441	5,249	F
	0,939		1,234		1,829		0,759		2,371		2,504	D
	1,159		1,454		2,013		0,943		2,555		2,688	L
3,984	2,014	4,713	2,379	4,581	2,319	4,563	2,310	4,908	2,482	10,526	5,291	F
	0,875		1,057		1,039		1,035		1,121		2,526	D
	1,095		1,277		1,223		1,219	İ	1,305		2,709	L
3,654	1,849	6,119	3,082	4,811	2,434	4,333	2,195	6,138	3,097	5,178	2,617	F
	0,793		1,409		1,097		0,977		1,429		1,189	D
	1,013		1,629		1,281		1,161		1,612		1,372	L
4,556	2,300	7,117	3,581	4,150	2,103	5,156	2,606	10,252	5,154	5,404	2,730	F
-	1,018		1,658		0,932		1,183		2,457		1,245	D
	1,238		1,878		1,115		1,367		2,641		1,429	L
4,309	2,177	6,416	3,230	4,380	2,218	4,927	2,492	11,482	5,769	5,489	2,773	F
-	0,956	-	1,483	-	0,989	-	1,126	-	2,765	-	1,266	D
	1,176		1,703		1,173		1,310		2,948		1,450	L
6,973	3,509	5,695	2,870	8,204	4,130	5,154	2,605	7,382	3,719	9,873	4,965	F
,	1,622	,	1,303	,== :	1,945	,== :	1,183	,	1,740	,=	2,362	D
	1,842		1,523		2,129		1,366		1,923		2,546	L
7,872	3,958	6,692	3,368	8,434	4,245	4,923	2,490	8,610	4,333	10,103	5,080	F
.,=.=	1,847	-,	1,552	_, .2 .	2,003	,,	1,125	-,	2,047	,	2,420	D
	2,067		1,772		2,186		1,309		2,230		2,604	L
	,	5,991	2,968	6,104	3,080	4,755	2,406	4,726	2,391	10,188	5,122	F

	0,971		1,525					
5,135	2,540	7,454	3,699					
	1,400		1,980					
	1,196		1,776					
4,885	2,415	6,750	3,347					
	1,337		1,804					
	1,133		1,600					
3,521	1,733	2,474	1,209					
	0,996		0,735					
	0,792		0,531					
4,421	2,183	3,474	1,709					
	1,221		0,985					
	1,017		0,781					
4,171	2,058	2,772	1,358					
	1,159		0,809					
	0,955		0,605					

Таблица 4.

2. Схема системы

Схема сложной системы:

Субъективные параметры:

а — число пассажиров, прошедших через турникеты метрополитена

n – количество аппаратов «с памятью» на контрольных станциях

N – количество аппаратов «с памятью» в метро

t - срок контроля

Т – период, на который куплена поездка

k – категория граждан

 s_{ij} стоимость балета категории j на период i

Входные данные:

$$\Pi^*(a,n,N,t)$$
 - количество пассажиров в год, оплативших поездку $S(T,k,s_{ii})$ - средняя стоимость поездки

Выходные данные:

 $U_p = \Pi^* * S$ - доход метрополитена в течение года

3. Формальное описание модели.

1) Проверка насколько тесна связь между потоком пассажиров, вошедших в метро и пассажиров, прошедших через турникет.

Данные для случайных величин возьмем из таблицы 2.

Используем следующие случайные величины:

 $\xi_1\,$ - количество людей, вошедших на станцию X в течение дня

 $\boldsymbol{\xi}_2~$ - количество прошедший через турникеты на станции X в течение дня

Для рабочей выборки случайной величины ξ_1 были взяты данные из столбцов ThA0, ThB0, ThC0, для контрольной выборки ξ_1 - из столбцов rA0, rB0, rC0.

Для рабочей выборки случайной величины ξ_2 были взяты данные из столбцов ThA1, ThC1, для контрольной выборки ξ_2 - из столбцов rA1, rB1, rC1.

Выдвигаем гипотезу H, которая гласит, что между случайными величинами ξ_1 и ξ_2 существует тесная стохастическая связь. Функции распределения случайных величин будут иметь вид:

$$F(\xi_{1}, \alpha_{1}, \beta_{1}) = 1 - e^{-\alpha_{1} * \xi_{1}^{\beta_{1}}}$$

$$F(\xi_{2}, \alpha_{2}, \beta_{2}) = 1 - e^{-\alpha_{2} * \xi_{2}^{\beta_{2}}}$$

Можно установить вид функции связи по функции распределения.

Рассмотрим частный случай, когда функциональная зависимость между случайными величинами ξ_1 и ξ_2 может быть нелинейна и связь между этими величинами можно представить в виде:

$$\xi_1 = \alpha \xi_2^{\beta}$$

Применив метода моментов, прологарифмировав обе части равенства и использовав выборочное среднее и среднеквадратичное отклонение для выборок значений случайных величин ξ_1 и ξ_2 , получаем решение для параметров статистик:

$$\hat{\beta} = \sqrt{\frac{\hat{S}^2(\ln \xi_1)}{\hat{S}^2(\ln \xi_2)}} \tag{1}$$

$$\hat{\alpha} = e^{\ln \bar{\xi}_1 - \hat{\beta} \ln \bar{\xi}_1} \tag{2}$$

где $\hat{\alpha}$, $\hat{\beta}$ — выборочные значения α и β ,

 $\ln(\xi_i)$ — средневыборочное значение случайной величины

 S^2 — среднеквадратичное отклонение выборки,

Вычислив коэффициенты α и β для рабочей выборки случайных величин ξ_1^k и ξ_2^k и, учитывая, что $\xi_2^* \equiv \xi_2^k$ находим ξ_1^* по формуле $\xi_1^* = \alpha \, \xi_2^{*\,\beta}$.

После этого необходимо проверить гипотезу о принадлежности выборки закону распределения (то есть проверить, что эмпирическое распределение соответствует предполагаемой модели), что можно сделать с помощью критерия Колмагорова-Смирнова. Назначение критерия заключается в том, что он определяет, относятся ли сравниваемые два распределения к одному и тому же типу.

Статистика (функция, аргументами которой являются результаты наблюдения) критерия определяется выражением:

$$D_n = \sup_{(-\infty < x < \infty)} |\hat{F}_n(\xi_1^k) - F_n(\xi_1^*)|$$
 , где

 $F_n(\xi_1^*)$, $\hat{F}_n(\xi_1^k)$ - функции распределения случайных величин ξ_1^* и ξ_1^k соответственно.

Величина D_n показывает степень различия между распределениями. Если D_n <0.05 , то гипотеза Н подтверждается, иначе — отвергается.

В результате проверки критерия Колмогорова-Смирнова (D_{36} =0.027) гипотеза Н о наличие достаточно тесной связи между потоком пассажиров, вошедших в метро, и пассажиров, прошедших через турникет подтвердилась. Основываясь на этом и зная количество турникетов в метро, можно оценить общий поток пассажиров.

Программа для создания выборок и вычисления зависимости представлена на Листинге 1.

```
1. #рабочая выборка
2.ksi w1 = thA0 + thB0 + thC0
3.ksi w2 = rA0 + rB0 + rC0
5. #контрольная выборка
6.ksi_c1 = thA1 + thB1 + thC1
7.ksi_c2 = rA1 + rB1 + rC1
8.
9.n = len(ksi w1)
10.
11.alfa w, beta w = main(ksi w1,ksi w2)
12.print(alfa_w,beta_w)
13.ksi_calc2 = ksi_c2
15.ksi calc1 = [alfa w * pow(ksi calc2[i], beta w) for i in range(len(ksi w1))]
17.ksi_c1.sort()
18.ksi_calc1.sort()
19.dif = []
20.for i in range(5,50,5):
      list_contr1 = [x for x in ksi_c1 if x < i]</pre>
22. list_calc1 = [x for x in ksi_calc1 if x < i]</pre>
23. Fn_contr1 = len(list_contr1) / n
24. Fn_calc1 = len(list_calc1) / n
```

```
25. dif.append(abs(Fn_contr1 - Fn_calc1))
26.
27.if (max(dif) > 0.05):
28. print("гипотеза не подтвереждена")
29.
30.print(max(dif))
Листинг 1.
```

2) Оценка общего потока пассажиров.

Особенностью задачи является то, что турникетов «с памятью» (количество прошедших через турникет передается на сервер) и турникетов «без памяти».

Таким образом необходимо:

- а) оценить долю турникетов с памятью среди всех турникетов в метрополитене
- б) распределение потока входящих через пассажиров

Будем считать закон распределения равномерным.

Используем следующие случайные величины:

 ξ_1 - все пассажиры, вошедшие в метро

 ξ_2 - количество пассажиров, прошедших через турникет (учитываю как турникеты «с памятью», так и «без памяти»)

 ξ_{3} - количество пассажиров, оплативших после проверки контроллера

Данные для случайных величин возьмем из таблицы 3.

Для рабочей выборки случайных величин были взяты данные из столбцов IIA0, IIB0, IIC0, для контрольной выборки случайных величин - из столбцов IIA1, IIB1, IIC1.

Предположим существование зависимостей $\xi_1 = \alpha \, \xi_2^{\beta}$ и $\xi_2 = \alpha \, \xi_3^{\beta}$.

Выразим ξ_1 через ξ_3 :

$$\xi_1 = \alpha_{12} (\alpha_{23} \xi_3^{\beta_{23}})^{\beta_{12}}$$

Подставив случайные величины из рабочих выборок в формулы (1) и (2), найдем α_{12} β_{12} и α_{23} β_{23} .

Учитывая, что $\xi_2^* \equiv \xi_2^k$ находим ξ_3^* , а затем ξ_1^* .

$$\xi_3^* = \frac{\xi_2^* \frac{1}{\beta_{23}}}{\alpha_{23}}$$

$$\xi_1^* = \alpha_{12} (\alpha_{23} \xi_3^{*\beta_{23}})^{\beta_{12}}$$

В результате проверки критерия Колмогорова-Смирнова получилось значение D=0.055, что означает, что наше предположение не подтвердилось.

Программа для создания выборок и вычисления зависимости представлена на Листинге 2.

```
1.#рабочая выборка
```

 $^{2.}ksi_w1 = []$

```
3.for arr in IIA0:
4. ksi_w1.append(sum((int(arr[i]) for i in range(0, int(len(arr)))))))
5.for arr in IIB0:
   ksi_w1.append(sum((int(arr[i]) for i in range(0, int(len(arr))))))
7.for arr in IIC0:
   ksi_w1.append(sum((int(arr[i]) for i in range(0, int(len(arr))))))
9.
10.ksi_w2 = []
11.for arr in IIA0:
12. if len(arr) == 3:
          ksi_w2.append(arr[0]+arr[1])
13.
14.
     else:
15.
          ksi_w2.append(arr[0])
16.
17.for arr in IIB0:
18. if len(arr) == 3:
          ksi_w2.append(arr[0]+arr[1])
19.
20. else:
21.
         ksi_w2.append(arr[0])
22.for arr in IIC0:
23. if len(arr) == 3:
         ksi_w2.append(arr[0]+arr[1])
25. else:
26.
          ksi_w2.append(arr[0])
27.
28.ksi w3 = []
29.for arr in IIA0:
30. ksi_w3.append(arr[len(arr)-1])
31.for arr in IIB0:
32. ksi_w3.append(arr[len(arr)-1])
33.for arr in IICO:
      ksi_w3.append(arr[len(arr)-1])
35.
36. #контрольная выборка
37.ksi_c1 = []
38.for arr in IIA0:
39. ksi_c1.append(sum((int(arr[i]) for i in range(0, int(len(arr))))))
40.for arr in IIB0:
     ksi_c1.append(sum((int(arr[i]) for i in range(0, int(len(arr))))))
42.for arr in IIC0:
     ksi_c1.append(sum((int(arr[i]) for i in range(0, int(len(arr))))))
43.
45.ksi_c2 = []
46.for arr in IIA0:
47. if len(arr) == 3:
48.
          ksi_c2.append(arr[0]+arr[1])
49.
50.
         ksi_c2.append(arr[0])
51.for arr in IIB0:
52. if len(arr) == 3:
53.
          ksi_c2.append(arr[0]+arr[1])
54.
     else:
55.
          ksi_c2.append(arr[0])
56.for arr in IIC0:
57. if len(arr) == 3:
58.
          ksi_c2.append(arr[0]+arr[1])
59.
      else:
```

```
60.
           ksi c2.append(arr[0])
 61.
 62.ksi_c3 = []
 63.for arr in IIA1:
 64. ksi_c3.append(arr[len(arr)-1])
 65.for arr in IIB1:
 66. ksi_c3.append(arr[len(arr)-1])
 67.for arr in IIC1:
 68. ksi_c3.append(arr[len(arr)-1])
 69.
 70.alfa_12, beta_12 = main(ksi_w1,ksi_w2)
 71.alfa_23, beta_23 = main(ksi_w2,ksi_w3)
 72.
 73.alfa, beta = main(ksi_w1,ksi_w3)
 74.print(" alfa12 =", alfa_12, "beta12 =", beta_12)
 75.print(" alfa23 =", alfa_23, "beta23 =", beta_23)
 77.ksi_calc3 = [(x**(1/beta_23))/alfa_23  for x in ksi_c2]
 78.ksi_calc = [alfa_23 * (x ** beta_23) for x in ksi_calc3]
 79.ksi_calc1 = [alfa_12 * (x ** beta_12) for x in ksi_calc]
 80.
 81.ksi_c1.sort()
 82.ksi_calc1.sort()
 83.dif.clear()
 84.for i in range(5,25,5):
       list contr1 = [x for x in ksi c1 if x < i]
       list_calc1 = [x for x in ksi_calc1 if x < i]</pre>
 86.
 87.
       Fn_contr1 = len(list_contr1) / n
 88.
       Fn_calc1 = len(list_calc1) / n
        dif.append(abs(Fn_contr1 - Fn_calc1))
 90.print("dif ",max(dif))
Листинг 2.
```

4. Формирование уравнения, связывающего входные и выходные данные.

Для оценки реального дохода нужно умножить количество пассажиров, оплативших проезд на среднюю стоимость билета:

$$U_p = \Pi^* * S$$

Данные для оценки средней стоимости билета были взяты из таблицы 4. Сначала вычислили среднюю стоимость каждого вида билета за час:

$$AverageCost_F = \frac{24}{0.5} + \frac{32}{1.5} + \frac{110}{24} + \frac{310}{72} = 78,22$$

$$AverageCost_D = AverageCost_L = \frac{12}{0.5} + \frac{16}{1.5} + \frac{55}{24} + \frac{310}{72} = 41.26$$

После этого, исходя из табличных данных, подсчитаем количество проданных билетов каждой из категорий, также общую сумму проданных билетов.

Следующим шагом вычислим стоимость всех билетов:

$$costAllTickets = (averageCost_F * count_F + averageCost_F * count_D + averageCost_F * count_D)$$

Затем найдем среднюю стоимость 3 билетов разных категорий:

$$averageCost 3 = \frac{costAllTickets}{countAllTickets}$$

Для нахождения средней стоимости одного билета необходимо поделить полученный результат на 3.

5. Оценка параметров уравнения по результатам эксперимента.

Количество пассажиров в год, оплативших поездку, составляет $\Pi = 530$ млн в год.

Было вычислено, что средняя стоимость билета в пражском метрополитене составляет за час составляет $S=19.6\,$ крон.

Подсчет средней стоимости билета представлен на Листинге 3.

```
1.FDL0 = FDLA0 + FDLB0 + FDLC0
2.FDL1 = FDLA1 + FDLB1 + FDLC1
3.def aver(x_30, x_90, x_24, x_72):
4. return x 30/0.5+x 90/1.5+x 24/24+x 72/72
5.
6.F 30 = 24
7.F 90 = 32
8.F_24 = 110
9.F_{72} = 310
11.average_F = aver(F_30, F_90, F_24, F_72)
12.print(average F)
13.D 30 = 12
14.D 90 = 16
15.D 24 = 55
16.D_{72} = 310
18.average_D = aver(D_30, D_90, D_24, D_72)
19.average_L = average_D
20.print(average_L)
21.count_tickets_F = 0
22.count_tickets_D = 0
23.count tickets L = 0
24.count all tickets = 0
25.for arr in FDL0:
26. count_tickets_F += arr[0]
27. count_tickets_D += arr[1]
28. count_tickets_L += arr[2]
29.
30.cost_all_tickets = (average_F * count_tickets_F + average_D * count_tickets_D + average_L *
count tickets L)
31.count_all_tickets = count_tickets_F + count_tickets_D + count_tickets_L
33.average_cost = cost_all_tickets / count_all_tickets
34.average_cost = average_cost / 3
35.print(average_cost)
 Листинг 3.
```

Для того, чтобы определить среднюю стоимость за год нужно, полученное значение S умножить на количество рабочих часов в сутки (21 ч) и на количество дней в году. Кроме того расчет делался только на 6 станциях, а в пражском метрополитене всего 61 станция, следовательно нужно полученный результат разделить на 6 и умножить на 61. Таким образом доход метрополитена составляет 1.8 млрд крон в год.

Вывод:

В ходе лабораторной работы была построена стохастическая модель пассажирского потока пражского метрополитена. Была произведена оценка средней стоимость билета за час на 6 станциях и спрогнозирован доход пражского метрополитена на следующий год.

В дальнейшем для проверки адекватности модели необходимо провести натурный эксперимент, чтобы сравнить реальными значения с полученными в результате моделирования.