Parcial 1°

Matrices.

Es un arreglo rectangular de $m \times n$ elementos reales o complejos distribuidos en m filas y n columnas por la denotación de:

Las matrices se representan en MAYUSCULAS y sus componente en minisculas

$$A = (a_{ij}) = \left[a_{ij} \right]$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2j} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3j} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{ij} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

Orden			
$m \times n$	$n \times n$		
Tiene una cantidad de m columnas y de n filas	Matriz cuadrada Tiene la misma cantidad de filas y columnas		
4×3	$3 \times 3 \rightarrow 3$		
$ \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 2 & -6 & 8 \\ 9 & -1 & 10 \end{bmatrix} $	$ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 2 & -6 & 8 \end{array}\right] $		

Tipos de Matrices

MATRIZ DIAGONAL

Una matriz $A=(a_{ij})$ de orden n es diagonal si $(a_{ij})=0$ para $i\neq j$

MATRIZ ESCALAR

Una matriz diagonal
$$A=(a_{ij})$$
 es escalar
$$\mathrm{si}\,(a_{ij})=k \ \mathrm{para}\, i=j$$

Esta no es escalar

$$\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{array}\right]$$

MATRIZ IDENTIDAD

Una matriz escalar $A=(a_{ij})$ es identidad si $(a_{ij})=1$ para i=j y la denotación por I_n

MATRIZ NULA

Una matriz escalar $A=(a_{ij})$ es nula si $(a_{ij})=0$ para i=j y la denotación por 0

MATRIZ TRIANGULO SUPERIOR

Una matriz $A=(a_{ij})$ de orden n es triangular superior, si $(a_{ij})=0$ para i>j, los elementos que están por debajo de la diagonal principal son nulos

MATRIZ TRIANGULAR INFERIOR

Una matriz $A=(a_{ij})$ de orden n es triangular inferior, si $(a_{ij})=0$ para i< j, los elementos que están por encima de la diagonal principal son nulos

MATRIZ SIMÉTRICA

Una matriz $A=(a_{ij})$ de orden n es simetría, si la $A=A^t$

MATRIZ ANTISIMETRICA

$$\begin{bmatrix}
 0 & 3 & 1 \\
 -3 & 0 & 3 \\
 -1 & -3 & 0
 \end{bmatrix}$$

Una matriz $A=(a_{ij})$ de orden n es antisimetría, si la $A=A^t$ pero negativa

Transpuesta de una Matriz

Si $A=(a_{ij})$ es una matriz de m imes n , entonces, $A^t=(a_{ij})^t$ convierte filas en columnas o columnas en filas donde $1 \le i \le m$ $1 \le j \le n$

$$\begin{bmatrix} 2 & 4 & 0 & 3 \\ -2 & 1 & -5 & 2 \\ 0 & 3 & 6 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -2 & 0 \\ 4 & 1 & 3 \\ 0 & -5 & 6 \\ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} (A^t)^t = A \\ (A+B)^t = A^t + B^t \\ (\lambda A)^t = \lambda A^t \\ (AB)^t = A^t B^t \end{bmatrix}$$

$$(A^{t})^{t} = A$$

$$(A + B)^{t} = A^{t} + B^{t}$$

$$(\lambda A)^{t} = \lambda A^{t}$$

$$(A B)^{t} = A^{t} B^{t}$$

Igualdad de una Matriz

Dos matrices $A=(a_{ij})\,\,{
m y}\,B=(b_{ij})$ de orden iguales, son iguales si $(a_{ii}) = (b_{ii})$ donde $1 \le i \le m$ $1 \le j \le n$

$$A = \begin{bmatrix} 3+r & 5 & 6 \\ 3 & -1 & 2+s \end{bmatrix}$$

$$B = \begin{bmatrix} -5 & 5 & 6 \\ 3 & 1 & -3 \end{bmatrix}$$

$$3+r = -5 \rightarrow -8 = r \rightarrow 3 - 8 = -5$$

$$2+s = -3 \rightarrow -5 = r \rightarrow 2 - 5 = -3$$

Operaciones con Matrices

SUMA Deben tener el mismo orden

$$A = \begin{bmatrix} 3 & -1 & 4 \\ 3 & 5 & -2 \end{bmatrix} \quad B = \begin{bmatrix} -3 & 2 & -4 \\ 1 & 5 & 6 \end{bmatrix} \quad \longrightarrow \quad S = \begin{bmatrix} 0 & 1 & 0 \\ 4 & 10 & 4 \end{bmatrix}$$

PROPIEDADES				
Cerradura	Conmutativa	Asociativa	Elemento Neutro	Matriz Opuesta
A + B	A + B = B + A	(A + B) + C = A + (B + C)	A + 0 = A	$A = a_{ij} - A = (-a_{ij})$ $A + (-A) = 0$

PRODUCTO POR UN ESCALAR

$$A = \begin{bmatrix} -2 & 1 & 4 \\ 0 & -3 & -1 \\ 2 & 5 & 6 \end{bmatrix} \qquad \xrightarrow{\lambda = 4} \qquad B = \begin{bmatrix} -8 & 4 & 16 \\ 0 & -12 & -4 \\ 8 & 20 & 24 \end{bmatrix}$$

PROPIEDADES			
Cerradura	Asociativa	Distributiva	Elemento Neutro
λA	$\lambda(\beta A) = (\lambda \beta) A$	$\lambda(A + B) = \lambda A + \lambda B$ $(\lambda + \beta)A = \lambda A + \beta A$	1A = A

RESTA

$$A = \begin{bmatrix} 3 & 2 & 1 \\ -1 & 4 & 2 \\ -5 & 0 & 3 \end{bmatrix} B = \begin{bmatrix} 0 & 4 & -2 \\ 3 & 2 & -1 \\ 0 & 3 & 0 \end{bmatrix} \longrightarrow A - B = A + (-1)B = \begin{bmatrix} 3 & -2 & 3 \\ -4 & 2 & 3 \\ -5 & -3 & 3 \end{bmatrix}$$

MULTIPLICACIÓN La matriz se llamara con minúsculas

Que sea una sola fila o columna
$$a = \begin{bmatrix} a_1, a_2, a_3, \dots, a_n \end{bmatrix} \quad b = \begin{bmatrix} b_1, \\ b_2, \\ b_3, \\ \dots, \\ b_n \end{bmatrix} \quad \longrightarrow \quad a \cdot b = a_1b_1 + a_2b_2 + a_3b_3 + \dots + a_nb_n$$

Sea $A=(a_{ij})$ de orden m imes p y $B=(b_{ij})$ de orden p imes n , el producto de A y B que denotaremos por AB , es la matriz C de m imes n

$$A = \begin{bmatrix} 3 & -1 & 2 \\ 5 & 3 & -1 \end{bmatrix} B = \begin{bmatrix} 4 & -2 \\ 3 & 5 \\ 1 & 6 \end{bmatrix} \longrightarrow C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$C_{11} = \begin{bmatrix} 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} = 11 \quad C_{21} = \begin{bmatrix} 5 & 3 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} = 28$$

$$C_{12} = \begin{bmatrix} 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \\ 6 \end{bmatrix} = 1 \quad C_{22} = \begin{bmatrix} 5 & 3 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \\ 6 \end{bmatrix} = -1 \quad C = \begin{bmatrix} 11 & 1 \\ 28 & -1 \end{bmatrix}$$

PROPIEDADES			
Distributiva	Distributiva	Con Escalar	Asociación
$B \lor C = m \times n$ $A = r \times m$ $A(B+C) = AB + AC$	$B y C = m \times n$ $A = n \times r$ $(B + C)A = BA + CA$	$\lambda A = m \times n$ $B = n \times r$ $A(B\lambda) = (\lambda A)B = \lambda(AB)$	(AB)C = A(BC)

Sistema de ecuaciones lineales.

Un sistema de m ecuaciones lineales con n incógnitas x_1, x_2, \ldots, x_n es un conjunto de relaciones de la forma Ax = B:

Si la matriz B=0, el sistema Ax=0 es homogéneo. Significa que el sistema tiene solución.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

FORMA MATRICIAL DE UN SISTEMA	FORMA MATRICIAL AMPLIADA
$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$	$A \mid B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & \mid & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & \mid & b_2 \\ \vdots & \vdots & \vdots & \vdots & \mid & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & \mid & b_m \end{bmatrix}$

COMO SABER EL TIPO DE ECUACIÓN			
$[\ 0 \ 0 \ \dots \ 0 \ t \ \ h \]$			
Solución Unica	Infinitas Soluciones	No tiene Solución	
$t \neq 0$ tal que, $tx_n = h \rightarrow x_n = \frac{h}{t}$	$t = 0 \land h = 0$	$t = 0 \land h \neq 0$	
Consistente Determinante	Consistente Indeterminante	Inconsistente	

COMO RESOLVER EJERCICIOS			
Nos dan las ecuaciones lineales	$2x_1 + 4x_2 + 6x_3 = 16$ $4x_1 + 5x_2 + 6x_3 = 24$ $2x_1 + 7x_2 + 12x_3 = 30$		
Sacamos la Matriz Ampliada y solo si lo piden la Formal Matricial	$A \mid B = \left[\begin{array}{cccc} 2 & 4 & 6 & & 16 \\ 4 & 5 & 6 & & 24 \\ 2 & 7 & 12 & & 30 \end{array} \right]$		
Buscamos sí hay un 1 en la columna 1 . Sí la hay y no esta en la fila 1 intercambiamos las filas. Si no hay ningún 1 multiplicamos en la fila 1 por un numero que en C_{11} de 1	$A \mid B = \begin{bmatrix} 1 & 2 & 3 & & 9 \\ 4 & 5 & 6 & & 24 \\ 2 & 7 & 12 & & 30 \end{bmatrix}$		
Todos los numero que estén en la columna 1 menos el C_{11} deben cambiar a 0 . Para eso, multiplicamos esas filas por un numero que los deje como queremos.	$F_2 \to F_2 + (-4)F_1 \qquad F_3 \to F_3 + (-2)F_1$ $A \mid B = \begin{bmatrix} 1 & 2 & 3 & & 9 \\ 0 & -3 & -6 & & -12 \\ 0 & 3 & 6 & & 12 \end{bmatrix}$		
Se realiza ese mismo proceso para que cada elemento con numero repetidos, es decir, C_{11} , C_{22} , etc. tenga 1 y sus compañeros de columnas tenga 0 o hasta que no podamos sacar mas 1	$A \mid B = \left[\begin{array}{cccc} 1 & 0 & -1 & \mid & 1 \\ 0 & 1 & 2 & \mid & 4 \\ 0 & 0 & 0 & \mid & 0 \end{array} \right]$		
Nos fijamos en la ultima fila y reemplazamos en la ecuación	$0x_1 + 0x_2 + 0x_3 = 0$		
Identificamos según sus características el tipo de ecuación	Consistente Indeterminante		

GAUSS	GAUSS-JORDAN
Nos permite suspender el proceso	Debemos hacer el proceso completo

Rango de Matrices.

$$A = \begin{bmatrix} 1 & 0 & 0 & : & 0 \\ 0 & 1 & 0 & : & 0 \\ 0 & 0 & 1 & : & 0 \end{bmatrix}$$

$$\rho(A) = 3$$

Sea A una matriz de orden $m \times n$ que denotamos con $\rho(A)$, se define como el numero de 1's pivotes que aparecen en la forma escalonada reducida de A.

Sistema de Ecuaciones Lineales.

Un sistema de ecuaciones de m ecuaciones lineales con n incógnitas.

AX = B		AX = 0		
$\rho(A \mid B) = \rho(A) \qquad \qquad \rho(A \mid B) > \rho(A)$		$\rho(A) = n$	$\rho(A) < n m < n$	
$\rho(A \mid B) = \rho(A) < n$	$\rho(A \mid B) = \rho(A) = n$		Consistente Consistente	Consistente
Consistente Indeterminante	Consistente Determinante	Inconsistente	Determinante	Indeterminante