CLAIMS

relational database, comprising:
a computing device having a user interface;
a relational database connected to the computing device and accessible by
structured query language, the database comprising spatial and attribute data related to
geographic information; and
means for providing dynamic segmentation of permanent anchor sections, an
anchor section defining a spatial reference for a geographic element in the relational
database.
2. A system as recited in claim 1, wherein the relational database is accessed
via an object-oriented front-end.
3. A system as recited in claim 1, wherein the relational database further
comprises:
integrated temporal data for maintaining historical records.
4. The system as recited in claim 1, wherein the relational database is also
accessible by a graphical information system viewing application.

IJ

14

15

section;

interior intersection to an anchor section is defined by offsets from an end of the anchor

20

1

1

2

1

2

3

- synchronizing tial and linear data, for tying spatial data a physical location represented by the road network; and utilizing meta-data definitions for database elements in a data dictionary, the data dictionary defining an implementation of the relational database, resulting in an
 - 8. A method as recited in claim 7, further comprising:

extensible relational database model.

- dynamically segmenting permanent anchor sections by adding interior
 intersections using offset information.
 - 9. A method as recited in claim 7, wherein the database model uses an open architecture.
- 1 10. A method as recited in claim 7, wherein linear event data is stored by 2 storing each value anchored linear event combination in a separate table record.
- 1 11. A method as recited in claim 7, wherein linear event data is stored by
 2 storing each value anchored linear event combination in a different table record with the
 3 same anchored linear events used for all event data, resulting in dynamic segmentation.
 - 12. A method as recited in claim 7, wherein the linear event data comprises an event value; and an anchored linear event related to at least one anchor section, the anchored linear event identifying start and end offsets of an anchor section.

1	13. A method is recited in 12, wherein jurisdictional axas are maintained as
2	spatial data, the method further comprising:
3	storing jurisdictional area polygons in the database;
4	accessing event data for a jurisdictional area using a spatial query;
5	identifying anchor sections contained within a specified jurisdictional area; and
6	compiling event data for the identified anchor sections using a relational query.
1	14. A method as recited in claim 13, further comprising:
2	summarizing anchor section event data using a summary query.
1	15. A method as recited in claim 13, further comprising:
2	summarizing anchor section event data using a report query.
1	16. A method as recited in claim 13, further comprising:
2	pre-processing spatial queries for desired jurisdictional areas; and
3	storing results of the pre-processed spatial queries for desired jurisdictional areas
4	in a location accessible by a query program, resulting in more efficient access to event
5	tables stored by the pre-processing queries.
1	17. A method as recited in claim 7, further comprising:
2	importing road network data in the form of a link-node network by adding
3	additional table columns required to maintain consistency of the link node network with a
4	snatial data engine for the road network data, the adding further comprising:

4	filtering results the query based on event data associated the anchor sections in
5	an area of interest as defined by the query.
1	23. A method as recited in claim 21, further comprising:
2	summarizing event values for the associated anchor sections.
1	24. A method as recited in claim 21, further comprising:
2	mapping the associated anchor sections.
1	25. A method as recited in claim 21, wherein the querying launches at least one
2	distributed application to retrieve data from a distributed network of databases.
1	26. A method as recited in claim 21, further comprising:
2	presenting results of the querying in a simple tabular display.
1	27. A method as recited in claim 7, further comprising:
2	converting location reference data stored by a traditional linear referencing method
3	to an anchor linear referencing method as a collection of anchor sections and intersections
4	that represent the roadways, the converted data for use with the road network comprised
5	of anchor sections integrated with linear data.
1	28. A transportation information system, comprising:
2	at least one computing device having storage for data and computer code and

capable of executing object oriented computer code;

4	a current data ository for storing current transportation twork data and linear
5	event data;
6	an historical data repository for storing historical transportation network data and
7	linear event data;
8	a current data query program comprising computer code for querying the current
9	data repository;
10	an historical data query program comprising computer code for querying the
11	historical data repository;
12	a report generator comprising computer code for generating reports using data
13	retrieved during a querying of a data repository;
14°	a maintenance process comprising computer code for maintaining data in the
15 16	historical data repository;
16	an anchor linear referencing system (LRS), the LRS having a collection of anchor
17	sections, intersections, and anchored linear events, an anchor section being a defined data
== 18 == 18	set representative of a linear portion of a transportation pathway, the anchored linear
19	events comprising a set of properties and attributes further defining their qualities and
¹ 20	relationships to elements in the transportation network, wherein the data defined by the
21	LRM comprises the network of transportation pathways, and wherein intersections may
22	be interior to an anchor section and defined by an offset from an end of an anchor section.

29. A system as recited in claim 28, wherein at least one anchor section connects two adjacent intersections.

- 1 30. A system recited in claim 28, further comprising optimized repository
- 2 for query data, the optimized repository being generated by the maintenance process.
- 1 31. A system as recited in claim 28, wherein the computer code is object-
- 2 oriented.
- 1 32. A system as recited in claim 28, wherein attributes and properties are
- 2 associated with elements in the network and disjointed attributes of an anchor section are
- 3 enabled.
- 1 33. A system as recited in claim 28, where the transportation network is a road
- 2 network.
- 1 34. A system as recited in claim 28, where the transportation network is
- 2 for waterway shipping lanes.