Lecture: SVM

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

• Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited

1

_

• Some ideas about how it works.

2

History of SVM

- Theoretically well motivated algorithm: developed from Statistical Learning Theory (Vapnik & Chervonenkis) since the 60's.
- SVM applications started appearing in machine learning literature since 1990's and has become quite popular with data scientists.
- Empirically good performance (as predictive models): successful applications in many fields (bioinformatics, text, image recognition,...)
- A good source for resources is located at: http://www.kernel-machines.org/

4

Л

Classification Model: Starting Point

- Training data set: Patients with known diagnoses
- Input variables: Data about patients

$$x_i \in \mathbb{R}^d$$

Response variable: two diseases

$$y_i \in \{+1,-1\}$$

5

5

Classification Function

Classification function:

 $f: \quad \mathcal{R}^d \mapsto \{+1,-1\}$

Diagnosis = f(new patient)

6

Classifying Data into 2 Classes

- In machine learning and statistics, *classification* is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.
- In SVM, a data point is viewed as a p-dimensional vector (or, p-input variables), and we want to know whether we can separate such points with a (p-1) dimensional hyperplane.
 - · This is called a linear classifier.
 - For 2 input variables, the hyperplane becomes a straight line

7

7

How to Classify Red versus Green?

8

Ω

Linear Separation of the Training Data

- A separating hyperplane H is given by
 - the normal vector w, (the direction of positive class)
 - an additional parameter, b, called bias.

Dot product

c

9

Training versus Prediction

Training:

Select w and b in such a way that the hyperplane separates the training data—that is, construction of a hyperplane.

Prediction of the class for a new patient: On which side of the hyperplane is the new data point located?

10

Optimization Problem

· To ensure correct separation, use the constraints:

$$\langle w, x_i \rangle + b \ge 1$$
 if $y_i = 1$

$$y_i \cdot (\langle w, x_i \rangle + b) \ge 1$$
 for i=1, ..., n

$$\langle w, x_i \rangle + b \le -1$$
 if $y_i = -1$

Maximize the separating distance

Minimize $\|w\|^2$

13

13

When Data are Not Separable

• Use a penalty : C (distance to hyperplane)

 ξ allows for errors.

Optimization problem becomes:

 $\text{Minimize} \quad \parallel w \parallel^2 + C \cdot \sum_i \xi_i$

under the condition

 $y_i \cdot (\langle w, x_i \rangle + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

14

1/

Lagrange Approach

· Lagrange function:

$$L(w,b,\alpha,\xi) = \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (\xi_i + y_i (\langle w, x_i \rangle + b) - 1)$$

- Minimize $L(w,b,lpha,\xi)$ for w, b, ξ .
- Maximize $L(w,b,\alpha,\xi)$ for α_i .

Ssas

15

What Are the Support Vectors?

- "Carrying vectors"
- The points, located closest to the hyperplane
- Determining the location of the hyperplane
- All other data points have $\, lpha_{_i} = 0 \,$.

$$w = \sum_{i=1}^{\#_{SV}} \alpha_i y_i x_i^{SV}$$

Ssas

What happens when data are not separable nicely?

- Think of the observed data in the 2-dimensional plane as a projection from a higher-dimensional plane (say 3-dimensions).
- **Assumption**: in the higher dimensional plane the data are *nicely separable*
- If we can transform (via a function) the observed 2-dimensional representation to that higher dimensions, then we can find the hyperplane
- This special transformation function is called *kernel function*.
 - The challenge is finding the right kernel function and its parameters.
 - · This is an optimization task in finding right weights for a neural network

17

17

Mapping (From 1 to 2 dimensions)

18

The Kernel Trick

We don't have to know exactly what the feature space (the higher dimensional representation) looks like.

- It is enough to specify the kernel functions (such as linear, polynomial, RBF, etc.).
 - But, we have the geometric interpretation in the form of a separating hyperplane, i.e. more transparency.

20

วก

Mathetmatical Challenge

• Dual optimization problem:

$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

Classification function

on function
$$f(x_{new}) = sign \left(\sum_{i=1}^{n} \alpha_i y_i (x_i, x_{new}) + b \right)$$

Dot product

21

L

Ssas

21

Feature Space ${\mathcal F}$

• The data points are transformed with a function Φ:

$$\Phi: \quad \mathcal{R}^d \mapsto \mathcal{F}$$
$$x \mapsto \Phi(x)$$

• Then we separate the data points $\Phi(x)$ in the feature space F.

Ssas

Solution: The Kernel Trick

- We want to construct the separating hyperplane in the feature space.
- Problem:

Dot products of the form

$$\langle \Phi(x_i), \Phi(x_j) \rangle$$

are difficult to calculate.

Ssas

23 © SAS Institute Inc. All rights rese

23

Solution: The Kernel Trick

• We use a kernel function, living in \mathcal{R}^{d} , but behaving as a dot product in the feature space:

$$\mathcal{K}(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$$

• Trick: We do not have to know $\Phi(x)$ explicitly!

Ssas

Examples of Kernel Functions

Linear

$$\mathcal{K}(x_i, x_j) = \langle x_i, x_j \rangle$$

Polynomial

$$\mathcal{K}(x_i, x_j) = (\gamma \langle x_i, x_j \rangle + k)^d$$

Radial-Basis-Function

$$\mathcal{K}(x_i, x_j) = \exp(-\gamma \|x_i - x_j\|^2)$$

Sigmoid

$$\mathcal{K}(x_i, x_j) = \tanh(\gamma \langle x_i, x_j \rangle - b)$$

25

25

Summary of SVM

- An SVM is a hyperplane with a maximum-margin in a feature space, constructed by use of a kernel function in the input space.
- Parmeters for SVMs for Classification are:
 - The penalty C (regularization term)
 - The kernel function and its parameters

Advantages of SVMs

- Finds a global, unique minimum
- The kernel trick
- A simple geometric interpretation
- Strong ability to generalize
- The complexity of the calculations does not depend on the dimension of the input space.
 - This avoids the *curse of dimensionality*.

27

27

Disadvantages of SVMs

- Which kernel function to use?
- How to select the parameters of the kernel function?