Please amend this application as follows:

In the Title:

Please change the Title to "Method of Dispensing Soap."

In the Claims:

In light of the election, Claims 51-65 and 73-74 have been withdrawn. A complete listing of the claims with proper claim identifiers is set forth below.

- 51. (Withdrawn) A motor housing and support assembly for use with a fluid dispensing system having a reservoir module, the reservoir module having a pump actuator that includes a flange, the assembly comprising:
 - a pump housing adapted to receive the reservoir module; and
- a motor and actuator mechanism housing coupled to the pump housing, wherein the motor and actuator mechanism housing includes a motor and a pump hammer, wherein the pump hammer is in communication with the motor and disposed in the motor and actuator mechanism so as to be adapted to interact with the flange of the pump actuator.
- 52. (Withdrawn) The assembly of claim 51, wherein the pump hammer includes at least one actuator arm and a gear portion having a flat face.
- 53. (Withdrawn) The assembly of claim 52, the motor and actuator mechanism housing further including a stop disposed in a path of the flat face of the pump hammer to restrict the movement of the pump hammer so as to cause the motor to stall.
- 54. (Withdrawn) In a fluid dispensing system, a shank clip adapted to couple a spout and mounting shaft assembly to a motor housing and support assembly, the shank clip comprising:
- a first sidewall defining a perimeter that includes a first circular portion that defines a first radius;
- a second sidewall defining a perimeter that includes a second circular portion that defines a second radius, wherein the second radius is greater than the first radius; and
- a bottom disposed between the first sidewall and the second side wall to define a channel.

- 55. (Withdrawn) The shank clip of claim 54, wherein the bottom is U-shaped.
- 56. (Withdrawn) The shank clip of claim 54, wherein the second circular portion includes a first end that mates with a first curved portion and a second end that mates with a second curved portion.
- 57. (Withdrawn) The shank clip of claim 54, wherein the first circular portion and the second circular portion each extend over an arc that exceeds 180 degrees.
 - 58. (Withdrawn) The shank clip of claim 57, wherein the arc is 240 degrees.
- 59. (Withdrawn) The shank clip of claim 57, wherein the second circular portion includes a first end that mates with a first curved portion and a second end that mates with a second curved portion.
- 60. (Withdrawn) The shank clip of claim 59, wherein the first sidewall, the second sidewall, and the bottom each are made from a resilient material.
- 61. (Withdrawn) A method to install a fluid dispensing system, the method comprising:

presenting a reservoir module having a container, the container defining a longitudinal axis, the reservoir module further having a pump mechanism defining a center and coupled to the container, a pump actuator defining a center and coupled to the pump mechanism, and a delivery tube having a lower end and defining a center and an axis that follows the center of the delivery tube, wherein the delivery tube extends at the lower end from the pump actuator and wherein the longitudinal axis of the container is aligned through the center of the pump mechanism, the center of the pump actuator, and the axis of the delivery tube at least at the lower end of the delivery tube;

placing a spout and mounting shaft assembly through an aperture in a countertop; and

disposing the delivery tube within the spout and mounting shaft assembly.

- 62. (Withdrawn) The method of claim 61, further comprising:
 coupling a motor housing and support assembly between the reservoir module and the spout and mounting shaft assembly.
- 63. (Withdrawn) The method of claim 62, wherein coupling the motor housing and support assembly between the reservoir module and the spout and mounting shaft assembly includes mating a pump housing of the motor housing and support assembly to a support shaft of the spout and mounting shaft assembly by aligning a plurality of splines to a plurality of grooves at one of a plurality of predetermined orientation angles.
- 64. (Withdrawn) The method of claim 62, wherein coupling the motor housing and support assembly between the reservoir module and the spout and mounting shaft assembly includes

presenting a shank clip having a first sidewall defining a perimeter that includes a first circular portion that defines a first radius, a second sidewall defining a perimeter that includes a second circular portion that defines a second radius, wherein the second radius is greater than the first radius, and a bottom disposed between the first sidewall and the second side wall to define a channel,

pressing the first curved portion and the second curved portion of the shank clip about a support shaft of the spout and mounting shaft assembly,

mating a pump housing of the motor housing and support assembly to the support shaft, and

simultaneously pressing the first circular portion about a groove of the support shaft and the second circular portion about a groove of the pump housing.

65. (Withdrawn) The method of claim 62, wherein coupling the motor housing and support assembly between the reservoir module and the spout and mounting shaft assembly includes

presenting a mounting clip having a flange, a lower plate defining a perimeter about an axis and having a plurality of protuberances that extend from the lower plate perimeter towards the axis, wherein two adjacent protuberances define a space, and a wall disposed between the flange and the lower plate to define a channel,

mating a pump housing of the motor housing and support assembly to the support shaft,

moving a plurality of tabs of a container of the reservoir module through the spaces of the adjacent protuberances, and

rotating the container until one of the tabs encounters a stop member disposed in the channel of the mounting clip.

- 66. (Previously Presented) A method to dispense soap from a fluid dispensing system, the method comprising:
- (i) presenting a tube having a tube end disposed at a first position within an indented portion of a spout of the fluid dispensing system;
 - (ii) sensing an object below the tube end;
- (iii) in response to sensing the object, expelling soap from the tube end by drawing the tube end further within the indented portion to a second position; and
 - (iv) returning the tube end to the first position.
- 67. (Previously Presented) The method of claim 66, wherein returning the tube end to the first position draws soap into the tube end.
- 68. (Previously Presented) The method of claim 67, wherein sensing an object below the tube end includes detecting an infrared signal that is reflected off the object.

- 69. (Previously Presented) The method of claim 67, wherein drawing the tube end further within the indented portion to a second position includes activating a torque of a motor to rotate an actuator arm of a pump hammer so that the actuator arm contacts a flange on a pump actuator and urges the pump actuator downward to overcome a spring bias.
- 70. (Previously Presented) The method of claim 69 wherein drawing the tube end further within the indented portion to a second position includes stalling the motor so that the spring bias overcomes the torque of the motor to urge the pump actuator upwards
- 71. (Previously Presented) The method of claim 66, subsequent to expelling soap from the tube end, the method further comprising:

incrementing a counter; and

if the counter is less than 900, then returning to (ii), or if the counter equals 900, then at least one of lighting a low soap level light indicator and issuing an audible signal.

72. (Previously Presented) The method of claim 66, subsequent to (ii) sensing an object below the tube end, the method further comprising:

sensing a voltage level of a power source; and

if the voltage is greater than 4.85 volts, then performing (iii), or

if voltage is less than 4.85 volts, then at least one of lighting a low power level light indicator and issuing an audible signal.

73. (Withdrawn) A method to perform maintenance on a fluid dispensing system, the method comprising:

presenting a second reservoir module having a second container, the second container defining a longitudinal axis, the second reservoir module further having a second pump mechanism defining a center and coupled to the second container, a second pump actuator defining a center and coupled to the second pump mechanism, and a second delivery tube having a lower end and defining a center and an axis that follows the center of the second delivery tube, wherein the second delivery tube extends at the lower end from the second pump actuator and wherein the longitudinal axis of the second container is aligned through the center of the second pump mechanism, the center of the second pump actuator, and the axis of the second delivery tube at least at the lower end of the second delivery tube; and

installing the second reservoir module in the spout and mounting shaft assembly.

74. (Withdrawn) The method of claim 73; further comprising:

presenting a first reservoir module having a first container, the first container defining a longitudinal axis, the first reservoir module further having a first pump mechanism defining a center and coupled to the first container, a first pump actuator defining a center and coupled to the first pump mechanism, and a first delivery tube having a lower end and defining a center and an axis that follows the center of the first delivery tube, wherein the first delivery tube extends at the lower end from the first pump actuator and wherein the longitudinal axis of the first container is aligned through the center of the first pump mechanism, the center of the first pump actuator, and the axis of the first delivery tube at least at the lower end of the first delivery tube,

wherein the delivery tube of the first reservoir module is disposed within a spout and mounting shaft assembly that is positioned through an aperture in a countertop; and prior to installing the second reservoir module in the spout and mounting shaft assembly, removing the first reservoir module from the spout and mounting shaft assembly.