Interaction Lab (1) week 6

Midterm

중간과제 발표

◆ 중간고사 (4/30) 발표

- 개별 프로젝트
- 작품 ppt발표 (한 사람당 5분 이내 발표) ← 꼭 엄수!
- 발표 주제: 2가지중 선택
 - 1. 바우하우스(bauhaus)스타일 인터랙티브 포스터 만들기
 - 2. 자유주제
- **7주차 까지 배운** 프로세싱의 개념 (조건문, 반복문, 함수의 개념까지 포함해서 코드짜기) → 이 개념이 빠지면 안됨.
- 예제코드는 네이버카페에.

❖ 프로세싱 코드 참조사이트

- http://openprocessing.org
- http://www.generative-gestaltung.de/1-archive/code.ht
 ml
- https://processing.org/examples/
- https://codepen.io/tag/processing
- https://www.instructables.com/search/?q=processing
 %20arduino&projects=all
- https://www.instructables.com/Raincloud-Tree-Watering-Serial-Controller-Game-Wit/

★★ 중간고사 발표 및 제출(20%)

중간과제 발표 당일 (4/30일)까지,

- 발표내용: <u>뒤의 중간 발표구성을 참조하여 ppt</u> 발표
- 발표당일, 자신의 작품으로 ppt발표
- 개인당 5분이내 발표.

중간과제 발표 후 (다음날 5/1일 자정 전까지), 중간과제 블로그 포스팅!

- 5/1<u>일 밤 12까지</u> 중간과제 <u>최종블로그 포스팅(늦으면 감점!)</u>
- 포스팅은 개별 포스팅!!!
 - 중간 과제에 대한 자세한 블로그 포스팅 → 네이버 중간과제 게시판에!
 - 내용: 뒤의 중간 발표 및 최종 블로그 포스팅 구성안 참조)

중간발표ppt 및 중간과제 블로그 포스팅에 들어갈 구성

- ♥ 중간과제 프로젝트 작품 이름
- 📍 중간과제 개요(2~3줄)
 - 내가 만들고자 한 것은 무엇인지?
 - 어떤 주제나 문제에서 출발했는지?

♥ 아이디어 도출 과정

- 어떤 생각에서 출발했는지
- 스케치, 레퍼런스, 키워드 등

↑ 작품 소개

- 결과물이 무엇인지 간단히 요약
- 색상, 형태, 인터랙션 구성 설명
- 스크린샷, GIF, 시연 영상 캡처

사용한 기술 및 구현 방식

- Processing에서 쓴 주요 코드 구조
- 코드 분석 및 설명(자기가 쓴 코드의 작동 원리)
- 작동 방식 시연 또는 설명/ 반복 구조나 시각적 효과 설명

♥ 문제 해결과 배운 점

- 구현하면서 막혔던 점
- ChatGPT나 검색으로 해결한 과정
- 배운 프로그래밍 개념
- ↑ 앞으로의 이 작업에서의 보완/ 개선사항 (For next..)

- 기존의 비슷한 작업들의 레퍼런스들(참조 사이트나 서적등 참조자료들)
- ↑ 작품 완성물(그림이나 동영상 첨부 및 시연!) 반드시 첨부!!
- ♥ 프로세싱 전체코드 스케치 반드시 블로그 포스팅에 첨부!!

(프로세싱 코드는 반드시 zip파일로 첨부! 블로그에 직접 쓰지마세요.)

- 프로세싱(프로세싱 메뉴- 도구 .zip으로 압축하기 클릭 →zip 파일로 저장됨)
- *본인이 쓴 코드의 원리를 말로 설명할 줄 알아야!

평가

성적 및 평가

- Lab 실습 포스팅 네이버카페 '실습 게시판' 이용 → 20%
- 중간고사 자신만의 스위치! 발표 및 제출 (개별진행)→ 20%
- 기말고사 최종 결과물(팀별 진행) → 40%
- 출석 → 10%
- 참여도 → 10%

중간고사 평가부분(20%)

- **중간고사 플랜부터~ 발표까지 프로세스 진행과정** (발표 와 최종 블로그 포스팅포함)
- 코드에 대한 본인 작품의 이해/아이디어/ 독창성
- 코드에 대한 이해도, chatgpt등 보조수단 활용여부
- 완성도

성적평가 기준

- 상대평가(A = 최대 40% / A+B= 최대 80% / B+ ~ F = 남은 인원)
- 출석으로 간주할 수 있는 결석범위:

직계가족의 사망(증빙서첨부) /병사관계로 인한 결석(병무청 증빙서첨부) /정부기관의 요청에 의한 부득이한 행사 참여(학생처장이 발행하는 확인서첨부) / 총학생회의 제업무 및 행사참여 (학생처장이 발행하는 확인서첨부) / 기타 교무처장(교학처장)의 사전승인을 받은 사항에 의한 결석에 한함.(코로나19, 독감확진-교무처 문의)

- 수업 시작 후 20분 까지는 지각, 이후 지각은 결석.
 (결석 : 총점100점에서 -1점감점, 지각 : -0.5점 감점)
- 결석시간이 총 수업시간의 3분의 1을 초과한 학생은 F 처리
- 지각 3회 = 결석 1회

반복문 (loop)

```
for (int x = 0; x < 3; x++)
int x = 0;
while (x < 3)
                             //do
 //do
 χ+<mark>+</mark>;
```

for (처음상태 ; 조건; 변화) { //조건이 참이면 실행할 코드

```
void setup() {
  size(400, 400);
void draw() {
 background(0);
 for (int x = 0; x < width; x+=10) { //0 에서 width까지 10씩
증가반복
   rect(x, 0, 10, 10); //rect 의 x위치에서 10씩증가.
```

```
for ( int x = 0; x < width; x+=10) {
    rect(x, 0, 10, 10);
}

for ( int x = 0; x < width; x+=10) {
    rect(x, 10, 10, 10);
}</pre>
```

for (int x = 0; x < width; x+=10) {

rect(x, 20, 10, 10);

```
for ( int y =0; y < 30; y+=10) {
        for ( int x = 0; x < width; x+=10) {
           rect(x, y, 10, 10);
```

}

for (처음상태 ; 조건; 변화) {

조건이 참이면 실행할 코드

for (처음상태 ; 조건; 변화) {

```
int size = 20;
                                     화면을 다 채우는 렉트를 만드려면,
                                   → 안쪽 for문에서 v값으로 값이 20씩 height
void setup() {
                                     까지 증가해야되므로 안쪽 for문 밖에 또
 size(400, 400);
                                     for문을 만들면된다.
 background(0);
void draw() {
 for (int y = 0; y < height; y+=20) { //-
   for (int x = 0; x < width; x+=20) { // 렉트가 width까지 20씩 간격으로 반복.
     rect(x, y, size, size);
```

◆ 이중 for루프를 사용하여 각 사각형은 size = 20 크기를 사용하고, 다음의 색상패턴이 전체 화면에 가득 차도록 배치하세요.

fill(r, g, b)와 rect(x, y, size, size)를 이용해 색을 지정하고 사각형을 그리세요.

각 사각형들의 색은 다음 기준에 따라 다르게 지정합니다:

- 가로 위치(x)가 증가함에 따라 빨간색(r) 값이 (0 →255로) 점점 증가 (map함수이용)
- 세로 위치(y)가 증가함에 따라 초록색(g) 값이 (0→255로) 점점 증가
- 파란색(b) 값은 고정(예: 150)

결과적으로 그림과 같은 컬러 그리드가 만들어짐.

화면 중앙(width/2, height/2)을 기준으로, 반지름(radius)이 10부터 140까지 10씩 증가하는 **동심원**(겹치는 원들)을 여러 개 그리는 코드를 작성하시오.

- 배경은 검정색, 원의 테두리는 흰색, **채우기 없음(noFill)**으로 설정한다.
- 선 두께는 **2픽셀**로 한다.
- for문을 사용하여 여러 개의 원을 반복적으로 그릴 것.
- 각 원의 중심은 화면 중앙이며, 반지름은 10씩 증가한다.

다음 조건을 만족하는 **세로 줄무늬 패턴을 생성하는 Processing 코드**를 작성하시오.

- 배경은 검정색, 띠는 흰색이며 **테두리 없음(noStroke)** 으로 설정한다.
- rect()를 사용하여 줄무늬를 그린다. 줄무늬 띠의 가로너비는 20픽셀이고 높이는 창크기인 height이다. 띠 사이에는 같은 크기의 간격(20픽셀)이 있다.
- 즉, 띠 하나 그리고 20픽셀 띄우고 다시 띠 하나, 이런 식으로 전체 화면을 채운다.
- 반복문(for)을 사용하여 줄무늬 띠를 그릴 것.

다음 조건을 만족하는 **가로 줄무늬 패턴을 생성하는 Processing 코드**를 작성하시오.

- 배경은 검정색, 띠는 **흰색**이며 **테두리 없음(noStroke)** 으로 설정한다.
- rect()를 사용하여 줄무늬를 그린다. 줄무늬 띠의 가로너비는 20픽셀이고 높이는 창크기인 height이다. 띠 사이에는 같은 크기의 간격(20픽셀)이 있다.
- 즉, 띠 하나 그리고 20픽셀 띄우고 다시 띠 하나, 이런 식으로 전체 화면을 채운다.
- 반복문(for)을 사용하여 줄무늬 띠를 그릴 것.

१६५५ देशभाष्ट्र tominus -> 1272!

20= Springez! .: Y== spring ×2

변환/이동/회전 (Transform)

```
void setup() {
    size(500, 500);
}
void draw() {
    background(0);

rectMode(CENTER);
    rotate(PI/6); //30도만큼 회전
    rect(width/2, height/2, 120, 120);
}
```


트랜스폼 종류	기능	영향	설명
Translate (이동)	좌표 이동	<mark>좌표계가</mark> 이동함	x, y (또는 x, y, z) 방향으로 좌표계를 이동
Scale (확대/축소)	크기 조정	<mark>좌표계가</mark> 확대/축소됨	오브젝트를 확대하거나 축소, 중심 기준으로 배율 조정
Rotate (회전)	회전	<mark>좌표계가</mark> 회전함	중심을 기준으로 전체 좌표계를 돌림 (오브젝트가 도는 게 아님)

Translate:

Rotate:

Scale:


```
void setup() {
  size(500, 500);
void draw() {
 background(0);
  rectMode(CENTER);
 translate(width/2, height/2);
  rotate(PI/6);
  rect(0,0, 120, 120);
```



```
void setup() {
 size(500, 500);
void draw() {
 background(0);
 rectMode(CENTER);
 translate(width/2, height/2); //좌표계를 0,0에서
실행창 중앙으로 이동.
 rotate(PI/6); //30도만큼 좌표계 회전
 rect(0, 0, 120, 120);
 rotate(-PI/6); //다시 역으로 -30도만큼 좌표계회전
 translate(-width/2, -height/2);//역으로 좌표계를
0,0으로 이동
 rect(0, 0, 120, 120);//거기서 렉트 그려라.
```

```
size(500, 500);
void draw() {
 background(0);
 pushMatrix(); // pop전까지 좌표계 이동적용됨.
 rectMode(CENTER);
 translate(width/2, height/2);
 rotate(PI/6);
 rect(0, 0, 120, 120);
 popMatrix();
 rect(0, 0, 120, 120);
```

void setup() {

아래의 코드는 pushMatrix()함수를 이용하여 새로운 원점에 대한 정보를 저장 후, popMatrix()함수를 이용하여 저장한 정보를 삭제하는 것이다. 따라서 이후의 도형에는 새로운 원점이 적용되지 않게 된다.


```
float ang =0;
void setup() {
  size(500, 500);
void draw() {
 ang += 0.02;
 background(0);
 pushMatrix();
  rectMode(CENTER);
 translate (width/2, height/2);
  rotate(ang); //ang라디안각도만큼 회전해라.
  rect(0, 0, 120, 120);
 popMatrix();
  rect(0, 0, 120, 120);
```

```
void setup() {
  size(500, 500);
}

void draw() {
  background(0);
  rectMode(CENTER);
  translate(width/2, height/2); // 중심 이동
  scale(1);
  // scale(-1); // -100,-100으로 그려져서
위치함.
  rect(100, 100, 120, 120);
}
```



```
float ang =0;
void setup() {
  size(500, 500);
void draw() {
 ang += 0.02;
 background(0);
 pushMatrix();
  rectMode(CENTER);
 translate(width/2, height/2);
 rotate(ang); //ang라디안각도만큼
회전해라.
  scale(0.5);
 rect(100,100, 120, 120);
 popMatrix();
 //rect(0, 0, 120, 120);
```



```
float ang =0;
void setup() {
  size(500, 500);
void draw() {
 ang += 0.02;
 //background(0); //지움.
 pushMatrix();
  rectMode(CENTER);
 translate (mouseX, mouseY); //마우스 위치"를
새로운 (0,0)으로 만들어버려서, 거기서 회전하고
스케일이 적용
 rotate(ang);
 scale(0.5);
 rect(0,0, 120, 120);
 popMatrix();
  // rect(0, 0, 120, 120);
```



```
void setup() {
  size(400, 400);
 myFont = createFont("Baskerville", 48);
void draw() {
 background(0);
  textFont (myFont);
  translate(width/2, height/2);
  for (int i = 0; i < 8; i++) {
    pushMatrix();
    rotate(TWO PI/8 *i );
    text("S", 0, 0);
    popMatrix();
```

```
void setup() {
  size(400, 400);
 myFont = createFont("Baskerville", 48);
void draw() {
 background(0);
  textFont (myFont);
  translate(width/2, height/2);
  for (int i = 0; i < 8; i++) {
    pushMatrix();
    rotate(TWO PI/8 *i );
    text("S", 0, 0);
    popMatrix();
```

translate(), rotate(), scale, push, popMatrix등의 개념을 사용해서 다음 조건을 모두 만족하는 "꽃잎 패턴"을 만드세요.

- 중심을 기준으로 꽃잎이 8개 방사형으로 배치
- 꽃잎은 **핑크색** 타원 형태이며, 크기는 대략 80×80
- **꽃잎은 세로 방향으로 납작하게(scale)** 눌린 형태여야 한다. (scale이용)
- 꽃잎은 좌표계 회전을 이용해 각각 균등한 간격으로 배치되어야 한다.
- 반복문(for)을 사용해서 **코드의 반복을 최소화**할 것.
- 꽃 중심에는 **노란색 원**을 그려 꽃의 중심을 표현할 것.

초침 + 시침 아날로그 시계 만들기

- 시계의 중심은 화면 가운데에 위치하도록 translate()를 사용할 것.
- hour()과 second() 내장 함수를 사용하여
- 시침: int hr = hour() % 12; // 0~23를 반환. 12를 나눈 나머지값이 1~12가 됨.
- 초침: int sc = second(); // 0에서 59반환.
- map() 함수를 활용하여 시각을 0~TWO_PI 라디안 각도로 변환할 것.
- rotate()를 이용해 각각 시침과 초침이 회전하도록 만들 것.
- 각 바늘은 라인함수로 그리되, pushMatrix() / popMatrix()를 사용할 것.
- 바늘의 중심에는 **하얀 점(point)**을 표시할 것.

시스템변수

시스템 상태나 입력과 관계된 변수

: keyPressed, mousePressed, key, keyCode, mouseX, mouseY \equiv

변수 이름	변수 타입	의미
width	float	현재 스케치 창의 너비(픽셀)
height	float	현재 스케치 창의 높이(픽셀)
displayWidth	float	컴퓨터 화면(디스플레이)의 전체 너비
displayHeight	float	컴퓨터 화면(디스플레이)의 전체 높이
frameRate	float	초당 몇 프레임을 그릴지 설정된 목표 FPS
frameCount	int	현재까지 그려진 프레임 수 (자동 증가)

변수 이름	변수 타입	의미
mouseX	float	마우스의 현재 X 좌표 (픽셀)
mouseY	float	마우스의 현재 Y 좌표 (픽셀)
pmouseX	float	이전 프레임에서의 마우스 X 좌표
pmouseY	float	이전 프레임에서의 마우스 Y 좌표
mousePressed	boolean	마우스 버튼이 눌려 있는지 (true/false)
mouseButton	int	어떤 버튼이 눌렸는지 (LEFT, RIGHT, CENTER)

변수 이름	변수 타입	의미
keyPressed	boolean	키보드가 눌려 있는 상태인지 여부 (true/false)
key	char	눌린 문자 키(일반 키) . 예: 'A', '1', '%' 등 (알파벳, 숫자,부호) (방향키나 특수키일 경우 CODED 값이 들어옴)
keyCode	int	눌린 키의 값 . 주로 방향키, Shift, Ctrl 등 특수키 구분용

```
void setup() {
  size(400, 400);
void draw() {
  background(0);
 textSize(50); //추가
  text("Hi!", width-100, height-200);
```



```
void setup() {
  size(400, 400);
void draw() {
 background(0);
  if (mousePressed == true) {
   fill(255, 255, 0);
  } else {
    fill(255);
  textSize(50);
  text("Hi!", width-100, height-200);
```

```
void setup() {
  //size(displayWidth, displayHeight
);
  fullScreen();//전체화면
void draw() {
  background(0);
  if (mousePressed == true) {
    fill(255, 255, 0);
  } else {
    fill(255);
```

textSize(50);

text("Hi!", width-100, height-200);

```
void setup() {
  size(400, 400);
  //fullScreen();
void draw() {
  background(0);
  if (mousePressed == true) {
    fill(255, 255, 0);
  } else {
    fill(255);
  textSize(50);
  text(frameCount, width-100, height-300);
  text(frameRate, width-100, height-200);
```

```
frameRate(60);
  //fullScreen();
  background(0);
void draw() {
  //background(0);
  //noStroke();
  //fill(255, 255, 0);
  //ellipse(mouseX, mouseY, 100, 100);
if(mousePressed == true) {
  stroke(255, 0, 0);
  strokeWeight(10);
  line (pmouseX, pmouseY, mouseX, mouseY);
```

void setup() {

size(400, 400);

```
size(400, 400);
  frameRate(60);
  //fullScreen();
  background(0);
void draw() {
  //background(0);
  //noStroke();
  //fill(255, 255, 0);
  //ellipse(mouseX, mouseY, 100, 100);
  if (mousePressed == true) {
    if (mouseButton == LEFT) {//왼쪽버튼: 화면그리기
     stroke(255, 0, 0);
      strokeWeight(10);
     line(pmouseX, pmouseY, mouseX, mouseY);
    } else if (mouseButton == RIGHT) {
     background(0); //오른쪽버튼: 화면지우기
```

void setup() {

```
float xpos, ypos;
  void setup() {
  size(400, 400);
  xpos = width/2;
  ypos = height/2;
void draw() {
  background(0);
  if ( keyCode == LEFT) {
    xpos--;
  if (keyCode == RIGHT) {
    xpos++;
  textSize(150);
  text(key, xpos, ypos);
```

```
//일반 키를 눌렀을 땐 글자 저장 (위치는 그대로)
float xpos, ypos;
char currentKey; // 현재 글자 저장
                                                else {
                                                     currentKey = key;
void setup() {
 size(400, 400);
 xpos = width / 2;
 ypos = height / 2;
                                                  textSize(150);
                                                  text(currentKey, xpos, ypos);
void draw() {
 background(0);
 if (keyPressed) { /지금 키보드가 눌려있는 상태인지.
   // 방향키일 때 이동만 하고 글자 안 바뀜
   if (key == CODED) { //방향키같은 특수키일때
     if (keyCode == LEFT) {
       xpos--;
     if (keyCode == RIGHT) {
       xpos++;
```

마우스가 원안에 들어가면 배경색 바꾸기!

- 화면 중앙에 반지름이 50인 원을 그린다.
- 마우스가 원 안으로 들어가면 배경색이 검정색,원 바깥에 있으면 배경색이 하얀색이 되도록 한다.
- **dist()** 함수를 사용하여 마우스와 원 중심 사이의 거리를 계산할 것.
- 조건문(if)을 사용하여 배경색을 바꾼다.

dist (markex, marker, x,x) ellipe (x,y,d,d) dist (make), make (, x, x)

아래 조건에 맞는 **슬라이더 인터페이스**를 Processing으로 구현하시오. (mousePressed 이용)

- 슬라이더 막대는 y = 100 위치에 가로로 길게 표시되며,
 시작 x좌표는 50, 끝 x좌표는 350이다. (라인함수로)
- 사용자가 슬라이더 막대 범위 안을 마우스로 클릭하고 (mousePressed) 드래그(mouseX)하면, 마우스의 x위치에 따라 슬라이더 값이 0에서 100 사이로 실시간 변한다.
- 슬라이더 손잡이(작은 원)는 슬라이더 값에 따라 막대 위를 따라 움직인다.