Common Approximations Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Reynolds averaging (turbulent flows) Time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) Time-dependent calculations: - "parabolic" or "hyperbolic" equations	3. Approximations and Simplified Equations
Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,)	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Reynolds averaging (turbulent flows) Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) Time-dependent calculations: - "parabolic" or "hyperbolic" equations	Reduction of dimension: - steady-state - 2-dimensional Neglect of some fluid property: - incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Reynolds averaging (turbulent flows) Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) Time-dependent calculations: - "parabolic" or "hyperbolic" equations - 1storder in time; solved by forward-marching in time Steady-state calculations: - "elliptic" equations - "elliptic" equations	Common Annuarity of the se
- incompressible - inviscid • Simplified forces: - hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows)	- incompressible - inviscid • Simplified forces: - hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows)	- incompressible - inviscid • Simplified forces: - hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows)	- incompressible - inviscid • Simplified forces: - hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,)	- incompressible - inviscid • Simplified forces: - hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) • Time-dependent calculations: - "parabolic" or "hyperbolic" equations	- incompressible - inviscid Simplified forces: - hydrostatic - Boussinesq approximation for density. Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Reynolds averaging (turbulent flows) Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) Time-dependent calculations: - "parabolic" or "hyperbolic" equations - 1st-order in time; solved by forward-marching in time Steady-state calculations: - "elliptic" equations	Reduction of dimension: - steady-state
 hydrostatic Boussinesq approximation for density Averaging: depth-averaging (shallow-water flows) 	 hydrostatic Boussinesq approximation for density Averaging: depth-averaging (shallow-water flows) 	- hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows)	- hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,)	- hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) • Time-dependent calculations: - "parabolic" or "hyperbolic" equations	- hydrostatic - Boussinesq approximation for density • Averaging: - depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) • Time-dependent calculations: - "parabolic" or "hyperbolic" equations - 1st-order in time; solved by forward-marching in time • Steady-state calculations: - "elliptic" equations	incompressibleinviscid
 depth-averaging (shallow-water flows) 	 depth-averaging (shallow-water flows) 	depth-averaging (shallow-water flows) Reynolds averaging (turbulent flows)	- depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,)	- depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) • Time-dependent calculations: - "parabolic" or "hyperbolic" equations	- depth-averaging (shallow-water flows) - Reynolds averaging (turbulent flows) Time-Dependent vs Steady-State • Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) • Time-dependent calculations: - "parabolic" or "hyperbolic" equations - 1st-order in time; solved by forward-marching in time • Steady-state calculations: - "elliptic" equations	 hydrostatic Boussinesq approximation for density
		Time-Dependent vs Steady-State	Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,)	Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) Time-dependent calculations: - "parabolic" or "hyperbolic" equations	Use time-dependent calculations for: - time-dependent problems (waves, pumps,) - flows with a natural instability (vortex shedding,) - time-marching to steady state (high-Mach or high-Froude flows) Time-dependent calculations: - "parabolic" or "hyperbolic" equations - 1st-order in time; solved by forward-marching in time Steady-state calculations: - "elliptic" equations	 depth-averaging (shallow-water flows)

2- or 3-Dimensional

- · Determined by geometry and boundary conditions
- Significant computational implications
- · 2-d flows difficult to achieve in the laboratory
- Axisymmetric flows also "2-d"

Incompressible Flow

- Definition: flow-induced pressure and temperature changes don't cause significant density changes
- Usually requires velocity << speed of sound (Ma << 1)
- · Doesn't necessarily mean "uniform density"

(Environmental flows driven by density differences in the atmosphere or ocean can still be regarded as incompressible)

Compressible vs Incompressible CFD

Compressible flow:

- density changes due to large pressure and/or temperature changes;
- $-\,$ requires equation for internal energy e (or enthalpy h):

change in energy = heat input + work done

 $\begin{array}{ll} \textbf{-} \mbox{ mass equation } & \rightarrow \mbox{ density p} \\ \mbox{ energy equation } & \rightarrow \mbox{ temperature } T \\ \mbox{ equation of state } & \rightarrow \mbox{ pressure } p \mbox{ (e.g. ideal gas law, } p = \mbox{pRT}) \end{array}$

Incompressible flow:

- density constant along a streamline; volume conserved
- mechanical energy equation:

change in kinetic energy = work done

- equivalent to momentum equation: no separate energy equation
- pressure equation arises from the requirement that solutions of the momentum equation also be mass-consistent

Viscous vs Inviscid

- Viscous (Navier-Stokes) equations:
 - dynamic ("no-slip") boundary condition: (u, v, w) = 0

- Inviscid (Euler) equations:
 - no 2nd-order derivatives (one less b.c)
 - kinematic ("slip-wall") boundary condition: u_n=0

- Inviscid approximation OK only if boundary layer is:
 - thin (high Re)
 - attached (no flow separation)
- Inviscid approximation implies no drag, no heat transfer, no sediment transport, ...

Potential Flow

- Approximation: inviscid, incompressible
- Velocity derived from a velocity potential ϕ :

$$\begin{array}{c} \textbf{u} = \nabla \phi \\ \\ \nabla \bullet \textbf{u} = 0 \end{array} \qquad \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

- Consequences:
 - entire flow field determined by a single scalar
 - very common equation; plenty of good solvers around
 - ignores boundary-layer effects: no drag or flow separation

Hydrostatic Approximation

- Approximation:
- pressure forces balance weight:

$$\frac{\partial p}{\partial z} = -\rho g \qquad \qquad \Delta p = -\rho g \Delta z$$

- Validity:
 - always true in stationary fluid
 - good approximation if vertical acceleration << g
- Consequence:
 - pressure is determined everywhere from the depth below the free-surface:

$$p = p_{atm} + \rho g(h - z)$$

Boussinesq Approximation for Density

Application: variable-density environmental flows:

atmosphere (temperature);oceans (salinity).

$$\frac{\rho - \rho_0}{\rho_0} = -\alpha \left(\theta - \theta_0\right) \qquad \qquad \rho = \rho_0 - \rho_0 \alpha (\theta - \theta_0)$$

• Approximation:

- retain density changes in buoyancy force -

- neglect density changes in mass × acceleration -

$$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} - \rho g \longrightarrow \rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} - \rho_0 g - (\rho - \rho_0) g \longrightarrow \rho_0 \frac{\partial w}{Dt} = -\frac{\partial p}{\partial z} + \rho_0 \alpha (\theta - \theta_0) g$$

$$\frac{\partial p}{\partial z} = -\frac{\partial p}{\partial z} + \rho_0 \alpha (\theta - \theta_0) g$$

$$\frac{\partial p}{\partial z} = -\frac{\partial p}{\partial z} + \rho_0 \alpha (\theta - \theta_0) g$$

• Comments:

- usually unnecessary in general-purpose CFD.

 $p^* = p + \rho_0 gz$

Shallow-Water Equations

- Application: open-channel hydraulics
- **Approximation:** depth-averaged
 - horizontal velocities u, v
 - water depth h

$$(mass) \qquad \frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(uh) = 0$$

- Compressible-flow analogy:

 - hydraulic jump \leftrightarrow shock wave speed: $c = \sqrt{gh} \leftrightarrow c = \sqrt{\gamma p/\rho}$ Froude number Fr \leftrightarrow Mach number Ma

Reynolds Averaging

Application: turbulent flows

Averaging produces an additional effective stress in the **mean** flow equations: $\tau_{narb} = -\rho \overline{u'v'}$ Reynolds stress

Common modelling practice:

$$\tau_{turb} = \mu_t \frac{\partial \overline{u}}{\partial y}$$

 $\mu_r = eddy \ viscosity$

Turbulent Jet

