Parrondo's Paradox

Group 4

Leo Huang Xiaotong Niu Mengdie Zhou

Introduction

- By Juan M. R. Parrondo in 1996
- Losing Games
 - Tendency of losing after some repetitive playing
- Winning Games: Combining 2 losing games will result in a winning game
 - Tendency of winning after some repetitive playing
 - Combination: playing periodically or randomly
- Different types of Parrondo's Paradox
 - Capital Dependent (the most popular)
 - The result of winning/losing only depends on the player's current capital
 - History Dependent
 - Keep track of states of winning/losing and the result of a game depends on the states of game before

Applications of Parrondo's Paradox

- Easy to implement wide range of fields
- Biology
 - Killing virus
 - Low temperature: NO!
 - High temperature: NO!
 - Alternation of extreme hot and cold environments: YES!
- Casino Games
 - Alternation of strategies and games will results in gaining money
 - Which is a trend of winning in Parrondo's Paradox

Two basic losing games (Coin Tossing)

Game A

- If it's a fair game, p = 0.5
- o Increasing p will result in a winning game
- Decreasing p will result in a losing game
- o To make it a losing game, we set p = 0.5 ewhere e = 0.005

Game B

$$p_1 = 3/4 - \varepsilon$$

$$p_2 = 1/10 - \varepsilon$$

- Basic assumptions: e is same for p1 and p2.
- How Game B to be a losing game?

Markov Process

- In game B, you will win \$1 if head comes up, and lose \$1 otherwise. In general, Game B can be stated as: we win with probability p1 if our money is not a multiple of 3, and we win with probability p2 otherwise.
- Assumptions: Let Zj be the probability of winning \$3 before losing \$3 when starting at state j.
- Based on this definition, we have:

$$z_{-3} = 0$$
 and $z_3 = 1$

Markov Process

- Z(-2) = (1-p1) Z(-3) + p1 Z(-1)
- Z(-1) = (1-p1) Z(-2) + p1 Z0
- Z0 = (1-p2) Z(-1) + p2 Z1
- Z1 = (1-p1) Z0 + p1 z2
- Z2 = (1-p1)Z1 + p1Z3

Markov Process

$$z_0 = p_3 p_{12}^2 / ((1-p_3)(1-p_{12})^2 + p_3 p_{12}^2)$$

Z0 = (0.095)x(0.745)x(0.745)/((1-0.095)x(1-0.745)x(1-0.745) + (0.095)x(0.745)x(0.745))= 0.47 < 0.5

Capital Dependent Games: Random combinations of A and B

- In this combined game, where the sole connection between game A and B is through the capital, the outcome of the game (win or loss) would depend on the relative appearance of game A with respect to game B.
- Interestingly, the combined game is not always winning with any randomness. Too much or too little presence of game A influences the capital in such a way that triggering of the good coin in game B turns less and less.

- B
- ABBB
- AABB
- Random(0.5,0.5)

History Dependent Game

One example here

(We didn't do much about this game)

Step	Step	Coin used
t-2	t-1	in Game B
Lose	Lose	Good coin
		[Win with
		$p = 0.9 - \epsilon$]
Lose	Win	Bad Coin
		$[p=0.4 - \epsilon]$
Win	Lose	Bad Coin
Win	Win	Bad Coin

Taking a Closer Look

Things to make sure:

- Game A can be fair game
- Game B can be fair game
- Game A with ε is a losing game
- Game B with ε is a losing game

Taking a Closer Look (Game A)

✓ A fair□ B fair✓ A + ε losing□ B + ε losing

Like Game A, we can:

$$p_1 = 1 - p_1
2 * p_1 = 1
p_1 = 0.5$$

- Increasing p1 will result in a winning game
- Decreasing p1 will result in a losing game

Taking a Closer Look (Game B)

☑ A fair □ B fair ☑ A + ε losing

B + ε losing

- \circ Like Game A, we can make $p_2=1-p_2$ and $p_3=1-p_3$
- But there might be more answers
- We need to use the formula:

$$p_2 * p_3^{M-1} = (1 - p_2) * (1 - p_3)^{M-1}$$

Taking a Closer Look (Game B)

✓ A fair✓ B fair✓ A + ε losing□ B + ε losing

$$p_2 * p_3^{M-1} = (1 - p_2) * (1 - p_3)^{M-1}$$

$$p_2 = 0.1, p_3 = 0.75, M = 3$$

$$0.1 * 0.75^{3-1} = (1 - 0.1) * (1 - 0.75)^{3-1}$$

$$0.1 * 0.75^2 = 0.9 * 0.25^2$$

$$0.1 * 0.5625 = 0.9 * 0.0625$$

$$0.05625 = 0.05625$$

Taking a Closer Look (Game B Graph)

A fairB fairA + ε losing

 \Box B + ϵ losing

Taking a Closer Look (Game B Graph)

A fairB fairA + ε losing

 \Box B + ε losing

Probability Space

$$p_2 * p_3^{M-1} = (1 - p_2) * (1 - p_3)^{M-1}$$

$$\frac{p_2 * p_3^{M-1}}{(1 - p_2) * (1 - p_3)^{M-1}} = 1$$

$$M = 3$$

$$p_2 = \frac{(1 - p_3)^2}{2p_3^2 - 2p_3 + 1}$$

☑ A fair

☑ B fair

 \triangle A + ϵ losing

 \square B + ϵ losing

Game A → Game B

Parrondo's Paradox

- Game A and Game B are have negative capital returns
- they were in the losing game section.
- However, if we combine them by connecting them ...

Parrondo's Paradox

 The resulting game is more in the winning section than the losing section

More Parrondo's Paradox

More Parrondo's Paradox

M = 5

Thank you