TD3 – Logique

Hugo Castaneda, Rémy Chaput, Nathalie Guin, Marie Lefevre

Rappels de cours sur atomes, termes, variables liées et libres, formules :

- Un atome (ou formule atomique) est un prédicat directement valuable à Vrai ou Faux
- Un **terme** est soit une variable, soit une constante, soit une fonction. Un terme prend sa valeur dans le domaine des variables.
- Une variable peut être liée ou libre selon qu'elle est quantifiée (par un quantificateur) ou non.
- Une formule est soit un atome, soit une composition de formules avec les connecteurs et les quantificateurs.

Rappels de cours sur la forme prénexe :

Une formule F est prénexe si elle est de la forme $Q_1x_1Q_2x_2 ... Q_nx_nG$ avec G sans quantificateur et chaque Q_i étant soit \forall soit \exists . Pour mettre sous forme prénexe une formule quelconque :

1. Eliminer les connecteurs \rightarrow et \leftrightarrow en appliquant les lois d'équivalence

$$((P \rightarrow Q) \equiv (\neg P \lor Q) \text{ et } (P \leftrightarrow Q) \equiv ((P \rightarrow Q) \land (Q \rightarrow P))).$$

2. Transporter les symboles de négation ¬ devant les formules atomiques (lois de De Morgan, lois de double négation...)

3. Renommer si nécessaire les variables pour pouvoir appliquer les règles d'équivalence en cas de déplacement des quantificateurs

 $\forall x (A(x) \land B(x)) \equiv \forall x A(x) \land \forall x B(x) \text{ mais pas vrai pour le } \lor !$

 $\exists x (A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x) \text{ mais pas vrai pour le } \land !$

4. Transporter les quantificateurs devant la formule de façon à obtenir une formule prénexe.

Rappels de cours sur la méthode de skolémisation (pour obtenir une forme standard de Skolem):

Soit F une FN prénexe i.e. $F = Q_1x_1 Q_2x_2 ... Q_nx_n G(x_1, x_2, ... x_n)$

- 1. Eliminer les quantificateurs existentiels Qr
- Si aucun ♥ n'apparaît avant Qr, on remplace par un nouveau symbole de constante C
- Si m ∀apparaissant avant Qr, on remplace par une nouvelle fonction de skolem f d'arité m
- 2. Itérer le processus jusqu'à ce qu'il n'y ait plus de quantificateur existentiel dans le préfixe.

Rappels de cours sur la forme clausale de la logique d'ordre 1 :

La forme clausale d'une formule F est constituée de l'ensemble des clauses de la forme standard de Skolem de cette formule où :

- 1. Les variables quantifiées universellement sont conservées et les fonctions (y compris les fonctions de Skolem) ne sont pas modifiées
- 2. Les variables quantifiées existentiellement sont remplacées par des constantes (toutes différentes)
- 3. Les variables sont renommées d'une clause à l'autre

EXERCICE 1: FORMULE UNIVERSELLEMENT VALIDE

Considérons la formule F suivante : $\exists x \forall y (((U(x) \rightarrow U(y)) \rightarrow T(x)) \rightarrow T(y))$

Nous allons essayer de monter qu'elle est universellement valide. Pour cela plusieurs étapes sont nécessaires :

1: Dans cette formule, qu'est-ce qui est atomes, variables, termes, formules?

formules atomiques ou atomes : U(x), U(y), T(x), T(y)

variables : x, y. Elles sont toutes liées car toutes sous l'emprise d'un quantificateur

termes: x, y.

formules non-atomiques : U(x), U(y), T(x), T(y)

 $U(x) \rightarrow U(y)$

 $(U(x) \to U(y)) \to T(x)$

 $((U(x) \to U(y)) \to T(x)) \to T(y)$

 $\exists x \; \forall y \; (((U(x) \rightarrow U(y)) \rightarrow T(x)) \rightarrow T(y))$

2: Quelle est la formule sur laquelle nous allons travailler pour montrer que F est universellement valide?

La négation de la formule à prouver est :

$$\neg \left(\exists x \ \forall y \ (((U(x) \to U(y)) \to T(x)) \to T(y)) \ \right)$$

3: Mettre la formule trouvée sous forme normale conjonctive (conjonction de disjonction).

------ Indices de correction ------

$$\neg \left(\exists x \ \forall y \left(\left(\left(U(x) \to U(y) \right) \to T(x) \right) \to T(y) \right) \right)$$

$$\forall x \; \exists y \; \neg (((U(x) \to U(y)) \to T(x)) \to T(y))$$

$$\forall x \exists y \neg (\neg(U(x) \rightarrow U(y)) \rightarrow T(x)) \lor T(y))$$

$$\forall x \; \exists y \; \neg (\neg ((U \; (x) \to U \; (y)) \to T \; (x)) \vee T \; (y))$$

$$\forall x \; \exists y \; \neg (\neg (U \; (x) \to U \; (y)) \vee T \; (x)) \vee T \; (y))$$

$$\forall x \exists y \neg (\neg (\neg U(x) \lor U(y)) \lor T(x)) \lor T(y))$$

$$\forall x \exists y \neg \neg (\neg (\neg U (x) \lor U (y)) \lor T (x)) \land \neg T (y)$$

$$\forall x \exists y (\neg \neg U(x) \land \neg U(y)) \lor T(x)) \land \neg T(y)$$

$$\forall x \exists y (U(x) \land \neg U(y)) \lor T(x)) \land \neg T(y)$$

$$\forall x \exists y (U(x) \lor T(x)) \land (\neg U(y) \lor T(x)) \land \neg T(y)$$

4: Mettre sous forme prénexe.

```
----- Indices de correction -----
Prénexe : les quantificateurs sont tous à gauches => déjà le cas....
\forall x \exists y (U(x) \lor T(x)) \land (\neg U(y) \lor T(x)) \land \neg T(y)
5 : Skolémiser le résultat.
                        ----- Indices de correction -----
\forall x \exists y (U(x) \lor T(x)) \land (\neg U(y) \lor T(x)) \land \neg T(y)
\forall x (U(x) \lor T(x)) \land (\neg U(f(x)) \lor T(x)) \land \neg T(f(x))
6: Mettre sous forme clausale.
                             ====== Indices de correction ======
C = \{U(x1) \vee T(x1), \, \neg U(f(x2)) \vee T(x2), \, \neg T(f(x3))\}
C1 = \{U(x1) \lor T(x1)\}
C2 = {\neg U(f(x2)) \lor T(x2)}
C3 = {\neg T(f(x3))}
7: Résoudre avec le principe de réfutation avec unification dans le monde de Herbrand.
                     ===== Indices de correction =====
1ère solution
on prend C3 et on substitue x3 par a
C'3 = {\neg T(f(a))}
on prend C2 et on substitue x2 par f(a)
C'2 = \{ \neg U(f(f(a))) \lor T(f(a)) \}
on prend C1 et on substitue x1 par f(f(a))
C'1 = \{U(f(f(a))) \lor T(f(f(a)))\}
on reprend C3 et on substitue x3 par f(a)
C''3 = {\neg T(f(f(a)))}
De C''3 = \{\neg T(f(f(a)))\}\) et C''1 = \{U(f(f(a))) \lor T(f(f(a)))\} on obtient C4 = U(f(f(a)))
De C'3 = \{\neg T(f(a))\}\ et C'2 = \{\neg U(f(f(a))) \lor T(f(a))\}\ on obtient C5 = \neg U(f(f(a)))
```

donc la négation de la formule initiale est insatisfiable et donc la formule initiale est valide.

De C4 = U(f(f(a))) et C5 = $\neg U(f(f(a)))$ on obtient une résultante vide,

```
2ème solution
C = \{U(x1) \lor T(x1), \neg U(f(x2)) \lor T(x2), \neg T(f(x3))\}
x1 = f(a)
x2 = a
x3 = a
\Rightarrow C = \{U(f(a)) \lor T(f(a)), \neg U(f(a)) \lor T(a), \neg T(f(a))\}
Est-ce toujours vrai?
Si U(f(a)) = faux
Alors T(f(a)) = vrai pour que C1 soit vraie
Mais alors C3 = \neg T(f(a)) est faux
Donc pas vrai pour ce cas
\Rightarrow \neg F \text{ n'est pas vrai donc } F \text{ est universellement valide}
```

En dessin c'est plus clair...

Ec =
$$\frac{1}{2}$$
 $U(x_n) \vee T(x_n)$, $PU(f(x_2)) \vee T(x_2)$, $PT(f(x_3))$ }

Ho = $\frac{1}{2}\alpha$, $f(\alpha)$ }

Hi = $\frac{1}{4}\alpha$, $f(\alpha)$, $f(f(\alpha))$ }

Hi = $\frac{1}{4}\alpha$, $f(\alpha)$, $f(f(\alpha))$ }

No a place dans le monde Ho:

On a place dans le monde Ho:

 $U(x_n) \vee T(x_n)$ $PU(f(x_2)) \vee T(x_2)$

$$P(f(\alpha)) \vee T(\alpha)$$
 $PU(f(x_3))$ $PU(f(x_3))$

$$P(f(\alpha)) \vee T(\alpha)$$
 $PU(f(x_3))$

The fault dance commences a passion of a contraint.

EXERCICE 2: VALIDER UN RAISONNEMENT

Pour une déduction, on établit d'abord ce qui est vrai (conjonction de prédicats) et pour établir la conclusion, on nie cette conclusion et on l'ajoute à la conjonction. Si la formule ainsi formée est impossible à satisfaire, c'est qu'il n'est pas possible de nier la conclusion en présence des prémisses et que donc la conclusion est une déduction logique des prémisses.

Valider le raisonnement suivant :

- 1. Quelques chandelles éclairent très mal
- 2. Les chandelles sont faites pour éclairer
- 3. donc : quelques objets qui sont faits pour éclairer le font très mal.

Cas 1: Si l'on se place dans le monde des chandelles.

EM(x) signifie que la chandelle x éclaire mal. FPE(x) signifie que x est fait pour éclairer.

- Quelques chandelles éclairent très mal ∃x EM(x)
- 2. Les chandelles sont faites pour éclairer

 $\forall x \text{ FPE}(x)$

3. donc : quelques objets qui sont fait pour éclairer le font très mal $\exists x \; (FPE(x) \land EM(x))$

On fait la conjonction du monde déclaré avec la négation de la conclusion à valider.

 $\exists x \ EM(x) \land \forall x \ FPE(x) \land \neg(\exists x \ (FPE(x) \land EM(x)))$

Mise sous forme prénexe.

 $\exists x \ EM(x) \land \forall x \ FPE(x) \land \forall x \ (\neg FPE(x) \lor \neg EM(x)))$

 $\exists x \ EM(x) \land \forall x \ (FPE(x) \land (\neg FPE(x) \lor \neg EM(x)))$

 $\exists y \ EM(y) \land \forall x \ (FPE(x) \land (\neg FPE(x) \lor \neg EM(x)))$

 $\exists y \ \forall x \ EM(y) \land FPE(x) \land (\neg FPE(x) \lor \neg EM(x))$

Skolemisation (remplacer y/a)

 \forall x EM(a) \land FPE(x) \land (\neg FPE(x) \lor \neg EM(x))

Forme clausale

C1 = EM(a)

C2 = FPE(x1)

 $C3 = \neg FPE(x2) \lor \neg EM(x2)$

Substitution de x2 par a

 $C'3 = \neg FPE(a) \lor \neg EM(a)$

Substitution de x1 par a

C'2 = FPE(a)

C1 et C'3 donnent comme résolvante : $C4 = \neg FPE(a)$

C4 et C'2 donnent comme résolvante une clause vide...

Il est donc impossible de satisfaire la négation de la conclusion en conjonction avec les prémisses, donc la conclusion est une déduction logique correcte.

Cas 2: Si l'on ne se place pas dans le monde des chandelles.

Ch(x) signifie que x est une chandelle

EM(x) signifie que l'objet x éclaire mal.

FPE(x) signifie que x est fait pour éclairer.

1. Quelques chandelles éclairent très mal

 $\exists x (Ch(x) \land EM(x))$

2. Les chandelles sont faites pour éclairer

 $\forall x (Ch(x) \rightarrow FPE(x))$

3. donc : quelques objets qui sont fait pour éclairer le font très mal

 $\exists x (FPE(x) \land EM(x))$

On fait la conjonction du monde déclaré avec la négation de la conclusion à valider.

 $\exists x \ (Ch(x) \land EM(x)) \land \forall x \ (Ch(x) \rightarrow FPE(x)) \land \neg (\exists x \ (FPE(x) \land EM(x)))$

Mise sous forme prénexe.

 $\exists x \ (Ch(x) \land EM(x)) \land \forall x \ (\neg Ch(x) \lor FPE(x)) \land \forall x \ (\neg FPE(x) \lor \neg EM(x))$

 $\exists x (Ch(x) \land EM(x)) \land \forall x (\neg Ch(x) \lor FPE(x)) \land (\neg FPE(x) \lor \neg EM(x))$

 $\exists y \ (Ch(y) \land EM(y)) \land \forall x \ (\neg Ch(x) \lor FPE(x)) \land (\neg FPE(x) \lor \neg EM(x))$

 $\exists y \ \forall x \ (\ Ch(y) \land EM(y) \land (\neg Ch(x) \lor FPE(x)) \land (\neg FPE(x) \lor \neg EM(x)) \)$

Skolemisation (remplacer y/a)

 $\forall x \text{ Ch}(a) \land \text{EM}(a) \land (\neg \text{Ch}(x) \lor \text{FPE}(x)) \land (\neg \text{FPE}(x) \lor \neg \text{EM}(x))$

Forme clausale

C1 = Ch(a)

C2 = EM(a)

 $C3 = \neg Ch(x1) \lor FPE(x1)$

 $C4 = \neg FPE(x2) \lor \neg EM(x2)$

Substitution de x2 par a

 $C'4 = \neg FPE(a) \lor \neg EM(a)$

Substitution de x1 par a

C'3 = FPE(a)

C2 et C'4 donnent comme résolvante : C5 = \neg FPE(a)

C5 et C'3 donnent comme résolvante : C6 = ¬Ch(a)

C1 et C6 donnent comme résolvante une clause vide...

Il est donc impossible de satisfaire la négation de la conclusion en conjonction avec les prémisses, donc la conclusion est une déduction logique correcte.

POUR S'ENTRAINER : MISE SOUS FORME PRENEXE... ET SES PIEGES!

Mettre les deux premières formules sous forme prénexe :

$$(\forall x \exists y \forall t R(x, z, y)) \rightarrow (\exists x \forall y \exists t S(x, z, t))$$

$$(\forall x \exists y \forall t R(x, z, t)) \rightarrow (\exists x \forall y \exists t S(x, z, t))$$

Dans la formule $(\forall x \exists y \forall t R(x, z, y)) \rightarrow (\exists x \forall y \exists t S(x, z, t))$

On supprime \rightarrow .

$$\neg (\forall x \exists y \forall t R(x, z, y)) \lor (\exists x \forall y \exists t S(x, z, t))$$

On transporte l'opérateur de négation devant la formule atomique

 $\exists x \forall y \exists t \neg R(x, z, y) \lor (\exists x \forall y \exists t S(x, z, t)) \text{ (forme } Qx F \lor G \equiv Qx (F \lor G))$

On déplace les quantificateurs

Le ∀y ne peut pas être le même pour les deux sous-formules.

Il n'y a pas de renommage à faire puisque le quantificateur \forall ne porte que sur la première sousformule (pas de y dans la seconde).

$$\exists x \forall y \exists t (\neg R(x, z, y) \lor (\exists x \forall y \exists t S(x, z, t)))$$

On déplace les quantificateurs

t n'a pas d'occurrence dans la 1ere sous-formule.

$$\exists x \forall y \exists t (\exists x \forall y \exists t (\neg R(x, z, y) \lor S(x, z, t)))$$

On simplifie

 $\exists x \forall y \exists t \neg R(x, z, y) \lor S(x, z, t)$

Dans la formule $(\forall x \exists y \ \forall t \ R(x, z, t)) \rightarrow (\exists x \ \forall y \ \exists t \ S(x, z, t))$

On supprime \rightarrow .

$$\neg \left(\forall x \; \exists y \; \forall t \; R(x, \, z, \, t) \right) \vee \left(\exists x \; \forall y \; \exists t \; S(x, \, z, \, t) \right)$$

On transporte l'opérateur de négation devant la formule atomique

$$\exists x \forall y \exists t \neg R(x, z, t) \lor (\exists x \forall y \exists t S(x, z, t)) \text{ (forme } Qx F \lor G \equiv Qx (F \lor G))$$

On déplace les quantificateurs et on simplifie (il n'y a pas de renommage nécessaire).

$$\exists x \ \forall y \ \exists t \ (\neg R(x, z, t) \lor (\exists x \ \forall y \ \exists t \ S(x, z, t)))$$

$$\exists x \forall y \exists t (\exists x \forall y \exists t (\neg R(x, z, t) \lor S(x, z, t)))$$

$$\exists x \forall y \exists t \neg R (x, z, t) \lor S(x, z, t)$$

On supprime les quantificateurs portant sur une variable n'appartenant pas aux formules

 $\exists x \ \exists t \ \neg R \ (x, z, t) \lor S(x, z, t)$