Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar¹

Efficiently Modelling Sparse Dynamical Systems with Compressed Predictive State Representations

William Hamilton, Mahdi Fard, Joelle Pineau

Department of Computer Science McGill University

June 8, 2013

Modelling a Dynamical System Using Time-Series Data

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

Problem: Efficiently learning a model of a dynamical system using time-series data.

- Focus on systems with the following properties:
 - Large discrete observation spaces.
 - Partially observability.
 - Sparsity.
- Example: Robot navigation without GPS

Latent-State Approaches to Learning.

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

Some popular examples:

- Expectation maximization learning with Hidden Markov Models (uncontrolled) [Rabiner, 1990] and POMDPs (controlled) [Kaelbling et al., 1998].
- Kalman Filtering [Kalman, 1960].

Limitations of these approaches:

- Assumptions.
- Local minima.
- Scalability.

Event-Based Approaches to Learning.

Efficiently
Modelling
Sparse
Dynamical
Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contributior

Results

Summar

 To avoid these limitations: work directly with observable events.

- Build model by determining probabilities of the form: $P(o_{t+2}^i o_{t+1}^j | o_t^k)$
- Learn how to compactly represent these probabilities as predictive states.
- Allows for model learning algorithms that are:
 - More general [Singh et al., 2004].
 - Immune to local minima [Rosencrantz et al., 2004].
- Examples:
 - Spectral learning methods [Hsu et al., 2008],
 Observable Operator Models, [Jaeger, 2000], Predictive State Representations [Littman et al., 2002].

The System Dynamics Matrix, \mathcal{D}

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Contributio

Results

Summar

- We want $P(\tau_i|h_i) \forall i \forall j$
- Rank finite and bounded [Littman et al., 2002].
- Tests corresponding to row basis called core tests.

Learning Compact Approximations of Predictive States (Previous Approaches)

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

Predictive State Representations

- Discover core tests through combinatorial search [Littman et al., 2002].
- Exponential complexity and not very useful in practice.
- Spectral Methods and Transformed Predictive State Representations (TPSRs) [Rosencrantz et al., 2004, Boots et al., 2009].
 - Estimate large sub-matrices of \mathcal{D} .
 - Project to low-dimensional subspace using SVD.
 - Computationally expensive, $O(|\mathcal{T}|^2|H|)$.
 - Consistency requires knowledge of rank(D) [Boots et al., 2009].

A new approach: Compressed Predictive State Representations (CPSRs)

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

- As with spectral methods, core test discovery avoided.
- Large sub-matrices of D are estimated in a compressed space using random projections.
 - Computationally efficient (projection has no cost).
 - Regularizes the solution (i.e. the learned model parameters).
 - Relies on the sparsity of the system.
- Compressed estimates and regression are used to learn compact model.

Key Assumption: Sparsity in \mathcal{D}

Efficiently
Modelling
Sparse
Dynamical
Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

• We say \mathcal{D} is k sparse if

$$k \ge ||\mathbf{c}_i||_0 \ \forall \mathbf{c_i} \in \mathcal{D}$$

- I.e. only k tests possible given any history h_i.
- Can we assume that many systems are sparse?
 - In Poc-Man domain, large sub-matrix estimates of \mathcal{D} empirically observed to have an average 99.902% column sparsity.

Compressing a Matrix using Random Projections

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

Exploit sparsity using random projections.

- Compress $m \times n$ matrix Y to a $d \times n$ matrix X, where d << m.
- Use

$$\mathbf{X} = \Phi \mathbf{Y}$$
.

where Φ is a $d \times m$ projection matrix with entries from $\mathcal{N} - (0, 1/d)$.

- In our case:
 - Projection via standard matrix multiplication unnecessary. Multiplication done "online" and Y matrix never held in memory.
 - Theoretical guarantees on compression fidelity.

Compressing a Matrix using Random Projections

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

Exploit sparsity using random projections.

- Compress $m \times n$ matrix Y to a $d \times n$ matrix X, where d << m.
- Use

$$\mathbf{X} = \Phi \mathbf{Y}$$
.

where Φ is a $d \times m$ projection matrix with entries from $\mathcal{N} - (0, 1/d)$.

- In our case:
 - Projection via standard matrix multiplication unnecessary. Multiplication done "online" and Y matrix never held in memory.
 - Theoretical guarantees on compression fidelity.

The CPSR Algorithm

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

Algorithm

- Obtain compressed estimates for sub-matrices of \mathcal{D} , $\Phi \mathcal{P}_{\mathcal{T},\mathcal{H}}$, $\Phi \mathcal{P}_{\mathcal{T},o',\mathcal{H}}$ s, and $\mathcal{P}_{\mathcal{H}}$ by sampling time series data.
 - Estimate $\Phi \mathcal{P}_{\mathcal{T},\mathcal{H}}$ in compressed space by adding ϕ_i to column j each time t_i observed after h_i (Likewise for $\Phi \mathcal{P}_{\mathcal{T},\phi',\mathcal{H}}$ s).
- Compute CPSR model:
 - $\mathbf{c}_0 = \Phi \hat{\mathcal{P}}(\tau | \emptyset)$
 - $\mathbf{C}_o = \Phi \mathcal{P}_{\mathcal{T},o',\mathcal{H}}(\Phi \mathcal{P}_{\mathcal{T},\mathcal{H}})^+$
 - $\mathbf{c}_{\infty} = (\Phi \mathcal{P}_{\mathcal{T},\mathcal{H}})^+ \hat{\mathcal{P}}_H$

Using the compact representation.

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

State definition and necessary equations

- **c**₀ serves as initial prediction vector (i.e. state vector).
- Update state vector after seeing observation with

$$oldsymbol{\circ} \ oldsymbol{c}_{t+1} = rac{oldsymbol{c}_o oldsymbol{c}_t}{oldsymbol{c}_\infty oldsymbol{c}_o oldsymbol{c}_t}$$

- Predict k-steps into the future using
 - $P(o_{t+k}^j|h_t) = \mathbf{b}_{\infty}\mathbf{C}_{o^j}(\mathbf{C}_{\star})^{k-1}\mathbf{C}_t$ where $\mathbf{C}_{\star} = \sum_{o^j \in \mathcal{O}}\mathbf{C}_{o_i}$.

Theory: Overview

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Our Contribution

Results

Summar

- Unlike spectral methods, we allow projection to subspaces of dimension $d < rank(\mathcal{D})$.
 - If $d \ge rank(\mathcal{D})$ then model trivially consistent [Boots et al., 2009].
- Results build upon work on compressed regression [Fard et al., 2012].
 - Analyze how compression provides regularization.
 - Provide error bounds and necessary projection size.
- We had to analyze how noisy targets affect these results.

Theory: Preliminaries

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Contribution

Results

Summary

 Results from the compressed regression literature [Maillard et al., 2012, Fard et al., 2012]:

• For random projection of size d, there exists a generic upper bound function ϵ , such that with probability no less than 1 $-\delta$

$$\|f(\mathbf{x}) - \hat{f}_d(\mathbf{x})\|_{\rho(\mathbf{x})} \le \epsilon(n, D, d, \|\mathbf{w}\| \|\mathbf{x}\|_{\rho(\mathbf{x})}, \sigma^2, \delta)$$

- Our sparsity assumptions:
 - For all h, $\mathcal{P}_{\mathcal{Q},h}$ and $\mathcal{P}_{\mathcal{Q},o,h}$ are k-sparse.

Theory: Main Results

Efficiently Modellina Sparse Dynamical Systems

Results

Error of the CPSR parameters

With probability no less than $1 - \delta$ we have:

$$\left\|\mathbf{C}_o(\Phi\mathcal{P}_{\mathcal{Q},h}) - \Phi\mathcal{P}_{\mathcal{Q},o,h}\right\|_{\rho(\mathbf{x})} \leq \sqrt{d}\epsilon(|\mathcal{H}|,|\mathcal{Q}|,d,L_o,\sigma_o^2,\delta/d)$$

Error propagation

The total propagated error for T steps is bounded by $\epsilon (c^T - 1)/(c - 1)$.

Projection size

A projection size of $d = O(k \log |Q|)$ suffices in a majority of systems.

GridWorld: Increased time-efficiency in small simple systems

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Contributio

Results

Summary

Poc-Man: Better model quality in large difficult systems

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivation

Contributio

Results

Summarı

Partially observable variant of Pac-Man video-game with $|\mathcal{S}|=10^{56}$ and $|\mathcal{O}|=2^{10}$ [Silver and Veness, 2010].

Summary

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Motivatior

Contribution

Results

Summary

- Developed an efficient algorithm for modelling dynamical systems.
- The compression technique has extremely low computational cost.
- Model can be used for planning.
- Directions for further work:
 - Determine how feature mapping affects sparsity.
 - Examine different model averaging techniques.
 - Formally analyze value-function based planning approach.

References L

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Appendix

Boots, B., Siddiqi, S., and Gordon, G. (2009). Closing the learning-planning loop with predictive state representations.

In Proceedings of Robotics: Science and Systems VI.

Fard, M., Grinberg, Y., Pineau, J., and Precup, D. (2012).

Compressed least-squares regression on sparse spaces.

AAAI.

Hsu, D., Kakade, S., and Zhang, T. (2008).
A spectral algorithm for learning hidden markov models.

In COLT.

References II

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Appendix

Jaeger, H. (2000).

Observable operator models for discrete stochastic time series.

Neural Computation, 12(6):1371–1398.

Kaelbling, L., Littman, M., and Cassandra, A. (1998). Planning and acting in partially observable stochastic domains.

Artificial Intelligence, 101:99–134.

Kalman, R. (1960).

A new approach to linear filtering and prediction problems.

In *Transactions of the ASME, Journal of Basic Engineering*, volume 82, pages 35–45.

References III

Efficiently Modelling Sparse Dynamical Systems

William Hamilton, Mahdi Fard, Joelle Pineau

Appendix

- Littman, M., Sutton, R. S., and Singh, S. (2002).

 Predictive representations of state.

 In In Advances In Neural Information Processing Systems.
- Maillard, O., Munos, R., et al. (2012). Linear regression with random projections. Journal of Machine Learning Research.
- Rabiner, L. R. (1990).

 Readings in speech recognition.

 chapter A tutorial on hidden Markov models and selected applications in speech recognition, pages 267–296.

References IV

Efficiently Modellina Sparse Dynamical Systems

Appendix

- Rosencrantz, M., Gordon, G., and Thrun, S. (2004). Learning low dimensional predictive representations. In Proceedings of the twenty-first international conference on Machine learning.
- Silver, D. and Veness, J. (2010). Monte-carlo planning in large pomdps. In Advances In Neural Information Processing Systems, 47:1-9.
- Singh, S., James, M., and Rudary, M. (2004). Predictive state representations: a new theory for modeling dynamical systems.

In Proceedings of the 20th conference on Uncertainty in artificial intelligence.