自动驾驶论文讲坛:

YOLO, YOLO9000:

Unified, Real-Time Object Detection

Authors: Joseph Redmon, Ali Farhadi, Santosh Divvala, Ross Girshick

Speaker: Yuehong Huang

Friday 17/11/2017

12:00 PM (GMT+8)

Zoom.us Webinar

Comparison to Other Detection System --Accurate object detection is slow!

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img

DPM: Deformable Part Models

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

Compute CNN features

4. Classify regions 4

tvmonitor? no.

aeroplane? no.

person? yes.

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

1/3 Mile, 1760 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img

176 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img

Sliding window, DPM, R-CNN all train region-based classifiers to perform detection

DPM: Deformable Part Models

Complex Pipeline

R-CNN: Regions with CNN features

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	63.4	45 FPS	22 ms/img

YOLO can be better!

iMorpheus

	Pascal 2007 mAP	Speed	iMo
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	63.4	45 FPS	22 ms/img

With YOLO, you only look once at an image to perform detection

Unified Model:

- 1. YOLO is extremely fast -- no complex pipeline
- 2. Twice the mean average precision of other real-time systems
- 3. YOLO reasons globally about the image less background errors
- 4. YOLO learns generalizable representations of objects new domain and unexpected input (art works).

Unified Detection -- we split the image into a grid

Each cell also predicts a class probability.

Conditioned on object: P(Car | Object)

Bicycle

Dog

Car

Dining Table 20

Then we combine the box and class predictions.

Finally we do threshold detections

This parameterization fixes the output size

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

The architecture of network

1. 24 convolutional layers

During training, match example to the right cell

Some cells don't have any ground truth detections!

Anchor boxes use static initialization

We use k-means to find better initializations

Anchor Boxes

Dimension Clusters

Dimension Clusters: +5% mAP

Box Generation	#	Avg IOU
Cluster SSE	5	58.7
Cluster IOU	5	61.0
Anchor Boxes [15]	9	60.9

Multi-scale training: +1.5% mAP

YOLOv2: Fast, Accurate Detection

Typically use softmax over all classes

Can't just mash classes together...

Can't just mash classes together...

WordNet has structure but it's messy

Each node is a conditional probability

Experiments -- YOLO works across a variety of natural images

It also generalizes well to new domains (like art)

So how many classes can

Code, models, and updates:

https://pjreddie.com/yolo/

XNOR.AI

iMorpheus Journal Club (Friday 12:00PM GMT+8, Weekly)

每周五下午12点 (北京时间)

iMorpheus website : www.imorpheus.ai

Email Address: live@imorpheus.ai

微信 Wechat

