考试类别[学生填写](□正考 □补考 □重修 □补修 □缓考 □其它)

《高等数学 A2》(A 卷)参考答案

电气、计算机、软件、建环各专业 17 级适用

一、单项选择题(6小题,每小题3分,共18分)

1. 已知 $y_1 = \cos wx$ 及 $y_2 = \sin wx$ 都是微分方程 $y'' + w^2 y = 0$ 的解,则该方程的通解

- (A) $y = Cx \tan wx$;
- (B) $y = C_1 \cos wx + C_2 \sin wx$;
- (C) $y = C_1 \cot wx + C_2 \tan wx$;
- (D) $y = C_1(\cos wx + \sin wx) + C_2$.
- 2. 改换二次积分的积分次序: $\int_0^a dx \int_0^x f(x,y) dy = ----- (C)$
 - (A) $\int_0^a dy \int_0^y f(x,y) dx$;
- (B) $\int_0^a dx \int_0^a f(x, y) dy;$
- - (A) $(y + \frac{1}{y}) dx + x(1 \frac{1}{y^2}) dy$; (B) $(y + \frac{1}{y}) dx + x(1 + \frac{1}{y^2}) dy$;
- (C) $(y^2 + \frac{1}{v}) dx + x(1 \frac{1}{v^2}) dy$; (D) $(y \frac{1}{v}) dx + x(1 + \frac{1}{v^2}) dy$.
- (C) $(y^2 + \frac{1}{y}) dx + x(1 \frac{1}{y^2}) dy$; (D) $(y \frac{1}{y}) dx + x(1 + \frac{1}{y^2}) dy$. 料4. 若级数 $\sum_{n=1}^{\infty} aq^n$ (a 为常数) 收敛,则 q 应满足-------(D) (A) |q| > 1; (B) q = 1; (C) q = -1; (D) |q| < 1.

- 5. 设 L 是抛物线 $y = x^2$ 上从 (0,0) 到 (1,1) 的一段弧,则 $\int_{L} \sqrt{y} \, ds =$ ------ (C)
 - (A) $\int_{0}^{1} \sqrt{1+4x^2} \, dx$;
- (B) $\int_{0}^{1} \sqrt{y} \sqrt{1+y} \, dy$;
- (C) $\int_0^1 x \sqrt{1 + 4x^2} \, dx$;
- (D) $\int_0^1 \sqrt{y} \sqrt{1 + \frac{1}{y}} \, dy$.
- 6. 函数 $f(x) = \frac{1}{1-x}$ 展开为 x 的幂级数,正确的是------ (A)

 - (A) $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, x \in (-1,1);$ (B) $\frac{1}{1-x} = \sum_{n=0}^{\infty} (-1)^n x^n, x \in (-1,1);$

 - (C) $\frac{1}{1-x} = \sum_{n=1}^{\infty} x^n, x \in (-1,1);$ (D) $\frac{1}{1-x} = \sum_{n=1}^{\infty} (-1)^n x^n, x \in (-1,1).$
- 二、填空题(6小题,每小题3分,共18分)
- 7. 微分方程 y'' = x 的通解 $y = \frac{1}{6}x^3 + C_1x + C_2$.
- 8. 设函数 $z = x^2 \sin 2y$,则 $\frac{\partial^2 z}{\partial x \partial y} = \frac{4x \cos 2y}{2}$.
- 9. 设闭区域 Ω 为 $-a \le x \le a$, $-b \le y \le b$, $-c \le z \le c$, 则 $\iiint 1 dv = \underline{8abc}$.
- 10. 若级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 分别收敛于和 s_1 与 s_2 ,则 $\sum_{n=1}^{\infty} (u_n + v_n) = \underline{s_1 + s_2}$.
- 11. 以 2π 为周期的函数 f(x) 的傅里叶级数展开式为 $\frac{a_0}{2} + \sum_{i=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,

则系数 b_n 的表达式为 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$.

12. 设 f 是 圆 域 $D = \{(x, y) | x^2 + y^2 \le 1\}$ 上 的 连 续 函 数 , 将 二 重 积 分 $I = \iint f(\sqrt{x^2 + y^2}) dx dy$ 化为极坐标系下的二次积分的结果是 $I = \int_0^{2\pi} d\boldsymbol{\theta} \int_0^1 f(\boldsymbol{\rho}) \boldsymbol{\rho} \, \mathrm{d} \boldsymbol{\rho}.$

第1页/共4页 节约用纸两面书写

三、解答题(7小题,每小题6分,共42分)

- 13. 求微分方程 $y'' + 3y' + 2y = 6e^x$ 通解.
- 解: 齐次微分方程的特征方程为 $r^2 + 3r + 2 = 0$, 特征根为 $r_1 = -1, r_2 = -2$, 故

齐次通解为
$$Y(x) = C_1 e^{-x} + C_2 e^{-2x}$$
; ------3分

右端项 $f(x) = 6e^x = P_0(x)e^{\lambda x}$, $\lambda = 1$ 不是特征方程的根, 故设特解 $y^* = ae^x$, 则

$$y^{*'} = ae^x$$
, $y^{*''} = ae^x$, 代入微分方程 $y'' + 3y' + 2y = 6e^x$, 得

$$6a e^x = 6^x e$$
,故 $a = 1$,得特解 $y^* = e^x$

综上, 所求 通解为

$$y = C_1 e^{-x} + C_2 e^{-2x} + e^x$$
 ----- 6 \Re

- 14. 求曲线 $x = 2\sin t$, $y = 4\cos t$, z = t 在点 $(2,0,\frac{\pi}{2})$ 处的法平面方程.
- 解: $x' = 2\cos t$, $y' = -4\sin t$, z' = 1, ----- 3 分

$$t=rac{\pi}{2}$$
时切向量 $T=(0,-4,1)$,故法平面方程为
$$4y-z=-rac{\pi}{2} \qquad \qquad ------6分$$

15. 设 z = z(x, y) 由方程 $x^2 + y^2 + z^2 = 4z$ 确定,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

解法一: 令
$$F(x, y, z) = x^2 + y^2 + z^2 - 4z$$
,则
$$F_x = 2x, F_y = 2y, F_z = 2z - 4$$
,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{2x}{4 - 2z} = \frac{x}{2 - z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{2y}{4 - 2z} = \frac{y}{2 - z}. \quad -----6$$

解法二: 方程两边对x求导, z = z(x, y), 得

$$2x + 2z \frac{\partial z}{\partial x} = 4 \frac{\partial z}{\partial x}$$
, 整理得 $\frac{\partial z}{\partial x} = \frac{x}{2-z}$ ----- 3分

方程两边对 y 求导, z = z(x, y) ,得

$$2y + 2z \frac{\partial z}{\partial y} = 4 \frac{\partial z}{\partial y}$$
, 整理得 $\frac{\partial z}{\partial y} = \frac{y}{2-z}$ -----6分

16. 计算 $\iint_D xy \, d\sigma$, 其中 D 是由直线 y=1、 x=2 及 y=x 所围成的闭区域.

解:
$$\iint_{D} xy \, d\sigma = \int_{1}^{2} dx \int_{1}^{x} xy \, dy \qquad ----- 2 \, \text{分}$$
$$= \int_{1}^{2} x \left[\frac{y^{2}}{2} \right]_{1}^{x} dx = \frac{1}{2} \int_{1}^{2} (x^{3} - x) \, dx = \frac{1}{2} \left(\frac{15}{4} - \frac{3}{2} \right) = \frac{9}{8} \quad ----- 6 \, \text{分}$$

17. 求函数 z = xy 在点 (1,2) 处沿方向 l = (1,1) 的方向导数.

解:
$$z_x = y, z_y = x$$
, 故 $z_x(1,2) = 2, z_y(1,2) = 1$ ---- 3 分

方向l 的单位向量为 $e_l = \frac{1}{\sqrt{2}}(1, 1, \text{ 故方向导数})$

$$\frac{\partial z}{\partial l}|_{(1,2)} = \frac{1}{\sqrt{2}}(2\cdot 1 + 1\cdot 1) = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$
 ----- 6 \(\frac{\frac{1}}{2}\)

18. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{2^n \cdot n}$ 的收敛域.

$$\mathbf{m}$$
: $a_n = \frac{1}{2^n \cdot n}$, 收敛半径

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{2^{n+1}(n+1)}{2^n \cdot n} = 2 \circ -----4$$

当
$$x = 2$$
 时,级数 $\sum_{n=1}^{\infty} \frac{2^n}{2^n \cdot n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散;

第2页/共4页节约用纸两面书写

当
$$x = -2$$
 时,级数 $\sum_{n=1}^{\infty} \frac{(-2)^n}{2^n \cdot n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛,故收敛域为[-2,2)

-----6 分

19. 利用高斯公式,求 $I = \bigoplus_{\Sigma} (y^2 + z) dy dz + z^3 dx dy$,其中 Σ 是曲面 $z = x^2 + y^2$ 与 平面 z = 2 所围成的整个立体表面的外侧.

解:
$$P = y^2 + z$$
, $Q = 0$, $R = z^3$, 则 $\frac{\partial P}{\partial x} = 0$, $\frac{\partial Q}{\partial y} = 0$, $\frac{\partial R}{\partial z} = 3z^2$ 连续,由高斯公式得

$$I = \iint_{\Sigma} (y^2 + z) \, dy \, dz + z^3 \, dx \, dy = \iiint_{\Omega} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) \, dv = \iiint_{\Omega} 3z^2 \, dv \quad -----3 \, \mathcal{D}$$

法一: $\Omega:(x,y)\in D_z, 0\leq z\leq 2$, 其中 $D_z:x^2+y^2\leq z$,利用先二后一的方法,得

$$I = \int_0^2 dz \iint_{D_z} 3z^2 dx dy = \int_0^2 3z^2 dz \iint_{D_z} dx dy = \int_0^2 \pi z \cdot 3z^2 dz$$

$$= \pi \int_0^2 3z^3 \, dz = \pi \left[\frac{3z^4}{4} \right]_0^2 = 12\pi.$$
 ----- 6 \(\frac{2}{2} \)

法二: $\Omega: x^2 + y^2 \le z \le 2, (x, y) \in D_{xy}$, 其中 $D_{xy}: x^2 + y^2 \le 2$, 利用柱面坐标

$$x = \rho \cos \theta, y = \rho \sin \theta, z = z$$
, θ

$$I = \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} \rho d\rho \int_{\rho^2}^2 3z^2 dz = 2\pi \int_0^{\sqrt{2}} \rho [z^3]_{\rho^2}^2 d\rho = 2\pi \int_0^{\sqrt{2}} (8\rho - \rho^7) d\rho$$
$$= 2\pi [4\rho^2 - \frac{\rho^8}{9}]_0^{\sqrt{2}} = 12\pi$$
------6 \(\frac{\psi}{2}\)

四、分析题(本题7分)

20. 根据 a 的不同取值, 讨论级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot a^n}$ (a > 0) 的敛散性.

解: 令
$$u_n = \frac{(-1)^n}{n \cdot a^n} = \frac{1}{n \cdot a^n}$$
, 利用比值审敛法(或根值审敛法)

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n} = \lim_{n\to\infty}\frac{na^n}{(n+1)a^{n+1}} = \frac{1}{a} \quad (\text{ if } \lim_{n\to\infty}\sqrt[n]{u_n} = \frac{1}{a} \quad ----3 \text{ fr}$$

当
$$a > 1$$
 时,级数 $\sum_{n=1}^{\infty} \frac{1}{n \cdot a^n}$ 绝对收敛,故级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot a^n}$ 收敛;

当
$$0 < a < 1$$
时,级数 $\sum_{n=1}^{\infty} \frac{1}{n \cdot a^n}$ 发散,故级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot a^n}$ 发散;

当
$$a=1$$
 时,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot a^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛。

综上, 当
$$a \ge 1$$
时,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot a^n}$ 收敛; $0 < a < 1$ 时,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot a^n}$ 发散。----- 7 分

五、应用题(本题7分)

21. 利用拉格朗日乘数法, 求函数 $f(x,y,z) = \ln x + \ln y + 3\ln z$ 在条件 $x^2 + y^2 + z^2 = 5$ (x > 0, y > 0, z > 0) 下的极大值.

解:构造拉格朗日函数

 $L(x, y, z) = \ln x + \ln y + 3\ln z + \lambda(x^2 + y^2 + z^2 - 5) (x > 0, y > 0, z > 0)$, -----2 分求导得

$$\begin{cases} L_x = \frac{1}{x} + 2x\lambda = 0 & (1) \\ L_x = \frac{1}{y} + 2y\lambda = 0 & (2) \\ L_z = \frac{3}{z} + 2z\lambda = 0 & (3) \\ L_\lambda = x^2 + y^2 + z^2 - 5 = 0 & (4) \end{cases}$$
 ----- 5 $\frac{2}{x^2}$

(1), (2), (3) 联立解得
$$x^2 = y^2 = \frac{z^2}{3}$$
, 代入 (4) 得 $x = 1, y = 1, z = \sqrt{3}$ 。因驻点只

第3页/共4页

有一个,根据实际问题驻点唯一性知,该驻点处取得极大值,且极大值为

$$f(1, \sqrt{1}, 3\frac{3}{2})$$
 -----7 $\%$

六、证明题(本题8分)

22. 证明曲线积分 $\int_L (1+4xy^3) dx + (6x^2y^2 - 5y^4) d$ 与积分路径 L 无关,并求 $I = \int_{(0,0)}^{(1,1)} (1+4xy^3) dx + (6x^2y^2 - 5y^4) dy$ 的值.

解: $P=1+4xy^3$, $Q=6x^2y^2-5y^4$, 则 $\frac{\partial P}{\partial y}=12xy^2=\frac{\partial Q}{\partial x}$, 所以该曲线积分与路径 无关。 -----4分

沿折线路径 $(0,0) \rightarrow (1,0) \rightarrow (1,1)$,则

$$I = \int_0^1 P(x,0) \, dx + \int_0^1 Q(1,y) \, dy = \int_0^1 1 \, dx + \int_0^1 (6y^2 - 5y^4) \, dy$$
$$= \int_0^1 1 \, dx + \int_0^1 (6y^2 - 5y^4) \, dy = 1 + [2y^3 - y^5]_0^1 = 2 \qquad -----8 \, \text{A}$$