

TÓPICOS EM CIÊNCIA DE DADOS PARA O ESPORTE

ALGORITMO ELO

DIEGO RODRIGUES DSC

INFNET

AGENDA

- PARTE 1 : TEORIA
 - CONTEXTO
 - ALGORITMO ELO
- PARTE 2 : PRÁTICA
 - PROGRAMA PYTHON →
 RANQUEAMENTO ESTATÍSTICO
 DO BRASILEIRÃO

CRONOGRAMA

DIA	NÚMERO	ÁREA	AULA	TRABALHOS
10/10/2023	1	Intro	Introdução a Disciplina e Organização do Ambiente	
17/10/2023	2	Dados	Coleta de Dados e Sensoriamento	
19/10/2023	3		Variáveis Aleatórias	Grupos
24/10/2023	4		Análise Exploratória	
26/10/2023	5		Estatísticas para Ranqueamento	
31/10/2023	6	Estatística	Ranqueamento Estatístico : ELO	Base de Dados
07/11/2023	7		Ranqueamento Estatístico : Glicko	
09/11/2023	8		Ranqueamento Estatístico : TrueSkill	
14/11/2023	9		Ranqueamento Estatístico : XELO	
16/11/2023	10		Modelos de Aprendizado de Máquina	Pesquisa
21/11/2023	11		Machine Learning: Classificação	
23/11/2023	12	ML	Machine Learning: Regressão	
28/11/2023	13		Machine Learning: Agrupamento	
30/11/2023	14		Machine Learning: Visão Computacional	Modelo
5/12/2023	15		Aplicações & Artigos: Esportes Independentes	
7/12/2023	16	Esportes	Aplicações & Artigos: Esportes de Combate	
12/12/2023	17	Laportes	Aplicações & Artigos: Esportes de Objeto	
14/12/2023	18		Aplicações & Artigos : Betting	
19/12/2023	19	Workshop	Workshop	
21/12/2023	20	vvoiksiiop	Apresentações de Trabalhos	Apresentação

SETUP INICIAL DO AMBIENTE PYTHOM

4. Variáveis Aleatórias

5. Visualização

6. Estimação e

Keras

1. Editor de Código

2. Gestor de Ambiente

statsmodels

3. Ambiente Python do Projeto

3. Notebook Dinâmico

CONTEXTO

TAXONOMIA

- ESPORTES FÍSICOS E ESPORTES MENTAIS.
 - JOGOS UTILIZANDO O CORPO VERSUS JOGOS UTILIZANDO A MENTE.
- TIPOS DE ESPORTE.
 - COMBATE: CONTROLAR O CORPO DO ADVERSÁRIO.
 - INDEPENDENTES: CONTROLAR O PRÓPRIO CORPO.
 - OBJETO: CONTROLAR UM OBJETO ESPECÍFICO.
- TIPOS DE RANQUEAMENTO
 - SUBJETIVO: AVALIAÇÃO SUBJETIVA DE JUÍZES OU TÉCNICOS.
 - ACUMULATIVO: SOMATÓRIO DE PONTUAÇÕES EM JOGOS E COMPETIÇÕES, AO LONGO DE UM PERÍODO DE TEMPO.
 - ADAPTATIVO: CALCULADO DE MANEIRA DINÂMICA A CADA EVENTO ESPORTIVO.

ALGORITMOS DE RANQUEAMENTO SÃO UTILIZADOS POR ESPORTES MENTAIS...

Federação de Xadrez usa o algoritmo ELO desde 1970 para ranquear os jogadores.

ELO usado na MSN Gaming Zone desde 1998.

Jogos recentes como Dota 2 já contam com ranqueamento a nível mundial.

TAMBÉM SÃO USADOS POR ESPORTES FÍSICOS...

De 159 esportes reconhecidos pelo COI e fontes alternativas, 99 usam algum tipo de ranqueamento, correspondendo à 62%.

Apenas 13 esportes utilizam algoritmos adaptativos. Esse número representa 13% dos esportes ranqueados e apenas 8% dos esportes reconhecidos.

Instituição	Esportes	Combate	Independentes	Objeto
COI Verão	39	6	22	11
COI Inverno	15	0	13	12
COI Reconhecidos	52	3	22	27
Outras Referências	53	9	17	27
Total	159	18	74	67

Esporte	Quantidade	Nenhum	Subjetivo	Acumulativo	Adaptativo
Combate	18	12	2	3	1
Independentes	74	18	0	53	3
Objeto	67	30	0	28	9
Total	159	60	2	84	13

Esporte	Algoritmo		
Sumo	ELO		
Xadrez	ELO		
Croqué	ELO		
Damas	ELO		
Go	ELO		
Futebol Feminino	ELO		
Arco e Flecha	Média Adaptativa		
Frisbee Golf	Média Adaptativa		
Golf	Média Adaptativa		
Futebol Masculino	Média Adaptativa		
Squash	Média Adaptativa		
Cricket	Probit		
Netball	Probit		
Rugby	Probit		

The Methodology of Oficially Recognized International Sports Rating Systems (2011)

ALGORITMO ELO

ESTIMADORES DINÂMICOS

$$\mu_n = \frac{1}{N} \sum_{i}^{n} x_i$$

$$\mu_{n+1} = \frac{1}{N} \sum_{i}^{n+1} x_i$$

$$\mu_{n+1} = \frac{n\mu_n + x_{n+1}}{n+1}$$

$$\mu_{n+1} = \mu_n + \frac{x_{n+1}}{n}$$

$$\mu_{n+1} = \mu_n + k x_{n+1}$$

MODELO BRADLEY TERRY

≡ Bradley–Terry model

文 1 language ~

Article Talk Read Edit View history Tools >

From Wikipedia, the free encyclopedia

The **Bradley–Terry model** is a probability model for the outcome of pairwise comparisons between individuals, teams, or objects. Given a pair of individuals i and j drawn from some population, it estimates the probability that the pairwise comparison i > j turns out true, as

$$P(i>j)=rac{p_i}{p_i+p_j}$$
 (1)

where p_i is a positive real-valued score assigned to individual i. The comparison i > j can be read as "i is preferred to j", "i ranks higher than j", or "i beats j", depending on the application.

For example, p_i might represent the skill of a team in a sports tournament and P(i>j) the probability that i wins a game against j.^{[1][2]} Or p_i might represent the quality or desirability of a commercial product and P(i>j) the probability that a consumer will prefer product i over product j.

The Bradley–Terry model can be used in the forward direction to predict outcomes, as described, but is more commonly used in reverse to infer the scores p_i given an observed set of outcomes. In this type of application p_i represents some measure of the strength or quality of i and the model lets us estimate the strengths from a series of pairwise comparisons. In a survey of wine preferences, for instance, it might be difficult for respondents to give a complete ranking of a large set of wines, but relatively easy for them to compare sample pairs of wines and say which they feel is better. Based on a set of such pairwise comparisons, the Bradley–Terry model can then be used to derive a full ranking of the wines.

Once the values of the scores p_i have been calculated, the model can then also be used in the forward direction, for instance to predict the likely outcome of comparisons that have not yet actually occurred. In the wine survey example, for instance, one could calculate the probability that someone will prefer wine i over wine j, even if no one in the survey directly compared that particular pair.

ELO: MODELO DE COMPARAÇÃO DE PARES

- ASSUME QUE OS JOGADORES POSSUEM UM NÍVEL DE HABILIDADE μ .
- TAMBÉM ASSUME QUE EM UMA PARTIDA, DOIS JOGADORES APRESENTARÃO UM DESEMPENHO d, COM VARIAÇÃO β AO REDOR DE SUA HABILIDADE.

$$d_i \sim \mathcal{N}(\mu_i, \beta^2)$$

$$\delta_1 \sim \mathcal{N}(\mu_1 - \mu_2, \sqrt{2}\beta)$$
$$p_{ij} = E[\delta_i] = \Phi\left(\frac{\mu_i - \mu_j}{\sqrt{2}\beta}\right)$$

ATUALIZAÇÃO DA HABILIDADE

DADO O RESULTADO DA PARTIDA, AS HABILIDADES SÃO ATUALIZADAS PROPORCIONALMENTE À DIFERENÇA ENTRE AS **HABILIDADES ORIGINAIS** E O **RESULTADO OBTIDO NA PARTIDA**.

Favorito

A B
$$= K(1 - 0.75) = 0.25K$$
 $= 0.25K$

Zebra

B A =
$$K(1 - 0.25)$$
 = $K(0 - 0.75)$ = -0.75 K

$$\mu_i \leftarrow \mu_i + \Delta_i$$

$$\Delta_{i} = K \left(y_{i} - \Phi \left(\frac{\mu_{i} - \mu_{j}}{\sqrt{2}\beta} \right) \right) = K \left(y_{i} - p_{ij} \right)$$

Resultado

Resultado Previsto

DESAFIO: RODAR O BOOTELO NA MÁQUINA

PRÓXIMA AULA LEITURA: ALGORITMO GLICKO