6. 4 (위)상평면(Phase Plane)과 임계점(Critical Point)

1. (위)상평면(Phase Plane)

연립미분방정식의 해를 직접 구하지 않으면서 해에 대한 일반적인 정성적(qualitative) 정보를 얻는 방법을 **정성법**(qualitative method)이라고 하고 (위)상평면의 개념은 정성법의 대표적인 예이다.

두 개의 상미분방정식으로 구성되는 상수계수를 갖는 연립미분방정식

$$\begin{cases} x^{\prime}(t) = \ a_{11}x(t) + a_{12}y(t) \\ y^{\prime}(t) = \ a_{21}x(t) + a_{22}y(t) \end{cases} \Leftrightarrow \mathbf{y}^{\prime}(t) = \begin{bmatrix} x^{\prime}(t) \\ y^{\prime}(t) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = A\mathbf{y}(t)$$

의 해 $\mathbf{y}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ 의 각각의 성분(해 x(t), y(t))에 대하여 한 개씩 그래프를 그림으로써 t 축 상의두 개의 해곡선을 그릴 수 있다. 그런데 이 해 $\mathbf{y}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ 를 xy-평면에 한 개의 곡선으로도 그릴 수 있다. 이것이 매개변수 t를 갖는 매개변수표현(parametric representation) 또는 매개변수방정식 (parametric equations)이라 한다. 이와 같은 곡선을 연립미분방정식 $\mathbf{y}'(t) = A\mathbf{y}(t)$ 의 귀적 (trajectory) 또는 궤도(orbit)라 하고, xy-평면을 (위)상평면(phase plane)이라고 한다. (위)상평면에 연립방정식의 궤적을 그려놓은 그림을 (위)상투영(phase portrait)이라 한다.

2. 연립방정식의 임계점(Critical point)

연립미분방정식

$$\begin{cases} x'(t) = a_{11}x(t) + a_{12}y(t) \\ y'(t) = a_{21}x(t) + a_{22}y(t) \end{cases} \Leftrightarrow \mathbf{y}'(t) = \begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = A\mathbf{y}(t)$$

에서

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a_{21}x + a_{22}y}{a_{11}x + a_{12}y}$$

를 얻는다. 이 식은 점 $P=P_0(0,0)$ (원점)을 제외한 모든 점 P(x,y)에 대해서 점 P를 지나는 궤적의 유일한 접선의 기울기 $\frac{dy}{dx}$ 의 값을 준다. 점 $P_0(0,0)$ 에서는 우변이 $\frac{0}{0}$ 이 되어 $\frac{dy}{dx}$ 가 정의되지 않는다. 이와 같이 상평면의 그래프의 접선의 기울기 $\frac{dy}{dx}$ 가 정의되지 않는 점 P_0 를 연립미분방정식 y'(t)=Ay(t)의 임계점(critical point)이라 한다.

3. 임계점 P_0 의 분류와 궤적

(1) 임계점 P_0 의 분류

 P_0 가 연립미분방정식

$$\begin{cases} x^{\prime}(t) = \ a_{11}x(t) + a_{12}y(t) \\ y^{\prime}(t) = \ a_{21}x(t) + a_{22}y(t) \end{cases} \Leftrightarrow \quad \boldsymbol{y}^{\prime}(t) = \begin{bmatrix} x^{\prime}(t) \\ y^{\prime}(t) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = A\boldsymbol{y}(t)$$

의 **임계점**(critical point)이라 하자. 그러면 임계점 P_0 근방(부근)에서 궤적의 기하학적 형태에 따라서 임계점을 다음과 같이 분류한다.

임계점 P_0 의 분류	개념 및 정의
비고유마디점 (improper node)	임계점 P_0 에서 두 개의 궤적을 제외한 나머지 모든 궤적의 접선이 같은 극한방향을 갖는 임계점
고유마디점 (proper node)	임계점 P_0 에서 각각의 궤적들이 특정한 극한방향을 가지는 임계점으로 서 P_0 에서 임의로 주어진 방향 \overrightarrow{d} 에 대하여 \overrightarrow{d} 를 극한방향으로 가지는 궤적이 존재한다.
안장점 (saddle point)	임계점 P_0 에서 두 개의 들어오는 궤적과 두 개의 나가는 궤적이 존재하고 P_0 근방(부근)의 모든 다른 궤적들은 P_0 를 우회하는 임계점
중심 (center)	무한히 많은 닫힌 궤적들에 의해 둘러싸여진 임계점
나선점 (spiral point)	$t \to \infty$ 일 때 궤적들이 임계점 P_0 의 주위에서 나선형을 그리며 P_0 에 접근하는(또는 P_0 으로부터 멀어지면서 이 나선들을 반대 방향으로 그리는) 임계점

(2) 임계점 P_0 에서의 궤적

4. 임계점 P_0 의 종류 및 판정

연립미분방정식

$$\begin{cases} x'(t) = a_{11}x(t) + a_{12}y(t) \\ y'(t) = a_{21}x(t) + a_{22}y(t) \end{cases} \Leftrightarrow \mathbf{y}'(t) = A\mathbf{y}(t)$$

의 해는 $y(t) = xe^{\lambda t}$ 의 형태이고. 이것을 연립방정식 y'(t) = Ay(t)에 대입하면

$$\mathbf{y}'(t) = \lambda \mathbf{x} e^{\lambda t} = A \mathbf{y}(t) = A \mathbf{x} e^{\lambda t} \iff A \mathbf{x} = \lambda \mathbf{x}$$

을 얻는다. 여기서 λ 는 행렬 A의 고윳값이고 x는 λ 에 대응하는 A의 고유벡터이다. 따라서 연립방정식 y'(t) = Ay(t)의 임계점은 행렬 A의 고윳값과 밀접한 관계가 있음을 추측할 수 있다.

행렬 $A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ 의 고윳값 λ 는 특성방정식(characteristic equation)

$$\det(\lambda I_2 - A) = \begin{vmatrix} \lambda - a_{11} & -a_{12} \\ -a_{21} & \lambda - a_{22} \end{vmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = 0$$

의 해이다. 이차방정식의 두 해를 λ_1 , λ_2 라 하면

 $\lambda_1+\lambda_2=tr(A)=a_{11}+a_{22},\ \lambda_1\cdot\lambda_2=\det(A)=a_{11}a_{22}-a_{12}a_{21},\ D=[tr(A)]^2-4[\det(A)]$ 이므로 특성방정식은

$$\lambda^2 - tr(A)\lambda + \det(A) = 0$$

이고. 이 방정식의 해는

$$\lambda_1 = \frac{tr(A) + \sqrt{D}}{2} \& \lambda_2 = \frac{tr(A) - \sqrt{D}}{2}$$

이다. 또한 위 λ_1 과 λ_2 에 의해서

$$D = (\lambda_1 - \lambda_2)^2$$

을 얻는다. 이와 같은 내용을 이용해서 『**임계점의 종류와 판정**』을 다음과 같이 할 수 있다.

0.53	판별식과 고윳값의 부호			크 9 가 \ 시 레 레 차 서면	
유형	D	$\det(A)$	tr(A)	고윳값 $\lambda_1,\;\lambda_2$ 에 대한 설명	
불안정 고유마디점 (unstable node)	$D \ge 0$	$\det(A) > 0$	tr(A) > 0	두 고윳값이 실수 & 같은 양의 부호	
안정하고 끌어당기는 비고유마디점 (stable attractive onde)	$D \ge 0$	$\det(A) > 0$	tr(A) < 0	두 고윳값이 실수 & 같은 음의 부호	
안장점 (saddle point)	D > 0	$\det(A) < 0$		두 고윳값이 실수 & 반대 부호	
퇴화 마디점 (degenerate node)	D = 0			고윳값이 중근	
중심 (center)	D < 0	$\det(A) > 0$	tr(A) = 0	두 고윳값이 순허수	
나선점 (spiral point)	D < 0	$\det(A) > 0$	$tr(A) \neq 0$	두 고윳값이 순허수가 아닌 복소수	

5. 임계점 P_0 의 안정성 판별법

안정성(stability)은 공학과 다른 응용분야에서 매우 중요한 개념이다. 예를 들면 주어진 물리적 상황 (←건물, 다리 등)을 모델링한 연립미분방정식의 해가 외부의 작은 영향에 의해 매우 큰 변화를 일으킨 다면 이는 매우 바람직하지 않은 일이 된다. 왜 그럴까? 이 연립방정식의 해가 외부의 작은 영향에 큰 변화를 일으키는 것은 주어진 물리적 상황인 건물이나 다리 등이 외부의 작은 영향에 아주 민감하게 반응하는 것으로 건물이나 다리의 안정성에 지대한 영향을 주는 것이기 때문이다.

(1) 안정(stable)과 불안정(unstable)

어느 순간 물리시스템의 작은 변화(작은 교란)가 이후의 모든 시간 t 에서 물리시스템의 움직임에 단지 작은 변화만을 줄 때, 그 물리시스템을 **안정**(stable)이라고 한다.

분류	개념 설명 및 정의	비고
안정 (stable)	어느 순간 연립방정식의 해가 임계점 P_0 근처에서 시작할 때, 그 해가 이후의 모든 시간에서 임계점 P_0 근처에 남아 있을 경우.	P ₁ 8 P ₀
수렴안정 (점근적 안정)	임계점 P_0 가 안정적이고, 모든 궤적이 $t ightarrow \infty$ 일 때 임계점 P_0 으로 수렴하는 경우.	
불안정	임계점 P_0 가 안정적이지 않을 경우	

(2) 안정성 판별법

안정성의 형태	$tr(A) = \lambda_1 + \lambda_2$	$\det(A) = \lambda_1 \cdot \lambda_2$
안정적이고 끌어당김 (수렴안정)	tr(A) < 0	$\det(A) > 0$
안정(stable)	$tr(A) \le 0$	$\det(A) > 0$
불안정(unstabe)	tr(A) > 0 E	$= \det(A) < 0$