M3M6: Applied Complex Analysis

Dr. Sheehan Olver s.olver@imperial.ac.uk

1 Lecture 23: Orthogonal polynomials and singular integrals

This lecture we do the following:

- 1. Cauchy transforms of weighted orthogonal polynomials
 - Three-term recurrence and calculation
 - Hilbert transform of weighted orthogonal polynomials
 - Hilbert transform of weighted Chebyshev polynomials
- 2. Log transform of weighted classical orthogonal polynomials

1.1 Cauchy transforms of orthogonal polynomials

Given a family of orthogonal polynomials $p_k(x)$ with respect to the weight w(x) on (a, b), we always know it satisfies a three-term recurrence:

$$xp_0(x) = a_0p_0(x) + b_0p_1(x)$$

$$xp_k(x) = c_kp_{k-1}(x) + a_kp_k(x) + b_kp_{k+1}(x)$$

Consider now the Cauchy transform of the weighted orthogonal polynomial:

$$C_k(z) := \mathcal{C}_{(a,b)}[p_k w](z) = \frac{1}{2\pi i} \int_a^b \frac{p_k(x)w(x)}{x - z} dx$$

Theorem (Three-term recurrence Cauchy transform of weighted OPs) $C_k(z)$ satisfies the same recurrence relationship as $p_k(x)$ for k = 1, 2, ...:

$$zC_0(z) = a_0C_0(z) + b_0C_1(z) - \frac{1}{2\pi i} \int_a^b w(x) dx$$
$$zC_k(z) = c_kC_{k-1}(z) + a_kC_k(z) + b_kC_{k+1}(z)$$

Proof

$$\begin{split} zC_k(z) &= \frac{1}{2\pi \mathrm{i}} \int_a^b \frac{z p_k(x) w(x)}{x - z} \mathrm{d}x = \frac{1}{2\pi \mathrm{i}} \int_a^b \frac{(z - x) p_k(x) w(x)}{x - z} \mathrm{d}x + \int_a^b \frac{x p_k(x) w(x)}{x - z} \mathrm{d}x \\ &= -\frac{1}{2\pi \mathrm{i}} \int_a^b p_k(x) w(x) \mathrm{d}x + \int_a^b \frac{(c_k p_{k-1}(x) + a_k p_k(x) + b_k p_{k+1}(x) w(x)}{x - z} \mathrm{d}x \\ &= -\frac{1}{2\pi \mathrm{i}} \int_a^b p_k(x) w(x) \mathrm{d}x + c_k C_{k-1}(z) + a_k C_k(z) + b_k C_{k+1}(z) \end{split}$$

when k > 0, the integral term disappears.

This gives a convenient way to calculate the Cauchy transforms: if we know $C_0(z) = \mathcal{C}w(z)$ and $\int_a^b w(x) dx$, solve the lower triangular system:

$$\begin{pmatrix} 1 & & & & & \\ a_0 - z & b_0 & & & & \\ c_1 & a_1 - z & b_1 & & & \\ & c_2 & a_2 - z & b_2 & & \\ & & c_3 & a_3 - z & \ddots \\ & & & \ddots & \ddots \end{pmatrix} \begin{pmatrix} C_0(z) \\ C_1(z) \\ C_2(z) \\ C_3(z) \\ \vdots \end{pmatrix} = \begin{pmatrix} C_0(z) \\ \frac{1}{2\pi i} \int_a^b w(x) dx \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

Example (Chebyshev Cauchy transform)

Consider the Chebyshev case $w(x) = \frac{1}{\sqrt{1-x^2}}$, which satisfies $\int_{-1}^1 w(x) dx = \pi$. Recall that

$$C_0(z) = \mathcal{C}w(z) = \frac{\mathrm{i}}{2\sqrt{z-1}\sqrt{z+1}}$$

Further, we have

$$xT_0(x) = T_1(x)$$
$$xT_k(x) = \frac{T_{k-1}(x)}{2} + \frac{T_{k+1}(x)}{2}$$

hence

$$zC_0(z) = C_1(z) - \frac{1}{2i}$$
$$zC_k(z) = \frac{C_{k-1}(z)}{2} + \frac{C_{k+1}(z)}{2}.$$

In other words, we want to solve

$$\begin{pmatrix} 1 & & & & \\ -z & 1 & & & \\ 1/2 & -z & 1/2 & & \\ & 1/2 & -z & 1/2 & \\ & & 1/2 & -z & \ddots \\ & & & \ddots & \ddots \end{pmatrix} \begin{pmatrix} C_0(z) \\ C_1(z) \\ C_2(z) \\ C_3(z) \\ \vdots \end{pmatrix} = \begin{pmatrix} \frac{\mathrm{i}}{2\sqrt{z-1}\sqrt{z+1}} \\ \frac{1}{2\mathrm{i}} \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

with forward substitution.

1.2 Hilbert transform of weighted orthogonal polynomials

Now consider the Hilbert transform of weighted orthogonal polynomials:

$$H_k(x) = \mathcal{H}_{(a,b)}[p_k w](x) = \frac{1}{\pi} \int_a^b \frac{p_k(t)w(t)}{x - t} dt$$

Just like Cauchy transforms, the Hilbert transforms have

Corollary (Hilbert transform recurrence)

$$xH_0(x) = a_0H_0(x) + b_0H_1(x) + \frac{1}{\pi} \int_a^b w(x)dx$$

$$xH_k(x) = c_kH_{k-1}(x) + a_kH_k(x) + b_kH_{k+1}(x)$$

Proof Recall

$$C^+f(x) + C^-f(x) = i\mathcal{H}f(x)$$

Therefore, we have

$$C_k^+(x) + C_k^-(x) = i\mathcal{H}[wp_k](x)$$

hence we have

$$xH_0(x) = -ix(C_0^+(x) + C_0^-(x)) = -i\left[a_0(C_0^+(x) + C_0^-(x)) + b_0(C_1^+(x) + C_1^-(x)) - \frac{1}{\pi i} \int_a^b w(x) dx\right]$$
$$= a_0H_0(x) + b_0H_1(x) + \frac{1}{\pi} \int_a^b w(x) dx$$

Other k follows by a similar argument.

1.2.1 Example 1: weighted Chebyshev T

For

$$H_k(x) := \mathcal{H}[T_k/\sqrt{1-x^2}](x) = \frac{1}{\pi} \int_{-1}^1 \frac{T_k(t)}{(x-t)\sqrt{1-t^2}} dt$$

The recurrence gives us

$$xH_0(x) = H_1(x) + 1$$
$$xH_k(x) = \frac{H_{k-1}(x)}{2} + \frac{H_k(x)}{2}$$

In this case, we have $H_0(x) = \mathcal{H}[w](x) = 0$. Therefore, we can rewrite this recurrence as

$$H_1(x) = -1$$

$$xH_1(x) = \frac{H_2(x)}{2}$$

$$xH_k(x) = \frac{H_{k-1}(x)}{2} + \frac{H_{k+1}(x)}{2}$$

This is precisely the three-term recurrence satisfied by $-U_{k-1}$! We therefore have

$$H_k(x) = -U_{k-1}(x)$$

This gives a very easy way to compute Hilbert transforms: if

$$f(x) = \sum_{k=0}^{\infty} f_k T_k(x)$$

then

$$\mathcal{H}\left[\frac{f}{\sqrt{1-\diamond^2}}\right](x) = -\sum_{k=0}^{\infty} f_{k+1}U_k(x)$$

1.2.2 Example 2: weighted Chebyshev U

For

$$H_k(x) := \mathcal{H}[U_k\sqrt{1-x^2}](x) = \frac{1}{\pi} \int_{-1}^1 \frac{U_k(t)\sqrt{1-t^2}}{x-t} dt$$

The recurrence gives us

$$xH_0(x) = H_1(x) + 1/2$$
$$xH_k(x) = \frac{H_{k-1}(x)}{2} + \frac{H_k(x)}{2}$$

In this case, we have $H_0(x) = \mathcal{H}[w](x) = x$. Therefore, we can rewrite this recurrence as

$$H_{-1}(x) := 1$$

$$xH_{-1}(x) = H_0(x)$$

$$xH_0(x) = \frac{H_{-1}(x)}{2} + \frac{H_1(x)}{2}$$

$$xH_k(x) = \frac{H_{k-1}(x)}{2} + \frac{H_{k+1}(x)}{2}$$

This is precisely the three-term recurrence satisfied by T_{k+1} ! We therefore have

$$H_k(x) = T_{k+1}(x)$$

1.3 Log transforms of weighted orthogonal polynomials

Now consider $\frac{1}{\pi} \int_a^b p_k(x) w(x) \log |z - x| dx$, which we write in terms of the real part of

$$L_k(z) = L[p_k w](z) = \frac{1}{\pi} \int_a^b p_k(x) w(x) \log(z - x) dx$$

For k > 0 we have $\int_a^b p_k(x)w(x)dx = 0$ due to orthogonality, and hence we actually have no branch cut:

using ApproxFun, SingularIntegralEquations, LinearAlgebra, Plots, ComplexPhasePortrait x = Fun()

 $T_5 = Fun(Chebyshev(), [zeros(2);1])$

 $w = 1/sqrt(1-x^2)$

 $L_5 = z->cauchyintegral(w*T_5, z)$

phaseplot(-3..3, -3..3, L_5)

1.4 Weighted Chebyshev log transform

For classical orthogonal polynomials we can go a step further and relate the indefinite integrals to other orthogonal polynomials.

For example, recall that

$$\frac{\mathrm{d}}{\mathrm{d}x}[\sqrt{1-x^2}U_n(x)] = -\frac{n+1}{\sqrt{1-x^2}}T_{n+1}(x)$$

in other words,

$$\int_{x}^{1} \frac{T_{k}(t)}{\sqrt{1-t^{2}}} dt = -\frac{\sqrt{1-x^{2}}U_{k-1}(x)}{k}$$

Thus for k = 1, 2, ...,

$$L_k(z) = -\frac{1}{n+1}C[\sqrt{1-\diamond^2}U_{k-1}](z)$$

and

$$\frac{1}{\pi} \int_{-1}^{1} \frac{T_k(x)}{\sqrt{1-x^2}} \log(z-x) dx = \frac{2i}{k} \mathcal{C}[\sqrt{1-\diamond^2} U_{k-1}](z)$$

As we saw above, Cauchy transforms of OPs satisfy simple recurrences, and this relationship renders log transforms equally calculable.

1.5 Demonstration

We first see how the Cauchy transform can be computed using forward recurrence if we know Cw(z). Here we consider the Chebyshev T case:

```
x = Fun()
w = 1/sqrt(1-x^2)
z = 0.1 + 0.1 im
n = 10
L = zeros(ComplexF64,n,n)
L[1,1] = 1
L[2,1] = -z
L[2,2] = 1
for k=3:n
    L[k,k-1] = -z
    L[k,k-2] = L[k,k] = 1/2
end
C = L \setminus [im/(2sqrt(z-1)sqrt(z+1)); 1/(2im); zeros(n-2)]
T_{-5} = Fun(Chebyshev(), [zeros(5);1])
\operatorname{cauchy}(T_5*w,z) , C[6]
(0.14734333381379638 - 0.26445831594251407im, 0.14734333381379644 - 0.26445
83159425141im)
```

Warning This fails for large n or large z:

```
x = Fun()
w = 1/sqrt(1-x^2)
z = 5+6im

n = 100
L = zeros(ComplexF64,n,n)
L[1,1] = 1
L[2,1] = -z
L[2,2] = 1
for k=3:n
    L[k,k-1] = -z
    L[k,k-2] = L[k,k] = 1/2
end

C = L \ [ im/(2sqrt(z-1)sqrt(z+1)); 1/(2im); zeros(n-2)]
T.2.0 = Fun(Chebyshev(), [zeros(20);1])
C[21], cauchy(T.2.0*w, z)
```

```
(-2.591846965643171e6 - 48792.874011516105im, 0.0 + 8.834874115176436e-18im
Get around it by dropping the first row:
L[2:end,1:end-1]
C = L[2:end,1:end-1] \setminus [1/(2im); zeros(n-2)]
C[6] - cauchy(T_5*w, z)
-3.072062106493749e-17 + 4.410018806364391e-17im
We can also use this technique for computing Hiblert transforms:
x = 0.1
T = Fun(Chebyshev(), [zeros(n);1])
hilbert(w*T,x), Fun(Ultraspherical(1), [zeros(n-1);1])(x)
 (0.5608031061203765, 0.5608031061203765)
And Log transforms:
T_5 = Fun(Chebyshev(), [zeros(5);1])
U_4 = Fun(Ultraspherical(1), [zeros(4);1])
x = Fun()
L_5 = z - sum(T_5/sqrt(1-x^2) * log(z-x))/\pi
L_5(z), 2im*cauchy(sqrt(1-x^2)*U_4,z)/5
 (6.576121814966233 \\ e-8 - 2.0389718362285204 \\ e-7im, \ 6.576121814966217 \\ e-8 - 2.0389718362285204 \\ e-8 - 2.0389718204 \\ e-8 - 2.0389718200 \\ e-8 - 2.038971800 \\ e-8 - 2.
 389718362285196e-7im)
```