Nikita Kazeev

Kernel density estimation

Aka advanced KNN

Good ol' distribution fitting

Good ol' distribution fitting

Given:

- ▶ data points $x_1, ..., x_n \in \mathbb{R}^m$
- ightharpoonup a parametrized distribution $P(x|\theta)$

Find a set of parameters to maximize the empirical likelihood:

$$\max L(\theta|x) = \max \prod_{i} P(x|\theta)$$

Kernel density

- Place many Gaussians on the data points and call their sum a PDF
- "Histogram interpretation": fuzzy bins
- "KNN interpretation": take into account the distances

Kernel density

Kernel function, usually looks like this:

 $P_{\text{KDE}}(x) = \sum_{i}^{N} K(x - x_i)/N$

Number of points in the training dataset

Sum over all points in the training dataset

Kernel Density vs Histogram

Kernel Density	Histogram
Smooth PDF	Discrete binning
With number of data points approaching infinity, the value in a point approaches the convolution of the PDF with the kernel function	With number of data points approaching infinity, the value in a bin approaches the unbiased mean PDF in that bin
No easy way to estimate the uncertainty	Straightforward uncertainty estimation of bin values
User-defined parameter: kernel shape and width	User-defined parameter: bins
Requires storing the full training dataset Finite support kernels allow for fast lookup	Lookup time and memory are proportional to the number of bins

Kernel Density: summary

- Go-to way for an easy 1-2D PDF approximation
- Histograms competitor
- Has heuristic parameters: kernel shape
- Memory expensive
- Doesn't scale for high dimensions
- Nice demo: https://mathisonian.github.io/kde/

Thank you!

nkazeev@hse.ru

<u>kazeevn</u>

hse_lambda

Nikita Kazeev

