Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 18

Виконав студент	III-12 Кушнір I анна Вікторівна
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота 4 Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 18

 $3 a \partial a a a$. Знайти суму n членів послідовності $a_n = \frac{a_{n-1}^2}{a_{n-1}+3}$, якщо $a_1 = 2$.

- 1. Постановка задачі. Початковими даними є число а, яке за умовою має початкове значення 2, та число n, яке вводиться користувачем з клавіатури. Результатом розв'язку є дійсне число Sum сума n членів послідовності, заданих формулою n-го члена a_n .
- 2. Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Член послідовності	Дійсний	a	Початкове дане
Номер члену послідовності	Цілий, додатній	n	Початкове дане
Лічильник арифметичного циклу	Порядковий	i	Лічильник (параметр) циклу
Сума п членів послідовності	Дійсний	Sum	Результат

Таким чином, математичне формулювання задачі зводиться до задання початкових значень змінним: a:=2, Sum:=a, а далі циклічне повторення виконання дій: a:=(a*a)/(a+3), Sum:=Sum+a. Це повторення буде задано за допомогою арифметичного циклу з лічильником і, який під час виконання циклу приймає значення від 1 до п за допомогою формули i++ (скорочена формула від i:=i+1).

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дію присвоєння початкових значень змінним.
- Крок 3. Деталізуємо дію обчислення п-го члена послідовності.
- Крок 4. Деталізуємо дію обчислення суми Sum n членів послідовності.

3. Псевдокод алгоритму.

Крок 1

ості
енів

Крок 2

4. Блок-схема алгоритму.

5. Випробування алгоритму. Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних:

Блок	Дія 1	Дія 2
	Початок	Початок
1	Введення n = 3	Введення n = 4
2	a=2	a=2
3	Sum = 2	Sum = 2
4	Для і від 2 до 3	Для і від 2 до 4
4.1	i = 2 <= 3 - істина $a = (2*2)/(2+3) = 4/5 = 0.8$ Sum = $2+0.8 = 2.8$	i = 2 <= 4 - істина $a = (2*2)/(2+3) = 4/5 = 0.8$ Sum = $2+0.8 = 2.8$
4.2	i=3 <= 3- істина $a=(0.8*0.8)/(0.8+3)=0.64/3.8=0.16842$ Sum = $2.8+0.16842=2.96842$	i=3 <= 4- істина $a=(0.8*0.8)/(0.8+3)=0.64/3.8=0.16842$ Sum = $2.8+0.16842=2.96842$
4.3	i = 4 <= 3 – хибність Вихід з циклу	i=4 <= 4- істина $a=(0.168*0.168)/(0.168+3)=0.00895$ Sum = $2.96842+0.00895=2.97737$
		i = 5 <= 4 – хибність Вихід з циклу
5	Виведення Sum = 2.96842	Виведення Sum = 2.97737
	Кінець	Кінець

6. Висновки. На цій лабораторній роботі було досліджено особливості роботи арифметичних циклів та було набуто практичних навичок їх використання під час складання програмних специфікацій.

Алгоритм було випробувано з уведенням значень: n=3 та n=4.

У результаті виконання алгоритму було виведено значення:

Sum=2.96842-y першому випадку (при n=3);

Sum=2.97737 - у другому випадку (при <math>n=4).