1) a) Cereneov photons emitted at angle & to direction of motion of charged particle - relate Cerenkov angle & to B and n

b) we meson and To meson have non zero overlap with un wavefunction

WO - JP = 1- 1 TO - JP = 0=

can wo decay to 110 700 and nothing else?

Initial Final

 J^{\dagger} 1 O+L = J need L=1

P -1 $(-1)(-1)(-1)^{L}$ - L = 1 conserves painty identical bosons in final state - need symmetric wavefunction

L=1 state is antisymmetric -not allowed

c) estimate ratio R= +lete > hadrons)/5(ete > \mu m)
for Ns halfway between threshold for c\(\tilde{c}\) and b\(\tilde{b}\)
production

hadron decays - matrix element $M \propto \frac{2}{3}e^2$ hr up type quarks

 $M \propto -\frac{1}{3}e^{2}$ for down type quarks

2 possible decays to up type quarks, 2 decays to down type quarks

 $\sigma \propto |M|^2 = R = 3 \times (\frac{1}{3})^2 \times 2 + 3 \times (\frac{1}{3})^2 \times 2 = \frac{10}{3}$

4) Gamma decays

. Spectral lines	r energy like	intensity	multipdanty
1	133.02	16.5	EZ
2 Z	136.25	2.4	EZ +M1
, 4	345.85	2.4	€2
5	482.0	141	MITEZ
J	61515	0.04	M3

a) determine the possible values of AEAB, AC, AD

AtAD = GIS. SKEV

482 = 136.25 + 345.85 => need transitions with DE= 136.25, 345.85 KeV next to each other

(1)	0		
1	482.0	DEAB = 133.02	
615.5		DEAC = 478.87	
	B J 345.85	AEAO = 615,5	keV
	A 1 133.02		

b) hierarchy El E2 E3
M1 M2 M3
— decreasing rate

E transitions are electric dipole transitions

M transitions are magnetic dipole transitions

Pany change of nucleus in El transitions with Lodd and Me transitions with Leven

JP. for gamma radiation:

E1 E2 E3 M1 M2 M3

1- 2+ 3- 1+ 2- 3+

i) If a decay between 2 states occurs via a process with L=3for example, with no lower I decays seen, the pm difference in I must be equal to the maximum possible difference 13 in this case) - if there was a smaller difference in J, the decay could occur vin a faster process, with L=1,2 deduce parities - if parity of one initial or hinal state is known, use the observed transition types to deduce painty of the other state - eg if MI and EZ transitions are seen the two states have the same parity, but if El is seen,

states have opposite parity

In general, if magnetic dipole transitions are seen with I odd or electric dipole transitions are seen with Leven, there is no parity change, otherwise parity of initial and final states is apposite

the stancety Mison

z diagram 4 d) ground state $J^P = \frac{7}{2}$ lines 2 and 4 are both decays to ground state deduce allowed of borlevels B, C, D

D > A transition M3, no other transitions seen so need DJ = 3 $J_0 = \frac{1}{2} \cdot \frac{13}{2}$ M3 - no pany change $J^{P}(D) = \frac{1}{2}^{+} + \frac{13}{2}^{+}$

(If $\Delta J = D_{11,2}$ could have MI, EL transitions - not seen) D= C transition

but if $\Delta J = 0,1$, and have MI transition - need $\Delta J = 0$

$$J_{c} = \frac{17}{2} \cdot \frac{9}{2}$$
 or $\frac{5}{2}$

$$J_{0} = \frac{13}{2}$$
 $J_{0} = \frac{1}{2}$

C-> A transition

$$J_{A} = \frac{7}{2} \implies J_{c} = \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}$$

from D+C and C+A transitions,
$$J_c = \frac{9}{2} \left(J_D = \frac{13}{2} \right)$$

or $\frac{9}{2} \left(J_D = \frac{1}{2} \right)$

C+ B transition

for
$$J_c = \frac{s}{2}$$
: $J_B = \frac{1}{2} (\frac{3}{2} + \frac{s}{2} + \frac{7}{2} + \frac{9}{2})$

but not MI transition seen => need DJ = 2

$$J_{B} = \frac{1}{2}, \frac{9}{2} \text{ or } \frac{5}{2}, \frac{13}{2}$$

B > A transition

$$J_A = \frac{7}{2}$$
 = $J_B = \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{4}{2}, \frac{11}{2}$

how (> B and B > A transitions

$$J_{g} = \frac{s}{2}$$
 or $\frac{q}{2}$

Gontra

no
$$D \rightarrow B$$
 transitions \Rightarrow If $J_D = \frac{13}{2}$, need $J_R = \frac{9}{2}$
If $J_D = \frac{1}{2}$, need $J_R = \frac{9}{2}$

(need large enough DT that transitions not seen)

no parity change for MI/EZ/M3 -all levels have P=+1

D	-	1 +		13+,
С		97	or =	9+
B		9 +		5 t
1		7 t		7 T

3) C + t + M B

BASTA

S, t massless decays isotropic in C, B rest frame

a) i) 3-momentum of C in B rest frame

in C rest frame: Mc = EB+Et

as t is massless and IPtl = Ipol in crest frame

Mc2 + EB2 - 2 Mc EB = PB2

Mil + MB2 - ZMCEB =0

 $EB = \frac{Mc^2 + MB^2}{2Mc} = NPB^2 + MB^2$

PB2 = Mc4 +MB4 +2 Mc2 MB2 - MB2

= Mc4 + Ms4 - 2 mc2 MB2

- Mis is equal to the 3 momentum of c in rest frame of B

Pc = (Mc" + MB" - 2 Mc" MB2) 1/2

ii) 3-momentum of A in rest frame of B

(mon i) (relabelling) $E_A = \frac{M_B^2 + M_A^2}{2m_B}$ in B test frame

PA = (MB4 +MA4 - 2MA2MB2) 1/2
4 MB2

```
b) i) Mist 2 = (Es + Et) 2 - (Ps + Pt)2
         = Mst + Mt + 2Es Et - 2Ps Pt cos &
         = 2EsEt (1-cos0)
        max value when cosil = -1
          Mst2 = 4Es Et
        min value when cost=1, Mst2=0
 ii) MAt2 = (EA + Et)2 - (PA+Pt)2
           = MA2 + ME2 + ZEA Ei - MEN 2PA PECOSO
           = MA2 + 2Pt(EA - PAWSO)
     If PA=0 => EA=MA
  · MAt = MA2 + 2 Pt & MA
     If PA >> MA => EA = PA
        MAE = MA 2 + 2PE EA (1-6050)
           which has may man values
                  maz + 4pt En ~ 4pt En and Maz
  K-+p > T0 + X0
                 1 K-+P => K++4- - strong
K+ = us => Y- = ssd
```

d) $\chi^{\circ} \rightarrow \Lambda + \gamma$, $Y^{-} \rightarrow \Lambda + \pi^{-}$ What can be deduced about lifetimes / spins / paintes of Xo and 4- ?

lifetimes: 4 decays via Em interaction - fast decay
4 must change, of of s quarks => wear decay 4 4 has longer lifetime

$$\begin{array}{ccc}
(X_0 \rightarrow) & 1+\gamma \\
T & ? & \rightarrow \frac{1}{2} & 1 \\
P & ? & \rightarrow (+1)(-1)(-1)^{L}
\end{array}$$

Parity conserred in EM Enteractions - if L is even, X° has P=-1, if Lis odd, Xº has P=+1

$$4^{-} \rightarrow \Lambda + \pi^{-}$$
 $7 ? \rightarrow \frac{1}{2} , 0$
 $7 ? \rightarrow (+1)(-1)(-1)^{2}$

can't deduce pany - not always conserved in weak interaction?

$$J = \frac{1}{2} \oplus L = \frac{1}{2} \quad \text{for } L = 0$$