

Grammaires de descriptions d'objets

Florent Hivert

Mél:Florent.Hivert@lri.fr
Adresse universelle:http://www.lri.fr/~hivert

Objectifs : algorithmes génériques

■ Identifier les composants de base :

 \Longrightarrow Singleton, union, produit cartésien, ensemble et multiensemble. . .

- Comprendre comment composer les briques de base
 ⇒ grammaire de description, classe combinatoire
- ⇒ Algorithmes génériques

Objectifs : algorithmes génériques

■ Identifier les composants de base :

⇒ Singleton, union, produit cartésien, ensemble et multiensemble. . .

- Comprendre comment composer les briques de base
 - ⇒ grammaire de description, classe combinatoire
- ⇒ Algorithmes génériques

Union disjointe 3 de 28

Union disjointe

Definition

On écrit $C = A \sqcup B$ et on dit que C est l'union disjointe de A et B si $C = A \sqcup B$ et $A \cap B = \emptyset$.

Alors

- \blacksquare count(C) = count(A) + count(B)
- On peut prendre : list(C) = concat(list(A), list(B))

Union disjointe 3 de 28

Union disjointe

Definition

On écrit $C = A \sqcup B$ et on dit que C est l'union disjointe de A et B si $C = A \sqcup B$ et $A \cap B = \emptyset$.

Alors:

- \blacksquare count(C) = count(A) + count(B)
- On peut prendre : list(C) = concat(list(A), list(B))

Itération sur une union disjointe

On fixe l'ordre d'énumération tel que

$$list(A \sqcup B) := concat(list(A), list(B))$$

Itération en Python :

```
1 def iterunion(A, B):
2 for a in A:
3 yield a
4 for b in B:
5 yield b
```

Union disjointe 5 de 28

first, next sur une union disjointe

```
list(A \sqcup B) := concat(list(A), list(B))
1
          def first_union(A, B):
              return A.first()
3
          def next_union(A, B, x):
4
5
              if x in A:
6
                   try:
                       return A.next(x)
8
                   except StopIteration:
                       return B.first()
9
10
              else:
11
                   return B.next(x)
```

Union disjointe 6 de 28

rank sur une union disjointe

```
list(A \sqcup B) := concat(list(A), list(B))
1
         def rank_union(A, B, x):
              if x in A:
3
                  return A.rank(x)
              else:
4
5
                  return A.count() + B.rank(x)
6
         def unrank_union(A, B, i):
              if i < A.count():
                  return A.unrank(i)
9
10
              else:
                  return B.unrank(i - A.count())
11
```

ARIS Union disjointe 7 de 28

Le principe de l'idée récursive

Quand on a un'bonne idée, on l'appliqu'récursivement : on obtient le plus souvent une bien meilleure idée!

Unions disjointes récursives

Union disjointe 7 de 28

Le principe de l'idée récursive

Quand on a un'bonne idée, on l'appliqu'récursivement : on obtient le plus souvent une bien meilleure idée!

■ Unions disjointes récursives

Les chaînes de *n*-bits ayant *k*-bits à 1

Une chaîne de bit non vide commence soit par un 0, soit par un 1 :

$$BitString(n, k) = 0 \cdot BitString(n-1, k) \sqcup 1 \cdot BitString(n-1, k-1)$$

Idem triangle de pascal:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

■ BitString(n, k). count $() = \binom{n}{k}$

rank, unrank pour les chaînes de n-bits ayant k-bits à 1

```
1
     def rank BSnk(x):
         if not x:
                          # liste vide
 3
             return 0
         if x[0] == 0:
4
 5
             return rank_BSnk(x[1:])
6
         else:
 7
             return binom(len(x)-1, sum(x)-1) + rank_BSnk(x[1:])
8
9
     def unrank_BSnk(n, k, i):
10
         if n == 0:
11
             return []
12
         bn1k = binom(n-1, k)
13
         if i < bn1k:
14
             return [0]+unrank_BSnk(n-1, k, i)
15
         else:
16
             return [1]+unrank_BSnk(n-1, k-1, i-bn1k)
```

Union disjointe 10 de 28

Le problème du calcul de la cardinalité

Problème

Le calcul récursif des coefficients binomiaux $\binom{n}{k}$ n'est pas efficace car on recalcule plusieurs fois la même chose.

Plus généralement, le calcul récursif des cardinalités sera très inefficace pour la même raison.

Union disjointe 11 de 28

Parenthèse : mémoization et programmation dynamique

Retenir

- **Mémoisation** : on mémorise tous les calculs pendant la récursion au momment où on les fait
- **Programmation Dynamique**: résoud les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.

En général, la programmation dynamique est plus efficace mais plus longue à mettre en oeuvre : il faut avoir planifié l'utilisation de la mémoire.

Union disjointe 11 de 28

Parenthèse : mémoization et programmation dynamique

Retenir

- **Mémoisation** : on mémorise tous les calculs pendant la récursion au momment où on les fait
- **Programmation Dynamique**: résoud les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.

En général, la programmation dynamique est plus efficace mais plus longue à mettre en oeuvre : il faut avoir planifié l'utilisation de la mémoire.

Union disjointe 11 de 28

Parenthèse : mémoization et programmation dynamique

Retenir

- **Mémoisation** : on mémorise tous les calculs pendant la récursion au momment où on les fait
- **Programmation Dynamique**: résoud les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.

En général, la programmation dynamique est plus efficace mais plus longue à mettre en oeuvre : il faut avoir planifié l'utilisation de la mémoire.

Union disjointe 12 de 28

Autre exemple : les permutations

Les permutés d'un ensemble $X := \{x_1, x_2, \dots, x_n\}$:

$$\mathsf{Perm}\{1,2,3\} = 1 \cdot \mathsf{Perm}\{2,3\} \ \sqcup \ 2 \cdot \mathsf{Perm}\{1,3\} \ \sqcup \ 3 \cdot \mathsf{Perm}\{1,2\}$$

Plus généralement :

Retenir

Énumération lexicographique des permutations :

$$\operatorname{\mathsf{Perm}}(X) = \bigsqcup_{i=1}^n x_i \cdot \operatorname{\mathsf{Perm}}(X/\{x_i\})$$

■ Perm(X). count() = |X|!

Généralisation : permuté d'un multiensemble

 $\mathsf{Perm}\{1,1,2,3\} = 1 \cdot \mathsf{Perm}\{1,2\} \sqcup 2 \cdot \mathsf{Perm}\{1,1,3\} \sqcup 3 \cdot \mathsf{Perm}\{1,1,2\}$

Notation : $\{1, 1, 2, 3\} = 1^2 2^1 3^1$

$$\mathsf{Perm}(1^2 2^3 3^1) = 1 \cdot \mathsf{Perm}(1^1 2^3 3^1) \sqcup 2 \cdot \mathsf{Perm}(1^2 2^2 3^1) \sqcup 3 \cdot \mathsf{Perm}(1^2 2^3)$$

Retenir

Énumération lexicographique des multi-permutations :

$$\operatorname{Perm}(X) = \bigsqcup_{i=1}^{n} x_i \cdot \operatorname{Perm}(X/\{x_i\})$$

Coefficient multinomiaux :

$$\binom{|I|}{i_1, i_2, \dots, i_k} = \binom{|I| - 1}{i_1 - 1, i_2, \dots, i_k} + \binom{|I| - 1}{i_1, i_2 - 1, \dots, i_k} + \cdots + \binom{|I| - 1}{i_1, i_2, \dots, i_k - 1}$$

$$\operatorname{Perm}(x_1^{i_1} \dots x_k^{i_k}). \operatorname{count}() = \frac{(i_1 + i_2 + \dots + i_k)!}{i_1! i_2! \dots i_k!} = \binom{|I|}{i_1, i_2, \dots, i_k}$$

Coefficient multinomiaux :

$$\binom{|I|}{i_1, i_2, \dots, i_k} = \binom{|I| - 1}{i_1 - 1, i_2, \dots, i_k} + \binom{|I| - 1}{i_1, i_2 - 1, \dots, i_k} + \cdots + \binom{|I| - 1}{i_1, i_2, \dots, i_k - 1}$$

$$\mathsf{Perm}(x_1^{i_1} \dots x_k^{i_k}). \, \mathsf{count}() = \frac{(i_1 + i_2 + \dots + i_k)!}{i_1! i_2! \dots i_k!} = \binom{|I|}{i_1, i_2, \dots, i_k}$$

Union disjointe 15 de 28

Autre application : transmission en codage NRZ

Non Return to Zero, Manière très élémentaire pour transmettre de l'information sur un ligne : 0 : -V, 1 : +V

Source: https://fr.wikipedia.org/wiki/Non_Return_to_Zero

Union disjointe 16 de 28

Perte de synchronisation en codage NRZ

S'il on envoie une suite trop longue de bit identique, on perd la synchronisation.

Definition

Une séquence de longueur n est dite non-repétitive d'ordre k (abréviation NR(k, n)) si elle ne contient pas se séquence de plus de k bits identiques consécutifs.

Notation : NR(k, n, c, i) les suites qui commencent par au plus c i :

- \blacksquare $NR(k, n, 0, 0) = 1 \cdot NR(k, n 1, k 1, 1)$
- $NR(k, n, c, 0) = 0 \cdot NR(k, n-1, c-1, 0) \sqcup 1 \cdot NR(k, n-1, k-1, 1)$
- Idem en écahngeant les rôles de 0 et 1.

C'est un automate fini l

ARIS Union disjointe 16 de 28

Perte de synchronisation en codage NRZ

S'il on envoie une suite trop longue de bit identique, on perd la synchronisation.

Definition

Une séquence de longueur n est dite non-repétitive d'ordre k (abréviation NR(k,n)) si elle ne contient pas se séquence de plus de k bits identiques consécutifs.

Notation : NR(k, n, c, i) les suites qui commencent par au plus c i :

- \blacksquare $NR(k, n, 0, 0) = 1 \cdot NR(k, n 1, k 1, 1)$
- $NR(k, n, c, 0) = 0 \cdot NR(k, n-1, c-1, 0) \sqcup 1 \cdot NR(k, n-1, k-1, 1)$
- Idem en écahngeant les rôles de 0 et 1.

C'est un automate fini!

Union récursive et automates finis

Retenir

La méthode précédente fonctionne pour toute les automates finis déterministes.

$$\mathsf{Lang}_0(\mathsf{Term}) = \{\epsilon\}$$

$$\mathsf{Lang}_n(E) = \bigsqcup_{E \to {}_2E'} a \cdot \mathsf{Lang}_{n-1}(E')$$

Le produit cartesien 18 de 28

Le produit cartésien

Definition

On appelle **produit cartesien** de A et B l'ensemble C noté $C := A \times B$ défini par

$$C := \{(a, b) \mid a \in A, b \in B\}\}.$$

Alors

- \blacksquare count(C) = count(A) · count(B)
- On peut prendre la liste dans l'ordre lexicographique : list(C) = [(a_0 , b_0), (a_0 , b_1), (a_0 , b_1), . . . (a_1 , b_0), (a_1 , b_1) . . .]

Le produit cartésien

Definition

On appelle **produit cartesien** de A et B l'ensemble C noté $C := A \times B$ défini par

$$C := \{(a, b) \mid a \in A, b \in B\}$$
.

Alors:

- \blacksquare count(C) = count(A) · count(B)
- On peut prendre la liste dans l'ordre lexicographique : list(C) = [(a_0, b_0), (a_0, b_1), (a_0, b_1), . . . (a_1, b_0), (a_1, b_1) . . .].

Itération sur un produit cartésien

```
Ordre lexicographique:
```

```
Itération en Python :
```

```
1    def iter_cartprod(A, B):
2     for a in A:
3     for b in B:
4     yield (a, b)
```


20 de 28

first, next sur un produit cartésien

Ordre lexicographique:

```
def first_cartprod(A, B):
1
            return (A.first(), B.first())
3
        def next_cartprod(A, B, x):
5
            (a , b) = x # pattern matching
6
            try:
               return (a, B.next(b))
8
            except StopIteration:
               return (A.next(a), B.first())
9
```


rank sur un produit cartésien

Ordre lexicographique:

```
def rank_cartprod(A, B, x):
    (a , b) = x  # pattern matching
    A.rank(a)*B.count() + B.rank(b)

def unrank_cartprod(A, B, i):
    c = B.count()
    return (A.unrank(i // c), B.unrank(i % c))
```


Notion de classe combinatoire

Définition (Classe combinatoire)

On appelle classe combinatoire un ensemble C dont les éléments e ont une taille (nommée aussi degrée) noté |e| et tels que l'ensemble C_n des éléments de taille n est fini :

$$\operatorname{count}(\{e \in C \mid |e| = n\}) < \infty$$

Exemple:

- \blacksquare Les mots de longeurs n sur un alphabet
- Les permutations de taille *n*
- \blacksquare Les arbres binaires de tailles n

L'union disjointe graduée

Si $C = A \sqcup B$, les élements de A et B gardent leur taille :

$$C_n := A_n \sqcup B_n$$

Alors:

- \blacksquare C. count(n) = A. count(n) + B. count(n)
- On peut prendre : C. list(n) =concat(A. list(b), B. list(n))
- ⇒ On peut réutiliser tout ce que l'on a vu.

L'union disjointe graduée

Si $C = A \sqcup B$, les élements de A et B gardent leur taille :

$$C_n := A_n \sqcup B_n$$

Alors:

- \blacksquare C. count(n) = A. count(n) + B. count(n)
- On peut prendre : C. list(n) =concat(A. list(b), B. list(n))
- ⇒ On peut réutiliser tout ce que l'on a vu.

Le produit cartesien gradué

Idée : les tailles (complexité, coût, nbr d'emplacements mémoires) s'ajoutent.

Definition

La taille de la paire $(a, B) \in A \times B$ est la somme des tailles :

$$|(a,b)|_{A\times b} := |a|_A + |b|_B$$

Le produit cartesien gradué

Retenir

Si
$$C = A \times B$$
 alors

$$C_n = \bigsqcup_{i+j=n} A_i \times B_j$$

Calcul de la cardinalité :

$$|C_n| = \sum_{i=1,\dots,n} |A_i| \times |B_j| = \sum_{i=0}^n |A_i| \times |B_{n-i}|$$

On peut alors prend l'ordre union/lexicographique suivant

$$A_0 \times B_n \mid A_1 \times B_{n-1} \mid A_2 \times B_{n-2} \mid \dots \mid A_n \times B_0$$

Le produit cartesien gradué

Retenir

Si $C = A \times B$ alors

$$C_n = \bigsqcup_{i+j=n} A_i \times B_j$$

Calcul de la cardinalité :

$$|C_n| = \sum_{i+j=n} |A_i| \times |B_j| = \sum_{i=0}^n |A_i| \times |B_{n-i}|$$

On peut alors prend l'ordre union/lexicographique suivant :

$$A_0 \times B_n \mid A_1 \times B_{n-1} \mid A_2 \times B_{n-2} \mid \dots \mid A_n \times B_0$$

Application les arbres binaires

Spécification récursive :

 $\mathsf{BinTree} \quad = \quad \mathsf{Leaf} \quad \sqcup \quad \mathsf{Node}(\mathsf{BinTree} \times \mathsf{BinTree})$

Deux manières de compter les tailles :

1 Nombre de feuille :

 $BinTree = Leaf_1 \sqcup BinTree \times BinTree$

2 Nombre de Noeuds :

 $BinTree = Leaf_0 \sqcup Node_1 \times BinTree \times BinTree$

Application les arbres binaires

Spécification récursive :

$$\mathsf{BinTree} \quad = \quad \mathsf{Leaf} \quad \sqcup \quad \mathsf{Node}(\mathsf{BinTree} \times \mathsf{BinTree})$$

Deux manières de compter les tailles :

1 Nombre de feuille :

$$BinTree = Leaf_1 \sqcup BinTree \times BinTree$$

2 Nombre de Noeuds :

 $\mathsf{BinTree} \quad = \quad \mathsf{Leaf}_0 \quad \sqcup \quad \mathsf{Node}_1 \times \mathsf{BinTree} \times \mathsf{BinTree}$

Liste de tous les arbres à *n* Nœuds

Algorithme

```
■ Entrée : un entier positif ou nul n
```

■ Sortie : une liste d'arbres

```
if n == 0:
    yield arbreVide()
for i in range(n):
    for g in BinTree(i):
        for f in BinTree(n-1-i):
        yield Noeud(g,d)
```


Nombre de Catalan

Proposition

Le nombre d'arbres binaires à n nœuds est appelé n-ième nombre de Catalan noté C_n . Les nombre de Catalan vérifient la récurrence :

$$C_0 = 1$$
 $C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$.

On en déduit

$$C_n=\frac{(2n)!}{n!(n+1)!}.$$

Voici les premières valeurs :

$$C_0 = 1$$
, $C_1 = 1$, $C_2 = 2$, $C_3 = 5$, $C_4 = 14$, $C_5 = 42$, $C_6 = 132$.