Package 'DCLEAR'

September 14, 2023

Version 1.0.13

Date 2023-9-14

Title Distance Based Cell Lineage Reconstruction

Author Il-Youp Kwak [aut, cre], Wuming Gong [aut]

Maintainer Il-Youp Kwak < ikwak 2@cau.ac.kr>

License GPL-3

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.3

Depends R (>= 4.1.0), tensorflow(>= 2.2.0)

biocViews

Encoding UTF-8

Imports BiocParallel, dplyr, Matrix, matrixStats, ape, phangorn, Rcpp, igraph, methods, purrr, stringr, tidyr, rBayesianOptimization, rlang, BiocGenerics

Suggests knitr, rmarkdown, markdown

Description R codes for distance based cell lineage reconstruction. Our methods won both subchallenges 2 and 3 of the Allen Institute Cell Lineage Reconstruction DREAM Challenge in 2020. References: Gong et al. (2021) <doi:10.1016/j.cels.2021.05.008>, Gong et al. (2022) <doi:10.1186/s12859-022-04633-x>.

URL https://github.com/ikwak2/DCLEAR

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-09-14 07:32:35 UTC

R topics documented:

add_deletion	3
add_dropout	4
as_igraph	4
as_igraph,data.frame-method	5
as_igraph,phylo-method	5
as_lineage_tree	6
as_lineage_tree,phyDat,phylo,lineage_tree_config-method	6
as_phylo	7
as_phylo,igraph-method	7
DCLEAR	7
dist_kmer_replacement_inference	8
dist_replacement	8
dist_replacement,phyDat,kmer_summary,integer-method	9
dist_replacement,phyDat,missing,integer-method	9
dist_weighted_hamming	10
dist_weighted_hamming,phyDat,numeric-method	10
downsample	12
downsample,igraph-method	12
downsample,lineage_tree-method	13
get_distance_prior	13
get_leaves	14
get_leaves,lineage_tree-method	14
get_node_names	15
get_replacement_probability	15
get_sequence	16
get_transition_probability	16
lineages	17
positional_mutation_prob	17
process_sequence	18
process_sequence,phyDat-method	18
prune	19
prune,igraph-method	19
prune,lineage_tree-method	20
random_tree	20
rbind,phyDat-method	21
sample_mutation_outcome	21
sample_mutation_site	
sample_outcome_prob	22
score_simulation	23
simulate	23
simulate,lineage_tree_config,missing-method	24
simulate,lineage_tree_config,phyDat-method	24
simulate_core	25
sim_seqdata	26
substr_kmer	27
substrkmerkmer summary-method	28

add_deletion 3

	subtract	28
	subtract,lineage_tree,lineage_tree-method	29
	subtree	29
	subtree,lineage_tree-method	30
	subtree,phylo-method	30
	summarize_kmer	31
	summarize_kmer,phyDat-method	31
	summarize_kmer_core	32
	WH	33
	WH_train	34
	WH_train_fit	35
Index		36
add_d	deletion add_deletion	

Description

Add deletion

Usage

```
add_deletion(x, tree, mutation_site, config)
```

Arguments

x a character matrix
 tree a matrix representing the lineage tree
 mutation_site a binary matrix for mutation site
 config a lineage_tree_config object

Value

a character matrix with deletions

4 as_igraph

 $\mathsf{add_dropout}$

add_dropout

Description

Add dropout events

Usage

```
add_dropout(x, config)
```

Arguments

x a character matrix

config a lineage_tree_config object

Value

a character matrix with dropout events

as_igraph

Generic function for as_igraph

Description

Generic function for as_igraph

Usage

```
as_igraph(x, ...)
```

Arguments

x a phylo object

... additional parameters

```
as\_igraph, data.frame-method \\ as\_igraph
```

Description

Convert an phylo object to an igraph object, while keeping the weight (in contrast to igraph::as.igraph)

Usage

```
## S4 method for signature 'data.frame'
as_igraph(x, config)
```

Arguments

```
x a phylo objectconfig a 'lineage_tree_config' object
```

Value

```
an igraph object
```

```
as\_igraph, phylo-method \\ as\_igraph
```

Description

Convert an phylo object to an igraph object, while keeping the weight (in contrast to igraph::as.igraph)

Usage

```
## S4 method for signature 'phylo'
as_igraph(x)
```

Arguments

```
x a phylo object
```

Value

```
an igraph object
```

as_lineage_tree

Generic function for as_lineage_tree

Description

Generic function for as_lineage_tree

Usage

```
as_lineage_tree(x, y, config, ...)
```

Arguments

```
a phyDat object
Χ
                  a phylo object
У
```

a lineage_tree_config object config

additional parameters . . .

```
as_lineage_tree,phyDat,phylo,lineage_tree_config-method
                       as_lineage_tree
```

Description

Convert a phylo object and a phyDat object to a lineage_tree object

Usage

```
## S4 method for signature 'phyDat,phylo,lineage_tree_config'
as_lineage_tree(x, y, config, ...)
```

Arguments

. . .

```
a phyDat object
Χ
                  a phylo object
```

config a lineage_tree_config object additional parameters

Value

```
a lineage_tree object
```

as_phylo 7

as_phylo

Generic function for as_phylo

Description

Generic function for as_phylo

Usage

```
as_phylo(x, ...)
```

Arguments

x a graph object

... additional parameters

```
{\tt as\_phylo,igraph-method}
```

as_phylo

Description

Convert an igraph object to a phylo object

Usage

```
## S4 method for signature 'igraph'
as_phylo(x)
```

Arguments

Χ

an igraph object

Value

a phylo object or a igraph object

DCLEAR

DCLEAR: A package for DCLEAR: Distance based Cell LinEAge Reconstruction

Description

Distance based methods for inferring lineage treess from single cell data

8 dist_replacement

```
dist_kmer_replacement_inference
```

Core function of computing kmer replacement distance

Description

Compute the sequence distance matrix using inferred kmer replacement matrix

Usage

```
dist_kmer_replacement_inference(x, kmer_summary, k = 2)
```

Arguments

```
x input data in phyDat formatkmer_summary a kmer_summary objectk k-mers (default k=2)
```

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)

dist_replacement

Generic function for dist_replacement

Description

Generic function for dist_replacement

Usage

```
dist_replacement(x, kmer_summary, k, ...)
```

Arguments

```
x a sequence objectkmer_summarya kmer_summary object
```

k k-mer length

... additional parameters

 $\label{lem:compute} \verb|dist_replacement,phyDat,kmer_summary,integer-method| \\ Compute the kmer replacement distance \\$

Description

Compute the kmer replacement distance between sequences

Usage

```
## S4 method for signature 'phyDat,kmer_summary,integer'
dist_replacement(x, kmer_summary, k = 2, ...)
```

Arguments

x input data in phyDat formatkmer_summarya kmer_summary object

k k-mer length

. . . other arguments passed to substr_kmer

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)

Description

Compute the kmer replacement distance between sequences

Usage

```
## S4 method for signature 'phyDat,missing,integer'
dist_replacement(x, kmer_summary, k = 2L, ...)
```

Arguments

x input data in phyDat formatkmer_summarya kmer_summary object

k k-mer length

. . . other arguments passed to substr_kmer

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)

dist_weighted_hamming Generic function for dist_weighted_hamming

Description

Generic function for dist_weighted_hamming

Usage

```
dist_weighted_hamming(x, wVec, ...)
```

Arguments

x a sequence objectwVec weight vector... additional parameters

Description

implementation of weighted hamming algorithm

Usage

```
## S4 method for signature 'phyDat,numeric'
dist_weighted_hamming(x, wVec, dropout = FALSE)
```

Arguments

x Sequence object of 'phyDat' type.

wVec Weight vector for the calculation of weighted hamming distance

dropout Different weighting strategy is taken to consider interval dropout with dropout

= 'TRUE'. Default is, dropout = 'FALSE'.

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

```
library(DCLEAR)
library(phangorn)
library(ape)
set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim\_seqdata(sim\_n = simn, m = m, mu\_d = 0.03,
      d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
## RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)
## RF score with weighted hamming
InfoW = -\log(mu_d1)
InfoW[1:2] = 1
InfoW[3:7] = 4.5
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout = FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)
## RF score with weighted hamming, cosidering dropout situation
nfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2= NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```

downsample

Generic function for downsample

Description

Generic function for downsample

Usage

```
downsample(x, ...)
```

Arguments

x a data object

... additional parameters

downsample,igraph-method

downsample

Description

Sample a lineage tree

Usage

```
## S4 method for signature 'igraph' downsample(x, n = 10L, ...)
```

Arguments

x a igraph object

n number of leaves (tips) in the down-sampled tree

... additional parameters

Value

```
a phylo object
```

```
{\it downsample, lineage\_tree-method} \\ {\it downsample}
```

Description

Sample a lineage tree

Usage

```
## S4 method for signature 'lineage_tree'
downsample(x, n = 10L, ...)
```

Arguments

x a lineage_tree object

n number of leaves (tips) in the down-sampled tree

... additional parameters

Value

```
a lineage_tree object
```

```
get_distance_prior get_distance_prior
```

Description

prior distribution of distance

Usage

```
get_distance_prior(x)
```

Arguments

x a kmer_summary object

Value

a probabilistic vector of the distribution of nodal distances

Author(s)

Wuming Gong (gongx030@umn.edu)

get_leaves

Generic function for get_leaves

Description

Generic function for get_leaves

Usage

```
get_leaves(x, ...)
```

Arguments

x a lineage_tree object
... additional parameters

Description

Get the leaf sequences

Usage

```
## S4 method for signature 'lineage_tree'
get_leaves(x, ...)
```

Arguments

x a lineage_tree object
... additional parameters

Value

```
a phyDat object
```

get_node_names 15

get_node_names

get_node_names

Description

Convenient function for get node names

Usage

```
get_node_names(x)
```

Arguments

Х

node id

Value

node names

Author(s)

Wuming Gong (gongx030@umn.edu)

Description

Compute p(A,Bld), the conditional probability of seeing a replacement of from kmer A to B or vice versa

Usage

```
get\_replacement\_probability(x)
```

Arguments

Х

a kmer_summary object

Value

an 3D probabilistic array (kmers by kmers by distances)

Author(s)

Wuming Gong (gongx030@umn.edu)

get_sequence

get_sequence

Description

Get sequencees

Usage

```
get_sequence(x, tree, outcome, config)
```

Arguments

x a character matrix

tree a matrix representing the lineage tree

outcome a character matrix

config a lineage_tree_config object

Value

a character matrix

```
get_transition_probability
```

 $get_transition_probability$

Description

Compute p(A,X|B,Y,d), the conditional probability of seeing a replacement from A to B given the previous replacement B from Y at nodal distance d

Usage

```
get_transition_probability(x)
```

Arguments

Χ

a kmer_summary object

Value

an 3D probabilistic array (kmers by kmers by distances)

Author(s)

Wuming Gong (gongx030@umn.edu)

lineages 17

lineages

Lineage data

Description

Lineage data

Usage

```
data(lineages)
```

Format

An object of class list of length 100.

Examples

```
data(lineages)
```

Description

Convenient function for get node names

Usage

```
positional_mutation_prob(x, config)
```

Arguments

```
x a phyDat object
```

config a lineage_tree_config object

Value

a positional mutation probability matrix

process_sequence

Generic function for process_sequence

Description

Generic function for process_sequence

Usage

```
process_sequence(x, ...)
```

Arguments

x a sequence object... additional parameters

```
\label{eq:process_sequence} process\_sequence , phyDat-method \\ \textit{Process sequences}
```

Description

Process sequences

Usage

```
## $4 method for signature 'phyDat'
process_sequence(
    X,
    division = 16L,
    dropout_character = "*",
    default_character = "0",
    deletion_character = "-"
)
```

Arguments

```
x input data in phyDat format

division cell division

dropout_character

Dropout character (default: '*')

default_character

Default character (default: '0')

deletion_character

Deletion character (default: '-')
```

prune 19

Value

```
a 'lineage_tree_config' object
```

Author(s)

Wuming Gong (gongx030@umn.edu)

prune

Generic function for prune

Description

Generic function for prune

Usage

```
prune(x, ...)
```

Arguments

x a lineage_tree object
... additional parameters

```
prune,igraph-method prune
```

Description

Trim a full lineage tree into phylogenetic tree

Usage

```
## S4 method for signature 'igraph'
prune(x, weighted = TRUE, ...)
```

Arguments

x an igraph object

weighted whether or not keep the edge weight (default: TRUE)

... additional parameters

Value

an igraph object

20 random_tree

```
prune, \\ \\ lineage\_tree-method \\ \\ prune
```

Description

Trim a full lineage tree into phylogenetic tree

Usage

```
## S4 method for signature 'lineage_tree'
prune(x, ...)
```

Arguments

x a lineage_tree object

. . . additional parameters passed to as_phylo()

Value

a lineage_tree object

random_tree

 $random_tree$

Description

Simulate a random lineage tree

Usage

```
random_tree(n_samples, division = 16L)
```

Arguments

n_samples number of samples to simulate division number of cell division

Value

a data frame

Author(s)

Wuming Gong (gongx030@umn.edu)

rbind,phyDat-method 21

```
rbind,phyDat-method rbind
```

Description

Concatenate multiple phyDat objects

Usage

```
## S4 method for signature 'phyDat'
rbind(..., deparse.level = 1)
```

Arguments

```
... a list of phyDat objects deparse.level see definition in generic rbind
```

Value

```
a phyDat object
```

```
sample\_mutation\_outcome \\ sample\_mutation\_outcome
```

Description

Sample mutation outcome

Usage

```
sample_mutation_outcome(x, mp = NULL, config)
```

Arguments

```
x an igraph objectmp a mutation site matrixconfig a lineage_tree_config object
```

Value

```
a outcome matrix
```

```
sample_mutation_site sample_mutation_site
```

Description

Sample mutation site

Usage

```
sample_mutation_site(tree, config)
```

Arguments

tree a data frame

config a lineage_tree_config object

Value

a mutation site matrix

```
sample_outcome_prob
```

Description

Sampling outcome probability based on a gamma distribution

Usage

```
sample_outcome_prob(config, num_states = 20L, shape = 0.1, scale = 2)
```

Arguments

config a lineage_tree_config object

num_states number of states used in simulation.
shape shape parameter in gamma distribution
scale scale parameter in gamma distribution

Value

a probability vector for each alphabet

Author(s)

Wuming Gong (gongx030@umn.edu)

score_simulation 23

score_simulation

score_simulation

Description

Compare two sets of sequences

Usage

```
score_simulation(x, y, config)
```

Arguments

x a character matrix y a character matrix

config a lineage_tree_config object

Value

numeric scores

simulate

Generic function for simulate

Description

Generic function for simulate

Usage

```
simulate(config, x, ...)
```

Arguments

```
config a lineage_tree_config object
```

x a sequence object... additional parameters

Description

Simulate a cell lineage tree Adoped from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master.

Usage

```
## S4 method for signature 'lineage_tree_config,missing'
simulate(config, x, n_samples = 200, ...)
```

Arguments

```
config simulation configuration; a lineage_tree_config object x missing
```

n_samples number of samples to simulate

... additional parameters

Value

```
a lineage_tree object
```

Author(s)

Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree based on a set of sequences

Usage

```
## S4 method for signature 'lineage_tree_config,phyDat'
simulate(config, x, n_samples = 200L, k = 50, greedy = TRUE, ...)
```

simulate_core 25

Arguments

config simulation configuration; a lineage_tree_config object

x a sequence object

n_samples number of samples to simulate

k Number of trials

greedy Whether ot not use a greedy search

... additional parameters

Value

a lineage_tree object

Author(s)

Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree Adoped from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master.

Usage

```
simulate_core(config, tree, mutation_site, outcome)
```

Arguments

config simulation configuration; a lineage_tree_config object

tree a matrix representing the lineage tree

mutation_site a binary matrix indicating the mutation sites

outcome a character matrix

Value

```
a 'lineage_tree' object
```

26 sim_seqdata

sim_seqdata

sim_seqdata

Description

Generate singe cell barcode data set with tree shaped lineage information

Usage

```
sim_seqdata(
   sim_n = 200,
   m = 200,
   mu_d = 0.03,
   d = 15,
   n_s = 23,
   outcome_prob = NULL,
   p_d = 0.003
)
```

Arguments

sim_n Number of cell samples to simulate.

m Number of targets.

mu_d Mutation rate. (a scalar or a vector)

d Number of cell divisions.

n_s Number of possible outcome states

outcome_prob Outcome probability vector (default is NULL)

Dropout probability

Value

p_d

The result is a list containing two objects, 'seqs' and 'tree'. The 'seqs' is 'phyDat' object of 'sim_n' number of simulated barcodes corresponding to each cell, and The 'tree' is a 'phylo' object, a ground truth tree structure for the simulated data.

Author(s)

Il-Youp Kwak

Examples

```
library(DCLEAR)
library(phangorn)
library(ape)
```

substr_kmer 27

```
set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
        d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
## RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)
## RF score with weighted hamming
InfoW = -\log(mu_d1)
InfoW[1:2] = 1
InfoW[3:7] = 4.5
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout=FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)
## RF score with weighted hamming, cosidering dropout situation
nfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2= NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```

substr_kmer

Generic function for substr_kmer

Description

Generic function for substr_kmer

Usage

```
substr_kmer(x, ...)
```

Arguments

x a kmer object

... additional parameters

28 subtract

```
substr\_kmer, kmer\_summary-method \\ Subseting \ a \ kmer\_summary \ object
```

Description

Summarize the short k-mer summary from the long k-mer summary

Usage

```
## S4 method for signature 'kmer_summary'
substr_kmer(x, k = 2)
```

Arguments

```
x a kmer_summary objectk k-mer length(default: 2)
```

Value

```
a new kmer_summary object
```

Author(s)

Wuming Gong (gongx030@umn.edu)

subtract

Generic function for subtract

Description

Generic function for subtract

Usage

```
subtract(x, y, ...)
```

Arguments

```
x a lineage_tree objecty a lineage_tree object... additional parameters
```

```
subtract, lineage\_tree, lineage\_tree-method \\ subtract
```

Description

Subtract a subtree from a large tree

Usage

```
## S4 method for signature 'lineage_tree,lineage_tree'
subtract(x, y, ...)
```

Arguments

```
x a lineage_tree objecty a lineage_tree object... additional parameters
```

Value

```
a lineage_tree object
```

subtree

Generic function for subtree

Description

Generic function for subtree

Usage

```
subtree(x, ...)
```

Arguments

```
x a lineage_tree object
... additional parameters
```

30 subtree,phylo-method

```
subtree,lineage_tree-method
subtree
```

Description

Extract a subtree with specific leaves

Usage

```
## S4 method for signature 'lineage_tree'
subtree(x, leaves = NULL, ...)
```

Arguments

```
x a lineage_tree object
leaves leaves of the extracted tree
... additional parameters
```

Value

```
a lineage_tree object
```

```
subtree,phylo-method subtree
```

Description

Extract a subtree with specific leaves

Usage

```
## S4 method for signature 'phylo'
subtree(x, leaves = NULL, ...)
```

Arguments

```
x a phylo object
leaves leaves of the extracted tree
... additional parameters
```

Value

```
a pylo object
```

summarize_kmer 31

summarize_kmer

Generic function for summarize_kmer

Description

Generic function for summarize_kmer

Usage

```
summarize\_kmer(x, ...)
```

Arguments

```
x a sequence object... additional parameters
```

Description

Summarize kmer distributions with input sequences

Usage

```
## S4 method for signature 'phyDat'
summarize_kmer(
    x,
    division = 16L,
    k = 2,
    reps = 20L,
    n_samples = 200L,
    n_nodes = 100L,
    n_targets
)
```

Arguments

```
    x input data as a phyDat object
    division number of cell division
    k k-mer (default = 2)
    reps number of simulated trees
    n_samples number of samples to simulate
```

32 summarize_kmer_core

n_nodes number of nodes to sample (including both leaves and internval nodes)

n_targets sequence length. If this argument is missing, the length of the input sequences

will be used.

Value

```
a kmer_summary object
```

Author(s)

Wuming Gong (gongx030@umn.edu)

```
summarize_kmer_core
```

Description

Summarize kmer distributions (core function)

Usage

```
summarize_kmer_core(
  k = 2,
  reps = 20L,
  n_samples = 200L,
  n_nodes = 100L,
  config = NULL
)
```

Arguments

```
k k-mer (default = 2)
```

reps number of simulated trees n_samples number of samples to simulate

n_nodes number of nodes to sample (including both leaves and internval nodes)

config lineage tree configuration (a lineage_tree_config object)

Value

```
a kmer_summary object
```

Author(s)

Wuming Gong (gongx030@umn.edu)

WH 33

WH WH

Description

implementation of weighted hamming algorithm

Usage

```
WH(x, InfoW, dropout = FALSE)
```

Arguments

x Sequence object of 'phyDat' type.

InfoW Weight vector for the calculation of weighted hamming distance

dropout Different weighting strategy is taken to consider interval dropout with dropout

= 'TRUE'. Default is, dropout = 'FALSE'.

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

```
set.seed(1)
library(phangorn)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
        d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
## RF score with hamming distance
D_h = dist.hamming(sD$seqs)
tree_h= NJ(D_h)
RF.dist(tree_h, sD$tree, normalize = TRUE)
## RF score with weighted hamming
InfoW = -\log(mu_d1)
InfoW[1:2] = 1
InfoW[3:7] = 4.5
D_wh = WH(sD$seqs, InfoW)
```

WH_train

```
tree_wh= NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

## RF score with weighted hamming, cosidering dropout situation
nfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3

D_wh2 = WH(sD$seqs, InfoW, dropout=TRUE)
tree_wh2= NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```

WH_train

Train weights for WH

Description

Train weights for WH and output weight vector

Usage

```
WH_train(X, loc0 = 2, locDropout = 1, locMissing = FALSE)
```

Arguments

X a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence

information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]]

as phylo format.

loc0 weight location of initial state

locDropout weight location of dropout state

locMissing weight location of missing state, FALSE if there is no missing values

Value

a weight vector

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)

WH_train_fit 35

14/1-1	4	C: 1
WH	train	†1†

Train weights for WH, and output distance object

Description

Train weights for WH using the given data, and fit the distance matrix for a input sequence.

Usage

```
WH_train_fit(x, X)
```

Arguments

x input data in phyDat format

X a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence

information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]]

as phylo format.

Value

a dist object

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)

Index

```
* datasets
                                                prune, 19
    lineages, 17
                                                prune, igraph-method, 19
                                                prune, lineage_tree-method, 20
add_deletion, 3
add_dropout, 4
                                                 random_tree, 20
as_igraph, 4
                                                 rbind, phyDat-method, 21
as_igraph, data.frame-method, 5
as\_igraph, phylo-method, 5
                                                 sample_mutation_outcome, 21
                                                sample_mutation_site, 22
as_lineage_tree, 6
as_lineage_tree,phyDat,phylo,lineage_tree_con$amp=he±hustçome_prob,22
                                                 score_simulation, 23
                                                sim_seqdata, 26
as_phylo, 7
                                                simulate, 23
as_phylo,igraph-method,7
                                                simulate,lineage_tree_config,missing-method,
DCLEAR, 7
dist_kmer_replacement_inference, 8
                                                 simulate,lineage_tree_config,phyDat-method,
dist_replacement, 8
dist_replacement, phyDat, kmer_summary, integer-menhopete_core, 25
                                                 substr_kmer, 27
\verb|dist_replacement,phyDat,missing,integer-methos | \verb|dubstr_kmer,kmer_summary-method|, 28| \\
                                                 subtract, 28
dist_weighted_hamming, 10
                                                 subtract,lineage_tree,lineage_tree-method,
dist_weighted_hamming,phyDat,numeric-method,
                                                         29
        10
                                                 subtree, 29
downsample, 12
                                                 subtree,lineage_tree-method,30
downsample, igraph-method, 12
                                                 subtree, phylo-method, 30
downsample, lineage_tree-method, 13
                                                summarize_kmer, 31
                                                summarize\_kmer,phyDat-method,31
get_distance_prior, 13
                                                summarize_kmer_core, 32
get_leaves, 14
get_leaves,lineage_tree-method, 14
                                                WH, 33
get_node_names, 15
                                                WH_train, 34
get_replacement_probability, 15
                                                WH\_train\_fit, 35
get_sequence, 16
get_transition_probability, 16
lineages, 17
positional_mutation_prob, 17
process_sequence, 18
process_sequence, phyDat-method, 18
```