Méthodes de Monte Carlo en finance (G. Pagès, V. Lemaire) M2 Probabilités & Finance, UPMC-X 30 mars 2010

3 h, polycopié et notes de cours non autorisées

L'espace canonique \mathbb{R}^d est supposé muni d'une norme euclidienne notée |.| dérivant d'un produit scalaire noté (.|.).

Problème I (Vitesse de convergence L^2 d'un algorithme stochastique) Soit $H: \mathbb{R}^d \times \mathbb{R}^q \to \mathbb{R}^d$ une fonction borélienne et $Z: (\Omega, \mathcal{A}, \mathbb{P}) \to \mathbb{R}^q$ un vecteur aléatoire vérifiant

$$\forall y \in \mathbb{R}^d$$
, $||H(y,Z)||_2 \le C_{H,Z}(1+|y|)$.

Question préliminaire. Montrer que l'égalité

$$h(y) = \mathbb{E} H(y, Z)$$

définit bien une fonction (borélienne) $h: \mathbb{R}^d \to \mathbb{R}^d$ vérifiant

$$\forall y \in \mathbb{R}^d$$
, $|h(y)| \le C_{H,Z}(1+|y|)$.

On définit par récurrence l'algorithme stochastique

$$Y_{n+1} = Y_n - \gamma_{n+1} H(Y_n, Z_{n+1}), \quad Y_0 \in L^2(\Omega, \mathcal{A}, \mathbb{P})$$

où $(Z_n)_{n\geq 1}$ désigne une suite de copies indépendantes de Z définies sur ce même espace de probabilités $(\Omega, \mathcal{A}, \mathbb{P})$ et $(\gamma_n)_{n\geq 1}$ une suite de pas strictement positifs vérifiant

$$\lim_{n} \gamma_n = 0.$$

1. On suppose dans toute la suite du problème qu'il existe $y^* \in \mathbb{R}^d$ et une constante réelle c>0 telle que

$$\forall y \in \mathbb{R}^d, \quad (y - y^* | h(y)) \ge c|y - y^*|^2.$$

- **1.a.** Montrer que $\{h = 0\} = \{y^*\}.$
- **1.b.** Montrer que, sous des hypothèses aditionnelles que l'on précisera avec soin, la suite $(Y_n)_{n\geq 0}$ converge p.s. vers y^* [Des arguments précis sur h et $(\gamma_n)_{n\geq 1}$ sont demandés].
- **2.** Pour tout $n \geq 0$, on pose $\varepsilon_n = \mathbb{E}|Y_n y^*|^2$.
- **2.a.** Montrer que, pour tout $n \geq 0$,

$$\varepsilon_{n+1} \le \varepsilon_n - 2c \gamma_{n+1} \varepsilon_n + \gamma_{n+1}^2 \mathbb{E} |H(Y_n, Z_{n+1})|^2$$
.

2.b. Montrer que pour tout $n \geq 0$, $\mathbb{E}|H(Y_n, Z_{n+1})|^2 \leq C'(1 + \varepsilon_n)$ et en déduire que

$$\varepsilon_{n+1} \le \varepsilon_n (1 - 2c \gamma_{n+1} + C' \gamma_{n+1}^2) + C' \gamma_{n+1}^2.$$

3. On pose pour tout $n \ge 0$, $\widetilde{\varepsilon}_n = \frac{\varepsilon_n}{\gamma_n}$ (convention $\gamma_0 = 1$) et

$$a_n = \frac{1}{\gamma_{n+1}} \left[\frac{\gamma_n}{\gamma_{n+1}} \left(1 - 2c \, \gamma_{n+1} \right) - 1 \right].$$

3.a. Montrer que pour tout $n \geq 0$

$$\widetilde{\varepsilon}_{n+1} \le \widetilde{\varepsilon}_n (1 + (a_n + C'\gamma_n)\gamma_{n+1}) + C'\gamma_{n+1}$$

où C'' > 0 est une constante réelle.

3.b. En déduire que si

$$\lim_{n} \sup_{n} a_{n} = -\kappa^{*}, \ \kappa^{*} > 0,$$

alors, il existe un entier n^* tel que, pour tout $n \ge n^*$,

$$\widetilde{\varepsilon}_{n+1} \le \widetilde{\varepsilon}_n \left(1 - \frac{1}{2} \kappa^* \gamma_{n+1} \right) + C' \gamma_{n+1}.$$

3.c. Montrer que la suite $(\widetilde{\varepsilon}_n)_{n\geq 0}$ est bornée par $\max\left(\widetilde{\varepsilon}_{n^*}, \frac{2C'}{\kappa^*}\right)$. En conclure à l'existence d'une constante C''>0 telle

$$\forall n \ge 0, \qquad \|Y_n - y^*\|_2 \le C'' \sqrt{\gamma_n}.$$

- **3.d.** Montrer que si $\gamma_n = \frac{\bar{\gamma}}{n^{\alpha}}, n \ge 1, 0 < \alpha < 1, \text{ alors } \lim \sup_n a_n < 0.$
- **3.e.** On suppose que $\gamma_n=\frac{\bar{\gamma}}{n},\ n\geq 1.$ Donner une condition sur $\bar{\gamma}$ pour assurer que $\limsup_n a_n<0.$
- **3.f.** Montrer que si $\lim_{n} a_n = a_{\infty} > 0$, alors $\sum_{n} \gamma_n < +\infty$.