

Animal Species Classification

Presentation by Group H

Pooya Khoshabi **40163944** Salar Nasr Azadani **40067490** Pouria Pirian **40207625** Shahzaib Malik **40185011**

Problem Statement

Practical Applications:

- Wildlife monitoring
- Veterinary diagnosis
- Agriculture

Challenges:

- large number of animal species with different features
- variations in the image quality, lighting, and background

Objective

• Manual classification of animal species is a time-consuming and labor-intensive task which makes it difficult to rely on humans for accurate classification of animals.

- Objective of animal species classification is to leverage the power of computer vision to accurately and efficiently identify different types of animals in a range of different applications.
- Our aim is to conduct a comprehensive analysis of the trained models with various architectures on multiple datasets for the task of animal image classification.

Dataset

Table: Specifications of Datasets

<u>Dataset</u>	# of classes	# of images	Size	Standard Deviation	Balanced
Animal10	10	26,000	614MB	0.2139	No
Animal90	90	5,400	688MB	0.2041	Yes
DogsAndCats	2	10,000	455MB	0.2226	Yes

- Splitting dataset 8:2
 - □ training:testing
- Splitting training dataset 8:2
 - □ training:validation

Methodology

- Image preprocessing was done before training the models which included the steps:
 - Data Augmentation
 - Normalization
 - Resizing
- Architectures such as ResNet-18, MobileNet V2, and ShuffleNet V2 were used to train the models.

Table 2. Average time needed for one epoch of training Animal10 Animal90 **DogsAndCats Attributes** ResNet-18 245s 117s 152s ShuffleNet V2 127s 214s 86s MobileNet 223s 90s 135s

Experiment Setup (continued)

- Models were trained using PyTorch with identical hyper-parameter values.
- The size of the image as input was **224x224**
- Batch size was set to **128** images per epoch
- Learning rate was set to **0.01**
- Models were trained on 50 epochs
- CrossEntropyLoss was used as loss function
- ADAM optimization algorithm

Results

Results (Transfer Learning)

The effect of Transfer Learning is provided below:

The result of hyperparameter tuning is provided below: (ShuffleNet and Animal10)

Learning rate	0.1	0.01	0.001	0.0001	0.005	0.0005
Accuracy val after 10 epochs	18.99%	59.54%	59.91%	37.32%	61.84%	57.49%

Results (On test dataset)

Models and Dataset				
	Animal 10	Animal 90	Dogs and Cats	
ResNet 18	65.32%	41.01%	80.88%	
ShuffleNet V2	77.87%	36.81%	89.63%	
MobileNet V2	72.20%	33.69%	85.15%	

Transfer Learning	
	Animal 90
SuffleNet V2	66.01%
MobileNet V2	51.85%

Fine-Tuning Hyperparameter		
ShuffleNet V2	Animal 10	
lr = 0.01	77.87%	
lr= 0.005	78.43%	

Results (TSNE)

References

- [1] chetanimravan. Dogs cats images. https://www.kaggle.com/datasets/chetankv/dogs- cats-images
- [2] Corrado Alessio. Animals-10. https://www.kaggle.com/datasets/alessiocorrado99/animals10
- [3] Sourav Banerjee. 90 animal species. https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals.
- [4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [5] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), pages 116–131, 2018.
- [5] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Lian Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.
- [6] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep adaptation networks. In International conference on machine learning, pages 97–105. PMLR, 2015.
- [7] Romain Mormont, Pierre Geurts, and Rapha el Mar ee. Comparison of deep transfer learning strategies for digital pathology. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 2262–2271, 2018.
- [8] Andr'es Ovidio Restrepo Rodr'iguez, Daniel Esteban Casas Mateus, Paulo Alonso Gaona Garc'ia, Carlos Enrique Montenegro Mar'ın, and Rub'en Gonz'alez Crespo. Hyperparameter optimization for image recognition over an ar- sandbox based on convolutional neural networks applying a previous phase of segmentation by colorspace. Symmetry, 10(12):743, 2018.