

Controlo do dispositivo

Desenvolvido por Danmar Computers

Um conjunto de ferramentas de formadores para promover as competências do STEM, ao utilizar Aplicações para microcontroladores

ojeto n.º 2019-1-RO01-KA202-063965

Este projeto foi financiado com o apoio da Comissão Europeia. O conteúdo reflete apenas a opinião dos autores e a Comissão não pode ser responsabilizada por qualquer utilização que possa ser feita a partir da informação nele contida.

Controlo do dispositivo

Conteúdo

Tipos de controlo

Com fios

Sem fios

Síntese

Introdução

Untrodução

Independentemente do tipo de dispositivo robótico, este requer sempre algum tipo de controlo e conetividade, o que muitas vezes define as características do dispositivo como um todo. Até os robôs autónomos requerem controlo, saídas de dados, etc.

Com fio (ligado por cabo)

Talvez a forma mais fácil de controlar um robô é ao utilizar um cabo (ou melhor, um conjunto de cabos). Desta forma, não só os comandos de controlo podem ser transmitidos, como também a energia, o que oferece várias vantagens. Muitos robôs industriais operam com base neste princípio. Variando o nível de controlo, por vezes estes robôs são referidos como "máquinas de controlo remoto" em vez de "robôs".

Com fio (ligado por cabo)

Vantagens:

- Sem limites durante o tempo de funcionamento
- Eletrónica mais simples, bem como a nível de complexidade
- Maior carga útil
- O robô pode ser facilmente recuperado em caso de falha
- Não há necessidade de bateria pesada

Desvantagens

- A ligação por cabo pode ser problemática durante o funionamento, especialmente se este for longo
- Distância limitada devido ao peso do cabo
- Nem todos os locais são possíveis

Controlo informático por cabo

Como o próximo passo lógico, incluir um microcontrolador no robô permite utilizar portas de E/S digitais. Deste modo é possível o controlo através do teclado ou rato, em vez de, por exemplo, o *joystick*.

Poderiam ser utilizados comportamentos mais complexos. Assim existe uma maior escolha por parte do controlador.

É também possível que o dispositivo possua um maior nível de autonomia, uma vez que já existe um microcontrolador incorporado.

As desvantagens são, em grande medida, as mesmas que suscitam o controlo por cabo.

Controlo informático com fios – baseado na interface Ethernet

Um alternativa pode ser a utilização de uma interface Ethernet (rede) padrão, que oferece várias vantagens.

- O robô pode ser controlado a partir de qualquer ponto da rede
- A tecnologia Power-over-Ethernet (PoE) pode ser utilizada, pelo menos para robots mais pequenos
- A utilização do protocolo TCP/IP padrão pode simplificar e normalizar a comunicação
- A Ethernet pode ser trocada por uma interface Wi-Fi, se necessário, sem necessidade de alterar os protocolos ou a programação

As desvantagens são as mesmas que as suscitam os cabos.

Tipos de controlo sem fios

As ligações sem fio incluem: infravermelhos, radiofrequências, Bluetooth, WiFi e a conetividade de dados móveis. Cada tecnologia apresenta vantagens específicas, contudo todas exigem que o robô possua uma fonte de energia independente.

Tipos de controlo sem fios - infravermelhos

Os emissores e recetores de infravermelhos permitem uma transmissão de baixo custo. No entanto é necessária uma "linha de visão" clara – com base no mesmo princípio utilizado com os telecomandos de televisão.

A comunicação ocorre apenas de uma só forma, do transmissor pararecetor.

Devido à taxa de dados muito baixa, apenas podem ser processados comandos simples.

💆 Tipos de controlo sem fios - radiofrequência

As unidades de controlo remoto (R/C) disponíveis comercialmente permitem um controlo e transmissão de dados sólidos, em ambos os sentidos. O alcance é significativo e não é necessária uma linha de visão clara. A radiofrequência é de bastante fácil incorporação no que concerne robôs e revela-se muito popular no mercado dos drones. Estas unidades de controlo remoto contêm um pequeno microcontrolador com um conjunto predefinido por comandos e modos de comunicação.

A radiofrequência requer, sem qualquer dúvida, um módulo de de ambos os lados.

Tipos de controlo sem fios - Bluetooth

O Bluetooth é um subconjunto específico de comunicação por radiofrquência, com um alcance limitado de aproximadamente 30 metros.

Contudo, existe uma vantagem. Este revela uma grande popularidade em muitos computadores portáteis e dispositivos móveis. Simultaneamente, este também permite a aplicação direta do protocolo TCP/IP. O BT também proporciona um ritmo de transferência bastante rápido.

A desvantagem é a baixa gama e o BT é considerada por muitos um método de transmissão instável.

Tipos de controlo sem fios - WiFi

A tecnologia WiFi é bastante conhecida e fácil de se aplicar, especialmente porque já se encontra presente em muitos dispositivos informáticos como o Arduino e o Pi.

Os chips WiFi modernos são muito eficientes em termos energéticos e proporcionam um alcance significativo, especialmente na banda inferior (2,4Ghz).

Em termos de programação, o WiFi é bastante transparente, pelo que a comunicação baseada em TCP/IP é de fácil uilização.

Tipos de controlo sem fios - Dados móveis

A transmissão de dados móveis (GPRS) é potencialmente muito atrativa. Contudo, existem alguns fatores que limitam a sua utilização.

Os modems de dados não são muito baratos e requerem cartões SIM, sejam estes prépagos ou baseados em assinaturas.

A nível tecnológico estes encontram-s muito próximos do Bluetooth ou do WiFi, no entanto, uma vez que enfrentam a Internet aberta, a segurança pode ser um problema.

Além disso, os módulos de dados são frequentemente agrupados com recetores de GPS, algo que pode ser útil em alguns casos.

A Robôs autónomos

O passo final é utilizar o microcontrolador e programar o seu robô para interagir com o seu meio envolvente. A verdadeira autonomia requer vários sensores e uma programação inteligente que permita ao robô determinar o curso de ação adequado.

Os métodos mais sofisticados incluem comandos visuais e sonoros, juntamente com o comportamento pré-programado e a prevenção de colisões.

Exemplos de módulos sem fios

Modem Bluetooth

Módulo Popular Blue SMiRF, RN-42

Modo rádio de Classe-2 BT

Taxa de dados em série até 115kbps

Créditos da Img: robotshop.com

Módulo WiFi ESP8266

SOC (Sistema em Chip) de baixa potência com protocolo TCP/IP integrado, contém una antena miniatura

Suporta IEEE 802.11 b/g/n

Créditos da Img: robotshop.com

Módulo GSM/GDPRS

Módulo de transmissão compatível com o Arduino pela EFCom.

Compatível com *quad-band*, pequeno fator de forma, baixo consumo de energia.

Créditos da Img: robotshop.com

5

Exemplo da Mars Rovers

Um exemplo de um dos robôs autónomos mais avançados até à data: os robôs da NASA Mars.

Dois robôs, chamados Spirit and Opportunity foram enviados para Marte, onde tiraram milhares de fotografias, navegaram em terrenos difíceis e realizaram muitas experiências científicas.

Crédito de imagem e mais informações:

https://mars.nasa.gov/mer/

Controlar o seu robô

Síntese do tema

Existem vários métodos para controlar os robôs. Cada um tem vantagens, que devem ser tidas em consideração na sua conceção.

As mais populares incluem:

- Ligações com fios
- Ligações sem fios sob diversas formas
- De forma autónoma (por exemplo, robôs autónomos).