Pontifícia Universidade Católica do Paraná

Plano de Ensino

Escola:	POLITÉ	CNICA			Campus:	CURITIBA
Curso:	CIÊNCIA	DA COMPUT	AÇÃO		Ano/Semestre:	2021 / 2º Semestre
Código/Nome da disciplina:	Construç	ão de Software	e Gráfico 3D			
Carga Horária:	Manhã (Segunda): CHTD 120 HA (90:00 HR) > CHP 72 CHTDE 18 Noite (Quartas e Quintas): CHTD 120 HA (90:00 HR) > CHP 78 CHTDE 12					
CH/Créditos:	4	Período: 2ª	Turma: U	Turno: M &	N	
Professor Responsável:	LUIZ AN	TONIO PAVÃO)			

1. Ementa:

Disciplina do segundo período do curso de Ciência da Computação aonde o estudante se capacita no desenvolvimento de software para geração imagens tridimensionais interativas a partir de informações estruturadas de qualquer natureza. O estudante terá como base conceitos de álgebra linear e geometria analítica aliado a teoria da computação gráfica e programação estruturada.

2. Relação com disciplinas precedentes e posteriores

As disciplinas precedentes que contribuem para esta disciplina são Raciocínio Algorítmico e Modelagem de Fenômenos Físicos. A disciplina de Raciocínio Algorítmico fornece a competência necessária a construção dos códigos que vão compor o software gráfico. Já a disciplina de Modelagem de Fenômenos Físicos, cria a base matemática para os conceitos de álgebra linear e geometria analítica necessários para a construção dos modelos matemáticos utilizados para a criação dos algoritmos a serem implementados.

3. Temas de estudo

1. GEOMETRIA ANALÍTICA

1.1. Retas no espaço

Equações da reta.

Condições de paralelismo, ortogonalidade e coplanaridade entre retas.

Cálculo do ângulo entre duas retas.

Posições relativas e determinação da interseção entre duas retas.

1.2. Plano

Equações do plano.

Condições de paralelismo e ortogonalidade.

Ângulos entre dois planos ou entre reta e plano.

Interseções entre dois planos ou entre reta e plano.

1.3. Distâncias

Distâncias entre dois pontos, entre ponto e reta e, entre: - duas retas paralelas.

Distâncias entre:

- ponto e plano, - entre dois planos paralelos, - entre reta e plano paralelos - entre ret as reversas.

1.4. Curvas Cônicas

Definição e equações.

Parábola, elipse, circunferência e hipérbole.

2. ÁLGEBRA LINEAR

2.1. Matrizes

Matrizes: operações e propriedades.

Matrizes especiais

Transformações Lineares

Matriz de transformação

Transformações Lineares e Multiplicação de Matrizes

2.2. Espaços Vetoriais

Espaços e Subespaços Vetoriais

Espaços Vetoriais Euclidianos

Produto Interno, Norma e Ângulo de Vetores

Independência Linear

Autovetores, Autovalores e Transformações Lineares

Bases de um Espaço Vetorial

Vetores Ortogonais.

Base Ortogonal e Ortonormal

2.3. Sistemas de Equações Lineares

Matrizes e Determinantes

Solução de sistemas de equações lineares.

3. GEOMETRIA ANALÍTICA

3.1. Superfícies Quadráticas (Quádricas)

Definições e equações.

Superfícies quadráticas: Cônica, Esférica, Cilíndrica, de Rotação

4. COMPUTAÇÃO GRÁFICA

4.1. Renderização

Aspectos físicos (ópticos) e computacionais

Descrição de cenários estáticos e dinâmicos (animação)

Modelagem de objetos e cenários

Algoritmo de Ray-Tracing

Scan-Line

CSG - consctructive solid geometry

4.2. Primitivas gráficas bi e tridimensionais e suas representações computacionais

Reta, circunferência, Plano, poliedros, esfera, cilindro e cone

Representação de sólidos por triângulos

4.3. Algoritmos fundamentais da computação gráfica

Transformações geométricas no plano e no espaço (translação, rotação, escala)

Sistemas de coordenadas (criação e conversão)

Transformação de visualização (projeção)

4.4. Arquitetura do software e hardware gráficos

Pipeline gráfico

Bibliotecas gráficas

OpenGL

4.5. Desenvolvimento de software gráfico

Sintaxe e semântica das API's gráficas (OpenGL)

Interatividade Menus e Mouse

Temas abordados transversalmente:

- 5. Modelagem gráfica por meio de técnicas e funções matemáticas:
- 6. Implementação computacional de soluções gráficas de problemas genéricos (reais e abstratos). Inclui linguagens de programação, técnicas de programação e técnicas algorítmicas).
- 7. Utilização de bibliotecas gráficas e matemáticas para a criação de software de modelagem gráfica.

4. Resultados de Aprendizagem

Como estratégia para a obtenção dos resultados de aprendizagem os temas foram reclassificados de forma a termos três aspectos fundamentais: matemáticos, algorítmicos e tecnológicos.

Com isto, passamos a ter o seguinte conceito diretor: modelagem com geometria analítica e álgebra linear por meio de métodos vetoriais para a construção de software gráfico

Desta forma os resultados de aprendizagem são compostos pelos três aspectos fundamentais e avaliados sempre em conjunto (matemáticos, algorítmicos e tecnológicos), oferecendo sempre um significado prático efetivo da teoria matemática e física.

Competência	Elemento de Competência	Resultado de Aprendizagem	Tema de Estudo
C1. Implementar softwares para problemas estruturados de solução algorítmica, utilizando técnicas e ferramentas de desenvolvimento, de forma autônoma e cooperativa.	EC1.1. Compreender especificações de software em variadas áreas de aplicação.	RA1. Codificar programas de forma organizada e estruturada de acordo com as boas práticas de programação e em conformidade com as especificações.	Т6
	EC1.2. Identificar a sequência lógica de etapas para a solução de problemas.	RA1.	T4.4 / T4.5 T7
	EC.1.3. Codificar produtos de software utilizando linguagem de programação, de forma sistematizada e aderente às especificações.	RA1.	T4.1 / T4.2 / T4.3
	EC1.5. Aplicar padrões e boas práticas de programação na construção de produtos de software.	RA1.	Т6
C2. Resolver problemas complexos não estruturados de solução algorítmica, considerando limites da computação, preceitos éticos e legais, de forma autônoma, crítica e inovadora.	EC2.1. Identificar as soluções algorítmicas viáveis para problemas complexos e não estruturados.	RA2. Criar modelos gráficos por meio de funções matemáticas baseadas na Geometria Analítica, Álgebra Vetorial e Álgebra Linear.	T1, T2 T5
	EC2.2. Selecionar algoritmos apropriados para problemas complexos e não estruturados.	RA3. Relacionar os aspectos físicos (óptica) e computacionais para a obtenção de modelos gráficos.	T4.1

5. Mapa Mental

6. Metodologia e Avaliação

Resultados de Aprendizagem	Indicadores de Desempenho	Métodos ou Técnicas empregados	Processos de Avaliação
RA1. Codificar programas com a finalidade de produzir informação gráfica.	ID1. Cria programas que produzem imagens gráficas	Aula Invertida Aulas remotas via Blackboard Collaborate Discord com apoio do Mentimeter e/ou Socrative.	Trabalho de implementação (formativa) Projeto de Implementação (somativa)
RA2. Codificar programas otimizando o uso dos recursos computacionais (software e hardware).	ID2. Cria programas gráficos interativos que maximizem o uso de recursos computacionais e minimizem o tempo de resposta.	Aula Invertida PBL Aulas remotas via Blackboard Collaborate Discord com apoio do Mentimeter e/ou Socrative.	Trabalho de implementação (formativa) Projeto de Implementação (somativa)
RA3. Codificar programas que produzam informação gráfica fiel aos dados de entrada e em conformidade com a especificação.	ID3. Cria programas que produzam gráficos que representem corretamente as informações definidas na especificação.	PBL Aulas remotas via Blackboard Collaborate Discord com apoio do Mentimeter e/ou Socrative.	Trabalho de implementação (formativa) Projeto de Implementação (somativa)
RA4. Codificar programas de forma organizada e estruturada de acordo com as boas práticas de programação.	ID4. Cria programas estruturados e com boas práticas de programação.	Aprendizado por pares Aulas remotas via Blackboard Collaborate Discord com apoio do Mentimeter e/ou Socrative.	Trabalho de implementação (formativa) Projeto de Implementação (somativa)
RA5. Criar modelos gráficos por meio de funções matemáticas baseadas na Geometria Analítica e nos Espaços Vetoriais.	ID5. Cria modelos gráficos utilizando recursos matemáticos passíveis de serem implementados computacionalmente. ID5a. Recursos Matemáticos da Álgebra Linear ID5b. Recursos Matemáticos da Geometria Analítica	Aula Invertida PBL Aprendizado por pares Aulas remotas via Blackboard Collaborate Discord com apoio do Mentimeter e/ou Socrative.	Resolução de Exercícios (formativa) Questões em provas escritas (somativa) Trabalho de implementação (formativa) Projeto de Implementação (somativa)
RA6. Relacionar os aspectos físicos (óptica), matemáticos e computacionais para a obtenção de modelos gráficos implementáveis (software).	ID6. Relaciona os aspectos e fenômenos físicos da óptica com os recursos matemáticos na criação de software gráfico.	Aula Invertida PBL Aulas remotas via Blackboard Collaborate Discord com apoio do Mentimeter e/ou Socrative.	Resolução de Exercícios (formativa) Questões em provas escritas (somativa) Trabalho de implementação (formativa) Projeto de Implementação (somativa)
RA7. Selecionar, dentre os recursos computacionais e os matemáticos oferecidos pela Geometria Analítica e Álgebra Linear, aqueles mais adequados à criação de software gráfico interativo aderente à especificação.	ID7. Seleciona corretamente os recursos necessários a criação de software gráfico interativo aderente à especificação.	Aula Invertida PjBL Aulas remotas via Blackboard Collaborate Discord com apoio do Mentimeter e/ou Socrative.	Trabalho de implementação (formativa) Projeto de Implementação (somativa)

7. Cronograma de atividades (datas para o 2º semestre de 2020)

Adaptação do Cronograma para a pandemia COVID 19, segundo o parecer do CNE/CP Nº:5/2020, homologado em 1º de junho 2020 pelo MEC em diário oficial, orientações: A partir do 2º semestre, enquanto durar a recomendação de aulas remotas será necessário fazer o controle da frequência dos estudantes, conforme orientação do MEC. Tendo em vista possíveis problemas de conectividade durante as videoaulas, devemos realizar o controle de presença por meio de entregas vinculadas a atividades pedagógicas relacionadas às aprendizagens almejadas nas aulas.

Encontro Semana	MANHÃ dia/mês	NOITE dia/mês	Tema de Estudo
1	1 02/ago 04/ago		Formas geométricas no espaço 3D: plano, esfera, cone, cilindro.
05/ago		05/ago	O processo de renderização. Aspectos físicos e computacionais. Definição de Cenário (Câmera, Iluminação, Objetos, Relacionamento) Fundamentos da Linguagem de Descrição de Cena.
2	2 09/ago 11/ago		Teoria da Iluminação e Sombreamento (shading)
12/ago		12/ago	O processo de renderização. Algoritmos e técnicas. Linguagem de Descrição de Cena e Scripts. Constructive Solid Geometry. Cenas dinâmicas (animadas).
3	16/ago	18/ago	Sistemas de Coordenadas: WCS, NDCS, DCS. Mapeamento de Coordenadas.
		19/ago	Implementação - mapeamento de coordenadas
4	4 23/ago 25/ag		OpenGL: definição, estrutura, sintaxe, semântica.
		26/ago	Callbacks, estrutura de um programa em C com OpenGL (freeGLUT) - OpenGL: Projeção Perspectiva, Interação (kbd e mouse).
5	5 30/ago		Projeção Ortogonal e Perspectiva
		02/set	Callbacks, estrutura de um programa em C com OpenGL (freeGLUT) - OpenGL: Projeção Perspectiva, Interação (kbd e mouse).
6	06/set	08/set	Primitivas 2D e 3D
		09/set	Implementação: primitivas
7	13/set	15/set	Iluminação
		16/set	Implementação: Animação, Iluminação, Menus
8	20/set	22/set	Vetores
		23/set	Implementação de Vetores
9	27/set	29/set	Vetores
		30/set	Implementação: Simulação Física com Vetores
10	04/out	06/out	Iluminação
		07/out	Implementação: iluminação de triângulos
11	11/out	13/out	Matrizes
		14/out	Implementação de Matrizes

12	18/out	27/out	Matrizes		
		28/out	Implementação: Aplicação de Matrizes		
13	25/out	03/nov	Transformações Geométricas (Projeção 3D>2D)		
04/nov			Implementação: Translação, Rotação e Escala		
14	01/nov	10/nov	Transformações Geométricas - Pilha de Matrizes OpenGL		
		11/nov	Implementação: Criação de Objetos Compostos		
15	08/nov	17/nov	Matrizes e Processamento de Imagens		
		18/nov	Implementação: Leitura de arquivos de imagem e visualização 3D		
16	22/nov	24/nov	Atividade Avaliativa		
		25/nov	Projeto da Disciplina		
17	29/nov	01/dez	RECUPERAÇÃO		
18			TDE - 01		
19			TDE - 02		
20			TDE - 03		

Contabilização de Frequência

Entregas / Avaliações	СН
Entrega: cena desenvolvida	6
1ª entrega / TDE 1	2
Atividade Avaliativa 1	2
2ª entrega / TDE2: código desenvolvido V0	2
3ª entrega / TDE3: código desenvolvido v1	6
Atividade Avaliativa 2	2
4ª entrega / TDE4: código desenvolvido v2	2
5ª entrega / TDE5: código desenvolvido v3	4
6ª entrega: Projeto v1	2
7ª entrega: Projeto v2	2
8ª entrega: Projeto v3	2

Alterações por conta da COVID19: Sem Alterações

- 8. Acessibilidade**
 Não houve necessidade de adaptação.
- 9. Adaptações para práticas profissionais** Não houve necessidade de adaptação.

^{**} conforme nota técnica conjunta número 17/2020 CGLNRS/DPR/SERES/SERES

10. Referência

Matemática 01

Básica:

STEINBRUCH, Alfredo. Álgebra linear. São Paulo: McGraw-Hill, 1987.

KOLMAN, B. Introdução à Álgebra linear com aplicações. Rio de Janeiro: Prentice Hall de Brasil, 1998.

POOLE, David. Álgebra Linear. São Paulo:Thomson,2004.

Complementar:

BOLDRINI, J. L. et alii. Álgebra linear. São Paulo: Harper and Row do Brasil,1980

CALLIOLI, Carlos A. Álgebra linear e aplicações. São Paulo: Atual, 1993.

DOMINGUES, H. H. et alii. Álgebra linear e aplicações. São Paulo: Atual, 1982

LIPSCHUTZ, Seymour e LIPSON Marc. Álgebra linear. Porto Alegre. Bookman - Coleção Schaum.2004.

ANTON, Howard; RORRES, Chris. Álgebra Linear com aplicações. 8ed.Porto Alegre: Bookman, 2001.

Matemática 02

Básica:

VENTURI, Jacir J. Álgebra vetorial e geometria analítica. 1º vol..5ed. Curitiba: Editora da UFPR, 1991. E: Cônicas e quádricas. 4ed. 2º vol. . Curitiba: Artes Gráficas . Ed. Unificado, 1994. WINTERLE, Paulo. Vetores e geometria analítica. 1ed. São Paulo: Makron Books,2000. STEINBRUCH, Alfredo e WINTERLE, Paulo. Geometria analítica. 2ed. São Paulo: McGraw-Hill, 1987.

Complementar:

BOULOS, Paulo e CAMARGO, Ivan. Geometria Analítica – um tratamento vetorial. 2ed.. São Paulo. McGraw- Hill, 1987.

LEHMANN, Charles H. Geometria analítica. 4ed.

Porto Alegre: Editora Globo.

OLIVEIRA, Ivan de Camargo e, BOULOS, Paulo. Geometria analítica: um tratamento vetorial. 2ed.

São Paulo: McGraw-Hill, 1987.

RIGHETTO, Armando. Vetores e geometria analítica. 4ed. São Paulo: IBEC, 1982.

BOULOS, Paulo e CAMARGO, Ivan. Introdução à Geometria Analítica – no espaço. 2ed.. São Paulo. Makron Books, 1997.

Computação Gráfica Básica:

FOLEY, J.D.; VAN DAM, A.; FEINER, S.K.; HUGHES, J.F.; PHILLIPS, R.L. Computer graphics, principles and practice. Ed. Addison-Wesley, 1990.

HILL, F.S. Computer graphics using open GL. Ed. Prentice-Hall, 2001.

AZEVEDO, E; CONCI, A.; Computação Gráfica, Teoria e Prática. Ed. Campus, 2003.

Complementar:

ROGERS, D. Procedural elements for computer graphics. Ed. McGraw-Hill, 1998.

AMES, Andrea L. The VRML source book. John Wiley & Sons, Inc. Ed., 1996.

NEWMAN, W.M.; SPROULL. Principles of in teractive computer graphics. Ed. McGraw-Hill, 1979.

MORTENSON, M.E.; Mathematics for Computer Graphics Applications. Internationa Press Inc. 1999.

COHEN, M.; MANSSOUR, I.H.; OpenGL, uma abordagem prática e objetiva. Ed. Novatec 2006.