Machine Learning in High Dimension IA317 Dimension Reduction

Thomas Bonald

2022 - 2023

High dimension

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

High dimension = d >> 1 (possibly larger than n) Typically a **sparse** matrix

Examples

- Textual data (bags of words)
- Medical data
- Marketing data

Dimension reduction

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Dimension reduction

$$X = \left[\begin{array}{cc} & & \\ & & \end{array} \right] \quad o \quad Y = \left[\begin{array}{c} & \\ & \end{array} \right]$$

Main objectives:

- reduce complexity (e.g., for nearest neighbors)
- clustering
- visualization

Feature selection

Select the k most important features for prediction, like

- correlation with the labels
- statistical independence
- mutual information
- ► feature importance → lecture on ensemble methods
- \rightarrow supervised learning

Feature selection

$$X = \left[\begin{array}{ccc} & & \\ & & \\ \end{array} \right] \quad o \quad Y = \left[\begin{array}{ccc} & \\ & \\ \end{array} \right]$$

Random projection

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Choose k random vectors in this vector space of high dimension:

$$Z \in \mathbb{R}^{k \times d}$$

Random projection

$$X = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \rightarrow Y = XZ^T = \begin{bmatrix} & \\ & \\ & \end{bmatrix}$$

cf. Locally Sensitive Hashing

Note: The projection vectors can be made **orthogonal** (QR decomposition)

Matrix factorization

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Matrix factorization

$$X = \begin{bmatrix} \\ \end{bmatrix} \approx \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix}$$

Inductive bias

Train set = n samples, each with d features

$$X_{\text{train}} \in \mathbb{R}^{n \times d}$$

Matrix factorization

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

How to reduce the dimension of the **test set** X_{test} so that distances between Y_{train} and Y_{test} make sense?

Outline

Focus on 2 matrix factorization techniques:

- Singular Value Decomposition (SVD)
 → Principal Component Analysis (PCA)
- 2. Non-negative Matrix Factorization (NMF)

Singular values

Let $X \in \mathbb{R}^{n \times d}$

Definition

We say that $\sigma \geq 0$ is a **singular value** of X if there exist unit vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^d$ such that

$$Xv = \sigma u$$
$$X^T u = \sigma v$$

The vectors u and v are left and right singular vectors for σ

Property

The vectors u and v are respective **eigenvectors** of XX^T and X^TX for the **eigenvalue** σ^2

Singular value decomposition

Let $X \in \mathbb{R}^{n \times d}$ of rank r

Theorem

There exist $U \in \mathbb{R}^{n \times r}$, $V \in \mathbb{R}^{d \times r}$ and $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ such that

$$X = \begin{bmatrix} \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} = U \Sigma V^T$$

with

$$U^T U = I_r \quad V^T V = I_r \quad \sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$$

The matrices U and V are orthogonal bases of left and right singular vectors for the singular values $\sigma_1, \ldots, \sigma_r$.

Proof: Spectral theorem applied to either XX^T or X^TX .

Matrix factorization by SVD

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Matrix factorization

$$X = \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} = U\Sigma V^T \quad o \quad Y = U\Sigma = \begin{bmatrix} \\ \end{bmatrix}$$

Remark

Projection on the right singular vectors (orthonormal basis)

$$Y = XV$$

Induction

Train set = n samples, each with d features

$$X_{\text{train}} \in \mathbb{R}^{n \times d}$$

Step 1: Matrix factorization

$$X_{\text{train}} = \left[\quad \right] \left[\quad \right] = U \Sigma V^T$$

Step 2: Dimension reduction

Projection on the right singular vectors (of the train set)

$$Y_{\text{train}} = X_{\text{train}} V$$

 $Y_{\text{test}} = X_{\text{test}} V$

Example: MNIST

$$X \in \{0, \dots, 255\}^{n \times d}$$

 $n = 10,000$ samples
 $d = 28 \times 28 = 784$

Samples

Singular vectors

Example: MNIST

Projection on the first 20 **right singular vectors** Visualization of 1,000 samples

Interpretation of SVD

Let $X \in \mathbb{R}^{n \times d}$

Low-rank approximation

We say that \hat{X} is the **best rank**-k approximation of X if

$$\hat{X} = \arg\min_{M: \operatorname{rank}(M) = k} ||X - M||^2$$

with $||\cdot||$ the Frobenius norm (= Euclidean norm for matrices)

Property

For any $k \leq \text{rank}(X)$, the best rank-k approximation of X is

$$\hat{X} = U_{\to k} \Sigma_{\to k} V_{\to k}^{T}$$

with $U_{\rightarrow k}, V_{\rightarrow k}, \Sigma_{\rightarrow k}$ the **restriction** to the first k singular vectors

Approximation error

Let $X \in \mathbb{R}^{n \times d}$

Property

For any $k \leq \text{rank}(X)$, the minimum **error** of a rank-k approximation of X is

$$||X - \hat{X}||^2 = ||X||^2 - \sum_{I \le k} \sigma_I^2$$

Note: The relative error is:

$$\rho = \frac{||X - \hat{X}||^2}{||X||^2} = 1 - \frac{\sum_{l \le k} \sigma_l^2}{||X||^2}$$

Interpretation of singular vectors

Let $X \in \mathbb{R}^{n \times d}$

Property

The leading singular vector is the direction of largest inertia:

$$v_1 = \arg\max_{v:||v||=1} ||Xv||^2$$

Note: If *X* is centered, in the sense that

$$1^T X = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} = 0$$

this is also the direction of highest variance

Interpretation of singular vectors

Let $X \in \mathbb{R}^{n \times d}$

Property 1

The k-th singular vector is the direction of highest inertia, **orthogonal** to the previous ones:

$$v_k = \arg\max_{v:||v||=1, v_1^T v = \dots = v_{k-1}^T v = 0} ||Xv||^2$$

Property 2

The k-th singular vector is the direction of highest inertia of the **residual** $X - \hat{X}$ with

$$\hat{X} = X \sum_{l < k} v_l v_l^T = U_{\rightarrow k-1} \Sigma_{\rightarrow k-1} V_{\rightarrow k-1}^T$$

Note: If X is centered, the inertia is the **variance**

Principal Component Analysis

PCA = SVD **after** centering

$$X \rightarrow X - \frac{11^T}{n}X$$

The directions (= principal components) can be interpreted as the directions of **highest variance**

Warning

If X is a **sparse** matrix, its centered version is no longer sparse!

Outline

Focus on 2 matrix factorization techniques:

- Singular Value Decomposition (SVD)
 → Principal Component Analysis (PCA)
- 2. Non-negative Matrix Factorization (NMF)

Non-negative matrix factorization

Data = n samples, each with d non-negative features

$$X \in \mathbb{R}^{n \times d}_+$$

Non-negative matrix factorization

$$X pprox WH = \left[\quad \right] \left[\quad \quad \quad Y = W = \left[\quad \right] \right]$$

with $W, H \ge 0$

Remark

The dimension reduction is **not** a projection!

Non-negative matrix factorization

Let $X \in \mathbb{R}^{n \times d}_+$ be a non-negative matrix The optimization problem

$$\min_{W,H\geq 0}\|X-WH\|^2$$

is **convex** in W and H but not in both

Lee-Seung's algorithm (2000)

Alternate updates

$$H \leftarrow H \times \frac{W^T X}{W^T W H}$$
 $W \leftarrow W \times \frac{X H^T}{W H H^T}$

with component-wise matrix multiplications and divisions

Theorem

The approximation error $\|X - \hat{X}\|$ with $\hat{X} = WH$ is non-increasing

Induction

Train set = n samples, each with d non-negative features

$$X_{\text{train}} \in \mathbb{R}_{+}^{n \times d}$$

Step 1: Non-negative matrix factorization

$$X_{\mathrm{train}} = \left[egin{array}{c} \ \ \end{array}
ight] pprox \mathit{WH} &
ightarrow & Y_{\mathrm{train}} = \mathit{W} = \left[egin{array}{c} \ \ \end{array}
ight]$$

Step 2: Prediction

For the \mathbf{test} \mathbf{set} , apply Lee-Seung's algorithm with H fixed:

$$X_{ ext{test}} = \left[egin{array}{c} \ \ \end{array}
ight] pprox W'H &
ightarrow & Y_{ ext{test}} = W' = \left[egin{array}{c} \ \ \end{array}
ight]$$

Example: MNIST

$$X \in \{0, \dots, 255\}^{n \times d}$$

 $n = 10,000$ samples
 $d = 28 \times 28 = 784$

-175

Samples

Dictionary (dimension 20)

Example: MNIST

NMF in dimension 20 Visualization of 1,000 samples

Summary

Dimension reduction

- 2 matrix factorization techniques, SVD and NMF Applicable to sparse matrices
- Critical choice of the dimension
- Different interpretations
- Other techniques: auto-encoders, GSVD, ...

