Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Idaho Water Supply
Outlook Report
March 1, 2012

aTD224.12133

AR 27 RECT

SKIP DICKSTEIN/ALBANY TIMES UNION

Happy Leap Day!

The March 1st snowpack and monthly precipitation values got a boost thanks to this year's leap day. A number of SNOTEL sites across Central Idaho and the Upper Snake Basin in Wyoming picked up a 6-12 inches of snow on February 29th. This storm accounted for 20-25% of February's monthly precipitation at many locations. Trinity Mountain SNOTEL in the Boise Mountains, recorded almost a foot of snowfall on leap day 2012. Historically leap days haven't produced much snow at this site. Since Trinity was installed in 1981 the only other February 29th snowfall occurred in 2000 when 2 inches were recorded.

Basin Outlook Reports and Federal - State - Private

Cooperative Snow Surveys

For more water supply and resource management information, or to subscribe to this publication

Contact - - Your local county Natural Resources Conservation Service Office

or

Natural Resources Conservation Service Snow Surveys 9173 West Barnes Drive, Suite C Boise, Idaho 83709-1574 (208) 378-5740 Internet Web Address http://www.id.nrcs.usda.gov/snow/

To join a free email subscription list contact us by email at: IDBOISE-NRCS-SNOW@one.usda.gov

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when the snow melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to produce runoff forecasts. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertainty is in the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.".

IDAHO WATER SUPPLY OUTLOOK REPORT

MARCH 1, 2012

SUMMARY

What an unexpected winter 2012 has been. High hopes for a repeat La Nina bringing above average snow to all corners of Idaho have been largely unfulfilled. Instead, sporadic moisture has helped some parts of the state maintain average snowpacks, while other areas have far less snow than is normal. February precipitation amounts ranged from only a third of normal in the Little Wood and Big Lost basins to normal in the Clearwater and Spokane basins. Idaho's populated valleys have seen very little snow and a number of relatively warm days. Rain falling on frozen soils in late February resulted in areas of flooding from Idaho Falls to St Anthony. Currently, the lowest snowpacks are about 60% of normal in the Big Lost and Owyhee basin and increase to 90-100% of average in the Upper Snake, Clearwater, Spokane and Panhandle regions. Streamflow forecasts range from only 25% of average in the Owyhee basin to near normal in the northern third of Idaho and the Upper Snake in Wyoming. Even with below normal snow in parts of southern Idaho, the overall water supply outlook is bright due to good reservoir storage across the state.

SNOWPACK

Idaho's mountain snowpack is an important indicator for the summer season's water supply. This year, there is a high degree of snowpack variability across the state. The highest snowpacks are near normal in the Upper Snake, Clearwater, Spokane and Northern Panhandle drainages. Across most of central Idaho, stretching from the Weiser to the Henrys Fork and Bear Lake, the snowpacks are 75-85% of average. However, a band of low snow ranging from 55-70% of average stretches from the Owyhee basin and northeast through the Little Wood, Big Lost, Little Lost, and Mud Lake area. The Owyhee aerial marker flight indicated that 4 out of 11 aerial markers were snow free, which illustrates the limited snow across this high rangeland. The daily snowpack as monitored by the 8 SNOTEL sites in the Owyhee basin shows the snowpack is 64% of average, however, when we combine these 8 SNOTEL sites and 11 aerial markers, which cover more of the lower elevations, the snowpack is only 58% of average. The lack of snow is less of a concern this year because of excellent carryover storage in Owyhee, Little Wood and Mackay reservoirs, and above average baseflows in the Big and Little Lost basins.

PRECIPITATION

If it wasn't for a handful of end of month stormy periods in December, January and February our mountain snowpack would be much less. In fact, monthly precipitation for February would look worse if it wasn't for the leap day storm on February 29. This extra day accounted for 20-25% of monthly precipitation totals at a number of central Idaho SNOTEL sites. February precipitation amounts ranged from 90-105% of average in the Spokane, Clearwater, Upper Snake, Salmon Falls and Bruneau basins. For the second consecutive month, the least amount of monthly precipitation fell in the Little Wood and Big Lost basins with a little less than 40% of average. The Big Wood basin was not far ahead, receiving 56% of average. Water year-to-date amounts remain encouraging with most of the state in the 80-100% of normal range. The exception is the area around the Albion Mountains south of Burley, which received twice the normal February precipitation amount and stands at 114% of average for the water year. Water users in the Wood and Lost basins should start watching the snowpack numbers closely if the

dry spell extends another month. One or two months of below normal precipitation generally does not hurt the water supply too much, but when winter precipitation is lacking for three or more months then the impacts become more noticeable. This year's dry impacts may be lessened by good reservoir storage and baseflows.

RESERVOIRS

Idaho's reservoirs continue to be in excellent shape. This will help water users if snowpacks and summer streamflow runoff volumes end up below normal. Ample stream baseflows continue in the Little Lost and Oakley basins. These winter time streamflows are increasing the water storage in Mackay Reservoir, which has the most end of February storage since 1983. With plenty of reservoir storage, streamflow runoff can be less than 50% of average this summer and surface water supplies should still be adequate to meet irrigation demand in the Bear, Oakley, Salmon Falls and Owyhee basins. Reservoir releases are being made in the Boise and Upper Snake reservoir systems to maintain flood control space as required by reservoir rule curves. These releases are a reflection of the good reservoir carryover levels and not because large amounts of flood control space are required at this time.

Note: NRCS reports reservoir information in terms of usable volumes, which includes both active, inactive and in some cases, dead storage. Other operators may report reservoir contents in different terms. For additional information, see the reservoir definitions in this report.

STREAMFLOW

Streamflow forecasts are the lowest in southwest Idaho. Just over the border in Oregon, Owyhee streams are forecast at only 25% of average. Other rivers in southern Idaho have better outlooks such as 62% for the Bruneau River and 55% for Salmon Falls and the Bear River. The Big Wood, Camas, Little Wood and Big Lost basins are forecast at 45-70% of average. The highest forecasts are predicted at near average in the Spokane, Clearwater and a few Snake River headwater streams in Wyoming. Elsewhere, forecasts for most streams fall in the 70-90% of average category. By combining these current volume forecasts with reservoir storage levels, Idaho's farmers and numerous water users in the state should have adequate water supplies.

Note: Forecasts published in this report are NRCS forecasts. NRCS uses timely SNOTEL data to provide streamflow forecasts. Jointly coordinated published forecasts by the USDA NRCS and the NOAA NWS are available from the joint west-wide Water Supply Outlook for the Western US at http://www.wcc.nrcs.usda.gov/wsf/westwide.html. Water users may wish to use a lesser exceedance forecast to reduce the risk of coming up water short or greater volume to mitigate high flow potential.

RECREATION

Blue skies between the monthly storms provided ideal powder and recreational opportunities for Idaho's winter recreationists. Determining when the winter recreation season will end and the river running season will begin depends on springtime weather. The spring of 2011 was the never-ending winter that let snow accumulate in the high country through May. The NOAA 90-day forecast for March through May calls for equal chances of above, below or normal precipitation and temperatures for Idaho, meaning there is no strong indicator of how the spring conditions will be. However, when looking at similar climatic years such as 2009, 1972 and 1968, the March precipitation and temperatures were near normal. April precipitation was also normal, but temperatures were several degrees cooler than normal in the western US. See this link for more detailed information on these trends:

http://www.oregon.gov/ODA/NRD/docs/pdf/dlongrange.pdf?ga=t. Other predictive tools are leaning towards a cool spring. For example, the Boise State University long-term streamflow forecast for the Boise River calls for normal 3rd quarter flows (April, May and June) but well above average 4th quarter flows (July, August and September). For more information see this link: http://earth.boisestate.edu/people/graduate-students/mel-kunkel/. However, when considering floating on Idaho's desert rivers such as the Owyhee and the Bruneau River, it would be best to have your boats ready to go as soon as the warm temperatures arrive to catch the wave on these rivers. Otherwise, unless these basins receive more snow or spring rains, the peak will be early and short-lived. The rest of Idaho's rivers are in good shape for an enjoyable and extended river running season. Enjoy the ride.

NRCS and NWS COLLABORATIVE FORECAST RELATIONSHIP

For years, NRCS and NWS Northwest River Forecast Center (NWRFC) used statistically-based water supply forecast models to predict seasonal runoff volumes. The models were run on the first of each month and grew into production of mid-month forecasts. Forecasters would share information in order to come up with a single forecast value. These final coordinated forecast values became the "official" forecasts published by both agencies. This method is still used this year to coordinate forecasts in the Bear River basin.

This year, the NWRFC is using their hydrologic simulation models to produce volume forecasts. Because NWRFC models are so different from NRCS statistical models, a new paradigm was needed to replace the coordination process. The new approach is a collaborative process where information is still shared. However, a single unified forecast value is not produced. NRCS will publish forecasts from the NWRFC for the following points; these will usually reflect the forecast value on the first working day of the month. The rest of the forecasts published in the Idaho Water Supply Report are provided by the NRCS. For additional questions, please contact Ron Abramovich.

Kootenai River at Leonia Spokane River at Spokane Pend Oreille Lake Inflow Clearwater River at Orofino Dworshak Reservoir Inflow. Clark Fork at Whitehorse Rapids Spokane River at Long Lake Salmon River at White Bird Clearwater River at Spalding The Surface Water Supply Index (SWSI) is a predictive indicator of surface water availability within a watershed for the spring and summer water use season. The index is calculated by combining pre-runoff reservoir storage (carryover) with forecasts of spring and summer streamflow. SWSI values are scaled from +4.0 (abundant supply) to -4.0 (extremely dry), with a value of zero indicating a median water supply as compared to historical occurrences. The SWSI analysis period is from 1971 to present.

SWSI values provide a more comprehensive outlook of water availability by combining streamflow forecasts and reservoir storage where appropriate. The SWSI index allows comparison of water availability between basins for drought or flood severity analysis. Threshold SWSI values have been determined for some basins to indicate the potential for agricultural irrigation water shortages.

BASIN or REGION	SWSI Value	Most Recent Year With Similar SWSI Value	Agricultural Water Supply Shortages Occur When SWSI is Less Than
Northern Panhandle	0.1	2008	NA
Spokane	0.1	2006	NA
Clearwater	-1.7	2009	NA
Salmon	-0.4	2003	NA
Weiser	-1.7	2009	NA
Payette	-0.9	2002	NA
Boise	1.2	2000	-1.3 to -1.6
Big Wood	0.1	2010	0.6 to 0.0
Little Wood	0.1	2009	-1.6 to -2.6
Big Lost	-0.4	2010	0.5 to -0.2
Little Lost	0.0	2010	1.5 to 0.7
Teton	0.3	2010	-3.7 to -3.9
Henrys Fork	0.0	2010	-3.4 to -3.6
Snake (Heise)	1.4	2009	-1.3 to -1.6
Oakley	1.7	2011	0.3 to -0.5
Salmon Falls	1.4	1996	-0.8 to -1.3
Bruneau	-0.7	2008	NA
Owyhee	-0.7	2007	-3.0 to -3.5
Bear River	2.0	2011	-3.0 to -3.4

SWSI SCALE, PERCENT CHANCE OF EXCEEDANCE, AND INTERPRETATION

-4 	-3 	-2 	-1 	0 	1	2	3	4 -
99%	87%	75%	63%	50%	37%	25%	13%	1%
Much Below	Below Normal	l		r Normal er Supply		Above Normal	Much Above	

NA = Not Applicable, Note: The Percent Chance of Exceedance is an indicator of how often a range of SWSI values might be expected to occur. Each SWSI unit represents about 12% of the historical occurrences. As an example of interpreting the above scale, the SWSI can be expected to be greater than -3.0, 87% of the time and less than -3.0, 13% of the time. Half the time, the SWSI will be below and half the time above a value of zero. The interval between -1.5 and +1.5 described as "Near Normal Water Supply," represents three SWSI units and would be expected to occur about one-third (36%) of the time.

PANHANDLE REGION MARCH 1, 2012

WATER SUPPLY OUTLOOK

The Panhandle region March 1 snowpack is near average and nearly the same as last year at this time. The northern basins in Idaho's Panhandle have maintained these near normal snowpacks most of the season, whereas the rest of Idaho and including parts of the Spokane basin, have lagged behind. The peak snow water content for the snowpack generally occurs in mid-April in this region, and if the snow stopped falling today, the snowpack would end the season at 85% of average. Hopefully, winter will stick around for another month and continue to keep the snowpack at average levels. February precipitation varied with isolated storms and ranged from 66-145% of average at individual SNOTEL sites. Reservoir storage in Pend Oreille, Coeur d'Alene and Priest Lake ranges from about 60-100% of average. The Panhandle Region also hosts some of the highest streamflow forecasts in the state with the Spokane River forecast at 108% of average. The lowest forecast in the region is for Priest River at 80% of average, which will still provide ample summer water supplies.

PANHANDLE REGION Streamflow Forecasts - March 1, 2012

		<<=====	Drier -	= Future Co	nditions —	Wetter	>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 5 (1000AF)	xceeding * = 0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Kootenai R at Leonia (1,2)	APR-JUL APR-SEP	5750 6760	6490 7490	6830 7820	97 96	7170 8160	7910 8890	7040 8120
Moyie R at Eastport	APR-JUL APR-SEP	280 295	330 345	365 380	90 91	400 415	450 465	405 420
Smith Ck nr Porthill	APR-JUL APR-SEP	85 87	104 109	117 123	95 95	130 137	149 159	123 129
Boundary Ck nr Porthill	APR-JUL APR-SEP	94 98	106 111	115 120	94 93	124 129	136 142	123 129
Clark Fork at Whitehorse Rpds (1,2)	APR-JUL APR-SEP	8580 9620	10200 11400	 11000 12300	97 98	11800 13100	13400 14900	11300 12500
Pend Oreille Lake Inflow (2)	APR-JUL APR-SEP	10000 11100	11300 12400	 12100 13300	95 96	12900 14200	14200 15500	12700 13900
Priest R nr Priest River (1,2)	APR-JUL APR-SEP	505 540	590 630	 650 695	80 80	710 760	795 850	815 870
NF Coeur d'Alene R at Enaville	APR-JUL APR-SEP	510 550	650 690	 745 785	101 101	840 880	980 1020	740 780
St. Joe R at Calder	APR-JUL APR-SEP	835 900	970 1040	 1060 1130	93 94	1150 1220	1290 1360	1140 1200
Spokane R nr Post Falls (2)	APR-JUL APR-SEP	1920 2010	2340 2430	 2620 2720	103 103	2900 3010	3320 3430	2550 2650
Spokane R at Long Lake (2)	APR-JUL APR-SEP	2320 2540	2770 3010	 3080 3320	108 108	3390 3630	3840 4100	2850 3070

PANHA Reservoir Storage (1	NDLE REGION 000 AF) - End	of Febru	uary	1	PANHANI Watershed Snowpack	OLE REGION Analysis -	March 1,	2012
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Yea	r as % of Average
Pend Oreille	1561.3	562.1	835.9	778.8	Kootenai ab Bonners Ferr	ry 12	88	100
Coeur d'Alene	238.5	82.5	87.1	144.9	Moyie River	1	97	110
Priest Lake	119.3	56.0	48.9	56.8	Priest River	3	101	104
					Pend Oreille River	84	85	97
					Rathdrum Creek	3	108	82
				1	Coeur d'Alene River	9	96	96
				į	St. Joe River	5	94	93
					Spokane River	16	95	92
					Palouse River	2	97	99

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

CLEARWATER RIVER BASIN MARCH 1, 2012

WATER SUPPLY OUTLOOK

Winter has brought a similar trend all season, which has been a dry one with a few exceptionally potent storms. These few but powerful storms produced just enough snow to sustain the snowpack at near average levels for March 1. Besides the Idaho Panhandle region, the Clearwater basin is the only region with an average snowpack in the state and is just slightly behind where it was last year at this time. The last few March and April's stayed cool allowing more snow accumulation though early spring. Hopefully this March will follow suit and preserve the snowpack at average levels. Streamflow forecasts range from 95-105% of average volumes for the April through July period. With decent streamflow predicted, the Lochsa and Selway should not only have a long floating season, but a potentially exciting peak depending on spring temperatures and precipitation. Given that the Clearwater has a near normal snowpack and that near normal streamflow is predicted, water supplies and river recreation opportunities should be plentiful during the summer.

CLEARWATER RIVER BASIN Streamflow Forecasts - March 1, 2012

	<<====	Drier ===	= Future Co	onditions =	Wetter	>>	
Forecast Period	90% (1000AF)	70% (1000AF)		-	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
APR-JUL	1800	2010	2150	104	2290	2500	2060
APR-SEP	1890	2110		104	2410	2630	2170
APR-JUL	1270	1440	1560	102	1680	1850	1530
APR-SEP	1330	1510	1630	101	1750	1930	1610
APR-JUL	3340	4410	4900	105	5390	6460	4650
APR-SEP	3610	4680	5170	106	5650	6720	4900
APR-JUL	1650	2220	2470	94	2730	3290	2640
APR-SEP	1750	2350		94	2890	3490	2800
APR-JUL	5100	6750	7500	101	8250	9900	7430
APR-SEP	5570	7220	7970	102	8720	10400	7850
	APR-JUL APR-SEP APR-JUL APR-SEP APR-JUL APR-SEP APR-JUL APR-SEP	Forecast 90% (1000AF) APR-JUL 1800 APR-SEP 1890 APR-JUL 1270 APR-SEP 1330 APR-JUL 3340 APR-SEP 3610 APR-JUL 1650 APR-SEP 1750 APR-JUL 5100	Forecast 90% 70% 1000AF) APR-JUL 1800 2010 APR-SEP 1890 2110 APR-JUL 1270 1440 APR-SEP 1330 1510 APR-JUL 3340 4410 APR-SEP 3610 4680 APR-JUL 1650 2220 APR-SEP 1750 2350 APR-JUL 5100 6750	Forecast	Forecast ———————————————————————————————————	Forecast Chance Of Exceeding * 30% 70% 50% 30% (1000AF) (1000AF) (1000AF) (1000AF) (2290 APR-SEP 1890 2110 2260 104 2410 APR-JUL 1270 1440 1560 102 1680 APR-SEP 1330 1510 1630 101 1750 APR-JUL 3340 4410 4900 105 5390 APR-SEP 3610 4680 5170 106 5650 APR-JUL 1650 2220 2470 94 2730 APR-SEP 1750 2350 2620 94 2890 APR-JUL 5100 6750 7500 101 8250	Forecast Chance Of Exceeding * 30% 10% 1000AF) 1

Neservoir	Scorage (1000 Ar) End	OI FEDI	ualy	<u>'</u>	watershed showpac	K MIGLYSIS	rater 1,	2012
Reservoir	Usable Capacity		able Stora Last	age ***	Watershed	Number of	This Yea	r as % of
Reservoir	Capacity	Year	Year	Avg	watershed	Data Sites	Last Yr	Average
Dworshak	3468.0	2362.2	2043.4	2281.7	North Fork Clearwater	9	88	94
				ļ	Lochsa River	2	95	101
					Selway River	5	101	103
				! !	Clearwater Basin Total	17	91	97

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

SALMON RIVER BASIN MARCH 1, 2012

WATER SUPPLY OUTLOOK

Location, location; location: The best snow in the basin can be found along the Salmon and Clearwater divide and near Lost Trail Pass area. The mountains above Salmon have the best snow at 90% of average, while the South Fork Salmon drainage is only 77%. After another dry spell during the first part of February, warm temperatures and rain boosted streamflows and cracked the river ice. Immediately following, was a delivery of knee deep powder at ski areas and natural avalanches in the backcountry. The new snow didn't boost the water supplies overall from last month, though. Any new snow that fell during February was just enough to sustain the snowpack at 86% of average on March 1, which was nearly the same percentage as last month. Given the steadiness of the snowpack, the streamflow forecasts haven't changed much from last month either. Most streams are forecast at 65-80% of average for the April-July period. Below average streamflow does not always mean low streamflow peaks. Exciting rivers can result from a rapid warm up or rain during snowmelt; especially since base-streamflow levels have been average or better all winter. 2010 was a lower snow year than the current, but the Middle Fork Salmon River jumped to dangerous levels during a heavy rain on melting snow event. If this March is anything like the last few, March and April weather may not only preserve the snowpack but improve it.

SALMON RIVER BASIN Streamflow Forecasts - March 1, 2012

		<<====	Drier -	Future C	Conditions =	Wetter	·>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		Exceeding * : 50% (% AVG.)	30% (1000AF)	10% (1000AF)	 30-Yr Avg. (1000AF)
Salmon R at Salmon (1)	APR-JUL APR-SEP	405 475	595 695	680 795	80 80	765 895	955 1120	855 1000
Lemhi R nr Lemhi	APR-JUL APR-SEP	24 31	38 48	50 61	58 58	63 76	86 101	86 105
MF Salmon R at MF Lodge	APR-JUL APR-SEP	400 455	545 615	645 725	82 83	745 835	890 995	785 875
SF Salmon R nr Krassel RS	APR-JUL APR-SEP	112 127	157 170	188	65 65	220 230	265 275	290 310
Johnson Ck at Yellow Pine	APR-JUL APR-SEP	90 96	119 126	139 146	68 68	159 166	188 196	205 215
Salmon R at White Bird (1)	APR-JUL APR-SEP	3040 3360	4220 4680	4760 5280	81 82	5300 5880	6480 7200	5850 6480
SALM Reservoir Storage	ON RIVER BASIN (1000 AF) - End	of Februar	y	 		SALMON RIVER H		1, 2012
Reservoir	Usable Capacity	*** Usabl This Year	e Storage * Last Year A		ershed	Numbe of Data Si		Year as % of
				Salm	non River ab	Salmon 10	103	90
				 Lemb	ni River	10	82	84
				Midd	lle Fork Salm	on River 3	93	79

South Fork Salmon River

Little Salmon River

Salmon Basin Total

85

95

28

77

83

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management.

WEISER, PAYETTE, BOISE RIVER BASINS MARCH 1, 2012

WATER SUPPLY OUTLOOK

Procrastination is this winter's pattern in the Weiser, Payette and Boise basins. Each month since November has started off dry and ended with a burst of precipitation. February followed the trend and like many last minute tasks, the result was mediocre. Monthly precipitation in February was 65-80% of normal across the region despite an extra day of snowfall on February 29. The Boise basin recorded the best monthly precipitation, 80%, while the Payette and Weiser basins saw the least, about 65%. Water year-to-date precipitation since October 1st is near normal in the Boise basin and 80-84% in the Payette and Weiser basins. Similarly, the snowpack in the Boise basin, at 86% of normal, is better than the Payette and Weiser basins, which are about 80% of normal. The Boise reservoir system is 126% of average, 74% of capacity. Managers have increased outflow to the Boise River to adjust the reservoir contents back to their management guidelines. These releases are a good sign for water users because they indicate that more than enough snow water exists to fill the reservoirs this spring. Cascade and Deadwood reservoirs are also storing above average amounts. Streamflow forecasts range from 75-90% of normal. With such good reservoir storage and decent streamflow predictions, water users can expect an adequate supply this summer even if March brings more second-rate precipitation amounts.

WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts - March 1, 2012

		<<	Drier ===	— Future Co	onditions =	Wetter	·>>	
Forecast Point	Forecast Period	 ===== 90% (1000AF)	70% (1000AF)		Exceeding * = 00% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Weiser R nr Weiser (1)	MAR-JUL	187	330	410	74	495	720	555
	APR-JUL APR-SEP	120 137	225 250	285 310	73 74	350 380	520 555	390 420
SF Payette R at Lowman	APR-JUL	290	335	1 370	84	405	465	440
	APR-SEP	330	380	420	85	460	525	495
Deadwood Resv Inflow (1,2)	APR-JUL APR-SEP	67 71	94 100	106	79 80	118 126	145 155	134 142
	ALIX DEL	71	100	113	00 I	120	133	142
Lake Fork Payette R nr McCall	APR-JUL APR-SEP	49 50	58 60	65 67	77 75	72 74	83 86	85 89
NF Payette R at Cascade (1,2)	APR-JUL APR-SEP	205 225	330 3 4 5	385 400	74 74	440 455	565 575	520 540
NF Payette R nr Banks (2)	APR-JUL APR-SEP	330 340	420 435	485 505	72 72	550 575	640 670	675 700
Payette R nr Horseshoe Bend (1,2)	APR-JUL APR-SEP	855 870	1130 1210	 1260 1360	 77 77	1390 1510	1670 1850	1640 1760
Boise R nr Twin Springs (1)	APR-JUL APR-SEP	405 440	525 570	 580 630	91 91	635 690	755 820	635 690
				İ	j			
SF Boise R at Anderson Ranch Dam (1,	APR-JUL APR-SEP	265 290	385 410	435 465	81 80	485 520	605 640	540 580
Mores Ck nr Arrowrock Dam	APR-JUL APR-SEP	61 64	85 89	104	79 79	125 129	158 164	131 137
Boise R nr Boise (1,2)	APR-JUN APR-JUL	795 785	985 1070	 1070 1200	85 85	1160 1330	1350 1610	1260 1410
	APR-SEP	885	1170	1300	85 I	1430	1710	1530
					1			

WEISER, PAYETTE, BOISE RIVER BASINS Reservoir Storage (1000 AF) - End of February

WEISER, PAYETTE, BOISE RIVER BASINS Watershed Snowpack Analysis - March 1, 2012

Reservoir	Usable		able Stora	ge ***	Watanahad	Number of	This Yea	r as % of
Reservoir	Capacity 	This Year	Last Year	Avg	Watershed I	Data Sites	Last Yr	Average
Mann Creek	11.1	3.6	6.2	6.1	Mann Creek	1	81	75
Cascade	693.2	497.2	465.3	438.3	Weiser River	4	83	78
Deadwood	161.9	98.0	102.1	88.5	North Fork Payette	8	81	76
Anderson Ranch	450.2	378.1	331.4	268.0	South Fork Payette	5	95	79
Arrowrock	272.2	256.5	222.7	210.4	Payette Basin Total	15	86	77
Lucky Peak	293.2	120.9	137.1	120.4	Middle & North Fork Bois	se 5	103	86
Lake Lowell (Deer Flat)	165.2	118.6	120.1	109.1	South Fork Boise River	7	106	88
					Mores Creek	6	97	83
					Boise Basin Total	15	104	86
					Canyon Creek	2	98	79

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management.

WOOD and LOST RIVER BASINS MARCH 1, 2012

WATER SUPPLY OUTLOOK

The Wood and Lost basins were the driest in Idaho in February. Monthly precipitation was 35-40% of normal in the Little Wood and Big Lost basins and 56% of normal in the Big Wood basin. The Little Lost and Birch basins had 83% of normal February precipitation, an amount more representative of the rest of the state. Water year-to-date precipitation since October 1 is down from last month, but still respectable, ranging from 87-94% of normal. Since a large amount of the year's precipitation fell as rain in October, the snowpack percentages do not relate to the water year precipitation as well this year. The snowpack in the Little Wood and Big Lost, at 59% and 55% of normal respectively, are the lowest in the state. Conditions are better in the Little Lost 72% of normal snow. The best snow lies in the Big Wood and Birch basins at 77% of average. Reservoirs in these basins are storing about 130-150% their normal amount for this date. Streamflow forecasts range from 45% of average for Camas Creek near Blaine to 85% for the Little Lost River. Fortunately, Little Wood and Mackay reservoirs are all about 90% full so it won't take much runoff to top them off this spring. Baseflows have remained near average all winter in ice-free streams; this indicates that groundwater levels remain high. Combining current reservoir storage with streamflow forecasts indicate the water supplies in these basins could be tight. Hopefully a cool, wet spring will allow the snowpack to climb closer to average in March and April. Additionally, above average baseflows will hopefully help water supplies.

WOOD AND LOST RIVER BASINS Streamflow Forecasts - March 1, 2012

		<<	Drier —	- Future Co	nditions =	Wetter	>>	
Forecast Point	Forecast Period	 ===== 90% (1000AF)	70% (1000AF)	Chance Of E 5 (1000AF)	xceeding * = 0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Big Wood R at Hailey (1)	APR-JUL APR-SEP	56 64	142 161	181 205	71 71	220 250	305 345	255 290
Big Wood R ab Magic Res	APR-JUL APR-SEP	43 39	68 69	 89 97	47 47	114 132	160 196	190 205
Camas Ck nr Blaine	APR-JUL APR-SEP	15.0 16.0	31 32	 45 46	45 46	62 63	91 92	100 101
Big Wood R bl Magic Dam (2)	APR-JUL APR-SEP	11.0 15.0	84 91	 134 143	46 47	184 195	255 270	290 305
Little Wood R ab High Five Ck	MAR-JUL MAR-SEP	22 23	37 40	 50 54	59 59	65 70	90 97	85 92
Little Wood R near Carey (2)	MAR-JUL MAR-SEP	26 29	46 50	 59 64	62 62	72 78	92 99	96 104
Big Lost R at Howell Ranch	APR-JUL APR-SEP	65 74	95 108	 118 135	68 69	144 165	187 215	173 197
Big Lost R bl Mackay Res	APR-JUL APR-SEP	23 30	59 73	 83 103	59 60	107 133	143 176	141 172
Little Lost R nr Howe	APR-JUL APR-SEP	15.8 20	22 27	 26 33	84 85	31 39	39 49	31 39
Camas Ck at Camas	APR-JUL	0.8	3.0	 11.0	37 !	19.0	31	30

WOOD AND LOST RIVER BASINS Reservoir Storage (1000 AF) - End of February

WOOD AND LOST RIVER BASINS Watershed Snowpack Analysis - March 1, 2012

Reservoir	Usable		le Storag	e ***	Watershed	Number of	This Year	r as % of
RESELVOII	Capacity 	This Year	Last Year	Avg		Data Sites	Last Yr	Average
Magic	191.5	127.7	90.5	89.7	Big Wood ab Hailey	8	98	77
Little Wood	30.0	26.1	22.1	17.7	Camas Creek	3	96	78
Mackay	44.4	39.8	37.5	30.8	Big Wood Basin Total	11	97	77
				ļ	Fish Creek	3	53	54
				ļ	Little Wood River	7	66	59
					Big Lost River	6	63	55
				ļ	Little Lost River	4	74	72
					Birch-Medicine Lodge Cr	ree 2	74	77
					Camas-Beaver Creeks	4	70	63

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

UPPER SNAKE BASIN MARCH 1, 2012

WATER SUPPLY OUTLOOK

The Upper Snake's water supply outlook is better than the outlook for the rest of southern Idaho. The Upper Snake basin above Palisades Reservoir benefitted from normal precipitation in February.

Monthly amounts were 80-85% of normal in the Willow, Blackfoot, Portneuf, Henrys Fork and Teton basins. Water year-to-date precipitation since October 1 for the entire Upper Snake basin is 96% of average. Snowpacks are about 85-95% of normal on both the east and west sides of the Idaho-Wyoming state line. Snow amounts are a 75-85% in the Willow, Blackfoot and Portneuf drainages.

Reservoir storage is slightly above average in Henrys Lake, Island Park, Grassy Lake and American Falls. Palisades Reservoir contains 118% of average while Jackson Lake, Ririe and Blackfoot are holding about 130%. The eight major reservoirs in the basin are storing 81% of the system's capacity when lumped together. Streamflow forecasts range from 85-105% of normal for most streams. The Snake River at Heise is forecast at 92% of normal for the April–July period. Combining reservoir storage with the forecasted streamflow volumes indicates that surface irrigation supplies will be adequate as long as the Snake River at Heise April-September streamflow is above 60% of average. This should be an easy goal to beat since the March 1 snowpack has already reached 74% of its average April peak value; so even if no more snow falls there should be enough snowmelt to produce adequate runoff.

UPPER SNAKE RIVER BASIN Streamflow Forecasts - March 1, 2012

		<<=	Drier =	= Future Co	onditions ==	Wetter	>>	
Forecast Point	Forecast Period	 <u>90%</u> (1000AF)	70% (1000AF)		Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Henrys Fork nr Ashton (2)	APR-JUL	350	415	465	82	515	595	570
Falls R nr Ashton (2)	APR-SEP APR-JUL APR-SEP	500 270 325	580 310 370	635 340 405	83 90 90	695 370 440	790 415 495	765 380 450
Teton R nr Driggs	APR-JUL APR-SEP	106 132	130 163	147 185	89 88	166 210	195 245	165 210
Teton R nr St. Anthony	APR-JUL APR-SEP	265 320	320 380	360 430	89 90	405 480	470 560	405 480
Henrys Fork nr Rexburg (2)	APR-JUL APR-SEP	1070 1420	1230 1600	1340 1720	86 86	1450 1840	1610 2020	1560 2010
Snake R at Flagg Ranch	APR-JUL APR-SEP	425 465	480 525	515 565	104 104	550 605	605 665	495 545
Snake R nr Moran (1,2)	APR-JUL APR-SEP	640 695	765 840	820 905	101 100	875 970	1000 1110	815 905
Pacific Ck At Moran	APR-JUL APR-SEP	149 153	176 181	194 200	114 112	210 220	240 245	171 178
Buffalo Fork ab Lava nr Moran	APR-JUL APR-SEP	260 295	290 335	315 360	105	340 385	370 425	301 344
Gros Ventre R at Kelly	APR-JUL APR-SEP	157 192	191 230	215 260	108 107	240 290	275 330	200 244
Snake R nr Alpine (1,2)	APR-JUL APR-SEP	1730 1970	2070 2380	2230	94 94	2390 2740	2730 3150	2370 2730
Greys R Nr Alpine	APR-JUL APR-SEP	240 280	280 325	305 355	90 90 87	330 385	370 430	340 395
Salt R Nr Etna	APR-JUL APR-SEP	179 225	250 310 2870	295 365 3070	87 87 92	340 420 3270	410 505 3710	340 420 3330
Snake R nr Irwin (1,2) Snake R nr Heise (2)	APR-JUL APR-SEP APR-JUL	2430 2860 2730	3350 3060	3570 3570 3280	92 92 92	3790 3500	4280 3830	3870 3560
	APR-SEP	3210	3580	3830	92	4080	4450	4160
Willow Ck nr Ririe (2) Blackfoot R ab Res nr Henry Charles B nr Blackfoot (1.2)	MAR-JUL APR-JUN	48 30	69 45	83 57	94 78 95	97 70	118 93 5250	88 73
Snake R nr Blackfoot (1,2)	APR-JUL APR-SEP	3490 4260	4100 5000 54	1 4370	95 95 69	4650 5680 69	6420 81	4600 5620 89
Portneuf R at Topaz	MAR-JUL MAR-SEP	44 55	66	61 75	69	84	98	109
Snake R at Neeley (1,2)	APR-JUL APR-SEP	1690 1830	2510 2720	2880 3120	89 89	3250 3520	4070 4410	3240 3510

	UPPER	SNAKE	RIVER	BASIN	
Reservoir	Storage	(1000	AF) -	End of	February

UPPER SNAKE RIVER BASIN Watershed Snowpack Analysis - March 1, 2012

December 1	Usable		able Stora	age ***	Table of the d	Number	This Yea	r as % of
Reservoir	Capacity 	This Year	Last Year	Avg	Watershed D	of ata Sites	Last Yr	Average
Henrys Lake	90.4	87.8	88.7	84.4	Henrys Fork-Falls River	9	84	84
Island Park	135.2	110.4	97.0	107.1	Teton River	8	88	86
Grassy Lake	15.2	12.3	13.2	12.0	Henrys Fork above Rexbur	g 17	86	85
Jackson Lake	847.0	640.0	656.6	494.0	Snake above Jackson Lake	9	99	101
Palisades	1400.0	1223.5	875.7	1033.1	Pacific Creek	3	111	117
Ririe	80.5	48.5	44.7	38.5	Gros Ventre River	4	77	88
Blackfoot	348.7	289.8	214.0	224.7	Hoback River	5	82	87
American Falls	1672.6	1320.0	1203.7	1271.1	Greys River	4	80	90
				1	Salt River	5	82	89
				- 1	Snake above Palisades	28	89	95
				1	Willow Creek	7	77	81
				ĺ	Blackfoot River	5	87	84
				i	Portneuf River	7	72	75
				i	Snake abv American Falls	47	85	90

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management.

SOUTHSIDE SNAKE RIVER BASINS MARCH 1, 2012

WATER SUPPLY OUTLOOK

A spectrum of conditions is present in the basins south of the Snake River. Conditions are better to the east and not as good to the west. Goose, Salmon Falls and Bruneau basins all received 80-90% of normal precipitation in February. The Owyhee basin was the outlier and received only 60% of its normal amount. Water year-to-date precipitation since October 1st is above average in the Goose basin and decreases to 81% of normal in the Owyhee basin. Snowpacks are 86% of average in the Goose Creek drainage, 75% in Salmon Falls basin, 69% in the Bruneau basin and lowest in the Owyhee basin at 58% of normal. The aerial marker survey in the Owyhee basin revealed large snow free areas. Streamflow forecasts range from 25% of average in the Owyhee basin to 80% of average for Oakley Reservoir inflow. One consistency from east to west is above normal reservoir storage. Wildhorse, Owyhee and Brownlee reservoirs are the closest to full and are storing 70%, 77% and 80% of their respective capacities; 104-124% of average. Oakley and Salmon Falls reservoirs are about half full and 117% and 149% of average for March 1, respectively. The current snowpack in these basins should be adequate to meet the water user's needs even if conditions are dry during the rest of the winter. Owyhee Reservoir needs 45% of average runoff to fill the reservoir. Since runoff in the Owyhee basin often depends more on spring rain than snowmelt, the low snowpack is not as much of a concern as getting enough rain in the coming months.

SOUTHSIDE SNAKE RIVER BASINS Streamflow Forecasts - March 1, 2012

		<<====	Drier ===	Future Cor	nditions =	Wetter	: ===>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of Ex 50 (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Goose Ck ab Trapper Ck nr Oakley	MAR-JUL MAR-SEP	10.4 11.5	16.7 18.4	21 23	81 77	25 28	32 34	26 30
Trapper Ck nr Oakley	MAR-JUL MAR-SEP	4.0 5.1	5.0 6.2	 5.7 6.9	79 79	6.4 7.6	7.4 8.7	7.2 8.7
Oakley Res Inflow	MAR-JUL MAR-SEP	13.9 15.8	21 24	27 30	79 81	34 37	44 49	34 37
Salmon Falls Ck nr San Jacinto	MAR-JUN MAR-JUL MAR-SEP	27 28 30	39 41 43	48 51 54	54 55 55	58 62 66	76 81 85	89 93 98
Bruneau R nr Hot Springs	MAR-JUL MAR-SEP	78 82	115 121	 145 152	62 61	178 186	230 245	235 250
Reynolds Ck at Tollgate	MAR-JUL	3.0	4.2	5.2	54	6.3	8.1	9.7
Owyhee R nr Gold Ck (2)	MAR-JUL MAR-SEP	5.6 4.9	9.1 7.8	12.2	38 33	16.0 13.3	23 18.7	32 31
Owyhee R nr Rome	MAR-JUL MAR-SEP APR-SEP	20 24 16.0	56 63 41	145 153 126	25 26 32	235 245 210	365 375 335	580 600 400
Owyhee R bl Owyhee Dam (2)	MAR-JUL MAR-SEP APR-SEP	57 67 49	114 125 102	 163 174 150	27 27 27 35	220 230 205	325 330 305	615 645 430
Snake R at King Hill (1,2)	APR-JUL	1450	2170	2500	82 82	2830	3550	3045
Snake R nr Murphy (1,2)	APR-JUL	1540	2310	2660	86	3010	3780	3090
Snake R at Weiser (1,2)	APR-JUL	2280	3930	1 4680	81	5430	7080	5770
Snake R at Hells Canyon Dam (1,2)	APR-JUL	2240	3920	4680	72 I	5440	7120	6490
Snake R bl Lower Granite Dam (1,2)	APR-JUL	11300	16300	1 18500	86 J	20800	25800	21550

SOUTHSIDE SNAKE RIVER BASINS Reservoir Storage (1000 AF) - End of February SOUTHSIDE SNAKE RIVER BASINS Watershed Snowpack Analysis - March 1, 2012

Reservoir	Usable		able Stora	age ***	Matanahad	Number of	This Yea	r as % of
Reservoir	Capacity	This Year	Last Year	Avg	Watershed	Data Sites	Last Yr	Average
Oakley	75.6	36.7	21.6	31.4	Raft River	6	69	79
Salmon Falls	182.6	89.0	49.2	59.8	Goose-Trapper Creeks	6	91	86
WILDHORSE RESERVOIR	71.5	49.9	33.3	40.1	Salmon Falls Creek	8	75	75
OWYHEE	715.0	549.7	403.8	489.1	Bruneau River	8	68	69
Brownlee	1420.0	1134.7	1007.4	1090.5	Reynolds Creek	6	91	79
					Owyhee Basin Total	19	58	58
					Owyhee Basin SNOTEL	8	69	64

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

BEAR RIVER BASIN MARCH 1, 2012

WATER SUPPLY OUTLOOK

The main message is that the water supply conditions have improved slightly since last month. The snowpack on February 1 was 72% of average and as of March 1 it's 82% for the Bear River as whole. This winter's precipitation pattern has also been consistently bringing extended dry spells during the first half of each month and potent storms during the latter half. Precipitation for February was 87% of average and stands at 82% for the water year. Last year at this time, the snowpack was 125% of average and that snow is responsible for today's 122% of average carryover storage in Bear Lake. Summer streamflow forecasts remain in the 55-70% of average range. Water users that depend on Bear Lake storage will have adequate water supplies this season and probably next year too.

BEAR RIVER BASIN Streamflow Forecasts - March 1, 2012

		<<====	Drier =		Future Co	nditions =	W	etter =		
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	1		xceeding * =- 0% (% AVG.)	30 (100		10% 1000AF)	30-Yr Avg. (1000AF)
Bear R nr UT-WY State Line	APR-JUL APR-SEP	50 53	69 75		82 90	73 72		95 .05	114 127	113 125
Bear R ab Res nr Woodruff	APR-JUL APR-SEP	31 33	59 61		78 81	57 57		97 .01	125 129	136 142
Big Ck nr Randolph	APR-JUL	1.3	2.4		3.2	65	4	.0	5.2	4.9
Smiths Fk nr Border	APR-JUL APR-SEP	38 55	54 73		65 86	63 71		76 99	92 117	103 121
Bear R bl Stewart Dam	APR-JUL APR-SEP	14.0 17.0	83 96	1	130 150	56 57		.77 :05	245 285	234 262
Little Bear R at Paradise	APR-JUL	10.4	23		32	70		41	54	46
Logan R nr Logan	APR-JUL	48	67	ļ	80	64		93	112	126
Blacksmith Fork nr Hyrum	APR-JUL	5.9	20		30	63		40	54	48
BEAI Reservoir Storage	R RIVER BASIN (1000 AF) - End	of Februa	ry		 	F Watershed Sno		ER BASI		, 2012
Reservoir	Usable Capacity	This	le Storage Last		 Water	shed		Number of		ear as % of
David Talla	1401.0	Year	Year	Avg				ta Site		
Bear Lake	1421.0	1112.7	545.8	910.7		s & Thomas Fo		4	70	86
Montpelier Creek	4.0	3.4	2.4	1.7	Bear	River ab WY-I	D line	11	58	75
					Montp	elier Creek		2	61	71
					Mink	Creek		4	58	68
					Cub R	iver		3	59	78
					Bear	River ab ID-U	T line	25	61	76
					Malad	River		3	78	72

 $[\]star$ 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management.

without influences from upstream reservoirs or diversions. These values are referred to as natural, unregulated or adjusted flows. To make these adjustments, changes in reservoir storage, diversions, and inter-basin transfers are added or subtracted from the observed (actual) streamflow volumes. The following list documents the adjustments made for each Streamflow Adjustment List for All Forecasts Published in Idaho Water Supply Outlook Report: Streamflow forecasts are projections of runoff volumes that would occur forecast point. (Revised Dec 2011).

Panhandle River Basins

Kootenai R at Leonia, MT

- + Lake Koocanusa storage change Boundary Ck nr Porthill - no corrections Smith Creek nr Porthill - no corrections Movie R at Eastport – no corrections Clark Fork R at Whitehorse Rapids
 - + Hungry Horse storage change
- + Flathead Lake storage change
- + Noxon Rapids Res storage change Pend Oreille Lake Inflow
 - + Pend Oreille R at Newport, WA
 - + Hungry Horse storage change
- + Flathead Lake storage change
- + Pend Oreille Lake storage change + Noxon Rapids storage change
 - + Priest Lake storage change

Priest R nr Priest R

- + Priest Lake storage change
- NF Coeur d'Alene R at Enaville no corrections St. Joe R at Calder- no corrections Spokane R nr Post Falls
 - + Coeur d'Alene Lake storage change
- + Coeur d'Alene Lake storage change Spokane R at Long Lake, WA

 - Long Lake, WA storage change

Clearwater River Basin

Selway R nr Lowell - no corrections Lochsa R nr Lowell - no corrections Dworshak Res Inflow

- + Clearwater R nr Peck
- Clearwater R at Orofino
- Clearwater R at Orofino no corrections + Dworshak Res storage change Clearwater R at Spalding
 - + Dworshak Res storage change

Salmon River Basin

SF Salmon R nr Krassel Ranger Station - no corrections Johnson Creek at Yellow pine - no corrections MF Salmon R at MF Lodge - no corrections Salmon R at White Bird - no corrections Salmon R at Salmon - no corrections Lemhi R nr Lemhi – no corrections

Weiser, Payette, Boise River Basins

SF Payette R at Lowman - no corrections Weiser R nr Weiser - no corrections

Deadwood Res Inflow

- + Deadwood R bl Deadwood Res nr Lowman
 - + Deadwood Res storage change

Lake Fork Payette R nr McCall - no corrections

NF Payette R at Cascade

+ Cascade Res storage change + Payette Lake storage change

NF Payette R nr Banks

+ Cascade Res storage change

+ Payette Lake storage change

+ Cascade Res storage change Payette R nr Horseshoe Bend

+ Deadwood Res storage change

+ Payette Lake storage change

Boise R nr Twin Springs - no corrections SF Boise R at Anderson Ranch Dam

Mores Ck nr Arrowrock Dam - no corrections + Anderson Ranch Res storage change

Boise R nr Boise

+ Anderson Ranch Res storage change

+ Arrowrock Res storage change

+ Lucky Peak Res storage change

Wood and Lost River Basins

Big Wood R at Hailey - no corrections

Big Wood R ab Magic Res

+ Big Wood R at Stanton Crossing nr Bellevue

+ Willow Ck

3ig Wood R bl Magic Dam nr Richfield Camas Ck nr Blaine - no corrections

+ Magic Res storage change

Little Wood R ab High Five Ck – no corrections Little Wood R nr Carey

+ Little Wood Res storage change

Big Lost R at Howell Ranch - no corrections

Big Lost R bl Mackay Res nr Mackay

Little Lost R bl Wet Ck nr Howe - no corrections + Mackay Res storage change

Upper Snake River Basin

Henrys Fork nr Ashton

+ Henrys Lake storage change

+ Island Park Res storage change

Falls R nr Ashton

+ Diversions from Falls R ab nr Ashton + Grassy Lake storage change

Teton R nr Driggs - no corrections Teton R nr St. Anthony

- Cross Cut Canal into Teton R

- + Sum of Diversions for Teton R ab St. Anthony
 - + Teton Dam for water year 1976 only

Henrys Fork nr Rexburg

+ Henrys Lake storage change

+ Island Park Res storage change

+ Grassy Lake storage change

+ 21 Diversions from Henrys Fk btw St. Anthony to Rexburg + 7 Diversions from Henrys Fk btw Ashton to St. Anthony

+ 3 Diversions from Falls R ab Ashton

6 Diversions from Falls R nr Ashton to Chester

Snake R nr Flagg Ranch, WY - no corrections

Snake R nr Moran, WY

+ Jackson Lake storage change

Pacific Ck at Moran, WY - no corrections

Buffalo Fork ab Lava nr Moran, WY - no corrections

Gros Ventre R at Kelly, WY - no corrections

Snake R ab Res nr Alpine, WY

+ Jackson Lake storage change

Greys R nr Alpine, WY - no corrections

Salt R R nr Etna, WY - no corrections Snake R nr Irwin

+ Jackson Lake storage change

+ Palisades Res storage change Snake R nr Heise

+ Jackson Lake storage change

+ Palisades Res storage change

Willow Ck nr Ririe

+ Ririe Res storage change

an adjustment for Grays Lake water diverted from Willow Creek drainage The forecasted natural volume for Willow Creek nr Ririe does not include through the Clarks Cut diversion and into Blackfoot Reservoir. Blackfoot R ab Res nr Henry

+ Blackfoot Res storage change

diverted from the Willow Creek drainage through the Clarks Cut diversion The forecasted Blackfoot Reservoir Inflow includes Grays Lake water and into Blackfoot Reservoir.

Portneuf R at Topaz - no corrections

Snake R at Neeley

+ Jackson Lake storage change

+ Palisades Res storage change

+ American Falls storage change

+ Teton Dam for water year 1976 only

Southside Snake River Basins

Frapper Ck nr Oakley - no adjustments Goose Ck nr Oakley - no adjustments

Dead + Inactive+Active

Active Active

10.00

1200.00 80.54

155.50

44.10

6.00 | |

4.00

Active Active Active Active

348.7 1672.6

348.73 1672.60

Active

90.4 135.2 15.2 847.0 1400.0

Active + Surcharge

Active Active

90.40

0.40

Unknown

Henrys Lake **Grassy Lake**

sland Park

Ipper Snake Basin

Unknown

Unknown

Jackson Lake

Palisades

Ririe

847.00

15.18

includes 119 that can be released

Dead + Active

Active + Inactive: Inactive + Active

1421.0

1302.00 3.84

5000.00 0.21

Bear River Basin

Brownlee

Owyhee

Sear Lake

Montpelier Creek

Active + Inactive

75.6 182.6

75.60 182.65

5.00

48.00

Salmon Falls

Dakley

Wildhorse

Jnknown

406.83

0.00

Unknown

American Falls

Slackfoot

Southside Snake Basins

Jnknown

71.5 715.0 1420.0

71.50 715.00 975.30

444.70 119.00

0.45

Oakley Res Inflow - flow does not include Birch Creek

+ Goose Ck

+ Trapper Ck

Salmon Falls Ck nr San Jacinto, NV - no corrections Bruneau R nr Hot Springs - no corrections Reynolds Ck at Tollgate - no corrections Owyhee R nr Gold Ck, NV

Owyhee R nr Rome, OR - no Corrections + Wildhorse Res storage change Owyhee R bl Owyhee Dam, OR

+ Diversions to North and South Canals + Owyhee Res storage change

Bear River Basin

Bear R abv Res nr Woodruff, UT- no corrections Bear R nr UT-WY Stateline, UT- no corrections Smiths Fork nr Border, WY - no corrections Big Ck nr Randolph, UT - no corrections Bear R bl Stewart Dam nr Montpelier

+ Bear R bl Stewart Dam

+ Rainbow Inlet Canal

Little Bear R at Paradise, UT - no corrections Blacksmith Fk nr Hyrum, UT - no corrections Logan R nr Logan, UT - no corrections

Reservoir Capacity Definitions (Units in 1,000 Acre-Feet, KAF)

port include dead, inactive, active, and surcharge storage. This table lists these volumes for each reservoir, and defines Different agencies use various definitions when reporting reservoir capacity and contents. Reservoir storage terms

and define NRCS rep								+ Active	O)	+ Active		O)			O)		Ф		Ф	o o				
nclude dead, inactive, active, and surcharge storage. This table lists these volumes for each reservoir, and define the storage volumes NRCS uses when reporting capacity and current reservoir storage. In most cases, NRCS rep		NRCS Capacity	Includes		Active	Active	Active	Dead + Inactive + Active	Inactive + Active	Dead + Inactive + Active		Inactive + Active		Active	Inactive + Active	Active	Inactive + Active	Active	Inactive + Active	Inactive + Active		Active	Active	Active
ese volumes eservoir stora	ec 2011)	NRCS	Capacity		3451.0	1791.0	335.0	1561.3	238.5	119.3		3468.0		11.1	693.2	161.9	450.1	272.2	293.2	165.2		191.5	30.0	44.4
s table lists the	. (Revised D	Surcharge	Storage		ł	1	ł	ł	ł	1		ł		ł	i	1	ı	I	13.80	1		į	ł	!
storage, Inis ting capacity	active storage	Active	Storage		3451.00	1791.00	335.00	1042.70	225.00	71.30		2016.00		11.10	646.50	161.90	413.10	272.20	264.40	159.40		191.50	30.00	44.37
and surcnarge as when repor	active and in	Inactive	Storage		ŀ	ŀ	!	112.40	13.50	28.00		1452.00		0.24	46.70	1	37.00	1	28.80	5.80		!	1	1
es NRCS use	hich includes	Dead	Storage		39.73	Unknown	Unknown	406.20	Unknown	20.00	-	Unknown	yette Basins	1.61	Unknown	Unknown	24.90	Unknown	Unknown	7.90	SI	Unknown	Unknown	0.13
nciude dead, inat	usable storage, which includes active and inactive storage. (Revised Dec 2011)	Basin/	Reservoir	Panhandle Region	Hungry Horse	Flathead Lake	Noxon Rapids	Pend Oreille	Coeur d'Alene	Priest Lake	Clearwater Basin	Oworshak	Neiser/Boise/Payette Basins	Mann Creek	Cascade	Deadwood	Anderson Ranch	Arrowrock	Lucky Peak	-ake Lowell	Nood/Lost Basins	Magic	Little Wood	Mackay

Interpreting Water Supply Forecasts

Introducti

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

90 Percent Chance of Exceedance Forecast. There is a 90 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 10 percent chance that the actual streamflow volume will be less than this forecast value.

70 Percent Chance of Exceedance Forecast. There is a 70 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 30 percent chance that the actual streamflow volume will be less than this forecast value.

50 Percent Chance of Exceedance Forecast. There is a 50 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 50 percent chance that the actual streamflow volume will be less than this forecast value. Generally, this forecast is the middle of the range of possible streamflow volumes that can be produced given current conditions.

30 Percent Chance of Exceedance Forecast. There is a 30 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 70 percent chance that the actual streamflow volume will be less than this forecast value.

10 Percent Chance of Exceedance Forecast. There is a 10 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 90 percent chance that the actual streamflow volume will be less than this forecast value.

*Note: There is still a 20 percent chance that actual streamflow volumes will fall either below the 90 percent exceedance forecast or above the 10 percent exceedance forecast.

These forecasts represent the uncertainty inherent in making streamflow predictions. This uncertainty may include sources such as: unknown future weather conditions, uncertainties associated with the various prediction methodologies, and the spatial coverage of the data network in a given basin.

30-Year Average. The 30-year average streamflow for each forecast period is provided for comparison. The average is based on data from 1971-2000. The % AVG. column compares the 50% chance of exceedance forecast to the 30-year average streamflow; values above 100% denote when the 50% chance of exceedance forecast would be greater than the 30-year average streamflow.

AF - Acre-feet, forecasted volume of water are typically in thousands of acre-feet.

These forecasts are given to users to help make risk-based decisions. Users can select the forecast corresponding to the level of risk they are willing to accept in order to minimize the negative impacts of having more or less water than planned for.

To Decrease the Chance of Having Less Water than Planned for

A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive less than this amount). To reduce the risk of having less water than planned for, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded such as the 90 or 70 percent exceedance forecasts.

To Decrease the Chance of Having More Water than Planned for

A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive more than this amount). To reduce the risk of having more water than planned for, users can base their operational decisions on one of the forecasts with a lesser chance of being exceeded such as the 30 or 10 percent exceedance forecasts.

Using the forecasts - an Example

Using the 50 Percent Exceedance Forecast. Using the example forecasts shown below, there is a 50% chance that actual streamflow volume at the Boise River near Twin Springs will be less than 685 KAF between April 1 and July 31. There is also a 50% chance that actual streamflow volume will be greater than 685 KAF.

Using the 90 and 70 Percent Exceedance Forecasts. If an unexpected shortage of water could cause problems (such as irrigated agriculture), users might want to plan on receiving 610 KAF (from the 70 percent exceedance forecast). There is a 30% chance of receiving less than 610 KAF.

Alternatively, if users determine the risk of using the 70 percent exceedance forecast is too great, then they might plan on receiving 443 KAF (from the 90 percent exceedance forecast). There is 10% chance of receiving less than 443 KAF.

Using the 30 or 10 Percent Exceedance Forecasts. If an unexpected excess of water could cause problems (such as operating a flood control reservoir), users might plan on receiving 760 KAF (from the 30 percent exceedance forecast). There is a 30% chance of receiving more than 760 KAF.

Alternatively, if users determine the risk of using the 30 percent exceedance forecast is too great, then they might plan on receiving 927 KAF (from the 10 percent exceedance forecast). There is a 10% chance of receiving more than 927 KAF.

Users could also choose a volume in between any of these values to reflect their desired risk level.

			Weiser, Payett Streamflow For	Weiser, Payette, Boise River Basins treamflow Forecasts – January 2000	ns 106	;		
Forecast Point	Forecast			Chance of	= Chance of Fxceeding * ====			
1000	Period	90% (1000AF)	70% (1000AF)	50 (1000 AF)	50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
SF PAYETTERIVER at Lowman	APR-JUL APR-SEP	329	414	471	109	528	613 673	432
BOISE RIVER near Twin Springs (1)	APR-JUL APR-SEP	443 495	610 670	685	109	760	927 1005	631

*90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table

OFFICIAL BUSINESS

PRSRT STD U.S. POSTAGE PAID SEATTLE, WA Permit No. 939

Issued by
Dave White, Chief
Natural Resources Conservation Service
Washington, DC

Released by
Jeff Burwell, State Conservationist
Rob Sampson, State Conservation Engineer
Natural Resources Conservation Service
Boise, Idaho

Prepared by
Idaho Snow Survey Staff
Ron Abramovich, Water Supply Specialist
Philip Morrisey, Data Collection Officer
Jeff Anderson, Hydrologist
Julie Koeberle, Hydrologist
Jeff Graham, Electronics Technician
Chad Gipson, Electronics Technician

Forecasts and Assistance provided by
Rashawn Tama, Forecast Hydrologist
Jolyne Lea, Forecast Hydrologist
NRCS, National Water and Climate Center, Portland, Oregon

Numerous other groups and agencies provide funding and/or cooperative support for the collection, operation and maintenance of the Cooperative Idaho Snow Survey Program. Their cooperation is greatly appreciated.

12-2-322

Usda-National Agricultural Library
Continuing Resources Unit/ Room 002 10301 Baltimore Ave
Beltsville MD 20705-2351

