Математический анализ

Игорь Балюк, 193 группа, @lod
the $4\ {\rm Hosfps}\ 2019\ {\rm r}.$

Содержание

1	Пределы				
	1.1	Следс	твия пер	вого замечательного предела	3
	1.2	Следс	твия втој	рого замечательного предела	3
	1.3	Триго	нометрич	неские формулы	4
	1.4	Колло	оквиум 1		4
		1.4.1	В обязат	гельный минимум входят	4
			1.4.1.1	Определение предела числовой последовательности	4
			1.4.1.2	Определение точной верхней и нижней грани	4
			1.4.1.3	Определение бесконечно малой и бесконечно большой после-	
				довательности	5
			1.4.1.4	Определение предела функции в точке и на бесконечности	
				по Коши и по Гейне	5
			1.4.1.5	Определение фундаментальной последовательности, крите-	
				рий Коши сходимости последовательности	5
			1.4.1.6	Первый и второй замечательный пределы	5
			1.4.1.7	Таблица производных элементарных функций	6
		1.4.2	Основни	ые понятие и теоремы (с доказательствами)	6
			1.4.2.1	Числовые последовательности. Примеры	6
			1.4.2.2	Понятие предела последовательности	6
			1.4.2.3	Ограниченные и неограниченные последовательности	6
			1.4.2.4	Теорема об ограниченности сходящейся последовательности.	7
			1.4.2.5	Теорема о единственности предела сходящейся последова-	
				тельности.	7
			1.4.2.6	Теорема о переходе к пределу в неравенствах	8
			1.4.2.7	Теорема о вынужденном пределе (Теорема о двух милицио-	
				нерах)	8
			1.4.2.8	Теорема о сходимости монотонных ограниченных последо-	
				вательностей	8
			1.4.2.9	Определение числа е	8
			1.4.2.10	Бесконечно малые последовательности	9
			1.4.2.11	Связь со сходящимися последовательностями	9
			1.4.2.12	Арифметические свойства бесконечно малых и сходящихся	
				последовательностей	10
			1.4.2.13	Бесконечно большие последовательности, их связь с беско-	
				нечно малыми	10

1.4.2.14	Арифметические свойства для последовательностей, имею-	
	щих конечные и бесконечные пределы	11
1.4.2.15	Неопределенности	11
1.4.2.16	Определение подпоследовательности	11
1.4.2.17	Теорема Больца́но-Ве́йерштрасса	12
1.4.2.18	Критерий Коши сходимости последовательности	12
1.4.2.19	Определение предела функции в точке по Коши и по Гейне.	13
1.4.2.20	Теорема об эквивалентности этих определений	13
1.4.2.21	Односторонние пределы, их связь с двусторонними. Преде-	
	лы функции в бесконечности.	14
1.4.2.22	Неопределенности. Теоремы о переходе к пределу в неравен-	
	ствах, о вынужденном пределе. [Не пройдено]	15
1.4.2.23	Теорема о пределе сложной функции. [Не пройдено]	15
1.4.2.24	Первый и второй замечательные пределы. [Не пройдено]	15
1.4.2.25	Сравнение функций, о-символика, главная часть функции,	
	порядок малости и порядок роста функции. [Не пройдено] .	15
1.4.2.26	Критерий Коши существования конечного предела функ-	
	ции. [Не пройдено]	15
1.4.2.27	Определения непрерывности функции в точке, их эквива-	
	лентность. [Не пройдено]	15
1.4.2.28	Точки разрыва, их классификация. Непрерывность основ-	
	ных элементарных функций. [Не пройдено]	15
1.4.2.29	Арифметические свойства непрерывных функций. [Не прой-	
	дено]	15
1.4.2.30	Теорема о непрерывности сложной функции. [Не пройдено] .	15
1.4.2.31	Теоремы о локальной ограниченности и локальном сохране-	
	нии знака для функций, непрерывных в точке. [Не пройдено]	15
1.4.2.32	Свойства функций, непрерывных на отрезке (первая и вто-	
	рая теоремы Вейерштрасса, теорема Коши). Критерий су-	
	ществования и непрерывности обратной функции на проме-	
	жутке. [Не пройдено]	15
1.4.2.33	Понятие равномерной непрерывности функции на множе-	
	стве. [Не пройдено]	15
1.4.2.34	Теорема Кантора [Не пройдено]	15
1.4.2.35	Система стягивающихся отрезков [В списке вопросов к кол-	
	JOKBUVMV OTCVTCTBVCT	15

1 Пределы

1.1 Следствия первого замечательного предела

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{x}{\sin x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

1.2 Следствия второго замечательного предела

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx} = e^{ab}$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{a^x - 1}{x \ln a} = 1, a > 0, a \neq 1$$

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a$$

1.3 Тригонометрические формулы

Сайт с многими остальными формулами

$$\sin 0 = 0, \cos 0 = 1$$

$$\sin(x)^{2} + \cos(x)^{2} = 1$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos(x)^{2} - \sin(x)^{2}$$

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$\sin a + \sin b = 2 \sin \frac{a + b}{2} \cos \frac{a - b}{2}$$

$$\sin a - \sin b = 2 \cos \frac{a + b}{2} \sin \frac{a - b}{2} \quad (\sin(-a) = -\sin(a))$$

$$\cos a + \cos b = 2 \cos \frac{a + b}{2} \cos \frac{a - b}{2}$$

$$\cos a - \cos b = -2 \sin \frac{a + b}{2} \sin \frac{a - b}{2}$$

$$\sin a \cdot \sin b = \frac{1}{2} \cdot (\cos(a - b) - \cos(a + b))$$

$$\sin a \cdot \cos b = \frac{1}{2} \cdot (\sin(a - b) + \sin(a + b))$$

$$\cos a \cdot \cos b = \frac{1}{2} \cdot (\cos(a - b) + \cos(a + b))$$

$$\cos a \cdot \cos b = \frac{1}{2} \cdot (\cos(a - b) + \cos(a + b))$$

$$\cos a \cdot \cos b = \frac{1}{2} \cdot (\cos(a - b) + \cos(a + b))$$

$$\cos a \cdot \cos b = \frac{1}{2} \cdot (\cos(a - b) + \cos(a + b))$$

$$\cos a \cdot \cos b = \frac{1}{2} \cdot (\cos(a - b) + \cos(a + b))$$

1.4 Коллоквиум 1

Информация о коллоквиуме

Ориентировочная дата проведения: 09.11.2019

1.4.1 В обязательный минимум входят

1.4.1.1 Определение предела числовой последовательности

Число a называется пределом числовой последовательности $\{x_n\}$, если

$$\forall \varepsilon > 0, \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \implies |x_n - a| < \varepsilon$$

1.4.1.2 Определение точной верхней и нижней грани

Верхняя (нижняя) грань числового множества X — число a такое, что $\forall x \in X \implies x \leqslant (\geqslant)a$

Точная верхняя грань (или супремум) — это наименьшая из всех верхних граней. Обозначается $\sup X$.

Точная нижняя грань (или инфинум) — это наибольшая из всех нижних граней. Обозначается $\inf X$.

$$a = \sup X \iff (\forall x \in X \implies x \leqslant a) \land (\not\exists b : b < a, \forall x \in X \implies x \leqslant b)$$

 $a = \inf X \iff (\forall x \in X \implies x \geqslant a) \land (\not\exists b : b > a, \forall x \in X \implies x \geqslant b)$

1.4.1.3 Определение бесконечно малой и бесконечно большой последовательности

Последовательность $\{x_n\}$ называется

• бесконечно малой последовательностью, если

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) : \; \forall n \geqslant N(\varepsilon) \implies |x_n| < \varepsilon$$

• бесконечно большой последовательностью, если

$$\forall A > 0 \; \exists N(A) : \; \forall n \geqslant N(A) \implies |x_n| > A$$

1.4.1.4 Определение предела функции в точке и на бесконечности по Коши и по Гейне

- По Коши: A предел функции f(x) в точке a ($\lim_{x\to a} f(x) = A$), если $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x : \; 0 < |x-a| < \delta \implies |f(x) A| < \varepsilon$
- По Гейне: A называется пределом функции f(x) в точке a, если $\forall \{x_n\} \to a, x_n \neq a$ (т.е. $\lim_{n\to\infty} x_n = a$), соответствующая последовательность значений $f(x_n) \to A$ (т.е. $\lim_{n\to\infty} f(x_n) = A$)

1.4.1.5 Определение фундаментальной последовательности, критерий Коши сходимости последовательности

<u>Критерий Коши</u>: Для того, чтобы последовательность $\{x_n\}$ сходилась, необходимо и достаточно, чтобы она была фундаментальной.

Последовательность называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n, m > N(\varepsilon) : |x_n - x_m| < \varepsilon$$

1.4.1.6 Первый и второй замечательный пределы

1.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

2.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

1.4.1.7 Таблица производных элементарных функций

$$(C)' = 0$$

$$(x^a)' = a \cdot x^{a-1}$$

$$(a^x)' = a^x \ln a$$

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

1.4.2 Основные понятие и теоремы (с доказательствами)

1.4.2.1 Числовые последовательности. Примеры.

Определение из википедии: Пусть X — это либо множество вещественных чисел \mathbb{R} , либо множество комплексных чисел \mathbb{C} . Тогда последовательность $\{x_n\}_{n=1}^{\infty}$ элементов множества X называется **числовой последовательностью**.

Определение из Ёжика: Отображение $\mathbb{N} \mapsto X$ будем называть последовательностью и записывать как x_1, x_2, \dots, x_n . Отображение $\mathbb{N} \mapsto \mathbb{R}$ будем называть **числовой последовательностью**.

Примеры:

- Функция, сопоставляющая каждому натуральному числу $n \le 12$ одно из слов «январь», «февраль», «март», «апрель», «май», «июнь», «июль», «август», «сентябрь», «октябрь», «ноябрь», «декабрь» (в порядке их следования здесь) представляет собой последовательность вида $\{x_n\}_{n=1}^{12}$. Например, пятым элементом x_5 этой последовательности является слово «май».
- $\{1/n\}_{n=1}^{\infty}$ является бесконечной последовательностью рациональных чисел. Элементы этой последовательности начиная с первого имеют вид $1, 1/2, 1/3, 1/4, 1/5, \ldots$
- $((-1)^n)_{n=1}^{\infty}$ является бесконечной последовательностью целых чисел. Элементы этой последовательности начиная с первого имеют вид $-1, 1, -1, 1, -1, \ldots$

1.4.2.2 Понятие предела последовательности.

Число a называется пределом числовой последовательности $\{x_n\}$, если

$$\forall \varepsilon > 0, \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \implies |x_n - a| < \varepsilon$$

1.4.2.3 Ограниченные и неограниченные последовательности.

 \bullet Ограниченная сверху последовательность — это последовательность элементов множества X, все члены которой не превышают некоторого элемента из этого множе-

ства. Этот элемент называется верхней гранью данной последовательности.

$$\{x_n\}$$
 ограниченная сверху $\iff \exists M \in X : \forall n \implies x_n \leqslant M$

ullet Ограниченная снизу последовательность — это последовательность элементов множества X, для которой в этом множестве найдётся элемент, не превышающий всех её членов. Этот элемент называется нижней гранью данной последовательности.

$$\{x_n\}$$
 ограниченная снизу $\iff \exists m \in X: \ \forall n \implies x_n \geqslant m$

• Ограниченная последовательность (ограниченная с обеих сторон последовательность) — это последовательность, ограниченная и сверху, и снизу.

$$\{x_n\}$$
 ограниченная $\iff \exists M, m \in X : \forall n \implies m \leqslant x_n \leqslant M$

• Неограниченная последовательность — это последовательность, которая не является ограниченной.

$$\{x_n\}$$
 неограниченная $\iff \forall M, m \in X : \exists N \implies (x_N < m) \lor (x_N > M)$

• <u>Критерий ограниченности</u>: Числовая последовательность является ограниченной тогда и только тогда, когда существует такое число, что модули всех членов последовательности не превышают его.

$$\{x_n\}$$
 ограниченная $\iff \exists A \in \mathbb{R} : \forall N \implies |x_N| \leqslant A$

1.4.2.4 Теорема об ограниченности сходящейся последовательности.

Всякая сходящаяся последовательность ограничена.

Доказательство. Все члены последовательности, кроме конечного их числа, принадлежат окрестности предела — ограниченному множеству.

Пусть последовательность $\{x_n\}$ сходится к a, т.е. $\lim_{n\to\infty} x_n = a$.

$$\forall \varepsilon > 0 \; \exists N : \; \forall n \geqslant N \implies |x_n - a| < \varepsilon$$

Пусть
$$\varepsilon = 1$$
, тогда $A = \max\{|x_1|, \dots, |x_N|, |a-\varepsilon|, |a+\varepsilon|\}$. Тогда, $\forall n \in \mathbb{N} : |x_n| \leqslant A$.

1.4.2.5 Теорема о единственности предела сходящейся последовательности.

Теорема. Если предел числовой последовательности существует, то он единственный.

Доказательство. Доказательство теоремы проведем «методом от противного». Предположим, что теорема неверна. Тогда, пусть $\lim_{n\to\infty} x_n = a = b$ и выполняется следующее:

$$\begin{cases} a < b, \\ \forall \varepsilon > 0, \exists N_1(\varepsilon) : \forall n \geqslant N_1(\varepsilon) \implies |x_n - a| < \varepsilon, \\ \forall \varepsilon > 0, \exists N_2(\varepsilon) : \forall n \geqslant N_2(\varepsilon) \implies |x_n - b| < \varepsilon, \end{cases}$$

Положим $\varepsilon=\frac{b-a}{2}$ и $N=\max\{N_1(\varepsilon),N_2(\varepsilon)\}.$ Тогда, $\forall n\geqslant N\implies |x_n-a|<\varepsilon \wedge |x_n-b|<\varepsilon.$ Возьмём $n\geqslant N,$ тогда,

$$|b-a| = |b-a| = |b-x_n + x_n - a| \le |x_n - b| + |x_n - a| < \frac{b-a}{2} + \frac{b-a}{2} = b-a$$

Пришли к противоречию (b-a < b-a).

1.4.2.6 Теорема о переходе к пределу в неравенствах.

Теорема. Пусть $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$. Если a < b, то $\exists N : \forall n \geqslant N \implies x_n < y_n$.

Доказательство. Из аксиомы полноты $\exists c: a < c < b.$

$$\forall \varepsilon_1 > 0 \ \exists N_1 : \ \forall n \geqslant N_1 \implies |x_n - a| < \varepsilon_1$$

 $\forall \varepsilon_2 > 0 \ \exists N_2 : \ \forall n \geqslant N_2 \implies |y_n - b| < \varepsilon_2$

Тогда,
$$\forall n \geqslant N_1 \implies |x_n - a| < c - a$$
 и $\forall n \geqslant N_2 \implies |y_n - b| < b - c$. Отсюда $\forall n \geqslant \max\{N_1, N_2\} \implies x_n < c - a + a = c = c - b + b < y_n$.

1.4.2.7 Теорема о вынужденном пределе (Теорема о двух милиционерах).

Теорема.
$$Ecnu \ \forall n \in \mathbb{N} : x_n \leqslant y_n \leqslant z_n \ u \ \exists \lim_{n \to \infty} x_n = a = \lim_{n \to \infty} z_n, \ mor\partial a \lim_{n \to \infty} y_n = a.$$

Доказательство. Из определения предела $\{x_n\}$, $\forall \varepsilon > 0 \ \exists N_1 : \ \forall n \geqslant N_1 \implies |x_n - a| < \varepsilon \iff a - \varepsilon < x_n < a + \varepsilon$. Аналогично для предела $\{z_n\}$, $\forall \varepsilon > 0 \ \exists N_2 : \ \forall n \geqslant N_2 \implies |z_n - a| < \varepsilon \iff a - \varepsilon < z_n < a + \varepsilon$. Тогда, $\forall n \geqslant \max\{N_1, N_2, N\} \implies a - \varepsilon < x_n \leqslant y_n \leqslant z_n < a + \varepsilon \implies \lim_{n \to \infty} y_n = a$.

1.4.2.8 Теорема о сходимости монотонных ограниченных последовательностей.

Теорема. Неубывающая числовая последовательность имеет предел, причём он в точности равен точной верхней границе (нижней границе, для ограниченной невозрастающей ч.п.).

Доказательство. Пусть $\{x_n\}$ — ограниченная неубывающая числовая последовательность. Тогда множество $\{x_n\}_{n\in\mathbb{N}}$ ограничено, следовательно, из определения супремума, имеет супремум. Обозначим его через S. Тогда $\lim_{n\to\infty} x_n = S$. Действительно, так как $S = \sup\{x_n\}_{n\in\mathbb{N}}$, то

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \geqslant N \implies S - \varepsilon < x_N \leqslant x_n \leqslant S \implies |x_n - S| < \varepsilon$$

Аналогичное доказательство для ограниченной невозрастающей ч.п.

1.4.2.9 Определение числа е.

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Теорема. Последовательность с общим членом $e_n = \left(1 + \frac{1}{n}\right)^n$ имеет конечный предел при $n \to \infty$. Для обозначение этого предела используется символ e.

Доказательство. Докажем сначала, что $\{e_n\}$ представляет собой монотонно возрастающую последовательность. Согласно биному Ньютона,

$$e_n = \left(1 + \frac{1}{n}\right)^n = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \dots + \frac{1}{n^n}$$

$$= 2 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{1}{n-1}\right)$$

$$e_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}$$

$$= 2 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{3!} \cdot \left(1 - \frac{1}{n+1}\right) \cdot \left(1 - \frac{2}{n+1}\right) + \dots$$

Сравним e_n и e_{n+1} :

- Оба выражения содержат только положительные слагаемые
- Начиная со второго слогаемого, каждый член в выражении e_{n+1} превышает соответствующий член в e_n , так как

$$\left(1-\frac{1}{n}\right) < \left(1-\frac{1}{n+1}\right), \left(1-\frac{2}{n}\right) < \left(1-\frac{2}{n+1}\right)\dots$$

• Выражение e_{n+1} состоит из большего числа слагаемых. Следовательно, $e_{n+1} > e_n$.

Далее докажем, что последовательность $\{e_n\}$ является ограниченной. Действительно, первый член любой монотонно возрастающей последовательности является ее наибольшей нижней границей и, таким образом, $e_n \geqslant 2 \ \forall n \in \mathbb{N}$.

Перейдем к доказательству существования верхней границы. Очевидно, что

$$e_n = 2 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{1}{n-1}\right) < 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!}$$

Кроме того, $\frac{1}{k!} < \frac{1}{2^k} \, \forall k > 3$. Тогда,

$$\frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} < \frac{1}{2^4} + \frac{1}{2^5} + \dots + \frac{1}{2^n}$$

Правая часть этого неравенства представляет собой сумму убывающей геометрической прогрессии, которая равна $\frac{\frac{1}{16}}{1-\frac{1}{2}}=\frac{1}{8}$. Таким образом, последовательность

$$e_n < 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} < 2 + \frac{1}{2} + \frac{1}{6} + \frac{1}{8} < 3$$

представляет собой ограниченную монотонно возрастающую последовательность и, следовательно, имеет конечный предел.

1.4.2.10 Бесконечно малые последовательности.

Последовательность a_n называется бесконечно малой, если $\lim_{n\to\infty} a_n = 0$.

1.4.2.11 Связь со сходящимися последовательностями.

Если предел последовательности равен 0, то это бесконечно малая последовательность. Бесконечно малые последовательности являются сходящимися последовательностями.

Для того чтобы последовательность $\{x_n\}$ имела предел b, необходимо и достаточно, чтобы $x_n = b + \alpha_n$, где α_n — бесконечно малая последовательность.

1.4.2.12 Арифметические свойства бесконечно малых и сходящихся последовательностей.

Пусть $\{\alpha_n\}$ — бесконечно малая числовая последвательность.

• $\{\alpha_n\}$ ограничена

 \mathcal{A} оказательство. Как известно, $\forall \varepsilon > 0 \; \exists N : \; \forall n > N \implies |\alpha_n| < \varepsilon$. Значит, для всех n > N доказано. Но $\forall n < N \implies \alpha_n \leqslant \max\{|\alpha_1|, |\alpha_2|, \dots, |\alpha_{N-1}|\}$. Тогда выберем $\varepsilon = 1, A = \max\{|\alpha_1|, |\alpha_2|, \dots, |\alpha_{N-1}|, 1\} \implies \forall n \in \mathbb{N}, |\alpha_n| \leqslant A$.

• Если $\{y_n\}$ ограничена, то $\{y_n \cdot \alpha_n\}$ — бесконечно малая.

 \mathcal{A} оказательство. $\{\alpha_n\}$ — бесконечно малая, поэтому $\forall \varepsilon > 0 \ \exists N : \ \forall n \geqslant N \implies |\alpha_n| < \frac{\varepsilon}{A}$. Ввиду ограниченности $\{y_n\}, \exists A : \ \forall n \in \mathbb{N} \implies |y_n| \leqslant A$. Но тогда $\{y_n \cdot \alpha_n\} : \forall \varepsilon > 0 \ \exists N : \ \forall n \geqslant N \implies |y_n \cdot \alpha_n| < \frac{\varepsilon}{A} \cdot A = \varepsilon$.

ullet Если $\{eta_n\}$ — бесконечно малая, то $\{lpha_n\pmeta_n\}$ и $\{lpha_n\cdoteta_n\}$ — бесконечно малые.

Доказательство.

$$\forall \varepsilon>0 \; \exists N_1: \forall n\geqslant N_1 \implies |\alpha_n|<\frac{\varepsilon}{2} \; \text{и} \; \forall \varepsilon>0 \; \exists N_2: \forall n\geqslant N_2 \implies |\beta_n|<\frac{\varepsilon}{2}$$
 Тогда при $N=\max\{N_1,N_2\} \implies \forall n\geqslant N \implies |\alpha_n\pm\beta_n|\leqslant |\alpha_n|+|\beta_n|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$

Аналогично для произведения:

$$\forall \varepsilon > 0 \; \exists N_1 : \forall n \geqslant N_1 \implies |\alpha_n| < \frac{1}{\varepsilon} \; \text{и} \; \forall \varepsilon > 0 \; \exists N_2 : \forall n \geqslant N_2 \implies |\beta_n| < \varepsilon^2$$
 Тогда при $N = \max\{N_1, N_2\} \implies \forall n \geqslant N \implies |\alpha_n \pm \beta_n| \leqslant |\alpha_n| \cdot |\beta_n| < \frac{1}{\varepsilon} \cdot \varepsilon^2 = \varepsilon$

1.4.2.13 Бесконечно большие последовательности, их связь с бесконечно малыми.

• Если $\{x_n\}$ — бесконечно малая и $\forall n \in \mathbb{N} \implies x_n \neq 0$, то $\{\frac{1}{x_n}\}$ — бесконечно большая.

Доказательство.
$$\forall \varepsilon > 0 \; \exists N : \; \forall n \geqslant N \implies |x_n| < \varepsilon \iff \frac{1}{|x_n|} < \frac{1}{\varepsilon} = A$$

• Если $\{x_n\}$ — бесконечно большая и $\forall n \in \mathbb{N} \implies x_n \neq 0$, то $\{\frac{1}{x_n}\}$ — бесконечно малая.

Доказательство.
$$\forall A>0 \; \exists N: \; \forall n\geqslant N \implies |x_n|>A \iff \frac{1}{|x_n|}<\frac{1}{A}=\varepsilon$$

1.4.2.14 Арифметические свойства для последовательностей, имеющих конечные и бесконечные пределы.

нечные и бесконечные пределы. Если
$$\exists \lim_{n \to \infty} x_n = a, \lim_{n \to \infty} y_n = b, \text{ то } \exists \lim_{n \to \infty} (x_n \pm y_n) = a \pm b, \lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b, \text{ а также}$$
 $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}, \text{ если } b \neq 0.$

Доказательство.

$$\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n \iff x_n = a + \alpha_n, y_n = b + \beta_n, \text{ где } \{\alpha_n\}\{\beta_n\} - \text{ бесконечно малые.}$$

$$x_n \pm y_n = (a + \alpha_n) \pm (b + \beta_n) = (a \pm b) + \underbrace{(\alpha_n \pm \beta_n)}_{\text{6. м.}}$$

$$x_n \cdot y_n = (a + \alpha_n) \cdot (b + \beta_n) = a \cdot b + \underbrace{(\alpha_n \cdot \beta_n + \alpha_n \cdot b + \beta_n \cdot a)}_{\text{6. м.}}$$

Лемма. Пусть $\exists \lim_{n \to \infty} y_n \neq 0$. Тогда $\exists r > 0 : \exists N \in \mathbb{N} : \forall n \geqslant N \implies |y_n| > r > 0$.

Доказательство.
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \implies |y_n - b| < \varepsilon \iff b - \varepsilon < |y_n| < b + \varepsilon$$
. Пусть $\varepsilon = \frac{b}{2}$, тогда $r < \frac{b}{2} < y_n < \frac{3b}{2}$.

Рассмотрим последовательность $\left\{\frac{x_n}{y_n} - \frac{a}{b}\right\}$ — бесконечно малая.

$$\frac{x_n}{y_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{b \cdot a + b \cdot \alpha_n - b \cdot a - \beta_n \cdot a}{y_n \cdot b} = (\alpha_n \cdot b - \beta_b \cdot a) \cdot \frac{1}{y_n \cdot b}$$

По лемме $\left|\frac{1}{y_n \cdot b}\right| \leqslant max \left\{\left|\frac{1}{y_1 \cdot b}\right|, \dots, \left|\frac{1}{y_N \cdot b}\right|, \frac{1}{rb}\right\} \implies \left\{\frac{1}{y_n \cdot b}\right\}$ ограничена. Но тогда имеем произведение бесконечно малой и ограниченной последовательностей, значит, $\left\{\frac{x_n}{y_n} - \frac{a}{b}\right\}$ бесконечно малая.

1.4.2.15 Неопределенности.

Не очень понятно, что именно требуется в этом пункте Основные виды неопределенностей: $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 1^{\infty}, 0^{0}, \infty^{0}$ Раскрывать неопределенность помогает:

- упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения,
- тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.); использование замечательных пределов;

1.4.2.16 Определение подпоследовательности.

Подпоследовательность последовательности $\{x_n\}$ — это последовательность $\{x_{n_k}\}$ = $\{x_{n_1}, x_{n_2}, \ldots, x_{n_k}\}$, полученная из $\{x_n\}$, удалением ряда её членов без изменения порядка следования членов.

То есть подпоследовательность состоит из членов исходной последовательности $\{x_n\}$ с номерами n_k , где $\{n_k\}$ — строго монотонная последовательность натуральных чисел.

$$\Pi$$
римечание. Если $\lim_{n\to\infty}a_n=a$, тогда $\forall\{a_{n_k}\}:\lim_{k\to\infty}a_{n_k}=a_{n_k}$

1.4.2.17 Теорема Больца́но-Ве́йерштрасса.

Теорема. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. Для понимания происходящего следует ознакомиться с 1.4.2.35 Системой стягивающихся отрезков (CCO)

 $\{x_n\}$ ограничена $\implies \exists [a,b] : \forall n \in N \implies a \leqslant x_n \leqslant b$. Поделим [a;b] на две равные части. Хотя бы одна из частей (пусть это $[a_1;b_1]$) содержит бесконечно много элементов $\{x_n\}$.

Выберем на $[a_1;b_1]$ произвольный элемент $\{x_n\}$. Назовем его x_{n_1} . Далее делим $[a_1;b_1]$ на две равные части. Хотя бы одна из этих частей содержит бесконечно много элементов $\{x_n\}$. Обозначим ее $[a_2;b_2]$. Выберем $x_{n_2} \in [a_2;b_2]$. Будем продолжать выполнять указанные действия. Обозначим за x_{n_k} число, полученное на k-ом шаге, т.е. $x_{n_k} \in [a_k;b_k]$.

 $\{[a_k;b_k]\}$ — система стягивающихся отрезков. Тогда, существует единственное $c:\forall k\implies c\in [a_k;b_k].$

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = c \implies \exists \lim_{k \to \infty} x_{n_k} = c$$
 (по теореме о двух милиционерах)

1.4.2.18 Критерий Коши сходимости последовательности.

<u>Критерий Коши</u>: Для того, чтобы последовательность $\{x_n\}$ сходилась, необходимо и достаточно, чтобы она была фундаментальной.

Последовательность называется фундаментальной, если

$$\forall \varepsilon > 0 \; \exists N : \forall n, m \geqslant N : |x_n - x_m| < \varepsilon$$

Доказательство. Докажем необходимость и достаточность.

• Необходимость:

Пусть $\lim_{n\to\infty} x_n = a$ по определению:

$$\forall \varepsilon > 0: \exists N: \forall p \geqslant N \implies |x_p - a| < \varepsilon$$

Поскольку ε произвольное, можно взять вместо него $\frac{\varepsilon}{2}$

$$p = m \geqslant N \implies |x_m - a| < \frac{\varepsilon}{2}$$

$$p = n \geqslant N \implies |x_n - a| < \frac{\varepsilon}{2}$$

$$|x_n - x_m| = |x_n - a + a - x_m| \leqslant |x_n - a| + |a - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

То есть $|x_n-x_m|<\varepsilon,$ а значит $\{x_n\}$ фундаментальная по определению. Необходимость доказана

• Достаточность:

Пусть $\{x_n\}$ — фундаментальная последовательность, докажем, что она имеет предел. Сначала покажем, что $\{x_n\}$ — ограничена. По определению фундаментальной последовательности

$$\forall \varepsilon > 0 \; \exists N : \forall n, m \geqslant N : |x_n - x_m| < \varepsilon$$

Так как ε произвольное, возьмём $\varepsilon = 1$.

$$|x_n| = |(x_n - x_N) + x_N| \leqslant \underbrace{|x_n - x_N|}_{\leqslant \varepsilon} + |x_N| \leqslant 1 + |x_N|$$

$$\forall n \geqslant N \implies |x_n| \leqslant (1 + |x_N|) = const = A \implies |x_n| \leqslant A$$

$$A = \max\{1 + |x_N|; |x_1|; |x_2|; \dots; |x_N|\}$$

$$\forall n \geqslant N \implies |x_n| \leqslant A$$

По теореме 1.4.2.17 Больцано-Вейерштрасса, так как $\{x_n\}$ — ограниченная, $\{x_n\}$ имеет сходящуюся подпоследовательность $\{x_{n_k}\}$.

Пусть $\lim_{k\to\infty} x_{n_k} = a$, покажем, что число a и будет пределом всей последовательности $\{x_n\}$.

Так как $\{x_n\}$ фундаментальная:

$$\forall \varepsilon > 0: \exists N_1: \forall p \geqslant N_1 \implies |x_p - a| < \frac{\varepsilon}{2}$$

Так как $\{x_{n_k}\}$ сходящаяся:

$$\lim_{k\to\infty} x_{n_k} = a: \ \forall \varepsilon>0 \ \exists N_2: \ \forall n_k\geqslant n_{N_2} \implies |x_{n_k}-a|<\frac{\varepsilon}{2}$$

$$\forall \varepsilon>0: \ |x_n-a|=|(x_n-x_{n_k})+(x_{n_k}-a)|\leqslant |x_n-x_{n_k}|+|x_{n_k}-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$
 Возьмём $N=\max\{N_1,N_2\}: \ \forall \varepsilon>0 \ \exists N: \ \forall n\geqslant N \implies |x_n-a|<\varepsilon$

Достаточность доказана.

1.4.2.19 Определение предела функции в точке по Коши и по Гейне.

- По Коши (или на языке $\varepsilon \delta$): A предел функции f(x) в точке a ($\lim_{x \to a} f(x) = A$), если $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x : \; 0 < |x a| < \delta \implies |f(x) A| < \varepsilon$
- По Гейне:

A называется пределом функции f(x) в точке a, если $\forall \{x_n\} \to a, x_n \neq a$ (т.е. $\lim_{n\to\infty} x_n = a$), соответствующая последовательность значений $f(x_n) \to A$ (т.е. $\lim_{n\to\infty} f(x_n) = A$)

1.4.2.20 Теорема об эквивалентности этих определений.

• Из определения по Коши следует определение по Гейне:

Выберем произвольную $\{x_n\} \to a, x_n \neq a$. По определению предела последовательности

$$\forall \delta > 0 \; \exists N : \; \forall n \geq N \implies |x_n - a| < \delta$$

Указанное неравенство выполняетс ядля любого $\delta>0$. Тогда какое бы $\varepsilon>0$ мы бы ни выбрали, можно найти $\delta>0$, такое, что по определению по Коши будет выполняться

$$\forall x: \ 0 < |x-a| < \delta \implies |f(x) - A| < \varepsilon$$

т.е. $\{f(x_n)\}\to A$, а значит из сходимости по Коши следует сходимость по Гейне.

• Из определения по Гейне следует определение по Коши: Пусть $\lim_{n\to\infty} f(x_n) = A$ По Гейне. От противного: если $\lim_{x\to a} f(x) = A$ по Гейне, то $\lim_{x\to a} f(x) \neq A$ по Коши. Напишем отрицание определения по Коши:

$$\exists \varepsilon_0 : \forall \delta > 0 : \exists x : 0 < |x - a| < \delta : |f(x) - A| \geqslant \varepsilon_0$$

Так как δ может быть любым, можно выбрать последовательность $\{\delta_n\} = \{\frac{1}{n}\}$, а соответствующие значения x будем обозначать как x_n . Тогда $0 < |x_n - a| < \delta_n = \frac{1}{n}$, и $|f(x_n) - A| \ge \varepsilon_0$. Отсюда следует, что последовательность $\{x_n\}$ является подходящей, но при этом число A не является пределом функции f(x) в точке a (по Гейне). Пришли к противоречию.

1.4.2.21 Односторонние пределы, их связь с двусторонними. Пределы функции в бесконечности.

Назовём число A левым (правым) пределом f по Коши, если:

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in (a - \delta; a)(x \in (a; a + \delta)) \implies |f(x) - a| < A$$

Назовём число A левым (правым) пределом f по Гейне, если:

$$\forall \{x_n\}: \ \forall n \in \mathbb{N}, x_n \neq a, x_n < a \ (x_n > a) \ \mathsf{u} \ \lim_{n \to \infty} x_n = a \implies \{f(x_n)\} \xrightarrow[n \to \infty]{} A$$

Обозначим односторонние пределы так: $\lim_{x\to a-0} f(x) = A = f(a-0)$ и $\lim_{x\to a+0} f(x) = A = f(a+0)$. Таким образом, когда мы можем «подойти» к предельному значению функции, двигаясь по x к точке a слева, говорят, что существует левый предел. Аналогично следует понимать и определение правого предела. Поэтому если мы можем подойти к a и слева, и справа, то существует предел в точке a. В кванторах это значит следующее:

$$\exists \lim_{x \to a} f(x) = A \iff \exists f(a-0) = f(a+0) = A$$
 ({..}\forall x: $a - \delta < x < a$ и $\forall x: a < x < a + \delta \iff \forall x: 0 < |x-a| < \delta$)

Предел функции на бесконечности:

$$\lim_{x \to \infty} f(x) = A \iff \forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in D(f) : \; |x| > \delta \implies |f(x) - A| < \varepsilon$$

- 1.4.2.22 Неопределенности. Теоремы о переходе к пределу в неравенствах, о вынужденном пределе. [Не пройдено]
- 1.4.2.23 Теорема о пределе сложной функции. [Не пройдено]
- 1.4.2.24 Первый и второй замечательные пределы. [Не пройдено]
- 1.4.2.25 Сравнение функций, о-символика, главная часть функции, порядок малости и порядок роста функции. [Не пройдено]
- 1.4.2.26 Критерий Коши существования конечного предела функции. [Не пройдено]
- 1.4.2.27 Определения непрерывности функции в точке, их эквивалентность. [Не пройдено]
- 1.4.2.28 Точки разрыва, их классификация. Непрерывность основных элементарных функций. [Не пройдено]
- 1.4.2.29 Арифметические свойства непрерывных функций. [Не пройдено]
- 1.4.2.30 Теорема о непрерывности сложной функции. [Не пройдено]
- 1.4.2.31 Теоремы о локальной ограниченности и локальном сохранении знака для функций, непрерывных в точке. [Не пройдено]
- 1.4.2.32 Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса, теорема Коши). Критерий существования и непрерывности обратной функции на промежутке. [Не пройдено]
- 1.4.2.33 Понятие равномерной непрерывности функции на множестве. [Не пройдено]
- 1.4.2.34 Теорема Кантора [Не пройдено]
- 1.4.2.35 Система стягивающихся отрезков [В списке вопросов к коллоквиуму отсутствует]

Множество отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$ называется системой стягивающихся отрезков, если выполнено:

- 1. Каждый последовательный отрезок вложен в предыдущий, т.е. $a_1\leqslant a_2\leqslant ...\leqslant a_n\leqslant b_n\leqslant b_{n-1}\leqslant ...\leqslant b_1$
- 2. $\lim_{n \to \infty} (b_n a_n) = 0$

Лемма. (Коши-Кантора) Для любой ССО существует, причем единственная, точка c, принадлежащая всем отрезками данной системы, m. e. $\exists ! c : \forall n \in \mathbb{N} \implies c \in [a_n, b_n]$ Доказательство. Существование. Используем аксиому полноты: если $a \leqslant b$, то $\exists c : a \leqslant c \leqslant b$.

$$\exists c: \forall n \in \mathbb{N} \implies c \in [a_n, b_n]$$

 $E\partial$ инственность. Предположим противное, пусть существуют две различные точки c, c', принадлежащие всем отрезкам последовательности $\{[a_n; b_n]\}_{n=1}^{\infty}$. Не теряя общности, предположим, что c > c'.

Тогда
$$\forall n \in \mathbb{N} \implies a_n \leqslant c' < c \leqslant b_n \implies 0 \leqslant c - c' \leqslant b_n - a_n$$
. Т.к. $\lim_{n \to \infty} (b_n - a_n) = 0 \implies 0 \leqslant c - c' \leqslant 0 \implies c - c' = 0 \implies c = c'$

Пришли к противоречию.