Exercise 1. Consider the following expressions: $\sqrt{4+9y^2}$ and $\frac{16}{\sqrt{4t^2-9}}$. What are the trigonometric substitutions required to simplify each of the expressions?

The first expression has a plus which indicates it's a tangent substitution. As it has constants different than 1, we must multiply or divide by their square roots. The 9 multiplying the y^2 indicates we should divide by $\sqrt{9}=3$, while the 4 away from the y^2 indicates we must multiply by 2. Thus the substitution is $y=\frac{2}{3}\tan(\theta)$. A similar reasoning gives us $t=\frac{3}{2}\sec(\theta)$ for the second expression.

Exercise 2. Find an anti-derivative of $\sin^3(t)\cos(t)$.

Even though it might seem like a trigonometric integral, it suffices to do the following u-substitution: $u = \sin(t)$ and $du = \cos(t)dt$. Then

$$\int \sin^3(t)\cos(t)dt = \int u^3 du = \frac{u^4}{4} + C = \frac{1}{4}\sin^4(t) + C.$$

Exercise 3. Manipulate the expression $\tan^6(r)\sec^4(r)$ in order to find an antiderivative of this function.

Separating a $\sec^2(r)$ for a possible substitution we have that

$$\tan^6(r)\sec^4(r) = \tan^6(r)\sec^2(r)\sec^2(r) = \tan^6(r)(\tan^2(r) + 1)\sec^2(r).$$

Now taking the integral of this expression and making the u-substitution $u = \tan(r)$ we obtain

$$\int \tan^6(r)(\tan^2(r)+1)\sec^2(r)dr = \int u^6(u^2+1)du = \frac{1}{9}u^9 + \frac{1}{7}u^7 + C = \frac{1}{9}(\tan(r))^9 + \frac{1}{7}(\tan(r))^7 + C$$

Exercise 4. Evaluate the integral $\int \frac{\mathrm{d}x}{\sqrt{(2x-1)^2-4}}$. Your answer must be a function depending on x. [It is helpful to know that an anti-derivative of $\sec(\theta)$ is $\log(\sec(\theta) + \tan(\theta))$.]

We first take a *u*-substitution, u=2x-1 and du=2dx. This converts our integral to

$$\frac{1}{2}\int \frac{\mathrm{d}u}{\sqrt{u^2-4}}$$

The negative sign indicates sine or secant substitution, but since the u^2 is positive, we choose secant. The 4 indicates we must multiply that secant by $\sqrt{4}=2$. So we take $u=2\sec(\theta)$ and $du=2\sec(\theta)\tan(\theta)$.

The integral becomes

$$\frac{1}{2} \int \frac{2 \mathrm{sec}(\theta) \mathrm{tan}(\theta)}{\sqrt{(2 \mathrm{sec}(\theta))^2 - 4}} \mathrm{d}\theta = \int \frac{\mathrm{sec}(\theta) \mathrm{tan}(\theta)}{\sqrt{4 (\mathrm{sec}^2(\theta) - 1)}} \mathrm{d}\theta = \frac{1}{2} \int \frac{\mathrm{sec}(\theta) \mathrm{tan}(\theta)}{\sqrt{\mathrm{tan}^2(\theta)}} \mathrm{d}\theta = \frac{1}{2} \int \mathrm{sec}(\theta) \mathrm{d}\theta$$

By the result in the statement we have that this integral is

$$\begin{split} \frac{1}{2} \log(\sec(\theta) + \tan(\theta)) &= \frac{1}{2} \log(\sec(\arccos(u/2)) + \tan(\arccos(u/2))) \\ &= \frac{1}{2} \log(\sec(\arccos((2x-1)/2)) + \tan(\arccos((2x-1)/2))) \end{split}$$

Also, knowing $\sec(\theta) = \frac{u}{2}$ means (in SOHCAHTOA) H = u, A = 2 and then $O = \sqrt{u^2 - 4}$. The result is then

$$\frac{1}{2}\log\left(\frac{u}{2} + \frac{\sqrt{u^2 - 4}}{2}\right) = \frac{1}{2}\log\left(\frac{2x - 1}{2} + \frac{\sqrt{(2x - 1)^2 - 4}}{2}\right).$$

Name: Solutions