Course Topics Up to the Midterm, ESE 524

March 7, 2019

• Probability Review:

- Basic axioms of probability
- Random variables
- Expected Values
- Conditional probability
- Bayes rule
- Transformation of Random Variables
- Gaussian univariate and multivariate pdfs

• Estimator Performance:

- Bias
- Variance
- Mean Squared Error

• Sufficient Statistics:

- What is a sufficient statistic?
- Factorization Theorem
- Exponential Family of Distributions, what assumptions must be satisfied for a distribution to be in the exponential family?

• Cramer Rao Bound:

- Fisher Information matrix several formulas to find this.
- CRB in scalar and vector cases.
- Cauchy Schwartz inequality.
- CRB and exponential family.
- Efficient estimator the variance reaches the CRB.

• Linear Models:

- General formulation. How can we write different things like signals or fourier transform as linear models?
- Least squares/minimum variance optimal solution.
- CRB for optimal solution.
- What to do for colored noise (non diagonal covariance matrix)
- BLUE
- Complete Sufficient Statistics

• Maximum Likelihood Estimation:

- General formulation.
- Asymptotic unbiasedness and efficiency.
- Properties of MLE Estimator
- How to maximize functions
 - * Sometimes it can be done by looking at the function (i.e. function is monotonic one way or the other)
 - * Set gradient to 0, check second derivative at critical points (this part is sometimes ommitted).
 - * Computing estimates gradient descent/newton raphson

• Bayesian Estimation:

- Bayes rule
- Posterior distribution likelihood * prior
- \propto operation get rid of constants that don't depend on θ , figure out the normalizing factor in the end.
- Types of prior:
 - * Conjugate prior posterior is same type of distribution as the prior.
 - * Proper prior integrates to 1
 - * Improper integrates to ∞
 - * Jeffrey's Prior improper prior that leads to proper posterior, based off of fisher information
 - * Informative Prior based off of actual information about the parameters.
 - * Non-informative prior chosen as uniform distribution or as a conjugate prior for mathematical convenience.
- Sequential Bayesian Inference posterior is the new prior, new data comes in.
- posterior predictive distribution
- Bayesian Sufficient Statistics