After Final Office Action of September 25, 2007

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A method of controlling a solid-state image pickup

apparatus, comprising:

a preparing step of preparing a solid-state image pickup apparatus configured to process

and output an image signal output from a solid-state image sensor that converts an optical image

representative of a field and focused on said solid-state image sensor by a lens to the image

signal, said solid-state image sensor including a plurality of composite pixels which are arranged

in a photosensitive array and each of which includes a main relatively high-photosensitive cell,

having a first area, and an auxiliary a relatively low-photosensitive cell of a same color as the

main relatively high-photosensitive cell, the auxiliary relatively low-photosensitive cell having a

second area smaller than the first area and a sensitivity lower than the main photosensitive cell,

different in sensitivity from each other and respectively formed by a main photosensitive portion

and an auxiliary photosensitive portion, a plurality of microlenses respectively positioned in said

plurality of composite pixels for focusing incident light, and only a single color component filter

segment positioned in each of said plurality of composite pixels, a plurality of color component

filter segments being provided in a preselected color component filter pattern;

a photometry step of executing photometry with the field;

a signal processing step of processing the image signal; and

a control step of switching signal processing of said signal processing step in accordance

with a result of photometry executed in said photometry step;

2

Docket No.: 0378-0404P

Amendment dated October 29, 2007

Application No. 10/754.498

After Final Office Action of September 25, 2007

wherein said control step includes estimating influence of shading on the image signals

from the main relatively high photosensitive cell and the auxiliary relatively low photosensitive

cell, and

wherein, in said signal processing step, color difference gain processing for the image

signal is switched in accordance with control of said control step to thereby lower a chroma of

the image signal.

2. (Original) The method in accordance with claim 1, wherein said control step

variably controls the signal processing for the image signal in accordance with a focal distance of

the lens.

3. (Original) The method in accordance with claim 2, wherein said control step

variably controls the signal processing for the image signal in accordance with a zoom position

of the lens.

4. (Previously Presented) The method in accordance with claim 1, wherein in

said signal processing step tone correction processing for the image signal is switched in

accordance with the control of said control step.

5. (Original) The method in accordance with claim 4, wherein in said signal

processing step a gamma table to use is switched in accordance with the control of said control

3

step.

Application No. 10/754,498 Docket No : 0378-0404P Amendment dated October 29, 2007

After Final Office Action of September 25, 2007

The method in accordance with claim 1, wherein 6. (Previously Presented)

said control step determines the shading on the basis of the result of photometry and switches the

processing of said signal processing step in accordance with a result of determination.

7 (Original) The method in accordance with claim 6, wherein said photometry

step executes divisional photometry with the field on the basis of the image signal output from

the image sensor, and wherein said control step determines shading on the basis of a result of

said divisional photometry.

8 (Currently Amended) A solid-state image pickup apparatus for processing and

outputting an image signal, comprising:

a solid-state image sensor that outputs the image signal and configured to convert an

optical image representative of an objective field and focused on said solid-state image sensor by

a lens to said image signal, said solid-state image sensor including a plurality of composite pixels

which are arranged in a photosensitive array and each of which includes a main relatively high

photosensitive cell, having a first area, and a auxiliary relatively low photosensitive cell of a

same color as the main relatively high-photosensitive cell, the auxiliary relatively low

photosensitive cell having a second area smaller than the first area and a sensitivity lower than

the main photosensitive cell, different in sensitivity from each other and respectively formed by a

main photosensitive portion and an auxiliary photosensitive portion, a plurality of microlenses

respectively positioned in said plurality of composite pixels for focusing incident light, and only 4

Application No. 10/754,498 Amendment dated October 29, 2007

After Final Office Action of September 25, 2007

a single color component filter segment positioned in each of said plurality of composite pixels, a

plurality of color component filter segments being provided in a preselected color component

filter pattern;

a signal processor configured to process the image signal; and

a controller configured to switch signal processing of said signal processor in accordance

with a result of photometry,

wherein said controller estimates influence of shading on image signals from the main

relatively high-photosensitive cell and the auxiliary relatively low-photosensitive cell, and

wherein said controller includes a photometry circuit configured to execute photometry

with the field, said signal processor switching, under control of said controller, color difference

gain processing for the image signal to thereby lower a chroma of said image signal.

The apparatus in accordance with claim 8, wherein said controller (Original) 9.

variably controls the signal processing for the image signal in accordance with a focal distance of

the lens.

(Original) The apparatus in accordance with claim 9, wherein said controller 10.

variably controls the signal processing for the image signal in accordance with a zoom position

of the lens.

5

Docket No.: 0378-0404P

Application No. 10/754,498 Amendment dated October 29, 2007

After Final Office Action of September 25, 2007

11. (Previously Presented) The apparatus in accordance with claim 8, wherein

said signal processor switches tone correction processing for the image signal under the control

of said controller.

12. (Original) The apparatus in accordance with claim 11, wherein said signal

processor switches a gamma table to use under the control of said controller.

13. (Previously Presented) The apparatus in accordance with claim 8, wherein

said controller determines the shading on the basis of the result of photometry and switches the

processing of said signal processor in accordance with a result of determination.

14. (Original) The apparatus in accordance with claim 13, wherein said

photometry circuit executes divisional photometry with the field on the basis of the image signal

output from the image sensor, said controller determining shading on the basis of a result of said

divisional photometry.

15. (Previously Presented) The method in accordance with claim 1, wherein

the main photosensitive cell has a region provided obliquely with regard to a horizontal

6

direction, and the auxiliary photosensitive cell is provided in a space defined by the region.

16. (Previously Presented)

The apparatus in accordance with claim 8, wherein the main photosensitive cell has a region provided obliquely with regard to a horizontal direction, and the auxiliary photosensitive cell is provided in a space defined by the region.