DATAWAREHOUSE ASSESSMENT2

1A)How many dimensions and Facts are present?

Number of dimensions:6

Number of facts:1 (SALES FACT)

1B) Please identify the cardinality between each table?

Cardinality

- Year Month -> One to Many
- Month Time -> One to Many
- Time Sales Facts -> One to Many
- Customer Sales Facts -> One to Many
- Store Sales Facts -> One to Many
- Products Sales Facts -> One to Many

1C) How to create a Sales_Aggr fact using the following structure (SQL Statement):

Create table sales_aggregate(select customer_key, storekey, product_key,y.yearkey from sales customer,store,product ,year y);

FOR ADDING DOLLARS

Alter table sales aggegrate add dollars double(40);

1D) Can you Please Modify the above snowflake schema to Star schema and draw the dimension model, showing all the cardinality?

- PRODUCT- SALES FACT -> ONE TO MANY
- STORE SALES_FACT -> ONE TO MANY
- CUSTOMER- SALES FACT -> ONE TO MANY
- DATE -SALES_FACT ->ONE TO MANY

- PRODUCT- SALES_FACT ->ONE TO MANY
- STORE SALES_FACT -> ONE TO MANY
- CUSTOMER- SALES_FACT -> ONE TO MANY
- DATE -SALES_FACT ->ONE TO MANY

5.Make a list of differences between DW and OLTP based on Size, Usage, Processing and Data Models.

	OLTP	DW	
size	Less in size in MB	More in size compared	
		to OLTP in TB	
usage	Designed for real time	Designed for analysis of	
	business operations.	business measures by	
		category and attributes.	
processing	It provides fast result for	It ensures that response	
	daily used data.	to the query is quicker	
		consistently.	
Data models	ER Modelling	Dimensional modelling	

4. For the above-mentioned dimension model, please identify the conformed and non conformed dimensions. Additionally, identify the measure types?

Conformed dimensions	Store,period,product
Non conformed	Customer, promotion
dimensions	
Additive measures	Quantity sold, Quantity_forecast
Semi additive measure	Extended_price,Extended_cost,Extended_price_fore cast,Extended_cost forecast
Non additive measure	None

2.For the following dimension Model can you please give an example of Circular Join and how to avoid it:

DATE TABLE

DATE	MONTH	MONTHNO
D1	M1	1
D2	M2	2
D3	M3	3

SALES

ORDERDATE	SHIPPINGDATE SALESAMOUNT	
01	S1	55555
O2	S2	99999
O3	S3	777777

◆ In circular join,if we order a product ,it can be ordered on the same day , shipped and delivered also sometimes on the same day. So,their might be a

ambiquity in the column and insertion or updating becomes difficult sometimes.

◆ Circular Joins can be avoided by making use of Aliases for the repetitive dimension table.

REMOVAL OF CIRCULAR JOIN BY ALIASING BY EXECUTING QUERY

Select sal.shipping date, sal.order date, sal.sales amt from

Date_table as order_date ,date_table as shipping_date from sales s,date d where S. orderdate=order.orderdate;

Explanation: Here in the date_table the date column is referring to both orderdate and shippingdate of the sales table.

- ◆ So, this might lead to a confusion that which date refers to what.
- ◆ So, we divide the date column of the date_table into Order date and Shipping date seperately by aliasing.

BEFORE

DATE_TABLE

DATE	MONTH	MONTHNO
D1	M1	1
D2	M2	2
D3	M3	3

AFTER

DATE_TABLE

ORDERDATE	SHIPPINGDATE	MONTH	MONTHNO
O1	S1	M1	1
O2	S2	M2	2
O3	S3	M3	3

3. For the given Dimension Model, can you please generate a sql to get the total divergence between Quantity sold and Quantity Forecast for the current month for all the stores:

- ◆ Divergence is difference between a table
- ◆ Example the difference between prediction and exact value

Select sum(quantity_sold) -sum(quantity_forecast) as d

From daily_forecast,daily_sales,period where

Month(period.month)-month(current_date)

Group by perkey;