

Mohammad Taha Majlesi

810101504

First Part:

دانشکده فنی دانشگاه تهران

دانشکده مهندسی برق و کامپیوتر

پروژه اول درس ریاضیات مهندسی

طراحان محمدامین کشمیری سروش مسفروش

مقدمه

هدف از این تمرین آشنایی مفدمتی دانشجویان با محیط متلب و آنالیز فوریه می باشد. این تمرین در سه بخش طراحی شده است.

• آشنایی با متلب

بخش اول غالبا شامل مفاهیم اولیه کار در محیط متلب شامل کار با ماتریس ها و رسم چند نمودار ساده می باشد.

• سرى فوريه

در این قسمت شما باید تابعی بنویسید که سری فوریه تابع دلخواه را محاسبه نماید و در ادامه به رسم سری فوریه و خود تابع و مقایسه آنها میپردازید، همچنین در انتها از شما خواسته میشود که سری فوریه یک تابع خاص را محاسبه کرده و نتیجه را با حل دستی تطابق دهید.

• تبديل فوريه

در این قسمت برای درک بهتر تبدیل فوریه، به صورت گام به گام، با رسم یک تابع در حوزه زمان و سپس انتقال آن به حوزه فرکانس را به کمک تبدیل فوریه بررسی میکنید، و رسم آن میپردازید.

در ادامه برای بررسی کاربردی تبدیل فوریه و درک بهتر مفهوم فرکانس نمونهبرداری یک فایل صوتی در اختیار شما قرار گرفته است و انجام یک سری عملیات از شما مطالبه میگردد.

۱ آشنایی با MATLAB

ابتدا برای این که در طی پروژه کمتر درگیر Syntax Error شوید، مراحل رسم دو تابع در MATLAB بررسی میشود.

مثال اول

```
در این بخش رسم تابع، x(t)=e^{-20|t|} بررسی میشود.
```

```
%Sample plotting
fs=100;
t=-30:1/fs:30;
x = exp(-20.*abs(t));
plot(t,x);
xlabel('Horizontal axis')
ylabel('Vertical axis')
xlim([-2 2])
ylim([0 1])
title('Title')
grid on
```

شكل ١: كد مثال اول


```
fs = 100;
t = -30:1/fs:30;
x = exp(-20.*abs(t));
plot(t, x);
xlabel('Horizontal axis');
ylabel('Vertical axis');
xlim([-2, 2]);
ylim([0, 1]);
title('Example 1');
grid on;
```


Part 1:

۱۰۱ رسمنمودار

با توجه به توضیحات ارائه شده، نمودار توابع زیر را رسم کنید.

- $\cot\left(\frac{\pi t}{4}\right)\sin\left(\frac{\pi t}{8}\right)$
 - $sgn\left(rac{1}{t^2}
 ight)$ •

•

$$\begin{cases} -1, & t < -3 \\ 3ramp(t), & -3 < t < 3 \\ e^{-2.5t}, & t > 3 \end{cases}$$

we have 3 plts:

first:

```
x = linspace(0, 32,1000)
plot(x, sin(pi*x/4).*cos(pi*x/8))
grid on
xlim([0,32])
```


socond:

```
x = linspace(-10, 10,100)
plot(x, sign(x))
grid on
xlim([-10,10])
ylim([-2,2])
```


thered:

```
syms x;

y = piecewise(x<-3,-1,-3<x<0,0,0<x<3,3*x,x>3,exp(-2.5*x));

fplot(x,y);

grid on
```


Part 2:

۲ سری فوریه

در این قسمت به بررسی سری فوریه با MATLAB میپردازیم.

۱.۲ محاسبه سری فوریه

تابعی بنویسید که سری فوریه تابعی به فرم $f(x)=x^{lpha}$ را محاسبه نماید، ورودی های تابع به صورت زیر خواهد بود.

Num •

تعداد جملات سرى فوريه.

Р •

تناوبهای مدنظر برای نمایش تابع.

 α •

توان چندجملهاي.

Nshow •

تعداد جملات سرى فوريه جهت نمايش هنگام خروجي گرفتن.

that function for fourier transform :

```
function [A0, An, Bn] = compute_fourier_series(f, T, num_terms)
    syms x;
    f_sym = f(x);
    A0 = (2/T) * int(f_sym, x, -T/2, T/2);
    A0 = double(A0);
    An = zeros(1, num_terms);
    Bn = zeros(1, num_terms);
    for k = 1:num_terms
        An(k) = (2/T) * int(f_sym * cos(k*x), x, -T/2, T/2);
        An(k) = double(An(k));
        Bn(k) = (2/T) * int(f_sym * sin(k*x), x, -T/2, T/2);
        Bn(k) = double(Bn(k));
    end
end
```

Example of this:


```
f = @(x) x;
T = 2 * pi;
num_terms = 10;
[A0, An, Bn] = compute_fourier_series(f, T, num_terms);
f_fourier = @(x) A0/2;
for k = 1:num_terms
    f_{\text{fourier}} = @(x) f_{\text{fourier}}(x) + An(k) * cos(k * x) + Bn(k) * sin(k * x);
end
x_values = linspace(-pi, pi, 1000);
f_values = arrayfun(f, x_values);
f_fourier_values = arrayfun(f_fourier, x_values);
figure;
plot(x_values, f_values, 'b', 'LineWidth', 2);
plot(x_values, f_fourier_values, 'r--', 'LineWidth', 2);
legend('Original Function', 'Fourier Series Approximation');
xlabel('x');
ylabel('f(x)');
title('Comparison of Original Function and Fourier Series Approximation');
```

```
grid on;
hold off;
```

Part 2_2


```
function plot_fourier_series()
   alpha = 1;
   beta = 2;
   T = 2 * pi;
   num_terms = 10;
   Nshow = 5;
   f = @(x) x.^beta .* log(alpha .* x);
   [A0, An, Bn] = compute_fourier_series(f, T, num_terms);
   fprintf('A0 = %.4f\n', A0);
   fprintf('An coefficients:\n');
   disp(An(1:Nshow));
   fprintf('Bn coefficients:\n');
   disp(Bn(1:Nshow));
   syms x;
    fourier_series = A0 / 2;
   for k = 1:num_terms
       fourier_series = fourier_series + An(k) * cos(2 * pi * k * x / T) + Bn(k) * sin(2 * pi * k * x / T)
   f_series = matlabFunction(fourier_series);
   x_vals = linspace(-pi, pi, 1000);
   y_vals_original = f(x_vals);
   y_vals_series = f_series(x_vals);
   figure;
```

```
plot(x_vals, y_vals_original, 'r', 'LineWidth', 1.5);
    hold on;
    plot(x_vals, y_vals_series, 'b--', 'LineWidth', 1.5);
    xlabel('x');
    ylabel('f(x)');
    title('Original Function and Fourier Series Approximation');
    legend('Original Function', 'Fourier Series Approximation');
    grid on;
    hold off;
end
function [A0, An, Bn] = compute_fourier_series(f, T, num_terms)
    syms x;
    f_sym = f(x);
    A0 = (2/T) * int(f_sym, x, -T/2, T/2);
    A0 = double(A0);
   An = zeros(1, num_terms);
    Bn = zeros(1, num_terms);
    for k = 1:num\_terms
        An(k) = (2/T) * int(f_sym * cos(2 * pi * k * x / T), x, -T/2, T/2);
        An(k) = double(An(k));
        Bn(k) = (2/T) * int(f_sym * sin(2 * pi * k * x / T), x, -T/2, T/2);
        Bn(k) = double(Bn(k));
    end
end
plot_fourier_series();
```

part 3_3

```
function plot_fourier_series_comparison()
   T = 2 * pi;
   f = @(x) x.^2;
   num_terms_list = [10, 50, 100];
   colors = ['r', 'g', 'b'];
   x_vals = linspace(-pi, pi, 1000);
   y_vals_original = f(x_vals);
   for i = 1:length(num_terms_list)
       num_terms = num_terms_list(i);
       [A0, An, Bn] = compute_fourier_series(f, T, num_terms);
        syms x;
        fourier_series = A0 / 2;
        for k = 1:num_terms
            fourier_series = fourier_series + An(k) * cos(2 * pi * k * x / T) + Bn(k) * sin(2 * pi * k)
       end
       f_series = matlabFunction(fourier_series);
       y_vals_series = f_series(x_vals);
       figure;
        plot(x_vals, y_vals_original, 'k', 'LineWidth', 1.5);
        hold on;
        plot(x_vals, y_vals_series, '--', 'LineWidth', 1.5, 'Color', colors(i));
        xlabel('x');
        ylabel('f(x)');
        title(['Fourier Series Approximation with ', num2str(num_terms), ' Terms']);
       legend('Original Function', ['Fourier Series (', num2str(num_terms), ' terms)']);
        grid on;
        hold off;
   end
end
```

```
function [A0, An, Bn] = compute_fourier_series(f, T, num_terms)
    syms x;
    f_sym = f(x);
    A0 = (2/T) * int(f_sym, x, -T/2, T/2);
    A0 = double(A0);
    An = zeros(1, num_terms);
    Bn = zeros(1, num_terms);
    for k = 1:num_terms
        An(k) = (2/T) * int(f_sym * cos(2 * pi * k * x / T), x, -T/2, T/2);
        An(k) = double(An(k));
        Bn(k) = (2/T) * int(f_sym * sin(2 * pi * k * x / T), x, -T/2, T/2);
        Bn(k) = double(Bn(k));
    end
end
```


part 4_2:

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^{2} dx = \frac{1}{6\pi} \times 2\pi^{3} = \frac{\pi^{2}}{3}$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos(nx) dx = \frac{(n^{2}x^{2} - 2)\sin(nx) + 2nx\cos(nx)}{\pi n^{3}} \Big|_{-\pi}^{\pi} = \frac{2\left(\sqrt{(\pi^{2}n^{2} - 2)\sin(\pi n)} + 2\pi n\cos(\pi n)\right)}{\pi n^{3}}$$

$$= \frac{4}{n^{2}} \frac{(-1)^{n}}{n^{2}}$$

$$b_{n} = 0 \text{ (even)}$$

$$\Rightarrow f(x) = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos(nx)$$

$$x = \pi \Rightarrow \frac{1}{2} (\pi^{2} + (-\pi)^{2}) = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos(n\pi) = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} (-1)^{n} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{1}{4} \times \left(\pi^{2} - \frac{\pi^{2}}{3}\right) = \frac{\pi^{2}}{6} \approx 1.644$$

```
function plot_fourier_series_comparison()
   T = 2 * pi;
   f = @(x) x.^2;
   num_terms = 100;
   x_val = pi;
   [A0, An, Bn] = compute_fourier_series(f, T, num_terms);
   syms x;
   fourier_series = A0 / 2;
    for k = 1:num_terms
        fourier_series = fourier_series + An(k) * cos(2 * pi * k * x / T) + Bn(k) * sin(2 * pi * k * x / T)
   f_series = matlabFunction(fourier_series);
   y_val_series = f_series(x_val);
   y_val_series = y_val_series/6
   manual\_series = (pi^2 / 3 + 4 * sum(((-1).^(1:num\_terms)) ./ (1:num\_terms).^2 .* cos((1:num\_terms))
    fprintf('Computed Fourier Series Value at x = %f: %f\n', x_val, y_val_series);
    fprintf('Manual Fourier Series Value at x = \%f: \%f \setminus n', x_val, manual_series);
end
function [A0, An, Bn] = compute_fourier_series(f, T, num_terms)
   syms x;
   f_sym = f(x);
   A0 = (2/T) * int(f_sym, x, -T/2, T/2);
```

Computed Fourier Series Value at x = 3.141593: 1.638301 Manual Fourier Series Value at x = 3.141593: 1.638301

fe >> v val cariacy val cariac

۵.۲ آنالیز هارمونیک در سری فوریه

آنالیز هارمونیک شاخهای از ریاضیات است که مرتبط با نمایش توابع به صورت برآیندی از امواج پایه بوده و به مطالعه و نمایش مفاهیم سری فوریه و تبدیل فوریه میپردازد. اخیرا، این شاخه کاربردهای گستردهای در نظریه اعداد، پردازش سیگنال، مکانیک کوانتومی، و علوم اعصاب دارد.

به روند یافتن ضرایب سری فوریه برای تابع با کمک مقادیر عددی آنالیز هارمونیک گفته میشود، روابط پایه مورد نیاز در این قسمت به شرح زیر است.

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos(nx) + B_n \sin(nx)),$$

$$A_0 = \frac{2\sum f(x)}{n}, \quad A_n = \frac{2\sum f(x)\cos(nx)}{n}, \quad B_n = \frac{2\sum f(x)\sin(nx)}{n}$$

لازم به ذکر است که در بسط سری فوریه، $(A_1\cos(x)+B_1\sin(x))$ را هارمونیک اول، $(A_1\cos(x)+B_n\sin(nx)+B_n\sin(nx))$ را هارمونیک دوم و $(A_n\cos(xx)+B_n\sin(xx))$ را هارمونیک n ام مینامیم.

Part 5_2:

۱.۵.۲ شبیهسازی آنالیز هارمونیک

n در این قسمت، شما باید تابعی بنویسید که با گرفتن نقاط x و مقدار تابع f(x) در آن نقطه، g(x) در ابا روش بیان شده،محاسبه کرده، نمایش داده و رسم کند.

یاضیات مهندسی

در نهایت قطعه کد خود را برای ورودی نمونه زیر و تا ۴ هارمونیک آزمایش کنید.

\boldsymbol{x}	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
f(x)	1	1.4	1.9	1.7	1.5	1.2	1

خروجي كد شما براي جدول ارائه شده به صورت زير خواهد بود:

```
f(x) = 1.3857 - 0.2\cos(x) + 1.0392\sin(x) + 0.7\cos(2x) - 0.1732\sin(2x) + 0.7333\cos(3x) + \dots
```

```
function harmonic_analysis(x, f_values, num_harmonics)
   T = 2 * pi;
   n = length(x);
   A0 = (2 / n) * sum(f_values);
   An = zeros(1, num_harmonics);
   Bn = zeros(1, num_harmonics);
   for k = 1:num_harmonics
       cos_kx = cos(k * x);
       sin_kx = sin(k * x);
       An(k) = (2 / n) * sum(f_values .* cos_kx);
        Bn(k) = (2 / n) * sum(f_values .* sin_kx);
   end
   syms x_sym;
   fourier_series = A0 / 2;
    for k = 1:num_harmonics
        fourier_series = fourier_series + An(k) * cos(k * x_sym) + Bn(k) * sin(k * x_sym);
   end
   disp(['f(x) = ' num2str(A0 / 2)]);
   for k = 1:num_harmonics
       if An(k) \sim = 0
           disp([' + ' num2str(An(k)) ' cos(' num2str(k) 'x)']);
        end
        if Bn(k) \sim = 0
            \label{eq:disp([' + ' num2str(Bn(k)) ' sin(' num2str(k) 'x)']);}
```

```
end
   end
   f_series = matlabFunction(fourier_series);
   x_{vals} = linspace(min(x), max(x), 1000);
   y_vals_series = f_series(x_vals);
   figure;
   plot(x, f_values, 'ro', 'MarkerSize', 8, 'LineWidth', 1.5);
   plot(x_vals, y_vals_series, 'b', 'LineWidth', 1.5);
   xlabel('x');
   ylabel('f(x)');
   title(['Fourier Series Approximation with ', num2str(num_harmonics), ' Harmonics']);
   legend('Data Points', 'Fourier Series Approximation');
   hold off;
end
x_sample = [0, pi/3, 2*pi/3, pi, 4*pi/3, 5*pi/3, 2*pi];
f_values_sample = [1, 1.4, 1.9, 1.7, 1.5, 1.2, 1];
harmonic_analysis(x_sample, f_values_sample, 4);
```

```
f(x) = 1.3857
+ -0.02857 1 cos(1x)
+ 0.14846 sin(1x)
+ 0.2 cos(2x)
+ -0.049487 sin(2x)
+ 0.31429 cos(3x)
+ -1.1547e-16 sin(3x)
```


in this part we work with audio files:

٣ تبديل فوريه

در این قسمت به بررسی حوزه فرکانس چند تابع میپردازیم و سپس مفاهیم و کاربردهای تبدیل فوریه را در کار با Audio بررسی میکنیم.

۱.۳ فرکانس نمونه برداری

تصویر زیر را در نظر بگیرید.

تابع پیوسته زمان S(t) را در نظر بگیرید، از این تابع در بازههای زمانی Δt ثانیه نمونه برداری می شود و تابع گسسته زمان S_i به دست می آید. فاصله زمانی بین هر دو نمونه را نرخ نمونه برداری می نامیم و فرکانس نمونه برداری به صورت زیر تعریف می گردد.

$$Sampling \ Freq = \frac{1}{Sampling \ Rate}$$

یاضیات مهندسی

۲.۳ بررسی حوزه زمان و فرکانس چند تابع

تابع $\cos(\pi t)$ را در نظر بگیرید.

- ابتدا تابع $\cos(\pi t)$ را در حوزه زمان در 2 دوره تناوب رسم کنید.
- تذکر: در این بخش برای ترسیم توابع فرکانس نمونه برداری را $f_s=1000$ در نظر بگیرید.
 - تبدیل فوریه این تابع را با کمک دستور fft و fftshift حساب کنید.
- تذکر: در help متلب در مورد دستور های fft و fftshift مطالعه کنید و لزوم استفاده از fftshift برای گرفتن خروجی دقیق را تحقیق نمایید.
- تبدیل فوریه این تابع را به صورت تئوری محاسبه کنید و نتیجه این بخش را با خروجی MATLAB
 - حال تمامی مراحل بالا را برای دو تابع $f(x)=\delta(x)$ و $f(x)=\delta(x)$ تکرار کنید.

Part 2_3:


```
fs = 1000;
T = 2;
t = 0:1/fs:2*T;
f_{cos} = cos(pi * t);
figure;
plot(t, f_cos);
xlabel('Time (s)');
ylabel('cos(\pi t)');
title('Time Domain of cos(\pi t)');
grid on;
N = length(f_cos);
f_cos_fft = fft(f_cos);
f_cos_fft_shifted = fftshift(f_cos_fft);
f = (-N/2:N/2-1)*(fs/N);
plot(f, abs(f_cos_fft_shifted)/N);
xlabel('Frequency (Hz)');
ylabel('Magnitude');
title('Frequency Domain of cos(\pi t) using FFT');
grid on;
```



```
f_const = ones(size(t));

figure;
plot(t, f_const);
xlabel('Time (s)');
ylabel('f(x) = 1');
title('Time Domain of f(x) = 1');
grid on;

f_const_fft = fft(f_const);
f_const_fft_shifted = fftshift(f_const_fft);

figure;
plot(f, abs(f_const_fft_shifted)/N);
xlabel('Frequency (Hz)');
ylabel('Magnitude');
title('Frequency Domain of f(x) = 1 using FFT');
grid on;
```

for delta we have this:


```
f_delta = zeros(size(t));
f_{delta}(t == 0) = 1;
figure;
stem(t, f_delta, 'filled');
xlabel('Time (s)');
ylabel('f(x) = \delta(x)');
title('Time Domain of f(x) = (x)');
grid on;
f_delta_fft = fft(f_delta);
f_delta_fft_shifted = fftshift(f_delta_fft);
figure;
plot(f, abs(f_delta_fft_shifted)/N);
xlabel('Frequency (Hz)');
ylabel('Magnitude');
title('Frequency Domain of f(x) = \beta(x) using FFT');
grid on;
```

ياضيات مهندسي

۳.۲ موسیقی

در این قسمت به کار با یک فایل موسیقی میپردازیم.

- فایل audio داده شده را با کمک دستور audioread در متلب باز کنید.
 - با کمک دستور sound به صدای آن گوش کنید.
- فرکانس نمونه برداری این فایل صوتی را گزارش کرده و در مورد علت آن تحقیق کنید.
 - راهنمایی: در مورد قضیه نمونه برداری نایکوییست مطالعه کنید.
- حال فرکانس نمونه برداری را دو برابر حالت اولیه کرده و نتیجه را با کمک دستور audiowrite
 - با كمك دستور sound به صداى فايل صوتى جديد گوش كنيد.
- حال فرکانس نمونه برداری را نصف حالت اولیه کرده و نتیجه را با کمک دستور audiowrite گزارش کنید.
 - با کمک دستور sound به صدای فایل صوتی جدید گوش کنید.
 - نتیجه گیری خود را از تغییردادن فرکانس نمونه برداری گزارش کنید.

```
[audio_data, fs] = audioread('ABITW.mp3');

new_fs_double = 2 * fs;

new_fs_half = fs / 2;
audiowrite('audio_double_fs.wav', audio_data, new_fs_double);

audiowrite('audio_half_fs.wav', audio_data, new_fs_half);

[audio_data_half, fs_half] = audioread('audio_half_fs.wav');
sound(audio_data_half, fs_half);
```

audio_double_fs.wav audio_half_fs.wav