Инструкция по использованию менеджера расчётов "СИМАН"

Аксенов Дмитрий

Оглавление

1.	Введение	2
2.	Создание нового проекта для расчётов в VASP	3
3.	Добавление нового расчёта	4
4.	Возможности системы 4.1. DFT+U расчеты	6
5 .	Описание основных классов и структур	7
6.	Список изменений в программе СИМАН2	8

Введение

Предлагаемый менеджер является оболочкой между пользователем и различными программами, предназначенными для выполнения компьютерного моделирования и теоретических расчётов. Использование менеджера позволяет существенно упростить запуск большого числа расчётов и их последующий анализ. Встроенные функции автоматически ведут протоколирование запущенных задач и сохраняют в базе данных основные результаты расчёта. За счёт представления результатов расчётов в стандартизированном виде, их последующий анализ существенно упрощается. В частности, достаточно дописать простые функции, которые будут строить рисунки и таблицы для вашей статьи на основе полученных результатов. В файле history сохраняются действия пользователя и их время. В файле осраняются все результаты расчётов и исходные структуры в компактном виде. Есть возможность быстрого продолжения расчетов.

Создание нового проекта для расчётов в VASP

Для создания нового проекта нужно создать папку с именем проекта и поместить туда файлы $\overline{\text{start.py}}$ (можно переименовать в название проекта, например $\overline{\text{VTi.py}}$), $\overline{\text{header.py}}$ и $\overline{\text{sets.py}}$.

Также необходимо скопировать папку с потенциалами (по умолчанию роtрам и создать папку /geo. В файле header.py необходимо указать основные пути и имя кластера.

Добавление нового расчёта

Придумать имя для группы, к которой будет относиться расчет. Например http по типу кристаллических структур, для которых будут проводиться расчеты. Придумать имя для расчёта. Как правило, это имя структуры плюс дополнительные обозначения, которые могут уточнять тип расчета. Например hs222 (расшифровка сокращения: hcp cell; sizes: 222) В файле header.py в конце функции update_des() прописать параметры расчета в виде:

```
struct_des['hs221'] = des("hcp", "hex cell: 8 atoms; ");
```

Первый параметр hcp - это имя группы расчётов. Второй параметр - произвольное описание расчёта, чтобы было понятно, что из себя представляет
структура и расчет. Подготовить входной файл с начальной кристаллической
структурой для данного расчета в формате Abinit ?описать формат?. Файл
должен иметь расширение geo; внутри файла должна быть строка version 1.
Номер версии может быть произвольным; его нужно также указать в имени
файла. Например файл будет называться hs221.1.geo. Файл необходимо поместить в папку geo/hcp/hs221/. Теперь для данного расчёта нужно подготовить
набор параметров (set), которые будет использовать VASP. Для этого необходимо открыть файл sets.ру и изменить необходимые параметры в имеющемся
по умолчанию наборе под именем 8. Далее, если необходимы другие наборы
параметров, их можно получить из существующих, используя команду

```
s = inherit_iset('8new', '8', varset);
```

По традиции в начале названия набора параметров необходимо указать цифру. 8 - полный расчет энергии без релаксации; 9 - оптимизация положений атомов; 2 - полная релаксация геометрии, объема и положений атомов. В файле VTi.py в третьем разделе добавить строку

```
add_loop('hs222', '8', 1, up = 'up1')
```

и запустить скрипт. Менеджер автоматически создаст все файлы и скопирует их на кластер. Расчет станет доступным внутри скрипта как calc[('hs222','8', 1)]. Объект calc[('hs222','8', 1)].init содержит информацию об исходной атомной структуре. Перейти на кластер и запустить расчёты, набрав в консоли ./run. Когда расчёт будет закончен переименовать имеющуюся команду add_loop в res_loop и запустить скрипт. Менеджер скопирует файл OUTCAR с кластера на рабочий компьютер и проанализирует его. На экране появятся основные данные в следующем порядке:

```
| Имя файла | Полн. энергия | а | с | Размеры ячейки | Объем ячейки | Плотн. к точек | Тензор напр. (MPa) | Давление | N атомов | Время расч. ч() | N шаг. рел., среднее N электрон. шаг на 1 шаг рел., кол. электрон. шагов | Кол. предупреждений | total drift | Кол. операций симметрий |
```

Полученную строку легко использовать для создания \LaTeX 2_{ε} таблиц рабочего дневника. Объект calc[('hs222', '8', 1)]. end содержит информацию о структуре после релаксации

Возможности системы

4.1. DFT+U расчеты

Для выполнения DFT+U расчёта создаем специальный сет параметров 8U на основе 8:

```
s = inherit_iset('8U', '8', varset, override = 1) #
s.set_vaspp('ISTART', 1) #use from previous step
s.set_vaspp('ICHARG', 1) #
s.set_vaspp('LDAU', '.TRUE.')
s.set_vaspp('LDAUTYPE', 2) #Dudarev
s.set_vaspp('LDAUPRINT', 1) #
s.set_vaspp('LASPH', '.TRUE.') #
s.set_vaspp('LDAUL', {'Ti':2} } ) # 2=d-orbitals if one number is provided than it is used for all species
s.set_vaspp('LDAUU', {'Ti':4.2} ) #if one number is provided than it is used for all species
s.set_vaspp('LDAUU', {'Ti':4.2} ) #if one number is provided than it is used for all species
```

Обратите внимание, что параметры которые в INCAR должны указываться в виде списка для каждого сорта атомов, задаются с помощью функции s.set_vaspp() в виде словаря для каждого атомного элемента: LDAUL, LDAUU, LDAUU, B случае, когда элемент не указан, для них будут использованы нулевые значения (-1 для LDAUL).

В менеджере "Симан"реализован метод U ramping [Meredig2010]. Чтобы им воспользоваться необходимо запустить расчёт в виде:

```
add_loop('Li4Ti8O16.r', '8U', 1, 'up1', calc_method = 'u_ramping', u_ramping_region = (0, 4, 0.2), savefile = 'o')
```

Параметр u_ramping_region задаёт диапазон изменения параметра U от 0 до 3.8 эВ с шагом 0.2 эВ. Изменение производится только для элементов, у которых ненулевые значения. После окончания расчета на сервере остается файлы 1.U2_2.OUTCAR для каждого U, а также для последнего расчёта сохраняется 1.U3_8.DOSCAR и 1.U3_8.CHGCAR. Также создается файл ENERGIES, который содержит полные энергии для каждого U. Как обычно, для считывания результатов достаточно выполнить команду

```
res_loop('Li4Ti8O16.r', '8U', 1, 'up1', calc_method = 'u_ramping')
```

При этом будет считан файл 1.U3_8.OUTCAR для последнего U, а значения U и соответствующие им энергии сохраняться в полях self.u_ramping_u_values и self.u_ramping_energies.

Описание основных классов и структур

В программе использует два класса (смотри что такое класс в описании языков объектно-ориентированного программирования): class Calculation() - основной класс. С его помощью создаются экземпляры (объекты), которые содержат в себе всю информацию об одном расчёте. Для примера предположим, что мы создали объект hcpTi = Calculation(). Это можно сделать вручную, но в программе такие объекты создаётся в процессе работы функции add_loop() и автоматически вносятся в словарь calc. Коротко опишем, что делает эта функция: После создания объекта, необходимо считать входную геометрию. Для этого используется метод read_geometry(). В результате данный объект содержит всю основную исходную информацию о расчёте. Вот список доступных полей:

class Set() - специальный класс, который используется для описания наборов контролирующих расчёт параметров.

Список изменений в программе СИМАН2

Для изменения параметров сета можно и нужно использовать только эти методы и атрибуты:

```
s.set_potential()
s.set_relaxation_type()
s.set_add_nbands(float)
```

- устанавливает внутренний атрибут add_nbands, указывающий что минимально необходимое число зон будет увеличено в add_nbands раз. Рекомендуемое значение - 1.25. Но для маленьких ячеек может потребоваться 2-4.

s.kpoints_file - 1 или 0 - определяет будет ли создан файл с к-точками s.set_vaspp("VASP_KEY", "VALUE") - для избежания путаницы с Abinit теперь для всех остальных параметров, кроме типа релаксации используется последний метод. Параметры сохраняются во внутреннем словаре s.vasp_params.

В случае если параметр **KSPACING** не удовлетворяет вашим потребностям, можно явно задать необходимый набор k-точек. s.set_ngkpt((int, int, int)) - внутренний аттрибут s.ngkpt с более высоким приоритетом чем s.vasp_params["К !!! Настоятельно рекомендуется использовать предложенные методы и не работать напрямую с атрибутами.