Date: Page: Rules to find Particular Integral (P.I.) Ŭ) $\frac{1 \cdot e^{ax}}{f(0)} = \frac{1 \cdot e^{ax}}{f(a)}$ If f(a) = 0, then $1 \cdot e^{ax} = x \cdot e^{ax}$.

If f(a) = 0, then $1 \cdot e^{ax} = x^2 \cdot e^{ax}$.

If f(a) = 0, then $1 \cdot e^{ax} = x^2 \cdot e^{ax}$. $1 \cdot x^n = [f(x)]^{-1} \cdot x^n$ f(x)Expand $(f(x))^{-1} \cdot x^n$ Expand $(f(x))^{-1} \cdot x^n$ in If $f(-a^2)=0$, $\int \sin ax = \pi \cdot \sin ax$ $f(-a^2)$ If $f(-a^2)=0$, $\int \cos ax = \pi \cdot \cos ax$ f(x)f(p) $e^{\alpha x}$ $\phi(x) = e^{\alpha x}$ f(x)W) $\frac{1 \cdot \phi(x) = e^{-\alpha x} \int e^{\alpha x} \phi(x) dx}{\rho + \alpha}$

TO find particular integral of (METHOD OF VARIATION) $\frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = X$ Here, CoFo = Ay, + Byz where A & B are constants. p. I. = y = uy; + vyz where u and v are fund of n Here, $W = \begin{vmatrix} y_1 \\ y_1' \end{vmatrix}$ - 42 X dx & JIX dx