实验参数设置

settings

- a real road network of Hennepin County, MN, USA
- an area of 8 × 8 km² that contains 6,109 road segments and 3,593 intersections
- java or c++

algorithms

Algorithm	Direction sharing	Waypoint selection	Parallel requesting
Baseline	$\sqrt{}$	Greedy by Euclidean distance	$\sqrt{}$
Proposed in Journal	V	Select-sort by sharing ability	V

Performance metrics

- the average number of external route requests submitted to the Web mapping serv ice per user query
- the average query response time per user query
 - the time from the time when the query is received by the LBS provider to the time when the a nswer is returned to the querying user.

default parameters:

- query/user distribution: Gaussian(σ =3) (bells: 10)
 - the number of queries in bells follow Zipf's law (2015_TKDE, 2001_SIGMOD)
- 100 queries per second
- 10 waypoints
- 200 parallel requests

parameter range (with respect to):

- Effect of different query distribution
 - Gaussian(σ =3) (bells: 1), Gaussian(σ =3) (bells: 5), Gaussian(σ =3) (bells: 10), Gaussian(σ =3) (bells: 20), uniform
 - Gaussian(σ =1) (bells: 10), Gaussian(σ =3) (bells: 10), Gaussian(σ =5) (bells: 10), Gaussian(σ =10) (bells: 10)
- Effect of the number of queries per second (Query Arrival Rates)
 - 10, 50, 100, 150, 200
- Effect of the number of waypoints
 - 2, 4, 8, 16, 20
- Effect of the number of parallel requests
 - 50, 100, 150, 200, 300
- Effect of different web mapping services