Devoir à la maison n° 7

À rendre le 18 novembre

I. Une équation différentielle non linéaire

On se propose de déterminer par analyse-synthèse toutes les solutions ne s'annulant pas sur leur domaine de définition de l'équation différentielle non linéaire

$$y' + \frac{x}{1+x^2}y = y^2. \tag{\spadesuit}$$

La détermination de ce domaine de définition n'est pas possible a priori. Il convient d'abord résoudre l'équation sur un intervalle I, puis après résolution préciser quel peut-être I, en le considérant le plus grand possible.

1) <u>Préliminaire</u>:

- a) Soit $y \in \mathbb{R}$. Montrer qu'il existe un unique $x \in \mathbb{R}$ tel que $y = \operatorname{sh} x$, et exprimer x en fonction de y. En déduire que la fonction sh est une bijection de \mathbb{R} dans \mathbb{R} , et donner une expression de sa fonction réciproque, qui est nommée argument sinus hyperbolique et notée Argsh.
- b) Justifier que Argsh est dérivable, et calculer Argsh'.
- 2) Analyse: Soit y une solution de (\clubsuit) définie sur un certain intervalle I et ne s'annulant pas sur cet intervalle. On note h la fonction $\frac{1}{y}$.
 - a) Montrer que h est solution de l'équation linéaire d'ordre 1

$$h' - \frac{x}{1+x^2} h = -1 \tag{\$}$$

- b) Résoudre l'équation homogène associée à (\$\.*).
- c) Donner une solution particulière de (\$\.*).
- d) En déduire une expression de h, puis de y.
- e) Pour une telle expression de cette fonction y, quel est le plus grand intervalle I que l'on puisse considérer? On trouvera deux formes différentes pour cet intervalle.
- 3) Synthèse : Conclure, en donnant l'ensemble des solutions de (•) ne s'annulant pas.

II. Un petit exercice ensembliste

Soit E un ensemble, soit A, B, C trois parties de E. Donner une condition nécessaire et suffisante pour que $A \cup B = B \cap C$.

— FIN —