Отчет по лабораторной работе 2.1.4

«Определение теплоемкости твердых тел»

Цель работы: 1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2) определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$.

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

Теоретические сведения:

В предлагаемой работе измерение теплоемкости твердых тел производится по обычной схеме. Исследуемое тело помещается в калориметр. Измеряется ΔQ — количество тепла, подведенного к телу, и ΔT — изменение температуры тела, произошедшее в результате подвода тепла. Теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T} = \frac{P \Delta t - \lambda (T - T_k) \Delta t}{\Delta T} = \frac{P - \lambda (T - T_k)}{\Delta T / \Delta t}$$

 $\frac{\Delta T}{\Delta t}$ = f(T) - строим график и проводим касательную при T = T_k

Тогда
$$C = \frac{P}{(\Delta T / \Delta t)_k}$$

Дополнительно
$$R_t$$
 = $R_0(1+lpha\,\Delta\,T)$; $\frac{dR}{dt}$ = $R_0lpha\,\frac{dT}{dt}$
$$C = \frac{PR_klpha}{(dR/dt)_k(1+lpha\,\Delta\,T_k)}$$

Экспериментальная установка.

Рисунок 1:Схема устройства калориметра

Рисунок 2: Схема включения нагревателя

Ход работы

1. Параметры установки:

класс точности моста Р4833: 0,1

Сопротивление калориметра при 20 C^0 , $R_{20C} = 18-18,5$ Ом

Масса железного цилиндра, $m_{\pi} = (815, 1\pm 0, 1)$ г

Масса алюминиевого цилиндра, $m_{a\pi} = (294,2\pm0,1)$ г

Сила тока: I=0,3A

Напряжение: U=36B

Мощность: W = 10,8 BT

 $\alpha = 4.28*10^{-3} \text{ K}^{-1}$

2. Измерим сопротивление термометра R_k при комнатной температуре t= 23,8 C^0

 $R_k = 18,074 \text{ Om}$

3. При неизменной мощности нагревателя измеряем зависимость сопротивления термометра от времени для пустого калориметра R_T =R(t), затем построим данную зависимость

No	R, Ом	ε _R , %	t, c	б, с
1	18,074		0	
2	18,124		42,89	
3	18,174		85,1	
4	18,224		130,45	
5	18,274		176,79	
6	18,324		225,29	
7	18,374	0,1	275,29	0,5
8	18,424	0,1	376,08	0,5
9	18,474		378,5	
10	18,524		433,68	
11	18,574		491,19	
12	18,624		548,57	
13	18,674		607,96	

14	18,724	667,1	
15	18,774	729,87	
16	18,824	794,72	

Разделим полученную зависимость на 14 отрезков и найдем на каждом из них dR/dt. Затем построим зависимость dR/dt(R). Экстраполируя к $R_T=R_k$, найдем (dR/dt) $_{R=Rk}$ и подставим полученное значение в $C=\frac{PR_k\alpha}{(dR/dt)_k(1+\alpha\,\Delta\,T_k)}$, тем самым получив значение C_0 (теплоемкость пустого калориметра)

$$k = \tau = \frac{\langle xy \rangle - \langle x \rangle * \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx -5,85 c$$

$$\sigma_k = \sqrt{\frac{1}{13}} \left(\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2 \right) \approx 1,61 c$$

$$b = \langle y \rangle - k * \langle x \rangle \approx 117,1c$$

$$\sigma_b = \sigma_k * \sqrt{\langle x^2 \rangle} \approx 29,7 c$$

k=(-5,85±1,61) c b=(117,1±29,7) c

Отсюда получаем

$$\begin{split} C_0 &= \frac{PR_k \, \alpha}{(dR/dt)_k (1 + \alpha \, \Delta \, T_k)} = \frac{10,\!8 \, Bm * 18,\!074 \, Om * 4,\!28 * 10^{-3} \, K^{-1}}{11,\!4 * 10^{-4} * (1 + 4,\!28 * 10^{-3} \, K^{-1} * 23,\!8 \, K)} \approx 665 \, \frac{\mathcal{J}\mathcal{M}}{K} \\ \sigma_C &= C * \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2} = 665 \, \frac{\mathcal{J}\mathcal{M}}{K} * \sqrt{(0,\!001)^2 + \left(\frac{0,\!5}{23,\!8}\right)^2 + (0,\!01)^2} \approx 16 \, \frac{\mathcal{J}\mathcal{M}}{K} \\ C_0 &= (665 \pm 16) \, \frac{\mathcal{J}\mathcal{M}}{K} \end{split}$$

4. Охладив установку латунным конусом до сопротивления R_k =18,257 Ом, повторим измерения прошлого пункта, но с железным конусом внутри.

Nº	R, Ом	ε _R , %	t, c	б _t , с
1	18,28		0	
2	18,33		50,21	
3	18,38		114,77	
4	18,43		187,17	
5	18,48		261,76	
6	18,53	0,1	339,71	0,5
7	18,58		419,02	
8	18,63		500,71	
9	18,68		584,31	
10	18,73		670,99	
11	18,78		758,96	
12	18,83		848,51	

Так же разделим полученную зависимость на 9 отрезков и найдем на каждом из них dR/dt. Затем построим зависимость dR/dt(R). Экстраполируя к $R_T=R_k$, найдем (dR/dt) $_{R=Rk}$ и подставим полученное значение в $C=\frac{PR_k\,\alpha}{(dR/dt)_k(1+\alpha\,\Delta\,T_k)}$, тем самым получив значение C_1 (теплоемкость калориметра с железным конусом внутри)

$$k = \tau = \frac{\langle xy \rangle - \langle x \rangle * \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx -4,14c$$

$$\sigma_k = \sqrt{\frac{1}{8} \left(\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2\right)} \approx 1,38c$$

$$b = \langle y \rangle - k * \langle x \rangle \approx 83,2c$$

$$\sigma_b = \sigma_k * \sqrt{\langle x^2 \rangle} \approx 25,8c$$

k=(-4,14±1,38) c b=(83,2±25,8) c

Отсюда получаем

$$\begin{split} C_1 &= \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \Delta T_k)} = \frac{10,8 \, Bm * 18,28 \, Om * 4,28 * 10^{-3} \, K^{-1}}{7,52 * 10^{-4} * (1 + 4,28 * 10^{-3} \, K^{-1} * 23,8 \, K)} \approx 1020 \, \frac{\mathcal{A}\mathcal{K}}{K} \\ \sigma_C &= C * \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2} = 1020 \, \frac{\mathcal{A}\mathcal{K}}{K} * \sqrt{(0,001)^2 + \left(\frac{0,5}{23,8}\right)^2 + (0,01)^2} \approx 23 \, \frac{\mathcal{A}\mathcal{K}}{K} \\ C_1 &= (1020 \pm 23) \, \frac{\mathcal{A}\mathcal{K}}{K} \end{split}$$

Найдем теплоемкость тела:

$$\begin{split} &C_{m} = C_{1} - C_{0} = 1020 - 665 = 355 \left(\frac{\cancel{\cancel{M}}\cancel{\cancel{K}}}{K}\right) \;\; ; \quad \sigma_{C_{m}} = \sqrt{\sigma_{C_{0}}^{2} + \sigma_{C_{1}}^{2}} = \sqrt{529 + 256} \approx 28 \, \frac{\cancel{\cancel{M}}\cancel{\cancel{K}}}{K} \\ &C_{m} = \left(355 \pm 28\right) \frac{\cancel{\cancel{M}}\cancel{\cancel{K}}}{K} \end{split}$$

Тогда удельная теплоемкость железа:
$$C_{y\partial} = \frac{C_m}{m_{\infty}} = \frac{355 \frac{\cancel{\cancel{M}}\cancel{\cancel{M}}}{\cancel{K}}}{0,8151 \, \kappa c} \approx 435,529 \frac{\cancel{\cancel{M}}\cancel{\cancel{M}}}{\kappa c * \cancel{K}} \times \sqrt{\left(\frac{28}{355}\right)^2 + \left(\frac{0,1}{815,1}\right)^2} \approx 34 \frac{\cancel{\cancel{M}}\cancel{\cancel{M}}}{\cancel{K} * \kappa c}$$
 $C_{y\partial} = (436 \pm 34) \frac{\cancel{\cancel{M}}\cancel{\cancel{M}}}{\cancel{K} * \kappa c}$

Молярная теплоемкость железа:
$$C_{\text{мол}} = C_{\text{уд}} * 0.056 \frac{\kappa z}{\text{моль}} \approx 24 \frac{\text{Дж}}{\text{моль}} * K$$

$$\sigma_{C_{MOI}} \approx 2 \frac{\cancel{\cancel{M}} \cancel{\cancel{M}} \cancel$$

5. Охладив установку латунным конусом до сопротивления R_k =18,459 Ом, повторим измерения прошлого пункта, но с алюминиевым конусом внутри.

N₂	R, Ом	ε _R , %	t, c	б _t , с
1	18,213		0	
2	18,263		41,43	
3	18,313		97,7	
4	18,363		164,5	
5	18,413	-	231,14	
6	18,463	0,1	302,39	0,5
7	18,513		372,71	
8	18,563		448,85	
9	18,613		524,56	
10	18,663		603,26	

	11	18,713	683,18
ſ	12	18,763	766,79

Так же разделим полученную зависимость на 9 отрезков и найдем на каждом из них dR/dt. Затем построим зависимость dR/dt(R). Экстраполируя к R_T = R_k , найдем (dR/dt) $_R$ = R_k и подставим полученное значение в $C = \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \, \Delta \, T_k)}$, тем самым получив значение C_2 (теплоемкость калориметра с алюминиевым конусом внутри)

$$k = \tau = \frac{\langle xy \rangle - \langle x \rangle * \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx -3,08 c$$

$$\sigma_k = \sqrt{\frac{1}{8} \left(\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2\right)} \approx 1,08 c$$

$$b = \langle y \rangle - k * \langle x \rangle \approx 63,9 c$$

$$\sigma_b = \sigma_k * \sqrt{\langle x^2 \rangle} \approx 19,9 c$$

Отсюда получаем

$$C_{1} = \frac{PR_{k}\alpha}{(dR/dt)_{k}(1+\alpha\Delta T_{k})} = \frac{10.8 Bm*18.213 Om*4.28*10^{-3} K^{-1}}{7.8*10^{-4}*(1+4.28*10^{-3} K^{-1}*23.8 K)} \approx 980 \frac{\cancel{\cancel{H}34}}{\cancel{K}}$$

$$\sigma_{C} = C*\sqrt{\left(\frac{\sigma_{R}}{R}\right)^{2} + \left(\frac{\sigma_{T}}{T}\right)^{2} + \left(\frac{\sigma_{t}}{t}\right)^{2}} = 980 \frac{\cancel{\cancel{H}34}}{\cancel{K}} * \sqrt{(0.001)^{2} + \left(\frac{0.5}{23.8}\right)^{2} + (0.01)^{2}} \approx 23 \frac{\cancel{\cancel{H}34}}{\cancel{K}}$$

$$C_{2} = (980 \pm 23) \frac{\cancel{\cancel{H}34}}{\cancel{K}}$$

Найдем теплоемкость тела:

$$\begin{split} &C_{m} = C_{2} - C_{0} = 980 - 665 = 315 \left(\frac{\cancel{\square} \cancel{m}}{K} \right) \; \; ; \quad \sigma_{C_{m}} = \sqrt{\sigma_{C_{0}}^{2} + \sigma_{C_{2}}^{2}} = \sqrt{529 + 256} \approx 28 \frac{\cancel{\square} \cancel{m}}{K} \\ &C_{m} = (315 \pm 28) \frac{\cancel{\square} \cancel{m}}{K} \end{split}$$

Тогда удельная теплоемкость алюминия: $C_{y\partial} = \frac{C_m}{m_{sc}} = \frac{315 \frac{\cancel{\square} \text{ж}}{K}}{0,2942 \, \text{кг}} \approx 1071 \frac{\cancel{\square} \text{ж}}{\text{кг}*K}$ $\sigma_C = C*\sqrt{\left(\frac{\sigma_{C_m}}{C_m}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2} = 1071 \frac{\cancel{\square} \text{ж}}{K*\kappa z} * \sqrt{\left(\frac{28}{315}\right)^2 + \left(\frac{0,1}{294,2}\right)^2} \approx 95 \frac{\cancel{\square} \text{ж}}{K*\kappa z}$ $C_{y\partial} = (1071 \pm 95) \frac{\cancel{\square} \text{ж}}{K*\kappa z}$

Молярная теплоемкость алюминия:
$$C_{MON} = C_{yo} * 0.027 \frac{\kappa z}{MON} \approx 29 \frac{\mathcal{J} \mathcal{H}}{MON} \times K$$

$$\sigma_{C_{MOR}} \approx 3 \frac{\mathcal{J}\mathcal{H}}{MOR} * K$$

$$C_{MON} = (29 \pm 3) \frac{\text{Дж}}{K*MON}$$

Вывод

В данном опыте были получены молярные и удельные теплоемкости алюминия и железа: Алюминий

$$C_{y\partial} = (1071 \pm 133) \frac{\cancel{\cancel{1}34}}{\cancel{\cancel{K} * \text{Ke}}} \; ; \; C_{\text{mon}} = (29 \pm 3) \frac{\cancel{\cancel{1}34}}{\cancel{\cancel{K} * \text{Monb}}}$$

Железо

$$C_{yo} = (436 \pm 48) \frac{\cancel{\cancel{L}}\cancel{\cancel{M}}}{\cancel{\cancel{K} * \cancel{\cancel{K} 2}}} \; ; \; C_{MOJ} = (24 \pm 2) \frac{\cancel{\cancel{\cancel{L}}\cancel{\cancel{M}}}}{\cancel{\cancel{K} * MOJ}}$$

Полученные данные сходятся с теоретическими в пределах 26.

Также были получены зависимости R(t) и dR/dt(R)

Вероятные причины расхождения теоретических и экспериментальных результатов:

- температура комнаты постоянно менялась
- нельзя исключать то, что исследуемые образцы могли быть с примесями других металлов
- не до нужной температуры остудили калориметр
- теплопередача происходила неравномерно, нагревание электроэлементов происходит быстрее, чем всей установки с образцом в целом
- остатки влаги также могли оказать отклоняющее влияние на построение зависимости скорости изменения сопротивления от самого сопротивления