Лабораторная работа 2.4.1 "Определение теплоты испарения жидкости"

Колинько Кира, Б04-207

22 февраля 2023 г.

1 Введение

Цель работы:

- 1. измерение давления насыщенного пара жидкости при разной температуре;
- 2. вычисление по полученным данным теплоты испарения с помощью уравнения Клайперона-Клаузиуса

Оборудование и материалы: термостат, герметичный сосуд, заполненный исследуемой жидкостью, отсчетный микроскоп

2 Теоретические сведения

1. По формуле Клайперона-Клаузиуса

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

Здесь P - давление насыщенного пара жидкости при температуре T, T - абсолютная температура жидкости и пара, L - теплота испарения жидкости, V_2 - объем пара, V_1 - объем жидкости

2. Будем считать, что объемом жидкости относительно объема паров можно пренебречь и насыщенные пары с хорошей точностью можно описать с помощью уравения Менделеева-Клапейрона. Таким образом, окончательная формула:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{2}$$

3 Экспериментальная установка

Рис. 1: Схема установки

1 - наполненный водой резервуар (термостат), 2 - спираль, подогреваемая электрическим током, 3 - змеевик, 4 - трубка, через которую перемещается воздух, 5 - термометр, 6 - запаянный прибор с исследуемой жидкостью. Отсчет показаний манометра производится при помощи микроскопа

4 Ход работы

Для определения теплоты парообразования воды измерим давление насыщенного пара при различных значениях температуры. Давление определим при помощи манометра, значения давления будем получать по следующей формуле

$$P = \rho g \Delta h \tag{3}$$

где ρ — плотность воды, g — ускорение свободного падения, Δh — разность высот уровней жидкости в столбах манометра Приведем формулы и значения погрешностей измеряемых величин

$$\sigma_P = P_0 \frac{\sigma_\Delta h}{H_0} \tag{4}$$

где $P_0 = 101325~\Pi a$, $H_0 = 760~\text{мм}$, $\sigma_\Delta h = 0.5~\text{мм}$. Погрешность измерения температуры $\sigma_T = 0.01~\text{K}$. Включим термостат и будем измерять температуру и давление через каждые 2 градуса сначала при повышении, а затем при понижении температуры. Полученные при повышении температуры значения занесем в таблицу 1, при понижении температуры в таблицу 2

T, K	σ_T, K	h_1 , cm	h_2 , cm	Δh , cm	σ_h , cm	Р, Па	σ_P , Π a
293,00	0,01	11,40	13,00	1,60	0,05	2167,36	66,66
295,04	0,01	11,30	13,10	1,80	0,05	2438,28	66,66
297,04	0,01	11,10	13,20	2,10	0,05	2844,66	66,66
299,05	0,01	11,00	13,40	2,40	0,05	3251,04	66,66
301,08	0,01	10,90	13,60	2,70	0,05	3657,42	66,66
303,07	0,01	10,60	13,70	3,10	0,05	4199,26	66,66
305,03	0,01	10,50	13,90	3,40	0,05	4605,64	66,66
307,05	0,01	10,30	14,10	3,80	0,05	5147,48	66,66
309,03	0,01	10,10	14,30	4,20	0,05	5689,32	66,66
311,04	0,01	9,90	14,60	4,70	0,05	6366,62	66,66
313,02	0,01	9,60	14,90	5,30	0,05	7179,38	66,66

Таблица 1: Результаты измерений показаний манометра при повышении температуры

T, K	σ_T , K	h_1 , см	h_2 , cm	Δh , cm	σ_h , cm	Р, Па	σ_P , Π a
293,48	0,01	11,40	12,90	1,50	0,05	2031,90	66,66
294,50	0,01	11,30	13,00	1,70	0,05	2302,82	66,66
295,47	0,01	11,20	13,10	1,90	0,05	2573,74	66,66
296,46	0,01	11,10	13,20	2,10	0,05	2844,66	66,66
297,53	0,01	11,10	13,30	2,20	0,05	2980,12	66,66
298,49	0,01	11,00	13,30	2,30	0,05	3115,58	66,66
299,47	0,01	10,90	13,40	2,50	0,05	3386,50	66,66
300,44	0,01	10,90	13,50	2,60	0,05	3521,96	66,66
301,45	0,01	10,80	13,60	2,80	0,05	3792,88	66,66
302,37	0,01	10,70	13,70	3,00	0,05	4063,80	66,66
303,41	0,01	10,60	13,70	3,10	0,05	4199,26	66,66
304,43	0,01	10,50	13,90	3,40	0,05	4605,64	66,66
305,45	0,01	10,40	14,00	3,60	0,05	$4876,\!56$	66,66
306,39	0,01	10,30	14,10	3,80	0,05	5147,48	66,66
307,37	0,01	10,20	14,20	4,00	0,05	5418,40	66,66
308,32	0,01	10,10	14,30	4,20	0,05	5689,32	66,66
309,32	0,01	10,00	14,50	4,50	0,05	6095,70	66,66
310,43	0,01	9,90	14,50	4,60	0,05	6231,16	66,66
311,82	0,01	9,70	14,70	5,00	0,05	6773,00	66,66

Таблица 2: Результаты измерений показаний манометра при понижении температуры

Для вычисления искомой величины построим графики в координатах P(T) и $\ln(P)(\frac{1}{T})$. Данные для построения второй зависимости внесем в таблицы 3 и 4. Погрешности величин $\frac{1}{T}$ и $\ln(P)$ были получены следующим образом:

$$\sigma_{ln(P)} = \frac{\sigma_P}{P},$$

1/T, 1/K	$\sigma_{\frac{1}{T}}, 1/K$	$ln(P), \Pi a$	$\sigma_{ln(P)}, \Pi a$
3,413	0,116	7,681	0,031
3,389	0,115	7,799	0,027
3,367	0,113	7,953	0,023
3,344	0,112	8,087	0,021
3,321	0,110	8,205	0,018
3,300	0,109	8,343	0,016
3,278	0,107	8,435	0,014
3,257	0,106	8,546	0,013
3,236	0,105	8,646	0,012
3,215	0,103	8,759	0,010
3,195	0,102	8,879	0,009

Таблица 3: Данные для построения зависимости $\ln(P)(\frac{1}{T})$ при повышении темперауры

1/T, 1/K	$\sigma_{\frac{1}{T}}, 1/K$	ln(P), Па	σ_{lnP} , Π a
3,407	0,116	7,617	0,033
3,396	0,115	7,742	0,029
3,384	0,115	7,853	0,026
3,373	0,114	7,953	0,023
3,361	0,113	8,000	0,022
3,350	0,112	8,044	0,021
3,339	0,112	8,128	0,020
3,328	0,111	8,167	0,019
3,317	0,110	8,241	0,018
3,307	0,109	8,310	0,016
3,296	0,109	8,343	0,016
3,285	0,108	8,435	0,014
3,274	0,107	8,492	0,014
3,264	0,107	8,546	0,013
3,253	0,106	8,598	0,012
3,243	0,105	8,646	0,012
3,233	0,105	8,715	0,011
3,221	0,104	8,737	0,011
3,207	0,103	8,821	0,010

Таблица 4: Данные для построения зависимости $\ln(P)(\frac{1}{T})$ при понижении темперауры

Построим необходимые графики. На графике 2 представлена зависимость P(T) при повышении и понижении температуры, на графике 3 представлена зависимость $\ln P\left(\frac{1}{T}\right)$ при повышении и понижении температуры. Коэффициенты наклона графиков вычислим по формулам 3 и 4 сответственно. Затем определим погрешности этих коэффициентов по формулам 5 и 6

$$k_1 = \frac{\langle PT \rangle - \langle P \rangle \langle T \rangle}{\langle T^2 \rangle - \langle T \rangle^2} \tag{6}$$

$$k_2 = \frac{\langle \frac{1}{T} ln(P) \rangle - \langle \frac{1}{T} \rangle \langle ln(P) \rangle}{\langle (\frac{1}{T})^2 \rangle - \langle \frac{1}{T} \rangle^2}$$
 (7)

$$\sigma_{k_1} = \frac{1}{\sqrt{N-2}} \sqrt{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - k_1^2}$$
 (8)

$$\sigma_{k_2} = \frac{1}{\sqrt{N-2}} \sqrt{\frac{\langle ln(P)^2 \rangle - \langle ln(P) \rangle^2}{\langle (\frac{1}{T})^2 \rangle - \langle \frac{1}{T} \rangle^2} - k_2^2}$$
(9)

Рис. 2: График 1

Рис. 3: График 2

Из графика 2 по формуле $L = \frac{RT^2}{P} k_1$ получим:

$$L_1 pprox (43, 36 \pm 2, 41) \$$
кДж/моль $L_2 pprox (45, 64 \pm 2, 54) \$ кДж/моль

Из графика 2 по формуле L = -kR получим:

$$L_3 \approx (45, 27 \pm 2, 52) \ кДж/моль $L_4 \approx (47, 72 \pm 2, 65) \ кДж/моль$$$

При этом, табличное значение составляет:

$$L_0 pprox 40,7$$
 кДж/моль

5 Выводы

- 1. В ходе работы было измерено давление насыщенного пара при различных температурах, по полученным данным была рассчитана теплота испарения воды. Значения, полученные экспериментально сходятся с табличными в пределах 1-2 погрешностей
- 2. Погрешность значений, полученных экспериментально составляет $\approx 5.5\%$. На основе полученных результатов можно сделать вывод, что оба метода дают значение искомой величины с достаточно хорошей точностью. Анализ графиков дает понять, что второй метод более точен, так как точки на графике в координатах $\ln(P)(1/T)$ ложатся на прямую гораздо лучше, чем точки в координатах P(T)
- 3. Для улучшения точности эксперимента можно было использовать более точные методы для установления температуры (например, ждать достаточно долгое время, чтобы система точно успела прийти в установившееся состояние); измерять разность высот столбиков манометра с большей точностью и учитывать возможное влияние пузырьков воздуха в трубках манометра (при условии их наличия)

6 Дополнительные вопросы

1. Капиллярно-гравитационными волнами называются волны, распространябщиеся по поверхности жидкости под действием сил поверхностного натяжения и силы тяжести. Рассмотрим капиллярно-гравитационные волны малой амплитуды. В плоской бегущей синусоидальной волне малой амплитуды все частицы движутся по окружности, расположенной в вертикальной плоскости. Радиус окружности мал по сравнению с длиной волны. Направим ось х по невозмущенной поверхности жидкости в сторону распространения волны, а ось z верткально вниз, тогда $x=ct; z=rsin(\frac{2\pi ct}{\lambda})$. Радиус траектории: $z=rsin(\frac{2\pi x}{\lambda})$

Рассмотрим трубку тока, изображенную на картинке. По уравнению Бернулли: $P_A + \frac{\rho}{2}(c-u)^2 + 2\rho gr = P_B + \frac{\rho}{2}(c+u)^2$

$$2\rho cu = 2\rho gr + (P_A - P_B)$$

$$u = \frac{2\pi r}{T} = \frac{2\pi rc}{\lambda}$$

По формуле Лапласа:

$$P_A = P_0 + \sigma K, P_B = P_0 - \sigma K$$

где К - абсолютное значение кривизны синусоиды в точке

$$K = \frac{4\pi^2 r}{\lambda^2}$$

Таким образом получим формулу для скорости распростанения капиллярно-гравитационных

$$c = \sqrt{\frac{g\lambda}{2\pi} + \frac{2\pi\sigma}{\rho\lambda}}$$

Для длинных волн поверхностное натяжение не играет роли, такие волны называют гравитационными и скорость волны выражается:

$$c = \sqrt{\frac{g\lambda}{2\pi}}$$

В случае коротких волн наоборот, несущественно действие силы тяжести. В этом случае волны называются капиллярными и скорость распространения выражается следующим образом:

$$c = \sqrt{\frac{2\pi\sigma}{\rho\lambda}}$$

- 2. Принцип Ле-Шателье: если система находится в устойчивом равновесии, то всякий процесс, вызванный в ней внешним воздействием или другим первичным процессом, всегда бывает направлен таким образом, что он стремится уничтожить изменения, произведенные внешним воздействием или первичным процессом. Необходимое условие применимости: наличие устойчивости равновесия, из которого система выводится внешним воздействием. Так например, он неприменим к взрывам
- 3. Устройство осциллографа: ЭЛТ, формирование развертки

Рис. 4: Электронно-лучевая трубка

Электронно-лучевая трубка представляет собой стеклянную колбу, в которой создан вакуум. В суженном конце колбы находится электронная пушка, предназначенная для получения узкого пучка электронов (электронного луча). Электронная пушка состоит из подогретого катода, управляющего электрода (модулятора), и двух анодов. Кроме электронной пушки в трубке находится две пары отклоняющих пластин (горизонтальные и вертикальные). Экран трубки с внутренней сторны покрыт люминофором. Принцип действия: пучок электронов, ускоренный жлектрическим полем, попадает на экран, покрытый люминофором и вызывает его свечение Напряжение, обеспечивающее перемещение электронного луча по горизонтали (оси времени), называется в осциллографах развертывающим напряжением, траектория, описываемая на экране ЭЛТ при отсутствии исследуемого напряжения, — разверткой, время, в течение которого описывается эта траектория, — длительностью развертки, а ее линейный размер по оси времени — длиной развертки. Развертки, применяемые в современных аналоговых осциллографах, различаются по нескольким признакам:

- по форме развертывающего напряжения пилообразные и синусоидальные;
- \bullet по форме траектории на экране ЭЛТ (при одновременной подаче исследуемого и развертывающего напряжений) линейные, круговые и спиральные;
- ullet по временным соотношениям непрерывные, ждущие, ждуще- задержанные (лупа времени) и однократные.