TED (15) - 1003

(REVISION -	-2015)
-------------	--------

Reg. No.	
Signature	

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY — MARCH, 2016

ENGINEERING PHYSICS - I

(Common to all branches except CABM and DCP)

(Maximum marks: 100)

[Time: 3 hours

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1: What are the advantages of SI over all other unit systems?
 - 2. Define the terms resultant and equilibrant of two forces.
 - 3. Distinguish between stress and strain. Give their units.
 - 4. What is meant by resonance?
 - Define simple harmonic motion. Give two examples for simple harmonic motion.

PART—B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - State the law of motion that helps us to measure force. Define force and explain how force is measured?
 - 2. Give an example to illustrate the third law. Explain the principle of rocket propulsion and recoil of a gun.

What is meant by resolution of a vector? What is rectangular resolution? Give two rectangular components of force 4N acting at an angle 30° to the horizontal.

- 4. The largest resultant of two forces P and Q is 31N and the least resultant is 17N. What is the resultant if P and Q act at right angles?
- 5. Describe an experiment to find the Young's modulus of a wire.
- 6. The volume of a metal sphere of radius 7cm is decreased by 0.019 centimeter cube when subjected to a pressure of 124 kN/m³. Find out its bulk modulus.
- 7. Derive the expression for the fundamental frequency and second harmonic in an open pipe of length L. $(5 \times 6 = 30)$

PART— C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

$U_{NIT} - I$

III	(a)	Write the equations of motion of a body moving under gravity.	3
	(b)	Define the terms velocity and acceleration. Derive the formula for the distance travelled by a particle during the n th second of its motion, when the body is moving with uniform acceleration.	2
	(c)	A body of mass 10 ³ kg at rest is acted on by a force 200N. How much time is required for the body to acquire a velocity 20m/s.	6
		OR .	
IV	(a)	Define impulse of a force and show that it is equal to the change in momentum.	3
	(b)	State Newton's third law of motion. Deduce the law of conservation of momentum using Newton's laws of motion.	6
	(c)	A uniformly accelerated body travels 20m during the 7 th second and 24m during the 9 th second. Find out the distance travelled during the 15 th second	
		of its motion. UNIT – II	6
V	(a)	State and explain Lami's theorem.	3
	(b)	State the law of parallelogram of forces. Find out the magnitude and direction of the resultant of two forces P and Q acting at an angle θ . Discuss the cases for $\theta = 0^{\circ}$, 90° and 180° .	.6
	(c)	The resultant of two unequal forces acting at 150° is perpendicular to the smaller force. If the larger force is 3N, find the smaller force and resultant.	6
1	9	OR	
I	(a)	Define the term moment of a force about a point. State the conditions of equilibrium of a body under the action of coplanar parallel forces.	3
	(b)	Derive a formula for the work done by a couple. Calculate the work done in one second when a couple 200Nm rotates a shaft at the rate 60 revolutions	
		per minute.	6
	(c)	weights 1kg, 2kg and 3kg respectively are suspended. Where the scale should	
		be suspended so that it remains horizontal?	6

Unit — IIİ

VII	(a)	State Hooke's law. Explain the term elastic fatigue.	3
	(b)	What is terminal velocity? Using stokes law, obtain an expression for the terminal velocity of a sphere falling through a viscous liquid.	6
	(c)	A capillary tube of length 0.20m and radius 0.5mm is fitted horizontally to the bottom of a large vessel containing a liquid of density 800 kg/m ³ . The tube is 0.30m below the surface of the liquid. If the coefficient of viscosity of the liquid is 0.0012 kgm ⁻¹ s ⁻¹ , find the mass of the liquid flowing out in 5 minutes.	S
		OR A	0
VIII	(a)	Explain the equation of continuity in the case of a fluid flowing through a pipe of varying cross-section.	3
	(b)	State Bernoullis principle. Explain the lift of an air craft using Bernoullis principle.	6
	(c)	In a model aeroplane, air streams across the wing of area 3m ² . The flow speeds on the upper and lower surfaces of the wing are 60 m/s and 45 m/s respectively.	
		Find the lift on the wing. Density of air is 1.3 kg/m ³ . UNIT - IV	6
IX	(a)	What is ultrasonics? Give few applications of ultrasonics.	3
	(b)	Explain the terms frequency, period, amplitude and phase of a wave. Derive an expression for the velocity of a wave.	6
	(c)	A pipe of length 18cm is closed at one end. Find out the lowest frequency of a tuning fork which will vibrate in unison with the air column. Velocity of sound in air is 345.6 m/s.	6
		OR	U
X	(a)	What is end correction as applied to vibration of air column contained in a pipe?	3 .
	(b)	Discuss the resonance column experiment to determine the velocity of sound in air.	6
	(c)	In a resonance column experiment the first and second resonance lengths were 17.6cm and 53.2cm when excited by a tuning fork of frequency 484Hz.	
		the laboratory temperature was 25°C, calculate the velocity of sound in air.	6
13			