Import required libraries, fetch data from database into pandas.DataFrame and format data type for PCA

```
In [1]: import numpy as np
        import sqlite3
        import matplotlib.pylab as plt
        import datetime as DT
        import seaborn as sns
        np.set_printoptions(precision=5)
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        #### import the PCA library from scikit learn library
        from sklearn.decomposition import PCA
        from mpl_toolkits.mplot3d import Axes3D # didn't get to use this
        %matplotlib inline
        # Normalizing (scaling) the data is VERY important - indeed can be important to many machine
        # learning algorithms. Take the original features and scale them so that they all have zero
        # mean and unit variance
        from sklearn import preprocessing
        ## pandas actually has a command to read_sql or read_sql_query and return a pandas.DataFrame
        ## coerce_float=True argument to force float data type
        ## Need to FIRST connect to the database by creating a connection object called conn.
        conn = sqlite3.connect('database.sqlite')
        # create a cursor object using the conn object method
        # The cursor object has methods for accessing the data
        # c = conn.cursor() # this is not needed for the pd.read_sql IO tool
        # Get the database table list from information in the sqlite_master table
        # Follow convention to type SQL commands in all caps
        # preview all tables in the database
        print ('=====')
        print ('Tables in the database')
        # Set the execute SQL command, Fetch and print all table names and info, and
        # return a pandas DataFrame
        df_tables = pd.read_sql("""SELECT * FROM sqlite_master WHERE type='table';""", conn)
        print('df_tables shape: ', df_tables.shape)
        print(df_tables)
        print ('=====')
        print('Player_Attributes table:')
        print(df_tables.sql[1]) # get sql that CREATE the Player_Atrribtues table
        print ('=====')
        print('Player table:')
        print(df_tables.sql[2]) # get sql that CREATE the Player table
        print ('=====')
        print ('Player table')
        df_Player = pd.read_sql("""SELECT * FROM Player """, conn)
        print('df_Player.shape:', df_Player.shape)
        print(df_Player.columns)
        print(df_Player.head())
        print ('=====')
        print ('Player_Attributes table')
        df_Player_Attributes = pd.read_sql("""SELECT * FROM Player_Attributes""", conn)
        print('df_Player_Attributes.shape:', df_Player_Attributes.shape)
        print(df_Player_Attributes.columns)
        print(df_Player_Attributes.head())
        print ('=====')
        # acquire data from database using pd.read_sql_query(sql, , ,)
        # build SQL to SELECT all columns from both Player and Player_Attributes tables
        # for rows reocrds w/ matching player_fifa_api_id
        sql="SELECT * FROM Player INNER JOIN Player_Attributes ON Player.player_fifa_api_id=Player_A
        ttributes.player_fifa_api_id;"
        df_all_col=pd.read_sql_query(sql, conn, coerce_float=True, params=None, parse_dates=['birthd
        ay','date'], chunksize=None)
        # calculate age of player at the time attributes were collected
        df_all_col['age'] = (df_all_col.date - df_all_col.birthday).astype('timedelta64[Y]')
        #Tally total score per player attribute category
        df_all_col['total_attack'] = df_all_col.crossing + df_all_col.finishing + df_all_col.heading
        accuracy + \
```

```
_____
Tables in the database
df_tables shape: (8, 5)
   type name
                                       tbl_name rootpage \
          sqlite_sequence
                               sqlite_sequence 4
0 table
1 table Player_Attributes Player_Attributes
                                  Player
2 table
             Player
3 table
                       Match
                                           Match
                                                          18
                                         League
4 table
                     League
                                                          24
5 table
                     Country
                                         Country
                                                          26
6 table
                                                         29
                       Team
                                            Team
7 table Team_Attributes Team_Attributes
              CREATE TABLE sqlite_sequence(name, seq)
1 CREATE TABLE "Player_Attributes" (\n\t`id`\tIN...
2 CREATE TABLE `Player` (\n\t`id`\tINTEGER PRIMA...
3 CREATE TABLE `Match` (\n\t`id`\tINTEGER PRIMAR...
4 CREATE TABLE `League` (\n\t`id`\tINTEGER PRIMA...
  CREATE TABLE `Country` (\n\t`id`\tINTEGER PRIM...
6 CREATE TABLE "Team" (\n\t`id`\tINTEGER PRIMARY...
7 CREATE TABLE `Team_Attributes` (\n\t`id`\tINTE...
Player_Attributes table:
CREATE TABLE "Player_Attributes" (
        `id` INTEGER PRIMARY KEY AUTOINCREMENT,
        `player_fifa_api_id` INTEGER,
        `player_api_id` INTEGER,
        `date` TEXT,
        `overall_rating` INTEGER,
         `potential` INTEGER,
         `preferred_foot` TEXT,
         `attacking_work_rate`
                                  TEXT.
         `defensive_work_rate` TEXT,
         `crossing` INTEGER,
`finishing` INTEGER,
         `heading_accuracy` INTEGER,
        `short_passing` INTEGER,
`volleys` INTEGER,
`dribbling` INTEGER,
        `curve` INTEGER,
        `free_kick_accuracy` INTEGER,
        `long_passing` INTEGER, 
`ball_control` INTEGER,
        `acceleration` INTEGER,
         `sprint_speed` INTEGER,
        `agility` INTEGER,
`reactions` INTEGER,
`balance` INTEGER,
        balance INTEGER,
shot_power INTEGER,
jumping INTEGER,
stamina INTEGER,
strength INTEGER,
long_shots INTEGER,
aggression INTEGER,
        `interceptions` INTEGER,
         `positioning` INTEGER,
        `vision` INTEGER,
`penalties` INTEGER,
`marking` INTEGER,
         `standing_tackle` INTEGER,
         `sliding_tackle`
                                 INTEGER,
         `gk_diving` INTEGER,
`gk_handling` INTEGER,
`gk_kicking` INTEGER,
         `gk_positioning` INTEGER,
         `gk_reflexes` INTEGER,
        FOREIGN KEY(`player_fifa_api_id`) REFERENCES `Player`(`player_fifa_api_id`),
        FOREIGN KEY(`player_api_id`) REFERENCES `Player`(`player_api_id`)
)
```

data cleaning

```
In [2]: df_all_col.replace(r'\s+', np.nan, regex=True, inplace = True)
        df_all_col.dropna(axis=0, how='any', inplace=True) #drop row (sample) with any NA entry
        df_all_col.sort_values('player_name',axis=0, inplace=True)
        df_all_col.drop_duplicates(inplace=True)
        df_all_col.to_csv('df_all_col.csv')
        print ('df_all_col.shape: ', df_all_col.shape)
        print(df_all_col.shape)
        print(df_all_col.info())
        print(df_all_col.head())
        print(df_all_col.tail())
        print(df_all_col['defensive_work_rate'][0:60]) # need more data cleaning for col before plot
        print ('=====')
        df_unscaled_data = df_all_col[numeric_col]
        print('df_unscaled_data.columns:', df_unscaled_data.columns)
        print('df_unscaled_data.shape:', df_unscaled_data.shape)
        print('df_unscaled_data.info: ', df_unscaled_data.info())
```

```
df_all_col.shape: (10898, 57)
   (10898, 57)
   <class 'pandas.core.frame.DataFrame'>
  Int64Index: 10898 entries, 1045 to 183615
  Data columns (total 57 columns):
                                                                                  10898 non-null int64
 player_api_id 10898 non-null into4
player_name 10898 non-null object
player_fifa_api_id 10898 non-null int64
birthday 10898 non-null datetime64[ns]
10898 non-null float64
  weight
                                                                              10898 non-null int64
 id 10898 non-null int64 player_fifa_api_id 10898 non-null int64 player_api_id 10898 non-null int64 date
player_api_id 10898 non-null int64
date 10898 non-null int64
overall_rating 10898 non-null float64
potential 10898 non-null float64
preferred_foot 10898 non-null object
attacking_work_rate 10898 non-null object
defensive_work_rate 10898 non-null object
crossing 10898 non-null float64
finishing 10898 non-null float64
heading_accuracy 10898 non-null float64
short_passing 10898 non-null float64
dribbling 10898 non-null float64
dribbling 10898 non-null float64
curve 10898 non-null float64
free_kick_accuracy 10898 non-null float64
free_kick_accuracy 10898 non-null float64
long_passing 10898 non-null float64
acceleration 10898 non-null float64
acceleration 10898 non-null float64
agility 10898 non-null float64
reactions 10898 non-null float64
palance 10898 non-null float64
  reactions
                                                                            10898 non-null float64
10898 non-null float64
  balance
                                                           10898 non-null float64
10898 non-null float64
10898 non-null float64
  shot_power jumping

        jumping
        10898
        non-null float64

        stamina
        10898
        non-null float64

        strength
        10898
        non-null float64

        long_shots
        10898
        non-null float64

        aggression
        10898
        non-null float64

        interceptions
        10898
        non-null float64

        positioning
        10898
        non-null float64

        vision
        10898
        non-null float64

        penalties
        10898
        non-null float64

        marking
        10898
        non-null float64

        standing_tackle
        10898
        non-null float64

        sliding_tackle
        10898
        non-null float64

        gk_diving
        10898
        non-null float64

        gk_handling
        10898
        non-null float64

        gk_positioning
        10898
        non-null float64

        gk_reflexes
        10898
        non-null float64

        age
        10898
        non-null float64

        total_attack
        10898
        non-null float64

 age 10898 non-null float64
total_attack 10898 non-null float64
total_skill 10898 non-null float64
total_movement 10898 non-null float64
total_power 10898 non-null float64
total_mentality 10898 non-null float64
total_defending 10898 non-null float64
total_goalkeeping 10898 non-null float64
dtypog: datestime64[rg](2) float64(44) int644
  dtypes: datetime64[ns](2), float64(44), int64(7), object(4)
  memory usage: 4.8+ MB
  None
                       id player_api_id player_name player_fifa_api_id birthday height \
  1045 67
                                                                                                                                      17880 1978-12-22
                                                                                                                                                                                                                                                  177.8
                                         40938 Abel
  1046 67
                                                                                                                                                                                17880 1978-12-22 177.8
                                                               40938
                                                                                                              Abel
  1047 67
                                                                                                                                                                               17880 1978-12-22 177.8
                                                             40938
                                                                                                    Abel
  1048 67
                                                             40938
                                                                                                          Abel
                                                                                                                                                                               17880 1978-12-22 177.8
```

Preprocess data and conduct PCA - principal component analysis

```
In [9]: scaled_data = preprocessing.scale(df_unscaled_data) #center and scale the data
        print('scaled data:')
        print (scaled_data) # preview scaled data
         # create a PCA object.
         # sklean uses this PCA object that can be trained using one dataset and applied to another d
        ataset
        pca = PCA()
        print(type(pca))
        # do PCA math, calculate loading scores and the variation each PCA accounts for
        pca.fit(scaled_data)
        # generate coordinates for a PCA graph based on the loading scores and the scaled data
        pca_data = pca.transform(scaled_data)
        scaled data:
        \hbox{\tt [[ 1.20435 -0.50782 -0.12955 \dots -0.64338 -0.19821 -0.36672]}
          [ \ 1.20435 \ -0.50782 \ -0.12955 \ \dots \ \ 2.36822 \ \ 0.20348 \ \ 0.18149 ]
         [ 0.98217 -0.50782 -0.12955 ... 2.36822 0.20348 0.18149]
         [-1.68402 -0.88666 -1.24685 \dots -0.64338 -0.31297 -0.47637]
         [-1.68402 - 0.88666 - 1.24685 \dots -0.64338 - 0.31297 - 0.47637]
         [-3.2393 \quad -0.88666 \quad -1.24685 \quad \dots \quad -0.64338 \quad -0.31297 \quad -0.47637]]
         <class 'sklearn.decomposition.pca.PCA'>
```

Present Explained Variance, Scree Plot and Principal Components Scatter Matrix

```
In [11]: # pca.explained_variance_ratio_ is <class 'numpy.ndarray'>.
         # It calculates the percentage of variance that each principal component accounts for
        per_var = np.round(pca.explained_variance_ratio_*100, decimals =1)
        print('=======')
        print('percent of explained variance: ')
        print(per_var)
        PC_labels = ['PC'+ str(x) for x in range(1,len(per_var)+1)] # labels for the Scree Plot: PC1
         , PC2 ...
        print('')
        print('=======')
         # create Scree Plot
        plt.figure(figsize=(18, 6))
        plt.bar(x=range(1, len(per_var)+1), height=per_var, tick_label=PC_labels)
        plt.ylabel('Percentage of Explained Variance', fontsize='14')
        plt.xlabel('Principal Component', fontsize='14')
        plt.title('Scree Plot', fontsize='18')
         plt.show()
        plt.close()
         # put pca_data with DataFrame with PC_labels
        pca_df = pd.DataFrame(pca_data, index=None, columns=PC_labels)
        print(pca_df.head()) # preview transformed and scaled
        print('======')
        print('Principal Components Scatter Matrix')
        df_pc_matrix = pca_df[['PC' + str(x) for x in range(1,21)]] # scatter matrix for PC1, PC2, ...
         , PC15
        pd.plotting.scatter_matrix(df_pc_matrix, alpha=0.1, figsize=(14, 14), diagonal='kde',range_p
         adding =0.1)
        plt.tight_layout()
        plt.show()
        plt.close()
```

```
percent of explained variance:
[43.9 15.7 8.9 6.8 3.9 3. 2.2 1.7 1.3 1.1 1. 1. 0.9 0.7 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1]
```



```
PC1
                     PC2
                                 PC3
                                             PC4
                                                        PC5
                                                                     PC6
                                                                                  PC7 \
0 \;\; -2.640114 \;\; 1.968095 \;\; 0.650296 \;\; -1.085030 \;\; 0.432893 \;\; -0.997913 \;\; -0.036752
1 \ -1.974144 \ 1.547071 \ 1.945571 \ -1.698880 \ 0.785256 \ -0.431110 \ 2.178955
2 -1.998243 1.632706 1.964671 -1.818000 0.655679 -0.269227 2.168876
3 \;\; -1.777293 \quad 1.508709 \quad 1.666837 \;\; -1.760435 \quad 0.469343 \;\; -0.019567 \quad 2.297794
4 \ -2.056297 \quad 0.869395 \quad 0.466741 \ -1.179464 \quad 0.879790 \ -0.124301 \quad 2.485314
         PC8
                     PC9
                                PC10
                                                        PC29
                                                                    PC30
                                                                                PC31 \
                                        . . .
0 \ -0.345769 \ -0.212905 \ 0.717640 \ \dots \ -0.243024 \ -0.082784 \ -0.287740
                                       ...
1 -0.524871 0.683914 0.138753
                                                  -0.313755 -0.136859 -0.142348
2 -0.553466  0.642269  0.157086
                                                  -0.304040 0.008732 -0.030220
                                                 -0.335973 0.075856 0.170031
3 -0.364947 0.543994 0.246732
4 0.184533 0.201187 -0.439294
                                                 -0.316171 0.099965 0.113237
                                          . . .
        PC32
                    PC33
                                PC34
                                            PC35
                                                       PC36
                                                                   PC37
0 \; -0.044248 \; -0.119196 \; -0.127400 \; -0.024028 \; \; 0.054763 \; \; 0.303422 \; \; 0.202196
1 \;\; -0.096422 \;\; -0.082920 \quad 0.120610 \quad 0.091425 \;\; -0.042255 \quad 0.005217 \;\; -0.040199
2 \; -0.022378 \; -0.068867 \quad 0.080547 \quad 0.128276 \quad 0.035120 \quad 0.007889 \; -0.050469
3 \quad 0.044900 \quad -0.031943 \quad 0.052600 \quad 0.120342 \quad 0.048383 \quad 0.012409 \quad -0.034910
4 \quad 0.045786 \quad -0.056746 \quad 0.502708 \quad 0.322174 \quad -0.167724 \quad -0.178028 \quad -0.046963
```

[5 rows x 38 columns]

Principal Components Scatter Matrix

Take a Look at the Loading Scores of PC1, PC2 and PC3 to determine which feature has the largest influence in each principal component

```
In [12]: loading_scores_PC1 = pd.Series(pca.components_[0],index=numeric_col)
         loading_scores_PC1_sorted = loading_scores_PC1.abs().sort_values(ascending=False)
         print('Sorted PC1 Loading Scores (abs)')
         print('PC1 sorted components: ', loading_scores_PC1_sorted.index)
         print(loading_scores_PC1_sorted)
         print('=====')
         loading_scores_PC2 = pd.Series(pca.components_[1],index=numeric_col)
         loading_scores_PC2_sorted = loading_scores_PC2.abs().sort_values(ascending=False)
         print('Sorted PC2 Loading Scores (abs)')
         print('PC2 sorted components: ', loading_scores_PC2_sorted.index)
         print(loading_scores_PC2_sorted)
         print('=====')
         loading_scores_PC3 = pd.Series(pca.components_[2],index=numeric_col)
         loading_scores_PC3_sorted = loading_scores_PC3.abs().sort_values(ascending=False)
         print('Sorted PC3 Loading Scores (abs)')
         print('PC3 sorted components: ', loading_scores_PC3_sorted.index)
         print(loading_scores_PC3_sorted)
```

```
Sorted PC1 Loading Scores (abs)
PC1 sorted components: Index(['ball_control', 'dribbling', 'short_passing', 'crossing', '
curve',
           'long_shots', 'positioning', 'shot_power', 'vision', 'gk_diving',
           'free_kick_accuracy', 'gk_reflexes', 'gk_handling', 'gk_positioning',
           'volleys', 'finishing', 'acceleration', 'penalties', 'sprint_speed',
           'long_passing', 'agility', 'stamina', 'balance', 'height',
           'heading_accuracy', 'weight', 'gk_kicking', 'reactions', 'aggression',
           'overall_rating', 'potential', 'interceptions', 'standing_tackle',
           'sliding_tackle', 'marking', 'strength', 'age', 'jumping'],
         dtype='object')
ball_control 0.233895
dribbling 0.226609
short_passing 0.220168
crossing 0.213529
crossing
                               0.213529

      curve
      0.211442

      long_shots
      0.211257

      positioning
      0.204851

      shot_power
      0.199655

      vision
      0.197614

      gk_diving
      0.196600

      free_kick_accuracy
      0.196366

      gk_reflexes
      0.195234

      gk_handling
      0.195011

      gk_positioning
      0.193662

      volleys
      0.193077

      finishing
      0.191773

curve
                                0.211442
penalties 0.183370
sprint_speed 0.182038
long_passing 0.177636
agility 0.168734
stamina 0.158548
balance 0.153811
height 0.134852
heading_accuracy 0.132158
weight 0.125473
gk_kicking 0.121982
reactions 0.105162
aggression 0.087644
overall_rating 0.083033
potential 0.080174
interceptions 0.071469
standing_tackle 0.065230
sliding_tackle 0.052163
marking
                                0.052163
                                0.028138
strength
age
                                 0.005573
 jumping
                                 0.001561
dtype: float64
Sorted PC2 Loading Scores (abs)
PC2 sorted components: Index(['marking', 'standing_tackle', 'sliding_tackle', 'intercepti
ons',
           'aggression', 'strength', 'heading_accuracy', 'agility', 'height',
           'weight', 'finishing', 'stamina', 'volleys', 'balance',
           'gk_positioning', 'gk_handling', 'acceleration', 'gk_reflexes',
           'positioning', 'gk_diving', 'jumping', 'dribbling', 'age', 'curve',
           'gk_kicking', 'sprint_speed', 'long_passing', 'penalties', 'long_shots',
           'vision', 'short_passing', 'free_kick_accuracy', 'overall_rating',
           'shot_power', 'crossing', 'reactions', 'potential', 'ball_control'],
         dtype='object')
                     0.360160
marking
marking
standing_tackle
sliding_tackle
interceptions
aggression
                                 0.357693
                                 0.351805
                                 0.323485
aggression
                                0.310414
                                0.269961
strength
heading_accuracy 0.231016
acility 0.172402
```

Present graphs pertinent to the first three principal componets:

Note: When plotting PC1 versus PC2 AND PC1 versus PC3, two clusters are displayed.

Next, we will visualize further in PC1, PC2 and PC3.

```
In [13]: # draw PCA 2D plot: PC1 Vs PC2 and PC1 Vs PC3
         def color_plot (i):
             plt.figure(figsize=(10, 5))
             plt.subplot(1,2,1)
             plt.scatter(pca_df.PC1, pca_df.PC2, c=scaled_data[:,i], alpha=0.1)
             plt.title("PCA Graph: PC1 Versus PC2 - color by " + numeric_col[i], fontsize='12')
             plt.xlabel('PC1 - {0}%'.format(per_var[0]), fontsize='12')
             plt.ylabel('PC2 - {0}%'.format(per_var[1]), fontsize='12')
             plt.tight_layout()
             plt.subplot(1,2,2)
             plt.scatter(pca_df.PC1, pca_df.PC3, c=scaled_data[:,i], alpha=0.1)
             plt.title("PCA Graph: PC1 Versus PC3 - color by " + numeric_col[i], fontsize='12')
             \verb|plt.xlabel('PC1 - {0}%'.format(per_var[0]), fontsize='12')| \\
             plt.ylabel('PC3 - {0}%'.format(per_var[2]), fontsize='12')
             plt.tight_layout()
             plt.show()
             plt.close()
         for j in range(0,38):
             color_plot (j)
```



```
In [17]: #'attacking_work_rate', 'defensive_work_rate']
         #plt.title('players with gk_diving > 40',loc='center')
         def plot (df_all, df_sub, hue_col):
             # first plot
            scatter=True, fit_reg=False, units=None, order=1, legend=True)
            plt.title('all players')
            plt.xlim(0,100)
            plt.ylim(0,100)
            plt.show()
            plt.close()
             # second plot: goalkeepers only
            vis2=sns.lmplot(x='ball_control', y='marking', hue=hue_col, sharex=False, data=df_sub,
         scatter=True, fit_reg=False, units=None, order=1, legend=True)
            plt.title('players with gk_diving > 40 (goalkeepers)')
            plt.xlim(0.100)
            plt.ylim(0,100)
            plt.show()
            plt.close()
         print('gk_diving > 40 (goalkeepers)')
         df_goalkeepers=df_all_col.loc[df_all_col['gk_diving']>40]
         #print(df_goalkeepers.head())
         plot(df_all_col, df_goalkeepers, None)
         # color by lefty and righty
         plot(df_all_col, df_goalkeepers, 'preferred_foot')
         # plot lefty only
         print('plot preferred left foot')
         df1=df_all_col.loc[df_all_col['preferred_foot']=='left']
         df2=df_goalkeepers.loc[df_goalkeepers['preferred_foot']=='left']
         plot(df1,df2,None)
         # color by 'attaching_work_rate'
         df3=df_all_col[df_all_col['attacking_work_rate'].isin (['low','medium','high'])]
         df4=df_goalkeepers[df_goalkeepers['attacking_work_rate'].isin (['low','medium','high'])]
         plot(df3, df4, 'attacking_work_rate')
         #plot jointplot with goal keeper attributes:
         #'gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'
         def joint_plot (df, title) :
            vis=sns.jointplot(x='ball_control',y='gk_diving', data=df, xlim=(0,100), ylim=(0,100), s
         tat_func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_handling', data=df, xlim=(0,100), ylim=(0,100),
         stat func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_kicking', data=df, xlim=(0,100), ylim=(0,100),
         stat func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_positioning', data=df, xlim=(0,100), ylim=(0,10
         0), stat_func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_reflexes', data=df, xlim=(0,100), ylim=(0,100),
         stat func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
             vis=sns.jointplot(x='marking',y='gk_diving', data=df, xlim=(0,100), ylim=(0,100), stat_f
         unc=None)
```


plot preferred left foot


```
In [42]: import seaborn as sns
         df1=df_all_col[df_all_col['defensive_work_rate'].isin (['low','medium','high'])]
         df2=df_all_col[df_all_col['defensive_work_rate'].isin (['high'])]
         df3=df_all_col[df_all_col['defensive_work_rate'].isin (['medium'])]
         df4=df_all_col[df_all_col['defensive_work_rate'].isin (['low'])]
         def lmplot (df):
             vis=sns.lmplot(x='marking', y='overall_rating', hue='defensive_work_rate', sharex=False
         , data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
             vis=sns.lmplot(x='standing_tackle', y='overall_rating', hue='defensive_work_rate', shar
         ex=False, data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
             vis=sns.lmplot(x='sliding_tackle', y='overall_rating', hue='defensive_work_rate', share
         x=False, data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
             vis=sns.lmplot(x='interceptions', y='overall_rating', hue='defensive_work_rate', sharex
         =False, data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
         lmplot(df1) #color by 'defensive_work_rate'].isin (['low','medium','high'])
         lmplot(df2) #color by 'defensive_work_rate'].isin (['high'])
         lmplot(df3) #color by 'defensive_work_rate'].isin (['medium'])
         lmplot(df4) #color by 'defensive_work_rate'].isin (['low'])
```



```
In [53]: df_totals=df_all_col[numeric_few_col]
    pd.plotting.scatter_matrix(df_totals, alpha=0.1, figsize=(16, 16), diagonal='kde',range_padd
    ing =0.01)
    plt.tight_layout()
    plt.show()
    plt.close()

    total_cols = numeric_few_col + ['player_fifa_api_id', 'player_name']
    df_t=df_all_col[total_cols]
    df_t.to_csv('player_total_score_per_attributes_category.csv')
    print(df_t.shape)
    print (df_t.head())
```


(1089	8, 15)									
	age	height	weight	overall	_rating	potentia	l total_a	attack	\	
1045	31.0	177.8	165		73.0	75.	0	311.0		
1046	31.0	177.8	165		72.0	75.	0	307.0		
1047	30.0	177.8	165		73.0	75.	0	305.0		
1048	28.0	177.8	165		73.0	75.	0	298.0		
1049	28.0	177.8	165		70.0	72.	0	288.0		
	total	_skill	total_mc	vement	total_po	ower tota	l_mentali	ty \		
1045		319.0		375.0	3!	55.0	351	.0		
1046		318.0 375.0			3!	355.0 372.0				
1047		316.0		377.0	3!	57.0	372.0			
1048		311.0 372.0			3!	355.0 370.0				
1049		335.0		366.0	34	16.0	356	. 0		
	total	_defend:	ing tota	al_goalke	eping p	player_fif	a_api_id	\		
1045	219.0		42.0			17880				
1046	216.0			143.0			17880			
1047	221.0			143.0			17880			
1048	221.0			141.0			17880			
1049		21	2.0		102.0		17880			
player_fifa_api_id player_name										
1045			17880	Abe	el					
1046			17880	Abe	el					
1047		17880			Abel					
1048	17880			Abel						
1049			17880	Abe	el					

A Closer Look at the Goalkeeper Subgroup on the Far Right total_goalkeeping > 200

Correlation Coefficient between Overall Rating and Total Goalkeeping Attribute total_goalkeeping overall_rating

total_goalkeeping 1.000000 0.978269
overall_rating 0.978269 1.000000

Interpret correlation coefficient

Exactly -1. A perfect downhill (negative) linear relationship

- -0.70. A strong downhill (negative) linear relationship
- -0.50. A moderate downhill (negative) relationship
- -0.30. A weak downhill (negative) linear relationship
- 0. No linear relationship

```
In [31]: print('Unscaled Data Scatter Matrix 1')
         print('PC1 sorted components: ', loading_scores_PC1_sorted.index[0:19])
          #col_of_interest = ['ball_control', 'dribbling', 'short_passing', 'crossing', 'curve', 'long_
          shots', 'positioning', 'shot_power', 'vision', 'gk_diving','free_kick_accuracy', 'gk_reflexe
          s', 'gk_handling']
          col_of_interest = loading_scores_PC1_sorted.index[0:19]
         df_col_of_interest= df_unscaled_data[col_of_interest] # scatter matrix for columns of intere
          st.
         pd.plotting.scatter_matrix(df_col_of_interest, alpha=0.1, figsize=(16, 16), diagonal='kde',r
         ange_padding =0.01)
         plt.tight_layout()
         plt.show()
         plt.close()
         Unscaled Data Scatter Matrix 1
         PC1 sorted components: Index(['ball_control', 'dribbling', 'short_passing', 'crossing', '
         curve',
                 'long_shots', 'positioning', 'shot_power', 'vision', 'gk_diving',
                 'free_kick_accuracy', 'gk_reflexes', 'gk_handling', 'gk_positioning',
                 'volleys', 'finishing', 'acceleration', 'penalties', 'sprint_speed'],
                dtype='object')
          .
                                                                        .
           20
                                                         .
                                                                        .
           9
                       \Lambda
                                                         1
                                                                   1
                                                                        .
                                                                             6
           類
                           Λ
                                                         .
                                                                        ١.
                                                                             ,
                                                         .
                                                                   .
                                                                        .
                                                                             A 25
                                Λ
                                                                        ١.
                                                                             ١,
                                     \mathbb{A}
                                                         .
                                                                   .
           3
                                          \Lambda
                                                                        F
                                                                             F
                                                         F
                                                                   F
                                               Л
                                                         l e
                                                                   •
                                                                        ø
                                                                             4
          Mislon
Mislon
                                                                        1
                                                                             4
                                                    Л
                                                         I
                                                                   .
          Ä
                                                         •
                                                                        •
                                                                             .
           20 10
                                                              \Lambda
                                                         1.5
                                                                   1
                                                                        14
                                                                             1
                                                         .
                                                              All I
                                                                   . "
                                                                             , "
           18
                                                         •
                                                                   . "
                                                                        ."
                                          2
                                                         . "
                                                              72
                                                                   . .
                                                                        ."
                                                                             -
           2
           到
                                                                   .
                                                                             .
                                                                                  \wedge
           發
                                                                        ,
                                                                             .
                                                                                      \wedge
                                                         ١,
                                                                                           \Lambda
           發 #
                                                         1
                                                                   0
                                                                        J.
                                                                             ı
           B 100
                                                         \mathbf{I}
                                                                        F
                                                                             I
                                                                   18
                                                                                                \Lambda
```

```
In [39]: print('Unscaled Data Scatter Matrix 2')
           print('PC1 sorted components: ', loading_scores_PC1_sorted.index[19:38])
            #col_of_interest = ['ball_control', 'dribbling', 'short_passing', 'crossing', 'curve', 'long_
            shots', 'positioning', 'shot_power', 'vision', 'gk_diving','free_kick_accuracy', 'gk_reflexe
            s', 'gk_handling']
            col_of_interest = loading_scores_PC1_sorted.index[19:38]
           df_col_of_interest= df_unscaled_data[col_of_interest] # scatter matrix for columns of intere
           pd.plotting.scatter_matrix(df_col_of_interest, alpha=0.1, figsize=(16, 16), diagonal='kde',r
           ange_padding =0.01)
           plt.tight_layout()
           plt.show()
           plt.close()
           Unscaled Data Scatter Matrix 2
           PC1 sorted components: Index(['long_passing', 'agility', 'stamina', 'balance', 'height',
                    'heading_accuracy', 'weight', 'gk_kicking', 'reactions', 'aggression', 'overall_rating', 'potential', 'interceptions', 'standing_tackle',
                    'sliding_tackle', 'marking', 'strength', 'age', 'jumping'],
                   dtype='object')
            흥 翔 🔙
                                                   \wedge
             kicki
Per kicki
                                                         0 PS -
                                                         \Lambda
                                                                                                 W
                                                                                                       \mathcal{M}
                                                                                                             Λ
             mpin
125
                                                                                                                         \Lambda
             NAME NAME 
long_passing agility
                                                   88
                                                      9090 KSRC KSRC SLIC SLIC 9090 KSRC KSRC KSRC KSRC KSRC KSRC Ksking reactions aggressionoverall rating potential interceptiogranding tacks
```

```
In [36]: # create distribution plot for all features
         final_col = ['player_fifa_api_id','preferred_foot','attacking_work_rate', 'defensive_work_ra
         te'] + numeric_col
         print(final_col)
         df_final=df_all_col[final_col]
         df_final=def_all_col['player_fifa_api_id', 'preferred_foot', 'attacking_work_rate', 'defensi
         ve_work_rate', 'age', \
                               'height', 'weight', 'overall_rating', 'potential', 'crossing', 'finishi
         ng', 'heading_accuracy', \
                               'short_passing', 'volleys', 'dribbling', 'curve', 'free_kick_accuracy',
         'long_passing', \
                               'ball_control', 'acceleration', 'sprint_speed', 'agility', 'reactions',
         'balance', 'shot_power', \
                               'jumping', 'stamina', 'strength', 'long_shots', 'aggression', 'intercep
         tions', 'positioning', \
                               'vision', 'penalties', 'marking', 'standing_tackle', 'sliding_tackle',
         'gk_diving', 'gk_handling', \
                               'gk_kicking', 'gk_positioning', 'gk_reflexes']
         print(df_final.head())
         print(len(final_col))
         df_final.to_csv("df_final.csv")
         # distplot for goalkeeping attributes
         fig = plt.figure(figsize=(24,18))
         ax1 = fig.add_subplot(321)
         ax2 = fig.add_subplot(322)
         ax3 = fig.add_subplot(323)
         ax4 = fig.add_subplot(324)
         ax5 = fig.add_subplot(325)
         vis1=sns.distplot (df_all_col['gk_diving'], bins=30, ax=ax1)
         vis2=sns.distplot (df_all_col['gk_handling'], bins=30, ax=ax2)
         vis3=sns.distplot (df_all_col['gk_kicking'], bins=30, ax=ax3)
         vis4=sns.distplot (df_all_col['gk_positioning'], bins=30, ax=ax4)
         vis5=sns.distplot (df_all_col['gk_reflexes'], bins=30, ax=ax5)
         plt.show()
         plt.close()
         # distplot for defending attributes
         fig = plt.figure(figsize=(18,5))
         ax6 = fig.add_subplot(131)
         ax7 = fig.add_subplot(132)
         ax8 = fig.add_subplot(133)
         vis6=sns.distplot (df_all_col['marking'], bins=30, ax=ax6)
         vis7=sns.distplot (df_all_col['standing_tackle'], bins=30, ax=ax7)
         vis8=sns.distplot (df_all_col['sliding_tackle'], bins=30, ax=ax8)
         plt.show()
         plt.close()
         # distplot
         for i in range (4,42) :
             sns.distplot (df_all_col[final_col[i]], bins=30)
             plt.title('Distribution Plot')
             plt.show()
             plt.close()
```

```
['player_fifa_api_id', 'preferred_foot', 'attacking_work_rate', 'defensive_work_rate', 'ag
e', 'height', 'weight', 'overall_rating', 'potential', 'crossing', 'finishing', 'heading_a
ccuracy', 'short_passing', 'volleys', 'dribbling', 'curve', 'free_kick_accuracy', 'long_pa
ssing', 'ball_control', 'acceleration', 'sprint_speed', 'agility', 'reactions', 'balance',
'shot_power', 'jumping', 'stamina', 'strength', 'long_shots', 'aggression', 'interceptions
', 'positioning', 'vision', 'penalties', 'marking', 'standing_tackle', 'sliding_tackle', 'gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes']
     player_fifa_api_id player_fifa_api_id preferred_foot \
                 17880
                                    17880
                                                  right
1046
                 17880
                                     17880
                                                   right
1047
                 17880
                                    17880
                                                 right
1048
                 17880
                                    17880
                                                  right
                 17880
                                    17880
                                                  right
    attacking_work_rate defensive_work_rate age height weight \
1045
         None o 31.0 177.8 165
                                                           165
1046
                  None
                                        0 31.0 177.8
                                        o 30.0 177.8 165
o 28.0 177.8 165
o 28.0 177.8 165
1047
                  None
1048
                  None
1049
                  None
     overall_rating potential ... vision penalties marking \
73.0 75.0 ... 75.0 66.0 73.0 
72.0 75.0 ... 75.0 75.0 72.0
1045
1046
              73.0
                        75.0
                                            75.0
                                                       75.0
                                                                74.0
1047
                                  . . .
                        75.0
                                            75.0
1048
              73.0
                                  . . .
                                                       76.0
                                                                74.0
              70.0
                        72.0
1049
                                 . . .
                                            75.0
                                                       83.0
     standing_tackle sliding_tackle gk_diving gk_handling gk_kicking \
1045
                              72.0 7.0 5.0 7.0
     74.0
                72.0
                               72.0
1046
                                         9.0
                                                                  74.0
                                                     20.0
                              72.0 9.0
72.0 9.0
72.0 9.0
                                                   20.0
1047
                75.0
                                                                  74.0
                                                    20.0
1048
                75.0
                                                                  72.0
1049
                70.0
                                                                 63.0
     gk_positioning gk_reflexes
        13.0
                     10.0
1045
1046
               20.0
                           20.0
1047
              20.0
                          20.0
1048
              20.0
                          20.0
1049
               8.0
                          12.0
```

[5 rows x 43 columns] 42


```
In [40]: print('A Closer Look at Overall Rating Versus Reactions Attributes')
         print(' ')
         corr1=df_all_col[['reactions','overall_rating']].corr()
         print(corr1)
         vis1=sns.lmplot( x='reactions', y='overall_rating', hue=None, sharex=False, data=df_all_col,
         scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         df11=df_all_col[df_all_col['attacking_work_rate'].isin (['low','medium','high'])]
         corr11=df11[['reactions','overall_rating']].corr()
         print(corr11)
         visl1=sns.lmplot( x='reactions', y='overall_rating', hue='attacking_work_rate', sharex=False
         , data=df11, scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         df12=df_all_col[df_all_col['defensive_work_rate'].isin (['low','medium','high'])]
         corr12=df12[['reactions','overall_rating']].corr()
         print(corr12)
         vis12=sns.lmplot( x='reactions', y='overall_rating', hue='defensive_work_rate', sharex=False
         , data=df12, scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         df13=df_all_col[df_all_col['gk_diving'] > 40]
         corr13=df13[['reactions','overall_rating']].corr()
         print('gk_diving > 40 ')
         print(corr13)
         vis13=sns.lmplot( x='reactions', y='overall_rating', hue=None, sharex=False, data=df13, scat
         ter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         plt.close()
         df14=df_all_col[df_all_col['gk_diving'] < 41]</pre>
         corr14=df14[['reactions','overall_rating']].corr()
         print('gk_diving < 41')</pre>
         print(corr14)
         vis14=sns.lmplot( x='reactions', y='overall_rating', hue=None, sharex=False, data=df14, scat
         ter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         plt.close()
```

A Closer Look at Overall Rating Versus Reactions Attributes

reactions overall_rating	reactions 1.00000 0.72483	overall_rating 0.7248 1.00000	3
90 -		v. 41	
80 -			,
overall rating			
60 -			
50 -			
20 30 4	10 50 60	70 80 90	-
20 30 4	reactions	/0 80 90	
reactions overall_rating	reactions 1.00000 0.72456	overall_rating 0.72456 1.00000	5
90 -		4.45	
80 -			
gn 70 -			
overall_rating			attacking_work_rate • medium
60 -			highlow
50 -	***		
40 -			
20 30 4	0 50 60	70 80 90	
	reactions		
reactions	reactions	overall_rating	
overall_rating	0.725001	1.000000	

1.00000

0.56092

overall_rating

