简答题

1. 简述 PCA 的原理、学习模型和算法步骤

原理: PCA 主要是想寻找一些方差最大的方向,将数据沿着这些方向进行正交投影,通过这样的投影,可以尽可能使得投影后的样本点较分散,即投影后的方差大。投影后样本的方差可以表示为 $\frac{1}{n}\sum_{i=1}^n(w_1^Tx_i-w_1^T\overline{x})^2$,由于是正交投影,有约束条件 $w_1^Tw_1=1$ 。使用拉格朗日乘子法求解最大化投影后样本方差的问题,描述为 $w_1^TCw_1-\lambda(w_1^Tw_1-1)$,其中 $C=\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})(x_i-\overline{x})^T$ 是原样本的协方差阵。令其偏导等于 0,可以得到 $Cw_1=\lambda w_1$ 。即投影向量为方差矩阵的一组表征正交特征向量。

学习模型: 设样本点 X_i 是零均值化的, $\sum_{i=1}^n W^T x_i x_i^T W = W^T X X^T W$ 是投影后的协方差。根据 PCA 的原理,学习模型可以表示为:

$$\max_{W \in R^{m \times d}} tr(W^T X X^T W) , s.t.W^T W = I$$

算法步骤:

- ① 将数据零均值化: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $x_i = x_i \overline{x}$
- ② 计算数据的协方差阵: $C = \frac{1}{n} \sum_{i=1}^{n} W^{T} x_{i} x_{i}^{T} W = \frac{1}{n} W^{T} X X^{T} W$
- ③ 对矩阵 C 进行特征值分解,选取最大的 m 个特征值 $(\lambda_1 \ge \lambda_2 \ge \cdots \lambda_m)$ 所对应的标准正交特征向量 w_1, w_2, \ldots, w_m ,则投影阵 $W = [w_1, w_2, \ldots, w_m] \in R^{d \times m}$
- ④ 对数据进行投影: $Y = W^T X$

2. 简述 LDA 的原理和学习模型

原理: LDA 是想寻找一组投影方向,使得样本经过投影后,同类样本尽可能地靠近,不同类的样本尽可能地相互远离。以两类分类问题为例,对于同类样本投影点尽可能地接近,可以使用投影后样本协方差阵 $w^T \sum_0 w + w^T \sum_1 w$ 比较小,对于不同类样本尽可能地互相远离,可以让类中心点地距离尽可能地大,即 $||w^T \mu_0 - w^T \mu_1||^2$ 大。由此可以变成最大化 $\frac{w^T (\mu_0 - \mu_1)(\mu_0 - \mu_1)^T w}{w^T (\Sigma_0 + \Sigma_1) w}$ 。记类内散度矩阵为 $S_w = \Sigma_0 + \Sigma_1 = \sum_{x \in X_0} (x - \mu_0)(x - \mu_0)^T + \sum_{x \in X_1} (x - \mu_1)(x - \mu_1)^T$

类间散度矩阵为 $S_b = (\mu_0 - \mu_1)(\mu_0 - \mu_1)^T$ 。问题变成最大化 $J = \frac{w^T S_b w}{w^T S_w w}$,约束条件为 $w^T w = 1$ 。对问题进一步表征, $\max w^T S_b w$, s.t. $w^T S_w w = 1$ 。对此问题应用拉格朗日乘数法进行求解, $S_b w = \lambda S_w w \Rightarrow S_w^{-1} S_b w = \lambda w$,因此向量 w 为矩阵的 $S_w^{-1} S_b$ 的特征向量。

学习模型:对于 c 类样本数据,记类内散度矩阵为 $S_w = \sum_{j=1}^c S_{wj}$,式中

$$S_{wj} = \sum_{x \in X_j} (x - \mu_j) (x - \mu_j)^T$$
, $\mu_j = \frac{1}{n_j} \sum_{x \in X_j} x_{\circ}$

类间散度矩阵 $S_b = S_t - S_w = \sum_{j=1}^c n_j (\mu_j - \mu) (\mu_j - \mu)^T$ 。

学习模型可以表示为以下两种:

①
$$\max \frac{tr(W^T S_b W)}{tr(W^T S_b W)}$$
, $s.t.$ $W^T W = I$

②
$$\max \frac{|W^T S_b W|}{|W^T S_w W|}$$
, $s.t.$ $W^T W = I$

3. 作为一类非线性降维方法,简述流形学习的基本思想

流形学习的基本思想为: 高维空间中相似的数据点,他们映射到低维空间的 距离也是相似的。

LLE 算法保持了高低维空间中,局部区域中心点的线性重构关系。

Isomap 算法保持了高低维空间中,任意两个点对之间的测地距离。

LE 算法保持了高低维空间中,局部区域点对之间的亲和度。

LSTA 算法对每一个数据,在局部引入一个线性变换,将其近邻点映射到低维坐标系中的对应近邻点。

LSE 算法对每一个数据,在局部引入一个非线性变换,将其近邻点映射到低维坐标系中的对应近邻点。

4. 根据特征选择和分类器的结合程度,简述特征提取的主要方法,提出各类方 法的特点

主要有三种方法:过滤式、包裹式以及嵌入式特征选择方法。这三种特征选择方法与分类器的结合程度不断加深。

过滤式特征选择

主要方法:特征选择过程与分类器学习过程没有任何关系。首先定义一个评价函数,并用它来度量某个给定特征与类别标签之间的相关度;最后选取具有最大相关度的 m 个特征作为选择结果。

基于过滤式的特征选择有:单独特征选择法、顺序前进特征选择法、顺序 后退特征选择法、增1减r特征选择法、Relief方法。前四种是一种遍历求解的 方法,即根据给定的特征评价函数,按照一定的增减特征顺序,对所有样本的 特征遍历求得局部最佳特征集合。Relief一方面是在数据集的采样上进行,另 一方面设计了一个相关统计量来度量特征的重要程度。

过滤式特征选择特点:

- ① 过滤式方法先对数据集进行特征选择,然后再训练学习器。特征选择过程与后续学习器无关;
- ② 启发式特征选择方法,无法获得最优子集:
- ③ 与包裹式选择方法相比, 计算量降低了很多。

包裹式特征选择

主要方法:这是一种以分类性能为准则的特征选择算法,特征的选择依赖于分类器的结果。先对数据集进行特征选择,然后再训练分类器;特征选择过程与分类单独进行,特征选择评价判据间接反应分类性能。

基于包裹式的方法分两类:

- ① 直观方法: 这种方法给定特征子集,训练分类器模型,计算分类器错误率为特征性能判据,进行特征选择
- ② 递归方法: 首先利用所有的特征进行分类器训练, 然后考查各个特征在分类器中的贡献, 逐步剔除贡献小的特征。如 R-SVM, SVM-RFE, Adaboost 包裹式特征选择特点:
- ① 特征选择过程与分类性能相结合,特征评价判据为分类器性能。对给定分类方法,选择最有利于提升分类性能的特征子集,最终分类性能比较好。
- ② 特征选择过程中需要多次训练学习器,因此包裹式特征选择的计算开销比较大。

嵌入式特征选择

主要方法: 在学习器训练过程中自动地进行特征选择,对分类器的训练模型加入一定的限制条件,让权重变得稀疏,稀疏权重对应位置的特征可以当作被剔除,达到特征选择的效果。

基于嵌入式的特征选择常采用 L1、L2 范数,即将分类器优化函数加上权重 1 范数或者 2 范数的约束。

特点:

- ① 将分类器学习与特征选择融为一体,分类器训练过程自动完成了特征选择。
- ② 训练出的分类器权重比较稀疏。
- ③ 分类器防止了过拟合,提高了模型的泛化能力。

5. 简述最优特征提取的基本思想

- ① 穷举法: 从给定的特征中,遍历挑选出最优的特征子集。如果有n个特征,需要挑选出d个特征,则有 C_n^d 种特征组合方式,计算量十分巨大。
- ② 分支定界方法:将所有可能的特征选择组合以树的形式进行表示,树的每一层按照特征评价判据从左到右升序排列,当前层某一个结点判据值不会低于该节点的后继结点。进行搜索时,每次从右边开始搜索(右边的判据值大),记录当前最大的判据值,不断回溯,回溯时如果某结点值小于最大值,就不用探索该节点的后继。由此搜索过程可以尽早达到最优解,而不必搜索整个树。

编程题

ORL 数据,缩减维度到 3~450,步长为 3,对测试集分类性能 ACC 如下():

目标维度	LDA	PCA
3	0.775	0.7625
6	0.8625	0.8125
9	0.9375	0.8875
12	0.925	0.8875
15	0.925	0.9
18	0.9625	0.9
21	0.8875	0.9
24	0.9	0.9
27	0.8875	0.9
30	0.9	0.9
33	0.9	0.9125
36	0.8875	0.9125
39	0.9	0.9125
42	0.8875	0.925
45	0.9	0.9125
48	0.8875	0.9125
51	0.8875	0.925
54	0.8875	0.9375
57	0.8875	0.9375
60	0.8875	0.9375

上表仅展示了降至 3~60 维时预测准确度,下图为 acc 性能图

Vehicle 数据,缩减维度 2~11,步长为 1,对测试集分类性能 ACC 如下:

目标维度	LDA	PCA
2	0.652941	0.541176
3	0.664706	0.617647
4	0.688235	0.676471
5	0.682353	0.682353
6	0.688235	0.682353
7	0.670588	0.652941
8	0.694118	0.688235
9	0.735294	0.688235
10	0.729412	0.688235
11	0.694118	0.676471

