PAMSI			
Wydział: Elektroniki	Grupa: 07di	Sprawozdanie z laboratorium nr 4	
Imię i nazwisko: Roberto Pietruszka-Orozco		Termin zajęć: czw, 16:15 - 18:30	
Prowadzący kurs: mgr. inż. Andrzej Wytyczak-Partyka		Data wykonania: 15.03.2017	

1. Pomiar

Tabela zawiera średni czas sortowania szybkiego (z dwudziestu realizacji) n-elementowej tablicy w trzech przypadkach, gdy dane wejściowe są posortowane, losowe oraz gdy wszystkie dane są takie same dla trzech różnych wyborów pivota.

Rodzaj danych wejściowych

Liczba elementów	Rouzuj danyen wejselowyen			
	Posortowane	Losowe	Takie same	
10	0.0000016	0.0000014	0.0000018	
100	0.0000179	0.0000184	0.0000216	
1000	0.0002294	0.0002504	0.0003352	
10000	0.0032993	0.0031994	0.0034325	
100000	0.0330568	0.0347858	0.0329524	
1000000	0.3905752	0.3960224	0.3870368	
10000000	4.4756579	4.5224545	4.4640941	
100000000	49.9941825	50.6282583	49.8325694	

Tabela 1.1

2. Wykresy

a. Wykres złożoności obliczeniowej algorytmu sortującego MergeSort dla danych wejściowych różnego typu

b. Wykres złożoności obliczeniowej dla danych wejściowych posortowanych

c. Wykres złożoności obliczeniowej dla losowych danych wejściowych

d. Wykres złożoności obliczeniowej dla takich samych danych wejściowych

3. Wnioski

Złożoność obliczeniowa algorytmu sortowania przez scalanie mieści się w O(nlogn) niezależnie od danych wejściowych. W porównaniu z sortowaniem szybkim nie degraduje się do $O(n^2)$. Wadą sortowania przez scalanie w badanej implementacji jest dodatkowe wykorzystanie pamięci na pomocniczą tablicę. Z przedstawionych wykresów wynika, że sortowanie przez scalanie wykonuje się krócej niż sortowanie szybkie, najprawdopodobniej jest to spowodowane implementacją obu algorytmów.