

CS 4501/6501 Interpretable Machine Learning

Post-hoc explanations: gradient/attention-based methods

Hanjie Chen, Yangfeng Ji
Department of Computer Science
University of Virginia
{hc9mx, yangfeng}@virginia.edu

Perturbation-based methods

- Model-agnostic (black-box)
- Perturbing the input and observing model prediction change
- Extracting relationships between input features and the output

Perturbation-based methods

- Model-agnostic (black-box)
- Perturbing the input and observing model prediction change
- Extracting relationships between input features and the output

- Applicable to any black-box models
- Computational complexity

Additional information from the model

- Model-dependent (white-box)
- Additional information: gradients, attentions
- Simple, fast, efficient
- Not applicable if no such information available

Gradient-based methods

Attention-based methods

The gradient of a function f on $x \in \mathbb{R}^n$ is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

The gradient of a function f on $x \in \mathbb{R}^n$ is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

The derivative $\frac{\partial f}{\partial x_i}$ indicates how much f will change when x_i increases a little bit

 x_1 is more important than x_2

- \checkmark Changing x_1 can flip the model prediction
- ✓ Changing x_2 would not influence the model prediction

Problem 1: saturated outputs lead to unintuitive gradients

$$y = \begin{cases} x_1 + x_2, & when (x_1 + x_2) < 1\\ 1, & when (x_1 + x_2) \ge 1 \end{cases}$$

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

$$y = max(0, x - 10)$$
The gradient changes dramatically
$$0 \quad 10 \quad x$$

(Shrikumar et al., 2017)

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

Problem 3: input gradient is sensitive to slight perturbations

Problem 3: input gradient is sensitive to slight perturbations

Input gradients are misleading, resulting in a noisy saliency map

(Smilkov et al., 2017)

Do NOT rely on a single gradient calculation

 SmoothGrad: add gaussian noise to inputs and average the gradients

(Smilkov et al., 2017)

Do NOT rely on a single gradient calculation

 SmoothGrad: add gaussian noise to inputs and average the gradients
 (Smilkov et al., 2017)

 Integrated Gradients: average gradients along a path from baseline to the input
 (Sundararajan et al., 2017)

Do NOT rely on a single gradient calculation

 SmoothGrad: add gaussian noise to inputs and average the gradients
 (Smilkov et al., 2017)

• Integrated Gradients: average gradients along a path from baseline to the input (Sundararajan et al., 2017)

Axiomatic Attribution for Deep Networks

Mukund Sundararajan, Ankur Taly, Qiqi Yan

(ICML, 2017)

Sensitivity

For every input and baseline that differ in one feature but have different predictions then the differing feature should be given a non-zero attribution

Sensitivity

Gradients violate Sensitivity

$$y = \begin{cases} x, & when \ x < 1 \\ 1, & when \ x \ge 1 \end{cases}$$

The output changes 1, while the gradient method gives attribution of 0 to \boldsymbol{x}

• Implementation invariance

The attributions are always identical for two functionally equivalent networks

The outputs of two networks are equal for all inputs, despite having very different implementations

$$f(h_1(x)) = f(h_2(x))$$

Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essentially about implementation invariance:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}$$

Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}$$

Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}$$

Some methods (e.g., LRP and DeepLift) do not satisfy the implementation invariance

Integrated Gradients

f : neural network

 $x \in \mathbb{R}^n$: input

 $x' \in \mathbb{R}^n$: baseline (e.g., black image, zero embedding vector)

Get samples along the straight line from x' to x

Integrated Gradients

f : neural network

 $x \in \mathbb{R}^n$: input

 $x' \in \mathbb{R}^n$: baseline (e.g., black image, zero embedding vector)

Compute gradients at all points along the path

Integrated Gradients

f : neural network

 $x \in \mathbb{R}^n$: input

 $x' \in \mathbb{R}^n$: baseline (e.g., black image, zero embedding vector)

Cumulate these gradients

$$IG_{\underline{i}}(\mathbf{x}) = (x_i - x_i') \times \int_{\alpha=0}^{1} \frac{\partial f(\mathbf{x}' + \alpha(\mathbf{x} - \mathbf{x}'))}{\partial x_i} d\alpha$$

On the i^{th} dimension

Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input ${\boldsymbol x}$ and the baseline ${\boldsymbol x}'$

$$\sum_{i=1}^{n} IG_i(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{x}')$$

Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x and the baseline x'

$$\sum_{i=1}^{n} IG_i(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{x}')$$

Sensitivity: for every input and baseline that differ in one feature but have different predictions then the differing feature should be given a non-zero attribution

Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x and the baseline x'

$$\sum_{i=1}^{n} IG_i(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{x}')$$

Sensitivity: for every input and baseline that differ in one feature but have different predictions then the differing feature should be given a non-zero attribution

- Sensitivity
- Implementation invariance

Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input ${\boldsymbol x}$ and the baseline ${\boldsymbol x}'$

$$\sum_{i=1}^{n} IG_i(\mathbf{x}) = f(\mathbf{x}) - \underline{f(\mathbf{x}')}$$
$$f(\mathbf{x}') \approx 0$$

Shapley

$$g(z) = \phi_0 + \sum_{i=1}^n \phi_i z_i$$

Question?

Uniqueness of Integrated Gradients

Each path yields a different attribution method

$$PathIG_{i}(\mathbf{x}) = \int_{\alpha=0}^{1} \frac{\partial f(\gamma(\alpha))}{\partial \gamma_{i}(\alpha)} \frac{\partial \gamma_{i}(\alpha)}{\partial \alpha} d\alpha$$

$$\gamma(\alpha)$$
: path function, $\gamma(0) = x'$, $\gamma(1) = x$

IG is the straight path:

$$\gamma(\alpha) = x' + \alpha(x - x')$$

Uniqueness of Integrated Gradients

Each path yields a different attribution method

$$PathIG_{i}(\mathbf{x}) = \int_{\alpha=0}^{1} \frac{\partial f(\gamma(\alpha))}{\partial \gamma_{i}(\alpha)} \frac{\partial \gamma_{i}(\alpha)}{\partial \alpha} d\alpha$$

$$\gamma(\alpha)$$
: path function, $\gamma(0) = x'$, $\gamma(1) = x$

- Sensitivity
- Implementation invariance

Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?

- ✓ The simplest path
- ✓ Preserving symmetry

For all inputs and baselines that have identical values for <u>symmetric variables</u>, the symmetric variables receive identical attributions

Swapping the two variables does not change the function

$$f(x,y) = f(y,x)$$

Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?

- ✓ The simplest path
- ✓ Preserving symmetry

For all inputs and baselines that have identical values for symmetric variables, the symmetric variables receive identical attributions

Example

$$logistic_regression(x_1 + x_2)$$

Input:
$$x_1 = x_2 = 1$$

 $Attr(x_1) = Attr(x_2)$

Baseline: $x_1 = x_2 = 0$

Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?

symmetry-preserving

- ✓ The simplest path
- ✓ Preserving symmetry

For all inputs and baselines that have identical values for symmetric variables, the symmetric variables receive identical attributions

Example

$$logistic_regression(x_1 + x_2)$$

Input:
$$x_1 = x_2 = 1$$

 $Attr(x_1) = Attr(x_2)$

Baseline: $x_1 = x_2 = 0$

Applying Integrated Gradients

The integral of integrated gradients can be efficiently approximated via a summation

$$IG_i(\mathbf{x}) \approx (x_i - x_i') \times \sum_{k=1}^m \frac{\partial f\left(\mathbf{x}' + \frac{k}{m}(\mathbf{x} - \mathbf{x}')\right)}{\partial x_i} \times \frac{1}{m}$$

m: the number of steps

Applications of Integrated Gradients

Task: object recognition

Model: GoogleNet Dataset: ImageNet

Integrated gradients are better at reflecting distinctive features of the input image

Original image

Top label and score

Top label: reflex camera Score: 0.993755

Top label: fireboat Score: 0.999961

Question?

Explaining Black-box Model

Gradient-based methods

Attention-based methods

What is attention?

In psychology, attention is the cognitive process of selectively concentrating on one or a few things while ignoring others

Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/

What is attention?

In psychology, attention is the cognitive process of selectively concentrating on one or a few things while ignoring others

The attention mechanism for neural networks is to mimic human brain actions in a simplified manner

Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/

Light up natural language procession (NLP)

Context vector: a good summary of the input

Context vector: a good summary of the input

$$\boldsymbol{c}_t = \sum_{i=1}^n \alpha_{ti} \boldsymbol{h}_i$$

Context vector for output y_t

$$\alpha_{ti} = align(y_t, x_i) \qquad \text{How well } y_t \text{ and } x_i \text{ are aligned}$$

$$= \frac{exp(score(s_{t-1}, h_i))}{\sum_{k=1}^{n} exp(score(s_{t-1}, h_k))} \qquad \text{Softmax of some predefined alignment score}$$

Context vector: a good summary of the input

$$\boldsymbol{c}_t = \sum_{i=1}^n \alpha_{ti} \boldsymbol{h}_i$$

$$\alpha_{ti} = align(y_t, x_i)$$

$$= \frac{exp(score(\mathbf{s}_{t-1}, \mathbf{h}_i))}{\sum_{k=1}^{n} exp(score(\mathbf{s}_{t-1}, \mathbf{h}_k))}$$

Context vector for output y_t

How well y_t and x_i are aligned

Softmax of some predefined alignment score

Can be parametrized by a feed-forward network jointly trained with other parts of the model

The attention weights $\{\alpha_{ti}\}$ somehow indicate how much of each input feature contributes to each output

Self-attention mechanism

Self-attention mechanism

Self-attention mechanism

Query: q

Key: *k*

Value: $oldsymbol{v}$

Self-attention mechanism

Query: q

Key: *k*

Value: \boldsymbol{v}

Self-attention mechanism

Query: q

Key: *k*

Value: $oldsymbol{v}$

Self-attention mechanism

Query: q

Key: *k*

Value: \boldsymbol{v}

Self-attention mechanism

Query: q

Key: *k*

Value: $oldsymbol{v}$

Self-attention mechanism

Query: q

Key: *k*

Value: \boldsymbol{v}

Self-attention mechanism

Composite embeddings based on attentions

Consider the last attention layer for model interpretation

Question?

Is Attention Interpretable?

Sofia Serrano, Noah A. Smith

(ACL, 2019)

Attention for Explanation

Attention weights can be highly inconsistent with model prediction

Intermediate Representation Erasure

- Explanation I: a ranking of importance of the attention layer's input representations
- Exam the impact of some contextualized inputs to an attention layer, $I' \subset I$, on the model's output

Intermediate Representation Erasure

- Explanation I: a ranking of importance of the attention layer's input representations
- Exam the impact of some contextualized inputs to an attention layer, $I' \subset I$, on the model's output
- Running the model twice: once without any modification, once with the attention weights of I'zeroed out

Intermediate Representation Erasure

Evaluate model prediction change

• Jensen-Shannon (JS) divergence between output distributions p and q_I ,

$$JS(P|Q) = \frac{1}{2}KL(P|M) + \frac{1}{2}KL(Q|M)$$
$$M = \frac{1}{2}P + \frac{1}{2}Q$$

• Difference between the argmaxes of p and q_I , (decision flip)

Remove the component $i^* \in I$ with the highest attention weight α_{i^*} $JS(p, q_{\{i^*\}})$ Comparison: a random component r drawn from I $JS(p, q_{\{r\}})$

Remove the component $i^* \in I$ with the highest attention weight α_{i^*} $JS(p, q_{\{i^*\}})$ Comparison: a random component r drawn from I $JS(p, q_{\{r\}})$

$$\nabla JS = JS(p, q_{\{i^*\}}) - JS(p, q_{\{r\}})$$

Indicate how important i^* is wrt r. Intuitively, if $\nabla \alpha = \alpha_{i^*} - \alpha_r$ is larger, ∇JS should be larger.

 $JS(p,q_{\{i^*\}})$ Remove the component $i^* \in I$ with the highest attention weight α_{i^*} $JS(p,q_{\{r\}})$

Comparison: a random component r drawn from I

$$\nabla JS = JS(p, q_{\{i^*\}}) - JS(p, q_{\{r\}})$$

- ✓ If i^* is more important, ∇JS is larger
- ✓ When ∇JS is small (close to 0), $\nabla \alpha$ tends to be small

(i^* and r are nearly "tied" in attention)

Remove the component $i^* \in I$ with the highest attention weight α_{i^*} $JS(p, q_{\{i^*\}})$

Comparison: a random component r drawn from I

$$\nabla JS = JS(p, q_{\{i^*\}}) - JS(p, q_{\{r\}})$$

 $\nabla \alpha = \alpha_{i^*} - \alpha_r$

- ✓ If i^* is more important, ∇IS is larger
- ✓ When ∇JS is small (close to 0), $\nabla \alpha$ tends to be small

 $JS(p,q_{\{r\}})$

(i^* and r are nearly "tied" in attention)

✓ When $\nabla \alpha$ is about 0.4, ∇JS is still close to 0

How much the attention weight can express the importance of a feature?

Decision flips caused by zeroing attention

Remove the component $i^* \in I$ with the highest attention weight α_{i^*}

Comparison: a random component r drawn from I

	Remove random: Decision flip?						
p?		Ya	hoo		IMDB		
Ħ		Yes	No		Yes	No	
ion	Yes	0.5	8.7	Yes	2.2	12.2	
Decision flip?	No	1.3	89.6	No	1.4	84.2	
Ŏ						2	
*:		Am	azon		Yelp		
ve		Yes	No		Yes	No	
Remove i^* :	Yes	2.7	7.6	Yes	1.5	8.9	
æ	No	2.7	87.1	No	1.9	87.7	

Intuitively, upper-right values should be much larger than lower-left values

Decision flips caused by zeroing attention

Remove the component $i^* \in I$ with the highest attention weight α_{i^*}

Comparison: a random component r drawn from I

✓ Upper-right values are larger than lower-left values (removing i^* is easier to flip decision)

Decision flips caused by zeroing attention

Remove the component $i^* \in I$ with the highest attention weight α_{i^*}

Comparison: a random component r drawn from I

- ✓ Upper-right values are larger than lower-left values (removing i^* is easier to flip decision)
- ✓ In most cases (lower-right values), erasing i^* does not change the decision

The highest attention weight indicates the most important feature?

$$I \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array} \right) \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \cdots \quad \alpha_n \quad \text{(descending order of importance)}$$

Intuitively, the top items in a truly useful ranking of importance would comprise a minimal necessary set of information for making the model's decision

Importance of Sets of Attention Weights

Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model's decision changes

 $I \qquad \alpha_{1} \qquad \alpha_{2} \qquad \alpha_{3} \qquad \alpha_{4} \qquad \cdots \qquad \alpha_{n} \qquad \Longrightarrow \qquad \text{Prediction change}$

Importance of Sets of Attention Weights

Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model's decision changes

$$I$$
 α_{1} α_{2} α_{3} α_{4} \cdots α_{n} \longrightarrow Prediction change I_{1} α_{1} α_{2} α_{3} α_{4} \cdots α_{n} \longrightarrow Prediction change

(Alternative rankings of importance)

Attention may not be a good interpretation method

Importance of Sets of Attention Weights

Baselines

- Random rankings
- Gradients
- Gradients × Attentions

Fractions of original components removed before first decision flip under different importance rankings

✓ Both a high attention weight and a high calculated gradient indicate an important component

Lipton (2016) describes a model as "transparent": a person can contemplate the entire model at once

Explanations are concise

Attention suggests a large part of features as "important"

Question?

Reference

- Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje. "Learning important features through propagating activation differences." International conference on machine learning. PMLR, 2017.
- Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." *International conference on machine learning*. PMLR, 2017.
- Serrano, Sofia, and Noah A. Smith. "Is attention interpretable?." arXiv preprint arXiv:1906.03731 (2019).
- Smilkov, Daniel, et al. "Smoothgrad: removing noise by adding noise." arXiv preprint arXiv:1706.03825 (2017).
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv* preprint arXiv:1810.04805 (2018).
- Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).