Roadshop Cosmetics VS Premium Cosmetics

Sodam Park

Department of Statistics SKKU

May 25, 2021

Overview

- 1. Design
- 2. Crossover Study
- 3. Application
- 4. Limitation
- 5. Reference

Motivation

- I am usually interested in skin and cosmetics. When I watch YouTube, I especially watch beauty YouTubers often. (ex. Director PI, Salary girl A and so on)
- When I watch YouTube, there are the videos the theme is what is effective through comparing cosmetics.
- However, there are no exact comparisons at the same time, and there are many things that are used and tested one by one.
- Therefore, I decided to experiment with using two cosmetics and comparing their efficacy.

Design

Unit

Me of the Day

Outcome

Moisture Change (After Measurement - Before Measurement)

Treatment

- Treatment :Sum LosecSumma Elixir Cream
- Control: EtudeHouse SoonJung Hydro Barrier Cream

Design

- 1. In the first week, apply A to the left face and B to the right.
- 2. It has a two-day wash-out period¹ to eliminate previous effects.
- 3. After wash out period, apply B to the left and A to the right.

 $^{^{1}}$ Wash-Out : a period between active drug periods, during which units receive no study medication.

Experiment

- 1. Before going to bed, wash your face with a foam cleanser.
- Measure skin moisture with the measuring device before applying cream
- 3. After 15 minutes of creaming, measure skin moisture.

Figure: Measuring Device

Matching Pair

Why did I experiment alone?

- Allergic reactions and skin troubles can occur.
- All cannot be tested under the same conditions.
- The cost is high.

Solution

Considering my condition on that day, let's match each other in a similar condition!

 Skin is very affected by body condition.(ex. sleep time, steps, makeup, etc)

Figure: Solution

Figure: 2 × 2 Crossover Design

- Crossover study is a type of randomized clinical trial. Each unit participates in all treatments.
- In 2 × 2 crossover study, if Sequence 1 received treatment A for Period 1, It received treatment B for Period 2 after a certain washout period.
- Conversely, if Sequence 2 received treatment B for Period 1, It received treatment A for Period 2 after a certain washout period.

$$Y_{ijkl} = \mu_k + \pi_l + \lambda_{k'_{l-1}} + \epsilon_{ijkl}^{1}$$

	Period 1	Period 2
Sequence AB	$\mu_A + \pi_1$	$\mu_B + \pi_2 + \lambda_{A_1}$
Sequence BA	$\mu_B + \pi_1$	$\mu_{A} + \pi_{2} + \lambda_{B_{1}}$

Table: 2×2 crossover study

- Treatment Effect (μ_k) : $\frac{1}{2}(\bar{d}_1+\bar{d}_2)=\mu_B-\mu_A-\frac{1}{2}(\lambda_A-\lambda_B)$
- Carryover Effect($\lambda_{k'_{l-1}}$): The effect of the treatment from the previous time period on the response at the current time period.
- Period Effect (π_I) : The effect of each period on outcome.
- Crossover design is mainly tested using a Two sample T-test or Wilcoxon Rank Sum test.

 $^{^{1}\}lambda_{k'_{0}}=0$

Advantage

• A comparison of treatments on the same subject is expected to be more precise. The increased precision often translates into a smaller sample size.

Disadvantage

- The statistical analysis of a cross-over experiment is more complex than a parallel-group experiment and requires additional assumptions.
- .The design cannot be used when the treatment (or the measurement of the response) alters the subject permanently

Why isn't the Potential Outcome Framework established?

- It is often difficult to manipulate the mediator perfectly.
- Even if such a manipulation is possible, the use of these designs requires the consistency assumption that
 the manipulation of the mediator should not affect the outcome through any pathway other than the
 mediator.

Descriptive Statistics

$$Y(outcome) = Moisture_{post} - Moisture_{post}^{1}$$

	Group							
	Left(AB)			Right(BA)				
	Roadshop	Premium	Difference ²	Overall ³	Roadshop	Premium	Difference	Overall
Mean	0.070	0.034	-0.036	0.052	0.073	0.047	-0.027	0.060
sd	0.039	0.014	0.032	0.034	0.037	0.049	0.055	0.044
n	7	7	7	7	7	7	7	7

Table: Descriptive Statistics

• Tests were conducted through the Two-sample T-test and the Wilcoxon Rank Sum Test.

¹The measurement is a percentage.

 $[\]overset{2}{\text{The moisture value on Premium - The moisture value on Roadshop}}$

³All values in the group

Two Sample T-test

Effect	Hypothesis	T-stat	df	p-value
Treatment	H_0 : $\mu_A = \mu_B$	-2.168	0.12	0.022
Carry-over	$H_0: \lambda_{A_1} = \lambda_{B_1}$	-0.492	0.12	0.632
Period	$H_0: \pi_1 = \pi_2$	-0.382	0.12	0.709

Table: Result for T-test

Effect	Estimate	CI.lower	CI.upper
Treatment	-0.031	-0.083	0.021

Table: Treatment Effect

- I created a function that performs 2 × 2 crossover tests.
- All tests in this study are two-sided tests.
- In the test, there is a treatment effect. However, there is no carryover and Period effect.
- Roadshop Cream Moisture Change is about 3.1% greater than Premium Cream Moisture Change.

Wilcoxon Rank Sum Test

Effect	Hypothesis	Chi ²	df	p-value
Period1	$H_0: \mu_A = \mu_B$ in Period1	0.4821	1	0.4821
Period2	$H_0: \mu_A = \mu_B$ in Period2	12.1	1	0.0005
Treatment*Period		1.45	1	0.23

Table: Result for Wilcoxon Rank Sum test

- The test was conducted using the library ("sanon").
- There is no difference in Period 1.However, in Period 2, the difference between Roadshop and Premium creams was very significant.
- Given the interaction between Treatment and Period effect, there is no interaction effect. Therefore, it seems to have resulted from the presence of carry over effect in Period 2.

Limitation

- The measuring machine has a large error.(the moisture value that varies every time)
- Since the unit is alone, the value may vary when applied to other units.(Low external validity)
- When the unit is matched, the condition is not exactly the same. Therefore, it would be good to consider the stratification of covariate.
 - The library ("sanon") can be stratified using a nonparametric method.

Reference

- Rezaei, Sadegh. The mathematical analysis of crossover designs. Diss. 1997.
- Putt, Mary E., and Vernon M. Chinchilli. "Nonparametric approaches to the analysis of crossover studies." Statistical Science (2004): 712-719.
- Kawaguchi, Atsushi, and Gary G. Koch. "Sanon: an R package for stratified analysis with nonparametric covariable adjustment." Journal of Statistical Software 67.9 (2015).
- Imai, Kosuke, Dustin Tingley, and Teppei Yamamoto. "Experimental designs for identifying causal mechanisms." Journal of the Royal Statistical Society: Series A (Statistics in Society) 176.1 (2013): 5-51.