Gravitational Lensing: Strong, Weak and Micro

Saas-Fee Advanced Course 33

Swiss Society for Astrophysics and Astronomy Edited by G. Meylan, P. Jetzer and P. North

With 196 Illustrations, 36 in Color

Peter Schneider

Institut für Astrophysik und Extraterrestrische Forschung Universität Bonn Auf dem Hügel 71 D-53121 Bonn, Germany peter@astro.uni-bonn.de

Christopher S. Kochanek

Department of Astronomy The Ohio State University 4055 McPherson Lab 140 West 18th Avenue Columbus, OH 43210 USA ckochanek@astonomy.ohio-state.edu

Volume Editors:

Georges Meylan Pierre North

Laboratoire d'Astrophysique Ecole Polytechnique Fédérale de Lausanne (EPFL) Observatoire CH-1290 Sauverny, Switzerland Zentrum für Astronomie Universität Heidelberg (ZAH)

Joachim Wambsganss

Universität Heidelberg (ZAH) Mönchhofstr. 12-14 D-69120 Heidelberg, Germany jkw@ari.uni-heidelberg.de

Philippe Jetzer Institute of Theoretical Physics Universität Zürich Winterthurerstrasse 190 CH-8057 Zürich, Switzerland

This series is edited on behalf of the Swiss Society for Astrophysics and Astronomy: Société Suisse d'Astrophysique et d'Astronomie Observatoire de Genève, ch. des Maillettes 51, 1290 Sauverny, Switzerland

Cover picture: (Left) Matterhorn, Zermatt, Switzerland, as seen in all its usual beauty (Kurt Müller, http://photo.zermatt.ch). (Right) Another vision of the same mountain, as observed on 1 April 2003, while suffering from the transiant phenomenon of a passing-by black hole of one Jupiter mass (with the help of B. McLeod, CfA, Castle, and F. Summers, STScI)

Library of Congress Control Number: 2006920099

ISBN-10 3-540-30309-X Springer Berlin Heidelberg New York ISBN-13 978-3-540-30309-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2006 Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting by the authors and SPI Publisher Services using a Springer LATEX macro package Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11568278 55/3100/SPI - 5 4 3 2 1 0

To the memory of Dennis Walsh (12 June 1933–1 June 2005) who, with his two colleagues Bob Carswell and Ray Weymann, discovered in 1979 the first extragalactic gravitational lens, the quasar QSO 0957+0561

Preface

The observation, in 1919 by A.S. Eddington and collaborators, of the gravitational deflection of light by the Sun proved one of the many predictions of Einstein's Theory of General Relativity: The Sun was the first example of a gravitational lens.

In 1936, Albert Einstein published an article in which he suggested using stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies.

It was only in 1979 that the first example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the first lens showing images in the form of arcs was detected.

The theory, observations, and applications of gravitational lensing constitute one of the most rapidly growing branches of astrophysics. The gravitational deflection of light generated by mass concentrations along a light path produces magnification, multiplicity, and distortion of images, and delays photon propagation from one line of sight relative to another. The huge amount of scientific work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.

The 33rd Saas-Fee Advanced Courses of the Swiss Society for Astronomy and Astrophysics, entitled *Gravitational Lensing: Strong, Weak, and Micro*, took place from 8–12 April, 2003, in Les Diablerets, a pleasant mountain resort of the Swiss Alps. The three lecturers were Peter Schneider, Christopher S. Kochanek, and Joachim Wambsganss.

These proceedings are provided in four complementary parts of a book on gravitational lensing. P. Schneider wrote Part 1, Introduction to Gravitational Lensing and Cosmology, the first draft of which was made available to all registered participants a week before the course. C.S. Kochanek wrote Part 2 about Strong Gravitational Lensing, while P. Schneider in Part 3 dealt with

VIII Preface

Weak Gravitational Lensing, and J. Wambsganss in Part 4 about Gravitational Microlensing.

We are thankful to Nicole Tharin, the secretary of the Laboratoire d'Astrophysique de l'Ecole Polytechnique Fédérale de Lausanne (EPFL), for her continuous presence and efficient help, and to Yves Debernardi for his efficient logistic support during the course. We are equally thankful to Frédéric Courbin, Dominique Sluse, Christel Vuissoz, and Alexander Eigenbrod for help in the editorial process of this book.

The meeting was also sponsored by the Université de Lausanne, the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Swiss Society for Astronomy and Astrophysics, the Académie Suisse des Sciences Naturelles, the Fonds National Suisse de la Recherche Scientifique, the Space Telescope Science Institute, the Universität Zürich, and the Observatoire de Genève.

Lausanne, July 2005 Georges Meylan Philippe Jetzer Pierre North

Contents

		Introduction to Gravitational Lensing and Cosmology	
P. \$	Schne	ider	1
1	Intro	oduction	1
	1.1	History of Gravitational Light Deflection	2
	1.2	Discoveries	5
	1.3	What is Lensing Good for?	14
2	Gravitational Lens Theory		
	2.1	The Deflection Angle	18
	2.2	The Lens Equation	20
	2.3	Magnification and Distortion	23
	2.4	Critical Curves and Caustics, and General	
		Properties of Lenses	25
	2.5	The Mass-Sheet Degeneracy	29
3	Simp	ple Lens Models	31
	3.1	Axially Symmetric Lenses	31
	3.2	The Point-Mass Lens	34
	3.3	The Singular Isothermal Sphere	36
	3.4	Non-Symmetric Lenses	38
4	The	Cosmological Standard Model I: The Homogeneous Universe	44
	4.1	The Cosmic Expansion	44
	4.2	Distances and Volumes	
	4.3	Gravitational Lensing in Cosmology	52
5	Basi	cs of Lensing Statistics	54
	5.1	Cross-Sections	55
	5.2	Lensing Probabilities; Optical Depth	57
	5.3	Magnification Bias	58
6	The Cosmological Standard Model II:		
	The	Inhomogeneous Universe	61
	6.1	Structure Formation	61
	6.2	Halo Abundance and Profile	71

X	Contents

7 Refe		The Concordance Model 77 Challenges 81 I Remarks 83 es 84
		Strong Gravitational Lensing
1	Intro	duction
2		ntroduction to the Data
3		Principles
	3.1	Some Nomenclature
	3.2	Circular Lenses
	3.3	Non-Circular Lenses
4	The	Mass Distributions of Galaxies
	4.1	Common Models for the Monopole
	4.2	The Effective Single Screen Lens
	4.3	Constraining the Monopole
	4.4	The Angular Structure of Lenses
	4.5	Constraining Angular Structure
	4.6	Model Fitting and the Mass Distribution of Lenses
	4.7	Non-Parametric Models
	4.8	Statistical Constraints on Mass Distributions
	4.9	Stellar Dynamics and Lensing
5		e Delays
	5.1	A General Theory of Time Delays
	5.2	Time Delay Lenses in Groups or Clusters
	5.3	Observing Time Delays and Time Delay Lenses
	5.4	Results: The Hubble Constant and Dark Matter
_	5.5	The Future of Time Delay Measurements
6		itational Lens Statistics
	6.1	The Mechanics of Surveys
	6.2	The Lens Population
	6.3	Cross Sections
	6.4	Optical Depth
	6.5	Spiral Galaxy Lenses
	6.6	Magnification Bias
	6.7	Cosmology With Lens Statistics
7	6.8	The Current State
7	7.1	**
	7.2	The Effects of Halo Structure and the Power Spectrum
8		Role of Substructure
O	8.1	Low Mass Dark Halos
9	-	Optical Properties of Lens Galaxies
J	9.1	The Interstellar Medium of Lens Galaxies

		Content	ts XI
10	E 4	110 10 11 (01)	0.40
10		ended Sources and Quasar Host Galaxies	
		An Analytic Model for Einstein Rings	
		Numerical Models of Extended Lensed Sources	
11		3 Lensed Quasar Host Galaxies	
11 D (s Strong Lensing Have a Future?	
Rei	eren	ces	256
Do	n+ 9.	Weak Gravitational Lensing	
		eider	269
1		oduction	
2		Principles of Weak Gravitational Lensing	
	2.1	Distortion of Faint Galaxy Images	
	2.2	Measurements of Shapes and Shear	
	2.3	Tangential and Cross Component of Shear	
	2.4	Magnification Effects	
3		servational Issues and Challenges	
	3.1	Strategy	
	3.2	Data Reduction: Individual Frames	
	3.3	Data Reduction: Coaddition	
	3.4	Image Analysis	292
	3.5	Shape Measurements	
4	Clus	sters of Galaxies: Introduction, and Strong Lensing	298
	4.1	Introduction	
	4.2	General Properties of Clusters	299
	4.3	The Mass of Galaxy Clusters	301
	4.4	Luminous Arcs and Multiple Images	304
	4.5	Results from Strong Lensing in Clusters	309
5	Mas	ss Reconstructions from Weak Lensing	315
	5.1	The Kaiser–Squires Inversion	316
	5.2	Improvements and Generalizations	317
	5.3	Inverse Methods	324
	5.4	Parameterized Mass Models	327
	5.5	Problems of Weak Lensing Cluster Mass Reconstruction	
		and Mass Determination	330
	5.6	Results	333
	5.7	Aperture Mass and Other Aperture Measures	343
	5.8	Mass Detection of Clusters	346
6	Cosmic Shear – Lensing by the LSS		
	6.1	Light Propagation in an Inhomogeneous Universe	
	6.2	Cosmic Shear: The Principle	
	6.3	Second-Order Cosmic Shear Measures	
	6.4	Cosmic Shear and Cosmology	
	6.5	E-Modes, B-Modes	
	6.6	Predictions; Ray-Tracing Simulations	

7	Larg	ge-Scale Structure Lensing: Results	
	7.1	Early Detections of Cosmic Shear	. 383
	7.2	Integrity of the Results	
	7.3	Recent Cosmic Shear Surveys	
	7.4	Detection of B-Modes	
	7.5	Cosmological Constraints	
	7.6	3-D Lensing	
	7.7	Discussion	
8		Mass of, and Associated with Galaxies	
	8.1	Introduction	
	8.2	Galaxy–Galaxy Lensing	
	8.3	Galaxy Biasing: Shear Method	
	8.4	Galaxy Biasing: Magnification Method	
9		itional Issues in Cosmic Shear	
	9.1	Higher-Order Statistics	. 430
	9.2	Influence of LSS Lensing on Lensing by Clusters	400
10	0	and Galaxies	
10		cluding Remarks	
Re	terenc	es	. 442
Pa	rt 4:	Gravitational Microlensing	
		osganss	. 453
1	Long	sing of Single Stars by Single Stars	151
Т	1.1	Brief History	
	1.2	Theoretical Background	
	1.3	How Good is the Point Lens – Point	. 404
	1.0	Source Approximation?	158
	1.4	Statistical Ensembles	
2		ary Lenses	
_	2.1	Theory and Basics of Binary Lensing	
	2.2	First Microlensing Lightcurve of a Binary Lens: OGLE-7	
	2.3	Binary Lens MACHO 1998-SMC-1	
	2.4	Binary Lens MACHO 1999-BLG-047	
	2.5	Binary Lens EROS BLG-2000-005	
3		colensing and Dark Matter: Ideas, Surveys and Results	
•	3.1	Why We Need Dark Matter: Flat Rotation Curves (1970s)	
	3.2	How to Search for Compact Dark Matter (as of 1986)	
	3.3	Just Do It: MACHO, EROS, OGLE et al. (as of 1989)	
	3.4	"Pixel"-Lensing: Advantage Andromeda!	
	3.5	Current Interpretation of Microlensing Surveys with Respect	, .
	2.0	to Halo Dark Matter (as of 2004)	. 479
	3.6	Microlensing toward the Galactic Bulge	
4		colensing Surveys in Search of Extrasolar Planets	
·	4.1	How Does the Microlensing Search for Extrasolar Planet	
		Work? The Method	. 486

	4.2	Why Search for Extrasolar Planets with Microlensing? –
		Advantages and Disadvantages
	4.3	Who is Searching? The Teams: OGLE, MOA, PLANET,
		MicroFUN
	4.4	What is the Status of Microlensing Planet Searches so far?
		The Results
	4.5	When will Planets be Detected with Microlensing?
		The Prospects
	4.6	Note Added in April 2004 (About One Year after the 33rd
		Saas Fee Advanced Course)
	4.7	Summary
5	High	ner Order Effects in Microlensing:
6	Astr	ometric Microlensing
7	Qua	sar Microlensing
	7.1	Microlensing Mass, Length and Time Scales
	7.2	Early and Recent Theoretical Work on Quasar Microlensing 524
	7.3	Observational Evidence for Quasar Microlensing
	7.4	Quasar Microlensing: Now and Forever?
Ref	erenc	es
Ind	lex .	541

List of Previous Saas-Fee Advanced Courses

- !! 2004 The Sun, Solar Analogs and the Climate $\it J.D.$ $\it Haigh, M.$ $\it Lockwood,$ $\it M.S.$ $\it Giampapa$
- !! 2003 GravitationalLensing: Strong, Weak and Micro P. Schneider, C. Kochanek, J. Wambsganss
- !! 2002 The Cold Universe A.W. Blain, F. Combes, B.T. Draine
- !! 2001 Extrasolar Planets
 T. Guillot, P. Cassen, A. Quirrenbach
- !! 2000 High-Energy Spectroscopic Astrophysics S.M.~Kahn,~P.~von~Ballmoos,~R.A.~Sunyaev
- !! 1999 Physics of Star Formation in Galaxies $F. \ Palla, \ H. \ Zinnecker$
- !! 1998 Star Clusters
 B.W. Carney, W.E. Harris
- !! 1997 Computational Methods for Astrophysical Fluid Flow R.J. LeVeque, D. Mihalas, E.A. Dorfi, E. Müller
- !! 1996 Galaxies Interactions and Induced Star Formation R.C. Kennicutt, F. Schweizer, J.E. Barnes
- !! 1995 Stellar Remnants S.D. Kawaler, I. Novikov, G. Srinivasan
- * 1994 Plasma Astrophysics
 J.G. Kirk, D.B. Melrose, E.R. Priest
- * 1993 The Deep Universe
 A.R. Sandage, R.G. Kron, M.S. Longair
- * 1992 Interacting Binaries S.N. Shore, M. Livio, E.J.P. van den Heuvel
- * 1991 The Galactic Interstellar Medium W.B. Burton, B.G. Elmegreen, R. Genzel
- * 1990 Active Galactic Nuclei R. Blandford, H. Netzer, L. Woltjer
- ! 1989 The Milky Way as a Galaxy
 G. Gilmore, I. King, P. van der Kruit
- ! 1988 Radiation in Moving Gaseous Media H. Frisch, R.P. Kudritzki, H.W. Yorke
- ! 1987 Large Scale Structures in the Universe A.C. Fabian, M. Geller, A. Szalay
- ! 1986 Nucleosynthesis and Chemical Evolution J. Audouze, C. Chiosi, S.E. Woosley

- ! 1985 High Resolution in Astronomy R.S. Booth, J.W. Brault, A. Labeyrie
- ! 1984 Planets, Their Origin, Interior and Atmosphere D. Gautier, W.B. Hubbard, H. Reeves
- ! 1983 Astrophysical Processes in Upper Main Sequence Stars A.N. Cox, S. Vauclair, J.P. Zahn
- * 1982 Morphology and Dynamics of Galaxies J. Binney, J. Kormendy, S.D.M. White
- ! 1981 Activity and Outer Atmospheres of the Sun and Stars F. Praderie, D.S. Spicer, G.L. Withbroe
- * 1980 Star Formation J. Appenzeller, J. Lequeux, J. Silk
- * 1979 Extragalactic High Energy Physics F. Pacini, C. Ryter, P.A. Strittmatter
- * 1978 Observational Cosmology J.E. Gunn, M.S. Longair, M.J. Rees
- * 1977 Advanced Stages in Stellar Evolution I. Iben Jr., A. Renzini, D.N. Schramm
- * 1976 Galaxies

 K. Freeman, R.C. Larson, B. Tinsley
- * 1975 Atomic and Molecular Processes in Astrophysics
 A. Dalgarno, F. Masnou-Seeuws, R.V.P. McWhirter
- * 1974 Magnetohydrodynamics L. Mestel, N.O. Weiss
- * 1973 Dynamical Structure and Evolution of Stellar Systems G. Contopoulos, M. Hénon, D. Lynden-Bell
- * 1972 Interstellar Matter N.C. Wickramasinghe, F.D. Kahn, P.G. Metzger
- * 1971 Theory of the Stellar Atmospheres D. Mihalas, B. Pagel, P. Souffrin

* Out of print

! May be ordered from Geneva Observatory
Saas-Fee Courses
Geneva Observatory
CH-1290 Sauverny
Switzerland

!! May be ordered from Springer-Verlag