Summary of Locker's Self-Adjointness For Multipoint Differential Operators

The set-up is as follows: given a closed interval [a, b], fix $n \in \mathbb{N}$, so that the differential operator is given by

$$\tau := \sum_{k=0}^{n} a_k(t) \left(\frac{d}{dt}\right)^k$$
, where $a_k(t) \in C^{\infty}[a,b]$ and $a_n(t) \neq 0 \ \forall t \in [a,b]$.

Let $S := L^2[a, b]$ with the standard inner product, and let $H^n[a, b]$ be a subspace of S consisting of $f \in C^{n-1}[a, b]$, with $f^{(n-1)}$ absolutely continuous (i.e. differentiable almost everywhere), and $f^{(n)} \in S$. Fix $m \in \mathbb{N}$, and let $\pi = \{a = x_0 < x_1 < \ldots < x_m = b\}$ be a partition of [a, b]. Finally, let $H^n(\pi)$ be a collection of $f \in S$ such that

- 1. On each subinterval $[x_{l-1}, x_l]$, f(t) possesses right-hand and left-hand limits at the endpoints x_{l-1} and x_l respectively. Moreover, let f_l denote the function f on subinterval (x_{l-1}, x_l) , and let $f_l(x_{l-1}) = f(x_{l-1}^+)$ and $f_l(x_l) = f(x_l^-)$. We call f_1, \ldots, f_m the components of f and denote this by writing $f = (f_1, \ldots, f_m)$.
- 2. For $l = 1, ..., m, f_l \in H^n[x_{l-1}, x_l]$.

We define a multipoint boundary value (MBV) to be a linear functional B on $H^n(\pi)$ of the form

$$B(f) = \sum_{l=1}^{m} \sum_{j=0}^{n-1} [\alpha_{jl} f_l^{(j)}(x_{l-1}) + \beta_{jl} f_l^{(j)}(x_l)]$$

where $f = (f_1, \ldots, f_m)$, and $\alpha_{jl}, \beta_{jl} \in \mathbb{R}$. Note that since every boundary value consists of a double sum, and for all l, j we expect that $f_l^{(j)}(x_{l-1})$ and $f_l^{(j)}(x_l)$ to be linearly independent, the space of all boundary values has dimension 2mn.

Now, suppose we are given a set of k linearly independent MBVs

$$B_i(f) = \sum_{l=1}^{m} \sum_{j=0}^{n-1} [\alpha_{ijl} f_l^{(j)}(x_{l-1}) + \beta_{ijl} f_l^{(j)}(x_l)], \qquad i \in \{1, \dots, k\}.$$

Let L be an operator given by $Lf = \tau f$, whose domain is

$$\mathfrak{D}(L) = \{ f \in H^n(\pi) \mid B_i(f) = 0, i = 1, \dots, k \}.$$

Then L is a multipoint differential operator. Observe that density of $\mathcal{D}(L)$ in S ensures that L has a well-defined adjoint L^* . Our goal is to obtain an explicit formula for L^* and its domain. First, recall the Green's formula from Dunford & Schwartz: given $f, g \in H^n(\pi)$,

$$\langle \tau f, g \rangle - \langle f, \tau^* g \rangle = \sum_{l=1}^m \sum_{p,q=0}^{n-1} [F_{x_l}^{p\,q}(\tau) f_l^{(p)}(x_l) g_l^{(q)}(x_l) - F_{x_{l-1}}^{p\,q}(\tau) f_l^{(p)}(x_{l-1}) g_l^{(q)}(x_{l-1})],$$

where F_t denotes an n×n boundary matrix for τ at the point $t \in [a, b]$. From Dunford & Schwartz, the entries of F_t are given by

$$F_t^{pq}(\tau) = \sum_{k=j}^{n-p-1} (-1)^k \binom{k}{j} \left(\frac{d}{dt}\right)^{k-j} a_{p+k+1}(t), \qquad p+q < n-1$$

$$F_t^{pq}(\tau) = (-1)^q a_n(t), \qquad p+q = n-1$$

$$F_t^{pq}(\tau) = 0, \qquad p+q > n-1.$$

Consider a linear system of equations

$$\sum_{l=1}^{m} \sum_{j=0}^{n-1} [\alpha_{ijl} x_{jl} + \beta_{ijl} y_{jl}] = 0, \quad i = 1, \dots, k.$$

Since the list $\{B_i\}_{i=1}^k$ is linearly independent, the above system has rank k, and so dim range $\{B_i\}_{i=1}^k = k$. Now, since the system is homogeneous, the solution space must have the same dimension as the null space of the system. Since $\dim\{B_i\}_{i=1}^k = 2mn$, it follows by the fundamental theorem of linear maps that

$$\dim \text{ null}\{B_i\}_{i=1}^k = \dim\{B_i\}_{i=1}^k - \dim \text{ range}\{B_i\}_{i=1}^k = 2mn - k.$$

Thus, let $[x_{ijl}, y_{ijl}], i = 1, ..., 2mn - k$ be the set of solutions of the above system that also form a basis for the solution space. Define

$$\alpha_{ijl}^* = -\sum_{p=0}^{n-1} x_{ipl} F_{x_{l-1}}^{p, q}(\tau)$$
 and $\beta_{ijl}^* = \sum_{p=0}^{n-1} y_{ipl} F_{x_l}^{p, q}(\tau)$,

where i = 1, ..., 2mn - k, j = 0, ..., n - 1, l = 1, ..., m. Finally, let

$$B_i^*(f) = \sum_{l=1}^m \sum_{j=0}^{n-1} [\alpha_{ijl}^* f_l^{(j)}(x_{l-1}) + \beta ijl^* f_l^{(j)}(x_l)], \qquad i \in \{1, \dots, 2mn - k\}.$$

We refer to B_i^* as adjoint multipoint boundary values. In the following theorem, we prove that the above construction is valid.

Theorem 1. The adjoint operator L^* is the multipoint differential operator defined by

$$\mathcal{D}(L^*) = \{ f \in H^n(\pi) \mid B_i^*(f) = 0, i = 1, \dots, 2mn - k \}, L^*f = \tau^*f.$$

Proof. First, we will define L_0 to be what we think is the adjoint of L. That is, let L_0 be the linear operator in S whose domain consists of all functions $f \in H^n(\pi)$ satisfying $B_i^*(f) = 0$ for $i = 1, \ldots, 2mn - k$ with $L_0 f = \tau^* f$. We want to show that $L_0 = L^*$. First, we show that $\mathcal{D}(L_0) \subseteq \mathcal{D}(L^*)$.

Let $g \in \mathcal{D}(L_0)$ and set $g^* = L_0 g = \tau^* g$. Then, let $f \in \mathcal{D}(L)$. Now, we want to show that $\langle Lf, g \rangle = \langle f, L_0 g \rangle = \langle f, g^* \rangle$. Recall that the numbers

$$x_{jl} = f_l^{(j)}(x_{l-1}), \quad y_{jl} = f_l^{(j)}(x_l),$$

form the solutions to the system

$$\sum_{l=1}^{m} \sum_{j=0}^{n-1} [\alpha_{ijl} x_{jl} + \beta_{ijl} y_{jl}] = 0, \quad i = 1, \dots, k.$$

Also recall that as defined earlier, $[x_{ijl}, y_{ijl}], i = 1, ..., 2mn - k$ is the set of solutions of the above system which form a basis for the solution space. So, by definition of a basis, there exist constants $c_1, ..., c_{2mn-k}$ such that

$$f_l^{(j)}(x_{l-1}) = \sum_{i=1}^{2mn-k} c_i x_{ijl} \text{ and } f_l^{(j)}(x_l) = \sum_{i=1}^{2mn-k} c_i y_{ijl}.$$

Now, we apply Green's formula to obtain

$$\langle Lf, g \rangle - \langle f, g^* \rangle = \langle \tau f, g \rangle - \langle f, \tau^* g \rangle$$

$$= \sum_{l=1}^{m} \sum_{p,q=0}^{n-1} [F_{x_l}^{p\,q}(\tau) f_l^{(p)}(x_l) g_l^{(q)}(x_l) - F_{x_{l-1}}^{p\,q}(\tau) f_l^{(p)}(x_{l-1}) g_l^{(q)}(x_{l-1})]$$
(Substitute for the $f_l^{(j)}$)
$$= \sum_{l=1}^{m} \sum_{p,q=0}^{n-1} \sum_{i=1}^{2mn-k} c_i [F_{x_l}^{p\,q}(\tau) y_{ipl} g_l^{(q)}(x_l) - F_{x_{l-1}}^{p\,q}(\tau) x_{ipl} g_l^{(q)}(x_{l-1})]$$
(Substitute in α^*, β^*)
$$= \sum_{i=1}^{2mn-k} c_i \sum_{l=1}^{m} \sum_{q=0}^{n-1} [\beta_{iql}^* g_l^{(q)}(x_l) + \alpha_{iql}^* g_l^{(q)}(x_{l-1})]$$

$$= \sum_{i=1}^{2mn-k} c_i B_i^*(g)$$
(By definition of g)
$$= 0$$

Since $f \in \mathcal{D}(L)$ is arbitrary, and $\langle Lf, g \rangle = \langle f, L_0g \rangle = \langle f, g^* \rangle$, we can conclude that $g \in \mathcal{D}(L^*)$, which implies $\mathcal{D}(L_0) \subseteq \mathcal{D}(L^*)$.

To complete the proof, it remains to show that $\mathcal{D}(L^*) \subseteq \mathcal{D}(L_0)$. Let $g \in \mathcal{D}(L^*)$. Now, we want to show that $g \in H^n(\pi)$ and that $B_i^*(g) = 0$, which would imply that $g \in \mathcal{D}(L_0)$ by definition of L_0 . Fix an integer l with $1 \leq l \leq m$, and let \bar{g} denote the restriction of g to the interval $[x_{l-1}, x_l]$. Let \bar{f} be any function in $H^n[x_{l-1}, x_l]$ having its support in the open interval (x_{l-1}, x_l) . Then, we can extend \bar{f} to f defined on [a, b] by making it 0 outside of $[x_{l-1}, x_l]$. The extension of f belongs in $\mathcal{D}(L^*)$ because $f \in H^n(\pi)$, and $B_i(f) = 0$ (because it is 0 at all boundary points). Then,

$$0 = \langle Lf, g \rangle - \langle f, L^*g \rangle = \int_{x_{l-1}}^{x_l} (\tau \bar{f}) \bar{g} - \int_{x_{l-1}}^{x_l} \bar{f}(L^*g).$$

By Theorem 10 of [1, p. 1294], the above implies that \bar{g} is equal a.e to a function in $H^n[x_{l-1}, x_l]$ and that $L^*g = \tau^*\bar{g}$ a.e. on $[x_{l-1}, x_l]$. Since this holds for all l, we can conclude $g \in H^n(\pi)$ and $L^*g = \tau^*g$.

Next, we want to show that $B_i^*(g) = 0$. Fix an integer i with $1 \le i \le 2mn - k$ and choose a function $\sigma = (\sigma_1, \ldots, \sigma_m) \in H^n(\pi)$ such that $\sigma_l^{(j)}(x_{l-1}) = x_{ijl}$ and $\sigma_l^{(j)}(x_l) = y_{ijl}$. That is, evaluating σ at each boundary point yields the set of solutions that form the basis for the solution space. Clearly, $\sigma \in \mathcal{D}(L)$, and from Green's formula

$$0 = \langle L\sigma, g \rangle - \langle \sigma, L^*g \rangle$$

$$= \langle \tau\sigma, g \rangle - \langle \sigma, \tau^*g \rangle$$

$$= \sum_{l=1}^{m} \sum_{p,q=0}^{n-1} [F_{x_l}^{pq}(\tau)\sigma_l^{(p)}(x_l)g_l^{(q)}(x_l) - F_{x_{l-1}}^{pq}(\tau)\sigma_l^{(p)}(x_{l-1})g_l^{(q)}(x_{l-1})]$$

$$= \sum_{l=1}^{m} \sum_{p,q=0}^{n-1} [F_{x_l}^{pq}(\tau)y_{ipl}g_l^{(q)}(x_l) - F_{x_{l-1}}^{pq}(\tau)x_{ipl}g_l^{(q)}(x_{l-1})]$$

$$= \sum_{l=1}^{m} \sum_{q=0}^{n-1} [\beta_{iql}^*g_l^{(q)}(x_l) + \alpha_{iql}^*g_l^{(q)}(x_{l-1})]$$

$$= B_i^*(q)$$

So, we have shown that if given $g \in \mathcal{D}(L^*)$, $B_i^*(g) = 0$. That together with $g \in H^n(\pi)$ proven earlier implies that $g \in \mathcal{D}(L_0)$. Thus, $L_0 = L^*$.

References

- [1] N. Dunford and J. T. Schwartz. Linear Operators II. Interscience, New York, 1963.
- [2] Locker John. Self-Adjointness for multi-point differential operators. *Pacific Journal of Mathematics*, 45, 1973.