Scilab Textbook Companion for Engineering Physics by S. K. Srivastava and R. A. Yadav¹

Created by
Pratishtha Singh
B.TECH
Electronics Engineering
Dr. A.P.J. Abdul Kalam Technical University
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: S. K. Srivastava and R. A. Yadav

Publisher: New Age International, New Delhi

Edition: 8

Year: 2011

ISBN: 978-81-224-3011-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Schab Codes		4
1	Relativistic Mechanics	5
2	interference	16
3	Diffraction	32
4	Polarisation	51
5	Lasers	58
6	Fiber optics and Holography	61
7	Wave Mechanics	65
8	X Rays	77
9	Dielectric Properties of Materials	86
10	Magnetic Properties of Materials	88
11	Ultrasonics	92
12	Electromagnetics	93
13	Superconductivity	101

List of Scilab Codes

Exa 1.1	length of the bar	5
Exa 1.2	velocity of rocket	5
Exa 1.4	percentage contraction of rod	6
Exa 1.7	velocity of circular lamina	6
Exa 1.8	speed of clock	7
Exa 1.9	distance travelled by beam	7
Exa 1.10	distance travelled by particle	8
Exa 1.11	speed	8
Exa 1.12	velocity of beta particle	9
Exa 1.13	velocity of B with respect to A	9
Exa 1.14	velocity in laboratory frame	9
Exa 1.17	resultant velocity	10
Exa 1.18	mass and momentum and total energy and kinetic energy	11
Exa 1.19	velocity of particle	11
Exa 1.20	mass and speed of an electron	12
Exa 1.21	work to be done	12
Exa 1.22	speed	13
Exa 1.23	speed of rocket and electron	13
Exa 1.24	velocity	14
Exa 1.25	kinetic energy and momentum of electron	14
Exa 1.26	proton gain in mass	14
Exa 1.27	speed and mass of electron	15
Exa 2.2	ratio of intensity	16
Exa 2.3	ratio of intensity	16
Exa 2.4	ratio of intensity	17
Exa 2.5	relative intensities	17
Exa 2.7	distance between two coherent sources	18
Exa 2.8	fringe width	18

Exa 2.9	wavelength of light
Exa 2.10	thickness of glass plate
Exa 2.11	refractive index of sheet
Exa 2.12	refrctive index of mica
Exa 2.13	intensity and lateral shift
Exa 2.14	spacing between slits
Exa 2.15	distance
Exa 2.16	refractive index and order and distance and wavelength
	and fringe width and thickness
Exa 2.17	thickness of plate
Exa 2.18	least thickness
Exa 2.19	thickness of film
Exa 2.20	thickness of film
Exa 2.21	angle of wedge
Exa 2.22	wavelength of light
Exa 2.23	wavelength of light
Exa 2.24	refractive index of liquid 2'
Exa 2.25	radius and thickness
Exa 2.26	distance
Exa 2.27	radius and thickness
Exa 2.28	diameter of ring
Exa 2.29	diameter of ring
Exa 2.30	difference of square of diameters
Exa 3.1	angular width and linear width
Exa 3.2	wavelength of light
Exa 3.3	width of slit
Exa 3.4	wavelength of incident light
Exa 3.6	values of lambda1 and lambda2
Exa 3.7	half angular width
Exa 3.8	angle
Exa 3.9	distances
Exa 3.10	wavelength of light and missing orders
Exa 3.11	wavelength of spectral line
Exa 3.12	difference in deviations
Exa 3.13	orders
Exa 3.14	number of lines per cm
Exa 3.15	orders of spectrum
Exa 3 17	angle of diffraction

Exa 3.18	number of lines in one centimeter	40
Exa 3.19	spectral line	40
Exa 3.20	grating element	41
Exa 3.21	angle of diffraction and absent spectra	41
Exa 3.22	difference in two wavelenghts	42
Exa 3.23	dispersive power	43
Exa 3.24	orders	43
Exa 3.25	difference in wavelenghts	44
Exa 3.26	aperture	44
Exa 3.27	separation of two points on the moon	44
Exa 3.28	numerical aperture	45
Exa 3.29	resolving power	45
Exa 3.30	maximum resolving power	46
Exa 3.31	minimum number of lines	46
Exa 3.32	will the telescope be able to observe the wiremesh	46
Exa 3.33	distance between the centres of the images of two stars	47
Exa 3.34	diameter of a telescope objective	47
Exa 3.35	smallest angle between two stars	48
Exa 3.36	limit of resolution of telescope	48
Exa 3.37	resolving limit of microscope	48
Exa 3.38	resolving power of grating and smallest wavelength dif-	
	ference	49
Exa 3.39	resolving power and smallest wavelength	49
Exa 4.1	compare intensities	51
Exa 4.2	angle of refraction	51
Exa 4.3	polarising angle and angle of refraction	52
Exa 4.4	thickness of half wave plate	52
Exa 4.5	thickness of quarter wave plate	53
Exa 4.6	thickness of doubly refracting plate	53
Exa 4.7	angle of rotation	53
Exa 4.8	specific rotation	54
Exa 4.9	strength of solution	54
Exa 4.10	difference in the refractive indices	55
Exa 4.11	optical rotation	55
Exa 4.12	specific rotation	56
Exa 4.13	length of solution	56
Exa 4.14	rotation of plane of polarisation	56
Exa 4.15	percentage purity of sugar sample	57

Exa 5.1	area of spot on the moon
Exa 5.2	angular spread and areal spread
Exa 5.3	number of oscillations and coherence time 59
Exa 5.4	area and intensity of image
Exa 6.1	critical angle and acceptance angle and numerical aper-
	ture and percentage of light collected 61
Exa 6.2	numerical aperture and critical angle
Exa 6.3	refractive index and normalised frequency and total num-
	ber of guided modes in the fibre
Exa 6.4	cutoff wavelength
Exa 6.5	maximum and minimum value of phase constant 63
Exa 7.1	de broglie wavelength
Exa 7.2	de broglie wavelength
Exa 7.4	wavelength
Exa 7.5	Kinetic energy of electron
Exa 7.6	wavelength of electron
Exa 7.7	de broglie wavelength of electron
Exa 7.9	energy of neutron
Exa 7.10	wavelength and number of photons
Exa 7.11	uncertainity in position of electron
Exa 7.12	uncertainity in velocity 69
Exa 7.13	uncertainity in momentum and velocity of electron and
	alpha particle
Exa 7.14	uncertainity in position of electron
Exa 7.15	uncertainity in frequency
Exa 7.16	minimum error
Exa 7.17	time required for the atomic system
Exa 7.18	uncertainity in momentum and kinetic energy of the nu-
	cleon
Exa 7.19	uncertainity in velocity
Exa 7.20	uncertainity in frequency and energy of electron 72
Exa 7.22	probability of finding the particle
Exa 7.24	energy of electron
Exa 7.26	probability of particle
Exa 7.28	energy of neutron
Exa 7.29	zero point energy
Exa 7.30	zero point energy
Exa 7.31	frequency of vibration
	7

Exa 8.1	value of plancks constant	77
Exa 8.2	maximum frequency	77
Exa 8.3	number of electrons and speed	78
Exa 8.4	longest wavelength	78
Exa 8.5	spacing of crystal	79
Exa 8.6	wavelength	79
Exa 8.7	thickness	80
Exa 8.8	atomic number	80
Exa 8.9	wavelength of X Rays	81
Exa 8.10	wavelength of second X Ray beam	81
Exa 8.11	wavelength of X Ray used	82
Exa 8.12	possible spacing of the set of planes	82
Exa 8.13	Compton shift and wavelength and fraction of energy	
	lost	83
Exa 8.14	wavelength and energy of photon	83
Exa 8.15	wavelength and direction of electron	84
Exa 8.16	wavelength of two X Rays and maximum wavelength	
	present in the scattered X Rays and maximum kinetic	
	energy	84
Exa 9.1	dielectric constant of liquid	86
Exa 9.2	charge on capacitor	86
Exa 9.3	resultant voltage	87
Exa 10.1	permeability and susceptibility of bar	88
Exa 10.2	current	88
Exa 10.3	magnetic moment of rod	89
Exa 10.4	flux density and magnetic intensity and permeability .	89
Exa 10.5	number of ampere turns	90
Exa 10.6	relative permeability	90
Exa 10.7	magnetising current	91
Exa 11.1	fundamental frequency	92
Exa 12.1	electric flux and flux	93
Exa 12.2	electric field	93
Exa 12.3	electric field	94
Exa 12.4	separation between the equipotential surfaces	94
Exa 12.5	force per unit area	95
Exa 12.6	charge	95
Exa 12.7	increase in radius	96
Exa 12.8	average values of intensities	96

Exa 12.9	amplitudes of electric and magnetic fields	97
Exa 12.11	skin depth	98
Exa 12.12	frequency and show that frequencies can be considered	
	as good conductor	98
Exa 12.13	penetration depth	99
Exa 12.14	conduction current and displacement current densities	100
Exa 13.1	value of T	101
Exa 13.2	temperature and critical current density at the temper-	
	ature	101

Chapter 1

Relativistic Mechanics

Scilab code Exa 1.1 length of the bar

```
1 clc
2 //to calculate length of the bar measured by the
    ststionary observer
3 lo =1 //length in metre
4 v=0.75*3*10^8 //speed (m/s)
5 c=3*10^8 //light speed(m/s)
6 l=lo*sqrt(1-(v^2/c^2))
7 disp("length of bar in is l="+string(1)+"m")
```

Scilab code Exa 1.2 velocity of rocket

```
1 clc
2 //to calculate velocity of rocket
3 //lo be the length at rest
4 l=99/100 //length is 99 per cent of its length at
    rest is l=(99/100)lo
5 c=3*10^8 //light speed(m/s)
6 v=sqrt(c^2*(1-1^2)) //formula is v=c sqrt(1-(1/lo)^2)
```

```
7 disp("velocity of rocket is v="+string(v)+"m/s")
```

Scilab code Exa 1.4 percentage contraction of rod

```
1 clc
2 //to percentage contraction of a rod
3 c=3*10^8 // light speed (m/s)
4 v=0.8*c // velocity(m/s)
5 //let lo be the length of the rod in the frame in
     which it is at rest
6 //s' is the frame which is moving with a speed 0.8c
     in a direction making an angle 60 with x-axis
7 //components of lo along perpendicular to the
      direction of motion are lo cos60 and lo sin60
      respectively
8 11=\cos(\%pi/3)*sqrt(1-(v/c)^2) //length of the rod
     alond the direction of motion = lo cos(pi/3) sqrt
     (1 - (v/c)^2)
9 12=sin(%pi/3) //length of the rod perpendicular to
     the direction of motion =lo sin60
10 l=sqrt(11^2+12^2) // length of the moving rod
11 per=(1-1)*100/1
12 disp("percentage contraction of a rod is per="+
     string(per)+"%")
```

Scilab code Exa 1.7 velocity of circular lamina

```
1 clc
2 //to calculate velocity of the circular lamina
3 c=3*10^8 //light speed (m/s)
4 //R'=R/2 (radius)
5 //R'=R sqrt(1-(v/c)^2)
6 v=(sqrt(3)/2)*c
```

```
7 disp("velocity of the circular lamina relative to
     frame s is v="+string(v)+"m/s")
8 //answer is given in terms of c in the textbook
```

Scilab code Exa 1.8 speed of clock

```
1 clc
2 //to calculate speed of the clock
3 //clock should record l=59 minutes for each hour recorded by clocks stationary with respect to the observer
4 l=59
5 lo=60
6 c=3*10^8 //light speed (m/s)
7 v=sqrt(c^2*(1-1^2/lo^2))
8 disp("speed of the clock is ="+string(v)+"m/s")
```

Scilab code Exa 1.9 distance travelled by beam

Scilab code Exa 1.10 distance travelled by particle

```
1 clc
2 //to calculate distance travelled by the particle
3 deltat0=2*10^-8 //proper half life to of the
    particle in (s)
4 c=3*10^8 //light speed (m/s)
5 v=0.96*c //speed of the particle (m/s)
6 deltat=(deltat0)/(sqrt(1-(v/c)^2)) //half life in
    the laboratory frame t in (s)
7 //t=deltat (flux of the beam falls to (1/2) times
    initial flux)
8 d=v*deltat //d=vt
9 disp("distance travelled by the particle in this
    time is d="+string(d)+"m")
10 //answer is given wrong in the textbook =20.45 m
```

Scilab code Exa 1.11 speed

Scilab code Exa 1.12 velocity of beta particle

Scilab code Exa 1.13 velocity of B with respect to A

Scilab code Exa 1.14 velocity in laboratory frame

1 clc

```
2 //to calculate velocity in the laboratory frame
3 c=3*10^8 // light speed (m/s)
4 v=0.8*c //velocity relative to laboratory along
       positive direction of x-axis
5 //given that u'=3 i+4 j+12 k (m/s)
6 \text{ ux1=3 } //\text{in } (\text{m/s})
7 uy1=4 //in (m/s)
8 \text{ uz1=12 } //\text{in } (\text{m/s})
9 ux = (ux1+v)/(1+v*ux1/c^2)
10 uy = (uy1*sqrt(1-(v/c)^2))/(1+v*ux1/c^2)
11 uz = (uz1 * sqrt (1 - (v/c)^2)) / (1 + v * ux1/c^2)
12 disp("u=ux i+uy j+uz k")
13 disp("where")
14 \operatorname{disp}("ux="+\operatorname{string}(ux)+"m/s")
15 disp("uy="+string(uy)+"m/s")
16 disp("uz="+string(uz)+"m/s")
```

Scilab code Exa 1.17 resultant velocity

```
1 clc
2 // to calculate velocity of the particle
3 c=3*10^8 // light speed (m/s)
4 v=0.4*c //velocity of frame s' relative to s along
     axis x
5 ux=0.8*c*(1/2) //component of velocity u(=0.8 c) of
     the particle along x axis ux=0.8 c cos60
6 uy=0.8*c*sin (%pi/3) //component of the velocity u
     of the particle along y axis
7 ux1 = (ux - v) / (1 - ux * v / c^2)
8 uy1=uy*sqrt(1-(v/c)^2)/(1-(ux*v/c^2))
9 disp("resultant velocity as observed by a person in
     frame s1 is u1=ux1 i+uy1 j")
10 disp("where")
11 disp("ux1="+string(ux1)+"m/s")
12 disp("uy1="+string(uy1)+"m/s")
```

```
13 //answer is given in terms of c in the book i.e. uy1 = 0.756 \,\mathrm{c} m/s
```

Scilab code Exa 1.18 mass and momentum and total energy and kinetic energy

```
1 clc
2 //to calculate mass, momentum, total energy, kinetic
      energy
3 c=3*10^8 // light speed (m/s)
4 v=c/sqrt (2) //velocity (m/s)
5 //let mo be the rest mass of the particle
6 //relativistic mass m of the particle is m=mo/sqrt
     (1-(v/c)^2)
7 \text{ m=1/sqrt} (1-v^2/c^2) //in \text{ kg}
8 disp("mass m="+string(m)+" mo")
9 //momentum p of the particle is p=mv
10 p=m*v //in kg-m/s
11 disp("momentum p="+string(p)+" mo")
12 //total energy E of the particle
13 E=m*c^2 //in J
14 disp("energy E="+string(E)+" mo")
15 //kinetic energy K=E-mo c^2
16 \text{ K=E-c^2} // \text{in J}
17 disp("kinetic energy K="+string(K)+" mo")
18 //answer is given in terms of m0 and c in the book
```

Scilab code Exa 1.19 velocity of particle

```
1 clc

2 //to calculate velocity of the parcticle

3 c=3*10^8 //light speed(m/s)

4 // we know that E(energy)=mc^2
```

```
5 // mo=rest mass
6 //E=3 moc^2=mc^2 or m=3 mo (given that total energy
    of the particle is thrice its rest energy)
7 m=3 // relativistic mass
8 //formula is v=c sqrt(1-(mo/m)^2)
9 v=sqrt(c^2*(1-(1/m)^2))
10 disp("velocity of the particle is v="+string(v)+"m/s
    ")
```

Scilab code Exa 1.20 mass and speed of an electron

```
1 clc
2 //to calculate mass(m), speed(v) of an electron
3 K=1.5*10^6*1.6*10^-19 //kinetic energy(J)
4 m0=9.11*10^-31 //rest mass of an electron(kg)
5 c=3*10^8 // velocity of light in vacuum(m/s)
6 m=(K/c^2)+m0 //relativistic kinetic energy(k=(m-mo)c^2)
7 disp("mass is m="+string(m)+"kg")
8 v=c*sqrt(1-m0^2/m^2)
9 disp("speed of an electron is v="+string(v)+"m/s")
```

Scilab code Exa 1.21 work to be done

```
1 clc
2 //to calculate work to be done
3 E=0.5*10^6 //rest energy of electron (MeV) E=m0*c^2
4 v1=0.6*3*10^8 //speed of electron in (m/s)
5 v2=0.8*3*10^8
6 c=3*10^8 //speed of light in (m/s)
7 K1=E*((1/sqrt(1-v1^2/c^2))-1) //kinetic energy in (eV)
8 K2=E*((1/sqrt(1-v2^2/c^2))-1)
```

```
9 w=(K2-K1)*1.6*10^-19
10 disp("amount of work to be done is w="+string(w)+"J"
)
```

Scilab code Exa 1.22 speed

```
1 clc
2 //to calculate speed
3 c=3*10^8 //light speed (m/s)
4 m=2.25 //mass m of a body be 2.25 times its rest
        mass mo i.e. m=2.25m0
5 //formula is v=c sqrt(1-(m0/m)^2)
6 v=c*sqrt(1-(1/m)^2)
7 disp(" speed is v="+string(v)+"m/s")
```

Scilab code Exa 1.23 speed of rocket and electron

```
1 clc
2 //to calculate speed of the rocket
3 m0=50 //weight of man on the earth(kg)
4 m=50.5 //weight of man in rocket ship (kg)
5 c=3*10^8 //speed of light(m/s)
6 v=c*sqrt(1-m0^2/m^2)
7 disp("speed of the rocket is v="+string(v)+"m/s")
8 //to calculate speed of electron
9 m0=9.11*10^-31 //mass of electron =rest mass of proton
10 m=1.67*10^-27
11 v=c*sqrt(1-m0^2/m^2)
12 disp("speed of an electron is v="+string(v)+"m/s")
```

Scilab code Exa 1.24 velocity

```
1 clc
2 //to calculate velocity
3 c=3*10^8 //light speed (m/s)
4 //K(kinetic energy)=(m-mo(rest mass))c^2
5 //it can also be written as mc^2=K+m0c^2
6 //given that K=2m0c^2(rest mass energy)
7 //m=3m0
8 m=3 //relativistic mass
9 //formula is v=c sqrt(1-(m0/m)^2)
10 v=c*sqrt(1-(1/m)^2)
11 disp("velocity of a body is v="+string(v)+"m/s")
```

Scilab code Exa 1.25 kinetic energy and momentum of electron

```
1 clc
2 //to calculate kinetic energy ,momentum of electron
3 m0=9.11*10^-31 //its rest mass (kg)
4 c=3*10^8 //light velocity in (m/s)
5 m=11*m0 //mass of moving electron is 11 times its
    rest mass
6 K=(m-m0)*c^2/(1.6*10^-19) // kinetic energy
7 disp("kinetic energy is K="+string(K)+"eV")
8 v=c*sqrt(1-(m0/m)^2) //velocity(m/s)
9 p=m*v //momentum
10 disp("momentum is p="+string(p)+"kg m/s")
```

Scilab code Exa 1.26 proton gain in mass

```
1 clc
2 //to calculate proton gain in mass
3 c=3*10^8 //light speed(m/s)
```

```
4 K=500*10^6*1.6*10^-19 //kinetic energy (J)
5 deltam=K/c^2
6 disp("proton gain in mass is delm="+string(deltam)+"
         kg")
7 //answer is given wrong in the book=8.89*10^28 kg
```

Scilab code Exa 1.27 speed and mass of electron

```
1 clc
2 //to calculate speed of 0.1MeV electron
3 E=0.512*10^6 //rest mass energy E=m0*c^2
4 c=3*10^8 //velocity of light (m/s)
5 K=0.1*10^6 //kinetic energy (MeV)
6 v=c*sqrt(1-(E/(K+E))^2)
7 disp("speed of electron is v="+string(v)+"m/s")
8 //to calculate mass and speed of 2MeV electron
9 E=2*10^6*1.6*10^-19 //in (J)
10 m=E/c^2
11 disp("mass is m="+string(m)+"kg")
12 m0=9.11*10^-31 //electron mass (kg)
13 v=c*sqrt(1-m0^2/m^2)
14 disp("speed is v="+string(v)+"m/s")
```

Chapter 2

interference

Scilab code Exa 2.2 ratio of intensity

```
1 clc
2 //to calculate ratio of intensity
3 //I1/I2=1/25
4 //formula is a1/a2=sqrt(I1/I2)=1/5
5 a2=5 //a2=5*a1
6 a1=1
7 I=((1+5)^2)/((1-5)^2)
8 disp("ratio of intensity at the maxima and minima in the interference pattern is Imax/Imin=((a1+a2)^2)/((a1-a2)^2)="+string(((a1+a2)^2)/((a1-a2)^2))+"unitless")
9 //answer is given in terms of ratio
```

Scilab code Exa 2.3 ratio of intensity

```
3 //the intensity at any point is I=a1^2+a2^2+2*a1*a2*
      cos del
4 / let a1=a2=a
5 //phase difference del is 0
6 //then I0=a^2+a^2+2*a*a*cos 0
7 //we get I0=4a^2
8 I0=4 //intensity
9 //path difference is lemda/8
10 //phase difference =2*%pi/lemda*path difference=%pi
     /4
11 / I1 = a^2 + a^2 + 2a * a * cos \% pi / 4
12 //I1 = 3.414 a^2
13 I1=3.414
14 intensity=I1/I0
15 disp(" ratio of intensity ="+string(intensity)+"
      unitless")
```

Scilab code Exa 2.4 ratio of intensity

```
1 clc
2 //to calculate ratio of maximum intensity to minimum intensity
3 //formula is I1/I2=a1^2/a2^2=100/1
4 //a1/a2=10/1
5 a1=10 //a1=10*a2
6 a2=1
7 disp("the ratio of maximum intensity to minmum intensity in the interference pattern Imax/Imin =((a1+a2)^2)/((a1-a2)^2)="+string(((a1+a2)^2)/((a1-a2)^2))+" unitless")
8 //answer is given in terms of ratio in the book
```

Scilab code Exa 2.5 relative intensities

```
1 clc
2 //to calculate relative intensities
3 //Imax/Imin=(a1+a2)^2/(a1-a2)^2+105/95
4 //(a1+a2)/(a1-a2)=1.051
5 //we get a1/a2=40
6 a1=40 //a1=40*a2
7 a2=1
8 disp("the ratio of the intensities of interfering sources is I1/I2=a1^2/a2^2="+string(a1^2/a2^2)+" unitless")
9 //answer is given in terms of ratio in the book
```

Scilab code Exa 2.7 distance between two coherent sources

Scilab code Exa 2.8 fringe width

```
1 clc
2 //to calculate fringe width
3 mu=1.5 //refractive index (unitless)
4 alpha=%pi/180 //refracting angle in radian
5 Y1=20*10^-2 //distance between the source and the biprism in m
6 Y2=80*10^-2 //distance in m
```

```
7 D=Y1+Y2 // distance in m
8 lambda=6900*10^-10 //wavelength in m
9 twod=2*(mu-1)*alpha*Y1
10 omega=D*lambda/twod
11 disp("the fringe width is omega="+string(omega)+"m")
```

Scilab code Exa 2.9 wavelength of light

```
1 clc
2 //to calculate wavelength of light
3 omega=1.888*10^-2/20 //in (m)
4 D=1.20 //distance of eye piece from the source in m
5 twod=0.00075 //distance between two virtual sources in m
6 lambda=omega*twod/D
7 disp("the wavelength of light is lambda="+string(lambda)+"m")
```

Scilab code Exa 2.10 thickness of glass plate

```
1 clc
2 //to calculate thickness of glass plate
3 n=3
4 mu=1.5 //refractive index (unitless)
5 lambda=5450*10^-10 //wavelength in m
6 t=n*lambda/(mu-1)
7 disp("the thickness of glass plate is t="+string(t)+"m")
```

Scilab code Exa 2.11 refractive index of sheet

Scilab code Exa 2.12 refretive index of mica

```
1 clc
2 //to calculate refractive index of mica
3 t=1.2*10^-8 //thickness of thin sheet of mica in m
4 n=1
5 lambda=6*10^-7 //wavelength in m
6 mu=(n*lambda/t)+1
7 disp("the refractive index of mica is mu="+string(mu)+"unitless")
8 //answer is given wrong in the book=1.50
```

Scilab code Exa 2.13 intensity and lateral shift

```
1 clc
2 //to calculate intensity
3 mu=1.5 //refractive index(unitless)
4 t=1.5*10^-6 //thickness of thin glass plate in m
5 pathdifference=(mu-1)*t // in m
6 lambda=5*10^-7 //wavelength in m
7 //del=2*%pi*pathdifference/lambda
8 del=3*%pi
9 a1=1
```

```
10
         //where a1=a2=a
11 a2=1
12 // formula is I = a1^2 + a2^2 + 2*a1*a2*cos del
13 // where \cos 3\% pi=-1
14 I=a1^2+a2^2+2*a1*a2*(-1)
15 disp("the intensity at the centre of the screen is I
     ="+string(I)+"unitless")
16 //to calculate lateral shift
17 D=1 // distance in m
18 twod=5*10^-4 //distance between two slits in m
19 mu=1.5 //refractive index (unitless)
20 t=1.5*10^-6 //thickness of thin glass plate in m
21 \quad x0=D*(mu-1)*t/twod
22 disp("the lateral shift of the central maximum is x0
     ="+string(x0)+"m")
```

Scilab code Exa 2.14 spacing between slits

Scilab code Exa 2.15 distance

```
1 clc
2 //to calculate distance of the third bright fringe
    on the screen from the central maximum
3 lambda=6.5*10^-5 //wavelength in cm
```

```
4 twod=0.2 //distance between the slits in cm
5 D=120 //distance between the plane of the slits and
      the screen in cm
6 n=3
7 X3=D*n*lambda/twod
8 disp("the distance of the third bright fringe from
      the central maximum is X3="+string(X3)+"cm")
9 //to calculate the least distance from the central
     maximum
10 lambda1=6.5*10^-5 //wavelength in cm
11 lambda2=5.2*10^-5 //wavelength in cm
12 / Xn = Dn lambda 1 / 2d = D(n+1) lambda 2 / 2d
13 / \text{we get}
14 n=lambda2/(lambda1-lambda2)
15 disp("n="+string(n)+"unitless")
16 \quad Xn=D*n*lambda1/twod
17 disp("the distance from the central maximum when the
       bright fringes due to both wavelengths coincide
      is Xn="+string(Xn)+"cm")
```

Scilab code Exa 2.16 refractive index and order and distance and wavelength and fringe width and thickness

```
1 clc
2 //to calculate refractive index
3 D=10 //distance in cm
4 twod=0.2 //distance detween the slits in cm
5 t=0.05 //thickness of transparent plate in cm
6 deltaX=0.5 //in cm
7 mu=(deltaX*twod/(D*t))+1
8 disp("the refractive index of the transparent plate is mu="+string(mu)+"unitless")
9 //to calculate order
10 n=10
11 lambda=7000*10^-8 //wavelength in cm
```

```
12 //path difference =n*lambda
13 n1=n*lambda/(5000*10^-8)
14 disp("the order will be visible is n1="+string(n1)+"
      unitless")
15 //to calculate distance between the two coherent
      sources
16 D=100 // distance in m
17 lambda=6000*10^-8 // wavelength in cm
18 omega=0.05 //distance between two consecutive bright
       fringes on the screen in cm
19 twod=D*lambda/omega
20 disp("the distance between the coherent sources is
     twod="+string(twod)+"cm")
21 //to calculate wavelength
22 Xn=1 //distance of fourth bright fringe from the
      central fringe in cm
23 twod=0.02 //distance between the two coherent
      sources in cm
24 n=4
25 D=100 // distance in cm
26 \quad lambda=Xn*twod/(n*D)
27 disp("the wavelength of light is lambda="+string(
      lambda) + "cm")
28 //to calculate wavelength
29 //position of nth bright fringe from the centre of
      the central fringe is Xn=D*n*lambda/2d---eq(1)
30 //fringe width umega=D*lambda/2d
                         ----eq(2)
31 // from eq(1) and eq(2) we get, Xn=n*omega
32 //for 11th bright fringe X11=11*omega
33 //position for nth dark fringe Xn' = (2n+1)D*lambda/4d
34 / X4' = (7/2) * omega
\frac{35}{\text{distance}} between 11th and 4th dark fringe = 0.8835
     cm
36 //we get
37 \text{ omega} = 0.1178 //in cm
38 twod=0.05 //distance between slis in cm
39 D=100 // distance in cm
```

```
40 lambda=omega*twod/D
41 disp("the wavelength of light is lambda="+string(
      lambda) + "cm")
42 //to calculate changed fringe width
43 / X10 - X0 = 10 * omega
44 //given that X10-X0=14.73-12.34=2.39mm
45 omega=0.239 //in mm
46 lambda=6000 //wavelength in angstrom
47 lambda1=5000 //lambda'=5000 angstrom
48 omega1=omega*lambda1/lambda
49 disp("the changed fringe width is omegal="+string(
      omega1) + "mm")
50 //to calculate thickness of mica sheet
51 n=3
52 mu=1.6 //refractive index(unitless)
53 \quad lambda=5.89*10^-5 //wavelength in cm
54 t=n*lambda/(mu-1)
55 disp("the thickness of mica sheet is t="+string(t)+"
     cm")
56 //answer of thickness is given wrong in the book
      =0.002945 cm
```

Scilab code Exa 2.17 thickness of plate

```
1 clc
2 //to calculate the smallest thickness of the plate
3 mu=1.5 //refractive index(unitless)
4 r=60*%pi/180 //angle of refraction in radians
5 lambda=5890*10^-10 //wavelength in m
6 n=1
7 //formula is t=n*lambda/(2*mu*cosr) where cosr=0.5
8 t=n*lambda/(2*mu*0.5)
9 disp("the smallest thickness of the plate which will appear dark by reflection is t="+string(t)+"m")
```

Scilab code Exa 2.18 least thickness

```
1 clc
2 //to calculate least thickness of the film
3 lambda=5893*10^-10//wavelength in m
4 r=0 //in degree
5 mu=1.42 //refractive index
6 n=1
7 //the formula is t=n*lambda/(2*mu*cosr), where cos0 =1
8 t=n*lambda/(2*mu*1)
9 disp("the least thickness of the film that will appear black is t="+string(t)+"m")
10 t=(2*n-1)*lambda/(2*mu*1*2)
11 disp("the least thickness of the film that will appear bright is t="+string(t)+"m")
```

Scilab code Exa 2.19 thickness of film

```
1 clc
2 //to calculate thickness of the film
3 lambda1=6.1*10^-7 //wavelength in m
4 lambda2=6*10^-7 // wavelength in m
5 //the two dark consecutive fringes are overlapping
    for the wavelength lambda1 and lambda2
    respectively
6 //then, n*lambda1=(n+1)*lambda2
7 //we get,
8 n=lambda2/(lambda1-lambda2)
9 sini=4/5
10 mu=4/3
11 //formula is mu=sini/sinr
```

Scilab code Exa 2.20 thickness of film

```
1 clc
2 //to calculate thickness of the film
3 mu=1.33 //refractive index of soap film (unitless)
4 i=45*%pi/180
5 //the formula is mu=sini/sinr
6 sinr=0.5317
7 cosr=sqrt(1-(sinr)^2)
8 //for destructive interference
9 lambda=5890*10^-10 //wavelength in m
10 n=1
11 t=n*lambda/(2*mu*cosr)
12 disp("the thickness of the film is t="+string(t)+"m")
```

Scilab code Exa 2.21 angle of wedge

```
1 clc
2 //to calculate angle of the wedge
3 lambda=6000*10^-10 //wavelength in m
4 mu=1.4 //refractive index in unitless
5 omega=2*10^-3 //distance in m
6 theta=lambda/(2*mu*omega)
7 disp("the angle of the wedge is theta ="+string(theta)+"radians")
```

Scilab code Exa 2.22 wavelength of light

```
1 clc
2 //to calculate wavelength of light
3 theta=10*%pi/(60*60*180) //angle of wedge in radians
4 omega=5*10^-3 //distance between the successive fringes in cm
5 mu=1.4 //refractive index
6 lambda=2*mu*theta*omega
7 disp("the wavelength of light is lambda="+string(lambda)+"m")
```

Scilab code Exa 2.23 wavelength of light

```
1 clc
2 //to calculate wavelength of the light
3 D15=0.590*10^-2 //diamater of 15th ring in m
4 D5=0.336*10^-2 //diameter of 5th ring in m
5 p=10
6 R=1 //radius of plano convex lens in m
7 //formula is lambda=Dn+p^2-Dn^2/4pR
8 lambda=((D15^2)-(D5^2))/(4*p*R)
9 disp("the wavelength of the monochromatic light is lambda="+string(lambda)+"m")
```

Scilab code Exa 2.24 refractive index of liquid

```
3 n=6
4 lambda=6000*10^-10 //wavelength in m
5 R=1 //radius of curvature of the curved surface in m
6 Dn=3.1*10^-3 //diameter of 6th bright ring in m
7 mu=2*(2*n-1)*lambda*R/Dn^2
8 disp("the refractive index of the liquid is mu="+ string(mu)+"unitless")
```

Scilab code Exa 2.25 radius and thickness

Scilab code Exa 2.26 distance

```
1 clc
2 //to calculate the distance from the apex of the
    wedge at which the maximum due to the two
    wavelengths first coincide
3 //condition for maxima for normal incidence air film
    is 2t=(2n+1)lambda/2
4 //let nth order maximum due to lambda1 coincides
    with (n+1)th order maximum due to lambda2
```

```
5 //we get , n=(3lambda2-lambda1)/2(lambda1-lambda2)
6 // we also get , 2t=lambda1*lambda2/(lambda1-lambda2)
7 //t=X*theta
8 lambda1=5896*10^-8 //wavelength in cm
9 lambda2=5890*10^-8 //wavelength in cm
10 theta=0.3*%pi/180 //angle of wedge
11 X=lambda1*lambda2/(2*(lambda1-lambda2)*theta)
12 disp("the distance from the apex of the wedge is X=" +string(X)+"cm")
```

Scilab code Exa 2.27 radius and thickness

Scilab code Exa 2.28 diameter of ring

Scilab code Exa 2.29 diameter of ring

```
1 clc
2 //to calculate diameter
3 \quad lambda1=6*10^-5 //wavelength in cm
4 lambda2=4.5*10^-5 //wavelength in cm
5 R=90 //radius of curvature of the curved surface in
     cm
6 //Dn^2=4nRlambda1 -----eq (1)
7 / Dn + 1^2 = 4(n+1)Rlambda2 - eq(2)
8 //the nth dark ring due to lambda1 coincides with (n
     +1)th dark ring due to lambda2
9 //from eq (1) and eq (2) -4nRlambda1 = 4(n+1)Rlambda2
10 // \text{ we get}
11 n=lambda2/(lambda1-lambda2)
12 Dn=sqrt (4*n*R*lambda1)
13 disp("the diameter of nth dark ring for lambda1 is
     Dn="+string(Dn)+"cm")
```

Scilab code Exa 2.30 difference of square of diameters

```
1 clc
```

```
2 //to calculate the difference of square of diameters
       for nth and (n+p)th ring when light of
      wavelength lambda is changed to lambda'
3 lambda=6*10^-5 //wavelength in cm
4 lambda1=4.5*10^-5 //wavelength in cm
5 / \text{Let D} = (D^2 - Dn^2) = 0.125 \text{ cm}^2
6 D = 0.125
7 //formula is D'(n+p)^2-D'n^2=lambda'*(D(n+p)^2-Dn^2)
     /lambda
8 disp("the difference of square of diameters is D1(n+
     p)^2-D1n^2=(lambda1*D)/lambda="+string((lambda1*D))
     )/lambda)+"cm^2")
  //to calculate difference of square of diamaters
     when liqquid of refractive index mu' is
      introduced
10 mu=1 //refractive index (unitless)
11 mu1=1.33 // mu'=1.33
12 // \text{formula is D'} (n+p)^2 - D' n^2 = (mu/mu') * (D(n+p)^2 - Dn)
13 disp("the difference of square of diameters is D1(n+
     (mu*D)^2-D1n^2=(mu*D)/mu1="+string((mu*D)/mu1)+"cm^2"
14 //to calculate difference of square of diameters
     when radius of curvature of convex surface of the
       plano convex lens is doubled
15 R1=2 //radius of curvature is R'=2R
16 R = 1
17 //formula is D'(n+p)^2-D'n^2=(R'/R)*(D(n+p)^2-Dn^2)
18 disp("the difference of square of diameters is D1(n+
     (R1*D)^2-D1n^2=(R1*D)/R="+string((R1*D)/R)+"cm^2"
```

Chapter 3

Diffraction

Scilab code Exa 3.1 angular width and linear width

```
1 clc
2 //to calculate angular width and linear width
3 \ lambda = 6 * 10^{-5}
4 e=0.01 //width of slit in cm
5 //position of minima is given by
6 sintheta=lambda/e
                                     // \sin t h e t a = m * lambda /
                     , where m = 1, 2, 3, \dots
7 disp("sintheta="+string(sintheta)+" m")
8 //since theta is very small, so sintheta is
      approximately equal to theta
9 theta=sintheta
10 theta1=2*theta
11 disp("total angular width of central maximum is
      theta1="+string(theta1)+" m radians ")
12 d=100 // distance in cm
13 Y=theta*d
14 \quad Y1 = 2 * Y
15 disp("linear width of central maximum on the screen
      is Y1="+string(Y1)+" m cm")
16 disp("values of m = 1, 2, 3, \dots gives the
      directions of first, second ...... minima")
```

Scilab code Exa 3.2 wavelength of light

Scilab code Exa 3.3 width of slit

```
1 clc
2 //to calculate width of slit
3 //direction of minima in fraunhofer diffraction due
    to single slit is given by %pi/lambda*e*siuntheta
    =+m*%pi, where m=1,2,3
4 //angular spread of the central maximum on either
    side of the incident light is sintheta=lambda/e,
    where m=1,position of first minima
5 lambda=5000*10^-8
6 e=lambda/sin(%pi/6)
7 disp("width of slit is e="+string(e)+"cm")
```

Scilab code Exa 3.4 wavelength of incident light

```
1 clc
2 //to calculate wavelength of incident light
3 // direction of minima is given by e*sintheta=+m*
     lambda
4 //for first minima m=1,i.e. e*sintheta=lambda,
     sintheta is approximately equal to theta, then we
     can write it as e*theta=lambda .....eq(1)
5 / \text{theta} = Y/d \dots eq(2)
6 e=0.02 //in cm
7 Y = 0.5
                //position of first minima from the
     central maxima in cm
  d = 200
                   //distance of screen from the slit
     in cm
9 // from eq (1) and eq (2), we get
10 lambda=e*Y/d
11 disp("wavelength of incident light is lambda="+
     string(lambda) + "cm")
```

Scilab code Exa 3.6 values of lambda1 and lambda2

```
6 //from eq(1) and eq(2), we get e*sintheta=4*lambda1
     =5*lambda2...eq(3)
7 y = 0.5
                    //in cm
8 f = 100
                      //in cm
9 theta=y/f
                              //in radian
10 sintheta=theta //theta is very small
11 e=0.05
          //width of slit in cm
12 lambda1=e*sintheta/4
13 disp("lambda1="+string(lambda1)+"cm")
14 / from eq(3) we get,
15 \quad lambda2 = 4 * lambda1/5
16 disp("lambda2="+string(lambda2)+"cm")
```

Scilab code Exa 3.7 half angular width

Scilab code Exa 3.8 angle

```
1 clc
2 //to calculate angle
3 lambda=6000*10^-8 //wavelength of light in cm
4 e=0.03 //width of slit in cm
5 //e*sintheta=m*lambda, where m=1
6 theta=asind(lambda/e)
```

```
7 disp("angle at which the first dark band are formed
    in the fraunhofer diffraction pattern is theta="+
    string(theta)+"degree")
8 theta1=asind(3*lambda/(2*e))
9 disp("angle at which the next bright band are formed
    in the fraunhofer diffraction pattern is theta1=
    "+string(theta1)+"degree")
```

Scilab code Exa 3.9 distances

```
1 clc
2 //to calculate distances of first dark band and of
     next bright band on either side of the central
     maximum
3 //formula is e*sintheta=m*lambda, where m=1
4 lambda=5890*10^-8 //wavelength of light in cm
5 e=0.03 //width of slit in cm
6 sintheta=lambda/e
7 theta=sintheta //becoz theta is very small, so
      sintheta is approximately equal to theta
8 f = 50
9 \text{ y=f*theta}
10 disp ("linear distance of first minimum from the
      central maximum is y="+string(y)+"cm")
11 sintheta1=3*lambda/(2*e)
12 theta1=sintheta1
13 y1=f*theta1
14 disp("linear distance of first secondary maxima is
     y1="+string(y1)+"cm")
```

Scilab code Exa 3.10 wavelength of light and missing orders

```
1 clc
```

```
//to calculate wavelength of light and missing
    orders

omega=0.25 //fringe width in cm

D=170 //distance in cm

twod=0.04 // distance in cm

lambda=omega*twod/D

disp("wavelength of light is lambda="+string(lambda) + "cm")

e=0.08 //width of slit in mm

d=0.4 //in mm

n=1

n=m*(e+d)/e

disp("missing order is n="+string(n)+"unitless")

//we can also find order for m=2,3,....
```

Scilab code Exa 3.11 wavelength of spectral line

```
1 clc
2 //to calculate wavelength
3 n=2 //order of spectrum
4 theta=%pi/6 //in radians
5 E=1/5000 //let (e+d)=E
6 lambda=E*sin(%pi/6)/n
7 disp("the wavelength of the spectral line is lambda="+string(lambda)+"cm")
```

Scilab code Exa 3.12 difference in deviations

```
1 clc
2 //to calculate difference in deviations
3 lambda=5*10^-5 //wavelength of light in cm
4 eplusd=1/6000 //where eplusd=e+d
```

Scilab code Exa 3.13 orders

```
1 clc
2 //to calculate orders
3 //let E=(e+d)
4 //formula is (e+d)*sin thita=n*lambda
5 //for maximum order to be possible thita=90 degree
6 //sin theta=1
7 E=2.54/2620 //in cm
8 lambda=5*10^-5 //wavelength of the incident light in cm
9 n=E/lambda
10 disp("the orders will be visible is n="+string(n)+" unitless")
```

Scilab code Exa 3.14 number of lines per cm

Scilab code Exa 3.15 orders of spectrum

Scilab code Exa 3.17 angle of diffraction

```
1 clc
2 //to calculate angle of diffraction
3 n=1 //order
```

Scilab code Exa 3.18 number of lines in one centimeter

Scilab code Exa 3.19 spectral line

```
1 clc
2 //to calculate which spectral line in 5th order will
      overlap with 4th order line of 5890 angstrom
3 //the grating equation for principal maxima is (e+d)
     *sin theta =n*lambda
4 n1=5
```

```
//order of spectrum

n2=4

lambda2=5890*10^-8 //wavelength of 4th order
spectrum in cm

//(e+d)*sin theta=5*lambda-eq(1)

//(e+d)*sin theta=4*5890*10^-8----eq(2)

//from eq(1) and eq(2) ,we get

lambda1=n2*lambda2/n1

disp("wavelength of 5th order spectrum is lambda1="+string(lambda1)+"cm")
```

Scilab code Exa 3.20 grating element

```
1 clc
2 //to calculate grating element
3 //grating equation for principal maxima is given by
      (e+d)*sintheta=n*lambda
4 //let nth order spectrum for yellow line (lambda
      =6000 angstrom) coincide with (n+1)th order
      spectrum for blue line (lambda=4800 angstrom)
5 / (e+d) * sintheta = n * 6000 * 10^- - 8...eq (1)
6 //(e+d)*sintheta=(n+1)*4800*10^{-8}....eq(2)
7 //from eq (1) and eq (2), we get n=4
8 n=4
9 lambda=6000*10^-8
                      //wavelength in cm
10 \text{ sintheta} = 3/4
11 eplusd=n*lambda/sintheta
12 disp("grating element is eplusd="+string(eplusd)+"cm
     ")
```

Scilab code Exa 3.21 angle of diffraction and absent spectra

```
1 clc
```

```
2 //to calculate angle of diffraction for third order
     spectrum and absent spectra if any
3 n=3
4 lambda=6000*10^-8
5 \text{ eplusd} = 1/200
6 theta=asind(n*lambda/eplusd)
7 disp("angle of refraction is theta="+string(theta)+"
     degree")
8 d=0.0025
9 e=eplusd-d //width of wire in cm
10 \quad m=1
11 n=eplusd*m/e
12 disp("order of absent spectrum is n="+string(n)+"
      unitless")
13 disp("here, m=1 is considered because the higher
     values of m result the order of absent spectrum
     more than the given order 3")
```

Scilab code Exa 3.22 difference in two wavelenghts

```
1 clc
2 //to calculate difference in the two wavelengths
3 //grating equation for principal maxima is (e+d)*
     sintheta=n*lambda....eq(1)
4 // differentiate both sides , we get dtheta=n*dlambda
     /((e+d)*costheta)....eq(2)
5 \quad lambda = 5000
                         //mean value of wavelengths in
      angstrom
6 \text{ cottheta=1.732}
                        // \cot 30 \deg ree = 1.732
7 dtheta=0.01 //in radian
8 //put the value of n from eq(2), we can write eq(2)
9 dlambda=lambda*dtheta*cottheta
10 disp("difference in two wavelengths is dlambda="+
     string(dlambda) + "angstrom")
```

Scilab code Exa 3.23 dispersive power

Scilab code Exa 3.24 orders

```
='+string(nmax2)+"unitless")
```

Scilab code Exa 3.25 difference in wavelenghts

```
1 clc
2 //to calculate difference in wavelengths of two
        lines
3 //let E=(e+d)=1/5000
4 //we get
5 E=2*10^-4 //in cm
6 n=2 //order of spectrum
7 lambda=5893*10^-8 //wavelength in cm
8 //dtheta=2.5'=(2.5/60)*(3.14/180), we get
9 dtheta=7.27*10^-4 //in radian
10 dlambda=sqrt(((E/n)^2)-lambda^2)*dtheta
11 disp("the difference in wavelengths of two lines is dlambda="+string(dlambda)+"cm")
```

Scilab code Exa 3.26 aperture

```
1 clc
2 //to calculate aperture of the objective of a
     telescope
3 lambda=6*10^-5 //wavelength of light in cm
4 dtheta=4.88*10^-6 // in radians
5 a=1.22*lambda/dtheta
6 disp("the aperture of the objective of a telescope
     is a="+string(a)+"cm")
```

Scilab code Exa 3.27 separation of two points on the moon

```
1 clc
2 //to calculate separation of two points on the moon
3 lambda=5.5*10^-5 //wavelength of light in cm
4 a=500 //diameter in cm
5 dtheta=1.22*lambda/a //limit of resolution of
    telescope in radians
6 R=3.8*10^8 //distance between earth and moon in m
7 X=R*dtheta
8 disp("the separation of two points on the moon is X=
    "+string(X)+"m")
```

Scilab code Exa 3.28 numerical aperture

Scilab code Exa 3.29 resolving power

Scilab code Exa 3.30 maximum resolving power

```
1 clc
2 //to calculate maximum resolving power
3 lambda=5*10^-5 //wavelength of light in cm
4 N=40000 //total number of lines on grating
5 //(e+d)=12.5*10^-5 cm
6 //formula is nmax=(e+d)/lambda
7 //we get
8 nmax=2 //order of spectrum
9 RP=nmax*N //RP=resolving power
10 disp("the maximum resolving power is RP="+string(RP)+"unitless")
```

Scilab code Exa 3.31 minimum number of lines

Scilab code Exa 3.32 will the telescope be able to observe the wiremesh

```
1 clc
2 //will the telescope be able to observe the wiremesh
3 a=3 //aperture in cm
4 lambda=5.5*10^-5 //wavelength of light in cm
5 //limit of resolution of telescope is given by
6 theta=1.22*lambda/a
7 //alpha=spacing of wire-mesh/distance of objective from wire-mesh
8 alpha=0.2/(80*10^2)
9 disp("theta="+string(theta)+"radian")
10 disp("alpha="+string(alpha)+"radian")
11 disp("if alpha>theta then telescope will be able to observe the wire-mesh")
12 //value of alpha is given wrong in the book
2.25*10^-5 radian
```

Scilab code Exa 3.33 distance between the centres of the images of two stars

Scilab code Exa 3.34 diameter of a telescope objective

```
1 clc
2 //to calculate diameter of a telescope
3 lambda=5*10^-5 //wavelength in cm
4 theta=(%pi/180)*(1/1000) //in radians
5 a=1.22*lambda/theta
6 disp("the diameter of a telescope is a="+string(a)+" cm")
```

Scilab code Exa 3.35 smallest angle between two stars

```
1 clc
2 //to calculate smallest angle between two stars
3 lambda=5*10^-5 //wavelength in cm
4 a=100*2.54 //diameter in cm
5 theta=1.22*lambda/a
6 disp("the smallest angle between two stars is thita=
    "+string(theta)+"radians")
```

Scilab code Exa 3.36 limit of resolution of telescope

```
1 clc
2 //to calculate limit of resolution of the telescope
3 lambda=5890*10^-8 //wavelength in cm
4 a=1 //diameter in cm
5 theta=1.22*lambda/a
6 disp("the limit of resolution of the telescope is theta="+string(theta)+"radians")
```

Scilab code Exa 3.37 resolving limit of microscope

```
1 clc
2 //to calculate resolving limit of microscope
3 lambda=5.5*10^-5 //wavelengh in cm
4 theta=%pi/6 //in radians
5 s=1.22*lambda/(2*sin(%pi/6))
6 disp("resolving limit of microscope is s="+string(s)+"cm")
```

Scilab code Exa 3.38 resolving power of grating and smallest wavelength difference

```
1 clc
2 //to calculate resolving power of grating
3 N=15000 //total number of lines on grating
4 lambda=6*10^-5 //wavelength in cm
5 n=2 //order of spectrum
6 RP=n*N
7 disp("resolving power is RP ="+string(RP)+"unitless")
8 //to calculate smallest wavelength difference that can be resolved with a light of wavelength 6000 angstrom in the second order
9 dlambda=lambda/(n*N)
10 disp("smallest wavelength difference dlambda="+string(dlambda)+"cm")
```

Scilab code Exa 3.39 resolving power and smallest wavelength

```
1 clc
2 //to calculate resolving power in the second order
3 N=6*10^4 //N=total number of lines on grating
4 n=2 //order of spectrum
5 RP=n*N //RP=resoling power
```

Chapter 4

Polarisation

Scilab code Exa 4.1 compare intensities

```
1 clc
2 // compare the intensities of ordinary and
        extraordinary rays
3 //intensity of ordinary rays is given by Io=a^2 *(
        sin theta)^2
4 //where theta=30 degree
5 //we get Io=a^2/4
6 Io=1/4
7 //intensity of extraordinary ray is given by IE=(a*
        cos theta)^2
8 //we get IE=3*a^2/4
9 IE=3/4
10 I=IE/Io
11 disp("the intensities of ordinary and extraordinary
        rays is I="+string(I)+"unitless")
```

Scilab code Exa 4.2 angle of refraction

```
1 clc
2 //to calculate angle of refraction
3 //according to brewster's law mu=tan ip
4 mu=1.732 //refractive index
5 ip=atand(mu) //polarising angle in degree
6 r=90-ip
7 disp("angle of refraction of ray is r="+string(r)+" degree")
```

Scilab code Exa 4.3 polarising angle and angle of refraction

```
1 clc
2 //to calculate polarising angle and angle of
    refraction
3 mu=1.345 //refractive index, mu=1/sinc=1/
        sin48degree=1/0.7431
4 ip=atand(mu)
5 r=90-ip
6 disp("polarising angle is ip="+string(ip)+"degree")
7 disp("angle of refraction is r="+string(r)+"degree")
```

Scilab code Exa 4.4 thickness of half wave plate

```
9 disp("thickness of a half wave plate of quartz is t=
   "+string(t)+"cm")
```

Scilab code Exa 4.5 thickness of quarter wave plate

Scilab code Exa 4.6 thickness of doubly refracting plate

Scilab code Exa 4.7 angle of rotation

1 clc

```
2 //to calculate angle of rotation
3 alpha=66 //specific rotation of cane sugar in degree
4 c=15/100 //concentration of the solution in gm/cc
5 l=20 //length of tube in cm
6 theta=alpha*l*c/10
7 disp("the angle of rotation of the plane of polarisation is theta="+string(theta)+"degree")
```

Scilab code Exa 4.8 specific rotation

```
1 clc
2 //to calculate specific rotation
3 theta=26.4 //in degree
4 l=20 //length in cm
5 c=0.2 //gm/cm^3
6 alpha=10*theta/(1*c)
7 disp("the specific rotation is alpha="+string(alpha) +"degree")
```

Scilab code Exa 4.9 strength of solution

```
1 clc
2 //to calculate strength of solution
3 theta=11 //degree
4 l=20 //length in cm
5 alpha=66 //specific rotation of sugar in degree
6 c=10*theta/(1*alpha)
7 disp("strength of solution is c="+string(c)+"gm/cm^3
")
```

Scilab code Exa 4.10 difference in the refractive indices

```
1 clc
2 //to calculate difference in the refractive indices
3 //specific rotation is theta/d=29.73 degree/mm
4 theta=29.73 //where theta=theta/d
5 lambda=5.086*10^-4 //wavelength in mm
6 //optical rotation is given by theta=%pi*d*(mul-mur) /lambda
7 //where mul and mur are refractive indices for anti-clockwise and clockwise polarised lights
8 mu=theta*lambda/180 //where mu=mul-mur
9 disp("difference in refractive indices is mu="+string(mu)+"unitless")
```

Scilab code Exa 4.11 optical rotation

Scilab code Exa 4.12 specific rotation

```
1 clc
2 //to calculate specific rotation
3 theta=52.8 //optical rotation in degree
4 l=20 //length of the solution in cm
5 c=20/50 //concentration of the solution in gm/cc
6 alpha=10*theta/(1*c)
7 disp("the specific rotation is alpha="+string(alpha) +"degree")
```

Scilab code Exa 4.13 length of solution

```
1 clc
2 //to calculate length
3 l=40 //length in cm
4 c=5/100 //concentration in percentage
5 theta1=35 //optical rotation in degree ,where theta1 =theta'
6 c1=10/100 //concentration in % ,where c1=c'
7 theta=20
8 //formula of specific rotation is alpha=10*theta/l*c
9 l1=1*c*theta1/(c1*theta)
10 disp("length is l1="+string(l1)+"cm")
```

Scilab code Exa 4.14 rotation of plane of polarisation

```
6 lambda=6.5*10^-5 //wavelength in cm
7 d=0.02 //distance in cm
8 thetaR=180*(mul-mur)*d/lambda
9 disp("rotation of plane of polarisation of light is thetaR="+string(thetaR)+"degree")
```

Scilab code Exa 4.15 percentage purity of sugar sample

Chapter 5

Lasers

Scilab code Exa 5.1 area of spot on the moon

```
1 clc
2 //to calculate area of the spot on the moon
3 lambda=6*10^-7 //wavelength in m
4 d=2 //diameter in m
5 dtheta=lambda/d //angular spread in radian
6 D=4*10^8 //distance of the moon
7 A=(D*dtheta)^2
8 disp("the areal spread is A="+string(A)+"m^2")
```

Scilab code Exa 5.2 angular spread and areal spread

```
1 clc
2 //to calculate angular spread of the beam
3 lambda=8*10^-7 //wavelength in m
4 d=5*10^-3 //aperture in m
5 dtheta=lambda/d
6 disp("the angular spread of the beam is dtheta="+string(dtheta)+"radian")
```

```
7 //to calculate the areal spread when it reaches the
         moon
8 D=4*10^8 //distance of the moon in m
9 A=(D*dtheta)^2
10 disp("the areal spread is A="+string(A)+"m^2")
```

Scilab code Exa 5.3 number of oscillations and coherence time

Scilab code Exa 5.4 area and intensity of image

```
1 clc
2 //to calculate area and intensity of the image
3 lambda=7200*10^-10 //wavelength in m
4 d=5*10^-3 //aperture in m
5 dtheta=lambda/d //angular spread in radian
6 f=0.1 //focal length in m
7 arealspread=(dtheta*f)^2
8 disp("areal spread ="+string(arealspread)+"m^2")
9 power=50*10^-3
10 I=power/arealspread
```

11 disp("intensity of the image is I="+string(I)+"watts /m^2")

Chapter 6

Fiber optics and Holography

Scilab code Exa 6.1 critical angle and acceptance angle and numerical aperture and percentage of light collected

```
1 clc
2 //to calculate critical angle for core-cladding
     interface
3 n1=1.5
4 n2=1.45
5 thetac=asind(n2/n1)
6 theta1=90-thetac
7 disp("critical angle for core-cladding interface is
     theta1="+string(theta1)+"degree")
  //to calculate acceptance angle in air for fibre and
       corresponding angle of obliquences
9 \text{ na=1}
10 thetaa=asind(n1*0.26/na)
11 disp("acceptance angle thetaa="+string(thetaa)+"
      degree")
12 //to calculate numerical aperture
13 NA = ((n1+n2)*(n1-n2))^(1/2)
14 disp("numerical aperture of fibre is NA="+string(NA)
     +" unitless")
15 //to calculate % of light
```

```
16 per=(NA)^2*100
17 disp("% of light collected is per="+string(per)+"%")
```

Scilab code Exa 6.2 numerical aperture and critical angle

```
1 clc
2 //to calculate numerical aperture
3 del=0.02 //relative refractive index difference
     between the core and the cladding of the fibre i.
     e. del = (n1-n2)/n1
             //refractive index of core of W-step
4 n1=1.46
     index fibre
5 n2=n1-del*n1
6 NA = ((n1+n2)*(n1-n2))^(1/2)
7 disp("numerical aperture is NA="+string(NA)+"
     unitless")
8 //to calculate critical angle at the core cladding
     interface within the fibre
9 thetac=asind(n2/n1)
10 disp("thetac="+string(thetac)+"degree")
```

Scilab code Exa 6.3 refractive index and normalised frequency and total number of guided modes in the fibre

```
1 clc
2 //to calculate refractive index of the cladding
3 a=35*10^-6 //core diameter in micrometre
4 //formula is del=(n1-n2)/n1
5 //we get
6 del=1.5/100
7 n1=1.46 //refractive index of the fibre
8 lambda=0.85*10^-6 //wavelength in micrometer
9 n2=n1-del*n1
```

```
disp("refractive index is n2="+string(n2)+"unitless")

//to calculate normalised frequency V number of the fibre
V=(2*%pi*a*n1*0.173)/lambda
disp("normalised frequency V number of the fibre is V="+string(V)+"unitless")

//to calculate total number of guided modes in the fibre
fibre
M=(V^2)/2
disp("total number of guided modes in the fibre is M ="+string(M)+"modes")
```

Scilab code Exa 6.4 cutoff wavelength

```
1 clc
2 //to calculate cut-off wavelength of the fibre
3 //(2*del)^(1/2)=(2*(n1-n2)/n1)^(1/2)=(0.005)^(1/2)
=0.071
4 a=5*10^-6 //radius in micrometre
5 n1=1.46 //core refractive index in micrometre
6 Vc=2.405 //cut-off value of V parametre for single mode operation
7 //formula is LAMBDAc=(2*%pi*a*n1*(2*del)^(1/2))/Vc
8 lambdac=(2*%pi*a*n1*0.071)/Vc
9 disp("cut-off wavelength is LAMBDAc="+string(lambdac)+"metre")
```

Scilab code Exa 6.5 maximum and minimum value of phase constant

Chapter 7

Wave Mechanics

Scilab code Exa 7.1 de broglie wavelength

Scilab code Exa 7.2 de broglie wavelength

```
1 clc
2 //to calculate de Broglie wavelength
3 //mo*c^2=1.507*10^-10/1.6*10^-19=941.87 Mev
4 //since 12.8 Mev is very small compared to rest mass energy hence relavistic consideration may be ignored
```

```
5 m=1.67*10^-27 //mass in kg
6 h=6.62*10^-34 //plank's constant
7 E=12.8*10^6 //energy in Mev
8 lambda=h/sqrt(2*m*E*1.6*10^-19)
9 disp("thede Broglie wavelength is lambda="+string(lambda)+"angstrom")
```

Scilab code Exa 7.4 wavelength

```
1 clc
2 //to calculate wavelength
3 h=6.6*10^-34 //plank's constant
4 m=9.1*10^-31 //mass of electron in kg
5 E=1.25*10^3 //pottential difference keV
6 lambda=h/sqrt(2*m*E*1.6*10^-19)
7 disp("the wavelength is lambda="+string(lambda)+" angstrom")
```

Scilab code Exa 7.5 Kinetic energy of electron

```
1 clc
2 //to calculate kinetic energy of an electron
3 h=6.63*10^-34 //plank's constant
4 mo=9.1*10^-31 //rest mass of an electron in kg
5 lambda=5896*10^-10 //wavelength in angstrom
6 K=(h^2)/(2*mo*(lambda^2)*1.6*10^-19)
7 disp("kinetic energy of an electron is K="+string(K)+"eV")
```

Scilab code Exa 7.6 wavelength of electron

Scilab code Exa 7.7 de broglie wavelength of electron

```
1 clc
2 //to calculate de Broglie wavelength
3 V=100 //potential difference in volts
4 lambda=12.25/sqrt(V)
5 disp("de Broglie wavelength of any electron is lambda="+string(lambda)+"angstrom")
```

Scilab code Exa 7.9 energy of neutron

```
1 clc
2 //to calculate energy of the neutron
3 h=6.60*10^-34 //plank's constant in J/s
4 m=1.674*10^-27 //mass of the neutron in kg
5 lambda=10^-10 //de Broglie wavelength in m
6 E=(h^2)/(2*m*(lambda^2)*1.6*10^-19)
7 disp("energy of the neutron is E="+string(E)+"eV")
```

Scilab code Exa 7.10 wavelength and number of photons

```
1 clc
2 //to calculate wavelength
3 h=6.6*10^-34 //plank's constant in J/sec
4 m=9.1*10^-31 //mass of electron in kg
5 c=3*10^8 // light speed in m/s
6 lambda=h/(m*c)
7 disp("wavelength of quantum of radiant energy is
     lambda="+string(lambda)+"m")
8 //to calculate number of photons
9 power=12 //power emitted by the lamp =150*(8/100) in
      watts
10 E=12 //energy emitted per second
11 lambda=4500*10^-10
12 energy=(h*c)/lambda //energy contained in one photon
      in J
13 number=E/energy
14 disp("number of photons emitted per sec is number="+
     string(number) + " unitless")
```

Scilab code Exa 7.11 uncertainty in position of electron

```
9 h=6.6*10^-34 //plank's constant in J/s
10 //from eq(1) and eq(2), we get
11 delxmin=(h*sqrt(1-(v/c)^2))/(2*%pi*mo*v)
12 disp("smallest possible uncertainity in the position of an electron is delxmin="+string(delxmin)+"m")
```

Scilab code Exa 7.12 uncertainty in velocity

Scilab code Exa 7.13 uncertainty in momentum and velocity of electron and alpha particle

```
1 clc
2 //to calculate uncertainity in the momentum of the parcticle
3 h=6.626*10^-34 //planck's constant J-s
4 delx=0.01*10^-2 //uncertainity in position in m
5 delp=h/(2*%pi*delx)
6 disp("uncertainity in the momentum of the parcticle is delp="+string(delp)+"kg-m/s^2")
7 //to calculate uncertainity in the velocity of an electron
```

```
8 m=9*10^-31 //mass of an electron in kg
9 delx=5*10^-10
10 delv=h/(2*%pi*m*delx)
11 disp("uncertainity in the velocity of an electron is delv="+string(delv)+"m/s")
12 //to calculate uncertainity in the velocity of alpha particle
13 m=4*1.67*10^-27 //mass of alpha particle in kg
14 delx=5*10^-10
15 delv=h/(2*%pi*m*delx)
16 disp("uncertainity in the velocity of an electron is delv="+string(delv)+"m/s")
```

Scilab code Exa 7.14 uncertainty in position of electron

```
1 clc
2 //to calculate uncertainity in position
3 m=9.11*10^-31 //mass of electron in kg
4 delv=40 //uncertainity in velocity in m/s
5 h=6.6*10^-34 //plank's constant
6 delx=h/(2*%pi*m*delv)
7 disp("uncertainity in the position of the electron is delx="+string(delx)+"m")
```

Scilab code Exa 7.15 uncertainty in frequency

```
1 clc
2 //to calculate uncertainity in frequency
3 //delE*delt=h/2*%pi---eq(1)
4 //delE=h*delv----eq(2)
5 delt=10^-8 //uncertainity in time in s
6 //from eq(1) and eq(2), we get
7 delnu=1/(2*%pi*delt)
```

```
8 disp("minimum uncertainity in the frequency of the photon is delv="+string(delnu)+"sec^-1")
```

Scilab code Exa 7.16 minimum error

Scilab code Exa 7.17 time required for the atomic system

```
1 clc
2 //to calculate time required for the atomic system
3 //delE=h*c*dellambda/lambda^2 ------eq(1)
4 //delE*delt=h/2*%pi------eq(2)
5 dellambda=10^-14
6 c=3*10^8
7 lambda=6*10^-7
8 //from eq(1) and eq(2), we get
9 delt=(lambda^2)/(2*%pi*c*dellambda)
10 disp("time required for the atomic system to retain rotational energy is delt="+string(delt)+"s")
```

Scilab code Exa 7.18 uncertainty in momentum and kinetic energy of the nucleon

```
clc
//to calculate minimum uncertainity in the momentum
delxmax=5*10^-14 //uncertainity in position in m
h=6.626*10^-34 //plank's constant in Js
delpmin=h/(2*%pi*delxmax)
disp("minimum uncertainity in the momentum of the nucleon is delpmin="+string(delpmin)+"kg m/s")
m=1.675*10^-27 //mass in kg
Emin=(delpmin^2)/(2*m*1.6*10^-19)
disp("minimum kinetic energy of the nucleon is Emin="+string(Emin)+"eV")
//the answer is given wrong in the book Emin=0.039
eV
```

Scilab code Exa 7.19 uncertainty in velocity

```
1 clc
2 //to calculate uncertainity in velocity
3 delx=1.1*10^-8 //uncertainity in velocity in m
4 h=6.626*10^-34 //plank's constant
5 m=9.1*10^-31 //mass of electron in kg
6 delv=h/(2*%pi*m*delx)
7 disp("minimum uncertainity in velocity is delv="+string(delv)+"m/s")
```

Scilab code Exa 7.20 uncertainty in frequency and energy of electron

```
1 clc
2 //to calculate uncertainity in frequency
3 delt=10^-8 //uncertainity in time
4 delnu=1/(2*%pi*delt)
5 disp("minimum uncertainity in the frequency of a photon is delnu="+string(delnu)+"sec^-1")
```

```
//to use the uncertainity principle to place a lower
limit on the energy an electron must have if it
is to be part of a nucleus

delx=5*10^-15 //uncertainity in position

delp=h/(2*2*%pi*delx) //uncertainbity in momentum

c=3*10^8 //speed of light in m/s

E=delp*c

disp("energy of an electron is E="+string(E)+"J")
```

Scilab code Exa 7.22 probability of finding the particle

```
1 clc
2 //to calculate probability of finding the particle
3 a=25*10^-10//width in angstrom
4 //wave function of the particle is chi(x)=sqrt(2/a)*
        sin(n*%pi*x/a), for the particle in the least
        energy state n=1
5 chix=sqrt(2/a)*sin(%pi*(a/2)/a)
6 delx=5*10^-10 //interval in angstrom
7 P=delx*chix^2
8 disp("probability of finding the particle is P="+
        string(P)+"unitless")
```

Scilab code Exa 7.24 energy of electron

```
1 clc
2 //to calculate energy of an electron
3 n=1 //least energy of the particle
4 h=6.63*10^-34 //planck's constant in Js
5 m=9.11*10^-31 //mass of electron in kg
6 a=10^-10 //width in angstrom
7 E=(n^2)*(h^2)/(8*m*(1.602*10^-19)*a^2)
```

```
8 disp("energy of an electron moving in one dimension
      in an infinitely high potential box is E="+string
      (E)+"eV")
9 //the answer is given wrong in the book E=5.68 eV
```

Scilab code Exa 7.26 probability of particle

```
1 clc
2 //to calculate probability
3 \times 1 = 0.45 / \times 1 = 0.45 * L
4 x2=0.55
                 //x2 = 0.55 * L
                             //for ground state
5 n=1
6 //formula is P=integrate('(2/L)*sin(n*\%pi*x)^2), 'x',
      x1, x2
7 P1=integrate ('2*(\sin(n*\%pi*x)^2)', 'x', x1, x2)
8 disp("P1="+string(P1)+"unitless")
9 \text{ probability1=P1*100}
10 disp("probability for the ground states is
      probability1 ="+string(probability1)+"%")
11 \quad n=2
                   //for first excited state
12 P2=integrate('2*(sin(n*\%pi*x)^2)', 'x', x1, x2)
13 disp("P2="+string(P2)+"unitless")
14 probability2=P2*100
15 disp("probability for first excited states is
      probability2="+string(probability2)+"%")
```

Scilab code Exa 7.28 energy of neutron

```
1 clc  
2 //to calculate energy of a neutron  
3 //consider nucleus as a cubical box of size 10^-14m  
4 //x=y=z=a=10^-14=1
```

Scilab code Exa 7.29 zero point energy

```
1 clc
2 //to calculate zero point energy of a linear
     harmonic oscillator
3 h=6.63*10^-34 //planck's constant in Js
4 nu=50 //frequency in Hz
5 zeropointenergy=(h*nu)/2
6 disp("zeropointenergy="+string(zeropointenergy)+"J")
```

Scilab code Exa 7.30 zero point energy

```
1 clc
2 //to calculate zero point energy
3 nu=1 //frequency in Hz
4 h=6.63*10^-34 //planck's constant in Js
5 zeropointenergy=(h*nu)/2
6 disp("zeropointenergy="+string(zeropointenergy)+"J")
```

Scilab code Exa 7.31 frequency of vibration

Chapter 8

X Rays

Scilab code Exa 8.1 value of plancks constant

```
1 clc
2 //to calculate value of planck's constant
3 e=1.6*10^-19 //in C
4 V=100*10^3 //voltage in KV
5 c=3*10^8 //light speed in m/s
6 lambdamin=12.35*10^-12 //wavelength in m
7 h=e*V*lambdamin/c
8 disp("the value of plancks constant is h="+string(h) +"J-s")
```

Scilab code Exa 8.2 maximum frequency

```
1 clc
2 //to calculate maximum frequency
3 h=6.6*10^-34 //planck's constant in J-s
4 c=3*10^8 //light speed in m/s
5 Ve=50000 //accelerating potential in V
6 lambdamin=h*c/Ve //wavelength in m
```

```
7 numax=c/lambdamin
8 disp("maximum frequency present in the radiation
      from an X-ray tube is numax="+string(numax)+"Hz")
9 //answer is given in thec book is incorrect
      =1.2*10^19 Hz
```

Scilab code Exa 8.3 number of electrons and speed

```
1 clc
2 //to calculate number of electrons
3 I=2*10^-3 //current in mA
4 e=1.6*10^-19
5 n=I/e
6 disp("number of electrons striking the target per second is n="+string(n)+"unitless")
7 //to calculate speed
8 m=9.1*10^-31 //mass of electron in kg
9 V=12.4*10^3 //potential difference in V
10 v=sqrt(2*V*e/m)
11 disp("the speed with which electrons strike the target is v="+string(v)+"m/s")
```

Scilab code Exa 8.4 longest wavelength

```
1 clc
2 //to calculate wavelength
3 n=2 //second order for longest wavelength
4 d=2.82*10^-10 // spacing in angstrom
5 sintheta=1
6 lambdamax=2*d*sintheta/n
7 disp("the longest wavelength that can be analysed by a rock salt crystal is lambdamax="+string(lambdamax)+"m")
```

Scilab code Exa 8.5 spacing of crystal

```
clc
//to calculate spacing of the crystal
h=6.62*10^-34 //planck's constant in J-s
m=9.1*10^-31 //mass of electron in kg
V=344 //voltage in V
e=1.6*10^-19
lambda=h/sqrt(2*m*e*V) //wavelength in m
//according to Bragg's law
n=1
//formula is 2*d*sintheta=n*lambda
d=n*lambda/(2*sin(%pi/6))
disp("the spacing of the crystal is d="+string(d)+"m")
```

Scilab code Exa 8.6 wavelength

Scilab code Exa 8.7 thickness

```
1 clc
2 //to calculate thickness
3 //mass absorption coefficient mum of an absorber is related with linear absorption coefficient mu and density of the material rho is given by
4 //mu=rho*mum=2.7*0.6=1.62 cm^-1
5 mu=1.62
6 //if initial intensity Io of the X-ray beam is reduced to I in traversing a distance x in absorber I=Io*e^-mu*x
7 //where I/Io=20
8 //put above values in the below equation , we get 9 x=(2.3026*(log(20)/log(10)))/1.62
10 disp("thickness is x="+string(x)+"cm")
```

Scilab code Exa 8.8 atomic number

Scilab code Exa 8.9 wavelength of X Rays

```
1 clc
2 //to calculate wavelength
3 d=1.87*10^-10 //spacing in angstrom
4 n=2
5 //formula is lambda=2*d*sintheta/n
6 lambda=2*d*sin(%pi/6)/n
7 disp("the waelength of X-rays is lambda="+string(lambda)+"m")
```

Scilab code Exa 8.10 wavelength of second X Ray beam

```
1 clc
2 //to calculate wavelength of second X-ray beam
3 //from bragg's law
4 // lambda = (d*sin(\%pi/3))/n
                                      eq (1)
5 //it is given that, theta=60,n=3,lambda=1.97 angstrom
6 //from eq(1) we get, 2*d*\sin 60 degree = 3*0.97
                    eq (2)
7 //let lambda' be the second X-ray beam
8 //we get 2*d'*sin theta'=n'*lambda'
                         eq (3)
9 // from eq (2) and eq (3), we get
10 lambda1=\sin(\%pi/6)*3*0.97/\sin(\%pi/3) //where
     lambda1=lambda'
11 disp("wavelength of X-ray is lambda1="+string(
     lambda1) + "angstrom")
```

Scilab code Exa 8.11 wavelength of X Ray used

```
1 clc
2 //to calculate wavelength
3 d=2.82*10^-10 //spacing in m
4 n=1
5 lambda=2*d*sin(10*%pi/180)/n
6 disp("wavelength of X-ray is lambda="+string(lambda) + "m")
```

Scilab code Exa 8.12 possible spacing of the set of planes

```
1 clc
2 //deduce possible spacing of the set of planes
3 //for first order , 2*d*sintheta1=1*lambda...eq(1)
4 // \text{for second order } ,2*d*sintheta2=2*lambda..eq(2)
5 //for third order, 2*d*sintheta3=3*lambda.....eq(3)
6 //for fourth order, 2*d*sintheta4=4*lambda
      .... eq (4)
7 //divide eq(2) by eq(1), we get sintheta2=2*sintheta1
8 //similarly, sintheta3=3*sintheta1, sintheta4=4*
     sintheta1
9 lambda=1.32*10^-10
10 sintheta1=0.1650
11 d1=lambda/(2*sintheta1)/for first order n=1, d1=d/n
12 d2=lambda/(2*2*sintheta1) //for second order n=2,
     d2=d/n
13 d3=lambda/(2*3*sintheta1)
                                    //for third order n
     =3, d3=d/n
14 d4=lambda/(2*4*sintheta1)
                                         //for fourth
     order n=4,d4=d/n
15 disp("d1="+string(d1)+"m")
16 disp("d2="+string(d2)+"m")
17 disp("d3="+string(d3)+"m")
18 disp("d4="+string(d4)+"m")
```

Scilab code Exa 8.13 Compton shift and wavelength and fraction of energy lost

```
1 clc
2 //to calculate compton shift and wavelength
3 h=6.63*10^-34 //planck's constant in J-s
4 m0=9.11*10^-31 //mass of electron
5 c=3*10^8 // light speed in m/s
6 dellambda=h*(1-(1/sqrt(2)))/(m0*c)
7 \quad lambda0 = 2 * 10^{-10}
8 lambda=dellambda+lambda0
9 disp("compton shift is dellambda="+string(dellambda)
     +"m")
10 disp("wavelength of the scattered X-rays is lambda="
     +string(lambda)+"m")
11 //to calculate fraction of energy lost by the photon
      in the collision
12 //energy lost =E0-E/E0=(hc/lambda0)-(hc/lambda)/(ha/
     lambda0)
13 / \text{we get}
14 energylost=dellambda/lambda
15 disp("energylost ="+string(energylost)+"unitless")
```

Scilab code Exa 8.14 wavelength and energy of photon

```
5 h=6.62*10^-34 //planck's constant
6 c=3*10^8 //light speed in m.s
7 m0=9*10^-31 //mass of electron in kg
8 //from eq(1) and eq(2) ,we get
9 lambda=h/(m0*c)
10 disp("wavelength is lambda="+string(lambda)+"m")
11 E=h*c/lambda
12 disp("energy of the incident photon is E="+string(E)+"J")
```

Scilab code Exa 8.15 wavelength and direction of electron

```
1 clc
2 //to calculate wavelength of radiation and direction
       of emission
3 h=6.6*10^-34
                            //planck's constant in J-s
                             //speed of light in m/s
4 c=3*10^8
                                    //energy of photon in
5 \text{ energy} = 510 * 10^3
6 lambda=h*c/(energy*1.6*10^-19)
7 \text{ mo} = 9.1 * 10^{-31}
                               //mass of electron in Kg
8 lambda1=lambda+h*(1-\cos(\%pi/2))/(mo*c)
9 disp("wavelength of radiation is lambda1="+string(
      lambda1)+"m")
10 theta=atand(lambda*sin(%pi/2)/(lambda1-lambda*cos(
      %pi/2)))
11 disp("direction of emission of electron is theta="+
      string(theta) + "degree")
```

Scilab code Exa 8.16 wavelength of two X Rays and maximum wavelength present in the scattered X Rays and maximum kinetic energy

```
1 clc
```

```
2 //to calculate wavelength of two X-rays
3 h=6.6*10^-34 //planck's constant in J-s
4 c=3*10^8 //light speed in m/s
5 mo=9.1*10^-31 //mass of electron in kg
6 lambda=10*10^-12 //wavelength in pm
7 lambda1=lambda+((h/(mo*c))*(1-(1/sqrt(2))))
8 disp("wavelength of two X-rays is lambda1="+string(
     lambda1)+"m")
9 //to calculate maximum wavelength
10 lambda2=lambda+((2*h)/(mo*c))
11 disp("maximum wavelength present in the scattered X-
     rays is lambda2="+string(lambda2)+"m")
12 //to calculate maximum kinetic energy
13 \operatorname{Kmax} = (h*c)*((1/lambda)-(1/lambda2))/(1.6*10^-19)
14 disp ("maximum kinetic energy of the recoil electrons
      is Kmax="+string(Kmax)+"eV")
```

Chapter 9

Dielectric Properties of Materials

Scilab code Exa 9.1 dielectric constant of liquid

Scilab code Exa 9.2 charge on capacitor

```
1 clc
2 //to calculate charge on the capacitance
3 epsilon0=8.854*10^-12 //permittivity
4 epsilonr=6 //relative permittivity
5 V=100 //voltage in volts
6 d=1.5*10^-3 //distance in m
7 A=4*10^-4//area in m^2
8 Q=epsilon0*epsilonr*A*V/d
9 disp("the charge on the capacitance is Q="+string(Q)+"Coulomb")
```

Scilab code Exa 9.3 resultant voltage

```
1 clc
2 //to calculate voltage
3 A=6.50*10^-4 //area in m^2
4 Q=2*10^-10 //charge in C
5 d=4*10^-3 //plate separation in m
6 epsilon0=8.854*10^-12
7 epsilonr=3.5 //dielectric constant
8 V=Q*d/(epsilon0*epsilonr*A)
9 disp("the resultant voltage across the capacitor is V="+string(V)+"volt")
```

Chapter 10

Magnetic Properties of Materials

Scilab code Exa 10.1 permeability and susceptibility of bar

Scilab code Exa 10.2 current

Scilab code Exa 10.3 magnetic moment of rod

```
1 clc
2 //to calculate magnetic moment of the rod
3 //formula is B=muo*(H+I)
4 //where H=ni
5 n=500 //number of turns in turns/m
6 i=0.5 //current passed through the solenoid in A
7 mur=1200 //relative permeability
8 I=(mur-1)*n*i //intensity of magnetisation in A/m
9 V=10^-3 //volume in m^3
10 M=I*V
11 disp("the magnetic moment of the rod is M="+string(M) + "A-m^2")
```

Scilab code Exa 10.4 flux density and magnetic intensity and permeability

```
4 A=10^-4 //cross-sectional area in m^2
5 B=phi/A
6 disp("flux density is B="+string(B)+"weber/m^2")
7 N=200 //number of turns
8 i=0.30 //current flows in the windings in A
9 l=0.2 //length in m
10 H=N*i/1
11 disp("magnetic intensity is H="+string(H)+"A-turn/m")
12 mu=B/H
13 disp("permeability is mu="+string(mu)+"weber/A-m")
14 muo=4*%pi*10^-7
15 mur=mu/muo
16 disp("relative permeability is mur="+string(mur)+" unitless")
```

Scilab code Exa 10.5 number of ampere turns

```
1 clc
2 //to calculate number of ampere turns
3 l=0.5 //length in m
4 mu=6.5*10^-3 //permeability of iron in henry/m
5 A=2*10^-4 //area of cross-section in m^-4
6 R=1/(mu*A) //reluctance in A-turns/weber
7 flux=4*10^-4 //in weber
8 mmf=flux*R
9 disp("the number of ampere turns is mmf="+string(mmf)+"ampere-turns")
```

Scilab code Exa 10.6 relative permeability

```
1 clc
2 //to calculate relative permeability of the medium
```

```
3 phi=1.5*10^-3 //magnetic flux in weber
4 l=%pi*50*10^-2 //length in m
5 A=10*10^-4 //area of cross-section
6 N=1000 //number of turns
7 i=5 //current in A
8 muo=4*%pi*10^-7
9 //phi(magnetic flux)=m.m.f/reluctance
10 //phi=N*i*muo*mur*A/l
11 //we get,
12 mur=phi*1/(N*i*A*muo)
13 disp("relative permeability of the medium is mur="+ string(mur)+"unitless")
```

Scilab code Exa 10.7 magnetising current

```
1 clc
2 //to calculate magnetising current
3 //formula is phi(magnetic flux)=m.m.f/reluctance
4 //phi=N*i*mu*A/l——eq(1)
5 //phi=BA——eq(2)
6 B=0.20 //magnetic flux density in weber/m^2
7 l=1 //average length of the circuit in m
8 N=100 //number of turns
9 mu=7.3*10^-3 //in h.m
10 //from eq(1) and eq(2), we get
11 i=B*1/(N*mu)
12 disp("magnetising current is i="+string(i)+"A")
```

Chapter 11

Ultrasonics

Scilab code Exa 11.1 fundamental frequency

```
1 clc
2 //to calculate fundemental frequency
3 Y=7.9*10^10 //Young modulus for quartz in Nm^-2
4 rho=2.65*10^3 //density of quartz in kg/m^3
5 //the velocity of longitudinal wave is given by
6 v=sqrt(Y/rho) //in m/s
7 //for fundamental mode of vibration ,thickness is given by lambda/2
8 lambda=2*0.001 //wavelength in m
9 nu=v/lambda
10 disp("the fundamental frequency is nu="+string(nu)+" Hz")
11 //answer is given wrong in the book ,nu=2730 Hz
```

Chapter 12

Electromagnetics

Scilab code Exa 12.1 electric flux and flux

```
1 clc
2 //to calculate electric flux
3 //electric flux through a surface is phi=vector(E)*
     vector(s)
4 //where vector E=2i+4j+7k, vector s=10j
5 E=4
                         //E=4j
6 s = 10
                           //s = 10 j
7 phi=E*s
8 disp("electric flux is phi="+string(phi)+"units")
9 //to calculate flux coming out of any face of the
     cube
                //charge in coulomb
10 q = 1
11 epsilon0=8.85*10^-12
                                     //permittivity in
      free space in coul^2/N-m^2
12 phi1=q/(6*epsilon0)
13 disp("flux coming out of any face of the cube is
     phi1="+string(phi1)+"N-m^2/coul^2"
```

Scilab code Exa 12.2 electric field

```
1 clc
2 //to calculate electric field at a point from centre
       of the shell
3 q=0.2*10^-6 //charge
4 \text{ r=3} //\text{radius}
5 epsilon0=8.85*10^-12
6 E=q/(4*\%pi*epsilon0*r^2)
7 disp("electric field at a point from centre of the
      shell is E="+string(E)+"N/coulomb")
  //to calculate electric field at a point just
     outside the shell
9 R=0.25 //radius
10 E=q/(4*\%pi*epsilon0*R^2)
11 disp("electric field at a point just outside the
      shell is E="+string(E)+"N/coulomb")
12 //to calculate the electric field at a point inside
     the shell
13 //when the point is situated inside the spherical
      shell, the electric field is zero
```

Scilab code Exa 12.3 electric field

```
1 clc
2 //to calculate electric field at a point on earth
    vertically below the wire
3 lambda=10^-4 //wavelength in coulomb/m
4 r=4 //radius in m
5 epsilon0=8.854*10^-12
6 E=2*lambda/(4*%pi*epsilon0*r)
7 disp("electric field at a point on earth vertically
    below the wire is E="+string(E)+"N/coulomb")
```

Scilab code Exa 12.4 separation between the equipotential surfaces

Scilab code Exa 12.5 force per unit area

Scilab code Exa 12.6 charge

```
1 clc
2 //to calculate charge
3 //let charge be q coulomb, then the surface density
     of charge i.e. sigma=q/(4*\%pi*r^2)......
     eq (1)
4 //outward pull per unit area = sigma^2/(2*epsilon0)
      \dots \dots eq(2)
5 //put eq(1) in eq(2), we get q^2/(4*\%pi*r^2)^2*(2*
     epsilon0).....eq(3)
6 //pressure due to surface tension =4*T/r......
     eq (4)
7 T = 27
8 r=1.5*10^-2
9 epsilon0=8.85*10^-12
10 //equate eq(3) and eq(4), we get
11 q = sqrt(4*T*((4*\%pi*r^2)^2)*2*epsilon0/r)
12 disp("charge is q="+string(q)+"coulomb")
13 //answer is given wrong in the book, square of 4*%pi*
     r<sup>2</sup> is not taken in the solution.
```

Scilab code Exa 12.7 increase in radius

Scilab code Exa 12.8 average values of intensities

```
1 //in page no.340, numbering is done wrongly, it should
       be like ex - 8, ex - 9, ex - 10, ex - 11, ex - 12, ex - 13, ex - 14
2 clc
3 //to calculate average values of intensities of
      electric and magnetic fields of radiation
4 //energy of lamp=1000 J/s
5 //area illuminated =4*%pi*r^2=16*%pi m^2
6 //energy radiated per unit area per second =1000/16*
  // from poynting theorem |s| = |E*H| = E*H
                                                       eq
      (1)
8 s=1000/(16*\%pi)
9 muo = 4 * \%pi * 10^-7
                                 //permeability of free
      space
                                        //permittivity in
10 epsilon0=8.85*10^-12
      free space
11 //E/H = sqrt (muo/epsilon0)
                                      eq (2)
12 //from eq (1) and eq (2), we get
13 E=sqrt(s*sqrt(muo/epsilon0))
14 \text{ H=s/E}
15 disp("average value of intensity of electric fields
      of radiation is E="+string(E)+"V/m")
16 disp ("average value of intensity of magnetic fields
      of radiation is H="+string(H)+"ampere-turn/m")
17 //answer is given wrong in the book E=48.87 \text{ V/m},
      solution of magnetic fields is not given in the
      book.
```

Scilab code Exa 12.9 amplitudes of electric and magnetic fields

```
1 clc
2 //to calculate amplitudes of electric and magnetic
        fields of radiation
3 //energy received by an electromagnetic wave per sec
        per unit area is given by poynting vector |s
```

```
|=|E*H|=E*H*\sin 90 (becox E is perpendicular to H
4 //it is given that energy received by earth's
      surface is
5 s = 1400
                           //|s|=2 cal min<sup>-1</sup> cm<sup>-2</sup>
6 muo=4*%pi*10^-7 //permittivity of free space
7 epsilon0=8.85*10^-12 //permeability of free space
8 / E*H=1400
                                          eq (1)
9 //E/H = sqrt (muo/epsilon0)
                                             eq (2)
10 //from eq (1) and eq (2), we get
11 E=sqrt(sqrt(muo/epsilon0)*s)
12 //from eq (1), we get
13 H = 1400/E
14 Eo=E*sqrt(2)
15 Ho=H*sqrt(2)
16 disp("amplitude of electric field is Eo="+string(Eo)
      +"V/m")
17 disp("amplitude of magnetic field is Ho="+string(Ho)
      +" amp-turn /m")
```

Scilab code Exa 12.11 skin depth

```
1 clc
2 //to calculate skin depth
3 f=10^8 //frequency
4 sigma=3*10^7 //conductivity of the medium
5 muo=4*%pi*10^-7 //permeability of free space
6 del=sqrt(2/(2*%pi*f*sigma*muo))
7 disp("skin depth is del="+string(del)+"m")
```

Scilab code Exa 12.12 frequency and show that frequencies can be considered as good conductor

```
1 clc
2 //to calculate frequency
                                  //permeability of free
3 \text{ muo} = 4 * \% \text{pi} * 10^{-7}
      space
4 \text{ sigma} = 4.3
              // in mhos/m
5 \text{ del} = 0.1
               //skin depth in m
6 f=2/(2*%pi*muo*del^2)
7 disp("frequency is f="+string(f)+"Hz")
8 //value of frequency is given incorrect in the book
9 //show that for frequencies less than 10<sup>8</sup>, it can
      be considered as good conductor
10 epsilon=80*8.854*10^-12
11 f=10<sup>8</sup>
                                                   //
      frequency in Hz
12 \text{ sigma=} 4.3
13 //formula is sigma/(omega*epsilon)>4.3/(2*\%pi
      *10^8*80*epsilon)
14 sigma1=sigma/(2*%pi*f*epsilon) //where sigma1=sigma
      /(omega*epsilon)
15 disp("sigma1="+string(sigma1)+"unitless")
16 //the ocean water to be good conductor, the value of
       sigma/(omega*epsilon) should be greater than 1
```

Scilab code Exa 12.13 penetration depth

```
1 clc
2 //to show that for frequency <10^9 Hz ,a sample of
        silicon will act like a good conductor
3 sigma=200 //in mhos/m
4 omega=2*%pi*10^9
5 epsilon0=8.85*10^-12 //permittivity in
        free space
6 epsilon=12*epsilon0
7 sigma1=sigma/(omega*epsilon) //sigma1=sigma
        /(omega*epsilon)</pre>
```

Scilab code Exa 12.14 conduction current and displacement current densities

```
1 clc
2 //to calculate conduction current and displacement
      current densities
                          //conductivity in mhos/m
3 \text{ sigma=} 10^{-3}
4 E=4*10^-6
                      //\text{where } E=4*10^-6*\sin(9*10^9 t) \text{ v/m}
5 J = sigma * E
6 disp("conduction current density is J="+string(J)+"
      \sin (9*10^9 t)
                         A/m")
  epsilon0=8.85*10^-12
                                         //permittivity in
      free space
                                          //relative
8 \text{ epsilonr} = 2.45
      permittivity
9 //formula is epsilon0*epsilonr*(delE/delt)
10 // \text{delE} / \text{delt} = 4*10^{-} - 6*9*10^{9}* \cos(9*10^{9}* t)
11 Jd=epsilon0*epsilonr*4*10^-6*9*10^9
12 disp("displacement current density is Jd="+string(Jd
      )+" \cos (9*10^9*t) A/m<sup>2</sup>")
```

Chapter 13

Superconductivity

Scilab code Exa 13.1 value of T

```
1 clc
2 //to calculate value of Temperature
3 Bc=105*10^3 //magnetic field in amp/m
4 Bo=150*10^3 //critical field of the metal in amp/m
5 Tc=9.2 //critical temperature of the metal in K
6 T=Tc*sqrt(1-(Bc/Bo))
7 disp("value of temperature is T="+string(T)+"K")
```

Scilab code Exa 13.2 temperature and critical current density at the temperature

```
1 clc
2 //to calculate temperature
3 Tc=7.18 //critical temperature in K
4 Bc=4.5*10^3 //critical field in A/m
5 Bo=6.5*10^3 //critical magnetic field in A/m
6 T=Tc*sqrt(1-(Bc/Bo))
7 disp("temperature is T="+string(T)+"K")
```

```
8 //to calculate critical current density at that
        temperature
9 r=1*10^-3 //diameter of the wire in mm
10 TJc=(Bc*2*%pi*r)/(%pi*r^2)
11 disp("the critical current density at that
        temperature is TJc="+string(TJc)+"A/m^2")
```