部分参考答案

第一章 动量守恒定律

1.1 动量

1.B 2.AB 3.D 4.D 5.B 6.B

 $7.\frac{2}{5}\sqrt{2} \text{ kg · m/s}$,方向竖直向上

8.C 9.C 10.B 11.B 12.AD 13.A

14.(1) 初动量的大小为 $1.6 \text{ kg} \cdot \text{m/s}$,方向向右 末动量的大小为 $4 \text{ kg} \cdot \text{m/s}$,方向向右 动量变化量的大小为 $2.4 \text{ kg} \cdot \text{m/s}$,方向向右 (2)5.2 kg · m/s,方向向左

1.2 动量定理

1.B 2.BC 3.D 4.C 5.C 6.D 7.C 8.BD 9.AD 10.A 11.AC 12.AC 13.B 14.4.8 N

1.3 动量守恒定律

1.D 2.C 3.C 4.C 5.B 6.C 7.D 8.B 9.D 10.BC 11.AB 12.CD

13.(1)0.25 m/s (2)2.75 m/s

14.(1) $(M+m)v_0$ (2) $\frac{M+m}{2M+m}v_0$ 15.(1) 40 m/s (2) 144 J

1.4 实验:验证动量守恒定律

1.(1)①水平 ③接通电源 (2)0.390 0.388

2.(1)C (2)ADE (3)
$$m_1 \cdot OP = m_1 \cdot OM + m_2 \cdot ON$$
 (4) $s^2 = 4h_1h_2$

3.(1)相等 (2)
$$\frac{d}{\Delta t}$$
 (3)0.620 0.610 1.6%

4.(1)平衡摩擦力 (2)AB (3)BC DE 5 $m_A \cdot s_2 = 4(m_A + m_B) \cdot s_4$

5.(1)*C A* (2)
$$\frac{m_1}{\sqrt{OB}} = \frac{m_1}{\sqrt{OC}} + \frac{m_2}{\sqrt{OA}}$$
 6

6.(1)③②④⑤① (2)> (3)将小球无初速度轻放在斜槽末端槽口处的轨道上,小球不滚动 (4) $m_1\sqrt{s_P}$ = $m_1\sqrt{s_M}+m_2\sqrt{s_N}$

1.5 弹性碰撞和非弹性碰撞

1.A 2.A 3.C 4.BD 5.AB 6.B 7.AD 8.BD 9.ABD

10.(1)0.4 s (2)1 m/s (3)0.25 m

11.(1)1 m/s (2)
$$-3 N \cdot s$$
 (3) $-2 m/s$ 2 m/s

12.(1)2 m/s (2)0.4 m

13.(1)0.15 m (2)-1 m/s 1 m/s (3)0 2 m/s

$$14.(1)\frac{1}{6}v_0$$
 $(2)\frac{13}{36}mv_0^2$

1.6 反冲现象 火箭

1.C 2.C 3.A 4.D 5.D

$$6.(1)\frac{Mv+mv_1}{M-m} \quad (2)\frac{m(v_1+v)}{\Delta t}$$

7.D 8.D 9.C 10.B 11.BC 12.D

$$13.(1)2\sqrt{\frac{eU}{m}} \quad (2)\frac{P}{2eU} \quad (3)\frac{P}{M}\sqrt{\frac{m}{eU}}$$

第二章 机械振动

2.1 简谐运动

1.D 2.D 3.D 4.BCD 5.B 6.A 7.D 8.B 9.(1)0.1 m 20 m/s² (2) $\sqrt{2}$ m/s 10.(1) $\frac{2mg}{b}$ (2)g

2.2 简谐运动的描述

1.D 2.B 3.A 4.AD 5.D 6.0.6 s 或 0.8 s 7.D 8.AB

9.2
$$(t_1+t_2)$$
 $\frac{s_1+s_2}{2}$

2.3 简谐运动的回复力和能量

1.B 2.B 3.A 4.A 5.D 6.B 7.BD 8.BCD 9.ACD

2.4 单摆

1.A 2.D 3.A 4.B 5.ACD 6.AD 7.CD

8.(1) $g \sin \theta$ (2)站立摆动时 (3)略

2.5 实验:用单摆测量重力加速度

- 1.(1)乙 铁球的尺寸相比摆线长度小得多、摆线的质量相比铁球的质量可忽略、铁球摆动过程中受空气阻力的影响小得多 (2)B 摆动过程中摆长可以保持不变 (3)5°~10° 97.7
- 2.(1)丙 (3) $\frac{4\pi^2}{k}$ 偶然
- 3.(1)①4~6 V 交流 ②释放纸带前重锤应靠近打点计时器 (2)①B 1.91 ②平衡位置 2.01
- 4.(1)18.6 (2)A (3)偏大 (4) $\frac{4\pi^2 \Delta l}{T_1^2 T_2^2}$
- $5.(1)\frac{4\pi^2n^2L}{t^2}$ (2)阻尼 (3) $\frac{4\pi^2}{k}$ 等于

2.6 受迫振动 共振

1.B 2.A 3.D 4.B 5.C 6.C 7.AC 8.AC 9.BC 10.AD

第三章 机械波

3.1 波的形成

1.AD 2.C 3.A 4.A 5.ABC 6.AB 7.ABC 8.A 9.A 10.C

3.2 波的描述

1.A 2.D 3.BD 4.AD 5.BC 6.AD 7.ABD 8.BD 9.BD

3.3 波的反射、折射和衍射

1.C 2.B 3.D 4.C 5.B 6.CD 7.BD 8.D 9.BD

3.4 波的干涉

1.B 2.B 3.A 4.BC 5.AD 6.D 7.D 8.D 9.0.5 m 减弱 10.在距离 A 点 0.35 m 和 0.85 m 处

3.5 多普勒效应

1.B 2.B 3.D 4.A 5.D 6.B 7.A 8.BD 9.D

第四章 光

4.1 光的折射(1)——折射定律

1.A 2.AC 3.AC 4.AC 5.C 6.D 7.D 8.C

光的折射(2)——测量玻璃的折射率

大、可能偏小、可能不变 $5.(1)\sqrt{3}$ (2)1 (3)K C

4.2 全反射

1.D 2.C 3.D 4.B 5.AC 6.D 7.C

8.(1)60° (2)
$$\frac{9R}{c}$$
 9.(1) $\sqrt{2}$ (2)30° 10.(1) $\sqrt{3}$ (2) $\frac{\sqrt{3}-\sqrt{2}}{2}$

4.3 光的干涉

1.D 2.A 3.A 4.B 5.BD 6.B 7.B 8.C 9.B 10.B

11.(1)2与3 (2)凹 (3)
$$\frac{a\lambda}{2b}$$

4.4 实验:用双缝干涉测量光的波长

1.BD 2.ACD 3.(1)S' (2)6.33 \times 10⁻⁷ 4.(1)C (2)2.331(2.331 \sim 2.333) 2.609 (3)4.35 \times 10⁻⁷

4.5 光的衍射

1.C 2.A 3.C 4.C 5.C 6.ACD 7.相当 小 8.C

4.6 光的偏振 激光

1.A 2.D 3.A 4.D 5.BD

6.(1)—切方向 (2)特定 (3)①偏振片 ②折射 (5)横 7.ACD