- 1. Are the following formulas valid, satisfiable, or unsatisfiable?
 - $P(a) \rightarrow ExP(x)$ Valid, for any model M, a is a subset of all possible values Ex
 - ExP(x)→P(a) Satisfiable. Consider a model where the entire universe is {1, 2}. If a = 1, and P is also 1, then P(a) is True (and exists in this universe).
 However, if the universe was the same {1,2}, but a=2 and P is 1, then P(a) is False.
 - $ExP(x) \lor Ex!P(x) \rightarrow AxP(x)$ Valid, every instance of P(x) will be either True or False
- 2. Foe each of the following sequent, give a formal proof if entailment holds.
 - $AxP(X) \vdash ExP(x)$
 - $Ax(P(x) \rightarrow Q(x))$, $AxP(x) \vdash AxQ(x)$
 - $Ax(P(x) \rightarrow Q(x))$, $ExP(x) \vdash ExQ(x)$
 - !ExP(x) + Ax!P(X)
 - !AxP(x) + Ex!P(x)

$AxP(X) \vdash ExP(x)$

1. AxP(X)	premise
2. x ₀	assumption
3. $P(x_0)$	A _e 1, 2
4. Ex(Px ₀)	$E_{e}, 2, 3$
5. Ex(Px)	E_{i} , 2-3

$Ax(P(x) \rightarrow Q(x)), AxP(x) \vdash AxQ(x)$ 1 $Ax(P(x) \rightarrow Q(x))$ premise

1. $AX(P(X) \rightarrow Q(X))$	premise
2. AxP(x)	premise
3. X ₀	assumption
4. $P(x_0) \rightarrow Q(X_0)$	A _e , 1, 3
5. P(x ₀)	\rightarrow_i , 4
6. $Q(x_0)$	\rightarrow_i , 4, 5
7. $Ax_0Q(x_0)$	$A_{\rm e}, 3-6$
8. AxQ(x)	$A_{e}, 3-7$

$Ax(P(x) \rightarrow Q(x)), ExP(x) \vdash$	• • •
1. $Ax(P(x) \rightarrow Q(x))$	premise
2. AxP(x)	premise
3. x ₀	assumption
4. $P(x_0) \rightarrow Q(x_0)$	A _e , 1, 3
5. $P(x_0)$	\rightarrow_i , 4
6. Q(x ₀)	\rightarrow _i , 4, 5
7. $Ex_0Q(x_0)$	E _e , 3-6
8. ExQ(x)	E_{e} , 3-7
$!ExP(x) \vdash Ax!P(X)$	
1. !ExP(x)	premise
2. x ₀	assumption
3. !Ax!P(x)	assumption
4. $!P(x_0)$	assumption
5. Ax!P(x)	A _i , 2, 4
6. ⊥	!e, 3, 5
7. P(x ₀)	PBC, 4-6
8. AxP(x)	A _i , 3-7
9. ⊥	!e, 1-8
10. Ax!P(x)	PBC, 2-9
$!AxP(x) \vdash Ex!P(X)$	
1. !AxP(x)	premise

2. x_0

6. 丄

9. 丄

7. $P(x_0)$

8. AxP(x)

10. Ex!P(x)

3. !Ex!P(x)

4. !P(x₀)

5. Ex!P(x)

premise assumption

E_i, 2, 4

!e, 3, 5

!e, 1-8 PBC, 2-9

PBC, 4-6 A_i, 3-7

assumption

assumption

Note: almost the same proof as prior, except we just need to show there exists an X₀, not show for all X. Thus the slight variation

Note: same approach as prior, but using there exists elimination instead of for all elimination