Peter Smith

PES71

ECE1395

Problem set 7

1B) Accuracy of model is 98.0

```
The cost with lambda = 0 : 0.20252633908551312
The cost with lambda = 1 : 1.0326189817073517
2B) The cost with lambda = 2 : 1.8627116243291904
```

```
[4.53958077e-05 2.50000000e-01 4.53958077e-05]
```

4D) alpha = 0.015

4E)

	MaxEpochs = 50				MaxEpochs = 100			
	Training	Training	Testing	Testing	Training	Training	Testing	Testing
	data	data cost	data	data cost	data	data cost	data	data cost
	accuracy		accuracy		accuracy		accuracy	
λ = 0	96.1	0.49	100	0.44	96.1	0.22	95.45	0.18
λ = 0.01	96.1	0.81	100	0.92	93.75	0.57	100	0.47
λ = 0.1	69.53	1.33	54.54	1.42	68.75	1.32	54.55	1.42
λ = 1	35.16	1.87	22.73	1.95	35.15	1.87	22.73	2.01

When using a λ value of 0.01 is when I get the best results. I also get a lower cost on the higher Epochs with the lower λ values. When λ gets too high the accuracy drops dramatically and the cost rises greatly. When λ = 0 I get good results, but I believe with slight regularization I get the best values.