

planetmath.org

Math for the people, by the people.

alternate statement of Bolzano-Weierstrass theorem

 ${\bf Canonical\ name} \quad Alternate Statement Of Bolzano Weierstrass Theorem$

Date of creation 2013-03-22 16:40:13 Last modified on 2013-03-22 16:40:13 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 7

Author mathcam (2727)

Entry type Theorem Classification msc 26A06

Related topic BolzanoWeierstrassTheorem

Related topic LimitPoint Related topic Bounded Related topic Infinite **Theorem.** Every bounded, infinite set of real numbers has a limit point.

Proof. Let $S \subset \mathbb{R}$ be bounded and infinite. Since S is bounded there exist $a, b \in \mathbb{R}$, with a < b, such that $S \subset [a, b]$. Let b - a = l and denote the midpoint of the interval [a, b] by m. Note that at least one of [a, m], [m, b] must contain infinitely many points of S; select an interval satisfying this condition, denoting its left endpoint by a_1 and its right endpoint by b_1 . Continuing this process inductively, for each $n \in \mathbb{N}$, we have an interval $[a_n, b_n]$ satisfying

$$[a_n, b_n] \subset [a_{n-1}, b_{n-1}] \subset \dots \subset [a_1, b_1] \subset [a, b], \tag{1}$$

where, for each $i \in \mathbb{N}$ such that $1 \leq i \leq n$, the interval $[a_i, b_i]$ contains infinitely many points of S and is of length $l/2^i$. Next we note that the set $A = \{a_1, a_2, \ldots, a_n\}$ is contained in [a, b], hence is bounded, and as such, has a supremum which we denote by x. Now, given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $x - \epsilon < a_N \leq x$. Furthermore, for every $m \geq N$, we have $x - \epsilon < a_N \leq a_m \leq x$. In particular, if we select $m \geq N$ such that $l/2^m < \epsilon$, then we have

$$x - \epsilon < a_n \le a_m \le x \le b_m = a_m + \frac{l}{2^m} < x + \epsilon.$$
 (2)

Since $[a_m, b_m] \subset (x - \epsilon, x + \epsilon)$ contains infinitely many points of S, we may conclude that x is a limit point of S.