	History										
Type	Author	Citation	Literature Cutoff Date								
Full Evaluation	Caroline D. Nesaraja, Scott D. Geraedts and Balraj Singh	Caroline D. Nesaraja, Scott D. Geraedts and Balraj Singh NDS 111, 897 (2010) 12-Jan-2010									
0(0=) 05(1.0.5; 5(-) 1	2216.2.5. 9(-) 9172.2.5. 0(-) 6200.2.4 2012W-29										
	2216.3 5; S(p)=8172.2 5; Q(α)=-6399.2 4 2012Wa38										
	Note: Current evaluation has used the following Q record. $S(2n)=22467$ 11, $S(2p)=14200.2$ 6 (2009AuZZ).										
	$(12217.0 \ 18; \ S(p)=8172.4 \ 5; \ Q(\alpha)=-6400.0 \ 6$ 2009AuZZ	2003 A 1103									
Other reactions:	$\frac{12217.076}{5}$, $\frac{3(p)-6172.43}{5}$, $\frac{2007Au22}{5}$,2003Au03									
⁵⁶ Fe(¹² C, ¹⁰ Be): 1998Pa43	$E = 60 \text{ MeV}, \ \sigma(\theta).$										
Additional information 1.											
	1989Na11; elastic and inelastic scattering. Extracted deform		model potential.								
	E=600 MeV; 2009Ag02: E=9.9, 11.2, 12.1, 13.0, 14.0 MeV	; measured σ , $\sigma(\theta)$.									
	, 1999Gu02: E=42 MeV, $\sigma(\theta)$.										
	e06: E=70.5 MeV, $\sigma(\theta)$, Ay(θ).										
	: E=15.1, 17.1, 18.5, 19.9, 21.4 MeV; measured σ , $\sigma(\theta)$.										
	E=20.7, 23.4, 25.3, 27.2, 29.3 MeV; measured $\sigma(\theta)$.										
³ Ni(°B,p'Be): 2008Ag11	: E=25.0, 26.9, 28.4 MeV; measured light fragment energy	spectra, $\sigma(\theta)$, excitation f	unctions.								
	: 1987FeZX; DWBA analysis extracted deformation paramet										
	7; studied relationship between centroid and Γ of giant quadratic quadratic relationship between centroid and Γ	rupole resonance and neu	tron binding energy.								
⁵⁸ Ni(¹⁸ O, ¹⁸ O): 1997Si13:											
⁵⁸ Ni(²⁸ Si, ²⁸ Si): 2003Ga18											
	Ni'), $(^{62}\text{Ni}, ^{62}\text{Ni'})$: 2000Va28: E=96.9-116.5 MeV, $\sigma(\theta)$.										
⁵⁸ Ni(⁵⁸ Ni, ⁵⁸ Ni): 2007Hi0											
⁵⁸ Ni(⁵⁸ Ni, ⁵⁸ Ni): 1996Va1											
⁵⁸ Ni(⁵⁸ Ni, ⁵⁸ Ni): 1994Me2											
	58 Ni($\pi^-,\pi^{-\prime}$): 1996La04, 1991Ra22, 1989Oa01; strong absor	ption model analysis of e	elastic scattering to								
extract deformation.											
⁵⁸ Ni mesic atoms, pionic x-rays: 1990Ku08, interaction shifts, and widths.											
	uced occupation probabilities of proton orbits.										
	58 Ni(α,α): 1992Du08; analysis of total cross section data to extract mean square radii of matter distribution.										
Cu(K^-, γ): 1972Ba55.											

⁵⁸Ni Levels

Individual values of τ in ps for first 2⁺ state at 1454 keV that were used in averaging are given below:

1. Deduced from BE2 measurement in Coulomb excitation: 0.82 *16* (1960An07, earlier value of 0.67 *17* in 1959Al95), 0.95 *6* and 1.04 *22* (1960Go08), 0.88 *9* (1962St02), 0.860 *20* (1970Le17), 0.924 *28* (1971ChZF), 0.83 *17* (2004Yu10).

Structure calculations (levels, transition probabilities, etc.): 2009Be24, 2007Sv01, 2006Va21, 2004Ho08, 1999Ha21, 1977Ko02,

- 2. From Γ in (γ, γ') : 0.62 20 (1964Bo22), 0.98 9 (1970Me18), 1.07 8 (1972ArZD), 0.90 11 (1981Ca10).
- 3. From B(E2) in (e,e'): 0.956 16 (1967Du07), 1.14 6 (1969Af01), 1.07 9 (1983Kl09). Uncertainties in B(E2) are statistical, 15% for systematic uncertainty as suggested in 1967Du07 is added in quadrature. Other: 0.65 9 (1961Cr01), not included in the averaging procedure.
- 4. From DSAM in (p,p'γ): 0.94 12 (1969Be48), 0.92 17 (1973BeYD).

1975Va08, 1974Pa13, 1972Gl05, 1972Ob02.

- 5. From DSAM in $(n,n'\gamma)$: 1.00 ps +15-10 (2008Or02, weighted average of two measurements at E(n)=1.6 and 1.8 MeV). Value of 42 fs 12 from 1989Ge09 is discrepant and highly suspect.
- 6. From DSAM in Coulomb excitation: 1.27 2 (2001Ke08), uncertainty is increased to 0.07 to take into account 5% systematic uncertainty due to stopping powers, as suggested by one of the authors of 2001Ke08 in an e-mail reply in December 2007. It should be pointed that this value stands as the highest amongst all the others and is higher by \approx 35% from the precise values deduced from BE2 values in Coulomb excitation. In the e-mail reply, the author of 2001Ke08 claimed that their measurements are reliable for two main reasons: a) the γ rays were detected in coincidence with scattered ¹²C ions thus giving clean γ -ray spectra,

⁵⁸Ni Levels (continued)

b) high ion velocities in inverse kinematics used for the first time. In a thesis by 2005NiZS where lifetime of first 2⁺ state in ²²Ne was measured using Coulomb excitation technique and ^{nat}Ni and 107Ag as targets, the results for first 2⁺ state in ²²Ne were found to be consistent in the two measurements only when BE2 value for first 2⁺ state from Coulomb excitation data was used. Use of the lifetime from 2001Ke08 gave inconsistent results.

Cross Reference (XREF) Flags

```
54Fe(12C,8Be)
                                                                                                                                 <sup>58</sup>Ni(<sup>3</sup>He, <sup>3</sup>He')
                                ^{58}Cu ε decay (3.204 s)
                        Α
                                                                            J
                                                                                                                          S
                                                                                   54Fe(16O,12C)
                                                                                                                                 ^{58}Ni(\alpha,\alpha')
                                ^{59}Zn \varepsilonp decay (182.0 ms)
                        В
                                                                           K
                                                                                                                         T
                                ^{28}Si(^{36}Ar,\alpha2p\gamma)
                                                                                   ^{56}Fe(^{3}He.n)
                                                                                                                                 <sup>58</sup>Ni(<sup>6</sup>Li, <sup>6</sup>Li')
                        C
                                                                           Ĺ
                                                                                                                         U
                        D
                                ^{28}Si(^{36}Ar,\alphap\gamma):prompt p decay
                                                                                   ^{56}Fe(\alpha,2n\gamma)
                                                                           M
                                                                                                                         ٧
                                                                                                                                 Coulomb excitation
                                ^{40}Ca(^{24}Mg,\alpha2p\gamma)
                                                                                   ^{58}\mathrm{Ni}(\gamma,\gamma'),(\mathrm{pol}\ \gamma,\gamma')
                                                                                                                                 <sup>60</sup>Ni(p,t)
                        Ē
                                                                            N
                                ^{45}Sc(^{16}O,p2n\gamma)
                                                                                   <sup>58</sup>Ni(e,e')
                        F
                                                                            0
                                                                                                                                 Ni(K^-, x ray \gamma)
                                ^{48}\text{Ti}(^{12}\text{C},2\text{n}\gamma)
                        G
                                                                            P
                                                                                   ^{58}Ni(n,n'),(n,n'\gamma)
                                                                                                                                 <sup>58</sup>Ni(<sup>16</sup>O, <sup>16</sup>O')
                        Н
                                <sup>54</sup>Fe(<sup>6</sup>Li,d)
                                                                            Q
                                                                                   ^{58}Ni(p,p'),(pol p,p'),(p,p'\gamma)
                                                                                                                                 <sup>58</sup>Ni(<sup>18</sup>O, <sup>18</sup>O')
                                ^{54}Fe(^{7}Li,t)
                                                                            R
                                                                                   <sup>58</sup>Ni(d,d')
                                                                     XREF
                                                                                                                                 Comments
                                                                                                  T_{1/2}: >7.0×10<sup>20</sup> y for decay by double \varepsilon\beta^+ channel to the 0<sup>+</sup> g.s. of <sup>58</sup>Fe, and>4.0×10<sup>20</sup> y for decay by
                                                    ABCDEFGHIJKLMNOPORSTUVWXYZ
                                                                                                     the same mode to the 2<sup>+</sup>, 811-keV level of <sup>58</sup>Fe
                                                                                                     (1993Va19). Others: 1984No09, 1982Be20.
1454.21<sup>l</sup> 9
                                                                                                   \mu=+0.076 18 (2001Ke02,2005St24)
                             0.652 ps 21
                                                    ABCDEFGHIJK MNOPQRST VWXYZ
                                                                                                   Q=-0.10 6 (1974Le13,1989Ra17)
                                                                                                   \langle r^2 \rangle^{1/2} = 3.7748 fm 14 (2004An14 evaluation).
                                                                                                   J^{\pi}: E2 \gamma to 0^+.
                                                                                                   T_{1/2}: different averaging methods were employed to 20
                                                                                                      independent values given in header comments above
                                                                                                     but minimum uncertainty was assigned as 5%, which
                                                                                                     required increasing the uncertainty by a factor of \approx 2
                                                                                                     to values in 1970Le17 and 1971ChZF. Average
                                                                                                     values of \tau in ps obtained are: 0.95 3 by weighted
                                                                                                     average, normalized \chi^2=2.0; 0.95 9 by limitation of
                                                                                                     statistical weights method (the uncertainties is
                                                                                                     increased to overlap the most precise value of 0.86
                                                                                                     4); 0.931 21 by normalized residuals method (NRM),
                                                                                                     normalized \chi^2 = 1.2; 0.926 21 by Rajeval's technique,
                                                                                                     normalized \chi^2=1.0. The evaluators adopt 0.94 3 as in
                                                                                                      2008Or02; this value overlaps all the averaging
                                                                                                     methods used. 2001Ra27 evaluation (which did not
                                                                                                     include 2008Or02, 2004Yu10 and 2001Ke08) lists
                                                                                                      \tau=0.904 ps 26.
                                                                                                   μ: transient field integral perturbed angular correlation
                                                                                                      (2001Ke02). Other: -0.12 24 (1978Ha13,1989Ra17).
                                                                                                   Q: reorientation in Coulomb excitation
                                                                                                     (1974Le13,1970Le17). See also 2005St24
                                                                                                     compilation.
2459.21^{l} 14
                             3.7 ps 4
                                                      BCDEFGH JK M OPQRST VWX
                                                                                                   J^{\pi}: \Delta J=2, E2 \gamma to 2^{+}; L(\alpha,\alpha')=4.
                                                                                                   T_{1/2}: from 2001Ke08, Coulomb excitation.
                                                                                                   T_{1/2}: from DSA In (p,p'\gamma). T_{1/2}=57 fs +25-13 from
2775.42 14
                             0.38 \text{ ps} + 12 - 9
                                                    AB
                                                                HI K NOPQR T W
```

E(level) [†]	$J^{\pi \ddagger}$	${{\operatorname{T}}_{1/2}}^{\#}$	XREF	Comments
				B(E2) In (e,e') is In disagreement. J^{π} : $L(\alpha,\alpha')=2$.
2902.15 <i>21</i>	1^{+h}	69 fs +15-14	A H N PQ t	Configuration= $\nu(p_{3/2}f_{5/2})$ ((p,p'),1986Ho15).
2942.56 18	0+	1.46 ns <i>14</i>	A H NOPQ St W	$T_{1/2}$: from $\gamma\gamma(t)$ in 58 Cu decay (1970Ra34). Other: 2.01 ns 7 in (p,p' γ) (1971St02) is in disagreement. Value from decay work is preferred due to cleaner γ -ray spectra such studies than in reaction data. J^{π} : E0 transition to g.s
3037.86 16	2+	57 fs 8	AB H NOPQRST VW	J ^{π} : L(α , α')=2. T _{1/2} : unweighted average of 75 fs 7 (2001Ke08, Coulomb excitation), 40 fs 6 from (p,p' γ), 47 fs +13-9 from (γ , γ'), 66 fs 6
3263.66 22	2+	37 fs 5	AB H K NOPQRST VW	from (e,e') .
3203.00 22	2		AD I K NOPQRSI VW	J ^{π} : L(α , α')=2. T _{1/2} : unweighted average of 53 fs 8 (2001Ke08, Coulomb excitation), 30 fs 4 from (γ , γ'), 25 fs 4 from (ρ , $\rho'\gamma$), 44 fs 21 from (η , $\eta'\gamma$), 33 fs 3 from (ρ , ρ').
3269.1 8	$(2)^{\boldsymbol{i}}$	>57 [@] fs	N	
3273.7 7	$(2)^{\boldsymbol{i}}$	>50 [@] fs	N	
3420.55 ^q 18	3 ⁺	0.26 ps + 22 - 10	C K PQ T W	J^{π} : L(p,p')=2+4 gives 3 ⁺ uniquely.
3450.9 5		>11 [@] fs	N	
3524 5	4+		I RT	J^{π} : $L(\alpha, \alpha')=4$.
3531.1 3	0+	0.19 ps 6	A H KL OPQ	J^{π} : E0 transition to g.s. L=0 in (6 Li,d), (3 He,n); also E0 in (e,e').
3593.71 25	1,2+	33 fs 9	A N PQ T	J^{π} : γ to 0 ⁺ ; population in (γ, γ') . $T_{1/2}$: DSA In $(p, p'\gamma)$. Other: 39 fs 7 from (γ, γ') .
3620.09 ^q 22 3775.0 3	4 ⁺ 3 ⁺	0.11 ps +8-5 0.28 ps +14-7	BCDEFGH K M OPQ ST W K PQ T W	J^{π} : L(α,α')=4; ΔJ =2, E2 γ to 2 ⁺ . J^{π} : L(p,p')=2+4 gives 3 ⁺ uniquely.
3870 3898.8 <i>4</i>	2+	23 fs 6	R AB H K NOPQR T W	J^{π} : $L(\alpha,\alpha')=2$.
3070.0 4	2		AB II K NOLQK I W	$T_{1/2}$: unweighted average of 13 fs +10-5 from (γ, γ') , 34 fs +8-6 from (e, e') , and 23 fs 3 from $(p, p'\gamma)$.
3943.6 12		>24 [@] fs	N	
4020	(44)		I 0 Q	77 47 (2) 2
4105.9 3	(4^{+})		C E	J^{π} : $\Delta J=(2)$, Q γ to 2^{+} .
4108.4 3	2+	128 fs 55	H K NOPQRST W	E(level): this level is different from 4107.7, 2^+ . J^{π} : $L(p,p')=2$. $T_{1/2}$: unweighted average of 65 fs 10 from $(p,p'\gamma)$, 0.14 ps $+9-4$ from (e,e') , 0.10 ps
4260 80	(2+)		L	+16-4 from (γ, γ') . E(level): broad peak, from energy matching it could correspond to 4295 level, but $J^{\pi'}$ s are different.
40047.4	4+	24.6 . 22 . 19	C	J^{π} : L(³ He,n)=2.
4294.7 4	4 ⁺	24 fs +22-18	C K OPQ W	J^{π} : 4 from (e,e'); γ to 2 ⁺ and RUL.
4347.9 <i>12</i> 4358.7 <i>7</i>	$(2^+,3,4^+)$	17 fs +15-13	k PQ T W E k Q	J^{π} : γ' s to 2^+ and 4^+ .
4383.0 ^q 3	(5^+)		CDEFG M Q T	J^{π} : $\Delta J=1$, (M1+E2) γ to 4 ⁺ .
4404.3 4	4+	43 fs +17-14	C PQ T W	J^{π} : $L(\alpha,\alpha')=4$.
4449.6 <i>4</i>	1+,2+		A QR T	J^{π} : log $ft=5.1$ from 1 ⁺ .
4474.6 5	3^{-a}	22 fs 6	B HI K OPQRST W	$T_{1/2}$: weighted average of 19 fs 8 from $(p,p'\gamma)$,

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF	Comments
					and 24 fs 8 from $(n,n'\gamma)$. B(E3)(\uparrow)=0.0176 16 (2002Ki06 evaluation, adopted from (e,e')).
4518.3 8				Q	W
4538.0 <i>6</i>	0^{+a}	31 fs <i>11</i>	A	OPQ T	
4574.1 <i>5</i>	1 ⁱ	21 [@] fs 3	J	N Q	XREF: N(?).
4752.2 8	4+		В	O QRST	
					J^{π} : $L(\alpha, \alpha') = 4$.
					E(level): weighted average of 4750 5 (e,e'), 4750 7 (p,t), 4750 8 (α , α '), 4755 5 (p,p').
4920.0 6				Q	$(p,t), +750 \circ (\alpha,\alpha), +755 \circ (p,p).$
4954.0 8	1 ⁱ	14 [@] fs 2		N	
4964.7 <i>3</i>	(5^{+})	11 13 2	CE	Q	J^{π} : $\Delta J=1 \ \gamma \text{ to } 4^{+}$.
5064.3 10	` '		I	Q	,
5084 5				Q	
5127.5 ^l 4	6+ <i>ah</i>		CDEFGH	M O Q T	
5156 <i>11</i>	2+				$\mathbf{W} \qquad \mathbf{J}^{\pi} \colon \mathbf{L}(\mathbf{p},\mathbf{t}) = 2.$
5166 <i>10</i>	1+ h			Q	Configuration= $\nu(p_{3/2}p_{1/2})$ ((p,p'),1986Ho15).
5170.3 10		6	K	QS	
5359.3? 16	$(2)^{l}$	>29 [@] fs		N	
5384.5 ^q 4	6+	@	CDE H	Q	J^{π} : $\Delta J=1$, E1 γ from 7 ⁻ ; $\Delta J=2$, Q γ' s to 4 ⁺ .
5394.0 9	4.4	41 [@] fs 8	Н	N T	TT T ()
5436.3 10	4 ⁺	<i>(</i> ()		0 Q	$J^{\pi}: L(p,p')=4.$
5452.2 <i>4</i>	1 ⁱ	>13 [@] fs		N Q	TT 1 (1) 4 C 5470 5 11 (1) 4 C 5400 11
5472.3 <i>8</i> 5503.5 <i>10</i>	4+			Q Q	J^{π} : L(p,p')=4 for 5470 5, and L(p,t)=4 for 5488 11.
5528.0 4	$(1)^{i}$	>7 [@] fs		N	
5589.0 7	(5^{-})	>/ 18	CD H	N t	J^{π} : L(α,α')=4+5 for a doublet; γ from 7 ⁻ ;
3307.0 7	(3)		CD II		$L(^{6}Li,d)=(5,6).$
5590.3 10	2+			Q ST	$\mathbf{W} \qquad \mathbf{J}^{\pi} \colon \mathbf{L}(\alpha, \alpha') = 2.$
5594.2 6	4+ <i>a</i>		K	0 Q t	XREF: O(5585).
5706.3 8				Q	
5744.7 5	(6^+)		С	•	J^{π} : $\Delta J = 2$, Q γ to 4^+ .
5748.5 8 5766.3 8	2 ⁺ 4 ⁺			Q	J^{π} : L(p,p')=2. J^{π} : L(p,p')=4.
5803.3 7	4			Q Q	J : L(p,p)=4.
5824.6 11				Q	
5896.4 7			Н	o Q S	
5905.3 7	1 + <i>i</i>	25 [@] fs 4		No	E(level): In (e,e') , level is At 5909 8 with J=2 In one
					study and 5903 15 In another with J=1, with assumed
					natural-parity states. IT is possible that it is doublet In
5006 5	2+			- 0	(e,e') representing 1^+ and 2^+ levels.
5906 <i>5</i>	2+			o Q	J^{π} : L(p,p')=2. E(level): see comment for 5905.3 level.
5924 10	$(0^+)^{b}$			0.0	
5942.4 10	$(0^+)^{b}$			· · · · · ·	W
	$(0^{+})^{b}$			-	W
5963 <i>10</i> 5967 8	$(0^{+})^{b}$ $2^{+},3^{-a}$			Q O	W
	$(0^+)^{b}$.		_
5982 <i>10</i> 6018.4 <i>10</i>	$\frac{(0^{+})^{b}}{3^{-a}}$		I	Q 0 Q	W
6027.3 7	1 ⁻	0.85 [@] fs 5	u le	NO Q T	J^{π} : L(α,α')=1; J=1 from (γ,γ'); $J^{\pi}=2^+$ favored in
0021.3 /	1	0.05 18 5	пК	NO Q I	(e,e') , but 1^- is not ruled out.
					(-)- //

COEFF Q F; \(\text{L} \t	E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF		Comments
COSE Q F: ΔI=1, E1 γ to 6*; γ to 4* not ΔI=1, D+Q.	6067.5 ^q 4	(7 ⁺)		CDEF Q		J^{π} : $\Delta J=2$, Q γ to (5 ⁺); $\Delta J=1$, (M1+E2) γ to 6 ⁺ .
6145 15 3 T 6	6084.7 5					
6174.3 8 2 2 3 7 4 6 6199 10 6220.0 4 (7 *) 6 22 8 6 220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 8 6 (2 *) 6 6220.0 4 (7 *) 6 (2	6116 <i>10</i>			Q		
6199 10						
6220.0 / (7*)		$2^{+},3^{-a}$				XREF: O(6182).
6228.3 6 (2*) ^a (2*) ^a 0 0 0 F; Δ!=2(2) γ to (5*), 6228 8 level. 6228.3 6 (2*) ^a 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6231 10 (2*) ^a 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6271 10 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6271 10 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6271 10 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 628.3 6 3* 6316 10 1-,2* ^a 638.5 6 3* 6316 10 1-,2* ^a 638.5 6 3* 6316 10 1-,2* ^a 638.7 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				· · · · · · · · · · · · · · · · · · ·		
6228.3 6 (2*) ^a		(7+)				IT AI 1 (+ AI (2) (5+)
6248 10 (2*) ^a (2*) ^a (0) (2*) ^a (1) (
6271 10 6274 3 10						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(2)				J . 2 ,(1) III (e,e) 101 a 0233 8 level.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4[+]^{a}$				
6306 1						J^{π} : L(p,p')=3.
G389 10						The state of the s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,			W	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6389 10			Q	W	
6424.9? 9 1					W	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				i 0 Q	W	J^{π} : L(p,p')=2, also (e,e').
6437 10 6447 10 6447 10 6447 10 6460 5 4+ 6468.4 7 (1+)a^2 6478.4 7 2+ 6478.4 7 2+ 6478.4 7 2+ 6570 10 6507.2 11 6549 10 6471	6424.9? 9			N		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1^{i}	6.9 [@] fs 7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6437 10			hi Q S	W	
6468.4 7 (1*) ^d 6478.4 7 2* 6478.4 7 2* 6478.4 7 2* 6500 10 6507.2 11 6549 10 (4*) ^c 6571.4 10 2* 6508 10 (4*) ^c 6601.3 8 6604.6 l 4 (8*) CDEFG M CDEFG M CREECE						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
6500 10 6507 2 11 6590 10 6591 4 10 6571.4 10 2+ 6598 10 6601.3 8 6604.6 1^{1} 6601.3 8 6604.6 1^{1} 6714 10 6685.0? 9 6714 10 6717.4 7 6735 8 3 7 6735 8 3 7 6735 8 673 10 3 7^{1} 6805.5 10 3 7^{1} 6805.5 10 3 7^{1} 6805.5 10 3 7^{1} 6805.7 7 6714 10 685.7 7 6816 8 685.7 7 6774 10 6865.7 10^{1} 6865.8 10^{1} 6865.9 10^{1} 6866.9 10^{1} 6866.9 10^{1} 687 687 6886 10^{1} 687 6886 10^{1} 687 6886 10^{1}						
6507.2 II 6549 10 (4+) ^C Q W 6571.4 IO 2+ 6598 10 (4+) ^C F Q W 6601.3 8 6604.6 ^I 4 (8+) 6665.4 7 6674 10 6685.0? 9 1 ^I 3.6 [©] fs 4 76714 10 6717.4 7 6735 8 3 ⁻ 0 T W 6735 8 3 ⁻ 0 T W 6752 5 2+ 6763.5 10 3 ^{-f} hi 0 Q s 6805.5 10 3 ^{-f} hiJk Q s 6805.5 10 3 ^{-f} hiJk Q s 6805.5 10 3 ^{-f} hiJk Q s 6816 8 (2+) ^a 0 Q J ^π ; L(p,p') = 2. 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6864.7 C Q W 6771.4 P Q P Q W 6771.4 P Q P Q P Q P Q P Q P Q P Q P Q P Q P		21				J'': L(p,p')=2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
6571.4 IO 2+		$(4^+)^{\mathbf{C}}$			TaT	
6698 10 (4+) ^C						J^{π} : L(p,p')=2.
6601.3 8 6604.6 l 4 (8 $^+$) CDEFG M XREF; G(?)M(?). J^π : $\Delta J = 2$, Q γ to 6^+ ; $\Delta J = 1$, (M1+E2) γ to 7^+ ; band assignment. 6665.4 7 6674.10 6685.0? 9 1 l 3.6 l fs 4 N 6714.10 6717.4 7 6735 8 3 - 6752 5 2 $^+$ Q J^π : $L(\alpha,\alpha') = 3$; also (e,e'). 6765.5 10 3 $^-$ hi 0 0 s E(level): level at 6780 in (3 He, 3 He') where $\Delta E = 25$ keV for strong and 50 keV for weak levels. 6793.10 3 - $^-$ hi Jk Q s 6805.5 10 3 - $^-$ hi Jk Q s 6816.8 (2 $^+$) a 0 Q $^ ^+$: $^ ^+$ $^ ^ ^ ^+$ $^ ^ ^ ^ ^ ^ ^ ^-$		$(4^+)^{\it c}$			W	4.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6601.3 8					
6665.4 7 6674 10	6604.6 ^l 4	(8^{+})		CDEFG M		
6655.4 7 6674 10 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q						
6674 10 6685.0? 9 1 1 3.6 6 fs 4 N 6714 10 Q W 6717.4 7 6735 8 3 - 6752 5 2 + 6763.5 10 3 - f 6805.5 10 3 - f 6805.5 10 3 - f 6816 8 (2+)a 6845.7 7 (7+) 6854.5 10 3 - a 6863.1 6 (6) C C 6886 10 (2+,3-)d 6886 10 (2+,3-)d 6886 10 (2+,3-)d 6886 10 (2+,3-)d 1 Q N Q W Jπ: $L(\alpha,\alpha')=3$; also (e,e'). Jπ: $L(\alpha,\alpha')=3$; also (e,e'). Jπ: $L(\alpha,\alpha')=3$; also (e,e'). E(level): level at 6780 in (3 He, 3 He') where ΔΕ=25 keV for strong and 50 keV for weak levels. E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). Jπ: γ' s to (5+) and 6+. E(level): level at 6860 40 in (p,t). Jπ: ΔJ=1, D γ to (5+). Negative parity assigned by 2009Jo03 In (36 Ar, α 2pγ).						assignment.
6685.0? 9 1 i 3.6 e fs 4						
6714 10 6717.4 7 6735 8 6752 5 6763.5 10 6793 10 6793 10 6793 10 6816 8 686 10 6863.1 6 686 10 6793		1 <i>i</i>	260 5 4			
6717.4 7 6735 8 3 ⁻ 6752 5 2 ⁺ 6763.5 10 3 ^{-f} 6769.5 10 3 ^{-f} 6805.5 10 3 ^{-f} 6816 8 (2 ⁺) ^a 6845.7 7 (7 ⁺) 6854.5 10 3 ^{-a} 6863.1 6 (6) 6863.1 6 (6) 6876 10 (2 ⁺ ,3 ⁻) ^d 6876 1 Q C C C C C C C C C C C C C C C C C C C		1'	3.6° IS 4			
6735 8 3 ⁻ 6752 5 2 ⁺ 6763.5 10 3 ^{-f} 6763.5 10 3 ^{-f} 6763.5 10 3 ^{-f} 6763.5 10 3 ^{-f} 6770 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3						
6752 5 2+ 6763.5 10 3-f hi 0 Q s E(level): level at 6780 in (3 He, 3 He') where ΔE=25 keV for strong and 50 keV for weak levels. 6793 10 3-f 6805.5 10 3-f hi Jk Q s 6816 8 (2+) ^a 6845.7 7 (7+) 6854.5 10 3-a H 0 Q T W $XREF: Q(6844)$ E(level): level at 6800 40 in (p,t). $XREF: Q(6844)$ E(level): level at 6860 40 in (p,t). $XREF: Q(6844)$ E(level): level at 6860 40 in (p,t). $XREF: Q(6844)$ E(level): level at 6860 40 in (p,t). $XREF: Q(6844)$ E(level): level at 6860 40 in (p,t). $XREF: Q(6844)$ E(level): level at 6860 40 in (p,t). $XREF: Q(6844)$ E(level): level at 6860 40 in (p,t). $XREF: Q(6844)$ E(level): level at 6860 40 in (p,t).		3-				I^{π} : L(α, α')=3: also (e.e').
6763.5 10 3^{-f} hi 0 Q s E(level): level at 6780 in (3 He, 3 He') where $\Delta E=25$ keV for strong and 50 keV for weak levels. 6793 10 3^{-f} iJk Q s 6805.5 10 3^{-f} hiJk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). 6816 8 (2+) a 0 Q J ^{π} : 2^{+} ,(1-) In (e,e'). 6845.7 7 (7+) C J ^{π} : 2^{+} ,(1-) In (e,e'). 6854.5 10 3^{-d} H 0 Q T W XREF: Q(6844). 6863.1 6 (6) C J ^{π} : $\Delta J=1$, D γ to (5+). Negative parity assigned by 2009Jo03 In (36 Ar, $\alpha 2$ p γ).						
keV for strong and 50 keV for weak levels. 6793 10 3^{-f} iJk Q s 6805.5 10 3^{-f} hiJk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). 6816 8 (2+) a 0 Q J $^{\pi}$: 2+,(1 $^{-}$) In (e,e'). 6845.7 7 (7+) C J $^{\pi}$: γ 's to (5+) and 6+. 6854.5 10 3^{-a} H 0 Q T W XREF: Q(6844). E(level): level at 6860 40 in (p,t). F(level): level at 6860 40 in (p,t). $E(level)$:		3^{-f}				
6805.5 10 3^{-f} hi Jk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 Q, 12 C). 6816 8 ($^{2+}$) d 0 Q J $^{\pi}$: $^{2+}$,(1 $^{-}$) In (e,e'). 6845.7 7 ($^{7+}$) C J $^{\pi}$: $^{2+}$, $^{2+}$ s to ($^{5+}$) and 6 $^{+}$. 6854.5 10 $^{3-d}$ H 0 Q T W XREF: Q(6844). E(level): level at 6860 40 in (p,t). 1 $^{2+}$						
6805.5 10 3^{-f} hi Jk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). 6816 8 ($^{2+}$) a 0 Q J $^{\pi}$: $^{2+}$,(1 $^{-}$) In (e,e'). 6845.7 7 ($^{7+}$) C J $^{\pi}$: $^{2+}$ s to ($^{5+}$) and 6 $^{+}$. 6854.5 10 $^{3-a}$ H 0 Q T W XREF: Q(6844). 6863.1 6 (6) C J $^{\pi}$: 2 J=1, D 2 to ($^{5+}$). Negative parity assigned by 2009Jo03 In (36 Ar, 2 2p 2).	6793 10	3- <i>f</i>		iJk Q s		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6805.5 10	3^{-f}				E(level): level at 6780 30 in (⁷ Li,t), level at 6800 50 in
6816 8 $(2^{+})^{al}$ 0 Q J^{π} : 2^{+} , (1^{-}) In (e,e'). 6845.7 7 (7^{+}) C J^{π} : γ' s to (5^{+}) and 6^{+} . 6854.5 10 3^{-al} H 0 Q T W XREF: Q(6844). 6863.1 6 (6) C J^{π} : $\Delta J = 1$, D γ to (5^{+}) . Negative parity assigned by 2009Jo03 In $(3^{6}$ Ar, $\alpha 2$ p γ).						
6854.5 10 3^{-d} H 0 Q T W XREF: Q(6844). E(level): level at 6860 40 in (p,t). J^{π} : $\Delta J = 1$, D γ to (5 ⁺). Negative parity assigned by 2009Jo03 In (36 Ar, α 2p γ).	6816 8	$(2^+)^a$		0 Q		J^{π} : 2 ⁺ ,(1 ⁻) In (e,e').
E(level): level at 6860 40 in (p,t). J^{π} : $\Delta J=1$, D γ to (5 ⁺). Negative parity assigned by 2009Jo03 In (36 Ar, α 2p γ).	6845.7 7	(7^{+})		C		J^{π} : γ' s to (5^+) and 6^+ .
6863.1 6 (6) C J^{π} : $\Delta J=1$, D γ to (5 ⁺). Negative parity assigned by 2009Jo03 In (36 Ar, $\alpha 2$ p γ).	6854.5 <i>10</i>	3 ^{-a}		H OQT	W	
2009Jo03 In (36 Ar, α 2p γ).						
6886 $10 (2^+, 3^-)^d$	6863.1 6	(6)		C		
	6006.10	(2+ 2-) d		7 0		$2009J003$ In ($^{\circ}$ Ar, α 2p γ).
6892.9? 15 (1)° 11° fs 5 N						
	6892.9? <i>15</i>	(1) ^t	11 ts 5	N		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
6912 10 6925 10 6935 10 6960 10 6983 5 6992.5 10 7017 10	(2 ⁺ ,3 ⁻) ^d 4 ^{+e} 4 ⁺ e		1 Q	J^{π} : L(p,p')=2; also (e,e').
7042 10 7048.2 9 7051 5 7054.5 10 7068 5 7089 10	1 ⁻ⁱ 4 ⁺ 4 ⁺	0.83 [@] fs 3	i	J^{π} : $L(p,p')=4$. J^{π} : $L(p,p')=4$.
7109 8 7111 5 7113.5 7 7131.5 10 7141 5	$(2^{+})^{a}$ 3^{-} $(1,2^{+})$ 4^{+}		i 0 i Q i Q i Q i Q	J^{π} : $4^{(+)}$ is also suggested In (e,e'). J^{π} : $L(p,p')=3$. J^{π} : $L(p,p')=4$.
7180 25 7210.4 10 7249.6 11 7255 5	3 ⁻ 3 ⁻ (1) ⁱ 2 ⁺ 1 ⁱ	9 [@] fs 3 0.99 [@] fs 11	S W H K O Q T W N O Q	J ^{π} : L(3 He, 3 He')=3. J ^{π} : L(p,p')=3; also (e,e'); L(α , α')=4 is inconsistent. J ^{π} : L(p,p')=2; also (e,e').
7271.7 7 7273.7 6 7300.5 10 7314.8 ^q 5 7380.5 10	7 ⁻ 3 ⁻ (8 ⁺) (1,2 ⁺)	0.99° IS 11	N Q C O Q C	J ^{π} : possible negative parity since No analog GT state seen In ⁵⁸ Cu from (³ He,t) (2002Fu07). J ^{π} : ΔJ =1, E1+M2 γ to 6 ⁺ ; ΔJ =0, D+Q γ to 7 ⁻ . J ^{π} : L(p,p')=3. J ^{π} : ΔJ =1, D+Q γ to (7 ⁺); ΔJ =2, Q γ to 6 ⁺ . J ^{π} : γ to 0 ⁺ .
7388.8 <i>4</i> 7420 <i>5</i> 7446.2 ⁹ <i>5</i> 7462 <i>8</i> 7514.5 <i>10</i>	1 ⁺ⁱ 3 ⁻ (9 ⁺) (1 ⁺) ^a 3 ^{-a}	1.00 [@] fs 5	NO Q C EF O Q hi 1 0 Q ST	J^{π} : L(p,p')=3. J^{π} : ΔJ=1, (M1+E2) γ to (8 ⁺); ΔJ=2, Q γ to (7 ⁺). J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
7560 8 7570.5 10 7585.1 6 7595.9 6 7603 8	1^{+a} 2^{+} $(2)^{i}$ $(1^{-})^{a}$	5.2 [@] fs 8	Hi kl O kl Q N N O	J^{π} : $L(p,p')=2$.
7616.0? 10 7618 5 7680.6 10 7709.7 6	$(1)^{i}$ 4^{+} 1^{-a} 1^{+i}	9.5 [@] fs 40 0.72 [@] fs 3	N Q O Q J NO Q	J^{π} : L(p,p')=4. Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
7721 10 7724.3 ^r 5 7748 8 7766.0 7	$ \begin{array}{c} (8^{+}) \\ (1^{+},2^{-})^{a} \\ (1)^{i} \end{array} $	3.7 [@] fs 6	I Q T C O Q N	J^{π} : $\Delta J=2 \gamma$ to 6^{+} ; $\Delta J=0$, D+Q γ to (8^{+}) .
7807.3 <i>5</i> 7820 <i>8</i> 7858 <i>5</i> 7860 <i>5</i>	1^{-i} $4[+]^a$ $3^ 4^+$	0.81 [@] fs 10	K N Q H O Q Q	J^{π} : $L(p,p')=3$. J^{π} : $L(p,p')=4$.
7862.6 ^{&} 7 7876.7 26	(1,2 ⁺) 1 ⁱ	0.9 [@] fs 5	Q N	J^{π} : γ to 0^+ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF	Comments
7937 25 7973.6 6 7982.8 6 8068.6? 12	8 ^{-a} (8 ⁺) (8 ⁻) (1 ⁻) ⁱ	1.38 [@] fs <i>17</i>	H C C	0	J ^π : ΔJ=2 γ to (6 ⁺); ΔJ=1, D+Q γ to 7 ⁺ . J ^π : ΔJ=1, D+Q γ to (7 ⁺); ΔJ=1, (M1+E2) γ to 7 ⁻ .
8074.5 7	(8^+) 1^{i}	1.6 [@] fs 3	C	N	J^{π} : $\Delta J=1$, D+Q γ to (7^+) .
8096.3 <i>6</i> 8100 <i>15</i> 8110.6 <i>10</i>	$4[+]^a$ $(1,2^+)$	1.0° IS 3	K	N O T Q	XREF: K(8060). J^{π} : γ to 0^{+} .
8115.1 <i>6</i> 8120.8 ^r <i>5</i>	(8 ⁻) (9 ⁺)		C C E	Ų	J^{π} : γ to σ . J^{π} : γ to σ . J^{π} : ΔJ =1, D+Q γ 's to (8^+) .
8134 <i>5</i> 8143 <i>10</i>	3-		CL	Q Q	J^{π} : L(p,p')=3.
8203 <i>20</i> 8237.3 <i>4</i>	$(1^+)^g$ 1^{-i}	$0.15^{\textcircled{0}}$ fs $+3-2$	K	Q NO Q	J^{π} : 1 ⁺ suggested in (e,e') is in disagreement, if the
8276 8	1+ <i>ag</i>	0.13 15 15 2		0 Q	level is the same as in (γ, γ') . J^{π} : 1 ⁺ ,(2 ⁻) In (e,e') .
8317.1 <i>17</i> 8372 <i>20</i>	1^{i} $(1^{+})^{g}$	1.9 [@] fs 3		N Q Q	
8395 <i>8</i> 8395.1 <i>12</i>	2+a $1-i$	0.40 [@] fs 8		O N Q	
8419 <i>10</i>	1+gh $1+gi$	0.51 [@] fs 3		Q	Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
8461.0 <i>7</i> 8475 <i>8</i> 8493 <i>15</i>	2^{-a} $(3^{-},1^{-})$	0.51 ° IS 3		N Q O T	J^{π} : L=(3,1) in (α,α') .
8514.1 <i>4</i>	1^{-i}	0.66 [@] fs 5		NO Q	J^{π} : 1 ⁺ suggested in (e,e') is in disagreement, if the level is the same as in (γ, γ') .
8552.7 13	1(+)	0.97 [@] fs 8		N Q	J^{π} : from analysis of $\sigma(\theta)$ in (p,p') , $J=1$ from (γ,γ') . Configuration= $\nu(p_{3/2}p_{1/2})$ $((p,p'),1986Ho15)$.
8600.5 <i>7</i> 8654 <i>9</i>	1 ⁺ <i>agi</i> (3 ⁻ ,1 ⁻)	0.57 [@] fs 6		NO Q Q T	E(level): unweighted average of 8645 10 (p,p'), and 8662 15 (α , α ').
8679.3 8	1^{+agi}	0.223 [@] fs 11		NO Q	J^{π} : L=(3,1) in (α,α') .
8692 8716 <i>10</i>				Q Q	
8718.1 <i>6</i> 8780 <i>8</i>	(9^{-}) 2^{-a}		С	0	J^{π} : $\Delta J=1$, (M1+E2) γ to (8 ⁻); γ to 7 ⁻ .
8797 <i>5</i> 8808 <i>25</i>	3^{-} $8^{-}a$ $(1^{+})^{a}$			Q 0	J^{π} : L(p,p')=3.
8817 <i>8</i> 8830 <i>40</i> 8845 <i>5</i>	2+ 3-			0 W 0 Q	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e'). J^{π} : L(p,t)=2. J^{π} : L(p,p')=3; 2 ⁺ ,3 ⁻ from (e,e').
8857.4 6	$1^{(+)}gi$ 1^{-i}	0.61 [@] fs <i>12</i> 0.390 [@] fs <i>17</i>		N Q	J. E(p,p)=3, 2, 3 Holli (c,c).
8880.2 <i>6</i> 8896.4? <i>10</i> 8902 <i>5</i>	1 * 4+	0.390° is 17	C	N Q Q	J^{π} : γ to (8 ⁺) suggests (8,9,10 ⁺). J^{π} : L(p,p')=4.
8934.6 5	$1^{(-)}i$	0.310 [@] fs 11	J	NO	J^{π} : parity from (e,e').
8961.3 <i>7</i> 9012 <i>5</i>	1^{+agi} 3^{-}	1.20 [@] fs <i>13</i>	6	NO Q Q	J^{π} : L(p,p')=3.
9027.2 <i>7</i> 9037 <i>8</i> 9062.7 ^{r} <i>6</i>	(9^{-}) $(1^{+})^{a}$ (10^{+})		С	0	J^{π} : $\Delta J = 2 \gamma$ to 7^- ; γ to (8^-) . J^{π} : 1^+ , (2^-) In (e,e') . J^{π} : $\Delta J = 2 \gamma$ to (8^+) ; $\Delta J = 1$, $(M1 + E2) \gamma$ to (9^+) .
7002.7	(10)				σ . $\triangle \sigma - 2 \gamma$ to $(\sigma j, \triangle \sigma - 1, (1411 + 122) \gamma$ to $(j j)$.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF	Comments
9073.4 <i>6</i> 9113 <i>10</i>	1^{+agi}	0.51 [@] fs 3		NO Q O	
9156.9 7	1^{+agi}	0.77 [@] fs 10		NO Q	
9190.7 5	1-i	0.58 [@] fs 6		N Q	J^{π} : (1 ⁺) suggested in (p,p') is in disagreement, if
7170.7 3	1	0.30 13 0		N Q	the level is the same as in (γ, γ') .
9251 <i>10</i>	$(1^+)^{g}$			0 Q	(1),
9295 10	1^{+h}			o Q T	Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
9304 5	3-			o Q	J^{π} : L(p,p')=3.
9310 40	4+			W	J^{π} : L(p,t)=4.
9322.1 9 9	(11^{+})	@	С		J^{π} : $\Delta J=2 \gamma$ to (9^+) .
9326.4 6	11	0.33 [@] fs 5		N Q	
9336 20	$(1^+)^g$		С. Г.	Q	VDCE, E(9)
9345.5 6	(10^{-})		CE		XREF: E(?). J^{π} : ΔJ=2 γ to (8 ⁻); ΔJ=1, (M1+E2) γ to (9 ⁻).
9368.5 6	1 ⁽⁺⁾ <i>ai</i>	0.37 [@] fs 4		NO	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e'); 1 ⁽⁻⁾ In (γ,γ') .
9379 5	3-	0.57 15 7		Q	J^{π} : L(p,p')=3.
9407 10	$(2^{-})^{a}$			0	J^{π} : 2^{-} , (1^{+}) In (e,e').
9436 5	4+	_		Q	J^{π} : $L(p,p')=4$.
9455.4 18	1 ⁱ	2.1 [@] fs 4		N	
9458 <i>5</i>	3-			0 Q	J^{π} : L(p,p')=3.
9523.3 13	1 ⁻ⁱ	0.118 [@] fs <i>13</i>		NO Q	J^{π} : 1 ⁺ ,(2 ⁻) suggested in (e,e') and (1 ⁺) in (p,p') are in disagreement, if the levels in these two reactions are the same as in (γ, γ') .
9554.0 <i>21</i>	1 ⁱ	0.335 [@] fs 20		K NO	XREF: $K(9500)$. J^{π} : (2^{-}) In (e,e') .
9585.2° 8	(9^{-})		С		J^{π} : $\Delta J=2 \gamma$ to 7^- ; $\Delta J=1$, D γ to (8^+) .
9588 <i>5</i>	4+			Q	J^{π} : L(p,p')=4.
9630.5 24	1 ⁱ	0.15 [@] fs 3		N	
9632 5	4+			Q	$J^{\pi}: L(p,p')=4.$
9643 10	$(2^{-})^{a}$		C	0	J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
9666.9 <i>8</i> 9667 <i>10</i>	(10^+) 2^{-a}		С	0	J^{π} : $\Delta J=2 \gamma$ to (8^+) ; $\Delta J=1$, D+Q γ to (9^+) .
9667.8 15	1 <i>i</i>	0.38 [@] fs 13		N	
9672 5	3-	0.36 18 13		Q	J^{π} : L(p,p')=3.
9723.0 9	$1^{(-)}i$	0.109 [@] fs 16		N	. E(p,p) 3.
9750 <i>10</i>	1^{+ag}	0.10) 13 10		0 Q	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
9790.6 <i>10</i>	(10^{+})		С		J^{π} : $\Delta J=1$, D+Q γ to (9 ⁺).
9799 10				0	
9835 5	3-			Q	E(level): doublet in (p,p') , 3^- and 1^+ levels, the latter corresponds to 9842 level here. J^{π} : $L(p,p')=3$.
9843 5	1 ⁺ <i>gh</i>	$0.26^{\textcircled{0}}$ fs +27–10		NO Q	E(level): possible IAS of 1050,1 ⁺ In ⁵⁸ Co. $T_{1/2}$: from (γ, γ') for J=1.
0070 5	2-			0.0	Configuration= $\nu(p_{3/2}p_{1/2})$ ((p,p'),1986Ho15).
9870 <i>5</i> 9886.8 <i>7</i>	$3^ (10^+)$		С	0 Q	J^{π} : L(p,p')=3. J^{π} =(2 ⁻) In (e,e').
9890.8 / 9890 <i>40</i>	(10 ⁺)		C	K W	J^{π} : $\Delta J = 2 \ \gamma \ \text{to} \ (8^+)$. J^{π} : $L(p,t) = 2$.
9929 5	3-			1 Q	J^{π} : L(p,p')=3.
9941 10	$(2^+)^a$			0	J^{π} : 2^{+} ,(1 ⁻) In (e,e').
9956 5	3-			1 Q	J^{π} : L(p,p')=3.
10029 5	3-			0 Q	J^{π} : L(p,p')=3. J^{π} =(2 ⁻) In (e,e').
10059 5	4+			Q	$J^{\pi}: L(p,p')=4.$

E(level) [†]	J ^{π‡}		XREF		Comments
10073 10	1 ⁺ <i>a</i>		0		
10107 <i>10</i>	1^{+ag}		0 Q		
10120 5	4 ⁺		K Q		XREF: K(10100).
					$J^{\pi}: L(p,p')=4.$
10137.2 <i>12</i>	(10^{+})	C			
10144.7 <i>6</i>	(10^{-})	C			**
10157 <i>10</i>	1^{+eg}		0 Q		E(level): possible IAS of 1377,1 ⁺ In ⁵⁸ Co.
10180.8 <i>6</i>	(11^{-})	C			
10190 25	8 ^{-a}		0		
10192.5° 7	(11^{+})	С			
10209 5	3-		Q		J^{π} : $L(p,p')=3$.
10014 10	1 + 0				E(level): note that 10209 and 10214 are two different levels in (p,p') .
10214 10	1 ^{+a}		0 Q		J^{π} : also from 0° data in (p,p') (2007Fu04) In (p,p').
10240.5	4.4				E(level): possible IAS of 1435, 1 ⁺ In ⁵⁸ Co.
10249 5	4+		Q		$J^{\pi}: L(p,p')=4.$
10266 10	1 ^{+a}		0		
10293.5 11	(9-)	С	0		
10304 10	1 ^{+a}		Q		
10355 10	4 ⁺		0		$II \cdot I \cdot (n \cdot n') = A$
10365 <i>5</i> 10385 <i>10</i>	$(1^+)^a$		Q 0		J^{π} : L(p,p')=4. J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
10383 10	(10^{+})	С	U		J. 1 ,(2) III (e,e).
10394.1 13	(9-)	C			
10434 10	$(2^{+})^{a}$	_	0 Q		J^{π} : 2 ⁺ ,(1 ⁻) In (e,e').
10460 5	4 ⁺		Q		J^{π} : L(p,p')=4.
10510 10	1^{+ag}		o Q		XREF: O(10492).
10510 10	1		U Q		E(level): possible IAS of 1729,1 ⁺ In ⁵⁸ Co.
10523 5	4+		Q		J^{π} : L(p,p')=4.
10550 10	$(1^+,2^-)^a$		0		
10582 <i>10</i>	$(1^+)^{a}$		0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
10586 5	3-		Q		$J^{\pi}: L(p,p')=3.$
10590 <i>50</i>	0^{+}		L		J^{π} : L(³ He,n)=0.
10590.9 6	(11^{-})	С			
10630 40	4+			W	J^{π} : L(p,t)=4.
10633 10	1 ^{+a}		0		***
10638 5	3-		Q		J^{π} : L(p,p')=3.
10667 10	1^{+agh}		0 Q		E(level): possible IAS of 1868,1 ⁺ In ⁵⁸ Co.
					Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
10694.7 <mark>P</mark> 7	(10^{-})	С			1/2 5/20 1/2 1/2
10720 <i>10</i>	$(3^-,4^+)^a$		0		
10744 5	4+		0 Q		J^{π} : L(p,p')=4.
10781.7 9	(11^{+})	C			
10805 <i>10</i>	$1^+, 2^{-a}$		0 Q		
10823 5	4+		Q		$J^{\pi}: L(p,p')=4.$
10856 <i>10</i>	$(1^-,2^+)^a$		0		
10882.0 <i>14</i>	(11^{+})	С			
10891 10	2^{+a}		0		TT T (1) 4
10902 5	4 ⁺		Q		J^{π} : $L(p,p')=4$.
10950 10	$1^{+a}_{4^{+}}$		0		VDEE. V(10050)
10967 5	4+		K Q		XREF: K(10950).
11005 6 8	(11^{-})	С			$J^{\pi}: L(p,p')=4.$
11005.6 8	1^{+ag}	C	0.0		E(layal), possible IAS of 2240 1+ In 58Ca
11008 <i>10</i> 11052 <i>10</i>	$(1^+)^g$		0 Q		E(level): possible IAS of 2249,1 ⁺ In ⁵⁸ Co. XREF: Q(11063).
11032 10	(1)6		0 Q		J^{π} : (2 ⁺) In (e,e').
					J. (2) III (C,C).

E(level) [†]	$_{ m J}^{\pi \ddagger}$		XREF		Comments
11080 10	$(1^+)^a$		0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
11117.0° 8	(11^{-})	С			5 . 1 ,(2) III (0,0).
11135 10	$(3^-,4^+)^a$		0		
11158 5	3-		Ő Q		E(level): note that 11158 and 11165 are two different levels in (p,p').
11130 3	3		O Q		J^{π} : L(p,p')=3; 2 ⁺ ,3 ⁻ In (e,e').
11165 10	1+		Q		J^{π} : from 0° data in (p,p') (2007Fu04) In (p,p').
11203 5	4+		Q		J^{π} : $L(p,p')=4$.
11240 25	8- <i>a</i>		0		J . L(P,P) - 1.
11255.2 ^p 7	(11^{-})	С	· ·		
11266 10	$(1^{+})^{a}$		0 Q		J^{π} : 1+,(2-) In (e,e').
11297 10	2+a		0		3 . 1 ,(2) III (0,0).
11297.7 7	(12^{-})	С	O		
11300 5	4+		Q		J^{π} : $L(p,p')=4$.
11335 10	$1^{-},2^{+a}$		0 Q		J . L(P,P) - 1.
11363 10	$(2^{-})^{a}$		0		J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
11410 10	$(2^+,3^-)^a$		0		3 . 2 ,(1) III (0,0).
11413.1 9	(11^+)	С	· ·		
11434 5	4+		Q		J^{π} : $L(p,p')=4$.
11450 25	$(6^+)^a$		0		J . L(P,P) - 1.
11470 10	$(2^{-})^{a}$		0		J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
11474.5 ^r 7	(12^{+})	С	O		3 . 2 ,(1) iii (c,c).
11497 10	(3^{-})	_	Q	W	J^{π} : L(p,t)=(3).
11536 10	$(2^{-})^{a}$		0	"	$J^{\pi}: 2^{-}, (1^{+}) \text{ In } (e,e').$
11579.3 8	(12^{+})	С	O		3 . 2 ,(1) iii (c,c).
11593 10	2^{+a}		0 Q		
11639 10	$\frac{2}{2^{+},3^{-a}}$		0		
11678 10	1^{+ag}		Q		
11728 5	4 ⁺		Q		J^{π} : $L(p,p')=4$.
11734 10	$^{+}_{2}^{+}a$		0		$J : L(p,p) \rightarrow 4$.
11792 10	$(2^{+})^{a}$		O Q		
11814.3 8	(12^{-})	С	O Q		
11824.7 11	(12^{+})	C			
11850 40	(3^{-})			W	J^{π} : L(p,t)=(3).
11860 10	1+a		0	•	σ . $D(p,t)=(\sigma)$.
11887 10	1+ <i>a</i>		0 Q		J^{π} : 1 ⁺ In (p,p') (2007Fu04); 2 ⁻ ,(1 ⁺) in (e,e').
11933 10	$(3^-,4^+)^a$		0		5 . 1 m (p,p) (20071 do 1), 2 ,(1) m (e,e).
11990 <i>10</i>	$(1^+)^a$		0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
11996.4 ^P 7	(12^{-})	С	•		5 . 1 ,(2 / III (0,0 /.
12040 10	2+a		0		
12090 10	-		0		
12141 10	$1^{-},2^{+a}$		0		
12155.1 10	(12^{-})	С	•		
12197 10	$(1^{2})^{g}$ $(1^{+},2^{+})^{g}$		0 Q		J^{π} : (2 ⁺) In (e,e').
12249 10	(1 ,2)		0		3 . (2) in (e,e).
12283 10	(1) <mark>8</mark>		o q		J^{π} : (1 ⁻) In (e,e').
12330 10	$(2^{-})^{a}$		0		$J^{\pi}: 2^{-}, (1^{+}) \text{ In } (e,e').$
12356.8 9	(12^{-})	С	•		5 . 2 ,(1 / III (0,0).
12364.6 7	(12^{+})	C			
12386 10	$(12)^{g}$	_	0 Q		J^{π} : (2 ⁺) In (e,e').
12447 10	$(2^+)^a$		0		· (=) · (=)
12482 10	$(2^+,4^+)^a$		0		
12500 25	8^{-a}		0		
12570.1 7	(12^{+})	С	•		%p=3.7 14 (2009Jo03)
120,011,	()	-			E(p)(c.m.)=1.83 MeV 5 (2009Jo03).
					prompt p decay populates 2524, 13/2 ⁻ level In ⁵⁷ Co which deexcites
					prompt p decay populates 2521, 15/2 level in Co which decacites

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	2	XREF	Comments
					through 834-466-1224 cascade to ⁵⁷ Co g.s.
12573 10	$2^{+},3^{-a}$			0	amough of those 1221 outstade to the gibt
12613 10	2^{+a}			0	
12643 10	$(1^+,2^+)^g$			0 Q	J^{π} : 2 ⁺ ,(4 ⁺) In (e,e').
12700 10	$(2^{-})^{a}$			0	J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
12719.2 7	(12^{+})		С		
12744 10	$(1^+,2^+)^g$			0 Q	J^{π} : (2 ⁺) In (e,e').
12796 <i>10</i>	$(1^+)^a$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
12831.6° 9	(13^{-})		C		
12837 10	$(2^{+})^{a}$			0	
12858 10	2^{+a}			0	
12912.1 <mark>P</mark> 9	(13^{-})		C		
12928 4			C		J^{π} : possible γ to (11 ⁺) suggests (11,12,13).
12931 <i>10</i>	$2^{+},3^{-a}$			0	
12971 <i>10</i>	2^{+a}			0	
13016.6 <i>10</i>	(13^{-})		C		
13022 10	$2^{+},4^{+}$			0	
13048.2 10	(13^{-})		C		
13057 10	2+ <i>a</i>			0	
13095.1 19	(12^{+})		С		
13125 10	(10+)		6	0	
13129.2 18	(12^{+})		С	0	IT. 1+ (2-) I. (1)
13176 10	$(1^+)^a_{2^+a}$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
13233 10			С	0	
13238.1 <i>7</i> 13260 <i>10</i>	(13^+) 2^+a		C	0	
13200 10	$(1^+,2^+)^g$			0 0 Q	J^{π} : (2 ⁺) In (e,e').
13345 10	2^{+a}			0 Q 0	J . (2) III (e,e).
13356.6 ^r 9	(13 ⁺)		С	U	
13411 10	1^{+a}		C	0	
13448 10	$\frac{1}{2+a}$			0	
13492 10	2			0	
13556 10	$(2^+)^a$			0	J^{π} : 2 ⁺ ,(1 ⁻) In (e,e').
13590 10	$(1^+,2^-)^a$			0	5 . 2 ,(1) III (e,e).
13606.8 ^w 13	(12^{+})		C	·	
13632 4	(12)		C C		J^{π} : γ to (11 ⁺) suggests (11,12,13).
13649 10	2^{+a}			0	. , , , , , , , , , , , , , , , , , , ,
13685 10	$(2^{+})^{a}$			0	
$13.7 \times 10^3 \ 3$,	4.7 MeV 3		0	E(level): GQR.
13716 10	1+ <i>a</i>			0	_(=====================================
13765 10	$(1^+)^a$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
13814 10	2^{+a}			0	
13850.1 ^P 10	(14^{-})		C		
13884.2 <i>17</i>	(13+)		С		
13902 10	(2^{+})			0	J^{π} : 2 ⁺ ,(3 ⁻) In (e,e').
13929 10	$(2^{+})^{a}$			0	
13943 <i>3</i>			C		J^{π} : γ to (11 ⁺) suggests (11,12,13).
13955 10	$(2^{+})^{a}$			0	
14000 <i>10</i>	2^{+a}			0	
14045 10	$(2^+)^a$			0	
14081 <i>10</i>	1+a			0	
14127.8 8	(14^{+})		C		
14138 <i>10</i>				0	
14180 <i>10</i>	$(1^+)^a$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
14213 <i>10</i>	$(2^+)^a$			0	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF		Comments
14217.5 13	(14-)		С			
14272 10	$1^{-},2^{+},3^{-a}$			0		
14303 10	$1^{-},2^{+},3^{-a}$			0		
14337 10	2^{+a}			Ō		
14383 10	$\frac{1}{2} + a$			Ö		
14441 10	$(2^+)^a$			0		J^{π} : 2 ⁺ ,(3 ⁻) In (e,e').
14455.8 ⁿ 16	(13^+)		С	O		3 . 2 ,(3) III (c,c).
14470 40	(0^+)				W	J^{π} : L(p,t)=(0).
14504 10	2^{+a}			0	"	\mathbf{J} . $\mathbf{L}(\mathbf{p},t)=(0)$.
14542 10	$(2^{+})^{a}$			0		J^{π} : 2+,(1-,3-) In (e,e').
14598 10	(2)			0		J . 2 ,(1 ,5) III (e,e).
14630 <i>10</i>	$2^{+},3^{-a}$			0		
14692 10	2,3			0		
14736 10	$(2^+)^a$			0		
	2^{+a}					
14823 10	$(1^+)^a$			0		$I\pi$. 1+ (2=) I (1)
14852 10				0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
14853.1° 11	(15^{-})		C	•		
14894 <i>10</i>	$1^{-},2^{+a}$		_	0		
14920.9 ^r 11	(14^+)		C			
14934.7 ^p 12	(15^{-})		C			
14940 <i>10</i>	$(2^{+})^{a}$			0		
15010.6 8	(14^{+})		C			
15031.0 <i>10</i>	(14^{+})		C			TT (4.01) 1 (4.01)
15105.2 <i>19</i>			С			J^{π} : γ' s to (12 ⁺) and (13 ⁺) suggest (12,13,14).
15187.0 <i>23</i>	(13^{+})		C			
15241.9 <i>14</i>	(13 ⁻)		С			%p=43 6 (2009Jo03) E(p)(c.m.)=2.15 MeV 5 (2009Jo03). prompt p decay populates 4814, 17/2 ⁻ level In ⁵⁷ Co which deexcites through 2290-834-466-1224 cascade to ⁵⁷ Co g.s.
15242.0 <i>18</i>			C			J^{π} : γ to (13 ⁻) suggests (13,14,15).
15266.3 10	(14^{+})		C			
15294.3 ^w 10	(14^{+})		C			
15324.1 ^m 12	(14^{+})		C			
≈15400	(13^{-})		C			%p=?
						E(p)(c.m.)≈2.35 MeV (2009Jo03). prompt p decay populates 4814, 17/2 ⁻ level In ⁵⁷ Co which deexcites through 2290-834-466-1224 cascade to ⁵⁷ Co g.s.
15412.6 <i>14</i>	(13^{-})		C			J^{π} : from 2005Ru06.
15434.1 <i>14</i>	(13^{-})		Č			
15709.3 9	(15 ⁺)		C			
15736.9 8	(15+)		C			
15858.2 9	(15^{+})		C			
16167.2 20			С			J^{π} : γ' s to (13 ⁺) and (14 ⁺) suggest (13,14,15).
16171.0 ⁿ 13	(15^+)		C			
16246.6 <mark>P</mark> 14	(16-)		С			
16496.6 23	(16^{-})		C			
16567.0 9	(16^{+})		С			
$16.64 \times 10^3 \ 12$. ,	5.81 MeV +16-11			T	E(level): L=2, isoscalar giant-quadrupole
						resonance (ISGQR).
16673 <i>3</i>	(14 ⁻)		С			%p=?

E(level) [†]	$J^{\pi \ddagger}$	${{\operatorname{T}}_{1/2}}^{\#}$		XREF		Comments
16676.4 8	(16 ⁺)	, , , , , , , , , , , , , , , , , , ,	С			J^{π} : from 2005Ru06, decays by protons to 5918, 19/2 ⁻ level in ⁵⁷ Co; the decay mode not shown in 2009Jo03.
16707 3	(14-)		С			%p=40 7 (2009Jo03) E(p)(c.m.)=2.56 MeV 5 (2009Jo03). prompt p decay populates 5918, 19/2 ⁻ level In ⁵⁷ Co which deexcites through 1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s.
16745 3	(14 ⁻)		С			%p=? E(p)(c.m.)=2.61 MeV 12 (2009Jo03). prompt p decay populates 5918, 19/2 ⁻ level In ⁵⁷ Co which deexcites through 1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s.
16758 3	(14-)		С			%p=41 6 (2009Jo03) E(p)(c.m.)=2.59 MeV 8 (2009Jo03). prompt p decay populates 5918, 19/2 ⁻ level In ⁵⁷ Co which deexcites through 1104-2290-834-466-1224
16798.0 ^v 10	(15 ⁻)	17 ps <i>11</i>	C			cascade to 57 Co g.s. %p=7 2 (2009Jo03); % α =2.6 3 (2009Jo03) T _{1/2} : from estimated T _{1/2} =7-28 ps (2001Ru03) from average Q(transition) in the band=2.4 3, assuming that 1364 γ and 1385 γ are part of the continuation of the band and that Q(transition) does not change at lower spins. E(p)(c.m.)=1.62 MeV 6, E(α)(c.m.)=6.90 MeV 6 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In 57 Co which deexcites through 1058-1104-2290-834-466-1224 cascade to 57 Co g.s.
17019.6 ⁰ 19			C			prompt α decay populates 2949, 6 ⁺ level In ⁵⁴ Fe which deexcites through 411(6 ⁺ to 4 ⁺)–1130(4 ⁺ to 2 ⁺)–1408(2 ⁺ to g.s.) cascade. J ^{π} : γ to (15 ⁻) suggests (15,16,17), (17 ⁻) from
17163.1 ^m 13	(16 ⁺)		С			possible band assignment.
17197 <i>3</i> 17290.0 ^w <i>11</i>	(16 ⁺)		C C			
$17.42 \times 10^3 \ 25$	(-)	3.9 MeV 4		0	T	E(level): L=1, giant-dipole resonance. Γ is from (α, α') . Other: 5.0 MeV 3 In (e,e').
17482 <i>3</i>	(15 ⁻)		С			%p=11 3 (2009Jo03) E(p)(c.m.)=2.35 MeV 6 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In ⁵⁷ Co which deexcites through 1058-1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s.
17530.0 9 17582 <i>3</i>	(17 ⁺) (15 ⁻)		C C			%p=66 5 (2009Jo03); % α <10 (2009Jo03) E(p)(c.m.)=2.43 MeV 4, E(α)(c.m.)=7.71 MeV 8 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In ⁵⁷ Co which deexcites through 1058-1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s. prompt α decay populates 2949, 6 ⁺ level In ⁵⁴ Fe which deexcites through 411(6 ⁺ to 4 ⁺)-1130(4 ⁺ to 2 ⁺)-1408(2 ⁺ to g.s.) cascade.

17607 3	E(level) [†]	$J^{\pi \ddagger}$	${T_{1/2}}^{\#}$		XREF		Comments
18261.1 1/4	17607 3	(15 ⁻)		С			E(p)(c.m.)=2.47 MeV 7 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In ⁵⁷ Co which deexcites through 1058-1104-2290-834-466-1224 cascade to ⁵⁷ Co
18.43×10 ³ 15	18261.1 ⁿ 14						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(16 ⁻)	7.41 MeV <i>13</i>	С		Т	E(level): L=0, giant-monopole resonance.
19196 p 4							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19196 <i>P</i> 4	(10)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
20135.4 j 25 (18") C	19566.9 ^w 19						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(18-)		С			E(p)(c.m.)=1.94 MeV 7 (2009Jo03). prompt p decay populates 10075, 25/2 ⁺ level In
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
							%n<10 (2009Io03)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21100.3 23	(1)		C			E(p)(c.m.)=1.89 MeV 7 (2009Jo03). prompt p decay populates 11069, 27/2 ⁺ level In
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23331 ^k 3	(21^{-})					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(21^+)	42 M N 26	C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(22^{+})	4.3 MeV 20	C		1	E(level): isoscalar giant-dipole resonance (ISGDR).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$25918^{k} \ 3$ (23 ⁻) C $26059.7^{l} \ 20$ (23 ⁺) C $27366^{j} \ 4$ (24 ⁻) C $28709^{v} \ 3$ (25 ⁻) C $28931^{k} \ 3$ (25 ⁻) C	25141 ^w 4	(22^{+})		C			
26059.7^{t} 20 (23 ⁺) C 27366^{j} 4 (24 ⁻) C 28709^{v} 3 (25 ⁻) C 28931^{k} 3 (25 ⁻) C							
$27366^{j} \ 4$ (24 ⁻) C $28709^{\nu} \ 3$ (25 ⁻) C $28931^{k} \ 3$ (25 ⁻) C							
$28709^{\nu} \ 3$ (25 ⁻) C C $28931^{k} \ 3$ (25 ⁻) C							
	28709 ^v 3						
20401 1 4 (26=)		(25^{-})		C			
	30491 ^j 4	(26^{-})		C			T
31.13×10 ³ 14 7.8 MeV 27 0 T E(level): isoscalar giant-dipole resonance (ISGDR). In (e,e'), composite energy is 28.3 MeV 3.	31.13×10 ³ 14		7.8 MeV 27		0	T	E(level): isoscalar giant-dipole resonance (ISGDR). In (e,e'), composite energy is 28.3 MeV 3.
32175 <i>3</i> (27 ⁻) C							1 500
$32495^k \ 3 \qquad (27^-)$	32495 ^k 3	(27^{-})		С			

E(level) [†]	$J^{\pi \ddagger}$		XREF	Comments
33972 ^j 4	(28-)	С		
36045 <i>4</i>	(29^{-})	C		
36535 ^k 3	(29^{-})	C		
37810 ^j 4	(30^{-})	С		
40333 4	(31^{-})	C		
40931 ^k 3	(31^{-})	С		
42007 ^j 4	(32^{-})	С		
$x^{\mathcal{U}}$		C		Additional information 2.
2868.1+x ^u 10		C		
6083.2+x ^u 15		C		
9667.3+x ^u 18		C		

[†] From a least-squares fit to E γ 's for levels populated in γ -ray studies. For levels populated in particle-transfer and inelastic scattering studies, the values are averaged over all available data. For levels populated in (γ, γ') , values are as given in the 58 Ni (γ, γ') dataset.

[‡] For high-spin (J>6) levels, all assignments are from γ -ray cascades observed in in-beam γ -ray studies: $^{28}\text{Si}(^{36}\text{Ar},\alpha2\text{p}\gamma), ^{28}\text{Si}(^{32}\text{S},2\text{p}\gamma); ^{40}\text{Ca}(^{24}\text{Mg},\alpha2\text{p}\gamma); ^{45}\text{Sc}(^{16}\text{O},\text{p}2\text{n}\gamma); ^{48}\text{Ti}(^{12}\text{C},2\text{n}\gamma) \text{ and }^{56}\text{Fe}(\alpha,2\text{n}\gamma).$ For many transitions angular distribution/correlation data support these assignments. For a few transitions, supporting γ (lin pol) data are available. In addition, ascending spins are assumed in these reactions as the excitation energy rises. Arguments for individual are given for levels below 10 MeV. Above this energy, all assignments are as proposed in $^{28}\text{Si}(^{36}\text{Ar},\alpha2\text{p}\gamma)$ reaction by 2009Jo03 and their previous papers, based on DCO data for selected transitions and γ cascades. The parentheses have been added by the evaluators since strong supporting arguments from polarization or other parity-sensitive seem to be lacking. When J^π is deduced from L-transfers, target J^π=0⁺ in all reactions.

[#] From DSA in $(p,p'\gamma)$ (1969Be48), except where noted otherwise. Weighted or unweighted averages are taken when values are available from different reactions. Values from (γ,γ') are deduced from measured Γ_0^2/Γ and branching ratios.

[@] From Γ_0^2/Γ or Γ_0 in (γ, γ') and adopted branching ratios, assuming $\Gamma(0)/\Gamma=1$ when there is only the ground-state transition listed from a level. See (γ, γ') dataset for details.

[&]amp; A level assumed by the evaluators to assign γ transitions to 1454 and g.s. in $(p,p'\gamma)$. These transitions could not be assigned to levels in (p,p') because their J^{π} was 3^{-} or 4^{+} .

^a From analysis of form factor in (e,e').

 $^{^{}b}$ (0⁺) from L(p,t)=(0) for 5960 40.

 $^{^{}c}$ (4⁺) from L(p,t)=(4) for 6560 40.

 $^{^{}d}$ (2⁺,3⁻) from L(3 He,n)=(2,3) for 6900 50.

^e 4⁺ from (e,e') for 6930 15.

 $f \ 3^- \text{ from L}(^3\text{He}, ^3\text{He}') = 3 \text{ for } 6780 \ 25.$

 $[^]g$ (1⁺) from strong population of L(p,p')=0 state in near 0° data (2007Fu04), and interpretation as GT transition.

^h From analysis of $\sigma(\theta)$ and analyzing power data in (pol,P').

ⁱ From $\gamma(\theta)$ and/or asymmetry measurement In (pol γ, γ').

 $^{^{}j}$ Band(A): Band based on (16⁻), α =0. Parity from 2009Jo03 and 2006Ru02.

^k Band(a): Band based on (17⁻), α =1. Parity from 2009Jo03 and 2006Ru02.

^l Band(B): yrast structure.

^m Band(C): Band based on 15323,14⁺.

ⁿ Band(D): Band based on 14455,13⁺.

^o Band(E): Band based on 9585,9⁻.

^p Band(F): $\Delta J=1$ band based on 10694,10⁻.

^q Band(G): $\Delta J=1$ band based on 3422,3⁺.

^r Band(H): $\Delta J=1$ band based on 7724,8⁺.

- ^s Band(I): Band based on 18638,18⁺.
- ^t Band(i): Band based on 19945,19⁺.
- ^u Band(J): γ cascade.
- $^{\nu}$ Band(K): SD-1 Band. BASED ON (15⁻); from 2009Jo03, 2006Ru02 and 2001Ru03. this band has been assigned (2001Ru03) In the secondary minimum of the potential well. Population intensity≈2%, relative to the total ⁵⁸Ni channel. The (13⁻) states At 15410 and 15431 are possibly continuation of this band towards low-lying states. The (15⁻) member of this band decays by prompt α emission to ⁵⁴Fe. Average Q(transition)=2.4 3 (2001Ru03), from residual Doppler-shift method.
- ^w Band(L): SD-2 band. based on (12⁺); from 2009Jo03 and 2001Ru03. this band has been assigned (2001Ru03) In the secondary minimum of the potential well. Population intensity≈1%, relative to the total ⁵⁸Ni channel.

γ (58Ni)

2 ⁺ 4 ⁺	1454.28 10							
		100	$0.0 0^{+}$	E2				B(E2)(W.u.)=10.0 4
	1004.80 15	100	1454.21 2+	E2				B(E2)(W.u.)=11.2 <i>12</i>
	2459.1	≤0.5	$0.0 0^{+}$					_()()
2+	316.1	≤0.06	2459.21 4+					
_	1321.2 2	100.0 3	1454.21 2+	E2+M1	-1.1 <i>I</i>			B(M1)(W.u.)=0.011 +3-4; $B(E2)(W.u.)=15 +4-5$
	1321.2 2	100.0 5	1131.21 2	D2 (WII	1.1 1			Mult.: large $\delta(Q+D)$ from $\gamma(\theta)$.
	2775 5 4	153	0.0 - 0+	F2				B(E2)(W.u.)= $0.029 + 8 - 10$
1+				152				D(E2)(W.u.)=0.029 +0-10
1								
				(M1)				B(M1)(W.u.)=0.00079 + 18-19
	2901.5 3	0.4 0	0.0 0	(MII)				Mult.: $\Delta J=1$, dipole from $\gamma(\theta)$; ΔJ^{π} requires M1.
0+	40.2.4	100 4	2002 15 1+	D. (1)		0.501.10		
0.	40.3 4	100 4	2902.15	[M1]		0.581 19		$\alpha(K) = 0.519 \ 17; \ \alpha(L) = 0.0541 \ 18; \ \alpha(M) = 0.000762 \ 25$
	165.0.0	10.4.10	2555 42 24	FE 01		0.0000		B(M1)(W.u.)=0.116 <i>14</i>
	167.2 2	18.4 19	2775.42 21	[E2]		0.0809		$\alpha(K) = 0.0722; \ \alpha(L) = 0.00761; \ \alpha(M) = 0.001063$
	100.00		0.150.01 1±					B(E2)(W.u.)=21 3
		19.9 <i>19</i>						B(E2)(W.u.)=0.00040 6
	2942.3		$0.0 0^{+}$	E0			0.058 8	$q_k^2(E0/E2)=0.65 \ 10, \ X(E0/E2)=0.53 \ 9, \ \rho^2(E0)=0.63E-5$
								10 (2005Ki02 evaluation).
								$I_{(\gamma+ce)}$: 0.021% 3 decay of level In $(p,p'\gamma)$.
2+	95.2	≤0.5	$2942.56 0^{+}$					
		≤0.2						
	262.6 <i>3</i>	1.7 3	$2775.42 \ 2^{+}$	M1(+E2)	-0.035			B(M1)(W.u.)=0.21 5; B(E2)(W.u.)=5 +18-5
								If M1, B(M1)(W.u.)=0.3 <i>1</i> .
	578.5	≤0.5	$2459.21 4^{+}$					
	1583.8 <i>3</i>	100.0 17	1454.21 2+	M1+E2	+0.21 3			B(M1)(W.u.)=0.055 8; B(E2)(W.u.)=1.8 6
	3037.7 <i>3</i>	68.4 <i>19</i>		[E2]				B(E2)(W.u.)=1.15 17
2+	321	≤0.3	2942.56 0+					
	361.6	≤0.3	2902.15 1 ⁺					
	488.2	≤0.3	$2775.42 \ 2^{+}$					
	804.3	<u>≤</u> 1.7	2459.21 4+					
	1809.5 <i>3</i>	65.8 18		M1+E2	+0.7 4			B(M1)(W.u.)=0.027 11; B(E2)(W.u.)=8 6
	3263.4 <i>4</i>	100.0 18	$0.0 0^{+}$	[E2]				B(E2)(W.u.)=1.9 3
(2)								
	3273.7 7		$0.0 0^{+}$					
3+		5.7 <i>3</i>		(M1(+E2))	+0.08 9			B(M1)(W.u.)=(0.08 +3-7); B(E2)(W.u.)=(7 +15-7)
-		≤0.6		//				(),(, (), - ()() ()
		< 0.7						
				(M1(+E2))	-0.02.3			B(M1)(W.u.)=(0.09 +4-8); B(E2)(W.u.)=(0.07 +23-7)
				(1/11(122))	0.02 3			2(111)(1111) (010) 17 0), 2(22)(1111) -(0107 123 7)
	3450.9 <i>5</i>		$0.0 0^{+}$					
	(2) (2)	2775.5 4 1 ⁺ 442.7 1448.2 4 2901.3 5 0 ⁺ 40.3 4 167.2 2 483.3 ^a 1488.3 3 2942.3 2 ⁺ 95.2 135.8 262.6 3 578.5 1583.8 3 3037.7 3 2 ⁺ 321 361.6 488.2 804.3 1809.5 3 3263.4 4 (2) 3269.1 8 (2) 3273.7 7 3 ⁺ 382.9 3 477.9 518.5 645.1 961.0 2 1966.3 3420.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

17

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$I_{(\gamma+ce)}$	Comments
3531.1	0+	493.3 588.5 ^a	≤1.0	3037.86 2 ⁺ 2942.56 0 ⁺				I_{γ} : ≤ 1.0 , but no γ expected for E0 transition.
		629.1	≤1.1	2902.15 1+				Tyr = 1.0, out no / enpected for 2.0 damenton
		755.7 1071.8 <mark>a</mark>	≤1.8 ≤2.9	2775.42 2 ⁺ 2459.21 4 ⁺				
		2076.9 3	100	1454.21 2+	[E2]			B(E2)(W.u.)=5.6 18
		3530.9		0.0 0+	E0		0.068 11	$q_k^2(E0/E2)=0.27 \ 4$, $X(E0/E2)=0.47 \ 7$, $\rho^2(E0)=0.08 \ 3$ (2005Ki02 evaluation).
3593.71	$1,2^{+}$	330.0	≤1.1	3263.66 2+				
		555.8 652.8 <i>10</i>	≤2.4 8.3 <i>10</i>	3037.86 2 ⁺ 2942.56 0 ⁺				
		691.6	<1.5	2942.36 0 2902.15 1 ⁺				
		818.4 <i>4</i>	27.2 15	2775.42 2+				
		1134.3	≤3.5	2459.21 4+				
		2139.2 5	18.0 10	1454.21 2+				
		3593.3 6	100.0 22	0.0 0+				I_{γ} : other: branching=24% 3 in (γ, γ') work of 2000Ba63 seems in error, the level in (γ, γ') is considered as the same as in other reactions and decays.
3620.09	4+	582.4	<3.8	3037.86 2+				as in other reactions and accurs.
		844.8	<3.8	2775.42 2+				
		1161.2 3	100.0 24	2459.21 4+	(M1(+E2))	+0.6 +3-6		B(M1)(W.u.)=(0.07 + 4-6); B(E2)(W.u.)=(4.E+1.4)
		2166.3 5	20.5 24	1454.21 2+	E2			B(E2)(W.u.)=1.3 +7-10
3775.0	3 ⁺	3620.0 ^a 354.5 <i>3</i>	<4.4 33 <i>3</i>	$0.0 0^{+}$ $3420.55 3^{+}$	(M1(+E2))	+0.05 +21-12		B(M1)(W.u.)=(0.33 +9-17); B(E2)(W.u.)=(1.E+1 +11-1)
3773.0	3	736 2	16 3	3037.86 2 ⁺	(WII(+E2))	T0.03 T21-12		If M1, B(M1)(W.u.)=0.019 9.
		872.6	<4.3	2902.15 1+				ii iiii, B(iiii)(iii.u.)=0.017 7.
		999.2		2775.42 2+				
		1316.4 <i>15</i>	100 7	2459.21 4+	M1(+E2)	+0.19 15		B(M1)(W.u.)=(0.019 +5-10); B(E2)(W.u.)=(0.8 +12-8)
		2320.5 8	24 3	1454.21 2+				If M1, B(M1)(W.u.)= 9×10^{-4} 5.
		3774.4	<5	$0.0 0^{+}$				P. 0.44 (411 - 1 - 0.040 - 10
3898.8	2+	2444.7 4	100.0 16	1454.21 2 ⁺ 0.0 0 ⁺	[M1]			B(M1)(W.u.)=0.050 13 B(E2)(W.u.)=0.50 14
		3898.0 7	31.9 <i>16</i>	$0.0 0^{+}$	[E2]			B(E2)(W.u.)=0.50 $I4$ I _{γ} : from (p,p' γ).
3943.6		3943.6 12		$0.0 0^{+}$				γ . Holli (p,p,γ) .
4105.9	(4^{+})	486.0 <i>3</i>	6 3	3620.09 4 ⁺				
	. ,	683.7 5	3 <i>3</i>	3420.55 3 ⁺				
		1646.4 <i>12</i>	9 3	2459.21 4+				
4400 :		2653.1 12	100 3	1454.21 2+	(Q)			
4108.4	2+	687.4	4.3 22	3420.55 3+				
		1205.9	11 4	2902.15 1+	DM11			D(M1)(W ₁₁)=0.0044.24
		1332.5 2654.6 <i>4</i>	13 <i>4</i> 87 <i>5</i>	2775.42 2 ⁺ 1454.21 2 ⁺	[M1] M1+E2	-0.58 +8-9		B(M1)(W.u.)=0.0044 24 B(M1)(W.u.)=0.0028 13; B(E2)(W.u.)=0.26 13
		4107.4 7	100 5	$0.0 0^{+}$	[E2]	-0.36 +6-9		B(E2)(W.u.)=0.0028 13, B(E2)(W.u.)=0.20 13 B(E2)(W.u.)=0.13 6
		110/.11/	100 5	0.0	رحدا			2(22)() 0.10 0

γ (58Ni) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
4294.7	4+	1835.3 4	67 33	2459.21 4+			
		2840.8 <i>10</i>	100 <i>33</i>	1454.21 2+	[E2]		B(E2)(W.u.)=6+5-6
4347.9		2893.6 12	100	$1454.21 \ 2^{+}$			if E2, B(E2)(W.u.)=12 11.
4358.7	$(2^+,3,4^+)$	1584		2775.42 2+			
		1901.7 <i>12</i>		2459.21 4+			
		2902		$1454.21 \ 2^{+}$			
4383.0	(5^+)	276.7 6	3.8 7	$4105.9 (4^+)$	D+Q		
		763.0 <i>3</i>	100.0 20	3620.09 4+	(M1+E2)	-0.385	
		962 <i>1</i>	0.2 2	3420.55 3 ⁺			
		1923.9 7	31.2 20	2459.21 4+	D+Q	+0.27 10	
4404.3	4+	2951.3 <i>11</i>	100	1454.21 2+	E2		B(E2)(W.u.)=4.4 + 15-18
4449.6	$1^+, 2^+$	855.0 <i>4</i>	100 10	3593.71 1,2 ⁺			
		1547.0 7	11 3	2902.15 1+			
		1673.8 <i>6</i>	12.4 <i>17</i>	$2775.42 \ 2^{+}$			
4474.6	3-	1697.5 9	25 8	2775.42 2+	[E1]		B(E1)(W.u.)=0.0008 4
		3021.1 6	100 17	1454.21 2+	[E1]		B(E1)(W.u.)=0.00060 22
4518.3		2059		2459.21 4+			
		3064		1454.21 2+			
4538.0	0^{+}	3083.7 6	100	1454.21 2+	[E2]		B(E2)(W.u.)=4.9 18
4574.1	1	4574.1 [@] a		$0.0 0^{+}$			
4752.2	4+	1132	100	3620.09 4 ⁺			
		2293	25	2459.21 4+			
4920.0		1300		3620.09 4+			
		1656		3263.66 2 ⁺			
		2461		2459.21 4+			
4954.0	1	4954.0 8		$0.0 0^{+}$			
4964.7	(5^+)	1344.7 2	23 3	3620.09 4+			
	,	2503.8 <i>13</i>	100 <i>3</i>	2459.21 4+	D+Q	-0.42 4	
5064.3		2605	100	2459.21 4+			
5127.5	6+	723.2 2	0.6 2	4404.3 4+			
		744.6 3	100.0 21	4383.0 (5 ⁺)	(M1+E2)	-0.424	δ: from (36 Ar,α2pγ). Other: $-2.5 + 6 - 8$ or $-0.20 + 10 - 15$ in (12 C,2nγ).
		832.0 ^a 7	0.4 2	4294.7 4+	(1111 1 22)	02	0. nom (1m,w2p/). o mor. 210 10 0 01 0.20 110 10 m (0,2m/).
		1020.3 7	1.46 21	4105.9 (4+)			
		2668.6 10	45.8 21	2459.21 4+	Q		
5170.3		2711	.0.0 21	2459.21 4+	~		
5359.3?	(2)	5359.3 [@] a 16		$0.0 0^{+}$			
5384.5	6 ⁺	1000.8 8	100 10	4383.0 (5 ⁺)	D+Q		
5504.5	U	1088.9 10	4 2	4383.0 (3) 4294.7 4 ⁺	D+Q		
		1764.5 <i>11</i>	100 10	3620.09 4 ⁺	0		
		2926.6 <i>15</i>	66 8	2459.21 4 ⁺	Q Q		
5394.0		5394.0 9	00 0	$0.0 0^{+}$	Q		
5436.3	4+	2977	100	2459.21 4 ⁺			
5452.2	1	5452.2 [@] 4	100	$0.0 0^{+}$			
3432.2	1	3432.2 4		0.0			

19

γ (58Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
5472.3	4+	3013		2459.21 4+			
		4018		1454.21 2+			
5503.5		2728	100	2775.42 2+			
5528.0	(1)	5528.0 <i>4</i>		$0.0 0^{+}$			
5589.0	(5 ⁻)	3129.0 <i>15</i>	100	2459.21 4+			
5590.3	2+	5590	100	$0.0 0^{+}$			E_{γ} : from $(p,p'\gamma)$.
5594.2	4+	1819	53	3775.0 3 ⁺			E_{γ} : all γ' s from $(p,p'\gamma)$.
		3135	100	2459.21 4+			
		4140	3	1454.21 2+			
5706.3		2931 ^a		2775.42 2+			
		3247		2459.21 4+			
57447	(C+)	4252	100	1454.21 2+			
5744.7	(6^{+})	3286.0 18	100	2459.21 4+	Q		
5748.5	2+	2155 3289		3593.71 1,2 ⁺			
		3289 4294 <mark>a</mark>		2459.21 4 ⁺ 1454.21 2 ⁺			
5766.3	4+	3307		2459.21 4 ⁺			
3700.3	4	4312		1454.21 2 ⁺			
5803.3		4349		1454.21 2 ⁺			
3603.3		5803		$0.0 0^{+}$			
5824.6		2404		3420.55 3+			
5896.4		4442		1454.21 2 ⁺			
3070.1		5896		$0.0 0^{+}$			
5905.3	1+	5905.3 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.0043 7
5942.4	(0^+)	4488	100	1454.21 2+			
6018.4	3-	4564	100	1454.21 2+			
6027.3	1-	3565		2459.21 4+			
		4574.1 [@] 5	23 4	1454.21 2+			
		6027.3 7	100 4	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00197 17
6067.5	(7^{+})	322.8 2	1.6 3	5744.7 (6 ⁺)	(M1+E2)	-0.18 10	2(21)(1141) 0100127 17
	. ,	682.7 5	16.1 <i>13</i>	5384.5 6+	(M1+E2)	-0.11 8	
		940.1 <i>4</i>	100 5	5127.5 6 ⁺	(M1+E2)	-0.364	
		1684.6 <i>10</i>	42 3	4383.0 (5 ⁺)	Q		
6084.7	7-	495.6 <i>6</i>	2.4 12	5589.0 (5-)			
		699.6 8	23.5 24	5384.5 6 ⁺	E1(+M2)	-0.06 13	
		957.1 7	100 4	5127.5 6 ⁺	E1(+M2)	-0.065	
		3625.1 <i>13</i>	10.6 12	2459.21 4+	(E3)		Mult.: DCO In (36 Ar, α 2py) consistent with pure octupole or Δ J=2,Q, not
							with $\Delta J=1$, dipole.
6174.3	$2^{+},3^{-}$	3715		2459.21 4+			
		4720 ^a		1454.21 2+			
		6174		$0.0 0^{+}$			
6220.0	(7^{+})	835.5 6	100 9	5384.5 6 ⁺	D+Q	$-0.08 \ 4$	
		1092.7 5	88 9	5127.5 6 ⁺	D+Q		
I							

20

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
6220.0	(7 ⁺)	1256.4 9	40 3	4964.7 (5+	(Q)		
6228.3	(2^{+})	3326	.00	2902.15 1+	(4)		
	(-)	4774		1454.21 2+			
		6228		0.0 0+			
6274.3	4[+]	3815	100	2459.21 4+			
6308.5	3-	3366		2942.56 0 ⁺			
000010		3533		2775.42 2+			
		4854		1454.21 2+			
6360.6		2940	100	3420.55 3+			
6402.4		6402	100	0.0 0+			
6424.9?	1	6424.9 [@] a 9		0.0 0+			
6430.7?	1	6430.7 ^a 10		$0.0 0^{+}$			
6468.4	(1^+)	5014		1454.21 2+			
0 TOO.T	(1)	6468		$0.0 0^{+}$			
6478.4	2+	5024		1454.21 2+			
0470.4	2	6478		$0.0 0^{+}$			
6507.2		2887	100	3620.09 4+			
6571.4	2+	5117	100	1454.21 2+			
6601.3	2	2981	100	3620.09 4 ⁺			
0001.5		4142		2459.21 4+			
6604.6	(8^{+})	384.8 <i>3</i>	2.6 3	6220.0 (7+	1		
0001.0	(0)	519.5 4	2.1 3	6084.7 7	,		
		537.0 3	100 3	6067.5 (7+	(M1+E2)	-0.18 <i>3</i>	δ: from (36 Ar, α 2pγ). Other: $-0.20 + 5-9$ In (12 C,2nγ).
		1476.8 10	70 3	5127.5 6 ⁺	Q	0.10 5	0. Holif (711,42py). Other. 0.20 15 7 Hr (0,2Hy).
6665.4		5211	705	1454.21 2 ⁺	~		
0005.1		6665		0.0 0+			
6685.0?	1	6685.0 [@] a 9		$0.0 0^{+}$			
6717.4	1	5263		1454.21 2 ⁺			
0/1/.4		6717		$0.0 0^{+}$			
6763.5	3-	5309	100	1454.21 2 ⁺			
6805.5	3-	5351	100	1454.21 2+			
6845.7	(7^{+})	1718.0 <i>10</i>	50 50	5127.5 6 ⁺			
0015.7	(,)	2463.0 19	100 50	4383.0 (5+)		
6854.5	3-	5400	100	1454.21 2+	•		
6863.1	(6)	2478.9 18	100	4383.0 (5+	D		
6892.9?	(1)	6892.9 [@] a 15		$0.0 0^{+}$	_		
6992.5	(1)	5538	100	1454.21 2 ⁺			
7048.2	1-	7048.2 9	100	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00155 6
1070.2	1	7054	100	$0.0 0^{+}$	Li		D(D1)(11.41)=0.00133 0
7054.5			100	0.0 0			
7054.5 7113.5	(1.2+)	5659		1454 21 2+			
7054.5 7113.5	$(1,2^+)$	5659 7113		1454.21 2 ⁺			
	(1,2+)	5659 7113 7131	100	$ \begin{array}{cccc} 1454.21 & 2^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \end{array} $			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
7249.6	(1)	7249.6 11		0.0	0+			
7271.7	1	5817		1454.21	2+			E_{γ} : from $(p,p'\gamma)$.
		7271.7 7		0.0	0_{+}			
7273.7	7-	410.5 3	8.5 21	6863.1	(6)			
		1189.9 8	57 4	6084.7	7-	D+Q		
		2146.4 <i>15</i>	100 6	5127.5	6+	E1+M2	-0.19 6	
7300.5	3-	5846	100	1454.21				
7314.8	(8^{+})	709.7 5	48 <i>4</i>	6604.6	(8^{+})			
		1095.7 9	78 <i>7</i>	6220.0	(7^{+})			
		1245.9 9	100 7	6067.5	(7^{+})	D+Q	-0.155	
		1930.3 <i>14</i>	81 7	5384.5	6+	Q		
7380.5	$(1,2^+)$	7380	100	0.0	0^{+}			
7388.8	1+	7388.8 <i>4</i>		0.0	0^{+}	M1		B(M1)(W.u.)=0.055 3
7446.2	(9^+)	841.6 <i>4</i>	100 <i>3</i>	6604.6	(8^{+})	(M1+E2)	-0.18 3	
	, ,	1226.1 9	14.1 <i>17</i>	6220.0	(7^{+})	Q		
		1378.6 10	5.5 <i>3</i>	6067.5	(7^{+})			
7514.5	3-	6060	100	1454.21				
7570.5	2+	7570	100	0.0	0+			
7585.1	_	7585.1 6		0.0	0+			
7595.9	(2)	7595.9 6		0.0	0+			
7616.0?	(1)	7616.0 ^a 10		0.0	0+			
7680.6	1-	6226	100	1454.21				
7709.7	1+	7709.7 6	100	0.0	0^{+}	M1		B(M1)(W.u.)=0.067 3
7724.3	(8 ⁺)	878.4 9	50 17	6845.7	(7^{+})	1411		D(W1)(W.u.)=0.007 5
1124.5	(0)	1119.6 4	100 17	6604.6	(8 ⁺)	D+Q		
		1639.0 10	50 17	6084.7	7-	DIQ		
		1657.0 <i>10</i>	50 17	6067.5	(7 ⁺)			
		2343.0 20	67 17	5384.5	6 ⁺	Q		
7766.0	(1)	7766.0 <i>7</i>	0/1/	0.0	0^{+}	Q		
7807.3	1-	6356		1454.21				
1001.5	1	7807.3 <i>5</i>	100	0.0	0+	E1		B(E1)(W.u.)=0.00117 15
7862.6	$(1,2^+)$	6408	100	1454.21		EI		D(E1)(W.u.)=0.00117 13
7802.0	(1,2)	7862			0+			
7876.7	1	6424.9 [@] 9	45 36	1454.21				
	(0.±:	7876.7 <i>26</i>	100 36	0.0	0+			
7973.6	(8^{+})	1370.0 10	100 5	6604.6	(8+)			
		1752.0 <i>11</i>	76 10	6220.0	(7^{+})	D+Q	-0.37 8	
		2229.6 <i>16</i>	43 5	5744.7	(6^{+})	Q		
7982.8	(8-)	709.2 5	100 4	7273.7	7-	(M1+E2)	-0.15 3	
		1120.2 8	6.5 22	6863.1	(6)			
		1915.6 <i>13</i>	65.2 22	6067.5	(7^{+})	D+Q	-0.17~6	
8068.6?	(1^{-})	8068.6 [@] a 12		0.0	0_{+}	(E1)		B(E1)(W.u.)=0.00062 8
8074.5	(8+)	1470 <i>I</i>	55 <i>5</i>	6604.6	(8^{+})			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult. [†]	δ^{\dagger}	Comments
8074.5	(8^{+})	1854.3 <i>13</i>	100 5	6220.0 (7 ⁺)	D+Q	-0.21 8	
8096.3	1	8096.3 <i>6</i>		$0.0 0^{+}$			
8110.6	$(1,2^+)$	8110	100	$0.0 0^{+}$			
8115.1	(8-)	2031.0 14	100	6084.7 7			
8120.8	(9^{+})	396.5 1	6.4 9	7724.3 (8 ⁺)	D+Q		
		805.5 5	6.4 9	7314.8 (8 ⁺)	D+Q		
		1516.6 7	100 5	6604.6 (8+)	D+Q	-0.13 4	
8237.3	1-	8237.3 4		$0.0 0^{+}$	E1		B(E1)(W.u.)=0.0054 +8-11
8317.1	1	8317.1 <i>17</i>		$0.0 0^{+}$			
8395.1	1-	5359.3 [@] 16		3037.86 2 ⁺			I _{γ} : 35 16 for 5359.3 γ +5452.2 γ , assuming the main placements of these γ rays are from 8395 level.
		5452.2 [@] 4		2942.56 0 ⁺			
		8395.1 12	100 16	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.0019 6
8461.0	1+	8461.0 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.071 5
8514.1	1-	8514.1 <i>4</i>		$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00111 9
8552.7	1 ⁽⁺⁾	8552.7 13		$0.0 0^{+}$	[M1]		B(M1)(W.u.)=0.036 3
8600.5	1+	8600.5 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.061 7
8679.3	1+	8679.3 8		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.151 8
8718.1	(9^{-})	603.0 4	4.4 11	8115.1 (8 ⁻)	D+Q		
		735.4 5	51.6 22	7982.8 (8 ⁻)	(M1+E2)	-0.16 <i>3</i>	
		1403.2 10	20.9 22	$7314.8 (8^+)$	D+Q	-0.13 10	
		1444.4 <i>10</i>	23.1 11	7273.7 7-			
	(.)	2114.0 <i>15</i>	100 3	6604.6 (8+)	D(+Q)	-0.034	
8857.4	1 ⁽⁺⁾	8857.4 6	100	0.0 0+	[M1]		B(M1)(W.u.)=0.052 11
8880.2	1-	8880.2 6		0.0 0+	E1		B(E1)(W.u.)=0.00165 8
8896.4?		1581.6 <i>11</i>	100	7314.8 (8 ⁺)			
8934.6	1(-)	8934.6 5		$0.0 0^{+}$	(E1)		B(E1)(W.u.)=0.00204 8
8961.3	1+	8961.3 7	100	$0.0 0^{+}$	[M1]		B(M1)(W.u.)=0.026 3
9027.2	(9-)	912.3 6	17 6	8115.1 (8-)			
0062.7	(10±)	2942.2 21	100 6	6084.7 7	Q M1 · E2	0.24.6	
9062.7	(10^{+})	941.1 7	100 4	8120.8 (9+)	M1+E2	-0.24 6	
		1336.5 28	4.3 14	7724.3 (8 ⁺)			
		1617.0 <i>11</i> 2459.9 <i>17</i>	14.3 <i>14</i> 40 <i>3</i>	7446.2 (9 ⁺) 6604.6 (8 ⁺)	Q		
9073.4	1+	2439.9 17 9073.4 6	40 3	$0.0 0^{+}$	(M1)		B(M1)(W.u.)=0.058 4
9156.9	1+	9156.9 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.038 4 B(M1)(W.u.)=0.037 5
9190.7	1-	9190.7 5		$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00100 11
9322.1	(11^{+})	1876.4 <i>13</i>	100	7446.2 (9+)	Q		D(D1)()-0.00100 11
9326.4	1	6424.9 [@] 9	39 10	2902.15 1+	~		
2320.4	1	9326.4 8	100 <i>10</i>	$0.0 0^{+}$			
9345.5	(10^{-})	627.5 5	100 10	8718.1 (9 ⁻)	(M1+E2)	-0.15 <i>3</i>	
	(10)	021.33	22.7 14	0/10/1 ()	(1711 112)	0.13 3	

$E_i(level)$	Ţπ	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	Ţπ	Mult. [†]	δ^{\dagger}	Comments
	J_i^{π}				J_f^{π}			Comments
9345.5 9368.5	(10^{-}) $1^{(+)}$	1899.9 <i>13</i>	74 <i>4</i>	7446.2	(9 ⁺)	D+Q	-0.16 <i>3</i>	D(M1)(W) 0 072 0
9308.3	1	9368.5 6		0.0	0.	[M1]		B(M1)(W.u.)=0.072 8 if E1, B(E1)(W.u.)=0.00148 16.
9455.4	1	9455.4 18		0.0	0^{+}			n Di, D(Di)(a.) 0.0011010.
9523.3	1-	8068.6 [@] 12	72 9	1454.21	2+			
		9523.3 <i>13</i>	100 9	0.0	0_{+}	E1		B(E1)(W.u.)=0.0026 5
9554.0	1	9554.0 <i>21</i>	67.17	0.0	0+	D		
9585.2	(9-)	1511.5 <i>11</i> 1610.6 <i>11</i>	67 <i>17</i> 100 <i>17</i>	8074.5 7973.6	(8^+) (8^+)	D D		
		3498.7 <i>24</i>	67 17	6084.7	(8) 7 ⁻	Q		
9630.5	1	9630.5 24		0.0	0+			I_{γ} : branching=38% 6 in (γ, γ') , but other two transitions proposed to feed
								levels for which there is not much evidence from other studies.
9666.9	(10^+)	1592.2 <i>11</i> 1694.2 <i>12</i>	53 6	8074.5	(8^+)	0		
		1694.2 12 2219.5 16	100 <i>12</i> 47 <i>6</i>	7973.6 7446.2	(8^+) (9^+)	Q D+Q		
		3062.0 21	41 6	6604.6	(8 ⁺)	DiQ		
9667.8	1	6892.9 [@] 15	49 27	2775.42				
		9667.8 <i>15</i>	100 27	0.0	0_{+}			
9723.0	1 ⁽⁻⁾	6685.0 [@] 9	139 <i>13</i>	3037.86				
0=00 <	(4.0±)	9723.0 9	100 13	0.0	0+	(E1)		B(E1)(W.u.)=0.0019 4
9790.6 9843	(10^+) 1^+	2344.0 <i>16</i> 9842 <i>5</i>	100 100	7446.2 0.0	(9^+)	D+Q		B(M1)(W.u.)=0.09 +4-9
9886.8	(10^{+})	1811.4 <i>13</i>	69 6	8074.5	(8 ⁺)	[M1] Q		D(M1)(W.u.)=0.09 +4=9
7000.0	(10)	1913.2 4	100 6	7973.6	(8^{+})	Q		
10137.2	(10^{+})	2688.4 19	100 8	7446.2	(9^+)			
101447	(10=)	3533.0 20	92 8	6604.6	(8^+)	Q		
10144.7	(10 ⁻)	799.1 <i>6</i> 1117.8 <i>8</i>	100 <i>7</i> 21 <i>7</i>	9345.5 9027.2	(10^{-}) (9^{-})	D+Q D+Q		
		1426.1 10	21 7	8718.1	(9-)	D⊤Q		
		2029.0 10	21 7	8115.1	(8-)			
10100 -		2162.9 9	14 7	7982.8	(8-)			
10180.8	(11^{-})	835.6 <i>6</i> 1153.7 <i>10</i>	100 3	9345.5	(10^{-})	(M1+E2)	-0.09 4	
		1463.9 10	1.6 <i>5</i> 12.1 <i>16</i>	9027.2 8718.1	(9 ⁻)	Q		
10192.5	(11^{+})	1129.4 8	100 4	9062.7	(10^{+})	D+Q	-0.45 6	
	. /	2072.7 15	22.4 15	8120.8	(9+)	Q		
10202.5	(0-)	2746.6 19	39 3	7446.2	(9 ⁺)	Q		
10293.5	(9-)	3688.3 28 4207.7 <i>30</i>	100 <i>33</i> 33 <i>33</i>	6604.6 6084.7	(8 ⁺) 7 ⁻			
10394.1	(10^+)	3078.0 22	50 <i>50</i>	7314.8	(8 ⁺)			
	(- /	3788.0 27	100 50	6604.6	(8 ⁺)			
10404.8	(9-)	4320.0 30	100	6084.7	7-			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. [†]	δ^{\dagger}
10590.9	(11^{-})	410.3 <i>3</i>	31 <i>3</i>	10180.8	(11^{-})	D+Q	
		446.3 <i>3</i>	39 <i>3</i>	10144.7	(10^{-})	D+Q	
		1245.2 9	100 6	9345.5	(10^{-})	D+Q	
		1563.5 11	6 3	9027.2	(9^{-})		
		1872.5 <i>13</i>	42 3	8718.1	(9-)	Q	
10694.7	(10^{-})	289.9 2	10 10	10404.8	(9^{-})		
		401.0 <i>10</i>	20 10	10293.5	(9-)	D+Q	
		1350.0 <i>10</i>	10 <i>10</i>	9345.5	(10^{-})		
		1632.2 <i>11</i>	20 10	9062.7	(10^{+})		
		1798.2 <i>13</i>	20 10	8896.4?			
		2710.2 <i>19</i>	40 10	7982.8	(8^{-})	Q	
		3249.7 <i>23</i>	100 10	7446.2	(9^+)	D	
10781.7	(11^{+})	991.1 <i>7</i>	50 10	9790.6	(10^+)	D+Q	
		3336.0 <i>23</i>	100 10	7446.2	(9^+)	Q	
10882.0	(11^{+})	1559.9 <i>11</i>	100	9322.1	(11^{+})	D+Q	
11005.6	(11^{-})	825.1 6	36 7	10180.8	(11^{-})	D+Q	
		1683.5 <i>12</i>	100 7	9322.1	(11^{+})		
11117.0	(11^{-})	1229.9 9	100 <i>13</i>	9886.8	(10^{+})	D+Q	-0.097
		1531.2 <i>11</i>	88 <i>13</i>	9585.2	(9^{-})		
		2090.0 15	38 <i>13</i>	9027.2	(9^{-})	Q	
11255.2	(11^{-})	560.6 <i>4</i>	100 5	10694.7	(10^{-})	(M1+E2)	-0.265
		1074.1 8	42 5	10180.8	(11^{-})		
11297.7	(12^{-})	707.0 5	38.8 11	10590.9	(11^{-})	(M1+E2)	-0.155
		1116.3 8	100 <i>3</i>	10180.8	(11^{-})	D+Q	-0.22~3
11413.1	(11^{+})	3966.2 28	100	7446.2	(9^{+})	Q	
11474.5	(12^{+})	1281.8 9	100 5	10192.5	(11^{+})	D+Q	-0.55 8
		1807.5 <i>13</i>	35 <i>3</i>	9666.9	(10^+)	Q	
		2152.4 <i>15</i>	32 <i>3</i>	9322.1	(11^{+})	D+Q	-0.397
		2410.9 <i>17</i>	30 <i>3</i>	9062.7	(10^{+})	Q	
11579.3	(12^{+})	1386.7 <i>10</i>	100 7	10192.5	(11^{+})	D+Q	-0.35 8
		1692.7 <i>10</i>	27 <i>7</i>	9886.8	(10^{+})		
11814.3	(12^{-})	1223.8 9	52 <i>4</i>	10590.9	(11^{-})	D+Q	$-0.08\ 2$
		1633.8 <i>11</i>	100 4	10180.8	(11^{-})	D+Q	$-0.07\ 2$
		2467.9 <i>17</i>	56 <i>4</i>	9345.5	(10^{-})	Q	
11824.7	(12^{+})	1632.0 <i>10</i>	100	10192.5	(11^{+})	D+Q	-0.61 14
11996.4	(12^{-})	741.4 5	100 6	11255.2	(11^{-})	D+Q	
		1301.0 <i>10</i>	12 6	10694.7	(10^{-})	Q	
		1406.2 <i>10</i>	12 6	10590.9	(11^{-})		
		1813.8 <i>13</i>	18 <i>6</i>	10180.8	(11^{-})		
12155.1	(12^{-})	1564.0 <i>12</i>	67 11	10590.9	(11^{-})	D+Q	+0.15 11
		1974.1 <i>14</i>	100 11	10180.8	(11^{-})	D+Q	-0.27 10
12356.8	(12^{-})	1351.1 9	100 10	11005.6	(11^{-})		
		1766.0 <i>10</i>	40 10	10590.9	(11^{-})		

						'
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}
12364.6	(12^{+})	1582.5 11	75 25	$10781.7 (11^+)$		
		2171.4 <i>15</i>	50 25	10192.5 (11+)		
		2478.0 20	50 25	9886.8 (10 ⁺)		
		2697.0 20	50 25	9666.9 (10+)		
		3302.1 <i>23</i>	100 25	$9062.7 (10^{+})$	Q	
12570.1	(12^{+})	991.0 <i>10</i>	14 <i>14</i>	11579.3 (12 ⁺)		
		1157.0 8	29 7	$11413.1 \ (11^+)$		
		1789.0 <i>13</i>	14 <i>14</i>	$10781.7 (11^+)$		
		2174.9 <i>15</i>	14 <i>14</i>	$10394.1 \ (10^{+})$		
		2377.8 17	14 <i>14</i>	$10192.5 (11^+)$		
		2390.1 <i>17</i>	100 14	10180.8 (11-)	D	
		2431.0 <i>17</i>	29 <i>14</i>	$10137.2 (10^{+})$		
		2682.9 <i>21</i>	43 14	9886.8 (10 ⁺)		
		3248.0 <i>23</i>	71 14	9322.1 (11+)	D+Q	-0.44 11
		3507.0 25	14 14	$9062.7 (10^+)$		
12719.2	(12^{+})	1306.0 <i>10</i>	33 33	11413.1 (11+)		
		2526.5 18	33 33	10192.5 (11 ⁺)		
		2928.0 20	33 33	9790.6 (10+)		
		3400.0 24	67 33	9322.1 (11+)	0	
12021 6	(1.2-)	3655.0 26	100 33	9062.7 (10+)	Q	
12831.6	(13^{-})	1534.1 11	100 5	11297.7 (12 ⁻)	0	
		1713.6 12	77 5	11117.0 (11-)	Q	
12012 1	(12=)	2652.2 19	41 5	10180.8 (11 ⁻)	Q	
12912.1	(13^{-})	915.7 6	100 5	11996.4 (12 ⁻) 11255.2 (11 ⁻)	D+Q	
12928		1657.0 <i>12</i> 3606.0 <i>30</i>	30 <i>5</i> 100	9322.1 (11+)		
13016.6	(13^{-})	1718.3 <i>12</i>	100	11297.7 (12 ⁻)	D+Q	
13048.2	(13^{-})	1749.8 12	100 7	11297.7 (12) 11297.7 (12 ⁻)	D+Q D+Q	
13040.2	(13)	2044.3 14	29 7	11005.6 (11 ⁻)	D⊤Q	
13095.1	(12^{+})	3772.2 30	100	9322.1 (11+)	(D+Q)	
13129.2	(12^{+})	3806.3 <i>30</i>	100 50	9322.1 (11+)	(D+Q)	
13238.1	(13^{+})	518.9 4	40 2	12719.2 (12 ⁺)	D+Q	
1020011	(10)	668.0 5	100 4	12570.1 (12+)	D+Q	
		873.3 6	44 4	12364.6 (12+)	D+Q	
		1424.5 10	28 2	11814.3 (12-)	D	
		1764.1 <mark>&</mark> 12	10 ^{&} 2	11474.5 (12+)		
		1941.7 <i>14</i>	30 2	11297.7 (12 ⁻)	D	
		3045.0 21	2 2	10192.5 (11 ⁺)	D	
13356.6	(13^+)	1881.5 <i>13</i>	100 17	11474.5 (12 ⁺)		
10000.0	(10)	3164.1 22	83 17	10192.5 (11 ⁺)	Q	
13606.8	(12^{+})	3417.0 24	$1 \times 10^2 I$	10192.5 (11+)	*	
12000.0	(12)	4283.9 31	$1 \times 10^{2} I$	9322.1 (11+)	D+Q	
13632		4310 3	100	9322.1 (11)	DIQ	
10002						

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult. [†]	δ^{\dagger}
13850.1	(14^{-})	938.0 7	100 5	12912.1 (13-)	D+Q	
		1853.8 <i>13</i>	47 5	11996.4 (12-)	Q	
13884.2	(13^{+})	755.0 10	33 <i>33</i>	$13129.2 (12^+)$		
		789.0 <i>10</i>	33 <i>33</i>	13095.1 (12+)	(D+Q)	
		2586.3 25	100 33	11297.7 (12 ⁻)	(D)	
13943		3750.0 <i>26</i>	100	10192.5 (11+)		
14127.8	(14^{+})	889.6 <i>6</i>	100 5	13238.1 (13+)	D+Q	
		1763.0 <i>10</i>	3.1 10	$12364.6 (12^{+})$	_	
14217.5	(14^{-})	1861.0 <i>13</i>	100 20	12356.8 (12-)	Q	
14455.0	(10+)	2062.0 15	80 20	12155.1 (12 ⁻)	Q	
14455.8	(13^+)	4261.7 30	100	10192.5 (11+)		
14853.1	(15^{-})	1835.6 13	8 4	13016.6 (13 ⁻)	0	
1.4020.0	(1.4±)	2021.2 14	100 12	12831.6 (13 ⁻)	Q	
14920.9	(14^{+})	1564.3 10	14 14	13356.6 (13 ⁺)	0	
14934.7	(15^{-})	3445 2 1084.8 8	100 <i>14</i> 100 <i>11</i>	11474.5 (12 ⁺) 13850.1 (14 ⁻)	Q D+Q	
14934.7	(13)	2022.2 14	78 11	12912.1 (13 ⁻)	D+Q Q	
15010.6	(14^{+})	1654.0 <i>10</i>	25 <i>13</i>	13356.6 (13 ⁺)	Q	
13010.0	(14)	1773.0 <i>10</i>	25 13	13238.1 (13+)		
		3185.9 22	13 13	11824.7 (12+)		
		3431.0 24	25 13	11579.3 (12+)		
		3536.4 <i>30</i>	100 13	11474.5 (12+)	Q	
15031.0	(14^{+})	1674.0 12	40 20	13356.6 (13+)	*	
	,	3206.0 <i>30</i>	20 20	11824.7 (12+)		
		3451.4 <i>24</i>	20 20	11579.3 (12+)		
		3556.0 25	100 20	11474.5 (12 ⁺)	Q	
15105.2		1221.0 <i>10</i>	$1 \times 10^{2} I$	13884.2 (13 ⁺)		
		1976.0 <i>14</i>	$1 \times 10^{2} I$	13129.2 (12 ⁺)		
15187.0	(13^{+})	2057.0 20	$1 \times 10^{2} I$	13129.2 (12+)		
	` /	4997 <i>4</i>	$1 \times 10^{2} I$	10192.5 (11+)		
15242.0		2193.7 15	100	13048.2 (13 ⁻)		
15266.3	(14^{+})	2249.9 16	29 14	13016.6 (13-)		
	. ,	2435.6 17	100 14	12831.6 (13-)	D	
15294.3	(14^{+})	1688.0 <i>12</i>	100 11	13606.8 (12 ⁺)	Q	
		2277.9 16	22 11	13016.6 (13-)		
		2462.2 17	44 11	12831.6 (13 ⁻)	D+Q	-0.13 7
15324.1	(14^{+})	3498.4 25	13 <i>13</i>	$11824.7 (12^{+})$		
		3849.0 27	100 13	$11474.5 (12^+)$	Q	
15434.1	(13^{-})	3436.5 ^a 24	$1 \times 10^2 I$	11996.4 (12 ⁻)		
		4136 4	$1 \times 10^2 I$	11297.7 (12-)		
15709.3	(15^{+})	1581.3 <i>11</i>	100 7	14127.8 (14 ⁺)	D+Q	-0.22 4
		2470.0 <i>17</i>	29 7	13238.1 (13 ⁺)		
15736.9	(15^{+})	706.0 <i>10</i>	5.6 13	15031.0 (14 ⁺)		

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\cday{\dagger}}$	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.†
15736.9	(15^+)	726.5 5	19 6	15010.6	(14^{+})	
13/30.7	(13)	1609.4 11	100 6	14127.8	(14^{+})	D+O
		2501.1 18	63 6	13238.1	(13^{+})	Q
15858.2	(15^+)	847.6 6	5 5	15010.6	(14^{+})	~
	()	1731.1 <i>12</i>	100 5	14127.8	(14^{+})	D+Q
16167.2		1062.0 10	$1 \times 10^{2} I$	15105.2	,	
10107.2		2283.0 16	$1 \times 10^{2} I$	13884.2	(13^{+})	
16171.0	(15^+)	847.0 <i>10</i>	67 33	15324.1	(14^{+})	
10171.0	(15)	1715.0 <i>12</i>	100 33	14455.8	(13^{+})	Q
16246.6	(16^{-})	1312.0 9	80 20	14934.7	(15^{-})	D+O
102.0.0	(10)	2396.1 17	100 20	13850.1	(14^{-})	Q
16496.6	(16^{-})	2279.0 19	100	14217.5	(14^{-})	Q
16567.0	(16^{+})	708.6 10	33 17	15858.2	(15^{+})	
	(-)	857.6 <i>6</i>	83 17	15709.3	(15^{+})	D+O
		1645.6 <i>12</i>	100 <i>17</i>	14920.9	(14^{+})	Q
16676.4	(16^+)	818.4 6	87 <i>13</i>	15858.2	(15^{+})	D+Q
	. ,	940.4 7	75 <i>13</i>	15736.9	(15^{+})	
		1644.6 <i>12</i>	50 <i>13</i>	15031.0	(14^{+})	Q
		1665.0 <i>12</i>	100 <i>13</i>	15010.6	(14^{+})	Q
		2546.0 18	50 <i>13</i>	14127.8	(14^{+})	Q
16798.0	(15^{-})	1363.8 <i>10</i>	40 20	15434.1	(13^{-})	Q
		1385.4 <i>10</i>	20 20	15412.6	(13^{-})	
		1474 <mark>a</mark>		15324.1	(14^{+})	
		1503.9 <i>11</i>	100 20	15294.3	(14^{+})	D
		1531.9 <i>11</i>	20 20	15266.3	(14^{+})	
		1556.0 <i>10</i>	40 20	15241.9	(13^{-})	
		3750		13048.2	(13^{-})	
		3965 <i>3</i>	20 20	12831.6	(13^{-})	Q
17019.6		2166.5 <i>15</i>	100	14853.1	(15^{-})	
17163.1	(16^{+})	992.1 <i>10</i>	100 33	16171.0	(15^{+})	D+Q
		1839.1 <i>13</i>	67 13	15324.1	(14^{+})	Q
		1896.6 <i>13</i>	67 13	15266.3	(14^{+})	
17197	(a < ± >	2092.0 20	100	15105.2	± .	
17290.0	(16^{+})	1965.0 <i>14</i>	15 8	15324.1	(14^{+})	Q
		1996.0 <i>14</i>	100 8	15294.3	(14^{+})	Q
		2023.9 12	15 8	15266.3	(14^{+})	
17520.0	(17+)	2436	70.10	14853.1	(15^{-})	
17530.0	(17^+)	854.0 6	70 10	16676.4	(16^+)	
		962.8 7	15 5	16567.0	(16^+)	0
		1793.3 13	100 10	15736.9	(15^+)	Q
17681.4	(17^+)	1819.5 <i>13</i> 1004.8 <i>7</i>	60 <i>10</i> 50 <i>10</i>	15709.3 16676.4	(15^+) (16^+)	
1/061.4	(1/)	1004.8 /	30 <i>10</i> 30 <i>10</i>	16567.0	(16^+)	
		1113.8 6	30 10	10307.0	(10)	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}
17681.4	(17^{+})	1823.7 <i>13</i>	100 10	15858.2 (15 ⁺)	Q	
	, ,	1944.8 <i>14</i>	70 10	15736.9 (15 ⁺)	Q	
		1972.7 <i>14</i>	40 10	15709.3 (15 ⁺)	Q	
18261.1	(17^+)	1097.9 <i>10</i>	17 <i>17</i>	17163.1 (16+)	D+Q	
		2090.0 10	100 33	16171.0 (15 ⁺)	Q	
18341.5	(16^{-})	1583.0 <i>11</i>	17 <i>17</i>	16758 (14-)		
		1596.0 <i>11</i>	17 <i>17</i>	16745 (14-)		
		1634.0 <i>11</i>	83 17	16707 (14-)	Q	
		1668.0 <i>12</i>	100 17	16673 (14-)		
		3489.4 <i>24</i>	17 <i>17</i>	14853.1 (15-)	D(+Q)	-0.02 14
18461.0	(17^{-})	1170.5 8	17 6	17290.0 (16+)	D+Q	-0.10 6
		1664.0 <i>12</i>	100 6	16798.0 (15-)	Q	
18638.9	(18^{+})	957.5 <i>7</i>	75 8	17681.4 (17+)		
		1109.0 <i>10</i>	17 8	17530.0 (17 ⁺)		
		1962.2 <i>14</i>	100 8	16676.4 (16 ⁺)	Q	
		2073.0 15	33 8	16567.0 (16 ⁺)	Q	
19196		2949.0 <i>30</i>	100	16246.6 (16-)		
19205.4	(17^{-})	864.0 10	33 <i>33</i>	18341.5 (16-)	D+Q	
		1598.0 <i>10</i>	67 33	17607 (15 ⁻)		
		1623.6 <i>11</i>	100 33	17582 (15-)		
		1723.0 <i>13</i>	67 33	17482 (15 ⁻)		
19482.5	(18^{+})	1221.1 <i>10</i>	50 <i>50</i>	18261.1 (17 ⁺)		
		2320.0 16	100 50	17163.1 (16 ⁺)	(Q)	
19566.9	(18^{+})	2276.9 <i>16</i>	100	17290.0 (16 ⁺)	Q	
19945.7	(19^+)	1307.3 9	58 8	18638.9 (18 ⁺)		
		2263.4 16	100 8	17681.4 (17 ⁺)	Q	
		2415.0 <i>17</i>	42 8	17530.0 (17+)	Q	
20135.4	(18^{-})	930.0 10	33 11	19205.4 (17 ⁻)		
		1794.0 <i>13</i>	100 11	18341.5 (16 ⁻)	Q	
20450.1	(19^{-})	1988.7 <i>14</i>	100	18461.0 (17 ⁻)	Q	
20826.2	(19^+)	2565.0 18	100	18261.1 (17 ⁺)	Q	
21106.3	(19^{-})	971.0 <i>10</i>	14 <i>14</i>	20135.4 (18 ⁻)	D+Q	
		1901.0 <i>14</i>	100 14	19205.4 (17 ⁻)	Q	
21248.0	(20^{+})	1301.8 9	50 7	19945.7 (19 ⁺)		
		2609.0 <i>18</i>	100 14	18638.9 (18 ⁺)	Q	
22138	(20^+)	2570.9 18	100	19566.9 (18 ⁺)	Q	
22211.3	(20^{-})	1105.0 <i>10</i>	22 11	21106.3 (19 ⁻)	D+Q	
		2076.0 <i>15</i>	100 11	20135.4 (18 ⁻)	Q	
22239.6	(20^{+})	2757.0 19	100	19482.5 (18 ⁺)	Q	
22767.9	(21^{+})	1519.2 <i>11</i>	37 13	$21248.0 (20^{+})$		
		2824.3 20	100 <i>13</i>	19945.7 (19 ⁺)	Q	
22800.4	(21^{-})	2349.7 <i>16</i>	100	20450.1 (19 ⁻)	E2	
23331	(21^{-})	1120		22211.3 (20 ⁻)		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}
23331	(21^{-})	2225.0 16	100	21106.3	(19^{-})	Q	30491	(26^{-})	3125	27366	(24-)
23741	(21^{+})	2914.5 25	100	20826.2	(19^+)	Q	32175	(27^{-})	3466	28709	(25^{-})
24211.9	(22^{+})	1444.0 <i>10</i>	29 14	22767.9	(21^{+})		32495	(27^{-})	3564	28931	(25^{-})
		2964.0 19	100 14	21248.0	(20^{+})	Q			3786	28709	(25^{-})
24611	(22^{-})	1280		23331	(21^{-})		33972	(28^{-})	3480	30491	(26^{-})
		2400.0 17	100 17	22211.3	(20^{-})	Q	36045	(29^{-})	3870	32175	(27^{-})
25141	(22^{+})	3002.8 <i>21</i>	100	22138	(20^{+})	Q	36535	(29^{-})	4040	32495	(27^{-})
25552	(23^{-})	2750.5 19	100	22800.4	(21^{-})	Q	37810	(30^{-})	3838	33972	(28^{-})
25918	(23^{-})	2587.0 18	100	23331	(21^{-})	Q	40333	(31^{-})	4288	36045	(29^{-})
26059.7	(23^{+})	1848.0 <i>13</i>	50 50	24211.9	(22^{+})		40931	(31^{-})	4396	36535	(29^{-})
		3291.0 <i>23</i>	100 50	22767.9	(21^{+})	Q	42007	(32^{-})	4197	37810	(30^{-})
27366	(24^{-})	2755.0 20	100	24611	(22^{-})	Q	2868.1+x		2868	X	
28709	(25^{-})	3157.0 22	100	25552	(23^{-})	Q	6083.2+x		3215	2868.1+x	
28931	(25^{-})	3014.0 <i>21</i>	100	25918	(23^{-})	Q	9667.3+x		3584	6083.2+x	
		3379		25552	(23^{-})						

[†] Mainly from $\gamma(\theta)$ in $(p,p'\gamma)$. Some assignments are from DCO values in $(^{24}\text{Mg},\alpha2p\gamma)$. The multipolarity assignments for γ rays from (γ,γ') are from polarization asymmetry measurements.

[‡] Values represent averages of all available data. For γ rays taken from (γ, γ') work only, values are level-energy differences, without applying any correction for recoil, which is at most 1 keV.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{58}_{28}Ni_{30}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{58}_{28}{\rm Ni}_{30}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{58}_{28}{\rm Ni}_{30}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

58₂₈Ni₃₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

γ Decay (Uncertain) Coincidence

Coincidence (Uncertain)

 $^{58}_{28}Ni_{30} \\$

 $^{58}_{28}\text{Ni}_{30}\text{-}47$

Band(B): Yrast structure

Adopted Levels, Gammas (continued)

Band(F): $\Delta J \text{=} 1$ band based on 10694,

10-19196 2949 (16^{-}) 16246.6 Band(H): $\Delta J=1$ band based on 7724, 1312 (15^{-}) 2396 14934.7 (14^{+}) 14920.9 1085 1564 $(14^-)_{2022}$ 13850.1 (13^{+}) 13356.6 3445 12912.1 (13^{-}) 1882 (12⁻) ₁₆₅₇ 11996.4 (12+) 3164 11474.5 (11^{-}) 1301 11255.2 561 (10^{-}) 10694.7 1282 Band(G): $\Delta J=1$ band based on 342/2, (11^+) 2411 10192.5 3^+ 1129 (11^{+}) 9322.1 $(10^+)_{2073}$ 9062.7 941 1876 **(9**⁺) 8120.8 7724.3 7446.2 7314.8 1379 1246 (7⁺)__1930 6067.5 5384.5 1685 (5⁺) 1764 4383.0 962 763 3620.09 3420.55 $^{58}_{28}\mathrm{Ni}_{30}$

Adopted Levels, Gammas (continued)

Band(J): γ cascade

Band(K): SD-1 Band

Band(i): Band based on ${\bf 19945,} {\bf 19}^+$

