

Convolutional Neural Networks

모두의연구소

박은수 Research Director

LeNet 1

Gray Image

28 x 28 784 pixels

Color Image

2D to 1D

2D spatial features are removed

2D Image characteristics

2D image

Having 2D spatial features

2D Image characteristics

2D image

- Having 2D spatial features
- Different features according to image scale

딥러닝의 이미지 인식 방법

영상의 특징

이러한 특징을 잘 활용한 뉴럴 네트워크는 ?

- 2차원 공간적 특징을 가짐
- 크기에 따라 같은 영역도 다른 특징을 가짐

딥러닝의 이미지 인식 방법

영상의 특징

이러한 특징을 잘 활용한 뉴럴 네트워크는 ?

Convolutional Neural Networks (CNNs)

- 2차원 공간적 특징을 가짐
- 크기에 따라 같은 영역도 다른 특징을 가짐

- 3x3 필터 1개
 - 파라미터(weight) 의 수 : 3x3x3(filter) + 1 (bias)

- 3x3 필터 2개
 - 파라미터(weight) 의 수 : (3x3x3+1)x2

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

- 3x3 필터 3개
 - 파라미터(weight) 의 수 : (3x3x3+1)x3

2차원 특성을 유지하려면

32 : 높이

32 : 너비

3: 채널

W

5 : 높이는 우리가 설정 5 : 너비도 우리가 설정

3: 채널

2차원 특성을 유지하려면

32 : 높이

32 : 너비

3: 채널

W

5 : 높이는 우리가 설정 5 : 너비도 우리가 설정

3: 채널

Convolution Layer

Convolution Layer

똑같은 크기의 필터 6개를 더 만들어 봅시다

Convolution Layer

건볼루션 네트워크는 활성화 함수를 포함한 건볼루션 레이어의 연결 입니다

영상의 특징

- 2차원 공간적 특징을 가짐
- 크기에 따라 같은 영역도 다른 특징을 가짐

Convolution layer

총 3채널

총 3채널

정면에서 보면?

3x3 필터로 얼굴을 인식할 수 있을까?

모두의연구소

- makes the representations smaller and more manageable
- operates over each activation map independently:

모두의연구소

- 세로·가로 방향의 공간을 줄이는 연산
 - 2x2 최대 풀링(max pooling)을 스트라이드 2로

• 평균 풀링(Average pooling)도 있습니다

정면에서 보면?

얼굴필터

정면에서 보면?

정면에서 보면?

눈, 코, 입을 특징을 합하여 얼굴로 인식가능

Convolutional Neural Networks

LeNet-5

강아지 분류기

그림: https://www.quantamagazine.org/new-theory-cracks-open-the-black-box-of-deep-learning-20170921/

박은수 Research Director

E-mail: es.park@modulabs.co.kr