Student: Maksim Kryuchkov

Группа: М3339

Дата: 9 октября 2018 г.

KEK

Алгоритм вывода типов

(1) Рекурсивно по структуре формулы построим построим по формуле А

$$< E, \tau >$$

Е - набор уравнений в алг. термах, т - тип А

Три случая

(a) A = x, уравнений нет, тип A - это α_x - свежая типовая переменная

(b)
$$A = PQ$$
, $E_P \cup E_O$, $\tau_P = \tau_O \rightarrow \alpha_A$, α_A

(c)
$$A = \lambda x.P, \langle E_P, \alpha_x \rightarrow \tau_P \rangle$$

(2) Решим уравнения, получим S

Применяем алгоритм унификации. Будем вместо $a \to b$ писать $\to ab$,

(3) Из решения E получим ответ $S(\tau)$

 Λ емма

Если $\Gamma \vdash M : p$, то существует S - решение E_M

$$\Gamma = \{S(\alpha_x) | x \in FV(M)\}$$

$$p = S(\tau_M)$$

Если S - решение E_M , то $\Gamma \vdash M : \mathfrak{p}$

Доказательство - индукция по структуре ${\rm M}$

Def Основная пара

Пара $\langle \Gamma, \tau \rangle$ - основная пара для терма М

Если

1. $\Gamma \vdash M : \tau$

2. $\Gamma' \vdash M : \tau'$, то существует $S: S(\Gamma) \subset \Gamma', S(\tau) = \tau'$

Пример

Черчевский нумерал

Normalization

Def Strong, weak normalization

- а) Если существует последовательность редукций, приводящая M нормальную форму, то он слабо нормализуем
- b) Если не существует бесконечной последовательности редукций, не приводящей М в нормальную форму, М сильно нормализуем

Теория сильно/слабо нормализуема, если любой терм соответственно нормализуем

КІΩ - слабо нормализуема

 Ω ненормализуема

II - сильно нормализуемо

Просто-типизированное λ- исчисление сильно нормализуемо

Нетипизированное - ненормализуемо

Сильная влечет слабую

1

Комбинаторы

Любое замкнутое лямбда выражение может быть записано с помощью комбинаторов К и S

 $S = \lambda xyz.xz(yz)$ - verSchmelzen - сплавление

 $K = \lambda xy.x$ - Konstanz

 $I=\lambda x.x$ - Indentitat