CONTENTS

Preface	. ,
1. FUNDAMENTAL ASPECTS	
Transport processes in solids during ion implantation	. 1
Bombardment-induced compositional change with alloys, oxides, oxysalts and halides III. The role of chemical driving forces	11
Temperature and dose dependence of nitrogen implantation into iron: experimental results and numerical modelling	
The effects of α -particle irradiation on carbonitrides produced in a nitrogen-implanted low-carbon steel S. M. M. Ramos, L. Amaral, M. Behar, G. Marest, A. Vasquez and F. C. Zawislak (Porto Alegre, Brazil)	31
Titanium implantation into a high speed steel: distribution parameters and CEMS characterization M. A. El Khakani, H. Jaffrezic, G. Marest, N. Moncoffre and J. Tousset (Villeurbanne, France)	37
Diffusion of implanted sodium in nickel and chromium	43
Temperature and fluence effects in lead-implanted cobalt single crystals	49
Surface deformations caused by high-dose high-energy helium, neon and argon ions	57
Megaelectronvolt ion beam polishing of anodically grown alumina	63
2. ION-INDUCED PHASES	
Compound formation effects in computing implantation profiles	67
Glancing-angle X-ray diffraction and X-ray photoelectron spectroscopy studies of nitrogen-implanted tantalum	73
Target temperature dependence on titanium oxide formation by high-dose oxygen ion implantation into titanium sheets	79
Transmission electron microscopy investigation of the structural transformations in titanium or TiAl implanted with nitrogen, carbon, oxygen and boron	83
Surface precipitation of natural and ion-implanted lithium and boron in metals	89
X-ray studies of krypton, xenon and lead inclusions in aluminium single crystals	97
Pressure effects of krypton bubbles on the host aluminium lattice as probed by ⁵⁷ Co impurity atoms H. Pattyn, P. Hendrickx, J. Odeurs and S. Bukshpan (Leuven, Belgium)	103
3. AMORPHIZATION	
on-induced crystal-to-glass transition in alloys	107

On metallic glass formation in Cu-Nb by ion beam mixing	123
Detailed analysis of the amorphization process in low-temperature ion-bombarded metallic alloys L. Thomé, A. Benyagoub (Orsay, France), F. Pons (Caen, France), E. Ligeon, J. Fontenille and R. Danielou (Grenoble, France)	127
Temperature dependence of amorphization and precipitation processes in Ni $^+$ - and N $^+$ -implanted Ni $_x$ Ti $_{1-x}$ alloys	133
Amorphization process in manganese-implanted aluminium thin films and single crystals: effects of strains and target temperature	139
Transmission electron microscopy study of amorphization and precipitation in Ni ⁺ -implanted aluminium . M. F. Denanot, O. Popoola and P. Moine (Poitiers, France)	145
4. ION BEAM MIXING	
Ion beam mixing of selected binary metal systems with large positive heats of formation	151
Different crystalline structures of ruthenium-rich metastable phases formed by ion beam mixing of the binary systems Au-Ru and Ag-Ru	155
Ion beam effects on Fe-Ni bilayers	161
Mixing and annealing effects in the krypton-irradiated Fe-Pd system	165
Low-temperature mixing of metallic multilayers with light ions	171
High-power ion-beam-induced melting and mixing in deposited structures	175
5. ION-BEAM-ASSISTED DEPOSITION	
Fundamentals of ion-beam-assisted deposition: technique and film properties	181
Simultaneous ion implantation and deposition	193
Surface modification of structural materials by dynamic ion mixing process	197
Nitride formation at metal surfaces by Ar ⁺ ion bombardment in nitrogen atmosphere Y. Baba and T. A. Sasaki (Tokai-mura, Japan)	203
Structure and properties of titanium carbide grown by dynamic ion beam mixing	209
Physical properties of TiN thin films	217
Ion-induced radiation-enhanced diffusion of silver in nickel	223

6	6. MECHANICAL PROPERTIES	
F	Phase transformations of a nitrogen-implanted austenitic stainless steel (X10 CrNiTi 18-9) R. Leutenecker (München, F.R.G.), G. Wagner, T. Louis, U. Gonser (Saarbrücken, F.R.G.), L. Guzman and A. Molinari (Povo, Italy)	
١	Wear resistance improvement and structural modifications of B ⁺ -implanted austenitic stainless steel S. Raud, H. Garem, A. Naudon, J. P. Villain and P. Moine (Poitiers, France)	245
1	Annealing behaviour of nitrogen-ion-implanted 304 stainless steel	253
F	Post-implantation heat treatment of nitrogen-implanted 440C stainless steel	257
	examination of wear, hardness and friction of nitrogen-, boron-, carbon-, silver-, lead- and tin-implanted steels with different chomium contents	261
5	Surface mechanical properties of CuNi and FeAI films produced by dynamic ion mixing J. von Stebut (Nancy, France), J. P. Rivière, J. Delafond, C. Sarrazin (Poitiers, France) and S. Michaux (Firminy, France)	267
T	The influence of temperature on the performance of ion-implanted metal-forming tools	273
C	Composition and sliding contact behavior of oxidized titanium-implanted 52100 steel	279
F	riction behavior and debris formation of titanium-implanted 52100 steel	285
	dicrostructure and mechanical properties of high dose nitrogen-implanted iron, chromium and titanium	
S	heets	291
N	dicrostructure and hardness of titanium and iron surfaces after megaelectronvolt nitrogen implantation A. M. Vredenberg, F. Z. Cui, F. W. Saris (Amsterdam, The Netherlands), N. M. van der Pers and P. F. Colijn (Delft, The Netherlands)	297
F	ricton and wear studies of oxidized titanium surfaces bombarded with ions in the 100 keV region B. M. Lund, N. J. Mikkelsen, L. M. Schmidt and G. Sørensenn (Aarhus, Denmark)	303
E	ffect of ion implantation on fatigue, fretting and fretting-corrosion of Ti-6Al-4V	307
T	he effect of ion beam surface modifications on fatigue crack initiation in polycrystalline nickel D. J. Morrison, J. W. Jones, D. E. Alexander, C. Kovach and G. S. Was (Ann Arbor, MI, U.S.A.)	315
S	tructural characterization and fatigue behaviour of a carbon-implanted pure polycrystalline nickel S. Patu, M. H. Xu and Z. G. Wang (Shenyang, China)	323
	on implantation and fatigue crack initiation: interaction of persistent slip bands with modified surface	204
la	D. S. Grummon (East Lansing, MI, U.S.A.), D. J. Morrison, J. W. Jones and G. S. Was (Ann Arbor, MI, U.S.A.)	331
D	islocation structures in near-surface layers of pure metals formed by ion implantation A. N. Didenko, A. I. Rjabchikov, G. P. Isaev, N. M. Arzubov, Yu. P. Sharkeev, E. V. Kozlov, G. V. Pushkareva, I. V. Nikonova (Tomsk, U.S.S.R.) and A. E. Ligachev (Moscow, U.S.S.R.)	337
lo	on beam modification of MoS_x films on metals	343

K. Hayashi, K. Sugiyama (Sagamihara, Japan), K. Fukutani and H. Kittaka (Kimitsu, Japan)

Nitrogen ion implantation into the intermetallic compound TiAl	355
Ion implantation in ceramics—residual stress and properties	361
Ion implantation in Japan in non-semiconductor fields	369
Present status of ion implantation in non-semiconductor materials in China	377
AUTHOR INDEX	385
SUBJECT INDEX	387

