# 3.2. Learnability via uniform convergence

- lacktriangle We now learn about an important concept to verify PAC-learnability for classes  $\mathcal{H}.$
- Let us start with an observation about the ERM learning rule:

### Proposition 3.6:

Given  $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$  we have for  $A = \mathrm{ERM}_{\mathcal{H}}$  almost surely

$$\varepsilon_{\mathsf{est}}(\mathcal{H},S) = \mathcal{R}_{\mu}(A(S)) - \inf_{h \in \mathcal{H}} \mathcal{R}_{\mu}(h) \ \leq \ 2 \sup_{h \in \mathcal{H}} |\mathcal{R}_{S}(h) - \mathcal{R}_{\mu}(h)|.$$

## Definition 3.7: Uniform convergence (UC)

A class  $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$  satisfies the uniform convergence condition (w.r.t. a loss  $\ell$ ) if there exists

 $\blacksquare$  a mapping  $m_{\mathcal{H}}^{\mathsf{uc}} \colon (0,1)^2 \to \mathbb{N}$ 

such that

- for any data distribution  $\mu$  on  $\mathcal{X} \times \mathcal{Y}$
- $\blacksquare$  any  $\epsilon \in (0,1)$  and  $\delta \in (0,1)$  ,

Uniform convergence ensures that learning models generalize well by bounding the difference between training and test error for all hypotheses.

we have

$$\mathbb{P}_{\mu^m}\left(\sup_{h\in\mathcal{H}}|\mathcal{R}_{\mu}(h)-\mathcal{R}_S(h)|\leq\epsilon\right)\geq 1-\delta \qquad \forall m\geq m_{\mathcal{H}}^{\mathsf{uc}}(\epsilon,\delta).$$

### Corollary 3.8:

If a class  $\mathcal H$  satisfies (UC) w.r.t. a loss  $\ell$ , then  $\mathcal H$  is also PAC-learnable w.r.t.  $\ell$  with  $A = \mathrm{ERM}_{\mathcal H}$  and

$$m_{\mathcal{H}}(\epsilon, \delta) \le m_{\mathcal{H}}^{\mathsf{uc}}(\epsilon/2, \delta).$$

# Tools to control $|\mathcal{R}_S(h) - \mathcal{R}_{\mu}(h)|$

## Theorem 3.9: (Law of Large Numbers, 1713)

Let  $Z_i$ ,  $i \in \mathbb{N}$ , be i.i.d. with  $\mathbb{E}[|Z_i|] < +\infty$ . Then

$$\frac{1}{m} \sum_{i=1}^{m} Z_i \xrightarrow[m \to \infty]{\mathbb{P}} \mathbb{E}[Z_1]$$



Jakob Bernoulli (1655 – 1705)

 $\blacksquare$  Yields with  $Z_i := \ell(h, (X_i, Y_i)), (X_i, Y_i) \sim \mu$  i.i.d. the asymptotic result (i.e., relates to consistency)

$$|\mathcal{R}_S(h) - \mathcal{R}_{\mu}(h)| \xrightarrow{\mathbb{P}} 0$$

lacktriangle How about non-asymptotic bounds for  $|\mathcal{R}_{\mu}(h) - \mathcal{R}_{S}(h)|$  for finite sample sizes m = |S|?

# Concentration inequalities

### Proposition 3.10: Chebyschev inequality

Let  $Z_1, \ldots, Z_m$  be i. i. d. with  $\mathbb{V}[Z_i] < +\infty$ . Then

$$\mathbb{P}\left(\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i} - \mathbb{E}[Z_{i}]\right| > \epsilon\right) \leq \frac{\mathbb{V}[Z_{i}]}{m\epsilon^{2}}.$$

 $\blacksquare$  Yields with  $Z_i := \ell(h, (X_i, Y_i)), (X_i, Y_i) \sim \mu$  i.i.d.

$$\mathbb{P}(|\mathcal{R}_S(h) - \mathcal{R}_{\mu}(h)| > \epsilon) \leq \frac{\mathbb{V}_{\mu}[\mu]}{m\epsilon^2}$$



Pafnuty L. Chebyshev (1821 – 1894)

### Lemma 3.11: Hoeffding's inequality

Let  $Z_1, \ldots, Z_m$  be i. i. d. bounded random variables, i.e.,  $Z_i \in [a,b]$  almost surely for finite  $a,b \in \mathbb{R}$ . Then

$$\mathbb{P}\left(\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i} - \mathbb{E}[Z_{i}]\right| > \epsilon\right) \leq 2\exp\left(-\frac{2m\epsilon^{2}}{(b-a)^{2}}\right).$$



Wasilly Hoeffding (1914 – 1991)

■ Yields sharper bounds than Chebyshev's inequality for bounded loss functions, e.g., for the 0-1 loss

$$\mathbb{P}\left(\left|\mathcal{R}_{S}(h) - \mathcal{R}_{u}(h)\right| > \epsilon\right) < 2\exp\left(-2m\epsilon^{2}\right).$$

■ However, all these tools only hold for a single, fixed hypothesis h! We need a uniform bound

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}|\mathcal{R}_S(h) - \mathcal{R}_{\mu}(h)| > \epsilon\right) \le \delta$$

# PAC-learnability of finite classes

If the class  $\mathcal{H}$  is finite, i.e.,  $\mathcal{H} = \{h_1, \dots, h_n\}$ , then we can apply the union bound

$$\mathbb{P}_{\mu^{m}}\left(\sup_{h\in\mathcal{H}}\left|\mathcal{R}_{S}(h)-\mathcal{R}_{\mu}(h)\right|>\epsilon\right) = \mathbb{P}_{\mu^{m}}\left(\exists h\in\mathcal{H}:\left|\mathcal{R}_{S}(h)-\mathcal{R}_{\mu}(h)\right|>\epsilon\right) \\
= \mathbb{P}_{\mu^{m}}\left(\bigcup_{h\in\mathcal{H}}\left\{\left|\mathcal{R}_{S}(h)-\mathcal{R}_{\mu}(h)\right|>\epsilon\right\}\right) \\
\leq \sum_{h\in\mathcal{H}}\mathbb{P}_{\mu^{m}}\left(\left|\mathcal{R}_{S}(h)-\mathcal{R}_{\mu}(h)\right|>\epsilon\right).$$

#### Theorem 3.12:

Let  $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$  be finite and  $\ell \colon \mathcal{H} \times \mathcal{D} \to \{0,1\}$  be the 0-1 loss. Then  $\mathcal{H}$  satisfies (UC) w.r.t.  $\ell$  with

$$m_{\mathcal{H}}^{\mathsf{uc}}(\epsilon,\delta) \leq \left\lceil rac{\ln(2|\mathcal{H}|/\delta)}{2\epsilon^2} 
ight
ceil.$$

Hence,  $\mathcal{H}$  is PAC-learnable with  $A = \mathrm{ERM}_{\mathcal{H}}$  and  $m_{\mathcal{H}}(\epsilon, \delta) = m_{\mathcal{H}}^{\mathrm{uc}}(\epsilon/2, \delta)$ .

# PAC-learnability of infinite classes

- We consider now a milestone of learning theory which establishes (UC) for arbitrary  $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ .
- lacktriangleright If the hypothesis class  $\mathcal H$  is infinite, the union bound is not useful:

$$\mathbb{P}_{\mu^m} \left( \sup_{h \in \mathcal{H}} |\mathcal{R}_S(h) - \mathcal{R}_{\mu}(h)| > \epsilon \right) \le |\mathcal{H}| \sup_{h \in \mathcal{H}} \mathbb{P}_{\mu^m} \left( |\mathcal{R}_S(h) - \mathcal{R}_{\mu}(h)| > \epsilon \right) = \infty$$

■ Luckily, a refined upper bound can be achieved by counting only those  $h \in \mathcal{H}$  which yield different values on the training data  $\{X_1, \ldots, X_m\}$ , m = |S|

#### Definition 3.13:

Given a hypothesis class  $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$  and a finite set  $M = \{x_1, \dots, x_m\} \subseteq \mathcal{X}$  we define the restriction of  $\mathcal{H}$  to M by

$$\mathcal{H}_M := \{ [h(x_1), \dots, h(x_m)] \colon h \in \mathcal{H} \},\,$$

i.e., the set of all m-bits  $\mathbf{b} \in \{0,1\}^m$  generated by an  $h \in \mathcal{H}$  on M.

### Example 3.14:

Heaviside hypotheses Let  $\mathcal{X}=\mathbb{R}$  and consider the set of Heaviside classifiers

$$\mathcal{H} = \left\{ \mathbb{1}_{[a,+\infty)} \colon a \in \mathbb{R} \right\} \qquad \text{where} \quad \mathbb{1}_{[a,+\infty)}(x) = \begin{cases} 0, & x < a, \\ 1 & x \geq a. \end{cases}$$

How does  $\mathcal{H}_M$  look like for various M?

■ For  $M = \{x_1\} \subset \mathbb{R}$  we have

$$\mathcal{H}_M = \{[0], [1]\}, \qquad |\mathcal{H}_M| = 2$$

■ For  $M = \{x_1, x_2\} \subset \mathbb{R}$ ,  $x_1 < x_2$ , we have

$$\mathcal{H}_M = \{[0,0], [0,1], [1,1]\}, \qquad |\mathcal{H}_M| = 3$$

■ For  $M = \{x_1, x_2, x_3\} \subset \mathbb{R}, x_1 < x_2 < x_3$ , we have

$$\mathcal{H}_M = \{[0,0,0], [0,0,1], [0,1,1], [1,1,1]\}, \quad |\mathcal{H}_M| = 4$$

■ For  $M = \{x_1, \dots, x_m\} \subset \mathbb{R}, x_1 < \dots < x_m$ , we have ...?

## Example 3.15: Interval hypotheses

Let  $\mathcal{X} = \mathbb{R}$  and

$$\mathcal{H} = \{ \mathbb{1}_{[a,b]} \colon a < b \in \mathcal{X} \}.$$

How does  $\mathcal{H}_M$  look for various M?

■ For  $M = \{x_1\} \subset \mathbb{R}$  we have again

$$\mathcal{H}_M = \{[0], [1]\}, \qquad |\mathcal{H}_M| = 2$$

■ For  $M = \{x_1, x_2\} \subset \mathbb{R}$ ,  $x_1 < x_2$ , we have

$$\mathcal{H}_M = \{[0,0], [0,1], [1,0], [1,1]\}, \qquad |\mathcal{H}_M| = 4$$

■ For  $M = \{x_1, x_2, x_3\} \subset \mathbb{R}$ ,  $x_1 < x_2 < x_3$ , we have

$$\mathcal{H}_M = \{[0,0,0], [0,0,1], [0,1,0], [1,0,0], [1,1,0], [0,1,1], [1,1,1]\}, \quad |\mathcal{H}_M| = 7$$

■ And for  $M = \{x_1, \dots, x_m\} \subset \mathbb{R}, x_1 < \dots < x_m$ ?

## The growth function

We are now interested in the maximal number of binary m-bits generated by  $\mathcal{H}$  on arbitrary  $x_1, \ldots, x_m \in \mathcal{X}$ 

#### Definition 3.16:

For a binary hypothesis class  $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$  its growth function  $\tau_{\mathcal{H}} \colon \mathbb{N} \to \mathbb{N}$  is given by

$$\tau_{\mathcal{H}}(m) := \sup_{M \subset \mathcal{X} \colon |M| = m} |\mathcal{H}_M|.$$

## Example 3.17:

Let  $\mathcal{X} = \mathbb{R}$  and consider again the class of Heaviside classifiers

$$\mathcal{H} = \{\mathbb{1}_{[a,+\infty)} \colon a \in \mathbb{R}\}.$$

Then

$$\tau_{\mathcal{H}}(m) = m + 1 \qquad \forall m \in \mathbb{N}.$$

## Theorem 3.18: Uniform Convergence Theorem (UCT)

Let  $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$  be a binary hypothesis class and  $\ell$  be the 0-1-loss. Then for any distribution  $\mu$  on  $\mathcal{D} = \mathcal{X} \times \{0,1\}$  and any  $\epsilon \in (0,1)$  we have

$$\mathbb{P}_{\mu^m}\left(\sup_{h\in\mathcal{H}}|\mathcal{R}_{\mu}(h)-\mathcal{R}_{S}(h)|>\epsilon\right) \leq 4 \, \tau_{\mathcal{H}}(2m) \, \exp\left(-\epsilon^2 m/8\right) \qquad \forall m\geq 2\ln(4)/\epsilon^2.$$

**Remark:** Why  $\tau_{\mathcal{H}}(2m)$  and not  $\tau_{\mathcal{H}}(m)$ ? Because the proof involves the step

$$\mathbb{P}_{S \sim \mu^m} \left( \sup_{h \in \mathcal{H}} |\mathcal{R}_{\mu}(h) - \mathcal{R}_{S}(h)| > \epsilon \right) \leq 2 \mathbb{P}_{S, \tilde{S} \sim \mu^m} \left( \sup_{h \in \mathcal{H}} |\mathcal{R}_{\tilde{S}}(h) - \mathcal{R}_{S}(h)| > \epsilon/2 \right)$$

### Corollary 3.19:

Let  $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$  be a binary hypothesis class and  $\ell$  be the 0-1-loss. If  $\tau_{\mathcal{H}}$  grows subexponentially, i.e., for any  $\epsilon > 0$  exists a  $c_{\epsilon} < \infty$  such that

$$\tau_{\mathcal{H}}(m) \le c_{\epsilon} \exp(\epsilon m) \quad \forall m \in \mathbb{N},$$

then  $\mathcal{H}$  satisfies the uniform convergence condition and is thus PAC-learnable by the ERM rule.

■ Hence, the class of Heaviside hypotheses

$$\mathcal{H} = \{\mathbb{1}_{[a,+\infty)} \colon a \in \mathbb{R}\}\$$

is an infinite PAC-learnable class on  $\mathcal{X} = \mathbb{R}$ , because  $\tau_{\mathcal{H}}(m) = m + 1$ .

■ However, the class of sine hypotheses

$$\mathcal{H} = \{ h = \operatorname{sgn} \left( \sin(w \cdot) \right) : w \in \mathbb{R} \}$$

is an infinite but not PAC-learnable class on  $\mathcal{X}=\mathbb{R}$ . In fact, it attains the upper bound

$$\tau_{\mathcal{H}}(m) = 2^m \quad \forall m \in \mathbb{N}.$$

lacksquare So which property of classes  $\mathcal H$  determines the growth of  $\tau_{\mathcal H}$  and, hence, their learnability?