EXAMINATION	AMO	SETTER	
FOR DIET May	2006	CHECKER	TNL PAGE NO

COMMENTS	SOLUTION	MARI
QUESTION NO.	(a) $0 \le x \le 1$ $y' + 2y = 1$ Integrating factor = e^{2x}	
	$(e^{2x}y)' = e^{2x}$ so that $e^{2x}y = \pm e^{2x} + A$	
	i.e. $y = \frac{1}{2} + Ae^{-2x}$	3
	Since $y(0) = 0$ we have $0 = \frac{1}{2} + A$: $A = -\frac{1}{2}$	·İ.
	$T_{1} 0 \le x \le 1$ $y = \frac{1}{2} - \frac{1}{2}e^{-2x}$	
	$x > 1$ $y' + 2y = 0$ i.e. $y = Be^{-2x}$	2
	Matching at $x=1$ we find $\frac{1}{2} - \frac{1}{2}e^2 = Be^2$: $B = \frac{1}{2}(e^2 - 1)$	
	:. Solution is $y = \begin{cases} \frac{1}{2} - \frac{1}{2}e^{-2x} & 0 \le x \le 1 \\ \frac{1}{2}(e^{-1})e^{-2x} & x > 1 \end{cases}$	2
	(b) Auxiliary equation $m^2+m-2=(m-1)(m+2)=0$	
	i.e. $m=1$ and -2	
	General solution is $y = Ae^2 + Be^{-2x}$,	3
	(e) $\ddot{y} + 2\dot{y} + 10\dot{y} = 50t$ $\ddot{y}(0) = 1, \dot{y}(0) = 6$	
	Auxiliary equation is $m+2m+10=0$ $m \Rightarrow -1\pm 3i$	3
	For the PI by $y = Ct + D$ to yield	
	2C + 10(Ct+D) = 50t	
	i.e. C=5 and 2C+10D=0 D=-1	3
	General solution is y=et(Aco3t+Bsin3t)+5t-1	
	y = -et (Ausst+Bsin3t) + et (-3Asin3t + 3Busst) + 5	
	Then $y(0) = 1 = A - 1$: $A = 0$	
	$\dot{y}(0) = 6 = -A + 3B + 5$: $B = \frac{1}{3}$	2
	Particular solution is $y = \frac{1}{3}e^t \sin 3t + 5t - 1$.	

EXAMINATION AM3	SETTER KBP
FOR DIET	CHECKER PAGE NO

OMMENTS	SOLUTION	MAR
QUESTION NO.	(a) $4u_{r+2}-4u_{r+1}+u_r=2^r$, $u_0=\frac{1}{4},u_1=\frac{1}{4}$ Characteristic equation is $4\lambda^2-4\lambda+1=0=(2\lambda-1)^2$ Repeated nort $\lambda=\frac{1}{2}$. CF is $(Ar+B)(\frac{1}{2})^2$.	4
	For the inhomogeneous equation by $u_r = C2^r$. $\Rightarrow 4C2^{r+2} - 4C2^{r+1} + C2^r = 2^r$	
	Hence general solution is $u_r = (Ar+B)(\frac{1}{2})^r + \frac{1}{9}2^r$	4
	$u_0 = 4 = B + \frac{1}{9}$ $B = \frac{1}{3}$	
	$u_1 = \frac{2}{9} = (A+B)\frac{1}{2} + \frac{2}{9}$. $A = -\frac{1}{3}$:- Particular solution is $u_r = \frac{1}{3}(1-r)(\frac{1}{2})^r + \frac{2}{9}^r$.	3
	(b) $\int_{0}^{2} dx \int_{0}^{4} \pi(x+y^{2}) dy$ $0 x^{2}$ $4 y = x^{2}$	2
	$= \int_0^z dy \int_0^z x(z^2+y^2) dz$	3
	$= \int_{0}^{4} \left[\frac{x}{4} + \frac{x^{2}}{2} \right]^{3} dy = \int_{0}^{4} \left(\frac{y^{2}}{4} + \frac{y}{2} \right) dy$	
	$= \left[\frac{3}{12} + \frac{3}{8} \right]_0^4 = \frac{16}{3} + 32 = \frac{112}{3}.$	3

EXAMINATION AM3	SETTER RBP
FOR DIET	CHECKER PAGE NO

ú

COMMENTS	SOLUTION	MARI
QUESTION NO.	(a) $\nabla \times F = \begin{vmatrix} \dot{1} & \dot{1} & \dot{1} & \dot{1} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & -e^{\chi} & 1+3z^{2} \end{vmatrix} = 0i + 0j + (e^{\chi} - e^{\chi})k = 0$	
	Since $\nabla x F \equiv Q$, then $F = \nabla \phi = i \frac{\partial \phi}{\partial x} + j \frac{\partial \phi}{\partial y} + k \frac{\partial \phi}{\partial z}$.	2
	Then $\frac{\partial \phi}{\partial z} = F_z = e^{i\varphi}$ $\Rightarrow \phi = -e^{i\varphi} + f(y, z)$	
	$\frac{\partial \phi}{\partial y} = -e^{-x} + \frac{\partial f}{\partial y} = F_y = -e^{-x} \implies \frac{\partial f}{\partial y} = 0 \text{ and so } f = g(z)$	
	$\frac{\partial \phi}{\partial z} = g'(z) = F_z = 1 + 3z^2$ $\Rightarrow g(z) = z^3 + z + C$	
	Hence $\phi = -\frac{2}{2}y + \frac{3}{2} + \frac{3}{2} + C$ $\phi(0,0,0) = 1 \Rightarrow C = 1$	
	: Scalar potential $\phi = -e^{-2}y + \frac{3}{2} + \frac{3}{2} + 1$.	5
	$\int_{C} F dr = \phi(\infty, 1, 2) - \phi(0, 0, 1) = 11 - 3 = 8.$	2
	(b) Green's theorem: & Pdx + Qdy = \int \left(\frac{100}{2x} - \frac{10P}{2y}\right) dody	
	$P=3x^2+y$, $\frac{\partial P}{\partial y}=1$ C is boundary of rectangle taken in the positive sense taken in the positive sense	1
	$\int_{C}^{\infty} (3x^{2} + y) dx + (3x - 3y^{2}) dy = \iint_{R}^{\infty} (3 - 1) dx dy$	
	$= 2 \iint dx dy = 12. \text{ Area of rectangle} = 3x2$ R	4
	(c) $\int \int \underline{n} \cdot \nabla x F dS = \oint F \cdot dr$ where C is the circle $x^2 + y^2 = 1$ in the positive sense.]
	F.dr = (-yi + xk).(idx+jdy) = -ydx on C	2
	$\oint F. d\underline{r} = \oint -y dx = \int \sin^2 \theta d\theta \qquad \pi = \omega_0 \theta, y = \sin \theta$ $0 \leq \theta \leq 2\pi$	
	$= \pi_{\cdot}$	3

B2.(a) X and Y are component of thrust required. Radial egy of notion: mad= Y-mgcood : Y = ma + mg cos --- (1) Transverse eg of notion: maë = x - mg mi e : X = mag + mag pin 0 --- (2) Rotational egr of motion (moments about huige); Iw= I moments 4 mai o = - mga sino - a0 = -3g sind . --- (3) Integrating (3) gives a = 3 g cos + C 8= v ox 0=0 => v o= vv +3d (vo-1) --- (4) 3 (3) 4(2) => X = - 3 mg sind + mg sind x = mg sin a (1) = (4) =) Y = ma 12+3mg (cos-1)+mgcos .. 1 = ma vs + md (2000-3) (as redused)

B2.(b) Truck rolls without solipping so no work done by frictional forces on wheels.

.: Work done by force F = K.E. of truck + 4 wholes

i.e. $F \propto = \frac{1}{2} M \dot{x}^2 + \frac{1}{2} . (4m \dot{x}^2 + 4 \cdot \frac{1}{2} (\frac{1}{2} m \dot{\alpha}^2) \omega^2$ ($\omega = \text{angular velocity of wheels}$)

 $Fx = \frac{1}{2}m\dot{x}^2 + 2m\dot{x}^2 + ma^2\omega^2$

But $x = \alpha \omega \Rightarrow Fx = x^2 (1M + 3m)$

 $\dot{x} = \sqrt{\frac{2Fx}{M+6m}} \quad (as required)$

From x2 = 2Fx, differentiation gives

 $2\dot{x}\dot{x} = \frac{2F\dot{x}}{M+6m}$

= x = F is accol.

4

7

7

First, check rolling condition that toma < M (1+02/2) N== i.e. tan 30 5 1 (1+ 03/02)

or 13 < 3 which is true

and no dise will roll on place.

all yn skila llin seib oa, polisitlin o= e Ano == x plane, lence F=MR = 1.29 co 30° Creshing people

i.e. F = 9 13.

Eq of motion of disc up plane:

$$2\dot{x} = -F - 2g \text{ min 30}$$

= $-9\frac{13}{2} - g$
 $\dot{x} = -\frac{9}{4}(\sqrt{3} + 2) = \dot{x} = -\frac{9}{4}(\sqrt{3} + 2) + 5$

Rotational equal motion:

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}$$

Disc stops objecting and starts rolling when is = 10,

$$t = \frac{20}{(313+2)g} = 0.284$$
 records.

2,1

w = ang. vel. of rod after aduqui U, V = components of velocity of c.ofg. of rod after salugui Monentum eg' peop to rod: JANX = MY ---Momentum egy along sod: J cox = mu ---: bor fo extras trooks atranom ocaluqui to stranon I = WI = = J. a sind .. VM = 32 bm x --- (3) Valority of point a has components of u along bleson and V+ aw peop to rad, after impulse. Now (2) => U= I cox and (1) => V= I onx :- where of c = 1 ms + (n+ am) , and mail (3) done (sing = J cosa+(sina)2 = I cosx+ 49 min x = I 1600 x+49 min x

= J 16+33 Din x (as required)

2