UNIVERSIDADE DE SÃO PAULO Instituto de Ciências Matemáticas e de Computação

Geradores de homologia persistente e aplicações

Carlos Henrique Venturi Ronchi

Dissertação de Mestrado do Programa de Pós-Graduação em Matemática (PPG-Mat)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP
Data de Depósito:
Assinatura:

Carlos Henrique Venturi Ronchi

Geradores de homologia persistente e aplicações

Dissertação apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Mestre em Ciências – Matemática. *EXEMPLAR DE DEFESA*

Área de Concentração: Matemática

Orientador: Prof. Dr. Marcio Fuzeto Gameiro

USP – São Carlos Junho de 2018

Carlos Henrique Venturi Ronchi

Persistent homology generators and applications

Dissertation submitted to the Institute of Mathematics and Computer Sciences – ICMC-USP – in accordance with the requirements of the Mathematics Graduate Program, for the degree of Master in Science. *EXAMINATION BOARD PRESENTATION COPY*

Concentration Area: Mathematics

Advisor: Prof. Dr. Marcio Fuzeto Gameiro

USP – São Carlos June 2018

RESUMO

RONCHI, C. H. V. **Geradores de homologia persistente e aplicações**. 2018. 35 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2018.

a.

Palavras-chave: Modelo, Monografia de qualificação, Dissertação, Tese, Latex.

ABSTRACT

RONCHI, C. H. V. **Persistent homology generators and applications**. 2018. 35 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2018.

a.

Keywords: Template, Qualification monograph, Dissertation, Thesis, Latex.

LISTA DE ILUSTRAÇÕES

Figura 1 –	Representação do pipeline para a utilização da homologia persistente	
	com um conjunto de dados	22
Figura 2 -	Exemplos de k -simplexos para $k \in \{0,1,2,3\}$	23
Figura 3 -	Exemplo em que a interseção de dois simplexos não é um simplexo	24
Figura 4 -	Exemplo de filtração para um complexo simplicial K	24
Figura 5 -	Esquema de uma rede neural artificial. O número de vértices na camada	
	escondida é determinado pelo tamanho da matriz A_i	32

LISTA DE ALGORITMOS

LISTA DE CÓDIGOS-FONTE

LISTA DE TABELAS

SUMÁRIO

1	INTRODUÇÃO	19
2	HOMOLOGIA PERSISTENTE 101	21
2.1	Filtrações	22
2.1.1	Filtração de Čech	25
2.1.2	Filtração de Vietoris-Rips	25
2.1.3	Filtração Alpha Shape	25
2.2	A matriz de bordo ∂	25
2.3	Redução da matriz	25
3	MÓDULOS DE PERSISTÊNCIA	27
4	GERADORES ÓTIMOS E OUTROS CONCEITOS	29
4.1	Geradores ótimos	29
4.2	Vetorização do diagrama de persistência	29
4.3	Mapper	29
5	APLICAÇÕES	31
5.1	Geradores ótimos em classificadores de imagens	31
5.1.1	Redes Neurais Convolucionais (CNN)	3 1
5.2	Imagens de persistência aplicadas a proteínas	32
6	CONCLUSÃO	33
DEEEDÍ	ÊNCIAS	25

INTRODUÇÃO

2

HOMOLOGIA PERSISTENTE 101

A topologia sempre foi vista como uma área de abstração da matemática, sem espaço para aplicações. Ela é usada para o estudo de diversos espaços em sua forma abstrata, auxiliando matemáticos em diversas demonstrações de teoremas e dando uma base fundamental para grande parte da teoria matemática usada no dia a dia (POINCARÉ, 1895).

Certas propriedades dos espaços topológicos são estudadas através da topologia algébrica, dando algumas informações, como o número de componentes conexas por caminhos de um espaço e buracos. A princípio esta é uma área altamente abstrata da matemática, nos últimos anos esta visão foi mudando, com o desenvolvimento da Homologia Persistente e Análise Topológica de Dados.

Um conjunto de dados, geralmente um subconjunto finito de algum espaço métrico, pode ser estudado através da homologia persistente e assim obtemos informações topológicas do objeto em estudo.

O pipeline da análise topológica de dados pode ser divido nos seguintes passos:

- A entrada do algoritmo pode ser um conjunto de pontos ou alguma matriz de distância/similaridade do conjunto de dados.
- A construção de um objeto combinatorial em cima do conjunto de dados ou da matriz de distância. Geralmente uma filtração ou um complexo simplicial.
- A partir da filtração ou do complexo simplicial é possível extrair informações topológicas e geométricas do conjunto de dados, por exemplo o número de componentes conexas, como um algoritmo de Clustering.
- Por fim a interpretação dos dados obtidos e possível pós processamento para a utilização em outros algoritmos, como os de classificação ou regressão.

Figura 1 – Representação do pipeline para a utilização da homologia persistente com um conjunto de dados.

Neste capítulo descrevemos de forma ingênua a homologia persistente, começando com filtrações, passando pelos espaços vetoriais associados aos complexos simpliciais e chegando ao algoritmo de homologia persistente. Mostraremos também como interpretar os resultados obtidos. A Figura 1 mostra os passos para utilizar esta ferramenta em um conjunto de dados.

2.1 Filtrações

A filtração de um conjunto de dados é o primeiro passo na nossa sequência apresentada na Figura 1. Dado um conjunto de dados precisamos construir um objeto combinatorial de forma que possa ser analisado do ponto de vista da topologia assim como computacionalmente. A filtração é este objeto que captura as mudanças do conjunto dada uma escala.

Algumas definições se fazem necessárias para entendermos o que é a filtração e qual o seu papel na análise topológica de dados. Começamos definindo um simplexo, primeiro objeto combinatorial que é a base da filtração.

Definição 2.1.1. Sejam $v_0, v_1, \dots, v_k \in \mathbb{R}^n$ linearmente afins, ou seja $\{v_1 - v_0, \dots, v_k - v_0\}$ é

2.1. Filtrações 23

Figura 2 – Exemplos de k-simplexos para $k \in \{0,1,2,3\}$.

um conjunto linearmente independente. O k-simplexo definido pelos pontos acima definidos, chamados de vértices também, é o conjunto

$$\left\{ \sum_{i=0}^k \lambda_i v_i \ \bigg| \ \sum_{i=0}^k \lambda_i = 1 \ \mathrm{e} \ \lambda_i \geq 0, \ \forall i \right\}.$$

Note que para k=0, temos um único vértice. Para k=1, temos uma reta, já para k=2 temos um triângulo preenchido. E no caso k=3, um tetraedro. Os simplexos podem ser vistos na Figura 2. Além disso, dizemos que a dimensão do k-simplexo é k. A envoltoria convexa de qualquer subconjunto dos vértices de um simplexo S é chamado de face de S.

Tendo definido os k-simplexos, podemos definir o complexo simplicial.

Definição 2.1.2. Um complexo simplicial K é uma coleção de simplexos satisfazendo as seguintes relações:

- Dado $\sigma \in K$, temos que para toda face $\tau \subset \sigma$ vale $\tau \in K$.
- A interseção de dois simplexos é face de ambos os simplexos, em outras palavras, $\sigma, \tau \in K$ implica que $\sigma \cap \tau \subset \sigma$ e $\sigma \cap \tau \subset \tau$.

A segunda condição é necessária para evitar casos patológicos como mostrado na Figura 3

Dizemos que a dimensão do complexo simplicial K é a maior dimensão dentre os simplexos em K. Podemos definir agora a filtração de um complexo simplicial.

Figura 3 – Exemplo em que a interseção de dois simplexos não é um simplexo.

Definição 2.1.3. Seja K um complexo simplicial. Definimos uma filtração de K sendo uma sequência de subconjuntos $K_i \subset K$, com $i \in \{1, ..., n\}$, de tal forma que K_i é um complexo simplicial para todo i e vale que

$$K_1 \subset \cdots \subset K_{n-1} \subset K_n = K$$
.

Na Figura 4 temos um exemplo de filtração para um complexo simplicial.

Figura 4 – Exemplo de filtração para um complexo simplicial K.

- 2.1.1 Filtração de Čech
- 2.1.2 Filtração de Vietoris-Rips
- 2.1.3 Filtração Alpha Shape
- 2.2 A matriz de bordo ∂
- 2.3 Redução da matriz

3

MÓDULOS DE PERSISTÊNCIA

4

GERADORES ÓTIMOS E OUTROS CONCEITOS

- 4.1 Geradores ótimos
- 4.2 Vetorização do diagrama de persistência
- 4.3 Mapper

5

APLICAÇÕES

Neste capítulo serão descritas algumas aplicações utilizando geradores ótimos e imagens de persistência.

5.1 Geradores ótimos em classificadores de imagens

Utilizando imagens e rótulos associados a elas é possível criar classificadores, algoritmos que decidem os rótulos dada uma imagem. Alguns deles são Redes Neurais (MCCULLOCH; PITTS, 1943), SVM (CORTES; VAPNIK, 1995), Redes Neurais Convolucionais (abreviado por CNN, sigla em inglês) (LECUN et al., 1989) e Generative Adversarial Networks (GAN) (GOODFELLOW et al., 2014).

Nesta seção será descrito as redes neurais convolucionais e como obteve-se um classificador de imagens utilizando-as. Além disso, será descrito como outros classificadores foram gerados utilizando informações disponibilizadas pelos geradores ótimos para obterse um classificador com melhor acurácia do que a rede neural convolucional original.

5.1.1 Redes Neurais Convolucionais (CNN)

O algoritmo de redes neurais artificiais é o precurso da CNN. Um rede neural artificial é uma composição de funções f_n que tem como contra domínio algum \mathbb{R}^m . O seu domínio é dado pela dimensão dos dados disponíveis, por exemplo, se temos uma imagem de tamanho 10x10, a dimensão do domínio é 100. Logo, a rede neural pode ser descrita como uma função $Ann: \mathbb{R}^p \to \mathbb{R}^m$

$$Ann(x) = f_n(...f_2(A_2 * f_1(A_1 * x + b_1) + b_2), \tag{5.1}$$

onde A_i é uma matrix de tamanho arbitrário e $b_i \in \mathbb{R}$. Na Figura 5, temos uma imagem clássica para redes neurais.

Figura 5 – Esquema de uma rede neural artificial. O número de vértices na camada escondida é determinado pelo tamanho da matriz A_i

5.2 Imagens de persistência aplicadas a proteínas

6

CONCLUSÃO

REFERÊNCIAS

CORTES, C.; VAPNIK, V. Support-vector networks. **Machine Learning**, Springer Nature, v. 20, n. 3, p. 273–297, set. 1995. Disponível em: https://doi.org/10.1007/bf00994018>. Citado na página 31.

GOODFELLOW, I. J.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-FARLEY, D.; OZAIR, S.; COURVILLE, A.; BENGIO, Y. Generative adversarial nets. In: **Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2**. Cambridge, MA, USA: MIT Press, 2014. (NIPS'14), p. 2672–2680. Disponível em: http://dl.acm.org/citation.cfm?id=2969033.2969125. Citado na página 31.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.; HUBBARD, W.; JACKEL, L. D. Backpropagation applied to handwritten zip code recognition. **Neural Computation**, MIT Press - Journals, v. 1, n. 4, p. 541–551, dez. 1989. Disponível em: https://doi.org/10.1162/neco.1989.1.4.541. Citado na página 31.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. **The Bulletin of Mathematical Biophysics**, Springer Nature, v. 5, n. 4, p. 115–133, dez. 1943. Disponível em: https://doi.org/10.1007/bf02478259. Citado na página 31.

POINCARé, H. Analysis situs. **Journal de l'École Polytechnique**, p. 1–123, 1895. Citado na página 21.

