Introduction to Electrical Circuits

Mid Term Lecture – 5

Faculty Name: Rethwan Faiz Email ID: rethwan_faiz@aiub.edu

Reference Book:

Introductory Circuit Analysis

Robert L. Boylestad, 11th Edition

Week No.	Class No.	Chapter No.	Article No., Name and Contents	Example No.	Exercise No.
W3	MC5	Chapter 8	8.7 MESH ANALYSIS (Either General or Format Approach)	See the circuits given	21(a), 22(I, II)

Current Source

A current source determines the current in the branch in which it is located and the magnitude and polarity of the voltage across a current source are a function of the network to which it is applied.

FIG. 1 Comparing the characteristics of an ideal voltage and current source.

Source Conversion

Source conversions are equivalent only at their external terminals.

FIG. 2 Source conversion.

For the voltage source, if $R_s = 0 \Omega$ or is so small compared to any series resistor that it can be ignored, then we have an "ideal" voltage source.

For the current source, if $R_s = \infty \Omega$ or is large enough compared to other parallel elements that it can be ignored, then we have an "ideal" current source.

Mesh Analysis (Format Approach)

- 1. Assign a distinct current in the clockwise direction to each independent, closed loop of the network.
- 2. Indicate the polarities within each loop for each resistor as determined by the assumed direction of loop current for that loop.
- 3. Current entering the positive polarity of resister and leaving from the negative polarity denotes a negative sign in the KVL equation and vice versa. Voltage source is polarity is independent of the direction of current.
- 4. Add resistances of a designated assigned current loop and multiply it with loop current.
- 5. Form simultaneous equations based on KVL where the right side of equation will have the value for voltage source based on designated current loop.
- 6. Solve equation using determinant method.

EXAMPLE 8.13 Find the branch currents of the networks in Fig. 8.32.

CHAPTER 8

Solution:

Steps 1 and 2: These are as indicated in the circuit.

Step 3: Kirchhoff's voltage law is applied around each closed loop:

loop 1:
$$-E_1 - I_1R_1 - E_2 - V_2 = 0$$
 (clockwise from point *a*)
- 6 V - (2 Ω) I_1 - 4 V - (4 Ω)(I_1 - I_2) = 0

loop 2:
$$-V_2 + E_2 - V_3 - E_3 = 0$$
 (clockwise from point b)
 $-(4 \Omega)(I_2 - I_1) + 4 V - (6 \Omega)(I_2) - 3 V = 0$

which are rewritten as

or, by multiplying the top equation by -1, we obtain

$$6I_1 - 4I_2 = -10$$

$$4I_1 - 10I_2 = -1$$

Step 4:
$$I_1 = \frac{\begin{vmatrix} -10 & -4 \\ -1 & -10 \end{vmatrix}}{\begin{vmatrix} 6 & -4 \\ 4 & -10 \end{vmatrix}} = \frac{100 - 4}{-60 + 16} = \frac{96}{-44} = -2.18 \text{ A}$$

$$I_2 = \frac{\begin{vmatrix} 6 & -10 \\ 4 & -1 \end{vmatrix}}{-44} = \frac{-6 + 40}{-44} = \frac{34}{-44} = -0.77 \text{ A}$$

The current in the 4 Ω resistor and 4 V source for loop 1 is

$$I_1 - I_2 = -2.18 \text{ A} - (-0.77 \text{ A})$$

= -2.18 A + 0.77 A
= -1.41 A

revealing that it is 1.41 A in a direction opposite (due to the minus sign) to I_1 in loop 1.

Faculty of Engineering

8.7 MESH ANALYSIS

CHAPTER 8

Chosen Circuit:

For the ladder network in Fig. 7.85:

- **a.** Find the current *I*.
- **b.** Find the current I_7 .
- **c.** Determine the voltages V_3 , V_5 , and V_7 .
- d. Calculate the power delivered to R₇, and compare it to the power delivered by the 240 V supply.

Do the Math in the class using either General Approach or Format Approach

Answers are:

$$I_7 = 8A$$

$$V_3 = 48V$$

$$V_7 = 16V$$

$$P_{R7}$$
= 128W

$$P_E = 5760W$$

$$V_5 = 24V$$

Find the current through each resistor for the networks in Fig. 8.117.

Exercise Problems

(I)

Solution:

(I):
$$I_1 \downarrow I_2 \downarrow$$

$$10 - I_1(5.6 \text{ k}\Omega) - 2.2 \text{ k}\Omega(I_1 - I_2) + 20 = 0$$

-20 - 2.2 k\Omega(I_2 - I_1) - I_2 3.3 k\Omega - 30 = 0

$$I_1 = 1.45 \text{ mA}, I_2 = 8.51 \text{ mA}$$

 $I_{R_1} = I_1 = 1.45 \text{ mA}, I_{R_2} = I_2 = 8.51 \text{ mA}$
 $I_{R_3} = I_2 - I_1 = 7.06 \text{ mA} \text{ (direction of } I_2\text{)}$

(II):
$$\overline{I_1}$$
 $\overline{I_2}$

$$-I_1(1.2 \text{ k}\Omega) + 9 - 8.2 \text{ k}\Omega(I_1 - I_2) = 0$$

-I_2(1.1 k\Omega) + 6 - I_2 (9.1 k\Omega) - 8.2 k\Omega(I_2 - I_1) = 0

$$I_1 = 2.03 \text{ mA}, I_2 = 1.23 \text{ mA}$$

 $I_{R_1} = I_1 = 2.03 \text{ mA}, I_{R_3} = I_{R_4} = I_2 = 1.23 \text{ mA}$
 $I_{R_1} = I_1 - I_2 = 2.03 \text{ mA} - 1.23 \text{ mA} = 0.80 \text{ mA} \text{ (direction of } I_1\text{)}$

 Find the mesh currents and the voltage V_{ab} for each network in Fig. 8.118. Use clockwise mesh currents.

Solution:

(I):
$$\overline{I_1} \checkmark \overline{I_2} \checkmark$$

$$V_{ab} = 20 - I_2 5 = 20 - (8.55 \text{ A})(5) = 20 \text{ V} - 42.75 \text{ V}$$

= -22.75 V

(II): Source conversion: $E = 9 \text{ V}, R = 3 \Omega$

$$V_{ab} = I_2 4 - 6 = (1.27 \text{ A})(4 \Omega) - 6$$

= 5.08 V - 6 V
= -0.92 V

