

ADVANCED DATA STRUCTURES

COMPUTER SCIENCE DEPARTMENT

Union Find Data Structure: An empirical analysis

Author: Alex Herrero $\begin{array}{c} \textit{Professor:} \\ \textbf{Conrado Marínez} \end{array}$

Contents

1 Introduction 3

List of Figures

List of Tables

1 Introduction

Given a binary relation R such that is:

• Reflexive: aRa

• Symmetric: $aRb \Rightarrow bRa$

• Transitive: $aRb \wedge bRc \Rightarrow aRc$

we say that R provides a partition Π of A into disjoint equivalence classes. That is, $\Pi = \{A_1, \dots, A_k\}$ is defined as follows:

• $\forall A_i, A_j \in \Pi, A_i \cap A_j = \emptyset \iff A_i \neq A_j$

$$\bullet \ A = \bigcup_{i=1}^{k} A_i$$

• $a \equiv b \iff a, b \in A_i \text{ for some } A_i \in \Pi.$

As every subset defines an equivalence class it is enough to represent every A_i with a single element $a \in A_i$ which is called the *representative* of A_i (as every other element of A_i is related to a by the properties of the binary relation previously defined).

Such idea was firstly introduced by Galler and Fisher[GF64] in Computer Science as the **union-find** data structure which is a data structure that stores partition of a set into disjoint sets. In particular union find consist of two main operation:

- Find Operation: Given two elements $a, b \in A$ determine if $\exists A_i \in \Pi$ s.t $a, b \in A_i$.
- Union Operation: Given two elements $a \in A_i$ and $b \in A_j$, merge A_i and A_j . That is, the result of this operation to the partition Π will be a new partition Π' such that $\Pi' = (\Pi \setminus \{A_i, A_j\}) \cup (A_i \cup A_j)$.

References

[GF64] Bernard A Galler and Michael J Fisher. An improved equivalence algorithm. Communications of the ACM, 7(5):301-303, 1964.