Binary Trees

- A tree is a graph T = (V, E) that is acyclic (contains no cycles)
 - · between any 2 vertices there is exactly I paths
 - · binar rue: oriental, parent, lett, right child

no children: leaf

· a vertex with no parent

tellength of that path onow is The depth of u

Depth of T: max. depth of any node

Depth: 4

Height of a node u is The hargest path to

ary of its descendent leaves

Binary Scard Tree!

Hegp: (min heap)

- · Bing true
- · K in a node u is less Than both its children

· Full: ey node is present except The last land, full to the left

Coding Theory "

- · encoding symbols (in binary)
- · ASCII: fixed length encoding all codewords have length 8

$$A = 65 = 0.1000001$$

- · Variable length encoling:

 - · omit some characters

· common letters: Shorter code words reduces The

· rane letters: It longer code words averge code word

length

A B C D {0,01,101,010} variable length code

messge: 010 -> D ambiguous -> BA

Goal: a prefix free code: no code word is The prefix
of another

A is a prefix of B 0 0001
B is a prefix D

- · Want to encode a fix using a variable lengt,

 putix free code that minimites the avera code word length

 (compression) loss less
- · Huffman Coding
 - o high frequency (common) letters: small code words
 - · low freques (vare) lettres: longer code words
- · Given of frequencies, build a thee:

combine "small" frequença as children to a nar root node -> new thee

- · continue until 1 tree remains
- · path root leaf defines a code word.

	Symbol	codeword	len	2th + fra
Fixed length encody: 3	A	101	3	, .10
6 () ()	В	001	3	.15
010	C	01	2	.34
0 11	D	1001	4	.05
101	E	000	3	,12
110	F	[]	2_	اء.
$\frac{3-2.53}{}=15.67\%$	G	1000	4	.03
= 15.67% (compression ratio) Away code word	leasth			

Awry code word length

pack ,3+,45+.68++.2+.36+.42+.12

Zip X Huffman = 2.53

```
Input: Alphabet of symbols, &
        frequency of symbols frez: 5 -> 1R+
 Outpea: A Huffman Thee
  He min Heap
  Ministed Ttation
for each x \in \Sigma

Tx = single node tree

wt(Tx) = frez(x)
    L H. insert (Tx)
    while Hosize > 1 (n-1)
       Tp & new root
       Te - H. getMin
       To High Min
       Tp. leAthild - Te
        Tp. right Child - Tr
```

freq (x) = frequency of The symbol x in The file : wt(Tp) = wt(Tr) + tot(Tr) Hinsert (Tp) output Hightin getMin, susent: O(d) = O(login)n = number of Things in the meap

$$|\log(a) + \log(b)|$$

$$= |\log(a \cdot b)|$$

$$\frac{1}{1} \quad n \quad \frac{\cos d}{\log(n)}$$

$$= \log(k) = \log(k) + \log(k) + \log(k) + \log(k) + \log(k)$$

$$= \log(k$$