# Xuanzhao Gao

Center for Computational Mathematics, Flatiron Institute, New York, NY, USA xgao@flatironinstitute.org | github.com/ArrogantGao | arrogantgao.github.io

### **RESEARCH INTERESTS**

I am interested in applied and computational mathematics in general, working on the following topics:

- Boundary integral equations for complex geometries.
- Fast summation algorithms for long-range interactions.
- Tensor network-based algorithms for combinatorial optimization problems.

#### **EDUCATION**

## Hong Kong University of Science and Technology, Hong Kong SAR, China

2021 -- 2025

Ph.D. in Individual Interdisciplinary Program, major in Applied Mathematics. Thesis advisors: Zecheng Gan, Jinguo Liu, and Yang Xiang

## The University of Science and Technology of China, China

2017 -- 2021

B.S. in Condensed Matter Physics & B.S. in Computer Science. Undergraduate thesis advisor: Xianhui Chen

### **POSITIONS**

#### Flatiron Research Fellow

Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, NY, USA 2025 -- now

#### **PUBLICATIONS**

#### **Peer-reviewed Publications**

- [1] X. Gao, Q. Zhou, Z. Gan, and J. Liang, Accurate error estimates and optimal parameter selection in Ewald summation for dielectrically confined Coulomb systems, J. Chem. Theory Comput. **21**, 5890 (2025)
- [2] Z. Gan, X. Gao, J. Liang, and Z. Xu, Random batch Ewald method for dielectrically confined Coulomb systems, SIAM J. Sci. Comput. **47**, B846 (2025)
- [3] X. Gao, X. Li, and J. Liu, Programming guide for solving constraint satisfaction problems with tensor networks, Chinese Physics B **34**, 50201 (2025)
- [4] Z. Gan, X. Gao, J. Liang, and Z. Xu, Fast algorithm for quasi-2D Coulomb systems, J. Comput. Phys. **524**, 113733 (2025)
- [5] M. Roa-Villescas, X. Gao, S. Stuijk, H. Corporaal, and J.-G. Liu, Probabilistic inference in the era of tensor networks and differential programming, Phys. Rev. Res. **6**, 33261 (2024)
- [6] X. Gao and Z. Gan, Broken symmetries in quasi-2D charged systems via negative dielectric confinement, J. Chem. Phys. **161**, (2024)
- [7] Z. Nie, X. Gao, Y. Ren, S. Xia, Y. Wang, Y. Shi, J. Zhao, and Y. Wang, Harnessing hot phonon bottleneck in metal halide perovskite nanocrystals via interfacial electron-phonon coupling, Nano Lett. **20**, 4610 (2020)

# **Manuscripts Under Review**

- [8] X. Gao, S. Jiang, J. Liang, Z. Xu, and Q. Zhou, A fast spectral sum-of-Gaussians method for electrostatic summation in quasi-2D systems, Arxiv Preprint Arxiv:2412.04595 (2024)
- [9] X. Gao, Y.-J. Wang, P. Zhang, and J.-G. Liu, Automated discovery of branching rules with optimal complexity for the maximum independent set problem, Arxiv Preprint Arxiv:2412.07685 (2024)

### In Draft (preprint available upon request)

[10] X. Gao, Z. Gan, and Y. Li, Efficient particle-based simulations of Coulomb systems under dielectric nanoconfinement, (2025)

Last updated: 2025-10-15 Xuanzhao Gao

### SOFTWARE PACKAGES

**ExTinyMD.jl:** A framework for molecular dynamics simulations.

**EwaldSummations.jl:** A comprehensive implementation of the Ewald summation method for electrostatic interactions in both triply and doubly periodic systems with and without dielectric mismatches.

**ChebParticleMesh.jl:** A suite of highly efficient tools for the widely used Particle-Mesh methods applicable to systems with arbitrary dimensions and periodicity.

**TropicalNumbers.jl:** A refined implementation of the tropical semiring.

**CuTropicalGEMM.jl:** A GPU-accelerated implementation of the tropical matrix multiplication.

**TreeWidthSolver.jl:** A collection of tools for calculating the exact tree width and tree decomposition of a given graph.

**OptimalBranching.jl:** A framework for automated discovery of optimal branching rules for the branch-and-bound algorithm.

# **OPEN SOURCE PROJECTS**

# Google Summer of Code 2024, The Julia Language

Contributed to the project "Tensor network contraction order optimization and visualization" released by the Julia Language community in GSoC 2024.

### Open Source Promotion Plan 2023, JuliaCN

Contributed to the project "TropicalGEMM on GPU" released by the JuliaCN community in OSPP 2023.

### PRESENTATIONS AND POSTERS

### The 14th CSCM Annual Conference, Invited Talk

August 17-21, 2025

A Fast Spectral Sum-of-Gaussians Method for Electrostatic Summation in Quasi-2D Systems

### JuliaCN Meetup 2024, Invited Talk

Nov 2-3, 2024

TreeWidthSolver.jl: From Treewidth to Tensor Network Contraction Order

### SciCADE 2024, Contributed Talk

July 15-19, 2024

Fast Algorithm for Quasi-2D Coulomb Systems

### JuliaCN Meetup 2023, Contributed Talk

Dec 9, 2023

How to Implement Generic Matrix-Mul with Generic Element Types on GPU?

# ICIAM 2023, Poster

August 20-25, 2023

Random Batch Ouasi-Ewald Method for the Simulations of Charged Particles under Dielectric Confinement

#### **SKILLS**

Programming Languages: Julia (proficient), Python, C/C++, CUDA

Languages: Mandarin Chinese (native), English (proficient)

Last updated: 2025-10-15 Xuanzhao Gao