Decompositions of Graphs

Hengfeng Wei

hfwei@nju.edu.cn

June 12, 2018

John Hopcroft

Robert Tarjan

John Hopcroft

Robert Tarjan

"For fundamental achievements in the design and analysis of algorithms and data structures."

— Turing Award, 1986

2 / 40

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"Depth-First Search And Linear Graph Algorithms" by Robert Tarjan.

3 / 40

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"DFS is a powerful technique with many applications."

▶ "Depth-First Search And Linear Graph Algorithms" by Robert Tarjan.

3 / 40

Power of DFS:

Graph Traversal ⇒ Graph Decomposition

Power of DFS:

Graph Traversal ⇒ Graph Decomposition

Structure! Structure! Structure!

Graph structure induced by DFS:

states of v

types of u v

Graph structure induced by DFS:

states of v

types of \underbrace{u} \underbrace{v}

life time of v:

 $v:\mathsf{d}[v],\mathsf{f}[v]$

f[v]: DAG, SCC

d[v]: biconnectivity

Definition (Classifying edges)

Given a DFS traversal \implies DFS tree:

Tree edge: \rightarrow child

Back edge: \rightarrow ancestor

Forward edge: → *nonchild* descendant

Cross edge: \rightarrow (\neg ancestor) \land (\neg descendant)

Definition (Classifying edges)

Given a DFS traversal \implies DFS tree:

Tree edge: \rightarrow child

Back edge: \rightarrow ancestor

Forward edge: → *nonchild* descendant

Cross edge: \rightarrow (¬ancestor) \land (¬descendant)

- also applicable to BFS
- w.r.t. DFS/BFS trees

DFS on directed graph

DFS on directed graph

DFS on undirected graph

BFS on directed graph

BFS on directed graph

BFS on undirected graph

Undirected connected graph $G = (V, E), v \in V$

DFS tree T from $v \equiv BFS$ tree T' from v

Undirected connected graph $G = (V, E), v \in V$

DFS tree T from $v \equiv$ BFS tree T' from v

$$G\equiv T$$

Undirected connected graph $G=(V,E),v\in V$

DFS tree T from $v \equiv BFS$ tree T' from v

$$G \equiv T$$

Proof.

$$G_{\mathsf{DFS}}$$
: tree + back vs. G_{BFS} : tree + cross

Undirected connected graph $G = (V, E), v \in V$

DFS tree T from $v \equiv$ BFS tree T' from v

$$G \equiv T$$

Proof.

$$G_{\mathsf{DFS}}$$
: tree + back vs. G_{BFS} : tree + cross

Q: What if G is a digraph?

Lift time of vertices in DFS

Theorem (Disjoint or Contained (Problem 4.2: (1) & (2)))

$$\forall u,v: [_u\]_u\cap [_v\]_v=\emptyset\bigvee\left([_u\]_u\subsetneqq [_v\]_v\vee [_v\]_v\subsetneqq [_u\]_u\right)$$

Theorem (Disjoint or Contained (Problem 4.2: (1) & (2)))

$$\forall u,v: [_u\]_u\cap [_v\]_v=\emptyset\bigvee \Big([_u\]_u\subsetneqq [_v\]_v\vee [_v\]_v\subsetneqq [_u\]_u\Big)$$

Proof.

Preprocessing for ancestor/descendant relation (Problem 5.23)

Q: Is u an ancestor of v? O(1)

Preprocessing for ancestor/descendant relation (Problem 5.23)

Q: Is u an ancestor of v? O(1)

 $v:\mathsf{d}[v],\mathsf{f}[v]$

Preprocessing for ancestor/descendant relation (Problem 5.23)

Q: Is u an ancestor of v? O(1)

 $v : \mathsf{d}[v], \mathsf{f}[v]$

Q: # of descendants of any v?

$$\forall u \rightarrow v$$
:

- ▶ tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\forall u \to v$$
:

- ▶ tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \qquad \mathsf{edge}$$

$$\forall u \to v$$
:

- ▶ tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $[v]_v [u]_u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$\forall u \to v$$
:

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$f[u] < f[v] \iff$$

$$\forall u \rightarrow v$$
:

- ► tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$f[u] < f[v] \iff \mathsf{back} \; \mathsf{edge}$$

$$\forall u \rightarrow v$$
:

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross} \; \mathsf{edge}$$

$$f[u] < f[v] \iff \mathsf{back} \; \mathsf{edge}$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

- $\blacktriangleright \ \ \text{height} \ H(T) \ \text{in} \ O(n)$
- ▶ diameter D(T) in O(n)

$$\begin{cases} H(T) = \max(H(L_T), H(R_T)) + 1, \end{cases}$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

$$\left\{ \begin{array}{ll} D(T)=0, & T \text{ is a leave} \\ D(T)=\max\Big(D(L_T),D(R_T), & \Big), & \text{o.w.} \end{array} \right.$$

Binary tree T = (V, E) with |V| = n and the root r:

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

$$\left\{ \begin{array}{ll} D(T)=0, & T \text{ is a leave} \\ D(T)=\max\left(D(L_T),D(R_T),\underbrace{H(L_T)+H(R_T)+2}_{\text{through the root}}\right), & \text{o.w.} \end{array} \right.$$

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ か へ ②

Binary tree T=(V,E) with |V|=n and the root r

Binary tree T = (V, E) with |V| = n and the root r

Q: Diameter of a $tree\ without$ a designated root

Binary tree T = (V, E) with |V| = n and the root r

Q: Diameter of a *tree without* a designated root

Q: Diameter of a $\it tree \ without$ a designated root

Q: Diameter of a $\it tree \ without$ a designated root

Q: Diameter of a $tree\ without$ a designated root

Your Job: Prove it!

	Digraph	Undirected graph
DFS		
BFS		

	Digraph	Undirected graph
DFS	back edge \iff cycle	
BFS		

	Digraph	Undirected graph
DFS	back edge \iff cycle	back edge \iff cycle
BFS		

	Digraph	Undirected graph
DFS	back edge \iff cycle	back edge \iff cycle
BFS		cross edge \iff cycle

	Digraph	Undirected graph
DFS	back edge ←⇒ cycle	back edge \iff cycle
BFS	back edge \implies cycle cycle \implies back edge	cross edge ←⇒ cycle
ы	cycle → back edge	cross edge \longleftrightarrow cycle

	Digraph	Undirected graph
DFS	back edge \iff cycle	back edge \iff cycle
BFS	back edge \implies cycle cycle \implies back edge	$cross\;edge\;\Longleftrightarrow\;cycle$
	cycle → back edge	cross edge \longleftrightarrow cycle

$$\mathsf{Evasiveness} \ \triangleq \ \mathsf{check} \ \binom{n}{2} \ \mathsf{edges} \ (\mathsf{adjacency} \ \mathsf{matrix})$$

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Adversary A:

Algorithm \mathbb{A} :

CHECKEDGE(u, v)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Adversary A:

Algorithm A:

CHECKEDGE(u, v)

Hint: Kruskal

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 釣 Q @

 $Q: \mathsf{Why} \ \mathsf{adjacency} \ \mathsf{matrix}?$

After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is connectivity evasive?

After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q : Is connectivity evasive?

Hint: Anti-Kruskal

- ▶ undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

- ▶ undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation $\iff \exists$ cycle C

- ightharpoonup undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation
$$\iff \exists$$
 cycle C

$$\mathsf{DFS} \mathsf{\ from\ } v \in C$$

- ▶ undirected (connected) graph G
- ▶ edges oriented s.t.

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation $\iff \exists$ cycle C

DFS from $v \in C$

Shortest cycle of undirected graph (Problem 4.12)

A WRONG DFS-based algorithm:

$$\forall v : \mathsf{level}[v]$$

Back edge
$$u \to v : \mathsf{level}[u] - \mathsf{level}[v] + 1$$

Shortest cycle of undirected graph (Problem 4.12)

A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$

Back edge $u \to v$: level[u] - level[v] + 1

Shortest cycle of digraph (Problem 4.12)

A DFS-based algorithm:

$$\forall v : \mathsf{level}[v]$$

$$\mathsf{Back}\ \mathsf{edge}\ u \to v : \mathsf{level}[u] - \mathsf{level}[v] + 1$$

Shortest cycle of digraph (Problem 4.12)

A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$

Back edge $u \to v$: level[u] - level[v] + 1

 \nexists back edge \iff DAG \iff \exists topo. ordering

$$\frac{1}{2} \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$$

TOPOSORT by Tarjan (probably), 1976

$$\sharp \text{ cycle } \Longrightarrow \boxed{u \to v \iff \mathsf{f}[v] < \mathsf{f}[u]}$$

$$\frac{1}{2} \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$$

TOPOSORT by Tarjan (probably), 1976

Sort vertices in *decreasing* order of their *finish* times.

Kahn's TOPOSORT algorithm (1962; Problem 4.16)

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: DEQUEUE $(u \in Q)$, delete u and $u \to v$ from Q, output u, ENQUEUE(v) if $\ln[v] = 0$

Kahn's TOPOSORT algorithm (1962; Problem 4.16)

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: DEQUEUE $(u \in Q)$, delete u and $u \to v$ from Q, output u, ENQUEUE(v) if $\operatorname{in}[v] = 0$

Lemma (Correctness of Kahn's TOPOSORT)

Every DAG has at least one source (and at least one sink vertex).

Kahn's TOPOSORT algorithm (1962; Problem 4.16)

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: DEQUEUE $(u \in Q)$, delete u and $u \to v$ from Q, output u, ENQUEUE(v) if $\operatorname{in}[v] = 0$

Lemma (Correctness of Kahn's TOPOSORT)

Every DAG has at least one source (and at least one sink vertex).

Q: What if G is not a DAG?

Taking courses in few semesters (Problem 5.14)

- ightharpoonup n courses
- ▶ m of $c_1 \rightarrow c_2$: prerequisite
- ► Goal: taking courses in few semesters

Taking courses in few semesters (Problem 5.14)

- ightharpoonup n courses
- ▶ m of $c_1 \rightarrow c_2$: prerequisite
- ► Goal: taking courses in few semesters

Critical path *OR* Longest path using DFS in O(n+m)

Taking courses in few semesters (Problem 5.14)

- ightharpoonup n courses
- ▶ m of $c_1 \rightarrow c_2$: prerequisite
- ► Goal: taking courses in few semesters

Critical path *OR* Longest path using DFS in O(n+m)

For general digraph, LONGEST-PATH is NP-hard.

Line up (Problem 4.22)

- 1. i hates j: $i \succ j$
- 2. i hates j: #i < #j

Toposort

Critical path

HP: path visiting each vertex once

 $Q: \exists \ \mathsf{HP} \ \mathsf{in} \ \mathsf{a} \ \mathsf{DAG} \ \mathsf{in} \ O(n+m)$

HP: path visiting each vertex once

 $Q: \exists \ \mathsf{HP} \ \mathsf{in} \ \mathsf{a} \ \mathsf{DAG} \ \mathsf{in} \ O(n+m)$

For general (di)graph, HP is NP-hard.

HP: path visiting each vertex once

 $Q: \exists \mathsf{HP} \mathsf{ in a DAG in } O(n+m)$

For general (di)graph, HP is NP-hard.

HP: path visiting each vertex once

 $Q: \exists \mathsf{HP} \mathsf{ in a DAG in } O(n+m)$

For general (di)graph, HP is NP-hard.

DAG: \exists HP \iff \exists ! topo. ordering

Tarjan's TOPOSORT + Check edges (v_i, v_{i+1})

Tarjan's TOPOSORT + Check edges (v_i, v_{i+1})

Tarjan's TOPOSORT + Check edges (v_i, v_{i+1})

Kahn's TOPOSORT (Problem 4.16)

29 / 40

Tarjan's TOPOSORT + Check edges (v_i, v_{i+1})

Kahn's TOPOSORT (Problem 4.16)

$$|Q| \leq 1$$

Theorem (Digraph as DAG (Problem 4.6))

Every digraph is a dag of its SCCs.

Theorem (Digraph as DAG (Problem 4.6))

Every digraph is a dag of its SCCs.

Two tiered structure of digraphs:

 $digraph \equiv a dag of SCCs$

SCC: equivalence class over reachability

 $digraph \equiv a dag of SCCs$

Kosaraju SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

$digraph \equiv a dag of SCCs$

Kosaraju SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

- (I) DFS on G; DFS/BFS on G^T
- (II) DFS on G^T ; DFS/BFS on G

Kosaraju SCC algorithm, 1978 (Problem 4.7)

 $1\mathsf{st}\;\mathsf{DFS} \stackrel{?}{\Longrightarrow} \mathsf{BFS}$

 $2\mathsf{nd}\;\mathsf{DFS} \stackrel{?}{\Longrightarrow} \mathsf{BFS}$

Kosaraju SCC algorithm, 1978 (Problem 4.7)

1st DFS
$$\stackrel{?}{\Longrightarrow}$$
 BFS

2nd DFS
$$\stackrel{?}{\Longrightarrow}$$
 BFS

1st DFS: toposort between SCCs

2nd DFS: reachability within an SCC

Kosaraju SCC algorithm, 1978 (Problem 4.7)

1st DFS
$$\stackrel{?}{\Longrightarrow}$$
 BFS

2nd DFS $\stackrel{?}{\Longrightarrow}$ BFS

1st DFS: toposort between SCCs

2nd DFS: reachability within an SCC

 $\mathsf{digraph} \equiv \mathsf{a} \; \mathsf{dag} \; \mathsf{of} \; \mathsf{SCCs}$

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

SCC

 $\exists !$ source vertex $v \iff v \leadsto \forall u$

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

SCC

$$\exists ! \text{ source vertex } v \iff v \leadsto \forall u$$

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

SCC

 $\exists ! \text{ source vertex } v \iff v \leadsto \forall u$

 \iff : \exists ! source

 \Longrightarrow : By contradiction.

 $\exists u: v \not\rightsquigarrow u \land \mathsf{in}[u] > 0 \implies \exists \mathsf{ cycle}$

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $\operatorname{arg\,min}_v\operatorname{impact}(v)$
- $arg max_v impact(v)$

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $\operatorname{arg\,min}_v\operatorname{impact}(v)$
- $\operatorname{arg\,max}_v \operatorname{impact}(v)$

 $\mathop{\arg\min}_{v} \mathop{\mathrm{impact}}(v) \in \mathop{\mathrm{sink}}\nolimits \; \mathrm{SCC} \; \text{of smallest cardinality}$

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $ightharpoonup arg min_v impact(v)$
- $\operatorname{arg\,max}_v \operatorname{impact}(v)$

 $\mathop{\arg\min}_{v} \mathop{\mathsf{impact}}(v) \in \mathop{\mathsf{sink}} \mathsf{SCC} \mathsf{\ of\ smallest\ cardinality}$

$$\mathop{\arg\min}_{v} \mathsf{impact}(v) \in \mathsf{source} \; \mathsf{SCC}$$

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $ightharpoonup arg \min_{v} \mathsf{impact}(v)$
- ightharpoonup $\operatorname{arg\,max}_v \operatorname{impact}(v)$

 $\mathop{\arg\min}_{v} \mathop{\mathsf{impact}}(v) \in \mathop{\mathsf{sink}} \mathsf{SCC} \mathsf{\ of\ smallest\ cardinality}$

$$\underset{v}{\operatorname{arg\,min\,impact}}(v) \in \mathsf{source\,SCC}$$

 $Q: \forall v: \mathsf{computing} \ \mathsf{impact}(v)$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph G_I .

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph G_I .

Theorem (2SAT)

 $\exists \ \mathit{SCC} \ \exists x : v_x \in \mathit{SCC} \land v_{\overline{x}} \in \mathit{SCC} \iff I \ \textit{is not satisfiable}.$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph G_I .

Theorem (2SAT)

 \exists $SCC \exists x : v_x \in SCC \land v_{\overline{x}} \in SCC \iff I$ is not satisfiable.

Reference:

► "A Linear-time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas" by Bengt Aspvall, Michael Plass, and Robert Tarjan, 1979.

BICOMP: Back!

- (I) When and how to update back[v]?
- (II) When and how to identify a bicomponent?

- (I) When and how to update back[v]?
- (II) When and how to identify a bicomponent?

$$\mathsf{back}[v] = d[v] \text{ \textit{vs.}} \ \mathsf{back}[v] = \infty \vee 2(n+1)$$

$$\mathsf{back}[v] = d[v] \text{ \textit{vs.}} \ \mathsf{back}[v] = \infty \vee 2(n+1)$$

back[v]: the earliest reachable ancestor of v

$$\mathsf{back}[v] = d[v] \ \textit{vs.} \ \mathsf{back}[v] = \infty \vee 2(n+1)$$

back[v]: the earliest reachable ancestor of v

```
\label{eq:continuous_problem} \begin{split} & \text{tree edge } (\to v) \colon \operatorname{back}[v] = d[v] \\ & \operatorname{back edge } (v \to w) \colon \operatorname{back}[v] = \min\{\operatorname{back}[v], d[w]\} \\ & \operatorname{backtracking from } w \colon \operatorname{back}[v] = \min\{\operatorname{back}[v], \operatorname{back}[w] = \operatorname{wBack}\} \end{split}
```

$$\mathsf{back}[v] = d[v] \ \textit{vs.} \ \mathsf{back}[v] = \infty \vee 2(n+1)$$

back[v]: the earliest reachable ancestor of v

```
tree edge (\rightarrow v): back[v] = d[v] back edge (v \rightarrow w): back[v] = \min\{\mathsf{back}[v], d[w]\} backtracking from w: back[v] = \min\{\mathsf{back}[v], \mathsf{back}[w] = \mathsf{wBack}\}
```

Proof.

if ever updated

$$\mathsf{back}[v] = d[v] \ \textit{vs.} \ \mathsf{back}[v] = \infty \vee 2(n+1)$$

back[v]: the earliest reachable ancestor of v

```
tree edge (\to v): back[v] = d[v] back edge (v \to w): back[v] = \min\{\text{back}[v], d[w]\} backtracking from w: back[v] = \min\{\text{back}[v], \text{back}[w] = \text{wBack}\}
```

Proof.

if never updated:

if ever updated

$$\mathsf{back}[v] = d[v] \textit{ vs. } \mathsf{back}[v] = \infty \vee 2(n+1)$$

back[v]: the earliest reachable ancestor of v

tree edge
$$(\to v)$$
: back $[v] = d[v]$ back edge $(v \to w)$: back $[v] = \min\{\mathsf{back}[v], d[w]\}$ backtracking from w : back $[v] = \min\{\mathsf{back}[v], \mathsf{back}[w] = \mathsf{wBack}\}$

Proof.

if never updated:

$$\text{if ever updated} \qquad \qquad \text{wBack} = \infty > d[v] \ \textit{vs.}$$

$$\mathsf{back}[v] = d[v] \textit{ vs. } \mathsf{back}[v] = \infty \vee 2(n+1)$$

back[v]: the earliest reachable ancestor of v

tree edge
$$(\to v)$$
: back $[v] = d[v]$ back edge $(v \to w)$: back $[v] = \min\{\text{back}[v], d[w]\}$ backtracking from w : back $[v] = \min\{\text{back}[v], \text{back}[w] = \text{wBack}\}$

Proof.

if never updated:

if ever updated
$${\rm wBack} = \infty > d[v] \ \textit{vs.} \ {\rm wBack} = d[w] > d[v]$$

Root cutnode v (Problem 4.8)

v is a cutnode \iff out $[v] \geq 2$

Root cutnode v (Problem 4.8)

v is a cutnode \iff out $[v] \ge 2$

