International Rectifier

IRF7309PbF

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- Dual N and P Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching
- Lead-Free

	N-Ch	P-Ch			
V _{DSS}	30V	-30V			
R _{DS(on)}	0.050Ω	0.10Ω			

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra-red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

SO-8

Absolute Maximum Ratings

	Parameter	M	Units	
		N-Channel	P-Channel	
I _D @ T _A = 25°C	10 Sec. Pulse Drain Current, VGS @ 10V	4.7	-3.5	Α
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.0	-3.0	Α
I _D @ T _A = 70°C	Continuous Drain Current, VGS @ 10V	3.2	-2.4	Α
I _{DM}	Pulsed Drain Current ①	16	-12	Α
P _D @T _A = 25°C Power Dissipation (PCB Mount)**		,	W	
Linear Derating Factor (PCB Mount)**		0.	W/°C	
V _{GS} Gate-to-Source Voltage		±	V	
d∨/dt	Peak Diode Recovery dv/dt 2	6.9	-6.0	V/ns
T _{J,} T _{STG} Junction and Storage Temperature Range		-55 to	°C	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{OJA}	Junction-to-Amb. (PCB Mount, steady state)**	-		90	°C/W

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).

For recommended footprint and soldering techniques refer to application note #AN-994.

1

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter			Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch		-	I	V	$V_{GS} = 0V, I_{D} = 250\mu A$	
▼(BR)D55	Brain-to-Cource Breakdown Volkage	P-Ch	-30	-3	_	V	$V_{GS} = 0V$, $I_D = -250\mu A$	
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	N-Ch	_	0.032	1	V/°C	Reference to 25°C, b = 1mA	
TA(RK)DSS(TI)	Breakdown voltage Temp. Obenicient	P-Ch	1/2 /	0.037		V/ C	Reference to 25°C, b = -1mA	
		N-Ch	_	_	0.050		V _{GS} = 10V, I _D = 2.4A 3	
D	Static Drain-to-Source On-Resistance	IN-CII	-	-5	0.080	۱ ۵	V _{GS} = 4.5V, I _D = 2.0A 3	
R _{DS(ON)}	Static Dialit-to-Source Off-Kesistance	P-Ch	D Ck	-5	0.10	Ω	V _{GS} = -10V, I _D = -1.8A 3	
		F-CII	_	_	0.16		V _{GS} = -4.5V, I _D = -1.5A ③	
V	Gate Threshold Voltage	N-Ch	1.0	_	Ī		$V_{DS} = V_{GS}, I_{D} = 250\mu A$	
$V_{GS(th)}$	Gate Threshold Voltage	P-Ch	-1.0	_	_	V	V _{DS} = V _{GS} , I _D = -250µA	
~	Forward Transconductance	N-Ch	5.2	_	_	_	V _{DS} = 15V, I _D = 2.4A 3	
9 fs	Forward Transconductance	P-Ch	2.5	_	-	S	V _{DS} = -24V, I _D = -1.8A 3	
		N-Ch	_	-	1.0		V _{DS} = 24V, V _{GS} = 0V	
il	Drain-to-Source Leakage Current	P-Ch	_		-1.0	١	V _{DS} = -24V, V _{GS} = 0V	
DSS	Diam-to-Source Leakage Current	N-Ch	-	-	25	μA	V _{DS} = 24V, V _{GS} = 0V, T _J = 125°C	
		P-Ch			-25	1	V _{DS} = -24V, V _{GS} = 0V, T _J = 125°C	
lgss	Gate-to-Source Forward Leakage	N-P	_		±100	nA	$V_{GS} = \pm 20V$	
	Total Cata Charge	N-Ch	(d)	_	25		N.O.	
\mathbf{Q}_{g}	Total Gate Charge	P-Ch			25	1	N-Channel	
0	Gate-to-Source Charge	N-Ch	_	_	2.9	1 _	$\begin{aligned} &I_D = 2.6\text{A}, V_{DS} = 16\text{V}, V_{GS} = 4.5\text{V} \\ &\text{G} \\ &\text{P-Channel} \\ &I_D = -2.2\text{A}, V_{DS} = -16\text{V}, V_{GS} = -4.5\text{V} \end{aligned}$	
Q_{gs}	Gate-to-Source Charge	P-Ch			2.9	nC		
0	Gate-to-Drain ("Miller") Charge	N-Ch	_	-3	7.9	1		
Q_{gd}	Gate-to-Diam (Miller) Charge	P-Ch	5-	-	9.0	1		
4 100 €	Turn-On Delay Time	N-Ch	-	6.8	_		1.60	
t _{d(on)}	Turn-On Delay Time	P-Ch	_	11	_	1	N-Channel	
	Rise Time	N-Ch	-	21		1	$V_{DD} = 10V$, $I_D = 2.6A$, $R_G = 6.0\Omega$,	
t _r	Kise i lille	P-Ch	7—	17	_	685045	$R_D = 3.8\Omega$	
■ POSSOBALIS	Turn-Off Delay Time	N-Ch	- T	22	-	ns	(3)	
t _{d(off)}	Turn-On Delay Time	P-Ch	_	25	_	1	P-Channel	
¥	Fall Time	N-Ch	_	7.7	_	1	$V_{DD} = -10V$, $I_D = -2.2A$, $R_G = 6.0\Omega$,	
t _f	rail fille	P-Ch)=	18	-	1	$R_D = 4.5\Omega$	
L _D	Internal Drain Inductace	N-P	_	4.0	_	311	Between lead tip	
L _S	Internal Source Inductance	N-P	_	6.0	-	nH	and center of die contact	
No. of Contract of	Input Capacitance	N-Ch	_	520	-	i	N Channel	
C _{iss}	input Capacitance	P-Ch	_	440	-	1	N-Channel	
<u></u>	Outnut Canacitanas	N-Ch	-	180	_	1	$V_{GS} = 0V, V_{DS} = 15V, f = 1.0MHz$	
Coss	Output Capacitance	P-Ch	12.	200	-	pF	(3)	
_	Bayeres Transfer Conscitones	N-Ch		72	_	1	P-Channel	
C _{rss}	Reverse Transfer Capacitance	P-Ch		93		1	$V_{GS} = 0V, V_{DS} = -15V, f = 1.0MHz$	

Source-Drain Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
i i	0 5 0 1/0 1 0 1	N-Ch	-	-	1.8	i i	
Is	Continuous Source Current (Body Diode)	P-Ch		=	-1.8	Α	
	D	N-Ch		J	16		
SM	Pulsed Source Current (Body Diode) ©	P-Ch		Į	-12		
	Diada Farrand Makana	N-Ch	_	J	1.0	V	$T_J = 25^{\circ}C$, $I_S = 1.8A$, $V_{GS} = 0V$ 3
V_{SD}	Diode Forward Voltage		1	J	-1.0	٧	$T_J = 25^{\circ}C$, $I_S = -1.8A$, $V_{GS} = 0V$ 3
4	5 5 ±	N-Ch	_	47	71	ns	N-Channel
t _{rr}	Reverse Recovery Time	P-Ch	_	53	80	113	T _. = 25°C, l ₌ = 2.6A, di/dt = 100A/µs
	D D	N-Ch	-	56	84	пC	P-Channel 3
Q _{rr}	Reverse Recovery Charge	P-Ch	-	66	99	10	$T_{J} = 25^{\circ}C$, $I_{F} = -2.2A$, $di/dt = 100A/\mu s$
ton	Forward Turn-On Time	N-P	Intrir	isic tu	rn-on t	ime is	neglegible (turn-on is dominated by l _S +L _D)

 ${\bf 0}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 23)

② N-Channel $I_{SD} \le 2.4A$, $di/dt \le 73A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 150^{\circ}C$ P-Channel $I_{SD} \le -1.8A$, $di/dt \le 90A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 150^{\circ}C$

N-Channel

Fig 1. Typical Output Characteristics, T_J = 25°C

Fig 2. Typical Output Characteristics, $T_J = 150^{\circ}C$

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

N-Channel

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

4.0 (Subject of the first of th

Fig 9. Max. Drain Current Vs. Ambient Temp.

Fig 11a. Gate Charge Test Circuit

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11b. Basic Gate Charge Waveform

Fig 12. Typical Output Characteristics, Ţ = 25°C

Fig 13. Typical Output Characteristics, Tj = 150°C

www.irf.com 5

N-Channel

P-Channel

Fig 14. Typical Transfer Characteristics

Fig 15. Normalized On-Resistance Vs. Temperature

Fig 16. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 17. Typical Gate Charge Vs. Gate-to-Source Voltage

P-Channel

Fig 18. Typical Source-Drain Diode Forward Voltage

Fig 20. Max. Drain Current Vs. Ambient Temp.

Fig 19. Maximum Safe Operating Area

Fig 21a. Switching Time Test Circuit

Fig 21b. Switching Time Waveforms

P-Channel

Fig 22b. Gate Charge Test Circuit

Fig 22b. Basic Gate Charge Waveform

Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 24. For N and P Channel HEXFETS

International

TOR Rectifier

SO-8 Package Details

Dimensions are shown in milimeters (inches)

DIM	INC	HES	MILLIMETERS			
DIIW	MIN	MAX	MIN	MAX		
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	0.10	0.25		
b	.013	.020	0.33	0.51		
С	.0075	.0098	0.19	0.25		
D	.189	.1968	4.80	5.00		
Е	.1497	.1574	3.80	4.00		
е	.050 B	ASIC	1.27 BASIC			
e 1	.025 B	ASIC	0.635 BASIC			
Н	.2284	2440	5.80	6.20		
K	.0099	.0196	0.25	0.50		
L	.016	.050	0.40	1.27		
У	0°	8°	0°	8°		

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

SO-8 Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/2007 www.irf.com 11

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRF7309PBF IRF7309TRPBF