Thème 3 – Champ créé par une distribution continue de charges

I- Champ créé par un fil rectiligne

$$1- \lambda = \frac{q}{2a}.$$

2-a-
$$d\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \frac{dq_P}{PM^2} \vec{u}_{P/M}$$
 où $dq_P = \lambda d\ell_P$.

2-b- Considérer les contributions des charges dq_P (de l'élément de longueur $d\ell_P$ entourant le point P) et dq_P (de l'élément de longueur $d\ell_P$ entourant le point P' symétrique du point P par rapport au point O): le champ résultant $d\vec{E}_P(M) + d\vec{E}_{P'}(M)$ est orienté selon \vec{u}_x , les composantes selon \vec{u}_y se compensant.

$$2\text{-c-} \ \mathrm{d}E_x = \frac{1}{4\pi\varepsilon_0} \frac{\lambda \mathrm{d}\ell_P}{PM^2} \vec{u}_{P/M} \cdot \vec{u}_x = \frac{1}{4\pi\varepsilon_0} \frac{\lambda \mathrm{d}\ell_P}{PM^2} \cos\theta \ \text{ avec } PM = \frac{x}{\cos\theta} \ \text{et } \ y = x \tan\theta \ \text{ soit } \ \mathrm{d}\ell_P = \mathrm{d}y = x \frac{\mathrm{d}\theta}{\cos^2\theta} \,.$$

On en déduit que
$$E_x(M) = \frac{\lambda}{4\pi\varepsilon_0 x} \int_{-\theta_0}^{\theta_0} \cos\theta d\theta = \frac{\lambda}{2\pi\varepsilon_0 x} \sin\theta_0$$
 où $\sin\theta_0 = \frac{a}{\sqrt{a^2 + x^2}}$.

On a donc finalement :
$$\vec{E}(M) = \frac{\lambda}{2\pi\varepsilon_0 x} \frac{a}{\sqrt{a^2 + x^2}} \vec{u}_x$$
.

3- Lorsque
$$a \to +\infty$$
 (donc $\theta_0 \to +\pi/2$), on a $\vec{E}(M) = \frac{\lambda}{2\pi\varepsilon_0 x} \vec{u}_x$.

4- Le champ au centre est nul, les contributions de deux côtés opposés se compensant.

II- Condensateur plan

A- Champ créé par un plan infini

2-
$$dS_P = \rho d\rho d\theta$$
 et $r = PM = \sqrt{\rho^2 + z^2}$.

3-
$$\overrightarrow{PM} = \overrightarrow{PO} + \overrightarrow{OM} = -\rho \overrightarrow{u}_{\rho} + z \overrightarrow{u}_{z}$$
 d'où $\overrightarrow{u}_{P/M} = \frac{-\rho \overrightarrow{u}_{\rho} + z \overrightarrow{u}_{z}}{\sqrt{\rho^{2} + z^{2}}}$.

4-
$$d\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \frac{dq_P}{PM^2} \vec{u}_{P/M}$$
 où $dq_P = \sigma dS_P$.

5- Considérer les contributions des charges $\mathrm{d}q_P$ (de l'élément de surface $\mathrm{d}S_P$ entourant le point P) et $\mathrm{d}S_{P'}$ (de l'élément de surface $\mathrm{d}S_{P'}$ entourant le point P' symétrique du point P par rapport au point O): le champ résultant $\mathrm{d}\vec{E}_P(M)+\mathrm{d}\vec{E}_{P'}(M)$ est orienté selon \vec{u}_z , les composantes selon \vec{u}_p se compensant.

6-
$$dE_z = \frac{1}{4\pi\varepsilon_0} \frac{\sigma dS_P}{PM^2} \vec{u}_{P/M} \cdot \vec{u}_z = \frac{\sigma z}{4\pi\varepsilon_0} \frac{\rho d\rho d\theta}{(\rho^2 + z^2)^{3/2}}$$

On en déduit que
$$E_z(M) = \frac{\sigma z}{4\pi\varepsilon_0} \int_0^{+\infty} \frac{\rho d\rho}{(\rho^2 + z^2)^{3/2}} \int_0^{2\pi} d\theta = \frac{\sigma z}{2\varepsilon_0} \left[-(\rho^2 + z^2)^{-1/2} \right]_0^{+\infty} = \frac{\sigma}{2\varepsilon_0} \text{ pour } z > 0.$$

On a donc finalement : $\vec{E}(M) = \frac{\sigma}{2\varepsilon_0} \vec{u}_z$.

De façon plus générale, on écrit que : $\vec{E}(M) = \mathrm{sgn}(z) \frac{\sigma}{2\varepsilon_0} \vec{u}_z$ où $\mathrm{sgn}(z)$ signifie « signe de z » : $\mathrm{sgn}(z) = +1$ si z > 0, et $\mathrm{sgn}(z) = -1$ si z < 0.

B- Modèle de condensateur plan

2-
$$z < -d/2$$
 : $\vec{E}_1 = -\frac{\sigma}{2\varepsilon_0} \vec{u}_z$ et $\vec{E}_2 = \frac{\sigma}{2\varepsilon_0} \vec{u}_z$.
 $-d/2 < z < d/2$: $\vec{E}_1 = \vec{E}_2 = \frac{\sigma}{2\varepsilon_0} \vec{u}_z$.
 $z > d/2$: $\vec{E}_1 = \frac{\sigma}{2\varepsilon_0} \vec{u}_z$ et $\vec{E}_2 = -\frac{\sigma}{2\varepsilon_0} \vec{u}_z$.

3- On a $\vec{E}(M) = \frac{\sigma}{\varepsilon_0} \vec{u}_z$ entre les armatures (-d/2 < z < d/2), et $\vec{E}(M) = \vec{0}$ à l'extérieur (z < -d/2) et z > d/2.

4- On a
$$\vec{E} = -\overrightarrow{\text{grad}}(V) = -\frac{dV}{dz}\vec{u}_z$$
.

Pour
$$-d/2 < z < d/2$$
, $E_z = \frac{\sigma}{\varepsilon_0}$, soit $V(M) = -\frac{\sigma}{\varepsilon_0}z$ avec $V(z = 0) = 0$.

Pour
$$z < -d/2$$
, $E_z = 0$, soit $V(M) = \frac{\sigma d}{2\varepsilon_0}$ par continuité.

Pour
$$z > d/2$$
, $E_z = 0$, soit $V(M) = -\frac{\sigma d}{2\varepsilon_0}$ par continuité.

On en déduit que :
$$\Delta V = V_1 - V_2 = V(z = -d/2) - V(z = +d/2) = \frac{\sigma d}{\varepsilon_0}$$
.

5-
$$C = \frac{Q}{\Delta V} = \frac{\sigma S}{\frac{\sigma d}{\varepsilon_0}} = \frac{\varepsilon_0 S}{d}$$
.