Analysis of RNA-sequencing from Schizosaccharomyces pombe

Laura Ciaran, Álvaro Ciudad, Tatiana Gusinskaia

Table of contents

- Schizosaccharomyces pombe
- Procurement of the novel transcripts
- Comparison of known and novel transcripts
- Analysis and characterization of novel transcripts
- Conclusion

Schizosaccharomyces pombe

- Unicellular ascomycota
- Rod shape cells with sizes varying between $3-5 \times 5-24 \mu m$
- Reproduction by fission instead of budding → Fission yeast
- Life cycle predominantly haploid only makes diploids when starved for nitrogen
- Genome size: approximately **14.1 million base pairs**, with estimated **4,970 protein-coding genes** and at least **450 non-coding RNAs**, distributed in three chromosomes: **I (5,7 Mb)**, **II (4,6 Mb) y III (3,5 Mb)**.
- Used to study the cellular responses to DNA damage and the process of DNA replication.

Analysis of the quality of the sequencing reads

22.724.832 reads

23.242.560 reads

FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2015), "FastQC," https://qubeshub.org/resources/fastqc.

Analysis of the quality of the sequencing reads

Read 1 Read 2

Per base sequence quality

15.572.105 reads

15.572.105 reads

Aligning RNA-Seq reads to the genome

Assembling of transcripts using mapped reads

Obtaining sequences in fasta format using the genomic coordinates from a

gff file

Known transcripts: 17045

Novel transcripts: 1617

- Unique novel transcripts: 1457

Kim, D., Langmead, B. & Salzberg, S. HISAT: a fast spliced aligner with low memory requirements. *Nat Methods*. 12, 357–360 (2015). Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat. Biotechnol*. 33, 290–295 (2015). Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, Heng Li. Twelve years of SAMtools and BCFtools. *GigaScience*. 10(2) (2021), giab008. Aaron R. Quinlan, Ira M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, *Bioinformatics*. 26(6): 841–842 (2010).

Longest ORFs length comparison- Known transcripts

Longest ORFs length comparison- Novel transcripts

Longest ORFs length comparison- Known vs Novel

Known median = 129 Novel median = 234

Analysis of novel transcripts

Analysis of novel transcripts - Blastn

S. Kumar, G. Stecher, M. Suleski, and S.B. Hedges, TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34: 1812-1819 (2017).

Analysis of novel transcripts - Blastn

Analysis of novel transcripts - Blastx

S. cerevisiae

Uku Raudvere, Liis Kolberg, Ivan Kuzmin, Tambet Arak, Priit Adler, Hedi Peterson, Jaak Vilo. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. *Nucleic Acids Research* (2019).

S. japonicus

Analysis of novel transcripts - Blastx

516 transcripts didn't align with either proteome of the species

Analysis of novel transcripts - No hits comparison

Analysis of novel transcripts - No hits

Analysis of novel transcripts - Length filtering

Analysis of novel transcripts - Highest TPM

Analysis of novel transcripts - Protein Prediction

Analysis of novel transcripts - Protein prediction

	Gene	Predicted Protein	BitScore		Gene	Predicted Protein	BitScore
1	NC_003424.3:4523297-4527764(-)	Unknown	N/A	13	NC_003421.2:2412337-2414790(+)	PUR3_YEAST	157
2	NC_003424.3:634751-636959(+)	MU161_SCHPO	470	14	NC_003423.3:3617962-3619663(+)	TAD2_SCHPO	144
3	NC_003424.3:5015958-5018021(-)	ANM1_SCHPO	184	15	NC_003423.3:478916-483814(-)	ALP6_SCHPO	1200
4	NC_003424.3:3617070-3623784(-)	SUB2_SCHPO	855	16	NC_003424.3:2057514-2059140(+)	Unknown	N/A
5	NC_003423.3:3326688-3329592(+)	YBX1_SCHPO	835	17	NC_003424.3:345623-347672(-)	Unknown	N/A
6	NC_003423.3:1714944-1715583(-)	Unknown	N/A	18	NC_003424.3:4523297-4527764(-)	Unknown	N/A
7	NC_003423.3:4220586-4222599(-)	SCS22_SCHPO	48.9	19	NC_003423.3:1156782-1158424(+)	PUR7_SCHPO	605
8	NC_003423.3:1775168-1777010(-)	SCE3_SCHPO	563	20	NC_003424.3:925110-926289(-)	COQ4_SCHPO	253
9	NC_003424.3:1283089-1286338(+)	OST3_SCHPO	138	21	NC_003424.3:3837568-3838456(+)	YAY6_SCHPO	89.4
10	NC_003423.3:1307691-1308797(+)	Unknown	N/A	22	NC_003424.3:308137-309938(-)	GPI18_SCHPO	843
11	NC_003423.3:1455518-1456130(+)	Unknown	N/A	23	NC_003423.3:969007-970357(-)	YN84_SCHPO	276
12	NC_003423.3:2932932-2934291(+)	YPT1_SCHPO	150	24	NC_003421.2:1616620-1619316(-)	YCVC_SCHPO	194

Analysis of novel transcripts - Protein prediction

Conclusions

- Known and novel transcripts were compared
 - Novel transcripts were longer.
- Metabolic processes are overrepresented in the hits.
- Protein function was predicted for the best candidates.

