Q1 Project: Chlorophyll-a Predictive Model

•••

Nikhil Alladi, Petr Kisselev, Jacob Dipasupil

Data Information

- 2226 instances (lakes), 67 attributes
- Class: logchl_A
- Heavily right-skewed

Motivations

- Chlorophyll-a indicates lake health
- High chlorophyll-A concentration leads to <u>algae blooms</u>
- Algae blooms cause:
 - Hypoxia
 - Toxin production
- Early prediction saves health

A harmful algae bloom on Lake Erie.

Preprocessing (I)

- Excel Cleaning (#DIV/0, #NUM, #VALUE)
- Empty class instance removal
- First-pass logic trimming
 - LAKENAME
 - Survey Number
 - SITE_ID

0.07012755	0.342422681	0.740382		
0.066309943	#DIV/0!	1.051923		
0.101871679	0.924279286	0.894869		

Preprocessing (II)

- Missing values per attribute
 - SNOW

To be z-score normalized

To be min-max normalized

0: {'Tmean', 'WSAREA km2', 'Tot Sdep 2000', 'Year', 'LST YrMean', 'Tmean YrMean', 'OmWs', 'nani', 'SandWs' 1: {"'Total Input'"} -> 0.048% 2: {'logchl A'} -> 0.095% 32: {'Precip'} -> 1.527% 294: {'wetlands'} -> 14.027% 330: {'SNOW YrMean'} -> 15.744% 456: {'Human_N_Demand_2007', 'N_Human_Waste_2007', 'N_Fert_Urban_2007'} -> 21.756% 485: {'PctWdWet2011Ws'} -> 23.139% 511: {'AgKffactWs'} -> 24.38% 518: {'P_human_nonfood_demand_kg_2007', 'P_nf_fertilizer_2007', 'P_human_food_demand_kg_2007', 'P_human_wa 615: {'N Livestock Food Demand 2007', 'N Livestock.Waste 2007', 'PctHbWet2011Ws', 'N Livestock N Content 2 625: {'N Fert Farm 2007', 'N Crop N Rem 2007', 'N CBNF 2007'} -> 29.819% 656: {'P Accumulated ag inputs 2007'} -> 31.298% 659: {'P livestock production 2007', 'P livestock Waste 2007', 'P livestock demand 2007'} -> 31.441% 672: {'P Crop removal 2007'} -> 32.061% 713: {'NAPI'} -> 34.017% 718: {'P f fertilizer 2007'} -> 34.256% 760: {'Legacy'} -> 36.26% 1080: {'DamDensWs'} -> 51.527% 1925: {'SNOW'} -> 91.842%

- Normalization
 - Z-Score vs min-max

Attribute Selection (I)

Learner-Based Information Gain

```
Ranked attributes:
0.43808
             8 ptl
0.40161
            7 ntl
0.13352
            4 lon dd
0.12736
           59 depth
0.1254
           13 1st yrmean
0.10355
            9 snow yrmean
0.10173
           18 tmean
0.10135
           19 tmean vrmean
0.10105
           57 agkffactws
0.09842
           28 n fert farm 2007
0.0983
           12 1st
0.09745
           53 clayws
0.09506
           47 total input
0.09349
           27 n crop n rem 2007
0.09
           36 p crop removal 2007
           38 p livestock demand 2007
0.08875
0.08832
0.08732
           40 p livestock production 2007
0.08668
           39 p livestock waste 2007
           26 n cbnf 2007
0.08393
           32 n livestock food demand 2007
0.08101
           34 n livestock n content 2007
0.08066
```

Threshold: 0.1

Principal Component Analysis

```
Ranked attributes:
          1 -0.213total input-0.213nani-0.211p_accumulated_ag_inputs_2007-0.211n_livestock_food
0.717
          2 -0.241n human waste 2007-0.239human n demand 2007-0.239p human waste kg 2007-0.237p
 0.475
          3 0.307lst+0.271lst yrmean-0.247npp-0.216omws-0.191lat dd...
          4 -0.252lat_dd+0.224atmo_pdep_2002+0.215atmo_pdep_2007-0.211p_human_food_demand_kg_20
0.4106
 0.3622
          5 0.41 wetlands+0.349pctwdwet2011ws+0.314pcthbwet2011ws-0.29depth+0.225ntl...
          6 0.284ntl-0.254depth+0.249ptl-0.223napi+0.218n_rock_2007...
0.3244
0.2986
          7 0.536wsarea km2+0.51 lake area ha+0.237depth-0.21runoffws-0.208npp yrmean...
0.2749
          8 0.368lake area ha+0.346wsarea km2-0.292sandws-0.255atmo pdep 2007+0.255npp...
          9 -0.469fire yrmean-0.42fire-0.339p f fertilizer 2007-0.246p2o5ws+0.208wsarea km2...
0.2523
        10 0.328napi+0.321precip-0.265n_cbnf_2007+0.25 ptl-0.246bfiws...
0.2141 11 0.524n_rock_2007+0.499damdensws+0.257fire-0.24omws+0.196fire_yrmean...
         12 0.626p2o5ws-0.36fire+0.278damdensws-0.278fire yrmean+0.207wetlands...
         13 -0.583p2o5ws+0.489damdensws+0.247p_f_fertilizer_2007-0.173fire+0.172depth...
0.181
0.1668 14 0.406damdensws-0.397clayws+0.341p2o5ws-0.301pctwdwet2011ws+0.262sandws...
0.1535 15 -0.458fire+0.358fire vrmean+0.342pcthbwet2011ws-0.323damdensws+0.319n rock 2007...
         16 0.527fire-0.466fire yrmean-0.249bfiws+0.242pcthbwet2011ws+0.221n rock 2007...
0.1293 17 -0.414omws-0.382fire_yrmean+0.343runoffws+0.284p_f_fertilizer_2007-0.264precip...
        18 -0.519n rock 2007+0.334pcthbwet2011ws-0.294omws-0.275tmean+0.251atmo pdep 2002...
```

Threshold: 0.2

Attribute Selection (II)

Learner-Based with J48

```
=== Attribute Selection on all input data ===
Search Method:
        Best first.
        Start set: no attributes
        Search direction: forward
        Stale search after 5 node expansions
        Total number of subsets evaluated: 651
        Merit of best subset found: 0.784
Attribute Subset Evaluator (supervised, Class (nominal): 60 logchl_A):
        Wrapper Subset Evaluator
        Learning scheme: weka.classifiers.trees.J48
        Scheme options: -C 0.25 -M 2
        Subset evaluation: classification accuracy
        Number of folds for accuracy estimation: 5
Selected attributes: 4,7,8,20,38,40,50 : 7
                     lon dd
                     ntl
                     atmo_pdep_2002
                     p livestock demand 2007
                     p livestock production 2007
                     pctwdwet2011ws
```

OneR Attribute Selection

```
Attribute Evaluator (supervised, Class (nominal): 60 logchl_A):
        OneR feature evaluator.
        Using 10 fold cross validation for evaluating attributes.
        Minimum bucket size for OneR: 6
Ranked attributes:
71.56489
             8 ptl
68.2729
             7 ntl
59.58969
           28 n fert farm 2007
            4 lon dd
59.25573
           45 p_accumulated_aq_inputs_2007
59.16031
58.77863
           57 agkffactws
58.6355
            20 atmo pdep 2002
58.58779
            36 p_crop_removal_2007
58.54008
           56 bfiws
            33 n livestock.waste 2007
58,49237
58.06298
           18 tmean
58.01527
           39 p livestock waste 2007
57.96756
           21 atmo pdep 2007
57.96756
           32 n livestock food demand 2007
           40 p_livestock_production_2007
57.87214
57.6813
            47 total input
57.58588
           27 n crop n rem 2007
57.06107
           34 n livestock n content 2007
56.91794
           38 p livestock demand 2007
56.91794
           19 tmean_yrmean
56.82252
             9 snow_yrmean
56.82252
           12 lst
56.7271
            13 lst yrmean
56.29771
           53 clayws
56.25
             1 nani
56.10687
           22 tot ndep 2000
```

Threshold: 58.5

Attribute Selection (III)

Self-Picked Attributes:

- lat_dd
- lon_dd
- ntl
- ptl
- atmo_pdep_2002
- n_human_waste_2007
- n_livestock.waste_2007
- p_livestock_waste_200a7
- p_human_waste_kg_2007
- runoffws

- Common appearance in attribute selection
- lon_dd vs lat_dd (added both to be complete)
- Focused on attributes related to Nitrogen and Phosphorus

Classifier Models

What we selected:

Naive Bayes

- Predicts probabilities
 of a given instance
 through recursively
 combining
 probabilities for parts
 of it
- Surprisingly effective with small amounts
 of data

Logistic Regression

- Similar to a linear regression but with the logistic function instead
- Parameters are μ(center) and s (scale)

Learner Based / J48

- Java-based open
 source version of the
 popular C4.5
 algorithm
- Creates decision tree
 by splitting data in
 the way to maximize
 information gain

<u>RandomTree</u>

- Constructs a decision
 tree with k branches
 at each node
- "Random" because at each node the attributes that will be used are randomly selected

Results

Model	Accuracy (%)	TPR High	FPR High	ROC High	TPR Weighted Avg.	FPR Weighted Avg.	ROC Weighted Avg.
InfoGainBayes	72.71%	0.654	0.051	0.935	0.727	0.189	0.852
InfoGainLogistic	78.10%	0.458	0.013	0.948	0.781	0.179	0.879
InfoGainJ48	76.53%	0.641	0.036	0.862	0.765	0.178	0.819
InfoGainTree	68.94%	0.51	0.046	0.732	0.689	0.233	0.728
PCABayes	69.42%	0.209	0.012	0.844	0.694	0.245	0.794
PCALogistic	73.86%	0.307	0.013	0.916	0.739	0.214	0.841
PCAJ48	67.08%	0.275	0.038	0.701	0.671	0.257	0.729
PCATree	61.74%	0.288	0.058	0.615	0.617	0.29	0.664
LearnerBayes	72.47%	0.634	0.058	0.93	0.725	0.198	0.851
LearnerLogistic	76.77%	0.425	0.014	0.945	0.768	0.19	0.869
LearnerJ48	78.01%	0.627	0.022	0.87	0.78	0.174	0.841
LearnerTree	70.66%	0.51	0.046	0.732	0.707	0.22	0.743
OneRBayes	68.70%	0.634	0.057	0.925	0.687	0.236	0.822
OneRLogistic	77.10%	0.438	0.013	0.946	0.771	0.188	0.87
OneRJ48	76.81%	0.588	0.024	0.851	0.768	0.183	0.822
OneRTree	71.37%	0.549	0.043	0.753	0.714	0.215	0.749
HandPickedBayes	72.42%	0.627	0.066	0.914	0.724	0.187	0.846
HandPickedLogistic	77.67%	0.451	0.016	0.951	0.777	0.181	0.882
HandpickedJ48	75.76%	0.588	0.028	0.858	0.758	0.194	0.816
HandPickedTree	71.14%	0.582	0.036	0.773	0.711	0.225	0.743

Conclusion, Limitations, Future Work

- Decently accurate model (78% at best model/attribute pick)
- Use more recent data
- Even class distribution
- Combination of different attributes
 - Many attributes contribute to phosphorus or nitrogen concentrations

Citations

Algae image:

https://en.wikipedia.org/wiki/Harmful_algal_bloom#/media/File:Blue-gree_algae_bloom Lake_Erie.png

Latitude image: By Hellerick - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=26737079