

FAST CMOS OCTAL D REGISTERS (3-STATE)

IDT54/74FCT574/A/C

FFATURFS:

- IDT54FCT574A equivalent to FAST™ speed and drive
- IDT54/74FCT574A up to 30% faster than FAST
- · IDT74FCT574C up to 50% faster than FAST
- IoL = 48mA (commercial) and 32mA (military)
- · CMOS power levels (1mW typ. static)
- · Edge-triggered master/slave, D-type flip-flops
- · Buffered common clock and buffered common 3-state control
- · MIlitary product compliant to MIL-STD-883, Class B
- · Meets or exceeds JEDEC Standard 18 specifications
- · Available in the following packages:
 - Commercial: SOIC
 - Military: CERDIP, LCC

DESCRIPTION:

The FCT574 is an 8-bit register built using an advanced dual metal CMOS technology. These registers consist of eight D-type flip-flops with a buffered common clock and buffered 3-state output control. When the output enable (\overline{OE}) is low, the eight outputs are enabled. When the \overline{OE} input is high, the outputs are in the high-impedance state.

Input data meeting the set-up and hold time requirements of the D inputs is transferred to the O outputs on the low-to-high transition of the clock input. The FCT574 has non-inverting outputs with respect to the data at the D inputs.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

JUNE 2002

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage	-0.5 to +7	-0.5 to +7	V
	with Respect to GND			
VTERM ⁽³⁾	Terminal Voltage	-0.5 to Vcc	–0.5 to Vcc	V
	with Respect to GND			
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature under BIAS	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	0.5	0.5	W
Іоит	DC Output Current	120	120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Input and Vcc terminals only.
- 3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description		
Dx	D flip-flop data inputs		
C P Clock Pulse for the register. Enters data on LOW-to- HIGH transition.			
O x 3-State Outputs (TRUE)			
ŌĒ	Active LOW 3-State Output Enable Input		

FUNCTION TABLE(1)

		Inputs	Outputs	Internal	
Function	ŌĒ	СР	Dx	Ох	Ох
High-Z	Н	L	Х	Z	NC
	Н	Н	Х	Z	NC
Load	L	↑	L	L	Н
Register	L	↑	Н	Н	L
	Н	↑	L	Z	Н
	Н	↑	Н	Z	L

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High Impedance
 - NC = No Change
- ↑ = LOW-to-HIGH transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: VLC = 0.2V; VHC = VCC - 0.2V

Commercial: Ta = 0° C to $+70^{\circ}$ C, Vcc = 5.0V $\pm 5\%$, Military: Ta = -55° C to $+125^{\circ}$ C, Vcc = 5.0V $\pm 10\%$

Symbol	Parameter	Test Condi	tions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level	Guaranteed Logic HIGH Level		_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level	Guaranteed Logic LOW Level		_	0.8	V
lih	Input HIGH Current		VI = VCC	_	_	5	
		Vcc = Max.	VI = 2.7V	_	_	5 ⁽⁴⁾	μΑ
lıL	Input LOW Current		VI = 0.5V	_	_	-5 ⁽⁴⁾	
			VI = GND	_	_	- 5	
Іоzн			Vcc = Max. Vo = Vcc Vc = 2.7V		_	10	
	Off State (High Impedance)	Vcc = Max.			_	10 ⁽⁴⁾	μΑ
lozl	Output Current	Vo = 0.5V		_	_	-10 ⁽⁴⁾	
			Vo = GND		_	-10	
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA		_	-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾		-60	-120	_	mA
Voн	Output HIGH Voltage	VCC = 3V, VIN = VLC or VHC, IOH =	- –32μA	VHC	Vcc	_	
		Vcc = Min	IOH = -300μA	VHC	Vcc	_	V
		VIN = VIH or VIL	IOH = -12mA MIL	2.4	4.3	_	
			IOH = -15mA COM'L	2.4	4.3	-	
Vol	Output LOW Voltage	Vcc = 3V, Vin = Vcc or VHc, IoL = 300μA		_	GND	VLC	
		Vcc = Min	IOL = 300μA		GND	VLC ⁽⁴⁾	V
	VIN = VIH or VIL		IOL = 32mA MIL	_	0.3	0.5	
		IOL = 48mA CON		_	0.3	0.5	

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading.
- 3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
- 4. This parameter is guaranteed but not ttested.

POWER SUPPLY CHARACTERISTICS

 $V_{LC} = 0.2V$; $V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	Test Cond	itions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Icc	Quiescent Power Supply Current	VCC = Max. VIN ≥ VHC; VIN ≤ VLC		_	0.2	1.5	mA
∆lcc	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = 3.4V^{(3)}$		_	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OE = GND	VIN ≥ VHC VIN ≤ VLC		0.15	0.25	mA/ MHz
		One Input Toggling 50% Duty Cycle					
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcp = 10MHz	VIN ≥ VHC VIN ≤ VLC (FCT)		1.7	4	mA
		50% Duty Cycle OE = GND	VIN = 3.4V VIN = GND	_	2.2	6	
		fi = 5MHz One Bit Toggling					
		Vcc = Max. Outputs Open fcp = 10MHz	VIN ≥ VHC VIN ≤ VLC (FCT)	_	4	7.8 ⁽⁵⁾	
		50% Duty Cycle OE = GND	VIN = 3.4V VIN = GND	_	6.2	16.8 ⁽⁵⁾	
		fi = 2.5MHz Eight Bits Toggling					

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (ViN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of Δlcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNi)$
 - Icc = Quiescent Current
 - Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for register devices (zero for non-register devices)
 - fi = Input Frequency
 - Ni = Number of Inputs at fi
- All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			54FCT574		54FCT574 54/74FCT574A			74FCT574C			
			l N	1il.	Co	m'l.	IV	lil.	Co	m'l.	
Symbol	Parameter	Condition ⁽¹⁾	Min.(2)	Max.	Min.(2)	Max.	Min.(2)	Max.	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	2	11	2	6.5	2	7.2	2	5.2	ns
tphl	CP to Qx	$RL = 500\Omega$									
tpzh	Output Enable Time		1.5	14	1.5	6.5	1.5	7.5	1.5	5.5	ns
tPZL											
tphz	Output Disable Time		1.5	8	1.5	5.5	1.5	6.5	1.5	5	ns
tPLZ											
tsu	Set-up Time HIGH or LOW		2	_	2	_	2	_	2	_	ns
	Dx to CP										
tH	Hold Time HIGH or LOW		1.5	_	1.5	_	1.5	_	1.5	_	ns
	Dx to CP										
tw	CP Pulse Width HIGH or LOW(3)		7	_	5	_	6	_	5	_	ns

- 1. See test circuit and waveforms.
- 3. This parameter is guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-Up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

Pulse Width

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; Zo \leq 50 Ω ; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459