Hope Artificial Intelligence Assignment-Regression Algorithm

1. Problem Identification:

Stage 1- Machine Learning

Stage 2- Supervised Learning

Stage 3- Regression

2. Total number of rows, columns: 1338 rows × 6 columns

- 3. Data pre-processing is used to convert the sex and smoker columns (nominal data) to numbers using get_dummies function in pandas.
- 4. Multiple Linear Regression, Support Vector Machine, Decision Tree and Random Forest algorithms are used to develop models for the given dataset.
- 5. R2 values from different algorithms are as tabulated below:

Multiple Linear Regression: 0.789

Support Vector Machine:

S.No	Standardisation	С	kernel	R2
1	Before	1	rbf	-0.089
2	After	1	rbf	-0.083
3	After	10	rbf	-0.032
4	After	100	rbf	0.320
5	After	1	poly	-0.075
6	After	10	poly	0.038
7	After	100	poly	0.617
8	After	1	sigmiod	-0.075
9	After	10	sigmiod	0.039
10	After	100	sigmiod	0.527

Decision Tree:

S.No	criterion	splitter	R2
1	friedman_mse	best	0.694
2	friedman_mse	random	0.689
3	squared_error	best	0.693
4	squared_error	random	0.629
5	absolute_error	best	0.672
6	absolute_error	random	0.731

7	poisson	best	0.707
8	poisson	random	0.727

Random Forest:

S.No	criterion	n_estimators	max_features	R2
1	friedman_mse	10	sqrt	0.855
2	friedman_mse	100	sqrt	0.868
3	friedman_mse	10	log2	0.842
4	friedman_mse	100	log2	0.870
5	squared_error	10	sqrt	0.852
6	squared_error	100	sqrt	0.870
7	squared_error	10	log2	0.852
8	squared_error	100	log2	0.870
9	absolute_error	10	sqrt	0.847
10	absolute_error	100	sqrt	0.870
11	absolute_error	10	log2	0.851
12	absolute_error	100	log2	0.871
13	poisson	10	sqrt	0.844
14	poisson	100	sqrt	0.870
15	poisson	10	log2	0.862
16	poisson	100	log2	0.867

6. Final model would be **Random Forest** for the given dataset as the R-square value is nearer to 1 for this algorithm.