SOLUTIONS

Module:	Digital Circuit Design				
Module Code	EBU4202	Paper	В		
Time allowed	2hrs Filename Solutions 1617 EBU4202 B				
Rubric	ANSWER ALL FOUR QUESTIONS				
Examiners	Mr Andy Watson Dr Jonathan Loo				

Question 1

a) Fill in the table by putting the correct numbers in different bases by doing suitable conversion. Write your answers in the table directly.

Show **THREE** places in any fractional part.

Decimal	Binary	Octal	Hexa	decimal
	1011001.100			
55.620				

[12 marks]

Answer

[2] each correct answer in red.

[-0.5] if either integer or fractional part is wrong.

Decimal	Binary	Octal	Hexadecimal
89.500	1011001.100	131.400	59.800
55.620	110111.100	67.475	37.9EB

b) Figure Q1b) shows a particular floating point format.

IBM System 360/370 Format

7-bits 24-bits
s e f

Value = $(-1)^s$ 0.f * 16 e^{-64}

Figure Q1b)

Express the decimal number 0.06 in this format to 8 fractional places. [5 marks]

Answer:

```
Convert 0.06_{10} to binary:
0.06x2=0.12 MSB
0.12x2=0.24
0.24x2 = 0.48
0.48x2 = 0.96
0.96x2=1.92
0.92x2=1.84
0.84x2=1.68
0.68x2=1.36
                   [2 marks]
So 0.06_{10}=0.000011111<sub>2</sub> to 8 fractional places
      =1.111_2 \times 2^{-5}
      =1.111 \times 2^{(59-64)}
      =1.111 \times 2^{(111011-64)}
                         [2 marks]
```

c) Convert the decimal numbers 213 and 126 to 8 bit binary and then obtain the value of $(213_{10}-126_{10})$ using 2^s complement arithmetic. State the answer in HEX. [6 marks]

```
Answer: 213_{10}\text{=}11010101_2 \quad [1 \text{ mark}] \\ 136_{10}\text{=}10001000_2 \quad [1 \text{ mark}] \\ 2^s \text{ complement of } 10001000\text{=}01110111\text{+}1\text{=}1111000 \quad [1 \text{ mark}] \\ 11010101\text{+}1111000\text{=}101001101 \quad [1 \text{ mark}] \\ \text{Leading 1 is an overflow bit } [1 \text{ mark}] \\ \text{Therefore answer is } 01001101\text{=}77_{10}\text{=}4D_H \quad [1 \text{ mark}]
```

d) A particular data transmission system uses single bit odd parity.

Can an error be detected if the data sent = 01000101 and the data received = 01010010? [2 marks]

Answer:

Received value has an odd number of 1's (so obeys odd parity) [1 mark], so no error is detected (there are 4 bits flipped) [1 mark].

Question 2

a) i)The basic gates used in the design of digital circuits are fabricated into Integrated Circuits. Briefly state the classification of Integrated Circuits based on complexity.

[4 marks]

ii) Modern integrated circuit fabrication techniques allow the on-chip devices to be very small.Briefly explain two advantages.[2 marks]

Answer: i)

Name	Number of Gates
SmallScale Integration (SSI)	< 20
MediumScale Integration (MSI)	20 – 200
LargeScale Integration (LSI)	200 – 200000
Very LargeScale Integration (VLSI)	≈ 1 million transistors

[4 marks: 1 each]

ii)

The two advantages are:

Device operation is fast because of the short interconnections [1 mark]

Very complex circuits can be produced in a very small package [1 mark]

b) Two technologies used in the manufacture of logic gates are TTL and CMOS. Compare gates using these two technologies in terms of noise margin and fan out.

[4 marks]

Answer:

	T _p (ns)	P (mW)	Noise Margin (mV)	Fan- out
TTL	9	10	400 (OH); 400 (OL)	10
смоѕ	18	0.01 (static)	1050 (OH); 1340 (OL)	≤ 50

Answer:

CMOS has a greater noise margin than TTL CMOS has a greater fanout than TTL. [4 marks:2 for the data, 2 for the statements]

- c) Let ABCD represent a 4 bit BCD number.
- i) Draw the truth table for a combinational logic circuit that produces a '1' output when the input ABCD is an even number and also when the number 9. The input combination 0000 is not allowed to occur.
- ii) Draw the Karnaugh map for this circuit.
- iii) From the Karnaugh map, determine a minimal expressions for the output expressed in SoP form and in all NAND form.
- iv) Using a truth table, show the state of the output for each of the "can't happen" input states as a result of the minimisation.
- v) Draw the circuit diagrams for the minimal SoP and all NAND implementations of the function.
- vi) Does the circuit have a static race hazard? Justify your answer.

[15 marks]

An	swer:							
i) The truth	n table is:						E(A B C B)	
		_	A 0	B	<u>C</u>	D 0	F(A,B,C,D) X	
			0	0	0	1	0	
			0	0	1	0	1	
			0	0	1 0	1 0	0	
			0	1 1	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
			0	1	1	0	1	
			0	1	1	1	0	
			1	$0 \\ 0$	$0 \\ 0$	0 1		
			1	0	1	0	X	
			1	0	1	1	X	
			1	1 1	$0 \\ 0$	0	X X	
			1	1	1	1 0	X	
			1	1	1	1	X	
[2 marks fo	or correct trut	th table]						
ii) The Kar	rnaugh map is	s:	***************************************					<u> </u>
CD	00	01			11		10	
AB		1			ı		-	
00	X	0			0		1	
01	1	0			0		1	\dashv
11	X	X			X		X	
10	1	1			X		X	
[2 marks fo	or correct ma	p]						
iii) A mini	mal SoP expi	ression is: F	=A-	+D' l	2 ma	arksl		
							ssion is: F=(A'.	D), L
	sulting output		. 411	1 1/ 1		npic	551011 15.1 (11.	<i>-,</i> [
IV) THE IES	outing output	states are.	A	В	C	D	F(A,B,C,D)	
		_	0	0	0	0	1	
			0	0	0	1	0	
			0	0	1 1	0	1	
			0	0 1	0	1 0	1	
			-					
			0	1	0	1	0	
			0	1	1	0	0	
							0 1 0	

1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

[1 mark]

v) The circuit diagrams are:

SoP:

All NAND:

[4 marks: 2 for each correct diagram]

vi) The circuit does not have a static race hazard [1 mark] because the map groupings overlap[1 mark].

Question 3

Figure Q3 shown a simple motor-shaft position encoder circuit. As the machine moves, the encoder shaft is rotating clock-wise manner, making and breaking the light beam between LED and phototransistor, thereby generating clock pulses to increase the counter circuit.

Figure Q3

Design a digital counter circuit using D flip-flops to track the angular position of the motor-shaft down to a precision of <u>45 degree</u>.

 Derive truth table for the counter which include present state, next state and the D flip-flop transition table to complete the input to D flip-flops.

[8 marks]

Present state	Next state	D flip-flop input			
(Q2, Q1, Q0)	(Q2, Q1, Q0)	D2	D 1	D0	
000	001	0	0	1	
001	010	0	1	0	
010	011	0	1	1	
011	100	1	0	0	
100	101	1	0	1	
101	110	1	1	0	
110	111	1	1	1	
111	000	0	0	0	

- 2 marks for the correct "Present state" table; otherwise 0 marks
- 2 marks for the correct "Next state" table; ; otherwise 0 marks
- 4 marks for the correct "D flip-flop input table; ; otherwise 0 marks
- ii) Construct the K-maps and finding out the minimised logic expressions for the input to D flip-flops.

[12 marks]

Q2 \ Q1 Q0	00	01	11	10
0	0	0	1	0
1 [1	1	0	1

$$D2 = Q2Q0' + Q2Q1' + Q2'Q1Q0$$

Q2 \ Q1 Q0	00	01	11	10	
0	0	1	0	1	
1	0	1	0	1	D4 04001 : 04100
					D1 = Q1Q0' + Q1'Q0
Q2 \ Q1 Q0	00	01	11	10	
0	1	0	0	1	
	-	_	0	1	
1	1	0	0	'	D0 = O0,

Each D input, 1 marks for the correct k-map and 2 marks for the correct minised logic expressions

iii) Draw the designed counter circuit.[5 marks: 1 for each input logic, 1 for each bistable]Answer

Question 4

a) Using a suitable diagram, explain the internal implementation of a 2-input 4-bit MUX. [5 marks]

Answer:

Selects between two 4-bit binary number inputs
Made up of 4 parallel 2-input 1-bit selectors
[3 marks for diagram, 2 marks for brief explanation]

b) Explain the difference and similarity between ROM and RAM.

[8 marks]

ROM and RAM are both random access [2 mark]. Every location in both types of memory can be accessed in the same length of time [2 mark].

ROM is non-volatile, ie, contents of memory are retained when power is removed. [2 mark] RAM is volatile, ie, contents of memory are lost when power is removed[2 mark].

c) Design an 4 x 4-bit read-only memory (ROM) circuit pre-programmed with the data shown in the Table Q4. (Hint: diodes, decoder, multiplexer etc. are required in the ROM circuit).

[12 marks]

Address	Data (4-bit)
0	8
1	14
2	15
3	14

[6 marks for 2 to 4 decoder, 6 marks for the diodes & buffers]