

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு

இரண்டாம் தவணைப் பரீட்சை - 2023

National Field Work Centre, Thondaimanaru.

2nd Term Examination - 2023

ூரசாயனவியல் Gr: 12 (2024) புள்ளித்திட்டம்

I true CLASSICAL EDUCATION FOR THE FUTURE

IN False IV true VI False

[03 marks x 6 = 18 marks]

$$II C_1 = \frac{-3}{2} C_2 = \frac{-3}{2} N_2 = \frac{-3}{2}$$

U all 3 N-0 bond length are [05×3=15]

D	15	Cı	Plange Angular Sp ² 118° (±118)	Linear Sp 180°	25 C S Trigonal planer Trigonal planer Sp2 120° + (120) 25x 01 = (
	Tetrahedral Tetrahedral Sp.3 109 (± 109)	Tetrahedal Angular Sp3 105 ± 104)	3 Triganal Planar Angular Sp2 118° (+118)	Linear Sp 180°	Trigonal planer Trigonal planer Sp2 120° + (120)	
	Tetrahedral 5 p.3 (+ 109)	Angular 5 p3 105 ± 104)	Plange Angular Sp ² 118° (±118)	Linear Sp 180°	7 20° 120°	
	5p.3 (109) (±109)	5 p3 105 ± 104)	Angular 5p ² 118° (±118)	180°	Trigonal alanan 502 120° + (120)	
	109° (± 109) (105 ± 104)	(± 118)	180	592 120° + (120)	
	(± 109) ((± 104) }	(± 118) 1	(± 130)	+ (120)	
	15	Cı	134	•	- 1 - 1 - 1 - 1	25
		Cı	003			15)
	403		Sp3			
	5P3		5p3			
02 -	Sp.		5:9			
. N3 -			Sp2			19
. C4 -	SP			107	x 01 = (10)
A Chas	SICALEI	THEATI	ON FO	R THE	FUTURE	
C4	2P	C2	2/2	4×	01 = (04)	T
VIII I NF3 <	. 0111	10 / 21				
	$\langle SCI_2 \langle S$					
III ANT	1.0				8	
LCu(Hz	2)6) < Cu	(OH) < [C	4(NH),72	1 2		
₹ 0<	S <f<c< td=""><td>-1</td><td>745</td><td></td><td></td><td></td></f<c<>	-1	745			
	7.7		5)	X 9 3 =	(15)	
	0-54	= = = =================================				
		*				

2) I
$$\times - H_2O_2$$
 $y - H_2O$ $Z - Cro_4^2$ $3x \circ s = (5)$

II $3H_2O_2 + Cr_2O_3 + 4OH \longrightarrow 2Cro_4^2 + 5H_2O$

(D) $H_2O_2 + 2H^4 + 2e \longrightarrow H_2O$

b) $H_2O_2 \longrightarrow O_2 + 2H^4 + 2e$
 $2x \circ s = (10)$

II $E - M_3O = F - M_3 N_2 = 2x \circ s = (10)$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3 N_2 = G - M_3(OH)_2$

II $E - M_3O = F - M_3O = G - M_3(OH)_2$

II $E - M_3O = F - M_3O = G - M_3$

```
VII
     I 2NH2 +2NA ->2NaNH2 + H2
      1 2NH3+3 C/2 -> N2 + 6 HC/
                              2×05=(10)
                       Q2 = 100
 I Caco + 2HC1 -> Cacl2 + Co2 + H20 . 10
    NOOH + HCI -> NOCH + H20
  on secono lem colx 28 = 1000 to lem to ou.
  IV
 U No of mal of HC1 react with Cal3 = 68×103ma)
                                or = 0.068 mo) (+1)
    No.09 m.) 0) Ca(23 = 34×103 mo) or (4+1)
 VII A Mass of Ca(03 = 0.034molx 100gmol
       Mass of Catr3 = 3.49 (1)

... mass percentage = \frac{3.4 \times 100}{4 \times 100} (5)
 I H= V&C8 3 = 85 1/1
       = 50 cm3 x 13 cm3 x 4.555 e x 5 8 (4+1)
       = 11255
  I No. of make of Calos that reacted with Hel = 0.034 mo)
      " realesed engryy that instacted 1.125 x 1 with I+C1 = 0.034
                 . \triangle HN = -33.1 \text{ kg moi} 9(4+1)
```


real gases molycules have high Intermolecular for but ideal gases no forces as aftraction or repulsed. The actual volume of the ideal gas molecule is very small compared to the fotal volume of the fotal volume of the fotal volume higher molucular volume. 2 × 25 = (10)
IV lower pressure PV = nRT P= = P RT The property of the proton of th
Constant CLASP FCALKEDUCATES FOR THE FUTURE Tempretu P o C A 4 = 100


```
(A) A-Na2co3 B-Cach C-Cac3 D-CaCHC3)2
       E-AgCI F-[Ag(NH3)2]+ /[Ag(NH3)2]CI
(6x06=36 mare)
 I Nazco + Cacl2 -> Caco + 2 Nacl
 II Caco3 + co2 + H20 - Ca (HCO3)2
 [ Cacl2 +2AgN3 -> 2AgC1 + (a(N23),
      Age1 + 2NH3 - [Ag (NH3)2]C1
    OR Agel +2NH4OH - [AgenH3]2]C1 + 2H2O
(abA=) 60 mirks) (4x06 = 24 marks)
(B) [AI(H20)6] 3+ forms H30/H+ ions when it goes
    Hydrlysis realdion
  when adding of Na2(3, co32 ions read with H32/H+ ions and of form co2 gas therefore Co32= ions Cannot be formas preciptable
  contenue to removal of it ione above equilin
  Shifted to right side therefore AI(OH)3 [AI(OH)3 (H2)3] form as precipitable
                   y = (02 =) (2x10= 20)
 1 X - A1(OH)3
 11) A16H)3 + NOOH - MA[A1(OH)4] => (10)
    A16H)3 + NaOH -> Na A102 +2H20
 IV AI (1)3 white colour precipitante torms again
      but contenue addingod Hel precipitate
        will be dessalved
                             068-9 65 morn
```

```
() = Na +2NH3 - 2NaNH2 + Hz
   OR 6Li +2NH, -> 2LizN +3H2
  1 502+2Fe3+2HO -> 572-+ +2Fe2++4H+
    or 5502 +2mno +2Hro -95502 +2Mn2+ 4H+
    0,3502 + Cr202 + 211 - 3592 + 20+3+ + H20
      Na + H20 - NaOH + H2
   10 Cb H1206/87 con H2804, 6 C/8)+ 6 H20/9)
      C12 + H2S - 2HL1 + S
            abc=) 5x05= 25
Q(T) Fe203 +61+C1->2FeC13 +3H20 -5
   2Fe^{3+} + 2I \longrightarrow 2Fe^{2+} + I_2 \longrightarrow Na_2S_4O_b + 2Na_1 \longrightarrow 8
   No.03 mole.01 Na282 23 = 0.1 x 25 x 103 - (5)
   NO. of LAND BAL EILCATION 1125 × 10 3 mg) URES
  ", No of mole of Fe3+ = 25×15 3 mo) -(5)
  . No of mole of FR23 in Hamortitle = 1.25×10-3mo) - 5
    mused fez ?; in hamofite = 1.25×103mo) × 160 gmo) = 0.29 - 5.
     Mass percentage of FRB = 0.2 × 100
                              97 a=) 50 marts
```

(T) b) I AHR =
$$\angle AHJ = 2$$
 AHJ - $\angle AHJ = -2$

= $\angle AHJ = 2$

=