

Convolutional Neural Networks (CNN)

Prof. Seungchul Lee Industrial AI Lab.

Machine Learning vs. Deep Learning

Machine learning

Convolution on Image (= Convolution in 2D)

- Filter (or Kernel)
 - Discrete convolution can be viewed as <u>element-wise multiplication</u> by a matrix
 - Modify or enhance an image by filtering
 - Filter images to emphasize certain features or remove other features
 - Filtering includes smoothing, sharpening and edge enhancement

Convolution Mask + Neural Network

Locality

- Locality: objects tend to have a local spatial support
 - fully-connected layer → locally-connected layer

Locality

- Locality: objects tend to have a local spatial support
 - fully-connected layer → locally-connected layer

We are not designing the kernel, but are learning the kernel from data

→ Learning feature extractor from data

Nonlinear Activation Function

Rectified linear unit (ReLU)

Pooling

Pooling

- Compute a maximum value in a sliding window (max pooling)
- Reduce spatial resolution for faster computation
- Achieve invariance to local translation
- Max pooling introduces invariances
 - Pooling size : 2×2
 - No parameters: max or average of 2x2 units

Pooling

• Such an operation aims at grouping several activations into a single "more meaningful" one.

• The average pooling computes average values per block instead of max values

Pooling: Invariance

- Pooling provides invariance to any permutation inside one of the cell
- More practically, it provides a pseudo-invariance to deformations that result into local translations

Pooling: Invariance

- Pooling provides invariance to any permutation inside one of the cell
- More practically, it provides a pseudo-invariance to deformations that result into local translations

CNNs for Classification: Feature Learning

- Learn features in input image through convolution
- Introduce non-linearity through activation function (real-world data is non-linear!)
- Reduce dimensionality and preserve spatial invariance with pooling

CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as probability of image belonging to a particular class

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

실시간 강의자료

Images

Images Are Numbers

Images Are Numbers

Images Are Numbers

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

Images

Multiple Filters (or Kernels)

Channels

- Colored image = tensor of shape (height, width, channels)
- Convolutions are usually computed for each channel and summed:
- Kernel size aka receptive field (usually 1, 3, 5, 7, 11)

Multi-channel and Multi-kernel 2D Convolution

Dealing with Shapes

- Activations or feature maps shape
 - Input (W^i, H^i, C)
 - Output (W^o, H^o, D)
- Kernel of Filter shape (w, h, C, D)
 - $-w \times h$ Kernel size
 - C Input channels
 - − *D* Output channels

- Numbers of parameters: $(w \times h \times C + 1) \times D$
 - bias

- The kernel is not swiped across channels, just across rows and columns.
- Note that a convolution preserves the signal support structure.
 - A 1D signal is converted into a 1D signal, a 2D signal into a 2D, and neighboring parts of the input signal influence neighboring parts of the output signal.
- We usually refer to one of the channels generated by a convolution layer as an activation map.
- The sub-area of an input map that influences a component of the output as the receptive field of the latter.

Strides

- Strides: increment step size for the convolution operator
- Reduces the size of the output map

Example with kernel size 3×3 and a stride of 2 (image in blue)

Padding

- Padding: artificially fill borders of image
- Useful to keep spatial dimension constant across filters
- Useful with strides and large receptive fields
- Usually fill with 0s

• Here with $5 \times 5 \times C$ as input, a padding of (1,1), a stride of (2,2)

Input

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Nonlinear Activation Function

Rectified linear unit (ReLU)

CNN in TensorFlow

Lab: CNN with TensorFlow

- MNIST example
- To classify handwritten digits

CNN Structure

```
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32,
                        (3,3),
                        activation = 'relu',
                        padding = 'SAME',
                        input shape = (28, 28, 1),
tf.keras.layers.MaxPool2D((2,2)),
tf.keras.layers.Conv2D(64,
                        (3,3),
                        activation = 'relu',
                        padding = 'SAME',
                        input_shape = (14, 14, 32)),
tf.keras.layers.MaxPool2D((2,2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation = 'relu'),
 tf.keras.layers.Dense(10, activation = 'softmax')
```


Convolution Layer

Fully connected layer

Loss and Optimizer

- Loss
 - Classification: Cross entropy
 - Equivalent to applying logistic regression
- Optimizer
 - GradientDescentOptimizer
 - AdamOptimizer: the most popular optimizer

```
model.fit(train_x, train_y)
```


Test or Evaluation

```
test_loss, test_acc = model.evaluate(test_x, test_y)
```


Prediction : 9