1 List of Problems for Chapter 3

This is a list of problems from Chapter 3 which I left in class as exercises or referred to during proofs. The Homework will be picked from these problems. They are a good practice list for the probability spaces chapter.

- $(\Omega, \mathcal{H}, \mathbb{P})$ will denote a probability space and X_n a sequence of random variables on it.
- 1. (i) If X is integrable and $\{X_n\}_{n\geq 1}$ is uniformly integrable, show that $\{X_n-X\}_{n\geq 1}$ is uniformly integrable.
 - (ii) Show that the result in part (i) holds true if X is replaced by a sequence Y_n of uniformly integrable functions.
- 2. If $X_n \longrightarrow X$ and $X_n \longrightarrow Y$, both in probability, show that X = Y almost surely.
- 3. Let $X_n \longrightarrow X$ in probability. Show that $X_n^3 \longrightarrow X^3$ in probability.
- 4. Let K be a uniformly integrable family of random variables. Show the following:
 - (i) $E[|X|] \le b + k(b)$;
 - (ii) $\mathcal{K} \subset L^1$;
 - $(iii) \sup_{X \in \mathcal{K}} \mathbb{E}[|X|] < \infty.$
- 5. Assume $\sum_{n\geq 1} P(|X_n X| > \frac{1}{n}) < \infty$. Show that $X_n \longrightarrow X$ almost surely.
- 6. Let X be a random variable and f and g be two functions, both increasing (or both decreasing). Show that

$$\mathbb{E}[f(X)g(X)] \ge \mathbb{E}[f(X)]\mathbb{E}[g(X)].$$

- 7. Let X_n be a sequence of random variables. Assume there is a constant k such that $\lim_{n\to\infty} \mathbb{E}[X_n] = k$ and $\lim_{n\to\infty} Var(X_n) = 0$. Show that $X_n \longrightarrow k$ in L^2 (i.e. in the mean square).
- 8. Let $X_n \longrightarrow X$ in L^2 , with $\mathbb{E}[X_n^2] < \infty$. Show the following:
 - $(i) \ \mathbb{E}[X_n] \longrightarrow \mathbb{E}[X];$
 - $(ii) \ \mathbb{E}[X_n^2] \longrightarrow \mathbb{E}[X^2];$
 - $(iii)Var[X_n] \longrightarrow Var[X];$
 - $(iv) \ Cov(X_n, X) \longrightarrow Var(X).$
- 9. Let X_n be a sequence such that $\mathbb{E}[|X_n|] \longrightarrow 0$. Show that $X_n \longrightarrow 0$ in probability.

- 10. Let $\Omega = (0,1]$, $\mathcal{H} = \mathcal{B}_{(0,1]}$ and \mathbb{P} be the Leb measure. Consider the sequence X_n defined as $X_1 = \mathbf{1}_{(0,1]}$, $X_2 = \mathbf{1}_{(0,1/2]}$, $X_3 = \mathbf{1}_{(1/2,1]}$, $X_4 = \mathbf{1}_{(0,1/3]}$, $X_5 = \mathbf{1}_{(1/3,2/3]}$, $X_5 = \mathbf{1}_{(2/3,1]}$, ...
 - (i) Fix $\epsilon \in (0,1)$. Compute the probabilities $\mathbb{P}(X_n > \epsilon)$, for n = 1, 2, 3...
 - (ii) Show that $X_n \longrightarrow 0$ in probability.
 - (iii) Does X_n also converge almost surely?
- 11. Consider the probability space (Ω, \mathcal{H}, P) , with $\Omega = [0, 1]$, $\mathcal{H} = \mathcal{B}_{[0,1]}$, and P the Leb measure on [0, 1]. Define the sequence X_n by

$$X_{2n}(\omega) = \begin{cases} 0, & \text{if } \omega < 1/2 \\ 1, & \text{if } \omega \ge 1/2 \end{cases} \qquad X_{2n+1}(\omega) = \begin{cases} 1, & \text{if } \omega < 1/2 \\ 0, & \text{if } \omega \ge 1/2 \end{cases}$$

- (i) Show that X_n converges in distribution.
- (ii) Show that X_n does not converge in probability.
- 12. Show that:
 - (i) If $X_n \longrightarrow 0$ in L^2 and $Y_n \longrightarrow 0$ in L^2 , then $X_n + Y_n \longrightarrow 0$ in L^2 ;
 - (ii) If $X_n \longrightarrow X$ in L^2 and $Y_n \longrightarrow Y$ in L^2 , then $X_n + Y_n \longrightarrow Y + Y$ in L^2 .
- 13. Let X be a random variable with the distribution function

$$\mu(dx) = \frac{5}{\Gamma(1/5)\Gamma(4/5)} \frac{1}{x^5 + 1} dx, \qquad x \ge 0.$$

- (i) Show $\mathbb{E}[X^2] < \infty$ and $\mathbb{E}[X^4] = \infty$;
- (ii) Construct the sequences of random variables $X_n = Y_n = \frac{1}{n}X$. Show that: $X_n \longrightarrow 0$ in L^2 , $Y_n \longrightarrow 0$ in L^2 , and $X_nY_n \longrightarrow \infty$ in L^2 . What do you notice?
- 14. Let B_1, B_2, \dots be independent Bernoulli variables with success probability p. Consider $S_n = X_1 + \dots + X_n$ be the number of successes in the first n trials. Then $\overline{B}_n = \frac{S_n}{n}$ is the success frequency in the first n trials. Show that $\overline{B}_n \to p$ almost surely. Find an approximation of the distribution of \overline{B}_n using a normal distribution for n large.
- 15. Let X_1, X_2, \cdots be sequence of independent, identically distributed random variables taking values in the measurable space (E, \mathcal{E}) . Let μ be their common distribution. Define

$$F_n(A) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_A \circ X_k, \qquad A \in \mathcal{E}.$$

- (i) Show that for each $\omega \in \Omega$, the mapping $A \longmapsto F_n(\omega, A)$ is a probability measure on (E, \mathcal{E}) .
- (ii) Let $A \in \mathcal{E}$. Show that $F_n(A) \longrightarrow \mu(A)$ almost surely.

(iii) Let $f \in \mathcal{E}_+$. Show that

$$\frac{1}{n}\sum_{k=1}^n f\circ X_k\longrightarrow \mu f$$
, almost surely.

- 16. If X is a random variable with E[|X|] = 0, show that X = 0 a.s.
- 17. Consider a sequence of random variables X_n such that there is another random variable X such that $\sum_n \|X_n X\|^2 < \infty$ a.s. Show that $X_n \to X$ almost surely.
- 18. Let X be an integrable random variable. Show that if H_n is a sequence of events such that $P(H_n) \to 0$ as $n \to \infty$, then $\lim_{n \to \infty} \mathbb{E}[|X|1_{H_n}] = 0$. Does the converse hold true?
- 19. Let $X_n \xrightarrow{d} X$. Show that $c_n(x) \to c(x)$, for all $x \in \mathbb{R}$. (Recall that c(x) denotes the distribution function of X).