```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler , LabelEncoder
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split , cross_val_score , GridSearchCV
from catboost import CatBoostClassifier
data = pd.read csv('data.csv')
data.head()
₹
                                                                                      \blacksquare
                                   City
                                           CO NO2 SO2 O3 PM2.5 PM10
                                                                               Type
                           Date
      0 2024-01-01 00:00:00+00:00 Moscow 208.0 15.9 13.2 44.0
                                                                 8.6 9.4 Industrial
      1 2024-01-01 01:00:00+00:00 Moscow 207.0 17.4 13.7 44.0
                                                                 8.6 10.5 Industrial
      2 2024-01-01 02:00:00+00:00 Moscow 217.0 19.0 15.5 43.0 10.4 12.9 Industrial
      3 2024-01-01 03:00:00+00:00 Moscow 231.0 21.0 20.7 36.0 12.3 15.3 Industrial
      4 2024-01-01 04:00:00+00:00 Moscow 263.0 34.5 27.2 27.0 13.6 20.0 Industrial
 Next steps: ( View recommended plots )
                                        New interactive sheet
X = data.drop(columns=['Date' , 'City' , 'Type'])
Y = data['Type']
y_le = LabelEncoder()
```

Y = y_le.fit_transform(Y)

```
X_train , X_test , y_train , y_test = train_test_split(X , Y , test_size=0.3 , random_state=42)
```

X.describe()

→ *		СО	NO2	S02	03	PM2.5	PM10
	count	52704.000000	52704.000000	52704.000000	52704.000000	52704.000000	52704.000000
	mean	508.030472	29.616492	22.387250	53.423668	32.931045	50.644980
	std	692.274824	23.984409	34.285823	42.225556	43.833691	67.311502
	min	0.000000	0.900000	0.000000	0.000000	0.300000	0.400000
	25%	187.000000	11.000000	0.700000	26.000000	6.400000	9.400000
	50%	268.000000	23.300000	10.500000	48.000000	14.800000	19.800000
	75%	519.000000	42.200000	30.200000	69.000000	42.600000	68.350000
	max	12876.000000	218.000000	497.800000	342.000000	459.100000	661.200000

```
model = CatBoostClassifier(
    silent=True,
    random_seed=42
)
```

```
param_grid = {
    'iterations': [ 500 ],
    'learning_rate': [0.01, 0.1],
    'depth': [4, 6, 8 ],
}
```

```
grid = GridSearchCV(estimator=model, param_grid=param_grid,
                   scoring='accuracy', cv=3, n_jobs=-1, verbose=1)
grid.fit(X_train, y_train)
print("Best Parameters:")
print(grid.best_params_)
Fitting 3 folds for each of 6 candidates, totalling 18 fits
     Best Parameters:
     {'depth': 8, 'iterations': 500, 'learning_rate': 0.1}
print("Best Score:")
print(grid.best_score_)
     Best Score:
     0.9883443292981638
best_param = grid.best_params_
cbg = CatBoostClassifier(**best_param)
cbg.fit(X_train , y_train)
```

 $\overline{\mathbf{x}}$

```
1earn: ש.ש/3554
                              total: 10.95
                                              remaining: 88ms
495:
496:
       learn: 0.0073554
                                              remaining: 66ms
                              total: 10.9s
                              total: 10.9s
497:
       learn: 0.0073554
                                              remaining: 43.9ms
                                              remaining: 22ms
498:
       learn: 0.0073554
                              total: 11s
       learn: 0.0073554
                              total: 11s
                                              remaining: Ous
499:
<catboost.core.CatBoostClassifier at 0x7d824a694650>
```

```
y_pred = cbg.predict(X_test)
print(r2_score(y_test , y_pred))
```

0.9612949457394157