مبانى نظريه محاسبه

عبارات منظم و ماشین متناهی

Regular Expression and Finite State Machines

بسته بودن زبانهای منظم تحت عملگر اجتماع

یادآوری: زبان L منظم است اگر و فقط اگر توسط یک \inf (ماشین متناهی غیر قطعی) پذیرفته شود.

فرض کنید زبان A توسط ماشین متناهی N_1 پذیرفته می شود و زبان B توسط ماشین متناهی N_2 . برای ساخت ماشین متناهی N برای زبان $A \cup B$ یک وضعیت اولیه جدید به ترکیب دو ماشین N_1 و N_2 اضافه می کنیم و از آن یک فلش E به وضعیتهای اولیه E و E E می گذاریم.

بسته بودن زبانهای منظم تحت عملگر اتصال

از همه وضعیتهای پذیرش N_1 یک فلش ϵ به وضعیت اولیه N_2 قرار می دهیم. وضعیتهای پذیرش N_1 را هم از حالت پذیرش خارج می کنیم.

بسته بودن زبانهای منظم تحت عملگر ستاره

میخواهیم با استفاده از ماشین N_1 برای زبان منظم A یک ماشین متناهی برای زبان A^* بسازیم.

از وضعیتهای پذیرش N_1 یک فلش ϵ به سمت وضعیت شروع N_1 قرار می دهیم. میدانیم که زبان A^* لزوما شامل رشته تهی است. چون ممکن است زبان A شامل رشته تهی نباشد، برای رفع این مشکل، یک وضعیت اولیه به ماشین N_1 اضافه می کنیم و وضعیت اولیه جدید را وضعیت پذیرش می کنیم. از وضعیت اولیه جدید هم یک فلش ϵ به وضعیت اولیه قبلی قرار می دهیم.

عبارات منظم

عبارات منظم یک شیوه دیگر بیان زبانهای منظم هستند. برای مثال زبان منظم رشتههای با طول زوج را میتوان بصورت $(\Sigma\Sigma)$ بیان کرد. این یک نمونه از عبارات منظم است.

تعریف: گوییم R یک عبارت منظم است اگر بصورت یکی از حالات زیر باشد:

- Σ تک حرف a از الفبای \square .
 - ϵ
 -) •
- الله باشند. دقت R_1 و قتی که R_1 و R_2 خود عبارات منظم باشند. دقت کنید کتاب مرجع از علامت U بجای U استفاده کرده است. در اینجا علامت U به معنی یا و اجتماع است.
 - بارات منظم باشند. R_1 و تحود عبارات منظم باشند. R_1
 - ه اشد. R^* وقتی که R یک عبارت منظم باشد.

عبارات منظم

تفسیر: (R_1+R_2) زبانی را بیان می کند که حاصل اجتماع دو زبان است که توسط عبارات منظم R_1 و R_2 بیان شده است. به عبارت دیگر اگر R_1 زبان مربوط به عبارت R_2 و R_1 زبان مربوط به عبارت R_2 باشد آنگاه

$$L(R_1 + R_2) = L(R_1) \cup L(R_2)$$

تفسیر: (R_1R_2) زبانی را بیان می کند که حاصل از اتصال زبانهای عبارات منظم R_1 و R_2 است. به عبارت دیگر،

$$L(R_1R_2) = L(R_1)L(R_2)$$

تفسیر: R^* زبانی را بیان می کند که حاصل از اعمال عملگر ستاره روی زبان مربوط به عبارت منظم R است. به عبارت دیگر

$$L(R^*) = L(R)^*$$

چند مثال

در مثالهای زیر الفبا را $\Sigma = \{a,b\}$ فرض گرفته ایم.

$$\Sigma^* a \Sigma^* \blacktriangleleft$$

$$\Sigma^*bba\Sigma^*$$

$$a^+$$

$$a^*(ba^+)^*$$

$$(\Sigma\Sigma\Sigma)^*$$

$$ab + ba$$

$$a\Sigma^*a + b\Sigma^*b + a + b$$

$$(b+\epsilon)a^*$$

- همه رشتههایی که دقیقا یک a دارند. b^*ab^*
- همه رشتههایی که حداقل یک a دارند. $\Sigma^*a\Sigma^*$
- هستند. Σ^*bba همه رشتههایی که شامل زیررشته bba هستند.
 - مشتههای غیر تهی که فقط شامل a^+ باشند. a^+
- هرجا b آمد حداقل یک a بلافاصله بعدش بیاید. $a^*(ba^+)^*$
 - رشتههایی که طولشان مضربی از 3 است. $(\Sigma\Sigma\Sigma)^*$
 - $\{ab,ba\}$ ab+ba
- $a\Sigma^*a + b\Sigma^*b + a + b$ رشته مثل هم باشد (شامل رشته تهی رشته هایی که اول و آخر رشته مثل هم باشد
 - $ba^* + a^* = (b + \epsilon)a^* \blacktriangleleft$
 - \emptyset $a^*\emptyset$
 - $\{\epsilon\}$ $(\emptyset)^* \blacktriangleleft$

$$A^* = \{\epsilon, A, AA, AAA, \ldots\}$$
 دقت کنید

عبارات منظم و ماشینهای متناهی

قضیه: اگر R یک عبارت منظم باشد، آنگاه L(R) را یک زبان منظم است. اثبات: نشان می دهیم یک ماشین متناهی nfa برای L(R) می توان ساخت. حالات مختلف را بررسی می کنیم.

طبق تعریف، عبارات منظم R میتواند به یکی از حالات زیر باشد.

 Σ تک حرف a از الفبای

 ϵ

Ø -

- $R_1 + R_2$ \blacktriangleleft مشابه اثبات بسته بودن زبانهای منظم تحت اجتماع
- R_1R_2 \blacktriangleleft مشابه اثبات بسته بودن زبانهای منظم تحت اتصال
- → R* → مشابه اثبات بسته بودن زبانهای منظم تحت عملگر ستاره

یک مثال

(ab∪a)*

عبارات منظم و ماشینهای متناهی

قضیه: اگر M یک ماشین متناهی باشد، آنگاه عبارت منظم R وجود دارد که معادل L(M) است.

اثبات كامل قضيه در كتاب موجود است.

خلاصه پروسه تبدیل ماشین متناهی به عبارت منظم: می توانیم فرض کنیم ماشین تنها یک وضعیت پذیرش دارد (چرا؟) ماشین ابتدا تبدیل به یک gnfa می شود. یک gnfa تعمیمی از nfa است که در آن برچسب روی فلشها می تواند یک عبارت منظم باشد. در هر مرحله یک وضعیت (غیر از وضعیت پذیرش و وضعیت شروع) حذف می شود و بجای آن برچسپ روی فلشها تغییر می کند. در انتها دو وضعیت شروع و وضعیت پذیرش با یک فلش بین آنها باقی می مانند. برچسپ روی فلش عبارت منظم حاصل را نشان می دهد.

یک مثال از تبدیل ماشین متناهی به عبارت منظم

در قدم اول، اگر ماشین dfa داده شده، بیشتر از یک وضعیت پذیرش دارد، یک ماشین f معادل میسازیم که تنها یک وضعیت پذیرش داشته باشد. برای این کار یک وضعیت پذیرش جدید ایجاد می کنیم و از وضعیتهای پذیرش قبلی یک فلش f به وضعیت پذیرش جدید قرار می دهیم.

اگر وضعیت شروع فلش ورودی دارد، یک وضعیت شروع جدید ایجاد می کنیم و یک فلش ϵ از آن به وضعیت شروع قبلی می گذاریم. حال وضعیت شروع جدید فلش ورودی ندارد.

حال فرض کنید می خواهیم وضعیت q_{rip} که یک وضعیت غیر نهایی و غیر شروع است را حذف کنیم. اگر قبلا از طریق q_{rip} ، از وضعیت q_i به q_i می رفتیم الان چون وضعیت q_{rip} وجود ندارد باید برچسب روی فلش بین q_i و q_i را تغییر دهیم تا یک ماشین معادل بدست آوریم. این کار را باید برای هر زوج q_i به q_i انجام دهیم.

در نهایت یک وضعیت شروع و یک وضعیت پذیرش باقی میماند.

برچسب تنها فلش باقیمانده، عبارت منظمی است که معادل با زبان ماشین است.