Содержание

1. Математическая логика 2
1.1. Включение и равенство множеств. Основные способы задания множеств
Операции и основные тождества алгебры множеств. Упорядоченные пары и декар-
тово произведение
1.2. Бинарные отношения; композиция и обращение. Функции. Равномощность
и вложение. Теорема Кантора; тождества в смысле равномощности для множеств
$\mathbb{N} \times \mathbb{N}, (A \times B)^C$ и C^{B^A} . Теорема Кантора–Бернштейна–Шрёдера (без доказатель-
ства) с примером применения

ДМ Гос (ИВТ: Матлог + ДС)

Disclaymer: доверять этому конспекту или нет выбирайте сами

1. Математическая логика

1.1. Включение и равенство множеств. Основные способы задания множеств. Операции и основные тождества алгебры множеств. Упорядоченные пары и декартово произведение.

Определение 1.1.1: Множество
$$A$$
 включено \subseteq в множество $B \Leftrightarrow x \in A \Rightarrow x \in B$

Определение 1.1.2: Множество
$$A$$
 равно множеству $B \Leftrightarrow x \in A \Leftrightarrow x \in B$

Лемма 1.1.1 (Свойства включения):

- $A \subseteq A$
- $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
- $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

Лемма 1.1.2 (Свойства равенства):

- \bullet A=A
- $A = B \land B = C \Rightarrow A = C$
- $A = B \Rightarrow B = A$

Замечание 1.1.1 (Основные способы задания множеств):

- Назвать все его элементы, когда число этих элементов конечно и все они уже определены
- Выделение всех элементов какого-нибудь уже определённого множества A, обладающих некоторым точно определённым свойством φ
- Рассмотреть **множество всех подмножеств** множества A. Такое множество обозначают выражением $\mathcal{P}(A)$
- Располагая каким-нибудь множеством X, рассмотреть его объединение, обозначаемое $\cup X$ и состоящее из всевозможных элементов множеств, принадлежащих X

Определение 1.1.3: **Объединением** множеств A и B называется множество $A \cup B$:

$$x \in A \cup B \Leftrightarrow x \in A \lor x \in B$$

Определение 1.1.4: **Пересечением** множеств A и B называется множество $A \cap B$:

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

Определение 1.1.5: **Разностью** множеств A и B называется множество $A \setminus B$:

$$x \in A \smallsetminus B \Leftrightarrow x \in A \land x \not \in B$$

Определение 1.1.6: Нередвко все рассматриваемые множества оказываются подмножествами какого-нибудь множества U.

Такое U называют тогда **универсумом**.

Для каждого подмножества A заданного универсума U определено дополнение

$$\overline{A} = U \setminus A$$

Теорема 1.1.1 (Основные тождества алгебры множеств): $\forall A, B, C$ и любого включающего их универсума U верно:

- $A \cap B = B \cap A$; $A \cup B = B \cup A$
- $(A \cap B) \cap C = A \cap (B \cap C); (A \cup B) \cup C = A \cup (B \cup C)$
- $A \cap A = A$; $A \cup A = A$
- $A \cap (A \cup B) = A$; $A \cup (A \cap B) = A$
- $\overline{A} = A$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\overline{A \cap B} = \overline{A} \cup \overline{B} : \overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\bullet \ \ A\cap\emptyset=\emptyset; A\cup\emptyset=A; A\cap U=A; A\cup U=U; \overline{\emptyset}=U; \overline{U}=\emptyset$
- $A \cap \overline{A} = \emptyset; A \cup \overline{A} = U$

Определение 1.1.7: Для произвольных множеств a и b символом (a,b) обозначают множество $\{\{a\},\{b,c\}\}$, называемое упорядоченной парой множеств a и b

Определение 1.1.8: **Декартовым (или прямым)** произведением множеств A и B называется множество

$$A\times B=\{z\in\mathcal{P}(\mathcal{P}(A\cup B))\ |\ \exists a\in A:\exists b\in B:z=(a,b)\}$$

1.2. Бинарные отношения; композиция и обращение. Функции. Равномощность и вложение. Теорема Кантора; тождества в смысле равномощности для множеств $\mathbb{N} \times \mathbb{N}$, $(A \times B)^C$ и C^{B^A} . Теорема Кантора-Бернштейна-Шрёдера (без доказательства) с примером применения.

Определение 1.2.1: Множество R называется бинарным отношением, если каждый его элемент является упорядоченной парой множеств.

Определение 1.2.2: Назовём **областью определения** отношения R множество

$$\dim R=\{a\in\cup\cup R\mid\exists b:(a,b)\in R\}$$
 и областью значений отношения R – множество
$$\operatorname{rng} R=\{b\in\cup\cup R\mid\exists a:(a,b)\in R\}$$

Определение 1.2.3: Для любых отношений P и Q определена композиция отношений P и Q:

$$Q\circ P=\{(a,c)\in \operatorname{dom} P\times\operatorname{rng} Q\mid \exists b:(a,b)\in P\wedge (b,c)\in Q\}$$

Определение 1.2.4: Пусть R — бинарное отношение. **Обратным отношением** к R называется отношение

$$R^{-1} = \{(b,a) \in \operatorname{rng} R \times \operatorname{dom} R \mid (a,b) \in R\}$$

Определение 1.2.5: Пусть R — бинарное отношение и X — некоторое множество.

Мы называем образом под действием отношения R множества X множество

$$R[X] = \{b \in \operatorname{rng} R \mid \exists a \in X : aRb\}$$

Определение 1.2.6: Бинарное отношение R называется:

- Функциональным, если $\forall x: \forall y: \forall z: xRy \land xRz \Rightarrow y=z$
- Инъективным, если $\forall x : \forall y : \forall z : xRy \land zRy \Rightarrow x = z$
- Тотальным для множества Z, если $\forall x \in Z : \exists y : (x,y) \in R$
- Сюръективным для множества Z, если $\forall y \in Z : \exists x : (x,y) \in R$

Определение 1.2.7: Функциональное отношение $f \subseteq A \times B$ называется частичной функцией на множестве A во множество B. В таком случае пишем $f: A \to B$.

Если, помимо того, отношение является тотальным для множества A, то оно называется функцией на множестве A во множество B. В таком случае пишем $f: A \to B$.

Определение 1.2.8: Множество

$$\{f \in \mathcal{P}(A \times B) \mid f : A \to B\}$$

всех функций из A в B обозначается символом B^A

Определение 1.2.9: Если функция $f:A\to B$ инъективна, она называется **инъекцией из** A в B.

Определение 1.2.10: Если функция $f:A\to B$ сюръективна, она называется **сюръекцией из** A в B.

Определение 1.2.11: Если функция $f:A\to B$ инъективна и сюръективна, она называется **биекцией из** A в B.

Определение 1.2.12: Будем писать $A \stackrel{p}{\sim} B$, если $f: A \to B$ есть биекция. Скажем, что множество A равномощно множеству B, если существует f, такая что $A \stackrel{f}{\sim} B$. Тогда пишем $A \sim B$.

Определение 1.2.13: Множество A не превосходит по мощности (вкладывается во) множество B, если существует инъекция $f:A\to B$. Тогда пишем $A\lesssim B$ и $A\lesssim B$

Теорема 1.2.1 (Кантора): Ни для какого множества A невозможно $\mathcal{P}(A)\lesssim A$

Доказательство: Пусть не так. Рассмотрим произвольную инъекцию f : $\mathcal{P}(A) \to A$. Положим

$$Y=\{a\in A\mid \forall X\in \mathcal{P}(A): a=f(X)\Rightarrow a\notin X\}$$

Очевидно, $Y\in \mathcal{P}(A)$. По определению Y следует, что $f(Y)\notin Y$.

Рассмотрим произвольное $X \in \mathcal{P}(A): f(Y) = f(X)$. В силу инъективности f имеем X = Y. Но тогда $f(Y) \notin X$ для всех таких X.

По определению множества Y получаем $f(Y) \in Y$. Противоречие. \square

Утверждение 1.2.1: Убедимся, что

$$\mathbb{N}^2 \sim \mathbb{N}$$

Доказательство: Положим

$$\forall (m,n) \in \mathbb{N}^2 : f(m,n) = 2^m (2n+1) - 1$$

Докажем инъективность, если f(m,n) = f(m',n'), то

$$2^m(2n+1) = 2^{m'}(2n'+1)$$

Допустим, что $m \neq m'$ и БОО m < m'. Тогда

$$2n + 1 = 2^{m' - m}(2n' + 1)$$

Причём второе число чётно, а первое – нет. Противоречие показывает, что m=m', но тогда $2n+1=2n'+1\Rightarrow n'=n$. Инъективность доказана.

Докажем сюръективность. Пусть некоторое положительное натуральное число не имеет вида $2^m(2n+1)$. Тогда найдётся наименьшее такое число k.

Это число чётно (иначе оно имело бы вид $2^0(2n+1)$). Следовательно k=2k'. Но k' < k, а, значит,

$$k'=2^{m'}(2n'+1)$$
 для некоторых $m',n'\in\mathbb{N}.$

Но тогда $k=2^{m'+1}(2n'+1)$ – противоречие. Сюръективность, а значит и биективность доказана

Утверждение 1.2.2:

$$(A\times B)^C\sim A^C\times B^C$$

Доказательство: Рассмотрим функции-проекторы $\pi_1: A\times B\to A$ и $\pi_2: A\times B\to B.$

Положим теперь $\psi: f \mapsto (\pi_1 \circ f, \pi_2 \circ f)$ для всех $f \in (A \times B)^C$.

Это отображения является биекцией, доказывается очевидной проверкой инъективности и сюръективности. $\hfill \Box$

Утверждение 1.2.3:

$$C^{B^A} \sim C^{A \times B}$$

 \mathcal{A} оказательство: Для всех $f\in C^{B^A}$ и $z\in A\times B$ положим $\psi(f):z\mapsto (f(\pi_1(x)))(\pi_2(z))$

Это отображения является биекцией, доказывается очевидной проверкой инъективности и сюръективности. $\hfill \Box$

Теорема 1.2.2 (Кантора-Шрёдера-Бернштейна): Для любых множеств A и B, если $A \lesssim B$ и $B \lesssim A$, то $A \sim B$.

 $\Pi puмеp$: Очевидно, что $\mathbb{N} \lesssim \mathbb{Q}$.

С другой стороны, $\mathbb{Q} \lesssim \mathbb{N}^3$: каждое положительное рациональное число q однозначно представляется несократимой дробью $\frac{m}{n}$, где $m,n\in\mathbb{N}$. Тогда отображение

оражение $f(q) = \begin{cases} {}_{(0,1,0),q=0} \\ {}_{(m,n,0),q>0} \\ {}_{(m,n,1),q<0} \end{cases}$ является искомой инъекцией. Осталось вспомнить, что $\mathbb{N}^3 = \mathbb{N}^2 \times \mathbb{N} \sim$ $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.

Показали инъекцию в обе стороны, а значит по КШБ $\mathbb{Q} \sim \mathbb{N}$.