PCT

<u>.</u>

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/19, C07K 13/00 A61K 37/02			(11) International Publication Number: WO 93/2354			
			(43	3) International Publication Date:	25 Novem	nber 1993 (25.11.93)
(21) International Application Number:	PCT/US93/046		648	(72) Inventors; and		
(22) International Filing Date:	17 May 199	3 (17.05.	93)	(75) Inventors/Applicants (for US [US/US]; 305 Loma Vista	onty): GC	Pacifica. CA 94044

(30) Priority data:

07/884,811 18 May 1992 (18.05.92) US 07/885,971 18 May 1992 (18.05.92) US

(60) Parent Applications or Grants

(63) Related by Continuation US 07/884,811 (CIP) 18 May 1992 (18.05.92) Filed on US 07/885,971 (CIP) Filed on 18 May 1992 (18.05.92)

(71) Applicant (for all designated States except US): GENEN-TECH, INC. [US/US]; 460 Point San Bruno Boulevard. South San Francisco, CA 94080 (US).

(US). LOKKER, Nathalie, A. [FR/US]; 741 40th Avenue, San Francisco, CA 94121 (US). MARK, Melanie, R. [US/US]; 1548 Hudson Street, #204, Redwood City, CA 94061 (US).

(74) Agents: DREGER, Ginger, R. et al.; Genentech, Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94080 (US).

(81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HEPATOCYTE GROWTH FACTOR VARIANTS

(57) Abstract

The invention concerns hepatocyte growth factor (HGF) amino acid sequence variants. The preferred variants are resistant to proteolytic cleavage by enzymes capable of in vivo conversion of HGF into its two-chain form and/or contain a mutation within the protease domain of HGF.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
ΑU	Australia	GA.	Gabon	MW	Malawi
BB	Barbados	G8	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	1E	Ireland	PT	Portugal
BR	Brazil	IT	łtały	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KР	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Cate d'Ivoire	ΚZ	Kazakhstan	SN	Senegal
CM	Cameroon	L.I	Liechtenstein	รบ	Soviet Union
cs	Czechoslovakia	LK	Sri Lanka	αT	Chad
CZ	Czech Republic .	1.0	1.uxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagascar	us	United States of America
ES	Spain	MI.	Mali	VN	Viet Nam
FI	Finland	MN	Mongolia		

HEPATOCYTE GROWTH FACTOR VARIANTS

BACKGROUND OF THE INVENTION

I. Field of the Invention

25

30

35

The present invention concerns amino acid sequence variants of hepatocyte growth factor (HGF), methods and means for preparing such variants, and pharmaceutical compositions comprising them.

II. Description of Background and Related Art

10 HGF was identified initially as a mitogen for hepatocytes
[Michalopoulos et al., Cancer Res.44, 4414-4419 (1984); Russel et al.,

J. Cell. Physiol. 119, 183-192 (1984) and Nakamura et al., Biochem.

Biophys. Res. Comm. 122:1450-1459 (1984)]. Nakamura et al., Supra
reported the purification of HGF from the serum of partially

15 hepatectomized rats. Subsequently, HGF was purified from rat
platelets, and its subunit structure was determined [Nakamura et al.,

Proc. Natl. Acad. Sci. USA, 83, 6489-6493 (1986); and Nakamura et al.,

FEBS Letters 224, 311-316 (1987)]. The purification of human HGF
(huHGF) from human plasma was first described by Gohda et al., J.

Both rat HGF and huHGF have been molecularly cloned, including the cloning and sequencing of a naturally occurring variant lacking 5 amino acids designated "delta5 HGF" [Miyazawa et al., Biochem.

Biophys. Res. Comm. 163, 967-973 (1989); Nakamura et al., Nature 342, 440-443 (1989); Seki et al, Biochem. and Biophys. Res. Commun. 172, 321-327 (1990); Tashiro et al., Proc. Natl. Acad. Sci. USA 87, 3200-3204 (1990); Okajima et al., Eur. J. Biochem. 193, 375-381 (1990)].

The mature form of huHGF, corresponding to the major form purified from human serum, is a disulfide linked heterodimer derived by proteolytic cleavage of the human pro-hormone between amino acids R494 and V495. This cleavage process generates a molecule composed of an α -subunit of 440 amino acids (M $_{\rm f}$ 69 kDa) and a β -subunit of 234 amino acids (M $_{\rm f}$ 34 kDa). The nucleotide sequence of the hHGF cDNA reveals that both the α - and the β -chains are contained in a single open reading frame coding for a pre-pro precursor protein. In the predicted primary structure of mature hHGF, an interchain S-S bridge is formed between Cys 487 of the α -chain and Cys 604 in the β -chain (see Nakamura et al., Nature, supra). The N-terminus of the α -chain

5

10

15

20

25

30

35

is preceded by 54 amino acids, starting with a methionine group. segment includes a characteristic hydrophobic leader (signal) sequence of 31 residues and the prosequence. The α -chain starts at amino acid (aa) 55, and contains four Kringle domains. The so called "hairpin domain" includes amino acid residues 70-96 of wild-type human HGF. The Kringle 1 domain extends from about aa 128 to about aa 206; the Kringle 2 domain is between about aa 211 and about aa 288, the Kringle 3 domain is defined as extending from about aa 303 to about aa 383, and the Kringle 4 domain extends from about aa 391 to about aa 464 of the α -chain. It will be understood that the definition of the various Kringle domains is based on their homology with kringle-like domains of other proteins (prothrombin, plasminogen), therefore, the above limits are only approximate. As yet, the function of these Kringles has not been determined. The β -chain of huHGF shows high homology to the catalytic domain of serine proteases (38% homology to the plasminogen serine protease domain). However, two of the three residues which form the catalytic triad of serine proteases are not conserved in huHGF. Therefore, despite its serine protease-like domain, hHGF appears to have no proteolytic activity and the precise role of the β-chain remains unknown. HGF contains four putative glycosylation sites, which are located at positions 294 and 402 of the α -chain and at positions 566 and 653 of the β -chain.

In.a portion of cDNA isolated from human leukocytes in-frame deletion of 15 base pairs was observed. Transient expression of the cDNA sequence in COS-1 cells revealed that the encoded HGF molecule (delta5 HGF) lacking 5 amino acids in the Kringle 1 domain was fully functional (Seki et al., supra).

A naturally occurring huHGF variant has recently been identified which corresponds to an alternative spliced form of the huHGF transcript containing the coding sequences for the N-terminal finger and first two kringle domains of mature huHGF [Chan et al., Science 254, 1382-1385 (1991); Miyazawa et al., Eur. J. Biochem. 197, 15-22 (1991)]. This variant, designated HGF/NK2, has been proposed to be a competitive antagonist of mature huHGF.

The comparison of the amino acid sequence of rat HGF with that of huHGF revealed that the two sequences are highly conserved and have the same characteristic structural features. The length of the four Kringle domains in rat HGF is exactly the same as in huHGF.

÷]

15

20

25

30

Furthermore, the cysteine residues are located in exactly the same positions; an indication of similar three-dimensional structures (Okajima et al., supra; Tashiro et al., supra).

The HGF receptor has been identified as the product of the c-Met proto-oncogene [Bottaro et al., Science 251, 802-804 (1991); Naldini et al., Oncogene 6, 501-504 (1991)], an 190-kDa heterodimeric (a disulfide-linked 50-kDa α-chain and a 145-kDa β-chain) membrane-spanning tyrosine kinase protein [Park et al., Proc. Natl. Acad. Sci. USA 84, 6379-6383 (1987)]. The c-Met protein becomes phosphorylated on tyrosine residues of the 145-kDa β-subunit upon HGF binding.

The levels of HGF increase in the plasma of patients with hepatic failure (Gohda et al., supra) and in the plasma [Lindroos et al., Hepatol. 13, 734-750 (1991)] or serum [Asami et al., J. Biochem. 109, 8-13 (1991)] of animals with experimentally induced liver damage. The kinetics of this response is rapid, and precedes the first round of DNA synthesis during liver regeneration suggesting that HGF may play a key role in initiating this process. More recently, HGF has been shown to be a mitogen for a variety of cell types including melanocytes, renal tubular cells, keratinocytes, certain endothelial cells and cells of epithelial origin [Matsumoto et al., Biochem. Biophys. Res. Commun. 176, 45-51 (1991); Igawa et al., Biochem. Biophys. Res. Commun. 174, 831-838 (1991); Han et al., Biochem. 30, 9768-9780 (1991); Rubin et al., Proc. Natl. Acad. Sci. USA 88, 415-419 (1991)]. Interestingly, HGF can also act as a "scatter factor", an activity that promotes the dissociation of epithelial and vascular endothelial cells in vitro [Stoker et al., Nature 327, 239-242 (1987); Weidner <u>et al.</u>, <u>J. Cell Biol. 111</u>, 2097-2108 (1990); Naldini <u>et al.</u>, EMBO J. 1., 2867-2878 (1991)]. Moreover, HGF has recently been described as an epithelial morphogen [Montesano et al., Cell 67, 901-908 (1991)]. Therefore, HGF has been postulated to be important in tumor invasion and in embryonic development. Chronic c-Met/HGF receptor activation has been observed in certain malignancies [Cooper et al., EMBO J. 5, 2623 (1986); Giordano et al., Nature 339, 155 (1989)].

It would be desirable to better understand the structure-activity relationship of HGF in order to identify functionally important domains in the HGF amino acid sequence.

It would be particularly desirable to identify the amino acid residues which are responsible for the interaction of HGF with its receptor.

It would be also desirable to identify the amino acid residues which are responsible for HGF biological activity.

It would further be desirable to provide amino acid sequence variants of HGF that have altered (preferably enhanced) receptor binding affinity as compared to the corresponding mature, wild-type HGF.

It would also be desirable to provide HGF amino acid sequence variants which have retained or enhanced receptor binding affinity as compared to the corresponding wild-type HGF, but are substantially devoid of HGF biological activity. Such molecules could act as competitive antagonists of HGF action.

15

20

25

30

35

It would further be desirable to provide HGF amino acid sequence variants that have retained or enhanced receptor binding affinity and increased biological activity as compared to the corresponding wild-type HGF (HGF agonists). Accordingly, it is an object of the present invention to provide HGF variants having retained or improved the receptor binding affinity of the corresponding mature wild-type HGF. It is another object of the invention to provide HGF variants that have retained substantially full receptor binding affinity of the corresponding mature wild-type HGF and are substantially incapable of HGF receptor activation. It is a further object to provide HGF variants that have retained substantially full receptor binding affinity of the corresponding mature wild-type HGF and have improved biological properties.

These and further objects will be apparent to one of ordinary skill in the art.

SUMMARY OF THE INVENTION

The foregoing objects are achieved by the provision of HGF variants having amino acid alterations within various domains of the wild-type HGF amino acid sequence.

In one aspect, HGF variants are provided that are resistant to proteolytic cleavage by enzymes that are capable of <u>in vivo</u> conversion of HGF into its two-chain form. The variants are preferably stabilized in single-chain form by site directed mutagenesis within a

10

15

20

25

30

35

region recognized by an enzyme capable of converting HGF into its twochain form.

In a particular embodiment, such variants have an amino acid alteration at or adjacent to amino acid positions 493, 494, 495 or 496 of the wild-type huHGF amino acid sequence. The alteration preferably is the substitution of at least one amino acid at amino acid positions 493-496 of the wild-type huHGF amino acid sequence.

In another embodiment, the variants retain substantially full receptor binding affinity of the corresponding wild-type HGF and are substantially incapable of HGF receptor activation. HGF variants with enhanced receptor binding affinity and substantially lacking the ability to activate the HGF receptor are particularly preferred. Such compounds are competitive antagonists of the corresponding wild-type HGF and, when present in sufficient concentration, are capable of inhibiting the binding of their wild-type counterparts to their ligands.

In another aspect, here are provided HGF variants having an amino acid alteration at a site within the protease domain of HGF and retaining substantially full receptor binding affinity of the corresponding wild-type HGF.

In a specific embodiment, these variants have substantially retained or improved receptor binding affinity as compared to the corresponding wild-type HGF, and are substantially devoid of HGF biological activity. Such compounds, if present in sufficient concentration, will act as competitive antagonists of HGF action.

In another specific embodiment, the variants combine substantially retained or improved receptor binding affinity with improved biological activity, as compared to the corresponding wild-type HGF. Such variants are valuable as HGF agonists.

In a preferred embodiment, the HGF variants within this group comprise an alteration in a region corresponding to the catalytic site of serine proteases. More preferably the alteration is at or adjacent to any of positions 534, 673 and 692 of the wild-type human HGF (huHGF) amino acid sequence.

The alteration preferably is substitution.

In a particularly preferred embodiment, at least two of the residues at amino acid positions 534, 673 and 692 of the wild-type huHGF sequence are replaced by another amino acid.

In a preferred group of the HGF variants herein, both tyrosine (Y) at position 673 and valine (V) at position 692 of the huHGF sequence are replaced by another amino acid. This alteration potentially yields HGF variants which substantially retain the receptor binding affinity of wild-type huHGF but are substantially devoid of HGF biological activity.

The mutations around the one-chain to two-chain cleavage site and within the protease domain may be advantageously combined for improved biological properties.

Variants with increased receptor binding affinity as compared to the corresponding wild-type HGF are particularly preferred. The increase in receptor binding affinity may, for example, be accomplished by an alteration in the receptor-binding domain of the wild-type HGF amino acid sequence, and preferably within the Kringle 1 domain.

10

15

20

25

30

35

Kringle 1 variants with amino acid alterations within the patch defined by amino acid positions 159, 161, 195 and 197, or at amino acid position 173 of the wild-type huHGF amino acid sequence are particularly preferred, but other positions within the Kringle 1 domain have also been identified as having a genuine effect on the receptor binding properties and/or the specific activity of HGF.

Furthermore, amino acid sequence variants with alterations at amino acid positions preceding the Kringle 1 domain, in particular those just N- or C-terminal to the hairpin domain, have been found to have significantly different binding properties and biological activity from those of the corresponding wild-type HGF.

The variants of this invention may be devoid of functional Kringle 2 and/or Kringle 3 and/or Kringle 4 domains.

In all embodiments, huHGF amino acid sequence variants are preferred.

In other embodiments, the invention relates to DNA sequences encoding the variants described above, replicable expression vectors containing and capable of expressing such DNA sequences in a transformed host cell, transformed host cells, and a process comprising culturing the host cells so as to express the DNAs encoding the HGF variants.

5

10

15

20

In yet another embodiment, the invention relates to therapeutic compositions comprising HGF variants having HGF agonist or antagonist properties.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of the $\alpha\text{-}$ and $\beta\text{-}$ subunits of huHGF. Shown in the α -chain are the signal sequence (boxed region) which encompasses amino acids 1 - 31, the predicted finger and four Kringle domains, each with their respective three disulfide bonds. The cleavage site for generation of the heterodimeric α/β form of huHGF immediately follows the P1 cleavage residue R494. This last residue has been specifically substituted with either E, D or A to generate HGF single-chain variants. The β -chain, which follows the cleavage site, contains homology to serine proteases. It is proposed that the α - and β -chains are held together by a unique disulfide-bridge between C487(lpha) and C604(eta) (Nakamura et al., 1989, supra). Three residues within the β -chain have been substituted individually or in combination to reconstitute the authentic residues of a serineprotease. Schematic representations of the mature forms of the Cterminal truncation variants are depicted below: N-207, deleted after the first Kringle; N-303, deleted after the second Kringle; N-384, deleted after the third Kringle and the α -chain. Also shown are the variants where deletions of each of the Kringles (AK1, AK2, AK3 and $\Delta K4$) were introduced. In each case, the deletions specifically remove the entire Kringle from C1 to C6.

Figure 2 shows the results of Western blot of wild-type rhuHGF and single-chain variants. Conditioned media from mock transfected 293 cells or stable 293 cells expressing either wild-type rhuHGF (WT) or the variants R494E, R494A or R494D were fractionated under reducing conditions on an 8% sodium-dodecyl sulfate-polyacrylamide gel and blotted. The blot was reacted with polyclonal anti-HGF antisera which recognizes epitopes primarily in the α-chain. Molecular masses (kilodaltons) of the marker are as indicated. Also indicated are the positions of the α-chain and uncleaved single-chain forms of huHGF. Note that the polyclonal antibody cross-reacts with an unidentified band (*) present even in the control transfected 293 cells, which do not express detectable quantities of huHGF.

Figure 3: Mitogenic activity (A) and competitive receptor binding (B) of wild-type (WT) rhuHGF and single-chain variants. (A) Biological

activity was determined by the ability of WT rhuHGF and variants to induce DNA synthesis of rat hepatocytes in primary culture as described in Example 2. Shown are the mean cpm from duplicates in a representative assay. Mock supernatant from control cells did not stimulate DNA synthesis in these cells (no cpm increase above background levels). (B) To perform competitive binding, various dilutions of supernatants of human 293 cells containing wt rhuHGF or variants were incubated with 50 pM of the huHGF receptor-IgG fusion protein as described in Example 2. Data represent inhibition of binding as the percentage of any competing ligand from a representative experiment and were corrected by subtraction of background values from control 293 cells.

Figure 4: Western blot of ligand-induced tyrosine-phosphorylation on the 145 kDa β -subunit of the HGF receptor by wild-type rhuHGF, single-chain or protease domain huHGF variants. Lysates from A549 cells incubated for 5 minutes without (-) or with 200 ng/mL of purified wt rhuHGF (WT), single-chain (R494E) or double protease variants (Y673S,V692S) were prepared and immunoprecipitated with an anti-HGF receptor antibody and blotted with anti-phosphotyrosine antibodies. Molecular masses (kilodaltons) are as indicated.

Figure 5 depicts the nucleotide sequence encoding the plasmid pRK5.1 (SEQ. ID. NO: 1).

Figure 6 depicts the nucleotide sequence encoding the plasmid p.CIS.EBON (SEQ. ID. NO: 15).

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

5

10

15

20

25

30

35

As used herein, the terms "hepatocyte growth factor", "HGF" and "huHGF" refer to a (human) growth factor capable of specific binding to a receptor of wild-type (human) HGF, which growth factor typically has a structure with six domains (finger, Kringle 1, Kringle 2, Kringle 3, Kringle 4 and serine protease domains), but nonetheless may have fewer domains or may have some of its domains repeated if it still retains its qualitative HGF receptor binding ability. This definition specifically includes the delta5 huHGF as disclosed by Seki et al., supra. The terms "hepatocyte growth factor" and "HGF" also include hepatocyte growth factor from any non-human animal species, and in particular rat HGF.

5

10

15

20

25

30

35

The terms "wild-type human hepatocyte growth factor", human hepatocyte growth factor", "wild-type huHGF", and "native huHGF" refer to native sequence human HGF, i.e., that encoded by the cDNA sequence published by Miyazawa, et al. 1989, supra, or Nakamura et al., 1989, supra, including its mature, pre, pre-pro, and pro forms, purified from natural source, chemically synthesized or recombinantly produced. The sequences reported by Miyazawa et al. and Nakamura et al. differ in 14 amino acids. The reason for the differences is not entirely clear; polymorphism or cloning artifacts are among the possibilities. Both sequences are specifically encompassed by the foregoing terms as defined for the purpose of the present invention. It will be understood that natural allelic variations exist and can occur among individuals, as demonstrated by one or more amino acid differences in the amino acid sequence of each individual. Amino acid positions in the variant huHGF molecules herein are indicated in accordance with the numbering of Miyazawa et al. 1989, supra.

The terms "(HGF) biological activity", "biologically active", "activity" and "active" refer to any mitogenic, motogenic or morphogenic activities exhibited by wild-type human HGF. The HGF biological activity may, for example, be determined in an in vitro or in vivo assay of hepatocyte growth promotion. Adult rat hepatocytes in primary culture have been extensively used to search for factors that regulate hepatocyte proliferation. Accordingly, the mitogenic effect of an HGF variant can be conveniently determined in an assay suitable for testing the ability of an HGF molecule to induce DNA synthesis of rat hepatocytes in primary cultures, such as, for example, described in Example 2. Human hepatocytes are also available from whole liver perfusion on organs deemed unacceptable for transplantation, pare-downs of adult livers used for transplantation in children, fetal livers and liver remnants removed at surgery for other indications. Human hepatocytes can be cultured similarly to the methods established for preparing primary cultures of normal rat hepatocytes. Hepatocyte DNA synthesis can, for example, be assayed by measuring incorporation of $[^3H]$ thymidine into DNA, with appropriate hydroxyurea controls for replicative synthesis.

The effect of HGF variants on hepatocyte growth can also be tested <u>in vivo</u> in animal models of liver dysfunction and regeneration, such as in rats following partial hepatectomy, or carbon tetrachloride

caused hepatic injury, in D-galactosamine induced acute liver failure models, etc. According to a suitable protocol, a liver poison, e.g. α -naphthylisothiocyanate (ANIT) is administered to rats in a predetermined concentration capable of causing reproducible significant elevation of liver enzyme and bilirubin levels. The rats are then treated with the HGF variant to be tested, sacrificed and the liver enzyme and bilirubin levels are determined. The livers are additionally observed for hepatic lesions.

The expression "retaining substantially full receptor binding affinity of wild-type (hu) HGF" and grammatical variant thereof as used herein mean that the receptor binding affinity of the HGF variant is not less then about 70%, preferably not less than about 80%, more preferably not less than about 90%, most preferably not less than about 95% of the affinity with which wild-type (hu) HGF binds its native receptor.

The terms "substantially incapable of HGF receptor activation" and "substantially devoid of HGF biological activity" mean that the activity exhibited by an HGF variant is less than about 20%, preferably less than about 15%, more preferably less than about 10%, most preferably less than about 5% of the respective activity of wild-type (human) HGF in an established assay of receptor activation or HGF biological activity, as hereinabove defined.

The terms "amino acid" and "amino acids" refer to all naturally occurring L-\alpha-amino acids. This definition is meant to include norleucine, ornithine, and homocysteine. The amino acids are identified by either the single-letter or three-letter designations:

	Asp	D	aspartic acid	Ile	I	isoleucine
	Thr	T	threonine	Leu	L	leucine
	Ser	s	serine	Tyr	Y	tyrosine
30	Glu	E	glutamic acid	Phe	F	phenylalanine
	Pro	P	proline	His	H	histidine
	Gly	G.	glycine	Lys	ĸ	lysine
	Ala	A	alanine	Arg	R	arginine
	Cys	С	cysteine	Trp	W	tryptophan
35	Val	v	valine	Gln	Q	glutamine
	Met	M	methionine	Asn	N	asparagine

10

15

20

25

These amino acids may be classified according to the chemical composition and properties of their side chains. They are broadly

classified into two groups, charged and uncharged. Each of these groups is divided into subgroups to classify the amino acids more accurately:

I. Charged Amino Acids

5

15

20

25

30

35

Acidic Residues: aspartic acid, glutamic acid Basic Residues: lysine, arginine, histidine

II. Uncharged Amino Acids

Aliphatic Residues: glycine, alanine, valine, leucine, isoleucine

Non-polar Residues: cysteine, methionine, proline

Aromatic Residues: phenylalanine, tyrosine, tryptophan

The terms "alteration", "amino acid alteration", "variant" and "amino acid sequence variant" refer to HGF molecules with some differences in their amino acid sequences as compared to wild-type (human) HGF. Ordinarily, the variants will possess at least about 80% homology with those domains of wild-type (human) HGF that are retained in their structure, and preferably, they will be at least about 90% homologous with such domains.

Substitutional HGF variants are those that have at least one amino acid residue in the corresponding wild-type HGF sequence removed and a different amino acid inserted in its place at the same position. The substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.

Substantial changes in the activity of the HGF molecule may be obtained by substituting an amino acid with a side chain that is significantly different in charge and/or structure from that of the native amino acid. This type of substitution would be expected to affect the structure of the polypeptide backbone and/or the charge or hydrophobicity of the molecule in the area of the substitution.

Moderate changes in the activity of the HGF molecule would be expected by substituting an amino acid with a side chain that is similar in charge and/or structure to that of the native molecule. This type of substitution, referred to as a conservative substitution, would not be expected to substantially alter either the structure of

5

10

15

20

25

30

35

the polypeptide backbone or the charge or hydrophobicity of the molecule in the area of the substitution.

Insertional HGF variants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in the wild-type HGF molecule. Immediately adjacent to an amino acid means connected to either the α -carboxy or α -amino functional group of the amino acid. The insertion may be one or more amino acids. Ordinarily, the insertion will consist of one or two conservative amino acids. Amino acids similar in charge and/or structure to the amino acids adjacent to the site of insertion are defined as conservative. Alternatively, this invention includes insertion of an amino acid with a charge and/or structure that is substantially different from the amino acids adjacent to the site of insertion.

Deletional variants are those with one or more amino acids in the wild-type HGF molecule removed. Ordinarily, deletional variants will have one or two amino acids deleted in a particular region of the HGF molecule.

The notations used throughout this application to describe huHGF amino acid sequence variants are described below. The location of a particular amino acid in the polypeptide chain of huHGF is identified by a number. The number refers to the amino acid position in the amino acid sequence of the mature, wild-type human HGF polypeptide as disclosed in Miyazawa et al., 1989, supra. In the present application, similarly positioned residues in huHGF variants are designated by these numbers even though the actual residue number is not so numbered due to deletions or insertions in the molecule. This will occur, for example, with site-directed deletional or insertional variants. The amino acids are identified using the one-letter code. Substituted amino acids are designated by identifying the wild-type amino acid on the left side of the number denoting the position in the polypeptide chain of that amino acid, and identifying the substituted amino acid on the right side of the number.

For example, replacement of the amino acid arginine (R) by glutamic acid (E) at amino acid position 494 of the wild-type huHGF molecule yields a huHGF variant designated R494E huHGF. Similarly, the huHGF variant obtained by substitution of serine (S) for tyrosine (Y) at amino acid position 673 and serine (S) for valine (V) at amino

acid position 692 of the wild-type huHGF molecule is designated Y673S,V692S huHGF.

Deletional variants are identified by indicating the amino acid residue and position at either end of the deletion, inclusive, and placing the Greek letter delta, " Δ ", to the left of the indicated amino acids. Deletion of a single amino acid is indicated by placing Δ to the left of the single letter code and number indicating the position of the deleted amino acid.

Insertional variants are designated by the use of brackets "[]" around the inserted amino acids, and the location of the insertion is denoted by indicating the position of the amino acid on either side of the insertion.

10

15

.20

25

30

35

The alterations in the amino acid sequence of the HGF variants herein are indicated with reference to amino acid positions in the wild-type human HGF amino acid sequence. (Miyazawa et al., supra). Methods for the alignment of homologous amino acid sequences from various species are well known in the art.

The terms "DNA sequence encoding", "DNA encoding" and "nucleic acid encoding" refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide chain. The DNA sequence thus codes for the amino acid sequence.

The terms "replicable expression vector" and "expression vector" refer to a piece of DNA, usually double-stranded, which may have inserted into it a piece of foreign DNA. Foreign DNA is defined as heterologous DNA, which is DNA not naturally found in the host cell. The vector is used to transport the foreign or heterologous DNA into a suitable host cell. Once in the host cell, the vector can replicate independently of the host chromosomal DNA, and several copies of the vector and its inserted (foreign) DNA may be generated. In addition, the vector contains the necessary elements that permit translating the foreign DNA into a polypeptide. Many molecules of the polypeptide encoded by the foreign DNA can thus be rapidly synthesized.

In the context of the present invention the expressions "cell", "cell line", and "cell culture" are used interchangeably, and all such designations include progeny.

5

10

15

20

25

30

35

The terms "transformed (host) cell", "transformant" and "transformed" refer to the introduction of DNA into a cell. The cell is termed a "host cell". The introduced DNA is usually in the form of a vector containing an inserted piece of DNA. The introduced DNA sequence may be from the same species as the host cell or a different species from the host cell, or it may be a hybrid DNA sequence, containing some foreign and some homologous DNA. The words transformants and transformed (host) cells include the primary subject cell and cultures derived therefrom, without regard to the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological property as screened for in the originally transformed cell are included.

The technique of "polymerase chain reaction" or "PCR", as used herein, generally refers to a procedure wherein minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Patent No. 4,683,195, issued 28 July 1987 and in Current Protocols in Molecular Biology, Ausubel et al. eds., Greene Publishing Associates and Wiley-Interscience 1991, Volume 2, Chapter 15.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete antibodies. The monoclonal antibodies include hybrid and recombinant antibodies produced by splicing a variable (including hypervariable) domain of an anti-selectin ligand antibody with a constant domain (e.g. "humanized" antibodies), only one of which is directed against a selectin, or a light chain with a heavy chain, or a chain from one species with a chain from another species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, as well as antibody fragments (e.g., Fab, F(ab')2, and Fv). Cabilly, et al., U.S. Pat. No. 4,816,567; Mage & Lamoyi, in Monoclonal Antibody Production Techniques and Applications, pp.79-97 (Marcel Dekker, Inc., New York,

1987). Thus, the modifier "monoclonal" indicates the character of the antibody as being obtained from such a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.

The term "immunoglobulin" generally refers to polypeptides comprising a light or heavy chain usually both disulfide bonded in the native "Y" configuration, although other linkage between them, including tetramers or aggregates thereof, is within the scope hereof.

10 Immunoglobulins (Ig) and certain variants thereof are known and many have been prepared in recombinant cell culture. For example, see U.S. Patent 4,745,055; EP 256,654; Faulkner et al., Nature 298:286 (1982); EP 120,694; EP 125,023; Morrison, <u>J. Immun.</u> 123:793 (1979); Köhler et al., Proc. Nat'l. Acad. Sci. USA 77:2197 (1980); Raso_et 15 al., Cancer Res. 41:2073 (1981); Morrison et al., Ann. Rev. Immunol. 2:239 (1984); Morrison, Science 229:1202 (1985); Morrison et_al., Proc. Nat'l. Acad. Sci. USA 81:6851 (1984); EP 255,694; EP 266,663; and WO 88/03559. Reassorted immunoglobulin chains also are known. See for example U.S. patent 4,444,878; WO 88/03565; and EP 68,763 and references cited therein. The immunoglobulin moiety in the chimeras 20 of the present invention may be obtained from IgG1, IgG2, IgG3, or IgG_4 subtypes, IgA, IgE, IgD or IgM, but preferably $IgG_{\dot{1}}$ or IgG_3 .

II. Selection of the HGF Variants

5

30

35

The present invention is based upon the study of structureactivity and structure-receptor binding relationship in amino acid sequence variants of HGF.

Certain HGF variants of the present invention are resistant to proteolytic cleavage by enzymes that are capable of in vivo conversion of the single-chain HGF proenzyme into its two-chain form. Such enzymes are trypsin-like proteases. Absent alterations, the proteolytic cleavage takes place between Arg494 and Val495 of the wild-type huHGF sequence. The resistance to proteolytic cleavage is preferably achieved by site-directed mutagenesis within a region recognized by an enzyme capable of converting HGF into its two-chain form, and preferably within the Leu-Arg-Val-Val (LRVV) sequence at amino acid residues 493-496 of the wild-type huHGF sequence. The variants herein may, for example, contain single or multiple amino

5

10

15

20

25

30

35

sequence.

acid substitutions, insertions or deletions at or adjacent to amino acid positions 493, 494, 495 and 496 in the wild-type human HGF amino acid sequence.

A preferred alteration is the replacement of arginine at amino acid position 494 with any other amino acid, preferably glutamic acid, aspartic acid or alanine. In general, the substitution of smaller, apolar or acidic amino acids for arginine at this position is believed to yield single-chain HGF variants.

Alternatively or in addition, the replacement of valine at position 495 by another amino acid is expected to block the one-chain to two-chain cleavage. Bulkier amino acids, such as tyrosine, phenylalanine, etc. are preferred for substitution at this position.

Other HGF variants of the present invention are altered at a site within the protease domain of HGF and retain substantially full receptor binding affinity of the corresponding (preferably human) wild-type HGF. The protease domain follows the cleavage site between amino acid positions 494 and 495 in the wild-type huHGF sequence, and shows a high degree of homology with the catalytic domain of known serine proteases. The conservation does not apply to the active site of serine proteases. In human plasmin, which is formed from its proenzyme, plasminogen, residues His-42, Asp-85 and Ser-181 form the catalytic site (catalytic triad). This catalytic triad is highly conserved in serine proteases. In the huHGF amino acid sequence asparagine is retained at amino acid position 594, however, position 534 (corresponding to position 42 of plasmin) is occupied by glutamine instead of histidine, and position 673 (corresponding to position 181 of plasmin) by tyrosine instead of A preferred group of the protease domain alterations herein involves one or both of amino acid positions 673 and 534. Alternatively, or in addition, the alteration may be at position 692 of the huHGF amino acid sequence. In all instances, the alteration preferably is the substitution of one or more different amino acids

Tyrosine at amino acid position 673 is preferably replaced by an amino acid which has no bulky aromatic or heterocyclic moieties. Such amino acids include serine, threonine, asparagine, cysteine, glycine,

for the residues at these positions of the native huHGF amino acid

5

10

15

20

25

30

35

alanine and valine. In the preferred variants, serine is substituted for tyrosine at this position.

Valine at amino acid position 692 preferably is substituted by a polar amino acid, such as serine, threonine, asparagine or glutamine, preferably serine.

In a preferred group of the HGF amino acid sequence variants herein, both position 673 and position 692 are substituted by one of the foregoing amino acids, preferably serine. Such variants may additionally contain an alteration (preferably substitution) at amino acid position 534. The latter alteration may be the substitution of histidine for glutamine in the wild-type huHGF amino acid sequence.

The single, double or triple mutations within the protease domain may be combined with additional alterations in the wild-type HGF amino acid sequence. Such further alterations may, for example, be at or around the one-chain to two chain cleavage site of the HGF molecule, as hereinabove described, and may result in variants which are substantially in single-chain form.

Additional alterations may be at the C-terminal end and/or in the Kringle domains of the HGF molecule. In addition to the deletion mutants disclosed in the examples, HGF variants with alterations within the Kringle 1 domain are of great interest. As we have found that the receptor binding domain is contained within the finger and the Kringle 1 regions of the HGF molecule, amino acid alterations within these domains are expected to significantly alter the receptor binding properties (and the biological activity) of the variants of the present invention. Alterations at residues that are most exposed to the interior in the Kringle structure (mostly charged residues) are particularly likely to cause profound changes in the receptor binding properties and/or biological activity of the HGF variants.

Alterations within the Kringle 1 domain preferably are within the patch defined by amino acid positions 159, 161, 195 and 197 of the wild-type huHGF amino acid sequence or at corresponding positions in a non-human HGF amino acid sequence. Another preferred site for amino acid alteration is at position 173 of the wild-type huHGF amino acid sequence. The latter position is at the opposite side as compared to the surface defined by amino acid position 159, 161, 195 and 197 and the reasons for its involvement in the binding properties and biological activity of HGF have not yet been fully identified.

Some illustrative huHGF variants within the scope herein are as follows: R494E; R494D; R494A; V495Y; V495F; R494E, V495Y; R494E, V495F; R494D, V495Y; R494D, V495F; R494A, V495Y; R494A, V495F; R494 [E] V495; R494 [D] V495; R494 [A] V495; R494 [Y] V495; R494 [F] V495; 5 R494E, Q534H; R494E, Y673S; R494E, V692S; R494D, O534H; R494D, Y673S; R494D, V692S, R494A, Q534H; R494A, V673S; R494A, V692S, R494E, Y673S, V692S; R494D, Y673S, V692S, R494A, Y673S, V692S, R494E, Q534H, Y673S, V692S; R494D, Q534H, Y673S, V692S; R494A, Q534H, Y673S, V692S; E159A; S161A; F162A, L163A, S165A, S166A; F162A; L163A, S165A, S166A; Y167F; 10 Y167A; R168A; Q173A; Q173A, E174A, N175A; N193A; R195A; R197A; N193A, E195A, R197A; K52A; D54A; K52A, D54A; H114A; H114A, E115A, D117A; E115A; D117A; variants with combinations of any of the foregoing alterations; AK3 and/or AK4 variants comprising any of the foregoing alterations; corresponding delta5-huHGF variants and non-human animal 15 HGF variants.

III. Construction of the HGF Variants

20

25

30

35

Whereas any technique known in the art can be used to perform site-directed mutagenesis, e.g. as disclosed in Sambrook et al.

[Molecular Cloning: A Laboratory Manual, second edition, Cold Spring Harbor Laboratory Press, New York (1989)], oligonucleotide-directed mutagenesis is the preferred method for preparing the HGF variants of this invention. This method, which is well known in the art [Adelman et al. DNA, 2:183 (1983), Sambrook et al., Supra], is particularly suitable for making substitution variants, it may also be used to conveniently prepare deletion and insertion variants.

As will be appreciated, the site-specific mutagenesis technique typically employs a phage vector that exists in both a single-stranded and double-stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage, for example, as disclosed by Messing et al., Third Cleveland Symposium on Macromolecules and Recombinant DNA, Editor A. Walton, Elsevier, Amsterdam (1981). These phage are readily commercially available and their use is generally well known to those skilled in the art. Alternatively, plasmid vectors that contain a single-stranded phage origin of replication (Veira et al., Meth. Enzymol., 153: 3 (1987)) may be employed to obtain single-stranded DNA.

The oligonucleotides are readily synthesized using techniques well known in the art such as that described by Crea et al. (Proc. Nat'l. Acad. Sci. USA, 75:5765 [1978]).

The specific mutagenesis method followed in making the HGF variants of Example 1 was described by Kunkel et al., Methods in Enzymol. 154 367-382 (1987).

10

15

20

25

30

35

Mutants with more than one amino acid substituted may be generated in one of several ways. If the amino acids are located close together in the polypeptide chain, they may be mutated simultaneously using one oligonucleotide that codes for all of the desired amino acid substitutions. If however, the amino acids are located some distance from each other (separated by more than ten amino acids, for example) it is more difficult to generate a single oligonucleotide that encodes all of the desired changes. Instead, one of two alternative methods may be employed. In the first method, a separate oligonucleotide is generated for each amino acid to be substituted. The oligonucleotides are then annealed to the single-stranded template DNA simultaneously, and the second strand of DNA that is synthesized from the template will encode all of the desired amino acid substitutions. The alternative method involves two or more rounds of mutagenesis to produce the desired mutant.

Another method for making mutations in the DNA sequence encoding wild-type HGF or a variant molecule known in the art, involves cleaving the DNA sequence encoding the starting HGF molecule at the appropriate position by digestion with restriction enzymes, recovering the properly cleaved DNA, synthesizing an oligonucleotide encoding the desired amino acid sequence and flanking regions such as polylinkers with blunt ends (or, instead of polylinkers, digesting the synthetic oligonucleotide with the restriction enzymes also used to cleave the HGF encoding DNA, thereby creating cohesive termini), and ligating the synthetic DNA into the remainder of the HGF encoding structural gene.

PCR mutagenesis is also suitable for making the HGF variants of the present invention, for example, as described in U.S. Patent No. 4,683,195 issued 28 July 1987 and in <u>Current Protocols in Molecular Biology</u>, Ausubel <u>et al.</u>, eds. Greene Publishing Associates and Wiley-Interscience, Volume 2, Chapter 15, 1991. While the following discussion refers to DNA, it is understood that the technique also find application with RNA. The PCR technique generally refers to the

5

10

15

20

25

30

35

following procedure. When small amounts of template DNA are used as starting material in a PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template. For introduction of a mutation into a plasmid DNA, one of the primers is designed to overlap the position of the mutation and to contain the mutation; the sequence of the other primer must be identical to a stretch of sequence of the opposite strand of the plasmid, but this sequence can be located anywhere along the plasmid DNA. It is preferred, however, that the sequence of the second primer is located within 200 nucleotides from that of the first, such that in the end the entire amplified region of DNA bounded by the primers can be easily sequenced. PCR amplification using a primer pair like the one just described results in a population of DNA fragments that differ at the position of the mutation specified by the primer, and possibly at other positions, as template copying is somewhat error-prone. If the ratio of template to product material is extremely low, the vast majority of product DNA fragments incorporate the desired mutation(s). This product material is used to replace the corresponding region in the plasmid that served as PCR template using standard DNA technology. Mutations at separate positions can be introduced simultaneously by either using a mutant second primer or performing a second PCR with different mutant primers and ligating the two resulting PCR fragments simultaneously to the vector fragment in a three (or more) -part ligation.

The cDNA encoding the HGF variants of the present invention is inserted into a replicable vector for further cloning or expression.

Suitable vectors are prepared using standard recombinant DNA procedures. Isolated plasmids and DNA fragments are cleaved, tailored, and ligated together in a specific order to generate the desired vectors.

After ligation, the vector with the foreign gene now inserted is transformed into a suitable host cell. The transformed cells are selected by growth on an antibiotic, commonly tetracycline (tet) or ampicillin (amp), to which they are rendered resistant due to the presence of tet and/or amp resistance genes on the vector. If the ligation mixture has been transformed into a eukaryotic host cell,

transformed cells may be selected by the DHFR/MTX system. The transformed cells are grown in culture and the plasmid DNA (plasmid refers to the vector ligated to the foreign gene of interest) is then isolated. This plasmid DNA is then analyzed by restriction mapping and/or DNA sequencing. DNA sequencing is generally performed by either the method of Messing et al., <u>Nucleic Acids Res.</u>, 9:309 (1981) or by the method of Maxam et al., <u>Methods of Enzymology</u>, 65:499 (1980).

Prokaryotes are the preferred host cells for the initial cloning 10 steps of this invention. They are particularly useful for rapid production of large amounts of DNA, for production of single-stranded DNA templates used for site-directed mutagenesis, for screening many mutants simultaneously, and for DNA sequencing of the mutants For expressing the HGF variants of the present invention generated. 15 eukaryotic hosts, such as eukaryotic microbes (yeast) and multicellular organisms (mammalian cell cultures) may also be used. Examples of prokaryotes, e.g. E. coli, eukaryotic microorganisms and multicellular cell cultures, and expression vectors, suitable for use in producing the HGF variants of the present invention are, for 20 example, those disclosed in WO 90/02798 (published 22 March 1990).

Cloning and expression methodologies are well known in the art and are, for example, disclosed in the foregoing published PCT patent application (WO 90/02798).

If mammalian cells are used as host cells, transfection generally
is carried out by the calcium phosphate precipitation method as
described by Graham and Van der Eb, <u>Virology</u>, <u>52</u>: 546 (1978).
However, other methods for introducing DNA into cells such as nuclear
injection, electroporation, or protoplast fusion are also suitably
used.

If yeast are used as the host, transfection is generally accomplished using polyethylene glycol, as taught by Hinnen, Proc.
<a href="Natl. Acad. Sci. U.S.A., 75: 1929-1933 (1978).

35

If prokaryotic cells or cells that contain substantial cell wall constructions are used, the preferred method of transfection is calcium treatment using calcium as described by Cohen et al., Proc. Natl. Acad. Sci. (USA) 69: 2110 (1972), or more recently electroporation.

The HGF variant preferably is recovered from the culture medium as a secreted protein, although it also may be recovered from host cell lysates when directly expressed without a secretory signal. When the variant is expressed in a recombinant cell other than one of human origin, the variant is thus completely free of proteins of human origin. However, it is necessary to purify the variant from recombinant cell proteins in order to obtain preparations that are substantially homogeneous as to protein. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris.

The variant is then purified from contaminant soluble proteins, for example, by an appropriate combination of conventional chromatography methods, e.g. gel filtration, ion-exchange, hydrophobic interaction, affinity, immunoaffinity chromatography, reverse phase HPLC; precipitation, e.g. ethanol precipitation, ammonium sulfate precipitation, or, preferably, immunoprecipitation with anti-HGF (polyclonal or monoclonal) antibodies covalently linked to Sepharose. Due to its high affinity to heparine, HGF can be conveniently purified on a heparin, such as heparine-Sepharose column. One skilled in the art will appreciate that purification methods suitable for native HGF may require modification to account for changes in the character of HGF or its variants upon expression in recombinant cell culture.

As hereinabove described, huHGF contains four putative glycosylation sites, which are located at positions 294 and 402 of the α -chain and at positions 566 and 653 of the β -chain. These positions are conserved in the rat HGF amino acid sequence. Glycosylation variants are within the scope herein.

Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side-chain of an asparagine residue. The tripeptide sequences, asparagine-X-serine and asparagine-X-threonine, wherein X is any amino acid except proline, are recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.

O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be involved in O-linked glycosylation. O-linked glycosylation sites may, for example, be modified by the addition of, or substitution by, one or more serine or threonine

residue to the amino acid sequence of the HGF molecule. For ease, changes are usually made at the DNA level, essentially using the techniques discussed hereinabove with respect to the amino acid sequence variants.

Chemical or enzymatic coupling of glycosydes to the HGF variants of the present invention may also be used to modify or increase the number or profile of carbohydrate substituents. These procedures are advantageous in that they do not require production of the polypeptide that is capable of O-linked (or N-linked) glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free hydroxyl groups such as those of cysteine, (d) free sulfhydryl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan or (f) the amide group of glutamine. These methods are described in WO 87/05330 (published 11 September 1987), and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Carbohydrate moieties present on an HGF variant may also be removed chemically or enzymatically. Chemical deglycosylation requires exposure to trifluoromethanesulfonic acid or an equivalent compound. This treatment results in the cleavage of most or all sugars, except the linking sugar, while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al., Arch. Biochem. Biophys. 259, 52 (1987) and by Edge et al., Anal.

Biochem. 118, 131 (1981). Carbohydrate moieties can be removed by a variety of endo- and exoglycosidases as described by Thotakura et al., Meth. Enzymol. 138, 350 (1987). Glycosylation is suppressed by tunicamycin as described by Duskin et al., J. Biol. Chem. 257, 3105 (1982). Tunicamycin blocks the formation of protein-N-glycosydase linkages.

Glycosylation variants of the amino acid sequence variants herein can also be produced by selecting appropriate host cells. Yeast, for example, introduce glycosylation which varies significantly from that of mammalian systems. Similarly, mammalian cells having a different species (e.g. hamster, murine, insect, porcine, bovine or ovine) or tissue (e.g. lung, liver, lymphoid, mesenchymal or epidermal) origin than the source of the selectin variant, are routinely screened for the ability to introduce variant glycosylation. Covalent

5

10

15

20

25

30

35

modifications of an HGF variant molecule are included within the scope herein. Such modifications are traditionally introduced by reacting targeted amino acid residues of the HGF variant with an organic derivatizing agent that is capable of reacting with selected sidechains or terminal residues, or by harnessing mechanisms of posttranslational modifications that function in selected recombinant host cells. The resultant covalent derivatives are useful in programs directed at identifying residues important for biological activity, for immunoassays of the HGF variants, or for the preparation of anti-HGF antibodies for immunoaffinity purification of the recombinant glycoprotein. For example, complete inactivation of the biological activity of the protein after reaction with ninhydrin would suggest that at least one arginyl or lysyl residue is critical for its activity, whereafter the individual residues which were modified under the conditions selected are identified by isolation of a peptide fragment containing the modified amino acid residue. Such modifications are within the ordinary skill in the art and are performed without undue experimentation.

Derivatization with bifunctional agents is useful for preparing intramolecular aggregates of the HGF variants as well as for crosslinking the HGF variants to a water insoluble support matrix or surface for use in assays or affinity purification. In addition, a study of interchain cross-links will provide direct information on conformational structure. Commonly used cross-linking agents include 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, Nhydroxysuccinimide esters, homobifunctional imidoesters, and bifunctional maleimides. Derivatizing agents such as methyl-3-[(pazidophenyl)dithio|propioimidate yield photoactivatable intermediates which are capable of forming cross-links in the presence of light. Alternatively, reactive water insoluble matrices such as cyanogen bromide activated carbohydrates and the systems reactive substrates described in U.S. patent Nos. 3,959,642; 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; 4,055,635; and 4,330,440 are employed for protein immobilization and cross-linking.

Certain post-translational modifications are the result of the action of recombinant host cells on the expressed polypeptide.

Glutaminyl and aspariginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and aspartyl

5

20

25

30

residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

Other post-translational modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, <u>Proteins: Structure and Molecular Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)].

Other derivatives comprise the novel HGF variants of this invention covalently bonded to a nonproteinaceous polymer. The nonproteinaceous polymer ordinarily is a hydrophilic synthetic polymer, i.e. a polymer not otherwise found in nature. However, polymers which exist in nature and are produced by recombinant or in vitro methods are useful, as are polymers which are isolated from nature. Hydrophilic polyvinyl polymers fall within the scope of this invention, e.g. polyvinylalcohol and polyvinylpyrrolidone.

Particularly useful are polyvinylalkylene ethers such a polyethylene glycol, polypropylene glycol.

The HGF variants may be linked to various nonproteinaceous polymers, such as polyethylene glycol, polypropylene glycol or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

The HGF variants may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, in colloidal drug delivery systems (e.g. liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th Edition, Osol, A., Ed. (1980). An HGF variant sequence can be linked to a immunoglobulin constant domain sequence as hereinbefore defined. The resultant molecules are commonly referred to as HGF variant-immunoglobulin chimeras. Such chimeras can be constructed essentially as described in WO 91/08298 (published 13 June 1991).

Ordinarily, the HGF variant is fused C-terminally to the N-terminus of the constant region of an immunoglobulin in place of the variable region(s), however N-terminal fusions of the selectin

5

10

15

20

25

30

35

variants are also desirable. The transmembrane regions of the HGF variants are preferably inactivated or deleted prior to fusion.

Typically, such fusions retain at least functionally active hinge, CH2 and CH3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the CH1 of the heavy chain or the corresponding region of the light chain. This ordinarily is accomplished by constructing the appropriate DNA sequence and expressing it in recombinant cell culture.

Alternatively, however, the HGF variant-immunoglobulin chimeras of this invention may be synthesized according to known methods.

The precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion or binding characteristics of the HGF variant.

In some embodiments, the hybrid immunoglobulins are assembled as monomers, or hetero- or homo-multimers, and particularly as dimers of tetramers, essentially as illustrated in WO 91/08298, <u>Supra</u>.

In a preferred embodiment, the C-terminus of a sequence which contains the binding site(s) for an HGF receptor, is fused to the Nterminus of the C-terminal portion of an antibody (in particular the Fc domain), containing the effector functions of an immunoglobulin, e.g. immunoglobulin G_1 . It is possible to fuse the entire heavy chain constant region to the sequence containing the receptor binding site(s). However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fc chemically; residue 216, taking the first residue of heavy chain constant region to be 114 [Kobet et al., Supra], or analogous sites of other immunoglobulins) is used in the fusion. In a particularly preferred embodiment, the amino acid sequence containing the receptor binding site(s) is fused to the hinge region and $C_{\rm H}^2$ and $C_{\rm H}^3$ or $C_{\rm H}^1$, hinge, C_{H^2} and C_{H^3} domains of an IgG_1 , IgG_2 or IgG_3 heavy chain. The precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation.

HGF variant-immunoglobulin chimeras may, for example, be used in protein A purification, immunohistochemistry, and immunoprecipitation techniques in place of anti-HGF antibodies, and can facilitate screening of inhibitors of HGF-HGF receptor interactions.

Therapeutically, they are expected to confer advantages such as longer half-life as compared to the corresponding HGF variant molecule.

IV. Therapeutic Compositions

bloodstream in an effective form.

5

20

25

30

35

The HGF variants with enhanced receptor binding affinity can be used to block the binding of wild-type HGF to its receptor. This would permit the treatment of pathologic conditions associated with the activation of an HGF receptor, such as malignancies associated with chronic HGF receptor activation.

The compounds of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the HGF product is combined in admixture with a pharmaceutically acceptable carrier. Suitable carriers and their formulations are described in Remington's Pharmaceutical Sciences, 16th ed., 1980. Mack Publishing Co., edited by Osla at all mines.

16th ed., 1980, Mack Publishing Co., edited by Oslo et al. These compositions will typically contain an effective amount of the HGF variant, for example, from on the order of about 0.5 to about 10 mg/ml, together with a suitable amount of carrier to prepare pharmaceutically acceptable compositions suitable for effective administration to the patient. The variants may be administered parenterally or by other methods that ensure its delivery to the

Compositions particularly well suited for the clinical administration of the HGF variants used to practice this invention include sterile aqueous solutions or sterile hydratable powders such as lyophilized protein. Typically, an appropriate amount of a pharmaceutically acceptable salt is also used in the formulation to render the formulation isotonic.

Dosages and desired drug concentrations of pharmaceutical compositions of this invention may vary depending on the particular use envisioned. A typical effective dose in rat experiments is about 250 µg/kg administered as an intravenous bolus injection. Interspecies scaling of dosages can be performed in a manner known in the art, e.g. as disclosed in Mordenti et al., Pharmaceut. Res. 8, 1351 (1991) and in the references cited therein.

The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention.

V. Examples

5

10

15

20

30

35

A series of recombinant huHGF (rhuHGF) variants were produced to determine the structural and functional importance of the cleavage of the prohormone to the α/β dimer and of the Kringle and protease-like domains. Mutations were introduced into the huHGF cDNA in a CMV based expression plasmid and conditioned media from stable populations of human 293 cells expressing each variant were assayed by Western blotting to monitor the size and expression level of the HGF variants.

The concentration of each huHGF derivative was confirmed with two types of sandwich ELISA assays. The differences in expression levels found in ELISA correlated with those observed on Western blots. For most variants, the level of expression was in the range of 1-5 mg/mL. For variants with expression levels below 0.6 mg/mL, the conditioned media was concentrated.

The mitogenic activity on liver cells in primary culture and ability to bind to the HGF receptor was then determined. The extracellular domain of the HGF receptor was fused to the constant region (Fc) of an human IgG and binding was performed in solution.

The construction of the rhuHGF variants, the assay methods and the analysis of the results obtained with the various mutants are described in the following examples.

EXAMPLE 1

Recombinant Production of the huHGF Variants

25 A. Site-directed mutagenesis

Plasmid DNA isolation, polyacrylamide and agarose gel electrophoresis were performed as disclosed in Sambrook et al., supra.

Mammalian expression plasmid pRK 5.1 with a CMV promotor (Genentech, Inc.) was used for mutagenesis of huHGF allowing secretion of the HGF variants in the culture medium and directly assayed for biological activity and binding. This expression vector is a derivative of pRK5, the construction of which is disclosed in EP 307,247 published 15 March 1989. The nucleotide sequence encoding this the pRK 5.1 vector is shown in Figure 5 (SEQ. ID. NO: 1).

The huHGF cDNA used corresponds to the 728 amino acid form as published earlier (Miyazawa et al., 1989, supra).

Mutagenesis was performed according to the method of Kunkel using the commercially available dut- ung- strain of \underline{E} . \underline{coli} [Kunkel et

5

15

20

25

al., Method. Enzymol. 154, 367-382 (1987)]. Synthetic oligonucleotides used for in vitro mutagenesis and sequencing primers were prepared using the Applied Biosystem 380A DNA synthesizer as described [Matteucci et al., J. Am. Chem. Soc. 103, 3185-3191 (1981)]. For generation of the desired mutants, oligonucleotides of sequences

coding for the desired mutants, oligonucleotides of sequences coding for the desired amino acid substitutions were synthesized and used as primers. The oligonucleotides were annealed to single-stranded pRK51-huHSA that had been prepared by standard procedures [Viera et al., Method. Enzymol. 142, 3 (1987)].

A mixture of three deoxyribonucleotides, deoxyriboadenosine (dATP), deoxyriboguanosine (dGTP), and deoxyribothymidine (dTTP), was combined with a modified thio-deoxyribonuleosine called dCTP(aS) provided in the kit by the manufacturer, and added to the single stranded pRK 5.1-huHGF to which was annealed the oligonucleotide.

Upon addition of DNA polymerase to this mixture, a strand of DNA identical to pRK 5.1-huHGF except for the mutated bases was generated. In addition, this new strand of DNA contained dCTP(aS) instead of dCTP, which served to protect from restriction endonuclease digestion. After the template strand of the double-stranded heteroduplex was nicked with an appropriate restriction enzyme, the template strand was digested with ExoIII nuclease past the region that contained the mutagenic oligomer. The reaction was then stopped to leave a molecule hat was only partly single-stranded. A complete double-stranded DNA homoduplex molecule was then formed by DNA polymerase in the presence of all four deoxyribonucleotide triphosphates, ATP, and DNA ligase.

The following oligonucleotides were prepared to use as primers to generate pRK 5.1-huHGF variant molecules:

R494E hullGF: TTGGAATCCCATTTACAACCTCGAGTTGTTTCGTTTTGGCACAAGAT

			(SEQ. ID. NO: 2)
30	R494D huHGF:	GAATCCCATTTACGACGTCCAATTGTTTCG (SEQ.	ID. NO: 3)
	R494A huHGF:	CCCATTTACAACTGCCAATTGTTTCG	(SEQ. ID. NO: 4)
	Q534H huHGF:	AGAAGGGAAACAGTGTCGTGCA	(SEQ. ID. NO: 5)
	Y673S huHGF:	AGTGGGCCACCAGAATCCCCCT	(SEQ. ID. NO: 6)
	V692S huHGF:	TCCACGACCAGGAGAAATGACAC	(SEQ. ID. NO: 7)
35	ΔK1 huHGF:	GCATTCAACTTCTGAGTTTCTAATGTAGTC	(SEQ. ID. NO: 8)
	ΔK2 huHGF:	CATAGTATTGTCAGCTTCAACTTCTGAACA	(SEQ. ID. NO: 9)
	ΔK3 huHGF:	TCCATGTGACATATCTTCAGTTGTTTCCAA	(SEQ. ID. NO:10)
	ΔK4 huHGF:	TGTGGTATCACCTTCATCTTGTCCATGTGA	(SEO. ID. NO:11)

5

10

15

20

25

30

N-303 huHGF: ACCTTGGATGCATTAAGTTGTTTC (SEQ. ID. NO:12)

N-384 huHGF: TTGTCCATGTGATTAATCACAGT (SEQ. ID. NO:13)

α-chain: GTTCGTGTTGGGATCCCATTTACCTATCGCAATTG (SEQ. ID. NO:14)

The Y673S, V692S huHGF variant was obtained from wild-type huHGF as a template, using both oligonucleotides used for generating the two mutations.

The mutant huHGF constructs generated using the protocol above were transformed in <u>E. coli</u> host strain MM294tonA using the standard calcium chloride procedure (Sambrook <u>et al.</u>, <u>supra</u>) for preparation and transformation of competent cells. MM294tonA (which is resistant to T1 phage) was prepared by the insertion and subsequent imprecise excision of a Tn10 transposon into the <u>ton</u>A gene. This gene was then inserted, using transposon insertion mutagenesis [Kleckner <u>et al.</u>, <u>J. Mol. Biol. 116</u>, 125-159 (1977)], into <u>E. coli</u> host MM294 (ATCC 31,446).

The DNA extract from individual colonies of bacterial transformants using the standard miniprep procedure of Sambrook et al., supra. The plasmids were further purified by passage over a Sephacryl CL6B spin column, and then analyzed by sequencing and by restriction endonuclease digestion and agarose gel electrophoresis.

B. Transfection of Human Embryonic Kidney 293 Cells

Plasmids with the correct sequence were used to transfect human fetal kidney 293 cells by the calcium phosphate method. 293 cells were growth to 70% confluence in 6-well plates. 2.5 μ g of huHGF plasmid DNA variant was dissolved in 150 μ l of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M.CaCl₂. Added to this (dropwise while vortexing) was 150 μ l of 50 mM HEPES buffer (pH 7.35), 280 mM NaCl, 1.5 mM NaPO₄, and the precipitate was allowed to form for ten minutes at 25 °C. The suspended precipitate was then added to the cells in the individual wells in a 6-well plate. The cell monolayers were incubated for 4 hours in the presence of the DNA precipitate, washed once with PBS, and cultured in serum-free medium for 72h. When stable populations were made, the HGF cDNA was subcloned in an episomal CMV driven expression plasmid pCisEBON (G. Cachianes, C, Ho, R. Weber, S. Williams, D. Goeddel, and D. Lueng, in preparation). pCisEBON is a

Williams, D. Goeddel, and D. Lueng, in preparation). pCisEBON is a pRK5 derivative; its underlying nucleotide sequence is shown in Figure 6 (SEQ. ID. NO: 15). The populations were directly selected in Neomycin selective medium.

EXAMPLE 2

Assay Methods

In view of the pleiotropic activities of HGF, a molecule with a structure unlike any other known growth factor, it is important to understand the molecular interaction of this factor with its receptor. The huHGF variants produced as described in Example 1 were analyzed for their ability to induce DNA synthesis of hepatocytes in primary culture and to compete for binding to a soluble form of the huHGF receptor.

10 A. Protein quantification of wild-type huHGF and huHGF variants.

A specific two-site huHGF sandwich ELISA using two monoclonal antibodies was used to quantify wild-type recombinant huHGF (WT rhuHGF), single chain and protease substitution variants. Microtiter plates (Maxisorb, Nunc) were coated with 10 mg/ml of a monoclonal

- anti-rhuHGF antibody A 3.1.2 (IgG2a phenotype, affinity: 3.2 x 10⁻⁸ mol) in 50 mM Carbonate buffer, pH 9.6, overnight at 4°C. After blocking plates with 0.5 % BSA (Sigma), 0.01 % thimerosal in PBS, pH 7.4, and subsequent washes, duplicate serial dilutions of HGF samples were prepared and in parallel a CHO-expressed rhuHGF (40-0.1 ng/mL)
- was used as a standard. Fifty microliters of these dilutions were simultaneously incubated with 50 mL of a 1:1500 diluted horseradish peroxidase conjugated monoclonal anti-rhuHGF antibody B 4.3 (IgG1 phenotype, affinity: 1.3 x 10⁻⁸ mol) for 2 h at RT. The substrate was prepared by adding 0.04 % o-phenylenediamine-dihydrochloride (Sigma)
- and 0.0i2 % (v/v) hydrogen-peroxide (Sigma) to PBS and 100 ml were added to the washed plates for 15 minutes at RT. The reaction was stopped by adding 50 mL of 2.25 M sulfuric acid to each well. The absorbance at 490 nm, with the absorbance at 405 nm subtracted as background, was determined on a microtiter plate reader (Vmax,
- Molecular Devices, Menlo Park, CA). The data was reduced using a four-parameter curve-fitting program developed at Genentech, Inc.

35

An HGF polyclonal sandwich ELISA was used to quantify all kringle deletion and C-terminal truncation variants. Briefly, microtiter plates (Nunc) were coated with 5 mg/mL guinea pig polyclonal (anti CHO-expressed rhuHGF) IgG antibody preparation (Genentech, Inc.) as described above. This antibody recognizes rhuHGF as well as HGF truncated forms when compared to visual inspection of Western blots, making it ideal for monitoring HGF variants. Plates were blocked and

duplicate serial dilutions of 293 cell supernatants (1:103-6.106) were added and incubated over night at 4°C. Purified CHO-expressed rhuHGF (100-0.78 ng/mL) was used as a standard and incubated in parallel. Plates were washed and incubated with a 1:500 dilution of the same polyclonal antibody (approx. 400 ng/mL) but in this case horseradish peroxidase conjugated for detection of the variants (see above). Western blotting was performed to determine the size of the expressed HGF variants. For this, SDS-polyacrylamide gel electrophoresis and Western blotting were performed using standard methods with the polyclonal IgG antibody preparation (500 ng/mL). A chemiluminescent detection method (Amersham) and a goat anti-guinea pig IgG-horseradish peroxidase conjugate (1:5000) were used for development of the blot as described by the manufacturer.

Soluble HGF receptor binding assay.

5

10

15

20

25

35

Previous studies on HGF binding to hepatocytes have shown that huHGF could bind to its cell surface receptor with high affinity (Kd~24-32 pM; Higuchi and Nakamura, <u>Biochem. Biophys. Res. Comm. 174</u>, 831-838 (1991)). We preferred to examine HGF binding using a soluble form of the receptor because of the nonspecific binding of HGF to cell surface heparin sulfate proteoglycans [Naldini <u>et al.</u>, <u>EMBO J. 10</u>, 2867-2878 (1991)].

Cell supernatants (concentrated on Amicon filters if concentration was below 600 ng/mL) were tested for their ability to block in solution the binding of CHO-expressed ¹²⁵I rhuHGF (2-5 x 103 Ci/mmole, kindly provided by T. Zioncheck, Genentech, Inc.) to the extracellular domain of the human HGF receptor (huHGFr) fused to the Fc constant region of an human IgG, expressed and secreted from 293 cells.

1.. Construction of huHGFr-IgG chimeras.

A full length cDNA clone encoding the huHGFr was constructed by joining partial cDNAs isolated from cDNA libraries and from PCR amplification. Coding sequences for amino acids 1-270 were isolated from a human placental cDNA library (provided by T. Mason, Genentech) screened with a 50 mer oligonucleotide (5'-

ATGAAGGCCCCGCTGTGCTTGCACCTGGCATCCTCGTGCTCCTGTTTACC-3') (SEQ. ID. NO: 16). Sequences encoding amino acids 809-1390 were isolated from a human liver library (Stragagen) screened with the oligonucleotide probe

(5'-CACTAGTTAGGATGGGGGACATGTCTGTCAGAGGATACTGCACTTGTCGGCATGAA CCGT-3'). (SEQ. ID. NO: 17)

Conditions for plating libraries, and for hybridization and washing filters were as described [Godowski et al., Proc. Natl. Acad. 5 Sci. USA 86, 8083-8087 (1989)]. PCR was used to isolate a cDNA clone containing residues 271-808 of the HGFr (<u>c-met</u>) from A549 cells. $\mu \mathrm{gs}$ of total RNA was used for reverse transcription using a primer specific to the HGFr (5'-TAGTACTAGCACTATGATGTCT -3') (SEQ. ID. NO: 18) in a 100 μ l reaction using Moloney murine leukemia virus reverse transcriptase and buffers supplied by Bethesda Research Laboratories. 10 One-tenth of this reaction mixture was used for PCR amplification. The PCR reaction was performed in a volume of 100 μl containing 10 μl of the reverse transcriptase reaction, 10 mM KCl, 20 mM Tris-HCl (pH 8.8), 10 mM (NH4)SO4, 6 mM MgSO4, 0.1% Trition X-100, 1 U of Vent DNA polymerase (New England Biolabs) and 50 pmol each of the forward 15 primer (5'-TTTACTTCTTGACGGTCCAAAG-3' (SEQ. ID. NO: 19) and the reverse primer (5'-CAGGGGGAGTTGCAGATTCAGCTGT-3') (SEQ. ID. NO: 20). After thirty cycles of denaturation (95°C, 1 min), annealing (55°C, 45 secs)and extension (72°C, 2 min), the PCR product were recovered from lowmelting temperature agarose gels. The full-length HGFr cDNA was 20 subcloned into vector pRK7 (see WO 90/02798, published 22 March 1990) and double-stranded DNA sequencing was performed by the dideoxynucleotide method.

The coding sequence of the extracellular domain of the huHGFr was fused to those of the human IgG1 heavy chain in a two-step process. 25 PCR was used to generate a fragment with a unique BstEII site 3' to the coding sequences of the HGFr amino acid 929. The 5' primer (located in the vector upstream of the HGFr coding sequences) and the 3' primer (5'-AGTTTTGTCGGTGACCTGATCATTCTGATCTGGTTGAACTATTAC-3') (SEQ. ID. NO: 21) were used in a 100 μ l reaction as described above except 30 that the extension time at 72°C was 3 minutes, and 40 ng of the full length HGFr expression vector was used as template. Following amplification, the PCR product was joined to the human IgG- γ 1 heavy chain cDNA through a unique <u>BstE</u>II site in that construct [Bennett et al., J. Biol. Chem. 266, 23060-23067 (1991)]. The resulting construct 35 contained the coding sequences of amino acids 1-929 of the huHGFr fused via the <u>Bst</u>EII site (adding the coding sequences for amino acids V and T) to the coding sequences of amino acids 216-443 of the human

IgG- γ 1 heavy chain. Sequencing of the construct was carried out as described above.

2. Binding assay.

5

10

15

20

25

30

35

The binding assay was performed in breakable microtiter plates (Nunc) coated o/n at 4°C with 1 mg/mL of rabbit-anti-human IgG Fc specific antibody (Jackson Immunoresearch) and plates were carefully washed with PBS containing 0.05% Tween 20 (Biorad). After blocking with PBS containing 0.1% BSA, in this same buffer, 50pM of 125I-rhuHGF in 25 mL per well were added. To each well 50 mL of serial dilutions (1:25-1:6000) of cell supernatants, purified CHO-expressed rhuHGF (25,000-0.064 pM) or medium were added in duplicates. Subsequently, 25 mL of 50 pM of HGF receptor: IgG fusion protein were added and the plates were incubated with gentle shaking. After 4 hours, when equilibrium was reached, plates were washed and wells were individually counted in a gamma-counter. The amount of nonspecifically bound radioactivity was estimated by incubating HGF receptor: IgG with a 500-fold excess of unlabelled rhuHGF. dissociation constant (Kd) of each analogue was calculated at the IC50 from fitted inhibition curves essentially as described (DeBlasi et al., 1989 [?]) using the huHGF concentration determined by ELISA.

C. Biological assay.

The biological activity of WT huHGF and variants was measured by their abilities to induce DNA synthesis of rat hepatocytes in primary culture. Hepatocytes were isolated according to published perfusion techniques with minor modifications [Garrison and Haynes, J. Biol. Chem. 150, 2269-277 (1975)]. Briefly, the livers of female Sprague Dawley rats (160-180g) were perfused through the portal vein with 100 mL of Ca⁺⁺ free Hepes buffered saline containing 0.02% Collagenase type IV (Sigma). After 20 minutes the liver was removed, placed in buffer, gently stirred to separate hepatocytes from connective tissue and blood vessels, and filtered through nylon mesh. Cells were then washed by centrifugation, resuspended at 1×10^5 cells/mL in Williams Media E (Gibco) containing Penicillin (100 U/ml), Streptomycin (100 mg/mL), L-Glutamine (2mM), trace elements (0.01%), transferrin (10 mg/mL) and Aprotinin (1 mg/mL). Hepatocytes were incubated in 96-well microtiter plates (Falcon) in the presence of duplicate serial dilutions of either purified CHO-expressed rhuHGF (1-0.031 mg/mL), 293 supernatants (1:4-1:256) or medium. After 48 hours incubation at

37°C, 0.5 mCi 3H-TdR (15 Ci/mmole, Amersham) was added to each well and incubated for an additional 16 hours. Cells were harvested on filter papers, which were washed, dried and counted in a Beckman counter after addition of scintillation liquid. For each huHGF variant, the specific activity (SA) expressed in units/mg was calculated at half-maximal proliferation (defined as 1 unit/mL) using the HGF concentration obtained in ELISA.

D. Induction of tyrosine phosphorylations on A549 cells.

Human lung carcinoma cells (A549) monolayers were cultured in RPMI 1640 medium containing 10% fetal bovine serum and maintained at 37°C in a humidified atmosphere with 5% CO₂. Serum-starved cells were incubated without or with 200 ng/mL rhuHGF for 5 minutes at 37°C and extracted with lysis buffer containing 50 mM Hepes, 150 mM NaCl, 1.5 mM MgCl₂, 1 mM EGTA, 10 % Glycerol, 1 % Triton X-100 and a cocktail of protease inhibitors. The lysates were immunoprecipitated with anti-Met COOH antibodies and blotted with anti-phosphotyrosine antibodies (see Western blotting above).

EXAMPLE 3

20

25

30

35

10

15

Analysis of Cleavage Site Mutants

The cleavage site of proteases commonly contains a basic residue at position P1 and two hydrophobic amino adid resides in positions P'1 and P'2, which follow the cleaved peptide bond. The proposed cleavage site of huHGF (P1 R494, P'1 V495, P'2 V496) fits this consensus. We chose to try to block cleavage of huHGF by replacing the Pl R494 with either D, E, or A. The major form of WT rhuHGF expressed in these cells is cleaved into two-chain material as judged by the presence of the lpha-chain with an apparent molecular mass of 69 kDa (Fig. 2). Each of these mutations appeared to block processing of rhuHGF because under reducing conditions these variants migrated as a single band at 94 kDa, the predicted size of single-chain HGF. These variants totally lacked the ability to induce the proliferation of hepatocytes in primary culture (Fig. 3A). However, when these variants were analyzed for their ability to compete with WT rhuHGF for binding to the HGF receptor: IgG fusion protein, their inhibition curves were roughly similar to that of WT rhuHGF (Fig. 3B). The Kd determined from these curves showed that WT rhuHGF binds to the fusion protein with high affinity (50-70pM) whereas all single chain variants showed

5

10

15

20

25

30

35

approximately a 2- to 10-fold higher Kd (100-500pM) compared to WT rhuHGF. Results from at least three independent assays are summarized in Table I as residual hepatocyte proliferative activity and receptor binding capacity compared to WT rhuHGF.

Our binding studies showed that WT rhuHGF bound to the soluble receptor fusion protein with a single class of high affinity binding sites (50-70 pM), similar to those found on hepatocytes by Higushi and Nakamura (1991). However, binding of HGF on cells may slightly be different since the soluble receptor is actually a dimer held together by the disulfide bridge of the hinge in the Fc portion of the IgGA.

Direct comparison of specific activity (SA) versus Kd ratios of all single chain variants showed they were inactive at the highest concentration tested (SA< 3%) while receptor binding affinities were only decreased by a factor of 2-3.

These results argue strongly that cleavage of HGF into the twochain form is required for mitogenic activity, i.e. that single-chain HGF is a promitogen and that the uncleaved form of HGF binds to the HGF receptor, albeit with a reduced affinity.

The major form of HGF isolated from placenta [Hernandez et al., (1992) J. Cell Physiol., in press] or expressed in transfected COS cells [Rubin et al., Proc. Natl. Acad. Sci. USA 88, 415-419 (1991)] is in single-chain form. When tested in mitogenic assays, this single-chain form of HGF is found to be biologically active. Taken together with our data, this suggests that this single-chain HGF is activated to the two-chain form during the mitogenic assay.

A second observation is that single-chain variants retain substantial capacity to bind to the HGF receptor, as suggested by our competition binding assays. This raises the interesting possibility that single-chain HGF may be bound to cell-surface HGF receptor in vivo in an inactive state and can subsequently be cleaved to the active double-chain form by the appropriate protease.

EXAMPLE 4

The Effects of Protease Domain Mutations

To elucidate the functional importance of the protease domain of HGF, several single, double and triple mutations were made in order to reconstitute a potential serine-protease active site. The construction of these variants is described in Example 1.

We replaced HGF residues Q534 with H, Y673 with S, or V692 with S as either single, double or triple mutations. The analysis of their effects on mitogenic activity and receptor binding showed that the single mutation Q534H did not significantly alter either SA (5.2 imes 104 Units/mg) or Kd (60 pM) when compared to wt rhuHGF (respectively 3.3 104 Units/mg and 70 pM) whereas Y673S and V692S exhibited SA reduced approximately 5- and 10-fold, respectively. In fact, these two variants never reached the maximum plateau seen with WT rhuHGF (approximately 50 % of wt rhuHGF plateau). Interestingly, these variants showed a Kd similar to WT rhuHGF. All other double and triple variants also retained the ability to bind the HGF receptor but they clearly showed a reduced SA (Table I). The residual SA of the double variants Q534H, Y673S and Y673S, V692S and of the triple variant Q534H,Y673S,V692S were less than 3 % compared to WT rhuHGF. However, the Kd of these variants was not significantly different from WT rhuHGF (Table I). These variants indicate that mutations within the β -chain of HGF block mitogenic activity but they are still able to bind to the HGF receptor. Thus, it appears that these mutants are defective in an activity subsequent to receptor binding.

10

15

20

25

30

These results show that although the β -chain is not required for receptor binding, certain residues (e.g. Y673 and V692) are critical for the structure and/or activity of HGF. Substitution of the nonpolar residue V692 with the polar residue S might have caused a structural transition if new hydrogen bonds to the active site residue D594, as found in serine-proteases, have been introduced. Substitution of Y673 with the smaller residue S might also introduce some local structural modifications. On the other hand, replacement of the polar residue Q534 by another polar residue H of similar size would not likely cause a drastic difference in the HGF conformation as this residue should be exposed; indeed the Q534H variant was similar to rhuHGF (Table I).

EXAMPLE 5

The Effect of C-terminal and Kringle Deletions

In order to ascertain whether the α -chain is required for HGF binding or activity, C-terminal truncations were made as described in Example 1, resulting in variants containing either the α -chain alone,

or variants truncated after the third (N-384) or second (N-303) Kringles.

5

10

15

20

25

30

35

A number of C-terminal truncations of HGF were made by deleting either the β -chain or the β -chain in addition to a progressive number of kringles as depicted in Fig. 1. One variant (N-207) corresponding to the N-terminal domain with the first Kringle did not express the protein to levels detectable either by Western blotting or ELISA using a polyclonal antibody preparation and thus was not investigated further. Expression of the variants containing the first two Kringles (N-303), three Kringles (N-384) or the complete α -chain of HGF was as low as 250-600 ng/mL. A summary of the residual SA and Kd compared to WT rhuHGF of these variants is presented in Table I. At the concentration tested no activity above background levels was observed indicating that these variants lost their biological activity. However, binding competition showed that variants N-303, N-384 or the

However, binding competition showed that variants N-303, N-384 or the α-chain still retained substantial binding capacity (up to 23 % compared to WT rhuHGF binding). Thus, the N-terminal 272 residues of HGF (the mature form of variant N-303) are sufficient for high affinity binding to the HGF receptor.

Results from deleting each kringle domain are shown in Table 1.

Deletion of the first Kringle (variant AK1) of HGF affected biological activity most, showing at least a 100-fold reduction (SA< 0.2% of wt rhuHGF). Similarly, binding of this variant was also affected as it failed to compete for binding with wt rhuHGF up to 2 mg/mL. Deletion of all other Kringles (variants AK2, AK3 or AK4) also induces severely reduced mitogenic activity (Table I). However, the Kds of these deletion variants remained close to that observed with wt rhuHGF.

These data show that Kringles K3 and K4 are not required for receptor binding. Our data support the previous observations by Miyazawa et al., 1991 supra and Chan et al., 1991 supra, in the sense that variant N-303, which in amino acid sequence is very similar to HGF/NK2, retains the ability to compete efficiently for binding to the HGF receptor (Kd~280 pM). Furthermore, the observations that N-303 is sufficient to bind to the receptor and that the second Kringle is not required for binding the HGF receptor (in the context of the remainder of the molecule) suggest that the receptor binding domain is contained within the finger and first Kringle of huHGF.

Unfortunately, we have not been able to detect expression of this

variant using our polyclonal antisera suggesting that variant N-207 (deletion after the first kringle) was not expressed in 293 cells.

EXAMPLE 6

Induction of Tyrosine-Phosphorylation of the huHGF Receptor

5

10

30

. 35

We determined if variants R494E or Y673S,V692S, which bind the HGF receptor in vitro but are defective for mitogenic activity, could stimulate tyrosine-phosphorylation of the HGF receptor in A549 cells. Serum starved cells were treated with purified WT rhuHGF or variants and immunoprecipitates of the HGF receptor were blotted and probed with phosphotyrosine antibodies. Stimulation with wt rhuHGF led to the phosphorylation on tyrosine of the 145 kDa β -subunit of the HGF receptor (Fig. 4). Both variants exhibited a reduced ability to induce phosphorylation of the HGF receptor.

Stimulation of tyrosine phosphorylation on the HGF receptor β -15 subunit by HGF was previously reported [Bottaro et al., Science 251, 802-804 (1991), Naldini <u>et al.</u>, 1991 <u>supra</u>]. The present data show that variants R494E and Y673S, V692S can bind the soluble HGF receptor: IgG protein in vitro but are not efficient in stimulating tyrosinephosphorylation in A549 cells. One interpretation of this result is 20 that these variants are capable of binding the HGF receptor on A549 cells, but are defective in a function required to induce efficient phosphorylation, e.g. receptor dimerization. It has been shown for other receptor proteins with an intrinsic tyrosine kinase such as the epithelial and platelet-derived growth factor that receptor-receptor 25 interactions or dimerization is required for activation of kinase function [see for review Ulrich and Schlessinger, Cell 61 203-212 (1990)]. Alternatively, these variants may not be able to bind the cell-surface associated HGF receptor.

The unique structure of HGF suggests that there may be multiple events that regulate the biological activity of this molecule. An early stage of regulation may be the cleavage step to generate the biologically active two-chain form. Interestingly, cleavage may not simply regulate receptor binding but rather control a subsequent event required for activating the HGF receptor. Our data also suggest that the β -chain, while not absolutely required for receptor binding contributes to a receptor activation step. These variants may be useful in dissecting the signalling events at the HGF receptor.

EXAMPLE 7

Hairpin Domain and Kringle 1 Domain Variants

The huHGF variants listed in Tables 2 and 3 were generated, and their specific activities (SA) and Kd ratios were determined essentially as described in the foregoing examples.

Although the foregoing refers to particular preferred embodiments, it will be understood that the present invention is not so limited. It will occur to those ordinarily skilled in the art that various modifications may be made to the disclosed embodiments without diverting from the overall concept of the invention. All such modifications are intended to be within the scope of the present invention.

15

10

5

Table 1

Variants (var)	SA var/SA wt	Kdwt/Kdvar
	+/- S.D.	+/- S.D.
Single-chain		
R494A	<0.03	0.32 +/- 0.18
R494D	<0.03	0.51 +/- 0.21
R494E	<0.02	0.31 +/- 0.13
Protease		
Q534H	1.19 +/- 0.44	1.48 +/- 0.85
Y673S	0.27 +/- 0.07*	1.35 +/- 0.72
V692S	0.08 +/- 0.04	1.02 +/- 0.13
Q534H, Y673S	<0.03	2.24 +/- 1.11
Y673S, V692S	<0.02	1.76 +/- 0.63
Q534H, Y673S, V692S	<0.02	1.91 +/- 1.28
C-terminal truncation		
N-303	<0.05	0.23 +/- 0.03
N-384	<0.05	0.25 +/- 0.02
α-chain	<0.04	0.25 +/- 0.03
Kringle deletion		
ΔK1	<0.002	<0.03
ΔK2	<0.05	0.41 +/- 0.18
ΔКЗ	<0.03	0.56 +/- 0.36
ΔΚ4	<0.07	0.86 +/- 0.46

^{*} means that the mitogenic activity of the variant did not reach the same absolute level as wild-type huHGF.

ď	
e	
ap	

HGP variant	u	SA mut/wt +/-SD	¤	Kdwt/mut
wt rhuHGF	ĸ	1	т	H
K137A	м	1.12 +/- 0.10	3	0.98 +/- 0.04
K144A, K148A	ĸ	0.93 +/- 0.16	м	1.03 +/- 0.08
E159A	м	< 0.02	м	< 0.03
S161A	en	0.15 +/- 0.03*	м	0.06 +/- 0.04
F162A, L163A, S165A, S166A	м	< 0.02	м	0.05 +/- 0.02
F162A	м	0.04 +/1 0.01*	м	0.05 +/- 0.01
L163A, S165A, S166A	м	0.14 +/- 0.08	м	1.10 +/- 0.04
Y167A	m	1.22 +/- 0.22*	м	0.92 +/- 0.06
X167F	Э	0.38 +/- 0.03*	m .	1.02 +/- 0.02
delta5-Y167A	е	< 0.02	м	< 0.02
delta5-Y167F	е	0.11 +/- 0.02	м	1.01 +/- 0.13
R168A	Э	0.83 +/- 0.07	м	0.98 +/- 0.04
Q173A, E174A, N175A	3	0.33 +/- 0.07*	м	0.21 +/- 0.03
Q173A	3	0.13 +/- 0.03*	м	0.15 +/- 0.05
E174A	3	0.84 +/- 0.11	ю	0.99 +/- 0.02
R181A, E183A, E184A	9	0.92 +/- 0.08	3	0.95 +/- 0.04
N193A, E195A, R197A	3	< 0.02	т	< 0.04
N193A	3	0.45 +/- 0.12	Э	0.62 +/- 0.20
R195A	3	0.10 +/- 0.06	3	0.17 +/- 0.05
R197A	ж	< 0.01	m	< 0.03
Ү198А	m	0.88 +/- 0.06	7	0.77

* means that the mitogenic activity of the variant did not reach the same absolute level as wild-type huHGF.

Table 3

Variants with alterations near or within the Hairpin Domain

	HGF variant	ū	SA +/- mut/wt	a	Kd wt/mut	
	wt rhuHGF	m	H	m	1	
	delta-hairpin	m	< 0.01	m	< 0.02	
	K34A, R35A, R36A	m	0.71 +/- 0.33	ю	0.95 +/- 0.03	
	K52A, D54A	æ	0.32 +/- 0.03*	ю	0.95 +/- 0.03	
43	K52A	т	0.19 +/- 0.03	ю	0.89 +/- 0.05	
	D54A	m	0.13 +/- 0.01	Э	0.79 +/- 0.10	
	K58A, K60A, K62A, K63A, N65A	м	0.96 +/- 0.12	ж	70.0 -/+ 66.0	
	N72A, R76A, N77A, K78A	m	0.04 +/- 0.07	m	0.83 +/- 0.11	
	K109A, K110A, E111A	٣	0.98 +/- 0.04	ю	0.78 +/- 0.02	
	H114A, E115A, D117A	æ	< 0.02	۳	< 0.04	
	H114A	e	0.16 +/- 0.04*	7	0.59	
	E115A	æ	0.20 +/- 0.02*	2	0.47	
	D117A	æ	0.02*	2	0.14	
	R126A, N127A	Э	0.33 +/- 0.14	м	0.87 +/- 0.12	

* means that the mitogenic activity of the variant did not reach the same absolute level as wild-type huHGF.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT: Genentech, Inc., Godowski, Paul J., Lokker, Natalie A., Mark, Melanie R.

- (ii) TITLE OF INVENTION: HEPATOCYTE GROWTH FACTOR VARIANTS
- 10 (iii) NUMBER OF SEQUENCES: 21
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Genentech, Inc.
 - (B) STREET: 460 Point San Bruno Blvd
- 15 (C) CITY: South San Francisco
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94080
- 20 (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: 5.25 inch, 360 Kb floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: patin (Genentech)

25

- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:

30

- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/884811
 - (B) FILING DATE: 18-MAY-92
- 35 (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/885971
 - (B) FILING DATE: 18-MAY-92
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Dreger, Ginger R.
 - (B) REGISTRATION NUMBER: 33,055
 - (C) REFERENCE/DOCKET NUMBER: 755,779P1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415/225-3216
 - (B) TELEFAX: 415/952-9881
 - (C) TELEX: 910/371-7168
 - (2) INFORMATION FOR SEQ ID NO:1:

50

45

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4732 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

5	TTCGAGCTCG	CCCGACATTG	ATTATTGACT	AGTTATTAAT	AGTAATCAAT	50
-	TACGGGGTCA	TTAGTTCATA	GCCCATATAT	GGAGTTCCGC	GTTACATAAC	100
10	TTACGGTAAA	TGGCCCGCCT	GGCTGACCGC	CCAACGACCC	CCGCCCATTG	150
	ACGTCAATAA	TGACGTATGT	TCCCATAGTA	ACGCCAATAG	GGACTTTCCA	200
15	TTGACGTCAA	TGGGTGGAGT	ATTTACGGTA	AACTGCCCAC	TTGGCAGTAC	250
20	ATCAAGTGTA	TCATATGCCA	AGTACGCCCC	CTATTGACGT	CAATGACGGT	300
	AAATGGÇCCG	CCTGGCATTA	TGCCCAGTAC	ATGACCTTAT	GGGACTTTCC	350
25	TACTTGGCAG	TACATCTACG	TATTAGTCAT	CGCTATTACC	ATGGTGATGC	400
	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGGA	450
30	TTTCCAAGTC	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	500
35	AAATCAACGG	GACTTTCCAA	AATGTCGTAA	CAACTCCGCC	CCATTGACGC	550
	AAATGGGCGG	TAGGCGTGTA	CGGTGGGAGG	TCTATATAAG	CAGAGCTCGT	600
40	TTAGTGAACC	GTCAGATCGC	CTGGAGACGC	CATCCACGCT	GTTTTGACCT	650
	CCATAGAAGA	CACCGGGACC	GATCCAGCCT	CCGCGGCCGG	GAACGGTGCA	700
45	TTGGAACGCG	GATTCCCCGT	GCCAAGAGTG	ACGTAAGTAC	CGCCTATAGA	750
50	GTCTATAGGC	CCACCCCTT	GGCTTCGTTA	GAACGCGGCT	ACAATTAATA	800
	CATAACCTTA	TGTATCATAC	ACATACGATT	TAGGTGACAC	TATAGAATAA	850
55	CATCCACTTT	GCCTTTCTCT	CCACAGGTGT	CCACTCCCAG	GTCCAACTGC	900

ACCTCGGTTC TATCGATTGA ATTCCCCGGG GATCCTCTAG AGTCGACCTG 950 CAGAAGCTTG CCTCGAGGCA AGCTTGGCCG CCATGGCCCA ACTTGTTTAT 1000 5 TGCAGCTTAT AATGGTTACA AATAAAGCAA TAGCATCACA AATTTCACAA 1050 10 ATAAAGCATT TTTTCACTG CATTCTAGTT GTGGTTTGTC CAAACTCATC 1100 AATGTATCTT ATCATGTCTG GATCGATCGG GAATTAATTC GGCGCAGCAC 1150 15 CATGGCCTGA AATAACCTCT GAAAGAGGAA CTTGGTTAGG TACCTTCTGA 1200 GGCGGAAGA ACCAGCTGTG GAATGTGTGT CAGTTAGGGT GTGGAAAGTC 1250 20 CCCAGGCTCC CCAGCAGGCA GAAGTATGCA AAGCATGCAT CTCAATTAGT 1300 CAGCAACCAG GTGTGGAAAG TCCCCAGGCT CCCCAGCAGG CAGAAGTATG 1350 ~ 25 CAAAGCATGC ATCTCAATTA GTCAGCAACC ATAGTCCCGC CCCTAACTCC 1400 30 GCCCATCCG CCCTAACTC CGCCCAGTTC CGCCCCATG 1450 GCTGACTAAT TTTTTTATT TATGCAGAGG CCGAGGCCGC CTCGGCCTCT 1500 35 GAGCTATTCC AGAAGTAGTG AGGAGGCTTT TITGGAGGCC TAGGCTTTTG 1550 40 CAAAAAGCTG TTAACAGCTT GGCACTGGCC GTCGTTTTAC AACGTCGTGA 1600 CTGGGAAAAC CCTGGCGTTA CCCAACTTAA TCGCCTTGCA GCACATCCCC 1650 45 CCTTCGCCAG CTGGCGTAAT AGCGAAGAGG CCCGCACCGA TCGCCCTTCC 1700 CAACAGTTGC GTAGCCTGAA TGGCGAATGG CGCCTGATGC GGTATTTCT 1750 50 CCTTACGCAT CTGTGCGGTA TTTCACACCG CATACGTCAA AGCAACCATA 1800 55 GTACGCGCCC TGTAGCGGCG CATTAAGCGC GGCGGGTGTG GTGGTTACGC 1850

	GCAGCGTGAC	CGCTACACTT	GCCAGCGCCC	TAGCGCCCGC	TCCTTTCGCT	1900
5	TTCTTCCCTT	CCTTTCTCGC	CACGTTCGCC	GGCTTTCCCC	GTCAAGCTCT	1950
	AAATCGGGGG	CTCCCTTTAG	GGTTCCGATT	TAGTGCTTTA	CGGCACCTCG	2000
10	ACCCCAAAAA	ACTTGATTTG	GGTGATGGTT	CACGTAGTGG	GCCATCGCCC	2050
	TGATAGACGG	TTTTTCGCCC	TTTGACGTTG	GAGTCCACGT	TCTTTAATAG	2100
15	TGGACTCTTG	TTCCAAACTG	GAACAACACT	CAACCCTATC	TCGGGCTATT	2150
20	CTTTTGATTT	ATAAGGGATT	TTGCCGATTT	CGGCCTATTG	GTTAAAAAAT	2200
	GAGCTGATTT	AACAAAAATT	TAACGCGAAT	TTTAACAAAA	TATTAACGTT	2250
25	TACAATTTTA	TGGTGCACTC	TCAGTACAAT	CTGCTCTGAT	GCCGCATAGT	2300
	TAAGCCAACT	CCGCTATCGC	TACGTGACTG	GGTCATGGCT	GCGCCCCGAC	2350
30	ACCCGCCAAC	ACCCGCTGAC	GCGCCCTGAC	GGGCTTGTCT	GCTCCCGGCA	2400
35	TCCGCTTACA	GACAAGCTGT	GACCGTCTCC	GGGAGCTGCA	TGTGTCAGAG	2450
	GTTTTCACCG	TCATCACCGA	AACGCGCGAG	GCAGTATTCT	TGAAGACGAA	2500
40	AGGGCCTCGT	GATACGCCTA	TTTTTATAGG	TTAATGTCAT	GATAATAATG	2550
	GTTTCTTAGA	CGTCAGGTGG	CACTTTTCGG	GGAAATGTGC	GCGGAACCCC	2600
45	TATTTGTTTA	TTTTTCTAAA	TACATTCAAA	TATGTATCCG	CTCATGAGAC	2650
50	AATAACCCTG	ATAAATGCTT	CAATAATATT	GAAAAAGGAA	GAGTATGAGT	2700
	ATTCAACATT	TCCGTGTCGC	CCTTATTCCC	TTTTTTGCGG	CATTTTGCCT	2 7 50
55	TCCTGTTTTT	GCTCACCCAG	AAACGCTGGT	GAAAGTAAAA	GATGCTGAAG	2800

	Alchoritoo	TOCACCAGIO	COTTACHTCG	AACIGGAICI	CAACAGCGGT	2030
5	AAGATCCTTG	AGAGTTTTCG	CCCCGAAGAA	CGTTTTCCAA	TGATGAGCAC	2900
	TTTTAAAGTT	CTGCTATGTG	GCGCGGTATŢ	ATCCCGTGAT	GACGCCGGGC	2950
10	AAGAGCAACT	CGGTCGCCGC	ATACACTATT	CTCAGAATGA	CTTGGTTGAG	3000
	TACTCACCAG	TCACAGAAAA	GCATCTTACG	GATGGCATGA	CAGTAAGAGA	3050
15	ATTATGCAGT	GCTGCCATAA	CCATGAGTGA	TAACACTGCG	GCCAACTTAC	3100
20	TTCTGACAAC	GATCGGAGGA	CCGAAGGAGC	TAACCGCTTT	TTTGCACAAC	3150
	ATGGGGGATC	ATGTAACTCG	CCTTGATCGT	TGGGAACCGG	AGCTGAATGA	3200
25	AGCCATACCA	AACGACGAGC	GTGACACCAC	GATGCCAGCA	GCAATGGCAA	3250
	CAACGTTGCG	CAAACTATTA	ACTGGCGAAC	TACTTACTCT	AGCTTCCCGG	3300
30	CAACAATTAA	TAGACTGGAT	GGAGGCGGAT	AAAGTTGCAG	GACCACTTCT	3350
35	GCGCTCGGCC	CTTCCGGCTG	GCTGGTTTAT	TGCTGATAAA	TCTGGAGCCG	3400
	GTGAGCGTGG	GTCTCGCGGT	ATCATTGCAG	CACTGGGGCC	AGATGGTAAG	3450
40	CCCTCCCGTA	TCGTAGTTAT	CTACACGACG	GGGAGTCAGG	CAACTATGGA	3500
	TGAACGAAAT	AGACAGATCG	CTGAGATAGG	TGCCTCACTG	ATTAAGCATT	3550
45	GGTAACTGTC	AGACCAAGTT	TACTCATATA	TACTTTAGAT	TGATTTAAAA	. 3600
50	CTTCATTTTT	' AATTTAAAAG	GATCTAGGTG	AAGATCCTTT	TTGATAATCT	3650
	CATGACCAAA	ATCCCTTAAC	: GTGAGTTTTC	: GTTCCACTGA	GCGTCAGACC	3700
55	CCGTAGAAAA	A GATCAAAGGA	TCTTCTTGAG	ATCCTTTTT	TCTGCGCGTA	3750

	ATCTGCTGCT	TGCAAACAAA	AAAACCACCG	CTACCAGCGG	TGGTTTGTTT	3800
5	GCCGGATCAA	GAGCTACCAA	CTCTTTTTCC	GAAGGTAACT	GGCTTCAGCA	3850
	GAGCGCAGAT	' ACCAAATACT	GTCCTTCTAG	TGTAGCCGTA	GTTAGGCCAC	3900
10	CACTTCAAGA	ACTCTGTAGC	ACCGCCTACA	TACCTCGCTC	TGCTAATCCT	3950
15	GTTACCAGTG	GCTGCTGCCA	GTGGCGATAA	GTCGTGTCTT	ACCGGGTTGG	4000
15	ACTCAAGACG	ATAGTTACCG	GATAAGGCGC	AGCGGTCGGG	CTGAACGGGG	4050
20	GGTTCGTGCA	CACAGCCCAG	CTTGGAGCGA	ACGACCTACA	CCGAACTGAG	4100
	ATACCTACAG	CGTGAGCATT	GAGAAAGCGC	CACGCTTCCC	GAAGGGAGAA	4150
25	AGGCGGACAG	GTATCCGGTA	AGCGGCAGGG	TCGGAACAGG	AGAGCGCACG	4200
30	AGGGAGCTTC	CAGGGGGAAA	CGCCTGGTAT	CTTTATAGTC	CTGTCGGGTT	4250
30	TCGCCACCTC	TGACTTGAGC	GTCGATTTTT	GTGATGCTCG	TCAGGGGGC	4300
35	GGAGCCTATG	GAAAAACGCC	AGCAACGCGG	CCTTTTTACG	GTTCCTGGCC	4350
	TTTTGCTGGC	CTITTGCTCA	CATGTTCTTT	CCTGCGTTAT	CCCCTGATTC	4400
40	TGTGGATAAC	CGTATTACCG	CCTTTGAGTG	AGCTGATACC	GCTCGCCGCA	4450
15	GCCGAACGAC	CGAGCGCAGC	GAGTCAGTGA	GCGAGGAAGC	GGAAGAGCGC	4500
*3	CCAATACGCA	AACCGCCTCT	CCCCGCGCGT	TGGCCGATTC	ATTAATCCAG	4550
50	CTGGCACGAC	AGGTTTCCCG	ACTGGAAAGC	GGGCAGTGAG	CGCAACGCAA	4600
	TTAATGTGAG	TTACCTCACT	CATTAGGCAC	CCCAGGCTTT	ACACTTTATG	4650
55	CTTCCGGCTC	GTATGTTGTG	TGGAATTGTG	AGCGGATAAC	AATTTCACAC	4700

AGGAAACAGC TATGACCATG ATTACGAATT AA 4732

5	(2) INFORMATION FOR SEQ ID NO:2:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 47 bases(B) TYPE: nucleic acid
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
15	TTGGAATCCC ATTTACAACC TCGAGTTGTT TCGTTTTGGC ACAAGAT 47
20	(2) INFORMATION FOR SEQ ID NO:3:
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 bases(B) TYPE: nucleic acid(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear.
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
30	GAATCCCATT TACGACGTCC AATTGTTTCG 30
35	(2) INFORMATION FOR SEQ ID NO:4:
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 26 bases(B) TYPE: nucleic acid(C) STRANDEDNESS: single
40	(D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
45	CCCATTTACA ACTGCCAATT GTTTCG 26
50	(2) INFORMATION FOR SEQ ID NO:5:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: nucleic acid
55	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
        AGAAGGGAAA CAGTGTCGTG CA 22
  5
       (2) INFORMATION FOR SEQ ID NO:6:
 10
          (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 22 bases
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
15
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
       AGTGGGCCAC CAGAATCCCC CT 22
20
      (2) INFORMATION FOR SEQ ID NO:7:
25
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 23 bases
             (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
30
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
     TCCACGACCA GGAGAAATGA CAC 23
35
      (2) INFORMATION FOR SEQ ID NO:8:
40
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 30 bases
             (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
45
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
      GCATTCAACT TCTGAGTTTC TAATGTAGTC 30
50
      (2) INFORMATION FOR SEQ ID NO:9:
55
         (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 30 bases
```

- Sie Arman

	(C) S	rand:	nucleic EDNESS: GY: lin	sing				
(xi)	SEQUE	NCE D	ESCRIPT	ION:	SEQ	ID	NO:9	:

CATAGTATTG TCAGCTTCAA CTTCTGAACA 30

10

5

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 30 bases

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

TCCATGTGAC ATATCTTCAG TTGTTTCCAA 30

25

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
- 30 (A) LENGTH: 30 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TGTGGTATCA CCTTCATCTT GTCCATGTGA 30

40

45

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ACCTTGGATG CATTAAGTTG TTTC 24

55

	(2) INFORMATION FOR SEQ ID NO:13:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	TTGTCCATGT GATTAATCAC AGT 23	
15	(2) INFORMATION FOR SEQ ID NO:14:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	GTTCGTGTTG GGATCCCATT TACCTATCGC AATTG 35	
30	(2) INFORMATION FOR SEQ ID NO:15:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10596 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
1 0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT	50
15	TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC	100
	TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG	150
	ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA	200
55	TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC	250

	AICAAGIGIA	ICAIAIGCCA	AGIACGCCCC	CIATIGACGI	CAATGACGGT	300
¹ 5	AAATGGCCCG	CCTGGCATTA	TGCCCAGTAC	ATGACCTTAT	GGGACTTTCC	350
	TACTTGGCAG	TACATCTACG	TATTAGTCAT	CGCTATTACC	ATGGTGATGC	400
10	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGGA	450
	TTTCCAAGTC	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	50 0
15	AAATCAACGG	GACTITCCAA	AATGTCGTAA	CAACTCCGCC	CCATTGACGC	550
20	AAATGGGCGG	TAGGCGTGTA	CGGTGGGAGG	TCTATATAAG	CAGAGCTCGT	600
	TTAGTGAACC	GTCAGATCGC	CTGGAGACGC	CATCCACGCT	GTTTTGACCT	650
25	CCATAGAAGA	CACCGGGACC	GATCCAGCCT	CCGCGGCCGG	GAACGGTGCA	70 0
	TTGGAAÇGCG	GATTCCCCGT	GCCAAGAGTG	ACGTAAGTAC	CGCCTATAGA	750
30 .	GTCTATAGGC	CCACCCCCTT	GGCTTCGTTA	GAACGCGGCT	ACAATTAATA	800
35	CATAACCITA	TGTATCATAC	ACATACGATT	TAGGTGACAC	TATAGAATAA	85 0
	CATCCACTTT	GCCTTTCTCT	CCACAGGTGT	CCACTCCCAG	GTCCAACTGC	900
40	ACCTCGGTTC	TATCGATTCT	CGAGAATTAA	TTCAAGCTTG	CGGCCGCAGC	950
	TTGGCCGCCA	TGGCCCAACT	TGTTTATTGC	AGCTTATAAT	GGTTACAAAT	1000
45	AAAGCAATAG	CATCACAAAT	TTCACAAATA	AAGCATTTT	TTCACTGCAT	1050
50	TCTAGTTGTG	GTTTGTCCAA	ACTCATCAAT	GTATCTTATC	ATGTCTGGAT	1100
	CGATCGGGAA	TTAATTCGGC	GCAGCACCAT	GGCCTGAAAT	AACCTCTGAA	1150
55	AGAGGAÄCTT	GGTTAGGTAC	CTTCTGAGGC	GGAAAGAACC	AGCTGTGGAA	1200

TGTGTGTCAG TTAGGGTGTG GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA 1250 GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCAGGTG TGGAAAGTCC 1300 5 CCAGGCTCCC CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC 1350 AGCAACCATA GTCCCGCCC TAACTCCGCC CATCCCGCCC CTAACTCCGC 1400 10 CCAGTTCCGC CCCATGGCT GACTAATITT TTTTATTTAT 1450 15 GCAGAGGCCG AGGCCGCCTC GGCCTCTGAG CTATTCCAGA AGTAGTGAGG 1500 AGGCTTTTTT GGAGGCCTAG GCTTTTGCAA AAAGCTGTTC ACGTGATGAA 1550 20 TTCTCATGTT TGACAGCTTA TCATCGATAG ATCCTCACAG GCCGCACCCA 1600 25 GCTTTCTTC CGTTGCCCCA GTAGCATCTC TGTCTGGTGA CCTTGAAGAG 1650 GAAGAGGAGG GGTCCCGAGA ATCCCCATCC CTACCGTCCA GCAAAAAGGG 1700 30 GGACGAGGAA TITGAGGCCT GGCTTGAGGC TCAGGACGCA AATCTTGAGG 1750 ATGTTCAGCG GGAGTTTTCC GGGCTGCGAG TAATTGGTGA TGAGGACGAG 1800 35 GATGGTTCGG AGGATGGGGA ATTTTCAGAC CTGGATCTGT CTGACAGCGA 1850 40 CCATGAAGGG GATGAGGGTG GGGGGGCTGT TGGAGGGGGC AGGAGTCTGC 1900 ACTCCCTGTA TTCACTGAGC GTCGTCTAAT AAAGATGTCT ATTGATCTCT 1950 45 TTTAGTGTGA ATCATGTCTG ACGAGGGCC AGGTACAGGA CCTGGAAATG 2000 GCCTAGGAGA GAAGGGAGAC ACATCTGGAC CAGAAGGCTC CGGCGGCAGT 2050 50 GGACCTCAAA GAAGAGGGG TGATAACCAT GGACGAGGAC GGGGAAGAGG 2100 55 ACGAGGACGA GGAGGCGGAA GACCAGGAGC CCCGGGCGGC TCAGGATCAG 2150

	· ·	TAGAGATGGT	GTCCGGAGAC	CCCAAAAACG	TCCAAGTTGC	2200
5	ATTGGCTGCA	AAGGGACCCA	CGGTGGAACA	GGAGCAGGAG	CAGGAGCGGG	2250
	AGGGGCAGGA	GCAGGAGGGG	CAGGAGCAGG	AGGAGGGCA	GGAGCAGGAG	2300
10	GAGGGGCAGG	AGGGGCAGGA	GGGGCAGGAG	GGGCAGGAGC	AGGAGGAGGG	2350
	GCAGGAGCAG	GAGGAGGGC	AGGAGGGCA	GGAGGGGCAG	GAGCAGGAGG	2400
15	AGGGGCAGGA	GCAGGAGGAG	GGGCAGGAGG	GGCAGGAGCA	GGAGGAGGGG	2450
20	CAGGAGGGGC	AGGAGGGCA	GGAGCAGGAG	GAGGGGCAGG	AGCAGGAGGA	2500
	GGGGCAGGAG	GGGCAGGAGC	AGGAGGAGGG	GCAGGAGGGG	CAGGAGGGC	2550
25	AGGAGCAGGA	GGAGGGGCAG	GAGCAGGAGG	GGCAGGAGGG	GCAGGAGGGG	2600
30	CAGGAGCAGG	AGGGGCAGGA	GCAGGAGGAG	GGGCAGGAGG	GGCAGGAGGG	2650
30	GCAGGAGCAG	GAGGGGCA GG	AGCAGGAGGG	GCAGGAGCAG	GAGGGGCAGG	270 0
35	AGCAGGAGGG	GCAGGAGGG	CAGGAGCAGG	AGGGGCAGGA	GGGGCAGGAG	2750
25 30 35 40	CAGGAGGGC	AGGAGGGCA	GGAGCAGGAG	GAGGGGCAGG	AGGGGCAGGA	2800
40	GCAGGAGGAG	GGGCAGGAGG	GGCAGGAGCA	GGAGGGGCAG	GAGGGGCAGG	2850
ΔE	AGCAGGAGGG	GCAGGAGGG	CAGGAGCAGG	AGGGGCAGGA	GGGGCAGGAG	2900
45	CAGGAGGAGG	GGCAGGAGCA	GGAGGGCAG	GAGCAGGAGG	TGGAGGCCGG	2950
50	GGTCGAGGAG	GCAGTGGAGG	CCGGGGTCGA	GGAGGTAGTG	GAGGCCGGGG	3000
•	TCGAGGAGGT	AGTGGAGGCC	GCCGGGGTAG	AGGACGTGAA	AGAGCCAGGG	3050
55	GGGGAAGTCG	TGAAAGAGCC	AGGGGGAGAG	GTCGTGGACG	TGGAGAAAAG	3100

	AGGCCCAGGA	GTCCCAGTAG	TCAGTCATCA	TCATCCGGGT	CTCCACCGCG	3150
5	CAGGCCCCCT	CCAGGTAGAA	GGCCATTTT	CCACCCTGTA	GGGGAAGCCG	3200
	ATTATTTTGA	ATACCACCAA	GAAGGTGGCC	CAGATGGTGA	GCCTGACGTG	3250
10	CCCCCGGGAG	CGATAGAGCA	GGGCCCCGCA	GATGACCCAG	GAGAAGGCCC	3300
15	AAGCACTGGA	CCCCGGGGTC	AGGGTGATGG	AGGCAGGCGC	AAAAAAGGAG	3350
15	GGTGGTTTGG	AAAGCATCGT	GGTCAAGGAG	GTTCCAACCC	GAAATTTGAG	3400
20	AACATTGCAG	AAGGTTTAAG	AGCTCTCCTG	GCTAGGAGTC	ACGTAGAAAG	3450
	GACTACCGAC	GAAGGAACTT	GGGTCGCCGG	TGTGTTCGTA	TATGGAGGTA	3500
25	GTAAGACCTC	CCTTTACAAC	CTAAGGCGAG	GAACTGCCCT	TGCTATTCCA	3550
30	CAATGTCGTC	TTACACCATT	GAGTCGTCTC	CCCTTTGGAA	TGGCCCCTGG	3600
	ACCCGGCCCA	CAACCTGGCC	CGCTAAGGGA	GTCCATTGTC	TGTTATTTCA	3650
35	TGGTCTTTT	ACAAACTCAT	ATATTTGCTG	AGGTTTTGAA	GGATGCGATT	3700
	AAGGACCTTG	TTATGACAAA	GCCCGCTCCT	ACCTGCAATA	TCAGGGTGAC	37 50
40	TGTGTGCAGC	TTTGACGATG	GAGTAGATTT	GCCTCCCTGG	TTTCCACCTA	3800
45	TGGTGGAAGG	GGCTGCCGCG	GAGGGTGATG	ACGGAGATGA	CGGAGATGAA	3850
	GGAGGTGATG	GAGATGAGGG	TGAGGAAGGG	CAGGAGTGAT	GTAACTTGTT	3900
50	AGGAGACGCC	CTCAATCGTA	TTAAAAGCCG	TGTATTCCCC	CGCACTAAAG	3950
	AATAAATCCC	CAGTAGACAT	CATGCGTGCT	GTTGGTGTAT	TTCTGGCCAT	4000
55	CTGTCTTGTC	ACCATTTTCG	TCCTCCCAAC	ATGGGGCAAT	TGGGCATACC	4050

CATGTTGTCA CGTCACTCAG CTCCGCGCTC AACACCTTCT CGCGTTGGAA 4100 AACATTAGCG ACATTTACCT GGTGAGCAAT CAGACATGCG ACGGCTTTAG 4150 5 CCTGGCCTCC TTAAATTCAC CTAAGAATGG GAGCAACCAG CATGCAGGAA 4200 10 AAGGACAAGC AGCGAAAATT CACGCCCCCT TGGGAGGTGG CGGCATATGC 4250 AAAGGATAGC ACTCCCACTC TACTACTGGG TATCATATGC TGACTGTATA 4300 15 TGCATGAGGA TAGCATATGC TACCCGGATA CAGATTAGGA TAGCATATAC 4350 TACCCAGATA TAGATTAGGA TAGCATATGC TACCCAGATA TAGATTAGGA 4400 20 TAGCCTATGC TACCCAGATA TAAATTAGGA TAGCATATAC TACCCAGATA 4450 25 TAGATTAGGA TAGCATATGC TACCCAGATA TAGATTAGGA TAGCCTATGC 4500 TACCCAGATA TAGATTAGGA TAGCATATGC TACCCAGATA TAGATTAGGA 4550 30 TAGCATATGC TATCCAGATA TTTGGGTAGT ATATGCTACC CAGATATAAA 4600 TTAGGATAGC ATATACTACC CTAATCTCTA TTAGGATAGC ATATGCTACC 4650 35 CGGATACAGA TTAGGATAGC ATATACTACC CAGATATAGA TTAGGATAGC 4700 40 ATATGCTACC CAGATATAGA TTAGGATAGC CTATGCTACC CAGATATAAA 4750 TTAGGATAGC ATATACTACC CAGATATAGA TTAGGATAGC ATATGCTACC 4800 45 CAGATATAGA TTAGGATAGC CTATGCTACC CAGATATAGA TTAGGATAGC 4850 ATATGCTATC CAGATATITG GGTAGTATAT GCTACCCATG GCAACATTAG 4900 50 CCCACCGTGC TCTCAGCGAC CTCGTGAATA TGAGGACCAA CAACCCTGTG 4950 CTTGGCGCTC AGGCGCAAGT GTGTGTAATT TGTCCTCCAG ATCGCAGCAA 5000 55

	TCGCGCCCCT	ATCTTGGCCC	GCCCACCTAC	TTATGCAGGT	ATTCCCCGGG	5050
5	GTGCCATTAG	TGGTTTTGTG	GGCAAGTGGT	TTGACCGCAG	TGGTTAGCGG	5100
10 15 20	GGTTACAATC	AGCCAAGTTA	TTACACCCTT	ATTTTACAGT	CCAAAACCGC	5150
10	AGGGCGGCGT	GTGGGGGCTG	ACGCGTGCCC	CCACTCCACA	ATTTCAAAAA	5200
GGTTACAATC AGCCAAGT 10 AGGGCGGCGT GTGGGGGG AAAGAGTGGC CACTTGTC 15 GTTTAATTTT CGGGGGTC 20 ACCTGTCTTG GTCCCTGC	AAAGAGTGGC	CACTTGTCTT	TGTTTATGGG	CCCCATTGGC	GTGGAGCCCC	5250
	CGGGGGTGTT	AGAGACAACC	AGTGGAGTCC	GCTGCTGTCG	5300	
10	GCGTCCACTC	TCTTTCCCCT	TGTTACAAAT	AGAGTGTAAC	AACATGGTTC	5350
	ACCTGTCTTG	GTCCCTGCCT	GGGACACATC	TTAATAACCC	CAGTATCATA	5400
25	TTGCACTAGG	ATTATGTGTT	GCCCATAGCC	ATAAATTCGT	GTGAGATGGA	545 0
3.0	CATCCAGTCT	TTACGGCTTG	TCCCCACCCC	ATGGATTTCT	ATTGTTAAAG	5500
30	ATATTCAGAA	TGTTTCATTC	CTACACTAGT	ATTTATTGCC	CAAGGGGTTT	5550
35	GTGAGGGTTA	TATTGGTGTC	ATAGCACAAT	GCCACCACTG	AACCCCCCGT	56 00
10	CCAAATTTTA	TTCTGGGGGC	GTCACCTGAA	ACCTTGTTTT	CGAGCACCTC	5650
40	ACATACACCT	TACTGTTCAC	AACTCAGCAG	TTATTCTATT	AGCTAAACGA	5700
4 E	AGGAGAATGA	AGAAGCAGGC	GAAGATTCAG	GAGAGTTCAC	TGCCCGCTCC	5750
45	TTGATCTTCA	GCCACTGCCC	TTGTGACTAA	AATGGTTCAC	TACCCTCGTG	5800
50	GAATCCTGAC	CCCATGTAAA	TAAAACCGTG	ACAGCTCATG	GGGTGGGAGA	5850
	TATCGCTGTT	CCTTAGGACC	CTTTTACTAA	CCCTAATTCG	ATAGCATATG	5900
55	CTTCCCGTTG	GGTAACATAT	GCTATTGAAT	TAGGGTTAGT	CTGGATAGTA	5950

TATACTACTA CCCGGGAAGC ATATGCTACC CGTTTAGGGT TAACAAGGGG 6000 GCCTTATAAA CACTATTGCT AATGCCCTCT TGAGGGTCCG CTTATCGGTA 6050 5 GCTACACAGG CCCCTCTGAT TGACGTTGGT GTAGCCTCCC GTAGTCTTCC 6100 10 TGGGCCCTG GGAGGTACAT GTCCCCCAGC ATTGGTGTAA GAGCTTCAGC 6150 CAAGAGTTAC ACATAAAGGC AATGTTGTGT TGCAGTCCAC AGACTGCAAA 6200 15 GTCTGCTCCA GGATGAAAGC CACTCAGTGT TGGCAAATGT GCACATCCAT 6250 TTATAAGGAT GTCAACTACA GTCAGAGAAC CCCTTTGTGT TTGGTCCCCC 6300 20 CCCGTGTCAC ATGTGGAACA GGGCCCAGTT GGCAAGTTGT ACCAACCAAC 6350 25 TGAAGGGATT ACATGCACTG CCCGTGACCA ATACAAAACA AAAGCGCTCC 6400 TCGTACCAGC GAAGAAGGGG CAGAGATGCC GTAGTCAGGT TTAGTTCGTC 6450 30 CGGCGGCGG GGATCCGCCA GAAATCCGCG CGGTGGTTTT TGGGGGGTCGG 6500 GGGTGTTTGG CAGCCAGAA CGCCCGGTGT TCGTGTCGCG CCAGTACATG 6550 35 CGGTCCATGC CCAGGCCATC CAAAAACCAT GGGTCTGTCT GCTCAGTCCA 6600 GTCGTGGACC TGACCCCACG CAACGCCCAA AAGAATAACC CCCACGAACC 6650 40 ATAAACCATT CCCCATGGGG GACCCCGTCC CTAACCCACG GGGCCCGTGG 6700 45 CTATGCCGCG CTTGCCGCCC CGACGTTGGC TGCGAGCCCT GGGCCTTCAC 6750 CCGAACTTGG GGGTTGGGGT GGGGAAAAGG AAGAAACGCG GGCGTATTGG 6800 50 CCCCAATGGG GTCTCGGTGG GGTATCGACA GAGTGCCAGC CCTGGGACCG 6850 55 AACCCCGCGT TTATGAACAA ACGACCCAAC ACCCGTGCGT TTTATTCTGT 6900

CTTTTTATTG CCGTCATAGC GCGGGTTCCT TCCGGTATTG TCTCCTTCCG 6950 TGTTTCAGTT AGCCTCCCCC ATCTCCCGGG GTGGGCGAAG AACTCCAGCA 7000 5 TGAGATCCCC GCGCTGGAGG ATCATCCAGC CGGCGTCCCG GAAAACGATT 7050 CCGAAGCCCA ACCTTTCATA GAAGGCGGCG GTGGAATCGA AATCTCGTGA 7100 10 TGGCAGGTTG GGCGTCGCTT GGTCGGTCAT TTCGAACCCC AGAGTCCCGC 7150 15 TCAGAAGAAC TCGTCAAGAA GGCGATAGAA GGCGATGCGC TGCGAATCGG 7200 GAGCGGCGAT ACCGTAAAGC ACGAGGAAGC GGTCAGCCCA TTCGCCGCCA 7250 20 AGCTCTTCAG CAATATCACG GGTAGCCAAC GCTATGTCCT GATAGCGGTC 7300 CGCCACACCC AGCCGGCCAC AGTCGATGAA TCCAGAAAAG CGGCCATTTT 7350 25 CCACCATGAT ATTCGGCAAG CAGGCATCGC CATGGGTCAC GACGAGATCC 7400 30 TCGCCGTCGG GCATGCGCGC CTTGAGCCTG GCGAACAGTT CGGCTGGCGC 7450 GAGCCCCTGA TGCTCTTCGT CCAGATCATC CTGATCGACA AGACCGGCTT 7500 35 CCATCCGAGT ACGTGCTCGC TCGATGCGAT GTTTCGCTTG GTGGTCGAAT 7550 GGGCAGGTAG CCGGATCAAG CGTATGCAGC CGCCGCATTG CATCAGCCAT 7600 40 GATGGATACT TTCTCGGCAG GAGCAAGGTG AGATGACAGG AGATCCTGCC 7650 45 CCGGCACTTC GCCCAATAGC AGCCAGTCCC TTCCCGCTTC AGTGACAACG 7700 TCGAGCACAG CTGCGCAAGG AACGCCCGTC GTGGCCAGCC ACGATAGCCG 7750 50 CGCTGCCTCG TCCTGCAGTT CATTCAGGGC ACCGGACAGG TCGGTCTTGA 7800 CAAAAAGAAC CGGGCGCCCC TGCGCTGACA GCCGGAACAC GGCGGCATCA 7850 55

	GAGCAGCCGA	TTGTCTGTTG	TGCCCAGTCA	TAGCCGAATA	GCCTCTCCAC	7900
5	CCAAGCGGCC	GGAGAACCTG	CGTGCAATCC	ATCTTGTTCA	ATCATGCGAA	7950
-	ACGATCCTCA	TCCTGTCTCT	TGATCAGATC	TGCGGCACGC	TGTTGACGCT	8000
10	GTTAAGCGGG	TCGCTGCAGG	GTCGCTCGGT	GTTCGAGGCC	ACACGCGTCA	8050
	CCTTAATATG	CGAAGTGGAC	CTGGGACCGC	GCCGCCCGA	CTGCATCTGC	8100
15	GTGTTCGAAT	TCATCAAAGC	AACCATAGTA	CGCGCCCTGT	AGCGGCGCAT	8150
20	TAAGCGÇGGC	GGGTGTGGTG	GTTACGCGCA	GCGTGACCGC	TACACTTGCC	8200
	AGCGCCCTAG	CGCCCGCTCC	TTTCGCTTTC	TTCCCTTCCT	TTCTCGCCAC	8250
25	GTTCGCCGGC	TTTCCCCGTC	AAGCTCTAAA	TCGGGGGCTC	CCTTTAGGGT	8300
	TCCGATTTAG	TGCTTTACGG	CACCTCGACC	CCAAAAAACT	TGATTTGGGT	8350
30	GATGGTTCAC	GTAGTGGGCC	ATCGCCCTGA	TAGACGGTTT	TTCGCCCTTT	8400
35	GACGTTGGAG	TCCACGTTCT	TTAATAGTGG	ACTCTTGTTC	CAAACTGGAA	8450
	CAACACTCAA	CCCTATCTCG	GGCTATTCTT	TTGATTTATA	AGGGATTTTG	8500
40	CCGATTTCGG	CCTATTGGTT	AAAAAATGAG	CTGATTTAAC	AATTTAAAAA	8550
	CGCGAATTTT	AACAAAATAT	TAACGTTTAC	AATITTATGG	TGCAGGCCTC	8600
45	GTGATACGCC	TATTTTTATA	GGTTAATGTC	ATGATAATAA	TGGTTTCTTA	8650
50	GACGTCAGGT	GGCACTTTTC	GGGGAAATGT	GCGCGGAACC	CCTATTTGTT	8700
	TATTTTTCTA	AATACATTCA	AATATGTATC	CGCTCATGAG	ACAATAACCC	87 50
55	TGATAAATGC	TTCAATAATA	TTGAAAAAGG	AAGAGTATGA	GTATTCAACA	ggnr

TTTCCGTGTC GCCCTTATTC CCTTTTTTGC GGCATTTTGC CTTCCTGTTT 8850 TTGCTCACCC AGAAACGCTG GTGAAAGTAA AAGATGCTGA AGATCAGTTG 8900 5 GGTGCACGAG TGGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT 8950 10 TGAGAGTTTT CGCCCCGAAG AACGTTTTCC AATGATGAGC ACTTTTAAAG 9000 TTCTGCTATG TGGCGCGGTA TTATCCCGTG ATGACGCCGG GCAAGAGCAA 9050 15 CTCGGTCGCC GCATACACTA TTCTCAGAAT GACTTGGTTG AGTACTCACC 9100 AGTCACAGAA AAGCATCTTA CGGATGGCAT GACAGTAAGA GAATTATGCA 9150 20 GTGCTGCCAT AACCATGAGT GATAACACTG CGGCCAACTT ACTTCTGACA 9200 ACGATCGGAG GACCGAAGGA GCTAACCGCT TTTTTGCACA ACATGGGGGA 9250 25 TCATGTAACT CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC 9300 30 CAAACGACGA GCGTGACACC ACGATGCCAG CAGCAATGGC AACAACGTTG 9350 CGCAAACTAT TAACTGGCGA ACTACTTACT CTAGCTTCCC GGCAACAATT 9400 35 AATAGACTGG ATGGAGGCGG ATAAAGTTGC AGGACCACTT CTGCGCTCGG 9450 CCCTTCCGGC TGGCTGGTTT ATTGCTGATA AATCTGGAGC CGGTGAGCGT 9500 40 GGGTCTCGCG GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG 9550 45 TATCGTAGTT ATCTACACGA CGGGGAGTCA GGCAACTATG GATGAACGAA 9600 ATAGACAGAT CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAACTG 9650 50 TCAGACCAAG TITACTCATA TATACTITAG ATTGATITAA AACTTCATIT 9700 55 TTAATTTAAA AGGATCTAGG TGAAGATCCT TTTTGATAAT CTCATGACCA 9750

AAATCCCTTA ACGTGAGTTT TCGTTCCACT GAGCGTCAGA CCCCGTAGAA 9800 AAGATCAAAG GATCTTCTTG AGATCCTTTT TITCTGCGCG TAATCTGCTG 9850 5 CTTGCAAACA AAAAAACCAC CGCTACCAGC GGTGGTTTGT TTGCCGGATC 9900 10 AAGAGCTACC AACTCTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG 9950 ATACCAAATA CTGTCCTTCT AGTGTAGCCG TAGTTAGGCC ACCACTTCAA 10000 15 GAACTCTGTA GCACCGCCTA CATACCTCGC TCTGCTAATC CTGTTACCAG 10050 TGGCTGCTGC CAGTGGCGAT AAGTCGTGTC TTACCGGGTT GGACTCAAGA 10100 20 CGATAGTTAC CGGATAAGGC GCAGCGGTCG GGCTGAACGG GGGGTTCGTG 10150 25 CACACAGCCC AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC 10200 AGCGTGAGCA TTGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC 10250 30 AGGTATCCGG TAAGCGGCAG GGTCGGAACA GGAGAGCGCA CGAGGGAGCT 10300 TCCAGGGGGA AACGCCTGGT ATCTTTATAG TCCTGTCGGG TTTCGCCACC 10350 35 TCTGACTTGA GCGTCGATTT TTGTGATGCT CGTCAGGGGG GCGGAGCCTA 10400 TGGAAAAACG CCAGCTGGCA CGACAGGTTT CCCGACTGGA AAGCGGGCAG 10450 40 TGAGCGCAAC GCAATTAATG TGAGTTACCT CACTCATTAG GCACCCCAGG 10500 45 CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT TGTGAGCGGA 10550 TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG AATTAA 10596 50

- (2) INFORMATION FOR SEQ ID NO:16:
- 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 bases

```
(B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
 5
       ATGAAGGCCC CCGCTGTGCT TGCACCTGGC ATCCTCGTGC TCCTGTTTAC 50
10
       C 51
     (2) INFORMATION FOR SEQ ID NO:17:
15
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 56 bases
             (B) TYPE: nucleic acid
20
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
25
       CACTAGTTAG GATGGGGGAC ATGTCTGTCA GAGGATACTG CACTTGTCGG 50
      CATGAA 56
30
      (2) INFORMATION FOR SEQ ID NO:18:
35
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 22 bases
             (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
40
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
      TAGTACTAGC ACTATGATGT CT 22
45
      (2) INFORMATION FOR SEQ ID NO:19:
50
         (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 22 bases
             (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
55
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
```

TTTACTTCTT GACGGTCCAA AG 22

5 (2) INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases 10 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: 15 CAGGGGGAGT TGCAGATTCA GCTGT 25 20 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 bases 25 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: 30 AGTTTTGTCG GTGACCTGAT CATTCTGATC TGGTTGAACT ATTAC 45

35

Claims:

10

25

1. A hepatocyte growth factor (HGF) variant resistant to proteolytic cleavage by enzymes that are capable of <u>in vivo</u> conversion of HGF into its two-chain form.

- 5 2. The variant of claim 1 which is a variant of human HGF (huHGF):
 - 3. A hepatocyte growth factor (HGF) variant stabilized in single-chain form by site directed mutagenesis within a region recognized by an enzyme capable of converting HGF into its two-chain form.
 - 4. The variant of claim 3 which is capable of binding an HGF receptor.
 - 5. The variant of claim 4 which is a variant of human HGF (huHGF).
- 6. The variant of claim 5 having an amino acid alteration at or adjacent to amino acid positions 493, 494, 495 or 496 of the wild-type huHGF amino acid sequence.
 - 7. The variant of claim 6 wherein said alteration is substitution.
- 8. The variant of claim 6 wherein said alteration is insertion or deletion.
 - 9. The variant of claim 6 in which amino acid position 494 is occupied by an amino acid other than arginine.
 - 10. The variant of claim 9 wherein said amino acid is selected from the group consisting of glutamic acid, aspartic acid and alanine.
 - 11. The variant of claim 6 wherein said alteration is the substitution of at least one amino acid at amino acid positions 493-496 of the wild-type hHGF amino acid sequence.
- 12. The variant of claim 11 having another amino acid substituted for arginine at amino acid position 494 of wild-type huHGF.
 - 13. The variant of claim 11 having another amino acid substituted for valine at amino acid position 495 of wild-type huHGF.
- 14. The variant of claim 11 having another amino acid substituted for valine at amino acid position 496 of wild-type huHGF.
 - 15. The variant of claim 6 retaining substantially full receptor binding affinity of wild-type huHGF.

16. A hepatocyte growth factor (HGF) variant having an amino acid alteration at a site within the protease domain of HGF and retaining substantially full receptor binding affinity of the corresponding wild-type HGF.

- 5 17. The variant of claim 16 comprising an alteration in a region corresponding to the catalytic site of serine proteases.
 - 18. The variant of claim 16 comprising an alteration at or adjacent to any of positions 534, 673 and 692 of the wild-type human HGF (huHGF) amino acid sequence.
- 10 19. The variant of claim 18 wherein said alteration is substitution.
 - 20. The variant of claim 19 having another amino acid substituted for glutamine at position 534 of the wild-type huHGF amino acid sequence.
- 15 21. The variant of claim 20 wherein said amino acid is histidine.

25

30

- 22. The variant of claim 19 having another amino acid substituted for tyrosine at position 673 of the wild-type huHGF amino acid sequence.
- 20 23. The variant of claim 22 wherein said amino acid is devoid of aromatic and heterocyclic moieties.
 - 24. The variant of claim 23 wherein said amino acid is selected from serine, threonine, asparagine, cysteine, glycine, alanine, and valine.
 - 25. The variant of claim 24 wherein said amino acid is serine.
 - 26. The variant of claim 19 having another amino acid substituted for valine at position 692 of the wild-type huHGF amino acid sequence.
 - 27. The variant of claim 26 wherein said amino acid is polar.
 - 28. The variant of claim 27 wherein said amino acid is selected from serine, threonine, asparagine and glutamine.
 - 29: The variant of claim 28 wherein said amino acid is serine.
- 30. The variant of claim 24 further comprising the substitution of glutamine at position 534 or valine at position 692 of the wild-type huHGF amino acid sequence.

31. The variant of claim 30 having serine substituted for tyrosine at position 673 of the wild-type huHGF amino acid sequence.

- 32. The variant of claim 31 having histidine substituted for glutamine at position 534 of the wild-type huHGF amino acid sequence.
- 5 33. The variant of claim 31 having serine substituted for valine at position 692 of the wild-type huHGF amino acid sequence.
 - 34. The variant of claim 33 additionally having histidine substituted for glutamine at position 534 of the wild-type huHGF amino acid sequence.
- 35. The variant of any of claims 1-15 having an amino acid alteration at a site within the protease domain of HGF and retaining substantially full receptor binding affinity of the corresponding wild-type HGF.
- 36. The variant of any of claims 16-34 that is resistant to proteolytic cleavage.
 - 37. The variant of any of claims 1-36 that is substantially incapable of HGF receptor activation.
 - 38. The variant of any of claims 1-36 that is substantially devoid of HGF hepatocyte growth stimulating activity.
- 39. The variant of any of claims 1-36 having increased receptor binding affinity as compared to wild-type huHGF.
 - 40. The variant of claim 39 wherein the increase in receptor binding affinity is accomplished by an alteration in a receptor-binding domain of the huHGF amino acid sequence.
- 25 41. The variant of claim 40 wherein said alteration is in the huHGF α -chain.
 - 42. The variant of claim 41 wherein said alteration is within the Kringle 1 domain.
- 43. The variant of claim 42 wherein said alteration is within the patch defined by amino acid positions 159, 161, 195 and 197 of the wild-type huHGF amino acid sequence.
 - 44. The variant of claim 42 wherein said alteration is at amino acid position 173 of wild-type huHGF.
- 45. The variant of claim 41 wherein said alteration is within the hairpin domain, N-terminal of the hairpin domain, or between the hairpin and the Kringle 1 domains of wild-type huHGF.

46. The variant of any of claims 1-45 devoid of functional Kringle 2 domain.

- 47. The variant of any of claims 1-45 devoid of functional Kringle 3 domain.
- 5 48. The variant of any of claims 1-45 devoid of functional.
 Kringle 4 domain.
 - 49. A nucleotide sequence encoding the variant of any of claims 1-48.
- 50. A replicable expression vector containing and capable of expressing in a suitable host cell the nucleotide sequence of claim 49.
 - 51. A host cell transformed with the vector of claim 50.
 - 52. A process comprising culturing the host cells of claim 51 so as to express the nucleic acid encoding the HGF variant.
- 15 53. The process of claim 52 further comprising recovering the variant from the host cell culture.

20

- 54: A pharmaceutical composition comprising a variant of any of claims 1-48 in an amount capable of competitive inhibition of the binding of wild-type huHGF to its receptor, in admixture with a pharmaceutically acceptable carrier.
- 55. A method of treating a pathological condition associated with the activation of a huHGF receptor comprising administering to a patient in need the composition of claim 54.

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4

><Modified RK5 derivative, insert Xho I into Hind III site; PJG</pre> 2/89> <from Cori 86.3.18 fix DHFR acc I</pre> <sequence of CMV enhancer/promoter, from Cell 41, 1985> T><from pPMLCMV beginning to HindIII, enhancers and promoter> TCGAGCTCGCCCGACATTGATTA TTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCC ATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCT GACCGCCCAACGACCCCCCCCCCATTGACGTCAATAATGACGTATGTTCCC ATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTT ACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTA CGCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATT AGTCATCGCTATTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGC GTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGAC GTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATG TCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGT GGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCG <Begin RNA> TCAGATCGCCTGG AGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATC CAGCCTCCGCGGCCGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCA AGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACCCCCTTGGCT ><sp6 promoter> <GGCCCACCCCTTGGCTT>CGTTAGAACGCGGCTACAATTAATACATAACC TTATGTATCATACACATACGATTTAGGTGACACTATA><sp6 RNA start>GAATA<ACATCCACTTTGCCTTTC> ACATCCACTTTGCCTTTCTCCC ACAGGTGTCCACTCCCAGGTCCAA<PstI-ClaI converter>CTGCA 1 i n linker>CCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGTCGACCTGCAGAAGCTT GCCTCGAGGCAAGCTT GGCCGCCATGGCCC ><sv40 early poly A>AACTTGTTTATTGCAGCTTATAATGGTT ACAAATAAAGCAATAGCATCACAAATTCACAAATAAAGCATTTTTTTCACTGCATTCTA GTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCT GGATCGATCGG S 4 origin>GAATTAATTCGGCGCAGCACCATGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTA GGTACCTTC TGAGGCGGAAAGAACCAGCT GTGGAATGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGC AGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGC TCCCCAGCAGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCG CCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCAT GGCTGACTAATTTTTTTTTTTTTTTGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAA ><start pUC118> AAGCTGTTAACAGCTTGGC ACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACC CTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATA

FIG. 5A

GCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGTAGCCTGAATGGCGAATGGC <start M13> G CCTGATGCGG

TATTTTCTCC TTACGCATCT GTGCGGTATT TCACACCGCA TA

TATGGTGCAC TCTCAGTACA

CGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTG TGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCCGCTCCTTTCG CTTTCTTCCCTTCCTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATT TGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGT TGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTA TCTCGGGCTATTCTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAA ATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTT

TATEGTECAC TCTCA	AGTACA			
ATCTGCTCTG	ATGCCGCATA C	STTAAGCCA	ACTCC	GCTATCGCTA
CGTGACTGGG				
TCATGGCTGC	GCCCCGACAC	CCGCCAACAC	CCGCTGACGC	GCCCTGACGG
GCTTGTCTGC				
TCCCGGCATC	CGCTTACAGA	CAAGCTGTGA	CCGTCTCCGG	GAGCTGCATG
TGTCAGAGGT				
	ATCACCGAAA CG	CGCGAGGC AG		
TATTC				
<	Hinc II (2271) to GTC	ATC>	
<		73) to CTGCT		
		3) delete 6	p>	
<pre><arbitrarily cha<="" pre=""></arbitrarily></pre>				
<puc><pucx 83.11.25="" p="" s<=""></pucx></puc>				
CMM A MCMCA	TTGAAG	ACGA AAGGGCC.	CG TGATACGCCT	
GTTAATGTCA GGGAAATGTG	TGATAATAAT	GGTTTCTTAG	ACGTCAGGTG	GCACTTTTCG
CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	3 M 3 A 3 M M A 3 3	
GCTCATGAGA	CIMITIGITI	ATTITICIAA	ATACATTCAA	ATATGTATCC
CAATAACCCT	GATAAATGCT	ТСААТААТАТ	TGAAAAAGGA	1616010616
TATTCAACAT	GAIAAAIGCI	ICANIANIAI	IGAAAAAGGA	AGAGTATGAG
TTCCGTGTCG	CCCTTATTCC	CTTTTTTGCG	GCATTTTGCC	TTCCTGTTTT
TGCTCACCCA	CCCTTATTCC	CITITIOCG	GCATTTTGCC	TICCIGITIT
GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA	GATCAGTTGG	GTGCACGAGT
GGGTTACATC	10.00.01.01.	HOMICCIOMA	GATCAGIIGG	GIGCACGAGI
GAACTGGATC	TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC	GCCCCGAAGA
ACGTTTTCCA	2 3.2.3.3.3	1111101110011	OHOAGITIC	GCCCCGAAGA
ATGATGAGCA	CTTTTAAAGT	TCTGCTATGT	GGCGCGGTAT	TATCCCGTGA
TGACGCCGGG			33333331111	INICCCOIGN
CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	TCTCAGAATG	ACTTGGTTGA
GTACTCACCA				norroura.
GTCACAGAAA	AGCATCTTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG
TGCTGCCATA				
ACCATGAGTG	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG
ACCGAAGGAG				
CTAACCGCTT	TTTTGCACAA	CATGGGGGAT	CATGTAACTC	GCCTTGATCG
TTGGGAACCG				
GAGCTGAATG	AAGCCATACC	AAACGACGAG	CGTGACACCA	CGATGCCAGC
AGCAATGGCA				
ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC	TAGCTTCCCG

FIG. 5B

GCAACAATTA	•			
ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC
CCTTCCGGCT				
GGCTGGTTTA	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG
TATCATTGCA				
GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC
GGGGAGTCAG				
GCAACTATGG	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT
GATTAAGCAT				
TGGTAACTGT	CAGACCAAGT	TTACTCATAT	ATACTTTAGA	TTGATTTAAA
ACTTCATTTT	661 M6M1 66M	CARCAMOOMM	mmma) m) hma	maxmax aax x
AAAATTTAAAA	GGATCTAGGT	GAAGATCCTT	TTTGATAATC	TCATGACCAA
AATCCCTTAA	CCMMCC) CMC	A COCHOA CA O	CCCGTAGAAA	AGATCAAAGG
CGTGAGTTTT ATCTTCTTGA	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG
GATCCTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC
GCTACCAGCG	1101606001	ANICIGCIGC	TIGCMACMA	AMMACCACC
GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTC	CGAAGGTAAC
TGGCTTCAGC	IGCCGGRICA	noncemeen	1101011110	CCILICOTILIC
AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA
CCACTTCAAG				
AACTCTGTAG	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT
GGCTGCTGCC				
AGTGGCGATA	AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	GATAGTTACC
GGATAAGGCG				
CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG
AACGACCTAC				
ACCGAACTGA	GATACCTACA	GCGTGAGCAT	TGAGAAAGCG	CCACGCTTCC
CGAAGGGAGA				
AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC
GAGGGAGCTT				~~~~~~~~~
CCAGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT
CTGACTTGAG	mama) ma ama	cma1.cacccc	0CC) C00M) M	CC2222220CC
CGTCGATTTT	TGTGATGCTC	GTCAGGGGG	CGGAGCCTAT	GGAAAAACGC
CAGCAACGCG GCCTTTTTAC	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT
TCCTGCGTTA	GGIICCIGGC	CITITECIES	CCITITIGCIC	MCMIGIICII
TCCCCTGATT	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC
CGCTCGCCGC	CIGIGGAIAA	CCGIAIIACC	CCCITIONGI	UNGCIONING
COCICGCCGC			CLOCALO COCAL	

AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG CGGAAGAGC <end M13>

GCCCAATACGCAA

FIG.5C

```
><pcis.ebon
>< assembled by Steve Williams June 1989
><"poison-minus" pRK
><with EBNA-1, oriP, neoR
><polylinker sites: XhoI, HindIII, NotI
><CMV enhancer/promoter
TCGAGCTCGCCCGACATTGATTA
TTG<SpeI>ACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCC
ATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCT
GACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCC
ATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTT
ACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTA
CGCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC
CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATT
AGTCATCGCTATTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGC
GTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGAC
GTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATG
TCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGT
GGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCG
<Begin RNA>
TCAGATCGCCTGG
AGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATC
CAGCCTCCGCGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCA
AGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACCCCCTTGGCT
><sp6 promoter>
<GGCCCACCCCTTGGCTT>CGTTAGAACGCGGCTACAATTAATACATAACC
TTATGTATCATACACATACGATTTAGGTGACACTATA><sp6
                                                              RNA
start>GAATA<ACATCCACTTTGCCTTTC>
ACATCCACTTTGCCTTTCTCTCC
ACAGGTGTCCACTCCCAGGTCCAA<PstI-ClaI converter>CTGCA
><cloning linker>CCTCGGTTCT
ATCGATTCTCGA
<EcoRI/klenow>GAATTAATTC
AAGCTTGCGGCCGCAGCTT
GGCCGCCATGGCCC
><sv40 early poly A>AACTTGTTTATTGCAGCTTATAATGGTT
ACAAATAAAGCĀATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTA
GTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCT
GGATCGATCGG
                                                    4
                          S
origin>GAATTAATTCGGCGCAGCACCATGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTA
<KpnI>GGTACCTTC
TGAGGCGGAAAGAACCAGCT
GTGGAATGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGC
```

FIG. 6A

AGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGC

WO 93/23541

TCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCG CCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCCAT GGCTGACTAATTTTTTTTTTTTTTTGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC CAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCTAGGCTTTTGCAAA <start pUC118> AAGCTGTT<HpaI end from SW1> ><delta 3 <PCR primer seq; PCR product was blunted & ligated in> CACGTGAT <this is EcoRV site remnant> <RI cassette: EBNA-oriP-tk term-NeoR-tk prom> <4913 bp EcoRI-Bam from 220 2> <EcoRI> GAATTCTCAT GTTTGACAGC TTATCATCGA TA ><EBNA-1> GATCCTCACA GGCCGCACCC AGCTTTTCTT CCGTTGCCCC AGTAGCATCT CTGTCTGGTG ACCTTGAAGA GGAAGAGGAG GGGTCCCGAG AATCCCCATC CCTACCGTCC AGCAAAAAGG GGGACGAGGA ATTTGAGGCC TGGCTTGAGG CTCAGGACGC AAATCTTGAG GATGTTCAGC GGGAGTTTTC CGGGCTGCGA GTAATTGGTG ATGAGGACGA GGATGGTTCG GAGGATGGGG AATTTTCAGA CCTGGATCTG TCTGACAGCG ACCATGAAGG GGATGAGGGT GGGGGGGCTG TTGGAGGGGG CAGGAGTCTG CACTCCCTGT ATTCACTGAG CGTCGTCTAA TAAAGATGTC TATTGATCTC TTTTAGTGTG AATCATGTCT GACGAGGGGC CAGGTACAGG ACCTGGAAAT GGCCTAGGAG AGAAGGGAGA CACATCTGGA CCAGAAGGCT CCGGCGGCAG TGGACCTCAA AGAAGAGGG GTGATAACCA TGGACGAGGA CGGGGAAGAG GACGAGGACG AGGAGGCGGA AGACCAGGAG CCCCGGGCGG CTCAGGATCA GGGCCAAGAC ATAGAGATGG TGTCCGGAGA CCCCAAAAAC GTCCAAGTTG CATTGGCTGC AAAGGGACCC ACGGTGGAAC AGGAGCAGGA GCAGGAGCGG GAGGGCAGG AGCAGGAGGG GCAGGAGCAG GAGGAGGGGC AGGAGCAGGA GGAGGGCAG GAGGGCAGG AGGGGCAGGA GGGGGAGGAG CAGGAGGAGG GGCAGGAGCA GGAGGAGGGG CAGGAGGGC AGGAGGGCA GGAGCAGGAG GAGGAGGAGGA GGGGCAGGAG GGGCAGGAGC AGGAGGAGGG GCAGGAGGGG CAGGAGGAGCAGGA GGAGGGCAG GAGCAGGAGG AGGGGCAGGA GGGGGAGGAGG GGCAGGAGGG GCAGGAGGG CAGGAGCAGG AGGAGGGCA GGAGCAGGAG GGCAGGAGGG GCAGGAGCAG GAGGGCAGG AGCAGGAGGA GGGCAGGAGG GGCAGGAGCA GGAGGGCAG GAGCAGGAGG GGCAGGAGCA GGAGGGCAG GAGCAGGAGG GGCAGGAGGG GCAGGAGCAG GAGGGCAGG AGGGGCAGGA GCAGGAGGGG CAGGAGGGGC AGGAGCAGGA GGAGGGGCAG GAGGGCAGG AGCAGGAGGA GGGCAGGAG GGGCAGGAGC AGGAGGGGCA GGAGGGCAG GAGCAGGAGG GGCAGGAGGG GCAGGAGCAG GAGGGCAGGA GCAGGAGGAG GGGCAGGAGC AGGAGGGCA GGAGCAGGAG GTGGAGGCCG GGGTCGAGGA GGCAGTGGAG GCCGGGGTCG AGGAGGTAGT GGAGGCCGGG GTCGAGGAGG TAGTGGAGGC CGCCGGGGTA GAGGACGTGA AAGAGCCAGG GGGGGAAGTC GTGAAAGAGC CAGGGGGAGA GGTCGTGGAC GTGGAGAAAA GAGGCCCAGG AGTCCCAGTA GTCAGTCATC ATCATCCGGG TCTCCACCGC GCAGGCCCCC TCCAGGTAGA AGGCCATTTT TCCACCCTGT AGGGGAAGCC GATTATTTTG AATACCACCA AGAAGGTGGC CCAGATGGTG AGCCTGACGT GCCCCCGGGA GCGATAGAGC AGGGCCCCGC AGATGACCCA GGAGAAGGCC CAAGCACTGG ACCCCGGGGT CAGGGTGATG GAGGCAGGCG CAAAAAAGGA GGGTGGTTTG GAAAGCATCG TGGTCAAGGA GGTTCCAACC CGAAATTTGA GAACATTGCA GAAGGTTTAA GAGCTCTCCT GGCTAGGAGT CACGTAGAAA GGACTACCGA CGAAGGAACT TGGGTCGCCG GTGTGTTCGT ATATGGAGGT AGTAAGACCT CCCTTTACAA CCTAAGGCGA GGAACTGCCC TTGCTATTCC ACAATGTCGT CTTACACCAT TGAGTCGTCT CCCCTTTGGA ATGGCCCCTG GACCCGGCCC ACAACCTGGC CCGCTAAGGG AGTCCATTGT CTGTTATTTC ATGGTCTTTT TACAAACTCA TATATTTGCT GAGGTTTTGA AGGATGCGAT TAAGGACCTT GTTATGACAA AGCCCGCTCC TACCTGCAAT

FIG. 6B

```
ATCAGGGTGA CTGTGTGCAG CTTTGACGAT GGAGTAGATT TGCCTCCCTG GTTTCCACCT
 ATGGTGGAAG GGGCTGCCGC GGAGGGTGAT GACGGAGATG ACGGAGATGA AGGAGGTGAT
 GGAGATGAGG GTGAGGAAGG GCAGGAGTGA TGTAACTTGT TAGGAGACGC CCTCAATCGT
 ATTAAAAGCC GTGTATTCCC CCGCACTAAA GAATAAATCC CCAGTAGACA TCATGCGTGC
 TGTTGGTGTA TTTCTGGCCA TCTGTCTTGT CACCATTTTC GTCCTCCCAA CATGGGGCAA
 TTGGGCATAC CCATGTTGTC ACGTCACTCA GCTCCGCGCT CAACACCTTC TCGCGTTGGA
 AAACATTAGC GACATTTACC TGGTGAGCAA TCAGACATGC GACGGCTTTA GCCTGGCCTC
 CTTAAATTCA CCTAAGAATG GGAGCAACCA
                            ><oriP>GCATGCAGGA AAAGGACAAG CAGCGAAAAT
 TCACGCCCCC TTGGGAGGTG GCGGCATATG CAAAGGATAG CACTCCCACT CTACTACTGG
 GTATCATATG CTGAC
><family of repeats>
                 TGTAT ATGCATGAGG ATAGCATATG CTACCCGGAT ACAGATTAGG
 ATAGCATATA CTACCCAGAT ATAGATTAGG ATAGCATATG CTACCCAGAT ATAGATTAGG
 ATAGCCTATG CTACCCAGAT ATAAATTAGG ATAGCATATA CTACCCAGAT ATAGATTAGG
 ATAGCATATG CTACCCAGAT ATAGATTAGG ATAGCCTATG CTACCCAGAT ATAGATTAGG
 ATAGCATATG CTACCCAGAT ATAGATTAGG ATAGCATATG CTATCCAGAT ATTTGGGTAG
 TATATGCTAC CCAGATATAA ATTAGGATAG CATATACTAC CCTAATCTCT ATTAGGATAG
 CATATGCTAC CCGGATACAG ATTAGGATAG CATATACTAC CCAGATATAG ATTAGGATAG
 CATATGCTAC CCAGATATAG ATTAGGATAG CCTATGCTAC CCAGATATAA ATTAGGATAG
CATATACTAC CCAGATATAG ATTAGGATAG CATATGCTAC CCAGATATAG ATTAGGATAG
 CCTATGCTAC CCAGATATAG ATTAGGATAG CATATGCTAT CCAGATATTT GGGTAGTATA
 TGCTACCC
><end family of repeats>
         AT GGCAACATTA GCCCACCGTG CTCTCAGCGA CCTCGTGAAT ATGAGGACCA
 ACAACCCTGT GCTTGGCGCT CAGGCGCAAG TGTGTGTAAT TTGTCCTCCA GATCGCAGCA
ATCGCGCCCC TATCTTGGCC CGCCCACCTA CTTATGCAGG TATTCCCCGG GGTGCCATTA
 GTGGTTTTGT GGGCAAGTGG TTTGACCGCA GTGGTTAGCG GGGTTACAAT CAGCCAAGTT
ATTACACCCT TATTTTACAG TCCAAAACCG CAGGGCGGCG TGTGGGGGGCT GACGCGTGCC
 CCCACTCCAC AATTTCAAAA AAAAGAGTGG CCACTTGTCT TTGTTTATGG GCCCCATTGG
CGTGGAGCCC CGTTTAATTT TCGGGGGTGT TAGAGACAAC CAGTGGAGTC CGCTGCTGTC
GGCGTCCACT CTCTTTCCCC TTGTTACAAA TAGAGTGTAA CAACATGGTT CACCTGTCTT
GGTCCCTGCC TGGGACACAT CTTAATAACC CCAGTATCAT ATTGCACTAG GATTATGTGT
 TGCCCATAGC CATAAATTCG TGTGAGATGG ACATCCAGTC TTTACGGCTT GTCCCCACCC
 CATGGATTTC TATTGTTAAA GATATTCAGA ATGTTTCATT CCTACACTAG TATTTATTGC
 CCAAGGGGTT TGTGAGGGTT ATATTGGTGT CATAGCACAA TGCCACCACT GAACCCCCG
 TCCAAATTTT ATTCTGGGGG CGTCACCTGA AACCTTGTTT TCGAGCACCT CACATACACC
 TTACTGTTCA CAACTCAGCA GTTATTCTAT TAGCTAAACG AAGGAGAATG AAGAAGCAGG
 CGAAGATTCA GGAGAGTTCA CTGCCCGCTC CTTGATCTTC AGCCACTGCC CTTGTGACTA
AAATGGTTCA CTACCCTCGT GGAATCCTGA CCCCATGTAA ATAAAACCGT GACAGCTCAT
 GGGGTGGGAG ATATCGCTGT TCCTTA
               ><dyad region>GGAC CCTTTTACTA ACCCTAATTC GATAGCATAT
 GCTTCCCGTT GGGTAACATA TGCTATTGAA TTAGGGTTAG TCTGGATAGT ATATACTACT
ACCCGGGAAG CATATGCTA
          ><end dyad>C CCGTTTAGGG TTAACAAGGG GGCCTTATAA ACACTATTGC
 TAATGCCCTC TTGAGGGTCC GCTTATCGGT AGCTACACAG GCCCCTCTGA TTGACGTTGG
 TGTAGCCTCC CGTAGTCTTC CTGGGCCCCT GGGAGGTACA TGTCCCCCAG CATTGGTGTA
 AGAGCTTCAG CCAAGAGTTA CACATAAAGG CAATGTTGTG TTGCAGTCCA CAGACTGCAA
 AGTCTGCTCC AGGATGAAAG CCACTCAGTG TTGGCAAATG TGCACATCCA TTTATAAGGA
 TGTCAACTAC AGTCAGAGAA CCCCTTTGTG TTTGGTCCCC CCCCGTGTCA CATGTGGAAC
 AGGGCCCAGT TGGCAAGTTG TACCAACCAA CTGAAGGGAT TACATGCACT GCCCG
><end oriP>
                                          ><HSV TK TERM 3'END>TGACC
```

FIG. 6C

AATACAAAAC AAAAGCGCTC CTCGTACCAG CGAAGAAGGG GCAGAGATGC CGTAGTCAGG

TTTAGTTCGT CCGGCGGC ><pUCl2 Smal-HaeIII polylinker> GG G<Bam site is next>

<following is EcoRI - SmaI from pKan2, rc>
><tn5 neomycin phosphotransferase gene>
 <BglII-Sma, rc>

<SmaI, AvaI>CCCGGGGTGGGCGAAGAACTCCAGCATGAGATCCCCGCGCT GGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAACCTTTCATAGAAGG ACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGA ATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTC TTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCG GCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGC ATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGGCATGCGCGCCTTGAGCCTGGCGAA CAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACC GGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCA GGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTC GGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCA GTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGC CTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCA GCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGA ACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATC

><tk promoter>
 <EcoRI-BglII, rc>
 <BglII>AGATCTGCGGCACGCTGTTGACGCTGTTAAGCGGGTCGCTGCA
GGGTCGCTCGGTGTTCGAGGCCACACGCGTCACCTTAATATGCGAAGTGGACCTGGGACC
GCGCCCCCGACTGCATCTGCGTGTTCGAATTC<EcoRI>

<back to SW2 sequence; EcoRV site remnant>
A

><M13 ori>

TCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGGGGTG
TGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCCTAGCGCCCCTCCTTTCG

FIG. 6D

CTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATT TGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGT TGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTA TCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAA ATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAAATATTAACGTTTACAATTT

TATGGTGCA<ApaLI/blunt>

><delta 2a>

	<e0< th=""><th>co0109I/blun</th><th>t>GGCCTCG</th><th>TGATACGCCT</th></e0<>	co0109I/blun	t>GGCCTCG	TGATACGCCT
ATTTTTATAG				
GTTAATGTCA	TGATAATAAT	GGTTTCTTAG	ACGTCAGGTG	GCACTTTTCG
GGGAAATGTG		7 mmmmcm7 7	7 M 7 G 7 M M G 7 7	* ** * ** *** ***
CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	ATACATTCAA	ATATGTATCC
GCTCATGAGA	CAMANAGCOM	מות א מות א איים א מיים	መሮ እ እ እ እ እ <u>ዮ</u> ሮ እ	AGAGTATGAG
CAATAACCCT	GATAAATGCT	TCAATAATAT	TGAAAAAGGA	AGAGIAIGAG
TATTCAACAT	CCCTTATTCC	CTTTTTTGCG	GCATTTTGCC	TTCCTGTTTT.
TTCCGTGTCG TGCTCACCCA	CCCTIATICC	CITITITIECE	GCATTTTGCC	ilocidilii .
GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA	GATCAGTTGG	GTGCACGAGT
GGGTTACATC	IGNAAGIAAA	Adarderdini	0.11.0.10.1.00	010011001101
GAACTGGATC	TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC	GCCCCGAAGA
ACGTTTTCCA	1 Crancride de	111101110011	01.01.01.1	
ATGATGAGCA	CTTTTAAAGT	TCTGCTATGT -	GGCGCGGTAT	TATCCCGTGA
TGACGCCGGG				
CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	TCTCAGAATG	ACTTGGTTGA
GTACTCACCA				
GTCACAGAAA	AGCATCTTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG
TGCTGCCATA				
ACCATGAGTG	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG
ACCGAAGGAG				
CTAACCGCTT	TTTTGCACAA	CATGGGGGAT	CATGTAACTC	GCCTTGATCG
TTGGGAACCG				
GAGCTGAATG	AAGCCATACC	AAACGACGAG	CGTGACACCA	CGATGCCAGC
AGCAATGGCA	~~~~~~~~	7 7 CMCCCC7 7	CM A CMM A CMC	TAGCTTCCCG
ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC	IAGCIICCG
GCAACAATTA	mccn cccccn	TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC
ATAGACTGGA	TGGAGGCGGA	IAAAGIIGCA	GGACCACTIC	1606010660
CCTTCCGGCT GGCTGGTTTA	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG
TATCATTGCA	TIGCIGNIAN	AICIGGAGCC	GGIGNGCGIG	001010000
GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC
GGGGAGTCAG	C71C711 GG 1.11	0000100001	1110011101	
GCAACTATGG	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT
GATTAAGCAT	0			
TGGTAACTGT	CAGACCAAGT	TTACTCATAT	ATACTTTAGA	TTGATTTAAA
ACTTCATTTT				
TAATTTAAAA	GGATCTAGGT	GAAGATCCTT	TTTGATAATC	TCATGACCAA
AATCCCTTAA				
CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG
ATCTTCTTGA	,			
GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC

FIG. 6E

			4
TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC
TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA
CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT
AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	GATAGTTACC
GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG
•			
GATACCTACA	GCGTGAGCAT	TGAGAAAGCG	CCACGCTTCC
GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC
ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT
TGTGATGCTC GT	CAGGGGGG CGG	AGCCTAT GGAAA	AACGC CAG
	TACCAAATAC CACCGCCTAC AGTCGTGTCT GCTGAACGGG GATACCTACA GGTATCCGGT ACGCCTGGTA	TACCAAATAC TGTCCTTCTA CACCGCCTAC ATACCTCGCT AGTCGTGTCT TACCGGGTTG GCTGAACGGG GGGTTCGTGC GATACCTACA GCGTGAGCAT GGTATCCGGT AAGCGGCAGG ACGCCTGGTA TCTTTATAGT	TACCAAATAC TGTCCTTCTA GTGTAGCCGT CACCGCCTAC ATACCTCGCT CTGCTAATCC AGTCGTGTCT TACCGGGTTG GACTCAAGAC GCTGAACGGG GGGTTCGTGC ACACAGCCCA GATACCTACA GCGTGAGCAT TGAGAAAGCG GGTATCCGGT AAGCGGCAGG GTCGGAACAG ACGCCTGGTA TCTTTATAGT CCTGTCGGGT

><delta1.PVU>

<PvuII site introduced by mutagenesis; 228 bp PvuII fragment
deleted>

<join to PvuII at 4532 in RK5>

FIG. 6F

International Application No

1. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) According to International Patent Classification (IPC) or to both National Classification and IPC Int.C1. 5 C12N15/19; CO7K13/00; II. FIELDS SEARCHED Minimum Documentation Searched Classification System Classification Symbols Int.C1. 5 C07K ; C12N ; A61K Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched IIL DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.13 X WO, A, 9 205 184 (THE UNITED STATES OF 1,2, AMERICA) 37-41, 2 April 1992 46-55 see page 4, line 1 - page 6, line 6 see page 10, line 22 - page 11, line 14 see page 13, line 7 - page 14, line 11 BIOCHEMICAL AND BIOPHYSICAL RESEARCH 16,35, COMMUNICATIONS 41-43. vol. 172, no. 1, 15 October 1990, DULUTH, 49-53 MINNESOTA US pages 321 - 327 TATSUYA, SEKI ET AL. 'Isolation and expression of cDNA for different forms of hepatocyte growth factor from human leukocyte' cited in the application see page 322, paragraph 1; figure 2 see page 326, paragraph 1 O Special categories of cited documents: 10 later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international filling date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but in the art. later than the priority date claimed "A" document member of the same patent family IV. CERTIFICATION Date of Mailing of this International Search Report Date of the Actual Completion of the International Search **23**. 09. 93 27 AUGUST 1993 International Searching Authority Signature of Authorized Officer MONTERO LOPEZ B. **EUROPEAN PATENT OFFICE**

III. DOCU	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS vol. 180, no. 2, 31 October 1991, DULUTH, MINNESOTA US pages 1151 - 1158 NOBUYUKI SHIMA ET AL. 'Tumor cytotoxic factor / hepatocyte growth factor from human fibroblasts: cloning of its cDNA, purification and characterization of recombinant protein' see abstract see page 1151, paragraph 1 - page 1152, paragraph 1; figure 1 see page 1154, paragraph 2 - page 1157, paragraph 1	16,35, 41-43, 49-53
P,X	EMBO JOURNAL vol. 11, no. 7, July 1992, EYNSHAM, OXFORD GB pages 2503 - 2510 NATHALIE A. LOKKER ET AL. 'Structure-function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding' see abstract see page 2505, left column, paragraph 3 - page 2508, right column, paragraph 1	1-7, 9-12, 15-41, 46-53
P,X	JOURNAL OF BIOLOGICAL CHEMISTRY vol. 267, no. 28, 5 October 1992, BALTIMORE, MD US pages 20114 - 20119 DAIJI NAKA ET AL. 'Activation of hepatocyte growth factor by proteolytic conversion of a single chain form to a heterodimer' see abstract see page 20114, left column, paragraph 2 - right column, paragraph 2 see page 20116, right column, paragraph 2 - page 20118, right column, paragraph 2; figure 4	1-7,9, 11,12, 15-17, 36,37, 49-53

	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category °	Citation of Document, with Indication, where appropriate, of the relevant passages	Relevant to Claim No.
P, X	FEBS LETTERS. vol. 311, no. 1, October 1992, AMSTERDAM NL pages 17 - 21 EVA GAK ET AL. 'Processing of hep: tocyte growth factor to the heterodimeric form is required for biological activity' see page 17, left column, paragraph 2 - right column, paragraph 1 see page 18, right column, paragraph 2 - page 20, left column, paragraph 1	1-7, 9-12,15, 36-39, 49-53

INTERNATIONAL SEARCH REPORT

1. Inational application No. PCT/US 93/04648

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
Ths int	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ı. 🗴	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 55 is directed to a method of treatment of the human body the search has been carried out and based on the alleged effects of the composition.
2. []	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no incamingful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 nf first sheet)
This fac	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	On Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9304648 SA 74139

This amex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

27/0 27/08/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
		AU-A- CA-A-	8659591 2091700	15-04-92 15-03-92
		•		
		•		
	·			
	ee Official Journal of the Eur			
•				