Лабораторная работа 3.2.2

Резонанс напряжений в последовательном контуре

Балдин Виктор, Б01-303

13 декабря 2024 г.

Краткая теория

Импеданс последовательного контура:

$$Z = Z_R + Z_C + Z_L = R + \frac{1}{iwC} + iwL$$

Ток в цепи:

$$I = \frac{\mathcal{E}}{Z} = \frac{\mathcal{E}}{R + \frac{1}{iwC} + iwL}$$

С учетом характеристик цепи: $w_0^2 = \frac{1}{LC}, \ \delta = \frac{R}{2L}$ получаем напряжения на всех элементах:

$$U_C = IZ_C = \frac{\mathcal{E}}{R + \frac{1}{iwC} + iwL} \cdot \frac{1}{iwC} = \frac{\mathcal{E}}{1 - w^2LC + iwCR} = \frac{\mathcal{E}w_0^2}{w_0^2 - w^2 + 2i\delta w}$$

$$U_L = IZ_L = \frac{\mathcal{E}w^2}{w^2 - w_0^2 - 2i\delta w}$$

$$U_R = IR = \frac{\mathcal{E}2i\delta w}{w_0^2 - w^2 + 2i\delta w}$$

Если контур обладает хорошей добротностью $Q = \frac{w_0}{2\delta}$, то резонансная частота $w_{\text{pes}} \approx w_0$, на которой в Q раз увеличивается напряжение на конденсаторе и катушке:

$$U_C = -i\mathcal{E}\frac{w_0}{2\delta} = -i\mathcal{E}Q, \quad U_L = i\mathcal{E}\frac{w_0}{2\delta} = i\mathcal{E}Q, \quad U_R = \mathcal{E}$$

Напряжения на катушке и конденсаторе находятся в противофазе, и всё напряжение источника находится на активном сопротивлении.

Добротность можно также измерить по амплитудно-частотной характеристике:

$$Q = \frac{w_0}{2\Delta w}$$

где $2\Delta w$ - ширина резонансной кривой на уровне $U=\frac{U_{\mathrm{pes}}}{\sqrt{2}}.$

Установка

Последовательный контур подключен к источнику напряжения, на который подается сигнал с генератора. R_L и R_C - активные сопротивления катушки и конденсатора. Напряжения снимаются вольтметрами 1 и 2 со всей цепи и с конденсатора соответственно.

Рис. 1: Схема экспериментальной цепи

Ход работы и обработка результатов

n	C_n , н Φ	$f_{0n},$ к Γ ц	U_C , B	<i>E</i> , B	L, мк Γ н	Q	ρ, Οм	R_{Σ} , Om	$R_{S_{\max}},$ Om	R_L , OM	I, мА
1	25,0	31,34	4,92	0,2	1031,58	24,61	203,13	8,25	0,203	4,60	24,22
2	33,2	27,36	4,41	0,2	1019,22	22,07	175,21	7,94	0,175	4,31	25,17
3	47,5	23,00	3,84	0,2	1008,07	19,23	145,68	7,58	0,146	3,98	26,36
4	57,2	21,01	3,55	0,2	1003,21	17,79	132,43	7,45	0,132	3,86	26,81
5	67,4	19,45	3,17	0,2	993,44	15,90	121,41	7,63	0,121	4,06	26,11
6	82,1	17,57	3,04	0,2	999,43	15,25	110,33	7,23	0,110	3,67	27,55
7	99,6	15,99	2,81	0,2	994,68	14,10	99,93	7,08	0,099	3,53	28,12
	Среднее значение				1007,09	_			4,00	_	
	Случайная погрешность				13,91	_			0,36	_	

Таблица 1: Измерение резонансных частот и характеристик контура

Относительный вклад активных потерь на конденсаторах: $\frac{R_{Smax}}{R_{\Sigma}} \leq 2,4\%$, среднее значение 1,8%. Также полученные данные имеют систематическую погрешность ввиду погрешности вольтметра $\varepsilon_{U_C} = \leq 3\%$ и погрешности измерения резонансной частоты, примем её за $\varepsilon_f = 1\%$. Тогда получаем следующие относительные систематические погрешности для полученных величин:

L	Q	ρ	R_{Σ}	$R_{S_{max}}$	R_L	I
2%	3%	1%	3,2%	1%	6%	3,2%

Таблица 2: Относительные систематические погрешности величин

Также были сняты данные для амплитудно-частотной и фазо-частотной характеристик для емкостей $C_2=33,2$ нФ и $C_6=82,1$ нФ. Для АЧХ получился следующий график:

Рис. 2: АЧХ для емкостей C_2 (справа) и C_6 (слева)

Видно, что большей емкости отвечает кривая с большей шириной (так как добротность ниже). Измерим добротности с помощью ширины резонансной кривой на графике в относительном масштабе. Получились следующие значения:

n	C , н Φ	$\frac{2\Delta\nu}{\nu_0}$	Q
2	33,2	0,0452	22,12
6	82,1	0,077	12,99

Таблица 3: Расчет добротности по ширине АЧХ

Рассчитаем также добротность по ФЧХ: измерим ширину кривой, которая ограничивается значениями $\frac{\Delta\phi}{\pi}$ от 0,25 до 0,75, получим следующие значения добротностей:

Рис. 3: АЧХ в относительном масштабе

Рис. 4: ФЧХ в относительном масштабе

n	C , н Φ	$\frac{2\Delta\nu}{\nu_0}$	Q
2	33,2	0,043	23,26
6	82,1	0,072	13,89

Таблица 4: Расчет добротности по ширине ФЧХ

Построим теперь график зависимость $R_L(\nu)$.

Рис. 5: Зависимость $R_L(\nu)$

Значения отклоняются от среднего достаточно сильно, прослеживается почти линейная зависимость от частоты. Из возможных причин можно выделить влияние скин-эффекта, из-за которого ток вытесняется на поверхность проводника и течет по меньшему сечению.

Так как контур последовательный, то токи будут находится на всех элементах в одной фазе. А вот с напряжением ситуация другая: напряжения на конденсаторе и катушке почти в противофазе, причем из напряжение на катушке опережает \mathcal{E} на $\frac{\pi}{2}$, а напряжение на конденсаторе отстаёт от \mathcal{E} на $\frac{\pi}{2}$. U_L расположена под углом $\varphi = 87,6^{\circ}$, так как на катушке есть еще активное сопротивление R_L . $\operatorname{tg} \varphi$ можно рассчитать как $\frac{U_{C_{\mathrm{pes}}}}{IR_L}$.

Выводы

В данной лабораторной работе был исследован резонанс напряжений в последовательном контуре и вычислены добротности контуров с различными значениями емкости несколькими способами. Так как получившиеся Φ ЧХ и AЧХ не очень точны ввиду небольшого числа точек и их неравномерности, то погрешность при расчете добротности через ширину резонансных кривых достаточно велика. Однако, рассчет по AЧХ получился достаточно точным в случае контура с C_2 . В любом случае, это явно не лучший способ измерять добротность контура, гораздо точнее измерение по формулам через параметры контура.

Было замечено, что активное сопротивление R_L катушки не является постоянным и линейно растет с частотой. Объяснение этому, скорее всего, кроется в скин-эффекте.