

Proyecto Integrador (Gpo. 10)

Avance 2. Ingeniería de características

Equipo #6

Julio César Pérez Zapata Christian Emilio Saldaña López Jorge Estivent Cruz Mahecha A01793880 A00506509 A0179380 En esta fase, conocida como ingeniería de características (FE - Feature Engineering):

A. Se aplicarán operaciones comunes para convertir los datos crudos del mundo real, en un conjunto de variables útiles para el aprendizaje automático. El procesamiento puede incluir:

Primer Modelo(SincNet)

• El primer modelo realizado, se hizo extrayendo las características mediante SincNet d-vectors:

Se tienen los datos adquiridos del dataset Saarbruecken Voice Database los cuales se empezaron a manejar y analizar posteriormente al resultado del desbalance de las clases se tomó la decisión de hacer un proceso de normalización se procedió a hacer las siguientes pruebas:

Un undersampling inicialmente igualando las clases la de menor cantidad de datos para poder ver normalizado el dataset y evaluar cómo se comportaba al clasificar, se utiliza una semilla random para agregar la aleatoriedad al tomar los datos, esto permite reducir sesgos humanos en el proceso de normalización.

```
def cargar_datos_con_undersampling(ruta_datos_enfermos, ruta_datos_sanos):
    archivos_enfermos = [f for f in os.listdir(ruta_datos_enfermos) if f.endswith(".wav")]
    archivos_sanos = [f for f in os.listdir(ruta_datos_sanos) if f.endswith(".wav")]
    # Asegurarse de que la selección sea reproducible
    random.seed(42)
    min_size = min(len(archivos_enfermos), len(archivos_sanos))
    archivos_enfermos = random.sample(archivos_enfermos, min_size)
    archivos_sanos = random.sample(archivos_sanos, min_size)
    # Cargar datos con undersampling
    datos = []
    etiquetas = []
    for archivo in archivos_enfermos:
        archivo_path = os.path.join(ruta_datos_enfermos, archivo)
        datos_audio = cargar_audio(archivo_path)
        datos.append(datos audio)
        etiquetas.append(1) # Etiqueta 1 para personas enfermas
    for archivo in archivos sanos:
        archivo_path = os.path.join(ruta_datos_sanos, archivo)
        datos_audio = cargar_audio(archivo_path)
        datos.append(datos_audio)
        etiquetas.append(0) # Etiqueta 0 para personas sanas
    X = np.array(datos)
    y = np.array(etiquetas)
    print(f"Total de archivos sanos seleccionados: {len(archivos_enfermos)}")
    print(f"Total de archivos enfermos seleccionados: {len( archivos_sanos )}")
    return X, y
```

Posteriormente se procede a probar un método de data augmentation mediante un proceso de oversampling agregando datos junto a la integración de datos con ruido blanco para poder igualar las clases y evaluar cómo se comportaba

```
# Rutas de las carpetas con datos de audio
ruta_enfermos = "/content/drive/MyDrive/PROYECTO_FINAL/Frases_enfermos_HM/export"
ruta_sanos = "/content/drive/MyDrive/PROYECTO_FINAL/frases sanos + whitenoise sanos"

# Cargar datos
X, y = cargar_datos(ruta_enfermos, ruta_sanos)

# Dividir datos en conjuntos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
```

La extracción de características se realizó directamente con una red pre entrenada(Usando Transfer Learning), cargando los datos crudos como

embeddings mediante el uso de la red SincNet d-vectors, esto nos permite el usar la red neuronal ya pre entrenada con una serie de filtros SincNet exporta correctamente estas características para poder realizar la correcta clasificación entre las etiquetas definidas(Enfermos y Sanos).

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
# Definir la arquitectura del modelo
out_dim = 50 # número de clases
sinc_layer = SincConv1D(N_filt=64, Filt_dim=129, fs=31800, stride=16, padding="SAME")
inputs = Input((31800, 1))
x = sinc_layer(inputs)
x = LayerNorm()(x)
x = LeakyReLU(alpha=0.2)(x)
x = MaxPooling1D(pool_size=2)(x)
x = Flatten()(x)
x = Dense(256)(x)
x = BatchNormalization(momentum=0.05, epsilon=1e-5)(x)
x = LeakyReLU(alpha=0.2)(x)
x = Dense(256)(x)
x = BatchNormalization(momentum=0.05, epsilon=1e-5)(x)
x = LeakyReLU(alpha=0.2)(x)
prediction = Dense(out dim, activation='softmax')(x)
model = tf.keras.models.Model(inputs=inputs, outputs=prediction)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# Entrenar el modelo
model.fit(X_train, y_train, epochs=20, batch_size=32, validation_split=0.2)
```

Segundo Modelo

• Aquí el segundo modelo con CNN, extrayendo las características manualmente:

Generación de nuevas características:

Inicialmente se estaba trabajando con la extracción de características de los MFCC, pero teniendo en cuenta lo solicitado en la ingeniería de características para buscar alter complejidad de los datos.

nativas de mejorar el modelo, se crearon nuevas características en función de los MFCCs extraídos, aunque los MFCC son características poderosas para representar información relevante en señales de audio, la ingeniería de características puede ayudar a mejorar aún más la capacidad del modelo para capturar patrones específicos o reducir la

Ahora presentamos resultados de precisión con las características iniciales(solo MFCC:

Vemos un resultados en la precisión del 64%

```
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(

your self-content of the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(

your self-content of the documentation of alternative solver options:
    predictions = model.predict(X_validation)
    print(accuracy_score(Y_validation, predictions))

0.643491124260355

your self-content/drive/MyDrive/PROYECTO_FINAL/personas_enfermas_hombre_mujeres_test
#X_new = nuevos_datos(directorio_audio)
    #model.predict(X_new)
```

Ahora con las características adicionales incluidas:

El resultado fue casi el mismo (65%) sin una mejora significativa, esto quiere decir que las nuevas características generadas no son informativas o están altamente correlacionadas con otras características existentes, pueden introducir ruido y no aportar valor adicional al modelo.esto lo veremos en el siguiente punto.

Fotos de nuevas características.

```
def extraer_caracteristicas_1(ruta_completa,clase):
   y, sr = librosa.load(ruta_completa)
   # Extracción de características
   mean = np.mean(y)
   std = np.std(y)
   #Calcular los Mel-Frequency Cepstral Coefficients (MFCC)
   mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
   #Obtener el promedio de los coeficientes MFCC
   mean_mfccs = np.mean(mfccs, axis=1)
   # Calcular las derivadas primera y segunda (delta y delta-delta)
   delta_mfcc = librosa.feature.delta(mfccs)
   delta_delta_mfcc = librosa.feature.delta(mfccs, order=2)
   #Características en el dominio del tiempo
   max_amplitude = np.max(np.abs(y))
   min amplitude = np.min(np.abs(y))
    #Características en el dominio de la frecuencia
   spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=y, sr=sr)[0])
    spectral_bandwidth = np.mean(librosa.feature.spectral_bandwidth(y=y, sr=sr)[0])
    spectral_rolloff = np.mean(librosa.feature.spectral_rolloff(y=y, sr=sr)[0])
   #Características de energía
   zero_crossing_rate = np.mean(librosa.feature.zero_crossing_rate(y=y)[0])
    rms = np.mean(librosa.feature.rms(y=y)[0])
```

[]		Media señal	Dstandar	MFCC_1	MFCC_2	MFCC_3	\	
	count	1494.000000	1494.000000	1494.000000	1494.000000	1494.000000		
	mean	-0.003213	0.118521	-285.282135	108.009033	23.426401		
	std	0.019123	0.041163	38.660976	17.561779	11.090279		
	min	-0 157601	0 035656	-491.181824	47.859734	-12.093027		
	25%	-0.000067	0.088874	-311.854179	96.597408	16.050041		
	50%	0.000090	0.111920	-286.031967	107.195984	23.712968		
	75%			-260.272789				
	max	0.005689	0.379412	-155.457825	163.457306	58.902077		
		MFCC_4	MFCC_5	MFCC_6	MFCC_7	MFCC_8		\
	count	1494.000000	1494.000000	1494.000000	1494.000000	1494.000000		
	mean	29.827608	11.924997	-4.207934	-3.221340	4.052886		
	std	8.629341	8.556303	9.034946	6.821115	6.858654		
	min	1.086860	-21.603552	-30.078554	-26.732029			
	25%	23.865721	5.831425	-10.469187	-7.999327	-0.566116		
	50%	29.726661	11.849786	-5.012325	-2.870015	4.132020		
	75%	35.921998	17.879104	1.736169	1.796740	8.475030		
	max	57.282078	49.110023	24.169561	20.284966	27.437059		
		MFCC_11	MFCC_12	MFCC_13	Amáxima	Amín	\	
	count	1494.000000	1494.000000	1494.000000	1494.000000	1.494000e+03		
	mean	-7.799371	-1.734573	-7.277539	0.670993	7.298134e-07		
	std	5.088238	4.584546	4.827751	0.192341	2.833765e-06		
	min	-25.576405	-18.944057	-23.155867	0.168511	0.000000e+00		
	25%			-10.404715		0.000000e+00		
	50%			-7.518412		2.051820e-09		
	75%	-4.251037	1.400147	-4.047214	0.812010	5.456077e-07		
	max	8.904531	12.548744	6.672144	1.164480	6.192806e-05		
		AvgCS	AvgBws	Avgrolloff	AvgCrossZ	RMS		
	count	1494.000000	1494.000000	1494.000000	1494.000000	1494.000000		
	mean			3311.323141				
	std	352.976694	294.459396	889.063608	0.017824	0.036036		
	min	667.745891	1398.945346	1277.545861				
	25%	1453.388717	1930.498906	2765.096156	0.047507	0.072976		
	50%	1645.774285	2093.870451	3155.426239	0.057452	0.092769		
	75%	1842.898772	2272.001783	3649.023377	0.066918	0.118473		
	max	3272.699674	3232.109353		0.170781	0.303140		
			-					

Escalamiento (normalización, estandarización, min – max,...)

Se aplica una técnica de normalización mix-max scaling

El Min-Max Scaling es una técnica de normalización que transforma los datos a un rango específico, generalmente [0, 1]. Para cada característica, el valor mínimo de esa característica se asigna a 0, el valor máximo se asigna a 1, y los valores intermedios se escalan proporcionalmente.

```
# Instanciar el MinMaxScaler
scaler = MinMaxScaler()

# Ajustar y transformar el DataFrame
df_normalizado = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

# Mostrar el DataFrame normalizado
print("\nDataFrame Normalizado:")
print(df_normalizado)
```

Dataframe sin estandarizar

⊟		0	1	2	3	4	5	\
ٺ	0	-276.71798	7 95.966431	16.797182	32.426895	5.460468 -	14.558228	
	1	-331.67117	3 88.990852	26.850248	29.664236	18.703295	-9.027935	
	2	-298.16217	94.625618	47.661263	33.394974	14.282223	9.721114	
	3	-335.46096	8 90.559555	30.698204	34.027248	10.324809	-1.605529	
	4	-328.96643	1 125.024414	32.765697	21.456146	0.954221	-5.444850	
	3375	-299.99926	8 84.822945	30.384068	27.291128	15.361194	4.424277	
	3376	-254.73179	6 95.487541	38.923668	30.053751	14.873991	2.490798	
	3377	-259.50305	2 69.861420	29.047359	22.718458	-0.338743	-5.093669	
	3378	-241.01774	6 72.833458	22.816212	10.544170	1.574811	-7.388791	
	3379	-211.60983	82.958015	30.486120	35.612396	18.947086	3.773836	
		6	7	8	9	10	11 \	
	0	0.648947	6.209880 -11	.038387 -2.	728484 -15.9	955387 -4.8	330564	
	1	0.670050	6.027178 -14	.027277 -4.	579039 -11.1	L64975 -4.9	51526	
	2	3.715047	17.661226 -1	.353177 -4.	638551 -8.2	260089 -6.2	271485	
	3	6.281756	10.063773 -11	.569776 -5.	919106 -10.5	38960 -5.5	04457	
	4	-0.443363	2.875868 -8	.184669 -8.	114563 -7.1	L64325 -11.1	196189	
	3375	-2.879648	7.122748 -4	.835103 -7.	628438 -7.9	981459 0.4	125982	
	3376	-5.420818	8.292114 2	.471379 -0.	328044 -7.5	34906 -3.7	788523	
	3377	-0.073438	0.348526 -2	.738698 -5.	018907 -6.7	781922 0.8	366892	
	3378	1.258463	3.783682 -14	.781074 -9.	954063 -7.9	996145 -0.8	330934	
	3379	-3.217421	8.508855 -4	.661208 -3.	813538 -9.3	394625 -4.0	30648	
		12	13	1	4	15 1	l6 17	
	0	-11.588970	1625.625807	1973.73974	6 2994.980	315 0.06238	31 sick	
	1	-13.915579	1907.157887	2495.26637	9 4065.2032	272 0.06252	27 sick	
	2	-0.735719	1702.239366	2401.04529	9 3580.8259	966 0.04642	20 sick	
	3	-7.531395	1584.164885	1936.43878	0 2741.2043	364 0.06299	95 sick	
	4	-4.804162	1400.222067	1815.46235	1 2614.9383	354 0.05694	l6 sick	
	3375	-5.635503	2166.070522	2622.57639	2 4588.3919	973 0.08674	19 sano	
	3376	-5.693202	2166.478623	2613.86065	7 4676.5147	799 0.07814	l8 sano	
	3377	-8.918947	2313.376848	2659.62396	0 4911.7492	268 0.08168	32 sano	
	3378	-7.666831	2552.174848	2845.06115	3 5802.7232	245 0.09375	7 sano	
	3379	-5.809443	2220.044609	2581.44899	5 4706.2531	184 0.07450	99 sano	
			. 0 -					

```
DataFrame Normalizado:
         0 1 2 3
    1
    0.442490 0.441898 0.548535 0.508538 0.570002 0.388043
     0.535446 0.484129 0.841668 0.574926 0.507481 0.733660
     0.431977 0.453655 0.602735 0.586178 0.451517 0.524867 0.702167
3
     0.449994 0.711958 0.631857 0.362474 0.319002 0.454093 0.559131
                . . .
                                . . .
                                        . . . .
3375 0.530350 0.410661 0.598310 0.466308 0.522739 0.636019 0.507314
3376 0.655924 0.490589 0.718595 0.515469 0.515849 0.600378 0.453266
3377 0.642688 0.298530 0.579482 0.384937 0.300717 0.460567 0.566999
3378 0.693967 0.320804 0.491713 0.168294 0.327778 0.418259 0.595327
3379 0.775546 0.396684 0.599748 0.614386 0.573449 0.624029 0.500130
          7
                           9
                  8
                                   10
                                            11
                                                     12
                                                              13
     0.552510 0.323840 0.539063 0.279024 0.448150 0.387786 0.272336
     0.548659 0.255056 0.487618 0.417954 0.444309 0.309786 0.352379
     0.793916 0.546728 0.485963 0.502200 0.402396 0.751647 0.294118
2
     0.633754 0.311611 0.450364 0.436109 0.426752 0.523819 0.260548
     0.482226 0.389513 0.389330 0.533979 0.246020 0.615251 0.208251
              ... ...
                              ... ...
3375 0.571754 0.466598 0.402844 0.510280 0.615062 0.587380 0.425991
3376 0.596406 0.634744 0.605795 0.523231 0.481238 0.585445 0.426107
3377 0.428947 0.514843 0.475389 0.545069 0.629063 0.477300 0.467871
3378 0.501363 0.237708 0.338192 0.509854 0.575151 0.519278 0.535764
3379 0.600975 0.470600 0.508898
                              0.469296 0.473550 0.581548 0.441336
          14
                  15
                           16
                               17
     0.299133 0.253747 0.175117
                               1.0
1
    0.570545 0.411869 0.175555
                               1.0
    0.521510 0.340304 0.127229
    0.279721 0.216252 0.176959
3
                               1.0
     0.216763 0.197596 0.158811
                               1.0
3375 0.636799 0.489169 0.248229
                               0.0
3376 0.632263 0.502189 0.222422
3377 0.656079 0.536945 0.233028
                              0.0
3378 0.752584 0.668584 0.269255 0.0
3379 0.615396 0.506583 0.211505 0.0
```

Conclusión de normalización:

El resultado para ambos casos fue el mismo lo que quiere decir que la diferentes escalas no afectan al modelo, en poca palabra el modelo utilizado es capaz de relacionar las diferentes escalar

B. Además, se utilizarán métodos de filtrado para la selección de características y técnicas de extracción de características, permitiendo reducir los requerimientos de almacenamiento, la complejidad del modelo y el tiempo de entrenamiento. Los ejemplos siguientes son ilustrativos, pero no exhaustivos, de lo que se podría aplicar:

Además, se utilizarán métodos de filtrado para la selección de características y técnicas de extracción de características, permitiendo reducir los requerimientos de almacenamiento, la complejidad del modelo y el tiempo de entrenamiento. Los ejemplos siguientes son ilustrativos, pero no exhaustivos, de lo que se podría aplicar:

- Umbral de varianza
- Correlación
- Chi-cuadrado
- ANOVA
- Análisis de componentes principales (PCA)
- Análisis factorial (FA)

Primer Modelo(SincNet)

Con el fin de ayudar a reducir la complejidad del modelo y el tiempo de procesamiento se efectuó en si el transfer learning usando una red neuronal pre entrenada(SincNet) esto hace que se simplifique en gran medida el uso del modelo y es mucho más rápido para arrojar resultados específicos, dado que se aprovecha tanto la estructura como el tiempo invertido en un modelo previo que se diseñó en base a datasets con muchas más características que en sí el nuestro.

Solamente fue necesario ajustar la entrada al modelo(forma de los audios, Frecuencia y etiquetas), así como la caracterización de salida deseada(Selección Binaria Enfermos/Sanos) y el modelo con SincNet. Por lo mismo es el modelo que mejores resultados nos está brindando.

* Todas las decisiones y técnicas empleadas deben ser justificadas.

Correlación segundo Modelo(CNN)

Para el filtrado de características se usó el mapa de calor de la matriz de correlación:

En esta vamos a ver que las característica adicionales a los MFCC están altamente correlacionadas entre sí, por lo que simplemente podemos dejar una sola variable, con esto reducimos la dimensionalidad del dataset y hacemos que el algoritmo sea más eficiente en términos de tiempo.

Para nuestro caso suprimimos las variables 13,15,16

En resumen, la matriz de correlación y su representación visual mediante un mapa de calor son esenciales para comprender las relaciones entre variables, identificar patrones, diagnosticar problemas en modelos y tomar decisiones informadas en el análisis de datos y la modelización estadística.

codigo:

```
import seaborn as sns
import matplotlib.pyplot as plt

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

corr_df = df.corr(method="pearson")

plt.figure(figsiz=(20, 15))
sns.heatmap(corr_df, annotaTrue)
# Crear una figura y ejes más grandes
fig, ax = plt.subplots(figsiz=(15, 15))

# Crear el mapa de calor
sns.heatmap(corr_df, cmapa='coolwarm', annotaTrue, ax=ax)

# Establecer el título
plt.title('Mapa de Calor de Correlación', fontsiz==16)

# Mostrar el mapa de calor
plt.show()
```


^{*} Es necesario fundamentar los métodos ejecutados.

c. Incluir conclusiones de la fase de "Preparación de los datos" en el contexto de la metodología CRISP-ML.

Data Understanding and Exploration:

El dataset se encuentra compuesto de audios grabados en formato .wav los cuales fueron capturados por la Universidad de Saarlandes y separadas por diferentes etiquetas acerca de patologías vocales, el dataset está compuesto por grabaciones vocales de más de 2000 personas, las cuales contienen la grabación de las vocales a, i, u, adicionalmente de la frase "Guten Morgen, wie geht es ihnen" (Buenos dias, como estas.) grabadas en idioma alemán, para lo cual se realiza la transformación de los

datos(audios), extrayendo espectrogramas de mel para poder analizar las características de cada audio.

```
[51] # Visualizar histogramas
    df.hist(bins=20, figsize=(15, 15))
    plt.suptitle('Histogramas de Características de Audio', y=0.95, fontsize=16)
    plt.show()
```

Histogramas de Características de Audio

Data Cleaning:

Durante el proceso se eliminaron varios audios que tienen muy poca duración (menos de 1 segundo). Debido a que no aportan soporte durante el entrenamiento.

Data Integration:

Se decidió agregar diferentes datasets para poder mejorar el entrenamiento. Originalmente utilizamos datasets de frases completas. Con la investigación se descubrió que utilizando audios de vocales también se podía calcular la patología del individuo.

Data Transformation:

Debido a que la clase de audios de gente sana resultó ser pequeña. Se hicieron transformaciones (data augmentation) con la técnica de white-noise para poder nivelar un poco los datos.

Data Splitting:

Se encontró que al tener 10% de datos para el test y el resto para entrenamiento se mejoró el 'accuracy'.

Readiness for Modeling:

Actualmente se está considerando expandir el dataset con audios en EGG-signal. Para ver si se puede mejorar el 'accuracy' de los modelos. Como equipo creemos que los datos que se tienen actualmente si están listos para ser utilizados en modelos.

Github

https://github.com/julioperezzapata/Proyecto_integrador_grupo_6