

DeSEm Design and Specification of the DeseNET Protocol

Dominique Gabioud Michael Clausen Thomas Sterren Medard Rieder

HES-SO 2020/21

Table of Content

- Introduction to DeseNET
- DeseNET & low energy
- The DeseNET protocol architecture
- DeseNET TDMA
- DeseNET frame format

Context

- Wireless sensor network
 - GateWay (GW)
 - Role: store sensor data
 - Local storage capacity or connected to "cloud"
 - Sensor Nodes (SN)
- Star topology
 - Only GW SN communication
- Battery powered sensor nodes
 - DeseNET protocol should enable low power implementation strategies
- Not a Plug and Play protocol
 - "Keep it simple and stupid!"
 - Manual configuration and/or implicit assumptions about data formats

What kind of data do SNs acquire?

- Sampled Values
 - Discrete samples of a continuous signal
 - Digitised by an ADC
- **Events**
 - Events occur not regularly over time
 - Usually rather infrequently
 - Events can be:
 - Change of state for a binary input,
 - Continuous values above/below threshold,

Sampled value service

It is required that sampling is performed synchronously on all nodes, to provide a good "picture" of a process. Frequency and phase synchronicity required!

Event service

Protocol stack should implement a sampled value service and an event service

Wireless & energy: Model

The wireless radio is often the most energy consuming unit of a node

Wireless & energy: Transceiver state

- Radio transceiver states:
 - Transmit (TX): The radio is sending frames over the air to peer nodes
 - Receive (RX): The radio receives frames from peer nodes
 - Idle: The radio receiver is turned on, but no frame is incoming
 - Sleep: The radio is turned off
- Radio transceiver control:
 - ON / OFF command
 - OFF: Sleep state
 - ON: Default state is Idle

In case of incoming frame, the transceiver goes automatically in **Receive** state

Upon frame transmission request, the transceiver goes in Transmit state and comes back to Idle state after the end of transmission

Wireless & energy: Distribution of consumption

The **Transmit**, **Receive** and **Idle** states consume almost the same energy

In the Sleep state, the consumption is 3 orders of magnitude lower

MAC & Energy

- MAC (Medium Access Control) layer role
 - Organise access to a shared communication channel by several nodes
 - Wired bus or wireless channel
- MAC & energy efficiency
 - An energy efficient MAC must control the radio transceiver states for minimum energy consumption
 - · While still fulfilling the expected requirements
- Major sources of energy wastes:
 - Collision: Frames transmitted simultaneously by several nodes are corrupted.
 - Retransmission increases energy consumption
 - Overhearing: A node picks up packet destined to other nodes
 - Overhead: Sending and receiving control frames or control fields in data frames
 - Idle listening: Radio receiver turned on but no incoming frames

Principle of TDMA MAC

A node with coordinator role broadcasts periodic beacons

Each node has its reserved transmission time slot

T2

- Fixed beacon to time slot delay
- Each node can read time slots
 - Time slot determined by beacon delay time
- Typical use:
 - Continuous bit rate "streaming applications"
 - **DECT** (Digital Enhanced Cordless Telecommunications)

TDMA MAC & energy

- Source of energy wastes
 - Collision: ++

Performance assessment (best grade: "++")

- No collision
- Overhearing: ++
 - Non-existent, at least for nodes without actuator
- Overhead: ++
 - Control frames kept to minimum
- Idle listening: ++
 - Non-existent, at least for nodes without actuators

DeseNET layer architecture

Radio & DeseNET layers

The Sampled Value service

- Chunk of data (SV Group Data) collected periodically by local sensors
 - A SV Group Data block is typically obtained through sampling (ADC) of a continuous signal
 - A SV Group Data block may contain several multiplexed sampled signals or any other periodically generated data block
 - Encoding of the SV Group Data is outside the scope of DeseNET
- Sequence of SV Group Data from the same source build a SV Channel
 - A Sampled Value Channel is identified by:
 - the SN ID of the originating SN, and
 - a so-called SV Group parameter, which identifies the local SV Group Data source
 - A SV Group identifies similar sources over all SNs
 - Example: SV Group7 -> Accelerometer sensor samples
- SV Group Data are transmitted on request of the Gateway:
 - Beacons carry Sampled Value transmission request for a given SV Group
 - A request for a given SV Group is transmitted in every n beacons (n = 1, 2, 3...)
 - n may be different for each SV group

SV Channel SN ID 3; SV Group 7

- An event is characterised by:
 - an Event ID, and
 - associated Event Data
- There is no restriction on the pace of occurrence of event. Hence, DeseNET:
 - queues events generated by local applications
 - empties the event queue as fast as possible. Extracted events are sent using the DeseNET protocol

DeseNET protocol

DeseNET & Event Application layers

Event DeseNET Application An event is occurring D_Event.Request(eventID, eventData) The DeseNET layer entity must somehow buffer the events as it can not transmit them immediately

DeseNET & SV Application layers: Synchronising ADC

- DeseNET enables a Gateway to trigger ADC reading on a per cycle basis
 - The Gateway may ask to read & transmit a selected subset of the SV Groups at each cycle
- Synchronisation service is optional
 - ADC read could be performed cyclically for example

But it's a good practice to read samples from ADC at the TDMA transmission rate

DeseNET & SV Application layers: Getting the sampled values

- DeseNET features:
 - 32 time slots numbered 0... 31
 - A variable period Tc, indicated by the Gateway in each Beacon
 - Hence the time position in cycle and the slot duration can be calculated
- The slot number ("the address") is statically configured in each sensor node

Overview of DeseNET frame format

- Within a cycle period Tc, a sensor node can have gathered
 - Sampled values: A constant number of pairs (SV Group, SV Group Data) is called MPDU
 - Unless new subscriptions occurred
 - Events: A variable number of pairs (Event ID, Event Data)
- All these data have to be send in the attributed time slot
 - DeseNET chose the option to send a unique frame per time slot
 - There is one and only one receiver (the Gateway)
 - Less overhead with one frame

EV ePDU with a pair (Event SV ePDU with a pair (SV Group, ID, Event Data) SV Group Data) MPDU frame Time slot i time

There is one frame per time slot (the MPDU, Multiple PDU). The latter contains several ePDUs (embedded PDUs)

A simple, conservative, suboptimal algorithm is to be implemented to keep the MPDU frame duration shorter than the time slot

ePDU format

- An SV ePDU contains mainly:
 - The SV Group and the SV Group Data
- An EV ePDU contains mainly
 - The Event ID and the Event Data
- SV Groups and Event IDs must be managed at DeseNET level
 - But their management is outside the scope of the DeseNET protocol
 - For the DeseNET protocol:
 - SV Groups and Event IDs are just numbers
 - SV Group Data and Event Data are just byte arrays