

Chapter 1

Improve optimization

Chapter 2

Speed optimization

Chapter 3

Projection optimization

P

R

ONE.

Improve optimization analytics

Think about it, what can be optimized in the handling of the car?

For example: velocity

switching, firing intensity, etc

Speed 60

Medium speed

Speed 150

high speed

Speed 240

The faster the speed, the faster it moves, and the more powerful it is

The angle of servo motor P0 is 60 degrees, and the speed of motor E is 60

Self-scaling method:

Think about it, is there any other way to optimize?

Distance B

Mode 1

The angle of servo motor P0 is 40 degrees, and the speed of motor E is 150

Mode 2

Mode 3

The angle of servo motor P0 is 60 degrees, And the speed of motor E is 60

The angle of servo motor P0 is 20 degrees, and the speed of motor M2 is 240

P

R

TWO.

Speed optimization

Task 1: Test the 2 or 3 speed values you need and record them

	low speed	Medium speed	high speed
Speed value			

Think about it, how to realize the switching of different speeds of the trolley?

The new variable speed is added, and different speed values are assigned in different cases

Task 2: Set SQUARE button as medium speed, CIRCLE as low speed

Results

Task 2: Set SQUARE button as medium speed, CIRCLE as low speed

Use the speed variable instead of the value Define back Define back Set Motor M3 - 's Speed to 100 ~255) Rotating Clockwise 🔻 turns Set Motor M3 • 's Speed to speed (0~255) Rotating Clockwise v turns Set Motor M4 > 's Speed to 100 (1~255) Rotating Clockwise v turns Set Motor M4 - 's Speed to (speed (0~255) Rotating Clockwise v turns ()~255) Rotating Clockwise 🔻 turns Set Motor M5 s 's Speed to 100 Set Motor M5 v 's Speed to (0~255) Rotating Clockwise v turns speed ()~255) Rotating Clockwise v turns Set Motor M6 v 's Speed to 100 Set Motor M6 v 's Speed to speed (0~255) Rotating Clockwise turns Define front Define front Set Motor M3 v 's Speed to ~255) Rotating Anti-Clockwise 🔻 turns 100 Set Motor M3 v 's Speed to (0~255) Rotating Anti-Clockwise turns speed ~255) Rotating Anti-Clockwise 🔻 turns Set Motor M4 v 's Speed to 100 Set Motor M4 > 's Speed to (speed (0~255) Rotating Anti-Clockwise v turns Set Motor M5 v 's Speed to 100 ~255) Rotating (Anti-Clockwise 🔻 turns Set Motor M5 > 's Speed to (speed (0~255) Rotating Anti-Clockwise turns Set Motor M6 v 's Speed to 100 ([~255) Rotating Anti-Clockwise 🔻 turns Set Motor M6 's Speed to (0~255) Rotating Anti-Clockwise turns speed

Task 2: Set SQUARE button as medium speed, CIRCLE as low speed

Turnleft and Turnright are used for micro-adjustment when projecting, and only need to be executed at low speed, and there is no need to set different speed values.

Reference

Task 2: Set SQUARE button as medium speed, CIRCLE as low speed

```
(III)
Set Motor M2 * 's Speed to 0 (0~255) Rotating Clockwise * turn
Set Motor M3 · 's Speed to ( 0 (0~255) Rotating Clockwise · turn
Set Motor M4 • 's Speed to 0 (0~255) Rotating Clockwise • turn
Set Motor M5 · 's Speed to ( 0 (0~255) Rotating Clockwise · turn
Set Motor M6 → 's Speed to 0 (0~255) Rotating Clockwise → turn:
Set Servo on GPIO # P0 - Rotate to 0 Degree (0'~180'
Set Servo on GPIO # P1 Rotate to 90 Degree (0'~180'
Set Servo on GPIO # P2 Rotate to 90 Degree (0'~180')
Set Servo on GPIO # P3 Rotate to 0 Degree (0*~180°)
UART ⇄
              Data - E Get Serial (UART) Data at 0 as
                 🌠 Split string to a list 🎁 Data 🕡 by delimiter: 📳 Split and generate a list
              List control - # - 0 item = - " L"
                 int List control # 1 item > 100
                 int · List control · # · 1 item < · 1-100
                  int 1 List control # 2 item > 100
                 int · List control · # · 2 item < - 100
```

```
List control # * 0 item = * 1 "R"
       int List control # 1 item > 100
       int - List control - # 1 item < - 100
       int List control # 2 item > 100
       int List control # 2 item < - 100
      Data - = - " " NONE "
      state - = 0
Else if Data = = " ((UP)"
Do Set Servo on GPIO # P1 Rotate to 180 Degree (0*~180°)
Else if Data - = - ( DOWN)
Do Set Servo on GPIO # P1 Rotate to 14 Degree (0°~180°)
Else if Data = W (LEFT)
Do Set Servo on GPIO # P1 Rotate to 90 Degree (0*~180°)
Else if Data · Eve "[1]"
Do Set Servo on GPIO # P2 Rotate to 120 Degree (0*~180°)
Else if Data - - " " R1 "
Do Set Servo on GPIO # P2 Rotate to 98 Degree (0*~180°)
      Data · = · | " TRIANGLE »
          state - = - 0
         state - = ( 1
      Data - = - | " SQUARE "
     Data - = - " " (CIRCLE) "
```

```
Set Motor M3 * 's Speed to 60 (0~255) Rotating Clockwise * turns
     Set Motor M3 → 's Speed to speed → (0~255) Rotating Clockwise → turns
                                                                                    Set Motor M4 * 's Speed to 60 (0~255) Rotating Clockwise * turns
    Set Motor M4 → 's Speed to speed → (0~255) Rotating Anti-Clockwise → turns
                                                                                    Set Motor M5 s 's Speed to ( 80 (0~255) Rotating Anti-Clockwise s turn:
    Set Motor M5 • 's Speed to speed • (0~255) Rotating Clockwise • turns
                                                                                    Set Motor M8 → 's Speed to 60 (0~255) Rotating Anti-Clockwise → turn
    Set Motor M8 * 's Speed to speed * (0~255) Rotating Anti-Clockwise * turns
     Set Motor M3 's Speed to speed (0~255) Rotating Anti-Clockwise turns
                                                                                   Set Motor M3 . 's Speed to | 60 (0~255) Rotating Anti-Clockwise . turns
    Set Motor M3 • 's Speed to speed • (0~255) Rotating Clockwise • turns
                                                                                   Set Motor M4 - 's Speed to | 60 (0~255) Rotating Anti-Clockwise - turn
    Set Motor M3 * 's Speed to speed • (0~255) Rotating (Anti-Clockwise • turns
                                                                                   Set Motor M5 * 's Speed to 60 (0~255) Rotating Clockwise * turns
    Set Motor (M3 → 's Speed to speed → (0~255) Rotating Clockwise → turns
                                                                                   Set Motor M8 . 's Speed to 1 80 (0~255) Rotating Clockwise . turns
Set Motor M3 's Speed to speed (0~255) Rotating Clockwise turns
                                                                                   Set Motor M2 v 's Speed to ( 200 (0~255) Rotating Clockwise v turns
Set Motor M4 's Speed to speed (0~255) Rotating Clockwise turns
                                                                                  Set Servo on GPIO # F3 → Rotate to 180 Degree (0*~180*)
Set Motor M5 • 's Speed to speed • (0~255) Rotating Clockwise • turns
Set Motor M8 · 's Speed to speed · (0~255) Rotating Clockwise · turns
                                                                                   Set Servo on GPIO # P3 Rotate to 0 Degree (0°~180°)
                                                                                      it 500 Millise
                                                                                  Set Motor M2 v 's Speed to 0 (0~255) Rotating Clockwise v turns
Set Motor M3 → 's Speed to speed → (0~255) Rotating Anti-Clockwise → turns
Set Motor M4 → 's Speed to speed → (0~255) Rotating Anti-Clockwise → turns
Set Motor M5 → 's Speed to speed → (0~255) Rotating Anti-Clockwise → turns
                                                                                  Set Motor M3 * 's Speed to 0 (0~255) Rotating Clockwise * turns
Set Motor M6 → 's Speed to speed → (0~255) Rotating Anti-Clockwise → turns
                                                                                 Set Motor M4 → 's Speed to 0 (0~255) Rotating Clockwise → turns
                                                                                 Set Motor M5 * 's Speed to 0 (0~255) Rotating Clockwise * turns
                                                                                  Set Motor M8 → 's Speed to 0 (0~255) Rotating Clockwise → turns
               shoot - < 70
             hange shoot by ( 5
    Else Set shoot = 70
                                                                                             shoot - > 0
                                                                                         Change shoot - by -5
    Set Servo on GPIO # P0 ■ Rotate to shoot ■ Degree (0°~180°)
                                                                                  Else Set shoot - = ( 0
                                                                                  Set Servo on GPIO # PO Rotate to shoot Degree (0°~180°)
```


P

R

THREE.

Projection optimization

Projection optimization

Task 3: Setup **TRIANGLE** button for high-speed launch, **CROSS** for low speed launch

Result


```
Step 1
```

```
Define shoot_ball
    Set Motor M2 's Speed to 250 (0~255) Rotating Clockwise turns
   Set Servo on GPIO # P3 THOTALE TO 180 Degree (0°~180°)
    Wait 1000 Milliseconds
   Set Servo on GPIO # P3 Rotate to 0 Degree (0*~180*)
   Set Motor M2 → 's Speed to 0 (0~255) Rotating Clockwise → turns
Define (shoot_ball2)
   Set Motor M2 : 's Speed to 170 0~255) Rotating Clockwise : turns
   Set Servo on GPIO # P3 Rotate to 180 Degree (0°~180°)
    Wait 1000 Milliseconds
   Set Servo on GPIO # P3 Rotate to 0 Degree (0°~180°)
    Vait 500 Milliseconds
   Set Motor M2 → 's Speed to 0 (0~255) Rotating Clockwise → turns
                 Step 2
```


Reference

Task 3: Setup TRIANGLE button for high-speed launch. CROSS for low speed launch

```
€
Set Motor M2 * 's Speed to * 0 (0~255) Rotating Clockwise * turns
 Set Motor M3 → 's Speed to 0 (0~255) Rotating Clockwise → turns
 Set Motor M4 - 's Speed to 0 (0~255) Rotating Clockwise - turns
 Set Motor M5 → 's Speed to 1 0 (0~255) Rotating Clockwise → turns
Set Motor M8 s 's Speed to 0 (0~255) Rotating Clockwise s turns
Set Servo on GPIO # P0 - Rotate to 0 Degree (0°~180°)
Set Servo on GPIO # P1 Rotate to 90 Degree (0*~180*)
 Set Servo on GPIO # P2 Rotate to 90 Degree (0*~180*)
Set Servo on GPIO # P3 Rotate to 0 Degree (0°~180°)
               Data - Get Serial (UART) Data at 0 as
                  Split string to a list Data by delimiter: 🛭 Split and generate a lis
               List | control - # - 0 0 item = - | " [ 2
                  int List control # 1 item > 100
                   int List control # 1 1 item < - 100
                   int List control # 2 item > 100
                  int - List control - # 2 item < - 100
```

```
List control # 0 item = " "R"
        int · List control · # · 1 item > · 100
       int List control # 1 1 item < - 100
       int C List control + + 1 2 item > 100
       int - List control - # - 2 item < - -100
      Data · E · W NONE »
      Data - = - " (UP)"
  Set Servo on GPIO # P1 Rotate to 1160 Degree (0°~180°)
      Data · = · " DOWN "
Do Set Servo on GPIO # P1 - Rotate to 1 14 Degree (0°~180')
      Data - = - " " (LEFT) "
Do Set Servo on GPIO # P1 Rotate to 90 Degree (0°~180°)
      Data · = · | " L1 »
Do Set Servo on GPIO # F2 Rotate to 120 Degree (0°~180°)
      Data - = - | " (R1) "
   Set Servo on GPIO # P2 Rotate to 98 Degree (0°~180')
       Data - = - " " TRIANGLE >
   state - = - 0
      Data • = • | " (CROSS)"
         state - = - 0
      Data · = · W SQUARE >>
     speed - = 200
Else if Data = " " CIRCLE "
      speed - = [ 100
```

```
Set Motor M3 → 's Speed to speed → (0~255) Rotating Clockwise → turns
Set Motor M4 → 's Speed to speed → (0~255) Rotating Anti-Clockwise → turns
Set Motor M5 → 's Speed to speed → (0~255) Rotating Clockwise → turns
Set Motor M6 . 's Speed to speed . (0~255) Rotating Anti-Clockwise . turns
Set Motor (M3 * 's Speed to speed * (0~255) Rotating Anti-Clockwise * turns
Set Motor M3 ⋅ 's Speed to speed ⋅ (0~255) Rotating Clockwise ⋅ turns
Set Motor M3 • 's Speed to speed • (0~255) Rotating Anti-Clockwise • turns
Set Motor M3 → 's Speed to speed → (0~255) Rotating Clockwise → turns
Set Motor M3 st 's Speed to speed st (0~255) Rotating Clockwise st turns
Set Motor M4 v 's Speed to speed v (0~255) Rotating Clockwise v turns
Set Motor M5 → 's Speed to speed → (0~255) Rotating Clockwise → turns
Set Motor M6 • 's Speed to speed • (0~255) Rotating Clockwise • turns
Set Motor M3 - 's Speed to speed - (0~255) Rotating Anti-Clockwise - turns
Set Motor M4 ⋅ 's Speed to speed ⋅ (0~255) Rotating Anti-Clockwise ⋅ turns
Set Motor M5 • 's Speed to speed • (0~255) Rotating Anti-Clockwise • turns
Set Motor M8 ■ 's Speed to speed ▼ (0~255) Rotating Anti-Clockwise ▼ turns
          shoot - < - 70
         nange shoot - by [ 5
 Else Set shoot = 70
Set Servo on GPIO # PO Rotate to (shoot Degree (0°~180°)
         shoot - > 0
        hange shoot by 5-5
 Set Servo on GPIO # P0 Rotate to shoot Degree (0°~180")
```

```
Set Motor M3 * 's Speed to | 60 (0~255) Rotating Clockwise * turns
  Set Motor M4 * 's Speed to | 60 (0~255) Rotating Clockwise * turn:
  Set Motor M5 * 's Speed to 1 80 (0~255) Rotating Anti-Clockwise * turn
 Set Motor M8 • 's Speed to 60 (0~255) Rotating Anti-Clockwise • turn
 Set Motor M3 * 's Speed to ( 80 (0~255) Rotating Anti-Clockwise * turn:
Set Motor M4 * 's Speed to 60 (0~255) Rotating Anti-Clockwise * turn:
Set Motor M5 * 's Speed to $ 80 (0~255) Rotating Clockwise * turns
Set Motor M6 • 's Speed to 60 (0~255) Rotating Clockwise • turns
Set Motor M2 → 's Speed to 1 250 (0~255) Rotating Clockwise → turns
Set Servo on GPIO # P3 Rotate to 1 180 Degree (0°~180')
Set Servo on GPIO # F3 Rotate to 0 Degree (0°~180°)
Set Motor M2 • 's Speed to ( 0 (0~255) Rotating Clockwise • turns
 Set Motor M2 → 's Speed to 170 (0~255) Rotating Clockwise → turns
Set Servo on GPIO # P3 Rotate to (180 Degree (0°~180°)
Set Servo on GPIO # P3 Rotate to 0 Degree (0°~180°)
Set Motor M2 * 's Speed to 0 (0~255) Rotating Clockwise * turns
Set Motor M3 ▼ 's Speed to ( 0 (0~255) Rotating Clockwise ▼ turns
Set Motor M4 * 's Speed to 0 (0~255) Rotating Clockwise * turns
Set Motor M5 · 's Speed to ( 0 (0~255) Rotating Clockwise · turns
Set Motor M6 's Speed to 0 (0~255) Rotating Clockwise turn:
```


Test your car!

