2. Содержательная постановка	
Необходимо провести проверку соблюдения закона Ома для участка цепи, состоящего из элемента питания, резистора и амперметра, подключенных последовательно. Известны значения напряжения а также значения силы тока на участке цепи.	
3. Формальная постановка	
Пусть	
• $U=U_1,U_2,\ldots,U_n$ - простраство зафиксированных (подаваемых) значений напряжения на участок цепи. • $I=I_1,I_2,\ldots,I_n$ - простраство случайных (измеренных) значений силы тока в участке цепи.	
Задача:	
$ ext{MSE} o ext{min}$	
$U_n > 0$ $I_n > 0$	
$I_n>0 \ w>0$	
4. Алгоритм и ПО	
Мы предполагаем, что согласно закону Ома для участка цепи ($I=rac{U}{R}$) истинная связь между U и I является линейной, плюс некоторая случайная ошибка: $I_i=f(w,U_i)+arepsilon_i$	
В данном случае в качестве веса будет выступать проводимость $rac{1}{R}$.	
Проверку состоятельности модели закона Ома будем проводить рассчитывая коэффициент детерминации ${f R}^2$.	
Если ${f R}^2$ выше 50% , то модель будем считать хорошей.	
В качестве алгоритма будем использовать МНК	
В качестве ПО будем использовать ЯП руthon, с подключенными модулями: питру - для работы с линейной алгеброй вkleam - для линейной регрессии в seaborn - для построения графиков	
• seaborn - для построения графиков	
5. Решение задачи	
Приведем решение задачи с применением выбранного алгоритма.	
Подключим необходимые модули	
from sklearn.linear_model import LinearRegression import seaborn as sns	
Предоставим данные п [2]: U = nn array([0 5 15 25 35 45 55]) reshape((-1 1))	
<pre>In [2]: U = np.array([0, 5, 15, 25, 35, 45, 55]).reshape((-1, 1)) I = np.array([0, 5, 20, 19, 32, 38, 48])</pre>	
Создадим экземпляр класса модели линейной регрессии и посчитаем R ²	
r_sq = model.score(U, I)	
Simple LinearRegression(fit_intercept = False).fit(U, I)	
Коэффициент детерминации: 0.9669999878497746 Проводимость: 0.87692307692	
6. Анализ	
Проведем анализ результатов: Исходя из вычисленного коэффициента детерминации - доли объясненной моделью дисперсии, получаем:	
if r_sq >= 0.8: print('Модель хорошая. Закон Ома выполняется') elif r_sq >= 0.5:	
if r_sq >= 0.8: print_Nogens xopowan. Закон Owa semonnertcs') elif r_sq >= 0.5: print('Mogens upwewnewan. Закон Owa semonnertcs') else: print('Mogens henpumewnewan. Закон Owa не выполняетсs')	
Модель хорошая. Закон Ома выполняется Построим график	
n [6]: sns.regplot(x=U, y=I);	

Из него видно, что зависимость линейная. Соответственно закон Ома выполняется.