Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 23

- Remarks on Ford-Fulkerson
- Intro to linear programming

Credit: based on slides by A. Smith & K. Wayne

Ford-Fulkerson augmenting-path algorithm

```
For each e \in E f(e) \leftarrow 0, G_f \leftarrow residual\ graph
While there is an augmenting path P in G_f
f \leftarrow Augment(f, c, P)
Update G_f
return f
```

Theorem. Ford-Fulkerson terminates in at most nC iterations.

Running time. O(mnC) Exponential in input size: $\log C$ bits (to represent C)

Can it be this bad?

Ford-Fulkerson: exponential example

Obs. If max capacity is C, then FF can take $\geq C$ iterations.

•
$$s \rightarrow v \rightarrow w \rightarrow t$$

•
$$s \rightarrow w \rightarrow v \rightarrow t$$

•
$$s \rightarrow v \rightarrow w \rightarrow t$$

•
$$s \rightarrow w \rightarrow v \rightarrow t$$

•

•
$$s \rightarrow v \rightarrow w \rightarrow t$$

•
$$s \rightarrow w \rightarrow v \rightarrow t$$

Each augmenting path sends only 1 unit of flow (# augmenting paths = 2C)

Choosing good augmenting paths

- Use care when selecting augmenting paths
 - Some choices lead to exponential algorithms
 - Clever choices lead to polynomial algorithms
 - If capacities are irrational, algorithm not guaranteed to terminate!
- Good choices of augmenting paths [EdmondsKarp'72,Dinitz'70]
 - Max bottleneck capacity [Next]
 - Fewest edges (shortest) [CLRS 26.2]

Capacity scaling

Intuition. Choosing path with highest bottleneck capacity increases the flow by max possible amount

- OK to choose sufficiently large bottleneck: scaling parameter Δ
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ

Capacity scaling algorithm

```
Scaling-Max-Flow (G, s, t, c)
 For each e \in E f(e) \leftarrow 0,
 G_f \leftarrow residual graph
 \Delta \leftarrow smallest power of 2 & \geq C
 While \Delta \geq 1
    G_f(\Delta) \leftarrow \Delta—residual graph
    While there is an augmenting path P in G_f(\Delta)
         f \leftarrow Augment(f, c, P) // augment flow by \geq \Delta
         Update G_f(\Delta)
    \Delta \leftarrow \Delta/2
```

return f

Exercise. Prove correctness

Capacity scaling algorithm: running time

```
While \Delta \geq 1
G_f(\Delta) \leftarrow \Delta - \text{residual graph}
While there is P in G_f(\Delta)
f \leftarrow Augment(f, c, P)
Update G_f(\Delta)
\Delta \leftarrow \Delta/2
```

Lemma 1 Outer loop runs $1 + \log C$ times.

Pf. Initially $C \le \Delta \le 2C$, decreases by a factor of 2 each iteration

Lemma2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow f^* is at most $v(f) + m\Delta$.

Lemma 3. There are at most 2m augmentations per scaling phase.

Pf. Let f be the flow at end of previous scaling

- [Lemma2] $\Rightarrow v(f^*) \le v(f) + m(2\Delta)$
- Each augmentation in Δ -scaling increases f by Δ

Theorem. Scaling-max-flow finds a max flow in $O(m^2 \log C)$ time.

Completing the proof

Lemma2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow f^* is at most $v(f) + m\Delta$.

Pf. [Almost identical to proof of max-flow min-cut theorem]

Show cut (A, B) w. $cap(A, B) \le v(f) + m\Delta$ at the end of a Δ -phase.

• Choose A to be the set of nodes reachable from s in $G_f(\Delta)$

• By definition $s \in A \& t \notin A$

$$v(f) = \sum_{e \text{ outof } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\geq \sum_{e \text{ outof } A} (c(e) - \Delta) - \sum_{e \text{ into } A} \Delta$$

$$= \sum_{e \text{ outof } A} c(e) - \sum_{e \text{ outof } A} \Delta - \sum_{e \text{ into } A} \Delta$$

$$= cap(A, B) - m\Delta$$

Augmenting-path algorithms: summary

Year	Method	# augmentations	Running time
1955	Augmenting path	nC	O(mnC)
1972	Fattest path	$m \log mC$	$O(m^2 \log n \log mC)$
1972	Capacity scaling	$m \log C$	$O(m^2 \log C)$
1985	Improved CapS	$m \log C$	$O(mn\log C)$
1970	Shortest path	mn	$O(m^2n)$
1970	level graph	mn	$O(mn^2)$
1983	dynamic trees	mn	$O(mn\log n)$

and the show goes on ...

Year	Method	Worst case	Discovered by
1951	Simplex	$O(mn^2C)$	Dantzig
1955	Augmenting path	$O(mn^2W)$	Ford-Fulkerson
• • •			
1988	Push-relabel	$O(mn\log(n^2/m))$	Goldberg-Tarjan
• • •			
2013	Compact networks	O(mn)	Orlin
2016	Electrical flows	$\tilde{O}(m^{10/7}C^{1/7})$	Madry
20XX			

To keep it simple, cite below when you invoke a max-flow subroutine in hw/exam

Maximum flows can be computed in O(mn) time

Another formulation of max-flow problem

Recall. An s-t flow is a function $f:E\to\mathbb{R}$ satisfying

- [Capacity] $\forall e \in E : 0 \le f(e) \le c(e)$
- [Conservation] $\forall v \in V \setminus \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

The value of a flow f is $v(f) := \sum_{e \text{ out of } s} f(e)$

```
Max-Flow Problem

Real-value variables \vec{f} = \{f_e : e \in E\}

Maximize: v(\vec{f})

Subject to:

0 \le f_e \le c(e), \ \forall e \in E

\sum_{e \ \text{into} \ v} f_e - \sum_{e \ \text{out of} \ v} f_e = 0, \ \forall v \in V \setminus \{s, t\}
```

Linear constraints: no x^2 , xy, $\sin(x)$, ...

Grade maximization

Input. HW from two courses (xxx & 629) due in one day

- Every hour you spend, you earn 1pts on xxx or 5pts on 629
- Your brain will explode if you work more than 12hrs on xxx or 15hrs on 629
- Of course, there are only 24 hrs in a day

Goal. Maximize the total pts you can earn

Grade-Maximization Variables: x_1 (xxx hrs); x_2 (629 hrs) Maximize: $x_1 + 5x_2$ Subject to: // linear constraints $0 \le x_1 \le 12$ $0 \le x_2 \le 15$ $x_1 + x_2 \le 24$

Linear programming

Linear programming. Optimize a linear objective function subject to linear inequalities.

- Formal definition and representations
- Duality
- Algorithms: simplex, ellipsoid, interior point

Why significant?

- Design poly-time algorithms & approximation algorithms
- Wide applications: math, economics, business, transportation, energy, telecommunications, and manufacturing

Ranked among most important scientific advances of 20th century

Happy Halloween! & Enjoy the treats!