Simulation

Yujiao Li 2019-03-18

Simulate an experiment of tossing a fair coin 30 times, P("Head") = ?

Toss a coin, it produces: ["H"] or ["T"]

Toss 30 times, it produces: ["H", "T" ,..., "T"]

Calculate
$$P = \frac{\# Head}{30}$$

Procedure

Toss a coin, it produces: ["H"] or ["T"]

Toss 30 times, it produces: ["H", "T" ,..., "T"]

Calculate $P = \frac{\# Head}{30}$

Write R function with equal probability of "H" or "T"

Calculate
by R devision function

What & Why

What

· Conducting experiments based on the model

Why

- · Understanding the behavior of the system
- · Evaluating various strategies for the operation of the system

Learning aims:

How to simulate data to:

- Test your statistical intuition.
- · Generate random numbers given distributioin.
- · Experiment for inferential stastistics (Estimation/Test)

1. Basic R functions

Sampling

sample()

set.seed()

Replicating

for() {}
replicate()
sapply()

Syntax

- sample(x, size, replace = FALSE, prob = NULL)
- set.seed(2)
- for (i in 1:100) { x[i] }
- replicate(n, expr)
- sapply(X, FUN, ...)

Exercise 1

(1) Simulate an experiment of rolling a die 100 times and plot histogram of outcomes

(2) Replicate above trials 30 times to estimate the probability of showing "6"

2. Genrating random numbers

Normal distribution: N(0,1)

> rnorm(n, mean = 0, sd = 1)

Uniform distribution: U[0,1]

> runif(n, min=0, max=1)

Poisson distribution: Poisson($\lambda = 3$)

> rpois(n, lambda = 3)

Exercise 2

- Generate 50 numbers $\sim N(10, 5)$
- Generate 100 numbers \sim Poission($\lambda = 50$)

• Generate 100 pair of (x, y) satisfying: $x \sim Unif(-10, 10), y = 3x + \varepsilon \text{ and } \varepsilon \sim N(0, 4)$

Summary of R functions

Generate random numbers

- sample()
- rnorm()
- runif()
- rpois()

Relicate

- replicate()
- sapply()

Exercise 3

Design simulation to estimate $\pi = ?$

Probability of falling into dark purple area?

TheoryRatio =
$$\frac{\text{DARK area}}{\text{ALL area}} = \frac{1 \times 1}{2 \times 2}$$

SimulationRatio=

of points in DARK area

of points in ALL area

Probability of falling into dark purple area?

$$\pi = 4 * \frac{A_{circle}}{A_{square}}$$

TheoryRatio =
$$\frac{\text{DARK area}}{\text{ALL area}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

~

3. Bootstrap

Question

1. What is averaged sleeping hours of all students at University?

(i.e. interval estimation of \bar{y})

2. How many hours of sleeping will lose if one add another course?

(i.e. interval estimation of regression coefficients a and b for y=a+bx)

Sleeping data

ID	name	Number of courses (x)	Sleeping hours (y)
1	Tom	4	9
2	Jerry	3	7
32	Yujiao	0	12

Solution: Bootrstrap

Bootstrapping is a approach to <u>statistical inference</u> based on building a <u>sampling distribution</u> for a statistic by <u>resampling with replacement</u> from the original data.

'Bootstrapping' means 'pulling oneself up by one's bootstraps'

– in this case, using the sample data as a population from which repeated samples are drawn. (Efron, 1979)

Interval Estimation

V.S.

Bootstrap Interval Estimation

Procedure

Original data

0 1 1	1	-	
ampled	data	tor	bootstrapping
Sampicu	uata	\mathbf{IOI}	Doorstrapping

	Sleeping hours (y)
y ₁	4
y ₂	6
y ₃	8
$\bar{\mathbf{y}}$	6

	Sample 1	Sample 2	 Sample 200
y ₍₁₎	y ₁ : 4	y ₃ : 8	<i>y</i> ₃ : 8
y ₍₂₎	y ₁ : 4	y ₂ : 6	<i>y</i> ₃ : 8
y ₍₃₎	y ₂ : 6	y ₃ : 8	y ₁ : 4
Mean	(4+4+6)/3 = 4.7	(8+6+8)/3 = 7.3	(8+8+8)/3 = 8

Note: for simplicity, we assume orinigal data have only 3 observations instead of 29.

$$[4.7, 7.3, ..., 8]_{1 \times 200}$$

Interval estimation

- Sampling with replacement from original dataset.
- Estimate statistic (coefficient α) from every bootstrap sample.
- Calculate sample distribution of α

Exercise 4

Use R to solve above bootstrapping question

Other applications

- Interval estimation of mean value
- Interval estimation of two samples' mean difference
- Interval estimation of parameters in linear regression

4. Placebo Test

Is treatment useful?

H₀: Treatment group is NOT different with Control group.

H₁: Treatment group is different with Control group.

ID	Treatment	Health score
1	0	10
2	0	20
3	0	40
4	1	30
5	1	40
6	1	90

Treatment Effects = mean_1 - mean_0
$$= \frac{30+40+90}{3} - \frac{10+20+40}{3}$$

$$= 30$$
Is 30 big enough to reject H₀?

Reject Ho if:

Observed effect

given treatment

>> Expected effect

given No treatment

Known result: 30

Distribution of effects without treatment?

Idea: "Blind" which treatment patients are getting.

Resampling without replacement

ID	Treat	Treat	Health
	Original	Sample 1	score
1	0	0	10
2	0	1	20
3	0	1	40
4	1	0	30
5	1	0	40
6	1	1	90

Treatment Effects_sample_1 =
$$\frac{mean_1}{3} - \frac{mean_0}{3}$$

= $\frac{20+40+90}{3} - \frac{10+40+30}{3}$
= 23.3

Exercise 5

Use R to solve above placebo test