Classification by Splitting Data: Decision Trees & Random Forest

CSCI316: Big Data Mining Techniques and Implementation

Table of Contents

- 1. Introduction to Classification
- 2. Decision Trees Fundamentals
- 3. Tree Construction Algorithm
- 4. Splitting Criteria
- 5. Impurity Measures
- 6. Implementation Details
- 7. Overfitting and Pruning
- 8. Random Forest
- 9. <u>Summary</u>

1. Introduction to Classification

The Classification Problem

- **Definition**: Given a set of training records with known class labels, build a model to predict the class of new, unlabeled records
- Process Flow:
 - **Training Phase**: Learn model from training data (Induction)
 - **Testing Phase**: Apply model to test data (Deduction)

Example Dataset Structure

2. Decision Trees Fundamentals

What is a Decision Tree?

- **Structure**: A flowchart-like tree structure where:
 - Internal nodes (non-leaf nodes): Tests on attributes
 - Branches: Outcomes of tests
 - **Leaf nodes**: Class labels

Key Characteristics

- Human-like Decision Making: Simulates human decision-making process
- Interpretability: Easy to understand and explain
- Flexibility: Can handle both categorical and continuous attributes

Decision Tree Components

- 1. **Root Node**: Starting point of the tree
- 2. Splitting Attributes: Features used to partition data
- 3. **Decision Nodes**: Internal nodes that test attribute values
- 4. Leaf Nodes: Terminal nodes containing class predictions

Example Tree Structure

3. Tree Construction Algorithm

Hunt's Algorithm (Basic Framework)

Input: Dataset D, Attribute_List Output: Decision Tree

General Procedure for Node t with dataset Dt:

- 1. Homogeneous Case: If all records in Dt belong to same class yt
 - Make t a leaf node labeled as yt

- 2. Empty Dataset: If Dt is empty
 - Make t a leaf node with same class as parent
- 3. **No More Attributes**: If no attributes left to split
 - Make t a leaf node with majority class
- 4. Continue Splitting: Otherwise
 - Split dataset into smaller subsets
 - Recursively apply procedure to child nodes

Detailed Algorithm Steps

Tree Induction Algorithm

```
python
def generate_decision_tree(D, Attribute_List):
  # Step 1: Create node N
  create_node(N)
  # Step 2-3: Check if all tuples have same class
  if all_same_class(D):
     return N as leaf with class C
  # Step 4-5: Check if attribute list is empty
  if Attribute_List.is_empty():
     return N as leaf with majority class
  # Step 6: Find best splitting attribute
  best_attr = find_best_split(D, Attribute_List)
  # Step 7: Update attribute list
  New_Attribute_List = Attribute_List - {best_attr}
  # Step 8-12: Create child nodes
  for each value v in best attr:
     Dv = subset_with_value(D, best_attr, v)
    if Dv.is_empty():
       attach_leaf(N, majority_class(D))
     else:
       child = generate_decision_tree(Dv, New_Attribute_List)
       attach_child(N, child)
```

4. Splitting Criteria

Attribute Types and Splitting Methods

1. Nominal/Categorical Attributes

- Multi-way Split: Use as many partitions as distinct values
- Binary Split: Divide values into two subsets
 - Example: CarType = {Family, Sports, Luxury}
 - Multi-way: Family | Sports | Luxury
 - Binary: {Family, Sports} | {Luxury}

2. Ordinal Attributes

- **Discretization**: Convert to categorical
 - Static: Discretize once at beginning
 - Dynamic: Use percentiles, clustering, etc.
- **Binary Decision**: (A < v) or $(A \ge v)$

3. Continuous Attributes

- Binary Split: Find optimal threshold
 - Example: TaxableIncome > 80K?
- Multi-way Split: Create multiple ranges
 - Example: <10K, [10K,25K), [25K,50K), [50K,80K), >80K

5. Impurity Measures

Why Measure Impurity?

- Goal: Prefer nodes with homogeneous class distributions
- **Principle**: Pure nodes (one class) are better than mixed nodes

1. Shannon Entropy (Information Gain)

Formula

where p(x) is the probability of class x in dataset D

Conditional Entropy

```
H(D|P) = \Sigma (|Di|/|D|) * H(Di)
```

Information Gain

```
InfoGain(P) = H(D) - H(D|P)
```

Python Implementation

```
python

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}

for featVec in dataSet:
    currentLabel = featVec[-1]
    if currentLabel not in labelCounts.keys():
        labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1

shannonEnt = 0.0
    for key in labelCounts:
    prob = float(labelCounts[key]) / numEntries
    shannonEnt -= prob * log(prob, 2)

return shannonEnt
```

2. Gini Index

Formula

```
Gini(D) = 1 - \Sigma pi^2
```

where pi is the probability of class i

Gini for Split

```
GiniP(D) = \Sigma (|Di|/|D|) * Gini(Di)

\DeltaGini = Gini(D) - GiniP(D)
```

Characteristics

- Measures probability of misclassification
- Range: [0, 0.5] for binary classification
- 0 = pure node, 0.5 = maximum impurity

3. Gain Ratio

Purpose

Addresses Information Gain's bias toward multi-valued attributes

Formula

```
SplitInfo(P) = -\Sigma (|Di|/|D|) * log(|Di|/|D|)
GainRatio = InfoGain(P) / SplitInfo(P)
```

4. Variance (Binary Classification)

Formula

```
Var(D) = p(1-p)
```

where p is probability of class 0

Characteristics

- Simple error measure for binary classification
- Maximum when p = 0.5
- Minimum when p = 0 or p = 1

Comparison of Impurity Measures

Measure	Advantages	Disadvantages
Information Gain	Simple, widely used	Biased toward multi-valued attributes
Gain Ratio	Reduces multi-valued bias	Prefers unbalanced splits
Gini Index	Good for equal-sized partitions	Difficulty with many classes
Variance	Suitable for binary classification	Limited to binary problems
4	'	•

6. Implementation Details

Python Data Structure

```
python

# Decision tree as nested dictionary
tree = {
  index_of_splitting_feature: {
    value_0: subtree_0 or leaf_0,
    value_1: subtree_1 or leaf_1,
    ...
}
```

Leaf Node Representation

```
python
# Simple: just class label
leaf = "ClassA"

# Advanced: class frequency vector
leaf = np.array([q1, q2, ..., qm]) # qi = |DCi|
```

Best Split Selection

```
def chooseBestMultiSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1
  baseEntropy = calcShannonEnt(dataSet)
  bestInfoGain = 0.0
  bestFeature = -1
  for i in range(numFeatures):
     uniqueVals = set([tuple[i] for tuple in dataSet])
     newEntropy = 0.0
    for value in uniqueVals:
       subDataSet = splitDataSet(dataSet, i, value)
       prob = len(subDataSet) / float(len(dataSet))
       newEntropy += prob * calcShannonEnt(subDataSet)
    infoGain = baseEntropy - newEntropy
    if infoGain > bestInfoGain:
       bestInfoGain = infoGain
       bestFeature = i
  return bestFeature
```

Classification Function

```
python

def classify(N, d):
    if N.is_leaf():
        return N.class_label
    else:
        split_feature = N.split_feature
        feature_value = d[split_feature]
        child_node = N.children[feature_value]
        return classify(child_node, d)
```

7. Overfitting and Pruning

Overfitting Problem

• **Definition**: Model performs well on training data but poorly on test data

- Causes:
 - Too many branches
 - Noise in training data
 - Outliers
 - Insufficient training data

Pruning Strategies

1. Pre-pruning (Early Stopping)

- Concept: Stop tree construction early
- Criteria:
 - Minimum number of samples per node
 - Maximum tree depth
 - Minimum information gain threshold
 - Minimum impurity decrease

Pre-pruning Implementation

```
python

def chooseBestMultiSplit(dataSet, ops=(0.1, 20)):
  tolG = ops[0] # Minimum gain threshold
  tolN = ops[1] # Minimum samples threshold

# Check minimum samples

if len(dataSet) < tolN:
  return None

# ... calculate best split ...

# Check minimum gain

if bestInfoGain < tolG:
  return None
```

2. Post-pruning

• Concept: Build full tree, then prune back

Process:

- 1. Build complete tree
- 2. Remove branches that don't improve validation accuracy
- 3. Use separate validation set for pruning decisions

Stopping Criteria

- 1. No more attributes for splitting
- 2. All tuples share same class label
- 3. **Empty dataset** (no tuples)
- 4. Pre-pruning conditions met

8. Random Forest

Ensemble Methods Overview

- **Definition**: Combine multiple models for better performance
- Types:
 - **Bagging**: Average predictions
 - Boosting: Weighted voting
 - **Ensemble**: Combine heterogeneous classifiers

Random Forest Concept

- **Definition**: Ensemble of decision trees with randomization
- Key Features:
 - Multiple decision trees
 - Random sampling of data and features
 - Voting for final prediction
 - Reduced overfitting

Advantages of Random Forest

- 1. **Higher Accuracy**: Misclassification only when majority of trees are wrong
- 2. Handles Large Data: Can process large datasets
- 3. **Parallel Processing**: Trees can be built independently
- 4. Robust to Outliers: Individual tree errors averaged out

Randomization Techniques

1. Bagging (Bootstrap Aggregating)

Process:

- 1. For each tree i, create training set Di by sampling with replacement
- 2. Build tree Mi on Di
- 3. For prediction, each tree votes
- 4. Final prediction = majority vote

2. Forest-RI (Random Input Selection)

• Process:

- At each node, randomly select F attributes (F << total attributes)
- Choose best split among these F attributes
- Useful for high-dimensional data

3. Forest-RC (Random Linear Combinations)

Process:

- Create new attributes as linear combinations of existing ones
- Coefficients are random numbers in [-1, 1]
- Useful for small or large attribute sets

Random Forest Algorithm

```
python

def random_forest(D, k, F):
    forest = []

for i in range(k):
    # Bagging: sample with replacement
    Di = bootstrap_sample(D)

# Build tree with random feature selection
    tree_i = build_tree_with_random_features(Di, F)
    forest.append(tree_i)

return forest

def predict(forest, x):
    votes = []
    for tree in forest:
        prediction = tree.predict(x)
        votes.append(prediction)
```

9. Summary

Majority voting

Decision Tree Advantages

return majority_vote(votes)

- 1. No Domain Knowledge Required: Algorithm learns patterns automatically
- 2. **Multidimensional Data**: Handles multiple attributes naturally
- 3. Interpretable: Easy to understand and explain
- 4. Fast: Simple learning and classification
- 5. **Good Accuracy**: Generally performs well

Decision Tree Limitations

- 1. **Overfitting**: Can create overly complex trees
- 2. **Bias**: Different measures have different biases.
- 3. **Instability**: Small data changes can create different trees
- 4. Difficulty with Linear Relationships: May need deep trees

Random Forest Advantages

- 1. **Reduced Overfitting**: Ensemble reduces individual tree overfitting
- 2. **Better Accuracy**: Generally more accurate than single trees
- 3. Handles Missing Values: Robust to missing data
- 4. **Feature Importance**: Provides feature importance rankings
- 5. **Scalability**: Can handle large datasets

Key Takeaways

- Decision Trees: Powerful, interpretable classification method
- Impurity Measures: Critical for good split selection
- Pruning: Essential for preventing overfitting
- Random Forest: Ensemble method that improves upon single trees
- Implementation: Recursive algorithms with careful data structure design

Practical Considerations

When to Use Decision Trees

- Need interpretable model
- Mixed data types (categorical and continuous)
- Non-linear relationships
- Feature interactions important

When to Use Random Forest

- Accuracy more important than interpretability
- Large datasets
- High-dimensional data
- Want robust predictions

Implementation Tips

- 1. **Data Preprocessing**: Handle missing values and outliers
- 2. Feature Selection: Remove irrelevant features
- 3. **Parameter Tuning**: Optimize tree depth, minimum samples, etc.
- 4. **Validation**: Use cross-validation for model assessment

5. Ensemble Size : Balance accuracy vs. computational cost		