Name:

Sequences and Functions: End-of-Unit Assessment

You may use a scientific calculator.

1. Which formula defines the sequence f(1) = 2, f(2) = 6, f(3) = 10, f(4) = 14, f(5) = 18?

A.
$$f(1) = 2$$
, $f(n) = 6 + f(n-1)$ for $n \ge 2$

B.
$$f(1) = 2$$
, $f(n) = 4 + f(n-1)$ for $n \ge 2$

C.
$$f(1) = 2$$
, $f(n) = 2 + f(n-1)$ for $n \ge 2$

D.
$$f(1) = 6$$
, $f(n) = 4 + f(n-1)$ for $n \ge 2$

2. A sequence is defined by f(1)=3 and $f(n)=2 \cdot f(n-1)$ for $n \geq 2$. Which of the following statements defines the n^{th} term of f?

A.
$$f(n) = 3 + 2(n-1)$$
 for $n \ge 1$

B.
$$f(n) = 3 + 2n$$
 for $n \ge 1$

C.
$$f(n) = 3 \cdot 2^{n-1}$$
 for $n \ge 1$

D.
$$f(n) = 3 \cdot 2^n$$
 for $n \ge 1$

3. Here is a growing pattern of squares:

Select **all** the expressions that represent the number of squares in Step n.

A.
$$f(n) = 8 + 3(n-1)$$
 for $n \ge 1$

B.
$$f(n) = 3 + 8(n-1)$$
 for $n \ge 1$

C.
$$f(1) = 8$$
, $f(n) = 3 + f(n-1)$ for $n \ge 2$

D.
$$f(1) = 8$$
, $f(n) = 8 + f(n-1)$ for $n \ge 2$

E.
$$f(n) = 3 + 8n$$
 for $n \ge 1$

F.
$$f(n) = 3n + 5$$
 for $n \ge 1$

4. Here are some values of sequence Q. Write a recursive definition for the sequence.

n	Q(n)
1	3
3	8
7	18

5. A piece of paper has an area of 81 cm². A strip is cut off that is $\frac{1}{3}$ the original area. From that strip, another strip is cut off that is $\frac{1}{3}$ the area of the first, and so on.

Here is a graph and table representing sequence k, where k(n) is the area in square centimeters of the strip of paper after n cuts.

number of cuts	area in square centimeters
0	81
1	27
2	9
3	3
4	1

a. Is sequence \boldsymbol{k} geometric or arithmetic? Explain how you know.

b. Write an equation to define sequence k recursively.

c. For term k(n), what are some values of n that make sense to use? What are some values of n that don't make sense to use? Explain your reasoning.

6. The first two numbers in a sequence h are h(1) = 2 and h(2) = 6.

a. If h is an arithmetic sequence, write a definition for the n^{th} term of h. Explain or show your reasoning.

b. If h is a geometric sequence, write a definition for the $n^{\rm th}$ term of h. Explain or show your reasoning.

7. Here are two sequences:

Sequence *A*

term number	value
0	$\frac{1}{4}$
1	$\frac{1}{2}$
2	1
3	2
4	4

Sequence B

- a. For sequence A, describe a way to produce each new term from the previous term.
- b. For sequence B, describe a way to produce each new term from the previous term.
- c. Write a definition for the $n^{\rm th}$ term of sequence A.
- d. Write a definition for the $n^{\rm th}$ term of sequence B.
- e. If these sequences continue, then which is greater, A(9) or B(9)? Explain or show how you know.