Slide 18

Cartesian vector addition:

$$\vec{a} + \vec{b} = \begin{cases} X_a & X_b \\ X_b & X_a + X_b \\ X_a & Y_b \\ X_b & X_b \end{cases} = \begin{cases} X_a + X_b \\ Y_b + Y_b \\ X_b & X_b \end{cases}$$

Cartesian dot product:

$$\vec{a} \cdot \vec{b} = \begin{cases} X_a \\ Y_a \end{cases} \cdot \begin{cases} X_b \\ Y_b \end{cases} = X_a X_b + Y_a Y_b + Z_a Z_b$$

$$Z_b = X_a X_b + Y_a Y_b + Z_a Z_b$$

Cartesian cross product:

$$\vec{a} \times \vec{b} = \begin{bmatrix} X_a \\ Y_a \\ Z_a \end{bmatrix} \times \begin{bmatrix} X_b \\ Y_b \\ Y_b \end{bmatrix} = \begin{bmatrix} y_a Z_b - Z_a Y_b \\ Z_a X_b - X_a Z_b \\ X_a Y_b - Y_a X_b \end{bmatrix}$$



| Implicit 2D line:                                                                                         | y= mx +6 3 12                                                      |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| T                                                                                                         | v-mx-h=0                                                           |
| "Our first instinct might be                                                                              | Stop Of Halant                                                     |
| "Our first instinct might be to attempt to use the slope-intercept form of a                              |                                                                    |
| slope-intercept form of                                                                                   | - All A tarky = 264 2"                                             |
| line to desive an implicit                                                                                | all a last a de la             |
| line to derive an implicit equation. It is very                                                           | LT a la la                                                         |
| straightferward, but it                                                                                   | AL A H &                                                           |
| Cilor correction than the                                                                                 | 31 ( 50 ) 15 ( 60 ) 1 ( )                                          |
| fails in cases where the                                                                                  | Mary Trade and Sweet States                                        |
| Time is vertical.                                                                                         |                                                                    |
| "We want a more general form that would work?                                                             | 1 0                                                                |
| We want a more general                                                                                    | Ax+By+C=0                                                          |
| form that would work                                                                                      | White that in action to c                                          |
| for any line, like this                                                                                   | I SUM SW SHITTINGS OF                                              |
| one. (369) (339) 3 may 3                                                                                  |                                                                    |
| 1 7 3 72                                                                                                  | 1 109 16 1a 1a)                                                    |
| "Most of the time, when we                                                                                | P(xPx)                                                             |
| want an equation for a line                                                                               | P(xPzho)                                                           |
| in graphics, we know two                                                                                  |                                                                    |
| points a and b. How do                                                                                    | (x, y, )                                                           |
| Cil and and AR                                                                                            | a (Xasya)                                                          |
| and C coefficients given two                                                                              | F 7                                                                |
| and C coefficients given two                                                                              | b-a= (yo-yo)                                                       |
| l'                                                                                                        | 1/0-1/07                                                           |
| "The first step is to define                                                                              | C-C = [Ya-Ya]                                                      |
| a third print such that                                                                                   | $C-a = \begin{bmatrix} y_a - y_b \\ x_b - x_a \end{bmatrix}$       |
| "The first step is to define a third point such that IIC-all=11b-all and (c-a) is perpendicular to (b-a)" | L P                                                                |
| is personalization to the ?"                                                                              | C= [ Ya - Yb + Xa]                                                 |
| be bendiental to to al                                                                                    | $C = \begin{cases} y_0 - y_b + x_a \\ x_b - x_a + y_0 \end{cases}$ |
|                                                                                                           | 5 - 0 / 4 / 4 ]                                                    |

Now we know that point p is on the line,  $(\vec{p}-\vec{a})$  is perpendicular to  $(\vec{c}-\vec{a})$ , so  $(\vec{p}-\vec{a})\cdot(\vec{c}-\vec{a})=0$ . Otherwise, the dot product will be non-zero. "In fact, this dot product is a signed, scaled distance of p from the line, which will be useful later." = (x-xa) (ya-yb) + (y-ya) (xb-x = x(ya-yb)+y(xb-xa)+xayb-yaxb f(x,y)= x(ya-yb)+y(xb-xa)+ Xayb-yb Xa=0

Implicit 3D plane: Sometimes when we want to define a plane, we know normal vector hand a point à. If we know, three points on the place instead, we can obtain a normal using a cross product."  $\vec{n} = (\vec{b} - \vec{a}) \times (\vec{c} - \vec{a})$ n·(p-a)=0 Then, we know for every port pon the plane, n.(p-a)=0, and it's non-zero atherwise, f(p)= n. (p-a)=0 is an implicit equation for a plane.

Slide 26 Parametric 3D line: If we know two points à and 6 on the line, we can easily obtain a parametric form by assuming f(0) = a and f(1)=b. t(+)= a+t(b-a) Suppose a sphere w/ center c and radius r. Let & the angle corresponding with longitude (-180°, 180°) and 0 be the angle corresponding with X= X + r cos & sin A y= yc+r sin \$ sin \$ Z= Z + r cos A

8=1 Slide 32 Y=0 Conversion from 2D Cartesian Note that a barycentric coord system can have gridlines like a Cortesian system." The b.c. components are just signed, weighted clistances from the axes. We know that the function of Y= Tob (x, y) the implicit form for a tab(xes ye) gives a signed, weighted distance to the line, but the weights B= fac(x,y) are probably not such that tab (xcs ye)=1; for example, so we divide. tac (Xb) yb) a=1-13-8

