SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING.

Tatjana Pavlenko

28 september 2018

Plan för dagens föreläsning

- ► Vad är en intervallskattning? (rep.)
- Den allmänna metoden för att konstruera ett konfidensintervall (rep.
)
- ▶ Tillämpning på normalfördelning: Intervallskattning för σ i $N(\mu, \sigma)$.
- Mer om situationer med normalfördelade data: två stickprov. Konfidensintervall för differens mellan olika väntevärden.
- Stickprov i par. (Kap. 12-3 (d))

VAD ÄR EN INTERVALLSKATTNING? (REP.)

Ett alternativt (till punktskattning) sätt att redovisa skattningen är att bestämma ett *intervall* som innehåller det sanna (verkliga) parametervärdet med t ex sannolikheten 0.95. Några exempel:

- Livslängden hos en bil ligger mellan 12 och 15 år med sannolikheten 0.95.
- ▶ Andelen väljare som röstar på socialdemokraterna är mellan 35% och 39% med sannolikheten 0.90.
- Antalet samtal till telefonväxel är mellan 15 och 18 per minut med sannolikheten 0.99.
- ► Standardavvikelsen för en viss laboratoriemättning är mellan 1.5 och 2 mg med sannolikheten 0.95.

INTERVALLSKATTNING (REP.)

Förra föreläsningen definierades ett konfidensintervall en okänd parameter θ :

▶ Def: Låt $x = (x_1, ..., x_n)$ vara utfall av ett slumpmässigt stickprov $X = (X_1, ..., X_n)$ vars fördelning beror av en okänd parameter θ och låt $0 < \alpha < 1$. Ett intervall,

$$I_{\theta} = (a_1(x), a_2(x))$$

kallas ett konfidensintervall för θ med konfidensgrad $1-\alpha$ om den innehåller θ med sannolikhet $1-\alpha$, dvs

$$P(a_1(X) < \theta < a_2(X)) = 1 - \alpha.$$

Konfidensgränserna, $a_1(x)$ och $a_2(x)$ är observationer av stickprovsvariabler, $a_1(X)$ och $a_2(X)$. Ett konfidensintervall $I_{\theta} = (a_1(x), \ a_2(x))$ kan alltså betraktas som *en observation* av ett intervall med stokastiska gränser.

KONSTRUKTION AV KONFIDENSINTERVALL (REP.)

Den allmäna metoden för att konstruera ett konfidensintervall för en okänd parameter θ kan beskrivas i följande steg:

- 1. Skriv upp parameter att skatta (θ) och hitta punktskattare θ^* .
- 2. Bestäm punktskattares fördelning.
- 3. Transformera punktskattare till en ny stokastisk variabel, T(X) vars fördelning inte beror på några okända parametrar, i.e. en *pivot*.
- 4. Stäng in den transformerade s.v. T(X) mellan kvantilerna t_{α} i dess kända fördelning:

$$1 - \alpha = P(t_{1-\alpha/2} < T(X) < t_{\alpha/2})$$

5. Skriv om i olikheten så att θ blir instängd i stället. Då ar

$$I_{\theta} = (a_1(x), a_2(x))$$

ett konfidensintervall för θ med konfidensgrad $1-\alpha$.

TILLÄMPNING PÅ NORMALFÖRDELNING (REP.)

Konfidensintervall för μ i $N(\mu, \sigma)$: sammanfattning av λ - och t-metoden.

Låt x_1,\ldots,x_n vara ett slumpmässigt stickprov från $N(\mu,\sigma)$ där μ är okänd. Då

om σ är känd:

$$I_{\mu} = (\bar{x} \pm \lambda_{\alpha/2} D(\mu^*)) = \left(\bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),$$

om σ är okänd:

$$I_{\mu}=\left(\bar{x}\pm t_{\alpha/2}(n-1)d(\mu^*)\right)=\left(\bar{x}\pm t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}\right),$$

där kvantilerna ges av

- ▶ $\lambda_{\alpha/2}$ är N(0,1)-fördelnings $\alpha/2$ -kvantil (se Tabell 2)
- $t_{\alpha/2}(n-1)$ är t-fördelnings $\alpha/2$ -kvantil (se Tabell 3)
- Man kan också göra konfidensintervall för σ och σ^2 i $N(\mu, \sigma)$. För detta behöver vi en ny fördelning.

STICKPROVSFÖRDELNINGAR.

I samband med stickprov från $N(\mu, \sigma)$ uppträder några (nya) fördelningar som vi behöver för att kunna hantera konfidensintervall.

Sats: Låt $X_1, ..., X_n$ vara ett slumpmässigt stickprov från $N(\mu, \sigma)$. Då gäller följande:

$$\mu^* = \bar{X} \in N(\mu, D), D = \frac{\sigma}{\sqrt{n}},$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{(n-1)S^2}{\sigma^2} \in \chi^2(n-1),$$

samt \bar{X} och S är oberoende.

▶ Sats: Låt $X \in N(0,1)$ och $Y \in \chi^2(f)$ vara oberoende s.v. Då gäller följande:

$$\frac{X}{\sqrt{Y}/\sqrt{f}} \in t(f).$$

STICKPROVSFÖRDELNINGAR (FORTS.)

- ▶ Nästa sats ger samband mellan $N(\mu, \sigma)$, χ^2 och t-fördelningar:
- ▶ Sats: Om $X_1, ..., X_n$ är oberoende $N(\mu, \sigma)$ -fördelare s.v. så gäller att

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\in t(n-1).$$

▶ Båda χ^2 och t-fördelningar förekommer som fördelningar för pivotvariabler vid stickprov från normalfördelningar.

χ^2 -FÖRDELNING.

FIGUR: Exempel på täthetsfunktionen för χ^2 -fördelning med olika antal frihetsgrader k=n-1.

t-FÖRDELNING.

FIGUR: Exempel på täthetsfunktionen för t-fördelning med olika antal frihetsgrader $\nu=n-1$. Den har N(0,1)-fördelningen som gränsfördelning då $\nu\to\infty$.

t-FÖRDELNING (FORTS.)

FIGUR: Teorin av *t*-fördelningen presenterades först 1908 av kemisten och statistikern W. S. Gosset som var anställd på bryggeriet Arthur Guinness & Sons i Dublin. Han publicerade sin forskning under pseudonymen *Student*, därför man ofta kallar den *Students t-fördelning*.

Konfidensintervall för σ .

Exempel: konfidensintervall för σ i $N(\mu, \sigma)$, steg 1-3 på tavlan.

4.

$$P\left(S\sqrt{\frac{n-1}{\chi_{\alpha/2}^2(n-1)}} < \sigma < S\sqrt{\frac{n-1}{\chi_{1-\alpha/2}^2(n-1)}}\right) = 1 - \alpha.$$

5. Med detta erhålls I_{σ} i följande

Sats: Låt x_1, \ldots, x_n vara utfall av ett slumpmässigt stickprov fråm $N(\mu, \sigma)$. Då ges konfidensintervall för σ med konfidensgraden $1-\alpha$ av

$$I_{\sigma}=(sk_1, sk_2),$$

där

$$k_1 = \sqrt{\frac{n-1}{\chi^2_{\alpha/2}(n-1)}}, \quad k_2 = \sqrt{\frac{n-1}{\chi^2_{1-\alpha/2}(n-1)}}.$$

Två oberoende stickprov: Konfidensintervall för $\mu_1 - \mu_2$.

I många praktiska situationer är det viktigt att kunna jämföra väntevärden i två olika grupper. Några exempel:

- Är två stållegeringar lika?
- Ar en viss ny medicin bättre än den gamla?
- ▶ Är nätverk A mer effektivt än nätverk B?

Följande modell är användbar för sådana jämförelser: vi antar att

- x_1, \ldots, x_{n_1} är oberoende observationer av s.v med $N(\mu_1, \sigma_1)$ -fördelning och
- y_1, \ldots, y_{n_2} är oberoende observationer av s.v med $N(\mu_2, \sigma_2)$ -fördelning.

Vi vill härleda konfidensintervall för $\mu_1 - \mu_2$ med konfidensgrad $1 - \alpha$, och delar upp analysen i två olika fall:

- 1. σ_1 och σ_2 är kända.
- 2. $\sigma_1 = \sigma_2 = \sigma$ är okänd.

Två oberoende stickprov: Konfidensintervall för $\mu_1 - \mu_2$ (forts.)

- ► För båda fall går vi tillväga enligt steg 1-5: (talan). De erhållna intevallen sammanfattas i förljande
- ▶ Sats: (sats 12.3) Låt x_1, \ldots, x_{n_1} och y_1, \ldots, y_{n_2} vara slumpmässiga, av varandras oberoende stickprov från $N(\mu_1, \sigma_1)$ respektive $N(\mu_2, \sigma_2)$.
 - Om σ_1 och σ_2 är kända erhålls ett tvåsidigt $1-\alpha$ konfidensintervall för $\mu_1-\mu_2$ med

$$I_{\mu_1-\mu_2} = (\bar{x} - \bar{y} \pm \lambda_{\alpha/2}D)$$
, $D = \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$.

• Om $\sigma_1 = \sigma_2 = \sigma$ och är okänd så är

$$I_{\mu_1-\mu_2} = (\bar{x} - \bar{y} \pm t_{\alpha/2}(f)d), \quad d = s\sqrt{1/n_1 + 1/n_2},$$

$$s = \sqrt{\frac{Q_1 + Q_2}{(n_1 - 1) + (n_2 - 1)}}.$$

 Q_1 och Q_2 är kvadratsummorna kring respektive stickprovsmedelvärden och $f = (n_1 - 1) + (n_2 - 1)$.

STICKPROV I PAR.

Man vill undersöka effekten av blodtryckssänkande medicin. Diskutera två möjliga försöksupplägg.

STICKPROV I PAR.

Idé: Man vill undersöka effekten av blodtryckssänkande medicin. Två möjliga försöksupplägg är följande:

1. En grupp om 10 personer får medicinen och en annan grupp om 10 personer får placebo.

Man kan använda $I_{\mu_1-\mu_2}$ för två oberoende stickprov. **Problem**: Stora skillnader mellan personernas blodtryck och <u>liten</u> skillnad beroende på om man har placebo eller medicin! Variationen mellan olika individer kommer att dominera och det blir svårt att se om medicinen har någon effekt. $I_{\mu_1-\mu_2}$ kommer att bli för brett.

2. Mät blodtrycket *före* och *efter* behandling på en grupp om 10 pers. Man kan **göra sig av variationen mellan individer** och istället fokusera på variation som orsakas av medicin!

Slutsats: Om mätvärdena hör ihop parvis använder man modellen stickprov i par!

STICKPROV I PAR (FORTS.).

Ex: Två vågar, A och B. Man misstänker att B har systematiskt fel så att det ger förhöjt värde, medan A har rätt i medeltal.

Modell.

Våg
$$A$$
: $X_i \in N(\mu_i, \sigma_1)$.
Våg B : $Y_i \in N(\mu_i + \Delta, \sigma_2)$,
 $i = 1, \ldots, n$.

Man vägde 6 föremål på båda vågarna för att bestämma I_{Δ} .

STICKPROV I PAR.

Figur: Uppmätta vikter för A(o) och B(x). Stor skillnad mellan de olika observationer men liten skillnad mellan A och B varför stickprov i par är lämpligt.

Objekt, i	1	2	3	4	5	6	Obs. av
A, \times_i	1.0	7.7	9.6	21.0	32.3	22.6	$X_i \in N(\mu_i, \sigma_1)$
В, у _{<i>i</i>}	3.1	8.8	12.0	19.5	35.5	35.5	$Y_i \in N(\mu_i + \Delta, \sigma_2)$
$z_i = y_i - x_i$	2.1	1.1	2.4	-1.5	3.2	9.9	$Z_i \in N(\Delta, \sigma)$

Konfidensintervall för Δ på tavlan!

