LØSNINGSFORSLAG EKSAMEN MA1301/MA6301/ HØST 2004

Oppgave 1. La x, y, z være hhv antall stipendiater, professorer og administrativt ansatte ved instituttet. Opplysningene gitt er følgende:

$$30x + 70y = 5060$$

$$x + y + z = 118$$

$$x \ge y + 10$$

$$z \ge 10.$$

Man må løse den Diofantiske ligningen først. Vi har $gcd(30,70) = 10 = 30 \cdot (-2) + 70 \cdot 1$, som gir $5060 = 10 \cdot 506 = 30 \cdot (-1012) + 70 \cdot 506$. Derfor er

$$x_0 = -1012, y_0 = 506$$

en løsning av 30x + 70y = 5060. Da er alle løsningene gitt ved

$$x = x_0 + \frac{70}{\gcd(30,70)}t = 7t - 1012$$
$$y = y_0 - \frac{30}{\gcd(30,70)}t = 506 - 3t$$

for $t\in\mathbb{Z}$. Ulikheten $x\geq y+10$ gir $10t\geq 1528$, dvs $t\geq 152,8$. Ulikheten $z\geq 10$ gir $x+y+z\geq x+y+10$, dvs $118\geq x+y+10$, som gir $614\geq 4t$, dvs $153,5\geq t$. Siden t er et heltall må vi da ha t=153. Dette gir

$$y = 506 - 3 \cdot 153 = 47$$

 $x = 7 \cdot 153 - 1012 = 59$
 $z = 118 - 47 - 59 = 12$.

Oppgave 2. Siden $\gcd(3,100)=1$ gir Eulers Teorem at $3^{\phi(100)}\equiv 1 \pmod{100}$. Vi har $100=2^2\cdot 5^2$, så $\phi(100)=40$, og derfor får vi

$$3^{40} \equiv 1 \pmod{100}$$
.

Hvis $n \ge 1$ får vi da $3^{40n} \equiv 1 \pmod{100}$, som igjen gir

$$3^{40n+1} \equiv 3 \pmod{100}$$
.

Da får vi

$$\sum_{n=1}^{10} 3^{40n+1} \equiv 10 \cdot 3 \equiv 30 \pmod{100},$$

så de to siste sifrene er 30.

Oppgave 3. Vi bruker det Kinesiske Restteorem. Setter

$$m_1 = 6 \cdot 7 = 42$$
, $m_2 = 5 \cdot 7 = 35$, $m_3 = 5 \cdot 6 = 30$,

og løser de tre kongruensene

$$m_1x_1 \equiv 1 \pmod{5} \rightarrow 42x_1 \equiv 1 \pmod{5}$$

 $m_2x_2 \equiv 1 \pmod{6} \rightarrow 35x_2 \equiv 1 \pmod{6}$
 $m_3x_3 \equiv 1 \pmod{7} \rightarrow 30x_3 \equiv 1 \pmod{7}$.

Tre tall som passer inn er $x_1 = 3, x_2 = -1, x_3 = -3$, som gir

$$\bar{x} = m_1 x_1 \cdot 2 + m_2 x_2 \cdot 1 + m_3 x_3 \cdot 1$$

= $42 \cdot 3 \cdot 2 + 35 \cdot (-1) \cdot 1 + 30 \cdot (-3) \cdot 1$
= 127 .

Løsningen av systemet blir derfor

$$x \equiv 127 \pmod{210}$$

hvor $210 = 5 \cdot 6 \cdot 7$.

Oppgave 4. Wilsons Teorem: for alle primtall p gjelder $(p-1)! \equiv -1 \pmod{p}$. Siden 37 er et primtall får vi da at $36! \equiv -1 \pmod{37}$, og fra denne og kongruensen $-1 \equiv 36 \pmod{37}$ fås kongruensen

$$36! \equiv 36 \pmod{37}$$
.

Her er 36 en felles faktor på begge sider, og siden gcd(36,37) = 1 kan vi dele ut og få $35! \equiv 1 \pmod{37}$. Trekker vi fra 35 på begge sider får vi da

$$35! - 35 \equiv 1 - 35 \equiv 3 \pmod{37}$$
,

så vi får 3 til rest.

Oppgave 5. (a) Vi må finne tallet d som tilfredsstiller $1 < d < \phi(n)$ og $ed \equiv 1 \pmod{\phi(n)}$. Nå er $\phi(n) = \phi(5 \cdot 17) = 4 \cdot 16 = 64$, så kravene til d blir

$$15d \equiv 1 \pmod{64}.$$

Euklids algoritme gir

$$64 = 4 \cdot 15 + 4$$

$$15 = 3 \cdot 4 + 3$$

$$4 = 3 + 1,$$

og jobber vi oss bakover får vi

$$1 = 4-3$$

$$= 4-(15-3\cdot 4) = 4\cdot 4-15$$

$$= 4\cdot (64-4\cdot 15) - 15 = 15\cdot (-17) + 64\cdot 4.$$

Derfor er $d \equiv -17 \pmod{64}$, som gir d = -17 + 64 = 47. Den hemmelige dekrypteringsnøkkelen er derfor tallparet

$${n,d} = {85,47}.$$

(b) Vi må finne tallet E(M) som tilfredsstiller $0 \leq E(M) < n$ og $E(M) \equiv M^e \pmod{n}$, dvs

$$E(M) \equiv 7^{15} \pmod{85}.$$

Siden $7^3 = 343$ og $85 \cdot 4 = 340$ er $7^3 \equiv 3 \pmod{85}$, og dette gir

$$7^{15} \equiv 3^5 \equiv 243 \equiv 73 \pmod{85}$$
.

Derfor er E(M) = 73.

Oppgave 6. Vi må finne minste positive b slik at

$$31b \equiv 1 \pmod{131}$$
,

så i praksis må vi løse en lineær kongruens. Euklids algoritme gir

$$131 = 4 \cdot 31 + 7
31 = 4 \cdot 7 + 3
7 = 2 \cdot 3 + 1,$$

og jobber vi oss bakover får vi

$$1 = 7 - 2 \cdot 3$$

= $7 - 2 \cdot (31 - 4 \cdot 7) = 9 \cdot 7 - 2 \cdot 31$
= $9 \cdot (131 - 4 \cdot 31) - 2 \cdot 31 = 31 \cdot (-38) + 131 \cdot 9$.

Derfor er $b \equiv -38 \pmod{131}$, så vi får

$$b = -38 + 131 = 93.$$

Oppgave 7. (a) Anta k deler t. Da er t = ks for et tall s, og siden $a^k \equiv 1 \pmod{n}$ kan vi opphøye i s og få $a^{ks} \equiv 1 \pmod{n}$, dvs $a^t \equiv 1 \pmod{n}$.

Anta nå at k ikke deler t. Da er t = ks + r hvor resten r tilfredsstiller $1 \le r < k$ (vi kan jo ikke ha r = 0 siden $k \nmid t$). Siden $a^k \equiv 1 \pmod{n}$ kan vi opphøye i s og få $a^{ks} \equiv 1 \pmod{n}$, og denne siste kan vi multiplisere med a^r og få $a^{ks+r} \equiv a^r \pmod{n}$, dvs $a^t \equiv a^r \pmod{n}$. Hvis det nå var slik at $a^t \equiv 1 \pmod{n}$ ville vi hatt $a^r \equiv 1 \pmod{n}$, men dette er umulig siden r < k og k er det minste positive tallet som er slik at $a^k \equiv 1 \pmod{n}$. Derfor er $a^t \not\equiv 1 \pmod{n}$.

(b) La k være ordenen til 7 modulo 11. Vi må undersøke om $k=\phi(11)$, dvs om k=10. Fra (a) vet vi at k må dele 10, siden $7^{\phi(11)}\equiv 1 \pmod{11}$ ifølge Eulers Teorem. Vi må med andre ord sjekke divisorene til 10:

$$\begin{array}{lll} 7^1 & \equiv & 7 (\bmod{\,}11) \\ 7^2 & \equiv & 5 (\bmod{\,}11) \\ 7^5 & \equiv & 7^2 \cdot 7^2 \cdot 7 \equiv 5 \cdot 5 \cdot 7 \equiv 10 (\bmod{\,}11). \end{array}$$

Siden vi nå har funnet ut at k ikke kan være 1,2 eller 5, må vi ha at k = 10. Derfor er 7 en primitiv rot av 11.

Tallet 37 er et primtall, og har derfor primitive røtter. Ifølge et teorem har det da

$$\phi(\phi(37)) = \phi(36) = \phi(2^2 \cdot 3^2) = 12$$

primitive røtter.

Oppgave 8. Induksjon på n. Vi har

$$S_2 = \sum_{i=1}^{2} \frac{1}{i} = 1 + \frac{1}{2} \ge \frac{1}{2} + 1,$$

så påstanden stemmer for n = 1. La nå $n \ge 1$ og anta

$$S_{2^n} \ge \frac{n}{2} + 1.$$

Vi må vise at da stemmer påstanden også for n+1, dvs at

$$S_{2^{n+1}} \ge \frac{n+1}{2} + 1.$$

Vi har

$$S_{2^{n+1}} = \sum_{i=1}^{2^{n+1}} \frac{1}{i}$$

$$= \sum_{i=1}^{2 \cdot 2^n} \frac{1}{i}$$

$$= \sum_{i=1}^{2^n} \frac{1}{i} + \sum_{i=2^n+1}^{2^n+2^n} \frac{1}{i}$$

$$= S_{2^n} + \sum_{i=2^n+1}^{2^n+2^n} \frac{1}{i}$$

$$\geq \left(\frac{n}{2} + 1\right) + \sum_{i=2^n+1}^{2^n+2^n} \frac{1}{i}.$$

Se nå på den siste summen som går fra $i=2^n+1$ til $i=2^n+2^n$. Der er det 2^n ledd, og alle er større enn eller lik det siste leddet som er $\frac{1}{2^n+2^n}=\frac{1}{2\cdot 2^n}$. Derfor har vi

$$\sum_{i=2^n+1}^{2^n+2^n}\frac{1}{i}\geq 2^n\cdot\frac{1}{2\cdot 2^n}=\frac{1}{2},$$

som gir

$$\begin{array}{lcl} S_{2^{n+1}} & \geq & \left(\frac{n}{2}+1\right) + \sum_{i=2^n+1}^{2^n+2^n} \frac{1}{i} \\ \\ & \geq & \left(\frac{n}{2}+1\right) + \frac{1}{2} \\ \\ & = & \frac{n+1}{2} + 1. \end{array}$$