HOTEL BOOKING DEMAND CLASSIFICATION

FINAL PROJECT:

Purwadhika Digital Technology School

PRESENTED BY:

BETA Group

MEMBER:

Azhar Muhammad Fikri Fuadi Chasanah Nur Ikayanti Muhammad Zulfiqar

The Team

Azhar Muhammad Fikri Fuadi

Chasanah Nur Ikayanti

Muhammad Zulfiqar

TABLE OF CONTENTS

Business Understanding

2 Data Understanding

3 Exploratory Data Analysis (EDA)

4 Preprocessing

Methodology (Analysis / Modeling)

6 Conclusion and Recommendation

STUDY CASE

DATA SOURCE:

Data in Brief

Volume 22, February 2019, Pages 41-49

Data Article

Hotel booking demand datasets

Nuno Antonio a b Ana de Almeida a c d, Luis Nunes a b d

City Hotel di Lisbon

Memiliki 200 kamar:

- 40% tipe kamar standard
- 30% tipe kamar deluxe
- 20% tipe kamar premium
- 10% tipe kamar family

Resort Hotel di Algarve

Memiliki 200 kamar:

- 40% tipe kamar standard
- 30% tipe kamar deluxe
- 20% tipe kamar premium
- 10% tipe kamar family

STUDY CASE

Objek wisata populer di Lisbon

Kastel São Jorge

Marquis of Pombal Square

Elevator Santa Justa

Objek wisata populer di Algarve

Alun-alun Lama Albufeira

Marina Vilamoura

Marina Lagos

Lisbon

Algarve

BUSINESS UNDERSTANDING

LisGarve City & Resort Hotel adalah sebuah penginapan yang berada di Portugal. Saat ini mengalami penurunan pendapatan karena banyak mengalami pembatalan pemesanan yang menyebabkan kerugian bagi pihak hotel. Mereka ingin mengetahui tindakan yang harus diambil oleh pihak manajemen hotel untuk mengurangi peluang terjadinya pembatalan pemesanan dengan mengidentifikasi karakteristik yang dimiliki oleh hotel.

Revenue Hotel Menurun

Tingkat Cancellation
Tinggi

Karakteristik Hotel

- Jenis Hotel apa? (What)
- Kapan tingkat pembatalan tinggi? (When)
- Negara asal customer? (Where)
- Bagaimana pelayanan hotel? (How)

PROBLEM

Hotel mengalami penurunan pendapatan akibat pembatalan pemesanan. Sehingga butuh informasi calon konsumen yang akan melakukan pembatalan

GOALS

Meningkatkan revenue hotel dengan cara mengetahui karakteristik konsumen melakukan cancel dan memprediksi pemesan yang akan membatalkan pemesanan hotel untuk mengetahui pelanggan yang melakukan pembatalan pemesanan

HOW?

- Meprediksi peluang terjadinya pembatalan pemesanan
- Mengidentifikasi faktor-faktor customers yang melakukan pembatalan
- Menerapkan strategi khusus untuk customer yang teridentifikasi melakukan cancel
- Meningkatkan retensi pelanggan

ANALYTIC APPROACH

Analisis eksploratif data untuk memahami tren dan pola perilaku pelanggan. Selanjutnya, membangun model klasifikasi menggunakan algoritma machine learning. Melibatkan analisis interpretasi model untuk mengidentifikasi fitur-fitur kunci yang mempengaruhi keputusan pelanggan

ASSUMPTION

Menurut Terminology Glossary Industri Perhotelan, standar harga breakfast di hotel biasanya berkisar antara 10% hingga 25% dari harga kamar permalamnya.

Perbandingan biaya Retensi Pelanggan dengan biaya kehilangan apabila customer melakukan cancel:

- Harga rata-rata kamar hotel: 91.85 Euro
- Total Biaya Marketing (Double Booking, Gaji Karyawan, Budget Campaign): 11% x 91.85 Euro = 10 Euro

METRIC EVALUATION

Positif Class Interested (Recall, Presisi, F1)

membuat model evaluation yang tertarik kepada kelas Positif yaitu (Recall, Presisi, F1) namun dilihat secara sederhana diatas recall memiliki dampak yang cukup besar karena biaya yang ditanggung pihak hotel akan lebih besar. Namun akan dicek lebih mendalam ketiganya untuk ditemukan metric yang terbaik

DATA UNDERSTANDING

NUMERICAL FEATURES

Attribute	Data Type	Description
lead_time	int	Jarak hari antara tanggal booking hotel yang telah dimasukkan ke dalam Hotel Property Management System (PMS) hingga tanggal yang dijadwalkan untuk check-in.
arrival_date_year	int	Tahun dari tanggal yang dijadwalkan untuk check-in.
arrival_date_week_number	int	Urutan minggu dalam setahun dari tanggal yang dijadwalkan untuk check-in.
arrival_date_day_of_month	int	Tanggal yang dijadwalkan untuk check-in.
stays_in_wekend_nights	int	Jumlah malam di akhir pekan (Sabtu atau Minggu) yang dipesan oleh pelanggan untuk menginap di hotel.
stay_in_week_nights	int	Jumlah malam dalam seminggu (Senin - Jumat) yang dipesan oleh pelanggan untuk menginap di hotel.
adults	int	Jumlah orang dewasa.
children	float	Jumlah anak-anak.
babies	int	Jumlah bayi.
previous_cancellations	int	Jumlah booking hotel sebelumnya yang dibatalkan oleh pemesan sebelum booking hotel terkini.
preious_bookings_not_canceled	int	Jumlah booking hotel sebelumnya yang tidak dibatalkan oleh pemesan sebelum booking hotel terkini.
booking_changes	int	Jumlah perubahan yang dilakukan pada booking hotel.
day_in_waiting_list	int	Jumlah hari untuk setiap booking hotel yang masuk ke dalam waiting list sebelum dikonfirmasi kepada pemesan.
adr	float	Rata-rata tarif harian atau Average Daily Rate yang ditentukan untuk membagi jumlah semua transaksi dengan jumlah malam yang dipesan.
required_car_parking_spaces	int	Jumlah ruang parkir mobil yang dibutuhkan oleh pemesan.
total_of_special_requests	int	Jumlah permintaan khusus yang dibuat oleh pemesan.

DATA UNDERSTANDING

CATEGORICAL FEATURES

Attribute	Data Type	Description
is_canceled	int	Nilai yang menunjukkan apakah booking hotel dibatalkan atau tidak dibatalkan
hotel	str	Tipe hotel yang disediakan.
arrival_date_month	str	Bulan dari tanggal yang dijadwalkan untuk check-in.
meal	str	Jenis makanan yang dipesan.
country	str	Negara asal pemesan.
market_segment	str	Pemilihan untuk segmentasi pasar.
distribution_channel	str	Saluran distribusi untuk setiap booking hotel.
is_repeated_guest	int	Nilai yang menunjukkan apakah nama pemesan. adalah pemesan berulang atau bukan
reserved_room_type	str	Kode untuk tipe kamar yang dipesan.
assigned_room_type	str	Kode untuk tipe kamar yang ditetapkan untuk pemesanan.
deposit_type	str	Indikasi apakah pemesan melakukan deposit untuk menjamin booking hotel.
agent	float	ID dari travel agency yang melakukan booking hotel.
company	float	ID dari perusahaan yang melakukan booking hotel atau yang bertanggung jawab untuk membayar booking-nya.
customer_type	str	Jenis booking hotel.
reservation_status	str	Status terakhir booking hotel.
reservation_status_date	str	Tanggal saat status terakhir ditetapkan.

EDA - NUMERICAL VARIABLE

EDA - NUMERICAL VARIABLE

EDA - CATEGORICAL VARIABLE

EDA - CATEGORICAL VARIABLE

PREPROCESSING

DATA DUPLICATED

MISSING VALUE

Data sebelumnya: 119,390 Data sekarang: 87,396

- Agent (16340 Data) --> Unkown
- Company (112593 Data) --> Unknown
- Children (4 data) --> 0
- Country (488 Data) --> Unknown

DATA OUTLIER & ANOMALIES

FEATURE ENGINEERING

Terdapat data outlier, namun tidak dilakukan penghapusan data. Handling data anomali dengan domain knowledge

- Analysis
- Modeling

HANDLING ANOMALIES

- Weekend & Week Night bernilai 0, hal ini tidak relevan karena minimal pemesanan 1 hari
- Adr memiliki nilai 5400 Euro, handlingnya diganti dengan 143.1. Pedekatan mengisi nilai dengan nilai berdasarkan data dengan karakteristik yang sama
- Adr memiliki nilai 0, namun tidak termasuk market segment complementary
- Children, Babies, dan Adults bernilai 0, hal tidak relevan karena minimal jumlah pemesan bernilai 1
- Babies bernilai 9 dan 10, hal ini tidak relevan karena jumlah bayi dan jumlah orang dewasa (2) dan type kamar City Hotel

DATA ANALYSIS

Pengaruh Waktu Terhadap Pembatalan Booking Hotel

Karakteristik jarak hari antara tanggal pemesanan hotel hingga tanggal yang dijadwalkan untuk check-in hotel?

Leadtime

- Pemesan yang memesan hotel yang < 90 hari (leadtime) memiliki jumlah cancel paling banyak dengan 12.966 transaksi
- Proporsi pembatalan pemesanan yang jedanya semakin lama jumlah proporsinya cenderung semakin tinggi
- Semakin lamanya leadtime, semakin tinggi peluang terjadinya pembatalan booking hotel

Pengaruh Banyaknya pemesan hotel di bulan tertentu terhadap persentase pembatalan

Frequency

- High Frequency: Bulan Juli Agustus & Agustus September
- Low Frequency: **Bulan November Januari**

Pengaruh Banyaknya pemesan hotel di bulan tertentu terhadap persentase pembatalan

High Season

seasonal mempengaruhi keputusan pelanggan pada season tertentu untuk melakukan transaksi

High Demand: Summer Seasons dan Festival Anggur (Juli-September)

Low Demand: Winter Seasons (November-Januari)

Q Pengaruh Fasilitas Terhadap Pembatalan Booking Hotel

Jenis Hotel yang melakukan pembatalan pemesanan

- Jumlah pemesan hotel **paling banyak melakukan cancel** berdasarkan jenis hotel berasal dari **City Hotel** dengan 16,047 dengan dua kali lipat dibandingkan Resort Hotel.
- 30% pemesan city hotel membatalkan pemesanan booking hotel, yang berarti peminat pemesan hotel city hotel memang paling banyak dari segi banyaknya pemesanan ataupun banyaknya yang melakukan pembatalan dari proporsi

Jenis Paket Breakfast Terbanyak yang Mengakibatkan Pembatalan Pemesanan Hotel

Insight:

• Proporsi cancel terbesar ada pada Self Catering dengan persentase 34% kemungkinan hal itu terjadi karena rata-rata harga untuk Self Catering dan Bed and breakfast hanya berbeda sedikit sekitar €5 para konsumen sudah mendapatkan menu sarapan

Pengaruh Banyaknya Lahan Parkir yang disediakan Hotel Terhadap Pembatalan Pemesanan Hotel

- mayoritas pengunjung tidak membutuhkan car space, hal ini mungkin dikarenakan pengunjung tidak membawa kendaraan pribadi. Terdapat **24023 orang** yang tidak memerlukan **car space** namun melakukan cancelation
- Car space parking bukan menjadi faktor dilakukannya pembatalan pemesanan

Banyaknya Permintaan Konsumen Terhadap Fasilitas Hotel Mempengaruhi Pembatalan Pemesanan Hotel

Insight:

• Semakin banyaknya jumlah spesial request, jumlah pembatalan hotel semakin kecil. Namun hal ini dikarenakan jumlah transaksi dengan jumlah spesial request > 3 lebih sedikit dari transaksi tanpa spesial request.

Pengaruh perbedaan pemesana type kamar dan type yang disediakan hotel

- Minat pelanggan secara garis besar terhadap Rooom Type A, D dan E
- Banyak pelanggan mendapatkan kamar tidak sesuai permintaan ketika booking. Hal ini dapat menyebabkan pelanggan melakukan cancellation atau menurunkan kepuasan pelanggan
- Sehingga kita merekomendasikan terhadap pihak hotel untuk melakukan layanan seperti berikut ini:
- Pihak hotel harus menanyakan kesediaan customer atas pergantian kamar, memberikan complementary terhadap customer, memberikan free upgrade, melakukan sistem ketersediaan kamar yang akurat

Pengaruh Karakteristik Pelanggan Terhadap Pembatalan Booking Hotel

Pengaruh jumlah pengunjung dalam satu transaksi terhadap pembatalan pemesanan hotel

- Jumlah visitor dalam satu transaksi dengan jumlah 2 orang cenderung tinggi peluang terjadinya cancel
- Untuk data diatas 5 hanya sedikit data, jadi data tersebut dianggap anomali
- Proporsi cancel visitor cenderung naik semakin banyaknya pengunjung pemesan hotel. Hal ini mungkin ada faktor lain seperti ketersediaan kamar dan jenis kamar yang dipesan

pengaruh tipe pelanggan terhadap pembatalan pemesanan hotel

- Jumlah dan proporsi konsumen transient melakukan pembatalan paling banyak dan jika dilihat transient merupakan tipe pelanggan yang memesan secara individual dan tidak terikat kontrak jangka panjang seperti wisatawan yang ingin berlibur atau perjalanan bisnis dalam waktu singkat
- Kami merekomendasikan untuk tim marketing membuat paket promo seperti membuat iklan yang ditargetkan kepada akun sosial media pribadi berup promo liburan atau promo akhir pekan

pengaruh banyaknya reservasi hotel yang dibatalkan sebelumnya terhadap pembatalan pemesanan hotel terkini

- Berdasarkan Faktor **previous cancellation** diketahui bahwa customer yang sebelumnya melakukan pembatalan proporsinya lebih besar melakukan pembatalan ditransaksi berikutnya
- Rekomendasi terhadap pihak hotel dapat memberikan treatment khusus terhadap konsumen yang sebelumnya pernah melakukan cancellation seperti : Penawaran reschedule apabila memang calon customer tersebut memiliki ketidaktepatan/tidak sesuaian tanggal dan Penawaran apakah customer tersebut memiliki special request yang dapat dipenuhi oleh pihak hotel

pengaruh pemesan hotel repeated guest terhadap pembatalan pemesanan hotel

- Customer yang belum pernah melakukan repeat booking lebih besar dari customer yang pernah melakukan booking secara jumlah maupun proporsi
- Hal ini mungkin disebabkan karena customer yang pernah melakukan booking telah mengetahui fasilitas dan layanan yang didapatkan oleh pihak hotel dibandingkan customer yang belum pernah melakukan repeat booking.
- saran kami terhadap pihak hotel yaitu memberikan potongan pada pelanggan baru agar tertarik untuk melakukan transaksi kembali dan memberikan pendekatan terhadap alasan cancellation pengunjung

pengaruh pemesan hotel yang sebelumnya melakukan reservasi terhadap cancellation

- pelanggan yang sebelumnya melakukan pembatalan memiliki persentase pembatalan yang lebih tinggi pada transaksi berikutnya.
- kami merekomendasikan kepada pihak hotel untuk memberikan perlakuan khusus kepada konsumen yang sebelumnya pernah melakukan pembatalan. Beberapa rekomendasi tersebut melibatkan: Menawarkan opsi untuk *reschedule* dan Memberikan penawaran terkait permintaan khusus yang dapat dipenuhi oleh pihak hotel.

pengaruh tipe deposit yang dipilih oleh pelanggan terhadap pembatalan pemesanan hotel

- persentase tertinggi yang berpeluang melakukan cancel ada pada pelanggan yang memilih kategori Non Refund
- pelanggan cenderung memilih pembatalan daripada kehilangan uang deposit atau biaya hotel yang tidak dapat dikembalikan
- kami merekomendasikan pihak hotel untuk menerapkan kebijakan konfirmasi kedatangan kepada pelanggan satu hari sebelum tanggal check-in
- membatasi opsi No Deposit dengan mengarahkan pelanggan pada pilihan deposit yang lebih fleksibel atau kebijakan reschedule

Encoding: One Hot Encoding

Data ini tidak memilki urutan dan memilki nilai unique yang sedikit.

- hotel
- arrival_date_month
- meal
- market_segment
- distribution_channel
- reserved_room_type
- assigned_room_type
- deposit_type
- customer_type

Define Target & Features

- Target: is_canceled
- Features : Numerical & Categorical

Splitting

- 80 % : Data Train set
- 20% : Data test set

Scaler: RobustScaler

Resampler:

- SMOTENC
- SMOTE
- RandomUnderSampler
- RandomOverSampler
- NearMiss

Analytic Approach:

- Logistic Regression
- K-Nearest Neighbors
- Decision Tree
- Random Forest
- Gradient Boosting
- AdaBoost
- XGBoost
- LightGBM

BENCHMARKING MODEL

without sampling

Model	Mean Recall	Recall Score
Random Forest	0.541	0.545
XGBoost	0.536	0.539
K-Nearest Neighbors	0.515	0.521
LightGBM	0.510	0.512
AdaBoost	0.468	0.478
Gradient Boosting	0.463	0.461
Decision Tree	0.436	0.441
Logistic regression	0.421	0.416

with sampling

Model - NearMiss	Mean Recall	Recall Score
Random Forest	0.784	0.784
XGBoost	0.784	0.783
LightGBM	0.776	0.781
Gradient Boosting	0.754	0.752
Decision Tree	0.753	0.751
AdaBoost	0.742	0.697
K-Nearest Neighbors	0.643	0.645
Logistic regression	0.631	0.629

Berdasarkan hasil diatas dapat dilihat dari 8 model yang telah diuji, didapatkan 2 model yang direkomendasikan berdasarkan Metric Evaluation yang terkecil untuk memprediksi data test set yaitu:

- Random Forest Classifier
- XGBoost Classifier

Metric Evaluation Recall untuk menghindari FN (False Negatif) sebagai prioritas utama.

• HYPERPARAMETER TUNING

Model	Mean Recall	Mean Precision	Mean F1	subsample	scale_pos_weight	n_estimators	min_child_weight	max_depth	max_delta_step	max_bin	gamma	eta	colsample_bytree
XGBoost Benchmark (Recall)	0.784		\ -	-	-	-	+	-	-	÷	n ë	-	-
XGBoost Tuned (Recall)	0.988	- ×	0 =	0.9	30	434	3	5	3	300	0	0.05	0.7
XGBoost Benchmark (Precision)	*	0.436	/=	-	-	-	些)	-	-	÷	V <u>=</u>	-	=
XGBoost Tuned (Precision)	<u>.</u> .	0.588	12	0.7	10	887	3	10	9	300	0.1	0.2	0.9
XGBoost Benchmark (F1 Score)	-	= ;	0.560	±	-	-	(4)	-	-	w	-	-	-
XGBoost Tuned (F1 Score)	=	÷.	0.65	0.9	10	934	7	10	8	275	0.1	0.1	0.8

	Model	Predict Score
0	XGBoost Benchmark (Recall)	0.783
1	XGBoost Tuned (Recall)	0.990
2	XGBoost Benchmark (Precision)	0.435
3	XGBoost Tuned (Precision)	0.587
4	XGBoost Benchmark (F1 Score)	0.559
5	XGBoost Tuned (F1 Score)	0.651

XGBOOST

Fungsi Tujuan:

- Model XGBoost mengoptimalkan fungsi tujuan yang mencakup bagian kerugian (loss function) dan komponen regularisasi (penalization)
- Meminimalkan kesalahan prediksi dan menghindari overfitting

Based modeling: Decision Tree & Gradient BoostingCara kerja:

• Menggabungkan beberapa model prediksi sederhana yang disebut "Weak Learner" untuk membentuk model yang lebih kompleks dan efektif

FEATURE IMPORTANT

beberapa fitur/kolom yang paling penting pada **feature importance** mayoritas cukup sesuai dengan sebagian EDA yang kami analisis

- required_car_parking_spaces: tidak terlalu sesuai dengan analisis. pada Analisis target melakukan cancel pada saat nilainya O
- deposit_type: target cenderung akan cancel jika deposit typenya non refund
- Market Segment: target cenderung akan melakukan cancel pada market segment Online Travel Agent

SHAP

Berdasarkan **SHAP** value, kita melihat beberapa fitur yang penting diantaranya:

- required_car_parking_spaces: Customer yang meminta lahan parkir mobil semakin banyak akan semakin kecil kemungkinannya melakukan pembatalan hotel
- lead_time: customer yang melakukan booking dengan jeda waktu yang lama akan semakin besar potensi melakukan pembatalan booking hotel
- total_of_special_request: semakin sedikit permintan spesial dari customer terhadap penyedia hotel semakin tinggi kemungkinan customer tersebut melakukan pembatalan booking.

Interpretasi SHAP Value diatas memiliki hasil yang cukup sesuai dengan hasil analisa kami pada Data Analis

DATA ACTUAL VS DATA PREDICTION

MODEL LIMITATION

Feature	Data Type	Limitasi
lead_time	Integer	Jarak hari antara tanggal <i>booking</i> hotel hingga tanggal yang dijadwalkan untuk <i>check-in</i> di rentang 0-709
arrival_date_year	Integer	Tahun dijadwalkan <i>check-in</i> di rentang 2015-2017
stays_in_weekend_nights	Integer	Jumlah malam di akhir pekan (Sabtu atau Minggu) yang di- <i>booking</i> di rentang 0-19
stays_in_week_nights	Integer	Jumlah malam dalam seminggu (Senin - Jum'at) yang di- <i>booking</i> di rentang 0-50
adults	Integer	Jumlah orang dewasa di rentang 0-4
children	Float	Jumlah anak-anak di rentang 0-10
babies	Integer	Jumlah bayi di rentang 0-2
is_repeated_guest	Integer	Nilai yang berasal dari pemesan yang berulang atau tidak di rentang 0-1
previous_cancellations	Integer	Jumlah Pemesanan yang dibatalkan sebelumnya di rentang 0-26
previous_bookings_not_canceled	Integer	Jumlah <i>booking</i> hotel sebelumnya yang tidak dibatalkan di rentang 0-72
booking_changes	Integer	Jumlah perubahan yang dilakukan pada <i>booking</i> hotel di rentang 0-18
days_in_waiting_list	Integer	Jumlah hari untuk setiap <i>booking</i> hotel yang masuk ke dalam <i>waiting list</i> di rentang 0-391
adr	Float	Rata-rata tarif harian atau Average Daily Rate di rentang 0-510
required_car_parking_spaces	Integer	Jumlah ruang parkir mobil yang dibutuhkan pemesan di rentang 0-3
total_of_special_requests	Integer	Jumlah permintaan khusus yang dibuat oleh pemesan di rentang 0-5

COST ANALYSIS

Sebelum Model dan sesudah menggunakan model:

€ 532,457

Tanpa Model

Metrics	Score Model	Keuntungan		
Recall	99	1.000.455 €		
Precision	58	961.833 €		
F1 Score	65	989.371 €		

Berdasarkan Evaluation Cost Metrics yang dipilih adalah **Recall.** Setelah meninjau Model dapat memprediksi data dengan cukup tepat dan memberikan keuntungan yang lebih besar.

€ 467,998
Income

187%

Total Keuntungan yang didapatkan

CONCLUSION

Analisis

- 1. Bagaimana karakteristik jarak hari dan waktu tertentu mempengaruhi kebiasaan pembatalan pemesanan hotel?
- Pembatalan pemesanan hotel rentan dilakukan ketika antara **waktu pemesanan dengan waktu kedatangan jaraknya terlalu jauh**
- Waktu yang tingkat cancellationnya tinggi terjadi pada high season seperti liburan **summer season** atau kisaran bulan **Juli-September** (Festival Anggur)
- 2. Bagaimana karakteristik fasilitas dan pelayanan hotel mempengaruhi pelanggan dalam membatalkan pesanan hotel?
- Jenis hotel City hotel memiliki proporsi lebih tinggi dilakukannya cancel
- Customer hotel yang memesan paket **self catering** memiliki peluang lebih tinggi untuk melakukan pembatalan
- Car space parking bukan menjadi faktor utama yang menyebabkan pengunjung melakukan pembatalan
- Customer dengan jumlah permintaan khusus proporsi pembatalan hotel cenderung berkurang
- 3. Bagaimana karakteristik pelanggan yang melakukan pembatalan pemesanan hotel?
- Semakin banyaknya jumlah **visitor**, proporsi tingkat pembatalan hotel cenderung semakin naik
- Customer dengan kategori transient berpeluang lebih besar melakukan pembatalan pemesanan
- Pelanggan yang **sebelumnya melakukan pembatalan** memiliki persentase pembatalan yang lebih tinggi
- Pelanggan dengan persentase tertinggi yang berpeluang melakukan *cancel* ada pada pelanggan yang memilih kategori **Non Refund**,

CONCLUSION

Modeling

- Model prediktif yang mampu mengidentifikasi potensi customer melakukan cancel didapat menggunakan algoritma XGBoost.
- Parameter ini digunakan untuk imbalance data dengan `Scale_post_weight`: 30.
- Hyperparameter tuning dilakukan untuk mendapatkan nilai metriks evaluasi yang maksimal. dengan mengontrol kompleksitas model secara langsung dengan `min_child_weight` : 3 dan `gamma` : 0
- Beberapa Fitur yang paling berpengaruh terhadap target (Is_canceled) diantaranya `required_car_parking_spaces`, `deposit_type`, dan `market_segment.
- Model XGBoost yang dipilih pada metrics evaluation ini adalah **RECALL** karena memiliki score sebesar **99%** dan memberikan keuntungan yang cukup besar dari segi Bisnis jika dilihat melalui Cost Analysis.
- Tanpa ML, Tim Marketing memberikan penawaran (Double Booking) atau promo bundling lain secara acak. Dengan Machine learning kita bisa memprioritaskan kepada Pelangganan Potensial untuk menghemat budget. Kita juga dapat membuat campaign dengan target audience yang lebih terarah dan terukur dengan adanya machine learning.

Selain itu juga **RECALL** memberikan penanganan nilai error yang cenderung lebih aman untuk dataset ini. Score 99 artinya bahwa model mampu mengidentifikasi dan menangkap data yang memiliki potensi pembatalan booking hotel dengan baik sesuai dengan tujuan penelitian yang dilakukan.

RECOMENDATION

Rekomendasi agar performa model lebih baik :

- Untuk meningkatkan hasil analisis, pihak hotel memperbaiki sistem website/dashboard hotel yang digunakan oleh user dengan penggunaan Menu Dropdown atau pilihan yang dibatasi untuk menghindari human error
- Menetapkan aturan input yang jelas dan mengkomunikasikannya kepada pengguna, seperti format tanggal yang diharapkan, tipe data yang diperbolehkan, dan sebagainya.
- Menambahkan kolom atau informasi tentang identitas pemesan atau unique ID pemesan

Rekomendasi berdasarkan Data Analisis:

- Membatasi waktu pemesanan ke waktu check in maksimal tidak lebih dari setahun
- Menerapkan sistem reschedule/refund dan memberikan kebijakan proporsional penalty
- Meningkatkan pemesanan booking pada winter dan mengurangi cancellation pada summer yang merupakan high season
- Memberikan penawaran menarik berupa promosi free sarapan untuk pemesan self catering
- Menawarkan kebutuhan special request kepada pemesan yang tidak melakukan special request terlebih dahulu
- Membuat paket promo kepada type transient pada waktu akhir pekan
- Menerapkan sistem deposit dan reschedule sebagai pertimbangan customer melakukan cancellation
- Menerapkan sistem double booking pada high season atau pada bulan rentan tinggi terjadinya cancel seperti pada bulan Agustus
- Membuat campaign yang ditargetkan berupa promo liburan atau promo akhir pekan dengan target audience type customer transient

TERIMA KASIH