Distributionally Generative Augmentation for Fair Facial Attribute Classification

Fengda Zhang¹*, Qianpei He¹*, Kun Kuang¹†, Jiashuo Liu², Long Chen³, Chao Wu¹, Jun Xiao¹, Hanwang Zhang^{4,5}
¹Zhejiang University ²Tsinghua University ³HKUST ⁴NTU ⁵Skywork AI

{fdzhang,hqp,kunkuang,chao.wu,junx}@zju.edu.cn liujiashuo77@gmail.com longchen@ust.hk hanwangzhang@ntu.edu.sg

CVPR 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

• Unfairness is largely attributed to bias in data, where some spurious attributes (e.g., Male) statistically correlate with the target attribute (e.g., Smiling)

• Proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation.

• Train a fair FAC model by fostering model invariance to these augmentation. Extensive experiments on three common datasets demonstrate the effectiveness.

Introduction

Introduction

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Framework

- Preliminary
- Framework
- Method
- Experiment
- Conclusion

Findings in Biased Generative Modeling

Bias Detection via Generative Modeling

- Using different regularization strengths, we can obtain two different biased semantic directions of target attribute
- Combine these two biased directions by some appropriate combination coefficients

Bias Mitigation via Generative Augmentation

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Bias detection results on CelebA dataset

Classification results on facial datasets

	T=	s / S=	=m	T=	=s / S=	<u>=y</u>	T=	<i>b</i> / S=	=m	T=	=a / S	=y	T=	m / S=	=y	T=	y / S=	=m	T=b8	ka&r	/ S=m	T=s	/ S=n	1&y	T=	=g / S=	= <i>e</i>
Method	Acc.	Wst.	EO	Acc.	Wst.	EO	Acc.	Wst.	EO	Acc.	Wst.	EO	Acc.	Wst.	EO	Acc.	Wst.	EO	Acc.	Wst.	EO	Acc.	Wst.	EO	Acc.	Wst.	\overline{EO}
ERM [23]	88.2	70.1	25.3	88.3	71.5	15.6	84.2	73.3	17.1	82.8	70.1	19.4	97.2	92.8	5.4	77.7	42.0	52.0	90.6	69.3	24.1	87.3	60.4	33.8	91.4	83.5	12.2
CVaR DRO [38]	87.3	74.0	22.8	87.0	76.1	13.9	84.0	73.9	15.5	81.4	71.8	15.2	96.5	93.0	5.3	75.4	42.3	48.8	90.0	71.8	22.0	86.3	64.0	28.4	90.6	84.5	11.9
<i>EIIL</i> [8]	87.9	75.6	19.7	87.9	72.5	13.3	84.1	73.9	15.7	81.9	73.3	14.4	96.2	93.3	4.9	77.5	45.6	39.2	90.4	71.5	22.0	86.4	60.8	19.7	89.2	84.3	8.3
<i>LfF</i> [52]	87.1	77.5	17.0	85.3	72.9	14.3	84.0	74.0	15.1	82.4	72.5	14.2	97.1	92.9	5.1	77.4	44.2	43.6	89.8	70.8	20.5	85.0	62.5	26.6	86.7	84.6	11.1
JTT [42]	88.0	74.8	19.4	87.6	73.3	14.2	83.9	74.1	16.7	81.1	71.1	16.6	97.0	92.4	5.8	76.3	43.6	47.7	88.3	69.1	23.3	87.3	61.0	31.0	90.5	85.0	10.4
<i>MAPLE</i> [85]	88.1	72.0	19.6	88.1	73.6	13.6	83.7	73.9	14.7	82.4	74.7	13.8	97.1	92.9	4.8	76.3	46.2	43.5	89.9	72.8	18.6	86.0	64.8	31.2	89.4	85.3	9.4
DiGA (ours)	88.4	81.9	7.4	89.1	78.5	9.5	84.5	74.5	13.5	83.6	78.6	10.8	97.4	94.8	4.3	80.0	51.3	33.3	90.7	79.7	15.8	88.4	75.8	15.6	92.7	89.0	6.8

Classification results on CelebA dataset under different of data bias

Ablation Studies

• T-SNE visualization for the learned representations on CelebA

Ablation Studies

	Acc.	Wst.	EO
λ_1 =2e-4 λ_2 =5e+3	88.3	82.7	9.3
λ_1 =1e-4 λ_2 =1e+4	88.4	81.9	7.4
λ_1 =2e-5 λ_2 =5e+4	88.8	85.1	4.8
λ_1 =1e-6 λ_2 =1e+6	88.8	82.3	7.4

	T=s / S							
Method	Acc.	Wst.	EO					
ERM	87.5	67.8	26.1					
CVaR DRO	86.6	72.9	22.1					
EIIL	86.2	71.3	22.5					
LfF	86.9	75.5	19.4					
JTT	87.3	72.9	20.1					
<i>MAPLE</i>	87.4	73.7	23.8					
DiGA (ours)	88.4	81.1	7.8					

- Ablation studies of regularization strength $\lambda 1$, $\lambda 2$ on CelebA
- Classification results on non-facial dataset Dogs and Cats

Results on the Cross-Domain Benchmark.

Method	Aircraft	Caltech101	Cars	DTD	EuroSAT	Flower102	Food101	Pets	SUN397	UCF101	Average
CLIP-ResNet-50	16.11	87.26	55.89	40.37	25.79	62.77	74.82	82.97	60.85	59.48	56.63
СоОр	15.12	86.53	55.32	37.29	26.20	61.55	75.59	87.00	58.15	59.05	56.18
CoCoOp	14.61	87.38	56.22	38.53	28.73	65.57	76.20	88.39	59.61	57.10	57.23
TPT	17.58	87.02	58.46	40.84	28.33	62.69	74.88	84.49	61.46	60.82	57.66
DiffTPT	17.60	86.89	60.71	40.72	41.04	63.53	79.21	83.40	62.72	62.67	59.85
TDA (Ours)	17.61	89.70	57.78	43.74	42.11	68.74	77.75	86.18	62.53	64.18	61.03
CLIP-ViT-B/16	23.22	93.55	66.11	45.04	50.42	66.99	82.86	86.92	65.63	65.16	64.59
CoOp	18.47	93.70	64.51	41.92	46.39	68.71	85.30	89.14	64.15	66.55	63.88
CoCoOp	22.29	93.79	64.90	45.45	39.23	70.85	83.97	90.46	66.89	68.44	64.63
TPT	24.78	94.16	66.87	47.75	42.44	68.98	84.67	87.79	65.50	68.04	65.10
DiffTPT	25.60	92.49	67.01	47.00	43.13	70.10	87.23	88.22	65.74	62.67	65.47
TDA (Ours)	23.91	94.24	67.28	47.40	58.00	71.42	86.14	88.63	67.62	70.66	67.53

• Comprehensive evaluation of the model's adaptability during test time across various class spaces

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Proposed a **generation-based** two-stage framework to train a fair FAC model on **biased data without additional annotations**.

• In the first stage, **detecting the spurious attributes** via generative models. This method enhances interpretability by explicitly representing the spurious attributes in the image space.

• In the second stage, for each image, first edit its spurious attributes, where the editing degree follows a uniform distribution. Then training a fair FAC model by promoting its invariance to these augmentation.