Return on Software

Maximizing the Return on Your Software Investment

Steve Tockey

SteveT@Construx.com

http://www.construx.com/returnonsw

© 2004 Steve Tockey All Rights Reserved.

Construx

Delivering Software Project Success

Harsh Realities

- 23% of software projects fail to deliver any working software at all
- * Of projects that do deliver, they average
 - 63% late
 - ◆ 45% over budget
 - 67% of the features and functions delivered
- 40% of commercial applications of computers are uneconomical

Reference: [Standish01], [Kidder81]

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

3

Harsh Realities (cont)

- Annual software budget in the US is about \$275 billion
 - ◆ \$63 billion/year in cancelled projects alone
 - ◆ As much as \$149 billion/year in net moneylosing projects

Reference: [Standish01]

construx software ♦ consulting ♦ training ♦ software projects ♦ construx.com

The Cost of Bad Decisions

- Poor project performance can almost always be traced back to bad decisions (whether accidental or intentional), either by the customer, the development staff, or both
 - · Which projects to do
 - Not getting good requirements
 - Not giving good requirements
 - Using inappropriate technology
 - Choosing the wrong design or architecture
 - Not giving the project team adequate resources
 - Not planning and/or managing the project
 - Not paying attention to quality
 - ٠...

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

5

Business on Purpose

Why are companies in business?

Because it's fun? Educational? A way to have a positive impact on society?

No: companies are in business to make a profit for the owners

Where does the money come from?

Economics, the Science of Choice

"... software economics has often been misconceived as the means of estimating the cost of programming projects. But economics is primarily a science of choice, and software economics should provide methods and models for analyzing the choices that software projects must make"

Reference: [Levy87]

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

9

The Business Decision Making Process

Understand the Real Problem

- In software, this is usually the "requirements"
 - Issues in contemporary requirements
 - Ambiguity
 - *** Incompleteness**
 - Mistaking a solution for the problem
- * Example
 - Find the best way to invest MegaCorp's development resources over the next 6 months

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

11

The Business Decision Making Process

construx software lacktriangledown consulting lacktriangledown training lacktriangledown software projects lacktriangledown construx.com

Define the Selection Criteria

- * Selection criteria need to be
 - Unique
 - ◆ Sufficient
 - ◆ Meaningful
 - Discriminating
- * At MegaCorp
 - Profitability
 - ◆ Risk
 - ◆ Staff morale

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

13

Typical Selection Criteria

- * Financial
 - ◆ Initial investment
 - Present worth (Net present value)
 - ◆ Internal rate of return
 - Discounted payback period
 - · ...
- * Technical
 - ◆ Performance
 - Reliability
 - Maintainability
 - **...**
- * Non-technical
 - Reputable provider
 - ◆ Creature comfort
 - ...

Some Interest Formulas

Single-payment Present-worth (P/F)

$$P = F \left[\frac{1}{(1+i)^n} \right]$$

❖ Present Worth, PW(i)

$$PW(i) = \sum_{t=0}^{n} F_t (1+i)^{-t}$$

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

17

Minimum Attractive Rate of Return (MARR)

- A statement that the organization is confident it can achieve at least that rate of return through its typical operations
 - aka "Opportunity cost"

Present Worth (Net Present Value)

Inventory Control Project						
End of year	Net cash flow	(P/F,14%,n)	Discounted cash flow			
0 1 2 3 4	-\$450,000 300,000 240,000 240,000 180,000	1.0000 0.8772 0.7695 0.6750 0.5921	-\$450,000 263,160 184,680 162,000 106,578			
Total	\$510,000		\$266,418			

CRM Project						
End of year	Net cash flow	(P/F,14%,n)	Discounted cash flow			
0 1 2 3 4	-\$450,000 90,000 210,000 360,000 390,000	1.0000 0.8772 0.7695 0.6750 0.5921	-\$450,000 78,948 161,595 243,000 230,919			
Total	\$600,000		\$264,462			

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

19

The Business Decision Making Process

Identify Reasonable Technicallyfeasible Solutions

- * We're usually pretty good at this...
 - ◆ Creative/lateral thinking helps (see [DeBono92] or [vonOech98])

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

21

Identify Reasonable Technicallyfeasible Solutions (cont)

- * Option 1
 - Extend product with new functionality
- Option 2
 - ◆ Fix outstanding defects
- * Option 3
 - ◆ Make it a client-server application

The Business Decision Making Process

Evaluate Each Proposal Against the Selection Criteria

Proposals	Financial	Risk	Morale
Extend	\$66,021	0.40	1.00
Fix defects	\$58,056	0.20	0.50
Client-server	\$76,605	0.50	0.80

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

The Business Decision Making Process

Select the Preferred Proposal

- Non-compensatory techniques
 - Dominance
 - Satisficing
 - Lexicography
- Compensatory techniques
 - Nondimensional scaling
 - Additive weighting
 - Analytic hierarchy process

Additive Weighting

- 1. Define the criteria weights
 - 1. Assign points to each criterion by importance
 - 2. Divide by total points across all criteria
- 2. Scale the values on the proposals
 - 1. Worst value within a criterion assigned 0.0
 - 2. Best assigned some arbitrary value, say 100.0
 - 3. Intermediate values are scaled proportionally
- 3. Calculate total scores for each proposal
 - 1. Add up (scaled value * criterion weight)
- 4. Identify best score

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

27

Select the Preferred Proposal (cont)

Proposals	Financial (0.60)	Risk (0.25)	Morale (0.15)	Total
Extend	\$66,021	0.40	1.00	49.0
Fix defects	\$58,056	0.20	0.50	25.0
Client-server	\$76,605	0.50	0.80	69.0

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

The Business Decision Making Process

Monitor the Performance of the Selected Proposal

- Look at where you've been
 - Meeting expectations?
- * Look at where you are
 - ◆ Earned value
- Look at where you're going
 - Improve future estimates

Other Important Methods and Tools

- ❖ Proposals → Alternatives
- Planning horizons and economic life
- * Replacement and retirement decisions
- Inflation and deflation
- Depreciation
- * General accounting and cost accounting
- Income taxes and their consequences
- Not-for-profit decisions
- * Break-even analysis
- Optimization analysis
- Estimation, risk, and uncertainty

construx software ♦ consulting ♦ training ♦ software projects ♦ construx.com

31

Other Important Decisions

- Which software project(s) should we do?
- Should Technology X be used on this project?
- Which software development lifecycle should we use?
- * How much software testing is enough?

***** ...

Engineering, Defined

"Finding the balance between what is technically feasible and what is economically acceptable"

"Doing well with one dollar that which any bungler can do with two"

Reference: [DeGarmo93], [Wellington1887]

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com

33

References

- [DeBono92] Edward DeBono, Serious Creativity: Using the Power of Lateral Thinking to Create New Ideas, Harper Collins, 1992
- [DeGarmo93] E. DeGarmo, W. Sullivan, J. Bontadelli, Engineering Economy, 9th Edition, Prentice Hall, 1993
- [Kidder81] Tracy Kidder, The Soul of a New Machine, Little, Brown & Company, 1981
- [Levy87] Leon Levy, Taming the Tiger—Software Engineering and Software Economics, Springer-Verlag, 1987
- [Standish01] ____, Extreme Chaos, The Standish Group, West Yarmouth, MA, 2001
- [vonOech98] Roger von Oech, A Whack on the Side of the Head, Revised Edition, Warner Business, 1998
- [Wellington1887] A. Wellington, The Economic Theory of the Location of Railways, 2nd Edition, John Wiley & Sons, 1887

Contact Information

Consulting

consulting@construx.com www.construx.com (425) 636-0100

Construx

Delivering Software Project Success

- ❖ Software Projects
- ❖ Project Consulting
- ❖ Seminars
- ❖ On-site Training

sales@construx.com www.construx.com

construx software lacktriangle consulting lacktriangle training lacktriangle software projects lacktriangle construx.com