STUDI	ENT I	DENT	IFICAT	TION NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2018/2019 SESSION

BMS2024 -ADVANCED MANAGERIAL STATISTICS

(All Sections / Groups)

27 OCTOBER 2018 2.30 pm - 4.30 pm (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 15 pages excluding the cover page.
- 2. This question paper consists of FOUR structured questions. Attempt ALL questions.
- 3. Students are allowed to use non-programmable scientific calculators with no restrictions.
- 4. A formulae list and statistical tables are attached at the end of the question paper.
- 5. Use **pen** to write the answers in the answer booklet provided.

QUESTION 1 [25 Marks]

A fast-food franchisor is considering building a restaurant at a certain location. Based on financial analyses, a location is acceptable only if the number of pedestrians passing the location is more than 100 per hour. From 40 hours of observations, the average number of pedestrians per hour was 107. Assume that the population standard deviation is known to be 16 pedestrians. Can we conclude that the proposed location is acceptable?

a) Establish the appropriate null and alternative hypotheses.

[2 marks]

b) Compute the test statistic and the p-value of the test.

[6 marks]

- c) Based on the p-value obtained in (b), what is your statistical decision? Use $\alpha = 0.01$. [3 marks]
- d) State the possible Type I and Type II errors that might occur.

[4 marks]

e) At 0.05 level of significance, compute the probability of a Type II error. Given that the actual average number of pedestrians passing the location per hour is 109.

[7 marks]

f) Compute the power of the test.

[2 marks]

g) If the sample size is decreased, what is the effect on the power of the test.

[1 mark]

Continued...

QUESTION 2 [25 Marks]

a) In a study of what motivates people to engage in sporting activity, students who regularly took part in a sport or fitness activity were asked to rate how strongly they were motivated by competition. The responses were recorded on a five-point scales; 1=weak, 2=fairly weak, 3=neutral, 4=fairly strong and 5=strong.

Determine the most appropriate statistical technique to identify any differences in their motivation in competition between three sport groups; those who regularly did athletics, played basketball and did yoga. State the reasons of your choice.

[6 marks]

b) Caffeine is a part of our daily routine. Caffeine is present naturally or added to widely consumed foods and beverages. The amounts of caffeine (mg) in a regular serving of assorted beverages are listed below.

Teas	Coffees	Cola
70	120	35
40	80	48
30	160	55
25	90	43
40	140	42

If someone wants to limit caffeine intake, does it really matter which beverage she or he chooses? At level of significance 1 percent, conduct an appropriate statistical testing method. Assume that the dataset is not normally distributed. [19 marks]

Continued...

QUESTION 3 [25 Marks]

A marketing manager of a bank claimed that the demographic profile of customers may give clear picture for the bank to understand the need of the customer including estimating their average bank balance. In selling a right product to right customer, the manager suggested to study the demographic information on customers in the bank's current market which significantly related to their bank balances.

Using banking data, he analysed three demographic profiles of 50 customers; customers' age (in years), monthly income (in RM'000) and home values (in RM'0000) to predict their average bank balances (in RM'00). The summary output of the analysis is shown below:

ANOVA

	df	SS	MS	F	Significance F
Regression	3	4341107925	1447035975	342.44	3.065*10-4
Residual	46	194380797	4225669.499		
Total	49	7640844145			,
	Coefficients	Std Error	t Stat	P-value	
Intercept	10710.64	4260.98	2.51366	· · · · · ·	- ,
Age	1.46	0.40691	3.58803	0.00053	
Income	8.665	1.65831	5.22521	$1.011*10^{-6}$	
Home value	-0.00918	0.0110	-0.831945	0.40750	

- a) State the multiple linear regression equation for the above data.
- [4 marks]
- b) Interpret the slope coefficient for the customer's age and customer's monthly income relating to the bank balances. [4 marks]
- c) How strong is the model? Compute and interpret the value.
- [4 marks]
- d) At the 5 percent level of significance, test the overall validity of the model. Use the p-value approach. [4 marks]
- e) At the 1 percent level of significance, test if each independent variable is significantly related towards bank balances. Use the p-value approach. [6 marks]
- f) What would the customer's bank balance be if he or she is 36 years old, has monthly income around RM4,500 and owns a house with value RM 275,000? [3 marks]

Continued...

QUESTION 4 [25 Marks]

An apple juice manufacturer is planning to develop a new product; liquid concentrate. The marketing manager has to decide how to market the new product. Three strategies are considered; emphasize convenience of using the product (convenience), emphasize the quality of the product (quality) and emphasize the product's low price (price).

An experiment was conducted in three cities where advertisement campaign was launched. In each city, only one of the three marketing strategies (convenience, quality, price) was emphasized. The weekly sales (in bottles) for twenty weeks following the beginning of the campaign were recorded as below. Assume that the dataset is normally distributed.

Summary Output

Groups	Count	Sum	Mean	Variance
Convenience	20	11551	577.55	10775.00
Quality	20	13060	653.00	7238.11
Price	20	12173	608.65	8670.24

ANOVA

Source of Variation	SS	df	MS	F
Among Groups	57512	2	28756	3.23
Within Groups	506984	57	8894	
Total	564496	59		

a) What kind of ANOVA test will be appropriate for the above study? State the required conditions or assumptions for the ANOVA test to be conducted.

[5 marks]

- b) At the 5 percent level of significance, is there evidence of a difference in the mean weekly sales of the new product between three marketing strategies? Conduct an appropriate statistical procedure. [8 marks]
- c) Conduct the Tukey-Kramer post-hoc test to examine which marketing strategies differ in mean weekly sales. Use 10 percent significance level. [12 marks]

End of Paper

STATISTICAL FORMULAE

A. DESCRIPTIVE STATISTICS

Sample Mean =
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 Sample Standard Deviation = $s = \sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n-1} - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n(n-1)}}$

where n = number of observations $X_i = the i^h observation of the data$

B. HYPOTHESIS TESTING

Types of Error

Type I Error = α = P(Rejecting H₀ | H₀ is true) where, Confidence Interval = 1 - α

Type II Error = β = P(Not Rejecting H₀ | H₀ is false)

One Sample Mean Test						
σ Known	σ Unknown					
$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	$t = \frac{\overline{x} - \mu}{\sqrt[S]{\sqrt{n}}}$					

Two Sample Mean Test

Comparing Means for Two Independent Populations

[Standard Deviation (G) Known]

$$z = \frac{\overline{(x_1 - x_2)} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

IStandard Deviation (c) Not Known

$$t = \frac{\overline{(x_1 - x_2)} - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \binom{1}{n_1} + \frac{1}{n_2}}}$$

where
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$$

Two Sample Mean Test

Comparing Means for Two Paired Populations

$$t = \frac{\left(\overline{D} - \mu_D\right)}{S_D / \sqrt{n}} \qquad \text{where } \overline{D} = \frac{\sum_{i=1}^n D_i}{n} \quad \text{and} \quad S_D = \sqrt{\frac{\sum_{i=1}^n D_i^2}{n-1} - \frac{\left(\sum_{i=1}^n D_i\right)^2}{n(n-1)}}$$

Non-Parametric Analysis								
Wilcoxon Rank Sum Test	Wilcoxon Signed Rank Sum Test							
$Z = \frac{\left(T_{\rm i} - \mu_{T_{\rm i}}\right)}{\sigma_{T_{\rm i}}} \qquad \text{where}$	$Z = \frac{\left(T_{+} - \mu_{T_{+}}\right)}{\sigma_{T_{+}}} \qquad \text{where}$							
$\mu_{T1} = \frac{n_1(n+1)}{2} \qquad \text{and} \qquad$	$\mu_{T+} = \frac{n(n+1)}{4} \text{and} $							
$\sigma_{T_1} = \sqrt{\frac{n_1 n_2 (n+1)}{12}}$ where $n = n_1 + n_2$	$\sigma_{T_{+}} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$							

Kruskal-Wallis Rank Test

$$H = \left[\frac{12}{n(n+1)} \sum_{j=1}^{c} \frac{T_j^2}{n_j} \right] - 3(n+1) \text{ where the critical value is } \chi^2 \text{ with } df = c - 1$$

Check ranking sum: $\Sigma T_j = n(n+1)/2$

Chi-Square Test

$$\chi^2 = \sum_{n=0}^{\infty} \frac{(O-E)^2}{E}$$

where O = Frequency of Observed Values

and

E = Frequency of Expected Values

with df = c - 1

where c = number of categories

or

with df = (r-1)(c-1) where r = number of rows and c = number of columns

C. ANALYSIS OF VARIANCE (ANOVA)

One-Way ANOVA								
Source	Degrees of Freedom	Sum of Squares	Mean Squares	F-statistic				
Among Groups	c - 1	SSA	MSA = SSA/c-1	MSA/MSW				
Within Groups	n - c	SSW	MSW = SSW/n-c					
Total	n - 1	SST						

$$SST = \sum_{j=1}^{c} \sum_{i=1}^{n_{j}} \left(X_{ij} - \overline{X} \right)^{2} \text{ or alternative formula:}$$

$$SST = \left(\sum_{j=1}^{c} \sum_{i=1}^{n_{i}} X_{ij}^{2} \right) - \frac{\left(\sum_{j=1}^{c} \sum_{i=1}^{n_{i}} X_{ij} \right)^{2}}{n}$$

$$SSA = \sum_{j=1}^{c} n_{j} \left(\overline{X}_{j} - \overline{X} \right)^{2} \text{ and } SSW = SST - SSA$$

where n = number of observations, c = number of groups and $\overline{X} = overall$ mean

Tukey-Kramer Procedure

Critical Range =
$$Q_U \sqrt{\frac{MSW}{2} \left[\frac{1}{n_i} + \frac{1}{n_j} \right]}$$

where Q_u = the upper tail critical value from a Studentized Range Distribution having (c) degrees of freedom in the numerator and (n-c) degrees of freedom in the denominator at a given level of significance

Two-Way ANOVA							
Source	Degrees of Freedom	Sum of Squares	Mean Squares	F-statistic			
Α	r-1	SSA	MSA = SSA/(r-1)	MSA / MSE			
В	c -1	SSB	MSB = SSB/(c - I)	MSB / MSE			
AB	(r-1)(c-1)	SSAB	MSAB = SSAB/(r-1)(c-1)	MSAB / MSE			
Error	rc (n-1)	SSE	MSE = SSE/rc(n'-1)				
Total	n-1	SST					

where,

Factor A levels are represented by the rows and Factor B levels are represented by the columns and

n = number of observations

c = number of columns

r = number of rows

n' = number of replicates

$$SST = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n'} \left(X_{ijk} - \overline{\overline{X}} \right)^{2} \qquad SSA = cn' \sum_{k=1}^{r} \left(\overline{X}_{i} - \overline{\overline{X}} \right)^{2}$$

$$SSB = rn'\sum_{j=1}^{c} \left(\overline{X}j - \overline{\overline{X}}\right)^2$$
 where $\overline{\overline{X}} = overall\ mean$

$$SSE = (n'-1)[S_1^2 + S_2^2 + \dots + S_k^2]$$
 where S_i^2 = variance of each block

D. REGRESSION ANALYSIS

Multiple Linear Regression

Population Model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$

Sample Model: $y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k + e$

Adjusted R-Square = $1 - \left[\frac{(1-R^2)(n-1)}{(n-p-1)} \right]$ where p = number of independent/predictor variables

ANOVA Table for Regression								
Source	Degrees of Freedom	Sum of Squares	Mean Squares					
Regression	p	SSR	MSR = SSR/p					
Error/Residual	n-p-1	SSE	MSE = SSE/(n-p-1)					
Total	n-1	SST						

Test Statistic for Significance of the Overall Regression Model

F = MSR/MSE

Test Statistic for Significance of Each Predictor Variable

$$t_i = \frac{b_i}{S_{b_i}}$$
 and the critical value = $\pm t_{\alpha/2,(n-p-1)}$

SMZ

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-ht^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = 1 - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

æ 0.00	Φ(±) 0-5000 -5040 -5080	α 0·40	Φ(π)	pe	$\Phi(x)$	<i>3</i> 2	$\Phi(x)$	œ	$\Phi(x)$	20	$\Phi(x)$
	.5040	0.40									
	.5040		o•6554	0-80	0.7881	1.20	0.8849	x-60	0-9452	2:00	0.97725
.oz		'4I	-6591	·8x	.7910	.31	.8869	-61	·9463	·OI	97778
.02		42	6528	-82	7939	.22	-8888	-62	9474	.03	97831
.03	5120	43	-6664	.83	7967	.23	-8907	•63	·9484	.03	97882
.04	5160	44	-6700	·84	7995	'24	8925	-64	.9495	.04	97932
04	3100	77	-,		1,770	•		•			
0.02	0.5199	0.45	0.6736	0.85	o·8ò≥3	1.22	0.8944	r-65	0.9505	2.05	0.97982
-06	5239	46	.6772	-86	·8051	-26	8962	-66	9515	-06	98030
.07	5279	47	·6868	87	-8078	-27	·8980	-67	9525	.07	98077
·08	5319	48	.6844	-88	8106	-28	-8997	·68	9535	801	98124
.09	5359	'49	6879	-89	.8133	*29	9015	-69	'9545	.09	-98169
09	2332	77				-					_
O'TO	0.5398	0.50	0.6915	0.90	0.8159	r-30	0.9032	1.40	0.9554	2.10	0.08214
·XI	.5438	'51	-6950	-91	-8186	~3I	9049	.21	·9564	'II'	-98257
·12	5478	.23	-6985	-92	-8212	-32	9066	.72	9573	.12	-68300
·*3	*5517	.53	.7019	.93	·8238	-33	·9082	.73	-9582	.13	·98341
114	5557	·54	7054	'94	*8264	'34	.0000	'74	.9591	14	-98382
					OQ.	2422	0.0112	x·75	019599	2:15	0.98422
0.12	0.5596	0.22	0.7088	0.95	0.8289	1,32 36	.9131	· 76	.9608	-16	98461
·x6	-5636	·56	7123	-96	8315	37	9147	.77	-9616	.17	-98500
·x7	-5675	·57	7157	197	·8340 ·8365	.38	9162	.78	9625	·18	98537
.18	.5714	-58	7190	-98	·8389	_	9102	.79	9633	'IQ	-98574
.19	5753	.28	7224	.99	.0309	-39	91//	79	9033	-3	2-214
0.30	0.5793	0.60	0.7257	r.00	0.8413	1:40	0.9192	x-80	0-9641	2:20	0.08610
21	5832	·6x	7291	·or	¹843Š	-41	9207	-8x	9649	21	-98645
-22	·5871	.62	7324	.02	·846x	42	9222	-82	·965 6	*22	198679
.23	.5910	-63	7357	.03	8485	:43	.9236	-83	-9664	23	·987x3
.24	.5948	·64	-7389	'04	·8508	44	·9251	∙84	·9671	.24	·98745
	2344		,,,,,	•	•						
0.25	0.5987	0.65	0.7422	1.02	0.8531	1.45	0'9265	1.85	0.9678	2.25	0.98778
26	6026	-66	.7454	.06	·8554	·46	.9279	∙86	.0686	·26	-98809
-27	6064	-67	.7486	.07	·8577	.47	.0292	-87	-9693	'27	·98840
28	6103	-68	.7517	.08	-8599	·48	-9306	-88	-9699	.28	98870
.29	·6141	-69	7549	,00	·8621	149	9319	.89	-9706	·2 9	·98899
					96.4-	7170	0.0222	x-90	0.9713	2-30	0.98928
0.30	0.6179	0.70	0.7580	1.10	0-8643	r.20	0'9332 '9345	.0I	9719	.31	-98956
.31	6217	.71	7611	'II'	-8665 -8686	-51		'92	9725	-32	.98983
-32	6255	.72	7642	12		.52	·9357 ·9379	.93	9723	.33	.33010
.33	16293	'73	.7673	,13	-8708	153	9370	93 194	9738	·34	.99036
'34	•6331	.74	.7704	14	·8729	.54	9302	94	9/30	37	39030
0.35	0.6368	0.75	0.7734	1.15	0.8749	1.55	0.9394	x-95	0.9744	2.35	0.9906x
.36	6406	-76	.7764	.16	-8770	-56	-9406	196	-9750	-36	.99086
37	6443	.77	7794	·17	-8790	57	-9418	-97	9756	'37	.29111
-38	.6480	.78	7823	·18	-8810	.58		.98		.38	'99134
.33	6517	.79	7852	.19	-8830	.59	-944X	.99	9767	*39	.99128
0.40		0.80	0.7881	1.20	0.8849	r-60	0.9452	2.00	0.9772	2.40	0.99180

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

20	$\Phi(x)$	æ	$\Phi(x)$	pc	$\Phi(x)$	×	$\Phi(x)$	20	$\Phi(x)$	30	$\Phi(x)$
2.40	0.99180	2.55	0.99461	2.70	0.99653	2-85	o∙99 7 81	3.00	0-99865	3.15	81099·0
'4 I	*99202	.56	99477	71	199664	-86	99788	·or	-99869	.16	99921
.42	.99224	.57	99492	72	99674	-87	99795	702	199874	-17	199924
· 4 3	*99245	.58	·99506	'73	99683	.88	10866.	-03	-99878	8x.	.99926
.44	199266	.59	199520	.74	·99693	-89	.99807	-04	199882	.19	199929
2.45	0.99286	2.60	0.99534	2.75	0.99702	2.90	0.99813	3.02	0.99886	3.50	0.00031
-46	199305	·6x	199547	.76	199711	'91	·99819	-06	.99889	·21	199934
.47	.09324	62	-99560	-77	99720	.92	.99825	.07	.99893	.22	-99936
·48	199343	•63	199573	.78	199728	.93	·99831	80'	.99896	.23	-99938
'49	· 9 9361	-64	-99585	.79	-99736	.94	-99836	.09	.00000	.24	-99940
2.50	0.99379	2.65	0.99598	2.80	0.99744	2.95	0199841	3.10	0.09903	3.35	0.00042
-51	-99396	-66	•99609	·81	99752	-96	99846	·II	90006	.26	99944
'52	99413	.67	-99621	182	-99760	-97	·99851	·I2	99910	.27	99946
'53	99430	-68	-99632	-83	.99767	.98	99856	·13	.00013	.28	.99948
'54	·99446	·69·	-99643	-84	99774	199	19986z	114	99916	.'29	99950
2.55	0·99461	2.70	0-99653	2.85	0.99781	3.00	0.99865	3-15	0.99918	3.30	0.99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

2-075	3'263 0'9995 3'320 page 6	3.731 0.99990 3.759 0.99991 3.791 0.99992 3.826 0.99993	3.916 0.99995 3.976 0.99996 4.055 0.99997 4.173 0.99999 4.417 1.00000
3.075 0.9990 3.105 0.9991 3.138 0.9992 3.174 0.9993 3.215 0.9994	3 203 0.9995	3 /3 0 9999 I	3 916 0.09996
3.102 0.0001	3 320 0 9996	3.759 0.00002	3.970 0.00007
3.139 0.0005	3'389 0'9996 3'480 0'9997	3.791 0.00003	4.055 0.00008
3'174 grooms	3.480 0.0008	3.826 - 22223	4'173 0'00000
3.212	3.612 0.0008	3.867 0.99994	4:417 - 399999
. 9994	- 0,0000	0.99992	I.00000

When x > 3.3 the formula $x - \Phi(x) \neq \frac{e^{-\frac{1}{2}x^2}}{x\sqrt{2\pi}} \left[1 - \frac{x}{x^2} + \frac{3}{x^4} - \frac{x5}{x^6} + \frac{105}{x^6} \right]$ is very accurate, with relative error less than $945/x^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points $\kappa(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{2\pi}} \int_{x(P)}^{\infty} e^{-\frac{1}{2}t^2} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \ge x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ge x(P)$ is x(P).

P	x(P)	P	x(P)	P	x(P)	P	x(P)	P	x(P)	P	$\alpha(P)$
50	0.0000	5.0	1-6449	3.0	1.8808	2.0	2.0537	1.0	2:3263	o.ro	3.0002
45	0.1222	4.8	1.6646	29	1.8957	r-g	2.0749	0.0	2-3656	0.09	3.1214
40	0.2233	4.6	1.6849	2.8	1.9110	x.8	2.0969	6.0	2.4089	0.08	3-1559
35	0.3823	4'4	1.7060	2.7	1-9268	I. 7	2.1201	0.7	2.4573	0.07	3.1947
30	0.244	4.3	1-7279	2.6	1.9431	x-6	2.1444	0.6	2-5121	0.06	3.2389
25	0.6745	4.0	1-7507	2.5	1.9600	1-5	2-1701	0.2	2.5758	0.05	312905
20	o·8416	3.8	1"7744	2.4	I:9774	1'4	2.1973	0.4	2.6521	0.01	3-7190
15	1.0364	3.6	1-7991	2.3	1.9954	1.3	2.2262	0.3	2.7478	0.002	3-8906
10	1.2816	3.4	1-8250	2.2	2.0141	1.3	2.2571	0.3	2.8782	0.001	4.2649
5	1.6449	3.3	1.8522	2.1	2.0335	r.r	2-2904	0-x	3.0002	0.0005	4.4172

35

TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION

This table gives percentage points $t_p(P)$ defined by the equation

$$\frac{P}{\mathrm{Ioo}} = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{t_{p}(P)}^{\infty} \frac{dt}{(\mathbf{x} + t^{2}/\nu)^{\frac{1}{2}(\nu + 1)}}.$$

Let X_1 and X_2 be independent random variables having a normal distribution with zero mean and unit variance and a χ^0 -distribution with ν degrees of freedom respectively; then $t = X_1/\sqrt{X_2/\nu}$ has Student's t-distribution with ν degrees of freedom, and the probability that $t \ge t_{\nu}(P)$ is P/100. The lower percentage points are given by symmetry as $-t_{\nu}(P)$, and the probability that $|t| \ge t_{\nu}(P)$ is 2P/100.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance. When ν is large interpolation in ν should be harmonic.

							_	-				
P	40	30	25	20	Ig	TO	5	2.2	x	0.2	O.E	0.02
$\mathbf{y} = \mathbf{x}$	0.3249	0.7265	1.0000	1.3764	1-963	3.028	6.314	12.71	31.82	63-66	318-3	.636-6
2	0.2887	0.6172	0.8162	1.0607	r-386	x-886	2.020	4'303	6.965	9.025	22:33	31.60
3	0.5262	0.2844	0.7649	0.9785	1.350	1.638	2.353	3.182	4'541	5.841	10.51	12.02
4	0.2707	0.2686	0.7407	0.9410	1,100	1.233	2-132	2.776	3.747	4-604	7'17.3	8-610
_											_	
5 6	0.5625	0.5594	0.7267	0.9192	1.120	1.476	\$.012	2.21	3.362	4'032	5-89;3	6.869
	0.3648	O`5534	0.7176	0.9057	1-134	1.440	I 943	2.447	3' 14 3	3.707	2,303	5'959
7 8	0.3633	0.2491	0.7111	0,8060	1.110	I'415	1.892	3.362	2.998	3'499	4.78;	5.408
	0.5010	O:5459	0.7064	0.8889	1.108	1.397	1-860	2.306	2 .896	3.322	4.20::	5.04I
9	0.5010	0.2432	0.7027	0.8834	1.100	1.383	1.833	2.363	2.821	3.320	4.29	4.78E
IO	0.2602	0'5415	0-6008	0-8701	1.003	1.372	1.812	2.228	2:764	3-160	4.144	4.587
XX	0.2296	0.5399	0.6974	0.8755	1.088	1.363	1.796	2.201	2.718	3.100	4'02!	4:437
12	0.320	05386	0.6955	0.8726	1.083	x 356	1 782	2.170	2.681	3-055	3.930	4.318
X3	0.2586	0.5375	0.6938	0.8702	1-079	1.350	1.771	2.160	2.650	3.015	3.85:	4.331
14	0.3283	0.2366	0.6924	o-8681	1.076	1'345	x-761	2'145	2.624	2.977	3.787	4'140
				066-			-1 - 1					
15	0*2579	o:5357	0.6913	0.8662	1.074	1.341	1'753	2.131	2.603	2'947	3.435	4.073
z6	0.2576	0.2320	0.6901	0.8647	1.071	1.337	1.746	2.150	2.283	2.921	3.686	4.012
17	0.3573	0.5344	0.6892	0.8633	1.069	1.333	1.240	2.110	2.567	2.898	3.646	3.062
18	0'2571	0.2338	0.6884	0.8620	1.067	1.330	1 734	2.101	2'552	2.878	3.910	3.032
19	0.3200	0'5333	0.6876	0.8610	1.066	1.338	1.729	2.093	2.239	2.861	3.579	3.883
20	0.2567	0'5329	0.6870	0-8600	1.064	1.322	1.725	2.086	2.328	2.845	3.224	3.820
21	0.2566	0.2332	0.6864	0.8201	1.063	1.353	1.721	5,080	3.218	5.831	3'527	3.819
22	0.2564	0.2331	0.6858	0.8583	1.061	1.321	Z. 727	2.074	2.208	5.810	3.202	3'792
23	0.563	0.5317	0.6853	0.8575	z-060	1.319	1714	2.069	2.200	2.802	3.485	3.768
24	0.3263	0.2314	o-6848	0.8260	1.029	1.318	T. Arr	2.064	2.492	2-797	3.467	3'745
. 25	0.3261	0.2313	0.6844	0.8562	1.058	1.316	11708	2.060	2.485	2.787	3.450	3'725
26	0.3260	0.2300	0.6840	0.8557	1.028	1'315	1 706	2.056	2.479	2.779	3.435	3.707
27	0.2520	0.2300	0.6832	0.8521	1.022	1'314	1 703	2.052	2:473	2.771	3.421	3.690
28	0.5228	0.2304	0.6834	0.8246	1.026	1.313	1.701	2'048	2.467	2:763	3.408	3.674
29	0.3557	0.2303	0.6830	0.8542	1.055	1.311	I 699	2.045	2.462	2.756	3-396	3.620
_,	- ,-301				,							
30	0.3220	0.2300	0.6838	0.8538	1.022	1.310	I 697	2.043	2.457	2'750	3.382	3.646
32	0'2555	0.5297	0.6822	0.8530	1.024	1.300	1.694	2.037	2:449	2.738	3.362	3.622
34	0.2553	0.2294	0.6818	0.8523	1.022	1.302	1 691	2.032	2.441	2.728	3.348	3,601
36	0.2552	0.231	0.6814	0.8517	1.022	1.300	1,688	2.028	2'434	2.410	3.333	3.282
38	0.5221	0.2288	0.6810	0.8512	1.021	1.304	1-686	2.024	2:429	2.413	3.319	3.266
40	0.2550	0.5286	0.6807	0.8507	1-050	1.303	1 ¹ 684	2.031	2'423	2.704	3'307	3.221
50	0.2547	0.2208	0.6794	0.8489	1.047	1.200	1 676	2.000	2.403	2 678		
60		0'5272	0.6786	0.8477	1.042	1.296	1:671	2.000	2.300	2.660	-	
120	0.2545	0.252	0.0765	0.8446	1.041	1.580	1 658	x-980	2'358	2.617		
140	0.5233	0.2220	Q 0/05	0 0440	4-				~ 23+		•	5 440
00	0.2533	0.5244	0.6745	0.8416	z-036	1-282	r 645	1.060	2 ·326	2.576	3.000	3.291

TABLE 12(a). 10 PER CENT POINTS OF THE F-DISTRIBUTION

The function tabulated is $F(P) = F(P|\nu_1, \nu_2)$ defined by the equation

$$\frac{P}{100} \approx \frac{\Gamma(\frac{1}{2}\nu_1 + \frac{1}{2}\nu_2)}{\Gamma(\frac{1}{2}\nu_1) \; \Gamma(\frac{1}{2}\nu_2)} \; \nu_1^{\frac{1}{2}\nu_1} \; \nu_2^{\frac{1}{2}\nu_2} \; \int_{F(P)}^{\infty} \frac{F^{\frac{1}{2}\nu_1 - 1}}{(\nu_2 + \nu_1 F)^{\frac{1}{2}(\nu_1 + \nu_2)}} dF,$$

for P = 10, 5, 2.5, 1, 0.5 and 0.1. The lower percentage points, that is the values $F'(P) = F'(P|\nu_1, \nu_2)$ such that the probability that $F \leq F'(P)$ is equal to P/100, may be found by the formula

$$F'(P|\nu_1,\,\nu_2)\,=\,{\rm i}\,/F(P|\nu_2,\,\nu_1).$$

(This shape applies only when $v_1 \geqslant 3$. When $v_1 < 3$ the mode is at the origin.)

$\nu_1 =$	I	2	3	4	5	6	7	8	10	12	24	00
$\nu_{a} = x$		49-50	53:59	55.83	57:24	58-20	58·91	59.44	60.19	60-71	62.00	60.00
2	8.526	6.000	9.162	9'243	9.293	9:326	9'349	9.367	9:392	9.408		63.33
3	5.238	5.462	2.391	5'343	5:300	5.285	5.266	5.52			9:450	9'491
4	4.242	4.322	4.101	4.107	4.051	4.010	3.979	3.955	5'230	3.896 3.896	5.176	5.134
				,,	7 -5-	7	3 9/9	3 755	3.920	3.000	3.831	3-761
5	4.060	3.780	3.610	3:520	3'453	3:405	3.368	01000		449		
6	3.776	3.463	3.380	3,181	3.108	3.022	3.014	3.333	3'297	3.268	3.101	3.102
7	3.280	3'257	3'074	2.001	2.883	2.827	2.785		2.937.	2.905	2·818	2.722
8	3:458	3.113	2.924	2.806	2.726	2.668		2.752	2'703	2.668	2.575	2:471
9	3.360	3.006	2.813	2.693	2.611	2.251	2.624	2.289	2.238	2.203	2.404	2.563
-				- 493	2011	2.221	2.202	2:469	2.419	2.379	2.277	2.120
IO	3-285	2.924	2.728	2.605	2.22	2-461						
II	3-225	2.860	2.660	2.236	2'451	2.389	2.414	2:377	2:323	2:284	2.178	2.022
12	3'177	2.807	2.606	2:480			2'342	2.304	2.248	2'209	2.100	1'972
13	3.136	2.763	2.260	2'434	2:394	2'331	2.583	2.242	2.188	2.142	2.036	1:904
14	3,105	2.726	2.25		2.347	2.283	2.234	2.102	2.138	2.002	1.983	I-846
	5	- /	- 3	2.395	2:307	2.243	3.103	2.124	2.002	2.024	1.938	I:797
15	3.073	2,695	2.490	2.361								
z 6	3.048	2.668	2.462	_	2.273	2.208	2.128	3,110	3.020	2.014	1.899	I:755
17	3.036	2.645	•	2.333	2.244	2.178	2.178	2.088	2.058	1.982	1-866	1'718
18	3.002	2.624	2:437	2.308	2.218	2.125	2,103	2.061	2.001	1.958	1.836	1.686
10	2.000	2.606	2.416	2.286	2.196	2.130	2.020	3.03 8	1.977	1.033	1.810	1.657
-9	2 990	2.000	2.397	2.266	2.176	2.100	2.028	2.017	1.956	1'912	1.787	1.631
20	2.975	2:589	2.380									•
21	2.961		-	2.249	2.128	2.001	2.040	1.000	1.937	1.892	1.767	1.607
22	2 949	. 2°575 2°561	2:365	2.233	2.142	2.075	2.053	1.982	1.920	1.875	1.748	1.586
23	2.032	_	2.321	2.210	2.138	2.000	2.008	1.967	1.004	1.859	1.731	1.567
94		2.249	2,339	2.207	2.112	2.047	1.995	1.953	1.800	1.845	1.716	1.540
	2.027	2.238	2:327	2.195	2.103	2.032	1.083	1.941	1.877	1.832	1.702	1.533
25	2.918	4.440									•	- 000
26	-	2-528	2.317	2.184	5.003	2.034	1.971	1.929	z·866	1.820	1.680	1.218
	2.909	2'519	2.307	2'174	2.082	2.014	1.061	1.919	1.855	1.800	1.677	1.504
27 28	2:90I 2:894	2.211	2.299	2.102	2.073	2.002	1.952	1.000	1.845	1.799	x-666	1.491
		2.203	2.201	2.124	2.004	1.696	1'943	1,000	1.836	1.790	1.656	1.478
29	2.887	2.495	5.583	2'149	2.057	1.088	1.935	1.892	1.827	1.781	1.647	1.467
	2.881	0.							•	•		- 4-7
30		2.489	2.276	2.142	2.040	1.080	1.927	1.884	1.810	1.773	1.638	I-456
32	2.869	2.477	2.263	2.130	2.036	1.967	1.013	1.870	1.805	1.758	1.622	I·437
34	2.859	2.466	2.52	2.118	2.024	1.955	I.GOI	I 858	I:793	1.745	1.008	1.410
36 -8	2.850	2.456	2.243	2.108	2.014	1.942	1.891	1.847	1.781	1'734	1.202	1.404
38	2.842	2.448	2.534	2.000	2.002	1.932	1.881	1.838	1.772	1.724	1.284	
	•				-				- //-	- /	* 204	1.300
40	2.835	2.440	2.226	2.001	1-997	1.927	1.873	1.820	1.763	1.715	1.574	TIONS
60	2.791	2.303	2.177	2.041	1.046	1.875	1.819	1.775	1.707	1-657	1.214	1:377
120	2.748	2:347	2,130	1'992	z-896	1.824	x·767	1.722	1.652	1.601	_	1.501
80	2.706	2.303	2.084	1.945	1.847	1.774	エ・フェフ	1.670	1.200	_	1.447	1.103
					• • • • • • • • • • • • • • • • • • • •		- /-/	- 0/0	- 277	1'546	1.383	1,000

TABLE 12(b). 5 PER CENT POINTS OF THE F-DISTRIBUTION

If $F = \frac{X_1}{\nu_1} / \frac{X_2}{\nu_2}$, where X_1 and X_2 are independent random variables distributed as χ^2 with ν_1 and ν_2 degrees of freedom respectively, then the probabilities that $F \geqslant F(P)$ and that $F \leqslant F'(P)$ are both equal to P/100. Linear interpolation in ν_1 and ν_2 will generally be sufficiently accurate except when either $\nu_1 > 12$ or $\nu_2 > 40$, when harmonic interpolation should be used.

(This shape applies only when $\nu_1 \geqslant 3$. When $\nu_1 < 3$ the mode is at the origin.)

$\nu_1 =$	r	2	3	4	5	6	7	8	ro	12	24	90
$\nu_{a} = x$	161.4	199.5	215.7	224.6	230.3	234.0	236.8	238.9	241'9	243'9	249'I	254.3
2,	18-51	19.00	19.16	19:25	19.30	19.33	19.35	19:37	19.40	19.41	19:45	19.50
3	10.13	9.552	9.277	9.117	0.013	8.941	8.887	8-845	8.786	8.745	8.639	8.526
4	7.709	6.944	6.291	6.388	6-256	6.163	6.094	6.041	5.964	5.012	5.774	5-628
5	6-608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.735	4.678	4:527	4.362
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4'747	4.060	4.000	3.841	3.669
7	2.201	4.737	4.347	4'120	3.972	3.866	3.787	3.726	3.637	3.575	3.410	3'230
8	2.318	4.459	4.066	3.838	3.687	3.28I	3.200	3.438	3:347	3:284	3.112	2.028
9	5-117	4.256	3.863	3.633	3.482	3*374	3.293	3.230	3.137	3.073	2.000	2:707
IO	4.965	4.103	3.708	3.478	3.326	3.217	3.132	3.072	2.978	2.013	2.737	2.538
II	4.844	3.085	3.282	3.357	3.204	3.095	3.012	2.948	2.854	2-788	2.600	2.404
12	4.747	3.885	3.400	3.259	3.100	2-996	2.913	2.849	2.753	2.687	2.505	2.296
13	4.667	3.806	3.411	3-179	3.022	2.915	2.832	2.767	2.671	2.604	2.420	2.206
14	4.600	3'739	3.344	3.113	2.958	2.848	2.764	2.699	2.602	2.534	2.349	2.131
15	4.243	3.682	3.287	3.026	2.901	2.790	2.707	2.641	2.544	2.475	21288	2.066
16	4.494	3.634	3:239	3.002	2-852	2.741	2.657	2.201	2.494	2.425	2.235	2.010
17	4.421	3.292	3.192	2.965	2.810	2.699	2.614	2.548	2.450	2.381	2.100	1.060
x8	4.414	3.222	3-160	2.928	2.773	2.661	2.577	2.210	2.412	2.342	2.120	1.017
19	4 <u>·3</u> 81	3.22	3.122	2.895	2.740	2.628	2.244	2.477	2.378	2.308	2.114	1.878
20	4.351	3 493	3.098	2.866	2.711	2.200	2.214	2.447	2.348	2.278	2.082	1.843
21	4.322	3.467	3.02	2.840	2.685	2.573	2.488	2.420	2.321	2.250	2.054	1.812
22	4.301	3*443	3.040	2.817	2.661	2-549	2.464	2:397	2.297	2.226	2.028	1.783
23	4.279	3.422	3-028	2.796	2.640	2.228	2.442	2.375	2.275	2.304	2.002	1-757
24	4.260	3.403	3.000	2.776	2.621	2-508	2.423	2.355	3.322	3.183	1.984	1.733
25	4'242	3 385	2.991	2.759	2.603	2.490	2.405	2.337	2.236	2.165	1.964	1-711
26	4.55	3.360	2.975	2.743	2.282	2:474	3.388	2.321	2.330	2-148	1.946	1-691
27	4.510	3.354	- 2-960	2.728	2.572	2.459	2:373	2.302	2.204	2.132	1,030	1.672
28	4.196	3.340	2.947	2.714	2.558	2.445	2:359	2.531	2.130	2.118	1.012	1.654
29	4-183	3:328	2.934	2.701	2.242	2.432	2.346	2.278	2.177	2.104	1.001	x·638
30	4.171	3.3xe	2-922	2-690	2*534	2.421	2.334	2.266	2.162	2.002	1.887	1.622
32	4.149	3.502	2.001	2.668	2.215	2.300	2.313	2-244	2.142	2.070	1.864	1.594
34	4-130	3.276	2.883	2.650	2.494	s.380	2.294	2.222	2-123	2.020	1.843	1.569
36	4.113	3.559	2.866	2.634	2.477	2.364	2.277	2-209	2-106	2.033	1.824	. I.547
38	4.098	3*245	2.852	2.619	2.463	2.349	2.565	2.194	5.001	2.012	x-808	1.527
40	4.085	3.535	2.839	2.606	2.449	2-336	2.249	3.180	2.077	2.003	1.793	1.509
60	4.001	3.120	2.758	2.222	2.368	2.254	2.167	2.097	1.993	1.917	1.700	1.389
120	3.020	3.072	2.680	2.447	3.300	2.172	2.087	5.019	1.010	1.834	1.608	1.254
90	3-841	2.996	2.605	2.372	2.214	2.099	2.010	1.938	1.831	1.752	1.217	1.000

TABLE 8. PERCENTAGE POINTS OF THE x²-DISTRIBUTION

This table gives percentage points $\chi^2_{\nu}(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} \int_{\chi_p^2(P)}^{\infty} x^{\frac{1}{2}\nu - 1} e^{-\frac{1}{2}x} dx.$$

If X is a variable distributed as χ^{1} with ν degrees of freedom, P/100 is the probability that $X \ge \chi^{2}_{\nu}(P)$. For $\nu > \text{100}$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu-1}$ and unit variance.

(The above shape applies for $\nu \gg 3$ only. When $\nu < 3$ the mode is at the origin.)

P	50	40	30	20	10	5	2.5	I	0.2	O.I	0.02
$\nu = r$	0.4549	0.7083	1.074	1.642	2.706	3.841	5.024	6.635	7.879	10.83	12.12
2	1.386	1.833	2.408	3-219	4.605	2,661	7:378	9.210	10.60	13.82	15.20
3	2.366	2.946	3.665	4-642	6.251	7.815	9.348	11.34	12.84	16.27	17.73
4	3.357	4.045	4.878	5.989	7.779	9.488	11.14	13.28	14-86	18.47	20.00
5 6	4.32x	5.132	6.064	7:289	9:236	11.07	12.83	15.09	16.75	20.52	22.11
	5 348	6.211	7.231	8.558	10.64	12.29	14.45	16.81	18.22	22.46	24.10
7 8	6.346	7.283	8.383	6.803	12.03	14.07	16.01	18.48	20.58	24.32	26.02
	7 344	8.351	9.524	11.03	13.36	12.21	17:53	20.09	21.95	26.12	27.87
9	8.343	9.414	10.66	12.24	14.68	16.92	19.02	21.67	23.59	27.88	29.67
ZO	9.342	10'47	11.78	13.44	15.00	18.31	20.48	23.21	25.10	29:59	31.42
11	10.34	11.23	12.00	14.63	17.28	19.68	21.92	24.72	26.76	31.20	33'14
12	11.34	12.28	14.01	15.81	18.22	21.03	23:34	26.22	28.30	32.91	34.82
13	12.34	13.64	15.12	16.98	19.81	22.36	24.74	27:69	29-82	34.23	36.48
14	13'34	14-69	16.33	18-15	21.06	23.68	26.13	29.14	31.33	36.13	38.11
15	14.34	15.73	17:32	19.31	22.31	25.00	27:49	30.28	32.80	37.70	39.72
16	15-34	16.78	18.43	20.47	23.24	26 30	28.85	32.00	34.27	39'25	41.31
17	16.34	17.82	19.21	21.91	24.77	27.59	30.10	33.4I	35.72	49.79	42.88
18	17:34	18.87	20-60	22.76	25.99	28-87	31.23	34.81	37.16	42.31	44.43
19	18.34	19-91	21.69	23.90	27.20	30.14	32.85	36.19	38.28	43.82	45 97
20	19.34	20.95	22.77	25.04	28.41	31-41	34.17	37.57	40.00	45'3I	47.50
21	20.34	21.99	23.86	26.17	29.62	32.67	35.48	38.93	41.40	46 80	49.01
22	21.34	23.03	24.04	27.30	-	33.92	36.78	40-29	42 80	48.27	50-21
23	22.34	24.07	26.03	28.43	32.01	35-17	38.08	41.64	44 18	49.73	52.00
24	23.34	25.11	27.10	29*55	33.30	36-42	39.36	42.98	45.26	21.18	53.48
25	24.34	26.14	28.17	ვი-68	34:38	37.65	40.65	44.31	46.93	52-62	54.95
26	25.34	27.18	29.25	31.79	35.26	38-89	41.92	45.64	48.29	54.05	56.41
27	26.34	28-21	30.33	32.01	36.74	40·II	43.19	46 96	49.64	55:48	57.86
28	27.34	29:25	31.30	34.03	37.92	41.34	44.46	48.28	20.00	56.89	59.30
29	28•34	30.58	32.46	35.14	39.09	42.26	45'72	49.59	52.34	58.30	60.73
30	29:34	31.32	33.23	36.25	40.26	43.77	46.98	50.89	53-67	59.70	62.16
32	31.34	33.38	35.66	38-47	42.58	46.19	49.48	53:49	56.33	62.49	65.00
34	33.34	35'44	37.80	40.68	44.00	48.60	51.97	56.06	58-96	65.25	67.80
36	35.34	37.50	39.92	42.88	47.21	\$1.00	54.44	58.62	6 1-5 8	67.99	70.59
38	37°34	39.26	42.05	45.08	49.21	53.38	56-90	61.16	64-18	70.70	73.35
40	39.34	41.62	44-16	47:27	51·81	55.76	59:34	63-69	66.77	73.40	76.09
50	49.33	2x.80	54.72	58.16	63-17	67.50	71.42	76-15	79.49	86.66	89-56
60	59.33	62.13	65.23	68-97	74.40	79.08	83-30	88-38	9x-95	99·61	102.7
70	69.33	72.36	75.69	79.71	85.23	90.23	95.02	100.4	104.2	112.3	115.6
80	79.33	82.57	86-12	90.41	96-58	101.0	106.6	112.3	116.3	124.8	128.3
90	89.33	92:76	96.52	101.1	107.6	113.1	118-1	124'1	128.3	137.2	140.8
100	99.33	102.9	106.9	111.7	118.5	124.3	129.6	135-8	140.3	149.4	153.5

Denominator									N	umerate	or	
df	2	3	4	5	6	7	8	9	10	11	12	13
1	8.93	13.44	16.36	18.49	20.15	21.50	22.64	23.62	24.48	25.24	25.92	26.
2	4.13	5.73	6.77	7.54	8.14	8.63	9.05	9.41	9.73	10.01	10.26	10.
3	3.33	4.47	5.20	5.74	6.16	6.51	6.81	7.06	7.29	7.49	7.67	7.8
4	3.02	3.98	4.59	5.04	5.39	5.68	5.93	6.14	6.33	6.49	6.65	6.7
5	2.85	3.72	4.26	4.66	4.98	5.24	5.46	5.65	5.82	5.97	6.10	6.2
6	2.75	3.56	4.07	4.44	4.73	4.97	5.17	5.34	5.50	5.64	5.76	5.
7	2.68	3.45	3.93	4.28	4.56	4.78	4.97	5.14	5.28	5.41	5.53	5.6
8	2.63	3.37	3.83	4.17	4.43	4.65	4.83	4.99	5.13	5.25	5.36	5.4
9	2.59	3.32	3.76	4.08	4.34	4.55	4.72	4.87	5.01	5.13	5.23	5.
10	2.56	3.27	3.70	4.02	4.26	4.47	4.64	4.78	4.91	5.03	5.13	5.
11	2.54	3.23	3.66	3.97	4.21	4.40	4.57	4.71	4.84	4.95	5.05	5.
12	2.52	3.20	3.62	3.92	4.16	4.35	4.51	4.65	4.78	4.89	4.99	5.
13	2.50	3.18	3.59	3.89	4.12	4.30	4.46	4.60	4.72	4.83	4.93	5,
14	2.49	3.16	3.56	3.85	4.08	4.27	4.42	4.56	4.68	4.79	4.88	4.
15	2.48	3.14	3.54	3.83	4.05	4.24	4.39	4.52	4.64	4.75	4.84	4.
16	2.47	3.12	3.52	3.80	4.03	4.21	4.36	4.49	4.61	4.71	4.81	4.
17	2.46	3.11	3.50	3.78	4.00	4.18	4.33	4.46	4.58	4.68	4.77	4.
18	2.45	3.10	3.49	3.77	3.98	4.16	4.31	4.44	4.55	4.65	4.75	4.
19	2.45	3.09	3.47	3.75	3.97	4.14	4.29	4.42	4.53	4.63	4.72	4.
20	2.44	3.08	3.46	3.74	3.95	4.12	4.27	4.40	4.51	4.61	4.70	4.
21	2.43	3.07	3.45	3.72	3	4.11	4.26	4.38	4.49	4.59	4.68	4
22	2.43	3.06	3.44	3.71	3.92	4.10	4.24	4.36	4.47	4.57	4.66	4
23	2.42	3.05	3.43	3.70	3.91	4.08	4.23	4.35	4.46	4.56	4.64	4.
24	2.42	3.05	3.42	3.69	3.90	4.07	4.21	4.34	4.45	4.54	4.63	4.
25	2.42	3.04	3.42	3.68	3.89	4.06	4.20	4.32	4.43	4.53	4.61	4.
26	2.41	3.04	3.41	3.68	3.88	4.05	4.19	4.31	4.42	4.52	4.60	4.
27	2.41	3.03	3.40	3.67	3.87	4.04	4.18	4.30	4.41	4.50	4.59	4.
28	2.41	3.03	3.40	3.66	3.87	4.03	4.17	4.29	4.40	4.49	4.58	4.
29	2.40	3.02	3.39	3.65	3.86	4.02	4.16	4.28	4.39	4.48	4.57	4.
30	2.40	3.02	3.39	3.65	3.85	4.02	4.16	4.28	4.38	4.47	4.56	4.
40	2.38	2.99	3.35	3.61	3.80	3.96	4.10	4.22	4.32	4.41	4.49	4.
60	2.36	2.96	3.31	3.56	3.76	3.91	4.04	4.16	4.25	4.34	4.42	4.
80	2.35	2.95	3.29	3.54	3.73	3.89	4.01	4.13	4.22	4,31	4.39	4.
120	2.34	2.93	3.28	3.52	3.71	3.86	3.99	4.10	4.19	4.28	4.35	4.
240	2.34	2.92	3.26	3.50	3.68	3.83	3.96	4.07	4.16	4.24	4.32	4.
∞	2.33	2.90	3.24	3.48	3.66	3.81	3.93	4.04	4.13	4.21	4.29	4.

SMZ

