GBIF in the cloud workshop framework

Aims

This document aims to describe the EBRII Platform workshop for the participants, explaining what we try to achieve and what they will do during the workshop. This workshop contains a small data part and a big data part accessing GBIF occurrences <u>snapshots in the cloud</u>.

Part I: Small Data

Introduction

During the morning session, you will use Jupyter Lab Framework to explore the specimens data of Ghent University (see https://doi.org/10.15468/dl.axpas3)

SD-Ex0

Aims

To download data for the Small Data exercises.

Steps

- Login to GBIF.org
- Select occurrences with
 - o basisOfRecord='preserved specimen'
 - dataPublisher= 'Ghent University'
- Download data in simple CSV format
- Explore the DarwinCore fields

Questions

1. What records would you exclude? Why?

Python Exercises

SDP-Ex1

Aims

Participants will get acquainted with Jupyter Lab, Python and Pandas data frame.

Pre-requisites

1. SD-EX0 finished

- 2. Have access to JupyterLab
- 3. Create your own Jupyter notebook

Steps

- Load CSV into a panda dataframe
- Subset some columns 'gbifID', 'individualCount','countryCode', 'year', 'class', 'speciesKey'
- Drop rows with null values
- Save this dataframe in a EX1.CSV file
- Describe the resulting data

Questions

- 1. How many rows do you have in the original file?
- 2. How many rows remain after dropping null values?

SDP-Ex2

Aims

Participants will do simple manipulations on Pandas data frame.

Pre-requisites

1. SDP-EX1 finished

Steps

- Load EX1.csv into panda dataframe
- Group data by class
- Group data by countryCode
- Group data by year
- Create a dataframe with all Belgian Insecta specimens, discard the others
- Describe the resulting data

Questions

- 1. How many rows do you have for class Insecta?
- 2. How many rows do you have for Belgium?
- 3. How many rows do you have for 1961?
- 4. How many Belgian Insecta in the 1960's rows do you have?

SDP-Ex3

Aims

Participants will create a data cube with 3 dimensions: taxonomy, geography and time.

Pre-requisites

1. SDP-EX2 finished

Steps

- Load EX1.csv into panda dataframe
- Add a 'decade' field
- Count the number of records, numbers of specimens and species for this cell : Insecta, Belgium, 1960s
- Create a 3D data frame based on
 - Taxonomy by class
 - Geography by countryCode
 - o Time by decade
- In addition to these fields, each cell of your cube will contain:
 - Number of records (count(*))
 - Number of specimens (sum of 'individual count')
 - Number of species (distinct (species_key))
- Save your data cube in EX3.csv file

Questions

Inspect three cells of your data cube:

- A (Aves, Belgium, 1950s)
- B (Insecta, Belgium, 1900s)
- C (Insecta, Belgium, 1950s)

For each cell, answer the following questions:

- 1. How many records do you have in these cells?
- 2. How many specimens do you have in these cells?
- 3. How many species do you have in these cells?

SDP-Ex4

Aims

Participants will combine their data cube with countries information

Pre-requisites

1. SDP-EX3 finished

Steps

- Load your Data Cube(EX3.csv) in a dataframe
- Filter the Insecta cells, discard the others
- Load Countries.csv in a dataframe
- Join the two dataframe on countryCode add country region and sub-region
- Save your results in EX4.csv file

Questions

1. How many non empty cells do you have?

SDP-Ex5

Aims

Participants will use their data cube to plot specimens provenance over time per continent and subregion.

Pre-requisites

1. SDP-EX4 finished

Steps

- Goto RawGraphs website
- Load your enriched Data Cube(EX4.csv)
- Plot specimens provenance over time per region and sub-region

Questions

- Are there differences between the regions?
- Are there gaps in time(decade) or geography(country, region, sub-region?
- Which regions/subregions offer the highest biodiversity(number of species)?
- Where would you recommend to collect specimens today?

Useful links

Getting started with pandas

Data Wrangling with pandas Cheat Sheet
RawGraphs

Further readings

The easiest way to plot data from Pandas on a world map An intro to Python GIS

SQL Exercises

If time allows, re-implement the python exercises SDP-Ex1 - SDP-Ex4 in SQL.

Part II: Big Data

Introduction

During the afternoon session, you will use Databricks Framework to explore all specimens data available on GBIF.org

Exercices

BD-Ex0

- Get your Databricks account ready, connect to BigData workspace.
- Connect to <u>Databricks Workspace</u>

SQL Exercises

BDS-Ex1

Aims

Participants will get acquainted with Databricks.

Pre-requisites

- 1. BD-EX0 finished
- 2. Have access to Databricks

Steps

- Create a new notebook
- Discover the default.occurrence 20220601 table
- Create a view on preserved specimen records with year, class and countryCode not null
- Explore further the data

Questions

- How many occurrences are recorded in the GBIF snapshot?
- How many specimens are recorded?
- How many specimens are recorded with year, class and countryCode?
- What other records would you exclude from your analysis? Why? See individualCount, decimalLat/long, speciesKey, issues...

BDS-Ex2

Aims

Participants to discover GBIF mediated specimens data.

Pre-requisites

- 1. BD-EX1 finished
- 2. Have access to Datrabricks

Steps

- Create a table on specimen records with year, class and countryCode not null
- Subset some columns 'gbifID', 'individualCount','countryCode', 'year', 'class', 'speciesKey'
- Drop rows with null values
- Describe the resulting data

Questions

- Which 'class' has more specimens records?
- Which 'class' has more distinct species of specimens?
- Which 'class' has more individual specimens?

BDS-Ex3

Aims

Participants will create a data cube with 3 dimensions: taxonomy, geography and time.

Pre-requisites

1. BDS-EX2 finished

Steps

- Create a DataCube view based on
 - Taxonomy by class
 - Geography by countryCode
 - o Time by decade
- In addition to these fields, each cell of your cube will contain:
 - Number of records (count(*))
 - Number of specimens (sum of 'individual count')
 - Number of species (distinct (species_key))

Questions

Inspect three cells of your data cube:

• A (Aves, Australia, 1920s)

- B (Insecta, Australia, 1900s)
- C (Insecta, Australia, 1950s)

For each cell, answer the following questions:

- 1. How many records do you have in these cells?
- 2. How many specimens do you have in these cells?
- 3. How many species do you have in these cells?

BDS-Ex4

Aims

Participants will combine their data cube with countries information

Pre-requisites

1. BDS-EX3 finished

Steps

- Explore your datacube table
- Explore Countries table
- Join the two on countryCode, add country's region and sub-region
- Select the class you want to analyse
- Export your datacube for that class in a CSV file (EX4.csv)

Questions

- 1. Which region, subregion have the most records of your class?
- 2. Which region, subregion have the most specimens of your class?
- 3. Which region, subregion have the most species of your class?

BDS-Ex5

Aims

Participants will use their data cube to plot specimens provenance over time per continent and subregion.

Pre-requisites

1. BDS-EX4 finished

Steps

- Goto RawGraphs website
- Load your enriched Data Cube(EX4.csv)
- Plot specimens provenance over time per region and sub-region
 - Number of records

- o Number of specimens
- o Number of species

Questions

- Are there differences between the regions?
- Are there gaps in time(decade) or geography(country, region, sub-region?
- Which regions/subregions offer the highest biodiversity(number of species)?
- Where would you recommend to collect specimens today?

Useful links

Azure Databricks documentation

Quickstart: run and visualize a query

RawGraphs

Participants survey

Please fill this <u>short survey</u> regarding the workshop. Answers are anonymous and it should not take more than 5 minutes!