A Simple Visual ML Experiment (2/2)

Model 1

- $f(\underline{x}) = +1$ when \underline{x} has an axis of symmetry
- $f(\underline{x}) = -1$ when \underline{x} is not symmetric
- The test set is symmetrical $\implies f(\underline{x}_0) = +1$

Model 2

- $f(\underline{x}) = +1$ when the top left square \underline{x} is empty
- $f(\underline{x}) = -1$ when the top left square \underline{x} is full
- The test set has top left square full $\implies f(\mathbf{x}_0) = -1$
- Many functions fit the 6 training examples
 - ullet Some have a value of -1 on the test point, others +1
 - Which one is it?
- How can a limited data set reveal enough information to define the entire target function?
 - Is machine learning possible?

Is Machine Learning Possible?

- The function can assume any value outside data
 - E.g., with summer temperature data, the function could assume a different value for winter
- How to learn an unknown function?
 - Estimating at unseen points seems impossible in general
 - · Requires assumptions or models about behavior
- Difference between:
 - Possible
 - No knowledge of the unknown function
 - E.g., could be linear, quadratic, or sine wave outside known data
 - Probable
 - Some knowledge of the unknown function from domain knowledge or historical data patterns
 - E.g., if historical weather data forms a sinusoidal pattern, unknown points likely follow that pattern

Supervised Learning: Bin Analogy (1/2)

- Consider a bin with red and green marbles
 - We want to estimate $Pr(pick \ a \ red \ marble) = \mu$ where the value of μ is unknown
 - We pick N marbles independently with replacement
 - ullet The fraction of red marbles is u

- Does ν say anything about μ ?
 - "No"
 - In strict terms, we don't know anything about the marbles we didn't pick
 - The sample can be mostly green, while the bin is mostly red
 - This is possible, but not probable
 - "Yes"
 - Under certain conditions, the sample frequency is close to the real frequency
- Possible vs probable
 - It is possible that we don't know anything about the marbles in the bin
 - It is probable that we know something
 - Hoeffding inequality makes this intuition formal

Hoeffding Inequality

- ullet Consider a Bernoulli random variable X with probability of success μ
- Estimate the mean μ using N samples with $\nu = \frac{1}{N} \sum_{i} X_{i}$
- The probably approximately correct (PAC) statement holds:

$$\Pr(|\nu - \mu| > \varepsilon) \le \frac{2}{e^{2\varepsilon^2 N}}$$

Remarks:

- Valid for all N and ε , not an asymptotic result
- Holds only if you sample ν and μ at random and in the same way
- If N increases, it is exponentially small that ν will deviate from μ by more than ε
- The bound does not depend on μ
- Trade-off between N, ε , and the bound:
 - Smaller ε requires larger N for the same probability bound
 - Since $\nu \in [\mu \varepsilon, \mu + \varepsilon]$, you want small ε with a large probability
- It is a statement about ν and not μ although you use it to state something about ν (like for a confidence interval)

Supervised Learning: Bin Analogy (2/2)

- Let's connect the bin analogy, Hoeffding inequality, and feasibility of machine learning
 - You know f(x) at points $x \in \mathcal{X}$
 - You choose an hypothesis $h: \mathcal{X} \to \mathcal{Y} = \{0, 1\}$
 - Each point $\underline{\textbf{\textit{x}}} \in \mathcal{X}$ is a marble
 - You color red if the hypothesis is correct $h(\underline{x}) = f(\underline{x})$, green otherwise
 - The in-sample error $E_{in}(h)$ corresponds to ν
 - The marbles of unknown color corresponds to $E_{out}(h) = \mu$
 - $\underline{x}_1, ..., \underline{x}_n$ are picked randomly and independently from a distribution over \mathcal{X} which is the same as for E_{out}
- Hoeffding inequality holds and bounds the error going from in-sample to out-of-sample

$$\Pr(|E_{in} - E_{out}| > \varepsilon) \le c$$

- Generalization over unknown points (i.e., marbles) is possible
- Machine learning is possible!

Validation vs Learning: Bin Analogy

- You have learned that for a given h, in-sample performance $E_{in}(h) = \nu$ needs to be close to out-of-sample performance $E_{out}(h) = \mu$
 - This is the validation setup, after you have already learned a model
- In a **learning setup** you have *h* to choose from *M* hypotheses
 - You need a bound on the out-of-sample performance of the chosen hypothesis $h \in \mathcal{H}$, regardless of which hypothesis you choose
 - You need a Hoeffding counterpart for the case of choosing from multiple hypotheses

$$\begin{split} \forall g \in \mathcal{H} &= \{h_1, ..., h_M\} \; \Pr(|E_{in}(g) - E_{out}(g)| > \varepsilon) \\ &\leq \Pr(\bigcup_{i=1}^{M} (|E_{in}(h_i) - E_{out}(h_i)| > \varepsilon)) \\ &\leq \sum_{i=1}^{M} \Pr(|E_{in}(h_i) - E_{out}(h_i)| > \varepsilon) \qquad \text{(by the union bound)} \\ &\leq 2M \exp(-2\varepsilon^2 N) \qquad \text{(by Hoeffding)} \end{split}$$

Problem: the bound is weak

Validation vs Learning: Coin Analogy

- In a validation set-up, you have a coin and want to determine if it is fair
- Assume the coin is unbiased: $\mu = 0.5$
- Toss the coin 10 times
- How likely is that you get 10 heads (i.e., the coin looks biased $\nu = 0$)?

Pr(coin shows
$$\nu = 0$$
) = $1/2^{10} = 1/1024 \approx 0.1\%$

• Conclusion: the probability that the out-of-sample performance ($\nu=0.0$) is completely different from the in-sample perf ($\mu=0.5$) is very low

Validation vs Learning: Coin Analogy

- In a learning set-up, you have many coins and you need to choose one and determine if it's fair
- If you have 1000 fair coins, how likely is it that at least one appears totally biased using 10 experiments?
 - I.e., out-of-sample performance is completely different from in-sample performance

Pr(at least one coin has
$$\nu=0)=1$$
 — Pr(all coins have $\nu\neq 0$)
$$=1-\left(\text{Pr(a coin has }\nu\neq 0)\right)^{10}$$

$$=1-\left(1-\text{Pr(a coin has }\nu=0)\right)^{10}$$

$$=1-\left(1-1/2^{10}\right)^{1000}$$

$$\approx 0.63\%$$

Conclusion: It is probable, more than 50%

Validation vs Learning: Hoeffding Inequality

- In validation / testing
 - Use Hoeffding to assess how well our g (the chosen hypothesis) approximates f (the unknown hypothesis):

$$\Pr(|E_{in} - E_{out}| > \varepsilon) \le 2 \exp(-2\varepsilon^2 N)$$

where:

$$E_{in}(g) = \frac{1}{N} \sum_{i} e(g(\underline{x}_{i}), f(\underline{x}_{i}))$$

$$E_{out}(g) = \mathbb{E}_{\underline{x}}[e(g(\underline{x}), f(\underline{x}))]$$

- Since the hypothesis g is final and fixed, Hoeffding inequality guarantees that you can learn since it gives a bound for E_{out} to track E_{in}
- In learning
 - Need to account that our hypothesis is the best of M hypotheses, so:

$$\Pr(|E_{in} - E_{out}| > \varepsilon) \le 2M \exp(-2\varepsilon^2 N)$$

- The bound for E_{out} from Hoeffding is weak
- Questions:
 - Is the bound weak because it needs to be?
 - Is it possible to replace it with a stricter bound?

Intuition Why Bound for Hoeffding Is Weak

The Hoeffding inequality and the union bound applied to training set

$$\Pr(|E_{in} - E_{out}| > \varepsilon) \le 2M \exp(-2\varepsilon^2 N)$$

is artificially too loose

• M was coming from the bad event:

$$\mathcal{B}_i$$
 = "hypothesis h_i does not generalize out-of-sample"
= " $|E_{in}(h_i) - E_{out}(h_i)| > \varepsilon$ "

- Since $g \in \{h_1, h_2, \dots, h_M\}$ then $Pr(\mathcal{B}) \leq Pr(\bigcup_i \mathcal{B}_i) \leq \sum_i Pr(\mathcal{B}_i)$
- The union bound assumes the events are disjoint, leading to a conservative estimate if events overlap
- In reality, bad events are extremely overlapping because bad hypotheses are extremely similar

Training vs Testing: College Course Analogy

- In machine learning there is always a training / learning phase and a validation / testing phase
- This set-up is very similar to studying and exams in a college course
- Before the final exam, students receive practice problems and solutions
 - These problems won't appear on the exam
 - Studying the problems improves performance
 - Serve as a "training set" in learning
- Why not give out exam problems to improve performance?
 - Doing well in the exam isn't the goal
 - The goal is to learn the course material
- The final exam isn't strictly necessary
 - Gauges how well you've learned
 - Motivates you to study
 - Knowing exam problems in advance wouldn't gauge learning effectively

• Growth Function

Dichotomy: Definition

- Problem: classify N (fixed) points <u>x</u>₁,..., <u>x</u>_N with an hypothesis set H of multi-class classifiers
- Consider an assignment D of the points to certain class $\underline{\boldsymbol{d}}_1,...,\underline{\boldsymbol{d}}_N$
- D is a **dichotomy** for hypothesis set $\mathcal{H} \iff$ there exists $h \in \mathcal{H}$ that gets the desired classification D
- Example
 - 4 points in a plane A, B, C, D
 - Binary classification
 - $\mathcal{H} = \{ \text{ bidimensional perceptrons } \}$
 - Moving the separating hyperplane, you get different classifications for the points (i.e., dichotomies)

	D1	D2	D3	D4	D
Α	0	x			
В	x	x			
C	0	0			
D	x	0			

- There are at most 2^N dichotomies
- Certain classifications are not possible (e.g., XOR assignment)

Dichotomies vs Hypotheses

- An hypothesis classifies each point of \mathcal{X} : $\mathcal{X} \to \{-1, +1\}$
- A dichotomy classifies each point of a fixed set:

$$\{\underline{\textbf{\textit{x}}}_1,...,\underline{\textbf{\textit{x}}}_N\} \rightarrow \{-1,+1\}$$

- Dichotomies are "mini-hypotheses", i.e., hypotheses restricted to given points
- A dichotomy depends on:
 - The number of points N
 - Hypothesis set \mathcal{H} (i.e., the possible models)
 - Where the points are placed
 - How the points are assigned
- The number of different dichotomies is indicated by $|\mathcal{H}(\underline{x}_1,...,\underline{x}_N)|$
 - The number of dichotomies is always finite, since $|\mathcal{H}(\underline{x}_1,...,\underline{x}_N)| \leq N^K$
 - ullet The number of hypotheses is usually infinite, i.e., $|\mathcal{H}|=\infty$
- ullet The "complexity" of ${\mathcal H}$ is related to the number of hypothesis
- From the training set point of view what matters are dichotomies and not hypotheses
 - Many (infinite) hypotheses can correspond to the same dichotomy

Growth Function

 The growth function counts the maximum number of possible dichotomies on N points for a hypothesis set H:

$$m_{\mathcal{H}}(N) = \max_{\underline{\mathbf{x}}_1, \cdots, \underline{\mathbf{x}}_N \in \mathcal{X}} |\mathcal{H}(\underline{\mathbf{x}}_1, \cdots, \underline{\mathbf{x}}_N)|$$

- Why growth function?
 - The dichotomies depend on point distribution and assignment
 - The growth function considers the maximum by placing points in the most "favorable way" for the hypothesis set
- To compute $m_{\mathcal{H}}(N)$ by **brute force**:
 - Consider all possible placements of N points $\underline{\mathbf{x}}_1,...,\underline{\mathbf{x}}_N$
 - Consider all possible assignments of the points to the classes
 - Consider all possible hypotheses $h \in \mathcal{H}$
 - Compute the corresponding dichotomy for h on $\underline{\mathbf{x}}_1,...,\underline{\mathbf{x}}_N$
 - Count the number of different dichotomies

What Can Vary in a Dichotomy

- Given:
 - An hypothesis set \mathcal{H} (e.g., bidimensional perceptrons)
 - N (fixed) points <u>x</u>₁, ..., <u>x</u>_N
 - An assignment D of the points to certain class $\underline{\boldsymbol{d}}_1,...,\underline{\boldsymbol{d}}_N$
- D is a **dichotomy** for hypothesis set $\mathcal{H} \iff$ there exists $h \in \mathcal{H}$ that gets the desired classification D
- There are various quantities in the definition of dichotomy
 - ullet The hypothesis set ${\cal H}$
 - It is fixed
 - The number of dimensions of the input space
 - ullet It is fixed through the hypothesis set ${\cal H}$
 - The number of points N
 - Input to the growth function $m_{\mathcal{H}}(N)$
 - How the points are assigned to the classes $\underline{d}_1, ..., \underline{d}_N$
 - ullet It is a free parameter, removed by how each hypothesis in ${\mathcal H}$ "splits" the space
 - Where the points are positioned $\underline{x}_1, ..., \underline{x}_N$
 - It is a free parameter, removed by the growth function through max

Growth Function Is Increasing

- $m_{\mathcal{H}}(N)$ increases (although not monotonically) with N
- E.g.,
 - The number of dichotomies on N=3 points $m_{\mathcal{H}}(3)$ is smaller or equal than the number of dichotomies on N=4 points
 - In fact we can ignore a new point and get the same classification
- $m_{\mathcal{H}}(N)$ increases with the complexity of \mathcal{H}
- $m_{\mathcal{H}}(N)$ increases with the number of dimensions in the input space (i.e., feature space)

Growth Function: Examples

- Consider the growth function $m_{\mathcal{H}}$ for different hypothesis sets \mathcal{H}
- Perceptron on a plane
 - $m_{\mathcal{H}}(3) = 8$
 - m_H(4) = 14 (2 XOR classifications not possible)

- Positive rays sign(x a) on \mathbb{R}
 - $m_{\mathcal{H}}(N) = N + 1$
 - Origin of rays a can be placed in N + 1 intervals

Growth Function: Examples

- Positive intervals on \mathbb{R} $x \in [a, b]$
 - $m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 \sim N^2$
 - Pick 2 distinct intervals out of N+1, and there is a dichotomy with 2 points in the same interval
- Convex sets on a plane
 - $m_{\mathcal{H}}(N) = 2^{N}$
 - Place points in a circle and can classify N points in any way

Break Point of an Hypothesis Set

- Given an hypothesis set ${\cal H}$
- A hypothesis set \mathcal{H} shatters N points $\iff m_{\mathcal{H}}(N) = 2^N$
 - There is a position of N points that we can classify in any way using $h \in \mathcal{H}$
 - It does not mean all sets of N points can be classified in any way
- k is a break point for $\mathcal{H} \iff m_{\mathcal{H}}(k) < 2^k$
 - I.e., no data set of size k can be shattered by \mathcal{H}
- E.g.,
 - For 2D perceptron: a break point is 4
 - For positive rays: a break point is 2
 - For positive intervals: a break point is 3
 - For convex set on a plane: there is no break point