Explore More

Subcription: Premium CDAC NOTES & MATERIAL @99

Contact to Join Premium Group

Click to Join
Telegram Group

For More E-Notes

Join Our Community to stay Updated

TAP ON THE ICONS TO JOIN!

	codewitharrays.in freelance project available to buy contact on 8007592194		
SR.NO	Project NAME	Technology	
1	Online E-Learning Platform Hub	React+Springboot+MySql	
2	PG Mates / RoomSharing / Flat Mates	React+Springboot+MySql	
3	Tour and Travel management System	React+Springboot+MySql	
4	Election commition of India (online Voting System)	React+Springboot+MySql	
5	HomeRental Booking System	React+Springboot+MySql	
6	Event Management System	React+Springboot+MySql	
7	Hotel Management System	React+Springboot+MySql	
8	Agriculture web Project	React+Springboot+MySql	
9	AirLine Reservation System / Flight booking System	React+Springboot+MySql	
10	E-commerce web Project	React+Springboot+MySql	
11	Hospital Management System	React+Springboot+MySql	
12	E-RTO Driving licence portal	React+Springboot+MySql	
13	Transpotation Services portal	React+Springboot+MySql	
14	Courier Services Portal / Courier Management System	React+Springboot+MySql	
15	Online Food Delivery Portal	React+Springboot+MySql	
16	Muncipal Corporation Management	React+Springboot+MySql	
17	Gym Management System	React+Springboot+MySql	
18	Bike/Car ental System Portal	React+Springboot+MySql	
19	CharityDonation web project	React+Springboot+MySql	
20	Movie Booking System	React+Springboot+MySql	

freelance_Project available to buy contact on 8007592194		
21	Job Portal web project	React+Springboot+MySql
22	LIC Insurance Portal	React+Springboot+MySql
23	Employee Management System	React+Springboot+MySql
24	Payroll Management System	React+Springboot+MySql
25	RealEstate Property Project	React+Springboot+MySql
26	Marriage Hall Booking Project	React+Springboot+MySql
27	Online Student Management portal	React+Springboot+MySql
28	Resturant management System	React+Springboot+MySql
29	Solar Management Project	React+Springboot+MySql
30	OneStepService LinkLabourContractor	React+Springboot+MySql
31	Vehical Service Center Portal	React+Springboot+MySql
32	E-wallet Banking Project	React+Springboot+MySql
33	Blogg Application Project	React+Springboot+MySql
34	Car Parking booking Project	React+Springboot+MySql
35	OLA Cab Booking Portal	React+NextJs+Springboot+MySql
36	Society management Portal	React+Springboot+MySql
37	E-College Portal	React+Springboot+MySql
38	FoodWaste Management Donate System	React+Springboot+MySql
39	Sports Ground Booking	React+Springboot+MySql
40	BloodBank mangement System	React+Springboot+MySql

41	Bus Tickit Booking Project	React+Springboot+MySql
42	Fruite Delivery Project	React+Springboot+MySql
43	Woodworks Bed Shop	React+Springboot+MySql
44	Online Dairy Product sell Project	React+Springboot+MySql
45	Online E-Pharma medicine sell Project	React+Springboot+MySql
46	FarmerMarketplace Web Project	React+Springboot+MySql
47	Online Cloth Store Project	React+Springboot+MySql
48	Train Ticket Booking Project	React+Springboot+MySql
49	Quizz Application Project	JSP+Springboot+MySql
50	Hotel Room Booking Project	React+Springboot+MySql
51	Online Crime Reporting Portal Project	React+Springboot+MySql
52	Online Child Adoption Portal Project	React+Springboot+MySql
53	online Pizza Delivery System Project	React+Springboot+MySql
54	Online Social Complaint Portal Project	React+Springboot+MySql
55	Electric Vehical management system Project	React+Springboot+MySql
56	Online mess / Tiffin management System Project	React+Springboot+MySql
57		React+Springboot+MySql
58		React+Springboot+MySql
59		React+Springboot+MySql
		Reactispinigoodtiviysqi
60		React+Springboot+MySql

Spring Boot + React JS + MySQL Project List

Sr.No	Project Name	YouTube Link
1	Online E-Learning Hub Platform Project	https://youtu.be/KMjyBaWmgzg?si=YckHuNzs7eC84-IW
2	PG Mate / Room sharing/Flat sharing	https://youtu.be/4P9cIHg3wvk?si=4uEsi0962CG6Xodp
3	Tour and Travel System Project Version 1.0	https://youtu.be/-UHOBywHaP8?si=KHHfE_A0uv725f12
4	Marriage Hall Booking	https://youtu.be/VXz0kZQi5to?si=IIOS-QG3TpAFP5k7
5	Ecommerce Shopping project	https://youtu.be/vJ_C6LkhrZ0?si=YhcBylSErvdn7paq
6	Bike Rental System Project	https://youtu.be/FlzsAmIBCbk?si=7ujQTJqEgkQ8ju2H
7	Multi-Restaurant management system	https://youtu.be/pvV-pM2Jf3s?si=PgvnT-yFc8ktrDxB
8	Hospital management system Project	https://youtu.be/lynlouBZvY4?si=CXzQs3BsRkjKhZCw
9	Municipal Corporation system Project	https://youtu.be/cVMx9NVyI4I?si=qX0oQt-GT-LR_5jF
10	Tour and Travel System Project version 2.0	https://youtu.be/ 4u0mB9mHXE?si=gDiAhKBowi2gNUKZ

Sr.No	Project Name	YouTube Link
11	Tour and Travel System Project version 3.0	https://youtu.be/Dm7nOdpasWg?si=P_Lh2gcOFhlyudug
12	Gym Management system Project	https://youtu.be/J8_7Zrkg7ag?si=LcxV51ynfUB7OptX
13	Online Driving License system Project	https://youtu.be/3yRzsMs8TLE?si=JRI_z4FDx4Gmt7fn
14	Online Flight Booking system Project	https://youtu.be/m755rOwdk8U?si=HURvAY2VnizlyJlh
15	Employee management system project	https://youtu.be/ID1iE3W GRw?si=Y jv1xV BljhrD0H
16	Online student school or college portal	https://youtu.be/4A25aEKfei0?si=RoVgZtxMk9TPdQvD
17	Online movie booking system project	https://youtu.be/Lfjv_U74SC4?si=fiDvrhhrjb4KSlSm
18	Online Pizza Delivery system project	https://youtu.be/Tp3izreZ458?si=8eWAOzA8SVdNwlyM
19	Online Crime Reporting system Project	https://youtu.be/0UlzReSk9tQ?si=6vN0e70TVY1GOwPO
20	Online Children Adoption Project	https://youtu.be/3T5HC2HKyT4?si=bntP78niYH802I7N

✓ A linear collection of data elements where the linear node is given by means of pointer is called?	1/1
a) Linked list	✓
O b) Node list	
C) Primitive list	
d) Unordered list	
 ✓ A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? ○ a) Queue ○ b) Circular queue 	oth 1/1
© c) Dequeue	<u>/</u>
b) Circular queue c) Dequeue d) Priority queue	Ť
cogen	

1/1 public class array public static void main(String args[]) int []arr = {1,2,3,4,5}; System.out.println(arr[5]); a) 4 b) 5 c) ArrayIndexOutOfBoundsException d) InavlidInputException How many children does a binary tree have? a) 2 X b) any number of children c) 0 or 1 or 2 d) 0 or 1 Correct answer (a) 0 or 1 or 2

CENTRE *	
JUHU ▼	
✓ Which of the following traversing algorithm is not used to traverse in a tree?	1/1
a) Post order	
O b) Pre order	
O c) Post order	
(a) Randomized	✓
What would be the asymptotic time complexity to add a node at the end singly linked list, if the pointer is initially pointing to the head of the list?	d of 0/1
a) O(1)b) O(n)c) θ(n)	
(a) b) O(n)	×
O d) θ(1)	
Correct answer	
(a) c) θ(n)	

Entries in a stack are "ordered". What is the meaning of this statement?	1/1
a) A collection of stacks is sortable	
b) Stack entries may be compared with the '<' operation	
c) The entries are stored in a linked list	
d) There is a Sequential entry that is one by one	✓
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1/1
What is the functionality of the following piece of code?	
public int function()	
<pre>{ Node temp = tail.getPrev();</pre>	
tail.setPrev(temp.getPrev());	
temp.getPrev().setNext(tail);	

- b) Return the element at the tail of the list and remove it from the list
- c) Return the last but one element from the list but do not remove it
- d) Return the last but one element at the tail of the list and remove it from the list

×	Which of the following sorting algorithms can be used to sort a random linked list with minimum time complexity?	0/1
0	a) Insertion Sort	
•	b) Quick Sort	×
0	c) Heap Sort	
0	d) Merge Sort	
Corr	rect answer	
•	d) Merge Sort	
×	Disadvantages of linked list representation of binary trees over arrays?	0/1
0	a) Randomly accessing is not possible	
•	b) Extra memory for a pointer is needed with every element in the list	×
0	c) Difficulty in deletion	
0	d) Random access is not possible and extra memory with every element	
Corr	rect answer	
•	d) Random access is not possible and extra memory with every element	

12/24/24, 9:38 PM

✓ In the worst case, the number of compa linked list of length n for a given elemen	
a) log 2 n	
b) n/2	
c) log 2 n − 1	
o d) n	✓
✓ Circular Queue is also known as	- 292, 9A 1/1
a) Ring Buffer	~ ~
b) Square Buffer	80
C) Rectangle Buffer	
d) Curve Buffer	
"Ha"	
Can a tree stored in an array using either pre order traversals be again reformed?	r one of inorder or post order or 0/1
a) Yes just traverse through the array and fo	orm the tree
b) No we need one more traversal to form a	tree
c) No in case of sparse trees	×
d) Yes by using both inorder and array elem	ents
Correct answer	
b) No we need one more traversal to form a	tree

Level order traversal of a tree is formed with the help of 1/1 a) breadth first search b) depth first search c) dijkstra's algorithm d) prims algorithm 1/1 9. What must be the missing logic below so as to print mirror of a tree as below as an example? if(rootnode): mirror(rootnode-->left) mirror(rootnode-->right a) swapping of left and right nodes is missing b) swapping of left with root nodes is missing c) swapping of right with root nodes is missing d) nothing is missing

	asbhatkar22@gmail.com	
×	What is the time complexity of pre-order traversal in the iterative fashion?	? 0/1
0	a) O(1)	
0	b) O(n)	
0	c) O(logn)	
•	d) O(nlogn)	×
Corr	ect answer	
•	b) O(n)	
×	The optimal data structure used to solve Tower of Hanoi is	0/1
0	a) Tree b) Heap	
•	b) Heap	×
0	c) Priority queue	
0	d) Stack	
Corr	ect answer	
	d) Stack	

√

1. For the tree below, write the pre-order traversal.

- (a) 2, 7, 2, 6, 5, 11, 5, 9, 4
- b) 2, 7, 5, 2, 6, 9, 5, 11, 4
- c) 2, 5, 11, 6, 7, 4, 9, 5, 2
- d) 2, 7, 5, 6, 11, 2, 5, 4, 9
- X How do you calculate the pointer difference in a memory efficient double 0/1 linked list?
- a) head xor tail
- b) pointer to previous node xor pointer to next node
- o) pointer to previous node pointer to next node
- d) pointer to next node pointer to previous node

Correct answer

(a) b) pointer to previous node xor pointer to next node

X

~	In general, the index of the first element in an array is	1/1
OOO	a) 0 b) -1 c) 2 d) 1	~
×	. What would be the asymptotic time complexity to find an element in the linked list?	0/1
•	a) O(1)	×
0	b) O(n)	
0	b) O(n) c) O(n2) d) O(n4) ect answer	
0	d) O(n4)	
Corr	ect answer	
	b) O(n)	
✓	In linked list each node contains a minimum of two fields. One field is data field to store the data second field is?	a 1/1
0	a) Pointer to character	
0	b) Pointer to integer	
0	c) Pointer to node	✓
0	d) Node	

✓ The prefix form of A-B/ (C * D ^ E) is?	1/1
a) -/*^ACBDE	
b) -ABCD*^DE	
	✓
d) -A/BC*^DE	

✓ The postfix form of the expression (A+ B)*(C*D- E)*F / G is?
 a) AB+ CD*E − FG /**
 b) AB + CD* E − F **G /
 c) AB + CD* E − *F *G /
 d) AB + CDE * − * F *G /

✓ A normal queue, if implemented using an array of size MAX_SIZE, gets full 1/1 when?

a) Rear = MAX_SIZE - 1

/

- b) Front = (rear + 1)mod MAX_SIZE
- c) Front = rear + 1
- d) Rear = front

×	What data structure would you mostly likely see in non recursive implementation of a recursive algorithm?	0/1
0	a) Linked List	
0	b) Stack	
0	c) Queue	
•	d) Tree	X
Corı	rect answer	
•	b) Stack	
	You are given pointers to first and last nodes of a singly linked list, which of the following operations are dependent on the length of the linked list? a) Delete the first element b) Insert a new element as a first element c) Delete the last element of the list d) Add a new element at the end of the list	of 1/1
0	d) Add a new element at the end of the list	

X The dat	ta structure required for Breadth First Traversal on a graph is?	0/1
a) Stack		
b) Array		
C) Queu	е	
od) Tree		×
Correct answ	er	
c) Queue		
× Linked	lists are not suitable for the implementation of	0/1
a) Inser	tion sort	×
b) Radix	csort	
C) Polyn	nomial manipulation	
d) Binar	y search	
Correct answ	y search er	
od) Binary	y search	

✓	What is/are the disadvantages of implementing tree using normal arrays? 1/1
0	a) difficulty in knowing children nodes of a node
0	b) difficult in finding the parent of a node
•	c) have to know the maximum number of nodes possible before creation of trees
0	d) difficult to implement
	code with arrays. in 800 1592 194

What is the time complexity of the following code? 1/1 public boolean isBalanced(String exp) int len = exp.length(); Stack<Integer> stk = new Stack<Integer>(); for(int i = 0; i < len; i++)</pre> char ch = exp.charAt(i); if (ch == '(') ewith arrays. In 800159219A stk.push(i); else if (ch == ')') } return true; a) O(logn) b) O(n) c) O(1)d) O(nlogn)

➤ To obtain a prefix expression, which of the tree traversals is used?	0/1
a) Level-order traversal	
b) Pre-order traversal	
c) Post-order traversal	×
d) In-order traversal	
Correct answer	
b) Pre-order traversal	
✓ Which of the following code is used to create new node?	1/1
<pre>struct node { int data; struct node * next; } typedef struct node NODE; NODE *ptr; a) ptr = (NODE*)malloc(sizeof(NODE));</pre>	✓
b) ptr = (NODE*)malloc(NODE);	
c) ptr = (NODE*)malloc(sizeof(NODE*));	
d) ptr = (NODE)malloc(sizeof(NODE));	

✓ The prefix form of an infix expression (p + q) − (r * t) is?
 1/1
 a) + pq − *rt
 b) − +pqr * t
 c) − +pq * rt
 d) − + * pqrt

✓ What is the value of the postfix expression 6 3 2 4 + − *?
a) 1
b) 40
c) 74
d) -18

✓ Which of the following in the content of the content

Which of the following is not the application of stack?
a) A parentheses balancing program
b) Tracking of local variables at run time
c) Compiler Syntax Analyzer
d) Data Transfer between two asynchronous process
Correct answer
d) Data Transfer between two asynchronous process

~	In a stack, if a user tries to remove an element from an empty stack it is called	1/1
0	a) Underflow	✓
0	b) Empty collection	
0	c) Overflow	
0	d) Garbage Collection	
✓	Which among the following is not a palindrome?	1/1
0	a) Madam	
0	b) Dad	
0	c) Malayalam	
•	d) Maadam	✓
	ithali.	
NAN	ME *	

✓	If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?	1/1
•	a) ABCD	✓
0	b) DCBA	
0	c) DCAB	
0	d) ABDC	
	This content is neither created nor endorsed by Google Terms of Service - Privacy Policy Does this form look suspicious? Report Google Forms	

codewitharrays.in and the codewitharrays.in

https://www.youtube.com/@codewitharrays

https://www.instagram.com/codewitharrays/

https://t.me/codewitharrays Group Link: https://t.me/ccee2025notes

+91 8007592194 +91 9284926333

codewitharrays@gmail.com

https://codewitharrays.in/project