

Travaux Pratiques d'Optique Polarisation

Préparation des TPs		
1	Polarisation : notions de base	3
2	Mesures de biréfringence	19
3	Polarimètre à analyseur tournant	27
4	Etude d'un modulateur électro-optique	41

Polarisation: "Pour bien faire, il faut bien commencer¹"

Le but des TP de polarisation est d'illustrer des situations expérimentales récurrentes où vous serez amenés à bien comprendre l'effet de la polarisation sur la propagation d'une onde lumineuse. Ils font appel à certaines des notions vues lors du cours de 1A et il est important de le relire avant de les aborder.

Les objectifs pédagogiques des quatre séances sont résumés ci-dessous. Avant le premier TP, vous devez connaître :

- les définitions de la biréfringence linéaire et circulaire,
- les effets d'une lame demi-onde et d'une lame quart-d'onde sur un état de polarisation donné,
- l'état de polarisation en sortie d'une lame biréfringente lorsqu'elle est éclairée avec une polarisation linéaire à 45° de ses axes neutres,
- l'influence de la longueur d'onde sur les propriétés de biréfringence d'un matériau,
- la définition de l'angle de Brewster.

A la fin des séances, vous devrez savoir :

- produire un état de polarisation donné,
- analyser un état de polarisation avec différentes méthodes,
- mesurer une biréfringence linéaire avec différentes méthodes,
- caractériser un milieu présentant une biréfringence circulaire,
- comment faire une modulation d'amplitude à l'aide de matériaux électrooptiques.

L'objectif des questions suivantes est de vous remettre en tête les concepts fondamentaux que vous aurez à utiliser tout au long du bloc de travaux pratiques de polarisation. Vous devez donc avoir répondu aux questions qui suivent avant de commencer votre première séance de polarisation. Ce sont des questions basiques de révision de cours. Les réponses à ces questions sont toutes dans votre cours. Vous pourrez les trouver parfois dans les annexes du présent

^{1.} Mary Poppins, 1964

polycopié.

Les réponses rédigées seront remises à l'enseignant au début de la première séance de TP de polarisation et notées sur 10, quel que soit le TP par lequel vous commencez.

Par ailleurs, vous devez préparer chaque séance en lisant l'énoncé et en répondant aux questions de préparation. Des consignes sont données en préambule de chaque énoncé.

- 1) Quelle est l'action d'un polariseur sur la lumière?
- 2) Quand dit-on d'un matériau qu'il est "biréfringent"?
- 3) Quel est le principe de fonctionnement d'une lame d'onde? Quelle est la définition d'un axe neutre?
- 4) Quel déphasage introduit une lame dite $\lambda/4$? une lame $\lambda/2$?
- 5) Quel est l'effet de ces lames sur une polarisation linéaire incidente?
- 6) Les propriétés d'une lame d'onde dépendent-elles de la longueur d'onde? Si oui, par quel(s) biais?
- 7) Qu'appelle-t-on "ellipticité" pour une lumière polarisée?
- 8) Quelle est la polarisation en sortie d'une lame d'onde quelconque quand elle est éclairée par une polarisation linéaire incidente, orientée à 45° des axes neutres de la lame?
- 9) Comment sont définies les polarisations "transverse électrique" (TE) et "transverse magnétique" (TM)?
- 10) Qu'est-ce que l'incidence de Brewster?

TP 1

Polarisation : notions de base

Si c'est votre première séance de TP de Polarisation, pensez à préparer les questions préliminaires page 4 (notées sur 10, à remettre à l'enseignant en début de séance).

L'objectif de cette première séance est l'étude de différents phénomènes de polarisation liés à la biréfringence de lames. Les biréfringences pourront être linéaire (cas des lames d'onde) ou circulaire (cas du pouvoir rotatoire). Il est important de distinguer ces deux phénomènes.

La première partie est une révision des notions de base du cours de polarisation. Préparez les questions à l'avance, et vérifiez si vos observations correspondent à ce à quoi vous vous attendiez.

Les parties 2.1 et 2.2 feront l'objet d'un **oral noté sur 5**. Vous devez avoir réfléchi aux questions théoriques de ces parties avant le début du TP, et avoir préparé des schémas clairs pour expliquer la méthode d'analyse d'une lumière polarisée.

Sommaire

1	Etu	de de composants simples au polariscope 4	
	1.1	Repérage de l'axe d'un polariseur par l'incidence Brewster 4	
	1.2	Etude de lames demi-onde et quart d'onde 5	
2	Pro	duction et analyse d'une lumière polarisée 6	
	2.1	Production d'une vibration lumineuse polarisée 6	
	2.2	Analyse d'une vibration lumineuse polarisée	
	2.3	Analyse d'un objet inconnu	
3	Biréfringence circulaire		
4	4 Pour approfondir		
	4.1	Etude en lumière blanche de lames cristallines $\lambda/2$ (à 546,1 nm) 10	
	4.2	Obtention de l'axe lent d'une lame biréfringente	
5	Anr	nexe : Echelle des teintes de Newton	
6	Anr	nexe : Biréfringence et ellipticité	

Matériels utilisés:

- un polariscope : structure en bois équipée au niveau le plus bas d'un polariseur dichroïque, à celui le plus haut d'un analyseur dichroïque gradué et de deux plateformes intermédiaires avec montures permettant des rotations calibrées de 45°. Ce montage peut être éclairé soit en lumière monochromatique, soit en lumière blanche. Il suffit pour cela de tourner l'ensemble du polariscope.
- un montage sur banc
- un spectromètre à réseau, boîtier fibré connecté à l'ordinateur.
- des échantillons et des lames à manipuler avec soin et à ranger dans leur boîte après utilisation.
- un montage pour l'observation d'interférences en lumière blanche convergente.

1 Etude de composants simples au polariscope

Cette première partie vise à étudier les propriétés des polariseurs dichroïques et de lames cristallines avec le polariscope en lumière monochromatique. Il s'agit d'expériences élémentaires d'illustration du cours, qui devront être faites d'autant plus rapidement que vous aurez fait les autres TP polarisation avant celui-ci. Vous devez avoir terminé cette première partie en 45 minutes au grand maximum.

1.1 Repérage de l'axe d'un polariseur par l'incidence Brewster

Pour déterminer la direction d'un analyseur, on peut utiliser le fait qu'à l'incidence de Brewster la polarisation TM (parallèle au plan d'incidence) n'est pas réfléchie : les reflets sur une plaque de verre (ou sur le linoléum du sol) seront

donc éteints pour une direction particulière du polariseur. C'est ce principe qui est utilisé en photographie pour les filtres ou polariseurs anti-reflets.

1) Rappeler la formule donnant l'angle de Brewster. Calculer cet angle dans le cas d'une réflexion air-verre, pour un verre ordinaire d'indice n = 1, 5.

Une plaque de verre collée sur la table éclairée par une lampe de bureau bien placée permet de faire un réglage précis de l'angle de Brewster.

Entraînez-vous à orienter les axes des polariseurs du polariscope en utilisant l'incidence de Brewster. Utilisez cette propriété pour orienter l'analyseur du polariscope (bague mobile ajustable par en dessous) de façon à ce que la direction de la pointe corresponde à sa direction passante. On aura ainsi pour toute la suite un repère absolu des axes du polariscope.

Vous pouvez ainsi, par commodité, placer le polariseur du haut (l'analyseur) de manière à ce que sa direction passante corresponde à la graduation 0 du polariscope.

1.2 Etude de lames demi-onde et quart d'onde

Pour cette partie on utilisera le polariscope éclairé par une lampe à vapeur de mercure, munie d'un filtre vert.

Vous disposez de lames de différents types : lames en mica, lames en matériau polymère (plastique étiré), lames en quartz (lames de petit diamètre). Sauf indication contraire spécifiée dans le texte, utilisez les lames en mica ou en plastique, moins fragiles et moins chères.

Repérage des axes neutres Croisez tout d'abord le polariseur et l'analyseur en l'absence de la lame cristalline à orienter. Introduisez ensuite n'importe quelle lame cristalline et orientez celle-ci de façon à retrouver l'extinction sans toucher à l'analyseur ni au polariseur.

2) Expliquer simplement pourquoi cette manipulation permet de déterminer les directions des axes neutres des lames introduites dans le polariscope. La direction à 90° d'un axe neutre est-elle également un axe neutre?

Lame $\lambda/2$ Insérez entre le polariseur et l'analyseur une lame $\lambda/2$ pour la raie verte du mercure (546.1 nm). Placez un des axes neutres de la lame sur la direction de polarisation imposée par le polariseur. Cette orientation de la lame sera choisie comme référence des angles. Tournez la lame d'un angle θ quelconque par rapport à l'orientation de référence. Tournez alors l'analyseur.

3) Peut-on retrouver l'extinction? Quel type de polarisation sort de la lame $\lambda/2$?

En utilisant la monture permettant des rotations calibrées de 45° , tournez la lame d'un angle $\theta = 45^{\circ}$.

4) Déterminez la polarisation sortante. Est-ce le résultat attendu?

Lame $\lambda/4$ Remplacez la lame précédente par une lame $\lambda/4$ pour la raie verte du mercure. Cherchez les axes neutres de cette nouvelle lame. Par **rotation calibrée**, placez les axes neutres de la lame $\lambda/4$ à $\theta=45^{\circ}$ de la direction du polariseur.

5) Que constate-on quand on tourne l'analyseur? Quel type de polarisation sort de la lame $\lambda/4$? Expliquer ce qui se passe en quelques phrases et/ou schémas.

Reprenez la manipulation en tournant cette fois d'un angle moitié (environ 20°). Notez dans ce cas les directions de l'analyseur pour lesquelles le flux globalement transmis est maximal ou minimal.

6) Vérifier que l'on obtient une polarisation elliptique et vérifier la direction du grand axe de l'ellipse.

2 Production et analyse d'une vibration lumineuse polarisée

En utilisant le banc optique, muni de deux polariseurs et de deux lames quart d'onde dont les axes lents correspondent à la graduation 0 de la monture, vous devez (re)trouver comment produire et analyser un état de polarisation donné.

Pour une meilleure précision de vos mesures, il est fortement recommandé de vérifier l'orientation exacte des axes neutres des lames quart d'onde et celle de l'axe passant des polariseurs. Ce n'est probablement pas exactement 0!

- 7) Vous disposez de deux sources lumineuses : une lampe à vapeur de mercure avec un filtre pour sélectionner sa raie verte et une lampe blanche. Laquelle allez-vous utiliser ? Pourquoi ?
- 8) Les lames biréfringentes sont calibrées pour fonctionner en incidence normale. Que se passe-t-il si cette condition d'éclairement des lames n'est pas respectée? Vérifiez que, sur votre montage, toutes les lames sont éclairées en faisceau parallèle et en incidence normale.

2.1 Production d'une vibration lumineuse polarisée

On souhaite d'abord produire une vibration elliptique droite, d'ellipticité 30° .

- 9) Sans chercher à donner le sens de parcours de l'ellipse par le champ électrique, expliquez comment vous devez placer les axes neutres d'une lame $\lambda/4$ pour produire une vibration elliptique, d'ellipticité donnée. Faites un schéma.
- 10) Sur le schéma précédent, placez l'axe lent de manière à ce que la vibration produite soit elliptique droite. Vous pouvez vous poser la question suivante :

quelle composante du champ électrique est en avance de phase sur l'autre? Réalisez sur le banc optique ce que vous avez résumé dans les deux questions précédentes.

2.2 Analyse d'une vibration lumineuse polarisée

L'objectif est maintenant d'analyser la vibration que vous avez produite. On considèrera évidemment la vibration incidente comme inconnue (ce que vous avez réalisé à l'étape précédente est une "boîte noire"). La première chose à faire est de vérifier que la lumière n'est pas simplement polarisée rectilignement.

11) Faites l'image de la fente source sur un écran et observez ce qui se passe lorsque vous tournez un polariseur placé sur le trajet de la vibration lumineuse. De manière générale, quelles sont les différentes observations possibles suivant les types de vibrations incidentes?

Dans le cas de figure qui nous concerne, la vibration est purement polarisée (il n'y a pas de composante non polarisée). L'idée de l'analyse est de se ramener à une polarisation rectiligne facilement caractérisable à l'aide d'un analyseur.

- 12) Vous mettrez le précédent polariseur (analyseur) sur la position du minimum d'intensité. On place une lame quart d'onde sur le trajet de la lumière, avant l'analyseur, de sorte que l'un de ses axes neutres soit aligné avec la direction passante de l'analyseur. Quel type de polarisation trouve-t-on après la lame? Pourquoi? Quelles sont les directions possibles de cette polarisation?
- 13) En choisissant un sens de rotation de l'ellipse, faites deux schémas correspondant aux deux positionnements possibles de l'axe lent de la $\lambda/4$, et retrouvez quelle est l'orientation de la polarisation rectiligne en sortie de la lame dans les deux cas.
- 14) En reprenant l'exemple que vous avez choisi précédemment, de quel angle et dans quel sens devez-vous tourner l'analyseur pour retrouver l'extinction dans chacun des cas? En déduire comment doit être positionné l'axe lent de la lame par rapport à la direction de l'analyseur pour retrouver l'extinction en tournant d'un angle égal à l'ellipticité et dans le sens de parcours de l'ellipse.
- 15) Décrire les étapes de la procédure **générale** d'analyse de la vibration lumineuse que vous venez de mettre en place et l'appliquer à la vibration produite au 2.1 pour la valider. **Présentez-la alors à l'enseignant responsable**, à l'aide de quelques schémas simples (Oral /5).

2.3 Analyse d'un objet inconnu

On utilise dans cette partie l'objet appelé "polariseur photo" que l'on mettra en lieu et place du dispositif de production de vibration lumineuse. 16) Analysez la vibration lumineuse issue de cet objet en fonction de la polarisation incidente, lorsqu'il est utilisé dans un sens ou dans l'autre. Expliquez de quoi cet objet est constitué.

(Bonus : ce type de polariseur est utilisé en photo ou dans les lunettes de cinéma 3D, voyez-vous l'intérêt dans chacun des cas?)

3 Biréfringence circulaire et exemple du pouvoir rotatoire

On étudie dans cette section des milieux biréfringents taillés de manière à ce que la lumière se propage selon l'axe optique.

On utilise une lame de quartz peu épaisse (L=7,7 mm) taillée perpendiculairement à l'axe. Alignez précisément le montage suivant (alignement précis des éléments le long du banc et réglage des positions des lentilles par auto-collimation, etc) pour éclairer l'échantillon en faisceau parallèle avec la longueur d'onde verte du mercure. Faites vérifier votre montage par l'enseignant.

- 17) Analysez la vibration lumineuse après l'échantillon de quartz. Que se passe-t-il lorsque vous tournez l'échantillon autour de l'axe optique du montage? Que devient la polarisation en sortie lorsque vous tournez la polarisation incidente d'un angle connu? En revenant à une configuration où polariseur et analyseur sont croisés, de quel angle devez-vous tourner l'analyseur pour trouver l'extinction en présence du quartz? Quel est l'effet de l'échantillon de quartz sur une polarisation linéaire?
- 18) En utilisant le matériel convenable, éclairez le quartz avec une vibration circulaire gauche. Quel est l'état de polarisation en sortie? Le sens de rotation est-il modifié? Mêmes questions si la polarisation incidente est circulaire droite. Quelle est la base de décomposition naturelle de la polarisation de la lumière dans ce cas de figure?

On interprète donc la propriété de rotation (d'un angle α) de la polarisation linéaire comme un phénomène de biréfringence circulaire, les deux polarisations propres circulaires droite et gauche se propageant avec des indices différents n_d et n_q , d'où un déphasage :

$$\varphi = \frac{2\pi}{\lambda}(n_d - n_g)L = 2\alpha.$$

On peut écrire $\alpha = \rho L$ où L est l'épaisseur de la substance et ρ une constante caractéristique de la substance active qui varie en inverse du carré de la longueur d'onde utilisée, suivant la loi (approchée) de Biot :

$$\rho = \frac{A}{\lambda^2}.$$

- 19) On donne $\rho = 22,09^{\circ}.\text{mm}^{-1}$ pour $\lambda = 589,3$ nm. Retrouvez-vous le résultat de la question 17? (évaluez rapidement vos sources d'incertitude)
- 20) On éclaire le dispositif en lumière blanche. Expliquez pourquoi on observe des teintes sur l'écran. Que se passe-t-il lorsque vous tournez l'analyseur.
- 21) Observez le spectre de la lumière en sortie du système à l'aide du spectromètre à réseau et confirmez vos observations précédentes. En observant ce qui se passe sur le spectre en tournant l'analyseur, pouvez-vous déduire si le quartz est dextrogyre ou lévogyre (i.e. s'il fait tourner la polarisation vers la droite ou vers la gauche)?

Lorsque l'épaisseur du cristal doué de pouvoir rotatoire est plus importante, différentes radiations du spectre sont éteintes en même temps. On obtient alors un blanc d'ordre supérieur, mais, le spectromètre permet d'analyser le spectre cannelé.

Placez maintenant l'échantillon long de quartz, taillé perpendiculairement à l'axe optique sur le montage. Sa longueur est $L=60,10\pm0,01$ mm (comme indiquée sur la monture). Observez le spectre obtenu entre P et A croisés.

- 22) Expliquez la présence de cannelures sombres.
- 23) Déterminez en utilisant la méthode établie à la question 21), si le quartz est lévogyre ou dextrogyre.
- 24) Calculez la valeur α de la rotation de polarisation dans le barreau pour $\lambda = 589, 3$ nm (jaune). De quel angle doit-on tourner l'analyseur pour obtenir la cannelure sombre exactement à cette longueur d'onde? Dans quel sens? Vérifiez si la valeur obtenue correspond à votre calcul. Sinon vérifiez l'alignement du cristal sur le banc. Pourquoi ce réglage est-il critique?

Entre P et A croisés, relevez les longueurs d'onde de toutes les cannelures sombres du spectre.

- 25) Comment, en utilisant la longueur d'onde de calibration à $\lambda = 589, 3$ nm, peut-on déterminer l'angle de rotation pour chacune de ces cannelures?
- 26) A l'aide des mesures précédentes, tracez la courbe $\rho = f(1/\lambda^2)$. Vérifiez alors que le pouvoir rotatoire du barreau de quartz suit bien la loi de Biot.
- 27) A partir de la courbe précédente, déduisez la valeur de A pour le quartz étudié. Comparez cette valeur avec le point d'étalonnage à 589,3 nm.

4 Pour approfondir

Cette partie permet d'aborder des exemples plus compliqués que ceux illustrés précédemment, mais aussi rencontrés beaucoup moins fréquemment. Elle n'est à aborder que si vous avez fait et compris les questions précédentes. Sinon, il est préférable de consacrer plus de temps à bien s'approprier les notions fondamentales. Cette partie n'est pas à rédiger pour le compte-rendu.

Il est possible de prédire relativement bien les états de polarisation en sortie de lames biréfringentes éclairées en incidence normale à une longueur d'onde donnée. Cet exercice s'avère plus délicat si on éclaire en lumière polychromatique ou si le faisceau n'est pas collimaté. Les exemples suivants vont vous permettre d'appréhender un peu mieux les phénomènes dans ces conditions.

4.1 Etude en lumière blanche de lames cristallines $\lambda/2$ (à 546,1 nm)

Les caractéristiques des lames que vous avez étudiées dans la première partie dépendent a priori de la longueur d'onde. Dirigez le polariscope vers la lampe de bureau avec analyseur et polariseur croisés. Insérez entre ces deux éléments une lame $\lambda/2$ (à 546 nm). Orientez celle-ci afin que ses lignes neutres soient à $\simeq 45^{\circ}$ de la direction du polariseur, puis tournez l'analyseur afin d'obtenir à nouveau l'extinction.

- L'extinction est-elle maintenue? Quelle est la teinte obtenue entre polariseur et analyseur parallèles? Entre polariseur et analyseur croisés? Comparez aux teintes de Newton données en annexe.
- En tournant la lame autour de ses axes neutres, on fait varier la différence de marche dans un sens ou dans l'autre (suivant que l'on tourne autour de l'axe extraordinaire ou ordinaire). Faites un schéma de l'un de ces cas de figure pour expliquer le sens de variation de la différence de marche.
- Observez les variations de teinte lorsque vous tournez la lame autour de ses axes neutres entre polariseur et analyseur parallèles puis croisés, notez soigneusement vos observations.
- A l'aide de toutes vos observations et en utilisant l'échelle des teintes de Newton (cf. pg.13), estimez au mieux la différence de marche introduite par la lame. Vérifiez qu'il s'agit bien d'une lame $\lambda/2$ à 546,1 nm.

4.2 Obtention de l'axe lent d'une lame biréfringente

On utilise ici un montage qui permet d'éclairer en lumière blanche convergente un cristal de spath (cristal **uniaxe négatif**) taillé perpendiculairement à l'axe optique entre polariseurs croisés.

- Quelle figure d'interférence observez-vous ? Que se passe-t-il lorsqu'on tourne le cristal autour de son axe ? Quand on tourne le polariseur et l'analyseur en les gardant croisés ?
- En déduire l'origine de la croix noire. Expliquez la figure d'interférence obtenue, et en particulier pourquoi on retrouve les teintes de Newton à centre blanc ou à centre noir lorsque l'on s'éloigne du centre de la figure.
- Placez l'une des lames $\lambda/4$ dont on connaît l'orientation de l'axe lent sur le trajet de la lumière de sorte que ses axes neutres soient à 45° de la croix noire. Expliquez pourquoi deux taches noires (correspondant à une différence de marche nulle) apparaissent sur la figure d'interférence dans la direction de l'axe lent.

5 Annexe : Echelle des teintes de Newton

δ en nanomètres	échelle à centre blanc	échelle à centre noir
différence de marche	$I = I_0 \cos^2\left(\frac{\pi\delta}{\lambda}\right)$	$I = I_0 \sin^2\left(\frac{\pi\delta}{\lambda}\right)$
0	blanc	noir
40	blanc	gris de fer
97	blanc jaunâtre	gris lavande
158	blanc jaunâtre	bleu gris
218	brun jaune	gris plus clair
234	brun	blanc verdâtre
259	rouge clair	blanc
267	rouge carmin	blanc jaunâtre
275	brun rouge sombre	jaune paille pâle
281	violet sombre	jaune paille
306	indigo	jaune clair
332	bleu	jaune vif
430	bleu gris	jaune brun
505	vert bleuâtre	orangé rougeâtre
536	vert pâle	rouge chaud
551	vert jaunâtre	rouge plus foncé
565	vert plus clair	pourpre
575	jaune verdâtre	violet
589	jaune d'or	indigo
664	orangé	bleu de ciel
728	orangé brunâtre	bleu verdâtre
747	rouge carmin clair	vert
826	pourpre	vert plus clair
843	pourpre violacé	vert jaunâtre
866	violet	jaune verdâtre
910	indigo	jaune pur
948	bleu sombre	orangé
998	bleu verdâtre	orangé rougeâtre vif
1101	vert	rouge violacé foncé
1128	vert jaunâtre	violet bleuâtre clair
1151	jaune sale	indigo
1258	couleur chair	bleu (teinte verdâtre)
1334	rouge brun	vert de mer
1376	violet	vert brillant
1426	bleu violacé grisâtre	jaune verdâtre
1495	bleu verdâtre	rose (nuance claire)
1534	bleu vert	rouge carmin
1621	vert terne	carmin pourpre
1658	vert jaunâtre	gris violacé
1682	jaune verdâtre	bleu gris
1711	jaune gris	vert de mer
1744	mauve gris rouge	vert bleuâtre
1811	carmin	beau vert
1927	gris rouge	gris vert
2007	bleu gris	gris presque blanc
2048	vert	rouge clair
2338	rose pâle	vert bleu pâle
2668	vert bleu pâle	rose pâle

6 Annexe : Mesure de la biréfringence d'une lame par mesure de l'ellipticité produite

Paramètres d'une polarisation elliptique

 α : direction du grand axe de l'ellipse

a: dimension du grand axe de l'ellipse

b: dimension du petit axe de l'ellipse

 $|\tan \varepsilon| = b/a : \varepsilon$: ellipticité de l'ellipse + sens de rotation

On crée une polarisation elliptique si on place une la me biréfringente à 45° de la direction de la polarisation rectiligne in cidente :

Dans le repère (X, Y) de la polarisation incidente :

$$\vec{E}'_{out} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix} \vec{E}_{out} = \frac{E_0}{2} \begin{bmatrix} 1 + e^{i\varphi}\\ 1 - e^{i\varphi} \end{bmatrix} = E_0 \begin{bmatrix} \cos(\varphi/2)\\ \sin(\varphi/2) \end{bmatrix}$$
(1.1)

Ce vecteur de Jones correspond à une polarisation elliptique dont les axes sont parallèle et perpendiculaire à la direction de polarisation incidente. On appelle β l'angle entre une diagonale du rectangle dans lequel est inscrite l'ellipse décrite par l'extrémité du vecteur champ électrique de cette polarisation elliptique et l'axe X de la polarisation linéaire incidente (voir schéma ci-dessus). β vérifie la relation suivante :

$$\tan |\beta| = \left| \tan \left(\frac{\varphi}{2} \right) \right|; \beta < \pi/2$$

Sur le schéma précédent, β est strictement équivalent à l'ellipticité ε . Mais attention! Il y a aussi des cas où $\beta > 45^{\circ}$. Dans ce cas, le grand axe de l'ellipse est perpendiculaire à la direction incidente. On a toujours $\tan |\beta| = \left|\tan \left(\frac{\varphi}{2}\right)\right|$ mais $\varepsilon = 90^{\circ} - \beta$. Pour mesurer φ , il suffit de mesurer β . On peut aussi déduire de β l'ellipticité de l'état de polarisation émergent.

Sur la figure suivante, le déphasage introduit par la lame varie de 0 à 180° par pas de 15°. La polarisation incidente est représentée par un trait gras gris, pour un déphasage nul, puis par une ligne pointillée. Elle est à 45° des axes neutres de la lame, représentés en traits gras noirs. L'ellipticité de la polarisation résultante est telle que l'ellipse est inscrite dans un carré $(E_{Ox} = E_{Oy})$.

- Les axes de l'ellipse sont fixes à 45°
- L'ellipticité ϵ vaut $\pm \varphi/2$ (modulo $\pi/2$)

Mesure de l'ellipticité à l'aide d'une lame $\lambda/4$: On procède en deux étapes :

- 1. On détermine la direction du petit axe de l'ellipse à l'aide d'un analyseur.
- 2. On ajoute une lame quart d'onde devant l'analyseur avec son axe lent perpendiculaire au petit axe de l'ellipse précédente. On crée ainsi une polarisation rectiligne faisant un angle ε avec l'axe lent de la lame quart d'onde. On retrouve donc une extinction en tournant l'analyseur d'un angle ε . Dans ce cas, l'angle de rotation de l'analyseur est inférieur ou égal à 45° .

Polarisation elliptique gauche de d'ellipticité ε telle que : $\tan \varepsilon = b/a$

La lame quart d'onde produit une rectiligne :

$$\begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} a \\ ib \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\vec{E} = \begin{bmatrix} a \\ ib \end{bmatrix}$$

On repère le petit axe avec un analyseur. Puis on introduit une $\lambda/4$ devant l'analyseur.

Il faut tourner l'analyseur de ϵ pour obtenir une extinction.

TP 2

Mesures de biréfringence

Si c'est votre première séance de TP de Polarisation, pensez à préparer les questions préliminaires page 4 (notées sur 10, à remettre à l'enseignant en début de séance).

Sommaire

)
2
3
4
4
5
3
3

L'objectif de cette séance est de déterminer le plus précisément possible la biréfringence de quelques lames cristallines, c'est-à-dire la différence de marche introduite entre leurs deux axes neutres. Pour cela, on utilisera différentes méthodes. Suivant les échantillons, certaines méthodes seront applicables ou non, plus ou moins précises, complémentaires... Dans tous les cas, il est **indispensable d'exploiter sur place tous les résultats** et de comparer les méthodes entre elles afin de déceler d'éventuelles incompatibilités entre les mesures. On essaiera pour chaque méthode applicable d'estimer les incertitudes et de les réduire au maximum.

Il faut que chaque étudiant fasse toutes les mesures par toutes les méthodes proposées. L'ordre des méthodes de mesure n'est pas très important. Les échantillons à étudier sont des lames en quartz, rangées dans la boîte Polarisation B.

ATTENTION : ces échantillons sont fragiles et chers (environ 300 euros pièce). Ils doivent être manipulés avec précaution et rangés soigneusement dans leur boîte en fin de manipulation.

A la fin de la séance, vous présenterez à l'oral le principe des trois méthodes de mesure. Cette présentation sera **notée sur 5**. Afin de la préparer au mieux, vous devez avoir répondu aux questions 1 et 11 à 14 (inspirez vous de l'annexe 6 du TP1) avant le début de la séance.

Méthodes mises en œuvre :

- Observation d'un spectre cannelé avec spectromètre à réseau
- Utilisation d'un compensateur de Babinet
- Méthode de la lame $\lambda/4$: on analyse, sur un polariscope éclairé en lumière monochromatique, la vibration issue de la lame à étudier lorsqu'on l'éclaire avec une polarisation à 45° de ses axes.

On utilisera un tableur au cours du TP pour rassembler tous les résultats de mesures de chacune des lames étudiées. On pourra ainsi tracer la courbe $\delta(\lambda)$ avec tous les points de mesures obtenus et vérifier la dépendance en fonction de la longueur d'onde ainsi que la cohérence des résultats.

1 Etude du spectre cannelé

Réalisez soigneusement le montage ci-dessous (alignement des éléments le long du banc et réglage des positions des lentilles et de la lame étudiée par auto-collimation). Réglez précisément le polariseur et l'analyseur croisés.

Placez la lame à étudier sur le banc et réglez ses axes à 45° des axes du polariseur et de l'analyseur.

- 1) Expliquer clairement et simplement la présence des cannelures dans le spectre entre polariseurs parallèles et entre polariseurs croisés.
- 2) Quel est l'effet sur le spectre d'une rotation de l'échantillon autour de l'axe optique du montage?

La position des cannelures entre polariseur et analyseur soit croisés, soit parallèles, permet de remonter à la valeur de la différence de marche pour des valeurs précises de la longueur d'onde.

Le contraste des franges d'interférences est maximal si les lignes neutres de la

lame sont à 45° des polariseurs croisés ou parallèles.

Dans le cas où polariseur et analyseur sont croisés, l'intensité lumineuse en sortie de l'analyseur vaut :

$$I = I_0 \sin^2\left(\frac{\varphi}{2}\right) = I_0 \sin^2\left(\frac{\pi\delta}{\lambda}\right)$$

Les radiations éteintes sont donc telles que la différence de marche introduite par la lame est un multiple de la longueur d'onde, soit $\delta = k\lambda_k = (n_e - n_o)e$.

Dans le cas où polariseur et analyseur sont parallèles, l'intensité lumineuse en sortie de l'analyseur vaut :

$$I = I_0 \cos^2\left(\frac{\varphi}{2}\right) = I_0 \cos^2\left(\frac{\pi\delta}{\lambda}\right)$$

Les radiations éteintes sont donc telles que la différence de marche introduite par la lame est un multiple demi-entier de la longueur d'onde, soit $\delta = (k+1/2)\lambda_{k+1/2} = (n_e - n_o)e$.

La mesure des longueurs d'onde de deux cannelures sombres successives (correspondant à k et k+1) ou d'une cannelure sombre et d'une cannelure brillante successives (correspondant à k et k+1/2) permet en principe de déterminer simplement la valeur de k (par résolution d'une équation à une inconnue). Mais attention, la variation de la biréfringence avec la longueur d'onde, même si elle est faible, rend parfois cette détermination délicate : on ne trouve jamais une valeur de k entière! Souvenez-vous en et utilisez le fait que la biréfringence $n_e - n_o$ diminue avec la longueur d'onde (loi de Cauchy) pour déterminer k (par résolution d'une inéquation à une inconnue).

Méthode pratique proposée pour vérifier chaque lame étudiée :

- Entrez dans un tableau Excel, par ordre croissant ou décroissant, toutes les valeurs mesurées des longueurs d'onde obtenues correspondant aux cannelures noires entres polariseurs croisés et parallèles.
- Déterminez ensuite la valeur de k entier positif pour chacune des cannelures.
- Calculez la différence de marche correspondant à chaque cannelure et tracez cette différence de marche en fonction de la longueur d'onde : $\delta(\lambda) = k\lambda_k$ ou $(k+1/2)\lambda$.
- Vérifiez ainsi la cohérence des mesures et vos calculs, en particulier la décroissance attendue de la différence de marche en fonction de la longueur d'onde.

Remarque : pour vérifiez la valeur de k entier positif, on peut aussi s'aider des points d'étalonnage suivants de la biréfringence du quartz :

à
$$\lambda = 0.45 \ \mu \text{m}, n_e - n_o = 0.00937$$

à
$$\lambda = 0,70 \ \mu\text{m}, \ n_e - n_o = 0,00898$$
 à $\lambda = 0,789 \ \mu\text{m}, \ n_o = 1,5442 \ \text{et} \ n_e = 1,5533.$

- 3) Relevez les cannelures observées entre **polariseur et analyseur croisés**, **puis parallèles**. Déterminer les valeurs de k correspondant à chaque cannelure. Expliquer pourquoi la valeur de k est simple à déterminer si le nombre de cannelures est très faible (inférieur à 2).
- 4) Pour toutes les lames étudiées, tracer la différence de marche en fonction de la longueur d'onde. En déduire la valeur de la différence de marche à 546,1 nm (raie verte du mercure).

Faites vérifier ces résultats par l'enseignant responsable.

2 Compensateur de Babinet

Un compensateur de Babinet est constitué de deux prismes biréfringents collés (voir figure). Il permet ainsi d'introduire entre les composantes d'un faisceau polarisées verticalement et horizontalement une différence de marche variable, proportionnelle au déplacement du deuxième prisme le long de l'axe Ox.

Pour un déplacement x, la différence de marche s'écrit :

$$\delta_{\lambda}(x) = 2[n_e(\lambda) - n_o(\lambda)] \tan(\theta) x = K_{etalonnage}(\lambda) x$$

Elle est nulle si x = 0.

Considérons que le compensateur de Babinet est placé entre polariseur et analyseur croisés. On place les lignes neutres du Babinet à 45° des axes du polariseur et de l'analyseur pour obtenir un contraste maximum. On observe des franges d'interférences équidistantes parallèles à l'arête Oy des prismes dont l'interfrange dans le plan xOy est égal à :

$$i(\lambda) = \frac{\lambda}{2[n_e(\lambda) - n_o(\lambda)] \tan(\theta)} = \frac{\lambda}{K_{etalonnage}(\lambda)}$$

En lumière blanche, on observe des franges colorées selon l'échelle des teintes de Newton à frange centrale blanche (pour $\delta = 0$) entre polariseur et analyseur parallèles ou à frange centrale noire entre polariseur et analyseur croisés.

Méthode de mesure d'une biréfringence : Si on ajoute entre le polariseur et l'analyseur un échantillon biréfringent dont les lignes neutres sont parallèles à celles du Babinet, les franges se déplacent proportionnellement à la différence de marche supplémentaire introduite par l'échantillon. On peut alors mesurer le décalage du Babinet nécessaire pour ramener la frange centrale au centre du champ et en déduire directement la différence de marche introduite par l'échantillon. Le déplacement transversal du Babinet est mesuré sur le vernier de la vis micrométrique avec une grande précision.

2.1 Réglages

Eclairez correctement le Babinet : un éclairage direct de la fente du collimateur par la lampe, sans condenseur, est suffisant pour couvrir toute l'ouverture du Babinet, à condition de placer la lampe suffisamment proche de la fente et de l'orienter correctement.

En l'absence du compensateur, croisez polariseur (situé en bout de collimateur) et analyseur (solidaire de l'oculaire du viseur à frontale fixe).

Mettez en place le compensateur (il coulisse à l'entrée du tube qui contient le viseur à frontale fixe).

Mettez au point le viseur d'observation sur le réticule gravé (le viseur à frontale fixe coulisse à l'intérieur du tube pour effectuer ce réglage).

Tournez le Babinet pour retrouver l'extinction puis basculez-le de 45°. Des franges bien contrastées doivent apparaître.

2.2 Etalonnage du Babinet

On peut alors procéder à l'étalonnage du Babinet en lumière monochromatique (lampe à mercure munie du filtre vert, 546,1 nm). On doit mesurer aussi précisément que possible l'interfrange (souvent appelée période du Babinet).

5) Déterminer le plus précisément possible l'interfrange du Babinet à 546,1 nm. Celui-ci est d'environ 2,4 mm : refaites la mesure tant que vous êtes loin de cette valeur! Donner la précision de votre mesure de l'interfrange.

Cette calibration permet la mesure de la différence de marche introduite par une lame à la longueur d'onde de la raie verte du mercure, si cette différence de marche est inférieure à la différence de marche maximale mesurable avec ce Babinet.

6) Quelle est la différence de marche maximale mesurable avec le Babinet?

2.3 Mesure de la biréfringence de l'échantillon

On remplace la lampe à mercure par une source de lumière blanche. Les polariseur et analyseur étant croisés, et la direction du compensateur étant à 45° des directions des polariseurs, centrez parfaitement la frange noire sur le réticule. Appuyer ensuite sur le bouton rouge du vernier électronique ("zero"). Cette position servira de référence pour la suite.

Placer la lame à analyser de manière à maintenir la frange noire centrée.

7) Expliquer pourquoi on oriente ainsi ses axes neutres sur les directions de l'analyseur et du polariseur.

On fait tourner la lame de 45° autour de l'axe optique. La frange noire n'est plus au centre.

Il faut à présent déplacer le Babinet pour ramener la frange noire au centre. Vérifier que le défilement des teintes de Newton est bien cohérent avec l'échelle correspondante.

8) Mesurer le déplacement du Babinet pour retrouver la frange noire au centre. Expliquer comment la mesure de ce déplacement de la frange noire permet de calculer directement la différence de marche introduite par l'échantillon pour la longueur d'onde de calibration.

Remarque : pour retrouver une frange noire bien contrastée en présence de la lame, il est important que les axes de la lame soient bien confondus avec ceux du Babinet.

- 9) Calculer la différence de marche introduite par la lame à 546,1 nm. Précision de la mesure?
- 10) Vérifier que la valeur obtenue est compatible avec celles du spectre cannelé.

3 Mesure de la biréfringence d'une lame par mesure de l'ellipticité produite. Méthode dite de la $\lambda/4$

Cette méthode est décrite dans l'Annexe 6 du TP 1. Relisez-la pour répondre aux questions théoriques suivantes, avant le début du TP.

- 11) Rappeler quel est l'état de polarisation (nature et orientation) en sortie d'une lame biréfringente dans le cas particulier où la polarisation incidente est rectiligne à 45° de ses axes. Faire un schéma représentant la polarisation incidente, les axes neutres de la lame biréfringente, et la polarisation en sortie de la lame. On ne se préoccupera pas du sens de rotation de la polarisation.
- 12) Donner la relation entre l'ellipticité ε de la polarisation en sortie et le déphasage φ introduit par la lame.

On va analyser la polarisation elliptique produite par la lame étudiée en ajoutant une lame quart d'onde $(\lambda/4)$ en sortie de celle-ci.

- 13) Comment faut-il placer les axes neutres de la lame quart d'onde pour que la polarisation à sa sortie soit linéaire?
- 14) Ajoutez sur le schéma précédent les axes neutres de la lame quart d'onde et la polarisation linéaire à sa sortie.

<u>Protocole expérimental</u>: On utilise le polariscope éclairé en <u>lumière monochromatique à 546,1 nm</u> (raie verte du mercure) et on se place entre analyseur et polariseur croisés.

On place la lame à étudier avec les axes neutres confondus avec P et A pour retrouver l'extinction.

On place à l'étage du dessus, de la même manière, la lame $\lambda/4$ pour retrouver l'extinction.

On tourne la lame à étudier de 45° .

On retrouve donc l'extinction en tournant l'analyseur d'un angle $\beta < 90^{\circ}$.

- 15) Mesurer l'angle β de rotation de l'analyseur pour chaque lame. Montrer que l'ellipticité est donnée soit par $\varepsilon = \beta$ soit par $\varepsilon = 90^{\circ} \beta$. En déduire que le déphasage introduit par la lame inconnue est $\varphi = 2k \times 180^{\circ} \pm 2\beta$.
- 16) Déduire la différence de marche introduite par la lame à 546,1 nm, après avoir déterminé k et le signe devant l'angle β grâce à une autre méthode (spectre cannelé ou compensateur de Babinet).
- 17) Vérifier que la valeur obtenue est cohérente avec les autres mesures déjà effectuées.
- 18) Evaluer la précision de la mesure sur la différence de marche.

Remarque : si l'échantillon est très mince (exemple lame $\lambda/4$ d'ordre 0 à 546,1 nm), on mesure directement la différence de marche due à l'échantillon. S'il est plus épais, on obtient uniquement la différence de marche à $k\lambda$ près. La détermination de k doit être faite par recoupement avec les autres méthodes. Cette méthode ne peut donc pas en général suffire à elle seule, mais elle permet de confirmer et souvent d'affiner d'autres mesures.

Présentez à l'enseignant responsable le principe des trois méthodes de mesure (oral /5).

4 Conclusions sur l'ensemble des mesures

- 19) Pour chaque lame, faites une synthèse des résultats obtenus par les trois méthodes. Expliquez pourquoi, pour certains échantillons, certaines méthodes ne peuvent être utilisées.
- 20) Pour chaque lame, tracez la différence de marche en fonction de la longueur d'onde avec les barres d'incertitude.
- 21) Pour chaque méthode évaluer la précision des résultats.
- 22) Déterminer l'épaisseur de chaque lame en supposant qu'il s'agit bien de lame de quartz taillé parallèlement à l'axe optique. On pourra utiliser la loi de variation de $n_e n_o$ du quartz en fonction de la longueur d'onde :

$$n_e - n_o = 8,678.10^{-3} + \frac{145,025}{\lambda^2}$$
 avec λ en nm.

5 Pour approfondir

Revenez au montage du spectre cannelé. Placez l'échantillon à étudier entre polariseur et analyseur croisés avec les axes neutres de l'échantillon à 45° de l'axe du polariseur. Pour faciliter les observations, arrangez vous pour qu'un axe neutre de l'échantillon soit vertical.

Inclinez légèrement l'échantillon de façon à ce que le faisceau fasse un petit angle avec sa face d'entrée. Quelle conséquence cela a-t-il sur les cannelures?

Tournez l'échantillon de 90°. C'est son autre axe neutre qui est vertical. Refaites la même procédure et observez la conséquence sur les cannelures.

Interprétez.

TP 3

Polarimètre à analyseur tournant. Notions d'ellipsométrie

Si c'est votre première séance de TP de Polarisation, pensez à préparer les questions préliminaires page 4 (notées sur 10, à remettre à l'enseignant en début de séance).

Préparer la question 13 avant la séance.

Sommaire

1	Montage utilisé							
2	Analyseur tournant							
3	Prise en main							
4	Utilisation du logiciel d'acquisition							
5	Direction "absolue" d'une polarisation							
6	Introduction à l'ellipsométrie							
7	Annexe 1 : Angles ellipsométriques							
	7.1 Définition des angles ellipsométriques Ψ et Δ							
	7.2 Détermination expérimentale des angles ellipsométriques 36							
8	Annexe 2 : Calcul de l'indice d'un miroir métallique 39							
9	Annexe 3 : Logiciel d'acquisition et TF 40							

Un ellipsomètre est un appareil industriel très utilisé en particulier pour caractériser les dépôts de couches minces (épaisseurs, indices). L'objectif de cette séance est l'étude du principe de fonctionnement d'un ellipsomètre à analyseur tournant. Vous allez dans un premier temps vous familiariser avec ce dispositif. Un oral noté sur 5 portera sur cette première partie, c'est-à-dire sur la section 3 (*Prise en main*). On utilisera ensuite l'ellipsomètre à analyseur tournant pour déterminer la nature de la vibration transmise par une lame bi-

réfringente ou réfléchie sur une surface métallique en fonction de l'angle et de la nature de l'onde électromagnétique incidente.

1 Montage utilisé

FIGURE 3.1 – schéma du dispositif

La source lumineuse est un laser He-Ne polarisé rectilignement intra-cavité. La cavité est relativement longue afin d'avoir un flux assez stable (laser multimode longitudinal). Afin de supprimer tout résidu de lumière non polarisée et de stabiliser très précisément la direction de polarisation, un polariseur (orienté usuellement de manière à maximiser le flux) est placé en sortie du laser. Le laser en question est assez puissant (10mW nominal, classe 3B), les précautions d'usage devront donc être respectées pendant les manipulations.

Le détecteur est constitué d'une photodiode de grande surface sensible ($\varnothing \simeq 11~\text{mm}$) associée à un amplificateur courant-tension soigneusement conçu afin d'avoir un faible bruit et un gain le plus constant possible dans sa bande passante utile. Il dispose d'un sélecteur permettant de choisir entre trois sensibilités.

Dans un tout premier temps, on visualisera ce signal avec un oscilloscope.

2 Analyseur tournant et encodeur incrémental de position angulaire

L'analyseur tournant est constitué d'un polariseur rectiligne, entraîné par un moteur électrique. Sa vitesse de rotation, affichée en tours par seconde sur l'écran du boîtier de gestion de l'encodeur (l'ordinateur doit être allumé), est réglable par la tension d'alimentation du moteur d'entraînement.

Un encodeur incrémental de position angulaire (boîtier de couleur orange) permet de repérer précisément la position angulaire de l'analyseur. Le modèle utilisé délivre entre autres un signal TOP0, qui donne une unique impulsion brève au début de chaque tour, et un signal noté T, constitué de 4096 fronts montants par tour. La fréquence du signal TOP0 donne la vitesse de rotation de l'analyseur exprimée en tours. s^{-1} (ou Hz). Cette fréquence fondamentale sera dénommée f_0 dans la suite de ce texte.

Le codeur incrémental joue un rôle très important dans le système d'acquisition du signal que vous utiliserez dans la deuxième partie du TP. Des détails sont donnés en annexe 3.

3 Prise en main de l'ellipsomètre. Observations qualitatives à l'oscilloscope

Alignez soigneusement le bras du goniomètre supportant l'analyseur tournant et le détecteur sur la direction du faisceau laser.

Mettez en marche l'alimentation du détecteur et l'ordinateur. Le signal de sortie du détecteur est envoyé sur la voie A de l'oscilloscope, le signal TOP0 sur la voie B. L'oscilloscope est par ailleurs réglé pour que le déclenchement de son balayage se fasse sur ce signal TOP0 (signal TTL 5V très étroit).

Alimentez le moteur d'entraînement de l'analyseur tournant à l'aide de l'alimentation continue prévue à cet effet et réglez la vitesse de rotation (lue sur l'afficheur du BOÎTIER DE GESTION DE L'ENCODEUR) à une dizaine de tours par seconde. (Ne dépassez pas $25 \text{ tr.} s^{-1}$).

Choisissez la sensibilité du détecteur afin d'avoir un signal important (de plusieurs volts) mais non saturé sur l'oscilloscope. Le détecteur délivre normalement une tension proportionnelle au flux lumineux qu'il reçoit, à une très faible tension d'obscurité éventuelle près. (Le polariseur de tête pourra, si nécessaire, servir à limiter le flux frappant le détecteur pour éviter une saturation éventuelle).

1) Expliquez les signaux observés à l'oscilloscope grâce à la loi de Malus, en particulier le rapport entre la fréquence du signal issu du détecteur et la fréquence f_0 de TOP0.

Insérez une lame $\lambda/2$ (à 633 nm) sur le trajet du faisceau et faites tourner la pola-

risation rectiligne. Observez les modifications du signal issu du détecteur visualisé à l'oscilloscope.

2) Interprétez le signal obtenu en fonction de l'orientation de la lame $\lambda/2$. Observez en particulier le sens de déplacement de la courbe lorsque vous faites tourner la lame $\lambda/2$.

Insérez une lame $\lambda/4$ (à 633 nm) sur le faisceau polarisé rectilignement.

3) Interprétez le signal obtenu en fonction de l'orientation de la lame $\lambda/4$. Comment vérifier la qualité de cette lame. Quelle est l'influence d'une incidence non normale du faisceau laser?

Faites un bilan précis de vos observations sous forme orale (noté sur 5 points) auprès de l'enseignant responsable.

De simples mesures de phase et d'amplitude d'une sinusoïde à l'oscilloscope permettent en toute rigueur de déterminer l'état de polarisation d'un faisceau totalement polarisé frappant l'analyseur tournant. Toutefois, ces mesures sont fastidieuses et assez peu précises. Elles peuvent être très utilement assistées par ordinateur. L'objectif de la partie suivante est de prendre en main un logiciel d'acquisition de mesures d'ellipsométrie.

Retirez les lames $\lambda/2$ et $\lambda/4$ avant de passer à la suite.

4 Utilisation du logiciel d'acquisition et de traitement sous LabVIEW

Lancez le VI (Virtual Instrument) dénommé TP Ellipsométrie AcqEllipso.VI développé par H. Sauer. Ce VI permet d'acquérir le signal du détecteur, de visualiser simultanément ce signal et sa FFT et de calculer les paramètres utiles pour la polarimétrie.

Le signal sinusoïdal détecté se met facilement sous la forme :

$$S(r) = V_0[1 + \gamma \cos(2.2\pi r + \Phi)]$$

où r est la position angulaire de l'analyseur exprimée **en tour**, V_0 la valeur moyenne du signal du détecteur, Φ sa phase à l'origine et γ son taux de modulation. La valeur moyenne du signal étant arbitraire (elle dépend de la puissance du laser et de la sensibilité du détecteur), l'information sur la polarisation est uniquement contenue dans le taux de modulation γ et la phase Φ . La transformée de Fourier de S(r), qui a pour argument des fréquences angulaires en tour⁻¹, a une composante continue à $\mathbf{0}$ tour⁻¹ d'amplitude V_0 et une composante sinusoïdale à $\mathbf{2}$ tour⁻¹ d'amplitude $\gamma V_0/2$ et de phase Φ :

$$S(r) = V_0 + \frac{\gamma V_0}{2} e^{i(2.2\pi r + \Phi)} + \frac{\gamma V_0}{2} e^{-i(2.2\pi r + \Phi)}$$

Les deux grandeurs γ et Φ sont extraites, dans le programme LabVIEW, par transformation de Fourier rapide (FFT) du signal détecteur sur un nombre **entier** de tours de l'analyseur.

On utilisera le mode de fonctionnement normal (bouton orange dans la position Horloge externe), pour lequel l'acquisition du signal S(r) est synchronisée sur l'encodeur (fronts montants de T). La valeur de l'amplitude $\gamma V_0/2$ et la valeur de phase Φ que l'on doit mesurer seront correctement calculées grâce à la synchronisation parfaite de l'acquisition avec le signal sinusoïdal de fréquence à **2** tour⁻¹ (cf annexe 3).

Remarque sur le spectre : En fait, l'analyseur tournant présente des défauts d'uniformité qui introduisent des petites distorsions se reproduisant à chaque tour. Le signal détecté est donc périodique au tour, à quelques fluctuations et bruits de mesure près. Il se décompose en série de Fourier ayant son fondamental à ± 1 tour⁻¹ et des harmoniques à ± 2 , ± 3 , ... tour⁻¹. Sa FFT présente donc des pics à ces fréquences particulières se détachant sur un fond résiduel de bruit, les pics à 0 et ± 2 tour⁻¹ étant normalement largement prépondérant. Les grandeurs γ et Φ , calculées comme indiqué précédemment peuvent être entachées d'erreurs aléatoires dues au bruit du signal et d'erreurs systématiques liées aux défauts déterministes de l'analyseur.

En l'absence de lame sur le faisceau, lancez le VI et observez les différents résultats affichés : signal acquis, FFT, amplitude normalisée et phase de l'harmonique 2.

- 4) A partir de la FFT affichée en dB (c'est-à-dire $20 \log(S(f)/S(0))$, calculez le rapport entre $S(2 \text{ tours}^{-1})$ et S(0), et vérifiez la valeur γ affichée et calculée à partir du signal acquis.
- 5) Calculez le rapport entre l'harmonique d'amplitude la plus grande due à des distorsions périodiques et $S(2 \text{ tours}^{-1})$. Commentez.
- 6) Etudiez l'influence de la lumière parasite (passez en synchronisation *Horloge interne* pour cette question uniquement). Quelle est la fréquence de la lumière parasite? Son origine? Dépend-elle de la vitesse de rotation de l'analyseur?

Relevez les valeurs de γ et Φ (que l'on notera Φ_{ref}).

Replacez la lame $\lambda/2$ sur le montage.

- 7) Expliquez comment trouver précisément la direction de ses axes neutres. Relevez soigneusement la graduation angulaire correspondante.
- 8) Tournez la lame d'un angle θ allant de 5° à 45° par pas de 5° et relevez Φ et γ . Tracez $\Delta\Phi = \Phi \Phi_{ref}$ en fonction de l'angle de rotation de la lame. Expliquez la relation entre $\Delta\Phi$ et θ . Commentez les résultats obtenus sur γ et sur ϕ .

Placez la lame $\lambda/4$ sur le montage, et orientez l'un de ses axes neutres sur la polarisation rectiligne incidente.

9) Tournez la lame d'un angle θ all
ant de 5° à 90° par pas de 5° et relevez

 Φ et γ . Tracez $\Delta\Phi = \Phi - \Phi_{ref}$ ainsi que γ en fonction de θ . Quelle est la fréquence de la sinusoïde donnant γ en fonction de θ pour $\theta \in [0, 45^{\circ}]$? Interprétez la relation entre $\Delta\Phi$ et θ . Commentez les résultats obtenus et les précisions de mesure. Que se passe-t-il autour de $\theta = 45^{\circ}$?

- Pour $\theta \in [0, 45^{\circ}]$, l'orientation du grand axe de l'ellipse par rapport à son orientation lorsque $\Phi = \Phi_{ref}$ correspond à θ , et est directement reliée à la position de la sinusoïde Φ par rapport sa position de référence Φ_{ref} .
- L'ellipticité ϵ est déduite de la racine carrée du rapport entre le minimum et le maximum du signal.

$$\tan(\epsilon) = b/a = \sqrt{\frac{1-\gamma}{1+\gamma}}$$

- Seul le sens de parcours droit ou gauche de l'ellipse échappe à la mesure directe.
 - 10) Expliquez les deux premières assertions à l'aide de quelques schémas clairs. Pourquoi n'a-t-on pas accès au sens de parcours de l'ellipse?

5 Obtention de la direction "absolue" d'une polarisation rectiligne

Lors des manipulations précédentes, la direction "absolue" de la polarisation n'est pas connue. L'objectif de cette partie est de repérer la polarisation TM.

11) Rappeler les définitions des polarisations transverse magnétique, TM, et transverse électrique, TE.

Les courbes des coefficients de réflexions **en intensité** d'un verre standard $(n = 1, 515 \text{ à } 633 \text{ nm}) R_{TE}$ et R_{TM} en fonction de l'angle d'incidence sont tracées sur la figure ci-dessus.

12) Pour quelle polarisation incidente le faisceau réfléchi a-t-il une intensité minimale? Ce résultat dépend-il de l'angle d'incidence?

Afin d'optimiser le repérage de la polarisation TM, l'angle d'incidence doit être voisin de l'angle de Brewster du verre utilisé.

13) Calculez l'angle de Brewster pour un verre standard (n = 1, 515 à 633 nm).

L'échantillon utilisé est une simple lame de verre de surface utile bien propre. Pour éviter des problèmes de réflexion parasite sur la deuxième interface, cette dernière est noircie.

L'échantillon sera vissé sur le support. Réglez, par autocollimation, l'échantillon normal au faisceau et placez sa surface sur l'axe de rotation de la platine ¹. Placez une lame $\lambda/2$ sur le trajet du faisceau incident.

Tournez ensuite l'échantillon avec la platine de rotation afin que l'angle d'incidence soit voisin de l'angle de Brewster d'un verre standard.

Cherchez à obtenir à l'oeil une extinction presque parfaite en jouant sur la polarisation incidente (à l'aide de la lame $\lambda/2$) et sur l'angle d'incidence, puis orientez le bras portant l'analyseur tournant et le détecteur afin que le faisceau réfléchi passe sur l'axe de rotation de l'analyseur et frappe le détecteur, et affinez votre réglage.

On est alors en position notée $\theta_{TM}(\lambda/2)$ (la polarisation du faisceau incident est TM pure sur l'échantillon, c'est à dire **E** horizontal). Repérez l'orientation de la lame $\lambda/2$ qui vous a permis d'obtenir la polarisation TM.

14) En tournant la $\lambda/2$, faites basculer la polarisation rectiligne incidente de 45°, puis 90°. Pourquoi obtient-on toujours une polarisation rectiligne? Replacez-vous en polarisation TM incidente.

6 Introduction à l'ellipsométrie. Etude d'un miroir en or

Miroir en or: NE PAS TOUCHER A LA SURFACE DU MIROIR. S'il est sale, NE PAS LE NETTOYER SOI-MEME, appeler l'enseignant responsable.

Toutes les mesures qui suivent doivent être menées avec le plus grand soin et la meilleure précision possible.

^{1.} Pour que les angles lus sur la platine goniométrique portant l'échantillon correspondent bien aux angles d'incidence, il faut que la surface de l'échantillon soit exactement sur l'axe de rotation verticale de la platine goniométrique. Pour cela, vous pouvez tourner le porte échantillon sur son axe et vérifier que le point d'impact du faisceau laser sur l'échantillon ne se déplace pas; si ce n'est pas le cas, il faut avancer ou reculer le porte échantillon à l'aide du mouvement micrométrique horizontal.

Placez ce nouvel échantillon sur l'axe de rotation de la platine.

15) Obtenez-vous alors un phénomène de Brewster. Pourquoi?

Relevez soigneusement la valeur Φ_{mes} que l'on notera Φ_{TM} et qui correspond à une polarisation incidente horizontale.

Placez maintenant la polarisation précisément à 45° en tournant la lame $\lambda/2$ et observez tout d'abord qualitativement le signal obtenu.

Modifiez l'angle d'incidence.

- 16) La polarisation après réflexion est-elle toujours rectiligne? Pourquoi? Observez comment évolue cette polarisation, pour un angle d'incidence faible (de l'ordre de 20°), puis très grand (80° par exemple). Commentez vos observations.
- 17) Relevez très soigneusement les valeurs mesurées de Φ_{mes} et γ pour des angles d'incidence compris entre 40 et 80 ° (par pas de 10°) et une polarisation rectiligne incidente à $\theta = 45^{\circ}$.

Initiation à l'ellipsométrie : Les valeurs de Φ et γ obtenues précédemment permettent de mesurer l'indice de l'or à la longueur d'onde du laser. L'indice n_{or} de l'or est complexe, ce qui signifie que les coefficients r_{TE} et r_{TM} sont eux aussi des complexes. On écrit : $r_{TE} = |r_{TE}| e^{i\delta_{TE}}$ et $r_{TM} = |r_{TM}| e^{i\delta_{TM}}$ où δ_{TE} et δ_{TM} sont les déphasages introduits sur les composantes TE et TM de l'onde réfléchie.

On pose
$$\rho = \frac{r_{TE}}{r_{TM}} = \left| \frac{r_{TE}}{r_{TM}} \right| e^{i(\delta_{TE} - \delta_{TM})} = \tan \Psi e^{i\Delta}$$
. Ψ et Δ sont appelés paramètres ellipsométriques de l'échantillon. A partir des

 Ψ et Δ sont appelés paramètres ellipsométriques de l'échantillon. A partir des valeurs de Φ (via la différence $\Phi_{mes} - \Phi_{TM}$) et γ mesurées, connaissant θ , on peut calculer tan Ψ et $|\Delta|$ (voir Annexe 1). On déduit ² la valeur de ρ :

$$\rho = \tan(\Psi)e^{i\Delta}$$

Pour un matériau massif (sans couche d'oxyde et sans rugosité), les mesures des paramètres ellipsométriques permettent de remonter à l'indice du matériau. Par un calcul donné en annexe (Annexe 2), on montre en particulier que :

$$\frac{n_1}{n_0} = \sin i_0 \sqrt{\left[1 + \left(\frac{1-\rho}{1+\rho}\right)^2 \tan^2 i_0\right]} \text{ où } i_0 \text{ est l'angle d'incidence, } n_1 \text{ l'indice du matériau et } n_0 \text{ l'indice de l'air.}$$

Les formules permettant le calcul des paramètres ellipsométriques à partir de Φ_{TM} , Φ_{mes} et γ mesurés pour une polarisation initiale d'angle θ par rapport à la polarisation TM, ainsi que le calcul de l'indice n_1 du matériau à partir de ces paramètres ellipsométriques et de la donnée de l'angle d'incidence i_0 , ont été implémentées dans un programme Matlab.

^{2.} On n'a pas accès au signe de Δ qui dépend du sens de parcours de l'ellipse et pourrait être déterminé par une mesure supplémentaire.

18) A l'aide du programme Matlab et de vos résultats expérimentaux, calculez l'indice optique du métal à la longueur d'onde du laser. Comparez avec la valeur du Handbook of Optical constants of Solids édité par E. D. Palik: $n_{or} = 0, 2 + i3, 3$.

À titre d'illustration, la figure suivante représente un calcul du taux de modulation et du paramètre ellipsométrique Δ en fonction de l'angle d'incidence (pour une polarisation incidente à 45°). Ce calcul est réalisé à partir de la valeur $n_1 = 0, 2 + i3, 3$ de l'indice à 633nm. Le trait en pointillé vertical représente le passage à $\Delta = \pi/2$: ayant calculé par ailleurs tan Ψ voisin de 1, la polarisation est quasiment circulaire!

7 Annexe 1 : Angles ellipsométriques

7.1 Définition des angles ellipsométriques Ψ et Δ

On considère un système stratifié plan, c'est-à-dire composé de couches parallèles de milieux d'indices différents. Lorsque ce système est éclairé en incidence oblique, il est possible que la polarisation de l'onde réfléchie soit modifiée par rapport à la polarisation de l'onde incidente. Cette modification provient de la différence entre le coefficient de réflexion de Fresnel en amplitude r_{TE} pour la polarisation Transverse Electrique (\mathbf{E} perpendiculaire au plan d'incidence), et celui r_{TM} pour la polarisation Transverse Magnétique (\mathbf{E} dans le plan d'incidence)³. Ces

^{3.} On peut montrer que la différence entre les deux coefficients de réflectivité est maximale pour des angles d'incidence voisins de l'angle de Brewster du substrat

deux polarisations rectilignes sont les polarisations *propres* du dispositif lorsque toutes les couches de la structure stratifiée sont isotropes et sans pouvoir rotatoire (voir cours d'électromagnétisme 1A). On définit les paramètres ρ , Ψ et Δ de la manière suivante :

$$\rho = \frac{r_{TE}}{r_{TM}} = \tan(\Psi) \exp(\mathrm{i}\Delta) \text{ avec } \Psi \in [0^{\circ}, 90^{\circ}] \text{ et } \Delta \in]-180^{\circ}, +180^{\circ}]$$

Les angles Ψ et Δ sont appelés les angles ellipsométriques, et ont une signification simple :

- $\tan \Psi$ caractérise le **rapport des atténuations** (en amplitude complexe, $\tan^2 \Psi$ en "intensité") d'une onde TE et d'une onde TM à la réflexion sur l'échantillon.
- $-\Delta$ caractérise le déphasage relatif d'une onde TE par rapport à une onde TM à la réflexion sur l'échantillon.

L'ellipsométrie proprement dite consiste tout d'abord à déterminer expérimentalement avec précision les angles Ψ et Δ , souvent pour différents angles d'incidence et différentes longueurs d'onde [Azzam 87] [Aspnes 75] [Wollam 92], puis dans une deuxième étape, à remonter de ces données brutes aux caractéristiques des couches de l'échantillon [Alterovitz 88] [Bu Abbud 86].

7.2 Détermination expérimentale des angles ellipsométriques

Les angles ellipsométriques peuvent être déterminés à partir de tout type de polarimètre (à annulation, à modulation électro-optique, etc.). Ce paragraphe développe les calculs pour le cas du polarimètre à analyseur tournant.

Définition des axes x, y et z

L'axe z est défini comme la direction de propagation de l'onde incidente. L'axe x est tel que le plan xz est le plan d'incidence. L'axe y est perpendiculaire au plan d'incidence. Dans cette définition, le champ électrique d'une onde polarisée TM est porté par l'axe x et le champ électrique d'une onde polarisée TE est selon l'axe y (voir Figure 1). En réflexion, les axes équivalents sont appelés x', y' et z'.

Fig. 1. Système stratifié considéré. Le champ électrique de l'onde incidente est dans le plan xy. Lorsque le champ électrique est suivant x, l'onde est polarisée TM; suivant y, l'onde est polarisée TE.

Calcul théorique du flux lumineux derrière l'analyseur tournant

Nous considérons ici une onde incidente polarisée rectilignement suivant une direction θ par rapport à l'axe x. L'amplitude complexe du vecteur champ électrique de l'onde incidente est proportionnelle à :

$$E_x = E_0 \cos \theta$$
$$E_y = E_0 \sin \theta$$

L'amplitude complexe du vecteur champ électrique de l'onde réfléchie sur l'échantillon stratifié vaut donc :

$$\begin{pmatrix} E_{x'} \\ E_{y'} \end{pmatrix} = \begin{pmatrix} r_{TM} E_x \\ r_{TE} E_y \end{pmatrix} = \begin{pmatrix} r_{TM} E_0 \cos \theta \\ r_{TE} E_0 \sin \theta \end{pmatrix} = r_{TM} E_0 \begin{pmatrix} \cos \theta \\ \tan \Psi \exp(i\Delta) \sin \theta \end{pmatrix}$$

Fig. 2. Convention de repérage des orientations de la polarisation avant et après réflexion. z et z' sortent en avant de la figure (convention "lumière venant vers soi"). P correspond à la direction de la polarisation rectiligne du faisceau incident. A correspond à la direction (instantanée) de l'analyseur.

Fig. 3. Projection des champs réfléchis sur la direction de l'analyseur

L'amplitude complexe, notée a, de l'onde derrière l'analyseur A s'obtient en projetant les composantes $E_{x'}$ et $E_{y'}$ du champ réfléchi sur la direction de l'analyseur (figure 3) :

$$a = E_{x'}\cos\varphi + E_{y'}\sin\varphi \propto \cos\theta\cos\varphi + \tan\Psi\exp(\mathrm{i}\Delta)\sin\theta\sin\varphi$$

Le flux reçu par le détecteur est proportionnel au module carré de l'amplitude complexe a de l'onde sortant de l'analyseur. En notant a^* le complexe conjugué de a:

$$F \propto aa^*$$

$$\propto [\cos\theta\cos\varphi + \tan\Psi\exp(\mathrm{i}\Delta)\sin\theta\sin\varphi][\cos\theta\cos\varphi + \tan\Psi\exp(-\mathrm{i}\Delta)\sin\theta\sin\varphi]$$

Après développement et simplification, on obtient l'expression suivante :

$$F(\varphi) \propto \tan^2 \Psi \sin^2 \theta + \cos^2 \theta + \cos(2\varphi) [\cos^2 \theta - \tan^2 \Psi \sin^2 \theta] + \sin(2\varphi) \sin(2\theta) \tan \Psi \cos \Delta$$

Cette expression montre que le flux reçu par le détecteur est une **fonction sinusoïdale** de l'azimut φ de l'analyseur, **de période 180**°. Si l'analyseur tourne uniformément, le flux détecté varie donc sinusoïdalement dans le temps avec une fréquence double de celle de la rotation de l'analyseur, notée f.

En divisant l'expression précédente par le terme indépendant de φ , on peut écrire :

$$F(\varphi) \propto 1 + \alpha \cos(2\varphi) + \beta \sin(2\varphi)$$

avec

$$\alpha = \frac{\cos^2 \theta - \tan^2 \Psi \sin^2 \theta}{\tan^2 \Psi \sin^2 \theta + \cos^2 \theta} = \frac{1 - \tan^2 \Psi \tan^2 \theta}{1 + \tan^2 \Psi \tan^2 \theta}$$

et

$$\beta = \frac{\sin(2\theta)\tan\Psi\cos\Delta}{\tan^2\Psi\sin^2\theta + \cos^2\theta} = \frac{2\tan\theta\tan\Psi\cos\Delta}{1 + \tan^2\Psi\tan^2\theta}$$

 α et β sont les coefficients de Fourier de la sinusoï de à la fréquence 2f. On peut également poser :

$$F(\varphi) \propto 1 + \alpha \cos(2\varphi) + \beta \sin(2\varphi) = 1 + \gamma \cos(2\varphi + \phi)$$

avec $\alpha = \gamma \cos \phi$ et $\beta = -\gamma \sin \phi$.

Les grandeurs γ et ϕ , et donc α et β , se déduisent très simplement du signal expérimental, et en particulier des mesures affichées par le VI si on a bien noté que φ a pour origine la direction x (x'), c'est-à-dire la direction de la polarisation TM dans les calculs précédents (cf. Fig. 3) et non pas celle, arbitraire, donnée par TOP0.

Calcul pratique de Ψ et Δ

La grandeur ϕ définie ci-dessus se détermine simplement expérimentalement à partir de la phase ϕ_{TM} de référence pour la polarisation TM et de la phase ϕ_{θ} donnée par le faisceau réfléchi lorsque le faisceau incident possède une polarisation rectiligne de direction θ par rapport à la direction x' (TM), et du sens de rotation de l'analyseur par $\phi = \pm (\phi_{\theta} - \phi_{TM})$ (+ si l'analyseur tourne dans le sens trigonométrique, - sinon).

Ensuite, il suffit de calculer les coefficients α et β , en utilisant la mesure de γ du faisceau réfléchi lorsque le faisceau incident possède une polarisation rectiligne de direction θ par rapport à la direction x (on a toujours $\alpha = \gamma \cos \phi$ et $\beta = -\gamma \sin \phi$). Il est alors possible de retrouver la valeur de ρ en notant que :

$$\tan \Psi = \sqrt{\frac{1-\alpha}{1+\alpha}} \frac{1}{|\tan \theta|} \text{ et } \cos \Delta = \beta \frac{1+\tan^2 \Psi \tan^2 \theta}{2 \tan \theta \tan \Psi}$$

Le signe de Δ , relié au sens de parcours de l'ellipse de polarisation, ne peut être déterminé par les manipulations présentées. Pour lever l'ambiguïté, il faut introduire une mesure supplémentaire avec une lame retardatrice d'axes lent et rapide connus, usuellement appelée compensateur.

8 Annexe 2 : Calcul de l'indice d'un miroir métallique

Les expressions des coefficients de réflexion de Fresnel dans la base TE/TM pour une interface plane entre deux milieux semi-infinis signalés par des indices 0 et 1 sont donnés par :

$$r_{TE} = \frac{\gamma_0 - \gamma_1}{\gamma_0 + \gamma_1} \text{ et } r_{TM} = \frac{\varepsilon_1 \gamma_0 - \varepsilon_0 \gamma_1}{\varepsilon_1 \gamma_0 + \varepsilon_0 \gamma_1}$$

avec $\varepsilon_i = n_i^2$ et $\gamma_i = n_i \cos(i_i)$.

On appelle ρ le rapport r_{TE}/r_{TM} . Exprimons ce rapport :

$$\rho = \frac{\varepsilon_1 \gamma_0 + \varepsilon_0 \gamma_1}{\varepsilon_1 \gamma_0 - \varepsilon_0 \gamma_1} \frac{\gamma_0 - \gamma_1}{\gamma_0 + \gamma_1}$$

On montre facilement que :

$$\left(\frac{1-\rho}{1+\rho}\right)^2 = \frac{\gamma_0^2 \gamma_1^2 (\varepsilon_1 - \varepsilon_0)^2}{(\varepsilon_1 \gamma_0^2 - \epsilon_0 \gamma_1^2)^2} = \frac{1}{\tan^2 i_0} \left(\frac{\varepsilon_1}{\varepsilon_0 \sin^2 i_0} - 1\right)$$

On tire de la dernière équation l'expression du rapport $\varepsilon_1/\varepsilon_0$:

$$\frac{\varepsilon_1}{\varepsilon_0} = \sin^2 i_0 \left[1 + \left(\frac{1 - \rho}{1 + \rho} \right)^2 \tan^2 i_0 \right]$$

9 Annexe 3: Logiciel d'acquisition et TF

En se plaçant en horloge externe, l'acquisition du signal S(r) est synchronisée sur l'encodeur (fronts montants de T) et la période d'échantillonnage est $P_e = 1/4096$ tour, soit une fréquence d'échantillonnage $f_e = 4096$ tour⁻¹. Le nombre de points dépend du nombre de tours N_t pendant lesquels on acquiert le signal :

$$N_e = N_t \times 4096 = N_t \times f_e.$$

Le calcul par FFT impose que le nombre de points calculés sur le spectre entre 0 et f_e soit obligatoirement identique au nombre de points du signal échantillonné, c'est-à-dire N_e . La FFT est donc calculée avec un pas de : $f_e/N_e = f_e/(N_t \times f_e) = 1/N_t$. Le signal de fréquence 2 tour⁻¹ qui nous intéresse ici est donc **exactement** le point $2N_t$. Par exemple, si le nombre de tours est 4 il s'agit du 8ème point de la FFT. La valeur de l'amplitude $\gamma V_0/2$ et la valeur de la phase Φ que l'on doit mesurer seront correctement calculées grâce à cette synchronisation parfaite de l'acquisition avec le signal sinusoïdal de fréquence à 2 tour^{-1} .

Une autre façon de présenter le même résultat est de faire remarquer que la fenêtre d'acquisition et d'échantillonnage du signal correspond exactement à un nombre entier de tours de l'analyseur.

TP 4

Etude d'un modulateur électro-optique

Si c'est votre première séance de TP de Polarisation, pensez à préparer les questions préliminaires page 4 (notées sur 10, à remettre à l'enseignant en début de séance).

L'objectif de cette séance est l'étude du principe de fonctionnement d'un modulateur électro-optique et de sa mise en œuvre en pratique.

Pour cette séance, vous n'aurez pas à produire un compte rendu mais nous vous demandons de remplir une feuille de résultats à rendre en fin de séance. Les questions pour lesquelles vous devrez reporter des résultats dans la feuille sont signalées par une *. Les questions 1 à 4 sont à préparer avant la séance.

Les parties 2.3 et 2.4 feront l'objet d'un oral noté sur 5.

Sommaire

1	Intro	oduction: l'effet électro-optique	1
2	Cara	actérisation du modulateur électro-optique 44	4
	2.1	Réglage de l'axe optique du modulateur 45	5
	2.2	Réglage lorsque le modulateur est alimenté 45	5
	2.3	Etude de la caractéristique	6
	2.4	Etude de l'état de la polarisation produit par le cristal 46	6
	2.5	Utilisation du MEO comme modulateur linéaire de flux lumineux 46	6

1 Introduction: l'effet électro-optique

L'effet électro-optique sera vu au second semestre en cours et en TD. Les quelques éléments qui suivent permettent de comprendre le TP qui concerne la bi-réfringence induite par un champ électrique et l'utilisation d'un composant électro-optique comme modulateur d'intensité.

L'application d'un champ électrique sur un cristal non centro-symétrique peut provoquer une modification de l'indice de réfraction. Si cette modification d'indice est proportionnelle au champ appliqué, on appelle ce phénomène l'effet Pockels (c'est le cas du cristal de KD*P étudié au cours de ce TP). Si au contraire la modification est proportionnelle au carré du champ appliqué, on appelle ce phénomène l'effet Kerr. L'effet électro-optique est donc un effet de biréfringence provoquée électriquement. Le cristal se comporte comme une lame biréfringente avec un axe lent et un axe rapide dont les indices varient en fonction de la tension appliquée. On décrit ces variations par une modification de l'ellipsoïde des indices. Dans un repère Oxyz quelconque l'équation de l'ellipsoïde des indices est :

$$\frac{x^2}{n_{xx}^2} + \frac{y^2}{n_{yy}^2} + \frac{z^2}{n_{zz}^2} + \frac{2xy}{n_{xy}^2} + \frac{2xz}{n_{xz}^2} + \frac{2yz}{n_{yz}^2} = 1$$

Dans le repère OXYZ des axes neutres du milieu, on obtient :

$$\frac{X^2}{n_{XX}^2} + \frac{Y^2}{n_{YY}^2} + \frac{Z^2}{n_{ZZ}^2} = 1$$

L'effet électro-optique se traduit par une faible variation des indices : les coefficients $1/n_{ij}^2$ subissent des variations $\Delta(1/n_{ij}^2)$ et deviennent les coefficients $1/n_{ij}^{\prime 2}$:

$$\frac{1}{n_{ij}^{\prime 2}} = \frac{1}{n_{ij(E=0)}^2} + \Delta \left| \frac{1}{n_{ij}^2} \right|$$

Les variations des coefficients $1/n_{ij}^2$ sont calculées en effectuant le produit de la matrice (6 x 3) des coefficients électro-optiques r_{ij} , qui dépendent de la nature du cristal, par le vecteur champ électrique, **E**. Pour le KD*P, qui en l'absence de champ électrique appliqué est un cristal uniaxe selon Oz, l'ellipsoïde initial a l'équation suivante :

$$\frac{x^2}{n_o^2} + \frac{y^2}{n_o^2} + \frac{z^2}{n_e^2} = 1$$
 avec $n_o = 1, 51$ et $n_e = 1, 47$ à $\lambda = 0, 6$ μ m.

Les propriétés de symétrie du cristal de KD*P permettent de montrer que la matrice de coefficients électro-optiques est la suivante :

$$\begin{pmatrix}
\Delta \left[\frac{1}{n_{xx}^{2}} \right] \\
\Delta \left[\frac{1}{n_{yy}^{2}} \right] \\
\Delta \left[\frac{1}{n_{zz}^{2}} \right] \\
\Delta \left[\frac{1}{n_{yz}^{2}} \right] \\
\Delta \left[\frac{1}{n_{yz}^{2}} \right] \\
\Delta \left[\frac{1}{n_{xy}^{2}} \right] \\
\text{avec } r_{41} = 8, 8.10^{-12} \text{m.V}^{-1} \text{ et } r_{63} = 26, 2.10^{-12} \text{m.V}^{-1}$$

On montre facilement que l'ellipsoïde du KD*P en présence d'un champ électrique E_z appliqué selon Oz devient :

$$\frac{x^2}{n_o^2} + \frac{y^2}{n_o^2} + \frac{z^2}{n_e^2} + 2r_{63}E_z xy = 1$$

où l'apparition d'un terme croisé indique une rotation de l'ellipsoïde. En présence d'un champ électrique selon Oz, les axes neutres Ox' et Oy' sont à 45° des axes Ox et Oy. En effectuant le changement de variables ci-dessous, on peut écrire l'équation de l'ellipsoïde dans le repère de ses nouveaux axes neutres :

$$\begin{cases} x' = \frac{1}{\sqrt{2}}(x+y) \\ y' = \frac{1}{\sqrt{2}}(y-x) \end{cases} \Rightarrow \left(\frac{1}{n_o^2} + r_{63}E_z\right)x'^2 + \left(\frac{1}{n_o^2} - r_{63}E_z\right)y'^2 + \frac{z^2}{n_e^2} = 1$$

Finalement, après avoir réalisé un développement limité au premier ordre, il est facile de mettre la dernière équation sous la forme suivante :

$$\frac{x'^2}{n_{x'}^2} + \frac{y'^2}{n_{y'}^2} + \frac{z^2}{n_e^2} = 1 \text{ avec } \begin{cases} n_{x'} = n_o - \frac{1}{2}n_o^3 r_{63} E_z \\ n_{y'} = n_o + \frac{1}{2}n_o^3 r_{63} E_z \end{cases}$$

Ainsi, en présence d'un champ E_z , on obtient deux axes neutres Ox' et Oy' dans un plan perpendiculaire à l'axe z, et une biréfringence caractérisée par la différence d'indice :

$$\Delta n = n_{y'} - n_{x'} = n_o^3 r_{63} E_z$$

On considère une onde plane monochromatique rectiligne selon Oy se propageant dans le cristal suivant la direction Oz.

- 1*) Donner l'expression du déphasage introduit et montrer que celui-ci est indépendant de la longueur l du cristal. Donner l'expression de la tension appelée V_{π} pour laquelle ce cristal se comporte comme une lame demi-onde.
- 2) Proposer un montage utilisant le cristal de KD*P destiné à moduler l'amplitude d'une onde électromagnétique de polarisation rectiligne.
- 3*) Proposer un montage utilisant le cristal de KD*P destiné à moduler la phase d'une onde électromagnétique de polarisation rectiligne.
- 4*) Chercher des exemples d'applications des modulateurs électro-optiques sur internet.

Partie expérimentale

2 Caractérisation du modulateur électro-optique

On réalise le montage suivant :

2.1 Réglage de l'axe optique du modulateur par rapport au faisceau laser

- Croiser l'analyseur avec la polarisation rectiligne produite par la lame demionde.
- Placer et régler le modulateur électro-optique sur le faisceau laser (pour l'instant, le modulateur n'est pas alimenté).
- Observer la figure d'interférence obtenue derrière l'analyseur.
- Régler l'orientation du modulateur de manière à faire coïncider le centre de la croix noire et le spot du faisceau laser transmis par l'analyseur.

2.2 Réglage lorsque le modulateur est alimenté

L'alimentation haute tension (HT) délivre une tension comprise entre 0 et 3000 V.

Attention Haute Tension

- Ne jamais débrancher un câble lorsque l'alimentation est en fonctionnement.
- N'utiliser que des câbles coaxiaux haute-tension (verts) dont l'âme est très bien protégée.
- Ne jamais brancher directement un câble haute-tension sur un câble basse tension.

L'alimentation HT est réglable par le potentiomètre.

- Appliquer une haute tension continue au cristal voisine de 1500 V.
- Placer les axes neutres du cristal, Ox' et Oy', à 45° de l'analyseur.

Pour cela, deux méthodes sont possibles :

- Rechercher l'extinction en tournant le modulateur autour de son axe. Puis à partir de l'extinction tourner de 45° le modulateur autour de son axe.
- Ne pas toucher au modulateur (pour ne pas le dérégler). Rechercher l'extinction en tournant la lame demi-onde et l'analyseur. Ensuite, éteindre l'alimentation HT et tourner l'analyseur de 45°, puis tourner la lame demi-onde pour retrouver à nouveau l'extinction.
- 5) Expliquer clairement et commenter la méthode de réglage que vous avez choisie à votre encadrant(e).
- Vérifier visuellement la variation d'intensité obtenue en faisant varier la tension appliquée à l'électro-optique.

2.3 Etude de la caractéristique du flux transmis en fonction de la tension appliquée

6*) Mesurer l'évolution de la puissance de sortie en fonction de la tension appliquée au modulateur pour des tensions comprises entre 0 V et 3000 V.

7*) Evaluer le taux de modulation obtenu, défini par :

$$\eta = \frac{V_{max} - V_{min}}{V_{max} + V_{min}}$$

- 8*) Mesurer la tension correspondant à la transmission maximum. Pour cette tension, préciser l'état de polarisation produit par le modulateur. Expliquer pourquoi cette tension est appelée V_{π} .
- 9*) Déduire de la valeur de V_{π} mesurée la valeur de r_{63} , en tenant compte du fait que le modulateur étudié comporte deux cristaux identiques en série, soumis au même champ E_z , dont les déphasages s'ajoutent.

2.4 Etude de l'état de la polarisation produit par le cristal

- 10*) Pour quelle valeur de la tension appliquée le cristal électro-optique est-il équivalent à une lame $\lambda/2$? à une lame $\lambda/4$? Vérifier pour ces deux valeurs, en expliquant la méthode, l'état de polarisation à la sortie du cristal.
- Appliquer une tension de 700 V puis de 1800 V au cristal.
 - 11*) Dans chaque cas, déterminer l'état de polarisation obtenu. Déterminer la position du grand axe et du petit axe de l'ellipse et mesurer son ellipticité par une mesure photométrique. Déduire le déphasage introduit par le cristal et vérifier que le déphasage mesuré est cohérent avec les valeurs attendues.

Présentez les résultats obtenus sous forme d'un oral (noté sur 5 points) à l'enseignant responsable.

2.5 Utilisation de l'électro-optique comme modulateur linéaire de flux lumineux

12*) Autour de quel point de fonctionnement de la caractéristique obtenue précédemment l'électro-optique peut-il être utilisé comme un modulateur linéaire de flux?

On va remplacer l'alimentation HT, qui n'et pas modulable, par un Générateur Basses Fréquences. En pratique : un petit boîtier bleu d'adaptation $BT \rightarrow HT$ permet d'envoyer la tension délivrée par le GBF directement sur le modulateur. Pour se placer dans la zone linéaire de la caractéristique, on peut placer une lame d'onde que l'on ajoute juste avant le modulateur.

- 13*) Quelle lame d'onde a un effet équivalent à la haute tension précédente? Comment doit-on régler cet élément pour se placer autour du point de fonctionnement choisi dans la partie précédente?
- 14) Expliquer comment effectuer le réglage.
- 15*) Evaluer l'ordre de grandeur de la bande passante du montage en observant le signal à l'oscilloscope.
- 16) Utiliser ce montage pour transmettre par le faisceau laser une modulation dans la bande audio d'un signal provenant du lecteur de cassettes de la minichaîne. Commenter et interpréter. Faites valider votre montage par l'encadrant(e).
- 17*) Mesurer le taux de modulation obtenu pour une tension de 20 V crête à crête appliquée au cristal. Vérifier que ce taux de modulation est cohérent avec la caractéristique obtenue précédemment.
- 18*) Commenter l'évolution de la modulation du flux lorsque l'on modifie l'orientation de la lame d'onde.

S'il vous reste du temps et que votre curiosité vous y invite

Retirer la lame d'onde. Observer, discuter et analyser la distribution d'intensité obtenue en sortie avec le modulateur hors tension pour la polarisation incidente et l'analyseur croisés (croix noire observée en début de séance).