

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

358. Proposed by H. C. FEEMSTER, A. B., Professor of Mathematics, York College, York, Neb.

Cut four coplanar non-copunctual straight lines in a harmonic range.

CALCULUS.

387. Proposed by C. N. SCHMALL, 604 East 5th Street, New York City.

An object P , being placed beyond the principal focus F of a convex lense, determine its position when its distance PQ , from its image Q , is a minimum.

388. Proposed by L. H. McDONALD, M. A., Ph. D., Sometimes Tutor at Cambridge, Jersey City, N. J.

$$\text{Find } \int \frac{x dx}{(1+x^3)^{\frac{3}{2}}}.$$

MECHANICS.

240. Proposed by G. B. M. ZERR, A. M., Ph. D., Philadelphia, Pa.

A simple beam length $2a$, supported at both ends, is loaded in the form of a parabola, height of vertex b . Find deflection at center due to this load.

241. Proposed by C. N. SCHMALL, 604 East 5th Street, New York City.

In a certain New York theatre there is an asbestos curtain supported by thin circular rings, radius r , which move on a cylindrical rod of radius a . The curtain is intended to be drawn by a *steady pull*. Taking μ as the coefficient of friction, show that this will not be possible if r be less than $a\sqrt{(1+\mu^2)}$.

NUMBER THEORY AND DIOPHANTINE ANALYSIS.

170. Proposed by PATRICK WALSH, 1451 Annunciation Street, New Orleans, La.

The areas of rectangles A and B are respectively $15170 \frac{10}{27}$ and 31230.3627 . Find the sides and diagonal of each rectangle in exact or rational numbers.

NOTES AND NEWS.

The editors extend to all our readers the Greetings of the Coming Year. We hope that delays in the regular appearance of THE MONTHLY will not occur during 1910. We trust that our subscribers will continue their support and that we may have the immediate renewals of those who have not already remitted their subscriptions for the new year.

On December 23, Editor Miller was married to Miss Cassie A. Boggs. They will make their home in Urbana, Illinois. The other editors and all readers of the monthly extend congratulations to the happy couple.