

Arquitectura de procesamiento real-time

PARTE DE LA FORMACIÓN BIG DATA ENGINEER DE BIG DATA ACADEMY PERÚ

Funcionamiento de una computadora común

INSTRUCCIONES Al tener una **PROGRAMA DE CÓDIGO** CPU no se tiene **Navegador** un paralelismo real, sino un "pseudoparalelismo" Editor de texto C2 B3 C1 A3 A2 B2 A1 B1 Frecuencia: 1GHz Reproductor de música (Cada nanosegundo se ejecuta una instrucción)

Funcionamiento de una computadora común con más de una CPU

Funcionamiento de un server

CPUs destinadas a servicios para que el servidor funcione (Sistema Operativo, Firewall, Datanode, Worker, etc)

CPUs para el procesamiento de datos

Phadoop

Un proceso paralelizable

CPUs destinadas a servicios para que el servidor funcione (Sistema Operativo, Firewall, Datanode, Worker, etc)

Si alguno de nuestros procesos es paralelizables, la lógica puede repartirse en más de una CPU, y por lo tanto aumentar en un factor lineal la velocidad de procesamiento (x2, x3, x4)

Mientras <u>más CPUs asignadas</u> al proceso, más factor de paralelización y por lo tanto <u>más rápidez de procesamiento</u>

BDA BIG DATA

Un proceso paralelizable sobre un clúster

<u>Un clúster nos permite disponer de muchas más CPUs</u> que un solo servidor y por lo tanto <u>escalar</u> <u>fácilmente</u> los recursos hardware disponibles

Funcionamiento de un proceso BATCH

CPUs destinadas a servicios para que el servidor funcione (Sistema Operativo, Firewall, Datanode, Worker, etc)

CPUs reservadas para el proceso P3:

HORA DE INICIO: 01:00 AM

HORA DE FIN: 02:00 AM

HILOS DE PROCESAMIENTO: 1 x CPU

Al finalizar el procesamiento, las CPUs se liberan y están libres para otros procesos

Funcionamiento de un proceso REAL TIME

CPUs destinadas a servicios para que el servidor funcione (Sistema Operativo, Firewall, Datanode, Worker, etc)

CPUs reservadas para el proceso P3:

HORA DE INICIO: **PERMANENTE**

HORA DE FIN: **PERMANENTE**

HILOS DE PROCESAMIENTO: ¿? X CPU

Existe un gran riesgo de que el proceso monopolice los recursos de CPU

ANTI-PATRÓN: MONOPOLIZACIÓN REAL TIME

Las peticiones de procesamiento se atienden como van llegando

Micro-batch

Cada hilo se atiende como va llegando (0.001 segundos)

Los hilos se acumulan y se atienden por lote cada cierto tiempo (<u>1 segundo</u>)

Funcionamiento de un server para un proceso micro-batch

CPUs destinadas a servicios para que el servidor funcione (Sistema Operativo, Firewall, Datanode, Worker, etc)

CPUs reservadas para el proceso P3:

HORA DE INICIO: PERMANENTE

HORA DE FIN: PERMANENTE

HILOS DE PROCESAMIENTO: 1 X CPU

TIEMPO DE ENCOLAMIENTO: 1 segundo

Existe un gran riesgo de que el proceso monopolice los recursos de CPU

PATRÓN: MICRO-BATCH COMO REAL TIME

Las peticiones de procesamiento se atienden por lotes

Arquetipo base para un proceso batch

Arquetipo base para un proceso real time

Arquitectura base para un proceso microbatch como Real Time

Arquitectura aplicada: Scrapping de Facebook

Arquitectura aplicada: Geolocalización móvil

