EECS 391 Intro to Al

CSPs - Inference and Local Search

L9 Thu Sep 28, 2017

Recap

- Constraint Satisfactions Problems (CSPs)
- Backtracking search
 - expand one variable at a time
 - backtrack when no legal values are left
- Key functions of algorithm:

```
var ← selectUnassignedVar()
foreach val in OrderDomainVals()
```

- Heuristics for selecting variables:
 - Minimum Remaining Values (MRV):

Choose variable with fewest legal values

- Degree Heuristic:

Choose variable that most constrains others

⇒ maximum reduction in tree size

Types of constraints

- unary constraint:
 restricts the value of a variable, e.g. Q= {R,G,B}
- binary constraint: relates two variables, e.g. WA≠NT can be represented by a graph
- global constraint:
 constraints involving an arbitrary number of variables (need not be all),
 e.g. Alldiff: all variables have different values.
- It is always possible to transform n-ary constraints into binary-constraints.

Today

- More examples of CSPs
- Constraint Propagation: Inference in CSPs
 - node consistency
 - arc consistency
 - path consistency
 - k-consistency
 - global constraints
- Back-tracking search
 - intelligent back-tracking
- Local search for CSPs

Cryptarithmatic Problem

$$T \quad W \quad O \\ + \quad T \quad W \quad O \\ \hline F \quad O \quad U \quad R$$

- Each letter stands for a unique digit.
- Objective is to find digits for letters such that sum is arithmetically correct.
- The constraints make it interesting:
 - all digits are different
 - must follow the rules of arithmetic
- Need to specific constraint equations
- Then make a constraint graph

Cryptarithmatic Problem

$$egin{array}{cccccc} T & W & O \\ + & T & W & O \\ \hline F & O & U & R \end{array}$$

- Each letter stands for a unique digit.
- Objective is to find digits for letters such that sum is arithmetically correct.
- The constraints make it interesting:
 - all digits are different
 - must follow the rules of arithmetic
- Need to specific constraint equations
- Then make a constraint graph

Minesweeper as a CSP

- An unknown number of mines are hidden beneath blank squares.
- Objective is to clear the board.
- Clicks on mine squares: player looses
- Clicks on non-mine squares: show the # of adjacent mines.
- If no mines are adjacent, the square becomes blank, and all adjacent squares are recursively revealed.
- Player can use numbers to deduce the location of mines.
- Locations can be marked to aid game play.

Can we do better?

- Goal is to reduce the search space as much as possible
- Can we do more intelligent checking?
- In state-space search, we only expanded nodes based on the successors.
- In CSPs:
 - I. algorithm can "search", i.e. assign new values to variables, or
 - 2. do a specific type of inference called constraint propagation
- Constraint Propagation
 - use constraints to reduce the number of legal values of one var,
 which in turn (i.e. propagate to) reduce the legal values of other vars.
 - could be used during search
 - or done as a pre-processing step (which might solve the problem)

Node consistency

- single vars correspond to nodes
- a var is **node consistent** if all the values in the var's domain satisfy the unary constraint

	WA	NT	Q	NSW	V	SA	Т
Initial domain	RGB						

Original coloring problem was unrestricted, but we could add local constraints.

Node consistency

- single vars correspond to nodes
- a var is **node consistent** if all the values in the var's domain satisfy the unary constraint

	WA	NT	Q	NSW	V	SA	Т
Initial domain	xGB	RGB	B(gr)	RGB	RGB	RGB	RGx

For example, WA doesn't like red. Q prefers blue. etc.

- Idea: Whenever a variable X is assigned, do **forward checking** from X:
 - look at each unassigned variable Y that is connected to X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

- Whenever X is assigned
 - Foreach unassigned neighbor Y of X
 - delete values from Y's domain that are inconsistent with X

Same example of forward checking using a table

	WA	NT	Q	NSW	V	SA	Т
Initial domain	RGB						
WA = R	R	хGВ	~	~	~	хGВ	~
Q = G	~	ххВ	G	RxB	~	ххВ	~
NSW = B	~	~	~	В	RGx	xxx	~

x means we've eliminated a domain value

SA domain becomes empty ⇒ backtrack.

[~] indicates no change

Constraint Propagation

• Forward consistency computes the domain of each var independently at start

Doesn't check all inconsistencies, e.g.

Last example after step 2: SA and NT can't both be blue.

WA:rgb

SA:rgb

NSW:rgb

2

NSW:rgb

V: rgb

T: r g b

2a

 What if we propagated further by looking more ahead? (Would that be as slow as doing search?)

- Constraint propagation repeatedly enforces constraints.
- Idea is detect inconsistencies as soon as possible.

• Simplest is *arc-consistency*, which is a generalization of forward checking.

Arc consistency

- X_i is **arc consistent** w.r.t X_j if $\forall x \in D_i \ \exists y \in D_j$ satisfying constraint (X_i, X_j)
- Fast method of constraint propagation. Equivalent to original problem
- Much stronger than forward checking, because it propagates constraints.
- This would detect the inconsistency 2a between SA and NT after Q=g. NT: + g b Q:rgb WA:rg b SA: rgb NSW: r g b 2b 2c V: r g b

T: r g b

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in esp

while queue is not empty do
(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
if \text{REVISE}(csp, X_i, X_j) then
if size of D_i = 0 then return false
for each X_k in X_i. NEIGHBORS - \{X_j\} do
add (X_k, X_i) to queue
return true

function \text{REVISE}(csp, X_i, X_j) returns true iff we revise the domain of X_i
```

function REVISE(csp, X_i, X_j) **returns** true iff we revise the domain of X_i $revised \leftarrow false$ **for each** x **in** D_i **do if** no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j **then** $delete \ x \ from \ D_i$ $revised \leftarrow true$ **return** revised

function AC-3(csp) **returns** false if an inconsistency is found and true otherwise

inputs: csp, a binary CSP with components (X, D, C)

local variables: queue, a queue of arcs, initially all the arcs in csp

Need to check all arcs.

```
while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if \text{REVISE}(csp, X_i, X_j) then if size of D_i = 0 then return false for each X_k in X_i.NEIGHBORS - \{X_j\} do add (X_k, X_i) to queue return true
```

```
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
revised \leftarrow false
for each x in D_i do
if no value \ y \ in \ D_j \ allows \ (x,y) \ to \ satisfy \ the \ constraint \ between \ X_i \ and \ X_j \ then
delete \ x \ from \ D_i
revised \leftarrow true
return \ revised
```

function AC-3(csp) **returns** false if an inconsistency is found and true otherwise **inputs**: csp, a binary CSP with components (X, D, C)

local variables: queue, a queue of arcs, initially all the arcs in csp

```
while queue is not empty do
(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
if \text{REVISE}(csp, X_i, X_j) then
if size of D_i = 0 then return false
for each X_k in X_i.NEIGHBORS - \{X_j\} do
add (X_k, X_i) to queue
return true
```

Really a set, since there's no priority.

function REVISE(csp, X_i, X_j) **returns** true iff we revise the domain of X_i $revised \leftarrow false$ **for each** x **in** D_i **do if** no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j **then** delete x from D_i $revised \leftarrow true$ **return** revised

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if \text{REVISE}(csp, X_i, X_j) then

if size of D_i = 0 then return false

for each X_k in X_i. NEIGHBORS - \{X_j\} do

add (X_k, X_i) to queue

return true

function \text{REVISE}(csp, X_i, X_j) returns true iff we revise the domain of X_i.
```

```
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
revised \leftarrow false
for each x in D_i do
if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then
delete \ x \ from \ D_i
revised \leftarrow true
return revised
```

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
if \text{REVISE}(csp, X_i, X_j) then
if \text{size of } D_i = 0 then return false
for each X_k in X_i. NEIGHBORS - \{X_j\} do
add (X_k, X_i) to queue
return true
```

function REVISE(csp, X_i, X_j) **returns** true iff we revise the domain of X_i $revised \leftarrow false$

```
for each x in D_i do

if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then

delete x from D_i

revised \leftarrow true
```

return revised

This is implementing the following:

$$X_i$$
 is **arc consistent** w.r.t X_j if $\forall x \in D_i \ \exists y \in D_j$ satisfying constraint (X_i, X_j)

All x's that are not arc-consistent, are deleted from X's domain.

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty \mathbf{do} (X_i, X_j) \leftarrow REMOVE-FIRST(queue) if REVISE(csp, X_i, X_j) then if size of D_i = 0 then return false This means we can backtrack. for each X_k in X_i.NEIGHBORS - \{X_j\} do add (X_k, X_i) to queue return true function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
```

```
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i

revised \leftarrow false

for each x in D_i do

if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i

revised \leftarrow true

return revised
```

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do
```

```
while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if \text{REVISE}(csp, X_i, X_j) then if size of D_i = 0 then return false for each X_k in X_i.NEIGHBORS - \{X_j\} do add (X_k, X_i) to queue
```

return true

Otherwise, need to re-check arcs to Xi: Even if these were already checked, the change in Di might further reduce Dk.

function REVISE(csp, X_i, X_j) **returns** true iff we revise the domain of X_i $revised \leftarrow false$ **for each** x **in** D_i **do if** no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j **then** delete x from D_i $revised \leftarrow true$ **return** revised

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if \text{REVISE}(csp, X_i, X_j) then

if size of D_i = 0 then return false

for each X_k in X_i. NEIGHBORS - \{X_j\} do

add (X_k, X_i) to queue

csp is arc-consistent, so we can keep searching for a solution.
```

```
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i revised \leftarrow false for each x in D_i do

if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i revised \leftarrow true return revised
```

Complexity of arc-consistency

- AC-3 seems like a lot of work.
 Is it worth it? Why not just use normal search?
- Exponential expansion and following dead-ends is also a lot of work.
- What the complexity of AC-3?
 - **n** variables, each with domain of size **d** and **c** binary constraints (arcs)

n variables, each with **d** domain values, and **c** constraints (arcs)

function AC-3(csp) **returns** false if an inconsistency is found and true otherwise **inputs**: csp, a binary CSP with components (X, D, C)**local variables**: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do --c arcs (constraints) $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ What's the cost of an arc check? if REVISE (csp, X_i, X_j) then if size of $D_i = 0$ then return falseEach arc can be inserted at most d times, for each X_k in X_i . NEIGHBORS - $\{X_i\}$ do _ because there are only **d** domain values. add (X_k, X_i) to queue return true \Rightarrow at most **c**·**d** arc checks function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i $revised \leftarrow false$ **d** domain values for x for each x in D_i do if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i **d** domain values for y $revised \leftarrow true$ return revised \Rightarrow Checking the consistency of an arc is $O(d^2)$

 \Rightarrow Worst case time is $O(\mathbf{c} \cdot \mathbf{d} \cdot \mathbf{d}^2) = O(\mathbf{c} \cdot \mathbf{d}^3)$

Backtracking search with inference

```
return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow Select-Unassigned-Variable(csp)
  for each value in Order-Domain-Values(var, assignment, csp) do
      if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow Inference(csp, var, value)
         if inferences \neq failure then
            add inferences to assignment
            result \leftarrow BACKTRACK(assignment, csp)
            if result \neq failure then
              return result
     remove \{var = value\} and inferences from assignment
  return failure
```

function BACKTRACKING-SEARCH(csp) **returns** a solution, or failure

Inference = AC-3 only returns T of F, but could add var vals that were inferred.

More general (and stronger) forms of constraint propagation

- k-consistency
- A CSP is k-consistent if
 - for any set of k-1 variables
 and for any consistent assignment of those variables
 - a consistent value can be assigned to the kth variable
 - k=1 I-consistency node consistency
 - **-** k=2 2-consistency same as arc consistency
 - **-** k=3 3-consistency path consistency

Any consistent pair can be extended to a third variable:

 Generally: There is a trade-off between extra cost of stronger checks and reduction in branching factor.

Using local search for CSPs

- Techniques like hill climbing and simulated annealing assume all variables are assigned.
- To apply CSPs:
 - allow states with unsatisfied constraints
 - operators **reassign** variable values to improve constraint satisfaction
- Variable section:
 - randomly select any variable inconsistent with constraints
- Value selection:
 - choose value that violates fewest constraints
 - hill climb with heuristic h(n) = number of violated constraints

4-Queens as a CSP

- **states**: 4 queens in 4 columns (4⁴ = 256 states)
- **operators**: move queen in column
- **goal test**: no attacks
- evaluation: h(n) = number of attacks

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n=10,000,000)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

