Clustering Techniques

Clustering Techniques

Intra cluster distance

Clustering Techniques

Inter cluster distance

Kmeans

Centroid based algorithm

Each cluster has a centroid

Kmeans

Objective: To minimize the sum of distances between the points and their respective cluster centroid.

1. Choose the number of clusters (k)

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.
- 3. Assign all the points to the closest cluster centroid

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.
- 3. Assign all the points to the closest cluster centroid

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.
- 3. Assign all the points to the closest cluster centroid
- 4. Recompute centroids of newly formed clusters

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.
- 3. Assign all the points to the closest cluster centroid
- 4. Recompute centroids of newly formed clusters

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.
- 3. Assign all the points to the closest cluster centroid
- 4. Recompute centroids of newly formed clusters
- 5. Repeat step 3 and 4.

- 1. Choose the number of clusters (k)
- 2. Select k random points from the data as centroids.
- 3. Assign all the points to the closest cluster centroid
- 4. Recompute centroids of newly formed clusters
- 5. Repeat step 3 and 4.

Stopping Criteria for K-means

1. Centroids of newly formed clusters do not change

2. Points remains in the same cluster

3. Maximum number of iterations are reached

Euclidean Distance

Euclidean Distance

Simila r

Euclidean Distance

Not Similar

Euclidean Distance

$$D = \sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_i-q_i)^2+\cdots+(p_n-q_n)^2}$$

n = number of variables

 $p_1, p_2, p_3, \dots = features of first point$

 $q_1,q_2,q_3,...$ = features of second

- Age
- Income (rupees)

ID	Age	Income(rupees)
1	25	80,000
2	30	100,000
3	40	90,000
4	30	50,000
5	40	110,000

ID	Age	Income(rupees)
1	25	80,000
2	30	100,000
3	40	90,000
4	30	50,000
5	40	110,000

Euclidean Distance = $[(100000 - 80000)^2 + (30 - 25)^2]^{1/2}$

ID	Age	Income(rupees)
1	25	80,000
2	30	100,000
3	40	90,000
4	30	50,000
5	40	110,000

[(100000 - 80000)² + (30 - 25)²]^{1/2}

Euclidean Distance =

= 20000.000625

Solution : Scaling or

Normalizing

Need to scale the data

ID	Age	Income(rupees)
1	-1.192	-0.260
2	-0.447	0.608
3	1.043	0.173
4	-0.447	-1.563
5	1.043	1.042

Need to scale the data

ID	Age	Income(rupees)	
1	-1.192	-0.260	Euclidean Distance =
2	-0.447	0.608	$[(0.608+0.260)^2 + (-$
3	1.043	0.173	$[(0.008+0.200)^{2} + (-0.447+1.192)^{2}]^{1/2}$
4	-0.447	-1.563	
5	1.043	1.042	

Need to scale the data

ID	Age	Income(rupees)	
1	-1.192	-0.260	Euclidean Distance =
2	-0.447	0.608	$[(0.608+0.260)^2 + (-$
3	1.043	0.173	$[(0.008+0.200)^{-}+(-0.447+1.192)^{2}]^{1/2}$
4	-0.447	-1.563	= 1.1438
5	1.043	1.042	_ _ _

Thank You!

