BÀI TẬP GIẢI TÍCH HÀM

1.1.2] Cho A là một tập con của một không gian định chuẩn (E, ||.||). Chứng minh A là một tập mở nếu và chỉ nếu mọi x trong A, có r > 0 sao cho $B(x, r) \subset A$.

Giải

• Giả sử mọi x trong A, có $r_x>0$ sao cho $B(x,r_x)\subset A$. Ta chứng minh

$$A = \bigcup_{x \in A} B(x, r_x).$$

Cho z trong A, ta có $z \in B(z, r_z)$. Vậy

$$A \subset \bigcup_{x \in A} B(x, r_x).$$

Chztrong $\bigcup_{x\in A}B(x,r_x),$ Có $x\in A$ sao cho $z\in B(x,r_x).$ Vì $B(x,r_x)\subset A,$ ta có $z\in A.$

ullet Giả sử A là tập mở, ta chứng minh với mọi x trong A, có r>0 sao cho $B(x,r)\subset A$.

Có một họ quả cầu mở $\{B(a_i,r_i)\}_{i\in I}$ trong Esao cho

$$A = \bigcup_{i \in I} B(a_i, r_i).$$

Cho x trong E, có i trong I sao cho $x \in B(a_i, r_i)$. Đặt $r = r_i - ||x - a_i||$, ta có

$$B(x,r) \subset B(a_i,r_i) \subset \bigcup_{i \in I} B(a_i,r_i) \subset A.$$

1.1.4 Cho A là một tập con của một không gian định chuẩn (E, ||.||). Chứng minh A là một tập đóng nếu và chỉ nếu mọi dãy $\{x_n\}$ trong A hội tụ về x trong E thì $x \in A$.

Giải

Giả sử A là một tập đóng. Cho dãy $\{x_n\}$ trong A hội tụ về x trong E ta chứng minh $x \in A$. Ta dùng phản chứng: giả sử $x \in E \setminus A$. Ta có $E \setminus A$ là một tập mở, nên có r > 0 sao cho $B(x,r) \subset E \setminus A$, hay

$$y \in E \setminus A$$
 $\forall y \in E, ||y - x|| < r.$ (1)

Mặt khác với $\varepsilon = r$, ta tìm được một số nguyên N sao cho

$$||x_n - x|| < \varepsilon \qquad \forall \ n \ge N.$$
 (2)

Từ đó ta có $x_N \in A \cap (E \setminus A)$: mâu thuẩn. Vậy $x \in A$. Nay giả sử mọi dãy $\{x_n\}$ trong A hội tụ về x trong E thì $x \in A$. Ta chứng minh A đóng, hay $E \setminus A$ là một tập mở. Ta dùng phản chứng: $E \setminus A$ không là một tập mở. Lúc đó có một x trong $E \setminus A$, và với mọi số thực dương r có một y_r sao cho $||y_r - x|| < r \text{ và } y_r \in A.$

Đặt $x_n = y_{1/n}$. Ta thấy $\{x_n\}$ trong A hội tụ về x trong E nhưng $x \in E \setminus A$: vô lý.

1.3.10 Cho A là một tập con của một không gian định chuẩn (E, ||.||). Chứng minh A là một tập đóng nếu và chỉ nếu $A = \overline{A}$.

Giải

Giả sử A là một tập đóng. Ta chứng minh $A = \overline{A}$.

• Chứng minh $A \subset \overline{A}$:

Cho x trong A, ta chứng minh $x \in \overline{A}$, hay $B(x,r) \cap A \neq \emptyset$. Vì $x \in B(x,r) \cap A$, ta có kết quả

• Chứng minh $\overline{A} \subset A$:

Cho x trong \overline{A} , chứng minh x trong A. Với mọi r>0 có $y_r\in A\cap B(x,r)$. Đặt $x_n=y_{1/n}$ với mọi số nguyên n. Ta có

$$||x_n - x|| < \frac{1}{n}$$
 $\forall n \in \mathbb{N}.$

Từ đó $\{x_n\}$ hội tụ về x. áp dụng bài 1.1.4, ta thấy x ở trong A.

Giả sử $A = \overline{A}$. Ta chứng minh A là một tập đóng.

Ta dùng bài 1.1.4. Cho dãy $\{x_n\}$ trong A hội tụ về x trong E ta chứng minh $x \in A$. Với giả thiết $A = \overline{A}$, ta chỉ cần chứng minh $x \in \overline{A}$. Ta có : với mọi $\varepsilon = r > 0$ có một số nguyên N sao cho

$$||x_n - x|| < \varepsilon \qquad \forall \ n \ge N.$$

Vậy $B(x,r) \cap A \neq \emptyset$ với mọi $r > 0 : x \in \overline{A}$

1.3.1 Cho a và b là hai vectơ trong một không gian định chuẩn (E, ||.||). Chứng minh

$$|||a|| - ||b||| \le ||a - b||. \tag{1}$$

Suy ra hàm số f liên tục trên (E, ||.||), nếu f(x) = ||x|| với mọi x trong E.

Giải

Ta thấy (1) tương đương với

$$\left\{ \begin{array}{l} ||a|| - ||b|| \leq ||a-b||, \\ \\ ||b|| - ||a|| \leq ||a-b||. \end{array} \right.$$

hay

$$\begin{cases} ||a|| \le ||a - b|| + ||b||, \\ ||b|| \le ||a - b|| + ||a||. \end{cases}$$

hay

$$\left\{ \begin{array}{l} ||(a-b)+b|| \leq ||a-b|| + ||b||, \\ ||(b-a)+a|| \leq ||a-b|| + ||a||. \end{array} \right.$$

Vậy ta có (1). Từ (1) ta có

$$|f(y) - f(x)| \le ||y - x|| \qquad \forall x, y \in E.$$

Vậy với mọi $\varepsilon>0,$ chọn $\delta=\frac{\varepsilon}{2}$ ta có

$$|f(y) - f(x)| < \varepsilon$$
 $\forall x, y \in E, ||x - y|| < \delta.$

Vậy f liên tục trên E.

1.3.2 Cho A là một tập hợp bị chặn trong một không gian định chuẩn (E, ||.||). Chứng minh có một số thực dương r sao cho $A \subset B(0, r)$.

Giải

Có số thực M sao cho

$$||x|| \le M \quad \forall x \in A.$$

Đặt r = M + 1, ta có

$$||x - 0|| = ||x|| < r \qquad \forall \ x \in A.$$

Vậy $x \in B(0,r)$, từ đó $A \subset B(0,r)$.

1.3.11 Cho A là một tập hợp compắc trong một không gian định chuẩn (E, ||||). Chứng minh

- (i) A đóng.
- (ii) A bị chặn.

Giải

Cho một dãy $\{y_n\}$ trong A, ta có một dãy con $\{y_{n_k}\}$ của $\{y_n\}$, sao cho $\{y_{n_k}\}$ hội tụ về y trong A. Áp dụng bài 1.1.4, ta thấy A là một tập đóng trong E.

Nay ta chứng minh A bị chặn. Ta dùng phản chứng : giải sử A không bị chặn. Dùng qui nạp toán học ta tìm được một dãy $\{x_n\}$ có tính chất

$$1 + ||x_1|| + \dots + ||x_n|| < ||x_{n+1}|| \qquad \forall n \in \mathbb{N}.$$

Vây

$$1 < ||x_m|| - ||x_n|| \le ||x_m - |x_n||$$
 $\forall m, n \in \mathbb{N}, m > n.$

hay

$$1 < ||x_m - |x_n|| \qquad \forall m, n \in \mathbb{N}, m \neq n. \tag{1}$$

Cho $\{x_{n_k}\}$ là một dãy con của dãy $\{x_n\}$. Theo (1),

$$1 < ||x_{n_k} - |x_{n_{k'}}||$$
 $\forall k, k' \in \mathbb{N}, k \neq k'.$

Vậy $\{x_{n_k}\}$ không là một dãy
Cauchy, nên không hội tụ : mâu thuẩn với giả thiết compắc của A.

1.1.6 Cho A là một tập hợp khác trống trong một không gian định chuẩn $(E, ||||_E)$ và f là một ánh xạ từ A vào một không gian định chuẩn $(F, ||||_F)$. Chứng minh f liên tục trên A nếu và chỉ nếu với mọi tập mở V trong F, có một tập mở W trong E sao cho $f^{-1}(V) = W \cap A$.

Giải

 \bullet Giả sử f liên tục trên A. Cho một tập mở V trong F, ta tìm một tập mở W trong E sao cho $f^{-1}(V) = W \cap A.$

Cho x trong $B \equiv f^{-1}(V)$, ta có $y = f(x) \in V$. Do bài 1.1.2 và sự liên tục của f tại x, ta thấy có $r_x > 0$ sao cho $B(y, r_x) \subset V$, và với $\varepsilon = r_x$, có một $\delta_x > 0$ sao cho

$$||f(z) - f(x)||_F < \varepsilon$$
 $\forall z \in A, ||z - x||_E.$

hay $f(z) \in B(y, \varepsilon)$ với mọi $z \in A \cap B(x, \delta_x)$, hay $f(A \cap B(x, \delta_x)) \subset B(y, \varepsilon) = B(y, r_x) \subset V$.

Đặt
$$W = \bigcup_{x \in B} B(x, \delta_x)$$
. Ta có $W \cap A = \bigcup_{x \in B} B(x, \delta_x) \cap A$ và

$$f(W \cap A) = f(\bigcup_{x \in B} B(x, \delta_x) \cap A) \subset \bigcup_{x \in B} f(B(x, \delta_x) \cap A) \subset V$$
$$V = \bigcup_{x \in B} \{f(x)\} \subset f(W \cap A).$$

Vậy

$$f(W \cap A) = V$$
.

ullet Giả sử với mọi tập mở V trong F, có một tập mở W trong E sao cho $f^{-1}(V) = W \cap A$. Ta chứng minh f liên tục trên A.

Cho x trong A, và $\varepsilon > 0$, ta tìm δ sao cho

$$||f(z) - f(x)||_F < \varepsilon$$
 $\forall z \in A, ||z - x||_E.$

hay

$$f(A \cap B(x, \delta)) \subset B(f(x), \varepsilon).$$

hay

$$A \cap B(x, \delta) \subset f^{-1}(B(f(x), \varepsilon)).$$

Đặt $V=B(f(x),\varepsilon)$. Theo giả thiết có một tập mở W trong E sao cho $f^{-1}(V)=W\cap A$. Vậy $x\in W$. Theo bài 1.1.2, ta có r>0 sao cho $B(x,r)\subset W$. Đặt $\delta=r$, ta có

$$A \cap B(x, \delta) \subset W \cap A = f^{-1}(B(f(x), \varepsilon)).$$

1.1.6] Cho A là một tập hợp compắc trong một không gian định chuẩn $(E, ||||_E)$ và f là một ánh xạ liên tục từ A vào một không gian định chuẩn $(F, ||||_F)$. Chứng minh f(A) compắc trong F.

Giải

Cho $\{y_n\}$ là một dãy trong f(A). Ta sẽ tìm một dãy con $\{y_{n_k}\}$ của $\{y_n\}$ hội tụ về y trong f(A). Chọn x_n trong A sao cho $f(x_n) = y_n$. Vì A compắc, có một dãy con $\{x_{n_k}\}$ của $\{x_n\}$ hội tụ về x trong A. Do tính liên tục của f, $\{f(x_{n_k})\}$ hội tụ về y = f(x).

1.2.5i Cho A là một tập hợp khác trống và (E, ||||) là một không gian định chuẩn trên Φ . Đặt B(A, E) là tập hợp các ánh xạ f từ A vào E sao cho f(A) bị chặn trong E. Với mọi f và g trong B(A, E), x trong A và α trong Φ ta đặt

$$(f+g)(x) = f(x) + g(x),$$

$$(\alpha f)(x) = \alpha f(x),$$

$$||f||_{\infty} = \sup\{||f(y)|| : y \in A\}.$$

Chứng minh $(B(A,F),||.||_{\infty})$ là một không gian định chuẩn.

Giải

Cho f và g trong B(A, E) và α trong Φ , ta chứng minh f + g và αf ở trong B(A, E). Có hai số thực dương M_1 và M_2 sao cho

$$||f(x)|| \le M_1 \qquad \forall x \in A. \tag{1}$$

$$||g(x)|| \le M_2 \qquad \forall x \in A. \tag{2}$$

Từ (1) và (2) ta có

$$||(f+g)(x)|| = ||f(x) + g(x)|| \le ||||f(x)|| + ||g(x)|| M_1 + M_2 \qquad \forall x \in A.$$

$$||(\alpha f)(x)|| = ||\alpha f(x)|| = |\alpha||f(x)|| \le |\alpha| M_1 \qquad \forall x \in A.$$

Vậy f+g và αf ở trong B(A,E). Từ đó B(A,E) là một không gian vecto.

Nay ta chứng minh $||.||_{\infty}$ là một chuẩn trên B(A, E). Cho f và g trong B(A, E), x trong A và α trong Φ . Vì $||f(x)|| \ge 0$, nên

$$||f||_{\infty} = \sup\{||f(y)|| : y \in A\} \ge 0.$$

Nếu $||f||_{\infty} = 0$, ta có

$$\sup\{||f(y)|| : y \in A\} = 0.$$

Vậy

$$||f(y)|| = 0 \qquad \forall y \in A.$$

Vậy f(y) = 0 với mọi y trong A hay f = 0. Ta có

$$\begin{split} ||\alpha f||_{\infty} &= \sup\{||\alpha f(y)|| : y \in A\} = \sup\{|\alpha|||f(y)|| : y \in A\} \\ &= \sup|\alpha|\{||f(y)|| : y \in A\} = \alpha|\sup|\{||f(y)|| : y \in A\} = ||\alpha|||f||_{\infty}. \end{split}$$

Đặt
$$C = \{||f(y)|| : y \in A\}$$
 và $D = \{||g(y)|| : y \in A\}$, ta có

$$||f+g||_{\infty} = \sup |\{||f(y)+g(y)|| : y \in A\} \le \sup |\{||f(y)|| + ||g(y)|| : y \in A\}$$

 $\le \sup(C+D) \le \sup C + \sup D = ||f||_{\infty} + ||g||_{\infty}.$

Vậy $||.||_{\infty}$ là một chuẩn trên B(A, E).

1.2.7i,ii Cho [a,b] là một khoảng đóng bị chặn trong R. Đặt X=C([a,b],R) là tập các hàm số thực liên tục trên [a,b]. Với mọi f và g trong X, x trong [a,b] và α trong R ta đặt

$$(f+g)(x) = f(x) + g(x),$$
$$(\alpha f)(x) = \alpha f(x),$$

$$||f||_{\infty} = \sup\{|f(y)| : y \in [a, b]\}.$$

Chứng minh $(X, ||.||_{\infty})$ là một không gian định chuẩn con của $B([a, b], \mathbb{R})$, và $(X, ||.||_{\infty})$ là một không gian Banach.

Cho f và g trong X và α trong R. Ta thấy f+g và αf là các hàm số thực liên tục, nên X là một không gian vectơ trên R. Vì f([a,b]) bị chặn với mọi f trong X, nên X chứa trong B([a,b],R). Vậy X là không gian vectơ con của B([a,b],R). Suy ra $(X,||.||_{\infty})$ là không gian vectơ định chuẩn con của B([a,b],R).

Ta chứng minh $(X, ||.||_{\infty})$ là một không gian Banach. Cho $\{f_m\}$ là một dãy Cauchy trong X. Ta tìm một f trong X sao cho $\{f_m\}$ hội tụ về f trong X, hay

$$\lim_{m \to \infty} ||f_m - f||_{\infty} = 0. \tag{1}$$

Trước hết ta xác định f. Vì $\{f_m\}$ là một dãy Cauchy trong X ta có

$$\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N} : |f_m - f_n||_{\infty} < \varepsilon \qquad m > n \ge N(\varepsilon).$$

hay

$$\forall \ \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N} : |f_m(x) - f_n(x)| < \varepsilon \qquad m > n \ge N(\varepsilon), x \in [a, b]. \tag{2}$$

Vậy, với mọi x trong [a, b], $\{f_m(x)\}$ là một dãy Cauchy trong R, và hội tụ về một số thực được ký hiệu là f(x).

Ta đã xác định được một hàm số thực f trên [a,b]. Nay ta chứng minh f thuộc X, nghĩa là f liên tục trên [a,b]. Cho x trong [a,b], ta có

$$\forall \varepsilon' > 0, \exists M(x, \varepsilon') \in \mathbf{N} : |f_k(x) - f(x)| < \varepsilon' \qquad \forall k > M(x, \varepsilon'). \tag{3}$$

Từ (2) và (3), ta thấy

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| < \varepsilon' + \varepsilon$$

$$\forall n > N(\varepsilon), m > \max\{n, N(\varepsilon), M(x, \varepsilon')\}, x \in [a, b]. \tag{4}$$

Chọ ε , chọn $\varepsilon'=\frac{\varepsilon}{2}$ và $m=\max\{n,N(\varepsilon)\geq M(x,\varepsilon')\}$, ta có

$$|f_n(x) - f(x)| < 2\varepsilon \quad \forall n \ge N(\varepsilon), x \in [a, b].$$
 (5)

Cho y và z trong [a, b], từ (5)

$$|f(y) - f(z)| \leq |f(y) - f_k(y)| + |f_k(y) - f_k(z)| + |f_k(z) - f(z)|$$

$$\leq 4\varepsilon + |f_k(y) - f_k(z)| \quad k \geq N(\varepsilon). \tag{6}$$

Chọn $k = N(\varepsilon)$, do tính liên tục đều của f_k , ta có

$$\forall \varepsilon" > 0, \exists \eta(\varepsilon") > 0 : |f_k(y) - f_k(z)| < \varepsilon" \qquad \forall y, z \in [a, b], |y - z| < \eta(\varepsilon"). \tag{7}$$

Từ (6) và (7) ta có

$$\forall \ \varepsilon" > 0, \exists \eta(\varepsilon") > 0: |f(y) - f(z)| < 4\varepsilon + \varepsilon" \qquad \forall \ y, z \in [a, b], |y - z| < \eta(\varepsilon"), \varepsilon > 0,$$

hay

$$\forall \ \varepsilon">0, \exists \eta(\varepsilon")>0: |f(y)-f(z)|\leq \varepsilon" \qquad \forall \ y,z\in [a,b], |y-z|<\eta(\varepsilon").$$

Vậy f liên tục trên [a, b]. Nay ta chứng minh (1). Theo (5), ta có

$$|f_n(x) - f(x)| < 2\varepsilon \quad \forall n \ge N(\varepsilon), x \in [a, b].$$

Vậy

$$||f_n - f||_{\infty} = \sup\{|f_n(x) - f(x)| : x \in [a, b]\} < 2\varepsilon \quad \forall n \ge N(\varepsilon).$$

1.2.7i,ii Cho [a,b] là một khoảng đóng bị chặn trong R. Đặt X = C([a,b],R) là tập các hàm số thực liên tục trên [a,b]. Với mọi f và g trong X, x trong [a,b] và α trong R ta đặt

$$(f+g)(x) = f(x) + g(x),$$

$$(\alpha f)(x) = \alpha f(x),$$

$$||f||_1 = \int_a^b |f(t)| dt.$$

Chứng minh $(X, ||.||_1)$ là một không gian định chuẩn, nhưng không là một không gian Banach.

Giải

Cho f và g trong X, và s trong R.

Vì $|f| \ge 0$, ta có

$$||f||_1 = \int_a^b |f(t)| dt \ge 0.$$

Giả sử $f\not\equiv 0$. Ta có y trong [a,b] sao cho $f(y)=\alpha\neq 0$. Cho $\varepsilon=\frac{|\alpha|}{2}>0$. Vì f liên tục nên có $\delta(y,\varepsilon)>0$ sao cho

$$|f(y) - f(t)| < \varepsilon \qquad \forall \ t \in [a, b] \cap [y - \delta(y, \varepsilon), y + \delta(y, \varepsilon)]. \tag{1}$$

Có c < dsao cho $[a,b] \cap [y - \delta(y,\varepsilon), y + \delta(y,\varepsilon)] = [c,d].$ Với ttrong [c,d], do (1)

$$|f(y)| - |f(t)| < \varepsilon$$
 or $\frac{|\alpha|}{2} < |f(t)|$.

Suy ra

$$||f||_1 = \int_a^b |f(t)|dt \ge \int_c^d |f(t)|dt \ge \int_c^d \frac{|\alpha|}{2}dt \ge \frac{|\alpha|}{2}(d-c) > 0.$$

Vậy $f \equiv 0$ nếu $||f||_1 = 0$.

Ta có

$$||sf||_1 = \int_a^b |sf(t)|dt = \int_a^b |s||f(t)|dt = |s| \int_a^b |f(t)|dt = |s|||f||_1.$$

$$||f+g||_1 = \int_a^b |f(t)+g(t)|dt \le \int_a^b [|f(t)|+|g(t)|dt]$$

$$= \int_a^b |f(t)|dt + \int_a^b |g(t)dt| = ||f||_1 + ||g||_1.$$

Vậy $||.||_1$ là một chuẩn trên X.

Nay ta chứng minh $(X, ||.||_1)$ không là một không gian Banach. Ta sẽ tìm một dãy Cauchy trong $(X, ||.||_1)$ nhưng không hội tụ. Đặt $c = \frac{1}{2}(a+b)$, $c_n = c + \frac{b-a}{4n}$ với mọi số nguyên dương n và

$$f_n(t) = \begin{cases} 0 & a \le t \le c, \\ \frac{t-c}{c_n-c} & c \le t \le c_n, \\ 1 & c_n \le t \le b. \end{cases}$$

Cho hai số nguyên dương m và nsao cho m>n. Ta có $c_m < c_n$ và

$$||f_n - f_m||_1 = \int_a^b |f_n(t) - f_m(t)| dt = \int_c^{c_n} |f_n(t) - f_m(t)| dt$$

$$\leq \int_c^{c_n} (|f_n(t)| + |f_m(t)|) dt \leq \int_c^{c_n} 2dt = \frac{b - a}{2n}.$$

Từ đó $\{f_n\}$ là một dãy Cauchy trong $(X, ||.||_1)$. Nay giả sử có f trong X sao cho $\{f_n\}$ hội tụ về f trong $(X, ||.||_1)$. Lúc đó, cho một số dương ε , ta tìm được một số nguyên dương $N(\varepsilon)$ sao cho

$$\int_{a}^{b} |f_{n}(t) - f(t)| dt = ||f_{n} - f||_{1} < \varepsilon \qquad \forall n \ge N(\varepsilon).$$

Vậy

$$\int_{a}^{c} |f(t)|dt + \int_{c_{n}}^{b} |1 - f(t)|dt = \int_{a}^{c} |f_{n}(t) - f(t)|dt + \int_{c_{n}}^{b} |f_{n}(t) - f(t)|dt$$

$$\leq \int_{a}^{b} |f_{n}(t) - f(t)|dt < \varepsilon \qquad \forall n \geq N(\varepsilon).$$

Cố định một số nguyên dương k, ta tìm được một số nguyên dương $n \geq \max\{k, N(\varepsilon)\}$. Lúc đó $c_n < c_k$ và

$$\int_a^c |f(t)|dt + \int_{c_k}^b |1 - f(t)|dt \le \int_a^c |f(t)|dt + \int_{c_n}^b |1 - f(t)|dt < \varepsilon$$

hay

$$\int_{a}^{c} |f(t)|dt + \int_{C}^{b} |1 - f(t)|dt < \varepsilon \qquad \forall \ \varepsilon > 0, k \in \mathbb{N}$$

hay

$$\int_{a}^{c} |f(t)|dt + \int_{c_{k}}^{b} |1 - f(t)|dt = 0 < \varepsilon \qquad \forall k \in \mathbb{N}$$

Như bên trên ta có với mọi số nguyên dương k

$$f(t) = \begin{cases} 0 & a \le t \le c, \\ 1 & c_n \le t \le b. \end{cases}$$

Từ đó ta có f(c) = 0 và $f(c_k) = 1$. Nhưng f liên tục tại c và $\{c_k\}$ hội về c. Ta có mâu thuẩn.

1.3.7i Cho n là một số nguyên ≥ 2 , Φ là R hay C, $(E_1, ||.||_1)$, \cdots , $(E_n, ||.||_n)$ là n không gian định chuẩn trên Φ . Đặt

$$E = E_1 \times \dots E_n,$$

$$x + y = (x_1 + y_1, \dots, x_n + y_n) \quad \forall \ x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in E,$$

$$\alpha x = (\alpha x_1, \dots, \alpha x_n) \quad \forall \ \alpha \in \Phi, x = (x_1, \dots, x_n) \in E,$$

$$||x|| = ||x_1||_1 + \dots + ||x_n||_n \quad \forall \ x = (x_1, \dots, x_n) \in E.$$

Chứng minh E là một không gian vecto định chuẩn trên Φ .

Giải

Ta dùng qui nạp toán học. Xét trường hợp n=2. Cho $x=(x_1,x_2),\,y=(y_1,y_2),\,z=(z_1,z_2)$ trong $E=E_1\times E_2$ và α trong Φ . Ta có

$$x + y = (x_1 + y_1, x_2 + y_2) = (y_1 + x_1, y_2 + x_2) = y + x$$

$$x + (y + z) = (x_1 + (y_1 + z_1), x_2 + (y_2 + z_2)) = ((x_1 + y_1) + z_1, (x_2 + y_2) + z_2) = (x + y) + z.$$

Cho 0_1 và 0_2 là các vecto không trong E_1 và E_2 . Đặt $0=(0_1,0_2)$, ta có

$$x + 0 = (x_1 + 0_1, x_2 + 0_2) = (x_1, x_2) = x \ \forall \ x = (x_1, x_2) \in E.$$