Equations integrated in PyTelTools

Yishu WANG, Luc DURON

August 2017

Table of Contents

1	Variables notations		2			
2	2 Constants					
3	Equations in 2D					
	3.1	Hydraulic variables	2			
	3.2	Sediment transport variables	2			
	3.3	Friction velocity	2			
		3.3.1 Chézy	3			
		3.3.2 Strickler	3			
		3.3.3 Manning	3			
		3.3.4 Nikuradse	3			
	3.4	Bed shear stress, Rouse number and diameter	3			
4	Ear	Equations in 3D				

1 Variables notations

Notation of 2D and 3D variables are described on this wiki page: https://github.com/CNR-Engineering/TelTools/wiki/Notations-of-variables. Variable notations used in this document are based on the varID column of the tables presented on latter webpage.

2 Constants

Equations may contain following constants:

Notation	Description	Value and unit
g	g gravitational accelaration on earth	
ρ	water density	$1000 \; kg.m^{-3}$
κ	Von Kármán constant	0.4

These constants are set in slf/variable/variables_utils.py.

3 Equations in 2D

3.1 Hydraulic variables

3.2 Sediment transport variables

$$\begin{split} \mathbf{H} &= \mathbf{S} - \mathbf{B} \\ \mathbf{S} &= \mathbf{H} + \mathbf{B} \\ \mathbf{B} &= \mathbf{S} - \mathbf{H} \\ \mathbf{M} &= \sqrt{\mathbf{U}^2 + \mathbf{V}^2} \\ \mathbf{I} &= \mathbf{H} \times \mathbf{U} \\ \mathbf{J} &= \mathbf{H} \times \mathbf{V} \\ \mathbf{Q} &= \sqrt{\mathbf{I}^2 + \mathbf{J}^2} \\ \mathbf{C} &= \sqrt{g \, \mathbf{H}} \\ \mathbf{F} &= \frac{\mathbf{M}}{\mathbf{C}} \end{split}$$

3.3 Friction velocity

$$US = \sqrt{\frac{1}{2} C_f M^2}$$

Law	Coefficient
Chézy	C
Strickler	K
Manning	m
Nikuradse	k_S

3.3.1 Chézy

3.3.3 Manning

3.3.4 Nikuradse

$$C_f = \frac{2g}{C^2}$$

$$C_f = \frac{2gm^2}{\mathrm{H}^{1/3}}$$

3.3.2 Strickler

$$C_f = \frac{2g}{K^2 \mathrm{H}^{1/3}} \qquad \qquad C_f = \frac{2\kappa^2}{\left[\log\left(\frac{30}{e^1}\frac{\mathrm{H}}{k_S}\right)\right]^2}$$

3.4 Bed shear stress, Rouse number and diameter

 $\mathrm{TAU} = \tau = \rho\,\mathrm{US}^2$

$$R_0 = \frac{w_s}{\kappa \text{ US}}$$
 FROTP = MU DMAX
$$DMAX = \begin{cases} 1.4593 \times \tau^{0.979} & \text{if } \tau > 3.4\\ 1.2912 \times \tau^2 + 1.3572\tau - 0.1154 & \text{if } 0.1 < \tau \leqslant 0.34\\ 0.9055 \times \tau^{1.3178} & \text{if } \tau \leqslant 0.1 \end{cases}$$

4 Equations in 3D

$$\begin{aligned} \mathbf{M} &= \sqrt{\mathbf{U}^2 + \mathbf{V}^2 + \mathbf{W}^2} \\ \mathbf{N}\mathbf{U} &= \sqrt{\mathbf{N}\mathbf{U}\mathbf{X}^2 + \mathbf{N}\mathbf{U}\mathbf{Y}^2 + \mathbf{N}\mathbf{U}\mathbf{Z}^2} \end{aligned}$$