Supplementary Information for

Quantum Chemistry-Informed Active Learning to Accelerate the Design and Discovery of Sustainable Energy Storage Materials

Hieu A. Doan, $^{\dagger, \ddagger}$ Garvit Agarwal, $^{\dagger, \ddagger}$ Hai Qian, $^{\P, \S, \ddagger}$ Michael J. Counihan, $^{\P, \S, \ddagger}$ Joaquín Rodríguez-López, $^{\P, \S, \ddagger}$ Jeffrey S. Moore, $^{\P, \S, \dagger}$ and Rajeev S. Assary $^{\dagger, \ddagger, *}$

[†]Materials Science Division, Argonne National Laboratory and [‡]Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL 60439, USA

[¶]The Beckman Institute for Advanced Science and Technology, §Department of Chemistry, and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Table S1 List of 133 identified HBEs with computed oxidation potential (E^{ox}) in the range of 1.40 V to 1.70 V

HBE#	SMILES	2-D Structure	E ^{ox} (V vs. NHE)
1	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C4= CC=CC=C4)OC)C=C1		1.52
2	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C(C)OC)C=C1		1.52
3	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C(C)OCOC)C=C1		1.53
4	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C)O COC)C=C1		1.54
5	O(C)C1=CC=C(C(C)(C)C(C)OCOC)C=C1	·	1.54

6	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C(C3=CC=CC=C3)O C)C=C1	1.54
7	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C(C)OC3=CC=CC=C 3)C=C1	1.54
8	O(C)C1=CC=C(C([H])(C)C(C2=CC=CC=C2)OC)C=C1	1.55
9	O(C)C1=CC=C(C([H])(C)C(C)OC2=CC=CC=C2)C=C1	1.55
10	O(C)C1=CC=C(C(C)(C)C(C)OC)C=C1	1.55

11	O(C)C1=CC=C(C(C)([H])C(OC)OCOC)C=C1	1.55
12	O(C)C1=CC=C(C([H])(C)C(C)OC)C=C1	1.56
13	O(C)C1=CC=C(C(C)(C2=CC=CC2)C(OC)OC)C=C1	1.56
14	O(C)C1=CC=C(C(C)([H])C(OC)OC)C=C1	1.56
15	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C([H])OC)C=C1	1.56

16	O(C)C1=CC=C(C(C)(C)C(C2=CC=CC=C2)OC3=CC=CC=C 3)C=C1	1.56
17	O(C)C1=CC=C(C(C)(C2=CC=CC=C2)C(C3=CC=CC=C3)O C4=CC=CC=C4)C=C1	1.57
18	O(C)C1=CC=C(C([H])([H])C(C)OC2=CC=CC=C2)C=C1	1.57
19	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C(OC)OC3=CC=CC= C3)C=C1	1.57
20	O(C)C1=CC=C(C([H])(C)C(C2=CC=CC=C2)OC3=CC=CC= C3)C=C1	1.57

21	O(C)C1=CC=C(C(C)(C)C([H])OC)C=C1		1.57
22	O(C)C1=CC=C(C(C)(C)C(OC)OC)C=C1		1.58
23	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C(OC)OC)C=C1		1.58
24	O(C)C1=CC=C(C(C)(C)C(OC)OCOC)C=C1	·	1.58
25	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C(OC)OCOC)C=C1		1.58

26	O(C)C1=CC=C(C(C)(C)C(OC)OC2=CC=CC=C2)C=C1	· () + ()	1.58
27	O(C)C1=CC=C(C([H])([H])C(C)OC)C=C1		1.58
28	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C(C)OC)C=C1		1.58
29	O(C)C1=CC=C(C(C2=CC=CC=C2)([H])C(C3=CC=CC=C3) OC)C=C1		1.58
30	O(C)C1=CC=C(C(C)(C)C([H])OC2=CC=CC=C2)C=C1	Q. + ()-q	1.58

31	O(C)C1=CC=C(C(C)(C)C([H])OCOC)C=C1	-, - o + () - o	1.58
32	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C([H])OC3=CC=CC= C3)C=C1		1.58
33	O(C)C1=CC=C(C(C)(C2=CC=CC=C2)C(C3=CC=CC=C3)O COC)C=C1		1.59
34	O(C)C1=CC=C(C(C)([H])C([H])OC)C=C1		1.59
35	O(C)C1=CC=C(C(C)([H])C(C)OCOC)C=C1		1.59

36	O(C)C1=CC=C(C([H])(C)C(OC)OC2=CC=CC=C2)C=C1		1.59
37	O(C)C1=CC=C(C([H])([H])C([H])OC)C=C1		1.59
38	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C4= CC=CC=C4)OC5=CC=CC=C5)C=C1		1.59
39	O(C)C1=CC=C(C([H])([H])C(C2=CC=C2)OCOC)C=C1		1.59
40	O(C)C1=CC=C(C(C)(C)C(C)OC2=CC=CC=C2)C=C1	·	1.59

41	O(C)C1=CC=C(C(C)(C)C(C2=CC=CC=C2)OC)C=C1	1.60
42	O(C)C1=CC=C(C(C)([H])C([H])OCOC)C=C1	1.60
43	O(C)C1=CC=C(C(C2=CC=CC=C2)([H])C([H])OCOC)C=C1	1.60
44	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C([H]) OC)C=C1	1.60
45	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C(C3=CC=CC3) OCOC)C=C1	1.6

46	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C([H])OC)C=C1	1.60
47	O(C)C1=CC=C(C(C)([H])C(C2=CC=CC2)OCOC)C=C1	1.60
48	O(C)C1=CC=C(C([H])([H])C(C2=CC=CC=C2)OC)C=C1	1.60
49	O(C)C1=CC=C(C(C)(C2=CC=CC=C2)C([H])OCOC)C=C1	1.61
50	O(C)C1=CC=C(C([H])([H])C(OC)OC2=CC=CC=C2)C=C1	1.61

51	CCC1=CC=C(C([H])(C)C(C2=CC=CC=C2)OC)C=C1	1.61
52	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C([H]) OCOC)C=C1	1.61
53	O(C)C1=CC=C(C(C)(C2=CC=CC=C2)C(OC)OCOC)C=C1	1.61
54	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(OC) OC)C=C1	1.61
55	O(C)C1=CC=C(C([H])(C2=CC=CC2)C(C)OCOC)C=C1	1.61

56	O(C)C1=CC=C(C([H])([H])C(C)OCOC)C=C1		1.61
57	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(Br)O C)C=C1	Br	1.61
58	O(C)C1=CC=C(C([H])(C)C([H])OC2=CC=CC=C2)C=C1	Or LO	1.62
59	O(C)C1=CC=C(C([H])([H])C([H])OCOC)C=C1		1.62
60	O(C)C1=CC=C(C(C2=CC=CC=C2)([H])C(C3=CC=CC=C3) OC4=CC=CC=C4)C=C1		1.62

61	O(C)C1=CC=C(C([H])([H])C(OC)OCOC)C=C1	1.62
62	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C)O C4=CC=CC=C4)C=C1	1.62
63	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C([H])OC3=CC=C C=C3)C=C1	1.63
64	O(C)C1=CC=C(C(C)(C)C(C2=CC=CC=C2)OCOC)C=C1	1.63
65	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C(C)OC3=CC=CC= C3)C=C1	1.63

66	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(Br)O COC)C=C1	Br Br	1.63
67	O(C)C1=CC=C(C(C2=CC=CC=C2)([H])C(OC)OC3=CC=CC =C3)C=C1		1.63
68	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C(Br)OC3=CC=CC =C3)C=C1		1.63
69	O(C)C1=CC=C(C([H])(C)C(Br)OC)C=C1	O O O	1.64
70	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C(Br)OC)C=C1	o Br	1.64

71	O(C)C1=CC=C(C([H])([H])C(OC)OC)C=C1		1.64
72	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C([H]) OC4=CC=CC=C4)C=C1	0.50.	1.64
73	C(OC)(=O)C1=CC=C(C(C)(C)C(C)OC2=CC=CC=C2)C=C1	.>	1.65
74	C1=CC=CC=C1C2=CC=C(C(C)(C3=CC=CC=C3)C(C)OC)C =C2		1.65
75	O(C)C1=CC=C(C([H])([H])C(C2=CC=CC=C2)OC3=CC=C C=C3)C=C1		1.65

76	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C#N)OC)C=C1	N N	1.65
77	O(C)C1=CC=C(C(C2=CC=CC=C2)(C)C(Br)OC3=CC=CC= C3)C=C1	Br Br	1.65
78	CCC1=CC=C(C([H])(C)C(C)OC2=CC=CC=C2)C=C1		1.66
79	C1=CC=CC=C1C2=CC=C(C([H])(C3=CC=CC=C3)C(C)OC 4=CC=CC=C4)C=C2		1.66
80	C1=CC=CC=C1C2=CC=C(C(C)([H])C(C)OC)C=C2		1.66

81	O(C)C1=CC=C(C(C2=CC=CC=C2)([H])C(Br)OCOC)C=C1	1.66
82	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C)O C)C=C1	1.66
83	C1=CC=CC=C1C2=CC=C(C([H])(C)C(C)OC3=CC=CC=C3) C=C2	1.66
84	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)([H])C(C)OC OC)C=C2	1.66
85	C1=CC=CC=C1C2=CC=C(C(C)(C)C(OC)OC)C=C2	1.66

86	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C)C(OC)OC) C=C2		1.67
87	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C)C(OC)OC OC)C=C2		1.67
88	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C4= CC=CC=C4)OCOC)C=C1		1.67
89	C1=CC=CC=C1C2=CC=C(C(C)(C)C(C3=CC=CC=C3)OC)C =C2	0010	1.67
90	O(C)C1=CC=C(C([H])([H])C(Br)OCOC)C=C1		1.67

91	C1=CC=CC=C1C2=CC=C(C([H])(C)C(C3=CC=CC=C3)OC) C=C2	0440	1.67
92	O(C)C1=CC=C(C([H])(C2=CC=CC=C2)C(Br)OC)C=C1	Br O	1.67
93	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(Br)O C4=CC=CC=C4)C=C1		1.67
94	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)([H])C(OC)O COC)C=C2		1.68
95	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C)C(C4=CC= CC=C4)OCOC)C=C2		1.68

96	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(OC) OC4=CC=CC=C4)C=C1	1.68
97	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)([H])C(OC)O C)C=C2	1.68
98	C1=CC=CC=C1C2=CC=C(C([H])(C)C(C)OCOC)C=C2	1.68
99	O(C)C1=CC=C(C([H])([H])C([H])OC2=CC=CC=C2)C=C1	1.68
100	C1=CC=CC=C1C2=CC=C(C(C)(C)C(C3=CC=CC=C3)OCO C)C=C2	1.68

101	C1=CC=CC=C1C2=CC=C(C([H])(C3=CC=CC=C3)C(C4=C C=CC=C4)OC)C=C2		1.68
102	C1=CC=CC=C1C2=CC=C(C([H])([H])C(C)OC3=CC=CC=C 3)C=C2		1.68
103	C1=CC=CC=C1C2=CC=C(C(C)(C3=CC=CC=C3)C(C)OC4= CC=CC=C4)C=C2		1.68
104	C1=CC=CC=C1C2=CC=C(C(C)(C3=CC=CC=C3)C([H])OC OC)C=C2	0000	1.68
105	[H]C1=CC=C(C(C)([H])C(C2=CC=CC=C2)OC)C=C1		1.68

106	C1=CC=CC=C1C2=CC=C(C(C)(C)C(C)OCOC)C=C2		1.68
107	C1=CC=CC=C1C2=CC=C(C(C)(C3=CC=CC=C3)C([H])OC) C=C2		1.68
108	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C4=CC=CC= C4)C([H])OC)C=C2		1.68
109	C1=CC=CC=C1C2=CC=C(C([H])(C3=CC=CC=C3)C(C4=C C=CC=C4)OCOC)C=C2		1.69
110	C1=CC=CC=C1C2=CC=C(C(C)(C)C(OC)OC3=CC=CC=C3) C=C2	0-6-1-6	1.69

111	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C4=CC=CC= C4)C(C5=CC=CC=C5)OC)C=C2	1.69
112	O(C)C1=CC=C(C([H])(C)C(Br)OCOC)C=C1	1.69
113	C1=CC=CC=C1C2=CC=C(C(C)(C)C([H])OC)C=C2	1.69
114	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C)C(OC)OC 4=CC=CC=C4)C=C2	1.69
115	C(#N)C1=CC=C(C(C)(C)C(C2=CC=CC=C2)OC3=CC=CC= C3)C=C1	1.69

116	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C4=CC=CC= C4)C(C5=CC=CC=C5)OCOC)C=C2		1.69
117	C1=CC=CC=C1C2=CC=C(C([H])([H])C([H])OC3=CC=CC= C3)C=C2	0000	1.69
118	C1=CC=CC=C1C2=CC=C(C([H])(C)C(OC)OC)C=C2		1.69
119	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C)C(C4=CC= CC=C4)OC)C=C2		1.69
120	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C4=CC=CC= C4)C(OC)OC)C=C2		1.69

121	O(C)C1=CC=C(C(C2=CC=CC=C2)(C3=CC=CC=C3)C(C#N)OC4=CC=CC=C4)C=C1	1.69
122	[H]C1=CC=C(C(C)(C)C(C)OC2=CC=CC=C2)C=C1	1.69
123	C1=CC=CC=C1C2=CC=C(C([H])([H])C(C)OC)C=C2	1.69
124	C1=CC=CC=C1C2=CC=C(C(C)(C3=CC=CC=C3)C(C)OCO C)C=C2	1.69
125	C1=CC=CC=C1C2=CC=C(C(C)(C)C(C)OC)C=C2	1.69

126	C1=CC=CC=C1C2=CC=C(C(C)(C)C(OC)OCOC)C=C2		1.69
127	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)(C)C(C4=CC= CC=C4)OC5=CC=CC=C5)C=C2		1.69
128	C1=CC=CC=C1C2=CC=C(C([H])(C)C([H])OC)C=C2		1.70
129	C1=CC=CC=C1C2=CC=C(C(C)(C)C(C)OC3=CC=CC=C3)C =C2	Q-Q-KQ	1.70
130	C1=CC=CC=C1C2=CC=C(C(C3=CC=CC=C3)([H])C(C4=C C=CC=C4)OC5=CC=C5)C=C2		1.70

131	O(C)C1=CC=C(C(C)(C2=CC=CC=C2)C(C#N)OC)C=C1		1.70
132	CCC1=CC=C(C(C)(C)C(C)OC2=CC=CC=C2)C=C1	JH.	1.70
133	CCC1=CC=C(C([H])([H])C(C)OC2=CC=CC=C2)C=C1		1.70

Table S2 Most favorable mesolytic cleavage pathways (red bonds) and their corresponding fragmentation free energy (ΔG_{min}^{meso}) for 10 randomly selected molecules from the 133 identified HBEs in Table S1.

Parent HBE	E ^{ox} (V vs. NHE)	Fragment 1	Fragment 2	ΔG ^{meso} (kJ/mol)
CC(C)(c1ccc(C#N)cc1)C(Oc1ccccc1)c1ccccc1	1.69	N		-61.69
CC(Oc1ccccc1)C(c1ccccc1)c1ccc(-c2ccccc2)cc1	1.66		**	-6.37
CCc1ccc(C(C)C(OC)c2ccccc2)cc1	1.61			-62.74
COC(C)C(C)(c1ccccc1)c1ccc(-c2cccc2)cc1	1.65		+	-56.35
COC(c1ccccc1)C(C)(C)c1ccc(-c2ccccc2)cc1	1.67			-65.74
COCC(c1ccccc1)(c1ccccc1)c1ccc(OC)cc1	1.60		<u>+</u>	-23.40

COCOC(C)C(C)(c1ccccc1)c1ccc(OC)cc1	1.53		, o	-54.55
COCOC(OC)C(C)c1ccc(OC)cc1	1.55		+,	-32.20
COc1ccc(C(C)(C)C(Oc2cccc2)c2cccc2)cc1	1.56	, \(\frac{\frac{1}{1}}{1}\)		-50.14
COCOC(OC)C(C)(C)c1ccc(OC)cc1	1.58	° 0+		-66.96

Table S3 List of 49 tabulated features and their value ranges. The Pearson correlation coefficients were derived from DFT-computed oxidation potentials.

Feature	Comment	Unit	Min	Max	Pearson correlation coefficient
sssr	Smallest set of smallest rings		1.0	6.0	-0.30
clogp ¹	Crippen's Partition Coefficient (measure of lipophilicity)		1.27	9.51	-0.36
Molar refractivity (mr) ¹		m³/mol	42.02	160.9	-0.36
Molecular weight (mw)		g/mol	136.09	504.11	-0.20
tpsa ²	Topological polar surface area	Å ²	9.23	132.97	0.57
chi0n ³	Simple molecular connectivity index (order 0)		6.21	21.73	-0.36
chi1n³	Simple molecular connectivity index (order 1)		3.46	13.39	-0.34
chi2n ³	Simple molecular connectivity index (order 2)		2.23	9.71	-0.41
chi3n³	Simple molecular connectivity index (order 3)		1.44	7.4	-0.33
chi4n³	Simple molecular connectivity index (order 4)		0.86	5.58	-0.30
chi0v³	Valence molecular connectivity index (order 0)		6.21	21.73	-0.34
chi1v³	Valence molecular connectivity index (order 1)		3.46	13.39	-0.33
chi2v³	Valence molecular connectivity index (order 2)		2.23	9.71	-0.39
chi3v³	Valence molecular connectivity index (order 3)		1.44	7.4	-0.30
chi4v³	Valence molecular connectivity index (order 4)		0.86	5.58	-0.28
fracsp3	Fraction of sp3 C		0.05	0.6	0.03
hall kier alpha ³	Ratio of covalent radii of atom		-4.88	-0.34	0.05
'	(x) and sp3 C atom ($\alpha_x = {r_x \choose r_{C_{sp3}}} -1$)				
kappa1 ³	Molecular shape index (order 1)		7.29	24.46	-0.22
kappa2 ³	Molecular shape index (order 2)		3.72	11.25	-0.21
kappa3 ³	Molecular shape index (order 3)		1.73	4.88	-0.32
Labute's approximate surface area (labuteasa) ⁴		Å ²	61.64	230.56	-0.26
number_aromatic_rings			1.0	6.0	-0.30
number_atom_stereocenters			0.0	2.0	-0.02
number_HBA			1.0	7.0	0.36
number_hetero_atoms			1.0	8.0	0.41
number_rings			1.0	6.0	-0.30
number_rotatable_bonds			3.0	9.0	-0.23
number_heavy_atoms			10.0	39.0	-0.23
number_n_o			1.0	8.0	0.39
number_valence_electrons			54.0	188.0	-0.27
max_partial_charge			0.05	0.34	0.40

min_partial_charge		-0.5	-0.35	0.22
fr_C_O	Number of -CO	0.0	1.0	0.24
fr_C_O_noCOO		0.0	1.0	0.24
fr_methoxy	Number of -OCH3	0.0	3.0	0.17
fr_ester		0.0	1.0	0.24
fr_ether		1.0	4.0	0.10
fr_NH0		0.0	4.0	0.21
fr_aniline		0.0	1.0	-0.76
fr_nitrile		0.0	4.0	0.41
fr_nitro		0.0	1.0	0.30
fr_halogen		0.0	1.0	0.06
fr_alkyl_halide		0.0	1.0	0.06
fr_unbrch_alkane	Number of unbranched alkane	0.0	2.0	0.04
fr_benzene		1.0	6.0	-0.30
fr_nitro_arom		0.0	1.0	0.30
fr_nitro_arom_nonortho		0.0	1.0	0.30
fr_para_hydroxylation		0.0	1.0	-0.24
fr_aryl_methyl		0.0	1.0	0.06

Table S4 List of functional groups and their corresponding scaffold sites used for populating HBE database of 112,000 entries

Scaffold Site	Functional group
R1	-Me, -Et, -Pr, -Ph, -COMe, -C(Me)Me, -EtOMe
R2	-N(Me) ₃ +, -COMe, -Et, -OCMe, N(Me) ₂ , -NO ₂ , -C(=O), -Pr, -iPr, -
	EtOMe, -C(Me)OMe
R3	-N(Me) ₃ +, -Me, -COMe, -Br, -C(=O), -OEth, - <i>Pr</i> , - <i>iPr</i> , -C(COMe), -
	C(Me)(OMe), -OPr, -OiPr
R4	-N(Me) ₃ +, -OMe, -COMe, -Br, -N(Me)Me, -Et, -OEt, -NO ₂ , -C(=O), -Pr,
	-C(Me)Me, -C(COMe), -C(Me)(OMe), -OPr, -OiPr)
R5	-N(Me) ₃ +, -OMe, -COMe, -Br, -N(Me)Me, -Et, -OEt, -NO ₂ , -C(=O), -Pr,
	-C(Me)Me, -C(COMe), -C(Me)(OMe), -OPr, -OiPr)

Substituent groups are, Ph: phenyl, Et:ethyl, OMe: methoxy, iPr: isopropyl, OPr: propoxy, EtOMe: methoxy ethyl, Pr: propyl

Table S5 List of HBEs evaluated during BO run #1 (BO1) and their corresponding E^{ox} . The initial 10 were randomly selected.

HBE#	SMILES	2-D Structure	DFT-computed E ^{ox} (V vs. NHE)	BO-predicted E ^{ox} (V vs. NHE)
1'	CCCOC(OCOC)C(CCC)(O C)c1ccc([N+](C)(C)C)cc1	N.	1.14	
2'	CCC(OC)(c1ccc(C(C)C)cc 1)C(COC)OC(C)C		1.87	
3′	COCCc1ccc(C(COC)(CO C)C(OC(C)C)OC(C)C)cc1		1.87	
4'	CCOC(OCC)(c1ccc(CCO C)cc1)C(OCCOC)[N+](= O)[O-]		2.23	
5′	CCCC(OC(C)C)(c1ccc(CC COCC)cc1)C(COC)Oc1cc ccc1		1.63	

6′	CCC(Oc1ccccc1)C(OC)(OC(C)C)c1ccc(CCOC)cc1		1.68	
7'	CCC(c1ccc(C(C)OC)cc1)(C(OC(C)C)C(C)OC)[N+](C)(C)C		2.65	
8′	CCC(CCOC)(c1ccc([N+](C)(C)C)cc1)C(OC)[N+](= O)[O-]	-0-N ₁	2.81	
9'	CCOC(COC)(c1ccc(C)cc1)C(OC)[N+](C)(C)C	N. O	2.43	
10′	CCC(c1ccc(OC(C)C)cc1)(C(C)OC)C(COC)OC(C)C		1.49	

1	COC(C)c1ccc(C(OC(C)C) (C(C)OC)C(Oc2cccc2)C (C)OC)cc1		1.62	1.62
2	CCCOc1ccc(C(C=O)(C=O)C(C=O)OCCOC)cc1	~. C. C.	1.92	1.82
3	CCCOc1ccc(C(C(OCC)N(C)C)(N(C)C)N(C)C)cc1		0.5	1.25
4	CCOC(OCC)C(Br)(OCC)c 1ccc(C=O)cc1		2.74	1.72
5	CCOCCCc1ccc(C(OCC)(C (C)OC)C(OCCOC)C(C)OC)cc1		1.78	1.76

6	COC(C)C(C=O)(c1ccc([N +](C)(C)C)cc1)C(C=O)Oc 1ccccc1		2.02	1.56
7	CC(C)OC([N+](=O)[O-])C(c1ccc([N+](C)(C)C)c c1)([N+](=O)[O-])[N+](=O)[O-]		3.44	1.23
8	CCCOC(C(C)OC)C(OCC)(OCCC)c1ccc(CCCOCC)cc 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.77	1.67
9	CCC(c1ccc(CCOC)cc1)(C (C)OC)C(Oc1ccccc1)C(C)OC		1.77	1.64
10	CCOC(C=O)(c1ccc(OC(C)C)cc1)C(OCCOC)OC(C) C		1.62	1.69

11	CCCOC(CCOC)(c1ccc(CC COCC)cc1)C(CCOC)OCC OC	1.64	1.55
12	CC(C)OC(C=O)(c1ccc(Br)cc1)C(Oc1ccccc1)C(C)C	1.73	1.67
13	CCCOC(OC(C)C)(c1ccc(OC(C)C)cc1)C(Oc1ccccc 1)OC(C)C	1.60	1.62
14	CCOCCCc1ccc(C(Br)(Br) C(OCCOC)OC(C)C)cc1	2.31	1.33
15	COCCC(OCOC)C(COC)(OC(C)C)c1ccc(OC(C)C)c c1	1.50	1.72

16	COCCOC(COC)C(COC)(OC(C)C)c1ccc(OC(C)C)c c1		1.53	1.70
17	CCCC(OC(C)C)(c1ccc(O C(C)C)cc1)C(Oc1ccccc1) C(C)C		1.55	1.60
18	CCCOc1ccc(C(CCOC)(O CCC)C(CCOC)OCCOC)cc 1		1.63	1.57
19	CCCOc1ccc(C(CC)(OCCC)C(Oc2ccccc2)C(C)OC)c c1		1.58	1.63
20	CCC(Oc1ccccc1)C(CC)(O C)c1ccc(OC(C)C)cc1	0.50.	1.53	1.57

21	CCCOC(CC)C(CCC)(OC(C)C)c1ccc(OC(C)C)cc1	1.43	1.60
22	CCOC(COC)(c1ccc(OC(C)C)cc1)C(OCCOC)C(C)O C	1.54	1.59
23	CCCC(OCC)(c1ccc(OC(C)C)cc1)C(OCCOC)C(C)O C	1.57	1.56
24	CCCC(OC(C)C)(c1ccc(O C(C)C)cc1)C(COC)OCC	1.57	1.55
25	CCCC(OC(C)C)(c1ccc(O C(C)C)cc1)C(COC)Oc1cc ccc1	1.52	1.55

26	COCC(Oc1ccccc1)C(CO C)(OC)c1ccc(C=O)cc1		1.83	1.51
27	CCC(OCCOC)C(CC)(OC(C)C)c1ccc(OC(C)C)cc1		1.50	1.55
28	CCC(OC(C)C)(c1ccc(OC(C)C)cc1)C(Oc1ccccc1)C(C)OC		1.53	1.56
29	COCC(OC(C)C)(c1ccc(C) cc1)C(Oc1ccccc1)C(C)O C		1.72	1.69
30	CCCC(OC(C)C)(c1ccc(O C(C)C)cc1)C(CC)OCC	100	1.50	1.54

31	CCCC(OCC)(c1ccc(OC(C)C)cc1)C(CC)OCCOC	1.34	1.54
32	COCCOC(OC(C)C)C(OC(C)C)(c1ccc(OC(C)C)cc1) C(C)C	1.46	1.59
33	COCOC(OC(C)C)C(C=O)(OC(C)C)c1ccc(OC(C)C)c c1	1.68	1.53
34	CCCOC(OC(C)C)(c1ccc(OC(C)C)cc1)C(OCCOC)O C(C)C	1.54	1.51
35	COCOC(C(C)OC)C(COC)(OC(C)C)c1ccc(OC(C)C)c c1	1.55	1.57

36	CC(C)Oc1ccc(C(C=O)(O C(C)C)C(Oc2cccc2)OC(C)C)cc1	1.66	1.59
37	COCOC(OC(C)C)C(COC)(OC(C)C)c1ccc(OC(C)C)c c1	1.53	1.53
38	COCCOC(OC(C)C)C(CCO C)(OC(C)C)c1ccc(OC(C) C)cc1	1.53	1.52
39	CCCOC(OCCOC)C(OCCC)(OC(C)C)c1ccc(OC(C)C) cc1	1.63	1.52
40	COCC(OC(C)C)(c1ccc(Br)cc1)C(Oc1ccccc1)C(C) OC	1.75	1.56

Table S6 List of HBEs evaluated during BO run #2 (BO2) and their corresponding E^{ox} . The initial 10 were randomly selected.

HBE #	SMILES	2-D Structure	DFT-computed E ^{ox} (V vs. NHE)	BO-computed E ^{ox} (V vs. NHE)
1'	CCCOC(COC)(c1ccc(CC COCC)cc1)C(OCC)[N+](=O)[O-]		2.08	
2'	CCCOC(OCC)(c1ccc(CO C)cc1)C(OC)[N+](=O)[O-]		2.29	
3'	CCCOc1ccc(C(C(OCCC) OC(C)C)([N+](=O)[O-])[N+](=O)[O-])cc1		2.07	
4'	CCCOc1ccc(C(Br)(C=O) C(C=O)OC)cc1		1.94	
5′	CCCC(Oc1ccccc1)C(CC C)(c1ccc(Br)cc1)C(C)C	O Br	1.70	

6'	CCCC(OCC)(c1ccc(C=O)cc1)C(Oc1ccccc1)C(C)		1.75	
7'	CC(C)OC(Oc1ccccc1)C(c1ccc(C(C)C)cc1)(N(C) C)[N+](=O)[O-]		1.67	
8′	CCCOc1ccc(C(OCCC)(O CCC)C(COC)OC)cc1		1.63	
9′	CCCC(OCCOC)C(C=O)(OC(C)C)c1ccc(Br)cc1	Br O	1.32	
10'	CCCOC(N(C)C)C(c1ccc(C)cc1)(C(C)OC)C(C)OC		0.86	

1	CCCOC(CCC)C(CCOC)(OCCC)c1ccc(CCOC)cc1		1.65	1.81
2	COCCOC(C(C)C)C(C=O) (OC)c1ccc(C(C)C)cc1		1.99	1.69
3	COCCOC(N(C)C)C(c1cc c([N+](C)(C)C)cc1)(N(C)C)N(C)C	o N N	-0.47	1.67
4	CCCC(C=O)(c1ccc(C(C) C)cc1)C(C=O)Oc1ccccc 1		1.89	1.73
5	CCOCCCc1ccc(C(Br)(C COC)C(CCOC)Oc2ccccc 2)cc1		1.70	1.65

6	O=Cc1ccc(C(C(Oc2cccc c2)[N+](=O)[O-])([N+](=O)[O-])[N+](=O)[O-])cc1	19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.53	1.68
7	CCCC(CCOC)(c1ccc(C(C)C)cc1)C(Oc1ccccc1)[N +](C)(C)C		2.29	1.68
8	CCCC(Oc1ccccc1)C(Br) (Br)c1ccc(C(C)C)cc1	Br O	1.86	1.66
9	COCCOC(N(C)C)C(OC)(c1ccc(OC(C)C)cc1)N(C) C		-0.33	1.70
10	CCCOC(CCC)C(c1ccc(B r)cc1)(N(C)C)[N+](=O)[O-]	O NO BE	1.91	1.56

11	CCCOc1ccc(C(OCCC)(O CCC)C(OCCC)OCCC)cc1		1.68	1.81
12	CCCOc1ccc(C(CC)(CCC) C(CCC)OCCC)cc1	~. C. C.	1.50	1.90
13	CCCOc1ccc(C(Br)(C(OC CC)OC(C)C)[N+](C)(C)C)cc1		2.31	1.65
14	CCCC(Oc1ccccc1)C(CC C)(OC)c1ccc(Br)cc1	O Br	1.72	1.88
15	CCCOc1ccc(C(CCC)(OC CC)C(OCCC)[N+](C)(C) C)cc1		1.92	1.72

16	CCCC(Oc1ccccc1)C(CC C)(c1ccc(C(C)OC)cc1)N (C)C		1.02	1.71
17	CCOCCCc1ccc(C(C=O)(C=O)C(C=O)Oc2ccccc2)cc1		1.90	1.77
18	CCCOC(c1ccc(CCCOCC)cc1)(C(C)OC)C(CCC)O		1.64	1.63
19	COCCOC(C(C)C)C(c1cc c([N+](C)(C)C)cc1)(C(C)C)[N+](=O)[O-]	o To Market Mark	2.61	1.73
20	CCCOC(OCCC)C(OCCC) (OC(C)C)c1ccc(Br)cc1		2.26	1.59

21	CCCOC(CCOC)C(CCOC) (CCOC)c1ccc(C)cc1		1.99	1.75
22	CCC(OCCOC)C(c1ccc(O C(C)C)cc1)(C(C)OC)C(C)OC		1.45	1.63
23	CCCOc1ccc(C(CCC)(CC OC)C(CCC)OCCC)cc1		1.45	1.62
24	CCCOC(OCC)C(OCCC)(c1ccc(C)cc1)[N+](C)(C) C		2.53	1.63
25	CCOCCCc1ccc(C(OC)(O C)C(C=O)Oc2ccccc2)cc 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.89	1.65

26	CCOCCCc1ccc(C(C=O)(C(C)OC)C(CCOC)OCCO C)cc1		1.99	1.63
27	CCCOC(C(C)OC)C(C=O) (c1ccc(CCOC)cc1)C(C) OC		2.01	1.73
28	CCCC(Oc1ccccc1)C(CC C)(CCOC)c1ccc(CCOC)c c1		1.67	1.68
29	CCCC(CC)(c1ccc(CCCO CC)cc1)C(CC)Oc1ccccc 1	D-)	1.69	1.86
30	CCCOC(OCCC)(c1ccc(B r)cc1)C(Oc1ccccc1)[N+](=O)[O-]		2.01	1.60

31	CCCOc1ccc(C(CCC)(CC C)C(OC)C(C)C)cc1		1.47	1.70
32	CCCOc1ccc(C(CCC)(CC C)C(Oc2cccc2)[N+](= O)[O-])cc1		1.72	1.81
33	CCCOC(OCCC)(c1ccc(C CCOCC)cc1)C(CCC)Oc1 ccccc1	0)	1.72	1.56
34	CCCOc1ccc(C(CCC)(OC (C)C)C(CCC)OCCOC)cc 1		1.64	1.65
35	CCCOc1ccc(C(CC)(CCO C)C(CCOC)OC)cc1		1.52	1.70

36	CCCC(c1ccc(Br)cc1)(C(C)OC)C(OCC)[N+](=O)[O-]	Br O-	2.31	1.80
37	CCCOC(OC(C)C)(c1ccc(OC(C)C)cc1)C(CCC)Oc1 ccccc1		1.54	1.85
38	CCCOc1ccc(C(CCC)(OC CC)C(OCCC)Oc2ccccc2)cc1		1.60	1.65
39	CCCOc1ccc(C(CCC)(OC CC)C(CCOC)Oc2ccccc2)cc1		1.61	1.56
40	CCCOc1ccc(C(CCOC)(C COC)C(COC)OC)cc1		1.54	1.81

Figure S1 Comparison between DFT-computed oxidation potentials (orange) and cyclic voltammetry measurements (blue) for 11 randomly selected homobenzylic ether molecules

Figure S2 DFT-computed E^{ox} as a function of 6 different features with highest Pearson correlation coefficient values.

Figure S3 PCA analysis of 49 generated features for 1,400 HBE data set

Figure S4 Learning curves of Gaussian Process Regression using various feature sets

Figure S5 Comparison of sampling efficiency between random selection and Bayesian optimizations with different values of epsilon

Figure S6 Comparison of efficiency between Bayesian optimization, random selection and Latin hypercube sampling

References

- 1. Wildman, S. A.; Crippen, G. M., Prediction of Physicochemical Parameters by Atomic Contributions. *Journal of Chemical Information and Computer Sciences* **1999**, 39, (5), 868-873.
- 2. Ertl, P.; Rohde, B.; Selzer, P., Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. *Journal of Medicinal Chemistry* **2000**, 43, (20), 3714-3717.
- 3. Hall, L. H.; Kier, L. B., The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modeling. In *Reviews in Computational Chemistry*, 2007; pp 367-422.
- 4. Labute, P., A widely applicable set of descriptors. *Journal of Molecular Graphics and Modelling* **2000,** 18, (4), 464-477.