Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2} + \frac{1}{5} = \frac{7}{10}$	3p
	$\frac{7}{10} \cdot \frac{20}{7} = 2$	2p
2.	$f(a) = 0 \Leftrightarrow a - 2 = 0$	3 p
	a = 2	2 p
3.	x+3=16	3 p
	x = 13, care verifică ecuația	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea <i>M</i> sunt 3 multipli de 15, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	2p
5.	$x_M = 4$	2p
	$y_M = 4$, unde punctul M este mijlocul segmentului AB	3 p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{12}{13}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$	3p
	=4-6=-2	2 p
b)	$A+B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix} =$	3 p
	$=5\begin{pmatrix}1&1\\1&1\end{pmatrix}=5C$	2p
c)	$AB = \begin{pmatrix} 8 & 5 \\ 20 & 13 \end{pmatrix}, BA = \begin{pmatrix} 13 & 20 \\ 5 & 8 \end{pmatrix}, 4I_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$AB + BA + 4I_2 = \begin{pmatrix} 25 & 25 \\ 25 & 25 \end{pmatrix} = 25 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 25C$	2 p
2.a)	$5 \circ (-4) = 5 \cdot (-4) + 4 \cdot 5 + 4 \cdot (-4) + 12 =$	3p
	=-20+20-16+12=-4	2p

b)	$x \circ y = xy + 4x + 4y + 16 - 4 =$	2p
	= x(y+4)+4(y+4)-4=(x+4)(y+4)-4, pentru orice numere reale x şi y	3 p
c)	$x \circ x = \left(x+4\right)^2 - 4$	2p
	$(x+4)^2 - 4 = x \Leftrightarrow (x+4)(x+3) = 0 \Leftrightarrow x_1 = -4 \text{ și } x_2 = -3$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = (2x^3)' + (3x^2)' + 5' =$	2p
	$=6x^2 + 6x = 6x(x+1), x \in \mathbb{R}$	3p
b)	$\lim_{x \to +\infty} \frac{f'(x)}{f(x) - 2x^3} = \lim_{x \to +\infty} \frac{6x(x+1)}{3x^2 + 5} =$	2p
	= 2	3p
c)	$f'(x) = 0 \Leftrightarrow x_1 = -1 \text{ si } x_2 = 0$	2 p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -1]$, deci f este crescătoare pe $(-\infty, -1]$	1p
	$f'(x) \le 0$, pentru orice $x \in [-1,0]$, deci f este descrescătoare pe $[-1,0]$	1p
	$f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe $[0, +\infty)$	1p
2.a)	$\int_{1}^{2} (f(x) - 3x^{2}) dx = \int_{1}^{2} 4x^{3} dx = x^{4} \Big _{1}^{2} =$	3p
	=16-1=15	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^4 + x^3 + c$, unde $c \in \mathbb{R}$	2p
	$F(1) = 2015 \Rightarrow c = 2013$, deci $F(x) = x^4 + x^3 + 2013$	3p
c)	$\int_{1}^{n} \frac{f(x)}{x^{2}} dx = \int_{1}^{n} (4x+3) dx = 2x^{2} \left \frac{1}{1} + 3x \right _{1}^{n} = 2n^{2} + 3n - 5$	3p
	$2n^2 + 3n - 5 = 9$ şi cum n este număr natural, $n > 1$, obținem $n = 2$	2p