

# **SQL-Part 1**

© 2019 Virtusa Corporation. All rights reserved.



#### **Module Overview**

The following module hierarchy presents the technical modules required to build the basic IT skills and acquaints you with relevant technology basics.

The current module – **SQL 1** (highlighted in red) underwrites Basics of SQL 1 and will enable you to enhance one's query writing skills.



<sup>\*</sup> Recommended duration: 6 hours



# **Module Objectives**

# By the end of this module, you will be able to:

- Define RDBMS Concepts
- Draw ER Diagrams
- Normalize the data using Normal Forms
- Retrieve data using DQL statements (SELECT Statement)
- Write sub queries
- Join tables to retrieve data from multiple tables



#### **RDBMS - Introduction**

#### What is RDBMS?

- RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL, and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.
- A Relational Database Management System (RDBMS) is a database management system (DBMS) that is based on the relational model as introduced by E. F. Codd.

#### What is Table?

- The data in RDBMS is stored in database objects called tables.
   The table is a collection of related data entries and it consists of columns and rows.
- Remember, a table is the most common and simplest form of data storage in a relational database.



#### References

http://www.tutorialspoint.com/sql/sql-rdbms-concepts.htm



# **RDBMS - ER Diagram**

#### ER

 Entity Relationship Diagram is a visual representation of data that describes how data is related to each other.

# **Entity**

Entities are represented by means of rectangles.
 Rectangles are named with the entity set they represent.

#### **Attributes**

 Attributes are properties of entities. Attributes are represented by means of eclipses. Every eclipse represents one attribute and is directly connected to its entity (rectangle).



## References

http://www.tutorialspoint.com/dbms/er\_diagram\_representation.htm



#### **RDBMS - Normalization**

Database Normalization, or Data Normalization, is a technique to organize the contents of the tables for transactional databases and data warehouses.

Normalization is part of successful database design; without normalization, database systems can be inaccurate, slow, and inefficient, and they might not produce the data you expect.

#### **Data Normalization Rules:**

| Level                   | Rule                                                                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| First normal form(1NF)  | An entity type is in 1NF when it contains no repeating groups of data.                                                   |
|                         |                                                                                                                          |
| Second normal form(2NF) | An entity type is in 2NF when it is in 1NF and when all of its non-key attributes are fully dependent on its primary key |
|                         |                                                                                                                          |
| Third normal form(3NF)  | An entity type is in 3NF when it is in 2NF and when all of its attributes are directly dependent on the primary key      |



# References

http://www.tutorialspoint.com/dbms/database\_normalization.htm



# **RDBMS - Querying Database**

- SQL SELECT Query
- SQL SELECT statement is used to fetch the data from a database table which returns data in the form of result table. These result tables are called result-sets.

# Syntax:

- The basic syntax of SELECT statement is as follows:
- SELECT column1, column2, columnN FROM table name



References

http://www.tutorialspoint.com/sql/sql-select-query.htm



# **RDBMS - Sub Queries**

- A Subquery or Inner query or Nested query is a query within another SQL query and embedded within the WHERE clause.
- A subquery is used to return data that will be used in the main query as a condition to further restrict the data to be retrieved.
- Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along with the operators like =, <, >, >=,
   IN, BETWEEN etc.
- Subqueries are most frequently used with the SELECT statement.
- The basic syntax is as follows.

```
SELECT column_name [, column_name ]
FROM table1 [, table2 ]
WHERE column_name
OPERATOR (SELECT
column_name [,
column_name ] FROM table1
[, table2 ]
[WHERE])
```



References

http://www.tutorialspoint.com/sql/sql-sub-queries.htm



# **RDBMS - SQL Joins**

- The SQL Joins clause is used to combine records from two or more tables in a database.
- A JOIN is a means for combining fields from two tables by using values common to each.

# **SQL Join Types**:

There are different types of Joins available in SQL:

- Inner Join: Returns rows when there is a match in both tables
- Left Join: Returns all rows from the left table, even if there are no matches in the right table
- **Right Join**: Returns all rows from the right table, even if there are no matches in the left table.
- Full Join: Returns rows when there is a match in one of the tables
- Self Join: Used to join a table to itself as if the table were two tables, temporarily renaming at least one table in the SQL statement



## References

http://www.tutorialspoint.com/sql/sql-using-joins.htm



# **Additional References**

To explore more on the subject, refer the below links and books:

# Links:-

http://www.tutorialspoint.com/dbms/

http://www.tutorialspoint.com/sql/sql-rdbms-concepts.htm

# **SQL** Reference:

https://docs.oracle.com/cd/E11882\_01/server.112/e41084.pdf





# **Self Check?**

## **Instructions to write Self Evaluation Sheet:**

Open the excel sheet, refer SQL Part 1 sheet, write down the solutions for all questions, save a local copy in your machine.





# **Lab Assignment**

- Refer Assignment Document to complete the tasks on the required timeline
- You are required to submit the Solutions for the given assignment and refer the *Participant guide* to get know the submission procedure.



# **Module Summary**

Now that you have completed this module, you will be able to:

- Apply RDBMS Concepts
- Design ER Diagrams
- Normalize the data available in the database using Normal Forms
- Obtain the data using DQL statements (SELECT Statement)
- Use sub queries in select statement.
- Combine tables together to retrieve data from multiple tables.



# Thank you!