> Calculation of Rise/Fall Time:

- Time taken for the output to rise (fall) from 10% (90%) to 90% (10%)
- Can be calculated from the figure

•
$$At t = t_1$$
:

$$0.1A_0V_A = A_0V_A[1 - \exp(p_1t_1)]$$

 $\Rightarrow t_1 = \ln(0.9)/p_1$

• $At t = t_2$:

$$0.9A_0V_A = A_0V_A[1 - \exp(p_1t_2)]$$

 $\Rightarrow t_2 = \ln(0.1)/p_1$

■ Thus, the *rise time*:

$$t_r = t_2 - t_1 = -2.2/p_1 = 2.2/\omega_H = 0.35/f_H$$

- Hence, higher the f_H , smaller the t_r
- The same expression holds for the fall time (t_f) as well

- Thus, circuits having high bandwidth under sinusoidal excitation (analog domain), will also have superb switching characteristics under square-wave excitation (digital domain)
- Under square-wave excitation, due to t_r/t_f , enough time should be provided for the transient in the output to get completed
- > Rule of Thumb:
 - At least 5 time constants should be allowed for each rising and falling transient
 - This determines the *maximum allowable frequency* of the *input pulse train*:

$$f_{\text{max}} = 1/T_{\text{min}} \approx 1/(10\tau) = \omega_H/10 = |p_1|/10$$

Effect of t_r/t_f on the Output for Square-Wave Excitation

➤ As $f \uparrow$, $T \downarrow$, V_0 first starts to become trianglular (incomplete transient), then the amplitude starts to drop, and eventually drops to zero (no output at all!)