José L. Bueso, José Gómez-Torrecillas, Alain Verschoren

Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups

List of corrections

Updated by J. Gómez-Torrecillas: August 10, 2013 gomezj@ugr.es

Published in 2003 by Kluwer Academic Publishers Boston Dordrecht London

Missprints and minor mistakes

page	line	it says	it should say
65	-10	$E \subseteq \bigcup_{(\boldsymbol{\alpha},i))\in B} ((\boldsymbol{\alpha},i) + \mathbb{N}^n)$	$E \subseteq \bigcup_{(\boldsymbol{\alpha},i)\in B}((\boldsymbol{\alpha},i)+\mathbb{N}^n)$
65	-13	finite	finite subset
69	-14	$1 \le i \le n$	$1 \le j \le n$
75	1	$x^{\alpha_1}\cdots x^{\alpha_n}y^{\alpha_{n+1}}$	$x_1^{\alpha_1}\cdots x_n^{\alpha_n}y^{\alpha_{n+1}}$
126	-8	$R = \mathbb{k}\langle x_1, \dots, x_n \rangle$	$R = \mathbb{k}\langle x_1, \dots, x_n \rangle / I_Q$
171		$a_{ij}oldsymbol{x}^{oldsymbol{\gamma}_{ij}-oldsymbol{lpha}_i}-a_{ji}oldsymbol{x}^{oldsymbol{\gamma}_{ij}-oldsymbol{lpha}_j}$	$a_{ij} \boldsymbol{x}^{\boldsymbol{\gamma}_{ij}g_i - \boldsymbol{lpha}_i} g_i - a_{ji} \boldsymbol{x}^{\boldsymbol{\gamma}_{ij} - \boldsymbol{lpha}_j} g_j$
179	15	$(\operatorname{lc}(f_i)^{\operatorname{sexp}(\boldsymbol{g}) - \operatorname{sexp}(\boldsymbol{f}_i)} q_{\operatorname{sexp}(\boldsymbol{g}) - \operatorname{sexp}(\boldsymbol{f}_i)), \operatorname{sexp}(\boldsymbol{f}_i)}$	$(\operatorname{lc}(f_i)^{\operatorname{sexp}(\boldsymbol{g}) - \operatorname{sexp}(\boldsymbol{f}_i)} q_{\operatorname{sexp}(\boldsymbol{g}) - \operatorname{sexp}(\boldsymbol{f}_i)), \operatorname{sexp}(\boldsymbol{f}_i)})^{-1}$
179		$\boldsymbol{f}_2 = (y, y)$	$\boldsymbol{f}_2 = (y, x)$
182	13	Theorem 5.3	Theorem 2.5.3
182	13	Theorem 5.9	Theorem 2.5.9
205	8	$1 \le i \le n$	$1 \le i \le t$
205	10	$(oldsymbol{lpha}, \operatorname{level}(g_i))$	$(oldsymbol{lpha}_i, \operatorname{level}(oldsymbol{g}_i))$
205	16	$q_{oldsymbol{\gamma}_{ij}-oldsymbol{lpha}_i,oldsymbol{lpha}_i}^{-1}oldsymbol{x}^{oldsymbol{\gamma}_{ij}-oldsymbol{lpha}_i}oldsymbol{g}_i$	$egin{aligned} & (oldsymbol{lpha}_i, \mathrm{level}(oldsymbol{g}_i)) \ q_{oldsymbol{\gamma}_{ij} - oldsymbol{lpha}_i, oldsymbol{lpha}_i}^{-1} oldsymbol{x}^{oldsymbol{\gamma}_{ij} - oldsymbol{lpha}_i} \end{aligned}$
205	-12	$\sum_{i=1}^{T} h_{ijk} oldsymbol{g}_k$	$\sum_{k=1}^{t} h_{ijk} oldsymbol{g}_k$
205	-4	$\{\boldsymbol{s}_{ij}; 1 \leq i, j \leq s\}$	$\{\boldsymbol{s}_{ij}; 1 \leq i, j \leq t\}$
207	6	columns	rows
217	6	R^n	R^m
217	16	R^n	R^m
219	5	we have	we have for $i < j$ such that $level(\boldsymbol{g}_i) = level(\boldsymbol{g}_j)$
219	7	for $1 \le i < j \le t$.	for $1 \le i < j \le t$ such that $\text{level}(\boldsymbol{g}_i) = \text{level}(\boldsymbol{g}_j)$
219	9	$oldsymbol{\gamma}_{ij}.$	$(oldsymbol{\gamma}_{ij}, \operatorname{level}(oldsymbol{g}_i)).$