MATH 531 HOMEWORK 6 Quadratic forms and the multivariate normal February 24, 2025

Some background:

Let **z** be distributed $MN(0, I_m)$ then we know that $\mathbf{z}^T\mathbf{z} = \sum_{i=1}^m \mathbf{z}_i^2$ is distributed $\chi^2(m)$. – a sum of iid N(0,1) RVs. (We also know that $\chi^2(m)$ is a member of the gamma distribution family with shape 2m and scale 2.)

Problem 1

Let M be an $n \times n$ projection matrix and let k be the dimension of the subspace that M projects onto.

1(a) For the eigendecomposition $M = UDU^T$ show that the diagonal elements of D must be either 0 or 1.

Proof. Since M is a projection matrix, then it is idempotent, that is $M^2 = M$. We can use the definition of M as its eigendecomposition to analyze further.

$$M^2 = M$$
$$(UDU^T)(UDU^T) = UDU^T$$

The matrix U is orthogonal, so we can simplify this to

$$UDIDU^{T} = UDU^{T}$$

$$UD^{2}U^{T} = UDU^{T}$$

$$\implies D^{2} = D$$

Since D is simply a diagonal matrix, we can rewrite this expression as

$$\operatorname{diag}(\sigma_1^2, ..., \sigma_n^2) = \operatorname{diag}(\sigma_1, ..., \sigma_n)$$

This directly implies that $\sigma_i^2 = \sigma_i$ for i = 1, ..., n. The only real solution that satisfies this criterion is if $\sigma_i = 1, 0$ for i = 1, ..., n. \square

This is provides an alternative proof that tr(M) = k.

1(b) Let U be an $n \times n$ orthonormal matrix and \mathbf{z} be distributed $MN(0, I_n)$. Show that $U^T\mathbf{z}$ is also distributed $MN(0, I_n)$.

Proof. Assume $U^Tz \sim MN(0, I_n)$. Then, $(U^Tz)^T(U^Tz)$ is distributed $\chi^2(n)$. We can expand the product to observe.

$$(U^{T}z)^{T}(U^{T}z) = z^{T}UU^{T}z = z^{T}Iz = z^{T}z$$

We know from above that if $z \sim MN(0, I_n)$, then $z^T z \sim \chi^2(n)$. It is given that $z \sim MN(0, I_n)$, which implies that $U^T z \sim MN(0, I_n)$. \square

1(c) Let **z** be distributed $MN(0, I_n)$ show that $\mathbf{z}^T M \mathbf{z}$ is distributed $\chi^2(k)$.

Proof. Let $y = U^T z$. We know from the previous problem that $y \sim MN(0, I_n)$. Given that $M = UDU^T$, we can write $z^T M z$ as

$$z^{T}Mz = z^{T}(UDU^{T})z$$
$$= (U^{T}z)^{T}DU^{T}z$$
$$= y^{T}Dy = \sum_{i=1}^{n} \sigma_{i}y_{i}^{2}$$

We already know that tr(M) = k, meaning that there are exactly k elements of D that are equal to 1. Hence, we have

$$\sum_{i=1}^{n} \sigma_i y_i^2 = \sum_{i=1}^{k} y_i^2$$

Therefore, we can say that each y_i for i=1,...,k is an i.i.d normally distributed random variable. Hence, $z^TMz=y^TDy=\sum_{i=1}^k y_i^2\sim \chi^2(k)$. \square

Problem 2

Let $\mathbf{W}_1 = \mathbf{z}^T M \mathbf{z}$ and let $\mathbf{W}_2 = \mathbf{z}^T (I_n - M) \mathbf{z}$ with \mathbf{z} be distributed $MN(0, I_n)$. Show that \mathbf{W}_1 and \mathbf{W}_2 are independent χ^2 RVs and explain why

$$F = \frac{\mathbf{W}_1/k}{\mathbf{W}_2/(n-k)}$$

has an F distribution with degrees of freedom (k, (n-k)).

This is a special case of the more general result: If $\mathbf{z} \sim MN(0, I_n)$ and AB = 0 then $\mathbf{z}^T A \mathbf{z}$ are $\mathbf{z}^T B \mathbf{z}$ are independent RVs. You can use this for 4(b).

Proof. From (1c), we know that $z^T M z \sim \chi^2(k)$ since M is a rank-k projection matrix (since it has k eigenvalues that are 1). Thus, the matrix $I_n - M$ has n - k nonzero eigenvalues and is therefore rank(n - k) and projects onto the complementary subspace that M projects onto. Now, let A = M and $B = (I_n - M)$. Then, we have $W_1 = z^T A z$ $W_2 = z^T B z$. By definition, if A and B are orthogonal matrices, then they satisfy AB = 0. We compute

$$AB = M(I_n - M) = M - M^2 = 0$$

since M is symmetric and idempotent. Clearly, A and B are orthogonal projection matrices, so it would follow that the matrices project onto orthogonal subspaces. Since z is a multivariate normal vector, then the products z^TAz and z^TBz lie in orthogonal subspaces, and thus, we conclude that W_1 and W_2 are independent random variables.

Since $W_1 \sim \chi^2(k)$, then $W_1/k \sim \chi^2(k)/k$. The similar argument can be made for $W_2 \sim \chi^2(n-k)/(n-k)$. Therefore,

$$F = \frac{\chi^2(k)/k}{\chi^2(n-k)/(n-k)}$$

is an F-distribution with (k, n-k) degrees of freedom. \square

Problem 3

Consider the linear model

$$\mathbf{v} = X\beta + \mathbf{e}$$

with $\mathbf{e} \sim MN(0, \sigma^2 I_n)$, X with full rank and M the projection matrix onto $\mathcal{W}_{\mathcal{X}}$. X has k columns.

The twist:

Partition the regression matrix as

$$X = [X_1 | X_2]$$

with X_1 having j columns $(X_2$ having k-j) and M_1 the projection matrix onto \mathcal{W}_{X_1} . Also partition $\beta = [\beta_1, \beta_2]$.

3(a) Explain why $M-M_1$ is also a projection matrix and identify its subspace.

We know that M projects onto \mathcal{W}_X , and M_1 projects onto \mathcal{W}_{X_1} . By subtracting $M - M_1$, then this matrix essentially projects onto a subspace of \mathcal{W}_X such that it is not in the subspace \mathcal{W}_{X_1} . Simply put, $(M - M_1)$ projects onto the subspace of W_X that is spanned by the columns of X_2 .

3(b) Explain why $(1/\sigma^2)\mathbf{y}^T(I-M)\mathbf{y}$ is distributed $\chi^2(n-k)$.

Proof. First, we can left-multiply the linear model expression by the projection matrix (I - M).

$$(I - M)y = (I - M)(X\beta + e)$$

Since $X\beta \in \mathcal{W}_X$, then that leaves us with

$$(I - M)y = (I - M)e$$

In quadratic form, we have

$$y^T(I-M)y = e^T(I-M)e$$

We can normalize e by dividing out the expression by σ^2 . We have

$$\frac{1}{\sigma^2}y^T(I-M)y = \frac{1}{\sigma^2}e^T(I-M)e$$

Let $\varepsilon = \frac{1}{\sigma^2}e$. Since $e \sim MN(0, \sigma^2I_n)$, then the normalized vector $\varepsilon \sim MN(0, I_n)$. From (2), we know that for a random vector $z \sim MN(0, I_n)$, the for a rank-k projection matrix M, then $z^T(I-M)z \sim \chi^2(n-k)$. Therefore, we can say that $\frac{1}{\sigma^2}e^T(I-M)e \sim \chi^2(n-k)$, and equivalently, $\frac{1}{\sigma^2}y^T(I-M)y \sim \chi^2(n-k)$. \square

3(c) The classic ANOVA decomposition

Show that

$$\mathbf{y}^T \mathbf{y} = \mathbf{y}^T M_1 \mathbf{y} + \mathbf{y}^T (M - M_1) \mathbf{y} + \mathbf{y}^T (I - M) \mathbf{y}$$

or equivalently

$$\mathbf{y}^T(I - M_1)\mathbf{y} = \mathbf{y}^T(M - M_1)\mathbf{y} + \mathbf{y}^T(I - M)\mathbf{y}$$

Proof. Through some simple algebra, we can say that $I = M_1 + (M - M_1) + (I - M)$. Therefore, we can say that

$$y^T y = y^T (M_1 + (M - M_1) + (I - M))y$$

We can algebraically simplify this expression to be

$$y^{T}y = y^{T}M_{1}y + y^{T}(M - M_{1})y + y^{T}(I - M)y$$

Furthermore, we can subtract the LHS by the first term on the RHS to find that

$$y^{T}y - y^{T}M_{1}y = y^{T}(M - M_{1})y + y^{T}(I - M)y$$

 $\to y^{T}(I - M_{1})y = y^{T}(M - M_{1})y + y^{T}(I - M)y$

Problem 4

4(a) Show that $(1/\sigma^2)\mathbf{y}^T(M-M_1)\mathbf{y}$ is $\chi^2(k-j)$ when $\beta_2=0$.

Hint: We know this is true for $(1/\sigma^2)\mathbf{e}^T(M-M_1)\mathbf{e}$ the main task is to show that the mean of \mathbf{y} is canceled by $M-M_1$.

Proof. Given that $\beta_2 = 0$, the model simply becomes

$$y = X_1 \beta_1 + e$$

So the "mean part" of $y(X_1\beta_1)$ is projected onto W_{X_1} , which is orthogonal to the column space spanned by $(M-M_1)$, that is $(M-M_1)(X_1\beta_1)=0$. We use this fact to observe:

$$y^{T}(M - M_{1})y = (X_{1}\beta_{1} + e)^{T}(M - M_{1})(X_{1}\beta_{1} + e)$$

Thus, the mean part contributes nothing to the model and this simply becomes a white noise process. We have

$$y^T(M - M_1)y = e^T(M - M_1)e^{-T}$$

We can again normalize this expression by dividing it by the variance.

$$\frac{1}{\sigma^2} y^T (M - M_1) y = \frac{1}{\sigma^2} e(M - M_1) e$$

Again, let $\varepsilon = \frac{1}{\sigma^2}e$. Since $(M - M_1)$ has rank(k - j), then we have that $\frac{1}{\sigma^2}e^T(M - M_1)e \sim \chi^2(k - j)$, and therefore

$$\frac{1}{\sigma^2} y^T (M - M_1) y \sim \chi^2 (k - j)$$

4(b) Show that $\mathbf{y}^T(M-M_1)\mathbf{y}$ and $\mathbf{y}^T(I-M)\mathbf{y}$ are independent.

Proof. To show that these terms are independent, we must show that their constituent projection matrices are orthogonal, that is, $(M - M_1)(I - M) = 0$. We start by expanding this expression.

$$(M - M_1)(I - M) = M - M^2 - M_1 + M_1M$$

M is idempotent, so we can say that

$$M - M^2 - M_1 + M_1 M = -M_1 + M_1 M$$

Now, since M and M_1 are both square, symmetric, and idempotent, and $\mathcal{W}_{X_1} \subseteq \mathcal{W}_X$, then we can say that $M_1M = M_1$, since projecting M onto \mathcal{W}_{X_1} involves only the projection matrix M_1 . Therefore, we have

$$(M - M_1)(I - M) = 0$$

Since the respective projection matrices are orthogonal, then we can say that they project onto orthogonal subspaces. Therefore, we can say that $y^T(M-M_1)y$ and $y^T(I-M)y$ are independent of each other. \Box

This is the basic ingredient to justify the usual F test for testing whether a subset of parameters (β_2 in this case) is zero.