

NPTEL ONLINE CERTIFICATION COURSE

Confidence Interval Estimation: Single Population-II

Dr. A. Ramesh

Department of Management Studies

Student's t Distribution

- Consider a random sample of n observations
 - with mean \bar{x} and standard deviation s
 - from a normally distributed population with mean μ
- Then the variable

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

follows the Student's t distribution with (n - 1) degrees of freedom

Confidence Interval for μ (σ^2 Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

(continued)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\boxed{\overline{x} - t_{n\text{--}1,\alpha/2} \, \frac{S}{\sqrt{n}}} \; < \; \mu \; < \; \overline{x} + t_{n\text{--}1,\alpha/2} \, \frac{S}{\sqrt{n}}}$$

where $t_{n-1,\alpha/2}$ is the critical value of the t distribution with n-1 d.f. and an area of $\alpha/2$ in each tail

Margin of Error

The confidence interval,

$$\overline{x} - t_{_{n\text{--}1,\alpha/2}} \frac{S}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + t_{_{n\text{--}1,\alpha/2}} \frac{S}{\sqrt{n}}$$

Can also be written as

$$\overline{x} \pm ME$$

where ME is called the margin of error:

$$ME = t_{n-1,\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Student's t Distribution

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

$$d.f. = n - 1$$

Student's t Distribution

Note: $t \rightarrow Z$ as n increases

Student's t Table

t distribution values

With comparison to the Z value

	onfidence Level	t <u>(10 d.f.)</u>	t <u>(20 d.f.)</u>	t (30 d.f.)	Z
	.80	1.372	1.325	1.310	1.282
	.90	1.812	1.725	1.697	1.645
	.95	2.228	2.086	2.042	1.960
	.99	3.169	2.845	2.750	2.576

Note: $t \rightarrow Z$ as n increases

Example

A random sample of n = 25 has \bar{x} = 50 and s = 8. Form a 95% confidence interval for μ

$$- d.f. = n - 1 = 24$$
, so

$$t_{n-1,\alpha/2} = t_{24,.025} = 2.0639$$

Confidence Intervals

Confidence Intervals for the Population Proportion

• An interval estimate for the population proportion (P) can be calculated by adding an allowance for uncertainty to the sample proportion (\hat{p})

Confidence Intervals for the Population Proportion, p

(continued)

Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_P = \sqrt{\frac{P(1-P)}{n}}$$

We will estimate this with sample data:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Interval Endpoints

 Upper and lower confidence limits for the population proportion are calculated with the formula

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \ < \ P \ < \ \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- where
 - $-z_{\alpha/2}$ is the standard normal value for the level of confidence desired
 - $-\hat{p}$ is the sample proportion
 - n is the sample size
 - nP(1-P) > 5

Example

- A random sample of 100 people shows that 25 are lefthanded.
- Form a 95% confidence interval for the true proportion of left-handers

Example

(continued)

• A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers.

$$\begin{split} \hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \; < \; P \; < \; \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \\ \frac{25}{100} - 1.96 \sqrt{\frac{.25(.75)}{100}} \; < \; P \; < \; \frac{25}{100} + 1.96 \sqrt{\frac{.25(.75)}{100}} \\ 0.1651 < \; P \; < \; 0.3349 \end{split}$$

Interpretation

 We are 95% confident that the true percentage of left-handers in the population is between

16.51% and 33.49%.

• Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

Confidence Intervals

Confidence Intervals for the Population Variance

• Goal: Form a confidence interval for the population variance, σ^2

- The confidence interval is based on the sample variance, s²
- Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

(continued)

The random variable

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma^2}$$

follows a chi-square distribution with (n - 1) degrees of freedom

Confidence Intervals for the Population Variance

The $(1 - \alpha)$ % confidence interval for the population variance is

$$\frac{(n-1)s^2}{\chi^2_{n-1, \alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1, 1-\alpha/2}}$$

Example

You are testing the speed of a batch of computer processors. You collect the following data (in Mhz):

Sample size 17

Sample mean 3004

Sample std dev 74

Assume the population is normal. Determine the 95% confidence interval for σ_v^2

Finding the Chi-square Values

- n = 17 so the chi-square distribution has (n 1) = 16 degrees of freedom
- $\alpha = 0.05$, so use the the chi-square values with area 0.025 in each tail:

$$\chi_{n-1, \alpha/2}^2 = \chi_{16, 0.025}^2 = 28.85$$

$$\chi_{n-1, 1-\alpha/2}^2 = \chi_{16, 0.975}^2 = 6.91$$

Calculating the Confidence Limits

The 95% confidence interval is

$$\frac{(n-1)s^2}{\chi^2_{n-1,\,\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1,\,1-\,\alpha/2}}$$

$$\frac{(17-1)(74)^2}{28.85} < \sigma^2 < \frac{(17-1)(74)^2}{6.91}$$

$$3037 < \sigma^2 < 12683$$

Converting to standard deviation, we are 95% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

Finite Populations

 If the sample size is more than 5% of the population size (and sampling is without replacement) then a finite population correction factor must be used when calculating the standard error

Finite Population Correction Factor

- Suppose sampling is without replacement and the sample size is large relative to the population size
- Assume the population size is large enough to apply the central limit theorem
- Apply the finite population correction factor when estimating the population variance

finite population correction factor =
$$\frac{N-n}{N-1}$$

Estimating the Population Mean

- Let a simple random sample of size $\,n\,$ be taken from a population of $\,N\,$ members with mean $\,\mu\,$
- The sample mean is an unbiased estimator of the population mean $\boldsymbol{\mu}$
- The point estimate is:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Finite Populations: Mean

 If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the sample mean is

$$\hat{\sigma}_{\bar{x}}^2 = \frac{s^2}{n} \left(\frac{N-n}{N-1} \right)$$

• So the $100(1-\alpha)\%$ confidence interval for the population mean is

$$\overline{x} \text{ - } t_{\text{n-1},\alpha/2} \hat{\sigma}_{\overline{x}} < \ \mu \ < \overline{x} + t_{\text{n-1},\alpha/2} \hat{\sigma}_{\overline{x}}$$

Estimating the Population Proportion

- Let the true population proportion be P
- Let \hat{p} be the sample proportion from nobservations from a simple random sample
- The sample proportion, \hat{p} , is an unbiased estimator of the population proportion, P

Finite Populations: Proportion

• If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the population proportion is

$$\hat{\sigma}_{\hat{p}}^2 = \frac{\hat{p}(1-\hat{p})}{n} \left(\frac{N-n}{N-1} \right)$$

• So the $100(1-\alpha)\%$ confidence interval for the population proportion is

$$\hat{p} \text{-} z_{\alpha/2} \hat{\sigma}_{\hat{p}} < P < \hat{p} + z_{\alpha/2} \hat{\sigma}_{\hat{p}}$$

Lecture Summary

- Introduced the concept of confidence intervals
- Discussed point estimates
- Developed confidence interval estimates
- Created confidence interval estimates for the mean (σ^2 known)
- Introduced the Student's t distribution
- Determined confidence interval estimates for the mean (σ^2 unknown)

Lecture Summary

(continued)

- Created confidence interval estimates for the proportion
- Created confidence interval estimates for the variance of a normal population
- Applied the finite population correction factor to form confidence intervals when the sample size is not small relative to the population size

Summary

- Introduced sampling distributions
- Described the sampling distribution of sample means
 - For normal populations
 - Using the Central Limit Theorem
- Described the sampling distribution of sample proportions
- Introduced the chi-square distribution
- Examined sampling distributions for sample variances
- Calculated probabilities using sampling distributions

Thank You

