Bacharelado em Ciência da Computação – UFU Disciplina GBC053 – Gerência de Banco de Dados Profa. Sandra de Amo

Solução dos Exercicios - Aula 28 Cálculo de Custos de Planos de Execução de Consultas

R(sid,bid,day,rname) : RESERVA S(sid,sname,rating,age) : SAILORS

B(bid,bname, color): BOAT

Consulta: Dê todos os nomes de marinheiros com rating > 5 que reservaram o barco com bid = 100.

Dados a considerar para o cálculo de custos dos planos:

 N° de páginas de R = M = 1000, com 100 tuplas por página

 N° de páginas de S = N = 500, com 80 tuplas por página

 N° de barcos reservados = 100 (existem 100 valores de bids distintos na tabela R)

Nº de valores para o atributo rating em S: 10 (varia de 1 a 10)

Hipóteses consideradas para a estimativa dos custos:

- As reservas estão uniformemente distribuídas entre os barcos.
- O número de marinheiros para cada valor de rating é aproximadamente o mesmo (distribuição uniforme dos valores de rating entre os marinheiros)

Nº de páginas livres no buffer = 5

Exercicio 1:

```
Custo = M + M.N = 1000 + 1000*500 = 501.000 I/Os
```

Exercicio 2:

```
Tamanho de Temp 1 = 1000/100 = 10
Tamanho de Temp 2 = 500/2 = 250
```

Custo de ordenação de Temp1 = 2. 10 .
$$n^{o}$$
 de etapas N^{o} de etapas = $[\log_4 10/5] + 1 = [\log_4 2] + 1 = [0,5] + 1 = 2$ Custo de ordenação de Temp 1 = 40

Custo de ordenação de Temp2 = 2. 250 .
$$n^{\circ}$$
 de etapas N° de etapas = $[\log_4 250/5] + 1 = [\log_4 50] + 1 = [2,5] + 1 = 4$ Custo de ordenação de Temp 1 = 2000

Custo do Sort-Merge = 10 + 250 = 260

Custo total do plano = (1000+10+500+250) + (40 + 2000 + 260) = 1760 + 2300 = 4060 I/O

Exercicio 3

B-2 = 3

 N° de blocos de 3 páginas = [10/3] = 4

Custo da operação de junção de Temp1 com Temp2 = 4*250 + 10 = 1010

Custo total do plano de execução = (1000 + 10 + 500 + 250) + 1010 = 2770 I/O

Exercicio 4

Reserva tem 4 atributos. Sailors tem 4 atributos. Tamanho de Temp1 após a projeção = [10/4] = 3 páginas

Tamanho de Temp2 após a projeção = [250/2] = 125 páginas

Nº de blocos de 3 páginas para Temp1 = 1

Custo do Block Nested = 3 + 1*125 = 128

Custo de criação e armazenamento das relações temporárias projetadas = 1000 + 3 + 500 + 125 = 1628

Custo total do plano de execução = 1628 + 128 = 1756 I/Os

Exercicio 5

Custo para obter a relação T1 do lado esquerdo do Join
 Observação: T1não será armazenada, o Join será executado em pipeline a medida que as tuplas de T1 forem sendo criadas.

R tem 100.000 tuplas Total de tuplas com bid 100 é = 100.000/100 = 1000Total de páginas para as tuplas com bid 100 = 10

Supondo que o índice hash segue a alternativa 2 Custo para encontrar a página do índice = 1,2

Como o índice é agrupado, as tuplas de dados com bid 100 estão agrupadas de acordo com o agrupamento do índice. Portanto, o custo para encontrar as tuplas de dados com bid 100 é = 10 (número de páginas contendo tais tuplas – cada página terá de ser acessada uma única vez).

Logo, custo de obter a relação T1 = 10 + 1,2 = 11,2

- Custo do Join
 - Para cada tupla de T1 (1000 tuplas ao todo) temos uma única tupla correspondente em S.
- Caso o indice hash em Sailors utilize a alternativa (2)
 - Custo para encontrar esta única tupla = 1,2 + 1 = 2,2
 - o Custo total do Join = 1000. 2,2 = 2200

Custo total do plano de execução = 11.2 + 2200 = 2211.2 I/Os

- Caso o indice hash em Sailors utilize a alternativa (1)
 - Custo para encontrar esta única tupla = 1,2 = 1,2
 - o Custo total do Join = 1000. 1,2 = 1200

Custo total do plano de execução = 11,2 + 1200 = **1211,2 I/Os**

Observações:

- 1) Como Sid é chave de Sailors, não faz diferença (em termos de custos) se o índice hash de Sailors é agrupado ou não.
- 2) Note que neste caso NÃO VALE A PENA "EMPURRAR" a seleção sobre rating > 5 para baixo do Join. Pelos seguintes motivos:
 - o A seleção envolveria uma varredura em Sailors, já que o índice hash de que dispomos é no atributo SID e não no atributo *rating*.
 - Mesmo se tivéssemos um índice em rating para facilitar a seleção em Sailors, o índice em SID seria inútil para realizar o Join depois.

Conclusão: Não vale a pena "empurrar" a seleção para dentro do Join quando existem índices úteis para o Join que seriam inutilizáveis caso a seleção fosse "empurrada" para dentro.

Exercício 6

 Custo para criar e gravar (materializar) a relação temporária Temp1 ORDENADA (por SID) do lado esquerdo do Join:

$$1,2 + 10 + 10 + 2*2*10 = 61,2$$

Todas as tuplas com o mesmo SID em Temp1 estão juntas após a ordenação

- Temos 40.000 tuplas em Sailors
 1000 reservas de barcos com bid 100
 - Suponhamos que **somente 4 marinheiros (M1, M2, M3, M4)** fizeram reservas de barcos.

(se todos os marinheiros tivessem reservado todos os barcos, teriamos pelo menos 4 milhões de reservas, o que não é verdade, pois temos 100.000 tuplas em Reservas !!)

- Suponhamos que cada um dos 4 marinheiros reservou todos os barcos o mesmo número de vezes.
- Assim, temos 250 reservas de cada barco por cada marinheiro.

Logo, para cada página de Temp1, temos 25 tuplas que combinam com o **M1**, 25 com o marinheiro **M2**, 25 com o **M3** e 25 com o **M4**. Temp1 está ordenada por SID.

Logo, cada página de Temp1 é organizada da seguinte maneira:

100	M1	
100	M1	
100	M2	
100	M2	
100	М3	
100	М3	
100	M4	
100	M4	

Cada uma das faixas coloridas comporta 25 tuplas

Para cada página de Temp1, preciso buscar 4 páginas de Sailors no máximo (no exemplo, as páginas onde está o Sid = M1, o Sid = M2, o Sid = M3 e o Sid = M4). O custo para encontrar cada uma destas páginas com o índice hash é 1,2 + 1 = 2,2.

Logo, o custo do Join é: 10*4*2,2 = 88

Custo total do plano de execução = 61,2 + 88 = **148,2 I/O**

Obs. Quanto menor for o número de marinheiros que reservaram barcos, menor o custo desta consulta.

Exercício 7

Lado esquerdo do Join, supondo a alternativa 1 para o índice em Reserva: usando o indice, o custo da primeira seleção é 10+1,2 (1,2 = custo para encontrar a 1ª página com bid=100, 10 = custo para encontrar o restante das páginas com bid=100 – já que o índice é agrupado).

O resultado da seleção on the fly sobre o atributo Day fornece uma única tupla **t**, já que (bid, day) é chave de Reserva. Só existe uma única tupla em Sailors que combina com

esta tupla t. Para encontrá-la, usando o índice hash em Sailors (supondo a alternativa 1 para este indice) temos um custo de 1,2.

Logo, o custo total do plano de execução é 11,2+1,2 =12,4 I/Os

Observação: Este é um exemplo que mostra que empurrar uma seleção para dentro do Join (no caso a seleção sobre os atributos Day e Bid) é muito vantajosa, no caso dos atributos constituirem uma chave da relação selecionada (no caso Reserva).