Report 5

Traditional Filter applied so far:

- 1. Convolution smoothing
- 2. Wavelet Smoothing
- 3. Moving averages
- 4. Exponential Smoothing
- 5. Finite Impulse Response filters
- 6. Infinite Impulse Response filters

INPUT SAMPLES: 20, 000 input 1D signals of length 512 were used

TESTING: 5,000 samples were used for testing, 6,000 were used for validation.

DEEP LEARNING FILTERS

Below are some neural nets from the past 2 years proven to be effective in signal denoising (mainly 1D ECG signals)

1. DRNN (Deep Recurrent Neural Network)

https://arxiv.org/abs/1807.11551 (July 2018)

2. LSTM neural network for denoising.

https://ieeexplore.ieee.org/document/8902833 (Sept 2019)

3. CNN Deep learning model for denoising.

https://ieeexplore.ieee.org/document/8902833 (sept 2019)

4. CNN encoder decoder

https://pubmed.ncbi.nlm.nih.gov/31918422/ (Feb 2020)

5. Vanilla Filter

Vanilla L

Model: "sequential 1"

Layer (type)	Output Shape	E	Param #
convld_1 (ConvlD)	(None, 512,	64)	640
conv1d_2 (Conv1D)	(None, 512,	64)	36928
conv1d_3 (Conv1D)	(None, 512,	32)	18464
convld_4 (ConvlD)	(None, 512,	32)	9248
conv1d_5 (Conv1D)	(None, 512,	16)	4624
conv1d_6 (Conv1D)	(None, 512,	16)	2320
convld_7 (ConvlD)	(None, 512,	1)	145

Total params: 72,369 Trainable params: 72,369 Non-trainable params: 0

https://arxiv.org/pdf/2101.03423.pdf (Jan 2021)

6. Full Convolution Net Denoising Autoencoders.

https://ieeexplore.ieee.org/document/8693790

(April 2019)

7. Vanilla NL Filter

Vanilla_NL

Model: "sequential_1"

Layer (ty	rpe)	Output	Shape	2	Param #
convld_1	(Conv1D)	(None,	512,	64)	640
conv1d_2	(Conv1D)	(None,	512,	64)	36928
convld_3	(Conv1D)	(None,	512,	32)	18464
convld_4	(Conv1D)	(None,	512,	32)	9248
conv1d_5	(Conv1D)	(None,	512,	16)	4624
convld_6	(Conv1D)	(None,	512,	16)	2320
convld_7	(Conv1D)	(None,	512,	1)	145

Total params: 72,369 Trainable params: 72,369 Non-trainable params: 0

https://arxiv.org/pdf/2101.03423.pdf (Jan 2021)

8. Deep Filter

--model photo.

Results:

Sum of Square Differences, Mean Absolute Differences, Percent Root Mean Square Differences, Cosine-Similarity.

Method/Model	į		SSD	į		/AD	Ī	PRD	İ		_SIM	Ţ
Data Values FCN-DAE			(0.063) (0.024)			(0.029)	 	26.276 (4.452) 16.843 (2.726)	- 1		(0.003)	İ
DRNN		0.338	(0.181)	ĺ	0.100	(0.034)	i	39.910 (10.309)	İ	0.980	(0.010)	i
LSTM IEEE CNN IEEE	ł		(0.020)			(0.023)	ł	15.704 (2.561) 30.149 (3.583)				
Vanilla L	į	0.102	(0.035)	ĺ	0.072	(0.019)	į	21.001 (3.016)	İ	0.994	(0.001)	į
Vanilla NL Multibranch LANL	ļ		(0.008) (0.018)	- 1		(0.014) (0.015)		8.657 (1.721) 19.310 (2.720)	- 1		(0.000) (0.001)	I

Training Time for Models: (in secs)

Method/Model	Training Time
l DRNN	1017.000 (0.000)
FCN-DAE	2057.000 (0.000)
LSTM IEEE	6485.000 (0.000)
CNN IEEE	287.000 (0.000)
Vanilla L	1144.000 (0.000)
Vanilla NL	1284.000 (0.000)
Multibranch LANL	10930.000 (0.000)
+	++

Sum of Squared Distances

Mean Absolute Deviations

Percent Root Mean Square Differences

Correlation Box plots

From the above graphs, we can see that some models perform much better than the others for our purpose. Like FCN-DAE, LSTM_IEEE, Vanilla_NL and Deep Filters(multibranch LANL).

Denoised Results: DRNN

FCN-DAE

LSTM IEEE

CNN IEEE

Vanilla L

Vanilla NL

Deep Filter

SOME QUESTIONS-----

- 1. Why we are not denoising the images directly.
- 2. Can we do some kind of data pre-processing before-hand.
- 3. Instead of adding random noise can we add some specific noise (ECG noise paper).