Review

(1) Instantaneous power (瞬时功率)

$$p(t) = u(t) i(t) \mathbf{W}$$

(2) Average power, active power (有功功率)

$$P = UI \cos \varphi = I^2 R W$$

cosφ: power factor(功率因数)

(3) Reactive power (无功功率)

$$Q = UI \sin \varphi = I^2 X \text{ Var}$$

(4) Complex Power (复功率)

$$\tilde{S} = P + jQ VA$$

103

9.9.5 Apparent Power (视在功率)

Apparent Power: $S = \sqrt{P^2 + Q^2} = UI$ Unit: VA

$$S = |\tilde{S}|$$

 $Q = \text{reactive power} \quad \cos \varphi = \frac{P}{S}$

P = average power

Power triangle (功率三角形)

Apparent power represent the volt-amps capacity required to supply the average power. 变压器容量(100kVA, 5000kVA)

104

Transformers

10 kV, 100kVA

500 kV, 450MVA

105

Transformers

Example

An electrical load operates at 240V rms (effective value). The load absorbs an average power of 8kW at a lagging power factor of

- Calculate the complex power of the load.
- Calculate the impedance of the load.

a) The load is inductive, so $\cos \varphi = 0.8$, $\sin \varphi = 0.6$, therefore

$$S = \frac{P}{\cos \varphi} = \frac{8kW}{0.8} = 10kVA \qquad Q = S\sin \varphi = 6kVAR$$

$$Q = S\sin\varphi = 6kVAR$$

 $\widetilde{S} = 8 + j6kVA$

 $P = UI \cos \varphi = 240I(0.8) = 8000W$

Solving for
$$I = 41.67A$$

$$|Z| = \frac{U}{I} = \frac{240}{41.67} = 5.76$$

$$Z = |Z|\cos\varphi + j|Z|\sin\varphi = 4.608 + j3.456\Omega$$

Example 1) $u=707\cos 10\omega t(V)$, $i=1.41\cos(\omega t-53.1^{\circ})(A)$. Find P_{γ} Q_{γ} S_{\circ}

Solution

$$\dot{U} = \frac{707}{\sqrt{2}} \angle 0^0 = 500V \qquad \dot{I} = \frac{1.414}{\sqrt{2}} \angle -53.1^0 A$$
$$\widetilde{S} = \dot{U} \dot{I} = 500 \angle 53.1^0 = 300 + j400VA$$

$$\widetilde{S} = \dot{U} \dot{I} = 500 \angle 53.1^{0} = 300 + j400VA$$

and
$$S = \left| \widetilde{S} \right| = 500VA$$

$$P = 300W$$
 $Q = 400VAR$

We need higher of lower Power Factor? Why? How?

We need higher higher Power Factor, but it is always low for many apparatus.

Motors: no-load cosφ =0.2~0.3 full-load cosφ =0.7~0.85

Fluorescent lamps: cosφ=0.45~0.6

Benefits:(1)Make full use of equipment capacity; (2) Reduce the current and line loss.

Most industrial loads are inductive, operate at a lagging power factor. So we need to corrected the power factor by adding a

113

Power Factor Correction (功率因数校正-PFC)

parallel capacitor.

Conservation of AC power (功率的守恒)

Notice:
$$\tilde{S} = \tilde{S}_1 + \tilde{S}_2 + \tilde{S}_3 + \dots$$

= $\dot{U}_1 \dot{I}_1^* + \dot{U}_2 \dot{I}_2^* + \dot{U}_3 \dot{I}_3^* + \dots$

$$Q = Q1 + Q2 + Q3....$$

$$P = P1 + P2 + P3....$$
;

 $S \neq S1 + S2 + S3...$ but

119

Brief summary

- (1) Instantaneous power (瞬时功率)
- (2) Average power, active power (有功功率)
- (3) Reactive power (无功功率)
- (4) Complex Power (复功率)
- (5) Apparent Power (视在功率)
- (6) Power Factor Correction (功率因数的提高)
- (7) Maximum power transfer (最大功率传输)

120

Example 10. Illustrate that when ω changes from 0 to ∞ , $U_2=U_1$, φ , changes from $180^{\circ}+\varphi_1$ to φ_1 .

$U_1 = U_1 \angle 0^\circ$

 $U_{bd} = U_2 = U_1$

121

Solution 2. Assume

$$\dot{U}_1 = U_1 \angle \varphi_1, \dot{U}_2 = U_2 \angle \varphi_2 = \frac{j \omega CR - 1}{j \omega CR + 1} \dot{U}_1$$

$$= \frac{R - \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} \dot{U}_{1} : \dot{U}_{2} = \dot{U}_{1} \angle (180^{\circ} - 2 \arctan CR\omega)$$
$$= U_{1} \angle (\varphi_{1} + 180^{\circ} - 2 \arctan CR\omega)$$

Exercise 1. U=100V,

$$U_c = 100 \sqrt{3}V$$
, $X_c = 100 \sqrt{3}\Omega$, $\frac{1}{+} + \frac{1}{-}$
 $\varphi_Z = 60^{\circ}$ Find Z.
Solution
 $I = \frac{U_c}{X_c} = 1A$ $I = 1 \angle 0^{\circ}$ $\frac{1}{-}$
 $Z = R + jX$
 $U = (-j100\sqrt{3} + R + jX) \cdot 1 \angle 0^{\circ} = R + j(X - 100\sqrt{3})$
 $\therefore 100^2 = R^2 + (X - 100\sqrt{3})^2$ $\therefore R = \begin{cases} 1000\Omega \\ 50\Omega \end{cases}$
 $\frac{X}{R} = tg60^{\circ} = 1.732$ $X = \begin{cases} 173.2\Omega \\ 86.6\Omega \end{cases}$
 $Z = \begin{cases} 100 + j173.2\Omega \\ 50 + j86.6\Omega \end{cases}$

Exercise 2. Find the relationship of L. C.
$$\omega$$
, to make I constant when R changes.?????

If R=0: $\dot{I} = j(\omega C - \frac{1}{\omega L})\dot{U} + \dot{I}$

If R= ω : $\dot{I} = j\omega C\dot{U}$
 \dot{U}
 \dot{U}

Summary

- (1) amplitude, angular frequency, initial phase angle; Phase angle difference; Root mean square, RMS;
- (2) Definition of Phasor;
- (3) Passive circuit elements in the frequency domain; impedance;
- (4) Sinusoidal steady-state analysis; Phasor diagrams
- (5) AC circuit power analysis

What's next?

- (1) Frequency characteristics; Resonance
- (2) Magnetically coupled circuits; Transformers
- (3) Three-Phase circuits;
- (4) Periodic, nonsinusoidal excitations

127

正误判断

在电感电路中:

$$i \stackrel{\textstyle \star}{X} \frac{u}{X_L}$$

$$i \not = \frac{u}{\omega L}$$

$$I \neq \frac{U}{\omega L}$$

$$\frac{U}{I} \times j\omega L$$

$$\frac{\dot{U}}{\dot{I}} \times X_L$$

129

正误判断

在R-L-C串联电路中

$$U \not \setminus U_R + U_L + U_C = IR + I(X_L - X_C)$$

因为交流物理量除有效值外还有相位。

正误判断

$$\dot{U} \not \neq \dot{I}\dot{Z}$$

 \dot{U} , \dot{I} 反映的是正弦电压或电流,

而复数阻抗只是一个运算符号。Z不能加"•"

131

正误判断

在 R-L-C 串联电路中,假设 $\dot{I}=I\angle 0^\circ$

$$U \not\models \sqrt{U_R^2 + U_L^2 + U_C^2}$$

$$U \checkmark I\sqrt{R^2 + (X_L - X_C)^2}$$

$$\dot{U} \neq \dot{I}[R + j(X_L - X_C)]$$

正误判断 在R-L-C正弦交流电路中

$$I \neq \frac{U}{|Z|} \qquad \qquad i \not \nmid \frac{u}{|Z|}$$

$$\dot{I} \neq \frac{\dot{U}}{Z} \qquad \qquad \dot{I} \not \nmid \frac{\dot{U}}{|Z|}$$

132

正误判断在R-L-C串联电路中,假设 $\dot{I}=I\angle 0^\circ$

$$\varphi \bowtie tg^{-1} \frac{X_L - X_C}{R}$$
 $\varphi \bowtie tg^{-1} \frac{U_L - U_C}{U}$

$$\varphi \neq tg^{-1} \frac{U_L - U_C}{U_R} \qquad \varphi \neq tg^{-1} \frac{\omega L - \omega C}{R}$$