Team ID: PNT2022TMID25408

Team Size: 4

0

1 2

3

4

101348.88

112542.58

113931.57

93826.63

79084.10

1

 Ω

1

Team Leader: THINESH PRABAKARAN D

Team member: SUNIL RANJITH T

Team member: SRIAKASH S

Team member: RUBANRAJ V

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
sns.set style('darkgrid')
sns.set(font scale=1.3)
df=pd.read csv("/content/drive/MyDrive/IBM/Assignment - 2
/Churn Modelling.csv")
df.head()
   RowNumber CustomerId
                           Surname CreditScore Geography Gender Age
\
0
                15634602 Hargrave
                                            619
                                                   France Female
                                                                    42
1
                15647311
                             Hill
                                            608
                                                    Spain Female
                                                                    41
                15619304
                                            502
2
                              Onio
                                                   France Female
                                                                    42
3
           4
                15701354
                              Boni
                                            699
                                                   France Female
                                                                    39
           5
                15737888 Mitchell
4
                                            850
                                                    Spain Female
                                                                    43
           Balance NumOfProducts HasCrCard IsActiveMember
   Tenure
0
        2
                0.00
                                             1
1
        1
          83807.86
                                  1
                                             0
                                                             1
2
        8 159660.80
                                  3
                                             1
                                                             0
3
        1
                0.00
                                  2
                                             0
                                                             0
4
        2 125510.82
                                  1
                                             1
                                                             1
   EstimatedSalary Exited
```

df.drop(["RowNumber","CustomerId","Surname"],axis=1,inplace=True)
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	CreditScore	10000 non-null	int64
1	Geography	10000 non-null	object
2	Gender	10000 non-null	object

```
3
     Age
                      10000 non-null int64
 4
     Tenure
                      10000 non-null int64
 5
     Balance
                      10000 non-null float64
                      10000 non-null int64
 6
     NumOfProducts
 7
    HasCrCard
                      10000 non-null
                                      int64
 8
     IsActiveMember
                      10000 non-null int64
     EstimatedSalary
                      10000 non-null float64
 10
    Exited
                      10000 non-null int64
dtypes: float64(2), int64(7), object(2)
memory usage: 859.5+ KB
#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.countplot(x='Tenure',data=df)
plt.xlabel('0:Customers with Bank, 1: exited from bank')
plt.ylabel('No.of.Customers')
plt.title("Bank Customers viz")
plt.show()
```



```
#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])
```

<matplotlib.axes. subplots.AxesSubplot at 0x7fa0c03906d0>

#Perform Bivariate Analysis
plt.scatter(df.Age,df.Balance)

<matplotlib.collections.PathCollection at 0x7fa0d35a7dd0>

#Perform Bivariate Analysis
df.corr()

D-1	CreditScore	Gender	Age	Tenure	
Balance \ CreditScore	1.000000	0.007888	-0.003965	0.000842	0.006268
Gender	0.007888	1.000000	0.022812	0.003739	0.069408
Age	-0.003965	0.022812	1.000000	-0.009997	0.028308
Tenure	0.000842	0.003739	-0.009997	1.000000	-0.012254
Balance	0.006268	0.069408	0.028308	-0.012254	1.000000
NumOfProducts	0.012238	0.003972	-0.030680	0.013444	-0.304180
HasCrCard	-0.005458	-0.008523	-0.011721	0.022583	-0.014858
IsActiveMember	0.025651	0.006724	0.085472	-0.028362	-0.010084
EstimatedSalary	-0.001384	-0.001369	-0.007201	0.007784	0.012797
Exited	-0.027094	0.035943	0.285323	-0.014001	0.118533

CreditScore 0.001384	0.012238	-0.005458	0.025651				
Gender 0.001369	0.003972	-0.008523	0.006724				
Age 0.007201	-0.030680	-0.011721	0.085472				
Tenure 0.007784	0.013444	0.022583	-0.028362				
Balance 0.012797	-0.304180	-0.014858	-0.010084				
NumOfProducts 0.014204	1.000000	0.003183	0.009612				
HasCrCard 0.009933	0.003183	1.000000	-0.011866				
IsActiveMember 0.011421	0.009612	-0.011866	1.000000				
EstimatedSalary 1.000000	0.014204	-0.009933	-0.011421				
Exited 0.012097	-0.047820	-0.007138	-0.156128				
	Exited						
CreditScore Gender	-0.027094 0.035943						
Age	0.035943						
Tenure	-0.014001						
Balance	0.118533						
NumOfProducts							
HasCrCard	-0.007138						
IsActiveMember							
EstimatedSalary							
Exited	1.000000						
<pre>#Perform Bivariate Analysis import statsmodels.api as sm</pre>							
<pre>#define response variable y = df['CreditScore']</pre>							
<pre>#define explanatory variable x = df[['EstimatedSalary']]</pre>							
<pre>#add constant to predictor variables x = sm.add_constant(x)</pre>							

#fit linear regression model
model = sm.OLS(y, x).fit()

#view model summary
print(model.summary())

OLS Regression Results

======							
Dep. Variabl	e:	Cr	reditScore	R-sqı	uared:		
Model: -0.000			OLS	Adj.	R-squa	red:	
Method: 0.01916		Leas	st Squares	F-sta	atistic	:	
Date: 0.890		Sat, 24	l Sep 2022	Prob	(F-sta	tistic):	
Time: -59900.			05:06:19	Log-I	Likelih	ood:	
No. Observat 1.198e+05	ions:		10000	AIC:			
Df Residuals 1.198e+05	:		9998	BIC:			
Df Model:			1				
Covariance T	ype:		nonrobust				
	=======================================	======		======	:=====		
[0.025	0.975]	coef	std err		t	P> t	
const	- 650	7617	1.940	335	407	0 000	
646.958		J. / U I /	1.940	333.	. 40 /	0.000	
EstimatedSal 05 3.06e-	_	26e-06	1.68e-05	-0.	138	0.890	-3.53e-

Omnibus: 132.939 Durbin-Watson:

2.014

=======

Prob(Omnibus): 0.000 Jarque-Bera (JB):

84.242

Skew: -0.072 Prob(JB):

5.10e-19

Kurtosis: 2.574 Cond. No.

2.32e+05

=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+05. This might indicate that

there are strong multicollinearity or other numerical problems.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

x = pd.concat(x[::order], 1)

#Perform Multivariate Analysis

plt.figure(figsize=(4,4))

sns.pairplot(data=df[["Balance", "CreditScore", "EstimatedSalary", "NumOf
Products", "Tenure", "Exited"]], hue="Exited")

<seaborn.axisgrid.PairGrid at 0x7fa0b00a1b10>

<Figure size 288x288 with 0 Axes>


```
#Perform Descriptive Statistics
df=pd.DataFrame(df)
print(df.sum())
CreditScore
                                                       6505288
               FranceSpainFranceFranceSpainSpainFranceGermany...
Geography
Gender
                 FemaleFemaleFemaleFemaleMaleMaleFemaleMa...
Age
                                                        389218
Tenure
                                                         50128
Balance
                                                   764858892.88
NumOfProducts
                                                         15302
HasCrCard
                                                          7055
                                                          5151
IsActiveMember
                                                  1000902398.81
EstimatedSalary
Exited
                                                          2037
dtype: object
#Perform Descriptive Statistics
print("----Sum Value-----")
print(df.sum(1))
print("----")
print("----Product Value-----")
print(df.prod())
print("----")
Sum Value-
0 102015.88
1
      197002.44
      274149.37
3
       94567.63
      205492.92
9995 97088.64
9996 159633.38
9997
       42840.58
9998 168784.83
9999 169159.57
Length: 10000, dtype: float64
-----
----Product Value----
CreditScore 0.0
                0.0
Age
                0.0
Tenure
Balance
                0.0
               0.0
NumOfProducts
HasCrCard
                0.0
IsActiveMember     0.0
EstimatedSalary     inf
Exited
                0.0
dtype: float64
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

This is separate from the ipykernel package so we can avoid doing imports until

/usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:52: RuntimeWarning: overflow encountered in reduce

return umr_prod(a, axis, dtype, out, keepdims, initial, where) /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

#Perform Descriptive Statistics print(df.mean()) print("----") print("-----"Median Value -----") print(df.median()) print("----") print(df.mode()) print("----") _____Mean Value-____ CreditScore 650.528800 Aae 38.921800 Tenure 5.012800 Balance 76485.889288 NumOfProducts 1.530200 HasCrCard 0.705500 IsActiveMember 0.515100 EstimatedSalary 100090.239881 Exited 0.203700 dtype: float64 ____Median Value_____ CreditScore 652.000 37.000 Age 5.000 Tenure Balance 97198.540 NumOfProducts 1.000 HasCrCard 1.000 1.000 IsActiveMember

EstimatedSalary 100193.915

0.000

Exited

dtype: float64

_____Mode Value-____

CreditScore Geography Gender Age Tenure Balance

NumOfProducts \

0 850 France Male 37 2 0.0

HasCrCard IsActiveMember EstimatedSalary Exited

1 1 24924.92 0

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

1

This is separate from the ipykernel package so we can avoid doing imports until

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

#Handling with missing Values
df.isnull()#Checking values are null

	CreditScore	Geography	Gender	Age	Tenure Ba	lance
NumOf	Products \					
0	False	False	False	False	False	False
False						
1	False	False	False	False	False	False
False						
2	False	False	False	False	False	False
False						
3	False	False	False	False	False	False
False						
4	False	False	False	False	False	False
False						
• • •	• • •	• • •	• • •	• • •	• • •	• • •
	п 1	ъ 1		- 1	- 1	- 1
9995	False	False	False	False	False	False
False			- 1	- 1	- 1	- 1
9996	False	False	False	False	False	False
False		П-1	D-1	T-1	D-1	D-1
9997	False	False	False	False	False	False
False		Delee	Falsa	Enlan	T-1	Enlar.
9998	False	False	False	False	False	False

False 9999 False	Fals	e False	False	False	Fal	se F	Talse
	HasCrCard	IsActiveMembe	er Esti	.matedSa	lary	Exited	i
0	False	Fals	se	F	alse	False	خ خ
1	False	Fals	se	F	alse	False	خ
2	False	Fals	se	F	alse	False	خ
3	False	Fals	se	F	alse	False	خ خ
4	False	Fals	se	F	alse	False	<u> </u>
		• •					
9995	False	Fals	se	F	alse	False	<u> </u>
9996	False	Fals	se	F	alse	False	<u> </u>
9997	False	Fals	se	F	alse	False	<u> </u>
9998	False	Fals	se	F	alse	False	5
9999	False	Fals	se	F	alse	False	5

[10000 rows x 11 columns]

#Handling with missing Values

df.notnull() #Checking values are not null

	CreditScore	Geography	Gender	Age I	enure Bal	ance
NumOf 0 True	Products \ True	True	True	True	True	True
1 True	True	True	True	True	True	True
2 True	True	True	True	True	True	True
3 True	True	True	True	True	True	True
4 True	True	True	True	True	True	True
		• • •		• • •	• • •	• • •
9995 True	True	True	True	True	True	True
9996 True	True	True	True	True	True	True
9997 True	True	True	True	True	True	True
9998 True	True	True	True	True	True	True
9999 True	True	True	True	True	True	True
0	HasCrCard I	IsActiveMembe Tri	ue	matedSa	True I	ted rue
1	True	Tri	ue		True I	'rue

2	True	True	True	True
3	True	True	True	True
4	True	True	True	True
		• • •		
9995	True	True	True	True
9996	True	True	True	True
9997	True	True	True	True
9998	True	True	True	True
9999	True	True	True	True

[10000 rows x 11 columns]

#Find outliers & replace the outliers
sns.boxplot(df['Balance'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fa0af6dcf90>

0 50000 100000 150000 200000 250000 Balance

```
#Find outliers & replace the outliers
print(np.where(df['Balance']>100000))
(array([ 2, 4, 5, ..., 9987, 9993, 9999]),)
```

```
#Find outliers & replace the outliers
from scipy import stats
import numpy as np
z = np.abs(stats.zscore(df["EstimatedSalary"]))
print(z)
0
        0.021886
1
        0.216534
2
        0.240687
3
        0.108918
4
        0.365276
9995
       0.066419
9996
       0.027988
9997
        1.008643
        0.125231
9998
9999
        1.076370
Name: EstimatedSalary, Length: 10000, dtype: float64
#Check for categorical columns & performs encoding
from sklearn.preprocessing import LabelEncoder
df['Gender'].unique()
array(['Female', 'Male'], dtype=object)
#Check for categorical columns & performs encoding
df['Gender'].value counts()
          5457
Male
          4543
Female
Name: Gender, dtype: int64
#Check for categorical columns & performs encoding
encoding=LabelEncoder()
df["Gender"] = encoding.fit transform(df.iloc[:,1].values)
df
      CreditScore Geography Gender Age Tenure
                                                     Balance
NumOfProducts \
              619
                                                2
                     France
                                  0
                                       42
                                                        0.00
1
1
              608
                      Spain
                                   2
                                       41
                                                1
                                                    83807.86
1
2
              502
                     France
                                   0
                                       42
                                                8 159660.80
3
3
              699
                     France
                                       39
                                                1
                                                        0.00
2
4
              850
                                   2
                                       43
                                                2 125510.82
                      Spain
1
              . . .
                                              . . .
```

9995	-	771	France	2	0	39	5	0.00
2 9996		516	France	2	0	35	10	57369.61
1 9997 1	5	709	France	:	0	36	7	0.00
9998	5	772	Germany	,	1	42	3	75075.31
9999	7	792	France	2	0	28	4	130142.79
0 1 2 3 4 9995 9996 9997 9998 9999		L D L D L L L D L		ember 1 0 0 1 0 1 1 0 0	Estir	1013 1125 1139 938 790 962 1016 420 928	alary 48.88 42.58 31.57 26.63 84.10 70.64 99.77 85.58 88.52 90.78	Exited 1 0 1 0 0 0 0 1 1 0 0 0 0
) rows x 1			umna (norfo	arma o	ngodin	~
<pre>#Check for categorical columns & performs encoding #Split the data into Dependent & Independent Variables print("Dependent Variables") X=df.iloc[:,1:4] print(X) print(" ") print("Independent Variables") Y=df.iloc[:,4] print(Y) print(" ")</pre>								
			Variabl					
0 1 2 3 4 9995 9996 9997 9998 9999	Age Tent 42 41 42 39 43 39 35 36 42 28	2 1 8 1 1 2 1 5 10 7 3	Balanc 0.0 83807.8 59660.8 0.0 25510.8 0.0 57369.6 0.0 75075.3 30142.7	66 60 00 62 61 00 61				

```
[10000 rows x 3 columns]
-----
-----Independent Variables-----
1
2
       3
3
       2
4
       1
9995 2
9996
       1
9997
       1
9998
9999
       1
Name: NumOfProducts, Length: 10000, dtype: int64
-----
#Scale the independent Variables
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
# standardization
scale = object.fit transform(df)
print(scale)
[[-0.32622142 \quad 0.29351742 \quad -1.04175968 \quad ... \quad 0.97024255 \quad 0.02188649]
   1.977164681
 [-0.44003595 \quad 0.19816383 \quad -1.38753759 \quad \dots \quad 0.97024255 \quad 0.21653375
  -0.50577476]
 [-1.53679418 \quad 0.29351742 \quad 1.03290776 \quad \dots \quad -1.03067011 \quad 0.2406869
   1.977164681
 [0.60498839 - 0.27860412 \ 0.68712986 \dots \ 0.97024255 - 1.00864308]
  1.977164681
 [ 1.25683526 \quad 0.29351742 \quad -0.69598177 \quad \dots \quad -1.03067011 \quad -0.12523071 ]
   1.977164681
 [ \ 1.46377078 \ -1.04143285 \ -0.35020386 \ \dots \ -1.03067011 \ -1.07636976
  -0.5057747611
#Split the data into training & testing
from sklearn.model selection import train test split
#Split the data into training & testing
x train, x test, y train, y test = train test split(x, y,
test size=4, random state=4)
x train
     const EstimatedSalary
2558 1.0 137903.54
7642
       1.0
                   121765.00
8912 1.0
                   109470.34
```

```
3319
      1.0
                    2923.61
6852
      1.0
                    7312.25
. . .
       . . .
                    7666.73
456
       1.0
6017
      1.0
                    9085.00
709
       1.0
                  147794.63
                  102515.42
8366
      1.0
1146
      1.0
                  54776.64
[9996 rows x 2 columns]
#Split the data into training & testing
x test
     const EstimatedSalary
1603
      1.0
                  23305.85
       1.0
8713
                  41248.80
4561
       1.0
                  143317.42
6600
      1.0
                  174123.16
#Split the data into training & testing
y train
2558
      727
7642
       811
8912
      623
3319
      430
6852
      600
456
      733
6017
       487
709
       686
8366
       637
1146
       614
Name: CreditScore, Length: 9996, dtype: int64
#Split the data into training & testing
y test
1603
       576
8713
       786
4561
       562
6600
       505
Name: CreditScore, dtype: int64
```