heme
k Scl
Mar
Final

4736/01

4		Þ
¢	•	٥
•		
	•	
	Ì	
	ζ	3
	;	
	5	
	¢	1
•		٥

1		Original list 6 5 9 4 5 2		Decreasing order can score method marks only
		After 1st pass 5 6 9 4 5 2	M1	For 1st pass correct with shuttle sort
		After 2 nd pass 5 6 9 4 5 2	Ψ	For 2 nd pass correct with shuttle sort
		After 3 rd pass 4 5 6 9 5 2	M1	For 3"d pass correct with shuttle sort
		After 4th pass 4 5 5 6 9 2	Σ	For 4 th pass correct with shuttle sort or follow through from previous list
		After 5 th pass 2 4 5 5 6 9	A1	For final list from correct shuttle sort, with results at end of each pass clearly shown
		May be shown vertically	ഹ	
7	Ξ	Number of arcs $\times 2 = \text{sum of orders of vertices}$ $\Rightarrow (3+3+4+4+4+4) + 2 = 11 \text{ arcs}$	¥ 4	For a general method For 11 calculated
	: : :	Semi-Eulerian, it has exactly two odd vertices	18	Drawing a specific case to get 11 scores B1 only For semi-Eulerian with avalid reason Accept 'two odd nodes' or 'two nodes of order 3'
	- (m)	Complete graph on five vertices has only 10 arcs, so 11 arcs means that all six vertices are connected.	1	as minimal reasons For a good explanation of the general case by considering orders of vertices A weak explanation may score B1
		Or, a vertex of order 4 must join to four others so five vertices are connected. The sixth vertex has order at least three and cannot connect to itself so it must join to the other five.		A diagram of a specific case is not sufficient
		Or any equivalent reasoning.	B2 5	
٤	(E)	Minimum spanning tree with U removed $R = \begin{cases} 10 & Q \\ R & 13 \end{cases}$ $S = 20 \qquad T.$	Σ	For 43 or arcs QR , RT , TS or a convincing attempt to find minimum spanning tree for $\{Q,R,S,T\}$
		QR + RT + TS = 43 miles		
		Join U back in using two shortest arcs $43 \pm 9 \pm 12$	Ψ.	For their 43 + 9 + 12
	<u>;</u> (ii)	oply nearest neighbour method	A1 M1-1	cao (miles may be implied) For a correct start to an application of nearest neighbour with any start vertex, ie at least: QURTS, STRQU, TRQU or UQRTS
			Œ	For R as start vertex (may be implied from cycle)
		to give RQUTSR	A1	For RQUTSR
			A1 FI	For 89 (miles may be implied) from valid method

Answer should be on insert For starting by choosing row C in column A For choosing more than one entry from column C For a correct order (A) , C , B , D , E , G , F , H	For correct entries chosen or a correct tree drawn	For 25 Accept 'more than 25'	For a correct graph drawn	For correct weights shown	Follow through graph, if possible, provided same conclusion is valid	For explaining what happens if AC is used or why AC cannot be included.	Follow through graph, if possible, provided same conclusion is valid	rc <i>EF</i> or for H	Follow through graph, if possible	For this route For this route For in the form of $ADGCBEFH$ as the quicker of for calculating 32
M M 1	B1	Bl		A1	1 1 1	BI	! ! !	81	l I	M1 M1 A1
(1) $1^{81} 3^{16} 2^{16} 4^{10} 5^{10} 7^{10} 6^{10} 8^{10}$ $ A B C D E F G H$ $ A A A A A A A A A A $	D 33 W 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Quickest time is at least 25 hours	(ii) 4 8 3 E	3 4 0	(iii)	If AC is used then either B or D is excluded. Or must pass through C in getting between B an D , so AC is impossible.		If EF is not used then passing throwing take the team to H , the team able to visit both E and F .		ABEFCDGH ADGCBEFH The second route is quicker (32 hours compared with 36 hours)

(0, 0), (3, 0), (0, 1)	(0, 1)					_	For this impossibility or equivalent, allow \
. 6	11 62 6		! !	1	B2	1	For these three vertices any two correct — B1
(0.9, 2.8)					8 1		For this vertex exact, in decimals or fractions
0) → P:	$(0,0) \rightarrow P = 0; (0,1) \rightarrow P = 3;$	→ P= 3			Ξ		For calculating $P = 5x + 3y$ for at least one of
9, 2.8) →	$(0.9, 2.8) \rightarrow P = 12.9; (3, 0) \rightarrow$	(3,0)-	$\Rightarrow P = 15$				their vertices or clear evidence of using an
x = 3 and $y = 0$	0 =				Ā		apping the correct values of x and y clearly identified
P = 15	1	1		1	V	i	For 15 clearly identified as the optimum value
Either conside (-1/3a) and the (2 and -1/3)	Either consider the gradient of the profit line (+\(\forall \), and the gradients of the boundary lines (2 and -1\(\forall \))	lient of of the l	the profi Soundary	t fine r lines	\(\bar{z}\) \(\bar{z}\)	,	One method mark for each appropriate gradient calculated correctly or for each appropriate value of O calculated correctly
calculate	or calculate Q at vertices \Rightarrow 3, 0.9a+8.4, 3a	s	0.94+8.	4, 3a			
Hence require a < -6	ire a < -6				A1		For the correct set of values identified $a = -6$ or any valid proper subset of the correct
						13	answer with no method shown ⇒ B1 only]
5x + 3y - 5z + s = 15 2x + 6y + 8z + t = 24	+s = 15 $t + t = 24$		1		B1		For both equations correctly stated
4	*	,			B.		For + (-2 5 1) in objective row
	5		0	0	B		Follow through from part (j) For 5 3 -5 1 0 15 and 2 6 8 0 1 24
0 5	,		0 -				swo
ot on	2 o 5 in x column		•	4 7	181		For correct pivot choice for their tableau
P x							
- 0	. 7.9	- -	0.4 0	9 6	Ξ.		For a correct method for their table and their pivor choice
0 0		0			₹ :		For increasing P
	Direction in the second	1		! ! !	₹ <u>i</u>	 	fi their tableau provided not yet optimal
A X	, v		5	•	<u>-</u>		rot correct pivot choice
0 - 0	1.08	00-	0.36 0.1	1 4.8	₹		For correct tableau or equivalent, cao
x = 4.8, y = 0, z = 1.8	0, z = 1.8			:			For all three correct values for their final tableau
= 7.8 e must no	P = 7.8 We must now pivot on the 2 in the x column, this	the 2 in	the x co	lumn, this	<u></u>	!	For correct value for their final tableau
gives P x	2	N		,	Σ		For chowing what harmone to tables
	11			1 24	1 1		only need to show enough to be able to deduce answer (eg ton row: 0.11.9.0.1.or.y.column.)
	÷ c	4	0 0.5				
Hence $y = 0$	Hence $y = 0$ Accept 'no change to y'	_			A1		For correctly deducing $y = 0$ in general case,
	Commerce of the control of the contr						Only using a specific value of k (eg $k = 60$) with no general argument \Rightarrow M1, A0
						[2]	Do not imply method mark from statement ' $y = 0$ ' with no method seen.

Answer should be on insert For correct temporary labels at D and E (condone extras here) For all temporary labels correct (with no extras) MI For value 38 at J Al For all permanent labels correct For the correct order of assigning permanent labels: A, B, C, D, G, E, F, H, J	nd length. sed and accept length = 9 nd length. sed and accept length = 38 om (i), if possible or reversed, as part of a long	May be implied For identifying that route will not visit every Yerlex. Hortrying to pair C, D, F, G (and no others) For trying to pair C, D, F, G (and no others) Al For CD, FG or 10 (or 1000) Mi For 147 (or 14700) or a good attempt seen or implied Al For 15700 metres (or 15700 m or 157 hundred metres or 15.7 km). But 157 \Longrightarrow M1, A0
(a) (i) A 1 0 B 2 2 2 N N	Shortest route: $A - B - G - E$ Length = 900 Shortest route: $A - C - D - F - H - J$ (ii) Length: 4700 metres $E - G - B - A - C - D - F - H - J$	(iii) Explanation: $C = B - A - C - D - F - H$ $C = B - A - C - D - F - H$ $C = B - A - C - D - F - H$ (b) Odd nodes are A, C, D, E, F, G Need to pair C, D, F, G in the shortest way $CD = 3 \text{ and } FG = 7 \Longrightarrow 10$ $CF = 10, DG = 11 \text{ and } CG = 8, DF = 7$ Sum of all weights = 147 $Length = 15700 \text{ metres}$