Parametric

Jibei Zheng jz3425

```
lung_df = lung %>%
mutate_at(c(1, 3, 5, 6), .funs = ~as.factor(.))
```

Model Checking

```
Plot -log\hat{S}(t)
```

Negative Log of Estimated Survival Functions

The curve for males is close to a straight line, while the curve for females is obviously non-linear, indicating a better choice of the Weibull distribution.

Plot log(-logS(t))

Log of Negative Log of Estimated Survival Functions

The slope of the male curve is close to 1, while the slope of the female curve is larger than 1, also indicating a Weibull distribution.

Fit exponential and Weilbull model

```
#parametric survival function
fit_exp = flexsurvreg(Surv(time, status == 2) ~ sex,
```

```
data = lung_df, dist = "exp")
fit_web <- flexsurvreg(Surv(time, status == 2) ~ sex,</pre>
                      data = lung_df, dist = "weibull")
#exp parameter estimation and CI
fit_exp
## Call:
## flexsurvreg(formula = Surv(time, status == 2) ~ sex, data = lung_df,
      dist = "exp")
##
## Estimates:
        data mean est
                              L95%
                                         U95%
                                                               exp(est)
                    0.002865 0.002381 0.003448
## rate
              NA
                                                     0.000271
## sex2 0.394737 -0.500399 -0.827169 -0.173628
                                                     0.166723
                                                                0.606289
      L95%
                   U95%
## rate
               NΑ
                          NA
## sex2
       0.437285
                    0.840609
##
## N = 228, Events: 165, Censored: 63
## Total time at risk: 69593
## Log-likelihood = -1157.6, df = 2
## AIC = 2319.199
#Weibull parameter estimation and CI
fit_web
## Call:
## flexsurvreg(formula = Surv(time, status == 2) ~ sex, data = lung_df,
      dist = "weibull")
##
##
## Estimates:
                             L95%
                                      U95%
                                                        exp(est) L95%
         data mean est
## shape
           NA
                    1.324
                             1.173
                                       1.495
                                                0.082
                                                             NA
                                                                       NA
                                                25.857
## scale
              NA
                    359.301 312.034 413.729
                                                             NA
                                                                       NA
## sex2
           0.395
                     0.396
                             0.145
                                      0.646
                                                 0.128
                                                          1.485
                                                                    1.156
##
         U95%
              NA
## shape
## scale
              NA
## sex2
           1.907
##
## N = 228, Events: 165, Censored: 63
## Total time at risk: 69593
## Log-likelihood = -1148.652, df = 3
## AIC = 2303.303
#plot km, exp fitted and web fitted
plot(fit_web,
    lwd = 2, lwd.obs = 1,
    col = c("blue", "red"), col.obs = c("skyblue", "pink"),
    xlab = "Days", ylab = "Survival Probability",
    main = "KM and Parametric Est with 95% CI")
```

KM and Parametric Est with 95% CI

From the plot we can see that fitting a Weibull distribution is actually more precise than an exponential distribution.