(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 March 2001 (22.03.2001)

(10) International Publication Number WO 01/19859 A2

- (51) International Patent Classification7:
- C07K 14/00
- (21) International Application Number: PCT/US00/25361
- (22) International Filing Date:

13 September 2000 (13.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

US

- (30) Priority Data: 60/153,995 15 September 1999 (15.09.1999)
- (71) Applicant: MONSANTO COMPANY [US/US]; 800 N. Lindbergh Boulevard, St. Louis, MO 63167 (US).
- (72) Inventors: BAUM, James, A.; 321 South Elm Avenue, Webster Groves, MO 63119 (US). CHU, Chih-Rei; 260 Steeplecase Drive, Exton, PA 19341 (US). DONOVAN, William, P.; 36 Calicobush Road, Levittown, PA 19057 (US). GILMER, Amy, J.; 2551 Tulip Lane, Langhorne, PA 19047 (US). RUPAR, Mark, J.; 42 Sturbridge Drive, Wilmington, DE 19810 (US).

- (74) Agent: KAMMERER, Patricia, A.; Howrey Simon Arnold & White, LLP, 750 Bering Drive, Houston, TX 77057-2198 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: LEPIDOPTERAN-ACTIVE BACILLUS THURINGIENSIS δ-ENDOTOXIN COMPOSITIONS AND METHODS OF USE

(57) Abstract: Disclosed are Bacillus thuringiensis strains comprising novel crystal proteins which exhibit insecticidal activity against lepidopteran insects. Also disclosed are novel B. thuringiensis genes and their encoded crystal proteins, as well as methods of making and using transgenic cells comprising the novel nucleic acid sequences of the invention.

-1-

Lepidopteran-Active *Bacillus thuringiensis* δ-Endotoxin Compositions and Methods of Use

1.0 Background of the Invention

1.1 Field of the Invention

The present invention relates generally to the fields of molecular biology. More particularly, certain embodiments concern methods and compositions comprising DNA segments, and proteins derived from bacterial species. More particularly, it concerns novel genes from *Bacillus thuringiensis* encoding lepidopteran-toxic crystal proteins. Various methods for making and using these DNA segments, DNA segments encoding synthetically-modified Cry proteins, and native and synthetic crystal proteins are disclosed, such as, for example, the use of DNA segments as diagnostic probes and templates for protein production, and the use of proteins, fusion protein carriers and peptides in various immunological and diagnostic applications. Also disclosed are methods of making and using nucleic acid segments in the development of transgenic plant cells containing the DNA segments disclosed herein.

1.2 Description of the Related Art

Almost all field crops, plants, and commercial farming areas are susceptible to attack by one or more insect pests. Particularly problematic are Coleopteran and Lepidoptern pests. For example, vegetable and cole crops such as artichokes, kohlrabi, arugula, leeks, asparagus, lentils, beans, lettuce (e.g., head, leaf, romaine), beets, bok choy, malanga, broccoli, melons (e.g., muskmelon, watermelon, crenshaw, honeydew,cantaloupe), brussels sprouts, cabbage, cardoni, carrots, napa, cauliflower, okra, onions, celery, parsley, chick peas, parsnips, chicory, peas, chinese cabbage, peppers, collards, potatoes, cucumber, pumpkins, cucurbits, radishes, dry bulb onions, rutabaga, eggplant, salsify, escarole, shallots, endive, soybean, garlic, spinach, green onions, squash, greens, sugar beets, sweet potatoes, turnip, swiss chard, horseradish, tomatoes, kale, turnips, and a variety of spices are sensitive to infestation by one or more of the following insect pests: alfalfa looper, armyworm, beet armyworm, artichoke plume moth, cabbage budworm, cabbage looper, cabbage webworm, corn earworm, celery leafeater, cross-striped cabbageworm, european corn borer, diamondback moth, green cloverworm, imported cabbageworm, melonworm, omnivorous leafroller, pickleworm, rindworm complex, saltmarsh caterpillar, soybean looper, tobacco budworm, tomato fruitworm, tomato hornworm, tomato

pinworm, velvetbean caterpillar, and yellowstriped armyworm. Likewise, pasture and hay crops such as alfalfa, pasture grasses and silage are often attacked by such pests as armyworm, beef armyworm, alfalfa caterpillar, European skipper, a variety of loopers and webworms, as well as yellowstriped armyworms.

Fruit and vine crops such as apples, apricots, cherries, nectarines, peaches, pears, plums, prunes, quince almonds, chestnuts, filberts, pecans, pistachios, walnuts, citrus, blackberries, blueberries, boysenberries, cranberries, currants, loganberries, raspberries, strawberries, grapes, avocados, bananas, kiwi, persimmons, pomegranate, pineapple, tropical fruits are often susceptible to attack and defoliation by achema sphinx moth, amorbia, armyworm, citrus cutworm, banana skipper, blackheaded fireworm, blueberry leafroller, cankerworm, cherry fruitworm, citrus cutworm, cranberry girdler, eastern tent caterpillar, fall webworm, fall webworm, filbert leafroller, filbert webworm, fruit tree leafroller, grape berry moth, grape leaffolder, grapeleaf skeletonizer, green fruitworm, gummosos-batrachedra commosae, gypsy moth, hickory shuckworm, hornworms, loopers, navel orangeworm, obliquebanded leafroller, omnivorous leafroller, omnivorous looper, orange tortrix, orangedog, oriental fruit moth, pandemis leafroller, peach twig borer, pecan nut casebearer, redbanded leafroller, redhumped caterpillar, roughskinned cutworm, saltmarsh caterpillar, spanworm, tent caterpillar, theclathecla basillides, tobacco budworm, tortrix moth, tufted apple budmoth, variegated leafroller, walnut caterpillar, western tent caterpillar, and yellowstriped armyworm.

Field crops such as canola/rape seed, evening primrose, meadow foam, corn (field, sweet, popcorn), cotton, hops, jojoba, peanuts, rice, safflower, small grains (barley, oats, rye, wheat, etc.), sorghum, soybeans, sunflowers, and tobacco are often targets for infestation by insects including armyworm, asian and other corn borers, banded sunflower moth, beet armyworm, bollworm, cabbage looper, corn rootworm (including southern and western varieties), cotton leaf perforator, diamondback moth, european corn borer, green cloverworm, headmoth, headworm, imported cabbageworm, loopers (including Anacamptodes spp.), obliquebanded leafroller, omnivorous leaftier, podworm, podworm, saltmarsh caterpillar, southwestern corn borer, soybean looper, spotted cutworm, sunflower moth, tobacco budworm, tobacco hornworm, velvetbean caterpillar.

Bedding plants, flowers, ornamentals, vegetables and container stock are frequently fed upon by a host of insect pests such as armyworm, azalea moth, beet armyworm, diamondback

30

10

, 20

moth, ello moth (hornworm), Florida fern caterpillar, Io moth, loopers, oleander moth, omnivorous leafroller, omnivorous looper, and tobacco budworm.

Forests, fruit, ornamental, and nut-bearing trees, as well as shrubs and other nursery stock are often susceptible to attack from diverse insects such as bagworm, blackheaded budworm, browntail moth, california oakworm, douglas fir tussock moth, elm spanworm, fall webworm, fruittree leafroller, greenstriped mapleworm, gypsy moth, jack pine budworm, mimosa webworm, pine butterfly, redhumped caterpillar, saddleback caterpillar, saddle prominent caterpillar, spring and fall cankerworm, spruce budworm, tent caterpillar, tortrix, and western tussock moth. Likewise, turf grasses are often attacked by pests such as armyworm, sod webworm, and tropical sod webworm.

Because crops of commercial interest are often the target of insect attack, environmentally-sensitive methods for controlling or eradicating insect infestation are desirable in many instances. This is particularly true for farmers, nurserymen, growers, and commercial and residential areas which seek to control insect populations using eco-friendly compositions.

The most widely used environmentally-sensitive insecticidal formulations developed in recent years have been composed of microbial pesticides derived from the bacterium *Bacillus thuringiensis*. *B. thuringiensis* is a Gram-positive bacterium that produces crystal proteins or inclusion bodies which are specifically toxic to certain orders and species of insects. Many different strains of *B. thuringiensis* have been shown to produce insecticidal crystal proteins. Compositions including *B. thuringiensis* strains which produce insecticidal proteins have been commercially-available and used as environmentally-acceptable insecticides because they are quite toxic to the specific target insect, but are harmless to plants and other non-targeted organisms.

1.2.1 B. thuringiensis Crystal Proteins δ-ENDOTOXINS

δ-endotoxins are used to control a wide range of leaf-eating caterpillars and beetles, as well as mosquitoes. These proteinaceous parasporal crystals, also referred to as insecticidal crystal proteins, crystal proteins, Bt inclusions, crystaline inclusions, inclusion bodies, and Bt toxins, are a large collection of insecticidal proteins produced by *B. thuringiensis* that are toxic upon ingestion by a susceptible insect host. Over the past decade research on the structure and function of *B. thuringiensis* toxins has covered all of the major toxin categories, and while these

25

30

toxins differ in specific structure and function, general similarities in the structure and function are assumed. Based on the accumulated knowledge of *B. thuringiensis* toxins, a generalized mode of action for *B. thuringiensis* toxins has been created and includes: ingestion by the insect, solubilization in the insect midgut (a combination stomach and small intestine), resistance to digestive enzymes sometimes with partial digestion actually "activating" the toxin, binding to the midgut cells, formation of a pore in the insect cells and the disruption of cellular homeostasis (English and Slatin, 1992).

One of the unique features of *B. thuringiensis* is its production of crystal proteins during sporulation which are specifically toxic to certain orders and species of insects. Many different strains of *B. thuringiensis* have been shown to produce insecticidal crystal proteins. Compositions including *B. thuringiensis* strains which produce proteins having insecticidal activity against lepidopteran and dipteran insects have been commercially available and used as environmentally-acceptable insecticides because they are quite toxic to the specific target insect, but are harmless to plants and other non-targeted organisms.

The mechanism of insecticidal activity of the *B. thuringiensis* crystal proteins has been studied extensively in the past decade. It has been shown that the crystal proteins are toxic to the insect only after ingestion of the protein by the insect. The alkaline pH and proteolytic enzymes in the insect mid-gut solubilize the proteins, thereby allowing the release of components which are toxic to the insect. These toxic components disrupt the mid-gut cells, cause the insect to cease feeding, and, eventually, bring about insect death. For this reason, *B. thuringiensis* has proven to be an effective and environmentally safe insecticide in dealing with various insect pests.

As noted by Höfte and Whiteley (1989), the majority of insecticidal *B. thuringiensis* strains are active against insects of the order Lepidoptera, *i.e.*, caterpillar insects. Other *B. thuringiensis* strains are insecticidally active against insects of the order Diptera, *i.e.*, flies and mosquitoes, or against both lepidopteran and dipteran insects. In recent years, a few *B. thuringiensis* strains have been reported as producing crystal proteins that are toxic to insects of the order Coleoptera, *i.e.*, beetles (Krieg *et al.*, 1983; Sick *et al.*, 1990; Donovan *et al.*, 1992; Lambert *et al.*, 1992a; 1992b).

10

1.2.2 Genes Encoding Crystal Proteins

Many of the δ-endotoxins are related to various degrees by similarities in their amino acid sequences. Historically, the proteins and the genes which encode them were classified based largely upon their spectrum of insecticidal activity. The review by Höfte and Whiteley (1989) discusses the genes and proteins that were identified in *B. thuringiensis* prior to 1990, and sets forth the nomenclature and classification scheme which has traditionally been applied to *B. thuringiensis* genes and proteins. *cryI* genes encode lepidopteran-toxic CryI proteins. *cryII* genes encode CryII proteins that are toxic to both lepidopterans and dipterans. *cryIII* genes encode coleopteran-toxic CryIII proteins, while *cryIV* genes encode dipteran-toxic CryIV proteins. Based on the degree of sequence similarity, the proteins were further classified into subfamilies; more highly related proteins within each family were assigned divisional letters such as CryIA, CryIB, CryIC, *etc.* Even more closely related proteins within each division were given names such as CryIC1, CryIC2, *etc.*

Recently, a new nomenclature was developed which systematically classified the Cry proteins based upon amino acid sequence homology rather than upon insect target specificities (Crickmore et al., 1998). The classification scheme for many known toxins, including allelic variations in individual proteins, is summarized and regularly updated at http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/. The informationw was most recently updated as of April 27, 1999 and is herein incorporated by reference.

1.2.3 Crystal Proteins Toxic to Lepidopteran Insects

2.0 Summary of the Invention

The recent review by Schnepf et al. (1998) describes the enormous diversity of insecticidal crystal proteins derived from B. thuringiensis. Cry proteins of the Cry1, Cry2, and Cry9 classes are particularly known for their toxicity towards lepidopteran larvae, however, the degree of toxicity varies significantly depending on the target lepidopteran pest (Höfte and Whiteley, 1989). For instance, Cry1Ac shows poor toxicity towards the armyworm, Spodoptera littoralis, but strong toxicity towards the tobacco budworm, Heliothis virescens. In addition, slight variations in amino acid sequence within a Cry protein class can dramatically impact insecticidal activity (see Schnepf et al., 1998 and references therein). The Cry3Ba and Cry3Bb genes, for instance, share 94% amino acid sequence identity, but only Cry3Bb exhibits

30

significant toxicity towards the Southern corn rootwom, Diabrotica undecimpunctata howardi (Donovan et al., 1992). Similarly, Cry2Aa and Cry2Ab share 87% amino acid sequence identity, yet only Cry2Aa displays toxicity towards mosquitos (Widner and Whiteley, 1990). Von Tersch et al. (1991) demonstrated that Cry1Ac proteins varying by only seven amino acids (>99% sequence identity) nevertheless show significant differences in insecticidal activity. Lee et al. (1996) reported that Cry1Ab alleles differing at only two amino acid positions exhibited a 10-fold difference in toxicity towards the gypsy moth, Lymantria dispar. Thus, even Cry proteins that are considered to be alleles of known Cry proteins or to belong to a Cry protein subclass (Crickmore et al., 1998) may have unique and useful insecticidal properties. International Patent Application Publication No. WO 98/00546 and WO 98/40490 describe a variety of Cry1-, Cry2-, and Cry9-related crystal proteins obtained from B. thuringiensis.

2.1 Cry DNA Segments

The present invention concerns nucleic acid segments, that can be isolated from virtually any source, that are free from total genomic DNA and that encode the novel peptides disclosed herein. Nucleic acid segments encoding these polypeptides may encode active proteins, peptides or peptide fragments, polypeptide subunits, functional domains, or the like of one or more crystal proteins. In addition the invention encompasses nucleic acid segments which may be synthesized entirely *in vitro* using methods that are well-known to those of skill in the art which encode the novel Cry polypeptides, peptides, peptide fragments, subunits, or functional domains disclosed herein.

As used herein, the term "nucleic acid segment" refers to a polynucleotide molecule that has been isolated free of total genomic DNA of a particular species. Therefore, a nucleic acid segment encoding an endotoxin polypeptide refers to a nucleic acid segment that comprises one or more crystal protein-encoding sequences yet is isolated away from, or purified free from, total genomic DNA of the species from which the nucleic acid segment is obtained, which in the instant case is the genome of the Gram-positive bacterial genus, *Bacillus*, and in particular, the species of *Bacillus* known as *B. thuringiensis*. Included within the term "nucleic acid segment", are polynucleotide segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phagemids, phages, viruses, and the like.

Similarly, a DNA segment comprising an isolated or purified crystal protein-encoding gene refers to a DNA segment which may include in addition to peptide encoding sequences,

certain other elements such as, regulatory sequences, isolated substantially away from other naturally occurring genes or protein-encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional protein-, polypeptide- or peptide-encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, operon sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides or peptides. Also, the term includes an expression cassette comprising at least a promoter operably linked to one or more protein coding sequences, operably linked to at least a transcriptional termination sequence.

"Isolated substantially away from other coding sequences" means that the gene of interest, in this case, a nucleic acid segment or gene encoding all or part of a bacterial insecticidal crystal protein, forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional nucleic acid segments or genes or operon coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes, recombinant genes, synthetic linkers, or coding regions later added to the segment by the hand of man.

In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences that encode a Cry peptide species that includes within its amino acid sequence an amino acid sequence essentially as set forth in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO:63.

The term "a sequence essentially as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:6," for example, means that the sequence substantially corresponds to a portion of the sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:6 and has relatively few amino acids that are not identitical with, or a biologically functional equivalent of, the amino acids of any of these sequences. The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein (e.g., see Illustrative Embodiments). Accordingly, sequences that have from about 70% to about 80%, or more preferably about 81, 82, 83, 84, 85, 86, 87, 88,

89, or about 90%, or even more preferably about 91, 92, 93, 94, 95, 96, 97, 98, or about 99% amino acid sequence identity or functional equivalence to the amino acids of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:38, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:26, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:38, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:40, SEQ ID NO:44, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:46, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:46, SEQ ID NO:46, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO:63."

In addition, sequences that have from about 70% to about 80%, or more preferably about 81, 82, 83, 84, 85, 86, 87, 88, 89, or about 90%, or even more preferably about 91, 92, 93, 94, 95, 96, 97, 98, or about 99% nucleic acid sequence identity or functional equivalence to the nucleic acids of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49 and SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:31, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49 and SEQ ID NO:62."

It will also be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences

flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, i.e., introns, which are known to occur within genes.

The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, nucleic acid fragments may be prepared that include a short 10 contiguous stretch encoding any of the peptide sequences disclosed in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO: 63, or that are identical with or complementary to DNA sequences which encode any of the peptides disclosed in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO: 63, and particularly those DNA segments disclosed in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49 and SEQ ID NO:62. For example, DNA sequences such as about 18 nucleotides, and that are up to about 10,000, about 5,000, about 3,000, about 2,000, about 1,000, about 500, about 200, about 100, about 50, and about 14 base pairs in length (including all intermediate lengths) are also contemplated to be useful.

It will be readily understood that "intermediate lengths", in these contexts, means any length between the quoted ranges, such as 18, 19, 20, 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52,

53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers in the ranges of from about 200-500; 500-1,000; 1,000-2,000; 2,000-3,000; 3,000-5,000; and up to and including sequences of about 10,00 or so nucleotides and the like.

It will also be understood that this invention is not limited to the particular nucleic acid sequences which encode peptides of the present invention, or which encode the amino acid sequences of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO: 63, including those DNA sequences which are particularly disclosed in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49 and SEQ ID NO:62. Recombinant vectors and isolated DNA segments may therefore variously include the peptidecoding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides that nevertheless include these peptide-coding regions or may encode biologically functional equivalent proteins or peptides that have variant amino acids sequences.

The DNA segments of the present invention encompass biologically-functional, equivalent peptides. Such sequences may arise as a consequence of codon degeneracy and functional equivalency that are known to occur naturally within nucleic acid sequences and the proteins thus encoded. Alternatively, functionally-equivalent proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the protein or to test mutants in order to examine activity at the molecular level.

If desired, one may also prepare fusion proteins and peptides, e.g., where the peptidecoding regions are aligned within the same expression unit with other proteins or peptides having

desired functions, such as for purification or immunodetection purposes (e.g., proteins that may be purified by affinity chromatography and enzyme label coding regions, respectively).

Recombinant vectors form further aspects of the present invention. Particularly useful vectors are contemplated to be those vectors in which the coding portion of the DNA segment, whether encoding a full length protein or smaller peptide, is positioned under the control of a promoter. The promoter may be in the form of the promoter that is naturally associated with a gene encoding peptides of the present invention, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCRTM technology, in connection with the compositions disclosed herein.

2.2 Cry DNA Segments as Hybridization Probes And Primers

In addition to their use in directing the expression of crystal proteins or peptides of the present invention, the nucleic acid sequences contemplated herein also have a variety of other uses. For example, they also have utility as probes or primers in nucleic acid hybridization embodiments. As such, it is contemplated that nucleic acid segments that comprise a sequence region that consists of at least a 14 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 14 nucleotide long contiguous DNA segment of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:11, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49 and SEQ ID NO:62 will find particular utility. Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, 50, 100, 200, 500, 1000, 2000, 5000 bp, etc. (including all intermediate lengths and up to and including the full-length gene sequences encoding each polypeptide will also be of use in certain embodiments.

The ability of such nucleic acid probes to specifically hybridize to crystal proteinencoding sequences will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

10

20

25

Nucleic acid molecules having sequence regions consisting of contiguous nucleotide stretches of about 14 to about 17 or so, 18-25, 26-35, 36-50, or even up to and including sequences of about 100-200 nucleotides or so, identical or complementary to DNA sequences of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49 and SEQ ID NO:62, are particularly contemplated as hybridization probes for use in, e.g., Southern and Northern blotting. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 10-14 and about 100 to 200 or so nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.

Of course, fragments may also be obtained by other techniques such as, e.g., by mechanical shearing or by restriction enzyme digestion. Small nucleic acid segments or fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the PCRTM technology of U. S. Patents 4,683,195 and 4,683,202 (each incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.

Accordingly, the nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of DNA fragments. Depending on the application envisioned, one will desire to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50°C to about 70°C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating crystal protein-encoding DNA

segments. Detection of DNA segments via hybridization is well-known to those of skill in the art, and the teachings of U. S. Patents 4,965,188 and 5,176,995 (each incorporated herein by reference) are exemplary of the methods of hybridization analyses. Teachings such as those found in the texts of Maloy *et al.*, 1990; Maloy 1994; Segal, 1976; Prokop, 1991; and Kuby, 1991, are particularly relevant.

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one seeks to isolate crystal protein-encoding sequences from related species, functional equivalents, or the like, less stringent hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ conditions such as about 0.15 M to about 0.9 M salt, at temperatures ranging from about 20°C to about 55°C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

In certain embodiments, it will be advantageous to employ nucleic acid sequences of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmentally undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known that can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.

In general, it is envisioned that the hybridization probes described herein will be useful both as reagents in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to specific

30

hybridization with selected probes under desired conditions. The selected conditions will depend on the particular circumstances based on the particular criteria required (depending, for example, on the G+C content, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantitated, by means of the label.

2.3 Vectors and Methods for Recombinant Expression of Cry Polypeptides

In other embodiments, it is contemplated that certain advantages will be gained by positioning the coding DNA segment under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with a DNA segment encoding a crystal protein or peptide in its natural environment. Such promoters may include promoters normally associated with other genes, and/or promoters isolated from any bacterial, viral, eukaryotic, or plant cell. Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type, organism, or even animal, chosen for expression. The use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook *et al.*, 1989. The promoters employed may be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides. Appropriate promoter systems contemplated for use in high-level expression include, but are not limited to, the *Pichia* expression vector system (Pharmacia LKB Biotechnology).

In connection with expression embodiments to prepare recombinant proteins and peptides, it is contemplated that longer DNA segments will most often be used, with DNA segments encoding the entire peptide sequence being most preferred. However, it will be appreciated that the use of shorter DNA segments to direct the expression of crystal peptides or epitopic core regions, such as may be used to generate anti-crystal protein antibodies, also falls within the scope of the invention. DNA segments that encode peptide antigens from about 8 to about 50 amino acids in length, or more preferably, from about 8 to about 30 amino acids in length, or even more preferably, from about 8 to about 20 amino acids in length are contemplated to be particularly useful. Such peptide epitopes may be amino acid sequences which comprise contiguous amino acid sequences from SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID

NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO: 63.

2.4 cry Transgenes and Transgenic Plants Expressing Cry Polypeptides

In yet another aspect, the present invention provides methods for producing a transgenic plant which expresses a nucleic acid segment encoding the novel polypeptides and endotoxins of the present invention. The process of producing transgenic plants is well-known in the art. In general, the method comprises transforming a suitable host cell with a DNA segment which contains a promoter operatively linked to a coding region that encodes one or more CryET31, CryET40, CryET43, CryET44, CryET45, CryET46, CryET47, CryET49, CryET51, CryET52, CryET53, CryET54, CryET55, CryET56, CryET57, CryET59, CryET60, CryET61, CryET62, CryET63, CryET64, CryET66, CryET67, CryET68, CryET72, CryET73, and CryET83 polypeptides. Such a coding region is generally operatively linked to a transcription-terminating region, whereby the promoter is capable of driving the transcription of the coding region in the cell, and hence providing the cell the ability to produce the polypeptide in vivo. Alternatively, in instances where it is desirable to control, regulate, or decrease the amount of a particular recombinant crystal protein expressed in a particular transgenic cell, the invention also provides for the expression of crystal protein antisense mRNA. The use of antisense mRNA as a means of controlling or decreasing the amount of a given protein of interest in a cell is well-known in the art.

Another aspect of the invention comprises transgenic plants which express a gene or gene segment encoding one or more of the novel polypeptide compositions disclosed herein. As used herein, the term "transgenic plant" is intended to refer to a plant that has incorporated DNA sequences, including but not limited to genes which are perhaps not normally present, DNA sequences not normally transcribed into RNA or translated into a protein ("expressed"), or any other genes or DNA sequences which one desires to introduce into the non-transformed plant, such as genes which may normally be present in the non-transformed plant but which one desires to either genetically engineer or to have altered expression.

It is contemplated that in some instances either the nuclear or plastidic genome, or both, of a transgenic plant of the present invention will have been augmented through the stable

introduction of one or more cryET31, cryET40, cryET43, cryET44, cryET45, cryET46, cryET47, cryET49, cryET51, cryET52, cryET53, cryET54, cryET55, cryET56, cryET56, cryET57, cryET59, cryET60, cryET61, cryET62, cryET63, cryET64, cryET66, cryET67, cryET68, cryET72, cryET73, and cryET83 transgenes, either native, synthetically modified, or mutated. In some instances, more than one transgene will be incorporated into one or more genomes of the transformed host plant cell. Such is the case when more than one crystal protein-encoding DNA segment is incorporated into the genome of such a plant. In certain situations, it may be desirable to have one, two, three, four, or even more B. thuringiensis crystal proteins (either native or recombinantly-engineered) incorporated and stably expressed in the transformed transgenic plant.

A preferred gene which may be introduced includes, for example, a crystal proteinencoding DNA sequence from bacterial origin, and particularly one or more of those described herein which are obtained from *Bacillus* spp. Highly preferred nucleic acid sequences are those obtained from *B. thuringiensis*, or any of those sequences which have been genetically engineered to decrease or increase the insecticidal activity of the crystal protein in such a transformed host cell.

Means for transforming a plant cell and the preparation of a transgenic cell line are well-known in the art, and are discussed herein. Vectors, plasmids, cosmids, YACs (yeast artificial chromosomes) and DNA segments for use in transforming such cells will, of course, generally comprise either the operons, genes, or gene-derived sequences of the present invention, either native, or synthetically-derived, and particularly those encoding the disclosed crystal proteins. These DNA constructs can further include structures such as promoters, enhancers, polylinkers, or even gene sequences which have positively- or negatively-regulating activity upon the particular genes of interest as desired. The DNA segment or gene may encode either a native or modified crystal protein, which will be expressed in the resultant recombinant cells, and/or which will impart an improved phenotype to the regenerated plant.

Such transgenic plants may be desirable for increasing the insecticidal resistance of a monocotyledonous or dicotyledonous plant, by incorporating into such a plant, a transgenic DNA segment encoding one or more CryET31, CryET40, CryET43, CryET44, CryET45, CryET46, CryET47, CryET49, CryET51, CryET52, CryET53, CryET54, CryET55, CryET56, CryET57, CryET59, CryET60, CryET61, CryET62, CryET63, CryET64, CryET66, CryET67,

30

10

PCT/US00/25361

CryET68, CryET72, CryET73, and CryET83 polypeptides which are toxic to a lepidopteran insect. Particularly preferred plants include turf grasses, kapok, sorghum, cotton, corn, soybeans, oats, rye, wheat, flax, tobacco, rice, tomatoes, potatoes, or other vegetables, ornamental plants, fruit trees, and the like.

In a related aspect, the present invention also encompasses a seed produced by the transformed plant, a progeny from such seed, and a seed produced by the progeny of the original transgenic plant, produced in accordance with the above process. Such progeny and seeds will have a crystal protein-encoding transgene stably incorporated into their genome, and such progeny plants will inherit the traits afforded by the introduction of a stable transgene in Mendelian fashion. All such transgenic plants having incorporated into their genome transgenic DNA segments encoding one or more CryET31, CryET40, CryET43, CryET44, CryET45, CryET46, CryET47, CryET49, CryET51, CryET52, CryET53, CryET54, CryET55, CryET56, CryET57, CryET59, CryET60, CryET61, CryET62, CryET63, CryET64, CryET66, CryET67, CryET68, CryET72, CryET73, and CryET83 crystal proteins or polypeptides are aspects of this invention. As well-known to those of skill in the art, a progeny of a plant is understood to mean any offspring or any descendant from such a plant, but in this case means any offspring or any descendant which also contains the transgene.

2.5 Site-Specific Mutagenesis

Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent proteins or peptides, through specific mutagenesis of the underlying DNA. The technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. The technique of site-specific mutagenesis is well known in the art, as exemplified by various publications.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart of two strands of a double stranded vector which includes within its sequence a DNA sequence which encodes the desired peptide. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically. This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as *E. coli* polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original

25

5 .

non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as *E. coli* cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

The preparation of sequence variants of the endotoxin-encoding nucleic acid segments using site-directed mutagenesis is provided as a means of producing potentially useful species and is not meant to be limiting as there are other ways in which sequence variants of peptides and the DNA sequences encoding them may be obtained. For example, recombinant vectors encoding the desired peptide sequence may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants.

2.6 Antibody Compositions and Methods of Making

In particular embodiments, the inventors contemplate the use of antibodies, either monoclonal (mAbs) or polyclonal which bind to one or more of the polypeptides disclosed herein. Means for preparing and characterizing antibodies are well known in the art (See, e.g., Harlow and Lane, 1988; incorporated herein by reference). mAbs may be readily prepared through use of well-known techniques, such as those exemplified in U. S. Patent 4,196,265, incorporated herein by reference.

2.7 ELISAs and Immunoprecipitation

ELISAs may be used in conjunction with the invention. Many different protocols exist for performing ELISAs. These are well known to those of ordinary skill in the art. Examples of basic ELISA protocols may be found in any standard molecular biology laboratory manual (e.g. Sambrook, Fritsch, and Maniatis, eds. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989).

2.8 Western Blots

The compositions of the present invention will find great use in immunoblot or western blot analysis. Methods of performing immunoblot and western blot analysis are well known to those of skill in the are (see Sambrook, et al, ibid). Immunologically-based detection methods for use in conjunction with Western blotting include enzymatically-, radiolabel-, or fluorescently-tagged secondary antibodies against the toxin moiety are considered to be of particular use in this regard.

2.9 Crystal Protein Screening and Detection Kits

The present invention contemplates methods and kits for screening samples suspected of containing crystal protein polypeptides or crystal protein-related polypeptides, or cells producing such polypeptides. A kit may contain one or more antibodies of the present invention, and may also contain reagent(s) for detecting an interaction between a sample and an antibody of the present invention. The provided reagent(s) can be radio-, fluorescently- or enzymatically-labeled or even epitope or ligand tagged. The kit can contain a known radiolabeled agent capable of binding or interacting with a nucleic acid or antibody of the present invention.

The reagent(s) of the kit can be provided as a liquid solution, attached to a solid support or as a dried powder. Preferably, when the reagent(s) are provided in a liquid solution, the liquid solution is an aqueous solution. Preferably, when the reagent(s) provided are attached to a solid support, the solid support can be chromatograph media, a test plate having a plurality of wells, or a microscope slide. When the reagent(s) provided are a dry powder, the powder can be reconstituted by the addition of a suitable solvent, that may be provided.

In still further embodiments, the present invention concerns immunodetection methods and associated kits. It is proposed that the crystal proteins or peptides of the present invention may be employed to detect antibodies having reactivity therewith, or, alternatively, antibodies prepared in accordance with the present invention, may be employed to detect crystal proteins or crystal protein-related epitope-containing peptides. In general, these methods will include first obtaining a sample suspected of containing such a protein, peptide or antibody, contacting the sample with an antibody or peptide in accordance with the present invention, as the case may be, under conditions effective to allow the formation of an immunocomplex, and then detecting the presence of the immunocomplex.

In general, the detection of immunocomplex formation is quite well known in the art and may be achieved through the application of numerous approaches. For example, the present invention contemplates the application of ELISA, RIA, immunoblot (e.g., dot blot), indirect immunofluorescence techniques and the like. One may find additional advantages through the use of a secondary binding ligand such as a second antibody or a biotin/avidin ligand binding arrangement, as is known in the art.

For assaying purposes, it is proposed that virtually any sample suspected of comprising either a crystal protein or peptide or a crystal protein-related peptide or antibody sought to be

15

25

detected, as the case may be, may be employed. It is contemplated that such embodiments may have application in the titering of antigen or antibody samples, in the selection of hybridomas, and the like. In related embodiments, the present invention contemplates the preparation of kits that may be employed to detect the presence of crystal proteins or related peptides and/or antibodies in a sample. Samples may include cells, cell supernatants, cell suspensions, cell extracts, enzyme fractions, protein extracts, or other cell-free compositions suspected of containing crystal proteins or peptides.

Generally speaking, kits in accordance with the present invention will include a suitable crystal protein, peptide or an antibody directed against such a protein or peptide, together with an immunodetection reagent and a means for containing the antibody or antigen and reagent. The immunodetection reagent will typically comprise a label associated with the antibody or antigen, or associated with a secondary binding ligand. Exemplary ligands might include a secondary antibody directed against the first antibody or antigen or a biotin or avidin (or streptavidin) ligand having an associated label. Of course, as noted above, a number of exemplary labels are known in the art and all such labels may be employed in connection with the present invention.

The container will generally include a vial into which the antibody, antigen or detection reagent may be placed, and preferably suitably aliquotted. The kits of the present invention will also typically include a means for containing the antibody, antigen, and reagent containers in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.

2.10 Epitopic Core Sequences

The present invention is also directed to protein or peptide compositions, free from total cells and other peptides, which comprise a purified protein or peptide which incorporates an epitope that is immunologically cross-reactive with one or more anti-crystal protein antibodies. In particular, the invention concerns epitopic core sequences derived from Cry proteins or peptides.

As used herein, the term "incorporating an epitope(s) that is immunologically cross-reactive with one or more anti-crystal protein antibodies" is intended to refer to a peptide or protein antigen which includes a primary, secondary or tertiary structure similar to an epitope located within a crystal protein or polypeptide. The level of similarity will generally be to such a degree that monoclonal or polyclonal antibodies directed against the crystal protein or

30

15

polypeptide will also bind to, react with, or otherwise recognize, the cross-reactive peptide or protein antigen. Various immunoassay methods may be employed in conjunction with such antibodies, such as, for example, Western blotting, ELISA, RIA, and the like, all of which are known to those of skill in the art. The identification of Cry immunodominant epitopes, and/or their functional equivalents, suitable for use in vaccines is a relatively straightforward matter (e.g. U. S. Patent 4,554,101; Jameson and Wolf, 1988; Wolf et al., 1988; U. S. Patent 4,554,101). The amino acid sequence of these "epitopic core sequences" may then be readily incorporated into peptides, either through the application of peptide synthesis or recombinant technology.

Preferred peptides for use in accordance with the present invention will generally be on the order of about 8 to about 20 amino acids in length, and more preferably about 8 to about 15 amino acids in length. It is proposed that particular advantages of the present invention may be realized through the preparation of synthetic peptides which include modified and/or extended epitopic/immunogenic core sequences which result in a "universal" epitopic peptide directed to crystal proteins, and in particular CryET31, CryET40, CryET43, CryET44, CryET45, CryET46, CryET47, CryET49, CryET51, CryET52, CryET53, CryET54, CryET55, CryET56, CryET57, CryET59, CryET60, CryET61, CryET62, CryET63, CryET64, CryET66, CryET67, CryET68, CryET72, CryET73, CryET83 and related sequences. These epitopic core sequences are identified herein in particular aspects as hydrophilic regions of the particular polypeptide antigen.

Computerized peptide sequence analysis programs (e.g., DNAStar® software, DNAStar, Inc., Madison, WI) may also be useful in designing synthetic peptides in accordance with the present disclosure.

Syntheses of epitopic sequences, or peptides which include an antigenic epitope within their sequence, are readily achieved using conventional synthetic techniques such as the solid phase method (e.g., through the use of commercially available peptide synthesizer such as an Applied Biosystems Model 430A Peptide Synthesizer).

2.11 Biological Functional Equivalents

Modification and changes may be made in the structure of the peptides of the present invention and DNA segments which encode them and still obtain a functional molecule that encodes a protein or peptide with desirable characteristics. The following is a discussion based

30

10

upon changing the amino acids of a protein to create an equivalent, or even an improved, second-generation molecule. In particular embodiments of the invention, mutated crystal proteins are contemplated to be useful for increasing the insecticidal activity of the protein, and consequently increasing the insecticidal activity and/or expression of the recombinant transgene in a plant cell. The amino acid changes may be achieved by changing the codons of the DNA sequence, according to the codons given in Table 1.

TABLE 1

Amino Acids			•			Codons			
Alanine	Ala	A	GCA	GCC	GCG	GCU			
Cysteine	Cys	C	UGC	UGU					
Aspartic acid	Asp	D	GAC	GAU					
Glutamic acid	Glu	E	GAA	GAG		•			
Phenylalanine	Phe	F	UUC	บบบ					
Glycine	Gly	G	GGA	GGC	GGG	GGU			
Histidine	His	Н	CAC	CAU					
Isoleucine	Ile	I	AUA	AUC	AUU				
Lysine	Lys	K	AAA	AAG					
Leucine	Leu	\mathbf{L}	UUA	UUG	CUA	CUC	CUG	CUU	
Methionine	Met	M	AUG						
Asparagine	Asn	N	AAC	AAU					
Proline	Pro	P	CCA	CCC	CCG	CCU		•	
Glutamine	Gln	Q	CAA	CAG					
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGU	
Serine	Ser	S .	AGC	AG U	UCA	UCC	UCG	UCU	
Threonine	Thr	T	ACA	ACC	ACG	ACU			
Valine	Val	V	GUA	GUC	GUG	GUU			
Tryptophan	Trp	W	UGG						
Tyrosine	Tyr	Y	UAC	UAU					

For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated by the inventors that various changes may be made in the peptide sequences of the disclosed compositions, or corresponding DNA sequences which encode said peptides without appreciable loss of their biological utility or activity.

In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982, incorporate herein by reference). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.

Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics (Kyte and Doolittle, 1982), these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, *i.e.*, still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U. S. Patent 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.

As detailed in U. S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 \pm 1); glutamate (+3.0 \pm 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 \pm 1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).

It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose

20

25

hydrophilicity values are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

2.12 Insecticidal Compositions and Methods of Use

The inventors contemplate that the crystal protein compositions disclosed herein will find particular utility as insecticides for topical and/or systemic application to field crops, grasses, fruits and vegetables, and ornamental plants. In a preferred embodiment, the bioinsecticide composition comprises an oil flowable suspension of bacterial cells which expresses a novel crystal protein disclosed herein. Preferably the cells are *B. thuringiensis* NRRL B-21921, NRRL B-21922, NRRL B-21923, NRRL B-21924, NRRL B-21925, NRRL B-21926, NRRL B-21927, NRRL B-21928, NRRL B-21929, NRRL B-21930, NRRL B-21931, NRRL B-21932, NRRL B-21933, NRRL B-21934, NRRL B-21935, NRRL B-21936, NRRL B-21937, NRRL B-21938, NRRL B-21939, NRRL B-21940, NRRL B-21941, NRRL B-21942, NRRL B-21943, and NRRL B-21944, however, any such bacterial host cell expressing the novel nucleic acid segments disclosed herein and producing a crystal protein is contemplated to be useful, such as *B. thuringiensis*, *B. megaterium*, *B. subtilis*, *E. coli*, or *Pseudomonas* spp.

In another important embodiment, the bioinsecticide composition comprises a water dispersible granule. This granule comprises bacterial cells which expresses a novel crystal protein disclosed herein. Preferred bacterial cells are *B. thuringiensis* NRRL B-21921, NRRL B-21922, NRRL B-21923, NRRL B-21924, NRRL B-21925, NRRL B-21926, NRRL B-21927, NRRL B-21928, NRRL B-21929, NRRL B-21930, NRRL B-21931, NRRL B-21932, NRRL B-21933, NRRL B-21934, NRRL B-21935, NRRL B-21936, NRRL B-21937, NRRL B-21938, NRRL B-21939, NRRL B-21940, NRRL B-21941, NRRL B-21942, NRRL B-21943, and NRRL B-21944, however, bacteria such as *B. thuringiensis*, *B. megaterium*, *B. subtilis*, *E. coli*, or

Pseudomonas spp. cells transformed with a DNA segment disclosed herein and expressing the crystal protein are also contemplated to be useful.

In a third important embodiment, the bioinsecticide composition comprises a wettable powder, dust, pellet, or collodial concentrate. This powder comprises bacterial cells which expresses a novel crystal protein disclosed herein. Preferred bacterial cells are *B. thuringiensis* NRRL B-21921, NRRL B-21922, NRRL B-21923, NRRL B-21924, NRRL B-21925, NRRL B-21925, NRRL B-21926, NRRL B-21927, NRRL B-21928, NRRL B-21929, NRRL B-21930, NRRL B-21931, NRRL B-21932, NRRL B-21933, NRRL B-21934, NRRL B-21935, NRRL B-21936, NRRL B-21937, NRRL B-21938, NRRL B-21939, NRRL B-21940, NRRL B-21941, NRRL B-21942, NRRL B-21943, and NRRL B-21944 cells, however, bacteria such as *B. thuringiensis*, *B. megaterium*, *B. subtilis*, *E. coli*, or *Pseudomonas* spp. cells transformed with a DNA segment disclosed herein and expressing the crystal protein are also contemplated to be useful. Such dry forms of the insecticidal compositions may be formulated to dissolve immediately upon wetting, or alternatively, dissolve in a controlled-release, sustained-release, or other time-dependent manner.

In a fourth important embodiment, the bioinsecticide composition comprises an aqueous suspension of bacterial cells such as those described above which express the crystal protein. Such aqueous suspensions may be provided as a concentrated stock solution which is diluted prior to application, or alternatively, as a diluted solution ready-to-apply.

For these methods involving application of bacterial cells, the cellular host containing the crystal protein gene(s) may be grown in any convenient nutrient medium, where the DNA construct provides a selective advantage, providing for a selective medium so that substantially all or all of the cells retain the *B. thuringiensis* gene. These cells may then be harvested in accordance with conventional ways. Alternatively, the cells can be treated prior to harvesting.

When the insecticidal compositions comprise intact *B. thuringiensis* cells expressing the protein of interest, such bacteria may be formulated in a variety of ways. They may be employed as wettable powders, granules or dusts, by mixing with various diluents, inert materials, such as inorganic minerals (phyllosilicates, carbonates, sulfates, phosphates, and the like) or botanical materials (powdered corncobs, rice hulls, walnut shells, and the like). The formulations may include spreader-sticker adjuvants, stabilizing agents, other pesticidal additives, or surfactants. Liquid formulations may be aqueous-based or non-aqueous and employed as foams, suspensions,

20

emulsifiable concentrates, or the like. The ingredients may include rheological agents, surfactants, emulsifiers, dispersants, or polymers.

Alternatively, the novel insecticidal polypeptides may be prepared by native or recombinant bacterial expression systems in vitro and isolated for subsequent field application. Such protein may be either in crude cell lysates, suspensions, colloids, etc., or alternatively may be purified, refined, buffered, and/or further processed, before formulating in an active biocidal formulation. Likewise, under certain circumstances, it may be desirable to isolate crystals and/or spores from bacterial cultures expressing the crystal protein and apply solutions, suspensions, or collodial preparations of such crystals and/or spores as the active bioinsecticidal composition.

Regardless of the method of application, the amount of the active component(s) is applied at an insecticidally-effective amount, which will vary depending on such factors as, for example, the specific coleopteran insects to be controlled, the specific plant or crop to be treated, the environmental conditions, and the method, rate, and quantity of application of the insecticidally-active composition.

10

15

25

The insecticide compositions described may be made by formulating either the bacterial cell, crystal and/or spore suspension, or isolated protein component with the desired agriculturally-acceptable carrier. The compositions may be formulated prior to administration in an appropriate means such as lyophilized, freeze-dried, dessicated, or in an aqueous carrier, medium or suitable diluent, such as saline or other buffer. The formulated compositions may be in the form of a dust or granular material, or a suspension in oil (vegetable or mineral), or water or oil/water emulsions, or as a wettable powder, or in combination with any other carrier material suitable for agricultural application. Suitable agricultural carriers can be solid or liquid and are well known in the art. The term "agriculturally-acceptable carrier" covers all adjuvants, *E. coli*, inert components, dispersants, surfactants, tackifiers, binders, *etc.* that are ordinarily used in insecticide formulation technology; these are well known to those skilled in insecticide formulation. The formulations may be mixed with one or more solid or liquid adjuvants and prepared by various means, *E. coli*, by homogeneously mixing, blending and/or grinding the insecticidal composition with suitable adjuvants using conventional formulation techniques.

The insecticidal compositions of this invention are applied to the environment of the target lepidopteran insect, typically onto the foliage of the plant or crop to be protected, by conventional methods, preferably by spraying. The strength and duration of insecticidal

WO 01/19859 PCT/US00/25361

application will be set with regard to conditions specific to the particular pest(s), crop(s) to be treated and particular environmental conditions. The proportional ratio of active ingredient to carrier will naturally depend on the chemical nature, solubility, and stability of the insecticidal composition, as well as the particular formulation contemplated.

Other application techniques, including dusting, sprinkling, soaking, soil injection, seed coating, seedling coating, spraying, aerating, misting, atomizing, and the like, are also feasible and may be required under certain circumstances such as *e.g.*, insects that cause root or stalk infestation, or for application to delicate vegetation or ornamental plants. These application procedures are also well-known to those of skill in the art.

The insecticidal composition of the invention may be employed in the method of the invention singly or in combination with other compounds, including and not limited to other pesticides. The method of the invention may also be used in conjunction with other treatments such as surfactants, detergents, polymers or time-release formulations. The insecticidal compositions of the present invention may be formulated for either systemic or topical use.

10

15

The concentration of insecticidal composition which is used for environmental, systemic, or foliar application will vary widely depending upon the nature of the particular formulation, means of application, environmental conditions, and degree of biocidal activity. Typically, the bioinsecticidal composition will be present in the applied formulation at a concentration of at least about 1% by weight and may be up to and including about 99% by weight. Dry formulations of the polypeptide compositions may be from about 1% to about 99% or more by weight of the protein composition, while liquid formulations may generally comprise from about 1% to about 99% or more of the active ingredient by weight. Formulations which comprise intact bacterial cells will generally contain from about 10⁴ to about 10⁷ cells/mg.

The insecticidal formulation may be administered to a particular plant or target area in one or more applications as needed, with a typical field application rate per hectare ranging on the order of from about 50 g to about 500 g of active ingredient, or of from about 500 g to about 1000 g, or of from about 1000 g to about 5000 g or more of active ingredient.

5.0 Description of Illustrative Embodiments

5.1 Some Advantages of the Invention

The use of B. thuringiensis insecticidal crystal protein genes for in planta production of insecticidal proteins, thereby conferring insect resistance on important agronomic plants, is rapidly gaining commercial acceptance in the United States and abroad. The need for new insecticidal traits does not diminish, however, with the successful deployment of a handful of cry genes in plants. Concerns over the potential for insect resistance development, for instance, makes it imperative that an arsenal of insecticidal proteins (i.e. cry genes) be assembled to provide the genetic material necessary for tomorrow's insecticidal traits. In addition, transgenic plants producing a B. thuringiensis Cry protein may still be susceptible to damage from secondary insect pests, thus prompting the search for additional Cry proteins with improved efficacy towards these pests. The B. thuringiensis crystal proteins of the present invention represent a diverse collection of insecticidal proteins, including several that are toxic towards a lepidopteran colony exhibiting resistance to certain types of Cryl proteins. Bioassays against a wide range of lepidopteran pests confirm that these proteins possess insecticidal activity and, furthermore, that these proteins vary in efficacy against this array of target insects. This variation in the spectrum of insects affected by the toxin proteins suggests differing modes of action that may be important for future insect resistance management strategies. In planta expression of the cry genes of the present invention can confer insect resistance to the host plant as has been demonstrated for other cry genes from B. thuringiensis.

5.2 Probes and Primers

In another aspect, DNA sequence information provided by the invention allows for the preparation of relatively short DNA (or RNA) sequences having the ability to specifically hybridize to gene sequences of the selected polynucleotides disclosed herein. In these aspects, nucleic acid probes of an appropriate length are prepared based on a consideration of a selected crystal protein gene sequence, *e.g.*, a sequence such as that shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID

30

5

10

NO:49 and SEQ ID NO:62. The ability of such DNAs and nucleic acid probes to specifically hybridize to a crystal protein-encoding gene sequence lends them particular utility in a variety of embodiments. Most importantly, the probes may be used in a variety of assays for detecting the presence of complementary sequences in a given sample.

In certain embodiments, it is advantageous to use oligonucleotide primers. The sequence of such primers is designed using a polynucleotide of the present invention for use in detecting, amplifying or mutating a defined segment of a crystal protein gene from *B. thuringiensis* using PCRTM technology. Segments of related crystal protein genes from other species may also be amplified by PCRTM using such primers.

To provide certain of the advantages in accordance with the present invention, a preferred nucleic acid sequence employed for hybridization studies or assays includes sequences that are complementary to at least a 14 to 30 or so long nucleotide stretch of a crystal protein-encoding sequence, such as that shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEO ID NO:43, SEO ID NO:45, SEO ID NO:47, SEQ ID NO:49 and SEQ ID NO:62. A size of at least about 14 or so nucleotides in length helps to ensure that the fragment will be of sufficient length to form a duplex molecule that is both stable and selective. Molecules having complementary sequences over stretches greater than about 14 or so bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having gene-complementary stretches of about 14 to about 20 or so nucleotides, or even longer where desired. Such fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR™ technology of U. S. Patents 4,683,195, and 4,683,202, herein incorporated by reference, or by excising selected DNA fragments from recombinant plasmids containing appropriate inserts and suitable restriction sites.

5.3 Expression Vectors

The present invention contemplates an expression vector comprising a polynucleotide of the present invention. Thus, in one embodiment an expression vector is an isolated and purified

PCT/US00/25361

WO 01/19859

DNA molecule comprising a promoter operatively linked to an coding region that encodes a polypeptide of the present invention, which coding region is operatively linked to a transcription-terminating region, whereby the promoter drives the transcription of the coding region.

As used herein, the term "operatively linked" means that a promoter is connected to an coding region in such a way that the transcription of that coding region is controlled and regulated by that promoter. Means for operatively linking a promoter to a coding region are well known in the art.

In a preferred embodiment, the recombinant expression of DNAs encoding the crystal proteins of the present invention is preferable in a Bacillus host cell. Preferred host cells include B. thuringiensis, B. megaterium, B. subtilis, and related bacilli, with B. thuringiensis host cells being highly preferred. Promoters that function in bacteria are well-known in the art. An exemplary and preferred promoter for the Bacillus crystal proteins include any of the known crystal protein gene promoters, including the cryET31, cryET40, cryET43, cryET44, cryET45, cryET46, cryET47, cryET49, cryET51, cryET52, cryET53, cryET54, cryET55, cryET56, cryET57, cryET59, cryET60, cryET61, cryET62, cryET63, cryET64, cryET66, cryET67, cryET68, cryET72, cryET73, and cryET83 gene promoters. Alternatively, mutagenized or recombinant crystal protein-encoding gene promoters may be engineered by the hand of man and used to promote expression of the novel gene segments disclosed herein.

In an alternate embodiment, the recombinant expression of DNAs encoding the crystal proteins of the present invention is performed using a transformed Gram-negative bacterium such as an *E. coli* or *Pseudomonas* spp. host cell. Promoters which function in high-level expression of target polypeptides in *E. coli* and other Gram-negative host cells are also well-known in the art.

Where an expression vector of the present invention is to be used to transform a plant, a promoter is selected that has the ability to drive expression in plants. Promoters that function in plants are also well known in the art. Useful in expressing the polypeptide in plants are promoters that are inducible, viral, synthetic, constitutive as described (Poszkowski *et al.*, 1989; Odell *et al.*, 1985), and temporally regulated, spatially regulated, and spatio-temporally regulated (Chau *et al.*, 1989).

A promoter is also selected for its ability to direct the transformed plant cell's or transgenic plant's transcriptional activity to the coding region. Structural genes can be driven by

25

a variety of promoters in plant tissues. Promoters can be near-constitutive, such as the CaMV 35S promoter, or tissue-specific or developmentally specific promoters affecting dicots or monocots.

Where the promoter is a near-constitutive promoter such as CaMV 35S, increases in polypeptide expression are found in a variety of transformed plant tissues (e.g., callus, leaf, seed and root). Alternatively, the effects of transformation can be directed to specific plant tissues by using plant integrating vectors containing a tissue-specific promoter.

An exemplary tissue-specific promoter is the lectin promoter, which is specific for seed tissue. The Lectin protein in soybean seeds is encoded by a single gene (*Le1*) that is only expressed during seed maturation and accounts for about 2 to about 5% of total seed mRNA. The lectin gene and seed-specific promoter have been fully characterized and used to direct seed specific expression in transgenic tobacco plants (Vodkin *et al.*, 1983; Lindstrom *et al.*, 1990.)

An expression vector containing a coding region that encodes a polypeptide of interest is engineered to be under control of the lectin promoter and that vector is introduced into plants using, for example, a protoplast transformation method (Dhir *et al.*, 1991). The expression of the polypeptide is directed specifically to the seeds of the transgenic plant.

A transgenic plant of the present invention produced from a plant cell transformed with a tissue specific promoter can be crossed with a second transgenic plant developed from a plant cell transformed with a different tissue specific promoter to produce a hybrid transgenic plant that shows the effects of transformation in more than one specific tissue.

Exemplary tissue-specific promoters are corn sucrose synthetase 1 (Yang et al., 1990), corn alcohol dehydrogenase 1 (Vogel et al., 1989), corn light harvesting complex (Simpson, 1986), corn heat shock protein (Odell et al., 1985), pea small subunit RuBP carboxylase (Poulsen et al., 1986; Cashmore et al., 1983), Ti plasmid mannopine synthase (Langridge et al., 1989), Ti plasmid nopaline synthase (Langridge et al., 1989), petunia chalcone isomerase (Van Tunen et al., 1988), bean glycine rich protein 1 (Keller et al., 1989), CaMV 35s transcript (Odell et al., 1985) and Potato patatin (Wenzler et al., 1989). Preferred promoters include a cauliflower mosaic virus (CaMV 35S) promoter, a S-E9 small subunit RuBP carboxylase promoter, a rice actin promoter, a maize histone promoter, a fused CaMV 35S-Arabidopsis histone promoter, a CaMV 35S promoter, a CaMV 19S promoter, a nos promoter, an Adh promoter, an actin promoter, a histone promoter, a ribulose bisphosphate carboxylase promoter, an R-allele

promoter, a root cell promoter, an α-tubulin promoter, an ABA-inducible promoter, a turgor-inducible promoter, a *rbcS* promoter, a corn sucrose synthetase 1 promoter, a corn alcohol dehydrogenase 1 promoter, a corn light harvesting complex promoter, a corn heat shock protein promoter, a pea small subunit RuBP carboxylase promoter, a Ti plasmid mannopine synthase promoter, a Ti plasmid nopaline synthase promoter, a petunia chalcone isomerase promoter, a bean glycine rich protein 1 promoter, a CaMV 35s transcript promoter, a potato patatin promoter, a *cab* promoter, a PEP-Carboxylase promoter and an S-E9 small subunit RuBP carboxylase promoter.

The choice of which expression vector and ultimately to which promoter a polypeptide coding region is operatively linked depends directly on the functional properties desired, e.g., the location and timing of protein expression, and the host cell to be transformed. These are well known limitations inherent in the art of constructing recombinant DNA molecules. However, a vector useful in practicing the present invention is capable of directing the expression of the polypeptide coding region to which it is operatively linked.

Typical vectors useful for expression of genes in higher plants are well known in the art and include vectors derived from the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens described (Rogers et al., 1987). However, several other plant integrating vector systems are known to function in plants including pCaMVCN transfer control vector described (Fromm et al., 1985). Plasmid pCaMVCN (available from Pharmacia, Piscataway, NJ) includes the cauliflower mosaic virus CaMV 35S promoter.

In preferred embodiments, the vector used to express the polypeptide includes a selection marker that is effective in a plant cell, preferably a drug resistance selection marker. One preferred drug resistance marker is the gene whose expression results in kanamycin resistance; i.e., the chimeric gene containing the nopaline synthase promoter, Tn5 neomycin phosphotransferase II (nptII) and nopaline synthase 3' non-translated region described (Rogers et al., 1988).

RNA polymerase transcribes a coding DNA sequence through a site where polyadenylation occurs. Typically, DNA sequences located a few hundred base pairs downstream of the polyadenylation site serve to terminate transcription. Those DNA sequences are referred to herein as transcription-termination regions. Those regions are required for efficient polyadenylation of transcribed messenger RNA (mRNA).

15

Means for preparing expression vectors are well known in the art. Expression (transformation vectors) used to transform plants and methods of making those vectors are described in U. S. Patents 4,971,908, 4,940,835, 4,769,061 and 4,757,011, the disclosures of which are incorporated herein by reference. Those vectors can be modified to include a coding sequence in accordance with the present invention.

A variety of methods has been developed to operatively link DNA to vectors via complementary cohesive termini or blunt ends. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted and to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

A coding region that encodes a polypeptide having the ability to confer insecticidal activity to a cell is preferably a CryET31, CryET40, CryET43, CryET44, CryET45, CryET46, CryET47, CryET49, CryET51, CryET52, CryET53, CryET54, CryET55, CryET56, CryET57, CryET59, CryET60, CryET61, CryET62, CryET63, CryET64, CryET66, CryET67, CryET68, CryET72, CryET73, and CryET83 polypeptide-encoding gene.

5.7 Nomenclature of the Novel Polypeptides

The inventors have arbitrarily assigned the designation CryET31, CryET40, CryET43, CryET44, CryET45, CryET46, CryET47, CryET49, CryET51, CryET52, CryET53, CryET54, CryET56, CryET57, CryET59, CryET60, CryET61, CryET62, CryET63, CryET64, CryET66, CryET67, CryET68, CryET72, CryET73, and CryET83 to the polypeptides of this invention. Likewise, the arbitrary designations of cryET31, cryET40, cryET43, cryET44, cryET45, cryET46, cryET47, cryET49, cryET51, cryET52, cryET53, cryET54, cryET56, cryET57, cryET59, cryET60, cryET61, cryET62, cryET63, cryET64, cryET66, cryET67, cryET68, cryET72, cryET73, and cryET83 have been assigned to the novel nucleic acid sequence which encodes these polypeptides, respectively. Formal assignment of gene and protein designations based on the revised nomenclature of crystal protein endotoxins will be assigned by a committee on the nomenclature of B. thuringiensis, formed to systematically classify B. thuringiensis crystal proteins. The inventors contemplate that the arbitrarily assigned designations of the present invention will be superceded by the official nomenclature assigned to these sequences.

10

5.8 Transformed Host Cells and Transgenic Plants

Methods and compositions for transforming a bacterium, a yeast cell, a plant cell, or an entire plant with one or more expression vectors comprising a crystal protein-encoding gene segment are further aspects of this disclosure. A transgenic bacterium, yeast cell, plant cell or plant derived from such a transformation process or the progeny and seeds from such a transgenic plant are also further embodiments of the invention.

Means for transforming bacteria and yeast cells are well known in the art. Typically, means of transformation are similar to those well known means used to transform other bacteria or yeast such as *E. coli* or *Saccharomyces cerevisiae*. Methods for DNA transformation of plant cells include *Agrobacterium*-mediated plant transformation, protoplast transformation, gene transfer into pollen, injection into reproductive organs, injection into immature embryos and particle bombardment. Each of these methods has distinct advantages and disadvantages. Thus, one particular method of introducing genes into a particular plant strain may not necessarily be the most effective for another plant strain, but it is well known which methods are useful for a particular plant strain.

There are many methods for introducing transforming DNA segments into cells, but not all are suitable for delivering DNA to plant cells. Suitable methods are believed to include virtually any method by which DNA can be introduced into a cell, such as by Agrobacterium infection, direct delivery of DNA such as, for example, by PEG-mediated transformation of protoplasts (Omirulleh et al., 1993), by desiccation/inhibition-mediated DNA uptake, by electroporation, by agitation with silicon carbide fibers, by acceleration of DNA coated particles, etc. In certain embodiments, acceleration methods are preferred and include, for example, microprojectile bombardment and the like.

Technology for introduction of DNA into cells is well-known to those of skill in the art. Four general methods for delivering a gene into cells have been described: (1) chemical methods (Graham and van der Eb, 1973; Zatloukal *et al.*, 1992); (2) physical methods such as microinjection (Capecchi, 1980), electroporation (Wong and Neumann, 1982; Fromm *et al.*, 1985; U. S. Patent No. 5,384,253) and the gene gun (Johnston and Tang, 1994; Fynan *et al.*, 1993); (3) viral vectors (Clapp, 1993; Lu *et al.*, 1993; Eglitis and Anderson, 1988a; 1988b); and (4) receptor-mediated mechanisms (Curiel *et al.*, 1991; 1992; Wagner *et al.*, 1992).

10

15

25

5.8.3 Agrobacterium-Mediated Transfer

Agrobacterium-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described (Fraley et al., 1985; Rogers et al., 1987). Further, the integration of the Ti-DNA is a relatively precise process resulting in few rearrangements. The region of DNA to be transferred is defined by the border sequences, and intervening DNA is usually inserted into the plant genome as described (Spielmann et al., 1986; Jorgensen et al., 1987).

Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations as described (Klee et al., 1985). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate construction of vectors capable of expressing various polypeptide coding genes. The vectors described (Rogers et al., 1987), have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes. In addition, Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.

Agrobacterium-mediated transformation of leaf disks and other tissues such as cotyledons and hypocotyls appears to be limited to plants that Agrobacterium naturally infects. Agrobacterium-mediated transformation is most efficient in dicotyledonous plants. Few monocots appear to be natural hosts for Agrobacterium, although transgenic plants have been produced in asparagus using Agrobacterium vectors as described (Bytebier et al., 1987). Therefore, commercially important cereal grains such as rice, corn, and wheat must usually be transformed using alternative methods. However, as mentioned above, the transformation of asparagus using Agrobacterium can also be achieved (see, for example, Bytebier et al., 1987).

A transgenic plant formed using Agrobacterium transformation methods typically contains a single gene on one chromosome. Such transgenic plants can be referred to as being

30

15

heterozygous for the added gene. However, inasmuch as use of the word "heterozygous" usually implies the presence of a complementary gene at the same locus of the second chromosome of a pair of chromosomes, and there is no such gene in a plant containing one added gene as here, it is believed that a more accurate name for such a plant is an independent segregant, because the added, exogenous gene segregates independently during mitosis and meiosis.

More preferred is a transgenic plant that is homozygous for the added structural gene; i.e., a transgenic plant that contains two added genes, one gene at the same locus on each chromosome of a chromosome pair. A homozygous transgenic plant can be obtained by sexually mating (selfing) an independent segregant transgenic plant that contains a single added gene, germinating some of the seed produced and analyzing the resulting plants produced for enhanced carboxylase activity relative to a control (native, non-transgenic) or an independent segregant transgenic plant.

It is to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes that encode a polypeptide of interest. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated.

Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., 1985; Lorz et al., 1985; Fromm et al., 1985; Uchimiya et al., 1986; Callis et al., 1987; Marcotte et al., 1988).

Application of these systems to different plant strains depends upon the ability to regenerate that particular plant strain from protoplasts. Illustrative methods for the regeneration of cereals from protoplasts are described (Fujimura et al., 1985; Toriyama et al., 1986; Yamada et al., 1986; Abdullah et al., 1986).

5.8.4 Other Transformation Methods

Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., 1985; Lorz et al., 1985; Fromm et al., 1985; Uchimiya et al., 1986; Callis et al., 1987; Marcotte et al., 1988).

Illustrative methods for the regeneration of cereals from protoplasts are described (Fujimura et al., 1985; Toriyama et al., 1986; Yamada et al., 1986; Abdullah et al., 1986).

5.8.5 Gene Expression in Plants

Although great progress has been made in recent years with respect to preparation of transgenic plants which express bacterial proteins such as B. thuringiensis crystal proteins, the results of expressing native bacterial genes in plants are often disappointing. In recent years, however, several potential factors have been implicated as responsible in varying degrees for the level of protein expression from a particular coding sequence. For example, scientists now know that maintaining a significant level of a particular mRNA in the cell is indeed a critical factor. Unfortunately, the causes for low steady state levels of mRNA encoding foreign proteins are many. First, full length RNA synthesis may not occur at a high frequency. This could, for example, be caused by the premature termination of RNA during transcription or due to unexpected mRNA processing during transcription. Second, full length RNA may be produced in the plant cell, but then processed (splicing, polyA addition) in the nucleus in a fashion that creates a nonfunctional mRNA. If the RNA is not properly synthesized, terminated and polyadenylated, it cannot move to the cytoplasm for translation. Similarly, in the cytoplasm, if mRNAs have reduced half lives (which are determined by their primary or secondary sequence) inisufficient protein product will be produced. In addition, there is an effect, whose magnitude is uncertain, of translational efficiency on mRNA half-life. In addition, every RNA molecule folds into a particular structure, or perhaps family of structures, which is determined by its sequence. The particular structure of any RNA might lead to greater or lesser stability in the cytoplasm. Structure per se is probably also a determinant of mRNA processing in the nucleus. It is likely that dramatically changing the sequence of an RNA will have a large effect on its folded structure It is likely that structure per se or particular structural features also have a role in determining RNA stability.

To overcome these limitations in foreign gene expression, researchers have identified particular sequences and signals in RNAs that have the potential for having a specific effect on RNA stability. In certain embodiments of the invention, therefore, there is a desire to optimize expression of the disclosed nucleic acid segments *in planta*. One particular method of doing so, is by alteration of the bacterial gene to remove sequences or motifs which decrease expression in

a transformed plant cell. The process of engineering a coding sequence for optimal expression in planta is often referred to as "plantizing" a DNA sequence.

Particularly problematic sequences are those which are A+T rich. Unfortunately, since B. thuringiensis has an A+T rich genome, native crystal protein gene sequences must often be modified for optimal expression in a plant. The sequence motif ATTTA (or AUUUA as it appears in RNA) has been implicated as a destabilizing sequence in mammalian cell mRNA (Shaw and Kamen, 1986). Many short lived mRNAs have A+T rich 3' untranslated regions, and these regions often have the ATTTA sequence, sometimes present in multiple copies or as multimers (e.g., ATTTATTTA...). Shaw and Kamen showed that the transfer of the 3' end of an unstable mRNA to a stable RNA (globin or VA1) decreased the stable RNA's half life dramatically. They further showed that a pentamer of ATTTA had a profound destabilizing effect on a stable message, and that this signal could exert its effect whether it was located at the 3' end or within the coding sequence. However, the number of ATTTA sequences and/or the sequence context in which they occur also appear to be important in determining whether they function as destabilizing sequences. Shaw and Kamen showed that a trimer of ATTTA had much less effect than a pentamer on mRNA stability and a dimer or a monomer had no effect on stability (Shaw and Kamen, 1987). Note that multimers of ATTTA such as a pentamer automatically create an A+T rich region. This was shown to be a cytoplasmic effect, not nuclear. In other unstable mRNAs, the ATTTA sequence may be present in only a single copy, but it is often contained in an A+T rich region. From the animal cell data collected to date, it appears that ATTTA at least in some contexts is important in stability, but it is not yet possible to predict which occurrences of ATTTA are destabiling elements or whether any of these effects are likely to be seen in plants.

Some studies on mRNA degradation in animal cells also indicate that RNA degradation may begin in some cases with nucleolytic attack in A+T rich regions. It is not clear if these cleavages occur at ATTTA sequences. There are also examples of mRNAs that have differential stability depending on the cell type in which they are expressed or on the stage within the cell cycle at which they are expressed. For example, histone mRNAs are stable during DNA synthesis but unstable if DNA synthesis is disrupted. The 3' end of some histone mRNAs seems to be responsible for this effect (Pandey and Marzluff, 1987). It does not appear to be mediated by ATTTA, nor is it clear what controls the differential stability of this mRNA. Another

example is the differential stability of IgG mRNA in B lymphocytes during B cell maturation (Genovese and Milcarek, 1988). A final example is the instability of a mutant β-thallesemic globin mRNA. In bone marrow cells, where this gene is normally expressed, the mutant mRNA is unstable, while the wild-type mRNA is stable. When the mutant gene is expressed in HeLa or L cells *in vitro*, the mutant mRNA shows no instability (Lim *et al.*, 1988). These examples all provide evidence that mRNA stability can be mediated by cell type or cell cycle specific factors. Furthermore this type of instability is not yet associated with specific sequences. Given these uncertainties, it is not possible to predict which RNAs are likely to be unstable in a given cell. In addition, even the ATTTA motif may act differentially depending on the nature of the cell in which the RNA is present. Shaw and Kamen (1987) have reported that activation of protein kinase C can block degradation mediated by ATTTA.

The addition of a polyadenylate string to the 3' end is common to most eukaryotic mRNAs, both plant and animal. The currently accepted view of polyA addition is that the nascent transcript extends beyond the mature 3' terminus. Contained within this transcript are signals for polyadenylation and proper 3' end formation. This processing at the 3' end involves cleavage of the mRNA and addition of polyA to the mature 3' end. By searching for consensus sequences near the polyA tract in both plant and animal mRNAs, it has been possible to identify consensus sequences that apparently are involved in polyA addition and 3' end cleavage. The same consensus sequences seem to be important to both of these processes. These signals are typically a variation on the sequence AATAAA. In animal cells, some variants of this sequence that are functional have been identified; in plant cells there seems to be an extended range of functional sequences (Wickens and Stephenson, 1984; Dean et al., 1986). Because all of these consensus sequences are variations on AATAAA, they all are A+T rich sequences. This sequence is typically found 15 to 20 bp before the polyA tract in a mature mRNA. Studies in animal cells indicate that this sequence is involved in both polyA addition and 3' maturation. Site directed mutations in this sequence can disrupt these functions (Conway and Wickens, 1988; Wickens et al., 1987). However, it has also been observed that sequences up to 50 to 100 bp 3' to the putative polyA signal are also required; i.e., a gene that has a normal AATAAA but has been replaced or disrupted downstream does not get properly polyadenylated (Gil and Proudfoot, 1984; Sadofsky and Alwine, 1984; McDevitt et al., 1984). That is, the polyA signal itself is not sufficient for complete and proper processing. It is not yet known what specific downstream

sequences are required in addition to the polyA signal, or if there is a specific sequence that has this function. Therefore, sequence analysis can only identify potential polyA signals.

In naturally occurring mRNAs that are normally polyadenylated, it has been observed that disruption of this process, either by altering the polyA signal or other sequences in the mRNA, profound effects can be obtained in the level of functional mRNA. This has been observed in several naturally occurring mRNAs, with results that are gene-specific so far.

It has been shown that in natural mRNAs proper polyadenylation is important in mRNA accumulation, and that disruption of this process can effect mRNA levels significantly. However, insufficient knowledge exists to predict the effect of changes in a normal gene. In a heterologous gene, it is even harder to predict the consequences. However, it is possible that the putative sites identified are dysfunctional. That is, these sites may not act as proper polyA sites, but instead function as aberrant sites that give rise to unstable mRNAs.

In animal cell systems, AATAAA is by far the most common signal identified in mRNAs upstream of the polyA, but at least four variants have also been found (Wickens and Stephenson, 1984). In plants, not nearly so much analysis has been done, but it is clear that multiple sequences similar to AATAAA can be used. The plant sites in Table 2 called major or minor refer only to the study of Dean et al. (1986) which analyzed only three types of plant gene. The designation of polyadenylation sites as major or minor refers only to the frequency of their occurrence as functional sites in naturally occurring genes that have been analyzed. In the case of plants this is a very limited database. It is hard to predict with any certainty that a site designated major or minor is more or less likely to function partially or completely when found in a heterologous gene such as those encoding the crystal proteins of the present invention.

AATAAA	Major consensus site
AATAAT	Major plant site
AACCAA	Minor plant site
ATATAA	w
AATCAA	**
• • • • • • • • • • • • • • • • • • • •	Ħ
	AATAAT AACCAA

TABLE 2 - POLYADENYLATION SITES IN PLANT GENES

P5A	ATACTA	"
P6A	ATAAAA	н
P7A	ATGAAA	#
P8A	AAGCAT	er
P9A	ATTAAT	n
P10A	ATACAT	*
PIIA	AAAATA	n ·
P12A	ATTAAA	Minor animal site
P13A	AATTAA	"
P14A	AATACA	"
P15A	CATAAA	H

10

15

20

PA

PIA P2A P3A P4A

The present invention provides a method for preparing synthetic plant genes which genes express their protein product at levels significantly higher than the wild-type genes which were commonly employed in plant transformation heretofore. In another aspect, the present invention also provides novel synthetic plant genes which encode non-plant proteins.

As described above, the expression of native *B. thuringiensis* genes in plants is often problematic. The nature of the coding sequences of *B. thuringiensis* genes distinguishes them from plant genes as well as many other heterologous genes expressed in plants. In particular, *B. thuringiensis* genes are very rich (~62%) in adenine (A) and thymine (T) while plant genes and most other bacterial genes which have been expressed in plants are on the order of 45-55% A+T.

Due to the degeneracy of the genetic code and the limited number of codon choices for any amino acid, most of the "excess" A+T of the structural coding sequences of some *Bacillus* species are found in the third position of the codons. That is, genes of some *Bacillus* species have A or T as the third nucleotide in many codons. Thus A+T content in part can determine codon usage bias. In addition, it is clear that genes evolve for maximum function in the organism in which they evolve. This means that particular nucleotide sequences found in a gene from one organism, where they may play no role except to code for a particular stretch of amino acids, have the potential to be recognized as gene control elements in another organism (such as transcriptional promoters or terminators, polyA addition sites, intron splice sites, or specific mRNA degradation signals). It is perhaps surprising that such misread signals are not a more common feature of heterologous gene expression, but this can be explained in part by the relatively homogeneous A+T content (~50%) of many organisms. This A+T content plus the nature of the genetic code put clear constraints on the likelihood of occurrence of any particular oligonucleotide sequence. Thus, a gene from *E. coli* with a 50% A+T content is much less likely to contain any particular A+T rich segment than a gene from *B. thuringiensis*.

Typically, to obtain high-level expression of the S-endotoxin genes in plants, existing structural coding sequence ("structural gene") which codes for the S-endotoxin are modified by removal of ATTTA sequences and putative polyadenylation signals by site directed mutagenesis of the DNA comprising the structural gene. It is most preferred that substantially all the polyadenylation signals and ATTTA sequences are removed although enhanced expression levels are observed with only partial removal of either of the above identified sequences.

10

15

20

Alternately if a synthetic gene is prepared which codes for the expression of the subject protein, codons are selected to avoid the ATTTA sequence and putative polyadenylation signals. For purposes of the present invention putative polyadenylation signals include, but are not necessarily limited to, AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATAAAA, ATGAAA, AAGCAT, ATTAAT, ATACAT, AAAATA, ATTAAA, AATTAA, AATACA and CATAAA. In replacing the ATTTA sequences and polyadenylation signals, codons are preferably utilized which avoid the codons which are rarely found in plant genomes.

The selected DNA sequence is scanned to identify regions with greater than four consecutive adenine (A) or thymine (T) nucleotides. The A+T regions are scanned for potential plant polyadenylation signals. Although the absence of five or more consecutive A or T nucleotides eliminates most plant polyadenylation signals, if there are more than one of the minor polyadenylation signals identified within ten nucleotides of each other, then the nucleotide sequence of this region is preferably altered to remove these signals while maintaining the original encoded amino acid sequence.

The second step is to consider the about 15 to about 30 or so nucleotide residues surrounding the A+T rich region identified in step one. If the A+T content of the surrounding region is less than 80%, the region should be examined for polyadenylation signals. Alteration of the region based on polyadenylation signals is dependent upon (1) the number of polyadenylation signals present and (2) presence of a major plant polyadenylation signal.

The extended region is examined for the presence of plant polyadenylation signals. The polyadenylation signals are removed by site-directed mutagenesis of the DNA sequence. The extended region is also examined for multiple copies of the ATTTA sequence which are also removed by mutagenesis.

It is also preferred that regions comprising many consecutive A+T bases or G+C bases are disrupted since these regions are predicted to have a higher likelihood to form hairpin structure due to self-complementarity. Therefore, insertion of heterogeneous base pairs would reduce the likelihood of self-complementary secondary structure formation which are known to inhibit transcription and/or translation in some organisms. In most cases, the adverse effects may be minimized by using sequences which do not contain more than five consecutive A+T or G+C.

5.8.6 Synthetic Oligonucleotides for Mutagenesis

When oligonucleotides are used in the mutagenesis, it is desirable to maintain the proper amino acid sequence and reading frame, without introducing common restriction sites such as *BgIII*, *HindIII*, *SacI*, *KpnI*, *EcoRI*, *NcoI*, *PstI* and *SaII* into the modified gene. These restriction sites are found in poly-linker insertion sites of many cloning vectors. Of course, the introduction of new polyadenylation signals, ATTTA sequences or consecutive stretches of more than five A+T or G+C, should also be avoided. The preferred size for the oligonucleotides is about 40 to about 50 bases, but fragments ranging from about 18 to about 100 bases have been utilized. In most cases, a minimum of about 5 to about 8 base pairs of homology to the template DNA on both ends of the synthesized fragment are maintained to insure proper hybridization of the primer to the template. The oligonucleotides should avoid sequences longer than five base pairs A+T or G+C. Codons used in the replacement of wild-type codons should preferably avoid the TA or CG doublet wherever possible. Codons are selected from a plant preferred codon table (such as Table 3 below) so as to avoid codons which are rarely found in plant genomes, and efforts should be made to select codons to preferably adjust the G+C content to about 50%.

Regions with many consecutive A+T bases or G+C bases are predicted to have a higher likelihood to form hairpin structures due to self-complementarity. Disruption of these regions by the insertion of heterogeneous base pairs is preferred and should reduce the likelihood of the formation of self-complementary secondary structures such as hairpins which are known in some organisms to inhibit transcription (transcriptional terminators) and translation (attenuators).

Alternatively, a completely synthetic gene for a given amino acid sequence can be prepared, with regions of five or more consecutive A+T or G+C nucleotides being avoided. Codons are selected avoiding the TA and CG doublets in codons whenever possible. Codon usage can be normalized against a plant preferred codon usage table (such as Table 3) and the G+C content preferably adjusted to about 50%. The resulting sequence should be examined to ensure that there are minimal putative plant polyadenylation signals and ATTTA sequences.

Table 3 - Preferred Codon Usage in Plants

Amino	Codon	Percent Usage in Plants	Amino	Codon	Percent Usage in Plants
Aeid			Acid		
ARG	CGA	7	LEU	CUA	8
	CGC	11		CUC	20
	CGG	5		CUG	10
	CGU	25		CUU	28
	AGA	29		UUA	5
	AGG	23		UUG	30 .
SER	UCA	14	ALA	GCA	23
	UCC	26		GCC	32
	UCG	3		GCG	3
	UCU	21		GCU	41
	AGC	21	GLY	GGA	32
	AGU	15		GGC	20
THR	ACA	21		GGG	11
	ACC	41		GGU	37
	ACG	7	ILE	AUA	12
	ACU	31		AUC	45
PRO	CCA	45		AUU	43
	CCC	19	VAL	GUA	· 9
	CCG	9		GUC	20
	CCU	26		GUG	28
HIS	CAC	65		GUU	43
	CAU	35	LYS	AAA	36
GLU	GAA	48		AAG	64
	GAG	52	ASN	AAC	7 2
ASP	GAC	48		AAU	28
	GAU	52	GLN	CAA	64
TYR	UAC	68		CAG	36
	UAU	32	PHE	UUC	56
CYS	UGC	78		บบบ	44
0.0	UGU	22	MET	AUG	100
			TRP	UGG	100

Restriction sites found in commonly used cloning vectors are also preferably avoided. However, placement of several unique restriction sites throughout the gene is useful for analysis of gene expression or construction of gene variants.

5.8.7 "Plantized" Gene Constructs

The expression of a plant gene which exists in double-stranded DNA form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals

RNA polymerase to associate with the DNA and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding strand of RNA.

A number of promoters which are active in plant cells have been described in the literature. These include the nopaline synthase (NOS) and octopine synthase (OCS) promoters (which are carried on tumor-inducing plasmids of *A. tumefaciens*), the Cauliflower Mosaic Virus (CaMV) 19S and 35S promoters, the light-inducible promoter from the small subunit of ribulose bis-phosphate carboxylase (ssRUBISCO, a very abundant plant polypeptide) and the mannopine synthase (MAS) promoter (Velten *et al.*, 1984; Velten and Schell, 1985). All of these promoters have been used to create various types of DNA constructs which have been expressed in plants (see *e.g.*, Intl. Pat. Appl. Publ. Ser. No. WO 84/02913).

Promoters which are known or are found to cause transcription of RNA in plant cells can be used in the present invention. Such promoters may be obtained from plants or plant viruses and include, but are not limited to, the CaMV35S promoter and promoters isolated from plant genes such as ssRUBISCO genes. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of protein.

The promoters used in the DNA constructs (*i.e.* chimeric plant genes) of the present invention may be modified, if desired, to affect their control characteristics. For example, the CaMV35S promoter may be ligated to the portion of the ssRUBISCO gene that represses the expression of ssRUBISCO in the absence of light, to create a promoter which is active in leaves but not in roots. The resulting chimeric promoter may be used as described herein. For purposes of this description, the phrase "CaMV35S" promoter thus includes variations of CaMV35S promoter, *e.g.*, promoters derived by means of ligation with operator regions, random or controlled mutagenesis, *etc.* Furthermore, the promoters may be altered to contain multiple "enhancer sequences" to assist in elevating gene expression.

The RNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNA's, from suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs, as presented in the following examples. Rather, the non-translated leader sequence can be part of the 5' end

25

5

10

20

25

of the non-translated region of the coding sequence for the virus coat protein, or part of the promoter sequence, or can be derived from an unrelated promoter or coding sequence. In any case, it is preferred that the sequence flanking the initiation site conform to the translational consensus sequence rules for enhanced translation initiation reported by Kozak (1984).

The cry DNA constructs of the present invention may also contain one or more modified or fully-synthetic structural coding sequences which have been changed to enhance the performance of the cry gene in plants. The structural genes of the present invention may optionally encode a fusion protein comprising an amino-terminal chloroplast transit peptide or secretory signal sequence.

The DNA construct also contains a 3' non-translated region. The 3' non-translated region contains a polyadenylation signal which functions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the viral RNA. Examples of suitable 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylation signal of *Agrobacterium* tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene, and (2) plant genes like the soybean storage protein (7S) genes and the small subunit of the RuBP carboxylase (E9) gene.

5.9 Methods for Producing Insect-Resistant Transgenic Plants

By transforming a suitable host cell, such as a plant cell, with a recombinant cryET31, cryET40, cryET43, cryET44, cryET45, cryET46, cryET46, cryET47, cryET49, cryET51, cryET52, cryET53, cryET54, cryET56, cryET57, cryET59, cryET60, cryET61, cryET62, cryET63, cryET64, cryET66, cryET67, cryET68, cryET72, cryET73, and cryET83 gene-containing segment, the expression of the encoded crystal protein (i.e., a bacterial crystal protein or polypeptide having insecticidal activity against coleopterans) can result in the formation of insect-resistant plants.

By way of example, one may utilize an expression vector containing a coding region for a B. thuringiensis crystal protein and an appropriate selectable marker to transform a suspension of embryonic plant cells, such as wheat or corn cells using a method such as particle bombardment (Maddock et al., 1991; Vasil et al., 1992) to deliver the DNA coated on microprojectiles into the recipient cells. Transgenic plants are then regenerated from transformed embryonic calli that express the insecticidal proteins.

The formation of transgenic plants may also be accomplished using other methods of cell transformation which are known in the art such as *Agrobacterium*-mediated DNA transfer (Fraley et al., 1983). Alternatively, DNA can be introduced into plants by direct DNA transfer into pollen (Zhou et al., 1983; Hess, 1987; Luo et al., 1988), by injection of the DNA into reproductive organs of a plant (Pena et al., 1987), or by direct injection of DNA into the cells of immature embryos followed by the rehydration of desiccated embryos (Neuhaus et al., 1987; Benbrook et al., 1986).

The regeneration, development, and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, 1988). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.

The development or regeneration of plants containing the foreign, exogenous gene that encodes a polypeptide of interest introduced by *Agrobacterium* from leaf explants can be achieved by methods well known in the art such as described (Horsch *et al.*, 1985). In this procedure, transformants are cultured in the presence of a selection agent and in a medium that induces the regeneration of shoots in the plant strain being transformed as described (Fraley *et al.*, 1983).

This procedure typically produces shoots within two to four months and those shoots are then transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Shoots that rooted in the presence of the selective agent to form plantlets are then transplanted to soil or other media to allow the production of roots. These procedures vary depending upon the particular plant strain employed, such variations being well known in the art.

Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants, as discussed before. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important, preferably inbred lines. Conversely, pollen from plants of those important lines is used to pollinate regenerated plants. A transgenic plant of the

15

present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.

A transgenic plant of this invention thus has an increased amount of a coding region (e.g., a cryET31, cryET40, cryET43, cryET44, cryET45, cryET46, cryET47, cryET49, cryET51, cryET52, cryET53, cryET54, cryET56, cryET57, cryET59, cryET60, cryET61, cryET62, cryET63, cryET64, cryET66, cryET67, cryET68, cryET72, cryET73, and cryET83 gene) that encodes one or more CryET31, CryET40, CryET43, CryET44, CryET45, CryET46, CryET47, CryET49, CryET51, CryET52, CryET53, CryET54, CryET56, CryET57, CryET59, CryET60, CryET61, CryET62, CryET63, CryET64, CryET66, CryET67, CryET68, CryET72, CryET73, and CryET83 polypeptides. A preferred transgenic plant is an independent segregant and can transmit that gene and its activity to its progeny. A more preferred transgenic plant is homozygous for that gene, and transmits that gene to all of its offspring on sexual mating. Seed from a transgenic plant may be grown in the field or greenhouse, and resulting sexually mature transgenic plants are self-pollinated to generate true breeding plants. The progeny from these plants become true breeding lines that are evaluated for, by way of example, increased insecticidal capacity against coleopteran insects, preferably in the field, under a range of environmental conditions. The inventors contemplate that the present invention will find particular utility in the creation of transgenic plants of commercial interest including various turf grasses, wheat, corn, rice, barley, oats, a variety of ornamental plants and vegetables, as well as a number of nut- and fruit-bearing trees and plants.

5.10 Definitions

The following words and phrases have the meanings set forth below.

Expression: The combination of intracellular processes, including transcription and translation undergone by a coding DNA molecule such as a structural gene to produce a polypeptide.

Identity or percent identity: refers to the degree of similarity between two nucleic acid or protein sequences. An alignment of the two sequences is performed by a suitable computer program. A widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. *Nucl. Acids Res.*, 22: 4673-4680, 1994). The number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had

25

WO 01/19859

145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths. For example, if there were 100 matched amino acids between 200 and a 400 amino acid proteins, they are 50 percent identical with respect to the shorter sequence. If the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acid bases) or 50 (for amino acids), and multiplied by 100 to obtain a percent identity.

Promoter: A recognition site on a DNA sequence or group of DNA sequences that provide an expression control element for a structural gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene.

Regeneration: The process of growing a plant from a plant cell (e.g., plant protoplast or explant).

Structural gene: A polynucleotide sequence that encodes a polypeptide, that is expressed to produce a polypeptide, or which is cryptic or incapable of expression in its natural host cell but which can be isolated and purified and operably linked to at least a promoter functional in one or more host cell types to express the encoded polypeptide.

Transformation: A process of introducing an exogenous DNA sequence (e.g., a vector, a recombinant DNA molecule) into a cell or protoplast in which that exogenous DNA is incorporated into a chromosome or is capable of autonomous replication.

Transformed cell: A cell whose DNA has been altered by the introduction of an exogenous DNA molecule into that cell.

Transgenic cell: Any cell derived or regenerated from a transformed cell or derived from a transgenic cell. Exemplary transgenic cells include plant calli derived from a transformed plant cell and particular cells such as leaf, root, stem, e.g., somatic cells, or reproductive (germ) cells obtained from a transgenic plant.

Transgenic plant: A plant or progeny thereof derived from a transformed plant cell or protoplast, wherein the plant DNA contains an introduced exogenous DNA molecule not originally present in a native, non-transgenic plant of the same strain. The terms "transgenic plant" and "transformed plant" have sometimes been used in the art as synonymous terms to define a plant whose DNA contains an exogenous DNA molecule. However, it is thought more scientifically correct to refer to a regenerated plant or callus obtained from a transformed plant cell or protoplast as being a transgenic plant, and that usage will be followed herein.

10

15

20

5

10

20

Vector: A DNA molecule capable of replication in a host cell and/or to which another DNA segment can be operatively linked so as to bring about replication of the attached segment. A plasmid is an exemplary vector.

5.11 Isolating Homologous Gene and Gene Fragments

The genes and δ -endotoxins according to the subject invention include not only the full length sequences disclosed herein but also fragments of these sequences, or fusion proteins, which retain the characteristic insecticidal activity of the sequences specifically exemplified herein.

It should be apparent to a person skill in this art that insecticidal δ -endotoxins can be identified and obtained through several means. The specific genes, or portions thereof, may be obtained from a culture depository, or constructed synthetically, for example, by use of a gene machine. Variations of these genes may be readily constructed using standard techniques for making point mutations. Also, fragments of these genes can be made using commercially available exonucleases or endonucleases according to standard procedures. For example, enzymes such as Bal31 or site-directed mutagenesis can be used to systematically cut off nucleotides from the ends of these genes. Also, genes which code for active fragments may be obtained using a variety of other restriction enzymes. Proteases may be used to directly obtain active fragments of these δ -endotoxins.

Equivalent δ -endotoxins and/or genes encoding these equivalent δ -endotoxins can also be isolated from *Bacillus* strains and/or DNA libraries using the teachings provided herein. For example, antibodies to the δ -endotoxins disclosed and claimed herein can be used to identify and isolate other δ -endotoxins from a mixture of proteins. Specifically, antibodies may be raised to the portions of the δ -endotoxins which are most constant and most distinct from other *B*. thuringiensis δ -endotoxins. These antibodies can then be used to specifically identify equivalent δ -endotoxins with the characteristic insecticidal activity by immunoprecipitation, enzyme linked immunoassay (ELISA), or Western blotting.

A further method for identifying the δ -endotoxins and genes of the subject invention is through the use of oligonucleotide probes. These probes are nucleotide sequences having a detectable label. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong bond between the two molecules, it can be reasonably assumed

that the probe and sample are essentially identical. The probe's detectable label provides a means for determining in a known manner whether hybridization has occurred. Such a probe analysis provides a rapid method for identifying formicidal δ -endotoxin genes of the subject invention.

The nucleotide segments which are used as probes according to the invention can be synthesized by use of DNA synthesizers using standard procedures. In the use of the nucleotide segments as probes, the particular probe is labeled with any suitable label known to those skilled in the art, including radioactive and non-radioactive labels. Typical radioactive labels include ³²P, ¹²⁵I, ³⁵S, or the like. A probe labeled with a radioactive isotope can be constructed from a nucleotide sequence complementary to the DNA sample by a conventional nick translation reaction, using a DNase and DNA polymerase. The probe and sample can then be combined in a hybridization buffer solution and held at an appropriate temperature until annealing occurs. Thereafter, the membrane is washed free of extraneous materials, leaving the sample and bound probe molecules typically detected and quantified by autoradiography and/or liquid scintillation counting.

Non-radioactive labels include, for example, ligands such as biotin or thyroxine, as well as enzymes such as hydrolases or peroxidases, or the various chemiluminescers such as luciferin, or fluorescent compounds like fluorescein and its derivatives. The probe may also be labeled at both ends with different types of labels for ease of separation, as, for example, by using an isotopic label at the end mentioned above and a biotin label at the other end.

Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid, and, as noted above, a certain degree of mismatch can be tolerated. Therefore, the probes of the subject invention include mutations (both single and multiple), deletions, insertions of the described sequences, and combinations thereof, wherein said mutations, insertions and deletions permit formation of stable hybrids with the target polynucleotide of interest. Mutations, insertions, and deletions can be produced in a given polynucleotide sequence in many ways, by methods currently known to an ordinarily skilled artisan, and perhaps by other methods which may become known in the future.

The potential variations in the probes listed is due, in part, to the redundancy of the genetic code. Because of the redundancy of the genetic code, *i.e.*, more than one coding nucleotide triplet (codon) can be used for most of the amino acids used to make proteins.

Therefore different nucleotide sequences can code for a particular amino acid. Thus, the amino acid sequences of the *B. thuringiensis* δ -endotoxins and peptides can be prepared by equivalent nucleotide sequences encoding the same amino acid sequence of the protein or peptide. Accordingly, the subject invention includes such equivalent nucleotide sequences. Also, inverse or complement sequences are an aspect of the subject invention and can be readily used by a person skilled in this art. In addition it has been shown that proteins of identified structure and function may be constructed by changing the amino acid sequence if such changes do not alter the protein secondary structure (Kaiser and Kezdy, 1984). Thus, the subject invention includes mutants of the amino acid sequence depicted herein which do not alter the protein secondary structure, or if the structure is altered, the biological activity is substantially retained. Further, the invention also includes mutants of organisms hosting all or part of a δ -endotoxin encoding a gene of the invention. Such mutants can be made by techniques well known to persons skilled in the art. For example, UV irradiation can be used to prepare mutants of host organisms. Likewise, such mutants may include asporogenous host cells which also can be prepared by procedures well known in the art.

6.0 Examples

10

15

25

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

6.1 Example 1 -- Identification of *B. thuringiensis* Strains Containing Novel δ -Endotoxins

Wild-type B. thuringiensis strains containing novel insecticidal protein genes were identified by Southern blot hybridization studies employing specific DNA probes. Twenty-four unique cry genes were discovered that are related to B. thuringiensis genes in the cry1, cry2, or cry9 classes of toxin genes.

WO 01/19859

Various methods were employed to clone the novel genes and express them in a crystal protein-negative (Cry-) strain of B. thuringiensis. These methods include PCRTM amplification of the region of cry1-related genes that encodes the active portion of the toxin gene. The PCRTM product is then joined to a fragment from the cry1Ac gene encoding the C-terminal region of the protoxin. This gene fusion was then expressed in a B. thuringiensis recombinant strain to produce a hybrid protoxin. In this instance, it is recognized that the sequence of the amplified DNA can be used to design hybridization probes to isolate the entire coding sequence of the novel cry gene from the wild-type B. thuringiensis strain.

Wild-type *B. thuringiensis* strains were screened in a bioassay to identify strains that are toxic to larvae of lepidopteran insects (procedure described in Example 10). Active strains were then examined genetically to determine if they contain novel toxin genes. The method used to make this determination is described below and includes isolation of genomic DNA from the *B. thuringiensis* strain, restriction enzyme digestion, Southern blot hybridization, and analysis of the hybridizing restriction fragments to determine which genes are present in a strain.

Total genomic DNA was extracted by the following procedure. Vegetative cells were resuspended in a lysis buffer containing 50 mM glucose, 25 mM Tris-HCl (pH 8.0), 10 mM EDTA, and 4 mg/ml lysozyme. The suspension was incubated at 37°C for 1 h. Following incubation, the suspension was extracted once with an equal volume of phenol, then once with an equal volume of phenol:chloroform:isoamyl alcohol (50:48:2), and once with an equal volume of chloroform:isoamyl alcohol (24:1). The DNA was precipitated from the aqueous phase by the addition of one-tenth volume 3 M sodium acetate and two volumes of 100% ethanol. The precipitated DNA was collected by centrifugation, washed with 70% ethanol and resuspended in distilled water.

The DNA samples were digested with the restriction enzymes ClaI and PstI. The combination of these two enzymes give a digestion pattern of fragments that, when hybridized with the probe wd207 (described below), allows the identification of many of the known cryI-related toxin genes. Hybridizing fragments that did not correspond to the fragment sizes expected for the known genes were classified as unknown and were candidates for cloning and characterization.

The digested DNA was size fractionated by electrophoresis through a 1.0% agarose gel in 1X TBE (0.089 M Tris-borate, 0.089 M boric acid, 0.002 M EDTA) overnight at 2 V/cm of gel

30

length. The fractionated DNA fragments were then transferred to a Millipore Immobilon-NC® nitrocellulose filter (Millipore Corp., Bedford, MA) according to the method of Southern (1975). The DNA fragments were fixed to the nitocellulose by baking the filter at 80°C in a vacuum oven.

To identify the DNA fragment(s) containing the sequences related to *cry1* genes, the oligonucleotide wd207 was radioactively labeled at the 5' end and used as a hybridization probe. To radioactively label the probe, 1-5 pmoles of wd207 were added to a reaction (20 ul total volume) containing 3 ul [γ-³²P]ATP (3,000 Ci/mmole at 10 mCi/ml), 70 mM Tris-HCl, pH 7.8, 10 mM MgCl₂, 5 mM DTT, and 10 units T4 polynucleotide kinase (Promega Corp., Madison, WI). The reaction was incubated for 20 min at 37°C to allow the transfer of the radioactive phosphate to the 5'-end of the oligonucleotide, thus making it useful as a hybridization probe.

The oligonucleotide probe used in this analysis, designated wd207, has the following sequence:

5'-TGGATACTTGATCAATATGATAATCCGTCACATCTGTTTTTA-3' (SEQ ID NO:51)

This oligonucleotide was designed to specifically hybridize to a conserved region of *cry1* genes downstream from the proteolyic activation site in the protoxin. Table 4 lists some of the *B. thuringiensis* toxin genes and their identities with wd207. The orientation of the wd207 sequence is inverted and reversed relative to the coding sequences of the *cry* genes.

TABLE 4

cry Gene	% Identity to wd207	Nucleotide Position in CDS				
crylAa	100%	1903-1944				
cry1Ba	95.2%	1991-2032				
crylCa	97.6%	1930-1971				
crylDa	97.6%	1858-1899				
crylEa	97.6%	1885-1926				

20

25

5

15

The labeled probe was then incubated with the nitrocellulose filter overnight at 45°C in 3X SSC (1X SSC = 0.15 M NaCl, 0.015 M sodium citrate), 0.1% SDS, 10X Denhardt's reagent (0.2% BSA, 0.2% polyvinylpyrrolidone, 0.2% Ficoll), and 0.2 mg/ml heparin. Following this incubation period, the filter was washed in several changes of 3X SSC, 0.1% SDS at 45°C. The filter was blotted dry and exposed to Kodak X-OMAT AR X-ray film (Eastman Kodak Co., Rochester, NY) overnight at -70°C with an intensifying screen to obtain an autoradiogram.

The autoradiograms were analyzed to determine which wild-type *B. thuringiensis* strains contained *cry1* genes that could be novel. Since the probe was only 42 nucleotides, it is unlikely that recognition sites for the restriction endonucleases *Clal* and *PstI* would occur within the hybridizing region of the *cry1*-related genes. Therefore, it was assumed that each hybridizing restriction fragment represented one *cry1*-related gene. The sizes, in kilobases (kb), of the hybridizing restriction fragments were determined based on the migration of the fragment in the agarose gel relative to DNA fragments of known size. The size of a fragment could be used to determine if that fragment represented a known *cry1* gene. For example, from the DNA sequence of the *cry1Ac* gene it was known that wd207 would hybridize to a 0.43 kb fragment after digestion of *cry1Ac* DNA with *Clal* and *PstI*. If the Southern blot analysis of a strain showed a 0.43 kb hybrizing fragment, that strain was assigned a probable genotype of *cry1Ac*. Fragments that could not be easily assigned a probable genotype were selected as candidates for further analysis. Because many *cry1*-containing strains have more than one *cry1*-related gene, all fragments were given a putative designation.

TABLE 5 - SUMMARY OF GENES AND PROTEINS

)

		_														_	_									
Plasmid	pEG1331	pEG1901	pEG1806	pEG1807	pEG1808	pEG1809	pEG1810	pEG1812	pEG1912	pEG1340	pEG1904	pEG1905	pEG1907	pEG1908	pEG945	pEG946	pEG1813	pEG1814	pEG1815	pEG1816	pEG1817	pEG1818	pEG1819	pEG1260	pEG1279	pEG397
Cloning Vector	pHT315	pEG1064	pEG1064	pEG1064	pEG1064	pEG1064	pEG1064	pEG1064	pHT315	pEG290	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pHT315	pEG597	pEG597	pHT315
DNA Probe ²	cry2a		•	•	•	•	•	•	wd207	wd207	cry1Aa	cry1Aa	cry1Aa	cry1Aa	pr56, cryET59	pr56, cryET59	wd207	wd207	wd207	wd207	wd207	wd207	wd207	cry2Aa	cry2Aa	cryET59, cryET83
Cloning Method	Mbol	PCRTM	PCRTM	PCRTM	PCR TM	PCR TM	PCR TM	PCR TM	Mbol	BamHI	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	Mbol	HindIII	HindIII	Mbol
Gene Family	cry2	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry9	cry9	cry1	cry1	cry1	cry1	cry1	cry1	cry1	cry2	cry2	cry9
Recomb. Strain	EG11562	EG11901	EG7692	EG11629	EG7694	EG7695	EG7696	EG11630	EG11921	EG11584	EG11906	EG11907	EG11909	EG11910	EG12102	EG12103	EG11634	EG11635	EG11636	EG11638	EG11640	EG11642	EG11644	EG11440	EG11465	EG11785
WT. Strain	EG6701	EG5476	EG2878	EG3114	EG3114	EG6451	EG6451	EG6451	EG5391	EG10475	EG3874	EG3874	EG3874	EG3874	EG9290	EG9290	EG4612	EG6831	EG4623	EG4612	EG5020	EG4869	EG5020	EG4420	EG3874	EG6346
Polynucleotide Seq ID No.:	-	က	5	7	6	=	13	15	17	19	21		23	25	27	29	31	33	35	37	39	41	43	45	47	49
Polypeptide Seq. ID No.:	2	4	9	8	10	12	14	16	18	20	22		24	26	28	30	32	¥	36	38	40	42	44	46	48	20
Polypeptide Designation	Cry ET31	Cry ET40	Cry ET43	Cry ET44	Cry ET45 .	Cry ET46	Cry ET47	Cry ET49	Cry ET51	Cry ET52	Cry ET53	Cry ET54	Cry ET56	Cry ET57	Cry ET59	Cry ET60	Cry ET61	Cry ET62			Cry ET66					Cry ET83

Methods include the construction of genomic libraries containing partial Mbol fragments (Example 4), the construction of genomic libraries containing sizeselected BamHI or HindIII restriction fragments (Example 5), the amplification of novel cry sequences by PCRTM and the construction of novel cry gene fusions (Example 6).

² Hybridization probes included the 700 base pair EcoRI fragment obtained from digestion of the cry1Aa gene, gene fragments from the cry2Aa, cryET59, and cryET83 genes, and synthetic oligonucleotides (wd207, pr56).

6.2 EXAMPLE 2 -- IDENTIFICATION *OF B. THURINGIENSIS* STRAINS CONTAINING NOVEL *CRY2*-RELATED GENES

Proteins encoded by the cry2 class of B. thuringiensis class of toxin genes have activity on the larvae of lepidopteran and diopteran insects. Southern blot hybridization analysis of DNA extracted from lepidopteran-active strains was utilized to identify novel cry2-related genes. Total genomic DNA was isolated as described in Section 6.1. The DNA was digested with the restriction endonuclease Sau3A and run on a 1.2% agarose gel as described. The digested DNA was transferred to nitrocellulose filters to be probed with a DNA fragment containing the cry2Aa gene. Hybridizations were performed at 55°C and the filters washed and exposed to X-ray film to obtain an autoradiogram.

Sau3A digestion followed by hybridization with the cry2Aa gene gave characteristic patterns of hybridizing fragments allowing the identification of the cry2Aa, cry2Ab, and cry2Ac genes. Hybridizing fragments that differed from these patterns indicated the presence of a novel cry2-related gene in that strain.

Once a strain was identified as containing one or more novel cry2-related genes, an additional Southern blot hybridization was performed. The procedures were the same as those already described above, except another restriction enzyme, usually HindIII, was used. Since an enzyme like HindIII (a "six base cutter") cuts DNA less frequently than does Sau3A or MboI, it was more likely to generate a restriction fragment containing the entire cry2-related gene which could then be readily cloned.

6.3 Example 3 -- Identification of *B. thuringiensis* Strains Containing Novel *cry9*-Type Genes

A *cry9*-specific oligonucleotide, designated pr56, was designed to facilitate the identification of strains harboring *cry9*-type genes. This oligonucleotide corresponds to nucleotides 4349-4416 of the gene (GenBank Accession No. Z37527). The sequence of pr56 was as follows:

5'-AGTAACGGTGTTACTATTAGCGAGGGCGGTCCATTCTTTAA AGGTCGTGCACTTCAGTTAGC-3' (SEQ ID NO:52).

B. thuringiensis isolates were spotted or "patched" on SGNB plates, with no more than 50 isolates per plate, and grown overnight at 25°C. The B. thuringiensis colonies were transferred to nitrocellulose filters and the filters placed, colony side up, on fresh SGNB plates for overnight

30

10

15

growth at 30°C. Subsequently, the filters were placed, colony side up, on Whatman paper soaked in denaturing solution (1.5 M NaCl, 0.5 N NaOH) for 20 min. After denaturation, the filters were placed on Whatman paper soaked in neutralizing solution (3 M NaCl, 1.5 M Tris-HCl, pH 7.0) for 20 min. Finally, the filters were washed in 3X SSC (1X SSC = 0.15 M NaCl and 0.015 M sodium citrate) to remove cellular debris and baked in a vacuum oven at 80°C for 90 min.

The cry9-specific oligonucleotide pr56 (~10 pmoles) was end-labeled with $[\gamma^{-32}P]ATP$ using T4 polynucleotide kinase. The labeling reaction was carried out at 37°C for 20 min and terminated by incubating the reaction at 100 C for 3 min. After ethanol precipitation, the labeled oligonucleotide was resuspended in 100 μ l distilled H₂O.

The filters were incubated with the *cry9*-specific probe in 6X SSC, 10X Denhardt's solution, 0.5% glycine, 0.2% SDS at 47°C overnight. The filters were washed twice in 3X SSC, 0.1% SDS for 15 min at 47°C and twice in 1X SSC, 0.1% SDS for 15 min at 47°C. The dried filters were exposed to X-OMAT XAR-5 film (Eastman Kodak Co.) at -70°C using an intensifying screen. The developed autoradiogram revealed 24 isolates of *B. thuringiensis* containing DNA that hybridized to the *cry9* probe.

To identify *cry9C*-type genes among these strains, two opposing oligonucleotide primers specific for the *cry9C* gene (GenBank Accession No. Z37527) were designed for polymerase chain reaction (PCRTM) analyses. The sequence of pr58 is:

5'-CGACTTCTCCTGCTAATGGAGG-3' (SEQ ID NO:53). The sequence of pr59 is:

5'-CTCGCTAATAGTAACACCGTTACTTGCC-3' (SEQ ID NO:54). Plasmid DNAs were isolated from the isolates of *B. thuringiensis* believed to contain *cry9*-type genes. *B. thuringiensis* isolates were grown overnight at 30°C on Luria agar plates and 2 loopfuls of cells from each isolate were suspended in 50 mM glucose, 10 mM Tris-HCl, 1 mM EDTA (1X GTE) containing 4 mg/ml lysozyme. After a 10 min incubation at room temperature, plasmid DNAs were extracted using a standard alkaline lysis procedure (Maniatis *et al.*, 1982). The plasmid DNAs were resuspended in 20 μl of 1X TE (10 mM Tris-HCl, 1 mM EDTA, pH 7.5). Two microliters of the plasmid DNA preparations were used in the PCRTM reactions. Amplifications were performed in 100 μl volumes with a Perkin-Elmer DNA Thermocycler (Perkin-Elmer Cetus, Foster City, CA) using materials and methods provided in the Perkin-

10

PCT/US00/25361

Elmer GeneAmpTM kit. Conditions for the PCRTM were as follows: 95°C for 30 sec, 46°C for 30 sec, 70°C for 1 min; 30 cycles. A PCRTM using these primers and the *cry9C* gene as a template should yield a DNA fragment of ~970 bp. Of twenty-four strains found to hybridize to the *cry9* probe (SEQ ID NO:XX), only one strain, EG9290, yielded the predicted amplified DNA fragment.

6.4 EXAMPLE 4 -- CLONING OF *B. THURINGIENSIS* TOXIN GENES BY CONSTRUCTING *MBO*I PARTIAL DIGEST LIBRARIES

The restriction endonuclease *Mbo*I was utilized in the construction of genomic DNA libraries because it has a recognition sequence of four base pairs which occurs frequently in long stretches of DNA. Total genomic DNA was isolated from *B. thuringiensis* strains as described in Section 6.1. The DNA was digested under conditions allowing limited cleavage of a DNA strand. The method of establishing these conditions has been described (Maniatis *et al.*, 1982). Digestion of DNA in this manner created a set of essentially randomly cleaved, overlapping fragments which were used to create a library representative of the entire genome.

The digested DNA fragments were separated, according to size, by agarose gel electrophoresis through a 0.6% agarose, 1X TBE gel, overnight at 2 volts/cm of gel length. The gel was stained with ethidium bromide so that the digested DNA could be visualized when exposed to long-wave UV light. A razor blade was used to excise a gel slice containing DNA fragments of approximately 9- kb to 12-kb in size. The DNA fragments were removed from the agarose by placing the slice in a dialysis bag with enough TE (10 mM Tris-HCl, 1 mM EDTA) to cover the slice. The bag was then closed and placed in a horizontal electrophoresis apparatus filled with 1X TBE buffer. The DNA was electroeluted from the slice into the TE at 100 volts for 2 h. The TE was removed from the bag, extracted with phenol:chloroform (1:1), followed by extraction with chloroform. The DNA fragments are then collected by the standard technique of ethanol precipitation (see Maniatis *et al.*, 1982).

To create a library in *E. coli* of the partially-digested DNA, the fragments were ligated into the shuttle vector, pHT315 (Arantes and Lereclus, 1991). This plasmid contains replication origins for *E. coli and B. thuringiensis*, genes for resistance to the antibiotics erythromycin and ampicillin, and a multiple cloning site. The *Mbol* fragments were mixed with *BamHI*-digested pHT315 that had been treated with calf intestinal, or bacterial, alkaline phosphatase (GibcoBRL, Gaithersburg, MD) to remove the 5'-phosphates from the digested plasmid, preventing re-

15

ligation of the vector to itself. After purification, T4 ligase and a ligation buffer (Promega Corp., Madison, WI) were added to the reaction containing the digested vector and the *Mbo*I fragments. These were incubated overnight at 15°C, or at room temperature for 1 h, to allow the insertion and ligation of the *Mbo*I fragments into the pHT315 vector DNA.

The ligation mixture was then introduced into transformation-competent *E. coli* SURE® cells (Stratagene Cloning Systems, La Jolla, CA), following procedures described by the manufacturer. The transformed *E. coli* cells were then plated on LB agar plates containing 50-75 µg/ml ampicillin and incubated ovenight at 37°C. The growth of several hundred ampicillinresistant colonies on each plate indicated the presence of recombinant plasmid in the cells of each of those colonies.

To isolate the colonies harboring sequences encoding toxin genes, the colonies were first transferred to nitrocellulose filters. This was accomplished by simply placing a circular nitrocellulose filter (Millipore HATF 08525, Millipore Corp., Bedford, MA) directly on top of the LB-ampicillin agar plates containing the transformed colonies. When the filter was slowly peeled off of the plate the colonies stick to the filter giving an exact replica of the pattern of colonies from the original plate. Enough cells from each colony were left on the plate that 5 to 6 h of growth at 37°C restored the colonies. The plates were then stored at 4°C until needed. The nitrocellulose filters with the transferred colonies are then placed, colony-side up, on fresh LB-ampicillin agar plates and allowed to grow at 37°C until they reached an approximate 1 mm diameter.

To release the DNA from the recombinant *E. coli* cells the nitrocellulose filters were placed, colony-side up, on 2-sheets of Whatman 3MM chromatogrphy paper (Whatman International Ltd., Maidstone, England) soaked with 0.5 N NaOH, 1.5 M NaCl for 15 min. This treatment lysed the cells and denatured the released DNA allowing it to stick to the nitrocellulose filter. The filters were then neutralized by placing the filters, colony-side up, on 2 sheets of Whatman paper soaked with 1 M NH₄-acetate, 0.02 M NaOH for 10 min. The filters were rinsed in 3X SSC, air dried, and baked for 1 h at 80°C in a vacuum oven. The filters were then ready for use in hybridization studies using probes to identify different classes of *B. thuringiensis* genes, as described in the above examples.

In order to identify colonies containing cloned cryl-related genes, the cryl-specific oligonucleotide wd207 was labeled at the 5'-end with $[\gamma^{-32}P]$ ATP and T4 polynucleotide kinase.

10

The labeled probe was added to the filters in 3X SSC, 0.1% SDS, 10X Denhardt's reagent (0.2% BSA, 0.2% polyvinylpyrrolidone, 0.2% Ficoll), 0.2 mg/ml heparin and incubated overnight at 47°C. These conditions allowed hybridization of the labeled oligonucleotide to related sequences present on the nitrocellulose blots of the transformed *E. coli* colonies. Following incubation the filters were washed in several changes of 3X SSC, 0.1% SDS at 45°C. The filters were blotted dry and exposed to Kodak X-OMAT AR X-ray film (Eastman Kodak Co., Rochester, NY) overnight at -70°C with an intensifying screen.

Colonies that contain cloned cryl-related sequences were identified by aligning signals on the autoradiogram with the colonies on the original transformation plates. The isolated colonies were then grown in LB-ampicillin liquid medium from which the cells could be harvested and recombinant plasmid prepared by the standard alkaline-lysis miniprep procedure (Maniatis et al., 1982). The plasmid DNA was then used as a template for DNA sequencing reactions necessary to confirm that the cloned gene was novel. If the cloned gene was novel, the plasmid was then introduced into a crystal protein-negative strain of B. thuringiensis (Cry) so that the encoded protein could be expressed and characterized. These procedures are described in detail in the following sections.

6.5 Example 5 -- Cloning of Specific Endonuclease Restriction Fragments

The identification of a specific restriction fragment containing a novel *B. thuringiensis* gene has been described for cry2-related genes in Section 2. The procedure for cloning a restriction fragment of known size was essentially the same as described for cloning an *MboI* fragment. The DNA was digested with a restriction enzyme (e.g., HindIII), and run through an agarose gel to separate the fragments by size. Fragments of the proper size, identified by Southern blot analysis (Example 2), were excised with a razor blade and electroeluted from the gel slice into TE buffer from which they could be precipitated. The isolated restriction fragments were then ligated into an *E. coli/B. thuringiensis* shuttle vector and transformed into *E. coli* to construct a size-selected library. The library could then be hybridized with a specific gene probe, as described in Example 4, to isolate the colony containing the cloned novel gene.

6.6 Example 6 -- Cloning of PCRTM-Amplified Fragments

A rapid method for cloning and expressing novel cryl gene fragments from B. thuringiensis was developed using the polymerase chain reaction. Flanking primers were

10

designed to anneal to conserved regions 5' to and within cryl genes. With the exception of certain cry3 genes, most B. thuringiensis cry genes are transcriptionally regulated, at least in part, by RNA polymerases containing the mother cell-specific σ^E or sigE, sigma factor. These σ^E -regulated cry genes possess 5' promoter sequences that are recognized by σ^E . Alignment of these promoter sequences reveals considerable sequence variation, although a consensus sequence can be identified (Baum and Malvar, 1995). A primer, designated "sigE", containing a sequence identical to the crylAc σ^E promoter sequence, was designed that would anneal to related σ^E promoter sequences 5' to uncharacterized cry genes. The sigE primer also includes a Bbul site (isoschizimer: SphI) to facilitate cloning of amplified fragments. The sequence of the sigE primer is shown below:

5'-ATTTAGTAGCATGCGTTGCACTTTGTGCATTTTTTCATAAGATGA GTCATATGTTTTAAAT-3' (SEQ ID NO:55).

The opposing primer, designated KpnR, anneals to a 3'-proximal region of the *cry1* gene that is generally conserved. This primer incorporates an *Asp*718 site (isoschizimer: *KpnI*) conserved among the *cry1A* genes to facilitate cloning of the amplified fragment and to permit the construction of fusion proteins containing a carboxyl-terminal portion of the Cry1Ac protein. The sequence of the *Kpn*R primer is shown below:

5'-GGATAGCACTCATCAAAGGTACC-3' (SEQ ID NO:56)

PCRTMs were carried out using a Perkin Elmer DNA thermocycler and the following parameters: 94°C, 2 min.; 40 cycles consisting of 94°C, 30 sec; 40°C, 2 min; 72°C, 3 min; and a 10 second extension added to the 72°C incubation after 20 cycles. The standard PCRTM buffer (100 μl volume) was modified to include 1X Taq Extender buffer, 25 μM each of the *sigE* and KpnR primers, and 0.5 - 1.0 μl of Taq Extender (Stratagene Inc.) in addition to 0.5 - 1.0 μl of Taq polymerase. Typically, 1-2 μl of the DNA preparations from novel *B. thuringiensis* isolates were included in the PCRTMs. PCRTMs with *cry* genes incorporating these primers resulted in the amplification of a ~2.3-kb DNA fragment flanked by restriction sites for *Bbul and Asp*718.

For the cloning and expression of these gene fragments, the crylAc shuttle vector pEG1064 was used. This plasmid is derived from the crylAc shuttle vector pEG857 (Baum et al., 1990), with the following modifications. A frameshift mutation was generated at a unique NcoI site within the crylAc coding region by cleaving pEG857 with the restriction endonuclease NcoI, blunt-ending the NcoI-generated ends with Klenow polymerase and ligating the blunt ends

with T4 ligase. In similar fashion, an Asp718 site located in the multiple cloning site 3' to the cry1Ac gene was removed, leaving only the single Asp718 site contained within the cry1Ac coding sequence. The resulting plasmid, pEG1064, cannot direct the production of crystal protein when introduced into an acrystalliferous (Cry') strain of B. thuringiensis because of the frameshift mutation. For cloning and expression of unknown cry genes, pEG1064 was cleaved with Bbul and Asp718 and the vector fragment purified following gel electrophoresis. Amplified fragments of unknown cry genes, obtained by PCRTM amplification of total B. thuringiensis DNA, were digested with the restriction endonucleases Bbul and Asp718 and ligated into the Bbul and Asp718 sites of the pEG1064 vector fragment. The ligation mixture was used to transform the Cry' B. thuringiensis strains, EG10368 or EG10650, to chloramphenicol resistance using an electroporation protocol previously described (Mettus and Macaluso, 1990) Chloramphenicol-resistant (Cm^R) isolates were evaluated for crystal protein production by phase-contrast microscopy. Crystal forming (Cry+) isolates were subsequently grown in C2 liquid broth medium (Donovan et al., 1988) to obtain crystal protein for SDS-PAGE analysis and insect bioassay.

Because of the frameshift mutation within the crylAc gene, the crystal proteins obtained from the transformants could not be derived from the vector pEG1064. The Cry^+ transformants thus contained unknown cry gene fragments fused, at the Asp718 site, to a 3'-portion of the crylAc gene. Transcription of these gene fusions in B. thuringiensis was presumably directed from the σ^E promoter incorporated into the amplified cry gene fragment. The fusion proteins, containing the entire active toxin region of the unknown Cry protein, were capable of producing crystals in B. thuringiensis.

6.7 Example 7 -- Cloning of cry9-Related Genes

Total DNA was isolated from *B. thuringiensis* strain EG9290 for cloning studies. EG9290 was grown overnight at 30°C in 1X brain heart infusion, 0.5% glycerol (BHIG). In the morning, 500 μl of the overnight growth was suspended in 50 ml BHIG and the culture incubated at 30°C with agitation until the culture reached a Klett reading of 150 (red filter). The cells were harvested by centrifugation, suspended in 5 ml 1X GTE buffer containing 4 mg/ml lysozyme and 100 μg/ml Rnase A, and incubated at 37°C for 20 min. The cells were lysed by the addition of 0.5 ml of 20% SDS. The released DNA was precipitated by the addition of 2.5 ml 7.5 M ammonium acetate and 7 ml of isopropanol. The precipitated DNA was spooled out of

the mixture using a glass micropipette and washed in 80% ethanol. The DNA was resuspended in 10 ml 1X TE, extracted with one volume each of buffered phenol and chloroform:isoamyl alcohol (24:1), and precipitated as before. The spooled DNA was washed in 80% ethanol, allowed to air dry for several min, and suspended in 600 µl 1X TE. The DNA concentration was estimated at 500 µg/ml.

A library of EG9290 total DNA was constructed using partially digested *Mbo*I fragments of EG9290 DNA and the general methods described herein. The partial *Mbo*I fragments were inserted into the unique *Bam*HI site of cloning vector pHT315. The ligation mixture was used to transform *E. coli* SureTM cells to ampicillin resistance by electroporation employing electrocompetent cells and protocols provided by Stratagene (La Jolla, CA) and the BioRad Gene PulserTM apparatus (Bio-Rad Laboratories, Hercules, CA). Recombinant clones harboring *cry9*-type genes were identified by colony blot hybridization using a ³²P-labeled probe consisting of the putative *cry9C* fragment generated by amplification of EG9290 DNA with primers pr58 and pr59. Plasmid DNAs were extracted from the *E. coli* clones using a standard alkaline lysis procedure.

Plasmid DNAs from the *E. coli* recombinant clones were used to transform *B. thuringiensis* strain EG10368 to erythromycin resistance using the electroporation procedure described by Mettus and Macaluso (1990). Cells were plated onto starch agar plates containing 20 µg/ml erythromycin and incubated at 30°C. After six days, colonies with a more opaque appearance were recovered from the plates and streaked out onto fresh starch agar plates containing 20 µg/ml erythromycin to isolate single colonies. Colonies exhibiting a more opaque appearance were observed to produce large parasporal inclusions/crystals by phase-contrast microscopy.

Recombinant EG10368 clones producing parasporal inclusion/crystals were evaluated for crystal protein production in broth culture. Single colonies were inoculated into C2 medium containing 10 µg/ml erythromycin and grown at 30°C for 3 days at 28-30°C, at which time the cultures were fully sporulated and lysed. Spores and crystals were pelleted by centrifugation and resuspended in 20 mM Tris-HCl, 1 mM EDTA, pH 7.0. Aliquots of this material were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Two EG10368 recombinant clones, initially identified as 9290-2 and 9290-3, were observed to produce distinct proteins of ~130

15

20

kDa. 9290-2 was designated EG12102 and 9290-3 was designated EG12103. The EG12102 protein was designated CryET59 while the EG12103 protein was designated CryET60.

Plasmid DNAs were prepared from EG12102 and EG12103 using a standard alkaline lysis procedure. Digestion of the plasmids with the restriction endonuclease *Xba*I confirmed that the two strains harbored distinct *cry* genes. The *cry* plasmids of EG12102 and EG12103, designated pEG945 and pEG946, respectively, were used to transform *E. coli* SureTM cells to ampicillin resistance by electroporation, employing electrocompetent cells and protocols provided by Stratagene Inc. The *E. coli* recombinant strain containing pEG945 was designated EG12132, and the *E. coli* recombinant strain containing pEG946 was designated EG12133. pEG945 and pEG946 were purified from the *E. coli* recombinant strains using the QIAGEN midi-column plasmid purification kit and protocols (QIAGEN Inc., Valencia, CA).

The cryET83 gene was cloned from B. thuringiensis strain EG6346 subspecies aizawai using similar methods. Southern blot analysis of genomic DNA from EG6346 revealed a unique restriction fragment that hybridized to the cryET59 probe. A series of degenerate oligonucleotide primers, pr95, pr97, and pr98, were designed to amplify cry9-related sequences from genomic DNA. The sequences of these primers are as shown:

pr95: 5'- GTWTGGACSCRTCGHGATGTGG -3' (SEQ ID NO:57)

pr97: 5'- TAATTTCTGCTAGCCCWATTTCTGGATTTAATTGTTGATC -3'

(SEQ ID NO:58)

15

20

pr98: 5'- ATWACNCAAMTWCCDTTRG -3' (SEQ ID NO:59)

where D = A, G; H = A, C, T; M = A, C; N = A, C, G, T; R = A, G; S = C, G; and W = A, T.

A PCR™ using Taq polymerase, Taq Extender™ (Stratagene, La Jolla, CA), the opposing primers pr95 and pr97, and total EG6346 DNA yielded a DNA fragment that was faintly visible on an ethidium bromide-stained agarose gel. This DNA served as the template for a second round of PCR™ using the opposing primers pr97 and pr98. The resulting amplified DNA fragment was suitable for cloning and served as a hybridization probe for subsequent cloning experiments. A library of EG6346 total DNA was constructed using partially digested 9-12 kb Mbol fragments of EG6346 DNA ligated into the unique BamHI site of cloning vector pHT315. E. coli recombinant clones harboring the cryET83 gene were identified by colony blot hybridization using the EG6346-specific DNA fragment as a chemiluminescent hybridization

probe and the CDP-Star[™] nucleic acid chemiluminescent reagent kit from NEN[™] Life Science Products (Boston, MA) to prepare the hybridization probe. The recombinant plasmid harboring the *cryET83* gene was designated pEG397. The *E. coli* recombinant stain containing pEG397 was designated EG11786. The *B. thuringiensis* recombinant strain containing pEG397 was designated EG11785.

6.8 Example 8 -- Sequencing of Cloned B. thuringiensis Toxin Genes

Partial sequences for the cloned toxin genes were determined following established dideoxy chain-termination DNA sequencing procedures (Sanger et al., 1977). Preparation of the double stranded plasmid template DNA was accomplished using a standard alkaline lysis procedure or using a QIAGEN plasmid purification kit (QIAGEN Inc., Valencia, CA). The sequencing reactions were performed using the SequenaseTM Version 2.0 DNA Sequencing Kit (United States Biochemical/Amersham Life Science Inc., Cleveland, OH) following the manufacturer's procedures and using 35S-dATP as the labeling isotope (obtained from DuPont NEN® Research Products, Boston, MA). Denaturing gel electrophoresis of the reactions is done on a 6% (wt./vol.) acrylamide, 42% (wt./vol.) urea sequencing gel. The dried gels are exposed to Kodak X-OMAT AR X-ray film (Eastman Kodak Company, Rochester, NY) overnight at room temperature. Alternatively, some cry genes were sequenced using automated sequencing methods. DNA samples were sequenced using the ABI PRISM™ DyeDeoxy sequencing chemistry kit (Applied Biosystems, Foster City, CA) according to the manufacturer's suggested protocol. The completed reactions were run on as ABI 377 automated DNA sequencer. DNA sequence data were analyzed using Sequencher™ v3.0 DNA analysis software (Gene Codes Corp., Ann Arbor, MI). Successive oligonucleotides to be used for priming sequencing reactions were designed from the sequencing data of the previous set of reactions.

The sequence determination for the *cry1*-related genes involved the use of the oligonucleotide probe wd207, described in Example 2, as the initial sequencing primer. This oligonucleotide anneals to a conserved region of *cry1* genes, but because of the inverted and reversed orientation of wd207, it generates sequence towards the 5'-end of the coding region allowing sequence of the variable region of the gene to be read. A typical sequencing run of 250-300 nucleotides was usually sufficient to determine the identity of the gene. If additional data were necessary, one or more additional oligonucleotides could be synthesized to continue the sequence until it could be determined if the sequence was unique. In cases where wd207 did

10

not function well as a primer, other oligonucleotides, designed to anneal to conserved regions of cryl genes, were used. One such oligonucleotide was the KpnR primer described herein above.

The sequencing of the cloned *cry2*-related genes followed the same general procedures as those described for the *cry1* genes, except that oligonucleotides specific for conserved regions in *cry2* genes were used as sequencing primers. The two primers used in these examples were wd268 and wd269, shown below.

Primer wd268 corresponds to *cry2Aa* nucleotides 579-597 5'-AATGCAGATGAATGGGG-3' (SEQ ID NO:60).

Primer wd269 corresponds to *cry2Aa* 1740-1757 5'-TGATAATGGAGCTCGTT-3' (SEQ ID NO:61)

The sequencing of *cryET59* and *cryET60* commenced with the use of primer pr56. The sequencing of *cryET83* commenced with the use of primer pr98. Successive oligonucleotides to be used for priming sequencing reactions were designed from the sequencing data of the previous set of reactions.

The derived sequences were compared to sequences of known *cry* genes using the FSTNSCAN program in the PC/GENE sequence analysis package (Intelligenetics, Mountain View, CA). This analysis permitted a preliminary classification of the cloned *cry* genes with respect to previously-known *cry* genes (Table 11).

TABLE 6 - HOMOLOGY COMPARISON OF DNA SEQUENCES1

Cloned Gene	DNA Sequence Identity
cryET31	90% identity with SEQ ID NO:4 of WO 98/40490
cryET40	99% identity with crylAa
cryET43	88% identity with cry1Bd1
cryET44	90% identity with cry1Da/1Db
cryET45	91% identity with cry/Da/IDb
cryET46	98% identity with cryl Ga
cryET47	99% identity with cry1Ab
cryET49	95% identity with crylJa
cryET51	85% identity with crylAc
cryET52	84% identity with cry1Da/1Db
crvET53	99% identity with SEQ ID NO:8 of US 5,723,758
cryET54	99.8% identity with crylBe
cryET56	80% identity with crylAc
cryET57	98% identity with cry1Da
cryET59	95% identity with cry9Ca
cryET60	99.6% identity with cry9Aa
cryET61	97% identity with cryl Ha
cryET62	99% identity with cryl Ad
cryET63	93% identity with crylAc
cryET64	91% identity with SEQ ID NO:9 of US 5,723,758
cryET66	76% identity with crylGa
cryET67	99% identity with SEQ ID NO:10 of US 5,723,758
cryET72	98% identity with SEQ ID NO:4 of WO 98/40490
cryET73	99% identity with SEQ ID NO:6 of WO 98/40490

Ktup value set at 2 for FSTNSCAN. The cryET59 and cryET60 sequences were compared using the FASTA program (Ktup=6) in the PC/GENE sequence analysis package.

6.9 Example 9 -- Expression of Cloned Toxin Genes in a B. thuringiensis Host

Plasmid DNA was isolated from *E. coli* colonies identified by hybridization to a gene-specific probe. The isolated plasmid was then introduced into a crystal protein-negative (Cry-) strain of *B. thuringiensis* using the electroporation protocol of Mettus and Macaluso (1990). Each of the cloning vectors used (see Table 5) has a gene to confer antibiotic resistance on the cells harboring that plasmid. *B. thuringiensis* transformants were selected by growth on agar plates containing 25 mg/ml erythromycin (pHT315) or 5 mg/ml chloramphenicol (pEG597 and pEG1064). Antibiotic-resistant colonies were then evaluated for crystal protein production by phase-contrast microscropy. Crystal producing colonies were then grown in C2 medium (Donovan *et al.*, 1988) to obtain cultures which were analyzed by SDS-PAGE and insect bioassay.

C2 cultures were inoculated with cells from Cry⁺ colonies and grown for three days at 25-30°C in the presence of the appropriate antibiotic. During this time the culture grew to

stationary phase, sporulated and lysed, releasing the protein inclusions into the medium. The cultures are harvested by centrifugation, which pellets the spores and crystals. The pellets were washed in a solution of 0.005% Triton X-100®, 2 mM EDTA and centrifuged again. The washed pellets were resuspended at one-tenth the original volume in 0.005% Triton X-100®, 2 mM EDTA.

Crystal protein were solubilized from the spores-crystal suspension by incubating the suspension in a solubilization buffer [0.14 M Tris-HCl pH 8.0, 2% (wt./vol.) sodium dodecyl sulfate (SDS), 5% (vol./vol.) 2-mercaptoethanol, 10% (vol./vol.) glycerol, and 0.1% bromphenol blue] at 100°C for 5 min. The solubilized crystal proteins were size-fractionated by SDS-PAGE using a gel with an acrylamide concentration of 10%. After size fractionation the proteins were visualized by staining with Coomassie Brilliant Blue R-250.

The expected size for Cryl- and Cry9-related crystal proteins was approximately 130 kDa. The expected size for Cry2-related proteins was approximately 65 kDa.

6.10 Example 10 -- Insecticidal Activity of the Cloned B. thuringiensis Toxin Genes

B. thuringiensis recombinant strains producing individual cloned cry genes were grown in C2 medium until the cultures were fully sporulated and lysed. These C2 cultures were used to evaluate the insecticidal activity of the crystal proteins produced. Each culture was diluted with 0.005% Triton® X-100 to achieve the appropriate dilution for two-dose bioassay screens. Fifty microliters of each dilution were topically applied to 32 wells containing 1.0 ml artificial diet per well (surface area of 175 mm²). A single lepidopteran larvae was placed in each of the treated wells and the tray was covered by a clear perforated mylar sheet. With the exception of the P. xylostella bioassays, that employed 3rd instar larvae, all the bioassays were performed with neonate larvae. Larval mortality was scored after 7 days of feeding at 28-30 °C and percent mortality was expressed as ratio of the number of dead larvae to the total number of larvae treated (Table 12). In some instances, severe stunting of larval growth was observed after 7 days, and the ratio of stunted/unstunted larva was also recorded. The bioassay results shown in Table 7 demonstrate that the crystal proteins produced by the recombinant B. thuringiensis strains do exhibit insecticidal activity and, furthermore,

Table 7A. Bioassay evaluations with ET crystal proteins

				-				
		Spodoptera e	exigua			Spodoptera j	frugiperda	
		250nl/well	2500nl/well	# stunted		250nl/well	2500nl/well	# stunted
		% mortality	% mortality	/# treated		% mortality	% mortality	/# treated
1	CrylAc	0	5	4/32		16	53	1/32
ì	ET31	5	12	17/32		9	6	4/32
1	ET40	0 -	5	0		3	3	0
1	ET43	0	8	0		3	3	2/32
1	ET44	0	2	0		6	0	1/32
1	ET45	0	0	0		0	0	1/32
Ì	ET46	0	12	0		0	6	0
	ET47	19	49	11/32		31	81	6/32
	ET49	0	8	0		0	3	0
	ET51	0	0	0 '		0	0	0
	ET52	0	0	0		3	3	0
	ET53	0	0	0		3 ,	0	0
-	ET54	0	66	3/32		6	34	9/32
1	ET56	0	0	0		0	6	0
1	ET57	2	15	18/32		3	94	0
1	ET59	0	0	0		0	3 3 3	0
١	ET60	0	0	0		0	3	0
Į	ET61	2	5	2/32		0		0
	ET62	2	59	12/32		0	13	0
1	ET63	0	12	5/32		3	0	0
1	ET64	0	0	0		3	6	0
	ET66	0	12	1/32		3	0	1/31
1	ET67	29	90	0		13	61	0
	ET72	0	0	0		3	94	5/31
1	ET73	0	2	0		0	0	0

Table 7B. Bioassay evaluations with ET crystal proteins

	Plutella xylo	ostella		Ostrinia nubilalis						
	250nl/well	2500nl/well	# stunted	250nl/well	2500nl/well	# stunted				
	% mortality	% mortality	/# treated	% mortality	% mortality	/# treated				
Cry1Ac	100	100	0	100	100	0				
ET31	0	2	0	100	100	0				
ET40	0	68	0	0	0	2/32				
ET43	5	100	0	46	100	0				
ET44	ő	0	Ô	. 0	0	3/32				
ET45	ő	Ö	Ö	0	0	4/32				
ET46	Ö	8	0	0	0	0				
ET47	100	100	Ō	100	100	0				
ET49	0	5	0	0	0	0				
ET51	Ö	0	0	0	0	0				
ET52	2	43	0	0	14	16/32				
ET53	8	97	0	4	46	5/32				
ET54	14	100	0	25	89	1/32				
ET56	0	. 0	0	0	0	0				
ET57	0	97	0	0	7	0				
ET59	100	100	0	96	100	0				
ET60	100	100	0	100	96	0				
ET61	0	11	0	0	0	2/32				
ET62	97	100	0	100	100	0				
ET63	100	100	0	- 100	100	0				
ET64	40	100	0	68	100	0				
ET66	100	100	0	86	100	0				
ET67	87	100	0	0	79	1/32				
ET72	0	0	0	0	0	0.				
ET73	2	2	0	93	100	0				
Control	2	2	0	0	0	0				

Table 7C. Bioassay evaluations with ET crystal proteins

Не	liothis virescens	5		Helicoverpa zea	
	250nl/well	2500nl/well	# stunted	250nl/well	2500nl/well
	% mortality	% mortality	/# treated	% mortality	% mortality
CrylAc	100	100	0	100	100
ET31	- 97	97	1/32	8	81
ET40	2	5	2/32	2	5
ET43	87	97	1/32	0	2
ET44	8	5	1/32	5	8
ET45	٥	11	0	8	18
ET46	12	25	0	0	8
ET47	87	100	Ō	83	100
ET49	8	2	Ô	11	15
ET51	2	15	0	. 5	5
ET52	0	31	1/32	, 93	11
ET53	22	64	2/32	90	61
ET54	15	64	5/32	2	5
ET56	0	11	0	8	0
ET57	2	0	0	11	28
ET59	28	84	4/32	2	2
ET60	56	97	1/32	31	28
ET61	5	5	0	8	5
ET62	44	87	4/32	21	64
ET63	100	100	0	100	100
ET64	100	21	0 .	5	0
ET66	l ŏ	. 8	1/32	0	5
ET67	18	93	1/32	0	68
ET72	34	64	11/32	8	2
ET73	42	90	2/32	8	48
Compai	5	5	0	1 5	5

Table 7D. Bioassay evaluations with ET crystal proteins

	Agrotis ipsii	lon		Trichoplusio	ni ni	
	250nl/well	2500nl/well	# stunted	250nl/well	2500nl/well	# stunted
	% mortality	% mortality	/# treated	% mortality	% mortality	/# treated
CrylAc	94	100		100	100	0
ET31	6	6		90	100	0
ET40	0	6		13	32	0
ET43	0	45		100	100	0
ET44	6	13		16	26	0
ET45	0	6		13	39	0
ET46	0	0		29	74	0
ET47	0	34	·	97	100	0
ET49	3	0		13	81	0.
ET51	0	0	•	3	19	0
ET52	0	28		81	100	0
ET53	25	81		74	100	0
ET54	3	6		100	100	0
ET56	3	3		16	26	0
ET57	13	74		19	100	0
ET59	3	3		10	84	0
ET60	3	0		97	100	0
ET61	6	28		29	52	0
ET62	23	58		100	100	0
ET63	3	0		100	100	0
ET64	0	0		87	100	0
ET66	13	91		26	81	0
ET67	3	0		6	100	0
ET72	0	0		23	74	8/32
ET73	13	6		94	100	0
Control	0	0		3	3	0

that the crystal proteins exhibit differential activity towards the lepidopteran species tested.

Additional bioassays were performed with the crystal proteins designated CryET59,
CryET60, CryET66, and CryET83. Crystal proteins produced in C2 medium were quantified by SDS-PAGE and densitometry using the method described by Brussock, S. M. and Currier, T.
C., 1990, "Use of Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis to Quantify Bacillus thuringiensis δ-Endotoxins", in Analytical Chemistry of Bacillus thuringiensis (L. A. Hickle and W. L. Fitch, eds.), The American Chemical Society, pp. 78-87.

5

TABLE 8 - Bioassay Evaluation of CryET59 and CryET60

	Percent mortality											
Toxin	Dose ng/well	AI	HV	HZ	ON	PX	rPX	SE	TN			
Control ²		2	6	0	0	2	0	2	0			
	100	2	37	0	94	100	100	2	13			
CryET59	500	11	80	3	100	100	100	0	63			
CryET59	5000	62	100	6	100	100	100	71	100			
CryET59 CryET60	500	0	93	22	100	100	100	0	100			
CryET60	5000	2	100	25	100	100	100	14	100			

Al = Agrotis ipsilon, HV = Heliothis virescens, HZ = Helicoverpa zea, ON = Ostrinia nubilalis, PX = Plutella xylostella, rPX = Plutella xylostella colony resistant to Cry IA and Cry IF toxins, SE = Spodoptera exigua, TN = Trichoplusia ni.

²Control = no toxin added.

The procedure was modified to eliminate the neutralization step with 3M HEPES. Crystal proteins resolved by SDS-PAGE were quantified by densitometry using a Molecular Dynamics model 300A computing densitometer and purified bovine serum albumin (Pierce, Rockford, IL) as a standard.

The bioassay results shown in Table 8 demonstrate that CryET59 and CryET60 are toxic to a number of lepidopteran species, including a colony of *P. xylostella* that is resistant to Cry1A and Cry1F crystal proteins. Eight-dose assays with CryET66 also demonstrated excellent toxicity towards both the susceptible and resistant colonies of *P. xylostella* (Table 14). In this instance, eight crystal protein concentrations were prepared by serial dilution of the crystal protein suspensions in 0.005% Triton® X-100 and 50 ul of each concentration was topically applied to wells containing 1.0 ml of artificial diet. After the wells had dried, a single larvae was placed in each of the treated wells and the tray was covered by a clear perforated mylar sheet (32 larvae for each crystal protein concentration). Larval mortality was scored after 7 days of feeding at 28-30 °C. Mortality data was expressed as LC₅₀ and LC₉₅ values, the concentration of crystal protein (ng/175 mm² diet well) causing 50% and 95% mortality, respectively (Daum, 1970).

Table 9: Toxicity of CryET66 towards Plutella xylostella

	1 auto 2.	Oxidity of Oryphological	licity of or yelloo letter and y					
Toxin	LC ₅₀	95% C.I.	LC ₉₅ 2	Slope				
	8.05	5.0-15.2	52.94	2.01				
CrylAc	25.06	15.7-40.6	117.07	2.46				
CrylAc CrylC CryET66	0.42	0.4-0.5	1.4	3.13				
CrvE100	0.42	U.7-U.2						

Toxicity of CryET66 towards Cry1 A-resistant Plutella xylostella

Toxin	LC ₅₀	95% C.l.	LC ₉₅ ²	Slope
CrylAc	*No significa	nt mortality		
	>			
Cry1C	27.32	15.4-51.1	156.13	2.17
Cry1C CryET66	1.65	1.3-2.0	6.41	2.79

¹ the concentration of crystal protein, in nanograms of crystal protein per well, required to achieve 50% mortality

Table 15 shows that the CryET83 protein exhibits toxicity towards a wide variety of lepidopteran pests and may exhibit improved toxicity towards S. exigua and H. virescens when 10 compared to the other Cry9-type proteins CryET59 and CryET60.

Table 10 - Toxicity of CryET83 towards lepidopteran larvae¹

Dose²	Al³	HV	HZ	ON	PX	SE	SF	TN
5				•	5			
10				9				
50		53			75			69
100				91				
500	0	100				67		100
5000	32					100		
10000			84				100	

¹ Toxicity calculated as percent mortality among treated larvae.
² ng CryET83 crystal protein/175 mm² diet well

The recombinant B. thuringiensis strains listed in Table 5 were deposited with the ARS Patent Culture Collection and had been assigned the NRRL deposit numbers shown in Table 11.

Table 11. Biological Deposits

25

15

Polypeptide Designation	Polypeptide Seq. ID No.:	Polynucleotide Seq ID No.:	Recomb. Strain	NRRL Deposit No.:
Cry ET31	2	1	EG11562	B-21921
Cry ET40	4	3	EG11901	B-21922
Cry ET43	6	5	EG7692	B-21923
Cry ET44	8	7	EG11629	B-21924
Cry ET45	10	9	EG7694	B-21925
Cry ET46	12	11	EG7695	B-21926
Cry ET47	14	13	EG7696	B-21927
Cry ET49	16	15	EG11630	B-21928
Cry ET51	18	17	EG11921	B-21929
Cry ET52	20	19	EG11584	B-21930
Cry ET53	22	21	EG11906	B-21931

² the concentration of crystal protein, in nanograms of crystal protein per well, required to achieve 95% mortality.

Abbreviations described in Table 8; SF = Spodoptera frugiperda

Polypeptide Designation	Polypeptide Seq. ID No.:	Polynucleotide Seq ID No.:	Recomb. Strain	NRRL Deposit No.:
Cry ET54	63	62	EG11907	B-21932
	24	23	EG11909	B-21933
Cry ET56	26	25	EG11910	B-21934
Cry ET57	28	27	EG12102	B-21935
Cry ET59		29	EG12103	B-21936
Cry ET60	30	31	EG11634	B-21937
Cry ET61	32	33	EG11635	B-21938
Cry ET62	34		EG11636	B-21939
Cry ET63	36	35	EG11638	B-21940
Cry ET64	38	37	EG11640	B-21941
Cry ET66	40	39		B-21942
Cry ET67	42	41	-EG11642	
Cry ET68	44	. 43	EG11644	B-30137
Cry ET72	46	45	EG11440	B-21943
Cry ET73	48	47	EG11465	B-21944
CryET83	50	49	EG11785	B-30138

6.11 Example 11 -- Modification of cry Genes for Expression in Plants

Wild-type *cry* genes are known to be expressed poorly in plants as a full length gene or as a truncated gene. Typically, the G+C content of a *cry* gene is low (37%) and often contains many A+T rich regions, potential polyadenylation sites and numerous ATTTA sequences. Table 12 shows a list of potential polyadenylation sequences which should be avoided when preparing the "plantized" gene construct.

Table 12 - LIST OF SEQUENCES OF POTENTIAL POLYADENYLATION SIGNALS

AATAAA*	AAGCAT
AATAAT*	ATTAAT
AACCAA	ATACAT
	AAAATA
ATATAA	ATTAAA**
AATCAA	AATTAA**
ATACTA	AATIAA
ATAAAA	AATACA**
ATGAAA	CATAAA**

indicates a potential major plant polyadenylation site.

** indicates a potential minor animal polyadenylation site.

All others are potential minor plant polyadenylation sites.

The regions for mutagenesis may be selected in the following manner. All regions of the DNA sequence of the *cry* gene are identified which contained five or more consecutive base pairs which were A or T. These were ranked in terms of length and highest percentage of A+T in the surrounding sequence over a 20-30 base pair region. The DNA is analysed for regions which might contain polyadenylation sites or ATTTA sequences. Oligonucleotides are then designed which maximize the elimination of A+T consecutive regions which contained one or more polyadenylation sites or ATTTA sequences. Two potential plant polyadenylation sites have been

shown to be more critical based on published reports. Codons are selected which increase G+C content, but do not generate restriction sites for enzymes useful for cloning and assembly of the modified gene (e.g., BamHI, Bg/II, SacI, NcoI, EcoRV, etc.). Likewise condons are avoided which contain the doublets TA or GC which have been reported to be infrequently-found codons in plants.

Although the CaMV35S promoter is generally a high level constitutive promoter in most plant tissues, the expression level of genes driven the CaMV35S promoter is low in floral tissue relative to the levels seen in leaf tissue. Because the economically important targets damaged by some insects are the floral parts or derived from floral parts (e.g., cotton squares and bolls, tobacco buds, tomato buds and fruit), it is often advantageous to increase the expression of crystal proteins in these tissues over that obtained with the CaMV35S promoter.

The 35S promoter of Figwort Mosaic Virus (FMV) is analogous to the CaMV35S promoter. This promoter has been isolated and engineered into a plant transformation vector. Relative to the CaMV promoter, the FMV 35S promoter is highly expressed in the floral tissue, while still providing similar high levels of gene expression in other tissues such as leaf. A plant transformation vector, may be constructed in which the full length synthetic *cry* gene is driven by the FMV 35S promoter. Tobacco plants may be transformed with the vector and compared for expression of the crystal protein by Western blot or ELISA immunoassay in leaf and floral tissue. The FMV promoter has been used to produce relatively high levels of crystal protein in floral tissue compared to the CaMV promoter.

6.12 Example 12 -- Expression of Synthetic *cry* Genes with ssRUBISCO Promoters and Chloroplast Transit Peptides

The genes in plants encoding the small subunit of RUBISCO (SSU) are often highly expressed, light regulated and sometimes show tissue specificity. These expression properties are largely due to the promoter sequences of these genes. It has been possible to use SSU promoters to express heterologous genes in transformed plants. Typically a plant will contain multiple SSU genes, and the expression levels and tissue specificity of different SSU genes will be different. The SSU proteins are encoded in the nucleus and synthesized in the cytoplasm as precursors that contain an N-terminal extension known as the chloroplast transit peptide (CTP). The CTP directs the precursor to the chloroplast and promotes the uptake of the SSU protein into

the chloroplast. In this process, the CTP is cleaved from the SSU protein. These CTP sequences have been used to direct heterologous proteins into chloroplasts of transformed plants.

The SSU promoters might have several advantages for expression of heterologous genes in plants. Some SSU promoters are very highly expressed and could give rise to expression levels as high or higher than those observed with the CaMV35S promoter. The tissue distribution of expression from SSU promoters is different from that of the CaMV35S promoter, so for control of some insect pests, it may be advantageous to direct the expression of crystal proteins to those cells in which SSU is most highly expressed. For example, although relatively constitutive, in the leaf the CaMV35S promoter is more highly expressed in vascular tissue than in some other parts of the leaf, while most SSU promoters are most highly expressed in the mesophyll cells of the leaf. Some SSU promoters also are more highly tissue specific, so it could be possible to utilize a specific SSU promoter to express the protein of the present invention in only a subset of plant tissues, if for example expression of such a protein in certain cells was found to be deleterious to those cells. For example, for control of Colorado potato beetle in potato, it may be advantageous to use SSU promoters to direct crystal protein expression to the leaves but not to the edible tubers.

Utilizing SSU CTP sequences to localize crystal proteins to the chloroplast might also be advantageous. Localization of the *B. thuringiensis* crystal proteins to the chloroplast could protect these from proteases found in the cytoplasm. This could stabilize the proteins and lead to higher levels of accumulation of active toxin. *cry* genes containing the CTP may be used in combination with the SSU promoter or with other promoters such as CaMV35S.

6.13 Example 13 -- Targeting of Cry Proteins to the Extracellular Space or Vacuole through the Use of Signal Peptides

The *B. thuringiensis* proteins produced from the synthetic genes described here are localized to the cytoplasm of the plant cell, and this cytoplasmic localization results in plants that are insecticidally effective. It may be advantageous for some purposes to direct the *B. thuringiensis* proteins to other compartments of the plant cell. Localizing *B. thuringiensis* proteins in compartments other than the cytoplasm may result in less exposure of the *B. thuringiensis* proteins to cytoplasmic proteases leading to greater accumulation of the protein yielding enhanced insecticidal activity. Extracellular localization could lead to more efficient exposure of certain insects to the *B. thuringiensis* proteins leading to greater efficacy. If a

B. thuringiensis protein were found to be deleterious to plant cell function, then localization to a noncytoplasmic compartment could protect these cells from the protein.

In plants as well as other eukaryotes, proteins that are destined to be localized either extracellularly or in several specific compartments are typically synthesized with an N-terminal amino acid extension known as the signal peptide. This signal peptide directs the protein to enter the compartmentalization pathway, and it is typically cleaved from the mature protein as an early step in compartmentalization. For an extracellular protein, the secretory pathway typically involves cotranslational insertion into the endoplasmic reticulum with cleavage of the signal peptide occurring at this stage. The mature protein then passes through the Golgi body into vesicles that fuse with the plasma membrane thus releasing the protein into the extracellular space. Proteins destined for other compartments follow a similar pathway. For example, proteins that are destined for the endoplasmic reticulum or the Golgi body follow this scheme, but they are specifically retained in the appropriate compartment. In plants, some proteins are also targeted to the vacuole, another membrane bound compartment in the cytoplasm of many plant cells. Vacuole targeted proteins diverge from the above pathway at the Golgi body where they enter vesicles that fuse with the vacuole.

A common feature of this protein targeting is the signal peptide that initiates the compartmentalization process. Fusing a signal peptide to a protein will in many cases lead to the targeting of that protein to the endoplasmic reticulum. The efficiency of this step may depend on the sequence of the mature protein itself as well. The signals that direct a protein to a specific compartment rather than to the extracellular space are not as clearly defined. It appears that many of the signals that direct the protein to specific compartments are contained within the amino acid sequence of the mature protein. This has been shown for some vacuole targeted proteins, but it is not yet possible to define these sequences precisely. It appears that secretion into the extracellular space is the "default" pathway for a protein that contains a signal sequence but no other compartmentalization signals. Thus, a strategy to direct *B. thuringiensis* proteins out of the cytoplasm is to fuse the genes for synthetic *B. thuringiensis* genes to DNA sequences encoding known plant signal peptides. These fusion genes will give rise to *B. thuringiensis* proteins that enter the secretory pathway, and lead to extracellular secretion or targeting to the vacuole or other compartments.

Signal sequences for several plant genes have been described. One such sequence is for the tobacco pathogenesis related protein PR1b has been previously described (Cornelissen *et al.*, 1986). The PR1b protein is normally localized to the extracellular space. Another type of signal peptide is contained on seed storage proteins of legumes. These proteins are localized to the protein body of seeds, which is a vacuole like compartment found in seeds. A signal peptide DNA sequence for the β-subunit of the 7S storage protein of common bean (*Phaseolus vulgaris*), PvuB has been described (Doyle *et al.*, 1986). Based on the published these published sequences, genes may be synthesized chemically using oligonucleotides that encode the signal peptides for PR1b and PvuB. In some cases to achieve secretion or compartmentalization of heterologous proteins, it may be necessary to include some amino acid sequence beyond the normal cleavage site of the signal peptide. This may be necessary to insure proper cleavage of the signal peptide.

6.14 Example 14 -- Isolation of Transgenic Plants Resistant to Insects Using cry Transgenes

15 6.64.1 PLANT GENE CONSTRUCTION

The expression of a plant gene which exists in double-stranded DNA form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter". The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding strand of RNA.

A number of promoters which are active in plant cells have been described in the literature. Such promoters may be obtained from plants or plant viruses and include, but are not limited to, the nopaline synthase (NOS) and octopine synthase (OCS) promoters (which are carried on tumor-inducing plasmids of *Agrobacterium tumefaciens*), the cauliflower mosaic virus (CaMV) 19S and 35S promoters, the light-inducible promoter from the small subunit of ribulose 1,5-bisphosphate carboxylase (ssRUBISCO, a very abundant plant polypeptide), and the Figwort Mosaic Virus (FMV) 35S promoter. All of these promoters have been used to create various

25

types of DNA constructs which have been expressed in plants (see e.g., U.S. Patent No. 5,463,175, specifically incorporated herein by reference).

The particular promoter selected should be capable of causing sufficient expression of the enzyme coding sequence to result in the production of an effective amount of protein. One set of preferred promoters are constitutive promoters such as the CaMV35S or FMV35S promoters that yield high levels of expression in most plant organs (U. S. Patent No. 5,378,619, specifically incorporated herein by reference). Another set of preferred promoters are root enhanced or specific promoters such as the CaMV derived 4 as-1 promoter or the wheat POX1 promoter (U. S. Patent No. 5,023,179, specifically incorporated herein by reference; Hertig et al., 1991). The root enhanced or specific promoters would be particularly preferred for the control of corn rootworm (Diabroticus spp.) in transgenic corn plants.

The promoters used in the DNA constructs (i.e. chimeric plant genes) of the present invention may be modified, if desired, to affect their control characteristics. For example, the CaMV35S promoter may be ligated to the portion of the ssRUBISCO gene that represses the expression of ssRUBISCO in the absence of light, to create a promoter which is active in leaves but not in roots. The resulting chimeric promoter may be used as described herein. For purposes of this description, the phrase "CaMV35S" promoter thus includes variations of CaMV35S promoter, e.g., promoters derived by means of ligation with operator regions, random or controlled mutagenesis, etc. Furthermore, the promoters may be altered to contain multiple "enhancer sequences" to assist in elevating gene expression.

The RNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNA's, from suitable eucaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs wherein the non-translated region is derived from the 5' non-translated sequence that accompanies the promoter sequence.

For optimized expression in monocotyledenous plants such as maize, an intron should also be included in the DNA expression construct. This intron would typically be placed near the 5' end of the mRNA in untranslated sequence. This intron could be obtained from, but not limited to, a set of introns consisting of the maize *hsp70* intron (U. S. Patent No. 5,424,412;

specifically incorporated herein by reference) or the rice Act1 intron (McElroy et al., 1990). As shown below, the maize hsp70 intron is useful in the present invention.

As noted above, the 3' non-translated region of the chimeric plant genes of the present invention contains a polyadenylation signal which functions in plants to cause the addition of adenylate nucleotides to the 3' end of the RNA. Examples of preferred 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylate signal of *Agrobacterium* tumorinducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene and (2) plant genes such as the pea ssRUBISCO E9 gene (Fischhoff *et al.*, 1987).

6.14.2 Plant Transformation and Expression

A plant gene containing a structural coding sequence of the present invention can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed, e.g., by Herrera-Estrella (1983), Bevan (1983), Klee (1985) and Eur. Pat. Appl. Publ. No. EP0120516. In addition to plant transformation vectors derived from the Ti or root-inducing (Ri) plasmids of Agrobacterium, alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve, for example, the use of liposomes, electroporation, chemicals that increase free DNA uptake, free DNA delivery via microprojectile bombardment, and transformation using viruses or pollen (Fromm et al., 1986; Armstrong et al., 1990; Fromm et al., 1990).

6.14.3 Construction of Monocot Plant Expression Vectors for cry Genes

For efficient expression of cry genes in transgenic plants, the gene must have a suitable sequence composition (Diehn et al., 1996). To place the cry gene in a vector suitable for expression in monocotyledonous plants (i.e. under control of the enhanced Cauliflower Mosaic Virus 35S promoter and link to the hsp70 intron followed by a nopaline synthase polyadenylation site as in U.S. Patent No. 5,424,412, specifically incorporated herein by reference), a vector such as pMON19469 may be used. Such a vector is conveniently digested with NcoI and EcoRI restriction enzymes. The larger vector band of approximately 4.6 kb is then electrophoresed, purified, and ligated with T4 DNA ligase to an NcoI-EcoRI fragment which contains the synthetic cry gene. The ligation mix is then transformed into E. coli, carbenicillin resistant colonies recovered and plasmid DNA recovered by DNA miniprep

30

procedures. The DNA is then subjected to restriction endonuclease analysis with enzymes such as *NcoI* and *EcoRI* (together), *NotI*, and/or *PstI* individually or in combination, to identify clones containing the *cry* coding sequence fused to an intron such as the *hsp70* intron, placed under the control of the enhanced CaMV35S promoter.

To place the gene in a vector suitable for recovery of stably transformed and insect resistant plants, the 3.75-kb NotI restriction fragment from pMON33708 containing the lysine oxidase coding sequence fused to the hsp70 intron under control of the enhanced CaMV35S promoter may be isolated by gel electrophoresis and purification. This fragment is then ligated with a vector such as pMON30460 which has been previously treated with NotI and calf intestinal alkaline phosphatase (pMON30460 contains the neomycin phosphotransferase coding sequence under control of the CaMV35S promoter). Kanamycin resistant colonies may then be obtained by transformation of this ligation mix into E. coli and colonies containing the desired plasmid may be identified by restriction endonuclease digestion of plasmid miniprep DNAs. Restriction enzymes such as NotI, EcoRV, HindIII, NcoI, EcoRI, and Bg/III may be used to identify the appropriate clones in which the orientation of both genes are in tandem (i.e. the 3' end of the cry expression cassette is linked to the 5' end of the nptll expression cassette). Expression of the Cry protein by the resulting plasmid in corn protoplasts may be confirmed by electroporation of the vector DNA into protoplasts followed by protein blot and ELISA analysis. This vector may be introduced into the genomic DNA of corn embryos by particle gun bombardment followed by paromomycin selection to obtain corn plants expressing the cry gene essentially as described in U.S. Patent No. 5,424,412, specifically incorporated herein by reference.

As an example, the vector may be introduced *via* cobombardment with a hygromycin resistance conferring plasmid into immature embryo scutella (IES) of maize, followed by hygromycin selection, and regeneration. Transgenic corn lines expressing the *cry* protein may then be identified by ELISA analysis. Progeny seed from these events may then be subsequently tested for protection from insect feeding.

7.0 References

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

- U. S. Patent 4,196,265, issued Apr. 1, 1980.
- U. S. Patent 4,554,101, issued Nov. 19, 1985.
- U. S. Patent 4,683,195, issued Jul. 28, 1987.
- U. S. Patent 4,683,202, issued Jul. 28, 1987.
- U. S. Patent 4,757,011, issued Jul. 12, 1988.
 - U. S. Patent 4,769,061, issued Sep. 6, 1988.
 - U. S. Patent 4,940,835, issued Feb. 23, 1990.
 - U. S. Patent 4,965,188, issued Oct. 23, 1990.
 - U. S. Patent 4,971,908, issued Nov. 20, 1990.
- U. S. Patent 4,987,071, issued Jan. 22, 1991.
 - U. S. Patent 5,023,179, issued Jun 11, 1991.
 - U. S. Patent 5,176,995, issued Oct. 15, 1991.
 - U. S. Patent 5,334,711, issued Aug. 2, 1994.
 - U. S. Patent 5,378,619, issued Jan 3, 1995.
- U. S. Patent 5,384,253, issued Jan. 24, 1995.
 - U. S. Patent 5,424,412, issued Jun 13, 1995.
 - U. S. Patent 5,463,175, issued Oct 31, 1995.
 - U. S. Patent 5,631,359, issued May 20, 1997.
 - Int. Pat. Appl. Publ. No. WO 84/02913.
- 20 Int. Pat. Appl. Publ. No. WO 91/03162.
 - Int. Pat. Appl. Publ. No. WO 92/07065.
 - Int. Pat. Appl. Publ. No. WO 93/15187.
 - Int. Pat. Appl. Publ. No. WO 93/23569.
 - Int. Pat. Appl. Publ. No. WO 94/02595.
 - Int. Pat. Appl. Publ. No. WO 94/13688.
 - Eur. Pat. Appl. Publ. No. EP0120516.
 - Eur. Pat. Appl. Publ. No. EP0360257.
 - Eur. Pat. Appl. Publ. No. 92110298.4
- Arantes and Lereclus, Gene, 108:115-119, 1991.
 Abdullah et al., Biotechnology, 4:1087, 1986.

WO 01/19859

Baum et al., Appl. Environ. Microbiol., 56:3420-3428, 1990.

Benbrook et al., In: Proceedings Bio Expo 1986, Butterworth, Stoneham, MA, pp. 27-54, 1986.

Bevan et al., Nucleic Acids Res., 11(2):369-85, 1983.

Bytebier et al., Proc. Natl. Acad. Sci. USA, 84:5345, 1987.

5 Callis et al., Genes and Development, 1:1183, 1987.

Campbell, "Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology," Vol. 13, Burden and Von Knippenberg, Eds. pp. 75-83, Elsevier, Amsterdam, 1984.

Capecchi, "High efficiency transformation by direct microinjection of DNA into cultured mammalian cells," *Cell*, 22(2):479-488, 1980.

Cashmore et al., Gen. Eng. of Plants, Plenum Press, New York, 29-38, 1983.

Charles et al., Annu. Rev. Entomol., 41:451-472, 1996.

Chau et al., Science, 244:174-181, 1989.

Chen et al., Nucl. Acids Res., 20:4581-9, 1992.

Chowrira and Burke, Nucl. Acids Res., 20:2835-2840, 1992.

Clapp, "Somatic gene therapy into hematopoietic cells. Current status and future implications," *Clin. Perinatol.*, 20(1):155-168, 1993.

Collins and Olive, Biochem., 32:2795-2799, 1993.

Conway and Wickens, *In: RNA Processing*, p. 40, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988.

Cornelissen et al., Nature, 321(6069):531-2, 1986.

Crickmore et al., Microbiol. Mol. Biol. Rev. 62:807-813, 1998.

Cristou et al., Plant Physiol., 87:671-674, 1988.

Curiel, Agarwal, Wagner, Cotten, "Adenovirus enhancement of transferrin-polylysine-mediated gene delivery," *Proc. Natl. Acad. Sci. USA*, 88(19):8850-8854, 1991.

Curiel, Wagner, Cotten, Birnstiel, Agarwal, Li, Loechel, Hu, "High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes," *Hum. Gen. Ther.*, 3(2):147-154, 1992.

Dean et al., Nucl. Acids Res., 14(5):2229, 1986.

10

20

- 86 -

WO 01/19859 PCT/US00/25361

Dhir, S. K., Dhir, S., Hepburn, A., and Widholm, J. M., "Factors affecting transient gene expression in electroporated *Glycine-max* protoplasts," *Plant Cell Rep.*, 10(2):106-110, 1991.

Dhir, S. K., Dhir, S., Sturtevant, A. P., and Widholm, J. M., "Regeneration of transformed shoots for electroporated soybean *Glycine-max* L. Merr. Protoplasts, *Plant Cell Rep.*, 10(2):97-101, 1991.

Diehn et al., Genet. Eng. (N.Y.), 18:83-99, 1996.

Donovan et al., J. Biol. Chem. 263:561-567, 1988.

Donovan et al., Appl. Environ. Microbiol. 58:3921-3927, 1992.

Doyle et al., J. Biol. Chem., 261(20):9228-38, 1986.

Dropulic et al., J. Virol., 66:1432-41, 1992.

Eglitis and Anderson, "Retroviral vectors for introduction of genes into mammalian cells," Biotechniques, 6(7):608-614, 1988.

Eglitis, Kantoff, Kohn, Karson, Moen, Lothrop, Blaese, Anderson, "Retroviral-mediated gene transfer into hemopoietic cells," Avd. Exp. Med. Biol., 241:19-27, 1988.

Elroy-Stein and Moss, Proc. Natl. Acad. Sci. USA, 87:6743-7, 1990.

English and Slatin, Insect Biochem. Mol. Biol., 22:1-7, 1992.

Fraley et al., Biotechnology, 3:629, 1985.

Fraley et al., Proc. Natl. Acad. Sci. USA, 80:4803, 1983.

Fromm et al., Biotechnology (N.Y.), 8(9):833-9, 1990.

Fromm et al., Nature, 319:791-793, 1986.

Fromm, Taylor, Walbot, "Expression of genes transferred into monocot and dicot plant cells by electroporation," *Proc. Natl. Acad. Sci. USA*, 82(17):5824-5828, 1985.

Fujimura et al., Plant Tiss. Cult. Lett., 2:74, 1985.

Fynan, Webster, Fuller, Haynes, Santoro, Robinson, "DNA vaccines: protective immunizations by parenteral, mucosal, and gene gun inoculations," *Proc. Natl. Acad. Sci. USA*, 90(24):11478-11482, 1993.

Gao and Huang, Nucl. Acids Res., 21:2867-72, 1993.

Gefter et al., Somat. Cell Genet., 3:231-236, 1977.

Genovese and Milcarek, In: RNA Processing, p. 62, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988.

Gil and Proudfoot, Nature, 312:473, 1984.

Goding, "Monoclonal Antibodies: Principles and Practice," pp. 60-74. 2nd Edition, Academic Press, Orlando, FL, 1986.

Graham and van der Eb, "Transformation of rat cells by DNA of human adenovirus 5," *Virology*, 54(2):536-539, 1973.

Guerrier-Takada et al., Cell, 35:849, 1983.

Hampel and Tritz, Biochem., 28:4929, 1989.

Hampel et al., Nucl. Acids Res., 18:299, 1990.

Harlow and Lane, "Antibodies: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988.

Herrera-Estrella et al., Embo. J., 2(6):987-996, 1983.

Hertig et al., Plant Mol. Biol., 16(1):171-4, 1991.

Hess, Intern Rev. Cytol., 107:367, 1987.

Höfte et al., Microbiol. Rev., 53:242-255, 1989.

Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T., "A simple and general method for transferring genes into plants," *Science*, 227(4691):1229-1231, 1985.

Jameson and Wolf, "The Antigenic Index: A Novel Algorithm for Predicting Antigenic Determinants," Compu. Appl. Biosci., 4(1):181-6, 1988.

Johnston and Tang, "Gene gun transfection of animal cells and genetic immunization," *Methods Cell. Biol.*, 43(A):353-365, 1994.

Jorgensen et al., Mol. Gen. Genet., 207:471, 1987.

Kashani-Sabet et al., Antisense Res. Dev., 2:3-15, 1992.

Keller et al., EMBO J., 8:1309-14, 1989.

Klee, H. J., Yanofsky, M. F., and Nester, E. W., "Vectors for transformation of higher plants,"

Bio-Technology, 3(7):637-642, 1985.

Klein et al., Nature, 327:70, 1987.

Klein et al., Proc. Natl. Acad. Sci. USA, 85:8502-8505, 1988.

Kohler and Milstein, Eur. J. Immunol., 6:511-519, 1976.

30 Kohler and Milstein, Nature, 256:495-497, 1975.

Kreig et al., In: Zangew. Ent., 96:500-508, 1983.

Kyte and Doolittle, A simple method for displaying the hydropathic character of a protein," J. Mol. Biol., 157(1):105-132, 1982.

Lambert et al., Appl. Environ. Microbiol., 58:2536-2642, 1992B.

Lambert et al., Gene, 110:131-132, 1992A.

5 Langridge et al., Proc. Natl. Acad. Sci. USA, 86:3219-3223, 1989.

Lee et al., Biochem. Biophys. Res. Comm. 229:139-146.

L'Huillier et al., EMBO J., 11:4411-8, 1992.

Lieber et al., Methods Enzymol., 217:47-66, 1993.

Lindstrom et al., Developmental Genetics, 11:160, 1990.

Lisziewicz et al., Proc. Natl. Acad. Sci. U.S.A., 90:8000-4, 1993.

Lorz et al., Mol. Gen. Genet., 199:178, 1985.

Lu, Xiao, Clapp, Li, Broxmeyer, "High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34(3+) hematopoietic stem/progenitor cells from human umbilical cord blood," J. Exp. Med., 178(6):2089-2096, 1993.

Luo et al., Plant Mol. Biol. Reporter, 6:165, 1988.

Maddock et al., Third International Congress of Plant Molecular Biology, Abstract 372, 1991.

Maloy et al., "Microbial Genetics" 2nd Edition. Jones and Barlett Publishers, Boston, MA, 1994.

Maloy, S.R., "Experimental Techniques in Bacterial Genetics" Jones and Bartlett Publishers, Boston, MA, 1990.

Maniatis et al., "Molecular Cloning: a Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1982.

Marcotte et al., Nature, 335:454, 1988.

McCabe et al., Biotechnology, 6:923, 1988.

McDevitt et al., Cell, 37:993-999, 1984.

McElroy, Zhang, Wu, "Isolation of an efficient promoter for use in rice transformation," *Plant Cell*, 2:163-171, 1990.

Mettus and Macaluso, Appl. Environ. Microbiol. 56:1128-1134, 1990

Neuhaus et al., Theor. Appl. Genet., 75:30, 1987.

Odell et al., Nature, 313:810, 1985.

Ohkawa, Yuyama, Taira, "Activities of HIV-RNA targeted ribozymes transcribed from a 'shot-gun' type ribozyme-trimming plasmid," *Nucl. Acids Symp. Ser.*, 27:15-6, 1992.

Oiwang et al., Proc. Natl. Acad. Sci. USA, 89:10802-6, 1992.

Omirulleh et al., Plant Mol. Biol., 21:415-428, 1993.

Pandey and Marzluff, *In* "RNA Processing," p. 133, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987.

5 Pena et al., Nature, 325:274, 1987.

Perrault et al, Nature, 344:565, 1990.

Perrotta and Been, Biochem., 31:16, 1992.

Pieken et al., Science, 253:314, 1991.

Poszkowski et al., EMBO J., 3:2719, 1989.

10 Potrykus et al., Mol. Gen. Genet., 199:183, 1985.

Poulsen et al., Mol. Gen. Genet., 205:193-200, 1986.

Prokop and Bajpai, , Ann. N. Y. Acad. Sci., 646, 1991.

Rogers et al., In: Methods For Plant Molecular Biology, A. Weissbach and H. Weissbach, eds., Academic Press Inc., San Diego, CA 1988.

15 Rogers et al., Methods Enzymol., 153:253-277, 1987.

Rossi et al., Aids Res. Hum. Retrovir., 8:183, 1992.

Sadofsky and Alwine, Mol. Cell. Biol., 4(8):1460-1468, 1984.

Sambrook et al., "Antibodies: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold spring Harbor, NY, 1989.

Sambrook et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

Sanger et al., "DNA sequencing with chain-terminating inhibitors," Proc. Natl. Acad. Sci. USA, 74(12):5463-5467, 1977.

Sarver et al., Science, 247(4947):1222-5, 1990.

25 Saville and Collins, Cell, 61:685-696, 1990.

Saville and Collins, Proc. Natl. Acad. Sci. USA, 88:8826-8830, 1991.

Scanlon et al., Proc. Natl. Acad. Sci. USA, 88:10591-5, 1991.

Scaringe et al., Nucl. Acids Res., 18:5433-5441, 1990.

Schnepf et al., Microbiol. Mol. Biol. Rev. 62:775-806, 1998.

30 Shaw and Kamen, Cell, 46:659-667, 1986.

Shaw and Kamen, In: "RNA Processing", p. 220, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987.

Sick et al., Nucl. Acids Res., 18:1305, 1990.

Simpson, Science, 233:34, 1986.

5 Spielmann et al., Mol. Gen. Genet., 205:34, 1986.

Taira et al., Nucl. Acids Res., 19:5125-30, 1991.

Toriyama et al., Theor Appl. Genet., 73:16, 1986.

Uchimiya et al., Mol. Gen. Genet., 204:204, 1986.

Usman et al., J. Am. Chem. Soc., 109:7845-7854, 1987.

10 Usman and Cedergren, TIBS, 17:34, 1992.

Van Tunen et al., EMBO J., 7:1257, 1988.

Vasil et al., "Herbicide-resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus," *Biotechnology*, 10:667-674, 1992.

Vasil, Biotechnology, 6:397, 1988.

15 Ventura et al., Nucl. Acids Res., 21:3249-55, 1993.

Vodkin et al., Cell, 34:1023, 1983.

- Vogel, J. M., Dawe, R. K., and Freeling, M., "Regulation of the cell type-specific expression of maize Adhl and Shl electroporation-directed gene transfer into protoplasts of several maize tissues," J. Cell. Biochem., (Suppl. 0) 13:Part D, 1989.
- Von Tersch, M. A., Robbins, H. L., Jany, C. S., and Johnson, T., *Appl. Environ. Microbiol.* 57:349-358, 1991.
 - Wagner et al., "Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes," Proc. Natl. Acad. Sci. USA, 89(13):6099-6103, 1992.
- 25 Weerasinghe et al., J. Virol., 65:5531-4, 1991.
 - Weissbach and Weissbach, Methods for Plant Molecular Biology, (eds.), Academic Press, Inc., San Diego, CA, 1988.

Wenzler et al., Plant Mol. Biol., 12:41-50, 1989.

Wickens and Stephenson, Science, 226:1045, 1984.

Wickens et al., In: "RNA Processing," p. 9, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987.

Widner, W. R., and Whiteley, H. R., J. Bacteriol., 172:2826-2832, 1990.

Wong and Neumann, "Electric field mediated gene transfer," Biochim. Biophys. Res. Commun., 107(2):584-587, 1982.

Woolf et al., Proc. Natl. Acad. Sci. USA, 89:7305-7309, 1992.

Yamada et al., Plant Cell Rep., 4:85, 1986.

Yang et al., Proc. Natl. Acad. Sci. USA, 87:4144-48, 1990.

Yu et al., Proc. Natl. Acad. Sci. USA, 90:6340-4, 1993.

Zatloukal, Wagner, Cotten, Phillips, Plank, Steinlein, Curiel, Birnstiel, "Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells," *Ann. N.Y. Acad. Sci.*, 660:136-153, 1992.

Zhou et al., Methods Enzymol., 101:433, 1983.

Zhou et al., Mol. Cell Biol., 10:4529-37, 1990.

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the composition, methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims. Accordingly, the exclusive rights sought to be patented are as described in the claims below.

CLAIMS:

10

15

- An isolated polypeptide at least 85% identical to SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:40, or SEQ ID NO:44.
- 2. An isolated polypeptide at least 91% identical to SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:40, or SEQ ID NO:44.
- 3. An isolated polypeptide at least 95% identical to SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:28, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:44, or SEQ ID NO:50.
- 4. An isolated polypeptide at least 99% identical to SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 or SEQ ID NO: 63.
- 5. The polypeptide of claim 4, comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO: 63.
- 6. An isolated nucleic acid sequence encoding the polypeptide of any preceding claim.
- 25 7. A composition comprising the polypeptide of any of claims 1 to 5, and a diluent.
 - 8. The composition of claim 7, wherein the polypeptide is selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID

- NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50 and SEQ ID NO: 63.
- 9. The composition of claim 7, comprising a cell extract, cell suspension, cell homogenate, cell lysate, cell supernatant, cell filtrate, or cell pellet of *Bacillus thuringiensis* cells.
- 10. The composition of claim 7, wherein said composition is a powder, dust, pellet, granule, spray, emulsion, colloid, or solution.
- 11. The composition of claim 7, comprising from about 1% to about 99% by weight of said polypeptide.
- 10 12. An insecticidal polypeptide prepared by a process comprising the steps of:
 - (a) culturing a *Bacillus thuringiensis* cell having the accession number NRRL B-21784, NRRL B-21783, NRRL B-21917, NRRL B-21786, NRRL B-21787, NRRL B-21785, NRRL B-21788, NRRL B-21915 or NRRL B-21916 under conditions effective to produce an insecticidal polypeptide; and
- 15 (b) obtaining from said cell the insecticidal polypeptide so produced.
 - A Bacillus thuringiensis cell having the NRRL accession number NRRL B-21784, NRRL B-21783, NRRL B-21917, NRRL B-21786, NRRL B-21787, NRRL B-21785, NRRL B-21788, NRRL B-21915 or NRRL B-21916.
- 14. An isolated polynucleotide at least 85% identical to SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:23, SEQ ID NO:39, or SEQ ID NO:43.
 - The polynucleotide of claim 15, wherein the polynucleotide is at least 95% identical to SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:27, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:43, or SEQ ID NO:49.
- The polynucleotide of claim 15, wherein the polynucleotide is at least 99% identical to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID

- NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, or SEQ ID NO:62.
- 17. The polynucleotide of claim 15, comprising the nucleic acid sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, or SEQ ID NO:62.
- 18. The polynucleotide of any of claims 14-17, wherein the isolated polynucleotide is provided in a vector.
 - 19. The polynucleotide of any of claims 14-17, wherein the isolated polynucleotide is operably linked to a promoter.
 - 20. The polynucleotide of claim 19, wherein the promoter is a plant-expressible promoter.
- 21. The polynucleotide of claim 20, wherein the plant-expressible promoter is selected from the group consisting of corn sucrose synthetase 1, corn alcohol dehydrogenase 1, corn light harvesting complex, corn heat shock protein, pea small subunit RuBP carboxylase, Ti plasmid mannopine synthase, Ti plasmid nopaline synthase, petunia chalcone isomerase, bean glycine rich protein 1, Potato patatin, lectin, CaMV 35S, and the S-E9 small subunit RuBP carboxylase promoter.
- 22. The polynucleotide of claim 18, wherein the vector is a plasmid, baculovirus, artificial chromosome, virion, cosmid, phagemid, phage or viral vector.
 - 23. A transformed host cell comprising a nucleic acid sequence encoding the polypeptide of any of claims 1 to 5.
 - 24. The transformed host cell of claim 23, wherein the nucleic acid is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID

- NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, and SEQ ID NO:62.
- 25. The transformed host cell of claim 23, further defined as a prokaryotic or eukaryotic host cell.
- 5 26. The transformed host cell of claim 23, further defined as a bacterial cell or a plant cell.
 - 27. The transformed host cell of claim 26, wherein said bacterial cell is a Bacillus thuringiensis, Bacillus subtilis, Bacillus megaterium, Bacillus cereus, Escherichia, Salmonella, Agrobacterium or Pseudomonas cell.
- The transformed host cell of claim 26, wherein said bacterial cell is a *Bacillus thuringiensis*NRRL B-21784, NRRL B-21783, NRRL B-21917, NRRL B-21786, NRRL B-21787,
 NRRL B-21785, NRRL B-21788, NRRL B-21915 or NRRL B-21916 cell.
 - 29. The transformed host cell of claim 27, wherein said bacterial cell is an Agrobacterium tumefaciens cell.
 - 30. The transformed host cell of claim 26, further defined as a monocotyledonous or dicotyledonous plant cell.

- 31. The transformed host cell of claim 30, wherein said plant cell is selected from the group consisting of a corn, wheat, soybean, oat, cotton, rice, rye, sorghum, sugarcane, tomato, tobacco, kapok, flax, potato, barley, turf grass, pasture grass, berry, fruit, legume, vegetable, ornamental plant, shrub, cactus, succulent, and tree cell.
- The transformed host cell of claim 30, wherein said plant cell is a corn, wheat, rice, or sugarcane cell.
 - 33. The transformed host cell of claim 30, wherein said plant cell is a soybean, cotton, potato, tomato, or tobacco cell.
 - 34. A transgenic plant having incorporated into its genome a selected polynucleotide comprising a first sequence region that encodes the polypeptide of any of claims 1 to 5.
 - 35. The transgenic plant of claim 34, wherein said first sequence region encodes SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID

- NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50, or SEQ ID NO: 63.
- The transgenic plant of claim 34, wherein said first sequence region comprises SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, or SEQ ID NO:62.
- 10 37. The transgenic plant of claim 34, further defined as a monocotyledonous plant.
 - 38. The transgenic plant of claim 34, further defined as a corn, wheat, oat, rice, barley, turf grass, or pasture grass plant.
 - 39. The transgenic plant of claim 34, further defined as a dicotyledonous plant.
- 40. The transgenic plant of claim 34, further defined as a legume, soybean, tobacco, tomato, potato, cotton, fruit, berry, vegetable or tree.
 - 41. A progeny of any generation of the transgenic plant of claim 34, wherein said progeny comprises said first selected sequence region.
 - 42. A seed of any generation of the plant of claim 34, wherein said seed comprises said first sequence region.
- 20 43. A seed of any generation of the progeny of claim 39, wherein said seed comprises said first sequence region.
 - 44. A plant of any generation of the seed of claim 42 or 43, wherein said plant comprises said first sequence region.
 - 45. A method for controlling Lepdopteran insects comprising contacting said insect with the polypeptide of any of claims 1 to 5.
 - 46. The method of claim 45, wherein the polypeptide is provided in a powder, dust, pellet, granule, spray, emulsion, colloid, or solution.
 - 47. The method of claim 45, wherein the polypeptide is provided in a transformed host cell.

- 48. The method of claim 47, wherein the transformed host cell is a bacterial or plant cell.
- 49. The method of claim 45, wherein the polypeptide is provided in a transgenic plant.
- 50. The method of claim 49, wherein the plant is a corn, cotton, or soybean plant.
- 51. A method of preparing an insect resistant plant comprising:
- (a) contacting recipient plant cells with a polynucleotide composition comprising at least a first nucleic acid sequence encoding the polypeptide of any of claims 1 to 5;
 - (b) selecting a recipient plant cell comprising the first nucleic acid sequence; and
- (c) regenerating a plant from the selected cell;
 wherein said plant has enhanced insect resistance relative to the corresponding non-transformed plant.

-1-

8.0 Sequence Listing

SEQUENCE LISTING

5 <110> Baum, James A.
Chu, Chih-Rei
Donovan, William P.
Gilmer, Amy J.
Rupar, Mark J.

<120> Lepidopteran-Active Bacillus thuringiensis Delta-Endotoxin Compositions and Methods of Use

<130> meco201

15 <140>

10

<141>

<160> 63

12007

<170> PatentIn Ver. 2.1

<210> 1

<211> 1899

5 <212> DNA

<213> Bacillus thuringiensis

<220>

<221> CDS

30 <222> (1)..(1899)

<400> 1

35

atg aat aat gta tta aat aac gga aga act act att tgt gat gcg tat 48
Met Asn Asn Val Leu Asn Asn Gly Arg Thr Thr Ile Cys Asp Ala Tyr
10 15

aat gta gtg gcc cat gat cca ttt agt ttt gag cat aaa tca tta gat 9
Asn Val Val Ala His Asp Pro Phe Ser Phe Glu His Lys Ser Leu Asp

acc atc cga aaa gaa tgg atg gag tgg aaa aga aca gat cat agt tta 144
Thr Ile Arg Lys Glu Trp Met Glu Trp Lys Arg Thr Asp His Ser Leu
40
45

45 tat gta gct cct ata gtc gga act gtt tct agc ttt ctg cta aag aag 192
Tyr Val Ala Pro Ile Val Gly Thr Val Ser Ser Phe Leu Leu Lys Lys
50 60

gtg ggg agt ctt att gga aaa agg ata ttg agt gaa tta tgg ggg tta 240
50 Val Gly Ser Leu Ile Gly Lys Arg Ile Leu Ser Glu Leu Trp Gly Leu
65 70 75 80

ata ttt cct agt ggt agc aca aat cta atg caa gat att tta agg gag 288

Ile Phe Pro Ser Gly Ser Thr Asn Leu Met Gln Asp Ile Leu Arg Glu
85 90 95

aca gaa caa ttc cta aat caa aga ctt aat aca gac act ctt gcc cgt 336

	Thr	Glu	Gln	Phe 100	Leu	Asn	Gln	Arg	Leu 105	Asn	Thr	Asp	Thr	Leu 110	Ala	Arg	
5	gta Val	aat Asn	gcg Ala 115	gaa Glu	ttg Leu	gaa Glu	Gly ggg	ctg Leu 120	caa Gln	gcg Ala	aat Asn	ata Ile	agg Arg 125	gag Glu	ttt Phe	aat Asn	384
10	caa Gln	caa Gln 130	gta Val	gat Asp	aat Asn	ttt Phe	tta Leu 135	aat Asn	cct Pro	act Thr	caa Gln	aac Asn 140	cct Pro	gtt Val	cct Pro	tta Leu	432
	tca Ser 145	ata Ile	act Thr	tct Ser	tca Ser	gtt Val 150	aat Asn	aca Thr	atg Met	cag Gln	caa Gln 155	tta Leu	ttt Phe	cta Leu	aat Asn	aga Arg 160	480
15	tta Leu	ccc Pro	cag Gln	ttc Phe	cgt Arg 165	gtg Val	caa Gln	gga Gly	tac Tyr	caa Gln 170	ctg Leu	tta Leu	tta Leu	tta Leu	cct Pro 175	tta Leu	528
20	ttt Phe	gca Ala	cag Gln	gca Ala 180	gcc Ala	aat Asn	atg Met	cat His	ctt Leu 185	tct Ser	ttt Phe	att Ile	aga Arg	gat Asp 190	gtt Val	gtt Val	576
25	ctc Leu	aat Asn	gca Ala 195	gat Asp	gaa Glu	tgg Trp	gga Gly	att Ile 200	tca Ser	gca Ala	gca Ala	aca Thr	tta Leu 205	cgt Arg	acg Thr	tat Tyr	624
30	caa Gln	aat Asn 210	tat Tyr	ctg Leu	aaa Lys	aat Asn	tat Tyr 215	aca Thr	aca Thr	gag Glu	tac Tyr	tct Ser 220	aat Asn	tat Tyr	tgt Cys	ata Ile	672
	aat Asn 225	acg Thr	tat Tyr	caa Gln	act Thr	gcg Ala 230	ttt Phe	aga Arg	ggt Gly	tta Leu	aac Asn 235	acc Thr	cgt Arg	tta Leu	cac His	gat Asp 240	720
35	atg Met	tta Leu	gaa Glu	ttt Phe	aga Arg 245	aca Thr	tat Tyr	atg Met	ttt Phe	tta Leu 250	aat Asn	gta Val	ttt Phe	gaa Glu	tat Tyr 255	gta Val	768
40	tct Ser	atc Ile	tgg Trp	tcg Ser 260	ttg Leu	ttt Phe	aaa Lys	tat Tyr	caa Gln 265	agc Ser	ctt Leu	cta Leu	gta Val	tct Ser 270	tct Ser	ggc Gly	816
45	gct Ala	aat Asn	tta Leu 275	tat Tyr	gca Ala	agc Ser	ggt Gly	agt Ser 280	gga Gly	cca Pro	cag Gln	cag Gln	act Thr 285	caa Gln	tca Ser	ttt Phe	864
50	act Thr	tca Ser 290	Gl'n	gac Asp	tgg Trp	cca Pro	ttt Phe 295	tta Leu	tat Tyr	tct Ser	ctt Leu	ttc Phe 300	Gln	gtt Val	aat Asn	tca Ser	912
	aat Asn 305	tat Tyr	gtg Val	tta Leu	aat Asn	ggc Gly 310	ttt Phe	agt Ser	ggc Gly	gct Ala	aga Arg 315	ctt Leu	acg Thr	cag Gln	act Thr	ttc Phe 320	960
55	cct Pro	aat Asn	att Ile	ggt Gly	ggt Gly	tta Leu	cct Pro	ggt Gly	act Thr	act Thr	aca Thr	act Thr	cac His	gca Ala	ttg Leu	ctt Leu	100

- 3 -

					325					330					335		
, 5	gcg Ala	gca Ala	agg Arg	gtc Val 340	aat Asn	tac Tyr	agt Ser	gga Gly	gga Gly 345	gtt Val	tcg Ser	tct Ser	ggt Gly	gat Asp 350	ata Ile	ggc Gly	1056
	gct Ala	gtg Val	ttt Phe 355	aat Asn	caa Gln	aat Asn	ttt Phe	agt Ser 360	tgt Cys	agc Ser	aca Thr	ttt Phe	ctc Leu 365	cca Pro	cct Pro	ttg Leu	1104
10	tta Leu	aca Thr 370	cca Pro	ttt Phe	gtt Val	agg Arg	agt Ser 375	tgg Trp	cta Leu	gat Asp	tca Ser	ggt Gly 380	tca Ser	gat Asp	cga Arg	gly ggg	1152
15	ggt Gly 385	gtt Val	aat Asn	acc Thr	gtt Val	aca Thr 390	aat Asn	tgg Trp	caa Gln	aca Thr	gaa Glu 395	tcg Ser	ttt Phe	gag Glu	tca Ser	act Thr 400	1200
20	tta Leu	ggt Gly	tta Leu	agg Arg	tgt Cys 405	ggt Gly	gct Ala	ttt Phe	aca Thr	gct Ala 410	cgt Arg	ggt Gly	aat Asn	tca Ser	aac Asn 415	tat Tyr	1248
25	ttc Phe	cca Pro	gat Asp	tat Tyr 420	ttt Phe	atc Ile	cgt Arg	aat Asn	att Ile 425	tca Ser	gga Gly	gtt Val	cct Pro	tta Leu 430	gtt Val	gtt Val	1296
30	aga Arg	aat Asn	gaa Glu 435	gat Asp	tta Leu	aga Arg	aga Arg	ccg Pro 440	tta Leu	cac His	tat Tyr	aat Asn	gaa Glu 445	ata Ile	aga Arg	aat Asn	1344
30	ata Ile	gaa Glu 450	agt Ser	cct Pro	tca Ser	gga Gly	aca Thr 455	cct Pro	ggt Gly	gga Gly	tta Leu	cga Arg 460	gct Ala	tat Tyr	atg Met	gta Val	1392
35	tct Ser 465	gtg Val	cat His	aat Asn	aga Arg	aaa Lys 470	aat Asn	aat Asn	atc Ile	tat Tyr	gcc Ala 475	gtg Val	cat His	gaa Glu	aat Asn	ggt Gly 480	1440
40	act Thr	atg Met	att Ile	cat His	tta Leu 485	gcg Ala	ccg Pro	gaa Glu	gat Asp	tat Tyr 490	aca Thr	gga Gly	ttc Phe	acc Thr	ata Ile 495	tcg Ser	1488
45	ccg Pro	ata Ile	cat His	gca Ala 500	act Thr	caa Gln	gtg Val	aat Asn	aat Asn 505	caa Gln	acg Thr	cga Arg	aca Thr	ttt Phe 510	att Ile	tct Ser	1536
	gaa Glu	aaa Lys	ttt Phe 515	gga Gly	aat Asn	caa Gln	ggt Gly	gat Asp 520	tcc Ser	tta Leu	aga Arg	ttt Phe	gaa Glu 525	caa Gln	agc Ser	aac Asn	1584
50	acg Thr	aca Thr 530	gca Ala	cgt Arg	tat Tyr	aca Thr	ctt Leu 535	aga Arg	gga Gly	aat Asn	gga Gly	aat Asn 540	agt Ser	tac Tyr	aat Asn	ctt Leu	1632
55	tat Tyr 545	tta Leu	aga Arg	gta Val	tct Ser	tca Ser 550	cta Leu	gga Gly	aat Asn	tcc Ser	act Thr 555	att Ile	cga Arg	gtt Val	act Thr	ata Ile 560	1680

	aac Asn	ggt Gly	agg Arg	gtt Val	tat Tyr 565	Thr	gct Ala	tca Ser	aat Asn	gtt Val 570	aat Asn	act Thr	act Thr	aca Thr	aat Asn 575	aac Asn	1728
5	gat Asp	gga Gly	gtt Val	aat Asn 580	gat Asp	aat Asn	ggc Gly	gct Ala	cgt Arg 585	ttt Phe	tta Leu	gat Asp	att Ile	aat Asn 590	atg Met	ggt Gly	1770
10	aat Asn	gta Val	gta Val 595	gca Ala	agt Ser	gat Asp	aat Asn	act Thr 600	aat Asn	gta Val	ccg Pro	tta Leu	gat Asp 605	ata Ile	aat Asn	gtg Val	182
15	aca Thr	ttt Phe 610	aac Asn	tcc Ser	ggt Gly	Thr	caa Gln 615	Phe	gag Glu	ctt Leu	atg Met	aat Asn 620	att Ile	atg Met	ttt Phe	gtt Val	187
20 .	cca Pro 625	act Thr	aat Asn	ctt Leu	Pro	cca Pro 630	ata Ile	tat Tyr	taa								189
25	<211 <212	0> 2 L> 63 2> PI B> Ba		lus 1	thur:	i n gi	ensi	5									
30	<400 Met	0> 2 Asn	Asn	Val	Leu 5	Asn	Asn	Gly	Arg	Thr 10	Thr	Ile	Cys	Asp	Ala 15	Tyr	
30	Asn	Val	Val	Ala 20		Asp	Pro	Phe	Ser 25	Phe	Glu	His	Lys	Ser 30	Leu	Asp	
			35	Lys				40	•				45			Leu	
35		50					55					60				Lys	
	65					70					75					Leu 80	
40					85					90					95		
				100			•		105					110		Arg	
	Val	Asn	Ala 115	Glu	Leu	Glu	Gly	Leu 120	Gln	Ala	Asn	Ile	Arg 125	Glu	Phe	Asn	
45	Gln	Gln 130	Val	Asp	Asn	Phe	Leu 135	Asn	Pro	Thr	Gln	Asn 140	Pro	Val	Pro	Leu	
	Ser 145	Ile	Thr	Ser	Ser	Val 150	Asn	Thr	Met	Gln	Gln 155		Phe	Leu	Asn	Arg 160	
50	Leu	Pro	Gln	Phe	Arg 165	Val		Gly	Tyr	Gln 170	Leu		Leu	Leu	Pro 175	Leu	
50	Phe	Ala	Gln	Ala 180			Met	His	Leu 185	Ser		Ile	Arg	Asp	Val	Val	
	Leu	Asn	Ala 195	Asp	Glu	Trp	Gly	Ile 200	Ser		Ala	Thr	Leu 205	Arg		Tyr	•
55	Gln	_	Tyr	Leu	Lys	Asn	Tyr 215			Glu	Tyr	Ser 220	Asn		Cys	Ile	
	_	210	(The arr-	~1 ~	mb	- ות		A **	G1 v	T.011	Nan			T,e11	His	Asp	

```
230
                                           235
    225
    Met Leu Glu Phe Arg Thr Tyr Met Phe Leu Asn Val Phe Glu Tyr Val
                                     250
                 245
    Ser Ile Trp Ser Leu Phe Lys Tyr Gln Ser Leu Leu Val Ser Ser Gly
               260
                                   265
    Ala Asn Leu Tyr Ala Ser Gly Ser Gly Pro Gln Gln Thr Gln Ser Phe
                               280
    Thr Ser Gln Asp Trp Pro Phe Leu Tyr Ser Leu Phe Gln Val Asn Ser
                           295
    Asn Tyr Val Leu Asn Gly Phe Ser Gly Ala Arg Leu Thr Gln Thr Phe
                       310
                                           315
    Pro Asn Ile Gly Gly Leu Pro Gly Thr Thr Thr His Ala Leu Leu
                                       330
                   325
   Ala Ala Arg Val Asn Tyr Ser Gly Gly Val Ser Ser Gly Asp Ile Gly
                                                       350
15
               340
                                   345
   Ala Val Phe Asn Gln Asn Phe Ser Cys Ser Thr Phe Leu Pro Pro Leu
                               360
                                                   365
    Leu Thr Pro Phe Val Arg Ser Trp Leu Asp Ser Gly Ser Asp Arg Gly
                           375
                                               380
   Gly Val Asn Thr Val Thr Asn Trp Gln Thr Glu Ser Phe Glu Ser Thr
                       390
                                           395
   Leu Gly Leu Arg Cys Gly Ala Phe Thr Ala Arg Gly Asn Ser Asn Tyr
                   405
                                       410
   Phe Pro Asp Tyr Phe Ile Arg Asn Ile Ser Gly Val Pro Leu Val Val
                                   425
   Arg Asn Glu Asp Leu Arg Arg Pro Leu His Tyr Asn Glu Ile Arg Asn
                               440
         435
    Ile Glu Ser Pro Ser Gly Thr Pro Gly Gly Leu Arg Ala Tyr Met Val
                           455
   Ser Val His Asn Arg Lys Asn Asn Ile Tyr Ala Val His Glu Asn Gly
                                         475
                       470
   Thr Met Ile His Leu Ala Pro Glu Asp Tyr Thr Gly Phe Thr Ile Ser
                   485
                                       490
   Pro Ile His Ala Thr Gln Val Asn Asn Gln Thr Arg Thr Phe Ile Ser
35
               500
                                   505
   Glu Lys Phe Gly Asn Gln Gly Asp Ser Leu Arg Phe Glu Gln Ser Asn
                               520
          515
   Thr Thr Ala Arg Tyr Thr Leu Arg Gly Asn Gly Asn Ser Tyr Asn Leu
                                               540
                          535
   Tyr Leu Arg Val Ser Ser Leu Gly Asn Ser Thr Ile Arg Val Thr Ile
                                           555
                       550
   Asn Gly Arg Val Tyr Thr Ala Ser Asn Val Asn Thr Thr Thr Asn Asn
                                       570
                   565
   Asp Gly Val Asn Asp Asn Gly Ala Arg Phe Leu Asp Ile Asn Met Gly
               580
                                   585
   Asn Val Val Ala Ser Asp Asn Thr Asn Val Pro Leu Asp Ile Asn Val
                               600
                                                  605
   Thr Phe Asn Ser Gly Thr Gln Phe Glu Leu Met Asn Ile Met Phe Val
                          615
   Pro Thr Asn Leu Pro Pro Ile Tyr
```

^{55 &}lt;210> 3 <211> 729 <212> DNA

<213> Bacillus thuringiensis

<400> 3 ttcgctagga accaagccat ttctagatta gaaggactaa gcaatcttta tcaaatttac 60 5 gcagaatctt ttagagagtg ggaagcagat cctactaatc cagcattaag agaagagatg 120 cgtattcaat tcaatgacat gaacagtgcc cttacaaccg ctattcctct tttggcagtt 180 caaaattatc aagttcctct tttatcagta tatgttcaag ctgcaaattt acatttatca 240 gttttgagag atgtttcagt gtttggacaa aggtggggat ttgatgccgc gactatcaat 300 agtegttata atgatttaac taggettatt ggcaactata cagattatge tgtgegetgg 360 10 tacaatacgg gattagagcg tgtatgggga ccggattcta gagattgggt aaggtataat 420 caatttagaa gagagctaac acttactgta ttagatateg ttgctctatt ctcaaattat 480 gatagtcgaa ggtatccaat tcgaacagtt tcccaattaa caagagaaat ttatacgaac 540 ccagtattag aaaattttga tggtagtttt cgtggaatgg ctcagagaat agaacagaat 600 attaggcaac cacatettat ggatateett aatagtataa ecatttatae tgatgtgeat 660 agaggettta attattggte agggeateaa ataacagett eteetgtagg gtttteagga 720 ccagaattc <210> 4 <211> 243 <212> PRT <213> Bacillus thuringiensis <400> 4 Phe Ala Arg Asn Gln Ala Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu

Tyr Gln Ile Tyr Ala Glu Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr

Asn Pro Ala Leu Arg Glu Glu Met Arg Ile Gln Phe Asn Asp Met Asn 35 40 45

Ser Ala Leu Thr Thr Ala Ile Pro Leu Leu Ala Val Gln Asn Tyr Gln
55 60

Val Pro Leu Leu Ser Val Tyr Val Gln Ala Ala Asn Leu His Leu Ser 65 70 75 80

40 Val Leu Arg Asp Val Ser Val Phe Gly Gln Arg Trp Gly Phe Asp Ala 85 90 95

Ala Thr Ile Asn Ser Arg Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn 100 105 110

Tyr Thr Asp Tyr Ala Val Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val

Trp Gly Pro Asp Ser Arg Asp Trp Val Arg Tyr Asn Gln Phe Arg Arg

Glu Leu Thr Leu Thr Val Leu Asp Ile Val Ala Leu Phe Ser Asn Tyr 145 150 155 160

Asp Ser Arg Arg Tyr Pro Ile Arg Thr Val Ser Gln Leu Thr Arg Glu 165 170 175

-7-

```
Ile Tyr Thr Asn Pro Val Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly
    Met Ala Gln Arg Ile Glu Gln Asn Ile Arg Gln Pro His Leu Met Asp
                             . 200
    Ile Leu Asn Ser Ile Thr Ile Tyr Thr Asp Val His Arg Gly Phe Asn
                            215
    Tyr Trp Ser Gly His Gln Ile Thr Ala Ser Pro Val Gly Phe Ser Gly
                                            235
    Pro Glu Phe
15
    <210> 5
    <211> 1959
    <212> DNA
20 <213> Bacillus thuringiensis
    gaaaatgaga atgaaattat aaatgcctta tcgattccag ctgtatcgaa tcattccgca 60
    caaatggatc tatcgctaga tgctcgtatt gaggattctt tgtgtatagc cgaggggaat 120
  aatatcaatc cacttgttag cgcatcaaca gtccaaacgg gtataaacat agctggtaga 180
   atattgggcg tattaggtgt gccgtttgct ggacaactag ctagttttta tagttttctt 240
   qttggggaat tatggcctag tggtagagat ccatgggaaa ttttcctgga atatgtagaa 300
   caacttataa gacaacaagt aacagaaaat actaggaata cggctattgc tcgattagaa 360
   ggtctaggaa gaggctatag atcttaccag caggctcttg aaacttggtt agataaccga 420
30 aatgatgcaa gatcaagaag cattattett gagegetatg ttgetttaga aettgacatt 480
   actactgcta taccgctttt cagaatacga aatgaagaag ttccattatt aatggtatat 540
   gctcaagctg caaatttaca cctattatta ttgagagacg catccctttt tggtagtgaa 600
   tgggggatgg catcttccga tgttaaccaa tattaccagg aacaaatcag atatacagag 660
   gaatattcta accattgcgt acaatggtat aatacagggc taaataactt aagagggaca 720
35 aatgetgaaa gttggttgeg gtataateaa tteegtagag acetaaegtt aggggtatta 780
   gatttagtag ccctattccc aagctatgat actcgcactt atccaatcaa tacgagtgct 840
   cagttaacaa gagaaattta tacagatcca attgggagaa caaatgcacc ttcaggattt 900
   gcaagtacga attggtttaa taataatgca ccatcgtttt ctgccataga ggctgccatt 960
   ttcaggcctc cgcatctact tgattttcca gaacaactta caatttacag tgcatcaagc 1020
   cgttggagta gcactcaaca tatgaattat tgggtgggac ataggcttaa cttccgccca 1080
   ataggaggga cattaaatac ctcaacacaa ggacttacta ataatacttc aattaatcct 1140
   gtaacattac attacgtttc gtctcgtgac gtttatagaa cagaatcaaa tgcagggaca 1200
   aatatactat ttactactcc tgtgaatgga gtaccttggg ctagatttaa ttttataacc 1260
   ctcagaatat ttatgaaaga ggcgccacta cctacagtca accgtatcag ggagttggga 1320
45 ttcaattatt tgattcagaa actgaattac caccagaaac aacagaacga ccaaattatg 1380
   aatcatatag tcatagatat ctcatataga ctaatcatag gaaacacttt gagagcacca 1440
   gtctattctt ggacgcatcg tagtgcagat cgtacgaata cgattggacc aaatagaatt 1500
   actcaaattc ctgcagtgaa gggaagattt ctttttaatg gttctgtgat ttcaggacca 1560
   ggatttactg gtggagacgt agttagattg aataggaata atggtaatat ccaaaataga 1620
   gggtatattg aagttccaat tcaattcacg tcgacatcta ccagatatcg agttcgagta 1680
   cgttatgctt ctgtaacctc gattgagctc aatgttaatt tgggcaattc atcaattttt 1740
   acgaacacat taccagcaac agctgcatca ttagataatc tacaatcagg ggattttggt 1800
   tatgttgaaa tcaacaatgc ttttacatcc gcaacaggta atatagtagg tgctagaaat 1860
   tttagtgcaa atgcagaagt aataatagac agatttgaat ttatcccagt tactgcaacc 1920
```

55 ttcgaggtag aatatgattt agaaagagca caaaaggcg

5	<212	> 65 > PF	?T	.us t	huri	ngie	nsis	3								
,	<400 Glu 1)> 6 Asn	Glu	Asn	Glu 5	Ile	Ile	Asn	Ala	Leu 10	Ser	Ile	Pro	Ala	Val 15	Ser
10	Asn	His	Ser	Ala 20	Gln	Met	Asp	Leu	Ser 25	Leu	Asp	Ala	Arg	Ile 30	Glu	Asp
	Ser	Leu	Cys 35	Ile	Ala	Glu	Gly	Asn 40	Asn	Ile	Asn	Pro	Leu 45	Val	Ser	Ala
15	Ser	Thr 50	Val	Gln	Thr	Gly	Ile 55	Asn	Ile	Ala	Gly	Arg 60	Ile	Leu	Gly	Val
20	Leu 65	Gly	Val	Pro	Phe	Ala 70	Gly	Gln	Leu	Ala	Ser 75	Phe	Tyr	Ser	Phe	Leu 80
	Val	Gly	Glu	Leu	Trp 85	Pro	Ser	Gly	Arg	Asp 90	Pro	Trp	Glu	Ile	Phe 95	Leu
25	Glu	Tyr	Val	Glu 100	Gln	Leu	Ile	Arg	Gln 105	Gln	Val	Thr	Glu	Asn 110	Thr	Arg
	Asn	Thr	Ala 115		Ala	Arg	Leu	Glu 120	Gly	Leu	Gly	Arg	Gly 125	Tyr	Arg	Ser
30	Tyr	Gln 130		Ala	Leu	Glu	Thr 135	Trp	Leu	Asp	Asn	Arg 140	Asn	Asp	Ala	Arg
35	Ser 145		Ser	Ile	Ile	Leu 150	Glu	Arg	Tyr	Val	Ala 155	Leu	Glu	Leu	Asp	Ile 160
	Thr	Thr	Ala	Ile	Pro 165	Leu	Phe	Arg	Ile	Arg 170	Asn	Glu	Glu	Val	Pro 175	Leu
40	Leu	Met	Val	Tyr 180	Ala	Gln	Ala	Ala	Asn 185	Leu	His	Leu	Leu	Leu 190	Leu	Arg
	Asp	Ala	Ser 195		Phe	Gly	Ser	Glu 200	Trp	Gly	Met	Ala	Ser 205	Ser	Asp	Val
45	Asn	Gln 210		Tyr	Gln	Glu	Gln 215		Arg	Tyr	Thr	Glu 220	Glu	Туг	Ser	Asr
50	His 225		Val	. Gln	Trp	Tyr 230	Asn	Thr	Gly	Leu	Asn 235	Asn	Leu	Arg	Gly	Th: 240
	Asn	Ala	Glu	. Ser	Trp 245		Arg	Туг	Asn	Gln 250	Phe	Arg	Arg	Asp	255	Thi
55	Leu	ı Gly	val	. Leu	Asp	Leu	Val	. Ala	Leu	Phe	Pro	Ser	туг	Asp 270	Thr	Arg

,	Thr	Tyr	Pro 275	Ile	Asn	Thr	Ser	Ala 280	Gln	Leu	Thr	Arg	Glu 285	Ile	Tyr	Thr
5	Asp	Pro 290	Ile	Gly	Arg	Thr	Asn 295	Ala	Pro	Ser	Gly	Phe 300	Ala	Ser	Thr	Asn
	Trp 305	Phe	Asn	Asn	Asn	Ala 310	Pro	ser	Phe	Ser	Ala 315	Ile	Glu	Ala	Ala	Ile 320
10	Phe	Arg	Pro	Pro	His 325	Leu	Leu	Asp	Phe	Pro 330	Glu	Gln	Leu	Thr	Ile 335	Tyr
	Ser	Ala	Ser	Ser 340	Arg	Trp	Ser	Ser	Thr 345	Gln	His	Met	Asn	Tyr 350	Trp	Val
15	Gly	His	Arg 355	Leu	Asn	Phe	Arg	Pro 360	Ile	Gly	Gly	Thr	Leu 365	Asņ	Thr	Ser
20	Thr	Gln 370	Gly	Leu	Thr	Asn	Asn 3 7 5	Thr	Ser	Ile	Asn	Pro 380	Val	Thr	Leu	His
	Tyr 385		Ser	Ser	Arg	Asp 390	Val	туг	Arg	Thr	Glu 395	Ser	Asn	Ala	Gly	Thr 400
25	Asn	Ile	Leu	Phe	Thr 405	Thr	Pro	Val	Asn	Gly 410	Val	Pro	Trp	Ala	Arg 415	Phe
	Asn	Phe	Ile	Thr 420		Arg	Ile	Phe	Met 425	. Lys	Glu	Ala	Pro	Leu 430	Pro	Thr
30	Val	Asn	Arg 435		Arg	Glu	Leu	Gly 440	Phe	Asn	Tyr	Leu	11e 445	Gln	Lys	Leu
35	Asn	Tyr 450		Gln	Lys	Gln	Gln 455	Asn	Asp	Gln	Ile	Met 460	Asn	His	Ile	Val
	Ile 465		Ile	Ser	Tyr	Arg 470		Ile	Ile	Gly	Asn 475	Thr	Leu	. Arg	Ala	Pro 480
40	Val	туг	Ser	Trp	Thr 485		Arg	ser	Ala	Asp 490	Arg	Thr	Asn	Thr	11e 495	Gly
45	Pro	Asn	Arg	11e 500		Gln	Ile	Pro	Ala 505	Val	Lys	Gly	Arg	Phe 510	Leu	Phe
	Asn	Gly	Ser 515	Val	Ile	Ser	Gly	Pro 520	Gly	Phe	Thr	Gly	Gly 525	Asp	Val	. Val
50	Arg	530		Arg	Asn	Asn	Gl ₃ 535	Asn	Ile	Glr	a Asr	1 Arg	Gly	Туг	· Ile	: Glu
	Val		ıle	Gln	Phe	Thr 550		Thr	Ser	Thi	555	Туз	Arg	Val	Arg	Val 560
55	Arg	туг	: Ala	Ser	Val		Seı	: Ile	Glu	Leu 570	a Asr	·Va]	Asr	Lev	Gly 575	Asr

PCT/US00/25361

- 10 -

WO 01/19859

Ser Ser Ile Phe Thr Asn Thr Leu Pro Ala Thr Ala Ala Ser Leu Asp 585 Asn Leu Gln Ser Gly Asp Phe Gly Tyr Val Glu Ile Asn Asn Ala Phe 600 Thr Ser Ala Thr Gly Asn Ile Val Gly Ala Arg Asn Phe Ser Ala Asn Ala Glu Val Ile Ile Asp Arg Phe Glu Phe Ile Pro Val Thr Ala Thr Phe Glu Val Glu Tyr Asp Leu Glu Arg Ala Gln Lys Ala 645 15 <210> 7 <211> 328 <212> DNA <213> Bacillus thuringiensis <400> 7 ctttacagga agattaccac aaagttatta tatcgtttcc gttatgcttc gggagcaaat 60 aggagtggtt cattaagtta ttcacagcaa acttcgtatg taatttcatt tccaaaaact 120 25 atggacgcag gtgaaccact aacatetegt tegttegett ttacaacaac egtcacteca 180 atagcettta cacgagetca agaagaattt gatttataca tecaacagaa tgtttatata 240 gatagagttg aatttatccc agtagatgca acatttgagg caaaatctga tttagaaaga 300 gcgaaaaagg cggtgaatgc cttgttta <210> 8 <211> 109 <212> PRT <213> Bacillus thuringiensis <400> 8 Leu Tyr Arg Lys Ile Thr Thr Lys Leu Leu Tyr Arg Phe Arg Tyr Ala Ser Gly Ala Asn Arg Ser Gly Ser Leu Ser Tyr Ser Gln Gln Thr Ser Tyr Val Ile Ser Phe Pro Lys Thr Met Asp Ala Gly Glu Pro Leu Thr 45 Ser Arg Ser Phe Ala Phe Thr Thr Thr Val Thr Pro Ile Ala Phe Thr Arg Ala Gln Glu Glu Phe Asp Leu Tyr Ile Gln Gln Asn Val Tyr Ile Asp Arg Val Glu Phe Ile Pro Val Asp Ala Thr Phe Glu Ala Lys Ser 55 Asp Leu Glu Arg Ala Lys Lys Ala Val Asn Ala Leu Phe

- 11 -

```
<210> 9
   <211> 340
    <212> DNA
   <213> Bacillus thuringiensis
   ttacgagtaa cctttacagg aagattacca caaagttatt atatacgttt ccgttatgct 60
   tcgggagcaa ataggagtgg ttcattaagt tattcacagc aaacttcgta tgtaatttca 120
   tttccaaaaa ctatggacgc aggtgaacca ctaacatctc gttcgttcgc ttttacaaca 180
    accgtcactc caataacctt tacacgagct caagaagaat ttgatttata catccaacag 240
   aatgtttata tagatagagt tgaatttatc ccagtagatg caacatttga ggcaaaatct 300
   gatttagaaa gagcgaaaaa ggcggtgaat gccttgttta
15
    <210> 10
    <211> 113
    <212> PRT
    <213> Bacillus thuringiensis
20
    <400> 10
    Leu Arg Val Thr Phe Thr Gly Arg Leu Pro Gln Ser Tyr Tyr Ile Arg
     1
   Phe Arg Tyr Ala Ser Gly Ala Asn Arg Ser Gly Ser Leu Ser Tyr Ser
    Gln Gln Thr Ser Tyr Val Ile Ser Phe Pro Lys Thr Met Asp Ala Gly
30
    Glu Pro Leu Thr Ser Arg Ser Phe Ala Phe Thr Thr Thr Val Thr Pro
    Ile Thr Phe Thr Arg Ala Gln Glu Glu Phe Asp Leu Tyr Ile Gln Gln
35
   Asn Val Tyr Ile Asp Arg Val Glu Phe Ile Pro Val Asp Ala Thr Phe
   Glu Ala Lys Ser Asp Leu Glu Arg Ala Lys Lys Ala Val Asn Ala Leu
    Phe
45
   <210> 11
    <211> 306
    <212> DNA
   <213> Bacillus thuringiensis
   <400> 11
   gtatcgcgtg agatcgtatg ctctacgaca gatttacaat tctatacgaa tattaatgga 60
   actactatta atattggtaa tttctcgagc actatggaca gtggggatga tttacagtac 120
55 ggaagattca gggttgcagg ttttactact ccatttacct tttcagatgc aaacagcaca 180
   ttcacaatag gtgcttttgg cttctctcca aacaacgaag tttatataga tcgaattgaa 240
    tttgtcccgg cagaagtaac atttgaggca gaatatgatt tagagaaagc tcagaaagcg 300
```

WO 01/19859 PCT/US00/25361

- 12 -

306 gtgaat <210> 12 5 <211> 102 <212> PRT <213> Bacillus thuringiensis <400> 12 Val Ser Arg Glu Ile Val Cys Ser Thr Thr Asp Leu Gln Phe Tyr Thr Asn Ile Asn Gly Thr Thr Ile Asn Ile Gly Asn Phe Ser Ser Thr Met 15 Asp Ser Gly Asp Asp Leu Gln Tyr Gly Arg Phe Arg Val Ala Gly Phe Thr Thr Pro Phe Thr Phe Ser Asp Ala Asn Ser Thr Phe Thr Ile Gly 20 Ala Phe Gly Phe Ser Pro Asn Asn Glu Val Tyr Ile Asp Arg Ile Glu 25 Phe Val Pro Ala Glu Val Thr Phe Glu Ala Glu Tyr Asp Leu Glu Lys Ala Gln Lys Ala Val Asn 100 30 <210> 13 <211> 279 <212> DNA 35 <213> Bacillus thuringiensis <400> 13 caattccata catcaattga cggaagacct attaatcagg ggaatttttc agcaactatg 60 agtagtggga gtaatttaca gtccggaagc tttaggactg taggttttac tactccgttt 120 40 aacttttcaa atggatcaag tgtatttacg ttaagtgctc atgtcttcaa ttcaggcaat 180 gaagtttata tagatcgaat tgaatttatt ccggcagaag taacctttga ggcagaatat 240 gatttagaaa gagcacaaaa ggcggtgaat gagctgttt 45 <210> 14 <211> 93 <212> PRT <213> Bacillus thuringiensis 50 <400> 14 Gln Phe His Thr Ser Ile Asp Gly Arg Pro Ile Asn Gln Gly Asn Phe Ser Ala Thr Met Ser Ser Gly Ser Asn Leu Gln Ser Gly Ser Phe Arg 55 Thr Val Gly Phe Thr Thr Pro Phe Asn Phe Ser Asn Gly Ser Ser Val

- 13 -

PCT/US00/25361

			35					40					43				
	Phe	Thr 50	Leu	Ser	Ala	His	Val 55	Phe	Asn	Ser	Gly	Asn 60	Glu	Val	Tyr	Ile	
5	Asp 65	Arg	Ile	Glu	Phe	Ile 70	Pro	Ala	Glu	Val	Thr 75	Phe	Glu	Ala	Glu	Tyr 80	
10	Asp	Leu	Glu	Arg	Ala 85	Gln	Lys	Ala	Val	Asn 90	Glu	Leu	Phe				
15	<212 <212	0> 15 1> 35 2> Di 3> Ba	97 NA	lus t	huri	ingie	ensi	3									
20	agga atga tcta ttca	egtgi acgad caaaq	ggt t taa a cag a gaa o	acatt attta ctate	acto acaat gaata tagti	gc ac tt ti ag ac tt ti	ccaci ttcac ggggg ttcac	tatca cgaga gtaal aatgo	a caa a ato t tta c qca	aagat caatg agaat aaagt	atc ggaa cctg taca	gcgt cttc gaaa ttca	taaga etgta actti acati	aat aaa tag (tegei teaag gaetg gtaei	ggagat tatget ggtaat geagga teagge	180 240 300
25	gag	gcag	atc a aat (aggaa ctgat	agttt cttgg	ta ta ga aa	ataga agag	atcga cgcaa	a ati	ggcgg	errg 3		ggc	aga .	agta	acattc	397
30	<213	0> 10 1> 13 2> Pl 3> Ba	32 RT	lus 1	thuri	ingi	ensi	S									
35	<40 Arg 1	0> 10 Thr	6 Arg	Phe	Tyr 5	Arg	Trp	Asp	Ile	Leu 10	Arg	Arg	Thr	Asn	Val 15	Gly	
	Ser	Phe	Gly	Asp 20	Met	Arg	Val	Asn	Ile 25	Thr	Ala	Pro	Leu	Ser 30	Gln	Arg	
40	Tyr	Arg	Val 35	Arg	Ile	Arg	Tyr	Ala 40	Ser	Thr	Thr	Asp	Leu 45	Gln	Phe	Phe	
	Thr	Arg 50	Ile	Asn	Gly	Thr	Ser 55	Val	Asn	Gln	Gly	Asn 60	Phe	Gln	Arg	Thr	
45	Met 65		Arg	Gly	Gly	Asn 70	Leu	Glu	Ser	Gly	Asn 75	Phe	Arg	Thr	Ala	Gly 80	
50	Phe	Ser	Thr	Pro	Phe 85	Ser	Phe	Phe	Lys	Cys 90	Ala	Lys	Tyr	Ile	His 95	Ile	
	Gly	Tyr	Ser	Gly 100	Phe	Ser	Asn	Gln	Glu 105	Val	Tyr	Ile	Asp	Arg 110	Ile	Glu	
55	Phe	Val	Pro	Ala	Glu	Val		Phe		Ala	Glu		Asp 125		Glu	Arg	

```
Ala Gln Lys Ala
       130
   <210> 17
   <211> 123
   <212> DNA
   <213> Bacillus thuringiensis
10 <400> 17
   ataatctaca atcaggggga ttttggttat gttgaaatca acaatgcttt tacatccgca 60
   acaggtaata tagtaggtgc tagaaatttt acgtgcaaat gcagaagtaa taatagacag 120
15
   <210> 18
   <211> 41
   <212> PRT
   <213> Bacillus thuringiensis
    <400> 18
   Ile Ile Tyr Asn Gln Gly Asp Phe Gly Tyr Val Glu Ile Asn Asn Ala
25 Phe Thr Ser Ala Thr Gly Asn Ile Val Gly Ala Arg Asn Phe Thr Cys
    Lys Cys Arg Ser Asn Asn Arg Gln Ile
30
    <210> 19
    <211> 192
    <212> DNA
35 <213> Bacillus thuringiensis
    <400> 19
    agttattata tacgtttccg ttatgcttcc gtagctaata ggagtggtat atttagctat 60
    tcacagccaa cttcatatgg aatttccttt ccaaaaacta tggatgcaga tgaatcatta 120
40 acatetegtt catttgcact tgctacactt gctacacege taacetttag aaggcaagaa 180
    gaattaaatc ta
    <210> 20
45 <211> 64
    <212> PRT
    <213> Bacillus thuringiensis
    <400> 20 '
   Ser Tyr Tyr Ile Arg Phe Arg Tyr Ala Ser Val Ala Asn Arg Ser Gly
    Ile Phe Ser Tyr Ser Gln Pro Thr Ser Tyr Gly Ile Ser Phe Pro Lys
                 20
```

Thr Met Asp Ala Asp Glu Ser Leu Thr Ser Arg Ser Phe Ala Leu Ala

5

Thr Leu Ala Thr Pro Leu Thr Phe Arg Arg Gln Glu Glu Leu Asn Leu

<210> 21 10 <211> 3507 <212> DNA <213> Bacillus thuringiensis <220> 15 <221> CDS <222> (1)..(3507) <400> 21 atg gag ata aat aat cag aac caa tgc ata cca tat aat tgc tta agt 48 Met Glu Ile Asn Asn Gln Asn Gln Cys Ile Pro Tyr Asn Cys Leu Ser 10 aat cct gag gaa gta ttt ttg gat ggg gag agg ata tta cct gat atc 96 Asn Pro Glu Glu Val Phe Leu Asp Gly Glu Arg Ile Leu Pro Asp Ile 25 . gat cca ctc gaa gtt tct ttg tcg ctt ttg caa ttt ctt ttg aat aac 144 Asp Pro Leu Glu Val Ser Leu Ser Leu Leu Gln Phe Leu Leu Asn Asn 35 ttt gtt cca ggg ggg ggg ttt att tca gga tta ctt gat aaa ata tgg 192 Phe Val Pro Gly Gly Gly Phe Ile Ser Gly Leu Leu Asp Lys Ile Trp 55 35 ggg gct ttg aga cca tct gat tgg gaa tta ttt ctt gca cag att gaa Gly Ala Leu Arg Pro Ser Asp Trp Glu Leu Phe Leu Ala Gln Ile Glu cag ttg att gat cga aga ata gaa aga aca gta aga gca aaa gca atc 288 40 Gln Leu Ile Asp Arg Arg Ile Glu Arg Thr Val Arg Ala Lys Ala Ile gct gaa tta gaa ggt tta ggg aga agt tat caa cta tat gga gag gca 336 Ala Glu Leu Glu Gly Leu Gly Arg Ser Tyr Gln Leu Tyr Gly Glu Ala 100 ttt aaa gag tgg gaa aaa act cca gat aac aca gcg gct cgg tct aga Phe Lys Glu Trp Glu Lys Thr Pro Asp Asn Thr Ala Ala Arg Ser Arg 120 gta act gag aga ttt cgt ata att gat gct caa att gaa gca aat atc 432 . Val Thr Glu Arg Phe Arg Ile Ile Asp Ala Gln Ile Glu Ala Asn Ile 135 130 55 cct tcg ttt cgg gtt tcc gga ttt gaa gtg cca ctt cta ttg gtt tat 480 Pro Ser Phe Arg Val Ser Gly Phe Glu Val Pro Leu Leu Leu Val Tyr 150

5			_	_		ttg Leu			_			_	_		-	-	528
J						gga Gly											576
10		_		_		aga Arg			-		_	_		-	-	-	624
15						tta Leu											672
20						cag Gln 230											720
25						ttc Phe											768
						ttg Leu											816
30						gtc Val											864
35						agg Arg											912
40	_		_		_	tca Ser 310	_		_	_	-						960
45		_	_	_	_	act Thr									_	_	1008
43						gly aaa											1056
50	aat Asn	ggt Gly	gag Glu 355	gga Gly	att Ile	tat Tyr	aga Arg	ata Ile 360	tta Leu	tcg Ser	gaa Glu	cca Pro	ttt Phe 365	tat Tyr	tca Ser	gca Ala	1104
55						agt Ser	_			_	-		-	-		-	1152

	ttt Phe 385	gca Ala	tct Ser	aat Asn	act Thr	act Thr 390	aca Thr	agt Ser	ctg Leu	cca Pro	tct Ser 395	aca Thr	ata Ile	tat Tyr	aga Arg	aat Asn 400	1200
5											ccg Pro						1248
10	gta Val	cca Pro	ccg Pro	cac His 420	agg Arg	gly aaa	tat Tyr	agt Ser	cat His 425	tta Leu	tta Leu	agt Ser	cac His	gtt Val 430	acg Thr	atg Met	1296
15											cat His						1344
	aga Arg	aat Asn 450	aca Thr	att Ile	gat Asp	cca Pro	gat Asp 455	agt Ser	atc Ile	act Thr	caa Gln	att Ile 460	cca Pro	gca Ala	gtt Val	aag Lys	1392
20	gga Gly 465	gcg Ala	tat Tyr	att Ile	ttt Phe	aat Asn 470	agt Ser	cca Pro	gtc Val	att Ile	act Thr 475	Gly 999	cca Pro	gga Gly	cat His	aca Thr 480	1440
25	ggt Gly	gly ggg	gat Asp	ata Ile	ata Ile 485	agg Arg	ttt Phe	aac Asn	cct Pro	aat Asn 490	act Thr	cag Gln	aac Asn	aac Asn	ata Ile 495	aga Arg	1488
30	att Ile	cca Pro	ttt Phe	caa Gln 500	tca Ser	aat Asn	gcg Ala	gta Val	cag Gln 505	cgt Arg	tat Tyr	cga Arg	att Ile	aga Arg 510	atg Met	cgt Arg	1536
35	tat Tyr	gcg Ala	gca Ala 515	gaa Glu	gct Ala	gat Asp	tgt Cys	att Ile 520	tta Leu	gaa Glu	agt Ser	gga Gly	gta Val 525	aac Asn	att Ile	gtt Val	1584
	act Thr	999 Gly 530	gca Ala	gjå aaa	gtc Val	acc Thr	ttt Phe 535	agg Arg	cca Pro	att Ile	cct Pro	att Ile 540	aaa Lys	gct Ala	aca Thr	atg Met	1632
40	act Thr 545	cct Pro	gga Gly	agt Ser	cct Pro	tta Leu 550	aca Thr	tat Tyr	tac Tyr	agc Ser	ttc Phe 555	cag Gln	tat Tyr	gca Ala	gat Asp	tta Leu 560	1680
45 .	aat Asn	ata Ile	aat Asn	ctt Leu	act Thr 565	gcg Ala	ccg Pro	ata Ile	aga Arg	cct Pro 570	aat Asn	aat Asn	ttt Phe	gta Val	tct Ser 575	att Ile	1728
50	aga Arg	cgt Arg	tca Ser	aac Asn 580	caa Gln	cca Pro	gga Gly	aac Asn	ctt Leu 585	tat Tyr	ata Ile	gat Asp	aga Arg	att Ile 590	gaa Glu	ttc Phe	1776
55											cat His						1824
	caa	aag	gcg	gtg	aat	gcg	ctg	ttt	act	tct	tcc	aat	caa	cta	gga	tta	1872

WO 01/19859

	Gln	Lys 610	Ala	Val	Asn	Ala	Leu 615	Phe	Thr	Ser	Ser	Asn 620	Gln	Leu	Gly	Leu	
5	aaa Lys 625	aca Thr	gat Asp	gtg Val	acg Thr	gat Asp 630	tat Tyr	cat His	att Ile	gat Asp	caa Gln 635	gtg Val	tcc Ser	aat Asn	tta Leu	gtt Val 640	1920
10	gcg Ala	tgt Cys	tta Leu	tcg Ser	gat Asp 645	gaa Glu	ttc Phe	tgc Cys	ctg Leu	gat Asp 650	gaa Glu	aag Lys	cga Arg	gaa Glu	ttg Leu 655	tcc Ser	1968
	gag Glu	aaa Lys	gtt Val	aaa Lys 660	cat His	gcg Ala	aag Lys	cga Arg	ctc Leu 665	agt Ser	gat Asp	gag Glu	aga Arg	aat Asn 670	tta Leu	ctc Leu	2016
15	caa Gln	gat Asp	caa Gln 675	aac Asn	ttt Phe	aca Thr	ggc Gly	atc Ile 680	aat Asn	agg Arg	caa Gln	gta Val	gac Asp 685	cgt' Arg	eja aaa	tgg Trp	2064
20	aga Arg	gga Gly 690	agt Ser	acg Thr	gat Asp	att Ile	acc Thr 695	atc Ile	caa Gln	gga Gly	gly ggg	aat Asn 700	gat Asp	gta Val	ttc Phe	aaa Lys	2112
25	gag Glu 705	aat Asn	tac Tyr	gtc Val	aca Thr	cta Leu 710	cca Pro	ggt Gly	acc Thr	ttt Phe	gat Asp 715	gag Glu	tgt Cys	tac Tyr	cca Pro	acg Thr 720	2160
30	tat Tyr	ttg Leu	tat Tyr	caa Gln	aaa Lys 725	ata Ile	gat Asp	gag Glu	tca Ser	aaa Lys 730	tta Leu	aaa Lys	cct Pro	tat Tyr	act Thr 735	cgc Arg	2208
	tat Tyr	gaa Glu	tta Leu	aga Arg 740	ggg ggg	tat Tyr	att Ile	gaa Glu	gat Asp 745	agt Ser	caa Gln	gac Asp	tta Leu	gaa Glu 750	gtc Val	tat Tyr	2256
35	ttg Leu	atc Ile	cgt Arg 755	tac Tyr	aat Asn	gca Ala	aaa Lys	cac His 760	gaa Glu	acg Thr	tta Leu	aat Asn	gtg Val 765	cca Pro	ggt Gly	acg Thr	2304
40	ggt Gly	tcc Ser 770	tta Leu	tgg Trp	cca Pro	ctt Leu	gca Ala 775	gcc Ala	gaa Glu	agt Ser	tca Ser	atc Ile 780	gly	agg Arg	tgc Cys	ggc Gly	2352
45	gaa Glu 785	Pro	aat Asn	cga Arg	tgc Cys	gcg Ala 790	cca Pro	cat His	att Ile	gaa Glu	tgg Trp 795	aat Asn	cct Pro	gaa Glu	cta Leu	gat Asp 800	2400
50	tgt Cys	tcg Ser	tgt Cys	agg Arg	gat Asp 805	gga Gly	gaa Glu	aaa Lys	tgt Cys	gca Ala 810	cat His	cat His	tct Ser	cat His	cat His 815	ttc Phe	2448
	tcc Ser	ttg Leu	gat Asp	att Ile 820	gat Asp	gtt Val	gga Gly	tgt Cys	aca Thr 825	gac Asp	tta Leu	aat Asn	gag Glu	gat Asp 830	tta Leu	ggt Gly	2496
55	gta Val	tgg Trp	gtg Val	ata Ile	ttt Phe	aag Lys	att Ile	aag Lys	acg Thr	caa Gln	gat Asp	ggc Gly	tat Tyr	gca Ala	aga Arg	cta Leu	2544

- 19 -

			835					840					845				
5	gga Gly	aat Asn 850	tta Leu	gag Glu	ttt Phe	ctc Leu	gaa Glu 855	gag Glu	aaa Lys	cca Pro	ttg Leu	tta Leu 860	gga Gly	gaa Glu	gcg Ala	cta Leu	2592
40	gct Ala 865	cgt Arg	gtg Val	aag Lys	aga Arg	gcg Ala 870	gag Glu	aaa Lys	aaa Lys	tgg Trp	aga Arg 875	gac Asp	aaa Lys	cgc Arg	gac Asp	aaa Lys 880	2640
10	ttg Leu	gaa Glu	tgg Trp	gaa Glu	aca Thr 885	aat Asn	att Ile	gtt Val	tat Tyr	aaa Lys 890	gag Glu	gca Ala	aaa Lys	gaa Glu	tct Ser 895	gta Val	2688
15	gat Asp	gct Ala	tta Leu	ttc Phe 900	gta Val	gat Asp	tct Ser	caa Gln	tat Tyr 905	aat Asn	aga Arg	tta Leu	caa Gln	acg Thr 910	gat Asp	acg Thr	2736
20	aac Asn	att Ile	gcg Ala 915	atg Met	att Ile	cat His	gtg Val	gca Ala 920	gat Asp	aaa Lys	cgc Arg	gtt Val	cat His 925	cga Arg	atc Ile	cga Arg	2784
25	gaa Glu	gcg Ala 930	tat Tyr	ttg Leu	cca Pro	gag Glu	tta Leu 935	tct Ser	gtg Val	att Ile	ccg Pro	ggt Gly 940	gtc Val	aat Asn	gcg Ala	gct Ala	2832
	att Ile 945	ttc Phe	gaa Glu	gaa Glu	tta Leu	gaa Glu 950	ggt Gly	ctt Leu	att Ile	ttc Phe	act Thr 955	gca Ala	ttc Phe	tcc Ser	cta Leu	tat Tyr 960	2880
30	gat Asp	gcg Ala	aga Arg	aat Asn	gtc Val 965	att Ile	aaa Lys	aac Asn	gga Gly	gat Asp 970	ttc Phe	aat Asn	cat His	ggt Gly	tta Leu 975	tca Ser	2928
35	tgc Cys	tgg Trp	aac Asn	gtg Val 980	aaa Lys	gly aaa	cat His	gta Val	gat Asp 985	gta Val	gaa Glu	gaa Glu	caa Gln	aat Asn 990	aac Asn	cac His	2976
40	cgt Arg	tcg Ser	gtc Val 995	ctt Leu	gtt Val	gtt Val	Pro	gaa Glu 1000	tgg Trp	gaa Glu	gca Ala	Glu	gtg Val 1005	tca Ser	caa Gln	gaa Glu	3024
45	Val	cgc Arg 1010	gta Val	tgt Cys	cca Pro	gga Gly	cgt Arg 1015	ggc Gly	tat Tyr	atc Ile	Leu	cgt Arg 1020	gtt Val	aca Thr	gcg Ala	tac Tyr	3072
	aaa Lys 1025	Glu	ggc Gly	tac Tyr	Gly	gaa Glu L030	gga Gly	tgc Cys	gta Val	Thr	atc Ile 1035	cat His	gaa Glu	att Ile	Glu	gat Asp L040	3120
50	cat His	aca Thr	gac Asp	Glu	ctg Leu 1045	aaa Lys	ttt Phe	aga Arg	Asn	tgt Cys 1050	gaa Glu	gaa Glu	gag Glu	Glu	gtg Val 1055	tat Tyr	3168
55	ccg Pro	aat Asn	Asn	acg Thr 1060	gta Val	acg Thr	tgt Cys	Asn	gat Asp 1065	tat Tyr	cca Pro	gca Ala	Asn	caa Gln 1070	gaa Glu	gaa Glu	3216

	tac a	agg 9 Arg 1	gct Ala	gcg Ala	gaa Glu	act Thr	Ser	Arg	aat Asn	cgt Arg	gga Gly	Tyr	GIĀ	gaa Glu	tct Ser	tat Tyr	3264
_		. 10	075				1	.080				L	.085				
5	gaa a Glu a	agt a Ser 2	aat Asn	tct Ser	tcc Ser	Ile	cca Pro 095	gct Ala	gag Glu	tat Tyr	Ala	cca Pro 1100	att Ile	tat Tyr	gag Glu	aaa Lys	331
0	gca Ala 1105	Tyr	aca Thr	gat Asp	Gly	aga Arg 110	aaa Lys	gag Glu	aat Asn	Ser	tgt Cys 1115	gaa Glu	tct Ser	aac Asn	Arg	gga Gly .120	336
15	tat Tyr	gga Gly	aat Asn	Tyr	aca Thr 1125	ccg Pro	tta Leu	cca Pro	Ala	ggt Gly 130	tat Tyr	gtg Val	aca Thr	гуѕ	gaa Glu 1135	tta Leu	340
20	gag Glu	tac Tyr	Phe	cca Pro L140	gaa Glu	acc Thr	gat Asp	Lys	gta Val 1145	tgg Trp	ata Ile	gag Glu	att Ile	gga Gly 1150	gaa Glu	acg Thr	345
	gaa Glu	Gly	aca Thr 155	ttc Phe	atc Ile	gta Val	Asp	agt Ser 1160	gtg Val	gaa Glu	tta Leu	Leu	ctc Leu 1165	atg Met	gag Glu	gaa Glu	350
25	tag																350
30	<211 <212)> 22 .> 11 ?> PF ß> Ba	.68 RT	lus :	thur	ingi	ensi	s									
35	Met		Ile		5					10			Asn		10		
	Asn	Pro	Glu	Glu 20	Val	Phe	Leu	Asp	Gly 25	Glu	Arg	Ile	Leu	Pro 30	Asp	Ile	
40	Asp	Pro		Glu	Val	Ser	Leu	Ser	Leu	Leu	Gln	Phe	Leu 45	Leu	Asn	Asn	
		50		Gly			55	Ile	Ser			60					
45	65					70					75	•				Glu 80	
	Gln				25					90					90		
				100	Gly	Leu			105	Tyr	Glr			TIO	,	Ala	
50			115	Trp	Glu			120)				125	•		Arg	
		120	Glu	Arg			135	Ile	Asp			140)			Ile	
	Pro	Ser	Phe	Arg	Val	Ser	Gly	Phe	e Glu	Val	Pro	Lev	Lev	Lev	ı Val	Tyr	
55	145					150	1				155	5				100	
	Thr	Gln	Ala	Ala	Asn 165		His	Lev	1 Ala	Leu 170	. њеt	ATC	, wer	, sel	175	. Val	

				Arg 180					185					190		
			195	Val				200					205			
5		210		Thr			215					220				
	225	Arg		Tyr		230					235					240
10	Asp			Ala	245					250					255	
,-	_			Ser 260					265					2/0		
			275	Tyr				280					285			
15		290		Gln			295					300			1	
	205			Tyr		310					315					320
20				Thr	325					330					333	
				Thr 340					345					350		
			255					360					365			Ala
25		370		Gly			375					380				Ala
•	205					390					395					400 Ser
30				Va1 His	405					410					410	
				420					425					430		Pro
26			435					440					445			Lys
35		4 E O					455					460				Thr
	465					470					475					480 Arg
40					485					490				Arg	Met	Arg
				500					505				val	Asn		Val
45			515					520				Ile	Lys			Met
		E30					535				Phe	Gln				Leu
	545 Asn	Ile	As'n	Leu	Thr	550 Ala	Pro	Ile	Arg	Pro	555 Asn		Phe	Val	Ser	560 Ile
50	Arg	Arg	Ser	Asn	565 Gln	Pro	Gly	Asn	Leu	570 Tyr		Asp	Arg	Ile	575 Glu	Phe
				580				Glu	585 Ala				Leu	Glu		Ala
55	Gln	Lys	595 Ala	Val	Asn	Ala	Leu	600 Phe	Thr	Ser	Ser	Asn	605 Gln		Gly	Leu
	Lvs	610 Thr	Asp	Val	Thr	Asp	615 Tyr	His	Ile	Asp	Gln	620 Val		Asn	Leu	Val

	625					630					635	•				640
	Ala	Cys			645					650					655	
5		Lys		660					665					670		
•		Asp	675					680					685			
	_	Gly 690					695					700				
10	705	Asn				710					715					720
		Leu			725					730					735	
15		Glu		740					745					750		
		Ile	755					760					765			
		Ser 770					775					780				
20	785	Pro Ser				790					795					800
		Leu			805					810					815	
25		Trp		820					825					830		
		Asn	835					840					845			
30		850 Arg					855					860				
	865	Glu				870					875				ser	880 Val
		Ala			885				Tyr	890				Thr	Asp	
35	Asn	Ile	Ala	900 Met	Ile	His	Val			Lys	Arg	Val	His	910 Arg		Arg
	Glu	Ala		Leu	Pro	Glu			Val	Ile	Pro	Gly 940	925 Val		Ala	Ala
40		930 Phe	Glu	Glu	Leu	Glu 950	935 Gly		Ile	Phe	Thr 955			Ser	Leu	Tyr 960
	945 Asp	Ala	Arg	Asn	Val 965	Ile	Lys	Asn	Gly	Asp 970		Asn	His	Gly	Leu 975	Ser
45	_	Trp		980	Lys	Gly			985	Val				990		
75		Ser	995	Leu	Val			1000					1005			
		Arg 1010					1015					1020				
50	102	Glu 5				1030					1035					1040
		Thr			1045					1050					1055	
55		Asn		1060					1065					1070		
	Tyr	Arg	Ala 1075		Glu	Thr		Arg 1080		Arg	ату	ıyr	1085	GIU	. sei	TYL

- 23 -

Glu Ser Asn Ser Ser Ile Pro Ala Glu Tyr Ala Pro Ile Tyr Glu Lys 1095 1100 1090 Ala Tyr Thr Asp Gly Arg Lys Glu Asn Ser Cys Glu Ser Asn Arg Gly 1115 1110 1105 Tyr Gly Asn Tyr Thr Pro Leu Pro Ala Gly Tyr Val Thr Lys Glu Leu 1135 1125 1130 Glu Tyr Phe Pro Glu Thr Asp Lys Val Trp Ile Glu Ile Gly Glu Thr 1150 1145 1140 Glu Gly Thr Phe Ile Val Asp Ser Val Glu Leu Leu Leu Met Glu Glu 1165 10 1155 1160 <210> 23 <211> 348 15 <212> DNA <213> Bacillus thuringiensis <400> 23 20 aataatagag gtcatcttcc aattccaatc caattttctt cgcgttctac cagatatcga 60 gttcgtgtac gttatgcttc tgcaaccccc attcaagtca atgttcattg ggaaaatagc 120 tegttttttt caggtacagt accagctacg gctcagtcat tagataatct acaatcaaac 180 aattttggtt actttgagac cgctaatact atttcatctt cattagatgg tatagtaggt 240 attagaaatt ttagtgcaaa tgcagatttg ataatagaca gatttgaatt tatcccagtg 300 25 gatgcaacct ccgaggcaga acatgattta gaaagagcgc aaaaggcg <210> 24 <211> 116 <212> PRT <213> Bacillus thuringiensis <400> 24 Asn Asn Arg Gly His Leu Pro Ile Pro Ile Gln Phe Ser Ser Arg Ser 35 Thr Arg Tyr Arg Val Arg Val Arg Tyr Ala Ser Ala Thr Pro Ile Gln 20 Val Asn Val His Trp Glu Asn Ser Ser Phe Phe Ser Gly Thr Val Pro 40 Ala Thr Ala Gln Ser Leu Asp Asn Leu Gln Ser Asn Asn Phe Gly Tyr 45 Phe Glu Thr Ala Asn Thr Ile Ser Ser Ser Leu Asp Gly Ile Val Gly Ile Arg Asn Phe Ser Ala Asn Ala Asp Leu Ile Ile Asp Arg Phe Glu 50 Phe Ile Pro Val Asp Ala Thr Ser Glu Ala Glu His Asp Leu Glu Arg 105 100

Ala Gln Lys Ala 115 WO 01/19859 PCT/US00/25361

- 24 -

```
<210> 25
   <211> 186
   <212> DNA
   <213> Bacillus thuringiensis
   <400> 25
   ccactaacat ctcgttcgtt cgctcataca acactcttca ctccaataac cttttcacga 60
   gctcaagaag aatttgatct atacatccaa tcgggtgttt atatagatcg aattgaattt 120
10 attccagtta ctgcaacatt tgaggcagaa tatgatttag aaagagcgca aagggcggtg 180
   <210> 26
   <211> 62
    <212> PRT
    <213> Bacillus thuringiensis
    <400> 26·
   Pro Leu Thr Ser Arg Ser Phe Ala His Thr Thr Leu Phe Thr Pro Ile
    Thr Phe Ser Arg Ala Gln Glu Glu Phe Asp Leu Tyr Ile Gln Ser Gly
25
    Val Tyr Ile Asp Arg Ile Glu Phe Ile Pro Val Thr Ala Thr Phe Glu
                                40
   Ala Glu Tyr Asp Leu Glu Arg Ala Gln Arg Ala Val Asn Ala
   <210> 27
   <211> 3471
35 <212> DNA
   <213> Bacillus thuringiensis
    <400> 27
   atgaatcgaa ataatcaaaa tgaatatgaa attattgatg ccccccattg tgggtgtcca 60
   tcagatgacg atgtgaggta tcctttggca agtgacccaa atgcagcgtt acaaaatatg 120
   aactataaag attacttaca aatgacagat gaggactaca ctgattctta tataaatcct 180
   agtttatcta ttagtggtag agatgcagtt cagactgcgc ttactgttgt tgggagaata 240
    ctcggggctt taggtgttcc gttttctgga caaatagtga gtttttatca attcctttta 300
   aatacactgt ggccagttaa tgatacagct atatgggaag ctttcatgcg acaggtggag 360
45 gaacttgtca atcaacaaat aacagaattt gcaagaaatc aggcacttgc aagattgcaa 420
    ggattaggag actcttttaa tgtatatcaa cgttcccttc aaaattggtt ggctgatcga 480
   aatgatacac gaaatttaag tgttgttcgt gctcaattta tagctttaga ccttgatttt 540
   gttaatgcta ttccattgtt tgcagtaaat ggacagcagg ttccattact gtcagtatat 600
   gcacaagctg tgaatttaca tttgttatta ttaaaagatg catctctttt tggagaagga 660
50 tggggattca cacaggggga aatttccaca tattatgacc gtcaattgga actaaccgct 720
   aagtacacta attactgtga aacttggtat aatacaggtt tagatcgttt aagaggaaca 780
   aatactgaaa gttggttaag atatcatcaa ttccgtagag aaatgacttt agtggtatta 840
    gatgttgtgg cgctatttcc atattatgat gtacgacttt atccaacggg atcaaaccca 900
   cagcttacac gtgaggtata tacagatccg attgtattta atccaccagc taatgttgga 960
55 ctttgccgac gttggggtac taatccctat aatacttttt ctgagctcga aaatgccttc 1020
   attcgcccac cacatctttt tgataggctg aatagcttaa caatcagcag taatcgattt 1080
    ccagtttcat ctaattttat ggattattgg tcaggacata cgttacgccg tagttatctg 1140
```

```
aacgattcag cagtacaaga agatagttat ggcctaatta caaccacaag agcaacaatt 1200
    aatcctggag ttgatggaac aaaccgcata gagtcaacgg cagtagattt tcgttctgca 1260
    ttgataggta tatatggcgt gaatagagct tcttttgtcc caggaggctt gtttaatggt 1320
    acgaettete etgetaatgg aggatgtaga gatetetatg atacaaatga tgaattacca 1380
 5 ccagatgaaa gtaccggaag ttctacccat agactatete atgttacett ttttagtttt 1440
    caaactaatc aggctggatc tatagctaat gcaggaagtg tacctactta tgtttggacc 1500
    cgtcgtgatg tggaccttaa taatacgatt accccaaata gaattacaca attaccattg 1560
    gtaaaggcat ctgcacctgt ttcgggtact acggtcttaa aaggtccagg atttacagga 1620
    gggggtatac tccgaagaac aactaatggc acatttggaa cgttaagagt aacagttaat 1680
10 tcaccattaa cacaaagata tcgcgtaaga gttcgttttg cttcatcagg aaatttcagc 1740
    ataaggatac tgcgtggaaa tacctctata gcttatcaaa gatttgggag tacaatgaac 1800
    agaggacagg aactaactta cgaatcattt gtcacaagtg agttcactac taatcagagc 1860
    gatctgcctt ttacatttac acaagctcaa gaaaatttaa caatccttgc agaaggtgtt 1920
    agcaccggta gtgaatattt tatagataga attgaaatca tccctgtgaa cccggcacga 1980
15 gaagcagaag aggatttaga agcagcgaag aaagcggtgg cgaacttgtt tacacgtaca 2040
    agggacggat tacaggtaaa tgtgacagat tatcaagtgg accaagcggc aaatttagtg 2100
    tcatgcttat ccgatgaaca atatgggcat gacaaaaaga tgttattgga agcggtaaga 2160
    geggeaaaac geeteageeg egaaegeaac ttaetteaag atecagattt taatacaate 2220
   aatagtacag aagagaatgg ctggaaggca agtaacggtg ttactattag cgagggcggt 2280
20 ccattettta aaggtegtge aetteagtta geaagegeaa gagaaaatta teeaacatae 2340
   atttatcaaa aagtagatgc atcggtgtta aagccttata cacgctatag actagatgga 2400
    tttgtgaaga gtagtcaaga tttagaaatt gatctcatcc accatcataa agtccatctt 2460
   gtaaaaaatg taccagataa tttagtatct gatacttact cagatggttc ttgcagcgga 2520
    atcaaccgtt gtgatgaaca gcatcaggta gatatgcagc tagatgcgga gcatcatcca 2580
25 atggattgct gtgaagcggc tcaaacacat gagttttctt cctatattaa tacaggggat 2640
    ctaaatgcaa gtgtagatca gggcatttgg gttgtattaa aagttcgaac aacagatggg 2700
    tatgcgacgt taggaaatct tgaattggta gaggttgggc cattatcggg tgaatctcta 2760
    gaacgggaac aaagagataa tgcgaaatgg aatgcagagc taggaagaaa acgtgcagaa 2820
   atagatogtg tgtatttago tgogaaacaa gcaattaato atotgtttgt agactatcaa 2880
   gatcaacaat taaatccaga aattgggcta gcagaaatta atgaagcttc aaatcttgta 2940
   gagtcaattt cgggtgtata tagtgataca ctattacaga ttcctgggat taactacgaa 3000
   atttacacag agttatccga tegettacaa caagcategt atetgtatac gtetagaaat 3060
   gcggtgcaaa atggagactt taacagtggt ctagatagtt ggaatacaac tatggatgca 3120
   teggtteage aagatggeaa tatgeattte ttagttettt egeattggga tgeacaagtt 3180
35 tcccaacaat tgagagtaaa tccgaattgt aagtatgtct tacgtgtgac agcaagaaaa 3240
   gtaggaggeg gagatggata egteacaate egagatggeg eteateacea agaaactett 3300
   acatttaatg catgtgacta cgatgtaaat ggtacgtatg tcaatgacaa ttcgtatata 3360
   acagaagaag tggtattcta cccagagaca aaacatatgt gggtagaggt gagtgaatcc 3420
   gaaggttcat tctatataga cagtattgag tttattgaaa cacaagagta g
   <210> 28
   <211> 1156
   <212> PRT
45 <213> Bacillus thuringiensis
   <400> 28
   Met Asn Arg Asn Asn Gln Asn Glu Tyr Glu Ile Ile Asp Ala Pro His
   Cys Gly Cys Pro Ser Asp Asp Val Arg Tyr Pro Leu Ala Ser Asp
   Pro Asn Ala Ala Leu Gln Asn Met Asn Tyr Lys Asp Tyr Leu Gln Met
```

Thr Asp Glu Asp Tyr Thr Asp Ser Tyr Ile Asn Pro Ser Leu Ser Ile

		50					55					60				
,	Ser 65	Gly	Arg	Asp	Ala	Val 70	Gln	Thr	Ala	Leu	Thr 75	Val	Val	Gly	Arg	Ile 80
5	Leu	Gly	Ala	Leu	Gly 85	Val	Pro	Phe	Ser	Gly 90	Gln	Ile	Val	Ser	Phe 95	Tyr
10	Gln	Phe	Leu	Leu 100	Asn	Thr	Leu	Trp	Pro 105	Val	Asn	Asp	Thr	Ala 110	Ile	Trp
	Glu	Ala	Phe 115	Met	Arg	Gln	Val	Glu 120	Glu	Leu	Val	Asn	Gln 125	Gln	Ile	Thr
15	Glu	Phe 130	Ala	Arg	Asn	Gln	Ala 135	Leu	Ala	Arg	Leu	Gln 140	Gly	Leu	Gly	Asp
	Ser 145	Phe	Asn	Val	Tyr	Gln 150	Arg	Ser	Leu	Gln	Asn 155	Trp	Leu	Ala	Asp	Arg 160
20	Asn	Asp	Thr	Arg	Asn 165	Leu	Ser	Val	Val	Arg 170	Ala	Gln	Phe	Ile	Ala 175	Leu
25	Asp	Leu	Asp	Phe 180	Val	Asn	Ala	Ile	Pro 185	Leu	Phe	Ala	Val	Asn 190	Gly	Gln
	Gln	Val	Pro 195	Leu	Leu	Ser	Val	Tyr 200	Ala	Gln	Ala	Val	Asn 205	Leu	His	Leu
30	Leu	Leu 210		Lys	Asp	Ala	Ser 215	Leu	Phe	Gly	G l u	Gly 220	Trp	Gly	Phe	Thr
	Gln 225		Glu	Ile	Ser	Thr 230	Tyr	Tyr	Asp	Arg	Gln 235	Leu	Glu	Leu	Thr	Ala 240
35	Lys	Tyr	Thr	Asn	Tyr 245		Glu	Thr	Trp	Tyr 250	Asn	Thr	Gly	Leu	Asp 255	Arg
40	Leu	Arg	Gly	Thr 260		Thr	Glu	Ser	Trp 265	Leu	Arg	Tyr	His	270	Phe	Arg
	Arg	Glu	Met 275		Leu	Val	Val	Leu 280	Asp	Val	. Val	Ala	Leu 285	phe	Pro	Tyr
45	Tyr	Asp 290		Arg	Leu	Tyr	Pro 295	Thr	Gly	Ser	Asn	300	Glr	ı Lev	1 Thr	Arg
	Glu 305		туг	Thr	Asp	9ro 310		. Val	Phe	. Asn	315	Pro	Ala	Asn (.	ı Val	320
50	Leu	Cys	Arg	Arg	325		Thi	Asn	Pro	330	Asr	Thr	Phe	e Sei	335	Leu 5
55	Glu	a Asr	n Ala	Phe 340		e Arg	Pro	Pro	His 345	Lev	ı Phe	e Asp	Arç	350	ı Asr	ı Ser
		. mb.s		CAY	. Ser	· Asn	Arc	z Phe	Pro	Va]	L Sei	Sei	Ası	n Phe	e Met	Asp

- 27 -

			355	5				360					365	•		
, 5	Туг	370		Gly	/ His	Thr	Leu 375	Arg	Arg	Ser	тут	380		Asp	Ser	Ala
J	Val 385		Glu	Asp	Ser	Туг 390	-	Leu	Ile	Thr	Thr 395		Arg	Ala	Thr	11 40
10	Asn	Pro	Gly	Va]	Asp 405		Thr	Asn	Arg	11e 410		Ser	Thr	Ala	Val 415	_
	Phe	Arg	Ser	Ala 420		ılle	Gly	Ile	Tyr 425	-	val	. Asn	Arg	Ala 430		Phe
15	Val	Pro	Gly 435	_	Leu	Phe	Asn	Gly 440	Thr	Thr	Ser	Pro	Ala 445		. Gly	Gly
20	Cys	Arg 450	_	Leu	Tyr	Asp	Thr 455	Asn	Asp	Glu	Leu	Pro 460		Asp	Glu	Set
	Thr 465	-	Ser	Ser	Thr	His 470	_	Leu	Ser	His	Val 475		Phe	Phe	Ser	Phe 480
25	Gln	Thr	Asn	Gln	Ala 485	-	Ser	Ile	Ala	Asn 490		Gly	Ser	Val	Pro 495	
•	-		_	500		_	_	Val	505					510		
30	Asn	Arg	Ile 515	Thr	Gln	Leu	Pro	Leu 520	Val	Lys	Ala	Ser	Ala 525	Pro	Val	Ser
35	_	530				_	535	Pro	Ī			540		_		
	545	_				550		Phe	_		555					560
40					565			Arg		570		•			575	
	Gly	Asn	Phe	Ser 580	Ile	Arg	Ile	Leu	Arg 585	Gly	Asn	Thr	Ser	Ile 590	Ala	Tyr
45			595	_				Asn 600		Ī			605		-	
50	Ser	Phe 610	Val	Thr	Ser	Glu	Phe 615	Thr	Thr	Asn	Gln	Ser 620	Asp	Leu	Pro	Phe
	Thr 625	Phe	Thr	Gln	Ala	Gln 630	Glu	Asn	Leu	Thr	Ile 635	Leu	Ala	Glu	Gly	Val 640
55	Ser	Thr	Gly	Ser	Glu 645	Tyr	Phe	Ile	Asp	Arg 650	Ile	Glu	Ile	Ile	Pro 655	Val
	Acr	Dro	λla	720	Glu	7 J -	C1.,	Clu	λen	T 011	Glu	7.1.	71-	T	Tare	λla

				660					665					670	٠	
	Val	Ala	Asn 675	Leu	Phe	Thr	Arg	Thr 680	Arg	Asp	Gly	Leu	Gln 685	Val	Asn	Val
5	Thr	Asp 690	Tyr	Gln	Val	Asp	Gln 695	Ala	Ala	Asn	Leu	Val 700	Ser	Cys	Leu	Ser
10	Asp 705	Glu	Gln	Tyr	Gly	His 710	Asp	Lys	Lys	Met	Leu 715	Leu	Glu	Ala	Val	Arg 720
	Ala	Ala	Lys	Arg	Leu 725	Ser	Arg	Glu	Arg	Asn 730	Leu	Leu	Gln	Asp	Pro 735	Asp
15	Phe	Asn	Thr	Ile 740	Asn	Ser	Thr	Glu	Glu 745	Asn	Gly	Trp	Lys	Ala 750	Ser	Asn
20	Gly	Val	Thr 755	Ile	Ser	Glu	Gly	Gly 760	Pro	Phe	Phe	Lys	Gly 7 6 5	Arg	Ala	Leu
	Gln	Leu 770	Ala	Ser	Ala	Arg	Glu 775	Asn	Tyr	Pro	Thr	Tyr 780	Ile	Tyr	Gln	Lys
25	785					790					795		Arg			800
					805					810			Ile		815	
30	Lys	Val	His	Leu 820	Val	Lys	Asn	Val	Pro 825	Asp	Asn	Leu	Val	Ser 830	Asp	Thr
35	_		835					840					Asp 845			
	Gln	Val 850	Asp	Met	Gln	Leu	Asp 855	Ala	Glu	His	His	Pro 860	Met	Asp	Cys	Суя
40 [.]	865					870					875		Asn		•	880
	Leu	Asn	Ala	Ser	Val 885	Asp	Gln	Gly	Ile	Trp 890	Val	Val	Leu	Lys	Val 895	Arg
45	Thr	Thr	Asp	Gly 900	Tyr	Ala	Thr	Leu	Gly 905	Asn	Leu	Glu	Leu	Val 910	Glu	Val
50	Gly	Pro	Leu 915	Ser	Gly	Glu	Ser	Leu 920	Glu	Arg	Glu	Gln	Arg 925	Asp	Asn	Ala
- 0	Lys	Trp 930	Asn	Ala	Glu	Leu	Gly 935	Arg	Lys	Arg	Ala	Glu 940	Ile	Asp	Arg	Val
55	Tyr 945	Leu	Ala	Ala	Lys	Gln 950	Ala	Ile	Asn	His	Leu 955	Phe	Val	Asp	Tyr	Glr 960
	Asp	Gln	Gln	Leu	Asn	Pro	Glu	Ile	Gly	Leu	Ala	Glu	Ile	Asn	Glu	Ala

- 29 -

		965	970	975
	Ser Asn Leu Val 980		Gly Val Tyr Ser As 985	p Thr Leu Leu 990
5	Gln Ile Pro Gly 995	Ile Asn Tyr Glu 1000	Ile Tyr Thr Glu Le	
10	Leu Gln Gln Ala 1010	Ser Tyr Leu Tyr 1015	Thr Ser Arg Asn Ala 1020	a Val Gln Asn
	Gly Asp Phe Asn 1025	Ser Gly Leu Asp 1030	Ser Trp Asn Thr Th: 1035	r Met Asp Ala 1040
15		Asp Gly Asn Met 1045	His Phe Leu Val Let 1050	u Ser His Trp 1055
20	Asp Ala Gln Val		Arg Val Asn Pro Asi 1065	n Cys Lys Tyr 1070
	Val Leu Arg Val 1075	Thr Ala Arg Lys 1080	Val Gly Gly Gly Asp 108	=
25	Thr Ile Arg Asp 1090	Gly Ala His His 1095	Gln Glu Thr Leu Th	r Phe Asn Ala
	Cys Asp Tyr Asp 1105	Val Asn Gly Thr 1110	Tyr Val Asn Asp Ası 1115	n Ser Tyr Ile 1120
30		Val Phe Tyr Pro 1125	Glu Thr Lys His Met 1130	Trp Val Glu 1135
35	Val Ser Glu Ser 1140	=	Tyr Ile Asp Ser Ile 145	e Glu Phe Ile 1150
,,	Glu Thr Gln Glu 1155			
40	<210> 29 <211> 2407 <212> DNA <213> Bacillus t	huringiensis		
15			gcttccaatt gtggttg	
	caaaatagta gtatt	ctcaa ctggattaac	tattcatctg ctttaaa ataataggcg atgcagc acagcacctt ctcttac	aaa agaagcagta 180
60	atagtatatg acctt ttgtctatat gtgac gatgggattg cagat	atagg taaagtacta ttatt atctattatt tttaa tggttctgta	ggaggtagta gtggaca gatttacggg taagtca ctcttataca ggaacta	atc catatcagat 300 gag tgttttaaat 360 ttt agaggctctg 420
5	atcgccgact cagaa ttagctagac aaaat	tttga tagaatttta gccca aatattatta	tctgctgaag aactccg acccgagggt ctttaac ttaccttctt ttgcgag tatggcacta attgggg	gaa tggtggctcg 540 cgc tgcatttttc 600
	acacctttta taaat	tatca atcaaaacta	gtagagetta ttgaact	ata tactgattat 720

```
tgcgtacatt gggataatcg aggttcaacc gaactaagac aacgagggcc tagtgctaca 780
   gettggttag aattteatag atateggaga gagatgacat tgatgggatt agaaatagta 840
   gcatcatttt caagtettga tattactaat tacccaatag aaacagattt tcagttgagt 900
   agggtcattt atacagatcc aattggtttt gtacatcgta gtagtcttag gggagaaagt 960
   tggtttagct ttgttaatag agctaatttc tcagatttag aaaatgcaat acctaatcct 1020
   agaccgtctt ggtttttaaa taatatgatt atatctactg gttcacttac attgccggtt 1080
   agcccaagta ctgatagagc gagggtatgg tatggaagtc gagatcgaat ttcccctgct 1140
   aattcacaat ttattactga actaatctct ggacaacata cgactgctac acaaactatt 1200
   ttagggcgaa atatatttag agtagattct caagcttgta atttaaatga taccacatat 1260
   ggagtgaata gggcggtatt ttatcatgat gcgagtgaag gttctcaaag atccgtgtac 1320
   gaggggtata ttcgaacaac tgggatagat aaccctagag ttcaaaatat taacacttat 1380
   ttacctggag aaaattcaga tatcccaact ccagaagact atactcatat attaagcaca 1440
   acaataaatt taacaggagg acttagacaa gtagcatcta atcgccgttc atctttagta 1500
   atgtatggtt ggacacataa aagtotggot cgtaacaata ccattaatcc agatagaatt 1560
15 acacagatac cattgacgaa ggttgatacc cgaggcacag gtgtttctta tgtgaatgat 1620
   ccaggattta taggaggagc tctacttcaa aggactgacc atggttcgct tggagtattg 1680
   agggtecaat ttecaettea ettaagacaa caatategta ttagagteeg ttatgettet 1740
   acaacaaata ttcgattgag tgtgaatggc agtttcggta ctatttctca aaatctccct 1800
   agtacaatga gattaggaga ggatttaaga tacggatctt ttgctataag agagtttaat 1860
20 acttetatta gacccactge aagteeggae caaattegat tgacaataga accatetttt 1920
   attagacaag aggtctatgt agatagaatt gagttcattc cagttaatcc gacgcgagag 1980
   gcgaaagagg atctagaagc agcaaaaaaa gcggtggcga gcttgtttac acgcacaagg 2040
    gacggattac aagtaaatgt gaaagattat caagtcgatc aagcggcaaa tttagtgtca 2100
    tgcttatcag atgaacaata tgggtatgac aaaaagatgt tattggaagc ggtacgtgcg 2160
   gcaaaacgac ttagccgaga acgcaactta cttcaggatc cagattttaa tacaatcaat 2220
    agtacagaag aaaatggatg gaaagcaagt aacggcgtta ctattagtga gggcgggcca 2280
    ttctataaag gccgtgcaat tcagctagca agtgcacgag aaaattaccc aacatacatc 2340
    tatcaaaaag tagatgcatc ggagttaaag ccgtatacac gttatagact ggatgggttc 2400
    gtgaaga
    <210> 30
    <211> 802
    <212> PRT
    <213> Bacillus thuringiensis
    <400> 30
    Met Asn Gln Asn Lys His Gly Ile Ile Gly Ala Ser Asn Cys Gly Cys
                                         10
40
    Ala Ser Asp Asp Val Ala Lys Tyr Pro Leu Ala Asn Asn Pro Tyr Ser
    Ser Ala Leu Asn Leu Asn Ser Cys Gln Asn Ser Ser Ile Leu Asn Trp
                                 40
45
    Ile Asn Ile Ile Gly Asp Ala Ala Lys Glu Ala Val Ser Ile Gly Thr
    Thr Ile Val Ser Leu Ile Thr Ala Pro Ser Leu Thr Gly Leu Ile Ser
50
    Ile Val Tyr Asp Leu Ile Gly Lys Val Leu Gly Gly Ser Ser Gly Gln
                                         90
55
    Ser Ile Ser Asp Leu Ser Ile Cys Asp Leu Leu Ser Ile Ile Asp Leu
                100
```

4	Arg	Val	Ser 115	Gln	Ser	Val	Leu	Asn 120		Gly	Ile	Ala	Asp 125	Phe	Asn	Gly
5	Ser	Val 130	Leu	Leu	Tyr	Arg	Asn 135	Tyr	Leu	Glu	Ala	Leu 140	Asp	Ser	Trp	Asn
10	Lys 145	Asn	Pro	Asn	Ser	Ala 150		Ala	Glu	Glu	Leu 155	Arg	Thr	Arg	Phe	Arg 160
				Ser	165					170					175	
15				Ser 180					185	·				190	•	
	,		195					200					205			
20		210		Gly			215					220				
25	225			Ser		230			•		235					240
	_	•		Trp	245					250					255	
30				Thr 260					265					270		
			275	Gly				280					285			
35		290	_	Pro			295					300				
40	305			Ile		310					315					320
	_			Phe	325					330					335	
45				Pro 340				_	345					350		
		-	355	Leu				360					365			
50		370		Gly			375					380				
55	385			Leu		390					395					400
	Leu	Gly	Arg	Asn	Ile	Phe	Arg	Val		Ser	Gln	Ala	Cys		Leu 415	Asn

	Asp	Thr	Thr	Tyr 420	Gly	Val	Asn	Arg	Ala 425	Val	Phe	Tyr	His	Asp 430	Ala	Ser
5	Glu	Gly	Ser		Arg	Ser	Val	Tyr 440		Gly	Tyr	Ile	Arg 445	Thr	Thr	Gly
	Ile	Asp 450		Pro	Arg	Val	Gln 455	Asn	Ile	Asn	Thr	Tyr 460	Leu	Pro	Gly	Glu
10	Asn 465	Ser	Asp	Ile	Pro	Thr 470	Pro	Glu	Asp	туr	Thr 475	His	Ile	Leu	Ser	Thr 480
15	Thr	Ile	Asn	Leu	Thr 485	Gly	Gly	Leu	Arg	Gln 490	Val	Ala	Ser	Asn	Arg 495	Arg
				500					505					310		Asn
20			515					520					723			Val
		530					535					340				Ile
25	545					550					222					Leu 560
30					565					570)				3,3	
				580)				585	•				350		Phe
35			595	;				600	,				002			ı Asp
40		610	כ				615	•				020	•			arg
40	625	5				630	1				632	,				640
45					645	5				65	J				00.	
				66	0				66	5				0	•	a Val
50	Ala	a Se	r Le		e Thi	r Arg	Th:	r Arg	g As _l O	p Gl	y Lei	ı Glı	n Va:	l Asa 5	n Va	l Lys
	As	р Ту 69		n Va	l Ası	o Glr	1 Al	a Ala 5	a Ası	n Le	u Val	70	r Cya	s Le	u Se	r As <u>p</u>
55	G1 70		n Ty	r Gl	у Ту	r Asp	p Ly	s Ly	s Me	t Le	u Let 71!	ı Gli	u Al	a Va	l Ar	g Ala 720

WO 01/19859 PCT/US00/25361

- 33 -

	Ala	Lys	Arg	Leu	Ser 725	Arg	Glu	Arg	Asn	Leu 730	Leu	Gln	Asp	Pro	Asp 735	Phe	•
5	Asn	Thr	Ile	Asn 740	Ser	Thr	Glu	Glu	Asn 745	Gly	Trp	Lys	Ala	Ser 750	Asn	Gly	
10	Val	Thr	Ile 755	Ser	Glu	Gly	Gly	Pro 760	Phe	Tyr	Lys	Gly	Arg 765	Ala	Ile	Gln	
10	Leu	Ala 770		Ala	Arg	Glu	Asn 775	Tyr	Pro	Thr	Tyr	Ile 780	Tyr	Gln	Lys	Val	
15	Asp 785	Ala	Ser	Glu	Leu	Lys 790	Pro	Tyr	Thr	Arg	Tyr 795	Arg	Leu	Asp	Gly	Phe 800	
	Val	Lys												1			
20 .	<21	0> 3: 1> 1	92														
25	<21		acil	lus t	huri	ingie	ensis	3									
	<40	0 > 3:	1														
	act	ttac;	gca a	gttt	gcto	ct ta	acaac	ctctt	tto	cacac	caa	taad	ctta	ac a	acgag	ccatta jcacaa jtccca	120 180
30	act gaa	ttac tctc gaat	gca a	gttt	gcto	ct ta	acaac	ctctt	tto	cacac	caa	taad	ctta	ac a	acgag	gcacaa	120
30 35	<pre>acti gaag gtta <210 <211 <211</pre>	ttac tete gaat atge 0> 3: 1> 64 2> PI	gca agtt of the second	egttt ateta at	geto acaa	et ta	acaac	eteti gggg¹	tto	cacac	caa	taad	ctta	ac a	acgag	gcacaa	120 180
	<pre></pre>	ttac tctc gaat atgc 0> 3: 1> 64 2> Pl 3> Ba	gca agtt of the second	egttt atcta at	igeto acaa	et ta	acaac ccacg	eteti ggggi	t tto	cacac	ccaa atag	taad	ectta gaatt	aac a	acgag attog	gcacaa gtccca	120 180
	<pre></pre>	ttac tctc gaat atgc 0> 3: 1> 64 2> Pl 3> Ba	gca agtt of the second	egttt atcta at	igeto acaa	et ta	acaac	eteti ggggi	t tto	cacac	ccaa atag	taad	ectta gaatt	aac a	acgag attog	gcacaa gtccca	120 180
35	<pre></pre>	ttacettacettacettacettacettacettacettac	gca agtt of the second of the	egttt atcta at us t	determination of the second se	ngie	acaac ccacg	etett gggg¹	ttt gtt Ser	Phe	ccaa atag Pro	taac acac Arg	cetta gaatt Thr	Met	Gly	gcacaa gteeca Thr	120 180
35	<pre><210 <210 <210 <210 <400 His 1</pre>	ttacettctctctctctctctctctctctctctctctctc	gca agtt of the age of	Asn Leu 20	decas churi Leu 5	ngie Val	acaac ccac ensis	ggggt ggggt	Ser Phe 25	Phe 10	Pro	Arg	Thr	Met Leu 30	Gly 15	gcacaa gteeca Thr	120 180
35 40	<pre></pre>	ttac; tctccc tctccc tctccc tctccc tctccc tctccc tctccc tctccc tcccc tccc tcccc tccc tcccc tccc tcccc tccc	gca agtt of the state of the st	Asn Leu 20 Leu	egete accas huri Leu 5 Thr	ngie Val Ser	ensis Trp	Ile Ser Gln 40	Ser Phe 25	Phe 10 Ala	Pro Leu Phe	Arg Thr	Thr Thr Leu 45	Met Leu 30	Gly 15 Phe	gcacaa gtccca Thr Thr	120 180

55 <210> 33 <211> 246 <212> DNA

- 34 -

```
<213> Bacillus thuringiensis
    <400> 33
    gcttctacta caaatttaca attccataca tcaattgacg gaagacctat taatcagggg 60
 5 aatttttcag caactatgag tagtgggggt aatttacagt ccggaagett taggactgca 120
    ggctttacta ctccgtttaa cttttcaaat ggatcaagta tatttacgtt aagtgctcat 180
    gtcttcaatt caggcaatga agtttatata gatcgaattg aatttgttcc ggcagaagta 240
    acattt
    <210> 34
    <211> 82
    <212> PRT
    <213> Bacillus thuringiensis
     <400> 34
    Ala Ser Thr Thr Asn Leu Gln Phe His Thr Ser Ile Asp Gly Arg Pro
    Ile Asn Gln Gly Asn Phe Ser Ala Thr Met Ser Ser Gly Gly Asn Leu
     Gln Ser Gly Ser Phe Arg Thr Ala Gly Phe Thr Thr Pro Phe Asn Phe
 25
     Ser Asn Gly Ser Ser Ile Phe Thr Leu Ser Ala His Val Phe Asn Ser
     Gly Asn Glu Val Tyr Ile Asp Arg Ile Glu Phe Val Pro Ala Glu Val
     Thr Phe
     <210> 35
     <211> 177
     <212> DNA
     <213> Bacillus thuringiensis
 40
     <400>.35
     ctctttccag attatattca gcctcgagtg ttgcagtaac tggaataaat tcaaatctgt 60
     ctattatcac tcctgcagtc ccactaaaat ttctaacacc tactatatta cctaatgaag 120
     atgtaaaagc attggcactt caaaatcact tgattgtaga ttatctaatg acgtagc
 45
     <210> 36
     <211> 57
     <212> PRT
    <213> Bacillus thuringiensis
     <400> 36
     Leu Ser Arg Leu Tyr Ser Ala Ser Ser Val Ala Val Thr Gly Ile Asn
. 55
     Ser Asn Leu Ser Ile Ile Thr Pro Ala Val Pro Leu Lys Phe Leu Thr
```

25

- 35 -

Pro Thr Ile Leu Pro Asn Glu Asp Val Lys Ala Leu Ala Leu Gln Asn

40 5 His Leu Ile Val Asp Tyr Leu Met Thr <210> 37 10 <211> 4173 <212> DNA <213> Bacillus thuringiensis <220> <221> CDS 15 <222> (1)..(3687) <400> 37 ttg act tca aat agg aaa aat gag aat gaa att ata aat gct tta tcg Met Thr Ser Asn Arg Lys Asn Glu Asn Glu Ile Ile Asn Ala Leu Ser 96 att cca gct gta tcg aat cat tcc aca caa atg gat cta tca cca gat Ile Pro Ala Val Ser Asn His Ser Thr Gln Met Asp Leu Ser Pro Asp 25 20 25 . gct cgt att gag gat tet ttg tgt ata gcc gag ggg aat aat atc aat Ala Arg Ile Glu Asp Ser Leu Cys Ile Ala Glu Gly Asn Asn Ile Asn cca ctt gtt agc gca tca aca gtc caa acg ggt att aac ata gct ggt Pro Leu Val Ser Ala Ser Thr Val Gln Thr Gly Ile Asn Ile Ala Gly 50 55 aga ata cta ggt gta tta ggc gta ccg ttt gct gga caa ata gct agt Arg Ile Leu Gly Val Leu Gly Val Pro Phe Ala Gly Gln Ile Ala Ser ttt tat agt ttt ctt gtt ggt gaa tta tgg ccc cgc ggc aga gat cag 288 Phe Tyr Ser Phe Leu Val Gly Glu Leu Trp Pro Arg Gly Arg Asp Gln 90 tgg gaa att ttc cta gaa cat gtc gaa caa ctt ata aat caa caa ata Trp Glu Ile Phe Leu Glu His Val Glu Gln Leu Ile Asn Gln Gln Ile 105 45 aca gaa aat gct agg aat acg gca ctt gct cga tta caa ggt tta gga 384 Thr Glu Asn Ala Arg Asn Thr Ala Leu Ala Arg Leu Gln Gly Leu Gly 120 gat tcc ttt aga gcc tat caa cag tca ctt gaa gat tgg cta gaa aac 432 Asp Ser Phe Arg Ala Tyr Gln Gln Ser Leu Glu Asp Trp Leu Glu Asn cgt gat gat gca aga acg aga agt gtt ctt tat acc caa tat ata gcc Arg Asp Asp Ala Arg Thr Arg Ser Val Leu Tyr Thr Gln Tyr Ile Ala 150

	tta Leu	gaa Glu	ctt Leu	gat Asp	ttt Phe 165	ctt Leu	aat Asn	gcg Ala	atg Met	ccg Pro 170	ctt Leu	ttc Phe	gca Ala	att Ile	aga Arg 175	aac Asn	528
5	caa Gln	gaa Glu	gtt Val	cca Pro 180	tta Leu	tta Leu	atg Met	gta Val	tat Tyr 185	gct Ala	caa Gln	gct Ala	gca Ala	aat Asn 190	tta Leu	cac H i s	576
10	cta Leu	tta Leu	tta Leu 195	ttg Leu	aga Arg	gat Asp	gcc Ala	tct Ser 200	ctt Leu	ttt Phe	ggt Gly	agt Ser	gaa Glu 205	ttt Phe	ggg ggg	ctt Leu	624
15	aca Thr	tcg Ser 210	cag Gln	gaa Glu	att Ile	Gln	cgt Arg 215	tat Tyr	tat Tyr	gag Glu	cgc Arg	caa Gln 220	gtg Val	gaa Glu '	caa Gln	acg Thr	672
20 .	aga Arg 225	gat Asp	tat Tyr	tcc Ser	gac Asp	tat Tyr 230	tgc Cys	gta Val	gaa Glu	tgg Trp	tat Tyr 235	aat Asn	aca Thr	ggt Gly	cta Leu	aat Asn 240	720
25	agc Ser	ttg Leu	aga Arg	Gly 999	aca Thr 245	aat Asn	gcc Ala	gca Ala	agt Ser	tgg Trp 250	gtg Val	cgt Arg	tat Tyr	aat Asn	caa Gln 255	ttc Phe	768
	cgt Arg	aga Arg	gat Asp	cta Leu 260	acg Thr	tta Leu	Gly ggg	gta Val	tta Leu 265	gat Asp	cta Leu	gtg Val	gca Ala	cta Leu 270	ttc Phe	cca Pro	816
30	agc Ser	tat Tyr	gac Asp 275	act Thr	cgc Arg	act Thr	tat Tyr	cca Pro 280	ata Ile	aat Asn	acg Thr	agt Ser	gct Ala 285	cag Gln	tta Leu	aca Thr	864
35	agg Arg	gaa Glu 290	gtt Val	tat Tyr	aca Thr	gac Asp	gca Ala 295	att Ile	gga Gly	gca Ala	aca Thr	300 Gly 399	gta Val	aat Asn	atg Met	gca Ala	912
40	agt Ser 305	atg Met	aat Asn	tgg Trp	tat Tyr	aat Asn 310	aat Asn	aat Asn	gca Ala	cct	tcg Ser 315	ttt Phe	tcc Ser	gct Ala	ata Ile	gag Glu 320	960
46	act Thr	gcg Ala	gtt Val	atc Ile	cga Arg 325	agc Ser	ccg Pro	cat His	cta Leu	ctt Leu 330	gat Asp	ttt Phe	cta Leu	gaa Glu	caa Gln 335	ctt Leu	1008
45	aca Thr	att Ile	ttt Phe	agc Ser 340	act Thr	tca Ser	tca Ser	cga Arg	tgg Trp 345	agt Ser	gct Ala	act Thr	agg Arg	cat His 350	Met	act Thr	1056
50	tac Tyr	tgg Trp	cgg Arg 355	ggg Gly	cac His	aca Thr	att Ile	caa Gln 360	tct Ser	cgg Arg	cca Pro	ata Ile	gga Gly 365	ggc Gly	gga Gly	tta Leu	1104
55	aat Asn	acc Thr 370	Ser	acg Thr	cat His	ggg ggg	tct Ser 375	acc Thr	aat Asn	acț Thr	tct Ser	att Ile 380	aat Asn	cct Pro	gta Val	aga Arg	1152

		Ser					Asp					Glu				gga Gly 400	1200
5						Ile			_		Ile			_		act Thr	1248
10	_	_			Phe				_	Asn			-	_	Gly	act Thr	1296
15	_			Ser					ser					Leu		gat Asp	1344
20		_	Thr								_	_				gaa Glu	1392
		Tyr														agg Arg 480	1440
25			_		_				acg Thr		_	_	_	_	_	aca Thr	1488
30				_		_	-		aca Thr 505				_	_			1536
35									gta Val	_	-						1584
40			_			_			gtt Val			_	_		_	_	1632
									tta Leu	_			_		_	_	1680
45	_		_	_				_	gtc Val	_				_			1728
50	_				_				cct Pro 585	_		_	_	_			1776
55		_					Phe	_	ttt Phe	_	_			_			1824
	-«t	~~3	tct	aac	agt	caa	act	act	aaa	ata	aat	ata	a~t	22 t	aat	~~2	1872

	Ser	Ala 610	Ser	Gly	Ser	Gln	Thr 615	Ala	Gly	Ile	Ser	11e 620	Ser	Asn	Asn	Ala	•
5	ggt Gly 625	aga Arg	caa Gln	acg Thr	ttt Phe	cac His 630	ttt Phe	gat Asp	aaa Lys	att Ile	gaa Glu 635	ttc Phe	att Ile	cca Pro	att Ile	act Thr 640	1920
10	gca Ala	acc Thr	ttc Phe	gaa Glu	gca Ala 645	gaa Glu	tac Tyr	gat Asp	tta Leu	gaa Glu 650	agg Arg	gcg Ala	caa Gln	gag Glu	gcg Ala 655	gtg Val	1968
	aat Asn	gct Ala	ctg Leu	ttt Phe 660	act Thr	aat Asn	acg Thr	aat Asn	cca Pro 665	aga Arg	aga Arg	ttg Leu	aaa Lys	aca Thr 670	gat Asp	gtg Val	2016
15	aca Thr	gat Asp	tat Tyr 675	cat His	att Ile	gat Asp	caa Gln	gta Val 680	Ser	aat Asn	tta Leu	gtg Val	gcg Ala 685	tgt Cys	tta Leu	tcg Ser	2064
20	gat Asp	gaa Glu 690	ttc Phe	tgc Cys	tta Leu	gat Asp	gaa Glu 695	aag Lys	aga Arg	gaa Glu	tta Leu	ctt Leu 700	gag Glu	aaa Lys	gtg Val	aaa Lys	2112
25	tat Tyr 705	gcg Ala	aaa Lys	cga Arg	ctc Leu	agt Ser 710	gat Asp	gaa Glu	aga Arg	aac Asn	tta Leu 715	Leu	caa Gln	gat Asp	cca Pro	aac Asn 720	2160
30	ttc Phe	aca Thr	tcc Ser	atc Ile	aat Asn 725	aag Lys	caa Gln	cca Pro	gac Asp	ttc Phe 730	ata Ile	tct Ser	act Thr	aat Asn	gag Glu 735	caa Gln	2208
	tcg Ser	aat Asn	ttc Phe	aca Thr 740	tct Ser	atc Ile	cat His	gaa Glu	caa Gln 745	tct Ser	gaa Glu	cat His	gga Gly	tgg Trp 750	Trp	gga Gly	2256
35	agt Ser	gag Glu	aac Asn 755	Ile	aca Thr	atc Ile	cag Gln	gaa Glu 760	Gly	aat Asn	gac	gta Val	ttt Phe 765	гλя	gag Glu	aat Asn	2304
40	tac	gto Val	Thr	cta Leu	ccg Pro	ggg	act Thr 775	Phe	aat Asn	gag Glu	tgt Cys	tat Tyr 780	PIO	acg Thr	tat Tyr	tta Leu	2352
45	tat Tyr 785	Glr	aaa Lys	ata :Ile	Gly	gag Glu 790	Ser	Glu	tta Leu	Lys	ATa	туг	act Thr	cgc	tac Tyr	caa Gln 800	2400
50	tta Lev	aga 1 Arg	ggg g Gly	tat Tyr	att Ile 805	Glu	gat Asp	agt Ser	caa Gln	gat Asp 810	Let	gag Glu	g ata i Ile	tat Tyr	ttg Leu 815	att Ile	2448
	cgt Arg	tat	aat Asr	gcg Ala 820	Lys	cat His	gaa Glu	aca Thr	ttg Leu 825	Asp	gtt Val	cca Pro	ggt Gly	acc Thi 830	GIU	tcc Ser	2496
55	gta Val	a tgg L Trj	g ccg	g ctt	tca Ser	gtt Val	gaa Glu	ago 1 Ser	c cca	ato Ile	gga Gly	a ago	tgo G Cys	gga Gly	gaa Glu	ccg Pro	2544

- 39 -

			835					840					845				
5	aat Asn	cga Arg 850	tgc Cys	gca Ala	cca Pro	cat His	ttt Phe 855	gaa Glu	tgg Trp	aat Asn	cct Pro	gat Asp 860	cta Leu	gat Asp	tgt Cys	tcc Ser	2592
10	tgc Cys 865	aga Arg	gat Asp	gga Gly	gaa Glu	aaa Lys 870	tgt Cys	gcg Ala	cat His	cat His	tcc Ser 875	cat His	cat His	ttc Phe	tct Ser	ttg Leu 880	2640
10							aca Thr										2688
15	gtg Val	gta Val	ttc Phe	aag Lys 900	att Ile	aag Lys	acg Thr	cag Gln	gaa Glu 905	ggt Gly	cat His	gca Ala	aga Arg	cta Leu 910	gly ggg	aat Asn	2736
20	ctg Leu	gaa Glu	ttt Phe 915	att Ile	gaa Glu	gag Glu	aaa Lys	cca Pro 920	tta Leu	tta Leu	gga Gly	gaa Glu	gca Ala 925	ctg Leu	tct Ser	cgt Arg	2784
25	gtg Val	aag Lys 930	aga Arg	gca Ala	gag Glu	aaa Lys	aaa Lys 935	tgg Trp	aga Arg	gac Asp	aaa Lys	cgt Arg 940	gaa Glu	aaa Lys	cta Leu	caa Gln	2832
20	ttg Leu 945	gaa Glu	aca Thr	aaa Lys	cga Arg	gta Val 950	tat Tyr	aca Thr	gag Glu	gca Ala	aaa Lys 955	gaa Glu	gct Ala	gtg Val	gat Asp	gct Ala 960	2880
30	tta Leu	ttt Phe	gta Val	gat Asp	tct Ser 965	caa Gln	tat Tyr	aat Asn	aga Arg	tta Leu 970	caa Gln	gcg Ala	gat Asp	aca Thr	aac Asn 975	att Ile	2928
35	ggc Gly	atg Met	att Ile	cat His 980	gcg Ala	gca Ala	gat Asp	aaa Lys	ctt Leu 985	gtt Val	cat His	cga Arg	att Ile	cga Arg 990	gag Glu	gct Ala	2976
40	tat Tyr	ctg Leu	tca Ser 995	gaa Glu	tta Leu	tct Ser	gtt Val	atc Ile 1000	ccg Pro	ggt Gly	gta Val	Asn	gcg Ala 1005	gaa Glu	att Ile	ttt Phe	3024
45	Glu	gaa Glu 1010	tta Leu	gaa Glu	ggt Gly	Arg	att Ile 1015	atc Ile	act Thr	gca Ala	Ile	tcc Ser	cta Leu	tac Tyr	gat Asp	gcg Ala	3072
		Asn			Lys		ggt Gly			Asn					Cys		3120
50	aat Asn	gta Val	aaa Lys	Gly	cat His 045	gta Val	gat Asp	gta Val	Gln	cag Gln 050	agc Ser	cat His	cac His	Arg	tct Ser 055	gtc Val	3168
55	ctt Leu	gtt Val	Ile	cca Pro 060	gaa Glu	tgg Trp	gaa Glu	Ala	gaa Glu 065	gtg Val	tca Ser	caa Gln	Ala	gtt Val .070	cgc Arg	gtc Val	3216

	tgt ccg Cys Pro	999 Gly L075	cgt Arg	ggc	tat Tyr	Ile	ctc Leu .080	cgt Arg	gtc Val	aca Thr	Ala	tac Tyr .085	aaa Lys	gag Glu	gga Gly	3264
,	tat gga Tyr Gly 1090	gag Glu	ggt Gly	tgt Cys	Val	acg Thr .095	atc Ile	cat His	gaa Glu	Ile	gag Glu L100	aac Asn	aat Asn	aca Thr	gac Asp	3312
10	gaa cta Glu Leu 1105	aaa Lys	ttt Phe	Lys	aac Asn 110	tgt Cys	gaa Glu	gaa Glu	Glu	gaa Glu L115	gtg Val	tat Tyr	cca Pro	Thr	gat Asp 1120	3360
15	aca gga Thr Gly	acg Thr	Cys	aat Asn .125	gat Asp	tat Tyr	act Thr	Ala	cac His	caa Gln	ggt Gly	aca Thr	Ala	gca Ala 1135	tg t Cys	3408
20	aat too Asn Ser	Arg	aat Asn 1140	gct Ala	gga Gly	tat Tyr	Glu	gat Asp 145	gca Ala	tat Tyr	gaa Glu	Val	gat Asp L150	act Thr	aca Thr	3456
25	gca tct Ala Ser	gtt Val 1155	aat Asn	tac Tyr	aaa Lys	Pro	act Thr 1160	tat Tyr	gaa Glu	gaa Glu	Glu	acg Thr	tat Tyr	aca Thr	gat Asp	3504
-	gta cga Val Arg 1170	aga Arg	gat Asp	aat Asn	His	tgt Cys 175	gaa Glu	tat Tyr	gac Asp	Arg	Gly 1180	tat Tyr	gtg Val	aat Asn	tat Tyr	3552
30	cca cca Pro Pro 1185	cta Leu	cca Pro	Ala	ggt Gly .190	tat Tyr	gtg Val	aca Thr	Lys	gaa Glu L195	tta Leu	gaa Glu	tat Tyr	Phe	cca Pro 1200	3600
35	gaa acc Glu Thr	gat Asp	Lys	gta Val 205	tgg Trp	att Ile	gag Glu	Ile	gga Gly 1210	gaa Glu	acg Thr	gaa Glu	Gly	aca Thr 1215	ttc Phe	3648
40	atc gtg Ile Val	Asp	agc Ser 1220	ata Ile	gaa Glu	tta Leu	Leu	ctt Leu 1225	atg Met	gaa Glu	gaa Glu	tag	gac	cgtc	cga	3697
	gtatagca	agt t	taat	aaat	c tt	aato	caaaa	ta <u>c</u>	gtagt	cta	actt	ccgt	tta	caat	ttaata	3757
15	agtaaati	tac a	agttg	taaa	a ag	gaaaa	acgga	a cat	cact	cct	aaga	agago	cga	tgtc	cgtttt	3817
45	ctatatg	gtg t	gtgc	taac	g at	aagt	gtac	ace	gaat	ttc	atta	atcca	aaa	ttaa	tattta	3877
	tttgagaa	aaa g	gato	atgt	t at	atag	gagat	att	tcct	tat	aata	attt	gtt	ccac	gttcat	3937
50	aattttt	gaa t	gata	catt	a ca	acaa	aaaa	tgt:	caca	aaat	ttat	atgt	ttc	taca	taaaat	3997
	atatggt	taa g	gaacc	taag	a ag	ttat	gaat	caa	agtaa	atag	gata	aaaa	ctg	aaaa	aggaag	4057
s e	tgtaggta	aca a	atgaa	taaa	a aa	ataa	agaaa	ı tga	agat	gag	catt	cato	cga	taga	attatc	4117
55										.+++	tatt	ata		tttc:	a.c.	4177

```
<210> 38
    <211> 1228
    <212> PRT
 5 <213> Bacillus thuringiensis
    <400> 38
    Met Thr Ser Asn Arg Lys Asn Glu Asn Glu Ile Ile Asn Ala Leu Ser
    Ile Pro Ala Val Ser Asn His Ser Thr Gln Met Asp Leu Ser Pro Asp
                20
                                    25
    Ala Arg Ile Glu Asp Ser Leu Cys Ile Ala Glu Gly Asn Asn Ile Asn
                                40
    Pro Leu Val Ser Ala Ser Thr Val Gln Thr Gly Ile Asn Ile Ala Gly
                            55
15
      50
                                                60
    Arg Ile Leu Gly Val Leu Gly Val Pro Phe Ala Gly Gln Ile Ala Ser
                        70
                                            75
    Phe Tyr Ser Phe Leu Val Gly Glu Leu Trp Pro Arg Gly Arg Asp Gln
                                        90
    Trp Glu Ile Phe Leu Glu His Val Glu Gln Leu Ile Asn Gln Gln Ile
               100
                                   105
    Thr Glu Asn Ala Arg Asn Thr Ala Leu Ala Arg Leu Gln Gly Leu Gly
                               120
    Asp Ser Phe Arg Ala Tyr Gln Gln Ser Leu Glu Asp Trp Leu Glu Asn
                          135
                                            140
    Arg Asp Asp Ala Arg Thr Arg Ser Val Leu Tyr Thr Gln Tyr Ile Ala
                       150
                                           155
    Leu Glu Leu Asp Phe Leu Asn Ala Met Pro Leu Phe Ala Ile Arg Asn
                   165
                                       170
30 Gln Glu Val Pro Leu Leu Met Val Tyr Ala Gln Ala Ala Asn Leu His
                                                       190
               180
                                   185
    Leu Leu Leu Arg Asp Ala Ser Leu Phe Gly Ser Glu Phe Gly Leu
           195
                               200
    Thr Ser Gln Glu Ile Gln Arg Tyr Tyr Glu Arg Gln Val Glu Gln Thr
                           215
                                               220
    Arg Asp Tyr Ser Asp Tyr Cys Val Glu Trp Tyr Asn Thr Gly Leu Asn
                       230
                                           235
    Ser Leu Arg Gly Thr Asn Ala Ala Ser Trp Val Arg Tyr Asn Gln Phe
                                       250
                   245
40 Arg Arg Asp Leu Thr Leu Gly Val Leu Asp Leu Val Ala Leu Phe Pro
               260
                                   265
    Ser Tyr Asp Thr Arg Thr Tyr Pro Ile Asn Thr Ser Ala Gln Leu Thr
                               280
   Arg Glu Val Tyr Thr Asp Ala Ile Gly Ala Thr Gly Val Asn Met Ala
                          295
                                              300
       290
   Ser Met Asn Trp Tyr Asn Asn Asn Ala Pro Ser Phe Ser Ala Ile Glu
                      310
                                          315
   Thr Ala Val Ile Arg Ser Pro His Leu Leu Asp Phe Leu Glu Gln Leu
                  325
                                       330
50 Thr Ile Phe Ser Thr Ser Ser Arg Trp Ser Ala Thr Arg His Met Thr
               340
                                   345
                                                       350
   Tyr Trp Arg Gly His Thr Ile Gln Ser Arg Pro Ile Gly Gly Leu
                               360
   Asn Thr Ser Thr His Gly Ser Thr Asn Thr Ser Ile Asn Pro Val Arg
                           375
                                              380
   Leu Ser Phe Phe Ser Arg Asp Val Tyr Trp Thr Glu Ser Tyr Ala Gly
                      390
                                          395
```

		•	T	Trp	Clv	T10	T1	7.011	Glu	Pro	Tla	Hic	Glv	٧al	Pro	Thr
	Val	Leu	Leu	irp	405	m	IYL	rea	GIU	410	116	1113	Cly	· · · ·	415	
				Asn 420					425					430		
5			435	Ser				440					445			
		450		Glu			455					460				
10	465			His		470					475					480
				Pro	485					490					495	
				Ser 500					505					510		
15			515	Asn				520					525			
	_	530		Ile			535					540				
20	Gly 545	Leu	Asn	Phe	Asn	550	Thr	ser	Leu	GIII	555	TÄT	Arg	vai	A. J	560
20	Arg	_		Ala	565	Gln				570					575	
				Phe 580					585					590		
25			595	Ser				600					605			
		610		Gly Thr			615					620				
30	625					630					635					640
				Glu	645					650					655	
				Phe 660					665					670		
35		_	675	His Cys				680					685			
	_	690		Arg			695					700				
40	705		_			710					715					720
				Ile	725					730					735	
				Thr 740					745					750		
45			755	Ile				760					765			Leu
	_	770					775					780				Gln
50	785					790					795					800
-	Leu	Arg		Tyr	805					810					815	
	_	_		820					825					830		Ser
55		_	835					840					845			Pro
	Asn	Arg	Cys	Ala	Pro	His	Phe	Glu	Trp	Asn	Pro	Asp	Leu	Asp	Cys	ser

```
855
    Cys Arg Asp Gly Glu Lys Cys Ala His His Ser His His Phe Ser Leu
                      870
                                        875
    Asp Ile Asp Ile Gly Cys Thr Asp Leu His Glu Asn Leu Gly Val Trp
                  885
                                     890
                                                       895
    Val Val Phe Lys Ile Lys Thr Gln Glu Gly His Ala Arg Leu Gly Asn
              900
                                905
                                                    910
    Leu Glu Phe Ile Glu Glu Lys Pro Leu Leu Gly Glu Ala Leu Ser Arg
          915
                             920
    Val Lys Arg Ala Glu Lys Lys Trp Arg Asp Lys Arg Glu Lys Leu Gln
                         935
                                           940
    Leu Glu Thr Lys Arg Val Tyr Thr Glu Ala Lys Glu Ala Val Asp Ala
                     950
                                        955
    Leu Phe Val Asp Ser Gln Tyr Asn Arg Leu Gln Ala Asp Thr Asn Ile
15
                 965
                                    970
    Gly Met Ile His Ala Ala Asp Lys Leu Val His Arg Ile Arg Glu Ala
              980
                                 985
                                                   990
    Tyr Leu Ser Glu Leu Ser Val Ile Pro Gly Val Asn Ala Glu Ile Phe
         995
                   1000
                                      1005
   Glu Glu Leu Glu Gly Arg Ile Ile Thr Ala Ile Ser Leu Tyr Asp Ala
     1010
               1015
                                  1020
   Arg Asn Val Val Lys Asn Gly Asp Phe Asn Asn Gly Leu Ala Cys Trp
           1030
                                       1035
   Asn Val Lys Gly His Val Asp Val Gln Gln Ser His His Arg Ser Val
                1045
                                   1050
   Leu Val Ile Pro Glu Trp Glu Ala Glu Val Ser Gln Ala Val Arg Val
     1060
                               1065
                                                  1070
   Cys Pro Gly Arg Gly Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly
      1075
                           1080
                                              1085
   Tyr Gly Glu Gly Cys Val Thr Ile His Glu Ile Glu Asn Asn Thr Asp
     1090
                        1095
                                          1100
   Glu Leu Lys Phe Lys Asn Cys Glu Glu Glu Glu Val Tyr Pro Thr Asp
                    1110
                                       1115
   Thr Gly Thr Cys Asn Asp Tyr Thr Ala His Gln Gly Thr Ala Ala Cys
                1125
                                   1130
   Asn Ser Arg Asn Ala Gly Tyr Glu Asp Ala Tyr Glu Val Asp Thr Thr
            1140
                               1145
                                                  1150
   Ala Ser Val Asn Tyr Lys Pro Thr Tyr Glu Glu Glu Thr Tyr Thr Asp
                           1160
                                              1165
40 Val Arg Arg Asp Asn His Cys Glu Tyr Asp Arg Gly Tyr Val Asn Tyr
                       1175
                                          1180
   Pro Pro Leu Pro Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro 1185 1190 1195 1200
   Glu Thr Asp Lys Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe
                1205
                                   1210
   Ile Val Asp Ser Ile Glu Leu Leu Leu Met Glu Glu
            1220
                               1225
```

50

<210> 39

<211> 3504

<212> DNA

<213> Bacillus thuringiensis
55

<220> <221> CDS

- 44 -

<222> (1)..(3504)

WO 01/19859

5	<400 atg Met 1	~2G	ana	aat Asn	aat Asn 5	cag Gln	gat Asp	caa Gln	tgc Cys	att Ile 10	cct Pro	tat Tyr	aat Asn	tgt Cys	tta Leu 15	aat Asn	48
10	aat Asn	cct Pro	gag Glu	att Ile 20	gag Glu	ata Ile	tta Leu	gat Asp	gtt Val 25	gaa Glu	aat Asn	ttc Phe	aat Asn	ctc Leu 30	gaa Glu	ctt Leu	96 .
	gta Val	tcg Ser	caa Gln 35	gtc Val	agt Ser	gtg Val	gga Gly	ctt Leu 40	aca Thr	cgt Arg	ttt Phe	ctt Leu	cta Leu 45	gag Glu	tca Ser	gct Ala	144
15	gtc Val	cca Pro 50	gga Gly	gcg Ala	ggt Gly	ttt Phe	gca Ala 55	ctt Leu	ggc Gly	cta Leu	ttc Phe	gat Asp 60	atc Ile	att Ile	tgg Trp	gga Gly	192
20	gct Ala 65	cta Leu	ggc Gly	gtc Val	gat Asp	caa Gln 70	tgg Trp	agc Ser	tta Leu	ttc Phe	ctt Leu 75	gcg Ala	caa Gln	att Ile	gag Glu	caa Gln 80	240
25	tta Leu	att Ile	aat Asn	gaa Glu	agg Arg 85	ata Ile	aca Thr	aca Thr	gtt Val	gaa Glu 90	agg Arg	aat Asn	aga Arg	gca Ala	att Ile 95	caa Gln	288
30	aca Thr	tta Leu	agt Ser	gga Gly 100	Leu	tcg Ser	agt Ser	agt Ser	tat Tyr 105	gaa Glu	gta Val	tat Tyr	att Ile	gag Glu 110	gca Ala	tta Leu	336
	aga Arg	gaa Glu	tgg Trp 115	Glu	aat Asn	aat Asn	cca Pro	gat Asp 120	Asn	cca Pro	gct Ala	tca Ser	caa Gln 125	gag Glu	aga Arg	gtg Val	384
35	cgt Arg	aca Thr 130	Arg	ttt Phe	cgt Arg	aca Thr	acg Thr 135	Asp	gac Asp	gct Ala	cta Leu	ata Ile 140	aca Thr	gct Ala	ata Ile	cct Pro	432
40	aat Asn 145	Leu	gcg Ala	att Ile	cca Pro	gat Asp 150	Phe	gag Glu	ata Ile	gct Ala	act Thr 155	пес	tca Ser	gtg Val	tat Tyr	gtt Val 160	480
45	caa Gln	gca Ala	gcc	aat Asn	cta Lev 165	His	cta Lev	tct Ser	tta Leu	tta Lev 170	Arg	gat J Asp	gct Ala	gtt Val	tac Tyr 175	ttt Phe	528
50	gga Gly	gaa Glu	aga Arg	tgg Trp 180	Gly	cto Lev	aca Thi	caa Glr	gta Val	. ASI	att 11e	gaa Glu	a gat ı Asp	tet Lev 190	/ -	acg Thr	576
	aga Arg	tta Lei	a aca 1 Thi 199	Arg	a aat g Asr	att i Ile	cat His	att 3 Ile 200	э Туз	tca Sei	gat Asp	cat His	tgt S Cys 20!	3 Ale	a agg a Arg	tgg Trp	624
55	tat Tyr	aat Asr	caa Gli	a ggt n Gly	tta Lev	a aat 1 Asr	aat Ası	att n Ile	gga Gly	a gca y Ala	a aca	a aat c Ası	t acg	g aga	a tat	ttg Leu	672

- 45 -

		210					215					220					
5	gaa Glu 225	ttc Phe	caa Gln	aga Arg	gaa Glu	tta Leu 230	aca Thr	ctc Leu	tct Ser	gtc Val	tta Leu 235	gat Asp	att Ile	gtg Val	gcc Ala	ctt Leu 240	720
	ttc Phe	ccg Pro	aat Asn	tac Tyr	gac Asp 245	atc Ile	cga Arg	aca Thr	tat Tyr	tca Ser 250	att Ile	ccg Pro	aca Thr	caa Gln	agt Ser 255	caa Gln	768
10	tta Leu	aca Thr	agg Arg	gag Glu 260	att Ile	tat Tyr	acc Thr	gat Asp	ata Ile 265	att Ile	gct Ala	gca Ala	ccc Pro	aat Asn 270	gca Ala	tca Ser	816
15	aat Asn	tta Leu	ata Ile 275	gtg Val	gga Gly	acg Thr	caa Gln	ggc Gly 280	cta Leu	gtg Val	aga Arg	gca Ala	cct Pro 285	cac Hiş	tta Leu	atg Met	864
20 .	gac Asp	ttt Phe 290	tta Leu	gtc Val	cgt Arg	ttg Leu	aat Asn 295	att Ile	tat Tyr	act Thr	ggc Gly	ttg Leu 300	gct Ala	aga Arg	aat Asn	att Ile	912
25	cgt Arg 305	cat His	tgg Trp	gca Ala	gga Gly	cat His 310	gaa Glu	gta Val	ata Ile	tct Ser	aga Arg 315	aga Arg	aca Thr	ggt Gly	gga Gly	gtg Val 320	960
30	gat Asp	tta Leu	aat Asn	act Thr	ata Ile 325	caa Gln	tct Ser	cct Pro	tta Leu	tat Tyr 330	gga Gly	aca Thr	gct Ala	gca Ala	act Thr 335	aca Thr	1008
30	gaa Glu	agt Ser	cca Pro	cgt Arg 340	tta Leu	ata Ile	att Ile	cct Pro	ttt Phe 345	aat Asn	gag Glu	gat Asp	tct Ser	tat Tyr 350	ctt Leu	ggt Gly	1056
35	ggt Gly	ttt Phe	att Ile 355	tat Tyr	aga Arg	aca Thr	tta Leu	tca Ser 360	tcc Ser	cct Pro	att Ile	tat Tyr	gta Val 365	cca Pro	cct Pro	tct Ser	1104
40	gga Gly	att Ile 370	tcg Ser	agt Ser	caa Gln	aga Arg	aca Thr 375	tct Ser	tta Leu	gtg Val	gag Glu	ggt Gly 380	gtg Val	gga Gly	ttt Phe	cag Gln	1152
45	aca Thr 385	ccg Pro	aat Asn	aac Asn	tca Ser	ata Ile 390	ctt Leu	caa Gln	tac Tyr	aga Arg	caa Gln 395	cgt Arg	gga Gly	aca Thr	ttg Leu	gat Asp 400	1200
	tcc Ser	ctt Leu	gag Glu	caa Gln	gta Val 405	cca Pro	ctt Leu	caa Gln	gaa Glu	gag Glu 410	Gly ggg	aga Arg	cca Pro	ggc Gly	ggt Gly 415	ttt Phe	1248
50	ggt Gly	gct Ala	agt Ser	cat His 420	aga Arg	ttg Leu	tgt Cys	cat His	gct Ala 425	aca Thr	ttt Phe	gct Ala	caa Gln	tca Ser 430	cct Pro	ata Ile	1296
55	ggt Gly	act Thr	aac Asn 435	tat Tyr	tat Tyr	ata Ile	agg Arg	gca Ala 440	ccg Pro	ttg Leu	ttt Phe	tct Ser	tgg Trp 445	acg Thr	cat His	ctg Leu	1344

5	agt Ser	gca Ala 450	act Thr	ctt Leu	act Thr	aat Asn	gaa Glu 455	gtt Val	cgt Arg	gta [·] Val	tct Ser	aga Arg 460	att Ile	aca Thr	caa Gln	tta Leu	1392
J	ccg Pro 465	atg Met	gtg Val	aag Lys	gcg Ala	cat His 470	acg Thr	ctt Leu	cat His	gcg Ala	gga Gly 475	gct Ala	act Thr	gtt Val	gtt Val	aga Arg 480	1440
10	gga Gly	cca Pro	gga Gly	ttt Phe	aca Thr 485	gga Gly	gga Gly	gat Asp	ata Ile	ctc Leu 490	cga Arg	aga Arg	act Thr	act Thr	tca Ser 495	ggc	1488
15	tca Ser	ttt Phe	gly aaa	gat Asp 500	atg Met	aga Arg	ata Ile	aca Thr	aat Asn 505	ttt Phe	tca Ser	agt Ser	tca Ser	tca Ser 510	tcg Ser	agg Arg	1536
20	tat Tyr	cgt Arg	gta Val 515	aga Arg	ata Ile	cgt Arg	tat Tyr	gct Ala 520	tct Ser	act Thr	aca Thr	gat Asp	tta Leu 525	caa Gln	ttt Phe	ttc Phe	1584
25	ttg Leu	aat Asn 530	gtt Val	gga Gly	gga Gly	acc Thr	cct Pro 535	gtc Val	aat Asn	gta Val	gcc Ala	gat Asp 540	ttc Phe	ccg Pro	aaa Lys	acc Thr	1632
25	ata Ile 545	gat Asp	aga Arg	Gly 399	gaa Glu	aac Asn 550	tta Leu	gaa Glu	tat Tyr	gga Gly	agc Ser 555	ttt Phe	aga Arg	acg Thr	gca Ala	ggt Gly 560	1680
30	ttt Phe	act Thr	acc Thr	cct Pro	ttt Phe 565	agt Ser	ttt Phe	gta Val	agt Ser	tca Ser 570	aca Thr	aat Asn	aat Asn	ttc Phe	aca Thr 575	tta Leu	1728
35	ggt Gly	gtt Val	cag Gln	agt Ser 580	gtt Val	tct Ser	tca Ser	ggt Gly	aac Asn 585	gag Glu	att Ile	ttt Phe	gta Val	gat Asp 590	cga Arg	att Ile	1776
40	gaa Glu	ttt Phe	gtt Val 595	ccg Pro	gca Ala	gat Asp	gca Ala	acc Thr 600	ttt Phe	gag Glu	gca Ala	gaa Glu	tat Tyr 605	gat Asp	tta Leu	gaa Glu	1824
	aga Arg	gcg Ala 610	caa Gln	gag Glu	gcg Ala	gtg Val	aat Asn 615	gct Ala	ctg Leu	ttt Phe	act Thr	tct Ser 620	acg Thr	aat Asn	caa Gln	aga Arg	1872
45	gga Gly 625	ctg Leu	aaa Lys	aca Thr	gat Asp	gtg Val 630	acg Thr	gat Asp	tat Tyr	cat His	att Ile 635	gat Asp	caa Gln	gtg Val	tcc Ser	aat Asn 640	1920
50	tta Leu	gtg Val	gat Asp	tgt Cys	tta Leu 645	tcc Ser	gat Asp	gaa Glu	ttc Phe	tgt Cys 650	cta Leu	gat Asp	gaa Glu	aaa Lys	aga Arg 655	gaa Glu	1968
55	ttg Leu	tcc Ser	gaa Glu	aaa Lys 660	att Ile	aaa Lys	cat His	gca Ala	aag Lys 665	cga Arg	ctc Leu	agt Ser	gat Asp	gag Glu 670	cgg Arg	aat Asn	2016

	tta Lei	cto Lei	c caa u Gli 67!	ı Ası	t tca Sei	a aac Asr	ttt Phe	aga Arg 680	g Gly	ato / Ile	aat Ası	t aga n Arg	caa g Glr 685	Pro	a gat o Asp	cgt Arg	2064
5	ggc Gly	tgg Trp	Arg	a gga g Gly	a agt / Sei	acg Thr	gat Asp 695	Ile	act Thr	ato Ile	caa Glr	a gga a Gly 700	′ Gly	aat Asi	gac Asp	gta Val	2112
10	tto Phe 705	Lys	gaa Glu	a aat 1 Asr	tac Tyr	gtc Val 710	Thr	cta Lev	cca Pro	ggt Gly	acc Thi 715	Phe	gat Asp	gag Glu	tgc Cys	tat Tyr 720	2160
15	cca Pro	aca Thr	tat Tyr	ttg Leu	tat Tyr 725	Gln	aaa Lys	ato	gat Asp	gaa Glu 730	Ser	aaa Lys	tta Leu	aaa Lys	gcc Ala 735	ttt Phe	2208
20					Leu					Glu					Leu	gaa Glu	2256
	atc Ile	tat Tyr	tta Leu 755	Ile	cgc Arg	tac Tyr	aat Asn	gca Ala 760	Lys	cat His	gaa Glu	aca Thr	gta Val 765	aat Asn	gtg Val	cca Pro	2304
25			Gly													aag Lys	2352
30												gaa Glu					2400
35	tta Leu	gat Asp	tgt Cys	tcg Ser	tgt Cys 805	agg Arg	gat Asp	gga Gly	gaa Glu	aag Lys 810	tgt Cys	gcc Ala	cat His	cat His	tcg Ser 815	cat His	2448
40	cat His	ttc Phe	tcc Ser	tta Leu 820	gac Asp	att Ile	gat Asp	gta Val	gga Gly 825	tgt Cys	aca Thr	gac Asp	tta Leu	aat Asn 830	gag Glu	gac Asp	2496
	cta Leu	ggt Gly	gta Val 835	tgg Trp	gtg Val	atc Ile	ttt Phe	aag Lys 840	att Ile	aag Lys	acg Thr	caa Gln	gat Asp 845	Gly aaa	cac His	gca Ala	2544
45	aga Arg	cta Leu 850	gly ggg	aat Asn	cta Leu	gag Glu	ttt Phe 855	ctc Leu	gaa Glu	gag Glu	aaa Lys	cca Pro 860	tta Leu	gta Val	gga Gly	gaa Glu	2592
50	gcg Ala 865	cta Leu	gct Ala	cgt Arg	Val	aaa Lys 870	aga Arg	gcg Ala	gag Glu	aaa Lys	aaa Lys 875	tgg Trp	aga Arg	gac Asp	aaa Lys	cgt Arg 880	2640
55	gaa Glu	aaa Lys	ttg Leu	Glu	tgg Trp 885	gaa Glu	aca Thr	aat Asn	Ile	gtt Val 890	tat Tyr	aaa Lys	gag Glu	gca Ala	aaa Lys 895	gaa Glu	2688
	tct	gta	gat	gct	tta	ttt	gta .	aac	tct	caa	tat	gat	caa	tta	caa	gcg	2736

	Ser	Val		Ala 900	Leu	Phe	Val	Asn	Ser 905	Gln	Tyr	Asp	Gln	Leu 910	Gln	Ala	·
5	gat Asp	acg Thr	aat Asn 915	att Ile	gcc Ala	atg Met	att Ile	cat His 920	gcg Ala	gca Ala	gat Asp	aaa Lys	cgt Arg 925	gtt Val	cat His	agc Ser	2784
10	att Ile	cga Arg 930	gaa Glu	gct Ala	tat Tyr	ctg Leu	cct Pro 935	gag Glu	ctg Leu	tct Ser	gtg Val	att Ile 940	ccg Pro	ggt Gly	gtc Val	aat Asn	2832
	gcg Ala 945	gct Ala	att Ile	ttt Phe	gaa Glu	gaa Glu 950	tta Leu	gaa Glu	ggg Gly	cgt Arg	att Ile 955	ttc Phe	act Thr	gca Ala	ttc Phe	tcc Ser 960	2880
15	cta Leu	tat Tyr	gat Asp	gcg Ala	aga Arg 965	aat Asn	gtc Val	att Ile	aaa Lys	aat Asn 970	ggt Gly	gat Asp	ttt Phe	aat Asn	aat Asn 975	ggc Gly	2928
20	tta Leu	tcc Ser	tgc Cys	tgg Trp 980	aac Asn	gtg Val	aaa Lys	gly aaa	cat His 985	vaı	gat Asp	gta Val	gaa Glu	gaa Glu 990		aac Asn	2976
25	aac Asn	caa Glr	cgt Arg 995	Ser	gtc Val	ctt Leu	Val	gtt Val 1000	Pro	gaa Glu	tgg Trp	gaa Glu	gca Ala 1005	GIU	gtg Val	tca Ser	3024
30	caa Glr	gaa Glu	ı Val	cgt Arg	gtc Val	Cys	ccg Pro 1015	ggt	cgt Arg	ggc Gly	tat Tyr	ato 1020	: Dec	cgt Arg	gto y Val	aca Thr	3072
	gcg Ala	туз	aag Lys	g gag Glu	gga Gly	tat Tyr 1030	Gly	gaa Glu	ggt Gly	tgo Cys	gta Val	. IIII	att	cat His	gag Glu	atc Ile 1040	3120
35			c aat n Asr	aca n Thr	gac Asp	o GIu	ctg Lev	aag Lys	g ttt s Phe	ago Sei 1050	. ASI	tgo Cys	gta Val	a gaa L Gli	a gag u Glu 105!	ggaa 1 Glu 5	3168
40	ate Ile	c ta e Ty:	t cca r Pro	a aat o Asr 1060	ı Asr	acg Thr	gta Val	acg Thi	g tgt r Cys 1065	3 ASI	gat n Asj	tato Ty	t act	gt. Va 107		t caa n Gln	3216
45	ga: Gl:	a ga u Gl	a ta u Ty: 107!	r Gly	a ggt 7 Gly	gcg Ala	туз	act Th:	r Se	t cgi	t aat g Ası	t cga	a gg g Gl; 108	угу	t aad r Asi	c gaa n Glu	3264
50	gc Al	t cc a Pr 109	t tc	_ ~-	a cca l Pro	a gct	gat Asp 109!	э Ту	t gcg r Ala	g tca a Se	a gt	c ta l Ty 110	r Gr	a ga u Gl	a aa u Ly	a tcg s Ser	3312
30	ТУ			t gga p Gl	a cga y Arg	a aga g Arg	g Gl	g aa u As	t cc n Pr	t tg o Cy	t ga s Gl	u Ph	t aa e As	c ag n Ar	a gg g Gl	g tat y Tyr 1120	3360
55			t ta	c ac	g cca r Pre	- at-		a gt o Va	t gg l Gl	t ta y Ty	t gt r Va	g ac l Th	a aa r Ly	a ga s Gl	a tt u Le	a gaa u Glu	3408

- 49 -

1125 1130 1135 tac ttc cca gaa acc gat aag gta tgg att gag att gga gaa acg gaa 3456 Tyr Phe Pro Glu Thr Asp Lys Val Trp Ile Glu Ile Gly Glu Thr Glu 1145 gga aca ttt atc gtg gac agc gtg gaa tta ctc ctt atg gag gaa tag 3504 Gly Thr Phe Ile Val Asp Ser Val Glu Leu Leu Met Glu Glu 1160 10 <210> 40 <211> 1167 <212> PRT 15 <213> Bacillus thuringiensis <400> 40 Met Glu Arg Asn Asn Gln Asp Gln Cys Ile Pro Tyr Asn Cys Leu Asn Asn Pro Glu Ile Glu Ile Leu Asp Val Glu Asn Phe Asn Leu Glu Leu Val Ser Gln Val Ser Val Gly Leu Thr Arg Phe Leu Leu Glu Ser Ala 40 Val Pro Gly Ala Gly Phe Ala Leu Gly Leu Phe Asp Ile Ile Trp Gly 25 55 Ala Leu Gly Val Asp Gln Trp Ser Leu Phe Leu Ala Gln Ile Glu Gln 70 Leu Ile Asn Glu Arg Ile Thr Thr Val Glu Arg Asn Arg Ala Ile Gln 85 90 Thr Leu Ser Gly Leu Ser Ser Ser Tyr Glu Val Tyr Ile Glu Ala Leu 100 105 Arg Glu Trp Glu Asn Asn Pro Asp Asn Pro Ala Ser Gln Glu Arg Val 120 Arg Thr Arg Phe Arg Thr Thr Asp Asp Ala Leu Ile Thr Ala Ile Pro 135 140 Asn Leu Ala Ile Pro Asp Phe Glu Ile Ala Thr Leu Ser Val Tyr Val 150 155 Gln Ala Ala Asn Leu His Leu Ser Leu Leu Arg Asp Ala Val Tyr Phe 170 Gly Glu Arg Trp Gly Leu Thr Gln Val Asn Ile Glu Asp Leu Tyr Thr 185 Arg Leu Thr Arg Asn Ile His Ile Tyr Ser Asp His Cys Ala Arg Trp 200 Tyr Asn Gln Gly Leu Asn Asn Ile Gly Ala Thr Asn Thr Arg Tyr Leu 215 220 Glu Phe Gln Arg Glu Leu Thr Leu Ser Val Leu Asp Ile Val Ala Leu 230 235 Phe Pro Asn Tyr Asp Ile Arg Thr Tyr Ser Ile Pro Thr Gln Ser Gln 245 250 Leu Thr Arg Glu Ile Tyr Thr Asp Ile Ile Ala Ala Pro Asn Ala Ser 265 Asn Leu Ile Val Gly Thr Gln Gly Leu Val Arg Ala Pro His Leu Met 275 280 285 Asp Phe Leu Val Arg Leu Asn Ile Tyr Thr Gly Leu Ala Arg Asn Ile 295 . 300 Arg His Trp Ala Gly His Glu Val Ile Ser Arg Arg Thr Gly Gly Val 315

															mh w	Thr
	Asp															
					Leu	Ile										
5						Thr			Ser							
	Gly	Ile	355 Ser	Ser	Gln	Arg	Thr	Ser	Leu	Val	Glu	Gly 380	Val	Gly	Phe	Gln
		370	_	•	00=	Ile	375	Gln	Tvr	Arq	Gln	Arg	Gly	Thr	Leu	Asp
10						Pro										
					Arg	Leu										
15				Tyr	Tyr	Ile										
			Thr	Leu		Asn										
	Dro	Met	Val	Lvs	Ala	His	Thr	Leu	His	Ala	Gly	Ala	Thr	Val	Val	Arg
20																
						Gly										
						. Arg				Phe	e Ser					
25					, Ile				Ser	Thr						Phe
	Leu	Asr	519 1 Va	l Gly	, Gly	Thr	Pro	Val	Asr	val	l Ala	Asp 540	Phe	Pro	Lys	Thr
							Leu	Glu								Gly 560
30						e ser	Phe									Leu
					r Va	l Ser										, Ile
35				l Pr	o Al											ı Glu
			a Gl	n Gl												n Arg
																r Asn 640
40	62: T.e1	ıVa	l As	р Су	s Le	u Se	r Asp	o Gl	u Ph	е Су	s Le	u As	p Gl	u Ly	s Arg	g Glu 5
									a Ly	s Ar						g Asn
45			u Gl	66 n As	o pSe			e Ar	g Gl					n Pr		p Arg
	Gl	y Tr	67 p Ar	75 :g Gl	y Se	r Th	r As	p Il	e Th	r Il	e Gl	n Gl	y Gl	y As	n As	p Val
						r Va	1 Th				y Th	ir Ph				s Tyr 720
50																a Phe
																5 u Glu
	Th	r Ai	g T	yr Gl	in Le 10	eu Ar	a er	у ту	74		ne	ی م		75	0	
55				eu I	le A				a Ly	s H						l Pro
	C)	. т)	:/ مد G	55 lv Se	er Le	eu Tr	p Pr	o Le	u Se	er A	la G	ln Se	er Pi	co Il	.e G1	ly Lys

- 51 -

775 Cys Gly Glu Pro Asn Arg Cys Ala Pro His Leu Glu Trp Asn Pro Asp 790 795 Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys Cys Ala His His Ser His 805 810 His Phe Ser Leu Asp Ile Asp Val Gly Cys Thr Asp Leu Asn Glu Asp 825 Leu Gly Val Trp Val Ile Phe Lys Ile Lys Thr Gln Asp Gly His Ala 840 835 Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu Lys Pro Leu Val Gly Glu 855 Ala Leu Ala Arg Val Lys Arg Ala Glu Lys Lys Trp Arg Asp Lys Arg 870 875 Glu Lys Leu Glu Trp Glu Thr Asn Ile Val Tyr Lys Glu Ala Lys Glu 15 885 890 Ser Val Asp Ala Leu Phe Val Asn Ser Gln Tyr Asp Gln Leu Gln Ala 900 905 Asp Thr Asn Ile Ala Met Ile His Ala Ala Asp Lys Arg Val His Ser 920 925 Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser Val Ile Pro Gly Val Asn 935 940 Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg Ile Phe Thr Ala Phe Ser 955 950 Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn Gly Asp Phe Asn Asn Gly 965 970 Leu Ser Cys Trp Asn Val Lys Gly His Val Asp Val Glu Glu Gln Asn 985 Asn Gln Arg Ser Val Leu Val Val Pro Glu Trp Glu Ala Glu Val Ser 995 1000 1005 Gln Glu Val Arg Val Cys Pro Gly Arg Gly Tyr Ile Leu Arg Val Thr 1015 1020 Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys Val Thr Ile His Glu Ile 1030 1035 Glu Asn Asn Thr Asp Glu Leu Lys Phe Ser Asn Cys Val Glu Glu Glu 1045 1050 1055 Ile Tyr Pro Asn Asn Thr Val Thr Cys Asn Asp Tyr Thr Val Asn Gln 1060 1065 1070 Glu Glu Tyr Gly Gly Ala Tyr Thr Ser Arg Asn Arg Gly Tyr Asn Glu 1075 1080 1085 40 Ala Pro Ser Val Pro Ala Asp Tyr Ala Ser Val Tyr Glu Glu Lys Ser 1095 1100 Tyr Thr Asp Gly Arg Arg Glu Asn Pro Cys Glu Phe Asn Arg Gly Tyr 1110 1115 Arg Asp Tyr Thr Pro Leu Pro Val Gly Tyr Val Thr Lys Glu Leu Glu 1125 1130 1135 Tyr Phe Pro Glu Thr Asp Lys Val Trp Ile Glu Ile Gly Glu Thr Glu 1140 1145 1150 Gly Thr Phe Ile Val Asp Ser Val Glu Leu Leu Met Glu Glu 1160

50

<210> 41 <211> 2133 55 <212> DNA

<213> Bacillus thuringiensis

	<220 <221 <222	> CD		2133)												
5	<400 atg Met 1		tat	aag Lys	aat Asn 5	caa Gln	aat Asn	atg Met	cat His	caa Gln 10	agc Ser	ttg Leu	tct Ser	aac Asn	aat Asn 15	gcg Ala	48
0	aca Thr	gtt Val	gat Asp	aaa Lys 20	aac Asn	ttt Phe	aca Thr	ggt Gly	tca Ser 25	cta Leu	gaa Glu	aat Asn	aac Asn	aca Thr 30	aat Asn	acg Thr	96
15	gaa Glu	tta Leu	caa Gln 35	aac Asn	ttt Phe	aat Asn	cat His	gaa Glu 40	ggt Gly	ata Ile	gag Glu	ccg Pro	ttt Phe 45	gtt Val	agt Ser	gta Val	144
20	tca Ser	aca Thr 50	att Ile	caa Gln	acg Thr	ggt Gly	att Ile 55	ggt Gly	att Ile	gct Ala	ggt Gly	aaa Lys 60	atc Ile	ctt Leu	ggt Gly	aac Asn	192
	cta Leu 65	ggc	gtt Val	cct Pro	ttt Phe	gct Ala 70	gj aga	caa Gln	gta Val	gct Ala	agc Ser 75	ctc Leu	tat T yr	agt Ser	ttt Phe	atc Ile 80	240
25	cta Leu	ggt Gly	gag Glu	ctt Leu	tgg Trp 85	ccc Pro	aaa Lys	G] y	aaa Lys	agc Ser 90	caa Gln	tgg Trp	gaa Glu	atc Ile	ttt Phe 95	atg Met	288
30	gaa Glu	cat His	gta Val	gaa Glu 100	gag Glu	ctt Leu	att Ile	aat Asn	caa Gln 105	aag Lys	ata Ile	tcg Ser	act Thr	tat Tyr 110	ALG	aga Arg	336
35	aac Asn	aaa Lys	gca Ala 115	Leu	gca Ala	gat Asp	tta Leu	aaa Lys 120	GLY	tta Leu	gga Gly	gat Asp	gct Ala 125	Deu	gct Ala	gtc Val	384
40	tac Tyr	cat His	Glu	tcg Ser	ctg Leu	gaa Glu	agt Ser 135	Trp	att Ile	gaa Glu	aat Asr	cgc Arg 140	Man	aac Asn	aca Thr	aga Arg	432
	acc Thr 145	Arg	agt Ser	gtt Val	gtc Val	aag Lys 150	Ser	caa Gln	tac Tyr	atc Ile	Thr 155	. rea	gaa Glu	ctt Lev	atg Met	ttc Phe 160	480
45	gta Val	caa Glr	tca Ser	tta Leu	cct Pro	Ser	ttt Phe	gca Ala	gtg Val	Ser 170	GT?	a gag / Glu	gaa Glu	gta Val	e cca Pro 175	cta Leu	528
50	tta Lev	cca Pro	a ata	tate Tyr	Ala	caa a Glr	gct Ala	gca Ala	a aat a Asn 185	Leu	cac His	c tta s Lei	ı ttg ı Lei	g cta Lei 190	I Dec	ı cga ı Arg	576
55	gat Asp	get Ala	tct a Sei 19!	r Ile	ttt Phe	gga Gly	a aaa / Lys	a taa 3 Xaa 200	a Trp	o Gl? 1 gg9	tt: / Le	a tca u Sei	a gad c As _l 20!	, se	a gaar	a att ı Ile	624

	tc: Se:	c acar Thi	r Pho	t ta e Ty:	t aat	t cgo n Arg	caa g Glr 215	Sei	gga Gly	a aaa / Lys	a tog s Sex	g aaa r Lys 220	s Gl	a tai	t tci r Se:	t gac r Asp	672
5	сас Нія 22	з Суя	gta Val	a aaa l Lys	a tgg	g tat p Tyr 230	Asr	aca Thr	a ggo	cta Lei	a aat 1 Asi 239	ı Arç	ttg J Lei	g ato 1 Met	Gl)	y aac y Asn 240	720
10	aat Ası	gco n Ala	gaa a Glu	a agt ı Sei	tgg Trp 245	val	cga Arg	tat Tyr	aat Asn	caa Gln 250	Phe	cgt Arg	aga g Arg	a gad J Asi	Met 255	act Thr	768
15	tta Lei	a atg 1 Met	gta : Va]	Let 260	ı Asp	tta Leu	gtg Val	gca Ala	cta Leu 265	Phe	cca Pro	ago Ser	tat Tyr	gat Asp 270	Thi	caa Gln	816
20	atg Met	tat Tyr	275	Ile	aaa Lys	act Thr	aca Thr	gcc Ala 280	Gln	Ctt Leu	aca Thr	aga Arg	gaa Glu 285	val	tat Tyr	aca Thr	864
	Asp	Ala 290	Ile	: Gly	Thr	gta Val	His 295	Pro	His	Pro	Ser	300	Thr	Ser	Thr	Thr	912
25	Trp 305	Tyr	Asn	Asn	Asn	gca Ala 310	Pro	Ser	Phe	Ser	Thr 315	Ile	Glu	Ala	Ala	Val 320	960
30	Val	Arg	Asn	Pro	His 325	cta Leu	Leu	Asp	Phe	Leu 330	Glu	Gln	Val	Thr	11e 335	Tyr	1008
35	Ser	Leu	Leu	Ser 340	Arg	tgg Trp	Ser	Asn	Thr 345	Gln	Tyr	Met	Asn	Met 350	Trp	Gly	1056
40	Gly	His	Lys 355	Leu	Glu	ttc Phe	Arg	Thr 360	Ile	Gly	Gly	Thr	Leu 365	Asn	Thr	Ser	1104
	Thr	Gln 370	Gly	Ser	Thr	aat Asn	Thr 375	Ser	Ile	Asn	Pro	Val 380	Thr	Leu	Pro	Phe	1152
45	Thr 385	Ser	Arg	Asp	Val	tat Tyr 390	Arg	Thr	Glu	Ser	Leu 395	Ala	Gly	Leu	Asn	Leu 400	1200
50	ttt Phe	tta Leu	act Thr	caa Gln	cct Pro 405	gtt Val	aat Asn	gga Gly	gta Val	ect Pro 410	agg Arg	gtt Val	gat Asp	ttt Phe	cat His 415	tgg Trp	1248
55	aaa Lys	ttc Phe	gtc Val	aca Thr 420	cat His	ccg Pro	atc Ile	Ala	tct Ser 425	gat Asp	aat Asn	ttc Phe	tat Tyr	tat Tyr 430	cca Pro	gly aaa	1296
	tat	gct	gga	att	ggg	acg	caa	tta	caq	gat	tca	gaa	aat	gaa	tta	сса	1344

				1													
	Tyr	Ala	Gly 435	Ile	Gly	Thr	Gln	Leu 440	Gln	Asp	Ser	Glu	Asn 445	Glu	Leu	Pro	
5	cct Pro	gaa Glu 450	gca Ala	aca Thr	gga Gly	cag Gln	cca Pro 455	aat Asn	tat Tyr	gaa Glu	tct Ser	tat Tyr 460	agt Ser	cat His	aga Arg	tta Leu	1392
10	tct Ser 465	cat His	ata Ile	gga Gly	ctc Leu	att Ile 470	tca Ser	gca Ala	tca Ser	cat His	gtg Val 475	aaa Lys	gca Ala	ttg Leu	gta Val	tat Tyr 480	1440
	tct Ser	tgg Trp	acg Thr	cat His	cgt Arg 485	agt Ser	gca Ala	gat Asp	cgt Arg	aca Thr 490	aat Asn	aca Thr	att Ile	gag Glu	cca Pro 495	aat Asn	1488
15	agc Ser	att Ile	aca Thr	caa Gln 500	ata Ile	cca Pro	tta Leu	gta Val	aaa Lys 505	gcg Ala	ttc Phe	aat Asn	ctg Leu	tct Ser 510	tca Ser	ggt Gly	1536
20	gcc Ala	gct Ala	gta Val 515	gtg Val	aga Arg	gga Gly	cca Pro	gga Gly 520	ttt Phe	aca Thr	ggt Gly	Gly	gat Asp 525	atc Ile	ctt Leu	cga Arg	1584
25	aga Arg	aag Lys 530	Asn	act Thr	ggt Gly	aca Thr	ttt Phe 535	gly ggg	gat Asp	ata Ile	cga Arg	gta Val 540	ASII	att Ile	aat Asn	cca Pro	1632
30	cca Pro 545	Phe	gca Ala	caa Gln	aga Arg	tat Tyr 550	Arg	gtg Val	agg Arg	att Ile	cgc Arg 555	ITAT	gct Ala	tct Ser	acc Thr	aca Thr 560	1680
	gat Asp	tta Leu	caa Gln	ttc Phe	cat His 565	Thr	tca Ser	att Ile	aac Asn	ggt G1; 570	LPA	gct Ala	att a Ile	aat Asn	caa Gln 575	ggt Gly	1728
35	aat Asn	ttt Phe	tca Ser	gca Ala 580	Thr	atg Met	aat Asn	aga Arg	gga Gly 585	GIL	gad Asp	tta Lei	a gad ı Asp	tat Tyr 590		acc Thr	1776
40	ttt Phe	aga Arg	act Thr 595	· Val	ggc Gly	ttt Phe	acc Thr	acc Thi	Pro	ttt Phe	ago Sei	c tti	t tca e Sei 609	. Abj	gta Val	caa Gln	1824
45	agt Ser	aca Thi	c Phe	c aca	a ata	ggt Gly	gct Ala 615	Tr	aac Asi	tto Phe	tci Se	t tc r Se 62	r Gr	aa Ası	c gaa n Glu	gtt Val	1872
50	tat Tyr 625	c Ile	a gat e Asj	aga Arg	a att	gaa Glu	ı Phe	gti Val	c ccg	g gta	a gaa 1 G1: 63	u va	a aca l Thi	a tai r Ty:	t gag r Gl	g gca ı Ala 640	1920
	gaa Glu	a tai	t gat r As	t tti p Pho	t gaa e Glu 645	ı Lys	a gcg s Ala	g caa	a gag n Gli	g ga u Gl 65	u va	t ac l Th	t gc	a ct	g tt u Pho 65	t aca e Thr 5	1968
55	tc1 Se	t ac	g aa r As	t cc n Pr	a aga	a gga g Gly	a tta y Le	a aa ı Ly	a ac	a ga r As	t gt p Va	a aa l Ly	g ga s As	t ta p Ty	t ca r Hi	t att s Ile	2016

- 55 -

660 665 670 gac cag gta tca aat tta gta gag tct cta tca gat aaa ttc tat ctt Asp Gln Val Ser Asn Leu Val Glu Ser Leu Ser Asp Lys Phe Tyr Leu 675 680 gat gaa aag aga gaa tta ttc gag ata gtt aaa tac gcg aag caa ctc 2112 Asp Glu Lys Arg Glu Leu Phe Glu Ile Val Lys Tyr Ala Lys Gln Leu 695 10 cat att gag cgt aac atg tag 2133 His Ile Glu Arg Asn Met 705 15 <210> 42 <211> 710 <212> PRT <213> Bacillus thuringiensis 20 <400> 42 Met Lys Ser Lys Asn Gln Asn Met His Gln Ser Leu Ser Asn Asn Ala 10 Thr Val Asp Lys Asn Phe Thr Gly Ser Leu Glu Asn Asn Thr Asn Thr 25 20 25 Glu Leu Gln Asn Phe Asn His Glu Gly Ile Glu Pro Phe Val Ser Val Ser Thr Ile Gln Thr Gly Ile Gly Ile Ala Gly Lys Ile Leu Gly Asn 55 60 30 Leu Gly Val Pro Phe Ala Gly Gln Val Ala Ser Leu Tyr Ser Phe Ile 70 75 Leu Gly Glu Leu Trp Pro Lys Gly Lys Ser Gln Trp Glu Ile Phe Met 85 90 Glu His Val Glu Glu Leu Ile Asn Gln Lys Ile Ser Thr Tyr Ala Arg 35 100 105 110 Asn Lys Ala Leu Ala Asp Leu Lys Gly Leu Gly Asp Ala Leu Ala Val 120 125 Tyr His Glu Ser Leu Glu Ser Trp Ile Glu Asn Arg Asn Asn Thr Arg 135 Thr Arg Ser Val Val Lys Ser Gln Tyr Ile Thr Leu Glu Leu Met Phe 150 155 Val Gln Ser Leu Pro Ser Phe Ala Val Ser Gly Glu Glu Val Pro Leu 170 Leu Pro Ile Tyr Ala Gln Ala Ala Asn Leu His Leu Leu Leu Arg 185 Asp Ala Ser Ile Phe Gly Lys Xaa Trp Gly Leu Ser Asp Ser Glu Ile 195 200 Ser Thr Phe Tyr Asn Arg Gln Ser Gly Lys Ser Lys Glu Tyr Ser Asp 210 215 220 His Cys Val Lys Trp Tyr Asn Thr Gly Leu Asn Arg Leu Met Gly Asn 230 235 Asn Ala Glu Ser Trp Val Arg Tyr Asn Gln Phe Arg Arg Asp Met Thr 245 250 255 Leu Met Val Leu Asp Leu Val Ala Leu Phe Pro Ser Tyr Asp Thr Gln 265 270 Met Tyr Pro Ile Lys Thr Thr Ala Gln Leu Thr Arg Glu Val Tyr Thr 280

285

	_		-1-	0 3	mb	นาไ	uic	Pro	His	Pro	Ser	Phe	Thr	Ser	Thr	Thr
		200					295					300				
'		Tyr	Asn	Asn	Asn	Ala	Pro	Ser	Phe	Ser	Thr 315	IIe	GIU	AIA	ALG	320
5	305 Val	Arg	Asn	Pro	His	310 Leu	Leu	Asp	Phe	Leu 330	Glu	Gln	Val	Thr	Ile 335	Tyr
	ser	Leu	Leu		325 Arg	Trp	Ser	Asn	Thr 345	Gln	Tyr	Met	Asn	Met 350	Trp	Gly
	~1.	uie	Lare	340	Glu	Phe	Ara	Thr	Ile	Gly	Gly	Thr	Leu		Thr	Ser
10			255					360			Pro		202			
		270					375					300				
						300					Leu 395					200
15	Phe				405					410	Arg			•		
				420	His				425		Asn			420		
20			435	Ile				440			Ser		447			
20		450	Ala				455				Ser	400				
	Ser	His	Ile	Gly	Leu	Ile	Ser	Ala	Ser	His	Val	Lys	Ala	Leu	Val	Tyr 480
						470					475 Asn					
25					405					490						
				E 0.0					505					270		Gly
30			C 2 C					520					222			Arg
30			Asn	Thr			- 525					34 U				Pro
	Pro	Phe	Ala	Gln	Arg	Tyr	Arg	, Val	Arg	, Ile	Arg 555	Tyr	Ala	Ser	Thr	Thr 560
35	545 Asp	Leu	Gln	Phe	His	550 Thr	Ser	: Ile	Asn	Gly 570	Lys		Ile	Asn	Gln 575	Gly
	Asr	ı Phe	Ser			Met	Asr	a Arg	Gly	/ Glu	Asp	Lev	Asp	Tyr 590	Lys	Thr
	Phe	Arc	Thr	580 Val) L Gly	/ Phe	Thi	Thr	585 Pro	o Ph∈	e Ser	Phe	Ser	Asp		Gln
40								600)				00-	,		
		C 2 C					ผาเ	5				626	,			Val
	Туз	: Ile	Asp	Arg	, Ile	e Glu	ı Phe	e Val	. Pro	val	Glu	Va]	Th	с Туз	: Glu	1 Ala 640
	625	5		. Dha	. 61.	630) : ልገ :	a Glr	Gli	ı Glı	635 1 Val	Th:	Ala	a Lev	. Phe	Thr
45					645	5				651)				05.	•
				661	n				66	5				0 / 1	,	Ile
en			675	l Se	r Ası			680)				00	9		r Leu
50	As	o Gli 690	ı Ly	s Arg	g Gl	u Lei	2 Pho 69	e Glı 5	ı Ile	e Va	l Lys	3 Ty:	r Ala	a Ly	s Gli	n Leu
	Hi:	s Ile		u Ar	g Ası	n Met	= D									

55

- 57 -

```
<210> 43
    <211> 218
    <212> DNA
    <213> Bacillus thuringiensis
    <400> 43
    gtagccgatt tcccgaaaac catagataga ggggaaaact tagaatatgg aagctttaga 60-
    acggcaggtt ttactacccc ttttagtttt gtaagttcaa caaataattt cacattaggt 120
    gatgcaacct ttgaggcaga atatgattta gaaagagc
    <210> 44
    <211> 72
   <212> PRT
    <213> Bacillus thuringiensis
    Val Ala Asp Phe Pro Lys Thr Ile Asp Arg Gly Glu Asn Leu Glu Tyr
20
    Gly Ser Phe Arg Thr Ala Gly Phe Thr Thr Pro Phe Ser Phe Val Ser
    Ser Thr Asn Asn Phe Thr Leu Gly Val Gln Ser Val Ser Ser Gly Asn
    Glu Ile Phe Val Asp Arg Ile Glu Phe Val Pro Ala Asp Ala Thr Phe
                            55
30
    Glu Ala Glu Tyr Asp Leu Glu Arg
     65
   <210> 45
    <211> 1908
    <212> DNA
    <213> Bacillus thuringiensis
40
   <220>
    <221> CDS
    <222> (1)..(1908)
   atg aat aat gta ttg aat agc gga aaa aca act att tgt aat gcg tat
   Met Asn Asn Val Leu Asn Ser Gly Lys Thr Thr Ile Cys Asn Ala Tyr
                                       10
   aat gta gtg gct cac gat cca ttt agt ttt gaa cat aaa tca tta gat
   Asn Val Val Ala His Asp Pro Phe Ser Phe Glu His Lys Ser Leu Asp
   acc atc caa gaa gaa tgg atg gag tgg aaa aga aca gat cat agt tta
   Thr Ile Gln Glu Glu Trp Met Glu Trp Lys Arg Thr Asp His Ser Leu
55
            35
                               40
   tat gta gct cct gta gtc gga act gtg tct agt ttt ctg cta aag aaa
```

WO 01/19859

	Tyr	Val 50	Ala	Pro	Val	Val	Gly 55	Thr	Val	Ser	Ser	Phe 60	Leu	Leu	Lys	Lys	
5	gtg Val 65	gjà aaa	agt Ser	cta Leu	att Ile	gga Gly 70	aaa Lys	agg Arg	ata Ile	ttg Leu	agt Ser 75	gaa Glu	tta Leu	tgg Trp	gly aaa	tta Leu 80	240
0	ata Ile	ttt Phe	cct Pro	agt Ser	ggt Gly 85	agt Ser	aca Thr	aat Asn	cta Leu	atg Met 90	caa Gln	gat Asp	att Ile	tta Leu	aga Arg 95	gag Glu	288
	aca Thr	gaa Glu	caa Gln	ttc Phe 100	cta Leu	aat Asn	caa Gln	aga Arg	ctt Leu 105	aat Asn	aca Thr	gac Asp	acc Thr	ctt Leu 110	gat Asp	cgt Arg	336
5	gta Val	aat Asn	gca Ala 115	gaa Glu	ttg Leu	gaa Glu	gly aaa	ctc Leu 120	caa Gln	gcg Ala	aat Asn	ata Ile	agg Arg 125	gag Glu	ttt Phe	aat Asn	384
20	caa Gln	caa Gln 130	gta Val	gat Asp	aat Asn	ttt Phe	tta Leu 135	aac Asn	cct Pro	act Thr	caa Gln	aac Asn 140	cct Pro	gtt Val	cct Pro	tta Leu	432
25	tca Ser 145	ata Ile	act Thr	tct Ser	tca Ser	gtt Val 150	aat Asn	aca Thr	atg Met	cag Gln	caa Gln 155	Leu	ttt Phe	cta Leu	aat Asn	aga Arg 160	480
30	tta Leu	ccc	cag Gln	ttc Phe	cag Gln 165	ata Ile	caa Gln	gga Gly	tac Tyr	cag Gln 170	ttg Leu	tta Leu	tta Leu	tta Leu	cct Pro 175	tta Leu	528
	ttt Phe	gca Ala	cag Gln	gca Ala 180	Ala	aat Asn	atg Met	cat His	ctt Leu 185	tct Ser	ttt Phe	att Ile	aga Arg	gat Asp 190	vai	att Ile	576
35	ctt Leu	aat Asn	gca Ala 195	Asp	gaa Glu	tgg Trp	ggc	att Ile	ser	gca Ala	gca Ala	aca Thr	cta Lev 205	LALS	acg Thr	tat Tyr	624
40	cga Arg	gac Asp 210	Tyr	ctg Leu	aga Arg	aat Asn	tat Tyr 215	Thr	aga Arg	gat Asp	tat Tyr	Ser 220	. ASI	tat Tyr	tgt Cys	ata Ile	672
45	aat Asn 225	Thi	tat Tyr	caa Gln	act Thr	gcg Ala 230	Phe	aga Arg	g ggg	tta Lei	aad Asr 235	1 Thi	cgt Arg	tta J Lei	a cad u His	gat Asp 240	720
50			a gaa 1 Glu	ttt 1 Phe	aga Arg	J. Thr	tat Tyr	ato Met	g ttt E Phe	tta Lei 250	ı ASI	gta 1 Val	ttt L Phe	gaa e Glu	a tat 1 Ty: 25	gta Val	768
	tco Ser	ati	t tgg e Trp	g tca Ser 260	. Lei	g ttt ı Phe	aaa Lys	a tat	cag r Glr 265	ı Se	cti Lei	t atg ı Met	g gta	a to 1 Sea 270	L Se.	ggc Gly	816
55	gct Ala	aat a Asi	t tta n Lei	a tat ı Tyı	gct Ala	agt a Ser	ggt Gly	agi Y Se:	t gga r Gly	a cca	a caq	g cag n Gli	g ac	a caa r Gl	a tca n Se:	a ttt r Phe	864

- 59 -

			275	5				28	o				289	5			
, 5	act Thr	gca Ala 290	Glr	a aad a Asr	tgg Tr	g cca p Pro	ttt Phe 295	Le	a tat ı Tyr	tct Ser	ctt Leu	tto Phe 300	Glr	a gtt 1 Val	aat Asr	tcg Ser	912
10	aat Asn 305	туг	ata Ile	tta Lei	tct Sei	ggt Gly 310	/ Ile	agt Sei	ggt Gly	aat Asr	agg Arg 315	Lev	tct Sei	act Thr	acc Thr	ttc Phe 320	960
	cct Pro	aat Asn	att Ile	ggt Gly	ggt Gly 325	/ Let	ccg Pro	ggt Gly	agt Ser	act Thr	Thr	att Ile	cat His	tca Ser	ttg Leu 335	aac Asn	1008
15	agt Ser	gcc Ala	agg Arg	gtt Val 340	Asr	tat Tyr	ago Ser	ggs Gly	gga Gly 345	Val	tca Ser	tct Ser	ggt	Lev 350	Ile	Gly 999	1056
20				Leu					aat Asn					Leu			1104
25			Thr					Ser	tgg Trp				Gly				1152
30	gag Glu 385	Gly	gtt Val	gct Ala	acc Thr	ser 390	acg Thr	act Thr	tgg Trp	cag Gln	aca Thr 395	Glu	tcc Ser	ttc Phe	caa Gln	ata Ile 400	1200
30									ttt Phe								1248
35									atc Ile 425								1296
40									aca Thr								1344
45	ata Ile	aga Arg 450	aat Asn	ata Ile	gaa Glu	agt Ser	cct Pro 455	tcg Ser	gga Gly	aca Thr	cct Pro	ggt Gly 460	gga Gly	tta Leu	cga Arg	gct Ala	1392
	tat Tyr 465	atg Met	gta Val	tct Ser	gtg Val	cat His 470	aac Asn	aga Arg	aaa Lys	aat Asn	aat Asn 475	atc Ile	tat Tyr	gcc Ala	gct Ala	cat His 480	1440
50	gaa Glu	aat Asn	ggt Gly	act Thr	atg Met 485	att Ile	cat His	ttg Leu	gca Ala	ccg Pro 490	gaa Glu	gat Asp	tat Tyr	aca Thr	gga Gly 495	ttt Phe	1488
55	act Thr	ata Ile	tca Ser	cca Pro 500	ata Ile	cat His	gcc Ala	act Thr	caa Gln 505	gtg Val	aat Asn	aat Asn	caa Gln	act Thr 510	cga Arg	aca Thr	1536

	ttt						~~>	22t	caa	aat	σat	tee	tta	aga	ttt	gaa	1584
	ttt Phe	Ile	Ser 515	gaa Glu	aaa Lys	Phe	Gly	Asn 520	Gln	Gly	Asp	Ser	Leu 525	Arg	Phe	Ğlu	
5	caa	-~-	226	a cc	aca	act	cat	tat	асч	ctt	aga	ggg	aat	gga	aat	agt	1632
	Gln	Ser 530	Asn	Thr	Thr	Ala	Arg 535	Tyr	Thr	Leu	Arg	Gly 540	Asn	Gly	Asn	Ser	
10	tac	aat	ctt	tat	tta	aga	gta	tct	tca	ata	gga	aat	tca	act	atc	cga	1680
	Tyr 545	Asn	Leu	Tyr	Leu	Arg 550	Val	Ser	Ser	Ile	Gly 555	Asn	Ser	Thr	Ile	Arg 560	
	gtt	act	ata	aac	ggt	agg	gtt	tat	act	gct	tca	aat	gtt	aat	act	aat	1728
15	Val	Thr	Ile	Asn	Gly 565	Arg	Val	Tyr	Thr	Ala 570	Ser	Asn	Val	Asn	575	ASII	
	aca	aat	aac	gat	999	gtt	aat	gat	aat	gga	gct	cgt	ttt	tca	gat	att Tle	1776
20				580					585					530		Ile	
	aat	atc	ggt	aat	gta	gta	gca	agt	gat	aat	act	aat	gta	ccg	tta	gat Asn	1824
	Asn	Ile	Gly 595	Asn	Val	Val	Ala	600	Asp	ASII	Int	ASII	605	110	204	Asp	
25							+ 00	aat	act	caa	+++	дад	ctt	atq	aat	att	1872
	ata Ile	aat Asn	gtg Val	Thr	Leu	Asn	Ser	Gly	Thr	Gln	Phe	GIU	Leu	Met	Asn	Ile	
		610					615					620					
30	atg	ttt	gtg	cca	act	aat	ctt	cca	cca	ctt	tat	taa					1908
	Met 625		Val	Pro	Thr	Asn 630	Leu	Pro	Pro	Leu	635						
35		0> 4															
	<21	1> 6 2> P	RT														
	<21	3> B	acil	lus	thur	ingi	ensi	s									
40	<40	0> 4	6	,,,,	T) A am	Sar	e al v	r T.ve	Thr	Thr	· Ile	. Cvs	. Asn	Ala	Tyr	
	- 1				5					10					1.	,	
				20)				25	,				3.	,	Asp	
45			2.5	:				4.0)				4:	•		c Leu	
		E (Ala	Pro			5.5	5				טט	,			Lys	
			/ Sei	Lev	ı Ile	Gly 70		Arg	, Ile	Lev	Sei 75	c GIV	ı Let	ı Tr	9 61	y Leu 80	
50	65 Il∈	Ph∈	e Pro	Ser	Gly	Ser	Thr	Asr	ı Lev	Met	Glr		Ile	e Lev	a Arg	g Glu	
					8.5	5				90)				9.	p Arg	
				100)				105	5				110	,		
55			116	5				120)				12:	>		e Asn	
	Glr	Glı	ı Va	l Asp	Ası	n Phe	e Lev	ı Ası	n Pro	Thi	Glr	n Ası	n Pro	va.	l Pr	o Leu	

		130)				135	5				140)			
	Ser 145		Thr	Ser	Ser	Val		Thi	Met	Glr	1 Gln 155		Phe	Leu	Asn	Arg 160
5	Leu	Pro	Glr	Phe	Glr 165		Gln	Gly	туг	Glr. 170	Leu	Leu	. Leu	Leu	Pro 175	
				180)				185	5	Phe			190		
	Leu	Asn	195		Glu	Trp	Gly	7 Il∈ 200		Ala	Ala	Thr	Leu 205		Thr	Туг
10	Ī	210	,		_		215	i		_	Tyr	220		_	_	
	225	,	_			230	1				235					240
15					245		_			250					255	
				260					265	i	Leu			270		
			275				_	280	_		Gln		285			
20		290					295				Leu	300				
	305					310					Arg 315					320
25				_	325			_		330					335	
			_	340				_	345		Ser		_	350		_
			355					360			Ser		365			
30		370					375				Asp	380				
	385					390					Thr 395					400
35			_		405	_				410					415	
			_	420		_	-		425		Asn			430		
			435	_				440			Pro		445	_		
40		450					455		_		Pro	460				
	465					470					Asn 475					480
45					485					490	Glu				495	
				500					505		Asn			510	_	
			515					520			Asp		525			
50		530					535				Arg	540				
	545					550					Gly 555					560
55					565					570	Ser				575	
	Thr	Asn		Asp	Gly	Val	Asn		Asn	Gly	Ala	Arg	Phe	Ser	Asp	Ile

WO 01/19859 PCT/US00/25361

- 62 -

													_	_	_		
			595	Asn				600					605				
		610		Thr			615					Glu 620	Leu	Met	Asn	11e	
5	Met 625	Phe	Val	Pro	Thr	Asn 630	Leu	Pro	Pro	Leu	Tyr 635						
0	<212	> 18 2> Di	378 NA	lus t	huri	ingie	ensis	3									
5		L> CI		(1878						•				•			
:O ·	2+4)> 4' aat Asn	act	gta Val	ttg Leu 5	aat Asn	aac Asn	gga Gly	aga Arg	aat Asn 10	act Thr	act Thr	tgt Cys	cat His	gca Ala 15	cat His	48
25	aat Asn	gta Val	gtt Val	gct Ala 20	cat His	gat Asp	cca Pro	ttt Phe	agt Ser 25	ttt Phe	gaa Glu	cat His	aaa Lys	tca Ser 30	tta Leu	aat Asn	96
30	acc Thr	ata Ile	gaa G1u 35	Lys	gaa Glu	tgg Trp	aaa Lys	gaa Glu 40	Trp	aaa Lys	aga Arg	act Thr	gat Asp 45	HIS	agt Ser	tta Leu	144
	Tyr	Val 50	Ala	Pro	Ile	Val	Gly 55	Thr	Val	GIÀ	ser	60 60	Let	ı Deu	. шув	aaa Lys	192
35	gta Val 65	Gly	agt Ser	ctt Leu	gtt Val	gga Gly 70	Lys	agg Arg	ata Ile	ctg Leu	agt Ser 75	GIU	tta Lev	cag Gln	aat Asn	tta Leu 80	240
40	att Ile	ttt Phe	cct Pro	agt Ser	ggt Gly 85	Ser	ata Ile	gat Asp	tta Leu	atg Met 90	GIT	gag Glu	att Ile	tta Lev	aga Arg 95	gcg Ala	288
45	aca Thr	gaa Glu	caa Gln	ttc Phe 100	Ile	aat Asn	caa Gln	agg Arg	ctt Leu 105	Asn	gca Ala	gac Asp	aco Thi	c ctt Lev 110	GIY	. cgt . Arg	336
50	gta Val	aat Asn	gça Ala 115	Glu	ttg Leu	gca Ala	ggt	ctt Lev 120	Glr	gcg Ala	aat Asr	gtg Val	g gca Ala 129	a GI	ttt 1 Phe	aat Asn	384
	cga Arg	caa Glr 130	ı Val	gat Asp	aat Asn	ttt Phe	tta Leu 135	. Asr	c cct n Pro	aat Asn	caa Glr	a aad a Asi 140	1 PIG	t gtt val	cct Pro	tta Leu	432
55	gca Ala	ata lle	a att	gat Asp	tca Ser	gtt Val	aat Asr	aca Thi	tto Lev	g cag n Glr	g caa n Glr	a tta 1 Le:	a tti	t cta e Lev	a agt ı Sei	aga Arg	480

- 63 -

	145					150				155					160	
, 5			_		_	Ile				Leu	tta Leu					528
10		_	_	-	Ala						att Ile	_	_	_		576
			-	Asp	_			Ser	_	_	aca Thr	_	_			624
15	_	-	His	_	_			_	-		tct Ser 220			_		672
20		_				_	_				act Thr	_			_	720
25			_		_		_				gta Val		_		_	768
30											cta Leu					816
30	_					_	 _				Caa Gln				_	864
35											gtt Val 300					912
40											att Ile					960
45											aca Thr					1008
50					_		 			_	cgc Arg				-	1056
50											ttc Phe				_	1104
55											aca Thr 380					1152

	gtt Val 385	gcc Ala	acc Thr	tct Ser	aca Thr	aac Asn 390	tgg Trp	caa Gln	tca Ser	gga Gly	gcc Ala 395	ttt Phe	gag Glu	aca Thr	act Thr	tta Leu 400	1200
5	tta Leu	cga Arg	ttt Phe	agc Ser	att Ile 405	ttt Phe	tca Ser	gct Ala	cgt Arg	ggt Gly 410	aat Asn	tcg Ser	aac Asn	ttt Phe	ttc Phe 415	cca Pro	1248
10	gat Asp	tat Tyr	ttt Phe	atc Ile 420	cgt Arg	aat Asn	att Ile	tct Ser	ggt Gly 425	gtt Val	gtt Val	Gly ggg	act Thr	att Ile 430	agc Ser	aac Asn	1296
15	gca Ala	gat Asp	tta Leu 435	gca Ala	aga Arg	cct Pro	cta Leu	cac His 440	ttt Phe	aat Asn	gaa Glu	ata Ile	aga Arg 445	gat Asp	ata Ile	gga Gly	1344
20	acg Thr	aca Thr 450	gca Ala	gtc Val	gct Ala	agc Ser	ctt Leu 455	gta Val	aca Thr	gtg Val	cat His	aac Asn 460	aga Arg	aaa Lys	aat Asn	aat Asn	1392
26	atc Ile 465	tat Tyr	gac Asp	act Thr	cat His	gaa Glu 470	aat Asn	ggt Gly	act Thr	atg Met	att Ile 475	cat His	tta Leu	gcg Ala	cca Pro	aat Asn 480	1440
25	gac Asp	tat Tyr	aca Thr	gga Gly	ttt Phe 485	acc Thr	gta Val	tct Ser	cca Pro	ata Ile 490	cat His	gcc Ala	act Thr	caa Gln	gta Val 495	aat Asn	1488
30	aat Asn	caa Gln	att Ile	cga Arg 500	acg Thr	ttt Phe	att Ile	tcc Ser	gaa Glu 505	aaa Lys	tat Tyr	ggt Gly	aat Asn	cag Gln 510	ggt Gly	gat Asp	1536
35	tcc Ser	ttg Leu	aga Arg 515	ttt Phe	gag Glu	cta Leu	agc Ser	aac Asn 520	aca Thr	acg Thr	gct Ala	cga Arg	tac Tyr 525	aca Thr	ctt Leu	aga Arg	1584
40	gly aaa	aat Asn 530	gga Gly	aat Asn	agt Ser	tac Tyr	aat Asn 535	ctt Leu	tat Tyr	tta Leu	aga Arg	gta Val 540	ser	tca Ser	ata Ile	gga Gly	1632
	agt Ser 545	Ser	aca Thr	att Ile	cga Arg	gtt Val 550	act Thr	ata Ile	aac Asn	ggt Gly	aga Arg 555	gtt Val	tat Tyr	act Thr	gca Ala	aat Asn 560	1680
45	gtt Val	aat Asn	act Thr	acc Thr	aca Thr 565	Asn	aat Asn	gat Asp	gga Gly	gta Val 570	ctt Leu	gat Asp	aat Asn	gga Gly	gct Ala 575	Arg	1728
50	ttt Phe	tca Ser	gat Asp	att Ile 580	Asn	atc Ile	ggt Gly	aat Asn	gta Val 585	Val	gca Ala	agt Ser	gct Ala	aat Asn 590	Thr	aat Asn	1776
55	gta Val	cca Pro	tta Leu 595	Asp	ata Ile	caa Gln	gtg Val	aca Thr 600	Phe	aac Asn	gaç Asp	aat Asn	cca Pro 605	Gln	ttt Phe	gag Glu	1824

ctt atg aat att atg ttg ttc caa cta atc ttc cac cac ttt att aag 1872 Leu Met Asn Ile Met Leu Phe Gln Leu Ile Phe His His Phe Ile Lys gtt tga 1878 Val · 625 <210> 48 <211> 625 <212> PRT <213> Bacillus thuringiensis 15 <400> 48 Met Asn Thr Val Leu Asn Asn Gly Arg Asn Thr Thr Cys His Ala His 10 Asn Val Val Ala His Asp Pro Phe Ser Phe Glu His Lys Ser Leu Asn Thr Ile Glu Lys Glu Trp Lys Glu Trp Lys Arg Thr Asp His Ser Leu Tyr Val Ala Pro Ile Val Gly Thr Val Gly Ser Phe Leu Leu Lys Lys 55 Val Gly Ser Leu Val Gly Lys Arg Ile Leu Ser Glu Leu Gln Asn Leu 65 70 75 Ile Phe Pro Ser Gly Ser Ile Asp Leu Met Gln Glu Ile Leu Arg Ala 85 90 Thr Glu Gln Phe Ile Asn Gln Arg Leu Asn Ala Asp Thr Leu Gly Arg 100 105 110 Val Asn Ala Glu Leu Ala Gly Leu Gln Ala Asn Val Ala Glu Phe Asn 120 115 125 Arg Gln Val Asp Asn Phe Leu Asn Pro Asn Gln Asn Pro Val Pro Leu 130 135 140 Ala Ile Ile Asp Ser Val Asn Thr Leu Gln Gln Leu Phe Leu Ser Arg 150 155 Leu Pro Gln Phe Gln Ile Gln Gly Tyr Gln Leu Leu Leu Pro Leu 165 170 Phe Ala Gln Ala Ala Asn Leu His Leu Ser Phe Ile Arg Asp Val Ile 185 180 190 40 Leu Asn Ala Asp Glu Trp Gly Ile Ser Ala Ala Thr Val Arg Thr Tyr 200 Arg Asp His Leu Arg Asn Phe Thr Arg Asp Tyr Ser Asn Tyr Cys Ile 215 220 Asn Thr Tyr Gln Thr Ala Phe Arg Gly Leu Asn Thr Arg Leu His Asp 45 225 230 235 Met Leu Glu Phe Arg Thr Tyr Met Phe Leu Asn Val Phe Glu Tyr Val 245 250 Ser Ile Trp Ser Leu Phe Lys Tyr Gln Ser Leu Leu Val Ser Ser Gly 265 50 Ala Asn Leu Tyr Ala Ser Gly Ser Gly Pro Thr Gln Ser Phe Thr Ala 275 280 Gln Asn Trp Pro Phe Leu Tyr Ser Leu Phe Gln Val Asn Ser Asn Tyr 295 300 Val Leu Asn Gly Leu Ser Gly Ala Arg Thr Thr Ile Thr Phe Pro Asn 310 315 Ile Gly Gly Leu Pro Gly Ser Thr Thr Thr Gln Thr Leu His Phe Ala

- 66 -

```
Arg Ile Asn Tyr Arg Gly Gly Val Ser Ser Ser Arg Ile Gly Gln Ala
                                  345
              340
   Asn Leu Asn Gln Asn Phe Asn Ile Ser Thr Leu Phe Asn Pro Leu Gln
                              360
                                                 365
          355
  Thr Pro Phe Ile Arg Ser Trp Leu Asp Ser Gly Thr Asp Arg Glu Gly
                                              380
                         375
      370
  Val Ala Thr Ser Thr Asn Trp Gln Ser Gly Ala Phe Glu Thr Thr Leu
                                          395
                     390
  Leu Arg Phe Ser Ile Phe Ser Ala Arg Gly Asn Ser Asn Phe Phe Pro
                                      410
                405
   Asp Tyr Phe Ile Arg Asn Ile Ser Gly Val Val Gly Thr Ile Ser Asn
                                  425
   Ala Asp Leu Ala Arg Pro Leu His Phe Asn Glu Ile Arg Asp Ile Gly
                                                 445
                              440
           435
   Thr Thr Ala Val Ala Ser Leu Val Thr Val His Asn Arg Lys Asn Asn
                                              460
                          455
   Ile Tyr Asp Thr His Glu Asn Gly Thr Met Ile His Leu Ala Pro Asn
                                          475
                      470
   Asp Tyr Thr Gly Phe Thr Val Ser Pro Ile His Ala Thr Gln Val Asn
                                      490
                  485
   Asn Gln Ile Arg Thr Phe Ile Ser Glu Lys Tyr Gly Asn Gln Gly Asp
                                   505
              500
   Ser Leu Arg Phe Glu Leu Ser Asn Thr Thr Ala Arg Tyr Thr Leu Arg
                                                  525
                              520
           515
   Gly Asn Gly Asn Ser Tyr Asn Leu Tyr Leu Arg Val Ser Ser Ile Gly
                                              540
                          535
   Ser Ser Thr Ile Arg Val Thr Ile Asn Gly Arg Val Tyr Thr Ala Asn
                                          555
                       550
   Val Asn Thr Thr Asn Asn Asp Gly Val Leu Asp Asn Gly Ala Arg
                                      570
                 565
   Phe Ser Asp Ile Asn Ile Gly Asn Val Val Ala Ser Ala Asn Thr Asn
                                   585
              580
   Val Pro Leu Asp Ile Gln Val Thr Phe Asn Asp Asn Pro Gln Phe Glu
                              600
       595
  Leu Met Asn'Ile Met Leu Phe Gln Leu Ile Phe His His Phe Ile Lys
   ·Val
   625
40
   <210> 49
   <211> 143
   <212> DNA
45 <213> Bacillus thuringiensis
   <220>
   <221> modified_base
   <222> (8)..(140)
50 < 223 > N = A, T, C or G
   <400> 49
   gtcgtganag gnccaggatt tacaggaggg gatatactnc gaagaacggn cggtggtgca 60
   tttggaacna ttagngctan ggctantgcc ccnttaacac aacaatatcg nataagatta 120
55 cgctntgctt ctacnacaan ttt
```

```
<210> 50
    <211> 47
    <212> PRT
    <213> Bacillus thuringiensis
    <220>
    <221> SITE
    <222> (3)
<223> X = R, I, K, or T
    <220>
    <221> SITE
    <222> (17)
    \langle 223 \rangle X = A, D, G \text{ or } V
    <220>
    <221> SITE
    <222> (25)
    <223> X = S, or R
20
    <220>
    <221> SITE
    <222> (27)
    <223> X = R, K, M, or T
25
    <220>
    <221> SITE
    <222> (29)
    <223> X = N, I, S, or T
30
    <220>
    <221> SITE
    <222> (42)
    <223> X = C, F, S, or Y
35
    <220>
    <221> SITE
    <222> (47)
    <223> X = N, I, S, or T
    <400> 50
    Val Val Xaa Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Arg Arg Thr
                                           10
45 Xaa Gly Gly Ala Phe Gly Thr Ile Xaa Ala Xaa Ala Xaa Ala Pro Leu
    Thr Gln Gln Tyr Arg Ile Arg Leu Arg Xaa Ala Ser Thr Thr Xaa
             35
                                   40
   <210> 51
   <211> 42
   <212> DNA
55 <213> Artificial Sequence
   <220>
```

	<223> Description of Artificial Sequence: Primer	
	<400> 51 tggatacttg atcaatatga taatccgtca catctgtttt ta	42
5		
	<210> 52	
	<211> 61	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	
15	<400> 52	
	agtaacggtg ttactattag cgagggcggt ccattettta aggtcgtgca cttcagttag	60
	.c	91
20	<210> 53	
20	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Description of Artificial Sequence: primer	
	<400> 53	22
••	cgacttctcc tgctaatgga gg	~ ~
30		
	<210> 54	
	<211> 28	
	<212> DNA <213> Artificial Sequence	
35	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	
40	<400> 54	~ ~
	ctcgctaata gtaacaccgt tacttgcc	28
45	<210> 55 <211> 61	
45	<211> 61 <212> DNA	
	<213> Artificial Sequence	
	<220>	
50	<223> Description of Artificial Sequence: primer	
	<400> 55	
	atttagtagc atgcgttgca ctttgtgcat tttttcataa gatgagtcat atgttttaaa	60
	t	61
55		
	<210> 56	

- 69 -

```
<211> 23
   <212> DNA
    <213> Artificial Sequence
   <220>
    <223> Description of Artificial Sequence: primer
   <400> 56
                                                                       23
   ggatagcact catcaaaggt acc
10
   <210> 57
   <211> 22
   <212> DNA
  <213> Artificial Sequence
15
   <220>
   <223> Description of Artificial Sequence: primer
20 <400> 57
                                                                        22
   gtwtggacsc rtcghgatgt gg
   <210> 58
   <211> 40
25
   <212> DNA
    <213> Artificial Sequence
30 <223> Description of Artificial Sequence: primer
    <400> 58
   taatttctgc tagcccwatt tctggattta attgttgatc
                                                                        40
35
    <210> 59
    <211> 19
    <212> DNA
    <213> Artificial Sequence
40
    <220>
   <221> modified_base
    <222> (3)..(12)
    <223> W = A, T
45
   <220>
   <221> modified_base
   <222> (6)
   <223> N = A, C, T
   <220>
   <221> modified_base
   <222> (10)
   <223> M = A, C
55
```

<221> modified_base

- 70 -

```
<222> (18)
   <223> R = A, G
   <220>
   <221> modified_base
   <222> (15)
   <223> D = A, G
    <220>
   <223> Description of Artificial Sequence: primer
    <400> 59
                                                                      19
    atwacncaam twccdttrg
15
    <210> 60
   <211> 17
    <212> DNA
    <213> Artificial Sequence
   <220>
    <223> Description of Artificial Sequence: primer
    <400> 60
                                                                      17
    aatgcagatg aatgggg
25
    <210> 61
    <211> 17
    <212> DNA
   <213> Artificial Sequence
    <220>
    <223> Description of Artificial Sequence: primer
35 <400> 61
                                                                       17
    tgataatgga gctcgtt
    <210> 62
   <211> 3684
    <212> DNA
    <213> Bacillus thuringiensis
    ttgacttcaa ataggaaaaa tgagaatgaa attataaatg ctttatcgat tccagctgta 60
45 togaatcatt cogcacaaat gaatctatca accgatgete gtattgagga tagettgtgt 120
    atagecgagg ggaacaatat egatecattt gttagegeat caacagteca aacgggtatt 180
    aacatagetg gtagaatact aggtgtatta ggegtaeegt ttgetggaea aatagetagt 240
    ttttatagtt ttcttgttgg tgaattatgg ccccgcggca gagatccttg ggaaattttc 300
   ctagaacatg tcgaacatct tataagacaa caagtaacag aaaatactag ggatacggct 360
   cttgctcgat tacaaggttt aggaaattcc tttagagcct atcaacagtc acttgaagat 420
    tggctagaaa accgtgatga tgcaagaacg agaagtgttc tttataccca atatatagcc 480
    ttagaacttg attttcttaa tgcgatgccg cttttcgcaa ttagaaacca agaagttcca 540
    ttattaatgg tatatgctca agctgcaaat ttacacctat tattattgag agatgcctct 600
    ctttttggta gtgaatttgg gcttacatcc caagaaattc aacgttatta tgagcgccaa 660
55 gtggaaaaaa cgagagaata ttctgattat tgcgcaagat ggtataatac gggtttaaat 720
    aatttgagag ggacaaatgc tgaaagttgg ttgcgatata atcaattccg tagagactta 780
    acgctaggag tattagatct agtggcacta ttcccaagct atgacacgcg tgtttatcca 840
```

BNSDOCID: -WO 011085042 1 ~

```
atgaatacca gtgctcaatt aacaagagaa atttatacag atccaattgg gagaacaaat 900
    gcaccttcag gatttgcaag tacgaattgg tttaataata atgcaccatc gttttctgcc 960
    atagaggctg ccgttattag gcctccgcat ctacttgatt ttccagaaca gcttacaatt 1020
    ttcagcgtat taagtcgatg gagtaatact caatatatga attactgggt gggacataga 1080
    cttgaatcgc gaacaataag ggggtcatta agtacctgga cacacggaaa taccaatact 1140
    tctattaatc ctgtaacatt acagttcaca tctcgagacg tttatagaac agaatcattt 1200
    gcagggataa atatacttct aactactcct gtgaatggag taccttgggc tagatttaat 1260
    tggagaaatc ccctgaattc tcttagaggt agccttctct atactatagg gtatactgga 1320
    gtggggacac aactatttga ttcagaaact gaattaccac cagaaacaac agaacgacca 1380
    aattatgaat cttacagtca tagattatct aatataagac taatatcagg aaacactttq 1440
    agagcaccag tatattettg gaegeacegt agtgeagate gtacaaatae cattagttea 1500
    gatagcataa cacaaatacc attggtaaaa tcattcaacc ttaattcagg tacctctgta 1560
    gtcagtggcc caggatttac aggaggggat ataatccgaa ctaacgttaa tggtagtqta 1620
    ctaagtatgg gtcttaattt taataataca tcattacagc ggtatcgcgt gagagttcgt 1680
15 tatgetgett etcaaacaat ggteetgagg gtaactgteg gagggagtae taettttgat 1740
    caaggattcc ctagtactat gagtgcaaat gagtctttga catctcaatc atttagattt 1800
    gcagaatttc ctgtaggtat tagtgcatct ggcagtcaaa ctgctggaat aagtataagt 1860
    aataatgcag gtagacaaac gtttcacttt gataaaattg aattcattcc aattactgca 1920
    accttcgaag cagaatatga tttagaaaga gcgcaagagg cggtgaatgc tctgtttact 1980
    aatacgaatc caagaaggtt gaaaacaggt gtgacagatt atcatattga tgaagtatcc 2040
    aatttagtgg cgtgtttatc ggatgaattc tgcttggatg aaaagagaga attacttgag 2100
    aaagtgaaat atgegaaaeg aeteagtgat gaaagaaaet taeteeaaga teeaaaette 2160
    acatecatea ataageaace agaetteaat tetaataatg ageaategaa ttteacatet 2220
    atccatgaac aatctgaaca tggatggtgg ggaagtgaga acattacaat ccaggaagga 2280
25 aatgacgtat ttaaagagaa ttacgtcaca ctaccgggta cttttaatga gtgttatccg 2340
    acgtatttat atcaaaaaat aggggaggcg gaattaaaag cttatactcg ctaccaatta 2400
    agtggctata ttgaagatag tcaagattta gagatatatt tgattcgtta caatgcgaaa 2460
    catgaaacat tggatgttcc aggtaccgag tccgtatggc cgctttcagt tgaaagccca 2520
    atcggaaggt gcggagaacc gaatcgatgc gcaccacatt ttgaatggaa tcctgatcta 2580
30 gattgttcct gcagagatgg agaaaaatgt gcgcatcatt cccatcattt ctctttggat 2640
    attgatgttg gatgcataga cttgcatgag aacctaggcg tgtgggtggt attcaagatt 2700
    aagacgcagg aaggtcatgc aagactaggg aacctggaat ttattgaaga gaaaccatta 2760
   ttaggagaag cactgtctcg tgtgaagaga gcagagaaaa aatggagaga caaacgtgaa 2820
   aaactacaat tggaaacaaa acgagtatat acagaggcaa aagaagctgt ggatgcttta 2880
35 tttgtagatt ctcaatatga tagattacaa gcggatacaa acattggcat gattcatgcg 2940
   gcagataaac ttgttcatcg aattcgagag gcgtatcttt cagaattatc tgttatccca 3000
   ggtgtaaatg cggaaatttt tgaagaatta gaaggtcgca ttatcactgc aatctcccta 3060
   tacgatgcga gaaatgtcgt taaaaatggt gattttaata atggattagc atgctggaat 3120
   gtaaaagggc atgtagatgt acaacagagc catcaccgtt ctgtccttgt tatcccagaa 3180
40 tgggaagcag aagtgtcaca agcagttcgc gtctgtccgg ggcgtggcta tatcctccgt 3240
   gtcacagcgt acaaagaggg atatggagag ggttgtgtaa ctatccatga aatcgagaac 3300
   aatacagacg aactaaaatt taaaaactgt gaagaagagg aagtgtatcc aacggataca 3360
   ggaacgtgta atgattatac tgcacaccaa ggtacagcag tatgtaattc ccgtaatgct 3420
   ggatatgagg atgcatatga agttgatact acagcatctg ttaattacaa accgacttat 3480
   gaagaagaaa cgtatacaga tgtacgaaga gataatcatt gtgaatatga cagagggtat 3540
   gtgaattatc caccagtacc agctggttat atgacaaaag aattagaata cttcccagaa 3600
   accgataagg tatggattga gattggagaa acggaaggga agtttattgt agacagcgtg 3660
   gaattactcc ttatggagga atag
```

50

<210> 63

<211> 1227

<212> PRT

<213> Bacillus thuringiensis

55 <400> 63

Leu Thr Ser Asn Arg Lys Asn Glu Asn Glu Ile Ile Asn Ala Leu Ser 1 5 10

	Ile	Pro	Ala	Val 20	Ser	Asn	His	Ser	Ala 25	Gln	Met	Asn	Leu	Ser 30	Thr	Asp
5	Ala	Arg	Ile 35	Glu	Asp	Ser	Leu	Cys 40	Ile	Ala	Glu	Gly	Asn 45	Asn	Ile	Asp
	Pro	Phe 50	Val	ser	Ala	Ser	Thr 55	Val	Gln	Thr	Gly	Ile 60	Asn	Ile	Ala	Gly
0	Arg 65	Ile	Leu	Gly	Val	Leu 70	Gly	Val	Pro	Phe	Ala 75	Gly	Gln	Ile	Ala	Ser 80
15	Phe	Tyr	Ser	Phe	Leu 85	Val	Gly	Glu	Leu	Trp ·90	Pro	Arg	Gly	Arg	Asp 95	Pro
	Trp	Glu	Ile	Phe 100	Leu	Glu	His	Val	Glu 105	His	Leu	Ile	Arg	Gln 110	Gln	Val
20 .	Thr	Glu	Asn 115	Thr	Arg	Asp	Thr	Ala 120	Leu	Ala	Arg	Leu	Gln 125	Gly	Leu	Gly
	Asn	Ser 130	Phe	Arg	Ala	Tyr	Gln 135	Gln	Ser	Leu	Glu	Asp 140	Trp	Leu	Glu	Asn
25	Arg		Asp	Ala	Arg	Thr 150	Arg	Ser	Val	Leu	Tyr 155	Thr	Gln	Tyr	Ile	Ala 160
30	Leu	Glu	Leu	Asp	Phe 165	Leu	Asn	Ala	Met	Pro 170	Leu	Phe	Ala	Ile	Arg 175	Asn
	Gln	Glu	Val	Pro 180	Leu	Leu	Met	Val	Туг 185	Ala	Gln	Ala	Ala	190	Leu	His
35	Leu	Leu	Leu 195		Arg	Asp	Ala	Ser 200	Leu	Phe	Gly	Ser	Glu 205	Phe	Gly	Leu
	Thr	Ser 210		Glu	Ile	Gln	Arg 215	Tyr	Tyr	Glu	Arg	Gln 220	Val	Glu	Lys	Thr
40	Arg 225		Tyr	Ser	Asp	Tyr 230	Cys	Ala	Arg	Trp	235	Asn	Thr	Gly	Lev	240
45	Asn	Leu	Àrg	Gly	Thr 245		Ala	Glu	Ser	Trp 250	Lev	a Arg	Туг	Asn	Glr 255	phe
	Arg	Arg) Asp	Leu 260		Lev	Gly	Val	Lev 265	a Asp	Lev	ı Val	Ala	270	Phe	e Pro
50	Ser	туг	275		Arg	Val	Туг	280	Met	Asr	1 Thi	Ser	285	a Glr	Let	ı Thr
	Arg	g Gli 290		e Tyr	Thr	Asp	295	ıle	Gly	/ Arg	Th:	3 00	n Ala	a Pro	Se	r Gly
55	Phe		a Sei	r Thr	Asn	Trp	Phe	e Asr	a Asr	n Asr	n Ala 319	a Pro	Se	r Phe	e Se	r Ala 320

,	Ile	e Gl	u Ala	a Al	a Va 32		e Arq	g Pro	o Pro	O Hi:		u Lei	ı Ası	p Pho	e Pro 33	o Glu 5
5	Glı	ı Le	ı Th	r Il		e Se:	r Val	l Let	34!		g Tr	e Sei	r Ası	350		п Ту
10	Met	Ası	1 Ty:		p Vai	l Gl	y His	360		u Glı	u Sei	r Arg	365		e Arg	g Gly
	Ser	Let 370		r Th	r Trj	p Thi	r His		/ Asr	n Thi	c Asr	380		: Ile	e Ası	n Pro
15	Va] 385		: Let	ı Glı	n Phe	390		Arg	g Asp	o Val	395		g Thi	Glı	ı Sei	2 Phe 400
	Ala	Gly	/ Ile	e Ası	1 Ile 409		ı Lev	Thr	Thi	410		. Asr	ı Gly	/ Val	Pro 415	Trp
20	Ala	Arg	Phe	420		Arg	j Asn	Pro	425		Ser	Leu	Arg	Gl ₃		Leu
25	Leu	Туг	435		e Gly	/ Туг	Thr	Gly 440		. Gly	Thr	Gln	Leu 445		Asp	Ser
	Glu	Thr 450		Leu	Pro	Pro	Glu 455		Thr	Glu	Arg	Pro 460		Туг	Glu	Ser
30	Tyr 465		His	Arg	, Leu	470		Ile	Arg	Leu	11e 475		Gly	Asn	Thr	Leu 480
	Arg	Ala	Pro	Val	Tyr 485		Trp	Thr	His	Arg 490		Ala	Asp	Arg	Thr 495	Asn
35				500					505					510	ı	Phe
10			515			•		520					525			Gly
		530					535					540				Gly
15	545					550					555					Arg 560
					565					570					575	Ser
0				580					585					590		Ser
5			59 5					600					605			Ser
	Ala	Ser	Gly	Ser	Gln		Ala 615	Gly	Ile	Ser		Ser	Asn	Asn	Ala	Gly

	Arg 625	Gln	Thr	Phe	His	Phe 630	Asp	Lys	Ile	Glu	Phe 635	Ile	Pro	Ile	Thr	Ala 640
5	Thr	Phe	Glu	Ala	Glu 645	Tyr	Asp	Leu	Glu	Arg 650	Ala	Gln	Glu	Ala	Val 655	Asn
	Ala	Leu	Phe	Thr 660	Asn	Thr	Asn	Pro	Arg 665	Arg	Leu	Lys	Thr	Gly 670	Val	Thr
10	Asp	Tyr	His 675	Ile	Asp	Glu	Val	Ser 680	Asn	Leu	Val	Ala	Cys 685	Leu	Ser	Asp
15	Glu	Phe 690	Cys	Leu	Asp	Glu	Lys 695	Arg	Glu	Leu	Leu	Glu 700	Lys	Val	Lys	Tyr
•	Ala 705	Lys	Arg	Leu	Ser	Asp 710	Glu	Arg	Asn	Leu	Leu 715	Gln	Asp	Pro	Asn	Phe 720
20	Thr	Ser	Ile	Asn	Lys 725	Gln	Pro	qaA	Phe	Asn 730	Ser	Asn	Asn	Glu	Gln 735	Ser
	Asn	Phe	Thr	Ser 740	Ile	His	Glu	Gln	Ser 745	Glu	His	Gly	Trp	Trp 750	Gly	Ser
25	Glu	Asn	Ile 755		Ile	Gln	Glu	Gly 760	Asn	Asp	Val	Phe	Lys 765	Glu	Asn	Tyr
30	Val	Thr 770	Leu	Pro	Gly	Thr	Phe 775	Asn	Glu	Суѕ	Tyr	Pro 780	Thr	Tyr	Leu	Tyr
	Gln 785	_	Ile	Gly	Glu	Ala 790		Leu	Lys	Ala	Tyr 795	Thr	Arg	Tyr	Gln	Leu 800
35	Ser	Gly	Tyr	Ile	Glu 805	Asp	Ser	Gln	Asp	Leu 810	Glu	Ile	Tyr	Leu	Ile 815	Arg
	туr	Asn	Ala	Lys 820		Glu	Thr	Leu	Asp 825	Val	Pro	Gly	Thr	Glu 830	Ser	Val
40	Trp	Pro	Leu 835		Val	Glu	Ser	Pro 840	Ile	Gly	Arg	Суз	Gly 845	Glu	Pro	Asn
45	Arg	Сув 850	Ala	Pro	His	Phe	Glu 855		Asn	Pro	Asp	Leu 860	Asp	Cys	Ser	Cys
	Arg 865		Gly	Glu	Lys	Cys 870		His	His	Ser	His 875	His	Phe	Ser	Leu	4sp 088
50	Ile	Asp	Val	Gly	Cys 885		Asp	Leu	His	Glu 890	Asn	Leu	Gly	Val	895	Val
	Val	Phe	. Lys	11e		Thr	Gln	Glu	Gly 905	His	Ala	Arg	Leu	910	Asr	Leu
55	Glu	Phe	: Ile 915		Glu	Lys	Pro	Leu 920	Leu	Gly	Glu	Ala	Lev 925	Ser	Arg	y Val

,	Lys	93		a Glu	ı Lys	Lys	935		g Asp) Ly	s Ar	940		Leu	Gln	Le
5	Gl: 945		r Lys	s Arg	y Val	. Tyr 950		Glu	ı Ala	a Lys	s Gl 95	ı Ala	Val	. Asp	Ala	Le:
10	Phe	e Va	l Asp	Ser	965		Asp	Arg	J Leu	970		a Asp	Thr	· Asn	Ile 975	_
	Met	: Il	e His	980		Asp	Lys	Leu	val 985		a Arg	, Ile	Arg	Glu 990		Туз
15	Let	ı Se	r Glv 995		Ser	Val		Pro 1000		/ Ųa]	l Asr	Ala	Glu 1005		Phe	Glu
	Glu	Le:		Gly	Arg		Ile 1015		Ala	Ile	e Ser	Leu 1020		qaA	Ala	Arg
20	Asn 102		l Val	Lys		Gly 1030	Asp	Phe	Asn	Asn	Gly 1035	Leu	Ala	Суз	_	Asr 1040
25	Val	Lys	s Gly		Val 1045		Val	Gln		Ser 1050		His	Arg		Val 1055	Leu
	Val	Ile	Pro	Glu 1060		Glu	Ala		Val 1065		Gln	Ala		Arg 1070	Val	Cys
30	Pro	Gly	/ Arg		Tyr	Ile		Arg 1080		Thr	Ala	Tyr	Lys 1085	Glu	Gly	Tyr
		Glu 1090		Cys	Val		Ile 1095	His	Glu	Ile		Asn 1100	Asn	Thr	Asp	Glu
35	Leu 110		Phe	Lys		Cys 1110	Glu	Glu	Glu		Val 1115	Tyr	Pro	Thr	-	Thr 1120
40	Gly	Thr	Cys		Asp 1125	Tyr	Thr	Ala		Gln 1130	Gly	Thr	Ala		Cys 135	Asn
	Ser	Arg		Ala 1140	Gly	Tyr	Glu		Ala 1145	Tyr	Glu	Val		Thr L150	Thr	Ala
45	Ser		Asn 1155	Tyr	Lys	Pro		Tyr 160	Glu	Glu	Glu	Thr 1	Tyr 165	Thr	Asp	Val
		Arg 1170		Asn		Cys 1				Arg		Tyr 1180	Val	Asn	Tyr	Pro
50	Pro 1185		Pro	Ala		Tyr 190	Met	Thr	Lys		Leu 1195	Glu	Tyr	Phe		Glu 200
• •	Thr	Asp	Lys		Trp 205	Ile	Glu	Ile		Glu .210	Thr	Glu	Gly		Phe 215	Ile
55	Val	Asp	Ser 1	Val 220	Glu :	Leu 1	Leu :		Met 225	Glu	Glu					

			:	
·				
				for the second
	•			

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 March 2001 (22.03.2001)

PCT

(10) International Publication Number WO 01/19859 A3

- (51) International Patent Classification?: C12N 15/32, C07K 14/325, A01N 63/00. C12N 15/63, 5/10, 15/82, A01H 5/00
- (21) International Application Number: PCT/US00/25361
- (22) International Filing Date:

13 September 2000 (13.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/153,995 15 September 1999 (15.09.1999) US

- (71) Applicant: MONSANTO TECHNOLOGY LLC [US/US]: 800 N. Lindbergh Boulevard, St. Louis, MO 63167 (US).
- (72) Inventors: BAUM, James, A.; 321 South Elm Avenue, Webster Groves, MO 63119 (US). CHU, Chih-Rei; 260 Steeplecase Drive, Exton, PA 19341 (US). DONOVAN, William, P.; 36 Calicobush Road, Levittown, PA 19057 (US). GILMER, Amy, J.; 2551 Tulip Lane, Langhorne, PA 19047 (US). RUPAR, Mark, J.; 42 Sturbridge Drive, Wilmington, DE 19810 (US).

- (74) Agent: KAMMERER, Patricia, A.: Howrey Simon Amold & White, LLP, 750 Bering Drive, Houston, TX 77057-2198 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report:
10 May 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: LEPIDOPTERAN-ACTIVE BACILLUS THURINGIENSIS δ -ENDOTOXIN COMPOSITIONS AND METHODS OF USE

(57) Abstract: Disclosed are *Bacillus thuringiensis* strains comprising novel crystal proteins which exhibit insecticidal activity against lepidopteran insects. Also disclosed are novel *B. thuringiensis* genes and their encoded crystal proteins, as well as methods of making and using transgenic cells comprising the novel nucleic acid sequences of the invention.

INTERNATIONAL SEARCH REPORT

Intal onal Application No PCT/US 00/25361

A. CLASSIFICATION OF SUBJECT MATTER TPC 7 C12N15/32 C07K14/325 C12N15/63 C12N5/10 A01N63/00 A01H5/00 C12N15/82 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7K C12N IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) STRAND, EPO-Internal, WPI Data, PAJ, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Retavant to claim No. Citetion of document, with Indication, where eppropriate, of the relevant passages Category ° 2,6-11US 5 338 544 A (DONOVAN) X 16 August 1994 (1994-08-16) abstract; figures 2A-C column 3, line 19 - line 40 US 5 723 758 A (CANNON RAYMOND J C ET AL) 2,6-11, X 23-27, 3 March 1998 (1998-03-03) 34-51 cited in the application 1-11. A Seq Id Nos 7,8 column 1, line 13 - line 57 column 2, line 24 - line 38 examples 2,3 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X *T* later document published after the international filing data or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Invention Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *E* earlier document but published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve en inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent lamily Date of mailing of the international search report Date of the actual completion of the international search 20 6 017 7 June 2001 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nf, Fax: (+31-70) 340-3016 Ceder, 0

INT-RNATIONAL SEARCH REPORT

Inter onel Application No PCT/US 00/25361

C./Contine	uation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 00/25361
Category °	·	Relevant to claim No.
	- Proposition of the television passages	Helevant to claim No.
A	KUO ET AL.: "Bacillus thuringiensis wuhanensis insecticidal crystal protein CryEl (cryLal) gene, complete cds." EMBL SEQUENCE DATABASE, 6 January 1999 (1999-01-06), XP002160714 HEIDELBERG DE Ac U70726 the whole document	1-6, 14-17
A	WO 95 06128 A (DEKALB GENETICS CORP) 2 March 1995 (1995-03-02)	1-6, 14-20, 22-26, 30-32, 34-38, 41-45, 47-51
	abstract; claims 11-14,22-25 Seq Id Nos 10, 11 page 6, line 1 -page 9, line 3 page 19, line 20 - line 25 page 29, line 6 - line 25 page 74, line 16 - line 27 page 129, line 10 -page 130, line 10 page 243, line 15 -page 244, line 6	77 51
·. ·	EP 0 367 474 A (MYCOGEN CORP) 9 May 1990 (1990-05-09) the whole document	1-11, 14-51
	EP 0 206 613 A (REPLIGEN CORP) 30 December 1986 (1986-12-30) the whole document	1-11, 14-51
	HOFTE H ET AL: "INSECTICIDAL CRYSTAL PROTEINS OF BACILLUS THURINGIENSIS" MICROBIOLOGICAL REVIEWS, US, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, DC, vol. 53, 1 June 1989 (1989-06-01), pages 242-255, XP000374163 ISSN: 0146-0749 cited in the application	
	WO 98 00546 A (MYCOGEN CORP) 8 January 1998 (1998-01-08) abstract; claims 21,22; example 13 page 16, line 10 -page 17, line 10	1-11, 14-51
	WO 98 23641 A (ECOGEN INC) 4 June 1998 (1998-06-04)	1-11, 14-51

Irremational application No. PCT/US 00/25361

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
1-11, 14-51 all partially (Inventions 1,6,10 searched)
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-11, 14-51 all partially

Isolated polypeptide, polynucleotide encoding it and composition containing it; vector, transformed host cell, plant and its progeny and seeds containing the polynucleotide; methods of controlling Lepdopteran insects and for preparing insect resistant plants using the above polypeptide and polynucleotide; the polynucleotide and polypeptide being Seq Id Nos 17 and 18, respectively.

2. Claims: 1-11, 14-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 19 and 20.

3. Claims: 1-11, 14-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 23 and 24.

4. Claims: 1-11, 14-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 39 and 40.

5. Claims: 1-11, 14-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 43 and 44.

6. Claims: 2-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 1 and 2.

7. Claims: 2-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 5 and 6.

8. Claims: 2-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 7 and 8.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

9. Claims: 2-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 9 and 10.

10. Claims: 2-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 37 and 38.

11. Claims: 3-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 15 and 16.

12. Claims: 3-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 21 and 22.

13. Claims: 3-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 27 and 28.

14. Claims: 3-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 35 and 36.

15. Claims: 3-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 49 and 50.

16. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 3 and 4.

17. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 11 and 12.

FURTHER INFORMATION CONTINUED FROM PCT/ISA 210

18. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 13 and 14.

19. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 25 and 26.

20. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 29 and 30.

21. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 31 and 32.

22. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 33 and 34.

23. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 41 and 42.

24. Claims: 4-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 45 and 46.

25. Claims: 4-11, 16-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 47 and 48.

26. Claims: 4-11, 15-51 all partially

Subject matter as defined for invention 1 above, but limited to Seq Id Nos 62 and 63.

27. Claims: 12, 13 both partially

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

A Bacillus thuringiensis cell and an insecticidal polypeptide prepared from it, where the cell is NRRL B-21784.

28. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21783.

29. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21917.

30. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21786

31. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21787.

32. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21785.

33. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21788.

34. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21915.

35. Claims: 12, 13 both partially

Subject matter as defined for invention 27 above, but limited to NRRL B-21916.

0

IN ERNATIONAL SEARCH REPORT

Information on patent family members

Into...ational Application No
PCT/US 00/25361

Patent document cited in search report	1	Publication date		Patent family member(s)	Publication date
US 5338544	Α	16-08-1994	US AT AU DE DK EP ES GR IL JP KR SG WO US	5073632 A 150089 T 618532 B 1681788 A 3855827 D 3855827 T 513689 A 0367767 A 2009599 A 88100247 A,B 86065 A 6036743 B 2500716 T 9606582 B 43288 A 8808034 A 5196342 A	17-12-1991 15-03-1997 02-01-1992 04-11-1988 17-04-1997 27-11-1997 14-12-1989 16-05-1990 01-10-1989 31-01-1989 07-10-1994 18-05-1994 15-03-1990 20-05-1996 17-10-1997 20-10-1988 23-03-1993
US 5723758	A .	03-03-1998	US US AT AU AU DE DE EP ES GR NZ WO	5268172 A 6150589 A 161391 T 662563 B 2672792 A 69223810 D 69223810 T 0642305 A 2112331 T 3026361 T 244285 A 9305657 A	07-12-1993 21-11-2000 15-01-1998 07-09-1995 27-04-1993 05-02-1998 20-05-1998 15-03-1995 01-04-1998 30-06-1998 22-12-1994 01-04-1993 22-03-1993
WO 9506128	A	02-03-1995	AU AU AU BR CA EP HU US US ZA ZA	712874 B 5640498 A 684105 B 7716994 A 9407355 A 2170260 A 0721509 A 74392 A 5780709 A 6118047 A 9406488 A 9604217 A	18-11-1999 04-06-1998 04-12-1997 21-03-1995 19-08-1997 02-03-1995 17-07-1996 30-12-1996 14-07-1998 12-09-2000 30-11-1995 26-08-1996
EP 0367474	A	09-05-1990	US AT DE DE ES JP JP US	5169629 A 104339 T 68914589 D 68914589 T 2063141 T 2273186 A 3054158 B 5135867 A 5352661 A	08-12-1992 15-04-1994 19-05-1994 21-07-1994 01-01-1995 07-11-1990 19-06-2000 04-08-1992 04-10-1994
EP 0206613	Α	30-12-1986	DE DE JP	3686452 A 3686452 T 61291600 A	24-09-1992 15-04-1993 22-12-1986

Form PCT/ISA/210 (patent family annex) (July 1992)

IF ERNATIONAL SEARCH REPORT

information on patent family members

PCT/US 00/25361

Patent document cited in search repo		Publication date		atent family member(s)	Publication date
EP 0206613	Α		US	5110905 A	05-05-1992
WO 9800546		08-01-1998	AU	35928 97 A	21-01-1998
WO 2000340	• •		CA	2259142 A	08-01-1998
		•	EP	09 0 9324 A	21-04-1999
	A	04-06-1998	US	594266 4 A	24-08-1999
WO 9823641	^	04 00 1330	AŬ	5371798 A	22-06-1998
			BR	9713555 A	25-01-2000
			CN	1245502 A	23-02-2000
			EP	0942929 A	22-09-1999
			TR	9901179 T	22-11-1999
			ÜS	6153814 A	28-11-2000
			ÜS	6177615 B	23-01-200
			ÜS	6033874 A	07-03-200
			us	5914318 A	22-06-1999