微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: http://bbs.rfeda.cn

HFSS FULL BOOK v10 中文翻译版 568 页(原 801 页)

(分节 水印 免费 发布版)

微波仿真论坛 --组织翻译 有史以来最全最强的 2955 中文教程

感谢所有参与翻译,投对,整理的会员

版权申明: 此翻译稿版权为微波仿真论坛(bbs.rfeda.cn)所有. 分节版可以转载. 严禁转载 568 页完整版.

推荐: EDA问题集合(收藏版) 之HFSS问题收藏集合 → http://bbs.rfeda.cn/hfss.html

- Q: 分节版内容有删减吗? A: 没有, 只是把完整版分开按章节发布, 免费下载. 带水印但不影响基本阅读.
- Q: 完整版有什么优势? A:完整版会不断更新,修正,并加上心得注解.无水印.阅读更方便.
- Q: 本书结构? A: 前 200 页为使用介绍.接下来为实例(天线,器件, BMC, SI 等).最后 100 页为基础综述
- 0: 完整版在哪里下载? A: 微波仿真论坛(http://bbs.rfeda.cn/read.php?tid=5454)
- Q: 有纸质版吗? A:有.与完整版一样,喜欢纸质版的请联系站长邮寄rfeda@126.com 无特别需求请用电子版
- Q: 还有其它翻译吗? A: 有专门协助团队之翻译小组. 除 HFSS 外, 还组织了 ADS, FEKO 的翻译. 还有正在筹划中的任务!
- 0: 翻译工程量有多大? A: 论坛 40 位热心会员, 120 天初译, 60 天校对. 30 天整理成稿. 感谢他们的付出!
- Q: rfeda. cn 只讨论仿真吗?
- **A: 以仿真为主. 微波综合社区. 论坛正在高速发展. 涉及面会越来越广! 现涉及** 微波|射频|仿真|通信|电子|EMC| 天线|雷达|数值|高校|求职|招聘
- Q: rfeda. cn 特色?
- A: 以技术交流为主,注重贴子质量,严禁灌水;资料注重原创;各个版块有专门协助团队快速解决会员问题;

http://bbs.rfeda.cn --- 等待你的加入

RFEDA. cn

rf---射频(Radio Frequency)
eda---电子设计自动化(Electronic Design Automation)

微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: http://bbs.rfeda.cn

致谢名单 及 详细说明

http://bbs.rfeda.cn/read.php?tid=5454

一个论坛繁荣离不开每一位会员的奉献 多交流,力所能及帮助他人,少灌水,其实一点也不难

打造国内最优秀的微波综合社区

还等什么?加入 RFEDA. CN 微波社区

我们一直在努力

微波仿真论坛

bbs.rfeda.cn

RFEDA. cn

rf---射频(Radio Frequency)
eda---电子设计自动化(Electronic Design Automation)

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n−chip 无源实例

第十章 On-chip 无源实例

第一节 螺旋形传感器

这个例子教你如何在 HFSS 设计环境下创建、仿真、分析一个 2.5 圈旋转的螺旋形传感器。

Nominal Design:

Spiral: 2.5T, W=15um, S=1.5um, Rad=60um

M6, 2um, σ= 2.8e7 S/m

Underpass: M5, 0.5um, σ= 2.8e7 S/m

Stackup:

Passivation: 0.7um

er = 7.9

Oxide: 9.8um

er = 4.0

Substrate: 300um

εr = 11.9, σ= 10 S/m

Passivation

M6
Oxide

Substrate

F.10.1.1

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

一. 开始

一) 启动 Ansoft HFSS

为了能够进入 Ansoft HFSS, 单击 Microsoft 开始键, 选择程序, 选择 Ansoft > HFSS 10 的程 序组, 然后单击 HFSS 10.

二)设置工具选项

- 2. HFSS 选择窗口:

 1. 単击 General 符号

 a. 句はかない。

 a. のはかない。

 a. のはかない。

 a. のはかない。

 a. のはかない。

 b. c. にいる。

 c. にいる。
 c. にいる。

 c. にいる。

 c. にいる。

 c tion. Mys. Mbs.
- - - a. 创建新边界条件时使用数据输入向导: 选中
 - b. 边界条件随几何体一起复制: 选中
 - 2) 单击 OK 按钮
- 3. 选择菜单栏选项工具(Tools)>选项(Options)>3D 模型选项(3D Modeler Options)
- 4. 3D 模型选项(3D Modeler Options) 窗口:
 - 1) 单击 Operation 符号
 - 自动覆盖闭合曲线: 选中
 - 2) 单击 Drawing 符号
 - 编辑新的简单形状的属性: 选口
 - 3) 单击 OK 按钮

三) 打开一个新的程序

打开一个新的程序:

- 1. 在一个 Ansoft HFSS 餐口, 单击标准工具栏,或者选择菜单名 File > New.
- 2. 从 Project 菜单上人选择 Insert HFSS Design。

F.10.1.2

四)设定解决方法类型 微波仿真论坛 组织翻译

第 485 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

创建三维模型

一)设置模型单位:

F.10.1.4

二)设置默认材料

设置默认材料:

用文维模拟器材料工具栏,选择 Select

F.10.1.5

- 2. 选择定义窗口
 - 1)单击 Add Material 键
 - 2)视图/编辑选项窗口:
 - a. Material Name 类型: My_Sub
 - b. Relative Permittivity (相对介电常数) 类型的值: 11.9
 - c. Bulk Conductivity (多数传导率) 类型的值: 10

微波仿真论坛 组织翻译

第 486 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n−chip 无源实例

d. 单击 OK 按钮

3)单击 OK 按钮

F.10.1.6

三)创建基底

- •创造基底:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域,输入长方体位置
 - X: -270.0, Y: -270.0, Z: 0.0,接下 Enter 键
- 3. 使用坐标输入区域,输入长方体的相对拐角;
 - •dX: 540.0, dY: 540.0, dZ: \$00.0, 按下 Enter 键
- •设定名字:
 - 1. 在 Properties 窗口来证择 Attribute 符号
 - 2. 对于 Name type (命名类型) 的 Value 应选择: Sub
 - 3. 单击 OK 按钮
- •适合视图:
 - 1. 选择文单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

微波仿真论坛 组织翻译 第 487 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

四)确定默认材料

- •为了确定默认材料:
- 1. 使用三维模拟器选项工具栏,选择 Select
- 2. 选择精确度窗口
 - 1)单击 Add Material (增加材料) 按钮
 - 2)视图/编辑选项窗口:
 - a. Material Name(选项名称)类型: My_Oxide
 - b. Relative Permittivity(相对介电常数)类型的值: 4.0
 - c. 单击 OK 按钮

3)单击 OK 按钮

五)创建介质

- •要创建基底:
 - 1. 选择菜单名 Draw Ro
 - 2. 使用坐标输入区域,输入 Box 位置
 - •X: -270.0, Y: -270.0, Z: 300.0, 按下 Enter 键
 - 3. 使用坐板输入区域,输入box的相对拐角;
 - •dX: 540.0, dY: 540.0, dZ: 9.8, 接下 Enter 键
- •设定名学:
 - 大在 Properties 窗口中,选择 Attribute 符号
- 之. 对于 Name type(命名类型)的 Value 应选择: Oxide
 - 3. 单击 OK 按钮
- •适合的视图:
 - 1. 选择菜单栏目录视图 (View) > 全屏视角 (Fit All) > 激活视角 (Active view)

微波仿真论坛 组织翻译

第 488 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

六)设置默认材料

- •为了设置默认选项:
- 1. 使用三维模拟器选项工具栏,选择 Select
- 2. 选择定义窗口
 - 1)单击 Add Material (增加选项) 键
 - 2)视图/编辑选项窗口:
 - a. Material Name(选项名称)类型: Pass
 - b. Relative Permittivity(相对介电常数)类型的值: 7.9
 - c. 单击 OK 按钮
- 3. 单击 OK 按钮

七)创建 Passivation

- •要创建基地:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域人输入 Box 位置
 - X: -270.0, Y: -270.0, Z: 309.8,接下 Enter 键
- 3. 使用坐标输入区域,输入box的相对拐角;
 - •dX: 540 dY: 540.0, dZ: 0.7, 按下 Enter 键
- •设定名字》
 - 1. 大Properties 窗口中,选择 Attribute 符号
 - X 对于 Name type(命名类型)的 Value 应选择: Pass
- ※>3. 单击 OK 按钮
- ▶ •适合的视图:
 - 1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

八)确定默认材料

- •为了确定默认材料:
- 1. 使用三维模拟器选项工具栏,选择 vacuum (真空)

九)创建空气

- •要创建空气:
- 1. 选择菜单名 Draw > Box

微波仿真论坛 组织翻译

第 489 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n-chip 无源实例

- 2. 使用坐标输入区域,输入Box位置
 - X: -270.0, Y: -270.0, Z: 0.0, 接下 Enter 键
- 3. 使用坐标输入区域,输入box的相对拐角;
 - •dX: 540.0, dY: 540.0, dZ: 600, 按下 Enter 键
- •设定名字:
 - 1. 在 Properties 窗口中,选择 Attribute 符号
 - 2. 对于 Name type (命名类型) 的 Value 应选择: Air
 - 3. 单击 OK 按钮
- •适合的视图:
- 1. 选择菜单栏目录*视图(View)>全屏视角(Fit All)>激活视角(Active view)*

三. 创建辐射边界

- •要选择客观 Air:
- 1. 选择菜单名 Edit(编辑) > Select(选择) > By Name(按名字)
- 2. 选择目标对话框,
 - 1)选择对象名: Air
 - 2)单击 OK 按钮
- •创建一个辐射区域
 - 1. 选择菜单名 HFSS > Boundaries (区域)> Assign (任务) > Radiation(辐射)
 - 2. 辐射区域窗口
 - a. 命名: Rad1
 - b. 单击 OK 按钮

四. 创建地

- •创建地
- 1. 选择菜单名 Draw (图形) > Rectangle (矩形)
- 2. 使用坐标输入区域,输入长水体的位置
 - •X: -270.0, Y: -270.0, Z, 0.0, 按下 Enter 键
- 3. 使用坐标输入区域, 基矩形的相对角
 - •dX: 540.0, dY: 540.0, dZ: 0.0, 按下 Enter 键
- •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type(命名类型)的 Value 应选择: Ground
- 3. 单志 OK 按钮
- •适合的视图:

选择菜单栏目录*视图(View)>全屏视角(Fit All)>激活视角(Active view)*

(大学) > 激活视角(Active view) Jame(按名字) (技名字) > Radiation

微波仿真论坛 组织翻译

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

一)给场地分配一个理想的 E 区域

- •选择场地:
- 1. 选择菜单名 Edit > Select > By Name
- 2. 选择目标对话框,
 - 1)选择对象名: Ground
 - 2)单击 OK 按钮
- •分配理想的 E 区域
- 1. 选择菜单名 HFSS > Boundaries > Assign > Perter F
- 2. 理想 E 区域窗口
 - 1)命名: PerfE Ground
 - 2)单击 OK 按钮

二)隐藏电介质

- •为了隐藏电介质
- 1. 选择菜单名 Edit > Select All Visible
- 2. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

三)设定默认材料

- •设定默认材料:
- 1. 使用三维模拟器选项工具栏,选择 Select
- 2. 精确选择窗口:
 - 1)单击 Add Material(增加选项)按钮
 - 2)视图/编辑窗口:
 - a. Material Name(选项命名)类型: My_Met
 - b. Bulk Conductivity 类型值: 2.8e7
 - c. 单击 OK 按钮
 - 3)单击 OK 按钮

四) 创建偏移坐标系统

- •要创建一个偏移坐标系统:
- 1. 选择菜单名3D Modeler > Coordinate System > Create >

Relative CS > Offset

2. 使用坐标输入区域,输入原点值

微波仿真论坛 组织翻译

第 491 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n-chip 无源实例

White Wife White I was a superior of the super

• X: 0.0, Y: 0.0, Z: 304.8, 按下 Enter 键

五) 创建螺旋路径

- •创造路径
- 1. 选择菜单名 Draw > Line
- 2. 使用坐标输入区域,输入顶点值
 - •X: -60.0, Y: 7.5, Z: 0.0,接下 Enter 键
- 3. 使用坐标输入区域,输入顶点值
 - X: -60.0, Y: -60.0, Z: 0.0, 接下 Enter 键
- 4. 使用坐标输入区域,输入顶点值
 - X: 76.5, Y: -60.0, Z: 0.0, 按下 Enter 键
- 5. 使用坐标输入区域,输入顶点值
 - X:76.5, Y:76.5, Z: 0.0, 按下 Enter 键
- 6. 使用坐标输入区域,输入顶点值
 - X:-76.5, Y:76.5, Z: 0.0, 接下 Enter 键
- 7. 使用坐标输入区域,输入顶点值
 - X:-76.5, Y:-76.5, Z: 0.0, 按下 Enter 键
- 8. 使用坐标输入区域,输入顶点值
 - X:93.0, Y:-76.5, Z: 0.0, 接下 Enter 键
- 9. 使用坐标输入区域,输入顶点值
 - X:93.0, Y:93.0, Z: 0.0, 按下 Enter 键
- 10. 使用坐标输入区域,输入顶点值
 - X:-93.0, Y:93.0, Z: 0.0, 按下 Enter 键
- 11. 使用坐标输入区域,输入顶点值。
 - X:-93.0, Y:-93.0, Z: 0.0, 接下 Firer 键
- 12. 使用坐标输入区域,输入顶点值
 - X:109.5, Y:-93.0, Z: 0.0 安下 Enter 键
- 13. 使用坐标输入区域、输入顶点值
 - X:109.5, Y:7.5, Z: 0.0, 接下 Enter 键
- 14. 使用坐标输入区域,输入顶点值
 - X:131.0 7.5, Z: 0.0, 接下 Enter 键
- 15. 使用鼠除右击并选择 Done
- 16. 当工具对话框出现时,单击 OK 键

六文创建螺旋形状

- ▶ 设定栅格平面:
 - 1. 选择菜单名 3D Modeler > Grid Plane > XZ
 - •创建导线轮廓:
 - 1. 选择菜单名 Draw > Rectangle
 - 2. 使用坐标输入区域,输入box的位置
 - •X: -60.0, Y: 7.5, Z: 0.0, 按下 Enter 键
 - 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: -15.0, dY: 0.0, dZ: 2.0, 按下 Enter 键

微波仿真论坛 组织翻译

第 492 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

- •设定名字:
 - 1. 在 Properties 窗口中,选择 Attribute 符号
 - 2. 对于 Name type (命名类型) 的 Value 应选择: Spiral
 - 3. 单击 OK 按钮
- •扫描轮廓:
 - 1. 选择菜单名 Edit > Select > By Name
 - 2. 选择目标对话框,
 - 1. 选择菜单名 Draw > Sweep > Along Path
 - 2. 当扫描路径对话框出现时,单击 OK 键
 - •适合的视图:

七)设定栅格平面

- •设定栅格平面:
- 1. 选择菜单名》 Modeler > Grid Plane > XY

八)创建接地

- •要创建接地:
- 1. 选择菜单名 Draw > Box
- **※** 使用坐标输入区域,输入长方体的位置
- •X: -60.0, Y: 7.5, Z: -0.8, 按下 Enter 键
- 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: -75.0, dY: -15.0, dZ: -0.5, 按下 Enter 键
- •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type(命名类型)的 Value 应选择: Underpass
- 3. 单击 OK 按钮
- •适合的视图:

微波仿真论坛 组织翻译

第 493 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n-chip 无源实例

1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

九) 创建路线1

- •要创建路线:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域,输入 box 的位置
 - •X: -60.0, Y: 7.5, Z: 0.0 接下 Enter 键
- 3. 使用坐标输入区域, 基矩形的相对角
 - •dX: -15.0, dY: -15.0, dZ: -0.8, 接下 Enter 键
- •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type (命名类型)的 Value 应选择: Via1
- 3. 单志 OK 按钮
- •适合的视图:
- 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

(一) 创建路线 2

- •要创建路线:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域,输入box的位置
 - •X: -120.0, Y: 7.5, Z: 0.0, 按下 Enter 键
- 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: -15.0, dY: -15.0, dZ: -0.8, 按下 Enter 键
- •设定名字:

微波仿真论坛 组织翻译

第 494 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type(命名类型)的 Value 应选择: Via2
- 3. 单击 OK 按钮
- •适合的视图:
- 1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

十一)创建馈源

- •创建电源:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域,输入 box 的位置
 - •X: -120.0, Y: 7.5, Z: 0.0, 按下 **Exter** 键
- 3. 使用坐标输入区域,输入基纸形的相对角
 - •dX: -22.0, dY: -15.0, dZ: 2.0, 按下 Enter 键
- •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type (命名类型) 的 Value 应选择: Feed
- 3. 单击 OK 校银
- •适合的视图:
- 1. 选择<mark>菜单</mark>栏目录*视图(View)>全屏视角(Fit All)>激活视角(Active view)*

十二人身线内部处理

次内部处理

- 1. 选择菜单名 Edit > Select All Visible
 - 2. 选择菜单名 Edit > Properties
 - 3. 性质对话框属性表
 - 1) 内部处理: Checked
 - 2) 单击 OK 按钮
 - •对于所有的警告信息都单击 OK 按钮(在处理高电导率固体内部时,可能需要一个大的网格)

十三) 网状导线内部处理

•内部处理:

微波仿真论坛 组织翻译

第 495 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n-chip 无源实例

- 1. 选择菜单名 Edit > Select All Visible
- 2. 选择菜单名HFSS > Mesh Operations > Assign > Inside

Selection > Length Based

- 3. 基于正规对话框的元素长度
 - 1) 元素长度的限制: _ Unchecked
 - 2) 元素数目的限制: _ Checked
 - 3) 元素数目的最大值: 5000
 - 4) 单击 OK 按钮

十四)设定默认材料

- •要设定默认材料:
- 1. 使用三维模拟器选项工具栏,选择 Select
- 2. 精确选择窗口:
 - 1) 在 Search by Name 区域选择类型 pec
 - 2) 单击 OK 按钮

十五) 创建地环

- •创建外环:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域,输入 box 的位置
 - •X: -225.0, Y: -225.0, Z: 0.0,接下 Enter 键
- 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: 450.0, dY: 450.0, dZ: 2.0, 按下 Enter 键
- •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type(命名类型)的 Value 应选择: Ring
- 3. 单击 OK 按钮
- •适合的视图:
- 1. 选择菜单栏目录视图、《Wiew》>全屏视角(Fit All)>激活视角(Active view)

C)

十六) 创建内环

- •创建内环:
- 1. 选择菜单**Praw** > Box
- 2. 使用坐板输入区域,输入 box 的位置
 - •X: 10.0, Y: -210.0, Z: 0.0,接下 Enter 键
- 3. 使用坐标输入区域,输入基矩形的相对角
- •dX: 420.0, dY: 420.0, dZ: 2.0, 按下 Enter 键
- ₩ •设定名字:
 - 1. 在 Properties 窗口中,选择 Attribute 符号
 - 2. 对于 Name type(命名类型)的 Value 应选择: Inner
 - 3. 单击 OK 按钮
 - •适合的视图:
 - 1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

十七) 完成环

•选择目标环形和内环:

微波仿真论坛 组织翻译

第 496 页

While With the Mos. Theda. cm

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

- 1. 选择菜单名 Edit > Select > By Name
- 2. 选择目标对话框,
 - 1) 选择对象名: Ring, Inner
 - 2) 单击 OK 按钮
- •完成环形:
- 1. 选择菜单名 3D Modeler > Boolean > Subtract
- 2. 比较窗口
 - •空白部分: Ring
 - •工具部分: Inner
 - •单击 OK 按钮

十八) 创建扩展名1

- 创建扩展名:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域,输入 kox 的位置
 - •X: -157.0, Y: 7.5, 2.0.0, 按下 Enter 键
- 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: -53.0, dX: -15.0, dZ: 2.0, 按下 Enter 键
- •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对天 Name type(命名类型)的 Value 应选择: Ring_Ext1
- 3. 单告 OK 按钮

泛适合的视图:

1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

十九) 创建扩展名2

- 创建扩展名:
- 1. 选择菜单名 Draw > Box
- 2. 使用坐标输入区域,输入box的位置
 - •X: 146.0, Y: 7.5, Z: 0.0, 按下 Enter 键
- 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: 64.0, dY: -15.0, dZ: 2.0, 按下 Enter 键

微波仿真论坛 组织翻译

第 497 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

- •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type (命名类型) 的 Value 应选择: Ring_Ext2
- 3. 单击 OK 按钮
- •适合的视图:
- 1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

二十)组合导线

- •组合导线:
- 1. 选择菜单名 Edit > Select > By Name
- 2. 选择目标对话框,
- 3. 选择菜单名, 3D Modeler > Boolean > Unite
- •适合的视图:

二十一)创造源1

- •创造源:
- 1. 选择菜单名 Draw > Box
- 使用坐标输入区域,输入 box 的位置
 - •X: -142.0, Y: 7.5, Z: 1.0, 按下 Enter 键
 - 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: -15.0, dY: -15.0, dZ: 0.0, 按下 Enter 键
 - •设定名字:
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对于 Name type (命名类型) 的 Value 应选择: Source1
- 3. 单击 OK 按钮
- •适合的视图:

微波仿真论坛 组织翻译

第 498 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

二十二) 分配激励

- •选择目标资源:
- 1. 选择菜单名 Edit > Select > By Name
- 2. 选择目标对话框,
 - 1) 选择对象名: Source1
 - 2) 单击 OK 按钮
 - •注: 你也可以从样本木里选择对象

二十三) 分配集总端口激励

- Millita William William William Com 1. 选择菜单名 HFSS > Excitations > Assign > Lumped Port
- 2. 集总端口: General
 - 1) 命名: P1
 - 2) 电阻: 50
 - 3) 电抗: 0
 - 4) 单击 OK 按钮
- 3. 集总端口: Terminals
 - 1) 终端设备数目: 1
 - 2) 对于T1,单击Undefined 栏并选择New Line
 - 3) 使用坐标输入区域,输入顶点的位置
 - X: -157.0, Y: 0.0, Z: 1.0,接下 Enter 键》
 - 4) 使用坐标输入区域,输入顶点的位置
 - dX: 15.0, dY: 0.0, dZ: 0.0, 按下 Enter 键
 - 5) 单击 Finish 按钮

二十四) 创造资源 2

- •创造资源:
- 1. 选择菜单名 Draw > Rectangle
- 2. 使用坐标输入区域, 输入 box 的位置
 - •X: 131.0, Y: 7.5, Z: 1.0, 按下 Enter 键
- 3. 使用坐标输入区域,输入基矩形的相对角
 - •dX: 15.0、按下 Enter 键
- •设定名字》
- 1. 在 Properties 窗口中,选择 Attribute 符号
- 2. 对 Name type(命名类型)的 Value 应选择: Source2
- 单击 OK 按钮

▶ 适合的视图:

1. 选择菜单栏目录视图(View)>全屏视角(Fit All)>激活视角(Active view)

二十五) 分配激励

- •选择目标资源:
- 1. 选择菜单名 Edit > Select > By Name
- 2. 选择目标对话框,
 - 1) 选择对象名: Source2
 - 2) 单击 OK 按钮

微波仿真论坛 组织翻译

第 499 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

- •注: 你也可以从样本木里选择对象
- •分配集总端口激励
- 1. 选择菜单名 HFSS > Excitations > Assign > Lumped Port
- 2. 集总端口: General
 - 1) 命名: P2
 - 2) 电阻: 50
 - 3) 电抗: 0
 - 4) 单击 Next 按钮
- 3. 集总端口: Terminals
 - 1) 终端设备数目: 1
 - 2) 对于T1, 单击 Undefined 栏并选择 New Line
 - 3) 使用坐标输入区域,输入顶点的位置
 - X: 146.0, Y: 0.0, Z: 1.0, 接下 Enter 接钮
 - 4) 使用坐标输入区域,输入顶点的位置
- With the Wife of the second of • dX: -15.0, dY: 0.0, dZ: 0.0, 按下 Enter 按钮
 - 5) 单击 Finish 按钮

二十六)显示全部

- •显示所有的对象:
- 1. 选择菜单名 View > Show All > All Views

二十七) 边界显示

- •验证边界设置:
- 1. 选择菜单名 HFSS > Boundary Display (Solver View)
- 2. 根据边界的解决视图,为你想要显示的边界建立可视复选框
 - •注: 背景(理想导线)作为 outer (外)边界显示
 - •注:理想导线作为 smetal,过多显示
 - •注:选择菜单名 View、Visibility 来隐藏所有的几何对象。这将使边界更容易看
- 3. 当你完成时,单击 Close 按钮

Name	Туре	Solver Visibility	Visibility	Color
Rad1	User Defined	Visible to solver.		
PerfE1	User Defined	Visible to solver.		
p1	User Defined	Visible to solver.		
p2	User Defined	Visible to solver.		
outer	Default	Overridden by other boundaries. Invi		
smetal	Default	Visible to solver.		

微波仿真论坛 组织翻译

第 500 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

五. 分析设置

一)创建一个分析设置

- •创建一个分析设置:
- 1. 选择菜单名 HFSS > Analysis Setup > Add Solution Setup
- 2. 解决方案设置窗口:
 - 1) 单击 General 符号:
 - •解决方案频率: 12.0GHz
 - •通道最大数目:20
 - ΔS 最大值: 0.02
 - 2) 单击 Options 符号:
 - •规范 λ: _ Checked
 - •对象: 0.05
 - •Low-Order 解决方案的基础: _ Checked

二)增加一个频率扫描

- •增加一个频率扫描:
- REFERENCE AND THE WAR THE WAY TO SEE THE BEAR. COM. WHITE THE WAY THE 1. 选择菜单名 HFSS > Analysis Setup > Add Sweep
 - 1) 选择解决方案设置: Setup1
 - 2) 单击 OK 按钮
- 2. 编辑扫描窗口:
 - 1) 扫描类型: Interpolating
 - 2) 单击 Setup Interpolation Basis 键
 - •最大解决方法: 20
 - •误差容许范围: 0.5%
 - •单击 OK 按钮
 - 3) 频率设置类型: Linear Step
 - •开始: 0.1GHz
 - •停止: 20.00Hz
 - •间隔: 0.1GHz
 - 4) 单击 OK 按钮

三)储存项目

- •储存项目:
- 1. 在大 Ansoft HFSS 窗口,选择菜单名 File > Save As.
- 2. 从Save As 窗口,确定文件名的类型:hfss_spiral_inductor
- 学 単击 Save 按钮

分分 分析

一) 样本确认

- •确认样本:
- 1. 选择菜单名 HFSS > Validation Check
- 2. 单击 Close 按钮
 - •注:要看任何错误或警告的信息,可使用信息管理器。

二)分析

•开始解决方案程序

微波仿真论坛 组织翻译

第 501 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

1. 选择菜单名 HFSS > Analyze All

三)数据解

- •查看数据解
- 1. 选择菜单名 HFSS > Results > Solution Data
 - •查看外形轮廓:
 - 1. 单击符号 Profile
 - •查看收敛性
 - 1. 单击符号 Convergence
- 据解 菜单名 HFSS > Results > Solution Data 看外形轮廓: 单击符号 Profile 看收敛性 单击符号 Convergence •注: Convergence 的默认视图是 Table。选择 Plot 单选按钮来查看一个收敛数据的图形表示法。 示法。
 - 查看矩阵数据:
 - 1. 单击符号 Matrix Data
 - 可将模拟仿真设置为 Setup1, Last Adaptive •注:要查看一个实时变化的矩阵数据,
- 2. 单击 Close 按钮

微波仿真论坛 组织翻译 第 502 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

七. 创建报表

一) 创建 S 参量和频率

- •创建一个报导:
- 1. 选择菜单名 HFSS > Results > Create Report
- 2. 创建报导窗口:
 - 1) 报导类型: Terminal S Parameters
 - 2) 显示类型: Rectangular
 - 3) 单击 OK 按钮
- 3. 轨迹窗口:
 - 1)解决方案: Setup1: Sweep1
 - 2) 单击符号 Y
 - a. 领域: 扫描
 - b. 种类: Terminal S-Parameters
 - c. 数量: St(p1,p1), St(p2,p1)
 - d. 功能: dB
 - e. 单击 Add Trace 按钮
 - 3. 单击 Done 按钮

八. 创建报表(续)

一) 自定义方程式——可变输出

- 1. 选择菜单名 HFSS > Results > Create Report
- 2. 创建报告窗口:
 - 1) 报导类型: Terminal S Parameters
 - 2) 显示类型: Rectangular

微波仿真论坛 组织翻译

第 503 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

3) 单击OK按钮

$$Q_{nn} = \frac{\operatorname{Im}(Y_{nn})}{\operatorname{Re}(Y_{nn})}$$

- 3. 轨迹窗口:
 - 1) 单击 Output Variables 按钮
 - 2) 可变输出对话框:
 - a. 命名: Q11
 - b. 表达式:
 - •种类: Terminal Y Parameters
 - •数量: Yt(p1,p1)
 - •功能: im
 - •单击 Insert Quantity into Expression 按钮
 - •类型: /
 - •数量: Yt(p1,p1)
 - •功能: re
 - •单击 Insert Quantity into Expression 按钮
 - c. 单击 Add 按钮
- The Wife William of the State o d. 对 Q22 重复上面的步骤,将 Yt(p1,p1)等换为 Yt(p2,p2)
 - e. 单击 Done 按钮
 - 3) 方案: Setup1: Sweep1
 - 4)领域: 扫描
 - 5)单击 Y 按钮
 - a. 种类: Output Variables
 - b. 数量: Q11, Q22
 - c. 功能: abs
 - d. 单击 Add Trace 按钮
 - 6)单击 Done 接钮

微波仿真论坛 组织翻译

第 504 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 On-chip 无源实例

九. 创建报表(续)

- 一)自定义方程式--可变输出
 - 1. 选择菜单名 HFSS > Results > Create Report
 - 2. 创建报导窗口:
 - 1) 报导类型: Terminal S Parameters
 - 2) 显示类型: Rectangular

$$L_{nn} = \frac{-1}{2\pi \cdot f \cdot im(Y_{nn})}$$

- 3) 单击OK按钮
- 3. 轨迹窗口
 - 1) 单击 Output Variables 按钮
 - 2) 可变输出对话框:
 - a. 命名: L11
 - b. 表达式:
 - •类型: -1/(2•pi•freq•
 - •种类: Terminal Y Parameters
 - •数量: Yt(p1,p1)
 - •功能: im
 - 单击 Insert Quantity into Expression 按钮
 - •类型:)
 - c. 单击 Add 按钮
 - d. 单击 Done 按钮
 - 3)方案: Setup1: Sweep
 - 4) 领域: 扫描
 - 5) 单击 Y 按钮
 - a. 种类: Output Variables
 - b. 💥 : Y11
 - 总动能: none
 - 文. 单击 Add Trace 按钮

A. 単击 Add 中击 Done 按钮

知 White With the Man of the second of the s

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n−chip 无源实例

微波仿真论坛 组织翻译 第 506 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n-chip 无源实例

微波仿真论坛 组织翻译 第 507 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n-chip 无源实例

微波仿真论坛 组织翻译 第 508 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权 http://www.rfeda.cn http://bbs.rfeda.cn http://blog.rfeda.cn

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第十章 0n-chip 无源实例

With the state of the state of

微波仿真论坛 组织翻译 第 509 页

完整版 目录

版权申明: 此翻译稿版权为微波仿真论坛(<u>bbs.rfeda.cn</u>)所有. 分节版可以转载. <u>严禁转载 568 页完整版</u> 如需<mark>纸质</mark>完整版(586 页),请联系 <u>rfeda@126.com</u> 邮购

由 ● hfss_full_book中文版.pdf **自 002-009 内容简介** 3 绪论 - 1 022-051 创建参数模型 📔 第一章 Ansoft HFSS参数化建模 - 1 052-061 边界条件 □ 062-077 激励 - 第二章 Ansoft HFSS求解设置 - 1 078-099 求解设置 - 第三章 Ansoft HFSS数据处理 **100-125 数据处理** 📄 第四章 Ansoft HFSS求解及网格设定 **126-137 求解循环** - 137-155 网格 第五章 天线实例 - 160-181 超高频探针天线 · 182-199 圆波导管喇叭天线 200-219 同轴探针微带贴片天线 220-237 缝隙耦合贴片天线 **238-259 吸收率** - 🕒 260-281 共面波导(CPW)馈电蝶形天线 - 1 282-303 端射波导天线阵 ■ 第六章 微波实例 · 🕒 306-319 魔T 320-347 同轴连接器 📭 348-365 环形电桥 366-389 同轴短线谐振器 - 390-413 微波端口 - 14-435 介质谐振器 ■ 第七章 滤波器实例 - [3 438-457 帯通滤波器 - 1 458-483 微带带阻滤波器 🕒 第八章 信号完整性分析实例 - 🕒 526-567 分段回路 - 🕒 568-593 非理想接地面 **1** 594-623 回路 📄 第九章 电磁兼容/电磁干扰实例 - 624-643 散热片 - 644-665 屏蔽体 ■ 第十章 On-chip无源实例

B 致 谢.pdf