Concours CPGE EPITA-IPSA-ESME 2022

Corrigé de l'épreuve de Mathématiques (Option - 2h)

- 0°) Préliminaire : l'inégalité triangulaire et son cas d'égalité
- a) Pour tous complexes z, z', on a l'inégalité triangulaire : $|z+z'| \le |z| + |z'|$ qui se justifie ainsi : $|z+z'|^2 = (z+z')(\bar{z}+\bar{z}') = |z|^2 + |z'|^2 + z|z'|^2 + z|z'|^2 + |z|^2 + |z'|^2 + 2\operatorname{Re}(\bar{z}|z')$.

En posant \bar{z} z' = a + i b, on sait que $\operatorname{Re}(\bar{z} \, z') = a \le \sqrt{a^2 + b^2} = |\bar{z} \, z'|$, avec égalité si et seulement et seulement si $a = \sqrt{a^2 + b^2}$, c'est à dire si et seulement si $a = \operatorname{Re}(\bar{z} \, z') \ge 0$ et $b = \operatorname{Im}(\bar{z} \, z') = 0$, donc si et seulement si \bar{z} z' est un nombre réel positif. Par conséquent, on a donc : $|z + z'|^2 = |z|^2 + |z'|^2 + 2\operatorname{Re}(\bar{z} \, z') \le |z|^2 + |z'|^2 + 2|\bar{z} \, z'| = |z|^2 + |z'|^2 + 2|z| |z'| = (|z| + |z'|)^2$. Ceci implique donc que : $|z + z'| \le |z| + |z'|$, avec égalité si et seulement si \bar{z} z' est réel positif.

- b) Il y a égalité si et seulement si $\operatorname{Re}(\bar{z}\,z') = |\bar{z}|\,|z'|$, donc si et seulement si $\bar{z}\,z'$ est réel positif. Si z=0, la condition est évidemment vérifiée et on a égalité dans l'inégalité triangulaire. Sinon, l'égalité $\bar{z}\,z'=\lambda\geq 0$ équivaut à $z'=\frac{\lambda}{|z|^2}z$, et on a donc $z'=\mu\,z$ avec $\mu\geq 0$. Inversement, s'il existe $\mu\geq 0$ tel que $z'=\mu\,z$, alors $|z+z'|=(1+\mu)\,|z|=|z|+|\mu\,z|=|z|+|z'|$.
- 1°) Existence d'un minimum absolu de la fonction f sur le plan
- a) Pour tout entier $k \in [0, n-1]$ et tout complexe z, on a : $|z| \le |z-z_k| + |z_k|$.

Il en résulte que : $|z - z_k| \ge |z| - |z_k|$, d'où par sommation et compte tenu de $\sum_{k=0}^{n-1} |z_k| = f(0)$:

$$f(z) = \sum_{k=0}^{n-1} |z - z_k| \ge n |z| - \sum_{k=0}^{n-1} |z_k| = n |z| - f(0).$$

Par conséquent, on a $\lim_{|z|\to+\infty} f(z) = +\infty$.

En particulier : f(z) > f(0) si n|z| - f(0) > f(0), ce qui est réalisé pour $|z| > \frac{2f(0)}{n}$.

b) La boule fermée de centre 0 et de rayon $\frac{2 f(0)}{n}$ étant fermée bornée dans le plan est compacte.

La fonction f étant clairement continue sur le plan, elle y admet donc un minimum $m \le f(0)$, atteint en un certain point Ω d'affixe ω de cette boule fermée.

Et pour $|z| > \frac{2f(0)}{n}$, on a vu que f(z) > f(0), ce qui implique f(z) > m (puisque $f(0) \ge m$).

Ainsi donc, le minimum $m = f(\omega)$ est un minimum global de f sur le plan complexe.

Celui-ci est clairement strictement positif puisque $f(\omega) = \sum_{k=0}^{n-1} |\omega - z_k| > 0$ (sinon, les z_k seraient tous égaux à ω alors qu'ils sont supposés distincts.

- 2°) Unicité d'un minimum absolu de la fonction f sur le plan
- a) Pour tous complexes distincts z, z' et tout réel $\lambda \in]0, 1[$, on a par inégalité triangulaire :

$$\begin{split} f_k(\lambda \, z + (1 - \lambda) \, z') \, &= \, |(\lambda \, z + (1 - \lambda) \, z') - z_k| \, = \, |\lambda(z - z_k) + (1 - \lambda) \, (z' - z_k)| \\ &\leq \, \lambda \, |z - z_k| + (1 - \lambda) \, |z' - z_k| \, = \, \lambda \, f_k(z) + (1 - \lambda) \, f_k(z'). \end{split}$$

D'après la question préliminaire, il y a égalité ci-dessus si et seulement si :

- soit : $\lambda(z z_k) = 0$, c'est à dire : $z = z_k$, ou : $M = M_k$.
- soit : $\exists \mu \ge 0 : (1 \lambda)(z' z_k) = \mu \lambda(z z_k)$, c'est à dire : $z' z_k = \frac{\mu \lambda}{1 \lambda}(z z_k)$,

Ainsi, s'il y a égalité dans l'inégalité ci-dessus, on a soit $M=M_k$, soit : $\overline{M_k M'}=\frac{\mu \lambda}{1-\lambda} \overline{M_k M}$.

Il en résulte que les points M, M', M_k d'affixes z, z' et z_k sont alignés.

b) En sommant les inégalités précédentes pour $0 \le k \le n - 1$, on obtient :

$$\sum_{k=0}^{n-1} f_k(\lambda z + (1-\lambda)z') \le \lambda \sum_{k=0}^{n-1} f_k(z) + (1-\lambda) \sum_{k=0}^{n-1} f_k(z').$$

Ce qui s'écrit encore : $f(\lambda z + (1 - \lambda) z') \le \lambda f(z) + (1 - \lambda) f(z')$.

Pour avoir égalité dans cette inégalité, il faut avoir pour tout entier $k \in [0, n-1]$ l'égalité :

$$f_k(\lambda z + (1 - \lambda) z') = \lambda f_k(z) + (1 - \lambda) f_k(z').$$

Ce qui implique, pour tout k, que les points M, M', M_k d'affixes z, z', z_k sont alignés, et comme $z \neq z'$, ceci implique que les points M_0 , M_1 , ..., M_{n-1} sont alignés sur la droite MM'.

Mais ceci contredit le fait que les points M_0 , M_1 , ..., M_{n-1} ont été supposés non alignés.

Ainsi donc, l'inégalité précédente portant sur f est nécessairement stricte.

c) Si f atteint son minimum absolu m en deux points distincts d'affixes ω et ω' , on a donc :

$$f(\lambda \omega + (1 - \lambda) \omega') < \lambda f(\omega) + (1 - \lambda) f(\omega') = \lambda m + (1 - \lambda) m = m.$$

Cette inégalité stricte est impossible puisque *m* est le minimum de *f*.

Par conséquent, f atteint son minimum absolu en un point Ω du plan et un seul.

d1) Supposons que l'ensemble $\{M_0, M_1, ..., M_{n-1}\}$ admette un axe de symétrie Δ .

Si Ω n'appartient pas à Δ , considérons son symétrique Ω' par rapport à Δ .

L'ensemble $\{M_0, M_1, \dots, M_{n-1}\}$ étant stable par symétrie par rapport à Δ , on en déduit que la symétrie orthogonale par rapport à Δ transforme l'ensemble ci-dessous en le suivant :

- l'ensemble des segments des n + 1 segments $\{\Omega M_0, \Omega M_1, \dots, \Omega M_{n-1}\}$
- l'ensemble des segments des n+1 segments $\{\Omega' M_0, \Omega' M_1, \dots, \Omega' M_{n-1}\}$.

Comme une symétrie orthogonale conserve les longueurs, on a donc :

$$f(\Omega) = \sum_{k=0}^{n-1} \left\| \overline{\Omega M_k} \right\| = \sum_{k=0}^{n-1} \left\| \overline{\Omega' M_k} \right\| = f(\Omega').$$

Ainsi, f atteint son minimum en deux points distincts, Ω et Ω' : c'est contradictoire, et on en tire la conclusion que Ω appartient à l'axe de symétrie Δ .

- d2) Supposons que l'ensemble $\{M_0, M_1, \dots, M_{n-1}\}$ admette un centre de symétrie I.
 - Si Ω est distinct de I, considérons son symétrique Ω' par rapport à I.

L'ensemble $\{M_0, M_1, ..., M_{n-1}\}$ étant stable par symétrie par rapport à I, on en déduit que

la symétrie centrale par rapport à *I* transforme l'ensemble ci-dessous en le suivant :

- l'ensemble des segments des n + 1 segments $\{\Omega M_0, \Omega M_1, \dots, \Omega M_{n-1}\}$
- l'ensemble des segments des n+1 segments $\{\Omega'\,M_0,\,\Omega'\,M_1,\,\ldots,\,\Omega'\,M_{n-1}\}$.

Comme une symétrie centrale conserve les longueurs, on a donc :

$$f(\Omega) = \sum_{k=0}^{n-1} \left\| \overline{\Omega M_k} \right\| = \sum_{k=0}^{n-1} \left\| \overline{\Omega' M_k} \right\| = f(\Omega').$$

Ainsi, f atteint son minimum en deux points distincts, Ω et Ω' : c'est contradictoire, et on en tire la conclusion que Ω est le centre de symétrie I.

Dans le cas d'un parallélogramme, on sait que les diagonales se coupent en leur milieu I. Donc la symétrie par rapport à I laisse invariant le parallélogramme $M_0 \, M_1 \, M_2 \, M_3$. Le minimum de la fonction f est donc atteint en $\Omega = I$ et ce minimum est égal à la somme des longueurs des deux diagonales puisque : $\sum_{k=0}^3 \left\| \overline{\Omega M_k} \, \right\| = \left\| \overline{M_0 \, M_2} \, \right\| + \left\| \overline{M_1 \, M_3} \, \right\|$.

d3) Supposons que l'ensemble $\{M_0, M_1, ..., M_{n-1}\}$ est stable par une rotation de centre I.

Si Ω est distinct de I, considérons son image Ω' par cette rotation de centre I.

Cette rotation de centre I transforme donc l'ensemble ci-dessous en le suivant :

- l'ensemble des segments des n + 1 segments $\{\Omega M_0, \Omega M_1, \dots, \Omega M_{n-1}\}$
- l'ensemble des segments des n+1 segments $\{\Omega' M_0, \Omega' M_1, \dots, \Omega' M_{n-1}\}$.

Comme une rotation conserve les longueurs, on a donc :

$$f(\Omega) = \sum_{k=0}^{n-1} \left\| \overline{\Omega M_k} \right\| = \sum_{k=0}^{n-1} \left\| \overline{\Omega' M_k} \right\| = f(\Omega').$$

Ainsi, f atteint son minimum en deux points distincts, Ω et Ω' : c'est contradictoire, et on en tire la conclusion que Ω est le centre I de la rotation.

Pour le polygone régulier de sommets M_k d'affixe $z_k = e^{\frac{2k i \pi}{n}}$, l'ensemble $\{M_0, M_1, \dots, M_{n-1}\}$ est invariant par la rotation de centre O et de mesure $2\pi/n$.

Le minimum de la fonction f est donc atteint en $\Omega = O$ et ce minimum est égal à :

$$f(\Omega) = \sum_{k=0}^{n-1} \left\| \overline{\Omega \mathbf{M}_k} \right\| = \sum_{k=0}^{n-1} \left\| \overline{OM_k} \right\| = n.$$

- 3°) Expression du gradient de la fonction f
- a) Pour z = x + i y et $z_k = x_k + i y_k$, on a donc posé : $f_k(z) = |z z_k| = \sqrt{(x x_k)^2 + (y y_k)^2}$. Ces n fonctions f_k ($0 \le k \le n 1$) sont clairement continues sur le plan complexe entier. L'ensemble réduit à un point M_k est fermé (par exemple, on a $M_k = f_k^{-1}(\{0\})$) et c'est donc l'image réciproque du fermé $\{0\}$ par la fonction continue f_k). Puis la réunion des n fermés $\{M_k\}$ constitue encore un fermé, et donc son complémentaire U est un ouvert du plan.
- b) Les dérivées partielles de f_k sont pour $z \neq z_k$, c'est à dire pour $(x, y) \neq (x_k, y_k)$

$$\frac{\partial f_k}{\partial x}(x, y) = \frac{x - x_k}{\sqrt{(x - x_k)^2 + (y - y_k)^2}} \quad ; \quad \frac{\partial f_k}{\partial y}(x, y) = \frac{y - y_k}{\sqrt{(x - x_k)^2 + (y - y_k)^2}}.$$

Ces dérivées sont continues sur le plan privé de M_k , donc sur U, et f_k est de classe C^1 sur U. Enfin, le gradient sur U de la fonction f_k en $(x, y) \neq (x_k, y_k)$ est donc :

$$\frac{\partial f_k}{\partial x}\left(x,\,y\right)+i\,\frac{\partial f_k}{\partial y}\left(x,\,y\right)\,=\,\frac{\left(x-x_k\right)+i(y-y_k)}{\sqrt{\left(x-x_k\right)^2+\left(y-y_k\right)^2}}\,=\,\frac{z-z_k}{|z-z_k|}.$$

c) Comme $f = \sum_{k=0}^{n-1} f_k$, f est bien de classe C^1 sur le plan privé des points M_0, M_1, \dots, M_{n-1} . Et par somme, l'affixe de son gradient sur U est donc :

$$\sum_{k=0}^{n-1} \frac{(x-x_k)+i(y-y_k)}{\sqrt{(x-x_k)^2+(y-y_k)^2}} = \sum_{k=0}^{n-1} \frac{z-z_k}{|z-z_k|}.$$

- 4°) Recherche de l'unique point Ω où la fonction f admet son minimum
- a) Le minimum m de la fonction f peut être atteint en l'un des points M_k d'affixe z_k , mais sinon il est atteint en un point de l'ouvert U du plan complémentaire des points $M_0, M_1, \ldots, M_{n-1}$. Dans ce cas, comme la fonction f est C^1 , ses dérivées partielles et son gradient s'y annulent :

$$\sum_{k=0}^{n-1} \frac{z - z_k}{|z - z_k|} = 0 \quad \text{ou de façon \'equivalente} : \quad \sum_{k=0}^{n-1} \frac{\overline{M_k M}}{||\overline{M_k M}||} = \vec{0}.$$

b) On suppose qu'il existe $c \in \mathbb{C} \setminus \{z_0, z_1, \dots, z_{n-1}\}$ vérifiant l'égalité : $\sum_{k=0}^{n-1} \frac{c-z_k}{|c-z_k|} = 0$.

Pour tout $z \in \mathbb{C}$, il vient en écrivant $z - z_k = (z - c) + (c - z_k)$:

$$\sum_{k=0}^{n-1} \frac{c - z_k}{|c - z_k|} = \sum_{k=0}^{n-1} \frac{(z - c) + (c - z_k)}{|c - z_k|} \frac{c - z_k}{|c - z_k|}$$

$$=\overline{z-c}\sum_{k=0}^{n-1}\frac{c-z_k}{|c-z_k|}+\sum_{k=0}^{n-1}\overline{c-z_k}\,\frac{c-z_k}{|c-z_k|}\,=\,\sum_{k=0}^{n-1}\frac{\overline{c-z_k}\,(c-z_k)}{|c-z_k|}\,=\,\sum_{k=0}^{n-1}|c-z_k|.$$

Par inégalité triangulaire, il vient alors pour tout $z \in \mathbb{C}$:

$$f(c) = \sum_{k=0}^{n-1} |c - z_k| \le \sum_{k=0}^{n-1} |z - z_k| \frac{|c - z_k|}{|c - z_k|} = \sum_{k=0}^{n-1} |z - z_k| = f(z).$$

Ainsi, si un tel point C d'affixe c existe, la fonction f y réalise son minimum.

D'après 2° , le point C d'affixe c est donc l'unique point Ω en lequel f réalise son minimum.

c) On en déduit qu'il existe au plus un complexe $c \notin \{z_0, z_1, \dots, z_{n-1}\}$ vérifiant : $\sum_{k=0}^{n-1} \frac{c-z_k}{|c-z_k|} = 0$.

En effet, s'il en existe deux, ils réalisent tous deux le minimum de f, ce qui est impossible. Ainsi, deux cas peuvent se produire :

- soit il existe un point C d'affixe $c \notin \{z_0, z_1, \dots, z_{n-1}\}$ où le gradient de f s'annule. Ce point est alors unique, et c'est le point Ω où la fonction f est minimale.
- soit un tel point C n'existe pas et alors le point Ω est l'un des points M_0, \ldots, M_{n-1} .

- 5°) Localisation du point Ω dans le cas d'un polygone convexe
- a) On considère une droite Δ du plan, un point M situé d'un côté de Δ (mais n'appartenant pas à Δ), un point A situé du côté opposé de Δ, et le point M' symétrique de M par rapport à Δ.
 Le point I d'intersection de AM et Δ est donc situé entre A et M et on a : AM = AI + IM.
 De plus, par symétrie, IM se transforme en IM' et on a donc : IM = IM'.
 Il en résulte que AM = AI + IM' ≥ AM' par inégalité triangulaire dans le triangle AIM'.
- b) Le polygone $M_0 M_1 \dots M_{n-1}$ (intérieur et côtés) est l'intersection des n demi-plans fermés F_i qui sont délimités par les droites $M_i M_{i+1}$ et contiennent tous les points M_0, M_1, \dots, M_{n-1} . Supposons que le point Ω n'appartient pas à ce polygone $M_0 M_1 \dots M_{n-1}$ (intérieur et côtés). Il existe $i \in [0, n-1]$ tel que Ω appartient au complémentaire du demi-plan fermé F_i délimité par la droite $M_i M_{i+1}$ et contenant tous les points M_0, M_1, \dots, M_{n-1} . Introduisons le symétrique Ω' de Ω par rapport à $M_i M_{i+1}$, qui est donc distinct de Ω puisque Ω n'est pas dans F_i alors que Ω' l'est évidemment. D'après la question 5.a), on sait que $\Omega' M_k \leq \Omega M_k$ pour $0 \leq k \leq n-1$, et donc $f(\Omega') \leq f(\Omega)$. Comme $m = f(\Omega)$ est le minimum de f, on a donc $f(\Omega') = f(\Omega) = m$. C'est contradictoire car f atteint son minimum en un point et un seul.

Donc pour tout côté $M_i M_{i+1}$ avec $0 \le i \le n-1$ et $M_n = M_0$, les points $M_0, M_1, \ldots, M_{n-1}$ et Ω appartiennent au même demi-plan fermé F_i délimité par la droite $M_i M_{i+1}$ et Ω appartient bien à l'intersection des demi-plans fermés F_i qui est le polygone $M_0 M_1 \ldots M_{n-1}$ (intérieur et côtés).

6°) Etude d'un exemple

- a) D'après les deux questions précédentes, le point Ω qui réalise le minimum de la fonction f appartient au triangle ABC (côtés compris), ainsi qu'à l'axe de symétrie Oy de ce triangle. Il appartient donc au segment [OA] et a un affixe de la forme it avec $0 \le t \le 1$.
- b) Si M_t est le point d'affixe $i \, t$, avec $0 \le t \le 1$, on a : $f(M_t) = 1 t + 2 \sqrt{x^2 + t^2}$. La dérivée de cette fonction par rapport à $t : -1 + \frac{2t}{\sqrt{x^2 + t^2}} = \frac{2t - \sqrt{x^2 + t^2}}{\sqrt{x^2 + t^2}} = \frac{3t^2 - x^2}{\sqrt{x^2 + t^2}}$.

Cette expression est négative pour $0 \le t \le \frac{x}{\sqrt{3}}$, positive pour $t \ge \frac{x}{\sqrt{3}}$, et comme $t \in [0, 1]$, on a :

■ si $x \ge \sqrt{3}$, alors $\frac{x}{\sqrt{3}} \ge 1$, et donc $t \mapsto f(M_t)$ est décroissante sur [0, 1].

La fonction est ainsi minimale en t = 1 et on a : $\Omega = M_1 = A$ et $m = f(A) = 2\sqrt{x^2 + 1}$.

■ si $0 < x < \sqrt{3}$, la dérivée s'annule en $\frac{x}{\sqrt{3}}$, qui appartient bien à [0, 1].

La fonction $t \mapsto f(M_t)$ est décroissante sur $\left[0, \frac{x}{\sqrt{3}}\right]$, croissante sur $\left[\frac{x}{\sqrt{3}}, 1\right]$.

La fonction est ainsi minimale en $t = \frac{x}{\sqrt{3}}$ et on a : $\Omega = M_{\frac{x}{\sqrt{3}}}$ et $m = f(\Omega) = 1 + x\sqrt{3}$.

c) Si θ est la mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{AO}) = (\overrightarrow{AO}, \overrightarrow{AC})$ appartenant à] 0, $\frac{\pi}{2}[$, on a : $\tan(\theta) = x$. Ainsi donc, le point Ω est en A si et seulement si $x = \tan(\theta) \ge \sqrt{3} = \tan(\pi/3)$, c'est à dire si et seulement si $\pi/3 \le \theta < \pi/2$, ou si et seulement si $(\overrightarrow{AB}, \overrightarrow{AC}) = 2\theta \ge 2\pi/3$.