FICHA 9 - SOLUÇÕES

AULA PRÁTICA

1. Em a = 0: $p_{2,0}(x) = 1 - x + x^2$; em a = 1: $p_{2,1}(x) = \frac{\pi}{4} - \frac{1}{2}(x-1)^2$. Tem um extremo local em a = 1, já que f'(1) = 0, $f''(1) = -1 \neq 0$ (máximo, porque f''(1) < 0).

2. Temos
$$p_{4,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \frac{f^{(4)}(a)}{4!}(x-a)^4$$
.

- a) Por comparação de coeficientes com a expressão geral de $p_{4,0}(x)$: $f^{(0)}(0) = f(0) = -1$, $f^{(k)}(0) = 0$, k = 1, 2, $f^{(3)}(0) = 2$, $f^{(4)}(0) = 3!$ não tem extremo em a (a primeira derivada não nula é de ordem ímpar).
- b) Calcular as derivadas $p_{4,1}^{(k)}(1) = f^{(k)}(1)$: f(1) = -1, $f^{(k)}(0) = 0$, k = 1, 3, 4, $f^{(2)}(1) = -2 < 0$ tem um máximo em 2. (Alternativamente, escrever $p_{4,1}(x) = -2 + 2x x^2 = -2 + 2x (x 1)^2 2x + 1 = -1 (x 1)^2$ e comparar coeficientes.)
- 3. $p(x) = -12 + 2(x-3) + (x-3)^2$.
- 4. Usa-se $f(x) = \sqrt{x}$ com a = 100. Recta tangente: $y = p_1(x) := 10 + \frac{1}{20}(x 100)$. A aproximação dada pela recta tangente fornece $p_1(99,7) = 9,985$. Do sinal da segunda derivada, depreende-se que o resto de Lagrange é negativo (verifique!), pelo que a aproximação é por excesso.
- 5. Escreva a fórmula de Taylor de ordem 4 de $f(x) = \sin x$ em a = 0: $f^{(4)}(0) = f^{(2)}(0) = f(0) = 0$, $f^{(3)}(0) = -1$, f'(0) = 1, $\log p_4(x) = p_3(x) = x \frac{x^3}{6}$, com resto de Lagrange $r_4(x) = \frac{\cos(c)}{5!} x^5$, com c entre 0 e x. Deduza então que, para $x \in [0, 1]$,

$$|r_4(x)| = \frac{|\cos(c)|}{5!} |x|^5 \le \frac{1}{5!} = \frac{1}{120} < 0.01.$$

6. Escreva a fórmula de Taylor de ordem n para e^x em a=0, com resto de Lagrange $r_n(x)=\frac{e^c}{(n+1)!}x^{n+1}$. com $c\in]0,0.1[$. Deduza que $|r_3(0.1)|\leq \frac{10^{-4}}{8}$ e que, portanto, a aproximação dada por $p_3(0.1)=1+0.1+\frac{0.01}{2}+\frac{0.001}{6}=1,1051(6)$ difere do valor exacto de $e^{0.1}$, no máximo, de $\frac{10^{-4}}{8}$. Se tomarmos 1,052 como aproximação final, introduzimos um erro adicional de $(1-0.(6))\times 10^{-4}$. O erro total continuará inferior a 10^{-4} .

7.

a)
$$2\sqrt{x} + \ln x - \frac{1}{x}$$
, $x > 0$, b) $-\frac{3}{4}\sqrt[3]{(1-x)^4}$, c) $3\ln|x+3|$,

d)
$$-\frac{1}{x-2}$$
, e) $\frac{e^{2x}}{2} + \frac{2^{3x}}{3\ln 2}$, f) $4\cosh(x/4)$, g) $-\frac{1}{2}\cos(2x)$,

h)
$$\arctan(x/2)$$
, i) $P\left(\frac{1}{\sqrt{1-4x^2}}\right) = P\left(\frac{1}{\sqrt{1-(2x)^2}}\right) = \frac{1}{2}\arcsin(2x)$.

8.

a)
$$\frac{1}{4}\ln(3+x^4)$$
, b) $2e^{\sqrt{x}}$, c) $-\cos(e^x)$, d) $\frac{(x^2-1)^6}{12}$, e) $\frac{2}{3}\sqrt{(1+\sin x)^3}$,

f)
$$-\frac{1}{1+e^x}$$
, g) $-\ln|\cos x|$, h) $P\left(\frac{\sin(2x)}{1+\sin^2 x}\right) = P\left(\frac{2\sin x \cos x}{1+\sin^2 x}\right) = \ln(1+\sin^2 x)$,

i)
$$\frac{1}{5} \operatorname{sen}^5 x$$
, j) $\operatorname{arctg}(\ln x)$, k) $\operatorname{arcsen}(e^x)$. l) $\frac{3}{1 + \cos x}$, m) $\ln(\ln x)$,

n)
$$\frac{2}{3}\sqrt{(\arcsin x)^3}$$
, o) $\ln(\arctan x)$.

9. a)
$$f(x) = \frac{1}{6} \arctan \frac{3}{2}x + 1$$
.

b)
$$g(x) = \begin{cases} \ln(x-1) + 3, & \text{se } x > 1\\ \ln(1-x) + 2, & \text{se } x < 1. \end{cases}$$

SUPLEMENTARES

1. a)
$$p_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$
. Temos $f(0) = f'(0) = f''(0) = 1$ e $f'''(0) = 0$ (verifique) logo $p_3(x) = 1 + x + \frac{x^2}{2}$.

b)
$$p_5(x) = e - \frac{e}{2}x^2 + \frac{2e}{3}x^4$$
.

2. a)
$$p(x) = 18 + 24(x-3) + 9(x-3)^2 + (x-3)^3$$
;

b)
$$p(x) = 81 + 108(x - 3) + 54(x - 3)^2 + 12(x - 3)^3 + (x - 3)^4$$
.

3. Por comparação de coeficientes com a expressão geral de $p_{n,a}(x)$:

a)
$$f^{(0)}(0) = f(0) = 1$$
, $f^{(k)}(0) = 0$, $k = 1, 2, 3$, $f^{(4)}(0) = 4! > 0$ tem um mínimo em $a = 0$.

b)
$$p_{4,-1}(x) = 1 + 2x + 3x^2 + x^3 = (x+1)^3 - x = (x+1)^3 - (x+1) + 1$$
. Logo $f(-1) = 1$, $f'(-1) = -1$, $f^{(k)}(-1) = 0$, $k = 2, 4$, $f^{(3)}(-1) = 6$ (ou calcular as derivadas $p_{4,-1}^{(k)}(-1)$), não tem extremo em a .

c)
$$f^{(k)}(0) = 0, k = 0, 1, 2, 4, f^{(3)}(0) = 3!, f^{(5)}(0) = -5!$$
. Não tem extremo em a .

d)
$$p_{5,1}(x) = \frac{x^2}{2} - \frac{x^4}{4} = \frac{((x-1)+1)^2}{2} - \frac{((x-1)+1)^4}{4} = \frac{1}{4} - (x-1)^2 - (x-1)^3 - \frac{(x-1)^4}{4}$$
.
Logo, $f(1) = \frac{1}{4}$, $f'(1) = 0$, $f^{(2)}(1) = -2$, $f^{(3)}(1) = -3!$, $f^4(1) = -3!$, $f^5(1) = 0$ (alternativamente, calcular as derivadas $p_{5,1}^{(k)}(1)$). Tem máximo em a .

- 4. f tem um máximo relativo em 0. $p_4(x) = 1 \frac{1}{4!}x^4$.
- 5. Usando sucessivamente a regra de derivação da função composta e os valores de $f^{(k)}(1)$, k = 0, 1, 2, deduzidos do polinómio de Taylor dado, obtêm-se

$$g(0) = f(1) = 2,$$
 $g'(0) = f'(1) = -1,$ $g''(0) = f'(1) + f''(1) = 3.$

Logo,
$$p_2(x) = 2 - x + \frac{3}{2}x^2$$
.

- 6. a) Relativa a a = 0: $f(x) = 1 + 2x + 2x^2 + \frac{4}{3}e^{2c}x^3$, em que c está entre 0 e x. Relativa a a = 1: $f(x) = e^2 + 2e^2(x-1) + 2e^2(x-1)^2 + \frac{4}{3}e^{2c}(x-1)^3$, em que c está entre 1 e x.
 - Relativa a a = 0: $f(x) = x \frac{1}{2}x^2 + \frac{1}{3}\frac{1}{(1+c)^3}x^3$, em que c está entre 0 e x. Relativa a a = 1: $f(x) = \ln 2 + \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \frac{1}{3}\frac{1}{(1+c)^3}(x-1)^3$ em que c está entre 1 e x.
 - Relativa a a = 0: $f(x) = 1 \frac{\pi^2}{2}x^2 + \frac{\pi^3}{6}\operatorname{sen}(\pi c)x^3$, em que $c \in]0, x[$ ou $c \in]x, 0[$. Relativa a a = 1: $f(x) = -1 + \frac{\pi^2}{2}(x-1)^2 + \frac{\pi^3}{6}\operatorname{sen}(\pi c)(x-1)^3$ em que c está entre 1 e x.
 - Relativa a a = 0: $f(x) = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{(c+1)^{-5/2}}{16}x^3$, em que $c \in]0, x[$ ou $c \in]x, 0[$. Relativa a a = 1: $f(x) = \sqrt{2} + \frac{1}{2\sqrt{2}}(x-1) \frac{1}{16\sqrt{2}}(x-1)^2 + \frac{(c+1)^{-5/2}}{16}(x-1)^3$, em que c está entre 1 e x.
 - b) e^{2x} : para $x \in]0, 1/2[$, temos também $c \in]0, 1/2[$ e $\left|\frac{4}{3}e^{2c}x^3\right| \leq \frac{4\sqrt{e}}{3\cdot 2^3} = \frac{\sqrt{e}}{6} < \frac{1}{3}$. $\ln(1+x)$: para $x \in]0, 1/2[$, temos também $c \in]0, 1/2[$ e $\left|\frac{1}{3}\frac{1}{(1+c)^3}x^3\right| \leq \frac{1}{24}$. $\cos(\pi x)$: para $x \in]0, 1/2[$, temos também $c \in]0, 1/2[$ e $\left|\frac{\pi^3}{6}\sin(\pi c)x^3\right| \leq \frac{\pi^3}{48}$. $\sqrt{x+1}$: para $x \in]0, 1/2[$, temos também $c \in]0, 1/2[$ e $\left|\frac{(c+1)^{-5/2}}{16}x^3\right| \leq \frac{1}{16} \cdot \frac{1}{8} = \frac{1}{128}$.
- 7. Escreva a fórmula de Taylor de ordem 2 em a=0 da função exponencial com resto de Lagrange $r_2(x)=\frac{-e^{-c}}{3!}\,x^3$, com c entre 0 e x. Deduza então que $|r_2(x)|=\frac{e^{-c}}{3!}\,|x|^3\leq \frac{1}{3!}=\frac{1}{6}$.
- 8. Nas condições dadas, f é n vezes diferenciável e o resto de Lagrange da fórmula de Taylor de ordem n-1 em a=0 é identicamente nulo (deduza!). Nesse caso, f(x) coincidirá cm $p_{n-1}(x)$ em \mathbb{R} e, por coseguinte, será um polinómio de grau não superior a n-1.

9.

a)
$$\frac{2}{3}x^3 + \frac{3}{4}x^4$$
, b) $\frac{1}{7}x^7 + \frac{3}{5}x^5 + x^3 + x$; ,

c)
$$P\left(\frac{x^2 - x + 1}{\sqrt{x}}\right) = P\left(x^{\frac{3}{2}} - x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right) = \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} = \frac{2}{5}\sqrt{x^5} - \frac{2}{3}\sqrt{x^3} + 2\sqrt{x}$$

d)
$$P\left(\frac{\sqrt[3]{x^2} + \sqrt{x^3}}{x}\right) = P\left(x^{-\frac{1}{3}} + x^{\frac{1}{2}}\right) = \frac{3}{2}\sqrt[3]{x^2} + \frac{2}{3}\sqrt{x^3},$$

e)
$$P\left(\frac{1}{\sqrt[5]{1-2x}}\right) = -\frac{1}{2}P\left(-2(1-2x)^{-\frac{1}{5}}\right) = -\frac{5}{8}(1-2x)^{\frac{4}{5}};$$

f)
$$e^{x+3}$$
; g) $\frac{1}{\ln 2} 2^{x-1}$; h) $-e^{1-x}$, i) $\frac{1}{2} \ln |x+1/2|$,

j)
$$tg x$$
, k) $-2 \cot g x$, l) $2 \arctan(2x)$, m) $P(tg^2 x) = P(\sec^2 x - 1) = tg x - x$.

10.

a)
$$\frac{1}{2}\ln(1+2e^x)$$
, b) $\ln(1+\sin x)$, c) $-e^{1/x}$, d) e^{e^x} ,

e)
$$e^{\operatorname{tg} x}$$
, f) $\frac{1}{2}\operatorname{sen}(x^2+2)$, g) $\frac{1}{4}\sqrt[3]{(1+x^3)^4}$, h) $\frac{5}{6}\sqrt[5]{(x^2-1)^6}$,

i)
$$-\arctan(\cos x)$$
, j) $-\frac{1}{4(1+x^4)}$, k) $\frac{2}{3}\sin^{\frac{3}{2}}x$, l) $\frac{1}{\cos x} = \sec x$,

m)
$$\ln(2 + \operatorname{ch} x)$$
, n) $\frac{1}{2(1-\alpha)} \frac{1}{(1+x^2)^{\alpha-1}}$, se $\alpha \neq 1$, $\ln \sqrt{1+x^2}$, se $\alpha = 1$.

11.

a)
$$\sqrt{2x^3}$$
, b) $-3\cos x + \frac{2}{3}x^3$, c) $\frac{1}{3}\ln|1+x^3|$, d) $-\frac{1}{2}e^{-x^2}$,

e)
$$\frac{1}{3} (1+x^2)^{3/2}$$
, f) $\frac{1}{2} e^{2 \sin x}$, g) $-\frac{1}{x+1}$, h) $\ln \sqrt{1+x^2}$;

i)
$$\frac{1}{\sqrt{2}} \arctan \frac{x}{\sqrt{2}}$$
, j) $\frac{1}{4} P\left(\frac{4x^3}{(x^4)^2 + 1}\right) = \frac{1}{4} \arctan(x^4)$; k) $\frac{1}{2} \arctan(x^2)$, l) $\operatorname{sen}(\ln x)$,

m)
$$P(\cos x(1 - 2\sin^2 x)) = P(\cos x - 2\cos x \sin^2 x) = \sin x - \frac{2}{3}\sin^3 x$$
, (ou por partes);

n)
$$P\left(\frac{\cos x}{\sin x}\right) = \ln|\sin x|;$$
 o) $P\left(3^{\sin^2 x} 2 \sin x \cos x\right) = P\left(3^{\sin^2 x} (\sin^2 x)'\right) = \frac{1}{\ln 3} 3^{\sin^2 x};$

p)
$$P\left(\frac{1}{2\sqrt{x}}\operatorname{tg}\sqrt{x}\right) = 2P\left(\left(\sqrt{x}\right)'\operatorname{tg}\sqrt{x}\right) = -2\ln|\cos\sqrt{x}|;$$
 q) $\frac{\sqrt{3}}{3}\operatorname{arctg}\left(\sqrt{3}x\right)$,

r)
$$\frac{1}{2} \arctan(e^x/2)$$
, s) $P\left(\frac{x}{\sqrt{1-x^2}}\right) + P\left(\frac{1}{\sqrt{1-x^2}}\right) = -\sqrt{1-x^2} + \arcsin x$,

t)
$$\frac{1}{2\sqrt{2}}$$
 arcsen $(\sqrt{2}x^2)$, u) $2 \arctan \sqrt{x}$.

- 12. $P(x \operatorname{sen}(x^2)) = \frac{1}{2} \cos(x^2), x \in \mathbb{R}$, logo a forma geral das primitivas é $F(x) = \frac{1}{2} \cos(x^2) + C$, com $C \in \mathbb{R}$.
 - a) $F(0) = 0 \Leftrightarrow \frac{1}{2} + C = 0$, logo $C = -\frac{1}{2}$.
 - b) $\lim_{x\to+\infty} F(x)$ não existe, para qualquer $C\in\mathbb{R}$, logo não existe uma primitiva nas condições dadas.
 - $P(\frac{e^x}{2+e^x}) = \ln(2+e^x)$, $x \in \mathbb{R}$, logo a forma geral das primitivas é $F(x) = \ln(2+e^x) + C$, com $C \in \mathbb{R}$.
 - a) $F(0) = 0 \Leftrightarrow \ln 3 + C = 0$, logo $C = -\ln 3$.
 - b) $\lim_{x\to+\infty} F(x) = +\infty$, para qualquer $C \in \mathbb{R}$, logo não existe uma primitiva nas condições dadas.
 - $P(\frac{1}{(1+x^2)(1+\operatorname{arctg}^2 x)}) = \operatorname{arctg}(\operatorname{arctg} x), \ x \in \mathbb{R}$, logo a forma geral das primitivas é $F(x) = \operatorname{arctg}(\operatorname{arctg} x) + C$, com $C \in \mathbb{R}$.
 - a) $F(0) = 0 \Leftrightarrow C = 0$.

b) $\lim_{x\to+\infty} F(x) = \lim_{x\to+\infty} \arctan(\arctan x) + C = \arctan \frac{\pi}{2} + C$, $\log C = -\arctan \frac{\pi}{2}$.

13.
$$F(x) = \begin{cases} -\frac{1}{x-1} + 1, & \text{se } x > 1, \\ -\frac{1}{x-1} + 10, & \text{se } x < 1. \end{cases}$$