

ChipScope Pro Analyzer

Objectives

After completing this module, you will be able to:

- Describe the value of the ChipScope™ Pro analyzer
- Describe how the ChipScope Pro analyzer works
- List what cores are available
- Use the Core Generator and Core Inserter software
- Plan for and perform debugging with the ChipScope Pro analyzer

Outline

- Importance of Debug
- · ChipScope Pro Analyzer Cores
- Design Flows
- Summary

What Engineers are Saying

- FPGA designs are getting more complex
 - Designs are getting faster
 - Design times are getting shorter
- Debug and verification is more challenging
 - Debug and verification consume a significant portion* of FPGA design time
 - Debug and verification need to be easier and integrated into the FPGA design flow

*An FPGA design survey conducted by Xilinx indicates that FPGA debug and verification accounts for nearly half of FPGA design time

Logic of Debug

- Engineers are trained to solve problems
- Debug is problem solving
 - Break a problem into basic parts
 - Remove or reduce variables and variation
 - Predict and verify
- Debug is an iterative process
- Verification is a component of debug
 - Confirming no problems remain

Reconfigurable nature of FPGAs enables an iterative debug process

Xilinx ChipScope Pro Analyzer

Dramatically Shortens Debug and Verification

- · Works the way you solve problems
 - Breaks a problem into basic parts
 - Removes variation introduced by external debug solutions
 - Enables a very fast, iterative process of prediction and verification
- Provides what you have requested
 - Reduction of debug and verification time
 - A powerful tool that is easy to use
 - Focus on solving the problem, not on learning the tool
 - Integrated part of the Xilinx FPGA design flow

Outline

- Design Flows
- Summary

What is the ChipScope Pro Analyzer?

- Tailored debug and verification cores
- Efficient core generation and insertion tools
- Total control via JTAG

Multiple Debug Cores to Address Different Debug Challenges

Virtual Input/Output (VIO) Core

- · Virtual inputs and outputs
- Stimulate logic with pulse trains

Integrated Bus Analysis (IBA) Core

- PLB-specific and OPB-specific bus analysis cores
- · Protocol detection
- Debug and verify control, address, and data buses

Integrated Logic Analysis (ILA)
Core

- · Access internal nodes and signals
- Debug and verify signal behavior
- Define detailed trigger conditions

Agilent Trace Core 2 (ATC2)

 Agilent-created core enabling on-chip debug of Xilinx FPGAs via Agilent FPGA Dynamic Probing

View cores as "virtual test headers" placed anywhere in the design

Core Resources

- ChipScope™ Pro analyzer cores utilize FPGA resources
 - For what?
 - Block RAM: trigger and data storage
 - Slice logic: trigger comparisons
- You must leave room for the ChipScope Pro analyzer cores in the FPGA
 - This may require using a larger part in the same package as you will use in production
- . ChipScope Pro analyzer 9.2i includes a built-in resource estimator

Using ChipScope Pro Analyzer

Core

- Place ChipScope™ Pro analyzer cores into the design
 - Attach internal nodes for viewing to the ChipScope Pro analyzer core
 - Generate the ChipScope Pro analyzer cores by using the ChipScope Pro analyzer Core Generator or Core Inserter tools
- Place and route the design with the Xilinx ISE™ implementation software tools
- Download the bitstream to the device under test and analyze the design with the ChipScope Pro analyzer software

or

Core

ChipScope Pro Analyzer ICON Core

- ICON (Integrated Control) core: This core controls up to 15 capture cores
 - The ICON core interfaces between the JTAG interface and the capture cores
- Capture cores: customizable cores for creating triggers and data storage
 - Customizable number, width, and storage of trigger ports
 - · ILA (Integrated Logic Analyzer) core: capture core for HDL designs
 - ILA/ATC (Integrated Logic Analyzer with Agilent Trace) core: similar to the ILA core, except data is captured off-chip by the Agilent Trace Port Analyzer
 - IBA/OPB (Integrated Bus Analyzer for CoreConnect On-Chip Peripheral Bus)
 core: capture core for debugging CoreConnect OPB buses
 - IBA/PLB (Integrated Bus Analyzer for CoreConnect Processor Local Bus) core:
 similar to the IBA/OPB core, except for the PLB bus
 - VIO (Virtual Input/Output) core: define and generate virtual I/O ports

ChipScope Pro Analyzer ILA Core

User-selectable, one to sixteen trigger ports

- Up to 256 channels per trigger port
- Multiple match units on the same trigger port
 - Up to 16 match units
 - For example, 4 trigger ports, 4 match units
 each = 16 match conditions

Trigger condition sequencer

 Defines complex trigger sequences that include up to 16 states or levels

ChipScope Pro Analyzer VIO Core

- Insert virtual pins into your design
 - Input or output
 - Synchronous or asynchronous
 - System clock or JTAG clock
 - Up to 256 bits each
- Inputs are virtual LEDs
 - Different refresh rates are available
- Outputs are virtual DIP switches
 - Force value or pulse train into the FPGA

Things to Know About VIO Cores

- Can only be added with the ChipScope[™] Pro analyzer Core Generator tool
- Uses no block RAM, only logic
- Inputs are like LEDs, for examining signals
- Outputs are switches or pushbuttons, for driving signals

Outline

- Importance of Debug
- ChipScope Pro Analyzer Cores

- **Design Flows**
- Summary

Core Inserter Flow

- Core Inserter inserts cores directly into the netlist
 - HDL code is untouched
 - Only post-synthesis nodes are available
 - Bypass this tool to remove cores
 - Inserter must perform the first portion of translate
 - Core generation and insertion are done together
 - ChipScope™ Pro analyzer
 Core Inserter is run from within Project Navigator

Core Generator Flow

- Generate cores that are instantiated directly into the HDL
 - Allows access to all HDL nodes
 - Requires changes to the code
 - Must comment out cores to remove them
 - Uses standard implementation flow
 - Core generation and insertion done separately

Outline

- Importance of Debug
- · ChipScope Pro Analyzer Cores
- Design Flows

Summary

Summary

- Shorten debug time by up to 50 percent
 - Break the problem into manageable parts
 - ChipScope™ Pro analyzer enables rapid iteration
- Add ChipScope Pro analyzer cores at any time
 - Debug in three simple steps
- Specialized cores allow you to focus on solving problems
 - ILA for viewing results
 - VIO for driving changes
- Minimal impact to FPGA design
 - Design at system speed
 - Optimized cores consume minimal FPGA resources

Where Can I Learn More?

- Visit www.xilinx.com/chipscopepro
 - View recorded ChipScope[™] Pro analyzer product demos
 - Access a 60-day free evaluation version of ChipScope Pro analyzer tools
 - Access ChipScope Pro analyzer documentation
 - · User guide
 - · At-a-glance summary of features
 - Obtain information on Agilent FPGA Agilent Technologies
 Dynamic Probe technology
 - Combine on-chip debug with the power of a logic analyzer

