

Engineering Electromagnetics

EE2011, Part CXD

LECTURE 5

Chen Xudong

Dept. of Electrical and Computer Engineering National University of Singapore

Plane Wave Reflection and Transmission

1 Normal Incidence at a Perfect Conductor

Given an incident fields:

Actual E-field may not be in $+\hat{\mathbf{x}}$ direction since $\hat{\mathbf{x}}E_{i0}$ determines the direction of E-field

$$\mathbf{E}_{i}\left(z\right) = \hat{\mathbf{x}} E_{i0} e^{-\mathrm{j}\beta_{1}z}$$

$$\mathbf{H}_{i}(z) = \hat{\mathbf{y}} \frac{E_{i0}}{\eta_{1}} e^{-\mathrm{j}\beta_{1}z}$$

Reflected fields:

difference
$$\mathbf{E}_{r}(z) = \hat{\mathbf{x}} E_{r0} e^{+j\beta_{1}z}$$

$$\mathbf{H}_{r}(z) = -\hat{\mathbf{y}} \frac{1}{\eta_{1}} E_{r0} e^{+j\beta_{1}z}$$

Transmitted fields in medium 2:

$$\mathbf{E}_2(z) = \mathbf{H}_2(z) = 0$$

At z = 0, using the boundary condition:

Tangential component of E-field continuous

Since the **E**-field vanishes in perfect conductors, the tangential component of **E**-field in medium 1 must also vanish at the boundary.

At the boundary of a dielectric medium and a perfect conductor: Only one equation is used to solve the reflected wave

Table 6-2: Boundary conditions for the electric and magnetic fields.

Field Components	General Form	Medium 1 Dielectric	Medium 2 Dielectric	Medium 1 Dielectric	Medium 2 Conductor
Tangential E	$\hat{\mathbf{n}}_2 \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$	$E_{1t} = E_{2t}$		$E_{1t} = E_{2t} = 0$	
Normal D	$\hat{\mathbf{n}}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_{\mathrm{s}}$	$D_{1n}-L$	$ ho_{ m 2n}= ho_{ m s}$	$D_{1n} = \rho_{\rm s}$	$D_{2n} = 0$
Tangential H	$\hat{\mathbf{n}}_2 \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_s$	H_{1t} =	$=H_{2t}$	$H_{1t} = J_{s}$	$H_{2t} = 0$
Normal B	$\hat{\mathbf{n}}_2 \cdot (\mathbf{B}_1 - \mathbf{B}_2) = 0$	$B_{1n} =$	$=B_{2n}$	$B_{1n} =$	$B_{2n}=0$

Notes: (1) ρ_s is the surface charge density at the boundary; (2) \mathbf{J}_s is the surface current density at the boundary; (3) normal components of all fields are along $\hat{\mathbf{n}}_2$, the outward unit vector of medium 2; (4) $E_{1t} = E_{2t}$ implies that the tangential components are equal in magnitude and parallel in direction; (5) direction of \mathbf{J}_s is orthogonal to $(\mathbf{H}_1 - \mathbf{H}_2)$.

Total electric field in medium 1:

$$\mathbf{E}_{1}(z) = \mathbf{E}_{i}(z) + \mathbf{E}_{r}(z)$$
$$= \hat{\mathbf{x}}E_{i0}e^{-\mathrm{j}\beta_{1}z} + \hat{\mathbf{x}}E_{r0}e^{+\mathrm{j}\beta_{1}z}$$

At z=0,

$$\mathbf{E}_{1}(0) = \hat{\mathbf{x}}E_{i0}e^{0} + \hat{\mathbf{x}}E_{r0}e^{0} = \hat{\mathbf{x}}(E_{i0} + E_{r0})$$

At z = 0 boundary, tangential directions are x and y directions.

From the boundary condition, we have

$$E_{1,x}(0) = 0 \quad \Longrightarrow \quad E_{i0} + E_{r0} = 0$$

$$\therefore E_{r0} = -E_{i0}$$

Then reflection coefficient: $\Gamma = \frac{E_{r0}}{E_{i0}} = -1$

Reflected electric field:

$$\mathbf{E}_r(z) = -\hat{\mathbf{x}} E_{i0} e^{+\mathrm{j}\beta_1 z}$$

Total electric field:

$$\mathbf{E}_{1}(z) = \mathbf{E}_{i}(z) + \mathbf{E}_{r}(z)$$

$$= \hat{\mathbf{x}} E_{i0} \left(e^{-j\beta_{1}z} - e^{+j\beta_{1}z} \right)$$

$$= -\hat{\mathbf{x}} j 2 E_{i0} \sin(\beta_{1}z)$$

Reflected magnetic field:

$$\mathbf{H}_{r}(z) = \frac{1}{\eta_{1}}(-\hat{\mathbf{z}}) \times \mathbf{E}_{r}(z)$$
$$= \frac{1}{\eta_{1}}\hat{\mathbf{y}}E_{i0}e^{+j\beta_{1}z}$$

Total magnetic field in medium 1:

$$\begin{aligned} \mathbf{H}_{1}(z) &= \mathbf{H}_{i}(z) + \mathbf{H}_{r}(z) \\ &= \hat{\mathbf{y}} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z} + \frac{1}{\eta_{1}} \hat{\mathbf{y}} E_{i0} e^{+j\beta_{1}z} = \hat{\mathbf{y}} \frac{E_{i0}}{\eta_{1}} \left(e^{-j\beta_{1}z} + e^{+j\beta_{1}z} \right) \\ &= \hat{\mathbf{y}} \frac{E_{i0}}{\eta_{1}} 2\cos(\beta_{1}z) \end{aligned}$$

Instantaneous fields:

$$\mathbf{E}_{1}(z,t) = \operatorname{Re}\left\{\mathbf{E}_{1}(z)e^{j\omega t}\right\} = \hat{\mathbf{x}}2E_{i0}\sin(\beta_{1}z)\sin(\omega t)$$

$$\mathbf{H}_{1}(z,t) = \operatorname{Re}\left\{\mathbf{H}_{1}(z)e^{j\omega t}\right\} = \hat{\mathbf{y}}2\frac{E_{i0}}{\eta_{1}}\cos(\beta_{1}z)\cos(\omega t)$$

Note that both the total electric and total magnetic fields in medium 1 are standing waves.

By setting $\sin(\beta_1 z) = 0$ in E_1

- 1. They are \perp to each other and 90° out of phase.
- 2. The electric field vanishes at $z = -n\lambda/2$, n = 0,1,2, -
- 3. The magnetic field vanishes at $z = -(\lambda/4 + n\lambda/2)$.

Negative sign:

Medium 1 is on the left of origin: z < 0

By setting $\cos(\beta_1 z) = 0$ in H₁

Total electric and magnetic fields in medium 1

Animation: http://www.walter-fendt.de/ph14e/stwaverefl.htm Press 'Start' button

Example 1

A uniform plane wave (\mathbf{E}_i , \mathbf{H}_i) at a frequency of 100 MHz travels in air in the +x direction. The electric field is polarised in the y direction. The wave impinges normally on a perfectly conducting plane at x = 0. The magnitude of the incident electric field is 6×10^{-3} V/m and its initial phase is zero.

- (a) Write phasor and instantaneous expressions for \mathbf{E}_i , \mathbf{H}_i .
- (b) Write phasor and instantaneous expressions for \mathbf{E}_r , \mathbf{H}_r .
- (c) Write phasor and instantaneous expressions for \mathbf{E}_1 , \mathbf{H}_1 in air.
- (d) Determine the position nearest to the conducting plane where $\mathbf{E}_1 = 0$.

Solutions

(a) Incident wave

$$\beta_1 = k_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{\omega}{c} \approx \frac{2\pi \times 10^8}{3 \times 10^8} = 2\pi/3 \quad \text{rad/m}$$

$$\eta_1 = \eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi \quad \Omega$$

Phasor expressions:

$$\mathbf{E}_{i}(x) = \hat{\mathbf{y}} E_{i0} e^{-j\beta_{1}x} = \hat{\mathbf{y}} 6 \times 10^{-3} e^{-j(2\pi/3)x}$$
 V/m

$$\mathbf{H}_{i}(x) = \frac{1}{\eta_{1}} \hat{\mathbf{x}} \times \mathbf{E}_{i}(x) = \hat{\mathbf{z}} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}x} = \hat{\mathbf{z}} \frac{1 \times 10^{-4}}{2\pi} e^{-j(2\pi/3)x} \quad \text{A/m}$$

Instantaneous expressions:

$$\mathbf{E}_{i}(x,t) = \operatorname{Re}\left[\mathbf{E}_{i}(x) e^{j\omega t}\right] = \hat{\mathbf{y}} 6 \times 10^{-3} \cos\left(2\pi \times 10^{8} t - \frac{2\pi x}{3}\right) \quad \text{V/m}$$

$$\mathbf{H}_{i}(x,t) = \operatorname{Re}\left[\mathbf{H}_{i}(x) e^{j\omega t}\right] = \hat{\mathbf{z}} \frac{1 \times 10^{-4}}{2\pi} \cos\left(2\pi \times 10^{8} t - \frac{2\pi x}{3}\right) \quad \text{A/m}$$

(b) Reflected wave:

Phasors:

$$\begin{aligned} \mathbf{E}_{r}(x) &= \hat{\mathbf{y}} \; (-1) E_{i0} \; e^{+j\beta_{1} x} \\ &= -\hat{\mathbf{y}} \; 6 \times 10^{-3} \; e^{+j(2\pi/3)x} \quad \text{V/m} \\ \mathbf{H}_{r}(x) &= \frac{1}{\eta_{1}} (-\hat{\mathbf{x}}) \times \mathbf{E}_{r}(x) \\ &= \hat{\mathbf{z}} \; \frac{E_{i0}}{\eta_{1}} \; e^{+j\beta_{1} x} = \hat{\mathbf{z}} \; \frac{1 \times 10^{-4}}{2\pi} \; e^{+j(2\pi/3)x} \quad \text{A/m} \end{aligned}$$

Instantaneous:

$$\mathbf{E}_{r}(x,t) = \operatorname{Re}\left[\mathbf{E}_{r}(x) e^{j\omega t}\right]$$

$$= -\hat{\mathbf{y}} 6 \times 10^{-3} \cos\left(2\pi \times 10^{8} t + \frac{2\pi x}{3}\right) \quad \text{V/m}$$

$$\mathbf{H}_{r}(x,t) = \operatorname{Re}\left[\mathbf{H}_{r}(x) e^{j\omega t}\right]$$

$$= \hat{\mathbf{z}} \frac{1 \times 10^{-4}}{2\pi} \cos\left(2\pi \times 10^{8} t + \frac{2\pi x}{3}\right) \quad \text{A/m}$$

(c) Total field:

Phasors:

$$\begin{aligned} \mathbf{E}_{1}(x) &= \mathbf{E}_{i}(x) + \mathbf{E}_{r}(x) = \hat{\mathbf{y}} \ 6 \times 10^{-3} \ (e^{-j2\pi x/3} - e^{+j2\pi x/3}) \\ &= \hat{\mathbf{y}} \ (-j) \ 12 \times 10^{-3} \ \sin(2\pi x/3) \\ \mathbf{H}_{1}(x) &= \mathbf{H}_{i}(x) + \mathbf{H}_{r}(x) = \hat{\mathbf{z}} \ \frac{1 \times 10^{-4}}{2\pi} \ (e^{-j2\pi x/3} + e^{+j2\pi x/3}) \\ &= \hat{\mathbf{z}} \ \frac{1 \times 10^{-4}}{\pi} \cos(2\pi x/3) \end{aligned}$$

Instantaneous:

$$\mathbf{E}_{1}(x,t) = \operatorname{Re}\left[\mathbf{E}_{1}(x) e^{j\omega t}\right]$$

$$= \hat{\mathbf{y}} 12 \times 10^{-3} \sin(2\pi x/3) \sin(2\pi \times 10^{8} t) \quad \text{V/m}$$

$$\mathbf{H}_{1}(x,t) = \operatorname{Re}\left[\mathbf{H}_{1}(x) e^{j\omega t}\right]$$

$$= \hat{\mathbf{z}} \frac{1 \times 10^{-4}}{\pi} \cos(2\pi x/3) \cos(2\pi \times 10^{8} t) \quad \text{A/m}$$

(d) The electric field vanishes at $x = -n\lambda/2$, n = 0,1,2,... Excluding the boundary surface (n = 0), the nearest null will be at n = 1, i.e., $x = -\lambda/2 = -(2\pi/\beta_1)/2 = -1.5$ m.

2 Normal Incidence at a lossless Dielectric Boundary

Incident, reflected, and transmitted fields:

Actual E-field may not be in $+\hat{\mathbf{x}}$ direction since $\hat{\mathbf{x}}E_{i0}$ determines the direction of E-field

$$\mathbf{E}_{i}(z) = \hat{\mathbf{x}} E_{i0} e^{-\mathrm{j}\beta_{1}z} \qquad \mathbf{H}_{i}(z) = \hat{\mathbf{y}} \frac{E_{i0}}{\eta_{1}} e^{-\mathrm{j}\beta_{1}z}$$

$$\mathbf{E}_{r}(z) = \hat{\mathbf{x}} E_{r0} e^{\mathrm{j}\beta_{1}z} \qquad \mathbf{H}_{r}(z) = -\hat{\mathbf{y}} \frac{E_{r0}}{\eta_{1}} e^{\mathrm{j}\beta_{1}z}$$

$$\mathbf{E}_{t}(z) = \hat{\mathbf{x}} E_{t0} e^{-\mathrm{j}\beta_{2}z} \qquad \mathbf{H}_{t}(z) = \hat{\mathbf{y}} \frac{E_{t0}}{\eta_{2}} e^{-\mathrm{j}\beta_{2}z}$$

Medium parameters:

$$eta_1 = \omega \sqrt{arepsilon_1 \mu_1}, \qquad eta_2 = \omega \sqrt{arepsilon_2 \mu_2}$$
 $\eta_1 = \sqrt{\frac{\mu_1}{arepsilon_1}}, \qquad \eta_2 = \sqrt{\frac{\mu_2}{arepsilon_2}}$

At the boundary of two dielectric media:

2 equations are considered in solving the reflected and transmitted waves

Table 6-2: Boundary conditions for the electric and magnetic fields.

Field Components	General Form	Medium 1 Medium 2 Dielectric Dielectric	Medium 1 Medium 2 Dielectric Conductor
Tangential E	$\hat{\mathbf{n}}_2 \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$	$E_{1t} = E_{2t}$	$E_{1t} = E_{2t} = 0$
Normal D	$\hat{\mathbf{n}}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_{\mathrm{s}}$	$D_{1n} - D_{2n} = \rho_s$ $H_{1t} = H_{2t}$	$D_{1n} = \rho_{s} \qquad D_{2n} = 0$
Tangential H	$\hat{\mathbf{n}}_2 \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_{\mathrm{s}}$	$H_{1t} = H_{2t}$	$H_{1t} = J_{s} \qquad H_{2t} = 0$
Normal B	$\hat{\mathbf{n}}_2 \cdot (\mathbf{B}_1 - \mathbf{B}_2) = 0$	$B_{1n} = B_{2n}$	$B_{1n} = B_{2n} = 0$

Notes: (1) ρ_s is the surface charge density at the boundary; (2) \mathbf{J}_s is the surface current density at the boundary; (3) normal components of all fields are along $\hat{\mathbf{n}}_2$, the outward unit vector of medium 2; (4) $E_{1t} = E_{2t}$ implies that the tangential components are equal in magnitude and parallel in direction; (5) direction of \mathbf{J}_s is orthogonal to $(\mathbf{H}_1 - \mathbf{H}_2)$.

Boundary conditions:

y conditions: Boundary z=0
$$E_{1\parallel}(0) = E_{2\parallel}(0) \qquad H_{1\parallel}(0) = H_{2\parallel}(0)$$

$$H_{1\parallel}(0) = H_{2\parallel}(0)$$

Explicitly:

$$E_{1\parallel}(0) = E_{i0}(0) + E_{r0}(0), \quad E_{2\parallel}(0) = E_{t0}(0)$$
 $H_{1\parallel}(0) = \frac{E_{i0}(0)}{\eta_1} - \frac{E_{r0}(0)}{\eta_1}, \quad H_{2\parallel}(0) = \frac{E_{t0}(0)}{\eta_2}$

The boundary conditions lead to:

$$E_{i0} + E_{r0} = E_{t0} \qquad \frac{E_{i0}}{\eta_1} - \frac{E_{r0}}{\eta_2} = \frac{E_{t0}}{\eta_2}$$
Solving for E_{r0} and E_{t0} ,
$$E_{r0} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} E_{i0} \qquad E_{t0} = \frac{2\eta_2}{\eta_2 + \eta_1} E_{i0}$$

Define:

Similar to T.L: $\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$

Reflection coefficient,

$$\Gamma = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 - \eta_2}{\eta_2 + \eta_2}$$

Transmission coefficient, $\tau = \frac{E_{t0}}{E_{i0}} = \frac{2\eta_2}{\eta_2 + \eta_1}$

Note:

$$1 + \Gamma = \tau$$

$$|\Gamma| \le 1$$

Using Γ and τ , the field expressions in the media can be expressed in terms of the incident field amplitude E_{i0} :

Incident	$\mathbf{E}_{i}(z) = \hat{\mathbf{x}} E_{i0} e^{-\mathrm{j}\beta_{1}z}$	$\mathbf{H}_{i}(z) = \hat{\mathbf{y}} \frac{E_{i0}}{\eta_{1}} e^{-\mathrm{j}\beta_{1}z}$
Reflected	$\mathbf{E}_r(z) = \hat{\mathbf{x}} \Gamma E_{i0} e^{\mathrm{j}\beta_1 z}$	$\mathbf{H}_r(z) = -\hat{\mathbf{y}} \frac{\Gamma E_{i0}}{\eta_1} e^{j\beta_1 z}$
Transmitted	$\mathbf{E}_{t}(z) = \hat{\mathbf{x}} \tau E_{i0} e^{-\mathrm{j}\beta_{2}z}$	$\mathbf{H}_{t}(z) = \hat{\mathbf{y}} \frac{\tau E_{i0}}{\eta_{2}} e^{-\mathrm{j}\beta_{2}z}$

Power Density Relationship

Reflected power density, S_r

$$\mathbf{S}_{r} = \frac{1}{2} \operatorname{Re} \left\{ \mathbf{E}_{r}(z) \times \mathbf{H}_{r}^{*}(z) \right\} = \frac{1}{2} \operatorname{Re} \left\{ \left(-\hat{\mathbf{z}} \right) \left| \Gamma \right|^{2} \frac{\left| E_{i0} \right|^{2}}{\eta_{1}} \right\}$$

$$= \left(-\hat{\mathbf{z}}\right) \left|\Gamma\right|^2 \frac{1}{2} \frac{\left|E_{i0}\right|^2}{\eta_1}$$

$$=(-\hat{\mathbf{z}})|\Gamma|^2 \times \text{incident power density}$$

$$\frac{1}{2} \frac{\left| E_{i0} \right|^2}{\eta_1} = \text{incident power density}$$

$$|\Gamma|^2 = \frac{\text{reflected power density}}{\text{incident power density}} = \text{fraction of power reflected}$$

Transmitted power density, S_t

$$\mathbf{S}_{t} = \frac{1}{2} \operatorname{Re} \left\{ \mathbf{E}_{t}(z) \times \mathbf{H}_{t}^{*}(z) \right\} = \frac{1}{2} \operatorname{Re} \left\{ \hat{\mathbf{z}} \left| \tau \right|^{2} \frac{\left| E_{i0} \right|^{2}}{\eta_{2}} \right\}$$

$$= \hat{\mathbf{z}} \left| \tau \right|^2 \frac{\eta_1}{\eta_2} \frac{1}{2} \frac{\left| E_{i0} \right|^2}{\eta_1}$$

$$= \hat{\mathbf{z}} |\tau|^2 \frac{\eta_1}{\eta_2} \times \text{incident power density}$$

$$|\tau|^2 \frac{\eta_1}{\eta_2} = \frac{\text{transmitted power density}}{\text{incident power density}} = \text{fraction of power transmitted}$$

Fraction of reflected power + Fraction of transmitted power = 1

lossless

$$\left|\Gamma\right|^2 + \left|\tau\right|^2 \frac{\eta_1}{\eta_2} = 1$$

Total average power density in medium 1, S_1

Derivation is not required

Fower density in median 1,
$$\mathbf{S}_{1}$$

$$\mathbf{S}_{1} = \frac{1}{2}\operatorname{Re}\left\{\mathbf{E}_{1}(z) \times \mathbf{H}_{1}^{*}(z)\right\}$$

$$= \frac{1}{2}\operatorname{Re}\left\{\left[\mathbf{E}_{i}(z) + \mathbf{E}_{r}(z)\right] \times \left[\mathbf{H}_{i}^{*}(z) + \mathbf{H}_{r}^{*}(z)\right]\right\}$$

$$= \frac{1}{2}\operatorname{Re}\left\{\mathbf{E}_{i}(z) \times \mathbf{H}_{i}^{*}(z)\right\} + \frac{1}{2}\operatorname{Re}\left\{\mathbf{E}_{r}(z) \times \mathbf{H}_{r}^{*}(z)\right\}$$

$$= \hat{\mathbf{z}}\frac{\left|E_{i0}\right|^{2}}{2\eta_{1}} + (-\hat{\mathbf{z}})\frac{\left|E_{i0}\right|^{2}}{2\eta_{1}}\left|\Gamma\right|^{2}$$

$$= \hat{\mathbf{z}}\left(1 - \left|\Gamma\right|^{2}\right) \times \text{incident power density}$$

$$= \hat{\mathbf{z}}|\tau|^{2}\frac{\eta_{1}}{\eta_{2}} \times \text{incident power density}$$

$$= \hat{\mathbf{z}} \text{ transmitted power density}$$

Total electric field in medium 1:

$$\mathbf{E}_{1}(z) = \mathbf{E}_{i}(z) + \mathbf{E}_{r}(z) = \hat{\mathbf{x}}E_{i0}e^{-\mathrm{j}\beta_{1}z} + \hat{\mathbf{x}}E_{r0}e^{\mathrm{j}\beta_{1}z}$$
$$= \hat{\mathbf{x}}E_{i0}(e^{-\mathrm{j}\beta_{1}z} + \Gamma e^{\mathrm{j}\beta_{1}z})$$

The total electric field in medium 1 is a standing wave, and it has local maximum and minimum values but does not go to zero at any location (Note: this is different from the case of incidence upon a conductor).

Total magnetic field in medium 1:

$$\mathbf{H}_{1}(z) = \mathbf{H}_{i}(z) + \mathbf{H}_{r}(z)$$

$$= \hat{\mathbf{y}} \frac{E_{i0}}{\eta_{1}} \left(e^{-j\beta_{1}z} - \Gamma e^{j\beta_{1}z} \right)$$

Note:

In comparison, the fields in medium 2 are only transmitted waves and they are pure travelling waves.

We will determine the maxima/minima of EM fields, as we did for T-Lines

$$\left|\mathbf{E}_{1}\left(z'\right)\right| = \left|E_{i0}\right| \left|\Gamma\right| e^{\mathrm{j}(\theta-2\beta_{1}z')} - (-1)\right|$$

In T.L.: l is similar to z'

Obviously, from the figure, we know \mathbf{E}_1 achieves

(1) maximum at z'_{M} when $e^{j(\theta-2\beta_{1}z'_{M})}=1$ such that:

$$\left|\mathbf{E}_{1}\left(z'_{M}\right)\right| = \left|E_{i0}\right|\left(1+\left|\Gamma\right|\right)$$

i.e., when:

 $2\beta_1 z'_M - \theta = 2n\pi$, n is an integer that makes $z'_M \ge 0$

(2) minimum at z'_m when $e^{j(\theta-2\beta_1 z'_m)} = -1$ such that:

$$\left|\mathbf{E}_{1}\left(z'_{m}\right)\right| = \left|E_{i0}\right|\left(1 - \left|\Gamma\right|\right)$$

i.e., when:

$$2\beta_1 z'_m - \theta = 2n\pi + \pi$$
, *n* is an integer that makes $z'_m \ge 0$

Note:

We choose the convention that θ is specified in the range $[-\pi,\pi)$

If the media are lossless, η_1 and η_2 are both real.

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \begin{cases} > 0, & \text{when } & \eta_2 > \eta_1 \\ < 0, & \text{when } & \eta_2 < \eta_1 \end{cases}$$

$$\Gamma = |\Gamma| e^{j\theta} \begin{cases} \theta = 0, & \text{when} \quad \eta_2 > \eta_1 \\ \theta = -\pi, & \text{when} \quad \eta_2 < \eta_1 \end{cases}$$

Therefore,

$$\begin{cases} 2\beta_1 z'_M = 2n\pi, & \text{when } \eta_2 > \eta_1 \\ 2\beta_1 z'_M = (2n'-1)\pi = (2n+1)\pi, & \text{when } \eta_2 < \eta_1 \end{cases}$$

Since $z'_{M} \ge 0$, we know n' starts from 1 n = n' - 1 starts from 0

$$\begin{cases} 2\beta_1 z'_m = (2n+1)\pi, & \text{when} & \eta_2 > \eta_1 \\ 2\beta_1 z'_m = 2n\pi, & \text{when} & \eta_2 < \eta_1 \end{cases}$$

Total magnetic field in medium 1:

$$\begin{aligned} \mathbf{H}_{1}(z) &= \hat{\mathbf{y}} \frac{E_{i0} e^{-\mathrm{j}\beta_{1}z}}{\eta_{1}} \left(1 - \Gamma e^{\mathrm{j}2\beta_{1}z} \right) \\ \mathbf{H}_{1}(z') &= \hat{\mathbf{y}} \frac{E_{i0} e^{\mathrm{j}\beta_{1}z'}}{\eta_{1}} \left(1 - \left| \Gamma \right| e^{\mathrm{j}\theta} e^{-\mathrm{j}2\beta_{1}z'} \right) \\ &= \hat{\mathbf{y}} \frac{E_{i0} e^{\mathrm{j}\beta_{1}z'}}{\eta_{1}} \left[1 - \left| \Gamma \right| e^{\mathrm{j}(\theta - 2\beta_{1}z')} \right] \end{aligned}$$

$$|\mathbf{H}_{1}(z')| = \frac{\left| E_{i0} \right|}{\eta_{1}} \left| 1 - \left| \Gamma \right| e^{\mathrm{j}(\theta - 2\beta_{1}z')} \right|$$
Distance between
$$|\Gamma| e^{\mathrm{j}(\theta - 2\beta_{1}z')} \text{ and } +1 \text{ in complex plane}$$

Observations:

- (1) \mathbf{H}_1 's maxima and minima are opposite to those of \mathbf{E}_1 's.
- (2) Since $\beta_1 \lambda = 2\pi$, when z' increases by λ , $|\mathbf{H}_1(z')|$ (as well as $|\mathbf{E}_1(z')|$) experiences 2 periods since $2\beta_1 z'$ is in the exponent.

Table for positions of the maxima and minima of the EM field in medium 1

	$\Gamma > 0 (\eta_2 > \eta_1)$	$\Gamma < 0 (\eta_2 < \eta_1)$
$\left \mathbf{E}_{1}\right _{\max}, \left \mathbf{H}_{1}\right _{\min}$	$\left E_{i0}\right (1+\left \Gamma\right), \; \frac{\left E_{i0}\right }{\eta_{1}}(1-\left \Gamma\right)$	$\left E_{i0}\right (1+\left \Gamma\right), \frac{\left E_{i0}\right }{\eta_1}(1-\left \Gamma\right)$
Condition	$2\beta_1 z_M' = 2n\pi$	$2\beta_1 z_M' = (2n+1)\pi$
Position	$z'_{M} = n \frac{\lambda_{1}}{2}, n = 0, 1, 2,$	$z'_{M} = \frac{\lambda_{1}}{4} + n\frac{\lambda_{1}}{2}, n = 0, 1, 2, \dots$
$\left \mathbf{E}_{1}\right _{\min},\ \left \mathbf{H}_{1}\right _{\max}$	$\left E_{i0}\right (1-\left \Gamma\right), \frac{\left E_{i0}\right }{\eta_1}(1+\left \Gamma\right)$	$ E_{i0} (1- \Gamma), \frac{ E_{i0} }{\eta_1}(1+ \Gamma)$
Condition	$2\beta_1 z_m' = (2n+1)\pi$	$2\beta_1 z_m' = 2n\pi$
Position	$z'_{m} = \frac{\lambda_{1}}{4} + n \frac{\lambda_{1}}{2}, n = 0, 1, 2,$	$z'_m = n \frac{\lambda_1}{2}, n = 0, 1, 2, \dots$

Attention

Note that :
$$|\mathbf{E}_1|_{\text{max}} = |E_{i0}|(1+|\Gamma|)$$

 $|\mathbf{E}_1|_{\text{min}} = |E_{i0}|(1-|\Gamma|)$

The ratio of $|E_1|_{max}$ to $|E_1|_{min}$ is called

the standing wave ratio *S*:

$$S = \frac{\left|\mathbf{E}_{1}\right|_{\text{max}}}{\left|\mathbf{E}_{1}\right|_{\text{min}}} = \frac{1 + \left|\Gamma\right|}{1 - \left|\Gamma\right|}$$

It is easy to find

$$\left| \varGamma \right| = \frac{S - 1}{S + 1}$$

Example 2

A beam of yellow light with a wavelength of 0.6 μ m is normally incident from air (z < 0) on to a glass (z > 0). If the glass surface is at the plane z = 0 and the relative permittivity of glass is 2.25, determine:

- (a) the locations of the electric field maxima in medium 1 (air),
- (b) the fraction of the incident power transmitted into the glass medium.

Solutions

(a) We determine the medium parameters,

$$\eta_{1} = \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \approx 120\pi \quad (\Omega)$$

$$\eta_{2} = \sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \frac{1}{\sqrt{\varepsilon_{r}}} \approx \frac{120\pi}{\sqrt{2.25}} = 80\pi \quad (\Omega)$$

$$\Gamma = \frac{\eta_{2} - \eta_{1}}{\eta_{2} + \eta_{1}} = \frac{80\pi - 120\pi}{80\pi + 120\pi} = -0.2$$

$$\tau = \frac{2\eta_{2}}{\eta_{2} + \eta_{1}} = \frac{160\pi}{80\pi + 120\pi} = 0.8$$

Electric-field magnitude is a maximum at (with Γ < 0):

$$z'_{M} = \frac{\lambda_{1}}{4} + n \frac{\lambda_{1}}{2} \quad (n = 0,1,2,...)$$
with $\lambda_{1} = 0.6 \mu \text{m}$

(b) The fraction of the incident power transmitted into the glass medium is $N \text{ ote}: P_{avi} \neq P_{av1}$

$$\frac{P_{av_2}}{P_{avi}} = \tau^2 \frac{\left|E_0^i\right|^2}{2\eta_2} \left|\frac{\left|E_0^i\right|^2}{2\eta_1}\right| = \tau^2 \frac{\eta_1}{\eta_2} = 0.8^2 \frac{120}{80} = 0.96$$

Alternatively,
$$\frac{P_{av_2}}{P_{avi}} = 1 - |\Gamma|^2 = 1 - (0.2)^2 = 0.96$$
 or 96%

Relationship between

- 1 Normal Incidence at a Perfect Conductor and
 - 2 Normal Incidence at a Dielectric Boundary

The former is a special case of the latter:

For a perfect conductor,
$$\varepsilon_c = \varepsilon - j\frac{\sigma}{\omega} \rightarrow -j\infty$$
, thus $\eta_2 = \sqrt{\frac{\mu}{\varepsilon_c}} \rightarrow 0$

Reflection coefficient,
$$\Gamma = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

Transmission coefficient, $\tau = \frac{E_{t0}}{E_{i0}} = \frac{2\eta_2}{\eta_2 + \eta_1}$

It is easy to find:

$$\Gamma = -1$$
 $\tau = 0$

$$\tau = 0$$

☐ Textbooks:

- Fundamentals of Applied Electromagnetics,

F. T. Ulaby, E. Michielssen, U. Ravaioli,

Pearson Education, 2010, 6th edition

Suggested reading [textbook]:

- Section 6-8: Boundary Conditions for Electromagnetics
- Section 8-1.1: Boundary between Lossless Media
- Section 8-1.3: Power Flow in Lossless Media