MAGIC008: Lie Groups and Lie algebras

Problem Sheet 2: Vector fields and flows. Lie bracket of vector fields

- 1. Let $\xi = (x, y)$. Describe the flow of ξ on \mathbb{R}^2 .
- 2. Let $\xi = (ax + b, -ay + c)$, where $a, b, c \in \mathbb{R}$ and $a \neq 0$. Describe the flow of ξ on \mathbb{R}^2 .
- 3. Consider the map $\Phi^t: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\Phi^t(x,y) = \left(\frac{x}{ty+1} \ , \ \frac{y}{ty+1}\right).$$

Show that Φ^t is a flow (one-parameter group of diffeomorphisms), i.e., $\Phi^t \circ \Phi^s = \Phi^{t+s}$. Find the vector field ξ that generates Φ^t .

- 4. Compute the Lie bracket $[\xi, \eta]$ for the following vector fields:
 - (a) $\xi = (x, y), \ \eta = (-y, x) \text{ in } \mathbb{R}^2;$
 - (b) $\xi = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$, $\eta = (-y, x)$ in \mathbb{R}^2 ;
 - (c) $\xi = (\sin x, \sin y, \sin z), \ \eta = (z + y, x + z, x + y) \text{ in } \mathbb{R}^3.$
- 5. Consider two vector fields in $\mathbb{R}^4(x,y,u,v)$ given by $\xi=(y,-x,v,-u)$ and $\eta=(u,v,-x,-y)$. Show that ξ and η are tangent to the 3-sphere $x^2+y^2+u^2+v^2=1$. Compute the Lie bracket $[\xi,\eta]$. Is $[\xi,\eta]$ tangent to this sphere? Do the same for ξ and ζ , where $\zeta=(u,-v,-x,y)$.
- 6. Consider two linear vector fields in \mathbb{R}^n

$$\xi(x) = Ax$$
 and $\eta(x) = Bx$, $x \in \mathbb{R}^n$

where A and B are $n \times n$ matrices. Show that the Lie bracket $\zeta = [\xi, \eta]$ is a linear vector field, i.e., can be written as $\zeta(x) = Cx$ and find the matrix C.