保護板 BMS 之 CAN 總線通訊規範(充電機端)CAN Bus Communication Protocol

加上背景色字樣為基於 11_240105_BT4T 的修改部分*

通訊規範 Communications Standard

一、 數據鏈路層應遵循的原則:

1. 總線通訊速率為: **250Kbps**

2. 數據鏈路層規定參考 CAN2.0B 和 J1939 的相關規定。

3. 使用 CAN 擴展幀 29 位標示符進行重新定義,以下為 29 標示符的分配表:

	IDENTIFIER 11BITS							SRR	IDE							DENT	IFIER	EXTE	NSIC	N 1	L8BIT	S								
Р	RIORI	TY	R	DP		PDU	J FOR	MAT	(PF)		SRR	IDE	Р	PF PDU SPECIFIC (PS)			S	OUR	URCE ADDRESS (SA)											
3	2	1	1	1	8	7	6	5	4	3			2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
28	27	26	25	24	23	22	21	20	19	18			17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

其中·優先級為 3 位·可以有 8 個優先级; R 一般固定為 0; DP 現固定為 0; 8 位的 PF 為報文的代碼; 8 位的 PS 為目標地址或组擴展; 8 位的 SA 為發送 此报文的源地址。

- →接入網絡的每一個節點都有名稱和地址,名稱用於識別節點的功能和進行地址仲裁,地址用於節點的數據通信;
- →每個節點都至少有一種功能,可能會有多個節點具有相同的功能,也可能一個節點具有多個功能。

二、 CAN 網絡地址分配表:

CAN 總線結點地址從 J1939 標準中定義的獲得;

結點名稱	地址 SOURCE ADDRESS (SA)
電機控制器	239 (0xEF)
電池管理系統(BMS)	244 (0xF4)
充電機控制系統 (CCS)	229 (0xE5)
廣播地址(BCA)	80 (0x50)

三、 報文格式

1. 報文1:(ID:0x1806E5F4)

OUT	IN			週期(ms)						
BMS	CCS	Р	R	DP	PF	1000				
DIVI2	ccs	6	0	0	6	1000				
數據										
位置		數據名			說明					
BYTE1	最	高允許充電端電壓高字	節	0.1)//bit 佢较旱:0.7	/⁄□·\/co+ -2201 粉/腐	E 東 東 カ 220 1 v				
BYTE2	最	高允許充電端電壓低字	節	─ 0.1V/bit 偏移量:0 例:Vset =3201·對應電壓為 320.1v						
BYTE3	Ē	最高允許充電電流高字館	ָ ֖֓֞֞֞֞֞֞֞֞֞֞֞֞֞	── 0.1A/bit 偏移量:0 例:Iset =582·對應電流為 58.2A						
BYTE4	Ē	最高允許充電電流低字館	ָ 	U.IA, bit 岬沙里,U /yi. 13ct = 302 * 到版电视物 30.2A						
BYTE5		目前 SOC 高字節		│ │ 0.1%/bit 偏移量:0 例:SOCset =582,對應 SOC 為 58.2%						
BYTE6		目前 SOC 低字節		0.170/011 岡均里.0 79.3005年1-302 9 到底 300 局 30.270						
BYTE7		控制		0: 充電機啟動‧開啟充電。						
DITE/		1±mi		1:電池保護,充電機關閉輸出。						
				0:無異常。						
BYTE8		異常說明		1: 若保護板因各串電壓差、總壓過/欠壓、溫度或電流異常進入二						
DITEO		天市		級保護,進而關閉充電 MOS 則顯示此資訊。(若為單體欠壓或是過						
				壓,此為為控制 SOC 的條件依據,則不在此限)						

2. 報文 2:(ID: 0x18FF50E5)

OUT	IN		週期(ms)								
CC	DC A	Р	R	DP	PF	1000					
CC	BCA	6	0	0	0xFF	1000					
	數據										
位置		數據名			說明						
BYTE1		輸出電壓高字節		- 0.1V/bit 偏移量:0 例:Vset =3201·對應電壓為 320.1v							
BYTE2		輸出電壓低字節									
BYTE3		輸出電流高字節		│ │ 0.1A/bit 偏移量:0 例:Iset =582·對應電流為 58.2A							
BYTE4		輸出電流低字節		7 U.IA/UIL 偏惨重,U 的,ISEL = 302,到底电派局 38.2A							
BYTE5		目前 SOC 高字節		0.10/ JL:1/ [FX] = . 0 [V] . COC+ F02 W/F COC 7 F03							
BYTE6		目前 SOC 低字節	─ 0.1%/bit 偏移量:0 例:SOCset =582·對應 SOC 為 58.								
BYTE7		狀態標誌 STATUS									
BYTE8		保留									

STATUS	标识	描述
BIT 0	硬件故障	0:正常。1:硬件故障 <i>(達鋰 DALY 表示無法實踐此功能)</i>
BIT1	充電機溫度	0:正常。1:充電機溫度過高保護
BIT2	輸入電壓	0:輸入電壓正常。1:輸入電壓錯誤,充電機停止工作
BIT3	啟動狀態	0: 充電器檢測到電池電壓進入啟動狀態。1: 處於關閉狀態。(用於防止電池反接)
BIT4	通信狀態	0:通信正常。1:通信接收超時
BIT5	電池組異常	0:正常。1:電池組異常(當報文一的 BYTE8 傳輸 1 時)。
BIT6		
BIT7		

四、 工作方式

- 1. BMS 固定間隔時間 1S 發送控制信息(報文 1)到充電機·充電機接收到信息以後根據報文數據的電壓電流設置來工作。如果 5 秒接收不到報文·則進入通信錯誤狀態·關閉輸出。

BMS 發布的報文 1:(ID: 0x1806E5F4) 邏輯說明

Byte 1 · Byte 2:

請以 3.70*串數作為發送值。舉例: 若為 8 串,則為 3.7*8=29.6V; 若為 16 串,則輸出為 3.7*16=59.2V,以此類推。

請輸入保護板內單局高電壓保護 cell volt high protect 三級保護數值*串數。舉例:若 cell volt high protect 三級保護數值為 3.65V·而電池組為 8 串,則該數值為 3.65*8=29.2。若為 16 串,則該數值為 3.65*16=58.4,以此類推。

Byte 3 · Byte 4:

如下表·参考 BMS 上的温度、SOC 数值与额定电容量 Rated Capacity (C)。

以 CC-CV 曲線為基底修改:

1.充電開始	2.充電流	過程 CC	3. 充電過程 FCV 4. 充電過程:最終階段
	温度 低於攝氏 0℃ 攝氏 0-5℃ 攝氏 5-7℃	指定電流 靜止充電 0.1 C 0.2 C	- 1. 一旦單體電壓觸及"單體過壓一級警告",使充電電流下降 0.1C。 - 2. 間隔 1 秒開始後觀察,若又觸碰
1. 從收到充電機發回的報文開始判定執行。 2. 以 0.1C 開始充電·開始後每秒上升 3A 逐步往 指定充電 C 數增加。	攝氏 7-10℃ 攝氏 10-25℃ 攝氏 25-45℃ 攝氏 45-55℃	0.4 C 0.6 C 0.7 C 0.5 C	# 單 體 過 壓 一 級 警 告 " 則 再 降
	攝氏 55-60℃ 高於攝氏 60℃	0.3 C 靜止充電	逐漸下降至 0.1C)

補充備註:

- 1. 充電過程不可逆。一旦由步驟 2.到步驟 3.後,不會因為突然電壓低於"單體過壓一級警告"而重新返回步驟 2.;

- 4. 取消 OCV-SOC 功能、不需要容量自學功能。
- 5. 在放電過程中,一旦觸碰"單體欠壓一級警告":

甲、 若此時的 SOC > 20%, 若在 1 秒內持續偵測到欠壓 1 級,則額外下降 1%的 SOC; (若在不到 1 秒內警告既解除,則不需要下降 1%的 SOC)

乙、 若此時的 SOC > 20% · 請將 SOC 加速下降調整至 20%;

丙、 若本來 SOC≤20%,則無需變動。

6. 在充電過程中,一旦觸碰"單體過壓一級警告":

甲、 若此時的 SOC < 80%, 若在 1 秒內持續偵測到過壓 1 級,則額外上升 1%的 SOC; (若在不到 1 秒內警告既解除,則不需要上升 1%的 SOC)

乙、 <mark>若本來 SOC≧80%,則無需變動。</mark>

攝氏溫度	0-1%	2-5%	6-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	71-80%	81-90%	91-95%	96-98%	99-100%	100%
< 0		禁止充電													
[0~5)	0.05-C	0.10 C	0.10 C	0.10 C	0.10 C	0.10 C	0.10 C	0.10 C	0.10 C	0.10 C	0.10 C	0.05-C	0.05 C	0.05 C	0
[5~7)	0.05-C	0.15 C	0.20 C	0.20 C	0.20 C	0.20 C	0.20 C	0.20 C	0.20 C	0.20 C	0.15 C	0.10 C	0.05 C	0.05 C	0
[7-10)	0.05 C	0.15 C	0.20 C	0.30 C	0.40 C	0.40 C	0.40 C	0.40 C	0.40 €	0.30 C	0.20 C	0.15 C	0.10 C	0.10 C	θ
[10-25)	0.15 C	0.30 C	0.30-C	0.40 C	0.50-C	0.60 C	0.60-C	0.60-C	0.60-C	0.60-C	0.50-C	0.40 C	0.20 C	0.10 C	θ
[25-45)	0.20 C	0.30 C	0.40 C	0.50 C	0.60 C	0.70 C	0.70 C	0.70 C	0.70 C	0.70 C	0.70 C	0.50 C	0.30 C	0.10 C	Đ
[45-55)	0.15 C	0.20 C	0.30 C	0.40 C	0.50 C	0.60 C	0.60 C	0.60 C	0.60 C	0.50 €	0.40 C	0.30 €	0.20 C	0.10 C	0
[55-60)	0.05 C	0.10 C	0.20 C	0.30 C	0.40 C	0.60 C	0.60 C	0.60 C	0.50 C	0.30 C	0.20 C	0.10 C	0.10 C	0.05 C	Đ
> 60								禁止充電							

Byte 5 · Byte 6:

傳輸當前 SOC 數值·Byte 5 為高字節、Byte 6 為低字節。例: SOCset= 1000·表示數值為 100%

Byte 7:

若 SOC 不為 100%,則傳輸 0;

若 SOC 為 100%, 或是因電池組有任何異常導致充電 MOS 關閉, 則傳輸 1。

Byte 8:

若保護板偵測電池組無任何異常,傳輸0;

若保護板因各串電壓差、溫度或電流異常而關閉充電機輸出,則傳輸1。

追加功能:

蜂鳴警示部分:

項次	說明	備註
1	蜂鳴器工作電壓 12V	
2	當 SOC 介於 0-10%時·持續蜂鳴	
3	當 SOC 介於 11-20\$時·間歇蜂鳴	
4	當偵測:電壓差、電流、溫度進入一級警告時,間歇蜂鳴直到警告解除	一級警告 不用 關閉 MOS
5	當偵測:單體欠壓、過壓或總體欠壓、過壓進入一級警告時,不需蜂鳴	一級警告 不用 關閉 MOS
6	當偵測為充電中時不用蜂鳴。	

軟開關部分:

項次	說明	備註
1	軟開關工作電壓 3.3V	充電中 不用 間歇供電
2	軟開關開路:(充電 MOS, 放電 MOS) = (ON, ON)	
3	軟開關短路:(充電 MOS, 放電 MOS) = (ON, OFF)	

鑰匙開關部分:

項次	說明	備註
1	鑰匙開關不控制充電/放電 MOS	
2	鑰匙開關接通(短路)時·永不休眠	
3	鑰匙開關斷開(開路)時·參照設定休眠時間	65535 為永不休眠
4	設定休眠時間最短為 3 秒	原默認最短為 10 秒

開機喚醒部分:

項次	說明	備註
1	SOC 燈板/藍牙模塊 上的按鈕可以喚醒保護板	
2	接上負載放電可自動喚醒保護板	前提為軟開關為 ON
3	接上充電機可以自動喚醒保護板	前提為軟開關為 ON
4	接上上位機可以自動喚醒保護板	

MOS、SOC 與開關機關係:

項次	說明	備註
1	當 SOC=100%時·充電 MOS 關閉	解決當客戶使用非專用充電機時的重複充電導致頻繁開關 MOS
2	一旦偵測到 10A 的放電電流·即使 SOC=100%也強制開啟充電 MOS	解決當負載放電終止時的回壓回衝到機電・可以被電池吸收
3	若此時偵測到繼續充電 10 秒或觸及單體過壓二級保護·則充電 MOS 關閉	
4	當觸及單體欠壓二級保護後·SOC 直接跳成 0% (此為默認功能)	即使因為瞬間回壓後解除二級保護後·SOC 也不會變成 1%
5	在觸及單體欠壓二級保護持續 60 秒後、保護板會自動關機	
6	在保護板因觸及單體欠壓二級保護關機時·在重開機後有 30 秒時間強制開啟 MOS	讓非盲充的充電機亦可以對電池充電

短路控制方案:

項次	說明	備註						
1	依需求提供透過電壓控制短路的程序	解決部分預充電容過大的車輛問題						
2	依需求提供透過電流控制短路的程序	解決部分起始壓降過大的車輛問題						

備註:

- 1. 目前已經可以透過工程模式中"加速短路控制"調整,不需要替換版本;
- 2. 關於"將保護板重啟時繞過 MOS 的預充時間默認從 1 秒改為 5 秒"已不需要;
- 3. 關於 "改善硬件阻值·用以滿足最大電容: $2700\mu F \times 22pcs$ 的車輛預充問題"已不需要;

其他部分:

項次	說明	備註
1	讓上位機可以顯示 SOH	需參照不同版本上位機軟件
2	追加 SOC-OCV 對照表進行 SOC 校正	參照下表(目前不需要)
3	依需求追加 TVS 管	TVS 管主要功能為吸收突波高壓·解決充放電結束時的突波
4	依需求追加 MOS·讓 8S 板子耐壓 80V、讓 16S 板子耐壓 100V	若可以再增加耐壓,請告知
5	將過充電流、過放電流的2級保護延遲從1秒增加為2秒	
6	工程模式中"加速短路控制"的初始值為:disable	需同時解決車輛預充電問題
7	藍芽名稱修改	需使用編號為 "BO4" 開頭的藍牙模塊
8	溫度感測器數量:8S的板子2根、16S的板子4根	目前最多2根·若可以再增加數量·請告知
9	新程序可與先前保護板兼容	

雲平台功能:

項次	說明	備註
1	可以透過雲平台進行 GPS 定位	
2	主動每 3 分鐘上傳一次 save data 數據到雲平台,只要點開雲平台就可以瀏覽數據	
3	可以從雲平台上看到 history data 歷史警告數據	
4	可透過雲平台更新程序與修改參數	
5	可透過雲平台強制鎖客戶的放電 MOS	可針對租賃客戶

備註:

OCV 對照表:

	放電 OCV 靜置																
SOC	90%	85%	80%	75%	70%	65%	60%	55%	50%	4 5%	40%	35%	30%	25%	20%	15%	10%
電壓	3.3310	3.3305	3.3303	3.3300	3.3295	3.3215	3.3030	3.2930	3.2910	3.2900	3.2895	3.2888	3.2804	3.2635	3.2474	3.2220	3.2050
溫度	<u>攝氏 25 度</u>																

	充電 OCV 靜置																
SOC	90%	85%	80%	75%	70%	65%	60%	55%	50%	4 5%	40%	35%	30%	25%	20%	15%	10%
電壓	3.3405	3.3403	3.3402	3.3390	3.3380	3.3320	3.3168	3.3090	3.3070	3.3057	3.3056	3.3040	3.3026	3.2956	3.2770	3.2500	3.2250
温度									攝氏 25 度	=							

	放電 OCV 動態 1C 放電																
SOC	90%	85%	80%	75%	70%	65%	60%	55%	50%	4 5%	40%	35%	30%	25%	20%	15%	10%
溫度	<u>電壓</u>																
0℃	3.0122	3.0094	3.0042	2.9962	2.9858	2.9729	2.9565	2.9363	2.9122	2.8834	2.8491	2.8102	2.7660	2.7150	2.6534	2.5772	2.4766
10°C	3.1125	3.1096	3.1064	3.1024	3.0971	3.0901	3.0811	3.0694	3.0550	3.0367	3.0135	2.9842	2.9474	2.9030	2.8506	2.7887	2.7162
25°C	3.2095	3.2050	3.1978	3.1925	3.1869	3.1810	3.1752	3.1689	3.1619	3.1541	3.1447	3.1333	3.1182	3.0968	3.0660	3.0176	2.9391
45°€	3.2383	3.2350	3.2309	3.2265	3.2212	3.2162	3.2109	3.2058	3.1978	3.1916	3.1850	3.1776	3.1681	3.1554	3.1382	3.1123	3.0835

	充電 OCV 動態 1C 充電																
SOC	90%	90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10%												10%			
電壓	3.5497	3.5160	3.4976	3.4852	3.4755	3.4674	3.4600	3.4528	3.4465	3.4412	3.4361	3.4313	3.4269	3.4217	3.4102	3.3862	3.3595
温度																	

——OCV 補充:

- 1. 當 SOC<10%或是 SOC>90%時 · 關閉校正功能。
- 2. 當觸碰單體電壓欠壓二級保護·SOC-0%
- 3. 當觸碰單體電壓過壓二級保護·SOC-100%
- 4. <u>動態 OCV 為 1C 充、放電時的電壓,故若當下充、放電流非 1C 時,請予以適當修正。</u>

20230722 備註:

- 1. 持續追蹤:未來能否實踐主動儲存 save data 資料,每 3 分鐘一筆,最多 1024 筆(目前無法實踐)
- 2. 持續追蹤:透過手機直接升級程序的操作步驟
- 3. 持續追蹤:能否連接現場當地 WiFi
- 4. 持續追蹤:目前溫差保護無實際功能

未來改善方案:

- 1. 增加一個硬件迴路,在偵測到 MOS 失效後,強制阻斷 MOS。(防止一旦 MOS 被擊穿後就喪失保護機制)
- 2. 增加一個檢測機制,判斷 MOS 的健康程度,並提供判斷標準。

對充電器廠商需求說明:

- 1. 報文 1 的 Byte 3 與 Byte 4 由於 BMS 會透過電池的電容量進行換算,有對於指定輸出的電流值時可能會高於充電器本身的最大輸出值。此時請充電器自行換算成最大輸出值。 值。
 - 舉例:假設充電器的 Imax = 100A·若從 Byte3 與 Byte4 解析後得知 Iset = 150A·則實際輸出 Iout = 100A。
- 2. 報文 1 中希望充電器可以通過 Byte5 與 Byte6 得知正確 SOC 數值,若有屏幕,請將其顯示於充電器的屏幕上。
- 3. 報文 1 中當 SOC 為 100%時,BMS 會透過 Byte7 傳輸 1,當充電器接受到 1 之後,請顯示充飽電的燈號,並停止供電。
- 4. 若有螢幕,顯示請為繁體字。
- 5. 當接受到充電指令時,請先緩衝 3 秒,再以小電流逐步增加啟動至指定電流。
 - 甲、舉例:接到報文指令為 100A, 請先暫停 3 秒, 之後再於 10 秒內逐步增加電流至 100A, 不要瞬間跳 100A。