Assignment 3

Submit your assignments to the ENCS's Electronic Assignment Submission (EAS) system: https://fis.encs.concordia.ca/eas

Problem 1

- a) Let G be an undirected graph with n vertices. If G is isomorphic to its own complement \overline{G} , how many edges must G have? (Such a graph is called *self-complementary*.)
- b) Find an example of a self-complementary graph on four vertices and one on five vertices.
- c) If G is a self-complementary graph on n vertices, where n > 1, prove that n = 4k or n = 4k + 1, for some $k \in \mathbb{Z}^+$.

Problem 2

- a) Find the number of edges in Q₈.
- b) Find the maximum distance between pairs of vertices in Q_8 . Give an example of one such pair that achieves this distance.
- c) Find the length of a longest path in Q₈.

Problem 3

For $n \in \mathbb{Z}^+$, how many distinct (though isomorphic) paths of length 2 are there in the n-dimensional hypercube Q_n ?

Problem 4

Prove that for each $n \in \mathbb{Z}^+$ there exists a loop-free connected undirected graph G = (V, E), where |V| = 2n and which has two vertices of degree i for every $1 \le i \le n$.

Problem 5

Let k be a fixed positive integer and let G = (V, E) be a loop-free undirected graph, where $\deg(v) \ge k$ for all $v \in V$. Prove that G contains a path of length k.

Problem 6

What is the length of a longest path in each of the following graphs?

- a) K_{1.4}
- b) K_{3,7}
- c) K_{7,12}
- d) $K_{m,n}$, where $m, n \in \mathbb{Z}^+$ with m < n.

Problem 7

- a) Find all the nonisomorphic complete bipartite graphs G = (V, E), where |V| = 6.
- b) How many nonisomorphic complete bipartite graphs G = (V, E) satisfy $|V| = n \ge 2$?

Problem 8

- a) Let G = (V, E) be a loop-free connected graph with $|V| \ge 11$. Prove that either G or its complement \overline{G} must be nonplanar.
- **b)** The result in part (a) is actually true for $|V| \ge 9$, but the proof for |V| = 9, 10, is much harder. Find a counterexample to part (a) for |V| = 8.

Problem 9

Can a bipartite graph contain a cycle of odd length? Explain.

Problem 10

Let G = (V, E) be a loop-free connected planar graph. If G is isomorphic to its dual and |V| = n, what is |E|?

Problem 11

If G = (V, E) is a connected graph with |E| = 17 and deg(v) > 2 for all vertices of graph G, what is the maximum value for |V|.

Problem 12

Prove that any subgraph of a bipartite graph is bipartite.

Problem 13

Let G = (V, E) be an undirected connected loop-free planar graph. Suppose G determines 53 regions. If, for some planar embedding of G, each region has at least five edges in its boundary, prove that |V| > 81.

Problem 14

(a) If graph G is self-complementary (see Problem 1) (i) determine |E| if |V| = n; (ii) Prove that G is connected. b) Let n = 4k or n = 4k + 1 for non-negative number k. Prove that there exist a self-complementary graph G = (V, E), where |V| = n.