

IN THE CLAIMS

Claim 1 (Currently Amended): A method for driving an LCD, comprising providing an LCD with a plurality of column lines (C), a plurality of scan lines (M), and a plurality of pixels and by driving the LCD by a multiple pixel inversion technique comprising:

providing a plurality of pixel matrices of $n \times m$ pixels in both the scan line and column line directions, where n and m are greater than 1;

applying signals of a same first polarity to every second pixel matrix in both the scan line and column line directions;

applying signals of a second polarity to the remaining pixel matrices; and

simultaneously inverting the polarities provided to said every second pixel matrix and said remaining pixel matrices,

~~a portion of an $n \times m$ pixel matrix where (n) is an integer from two to a number of scan lines and (m) is an integer from two to C - 1 number of column lines wherein to provide a reduced total fringe field effect to maintain contrast and a minimized flickering display is provided.~~

Claim 2 (Previously Presented): The method as defined in Claim 1, wherein multiple inversions are adjustable.

Claim 3 (Previously Presented): The method as defined in Claim 1, wherein said method is applied to one of an actively driven miniature TFT LCD and a reflective liquid crystal on silicon LCD.

Claim 4 (Cancelled)

Claim 5 (Currently Amended): The method as defined in ~~Claim 4~~Claim 1, wherein said plurality comprises $n = m =$ two.

Claim 6 (Previously Presented): The method as defined in Claim 1, wherein multiple pixel inversion is applied for two (or more) consecutive frames.

Claims 7-9 (Canceled)