(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-294957 (P2001-294957A)

(43)公開日 平成13年10月26日(2001.10.26)

(51) Int.Cl.7		識別記号		FΙ				<i>5</i> -	-マコード(参考	()
C 2 2 C	9/04			C 2	2 C	9/04				
C 2 2 F	1/08			C 2	2 F	1/08		В		
// C22F	1/00	6 0 4				1/00		604		
		630						630A		
								630K		
			審査請求	未請求	請求	項の数7	OL	(全 10 頁)	最終頁に	続く
(21)出願番号	•	特願2000-113520(P200	0-113520)	(71)	出願人	000224	798		-	
						同和鉱	業株式	会社		
(22)出願日		平成12年4月14日(2000.	. 4. 14)			東京都	千代田	区丸の内1丁	目8番2号	
				(72)	発明者	首 菅原	章			
						東京都	千代田	区丸の内1丁	目8番2号	同
						和鉱業				
				(72)	発明者		•			
						東京都	千代田	区丸の内1丁	目8番2号	同
						和鉱業	株式会	社内		
				(72)	発明者	好 凌 樂				
						東京都	千代田	区丸の内1丁	目8番2号	司
						和鉱業				
				(74)	代理人			·		
						弁理士	丸岡	政彦		
				1						

(54)【発明の名称】 コネクタ用銅合金およびその製造法

(57)【要約】

【課題】 コストが易く、強度が高く、導電率に優れブレス性にも良好なコネクタ用銅合金とその製造方法を提供する。

【解決手段】 銅合金を Z n を 2 3 ~ 2 8 wt %、 S n を 0.3 ~ 1.8 wt % 含有し、かつ次式を満たす基本組成の C u - Z n - S n とする。

6. 0≤0. 25X+Y≤8. 5 (ただし、XはZnwt%、YはSnwt%)

鋳造時、液相線温度~600℃の温度域を50℃/min 以上の冷却速度で冷却した後、900℃以下の温度で熱 間圧延し、その後冷間圧延と焼鈍(300~650℃) を繰り返して結晶粒径の制御を行い、0.2%耐力が6 00kN/mm²以上、引張り強さが650N/mm²以上、導 電率が20%IACS以上、ヤング率120N/mm²以 下、応力緩和率が20%以下の圧延条を得る。

【特許請求の範囲】

【請求項1】 Zn:23~28wt%、Sn:0.3~ 1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金であって、

6. 0 ≤ 0. 2 5 X + Y ≤ 8. 5 (1) ただし、X: Z n の含有量 (wt%)、Y: S n の含有量 (wt%)

0. 2%耐力が600N/mm²以上、引張強さが650N/mm²以上、導電率が20%IACS以上、ヤング率が120kN/mm²以下および応力緩和率が20%以下であることを特徴とするコネクタ用銅合金。

【請求項2】 Zn:23~28wt%、Sn:0.3~ 1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金であって、

6.0≤0.25X+Y≤8.5 (1) ただし、X:Znの含有量(wt%)、Y:Snの含有量 (wt%)

展伸方向の0.2%耐力が600N/mm²以上、引張強さが650N/mm²以上、ヤング率が120kN/mm²以下、導電率が20%IACS以上および応力緩和率が20%以下で、展伸方向と直角方向の0.2%耐力が650N/mm²以上、引張強さが700N/mm²以上およびヤング率が130kN/mm²以下であることを特徴とするコネクタ用銅合金。

【請求項3】 前記銅合金が、さらに、Fe:0.01~3wt%、Ni:0.01~5wt%、Co:0.01~3wt%、Ti:0.01~3wt%、Mg:0.01~2wt%、Zr:0.01~2wt%、Ca:0.01~1wt 30%、Si:0.01~3wt%、Mn:0.01~5wt%、Cd:0.01~3wt%、Al:0.01~5wt%、Pb:0.01~3wt%、Bi:0.01~3wt%、Be:0.01~3wt%、Cr:0.01~3wt%、Ce:0.01~3wt%、Cr:0.01~3wt%、Ce:0.01~3wt%、Au:0.01~5wt%、Ag:0.01~5wt%、P:0.005~0.5wt%、Ag:0.01~5wt%、P:0.005~0.5wt%のうち少なくとも1種以上の元素を含み、その総量が0.01~5wt%であり、かつ、Sが30ppm以下であることを特徴とする請求項1また 40は2に記載のコネクタ用銅合金。

【請求項4】 Zn:23~28wt%、Sn:0.3~ 1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金を溶解鋳造するに際し、

6. 0≦0. 25X+Y≦8. 5 (1) ただし X・7 nの添加量 (wt%) V・S nの添加

ただし、X:Znの添加量(wt%)、Y:Snの添加量(wt%)

液相線温度から 600 でまでの温度域を 50 で 0 min以 0 S が 0 ppm以下であることを特徴とする請求項 0 上の冷却速度で冷却し、得られた鋳塊を引き続き 0 のいずれかに記載のコネクタ用銅合金の製造方法。

℃以下の加熱温度で熱間圧延を行うことを特徴とするコネクタ用銅合金の製造方法。

【請求項5】 Zn:23~28wt%、Sn:0.3~ 1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金を溶解鋳造するに際し、

6. 0 ≤ 0. 2 5 X + Y ≤ 8. 5 (1) ただし、X: Z n の添加量 (wt%)、Y: S n の添加量

液相線温度から600%℃までの温度域を50℃/min以上の冷却速度で冷却し、得られた鋳塊を引き続き900℃以下の加熱温度で熱間圧延した後、冷間圧延と300~650℃の温度域での焼鈍を繰り返し、焼鈍後の圧延条の結晶粒径を25μm以下とすることを特徴とするコネクタ用銅合金の製造方法。

【請求項6】 Zn:23~28wt%、Sn:0.3~ 1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金を溶解鋳造するに際し、

20 6.0≤0.25X+Y≤8.5 (1) ただし、X:Znの添加量(wt%)、Y:Snの添加量 (wt%)

液相線温度から600℃までの温度域を50℃/min以上の冷却速度で冷却し、得られた鋳塊を900℃以下の加熱温度で熱間圧延した後、冷間圧延と300~650℃の温度域での焼鈍を繰り返し、焼鈍後の圧延条の結晶粒径を25μm以下とし、さらに30%以上の加工率と450℃以下の低温焼鈍を行うことによって、展伸方向の2.2%耐力が600N/mm²以上、引張強さが650N/mm²以上、ヤング率が120kN/mm²以下、導電率が20%IACS以上および応力緩和率が20%以下で、展伸方向と直角方向の0.2%耐力が650N/mm²以上、引張強さが700N/mm²以上およびヤング率が130kN/mm²以下である圧延条を得ることを特徴とするコネクタ用銅合金の製造方法。

【請求項7】 前記銅合金が、さらに、Fe:0.01~3wt%、Ni:0.01~5wt%、Co:0.01~2wt%、Ti:0.01~3wt%、Mg:0.01~2wt%、Zr:0.01~3wt%、Mn:0.01~5wt%、Si:0.01~3wt%、Mn:0.01~5wt%、Cd:0.01~3wt%、Al:0.01~5wt%、Pb:0.01~3wt%、Bi:0.01~3wt%、Be:0.01~3wt%、Te:0.01~1wt%、Y:0.01~3wt%、Ce:0.01~3wt%、Cr:0.01~3wt%、Ce:0.01~3wt%、Au:0.01~5wt%、Ag:0.01~3wt%、Au:0.01~5wt%、Ag:0.01~5wt%、P:0.005~0.5wt%のうち少なくとも1種以上の元素を含み、その総量が0.01~5wt%であり、かつ、Sが30ppm以下であることを特徴とする請求項4~6のいずれかに記載のコネクタ用銅合金の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コネクタ等の電気・電子部品用材料として好適な強度・導電性・耐応力緩和特性等を有し、さらにヤング率の小さい銅合金およびその製造法に関するものである。

3

[0002]

【従来の技術】近年のエレクトロニクスの発達により、種々の機械の電気配線は複雑化、高集積化が進み、それに伴いコネクタ等の電気・電子部品用材として使用される伸銅品材料が増加している。また、コネクタ等の電気・電子部品用材は、軽量化、高信頼性、低コスト化が要求されている。よって、これらの要求を満たすために、コネクタ用銅合金材料は薄肉化され、また複雑な形状にプレスされるため、強度、弾性、導電性及びプレス成形性が良好でなければならない。

【0003】具体的には、端子において、挿抜時や曲げに対して座屈や変形しない強度、電線のかしめ、嵌合保持に対する強度として、0.2%耐力は600N/mm²以上、好ましくは700N/mm²以上、更に好ましくは700N/mm²以上が要求され、引張強さは650N/mm²以上、好ましくは750N/mm²以上、要に好ましくは750N/mm²以上が要求されている。また、端子をプレスする際に連鎖方向の関係から、圧延等の展伸方向に直角方向の強度が要求され、したがって直角方向の強度において、0.2%耐力は650N/mm²以上、好ましくは700N/mm²以上、更に好ましくは750N/mm²以上が要求されており、引張強さは700N/mm²以上、好ましくは750N/mm²以上、更に好ましくは800N/mm²以上が要求されている。

【0004】さらに、通電によるジュール熱発生を抑え るため導電率としては、20%IACS以上が好まし い。またさらに、従来は、コネクタが小型化され、小さ い変位で大きな応力が得られるように材料のヤング率が 大きいことが求められており、端子自身の寸法精度が厳 しくなり、金型技術やプレスの操業管理、または材料の 板厚や残留応力のバラツキ等、管理基準が厳しくなり、 逆にコストアップを招く状況になっていた。そのため、 最近ではヤング率の小さい材料を用い、ばねの変位を大 きくとる構造とし、寸法のばらつきを許容できる設計が 求められるようになってきている。したがって、ヤング 率としては展伸方向においては120kN/mm2以下、好 ましくは115kN/mm2以下、直角方向においては13 OkN/mm²以下、好ましくは125kN/mm²以下、さらに 好ましくは120kN/mm²以下であることが求められて きている。

【0005】上記の状況に加え、金型のメンテナンスの 頻度もコストに占める割合が大きい点も問題になってき ている。金型のメンテナンスの大きな要因として、金型 工具の摩耗があげられる。すなわち、素材に打ち抜きや 曲げ等プレス加工を施す際に、パンチ、ダイス、ストリッパー等の金型工具が摩耗することにより、加工材のバリ発生や寸法不良をもたらすようになる。また、同時に、素材自身の摩耗に与える影響も無視できず、金型摩耗性に対する加工材料側の改善要求も高くなってきている。

【0006】さらに、コネクタとしては、耐食性、耐応力腐食割れ性に優れていることが必要であり、またメス端子に至っては、熱的負荷が加わることから、耐応力緩和特性にも優れていなければならない。具体的には、応力腐食割れ寿命は従来の黄銅一種の3倍以上に、また、150℃における応力緩和率は黄銅一種の半分以下に、すなわち、応力緩和率としては25%以下、好ましくは20%以下、さらに好ましくは15%以下であることが求められている。

【0007】従来、コネクタ材としては、黄銅やりん青銅等が一般的に使用されていた。このうち、黄銅は低コストな材料として使用されているが、耐力及び引張強さは質別がH08(spring)でも570N/mm²及び640N/mm²程度であり、前記した600N/mm²以上の耐力および650N/mm²以上の引張強さという要求を満足できず、さらに、黄銅は耐食性、耐応力腐食割れ性、耐応力緩和特性で劣っている。また、りん青銅については、このような強度、耐食性、耐応力腐食割れ性、耐応力緩和特性のバランスに優れているものの、導電率は、例えばばね用りん青銅で12%IACSと小さく、かつコスト的にも不利になっている。

【0008】このため、多くの銅合金が研究、開発され 提案されている。提案された多くの銅合金は、銅に微量 30 な添加元素を加え、強度、導電率、耐応力緩和特性等の 特性をバランスさせるようにしたものであるが、ヤング 率については展伸方向でも120~135KN/mm²、直 角方向では125~145kN/mm²と大きな値を示すも のであり、またコストも高いものであった。

【0009】このような状況において、黄銅、りん青銅共にヤング率は、展伸方向が110~120kN/mm²、直角方向が115~130kN/mm²であり、小さいヤング率が前記した設計の要求に合致することから、最近またこれらの材料が見直されるようになってきている。すなわち、黄銅に近い価格で、展伸方向の0.2%耐力が600N/mm²以上、引張強さが650N/mm²以上、ヤング率が120kN/mm²以下、導電率が20%IACS以上および応力緩和率が20%以下であり、展伸方向と直角方向において0.2%耐力が650N/mm²以上、引張強さが700N/mm²以上およびヤング率が130kN/mm²以下である材料が切に望まれるようになってきている

【0010】また、コネクタ用の材料はSnめっきされる機会が多くなり、合金にSnを含んでいる方が原料として利用価値が高くなり、さらに黄銅に代表されるよう

50

5

にZnを含むと強度、加工性、コストのバランスに優れる合金が得られ易い。このような見地からCu-Zn-Sn合金は注目に値する合金系といえる。Cu-Zn-Sn合金としては、CDA(Copper Development Association:米国)規格のC40000番台の銅合金が知られている。

【0011】例えば、C42500はCu-9.52n-2.0Sn-0.2P合金であり、コネクタ用の材料として良く知られている。C43400はCu-142n-0.7Sn合金であり、スイッチ、リレー、端子用 10として少量であるが用いられている。しかしながら、これより2n量の多いCu-2n-Sn合金については、コネクタ用の材料としてほとんど用いられていない。すなわち、Zn量とSn量が増すと熱間加工性が低下し、かつ、加工熱処理を制御しないとコネクタ材に必要な機械的特性をはじめとした各種特性が発現できないという問題があり、また適切なZn量、Sn量とその製造条件が知られていなかったという事情もあった。

【0012】具体的には、C42500よりZn量の多 い銅合金として、C43500 (Cu-18Zn-0. 9 S n) やC 4 4 5 0 0 (C u - 2 8 Z n - 1 S n -0.05P), C46700 (Cu-39Zn-0.8Sn-0. 05P) 等が挙げられるが、楽器用、船舶 用、雑貨品等の用途としての板、棒、管等の製品がある だけであり、コネクタ用の展伸材料とくに条材としては 利用されていない。またこれらの材料としても、展伸方 向の0.2%耐力が600N/mm²以上、引張強さが65 0 N/mm² 以上、ヤング率が1 2 0 kN/mm² 以下、導電率 が20%IACS以上 、応力緩和率が20%以下、展 伸方向と直角方向の0.2%耐力が650N/mm²以上、 引張強さが700N/mm²以上、ヤング率が130kN/mm 2以下であると共に、良好なプレス性、耐応力腐食割れ 性等のコネクタ材に必要な特性を全て満たすことができ ない状況にある。

[0013]

【発明が解決しようとする課題】上記の状況に鑑み、本発明の課題とするところは、エレクトロニクスの発達に伴い、コネクタ等の電気・電子部品用材料に要求される上記のような諸特性を同時に満足できる銅合金、すなわちコストが安く、0.2%耐力、引張強さ、導電率、ヤ 40ング率、耐応力緩和特性、プレス性等の特性に優れたコネクタ用銅合金とその製造法の提供にある。

[0014]

【課題を解決するための手段】本発明者等は、上記の課題を解決するべく鋭意研究の結果、このようなコネクタ等の電気・電子部品用材料に要求される上記の諸特性を同時に満足できる銅合金としてCu-Zn-Sn合金を追及することにより、該銅合金におけるZnおよびSnの最適な組成条件を見出すと共に、上記の諸特性を具現するには、さらに鋳塊の冷却条件や鋳塊の圧延加工条件 50

と熱処理条件の関連が極めて重要であることを見出し、 その最適処理条件を設定することにより、本発明を提供 するに至ったものである。

【0015】すなわち、本発明は、第1に、Zn:23~28wt%、Sn:0.3~1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金であって、

6. 0≦0. 25X+Y≦8. 5 (1) ただし X・7 nの添加量 (wt%) V * S nの添加

ただし、X:Znの添加量(wt%)、Y:Snの添加量(wt%)

0. 2 %耐力が 6 0 0 N/mm² 以上、引張強さが 6 5 0 N/mm² 以上、導電率が 2 0 % I A C S 以上、ヤング率が 1 2 0 k N/mm² 以下および応力緩和率が 2 0 %以下であることを特徴とするコネクタ用銅合金であり、第 2 に、 2 n: 2 3 ~ 2 8 wt %、 S n: 0. 3 ~ 1. 8 wt %の範囲で、かつ次式(1)を満たしてなる Z n、 S n を含み、残部が C u および不可避的不純物からなる銅合金であって、

6. 0 ≤ 0. 2 5 X + Y ≤ 8. 5 (1) ただし、X:Z n の添加量 (wt%)、Y:S n の添加量 (wt%)

展伸方向の0.2%耐力が600N/mm²以上、引張強さ が650N/mm²以上、ヤング率が120kN/mm²以下、 導電率が20%IACS以上および応力緩和率が20% 以下で、展伸方向と直角方向の0.2%耐力が650N/ mm² 以上、引張強さが 7 0 0 N/mm² 以上、およびヤン グ率が130kN/mm²以下であることを特徴とする コネ クタ用銅合金であり、第3に、前記銅合金が、さらに、 Fe: 0. $01 \sim 3$ wt%, Ni: 0. $01 \sim 5$ wt%, C 0:0.01-3 wt%, Ti:0.01-3 wt%, M $g: 0. 01 \sim 2 \text{ wt }\%, Zr: 0. 01 \sim 2 \text{ wt }\%, C$ a: 0. 01~1wt%, Si: 0. 01~3wt%, M n:0.01-5wt%, Cd:0.01-3wt%, A $1:0.01\sim5$ wt%, Pb:0.01~3 wt%, B i: 0. 01~3wt%, Be: 0. 01~3wt%, T e: 0. 01~1wt%, Y: 0. 01~3wt%, La: 0. 01~3wt%, Cr: 0. 01~3wt%, Ce: 0. 01~3wt%, Au: 0. 01~5wt%, Ag: 0. 01~5wt%、P:0. 005~0. 5wt%のうち・ 少なくとも1種以上の元素を含み、その総量が0.01 ~5wt%であり、かつ、Sが30ppm以下であることを 特徴とする前記第1または前記第 2に記載のコネクタ 用銅合金である。また、本発明は、第4に、2n:23 ~28wt%、Sn:0.3~1.8wt%の範囲で、かつ 次式(1)を満たしてなる Zn、Snを含み、残部が C u および不可避的不純物からなる銅合金を溶解鋳造する に際し、

6. 0 ≤ 0. 2 5 X + Y ≤ 8. 5 (1) ただし、X: Z n の添加量 (wt%)、Y: S n の添加量 (wt%) 7

液相線温度から600℃まで温度域を50℃/min以上の冷却速度で冷却し、得られた鋳塊を引き続き900℃以下の加熱温度で熱間圧延を行うことを特徴とするコネクタ用銅合金の製造方法であり、第5に、Zn:23~28wt%、Sn:0.3~1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金を溶解鋳造するに際し、

6. 0 ≤ 0. 2 5 X + Y ≤ 8. 5 (1) ただし、X: Z n の添加量 (wt%)、Y: S n の添加量 10 (wt%)

液相線温度から600℃まで温度域を50℃/min 以上の冷却速度で冷却し、得られた鋳塊を引き続き、900℃以下の加熱温度で熱間圧延した後、冷間圧延と300~650℃の温度域での焼鈍を繰り返し、焼鈍後の圧延条の結晶粒径を25μm以下とすることを特徴とするコネクタ用銅合金の製造方法であり、第6に、Zn:23~28wt%、Sn:0.3~1.8wt%の範囲で、かつ次式(1)を満たしてなるZn、Snを含み、残部がCuおよび不可避的不純物からなる銅合金を溶解鋳造する 20に際し、

6. 0≤0. 25X+Y≤8. 5 (1)ただし、X: Znの添加量(wt%)、Y: Snの添加量(wt%)

液相線温度から600℃まで温度域を50℃/min以上 の冷却速度で冷却し、得られた鋳塊を引き続き900℃ 以下の加熱温度で熱間圧延した後、冷間圧延と300~ 650℃の温度域での焼鈍を繰り返し、焼鈍後の圧延条 の結晶粒径を25 μm以下とし、さらに30%以上の加 工率と450℃以下の低温焼鈍を行うことによって、展 30 伸方向の0.2%耐力が600N/mm²以上、引張強さが 6 5 0 N/mm² 以上、ヤング率が 1 2 0 kN/mm² 以下、導 電率が20%IACS以上および応力緩和率が20%以 下で、展伸方向と直角方向の0.2%耐力が650N/mm 2以上、引張強さが700N/mm²以上およびヤング率が 130kN/mm²以下である圧延条を得ることを特徴とす るコネクタ用銅合金の製造方法であり、第7に、前記銅 合金が、さらに、Fe: 0. 01~3wt%、Ni: 0. $0.1 \sim 5$ wt%, Co: 0. $0.1 \sim 3$ wt%, Ti: 0. 0 $1 \sim 3 \text{ wt \%}$, Mg: 0. $0.1 \sim 2 \text{ wt \%}$, Zr: 0. 0.1~2wt%, Ca: 0. 01~1wt%, Si: 0. 01~ 3 wt %, Mn: 0. $0.1 \sim 5 \text{ wt \%}$, Cd: 0. $0.1 \sim 3$ wt%, A1:0. $01 \sim 5$ wt%, Pb:0. $01 \sim 3$ wt %, Bi: 0. $01 \sim 3$ wt%, Be: 0. $01 \sim 3$ wt %, Te: 0. 01~1wt%, Y: 0. 01~3wt%, La: 0. 01~3wt%, Cr: 0. 01~3wt%, C $e: 0. 01 \sim 3 \text{ wt \%}, Au: 0. 01 \sim 5 \text{ wt \%}, A$ $g: 0. 01 \sim 5 wt\%, P: 0. 005 \sim 0. 5 wt\%$ うち少なくとも1種以上の元素を含み、その総量が0. 01~5wt%であり、かつ、Sが30ppm以下であるこ

とを 特徴とする前記第1~第6のいずれかに記載のコネクタ用銅合金の製造方法である。

[0016]

【発明の実施の形態】所要組成に配合した銅合金溶湯を 鋳型に注入して鋳塊を得るに際し、鋳型内において鋳塊 を液相線温度から600℃までの温度域を50℃/min 以上の冷却速度で冷却することにより、鋳塊における乙 nとSnの偏析を防止する。得られた鋳塊を900℃以 下、例えば800℃程度に加熱して熱間圧延を行って、 急冷することにより結晶粒径を抑えた均質な組織を持つ 熱間圧延条を得ることができる。次いで、この熱間圧延 条を冷間圧延した後、300~650℃の温度で焼鈍 し、また必要に応じてこの冷間圧延と焼鈍を繰り返し て、圧延条の結晶粒径を25μm以下とする。好ましく はまたさらに、この圧延条について加工率30%以上の 冷間圧延を行うと共に、450℃以下の低温焼鈍を行っ て結晶粒径を制御することにより、展伸方向の0.2% 耐力が600N/mm²以上、引張強さが650N/mm²、導 電率が20%IACS以上、ヤング率が120kN/mm² 以下、応力緩和率が20%以下で、展伸方向と直角方向 の0.2%耐力が650N/mm2以上、引張強さが700 N/mm²以上、ヤング率が130kN/mm²以下の銅合金圧 延条を得ること ができる。

【0017】以下、本発明の内容をさらに具体的に説明 する。

[本発明銅合金における成分量限定理由]

Zn: Znを添加することにより、強度、ばね性が向上し、かつCuより安価であるため多量に添加することが望ましいが、28wt%を超えるとSnとの共存下で粒界偏析が激しくなり熱間加工性が著しく低下する。また、冷間加工性、耐食性、耐応力腐食割れ性も低下する。さらに湿気や加熱によるめっき性、はんだ付け性についても低下する。また、23wt%より少ないと0.2%耐力や引張強さなどの強度・ばね性が不足し、ヤング率が付きくなり、さらにSnを表面処理したスクラップを原料とした場合、溶解時の水素ガス吸蔵が多くなり、インゴットのプローホールが発生しやすくなる。また、安価なフェが少なく経済的にも不利になる。したがって、Znは、23~28wt%の範囲であれば良い。更に好ましい範囲としては、24~27wt%である。Zn量はこのように狭い範囲で規定する必要がある。

【0018】Sn:Snは微量でヤング率を大きくすることなく0.2%耐力や引張強さなどの強度・弾性をはじめとした機械的特性を向上させる効果がある。また、Snは高価であり、Snめっき等のSnを表面処理した材料を再利用できる点からも添加元素としてSnを含有させるのが好ましい。しかし、Sn含有量が増すと導電率が急激に低下し、またZnとの共存下で粒界偏析が激しくなり熱間加工性が著しく低下する。熱間加工性と200%IACS以上の導電率を確保するためには、1.8

(6)

10

wt%を超えない範囲でなければならない。また、0.3 wt%より少ないと機械的特性の向上が望めず、Snめっ き等を施したプレスくず等が原料として利用しにくくな る。したがって、Snは、0.3~1.8wt%の範囲が 好ましく、さらに好ましい範囲は、0.6~1.4wt%

【0019】また、以上のようにして限定された成分で かつ下記式(1)、さらに好ましくは下記式(2)を満 たす範囲であれば、鋳造や熱間圧延等の高温時に粒界に 析出するZn、Snリッチ相を制御でき、展伸方向の 0. 2%耐力が600N/mm²以上、引張強さが650N/ mm²以上、ヤング率が120kN/mm²以下、導電率が2 0% IACS以上および応力緩和率が20%以下であ り、展伸方向と直角方向の0.2%耐力が650N/mm² 以上、引張強さが700N/mm²以上およびヤング率が1 30kN/mm²以下、さらにコネクタ材として必要な諸特 性、具体的には耐食性、耐応力腐食割れ性(アンモニア 蒸気中での割れ寿命が黄銅一種の3倍以上)、耐応力緩 和特性(150℃における緩和率が黄銅一種の半分以 下、りん青銅並)、プレス打ち抜き性等を満足する銅合 20 金を作成できる。

6.
$$0 \le 0$$
. $25X + Y \le 8$. 5 (1)

6.
$$4 \le 0$$
. $25X+Y \le 8$. 0 (2)

ただし、X: Znの含有量(wt%)、Y: Snの含有量 (wt%) 。

【0020】また、不純物のうちSはできるだけ少ない 方が望ましい。Sは少量の含有でも、熱間圧延における 変形能を著しく低下させる。特に、硫酸浴でSnめっき されたくずを使用した場合やプレス等の油からSが取り 込まれるが、この値を規制することにより、熱間圧延で 30 の割れ防止につなげることができる。このような効果を 発現するには、Sは30ppm以下、好ましくは15ppm以 下が必要である。

【0021】さらに、第3添加元素として、Fe:0. $0.1 \sim 3 \text{ wt \%}$, N i : 0. $0.1 \sim 5 \text{ wt \%}$, C o : 0. 0 $1 \sim 3$ wt%, T i : 0. $0.1 \sim 3$ wt%, Mg: 0. 0.1 $\sim 2 \text{ wt \%}, \text{ Z r} : 0. 01 \sim 2 \text{ wt \%}, \text{ Ca} : 0. 01 \sim$ 1 wt %, S i : 0. $0.1 \sim 3 \text{ wt \%}$, Mn : 0. $0.1 \sim 5$ wt%, Cd: 0. $01 \sim 3$ wt%, Al: 0. $01 \sim 5$ wt %, Pb: 0. $0.1 \sim 3$ wt%, Bi: 0. $0.1 \sim 3$ wt %, Be: 0. $0.1 \sim 3$ wt%, Te: 0. $0.1 \sim 1$ wt %, Y: 0. $0.1 \sim 3$ wt%, La: 0. $0.1 \sim 3$ wt%, $Cr: 0. 01 \sim 3 wt\%$, $Ce: 0. 01 \sim 3 wt\%$, A $u: 0. 01 \sim 5 wt\%$, Ag: 0. $01 \sim 5 wt\%$, P: 0. 005~0. 5wt%のうち少なくとも1種以上の元 素を含み、その総量が0.01~5wt%を含んでもよ い。これらは、導電率、ヤング率や成形加工性を大きく 損なうことなく、強度を向上させることができる。ま た、各元素の含有範囲からはずれると所望とする効果が 得られないか、もしくは、熱間加工性、冷間加工性、プ 50

レス性、導電率、ヤング率、コスト面等で不利となる。 【0022】 [本発明法による製造条件限定理由] まず 最初に本発明合金を溶解鋳造する。原料を溶解するに際 し、Snを表面処理してある端材を原料とする場合、特 に、プレス打ち抜きくずを原料とする場合は、300~ 600℃の温度で0.5~24hr、大気中または不活性 雰囲気中で熱処理した後に溶解した方が好ましい。30 0℃未満の温度では、プレスくずに付着したプレス油の 燃焼が不十分であり、また保管中に吸着した水分の乾燥 が不十分であり、この後急激に温度を上昇させ溶解作業 に入ると、分解により生成した水素を溶湯中に吸収し、 プローホールを発生する原因となる。

【0023】また、溶解温度が600℃を超える温度で は、酸化が急激に進みドロス発生の原因となる。このド ロスは溶湯の粘性を高め、鋳造性を低下させる。したが って、溶解前の原料熱処理温度は300~600℃の範 囲とする。0.5hr未満の時間では、プレス油の燃焼や 水分の乾燥が十分でなく、24hrを超える時間では母材 のCuがSn表面処理層に拡散し酸化し、Cu-Sn-O系の酸化物を形成しドロスの原因となり、また経済的 でもない。したがって熱処理時間は0.5~24hrの範 囲とする。また、雰囲気は大気中で十分であるが、不活 性ガスでシールした方が酸化防止の面から好ましい。た だし、還元ガス中では高温になると水分の分解による水 素の吸収、拡散があって不利になる。

【0024】原料溶解後の鋳造は連続鋳造によるのが望 ましい。連続鋳造は、縦型、横型等どちらでも構わな い。ただし、液相線温度から600℃まで温度域を50 ℃/min以上の冷却速度で冷却する。冷却速度が50℃ /min未満では粒界に Zn、Snの偏析が生じ、その後 の熱間加工性を悪化させ、歩留りの低下を引き起こす。 冷却速度を規定する温度域は、液相線温度から600℃ まででよい。液相線以上の温度域を規定しても効果がな く、600℃以下では鋳造時の冷却過程の時間程度では 粒界への2n、Snの過度な偏析を生じない。

【0025】溶解鋳造後、熱間圧延を行う。熱間圧延の 加熱温度は900℃以下とする。900℃を超える温度 では、Zn、Snの粒界への偏析による熱間割れが生 じ、歩留りが低下する。900℃以下の温度で熱間圧延 40 することにより、鋳造時のミクロな偏析及び鋳造組織が 消失し、本発明合金の組成の2n量、Sn量を含んで も、組織的に均質な圧延条を得ることができる。さらに 熱間圧延温度は870℃以下であるとなお好ましい。熱 間圧延後の結晶粒径は35 μm以下とすることが望まし い。35μmを越えるとその後の冷間加工率、焼鈍条件 の管理幅が狭く、少しでも逸脱すると結晶粒が混粒にな りやすく、特性が劣化する。

【0026】熱間圧延後、必要によっては表面を面削す る。その後、冷間圧延と300~650℃の温度域での 焼鈍を繰り返し、焼鈍後の結晶粒径を25μm以下とす

る。 300 で未満の温度では結晶粒の制御に要する時間が長くなり不経済であり、650 でを越えると短時間で結晶粒が粗大化する。焼鈍後の結晶粒径が 25μ mを越えると、特に0.2% 耐力等機械的特性、あるいは加工性が低下する。好ましくは結晶粒径を 15μ m以下、さらに好ましくは 10μ m以下とする。

11

【0027】このようにして得られた焼鈍材を、30% 以上の加工率による冷間圧延と450℃以下の低温焼鈍 によって、展伸方向の0.2%耐力が600N/mm²以 上、引張強さが650N/mm²以上、ヤング率が120kN 10 /mm² 以下、導電率が 2 0 % I A C S 以上および応力緩 和率が20%以下であって、展伸方向と直角方向の0. 2%耐力が650N/mm²以上、引張強さが700N/mm² 以上およびヤング率が130kN/mm²以下である銅合金 とすることができる。冷間加工率が30%未満では加工 硬化による強度向上が不十分であり、機械的特性の向上 が不十分である。さらに加工率は好ましくは60%以上 とする。低温焼鈍は、さらに0.2%耐力、引張強さ、 ばね限界値および耐応力緩和特性を向上させるために必 要である。450℃を越える温度では、与える熱容量が 20 大きすぎ短時間で軟化する。また、バッチ式、連続式共 にワーク内での特性ばらつきが発生しやすくなる。すな わち低温焼鈍の条件を450℃以下とする。

【0028】このようにして得られた材料は、場合によ っては、表面処理層として0.3~2.0μmのCu下 地膜と0.5~5.0μmのSn表面膜を施して用い る。Cu下地膜はO.3μm未満では、合金中のZnが 表面処理層および表面に拡散し酸化することによる接触 抵抗の増加やはんだ付け性の低下を防止する効果が少な く、2.0μmを超えても効果が飽和しまた経済的でも なくなる。ただし、Cu下地膜は、純Cuに限らず、C u-FeやCu-Ni等の銅合金でもよい。Sn表面膜 は、0.5 μm未満では耐食性、特に耐硫化水素性が不 十分であり、また、5.0μmを超えても効果が飽和し 経済的にも不利となる。さらに、これらの表面処理は電 気めっきによって実施すれば、膜厚の均一性、経済性の 面から好ましい。表面処理後に光沢をだすためにリフロ -処理を施してもよい。この処理はさらにSnウイスカ の抑止策としても有効である。

応力緩和率 (%) = [(L1-L2)/(L1-L0)]×100

3)

だだし LO:治具の長さ (mm)

L1:開始時の試料長さ (mm)

L2:処理後の試料端間の水平距離 (mm)

応力腐食割れ試験は、0.2%耐力の80%にあたる曲 げ応力を加え、12.5%のアンモニア水を入れたデシ ケータ内に暴露保持した。暴露時間は、10分単位とし 150分まで試験した。各時間試験片を暴露後、取り出 し、必要によっては皮膜を酸洗除去し、光学顕微鏡で1 00倍の倍率で割れを観察した。そして割れを確認した 50

*【0029】このようにして得られた材料を端子にプレスした後に、100~280℃の温度で1~180minの熱処理をしてもよい。この熱処理によって、プレス加工によって低下したばね限界値、耐応力緩和特性が改善され、さらにウイスカ対策が実現できる。100℃未満の温度ではこのような効果が十分でなく、280℃を超えると拡散や酸化により、接触抵抗、はんだ付け性および加工性が低下する。また、熱処理時間が1min未満では効果が十分でなく、180minを超えると拡散や酸化による前述の特性低下が起こりまた経済的でもない。

[0030]

【実施例】 [実施例1] 表1に組成(wt%)を示す鍋合 金No. 1~6を液相線温度より70℃高い温度で溶解 後、縦型の小型連続鋳造機を用いて、30×70×10 00 (mm) の鋳塊に鋳造した。冷却については、鋳型に よる一次冷却と水シャワーによる二次冷却を調整するこ とにより、液相線から600℃までの冷却速度は50℃ /minを大きく上回るようにした。その後、各鋳塊を8 00~840℃に加熱後、厚さ5mmまで熱間圧延し、表 面やエッヂの割れにて熱間加工性を評価した。酸洗後5 0倍の光学顕微鏡で割れが全く確認されないものを○、 確認されたものを×とした。さらに、熱間圧延の終了温 度を約600℃とし、急冷によって結晶粒径を熱延上が りで約30μmに制御した。次いで、冷間圧延によって 厚さ1mmまで圧延し、450~520℃の温度で熱処理 し、結晶粒径が約10 μmになるように調整した。酸洗 後に、厚さ0.25mmまで冷間圧延し、最終工程で23 0℃の低温焼鈍を施した。

【0031】以上のようにして得られた条材から試験片を採取し、0.2%耐力、引張強さ、ヤング率、導電率、応力緩和率及び応力腐食割れ寿命の測定を行った。0.2%耐力、引張強さ、ヤング率の測定はJIS-Z-2241の試験方法、導電率はJIS-H-0505の測定方法に従った。ただし、圧延方向と直角方向の0.2%耐力、引張強さ、ヤング率は、試験片長さ70mmの小型の試験片を用いた。応力緩和試験は、試料表面に0.2%耐力の80%にあたる曲げ応力を加え、150℃、500時間保持し、曲げぐせを測定した。応力緩和率は次式(3)によって計算した。

10分前の時間を応力腐食割れ寿命とした。得られた測定結果を表1に示した。

【0032】 [比較例1] 表1に組成を示す本発明の規定範囲外組成の銅合金を比較合金No.7~11として、実施例1の場合と同様の条件で鋳造し、加工して条材を得た。この条材から試験片を採取し、実施例1と同様に機械的性質や導電率等を測定した。得られた結果を表1に併記した。

50 [0033]

【表1】

	合金		銅合	金組成(wt%)		0.2%耐力 (N/mm²)	引張強さ (N/mm²)	ヤング率 (kN/mm²)	導電率	熱間	応力 緩和	応力 腐食
	種類 No.	Zn	Sn	1式 の値	他	S (ppm)	丘延方向 直角方向	任延方向 直角方向	庄延方向 直角方向	(% IACS)	加工 性	率 (%)	割れ 寿命 (min)
	1	24.7	0.84	7.0	-	13	755 822	812 932	108 117	24.9	0	12.6	120
寒	2	26.1	0.71	7.2	_	12	756 829	818 930	109 118	25.3	0	10.8	110
施	3	25.0	0.91	7.2	Ni 0.18	12	763 840	831 951	110 118	22.9	0	10.8	120
例	4	25.4	0.69	7.0	Fe0.12 Cr0.07	12	731 819	811 930	107 118	26.1	0	12.0	110
1	5	24.2	1.10	7.2	SiO.19 TiO.05	12	770 838	835 950	106 117	22.2	0	12.5	110
	6	23.6	0.91	6.8	A10.29 Mn0.31	14	750 818	811 916	108 117	23.8	0	12.1	110
比	7	24.5	0.19	6.3	-	13	673 699	714 802	118 124	26.9	0	16.9	100
較較	8	27.5	1.72	8.6	_	12	771 860	840 955	109 117	21.5	×	12.1	110
例	9	21.1	0.44	5.7	_	13	671 713	725 822	108 119	27.4	0	20.1	120
1	10	27.5	1.18	8.1	_	41	_		_	_	×	_	_
	11	30.2	0.22	7.8	Ni0.13	14	682 711	741 828	109 119	24.4	.0	22.7	40

【0034】表1に示した結果から、本発明に係るNo. 1~6の銅合金は、熱間加工性に優れ、製造面でも有利 であり、かつ0.2%耐力、引張強さ、ヤング率、導電 率のバランスに優れ、また、耐応力緩和特性、耐応力腐 食割れ性も良好であった。したがって、コネクタ等の電 気・電子用材料として極めて優れた特性を有する銅合金 が得られた。

【0035】これに対して、Sn含有量が少ない比較合 30 金No.7及びZn含有量が少ない比較合金No.9は、0.2%耐力、引張強さ、耐応力緩和特性に劣っていた。また、No.7はヤング率も劣っていた。Zn、Sn含有量が範囲内であっても前記式(1)で規定する値より大きいNo.8は、熱間加工性に劣っており、歩留り低下によるコストアップの問題がある。さらに、Zn量、Sn量及び式(1)が満たされる範囲内であっても、S不純物の多いNo.10は、熱間圧延の途中で割れが入 *

*り、その後の冷間加工との兼ね合いで最終板厚まで歩留 り良く製造できなかった。Zn量が多く、Sn量の少な いNo.11は、耐応力緩和特性、耐応力腐食割れ性に劣 っていた。

【0036】 [比較例2] 市販の黄銅1種 (C26000-H08)、ばね用りん青銅 (C52100-H08) について、実施例1の場合と同様に鋳造、加工を行って条材を得、その試験片について0.2%耐力、引張強さ、ヤング率、導電率、応力緩和率及び応力腐食割れ寿命を測定した。測定方法は、実施例1と同様である。また、これらの市販材料は、質別がH08 (spring)であり、同一成分の中でも高強度な質別である。得られた結果を、実施例1の本発明の合金No.1の結果(表1)と併せて、表2に示した。なお、硬さ (HV) についても示した。

【0037】 【表2】

	網合金	阿合金組成(ut?		0.2%耐力 (N/mm²)	引張強さ (N/mm²)	ヤング率 (kN/mm²)	導電率	硬さ	応力緩	応力腐 食割れ 寿命
	Zn	Sn	他	圧延方向 直角方向	E延方向 直角方向	圧延方向 直角方向	(% IACS)	(HV)	和率 (%)	寿命 (min)
実施例 1 合金No. 1	24.7	0.84	_	755 822	812 932	108 117	24.9	232	12.6	120
比較例 2	29.8	_	_	641 715	672 791	112 119	27.2	204	48.9	20
比較例 2	-	8.11	P 0.19	725 808	784 911	116 128 -	12.8	228	13.0	_

【0038】表2に示す結果から、本発明の銅合金は、 50 従来

50 従来の代表的なコネクタ等の電気・電子用材料である黄

15

銅に比較して0.2%耐力、引張強さ、耐応力緩和特性、耐応力腐食割れ性等が向上していることがわかる。ばね用りん青銅に比較しても、ヤング率、導電率に優れている。ばね用りん青銅は高価なSnを8%も含有し、原料費が高騰しやすく、かつ熱間圧延できないため製法が限定され、製造費を含めたトータルコスト面で劣っていた。したがって、本発明に係る銅合金は従来の黄銅、りん青銅に比較して十分に優れているといえる。

【0039】 [実施例2] Cu-25.12n-0.8 2Snの組成(wt%)をもつ本発明組成範囲内の合金N 10 o.12を一次と二次の冷却条件と引き抜き速度条件を変えて連続鋳造した。冷却速度は、熱電対を一緒に鋳込みながら測定した。この合金の液相線が約950℃であり、この温度から600℃までの平均冷却速度を求めた。その後、840℃に加熱して、1パスあたり約15%の加工率で9パスの熱間圧延を行い、表面とエッヂの割れを観察した。この結果、50℃/min以上の平均冷却速度で鋳造した鋳片に熱延割れは全く生じなかった。*

*特に、80℃/min以上の平均冷却速度の鋳片は、熱延温度を更に上げても、加工率を上げても対応でき、条件範囲に余裕がもてることがわかった。これに対し、50℃/min 未満の冷却速度で鋳造した鋳片では熱延割れが発生し、適切な組成範囲であっても鋳造時の平均冷却速度によっては熱延割れを生じることがあり、歩留り低下をもたらす場合があることがわかった。

【0040】 [実施例3] 実施例1によって得られた本発明の合金No.1に、Cu下地めっき0.45μm、Snめっきリフロー1.2μmを施した。その後、ばね部を有する箱形メス端子に加工して、190℃の温度で60minの熱処理を実施した。この端子と熱処理しなかった端子にオスを嵌合し、125℃で330時間恒温槽に暴露保持した。初期及び暴露後の端子の低電圧低電流抵抗、接触荷重を測定し、その結果を表3に示した。

【0041】 【表3】

	低電圧低電	流抵抗(ωΩ)	接触荷重(N)		
	初期	暴露後	初期	暴露後	
熱処理あり	1. 90	5. 33	7. 88	7. 11	
熱処理なし(プレス 上がり)	1. 79	6.87	7. 69	5. 92	

【0042】表3より、端子にプレス加工後に熱処理を施すことにより、高温放置後の低電圧低電流抵抗の増大 30 や接触荷重の低下を効果的に抑制できることがわかる。すなわち、本発明の銅合金とその製造方法を利用した端子の信頼性向上につなげることができるといえる。

【0043】[実施例4] 実施例1によって得られた表 1の本発明の合金No.1と比較例合金No.7、No.11 の条材を準備した。これらの条材を超硬のパンチと工具 鋼のダイスを用いて、1.25mmピッチの串歯状の端子 にプレス打ち抜きした。ただし、クリアランスを板厚の 8%とした。このプレス打ち抜きを100万ショット行った後、バリの状況を圧延方向、直角方向の打ち抜き面 40 を光学顕微鏡で調査したところ、No.1のバリは高さ1

0 μm以下であったのに対し、No. 7、No. 1 1 は特に10 圧延方向に平行な部分に 2 0 μmを越えるバリが発生していた。以上より、本発明に係るNo. 1 の合金は金型摩耗に対しても優れていることがわかる。

[0044]

【発明の効果】以上の説明により明らかなように、本発明に係る銅基合金または本発明方法によって得られた材料は、従来の黄銅やりん青銅等に比較して、0.2%耐力、引張強さ、導電率、ヤング率のバランスや耐応力緩和率特性、耐応力腐食割れ性等、さらにはプレス性に優れかつ安価に製造できるため、黄銅やりん青銅に代わるコネクタ等の電気・電子部品用材料として最適なものである。

フロントページの続き

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
C 2 2 F 1/00	6 3 0	C 2 2 F 1/00	6 3 0 Z
	6 6 1		6 6 1 A
	682		682
	683		683

		٠.
- / 1	EΛ	

6 8 4	6 8 4 C
6 8 5	6 8 5 Z
6 8 6	6 8 6 B
6 9 2	6 9 2 A
	6 9 2 B
6 9 4	6 9 4 A
	6 9 4 B

特開2001-294957