# Derin Gezgin | Johnny Andreasen | Sababa Ahmed Group Project #1

1. Install the package and get it ready for this session.

R-Code: install.packages("UsingR")

2. Open help file for the data and use it to understand variables.

R-Code: ?Galton

There are two variables in the data:

- Parent: A numeric vector: height of the mid-parent (average of father and mother) in inches.
- Child: A numeric vector: height of the child in inches.

### 3. What is the goal of this study? State the response and predictor variables.

The study aims to see if the mid-parents' height in inches is directly related to the child's height in inches.

- **Predictor Variable (X):** Mid-parent's height in inches.
- **Response Variable (Y):** Child's height in inches.

# 4. Check the data summaries and make a plot for each variable.



# 5. How many missing values do we have? Do you see any outliers? Anything unusual?

- We have no missing values in the Galton data set.
- There are also no outliers in the data set. We can also see this from the scatterplot in the next question.
- **R-Code**: sum(is.na(Galton)): Returns 0 which means no missing values

#### 6. Using correlation coefficient and scatter plot, comment on the relationship.

- **Multiple R** $^{2}$ : 0.459

# Derin Gezgin | Johnny Andreasen | Sababa Ahmed Group Project #1



- The correlation coefficient is average with some positive correlation. The scatterplot shows some relation between the two variables but it's far from being a strong relationship.
- 7. Fit a linear regression model and show the fitted model.

The fitted model is  $\hat{Y} = 23.942 + 0.646x$ .

x = Mid Parent's Height

 $\hat{Y}$ = Estimated Child Height

8. Interpret the regression coefficients (slope and intercept) of the model?

The slope estimate is **0.646**. Which is the expected difference in the estimated "child height" for each 1 inch increase in the mid parent's height

The intercept estimate is 23.942. Which is the expected child height when the mid-parent's height is 0.

- 9. Check goodness of fit of this model?
- a. Coefficient Determination

For this factor, we can see that the Multiple R-squared values is 0.2105 which means that the 21% of the child height can be explained by mid-parent height. It's the variability in Y explained by X.

b. Variability in Errors

The average distance between the observed values of Child height and fitted values of it is  $\pm$  2.239.

c. Residual Plot



# Derin Gezgin | Johnny Andreasen | Sababa Ahmed Group Project #1

## 10. Show fitted values in the scatterplot.

Scatter Plot of Mid-Parents Height v. Child Height



# 11. Are regression coefficients statistically significant at 5% significance level?

**Step 1:**  $H_0$ :  $B_1$ =0 and  $H_a$ :  $B_a \neq 0$ 

**Step 2:** let a = 0.05

**Step 3: t** value = 8.517

**Step 4: p** value = 2e-16 which is approximately 0. So reject  $H_0$ 

**Step 5:** At 5% significance level, mid-parent height is a significant predictor of child height.

# 12. Report 99% Cis for regression parameters.

We're %99 confident that the actual difference in the estimated "child height" for each 1-inch increase in the mid parent's height is between 0.540 and 0.752.

We're %99 confident that the actual child height when the mid-parent's height is 0. is between 16.686 and 31.197