기초공학설계

Introduction to Computers

한국항공대학교 소프트웨어학과

Outline

- What is a computer?
- Types of computers
- Computer Hardware
- Computer Software

What is a Computer?

- A basic computer consists of 4 components: An input Device, a CPU, output devices, and memory
- The data is inserted using an input device
- The central processing unit (CPU) converts data to information
- The information is put on an output device
- A memory is a device for storing data and information

<u>아리스토텔레스</u>

<u>폰 노이먼</u>

컴퓨터공학 및 인공지능 가계도

Von Neumann

J.H. Holland

B.P. Zeigler

S.D. Chi

바로 여러분!

Computer System

- The minimum requirements for a computer system
 - a keyboard,
 - a case containing a CPU and memory
 - a monitor
- The data is usually entered via the keyboard and the information is usually presented through a screen
- information can also be presented through speakers, braille
 (점자) displays, or any other <u>output devices</u>

Input and Output Device

- Input and output device (I/O) provide a way to interact with a computer. Some examples of I/O devices are:
 - Computer keyboard used to input text.
 - Computer mouse
 - Touch pad
 - Camera
 - Display, or computer monitor
 - Speakers, for audio output
 - Touchscreen, for simultaneous input and output

CPU and Memory

- CPU (or processor)
 - the component of a computer that performs arithmetical and logical operations of the computer system
- Examples of tasks performed by a CPU include:
 - Input/output directions (reading data from an input device/writing information to an output device)
 - Storing data in <u>memory</u>
- Memory (or storage)
 - a place to store information that it might need in order to operate
 - Something stored in memory might be:
 - Text document, photo, operating system, application program, etc.

Types of computers

Super Computer

<u>Titan: Oak Ridge</u>
<u>National Laboratory</u>
No. 1 system in
November 2012

Tianhe-2 (MilkyWay-2):
National Super Computer
Center in Guangzhou
No. 1 system since June 2013
33.86 petaflop/s

- the fastest and the most expensive computers
- solve very complex science and engineering problems
- Supercomputers get their processing power by taking advantage of parallel processing
 - use lots of CPUs at the same time on one problem
 - Performance (in FLOP)
 - Tianhe-2: 33.86 Peta FLOP/s = 33,860,000 Giga FLOP/s
 - Intel Core i7 4770K: 99.72 Giga FLOP/s

Computer vs. Human

Server Computer

Inside of a Rack unit Server

- Don't focus on trying to solve one very complex problem, but try to solve many similar smaller ones
- A central computer that contains collections of data and programs
 - A network server allows all connected users to share and store electronic data and applications
 - Two important types of servers are file servers and application servers.
- Some servers have applications on them instead of just files, like Wikipedia and Google Documents

Workstation Computer

HP Workstation

Targets AutoCAD Users

- high-end, expensive computers that are made for more complex procedures and are intended for one user at a time
- Some of the complex procedures consist of science, math and engineering calculations and are useful for computer design and manufacturing

Personal Computer (PC)

- Today a PC is an all-around device that can be used as a productivity tool, a media server and a gaming machine.
- The modular construction of PC allows components to be easily swapped out when broken or upgraded.

Microcontroller

An Arduino, a common programmable microcontroller

- mini computers that enable the user to store data and execute simple commands and tasks
- have minimal memory and program length
- but are normally designed to be very good at performing a niche task → embedded systems

Computer Hardware

I/O and Memory Unit

- I/O
 - Input unit: keyboard, mouse, flashdrive, etc.
 - Output unit: monitor, printer, speaker, etc.
- Memory unit
 - short term memory (RAM)
 - long term memory (HDD, SSD, Compact Disk(CD))

Inside a PC

- 1. Monitor
- 2. Motherboard
- 3. CPU (Microprocessor)
- 4. Main memory (RAM)
- 5. Expansion cards
- 6. Power supply unit
- 7. Compact disk drive (CDD)
- 8. Hard disk drive (HDD)
- 9. Keyboard
- 10. Mouse

Computer Software

What is software?

Software

 A piece of computer software is a set of computer instructions that tell a computer how it should do something.

System software

- An operating system (OS), which defines some of the basics about how your computer should act.
- Windows, Mac OS, Linux, etc.

Applications

 A program or piece of software designed and written to fulfill a particular purpose of the user.

Operating System

- The minimum software layer that enables user and/or programs to operate the hardware parts.
 - execute a program (processing)
 - retrieve data from a hard disk (storage)
 - print a file, send a file to remote server (I/O)

Linux

Android

The Relationship

Booting Up to OS - (1)

- Microprocessor On
 - It starts to read 'instructions' from BIOS
 - BIOS (Basic Input/Output System)
 - ROM containing the hardware configuration utility etc
- Going Through BIOS
 - Hardware configuration
 - Interrupt required
 - Hardware testing
 - Go to read from the boot sector of the hard

Booting Up to OS - (2)

- Read From Boot Sector
 - Boot sector
 - Containing a special small boot-up program
 - Small boot-up program loaded up to RAM
- Going Through RAM
 - The microprocessor begins to execute the instructions on RAM
 - The microprocessor to fetch more instructions from the hard disk to RAM
 - The microprocessor then executes these instructions on RAM
 - The microprocessor to fetch even more instructions from the hard disk to RAM ... and the process repeats until the entire OS is loaded

Computer System and OS

