SÍNTESE DE CORES

Prof. Valmir Macário Filho

COR - Fundamentos

- É a nossa percepção de diferentes comprimentos de onda luz
- É a presença ou ausência de componentes de frequência de luz que nos dá a sensação de cor
- A luz é um fenômeno físico, mas a cor depende da interação da luz com o sistema visual, sendo, assim, um fenômeno psicofísico
- Necessidade de especificar uma cor
 - O que significa um objeto ser vermelho?
 - Mas vermelho é vermelho pra todo mundo?

O Universo Físico de Cor

M

w

w

M

Espectro eletromagnético e espectro visível

 \mathbf{M}

O Universo Físico de Cor

- Faixa Visível do Espectro
 - Comprimento de onda: 380nm a 780nm (nm=mµ=nanômetro =10⁻⁹m)

700 600	500	400
Cor	Faixa do Espectro (mµ)	
Violeta	380 - 440	
Azul	440 - 490	
Verde	490 - 565	
Amarelo	565 - 590	
Laranja	590 - 630	
Vermelho	630 - 780	

Síntese de Cores

Síntese Aditiva

Cor enquanto luz. Esta síntese representa de forma básica as cores primárias do espéctro visível, possuindo um alcance de cores muito maior que o espaço de cores em CMYK.

Síntese Subtrativa

Cor enquanto pigmento. Esta síntese representa de forma básica as cores primárias de impressão. Seu alcance é reduzido se comparado com o espaço de cores em RGB.

O Universo Físico de Cor

- Sistemas aditivos:
 - Funcionam bem para especificar cores em dispositivos que emitem luz, como monitores
- Sistemas subtrativos:
 - Apropriado se o dispositivo funciona com tintas ou pigmentos (materiais filtram a luz)

Colorimetria

 Imagine como se poderiamos "ordenar" ou "organizar" essas amostras coloridas

Poderíamos começar separando as amostras neutras...

• . . . depois agrupando tons similares . . .

Três Dimensões da Cor

Três Dimensões da Cor

SATURAÇÃO

Três Dimensões da Cor

Olho Humano

- O olho é um sistema físico de processamento de cor (sistema refletivo)
- Similar a uma câmera de vídeo
- Converte luz em impulsos nervosos.

O Universo de Representação de Cor

Curvas de resposta espectral do olho humano:

Luminância e Crominância

- A combinação das frequências é feita no cérebro da seguinte forma:
 - L M
 - H (L + M)
 - L + M
- Considerando
 - H = B, M = G, L = R; e
 - R + G = Y (amarelo)
- a combinação enviada ao cérebro é:
 - R G
 - B Y
 - R + G

Luminância e Crominância

Luminosidade:

- Relacionada a claridade;
- A combinação R + G está relacionada com a luminosidade da cor ou luminância
 - A contribuição da componente B é praticamente desprezível

Matiz:

- Medida do comprimento de onda médio da luz que ele reflete ou emite.
- Define a cor do objeto.
- R G e B Y fornecem a informação da tonalidade (ou matiz) da cor, também chamada de crominância, então a crominância refere-se ao valor das cores
- O sinal luminosos é dividido em Luminância e Crominância

Brilho versus Saturação

sistemas de cor padrão

- Sistemas propostos para especificação de cor padronizada.
- Independentes de dispositivos físicos.

- Sistemas propostos pela CIE (Comission Internationale de l'Eclairage)
 - Sistema CIE-RGB.
 - Sistema CIE-XYZ.

O sistema CIE-RGB

- Primeiro sistema padrão proposto.
- Base de primárias do sistema:
 - R(λ) vermelho com comprimento de onda de 700 nm
 - G(λ) verde com comprimento de onda de 546 nm
 - B(λ) azul com comprimento de onda de 435.8 nm

Em algumas implementações os valores RGB são convertidos para os intervalos:

[0,1] (double)

[0-255] (uint8)

[0-65535] (uint16)

.30	G:0.29	G:0.27	G:0.29	G:0.33	G:U.64	G: U.
.10	B:0.09	B:0.09	B:0.11	B:0.15	B:0.48	B:0
.85	R:0.84	R:0.83	R:0.83	R:0.78	R:0.75	R:0
.33	G:0.32	G:0.30	G:0.31	G:0.31	G:0.32	G: 0
.13	B:0.12	B:0.11	B:0.12	B:0.12	B:0.16	B:0
.85	R:0.84	R:0.83	R:0.84	R:0.81	R:0.78	R: 0
.34	G:0.32	G:0.31	G:0.32	G:0.31	G:0.30	G: 0
.13	B:0.13	B:0.13	B:0.13	B:0.12	B:0.13	B:0
.85	R:0.84	R:0.84	R:0.83	R:0.82	R:0.79	R: 0
.35	G:0.35	G:0.33	G:0.31	G:0.30	G:0.29	G: 0.
.16	B:0.16	B:0.16	B:0.13	B:0.13	B:0.11	B:0
.83	R:0.83	R:0.85	R:0.84	R:0.82	R:0.80	R: 0
36	G+0 35	G+0 36	G+0 33	G+0 32	G+0 29	G+D

uint8

76	G: 73	G: 70	G: 74	Ե: 84	6:164	6:1
25	B: 23	B: 22	B: 27	B: 39	B:123	B:1
216	R:215	R:212	R:211	R:200	R:191	R:2
85	G: 81	G: 77	G: 79	G: 78	G: 82	G: 1
33	S: 30	B: 29	B: 31	B: 31	B: 41	в:
216	R:213	R:212	R:214	R:206	R:198	R: 1
86	G: 81	G: 80	G: 82	G: 78	G: 77	G:
34	B: 32	B: 32	B: 34	B: 31	B: 34	B:
217	R:215	R:213	R:211	R:208	R:201	R: 1
89	G: 89	G: 85	G: 80	G: 77	G: 74	G:
40	B: 41	B: 40	B: 34	B: 33	B: 29	B:
211	R:212	R:216	R:214	R:209	R:205	R: 1
93	G+ 89	G+ 91	G+ 85	G+ 81	G+ 74	G.

O cubo RGB

Sólido de cor para o sistema RGB

Vértices:

V C1 C1000.					
R	G	В	cor		
0	0	0	preto		
1	0	0	vermelho		
0	1	0	verde		
0	0	1	azul		
1	1	0	amarelo		
0	1	1	ciano		
1	0	1	magenta		
1	1	1	branco		

RGB

O sistema CMY

- Ciano, Magenta e Amarelo são as cores que se obtém ao retirar Vermelho,
- Diz-se que s\(\tilde{a}\) o as cores complementares das prim\(\tilde{a}\)rias
 RGB

Conversão CMY←RGB é dada por:

$$C = 1 - R, M = 1 - G, Y = 1 - B$$

O sistema CMY

- Impressoras frequentemente usam pigmentos com essas cores
 - Para criar a cor preta é preciso quantidades iguais de pigmentos de ciano, magenta e amarelo.
 - É útil postular a existência de uma cor primária preta, gerando um sistema chamado CMYK

```
Red + Green = Yellow
Red + Blue = Magenta
Green + Blue = Cyan
```

Capaz de reconstruir todas as cores visíveis.

Deste modo todas as cores visíveis possuem

coordenadas positivas.

Sólido de cor

 Conjunto de todas as cores visíveis forma um cone convexo, chamado de sólido de cor.

 Combinação de duas cores visíveis é também visível.

- Pontos c e d representam dois tipos de Branco.
- Comprimento da onda:
 - Comprimento da reta que passa por um dos pontos de branco, passe pela cor e pela borda.
- Saturação:
 - Razão entre a distância do ponto à cor branca e a distância entre a borda e a cor branca.
- Criação de cores:
 - Qualquer cor pode ser criada passando uma linha entre duas cores;
 - Todas as cores entre elas podem ser criadas combinando-se essas duas cores na proporção da distância ao ponto desejado.

Conversão

O sistema CIE-YIQ

- YIQ, sistema de cor de TVs NTSC
- YIQ parameters
 - Y : luminância
 - I, Q: crominância (informação de cor)
- · Cálculo:
 - Y = 0.299 R + 0.587 G + 0.114 B
 - $\cdot I = R Y$
 - Q = B Y
- Separa a luminância ou brilho da cor, porque nós percebemos variações no brilho melhor do que variações de cor

O sistema CIE-YIQ

· Conversão:

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1.000 & 0.956 & 0.621 \\ 1.000 & -0.272 & -0.647 \\ 1.000 & -1.106 & 1.703 \end{bmatrix} \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$

YCbCr

- Os componentes são separados em duas categorias, luminância e crominância
- O modelo YCbCr é uma das escolhas mais populares para a detecção de tons de pele
- Também conhecido como YUV

YCbCr

- Y é a luminosidade
- Cb é o canal de cor azul
- · Cr é o canal de cor vermelho

RGB para YCbCr

 O componente Y é obtido a partir da soma ponderada de valores RGB, a crominância é calculada subtraindo o componente de luminância dos canais B e R do sistema RGB.

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \begin{bmatrix} 65.481 & 128.553 & 24.966 \\ -37.797 & -74.203 & 112.000 \\ 112.000 & -93.786 & -18.214 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Note que Y está entre [16, 235] enquanto Cb e Cr estão entre [16, 240]. Na prática, a escala é convertida para [0, 255].

Detecção de Tom de Pele

Valores que delimitam o tom de pele:

$$133 \le Cr \le 173$$

$$80 \le Cb \le 120$$

2.

Gamute

- Monitores, impressoras e outros dispositivos são normalmente usados para reproduzir cores
- O gamute de um dispositivo é a variedade de cores que ele é capaz de reproduzir

Gamute típico de um monitor

Sistemas de cor computacionais e de interface

- Sistemas de cor computacionais são usados em síntese de imagens
 - Não são intuitivos para humanos
 - O sistema RGB é o exemplo mais conhecido
- Sistemas de cor de interface são mais apropriados para humanos
 - Baseados em coordenadas
 - HSV Hue, Saturation, Value
 - HSL Hue, Saturation, Luminosity
 - Baseados em amostras
 - Pantone
 - Munsell

O sistema HSV

 Sólido de cor é uma pirâmide hexagonal invertida

 Coordenadas correspondem ao matiz, saturação e valor

 Hexágono correspondente a V = 1 é uma projeção do cubo RGB

- Hue (matiz) corresponde a um ângulo ao redor do eixo do cone
- Saturação é o afastamento em relação ao eixo da pirâmide
- Valor (brilho) é a altura com relação ao ápice (preto)

O sistema HSV

- Hue (matiz) medido em graus [0°, 360°]
- Saturation (saturação) [0.0, 1.0]
- Value (valor) [0.0, 1.0]

Transformação de RGB para HSV

$$H = \begin{cases} 60 \frac{(G-B)}{(M-m)} & , \text{ se R} = M \\ 60 \frac{(B-R)}{(M-m)} + 120 & , \text{ se G} = M \\ 60 \frac{(R-G)}{(M-m)} + 240 & , \text{ se M} = B \end{cases}$$

$$Se \ H < 0, \text{ então } H = H + 360$$

$$S = \begin{cases} \frac{(M-m)}{M} & , \text{ se M} \neq 0 \\ 0 & \text{ caso contrário} \end{cases}$$

$$V = M$$

$$Onde : m = \min(R, G, B)$$

$$M = \max(R, G, B)$$

Transformação de HSV para RGB

$$R = \begin{cases} V & , \text{se } 0 \le h < 60 \text{ ou } 300 \le h < 360 \\ q & , \text{se } 60 \le h < 120 \\ p & , \text{se } 120 \le h < 240 \\ t & , \text{se } 240 \le h < 360 \end{cases}$$

$$G = \begin{cases} t & , \text{se } 0 \le h < 60 \\ V & , \text{se } 60 \le h < 180 \\ q & , \text{se } 180 \le h < 240 \\ p & , \text{se } 240 \le h < 360 \end{cases}$$

$$B = \begin{cases} p & , \text{se } 0 \le h < 120 \\ t & , \text{se } 120 \le h < 180 \\ V & , \text{se } 180 \le h < 300 \\ q & , \text{se } 300 \le h < 360 \end{cases}$$

onde:

$$p = V(1 - S)$$

 $q = V(1 - Sf)$
 $t = V(1 - S(1 - f))$
 $f = H - floor(H)$

O sistema HSL

Sólido de cor é um duplo cone

Semelhante ao HSV, mas simétrico com relação à

Iuminosidade da cor (Lightness)

 Corresponde à intuição de que branco também é uma cor com saturação zero

Comparação

RGB CMY CMYK YIQ YCbCr HSV HSL

Espaço de Cores Uniforme

 Espaço de cores em que as mudanças nas coordenadores de cores correspondem a mudanças na mesma proporção nos tons visíveis de cor e saturação.

- CIELAB
 - L*a*b
- CIELUV
 - L*u*v
- Úteis quando cores similares precisam ser comparadas.
- Baseados diretamente no sistema CIE-XYZ

CIELAB

- Expressa numericamente as cores, sendo que o de mensuração cromática L*a*b*
- L* é referente à luminosidade do objeto podendo variar do preto ao branco;
 - 0 = preto
 - 100 = branco
- a* é a medida do croma no eixo vermelho-verde;
 - a* > 0 vermelho/púrpura
 - a* < 0 verde
- b* é a medida do croma no eixo amarelo-azul
 - b* > 0 □ amarelo
 - b* < 0 □ azul
- a* = b* = 0 cor acromática (cinzento)

CIELAB

CIELAB

- Conversão:
 - Converter RGB para o CIE-XYZ
 - Xn Yn Zn são os valores XYZ do branco de referência (Dependente do sistema)

$$L^* = 116.h \left(\frac{Y}{Y_W} \right) - 16$$

$$a^* = 500 \left[h \left(\frac{X}{X_W} \right) - h \left(\frac{Y}{Y_W} \right) \right]$$

$$b^* = 200 \left[h \left(\frac{Y}{Z_W} \right) - h \left(\frac{Z}{Z_W} \right) \right]$$

$$h(q) = \begin{cases} \sqrt[3]{q} & q > 0.008856 \\ 7.787q + 16/116 & q \le 0.008856 \end{cases}$$

CIELUV

- L* é referente à luminosidade do objeto podendo variar do preto ao branco;
 - 0 = preto
 - 100 = branco
- u* é a medida do croma no eixo vermelho-verde;
 - u* > 0 vermelho/púrpura
 - u* < 0 verde
- v* é a medida do croma no eixo amarelo-azul
 - v* > 0 □ amarelo
 - v* < 0 □ azul
- u* = v* = 0 cor acromática (cinzento)

CIELUV

CIELUV

$$L^* = \begin{cases} 903,3 \text{ Y/Y}_n & \text{if } \text{Y/Y}_n < 0,008856 \\ 116 (\text{Y/Y}_n)^{1/3} & \text{senão} \end{cases}$$

- $u^* = 13L^* (u' u'_n)$
- $v^* = 13L^* (v' v'_n)$
- u' = 4X / (X+15Y+3Z)
- v' = 9Y / (X+15Y+3Z)
- Y_n u_n v_n são os valores XYZ do branco de referência

CIELAB versus CIELUV

- Nos espaços de cor L*a*b* e L*u*v* as distância entre as cores podem ser calculadas pela distância euclidiana:
- No L*u*v*, o vermelho é mais representado que o verde e o azul.
- O L*a*b*, possui uma sensibilidade maior no verde que no vermelho e azul. Porém, Azul é mais representado que no espaço de cor L*u*v*.

- Windows
 - 2 cores (1 bit)
 - 16 cores (4 bits)
 - 256 cores (8 bits = 1 byte)
 - 16 milhões de cores (24 bits = 3 bytes)
- Até 256 cores são armazenadas em uma paleta de cores

- Paleta de cores armazenada no início do arquivo da imagem, chamado cabeçalho
- Cada cor é armazenada no cabeçalho em três bytes (1 R; 1 G; 1 B)
- Cada pixel possui informação sobre a sua cor na paleta
- Para imagens com 16 milhões de cores, a paleta não é utilizada (a cor é definida no próprio pixel em 3 bytes)

Paleta para Imagem com 256 tons de cinza (Windows)

Paleta para Imagem com 16 cores (Windows)

Luminância, Matiz e Saturação

Cubo de Cores

Referências

- Azevedo, E., Conci, A. Computação Gráfica Teoria e Prática, Ed 1, Campus, 2003. 368 p.
- FOLEY, J. et al. Computer graphics: principles and practice. 2. ed. Reading, MA: Addison-Wesley, 1997. 1175 p. il.