Contents

5.5	Theorem		2
	Corollary		2
	Definition		3
	Definition		3
	Definition		3
5.6	Theorem		4
5.7	Theorem		5
	Lemma		6
5.8	Theorem		7
5.9	Theorem		8
	Corollary		9
	Definition		10
	Definition		10
5.10	Theorem		11
5.11	Theorem		13
	Definition	_	14
5.21			15
J.21	Theorem		16
5.23			17
0.20	Corollary (Cayley-Hamilton Theorem for Matrices)		17
5 24	Theorem		18
0.24	Definition		19
5 25	Theorem		20

5.2 Diagonalizability

Theorem 5.5. Let T be a linear operator on a vector space V, and let λ_1 , $\lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of T. If v_1, v_2, \ldots, v_k are eigenvectors of T such that λ_i corresponds to v_i $(1 \le i \le k)$, then $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

Proof.

Corollary. Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Definition. A polynomial f(t) in P(F) splits over F if there are scalars c, a_1, a_2, \ldots, a_n (not necessarily distinct) in F such that

$$f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n).$$

Definition. Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

Definition. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $\mathsf{E}_{\lambda} = \{x \in \mathsf{V} : \mathsf{T}(x) = \lambda x\} = \mathsf{N}(\mathsf{T} - \lambda \mathsf{I}_{\mathsf{V}})$ The Set E_{λ} is called the **eigenspace** of T corresponding to the eigenvalue λ . Analogously, we define the **eigenspace** of a square matrix A to be the eigenspace of L_A .

Theorem 5.6. The characteristic polynomial of any diagonalizable linear operator splits.

Theorem 5.7. Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \le \dim(\mathsf{E}_{\lambda}) \le m$.

Lemma. Let T be a linear operator, and let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of T. For each $i = 1, 2, \ldots, k$, let $v_i \in \mathsf{E}_{\lambda_i}$, the eigenspace corresponding to λ_i . If

$$v_1 + v_2 + \dots + v_k = 0,$$

then $v_i = \theta$ for all i.

Theorem 5.8. Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of T. For each $i=1, 2, \ldots, k$, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i} . Then $S=S_1\cup S_2\cup\cdots\cup S_k$ is a linearly independent subset of V.

Theorem 5.9. Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the distinct eigenvalues of T. Then

- (a) T is diagonalizable if and only if the multiplicity of λ_i is equal to $\dim(\mathsf{E}_{\lambda_i})$ for all i.
- (b) if T is diagonalizable and β_i is an ordered basis for E_{λ_i} for each i, then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T.
- (c) State and prove results analogous to (a) and (b) for matrices.

Corollary. Let T be a linear operator on an n-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold.

- 1. The characteristic polynomial of T splits.
- 2. For each eigenvalue λ of T, the multiplicity of λ equals $n \text{rank}(\mathsf{T} \lambda \mathsf{I})$.

Direct sums

Definition. Let $W_1, W_2, ..., W_k$ be subspaces of a vector space V. We define the **sum** of these subspaces to be the set

$$\{v_1 + v_2 + \dots + v_k : v_i \in W_i \text{ for } 1 \le i \le k\},\$$

which we denote by $W_1 + W_2 + \cdots + W_k$ or $\sum_{i=1}^k W_i$.

Definition. Let W_1, W_2, \ldots, W_k be subspaces of a vector space V. We call V the **direct sum** of the subspaces W_1, W_2, \ldots, W_k and write $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$, If

$$V = \sum_{i=1}^k W_i$$

and

$$W_j \cap \sum_{i \neq j} W_i = \{0\}$$
 for each $j \ (1 \le j \le k)$.

Theorem 5.10. Let $W_1, W_2, ..., W_k$ be subspaces of a finite-dimensional vector space V. The following conditions are equivalent.

- (a) $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$
- (b) $V = \sum_{i=1}^{k} W_i$ and, for any vectors $v_1, v_2, ..., v_k$ such that $v_i \in W_i$ $(1 \le i \le k)$, if $v_1 + v_2 + \cdots + v_k = 0$, then $v_i = 0$ for all i.
- (c) Each vector $v \in V$ can be uniquely written as $v = v_1 + v_2 + \cdots + v_k$, where $v_i \in W_i$.
- (d) If γ_i is an ordered basis for W_i $(1 \le i \le k)$, then $\gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_k$ is an ordered basis for V.
- (e) For each $i=1,\,2,\,\ldots,\,k$, there exists an ordered basis γ_i for W_i such that $\gamma_1\cup\gamma_2\cup\cdots\cup\gamma_k$ is an ordered basis for V .

T .	1	. 1		• ,
Diag	onal	17.A.	D1	litv

Proof. Continued...

Theorem 5.11. A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T.

5.6 Invariant subspaces and the Cayley–Hamilton Theorem

Definition. Let T be a linear operator on a vector space V. A subspace W of V is called a T-invariant subspace of V if $T(W) \subseteq W$, that is, if $T(v) \in W$ for all $v \in W$.

Theorem 5.21. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Then the characteristic polynomial of T_W divides the characteristic polynomial of T.

Theorem 5.22. Let T be a linear operator on a finite-dimensional vector space V, and let W denote the T-cyclic subspace of V generated by a nonzero vector $v \in V$. Let $k = \dim(W)$. Then

- (a) $\{v, \mathsf{T}(v), \mathsf{T}^2(v), \dots, \mathsf{T}^{k-1}(v)\}$ is a basis for W .
- (b) If $a_0v + a_1\mathsf{T}(v) + \cdots + a_{k-1}\mathsf{T}^{k-1}(v) + \mathsf{T}^k(v) = 0$, then the characteristic polynomial of T_W is $f(t) = (-1)^k(a_0 + a_1t + \cdots + a_{k-1}t^{k-1} + t^k)$.

The Cayley-Hamilton Theorem

Theorem 5.23 (Cayley-Hamilton). Let T be a linear operator on a finite-dimensional vector space V, and let f(t) be the characteristic polynomial of T. Then $f(T) = T_0$, the zero transformation. That is, T "satisfies" its characteristic equation.

Proof.

Corollary (Cayley-Hamilton Theorem for Matrices). Let A be an $n \times n$ matrix, and let f(t) be the characteristic polynomial of A. Then f(A) = O, the $n \times n$ zero matrix.

Theorem 5.24. Let T be a linear operator on a finite-dimensional vector space V, and suppose that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$, where W_i is a T-invariant subspace of V for each i $(1 \le i \le k)$. Suppose that $f_i(t)$ is the characteristic polynomial of T_{W_i} $(1 \le i \le k)$. Then $f_1(t) \cdot f_2(t) \cdot \cdots \cdot f_k(t)$ is the characteristic polynomial of T.

Definition. Let $B_1 \in \mathsf{M}_{m \times m}(F)$, and let $B_2 \in \mathsf{M}_{n \times n}(F)$. We define the **direct sum** of B_1 and B_2 , denoted $B_1 \oplus B_2$, as the $(m+n) \times (m+n)$ matrix A such that

$$A_{ij} = \begin{cases} (B_1)_{ij} & \text{for } 1 \le i, \ j \le m \\ (B_2)_{(i-m), \ (j-m)} & \text{for } m+1 \le i, \ j \le n+m \\ 0 & \text{otherwise} \end{cases}$$

If B_1, B_2, \ldots, B_k are square matrices with entries from F, then we define the **direct sum** of B_1, B_2, \ldots, B_k recursively by

$$B_1 \oplus B_2 \oplus \cdots \oplus B_k = (B_1 \oplus B_2 \oplus \cdots \oplus B_{k-1}) \oplus B_k.$$

If $A = B_1 \oplus B_2 \oplus \cdots \oplus B_k$, then we often write

$$A = \begin{pmatrix} B_1 & O & \cdots & O \\ O & B_2 & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & B_k \end{pmatrix}.$$

Theorem 5.25. Let T be a linear operator on a finite-dimensional vector space V, and let W₁, W₂, ..., W_k be T-invariant subspaces of V such that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. For each i, let β_i be an ordered basis for W_i, and let $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$. Let $A = [T]_{\beta}$ and $B_i = [T_{W_i}]_{\beta_i}$ for $i = 1, 2, \ldots, k$. Then $A = B_1 \oplus B_2 \oplus \cdots \oplus B_k$.