Дипломна работа

Диана Генева <dageneva@qtrp.org>

2019

Съдържание

А Приложение за Максимизиране на ентропията

2

Приложение А

Приложение за Максимизиране на ентропията

Имаме списък от входни данни $\mathcal{D}=(x_1,y_1),\dots,(x_n,y_n)$, където $x_i\in X$ са характеристични вектори с етикети $y_i\in Y$. Търсим такова разпределение p върху \mathcal{D} , което да максимизира ентропията:

$$H(p) = -\sum_{(x,y) \in X \times Y} p(x,y) \log(p(x,y))$$

и да изпълнява ограниченията, зададени с множество от характеристични функции $\mathcal{H}, |\mathcal{H}| = K$. Характеристичните функции са от вида $h_i: X \times Y \to [0,1]$.

Неко
$$E(p,h) := \sum_{(x,y) \in X \times Y} p(x,y) h(x,y)$$

Тогава ограниченията за търсеното p имат вида:

$$E(p,h) = E(\tilde{p},h), \forall h \in \mathcal{H},$$

където с \tilde{p} означаваме емпиричната вероятност върху $\mathcal{D}\left(p(x,y)=\frac{\#(x,y)}{n}\right)$.

Тоест върху наличните данни искаме това разпределение да се държи очаквано като емпиричното, но да не внася допълнителни предположения извън \mathcal{D} , да се държи равномерно.

Нека P е множеството от всички разпределения, които изпълняват това условие: $P=\{p\mid E(p,h)=E(\tilde{p},h), \forall h\in\mathcal{H}\}.$

Тогава искаме да намерим $\hat{p} = argmax_{p \in P} H(p)$.

Ще покажем, че \hat{p} трябва да има следния вид: $\hat{p}(x,y)=\pi\prod_{i=1}^K e^{\lambda_i h_i(x,y)}$. Тук $\lambda_i\in\mathbb{R}$ е тегло на съответната характеристична функция, а π е нормализираща константа. Ще покажем, че съществува единствено \hat{p} и че минимизацията на ентропията е еквивалентна на минимизацията на правдоподобието.

Нека с Q означим всички разпределения с желание вид. Имаме, че $Q=\{p\mid p(x,y)=\pi\prod_{i=1}^K e^{\lambda_i h_i(x,y)}\}$. За да намерим оптималното разпределение, ще ни

е нужно да дефинираме разстояние между разпределения - "Разстояние" на Кулбек-Лайблър:

$$D(p,q) = \sum_{(x,y) \in \mathcal{D}} p(x,y) \log \left(\frac{p(x,y)}{q(x,y)} \right)$$

"Разстоянието" на Кулбек-Лайблър всъщност не е разстояние в математическия смисъл (в смисъла на метрика), тъй като не е симетрична функция, но често се използва за разстояние между разпределения, тъй като има този интуитивен смисъл. Затова ще продължим да го наричаме разстояние, пропускайки кавичките.

С това сме готови да покажем следните твърдения:

Твърдение 1. За всеки две разпределения p и q, $D(p,q) \geq 0$, като $D(p,q) = 0 \iff p = q$

Доказателство: Тъй като p е разпределение и е изпълнено, че $\sum\limits_{(x,y)\in\mathcal{D}}p(x,y)=1$, можем да приложим неравенството на Йенсен:

$$\sum_{i=1}^n p(x_i,y_i) f(z_i) \leq f\left(\sum_{i=1}^n p(x_i,y_i) z_i\right), \forall (z_1,\dots,z_n) \in \mathbb{R}^n,$$

където f е вдлъбната. Ако f е строго вдлъбната (f' е строго намаляваща), равенство се достига, когато z_i е константа.

$$\begin{split} -D(p,q) &= -\sum_{(x,y)\in\mathcal{D}} p(x,y) \log \left(\frac{p(x,y)}{q(x,y)}\right) \\ &= \sum_{(x,y)\in\mathcal{D}} p(x,y) \log \left(\frac{q(x,y)}{p(x,y)}\right) \\ &\leq \log \left(\sum_{(x,y)\in\mathcal{D}} p(x,y) \frac{q(x,y)}{p(x,y)}\right) \\ &\leq \log \left(\sum_{(x,y)\in\mathcal{D}} q(x,y)\right) = 0 \\ &\iff D(p,q) \geq 0 \end{split}$$

Тъй като логаритъмът е строго вдлъбната функция, равенство при неравенството на Йенсен се достига, когато $\frac{q(x,y)}{p(x,y)}$ е константа, тоест $\frac{q(x,y)}{p(x,y)}=1 \iff p(x,y)=q(x,y)$ за произволно $(x,y)\in\mathcal{D}$. Твърдение 2. За всеки $p_1,p_2\in P,q\in Q$ е изпълнено $\sum\limits_{(x,y)\in\mathcal{D}}p_1(x,y)\log(q(x,y))=\sum\limits_{(x,y)\in\mathcal{D}}p_2(x,y)\log(q(x,y))$

Доказателство:

$$\begin{split} &\sum_{(x,y)\in\mathcal{D}} p_1(x,y) \log(q(x,y)) \\ &= \sum_{(x,y)\in\mathcal{D}} p_1(x,y) \log\left(\pi \prod_{h_i\in\mathcal{H}} e^{\lambda_i h_i(x,y)}\right) \\ &= \sum_{(x,y)\in\mathcal{D}} p_1(x,y) \left(\log(\pi) + \log\left(\prod_{h_i\in\mathcal{H}} e^{\lambda_i h_i(x,y)}\right)\right) \\ &= \sum_{(x,y)\in\mathcal{D}} p_1(x,y) \left(\log(\pi) + \sum_{h_i\in\mathcal{H}} \log\left(e^{\lambda_i h_i(x,y)}\right)\right) \\ &= \sum_{(x,y)\in\mathcal{D}} p_1(x,y) \left(\log(\pi) + \sum_{h_i\in\mathcal{H}} \lambda_i h_i(x,y)\right) \\ &= \sum_{(x,y)\in\mathcal{D}} p_1(x,y) \log(\pi) + \sum_{(x,y)\in\mathcal{D}} p_1(x,y) \sum_{h_i\in\mathcal{H}} \lambda_i h_i(x,y) \\ &= \log(\pi) \sum_{(x,y)\in\mathcal{D}} p_1(x,y) + \sum_{(x,y)\in\mathcal{D}} \sum_{h_i\in\mathcal{H}} p_1(x,y) \lambda_i h_i(x,y) \\ &= \log(\pi).1 + \sum_{(x,y)\in\mathcal{D}} \sum_{h_i\in\mathcal{H}} p_1(x,y) \lambda_i h_i(x,y) \\ &= \log(\pi).1 + \sum_{h_i\in\mathcal{H}} \lambda_i \sum_{(x,y)\in\mathcal{D}} p_1(x,y) h_i(x,y) \end{split}$$

Тъй като $p_2 \in P$ то също изпълнява ограниченията.

$$=\log(\pi).1+\sum_{h_i\in\mathcal{H}}\lambda_i\sum_{(x,y)\in\mathcal{D}}p_2(x,y)h_i(x,y)$$
 Usinoasbame u че
$$\sum_{(x,y)\in\mathcal{D}}p_2(x,y)=1$$

$$=\log(\pi)\sum_{(x,y)\in\mathcal{D}}p_2(x,y)+\sum_{h_i\in\mathcal{H}}\lambda_i\sum_{(x,y)\in\mathcal{D}}p_2(x,y)h_i(x,y)$$

$$\sum_{(x,y)\in\mathcal{D}}p_2(x,y)\log(q(x,y))$$

Твърдение 3. Ако $p \in P, q \in Q, r \in P \cap Q$, mo D(p,q) = D(p,r) + D(r,q)

Доказателство:

$$\begin{split} &D(p,r) + D(r,q) \\ &= \sum_{(x,y) \in \mathcal{D}} p(x,y) \log \left(\frac{p(x,y)}{r(x,y)} \right) + \sum_{(x,y) \in \mathcal{D}} r(x,y) \log \left(\frac{r(x,y)}{q(x,y)} \right) \\ &= \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(p(x,y)) - \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(r(x,y)) + \\ &\sum_{(x,y) \in \mathcal{D}} r(x,y) \log(r(x,y)) - \sum_{(x,y) \in \mathcal{D}} r(x,y) \log(q(x,y)) \\ &\leq \\ &\sum_{(x,y) \in \mathcal{D}} p(x,y) \log(p(x,y)) - \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(r(x,y)) + \\ &\sum_{(x,y) \in \mathcal{D}} p(x,y) \log(p(x,y)) - \sum_{(x,y) \in \mathcal{D}} r(x,y) \log(q(x,y)) \\ &= \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(p(x,y)) - \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(q(x,y)) \\ &\leq \\ &\sum_{(x,y) \in \mathcal{D}} p(x,y) \log(p(x,y)) - \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(q(x,y)) \\ &= \sum_{(x,y) \in \mathcal{D}} p(x,y) \log\left(\frac{p(x,y)}{q(x,y)} \right) = D(p,q) \end{split}$$

Твърдение 4. Ако $r \in P \cap Q$, то r е единствено и $r = \hat{p}$

Доказателство:

Нека $r\in P\cap Q$. Условието $r=\hat{p}$ значи, че $r=argmax_{p\in P}H(p)$, тоест ще покажем, че за всяко $p\in P: H(r)\geq H(p)$.

Нека u е равномерното разпределение върху \mathcal{D} , тоест $u(x,y)=\frac{1}{n}, \forall (x,y)\in \mathcal{D}.$ Следователно $u\in Q$, защото можем да изберем $\pi=\frac{1}{n}$ и $\lambda_i=0, \forall i\in\{1\dots K\}$

Нека фиксираме произволно $p \in P$. Тогава от Твърдение 3 следва, че

$$\begin{split} &D(p,u) = D(p,r) + D(r,u) \\ &D(p,u) \overset{\text{Твъродение 1}}{\geq} D(r,u) \\ &\sum_{(x,y) \in \mathcal{D}} p(x,y) \log \left(\frac{p(x,y)}{u(x,y)} \right) \geq \sum_{(x,y) \in \mathcal{D}} r(x,y) \log \left(\frac{r(x,y)}{u(x,y)} \right) \\ &- H(p) - \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(u(x,y)) \geq -H(r) - \sum_{(x,y) \in \mathcal{D}} r(x,y) \log(u(x,y)) \\ &\stackrel{\text{Зъродение 2}}{\longleftrightarrow} \\ &- H(p) - \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(u(x,y)) \geq -H(r) - \sum_{(x,y) \in \mathcal{D}} p(x,y) \log(u(x,y)) \\ &H(r) \geq H(p) \end{split}$$

Следователно $r = argmax_{p \in P}H(p)$

Сега нека видим защо r е единствено. Нека $r' = argmax_{p \in P}H(P)$. Тогава:

$$H(r')=H(r)\longleftrightarrow D(r,u)=D(r',u)$$
 но $D(r,u)=D(r,r')+D(r',u)$ по Твърдение 2 $\Longrightarrow D(r,r')=0$ $\Longrightarrow r=r'$

Сега, нека дефинираме правдоподобие на разпределение p като при дадено множество \mathcal{D} :

$$\widehat{L}_{\mathcal{D}}(p) = \prod_{(x,y) \in \mathcal{D}} p(x,y)$$

Тъй като логаритъмът е вдлъбната и монотонно растяща функция, често се разглежда за удобство:

$$\log\left(\widehat{L}_{\mathcal{D}}(p)\right) = \sum_{(x,y) \in \mathcal{D}} \log(p(x,y))$$

Дефинираме фунцкията L(p):

$$\begin{split} L(p) &= \sum_{(x,y) \in X \times Y} \tilde{p}(x,y) \log(p(x,y)) = \sum_{(x,y) \in D} \tilde{p}(x,y) \log(p(x,y)) + \sum_{(x,y) \notin D} \tilde{p}(x,y) \log(p(x,y)) \\ &= \sum_{(x,y) \in D} \tilde{p}(x,y) \log(p(x,y)) + 0 \\ &= \sum_{(x,y) \in D} \frac{1}{n} \log(p(x,y)) = C \log\left(\widehat{L}_{\mathcal{D}}(p)\right) \end{split}$$

Тоест L е пропорционална на логаритъм от правдоподобието. Тоест, ако p максимизира L, то максимизира и правдоодобието, и обратното.

Твърдение 5. Ако $r \in P \cup Q$, то r е единствено и $r = argmax_{q \in Q} L(q)$

Доказателство: Искаме да покажем, че за всяко $q \in Q: L(r) \geq L(q)$.

Нека фиксираме едно $q \in Q$, а \tilde{p} е емпиричното разпределение и следователно $\tilde{p} \in P$.

Тогава от Твърдение 3 следва, че:

$$\begin{split} &D(\tilde{p},q) = D(\tilde{p},r) + D(r,q) \\ &D(\tilde{p},q) \overset{\text{Твърдение 1}}{\geq} D(\tilde{p},r) \\ &- \cancel{H}(\tilde{p}) - L(q) \geq - \cancel{H}(\tilde{p}) - L(r) \\ &\longleftrightarrow L(r) \geq L(q) \end{split}$$

Сега нека $r'=argmax_{q\in Q}L(q)$, moecm $L(r)=L(r')\Longrightarrow D(\tilde{p},r)=D(\tilde{p},r').$

Ho no Твърдение 3, $D(\tilde{p},r')=D(\tilde{p},r)+D(r,r')\Longrightarrow D(r,r')=\overset{\text{Твърдение 1}}{0}\longleftrightarrow r'=r$, следователно r е единствено.

От Твърдение 4 и Твърдение 5, че ако вземем разпределение от сечението на P и Q, то е единствено и е равно на $\hat{p}=argmax_{p\in P}H(p)=argmax_{q\in Q}L(q)$. Тъй като L е пропорционално на правдоподобието, за да намерим търсеното разпределение е достатъчно да максимизираме правдоподобието.