

(11) Publication number: 0 614 977 A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 94301587.5

(22) Date of filing: 07.03.94

(f) Int. CI.⁵: **C12N 15/12**, C07K 13/00, C12N 1/21, C12N 5/10, C07K 15/28, C12N 5/16, C12Q 1/68, A61K 37/02, A61K 48/00, C12P 21/08

③ Priority: 05.03.93 US 27498 01.07.93 US 85000

(3) Date of publication of application: 14.09.94 Bulletin 94/37

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC

NL PT SE

(1) Applicant: THE GENERAL HOSPITAL CORPORATION 55 Fruit Street Boston, MA 02114 (US)

72 Inventor: MacDonald, Marcy E.
462 Waltham Street
Lexington, Massachusetts 02173 (US)
Inventor: Ambrose, Christine M.
42-8th Street, No. 3105 Charlestown
Massachusetts 02129 (US)
Inventor: Duyao, Mabel P.
24 Aberdeen Avenue
Cambridge, Massachusetts 02138 (US)
Inventor: Gusella, James F.
7 Woodstock Drive
Framingham, Massachusetts 01701 (US)

(74) Representative: Wright, Simon Mark et al Kilburn & Strode 30 John Street London WC1N 2DD (GB)

(54) Huntingtin DNA, protein and uses thereof.

(57) A novel gene, huntingtin, is described, encoding huntingtin protein, recombinant vectors and hosts capable of expressing huntingtin. Methods for the diagnosis and treatment of Huntington's disease are also provided.

Field of the Invention

5

10

15

20

25

30

35

40

45

55

The invention is in the field of the detection and treatment of genetic diseases. Specifically, the invention is directed to the *huntingtin* gene (also called the IT15 gene), huntingtin protein encoded by such gene, and the use of this gene and protein in assays (1) for the detection of a predisposition to develop Huntington's disease, (2) for the diagnosis of Huntington's disease (3) for the treatment of Huntington's disease, and (4) for monitoring the course of treatment of such treatment.

Background of the Invention

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor disturbance, cognitive loss and psychiatric manifestations (Martin and Gusella, *N. Engl. J. Med. 315*:1267-1276 (1986). It is inherited in an autosomal dominant fashion, and affects about 1/10,000 individuals in most populations of European origin (Harper, P.S. *et al.*, in *Huntington's disease*, W.B. Saunders, Philadelphia, 1991). The hallmark of HD is a distinctive choreic movement disorder that typically has a subtle, insidious onset in the fourth to fifth decade of life and gradually worsens over a course of 10 to 20 years until death. Occasionally, HD is expressed in juveniles typically manifesting with more severe symptoms including rigidity and a more rapid course. Juvenile onset of HD is associated with a preponderance of paternal transmission of the disease allele. The neuropathology of HD also displays a distinctive pattern, with selective loss of neurons that is most severe in the caudate and putamen regions of the brain. The biochemical basis for neuronal death in HD has not yet been explained, and there is consequently no treatment effective in delaying or preventing the onset and progression of this devastating disorder.

The genetic defect causing HD was assigned to chromosome 4 in 1983 in one of the first successes of linkage analysis using polymorphic DNA markers in man (Gusella et al., Nature 306:234-238 (1983). Since that time, we have pursued a location cloning approach to isolating and characterizing the HD gene based on progressively refining its localization (Gusella, FASEB J. 3:2036-2041 (1989); Gusella, Adv. Hum. Genet. 20:125-151 (1991)). Among other work, this has involved the generation of new genetic markers in the region by a number of techniques (Pohl et al., Nucleic Acids Res. 16:9185-9198 (1988); Whaley et al., Somat. Cell. Mol. Genet. 17:83-91 (1991); MacDonald et al., J. Clin. Inv. 84:1013-1016 (1989)), the establishment of genetic (MacDonald et al., Neuron 3:183-190(1989); Allitto et al., Genomics 9:104-112 (1991)) and physical maps of the implicated regions (Bucan et al., Genomics 6:1-15 (1990); Bates et al., Nature Genet. 1:180-187 (1992); Doucette-Stamm et al., Somat. Cell Mol. Genet. 17:471-480 (1991); Altherr et al., Genomics 13:1040-1046 (1992)), the cloning of the 4p telomere of an HD chromosome in a YAC clone (Bates et al., Am. J. Hum. Genet. 46:762-775 (1990); Youngman et al., Genomics 14:350-356 (1992)), the establishment of YAC [yeast artificial chromosome] (Bates et al., Nature Genet. 1:180-187 (1992)) and cosmid (Baxendale et al., in preparation) contigs (a series of overlapping clones which together form a whole sequence) of the candidate region, as well as the analysis and characterization of a number of candidate genes from the region (Thompson et al., Genomics 11:1133-1142 (1991); Taylor et al., Nature Genet. 2:223-227 (1992); Ambrose et al., Hum. Mol. Genet. 1:697-703 (1992)). Analysis of recombination events in HD kindreds has identified a candidate region of 2.2 Mb, between D4S10 and D4S98 in 4p16.3, as the most likely position of the HD gene (MacDonald et al., Neuron 3:183-190 (1989); Bates et al., Am. J. Hum. Genet. 49:7-16 (1991); Snell et al., Am. J. Hum. Genet. 51:357-362 (1992)). Investigations of linkage disequilibrium between HD and DNA markers in 4p16.3 (Snell et al., J. Med. Genet. 26:673-675 (1989); Theilman et al., J. Med. Genet. 26:676-681 (1989)) have suggested that multiple mutations have occurred to cause the disorder (MacDonald et al., Am. J. Hum. Genet. 49:723-734 (1991)). However, haplotype analysis using multi-allele markers has indicated that at least 1/3 of HD chromosomes are ancestrally related (MacDonald et al., Nature Genet. 1: 99-103 (1992)). The haplotype shared by these HD chromosomes points to a 500 kb segment between D4S180 and D4S182 as the most likely site of the genetic defect.

Targeting this 500 kb region for saturation with gene transcripts, exon amplification has been used as a rapid method for obtaining candidate coding sequences (Buckler et al., Proc. Natl. Acad. Sci. USA 88:4005-4009 (1991)). This strategy has previously identified three genes: the a-adducin gene (ADDA) (Taylor et al., Nature Genet. 2:223-227 (1992)); a putative novel transporter gene (IT10C3) in the distal portion of this segment; and a novel G protein-coupled receptor kinase gene (IT11) in the central portion (Ambrose et al., Hum. Mol. Genet. 1:697-703 (1992)). However, no defects implicating any of these genes as the HD locus have been found.

Summary of the Invention

5

15

20

25

A large gene, termed herein "huntingtin" or "IT15," has been identified that spans about 210 kb and encodes a previously undescribed protein of about 348 kDa. The huntingtin reading frame contains a polymorphic (CAG)_n trinucleotide repeat with at least 17 alleles in the normal population, varying from 11 to about 34 CAG copies. On HD chromosomes, the length of the trinucleotide repeat is substantially increased, for example, about 37 to at least 73 copies, and shows an apparent correlation with age of onset, the longest segments are detected in juvenile HD cases. The instability in length of the repeat is reminiscent of similar trinucleotide repeats in the fragile X syndrome and in myotonic dystrophy (Suthers *et al., J. Med. Genet. 29:*761-765 (1992)). The presence of an unstable, expandable trinucleotide repeat on HD chromosomes in the region of strongest linkage disequilibrium with the disorder suggests that this alteration underlies the dominant phenotype of HD, and that huntingtin encodes the HD gene.

The invention is directed to the protein huntingtin, DNA and RNA encoding this protein, and uses thereof. Accordingly, in a first embodiment, the invention is directed to purified preparations of the protein huntingtin, preferably substantially cell-free.

In a further embodiment, the invention is directed to a recombinant construct containing DNA or RNA encoding huntingtin.

In a further embodiment, the invention is directed to a vector containing such huntingtin-encoding nucleic acid.

In a further embodiment, the invention is directed to a host transformed with such vector.

In a further embodiment, the invention is directed to a method for producing huntingtin from such recombinant host.

In a further embodiment, the invention is direct to a method for diagnosing Huntington's disease using such huntingtin DNA, RNA and/or protein.

In a further embodiment, the invention is directed to a method for treating Huntington's disease using such huntingtin DNA, RNA and/or protein.

In a further embodiment, the invention is directed to a method of gene therapy of a symptomatic or presymptomatic patient, such method comprising providing a functional *huntingtin* gene with a (CAG)_n repeat of the normal range of 11-34 copies to the desired cells of such patient in need of such treatment, in a manner that permits the expression of the huntingtin protein provided by such gene, for a time and in a quantity sufficient to provide the huntingtin function to the cells of such patient.

In a further embodiment, the invention is directed to a method of gene therapy of a symptomatic or presymptomatic patient, such method comprising providing a functional *huntingtin* antisense gene to the desired cells of such patient in need of such treatment, in a manner that permits the expression of huntingtin antisense RNA provided by such gene, for a time and in a quantity sufficient to inhibit huntingtin mRNA expression in the cells of such patient.

In a further embodiment, the invention is directed to a method of gene therapy of a symptomatic or presymptomatic patient, such method comprising providing a functional *huntingtin* gene to the cells of such patient in need of such gene; in one embodiment the functional huntingtin gene contains a (CAG)_n repeat size between 11-34 copies.

In a further embodiment, the invention is directed to a method for diagnosing Huntington's disease or a predisposition to develop Huntington's disease in a patient, such method comprising determining the number of (CAG)_n repeats present in the huntingtin gene in such patient and especially in the affected tissue of such patient.

In a further embodiment, the invention is directed to a method for treating Huntington's disease in a patient, such method comprising decreasing the number of huntingtin (CAG)_n repeats in the huntingtin gene in the desired cells of such patient.

Brief Description of the Drawings

50

40

45

FIGURE 1. Long-range restriction map of the *HD* candidate region. A partial long range restriction map of 4p16.3 is shown (adapted from Lin *et al.*, *Somat. Cell Mol. Genet.* 17:481-488 (1991)). The HD candidate region determined by recombination events is depicted as a hatched line between *D4S10* and *D4S98*. The portion of the *HD* candidate region implicated as the site of the defect by linkage disequilibrium haplotype analysis (MacDonald *et al.*, *Nature Genet.* 1:99-103 (1992) is shown as a filled box. Below the map schematic, the region from *D4S180* to *D4S182* is expanded to show the cosmid contig (averaging 40 kb/cosmid). The genomic coverage and where known the transcriptional orientation (arrow 5' to 3') of the huntingtin (IT15), IT11, IT10C3 and *ADDA* genes is also shown. Locus names above the map denote selected polymorphic markers that have

been used in HD families. The positions of *D4S127* and *D4S95* which form the core of haplotype in the region of maximum disequilibrium are also shown in the cosmid contig. Restriction sites are given for Not I (N), Mlu I (M) and Nru I (R). Sites displaying complete digestion are shown in boldface while sites subject to frequent incomplete digestion are shown as lighter symbols. Brackets around the "N" symbols indicate the presence of additional clustered Not I sites.

FIGURE 2. Northern blot analysis of the huntingtin (IT15) transcript. Results of the hybridization of IT15A to a Northern blot of RNA from normal (lane 1) and HD homozygous (lane 2 and 3) lymphoblasts are shown. A single RNA of about 11 kb was detected in all three samples, with slight apparent variations being due to unequal RNA concentrations. The HD homozygotes are independent, deriving from the large an American family (lane 2) and the large Venezuelan family (lane 3), respectively. The Venezuelan HD chromosome has a 4p16.3 haplotype of "5 2 2" defined by a (GT)_n polymorphism at *D4S127* and VNTR and Taql RFLPs at *D4S95*. The American homozygote carries the most common 4p16.3 haplotype found on HD chromosomes: "2 11 1" (MacDonald *et al., Nature Genet. 1*:99-103 (1992)).

FIGURE 3. Schematic of cDNA clones defining the IT15 transcript. Five cDNAs are represented under a schematic of the composite IT15 sequence. The thin line corresponds to untranslated regions. The thick line corresponds to coding sequence, assuming initiation of translation at the first Met codon in the open reading frame. Stars mark the positions of the following exon clones 5' to 3': DL83D3-8, DL83D3-1, DL228B6-3, DL228B6-5, DL228B6-13, DL69F7-3, DL178H4-6, DL118F5-U and DL134B9-U4.

The composite sequence was derived as follows. From 22 bases 3' to the putative initiator Met ATG, the sequence was compiled from the cDNA clones and exons shown. There are 9 bases of sequence intervening between the 3' end of IT16B and the 5' end of IT15B. These were by PCR amplification of first strand cDNA and sequencing of the PCR product. At the 5' end of the composite sequence, the cDNA clone IT16C terminates 27 bases upstream of the (CAG)_n. However, when IT16C was identified, we had already generated genomic sequence surrounding the (CAG)_n in an attempt to generate new polymorphisms. This sequence matched the IT16C sequence, and extended it 337 bases upstream, including the apparent Met initiation codon.

FIGURE 4. Composite sequence of huntingtin (IT15)(SEQ ID NO:5 and SEQ ID NO:6). The composite DNA sequence of huntingtin (IT15) is shown (SEQ ID NO:5). The predicted protein product (SEQ ID NO:6) is shown below the DNA sequence, based on the assumption that translation begins at the first in-frame methionine of the long open reading frame.

FIGURE 5. DNA sequence analysis of the (CAG)_n repeat. DNA sequence shown in panels 1, 2 and 3, demonstrates the variation in the (CAG)_n repeat detected in normal cosmid L191F1 (1), cDNA IT16C (2), and *HD* cosmid GUS72-2130. Panels 1 and 3 were generated by direct sequencing of cosmid subclones using the following primer (SEQ ID NO:1):

5' GGC GGG AGA CCG CCA TGG CG 3'.

Panel 2 was generated using the pBSKII T7 primer (SEQ ID NO:2):

5

15

20

25

30

35

40

45

55

5' AAT ACG ACT CAC TAT AG 3'.

FIGURE 6. PCR analysis of the (CAG)_n repeat in a Venezuelan HD sibship with some offspring displaying juvenile onset. Results of PCR analysis of a sibship in the Venezuela HD pedigree are shown. Affected individuals are represented by shaded symbols. Progeny are shown as triangles for confidentiality. AN1, AN2 and AN3 mark the positions of the allelic products from normal chromosomes. AE marks the range of PCR products from the *HD* chromosome. The intensity of background constant bands, which represent a useful reference for comparison of the above PCR products, varies with slight differences in PCR conditions. The PCR products from cosmids L191F1 and GUS72-2130 are loaded in lanes 12 and 13 and have 18 and 48 CAG repeats, respectively.

FIGURE 7. PCR analysis of the (CAG)_n repeat in a Venezuelan HD sibship with offspring homozygous for the same HD haplotype. Results of PCR analysis of a sibship from the Venezuela HD pedigree in which both parents are affected by HD are shown. Progeny are shown as triangles for confidentiality and no HD diagnostic information is given to preserve the blind status of investigators in the Venezuelan Collaborative Group. AN1 and AN2 mark the positions of the allelic products from normal parental chromosomes. AE marks the range of PCR products from the HD chromosome. The PCR products from cosmids L191F1 and GUS72-2130 are loaded in lanes 29 and 30 and have 18 and 48 CAG repeats, respectively.

FIGURE 8. PCR analysis of the (CAG)_n repeat in members of an American family with an individual homozygous for the major *HD* haplotype. Results of PCR analysis of members of an American family segregating the major HD haplotype. AN marks the range of normal alleles; AE marks the range of *HD* alleles. Lanes 1, 3,

4, 5, 7 and 8 represent PCR products from related *HD* heterozygotes. Lane 2 contains the PCR products from a member of the family homozygous for the same *HD* chromosome. Lane 6 contains PCR products from a normal individual. Pedigree relationships and affected status are not presented to preserve confidentiality. The PCR products from cosmids L191F1 and GUS72-2130 (which was derived from the individual represented in lane 2) are loaded in lanes 9 and 10 and have 18 and 48 CAG repeats, respectively.

FIGURES 9 and 10. PCR analysis of the (CAG)_n repeat in two families with supposed new mutation causing HD. Results of PCR analysis of two families in which sporadic HD cases representing putative new mutants are shown. Individuals in each pedigree are numbered by generation (Roman numerals) and order in the pedigree. Triangles are used to protect confidentiality. Filled symbols indicate symptomatic individuals. The different chromosomes segregating in the pedigree have been distinguished by extensive typing with polymorphic markers in 4p16.3 and have been assigned arbitrary numbers shown above the gel lanes. The starred chromosomes (3 in Figure 9, 1 in Figure 10) represent the presumed *HD* chromosome. AN denotes the range of normal alleles; AE denotes the range of alleles present in affected individuals and in their unaffected relatives bearing the same chromosomes.

FIGURE 11. Comparison of (CAG)_n Repeat Unit Number on Control and HD Chromosomes. Frequency distributions are shown for the number of (CAG)_n repeat units observed on 425 HD chromosomes from 150 independent families, and from 545 control chromosomes.

FIGURE 12. Comparison of (CAG)n Repeat Unit Number on Maternally and Paternally Transmitted HD Chromosomes. Frequency distributions are shown for the 134 and 161 HD chromosomes from Figure 11 known to have been transmitted from the mother (Panel A) and father (Panel B), respectively. The two distributions differ significantly based on a t-test ($t_{272.3}$ =5.34, p<0.0001).

FIGURE 13. Comparison of $(CAG)_n$ Repeat Unit Number on HD Chromosomes from Three Large Families with Different HD Founders. Frequency distributions are shown for 75, 25 and 35 HD chromosomes from the Venezuelan HD family (Panel A) (Gusella, J.F., et al., Nature 306:234-238 (1983); Wexler, N.S., et al., Nature 326:194-197 (1987)), Family Z (Panel B) and Family D (Panel C) (Folstein, S.E., et al., Science 229:776-779 (1985)), respectively. The Venezuelan distribution did not differ from the overall HD chromosome distribution in Figure 11 ($t_{79.7}$ = 1.58, p<0.12). Both Family Z and Family D did produce distributions significantly different from the overall HD distribution ($t_{42.2}$ =6.73, p<0.0001 and t_{458} =2.90, p<0.004, respectively).

Figure 14. Relationship of (CAG)_n Repeat Length in Parents and Corresponding Progeny. Repeat length on the HD chromosome in mothers (Panel A) or fathers (Panel B) is plotted against the repeat length in the corresponding offspring. A total of 25 maternal transmissions and 37 paternal transmissions were available for typing.

FIGURE 15. Amplification of the HD (CAG)_n Repeat From Sperm and Lymphoblast DNA. DNA from sperm (S) and lymphoblasts (L) for 5 members (pairs 1-5) of the Venezuelan HD pedigree aged 24-30 were used for PCR amplification of the HD (CAG)_n repeat. The lower band in each lane derives from the normal chromosome.

FIGURE 16. Relationship of Repeat Unit Length with Age of Onset. Age of onset was established for 234 diagnosed HD gene carriers and plotted against the repeat length observed on both the HD and normal chromosomes in the corresponding lymphoblast lines.

Detailed Description of the Invention

10

15

20

45

In the following description, reference will be made to various methodologies known to those of skill in the art of molecular genetics and biology. Publications and other materials setting forth such known methodologies to which reference is made are incorporated herein by reference in their entireties as though set forth in full.

The IT15 gene described herein is a gene from the proximal portion of the 500 kb segment between human chromosome 4 markers *D4S180* and *D4S182*. The huntingtin gene spans about 210 kb of DNA and encodes a previously undescribed protein of about 348 kDa. The huntingtin reading frame contains a polymorphic (CAG)_n trinucleotide repeat with at least 17 alleles in the normal human population, where the repeat number varies from 11 to about 34 CAG copies in such alleles. This is the gene of the human chromosome that, as shown herein, suffers the presence of an unstable, expanded number of CAG trinucleotide repeats in Huntington's disease patients, such that the number of CAG repeats in the huntingtin gene increases to a range of 37 to at least 86 copies. These results are the basis of a conclusion that the huntingtin gene encodes a protein called "huntingtin," and that in such huntingtin gene the increase in the number of CAG repeats to a range of greater than about 37 repeats is the alteration that underlies the dominant phenotype of Huntington's disease. As used herein huntingtin gene is also called the Huntington's disease gene.

It is to be understood that the description below is applicable to any gene in which a CAG repeat within the gene is amplified in an aberrant manner resulting in a change in the regulation, localization, stability or translatability of the mRNA containing such amplified CAG repeat that is transcribed from such gene.

I. Cloning Of Huntingtin DNA And Expression Of Huntingtin Protein

10

15

20

25

30

35

40

45

55

The identification of huntingtin DNA and protein as the altered gene in Huntington's disease patients is exemplified below. In addition to utilizing the exemplified methods and results for the identification of deletions of the *huntingtin* gene in Huntington's disease patients, and for the isolation of the native human *huntingtin* gene, the sequence information presented in Figure 4 represents a nucleic acid and protein sequence, that, when inserted into a linear or circular recombinant nucleic acid construct such as a vector, and used to transform a host cell, will provide copies of *huntingtin* DNA and huntingtin protein that are useful sources for the native *huntingtin* DNA and huntingtin protein for the methods of the invention. Such methods are known in the art and are briefly outlined below.

The process for genetically engineering the *huntingtin* coding sequence, for expression under a desired promoter, is facilitated through the cloning of genetic sequences which are capable of encoding such huntingtin protein. Such cloning technologies can utilize techniques known in the art for construction of a DNA sequence encoding the huntingtin protein, such as, for example, polymerase chain reaction technologies utilizing the *huntingtin* sequence disclosed herein to isolate the *huntingtin* gene anew, or an allele thereof that varies in the number of CAG repeats in such gene, or polynucleotide synthesis methods for constructing the nucleotide sequence using chemical methods. Expression of the cloned *huntingtin* DNA provides huntingtin protein.

As used herein, the term "genetic sequences" is intended to refer to a nucleic acid molecule of DNA or RNA, preferably DNA. Genetic sequences that are capable of being operably linked to DNA encoding huntingtin protein, so as to provide for its expression and maintenance in a host cell are obtained from a variety of sources, including commercial sources, genomic DNA, cDNA, synthetic DNA, and combinations thereof. Since the genetic code is universal, it is to be expected that any DNA encoding the huntingtin amino acid sequence of the invention will be useful to express huntingtin protein in any host, including prokaryotic (bacterial) hosts, eukaryotic hosts (plants, mammals (especially human), insects, yeast, and especially any cultured cell populations).

If it is desired to select anew a gene encoding huntingtin from a library that is thought to contain a huntingtin gene, such library can be screened and the desired gene sequence identified by any means which specifically selects for a sequence coding for the huntingtin gene or expressed huntingtin protein such as, for example, a) by hybridization (under stringent conditions for DNA:DNA hybridization) with an appropriate huntingtin DNA probe(s) containing a sequence specific for the DNA of this protein, such sequence being that provided in Figure 4 or a functional derivative thereof that is, a shortened form that is of sufficient length to identify a clone containing the huntingtin gene, or b) by hybridization-selected translational analysis in which native huntingtin mRNA which hybridizes to the clone in question is translated in vitro and the translation products are further characterized for the presence of a biological activity of huntingtin, or c) by immunoprecipitation of a translated huntingtin protein product from the host expressing the huntingtin protein.

When a human allele does not encode the identical sequence to that of Figure 4, it can be isolated and identified as being *huntingtin* DNA using the same techniques used herein, and especially PCR techniques to amplify the appropriate gene with primers based on the sequences disclosed herein. Many polymorphic probes useful in the fine localization of genes on chromosome 4 are known and available (see, for example, "ATCC/NIH Repository Catalogue of Human and Mouse DNA Probes and Libraries," fifth edition, 1991, pages 4-6. For example, a useful *D4S10* probe is clone designation pTV20 (ATCC 57605 and 57604); H5.52 (ATCC 61107 and 61106) and F5.53 (ATCC 61108).

Human chromosome 4-specific libraries are known in the art and available from the ATCC for the isolation of probes ("ATCC/NIH Repository Catalogue of Human and Mouse DNA Probes and Libraries," fifth edition, 1991, pages 72-73), for example, LL04NS01 and LL04NS02 (ATCC 57719 and ATCC57718) are useful for these purposes.

It is not necessary to utilize the exact vector constructs exemplified in the invention; equivalent vectors can be constructed using techniques known in the art. For example, the sequence of the huntingtin DNA is provided herein, (see Figure 4) and this sequence provides the specificity for the *huntingtin* gene; it is only necessary that a desired probe contain this sequence, or a portion thereof sufficient to provide a positive indication of the presence of the *huntingtin* gene.

Huntingtin genomic DNA may or may not include naturally occurring introns. Moreover, such genomic DNA can be obtained in association with the native huntingtin 5' promoter region of the gene sequences and/or with the native huntingtin 3' transcriptional termination region.

Such huntingtin genomic DNA can also be obtained in association with the genetic sequences which encode the 5' non-translated region of the huntingtin mRNA and/or with the genetic sequences which encode the huntingtin 3' non-translated region. To the extent that a host cell can recognize the transcriptional and/or translational regulatory signals associated with the expression of huntingtin mRNA and protein, then the

5' and/or 3' non-transcribed regions of the native huntingtin gene, and/or, the 5' and/or 3' non-translated regions of the huntingtin mRNA can be retained and employed for transcriptional and translational regulation.

Genomic DNA can be extracted and purified from any host cell, especially a human host cell possessing chromosome 4, by means well known in the art. Genomic DNA can be shortened by means known in the art, such as physical shearing or restriction digestion, to isolate the desired huntingtin gene from a chromosomal region that otherwise would contain more information than necessary for the utilization of the huntingtin gene in the hosts of the invention. For example, restriction digestion can be utilized to cleave the full-length sequence at a desired location. Alternatively, or in addition, nucleases that cleave from the 3'-end of a DNA molecule can be used to digest a certain sequence to a shortened form, the desired length then being identified and purified by polymerase chain reaction technologies, gel electrophoresis, and DNA sequencing. Such nucleases include, for example, Exonuclease III and Bal31. Other nucleases are well known in the art.

Alternatively, if it is known that a certain host cell population expresses huntingtin protein, then cDNA techniques known in the art can be utilized to synthesize a cDNA copy of the huntingtin mRNA present in such population.

15

20

25

30

45

50

55

For cloning the genomic or cDNA nucleic acid that encodes the amino acid sequence of the huntingtin protein into a vector, the DNA preparation can be ligated into an appropriate vector. The DNA sequence encoding huntingtin protein can be inserted into a DNA vector in accordance with conventional techniques, including blunt-ending or staggered-ending termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. Techniques for such manipulations are well known in the art.

When the huntingtin DNA coding sequence and an operably linked promoter are introduced into a recipient eukaryotic cell (preferably a human host cell) as a non-replicating, non-integrating, molecule, the expression of the encoded huntingtin protein can occur through the transient (nonstable) expression of the introduced sequence.

Preferably the coding sequence is introduced on a DNA molecule, such as a closed circular or linear molecule that is capable of autonomous replication. If integration into the host chromosome is desired, it is preferable to use a linear molecule. If stable maintenance of the *huntingtin* gene is desired on an extrachromosomal element, then it is preferable to use a circular plasmid form, with the appropriate plasmid element for autonomous replication in the desired host.

The desired gene construct, providing a gene coding for the huntingtin protein, and the necessary regulatory elements operably linked thereto, can be introduced into a desired host cells by transformation, transfection, or any method capable of providing the construct to the host cell. A marker gene for the detection of a host cell that has accepted the *huntingtin* DNA can be on the same vector as the *huntingtin* DNA or on a separate construct for cotransformation with the huntingtin coding sequence construct into the host cell. The nature of the vector will depend on the host organism.

Suitable selection markers will depend upon the host cell. For example, the marker can provide biocide resistance, e.g., resistance to antibiotics, or heavy metals, such as copper, or the like.

Factors of importance in selecting a particular plasmid or viral vector include: the ease with which recipient cells that contain the vector can be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species.

When it is desired to use *S. cerevisiae* as a host for a shuttle vector, preferred *S. cerevisiae* yeast plasmids include those containing the 2-micron circle, etc., or their derivatives. Such plasmids are well known in the art and are commercially available.

Oligonucleotide probes specific for the *huntingtin* sequence can be used to identify clones to huntingtin and can be designed *de novo* from the knowledge of the amino acid sequence of the protein as provided herein in Figure 4 or from the knowledge of the nucleic acid sequence of the DNA encoding such protein as provided herein in Figure 4 or of a related protein. Alternatively, antibodies can be raised against the huntingtin protein and used to identify the presence of unique protein determinants in transformants that express the desired cloned protein.

A nucleic acid molecule, such as DNA, is said to be "capable of expressing" a huntingtin protein if that nucleic acid contains expression control sequences which contain transcriptional regulatory information and such sequences are "operably linked" to the huntingtin nucleotide sequence which encode the huntingtin polypeptide.

An operable linkage is a linkage in which a sequence is connected to a regulatory sequence (or sequences) in such a way as to place expression of the sequence under the influence or control of the regulatory sequence. If the two DNA sequences are a coding sequence and a promoter region sequence linked to the 5' end of the coding sequence, they are operably linked if induction of promoter function results in the transcription of mRNA

encoding the desired protein and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the expression regulatory sequences to direct the expression of the protein, antisense RNA, or (3) interfere with the ability of the DNA template to be transcribed. Thus, a promoter region would be operably linked to a DNA sequence if the promoter was capable of effecting transcription of that DNA sequence.

The precise nature of the regulatory regions needed for gene expression can vary between species or cell types, but shall in general include, as necessary, 5' non-transcribing and 5' non-translating (non-coding) sequences involved with initiation of transcription and translation respectively, such as the TATA box, capping sequence, CAAT sequence, and the like, with those elements necessary for the promoter sequence being provided by the promoters of the invention. Such transcriptional control sequences can also include enhancer sequences or upstream activator sequences, as desired.

The vectors of the invention can further comprise other operably linked regulatory elements such as DNA elements which confer antibiotic resistance, or origins of replication for maintenance of the vector in one or more host cells.

In another embodiment, especially for maintenance of the vectors of the invention in prokaryotic cells, or in yeast *S. cerevisiae* cells, the introduced sequence is incorporated into a plasmid or viral vector capable of autonomous replication in the recipient host. Any of a wide variety of vectors can be employed for this purpose. In *Bacillus* hosts, integration of the desired DNA can be necessary.

Expression of a protein in eukaryotic hosts such as a human cell requires the use of regulatory regions functional in such hosts. A wide variety of transcriptional and translational regulatory sequences can be employed, depending upon the nature of the host. Preferably, these regulatory signals are associated in their native state with a particular gene which is capable of a high level of expression in the specific host cell, such as a specific human tissue type. In eukaryotes, where transcription is not linked to translation, such control regions may or may not provide an initiator methionine (AUG) codon, depending on whether the cloned sequence contains such a methionine. Such regions will, in general, include a promoter region sufficient to direct the initiation of RNA synthesis in the host cell.

If desired, the non-transcribed and/or non-translated regions 3' to the sequence coding for the huntingtin protein can be obtained by the above-described cloning methods. The 3'-non-transcribed region of the native human *huntingtin* gene can be retained for its transcriptional termination regulatory sequence elements, or for those elements which direct polyadenylation in eukaryotic cells. Where the native expression control sequences signals do not function satisfactorily in a host cell, then sequences functional in the host cell can be substituted.

It may be desired to construct a fusion product that contains a partial coding sequence (usually at the amino terminal end) of a first protein or small peptide and a second coding sequence (partial or complete) of the huntingtin protein at the carboxyl end. The coding sequence of the first protein can, for example, function as a signal sequence for secretion of the huntingtin protein from the host cell. Such first protein can also provide for tissue targeting or localization of the huntingtin protein if it is to be made in one cell type in a multicellular organism and delivered to another cell type in the same organism. Such fusion protein sequences can be designed with or without specific protease sites such that a desired peptide sequence is amenable to subsequent removal.

The expressed huntingtin protein can be isolated and purified from the medium of the host in accordance with conventional conditions, such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis, or the like. For example, affinity purification with anti-huntingtin antibody can be used. A protein having the amino acid sequence shown in Figure 3 can be made, or a shortened peptide of this sequence can be made, and used to raised antibodies using methods well known in the art. These antibodies can be used to affinity purify or quantitate huntingtin protein from any desired source.

If it is necessary to extract huntingtin protein from the intracellular regions of the host cells, the host cells can be collected by centrifugation, or with suitable buffers, lysed, and the protein isolated by column chromatography, for example, on DEAE-cellulose, phosphocellulose, polyribocytidylic acid-agarose, hydroxyapatite or by electrophoresis or immunoprecipitation.

II. Use Of Huntingtin For Diagnostic And Treatment Purposes

15

20

25

30

35

40

45

It is to be understood that although the following discussion is specifically directed to human patients, the teachings are also applicable to any animal that expresses huntingtin and in which alteration of huntingtin, especially the amplification of CAG repeat copy number, leads to a defect in huntingtin gene (structure or function) or huntingtin protein (structure or function or expression), such that clinical manifectations such as those seen in Huntington's disease patients are found.

5

10

15

25

It is also to be understood that the methods referred to herein are applicable to any patient suspected of developing/having Huntington's disease, whether such condition is manifest at a young age or at a more advanced age in the patient's life. It is also to be understood that the term "patient" does not imply that symptoms are present, and patient includes any individual it is desired to examine or treat using the methods of the invention.

The diagnostic and screening methods of the invention are especially useful for a patient suspected of being at risk for developing Huntington's disease based on family history, or a patient in which it is desired to diagnose or eliminate the presence of the Huntington's disease condition as a causative agent behind a patient's symptoms.

It is to be understood that to the extent that a patient's symptoms arise due to the alteration of the CAG repeat copy numbers in the *huntingtin* gene, even without a diagnosis of Huntington's disease, the methods of the invention can identify the same as the underlying basis for such condition.

According to the invention, presymptomatic screening of an individual in need of such screening for their likelihood of developing Huntington's disease is now possible using DNA encoding the huntingtin gene of the invention, and specifically, DNA having the sequence of the normal human huntingtin gene. The screening method of the invention allows a presymptomatic diagnosis, including prenatal diagnosis, of the presence of an aberrant *huntingtin* gene in such individuals, and thus an opinion concerning the likelihood that such individual would develop or has developed Huntington's disease or symptoms thereof. This is especially valuable for the identification of carriers of altered huntingtin gene alleles where such alleles possess an increased number of CAG repeats in their huntingtin gene, for example, from individuals with a family history of Huntington's disease. Especially useful for the determination of the number of CAG repeats in the patient's *huntingtin* gene is the use of PCR to amplify such region or DNA blotting techniques.

For example, in the method of screening, a tissue sample would be taken from such individual, and screened for (1) the presence of the 'normal' human huntingtin gene, especially for the presence of a "normal" range of 11-34 CAG copies in such gene. The human huntingtin gene can be characterized based upon, for example, detection of restriction digestion patterns in 'normal' versus the patient's DNA, including RFLP analysis, using DNA probes prepared against the huntingtin sequence (or a functional fragment thereof) taught in the invention. Similarly, huntingtin mRNA can be characterized and compared to normal huntingtin mRNA (a) levels and/or (b) size as found in a human population not at risk of developing Huntington's disease using similar probes. Lastly, huntingtin protein can be (a) detected and/or (b) quantitated using a biological assay for huntingtin, for example, using an immunological assay and anti-huntingtin antibodies. When assaying huntingtin protein, the immunological assay is preferred for its speed. Methods of making antibody against the huntingtin are well known in the art.

An (1) aberrant huntingtin DNA size pattern, such as an aberrant huntingtin RFLP, and/or (2) aberrant huntingtin mRNA sizes or levels and/or (3) aberrant huntingtin protein levels would indicate that the patient has developed or is at risk for developing a huntingtin-associated symptom such as a symptom associated with Huntington's disease.

The screening and diagnostic methods of the invention do not require that the entire huntingtin DNA coding sequence be used for the probe. Rather, it is only necessary to use a fragment or length of nucleic acid that is sufficient to detect the presence of the huntingtin gene in a DNA preparation from a normal or affected individual, the absence of such gene, or an altered physical property of such gene (such as a change in electrophoretic migration pattern).

Prenatal diagnosis can be performed when desired, using any known method to obtain fetal cells, including amniocentesis, chorionic villous sampling (CVS), and fetoscopy. Prenatal chromosome analysis can be used to determine if the portion of chromosome 4 possessing the normal *huntingtin* gene is present in a heterozygous state, and PCR amplification or DNA blotting utilized for estimating the size of the CAG repeat in the *huntingtin* gene.

The huntingtin DNA can be synthesized, especially, the CAG repeat region can be amplified and, if desired, labeled with a radioactive or nonradioactive reporter group, using techniques known in the art (for example, see Eckstein, F., Ed., Oligonucleotides and Analogues: A Practical Approach, IRS Press at Oxford University Press, New York, 1992); and Kricka, L.J., Ed., Nonisotopic DNA Probe Techniques, Academic Press, San Diego, (1992)).

In one method of treating Huntington's disease in a patient in need of such treatment, functional huntingtin DNA is provided to the cells of such patient, preferably prior to such symptomatic state that indicates the death of many of the patient's neuronal cells which it is desired to target with the method of the invention. The replacement huntingtin DNA is provided in a manner and amount that permits the expression of the huntingtin protein provided by such gene, for a time and in a quantity sufficient to treat such patient. Many vector systems are known in the art to provide such delivery to human patients in need of a gene or protein missing from the

cell. For example, adenovirus or retrovirus systems can be used, especially modified retrovirus systems and especially herpes simplex virus systems. Such methods are provided for, in, for example, the teachings of Breakefield, X.A. et al., The New Biologist 3:203-218 (1991); Huang, Q. et al., Experimental Neurology 115:303-316 (1992), WO93/03743 and WO90/09441 each incorporated herein fully by reference. Methods of antisense strategies are known in the art (see, for example, Antisense Strategies, Baserga, R. et al., Eds., Annals of the New York Academy of Sciences, volume 660, 1992).

In another method of treating Huntington's disease in a patient in need of such treatment, a gene encoding an expressible sequence that transcribes *huntingtin* antisense RNA is provided to the cells of such patient, preferably prior to such symptomatic state that indicates the death of many of the patient's neuronal cells which it is desired to target with the method of the invention. The replacement *huntingtin* antisense RNA gene is provided in a manner and amount that permits the expression of the antisense RNA provided by such gene, for a time and in a quantity sufficient to treat such patient, and especially in an amount to inhibit translation of the aberrant huntingtin mRNA that is being expressed in the cells of such patient. As above, many vector systems are known in the art to provide such delivery to human patients in need of a gene or protein which is altered in the patients' cells. For example, adenovirus or retrovirus systems can be used, especially modified retrovirus systems and especially herpes simplex virus systems. Such methods are provided for, in, for example, the teachings of Breakefield, X.A. et al., The New Biologist 3:203-218 (1991); Huang, Q. et al., Experimental Neurology 115:303-316 (1992), WO93/03743 and WO90/09441 each incorporated herein fully by reference.

15

25

30

35

45

Delivery of a DNA sequence encoding a functional huntingtin protein, such as the amino acid encoding sequence of Figure 4, will effectively replace the altered *huntingtin* gene of the invention, and inhibit, and/or stop and/or regress the symptoms that are the result of the interference to *huntingtin* gene expression due to an increased number of CAG repeats, such as 37 to 86 repeats in the *huntingtin* gene as compared to the 11-34 CAG repeats found in human populations not at risk for developing Huntington's disease.

Because Huntington's disease is characterized by a loss of neurons that is most severe in the caudate and putamen regions of the brain, the method of treatment of the invention is most effective when the replacement huntingtin gene is provided to the patient early in the course of the disease, prior to the loss of many neurons due to cell death. For that reason, presymptomatic screening methods according to the invention are important in identifying those individuals in need of treatment by the method of the invention, and such treatment preferably is provided while such individual is presymptomatic.

In a further method of treating Huntington's disease in a patient in need of such treatment such method provides an antagonist to the aberrant huntingtin protein in the cells of such patient.

Although the method is specifically described for DNA-DNA probes, it is to be understood that RNA possessing the same sequence information as the DNA of the invention can be used when desired.

For diagnostic assays, huntingtin antibodies are useful for quantitating and evaluating levels of huntingtin protein, and are especially useful in immunoassays and diagnostic kits.

In another embodiment, the present invention relates to an antibody having binding affinity to an huntingtin polypeptide, or a binding fragment thereof. In a preferred embodiment, the polypeptide has the amino acid sequence set forth in SEQ ID NO:6, or mutant or species variation thereof, or at least 7 contiguous amino acids thereof (preferably, at least 10, 15, 20, or 30 contiguous amino acids thereof). Those which bind selectively to huntingtin would be chosen for use in methods which could include, but should not be limited to, the analysis of altered huntingtin expression in tissue containing huntingtin.

The antibodies of the present invention include monoclonal and polyclonal antibodies, as well fragments of these antibodies. Antibody fragments which contain the idiotype of the molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragment; the Fab' fragments, and the Fab fragments.

Of special interest to the present invention are antibodies to huntingtin (or their functional derivatives) which are produced in humans, or are "humanized" (i.e. non-immunogenic in a human) by recombinant or other technology. Humanized antibodies may be produced, for example by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e. chimeric antibodies) (Robinson, R.R. et al., International Patent Publication PCT/US86/02269; Akira, K. et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison, S.L. et al., European Patent Application 173,494; Neuberger, M.S. et al., PCT Application WO 86/01533; Cabilly, S. et al., European Patent Application 125,023; Better, M. et al., Science 240:1041-1043 (1988); Liu, A.Y. et al., Proc. Natl. Acad. Sci. USA 84:3439-3443 (1987); Liu, A.Y. et al., J. Immunol. 139:3521-3526 (1987); Sun, L.K. et al., Proc. Natl. Acad. Sci. USA 84:214-218 (1987); Nishimura, Y. et al., Canc. Res. 47:999-1005 (1987); Wood, C.R. et al., Nature 314:446-449 (1985)); Shaw et al., J. Natl. Cancer Inst. 80:1553-1559 (1988). General reviews of "humanized" chimeric antibodies are provided by Morrison, S.L. (Science, 229:1202-1207 (1985)) and by Oi, V.T. et al., BioTechniques 4:214 (1986)). Suitable "humanized" antibodies can be alternatively produced by CDR or CEA substitution

(Jones, P.T. et al., Nature 321:552-525 (1986); Verhoeyan et al., Science 239:1534 (1988); Beidler, C.B. et al., J. Immunol. 141:4053-4060 (1988)).

In another embodiment, the present invention relates to a hybridoma which produces the above-described monoclonal antibody, or binding fragment thereof. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing monoclonal antibodies and hybridomas are well known in the art (Campbell, "Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology," Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35:1-21 (1980)).

Any animal (mouse, rabbit, and the like) which is known to produce antibodies can be immunized with the selected polypeptide. Methods for immunization are well known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of polypeptide used for immunization will vary based on the animal which is immunized, the antigenicity of the polypeptide and the site of injection.

10

15

The polypeptide may be modified or administered in an adjuvant in order to increase the peptide antigenicity. Methods of increasing the antigenicity of a polypeptide are well known in the art. Such procedures include coupling the antigen with a heterologous protein (such as globulin or β -galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp.Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, supra (1984)).

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

In another embodiment of the present invention, the above-described antibodies are detectably labeled. Antibodies can be detectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, and the like), enzymatic labels (such as horse radish peroxidase, alkaline phosphatase, and the like) fluorescent labels (such as FITC or rhodamine, and the like), paramagnetic atoms, and the like. Procedures for accomplishing such labeling are well-known in the art, for example, see (Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer et al., Meth. Enzym. 62:308 (1979); Engval et al., Immunol. 109:129 (1972); Goding, J. Immunol. Meth. 13:215 (1976)). The labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify cells or tissues which express a specific peptide.

In another embodiment of the present invention the above-described antibodies are immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby et al., Meth. Enzym. 34 Academic Press, N.Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and *in situ* assays as well as in immunochromotography.

Furthermore, one skilled in the art can readily adapt currently available procedures, as well as the techniques, methods and kits disclosed above with regard to antibodies, to generate peptides capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides", In Synthetic Peptides, A User's Guide, W.H. Freeman, NY, pp. 289-307 (1992), and Kaspczak et al., Biochemistry 28:9230-8 (1989).

Anti-peptide peptides can be generated in one of two fashions. First, the anti-peptide peptides can be generated by replacing the basic amino acid residues found in the huntingtin peptide sequence with acidic residues, while maintaining hydrophobic and uncharged polar groups. For example, lysine, arginine, and/or histidine residues are replaced with aspartic acid or glutamic acid and glutamic acid residues are replaced by lysine, arginine or histidine.

The manner and method of carrying out the present invention can be more fully understood by those of skill by reference to the following examples, which examples are not intended in any manner to limit the scope of the present invention or of the claims directed thereto.

Examples

5

15

25

40

50

55

The gene causing Huntington's disease has been mapped in 4p16.3 but has previously eluded identification. The invention uses haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect. A new gene, huntingtin (IT15), isolated using cloned "trapped" exons from a cosmid contig of the target area contains a polymorphic trinucleotide repeat that is expanded and unstable on HD chromosomes. A (CAG)_n repeat longer than the normal range of about 11 to about 34 copies was observed on HD chromosomes from all 75 disease families examined, comprising a wide range of ethnic backgrounds and 4p16.3 haplotypes. The (CAG)_n repeat, which varies from 37 to at least 86 copies on HD chromosomes appears to be located within the coding sequence of a predicted about 348 kDa protein that is widely expressed but unrelated to any known gene. Thus, the Huntington's disease mutation involves an unstable DNA segment, similar to those described in fragile X syndrome and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

The following protocols and experimental details are referenced in the examples that follow.

HD Cell Lines. Lymphoblast cell lines from HD families of varied ethnic backgrounds used for genetic linkage and disequilibrium studies (Conneally et al., Genomics 5:304-308 (1989); MacDonald et al., Nature Genet. 1:99-103 (1992)) have been established (Anderson and Gusella, In Vitro 20:856-858 (1984)) in the Molecular Neurogenetics Unit, Massachusetts General Hospital, over the past 13 years. The Venezuelan HD pedigree is an extended kindred of over 10,000 members in which all affected individuals have inherited the HD gene from a common founder (Gusella et al., Nature 306:234-238 (1983); Gusella et al., Science 225:1320-1326 (1984); Wexler et al., Nature 326:194-197 (1987)).

DNA/RNA Blotting. DNA was prepared from cultured cells and DNA blots prepared and hybridized as described (Gusella et al., Proc. Natl. Acad. Sci. USA 76:5239-5243 (1979); Gusella et al., Nature 306:234-238 (1983)). RNA was prepared and Northern blotting performed as described in Taylor et al., Nature Genet. 3:223-227 (1992).

Construction of Cosmid Contig. The initial construction of the cosmid contig was by chromosome walking from cosmids L19 and BJ56 (Allitto et al., Genomics 9:104-112 (1991); Lin et al., Somat. Cell Mol. Genet. 17:481-488 (1991)). Two libraries were employed, a collection of Alu-positive cosmids from the reduced cell hybrid H39-8C10 (Whaley et al., Som. Cell Mol. Genet. 17:83-91 (1991)) and an arrayed flow-sorted chromosome 4 cosmid library (NM87545) provided by the Los Alamos National Laboratory. Walking was accomplished by hybridization of whole cosmid DNA, using suppression of repetitive and vector sequences, to robot-generated high density filter grids (Nizetic, D. et al., Proc. Natl. Acad. Sci. USA 88:3233-3237 (1991); Lehrach, H. et al., in Genome Analysis: Genetic and Physical Mapping, Volume 1, Davies, K.E. et al., Ed., Cold Spring Harbor Laboratory Press, 1991, pp. 39-81). Cosmids L1C2, L69F7, L228B6 and L83D3 were first identified by hybridization of YAC clone YGA2 to the same arrayed library (Bates et al., Nature Genet. 1:180-187 (1992); Baxendale et al., Nucleic Acids Res. 19:6651 (1991)). HD cosmid GUS72-2130 was isolated by standard screening of a GUS72 cosmid library using a single-copy probe. Cosmid overlaps were confirmed by a combination of clone-to-clone and clone-to-genomic hybridizations, single-copy probe hybridizations and restriction mapping.

cDNA Isolation and Characterization. Exon probes were isolated and cloned as described (Buckler et al., Proc. Natl. Acad. Sci. USA 88:4005-4009 (1991)). Exon probes and cDNAs were used to screen human lamb-daZAPII cDNA libraries constructed from adult frontal cortex, fetal brain, adenovirus transformed retinal cell line RCA, and liver RNA. cDNA clones, PCR products and trapped exons were sequenced as described (Sanger et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977)). Direct cosmid sequencing was performed as described (McClatchey et al., Hum. Mol. Genet. 1:521-527 (1992)). Database searches were performed using the BLAST network service of National Center for Biotechnology Information (Altschul et al., J. Mol. Biol. 215:403-410 (1990)).

PCR Assay of the (CAG)_n Repeat. Genomic primers (SEQ ID NO:3 and SEQ ID NO:4) flanking the (CAG)_n repeat are:

5' ATG AAG GCC TTC GAG TCC CTC AAG TCC TTC 3'

and

5' AAA CTC ACG GTC GGT GCA GCG GCT CCT CAG 3'.

PCR amplification was performed in a reaction volume of 25 μ l using 50 ng of genomic DNA, 5 μ g of each primer, 10 mM Tris, pH 8.3, SmM KCl, 2mM MgCl₂, 200 μ M dNTPs, 10% DMSO, 0.1 unit Perfectmatch (Stra-

tagene), $2.5~\mu$ Ci 32 P-dCTP (Amersham) and 1.25~units Taq polymerase (Boehringer Mannheim). After heating to 94° C for 1.5~minutes, the reaction mix was cycled according to the following program: $40~\chi$ [1'@ 94° C;1'@ 60° C;2'@ 72° C]. $5~\mu$ I of each PCR reaction was diluted with an equal volume of 95~% formamide loading dye and heat denatured for 2~min. at 95° C. The products were resolved on 5~% denaturing polyacry-lamide gels. The PCR product from this reaction using cosmid L191F1 (CAG $_{18}$) as template was 247~bp. Allele sizes were estimated relative to a DNA sequencing ladder, the PCR products from sequenced cosmids, and the invariant background bands often present on the gel. Estimates of allelic variation were obtained by typing unrelated individuals of largely Western European ancestry, and normal parents of affected HD individuals from various pedigrees.

Typing of HD and normal chromosomes in Examples 5-8. HD chromosomes were derived from symptomatic individuals and "at risk" individuals known to be gene carriers by linkage marker analysis. All HD chromosomes were from members of well-characterized HD families of varied ethnic backgrounds used previously for genetic linkage and disequilibrium studies (MacDonald, M.E., et al., Nature Genet. 1:99-103 (1992); Conneally, P.M., et al., Genomics 5:304-308 (1989)). Three of the 150 families used were large pedigrees, each descended from a single founder. The large Venezuelan HD pedigree is an extended kindred of over 13,000 members from which we typed 75 HD chromosomes (Gusella, J.F., et al., Nature 306:234-238 (1983); Wexler, N.S., et al., Nature 326:194-197 (1987)). Two other large families that have been described previously as Family Z and Family D, provided 25 and 35 HD chromosomes, respectively (Folstein, S.E., et al., Science 229:776-779 (1985)). Normal chromosomes were taken from married-ins in the HD families and from unrelated normal individuals from non-HD families. The DNA tested for all individuals except four was prepared from lymphoblastoid cell lines or fresh blood (Gusella, J.F., et al., Nature 306:234-238 (1983); Anderson and Gusella, In Vitro 20:856-858 (1984)). In the exceptional cases, DNA was prepared from frozen cerebellum. No difference in the characteristics of the PCR products were observed between lymphoblastoid, fresh blood, or brain DNAs. For five members of the Venezuelan pedigree aged 24-30, we also prepared DNA by extracting pelleted sperm from semen samples. The length of the HD gene (CAG)_n repeat for all DNAs was assessed using polymerase chain reaction amplification.

Statistical analysis as set forth in Examples 5-8. Associations between repeat lengths and onset age were assessed by Pearson correlation coefficient and by multivariate regression to assess higher order associations. Comparisons of the distributions of repeat length for all HD chromosomes and those for individual families were made by analysis of variance and t-test contrasts between groups. The 95 % confidence bands were computed around the regression line utilizing the general linear models procedure of SAS (SAS Institute Inc., SAS/STAT User's Guide, Version 6, Fourth Edition, Volume 2 (SAS Institute Inc., Cary, N.C., pp. 846, 1989)).

Example 1

10

15

20

25

35

40

55

Application of Exon Amplification to Obtain Trapped Cloned Exons

The *HD* candidate region defined by discrete recombination events in well-characterized families spans 2.2 Mb between *D4S10* and *D4S98* as shown in Figure 1. The 500 kb segment between *D4S180* and *D4S182* displays the strongest linkage disequilibrium with *HD*, with about 1/3 of disease chromosomes sharing a common haplotype, anchored by multi-allele polymorphisms at *D4S127* and *D4S95* (MacDonald *et al., Nature Genet. 1*:99-103 (1992)). Sixty-four overlapping cosmids spanning about 480 kb from *D4S180* to a location between *D4S95* and *D4S182* have been isolated by a combination of information from YAC (Baxendale *et al., Nucleic Acids Res. 19*:6651 (1991)) and cosmid probe hybridization to high density filter grids of a chromosome 4 specific library, as well as additional libraries covering this region. Sixteen of these cosmids providing the complete contig are shown in Figure 1. We have previously used exon amplification to identify *ADDA*, the α-adducin locus, IT10C3, a novel putative transporter gene, and IT11, a novel G protein-coupled receptor kinase gene in the region distal to *D4S127* (Figure 1).

We have now applied the exon amplification technique to cosmids from the region of the contig proximal to *D4S127*. This procedure produces "trapped" exon clones, which can represent single exons, or multiple exons spliced together and is an efficient method of obtaining probes for screening cDNA libraries. Individual cosmids were processed, yielding 9 exon clones in the region from cosmids L134B9 to L181B10.

Two non-overlapping cDNAs were initially isolated using exon probes. IT15A was obtained by screening a transformed adult retinal cell cDNA library with exon clone DL118F5-U. IT16A was isolated by screening an adult frontal cortex cDNA library with a pool of three exon clones, DL83D3-8, DL83D3-1, and DL228B6-3. By Northern blot analysis, we discovered that IT15A and IT16A are in fact different portions of the same large approximately 10-11 kb transcript. Figure 2 shows an example of a Northern blot containing RNA from lymphoblastoid cell lines representing a normal individual and 2 independent homozygotes for *HD* chromosomes

of different haplotypes. The same approximately 10-11 kb transcript was also detected in RNA from a variety of human tissues (liver, spleen, kidney, muscle and various regions of adult brain).

IT15A and IT16A were used to "walk" in a number of human tissue cDNA libraries in order to obtain the full-length transcript. Figure 3 shows a representation of 5 cDNA clones which define the IT15 transcript, under a schematic of the composite sequence derived as described in the legend. Figure 3 also displays the locations on the composite sequence of the 9 trapped exon clones.

The composite sequence of IT15, containing the entire predicted coding sequence, spans 10,366 bases including a tail of 18 A's as shown in Figure 4. An open reading frame of 9,432 bases begins with a potential initiator methionine codon at base 316, located in the context of an optimal translation initiation sequence. An in-frame stop codon is located 240 bases upstream from this site. The protein product of IT15 is predicted to be a 348 kDa protein containing 3,144 amino acids. Although the first Met codon in the long open reading frame has been chosen as the probably initiator codon, we cannot exclude that translation does not actually begin at a more 3' Met codon, producing a smaller protein.

15 Example 2

5

10

20

25

30

35

40

Polymorphic Variation of the (CAG), Trinucleotide Repeat

Near its 5' end, the IT15 sequence contains 21 copies of the triplet CAG, encoding glutamine (Figure 5). When this sequence was compared with genomic sequences that are known to surround simple sequence repeats (SSRs) in 4p16.3, it was found that normal cosmid L191F1 had 18 copies of the triplet indicating that the (CAG)_n repeat is polymorphic (Figure 5). Primers from the genomic sequence flanking the repeat were chosen to establish a PCR assay for this variation. In the normal population, this SSR polymorphism displays at least 17 discrete alleles (Table 1) ranging from about 11 to about 34 repeat units. Ninety-eight percent of the 173 normal chromosomes tested contained repeat lengths between 11 and 24 repeats. Two chromosomes were detected in the 25-30 repeat range and 2 normal chromosomes had 33 and 34 repeats respectively. The overall heterozygosity on normal chromosome was 80%. Based on sequence analysis of three clones, it appears that the variation is based entirely on the (CAG)_n, but the potential for variation of the smaller downstream (CCG)₇ which is also included in the PCR product, is also present.

Example 3

Instability of the Trinucleotide Repeat on HD chromosomes

Sequence analysis of cosmid GUS72-2130, derived from a chromosome with the major HD haplotype (see below), revealed 48 copies of the trinucleotide repeat, far greater than the largest normal allele (Figure 5). When the PCR assay was applied to HD chromosomes, a pattern strikingly different from the normal variation was observed. HD heterozygotes contained one discrete allelic product in the normal size range, and one PCR product of much larger size, suggesting that the (CAG)_n repeat on HD chromosomes is expanded relative to normal chromosomes.

Figure 6 shows the patterns observed when the PCR assay was performed on lymphoblast DNA from a selected nuclear family in a large Venezuelan HD kindred. In this family, DNA marker analysis has shown previously that the HD chromosome was transmitted from the father (lane 2) to seven children (lanes 3, 5, 6, 7, 8, 10 and 11). The three normal chromosomes present in this mating yielded a PCR product in the normal size range (AN1, AN2, AN3) that was inherited in a Mendelian fashion. The HD chromosome in the father yielded a diffuse, "fuzzy"-appearing PCR product slightly smaller than the 48 repeat product of the non-Venezuelan HD cosmid. Except for the DNA in lane 5 which did not PCR amplify and in lane 11 which displayed only a single normal allele, each of the affected children's DNAs yielded a fuzzy PCR product of a different size (AE), indicating instability of the HD chromosome (CAG)_n repeat. Lane 6 contained an HD- specific product slightly smaller than or equal to that of the father's DNA. Lanes 3, 7, 10 and 8, respectively, contained HD-specific PCR products of progressively larger size. The absence of an HD-specific PCR product in lane 11 suggested that this child's DNA possessed a (CAG)_n repeat that was too long to amplify efficiently. This was verified by Southern blot analysis in which the expanded HD allele was easily detected and estimated to contain up to 100 copies of the repeat. Notably, this child had juvenile onset of HD at the very early age of 2 years. The onset of HD in the father was in his early 40s, typical of most adult HD patients in this population. The onset ages of children represented by lanes 3, 7, 10 and 8 were 26, 25, 14 and 11 years, respectively, suggesting a rough correlation between age at onset of HD and the length of the (CAG)_n repeat on the HD chromosome. In keeping with this trend, the offspring represented in lane 6 with the fewest repeats remained asymptomatic

when last examined at age of 30.

Figure 7 shows PCR analysis for a second sibship from the Venezuelan pedigree in which both parents are *HD* heterozygotes carrying the same *HD* chromosome based on DNA marker studies. Several of the offspring are *HD* homozygotes (lanes 6+7, 10+11, 13+14, 17+18, 23+24) as reported previously (Wexler *et al.*, *Nature 326*:194-197 (1987)). Each parent's DNA contained one allele in the normal range (AN1, AN2) which was transmitted in a Mendelian fashion. The *HD*-specific products (AE) from the DNA of both parents and children were all much larger than the normal allelic products and also showed extensive variation in mean size. A neurologic diagnosis for the offspring in this pedigree was not provided to maintain the blind status of investigators involved in the ongoing Venezuela HD project, although age of onset again appears to parallel repeat length. Paired samples under many of the individual symbols represent independent lymphoblast lines initiated at least one year apart. The variance between paired samples was not as great as between the different individuals, suggesting that the major differences in size of the PCR products resulted from meiotic transmission. Of special note is the result obtained in lanes 13 and 14. This *HD* homozygote's DNA yielded one PCR product larger and one smaller than the *HD*-specific PCR products of both parents.

To date, we have tested 75 independent HD families, representing all different reported in MacDonald *et al.*, *Nature Genet.* 1:99-103 (1992)) and a wide range of ethnic backgrounds. In all 75 cases, a PCR product larger than the normal size range was produced from the *HD* chromosome. The sizes of the *HD*-specific products ranged from 42 repeat copies to more than 66 copies, with a few individuals failing to yield a product because of the extreme length of the repeat. In these cases, Southern blot analysis revealed an increase in the length of an EcoRI fragment with the largest allele approximating 100 copies of the repeat. Figure 8 shows the variation detected in members of an American family of Irish ancestry in which the major *HD* haplotype is segregating. Cosmid GUS72-2130 was cloned from the *HD* homozygous individual whose DNA was amplified in lane 2. As was observed in the Venezuelan HD pedigree (Figures 6 and 7), which segregates the disorder with a different 4p16.3 haplotype, the *HD*-specific PCR products for this family display considerable size variation.

Example 4

15

25

30

New Mutations to HD

The mutation rate in HD has been reported to be very low. To test whether the expansion of the (CAG)_n repeat is the mechanism by which new *HD* mutations occur, two pedigrees with sporadic cases of HD have been examined in which intensive searching failed to reveal a family history of the disorder. In these cases, pedigree information sufficient to identify the same chromosomes in both the affected individual and unaffective relatives was gathered. Figures 9 and 10 show the results of PCR analysis of the (CAG)_n repeat in these families. The chromosomes in each family were assigned an arbitrary number based on typing for a large number of RFLP and SSR markers in 4p16.3 defining distinct haplotypes and the presumed *HD* chromosome is starred.

In family #1, HD first appeared in individual II-3 who transmitted the disorder to III-1 along with chromosome 3*. This same chromosome was present in II-2, an elderly unaffected individual. PCR analysis revealed that chromosome 3* from II-2 produced a PCR product at the extreme high end of the normal range (about 36 CAG copies). However, the (CAG)_n repeat on the same chromosome in II-3 and III-1 had undergone sequential expansions to about 44 and about 46 copies, respectively. A similar result was obtained in Family #2, where the presumed HD mutant III-2 had a considerably expanded repeat relative to the same chromosome in II-1 and III-1 (about 49 vs. about 33 CAG copies). In both family #1 and family #2, the ultimate HD chromosome displays the marker haplotype characteristic of 1/3 of all HD chromosomes, suggesting that this haplotype may be predisposed to undergoing repeat expansion.

Discussion

50

The discovery of an expanded, unstable trinucleotide repeat on *HD* chromosomes within the *IT15* gene is the basis for utilizing this gene as the *HD* gene of the invention. These results are consistent with the interpretation that HD constitutes the latest example of a mutational mechanism that may prove quite common in human genetic disease. Elongation of a trinucleotide repeat sequence has been implicated previously as the cause of three quite different human disorders, the fragile X syndrome, myotonic dystrophy and spino-bulbar muscular atrophy. The initial observations of repeat expansion in HD indicate that this phenomenon shares features in common with each of these disorders.

In the fragile X syndrome, expression of a constellation of symptoms that includes mental retardation and

a fragile site at Xq27.3 is associated with expansion of a (CGG)_n repeat thought to be in the 5' untranslated region of the FMR1 gene (Fu et al., Cell 67:1047-1058 (1991); Kremer et al., Science 252:1711-1714(1991); Verkerk et al., Cell 65:904-914 (1991)). In myotonic dystrophy, a dominant disorder involving muscle weakness with myotonia that typically present in early adulthood, the unstable trinucleotide repeat, (CTG),, is located in the 3' untranslated region of the mysotonin protein kinase gene (Aslanidis et al., Nature 355:548-551 (1992); Brook et al., Cell 68:799-808 (1992); Buxton et al., Nature 355:547-548 (1992); Fu et al., Science 255:1256-1259 (1992); Harley et al., Lancet 339:1125-1128 (1992); Mahadevan et al., Science 255:1253-1255 (1992)). The unstable (CAG)_n repeat in HD may be within the coding sequence of the IT15 gene, a feature shared with spino-bulbar muscular atrophy, an X-linked recessive adult-onset disorder of the motor neurons caused by expansion of a (CAG)_n repeat in the coding sequence of the androgen receptor gene (LaSpada et al., Nature 352:77-79 (1991)). The repeat length in both the fragile X syndrome and myotonic dystrophy tends to increase in successive generations, sometimes quite dramatically. Occasionally, decreases in the average repeat length are observed (Fu et al., Science 255:1256-1259 (1992); Yu et al., Am. J. Hum. Genet. 50:968-980 (1992); Bruner et al., N. Engl. J. Med.:476-480 (1993)). The HD trinucleotide repeat is also unstable, usually expanding when transmitted to the next generation, but contracting on occasion. In HD, as in the other disorders, change in copy number occurs in the absence of recombination. Compared with the fragile X syndrome, myotonic dystrophy, and HD, the instability of the disease allele in spino-bulbar muscular atrophy is more limited, and dramatic expansions of repeat length have not been seen (Biancalana et al., Hum. Mol. Genet. 1:255-258 (1992)).

10

15

20

25

30

40

45

Expansion of the repeat length in myotonic dystrophy is associated with a particular chromosomal haplotype, suggesting the existence of a primordial predisposing mutation (Harley *et al.*, *Am. J. Hum. Genet.* 49:68-75 (1991); Harley *et al.*, *Nature* 355:545-546 (1992); Ashizawa, *Lancet* 338:642-643 (1991); and Epstein (1991)). In the fragile X syndrome, there may be a limited number of ancestral mutations that predispose to increases in trinucleotide repeat number (Richards *et al.*, *Nature Genet.* 1:257-260 (1992); Oudet *et al.*, *Am. J. Hum. Genet.* 52:297-304 (1993)). The linkage disequilibrium analysis used to identify IT15 indicates that there are several haplotypes associated with HD, but that at least 1/3 of *HD* chromosomes are ancestrally related (MacDonald *et al.*, *Nature Genet.* 1:99-103 (1992)). These data, combined with the reported low rate of new mutation to *HD* (Harper, *J. Med. Genet.* 89:365-376 (1992)), suggest that expansion of the trinucleotide repeat may only occur on select chromosomes. The analysis of two families presented herein, in which new mutation was supposed to have occurred, is consistent with the view that there may be particular normal chromosomes that have the capacity to undergo expansion of the repeat into the *HD* range. In each of these families, a chromosome with a (CAG)_n repeat length in the upper end of the normal range was segregating on a chromosome whose 4p16.3 haplotype matched the most common haplotype seen on *HD* chromosomes and the clinical appearance of HD in these two cases was associated with expansion of the trinucleotide repeat.

The recent application of haplotype analysis to explore the linkage disequilibrium on *HD* chromosomes pointed to a portion of a 2.2 Mb candidate region defined by the majority of recombination events described in HD pedigrees (MacDonald *et al.*, *Nature Genet 1*:99-103 (1992)). Previously, the search for the gene was confounded by three matings in which the genetic inheritance pattern was inconsistent with the remainder of the family (MacDonald *et al.*, *Neuron 3*:183-190 (1989b); Prichard *et al.*, *Am. J. Hum. Genet. 50*:1218-1230 (1992)). These matings produced apparently affected HD individuals despite the inheritance of only normal alleles for markers throughout 4p16.3, effectively excluding inheritance of the *HD* chromosome present in the rest of the pedigree. Using PCR assay disclosed above, each of these families was tested and it was determined that like other HD kindreds, an expanded allele segregates with *HD* in affected individuals of all three pedigrees. However, an expanded allele was not present in those specific individuals with the inconsistent 4p16.3 genotypes. Instead, these individuals displayed the normal alleles expected based on analysis of other markers in 4p16.3. It is conceivable that these inconsistent individuals do not, in fact, have HD, but some other disorder. Alternatively, they might represent genetic mosaics in which the *HD* allele is more heavily represented and/or more expanded in brain tissue than in the lymphoblast DNA used for genotyping.

The capacity to monitor directly the size of the trinucleotide repeat in individuals "at risk" for HD provides significant advantages over current methods, eliminating the need for complicated linkage analyses, facilitating genetic counseling, and extending the applicability of presymptomatic and prenatal diagnosis to "at risk" individuals with no living affected relatives. however, it is of the utmost importance that the current internationally accepted guidelines and counseling protocols for testing those "at risk" continue to be observed, and that samples from unaffected relatives should not be tested inadvertently or without full consent. In the series of patients examined in this study, there is an apparent correlation between repeat length and age of onset of the disease, reminiscent of that reported in myotonic dystrophy (Harley et al., Lancet 339:1125-1128 (1992); Tsilfidis et al., Nature Genet. 1:192-195 (1992)). The largest HD trinucleotide repeat segments were found in juvenile onset cases, where there is a known preponderance of male transmission (Merrit et al., Excerpta Medica, Amsterdam, pp. 645-650 (1969)).

The expression of fragile X syndrome is associated with direct inactivation of the FMR1 gene (Pierretti et al., Cell 66:817-822 (1991); DeBoulle et al., Nature Genet. 3:31-35 (1993)). The recessive inheritance pattern of spino-bulbar muscular atrophy suggests that in this disorder, an inactive gene product is produced. In myotonic dystrophy, the manner in which repeat expansion leads to the dominant disease phenotype is unknown. There are numerous possibilities for the mechanism of pathogenesis of the expanded trinucleotide repeat in HD. Without intending to be held to this theory, nevertheless notice can be taken that since Wolf-Hirschhorn patients hemizygous for 4p16.3 do not display features of HD, and IT15 mRNA is present in HD homozygotes. the expanded trinucleotide repeat does not cause simple inactivation of the gene containing it. The observation that the phenotype of HD is completely dominant, since homozygotes for the disease allele do not differ clinically from heterozygotes, has suggested that HD results from a gain of function mutation, in which either the mRNA product or the protein product of the disease allele would have some new property, or be expressed inappropriately (Wexler et al., Nature 326:194-197 (1987); Myers et al., Am. J. Hum. Genet. 45:615-618 (1989)). If the expanded trinucleotide repeat were translated, the consequences on the protein product would be dramatic, increasing the length of the poly-glutamine stretch near the N-terminus. It is possible, however, that despite the presence of an upstream Met codon, the normal translational start occurs 3' to the (CAG)_n repeat and there is no poly-glutamine stretch in the protein product. In this case, the repeat would be in the 5' untranslated region and might be expected to have its dominant effect at the mRNA level. The presence of an expanded repeat might directly alter regulation, localization, stability or translatability of the mRNA containing it, and could indirectly affect its counterpart from the normal allele in HD heterozygotes. Other conceivable scenarios are that the presence of an expanded repeat might alter the effective translation start site for the HD transcript, thereby truncating the protein, or alter the transcription start site for the IT15 gene, disrupting control of mRNA expression. Finally, although the repeat is located within the IT15 transcript, the possibility that it leads to HD by virtue of an action on the expression of an adjacent gene cannot be excluded.

Despite this final caveat, it is consistent with the above results and most likely that the trinucleotide repeat expansion causes HD by its effect, either at the mRNA or protein level, on the expression and/or structure of the protein product of the IT15 gene, which has been named huntingtin. Outside of the region of the triplet repeat, the IT15 DNA sequence detected no significant similarity to any previously reported gene in the Gen-Bank database. Except for the stretches of glutamine and proline near the N-terminus, the amino acid sequence displayed no similarity to known proteins, providing no conspicuous clues to huntingtin's function. The polyglutamine and poly-proline region near the N-terminus detect similarity with a large number of proteins which also contain long stretches of these amino acids. It is difficult to assess the significance of such similarities, although it is notable that many of these are DNA binding proteins and that huntingtin does have a single leucine zipper motiff at residue 1,443. Huntingtin appears to be widely expressed, and yet cell death in HD is confined to specific neurons in particular regions of the brain.

35

20

40

45

50

55

	TABLE 1. C	COMPARISON OF	HD AND	
	NOR	MAL REPEAT SIZ	ES	
RANGE OF ALLELE SIZES (#REPEATS)	NORMAL CHI		HD CHRON NUMBER AND	
<u>></u> 48	0	0	44	0.59
42-47	0	0	30	0.41
30-41	2	0.01	. 0	(
25-30	2	0.01	0	(
<u><</u> 24	169	0.98	0	
TOTAL	173	1.00	74	1.0

Example 5

30

35

40

45

55

Distribution of Trinucleotide Repeat Lengths on Normal and HD Chromosomes

The number of copies of the HD triplet repeat has been examined in a total of 425 HD chromosomes from 150 independent families and compared with the copy number of the HD triplet repeat of 545 normal chromosomes. The results are displayed in Figure 11. Two non-overlapping distributions of repeat length were observed, wherein the upper end of the normal range and the lower end of the HD range were separated by 3 repeat units. The normal chromosomes displayed 24 alleles producing PCR products ranging from 11 to 34 repeat units, with a median of 19 units (mean 19.71, s.d. 3.21). The HD chromosomes yielded 54 discrete PCR products corresponding to repeat lengths of 37 to 86 units, with a median of 45 units (mean 46.42, s.d. 6.68).

Of the HD chromosomes, 134 and 161 were known to be maternally or paternally-derived, respectively. To investigate whether the sex of the transmitting parent might influence the distribution of repeat lengths, these two sets of chromosomes were plotted separately in Figure 12. The maternally-derived chromosomes displayed repeat lengths ranging from 37 to 73 units, with a median of 44 (mean 44.93, s.d. 5.14). The paternally-derived chromosomes had 37 to 86 copies of the repeat unit, with a median of 48 units (mean 49.14, s.d. 8.27). However, a higher proportion of the paternally-derived HD chromosomes had repeat lengths greater than 55 units (16% vs. 2%), suggesting the possibility of a differential effect of paternal versus maternal transmission.

The data set used excluded chromosomes from a few clinically diagnosed individuals who have previously been shown not to have inherited the HD chromosome by DNA marker linkage studies (MacDonald, M.E., et al., Neuron 3:183-190 (1989); Pritchard, C., et al., Am. J. Hum. Genet. 50:1218-1230 (1992)). These individuals have repeat lengths well within the normal range. Their disease manifestations have not been explained, and they may represent phenocopies of HD. Regardless of the mechanism involved, the occurrence at low frequency of such individuals within known HD families must be considered if diagnostic conclusions are based solely on repeat length.

The control data set also excludes a number of chromosomes from phenotypically normal individuals who are related to "spontaneous" cases of HD or "new mutations". Chromosomes from these individuals who are not clinically affected and have no family history of the disorder cannot be designated as HD. However, these chromosomes cannot be classified as unambiguously normal because they are essentially the same chromo-

some as that of an affected relative, the diagnosed "spontaneous" HD proband, except with respect to repeat length. The lengths of repeat found on these ambiguous chromosomes (34-38 units) span the gap between the control and HD distributions, confounding a decision on the status of any individual with a repeat in the high normal to low HD range.

Example 6

5

15

25

30

35

40

45

50

55

Instability of the Trinucleotide Repeat

The data in Figure 11 combine repeat lengths from 150 different HD families representing many potentially independent origins of the defect. To examine the variation in repeat lengths on sets of HD chromosomes known to descend from a common founder, the data from three large HD kindreds (Gusella, J.F., et al., Nature 306:234-238 (1983); Wexler, N.S., et al., Nature 326:194-197 (1987); Folstein, S.E., et al., Science 229:776-779 (1985)) with different 4p16.3 haplotypes (MacDonald, M.E., et al., Nature Genet. 1:99-103 (1992)), typed for 75, 25 and 35 individuals, respectively, were separated. Despite the single origin of the founder HD chromosome within each pedigree, members of the separate pedigrees display a wide range of repeat lengths (Figure 13). This instability of the HD chromosome repeat is most prominent in members of a large Venezuelan HD kindred (panel A) In which the common HD ancestor has produced 10 generations of descendants, numbering over 13,000 individuals. The distribution of repeat lengths in this sampling of the Venezuelan pedigree (median 46, mean 48.26, s.d. 9.3) is not significantly different from that of the larger sample of HD chromosomes from all families. Panels B and C display results for two extended families in which HD was introduced more recently than in the Venezuelan kindred. These families have been reported to exhibit different age of onset distributions and varied phenotypic features of HD (Folstein, S.E., et al., Science 229:776-779 (1985)). Both revealed extensive repeat length variation, with a median of 41 and 49 repeat units, respectively. The distribution of repeat lengths in the members of the family in Panel B was significantly different from the distribution of all HD chromosome repeat lengths (p<0.0001), with a smaller mean of 42.04 repeat units (s.d. 2.82). The repeat distribution from HD chromosomes of Panel C was also significantly different from the total data set (p<0.004), but with a higher mean of 49.80(s.d. 5.86).

Example 7

Parental Source Effects on Repeat Length Variation

For 62 HD chromosomes in Figure 11, the length of the trinucleotide repeat also could be examined on the corresponding parental HD chromosome. In 20 of 25 maternal transmissions, and in 31 of 37 paternal transmissions, the repeat length was altered, indicating considerable instability. A similar phenomenon was not observed for normal chromosomes, where more than 500 meiotic transmissions revealed no changes in repeat length, although the very existence of such a large number of normal alleles suggests at least a low degree. of instability.

Figure 14 shows the relationship between the repeat lengths on the HD chromosomes in the affected parent and corresponding progeny. For the 20 maternally-inherited chromosomes on which the repeat length was altered, 13 changes were increases in length and 7 were decreases. Both increases and decreases involved changes of less than 5 repeat units and the overall correlation between the mother's repeat length and that of her child was r=0.95 (p<0.0001). The average change in repeat length in the 25 maternal transmissions was an increase of 0.4 repeats.

On paternally-derived chromosomes, the 31 transmissions in which the repeat length changes comprised 26 length increases and 5 length decreases. Although the decreases in size were only slightly smaller than those observed on maternally-derived chromosomes, ranging from 1 to 3 repeat units, the increases were often dramatically larger. Thus, the correlation of the repeat length in the father with that of his offspring was only r=0.35 (p<0.04). The average change in the 37 paternal transmissions was an increase of 9 repeat units. The maximum length increase observed through paternal transmission was 41 repeat units, a near doubling of the parental repeat.

For both male and female transmissions, there was no correlation between the size of the parental repeat and either the magnitude or frequency of changes.

To determine whether the variation in the length of the repeat observed through male transmission of HD chromosomes is reflected in the male germ cells, we amplified the repeat from sperm DNA and from DNA of the corresponding lymphoblast from 5 HD gene carriers. The results, shown in Figure 15, reveal striking differences between the lymphoblast and sperm DNA for the HD chromosome repeat, but not for the repeat on

the normal chromosome. All the sperm donors are members of the Venezuelan HD family and range in age from 24 to 30 years. Individuals 1 and 2 are siblings with HD chromosome repeat lengths based on lymphoblast DNA of 45 and 52, respectively. Individuals 3 and 4 are also siblings, with HD repeat lengths of 46 and 49, respectively. Individual 5, from a different sibship than either of the other two pairs, has an HD repeat of 52 copies. In all 5 cases, the PCR amplification of sperm DNA and lymphoblast DNA yielded identical products from the normal chromosome. However, in comparison with lymphoblast DNA, the HD gene from sperm DNA yielded a diffuse array of products. In 3 of the 5 cases (2,4 and 5), the diffuse array spread to much larger allelic products than the corresponding lymphoblast product. Subject 2 showed the greatest range of expansion, with the sperm DNA product extending to over 80 repeat units. Interestingly, the 3 individuals displaying the greatest variation have the longest repeats and are currently symptomatic. The other two donors have shorter repeat lengths in the HD range, and remain at risk at this time.

The striking difference in the high repeat length range (>55) between HD chromosomes transmitted from the father and those transmitted from the mother indicated a potential parental source effect. When this was examined directly, the HD chromosome repeat length changed in about 85% of transmissions. Most changes involved a fluctuation of only a few repeat units, with larger increases occurring only in male transmissions. The greater size increases in male transmission appear to be caused by particular instability of the HD trinucleotide repeat during male gametogenesis, based on the amplification of the repeat from sperm DNA.

Example 8

5

10

15

20

25

30

40

45

Relationship between Repeat Length and Age of Onset

Increased repeat length might correlate with a reduced age of onset of HD. Accordingly, age of onset data was determined for 234 of the individuals represented in Figure 11. Figure 16 displays the repeat lengths found on the HD and normal chromosomes of these individuals relative to their age of onset. Indeed, age of onset is inversely correlated with the HD repeat length. A Pearson correlation coefficient of r=-.75, p<0.0001 was obtained assuming a linear relationship between age of onset and repeat length. When a polynomial function was used, a better fit was obtained ($R^2=0.61$, F=121.45), suggesting a higher order association between age of onset and repeat length.

There is considerable variation in the age of onset associated with any specific number of repeat units, particularly for trinucleotide repeats in the 37-52 unit zone (88% of HD chromosomes) where onset ranged from 15 to 75 years. In this range, a linear relationship between age of onset and repeat length provided as good a fit as a higher order relationship. The 95 % confidence interval surrounding the predicted regression line was estimated at ±18 years. In the 37 to 52 unit range, the association of repeat length to onset age is only half as strong as in the overall distribution (r=-0.40, p<.0001), indicating that much of the predictive power is contributed by repeats longer than 52 units. In this increased range, onset is likely to be very young and consequently not relevant to most persons seeking testing.

For the 178 cases in the 37-52 repeat unit range for which it was possible to subdivide the data set based on parental origin of the HD gene, multivariate regression analysis suggested a significant effect of parental origin on age of onset (p<0.05) independent of repeat length in this range. HD gene carriers from maternal transmissions had an average age of onset two years later than those from paternal transmissions.

In both univariate and multivariate analyses, no association between age of onset and the repeat length on the normal chromosome was detected, either in the total data set, or when it was subdivided into chromosomes of maternal or paternal origin.

All publications mentioned hereinabove are hereby incorporated in their entirety by reference.

While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention and appended claims.

50

55

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
40	(i) APPLICANT: THE GENERAL HOSPITAL CORPORATION Fruit Street Boston, Massachusetts 02114 United States of America	
10	(ii) TITLE OF INVENTION: Huntingtin DNA, Protein And Uses Thereof	
	(iii) NUMBER OF SEQUENCES: 6	
15	(iv) CORRESPONDENCE ADDRESS: (A) KILBURN & STRODE (B) 30 JOHN STREET (C) LONDON (D) GREAT BRITAIN (E) WC1N 2DD	
20	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 	
25	(vi) CURRENT APPLICATION DATA: (A) 7th March 1994	
30	(vii)PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/085,000 (B) FILING DATE: 01 JULY 1993	
	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/027,498 (B) FILING DATE: 05 MARCH 1993</pre>	
35	(2) INFORMATION FOR SEQ ID NO:1:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	GGCGGGAGAC CGCCATGGCG	20
45	(2) INFORMATION FOR SEQ ID NO:2:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	AATACGACTC ACTATAG	17

55

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	ATGAAGGCCT TCGAGTCCCT CAAGTCCTTC	30
10	(2) INFORMATION FOR SEQ ID NO:4:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
20	AAACTCACGG TCGGTGCAGC GGCTCCTCAG	30
	(2) INFORMATION FOR SEQ ID NO:5:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10366 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3169748	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
35	TTGCTGTGTG AGGCAGAACC TGCGGGGGCA GGGGCGGGCT GGTTCCCTGG CCAGCCATTG GCAGAGTCCG CAGGCTAGGG CTGTCAATCA TGCTGGCCGG CGTGGCCCCG CCTCCGCCGG	60 120
	CGCGGCCCG CCTCCGCCG CGCACGTCTG GGACGCAAGG CGCCGTGGGG GCTGCCGGGA	180
	CGGGTCCAAG ATGGACGGCC GCTCAGGTTC TGCTTTTACC TGCGGCCCAG AGCCCCATTC	240
40	ATTGCCCGG TGCTGAGCGG CGCCGCGAGT CGGCCCGAGG CCTCCGGGGA CTGCCGTGCC	300
	GGGCGGGAGA CCGCC ATG GCG ACC CTG GAA AAG CTG ATG AAG GCC TTC GAG Met Ala Thr Leu Glu Lys Leu Met Lys Ala Phe Glu 1 5 10	351
45	TCC CTC AAG TCC TTC CAG CAG CAG CAG CAG CAG CAG CAG CAG CA	399
	CAG CAG CAG CAG CAG CAG CAG CAG CAG CAA CAG CCG CC	447
50	CCG CCG CCG CCG CCT CCT CAG CTT CCT CAG CCG CCG CCG CAG GCA Pro Pro Pro Pro Pro Pro Gln Leu Pro Gln Pro Pro Pro Gln Ala 45 50 55 60	495
55	CAG CCG CTG CTG CCT CAG CCG CAG CCG CCC CCG CCG CCG CCC CCG CCG	543
	CCA CCC GGC CCG GCT GTG GCT GAG GAG CCG CTG CAC CGA CCA AAG AAA	591

	Pro	Pro	Gly	Pro 80	Ala	Val	Ala	Glu	Glu 85	Pro	Leu	His	Arg	Pro 90	Lys	Lys		
5		CTT Leu																639
10	TGT Cys	GAA Glu 110	AAC Asn	ATA Ile	GTG Val	GCA Ala	CAG Gln 115	TCT Ser	GTC Val	AGA Arg	AAT Asn	TCT Ser 120	CCA Pro	GAA Glu	TTT Phe	CAG Gln		687
		CTT Leu																735
15		GAG Glu																783
		AAA Lys																831
20		AAG Lys																879
25		TGG Trp 190																927
		CCT Pro																975
30		CCC Pro															3	1023
		ATG Met															1	1071
35		TTA Leu															1	1119
40	CGG Arg	CGG Arg 270	ACA Thr	GCG Ala	GCT Ala	GGA Gly	TCA Ser 275	GCA Ala	GTG Val	AGC Ser	ATC Ile	TGC Cys 280	CAG Gln	CAC His	TCA Ser	AGA Arg	;	1167
	AGG Arg 285	ACA Thr	CAA Gln	TAT Tyr	TTC Phe	TAT Tyr 290	AGT Ser	TGG Trp	CTA Leu	CTA Leu	AAT Asn 295	GTG Val	CTC Leu	TTA Leu	GGC Gly	TTA Leu 300	:	1215
45	CTC Leu	GTT Val	CCT Pro	GTC Val	GAG Glu 305	GAT Asp	GAA Glu	CAC His	TCC Ser	ACT Thr 310	CTG Leu	CTG Leu	ATT Ile	CTT Leu	GGC Gly 315	GTG Val	;	1263
	CTG Leu	CTC Leu	ACC Thr	CTG Leu 320	AGG Arg	TAT Tyr	TTG Leu	GTC Val	CCC Pro 325	TTG Leu	CTG Leu	CAG Gln	CAG Gln	CAG Gln 330	GTC Val	AAG Lys	:	1311
50	GAC Asp	ACA Thr	AGC Ser 335	CTG Leu	AAA Lys	GGC Gly	AGC Ser	TTC Phe 340	GGA Gly	GTG Val	ACA Thr	AGG Arg	AAA Lys 345	GAA Glu	ATG Met	GAA Glu		1359
55	GTC Val	TCT Ser 350	Pro	TCT Ser	GCA Ala	GAG Glu	CAG Gln 355	CTT Leu	GTC Val	CAG Gln	GTT Val	TAT Tyr 360	GAA Glu	CTG Leu	ACG Thr	TTA Leu		1407
	CAT His	CAT His	ACA Thr	CAG Gln	CAC His	CAA Gln	GAC Asp	CAC His	AAT Asn	GTT Val	GTG Val	ACC Thr	GGA Gly	GCC Ala	CTG Leu	GAG Glu		1455

	365					370					375					380	
5					CTC Leu 385												1503
					GGG Gly												1551
10	TCT Ser	GGT Gly	GGC Gly 415	CGA Arg	AGC Ser	CGT Arg	AGT Ser	GGG Gly 420	AGT Ser	ATT Ile	GTG Val	GAA Glu	CTT Leu 425	ATA Ile	GCT Ala	GGA Gly	1599
15					TGC Cys												1647
					GAA Glu												1695
20					AGC Ser 465												1743
25					GCT Ala												1791
					ATC Ile												1839
30	GCG Ala	GAC Asp 510	TCA Ser	CTG Leu	GAT Asp	CTG Leu	GCC Ala 515	AGC Ser	TGT Cys	GAC Asp	TTG Leu	ACA Thr 520	AGC Ser	TCT Ser	GCC Ala	ACT Thr	1887
	Asp 525	Gly	Asp	Glu	GAG Glu	Asp 530	Ile	Leu	Ser	His	Ser 535	Ser	Ser	Gln	Val	Ser 540	1935
35	Ala	Val	Pro	Ser	GAC Asp 545	Pro	Ala	Met	Asp	Leu 550	Asn	Asp	Gly	Thr	Gln 555	Ala	1983
40	Ser	Ser	Pro	Ile 560	AGC Ser	Asp	Ser	Ser	Gln 565	Thr	Thr	Thr	Glu	Gly 570	Pro	Asp	2031
	Ser	Ala	Val 575	Thr	CCT Pro	Ser	Asp	Ser 580	Ser	Glu	Ile	Val	Leu 585	Asp	Gly	Thr	2079
45	Asp	Asn 590	Gln	Tyr	Leu	Gly	Leu 595	Gln	Ile	Gly	Gln	Pro 600	Gln	Asp	Glu	GAT Asp	2127
50	Glu 605	Glu	Ala	Thr	Gly	Ile 610	Leu	Pro	Asp	Glu	Ala 615	Ser	Glu	Ala	Phe	ACG Arg 620	2175
50	Asn	Ser	Ser	Met	Ala 625	Leu	Gln	Gln	Ala	His 630	Leu	Leu	Lys	Asn	Met 635		2223
55	His	Cys	Arg	Gln 640	Pro	Ser	Asp	Ser	Ser 645	Val	Asp	Lys	Phe	Val 650	Leu	AGA Arg	2271
	GAT Asp	GAA Glu	GCT Ala	ACT Thr	GAA Glu	CCG Pro	GGT Gly	GAT Asp	CAA Gln	GAA Glu	AAC	Lys	CCT Pro	TGC	CGC	I ATC Ile	2319

			655					660					665				
5	AAA Lys	GGT Gly 670	GAC Asp	ATT Ile	GGA Gly	CAG Gln	TCC Ser 675	ACT Thr	GAT Asp	GAT Asp	GAC Asp	TCT Ser 680	GCA Ala	CCT Pro	CTT Leu	GTC Val	2367
	CAT His 685	TCT Ser	GTC Val	CGC Arg	CTT Leu	TTA Leu 690	TCT Ser	GCT Ala	TCG Ser	TTT Phe	TTG Leu 695	CTA Leu	ACA Thr	GGG Gly	GGA Gly	AAA Lys 700	2415
10	AAT Asn	GTG Val	CTG Leu	GTT Val	CCG Pro 705	GAC Asp	AGG Arg	GAT Asp	GTG Val	AGG Arg 710	GTC Val	AGC Ser	GTG Val	AAG Lys	GCC Ala 715	CTG Leu	2463
15	GCC Ala	CTC Leu	AGC Ser	TGT Cys 720	GTG Val	GGA Gly	GCA Ala	GCT Ala	GTG Val 725	GCC Ala	CTC Leu	CAC His	CCG Pro	GAA Glu 730	TCT Ser	TTC Phe	2511
	TTC Phe	AGC Ser	AAA Lys 735	CTC Leu	TAT Tyr	AAA Lys	GTT Val	CCT Pro 740	CTT Leu	GAC Asp	ACC Thr	ACG Thr	GAA Glu 745	TAC Tyr	CCT Pro	GAG Glu	2559
20	GAA Glu	CAG Gln 750	TAT Tyr	GTC Val	TCA Ser	GAC Asp	ATC Ile 755	TTG Leu	AAC Asn	TAC Tyr	ATC Ile	GAT Asp 760	CAT His	GGA Gly	GAC Asp	CCA Pro	2607
25	CAG Gln 765	GTT Val	CGA Arg	GGA Gly	GCC Ala	ACT Thr 770	GCC Ala	ATT Ile	CTC Leu	TGT Cys	GGG Gly 775	ACC Thr	CTC Leu	ATC Ile	TGC Cys	TCC Ser 780	2655
	ATC Ile	CTC Leu	AGC Ser	AGG Arg	TCC Ser 785	CGC Arg	TTC Phe	CAC His	GTG Val	GGA Gly 790	GAT Asp	TGG Trp	ATG Met	GGC Gly	ACC Thr 795	ATT Ile	2703
30	AGA Arg	ACC Thr	CTC Leu	ACA Thr 800	GGA Gly	AAT Asn	ACA Thr	TTT Phe	TCT Ser 805	TTG Leu	GCG Ala	GAT Asp	TGC Cys	ATT Ile 810	CCT Pro	TTG Leu	2751
	CTG Leu	CGG Arg	AAA Lys 815	ACA Thr	CTG Leu	AAG Lys	GAT Asp	GAG Glu 820	TCT Ser	TCT Ser	GTT Val	ACT Thr	TGC Cys 825	AAG Lys	TTA Leu	GCT Ala	2799
35	TG T Cys	ACA Thr 830	GCT Ala	GTG Val	AGG Arg	AAC Asn	TGT Cys 835	GTC Val	ATG Met	AGT Ser	CTC Leu	TGC Cys 840	AGC Ser	AGC Ser	AGC Ser	TAC Tyr	2847
40	AGT Ser 845	GAG Glu	TTA Leu	GGA Gly	CTG Leu	CAG Gln 850	CTG Leu	ATC Ile	ATC Ile	GAT Asp	GTG Val 855	CTG Leu	ACT Thr	CTG Leu	AGG Arg	AAC Asn 860	2895
	AGT Ser	TCC Ser	TAT Tyr	TGG Trp	CTG Leu 865	GTG Val	AGG Arg	ACA Thr	GAG Glu	CTT Leu 870	CTG Leu	GAA Glu	ACC Thr	CTT Leu	GCA Ala 875	GAG Glu	2943
45	ATT Ile	GAC Asp	TTC Phe	AGG Arg 880	CTG Leu	GTG Val	AGC Ser	TTT Phe	TTG Leu 885	GAG Glu	GCA Ala	AAA Lys	GCA Ala	GAA Glu 890	AAC Asn	TTA Leu	2991
50						CAT His											3039
50	GTG Val	CTC Leu 910	AAT Asn	AAT Asn	GTT Val	GTC Val	ATC Ile 915	CAT His	TTG Leu	CTT Leu	GGA Gly	GAT Asp 920	GAA Glu	GAC Asp	CCC Pro	AGG Arg	3087
55	GTG Val 925	CGA Arg	CAT His	GTT Val	GCC Ala	GCA Ala 930	GCA Ala	TCA Ser	CTA Leu	ATT Ile	AGG Arg 935	CTT Leu	GTC Val	CCA Pro	AAG Lys	CTG Leu 940	3135
						CAA Gln											3183

			945		950		955		
5	AGA GAT Arg Asp	CAA AGC Gln Ser 960	AGT GTT Ser Val	TAC CTG Tyr Leu	AAA CTT Lys Leu 965	CTC ATG CAT Leu Met His	GAG ACG Glu Thr 970	CAG Gln	3231
	CCT CCA Pro Pro	TCT CAT Ser His 975	TTC TCC Phe Ser	GTC AGC Val Ser 930	ACA ATA Thr Ile	ACC AGA ATA Thr Arg Ile 985	TAT AGA Tyr Arg	GGC Gly	3279
10	TAT AAC Tyr Asn 990	CTA CTA Leu Leu	CCA AGC Pro Ser	ATA ACA Ile Thr 995	GAC GTC Asp Val	ACT ATG GAA Thr Met Glu 1000	AAT AAC Asn Asn	CTT Leu	3327
15	Ser Arg 1005	Val Ile	Ala Ala 1010	Val Ser	His Glu	CTA ATC ACA Leu Ile Thr 1015	Ser inr	1020	3375
	AGA GCA Arg Ala	CTC ACA Leu Thr	TTT GGA Phe Gly 1025	TGC TGT Cys Cys	GAA GCT Glu Ala 103	TTG TGT CTT Leu Cys Leu 0	CTT TCC Leu Ser 103	Thr	3423
20	GCC TTC Ala Phe	CCA GTT Pro Val 104	. Cys Ile	TGG AGT Trp Ser	TTA GGT Leu Gly 1045	TGG CAC TGT Trp His Cys	GGA GTO Gly Val 1050	CCT Pro	3471
25	CCA CTG Pro Leu	AGT GCC Ser Ala 1055	TCA GAT Ser Asp	GAG TCT Glu Ser 106	Arg Lys	AGC TGT ACC Ser Cys Thr 106	. val Gly	ATG Met	3519
20	Ala Thr 107	Met Ile O	e Leu Thr	Leu Leu 1075	Ser Ser	GCT TGG TTC Ala Trp Phe 1080	Pro Let	ı Asp	3567
30	Leu Ser 1085	Ala His	s Gln Asp 109	Ala Leu O	ı Ile Leu	GCC GGA AAG Ala Gly Asi 1095	rea re	1100	3615
	Ala Ser	: Ala Pro	Lys Ser 1105	Leu Arg	g Ser Ser 111		r Glu Gli	1 G1u 15	3663
35	Ala Asr	Pro Ala	a Ala Thr 20	Lys Glr	n Glu Glu 1125	GTC TGG CC	1130	u Giy	3711
40	Asp Arg	Ala Le	u Val Pro	Met Va.	1 GIU GIR 40	G CTC TTC TC n Leu Phe Se 11	45	a bea	3759
	Lys Val	l Ile As 50	n lie Cys	1155	s val Let	G GAT GAC GT 1 Asp Asp Va 1160	i Aia Fi	O GIY	3807
45	Pro Ala 1165	a Ile Ly	s Ala Ala 117	a Leu Pr 70	o Ser Lei	A ACA AAC CC u Thr Asn Pr 1175	o Pro Se	1180	3855
	Ser Pr	o Ile Ar	g Arg Lys 1185	s Gly Ly	s Glu Ly 11		y GIU GI	.n Ala .95	3903
50	Ser Va	l Pro Le	u Ser Pro 200	o Lys Ly	s Gly Se 1205	T GAG GCC AC r Glu Ala Se	1210	la Ser	3951
55	Arg Gl	n Ser As 1215	sp Thr Se	r Gly ?r 12	co Val Th		7s Ser St 225	er ser	3999
	CTG GG Leu Gl	G AGT T	TC TAT CA ne Tyr Hi	T CTT CO s Leu Pi	T TCA TA	C CTC AGA C'r Leu Arg L	rg CAT G	AT GTC sp Val	4047

		1230)				1235	5				1240)				
5	CTG Leu 1245	Lys	GCT Ala	ACA Thr	CAC His	GCT Ala 1250	Asn	TAC Tyr	AAG Lys	GTC Val	ACG Thr 1255	Leu	GAT Asp	CTT Leu	CAG Gln	AAC Asn 1260	4095
	AGC Ser	ACG Thr	GAA Glu	AAG Lys	TTT Phe 1265	Gly	GGG Gly	TTT Phe	CTC Leu	CGC Arg 1270	Ser	GCC Ala	TTG Leu	GAT Asp	GTT Val 1275	Leu	4143
10	TCT Ser	CAG Gln	ATA Ile	CTA Leu 1280	Glu	CTG Leu	GCC Ala	ACA Thr	CTG Leu 1285	Gln	GAC Asp	ATT Ile	GGG Gly	AAG Lys 1290	Cys	GTT Val	4191
15	GAA Glu	GAG Glu	ATC Ile 1295	Leu	GGA Gly	TAC Tyr	CTG Leu	AAA Lys 1300	Ser	TGC Cys	TTT Phe	AGT Ser	CGA Arg 1305	Glu	CCA Pro	ATG Met	4239
	ATG Met	GCA Ala 1310	Thr	GTT Val	TGT Cys	GTT Val	CAA Gln 1315	Gln	TTG Leu	TTG Leu	AAG Lys	ACT Thr 1320	Leu	TTT Phe	GGC Gly	ACA Thr	4287
20	AAC Asn 1325	Leu	GCC Ala	TCC Ser	CAG Gln	TTT Phe 1330	Asp	GGC Gly	TTA Leu	TCT Ser	TCC Ser 1335	Asn	CCC Pro	AGC Ser	AAG Lys	TCA Ser 1340	4335
25	CAA (Gln	Gly	Arg	Ala	Gln 1345	Arg	Leu	Gly	Ser	Ser 1350	Ser	Val	Arg	Pro	Gly 1355	Leu 5	4383
	TAC Tyr				Phe					Thr					Ala		4431
30	GCT Ala .	GAC Asp	GCC Ala 1375	Ser	CTG Leu	AGG Arg	AAC Asn	ATG Met 1380	Val	CAG Gln	GCG Ala	GAG Glu	CAG Gln 1385	Glu	AAC Asn	GAC Asp	4479
	ACC Thr	TCG Ser 1390	Gly	TGG Trp	TTT Phe	GAT Asp	GTC Val 1395	Leu	CAG Gln	AAA Lys	GTG Val	TCT Ser 1400	Thr	CAG Gln	TTG Leu	AAG Lys	4527
35	ACA . Thr . 1405	Asn	CTC Leu	ACG Thr	AGT Ser	GTC Val 1410	Thr	AAG Lys	AAC Asn	CGT Arg	GCA Ala 1415	Asp	AAG Lys	AAT Asn	GCT Ala	ATT Ile 1420	4575
40	CAT . His .					Leu					Val					Lys	4623
	CAG Gln				Thr					Leu					Leu		4671
45	TTG Leu			${\tt Gln}$					Arg					Leu			4719
50	TCA Ser		Gln					Phe					Phe				4767
	GAA Glu 1485	Val					Glu					Ile					4815
55	TTC Phe					Leu					Tyr					Ile	4863
	ATT Ile	GGA Gly	ATT Ile	CCT Pro	AAA Lys	ATC Ile	ATT Ile	CAG Gln	CTC Leu	TGT Cys	GAT Asp	GGC Gly	ATC Ile	ATG Met	GCC Ala	AGT Ser	4911

				1520					1525	i				1530)			
5	GGA ! Gly !	Arg	AAG Lys 1535	Ala	GTG Val	ACA Thr	CAT His	GCC Ala 1540	Ile	CCG Pro	GCT Ala	Leu	CAG Gln 1545	Pro	ATA Ile	GTC Val	•	4959
10	CAC O	GAC Asp 1550	Leu	TTT Phe	GTA Val	TTA Leu	AGA Arg 1555	Gly	ACA Thr	AAT Asn	Lys	GCT Ala 1560	Asp	GCA Ala	GGA Gly	AAA Lys	!	5007
10	GAG Glu I	Leu	GAA Glu	ACC Thr	CAA Gln	AAA Lys 1570	Glu	GTG Val	GTG Val	GTG Val	TCA Ser 1575	Met	TTA	CTG Leu	AGA Arg	CTC Leu 1580		5055
15	ATC (CAG Gln	TAC Tyr	CAT His	CAG Gln 1585	Val	TTG Leu	GAG Glu	ATG Met	TTC Phe 1590	Ile	CTT Leu	GTC Val	CTG Leu	CAG Gln 1595	Gln		5103
	TGC (Cys)	CAC His	AAG Lys	GAG Glu 1600	Asn	GAA Glu	GAC Asp	AAG Lys	TGG Trp 1609	Lys	CGA Arg	CTG Leu	TCT Ser	CGA Arg 1610	Gln	ATA Ile		5151
20	GCT (GAC Asp	ATC Ile 1615	Ile	CTC Leu	CCA Pro	ATG Met	TTA Leu 1620	Ala	AAA Lys	CAG Gln	CAG Gln	ATG Met 1629	His	ATT Ile	GAC Asp		5199
25	TCT (CAT His 1630	Glu	GCC Ala	CTT Leu	GGA Gly	GTG Val 1635	Leu	AAT Asn	ACA Thr	TTA Leu	TTT Phe 1640	Glu	ATT Ile	TTG Leu	GCC Ala		5247
	CCT Pro 1645	Ser	TCC Ser	CTC Leu	CGT Arg	CCG Pro 165	Val	GAC Asp	ATG Met	CTT Leu	TTA Leu 1655	Arg	AGT Ser	ATG Met	TTC Phe	GTC Val 1660		5295
30	ACT Thr	CCA Pro	AAC Asn	ACA Thr	ATG Met 1669	Ala	TCC Ser	GTG Val	AGC Ser	ACT Thr 167	Val	CAA Gln	CTG Leu	TGG Trp	ATA Ile 167	Ser		5343
	GGA Gly	ATT Ile	CTG Leu	GCC Ala 168	Ile	TTG Leu	AGG Arg	GTT Val	CTG Leu 168	Ile	TCC Ser	CAG Gln	TCA Ser	ACT Thr 169	Glu	GAT Asp		5391
35	ATT Ile	GTT Val	CTT Leu 169	Ser	CGT Arg	ATT Ile	CAG Gln	GAG Glu 170	Leu	TCC Ser	TTC Phe	TCT Ser	CCG Pro 170	Tyr	TTA Leu	ATC Ile		5439
40	TCC Ser	TGT Cys 171	Thr	GTA Val	ATT Ile	AAT Asn	AGG Arg 171	Leu	AGA Arg	GAT Asp	GGG Gly	GAC Asp 172	Ser	ACT Thr	TCA Ser	ACG Thr		5487
	CTA Leu 1725	Glu	GAA Glu	CAC His	AGT Ser	GAA Glu 173	Gly	AAA Lys	CAA Gln	ATA Ile	AAG Lys 173	Asn	TTG Leu	CCA Pro	GAA Glu	GAA Glu 1740		5535
45	ACA Thr	TTT Phe	TCA Ser	AGG Arg	TTT Phe 174	Leu	TTA Leu	CAA Gln	CTG Leu	GTT Val 175	Gly	ATT	CTT Leu	TTA Leu	GAA Glu 175	GAC Asp		5583
	ATT Ile	GTT Val	ACA Thr	AAA Lys 176	Gln	CTG Leu	AAG Lys	GTG Val	GAA Glu 176	ı Met	AGT Ser	GAG Glu	CAG Gln	CAA Glr 177	1 HIS	ACT Thr		5631
50	TTC Phe	TAT Tyr	TGC Cys 177	Glr.	GAA Glu	CTA Leu	GGC Gly	ACA Thr 178	Let	CTA Lei	ATG Met	TGI Cys	CTC Lev 178	1 IIe	C CAC His	ATC Ile		5679
55	TTC Phe	AAG Lys 179	Ser	GGA Gly	ATG Met	TTC Phe	CGG Arg	Arg	ATO	ACA Tha	A GCA	GCT Ala 180	LAT	ACT Thi	r AGG	G CTG G Leu		5727
	TTC Phe	CGC Arg	AGI Ser	GAT Asp	GGC Gly	TG1	GGC Gly	GGC Gly	AG: Sei	r TTC	TAC Tyr	ACC Thi	C CTC	GAG 1 Asj	C AGO	TTG Leu		5775

	1805				1810)				1815	5				1820	
5	AAC TT Asn Le				Ser					His					Leu	5823
	CTC TO Leu Ti	GG TG rp Cy	CAG Gln 184	Ile	CTG Leu	CTG Leu	CTT Leu	GTC Val 1845	Asn	CAC His	ACC Thr	GAC Asp	TAC Tyr 1850	Arg	TGG Trp	5871
10	TGG GG Trp Al		ı Val					Lys					Ser			5919
15	AAG TT Lys Le						Ser					Asp				5967
	GCA GC Ala Al 1885					Cys					Val					6015
20	CTC AT				Asp					Asn					Glu	6063
25	CAC TO	TA AC	TGG Trp 192	Leu	ATT Ile	GTA Val	AAT Asn	CAC His 1925	Ile	CAA Gln	GAT Asp	CTG Leu	ATC Ile 1930	Ser	CTT Leu	6111
	TCC CA		ı Pro					Phe					His			6159
30	TCT GG Ser Al						Ile					Ser				6207
	AAC CT Asn Le 1965					Met					Leu					6255
35	GGG AT				Gln					Leu					Asp	6303
40	AGG C			Thr					Leu					Asp		6351
	CTT GO		s Arg					Leu					Leu			6399
45	AGC AS						Glu					Ile				6447
50	CTT CL Leu G 2045					Ala					Arg					6495
•	CTG G	AC AG sp Ar	G TTT g Phe	CGT Arg 206	Leu	TCC Ser	ACC Thr	ATG Met	CAA Gln 207	Asp	TCA Ser	CTT Leu	AGT Ser	CCC Pro 207	Ser	6543
55	CCT C	CA GT ro Va	C TCT l Ser 208	Ser	CAC His	CCG Pro	CTG Leu	GAC Asp 208	Gly	GAT Asp	GGG Gly	CAC His	GTG Val 209	Ser	CTG Leu	6591
	GAA A Glu T															6639

	2095	2100	ı	2105	
5	CAG TGT TGG ACC Gln Cys Trp Thr 2	AGG TCA GAT TCT Arg Ser Asp Ser 2115	GCA CTG CTG GAA Ala Leu Leu Glu 2120	Gly Ala Glu Leu	6687
	GTG AAT CGG ATT Val Asn Arg Ile	CCT GCT GAA GAT Pro Ala Glu Asp 2130	ATG AAT GCC TTC Met Asn Ala Phe 2135	ATG ATG AAC TCG Met Met Asn Ser 2140	6735
10	GAG TTC AAC CTA . Glu Phe Asn Leu	AGC CTG CTA GCT Ser Leu Leu Ala 2145	CCA TGC TTA AGC Pro Cys Leu Ser 2150	CTA GGG ATG AGT Leu Gly Met Ser 2155	6783
15	GAA ATT TCT GGT Glu Ile Ser Gly 2160	Gly Gln Lys Ser	GCC CTT TTT GAA Ala Leu Phe Glu 2165	GCA GCC CGT GAG Ala Ala Arg Glu 2170	6831
	GTG ACT CTG GCC Val Thr Leu Ala 2175	CGT GTG AGC GGC Arg Val Ser Gly 2180	Thr Val Gln Gln	CTC CCT GCT GTC Leu Pro Ala Val 2185	6879
20	CAT CAT GTC TTC His His Val Phe 2190	CAG CCC GAG CTG Gln Pro Glu Leu 2195	CCT GCA GAG CCG Pro Ala Glu Pro 220	GCG GCC TAC TGG Ala Ala Tyr Trp 0	6927
	AGC AAG TTG AAT Ser Lys Leu Asn 2205	GAT CTG TTT GGG Asp Leu Phe Gly 2210	GAT GCT GCA CTG Asp Ala Ala Leu 2215	TAT CAG TCC CTG Tyr Gln Ser Leu 2220	6975
25	CCC ACT CTG GCC Pro Thr Leu Ala	CGG GCC CTG GCA Arg Ala Leu Ala 2225	CAG TAC CTG GTG Gln Tyr Leu Val 2230	GTG GTC TCC AAA Val Val Ser Lys 2235	7023
30	CTG CCC AGT CAT Leu Pro Ser His 2240	Leu His Leu Pro	CCT GAG AAA GAG Pro Glu Lys Glu 2245	AAG GAC ATT GTG Lys Asp Ile Val 2250	7071
	AAA TTC GTG GTG Lys Phe Val Val 2255	GCA ACC CTT GAG Ala Thr Leu Glu 226	Ala Leu Ser Trp	G CAT TTG ATC CAT His Leu Ile His 2265	7119
35	GAG CAG ATC CCG Glu Gln Ile Pro 2270	CTG AGT CTG GAT Leu Ser Leu Asp 2275	CTC CAG GCA GGG Leu Gln Ala Gly 228	G CTG GAC TGC TGC / Leu Asp Cys Cys 30	7167
40	TGC CTG GCC CTG Cys Leu Ala Leu 2285	CAG CTG CCT GGC Gln Leu Pro Gly 2290	CTC TGG AGC GTC Leu Trp Ser Val 2295	G GTC TCC TCC ACA l Val Ser Ser Thr 2300	7215
	GAG TTT GTG ACC Glu Phe Val Thr	CAC GCC TGC TCC His Ala Cys Ser 2305	CTC ATC TAC TGT Leu Ile Tyr Cys 2310	T GTG CAC TTC ATC s Val His Phe Ile 2315	7263
45	CTG GAG GCC GTT Leu Glu Ala Val 232	Ala Val Gln Pro	GGA GAG CAG CT Gly Glu Gln Let 2325	T CTT AGT CCA GAA u Leu Ser Pro Glu 2330	7311
	AGA AGG ACA AAT Arg Arg Thr Asn 2335	ACC CCA AAA GCC Thr Pro Lys Ala 234	a Ile Ser Glu Gl	G GAG GAG GAA GTA u Glu Glu Glu Val 2345	7359
50	GAT CCA AAC ACA Asp Pro Asn Thr 2350	CAG AAT CCT AAG Gln Asn Pro Ly: 2355	G TAT ATC ACT GC. 5 Tyr Ile Thr Al. 23	A GCC TGT GAG ATG a Ala Cys Glu Met 60	7407
55	GTG GCA GAA ATG Val Ala Glu Met 2365	GTG GAG TCT CTG Val Glu Ser Let 2370	G CAG TCG GTG TT u Gln Ser Val Le 2375	G GCC TTG GGT CAT u Ala Leu Gly His 2380	7455
	AAA AGG AAT AGO Lys Arg Asn Ser	GGC GTG CCG GC Gly Val Pro Al	G TTT CTC ACG CC a Phe Leu Thr Pr	A TTG CTC AGG AAC TO Leu Leu Arg Asn	7503

					2385	5				2390	}				2395	5	
5	ATC Ile	ATC Ile	ATC Ile	AGC Ser 2400	Leu	GCC Ala	CGC Arg	CTG Leu	CCC Pro 2409	Leu	GTC Val	AAC Asn	AGC Ser	TAC Tyr 241	Thr	CGT Arg	7551
	GTG Val	CCC Pro	CCA Pro 2415	Leu	GTG Val	TGG Trp	AAG Lys	CTT Leu 2420	Gly	TGG Trp	TCA Ser	CCC Pro	AAA Lys 2425	Pro	GGA Gly	GGG Gly	7599
10			Gly				CCT Pro 2435	Glu					Phe			GAA Glu	7647
15	AAG Lys 2445	Glu	GTC Val	TTT Phe	AAG Lys	GAG Glu 2450	TTC Phe	ATC Ile	TAC Tyr	CGC Arg	ATC Ile 2455	Asn	ACA Thr	CTA Leu	GGC Gly	TGG Trp 2460	7695
						Phe	GAA Glu				Ala					Val	7743
20	CTG Leu	GTG Val	ACG Thr	CAG Gln 2480	Pro	CTC Leu	GTG Val	ATG Met	GAG Glu 2485	Gln	GAG Glu	GAG Glu	AGC Ser	CCA Pro 2490	Pro	GAA Glu	7791
25				Glu			CAG Gln		Asn					Gln			7839
			Leu				GCA Ala 2515	Met					Ala			CCA Pro	7887
30		Val					CAG Gln					Lys					7935
						Gly	AGG Arg				Ile					Val	7983
35					Gln		ATG Met			Lys					Ala		8031
40				Tyr			TGG Trp		Pro					Ser			8079
			Gly				AGC Ser 2595	His					Leu			AAC Asn	8127
45		Glu					AGC Ser					Leu					8175
	ATA Ile	CAC His	TCC Ser	GTG Val	TGG Trp 2625	Leu	GGG Gly	AAC Asn	AGC Ser	ATC Ile 263	Thr	CCC Pro	CTG Leu	AGG Arg	GAG Glu 263	Glu	8223
50	Glu	Trp	Asp	Glu 264	Glu 0	Glu	Glu	Glu	Glu 264	Ala 5	Asp	Ala	Pro	Ala 265	Pro 0		8271
55	Ser	Pro	Pro 265	Thr 5	Ser	Pro	GTC Val	Asn 266	Ser 0	Arg	Lys	His	Arg 266	Ala 5	Gly	Val	8319
	GAC Asp	ATC Ile	CAC His	TCC Ser	TGT Cys	TCG Ser	CAG Gln	TTT Phe	TTG Leu	CTT Leu	GAG Glu	TTG Leu	TAC Tyr	AGC Ser	CGC Arg	TGG	8367

	2670	2675	2680
5	ATC CTG CCG TCC AGC TCI Ile Leu Pro Ser Ser Ser 2685	Ala Arg Arg Thr Pro	Ala Ile Leu Ile Ser
10	GAG GTG GTC AGA TCC CT	T CTA GTG GTC TCA GAC	TTG TTC ACC GAG CGC 8463
	Glu Val Val Arg Ser Let	Leu Val Val Ser Asp	Leu Phe Thr Glu Arg
	2705	2710	2715
10	AAC CAG TTT GAG CTG ATG	G TAT GTG ACG CTG ACA	GAA CTG CGA AGG GTG 8511
	Asn Gln Phe Glu Leu Mer	t Tyr Val Thr Leu Thr	Glu Leu Arg Arg Val
	2720	2725	2730
15	CAC CCT TCA GAA GAC GA	G ATC CTC GCT CAG TAC	CTG GTG CCT GCC ACC 8559
	His Pro Ser Glu Asp Gl	u Ile Leu Ala Gln Tyr	Leu Val Pro Ala Thr
	2735	2740	2745
	TGC AAG GCA GCT GCC GT	C CTT GGG ATG GAC AAG	GCC GTG GCG GAG CCT 8607
	Cys Lys Ala Ala Ala Va	l Leu Gly Met Asp Lys	Ala Val Ala Glu Pro
	2750	2755	2760
20	GTC AGC CGC CTG CTG GA Val Ser Arg Leu Leu Gl 2765 27	u Ser Thr Leu Arg Ser	Ser His Leu Pro Ser
	AGG GTT GGA GCC CTG CA	C GGC ATC CTC TAT GTG	CTG GAG TGC GAC CTG 8703
	Arg Val Gly Ala Leu Hi	s Gly Ile Leu Tyr Val	Leu Glu Cys Asp Leu
	2785	2790	2795
25	CTG GAC GAC ACT GCC AA	G CAG CTC ATC CCG GTC	C ATC AGC GAC TAT CTC 8751
	Leu Asp Asp Thr Ala Ly	s Gln Leu Ile Pro Val	I lle Ser Asp Tyr Leu
	2800	2805	2810
30	CTC TCC AAC CTG AAA GG	G ATC GCC CAC TGC GTC	G AAC ATT CAC AGC CAG 8799
	Leu Ser Asn Leu Lys Gl	y Ile Ala His Cys Val	L Asn Ile His Ser Gln
	2815	2820	2825
	CAG CAC GTA CTG GTC AT	G TGT GCC ACT GCG TTT	T TAC CTC ATT GAG AAC 8847
	Gln His Val Leu Val Me	C Cys Ala Thr Ala Phe	e Tyr Leu Ile Glu Asn
	2830	2835	2840
35	TAT CCT CTG GAC GTA GG Tyr Pro Leu Asp Val Gl 2845 28	G CCG GAA TTT TCA GCA y Pro Glu Phe Ser Ala 150 289	a Ser Ile Ile Gln Met
40	TGT GGG GTG ATG CTG TG Cys Gly Val Met Leu Se 2865	er Gly Ser Glu Glu Ser 2870	C.ACC CCC TCC ATC ATT 8943 r Thr Pro Ser Ile Ile 2875
	TAC CAC TGT GCC CTC AC	GA GGC CTG GAG CGC CTG	C CTG CTC TCT GAG CAG 8991
	Tyr His Cys Ala Leu Ar	cg Gly Leu Glu Arg Leu	u Leu Leu Ser Glu Gln
	2880	2885	2890
45	CTC TCC CGC CTG GAT GG	CA GAA TCG CTG GTC AA	G CTG AGT GTG GAC AGA 9039
	Leu Ser Arg Leu Asp A	la Glu Ser Leu Val Ly	s Leu Ser Val Asp Arg
	2895	2900	2905
	GTG AAC GTG CAC AGC C	CG CAC CGG GCC ATG GC	G GCT CTG GGC CTG ATG 9087
	Val Asn Val His Ser P	ro His Arg Ala Met Al	a Ala Leu Gly Leu Met
	2910	2915	2920
50	CTC ACC TGC ATG TAC A Leu Thr Cys Met Tyr T 2925 2	hr Gly Lys Glu Lys Va	C AGT CCG GGT AGA ACT 9135 11 Ser Pro Gly Arg Thr 2940
55	TCA GAC CCT AAT CCT G	CA GCC CCC GAC AGC GA	G TCA GTG ATT GTT GCT 9183
	Ser Asp Pro Asn Pro A	la Ala Pro Asp Ser Gl	u Ser Val Ile Val Ala
	2945	2950	2955
	ATG GAG CGG GTA TCT G	TT CTT TTT GAT AGG AT	CC AGG AAA GGC TTT CCT 9231
	Met Glu Arg Val Ser V	al Leu Phe Asp Arg Il	Le Arg Lys Gly Phe Pro

		2960						5				2970					
5	TGT GAA Cys Glu	GCC Ala 2975	Arg V	STG GTG Val Val	G GCC L Ala	AGG Arg 298	Ile	CTG Leu	CCC Pro	CAG Gln	TTT Phe 2989	Leu	GAC Asp	GAC Asp	9279		
	TTC TTC Phe Phe 299	Pro	CCC C Pro G	CAG GAG	C ATC D Ile 299	Met	AAC Asn	AAA Lys	GTC Val	ATC Ile 3000	Gly	GAG Glu	TTT Phe	CTG Leu	9327		
10	TCC AAC Ser Asn 3005				. Pro					Thr					9375		
15	GTG TTT Val Phe	CAG . Gln	Thr L	TG CAG eu His 025	C AGC S Ser	ACC Thr	GGG Gly	CAG Gln 3030	Ser	TCC Ser	ATG Met	GTC Val	CGG Arg 3035	Asp	9423		
	TGG GTC Trp Val	Met	CTG T Leu S 3040	CC CTO	TCC Ser	AAC Asn	TTC Phe	Thr	CAG Gln	AGG Arg	GCC Ala	CCG Pro 3050	Val	GCC Ala	9471		
20	ATG GCC Met Ala		Trp S				Phe					Ser			9519		
25	CCG TGG Pro Trp 307	Val .	GCG G Ala A	CG ATO	CTC Leu 307	Pro	CAT His	GTC Val	ATC Ile	AGC Ser 3080	Arg	ATG Met	GGC Gly	AAG Lys	9567		
20	CTG GAG Leu Glu 3085				l Asn					Val					9615		
30	TAC AGA Tyr Arg		Gln I						Arg					Ser	9663		
	GTG CTT Val Leu	Glu						Ser					Leu		9711		
35	ACT TGT Thr Cys		Arg A				Val				T G	AGCG	CCAT	5	9758		
	GTGGGAG	AGA C	TGTGA	GCCC (GCAGC'	rggg	G CCC	GGAG	CTT	TGG	AAGT	CTG T	rgcc	CTTGTG	9818		
40	CCCTGCC	rcc A	CCGAG	CCAG (CTTGG	rccc:	TA T	GGGC1	TCC	GCA	CATG	CCG (CGGG	CGGCCA	9878		
	GGCAACG'	TGC G	TGTCT	CTGC (CATGT	GGCA	G AAC	GTGC1	CTT	TGT	GCA	STG (GCCAC	GCAGG	9938		
	GAGTGTC'	IGC A	GTCCT	GGTG	GGGCT	GAGC	I TG	AGGC	CTTC	CAG	AAAG	CAG (GAGC	AGCTGT	9998		
45	GCTGCAC	CCC A	TGTGG	GTGA (CAGG'	rcct:	r TC	rccro	SATA	GTC	ACCT	GCT (3GTT(STTGCC	10058		
	AGGTTGC														10118		
	CCCCTCT														10178		
50	TCTCCCT			-											10238		
	TGCTGGG														10298		
	TCTCAGG.		AAAA'l	IIAA '	LIATA	ı CAG.	ı AA	ngag/	TITA	AII.	TTAM	-G1 /	~~~~	wanna.	10356		
	AMMAMA	n,															

(2) INFORMATION FOR SEQ ID NO:6:

55

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3144 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

	Met 1	Ala	Thr	Leu	Glu 5	Lys	Leu	Met	Lys	Ala 10	Phe	Glu	Ser	Leu	Lys 15	Ser
10	Phe	Gln	Gln	Gln 20	Gln	Gln	Gln	Gln	Gln 25	Gln	Gln	Gln	Gln	Gln 30	Gln	Gln
	Gln	Gln	Gln 35	Gln	Gln	Gln	Gln	Gln 40	Pro	Pro	Pro	Pro	Pro 45	Pro	Pro	Pro
15	Pro	Pro 50	?ro	Gln	Leu	Pro	Gln 55	Pro	Pro	Pro	Gln	Ala 60	Gln	Pro	Leu	Leu
	Pro 65	Gln	Pro	Gln	Pro	Pro 70	Pro	Pro	Pro	Pro	Pro 75	Pro	Pro	Pro	Gly	Pro 80
20	Ala	Val	Ala	Glu	Glu 85	Pro	Leu	His	Arg	Pro 90	Lys	Lys	Glu	Leu	Ser 95	Ala
	Thr	Lys	Lys	Asp 100	Arg	Val	Asn	His	Cys 105	Leu	Thr	Ile	Cys	Glu 110	Asn	Ile
25	Val	Ala	Gln 115	Ser	Val	Arg	Asn	Ser 120	Pro	Glu	Fhe	Gln	Lys 125	Leu	Leu	Gly
		Ala 130					135					140				
30	Val 145	Arg	Met	Val	Ala	Asp 150	Glu	Cys	Leu	Asn	Lys 155	Val	Ile	Lys	Ala	Leu 160
	Met	Asp	Ser	Asn	Leu 165	Pro	Arg	Leu	Gln	Leu 170	Glu	Leu	Tyr	Lys	Glu 175	Ile
35	Lys	Lys	Asn	Gly 180	Ala	Pro	Arg	Ser	Leu 185	Arg	Ala	Ala	Leu	Trp 190	Arg	Phe
		Glu	195					200					205			
40		Asn 210					215					220				
	225					230					235					Ser 240
45					245					250					255	
4 0				260					265					270		Ala
50			275	,				280)				283)		Tyr
		290	ŀ				295	•				300)			Val
55	305	5				310)				315	5				320
					325	5				33()				33:	
	Lys	s Gly	/ Sei	Phe	e Gly	y Val	l Thi	Arg	Lys	Gl:	ı Met	t Gl	u Vai	l Se	r Pro	o Ser

				340					345					350		
	Ala (Gln 355	Leu	Val	Gln	Val	Tyr 360	Glu	Leu	Thr	Leu	His 365	His	Thr	Gln
5	His C	Gln 370	Asp	His	Asn	Val	Val 375	Thr	Gly	Ala	Leu	Glu 380	Leu	Leu	Gln	Gln
	Leu 1 385	Phe	Arg	Thr	Pro	Pro 390	Pro	Glu	Leu	Leu	Gln 395	Thr	Leu	Thr	Ala	Val 400
10	Gly (Gly	Ile	Gly	Gln 405	Leu	Thr	Ala	Ala	Lys 410	Glu	Glu	Ser	Gly	Gly 415	Arg
	Ser A	Arg	Ser	Gly 420	Ser	Ile	Val	Glu	Leu 425	Ile	Ala	Gly	Gly	Gly 430	Ser	Ser
15	Cys s	Ser	Pro 435	Val	Leu	Ser	Arg	Lys 440	Gln	Lys	Gly	Lys	Val 445	Leu	Leu	Gly
	Glu (Glu 450	Glu	Ala	Leu	Glu	Asp 455	Asp	Ser	Glu	Ser	Arg 460	Ser	Asp	Val	Ser
20	Ser :	Ser	Ala	Leu	Thr	Ala 470	Ser	Val	Lys	Asp	Glu 475	Ile	Ser	Gly	Glu	Leu 480
	Ala	Ala	Ser	Ser	Gly 485	Val	Ser	Thr	Pro	Gly 490	Ser	Ala	Gly	His	Asp 495	Ile
25	Ile '	Thr	Glu	Gln 500	Pro	Arg	Ser	Gln	His 505	Thr	Leu	Gln	Ala	Asp 510	Ser	Leu
	Asp 1	Leu	Ala 515	Ser	Cys	Asp	Leu	Thr 520	Ser	Ser	Ala	Thr	Asp 525	Gly	Asp	Glu
30	Glu i	Asp 530	Ile	Leu	Ser	His	Ser 535	Ser	Ser	Gln	Val	Ser 540	Ala	Val	Pro	Ser
	Asp : 545	Pro	Ala	Met	Asp	Leu 550	Asn	Asp	Gly	Thr	Gln 555	Ala	Ser	Ser	Pro	Ile 560
35	Ser	Asp	Ser	Ser	Gln 565	Thr	Thr	Thr	Glu	Gly 570	Pro	Asp	Ser	Ala	Val 575	Thr
	Pro	Ser	qzA	Ser 580	Ser	Glu	Ile	Val	Leu 585	Asp	Gly	Thr	Asp	Asn 590	Gln	Tyr
40	Leu	Gly	Leu 595	Gln	Ile	Gly	Gln	Pro 600	Gln	Asp	Glu	Asp	Glu 605	Glu	Ala	Thr
40	Gly	Ile 610	Leu	Pro	Asp	Glu	Ala 615	Ser	Glu	Ala	Phe	Arg 620	Asn	Ser	Ser	Met
	Ala 625	Leu	Gln	Gln	Ala	His 630	Leu	Leu	Lys	Asn	Met 635	Ser	His	Cys	Arg	Gln 640
45	Pro	Ser	Asp	Ser	Ser 645	Val	Asp	Lys	Phe	Val 650	Leu	Arg	Asp	Glu	Ala 655	Thr
	Glu	Pro	Gly	Asp 660	Gln	Glu	Asn	Lys	Pro 665	Cys	Arg	Ile	Lys	Gly 670	Asp	Ile
50	Gly	Gln	Ser 675	Thr	Asp	Asp	Asp	Ser 680	Ala	Pro	Leu	Val	His 685		Val	Arg
	Leu	Leu 690	Ser	Ala	Ser	Phe	Leu 695	Leu	Thr	Gly	Gly	Lys 700		Val	Leu	Val
55	705	_	_			710					715			Leu		720
	Val	Gly	Ala	Ala	Val 725	Ala	Leu	His	Pro	Glu 730	Ser	Phe	Phe	Ser	Lys 735	Leu

	Tyr	Lys	Val	Pro 740	Leu	Asp	Thr	Thr	Glu 745	Tyr	Pro	Glu	Glu	Gln 750	Tyr	Val
5	Ser	Asp	Ile 755	Leu	Asn	Tyr	Ile	Asp 760	His	Gly	Asp	Pro	Gln 765	Val	Arg	Gly
	Ala	Thr 770	Ala	Ile	Leu	Cys	Gly 775	Thr	Leu	Ile	Cys	Ser 780	Ile	Leu	Ser	Arg
10	Ser 785	Arg	Phe	His	Val	Gly 790	Asp	Trp	Met	Gly	Thr 795	Ile	Arg	Thr	Leu	Thr 800
	Gly	Asn	Thr	Phe	Ser 805	Leu	Ala	Asp	Cys	Ile 810	Pro	Leu	Leu	Arg	Lys 815	Thr
15	Leu	Lys	Asp	Glu 820	Ser	Ser	Val	Thr	Cys 825	Lys	Leu	Ala	Cys	Thr 830	Ala	Val
	Arg	Asn	Cys 835	Val	Met	Ser	Leu	Cys 840	Ser	Ser	Ser	Tyr	Ser 845	Glu	Leu	Gly
20	Leu	Gln 850	Leu	Ile	Ile	Asp	Val 855	Leu	Thr	Leu	Arg	Asn 860	Ser	Ser	Tyr	Trp
	Leu 865	Val	Arg	Thr	Glu	Leu 870	Leu	Glu	Thr	Leu	Ala 875	Glu	Ile	Asp	Phe	Arg 880
25	Leu	Val	Ser	Phe	Leu 885	Glu	Ala	Lys	Ala	Glu 890	Asn	Leu	His	Arg	Gly 895	Ala
	His	His	Tyr	Thr 900	Gly	Leu	Leu	Lys	Leu 905	Gln	Glu	Arg	Val	Leu 910	Asn	Asn
	Val	Val	Ile 915	His	Leu	Leu	Gly	Asp 920		Asp	Pro	Arg	Val 925	Arg	His	Val
30	Ala	Ala 930	Ala	Ser	Leu	Ile	Arg 935	Leu	Val	Pro	Lys	Leu 940	Phe	Tyr	Lys	Cys
	Asp 945	Gln	Gly	Gln	Ala	Asp 950		Val	Val	Ala	Val 955	Ala	Arg	Asp	Gln	Ser 960
35	Ser	Val	Tyr	Leu	Lys 965		Leu	Met	His	Glu 970	Thr	Gln	Pro	Pro	Ser 975	His
	Phe	Ser	Val	Ser 980		Ile	Thr	Arg	1le 985	Tyr	Arg	Gly	Tyr	990	Leu	Leu
40	Pro	Ser	1le 995		Asp	Val	Thr	Met 100	Glu 0	. Asr	a Asn	Leu	Ser 100	Arg	y Val	Ile
	Ala	Ala		Ser	His	Glu	Leu 101	ı Il∈ .5	. Thr	Sei	Thr	Thr 102	Arg	Ala	Lev	Thr
45	Phe 102		Cys	Cys	Glu	Ala 103	Leu 30	Cys	s Lev	ı Lev	1 Ser 103	Thr	Ala	Phe	e Pro	Val 1040
	Cys	: Ile	Trp	Ser	Leu 104		y Trp	His	s Cys	5 Gl	y Val	. Pro	Pro	Lev	1 Ser	Ala 55
50	Sea	c Asp	Glu	106		J Lys	s Sei	c Cys	3 Th:	r Val	l Gly	/ Met	. Ala	10°	r Met 70	: Ile
	Lev	ı Thi	Let 107		ı Sei	r Sei	r Ala	a Try	p Phe	e Pr	o Lei	ı Ası	Let 108	ı Se: 35	r Ala	a His
55	Gli	n Asp		a Lev	ı I16	e Le	u Ala 10:	a Gl	y Asi	n Le	u Lei	11 Ala	a Ala	a Se	r Ala	a Pro
	Ly:		r Le:	ı Arg	g Se:	r Se	r Tr	p Al	a Se	r Gl	u Gl	u Gl	u Ala	a As	n Pr	o Ala 1120

	Ala	Thr	Lys	Gin	1125	Glu 5	Val	Trp	Pro	Ala 1130		Gly	Asp	Arg	Ala 113	
5	Val	Pro	Met	Val 1140	Glu)	Gln	Leu	Phe	Ser 1145	His 5	Leu	Leu	Lys	Val 1150		Asn
	Ile	Cys	Ala 1155	His	Val	Leu	Asp	Asp 1160	Val	Ala	Pro	Gly	Pro 1165		Ile	Lys
10	Ala	Ala 1170		Pro	Ser	Leu	Thr 1179		Pro	Pro	Ser	Leu 1180		Pro	Ile	Arg
	Arg 1185	Lys 5	Gly	Lys	Glu	Lys 1190		Pro	Gly	Glu	Gln 1199		Ser	Val	Pro	Leu 1200
15	Ser	Pro	Lys	Lys	Gly 1205		Glu	Ala	Ser	Ala 1210		Ser	Arg	Gln	Ser 1215	
	Thr	Ser	Gly	Pro 1220	Val	Thr	Thr	Ser	Lys 1225		Ser	Ser	Leu	Gly 1230		Phe
20	Tyr	His	Leu 1235	Pro	Ser	Tyr	Leu	Arg 1240		His	Asp	Val	Leu 1245		Ala	Thr
	His	Ala 1250	Asn)	Tyr	Lys	Val	Thr 1255		Asp	Leu	Gln	Asn 1260		Thr	Glu	Lys
25	Phe 1265	Gly	Gly	Phe	Leu	Arg 1270		Ala	Leu	Asp	Val 1275		Ser	Gln	Ile	Leu 1280
	Glu	Leu	Ala	Thr	Leu 1285	Gln	Asp	Ile	Gly	Lys 1290		Val	Glu	Glu	Ile 1295	
	Gly	Tyr	Leu	Lys 1300		Cys	Phe	Ser	Arg 1305		Pro	Met	Met	Ala 1310		Val
30	Cys	Val	Gln 1315	Gln	Leu	Leu	Lys	Thr 1320		Phe	Gly	Thr	Asn 1325		Ala	Ser
	Gln	Phe 1330		Gly	Leu	Ser	Ser 1335		Pro	Ser	Lys	Ser 1340		Gly	Arg	Ala
35	Gln 1345	Arg 5	Leu	Gly	Ser	Ser 1350		Val	Arg	Pro	Gly 1355		туr	His	Tyr	Cys 1360
	Phe	Met	Ala	Pro	Tyr 1365		His	Phe	Thr	Gln 1370		Leu	Ala	Asp	Ala 1375	
40	Leu	Arg	Asn	Met 1380	Val	Gln	Ala	Glu	Gln 1385		Asn	Asp	Thr	Ser 1390		Trp
	Phe	Asp	Val 1395		Gln	Lys	Val	Ser 1400		Gln	Leu	Lys	Thr 1405		Leu	Thr
45	Ser	Val 1410		Lys	Asn	Arg	Ala 1415		Lys	Asn	Ala	Ile 1420		Asn	His	Ile
	Arg 1425	Leu 5	Phe	Glu	Pro	Leu 1430		Ile	Lys	Ala	Leu 1439	-	Gln	Tyr	Thr	Thr 1440
50	Thr	Thr	Cys	Val	Gln 1445		Gln	Lys	Gln	Val 1450		Asp	Leu	Leu	Ala 1459	
	Leu	Val	Gln	Leu 1460		Val	Asn	Tyr	Cys 1469		Leu	Asp	Ser	Asp 1470		Val
55	Phe	Ile	Gly 1475		Val	Leu	Lys	Gln 1480		Glu	Tyr	Ile	Glu 1489		Gly	Gln
	Phe	Arg 1490		Ser	Glu	Ala	Ile 1499		Pro	Asn	Ile	Phe 150		Phe	Leu	Val

	Leu Leu Ser Tyr Glu Arg Tyr His Ser Lys Gln Ile Ile Gly Ile Pro 1505 1510 1515 1520
5	Lys Ile Ile Gln Leu Cys Asp Gly Ile Met Ala Ser Gly Arg Lys Ala 1525 1530 1535
	Val Thr His Ala Ile Pro Ala Leu Gln Pro Ile Val His Asp Leu Phe 1540 1545 1550
10	Val Leu Arg Gly Thr Asn Lys Ala Asp Ala Gly Lys Glu Leu Glu Thr 1555 1560 1565
	Gln Lys Glu Val Val Val Ser Met Leu Leu Arg Leu Ile Gln Tyr His 1570 1575 1580
15	Gln Val Leu Glu Met Phe Ile Leu Val Leu Gln Gln Cys His Lys Glu 1585 1590 1595 1600
	Asn Glu Asp Lys Trp Lys Arg Leu Ser Arg Gln Ile Ala Asp Ile Ile 1605 1610 1615
20	Leu Pro Met Leu Ala Lys Gln Gln Met His Ile Asp Ser His Glu Ala 1620 1625 1630
20	Leu Gly Val Leu Asn Thr Leu Phe Glu Ile Leu Ala Pro Ser Ser Leu 1635 1640 1645
	Arg Pro Val Asp Met Leu Leu Arg Ser Met Phe Val Thr Pro Asn Thr 1650 1655 1660
25	Met Ala Ser Val Ser Thr Val Gln Leu Trp Ile Ser Gly Ile Leu Ala 1665 1670 1675 1680
	Ile Leu Arg Val Leu Ile Ser Gln Ser Thr Glu Asp Ile Val Leu Ser 1685 1690 1695
30	Arg Ile Gln Glu Leu Ser Phe Ser Pro Tyr Leu Ile Ser Cys Thr Val 1700 1705 1710
	Ile Asn Arg Leu Arg Asp Gly Asp Ser Thr Ser Thr Leu Glu Glu His 1715 1720 1725
35	Ser Glu Gly Lys Gln Ile Lys Asn Leu Pro Glu Glu Thr Phe Ser Arg 1730 1735 1740
	Phe Leu Leu Gln Leu Val Gly Ile Leu Leu Glu Asp Ile Val Thr Lys 1745 1750 1755 1760
40	Gln Leu Lys Val Glu Met Ser Glu Gln Gln His Thr Phe Tyr Cys Gln 1765 1770 1775
	Glu Leu Gly Thr Leu Leu Met Cys Leu Ile His Ile Phe Lys Ser Gly 1780 1785 1790
45	Met Phe Arg Arg Ile Thr Ala Ala Ala Thr Arg Leu Phe Arg Ser Asp 1795 1800 1805
	Gly Cys Gly Gly Ser Phe Tyr Thr Leu Asp Ser Leu Asn Leu Arg Ala 1810 1815 1820
50	Arg Ser Met Ile Thr Thr His Pro Ala Leu Val Leu Leu Trp Cys Gln 1825 1830 1835 1840
	Ile Leu Leu Val Asn His Thr Asp Tyr Arg Trp Trp Ala Glu Val 1855 1845 1850 1855
55	Gln Gln Thr Pro Lys Arg His Ser Leu Ser Ser Thr Lys Leu Leu Ser 1860 1865 1870
	Pro Gln Met Ser Gly Glu Glu Glu Asp Ser Asp Leu Ala Ala Lys Leu 1875 1880 1885

	Gly	Met	Cys	Asn	Arg	Glu	Ile	Val	Arg	Arg	Gly	Ala	Leu	Ile	Leu	Phe
		1890)				1899	5				1900)			
5	1905	Asp	Tyr	val	Cys	1910		Leu	His	Asp	Ser 1915		His	Leu	Thr	Trp 1920
	Leu	Ile	Val	Asn	His 1925	Ile	Gln	Asp	Leu	Ile 1930		Leu	Ser	His	Glu 1935	
10	Pro	Val	Gln	Asp 1940		Ile	Ser	Ala	Val 1945		Arg	Asn	Ser	Ala 1950		Ser
	Gly	Leu	Phe 1955		Gln	Ala	Ile	Gln 1960		Arg	Cys	Glu	Asn 1969		Ser	Thr
15	Pro	Thr 1970		Leu	Lys	Lys	Thr 1975		Gln	Cys	Leu	Glu 1980	Gly	Ile	His	Leu
	Ser 1985	Gln	Ser	Gly	Ala	Val 1990	Leu)	Thr	Leu	Tyr	Val 1995		Arg	Leu	Leu	Cys 2000
20	Thr	Pro	Phe	Arg	Val 2005	Leu	Ala	Arg	Met	Val 2010		Ile	Leu	Ala	Cys 2015	
	Arg	Val	Glu	Met 2020		Leu	Ala	Ala	Asn 2025		Gln	Ser	Ser	Met 2030		Gln
25	Leu	Pro	Met 2035		Glu	Leu	Asn	Arg 2040		Gln	Glu	Tyr	Leu 2049		Ser	Ser
	Gly	Leu 2050		Gln	Arg	His	Gln 2055		Leu	Tyr	Ser	Leu 2060	Leu)	Asp	Arg	Phe
20	Arg 2065		Ser	Thr	Met	Gln 2070		Ser	Leu	Ser	Pro 2075		Pro	Pro	Val	Ser 2080
30	Ser	His	Prc	Leu	Asp 2085		Asp	Gly	His	Val 2090		Leu	Glu	Thr	Val 2095	
				2100)				2105	5			Gln	2110)	
35			2115	5				2120					Val 2129	5		
		2130)				2135	5				2140				
40	2145	5				2150					215	5	Glu			2160
					2169	5				2170)		Val		2175	5
45				2180	ס				2185	5			His	2190)	
			2195	5				2200	כ		-		Ser 220	5		
50		2210)				2215	5				222				
	Arg 2225		Leu	Ala	Gin	Tyr 223		Val	Val	Val	Ser 223	-	Leu	Pro	ser	His 2240
55					224	5			-	2250)		Lys		225	5
	Ala	Thr	Leu	Glu 2260		Leu	Ser	Trp	His 2269		Ile	His	Glu	Gln 227		Pro

	Leu Sei	Leu Asp 2275	Leu Glr	ı Ala	Gly I 2280	Leu	Asp	Cys	Cys	Cys 2285		Ala	Leu
5	Gln Let 229	Pro Gly	Leu Tr	Ser 2295		Val	Ser	Ser	Thr 2300		Phe	Val	Thr
	His Ala 2305	Cys Ser	Leu Ile 231		Cys V	Val	His	Phe 2315		Leu	Glu	Ala	Val 2320
10	Ala Va	Gln Pro	Gly Glu 2325	Gln	Leu I	Leu	Ser 2330		Glu	Arg	Arg	Thr 2335	
	Thr Pro	Lys Ala 234		Glu		Glu 2345		Glu	Val	Asp	Pro 2350		Thr
15	Gln Ası	Pro Lys 2355	Tyr Ile	e Thr	Ala <i>I</i> 2360	Ala	Cys	Glu	Met	Val 2365		Glu	Met
	Val Glu 23	ı Ser Leu 70	Gln Sei	Val 2375		Ala	Leu	Gly	His 2380		Arg	Asn	Ser
20	Gly Va: 2385	l Pro Ala	Phe Let 239		Pro I	Leu	Leu	Arg 2395		Ile	Ile	Ile	Ser 2400
20	Leu Ala	a Arg Leu	Pro Let 2405	ı Val	Asn S	Ser	Tyr 2410		Arg	Val	Pro	Pro 2415	
	Val Tr	Lys Leu 242		Ser		Lys 2425		Gly	Gly	Asp	Phe 2430		Thr
25	Ala Phe	Pro Glu 2435	Ile Pro	Val	Glu i 2440	Phe	Leu	Gln	Glu	Lys 2445		Val	Phe
	Lys Gli 24	ı Phe Ile 50	Tyr Arg	g Ile 2455		Thr	Leu	Gly	Trp 2460		Ser	Arg	Thr
30	Gln Pho 2465	e Glu Glu	Thr Tr		Thr 1	Leu	Leu	Gly 2475		Leu	Val	Thr	Gln 2480
	Pro Le	ı Val Met	Glu Gli 2485	ı Glu	Glu s	Ser	Pro 2490		Glu	Glu	Asp	Thr 249	
35	Arg Th	r Gln Ile 250		l Leu		Val 2505		Ala	Ile	Thr	Ser 251		Val
	Leu Se	r Ala Met 2515	Thr Va	l Pro	Val 2 2520		Gly	Asn		Ala 252		Ser	Cys
40	Leu Gl	u Gln Glr 30	Pro Ar	g Asn 253	_ •	Pro	Leu	Lys	Ala 254		Asp	Thr	Arg
	Phe Gl 2545	y Arg Lys	Leu Se 25		Ile	Arg	Gly	Ile 255		Glu	Gln	Glu	Ile 2560
45	Gln Al	a Met Val	Ser Ly 2565	s Arg	Glu .	Asn	Ile 2570		Thr	His	His	Leu 257	
	Gln Al	a Trp Asp 258		l Pro		Leu 2589		Pro	Ala	Thr	Thr 259		Ala
50	Leu Il	e Ser His 2595	Glu Ly	s Leu	Leu 2600		Gln	Ile	Asn	Pro 260		Arg	Glu
		y Ser Met 10	Ser Ty	r Lys 261		Gly	Gln	Val	Ser 262		His	Ser	Val
55	Trp Le 2625	u Gly Ası		e Thr 30	Pro	Leu	Arg	Glu 263		Glu	Trp	Asp	Glu 2640
	Glu Gl	u Glu Glı	ı Glu Al 2645	a Asp	Ala	Pro	Ala 265		Ser	Ser	Pro	Pro 265	

	Ser Pro	Val Asn 266		J Lys	His Arg 266		y Val	Asp Ile		Ser
5	Cys Ser	Gln Phe 2675	Leu Le		Leu Tyr 2680	Ser Ar	g Trp	Ile Leu 2685	Pro	Ser
	Ser Ser 269	Ala Arg	Arg Thi	Pro . 2695	Ala Ile	Leu Il	e Ser 270		Val	Arg
10	Ser Leu 2705	Leu Val	Val Ser 27		Leu Phe		u Arg 15	Asn Gln	Phe	Glu 2720
	Leu Met	Tyr Val	Thr Let 2725	1 Thr	Glu Leu	Arg Ar 2730	g Val	His Pro	Ser 2739	
15	Asp Glu	Ile Leu 274		n Tyr	Leu Val 274		a Thr	Cys Lys 275		Ala
	Ala Val	Leu Gly 2755	Met Asp		Ala Val 2760	Ala Gl	u Pro	Val Ser 2765	Arg	Leu
20	Leu Glu 277	Ser Thr	Leu Arg	Ser : 2775		Leu Pr	o Ser 278		Gly	Ala
	Leu His 2785	Gly Ile	Leu Tyr 279	Val	Leu Glu		p Leu 95	Leu Asp	Asp	Thr 2800
25	Ala Lys	Gln Leu	Ile Pro 2805	Val	Ile Ser	Asp Ty 2810	r Leu	Leu Ser	Asn 2815	
25	Lys Gly	Ile Ala 282		Val 2	Asn Ile 282		r Gln	Gln His 283		Leu
	Val Met	Cys Ala 2835	Thr Ala		Tyr Leu 2840	Ile Gl	u Asn	Tyr Pro 2845	Leu	Asp
30	Val Gly 285	Pro Glu O	Phe Ser	Ala : 2855		Ile Gl	n Met 286		Val	Met
	Leu Ser 2865	Gly Ser	Glu Glu 287		Thr Pro		e Ile 75	Tyr His	Cys	Ala 2880
35	Leu Arg	Gly Leu	Glu Arg 2885	J Leu :	Leu Leu	Ser Gl 2890	u Gln	Leu Ser	Arg 2895	
	Asp Ala	Glu Ser 290		. Lys :	Leu Ser 290		p Arg	Val Asn 291		His
40	Ser Pro	His Arg 2915	Ala Met		Ala Leu 2920	Gly Le	u Met	Leu Thr 2925	Cys	Met
	Tyr Thr 293	Gly Lys 0	Glu Lys	Val : 2935		Gly Ar	g Thr 294		Pro	Asn
45	Pro Ala 2945	Ala Pro	Asp Ser 295		Ser Val		l Ala 55	Met Glu	Arg	Val 2960
	Ser Val	Leu Phe	Asp Arg 2965	; Ile :	Arg Lys	Gly Ph 2970	e Pro	Cys Glu	Ala 2975	
50	Val Val	Ala Arg 298		Pro	Gln Phe 298		p Asp	Phe Phe 299		Pro
	Gln Asp	Ile Met 2995	Asn Lys		Ile Gly 3000	Glu Ph	e Leu	Ser Asn 3005	Gln	Gln
55	Pro Tyr 301	Pro Gln	Phe Met	Ala 3015		Val Ty	r Lys 302		Gln	Thr
	Leu His 3025	Ser Thr	Gly Glr		Ser Met		g Asp 35	Trp Val	Met	Leu 3040

	Ser	Leu	Ser	Asn	Phe 3045		Gln	Arg	Ala	Pro 3050	Val	Ala	Met	Ala	Thr 3055	Trp
5	Ser	Leu	Ser	Cys 3060		Phe	Val	Ser	Ala 3065	Ser	Thr	Ser	Pro	Trp 3070	Val	Ala
	Ala	Ile	Leu 3075		His	Val	Ile	Ser 3080	Arg O	Met	Gly	Lys	Leu 308	Glu 5	Gln	Val
10	Asp	Val 3090		Leu	Phe	Cys	Leu 3099	Val	Ala	Thr	Asp	Phe 3100		Arg	His	Gln
	Ile 310		Glu	Glu	Leu	Asp 311		Arg	Ala	Phe	Gln 311	Ser 5	Val	Leu	Glu	Val 3120
46	Val	Ala	Ala	Pro	Gly 312		Pro	Tyr	His	Arg 3130	Leu)	Leu	Thr	Cys	Leu 3135	Arg
15	Asn	Val	His	Lys 314		Thr	Thr	Суѕ								
20																
25																
30																
35																
40																
45																

Claims

15

20

30

40

50

55

- An isolated, purified or recombinant polypeptide comprising a huntingtin protein or a mutuant, fragment or variant thereof having substantially the same activity as huntingtin protein.
 - 2. A polypeptide according to claim 1 having the amino acid sequence shown in SEQ ID NO:6.
- 3. A polypeptide according to claim 1 or 2 which is essentially purified and/or has at least 5 contiguous amino acids.
 - 4. An isolated, purified or recombinant nucleic acid molecule comprising nucleic acid which is:
 - (a) a sequence encoding a huntingtin protein according to any preceding claim (whether normal or genetically defective), or its complementary strand;
 - (b) a sequence that is substantially homologous to, or hybridises under stringent conditions to, either sequence in (a);
 - (c) a sequence that is substantially homologous to, or would hybridise under stringent conditions to, a sequence in (a) or (b) but for the degeneracy of the genetic code;

or a fragment of any of (a), (b) or (c).

- 5. A nucleic acid according to claim 1, wherein the huntingtin protein has the amino acid sequence shown in SEQ ID NO:6 and/or the nucleic acid is DNA encoding the amino acid sequence SEQ ID NO:5.
- 6. A nucleic acid molecule according to claim 4 or 5 which is a probe for detecting the presence of huntingtin in a sample comprising being at least 5, such as at least 15, contiguous nucleotides.
 - 7. A (preferably recombinant) nucleic acid molecule according to any of claims 4 to 6 comprising a transcriptional region functional in a cell operably linked to a sequence complimentary to an RNA sequence encoding a protein according to any of claims 1 to 3 or at least 5 contiguous amino acids thereof.
 - 8. A vector comprising a nucleic acid molecule according to any of claims 4 to 7.
 - A vector according to claim 8 wherein the nucleic acid molecule, such as encoding huntingtin protein, is operably linked to transcriptional and/or translational expression signals.
- 35 10. A host cell transformed or transfected with a vector according to claim 4 or 5.
 - 11. An antibody specific for huntingtin protein, or a protein according to any of claims 1 to 3.
 - 12. A hybridoma which produces an antibody according to claim 11.
 - 13. A method of detecting the presence of, or predisposition to develop, Huntington's disease in a subject, the method comprising evaluating the characteristics of huntingtin nucleic acid in a sample from the subject, for example in relation to the number of (CAG) repeats.
- 14. A method according to claim 13 comprising:
 - (a) taking a sample from the subject;
 - (b) evaluating the characteristics of huntingtin nucleic acid in the sample, wherein the evaluation comprises detecting the huntingtin (CAG)_n region in the sample; and
 - (c) comparing the characteristics found in (b) with a similar analysis from an individual not having, or not suspected of having, Huntington's disease; and
 - (d) the presence of, or predisposition to develop, Huntington's disease being indicated if those characteristics in the huntingtin $(CAG)_n$ region differ.
 - **15.** A method according to claim 13 comprising:
 - (a) taking a sample from a subject and;
 - (b) evaluating the characteristics of huntingtin nucleic acid comprising the huntingtin (CAG)_n region in the sample by Southern blot, northern blot, or polymerase chain reaction analysis.

16. The use of:

5

15

25

30

35

- (a) a nucleic acid molecule according to any of claims 4 to 6 or a vector according to claim 8 which encodes a functional (or non-defective) protein;
- (b) a polypeptide according to any of claims 1 to 3 which is functional (or non-defective);
- (c) a host cell according to claim 10 expressing a polypeptide which is functional (or non-defective); and/or
- (d) an antagonist to, or a compound that binds to, huntingdon protein; in the preparation of an agent for treating, delaying or preventing a neurodegenerative disorder.
- 17. The use according to claim 16 which is gene therapy.
 - 18. The use according to claim 16 or 17 for treating, preventing or delaying Huntingdon's disease.
 - 19. The use according to any of claims 16 to 17 wherein the nucleic acid has from 11 to 34 (CAG) repeats and/or the polypeptide has from 11 to 34 Gln repeats, said repeats being consecutive.
 - 20. A diagnostic and/or immunoassay kit comprising at least one container and;
 - (a) a nucleic acid molecule according to any of claims 4 to 6, optionally labelled; or
 - (b) an antibody according to claim 11, optionally labelled.
- 20 21. The use of:
 - (a) a nucleic acid molecule according to any of claims 4 to 6 or a vector according to claim 8 which encodes a functional (or non-defective) protein;
 - (b) a polypeptide according to any of claims 1 to 3 which is functional (or non-defective);
 - (c) a host cell according to claim 10 expressing a polypeptide which is functional (or non-defective); and/or
 - (d) an antagonist to, or a compound that binds to, huntingdon protein; in the preparation of a medicament.
 - 22. A pharmaceutical composition comprising:
 - (a) a nucleic acid molecule according to any of claims 4 to 6 or a vector according to claim 8 which encodes a functional (or non-defective) protein;
 - (b) a polypeptide according to any of claims 1 to 3 which is functional (or non-defective);
 - (c) a host cell according to claim 10 expressing a polypeptide which is functional (or non-defective); and/or
 - (d) an antagonist to, or a compound that binds to, huntingdon protein; in admixture with pharmaceutically acceptable carrier.
- 23. A process for the preparation of a polypeptide, the process comprising culturing a host cell according to claim 10 under conditions whereby the polypeptide is expressed, and purifying or isolating the polypeptide.

55

45

50

1 2 3

~ 285

-185

Figure 2

47

FIGURE 4 (Sheet 10) 3)

3761 ENTACTICAGGICCTGTTACAACAAGTMATCCTCATCACTGGGGAGTTTCTATCATCTTCCTTCAIACCTCACACTGCATGATGTCCTCAAAGTACAACCTCACACTACTACCACCTCACGTCACG THE A P & E B B E B A B E L B E E S E V B P E L B E V C F H A P T T B F T B A L A D A L B F T B A L A D A L B F T B A L A D A L B F T B A L A D A L B F T B A L A D A L B D A 4561 EXTAMMATOCIATICATANICACATICETETETETETETETETETETATANACCITYTANA HE CVCLECLICACITYCOCCLIVALIVECELELICIOCYLECTORISMECALLIVALISMELICIANISMELICIANISMELECTORISMELECTORISMELECTORISMELECTORISME 1239 WALLE TO THE TANK OF THE TOTAL TOTAL TOTAL TOTAL TOTAL THE THREE THREE TOTAL TO 1909 6 8 M L A L L M M W R A R L A M E L M R M R L M R SOR! CTOCHCOCHACTCOLANGACACHETTETCHOCACHAMITACTTAGTCCCCAAATETCTHOMAGAGAGAACTTCCCACTCAACTTCCCACCAACTTCCAATETCCACTAACTTCCACTCAACTCA 4 A B B A L I L F E D Y Y C B H L H D S E H L T Y L I Y H H E Q D L I S L S H E SOIS REVENTAGESTICT STUTE COMMITTACAGE CONTROL TO CONTROL TO CONTROL TO CANADA TO CARGA A TO CARGA AND ADMITTATION TO THE PARTY OF CON ANICCEGALAMAGACIGGIACGITCATCTTGTCMATCCCAGTGTTGCACCAGGTCAGATTGTGCAGGTGCAGAGGTGCAGACTGCTCAATCCCATTGCTGCAACATATCAATGCCCATTGCTGCAACACTGCTCAATCCCAATTGCTGCAACATGCCCAATTGCTGCAACACTGCTCAATCCCAATTCCTGCTCAACACTGCTCAATCCCAATTCCTGCTCAATCCCAATTCCTGCTCAACACTGCTCAATCCCAATTCCTGCTCAATCCAATTCCTGCAATTCCTGCTCAATCCAATTCCTGCTCAATCCAATTCCTGCTCAATCCAATTCCTGCTCAATCCAATTCCTGCTCAATCCAATTCCTGCTCAATCCAATTCCTGCAATTCCTGCAATCCAATTCCTGCAATTCCTGCTCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCAATTCCTGCTGCAATTCCTGCAATTCCTGCTGCAATTCCTGCTGCAATTCCTGCAATTCCTGCTGCAATTCCTGCTGCAATTCCTGCTGCAATTCCTGCTGCAATTCCTGCTGCAATTCCTGCAATTCCTGCTGCAATTCCTGCTGCAATTCCTAATTCCAATTCCAATTC SOLI CONTESTED C

FIGURE 4 (Sheet 2 & 3)

TOO! ANCHER TRANSPORTED ANT A SECRET THE ANTI-LIBER STATE OF THE SECRET OF THE SECRET 2501 CACTOCACOCKTICINGLICITICACCELICACACTURACICALICACICACICACACTURACICACICACACTURACACTURACICACACTUR PRE AMECTETAMMETETOMECECAGITTOMENAMENTATOMECATTATEMENANTETOTOMECATTATEMENANTATOMECATTATEMENAMENTATOMECATTATEMENAMENTATOMECATOMECATOMETATOMECATOMECATOMETATOMECATOM SALT ACCENCENCACIONISCULICACIO STRE C C S I A N C V N I N S O O N V L V N C A I A F V L I E N V P L B V C P E F S A PRI AGMINITINGCOMMATICITECCOCCAMITITITAMACACTICITECCACCOCCAMACATORITECTATORICAMACTICITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORITECTATORICAMACATORICAM SONS WATDFTE NECESCALAR CONTRACTOR OF THE FEEL DEEAFERS VLEV VAA PEEPVEELT TE COMMITTEE AND TO THE CONTROL OF THE 19081 TERRORAGAMETECT CONTENTION CONTENTION CONTENTION CONTENTIAL AND ANALOGO CONTENTIAL ANALOGO CONTENTIAL ANALOGO CONTENTIAL ANALOGO CO 10321 ATATCAGTAMGAGATTAATTTTAACGTAMAAAAAAAAA

> FIGURE 4 (sheet 3 of 3)

FIGURE 12 cont. (PANEL B)

Repeat Units Frequency (%) 16 人

FIGURE 13 cont. (PANEL C)

FIGURE 14 cont. (PANEL B)

FIGURE 15

45

1 2 3

-- 285

~18 S

Figure 2

Figura 3

FIGURE 4 (Sheet 1 8 3)

tong to a particular to the second se TOP DELLASSEDE EL ES STARES EL ES STARES EN ST Ser Britationentale interferiories and anticipate interference and an interpretation of the contraction of t The without well by which the property of the 444) variantotivetininininga marinininga fariantininen sentinginininga fariantininga f 446 Contractionalitation in the Contraction of the AND STREET, STORES CONTRACTOR AND STREET, STRE TOTAL BLACK CONTROL OF THE PROPERTY OF THE PRO 1919 3 C LOCAL CONTROL OF THE PROPERTY OF THE ANG BELLEN AND SERVICE CONTRACTOR OF THE PROPERTY OF THE PROPE ALL PROPERTY CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE PRO Atte de le la contratte de la THE CONTRACTOR OF THE PROPERTY HALF CALENCIALIDATE CALCALIDATE CONTRACTOR CONTRACTOR CALCALIDATE CONTRACTOR SOUR ENFORMER PROPERTY COMMENT OF THE RESERVE OF TH STAC FRIENDS COMMITTER TO THE RELEGIES OF THE CANO A STATE COLOR CONTROL CON

FIGURE 4 (Sheet 203)

FIGURE 4 (Sheet 30,3)

EP 0 814 977 A2

FIGURE 5

FIGURE 10

FIGURE 13 court. (FRAMEL C)

EP 0 814 977 A2

FIGURE 15

PICHER 16

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 0614977 A3**

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 28.02.1996 Bulletin 1996/09
- (43) Date of publication A2: 14.09.1994 Bulletin 1994/37
- (21) Application number: 94301587.5
- (22) Date of filing: 07.03.1994

- (51) Int CI.⁶: **C12N 15/12**, C07K 13/00, C12N 1/21, C12N 5/10, C07K 15/28, C12N 5/16, C12Q 1/68, A61K 37/02, A61K 48/00, C12P 21/08
- (84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

- (30) Priority: 05.03.1993 US 27498 01.07.1993 US 85000
- (71) Applicant:
 THE GENERAL HOSPITAL CORPORATION
 Boston, MA 02114 (US)
- (72) Inventors:
 - MacDonald, Marcy E.
 Lexington, Massachusetts 02173 (US)
 - Ambrose, Christine M.
 Massachusetts 02129 (US)
 - Duyao, Mabel P.
 Cambridge, Massachusetts 02138 (US)
 - Gusella, James F.
 Framingham, Massachusetts 01701 (US)
- (74) Representative: Wright, Simon Mark et al London WC1N 2DD (GB)

(54) Huntingtin DNA, protein and uses thereof

(57) A novel gene, *huntingtin*, is described, encoding huntingtin protein, recombinant vectors and hosts capable of expressing huntingtin. Methods for the diagnosis and treatment of Huntington's disease are also provided.

EUROPEAN SEARCH REPORT

Application Number EP 94 30 1587

	DOCUMENTS CONSI	DERED TO BE RE	LEVANT		
Category	Citation of document with in of relevant pas			Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.5)
Χ,D	SOMAT. CELL MOL. GENET., vol. 17, no. 5, 1991 pages 481-488, LIN ET AL. 'New DNA markers in the Huntington's disease gene candidate region' * the whole document *			, 6	C12N15/12 C07K13/00 C12N1/21 C12N5/10 C07K15/28 C12N5/16 C12Q1/68 A61K37/02
X ,D	NATURE GENET., vol. 1, May 1992 pages 99-103, MAC DONALD ET AL. 'The Huntington's disease candidate region exhibits many different haplotypes' * the whole document *			· , 6	A61K48/00 C12P21/08
P,X	CELL, vol. 72, 26 March 1993 pages 971-983, THE HUNTINGTON'S DISEASE COLLABORATIVE RESEARCH GROUP 'A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes' * the whole document *			1-6,8, 13-15	
					TECHNICAL FIELDS SEARCHED (IM.CI.5) CO7K C12N
Ρ,Χ	CR ACAD. SCI. III, vol. 316, no. 11, November 1993 pages 1374-1380, DODÉ ET AL. 'Huntington's disease in French families : CAG repeat expansion an linkage disequilibrium analysis' * the whole document *			1,6, 13-15	
		-/-			
	The present search report has I	Date of completion o	(the search		Economy
THE HAGUE			ecember 1995 Gac, G		_
Y:pa de A:te O:ne	CATEGORY OF CITED DOCUME oricularly relevant if taken alone oricularly relevant if conblaced with an comment of the same category chnological background on-written disclosure termediate document	E:ea af other D:do L:do	cory or principle riser patent docu- ler the filling dat- cument cited in cument cited for ember of the san cument	ment, but pu e the application other reason	blished on, or OB S

EPO PORM 1503 03.82 (POSCO)

EUROPEAN SEARCH REPORT

Application Number EP 94 30 1587

ategory	DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, Rei			CLASSIFICATION OF THE
- Legory	of relevant p	ISSREES	to claim	APPLICATION (Int.CL5)
P,X	MOL. CELL PROBES,		4,6,	
	vol. 7, no. 3, June	13-15		
	pages 235-239,			
	WARNER ET AL. 'A	new polymerase chain	- 1	
	reaction (PCR) ass	y for the trinucleotid	e	
	repeat that is unst			
	Huntington's disea: * the whole document	se chromosomes' it *		
A	US-A-4 666 828 (GU	SELLA) 19 May 1987	1-23	
	* the whole documen	it *	1 23	
١.	MOL. CELL. BIOL.,		19	
	vol. 10, no. 11, No pages 5616-5625,			
	LAURENT ET AL. 'TH			
	Saccharomyces ceres			
	and proline-rich to	r		
	that affects expres			
	spectrum of genes			
	* page 5618 - page	5619 *		TECHNICAL FIELDS SEARCHED (Int.Cl.5)
			1	
		•		
			1	
			1	
-				
-			1	
	The present search report has i			
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	15 December 199	5 Gad	:, G
•	CATEGORY OF CITED DOCUME		iple underlying the document, but publ	invention
	ricularly relevant if taken alone	after the filing	date	
doc	dicularly relevant if combined with an ument of the same category	other 9 : 4ocument cite L : 4ocument cite	d in the application I for other reasons	1
A · tard	anological background			

