СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 Задание
2 Структура ОА
3 Синтез ОА
3.1 Синтез OA_1
3.1.1 Синтез ${\rm OA}_{10}$
3.1.2 Синтез OA_{11}
3.1.3 Объединенные ФВ И ЛФП ОА $_1$
3.2 Синтез OA_2
4 Реализация OA
4.1 Реализация OA_1
4.2 Реализация OA_2
4.3 Реализация ОА
5 Моделирование ОА
5.1 Выполнение арифметической операции
5.2 Выполнение логической операции
ЗАКЛЮЧЕНИЕ
ЕМЕЛИОГРАФИЧЕСКИЙ СПИСОК

ВВЕДЕНИЕ

Теория автоматов — самостоятельный раздел математики, имеющий разнообразную проблематику и приложения. Основными понятиями теории автоматов являются понятия абстрактного автомата и понятие композиции автоматов. Эти понятия являются разумными абстракциями реально существующих дискретных устройств — автоматов. Понятие абстрактного автомата позволяет характеризовать устройство с точки зрения алгоритма его функционирования, т.е. алгоритма переработки информации, который оно реализует. Понятие композиции автоматов позволяет характеризовать устройство с точки зрения его структуры, иными словами, даёт представление, каким образом данное устройство построено из других, более элементарных.

Академик В.М. Глушков показал, что любое устройство обработки цифровой информации можно представить в виде совокупности двух взаимодействующих автоматов — управляющего УА и операционного ОА (Рисунок 1).

Рисунок 1 — Структура цифрового автомата.

ОА осуществляет непосредственную обработку данных путем выполнения элементарных операций над словами и выдает результат преобразования в виде двух слов: A (результат) и F (признаки результата, т.е. сигналы о знаках и особых значениях промежуточных и конечных результатов операций). Выполнение элементарных операций инициируется соответствующими управляющими сигналами $y_0, y_1, y_2...y_m$, которые формируются УА.

В курсовой работе требуется разработать ОА, реализующий заданный набор арифметикологических операций.

1 Задание

Синтезировать 4-разрядный ОА, реализующий две операции — арифметическую и логическую, в соответствии с заданным вариантом (Таблица 1). Работу ОА промоделировать, используя САПР «Альтера» Max+plus II.

Таблица 1 — Операции, реализуемые ОА.

Вариант	Операция	Код	Элементы	Элементы	Признаки				
			памяти ОА1	памяти ОА2	S	Z	Ĉ	P	С
2в, 1	$A \leftarrow A - 1$	8421+3	JK	DC	+	+	+	+	-
	$A \leftarrow A\&B$	двоичный	JK		+	+	0	+	0

2 Структура ОА

На этапе структурного синтеза ОА представляют в виде двух частей — памяти и комбинационной схемы КС (Рисунок 2). КС служит для преобразования входных сигналов X и информации о состоянии устройства (A) в выходные сигналы Y и сигналы возбуждения элементов памяти U.

Рисунок 2 — Обобщенная структура ОА.

Поведение структуры (Рисунок 2) описывается четырьмя группами различных сигналов:

X — входное слово,

Y = (X, A) — выходное слово,

 $U = \psi(X, A)$ — слово (функция), обеспечивающее порядок смены состояний автомата

A — слово, характеризующее состояние автомата.

Внутреннее состояние автомата определяется состоянием триггеров $a_r \in \{0,1\}$ и описывается словом состояния $A=(a_1,a_2,a_3,...,a_i,...a_r), r=\overline{1,R}$. Множество слов A определяет объем памяти OA.

Синтезируемый ОА является 4-х разрядным и формирует слово состояния $A=a_3a_2a_1a_0$.

3 Синтез ОА

Задача синтеза ОА сводится к: - выбору типа элементов памяти (триггеров), который задан заранее (в данной курсовой работе – ТС - триггеры); - разработке КС, для чего необходимо сформировать систему переключательных функций, описывающую ее поведение: ; (1) - реализации системы ПФ (1) на заданной элементной базе (в данной курсовой работе используется элементная база САПР МАХ+plus II 10.0). В случае, если автомат оказывается сложным, задачу синтеза ОА упрощают, декомпозируя (разделяя) его на более простые автоматы ОА1 и ОА2 (рис. 3) с одинаковой структурой (рис. 4).

«««<Рисунок 3 - Декомпозиция ОА»»»»>

«««<Рисунок 4 - Структурное представление ОА1 и ОА2»»»»>

Арифметико-логический автомат ОА1 формирует слово А результата операции и сигналы fS, fC, fZ, fP, fC' – логические функции признаков ($\Pi\Phi\Pi$), относящиеся к выходным сигналам Y= λ (X,A), на основе которых ОА2 формирует уже сами признаки – слово F=(S, Z, P, C, C') в соответствии с логикой признаков, которая задается таблично для каждой отдельной операции. Операции, реализуемые ОА (рис. 3), инициализируются управляющими сигналамиуі. Поскольку сигналы у0, у1 несовместимы во времени, в текущий момент t только один из управляющих сигналов может быть равен 1 (другой сигнал равен нулю).

3.1 Синтез ОА₁

ОА1 можно рассматривать как многооперационный автомат, способный реализовать не одну, а несколько операций. Синтез автомата ОА1 разделяется на синтез автоматов ОА1(0) и ОА1(1) с памятью на ТС-триггерах, реализующих соответственно: - операцию сложения с переносом ($A \leftarrow A + C$) в коде "8421+3", инициируемую сигналом у0. - операцию логического сложения с дво-ичной константой (2), инициируемую сигналом у1. Абстрактное представление ОА1 изображено на рис. 5.

«««Рисунок 5 – Абстрактное представление OA1»»»

Автомат ОА1(0) реализует операцию над одним словом А с установкой результата, поэтому ОА не декомпозируется, и синтезируется как единый 4-х разрядный ОЭ. Автомат ОА1(1) реализует операцию над двумя 4-х разрядными словами А и В с установкой результата. Сигналы возбуждения и выходов являются функциями восьми аргументов. При рассмотрении такого автомата как единого ОЭ синтез значительно усложнится (КТ будет содержать 256=28 наборов), поэтому ОА1(1) декомпозируется, и синтезируется как композиция одноразрядных ОЭ.

3.1.1 Синтез OA_{10}

Рисунок 3 — oa10mintrig.

Рисунок 4 — oa10minflags.

3.1.2 Синтез ОА₁₁

Рисунок 5 — oal1mintrig.

Рисунок 6 — oal1minflags.

3.1.3 Объединенные ФВ И ЛФП OA_1

3.2 Синтез OA_2

- 4 Реализация ОА
- **4.1** Реализация OA_1
- **4.2** Реализация OA_2
- 4.3 Реализация ОА

- 5 Моделирование ОА
- 5.1 Выполнение арифметической операции
- 5.2 Выполнение логической операции

ЗАКЛЮЧЕНИЕ

В результате выполнения курсовой работы был синтезирован автомат, реализующий две операции: $A \leftarrow A-1|_{8421+3}$ (арифметическую) и $A \leftarrow A\&B$ (логическую), устанавливающий флаги S,Z,P,C,C' в зависимости от результата операции.

При синтезе автомат ОА был представлен в виде двух автоматов: OA_1 и OA_2 . Первый автомат осуществляет выполнение операции, второй — устанавливает флаги признаков.

Автомат OA_1 был декомпозирован на два автомата: $OA_1^{(0)}$ и $OA_1^{(1)}$.

 $\mathrm{OA}_1^{(0)}$ выполняет операцию $A \leftarrow A - 1|_{8421+3}$ и вырабатывает признаки результата на основе последующего состояния A(t+1). Этот автомат был представлен как единый 4-разрядный ОЭ.

 $\mathrm{OA}_1^{(1)}$ выполняет операцию $A \leftarrow A\&B$ и вырабатывает признаки результата на основе текущего состояния A(t). Этот автомат был представлен как композиция одноразрядных ОЭ.

Также было проведено моделирование полученного автомата с помощью САПР «Альтера» Max+plus II.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК