CIE6020/MAT3350 Selected Topics in Information Theory

Lecture 8: Typical Set

22 February 2019

The Chinese University of Hong Kong, Shenzhen

Weak Typical Set

Lemma

Consider a DMS $\mathcal A$ with distribution Q. The probability that an n-length sequence $\mathbf x$ is generated is

$$Q^{n}(\mathbf{x}) = \prod_{a \in \mathcal{A}} Q(a)^{N(a|\mathbf{x})}$$

$$= \prod_{a \in \mathcal{A}} Q(a)^{nP_{\mathbf{x}}(a)}$$

$$= 2^{\sum_{a \in \mathcal{A}} nP_{\mathbf{x}(a)} \log Q(a)}$$

$$= 2^{-nH(P_{\mathbf{x}}) - nD(P_{\mathbf{x}}||Q)}.$$

Lemma

For any type P of sequences in \mathcal{A}^n and distribution Q on \mathcal{A} ,

$$(n+1)^{-|\mathcal{A}|} 2^{-nD(P||Q)} \le Q^n(T_P^n) \le 2^{-nD(P||Q)}. \tag{1}$$

Proof.

By Lemma 1

$$Q^{n}(T_{P}) = |T_{P}|2^{-nH(P)-nD(P||Q)}.$$
 (2)

The proof is compeled by the bound on $|T_P|$.

3

Convergence in Probability

- Let $X^n = (X_1, \dots, X_n)$ be the i.i.d. sequence with distribution p sampled from A.
- By the weak law of large numbers, P_{X^n} converges in probability to p when $n \to \infty$, i.e.,

$$\lim_{n \to \infty} \Pr\{|P_{X^n}(x) - p(x)| > \delta\} = 0, \forall x \in \mathcal{A}.$$

• Hence, $D(P_{\mathbf{v}_n}||n) + H(P_{\mathbf{v}_n}) = -\sum_{n} P_{\mathbf{v}_n}(n)$

$$D(P_{X^n}||p) + H(P_{X^n}) = -\sum_{x \in \mathcal{A}} P_{X^n}(x) \log p(x) \to H(p)$$
 in probability as $n \to \infty$.

Weak Typical Set

- Fix $\delta > 0$.
- Let

$$\begin{split} W^{(n)}_{\delta} &= \{\mathbf{x} \in \mathcal{A}^n : |D(P_{\mathbf{x}}||p) + H(P_{\mathbf{x}}) - H(p)| \leq \delta\} \\ &= \bigcup_{\text{type P of $\mathcal{A}^n: |D(P||p) + H(P) - H(p)| \leq \delta$}} T^n_P. \end{split}$$

Lemma

- 1. For any $\delta > 0$, $\lim_{n \to \infty} \Pr\{X^n \in W_{\delta}^{(n)}\} = 1$.
- 2. For any $\delta>0$ and sufficiently large n, $|W_{\delta}^{(n)}|\leq 2^{n(H(p)+\delta)}$.

Block Source Coding Theorem

Theorem (Block Source Coding Theorem)

For a discrete memoryless source with distribution p,

$$\lim_{n\to\infty}\frac{\log M^*(n,\epsilon)}{n}=H(X), \ \text{for every } \epsilon\in(0,1).$$

Code Construction

- Let $C_n = W_{\delta}^{(n)}$.
- For all sufficiently large n, (by Property 1)

$$P_e = \Pr\{X^n \notin \mathcal{W}_{\delta}^{(n)}\} \le \epsilon.$$

- So for any $\epsilon>0$ and all sufficiently large n, $M^*(n,\epsilon)\leq |W^{(n)}_\delta|.$
- Moreover, (by Property 2)

$$\lim_{n\to\infty}\frac{M^*(n,\epsilon)}{n}\leq \lim_{n\to\infty}\frac{\log|W_{\delta}^{(n)}|}{n}\leq H(p)+\delta.$$

Converse

- Consider a sequence of code $C_n \subset A^n$ with $\Pr\{X^n \in C_n\} \ge 1 \epsilon$.
- As $\Pr\{X^n \notin W_{\delta}^{(n)}\} + \Pr\{X^n \in W_{\delta}^{(n)} \cap \mathcal{C}_n\} \ge P(\mathcal{C}_n) \ge 1 \epsilon$ and $\Pr\{X^n \notin W_{\delta}^{(n)}\} \to 0$ (Property 1), for sufficiently large n, $\Pr\{X^n \in W_{\delta}^{(n)} \cap \mathcal{C}_n\} \ge \frac{1-\epsilon}{2}$.
- Hence, for sufficiently large n

$$\frac{1-\epsilon}{2} \le \Pr\{X^n \in W_{\delta}^{(n)} \cap \mathcal{C}_n\}$$
$$\le |\mathcal{C}_n \cap W_{\delta}^{(n)}| 2^{-n(H(p)-\delta)}$$
$$\le |\mathcal{C}_n| 2^{-n(H(p)-\delta)}.$$

• So for every $\delta > 0$,

$$\lim_{n \to \infty} \frac{M^*(n, \epsilon)}{n} = \lim_{n \to \infty} \min_{A \subset \mathcal{X}^n : \Pr\{X^n \in \mathcal{C}_n\} \ge 1 - \epsilon} \frac{\log |\mathcal{C}_n|}{n} \ge H(p) - \delta.$$

Universal Block Source Coding

Theorem

There exists a sequence of rate R codes such that $P_e \to 0$ for every DMS Q over \mathcal{A} with H(Q) < R.