Математический анализ. Лекции

Математический анализ - изучение через размышление

Объект математического анализа - функция

В математическом анализе используются символы из математической логики и теории множеств.

1 Математическая логика

Объект изучения математической логики - высказывание.

Определение 1. Высказывание - повествовательное предложение, относительно которого можно сказать, истинно оно или ложно. Обозначаются заглавными буквами латинского алфавита.

Пример. 2+3=5 - истинно, 3<0 - ложно

1.1 Логические символы

```
\wedge - конъюнкция (логическое "И")
```

∨ - дизъюнкция (логическое "ИЛИ")

⇒ - импликация ("если А то В")

⇔ - эквивалетность или равносильность ("тогда и только тогда")

Кванторы - общее название для логических операций

∃ - существует

∄ - не существует

!∃ - существует единствуенный элемент

 \forall - для каждого

2 Теория множеств

Определение 2. Множество - совокупность объектов, связанных одним и тем же свойством. Обозначаются заглавными латинскими буквами. Элементы множества обозначаются строчными латинскими буквами.

2.1 Символы теории множеств

- \bullet \in принадлежит
- ∉ не принадлежит
- С включает

- ⊆ включает, возможно равенство
- = тожденственное равенство (для любого значения переменной
- \emptyset пустое множество

2.2 Операции со множествами

- ∪ объединение множеств
- \bullet \cap пересечение множеств

Замечание.

$$A \cup B = \{x : x \in A \land x \in B\} \\ A \cap B = \{x : x \in A \lor x \in B\}.$$

Определение 3. Подмножество - множество A называется подмножеством B, если каждый элемент множества A является элементом множества B.

Определение 4. Универсальное множество - такое множество, подномножествами которого являются все рассматриваемые множества.

2.3 Способы задания множества

1. Перечислить все элементы:

$$A = \{1, 2, 3, 4 \ldots\}.$$

2. Указание свойства, которым обладают все элементы множества:

$$B = \{x : Q(x)\}.$$

2.4 Числовые множества

- $\mathbb{N} = \{1, 2, 3, 4\}$ множество натуральных чисел
- \bullet $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ множество целых чисел
- $\mathbb{Q} = \{x : x = \frac{m}{n}, m \in \mathbb{Z} n \in \mathbb{N}\}$ множество рациональных чисел
- $I = \{\pi, \sqrt{2} \ldots \}$ множество иррациональных чисел
- ullet $\mathbb{R}=\mathbb{Q}\cup I$ множество действительных чисел

Замечание. Порядок вложенности:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

2.5 Промежутки

Определение 5. Промежуток - подножество X множества \mathbb{Q} , где $\forall x_1, x_2 \in X$ этому множеству принадлежат все x, где $x_1 < x < x_2$.

2.5.1 Виды промежутков

- 1. Отрезок $[a; b] = \{x \in \mathbb{R} : a \le x \le b\}$
- 2. Интервал $(a; b) = \{x \in \mathbb{R} : a < x < b\}$
- 3. Полуинтервал $[a; b) = \{x \in \mathbb{R} : a < x < b\}$

2.6 Конечные и бесконечные окрестности

Пусть $x_0 \in \mathbb{R}, \ \delta$ и ε - малые положительные величины

Определение 6. Окрестностью точки x_0 называется любой интервал, содержащий эту точку

Определение 7. δ - окрестностью $(S(x_0, \delta)$ точки x_0 называется интервал с центром в точке x_0 и длиной 2δ .

$$S(x_0; \delta) = (x_0 - \delta; x_0 + \delta)$$

Определение 8. ε - окрестностью $(S(x_0,\varepsilon)$ точки x_0 называется интервал с центром в точке x_0 и длиной 2ε .

$$S(x_0; \delta) = (x_0 - \delta; x_0 + \delta)$$

Определение 9. Окрестностью $+\infty$ называется любой интервал вида:

$$S(+\infty) = (a; +\infty), a \in \mathbb{R}, a > 0.$$

Определение 10. Окрестностью $-\infty$ называется любой интеграл вида:

$$S(-\infty) = (-\infty; -a), a \in \mathbb{R}, a > 0.$$

Определение 11. Окрестностью ∞ называется любой интервал вида

$$S(\infty) = (-\infty; -a) \cup (a; +\infty), a \in \mathbb{R}, a > 0.$$

3 Числовая последовательность

Определение 12. Числовая последовательность - это <u>бесконечное</u> множество числовых значений, которое можно упорядочить (перенумеровать).

Задать последовательность - указать формулу или правило, по которой $\forall n \in \mathbb{N}$ можно записать соответствующий элемент последовательности.

Замечание. Множество значений последовательности может быть конечным или бесконечным, но число число элементов последовательности всегда бесконечно.

Пример.

$$1, -1, 1, -1, 1 \dots$$

Число элементов бесконечно

• Значенией последовательности два

Пример.

$$x_n = (-1)^{n+1}$$

2, 2, 2, 2, 2 . . .

Число элементов бесконечно

• Значенией последовательности одно

Пример.

$$x_n = 2 * 1^n$$

1, 2, 3, 4, 5 . . .

Число элементов бесконечно

• Значений последовательности бесконечно

$$x_n = n, \forall n \in \mathbb{N}.$$

Последовательность чисел $\{x_n\}$ называется **неубывающей**, если каждый последующий член $x_{n+1} \ge x_n, \forall n \in \mathbb{N}$.

```
Пример. 1, 2, 3, 4, 4, 5, 5...
```

Последовательность чисел $\{x_n\}$ называется возрастающей, если каждый последующий член $x_{n+1} > x_n, \forall n \in \mathbb{N}$.

```
Пример. 1, 2, 3, 4, 5, 6, 7...
```

Последовательность чисел $\{x_n\}$ называется **невозрастающей**, если каждый последующий член $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$.

```
Пример. \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{4} \dots
```

Последовательность чисел $\{x_n\}$ называется **убывающей**, если каждый последующий член $x_{n+1} < x_n, \forall n \in \mathbb{N}.$

```
Пример. \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \dots
```

Возрастающие и убывающие последовательности называются **строго** монотонными.

Неубывающие, возрастающие, невозрастающие и убывающие последовательности называются монотонными.

Немонотонная последовательность:

```
Пример. 1, 2, 3, 2, 1...
```

Постоянная последовательность

```
Пример. 1, 1, 1, 1, 1...
```

4 Предел последовательности

Определение 13. Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдется натуральное число $N\left(\varepsilon\right)$, такое, что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

```
\lim_{x \to \infty} x_n = a \quad \Leftrightarrow \quad (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N}) : (\forall n > N(\varepsilon)) \Rightarrow |x_n - a| < \varepsilon.
```

Замечание. Т.е. начиная с номера $N(\varepsilon)+1$ все элементы последовательности $\{x_n\}$ попадают в ε -окрестность точки a.

4.1 Геометрический смысл

$$|x_n - a| < \varepsilon$$

$$-\varepsilon < x_n - a < \varepsilon$$

$$a - \varepsilon < x_n < a + \varepsilon$$

$$\forall n > N(\varepsilon)$$

Какой бы малый ε мы не взяли, бесконечное количество элементов последовательности $\{x_n\}$ попадают в ε -окрестность точки a, причем чем $\varepsilon \downarrow$, тем $N(\varepsilon) \uparrow$.

Пример. Рассмотрим последовательность $x_n = \frac{1}{n+1} = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6} \dots \}$

$$\lim_{n\to\infty} x_n = a \lim_{n\to\infty} \frac{1}{n+1} = 0$$

Пусть $\varepsilon = 0.3$, $x_n \in (a - \varepsilon; a + \varepsilon)$, т.е. (-0.3; 0.3) Получается два элемента $x_1, x_2 \notin (-0.3, 0.3)$

$$\Rightarrow N(\varepsilon) = 2$$

$$N(\varepsilon) + 1 = 3$$

$$x_3., x_4, x_5... \in (-0.3, 0.3)$$

Определение 14. Последовательность, имеющая предел, назыается **схо- дящейся**.

Определение 15. Последовательность $\{x_n\}$ называется ограниченной снизу (сверху), если $\exists m \in \mathbb{R}(M \in \mathbb{R})$, что для всех $\forall n \in \mathbb{N}$ выполнено неравенство $x_n \geq m \ (x_n \leq M)$

Определение 16. Последовательность x_n называется ограниченной, если она ограничена и сверху, и снизу, т.е. $\forall n \in \mathbb{N}, m \leq x_n \leq M$ или $|x_n| \leq M$.

Определение 17. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon>0$ \exists свой порядковый номер $N(\varepsilon)$ такой, что при всех $n\geq N(\varepsilon)$ и $m\geq N(\varepsilon)$ выполнено неравенство $|x_n-x_m|<\varepsilon$.

$$\forall \varepsilon > 0 \exists N(\varepsilon) \quad \forall n \ge N(\varepsilon) \quad \forall m \ge N(\varepsilon) \Rightarrow |x_n - x_m| < \varepsilon$$

Теорема 1. Критерий Коши существования предела последовательности

Для того, чтобы последовательность была сходящейся, необходимо и

достаточно она была фундаментальной.

$$\{x_n\}$$
 - сходится $\Leftrightarrow \{x_n\}$ - фундаментальная.

4.2 Свойства сходящихся последовательность

Теорема 2. О существовании единственности предела последовательности

Любая сходящаяся последовательность имеет единственный предел.

Доказательство. Аналитическое доказательство. Пусть $\{x_n\}$ - сходящаяся последовательность.

Рассуждаем методом от противного. Пусть последовательность $\{x_n\}$ более одного предела.

$$\lim_{n \to \infty} = a$$

$$\lim_{n \to \infty} = b$$

$$a \neq b$$

$$\lim_{n \to \infty} = a \Leftrightarrow (\forall \varepsilon_1 > 0)(\exists N_1(\varepsilon_1) \in N)(\forall n > N_1(\varepsilon_1) \Rightarrow |x_n - a| < \varepsilon_1) \quad (1)$$

$$\lim_{n \to \infty} = b \Leftrightarrow (\forall \varepsilon_2 > 0)(\exists N_2(\varepsilon_2) \in N)(\forall n > N_2(\varepsilon_2) \Rightarrow |x_n - b| < \varepsilon_2) \quad (2)$$

Выберем $N = max\{N_1(\varepsilon_1), N_2(\varepsilon_2)\}.$

Пусть

$$\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{|b-a|}{3}$$

$$3\varepsilon = |b-a| = |b-a+x_n-x_n| =$$

$$= |(x_n-a)-(x_n-b)| \le |x_n-a|+|x_n-b| < \varepsilon_1+\varepsilon_2 = 2\varepsilon$$

$$3\varepsilon < 2\varepsilon$$

Противоречие. Значит, предоположение не является верным \Rightarrow последовательность x_n имеет единственный предел.

Доказательство. Геометрическое доказательство

Нельзя уложить бесконечное число членов последовательности x_n в две непересекающиеся окрестности.

Теорема 3. Об ограниченности сходящейся последовательности. Любая сходящаяся последовательность ограничена.

Доказательство. По определению сходящейся последовательности

$$\Rightarrow \lim_{n \to \infty} = a \Leftrightarrow (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon).$$

Выберем в качестве $M=\max\{|x_1|,|x_2|,\dots|x_n|,|a-\varepsilon|,|a+\varepsilon|\}$. Тогда для $\forall n\in\mathbb{N}$ будет верно $|x_n|\leq M$ - это и означает, что последовательность x_n - ограниченная.

Теорема 4. *Признак сходимости Вейерштрасса.* Ограниченная монотонная последовательность сходится.

4.2.1 Предел последовательности $\mathbf{x}_n = \left(1 + \frac{1}{n}\right)$

Теорема 5. Последовательность $x_n = (1 + \frac{1}{n})$ имеет предел равный e.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e$$

5 Предел функции

Определение 18. Окрестностью, из которой исключена точка x_0 называется проколотой окрестностью.

$$\mathring{S}(x_0; \delta) = S(x_0; \delta) \setminus x_0$$

Определение 19. Определение функции по Коши или на языке ε и δ . Число a называется пределом функции y=f(x) в точке x_0 , если $\forall \varepsilon>0$ найдется δ , зависящее от ε такое что $\forall x\in \mathring{S}(x_0;\delta)$ будет верно неравенство $|f(x)-a|<\varepsilon$.

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0; \delta) \Rightarrow |f(x) - a| < \varepsilon)$$

Эквивалентные записи определения

$$\dots \forall x \in \mathring{S}(x_0; \delta) \Rightarrow \dots$$
$$\dots \forall x \neq x_0, |x - x_0| < \varepsilon \Rightarrow \dots$$
$$\dots \forall x, 0 < |x - x_0| < \delta \Rightarrow \dots$$

$$\dots \Rightarrow |f(x) - a| < \varepsilon$$

 $\dots \Rightarrow f(x) \in \mathring{S}(a, \varepsilon)$

Геометрический смысл предела функции

Если для $\forall \mathring{S}(a;\varepsilon)$ найдется $\mathring{S}(x_0;\delta)$, то соответствующее значение функции лежат в $\mathring{S}(a;\varepsilon)$ (полоса 2ε):

$$\forall x_1 \in \mathring{S}(x_0; \delta) \Rightarrow |f(x_1) - a| < \varepsilon$$

Определение 20. Определение предела функции по Гейне или на языке последовательностей.

Число a называется пределом y=f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательнсти x_n из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} = a \Leftrightarrow (\forall x_n \in D_f) (\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = a)$$

Геометрический смысл

$$\forall x_n \lim_{n \to \infty} x_n = x_0$$

Для любых точек x, достаточно близких к точке x_0 (на языке математики $\lim_{n\to\infty}x_n=x_0$) соответствующие значения $f(x_n)$ достаточно близко расположены к a (на языке математики - $\lim_{n\to\infty}f(x_n)=a$)

Теорема 6. Определение предела функции по Коши и по Гейне *эквивалентны*.

5.1 Ограниченная функция

Определение 21. Функция называется ограниченной в данной области изменения аргумента x, если $\exists M \in \mathbb{R}, M > 0, |f(x)| \leq M$.

Если $\not\exists M \in \mathbb{R}, M > 0$, то функция f(x) называется неограниченной.

Определение 22. Функция называется локально ограниченной при $x \to x_0$, если существует проколотая окрестность с центром в точке x_0 , в которой данная функция ограничена.

5.2 Основные теоремы о пределах

Теорема 7. О локальной ограниченности функции, имеющей конечный предел.

Функция, имеющая конечный предел, локально ограничена.

Доказательство.

$$\lim_{x \to x_0} f(x) = a$$

$$\Leftrightarrow (\forall \varepsilon > 0)(\delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon)$$

Распишем:

$$-\varepsilon < f(x) - a < \varepsilon$$

$$a - \varepsilon < f(x) < a + \varepsilon$$

$$\forall x \in \mathring{S}(x_0, \delta)$$

Выберем $M = max\{|a - \varepsilon|, |a + \varepsilon|\}$

$$|f(x)| \le M, \quad \forall x \in \mathring{S}(x_0, a)$$

Что и требовалось доказать.

Теорема 8. О единственности предела функции.

Если функция имеет конечный предел, то он единственный.

Доказательство. Предположим, что функция имеет более одного предела, например 2 - a и b. Тогда:

$$\lim_{x \to x_0} = a \tag{1}$$

$$\lim_{x \to x_0} = b \tag{2}$$

 $a \neq b$, пусть b > a

$$(1) \Leftrightarrow (\forall \varepsilon_1 > 0)(\exists \delta_1(\varepsilon_1) > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \Rightarrow |f(x) - a| < \varepsilon_1)$$

$$(2) \Leftrightarrow (\forall \varepsilon_2 > 0)(\exists \delta_2(\varepsilon_2) > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \Rightarrow |f(x) - b| < \varepsilon_2)$$

Распишем:

$$(1) \Rightarrow a - \varepsilon_1 < f(x) < a + \varepsilon_1, \forall x \in \mathring{S}(x_0, \delta_1)$$

$$(1) \Rightarrow b - \varepsilon_2 < f(x) < b + \varepsilon_2, \forall x \in \mathring{S}(x_0, \delta_2)$$

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда $\forall x \in \mathring{S}(x_0, \delta)$ будет верно (1) и (2) одновременно.

Пусть $\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{b-a}{2}$:

$$(1) \Rightarrow f(x) < a + \varepsilon_1 = a + \frac{b-a}{2} = \frac{a+b}{2}$$
$$(2) \Rightarrow f(x) < b - \varepsilon_2 = b - \frac{b-a}{2} = \frac{a+b}{2}$$

 $\forall x \in \mathring{S}(x_0, \delta)$

Мы получили противоречие. Это означает, что предположение не является верным. Функция имеет единственный предел. \Box

Теорема 9. O сохранении функией знака своего предела Если $\lim_{x\to x_0}=a\neq 0$, то $\exists \mathring{S}(x_0,\delta)$ такая, что функция в ней сохраняет знак своего предела.

$$\lim_{x \to x_0} f(x) = a \neq 0 \to \begin{cases} a > 0 \\ a < 0 \end{cases} \Rightarrow \begin{cases} f(x) > 0 \\ f(x) < 0 \end{cases} \quad \forall x \in \mathring{S}(x_0, \delta)$$

Доказательство. Пусть a > 0. Выберем $\varepsilon = a > 0$.

$$\lim_{x \to x_0} = a \Leftrightarrow (\forall \varepsilon = a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon = a)$$

Распишем:

$$-a < f(x) - a < a$$
$$0 < f(x) < 2a$$

Знак у функции f(x) и числа a - одинаковые.

Пусть a < 0. Выберем $\varepsilon = -a$.

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon = -a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon = -a)$$

Распишем:

$$-a < f(x) - a < a$$
$$-2a < f(x) < 0$$

Знак у функции f(x) и числа a - одинаковые.

Значит, f(x) сохраняет знак своего предела $\forall x \in \mathring{S}(x_0, \delta)$

Следствие. Если функция y=f(x) имеет предел в точке x_0 и знакопостояна в $\mathring{S}(x_0,\delta)$, тогда её предел не может иметь с ней противоположные знак.

Теорема 10. О предельном переходе в неравенстве.

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\forall x \in S(x_0, \delta)$ верно f(x) < g(x). Тогда $\forall x \in \mathring{S}(x_0, \delta)$ имеет место неравенство $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$.

Доказательство. По условию $f(x) < g(x), \forall x \in \mathring{S}(x_0, \delta).$

Введём функцию $F(x) = f(x) - g(x) < 0, \forall x \in \mathring{S}(x_0, \delta)$. Т.к. f(x) и g(x) имеют конечные пределы в точке x_0 , соответственно и функция F(X) имеет конечный предел в точке x_0 (как разность f(x) и g(x)).

По следствию из предыдущей теоремы $\Rightarrow \lim_{x \to x_0} F(x)$

Подставим F(x) = f(x) - g(x):

$$\lim_{x \to x_0} \left(f(x) - g(x) \right) \le 0 \Rightarrow \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \le 0 \Rightarrow \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Пример. Пусть f(x) = 0, $g(x) = x^2$ и $x_0 = 0$.

$$\forall x \in \mathring{S}(x_0, \delta) \qquad 0 < x^2$$

$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$$

$$\lim_{x \to 0} f(x) \le \lim_{x \to 0} g(x)$$

В теореме знак строгий переходит в нестрогий!

Теорема 11. О пределе промежсуточной функции.

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\lim_{x\to x_0}f(x)=a$ и $\lim_{x\to x_0}g(x)=a,$ $\forall x\in \mathring{S}(x_0,\delta)$ верно неравенство $f(x)\leq h(x)\leq g(x).$ Тогда $\lim_{x\to x_0}h(x)=a.$

Доказательство. По условию:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta_1(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon)$$

$$\lim_{x \to x_0} g(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta_2(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |g(x) - a| < \varepsilon)$$

$$(2)$$

Выберем $\delta_0=min\{\delta,\delta_1,\delta_2\},$ тогда (1), (2) и $f(x)\leq h(x)\leq g(x)$ верны

одновременно $\forall x \in \mathring{S}(x_0, \delta_0).$

(1)
$$a - \varepsilon < f(x) < a + \varepsilon$$

(2)
$$a - \varepsilon < g(x) < a + \varepsilon$$

$$f(x) \le h(x) \le g(x)$$

$$\Rightarrow a - \varepsilon_1 < f(x) \le h(x) \le g(x) < a + \varepsilon_2$$

$$\Rightarrow \forall x \in \mathring{S}(x_0, \delta_0) \qquad a - \varepsilon < h(x) < a + \varepsilon$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_0(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_0 \Rightarrow |h(x) - a| < \varepsilon)$$
 \Rightarrow по определению предела
$$\lim_{x \to x_0} h(x) = a$$

Теорема 12. О пределе сложной функции.

Если функция y=f(x) имеет предел в точке x_0 равный a, то функция $\varphi(y)$ имеет предел в точке a, равный C, тода сложная функция $\varphi(f(x))$ имеет предел в точке x_0 , равный C.

$$\left. \begin{array}{l} y = f(x) \\ \lim_{x \to x_0} f(x) = a \\ \lim_{y \to a} \varphi(y) = C \end{array} \right\} \Rightarrow \lim_{x \to x_0} \varphi(f(x)) = C$$