Theoretical Foundations of Buffer Stock Saving

Chris Carroll

Johns Hopkins University

September 12, 2019

Powered By

Econ ARK

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

l Am A *Big* Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

l Am A *Big* Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

Am A Big Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

I Am A Big Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

The Gap This Paper Fills

Foundations For Microeconomic Household's Problem With

- Uncertain Labor Income
- No Liquidity Constraints
- CRRA Utility
- (Problem with Liquidity Constraints Is A Limiting Case)

The Gap This Paper Fills

Foundations For Microeconomic Household's Problem With

- Uncertain Labor Income
- No Liquidity Constraints
- CRRA Utility
- (Problem with Liquidity Constraints Is A Limiting Case)

Key Result

Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - $\Rightarrow \exists$ A Unique Consumption Function c(m)
- There Is A 'Target' Ratio Of Assets to Permanent Income
 - Requires A Key 'Impatience' Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed

Key Result

Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - $\Rightarrow \exists$ A Unique Consumption Function c(m)
- There Is A 'Target' Ratio Of Assets to Permanent Income
 - Requires A Key 'Impatience' Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed

Key Result

Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - \Rightarrow \exists A Unique Consumption Function c(m)
- There Is A 'Target' Ratio Of Assets to Permanent Income
 - Requires A Key 'Impatience' Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed

Limit as horizon T goes to infinity of

$$a_{t} = m_{t} - c_{t}$$

$$b_{t+1} = a_{t}R$$

$$p_{t+1} = p_{t} \underbrace{\Gamma \psi_{t+1}}_{\equiv \Gamma_{t+1}}$$

$$m_{t+1} = b_{t+1} + p_{t+1}\xi_{t+1},$$
(1)

$$\xi_{t+n} = \begin{cases} 0 & \text{with probability } \wp > 0\\ \theta_{t+n}/(1-\wp) & \text{with probability } (1-\wp) \end{cases}$$
 (2)

•
$$u(\bullet) = \bullet^{1-\rho}/(1-\rho)$$
; $\mathbb{E}_t[\psi_{t+n}] = \mathbb{E}_t[\xi_{t+n}] = 1 \ \forall \ n > 0$; $\beta < 1, \rho > 1$

Surely This Problem Has Been Solved?

No.

- Can't Use Stokey et. al. theorems because CRRA utility
- Lit thru ? Can't Handle Permanent Shocks
- Must Use Boyd's 'Weighted' Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!

Surely This Problem Has Been Solved?

No.

- Can't Use Stokey et. al. theorems because CRRA utility
- Lit thru ? Can't Handle Permanent Shocks
- Must Use Boyd's 'Weighted' Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!

Surely This Problem Has Been Solved?

No.

- Can't Use Stokey et. al. theorems because CRRA utility
- Lit thru ? Can't Handle Permanent Shocks
- Must Use Boyd's 'Weighted' Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!

Benchmark: Perfect Foresight Model

Definitions:

Absolute Patience Factor	Þ	=	$(R\beta)^{1/\beta}$
Return Patience Factor	\mathbf{p}_R	=	\mathbf{P}/R
Perfect Foresight Growth Patience Factor	\mathbf{p}_{L}	=	\mathbf{P}/Γ

Name	Condition		ondition Implication	
(AIC) Absolute Impatience Condition	Þ	<	1	$c \downarrow$ over time
(RIC) Return Impatience Condition	\mathbf{p}_{R}	<	1	$c/a \downarrow$ over time
(PFGIC) Growth Impatience Condition	\mathbf{p}_{L}	<	1	$c/\mathbf{p}\downarrow$ over time

When Does A Useful Limiting Solution Exist?

Finite Human Wealth (FHWC) condition:

$$\Gamma < R$$
 (3)

Return Impatience Condition:

$$\mathbf{b}_{\mathsf{R}} < \mathsf{R}$$
 (4)

When Does A Useful Limiting Solution Exist?

Finite Human Wealth (FHWC) condition:

$$\Gamma < R$$
 (3)

Return Impatience Condition:

$$\mathbf{p}_{\mathsf{R}} < \mathsf{R}$$
 (4)

What If There Are Liquidity Constraints?

- FHWC is not necessary for solution to exist
- Other Key Condition For Useful Solution is 'Perfect Foresight Finite Value of Autarky Condition (PFFVAC)':

$$\beta \Gamma^{1-\rho} < 1 \tag{5}$$

- Without RIC, Constraints Are Irrelevant
 - Because Wealth Always Wants To Rise, So Constraint Never Binds

What If There Are Liquidity Constraints?

- FHWC is not necessary for solution to exist
- Other Key Condition For Useful Solution is 'Perfect Foresight Finite Value of Autarky Condition (PFFVAC)':

$$\beta \Gamma^{1-\rho} < 1 \tag{5}$$

- Without RIC, Constraints Are Irrelevant
 - Because Wealth Always Wants To Rise, So Constraint Never Binds

Liquidity Constraints and Uncertainty

- Introduce permanent shocks to income
- Finite Value of Autarky Condition Becomes

$$\overbrace{\beta}\underline{\underline{\Gamma}}^{1-\rho} < 1 \qquad (6)$$

$$\beta < \underline{\underline{\Gamma}}^{\rho-1}$$

Contraction Mapping Requirements

Finite Value of Autarky Condition: Same As In Liq Constr Problem!

$$\overbrace{\beta}\underline{\underline{\Gamma}^{1-\rho}} < 1 \\
\beta < \underline{\underline{\Gamma}}^{\rho-1}$$
(7)

'Weak Return Impatience Condition' (WRIC)

$$0 \le \wp^{1/\rho} \mathbf{p}_{\mathsf{R}} < 1 \tag{8}$$

Requirement For Existence Of A Target

Definitions: 'Uncertainty-Adjusted' Growth:

$$\underline{\Gamma} = \Gamma \underline{\psi} \tag{9}$$

Adjusted Growth Patience Factor:

$$\mathbf{P}_{\underline{\Gamma}} = \mathbf{P}/\underline{\Gamma} \tag{10}$$

$$=\bar{\phi}\mathbf{P}_{\Gamma}\tag{11}$$

$$= \mathbb{E}\left(\frac{\mathbf{p}}{\Gamma\psi}\right) \tag{12}$$

Growth Impatience Condition:

$$\mathbf{\dot{p}}_{\underline{\Gamma}} < 1 \tag{13}$$

Why? Because it can be shown that

$$\lim_{m_t \to \infty} \mathbb{E}_t \left[\frac{m_{t+1}}{m_t} \right] = \mathbf{P}_{\underline{\Gamma}}$$
 (14)

Five Propositions

 \odot \exists a unique target value of m, called \check{m}

The Target Saving Figure

Bounds On the Consumption Function

The Marginal Propensity to Consume

The Consumption Function and Target Wealth

Convergence To The Invariant Distribution

? Proves Existence of an Invariant Distribution of m, c, a, etc.

Balanced Growth Equilibrium

Achieved When Cross Section Distribution Reaches Invariance

$$Y_{t+1}/Y_t = C_{t+1}/C_t = \Gamma$$
 (15)

Fisherian Separation Fails, Even Without Liquidity Constraints!

Insight

- ullet Precautionary Saving pprox Liquidity Constraints
- If $\dot{c}(m)$ is solution for constrained consumer,

$$\lim_{\wp \downarrow 0} c(m; \wp) = \dot{c}(m) \tag{16}$$

Balanced Growth Equilibrium

Achieved When Cross Section Distribution Reaches Invariance

$$Y_{t+1}/Y_t = C_{t+1}/C_t = \Gamma$$
 (15)

Fisherian Separation Fails, Even Without Liquidity Constraints!

Insight:

- Precautionary Saving \approx Liquidity Constraints
- If $\dot{c}(m)$ is solution for constrained consumer,

$$\lim_{\wp \downarrow 0} c(m; \wp) = \grave{c}(m) \tag{16}$$

Balanced Growth Equilibrium

Achieved When Cross Section Distribution Reaches Invariance

$$Y_{t+1}/Y_t = C_{t+1}/C_t = \Gamma$$
 (15)

Fisherian Separation Fails, Even Without Liquidity Constraints!

Insight:

- Precautionary Saving ≈ Liquidity Constraints
- If $\dot{c}(m)$ is solution for constrained consumer,

$$\lim_{\wp \downarrow 0} c(m;\wp) = \dot{c}(m) \tag{16}$$

The MPC Out Of Permanent Shocks

http://econ.jhu.edu/people/ccarroll/papers/MPCPerm.pdf Lots of Recent Papers Trying to Measure the MPCP

Paper Proves:

- MPCP < 1
- But not a lot less:
 - 0.75 to 0.95 (annual rate) for wide range of parameter values

- Defined Conditions Under Which Widely Used Problem Has Solution
 - Finite Value of Autarky Condition Guarantees Contraction (with WRIC)
 - Growth Impatience Condition Prevents $m \to \infty$
- Economy Of Buffer Stock Consumers Exhibits Balanced Growth
 - Even In Absence of General Equilibrium Adj of Interest Rate