

Neural Network Building Blocks

Maleeha Hassan Helmholtz AI

AI vs ML vs DL

Artificial Intelligent

• Creation of machines that can mimic human intelligence

Machine Learning

 Allows machines to learn from data without explicitly being programmed

Deep Learning

 Uses artificial NNs to train models on big data

PEOPLE BECOMING EXPERTS IN AI

Difference between machine learning and AI:
If it is written in Python, it's probably machine learning If it is written in PowerPoint, it's probably AI

Curt Simon Harlinghausen // PUBLICIS SAPIENT | 48FRWD AI MI

Goal

- Creating an algorithm to achieve a certain task for example image recognition
- Historically one had to invent algorithms
- Nowadays one trains a generalized algorithm that is already invented and implemented

Some examples of AI

The first victim of Artificial Intelligence

SCIENCE

GraphCast: Al model for faster and more accurate global weather forecasting

DINOv3: Revolutionary Self-Supervised Vision Model

Taxonomy of Machine Learning

Supervised Learning	Unsupervised Learning	Reinforcement Learning
Learns a mapping from labeled inputs to target outputs.	Discovers structure in unlabeled data.	Learns decisions by interacting with an environment to maximize reward.
Classification, regression.	Clustering, dimensionality reduction.	Control, game playing, robotics.
Labeled examples (X,y).	Unlabeled examples (X).	No fixed dataset; experiences of states, actions, rewards.
Generalizes from labels to predict outputs on new data.	Groups, compresses, or reveals latent structure.	Learns a policy via trial-and-error.

Supervised learning

The Perceptron by Rosenblatt

A Perceptron is the simplest type of artificial neuron, introduced by Frank Rosenblatt in 1958.

credits: starship-knowledge.com

https://github.com/jtsulliv/ML-from-scratch/blob/master/Neural-Networks/perceptron.ipynb

MultiLayer Perceptron

A multilayer perceptron (MLP) has multiple layers, including one or more hidden layers, allowing it to learn and represent more complex.

Activation Functions

Activation Functions

- Activation function decides whether a neuron should be activated by calculating the weighted sum of inputs and adding a bias term.
- Activation functions introduce non-linearity to neural networks.

Sigmoid Activation Function

- values are between 0 and 1.
- Example: Output = $0.85 \rightarrow 85\%$ chance this is a cat.
- The derivative of sigmoid is $\sigma'(x) = \sigma(x) \cdot (1 \sigma(x))$.
- Mainly used in binary classification.
- Has vanishing gradient problem (network stops learning when inputs are large or too small).

$$\sigma(x) = 1 / (1 + e^{-x})$$

Rectified Linear Units (ReLU)

- If the function receives any negative input, it returns 0; however, if the function receives any positive value x, it returns that value.
- Doesn't saturate for positive values which avoids vanishing gradient problem.
- Fast to compute (no exponentials).
- Dying ReLU problem → if a neuron always gets negative inputs, it outputs 0 forever and becomes dead.
- Leaky ReLU fixes the problem by allowing a small curve when x<0.

$$f(x) = \max(0,x)$$

Now that we've seen how activation functions turn numbers into meaningful predictions — *How do we measure whether those predictions are correct?*

Loss Function

- A loss function (also called a cost function or error function) measures how wrong the model's prediction is compared to the true answer.
- Input is prediction + true label and output is a single number (loss).
- Provides the *learning signal* (error) for backpropagation.
- The goal of training is to minimize loss.
- The choice of loss function depends on the task at hand.

Loss Function

0.50

Regression losses

- Mean Absolute Error (L1)
 - MAE = $(1/n) * \Sigma |actual predicted|$
- Mean Squared Error (L2)
 - MSE = $(1/n) * \Sigma |actual predicted|^2$

Classification losses

- Binary Cross Entropy (BCE)
 - Loss = (y * log(p) + (1 y) * log(1 p))
 - $(1/N) * \Sigma [y_i * log(p_i) + (1 y_i) * log(1 p_i)]$

Categorical Class Entropy (CCE)

Helping Materials

- Youtube Channels
 - 3blue1brown
 - StatQuest
 - Digital Sreeni
- Websites and Blogs
 - Introduction to Deep Learning
 - Understanding Deep Learning
 - o https://gombru.github.io/2018/05/23/cross entropy loss/
 - Neural Networks, Manifolds, and Topology -- colah's blog
 - o ConvNetJS demo: Classify toy 2D data
 - Neural networks: Activation functions | Machine
 Learning | Google for Developers

Hands On

https://github.com/maleehahassan/NNBuildingBlocksTeachingPt1