Recitation #19: Approximating functions with polynomials

Warm up:

For each of the following, write the given polynomial in summation notation starting with k=0.

(a)
$$\frac{3x}{2} - \frac{5x^2}{3} + \frac{7x^3}{4} - \frac{9x^4}{5} + \frac{11x^5}{6}$$

(b)
$$\frac{1}{2}x + \frac{1\cdot 5}{4\cdot 2!}x^3 + \frac{1\cdot 5\cdot 9}{8\cdot 3!}x^5 - \frac{1\cdot 5\cdot 9\cdot 13}{16\cdot 4!}x^7$$

(c)
$$(x-1)^3 - \frac{(x-1)^4}{2!} + \frac{(x-1)^5}{4!} - \frac{(x-1)^6}{6!}$$

Group work:

Problem 1 Assuming that the function f(x) is infinitely differentiable, and given that

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a)^{1} + \frac{f''(a)}{2!}(x-a)^{2} + \frac{f'''(a)}{3!}(x-a)^{3} + c_{4}(x-a)^{4} + \frac{f^{(5)}(a)}{5!}(x-a)^{5}$$

show that the coefficient c_4 of the $(x-a)^4$ term in the Taylor polynomial is $\frac{f^{(4)}(a)}{4!}$.

Problem 2 Let $f(x) = \sin(2x)$. Find $p_3(x)$ about the point $a = \frac{\pi}{8}$.

Problem 3 Let $f(x) = xe^{-x}$ on the interval [-2, 8].

(a) Write the Taylor polynomial $p_4(x)$ around a = 3.

Fun facts:
$$f'(x) = -e^{-x}(x-1)$$

 $f''(x) = e^{-x}(x-2)$
 $f^{(3)}(x) = -e^{-x}(x-3)$
 $f^{(4)}(x) = e^{-x}(x-4)$

Recitation #19: Approximating functions with polynomials

- (b) Write $p_4(x)$ about a=3 in summation notation. Also, write the remainder term $R_4(x)$.
- (c) Calculate $p_4(4.5)$ and, using $R_4(4.5)$, estimate how close $p_4(4.5)$ is to f(4.5). Do the same for $p_4(1.5)$.
- (d) Use the remainder term $R_4(x)$ to estimate the maximum error for $p_4(x)$ on [-2,8].
- (e) How large must n be to assure that the n^{th} degree Taylor polynomial for $f(x)=xe^{-x}$ about a=3 approximates $2e^{-2}$ within 10^{-5} ?

2