

TRABAJO PRÁCTICO 4 AJUSTE DE CURVAS – MÉTODOS DE APROXIMACIÓN

Ejercicios de regresión por mínimos cuadrados

1. Emplee la regresión lineal (o ajuste lineal) para los valores de la tabla

x_i	y_i	$(y_i - \overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	$(y_i - a_0 - a_1 \cdot x_i)^2$
1	0,5				
2	2,5			/	
3	2				
4	4				
5	3,5				
6	6				
7	5,5				
$\sum x_i =$	$\sum y_{i=}$	$\sum (y_i - \bar{y})^2 = s_t$	$\sum (x_i \cdot y_i) =$	$\sum (x_i^2) =$	$\sum (y_i - a_0 - a_1 \cdot x_i)^2 = s_r$

$$\bar{x} = \frac{\sum x_i}{n} = \bar{y} = \frac{\sum y_i}{n} = \bar{y}$$

$$y = a_0 + a_1 \cdot x \qquad a_1 = \frac{n \cdot \sum (x_i \cdot y_i) - \sum x_i \cdot \sum y_i}{n \cdot \sum (x_i^2) - (\sum x_i)^2} \qquad \text{Sistema de ecuaciones para encontrar los valores de } a_0 \text{ y } a_1 \\ a_0 = \bar{y} - a_1 \bar{x} \qquad (\sum x_i) \cdot a_0 + (\sum x_i^2) \cdot a_1 = \sum y_i \\ \sum x_i \cdot a_0 + (\sum x_i^2) \cdot a_1 = \sum y_i \cdot x_i$$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación
$s_y = \sqrt{\frac{s_t}{n-1}} = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$ =	$s_{y/x} = \sqrt{\frac{s_r}{n-2}} = \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i)^2}{n-2}}$	$r^2 = \frac{S_t - S_r}{S_t} =$

Avenida Universidad 450 – 5900 Villa María (Cba) – Tel. (0353)-4537500

x_i	y_i	(y_i)	$x_i \cdot y_i$	$(x_i)^2$	(y_i-a_0)	$(x_i)^3$	$(x_i)^4$	$x_i^2 \cdot y_i$	y_i^2
		$-\overline{y})^2$			$-a_1 \cdot x_i - a_2$ $\cdot x_i^2)^2$				
1	0,5								
2	2,5								
3	2	10							
4	4						/		/
5	3,5								/
6	6								
7	5,5								
$\sum_{i=1}^{n} x_i$	$\sum y_{i=}$	$\sum_{-\bar{y})^2} (y_i - \bar{y})^2 = s_t$	$\sum_{i} (x_i + y_i) =$	$\sum_{i=1}^{n} (x_i^2)$	$\sum_{i=1}^{n} (y_i - a_0)$ $-a_1 \cdot x_i)^2 = s_r$	$\sum_{i=1}^{n} (x_i^3)$	$\sum_{i=1}^{n} (x_i^4)$	$\sum_{i} (x_i^2 + y_i) =$	$\sum_{i=1}^{n} (y_i^2)$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación
$s_y = \sqrt{\frac{s_t}{n-1}}$ $= \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} =$	$s_{y/x} = \sqrt{\frac{s_r}{n - (m+1)}}$ $= \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i - a_2 \cdot x_i^2)^2}{n - (m+1)}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$

3. Emplee la regresión lineal (o ajuste lineal) para los valores de la tabla

x_i	y_i	$(y_i - \overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	$(y_i - a_0 - a_1 \cdot x_i)^2$
1	3				
3	2				
5	6				
7	5	\			
10	8				
12	7				
13	10				
16	9				
18	12				-
20	10				
$\sum x_i =$	$\sum y_{i=}$	$\sum (y_i - \bar{y})^2 = s_t$	$\sum (x_i \cdot y_i) =$	$\sum (x_i^2) =$	$\sum (y_i - a_0 - a_1 \cdot x_i)^2 = s_r$

$$\bar{x} = \frac{\sum x_i}{n} =$$

$$\bar{y} = \frac{\sum y_i}{n} =$$

		Sistema de ecuaciones para encontrar los valores de a_0 y a_1
$y = a_0 + a_1 \cdot x$	$a_1 = \frac{1}{n \cdot \sum (x_i^2) - (\sum x_i)^2}$	$n \cdot \boldsymbol{a_0} + \left(\sum x_i\right) \cdot \boldsymbol{a_1} = \sum y_i$
	$a_0 = \bar{y} - a_1 \bar{x}$	$\left(\sum x_i\right) \cdot \boldsymbol{a_0} + \left(\sum x_i^2\right) \cdot \boldsymbol{a_1} = \sum y_i \cdot x_i$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación
$s_y = \sqrt{\frac{s_t}{n-1}} = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}}$	$s_{y/x} = \sqrt{\frac{s_r}{n-2}} = \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i)^2}{n-2}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$

x_i	y_i	$(y_i - \overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	$(y_i - a_0)$	$(x_i)^3$	$(x_i)^4$	x_i^2	y_i^2
		$(-y)^2$			$-a_1 \cdot x_i$			$\cdot y_i$	
					$-a_2$ $\cdot x_i^2)^2$				
1	3	1							
3	2								
5	6					,			
7	5								
10	8								
12	7								
13	10								
16	9								
18	12								
20	10								
$\sum_{i=1}^{n} x_{i}$	$\sum y_{i=}$	$\sum_{i=1}^{\infty} (y_i - \bar{y})^2$ $= s_t$	$\sum_{i} (x_i)$	$\sum_{i=1}^{n} (x_i^2)^{i}$	$\sum_{i=1}^{n} (y_i - a_0)^2$ $= a_1 \cdot x_i)^2$ $= s_r$	$\sum_{i=1}^{n} (x_i^3)$	$\sum_{i=1}^{n} (x_i^4)$	$\sum_{i} (x_i^2 + y_i) =$	$\sum_{i=1}^{n} (y_i^2)^{i}$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación
$s_{y} = \sqrt{\frac{s_{t}}{n-1}} = \sqrt{\frac{\sum (y_{i} - \overline{y})^{2}}{n-1}}$ $=$	$s_{y/x} = \sqrt{\frac{s_r}{n - (m+1)}}$ $= \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i - a_2 \cdot x_i^2)^2}{n - (m+1)}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$

5. Emplee la regresión lineal (o ajuste lineal) para los valores de la tabla

x_i	y_i	$(y_i - \overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	$(y_i - a_0 - a_1 \cdot x_i)^2$
1	0,4				
2	0,7				
2,5	0,8				
4	1	\			
6	1,2				
8	1,3				/
8,5	1,4				/
$\sum x_i =$	$\sum y_{i=}$	$\sum (y_i - \bar{y})^2 = s_t$	$\sum (x_i \cdot y_i) =$	$\sum (x_i^2) =$	$\sum (y_i - a_0 - a_1 \cdot x_i)^2 = s_r$

$$\bar{x} = \frac{\sum x_i}{n} =$$

$$\bar{y} = \frac{\sum y_i}{n} =$$

	$n \cdot \sum (x_i \cdot y_i) - \sum x_i \cdot \sum y_i$	Sistema de ecuaciones para encontrar los valores de ao y a1
	$a_1 = \frac{1}{n \cdot \sum (x_i^2) - (\sum x_i)^2}$	$n \cdot a_0 + \left(\sum_i x_i\right) \cdot a_1 = \sum_i y_i$
$y=a_0+a_1\cdot x$		
	$a_0 = \bar{y} - a_1 \bar{x}$	$\left(\sum x_i\right) \cdot \boldsymbol{a_0} + \left(\sum x_i^2\right) \cdot \boldsymbol{a_1} = \sum y_i \cdot x_i$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación
$s_y = \sqrt{\frac{s_t}{n-1}} = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$	$s_{y/x} = \sqrt{\frac{s_r}{n-2}} = \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i)^2}{n-2}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$

x_i	y_i	(y_i)	$x_i \cdot y_i$	$(x_i)^2$	(y_i-a_0)	$(x_i)^3$	$(x_i)^4$	x_i^2	y_i^2
		$-\overline{y})^2$			$-a_1 \cdot x_i$			$\cdot y_i$	
					$-a_2 \\ \cdot x_i^2)^2$				
					$(x_i^2)^2$				
1	0,4								
2	0,7								
2,5	0,8								
4	1								
6	1,2								
8	1,3								
8,5	1,4								
$\sum x_i$	$\sum y_{i=}$	$\sum_{-\bar{y})^2} (y_i - \bar{y})^2$	$\sum (x_i$	$\sum (x_i^2)$	$\sum_{i=1}^{\infty} (y_i - a_0 - a_1 \cdot x_i)^2$	$\sum_{i=1}^{n} (x_i^3)$	$\sum_{i=1}^{4} (x_i^4)$	$\sum_{i} (x_i^2 + y_i) =$	$\sum (y_i^2)$
=			$\overline{y_i}$) =	=	$-a_1 \cdot x_i)^2$	=	=	$\cdot y_i) =$	=
		$= s_t$			$= s_r$				

Desviación estándar	Error estándar del estimado	Coeficiente de determinación
$s_y = \sqrt{\frac{s_t}{n-1}} = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$	$s_{y/x} = \sqrt{\frac{s_r}{n - (m+1)}}$ $= \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i - a_2 \cdot x_i^2)^2}{n - (m+1)}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$

7. Emplee la regresión lineal (o ajuste lineal) para los valores de la tabla.

x_i	y_i	$(y_i - \overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	$(y_i - a_0 - a_1 \cdot x_i)^2$
5	17				
10	25				
15	30				
20	33	\			
25	36	\			
30	38				
35	39			/	
40	40				
45	41				
50	42				
$\sum x_i =$	$\sum y_{i=}$	$\sum (y_i - \bar{y})^2 = s_t$	$\sum (x_i \cdot y_i) =$	$\sum (x_i^2) =$	$\sum (y_i - a_0 - a_1 \cdot x_i)^2 = s_r$

$$\bar{x} = \frac{\sum x_i}{n} = \bar{y} = \frac{\sum y_i}{n} = \bar{y}$$

		Sistema de ecuaciones para encontrar los valores de a ₀ y a ₁
	$a_1 = \frac{1}{n \cdot \sum (x_i^2) - (\sum x_i)^2}$	$n \cdot a_0 + \left(\sum x_i\right) \cdot a_1 = \sum y_i$
$y=a_0+a_1\cdot x$	$a = \overline{v}$ $a \overline{v}$	
	$a_0 = \bar{y} - a_1 \bar{x}$	$\left(\sum x_i\right) \cdot \boldsymbol{a_0} + \left(\sum x_i^2\right) \cdot \boldsymbol{a_1} = \sum y_i \cdot x_i$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación	
$s_y = \sqrt{\frac{s_t}{n-1}} = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$	$s_{y/x} = \sqrt{\frac{s_r}{n-2}} = \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i)^2}{n-2}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$	

x_i	y_i	$(y_i - \overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	(y_i-a_0)	$(x_i)^3$	$(x_i)^4$	x_i^2	y_i^2
		$(-y)^2$			$-a_1 \cdot x_i$			$\cdot y_i$	
					$-a_2$ $x_i^2)^2$				
		\			$(x_i^-)^-$				
5	17								
10	25								
15	30								
20	33								
25	36								
30	38								
35	39							/	
40	40								
45	41								
50	42								
$\sum_{i=1}^{n} x_{i}$	$\sum y_{i=}$	$\sum_{i=1}^{n} (y_i)^2$ $= s_t$	$\sum_{i} (x_i)$	$\sum_{i=1}^{n} (x_i^2)$	$\sum_{i=1}^{n} (y_i - a_0)^2$ $= s_r$	$\sum_{i=1}^{n} (x_i^3)$	$\sum_{i=1}^{n} (x_i^4)$	$\sum_{i} (x_i^2 \cdot y_i) =$	$\sum_{i=1}^{n} (y_i^2)$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación
$s_{y} = \sqrt{\frac{s_{t}}{n-1}} = \sqrt{\frac{\sum (y_{i} - \overline{y})^{2}}{n-1}}$ $=$	$s_{y/x} = \sqrt{\frac{s_r}{n - (m+1)}}$ $= \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i - a_2 \cdot x_i^2)^2}{n - (m+1)}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$

9. A un ingeniero en sistemas, que trabaja en un negocio de venta de computadoras, se le pide que examine los datos de la siguiente tabla y calcule cuántas computadoras tendrá disponibles en 15, 25 y 55 días. Emplee la regresión lineal (o ajuste lineal) para resolver.

Días	Computadoras				
x_i	y_i	$(y_i - \overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	$(y_i - a_0 - a_1 \cdot x_i)^2$
0	50000				
10	35000			/	
20	31000				
30	20000				/
40	19000				
50	12000				/-
60	11000				
$\sum_{i=1}^{n} x_i$	$\sum y_{i=}$	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	$\sum_{i=1}^{n} (x_i \cdot y_i)$	$\sum_{i=1}^{n} (x_i^2)$	$\sum (y_i - a_0 - a_1 \cdot x_i)^2$ $= s_r$

$$\bar{x} = \frac{\sum x_i}{n} = \bar{y} = \frac{\sum y_i}{n} = \bar{y}$$

		Sistema de ecuaciones para encontrar los valores de ao y a1
	$a_1 = \frac{1}{n \cdot \sum (x_i^2) - (\sum x_i)^2}$	$n \cdot a_0 + \left(\sum x_i\right) \cdot a_1 = \sum y_i$
$y = a_0 + a_1 \cdot x$		
	$a_0 = \bar{y} - a_1 \bar{x}$	$\left(\sum x_i\right) \cdot \boldsymbol{a_0} + \left(\sum x_i^2\right) \cdot \boldsymbol{a_1} = \sum y_i \cdot x_i$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación	
$s_y = \sqrt{\frac{s_t}{n-1}} = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$	$s_{y/x} = \sqrt{\frac{s_r}{n-2}} = \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i)^2}{n-2}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$	

Avenida Universidad 450 - 5900 Villa María (Cba) - Tel. (0353)-4537500

ANÁLISIS NUMÉRICO

10. A un ingeniero en sistemas, que trabaja en un negocio de venta de computadoras, se le pide que examine los datos de la siguiente tabla y calcule cuántas computadoras tendrá disponibles en 15, 25 y 55 días. Emplee la regresión cuadrática (o ajuste cuadrático) para resolver

Computadoras				$(y_i - a_0)$				
y_i	(y_i)			$-a_1 \cdot x_i$	2			
	$-\overline{y})^2$	$x_i \cdot y_i$	$(x_i)^2$	$-a_2\cdot x_i^2)^2$	$(x_i)^3$	$(x_i)^4$	$x_i^2 \cdot y_i$	y_i^2
50000								
35000								
31000								
20000							/	
19000								
12000								
11000						/		
$\sum y_{i=}$	$\sum (y_i)$	$\sum (x_i)$	$\sum (x_i^2)$	$\sum (y_i$	$\sum (x_i^3)$	$\sum (x_i^4)$	$\sum (x_i^2)$	$\sum (y_i^2)$
	$-\bar{y})^2$	$\cdot y_i)$	=	$-a_0$	=	=	$\cdot y_i) =$	=
	$= s_t$	=		$-a_1 \cdot x_i)^2$				
				o _r				
	yi 50000 35000 31000 20000 19000 12000 11000	$y_{i} \qquad \frac{(y_{i} - \overline{y})^{2}}{-\overline{y})^{2}}$ 50000 35000 31000 20000 19000 12000 11000 $\sum y_{i=} \qquad \sum (y_{i} - \overline{y})^{2}$	$ \begin{array}{c cccc} y_i & (y_i \\ & -\bar{y})^2 & x_i \cdot y_i \\ \hline 50000 & & & \\ 35000 & & & \\ 31000 & & & & \\ 20000 & & & & \\ 12000 & & & & \\ \hline 11000 & & & & \\ \sum y_{i=} & \sum (y_i \\ & -\bar{y})^2 & \cdot y_i) \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$\bar{x} \qquad \bar{y} \\ = \frac{\sum x_i}{n} \qquad = \frac{\sum y_i}{n} \\ = \qquad = \qquad \qquad v = a_0 + a_1 \cdot x + a_2 \\ = \qquad = \qquad (\sum x_i) \cdot a_0 + (\sum x_i) \cdot a_1 + (\sum x_i^2) \cdot a_2 = \sum y_i \\ (\sum x_i) \cdot a_0 + (\sum x_i^2) \cdot a_1 + (\sum x_i^3) \cdot a_2 = \sum y_i \cdot x_i \\ (\sum x_i^2) \cdot a_0 + (\sum x_i^3) \cdot a_1 + (\sum x_i^4) \cdot a_2 = \sum y_i \cdot x_i^2$$

Desviación estándar	Error estándar del estimado	Coeficiente de determinación	
$s_y = \sqrt{\frac{s_t}{n-1}} = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$ =	$s_{y/x} = \sqrt{\frac{s_r}{n - (m+1)}}$ $= \sqrt{\frac{\sum (y_i - a_0 - a_1 \cdot x_i - a_2 \cdot x_i^2)^2}{n - (m+1)}} =$	$r^2 = \frac{S_t - S_r}{S_t} =$	

Ejercicios de interpolación

1. Emplee la interpolación lineal (Polinomio de Newton) para conocer el valor de ln(2) si se conocen los valores de ln(1), ln(4) y ln(6). Realice la primera estimación en [1;6] y luego en [1;4]. Calcule los errores de aproximación, en cada caso, si se sabe que ln(2)=0,6931472. Analice los resultados obtenidos.

x	$y = \ln(x)$
1	0
2	
4	1,386294
6	1,791759

Interpolación lineal – Polinomio de Newton

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot (x - x_0)$$

Error de estimación

$$E_{a\%} = \left| \frac{y_{real} - y_{calculado}}{y_{real}} \right| \cdot 100$$

2. Emplee la interpolación cuadrática (Polinomio de Newton) para conocer el valor de ln(2) si se conocen los valores de ln(1), ln(4) y ln(6). Realice la estimación para el intervalo [1;6]. Calcule el error de aproximación si se sabe que ln(2)=0,6931472. Analice los resultados obtenidos en el ejercicio anterior.

Interpolación cuadrática Polinomio de Newton $f_2(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2$	$a_{0} = b_{0} - b_{1} \cdot x_{0} + b_{2} \cdot x_{0} \cdot x_{1}$ $a_{1} = b_{1} - b_{2} \cdot x_{0} - b_{2} \cdot x_{1}$ $a_{2} = b_{2}$ $b_{0} = f(x_{0})$ $b_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$ $\underline{f(x_{2}) - f(x_{1})} \underline{f(x_{1}) - f(x_{0})}$
	$b_2 = \frac{\frac{x_2 - x_1}{x_2 - x_1} - \frac{x_1 - x_0}{x_1 - x_0}}{x_2 - x_0}$

3. Emplee la interpolación polinómica de Lagrange de 1º y 2º orden para conocer el valor de ln(2) si se conocen los valores de ln(1), ln(4) y ln(6). Realice la estimación para el intervalo [1;6]. Calcule el error de aproximación si se sabe que ln(2)=0,6931472. Analice los resultados obtenidos en los ejercicios 1 y 2 de esta sección.

Interpolación polinómica de Lagrange de 1º orden

$$f_1(x) = \frac{x - x_1}{x_0 - x_1} \cdot f(x_0) + \frac{x - x_0}{x_1 - x_0} \cdot f(x_1)$$

Interpolación polinómica de Lagrange de 2º orden

$$f_2(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} \cdot f(x_0) + \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} \cdot f(x_1) + \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} \cdot f(x_2)$$

- 4. Calcular f(1,6) usando los datos de la siguiente tabla. Calcule por
 - a. Interpolación lineal Polinomio de Newton
 - b. Interpolación cuadrática Polinomio de Newton
 - c. Interpolación polinómica de Lagrange de 1º orden
 - d. Interpolación polinómica de Lagrange de 2º orden

Х	y=f(x)	
0	1	
0,5	2,1	
1	2,9	
1,5	3,9	
2	5,7	
2,5	8,6	

Ejercicios de aplicación

1. Determine la ecuación para predecir la tasa de metabolismo como función de la masa con base en los datos siguientes

Animal	Masa (kg)	Metabolismo (W)	
Vaca	400	270	
Humano	70	82	
Oveja	45	50	
Gallina	2	4,8	
Rata	0,3	1,45	
Paloma	0,16	0,97	

2. Se realizó un estudio de ingeniería del transporte para determinar el diseño apropiado de pistas para bicicletas. Se recabaron datos del ancho de las pistas y la distancia promedio entre las bicicletas y los autos en circulación. Los datos de 9 (nueve) calle son

Distancia (m)	Ancho de la pista (m)	
2,4	2,9	
1,5	2,1	
2,4	2,3	
1,8	2,1	
1,8	1,8	
2,9	2,7	
1,2	1,5	
3	2,9	
1,2	1,5	

Se solicita:

- a. Grafique los datos
- b. Ajuste una línea recta a los datos con regresión lineal. Agregue esta línea a la gráfica.
- c. Si se considera que la distancia mínima promedio de seguridad entre las bicicletas y los autos es de 2 m, determine el ancho de pista mínimo correspondiente.

Avenida Universidad 450 - 5900 Villa María (Cba) - Tel. (0353)-4537500

ANÁLISIS NUMÉRICO

3. Se realiza un experimento para determinar la elongación porcentual de un material conductor de la electricidad como función de la temperatura. Los datos que resultan se presentan en la tabla siguiente. Prediga la elongación porcentual para una temperatura de 400 °C. Utilice el método que más convenga y explique por qué lo empleó.

Temperatura (ºC)	% elongación	
200	7,5	
250	8,6	
300	8,7	
375	10	
425	11,3	
475	12,7	
600	15,3	

Método	Formulación	Interpretación gráfica	Errores
Regresión lineal	$y = a_0 + a_1 x$ donde $a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$ $a_0 = \overline{y} - a_1 \overline{x}$	y , , , , , , , , , , , , , , , , , , ,	$s_{y/x} = \sqrt{\frac{S_r}{n-2}}$ $r^2 = \frac{S_r - S_r}{S}$
Regresión polinomial	$y = a_0 + a_1x + \cdots + a_mx_m$ (Evaluación de las a equivalente a la solución de $m + 1$ ecuaciones algebraicas lineales)	•••••	$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$ $r^2 = \frac{S_r - S_r}{S_r}$
Regresión lineal múltiple	$y = a_0 + a_1x_1 + \cdots + a_mx_m$ (Evaluación de las a equivalentes a la solución de $m + 1$ ecuaciones algebraicas lineales)	x_1	$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$ $r^2 = \frac{S_r - S_r}{S_r}$
Interpolación polinomial de Newton en diferencias divididas*	$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_0)$ donde $b_0 = f(x_0)$ $b_1 = f[x_1, x_0]$ $b_2 = f[x_2, x_1, x_0]$) ^y	$R_{2} = (x - x_{0})(x - x_{1})(x - x_{2}) \frac{f^{(3)}(\xi)}{6}$ o $R_{2} = (x - x_{0})(x - x_{1})(x - x_{2})f[x_{3}, x_{2}, x_{1}, x_{0}]$
Interpolación polinomial de Lagrange*	$f_{2}(x) = f(x_{0}) \left(\frac{x - x_{1}}{x_{0} - x_{1}} \right) \left(\frac{x - x_{2}}{x_{0} - x_{2}} \right)$ $+ f(x_{1}) \left(\frac{x - x_{0}}{x_{1} - x_{0}} \right) \left(\frac{x - x_{2}}{x_{1} - x_{2}} \right)$ $+ f(x_{2}) \left(\frac{x - x_{0}}{x_{0} - x_{0}} \right) \left(\frac{x - x_{1}}{x_{0} - x_{1}} \right)$	y	$R_2 = (x - x_0)(x - x_1)(x - x_2) \frac{f^{(3)}(\xi)}{6}$ o $R_2 = (x - x_0)(x - x_1)(x - x_2)f[x_3, x_2, x_1, x_0]$
Trazadores cúbicos	Una cúbica: $ax^3 + bx^2 + cx + d_i$ se ajusta a cada intervalo entre nodos. Primera y segunda derivadas son iguales en cada nodo	$a_1 x^3 + b_1 x^2 + c_1 x + d$ nodo $a_2 x^3 + b_2 x^2 + c_2 x + d$	