Работа 2.1.3

Определение C_p/C_v по скорости звука в газе

Малиновский Владимир

galqiwi@galqiwi.ru

Цель работы: Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу

В работе используются: звуковой генератор ГЗ, электронный осциллограф ЭО, микрофон, телефон, раздвижная труба, теплоизолированная труба, обогреваемая водой из термостата, баллон со сжатым углекислым газом, газгольдер.

Описание работы

Из теории нам известна зависимость скорости звука от показателя адиабаты γ :

$$c = \sqrt{\gamma \frac{RT}{\mu}}.$$

Таким образом, задача нахождения γ сходится к задаче нахождения скорости звука при заданной температуре.

В этом эксперименте предпологается использовать стоячие волны для нахождения c. Известно, что стоячие волны в коридоре длиной L образуются при:

$$L = \frac{n}{2}\lambda,$$

где λ – длина волны звука, связанная со скоростью звука и частотой f, как:

$$\lambda = c/f$$
.

То есть верно, что:

$$L = \frac{c}{2f}n.$$

В текущем эксперименте мы будем знать не абсолютный номер порядка n, а его приращение $k = n - n_0$, для которого верно, что:

$$\Delta L = L - L_0 = \frac{c}{2f}k + \Delta L_0,$$

где L_0 – минимальный размер трубы, а ΔL – отклонение от него, которое мы можем измерить.

Экспериментальная установка

В этой работе мы будем измерять зависимость $\Delta L(k)$ при постоянных значениях f, из чего получим c. Для этого мы используем установку на Рис. 1. Эта установка представляет из себя две вложенных друг в друга трубы с миллиметровой шкалой на подвижной части. На краях этой системы установлены приемник T и передатчик M. Также к системе подведена трубка, через которую можно накачивать пространство внутри труб воздухом или углекислым газом.

Рис. 1. Установка для измерения скорости звука при помощи раздвижной трубы

Описание работы и ее результатов

- (1) Включим звуковой генератор с осциллографом и дадим им прогреться 5-7 минут.
- (2) Зададим амплитуду и частоту сигнала на генераторе так, чтобы на осциллографе можно было пронаблюдать сигнал. Он должен быть неискаженным синусоидальным. Если он будет искаженным, уменьшим амплитуду.
- (3, a, 6, в) При вариации длины в 230мм, для того, чтобы при скорости в 340м/с было ≈ 4 резонанса, нужна частота порядка:

$$f pprox rac{4 \cdot 340 \mathrm{m/c}}{2 \cdot 0.23 \mathrm{m}} pprox 3 \mathrm{к} \Gamma$$
ц.

Продуем трубу воздухом ≈ 5 мин.

Для нескольких частот получим различные зависимости $\Delta L(k)$, плавно вытягивая и втягивая внутреннюю трубку относительно внешней и наблюдая за амплитудой показаний осциллографа. При достижении максимума амплитуды, наблюдается резонанс, и мы записываем новое значение ΔL .

$N_{\scriptscriptstyle{ exttt{M}3M}}$	f , к Γ ц	L(0),	L(1),	L(2),	L(3),	L(4),	λ , mm	$\Delta\lambda$,	c,	Δc ,	примечание
		MM	MM	MM	MM	MM		MM	м/с	м/с	примечание
1	4.00	38	82	126	170	215	88.4	0.2	354	2	вверх
2	3.99	42	85	127	170	215	86.2	0.5	344	3	вниз
3	2.45	12	85	155	223	-	140.6	1.1	344	4	вверх
4	2.45	12	77	120	218	-	132.2	10.7	324	27	вниз
5	1.74	13	112	210	-	-	197.0	0.3	343	3	вверх
6	1.74	10	110	210	-	-	200.0	0.1	348	2	вниз
7	3.25	46	99	152	207	-	107.2	0.5	348	3	вверх
8	3.25	46	100	153	207	-	107.2	0.2	348	2	вниз
9	1.99	9	94	180	-	-	171.0	0.3	340	2	вверх
10	1.99	4	85	178	1	-	174.0	4.0	346	10	вниз
11	2.73	65	130	191	-	-	126.0	1.3	344	5	вверх
12	2.73	64	128	191	-	-	127.0	0.3	347	2	вниз
13	3.75	40	85	132	178	224	92.2	0.2	346	2	вверх
14	3.75	40	84	133	178	225	92.8	0.6	348	3	вниз

$$\Delta f = 0.01$$
к Γ ц, $\Delta L = 0.5$ мм.

Значение λ и ее погрешности я получил через МНК, по формуле

$$\lambda = 2\frac{dL}{dk}.$$

Приборная погрешность у этого эксперимента сопоставима с погрешностью мнк:

$$\varepsilon f \approx \frac{1}{200} = 0.5\%,$$

$$\varepsilon L \approx \frac{0.5}{100} = 0.5\%,$$

что добавит дополнительные 1% погрешности к финальному результату.

Из таблицы видны выбросы на 4 и 10 измерении – видимо, на них слишком неточно были получены несколько точек. В последующих вычислениях я их не буду учитывать. Из МНК получается средняя скорость звука:

$$c = (346 \pm 3) \frac{M}{c}$$
.

С Учетом 1%:

$$c = (346 \pm 5) \frac{\text{M}}{\text{c}}.$$

Как было сказано ранее, из c мы можем найти γ (при $T=(25\pm5)^{\circ}C)$:

$$\gamma = \frac{\mu c^2}{RT} = 1.40 \pm 0.07,$$

что сходится с теорией.

(3, г) Измерение скорости звука в углекислом газе.

Измерение скорости звука в углекислом газе проводится аналогично скорости звука в воздухе, но со своими особенностями: установка не является герметичной, и поэтому в нее поступает воздух при движении трубы наружу. Поэтому метод нахождения получает новые особенности:

- 1. Просто открытия краника для того, чтобы закачать CO_2 , недостаточно надо открыть краник и начать вводить-выводить внутреннюю трубу где-то 20 секунд, прокачивая CO_2 внутрь, и удаляя воздух.
- 2. CO_2 надо обновлять после каждого измерения это правило я не выполнил в двух измерениях, что указал в таблице, поскольку официальная методика решения была без этого правила.
- 3. Измерения проводятся только при входе трубы внутрь. Поскольку измерения при полностью открытом кране невозможны из-за сильного шума на осциллографе, при выводе трубы, в установку закачивается воздух.
- 4. Во время измерений краник немного приоткрыт достаточно, чтобы был доступ к CO_2 , но недостаточно, чтобы были помехи в работе осциллографа.

$N_{\scriptscriptstyle exttt{M3M}}$	f , к Γ ц	L(0),	L(1),	L(2),	L(3),	L(4),	L(5),	λ , mm	$\Delta\lambda$, MM	c , $_{\mathrm{M/c}}$	Δc , M/c	примечание
1	3.25	8	48	89	132	172	212	82.0	0.4	266	2	
2	3.02	12	64	118	174	-	-	108.0	0.9	327	4	без п.2
3	2.74	35	90	149	207	-	-	115.0	0.8	315	3	без п.2
4	2.74	40	88	138	185	-	_	97.0	0.5	266	2	
5	2.23	32	92	153	212	-	-	120.2	0.4	268	2	
6	1.75	78	155	-	-	-	-	154.0	0.1	270	2	
7	1.50	8	105	188	-	-	-	180.0	4.7	271	9	
8	1.99	45	115	177	-	-	-	132.0	2.7	263	7	
9	2.50	55	105	160	213	-	-	105.8	1.0	264	3	

$$\Delta f = 0.01$$
к Γ ц, $\Delta L = 0.5$ мм.

Как видно из таблицы, значения измерений 2 и 3 выбиваются на фоне других — видно, что из-за проникновения воздуха, скорость звука вырастает со значений $\approx 265 \text{м/c}$ до 320 м/c, что ближе к 345 м/c воздуха.

Аналогично воздуху, найдем c:

$$c = (267 \pm 4) \text{M/c}.$$

Приборная погрешность так же равна 1%. С ее учетом:

$$c = (267 \pm 5) \text{M/c}.$$

Из этого γ равна:

$$\gamma = \frac{\mu c^2}{RT} = (1.27 \pm 0.07),$$

что соответствует табличному значению.

Вывод

Мы научились измерять показатель адиабаты через скорость звука с помощью резонансных пиков зависимости амплитуды принимаемого сигнала при прохождении в закрытом пространстве от расстояния, проходимого звуком в одну сторону из-за появления стоячих волн, результаты эксперимента совпали с табличными значениями. Был уточнен метод получения скорости звука в углекислом газе.