

VEKTOR

Besaran yang mempunyai nilai dan arah.

Notasi Vektor

 $ec{a}$ atau ${f a}$

Penggambaran Vektor

Vektor digambarkan dengan anak panah.

Contoh vektor \vec{a} :

Vektor \vec{a} mempunyai titik pangkal di O dan titik ujung di A.

Vektor dalam Koordinat 2D

$$ec{a}=a_xec{i}+a_yec{j}$$

Panjang vektor \vec{a}

$$|ec{a}|=\sqrt{{a_x}^2\,+\,{a_y}^2}$$

Vektor dalam Koordinat 3D

$$ec{p}=p_xec{i}+p_yec{j}+p_zec{k}$$

Panjang vektor \vec{p}

$$|ec{p}| = \sqrt{{p_x}^2 \, + \, {p_y}^2 \, + \, {p_z}^2}$$

Vektor Satuan

Vektor yang mempunyai panjang satu satuan dan dilambangkan dengan topi (^).

Rumus

Vektor

Panjang Vektor

Contoh:

Misalkan diketahui vektor \vec{p} , dan panjang vektornya adalah $|\vec{p}|$, maka vektor satuannya (\hat{p}) adalah

$$\hat{p}=rac{ec{p}}{|ec{p}|}$$

Kesamaan Dua Vektor

Vektor sama panjang dan searah

Vektor sama panjang dan berlawanan arah

Vektor tidak sama panjang dan searah

Vektor Basis dinyatakan dalam Vektor Kolom

Vektor Basis

$$ec{i} = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}$$

$$ec{j} = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}$$

$$ec{k} = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

Contoh penggunaannya dalam suatu vektor:

Misalkan diketahui vektor $ec{p}=2ec{i}-3ec{j}+4ec{k}$, maka vektor $ec{p}$ dapat dinyatakan

$$ec{p}=2egin{pmatrix}1\0\0\end{pmatrix}-3egin{pmatrix}0\1\0\end{pmatrix}+4egin{pmatrix}0\0\1\end{pmatrix}=egin{pmatrix}2\-3\4\end{pmatrix}$$

Kelipatan Suatu Vektor

ullet $ec{a}=ec{i}+2ec{j}$

ullet -ec a = -ec i - 2ec j

 $ullet \ 3ec a = ec i + ec i + ec i + 2ec j + 2ec j + 2ec j$

 $ullet \ \ 3ec{a}=ec{i}+2ec{j}+ec{i}+2ec{j}+ec{i}+2ec{j}$

Penjumlahan Dua Vektor

Metode Segitiga

Misalkan diketahui, vektor $ec{a}$ dan $ec{b}$ seperti ini

Kemudian susun vektor \vec{a} dan \vec{b} seperti ini (untuk mencari hasil dari $\vec{a}+\vec{b}$ dan $\vec{b}+\vec{a}$)

$$ec{a} + ec{b} = \stackrel{\longrightarrow}{OA} + \stackrel{\longrightarrow}{AC} = \stackrel{\longrightarrow}{OC}$$

$$ec{b} + ec{a} = \stackrel{\longrightarrow}{OB} + \stackrel{\longrightarrow}{BC} = \stackrel{\longrightarrow}{OC}$$

$$ec{a}+ec{b}=ec{b}+ec{a}$$

Metode Jajaran Genjang

$$ec{a} + ec{b} = ec{b} + ec{a}$$
 $\overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OB} + \overrightarrow{BC}$ $\overrightarrow{OC} = \overrightarrow{OC}$

Selisih Dua Vektor

Misalkan vektor \overrightarrow{OV} adalah \overrightarrow{v} , maka vektor \overrightarrow{VO} adalah $-\overrightarrow{v}$. Karena vektor sama panjang dan berlawanan arah, maka dapat diperoleh $\overrightarrow{VO} = -\overrightarrow{OV}$, sehingga

$$\overrightarrow{VU} = \overrightarrow{VO} + \overrightarrow{OU}$$
 $= -\vec{v} + \vec{u}$
 $= \vec{u} - \vec{v}$

 $ec{u}-ec{v}$ adalah selisih dari vektor $ec{u}$ dan $ec{v}$.

Penjumlahan pada Banyak Vektor

$$\overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{OD}$$

$$\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RS} + \overrightarrow{SP} = \overrightarrow{PP}$$

Karena kembali ke posisi awal, maka $\overrightarrow{PP} = \vec{0}$ (vektor nol).

Vektor Posisi

Vektor yang dimulai dari titik **O** (pusat koordinat) ke suatu titik.

Contoh:

$$\overrightarrow{OA} = \vec{a} = 2\vec{i} + 3\vec{j}$$

Menentukan Suatu Vektor dari Dua Titik

Dalam Koordinat 2D

$$\overrightarrow{AB} = egin{pmatrix} x_B \ y_B \end{pmatrix} - egin{pmatrix} x_A \ y_A \end{pmatrix} = egin{pmatrix} x_B - x_A \ y_B - y_A \end{pmatrix}$$

Dalam Koordinat 3D

$$\overrightarrow{AB} = egin{pmatrix} x_B - x_A \ y_B - y_A \ z_B - z_A \end{pmatrix} \quad \overrightarrow{BA} = egin{pmatrix} x_A - x_B \ y_A - y_B \ z_A - z_B \end{pmatrix} \quad \overrightarrow{AB} = -\overrightarrow{BA}$$

Contoh:

Diketahui titik A(3,2,4) dan B(4,-1,5). Tentukan vektor \overrightarrow{AB} .

$$\overrightarrow{AB} = egin{pmatrix} 4-3 \ -1-2 \ 5-4 \end{pmatrix} = egin{pmatrix} 1 \ -3 \ 1 \end{pmatrix} \quad \overrightarrow{AB} = \vec{i} - 3\vec{j} + \vec{k}$$

Sifat-Sifat Operasi Hitung pada Vektor

ullet Jika ada suatu skalar m dan suatu vektor $ec{p}$, maka berlaku:

$$mec{p}=mp_xec{i}+mp_yec{j}+mp_zec{k}$$

• Jika ada dua skalar m dan n dan vektor \vec{p} , maka berlaku:

$$(mn)\vec{p}=m(n\vec{p})=n(m\vec{p})$$

$$(m\pm n)ec p=mec p\pm nec p$$

• Jika ada skalar m dan dua vektor \vec{p} dan \vec{q} , maka berlaku:

$$m(ec p + ec q) = mec p + nec q$$

Sifat Operasi Penjumlahan pada Vektor:

- $\bullet \quad \vec{p} + (-\vec{p}) = \vec{0}$
- $\bullet \quad \vec{p} + \vec{q} = \vec{q} + \vec{p}$
- $ullet \ ec p + (ec q + ec r) = (ec p + ec q) + ec r$

Vektor yang Saling Sejajar

$$ec{a}=mec{b}$$

m
eq 0 dan $m \in \mathbb{R}$

Tiga Titik Segaris

Dari gambar di atas diperoleh 3 hubungan, yaitu:

$$egin{array}{ccc} \overrightarrow{AC} = \overrightarrow{mAB} \ \overrightarrow{AC} = \overrightarrow{nBC} \ \overrightarrow{BC} = \overrightarrow{tAB} \ \end{array}$$

$$ullet \ \overrightarrow{AC} = n\overrightarrow{BC}$$

$$ullet$$
 $\overrightarrow{BC} = \overrightarrow{tAB}$

dengan m, n, t skalar bukan nol.

Perbandingan Vektor dalam Segitiga

$$ec{p}=rac{mec{b}+nec{a}}{m+n}$$

Hasil Kali Skalar (Dot Product)

 $ec{m{a}}\cdotec{b}=0$

 $ec{a}\cdotec{b}=|ec{a}||ec{b}|$

 $oldsymbol{ec{a}}\cdotec{b}=-|ec{a}||ec{b}|$

Hasil Perkalian Titik antar Vektor Basis

- $ullet \ ec{i} \cdot ec{i} = 1 \quad ullet \ ec{i} \cdot ec{j} = ec{j} \cdot ec{i} = 0$
- $ullet \ \ ec{j}\cdotec{j}=1 \qquad ullet \ \ ec{i}\cdotec{k}=ec{k}\cdotec{i}=0$
- ullet $ec{k}\cdotec{k}=1$ ullet $ec{j}\cdotec{k}=ec{k}\cdotec{j}=0$

Rumus Hasil Kali Skalar

Jika diketahui komponennya, maka

$$ec{a}\cdotec{b}=a_xb_x+a_yb_y+a_zb_z$$

Jika diketahui panjang dan sudutnya, maka

$$ec{b}\cdotec{a}=|ec{b}||ec{a}|\cos heta$$

Sifat-Sifat Hasil Kali Skalar

- $ec{a}\cdotec{b}=ec{b}\cdotec{a}$
- $ec{m{a}\cdot(ec{b}\pmec{c})}=\overline{ec{a}\cdotec{b}\pmec{a}\cdotec{c}}$

Proyeksi Vektor Ortogonal

Proyeksi Vektor $ec{a}$ terhadap Vektor $ec{b}$

Proyeksi skalar ortogonal

$$rac{ec{a}\cdotec{b}}{|ec{b}|}$$

Panjang proyeksi skalar ortogonal

$$|ec{c}| = \left| rac{ec{a} \cdot ec{b}}{|ec{b}|}
ight|$$

Proyeksi vektor ortogonal

$$ec{c} = \left(rac{ec{a}\cdotec{b}}{|ec{b}|^2}
ight)\cdotec{b}$$

Proyeksi Vektor $ec{b}$ terhadap Vektor $ec{a}$

Proyeksi skalar ortogonal

$$rac{ec{b}\cdotec{a}}{|ec{a}|}$$

Panjang proyeksi skalar ortogonal

$$|ec{d}\,| = \left|rac{ec{b}\cdotec{a}}{|ec{a}|}
ight|$$

Proyeksi vektor ortogonal

$$ec{d} = \left(rac{ec{b} \cdot ec{a}}{|ec{a}|^2}
ight) \cdot ec{a}$$

Proyeksi Vektor

Panjang Jumlah Dua Vektor

$$|ec{a} + ec{b}| = \sqrt{ec{a} \cdot ec{a} + ec{b} \cdot ec{b} + 2(ec{a} \cdot ec{b})}$$

$$|ec{a}+ec{b}|=\sqrt{|ec{a}|^2+|ec{b}|^2+2|ec{a}||ec{b}|\cos heta}$$

Panjang Selisih Dua Vektor

$$|ec{a}-ec{b}|=\sqrt{ec{a}\cdotec{a}+ec{b}\cdotec{b}-2(ec{a}\cdotec{b})}$$

$$|ec{a}-ec{b}|=\sqrt{|ec{a}|^2+|ec{b}|^2-2|ec{a}||ec{b}|\cos heta}$$