PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous) KANURU, VIJAYAWADA-520007

II B.Tech – I Sem CSE (DATA SCIENCE)

Data Structures Lab

Course Code	20DS3352	Year	II	Semester:	I		
Course Category	PCC Lab	Branch	CSE(Data Science)	Course Type	Practical		
Credits	1.5	L-T-P	0-0-3	Prerequisites	Programming for Problem Solvingusing C		
Continuous Internal Evaluation	15	Semester End Examination	35	Total Marks	50		

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to:						
CO1	CO1 Apply Linear and non-linear data structures for solving problems. L3						
CO2	CO2 Implement programs as an individual on different IDEs.						
CO3	CO3 Develop an effective report based on various programs implemented.						
CO4	Apply technical knowledge for a given problem and express it with effective oral communication.	L3					
CO5	Analyze outputs using given constraints/test cases.	L4					

Contr	ibutior	of (Course	Outco	omes	toward	s achi	evemer	nt of	Progran	n Outc	omes &	& Stren	gth of
correl	correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PS01

		102		10.		100	10.	100	100	1010	1011		1001	1501
CO1	3													
					1				2					
CO2														
			3											
CO3														
CO4										3				
		2										1		
CO5														

	Syllabus								
Expt. No.	Contents	Mapped CO							
1	Demonstrate recursive algorithms with examples.	CO1,CO2,CO3,CO4,CO5							
2	Implement various searching techniques.	CO1,CO2,CO3,CO4,CO5							
3	Develop programs for different sorting techniques	CO1,CO2,CO3,CO4,CO5							
4	Implement and perform different operations on Single, Double and Circular Linked Lists.	CO1,CO2,CO3,CO4,CO5							
5	Develop a program to perform operations of a Stack using arrays and linked Lists.	CO1,CO2,CO3,CO4,CO5							
6	Develop programs to implement Stack applications.	CO1,CO2,CO3,CO4,CO5							
7	Develop a program to perform operations of Linear Queue using arrays and linked Lists.	CO1,CO2,CO3,CO4,CO5							
8	Implement Circular Queues.	CO1,CO2,CO3,CO4,CO5							
9	Develop a program to represent a tree data structure.	CO1,CO2,CO3,CO4,CO5							
10	Develop a program to demonstrate operations on Binary Search Tree.	CO1,CO2,CO3,CO4,CO5							
11	Implement and perform different operations on Graph	CO1,CO2,CO3,CO4,CO5							
12	Demonstrate Graph Traversal Techniques	CO1,CO2,CO3,CO4,CO5							
13	Case Study -1	CO1,CO2,CO3,CO4,CO5							
14	Case Study -2	CO1,CO2,CO3,CO4,CO5							
15	Case Study -3	CO1,CO2,CO3,CO4,CO5							
16	Case Study -4	CO1,CO2,CO3,CO4,CO5							

Learning Resources

Text Books

1. Data Structures Using C, Reema Thareja, Second Edition, OXFORD University Press

e-Resources & other digital material

- 1. https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
- 2. http://www.algomation.com/algorithm/single-linked-list-insert-delete
- 3. http://www.algomation.com/algorithm/binary-tree-insert-delete-display
- 4. https://www.youtube.com/watch?v=AfYqN3fGapc
- 5. https://www.youtube.com/watch?v=7vw2iIdqHlM
- 6. http://littlesvr.ca/dsa-html5-animations/sorting.php