Stepper Motor Interfacing with Firebird V ATmega2560

Joel M. Pinto and Vishal Rajai eYantra Summer Internship – 2014 Embedded Real-Time Systems Lab Indian Institute of Technology, Bombay

> IIT Bombay July 7, 2014

Agenda for Discussion

- Introduction
 - What is a stepper motor?
 - Types of Stepper Motors
- Controlling a Stepper Motor
 - Stepping sequences
 - Wave Stepping
 - Full Stepping
 - Half Stepping
 - Comparison of stepping modes
- Identifying the wires of a stepper motor
- Stepper Motor Driver
- 5 Interfacing with ATmega2560
 - GPIO pins
 - Timer Configuration
 - Code

Prerequisite knowledge

- Basic IO Interfacing using ports
- Basic knowledge about timers in AVR

What is a stepper motor?

What is a stepper motor?

• Rotates in discrete steps

What is a stepper motor?

- Rotates in discrete steps
- Can hold or move to a position

What is a stepper motor? Types of Stepper Motors

Types of Stepper Motors

Types of Stepper Motors

Bipolar

Has 4 wires

Types of Stepper Motors

- Bipolar
 - Has 4 wires

- Unipolar
 - Has 5 or 6 wires

Types of Stepper Motors

We will use a unipolar stepper motor.

Introduction
Controlling a Stepper Motor
Identifying the wires of a stepper motor
Stepper Motor Driver
Interfacing with ATmega2560

Stepping sequences Wave Stepping Full Stepping Half Stepping Comparison of stepping modes

Stepping sequences

Introduction
Controlling a Stepper Motor
Identifying the wires of a stepper motor
Stepper Motor Driver
Interfacing with ATmega2560

Stepping sequences Wave Stepping Full Stepping Half Stepping Comparison of stepping modes

Stepping sequences

Wave Stepping

Stepping sequences Wave Stepping Full Stepping Half Stepping Comparison of stepping modes

Stepping sequences

- Wave Stepping
- Full Stepping

Stepping sequences Wave Stepping Full Stepping Half Stepping Comparison of stepping modes

Stepping sequences

- Wave Stepping
- Full Stepping
- 6 Half Stepping

Introduction
Controlling a Stepper Motor
Identifying the wires of a stepper motor
Stepper Motor Driver
Interfacing with ATmega2560

Stepping sequences
Wave Stepping
Full Stepping
Half Stepping
Comparison of stepping modes

Wave Stepping

Stepping sequences
Wave Stepping
Full Stepping
Half Stepping
Comparison of stepping mode

Wave Stepping

Step	Coil A	Coil B	Coil C	Coil D	
1	1	0	0	0	
2	0	1	0	0	
3	0	0	1	0	
4	0	0	0	1	

Table: Wave stepping sequence

Stepping sequences
Wave Stepping
Full Stepping
Half Stepping
Comparison of stepping mode

Wave Stepping (contd.)

Stepper Motor's positions in the wave stepping sequence

Introduction
Controlling a Stepper Motor
Identifying the wires of a stepper motor
Stepper Motor Driver
Interfacing with ATmega2560

Stepping sequences Wave Stepping Full Stepping Half Stepping Comparison of stepping modes

Full Stepping

Stepping sequences
Weve Stepping
Full Stepping
Half Stepping
Comparison of stepping mode

Full Stepping

Step	Coil A	Coil B	Coil C	Coil D
1	1	1	0	0
2	0	1	1	0
3	0	0	1	1
4	1	0	0	1

Table: Full stepping sequence

Stepping sequences
Wave Stepping
Full Stepping
Half Stepping
Comparison of stepping modes

Full Stepping (contd.)

Stepper Motor's positions in the full stepping sequence

Introduction
Controlling a Stepper Motor
Identifying the wires of a stepper motor
Stepper Motor Driver
Interfacing with ATmega2560

Stepping sequences Wave Stepping Full Stepping Half Stepping

Half Stepping

Half Stepping

Step	Coil A	Coil B Coil C		Coil D	
1	1	0	0	0	
2	1	1	0	0	
3	0	1	0	0	
4	0	1	1	0	
5	0	0	1	0	
6	0	0	1	1	
7	0	0	0	1	
8	1	0	0	1	

Table: Half stepping sequence

Stepping sequences
Wave Stepping
Full Stepping
Half Stepping
Comparison of stepping mode

Half Stepping (contd.)

Stepper Motor's positions in the half stepping sequence

Stepping sequences
Wave Stepping
Full Stepping
Half Stepping
Comparison of stepping modes

Comparison of stepping modes

Stepping sequences
Wave Stepping
Full Stepping
Half Stepping
Comparison of stepping modes

Comparison of stepping modes

Stepping Mode

- Torque
- Wibration
- Speed
- Resolution

Wave Stepping

- Lowest
- 4 Intermediate
 - Full
- O Normal

Full Stepping

- Highest
- 4 Highest
- 3 Full
- O Normal

Half Stepping

- Intermediate
- Lowest
- 6 Halved
- Oubled

Introduction
Controlling a Stepper Motor
Identifying the wires of a stepper motor
Stepper Motor Driver
Interfacing with ATmega2560

Identifying the wires of a stepper motor

Stepper Motor Driver Circuit

Interfacing with ATmega2560 GPIO pins

Interfacing with ATmega2560 GPIO pins

Expansion Slot pin	MCU pin	Connected to
17	PL7	ULN2003 pin 1
18	PL6	ULN2003 pin 2
19	PD1	ULN2003 pin 3
20	PD0	ULN2003 pin 4
23	GND	ULN2003 pin 8

Table: GPIO pins used

Interfacing with ATmega2560 GPIO pins

Expansion Slot pin	MCU pin	Connected to
17	PL7	ULN2003 pin 1
18	PL6	ULN2003 pin 2
19	PD1	ULN2003 pin 3
20	PD0	ULN2003 pin 4
23	GND	ULN2003 pin 8

Table: GPIO pins used

1	4	 17	20	21	24	 53	56
2	3	 18	19	22	23	 54	55

Figure: Pin numbering on the expansion slot

Timer Configuration

Timer Configuration

 \checkmark Time period of stepping = 3.333 ms \Rightarrow Frequency = 300 Hz

Timer Configuration

- ✓ Time period of stepping = 3.333 ms \Rightarrow Frequency = 300 Hz
- \checkmark 16-bit Timer1 in CTC mode \Rightarrow WGM13:0 = 4 (bin: 0100)

Timer Configuration

- Time period of stepping = $3.333 \text{ ms} \Rightarrow \text{Frequency} = 300 \text{ Hz}$
- 16-bit Timer1 in CTC mode \Rightarrow WGM13:0 = 4 (bin: 0100)
- \checkmark Prescaler = 1

Timer Configuration

- \checkmark Time period of stepping = 3.333 ms ⇒ Frequency = 300 Hz
- ✓ 16-bit Timer1 in CTC mode \Rightarrow WGM13:0 = 4 (bin: 0100)
- \checkmark Prescaler = 1
- √ Timer frequency = 300 Hz. So,

$$OCR1A = TOP = \frac{f_{CLK}}{f_{timer}} - 1 = \frac{14745600}{300} - 1 = 49151$$

Timer Configuration

- \checkmark Time period of stepping = 3.333 ms ⇒ Frequency = 300 Hz
- ✓ 16-bit Timer1 in CTC mode \Rightarrow WGM13:0 = 4 (bin: 0100)
- \checkmark Prescaler = 1
- √ Timer frequency = 300 Hz. So,

$$OCR1A = TOP = \frac{f_{CLK}}{f_{timer}} - 1 = \frac{14745600}{300} - 1 = 49151$$

√ Compare interrupt enabled

Interfacing with ATmega2560 Code

#include

```
#include <avr/io.h>
#include <avr/interrupt.h>
#include "stepper.h"
```


#include

```
#include <avr/io.h>
#include <avr/interrupt.h>
#include "stepper.h"
```

Interrupt Service Routine

```
ISR(TIMER1_COMPA_vect)
{
    wave_step(direction);
    stepcount++;
    if(stepcount > 200) //Change direction every revolution
    {
        direction *= -1;
        stepcount = 0;
    }
}
```


Interfacing with ATmega2560 Code (contd.)

```
Main Program
```

```
int main(void)
{
    stepper_port_init(); //Initialize ports
```


Code (contd.)

```
int main(void)
{
    stepper_port_init(); //Initialize ports

cli(); //Clear global interrupts
    TCCR1B |= (1 << WGM12); //CTC mode (WGM13:0 = 0100)
    TIMSK1 |= (1 << OCIE1A); //Enable CTC interrupt
    sei(); //Enable global interrupts</pre>
```


Code (contd.)

```
int main(void)
{
    stepper_port_init(); //Initialize ports

    cli(); //Clear global interrupts
    TCCR1B |= (1 << WGM12); //CTC mode (WGM13:0 = 0100)
    TIMSK1 |= (1 << OCIE1A); //Enable CTC interrupt
    sei(); //Enable global interrupts

    OCR1A = (F_CPU / SPEED) - 1; //Set TOP</pre>
```


Interfacing with ATmega2560 Code (contd.)

```
int main(void)
{
    stepper_port_init(); //Initialize ports

    cli(); //Clear global interrupts
    TCCR1B |= (1 << WGM12); //CTC mode (WGM13:0 = 0100)
    TIMSK1 |= (1 << OCIE1A); //Enable CTC interrupt
    sei(); //Enable global interrupts

    OCR1A = (F_CPU / SPEED) - 1; //Set TOP

    //Prescalar = 1
    TCCR1B |= ((0 << CS12) | (0 << CS11) | (1 << CS10));</pre>
```


Interfacing with ATmega2560 Code (contd.)

```
int main(void)
{
    stepper_port_init(); //Initialize ports

    cli(); //Clear global interrupts
    TCCR1B |= (1 << WGM12); //CTC mode (WGM13:0 = 0100)
    TIMSK1 |= (1 << OCIE1A); //Enable CTC interrupt
    sei(); //Enable global interrupts

    OCR1A = (F.CPU / SPEED) - 1; //Set TOP

    //Prescalar = 1
    TCCR1B |= ((0 << CS12) | (0 << CS11) | (1 << CS10));
    while(1);
}</pre>
```


Code

Thank You!

Send your queries to: helpdesk@e-yantra.org

