Overstory K8s Assignment

Part-2 Cloud-prediction application deployment:

		application is deployed on Minikube with three nodes on local machine. Inload the repo from GITHUB and run below command to install Minikube.						
		3. cd Minikube						
		bash minikube.sh						
4.	Run	n the below command to check the node status						
		5. kubectl get nodes						
6.	Crea	reate a namespace for our application deployment						
		7. kubectl create ns overstory						
8.	Now	deploy the cloud-prediction application using below commands						
		9. cd manifests kubectl apply -fn overstory						
10.	Che	ck the deployment status using below command						
		11. kubectl get pods -n overstory						
12.	You	should the pods running successfully, If not debug app using describe command						
		13. kubectl describe pod <pod_name_here> -n overstory</pod_name_here>						
14.	List	the service created in the namespace to access the pod						
		15. kubectl get svc -n overstory #get the external port from above command						
	6. This application is exposed on NodePort 7. Get the IP address of the node using below command							
		18. kubectl get nodes -o wide						

19. Now make a request to the application using below address

20. http://<NODE_IP>:<PORT>/get-prediction?image_path=image.tif
 Example: http://192.*.*.*:30823/get-prediction?image_path=image.tif

21	Let the page	load for s	ome time	After few	minutes v	vou will see	e the array	/ like below
~ ı.	Lot till page	ioau ioi s		TILCI ICVV	minutes 1	you will so	s tille allay	, like below

ZZ.	("results":
	[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
	4404040404040404040404040404040404040404
	444444444444444444444444444444444444444
	6036046046046046046046046046046046046046046
	14
	1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
	-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	\$, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4

	-4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
	-1.6.1.6.1.6.1.6.1.6.1.6.1.6.1.6.1.6.1.6
	-0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1
	0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1
	8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
	0,
	1.0.1.0.1.0.1.0.0.0.1.0.0.1.0.0.1.0.1.0

	440446444444444444444444444444444444444
	0.00.00.00.00.00.00.00.00.00.00.00.00.0
	8.03.03.03.03.03.03.03.03.03.03.03.03.03.
	4101416161616161616161616161616166666666
	8.10.10.10.10.10.10.10.10.10.10.10.10.10.
	1414144414141414141414141414141414141414
	444444444444444444444444444444444444444
	6.03.03.03.03.03.03.03.03.03.03.03.03.03.
	4404404404604604604604604604604604604604
	4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
	445444444444444444444444444444444444444
	444444444444444444444444444444444444444
	44.04.04.04.04.04.04.04.04.04.04.04.04.0
	16.18.18.18.18.18.18.18.18.18.18.18.18.18.
	4.10.10.10.10.10.10.10.10.10.10.10.10.10.
	6,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
	,10,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0

	4,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
	4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	$\tt 6.6.6.6.1.6.1.6.1.6.1.6.1.6.1.6.1.6.1.6$
	41
	\$1.61.61.61.61.61.61.61.61.61.61.61.61.61

23. Please find the switched images below

24.

<matplotlib.image.AxesImage at 0x7f571ba6ff10>

50g 0 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

Monitoring Screenshots:

Part-1 Architecture of GKE cluster setup

