Spotify Song Popularity

A correlation analysis of music popularity

Group 5: Yuqing Huang, Uchenna Nwagbara, Alex Tucker

Our Hypothesis

• **Business Claim:**We want to help Spotify and other streaming platforms alike accurately set the price per song based on popularity.

 Null Hypothesis: The Valence of the song has the strongest correlation with popularity.

Alternate Hypothesis: The Valence of the song has the weakest correlation with popularity.

Key Terms and Definitions

 Danceability- Describes how suitable a track is for dancing based on a combination of musical elements such as tempo, rhythm, and beat strength.

• **Energy-** A measure of 0.0 to 1.0 representing a perceptual measure of intensity and activity. Typically energetic tracks feel fast, loud, and noisy.

 Valence- A measure of 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence tend to be more happy and cheerful, while tracks with low valence sound more negative, sad, or angry.

Genres for top 25% of popular artists

Examples From the Data

	Popularity	Danceability	Energy	Valence
Bad Bunny- Dakiti	100	.731	.573	.145
Ariana Grande- Positions	96	.737	.802	.682
Pop Smoke- For the Night	95	.823	.586	.114

Popularity vs Danceability Top 10000 Songs

Popularity vs Danceability Top 100 Songs

Danceability Conclusion

The correlation between danceability and popularity is to weak to use as a price determinant.

Popularity vs Energy Top 10000 Songs

Popularity vs Energy Top 100 Songs

Energy Conclusion

Although the trend is consistently negative regardless of the sample size, the correlation between energy and popularity is not strong enough to justify using as a price gauge.

Popularity vs Valence Top 10000 Songs

Popularity vs Valence Top 100 Songs

Valence Conclusion

Valence has the weakest correlation with popularity of out the three parameters. This would not be an ideal parameter to using to determine price.

Analysis Conclusion and Limitations

Conclusion

Based on our analysis we will reject our null hypothesis, because out of the three parameters we chose, danceability did
not have the strongest correlation with popularity.

Limitations

- Spotify was created in 2011, so the dataset does not take into account songs made before 2011.
- There are other popular streaming platforms such as Apple Music and Soundcloud.

Business Solution

 Based on our analysis the data is not conclusive enough for Spotify to make a decision on what prices to charge per song based on popularity.

Our Code

Import Dependencies and clean data

```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        from scipy.stats import linregress
        import numpy as np
        import seaborn as sn
        artists df=pd.read csv('artists.csv')
        data df = pd.read csv('data o.csv')
        data df.head()
In [ ]: top 100 songs = data df.sort values(by='popularity', ascending=False)
        top 100 songs.head(10)
In [ ]: artists df=pd.read csv('artists.csv')
        artists df['expanded genres']=artists df['genres'].str.strip("[]'")
        artists df['expanded genres']=artists df['expanded genres'].apply(lambda s:s.replace("'",""))
        expanded genres=artists df['expanded genres'].str.split(',\s+',expand=True).stack().value counts()
        expanded genres.to frame()
        top 25 perc pop=artists df[artists df['popularity']>41]
        genres count=top 25 perc pop['expanded genres'].str.split(',\s+',expand=True).stack().value counts().to frame().rename(
In [ ]: top guart genres ct=genres count[genres count['Counts of Genres']>22]
        genres top 100=top guart genres ct.iloc[0:99 .:]
        genres top 10=top quart genres ct.iloc[0:9 , :]
        genres middle 10=top guart genres ct.iloc(20:30 , :1
In []: x axis = np.arange(len(genres top 10))
        tick locations = [value for value in x axis]
        plt.figure(figsize=(30,15))
        plt.bar(x axis, genres top 10["Counts of Genres"], color='r', alpha=0.5, align="center")
        plt.xticks(tick locations, genres top 10.index, rotation="vertical")
        plt.title("Genres for top 25% of popular artists (Part 1)", fontsize=20)
        plt.xlabel("Genres", fontsize=20)
        plt.vlabel("Count of Artists", fontsize=20)
```

Bar Chart and Scatter plot

```
In [ ]: x axis = np.arange(len(genres middle 10))
        tick locations = [value for value in x axis]
        plt.figure(figsize=(30,15))
        plt.bar(x axis, genres middle 10["Counts of Genres"], color='r', alpha=0.5, align="center")
        plt.xticks(tick locations, genres middle 10.index, rotation="vertical")
        plt.title("Genres for top 25% of popular artists (Part 2)", fontsize=20)
        plt.xlabel("Genres", fontsize=20)
        plt.vlabel("Count of Artists", fontsize=20)
In []: new songs= top 100 songs.sort values(by='year', ascending=False).head(100)
In [ ]: x values = new songs['danceability']
        v values = new songs['popularity']
        plt.scatter(x values, y values)
        plt.title('Popularity vs Danceabilty Top 10000 Songs')
        plt.xlabel('Danceability')
        plt.ylabel('Popularity')
        (slope, intercept, rvalue, pvalue, stderr) = linregress(x values, y values)
        regress values = x values * slope + intercept
        line eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2))
        plt.scatter(x values, y values)
        plt.plot(x values, regress values, "r-")
        plt.annotate(line eq,(10,10),fontsize=15,color="red")
        plt.show()
In [ ]: x values = new songs['energy']
        y_values = new_songs['popularity']
        plt.scatter(x values, y values)
        plt.title('Popularity vs Energy Top 10000 Songs')
        plt.xlabel('Energy')
        plt.ylabel('Popularity')
        (slope, intercept, rvalue, pvalue, stderr) = linregress(x values, y values)
        regress_values = x_values * slope + intercept
        line_eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2))
        plt.scatter(x values, y values)
        plt.plot(x_values, regress_values, "r-")
        plt.show()
```

Linear Regression and correlation

```
In [ ]: x values = new songs['year']
        y values = new songs['popularity']
        plt.scatter(x values,y values)
        plt.title('Popularity vs Year Top 10000 Songs')
        plt.xlabel('Year')
        plt.ylabel('Popularity')
        (slope, intercept, rvalue, pvalue, stderr) = linregress(x values, y values)
        regress values = x values * slope + intercept
        line eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2))
        plt.scatter(x values, y values)
        plt.plot(x values, regress values, "r-")
        plt.show()
In [ ]: x values = new songs['valence']
        y values = new songs['popularity']
        plt.scatter(x values,y values)
        plt.title('Popularity vs Valence Top 10000 Songs')
        plt.xlabel('Energy')
        plt.vlabel('Popularity')
        (slope, intercept, rvalue, pvalue, stderr) = linregress(x values, y values)
        regress values = x values * slope + intercept
        line eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2))
        plt.scatter(x values, y values)
        plt.plot(x values, regress values, "r-")
        plt.figure(figsize=(10, 10))
        plt.show()
In []: corrMatrix = top 100 songs[['popularity', 'danceability', 'energy', 'valence', 'loudness', 'mode', 'speechiness', 'tempo', 'exp
        sn.heatmap(corrMatrix, annot=True)
        plt.figure(figsize=(10, 10))
        plt.show()
In [ ]: corr = top 100 songs.corr()
        corr.style.background gradient(cmap='coolwarm')
```