Simple Harmonic Motion

Turja Roy ID: 2108052

Contents

1	Oscillation and Vibration					
	1.1 Oscillation					
	1.2 Vibration					
	1.3 Differences between Oscillation and Vibration					
2	Simple Harmonic Motion					
	2.1 Definition					
	2.2 Differential Equation of SHM					
	2.3 Solution of the Differential Equation of SHM					
3	Energy in SHM					
	3.1 Total Energy of a Vibrating Particle					
	3.2 Average Kinetic Energy					
	3.3 Average Potential Energy					
4	Composition of Two SHMs of Same Frequency					
	1.1 Same Direction					
	4.1.1 Special Cases					
	1.2 Right Angle					
	4.2.1 Special Cases					

1 Oscillation and Vibration

1.1 Oscillation

- Oscillation is the repetitive variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states.
- The term vibration is precisely used to describe mechanical oscillation.
- Familiar examples of oscillation include a swinging pendulum and alternating current.

1.2 Vibration

- Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point.
- The word comes from Latin vibrationem ("shaking, brandishing").
- The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.

1.3 Differences between Oscillation and Vibration

- Oscillation is the definite displacement of a body in terms of distance or time, whereas vibration is the movement brought about in a body due to oscillation.
- Oscillation takes place in physical, biological systems, and often in our society, but vibrations is associated with mechanical systems only.
- Oscillation is about a single body, whereas vibration is the result of collective oscillation of atoms in the body.
- All vibrations are oscillations, but not all oscillations are vibrations.

2 Simple Harmonic Motion

2.1 Definition

Definition 2.1.1: Simple Harmonic Motion

Simple harmonic motion is a type of periodic motion where the restoring force is directly proportional to the displacement and acts in the direction opposite to that of displacement.

A particle is said to execute SHM when it will

- (a) Trace and retrace the same path over and over again.
- (b) Change direction at a regular interval of time.
- (c) Move along a straight line.
- (d) Have acceleration proportional to its displacement from the mean position.

A particle which satisfies the condition (a) only is said to execute **periodic motion**. A particle which satisfies condition (a) and (b) is said to execute **vibratory motion**.

Let P be a particle moving on the circumference of a circle of radius r with a uniform velocity v. Let angular velocity be $\omega = v/r$.

Displacement of the particle from the mean position is given by $y=r\sin\omega t$ So, velocity of the particle is given by $v=\frac{dy}{dt}=\omega r\cos\omega t$

And acceleration of the particle is given by $a = \frac{dv}{dt} = -\omega^2 r \sin \omega t = -\omega^2 y$

Angle	Position of vibrating particle	Displacement $y = r \sin \omega t$	Velocity $\frac{\mathrm{d}y}{\mathrm{d}t} = \omega r \cos \omega t$	Acceleration $-\omega^2 r \sin \omega t = -\omega^2 y$
0	О	0	ωr	0
$\pi/2$	X	r	0	$-\omega^2 a$
π	О	0	$-\omega r$	0
$3\pi/2$	Y	-r	0	$\omega^2 r$
2π	О	0	ωr	0

2.2 Differential Equation of SHM

Let y be the displacement of the particle from the mean position at time t, r be the amplitude, and α be the epoch of the vibrating particle

$$y = r\sin\left(\omega t + \alpha\right) \tag{1}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = r\omega\cos\left(\omega t + \alpha\right) \tag{2}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -r\omega^2 \sin\left(\omega t + \alpha\right) \tag{3}$$

Hence the differential equation of SHM is

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \omega^2 y = 0 \tag{4}$$

2.3 Solution of the Differential Equation of SHM

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \omega^2 y = 0 \tag{5}$$

Here,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}t} = v \frac{\mathrm{d}v}{\mathrm{d}y}$$

$$v dv + \omega^2 y dy = 0$$

$$\int v dv + \omega^2 \int y dy = 0$$

$$\frac{v^2}{2} + \frac{\omega^2 y^2}{2} = C'$$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \omega^2 y^2 = C^2$$

At maximum displacement, y=r and $\frac{\mathrm{d}y}{\mathrm{d}t}=0$ So, $C^2=\omega^2r^2$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \omega^2(r^2 - y^2)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \omega\sqrt{r^2 - y^2}$$

$$\int \frac{1}{\sqrt{r^2 - y^2}} \, dy = \int \omega \, dt$$

$$\sin^{-1}\frac{y}{r} = \omega t + \alpha$$

$$y = r\sin(\omega t + \alpha)$$
(6)

By expanding equation (6), we get

$$y = r\sin\omega t\cos\alpha + r\cos\omega t\sin\alpha \tag{7}$$

If y = 0 at t = 0, then $\alpha = 0$

$$y = r\sin\omega t \tag{8}$$

If y = r at t = 0, then $\alpha = \pi/2$

$$y = r\cos\omega t \tag{9}$$

Hence, the general solution of the differential equation of SHM is

$$y = A\sin\omega t + B\cos\omega t \tag{10}$$

3 Energy in SHM

3.1 Total Energy of a Vibrating Particle

Kinetic Energy =
$$\frac{1}{2}m\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2$$

= $\frac{1}{2}m\omega^2r^2\cos^2\left(\omega t + \alpha\right)$
Potential Energy = $\frac{1}{2}ky^2$
= $\frac{1}{2}m\omega^2r^2$
= $\frac{1}{2}m\omega^2r^2\sin^2\left(\omega t + \alpha\right)$

Thus, the total energy of the vibrating particle is

$$E = \frac{1}{2}kr^2 = \frac{1}{2}m\omega^2 r^2$$
 (11)

3.2 Average Kinetic Energy

Kinetic energy of the particle is given by

$$K = \frac{1}{2}m\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \frac{1}{2}m\omega^2 r^2 \cos^2(\omega t + \alpha) \tag{12}$$

Hence, average kinetic energy is

$$\overline{K} = \frac{1}{T} \int_0^T K \, dt$$

$$= \frac{1}{T} \int_0^T \frac{1}{2} m \omega^2 r^2 \cos^2 (\omega t + \alpha) \, dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \int_0^T \cos^2 (\omega t + \alpha) \, dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \int_0^T \frac{1 + \cos 2(\omega t + \alpha)}{2} \, dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{t}{2} + \frac{\sin 2(\omega t + \alpha)}{4\omega} \right]_0^T$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{T}{2} + \frac{\sin 2(\omega T + \alpha)}{4\omega} - \frac{\sin 2\alpha}{4\omega} \right]$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{T}{2} + \frac{\sin 2\alpha}{4\omega} - \frac{\sin 2\alpha}{4\omega} \right]$$

$$= \frac{1}{4} m \omega^2 r^2$$

$$\overline{K} = \frac{1}{4} m \omega^2 r^2 = \frac{1}{4} k r^2 = \frac{1}{2} E$$
(13)

3.3 Average Potential Energy

Potential energy of the particle is given by

$$U = \frac{1}{2}ky^2 = \frac{1}{2}m\omega^2 r^2 \sin^2(\omega t + \alpha)$$
(14)

Hence, average potential energy is

$$\overline{U} = \frac{1}{T} \int_0^T U \, dt$$

$$= \frac{1}{T} \int_0^T \frac{1}{2} m \omega^2 r^2 \sin^2(\omega t + \alpha) dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \int_0^T \sin^2(\omega t + \alpha) dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \int_0^T \frac{1 - \cos 2(\omega t + \alpha)}{2} dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{t}{2} - \frac{\sin 2(\omega t + \alpha)}{4\omega} \right]_0^T$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{T}{2} - \frac{\sin 2(\omega T + \alpha)}{4\omega} + \frac{\sin 2\alpha}{4\omega} \right]$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{T}{2} + \frac{\sin 2\alpha}{4\omega} - \frac{\sin 2\alpha}{4\omega} \right]$$

$$= \frac{1}{4} m \omega^2 r^2$$

$$\boxed{\overline{U} = \frac{1}{4} m \omega^2 r^2 = \frac{1}{4} k r^2 = \frac{1}{2} E}$$

$$(15)$$

4 Composition of Two SHMs of Same Frequency

4.1 Same Direction

Let y_1 and y_2 be the displacements of two SHM of same frequency ω , amplitude r_1 and r_2 , and phases α_1 and α_2 respectively.

$$y_1 = r_1 \sin\left(\omega t + \alpha_1\right) \tag{16}$$

$$y_2 = r_2 \sin\left(\omega t + \alpha_2\right) \tag{17}$$

If the two SHMs are in the same direction, then the resultant displacement is

$$y = y_1 + y_2$$

$$= r_1 \sin(\omega t + \alpha_1) + r_2 \sin(\omega t + \alpha_2)$$

$$= r_1 \sin \omega t \cos \alpha_1 + r_1 \cos \omega t \sin \alpha_1 + r_2 \sin \omega t \cos \alpha_2 + r_2 \cos \omega t \sin \alpha_2$$

$$\therefore y = (r_1 \cos \alpha_1 + r_2 \cos \alpha_2) \sin \omega t + (r_1 \sin \alpha_1 + r_2 \sin \alpha_2) \cos \omega t$$
(18)

In equation (18), let

$$r_1 \cos \alpha_1 + r_2 \cos \alpha_2 = A \cos \varphi \tag{19}$$

$$r_1 \sin \alpha_1 + r_2 \sin \alpha_2 = A \sin \varphi \tag{20}$$

Then, equation (18) becomes

$$y = A\cos\varphi\sin\omega t + A\sin\varphi\cos\omega t \tag{21}$$

$$y = A\sin\left(\omega t + \varphi\right) \tag{22}$$

Here, A is the amplitude of the resultant SHM and φ is the phase of the resultant SHM. From equations (19) and (20), we get

$$A^2 = A^2 \sin^2 \varphi + A^2 \cos^2 \varphi$$

$$A^{2} = r_{1}^{2} \sin^{2} \alpha_{1} + r_{2}^{2} \sin^{2} \alpha_{2} + 2r_{1}r_{2} \sin \alpha_{1} \sin \alpha_{2}$$

$$+ r_{1}^{2} \cos^{2} \alpha_{1} + r_{2}^{2} \cos^{2} \alpha_{2} + 2r_{1}r_{2} \cos \alpha_{1} \cos \alpha_{2}$$

$$A^{2} = r_{1}^{2} + r_{2}^{2} + 2r_{1}r_{2} (\sin \alpha_{1} \sin \alpha_{2} + \cos \alpha_{1} \cos \alpha_{2})$$

$$A^{2} = r_{1}^{2} + r_{2}^{2} + 2r_{1}r_{2} \cos (\alpha_{1} - \alpha_{2})$$

$$A = \sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos(\alpha_1 - \alpha_2)}$$
 (23)

And,

$$\varphi = \tan^{-1} \frac{r_1 \sin \alpha_1 + r_2 \sin \alpha_2}{r_1 \cos \alpha_1 + r_2 \cos \alpha_2}$$
(24)

4.1.1 Special Cases

(I) Same phase : $\alpha_1 = \alpha_2$

In this case, equation (21) becomes

$$A = \sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos 0} = \sqrt{(r_1 + r_2)^2} = r_1 + r_2$$

$$\boxed{A = r_1 + r_2}$$
(25)

And,

$$\varphi = \tan^{-1} \frac{r_1 \sin \alpha + r_2 \sin \alpha}{r_1 \cos \alpha + r_2 \cos \alpha} = \tan^{-1} \left(\frac{r_1 + r_2}{r_1 + r_2} \tan \alpha \right) = \tan^{-1} \left(\tan \alpha \right)$$

$$\varphi = \alpha$$
(26)

(II) Opposite phase : $\alpha_1 - \alpha_2 = (2n+1)\pi$, where $n = 0, 1, 2, \cdots$ In this case, equation (21) becomes

$$A = \sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos(\alpha_2 + \pi - \alpha_2)} = \sqrt{(r_1 - r_2)^2} = r_1 - r_2$$

$$A = r_1 - r_2$$
(27)

And,

$$\varphi = \tan^{-1} \frac{r_1 \sin(\alpha + \pi) + r_2 \sin \alpha}{r_1 \cos(\alpha + \pi) + r_2 \cos \alpha} = \tan^{-1} \left(\frac{r_1 \sin \alpha - r_2 \sin \alpha}{r_1 \cos \alpha - r_2 \cos \alpha} \right) = \tan^{-1} \left(-\tan \alpha \right)$$

$$\varphi = \alpha + \pi$$
(28)

4.2 Right Angle

Let x and y be the displacements of two SHM of same frequency ω , amplitude a and b respectively, and phase difference α , acting at right angle to each other.

$$x = a\sin\left(\omega t + \alpha\right) \tag{29}$$

$$y = b\sin\left(\omega t\right) \tag{30}$$

Or,

$$\frac{x}{a} = \sin\left(\omega t + \alpha\right) \tag{31}$$

$$\frac{y}{b} = \sin\left(\omega t\right) \tag{32}$$

Thus, we get

$$\frac{x}{a} = \sin \omega t \cos \alpha + \cos \omega t \sin \alpha$$

$$\frac{x}{a} = \frac{y}{b} \sqrt{1 - \sin^2 \alpha} + \sqrt{1 - \frac{y^2}{b^2}} \sin \alpha$$

$$\frac{x}{a} - \frac{y}{b} \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{y^2}{b^2}} \sin \alpha$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} (1 - \sin^2 \alpha) - \frac{2xy}{ab} \sqrt{1 - \sin^2 \alpha} = \left(1 - \frac{y^2}{b^2}\right) \sin^2 \alpha$$

$$\left[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab} \sqrt{1 - \sin^2 \alpha} = \sin^2 \alpha\right]$$
(33)

Equation (33) represents the general equation of the resultant SHM of the two perpendicular SHMs. The resulting curves are also known as Lissajous firgures.

4.2.1 Special Cases

(I) If $\alpha = 0$ or 2π

 $\cos \alpha = 1, \qquad \sin \alpha = 0$

Then equation (33) becomes

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab} = 0$

Or,

 $\frac{x}{a} = \frac{y}{b}$

This represents a straight line passing through the origin.

(II) If $\alpha = \pi$

 $\cos \alpha = -1, \quad \sin \alpha = 0$

Then equation (33) becomes

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{2xy}{ab} = 0$

Or,

$$\frac{x}{a} = -\frac{y}{h}$$

This represents a straight line with negative slope passing through the origin.

(III) If $\alpha = \pi/2 \text{ or, } 3\pi/2$

 $\cos \alpha = 0, \qquad \sin \alpha = 1$

Then equation (33) becomes

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

This represents an ellipse.

(IV) If $\alpha = \pi/2$ or, $3\pi/2$, and a = b

$$\cos \alpha = 0, \quad \sin \alpha = 1$$

Then equation (33) becomes

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$

Or,

$$x^2 + y^2 = a^2$$

This represents a circle of radius a.

(V) If $\alpha = \pi/4$ or, $7\pi/4$

$$\cos \alpha = \frac{1}{\sqrt{2}}, \qquad \sin \alpha = \frac{1}{\sqrt{2}}$$

Then equation (33) becomes

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab} \frac{1}{\sqrt{2}} = \frac{1}{2}$$

This represents an oblique ellipse.

(VI) If $\alpha = 3\pi/4$ or, $5\pi/4$

$$\cos \alpha = -\frac{1}{\sqrt{2}}, \qquad \sin \alpha = \frac{1}{\sqrt{2}}$$

Then equation (33) becomes

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{2xy}{ab} \frac{1}{\sqrt{2}} = \frac{1}{2}$$

This represents an oblique ellipse (negative slope).

Figure 1: Lissajous figures