# Biostatistics Week X

Ege Ülgen, MD, PhD

8 December 2022



### Hypothesis Testing - Steps

#### 1. Check assumptions, determine $H_0$ and $H_a$ , choose $\alpha$

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

#### 2. Calculate the appropriate test statistic

• z, t,  $\chi^2$ , ...

#### 3. Calculate critical values/p value

With the aid of precalculated tables/software

#### 4. Decide whether to reject/fail to reject H<sub>0</sub>

• Reject if the statistic is within the critical region/p  $\leq \alpha$ 

### Analysis of Variance (ANOVA)

 Analysis of variance (ANOVA) is a statistical technique that is used to check if the means of two or more groups are significantly different from each other



### One-way ANOVA

 $H_0$ :  $\mu_1 = \mu_2 = ... = \mu_n$  $H_a$ : at least one  $\mu_i$  is different



#### ANOVA



#### One-way ANOVA

k: number of groups

n: total number of samples

n<sub>i</sub>: number of samples in group i

#### Analysis of Variance(ANOVA)

| Source of<br>Variation | Sum of Squares                     | Degrees of<br>Freedom | Mean Squares (MS)        | F                       |
|------------------------|------------------------------------|-----------------------|--------------------------|-------------------------|
| Between                | $\sum n_i (\bar{X}_i - \bar{X})^2$ | k - 1                 | $SS_b/df_b$              | $F = \frac{MS_b}{MS_w}$ |
| Within                 | SS <sub>T</sub> - SS <sub>b</sub>  | n - k                 | $\mathrm{SS_{w}/df_{w}}$ |                         |
| Total                  | $\sum (X_j - \bar{X})^2$           | n - 1                 |                          |                         |

### One-way ANOVA – Example I

Table 1: Percentage benefits for 5 patients from each treatment groups.

| Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
|-------------|-------------|-------------|-------------|
| -7.2        | -13.0       | -3.8        | 7.0         |
| 2.5         | -0.4        | -2.7        | 1.5         |
| 1.4         | -1.6        | 5.3         | 9.4         |
| -0.7        | 4.9         | -5.9        | 9.5         |
| -0.9        | -0.7        | 3.7         | 9.9         |

The hypothesis of interest is

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ 

 $H_1$ : at least one is different from the others

- 1. Check assumptions, determine  $H_0$  and  $H_a$ , choose  $\alpha$ 
  - Check that data is normally distributed
  - $H_0$ :  $\mu_1 = \mu_2 = \mu_3 = \mu_4$   $H_a$ : at least one mean is different
  - $\alpha = 0.05$

2. Calculate the appropriate test statistic

| Sources of variation | Sum of squares | degrees-of-freedom | Mean squared error | F | p-value |
|----------------------|----------------|--------------------|--------------------|---|---------|
| Between treatment    |                |                    |                    |   |         |
| Within treatment     |                |                    |                    |   |         |
| Total                |                |                    |                    |   |         |

#### 2. Calculate the appropriate test statistic

**Step 1:** Calculate the treatment means and grand mean:

$$\bar{x}_1 = \frac{-7.2 + 2.5 + 1.4 + (-0.7) + (-0.9)}{5} = -0.98$$

$$\bar{x}_2 = \frac{-13.0 + (-0.4) + (-1.6) + 4.9 + (-0.7)}{5} = -2.16$$

$$\bar{x}_3 = \frac{-3.8 + (-2.7) + (5.3) + (-5.9) + 3.7}{5} = 0.68$$

$$\bar{x}_4 = \frac{7.0 + 1.5 + 9.4 + 9.5 + 9.9}{5} = 7.46$$

$$\bar{x} = \frac{-7.2 + \dots + (-0.9) + (-13.0) + \dots + (-0.7) + (-3.8) + \dots + 3.7 + 7.0 + \dots + 9.9}{20} = 0.91$$

#### 2. Calculate the appropriate test statistic

**Step 3:** Calculate between treatment sum of squared error:

$$5(-0.98 - 0.91)^2 + 5(-2.16 - 0.91)^2 + 5(0.68 - 0.91)^2 + 5(7.46 - 0.91)^2 = 292.138$$

**Step 4:** Calculate the total sum of squared error:

$$(-7.2 - 0.91)^2 + \dots + (-0.9 - 0.91)^2 + (-13.0 - 0.91)^2 + \dots + (-0.7 - 0.91)^2 + (-3.8 - 0.91)^2 + \dots + (3.7 - 0.91)^2 + (7.0 - 0.91)^2 + \dots + (9.9 - 0.91)^2 = 667.198$$

**Step 5:** Calculate the within-group sum of squared error as 667.198 - 292.138 = 375.06

#### 2. Calculate the appropriate test statistic

Step 6: Total d.o.f.: 20 - 1, 19; between treatment d.o.f: 4-1=3; within treatment d.o.f.: 19-3=16

Step 7: Calculate mean sugared error for between treatment as 292.138/3=97.38

**Step 8:** Calculate mean squared error for within treatment as 375.06.198/16=23.44

**Step 9:** Calculate F value as 97.38/23.44=4.154

- 3. Calculate **rejection zone/**p value
- 4. Decide whether to reject/fail to reject H<sub>0</sub>



- 3. Calculate rejection zone/p value
- 4. Decide whether to reject/fail to reject H<sub>0</sub>



#### One-way ANOVA — Example II

THE LANCET, AUGUST 12, 1978

#### MEGALOBLASTIC HÆMOPOIESIS IN PATIENTS RECEIVING NITROUS OXIDE

J. A. L. Amess J. F. Burman G. M. REES D. G. NANCEKIEVILL

D. L. MOLLIN

Departments of Hæmatology, Cardiothoracic Surgery, and Anæsthetics, St. Bartholomew's Hospital, West Smithfield, London EC1A 7BE

- 22 patients who underwent coronary artery bypass graft surgery (CABG) are separated into 3 different treatment groups (different ventilation strategies)
- Is there a difference in red blood cell folic acid measurements at 24 hours between the 3 treatment groups?

Group I.—8 patients received approximately 50% nitrous oxide and 50% oxygen mixture continuously for 24 h. 1 patient received 2000 µg of hydroxocobalamin intramuscularly immediately before and after the operation.

Group II.—9 patients received approximately 50% nitrous oxide and 50% oxygen mixture only during the operation (5–12 h) and thereafter 35–50% oxygen for the remainder of the 24 h period.

Group III.—5 patients received no nitrous oxide but were ventilated with 35-50% oxygen for 24 h.

| Group I | Group II | Group III |
|---------|----------|-----------|
| 243     | 206      | 241       |
| 251     | 210      | 258       |
| 275     | 226      | 270       |
| 291     | 249      | 293       |
| 347     | 255      | 328       |
| 354     | 273      |           |
| 380     | 285      |           |
| 392     | 295      |           |
|         | 309      |           |



- 1. Check assumptions, determine  $H_0$  and  $H_a$ , choose  $\alpha$ 
  - Check that data is normally distributed
  - $H_0$ :  $\mu_1 = \mu_2 = \mu_3$   $H_a$ : at least one mean is different
  - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic
  - F = 3.71  $\sim F_{2.19}$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H<sub>0</sub>



- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H<sub>0</sub>



p = 0.043631

• With 95% confidence, we can conclude that the mean RBC folic acid level of at least one group is significantly different than the others

Next, we perform 2-sample t-tests between all pairs of groups



#### Variations of ANOVA

- Two-way ANOVA effect of 2 independent variables on one dependent variable
- Multivariate ANOVA (MANOVA) effect of independent variable(s) on multiple dependent variables

- Analysis of Covariance (ANCOVA) compares a dependent variable by both a factor and a continuous independent variable
- MANCOVA

• ...

### χ<sup>2</sup> Test for Independence

- Used to assess the association between two categorical variables
- More generally, used to investigate the significance of the difference between expected and observed values

Are the 2 categorical variables independent?

χ<sup>2</sup> Test – Test Statistic

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$

# TABLE III—Changes in frequency of physical exercise in patients with angina between baseline and review at two years

|           | No (%) of patients |               |  |
|-----------|--------------------|---------------|--|
|           | Intervention group | Control group |  |
| Increased | 108 (34)           | 63 (21)       |  |
| No change | 120 (38)           | 74 (25)       |  |
| Decreased | 89 (28)            | 163 (54)      |  |

|           | Intervention Group | Control Group | Total |
|-----------|--------------------|---------------|-------|
| Increased | 108                | 63            | 171   |
| No change | 120                | 74            | 194   |
| Decreased | 89                 | 163           | 252   |
| Total     | 317                | 300           | 617   |

$$expected_{1,1} = 317 \times \frac{171}{617}$$
  $expected_{1,2} = 300 \times \frac{171}{617}$   
 $expected_{2,1} = 317 \times \frac{194}{617}$   $expected_{2,2} = 300 \times \frac{194}{617}$   
 $expected_{3,1} = 317 \times \frac{252}{617}$   $expected_{3,2} = 300 \times \frac{252}{617}$ 

| OBSERVED  | Intervention Group | <b>Control Group</b> |  |
|-----------|--------------------|----------------------|--|
| Increased | 108                | 63                   |  |
| No change | 120                | 74                   |  |
| Decreased | 89                 | 163                  |  |

| EXPECTED  | Intervention Group | <b>Control Group</b> |  |
|-----------|--------------------|----------------------|--|
| Increased | 87.86              | 83.14                |  |
| No change | 99.67              | 94.33                |  |
| Decreased | 139.47             | 122.53               |  |

### χ<sup>2</sup> Test – Test Statistic

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$

$$\chi_H^2 = 44.04 \sim \chi_{(3-1)(2-1)=2}^2$$

# χ<sup>2</sup> Test – Test Statistic



Is there an association between vaccine type and protection status?

|           | Protected | Not protected |
|-----------|-----------|---------------|
| Vaccine 1 | 82        | 41            |
| Vaccine 2 | 70        | 24            |
| Vaccine 3 | 45        | 20            |
| Vaccine 4 | 48        | 42            |



- 1. Check assumptions, determine  $H_0$  and  $H_a$ , choose  $\alpha$ 
  - $H_0$ : there is **no difference** in efficacy  $H_a$ : there is a difference in efficacy
  - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$\chi_H^2 = 9.297 \sim \chi_3^2$$

|           | Proctected | Not protected | Total |
|-----------|------------|---------------|-------|
| Vaccine 1 | 82         | 41            | 123   |
| Vaccine 2 | 70         | 24            | 94    |
| Vaccine 3 | 45         | 20            | 65    |
| Vaccine 4 | 48         | 42            | 90    |
| Total     | 245        | 127           | 372   |

$$expected_{4,1} = 245 \times \frac{90}{372} = 59$$

$$expected_{4,2} = 127 \times \frac{90}{372} = 31$$

$$\chi_H^2 = \sum_{j=1}^m \sum_{i=1}^n \frac{(observed_{ij} - expected_{ij})^2}{expected_{ij}} \sim \chi_{(m-1)(n-1)}^2$$

 $\chi_H^2 = 9.74 \sim \chi_3^2$ 



p = 0.021

\*χ² Goodness of Fit Test

• Decide if one variable is likely to come from a given distribution or not

