MLRF Lecture 03

J. Chazalon, LRDE/EPITA, 2019

Projective transformations

Lecture 03 part 05

A linear transformation of pixel coordinates

Illustration: Robert Collins

Image Mappings Overview

Homography H (planar projective transformation)

Math. foundations & assumptions

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

For <u>planar surfaces</u>, 3D to 2D perspective projection reduces to a 2D to 2D transformation.

This is just a change of coordinate system.

This transformation is **INVERTIBLE**!

Translation

$$x' = x + t_x$$
$$y' = y + t_y$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

equations

Scale

$$x' = s x_i$$

$$y' = s y_i$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

equations

Rotation

$$x' = x_i \cos \theta - y_i \sin \theta$$

$$y' = x_i \sin \theta + y_i \cos \theta$$

$$\begin{aligned}
 x' &= x_i \cos \theta - y_i \sin \theta \\
 y' &= x_i \sin \theta + y_i \cos \theta
 \end{aligned}
 \quad
 \begin{bmatrix}
 x' \\
 y' \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix}$$

equations

Euclidean (rigid)

$$x' = x_i \cos \theta - y_i \sin \theta + t_x$$

$$y' = x_i \sin \theta + y_i \cos \theta + t_y$$

$$x' = x_i \cos \theta - y_i \sin \theta + t_x y' = x_i \sin \theta + y_i \cos \theta + t_y$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

equations

Notation: Partitioned matrices

$$\begin{bmatrix} x' \\ \underline{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ \hline 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \underline{y} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} p' \\ \mathbf{1}_{\mathbf{1}} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & t \\ \mathbf{R} & t \\ \mathbf{1}_{\mathbf{1}} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1}_{\mathbf{1}} \\ \mathbf{1}_{\mathbf{1}} \\ 1 \end{bmatrix} \quad \text{matrix form}$$

$$p' = Rp + t$$

equation form

Similarity (scaled Euclidean)

$$p' = sRp + t$$

$$\begin{bmatrix} p' \\ 1 \end{bmatrix} = \begin{bmatrix} sR & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix}$$

equations

Affine

$$p' = Ap + b$$

$$\left[\begin{array}{c} p' \\ 1 \end{array} \right] \, = \, \left[\begin{array}{cc} A & b \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} p \\ 1 \end{array} \right]$$

equations

Projective

$$p' = \frac{Ap + b}{c^T p + 1}$$

 $\begin{bmatrix} p' \\ 1 \end{bmatrix} \bigcirc \sim \begin{bmatrix} A & b \\ c^T & 1 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix}$

equations

More on projective transform

Each point in 2D is actually a vector in 3D

Equivalent up to scaling factor 3*H ~ H

Have to normalize to get back to 2D

$$\mathbf{\tilde{x}} = \begin{bmatrix} \tilde{\mathbf{x}} \\ \tilde{\mathbf{y}} \\ \tilde{\mathbf{w}} \end{bmatrix} \qquad \mathbf{\bar{x}} = \mathbf{\tilde{x}} / \tilde{\mathbf{w}}$$

Why does this make sense?

Pinhole camera model:

- Every point in 3D projects onto our viewing plane through our aperture
- Points along a vector are indistinguishable

More on projective transform

Using homography to project point

Multiply ilde x by ilde H to get ilde x'

Convert to $ilde{x'}$ by dividing by $ilde{w'}$

$$\begin{bmatrix} \widetilde{\mathbf{x}}' \\ \widetilde{\mathbf{y}}' \\ \widetilde{\mathbf{w}}' \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{00} & \mathbf{h}_{01} & \mathbf{h}_{02} \\ \mathbf{h}_{10} & \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{20} & \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \\ \widetilde{\mathbf{w}} \end{bmatrix}$$

$$\tilde{\mathbf{x}}' = \tilde{\mathbf{H}} \tilde{\mathbf{x}}$$

$$\overline{\mathbf{x}} = \mathbf{\tilde{x}} / \mathbf{\tilde{w}}$$

Euclidean

Similarity

Affine

Projective

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c}\mathbf{R}&\mathbf{t}\end{array}\right]_{2\times3}$	3	lengths	
similarity	$\begin{bmatrix} \mathbf{sR} & \mathbf{t} \end{bmatrix}_{2\times 3}$	4	angles	\Diamond
affine	$\left[\begin{array}{c}\mathbf{A}\end{array}\right]_{2\times3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{f H} \end{array} ight]_{3 imes 3}$	8	straight lines	

Image Mappings Overview

Warping images

Warping Example

Source Image

Destination image

Warping & Bilinear Interpolation

Given a transformation between two images (coordinate systems) we want to "warp" one image into the coordinate system of the other.

We will call the coordinate system where we are **mapping from** the **"source"** image.

We will call the coordinate system we are **mapping to** the "**destination**" image.

Forward Warping

For each pixel x in the source image

Determine where it goes as H(x)

Color the destination pixel

Forward Warping

Forward Warping Problem

Can leave gaps!

Backward Warping — No gap

For each pixel x in the destination image

Determine where it comes from as H⁻¹ (x)

Get color from that location

Interpolation

What do we mean by "get color from that location"?

Consider grey values. What is intensity at (x,y)?

