This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

			3 3 4	_ ** *				T. MASTER	F - F - 1		(Ag)
	૧ સું ૧			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						•	
				:						٠	
			¥.			3 %		1			
				io.							
									ati, ili. Si		
									Υ		
				*							
							*				
	•										
•							4 % ** 4 %	*			
•							:				
							· · · · · · · · · · · · · · · · · · ·				
ř .				No.							
		•		18 N.				3 .			
	* * * * * * * * * * * * * * * * * * * *	•									
				· **							
				., "							
				•							
						•					
		•									
:									*		
•											•
	1										
									•		
					\$100 ·						
						<					
					*						
		٠.	4 T								
		18 18 20 194						75 16			
								e'			
	· je										
								8.30	•		
					r _e				2.4		
							· **				
					en de la companya de La companya de la co						
	· · · · · · · · · · · · · · · · · · ·	+ \$			∌ *:						
		* ************************************		. F		w tu					
			•					en e			
			1								
				*, **							

FUNDAMENTAL PHYSICAL CONSTANTS

The 1986 CODATA Recommended Values

By E. Richard Cohen and Barry N. Taylor as published in the Journal of Research of the National Bureau of Standards, 92, 85, 1987. Discussions of the background, data selection and evaluation procedures are presented in CODATA Bulletin Number 63, November 1986, "The 1986 Adjustment of the Fundamental Physical Constants", a Report of the CODATA Task Group on Fundamental Physical Constants (36 pages) published by Pergamon Press.

The 1986 recommended values of the fundamental physical constants are given in five tables. Table 1 is an abbreviated list containing the quantities which should be of greatest interest to most users. Table 2 is a more complete compilation. Table 3 is a list of related "maintained units and standard values." Table 4 contains a number of scientifically, technologically, and metrologically useful energy conversion factors. Table 5 is an extended covariance matrix containing the variances, covariances, and correlation coefficients of the unknowns and a number of different constants (included for convenience) from which the like quantities of other constants may be calculated. (B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Med. Phys., 41, 375, 1969. Such a matrix is necessary because the variables in a least-square adjustment are correlated.

Table 1 SUMMARY OF THE 1986 RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS

Quantity	Symbol	Value	Unite	Relative Uncertainty (ppm)
speed of light in vacuum	с	299 792 458	ms ⁻¹	(exact)
permeability of vacuum	μ_{ullet}	$4\pi \times 10^{-7}$	N Y = 3	
		=12.566370614	10 ⁻⁷ N A ⁻²	(exact)
permittivity of vacuum	t _o	1/μ _• c ²	10 ⁻¹² F m ⁻¹	(1)
	~	=8.854 187 817		(exact)
Newtonian constant of gravitation		6.67259(85)	10 ⁻¹¹ m ³ kg ⁻¹ s ⁻ 10 ⁻³⁴ Js	2 128 0.60
Planck constant	h h	6.626 0755(40)	10 -34 Js	0.60
h/2π		1.054 572 66(63)	10 ⁻¹⁹ C	0.00
elementary charge	•	1.602 177 33(49)	10 ⁻¹⁵ Wb	0.30
magnetic flux quantum, h/2e	Φ,	2.067 834 61(61)	10 -31 kg	0.59
electron mass	m_{e}	9.1093897(54)		
proton mass	m_{p}	1.672 6231(10)	10 ⁻²⁷ kg	0.59
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.152701(37)	10 ⁻³	0.020
fine-structure constant, $\mu_{\bullet}ce^2/2h$	α	7.297 353 08(33)	10 -	0.045
inverse fine-structure constant	α-ι	137.035 9895(61)	m ⁻¹	0.045
Rycherg constant, m.co ² /2h	R_{∞}	10 973 731 534(13)	m 10 ²³ mol ⁻¹	0.0012
Avogadro constant	N_A, L	6.022 1367(36)	C mol -1	0.59
Faraday constant, NAe	F	96 485.309(29)		0.30
molar gas constant	R	8.314510(70)	J mol ⁻¹ K ⁻¹ 10 ⁻²³ J K ⁻¹	8.4
Boltzmann constant, R/NA	k	1.380658(12)	10-8W m-2 K-4	8.5
Stefan-Boltzmann constant, $(\pi^2/60)k^4/\hbar^3c^2$	σ	5.67051(19)	10-5W m-1 K-1	34
	Non	-SI units used with SI		
electron volt, $(e/C)J = \{e\}J$.	eV	1.602 177 33(49)	10 ⁻¹⁹ J	0.30
(unified) atomic mass unit, $1 u = m_u = \frac{1}{12}m(^{12}C)$	u .	1 660 5402(10)	10 ⁻²⁷ .kg	0.59

NOTE: An abbreviated list of the fundamental constants of physics and chemistry based on a least-squares adjustment with 17 degrees of freedom. The digits in parentheses are the one-standard-deviation uncertainty in the last digits of the given value. Since the uncertainties of many entries are correlated, the full covariance matrix must be used in evaluating the uncertainties of quantities computed from

Table 2
THE 1986 RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS

Quantity	Symbol	Value	Üalta	Relative Uncertainty (ppm)
	GENERAL (CONSTANTS	•	
	Universal	Constants		
speed of light in vacuum	c	299 792 458	ms-i	(exact)
permeability of vacuum	μ_{\bullet}	$4\pi \times 10^{-7}$	N A-2	
•		= 12.566 370 614	10 ⁻⁷ N A ⁻²	(exact)
permittivity of vacuum	c _e	$1/\mu_0 c^2$		
		=8.854 187 817	10 ⁻¹² F m ⁻¹	(exact)
Newtonian constant of gravitation	G	6.67259(85)	10 ⁻¹¹ m ³ kg ⁻¹ s ⁻²	128
Planck constant	h	6.628 0755(40)	10 ⁻³⁴ Js	0.60
in electron volts, h/{e}		4.135 6692(12)	10 ⁻¹⁵ eV a	0.30
h/2#	ħ	1.054 572 66(63)	10-34 J s	0.60
in electron volts, h/{e}		6.5821220(20)	10 ⁻¹⁶ eV s	0.30

Table 2
THE 1986 RECOMMENDED VALUES OF THE
FUNDAMENTAL PHYSICAL CONSTANTS (continued)

Quantity	Symbol	Value	Units	Relative Uncertainty (ppm)	
Planck mass, $(\hbar c/G)^{\frac{1}{2}}$	m_{P}	2.17671(14)	10 ⁻⁸ kg	54	
Planck length, $h/m_{P}c = (hG/c^3)^{\frac{1}{2}}$	$t_{\mathbf{P}}$	1.61605(10)	10 ⁻³⁵ m	64	
Planck time, $l_P/c = (\hbar G/c^5)^{\frac{1}{2}}$	lp.	5.39056(34)	10 ⁻⁴⁴ s	64	
	Electromagne	etic Constants			
elementary charge	e	1.60217733(49)	10 ^{−19} C	0.30	
<u> </u>	e/h	2.417 988 36(72)	1014 A J-1	0.30	
magnetic flux quantum, h/2e	Φ.	2.067 834 61 (61)	10 ⁻¹⁵ Wb	0.30	
Josephson frequency-voltage ratio	2e/h	4.835 9767(14)	$10^{14} \mathrm{Hz} \mathrm{V}^{-1}$	0.30	
quantized Hall conductance	e^2/h	3.87404614(17)	10-5 S	0.045	
quantized Hall resistance, $h/e^2 = \mu_0 c/2\alpha$	$R_{\mathbf{H}}$	25 812.8056(12)	Ω	0.045	
Bohr magneton, eh/2m.		9.2740154(31)	10 ⁻²⁴ J T ⁻¹	0.24	
in electron volts, $\mu_{\rm B}/\{e\}$	μ_{B}	5.788 382 63(52)	10-5 eV T-1	0.34 0.089	
in hertz, μ_B/h		1.399 624 18(42)	1010 Hz T-1	0.30	
in wavenumbers, µB/hc		46.686437(14)	m-1 T-1	0.30	
in kelvins, μ_B/k		0.6717099(57)	K T-1	8.5	
nuclear magneton, eh/2mp	μN	5.0507866(17)	10-27J T-1	0.34	
in electron volts, $\mu_N/\{e\}$		3.15245156(28)	10 ⁻⁸ eV T ⁻¹	0.089	
in hertz, μ _N /h		7.6225914(23)	MHz T-1	0.30	
in wavenumbers, μ _N /hc		2.54262281(77)	10 ⁻² m ⁻¹ T ⁻¹	0.30	
in kelvins, μ _N /k		3.658 246(31)	10-1 K T-1	8.5	
	ATOMIC C	ONSTANTS			
fine-structure constant, μ _o ce ² /2h inverse fine-structure constant	α1	7.297 353 08(33)	10-3	0.045	
	α^{-1}	137.0359895(61)		0.045	
Rydberg constant, m _e cα ² /2h	R_{∞}	10 973 731.534(13)	m-t	0.0012	
in hertz, R∞c		3.289 841 9499(39)	1015 Hz	0.0012	
in joules, $R_{\infty}hc$ in eV, $R_{\infty}hc/\{e\}$		2.1798741(13)	10 ⁻¹⁸ J	0.60	
	•	13.6056931(40)	·eV	0:30	
Bohr radius, $\alpha/4\pi R_{\infty}$ Hartree energy, $e^2/4\pi \epsilon_0 a_0 = 2R_{\infty}hc$	a _o	0.529 177 249(24)	10 ⁻¹⁰ m	0.045	
in eV, $E_h/\{e\}$	E_{h}	4.359 7482(26) 27.2113961(81)	10-18 J	0.60	
quantum of circulation	$h/2m_e$	3.636 948 07(33)	eV	0.30	
	h/m_e	7.273 896 14(65)	$10^{-4} \mathrm{m}^2 \mathrm{s}^{-1}$ $10^{-4} \mathrm{m}^2 \mathrm{s}^{-1}$	0.089 0.089	
	Elec	tron			
electron mass	m_{e}	9.1093897(54)	$10^{-31}\mathrm{kg}$	0.59	
		5.485 799 03(13)	10-4 u	0.023	
in electron volts, $m_e c^2/\{e\}$		0.510 999 06(15)	MeV	0.30	
electron-muon mass ratio	m_e/m_μ	4.835 332 18(71)	10-3	0.15	
electron-proton mass ratio electron-deuteron mass ratio	m_e/m_p	5.446 170 13(11)	10-4	0.020	
electron—a-particle mass ratio	m_e/m_d	2.724 437 07(6)	10-4	0.020	
	m_e/m_o	1.37093354(3)	10-4	0.021	
electron specific charge electron molar mass	$-e/m_e$	-1.75881952(53)	1011 C kg ⁻¹	0.30	
Compton wavelength, h/mec	$M(e), M_e$	5.485 799 03(13)	10 ⁻⁷ kg/mol	0.023	
$\lambda_{\rm C}/2\pi = \alpha a_{\rm o} = \alpha^2/4\pi R_{\infty}$	λC	2.426 310 58(22)	10 ⁻¹² m	0.089	
classical electron radius, $\alpha^2 a_0$	λc	3.86 159 323(35) 2.817 940 92(38)	10~13 m	0.089	
Thomson cross section, $(3\pi/3)r^2$	$r_{ m e}$ $\sigma_{ m e}$	0.665 246 16(18)	10 ⁻¹⁵ m	0.13	
electron magnetic moment			10 ⁻²⁸ m ²	0.27	
in Bohr magnetons	μ _ε μ _ε /μ _Β	928.47701(31)	10-26 J T-1	0.34	
in nuclear magnetons	μ_e/μ_B μ_e/μ_N	1.001 159 652 193(10) 1838.282 000(37)		1×10 ⁻⁵	
electron magnetic moment	<i>Pe/ PN</i>	1035.202000(31)		0.020	
-anomaly, $\mu_e/\mu_B = 1$	aį	1.159652 193(10)	10-3	0.0086	
electron g-factor; $2(1+a_e)$ electron-muon		2.002 319 304 386(20)	••	1×10 ⁻⁵	
magnetic moment ratio electron-proton	μ_e/μ_μ	206.766967(30)		0.15	
magnetic moment ratio	μ_e/μ_p	658.2106881(66)		0.010	
	Muc	on			
muon mass	m_{μ}	1.883 5327(11)	10 ⁻²⁸ kg	0.61	
in electron volts, $m_{\mu}c^2/\{e\}$		0.113428913(17)	u	0.15	
muon-electron mass ratio	w /	105.658389(34)	MeV	0.32	
muon molar mass	m_{μ}/m_{e} $M(\mu), M_{\mu}$	206.768 262(30)	10-41	0.15	
	400 10 10 10 10	1.134 289 13(17)	10 ⁻⁴ kg/mol	0.15	
muon magnetic moment					
muon magnetic moment in Bohr magnetons, in nuclear magnetons,	μ_{μ} $\mu_{\mu}/\mu_{\rm B}$	4.4904514(15) 4.84197097(71)	10-26 J T-1	0.33 0.15	

Table 2
THE 1986 RECOMMENDED VALUES OF THE
FUNDAMENTAL PHYSICAL CONSTANTS (continued)

				Relative
Quantity	Symbol	Value	Units	Uncertain (ppm)
was marked market anomaly				
muon magnetic moment anomaly, $[\mu_{\mu}/(\epsilon\hbar/2m_{\mu})] = 1$	a _µ	1.165 9230(84)	10-3	7.2
muon g-factor, $2(1 + a_{\mu})$	-μ 9μ	2.002 331 846(17)		0.0084
muon-proton	•-	` ,		
magnetic moment ratio	μ_{μ}/μ_{p}	3.183 345 47(47)		0.15
	Prote	on		
proton mass	m_p	1.6726231(10)	10 ⁻²⁷ kg	0.59
proton	•	1.007 276 470(12)	u	0.012
in electron volts, mpc2/{e}		938.27231(23)	MeV	0.30
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.152701(37)		0.020
proton-muon mass ratio	m_p/m_μ	3.8802444(13)		0.15
proton specific charge	$\epsilon/m_{\rm p}$	9.578 8309(29)	10 ⁷ C kg ⁻¹	0.30
proton molar mass	$M(p), M_p$	1.007 276 470(12)	10 ⁻³ kg/mol	0.012
proton Compton wavelength, h/mpc	$\lambda_{C,p}$	1.32141002(12)	10 ⁻¹⁵ m	0.089
$\lambda_{C,p}/2\pi$	$\lambda_{C,p}$	2.103 089 37(19)	10 ⁻¹⁶ m	0.089
proton magnetic moment	μ_{p}	1.41060761(47)	10 ⁻²⁶ J T ⁻¹	0.34
in Bohr magnetons	$\mu_{\rm p}/\mu_{\rm B}$	1.521 032 202(15)	10 ⁻³	0.010
in nuclear magnetons	$\mu_{\rm p}/\mu_{\rm N}$	2.792847386(63)		0.023
diamagnetic shielding correction				
for protons in pure water,		or 400/153	10-6	
spherical sample, 25 °C, $1 - \mu_p'/\mu_p$		25.689(15)	10 ⁻⁶ 10 ⁻²⁶ J T ⁻¹	0.34
shielded proton moment	μ_{P}'	1.41057138(47)	10 3 1 -	0.34
(H ₂ O, sph., 25 °C)	u' / u	1.520993129(17)	10-3	0.011
in Bohr magnetons	μ _p /μ _Β μ _p /μ _N	2.792 775 642(64)	10	0.023
in nuclear magnetons proton gyromagnetic ratio	•	26 752.2128(81)	$10^4 \mathrm{s}^{-1} \mathrm{T}^{-1}$	0.30
proton gyromagnetic racio	$\frac{\gamma_p}{\gamma_p/2\pi}$	42.577469(13)	MHz T-1	0.30
uncorrected (H2O, sph., 25 °C)	γρ,	26751.5255(81)	104 s-1 T-1	0.30
4.120, 2pm, 20 0,	$\gamma_p'/2\pi$	42.576375(13)	MHz T-1	0.30
	Neuti	·on		
neutron mass	mn	1.6749286(10)	10 ⁻²⁷ kg	0.59
ileasion mass	*****	1.008 664 904(14)	u eg	0.014
in electron volts, $m_n e^2/\{e\}$		939.56563(28)	Mev	0.30
neutron-electron mass ratio	m_n/m_e	1838.683662(40)		0.022
neutron-proton mass ratio	m_n/m_p	1.001 378 404(9)		0.009
neutron molar mass	$M(n), M_n$	1.008 554 904(14)	10 ⁻³ kg/mol	0.014
neutron Compton wavelength, h/m_nc	$\lambda_{\mathbf{C},n}$	1.31959110(12)	10 ⁻¹⁵ m	0.089
$\lambda_{C,n}/2\pi$	$\lambda_{C,n}$	2.100 194 45(19)	10 ⁻¹⁶ m	0.089
neutron magnetic moment *	$\mu_{ m n}$	0.956 237 07(40)	10-26 J T-1	0.41
in Bohr magnetons	$\mu_{\rm n}/\mu_{\rm B}$	1.04187563(25)	10-3	0.24
in nuclear magnetons	μ_n/μ_N	1.91304275(45)		0.24
neutron-electron	1	1.04066882(25)	10-3	2.04
magnetic moment ratio neutron-proton	μ_n/μ_e	1.010000802(23)	10 -	9.24
magnetic moment ratio	μ_0/μ_p	0.68497934(15)		0.24
	Deute			0.50
deuteron mass	m_d	3.3435860(20)	10 ⁻²⁷ kg	$0.59 \\ 0.012$
211		2.013 553 214(24)	u MeV	0.012
in electron volts, $m_d c^2/\{e\}$	vn . / vn	1875.61339(57) 3670.483014(75)	1-1C T	0.020
deuteron-electron mass ratio	$m_d/m_e \ m_d/m_p$	1.999 007 496(6)		0.003
deuteron-proton mass ratio	$M(d), M_d$	2.013 553 214(24)	10-3 kg/mol	0.012
deuteron molar mass deuteron magnetic moment *	μ_d	0.433 073 75(15)	10 ⁻²⁶ J T ⁻¹	0.34
in Bohr magnetons,	μ _α /μ _Β	0.4669754479(91)	10-3	0.019
in nuclear magnetons,	Ha/hh	0.857 438 230(24)		0.028
deuteron-electron magnetic moment ratio	μ ₄ /μ _e	0.4664345460(91)	.10-3	0.019
deuteron-proton				0.017
magnetic moment ratio	μ_d/μ_p	0.3070122035(51)		0.017
PHYSIC	O-CHEMIC	AL CONSTANTS		
Avogadeo constant	N. 1	6.0221367(36)	10 ²³ mol ⁻¹	0.59
Avogadro constant atomic mass constant, $\frac{1}{12}m(^{12}C)$	$N_{\mathbf{A}}, L$ $m_{\mathbf{q}}$	1.660 5402(10)	10 ⁻²⁷ kg	0.59
	******	931.49432(28)	MeV	0.30
in electron voite no c2/1e1	_	001.70702(40)		
in electron volts, niuc'/{e}	F	96 485.309(29)	C mol ⁻¹	0.30
in electron volts, $m_u c^2/\{e\}$ Faraday constant molar Planck constant	_	96 485.309(29) 3.990 313 23(36)	10 ⁻¹⁰ J s mol ⁻¹	0.089
in electron voits, muc'/{e} Faraday constant	F	96 485.309(29)	C mol ⁻¹ 10 ⁻¹⁰ J s mol ⁻¹ J m mol ⁻¹ J mol ⁻¹ K ⁻¹	

Table 2
THE 1986 RECOMMENDED VALUES OF THE
FUNDAMENTAL PHYSICAL CONSTANTS (continued)

Symbol	Value	Units	Relative Uncertainty (ppm)
k	1.380658(12)		8.5
	8.617 385(73)		8.4
	2.083674(18)	10 ¹⁰ Hz K ⁻¹	8.4
	69.50387(59)	m-1 K-1	8.4
V	22.41410(19)	L/mol	8.4
	2.686763(23)	10 ²⁵ m ⁻³	8.5
V _m	22.71108(19)	L/mol	8.4
•			
			_
S_{Λ}/R	-1.151693(21)		18
- 4,	-1.164856(21)		18
σ			
c ₁			0.60
C ₂	0.01438769(12)	m K	8.4
=		_	
ь	2.897756(24)	10 ⁻³ m K	8.4
	k Vm no Vm So/R	k 1.360658(12) 8.617385(73) 2.083674(18) 69.50387(59) V _m 22.41410(19) n _o 2.666763(23) V _m 22.71108(19) S _o /R -1.151693(21) -1.164856(21) σ 5.67051(19) c ₁ 3.7417749(22) c ₂ 0.01438769(12)	k 1.380 658(12) 10 ⁻²³ J K ⁻¹ 8.617 385(73) 10 ⁻⁵ eV K ⁻¹ 2.083 674(13) 10 ¹⁰ Hz K ⁻¹ 69.503 87(59) m ⁻¹ K ⁻¹ V _m 22.414 10(19) L/mol n _e 2.686 763(23) 10 ²⁸ m ⁻³ V _m 22.71108(19) L/mol S ₆ /R -1.151693(21) -1.164856(21) σ 5.670 51(19) 10 ⁻⁸ W m ⁻² K ⁻⁴ c ₁ 3.7417749(22) 10 ⁻¹⁶ W m ² c ₂ 0.014387 69(12) m K

NOTE: This list of the fundamental constants of physics and chemistry is based on a least-squares adjustment with 17 degrees of freedom. The digits in parentheses are the one-standard-deviation uncertainty in the last digits of the given value. Since the uncertainties of many of these entries are correlated, the full covariance matrix must be used in evaluating the uncertainties of quantities computed from them.

• The scalar magnitude of the neutron moment is listed here. The neutron magnetic dipole is directed oppositely to that of the proton, and corresponds to the dipole associated with a spinning negative charge distribution. The vector sum, μ_d = μ_p + μ_n, is approximately satisfied.

The entropy of an ideal monatomic gas of relative atomic weight A_r is given by $S = S_0 + \frac{1}{2}R$ in $A_r - R$ in $(p/p_0) + \frac{5}{2}R$ in (T/K).

Table 3
MAINTAINED UNITS AND STANDARD VALUES

Quantity	Symbol	Value	Units	Relative Uncertainty (ppm)
1 (-10) 1 - 1-) 1	eV	1.602 177 33(49)	10 ⁻¹⁹ J	0.30
electron volt, $(e/C)J = \{e\}J$ (unified) atomic mass unit,	u	1.660 5402(10)	10 ⁻²⁷ kg	0.59
$1 u = m_u = \frac{1}{12}m(^{12}C)$ standard atmosphere	atm	101 325	Pa	(exact)
standard acceleration of gravity	gn	9.80665	m s - 2	(exact)
•	As-Maintainec	l'Electrical Units		
BIPM maintained ohm, Ω _{69-BI}			6	
$\Omega_{\rm Bids} \equiv \Omega_{\rm 69-Bi} (1 \rm Jan 1985)$	Ω_{B185}	$1 - 1.563(50) \times 10^{-6}$	Ω	0.050
	40	= 0.999998437(50)		0.030
Drift rate of Ω _{69-BI}	$\frac{d\Omega_{69-BI}}{dt}$	-0.0566(15)	μΩ/a	· —
BIPM maintained volt,	V _{76-B1}	$1 - 7.59(30) \times 10^{-6}$	v	
$V_{76-B1} \equiv 483594 \text{GHz}(h/2e)$	4 10 - 111	= 0.99999241(30)	V	0.30
BIPM maintained ampere.	ABISS	$1 - 6.03(30) \times 10^{-6}$	A	
$A_{BIPM} = V_{76-BI}/\Omega_{69-BI}$	7-B103	= 0.999 993 97(30)	A	0.30
	X-Ray	Standards		
Cu x-unit : λ(CuKα ₁) ≡ 1537.400 xu	xu(CuKo ₁)	1.00207789(70)	10 ⁻¹³ m	0.70
Mo x-unit : λ(MoKα ₁) ≡ 707.831 xu	xu(MoKa ₁)	1.002 099 38(45)	10 ⁻¹³ m	0.45
$\dot{A}^*: \lambda(WK\alpha_1) \equiv 0.209100 \dot{A}^*$	Å*	1.00001481(92)	10 ⁻¹⁰ m	0.92

Table 3
MAINTAINED UNITS AND STANDARD VALUES
(continued)

				Relative Uncertainty
Quantity	Symbol	Value	Units	(ppm)
lattice spacing of Si	a	0.54310196(11)	nm	0.21
(in vacuum, 22.5 °C), $d_{220} = a/\sqrt{8}$	d220	0.192015540(40)	nm	0.21
molar volume of Si, $M(Si)/\rho(Si) = N_A a^3/8$	$V_{m}(Si)$	12.0588179(89)	cm³/mol	0.74

NOTE: A summary of "maintained" units and "standard" values and their relationship to SI units, based on a least-squares adjustment with 17 degrees of freedom. The digits in parentheses are the one-standard-deviation uncertainty in the last digits of the given value. Since the uncertainties of many of these entries are correlated, the full covariance matrix must be used in evaluating the uncertainties of quantities computed from them.

+ The lattice spacing of single-crystal Si can vary by parts in 10⁷ depending on the preparation process. Measurements at PTB indicate also the possibility of distortions from exact cubic symmetry of the order of 0.2 ppm.

Table 4
ENERGY CONVERSION FACTORS

			1	Н×
	J	kg	m-1	ns
1 J =	1	$1/\{c^2\}$ $1.11265006 \times 10^{-17}$	1/{hc} 5.034 1125(30)×10 ²⁴	1/(h) 1.509 183 97(90) × 10 ³³
1 kg =	$\{c^2\}$ 8.987 551 787 × 10^{16}	1	$\{c/h\}$ $4.5244347(27) \times 10^{41}$	$\{c^2/h\}$ 1.35639140(81)×10 ⁵⁰
1 m ⁻¹ =	(hc) 1.9864475(12)×10 ⁻²⁵	$\{h/c\}$ 2.210 2209(13) × 10^{-42}	1	{c} 299 792 458
1 Hz =	(h) 6.6260755(40)×10 ⁻³⁴	$\{h/e^2\}$ 7.3725032(44) × 10^{-51}	1/{e} 3.335640952×10 ⁻⁹	1
1 K =	$\{k\}$ 1.380 558(12)×10 ⁻²³	$\{k/c^2\}$ 1.536 189(13)×10 ⁻⁴⁰	{k/hc} 69.503.87(59)	{k/h} 2.083674(18)×10 ¹⁰
1 eV =	$\{e\}$ 1.692 177 33(49)×10 ⁻¹⁹	$\{e/e^2\}$ 1.78266270(54)×10 ⁻³⁶	{e/hc} 806 554.10(24)	{e/h} 2.417 983 36(72)×10 ¹⁴
l u =	$\{m_uc^2\}$ 1.49241909(88)×10 ⁻¹⁰	$\{m_n\}$ 1.660 5402(10) × 10 ⁻²⁷	$\{m_0c/h\}$ 7.513 005 63(67) × 10^{14}	$\{m_u e^2/h\}$ 2.25234242(20)×10 ²³
l hartree =	$\{2R_{\infty}hc\}$ 4.3597482(26)×10 ⁻¹⁸	$\{2R_{\infty}h/e\}$ 4.8503741(29)×10 ⁻³⁵	$\{2R_{\infty}\}\$ 21 947 463.067(26)	$\{2R_{\infty}c\}$ 6.579 683 8999(78)×10 ¹⁵
	ĸ	eV	u	hartree
1J =	1/(+) 7.242924(61)×10 ²²	1/{e} 6.2415064(19)×10 ¹⁶	$1/\{m_uc^2\}$ 6.700 5308(40) × 10°	1/(2R _w hc) 2.2937104(14)×10 ¹⁷
1 kg =	$(c^3/\dot{\epsilon})$ 6.509616(55)×10 ³⁹	$\{c^{2}/e\}$ 5.609 5862(17) × 10 ³⁵	$1/\{m_u\}$ 6.022 1357(36)×10 ²⁶	$\{c/2R_{\infty}h\}$ 2.061 4841(12)×10 ³⁴
l m-1 =	{5c/k} 0.01438769(12)	(hc/e) 1.23984244(37)×10−6	$\{h/m_uc\}$ 1.33102522(12)×10 ⁻¹⁵	$1/\{2R_{\infty}\}$ $4.5563352672(54) \times 10^{-8}$
1 Hz =	{h/k} 4.799216(41)×10 ⁻¹¹	{h/e} 4.1356692(12)×10 ^{−15}	$\{h/m_uc^2\}$ 4.43982224(40)×10 ⁻²⁴	$1/\{2R_{\infty}c\}$ 1.5198298508(18)×10 ⁻¹⁶
1 K =	1	{k/ε} 8.617385(73)×10 ⁻⁵	$\{k/m_uc^2\}$ 9.251 140(78)×10 ⁻¹⁴	$\{k/2R_{\infty}he\}$ 3.166 829(27)×10 ⁻⁶
1 eV =	{e/k} 11 604.45(10)	1	$\{e/m_uc^2\}$ 1.07354385(33)×10 ⁻⁹	{e/2R∞he} 0.036749309(11)
l u =	$\{m_u e^2/k\}$ 1.0809478(91)×10 ¹³	(m _u c²/e) 931.49432(28)×10 ⁶	1	$\{m_u c/2R_{\infty}h\}$ 3.423 177 25(31)×10 ⁷
l hartree =	$\{2R_{\infty}hc/k\}$ 3.157733(27)×10 ⁵	{2R _{co} hc/e} 27.2113961(81)	$\{2R_{\infty}h/m_{u}c\}$ 2.921 262 69(26)×10 ⁻⁸	1

NOTE: To use this table note that all entries on the same line are equal; the unit at the top of a column applies to all of the values beneath it. Example: $1 \text{ eV} = 806544.10 \text{ m}^{-1}$.

Table 5
EXPANDED COVARIANCE AND CORRELATION
COEFFICIENT MATRIX FOR THE 1986
RECOMMENDED SET OF FUNDAMENTAL PHYSICAL
CONSTANTS

	a-1	Κv		μμ/μ,		h	m,	N _A	F
a-i	1997	- 1062	925	3267	-3059	-4121	-127	127	9029
K _V	-0.080	87988	90	-1737	89050	177038	174914	-174914	-2932 -85864
K_{Ω}	0.416	0.006	2477	1513	-835	-744	1105	-1105	-1939
μ_{μ}/μ_{ϕ}		-0.040	0.207	2 1 5 23	-5004	-6742	-208	208	-4796
•	-9.226	0.989	-0.055	-0.112	92109	181159	175042	-175042	-82933
'n	-0.154	0.997	-0.025	-0.077	0.997	358197	349956	-349956	-168797
m.	-0.005	0.997	0.038	-0.002	0.975	0.939	349702	-349702	-174660
N _A	0.005	-0.997	-0.033	0.002	-0.975	-0.989	-1.000	349702	174660
F	-0.217	-0.956	-0.129	-0.108	-0.902	-0.931	-0.975	0.975	91727

The elements of the covariance matrix appear on and above the major diagonal in (parts in 10^9)?; correlation coefficients appear in *italics* below the diagonal. The values are given to as many as six digits only as a matter of consistency. The correlation coefficient between m_e and N_A appears as -1.000 in this table because the auxiliary constants were considered to be exact in carrying out the least-squares adjustment. When the uncertainties of m_p/m_e and N_A are slightly increased.

STANDARD ATOMIC WEIGHTS (1989) (Scaled to A_r (12 C) = 12)

The atomic weights of many elements are not invariant but depend on the origin and treatment of the material. The footnotes to this table elaborate the types of variation to be expected for individual elements. The values of $A_i(E)$ and uncertainty $U_i(E)$ given here apply to elements as they exist naturally on earth. New values recommended by IUPAC in 1989 are included.

1989 are mended.							
Name	Symbol	Atomic no.	Atomic weight		Footi	notes	
Actinium*	Ac	89					Α
Aluminium	Al	13	26.981539(5)				
Americium*	Am	95					Α
Antimony	Sb	51	121.757(3)				
Argon	Ar	18	39.948(1)	g		r	
Arsenic	As	33	74.92159(2)				
Astatine*	At	85	127 227/7				Α
Barium	Ba Bk	56 97	137.327(7)				Α
Berkelium*	Be	4	9.012182(3)				••
Beryllium Bismuth	Bi	83	208.98037(3)				
Boron	В.	5	10.811(5)	g	m	г	
Bromine	Br	35	79.904(1)				
Cadmium	Cd	48	112.411(8)	g			
Caesium	Cs	55	132.90543(5)				
Calcium	Ca	20	40.078(4)	g			
Californium*	Cf	98					\mathbf{A} .
Carbon	С	6	12.011(1)			r	
Cerium	Ce	58	140.115(4)	8			
Chlorine	C1	17	35.4527(9)				
Chromium	Cr	24	51.9961(6)				
Cobalt	Co	27	58.93320(1)			r	
Copper	Cu	29 96	63.546(3)			•	Α
Curium* Dysprosium	Cm .	66	162.50(3)	g	•		
Einsteinium*	Dy Es	99	102.50(5)	6			Α
Erbium	Er Er	68	167.26(3)	g			
Europium	Eu	63	151.965(9)	g			
Fermium*	Fm	100		J			Α
Fluorine	F	9	18.9984032(9)				
Francium*	Fr	37					Α
Gadolinium	Gd	64	157.25(3)	g			
Gallium	Ga	31	69.723(1)				
Germanium	Gc	3 2	72.61(2)				
Gold	Au	79	196.96654(3)				
Hafnium	Hf	72	178.49(2)			r	
Helium	He Ho	2 67	4.002602(2) 164.93032(3)	g		•	
Holmium	H	1	1.00794(7)	g	m	r	
Hydrogen Indium	In	49	114.82(1)	ь	•••	•	
Iodine	I	53	126.90447(3)				
Iridium	Ţ.	77	192.22(3)				
Iron	Fe	26	55.847(3)				
Krypton	Kr	36	83.80(1)	g	m		
Lanthanum	La	57	138.9055(2)	g			
Lawrencium*	Lr	103					Α
Lead	Pb	82	207.2(1)	g		r	
Lithium _.	Li	3	6.941(2)	g	m	r	
Lutetium	Lu	71	174.967(1)	g			٠.
Magnesium .	Mg	12	24.3050(6) 54.93805(1)				
Manganese	Mn	25 101	34.93803(1)				Α
Mendelevium*	Md	80	200.59(2)				<i>,</i> ,
Mercury Molybdenum	Hg Mo	42	95.94(1)				
Neodymium	Nd	60	144.24(3)	g			
Neon	Ne	10	20.1797(6)	g	m		
Neptunium*	Np	93		J			Α
Nickel	Ni	28	58.6934(2)				
Niobium	Nb	41	92.90638(2)				
Nitrogen	N	7	14.00674(7)	g		r .	
Nobelium*	No	102	•			•	Α
Osmium	Os	76 .	190.2(1)	g			
Oxygen	0	8	15.9994(3)	g		. r	
Palladium	Pd	46	106.42(1)	g.			

STANDARD ATOMIC WEIGHTS (1989) (Scaled to A_r (12C) = 12) (continued)

Name	Symbol	Atomic no.	Atomic weight		Footno	tes	
Phosphorus	P	15	30.973762(4)				
Platinum	Pt	78	195.08(3)				
Plutonium*	Pu	94					Α
Polonium*	Po	84					Α
Potassium	ĸ	19	39.0983(1)				
Praseodymium	Pτ	59	140.90765(3)				
Promethium*	Pm	61					A
Protactinium*	Pa	91	231.03588(2)				Z
Radium*	Ra	88					A
Radon*	Rn	86					Α
Rhenium	Re	75	186.207(1)				
Rhodium	Rh	45	102.90550(3)				
Rubidium	Rb	37	85.4678(3)	g			
Ruthenium	Ru	44	101.07(2)	g			
Samarium	Sm	62	150.36(3)	g			
Scandium	Sc	21	44.955910(9)				
Selenium	Se	34	78.96(3)				
Silicon	Si	14	28.0855(3)			ſ	
Silver	Ag	47	107.8682(2)	g			
Sodium	Na	11	22.989768(6)				
Strontium	Sr	38	87.62(1)	g		ſ	
Sulfur	Š	16	32.066(6)			T	
Tantalum	Ta	73	180.9479(1)				
Technetium*	Tc	43					Α
Tellurium	Te	52	127.60(3)	g			
Terbium	ТЪ	65	158.92534(3)				
Thallium	Tl	81	204.3833(2)				_
Thorium*	Th	90	232.0381(1)	g			Z
Thulium	Tm	69	168.93421(3)				
Tin	Sn	50	118.710(7)	g			
Titanium	Ti	. 22	47.88(3)				
Tungsten	W	. 74	183.85(3)				
Unnilquadium	Unq	104					A
Unnilpentium	Unp	105					A
Unnihexium	Unh	106					Α
Unnilseptium	Uns	107					A
Uranium*	Ū	92	238.0289(1)	g	m		Z
Vanadium	v	23	50.9415(1)				
Xenon	Xe	54	131.29(2)	g	m		
Ytterbium	Yb	70	173.04(3)	g			
Yttrium	Y	39	88.90585(2)				
Zinc	Zn	30	65.39(2)				
Zirconium	Zr	40	91.224(2)	g			

geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic weight of the element in such specimens and that given in the table may exceed the implied uncertainty.

modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic separation. Substantial deviations in atomic weight of the element from that given in the table can occur.

range in isotopic composition of normal terrestrial material prevents a more precise $A_r(E)$ being given; the tabulated $A_r(E)$ value should be applicable to any normal material.

Radioactive element that lacks a characteristic terrestrial isotopic composition.

An element, without stable nuclide(s), exhibiting a range of characteristic terrestrial compositions of long-lived radionuclide(s) such that a meaningful atomic weight can be given.

Element has no stable nuclides.

ELECTRON CONFIGURATION OF NEUTRAL ATOMS IN THE GROUND STATE (continued)

Atomic	n =	K 1	L 2	M 3	N 4	0 5	P 6	Q 7
no.	Element	s	s p	s pa	s p a r	s p u '	3 p u	,,
no. 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	Element La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir	s 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	s p 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2	s p d 2 6 10	s p d f 2 6 10 1* 2 6 10 3 2 6 10 4 2 6 10 5 2 6 10 6 2 6 10 7 2 6 10 7 2 6 10 9* 2 6 10 10 2 6 10 11 2 6 10 12 2 6 10 13 2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14	s p d f 2 6 1 2 6 1 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 2 6 2 6	s p d 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 s
78 70	Pt	2	2 6	2 6 10	2 6 10 14	2 6 9	1 1.	
79 80	Au Ha	2 2	2 6 2 6.	2 6 10 2 6 10	2 6 10 14 2 6 10 14	2 6 10 2 6 10	1 2	
80 81 82	Hg Tl Pb	2 2	2 6 2 6	2 6 10 2 6 10 2 6 10	2 6 10 14 2 6 10 14 2 6 10 14	2 6 10 2 6 10 2 6 10	2 1 2 2	1 page 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
83	Bi	2	2 6	2 6 10	2 6 10 14	2 6 10	2 3	1
84	Po	2	2 6	2 6 10	2 6 10 14	2 .6 10	2 4	
85	At	2	2 6	2 6 10	2 6 10 14	2 6 10	2 5	
86	Rn C-	2	2 6	2 6 10 2 6 10	2 6 10 14 2 6 10 14	2 6 10	2 6 2 6	1
87 88	Fr Ra	2 2	2 6 2 6	2 6 10 2 6 10	2 6 10 14	2 6 10	2 6	2
89	Ac	2	2 6	2 6 10	2 6 10 14	2 6 10	2 6 1	2
90	Th	2	2 6	2 6 10	2 6 10 14	2 6 10	2 6 2	2
91	Pa	2	2 6	2 6 10	2 6 10 14	2 6 10 2*	2 6 1	2
92	U	2	2 6	2 6 10	2 6 10 14	2 6 10 3	2 6 1	2
93	Np	2	2 6	2 6 10	2 6 10 14	2 6 10 4	2 6 1	2
94	Pu	2	2 6	2 6 10	2 6 10 14	2 6 10 6*	2 6	2
95 06	Am	2	2 6	2 6 10 2 6 10	2 6 10 14 2 6 10 14	2 6 10 7	2 6 1	2 2
96 97	Cm Bk	2 2	2 6 2 6	2 6 10 2 6 10	2 6 10 14 2 6 10 14	2 6 10 9	2 6	2
97 98	Cf	2	2 6	2 6 10	2 6 10 14	2 6 10 10	2 6	2
99	Es	2	2 6	2 6 10	2 6 10 14	2 6 10 11	2 6	2
100	Fm	2	2 6	2 6 10	2 6 10 14	2 6 10 12	2 6	2
· 101	Md	2	2 6	2 6 10	2 6 10 14	2 6 10 13	2 6	2
102	No	2	2 6	2 6 10	2 6 10 14	2 6 10 14	2 6	2
103	Lr	2	2 6	2 6 10	2 6 10 14	2 6 10 14	2 6 1	2
104	Rf	2	2 6	2 6 10	2 6 10 14	2 6 10 14	2 6 2	2

* Note irregularity.

REFERENCE

W. L. Wiese and G. A. Martin, in A Physicist's Desk Reference, American Institute of Physics, New York, 1989, 94.

ELECTRON CONFIGURATION OF NEUTRAL ATOMS IN THE GROUND STATE

Atomic no.	n = Element	K 1 s	L 2 s p	M 3 s p		S	P 1	l .	ſ	s	0 5	f"	s	P 6 p	d	Q 7 .s
1 2 3 4 5 6 7 8 9 10 11 12 13	H He Li Be B C N O F Ne Na Mg Al Si	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 1 2 2 2 3 2 4 2 5 2 6 2 6 2 6 2 6 2 6 2 6	1 2 2 1 2 2						, *		-		• •		
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	2 4 2 5 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	1 2 3 5* 5 6 7 8 10*	1 2 2 2 1 2 2 1 2 2 1 2										
31 32 33 34 35 36 37 38 39 40 41 42 43 44	Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6	1 2 4* 5 5 7 8		1 2 2 2 1 1 2 1						
46 47 48 49 50 51 52 53 54 55	Pd Ag Cd In Sn Sb Te I Xe Cs Ba	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	5 10 5 10 5 10 6 10 6 10 6 10	2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	10* 10 10 10 10 10 10 10 10 10 10 10		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6 6			l 2	₹.,	

	** Actinides		sepinedine 1.	·18-8-1	87 Fr +1	132.90543	÷ دی	-18-8-1	37 +1	39.0983	× 19	22.989768 2-8-1	∑ =	6.941	<u> </u>	079	≥કુ-
	-		2	-18-8-2	7 88 42	137.327 -18-8-2	56 +2 Ba	87.62 -18-8-2	38 +2 St	40.078 -8-8-2	20 +2 Ca	24.3050 2-8-2	12 +2 Mg	9.012182 2-2	₽ 1		₹ 2
232.0381	% E	140.115 -20-8-2	58 +3 Ce +4	-18-9-2	89** Ac +3	-18-9-2	57* +3	88.90585 -18-9-2	₹39 ±3	44.955910 -8-9-2	\$ 22	III A				- 	
231.03588 -20-9-2	91 Pa +5	140.90765 -21-8-2	59 +3 Pr	-32-10-2	Unq +4	178.49 -32-10-2	#72 #	91.224	Z 40	47.88 -8-10-2	11 22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IVA IVA					
238.0289 -21-9-2	∪ 92 ±	144.24 -22-8-2	Nd +3	-32-11-2		180.9479 -32-11-2	73 +5	92.90638	Nb + + + + + + + + + + + + + + + + + + +	50.9415 -8-11-2	\$\$ \$\$\$\$	\$ ~	•				
237.04	% # # # # # # # # # # # # # # # # # # #	(145) -23-8-2	61 +3	-32-12-2	Unb 801	183.85 -32-12-2	74 +6	95.94 -18-13-1	3 43 ±	51.9961 -8-13-1	Cr + 55	VIB VIA					Previous CA
(244) -24-8-2	P 4	150.36 -24-8-2	62 +2 Sm +3	.32-13-2	Uns	186.207 -32-13-2	75 Re + 4	(98) -18-13-2	Tc +6	54.93085 -8-13-2	Mn + + + + + + + + + + + + + + + + + + +	VIIA VIIB	: •	1989 Atomic Weight	Atomic Number Symbol		Previous IUPAC form CAS version
(243) -25-8-2	95 Am + + + +	151.965 -25-8-2	63 ±2			190.2 -32-14-2	76 ±3	101.07 -18-15-1	Ru +3	55.847 -8-14-2	26 +2 Fe +3	∞	,	Weight →	Number — Symbol —		Jrm
(247) -25-9-2	Cm +3	157.25 -25-9-2	42 24 25 24			192.22	177 +3	102.90550 -18-16-1	- 45 +3	58.93320 -8-15-2	27 +2 Co +3	VIIIA VIII		18.71	\$0 +2 \$n +4		
(247) -27-8-2	97 +3 Bk +4	158.92534 -27-8-2	₹ *			195.08 -32-16-2	P 78	106.42 -18-18-0	P46	58.6934 -8-16-2	28 +2 Ni +3	10		1			
(251) -28-8-2	t. %	162.50 -28-8-2	Dy 53			196.96654 -32-18-1	79 +1 Au +3	107.8682 -1 8-18-1	47 +1 Ag	63.546 -8-18-1	29 +1 3 Cu +2) B =		Electron Configuration	Oxidation States		
(252) -29-8-2	99 +3 Es	164.93032 -29-8-2	67 +3			200.59	80 +1 Hg +2	-18-18-2	48 +2 Cd	65.39 -8-18-2	30 +2 Zn	12 IIB		nfiguration	ates		
(257) -30-8-2	100 +3 Fm	167.26 -30-8-2	68 +3			204.3833 -32-18-3	81 +1 1+ 18	114.82 -18-18-3	49 +3 lu	69.723 -8-18-3	31 +3 Ca	26.981539 2-8-3	13 +3 Al	10.811	5 5		+ + + 13 IIIA
(258) -31-8-2	Md +3	168.93421 -31-8-2	69 +3 Tm			207.2 -32-18-4	82 +2 Pb +4	118.710 -18-18-4	50 +2 Sn +4	72.61 -8-18-4	32 ±	28.0855 2-8-4	Si ++2	12.011	C 0		IVB IVA
(259) -32-8-2	102 No		\$ 70			208.98037	B:	121.757 -18-18-5	Sb 51	74.92159 -8-18-5	≵ 33	30.97362 2-8-5	P 15	14.00674 2-5	Z		VA WB VB
(260) -32-9-2	12 103 +3 Lr	174.967 -32-9-2	÷3 71	-		(209) -32-18-6	+3 84 Po	127.60 -18-18-6	+3 +5 Fe	78.96 -8-18-6	+3 34 Se	32.066 2-8-6	+5 16 S	-1 -2 15.9994 -3 2-6	±±±±± • ∞		VIA VIA
	t.	7	٤			-6 (210) -32-18-7	+2 85 At	126.90447	+4 53 -2 1	79.904 -8-18-7	±4 ±6 Br	35.4527 2-8-7	1 t t 1 C C C C C C C C C C C C C C C C	4 18.99×4032 2-7	-12 -F9		VIIIA VIIIA
				-		(222) -7 -32-18-8	R ₃ 86	447 131.29 1-7 -18-18-8	×55± Xe	4 83.80 7 -8-18-8	1.5± Kr 36	27 39.948 27 2-8-8	++5± Ar	4032 20.1797	2 0 8 0	He 4.0020602 2	_
			}	-			٥		•		0		- 8	97		552 6	+
0 9 0		2 0 7		040		-N-O-P		.м-и-O		-JM-N		¥-7-3		<u>*</u>		*	Shell

PERIODIC TABLE OF THE ELEMENTS

...:: · 4 ()

elements that do not occur in nature, the mass number of the most stable isotope is given in parentheses. The new IUPAC format numbers the groups from 1 to 18. The previous IUPAC numbering system and the system used by Chemical Abstracts Service (CAS) are also shown. For radioactive

REFERENCES

- G. J. Leigh, Editor, Nomenclature of Inorganic Chemistry, Blackwells Scientific Publications, Oxford, 1990.
 Chemical and Engineering News, 63(5), 27, 1985.

THIS PAGE BLANK (USPTO)