2. test iz Uvoda v geometrijsko topologijo

21. 5. 2019

Veliko uspeha!

1. naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna ${\color{blue} {\sf P}}$ oziroma napačna ${\color{blue} {\sf N}}$.

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

- Vsako zvezno preslikavo $f \colon (0,1] \to \mathbb{R}^2$ je moč razširiti do zvezne preslikave $(0,\infty) \to \mathbb{R}^2$.

 Stožec CX je povezan natanko tedaj, ko je povezan prostor X.
- Če je X normalen in $A \subset X$ zaprta in povezana s potmi, je A retrakt prostora X.

 Za vsako zvezno $f: \mathbb{R}^2 \to \mathbb{B}^2$ obstaja $x \in \mathbb{R}^2$, da je f(x) = x.
- Prostor $\{(x,y) \in \mathbb{R}^2 \mid xy=1\}$ je absolutni ekstenzor za razred normalnih prostorov.
- Če je $q\colon \mathbb{R} \to \mathbb{R}/[-1,1)$ kvocientna preslikava, je q((-1,1]) zaprta množica.
- Če sta $A, B \subset \mathbb{R}^n$ absolutna ekstenzorja za razred normalnih prostorov in $A \cap B \neq \emptyset$, je $A \cup B$ absolutni ekstenzor za razred normalnih prostorov.
- Preslikava $f:(0,1)\times(0,1)\to\mathbb{R}^2$, podana s predpisom $f(x,y)=(x\ln y,x+1)$, je odprta.
- Za vsako zvezno injektivno preslikavo $f: \mathbb{S}^1 \to \mathbb{R}^2$, ima $\mathbb{R}^2 \setminus f(\mathbb{S}^1)$ natanko dve komponenti za povezanost.
- Kvocientna preslikava $\mathbb{S}^2 \to \mathbb{R}P^2$ je odprta.

2. naloga (5 točk)

Naj bo $X=[-1,1]\times[-1,1],\,A=[-1,1]\times\{-1,1\}\subset X$ in $Y=\mathbb{S}^1.$

- 1. Naj bo $f\colon A\to Y$ podana s predpisom f(x,y)=(0,y). Poišči podprostor evklidskega prostora, ki je homeomorfen zlepku $X\coprod_f Y$.
- 2. Naj bo $g\colon A\to Y$ podana s predpisom $g(x,y)=(x,\sqrt{1-x^2}).$ Poišči podprostor evklidskega prostora, ki je homeomorfen zlepku $X\coprod_q Y.$

3. naloga (5 točk)

Za $a \in \mathbb{R}$ definiramo

$$X_a = \{(x, y) \in \mathbb{R}^2 \mid y = x^2 - 1\} \cup [a, \infty) \times \{0\},$$

$$Y_a = \{(x, y) \in \mathbb{R}^2 \mid y = x^2 - 1\} \cup (a, \infty) \times \{0\}.$$

- 1. Za katere a je X_a absolutni ekstenzor za razred normalnih prostorov?
- 2. Za katere a je Y_a absolutni ekstenzor za razred normalnih prostorov?
- 3. Za katere a je Y_a retrakt prostora \mathbb{R}^2 ?