Selected 2 Project FCAI-HU

Team Number: 14

Team Members Names & IDs:

Team Member Name	Team Member ID
محمد عبد الرحيم ابراهيم محمد	201900698
مصطفى عصام عبدالفتاح ابوشامه	201900824
احمد مصطفى اسماعيل علام	201900103
أحمد فرغلى ثابت عبد الرحمن	201900076
احمد اشرف عبدالمنعم محمود	201900016
عمر محمد كامل عبدالمالك	201900530

Paper details

<u>Paper Name:</u> Brain Tumor Classification Using Convolutional Neural Network (CNN).

Paper authors: Sunanda Das, Nishat Nayla Labiba

Paper link:

<u>Brain-Tumor-Classification-Using-Convolutional-Neural-Network.pdf (researchgate.net)</u>

Dataset name: Brain Cancer

Dataset link:

https://www.kaggle.com/datasets/obulisainaren/multi-cancer

Number of samples: 15000

[Train : Test] Ratio -> 12000 image : 3000 image = 80% : 20%

Diminution of image: 112*112

Classes number: 3

Classes Labels: brain glioma, brain menin, brain pituitary

Analysis & Distribution Data

These graphs show that data is balanced

Model

```
model = Sequential()
model.add(Conv2D(filters = 32, kernel_size = (3, 3), activation = 'relu', input_shape = (IMGSIZE, IMGSIZE, 3)))
model.add(BatchNormalization())
model.add(MaxPooling2D((2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 128, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 256, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = 'relu'))
model.add(Dropout(0.25))
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.25))
model.add(Dense(64, activation = 'relu'))
model.add(Dense(3, activation = 'softmax'))
model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy'])
history = model.fit(X_train, y_train, validation_data = (X_test, y_test), epochs = 25)
y_pred = model.predict(X_test)
model.summary()
```

Block Diagram:

Hyper-parameters:

```
numOfCNNLayers = 4 & Activation_functhion = 'relu'
kernal_size = (3,3) & MaxPooling = (2,2)
numOfDenseLayers = 4 & Activation_functhion = 'relu', 'softmax' for output
optimizer = 'adam'
loss = 'sparse_categorical_crossentropy'
epochs = 25
batch_size = 32 (Defualt)
image_size = 128 * 128
channels = 3 (RGB)
```

We have changed the hyperparameters in model many times to get the best results.

Result Details:

1) Accuracy Graph:

Training Accuracy = 98.44 %
Validation Accuracy = 98.27 %

2)Loss Graph:

Training Loss = 5.00 %

Validation Loss = 5.30 %

3) Confusion Matrix:

4) Zero One Loss: -> Only 52 of 3000 image

There are <u>2948 of 3000</u> image that Model Predicted Correctly.

.....