WHAT IS CLAIMED IS:

1	1. An electronic device comprising:		
2	a first circuit portion; and		
3	a linear regulator circuit connected to said first circuit portion, said linear		
4	regulator circuit comprising:		
5	a circuit control node;		
. 6	a circuit output node to which a load can be connected, a voltage at		
. 7	said circuit output node being determined based on a voltage signal at said circuit		
8	control node;		
. 9	an amplifier circuit having a first amplifier input and a second		
10	amplifier input, and further having an amplifier output, said first amplifier input		
11	configured for receiving a reference voltage, said amplifier circuit receiving power		
12	from a first voltage source;		
13	a source follower circuit having a source follower input node and a		
14	source follower output, said amplifier output configured drive said source follower		
15	input node, said source follower output coupled to said circuit control node; and		
16	a feedback circuit coupled between said circuit output node and said		
17	second amplifier input.		
1	2. The electronic device of claim 1 wherein said electronic device is a		
2	hard disk device.		
1	3. The electronic device of claim 2 wherein said first circuit portion is		
2	hard disk device controller.		
1	4. The electronic device of claim 1 further comprising a current mirror		
2	circuit coupled between said amplifier output and said source follower.		
1	5. The electronic device of claim 4 further comprising a resistor		
2	component coupled between a second voltage source and said source follower input node.		
1	6. The electronic device of claim 5 wherein said first voltage source is		
2	different from the second voltage source.		

1	7. The electronic device of claim 1 wherein said source follower electric			
2	comprises a transistor element in series connection with a current source.			
1	8. The electronic device of claim 1 wherein said amplifier circuit			
2	comprises a single op amp component.			
1	9. The electronic device of claim 1 wherein said feedback path comprises			
2	a pair of resistor components configured as a voltage divider.			
1	10. The electronic device of claim 1 wherein a pass element having a			
2	control node an can be connected to said circuit control node, wherein a output node of said			
3	pass element can be connected to said circuit output node, whereby said pass element can			
4	provide a regulated output voltage at its output node to a load connected thereto.			
1	11. The electronic device of claim 10 wherein a second voltage source			
2	different from said first voltage source can be connected to said load via said pass element,			
3	thereby providing a voltage to said load that is independent of said first voltage source.			
1	12. A hard disk controller circuit comprising:			
. 2	a first circuit node;			
3	a second circuit node, wherein a voltage level thereat varies in accordance			
4	with a voltage level of said first circuit node;			
5	an error amplifier having a first amplifier input configured to be coupled to a			
6	reference voltage, having a second amplifier input, and having an amplifier output, said error			
7	amplifier configured to receive power from a first voltage source;			
8	a gain stage comprising a source follower circuit in electrical communication			
9	with said amplifier output and with said first circuit node;			
10	a feedback path coupled between said second node and said second circuit			
11	amplifier input, said feedback path including a pair of resistors configured as a voltage			
12	divider.			

1	13. The circuit of claim 12 wherein a pass element having a control node			
2	an can be connected to said first circuit node, wherein a output node of said pass element can			
3	be connected to said second circuit node, whereby said pass element can provide a regulated			
4	output voltage at its output node to a load connected thereto.			
1	14. The circuit of claim 13 wherein a second voltage source different from			
2	said first voltage source can be connected to said load via said pass element, thereby			
3	providing a voltage to said load that is independent of said first voltage source.			
1	15. The circuit of claim 12 wherein said gain stage comprises a first			
2	transistor component in series with a current source and having a control terminal, said			
3	amplifier output configured to drive said control terminal.			
1	16. The circuit of claim 15 further comprising a resistor component			
2	coupled between a second voltage source and said control terminal.			
1	17. The circuit of claim 16 wherein said first voltage source and said			
2	second voltage source are the same.			
1	18. The circuit of claim 16 wherein said first voltage source and said			
2	second voltage source are different.			
1	19. In a hard disk drive device, a method for regulating an output voltage			
2	level suitable for supplying power to a first circuit comprising:			
3	detecting said output voltage level;			
4	producing an error signal based on a comparison of said output voltage level			
5	relative to a reference voltage;			
6	controlling a source follower circuit with said error signal to produce a source			
7	follower output; and			
8	varying said output voltage level based on said source follower output,			
9	wherein a bandwidth at said output node has a pole at a frequency greater tha			
10	the unity gain frequency of said circuit.			
1	The method of claims 10 volcousing and first circuit in a bound distance			

controller.

2

1	21.	The method of claim 19 further comprising setting a DC operating
2	point of said source f	follower circuit via a resistor element coupled to a first voltage source.

- 1 22. The method of claim 21 further comprising controlling a pass circuit 2 with said source follower output to produce said output voltage level.
 - 23. The method of claim 22 wherein controlling said pass circuit with includes applying said source follower output to a control node of said pass circuit, said pass circuit being powered by a second voltage source, wherein a pole at said control node of said pass circuit varies with a pole at said circuit output node.
 - 24. The method of claim 23 wherein said first voltage level is different from said second voltage level.
 - 25. A hard disk drive device having a hard disk controller, said hard disk controller including a voltage regulator circuit comprising:
- 3 first means for detecting said output voltage level;
 - second means for producing an error signal based on a comparison of said output voltage level relative to a reference voltage, said second means couple to a first voltage source; and
 - a source follower circuit in electrical communication with said first means to produce a source follower output,
 - wherein said output voltage level is varied in response to variances in said source follower output,
- wherein a bandwidth at said output node has a pole at a frequency greater than the unity gain frequency of said circuit.
- 1 26. The circuit of claim 25 wherein said source follower output can be 2 connected to a pass element that is connected to a second voltage source, wherein an output 3 of said pass element constitutes said output voltage.
- 1 27. The circuit of claim 25 further comprising a resistor component 2 connected between said first voltage source and said source follower circuit.

1

2

3 4

1

2

1

2

4

5

6

7

8

10