Movie Recommender System

Project Report

Introduction

- The objective of a Recommender System is to predict user preferences and recommend top items.
- Used in a wide variety of areas movies, books, music, apparel, consumer products, mobile apps, games.

Benefits

- Increased revenue
- Improved customer engagement
- Personalization
- Customer retention
- Competitive advantage

Approaches

There are 2 widely used approaches to building recommendation systems.

- Content-based Based on attributes of the items and user's profile built with specific preferences.
- Collaborative Filtering Based on user's past behavior.

Collaborative Filtering

- User-based: measure the similarity between target users and other users
- Item-based: measure the similarity between the items that target users rates/ interacts with and other items

User-based CF

 Similarity between 2 users is calculated using Pearson correlation. Following is the formula.

$$u_{ik} = \frac{\sum_{j} (v_{ij} - v_i)(v_{kj} - v_k)}{\sqrt{\sum_{j} (v_{ij} - v_i)^2 \sum_{j} (v_{kj} - v_k)^2}}$$

Pearson Correlation (https://goo.gl/y93CsC)

 Recommendations are then made from the movies highly rated by the most similar user that haven't yet been watched by the active user.

Singular Value Decomposition

 Uses Matrix Factorization to extract latent features. This results in dimensionality reduction

Singular Matrix Decomposition(http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/images/svd2.png)

- X denotes the utility matrix,
- U is a left singular matrix, representing the relationship between users and latent factors.
- S is a diagonal matrix describing the strength of each latent factor
- V transpose is a right singular matrix, indicating the similarity between items and latent factors.

Evaluation Metrics - Accuracy

RMSE - Root Mean Squared Error

The square root of the average of squared differences between prediction and actual observation.

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

MAE - Mean Absolute Error

The average over the test sample of the absolute differences between prediction and actual observation

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Evaluation Metrics - Top N

- While accuracy metrics like RMSE are widely used, they are poor estimators of online performance.
- Top N evaluation metrics are more useful in the real world.
- The top N items are presented to the user and evaluation is done based on subsequent user interaction with any of the top N items.

Evaluation Metrics - Top N

- Hit Rate Number of successful hits from Top N / Number of users
- Average Reciprocal Hit Rate Cumulative value of 1/ rank / Number of users
- Cumulative Hit Rate How often we recommended a movie the user actually liked (ignore low ratings)
- Hit Rate by Rating value Break down of hit rate by rating value

Top N metrics selection

- As always, which metrics are the most relevant depends on the requirements of the system and design of the user interface that displays the recommendations.
- As an example, if the top N recommendations are laid out side by side and are treated equally, the hit rate might be enough.
- If the user has to scroll through recommendations, rankings of individual items need to be taken into account. The average reciprocal hit rate might be a better metric in this case.

Project metrics - Accuracy

The metrics were calculated using scikit surprise library methods.

Direct accuracy metrics for RMSE and MAE

RMSE: 0.9033701087151802 MAE: 0.6977882196132263

5 fold cross validation results for RMSE and MAE

```
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std RMSE (testset) 0.8953 0.8950 0.8974 0.8953 0.9027 0.8972 0.0029 MAE (testset) 0.6899 0.6892 0.6919 0.6900 0.6927 0.6907 0.0013
```

Project metrics - Top N

- 1. To compute the Top N metrics, scikit surprise's LeaveOneOut model selector was used. This holds out a specified number of observations (1 rating in our case).
- 2. Our model is trained without the left out ratings.
- 3. Top N recommendations are predicted by the model.
- 4. Metrics calculated by checking if the top N movies include the left out one in the first step.

Project metrics - Top N

Following were the observed Top N metrics

```
Hit Rate: 0.029806259314456036

ARHR (Average Reciprocal Hit Rank): 0.0111560570576964

CHR (Cumulative Hit Rate, rating >= 4): 0.04960835509138381

rHR (Hit Rate by Rating value):
3.5 0.017241379310344827
4.0 0.0425531914893617
4.5 0.0208333333333333332
5.0 0.06802721088435375
```

Top N metrics interpretation

- The top N metrics above appear to be on the lower side due to the sparsity of user ratings data.
- Best to combine metrics for more insight. In our case, the hit rate is 3% but the cumulative hit rate (cHR) is 5%. This is good as the cHR discards low ranked left out ratings.
- Which ones matter depend on the design of UI that displays top N items. ARHR rewards hits for being on top of the list.
- These metrics are the most meaningful when comparing different recommender implementations.

A/B Testing

- A recommender system with great accuracy and top N metrics isn't still guaranteed to be successful if rolled out.
- Online A/B tests are extremely important to evaluate real world impact and tune the recommender system.
- Good A/B tests help companies to invest time and resources only on systems that actually work in the real world.
- A/B tests typically come up with estimates for CTR (Click Through Rate), CR (Conversion rate) and ROI (Return on Investment).

Summary

Explored / learned the following during the course of my Capstone project

- Multiple approaches to coming up with recommendations User based CF and SVD.
- Compute Pearson correlation among users to determine similarity for User based Collaborative Filtering.
- The importance of ranking based metrics for recommender systems in the real world in addition to accuracy metrics.
- Interpret the metrics for recommender systems and pick the relevant metrics for a given use case.
- Accuracy and top N metrics can be used to narrow down the selections to a single implementation or a few. Online A/B tests are the actual indicators of the success of a recommender system.

Next steps

I would like to explore the following further

- Ways to transform the user ratings matrix to reduce the effects of sparsity.
- Deep Learning based approaches to building recommender systems.

Links & references

- My github repo with capstone project resources and other springboard submissions. https://github.com/lakshv77/ springboard/
- Helpful post on overview and comparison of different approaches to implement recommendation systems.
 https://towardsdatascience.com/various-
 implementations-of-collaborative-filtering-100385c6dfe0
- Top N metrics evaluation was based on the material from this online course. https://www.udemy.com/building-recommender-systems-with-machine-learning-and-ai/