Tuesday Reading Assessment: Unit 3, Magnetic Forces and Fields

Prof. Jordan C. Hanson

February 27, 2024

1 Memory Bank

- $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$... The direction of the *cross-product* follows this pattern. Reversing the order of any two vectors introduces a minus sign.
- $\hat{i} \times \hat{i} = 0$, $\hat{j} \times \hat{j} = 0$, $\hat{k} \times \hat{k} = 0$... The cross-product is zero when both vectors are parallel.
- $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$... The magnitude of the cross-product of two vectors \vec{a} and \vec{b} , given the angle θ between them.
- $\vec{F} = i\vec{L} \times \vec{B}$... The Lorentz force, by a magnetic field \vec{B} on a current i of length and direction \vec{L} .

2 The Cross-Product

- 1. Let $\vec{a} = 4\hat{i}$, and $\vec{b} = 4\hat{j}$. (a) Calculate $\vec{a} \times \vec{b}$. (b) What are the magnitude and direction of the result?
- 2. Let $\vec{a} = 2\hat{i} + 2\hat{j}$, and $\vec{b} = -2\hat{i} 2\hat{j}$. (a) Calculate $\vec{a} \times \vec{b}$. (b) What are the magnitude and direction of the result?
- 3. What is the angle between the two vectors in the previous problem?

3 Magnetic Force on a Wire

1. Consider Fig. 1, in which a current passes through a magnetic field generated by a permanent magnet. Notice in the Memory Bank the formula for the force on the conductor carrying the current. (a) If the amount of wire in the magnetic field is L=10 cm, the magnetic field is $B=10^{-1}$ Tesla, the voltage is V=24 Volts, and the effective resistance in the wire is $R=2\Omega$, what is the force upwards on the wire? (b) If the wire was attached to a scale, and the scale has a mass of m=24 grams on it, what would the scale read if we turn on this current in this magnetic field? (Hint: it won't say 24 grams).

Figure 1: A permanent magnet creates a magnetic field to the *left*, while a voltage pushes a current *out of the page*. The force is measured to occur in the *upward direction*.