מבוא לתורת הקבוצות – תרגיל 12

לא להגשה

 $\mathbb{Z}*\mathbb{Z}*\mathbb{N}+\mathbb{N}$ ב־ \mathbb{Z} . מצאו שיכון של $\mathbb{Z}*\mathbb{Z}*\mathbb{Z}$ ב־ \mathbb{Z} .

פתרון ראשית נמצא שיכון של \mathbb{Z} ב־ $\mathbb{Q} \cap \mathbb{Q}$. לשם כך, נמצא שיכון של השלמים האי־שליליים ב- \mathbb{Q} . לשם כך, נמצא שיכון של השלמים האי־שליליים ב- $\mathbb{Q} \cap \mathbb{Q}$. השיכון הראשון יהיה מהצורה הבאה:

$$f\left(z\right) = 2 - \frac{1}{z+1}$$

והשני מהצורה

$$g\left(z\right) = \frac{1}{1-z}$$

נגדיר $m\in\mathbb{Z}$ לכל עתה, לכל ב־(0,2). עתה שיכון של הנו איכון או הנו איכון איכון איכון איכון איכון איכו

$$h_m(z) = h(z) + 2m$$

:ונגדיר $\varphi: \mathbb{Z} * \mathbb{Z} \to \mathbb{Q}$ באופן הבא

$$\varphi\left(m,z\right) = h_m\left(z\right)$$

וזהו שיכון. ל־ $\mathbb{N}+\mathbb{N}$ אין שיכון ב־ \mathbb{Z} , שכן ב־ $\mathbb{N}+\mathbb{N}$ ישנם שני איברים עם אינסוף איברים ביניהם, ואין תת קבוצה של \mathbb{Z} עם התכונה הזו.

2. מצאו שיכון של $\mathbb{Q}+\mathbb{Q}$ ב־ \mathbb{Q} . \star האם הם איזומורפיים (כסדרים)?

בתרון נשכן ראשית את \mathbb{Q} ב־ $\mathbb{Q} \to (0,\infty) \cap \mathbb{Q}$. נגדיר את הפונקציה $\mathbb{Q} \to \mathbb{Q}$ ב- $\mathbb{Q} \to \mathbb{Q}$ הבאה:

$$f(q) = \begin{cases} q + 97 & -3 \le q \\ -\frac{1}{q} & q < -3 \end{cases}$$

:ונגדיר את הפונקציה $g:\mathbb{Q} o (-\infty,0)\cap \mathbb{Q}$ הבאה

$$g\left(q\right) = -\frac{1}{f\left(q\right)}$$

ואז לא נוכיח אך אך א היזומורפיים הנם הסדרים למעשה, למעשה, היכון איז הנה איזומורפיים הנח $h=f\cup g$ את כאן.

3. לכל אחת מן הקבוצות הבאות, קבעו האם היא טרנזיטיבית או לא:

$$A = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}\}\} \qquad B = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}\}, \{\varnothing, \{\varnothing\}\}\}\} \qquad C = \{\varnothing, \{\{\varnothing\}\}\}\}$$

$$D = \{n \in \omega \mid n < 9^{2012}\} \qquad E = \{x \mid \forall y \in x \forall z \in y : z = \varnothing\} \qquad F = \mathcal{P}(\omega)$$

$$G = \{n \in \omega \mid n \text{ is even}\} \qquad H = \{T \subseteq \mathbb{N} \mid |T| < \aleph_0\}$$

פתרונות A,B הנן טרנזיטיביות. C אינה טרנזיטיבית, שכן A,B אינה ממש כמו A,B הנן טרנזיטיבית. B אינה טרנזיטיבית. B ולכן B אינה טרנזיטיבית. כל מספר טבעי אחר, היא טרנזיטיבית. B ולכן B ולכן B אינה טרנזיטיבית. אינה ערנזיטיבית שלכל B אולכן B אולכן B אינה טרנזיטיבית, שכן B אולכן B אולכן B אינה טרנזיטיבית. שכן B אולכן B

. | אם ורק אם ורק אם הוכיחו כי $T\subseteq T$ הנה טרנזיטיבית אם ורק אם אם הוכיחו לי הוכיחו לי הנה טרנזיטיבית אם ורק אם אם אם הוכיחו לי הוכיחו לי

פתרון

- $T\subseteq\mathcal{P}\left(T
 ight)$ ולכן $t\in\mathcal{P}\left(T
 ight)$ ולכן $t\in\mathcal{T}$. אז: $t\in T$ ולכן יהי $t\in\mathcal{T}$ ולכן •
- נניח כי $t\in\mathcal{P}\left(T\right)$. $t\in s$ עבורו $s\in T$ אז, קיים $t\in\mathcal{D}$. ההי $t\in\mathcal{D}\left(T\right)$. ולכן . $t\in T$ ולכן $t\in s\subset T$
- . טרנזיטיבית. $t\in T$ ולכן ולכן $t\in T$ ולכן אז: $t\in s$ והי יהי יהי יהי ולכן $t\in T$ ולכן יהי יהי יהי יהי יהי יהי יהי ולכן יהי
 - . הנה טרנזיטיבית. הוכיחו כי לX קבוצה, ונניח כי כל $A \in X$ הנה טרנזיטיבית. הוכיחו כי ל

ולכן $x\in A$ וואסי אינים איז א כך ש־ $y\in U$ וואסי אינים איז א וואסי א

- .6 הנם חדרים. α^{β} ו הנם $\alpha\cdot\beta$, $\alpha+\beta$ הנם מבינים מבינים מחדרים. ודאו כי אתם מבינים מדרים.
 - $.1^{\alpha}=1$ וכי 1 $\cdot\alpha=\alpha$ כי הוכיחו $0\cdot\alpha=0$ כי הוכיחו כי $0+\alpha=\alpha$ וכי וכי 1 $\cdot\alpha=\alpha$
 - lpha=eta . הוכיחו כי lpha+n=eta+n נניח כי lpha . הוכיחו כי lpha

n באינדוקציה על

בסיס n=0 – הטענה טריביאלית.

צעד נניח כי לפי הגדרת החיבור, $\alpha + (n+1) = \beta + (n+1)$ נניח כי לפי הגדרת החיבור,

$$(\alpha + n) + 1 = \alpha + (n+1)$$

$$(\beta + n) + 1 = \beta + (n+1)$$

ולכן

$$(\alpha + n) + 1 = (\beta + n) + 1$$

$$s(\alpha + n) = s(\beta + n)$$

ולכן (למה?) ה $\alpha=\beta+n$ מהנחת האינדוקציה, $\alpha=\beta+n$ כדרוש.

lpha=eta כי בהכרח נובע כי $lpha+\gamma=eta+\gamma$ האם בהכרח נובע כי $lpha,eta,\gamma$ יהיו

$$.2 + \omega = 3 + \omega$$
 לא. למשל,

eta + lpha > lpha סודרים, eta > eta. הוכיחו כי lpha + eta > lpha האם בהכרח lpha, eta ויהיו

.eta באינדוקציה על

 $lpha \in s\left(lpha
ight)$ יש להוכיח כי lpha + 1 > lpha כי להוכיח מיeta = 1

 $lpha+(\gamma+1)>\alpha$ יש להוכיח כי $eta+(\gamma+1)>lpha$, אך מספיק להראות כי $eta=\gamma+1$ עוקב $eta+\gamma$, אך זה נובע מכך ש־ $lpha+\gamma$

$$\alpha + \gamma \in s(\alpha + \gamma) = (\alpha + \gamma) + 1 = \alpha + (\gamma + 1)$$

, גבולי $\delta_0<\beta$ יש להוכיח כי $\alpha+\beta>\alpha$ יש להוכיח כי $\beta=\bigcup_{\delta<\beta}\delta$ יש גבולי

$$\alpha < \alpha + \delta_0 < \bigcup_{\delta < \beta} \alpha + \delta = \alpha + \bigcup_{\delta < \beta} \delta = \alpha + \beta$$

 $.2 + \omega = \omega$:לא בהכרח מתקיים $.\beta + \alpha > \alpha$ מתקיים

- $.\beta<\gamma$ אם ורק אם $\alpha+\beta<\alpha+\gamma$ כי הוכיחו α,β,γ יהיו יהיו יהיו יהיו
- $eta \cdot lpha > lpha$ סודרים, eta > lpha. הוכיחו כי $lpha \cdot eta > lpha$. האם בהכרח lpha, eta יהיו

 $\alpha > 0$ הערה בשאלה זו יש לדרוש גם

 $.\beta$ באינדוקציה על

בסיס $eta > lpha \cdot 2 > lpha$ יש להוכיח כי eta = 2 אכן:

$$\alpha \cdot 2 = \alpha + \alpha > \alpha + 0 = \alpha$$

כאשר אי השוויון במרכז הנו מסקנה של שאלה 11.

עוקב $\alpha\cdot \beta > \alpha$ יש להוכיח כי $\beta = \gamma + 1$. אכן

$$\alpha \cdot \beta = \alpha \cdot (\gamma + 1) = \alpha \cdot \gamma + \alpha > \alpha \cdot \gamma + 0 = \alpha \cdot \gamma > \alpha$$

גבולי $\delta_0 \in \beta$ כלשהו מתקיים. $lpha \cdot eta > lpha$ יש להוכיח כי $eta = \bigcup_{\delta < eta} \delta$

$$\alpha \cdot \beta = \alpha \cdot \bigcup_{\delta < \beta} \delta = \bigcup_{\delta < \beta} \alpha \cdot \delta > \alpha \cdot \delta_0 > \alpha$$

 $.2\cdot\omega=\omega$ לא מתקיים בהכרח . $eta\cdotlpha>lpha$

13. הוכיחו כי כפל סודרים אינו קומוטטיבי, אך אסוציאטיבי, ובנוסף דיסטריביוטיבי (ביחס לחיבור).

.14 מניה. $lpha \cdot eta$ הנו בי מניה. הוכיחו כי $lpha \cdot eta$ הנו בן מניה.

טענת עזר יהי n>0 טבעי; אז, $\alpha\cdot n$ בת מניה.

n הוכחה באינדוקציה על

בסיס n=1 אז: $\alpha\cdot n$ ולכן $\alpha\cdot n=1$ בת מניה.

צעד מתקיים

$$\alpha \cdot (n+1) = \alpha \cdot n + \alpha$$

וזהו חיבור של שני סודרים בני מניה, והוכחנו בתרגול שזוהי קבוצה בת מניה.

etaהוכחה של השאלה באינדוקציה על

בסיס $eta=\omega$ יש להראות כי $lpha\cdot\omega$ הנה קבוצה בת מניה. אבל:

$$\alpha \cdot \omega = \bigcup_{n < \omega} \alpha \cdot n$$

וזהו איחוד בן מניה של קבוצות שראינו שהן בנות מניה (בטענת העזר).

עוקב $\beta=\gamma+1$ אזי:

$$\alpha \cdot \beta = \alpha \cdot (\gamma + 1) = \alpha \cdot \gamma + \alpha$$

וזהו חיבור של שני סודרים בני מניה, ולכן זוהי קבוצה בת מניה.

etaגבולי $eta = igcup_{\delta < eta} \delta$. אזי:

$$\alpha \cdot \beta = \bigcup_{\delta < \beta} \alpha \cdot \delta$$

וזהו איחוד בן מניה של קבוצות שהן בנות מניה (לפי הנחת האינדוקציה), ולכן זוהי קבוצה בת מניה.

- כיחו סדר (בהתאמה). הוכיחו בעלי אותו ש־ α,β הנם סדר ש־A,Bיהיו הוכיחו מיפוס היהיו מ- α,β הנם סדר ש־A,Bהנה הקבוצה היהי ש־ $\alpha\cdot\beta$ סדר של מאותו טיפוס היה שר B*A
 - $.\beta<\gamma$ אם ורק אם $\alpha\cdot\beta<\alpha\cdot\gamma$ כי הוכיחו $\alpha>0$ סודרים, α,β,γ יהיו יהיו יהיו

 $lpha\cdot\gamma\leqlpha\cdot\beta$ מתקיים lpha>0 ולכל $\gamma\leqeta$ שלכל שלכל באינדוקציה על באינדוקציה על מתקיים

בסיס
$$\gamma=0$$
 אז: $\beta=0$ ומתקיים

$$\alpha \cdot \gamma = \alpha \cdot 0 = 0 = \alpha \cdot 0 = \alpha \cdot \beta$$

עוקב $\beta=\eta+1$ מהנחת האינדוקציה, אחרת $\gamma=\beta$ אם $\beta=\eta+1$ עוקב $\beta=\eta+1$

$$\alpha \cdot \gamma \le \alpha \cdot \eta$$

לכן

$$\alpha \cdot \beta = \alpha \cdot (\eta + 1) = \alpha \cdot \eta + \alpha > \alpha \cdot \eta \ge \alpha \cdot \gamma$$

. לכן: $\gamma<\beta$ אחרת, אחרת, הטענה $\gamma=\beta$ אם $\beta=\bigcup_{\delta<\beta}\delta$ גבולי גבולי

$$\alpha \cdot \gamma < \bigcup_{\delta < \beta} \alpha \cdot \delta = \alpha \cdot \beta$$

 $lpha\cdoteta<lpha\cdot\gamma$ מתקיים lpha>0 ולכל $eta<\gamma$ שלכל על שלכל באינדוקציה נוכיח באינדוקציה על מחכל

 $eta < \gamma$ בסיס $\gamma = 0$ – הטענה נכונה באופן ריק (אין

עוקב הראשון נובע הכיוון אזי, בסיוע ה $.\beta \leq \eta$ אזי, אזי, $\gamma = \eta + 1$

$$\alpha \cdot \gamma = \alpha \cdot (\eta + 1) = \alpha \cdot \eta + \alpha > \alpha \cdot \eta \ge \alpha \cdot \beta$$

גבולי $\gamma = igcup_{\delta < \gamma} \delta$ אזי,

$$\alpha \cdot \beta < \bigcup_{\delta < \gamma} \alpha \cdot \delta = \alpha \cdot \gamma$$

כי: α, β, γ הוכיחו כי: α, β, γ יהיו

$$lpha^{\gamma} \leq eta^{\gamma}$$
 (1) $lpha \cdot \gamma \leq eta \cdot \gamma$ (1) $lpha + \gamma \leq eta + \gamma$ (14)

הוכחות

 $.\gamma$ א) באינדוקציה על (א)

בטיט $\gamma=0$, אך זה נתון. $\alpha\leq \beta$ בטיט . $\gamma=0$

עוקב $\gamma=\eta+1$, ואה שקול להוכחת אי השוויון $\alpha+(\eta+1)\leq \beta+(\eta+1)$ יש להוכיח כי $\gamma=\eta+1$

$$(\alpha + \eta) + 1 \le (\beta + \eta) + 1$$

יהי $x=\alpha+\eta$ אז: $x\in\alpha+\eta$ אז: $x\in\alpha+\eta$ אז: $x\in(\alpha+\eta)+1$ יהי $x\in(\alpha+\eta)+1$ מהנחת האינדוקציה כי $x\in\beta+\eta$, ולכן $x\in\beta+\eta+1$ מכאן מהנחת האינדוקציה כי $x\in\beta+\eta+1$ ולכן $x\in\beta+\eta+1$ מכאן אי השויון הדרוש.

גבולי להוכחת אי השויון , $\alpha+\gamma\leq \beta+\gamma$ כי להוכיח אי השויון . $\gamma=\bigcup_{\delta<\gamma}\delta$

$$\bigcup_{\delta < \gamma} \alpha + \delta \leq \bigcup_{\delta < \gamma} \beta + \delta$$

ואכן, יהי x באגף שמאל. אזי, קיים $\delta<\gamma$ עבורו אזי, קיים מהנחת האינדוקציה, $x\in\alpha+\delta$ ואכן, קיים ימין. $x\in\beta+\delta$

(ב),(ג) בדומה.

 $.\alpha^{\beta}=\beta$ עבורם עבורם α,β דוגמה ל- α,β מצאו הוכיחו כי מ־1. הוכיחו מ־1. מיטו יהיו α,β יהיו מצאו מיטו מ־1. הוכיחו מיטו מיטו יהיו

.eta באינדוקציה על

בסיס $\beta=2$ מתקיים

$$\alpha^2 = \alpha \cdot \alpha \ge \alpha \cdot 2 \ge 2 \cdot 2 > 2$$

.17 משאלה נובע משאלה 16 ואי השויון השני נובע משאלה

צעד $\gamma \geq 1$ אזי: $\beta = \gamma + 1$ צעד

$$\alpha^{\beta} = \alpha^{\gamma+1} = \alpha^{\gamma} \cdot \alpha \ge \gamma \cdot \alpha \ge \gamma \cdot 2 = \gamma + \gamma \ge \gamma + 1$$

כאשר אי השויון הראשון נובע משאלה 17 בשילוב הנחת האינדוקציה, אי השויון השני כאשר אי השויון השלישי נובע מכך ש־ $\gamma \geq 1$ נובע משאלה 16.

:גבולי $eta = igcup_{\delta < eta} \delta$ אזי:

$$\alpha^{\beta} = \bigcup_{\delta < \beta} \alpha^{\delta} \ge \bigcup_{\delta < \beta} \delta = \beta$$

 $\delta<\beta$ כאשר עלינו להצדיק את אי השויון האמצעי. אכן: יהי $x\in\bigcup_{\delta<\beta}\delta$ אזי: קיים כאשר עלינו להצדיק את אי השויון האמצעי. אכן $x\in\bigcup_{\delta<\beta}\alpha^\delta$ עבורו $x\in\partial$

 $.\omega^{\omega_1}=\omega_1$ דוגמה