Grundlagen und diskrete Mathematik

Übung 5 Abgabe: Kalenderwoche 48

Aufgabe 1

Gegeben sei das Hasse-Diagramm der Relation R wie folgt:

- (a) Geben Sie alle minimalen und alle maximalen Elemente von der Menge $\{2, 5, 6, 3, 8\}$ an.
- (b) Geben Sie drei paarweise unvergleichbare Elemente an.
- (c) Schreiben Sie die Menge $R \cap \{(x,y) \mid 0 < x < y < 6\}$ in aufzählender Schreibweise auf.

Aufgabe 2

Geben Sie eine Äquivalenzrelation auf der Menge aller Tiere an, so dass die Äquivalenzklassen genau den "Tierarten" entsprechen.

Aufgabe 3

Gegeben sei die Halbordnung \leq auf der Menge aller Funktionen $f: \mathbb{N} \to \mathbb{N}$ durch:

$$f \leq g \Leftrightarrow \forall x \in \mathbb{N} (f(x) \leq g(x)).$$

- (a) Geben Sie zwei Funktionen f und g mit $f \leq g$ an.
- (b) Geben Sie paarweise verschiedene Funktionen f_0, f_1, \ldots an, die eine echt aufsteigende Folge in \leq bilden.

$$f_0 \leq f_1 \leq \dots$$

(c) Geben Sie paarweise verschiedene Funktionen g_0, g_1, \ldots an, die eine echt absteigende Folge in \leq bilden.

$$g_0 \succeq g_1 \succeq \dots$$

Aufgabe 4

- (a) Ist jede endliche totale Ordnung eine Wohlordnung? Begründen Sie Ihre Antwort.
- (b) Ist die "normale" \leq -Relation eine Wohlordnung auf der Menge \mathbb{Q} ? Begründen Sie Ihre Antwort.

Aufgabe 5

Beweisen Sie mit Induktion, dass folgende Aussagen für alle natürlichen Zahlen $n \in \mathbb{N}$ gelten:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

$$n^2 + n$$
 ist gerade

$$a \in \mathbb{N}_{>1} \Rightarrow a^n - 1$$
 ist durch $a - 1$ teilbar

Aufgabe 6

Die Fibonacci Folge $F: \mathbb{N} \to \mathbb{N}$ ist rekursiv wie folgt gegeben:

$$F(0) = 0$$

 $F(1) = 1$
 $F(n+2) = F(n) + F(n+1)$.

Beweisen Sie, dass aufeinander folgende Glieder der Fibonacci Folge stets teilerfremd sind.