

N-Channel Enhancement Mode Power MOSFET

Description

The GT023N10M uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. It can be used in a wide variety of applications.

General Features

• 100% Avalanche Tested

RoHS Compliant

Application

Power switch

DC/DC converters

Schematic diagram

TO-263

Ordering Information

Device	Package	Marking	Packaging	
GT023N10M	TO-263	GT023N10	800pcs/Reel	

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted						
Parameter	Symbol	Value	Unit			
Drain-Source Voltage	V_{DS}	100	V			
Continuous Drain Current	I _D	226	Α			
Pulsed Drain Current (note1)	I _{DM}	904	А			
Gate-Source Voltage	V_{GS}	±20	V			
Power Dissipation	P _D	250	W			
Single pulse avalanche energy (note2)	E _{AS}	600	mJ			
Operating Junction and Storage Temperature Range	T_J,T_stg	-55 To 175	°C			

Thermal Resistance						
Parameter	Symbol	Value	Unit			
Thermal Resistance, Junction-to-Ambient	R _{thJA}	62	°C/W			
Maximum Junction-to-Case	R _{thJC}	0.5	°C/W			

Specifications $T_J = 25^{\circ}$ C, unless otherwise noted								
Parameter	Cumbal	Total Constitutions	Value			11.24		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
Static Parameters								
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	100			V		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$			1	μΑ		
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20V$			±100	nA		
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	3.0	4.0	V		
Drain-Source On-Resistance	R _{DS(on)}	V _{GS} = 10V, I _D = 60A		2.2	2.7	mΩ		
Forward Transconductance	9 _{FS}	V _{GS} = 5V, I _D = 80A		129		S		
Dynamic Parameters				1				
Input Capacitance	C _{iss}			8148				
Output Capacitance	C _{oss}	$V_{GS} = 0V,$ $V_{DS} = 50V,$		3042		pF		
Reverse Transfer Capacitance	C _{rss}	f = 0.3MHz		25				
Total Gate Charge	Q_g	V 50V		121		nC		
Gate-Source Charge	Q_{gs}	$V_{DD} = 50V,$ $I_{D} = 80A,$		36				
Gate-Drain Charge	Q_{gd}	V _{GS} = 10V		26				
Turn-on Delay Time	t _{d(on)}			24				
Turn-on Rise Time	t _r	$V_{DD} = 50V$		30		ns		
Turn-off Delay Time	$t_{d(off)}$	$I_D = 80A$, $R_G = 5\Omega$		94				
Turn-off Fall Time	t _f			74				
Drain-Source Body Diode Characte	eristics							
Continuous Body Diode Current	Is	T _C = 25°C			226	А		
Body Diode Voltage	V _{SD}	T _J = 25°C, I _{SD} = 80A, V _{GS} = 0V			1.2	V		
Reverse Recovery Charge	Qrr	I _F = 80A, V _{GS} = 0V		297		nC		
Reverse Recovery Time	Trr	di/dt=100A/us		94		ns		

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. EAS condition : Tj=25°C ,VDD=50V,VGS=10V,L=0.5mH,Rg=25 Ω The table shows the minimum avalanche energy, which is 1600mJ when the device is tested until failure

TEL: 0755-29961263

3. Identical low side and high side switch with identical $R_{\mbox{\scriptsize G}}$

Gate Charge Test Circuit

Switch Time Test Circuit

EAS Test Circuit

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 1. Output Characteristics

Figure 3. Drain Source On Resistance

Figure 5. Capacitance

Figure 2. Transfer Characteristics

Figure 4. Gate Charge

Figure 6. Source-Drain Diode Forward

Typical Characteristics $T_J = 25$ °C, unless otherwise noted

Figure 7 Books Comment On Books (assured

Figure 8. Safe Operation Area

Figure 9. Normalized Maximum Transient Thermal Impedance

TO-263 Package Information

COMMON DIMENSIONS

SYMBOL MIN		MM		SYMBOL	MM		
	MIN	NOM	MAX	STIVIBUL	MIN	NOM	MAX
Α	4.37	4.57	4.77	E	9.86	10.16	10.36
A1	1.22	1.27	1.42	E5	7.06	-	-
A2	2.49	2.69	2.89	е	2.54 BSC		
A3	0.00	0.13	0.25	Н	14.70	15.10	15.50
b	0.70	0.81	0.96	H2	1.07	1.27	1.47
b1	1.17	1.27	1.47	L	2.00	2.30	2.60
С	0.30	0.38	0.53	L1	1.40	1.55	1.70
D1	8.50	8.70	8.90	L4	0.25 BSC		
D4	6.60			θ	0°	5°	9°