ISA 444: Business Forecasting

05: Time Series Summaries

Fadel M. Megahed, PhD

Endres Associate Professor Farmer School of Business Miami University

- fmegahed
- ✓ fmegahed@miamioh.edu
- ? Automated Scheduler for Office Hours

Fall 2023

Quick Refresher from Last Class

- Examine the goals of utilizing line charts in time-series analysis (i.e., detect trends, seasonality, and cycles).
- Arr Develop a deeper understanding of the grammar of graphics, which we used to create time series plots in Arr and Arr.
- Use numerical summaries to describe a time series.
- Explain what do we mean by correlation.

Learning Objectives for Today's Class

• Apply transformations to a time series in both \mathbf{Q} and \mathbf{Q} .

Transformations

Guidelines for Transforming Time Series Data

A classification of common transformation approaches for time series data

Stablize the Mean: Differencing

The plot below shows the number of murdered women per 100,000 people in the U.S. From the plot, we can see that the ts is not stationary.

Stablize the Mean: Differencing

The plot below shows the **first nonseasonal difference**. From the plot, we can see that differencing has reduced the nonstationary nature of the time-series.

Computing the First Nonseasonal Difference

The change in the time series from one period to the next is known as the first nonseasonal difference. It can be computed as follows:

$$DY_t = Y_t - Y_{t-1}$$


```
women_murdered_filtered =
  women_murdered |> # dataset read in previous lines of code
  dplyr::filter(year > 2000)
print(women_murdered_filtered)
```

Q Output

Computing the First Nonseasonal Difference

The change in the time series from one period to the next is known as the first nonseasonal difference. It can be computed as follows:

$$DY_t = Y_t - Y_{t-1}$$


```
women_murdered_filtered =
  women_murdered |> # dataset read in previous lines of code
  dplyr::filter(year > 2000)

women_murdered_filtered =
  women_murdered_filtered |>
  dplyr::mutate(
    diff1 = murders_per_100000 - dplyr::lag(murders_per_100000, n = 1
    diff2 = c(NA, diff(murders_per_100000, lag = 1))
)

print(women_murdered_filtered)
```

Q Output

Computing the First Nonseasonal Difference

The change in the time series from one period to the next is known as the first nonseasonal difference. It can be computed as follows:

$$DY_t = Y_t - Y_{t-1}$$


```
import pandas as pd
import numpy as np
# Reading the CSV file (Equivalent to readr::read_csv in R)
women_murdered = pd.read_csv('../../data/murdered_women_per_100000_people.csv')
# Filtering for 'United States' (Equivalent to dplvr::filter in R)
women murdered = women murdered[women murdered['country'] == 'United States']
# Melting the DataFrame to make it longer (Equivalent to tidyr::pivot_longer in R)
women_murdered = pd.melt(women_murdered, id_vars=['country'], var_name='year', value_name='murders_per_100000')
# Converting 'vear' column to numeric (Equivalent to as.numeric in R)
women_murdered['year'] = pd.to_numeric(women_murdered['year'], errors='coerce')
# Removing rows with NA values (Equivalent to na.omit in R)
women murdered = women murdered.dropna()
# Filtering for years greater than 2000 and creating a copy to avoid warnings
women_murdered_filtered = women_murdered[women_murdered['year'] > 2000].copy()
# Calculating the differences in 'murders_per_100000' (Equivalent to dplyr::mutate and diff in R)
women_murdered_filtered['diff1'] = women_murdered_filtered['murders_per_100000'].diff()
women_murdered_filtered['diff2'] = np.append(np.nan, np.diff(women_murdered_filtered['murders_per_100000']))
are columns identical = women murdered filtered['diff1'].equals(women murdered filtered['diff2'])
```

Computing the First Seasonal Difference

If your data exhibits a seasonal pattern, as illustrated in $04_ts_eda.html$, you should employ a seasonal differencing approach, you should subtract the difference between an observation and the previous observation from the same season. Let m denote the number of seasons, e.g. m=4 for quarterly data. In such a case, the seasonal difference is computed as follows:

$$DY_{t-m} = Y_t - Y_{t-m}$$

Note: In \P , this can be computed by assigning the x argument in the dplyr::lag() to m, or by setting the lag argument in the diff() to m. In \P , this can be computed by setting the 'periods' argument in the DataFrame.diff() method to m.

Stablize the Variance: Power Transformations

```
# The built-in JohnsonJohnson dataset

forecast::autoplot(JohnsonJohnson) +
    ggplot2::geom_point() + # adding points
    ggplot2::scale_x_continuous(breaks = scale
    ggplot2::scale_y_continuous(breaks = scale
    ggplot2::theme_bw()
```


Stablize the Variance: Power Transformations

```
# The built-in JohnsonJohnson dataset

forecast::autoplot(sqrt(JohnsonJohnson)) +
    ggplot2::geom_point() + # adding points
    ggplot2::scale_x_continuous(breaks = scale
    ggplot2::scale_y_continuous(breaks = scale
    ggplot2::theme_bw()
```


Stablize the Variance: Power Transformations

```
# The built-in JohnsonJohnson dataset

forecast::autoplot(log(JohnsonJohnson)) +
    ggplot2::geom_point() + # adding points
    ggplot2::scale_x_continuous(breaks = scale
    ggplot2::scale_y_continuous(breaks = scale
    ggplot2::theme_bw()
```


A Note on the Log Transform

The log transformation can be computed as follows:

$$L_t = \ln\left(Y_t\right)$$

Note that the log() in both \mathbf{Q} and \mathbf{e} takes the natural logarithm as its default base, i.e., would transform a variable/statistic based on the above equation.

The reverse transformation using the exponential function is:

$$e^{L_t}=e^{\ln{(Y_t)}}=Y_t$$

The Log Transform

- The primary purpose of the log transform is to convert exponential growth into linear growth.
- The transform often has the **secondary purpose of balancing the variance**.
- Difference in logs and growth rate transformations produce similar results and interpretations (see next slides).

Stabilizing the Mean and Variance

The first nonseasonal difference in logarithms represents the logarithm of the ratio

$$L_t = \ln\left(rac{Y_t}{Y_{t-1}}
ight) = \ln\left(Y_t
ight) - \ln\left(Y_{t-1}
ight)$$

In the absence of seasonality, the growth rate for a time series is given by

$$GY_t = 100 rac{Y_t - Y_{t-1}}{Y_{t-1}}$$

Stabilizing the Mean and Variance

```
# The built-in JohnsonJohnson dataset

forecast::autoplot(
   log(JohnsonJohnson) - log(stats::lag(Johns)) +
   ggplot2::geom_point() + # adding points
   ggplot2::scale_x_continuous(breaks = scale
   ggplot2::scale_y_continuous(breaks = scale
   ggplot2::theme_bw()
```


Stabilizing the Mean and Variance

```
# The built-in JohnsonJohnson dataset

forecast::autoplot(
   (JohnsonJohnson - stats::lag(JohnsonJohnson)) +
   ggplot2::geom_point() + # adding points
   ggplot2::scale_x_continuous(breaks = scale ggplot2::scale_y_continuous(breaks = scale ggplot2::theme_bw()
```


05:00

A Practical Note about Growth Rates

Activity Q1 Q2

Over the next 5 minutes, please answer the question in each tab.

05:00

A Practical Note about Growth Rates

Activity Q1 Q2

• Question 1: Let us say that an investor purchased 10 stocks of \\$GME, on 2021-01-29, at 325/stock. The next trading day, 2021-02-01, the GME stock closed at \$225. Compute the growth rate in their portfolio worth (assuming it only has the GME stock) over this time period.

What is their growth rate? (Insert below)

• Edit me

05:00

A Practical Note about Growth Rates

Activity Q1 Q2

• Question 2: Let us say that the growth rate, $GY_t = -g$. Now let us assume that the GME stock went up by g (i.e., if it went down 10%, it increased by 10% over the next trading day). What is the value of the investor's portfolio by stock market closing on 2021-02-02?

What is their growth rate? (Insert below)

Edit me

A Live Demo

In this live coding session, we will perform the following transformations on the AAPL stock [YTD] in both � and �:

- Growth Rates
- Natural log
- Log Differences
- [0-1] Scaling

Recap

Summary of Main Points

By now, you should be able to do the following:

• Apply transformations to a time series in both \mathbf{Q} and \mathbf{Q} .

Things to Do to Prepare for Our Next Class

- Go over your notes and read through Chapter 2.1-2.5 of our reference book.
- Complete Assignment 03 on Canvas.