VERMES MIKLÓS Fizikaverseny

II. forduló

2017. február 27.

X. osztály

JAVÍTÓKULCS

I. feladat

a) $U = vC_vT$	1 p
$C_{\rm v} = (5/2)R$	1 p
pV = vRT	1 p
U = (5/2)vRT = (5/2)pV	1 p
$U_0 = (5/2)p_0V = 75 \cdot 10^5 \mathrm{J}$	1 p
b) $p = p_0$	1 p
$U = (5/2)p_0V = 75 \cdot 10^5 \text{ J}$	1 p

c)
$$U = U_0$$
 1 p

2 p

Bár melegítettük a gázt, azonban a gáz egy része elhagyta a szobát, így a belső energia nem változott.

II. feladat

a)
$$V_T = \sqrt{\frac{3RT}{\mu}}$$
 0,5 p
 $\frac{p^3}{V_T^4} = \frac{p^3}{\frac{9R^2T^2}{\mu^2}} = \acute{a}ll$ 0,5 p
 $pV = vRT = m/\mu RT$ $RT/\mu = pV/m$ 1 p
 $\frac{p^3}{\frac{9p^2V^2}{m^2}} = \acute{a}ll$ $\frac{p}{V^2} = \acute{a}ll$ 1 p

p – V koordináta rendszerben az átalakulás egy parabola, melynek csúcsa az origóban található. 1 p

$$C = \frac{C_p + 2C_v}{3}$$
 $C_p = (7/2)R$, $C_v = (5/2)R$, $C = (17/6)R = 23,545 \text{ J/mol} \cdot \text{K}$ 1 p

c)
$$\Delta U = U_2 - U_1 = (5/2)(p_2V_2 - p_1V_1)$$
 1 p

$$\frac{p_2}{V_2^2} = \frac{p_1}{V_1^2} \implies V_2 = V_1$$
 0,5 p

$$\Delta U = 65p_1V_1 \tag{17.6}$$

$$Q = vC(T_2 - T_1) = (17/6)(p_2V_2 - p_1V_1) = (17\cdot26)/6 \cdot p_1V_1 = 73,67p_1V_1$$

$$L = Q - \Delta U = (26/3)p_1V_1 = 8,67p_1V_1$$
1 p

III. feladat

 $10^6 x^2 + 3 \cdot 10^5 x - 4 \cdot 10^4 = 0$

 $10x^2 + 3x - 0.4 = 0$

 $x_1 = 0.1 m$

a)
$$v = \frac{m}{\mu}$$
 0,5 p
 $v = v_1 + v_2 \frac{N_1 + N_2}{N_A}$ 1 p
 $m = m_1 + m_2 = v_1 \cdot \mu_1 + v_2 \cdot \mu_2 = \frac{N_1}{N_2} \cdot \mu_1 + \frac{N_2}{N_A} \cdot \mu_2$ 1 p
 $\mu = \frac{m}{v} = \frac{N_1 \cdot \mu_1 + N_2 \cdot \mu_2}{N_1 + N_2} = \frac{19}{2} = 9,5 \frac{g}{mol}$ 0,5 p
b) $pV = vRT$ 0,5 p
 $l = \frac{(N_1 + N_2) \cdot RT_1}{N_A \cdot P_0 \cdot S} = 0,2 m$ 0,5 p
c) $\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$ 1 p
 $P_2 = P_0 + \frac{kx}{S}$ 1 p
 $V_1 = SI$, $V_2 = S(l + x)$ 1 p
 $\frac{P_0 \cdot SI}{T_1} = \frac{(P_0 + \frac{k}{S} \cdot x) \cdot S \cdot (l + x)}{T_2}$ 1 p
 $\frac{P_0 \cdot SI}{T_1} = \frac{(P_0 + \frac{k}{S} \cdot x) \cdot S \cdot (l + x)}{T_2}$ 0,5 p
 $\frac{R_1 \cdot SI}{T_2} = \frac{(P_0 + \frac{k}{S} \cdot x) \cdot S \cdot (l + x)}{T_2}$ 0,5 p
 $\frac{R_1 \cdot SI}{SI} = \frac{(P_0 + \frac{k}{S} \cdot x) \cdot S \cdot (l + x)}{(P_0 + 10^6 x) \cdot (0,2 + x)}$ 0,5 p

1 p