GEORGE MCINTIRE

INTRODUCTION TO MACHINE LEARNING

TABLE OF CONTENTS

I. PRESENTATION

- What is Machine Learning?
- Supervised Learning
 - Examples, classification vs regression.
- Unsupervised Learning

II. SCIKIT-LEARN DEMO

- Train a simple KNN model on Spotify data
- Train/test splits, cross validation, and model evaluation

WHAT IS MACHINE LEARNING

- "A field of study that gives computers the ability to learn without being explicitly programmed" (1959)
 - Arthur Samuel, Al pioneer, coined the term "Machine Learning"
- "The automation of activities that we associate with human thinking, activities such as decision-making, problem solving, learning..." (1978)
 - Richard Bellman, applied mathematician

WHAT IS MACHINE LEARNING

- Examples in the form of data are passed through algorithms that look for patterns in that data in order to make predictions and decisions on future data.
- The computer observes that data of a certain category exhibits certain characteristics and data of another category exhibits a whole set of different characteristics. Allows the computer to properly classify data without that labeling.

FACE

?

FACE

NOT A FACE

?

EXAMPLES

- Netflix and Spotify recommendations
- Credit card fraud detections
- Loan approvals
- Zillow's Zestimate
- Email spam prevention
- Personal assistant machines: Siri, Alexa, etc...
- Crime pattern detections

TYPES OF MACHINE LEARNING

SUPERVISED

UNSUPERVISED

MAKING PREDICTIONS

FINDING STRUCTURES

SUPERVISED LEARNING

SUPERVISED LEARNING

- Main goal is making predictions/classifications. Uses the past to predict the future.
- Data is composed of observations/events/instances.
- Predictors aka "X" aka the independent variables aka the features aka the input aka the attributes.
- Response variable aka "Y" aka the outcome aka the label aka the target aka the dependent variable.

SUPERVISED LEARNING DATASET

OBSERVATIONS

Fisher's Iris Data				
Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

PREDICTORS

RESPONSE

TYPES OF SUPERVISED LEARNING

CLASSIFICATION

- Outcome variable is a category:
 - good/bad
 - 1/0
 - sports/tech/politics/style
- Types of algorithms:
 - Logistic Regression, Naive Bayes, K-Nearest Neighbors, Decision Tress

REGRESSION

- Outcome variable is a continuous:
 - 3.6, 9.7, 2.3,8.9,11.1,18.3,23.6,4.2, 6.9
- Types of algorithms:
 - Linerar regression,Ridge regression,Lasso Regression

CLASSIFICATION EXAMPLE: LOAN DEFAULTS

- Problem: Lenders lose money when loanees fail to pay back loans.
- Goal: Develop a system that can efficiently identify high risk loans so lenders know which applications to reject
- Data: Records of previous loans marked as successful or failure that includes relevant information such as income, credit score, loan term, loan amount, etc...

REGRESSION EXAMPLE: HOUSING PRICES

- Problem: A home owner wants to sell her home but can't decide on an asking price.
- Goal: Accurately appraise the true value of the property
- Data: Home sale records labelled with their sale prices. Dataset features # bedrooms/bathrooms, sq ft, location, year sold, etc...

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING

- Absence of outcome variable/labels. Only features.
- Objective is looser and more exploratory.
 - Find groups of observations that exhibit similar characteristics.
 - Find combinations of features that explain the variation in the data.
- Useful as a preprocessing/exploratory data analysis step but to difficult to evaluate how well you're doing.

TYPES OF UNSUPERVISED LEARNING

CLUSTERING

- Make labels from unlabelled data.
- Examples: detect segment of users, derive micropositions in sports
- Algorithms:KMeans, Hierarchal,DBScan

DIMENSIONALITY REDUCTION

- Deals with two many variables.Compresses data
- Great visualizing data with >=4 dimensions
- Algorithms: PCA, Truncated SVD, NMF

MACHINE LEARNING IN SCIKIT-LEARN