

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
College of Engineering

10/16/2018

RESL: A Web Browser Based Remote Embedded System Laboratory

Fernando Mosquera @my.unt.edu

Dr. Robin J. Pottathuparambil robin.pottathuparambil@unt.edu

Introduction

- Increasing enrollment of students requires more resources.
- The computer engineering labs are becoming more crowded.
- Labs typically include:
 - Workstation
 - Desk and chair
 - Embedded system board
- How can we expand the labs?

Tiva C

Adding more workstations is not the best solution!

Introduction

Traditional Emdebbed System Lab

Our solution

Our solution

- A remote lab, accessible through web interface.
- All boards connected to the central server.
- The boards can be used, like one is there in person.
 - User can program the boards, control inputs, and monitor outputs.
- Available 24/7.

How to program the boards

Board introduction: Arduino

Arduino Uno R3

ATmega328P

It is a reference board **NOT included in RESL**

Tiva C & MSP432

Tiva CARM Cortex-M4F

MSP432 ARM Cortex-M4F

Educational BoosterPack MKII

Boards + BoosterPack MKII

Nexys 4 DDR FPGA

Nexys 4 DDR FPGA

XC7A100T-1CSG324C of Xilinx

Design

- Linux Ubuntu 16.04.1 LTS 64 bits
- Web server Nginx + PHP 7.0 + MariaDB
- Web programed in AJAX
- Bootstrap with Jquery
- Apache2 + php in Raspberry Pi
- FFmpeg server + uv4l in Raspberry Pi

- 1. Show the temperature of the temperature sensor
- 2. Switches buttons and Reset button
- 3. Set the LED brightness (0 to 100%)
- 4. Set the temperature (65-85 F)
- 5. Set the voltage of the DAC (0 to 3 V)
- 6. Upload binary code (user and example code)
- 7. Open close serial terminal windows
- 8. Play sound on the board options
- 9. Show video streaming
- 10. Control volume of audio Streaming
- 11. Deallocate board button
- 12. System log to show every action

- 1. Show the temperature of the temperature sensor
- 2. 5 Switches buttons
- 3. Reset button
- 4. Set the temperature (65-85 F)
- 5. Set the voltage of the DAC (0 to 1 V)
- 6. Upload bitstream code (user and example code)
- 7. Open close serial terminal windows
- 8. Play sound on the board options
- 9. Show video streaming
- 10. Control volume of audio Streaming
- 11. Deallocate board button
- 12. 16 slides switches
- 13. System log to show every action

Deallocate Board (RESL)

fm0105. You have deallocated the Board: 2.

You have been 00:07:10 connected.

View and download your registered log

Go to Main Page

Log List (RESL)

2017-04-13 20.58/07: The board 4 is ready to work 2017-04-13 20.58/07: The board 4 was flashed with the file MicrophoneFFT_MSP432P401R.out 2017-04-13 21.05:06: A 1000 Hz Sine Signal was sent to the microphone of the board 4 2017-04-13 21.05:18: The board 4 was flashed with the file Blink: GREEN.elf 2017-04-13 21.09:26: The board 4 was flashed with the file MicrophoneFT_MSP432P401R.out 2017-04-13 21:18:58: You have deallocated the Board: 4. You have been 00:20:52 connected.

Download a register log file

Return to previous page

Conclusion

This lab is fully capable of controlling buttons and sensors for all boards

Overall the lab permits the following:

- Multi-user, multi-board
- Responsive in real-time
- Ideal for long distance education
- Sharing expensive boards in traditional labs.

Improvement: Tested, but not implemented

UNIT UNIVERSITY OF NORTH TEXAS®

Improvement: Tested, but not implemented yet

- Boards and Arduino connected to Raspberry PI
- Server only will be used for user access, board allocation management,
 connection logs, and statistics
- Addition of different FPGA boards:
 - Altera DE10-Standard
 - IceZum Alhambra
- Relays to control power of the target boards
- Relays to power on a LED for external board illumination

In Progress

DE-10 Standard BoardCyclone V SX SoC

In Progress

IceZum Alhambra

iCE40HX1K from Lattice

- UNT Computer Science and Engineering Department
- Dr. Robin Pottathuparambil

Thanks

Questions?

