Homework 4 solutions

1. Exercise T3.55.

Solution.

(a) The first and second derivatives of f are

$$f'(x) = e^{-h(x)}, f''(x) = -h'(x)e^{-h(x)}.$$

Log-concavity requires $f''(x)f(x) \leq (f'(x))^2$, i.e.,

$$-h'(x)e^{-h(x)} \int_{-\infty}^{x} e^{-h(t)} dt \leq e^{-2h(x)}$$
$$-h'(x) \int_{-\infty}^{x} e^{-h(t)} dt \leq e^{-h(x)}.$$

This is obviously true if $h'(x) \ge 0$.

(b) Taking exponentials and integrating both sides of $-h(t) \le -h(x) - h'(x)(t-x)$ gives

$$\int_{-\infty}^{x} e^{-h(t)} dt \leq e^{xh'(x)-h(x)} \int_{-\infty}^{x} e^{-th'(x)} dt$$

$$= e^{xh'(x)-h(x)} e^{-xh'(x)} / (-h'(x))$$

$$= \frac{e^{-h(x)}}{-h'(x)}.$$

Therefore

$$-h'(x)\int_{-\infty}^x e^{-h(t)}\,dt \le e^{-h(x)}.$$

2. Exercise T4.13.

Solution. We consider the constraints separately. The *i*th constraint is

$$\sum_{j=1}^{n} A_{ij} x_{j} \le b_{i} \quad \text{for all } A_{ij} \in [\bar{A}_{ij} - V_{ij}, \bar{A}_{ij} + V_{ij}].$$

For given x, the expression on the left-hand side of the inequality is maximized by taking $A_{ij} = \bar{A}_{ij} + V_{ij}$ when $x_j \geq 0$ and $A_{ij} = \bar{A}_{ij} - V_{ij}$ when $x_j < 0$. This shows that the *i*th constraint is equivalent to a nonlinear convex constraint in x:

$$\sum_{j=1}^{n} \bar{A}_{ij} x_j + V_{ij} |x_j| \le b_i.$$

The problem is therefore equivalent to

minimize
$$c^T x$$

subject to $\bar{A}x + V|x| \leq b$ (1)

where we define |x| as the vector $|x| = (|x_1|, |x_2|, \dots, |x_n|)$. This in turn is equivalent to the LP

with variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^n$.

To see the equivalence between (1) and (2), first note that the constraints $-y \leq x \leq y$ mean $y \geq |x|$. Suppose x is feasible in (1). Then clearly x and y = |x| are feasible in (2). Conversely if x and y are feasible in (2), then x is feasible in (1) because V is component-wise nonnegative and $y \geq |x|$.

3. Exercise A4.39.

Solution.

(a) The limits for $\gamma \to \pm \infty$ are clearer from the expression

$$\log \sum_{i=1}^{m} p_i e^{z_i} = z_{\text{max}} + \log \sum_{i=1}^{m} p_i e^{z_i - z_{\text{max}}},$$

where $z_{\max} = \max_{i=1,\dots,m} z_i$. (This is also useful in computations, to avoid very large numbers when evaluating the function.) For the limit at $+\infty$ we apply this with $z_i = \gamma c_i^T x$:

$$\frac{1}{\gamma} \log \sum_{i=1}^{m} p_i e^{\gamma y_i} = y_{\text{max}} + \frac{1}{\gamma} \log (\sum_{i:y_i = y_{\text{max}}} p_i + \sum_{i:y_i < y_{\text{max}}} p_i e^{\gamma(y_i - y_{\text{max}})}),$$

where $y_i = c_i^T x$. The second sum on the right-hand side goes to zero as $\gamma \to \infty$. Therefore the limit of the right-hand side is y_{max} . For the limit at $-\infty$ we write

$$\frac{1}{\gamma} \log \sum_{i=1}^{m} p_i e^{\gamma y_i} = y_{\min} + \frac{1}{\gamma} \log (\sum_{i: y_i = y_{\min}} p_i + \sum_{i: y_i > y_{\min}} p_i e^{\gamma (y_i - y_{\min})}).$$

Now the second sum on the right-hand side goes zero if $\gamma \to -\infty$, and the limit of the right-hand side is y_{\min} .

The limit at zero can be found from the linear approximations $\exp(u) \approx 1 + u$ and $\log(1 + u) \approx u$ for small u:

$$\frac{1}{\gamma} \log \sum_{i} p_{i} e^{\gamma c_{i}^{T} x} \approx \frac{1}{\gamma} (\log \sum_{i} p_{i} (1 + \gamma c_{i}^{T} x))$$

$$= \frac{1}{\gamma} \log (1 + \gamma \bar{c}^{T} x)$$

$$\approx \bar{c}^{T} x.$$

(b) This follows from convexity of the function $e^{\gamma t}$:

$$e^{\gamma \bar{c}^T x} = e^{\gamma \sum_i p_i c_i^T x} \le \sum_{i=1}^m p_i e^{\gamma c_i^T x}.$$

Hence

$$\gamma \bar{c}^T x \le \log \sum_{i=1}^m p_i e^{\gamma y_i}$$

and dividing by γ gives the two inequalities.

(c) The gradient and Hessian of f_{γ} at a point \hat{y} are given by

$$abla f_{\gamma}(\hat{y}) = rac{1}{\mathbf{1}^T z} z, \qquad
abla^2 f_{\gamma}(\hat{y}) = rac{\gamma}{\mathbf{1}^T z} (\mathbf{diag}(z) - rac{1}{\mathbf{1}^T z} z z^T),$$

where $z = (p_1 e^{\gamma \hat{y}_1}, \dots, p_m e^{\gamma \hat{y}_m})$. If $\hat{y} = (\bar{c}^T x) \mathbf{1}$, we have $z = e^{\gamma \bar{c}^T x} p$ and $\mathbf{1}^T z = e^{\gamma \bar{c}^T x}$, and we find the expressions for gradient and Hessian in the assignment.

Substituting these in the quadratic approximation, we get

$$f_{\gamma}(\hat{y}) + \nabla f_{\gamma}(\hat{y})^{T} (Cx - \hat{y}) + \frac{1}{2} (Cx - \hat{y})^{T} \nabla f_{\gamma}(\hat{y}) (Cx - \hat{y})$$

$$= \bar{c}^{T} x + p^{T} (Cx - \hat{y}) + \frac{\gamma}{2} (Cx - \hat{y})^{T} (\mathbf{diag}(p) - pp^{T}) (Cx - \hat{y})$$

$$= \bar{c}^{T} x + \frac{\gamma}{2} (Cx - \hat{y})^{T} \mathbf{diag}(p) (Cx - \hat{y})$$

$$= \bar{c}^{T} x + \frac{\gamma}{2} \sum_{i=1}^{m} p_{i} (c_{i}^{T} x - \bar{c}^{T} x)^{2}$$

$$= \bar{c}^{T} x + \frac{\gamma}{2} x^{T} \Sigma x.$$

The second step follows because $p^T(Cx - \hat{y}) = \sum_i p_i(c_i^T x - \bar{c}^T x) = 0$.

4. Exercise T4.25.

Solution. We first note that the problem is homogeneous in a and b, so we can replace the strict inequalities $a^Tx + b > 0$ and $a^Tx + b < 0$ with $a^Tx + b \ge 1$ and $a^Tx + b \le -1$, respectively. The variables a and b must satisfy

$$\inf_{\|u\|_2 \le 1} a^T (P_i u + q_i) \ge 1 - b, \quad i = 1, \dots, K,$$

and

$$\sup_{\|u\|_2 \le 1} a^T (P_i u + q_i) \le -1 - b, \quad i = K + 1, \dots, K + L.$$

The left-hand sides can be expressed as

$$\inf_{\|u\|_2 \le 1} a^T (P_i u + q_i) = -\|P_i^T a\|_2 + q_i^T a$$

and

$$\sup_{\|u\|_2 \le 1} a^T (P_i u + q_i) = \|P_i^T a\|_2 + q_i^T a.$$

We therefore obtain a set of second-order cone constraints in a, b:

$$||P_i^T a||_2 \le q_i^T a + b - 1, \quad i = 1, \dots, L, \quad ||P_i^T a||_2 \le -q_i^T a - b - 1, \quad i = K + 1, \dots, K + L.$$

5. Exercise A4.21(a,b)

Solution.

(a) First consider the conditions

$$y \le \sqrt{z_1 z_2}, \qquad y, z_1, z_2 \ge 0.$$

This is equivalent to

$$y \ge 0,$$

$$\left\| \begin{bmatrix} 2y \\ z_1 - z_2 \end{bmatrix} \right\|_2 \le z_1 + z_2.$$

The equivalence can be seen by expanding the norm inequality, which gives

$$4y^2 + (z_1 - z_2)^2 \le (z_1 + z_2)^2, \qquad z_1 + z_2 \ge 0.$$

This simplifies to $y^2 \le z_1 z_2$ and $z_1, z_2 \ge 0$.

Next consider the second constraint in the problem statement,

$$y \le (z_1 z_2 \cdots z_n)^{1/n}, \quad y, z_1, \dots, z_n \ge 0.$$

First suppose $n=2^l$. Introduce variables y_{ij} for $i=1,\ldots,l-1$, and $j=1,\ldots,2^i$, and write the constraint as the following set of inequalities:

$$z \succeq 0$$
,

$$y_{l-1,j} \le (z_{2j-1}z_{2j})^{1/2}, y_{l-1,j} \ge 0, j = 1, \dots, 2^{l-1}$$

 $y_{ij} \le (y_{i+1,2j-1}y_{i+1,2j})^{1/2}, y_{ij} \ge 0, i = 1, \dots, l-2, j = 1, \dots, 2^{i}$
 $y \le (y_{11}y_{12})^{1/2}, y \ge 0.$

Then apply the second order cone formulation as in the case n=2. For general n we write the constraint as

$$y \le (y^{m-n}z_1 \cdots z_n)^{1/m}, \qquad y \ge 0, \qquad z \succeq 0,$$

where m is the smallest power of two that is greater than or equal to n, and then use the previous formulation.

(b) For the first function, write the constraint as

$$y \le (t^s)^{1/r}, \qquad y \ge x, \qquad y \ge 0, \qquad t \ge 0$$

where $\alpha = r/s$ and s and $r \ge s$ are integers, and then apply part (a) with $z_k = t$ for $k = 1, \ldots, s$ and $z_k = 1$ for $k = s + 1, \ldots, r$.

For the second function, we express the constraint as

$$1 \le (x^r t^s)^{1/(r+s)}, \qquad x \ge 0, \qquad t \ge 0,$$

where $\alpha = -r/s$ and r and s are integers, and then apply the formulation of (a).

- 6. Exercise A15.6.
 - (a) The problem can be expressed as the SOCP

minimize
$$t$$

subject to $||A_k x||_2 \le t$, $k \in \mathcal{I}$
 $Bx = d$

with variables x, t, where $\mathcal{I} = \{k \mid |\theta_k - \theta^{\text{tar}}| \geq \Delta\}$ and

$$x = \begin{bmatrix} w_{\text{re}} \\ w_{\text{im}} \end{bmatrix} \in \mathbf{R}^{2n}$$

$$A_k = \begin{bmatrix} \cos \gamma_1(\theta_k) & \cdots & \cos \gamma_n(\theta_k) & -\sin \gamma_1(\theta_k) & \cdots & -\sin \gamma_n(\theta_k) \\ \sin \gamma_1(\theta_k) & \cdots & \sin \gamma_n(\theta_k) & \cos \gamma_1(\theta_k) & \cdots & \cos \gamma_n(\theta_k) \end{bmatrix}$$

$$B = \begin{bmatrix} \cos \gamma_1(\theta^{\text{tar}}) & \cdots & \cos \gamma_n(\theta^{\text{tar}}) & -\sin \gamma_1(\theta^{\text{tar}}) & \cdots & -\sin \gamma_n(\theta^{\text{tar}}) \\ \sin \gamma_1(\theta^{\text{tar}}) & \cdots & \sin \gamma_n(\theta^{\text{tar}}) & \cos \gamma_1(\theta^{\text{tar}}) & \cdots & \cos \gamma_n(\theta^{\text{tar}}) \end{bmatrix}$$

$$d = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

(b) The figure below shows the output of the antenna array for different values of θ .

The following code solves the problem.

```
rand('state',0);
n = 40;
X = 30*[rand(1,n); rand(1,n)];
N = 400;
beamwidth = 15*pi/180;
theta_tar = 15*pi/180;
theta = linspace(theta_tar + beamwidth, 2*pi + theta_tar - beamwidth, N)';
A = exp(i * [cos(theta), sin(theta)] * X);
Atar = exp(i * [cos(theta_tar), sin(theta_tar)] * X)
cvx_begin
    variable w(n) complex
    minimize( max(abs(A*w)) )
    subject to
        Atar*w == 1;
cvx_end
```

7. Exercise T4.26(a).

Solution. The problem is equivalent to

minimize
$$\mathbf{1}^T t$$

subject to $t_i(a_i^T x - b_i) \ge 1, \quad i = 1, \dots, m$
 $t \succ 0.$

Writing the hyperbolic constraints as second order cone constraints yields an SOCP

minimize
$$\mathbf{1}^T t$$

subject to $\left\| \begin{bmatrix} 2 \\ a_i^T x - b_i - t_i \end{bmatrix} \right\|_2 \le a_i^T x - b_i + t_i, \quad i = 1, \dots, m$
 $t \succ 0.$

8. Exercise T4.27.

Solution. To show the equivalence with the problem in the hint, we assume $x \succeq 0$ is fixed, and optimize over v and w. This is a quadratic problem with equality constraints:

minimize
$$\begin{bmatrix} v \\ w \end{bmatrix}^T \begin{bmatrix} I & 0 \\ 0 & \mathbf{diag}(x)^{-1} \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix}$$
 subject to $\begin{bmatrix} I & B \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = Ax + b$.

The optimality conditions (from lecture 4, page 13) are

$$\left[\begin{array}{c} v \\ \mathbf{diag}(x)^{-1}w \end{array}\right] = \left[\begin{array}{c} I \\ B^T \end{array}\right] \nu, \qquad \left[\begin{array}{c} I & B \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = Ax + b.$$

In other words, v and w are optimal if and only if there exists a v such that

$$v = \nu$$
, $w = \operatorname{diag}(x)B^T \nu$, $v + Bw = Ax + b$.

Substituting the expressions for v and w from the first two equations in the third equation, we find that ν must satisfy

$$(I + B \operatorname{\mathbf{diag}}(x)B^T)\nu = Ax + b.$$

Since the matrix on the left is invertible for $x \succeq 0$, we can solve for ν . Therefore the optimal v, w for the optimization problem in the hint are

$$v = \nu = (I + B\operatorname{\mathbf{diag}}(x)B^T)^{-1}(Ax + b)$$

and

$$w = \mathbf{diag}(x)B^T \nu = \mathbf{diag}(x)B^T (I + B \mathbf{diag}(x)B^T)^{-1} (Ax + b).$$

Substituting these expressions for v and w in the objective of the problem in the hint, we obtain

$$v^{T}v + w^{T}\operatorname{diag}(x)^{-1}w = (Ax + b)^{T}(I + B\operatorname{diag}(x)B^{T})^{-1}(Ax + b).$$

This shows that the problem is equivalent to the problem in the hint.

As in exercise 4.26 we now introduce hyperbolic constraints and formulate the problem in the hint as

$$\begin{array}{ll} \text{minimize} & t+\mathbf{1}^T s \\ \text{subject to} & v^T v \leq t \\ & w_i^2 \leq s_i x_i, \quad i=1,\dots,n \\ & x \succeq 0 \end{array}$$

with variables $t \in \mathbf{R}$, $s, x, w \in \mathbf{R}^n$, $v \in \mathbf{R}^m$. Converting the hyperbolic constraints into second order cone constraints results in the SOCP

minimize
$$t + \mathbf{1}^T s$$

subject to $\left\| \begin{bmatrix} 2v \\ 1-t \end{bmatrix} \right\|_2 \le 1+t$
 $\left\| \begin{bmatrix} 2w_i \\ s_i-x_i \end{bmatrix} \right\|_2 \le s_i+x_i, \quad i=1,\ldots,n$
 $x \succeq 0.$