problem statement t:

A real estate agent want help to preedict the house price for regions in USA. He gave us the dataset to work on to use Linear regression model. Create a model that helps hom to estimate of what the house would sell sell for

Data collection

```
In [1]:  # import Libraries
  import numpy as np # data cleaning and collection
  import pandas as pd # "" ""
  import matplotlib.pyplot as py # visualization
  import seaborn as sns #" " ""

In [2]:  d=pd.read_csv(r"C:\Users\user\Downloads\USA_Housing.csv")
  d
```

Out[2]:

	Avg. Area_Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.45857	5.682861	7.009188	4.09	23086.80050	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.64245	6.002900	6.730821	3.09	40173.07217	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.06718	5.865890	8.512727	5.13	36882.15940	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.24005	7.188236	5.586729	3.26	34310.24283	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.19723	5.040555	7.839388	4.23	26354.10947	6.309435e+05	USNS Raymond\nFPO AE 09386
•••			•••	•••			
4995	60567.94414	7.830362	6.137356	3.46	22837.36103	1.060194e+06	USNS Williams\nFPO AP 30153-7653
4996	78491.27543	6.999135	6.576763	4.02	25616.11549	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991- 3352
4997	63390.68689	7.250591	4.805081	2.13	33266.14549	1.030730e+06	4215 Tracy Garden Suite 076\nJoshualand, VA 01

	Avg. Area_Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
4998	68001.33124	5.534388	7.130144	5.44	42625.62016	1.198657e+06	USS Wallace\nFPO AE 73316
4999	65510.58180	5.992305	6.792336	4.07	46501.28380	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly, NV 2

5000 rows × 7 columns

In [3]:

d.head()

Out[3]:

	Avg. Area_Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.45857	5.682861	7.009188	4.09	23086.80050	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.64245	6.002900	6.730821	3.09	40173.07217	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.06718	5.865890	8.512727	5.13	36882.15940	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.24005	7.188236	5.586729	3.26	34310.24283	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.19723	5.040555	7.839388	4.23	26354.10947	6.309435e+05	USNS Raymond\nFPO AE 09386

In [4]: | d.info() #informa

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

Ducu	columns (cocal / columns):							
#	Column	Non-Null Count	Dtype					
0	Avg. Area_Income	5000 non-null	float64					
1	Avg. Area House Age	5000 non-null	float64					
2	Avg. Area Number of Rooms	5000 non-null	float64					
3	Avg. Area Number of Bedrooms	5000 non-null	float64					
4	Area Population	5000 non-null	float64					
5	Price	5000 non-null	float64					
6	Address	5000 non-null	object					

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [5]: #to display summary of statistics
d.describe()

\cap	5	
out	2	

	Avg. Area_Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562390	5.322283	6.299250	3.140000	29403.928700	9.975771e+05
50%	68804.286405	5.970429	7.002902	4.050000	36199.406690	1.232669e+06
75%	75783.338665	6.650808	7.665871	4.490000	42861.290770	1.471210e+06
max	107701.748400	9.519088	10.759588	6.500000	69621.713380	2.469066e+06

In [6]: #to display column heading
d.columns

Out[6]: Index(['Avg. Area_Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'], dtype='object')

In [7]: d.index

Out[7]: RangeIndex(start=0, stop=5000, step=1)

EDA and visualization

In [8]: sns.pairplot(d)

Out[8]: <seaborn.axisgrid.PairGrid at 0x17f28628bb0>

In [9]: sns.distplot(d['Price'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adap
t your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Price', ylabel='Density'>

to train the model - model building

we are going to train linear regression model, We ned to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output) we could ignore address column as it is not required for our model

```
In [11]:
          #x-input,y-output
          x=d1[['Avg. Area_Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
                  'Avg. Area Number of Bedrooms', 'Area Population']]
          y=d1['Price']
In [12]:
           #to split my dataset into training and test data
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [13]:
          from sklearn.linear_model import LinearRegression
In [14]:
           lr=LinearRegression()
          lr.fit(x train,y train)
Out[14]: LinearRegression()
In [15]:
           print(lr.intercept )
          -2627404.1891406737
In [16]:
          \# y=mx+c , coeff=m
          coeff =pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
                                        Co-efficient
Out[16]:
                                         21.415542
                     Avg. Area_Income
                   Avg. Area House Age 165962.609867
            Avg. Area Number of Rooms 119394.519811
          Avg. Area Number of Bedrooms
                                       2806.514707
                                         15.319576
                      Area Population
In [17]:
          prediction =lr.predict(x_test)
          py.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x17f2bf91fa0>
```

```
1.5 - 1.0 - 0.5 - 0.0 0.5 1.0 1.5 2.0 2.5 1.66
```

```
In [18]:
          print(lr.score(x_test,y_test))
         0.9176019291991886
In [19]:
          print(lr.score(x_train,y_train))
         0.9181168859388773
In [20]:
          from sklearn.linear_model import Ridge,Lasso
In [21]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[21]: Ridge(alpha=10)
In [22]:
          rr.score(x_test,y_test)
         0.9175841703573315
Out[22]:
In [23]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[23]: Lasso(alpha=10)
In [24]:
          la.score(x_test,y_test)
         0.9176020277657732
Out[24]:
In [25]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
```

```
Out[25]: ElasticNet()
In [26]:
          print(en.coef_)
         [2.12135675e+01 1.08975542e+05 7.51370003e+04 1.43564743e+04
          1.53595576e+01]
In [27]:
          print(en.intercept_)
         -2011619.4173096179
In [28]:
          print(en.predict(x_test))
         [1256720.3605405 1311611.68032796 1671766.35687042 ... 1497353.91061606
          1245011.71139054 939028.23742129]
In [29]:
          print(en.score(x_test,y_test))
         0.8782932216399257
In [30]:
          from sklearn import metrics
In [31]:
          print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolute Error: 82375.96847878218
In [32]:
          print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
         Mean Squared Error: 10480055759.793833
In [33]:
          print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction))
         Root Mean Squared Error: 102372.14347562443
 In [ ]:
```