Técnicas de representación y razonamiento

□ Tema 3: Representación del conocimiento e inferencia
,
3.3: Redes semánticas – Índice de contenidos
Introducción
 Definición de redes semánticas (o asociativas)
Características
□ Tipos de arcos
Mecanismos de inferencia (o razonamiento)
 Herencia de propiedades
 Búsqueda de la intersección entre dos conceptos
Contestación de preguntas: equiparación
Representación con redes semánticas
 Representación de relaciones no binarias
 Representación de sucesos
Conclusiones
IAIC Cure 2009 00

IAIC - Curso 2008-09

Técnicas de representación y razonamiento

Técnicas de representación del conocimiento
☐ Representaciones básicas
☐ Lógica de predicados. Representación en Prolog
☐ Redes semánticas
☐ Sistemas de producción
☐ Representaciones estructuradas
☐ Marcos (frames) y guiones (scripts)
☐ Estudio comparativo de las técnicas de representación
☐ Lenguajes de representación del conocimiento

Las representaciones lógicas surgieron para caracterizar los principios del razonamiento correcto
Los lógicos (matemáticos y filósofos) se centraron en lenguajes de representación con reglas de inferencia correctas y completas, que preservan la verdad
Hay una línea alternativa más preocupada por caracterizar la naturaleza de la comprensión humana
A psicólogos y lingüistas les interesa, no tanto el razonamiento correcto, sino describir cómo el ser humano adquiere y usa el conocimiento
Esta línea ha resultado de mucha utilidad en el área de tratamiento del lenguaje natural, y en los razonamientos de sentido común
La investigación en formalismos para la representación estandarizada del conocimiento y en ontologías persigue hacer más eficiente el proceso de creación de SBCs

IAIC – Curso 2008-09

Redes semánticas: introducción

Teorías asociativas: el significado de un objeto se expresa a través de una red de asociaciones con otros objetos
Según los asociativistas cuando un ser humano percibe un objeto y razona acerca de él
Establece una correspondencia entre el objeto y un concepto
□ El concepto forma parte de nuestro conocimiento del mundo y está conectado mediante relaciones con otros conceptos
Estas relaciones constituyen la comprensión de las propiedades y comportamiento de los objetos
□ Nieve → fría, blanca, hielo, muñeco de nieve
Existen evidencias psicológicas de que los seres humanos
☐ Somos capaces de establecer asociaciones entre conceptos
☐ Organizamos nuestro conocimiento de forma ierárquica

Almacenamos las propiedades en el nivel mas abstracto posible y tenemos que ascender por la jerarquía de estructuras de la memoria para responder a preguntas	
Canario no está asociado directamente con la capacidad de volar, sino que ésta forma parte de las propiedades de pájaro, así como la capacidad motora depende de animal	
Las excepciones, en cambio, las almacenamos directamente en los conceptos	
Un avestruz no puede volar	
Formalización en sistemas con herencia	
 Almacenamiento de la información en los niveles más altos de abstracción 	
 Reduce el tamaño de la BC y ayuda a prevenir inconsistencias al añadir nuevas clases e instancias 	
Los grafos constituyen el vehículo ideal para esta formalización de las teorías asociativas del conocimiento	

IAIC – Curso 2008-09

Redes semánticas: introducción

 Quillian se cuestiona la idea de que nuestra capacidad para entender el lenguaje pueda caracterizarse mediante un conjunto de reglas básicas
Sugirió que la comprensión de textos involucraba la "creación de alguna representación simbólica"
Esto le llevó a preocuparse por cómo almacenar el significado de las palabras en una máquina para que haga un uso similar de éstas al que hacemos los seres humanos
☐ Fue el primero en sugerir que la memoria humana puede modelarse mediante una red y en proponer un modelo de recuperación de la información memorizada

Quillian inicia en 1968 el trabajo con redes semánticas en la IA (investigación en comprensión del lenguaje natural)
□ BC (tipo diccionario) organizada en planes
Cada plan es un grafo que define a una palabra en función de otras
Una palabra puede tener asociados varios planes (significados)
Su sistema usaba la BC para encontrar relaciones entre palabras: concepto común o nodo intersección
Quillian defendía que su aproximación permitía a un sistema
 Determinar el significado de un texto construyendo una colección de nodos intersección
Elegir entre distintos significados de una palabra, localizando los significados con menor camino intersección con otras palabras de la frase
 Responder a preguntas basándose en asociaciones entre palabras de las preguntas y palabras del sistema

Tema 3.3 - 7

Redes semánticas: introducción

Éste y otros trabajos previos demostraron que los grafos son una técnica potente para modelizar significado asociativo, aunque limitada por la extrema generalidad del formalismo
Generalmente, el conocimiento se estructura en función de relaciones específicas
☐ Concepto/propiedad, clase/subclase, agente/verbo/objeto
Definición de arcos y reglas de inferencia para permitir inferencias específicas como la herencia
La investigación en estos formalismos a menudo se ha centrado en especificar estas relaciones
 Definir etiquetas primitivas para los arcos como parte del formalismo y no del dominio

IAIC – Curso 2008-09

☐ BCs más sencillas de construir, más generales y más consistentes

Una red semántica representa conocimiento mediante un grafo
 □ nodos: conceptos
 □ arcos etiquetados: relaciones entre conceptos
 □ Por red semántica actualmente se entiende toda una familia de representaciones basadas en grafos que difieren entre sí en los nombres que se permiten para nodos y arcos, y en las inferencias que pueden hacerse
 □ Grafos conceptuales: lenguaje de representación basado en redes más moderno (Sowa, 1984)
 □ Grafos dirigidos finitos bipartitos
 □ Los nodos son de dos tipos: los que representan conceptos, y los que representan relaciones entre conceptos
 □ Los conceptos sólo tienen arcos hacia relaciones y las relaciones sólo tienen arcos hacia conceptos. Los arcos no tienen etiquetas

Tema 3.3 - 9

Redes semánticas (o asociativas)

etiquetados
 Utilizada inicialmente para representar la semántica de los lenguajes naturales, especialmente en los sistemas de traducción automática (como lenguaje intermedio –interlingua)

☐ Técnica de representación declarativa a través de grafos dirigidos

Idea principal: el significado de un concepto se especifica a través sus conexiones con otros conceptos

■ Nodos: representan conceptos (entidades, atributos, sucesos y estados)

□ Arcos: representan relaciones conceptuales (asocian conceptos). La etiqueta identifica el tipo de relación (espacial, temporal, causal, rol desempeñado, etc.)

Ejemplo: fragmentos de una red semántica

Redes semánticas (o asociativas)

- Características
 - □ Redes complejas organizadas en jerarquías que facilitan la utilización del razonamiento basado en la herencia
 - Un concepto está asociado con otros conceptos a través de los arcos salientes del nodo que lo representa (conexión con otros conceptos)
 - ☐ Tienen una estructura tipo diccionario
 - ☐ Por ejemplo, "un velero es un barco con velas"

- No tienen un vocabulario prefijado de representación, pero todas las variantes son capaces de representar conceptos individuales, conceptos colectivos y relaciones entre conceptos
- ☐ Fácil comprensión gráfica

IAIC – Curso 2008-09 Tema 3.3 - 12

Redes semánticas (o asociativas)

- Características más importantes
 - Distinción entre nodos conceptuales: colectivo o individual
 - Los nodos tipo están conectados con una configuración de nodos token de otros nodos conceptuales que constituyen su definición
 - Como en un diccionario
 - El significado de los nodos token se deriva haciendo referencia al significado de los nodos tipo
 - Para entender una palabra que aparece en la definición de otra en un diccionario, podemos necesitar buscar su definición
 - □ Ayuda a la construcción y mantenimiento de las representaciones del conocimiento
 - □ Al menos un nodo tipo por cada nodo token
 - Economía cognitiva
 - ☐ Herencia de propiedades
 - Se han ido añadiendo más facilidades en los últimos años en los sistemas de redes semánticas modernos, aunque las ideas básicas son las mismas

Tema 3.3 - 13

Tipos de arcos: relaciones entre conceptos

- □ Arcos estructurales (semántica independiente del dominio)
 - ☐ Instancia o ejemplar: une un objeto con su tipo (clase)
 - □ Subclase: une una clase con otra más general
 - ☐ Tiene_parte: liga un objeto con sus componentes

- □ Arcos descriptivos (semántica dependiente del dominio)
 - ☐ Propiedades: *Profesión, Color_Pelo,* etc.
 - □ Relaciones (no estructurales): *Amigo_de, Padre_de,* etc.

Mecanismos de inferencia: herencia

- Herencia de propiedades
 - La notación de redes semánticas hace muy conveniente la utilización de razonamiento basado en herencia
 - Algoritmo simple y eficiente con manejo de excepciones
 - □ Los nodos acceden a las propiedades definidas en otros nodos siguiendo los arcos *Instancia* (o *Ejemplar*) y *Subclase*
 - Ventajas
 - Evita repetir propiedades
 - □ Permite compartir conocimiento entre diferentes conceptos de la red semántica

IAIC – Curso 2008-09

Herencia de propiedades: ejemplo

Gris

¿Qué puedo decir de Dumbo?

- Es un elefante
 - Es de color gris
- Es un macho
- Es un mamífero
- Es un animal
 - Necesita oxígeno
- Es un ser vivo

IAIC - Curso 2008-09

Tema 3.3 - 16

Problemas con la herencia de propiedades

Herencia de propiedades que no son ciertas (inferencias inválidas) tiene Pájaro Alas estudiado por subclase instancia Popi Biólogos Gorrión Causa: Otra posibilidad Algunas propiedades del tiene Pájaro conjunto (como un todo) **Alas** no son heredables por los individuos pertenecientes

Tema 3.3 - 17 IAIC - Curso 2008-09

subclase

Gorrión

estudian

Biólogos

Excepciones a la herencia de propiedades

instancia

Popi

al conjunto

- ☐ Se hereda el valor de la propiedad del nodo más cercano al nodo que sirvió como punto de partida en la inferencia
 - Brutus es de color negro (hay herencia de la clase Gorila)
 - Copito es de color blanco (no hay herencia)
- Si el nodo más cercano no es único, estamos ante herencia múltiple (se permite en redes semánticas)

IAIC - Curso 2008-09 Tema 3.3 - 18

Mecanismos de inferencia: intersección

- ☐ Búsqueda de la intersección entre dos conceptos
 - □ Dados dos conceptos C1 y C2, queremos saber cuál es su relación
- ☐ Se utiliza un mecanismo de propagación de la activación
 - Inicialmente activamos ambos conceptos
 - La activación se propaga a los nodos que están a un arco de distancia de los nodos iniciales, después a los nodos que están a distancia 2, ..., formando "ondas" concéntricas
 - ☐ Cuando las ondas procedentes de *C1* intersecan a las procedentes de *C2* (o a algún nodo del interior), hemos encontrado la intersección
 - La relación entre C1 y C2 viene dada por las etiquetas de las aristas existentes de C1 al punto de intersección y de C2 al punto de intersección
 - □ Si hubiera varios puntos de intersección, esto indicaría que existen varias relaciones distintas entre C1 y C2

Tema 3.3 - 19

Uso de enlaces inversos

- La búsqueda de la intersección a menudo necesita generar la inversa de una relación
 - Algunos sistemas lo hacen automáticamente con los arcos estructurales
- ☐ ¿Quién es hermana de Juan?
 - El algoritmo de inferencia podría deducir que tiene_hermana es inversa de hermana_de y responder siguiendo el enlace de Juan a María
 - Si no, comprobaría cada mujer para ver si tiene un enlace hermana_de hacia Juan
 - Indexación directa sólo para los enlaces que salen de un nodo

Ejemplo de representación: relaciones binarias

Una red semántica es la forma natural de representar relaciones correspondientes a instancias cerradas de predicados binarios en lógica

Representación de relaciones no binarias

- Los enlaces representan relaciones binarias
 - □ ¡Un arco sólo tiene 2 extremos!
- La representación de relaciones n-arias en una red semántica también es posible. Han de convertirse a formato binario
 - Se crea un nuevo objeto que representa a la relación concreta puntuación(Tigres, Leones, 5-3)
 J23
 - Se introducen predicados binarios para describir la relación de ese nuevo objeto con sus argumentos originales

☐ Esta técnica resulta útil para la representación de sucesos

Representación de sucesos

Juan dio el libro a María

- □ El objeto del suceso es un libro concreto que no está representado como tal en la frase dada por el usuario → el sistema crea un objeto, ejemplar de libro y le da un nombre (15)
- ☐ Juan sí es un individuo concreto al igual que María
- □ Este tipo de representación está orientado a contestar preguntas de distinto tipo sobre el conocimiento que tenemos representado

Tema 3.3 - 23

Representación de sucesos

☐ Pepe vio un museo en Madrid

Representación de sucesos

☐ Luis sabe que Pepe vio el museo de El Prado

Representación de sucesos

- Pepe compra a Luis un reloj por 5000 pesetas
 - ☐ Lógica: compra(Pepe, Luis, Reloj, 5000, Pesetas)

Contestación de preguntas: equiparación

- Se razona por equiparación
- Una pregunta se equiparará con una base de conocimiento si la primera puede asociarse con un fragmento de la segunda
- □ Pasos del proceso de equiparación:
 - Construir un apunte (red semántica) para la pregunta en cuestión
 - ☐ Elementos: nodos constante, nodos variable, arcos etiquetados
 - Criterio de construcción: el mismo de la base de conocimiento
 - Cotejar el apunte con la base de conocimiento
 - Equiparación de nodos
 - Respuesta
- La complejidad es importante
 - Si pregunto algo falso (o que el sistema no sepa) puede ser necesario estudiar la red semántica por completo

Tema 3.3 - 27 IAIC - Curso 2008-09

Equiparación: ejemplo

Base de conocimiento

Transparencias de redes semánticas. Asunción Gómez Pérez. Facultad de Informática. UPM.

Tema 3.3 - 28 IAIC - Curso 2008-09

Equiparación: ejemplo

☐ Consulta: ¿quién vio un museo en Madrid?

Equiparación 1: Equiparación 2:

 $Ver_? \equiv Ver_1$ $Ver_? \equiv Ver_3$

X? = Pepe X? = María

Tema 3.3 - 29

Equiparación: ejemplo

☐ Consulta: ¿algún varón vio algún museo en Madrid?

Equiparación: ejemplo

Consulta: ¿alguna persona vio algún museo en Madrid?

No existe equiparación directa con la consulta, pero puede inferirse

IAIC – Curso 2008-09

Redes semánticas: adecuación

- Más intuitiva y cercana al pensamiento humano que la lógica
 - Mismos conceptos base que la lógica, pero con la ventaja de que el conocimiento se organiza en base a conceptos (y no a relaciones)
- Ayuda gráfica para visualización, algoritmo eficiente de herencia
 - □ Permite fácilmente el mecanismo de herencia con excepciones, siendo el proceso transparente (facilidad de visualizar los pasos)
- Mecanismo específico para obtener la relación entre dos conceptos: búsqueda de la intersección
 - ☐ Fue uno de los usos más tempranos de las redes semánticas en IA (Quillian, 1968): operación básica de recuperación de información
 - ☐ A menudo, necesita la generación de las relaciones inversas
- ☐ Contribución a investigación en representación del conocimiento
 - □ Abrió una década de investigación en formalismos basados en redes
 - Éxito limitado como modelo psicológico de la memoria humana

IAIC – Curso 2008-09 Tema 3.3 - 32

Redes semánticas: dificultades

 □ Falta de estándares a la hora de nombrar nodos y arcos □ Como en la lógica de predicados □ Problema: no seguir convenios al asignar significado a nodos y arcos □ Dos personas distintas pueden hacer diferentes interpretaciones de la misma red
 Explosión combinatoria: sigue estando presente, aunque la inferencia se reduzca a la búsqueda de la intersección Respuestas negativas: cantidad descomunal de búsqueda Esto prueba su no adecuación como modelo psicológico ¿Hay un equipo de fútbol en Plutón? Imposibilidad de distinguir entre características propias del conjunto y características heredables por sus elementos El cardinal del conjunto delfín es característica de la clase y NO de los individuos de la clase (como flipper)
IAIC – Curso 2008-09
Redes semánticas: problemas

☐ Falta de adecuación lógica
Imposibilidad de hacer las mismas distinciones: faltan negación, disyunción, símbolos de función anidados, cuantificadores
La falta de cuantificadores (todo se representa sobre nodos concretos) se ha resuelto con el uso de redes semánticas particionadas en las que se puede indicar qué parte de la red está cuantificada existencialmente y cuál lo está universalmente
Significados de nodos y arcos dependientes de las capacidades del sistema: confusión de semántica con detalles de implementación
☐ Falta de adecuación heurística
 Imposibilidad de incluir meta-conocimiento para dirigir la búsqueda Extraer información puede ser muy ineficiente
■ Escasez de estructura
Evolución hacia sistemas más estructurados: los sistemas de marcos que soportan mejor ciertas tareas
Menos costoso un recorrido para contestar a preguntas negativamente

Implementación de redes semánticas

- Existen entornos específicos que proporcionan las herramientas básicas para construir redes semánticas, aunque en su mayoría han evolucionado hacia sistemas de marcos
 - ☐ Poco adecuadas como herramienta universal, aunque tienen usos especialmente adecuados
- Otras alternativas:
 - Implementación de un grafo > podemos usar cualquier lenguaje de programación
 - Podemos también simular la representación de redes semánticas en un lenguaje como Prolog, al igual que haremos con otras técnicas de representación

Lógica de predicados -PROLOG Redes semánticas Sistemas de producción Marcos

IAIC - Curso 2008-09

Ejemplo: ConceptNet, una red con 1,4 millones de conceptos

Tema 3.3 - 35

Variaciones: Mapas Conceptuales

ı ema 3.3 - 36 IAIC - Curso 2008-09

Variaciones: Mapas Mentales

Variaciones : Ontologías

