Théorie des nombres

Pierron Théo

ENS Ker Lann

Table des matières

1	Corps finis					
	1.1	Rappe	els de théorie des corps	1		
		1.1.1	Caractéristique d'un corps, sous-corps premier	1		
		1.1.2	Extension de corps	1		
		1.1.3	Corps de rupture, corps de décomposition	2		
	1.2	Corps	finis	3		
		1.2.1	Propriétés	3		
		1.2.2	Structure multiplicative	3		
		1.2.3	Morphisme de Frobenius - Sous-corps d'un corps fini .	4		
		1.2.4	Le polynôme $P = X^{q^n} - X \in \mathbb{F}_q[X]$	5		
	1.3	Carrés	$\operatorname{sde} \mathbb{F}_q$	5		
		1.3.1	Dénombrement	5		
		1.3.2	Symbole de LEGENDRE	6		
		1.3.3	Calcul de $\left(\frac{-1}{p}\right)$	6		
		1.3.4	Calcul de $\binom{2}{p}$	7		
		1.3.5	Loi de réciprocité quadratique	7		
	1.4	Symbo	ole de Jacobi	9		
		1.4.1	Définition	9		
		1.4.2	Calcul effectif du symbole de Jacobi	10		
		1.4.3	Test de primalité	11		
	1.5	Factor	risation dans $\mathbb{F}_q[X]$	12		
		1.5.1	Algorithme de Berlekanp	12		
2	Réseaux					
	2.1	Défini	tion et théorème de MINKOWSKI	15		
	2.2	Applie	cations	18		
		2.2.1		18		
		2.2.2	Théorème des quatre carrés	19		
			-			

3	Anneaux des entiers d'un corps de nombres				
	3.1	Rappels	21		
	3.2				
4	neau des entiers des corps quadratiques	27			
	4.1	Détermination	27		
	4.2	Unités de $\mathcal{O}_{\mathbb{O}[\sqrt{N}]}$	28		
	4.3	Factorialité, euclidianité de $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}$	29		
5	Bas	es d'entiers	33		
	5.1	Description de \mathcal{O}_K	33		
	5.2	Calcul d'une base de \mathcal{O}_K			
6	Uni	tés et équation de Pell-Fermat	37		
	6.1	$x^2 - dy^2 = 1 \dots \dots \dots \dots \dots \dots$	37		
	6.2	Fractions continues	40		
		6.2.1 Définition et premières propriétés	40		
		6.2.2 Réduction des formes quadratiques			
		6.2.3 Lien avec les fractions continues			
		6.2.4 Algorithme de résolution de l'équation de Pell-Fermat .			
	6.3	Théorème de Dirichlet			
7	Ana	alyse numérique	51		
-	7.1	-			
	7.2				
		Généralisation			
	1.5	7 3 1 Fonctions L			

Chapitre 1

Corps finis

1.1 Rappels de théorie des corps

1.1.1 Caractéristique d'un corps, sous-corps premier

<u>Définition 1.1</u> Soit k un corps. L'application :

$$f: \begin{cases} \mathbb{Z} & \to & k \\ n & \mapsto & n.1_k \end{cases}$$

définit un morphisme d'anneaux. Son noyau est un idéal de \mathbb{Z} . Il s'écrit donc $n\mathbb{Z}$. Si $n = n_1 n_2 \neq 0$, on a $(n_1 1_k)(n_2 1_k) = 0$ donc par intégrité, $n_1 \in \text{Ker}(f)$ ou $n_2 \in \text{Ker}(f)$. Ainsi, n = 0 ou n est premier.

Si $n \neq 0$, f induit une injection de $\mathbb{Z}/n\mathbb{Z}$ dans k. Son image est le plus petit sous-corps de k et est appelé sous-corps premier de k.

Si n=0, on montre que le sous-corps premier de k est \mathbb{Q} . En effet, k contient $\mathrm{Im}(f)=\mathbb{Z}$, donc son corps des fractions \mathbb{Q} . Comme \mathbb{Q} ne contient pas d'autre corps, on a bien le résultat.

Remarque 1.1 Si k est fini, n > 0.

1.1.2 Extension de corps

Définition 1.2

- Soient K et L deux corps avec $K \subset L$. On dit que L est une extension de K.
- Le degré de l'extension L/K est la dimension de L considéré comme K-espace vectoriel : $[L:K] = \dim_K L$.
- On dit qu'une extension est finie ssi son degré est fini.

- Si L/K est une extension et $\alpha \in L$, le plus petit sous-corps de L contenant α et K est noté $K(\alpha)$.
 - Si α vérifie $P(\alpha) = 0$ avec $P \in K[X]$, alors $K(\alpha)$ est finie et de degré inférieur ou égal à $\deg(P)$ et $K(\alpha) = K[\alpha]$. On dit que α est algébrique sur K.
 - Sinon, α est dit transcendant sur K et $K(\alpha) = \operatorname{Frac}(K[\alpha])$. L'extension $K(\alpha)/K$ est alors infinie. Une extension de cette forme est dite monogène.

<u>Théorème 1.1</u> (de l'élément primitif) Toute extension finie séparable ¹ est monogène.

Exemples:

- Toute extension finie de corps de caractéristique nulle est monogène.
- Toute extension finie de corps fini est monogène.

1.1.3 Corps de rupture, corps de décomposition

THÉORÈME 1.2 Soit K un corps et $P \in K[X]$. Il existe une extension L de K telle que P ait une racine dans L (corps de rupture). Les extensions de K minimales où P a une racine sont isomorphes.

Démonstration. On peut supposer P irréductible, c'est-à-dire $K[X]/\langle P\rangle = K[X]/(PK[X])$.

- \exists La classe de X est une racine de P dans $K[X]/\langle P \rangle$.
- \sim Si L/K est une extension et $\alpha \in L$ vérifie $P(\alpha) = 0$, $K(\alpha)$ est une extension de K où P a une racine donc si L est minimal, on a $L = K(\alpha)$. Via l'application :

$$\delta_a: \begin{cases} K[X] & \to & K(\alpha) = L \\ Q(X) & \mapsto & Q(\alpha) \end{cases}$$

on a
$$K[X]/\langle P \rangle \simeq K(\alpha) = L$$
.

Théorème 1.3 Soit K un corps et $P \in K[X]$. Il existe une extension L de K telle que P s'écrive comme produit de facteurs de degré 1 dans L[X]. Les extensions de K minimales pour cette propriété sont isomorphes entre elles.

<u>Définition 1.3</u> Un tel corps est appelé corps de décomposition pour P.

Démonstration. Il suffit d'itérer le processus de construction du corps de rupture.

^{1.} Une extension algébrique L d'un corps K est dite séparable ssi le polynôme minimal de tout élément de L n'admet que des racines simples.

1.2 Corps finis

1.2.1 Propriétés

Proposition 1.1 Soit K un corps fini.

- Sa caractéristique est un nombre premier p.
- Son sous-corps premier est isomorphe à $\mathbb{Z}/p\mathbb{Z}$.
- Comme K en est une extension, il a une structure de $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel de dimension finie (car K fini) notée d.
- On a $K \simeq (\mathbb{Z}/p\mathbb{Z})^d$ donc $Card(K) = p^d$.

1.2.2 Structure multiplicative

Théorème 1.4 Si K est un corps fini, alors (K^*, \times) est un groupe cyclique.

Démonstration. Si $x \in K^*$ d'ordre $n \ge 1$. Le sous-groupe engendré par x est un sous-groupe d'ordre n donc les éléments ont un ordre qui divise n.

Un élément de K^* dont l'ordre divise n est une racine de X^n-1 et il y a au plus n éléments de K^* dont l'ordre divise n.

On a donc deux possibilités : soit il n'y a pas d'éléments d'ordre n dans K^* , soit, s'il y en a, il y a n éléments dont l'ordre divise n. Ils forment alors un sous-groupe cyclique de K^* , isomorphe à $\mathbb{Z}/n\mathbb{Z}$. Il y a donc $\varphi(n)$ éléments d'ordre n.

Notons $q = \operatorname{Card}(K)$.

$$q - 1 = \operatorname{Card}(K^*)$$

$$= \sum_{n|q-1} \operatorname{Card}\{x \in K^*, x \text{ est d'ordre } n\}$$

$$\leqslant \sum_{n|q-1} \varphi(n)$$

On a aussi:

$$q-1 = \operatorname{Card}(\mathbb{Z}/(q-1)\mathbb{Z})$$

$$= \sum_{n|q-1} \operatorname{Card}\{x \in \mathbb{Z}/(q-1)\mathbb{Z}, x \text{ est d'ordre } n\}$$

$$= \sum_{n|q-1} \varphi(n)$$

La première inégalité est donc une égalité et pour tout $n \mid q-1$, il y a au moins un élément d'ordre n. Donc il existe un élément d'ordre q-1 et K^* est cyclique.

 $Remarque \ 1.2 \quad On \ a \ montr\'e \ que \ X^{q-1}-1=\prod_{x\in K^*}(X-x).$

1.2.3 Morphisme de Frobenius - Sous-corps d'un corps fini

THÉORÈME 1.5 L'application $\varphi_p: x \mapsto x^p$ est un automorphisme de corps. $(a^p + b^p = (a + b)^p$ car p divise les cæfficients binomiaux différents de 1).

Soit K' un sous-corps de K. K' contient le sous-corps premier de K donc on a des extensions.

THÉORÈME 1.6 On a $[K: \mathbb{Z}/p\mathbb{Z}] = [K:K'] \times [K': \mathbb{Z}/p\mathbb{Z}].$

Démonstration. Si K est de cardinal p^d et si $d' \mid d$, montrons que K' est un sous-corps de K de cardinal $p^{d'}$.

Posons $E = \{x \in K, x^{p^{d'}} - x = 0\}$. E est le noyau de l'application $\mathbb{Z}/p\mathbb{Z}$ -linéaire $\varphi_{p^{d'}}$ – Id donc E est stable par + et \cdot . De plus, $\varphi_{p^{d'}}(xy) = \varphi_{p^{d'}}(x)\varphi_{p^{d'}}(y) = xy$ donc E est stable par \times . C'est donc un sous-corps de K qui convient.

En effet,
$$X^{p^{d'}}-X\mid X^{p^d}-X=\prod_{x\in K}(X-x)$$
 donc $X^{p^{d'}}-X$ est scindé sur K donc $\mathrm{Card}(E)=p^{d'}.$

Remarque 1.3 Les éléments de K' sont les racines de $X^{p^{d'}} - X$. Il y a donc au plus un sous-corps de cardinal $p^{d'}$.

THÉORÈME 1.7 Pour tout $q = p^d$, il existe un unique corps fini de cardinal q noté \mathbb{F}_q .

Démonstration.

 $\exists q \text{ s'écrit } p^d.$

 $P = X^q - X \in \mathbb{Z}/p\mathbb{Z}[X]$ est sans facteur carré car P' = -1.

Notons K le corps de décomposition de P sur $\mathbb{Z}/p\mathbb{Z}$.

K est un corps fini (extension finie de $\mathbb{Z}/p\mathbb{Z}$) et $\operatorname{Card}(K) \geqslant q$ car K contient les q racines distinctes de P.

Posons $K' = \{x \in K, x^q = x\}$. K' est un sous-corps de K à q éléments.

! Si k est un corps fini de cardinal $q = p^d$, on a k^* cyclique donc pour tout $x \in k^*$, $x^{q-1} = 1$ donc $x^q = x$ et $0^q = 0$ donc $X^q - X$ est scindé dans k. Par unicité du corps de décomposition, k et K' sont isomorphes.

Remarque 1.4 K' est un sous-corps contenant K et les q racines de P. Donc c'est un corps de décomposition de P qui est de plus minimal donc K = K'.

Remarque 1.5 L'isomorphisme n'est pas unique (sa composée avec le Frobénius en est aussi un).

Le polynôme $P = X^{q^n} - X \in \mathbb{F}_q[X]$

Théorème 1.8 Soient a, b, q trois entiers. r est le reste dans la division de a par b ssi $q^r - 1$ est le reste dans la division de $q^a - 1$ par $q^b - 1$.

 $D\acute{e}monstration$. Il suffit d'écrire les nombres en base q.

Proposition 1.2

- P est à racines simples.
- Soit $Q \in \mathbb{F}_q[X]$ irréductible. $Q \mid P$ ssi $\deg(Q) \mid n$ et $K = \mathbb{F}_q[X]/\langle Q \rangle$ est un corps à $q^{\deg(Q)}$ éléments.

Démonstration.

- P' = -1 donc P est à racines simples. Si $\deg(Q) \mid n, x^{q^{\deg(Q)}} = x$ donc $x^{q^n} = (((x^{q \deg(Q)})^{q \deg(Q)})^{\cdots})^{q \deg(Q)} = x$. Donc $x^{q^n} = x$ sur K et $Q \mid X^{q^n} - X$.
- $\bullet \,$ Si $Q \mid X^{q^n} X, \, K$ est un corps à $q^{\deg(Q)}$ éléments. On a $Q(\overline{X})=0$ et $\overline{X}^{q^n}=\overline{X}$. Donc $\varphi_q^n(\overline{X})=\overline{X}$ avec φ_q le Frobénius. φ_q est linéaire et \overline{X} engendre K en tant que \mathbb{F}_q -algèbre. Donc, pour tout $x \in K$, $x^{q^n} = x$. En particulier, si x est un générateur $\det K^*, q^{\deg(Q)} - 1 \mid q^n - 1 \operatorname{donc} \deg(Q) \mid n.$

On a donc:

$$X^{q^n} - X = \prod_{P \in \mathbb{F}_q[X] \text{ unitaire irréductible}} P$$

Carrés de \mathbb{F}_q 1.3

1.3.1 Dénombrement

 \mathbb{F}_q^* est isomorphe à $\mathbb{Z}/(q-1)\mathbb{Z}$ donc x est un carré de \mathbb{F}_q^* ssi x est un multiple de 2 dans $\mathbb{Z}/(q-1)\mathbb{Z}$.

- Si q est pair, tout élément de \mathbb{F}_q est un carré. En effet, q-1 est impair donc premier avec 2 donc 2 est inversible.
- Si q est impair, il y a $\frac{q+1}{2}$ carrés dans \mathbb{F}_q . En effet, dans $\mathrm{Im}(x\to x^2)$ chaque élément non nul a deux antécédents. Donc $q = 1 + 2(\text{Card}(\text{Im}(x \to x^2)) - 1).$
- Si $x \in \mathbb{F}_q$, $x^{\frac{q-1}{2}}$ vaut 0 si x = 0, 1 si x est un carré non nul et -1 sinon.

1.3.2Symbole de LEGENDRE

On se place maintenant dans \mathbb{F}_p avec p premier.

Définition 1.4 On définit le symbole de Legendre de n et p (premier) et on note $\left(\frac{n}{p}\right)$ l'entier 0 si $p \mid n$, 1 si n est un carré modulo p avec $p \nmid n$ et -1sinon (ie si n n'est pas un carré modulo p).

Remarque 1.6

• $\binom{-1}{p} = x^{\frac{p-1}{2}} \mod p \text{ si } p \neq 2.$ • L'application :

$$l: \begin{cases} \mathbb{F}_p^* & \to & \{1, -1\} \\ n & \mapsto & \left(\frac{n}{p}\right) \end{cases}$$

est un morphisme de groupes.

• Pour déterminer les carrés, il suffit de savoir calculer $\left(\frac{-1}{p}\right)$, $\left(\frac{2}{p}\right)$ et $\left(\frac{q}{p}\right)$ avec q et p premiers et impairs.

On suppose désormais p et q premiers impairs.

Calcul de $\left(\frac{-1}{n}\right)$ 1.3.3

On a, d'après le paragraphe précédent, $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} \mod p$ donc $\left(\frac{-1}{p}\right)$ vaut donc la classe de p dans $\mathbb{Z}/4\mathbb{Z}$.

<u>Définition 1.5</u> Soit $\sigma \in \mathfrak{S}_n$. On définit la signature de σ et on note $\varepsilon(\sigma)$ la quantité:

$$(-1)^{\operatorname{Card}\{1 \le i < j \le n, \sigma(i) > \sigma(j)\}}$$

$$= (-1)^{\operatorname{Card}(\operatorname{supp} \sigma) - 1} (\operatorname{si} \sigma \text{ est un cycle})$$

$$= 1 \operatorname{si} \sigma = \tau_1 \circ \cdots \circ \tau_{2p} \text{ et } -1 \text{ sinon}$$

Théorème 1.9 Si $p \nmid n$, $\left(\frac{n}{p}\right) = \varepsilon(\sigma_n)$ avec :

$$\sigma_n: \begin{cases} \mathbb{F}_p^* & \to & \mathbb{F}_p^* \\ x & \mapsto & nx \end{cases}$$

Démonstration. On montre que si g est un générateur de \mathbb{F}_p^* , alors $\left(\frac{g}{p}\right)$

 σ_g est circulaire donc $\varepsilon(\sigma_g) = (-1)^{p-1-1} = -1$. De plus g n'est pas un carré sinon tous les éléments de \mathbb{F}_p^* en seraient, ce qui contredirait p impair. Donc $\left(\frac{g}{p}\right) = -1$.

1.3.4 Calcul de $\binom{2}{p}$

On compte les inversions causées par σ_2 .

On a, pour tout i, $2i = (2i \mod p)$ si $i \leqslant \frac{p-1}{2}$ et $2i = (2i-p \mod p)$ si $i > \frac{p-1}{2}$.

Pour avoir une inversion, il faut (et il suffit) d'avoir $i \leq \frac{p-1}{2}$, $j > \frac{p-1}{2}$ et 2i > 2j - p (ie $j \leq i + \frac{p-1}{2}$)

On a donc
$$\sum_{j=0}^{\frac{p-1}{2}} j = \frac{p^2 - 1}{8}$$
 inversions donc $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}$.

1.3.5 Loi de réciprocité quadratique

<u>Définition 1.6</u> On pose $\mu_p(E) = \{x \in E, x^p = 1\}.$

<u>Définition 1.7</u> Soit K un corps et $P \in K[X]$ de degré d. On note \overline{K} une clôture algébrique de K et $(\theta_1, \ldots, \theta_d)$ les racines de P dans \overline{K} .

Le discriminant de P, noté $\operatorname{disc}(P)$ est défini par

$$\operatorname{disc}(P) = \left(\prod_{i=1}^{d-1} \prod_{j=i+1}^{d} (\theta_i - \theta_j)\right)^2$$

Théorème 1.10 disc $(P) \in K$.

 $D\acute{e}monstration$. disc(P) est symétrique en les θ_i donc c'est un polynôme en les polynômes symétriques élémentaires en les θ_i , qui sont, au signe près les cœfficients de P.

Comme
$$P \in K[X]$$
, disc $(P) \in K$.

THÉORÈME 1.11 Soient $(\theta_1, \dots, \theta_p)$ les racines de $X^p - 1$ dans $\overline{\mathbb{F}_q}$. On pose $\delta = \prod_{i=1}^{d-1} \prod_{j=i+1}^d (\theta_i - \theta_j)$. On a :

$$\delta^{q} = \delta \times \varepsilon \left(f : \begin{cases} \mu_{p}(\overline{\mathbb{F}_{q}}) & \to & \mu_{p}(\overline{\mathbb{F}_{q}}) \\ x & \mapsto & x^{q} \end{cases} \right)$$

Démonstration.

$$\delta^{q} = \left(\prod_{i=1}^{d-1} \prod_{j=i+1}^{d} (\theta_{i} - \theta_{j})\right)^{q} = \prod_{i=1}^{d-1} \prod_{j=i+1}^{d} (\theta_{i}^{q} - \theta_{j}^{q}) = \prod_{i=1}^{d-1} \prod_{j=i+1}^{d} (\theta_{i} - \theta_{j}) \varepsilon(x \to x^{q})$$

THÉORÈME 1.12 $\varepsilon(x \to x^q) = 1 \ ssi \ disc(X^p - 1) \ est \ un \ carré \ de \mathbb{F}_q$.

Démonstration.

- $\Rightarrow \varepsilon(x \to x^q) = 1$ donc $\delta^q = \delta$ (théorème 1.11). Donc δ est racine de $X^q - X$ dans $\overline{\mathbb{F}_q}$ donc $\delta \in \mathbb{F}_q$ et $\operatorname{disc}(P) = \delta^2$.
- \Leftarrow Par contraposée, si $\varepsilon(x \to x^q) = -1$, $\delta^q = -\delta$ donc $\delta \notin \mathbb{F}_q$. $(\delta \neq 0 \text{ car})$ P est à racines simples)

Les racines, dans $\overline{\mathbb{F}_q}$, de disc(P) étant $\pm \delta$, disc(P) n'est pas un carré de \mathbb{F}_q .

Proposition 1.3 Soit K un corps et $P \in K[X]$ unitaire de degré d. Notons $(\theta_1,\ldots,\theta_d)$ ses racines dans \overline{K} .

$$\operatorname{disc}(P) = (-1)^{\frac{d(d-1)}{2}} \prod_{i=1}^{d} P'(\theta_i)$$

$$D\acute{e}monstration. \text{ On a } P' = \sum_{i=1}^d \prod_{j \neq i} (X - \theta_j).$$

$$P'(\theta_i) = \prod_{j \neq i} (\theta_i - \theta_j) \text{ donc } \prod_{i=1}^d P'(\theta_i) = \prod_{i=1}^d \prod_{j \neq i} (\theta_i - \theta_j).$$

$$\text{Donc } \prod_{i=1}^d P'(\theta_i) = \text{disc}(P) \times (-1)^{1+2+\dots+(d-1)} = (-1)^{\frac{d(d-1)}{2}} \text{ disc}(P).$$

<u>Théorème 1.13</u> $\operatorname{disc}(X^p - 1) = (-1)^{\frac{p-1}{2}} p^p$

Démonstration.

$$\operatorname{disc}(X^{p}-1) = (-1)^{\frac{p(p-1)}{2}} \prod_{\theta \in \overline{K}, P(\theta)=0} p\theta^{p-1} \quad (\operatorname{Propriét\'e} \ 1.3)$$

$$= (-1)^{\frac{p-1}{2}} p^{p} \left(\prod_{\theta \in \overline{K}, P(\theta)=0} \theta\right)^{p-1} \quad (p \text{ impair})$$

$$= (-1)^{\frac{p-1}{2}} p^{p} (-1)^{p(p-1)} \quad (\operatorname{Relations coefficients/racines})$$

$$= (-1)^{\frac{p-1}{2}} p^{p} \quad (\operatorname{car} \ p(p-1) \equiv 0 \mod 2)$$

Théorème 1.14 (Loi de réciprocité quadratique) Soient p et q deux entiers impairs premiers distincts. On a:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}$$

 $D\'{e}monstration$. On a :

$$\left(\frac{q}{p}\right) = \varepsilon \left(\sigma_{q,p} : \begin{cases} \mathbb{F}_p^* & \to & \mathbb{F}_p^* \\ x & \mapsto & qx \end{cases}\right)$$

Comme $\mu_p(\mathbb{F}_q)$ est cyclique, via un isomorphisme, on a :

$$\left(\frac{q}{p}\right) = \varepsilon \left(f : \begin{cases} \mu_p(\overline{\mathbb{F}_q}) & \to & \mu_p(\overline{\mathbb{F}_q}) \\ x & \mapsto & x^q \end{cases}\right)$$

D'après le théorème 1.12, $\binom{q}{p} = \binom{\operatorname{disc}(X^p-1)}{q}$. D'après le théorème 1.13,

$$\left(\frac{q}{p}\right) = \left(\frac{(-1)^{\frac{p-1}{2}}p^p}{q}\right) = \left(\frac{-1}{q}\right)^{\frac{p-1}{2}}\left(\frac{p}{q}\right)^p = (-1)^{\frac{(p-1)(q-1)}{4}}\left(\frac{p}{q}\right)^p$$

Or,
$$\binom{p}{q} \in \{1, -1\}$$
 donc $\binom{p}{q} = \frac{1}{\binom{p}{q}}$ donc on a bien $\binom{p}{q}$ $\binom{q}{p} = (-1)^{\frac{(p-1)(q-1)}{4}}$.

Symbole de Jacobi 1.4

1.4.1 **Définition**

<u>Définition 1.8</u> Soit $m = \prod_{i=1}^{r} p_i \in 2\mathbb{Z} + 1$, avec p_i premiers.

Le symbole de Jacobi de n et m, noté $\left(\frac{n}{m}\right)$ vaut $\prod_{i=1}^{n} \left(\frac{n}{p_i}\right)$.

Proposition 1.4

- $\bullet \quad \left(\frac{n}{m}\right) \left(\frac{n'}{m}\right) = \left(\frac{nn'}{m}\right) \\
 \bullet \quad \left(\frac{n}{m}\right) \left(\frac{n}{m'}\right) = \left(\frac{n}{mm'}\right) \\
 \bullet \quad \left(\frac{-1}{m}\right) = \left(-1\right)^{\frac{m-1}{2}}$

Démonstration.

- Clair par définition
- On veut montrer que $\frac{m-1}{2} + \frac{m'-1}{2} \equiv \frac{mm'-1}{2} \mod 2$. En testant les cas, on obtient $\frac{m-1}{2} + \frac{m'-1}{2} \equiv 0 \mod 2$ si $mm' \equiv 1 \mod 4$ et 1 si $mm' \equiv -1 \mod 4$, ce qui correspond bien à $\frac{mm'-1}{2}$ $\mod 2$.

• La propriété similaire concernant le symbole de Legendre assure le résultat d'après le point précédent.

Proposition 1.5
$$\left(\frac{2}{m}\right) = (-1)^{\frac{m^2-1}{8}}$$
.

Démonstration. Le résultat avec le symbole de Legendre assure le résultat si on montre la multiplicativité de $(-1)^{\frac{m^2-1}{8}}$. Or $\frac{m^2-1}{8}+\frac{m'^2-1}{8}\equiv 0 \mod 2$ si $mm'=\pm 1 \mod 8$ et 1 si $mm'=\pm 3$

mod 8, ce qui correspond à la classe de $\frac{(mm')^2-1}{8}$ dans $\mathbb{Z}/2\mathbb{Z}.$

Proposition 1.6 Si
$$m$$
 et n impairs, $\left(\frac{n}{m}\right)\left(\frac{m}{n}\right) = (-1)^{\frac{(m-1)(n-1)}{4}}$.

 $D\acute{e}monstration$. On montre de même la multiplicativité de $(-1)^{\frac{(m-1)(n-1)}{4}}$. Or, modulo 2, on a:

$$\frac{(m-1)(n-1)}{4} + \frac{(m'-1)(n-1)}{4} \equiv \left(\frac{m-1}{2} + \frac{m'-1}{2}\right) \frac{n-1}{2}$$

$$\equiv \frac{mm'-1}{2} \times \frac{n-1}{2}$$

1.4.2 Calcul effectif du symbole de Jacobi

On utilise un algorithme d'Euclide modifié pour ne garder que des impairs. Pour calculer $\left(\frac{n}{m}\right)$:

Si *n* pair, on chasse les facteurs 2 (on calcule $\left(\frac{2}{m}\right)$)

On est ramené à n impair. Si $n=\pm 1 \mod m$, on sait calculer le symbole.

- Si $m \mid n, \left(\frac{n}{m}\right) = 0$
- Si |n| > m, on remplace n par le reste de la division euclidienne de n
- On se ramène alors à $\left(\frac{m}{n}\right)$ à l'aide de la propriété précédente.

Exemple 1.1
$$\left(\frac{90}{143}\right) = \left(\frac{2}{143}\right) \left(\frac{45}{143}\right)$$
. Or $143 \equiv -1 \mod 9$ donc $\left(\frac{2}{143}\right) = 1$.
Donc $\left(\frac{90}{143}\right) = \left(\frac{45}{143}\right) = \left(\frac{143}{45}\right)$ car $45 \equiv 1 \mod 4$ donc $\left(\frac{45-1}{2}\right) \left(\frac{143-1}{2}\right)$ est pair. Or $\left(\frac{143}{45}\right) = \left(\frac{8}{45}\right)$ car $143 = 3 \times 45 + 8$.
De plus, $\left(\frac{8}{45}\right) = \left(\frac{2}{45}\right)^3 = \left(\frac{2}{45}\right) = -1$ car $45 \equiv -3 \mod 8$.
Donc $\left(\frac{90}{143}\right) = -1$.

1.4.3 Test de primalité

Étant donné un entier N > 1, on veut savoir si N est premier.

- Algorithme élémentaire : on essaie de diviser N par $2, 3, \ldots, E(\sqrt{n})$. (totalement inefficace)
- Utilisation du petit théorème de Fermat : Si N est premier et $a \wedge N =$ 1 alors $a^{N-1} \equiv 1 \mod N$. On a alors une condition nécessaire non suffisante (nombres de Carmichael).
- Test de NON primalité (Soloway-Strassen) Il repose sur le fait que si N est premier et a premier avec N, $a^{\frac{N-1}{2}} \equiv \left(\frac{a}{N}\right) \mod N$. On prend N impair.

Algorithme: On choisit au hasard $a \in [0, N-1]$.

Si $a \wedge N \neq 1$ alors N n'est pas premier, Sinon, on calcule $a^{\frac{N-1}{2}} \mod N$ et le symbole de Jacobi $\left(\frac{a}{N}\right)$.

Si $a^{\frac{N-1}{2}} \not\equiv \left(\frac{a}{N}\right) \mod N$ alors N n'est pas premier. Sinon, on ne peut rien dire.

Théorème 1.15 Si N n'est pas premier, alors au plus la moitié des entiers entre [0, N-1] ne détectent pas ce fait.

Démonstration. On sait que $\left\{a \in (\mathbb{Z}/N\mathbb{Z})^*, a^{\frac{N-1}{2}} \equiv \left(\frac{a}{N}\right) \mod N\right\}$ est un sous-groupe de $\mathbb{Z}/N\mathbb{Z}^*$.

Il suffit donc de montrer que si N n'est pas premier, alors ce sous-groupe n'est pas $(\mathbb{Z}/N\mathbb{Z})^*$ tout entier.

ullet Si N est sans-facteur carré, soit p premier divisant N et a tel que $a \equiv 1 \mod \frac{N}{n}$ et $\left(\frac{a}{n}\right) = -1$.

Alors, d'après le théorème chinois, $\left(\frac{a}{N}\right) = \left(\frac{a}{N}\right) \left(\frac{a}{N}\right) = (-1) \left(\frac{1}{N}\right) = -1$.

On a de plus $a^{\frac{N-1}{2}} = 1 \mod \frac{N}{p}$. Donc $a^{\frac{N-1}{2}} = \left(\frac{a}{N}\right) \mod N \Rightarrow a^{\frac{N-1}{2}} = \left(\frac{a}{N}\right) \mod \frac{N}{p} \Rightarrow 1 \equiv -1 \mod \frac{N}{p} \Rightarrow \frac{N}{p} \mid 2 \Rightarrow N \mid 2p$. On a donc une contradiction.

• Si N a un facteur carré, on a $p^2 \mid N$. Posons $a = 1 + \frac{N}{n}$.

On a
$$a^p = (1 + \frac{N}{p})^p = \sum_{i=1}^n \binom{p}{i} \left(\frac{N}{p}\right)^i$$
;

Comme p est premier, p divise les cœfficients binômiaux (sauf 1) donc

$$N\left|\binom{p}{i}\left(\frac{N}{p}\right)^i\right|$$
 pour tout i . De plus, $(\frac{N}{p})^p = \underbrace{\frac{N}{p}}_{=kp} \underbrace{\frac{N}{p}}_{p} (\frac{N}{p})^{p-2}$.

Donc $N \mid (\frac{N}{n})^p$.

On a alors $a^p \equiv 1 \mod N$. Or p est premier et $a \not\equiv 1 \mod N$ donc a est d'ordre p dans $\mathbb{Z}/N\mathbb{Z}^*$.

 $p \mid N$ donc $p \nmid N-1$ donc $a^{N-1} \not\equiv 1 \mod N$ donc $a^{\frac{N-1}{2}} \not\equiv \pm 1 \mod N$

Donc
$$a^{\frac{N-1}{2}} \not\equiv \left(\frac{a}{N}\right) \mod N$$
.

• Test de Pocklington-Lehmer

Théorème 1.16 Soit $N \ge 2$ un entier. On suppose que la factorisation de N-1 est connue.

N est premier ssi pour tout p premier divisant N-1, il existe a_p tel que $a_p^{N-1} \equiv 1 \mod N$ et $a_p^{\frac{N-1}{p}} \wedge N = 1$.

Démonstration.

- Si N est premier, soit a un générateur de Z/NZ*. a est d'ordre N-1 donc a^{N-1} ≡ 1 mod N et a^{N-1} ≠ 1 mod N car 0 < N-1 p < N-1.
 Réciproquement, si q est un diviseur premier de N et p un diviseur
- Réciproquement, si q est un diviseur premier de N et p un diviseur premier de N-1, on a $a^{N-1} \equiv 1 \mod q$ et $a^{\frac{N-1}{q}} \not\equiv 1 \mod q$. Soit e l'ordre de a dans $\mathbb{Z}/q\mathbb{Z}^*$. $e \mid N-1$ mais $e \nmid \frac{N-1}{p}$.

Posons
$$N - 1 = \prod_{i=1}^{s} p_i^{\alpha_i}$$
 et $e = \prod_{i=1}^{s} p_i^{\beta_i}$.

On a, pour tout $i, \beta_i \leqslant \alpha_i$ mais il existe i_0 tel que $p_{i_0} = p$ et $\beta_{i_0} \leqslant \alpha_{i_0} - 1$ est faux donc $\alpha_{i_0} = \beta_{i_0}$.

On a alors $v_p(e) = v_p(N-1)$.

Comme e est l'ordre de a dans $\mathbb{Z}/q\mathbb{Z}^*$, $e \mid q-1$ donc $v_p(q-1) \geqslant v_p(e) = v_p(N-1)$.

En quantifiant en p, on obtient $N-1 \mid q-1$. Or q-1>0 donc $q-1 \ge N-1$. Or $q \mid N$ donc N=q et q est premier.

1.5 Factorisation dans $\mathbb{F}_q[X]$

1.5.1 Algorithme de Berlekanp

On a $q = p^d$ avec p premier. $Q \in \mathbb{F}_q[X]$ peut être supposé sans facteur carrés (en faisant des PGCD avec Q', \ldots).

THÉORÈME 1.17 Soit
$$Q = \prod_{i=0}^{m-1} Q_i$$
 avec Q_i irréductible. Soit $R \in \mathbb{F}_q[X]$.
$$R^q \equiv R \mod Q \quad \text{ssi} \quad \forall i \in [0, m-1], \exists s_i \in \mathbb{F}_q, R \equiv s_i \mod Q_i$$

Démonstration.

 \Leftarrow Pour tout i, $R^q - R \equiv s_i^q - s_i \mod Q_i$. Or $s_i \in \mathbb{F}_q$ donc $s_i^q = s_i$ donc $R^q \equiv R \mod Q_i$.

Les Q_i étant premiers entre eux (pas de facteurs carrés), $R^q \equiv R \mod Q$.

 \Rightarrow Posons $K_i = \mathbb{F}_q[X]/\langle Q_i \rangle$.

Les K_i sont des corps et des extensions finies de \mathbb{F}_q . La classe de R dans K_i est une racine de $Y^q - Y \in K_i[Y]$.

Ces racines sont les éléments de \mathbb{F}_q donc il existe $s_i \in \mathbb{F}_q$ tel que $R = s_i$ dans K_i ie $R \equiv s_i \mod Q_i$.

Remarque 1.7

• $\{R \in \mathbb{F}_q[X]/\langle Q \rangle, R^q = R \mod Q\}$ est un sous-espace vectoriel de $\mathbb{F}_q[X]/\langle Q \rangle$ qui est un \mathbb{F}_q -espace vectoriel. Plus précisément, c'est le noyau de l'application \mathbb{F}_q linéaire :

$$f: \begin{cases} \mathbb{F}_q[X]/\langle Q \rangle & \to & \mathbb{F}_q[X]/\langle Q \rangle \\ R & \mapsto & R^q - R \end{cases}$$

En particulier, on peut calculer une base de ce noyau (par exemple avec un pivot de Gauss).

- Ce noyau est isomorphe (en tant que \mathbb{F}_q -espace vectoriel) à \mathbb{F}_q^m , donc ce noyau est de dimension m.
- Le cas où tous les s_i sont égaux correspond au cas où R est constant modulo Q ie à la droite vectorielle de $\mathbb{F}_q[X]/\langle Q \rangle$ engendrée par 1.

Algorithme:

• Écrire la matrice de :

$$f: \begin{cases} \mathbb{F}_q[X]/\langle Q \rangle & \to & \mathbb{F}_q[X]/\langle Q \rangle \\ R & \mapsto & R^q - R \end{cases}$$

dans $(1, X, ..., X^{\deg(Q)-1})$

• Calculer une base $(A_1 = 1, A_2, ..., A_m)$ de son noyau par pivot de Gauss.

Si m=1, alors Q est irréductible. Sinon,

Choisir $j \in [\![2,m]\!]$

Calculer $(A_i - s) \wedge Q$ pour tout $s \in \mathbb{F}_q$.

D'après le théorème, l'un de ces PGCD donne un facteur non trivial de Q. $(A_j \in \operatorname{Ker}(f) \operatorname{donc} \operatorname{pour} s = s_i, Q_i \mid (A_j - s) \wedge Q)$ On peut alors recommencer avec les deux parties issues de Q.

Chapitre 2

Réseaux

2.1 Définition et théorème de MINKOWSKI

<u>Définition 2.1</u> Soit E un \mathbb{R} -espace vectoriel de dimension finie n muni d'une base $(e_1 \cdots, e_n)$. Un réseau de E est un sous- \mathbb{Z} -module de la forme $\mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n$.

FIGURE 2.1 – Réseau de \mathbb{R}^2

Théorème 2.1 Un sous- \mathbb{Z} -module qui engendre E comme \mathbb{R} -espace vectoriel est un réseau ssi il est discret.

$D\'{e}monstration.$

 \Rightarrow Si Λ est un réseau de E, avec $\Lambda = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n$ où (e_1, \ldots, e_n) est une base de E.

$$\varphi: \begin{cases} \mathbb{R}^n & \to & E \\ (x_1, \dots, x_n) & \mapsto & \sum_{i=1}^n x_i e_i \end{cases}$$

est un isomorphisme d'espaces vectoriels topologiques (c'est un homéomorphisme linéaire).

 \mathbb{Z}^n est discret dans \mathbb{R}^n donc $\Lambda = \varphi(\mathbb{Z}^n)$ est discret dans E.

 \Leftarrow Par récurrence sur n.

On suppose Λ discret. On prend (g_1, \ldots, g_r) une famille libre maximale incluse dans Λ .

On note $E_0 = \text{Vect} \{g_1, \dots, g_{r-1}\}\ \text{et } \Lambda_0 = \Lambda \cap E_0.$

 Λ_0 est un sous- \mathbb{Z} -module discret de E_0 (qui est de dimension inférieure à n) et Λ_0 engendre E_0 .

Par hypothèse de récurrence, Λ_0 est un réseau de E_0 . Donc il existe (e_1, \ldots, e_{r-1}) base de E_0 tel que $\Lambda_0 = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_{r-1}$.

 $(e_1, \ldots, e_{r-1}, g_r)$ est libre et maximale car (g_1, \ldots, g_r) l'était.

On considère

$$D = \{\lambda_1 e_1 + \dots + \lambda_{r-1} e_{r-1} + \lambda_r g_r, (\lambda_1, \dots, \lambda_{r-1}) \in [0, 1[, \lambda_r \in]0, 1]\}$$

On pose $T=D\cap\Lambda.$ D est borné dans E qui est de dimension finie donc il est compact.

T est donc inclus dans un compact discret donc il est fini. On prend $e_r \in T$ avec λ_r minimal.

 $e_r = \sum_{i=1}^r \lambda_i e_i$. (e_1, \dots, e_r) est donc libre maximale.

Si $x \in \Lambda$, comme Λ engendre E, toute famille libre maximale formée d'éléments de Λ est une base de E, $(e_1, \ldots, e_{r-1}, g_r)$ est une base de E.

Donc
$$x = \sum_{i=1}^{r-1} \mu_i e_i + \mu_r e_r$$
.

Le soustraction d'un élément de $\mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$ à x, noté y, vérifie $\mu_r \in [0, \lambda_r[$, puis $\mu_1, \ldots, \mu_{r-1} \in [0, 1[$.

 $y \in \Lambda$ donc si $\mu_r \neq 0$, alors $y \in T$ donc on a une contradiction avec la minimalité de λ_r .

Donc $\mu_r = 0$ donc $y \in E_0 \cap \Lambda = \Lambda_0$. Or (e_1, \ldots, e_{r-1}) est une base de Λ_0 donc $(\mu_1, \ldots, \mu_{r-1}) \in \mathbb{Z}$ donc ils sont nuls et y = 0.

Donc $x \in \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$. Donc $\Lambda \subset \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$ donc $\Lambda = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$.

Par récurrence on a le résultat.

Remarque 2.1 Si Λ est un réseau de E, il n'y a pas unicité de la base (e_1, \ldots, e_n) telle que $\Lambda = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n$. La matrice de passage entre deux

telles bases est une matrice à cæfficients entiers, inversible et son inverse est à cæfficients entiers. En particulier, le déterminant d'une telle matrice vaut ± 1 .

<u>Définition 2.2</u> La dimension d'un réseau est la dimension de l'espace vectoriel qu'il engendre.

Un domaine fondamental de Λ est une partie D de E telle que $(D+x)_{x\in\Lambda}$ soit une partition de E.

Le volume de Λ est le volume du domaine fondamental

$$D = \left\{ \sum_{i=1}^{n} \lambda_i e_i, (\lambda_1, \dots, \lambda_n) \in [0, 1]^n \right\}$$

C'est $|\det_{b.c.\mathbb{R}^2}(e_1,\ldots,e_n)|$.

THÉORÈME 2.2 Soit Λ un réseau de \mathbb{R}^n de domaine fondamental D.

Soit $\pi: \mathbb{R}^n \to \mathbb{R}^n/\Lambda$ et $\Phi = \pi|_D$.

Soit X une partie mesurable bornée de \mathbb{R}^n et λ la mesure de Lebesgue.

Si $\lambda(\Phi^{-1}(\pi(X))) \neq \lambda(X)$, $\pi|_X$ n'est pas injective.

Démonstration. On suppose que $\pi|_X$ est injective.

On pose $U = \{v \in \Lambda, (D+v) \cap X \neq \emptyset\}$. X est borné donc U est fini.

De plus, $X = \bigcup_{v \in U} (D+v) \cap X$ car D est un domaine fondamental.

On a de plus $(D + v) \cap X = (D \cap (X - v)) + v$.

Montrons que les $D \cap (X - v)$, $v \in U$ sont deux à deux disjoints. Si $x \in D \cap (X - v_0) \cap (X - v_1)$.

 $x + v_0 \in X$ et $x + v_1 \in X$ donc $\pi(x + v_0) = \pi(x + v_1) = \pi(x)$.

Par injectivité, $x + v_0 = x + v_1$ donc $v_0 = v_1$ donc $D \cap (X - v_0) = D \cap (X - v_1)$.

On a donc
$$\lambda(X) = \sum_{v \in U} \lambda((D+v) \cap X) = \sum_{v \in U} \lambda(D \cap (X-v)).$$

De plus,

$$\lambda(\Phi^{-1}(\pi(X))) = \lambda \left(\Phi^{-1}\left(\pi\left(\bigcup_{v \in U}(D+v) \cap X\right)\right)\right)$$
$$= \lambda \left(\Phi^{-1}\left(\bigcup_{v \in U}\pi((D+v) \cap X)\right)\right)$$
$$= \sum_{v \in U}\lambda(\Phi^{-1}(\pi((D+v) \cap X)))$$

Or
$$\pi((D+v) \cap X) = \pi(D \cap (X-v)) = \Phi(D \cap (X-v)).$$

Donc
$$\Phi^{-1}(\pi((D+v)\cap X)) = D\cap (X-v).$$

Donc
$$\lambda(\Phi^{-1}(\pi(X))) = \sum_{v \in U} \lambda(D \cap (X - v)) = \lambda(X).$$

Théorème 2.3 Minkowski Soit Λ un réseau de \mathbb{R}^n , D le domaine fondamental usuel.

Soit X un convexe symétrique borné non vide de \mathbb{R}^n .

$$Si \ \lambda(X) > 2^n \lambda(D) \ alors \ (X \cap \Lambda) \setminus \{0\} \neq \emptyset.$$

Démonstration. On applique le lemme précédent à 2Λ , 2D et X.

$$\lambda(\Phi^{-1}(\pi(X))) \leqslant \lambda(2D) = 2^n \lambda(D) < \lambda(X)$$

Donc $\pi|_X$ n'est pas injective donc il existe $x_0, x_1 \in X$ tel que $\pi(x_0) =$ $\pi(x_1) \text{ et } x_0 \neq x_1.$

 $\pi(x_0) = \pi(x_1)$ donc $x_0 - x_1 \in 2\Lambda$ donc $\frac{x_0 - x_1}{2} \in \Lambda$.

Or $\frac{x_0-x_1}{2} \in X$. (X convexe et symétrique).

De plus, $\frac{x_0 - x_1}{2} \neq 0$ car $x_0 \neq x_1$.

Donc $\frac{x_0-x_1}{2}$ convient.

Applications 2.2

2.2.1Théorème des deux carrés

Théorème 2.4 Soit p premier. p est somme de deux carrés ssi $p \not\equiv 3$ $\mod 4$.

Démonstration.

 \Rightarrow Si $p = x^2 + y^2$. Les carrés dans $\mathbb{Z}/4\mathbb{Z}$ sont 0 et 1 donc $x^2 \equiv 0 \mod 4$ ou $x^2 \equiv 1 \mod 4$ et de même pour y^2 .

Donc $x^2 + y^2 \equiv 0, 1, 2 \mod 4 \not\equiv 3 \mod 4$.

 \Leftarrow Si $p \not\equiv 3 \mod 4$.

Si p = 2, $p = 1^2 + 1^2$. Si $p \neq 2$, $p \equiv 1 \mod 4$. Comme $p \equiv 1 \mod 4$, on a $\left(\frac{-1}{p}\right) = 1$ donc il existe $\alpha \in \mathbb{Z}$, $\alpha^2 \equiv -1$

On pose $\Lambda = \{(x, y) \in \mathbb{Z}^2, y \equiv \alpha x \mod p\}.$

 $(1,\alpha), (0,1)$ est une base de \mathbb{Z}^2 donc $(x,y) \in \Lambda$ ssi il existe $a \in \mathbb{Z}$, $y = ap + \alpha x \text{ ssi } (x, y) \in \mathbb{Z}(1, \alpha) + p\mathbb{Z}(0, 1).$

Les diviseurs élémentaires sont donc 1 et p.

Le volume de Λ est $\begin{vmatrix} 1 & 0 \\ \alpha & p \end{vmatrix} = p$.

On applique le théorème de Minkowski avec X = B(0, r) : si $\pi r^2 > 4p$, $X \cap \Lambda$ contient un élément non nul.

Si $(x,y) \in X \cap \Lambda$ est non nul, $y \equiv \alpha x \mod p$ et $x^2 + y^2 \leqslant r^2$.

Donc $y^2 \equiv -x^2 \mod p \operatorname{donc} x^2 + y^2 \equiv 0 \mod p$.

Si $r^2 < 2p$, $p = x^2 + y^2$. On cherche donc r tel que $\pi r^2 > 4p$ et $r^2 < 2p$, ce qui est possible car $2 < \pi$.

2.2.2Théorème des quatre carrés

Théorème 2.5 Tout entier naturel est somme de quatre carrés.

Démonstration.

- On a $0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2$, $1 = 0^2 + 0^2 + 0^2 + 1^2$ et $2 = 0^2 + 0^2 + 1^2 + 1^2$
- Si a et b sont somme de 4 carrés, $a = x_0^2 + x_1^2 + x_2^2 + x_3^2$ et $b = y_0^2 + y_1^2 + x_2^2 + x_3^2$ $y_2^2 + y_3^2$.

a est le carré du module du quaternion $x_0 + ix_1 + jx_2 + kx_3$. b est celui de $y_0 + iy_1 + jy_2 + ky_3$.

Le produit de ces quaternions est $z_0 + iz_1 + jz_2 + kz_3$ qui a pour module au carré ab (en effet |xy| = |x||y| pour tout $x, y \in \mathbb{H}$).

Il suffit donc de montrer le résultat pour les nombres premiers impairs (fait pour 2).

• Soit p premier impair.

Lemme 2.5.1

Il existe (α, β) tel que $\alpha^2 + \beta^2 + 1 \equiv 0 \mod p$.

Démonstration. Il y a $\frac{p+1}{2}$ carrés dans \mathbb{F}_p . Donc α^2+1 prend $\frac{p+1}{2}$ valeurs dans \mathbb{F}_{+} et $-\beta^2$ aussi.

Or $\frac{p+1}{2} + \frac{p+1}{2} = p+1 > p$ donc il existe α, β tel que $\alpha^2 + 1 \equiv -\beta^2$ $\mod p$.

On considère le réseau $\Lambda = \{(x, y, z, t) \in \mathbb{Z}^4, z \equiv \alpha x + \beta y \mod p \text{ et } t = 1\}$ $\alpha y - \beta x \mod p$.

Le volume de Λ est p^2 car $((1,0,\alpha,-\beta),(0,1,\beta,\alpha),pe_3,pe_4)$ est une base et le déterminant associé vaut p^2 .

On utilise le théorème de Minkowski avec pour convexe la boule de rayon r centrée en 0. Le volume de vette boule est $\frac{\pi^2}{2}r^4$.

Si $\frac{\pi^2}{2}r^4 > 2^4p^2$, alors il existe $(x, y, z, t) \in \Lambda \setminus \{0\}$ avec $x^2 + y^2 + z^2 + t^2 \le$

Si $(x, y, z, t) \in \Lambda$, $x^2 + y^2 + z^2 + t^2 \equiv x^2 + y^2 + (\alpha x + \beta y)^2 + (\alpha y - \beta x)^2 \equiv$ $x^{2}(1+\alpha^{2}+\beta^{2})+y^{2}(1+\alpha^{2}+\beta^{2})\equiv 0 \mod p.$

Comme $\pi^2 > 8$, $\frac{32}{\pi^2} < 4$ donc il existe r tel que $\frac{32p^2}{\pi^2} < r^4 < 4p^2$. Pour ce r, on a $\frac{\pi^2}{2}r^4 > 16p^2$ et $r^2 < 2p$. Donc Minkowski s'applique et $0 < x^2 + y^2 + z^2 + t^2 < r^2 < 2p$ et $p \mid (x^2 + y^2 + z^2 + t^2)$ donc $x^2 + y^2 + z^2 + t^2 = p$.

Chapitre 3

Anneaux des entiers d'un corps de nombres

3.1 Rappels

<u>Définition 3.1</u> Un corps de nombres est une extension de \mathbb{Q} (ie un $\mathbb{Q}(\alpha)$ avec α algébrique).

<u>Définition 3.2</u> Si A est un anneau intègre, si $p \in A$, et $p \notin A^{\times} \cup \{0\}$, on dit que p est premier ssi $p \mid ab \Rightarrow p \mid a$ ou $p \mid b$.

Proposition 3.1 p premier ssi $\langle p \rangle$ est premier ssi $A/\langle p \rangle$ est intègre.

<u>Définition 3.3</u> p est irréductible ssi $p = ab \Rightarrow a \in A^{\times}$ ou $b \in A^{\times}$.

Proposition 3.2 Si p premier, p irréductible.

Démonstration. Si p est premier et p = ab, $p \mid ab$ donc $p \mid a$ ou $p \mid b$. Si $p \mid a$, $a = p\alpha$ donc $p = ab = p\alpha b$ donc $\alpha b = 1$ (A intègre) donc $b \in A^{\times}$.

Définition 3.4 Si A est un anneau intègre, on dit que A est factoriel ssi tout élément de $A \setminus \{0\}$ s'écrit $up_1 \cdots p_n$ avec $u \in A^{\times}$, (p_1, \ldots, p_n) irréductibles et cette décomposition est unique à permutation des p_i est multiplication par $v \in A^{\times}$ près.

<u>Définition 3.5</u> Un anneau A est dit nœthérien ssi tout idéal de A est engendré par un nombre fini d'éléments (de type fini) ssi toute suite croissante d'idéaux stationne.

Remarque 3.1 Si A est intègre næthérien, l'existence de la décomposition est vérifiée.

Exemple 3.1

- Z est factoriel.
- $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel : $6 = 2 \times 3 = (1 i\sqrt{5})(1 + i\sqrt{5})$ et 2, 3, $1 + i\sqrt{5}$ et $1 i\sqrt{5}$ sont irréductibles.

Remarque 3.2 La condition d'unicité est équivalente à (p premier ssi p irréductible) et à (a | bc et (d | a et d | b \Rightarrow d inversible) \Rightarrow a | c).

<u>Définition 3.6</u> Si A est un anneau intègre, et si tout idéal de A est principal (ie monogène), on dit que A est principal.

Proposition 3.3 Les anneaux principaux sont factoriels (et clairement nœthériens).

Définition 3.7 Si A est intègre, et s'il existe une application $\nu^1: A \setminus \{0\} \to \mathbb{N}$ tel que pour tout $a, b \in A \setminus \{0\}$, il existe $q, r \in A$ tel que a = bq + r avec $\nu(r) < \nu(b)$, A est dit euclidien.

Proposition 3.4 Les anneaux euclidiens sont principaux donc factoriels.

Définition 3.8 Si L/K est une extension de corps et si $x \in L$, on dit que x est algébrique sur K si x est racine d'un polynôme à cœfficients dans K.

3.2 Entiers algébriques

Définition 3.9 Un nombre algébrique est un élément d'un sur-corps de \mathbb{Q} qui est algébrique sur \mathbb{Q} .

<u>Définition 3.10</u> Un corps de nombres est une extension finie de \mathbb{Q} .

Remarque 3.3 D'après le théorème de l'élément primitif, tout les corps de nombres sont de la forme $\mathbb{Q}[\theta]$ pour un θ algébrique.

Proposition 3.5 Si K est un corps de nombres avec $K = \mathbb{Q}[\theta]$ et $n = [K : \mathbb{Q}]$ alors n est le degré du polynôme minimal de θ sur \mathbb{Q} et il y a n morphismes de corps distincts de $K \to \mathbb{C}$ ou dans une clôture algébrique de K. Ces morphismes sont les :

$$\pi_i: \begin{cases} \mathbb{Q}[\theta] & \to & \mathbb{C} \\ P(\theta) & \mapsto & P(\theta_i) \end{cases}$$

avec $\theta_1, \ldots, \theta_n$ sont mes racines de μ_{θ} sur \mathbb{Q} .

Exemple 3.2 $\mathbb{Q}[\sqrt{2}]$ est un corps de nombres de degré 2 et les morphismes sont :

$$f_1: \begin{cases} \mathbb{Q}[\sqrt{2}] & \to & \mathbb{C} \\ a+b\sqrt{2} & \mapsto & a+b\sqrt{2} \end{cases} \qquad f_2: \begin{cases} \mathbb{Q}[\sqrt{2}] & \to & \mathbb{C} \\ a+b\sqrt{2} & \mapsto & a-b\sqrt{2} \end{cases}$$

1. appellée stathme

Définition 3.11 Si L/K est une extension de K, et si $(\alpha_1, \ldots, \alpha_n)$ une base de L comme K espace vectoriel, on appelle discriminant de la base $(\alpha_1, \ldots, \alpha_n)$ le nombre $\det(M)^2$ où M est la matrice $(\sigma_i(\alpha_j))_{i,j}$ où les σ_i sont les morphismes de corps K-linéaires de L dans \overline{K} .

Remarque 3.4 Si $L = K[\theta]$ alors $(1, \theta, ..., \theta^{n-1})$ est une base de L comme K espace vectoriel et le discriminant de cette base est $\operatorname{disc}(\mu_{\theta})$. C'est un élément de K car c'est un polynôme symétrique en les $\sigma_i(\theta)$, donc un polynôme en les cœfficients de K donc dans K.

<u>Définition 3.12</u> Soit θ un nombre algébrique. On dit que θ est un entier algébrique si θ est racine d'un polynôme unitaire à cœfficients entiers.

Exemple 3.3

- \bullet Tout élément de $\mathbb Z$ est un entier algébrique.
- \sqrt{k} avec $k \in \mathbb{N}$ est un entier algébrique.
- $\frac{1+\sqrt{5}}{2}$ est un entier algébrique.
- $\frac{1}{2}$ n'est pas algébrique : si $\frac{1}{2^n} + \sum_{i=0}^{n-1} \frac{a_i}{2^i} = 0$, $1 + \sum_{i=0}^{n-1} a_i 2^{n-i} = 0$ et le terme de gauche est impair.

Lemme 3.0.2

Soit θ un nombre algébrique. θ est algébrique ssi $\mathbb{Z}[\theta]$ est un \mathbb{Z} -module de type fini.

Remarque 3.5 Si θ était transcendant sur \mathbb{Q} , $\mathbb{Z}[\theta]$ ne serait pas de type fini.

Démonstration.

 \Rightarrow Si θ est algébrique, il existe $P \in \mathbb{Z}[X]$ unitaire annulateur de θ . Si $x \in \mathbb{Z}[\theta]$, il existe $Q \in \mathbb{Z}[X]$ tel que $x = Q(\theta)$. Notons R le reste dans la division euclidienne 2 de Q par P.

 $x = Q(\theta) = R(\theta)$ et $\deg(R) < \deg(P)$ donc x est une combinaison linéaire à cœfficients entiers de $(1, \theta, \dots, \theta^{\deg(P)-1})$.

Donc le \mathbb{Z} -module $\mathbb{Z}[\theta]$ est engendré par $(1, \theta, \dots, \theta^{\deg(P)-1})$.

 \Leftarrow On suppose que $\mathbb{Z}[\theta] = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$.

 $\theta e_i \in \mathbb{Z}[\theta]$ donc il existe des $(b_{i,j}) \in \mathbb{Z}$ tels que $\theta e_i = \sum_{j=1}^n b_{i,j} e_j$.

Notons $M = (b_{i,j})_{i,j}$. ${}^{t}(e_1, \ldots, e_r) \in \operatorname{Ker}(M - \theta I_r) \setminus \{0\}$ donc $\det(M - \theta I_r) = 0$.

Le polynôme $D = \det(XI_r - M)$ appartient à $\mathbb{Z}[X]$, son coefficient dominant vaut 1 et $D(\theta) = 0$.

Donc θ est algébrique.

^{2.} bien dans $\mathbb{Z}[X]$: cf après

Lemme 3.0.3

Pour tout $(P,Q) \in \mathbb{Z}[X]^2$, il existe $R \in \mathbb{Z}[X]$ tel que $Q \equiv R \mod P$ et $\deg(R) < \deg(P)$.

Démonstration. Par récurrence sur deg(Q). Supposons la propriété vraie au rang n-1.

Si deg(Q) < deg(P), c'est évident.

Sinon, soit $Q_1 \in \mathbb{Z}[X]$ de degré n. $Q_1 = \sum_{i=0}^n a_i X^i$ et $P = \sum_{i=0}^{r-1} b_i X^i + X^r$.

$$Q_1 = \sum_{i=0}^{n-1} a_i X^i + a_n X^{n-r} P - \sum_{i=0}^{r-1} a_n b_i X^{m-n+i}$$
$$\equiv \sum_{i=0}^{n-1} a_i X^i - \sum_{i=0}^{r-1} a_n b_i X^{m-n+i} \mod P$$

Par hypothèse de récurrence, il existe $R \in \mathbb{Z}[X]$ tel que $\deg(R) < r$ et :

$$R \equiv \sum_{i=0}^{n-1} a_i X^i - \sum_{i=0}^{r-1} a_n b_i X^{m-n+i} \equiv Q \mod P$$

Le principe de récurence assure le résultat.

Théorème 3.1 L'ensemble des entiers algébriques est un anneau.

 $D\acute{e}monstration$. On va montrer que c'est un sous anneau de \mathbb{C} .

Soient θ_1, θ_2 deux entiers algébriques. $\mathbb{Z}[\theta_1]$ et $\mathbb{Z}[\theta_2]$ sont des \mathbb{Z} modules de type fini engendrées par (e_1, \ldots, e_r) et (f_1, \ldots, f_s) respectivement.

 $\mathbb{Z}[\theta_1, \theta_2]$ est de type fini car engendré par $(e_i f_j)$.

 $\mathbb{Z}[\theta_1 + \theta_2]$ et $\mathbb{Z}[\theta_1 \theta_2]$ sont des sous-modules de $\mathbb{Z}[\theta_1, \theta_2]$ qui est un module de type fini donc c'est un quotient d'un \mathbb{Z} -module libre Λ de type fini. Notons π la surjection canonique.

 $\pi^{-1}(\mathbb{Z}[\theta_1 + \theta_2])$ est un module libre de type fini donc $\mathbb{Z}[\theta_1 + \theta_2]$ est de type fini. De même, $\mathbb{Z}[\theta_1\theta_2]$ est de type fini.

Donc $\theta_1 + \theta_2$ et $\theta_1 \theta_2$ sont des entiers algébriques.

Proposition 3.6 Les racines d'un polynôme à cœfficients entiers algébriques sont des entiers algébriques.

Démonstration. Soit $P = X^n + \sum_{i=0}^{n-1} a_i X^i \in \mathbb{Z}[X]$. Soit θ une racine de P.

 $\mathbb{Z}[a_0,\ldots,a_{n-1},\theta]=\mathbb{Z}[a_0,\ldots,a_{n-1}][\theta]$ est de type fini sur $\mathbb{Z}[a_0,\ldots,a_{n-1}]$ (par division euclidienne par P).

De plus, $\mathbb{Z}[a_0,\ldots,a_{n-1}]$ est de type fini sur \mathbb{Z} car $\mathbb{Z}[a_0],\ldots,\mathbb{Z}[a_{n-1}]$ en

Donc $\mathbb{Z}[a_0,\ldots,a_{n-1},\theta]$ est de type fini sur \mathbb{Z} .

 $\mathbb{Z}[\theta]$ est un sous module de type fini de $\mathbb{Z}[a_0,\ldots,a_{n-1},\theta]$ donc de \mathbb{Z} .

Donc θ est un entier algébrique.

Proposition 3.7 Les entiers algébriques de \mathbb{Q} sont les entiers relatifs.

Démonstration. On a déjà vu une inclusion.

Soit
$$r \in \mathbb{R}$$
. $r = \frac{x}{y}$ avec $x \wedge y = 1$.

Soit
$$P = X^n + \sum_{i=0}^{n-1} a_i X^i \in \mathbb{Z}[X]$$
 tel que $P(\frac{x}{y}) = 0$.

On a
$$0 = \frac{x^n}{y^n} + \sum_{i=0}^{i=0} a_i \frac{x^i}{y^i}$$
.

Donc
$$0 = x^n + \sum_{i=0}^{n-1} a_i x^i y^{n-i} \equiv x^n \mod y$$
.
Donc $y \mid x^n \text{ or } x \land y = 1 \text{ donc } y \mid 1 \text{ donc } \frac{x}{y} \in \mathbb{Z}$.

Donc
$$y \mid x^n$$
 or $x \wedge y = 1$ donc $y \mid 1$ donc $\frac{x}{y} \in \mathbb{Z}$

<u>Définition 3.13</u> Si K est un corps de nombres, l'anneau des entiers de K, noté \mathcal{O}_K est l'ensemble $\{x \in K, x \text{ entier algébrique}\}$. C'est un sous-anneau de K.

Remarque 3.6 $\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$.

Proposition 3.8 Tout nombre algébrique est quotient d'un entier algébrique par un entier naturel non nul.

Démonstration. Si θ est algébrique, il existe $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ tel que $P(\theta) = 0.$

 $a_n \theta$ est racine de $Q = X^n + a_{n-1} X^{n-1} + a_n a_{n-2} X^{n-2} + \dots + a_n^{n-1} a_0$. En effet, $Q(\theta) = a_n^{n-1} P(\theta) = 0.$

Donc $a_n\theta$ est un entier algébrique.

Définition 3.14 Si $P \in \mathbb{Z}[X]$. On appelle contenu de P le pgcd de ses coefficients.

On peut étendre la notion de contenu à $\mathbb{Q}[X]$ en posant $C(\frac{P}{\lambda}) = \frac{C(P)}{|\lambda|}$.

Proposition 3.9 Pour tout $(P,Q) \in \mathbb{Q}[X]^2$, C(PQ) = C(P)C(Q).

Proposition 3.10 Soit θ un nombre algébrique. θ est un entier algébrique ssi $\mu_{\theta} \in \mathbb{Z}[X]$.

Démonstration.

← Clair

CHAPITRE 3. ANNEAUX DES ENTIERS D'UN CORPS DE NOMBRES

 \Rightarrow Si θ est un entier algébrique, il existe $Q \in \mathbb{Z}[X]$ unitaire tel que $Q(\theta) = 0.$

 $P = \mu_{\theta} \mid Q$ donc Q = PS avec Q et P unitaires. C(Q) = C(P)C(S) donc $\frac{Q}{C(Q)} = \frac{P}{C(P)}\frac{S}{C(S)}$ et ces trois polynômes sont à cœfficients entiers.

 $Q \in \mathbb{Z}[X]$ est unitaire donc C(Q) = 1 et $\frac{Q}{C(Q)} = Q$ est donc unitaire.

Le coefficient dominant de $\frac{P}{C(P)}\frac{S}{C(S)}$ est le produit des coefficients dominants p et s de $\frac{P}{C(P)}\frac{S}{C(S)}$.

Donc ps = 1 et $p, s \in \mathbb{Z}^2$ donc p = s = 1 ou p = s = -1. Or P est unitaire donc $p = \frac{1}{C(P)}$. Donc C(P) = 1 et $P = \frac{P}{C(P)} \in \mathbb{Z}[X]$.

Chapitre 4

Anneau des entiers des corps quadratiques

4.1 Détermination

<u>Définition 4.1</u> On appelle corps quadratique toute extension de degré 2 de \mathbb{Q} .

Proposition 4.1 Ce sont les $\mathbb{Q}[\sqrt{k}]$ avec $k \in \mathbb{Z}$ non carré. On peut même supposer k sans facteur carré.

Si k > 0, on parle de corps quadratique réel, et si k < 0, on parle de corps quadratique imaginaire.

Démonstration. La première inclusion est claire.

De plus,
$$\mathbb{Q}[X]/(aX^2 + bX + c) = \mathbb{Q}(\frac{-b + \sqrt{b^2 - 4ac}}{2a}) = \mathbb{Q}[\sqrt{b^2 - 4ac}].$$

On cherche l'anneau des entiers de $\mathbb{Q}[\sqrt{d}]$.

 $a + b\sqrt{d}$ a-t-il un polynôme minimal à cœfficients entiers?

Si b = 0, X - a convient.

Sinon, $a + b\sqrt{d} \notin \mathbb{Q}$ et $X^2 - 2aX + a^2 - db^2$ annule $a + b\sqrt{d}$.

Donc $a + b\sqrt{d} \in \mathcal{O}_{\mathbb{Q}[\sqrt{d}]}$ ssi $2a \in \mathbb{Z}$ et $a^2 - db^2 \in \mathbb{Z}$.

On a doit donc avoir $a \in \mathbb{Z}$ ou $a - \frac{1}{2} \in \mathbb{Z}$.

- Si $a \in \mathbb{Z}$,
 - Pour tout p premier, $v_p(db^2) \ge 0$ et $v_p(d) \in \{0,1\}$ donc $v_p(b^2) \ge -1$ donc $2v_p(b) \ge -1$ donc $v_p(b) = \ge 0$.

Donc $b \in \mathbb{Z}$.

• Si $a - \frac{1}{2} \in \mathbb{Z}$, $a^2 = (a - \frac{1}{2})^2 + (a - \frac{1}{2}) + \frac{1}{4}$. Donc $a^2 - \frac{1}{4} \in \mathbb{Z}$ donc $4a^2 \equiv 1 \mod 4$. $a^2 - db^2 \in \mathbb{Z}$ donc $0 \equiv 4a^2 - 4db^2 \equiv 1 - 4db^2 \mod 4$ donc $4db^2 \equiv 1$ mod 4 et $4db^2 \in \mathbb{Z}$. $4db^2 = d(2b)^2 \in \mathbb{Z}$ et le raisonnement précédent assure $2b \in \mathbb{Z}$.

Si $2b \in 2\mathbb{Z}$, alors $(2b)^2 d \equiv 0 \mod 4$. Or $(2b)^2 d \equiv 1 \mod 4$ donc on a une contradiction.

Donc 2b est impair et $b - \frac{1}{2} \in \mathbb{Z}$. On a donc $4b^2 \equiv 1 \mod 4$ donc, comme $4db^2 \equiv 1 \mod 4$, $d \equiv 1$ $\mod 4$.

Réciproquement, $\mathbb{Z}[\sqrt{d}]\subset\mathcal{O}_{\mathbb{Q}[\sqrt{d}]}$ car \sqrt{d} est un entier algébrique.

Si $d \equiv 1 \mod 4$, et si $u, v \in \mathbb{Z}^2$, $u + v \frac{1 + \sqrt{d}}{2}$ est un entier algébrique car $\frac{1+\sqrt{d}}{2}$ est racine de $X^2-X+\frac{1-d}{4}\in\mathbb{Z}[X].$

Exemple 4.1

- $\mathcal{O}_{\mathbb{Q}[\sqrt{-1}]} = \mathbb{Z}[\sqrt{-1}]$ (anneau des entiers de Gauss)
- $\mathcal{O}_{\mathbb{Q}[\sqrt{-5}]} = \mathbb{Z}[\sqrt{-5}]$
- $\mathcal{O}_{\mathbb{Q}[\sqrt{5}]} = \mathbb{Z}[\frac{1+\sqrt{5}}{2}]$
- $\mathcal{O}_{\mathbb{Q}[\sqrt{-7}]} = \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$
- $\mathcal{O}_{\mathbb{Q}[\sqrt{6}]} = \mathbb{Z}[\sqrt{6}]$

Unités de $\mathcal{O}_{\mathbb{O}[\sqrt{N}]}$ 4.2

Si $a + b\sqrt{N} \in \mathcal{O}_{\mathbb{Q}[\sqrt{N}]}^{\times}$, alors il existe $a' + b'\sqrt{N} \in \mathcal{O}_{\mathbb{Q}[\sqrt{N}]}$ tel que (a + b') $b\sqrt{N}(a'+b'\sqrt{N})=1.$

En prenant la norme, on obtient $(a^2-Nb^2)(a'^2-Nb'^2)=1$ donc $a^2-Nb^2\in$ $\mathbb{Z}^{\times} = \{-1, 1\}.$

- Si N > 0, $a^2 Nb^2 \in \{\pm 1\}$ et on étudiera ça plus tard.
- Si N < 0, $a^2 Nb^2 \ge 0$ donc $a^2 Nb^2 = 1$. Donc $a^2 = 1 + Nb^2 \leqslant 1$ et de même $b^2 \leqslant -\frac{1}{N}$.
 - ▶ Si N = -1, $a \in \{-1, 0, 1\}$ et $b \in \{1, -1\}$ donc on a $\mathcal{O}_{0, \sqrt{N}}^{\times} =$ $\{\pm 1, \pm \sqrt{-1}\}.$
 - ▶ Si $N \equiv 2,3 \mod 4$ et $N \neq -1$, alors $a,b \in \mathbb{Z}^2$ donc $a \in \{-1,0,1\}$ et b = 0 donc $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}^{\times} = \{1, -1\}.$
 - ▶ Si $N \equiv 1 \mod 4$, on a aussi $a^2 \leqslant 1$ et $b^2 \leqslant -\frac{1}{N}$ et $(a,b) \in \mathbb{Z}$ ou $(a,b) \in \frac{1}{2} + \mathbb{Z}.$

- Si $N \leqslant -5$ alors $b^2 \leqslant \frac{1}{5} < \frac{1}{4}$ donc $b^2 = 0$ et b = 0. Et $a^2 = 1$ donc
- Donc $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}^{\times} = \{-1, 1\}.$ Si N = -3 alors $b^2 \leqslant \frac{1}{3}$ donc $b \in \{-\frac{1}{2}, 0, \frac{1}{2}\}.$ Or $a^2 + 3b^2 = 1$ donc si b = 0, $a = \pm 1$, si $b = \pm \frac{1}{2}$, $a^2 = \frac{1}{4}$ donc

Donc $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}^{\times} \subset \{\pm 1, \frac{\pm 1 \pm \sqrt{-3}}{2}\}.$

Or il sont inversibles donc $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}^{\times} = \{\pm 1, \frac{\pm 1 \pm \sqrt{-3}}{2}\}.$

FIGURE 4.1 – Unités de $\mathbb{Q}[\sqrt{-3}]$

Factorialité, euclidianité de $\mathcal{O}_{\mathbb{O}[\sqrt{N}]}$ 4.3

S'il est euclidien, il est principal donc factoriel.

Proposition 4.2 (Admise) Si N > 0, $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}$ est euclidien pour le stathme défini par la norme $a + b\sqrt{N} \mapsto a^2 + Nb^2$ ssi

$$N \in \{2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 55, 73\}$$

Proposition 4.3 Si N < 0 alors $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}$ est euclidien ssi

$$N \in \{-1, -2, -3, -7, -11\}$$

Démonstration.

• Si $N \equiv 2, 3 \mod 4$, $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]} = \mathbb{Z}[\sqrt{N}]$. Est-il euclidien? On considère $(a, b) \in \mathbb{Z}[\sqrt{N}]$ avec $b \neq 0$. On cherche $q, r \in \mathbb{Z}[\sqrt{N}]$ tel que a = bq + r et ||r|| < ||b||. On fixe un plongement de $\mathbb{Q}[\sqrt{N}]$ dans \mathbb{C} et on identifie $\mathbb{Q}[\sqrt{N}]$ à l'image de ce prolongement.

Il existe $q \in \mathbb{Z}[\sqrt{N}]$ tel que a = bq + r avec $||r|| \leq ||b||$ ssi il existe $q \in \mathbb{Z}[\sqrt{N}]$ tel que $|\frac{a}{b} - q|^2 < 1$.

On cherche la plus grande distance possible d'un point de \mathbb{C} au réseau $\mathbb{Z}[\sqrt{N}]$. Par translation, on est ramené au cas d'un rectangle de côtés de longueur 1 et $\sqrt{-N}$.

La plus grande distance est donc $\frac{\sqrt{1-N}}{2}$.

Icelle est plus petite que 1 ssi N > -3.

Donc $\mathbb{Z}[\sqrt{N}]$ est donc euclidien pour la norme si $N \in \{-1, -2\}$.

• Si $N \equiv 1 \mod 4$, on peut procéder de la même façon avec le réseau $\mathbb{Z}[\frac{1+\sqrt{N}}{2}] = \mathbb{Z} \oplus \mathbb{Z}\frac{1+\sqrt{N}}{2}$.

On est donc ramené au parallélogramme engendré par les vecteurs d'affixe 1 et $\frac{1+i\sqrt{-N}}{2}$.

C'est un losange donc on est ramené au cas du triangle de sommets 0, $\frac{1}{2}$ et $\frac{1+i\sqrt{N}}{2}$.

Cette distance est $\sqrt{\frac{2-N}{16} - \frac{1}{16N}}$.

Elle est strictement inférieure à 1 ssi $N \ge -13$ donc $-N \in \{3, 7, 11\}$.

- Il reste à montrer qu'aucun autre N rend $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}$ euclidien pour n'importe quel stathme.
 - Si N = -5, $6 = 2 \times 3 = (1 + \sqrt{5})(1 \sqrt{-5})$ et $2, 3, 1 \pm \sqrt{5}$ sont irréductibles.
 - ▶ Si N = -6, $6 = 2 \times 3 = \sqrt{-6}\sqrt{6}$ qui sont irréductibles.
 - ► Si N = -10, $14 = 2 \times 7 = (2 + \sqrt{10})(2 \sqrt{10})$ qui sont irréductibles.
 - ► Sinon,

Lemme 4.0.1

Si A est un anneau euclidien, il existe x non inversible et non nul tel que la projection de $A \to A/\langle x \rangle$ induise une surjection de $A^\times \cup \{0\}$ sur $A/\langle x \rangle$.

Démonstration. Soit ν le stathme et x non inversible et non nul tel que $\nu(x)$ soit minimal.

Si $a \in A$, par division par x, il existe $q, r \in A$ tel que a = qx + r et $(r = 0 \text{ ou } \nu(r) < \nu(x))$.

Si r = 0, $a \equiv 0 \mod x$. Sinon, comme $r \in A^* \cup \{0\}$, r est inversible a est congru à un inversible modulo x.

D'où la surjection annoncée.

Si N < -3 alors $\mathcal{O}_{\mathbb{Q}[\sqrt{N}]}^{\times} = \{\pm 1\}$ donc $\operatorname{Card}(A^* \cup \{0\}) = 3$ si $A = \mathcal{O}_{\mathbb{Q}[\sqrt{N}]}$.

Si A est euclidien, alors il existe $x \in A \setminus (A^* \cup \{0\})$ tel que la projection $A \to A/\langle x \rangle$ soit surjective.

On a donc $\operatorname{Card}(A/\langle x \rangle) \leq 3$. Or A est un réseau de $\mathbb C$ et $\langle x \rangle$ est un

sous-réseau de \mathbb{C} .

D'où Card $(A/\langle x \rangle) = \frac{\text{Vol}(\langle x \rangle)}{\text{Vol}(A)} = \det(y \mapsto xy) = ||x||.$

Donc $a^2 - Nb^2 = ||x|| \leqslant 3$ et $(a, b) \in \mathbb{Z}$ ou $(a, b) \in \frac{1}{2} + \mathbb{Z}$.

Si N < -12, $b^2 = 0$ et $a^2 \le 3$ donc b = 0 et $a^2 \le -3$. $b \notin \frac{1}{2} + \mathbb{Z}$ donc a non plus et $a \in \mathbb{Z}$ donc $a \in \{0, 1, -1\}$.

Donc $x \in A^{\times} \cup \{0\}$ ce qui est une contradiction.

Application : Résoudre $y^2 + 4 = z^3$.

On se place dans l'anneau $\mathbb{Z}[i]$ qui est euclidien donc principal donc factoriel.

L'équation s'écrit $(y+2i)(y-2i)=z^3$. Si y+2i et y-2i sont premiers entre eux, ce sont des cubes. ¹

- Si y est impair, $(2+iy)(2-iy) = z^3$.
 - ▶ Si a+ib est un diviseur commun de 2+iy et de 2-iy, on a $a+ib \mid 4$ et $a+ib \mid 2iy$. En passant à la norme, $a^2+b^2 \mid 16$ et $a^2+b^2 \mid 4y^2$. Donc, comme y et 2 sont premiers entre eux, a^2+b^2 (qui est une puissance de 2 car divise 16) vaut donc 1, 2 ou 4.

On a $a+ib \mid 2+iy$ donc $a^2+b^2 \mid 4+y^2$ qui est impair donc $a^2+b^2=1$ donc a+ib est inversible.

Donc 2 + iy et 2 - iy sont premiers entre eux donc sont des cubes.

▶ On est donc ramenés à résoudre $2 + iy = (c + id)^3$.

On a $2 = c^3 - 3cd = c(c^2 - 3d)$ et $y = 3c^2d - d^3$

Donc $c \mid 2$ donc $c = \pm 1$ ou $c = \pm 2$. D'où $3d^2 = c^2 - \frac{2}{c}$.

Or pour c=-2 et c=1, on obtient $3d^2 \not\equiv 0 \mod 3$ donc c=2 ou c=-1. Dans ces cas, $d=\pm 1$.

- Supposons c = -1. $2 + iy = (c + id)^3 = (-1 \pm i)^3 = 2 \pm 2i$ donc $y = \pm 2$ or y est supposé impair.
- Supposons c=2, on a alors $y=\pm 11$ et $y^2+4=125=5^3$ donc (11,5) est solution.
- Si y = 2Y, $(2Y)^2 + 4 = z^3$ donc $2 \mid z$ donc z = 2Z et l'équation devient $Y^2 + 1 = 2Z^3$. (On peut constater que Y doit être impair) On a donc $(Y + i)(Y i) = 2Z^3$. Soit a + ib un diviseur commun à Y + i et Y i.

On a $a + ib \mid Y + i \text{ donc } a^2 + b^2 \mid Y^2 + 1$.

Or Y est impair donc $Y^2 \equiv 1 \mod 4$ donc $Y^2 + 1 \equiv 2 \mod 4$ et 4 ne divise pas $Y^2 + 1$ donc $a^2 + b^2 \neq 4$.

Cependant, $a+ib \mid 2i$ donc $a^2+b^2 \mid 4$ et a^2+b^2 est une puissance de 2 donc vaut ± 1 ou ± 2 .

^{1.} En effet, ce sont des cubes multipliés par une unité et toutes les unités de $\mathbb{Z}[i]$ sont des cubes.

CHAPITRE 4. ANNEAU DES ENTIERS DES CORPS QUADRATIQUES

- ► Calculons $(Y + i) \wedge (Y i)$. $a + ib \mid 2i$ et $2i = (1 + i)^2$ avec (1 + i) de norme 2 qui est premier donc irréductible.
 - Donc a+ib=u ou a+ib=u(1+i) avec u inversible. Or $1+i\mid Y+i$ car $Y+i=(1+i)(\frac{Y+1}{2}+\frac{1-Y}{2}i)$ et de même $1+i\mid Y-i$ donc $(Y+i)\wedge (Y-i)=1+i$ (à unité près).
- ▶ On peut donc écrire $1 + iY = u(1+i)^{\alpha_0} p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ et $1 iY = v(1+i)^{\beta_0} q_1^{\beta_1} \cdots q_s^{\beta_s}$.

En remplaçant dans l'équation, on a $(\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s)$ sont multiples de 3.

De plus, $2Z^3 = (-i)(1+i)^2 Z^3$ donc $\alpha_0 + \beta_0 = v_{1+i}((1+iY)(1-iY)) = 2 + 3v_{1+i}(Z) \equiv 2 \mod 3$.

Or $1 - iY = \overline{u}(1 - i)^{\alpha_0}\overline{p_1}^{\alpha_1}\cdots\overline{p_r}^{\alpha_r} = \overline{u'}(1 + i)^{\alpha_0}\overline{p_1}^{\alpha_1}\cdots\overline{p_r}^{\alpha_r}$ donc $\beta_0 \geqslant \alpha_0$.

De même, $\beta_0 \leqslant \alpha_0$ donc $\beta_0 = \alpha_0 = \min(\alpha_0, \beta_0) = 1$.

► On a donc $1 + iY = (1 + i)(c + id)^3$ donc $1 = (c + d)(c^2 - 4cd + d^2)$ donc $c + d = \pm 1$ et $c^2 - 4cd + d^2 = c + d$.

Donc $c=\pm 1$ et d=0 ou c=0 et $d=\pm 1$. On obtient donc les solutions $y=\pm 2$ et z=2.

Finalement, en testant les solutions potentielles, on trouve que les solutions de $y^2 + 4 = z^3$ sont $(\pm 11, 5)$ et $(\pm 2, 2)$.

Remarque 4.1

- On peut donc redémontrer le théorème des deux carrés par un raisonnement sur la factorisation de l'entier p dans $\mathbb{Z}[i]$. On a $\mathbb{Z}[i]/\langle p \rangle \simeq \mathbb{Z}[X]/\langle p, X^2 + 1 \rangle \simeq \mathbb{F}_p[X]/\langle X^2 + 1 \rangle$ donc le premier est intègre ssi le dernier l'est ssi $X^2 + 1$ est irréductible dans $\mathbb{F}_p[X]$.
- Un entier n > 0 est somme de deux entiers ssi $(\forall p \mid n \text{ premier, } p \equiv 1 \mod 4 \text{ ou } p \equiv 2 \mod 4 \text{ ou } v_p(n) \text{ est pair}).$

Si $n = a^2 + b^2$, on a n = N(a + ib) et on factorise a + ib dans $\mathbb{Z}[i]$.

Chapitre 5

Bases d'entiers

5.1 Description de \mathcal{O}_K

THÉORÈME 5.1 Si K est un corps de nombres, \mathcal{O}_K est un \mathbb{Z} -module libre de rang $[K:\mathbb{Q}]$.

Démonstration. On prend $(\omega_1, \ldots, \omega_n)$ une base du \mathbb{Q} -espace vectoriel K formée d'éléments de \mathcal{O}_K telle que son discriminant soit minimal en valeur absolue (c'est possible car celui-ci est non nul).

Montrons que $(\omega_1, \ldots, \omega_n)$ est une \mathbb{Z} -base du \mathbb{Z} -module \mathcal{O}_K . Supposons qu'il existe $\omega \in \mathcal{O}_K \setminus \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$.

$$(\omega_1, \ldots, \omega_n)$$
 est une \mathbb{Q} -base de K donc $\omega = \sum_{i=1}^n \lambda_i \omega_i$ avec un $\lambda_i \notin \mathbb{Z}$.

Quitte à soustraire de ω un élément de $\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$, on peut supposer $0 \leq \lambda_i < 1$.

Quitte à permuter les ω_i , on peut supposer $\lambda_1 \notin \mathbb{Z}$ ie $0 < \lambda_1 < 1$. La famille $(\omega, \omega_2, \dots, \omega_n)$ est une \mathbb{Q} -base de K formée d'éléments de \mathcal{O}_K . La matrice de passage est :

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ \vdots & 1 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 & 0 \\ \lambda_n & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Le discriminant de $(\omega, \omega_2, \dots, \omega_n)$ est :

$$\begin{vmatrix} \sigma_1(\omega) & \sigma_1(\omega_2) & \cdots & \sigma_1(\omega_n) \\ \vdots & \vdots & & \vdots \\ \sigma_n(\omega) & \sigma_n(\omega_2) & \cdots & \sigma_n(\omega_n) \end{vmatrix} = \lambda_1^2 \operatorname{disc}(\omega_1, \dots, \omega_n)$$

On a donc $|\operatorname{disc}(\omega, \omega_2, \ldots, \omega_n)| < |\operatorname{disc}(\omega_1, \ldots, \omega_n)|$, ce qui contredit la minimalité de $|\operatorname{disc}(\omega_1, \ldots, \omega_n)|$.

Donc
$$\mathcal{O}_K = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$$
.

5.2 Calcul d'une base de \mathcal{O}_K

Proposition 5.1 Si $(\omega_1, \ldots, \omega_n)$ est une \mathbb{Q} -base de K formée d'éléments de \mathcal{O}_K mais qui n'est pas une \mathbb{Z} -base de \mathcal{O}_K , alors il existe p premier tel que :

• $p^2 \mid \operatorname{disc}(\omega_1, \ldots, \omega_n)$.

•
$$\exists \lambda_1, \dots, \lambda_n \in [0, p-1]^n, \frac{1}{p} \sum_{i=1}^n \lambda_i \omega_i \in \mathcal{O}_K \setminus \{0\}.$$

 $D\acute{e}monstration$. $\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_d$ est un sous- \mathbb{Z} -module du \mathbb{Z} -module de type fini \mathcal{O}_K donc il existe k, (e_1, \ldots, e_n) une \mathbb{Z} -base de \mathcal{O}_K et $(d_1, \ldots, d_n) \in \mathbb{Z}$ tel que $d_1 \mid \cdots \mid d_n$ et (d_1e_1, \ldots, d_ke_k) soit une base de $\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$ et $d_{k+1}, \ldots, d_n = 0$.

Le \mathbb{Q} -espace vectoriel engendré par $\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$ est de dimension n (c'est K) et (d_1e_1, \ldots, d_ke_k) en est une base donc k = n.

$$\operatorname{Card}(\mathcal{O}_K/(\mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_n)) = \operatorname{Card}(\mathbb{Z}/d_1\mathbb{Z} \times \dots \times \mathbb{Z}/d_1\mathbb{Z}) = \left|\prod_{i=1}^n d_i\right| = r$$

De plus $\operatorname{disc}(\omega_1,\ldots,\omega_n)=\operatorname{disc}(d_1e_1,\ldots,d_ne_n)$ car la matrice de passage est de déterminant ± 1 .

Donc $\operatorname{disc}(\omega_1, \ldots, \omega_n) = r^2 \operatorname{disc}(e_1, \ldots, e_n) \in \mathbb{Z} \operatorname{donc} \operatorname{Card}(\mathcal{O}_K/(\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n))^2 \mid \operatorname{disc}(\omega_1, \ldots, \omega_n).$

On prend p premier qui divise $\operatorname{Card}(\mathcal{O}_K/(\mathbb{Z}\omega_1+\cdots+\mathbb{Z}\omega_n))$.

Soit $x \in \mathcal{O}_K$ d'ordre p dans $\mathcal{O}_K/(\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n)$.

$$px \in \mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_n \text{ donc } x = \frac{1}{p} \sum_{i=1}^n \lambda_i \omega_i \text{ avec } (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n.$$

Quitte à enlever de x un élément de $\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$, on peut supposer $0 \leq \frac{\lambda_i}{p} < 1$ ie $0 \leq \lambda_i < p$.

COROLLAIRE 5.1 $Si(\omega_1, \ldots, \omega_n)$ est une \mathbb{Q} -base de K formée d'éléments de \mathcal{O}_K et si disc $(\omega_1, \ldots, \omega_n)$ est sans facteurs carrés, $\omega_1, \ldots, \omega_n$ est une \mathbb{Z} -base de \mathcal{O}_K .

Démonstration. Il n'y a pas de p premier tel que $p^2 \mid \operatorname{disc}(\omega_1, \dots, \omega_n)$.

Exemple : Calcul de $\mathcal{O}_{\mathbb{O}[\sqrt[3]{5}]}$.

 $(1, \sqrt[3]{5}, \sqrt[3]{25})$ est une base de $\mathbb{Q}[\sqrt[3]{5}]$. On a :

$$\operatorname{disc}(1,\sqrt[3]{5},\sqrt[3]{25}) = \begin{vmatrix} \operatorname{tr}(1) & \operatorname{tr}(\sqrt[3]{5}) & \operatorname{tr}(\sqrt[3]{25}) \\ \operatorname{tr}(\sqrt[3]{25}) & \operatorname{tr}(5) & \operatorname{tr}(5) \\ \operatorname{tr}(\sqrt[3]{25}) & \operatorname{tr}(5) & \operatorname{tr}(5\sqrt[3]{5}) \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 \\ 0 & 0 & 15 \\ 0 & 15 & 0 \end{vmatrix} = -3^3 \times 5^2$$

 $\operatorname{car}\operatorname{tr}(1) = 3, \operatorname{tr}(\sqrt[3]{5}) = 0$ (car de polynôme caractéristique $X^3 - 5$), $\operatorname{tr}(\sqrt[3]{25}) = 0$ 0 (polynôme caractéristique $X^3 - 25$), tr(5) = 5tr(1) = 15 et $tr(5\sqrt[3]{5}) =$ $5 \operatorname{tr}(\sqrt[3]{5}) = 0.$

Dans la proposition, on a donc p = 3 ou p = 5.

- Si p=3, on aurait un entier de la forme $x=\frac{\lambda_1+\lambda_2\sqrt[3]{5}+\lambda_3\sqrt[3]{25}}{3}$ avec $\lambda_i \in \{-1, 0, 1\}$ non tous nuls.
 - $\mathbf{tr}(x^2) = \frac{\lambda_1^2 + 10\lambda_2\lambda_3}{3} \in \mathbb{Z} \text{ donc } \lambda_1^2 + \lambda_2\lambda_3 \equiv 0 \mod 3.$ En calculant $\operatorname{tr}(x^2\sqrt[3]{5})$ et $\operatorname{tr}(x^2\sqrt[3]{25})$, on trouve $-\lambda_2^2 + \lambda_1\lambda_3 \equiv 0$ mod 3 et $\lambda_3^2 + \lambda_1 \lambda_2 \equiv 0 \mod 3$.
 - ▶ Si $\lambda_1 \equiv 0 \mod 3$, alors $\lambda_2^2 \equiv 0 \mod 3$ donc $\lambda_2 \equiv 0 \mod 3$ et donc $\lambda_3 \equiv 0 \mod 3 \text{ donc, comme } \lambda_i \in \{\pm 1, 0\}, \ \lambda_1 = \lambda_2 = \lambda_3 = 0.$
 - ▶ Si $\lambda_1 \equiv 1 \mod 3$, on a $\lambda_2 \equiv -1 \mod 3$ et $\lambda_3 \equiv 1 \mod 3$ donc $(\lambda_1, \lambda_2, \lambda_3) = (1, -1, 1).$
 - ▶ Si $\lambda_1 \equiv -1 \mod 3$, on a $\lambda_2 \equiv 1 \mod 3$ et $\lambda_3 \equiv -1 \mod 3$ donc $(\lambda_1, \lambda_2, \lambda_3) = (-1, 1, -1).$
 - ▶ On doit donc rechercher si $\frac{1-\sqrt[3]{5}+\sqrt[3]{25}}{3} \in \mathbb{Z}$ (l'autre cas revient à chercher si son opposé est entier).

Si c'était un entier, son carré (valant $-1 + \frac{\sqrt[3]{5} + \sqrt[3]{25}}{3}$) le resterait donc $\frac{\sqrt[3]{5}+\sqrt[3]{25}}{3}$ aussi.

Or la norme de ce nombre vaut $\frac{1}{33}N(\sqrt[3]{5})N(1+\sqrt[3]{5})$.

Le polynôme caractéristique de $\sqrt[3]{5}$ est $X^3 - 5$ et celui de $\sqrt[3]{5} + 1$ est $(X-1)^3 - 5 = X^3 - 3X^2 + 3X - 6.$

Donc cette norme vaut $\frac{10}{9} \notin \mathbb{Z}$. D'où la contradiction. • Si p = 5, $x = \frac{\lambda_1 + \lambda_2 \sqrt[3]{5} + \lambda_3 \sqrt[3]{25}}{5} \in \mathbb{Z}$ avec $\lambda_i \in [0, 4]$. $\operatorname{tr}(x) = \frac{3\lambda_1}{5} \operatorname{donc} \lambda_1 = 0$.

Donc $N(x) = \frac{5\lambda_2^3 + 25\lambda_3^3}{5^3} = \frac{\lambda_2^3 + 5\lambda_3^3}{5^2} \in \mathbb{Z}.$ \blacktriangleright Si $5 \mid \lambda_2$ alors $25 \mid 5\lambda_3^3$ donc $\lambda_2 = \lambda_3 = 0.$

- ▶ Sinon, $\lambda_2 \in (\mathbb{Z}/25\mathbb{Z})^{\times}$ donc −5 est un carré dans $\mathbb{Z}/25\mathbb{Z}$, ce qui est

Donc $(1, \sqrt[3]{5}, \sqrt[3]{25})$ est une base de $\mathcal{O}_{\mathbb{Q}[\sqrt[3]{5}]}$. Donc $\mathcal{O}_{\mathbb{Q}[\sqrt[3]{5}]} = \mathbb{Z}[\sqrt[3]{5}]$.

Chapitre 6

Unités de l'anneau des entiers d'un corps quadratique réel, équation de Pell-Fermat

<u>Définition 6.1</u> Une équation de Pell-Fermat est une équation du type x^2 – $dy^2 = \pm 1$ avec d > 0 fixé d'inconnues entières x et y.

Résoudre cette équation revient à chercher les unités de $\mathbb{Z}[\sqrt{d}]$.

6.1
$$x^2 - dy^2 = 1$$

Lemme 6.0.1

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Pour tout $n \in \mathbb{N}^*$, il est p, q entiers premiers entre eux tels que q > 0 et $\left|\alpha - \frac{p}{q}\right| < \frac{1}{nq}.$

De plus, on peut supposer $q \leq n$.

Démonstration. On a
$$[0,1[=\bigcup_{k=0}^{n-1}\left[\frac{k}{n},\frac{k+1}{n}\right[.$$

 $r\alpha - \lfloor r\alpha \rfloor \in [0, 1[\text{ pour tout } r \in [0, n]].$

Par principe des tiroirs, il existe $r_0, r_1 \in [0, n]$ distincts tels que $(r_0\alpha -$ Far principe describins, it cannot $r_0, r_1 \subset [0, r_2]$. Let $[r_0\alpha], r_1\alpha - \lfloor r_1\alpha \rfloor) \in [\frac{k}{n}, \frac{k+1}{n}[$ pour un certain k.

On a donc $|(r_0 - r_1)\alpha - (\lfloor r_0\alpha \rfloor - \lfloor r_1\alpha \rfloor)| < \frac{1}{n}$.

Or $|r_0 - r_1| \geqslant 1 > 0$ donc $|\alpha - \frac{\lfloor r_0\alpha \rfloor - \lfloor r_1\alpha \rfloor}{r_0 - r_1}| < \frac{1}{n |r_0 - r_1|}$.

On a donc
$$|(r_0 - r_1)\alpha - (\lfloor r_0\alpha \rfloor - \lfloor r_1\alpha \rfloor)| < \frac{1}{n}$$
.

Or
$$|r_0 - r_1| \ge 1 > 0$$
 donc $|\alpha - \frac{|r_0 \alpha| - |r_1 \alpha|}{r_0 - r_1}| < \frac{1}{n|r_0 - r_1|}$

On pose
$$p' = (\lfloor r_0 \alpha \rfloor - \lfloor r_1 \alpha \rfloor) \operatorname{Sgn}(r_0 - r_1)$$
 et $q' = |r_0 - r_1| \leqslant n$ et $p = \frac{p'}{p' \wedge q'}$, $q = \frac{q'}{p' \wedge q'}$ conviennent.

Théorème 6.1 Dirichlet Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Il existe une infinité de couples $(p,q) \in \mathbb{N}$ premiers entre eux avec q > 0tels que $|\alpha - \frac{p}{q}| < \frac{1}{q^2}$.

Démonstration. D'après le lemme précédent, il existe p_0, q_0 tels que $\left|\alpha - \frac{p_0}{q_0}\right| <$

 $\alpha \notin \mathbb{Q} \text{ donc } |\alpha - \frac{p_0}{q_0}| > 0 \text{ donc il existe } n_1 \in \mathbb{N}^* \text{ tel que } |\alpha - \frac{p_0}{q_0}| > \frac{1}{n_1}$. Par le lemme, on a p_1 et q_1 tels que $\left|\alpha - \frac{p_1}{q_1}\right| < \frac{1}{n_1 q_1} \leqslant \frac{1}{a_1^2}$. On a:

$$\frac{1}{n_0 q_0} > \left| \alpha - \frac{p_0}{q_0} \right| > \frac{1}{n_1} \geqslant \frac{1}{n_1 q_1} > \left| \alpha - \frac{p_1}{q_1} \right| > \frac{1}{n_2} \geqslant \cdots$$

 $(n_i)_i$ est strictement croissante donc $\lim_{i\to+\infty}n_i=+\infty$ donc $\lim_{i\to+\infty}\alpha-\frac{p_i}{q_i}=0$. Donc $\{q_i,i\in\mathbb{N}\}$ n'est pas majoré donc, quitte à extraire une sous-suite,

 $(q_i)_i$ est strictement croissante.

Remarque 6.1 Les $\frac{p_i}{q_i}$ sont deux à deux distincts.

Proposition 6.1 Soit $d \in \mathbb{N}^*$ sans facteur carré.

L'équation $x^2 - dy^2 = 1$ admet une solution avec $y \neq 0$.

Démonstration.

• Il existe une infinité de $\frac{p}{q} \in \mathbb{Q}$ tel que $|\sqrt{d} - \frac{p}{q}| < \frac{1}{q^2}$. Pour ces p, q, on a donc $|p - q\sqrt{d}| < \frac{1}{a}$ donc :

$$|p^2 - dq^2| < \frac{|p + q\sqrt{d}|}{q} < \frac{|p - q\sqrt{d}| + 2q\sqrt{d}}{q} < \frac{1}{q^2} + 2\sqrt{d} < 1 + 2\sqrt{d}$$

- Il existe donc $c \in \mathbb{Z}$ tel que $|c| < 1 + 2\sqrt{d}$ et qu'il y ait une infinité de $\frac{p}{q} \in \mathbb{Q}$ vérifiant $|\sqrt{d} \frac{p}{q}| < \frac{1}{q^2}$ et $p^2 dq^2 = c$. d n'est pas un carré donc $c \neq 0$.
- $\mathbb{Z}/|c|\mathbb{Z}$ est fini donc il existe donc $\overline{p}, \overline{q}$ tels qu'il y ait une infinité de On prend $\frac{p_0}{q_0}$ et $\frac{p_1}{q_1}$ comme ceci.

On a
$$(p_0 + q_0\sqrt{d})(p_1 - q_1\sqrt{d}) = (p_0p_1 - dq_0q_1) + (p_1q_0 - p_0q_1)\sqrt{d}$$
.
Or $p_0p_1 - dq_0q_1 = p^2 - d\overline{q}^2 = \overline{c} = 0$ et $p_1q_0 - p_0q_1 = \overline{pq} - \overline{pq} = 0$.

• Posons $u = \underbrace{\frac{(p_0p_1 - dq_0q_1)}{c}}_{u_1} + \underbrace{\frac{(p_1q_0 - p_0q_1)\sqrt{d}}{c}}_{u_2} \in \mathbb{Z}[\sqrt{d}].$ On a de plus $||u|| = \frac{||p_0 + q_0\sqrt{d}|| \times ||p_1 - q_1\sqrt{d}||}{||c||} = 1.$ On a donc $u_0^2 - du_1^2 = 1$ et $u_1 \neq 0$ car sinon $p_0q_1 = p_1q_0$ et $\frac{p_1}{q_1} = \frac{p_0}{q_0}$.

COROLLAIRE 6.1 Soit $d \in \mathbb{N}^*$ sans facteur carré.

L'équation $x^2 - dy^2 = 1$ admet une solution dans $\mathbb{N} \times \mathbb{N}^*$.

THÉORÈME 6.2 $G = (\{x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}], x^2 - dy^2 = 1\}, \times)$ est un groupe isomorphe à $(\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}$.

Démonstration.

- Les éléments de G sont les éléments de norme 1 de $\mathbb{Z}[\sqrt{d}]^{\times}$ donc c'est le noyau de $\|\cdot\|: \mathbb{Z}[\sqrt{d}]^{\times} \to \{\pm 1\}.$ Donc G est un groupe.
- Montrons que $G \cap \mathbb{R}_+^* \simeq \mathbb{Z}$.
 - ▶ On a $1 \in G \cap [1, +\infty[$ donc $G \cap [1, +\infty[\neq \varnothing.$ Si $x + y\sqrt{d} \in G \cap [1, +\infty[, x^2 - dy^2 = 1 \text{ donc } x - y\sqrt{d} = \frac{1}{x + u\sqrt{d}} \in]0, 1].$ Donc

$$\begin{cases} x &= \frac{(x+y\sqrt{d})+(x-y\sqrt{d})}{2} \in]\frac{1}{2}, +\infty[\\ y &= \frac{(x+y\sqrt{d})-(x-y\sqrt{d})}{2\sqrt{d}} \in [0, +\infty[\end{cases}$$

Donc $x \in \mathbb{N}^*$ et $y \in \mathbb{N}$.

- ▶ De plus, si $x + y\sqrt{d} \leq M$ alors $x y\sqrt{d} \in [\frac{1}{M}, 1]$ donc $x \in [\frac{1}{2} + \frac{1}{2M}, \frac{M+1}{2}] \cap \mathbb{Z}$ et $y \in [0, \frac{1}{2\sqrt{d}}(M \frac{1}{M})] \cap \mathbb{Z}$. Donc $G \cap [1, M]$ est fini pour tout $M \ge 1$.
- ▶ $G \cap]1, +\infty[$ admet un plus petit élément $x_0 + y_0 \sqrt{d} > 1$ (non vide par le corollaire).

Soit $x + y\sqrt{d} \in G \cap [1, +\infty[$, il existe n maximum tel que $(x_0 +$

 $y_0\sqrt{d}$)ⁿ $\leq x + y\sqrt{d}$. $u = \frac{x+y\sqrt{d}}{(x_0+y_0\sqrt{d})^n} \in G \cap [1, +\infty[$. Or, par minimalité de $n, u < x_0+y_0\sqrt{d}$.

Par minimalité de $x_0 + y_0 \sqrt{d}$, u = 1. \blacktriangleright Si $x + y\sqrt{d} \in G \cap]0,1]$, alors $\frac{1}{x+y\sqrt{d}} = x - y\sqrt{d} \in G \cap [1,+\infty[$ donc il existe $n \in \mathbb{N}$, $x + y\sqrt{d} = (x_0 + y_0\sqrt{d})^{-n}$.

On a donc un isomorphisme entre \mathbb{Z} et $G \cap \mathbb{R}_+^*$ $(n \mapsto (x_0 + y_0 \sqrt{d})^n)$.

• G est isomorphe à $\{\pm 1\} \times (G \cap \mathbb{R}_+^*)$ par $x \mapsto (\operatorname{Sgn}(x), |x|)$ et $\{\pm 1\} \simeq$ $\mathbb{Z}/2\mathbb{Z}$ et $G \cap \mathbb{R}_+^* \simeq \mathbb{Z}$.

En fait, on peut considérer l'isomorphisme

$$\varphi: \begin{cases} \mathbb{Z}/n\mathbb{Z} \times 2\mathbb{Z} & \to & G = \{z \in \mathbb{Z}[\sqrt{d}]^{\times}, N(z) = 1\} \\ (s,n) & \mapsto & (-1)^{s} g^{n} \end{cases}$$

avec $g = \min G \cap]1, +\infty[$.

L'équation $x^2 - dy^2 = N(z) = 1$ a pour solution les couples (x, y) tels que $x + y\sqrt{d} = \pm g^n.$

On peut aussi prendre pour g l'élément $g_0 = \min(\mathbb{Z}[\sqrt{d}]^{\times} \cap]1, +\infty[)$.

On a deux cas:

- Si $N(g_0) = 1$, pour tout $z \in \mathbb{Z}[\sqrt{d}]^{\times}$, N(z) = 1. Donc $x^2 dy^2 = -1$ n'a pas de solutions.
- Si $N(g_0) = -1$, alors G est un sous-groupe d'indice 2 de $\mathbb{Z}[\sqrt{d}]$ correspondant à $\mathbb{Z}/2\mathbb{Z} \times 2\mathbb{Z}$ (ie $g = g_0^2$). $x^2 dy^2 = -1$ a alors une infinité de solutions.

Dans le cas où on doit considérer $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]^{\times}$ ($d\equiv 1\mod 4),$ on a l'isomorphisme

$$\varphi: \begin{cases} \mathbb{Z}/n\mathbb{Z} \times 2\mathbb{Z} & \to & G = \{z \in \mathbb{Z}[\sqrt{d}]^{\times}, N(z) = 1\} \\ (s, n) & \mapsto & (-1)^{s} g_{1}^{n} \end{cases}$$

avec $g_1 = \min(\mathbb{Z}[\frac{1+\sqrt{d}}{2}]^* \cap]1, +\infty[)$, on appelle g_1 unité fondamentale.

Le but est de calculer une unité fondamentale pour pouvoir résoudre $x^2 - dy^2 = \pm 4$.

6.2 Fractions continues

6.2.1 Définition et premières propriétés

<u>Définition 6.2</u> Une fraction continue est un objet de la forme :

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}}$$

avec $a_i > 0$ sauf éventuellement a_0 .

Proposition 6.2 Posons $p_{-1} = 1$, $p_0 = a_0$ et $p_n = a_n p_{n-1} + p_{n-2}$. De même, $q_{-1} = 0$, $q_0 = 1$ et $q_n = a_n q_{n-1} + q_{n-2}$.

$$q_{-1} = 0, q_0 = 1 \text{ et } q_n = a_n q_{n-1} + q_{n-2}.$$
On a $\begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} = \prod_{i=0}^n \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix}.$

On a alors:

$$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{n}}}} = \frac{p_{n}}{q_{n}}$$

$$\vdots + \frac{1}{a_{n}}$$

 $D\'{e}monstration$. Par récurrence sur n:

 $a_0 = \frac{p_0}{q_0}$ donc H_0 est vraie. De même, H_1 est vraie.

Si H_n et H_{n-1} sont vraies, on remplace a_n par $a_n + \frac{1}{a_{n+1}}$.

 p_n est remplacé par $p'_n = (a_n + \frac{1}{a_{n+1}})p_{n-1} + p_{n-2}$ et q_n par $q'_n = (a_n + \frac{1}{a_{n+1}})q_{n-1} + q_{n-2}$.

Donc:

$$a_{0} + \frac{1}{ \cdot \cdot \cdot + \frac{1}{a_{n+1}}} = \frac{p'_{n}}{q'_{n}}$$

$$= \frac{(a_{n}a_{n+1} + 1)p_{n-1} + a_{n+1}p_{n-2}}{(a_{n}a_{n+1} + 1)q_{n-1} + a_{n+1}q_{n-2}}$$

$$= \frac{(a_{n}a_{n+1} + 1)p_{n-1} + a_{n+1}(p_{n} - a_{n}p_{n-1})}{(a_{n}a_{n+1} + 1)q_{n-1} + a_{n+1}(q_{n} - a_{n}q_{n-1})}$$

$$= \frac{a_{n+1}p_{n} + p_{n-1}}{a_{n+1}q_{n} + q_{n-1}}$$

$$= \frac{p_{n+1}}{q_{n+1}}$$

Donc H_{n+1} est vraie.

Proposition 6.3

- $(p_n)_n$ et $(q_n)_n$ sont croissantes car $a_i > 0$.
- $p_{n+1}q_n p_nq_{n+1} = (-1)^n$.

Démonstration.

$$p_{n+1}q_n - p_n q_{n+1} = \begin{vmatrix} p_{n+1} & p_n \\ q_{n+1} & q_n \end{vmatrix}$$
$$= \prod_{i=0}^{n+1} \begin{vmatrix} a_i & 1 \\ 1 & 0 \end{vmatrix}$$
$$= (-1)^n$$

COROLLAIRE 6.2 Pour tout n, p_n et q_n sont premiers entre eux.

Proposition 6.4 $r_n = \frac{p_n}{q_n}$ est croissant en a_i si $i \equiv 0 \mod 2$ et décroissant sinon.

Démonstration. Décroissance de la fonction inverse.

Proposition 6.5 $(r_{2n})_n$ est strictement croissante et $(r_{2n+1})_n$ est strictement décroissante.

Proposition 6.6 $r_{n+1} - r_n = \frac{(-1)^n}{q_n q_{n+1}}$.

Démonstration.

$$r_{n+1} - r_n = \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n}$$

$$= \frac{p_{n+1}q_n - p_nq_{n+1}}{q_nq_{n+1}}$$

$$= \frac{(-1)^n}{q_nq_{n+1}}$$

Proposition 6.7 $(r_n)_n$ converge dans \mathbb{R} .

Démonstration. Si les a_i sont entiers alors les q_i aussi. Or (q_n) est croissante (strictement) donc sa limite est $+\infty$ et $\lim_{n\to+\infty} |r_{n+1}-r_n|=0$.

Donc $(r_{2n})_n$ et $(r_{2n+1})_n$ sont adjacentes donc r converge.

Réciproquement, si $x \in \mathbb{R}$, on lui associe un développement en fraction continue donné par : $x_0 = x$ et $x_{n+1} = \frac{1}{x_n - \lfloor x_n \rfloor}$ si $x_p \notin \mathbb{Z}$.

- Si la suite s'arrête, (ie il existe n tel que $x_n \in \mathbb{Z}$) alors $x \in \mathbb{Q}$.
- Sinon, on a $\lfloor x_n \rfloor \leqslant x_n < \lfloor x_n \rfloor + 1 < \infty$. Donc $r_{2n} < x < r_{2n+1}$ et x est bien égal au développement en fraction continue associé aux coefficients x_i .

Remarque 6.2 Si $x = \frac{p}{q} \in \mathbb{Q}$, on retrouve l'algorithme d'Euclide appliqué à (p,q).

En particulier, comme tout algortihme qui se respecte, icelui termine donc le développement en fraction continue de $\frac{p}{q}$ est fini.

On a donc $x \in \mathbb{Q}$ ssi son développement en fraction continue est fini.

Proposition 6.8 x est un irrationnel quadratique ssi son développement en fraction continue est périodique à partir d'un certain rang.

Exemple 6.1
$$x = \sqrt{2}, x_0 = \sqrt{2}, a_0 = \lfloor \sqrt{2} \rfloor = 1.$$
 $x_1 = \frac{1}{\sqrt{2}-1} = 1 + \sqrt{2}$ et $a_1 = 2.$ $x_2 = \frac{1}{\sqrt{2}+1-2} = \frac{1}{\sqrt{5}-1} = \sqrt{2}+1$ donc $a_2 = 2.$ On a ainsi $a_i = 2$ pour $i \geqslant 1$.

Donc:

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}$$

Démonstration.

← • Si le développement est périodique alors :

$$x = a_0 + \frac{1}{a_1 + \frac{1}{\cdots + \frac{1}{a_n + \frac{1}{x}}}}$$

Donc $x = \frac{xp_n + p_{n-1}}{xq_n + q_{n-1}}$ donc $x^2q_n + xq_{n-1} - xp_n - p_{n-1} = 0$. $x \notin \mathbb{Q}$ car son développement en fraction continue est infini. Il est aussi quadratique.

- Si le développement en fraction continue de x est périodique à partir d'un certain rang i, alors on se ramène au cas précédent en posant y le réel donc le développement en fraction continue est $(a_n)_{n\geq i}$. y est donc un irrationnel quadratique donc, comme $\mathbb{Q}[y]$ est un corps, $x \in \mathbb{Q}[y]$. Or $x \notin \mathbb{Q}$ donc c'est gagné.
- \Rightarrow Si $x_0 = x$ est racine de $aX^2 + bX + c$ avec $a, b, c \in \mathbb{Z}$ et a > 0. On peut supposer $a \wedge b \wedge c = 1$.

 $x_0 - \lfloor x_0 \rfloor$ est racine de $aX^2 + \underbrace{(b + 2a \lfloor x_0 \rfloor)}_{X} X + a'$ où a' est tel que

 $\Delta = b'^2 - 4aa' = b^2 - 4ac.$ $x_1 = \frac{1}{x_0 - \lfloor x_0 \rfloor} \text{ est racine de } a'X^2 + b'X + a. \text{ On va conclure grâce à la}$ partie suivante.

6.2.2Réduction des formes quadratiques

Définition 6.3 On appelle forme (a, b, c) une forme quadratique de la forme $aX^2 + bX + c$ ou $aX^2 + bXY + cY^2$.

On dit que celle-ci est réduite ssi $0 < b < \sqrt{\Delta}$ et $\sqrt{\Delta} - b < 2|a| < \sqrt{\Delta} + b$ avec $\Delta = b^2 - 4ac$.

Remarque 6.3 On a alors $\frac{-b-\sqrt{\Delta}}{2|a|} < -1 < 0 < \frac{-b+\sqrt{\Delta}}{2|a|} < 1$.

Proposition 6.9 Si (a, b, c) est réduite, alors $\sqrt{\Delta} - b < 2|c| < \sqrt{\Delta} + b$.

Démonstration. $c=\frac{b^2-\Delta}{4a}$ donc $2|c|=\frac{(\sqrt{\Delta}-b)(\sqrt{\Delta}+b)}{2|a|}$ et $\sqrt{\Delta}-b<2|a|<$ $\sqrt{\Delta} + b$.

COROLLAIRE 6.3 Il n'y a qu'un nombre fini de formes réduites à Δ fixé.

On peut définir une application de réduction ρ .

Pour toute forme (a,b,c) il existe $\delta \in \mathbb{Z}$ tel que $\sqrt{\Delta} - 2|c| < -b + 2c\delta < -b < 2c\delta$ $\sqrt{\Delta} \operatorname{car} 2|c| \geqslant 2.$

On a alors $\rho(a,b,c) = (c,2c\delta - b,a - b\delta + c\delta^2) = (a',b',c')$. On a bien $b'^2 - 4a'c' = \Delta.$

D'où l'algorithme:

CHAPITRE 6. UNITÉS ET ÉQUATION DE PELL-FERMAT

Algorithme 1: Réduction de formes quadratiques

Entrées : (a, b, c) non nécessairement réduite

Sorties : (a', b', c') réduite

1 tant que |a| > |c| faire

2 Itérer ρ

Démonstration de l'algorithme. On sort bien de la boucle car quand on itère ρ , on fait décroitre strictement |a|.

Ensuite, on a $|a'| \leq |c'|$. Par définition de ρ , $\sqrt{\Delta} - 2|a'| < b' < \sqrt{\Delta}$.

Donc $0 < \sqrt{\Delta} - b' < 2|a'|$.

On a $\Delta = b'^2 - 4a'c'$ donc $|\sqrt{\Delta} + b'| = \frac{4|a'||c'|}{\sqrt{\Delta} - b'} > 2|c'|$.

Comme $|a'| \leq |c'|$, on a $|\sqrt{\Delta} + b'| > 2|c'| \geq 2|a'| > \sqrt{\Delta} - b'$.

Donc $\sqrt{\Delta} + |b'| \ge |\sqrt{\Delta} + b'| > \sqrt{\Delta} - b'$.

Donc |b'| > -b' donc b' > 0. Donc $\sqrt{\Delta} + b' > 0$.

On a bien les conditions recherchées donc (a', b', c') est réduite.

<u>Définition 6.4</u> Si (a_0, b_0, c_0) et (a_1, b_1, c_1) sont deux formes réduites de discriminant Δ , on dit qu'elles sont adjacentes si $a_1 = c_0$ et $b_0 + b_1 \equiv 0$ mod $2a_1$.

On dit que (a_0, b_0, c_0) est adjacente à gauche à (a_1, b_1, c_1) .

Proposition 6.10 Chaque forme réduite a une unique forme adjacente à droite et une unique forme adjacente à gauche.

 $D\acute{e}monstration.$ Montrons le pour l'adjacence à droite.

On a déja $a_1=c_0$ et $c_1=\frac{b_1^2-\Delta}{4a_1}$ fixés donc il faut montrer qu'il n'y a qu'un seul b_1 possible.

Or $b_1 \equiv -b_0 \mod 2a_1$. De plus, $\sqrt{\Delta} - b_1 < 2|a_1| \operatorname{donc} \sqrt{\Delta} - 2|a_1| < b_1$ et $0 < b_1 < \sqrt{\Delta}$.

Donc $\sqrt{\Delta} - 2|a_1| < b_1 < \sqrt{\Delta}$ qui est un intervalle de longueur $2|a_1|$ ce qui assure l'unicité de b_1 .

Proposition 6.11 Par définition de ρ , si (a, b, c) est réduite, $\rho(a, b, c)$ lui est adjacente à droite.

Dans l'ensemble des formes réduites, ρ décrit des cycles qui partitionnent l'ensemble des formes réduites.

6.2.3 Lien avec les fractions continues

On obtient le cœfficient suivant dans le développement en fraction continue en appliquant ρ à la forme quadratique correspondante.

Par l'application $(a, b, c) \mapsto (\tau, s) = (\frac{-b + \sqrt{\Delta}}{2|a|}, \operatorname{Sgn}(a))$, en applicant ρ , on tombe sur $(\frac{1}{\tau} - \lfloor \frac{1}{\tau} \rfloor, -1)$.

Le développement en fraction continue d'un irrationnel quadratique est donc périodique à partir d'un certain rang.

La période est égale à la longueur du cycle sur les formes quadratiques réduites ou à la moitié de cette longueur.

Cas du développement en fraction continue de \sqrt{d} :

On part de (-d, 0, 1), $\Delta = 4d$.

 $\rho(-d,0,1) = (1,2\lfloor\sqrt{d}\rfloor,\lfloor\sqrt{d}\rfloor^2 - d)$ qui est réduite.

Le développement en fraction continue de \sqrt{d} est donc de la forme

$$(a_0, a_1, \ldots, a_{r+1}, a_1, \ldots, a_{r+1}, \cdots)$$

6.2.4 Algorithme de résolution de l'équation de Pell-Fermat

On développe \sqrt{d} en fraction continue : $(a_0, a_1, \ldots, a_{r+1}, a_1, \ldots, a_{r+1}, \cdots)$. $\frac{p_r}{q_r}$ est le rationnel dont le développement en fraction continue a pour cœfficients (a_0, \ldots, a_r) .

Si r est impair, alors (p_r, q_r) est la solution fondamentale de $x^2 - dy^2 = 1$ et $x^2 - dy^2 = -1$ n'a pas de solutions.

Sinon, r est pair et (p_r, q_r) est la solution fondamentale de $x^2 - dy^2 = \pm 1$. Exemple : $x^2 - 7y^2 = \pm 1$.

Le développement en fraction continue de $\sqrt{7}$ est $(2, \overline{1, 1, 1, 4})$.

On regarde:

$$2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = \frac{8}{3}$$

Les solutions de $x^2 - 7y^2 = 1$ sont $\pm (8 + 3\sqrt{7})^n$ et $x^2 - 7y^2 = -1$ n'a pas de solutions.

6.3 Théorème de Dirichlet

Soit K un corps de nombres. Notons s le nombre de plongements réels et t le nombre de paires de plongements non réels. Le degré de K sur $\mathbb Q$ est

n = s + 2t.

Notons $\mu(K)$ l'ensembles des racines de l'unité dans K.

Théorème 6.3 Dirichlet $\mathcal{O}_K^{\times} \simeq \mu(K) \times \mathbb{Z}^{s+t-1}$.

Démonstration.

Définition 6.5 On définit :

$$\sigma: \begin{cases} K & \to & \mathbb{R}^s \times \mathbb{C}^t \\ z & \mapsto & \underbrace{(\sigma_1(z), \dots, \sigma_s(z), \underbrace{\sigma_{s+1}(z), \dots, \sigma_{s+t}(z)}_{\text{plongements r\'eels}})}_{\text{plongements non r\'eels}} \end{cases}$$

$$l: \begin{cases} (\mathbb{R}^{\times})^s \times (\mathbb{C}^{\times})^t & \to & \mathbb{R}^{s+t} \\ (z_1, \dots, z_{s+t}) & \mapsto & (\ln(|z_1|), \dots, \ln(|z_s|), \ln(|z_{s+1}|^2), \dots, \ln(|z_{s+t}|^2)) \end{cases}$$

Proposition 6.12

- Si $z \in K^*$, $\sigma(z) \in (\mathbb{R}^{\times})^s \times (\mathbb{C}^{\times})^t$ donc $(l \circ \sigma)$ est bien définie.
- $l \circ \sigma : K^* \to \mathbb{R}^{s+t}$ est un morphisme de groupes.
- Si $z \in K^{\times}$, posons $l(\sigma(z)) = (l_1, \dots, l_{s+t})$. $\sum l_i = \ln(|N(z)|).$

$$\sum l_i = 0 \quad \text{ssi} \quad z \in \mathcal{O}_K^{\times}.$$

$$\forall i, l_i = 0 \quad \text{ssi} \quad z \in \mu(K).$$

Démonstration. Tous les points sont faciles sauf le dernier.

Les l_i sont nuls ssi pour tout i, $|\sigma_i(z)| = 1$ ssi pour tout plongement σ , $|\sigma(z)| = 1$.

Lemme 6.3.1

Si B est un compact de \mathbb{R}^{s+t} , alors $\{z \in \mathcal{O}_K^*, (l \circ \sigma)(z) \in B\}$ est fini.

Démonstration. Soit $z \in \mathcal{O}_K$. $\prod_{\sigma} (X - \sigma(z)) \in \mathbb{Z}[X]$ et $(\sigma_1(z), \dots, \sigma_{s+t}(z)) \in l^{-1}(B)$ qui est compact.

Donc les cœfficients de $\prod_{\sigma}(X-\sigma(z))$ se trouvent dans un compact qui dépend uniquement de B donc ce polynôme appartient à un ensemble fini de polynômes.

Ceux-ci ont chacun au plus n racines dans K et z en est une.

Donc l'ensemble considéré est fini.

Lemme 6.3.2

 $\mu(K)$ est un sous-groupe fini de \mathcal{O}_K^{\times} .

Démonstration. $\mu(K) = \{x \in \mathcal{O}_K^*, l(\sigma(x)) = 0\}$ et $\{0\}$ est compact. D'où le résultat.

Lemme 6.3.3

Soit $z \in \mathcal{O}_K$.

(Pour tout σ , $|\sigma(z)| = 1$) ssi $z \in \mu(K)$.

Démonstration.

 \Leftarrow Si $z \in \mu(K)$, $z^m = 1$ donc $|\sigma(z)|^n = 1$ donc $|\sigma(z)| = 1$. $\Rightarrow G = \text{Ker}(l \circ \sigma)$. $\{0\}$ est compact donc G est fini. Soit $z \in \mathcal{O}_K$ qui vérifie l'hypothèse, $z \in G$ donc $z^{|G|} = 1$ donc $z \in \mu(K)$.

Ce qui permet de conclure la propriété.

Remarque 6.4 $\mu(K)$ est un sous-groupe de

$$\{z \in \mathbb{C}, z^{|\mu(K)|} = 1\} \simeq \mathbb{Z}/|\mu(K)|\mathbb{Z}$$

Donc $\mu(K)$ est cyclique (car tous les sous-groupes de $\mathbb{Z}/|\mu(K)|\mathbb{Z}$ sont cycliques).

On a de plus $\mathcal{O}_K^{\times}/\mu(K) \simeq \operatorname{Im}(l \circ \sigma)$.

Lemme 6.3.4

 $(l \circ \sigma)(\mathcal{O}_K^{\times})$ est un sous-groupe discret de \mathbb{R}^{s+t} contenu dans l'hyperplan $H = \{l \in \mathbb{R}^{s+t}, \sum l_i = 0\}.$

Démonstration. On sait déjà que c'est un sous-groupe.

Soit B une boule fermée de \mathbb{R}^{s+t} donc compacte.

 $(l \circ \sigma)^{-1}(B)$ est un compact donc fini donc $(l \circ \sigma)(\mathcal{O}_K^{\times}) \cap B$ est fini donc $(l \circ \sigma)(\mathcal{O}_K)$ est discret.

 $(l \circ \sigma)(\mathcal{O}_K)$ est donc un réseau d'un sous-espace vectoriel de H donc c'est isomorphe à \mathbb{Z}^h .

On veut montrer que $(l \circ \sigma)(\mathcal{O}_K^{\times})$ engendre H comme \mathbb{R} -espace vectoriel. Il suffit de montrer que pour toute forme linéaire $f: H \to \mathbb{R}, \ f((l \circ \sigma)(\mathcal{O}_K^{\times})) \neq 0$.

Lemme 6.3.5

$$\sigma(\mathcal{O}_K) \subset \mathbb{R}^s \times \mathbb{C}^t$$
.

 $\sigma(\mathcal{O}_K)$ en est un réseau de volume $2^{-t}\sqrt{|\operatorname{disc}(K)|}$.

 $D\acute{e}monstration.$ \mathcal{O}_K est un \mathbb{Z} -module libre de rang n dont une \mathbb{Z} -base est $(z_1,\ldots,z_n).$

On veut montrer que $(\sigma(z_1), \ldots, \sigma(z_n))$ est une base du \mathbb{R} -espace vectoriel $\mathbb{R}^s \times \mathbb{C}^t$.

$$\det(\sigma(z_{1}), \dots, \sigma(z_{n})) = \begin{vmatrix} \sigma_{1}(z_{1}) & \cdots & \sigma_{1}(z_{n}) \\ \vdots & & \vdots \\ \sigma_{s}(z_{1}) & \cdots & \sigma_{s}(z_{n}) \\ \Re(\sigma_{s+1}(z_{1})) & \cdots & \Re(\sigma_{s+1}(z_{n})) \\ \Im(\sigma_{s+1}(z_{1})) & \cdots & \Im(\sigma_{s+1}(z_{n})) \\ \vdots & & \vdots \\ \Re(\sigma_{s+t}(z_{1})) & \cdots & \Re(\sigma_{s+t}(z_{n})) \\ \Im(\sigma_{s+t}(z_{1})) & \cdots & \Im(\sigma_{s+t}(z_{n})) \end{vmatrix}$$

$$= \begin{vmatrix} \sigma_{1}(z_{1}) & \cdots & \sigma_{1}(z_{n}) \\ \vdots & & \vdots \\ \sigma_{s}(z_{1}) & \cdots & \sigma_{s}(z_{n}) \\ \vdots & & \vdots \\ \sigma_{s+1}(z_{1}) + \overline{\sigma_{s+1}(z_{1})} & \cdots & \frac{\sigma_{s+1}(z_{n}) + \overline{\sigma_{s+1}(z_{n})}}{2} \\ \vdots & & \vdots \\ \sigma_{s+t}(z_{1}) + \overline{\sigma_{s+t}(z_{1})} & \cdots & \frac{\sigma_{s+t}(z_{n}) + \overline{\sigma_{s+t}(z_{n})}}{2} \\ \vdots & & \vdots \\ \sigma_{s+t}(z_{1}) + \overline{\sigma_{s+t}(z_{1})} & \cdots & \frac{\sigma_{s+t}(z_{n}) + \overline{\sigma_{s+t}(z_{n})}}{2} \\ \frac{\sigma_{s+t}(z_{1}) - \overline{\sigma_{s+t}(z_{1})}}{2} & \cdots & \frac{\sigma_{s+t}(z_{n}) + \overline{\sigma_{s+t}(z_{n})}}{2} \end{vmatrix}$$

Donc
$$\det(\sigma(z_1), \dots, \sigma(z_n))^2 = (-1)^t 2^{-2t} \operatorname{disc}(K) = 2^{-2t} |\operatorname{disc}(K)| \neq 0.$$

Posons

$$B_{\lambda} = \{(x_1, \dots, x_{s+t}) \in \mathbb{R}^s \times \mathbb{C}^t, \forall i, |x_i| \leqslant \lambda_i\}$$

pour $\lambda = (\lambda_1, \dots, \lambda_{s+t})$.

C'est un convexe symétrique borné non vide.

Son volume vaut $2^s \pi^t \lambda_1 \cdots \lambda_s \lambda_{s+1}^2 \cdots \lambda_{s+t}^2 = 2^s \pi^t \alpha$.

• Si $2^s \pi^t \alpha \geqslant 2^n 2^{-t} \sqrt{|\operatorname{disc}(K)|}$ alors il existe un $z_{\lambda} \in \mathcal{O}_K^*$ tel que $\sigma(z_{\lambda}) \in$ B_{λ} .

Dans ce cas, $1 \leq |N(z_{\lambda})| \leq \alpha$.

$$1 \leqslant |N(z_{\lambda})| = |\sigma_{i}(z_{\lambda})| \prod_{\sigma \neq \sigma_{i}} |\sigma(z_{\lambda})| \leqslant \sigma_{i}(z_{\lambda}) \frac{\alpha}{\lambda_{1}}.$$

Donc $|\sigma_i(z_\lambda)| \geqslant \frac{\lambda_1}{\alpha}$. Donc $0 \leqslant \ln \lambda_i - \ln |\sigma_i(z_\lambda)| \leqslant \ln \alpha$.

Or
$$f((l \circ \sigma)(z_{\lambda})) = \sum_{i} f_{i} \ln(|\sigma_{i}(z_{\lambda})|)$$
 donc

$$\left| \sum_{i} f_{i} \log(\lambda_{i}) - f((l \circ \sigma)(z_{\lambda})) \right| \leqslant \left(\sum_{i} |f_{i}| \right) \ln \alpha$$

• On prend $\alpha \geqslant (\frac{2}{\pi})^t \sqrt{|\operatorname{disc}(\alpha)|}, \ \alpha \geqslant 1 \text{ et } \beta > \ln(\alpha) \sum_i |f_i|.$

Pour tout m > 0, on a alors des $(\lambda_1(m), \ldots, \lambda_{t+s}(m))$ strictement positifs tels que $\ln(\lambda_1(m)) + \cdots + \ln(\lambda_s(m)) + 2\ln(\lambda_{s+1}(m)) + \cdots + 2\ln(\lambda_{s+t}(m)) = \ln(\alpha)$.

On a alors $2\beta m = \sum_{i} f_i \ln(\lambda_i(m))$.

Remarque 6.5 C'est possible car (f_1, \ldots, f_{s+t}) et $(\underbrace{1, \ldots, 1}_{s \text{ fois}}, \underbrace{2, \ldots, 2}_{s+t \text{ fois}})$ ne

sont pas colinéaires car $f \neq 0$.

 $B_{\lambda(m)}$ est un convexe symétrique borné non vide de volume $2^s\pi^t\alpha > 2^n\operatorname{Vol}(\sigma(\mathcal{O}_K))$.

Par Minkowski, il existe $z_{\lambda(m)} \in \mathcal{O}_K \setminus \{0\}$ tel que $\sigma(z_{\lambda(m)}) \in B_{\lambda(m)}$.

Par le premier point,
$$|f((l \circ \sigma)(z_{\lambda(m)})) - 2\beta m| \leq \ln(\alpha) \sum_{i=1}^{s+t} |f_i| < \beta$$
.

Donc $(2m-1)\beta < f((l \circ \sigma)(z_{\lambda(m)})) < (2m+1)\beta$.

Donc les $f((l \circ \sigma)(z_{\lambda(m)})) \in \mathbb{R}$ sont tous distincts.

De plus,

$$|N(z)| = |\sigma_1(z_{\lambda(m)})| \cdots |\sigma_s(z_{\lambda(m)})| |\sigma_{s+1}(z_{\lambda(m)})|^2 \cdots |\sigma_{s+t}(z_{\lambda(m)})|^2 \leqslant \alpha$$

Lemme 6.3.6

Si $a \in \mathbb{Z}$, $\{x\mathcal{O}_K, x \in \mathcal{O}_K, N(x) = a\}$ est fini.

Démonstration. $a = N(x) = \prod_{\sigma} \sigma(x)$ donc, comme a et $\sigma_1(x)$ appartiennent

à
$$\sigma_1(\mathcal{O}_K)$$
 donc $\prod_{\sigma \neq \sigma_1} \sigma(x) \in \sigma_1(\mathcal{O}_K)$.

 $a \in \sigma_1(x)\sigma_1(\mathcal{O}_K)$ donc $\sigma_1(a) \in \sigma_1(x\mathcal{O}_K)$ donc $a \in x\mathcal{O}_K$.

Donc $a\mathcal{O}_K \subset x\mathcal{O}_K$ donc $x\mathcal{O}_K/a\mathcal{O}_K$ est un idéal de $\mathcal{O}_K/a\mathcal{O}_K \simeq (\mathbb{Z}/a\mathbb{Z})^n$ qui est fini.

Donc $\mathcal{O}_K/a\mathcal{O}_K$ a un nombre fini d'idéaux donc \mathcal{O}_K a un nombre fini d'idéaux qui contienent $a\mathcal{O}_K$ d'où le lemme.

Considérons les idéaux $z_{\lambda(m)}\mathcal{O}_K$.

 $N(z_{\lambda(m)}) \in \llbracket -\alpha, \alpha \rrbracket$ donc il existe $a \in \llbracket -\alpha, \alpha \rrbracket$ tel qu'il y ait une infinité de m tels que $N(z_{\lambda(m)}) = a$.

CHAPITRE 6. UNITÉS ET ÉQUATION DE PELL-FERMAT

```
 \{z_{\lambda(m)}\mathcal{O}_K, m>0, N(z_{\lambda(m)})=a\} \text{ est donc fini donc il existe } m_0, m_1>0  tels que m_0\neq m_1 tels que z_{\lambda(m_0)}\mathcal{O}_K=z_{\lambda(m_1)}\mathcal{O}_K. Il existe donc u\in\mathcal{O}_K^{\times} tel que z_{\lambda(m_1)}=uz_{\lambda(m_0)}. f((l\circ\sigma)(u))=f((l\circ\sigma)(z_{\lambda(m_1)}))-f((l\circ\sigma)(z_{\lambda(m_0)}))\neq 0 \text{ car } m_1\neq m_0. On a donc trouvé u\in\mathcal{O}_K^{\times} tel que f((l\circ\sigma)(u))\neq 0. D'où le théorème.
```

Chapitre 7

Analyse numérique

7.1 Fonction ζ

Définition 7.1 On définit la fonction ζ de Riemann par :

$$\zeta: \begin{cases} \mathbb{C} & \to & \mathbb{C} \\ s & \mapsto & \sum_{n\geqslant 0} n^{-s} \end{cases}$$

Proposition 7.1 If y a convergence sur $\{s, \Re(s) > 1\}$ et convergence uniforme sur $\{s, \Re(s) \ge A\}$ avec A > 1.

Proposition 7.2
$$\zeta(s) = \prod_{p \in \mathscr{P}} (1 - p^{-1})^{-1}$$
.

Démonstration.

$$\zeta(s) = (1 + 2^{-s} + 2^{-2s} + \cdots)(1 + 3^{-s} + \cdots)\cdots
= \sum_{n=1}^{\infty} \prod_{p \in \mathscr{P}} p^{-sv_p(n)}
= \prod_{p \in \mathscr{P}} \sum_{k=0}^{\infty} p^{-ks}
= \prod_{p \in \mathscr{P}} (1 - p^{-1})^{-1}$$

THÉORÈME 7.1 \mathscr{P} est infini.

Démonstration. On a $\lim_{s\to 1} \zeta(s) = +\infty$ donc $\lim_{s\to 1} \prod_{p\in\mathscr{P}} (1-p^{-1}) = 0$.

Si $\mathscr P$ était fini, cette limite vaudrait $\prod_{p\in\mathscr P}(1-p^{-1})\neq 0$. Donc $\mathscr P$ est infini.

Théorème 7.2
$$\sum_{p \in \mathscr{P}} \frac{1}{p} = +\infty$$
.

Démonstration. On a $\lim_{s\to 1} \sum_{p\in\mathscr{P}} \ln(1-p^{-1}) = +\infty$. Donc $\lim_{s\to 1} \sum_{p\in\mathscr{P}} \sum_{n=1}^{+\infty} \frac{p^{-ns}}{n} = +\infty$.

Donc
$$\lim_{s \to 1} \sum_{p \in \mathscr{D}} \sum_{n=1}^{+\infty} \frac{p^{-ns}}{n} = +\infty$$

Pour
$$n \geqslant 2$$
, $\sum_{p \in \mathcal{P}} p^{-ns} \leqslant \sum_{k=2}^{\infty} k^{-ns} \leqslant \int_{1}^{+\infty} t^{-ns} dt \leqslant \frac{1}{ns+1}$.

Donc
$$\sum_{n=2}^{\infty} \frac{1}{n} \frac{1}{ns+1} \leqslant \frac{1}{s} \sum_{n=2}^{\infty} \frac{1}{n^2}$$
 qui est bornée.

Donc c'est le terme en n=1 qui diverge. Donc $\lim_{s\to 1} \sum_{p\in\mathscr{P}} p^{-s} = +\infty$.

$$Donc \sum_{p \in \mathscr{P}} \frac{1}{p} = +\infty.$$

Proposition 7.3 $\zeta(2k) = (-1)^{k+1} \frac{2^{2k-1}b_{2k}}{(2k)!} \pi^{2k}$ avec $b_{2k} \in \mathbb{Q}$ est le 2k-ème nombre de Bernoulli : il vérifie $\sum_{n=0}^{\infty} \frac{b_n}{n!} t^n = \frac{t}{e^t - 1}$.

Théorème 7.3 (Apéry, 1978) $\zeta(3)$ est irrationnel.

Théorème 7.4 La fonction ζ a un prolongement méromorphe à \mathbb{C} avec un unique pôle en 1, qui vérifie une équation fonctionnelle.

7.2 Fonction Γ

<u>Définition 7.2</u> On définit la fonction Γ par :

$$\Gamma: \begin{cases} \mathbb{C} & \to & \mathbb{C} \\ s & \mapsto & \int_0^\infty t^{s-1} e^{-t} dt \end{cases}$$

Proposition 7.4 La fonction est définie sur le demi-plan $\Re(z) > 0$. Elle admet un prolongement méromorphe à C dont les pôles sont les éléments de

Proposition 7.5
$$n^{-2s}\pi^{-s}\Gamma(s) = \int_0^\infty e^{n^2\pi t} t^{s-1} dt$$

Démonstration. Utiliser le changement de variables $t = n^2 \pi u$.

Proposition 7.6
$$\zeta(2s)\pi^{-s}\Gamma(s) = \int_0^\infty \frac{\theta(t)-1}{2}t^{s-1} dt \text{ avec } \theta(t) = \sum_{n\in\mathbb{Z}} e^{-n^2\pi t}.$$

Démonstration. Sommer la formule précédente.

Lemme 7.4.1

$$\theta(\frac{1}{t}) = t^{\frac{1}{2}}\theta(t).$$

Démonstration. On applique la formule sommatoire de Poisson aux transformées de Fourier de $x \mapsto e^{-\pi x^2 t}$ et $x \mapsto \frac{e^{-\pi \frac{x^2}{t}}}{\sqrt{t}}$.

Théorème 7.5 ζ :

- est méromorphe sur \mathbb{C} ,
- a un pôle en 1 et c'est le seul,
- s'annule $sur \mathbb{Z}^-$,
- $s \mapsto \pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)$ est symétrique par rapport à l'axe $\Re(z) = \frac{1}{2}$.

Démonstration. On a par les résultats précédents :

$$\zeta(2s)\pi^{-s}\Gamma(s) = \int_0^\infty \frac{\theta(t) - 1}{2} t^{s-1} dt$$

$$= \int_0^1 \frac{\theta(t) - 1}{2} t^{s-1} dt + \int_1^\infty \frac{\theta(t) - 1}{2} t^{s-1} dt$$

$$= \int_1^\infty \frac{\theta(\frac{1}{t}) - 1}{2} t^{-s-1} dt + \int_1^\infty \frac{\theta(t) - 1}{2} t^{s-1} dt$$

$$= \int_1^\infty \frac{\theta(t) t^{-s-\frac{1}{2}} - t^{-s-1} + \theta(t) t^{s-1} - t^{s-1}}{2} dt$$

$$= \int_1^\infty \frac{(\theta(t) - 1)(t^{-s-\frac{1}{2}} + t^{s-1})}{2} dt + \frac{1}{2s - 1} - \frac{1}{2s}$$

Proposition 7.7 ζ ne s'annule pas sur la droite $\Re(z) = 1$.

Remarque 7.1 C'est de là qu'on déduit le :

Théorème 7.6 des nombres premiers

$$\operatorname{Card}(\{p \in \mathscr{P}, p \leqslant x\}) \sim \frac{x}{\ln(x)}$$

Théorème 7.7 (Conjecture de Riemann) Les zéros de ζ sont les entiers négatifs ou ont pour partie réelle $\frac{1}{2}$.

7.3 Généralisation

7.3.1 Fonctions L

<u>Définition 7.3</u> Soit $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ un morphisme de groupe.

On définit les fonctions L par :

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \in \mathscr{P}} (1 - \chi(p)p^{-s})^{-1}$$

<u>Définition 7.4</u> (Fonction ζ d'un corps de nombres) Soit K un corps de nombres et N la norme associée.

On définit la fonction ζ associée à K par :

$$\zeta_K(s) = \prod_{(0) \neq \mathfrak{p} \text{ premier } \subset \mathcal{O}_K} (1 - N(p)^{-s})^{-1}$$

Théorème 7.8 Soit $m \in \mathbb{N}^*$ et $a \in \mathbb{Z}$ premier avec m.

Il existe une infinité de nombres premiers congrus à a modulo m.

Démonstration. Soit $A \subset \mathscr{P}$.

On définit la densité de A dans ${\mathscr P}$ par :

$$\lim_{n \to +\infty} \frac{\operatorname{Card}(A \cap [1, n])}{\operatorname{Card}(P \cap [1, n])}$$

et la densité analytique par :

$$\lim_{s \to 1} \frac{\sum_{p \in A} p^{-s}}{\ln(\frac{1}{s-1})}$$

Si A est fini, sa densité et sa densité analytique sont nulles. On va montrer que la densité analytique de $A = \{p \in \mathscr{P}, p \equiv a \mod m\}$ est $\frac{1}{\varphi(m)} > 0$.

Soit
$$\chi$$
 un morphisme de $(\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ et $f_{\chi} = s \mapsto \sum_{\substack{p \in \mathscr{P} \\ p \nmid m}} \chi(p) p^{-s}$.

Lemme 7.8.1

Si
$$\chi = \mathrm{Id}, f_{\chi}(s) \underset{s \to 1}{\sim} \ln(\frac{1}{s-1})$$

Si $\chi=\mathrm{Id},\ f_\chi(s) \underset{s\to 1}{\sim} \ln(\frac{1}{s-1}).$ Sinon, f_χ est bornée au voisinage de 1.

Et ça permet de conclure (cf. rapport de stage).