Analysis and Design of Algorithms

Lecture 9,10 **Dynamic Programming**

Lecturer: Tong Minh Duc

Nội dung

- 1. Lược đồ chung
- 2. Bài toán tính số Fibonaci
- 3. Bài toán cái túi
- 4. Bài toán dãy con có tổng lớn nhất
- 5. Bài toán tìm xâu con chung dài nhất
- 6. Đường đi ngắn nhất TT Floyd
- 7. Cây nhị phân tìm kiếm tối ưu

2/22/2023

Bài toán

· Cho hai xâu

$$X = (x_1, x_2, ..., x_m)$$
 và
 $Y = (y_1, y_2, ..., y_n)$

- Hãy tìm xâu con chung dài nhất của hai dãy X và Y.
- Ví dụ

X = KHOA HOC Y = HOA HONG

HOA HO

2/22/2023

Ý tưởng thuật toán

- Phân rã:
 - m: chiều dài xâu X, n: chiều dài xâu Y
 - Với mỗi $0 \le i \le m$ và $0 \le j \le n$ gọi C[i, j] là độ dài của dãy con chung dài nhất của hai dãy

$$\mathbf{X_i} = \mathbf{x_1} \mathbf{x_2} ... \mathbf{x_i}$$
 và $\mathbf{Y_j} = \mathbf{y_1} \mathbf{y_2} ... \mathbf{y_j}$
(Qui ước $\mathbf{X_0} = \mathbf{rong}$, $\mathbf{Y_0} = \mathbf{rong}$)

- Khi đó C[m,n] là chiều dài xâu con chung dài nhất của X và Y.
- Bài toán con: C[0,j]=0 j=1..n, C[i,0] = 0 i=1..m

2/22/2023

Tổng hợp

- Với i > 0, j > 0 tính C[i, j]
 - Nếu $x_i = y_j$ thì dãy con chung dài nhất của X_i và Y_j sẽ thu được bằng việc bổ sung x_i (cũng là y_j) vào dãy con chung dài nhất của hai dãy X_{i-1} và Y_{i-1}
 - **◯** C[i,j] = C[i-1,j-1]+1
 - Nếu x_i ≠ y_j thì dãy con chung dài nhất của X_i và Y_j sẽ là dãy con dài hơn trong hai dãy con chung dài nhất của (X_{i-1} và Y_j) và của (X_i và Y_{j-1})
 - ➡ C[i,j] = Max{C[i-1,j], C[i,j-1]}

2/22/2023

Cài đặt

```
Procedure LCS(X,Y) 

{
    For i = 1 to m do c[i,0]=0;
    For j = 1 to n do c[0,j]=0;
    For i = 1 to m do
        for j = 1 to n do
            If x_i = y_j then { c[i,j]=c[i-1,j-1]+1; b[i,j]='\Gamma' }
        else
            If c[i-1,j] \ge c[i,j-1] then { c[i,j]=c[i-1,j]; b[i,j]='\uparrow'; }
        else { c[i,j]=c[i,j-1]; b[i,j]='\leftarrow'; }
    }
```

Minh họa

• X= KHOAHOC, Y= HOAHONG

К	Н	0	Α	н	0	С
	K	K H	K H O	K H O A	K H O A H	K H O A H O

2/22/2023

Khởi tạo

• Y= KHOAHOC, X= HOAHONG

		K	н	0	Α	Н	0	С
	0	0	0	0	0	0	0	0
Н	0							
0	0							
Α	0							
Н	0							
0	0							
N	0							
G	0							

2/22/2023

Lặp

• X= KHOAHOC, Y= HOAHONG

		К	Н	0	Α	Н	0	С
	0	0	0	0	0	0	0	0
Н	0	0						
0	0							
Α	0							
Н	0							
0	0							
N	0							
G	0							
N	0							

2/22/2023

Lặp ...

• X= KHOAHOC, Y= HOAHONG

		K	Н	0	Α	н	0	С
	0	0	0	0	0	0	0	0
Н	0	0	1					
0	0							
Α	0							
Н	0							
0	0							
N	0							
G	0							

2/22/2023

Lặp ...

• X= KHOAHOC, Y= HOAHONG

		K	Н	0	Α	Н	0	С
	0	0	0	0	0	0	0	0
Н	0	0	1	?				
0	0							
Α	0							
Н	0							
0	0							
N	0							
G	0							

2/22/2023

11

Lặp ...

• X= KHOAHOC, Y= HOAHONG

		K	н	0	Α	Н	0	С
	0	0	0	0	0	0	0	0
Н	0	0	1-	→1				
0	0							
Α	0							
Н	0							
0	0							
N	0							
G	0							

2/22/2023

13

2/22/2023

Lặp ...

• X= KHOAHOC, Y= HOAHONG

		К	Н	0	A	Н	0	С
	0	0	0	0	0	0	0	0
Н	0	0	1_	→1-	→1	1	→1 —	1
0	0	0	ĺ	2				
Α	0							
Н	0							
0	0							
N	0							
G	0							

2/22/2023

17

Kết thúc

• X= KHOAHOC, Y= HOAHONG

		K	Н	0	Α	Н	0	С
	0	0	0	0	0	0	0	0
Н	0	0	1_	→1-	→1	1	1	1
0	0	0	1	2-	-> 2	⇒ 2	2	⇒ 2
Α	0	0	1	2	3	→3	-3	-3
Н	0	0	1	ž	3	4	4	4
0	0	0	1	2	3	4	5-	5
N	0	0	1	2	3	4	5-	5
G	0	0	1	2	3	4	5-	-5

2/22/2023

Kết thúc

• X= KHOAHOC, Y= HOAHONG

2/22/2023

19

Nội dung

- 1. Lược đồ chung
- 2. Bài toán tính số Fibonaci
- 3. Bài toán cái túi
- 4. Bài toán dãy con có tổng lớn nhất
- 5. Bài toán tìm xâu con chung dài nhất
- 6. Đường đi ngắn nhất TT Floyd
- 7. Cây nhị phân tìm kiếm tối ưu

2/22/2023

Bài toán

- Đồ thị G=(V,E)
 - Đơn đồ thị liên thông (vô hướng hoặc có hướng)
 - Có trọng số.
 - V: Tập đỉnh
 - E: Tập cạnh
- Tìm đường đi ngắn nhất từ giữa một cặp đỉnh nào đó của G.

2/22/2023

21

Thuật toán Floyd

- Tư tưởng:
 - Nếu k nằm trên đường đi ngắn nhất từ i đến j thì đường đi từ i đến k và từ k đến j cũng ngắn nhất (Nguyên lý Bellman).
- Phân rã:
 - n là số đỉnh của G
 - Gọi d[i,j] là đường đi ngắn nhất từ đỉnh i đến đỉnh j
 - Qui ước $\mathbf{p_k[i,j]}$ với (k=0..n) lưu giá trị từ 0 .. k (đỉnh) thể hiện đường đi ngắn nhất từ i đến j có qua đỉnh $\mathbf{p_k[i,j]}$

2/22/2023

Thuật toán Floyd

- Phân rã:
 - n là số đỉnh của G, d[i,j], $p_k[i,j]$
 - $-p_k[i,j] = 0$ đường đi ngắn nhất từ i đến j không đi qua $p_k[i,j]$,
 - $-p_{k}[i,j]$!=0 đường đi ngắn nhất từ i đến j đi qua $p_{k}[i,j]$
 - Khi k = n thì $p_k[i,j]$ cho biết đường đi cần tìm.
- Bài toán con:
 - -d[i,j] = a[i,j]
 - $-p_0[i,j] = 0$

2/22/202

23

Tổng hợp

- Nếu d[i,j] là đường đi ngắn nhất từ i đến j đã xét ở bước k-1 (đã xét đi qua từ đỉnh 1 đến đỉnh k-1).
- Ở bước k:

```
d[i,j] = min (d[i,j], d[i,k]+d[k,j])
```

2/22/2023

Cài đặt

• Biểu diễn đồ thị G qua ma trận trọng số cạnh

$$a = (a_{uv})_{nxn};$$

$$a_{uv} = \begin{cases} trong \ so' \ cua(u,v); (u,v) \in E; \\ \infty; (u,v) \notin E; \end{cases}$$

• Khởi tạo

$$d[i,j] = a[i, j]$$

 $p[i,j] = 0$

2/22/2023

```
void floyd()
        int i, j, k;
        // Khoi dong ma tran d va p
        for (i = 1; i \le n; i++)
                for (j = 1; j \le n; j ++)
                        d[i][j] = a[i][j];
                        p[i][j] = 0;
        for (k = 1; k \le n; k++) // Tính ma trận d và p ở bước lặp k
                for (i = 1; i \le n; i++)
                        if (d[i][k] > 0 && d[i][k] < vc)
                                for (j = 1; j \le n; j++)
                                         if (d[k][j] > 0 && d[k][j] < vc)
                                                 \mathrm{if}\; (d[i][k]+d[k][j]< d[i][j]\;)
                                                         d[i][j] = d[i][k] + d[k][j];
                                                         p[i][j] = k;
                                                 }
} 2023
                                                                                      26
```

Minh họa

Tìm đường đi ngắn nhất giữa các cặp đỉnh của đồ thị:

2/22/2023

27

Khởi tạo

Tìm đường đi ngắn nhất giữa các cặp đỉnh của đồ thị :

 d^0

-3	1	2	3	4
1	0	5	∞	∞
2	50	0	15	5
3	50 30 15	∞	0	15
4	15	∞	5	0

 p^0

	1	2	3	4
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0

2/22/2023

Với k = 1

p¹

Tìm đường đi ngắn nhất giữa các cặp đỉnh của đồ thị :

 d^{1} ∞

 1
 2
 3
 4

 1
 0
 0
 0
 0

 2
 0
 0
 0
 0

 3
 0
 1
 0
 0

 4
 0
 1
 0
 0

2/22/2023

Với K = 2

 d^2

 p^2

Tìm đường đi ngắn nhất giữa các cặp đỉnh của đồ thị:

2/22/2023

 p^3

Tìm đường đi ngắn nhất giữa các cặp đỉnh của đồ thị:

		1	2	3	4
d^3	1	0	5	20	10
	2	45	0	15	5
	3	30	35	0	15
	4	15	20	5	0

	1	2	3	4
1	0	0	2	2
2	3	0	0	0
3	0	1	0	0
4	0	1	0	0

2/22/2023

Với K = 4

p 4

Tìm đường đi ngắn nhất giữa các cặp đỉnh của đồ thị:

d⁴

		1	2	3	4
1	1	0	0	4	2
2	2	4	0	4	0
3	3	0	1	0	0
4	4	0	1	0	0

2/22/2023

Kết quả

Tìm đường đi ngắn nhất giữa các cặp đỉnh của đồ thị:

 d^4

 p^4

Đường đi từ 1->3?

$$p[1,3] = 4$$

Đường đi từ 1->4?

$$p[1,4] = 2$$

Đường đi từ 1->3: 1->2->4->3 (15)

2/22/2023

Nội dung

- 1. Lược đồ chung
- 2. Bài toán tính số Fibonaci
- 3. Bài toán cái túi
- 4. Bài toán dãy con có tổng lớn nhất
- 5. Bài toán tìm xâu con chung dài nhất
- 6. Đường đi ngắn nhất TT Floyd
- 7. Cây nhị phân tìm kiếm tối ưu

2/22/2023

Cây nhị phân tìm kiếm

- Cây nhị phân tìm kiếm (binary search tree) là một cây nhị phân có tính chất sau:
 - Mỗi nút là một khóa tìm kiếm
 - Với mỗi cây con, khóa của nút gốc lớn hơn khóa của mọi nút của cây con trái và nhỏ hơn khóa của mọi nút của cây con phải

• Ví dụ

2/22/2023

35

Cây nhị phân tìm kiếm ...

 Nếu số lần tìm kiếm (tần xuất) các khóa trên cây là như nhau?

Cấu trúc của cây không quan trọng

2/22/2023

Cây nhị phân tìm kiếm ...

• Số lần tìm kiếm các khóa khác nhau:

Cây nhị phân tìm kiếm tối ưu

 Vậy cấu trúc nào để cây nhị phân tìm kiếm có số lần duyệt nhỏ nhất (tối ưu)?

2/22/2023

Bài toán

 Cho mảng A[1,2,...,n] đã sắp xếp theo chiều tăng dần trong đó các phần tử đôi một khác nhau. Mỗi phần tử A[i] có tần số tìm kiếm f[i] (i=1..n).

Tìm cây nhị phân với khóa là các phần tử của mảng A sao cho tổng số lượng các phép so sánh là nhỏ nhất

2/22/2023

Tiếp cận bằng QHD

 Nhận xét: Số lần duyệt ở gốc không phụ thuộc vào cấu trúc cây và SumF(n)= f[1]+f[2]+..+f[n]

Phân rã

 Gọi Op(1..n) là số phép so sánh của cây nhị phân tìm kiếm tối ưu của mảng A[1..n]. Nếu A[r] là khóa của nút gốc, ta có:

```
Op(1..n) = Op(1..r-1) + Op(r+1..n) + SumF(1..n)

(SumF(1..n)= f[1]+f[2]+..+f[n])

Vì Op(1..n) là tối ưu nên ta có

Op(1..n) = min {Op(1..r-1) + Op(r+1..n): r=1..n}

+ SumF(1..n)
```

2/22/2023 41

Phân rã ...

- Gọi C[i,j] là số phép so sánh của cây nhị phân tìm kiếm tối ưu cho mảng con A[i..j]
- Đặt F[i,j] = f[i]+f[i+1]+..+f[j])
- Ta có

$$C[i,j] = min\{C[i,r-1] + C[r+1,j]: r=i..j\} + F[i,j]$$

Tiếp cận bằng QHD ...

• Bài toán con

$$C[i,i] = F[i,i]$$

• Tổng hợp:

$$C[i,j] = min\{C[i,r-1] + C[r+1,j]\} + F[i,j]$$

2/22/2023

Tính F[i,j]

• Hàm PreCompute $(f[1,2,\ldots,n])$ Tính F[i,j]

$$\begin{aligned} & \frac{\text{PreCompute}(f[1,2,\ldots,n]):}{\text{for } i \leftarrow 1 \text{ to } n} \\ & F[i,i-1] \leftarrow 0 \\ & \text{for } j \leftarrow i \text{ to } n \\ & F[i,j] \leftarrow F[i,j-1] + f[j] \end{aligned}$$

Tính C[i,j]

• Hàm ComputeCost(i,i+d)Tính C[i,j] = min{C[i,r-1] + C[r+1,j]} + F[i,j]

$$\begin{aligned} & \frac{\text{ComputeCost}(i,j) \colon}{C[i,j] \leftarrow +\infty} \\ & \textbf{for } r \leftarrow i \text{ to } j \\ & \text{tmp} \leftarrow C[i,r-1] + C[r+1,j] \\ & \textbf{if } \text{tmp} \leq C[i,j] \\ & C[i,j] \leftarrow \text{tmp} \\ & R[i,j] \leftarrow r \\ & C[i,j] \leftarrow C[i,j] + F[i,j] \end{aligned}$$

2/22/2023

45

Thuật toán

$$\frac{\mathsf{OptBinSearchTree}(A[1,2,\dots,n])\colon}{\mathsf{PreCompute}(f[1,2,\dots,n])}\\ \mathbf{for}\ i \leftarrow 1\ \mathsf{to}\ n\\ C[i,i] \leftarrow F[i][i]\\ R[i,i] \leftarrow i\\ \mathbf{for}\ d \leftarrow 1\ \mathsf{to}\ n-1\\ \mathbf{for}\ i \leftarrow 1\ \mathsf{to}\ n-d\\ \mathsf{ComputeCost}(i,i+d)\\ \mathsf{return}\ C[1,n] \end{aligned}$$

2/22/2023

Độ phức tạp tính toán

- Hàm $\mathsf{P}_\mathsf{RE}\mathsf{ComPUTE}(f[1,2,\ldots,n])$ Là $\mathsf{O}(\mathsf{n}^2)$
- Hàm ComputeCost(i,i+d)Là O(n)
- Hàm OptBinSearchTree $(A[1,2,\ldots,n])$ Là $O(\mathsf{n}^3)$

2/22/2023

Mång R[i,j]

- Mảng R[i,j] trong thuật toán trên lưu lại gốc của cây nhị phân tìm kiếm tối ưu của mảng con A[i...j].
- Mảng R[i,j] có thể được sử dụng để truy vết để tìm ra cây nhị phân tìm kiếm tối ưu (bài tập)

Bài tập

1. Thực hiện và ghi kết quả từng bước thuật toán tìm xâu con dài nhất của 2 xâu:

TOANHOC và KHONHOC

2. Thực hiện và ghi kết quả từng bước thuật toán tìm xâu con dài nhất của 2 xâu:

TINHYEU va HOAHONG

2/22/2023

2/22/2023

Bài tập

3. Thực hiện và ghi kết quả tường bước thuật toán Floyd tìm đường đi ngắn nhất trên đồ thị sau:

Bài tập

- 4. Cài đặt thuật toán tìm xâu con dài nhất của 2 xâu ký tự. Đánh giá độ phức tạp bằng thực nghiệm và so sánh với lý thuyết.
- 5. Cài đặt thuật toán Floyd tìm đường đi ngắn nhất trên đồ thị. Đánh giá độ phức tạp bằng thực nghiệm và so sánh với lý thuyết.
- 6. Cài đặt thuật toán xây dựng cây tìm kiếm nhị phân tối ưu. Đánh giá độ phức tạp bằng thực nghiệm và so sánh với lý thuyết.

2/22/2023 51

Nội dung đã học

- 1. Lược đồ chung
- 2. Bài toán tính số Fibonaci
- 3. Bài toán cái túi
- 4. Bài toán dãy con có tổng lớn nhất
- 5. Bài toán tìm xâu con chung dài nhất
- 6. Đường đi ngắn nhất TT Floyd
- 7. Cây nhị phân tìm kiếm tối ưu