# Bode Plot of Magnitude and Phase Response for Cascaded RC Low-Pass Filters



Lab Assignment: 03

EE1200: Electrical Circuits Lab

Harshil Rathan Y Y Akhilesh EE24BTECH11064 EE24BTECH11066

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

#### **Contents**

| 1 | Experin               | nent Objectives                                 | 2           |
|---|-----------------------|-------------------------------------------------|-------------|
| 2 | <b>Thoery</b> 2.1 2.2 | : Bode Plot  Magnitude Plot                     | 2<br>3<br>3 |
| 3 | Compo                 | nents Used                                      | 3           |
| 4 | Procedu               | ıre                                             | 4           |
| 5 | 1-Stage               |                                                 | 4           |
|   | 5.1                   | Circuit Diagram                                 | 4           |
|   | 5.2                   | Mathematical Analysis for Bode Plot             | 5           |
|   |                       | 5.2.1 Magnitude Plot                            | 5           |
|   |                       | 5.2.2 Phase plot                                | 5           |
|   | 5.3                   | Observations and Calculations                   | 6           |
|   | 5.4                   | Plotting Bode Plot                              | 8           |
| 6 | 2-Stage               |                                                 | 8           |
|   | 6.1                   | Circuit Diagram                                 | 8           |
|   | 6.2                   | Mathematical Analysis for Bode Plot             | 9           |
|   |                       | 6.2.1 Magnitude Plot                            | 9           |
|   |                       | 6.2.2 Phase plot                                | 9           |
|   | 6.3                   | Observations and Calculations                   | 10          |
|   | 6.4                   | Plotting Bode Plot                              | 12          |
| 7 | 3-Stage               |                                                 | 13          |
|   | 7.1                   | Circuit Diagram                                 | 13          |
|   | 7.2                   | Mathematical Analysis for Bode Plot             | 13          |
|   |                       | 7.2.1 Magnitude Plot for Three-Stage RC Circuit | 13          |
|   |                       | 7.2.2 Phase plot                                | 14          |
|   | 7.3                   | Observations and Calculations                   | 14          |
|   | 7.4                   | Plotting Bode Plot                              | 16          |
|   | 7.4                   | Troumg Bode Flot                                | 10          |

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

#### **Experiment Objectives**

- To analyze the frequency response of 1-stage, 2-stage, and 3-stage RC low-pass filters by measuring the magnitude and phase response.
- To plot the Bode plots (magnitude and phase) and compare the experimental results with theoretical predictions.
- To Compare Single-Stage and Multi-Stage Filters and analyze how the frequency response changes when multiple RC stages are cascaded.

#### **Thoery: Bode Plot**

- An RC circuit consists of a resistor (R) and Capacitor (C) in series or parallel configurations. These circuits are fundamental in signal processing, especially for filtering applications.
- The Bode plot is a graphical representation of a system's frequency response, showing how the gain and phase of the output signal change with frequency.

#### RC Low-Pass Filter

- A 1-stage RC filter consists of a single of a resistor (R) and a capacitor (C) connected in series, with the output taken across the capacitor.
- The transfer function for a 1-stage RC low pass filter is given by

$$H(s) = \frac{1}{1 + sRC}$$

where  $s = j\omega$ 

# Cascading RC Low-Pass Filter

• When multiple RC sections are cascaded, the overall transfer function becomes the product of individual transfer functions.

For n identical RC stages

$$H_n(S) = \left(\frac{1}{1 + sRC}\right)^n$$

Transfer function for a 2-Stage RC Low-pass filter

$$H(s) = \frac{1}{(1 + sRC)^2}$$

Transfer function for a 3 Stage RC Low-Pass filter  $H(s) = \frac{1}{(1 + sRC)^3}$ 

$$H(s) = \frac{1}{(1 + sRC)^3}$$

• Each additional stage increases the roll-off rate by -20 dB/decade, making the overall filter steeper. The phase response is also affected, introducing additional phase lag.

#### Cutoff Frequency

It is given by

$$f_c = \frac{1}{2\pi RC}$$

• At this frequency, the output voltage drops to  $\frac{1}{\sqrt{2}}$  (about 70.7) of the input voltage, corresponding to a -3 dB gain reduction in the Bode plot. Beyond  $f_c$ , the filter attenuates signals at a rate of -20 dB/decade for a single stage.

#### 2.1 Magnitude Plot

It is a Gain vs Frequency plot

The Magnitude response in dB is given by

$$|H(j\omega)|_{dB} = 20 \log_{10} \left( \frac{1}{\sqrt{1 + (\omega RC)^2}} \right)$$

- At Low frequencies ( $\omega \ll \omega_c$ ) The gain is approximately 0
- At cut-off frequency ( $\omega = \omega_c$ ) The gain drops to -3 dB
- At High Frequencies ( $\omega \gg \omega_c$ ) The gain decreases at a slope of -20 dB/decade

#### 2.2 Phase Plot

It is a Phase Shift vs Frequency plot, given by

$$\angle H(j\omega) = -\tan^{-1}(\omega RC)$$

- At Low frequencies  $(\omega \ll \omega_c)$  The phase shift is approximately  $0^{\circ}$
- At cut-off frequency  $(\omega = \omega_c)$  The phase shift is approx  $-45^\circ$
- At High Frequencies  $(\omega \gg \omega_c)$  The phase shift approaches  $-90^\circ$

## 3 Components Used

Function Generator

- Supplies and Generates an adjustable evaluate the frequency response.

  periodic waveforms (e.g., sine waves) to
- Enables variation of signal frequency to observe magnitude and phase response.

# Oscilloscope

- Displays the voltage waveform over time, enabling real-time signal analysis.
- Measures amplitude attenuation and phase shift across different filter stages.
- Provides frequency-domain analysis when used in conjunction with Fast Fourier Transform (FFT) functions.

#### Resistors

- sistors Indian institute of lechnology Hyderabac
- Control the charging and discharging time of capacitors.
- Influence the cutoff frequency .
- Affect the overall attenuation and phase characteristics of the filter.

In this experiment, we used  $10k\Omega$  resistors

#### **Capacitors**

- Store and release charge, controlling signal attenuation at different frequencies.
- Influence the phase shift of the output signal relative to the input.
- Play a key role in defining the filter's behavior when cascaded.

In this experiment, we used  $220\mu F$  capacitors.

#### Breadboard

- Facilitates quick circuit assembly and reconfiguration.
- Simplifies testing of different cascading configurations.

#### 4 Procedure

- Choose resistor (R) and capacitor (C) values to achieve a desired cutoff frequency and calculate the cutoff frequency  $f_c = \frac{1}{2\pi RC}$
- Connect all the components on the breadboard and build 1-Stage, 2-Stage, 3-Stage RC Low-Pass filters
- Connect the function generator to the input of the filter.
- Connect the oscilloscope to both the input and output of the filter.
- Set the function generator to produce a sinusoidal waveform with amplitude 5V
- Start with the cutoff frequency and gradually increase the frequency in multiples of that cutoff freq.
- At each frequency, measure the output voltage using the oscilloscope.
- Calculate and record the gain for every  $V_{out}$  and plot the required bode plot

$$Gain(dB) = 20 \log_{10}(\frac{V_{out}}{V_{in}})$$

- Use the oscilloscope to measure the phase difference between the input and output signals.
- At each frequency, note the phase shift and plot the required bode plot

#### 5 1-Stage

## 5.1 Circuit Diagram



#### 5.2 Mathematical Analysis for Bode Plot

#### 5.2.1 Magnitude Plot

The Transfer function is given by

$$H(s) = rac{V_{out}}{V_{in}}$$
  $H(s) = rac{rac{1}{j\omega C}}{1 + rac{1}{j\omega C}}$ 

$$H(s) = \frac{1}{1 + i\omega RC}$$

The magnitude of the transfer function:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 R^2 C^2}}$$

For our given values of R and C,

$$RC = 2.2$$

Thus magnitude simplifies to:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (4.84)\omega^2}}$$

The gain in decibels is given by,

Gain = 
$$20 \log_{10} |H(j\omega)| = -20 \log_{10} \sqrt{1 + 4.84\omega^2}$$

For different values of  $\omega$ :

- When  $\omega \ll a$ :

Gain 
$$\approx 0$$

- When  $\omega = a$ :

Gain 
$$\approx -20 \log_{10}(\sqrt{2}) \approx -10 \log_{10} 2 = -3.010299...$$

- When  $\omega \gg a$ :

Gain 
$$\approx -10 \log_{10}(2.2\omega)$$

#### 5.2.2 Phase plot

The transfer function is given by

Indian Institu
$$H(j\omega) = \frac{1}{1 + j\omega RC}$$
 y Hyderabad

The phase is given by

$$\angle H(j\omega) = \tan^{-1} \left( \frac{\text{Imaginary part}}{\text{Real part}} \right) = \tan^{-1} (-\omega RC)$$

On substituting  $R = 10k\Omega$  and  $C = 220\mu F$ 

$$RC = 2.2$$

$$\angle H(j\omega) = \tan^{-1}(-2.2\omega)$$

• When  $\omega \ll a$ : Using small angle approximations  $\tan^{-1}(x) = x$ 

$$\angle H(j\omega) \approx -2.2\omega$$

• When  $\omega = a$ : The phase is approximately  $-45^{\circ}$ 

$$\angle H(j\omega) = \tan^{-1}(-1) = -45^{\circ}$$

• When  $\omega \gg a$ : The phase reaches  $-90^{\circ}$ 

$$\angle H(j\omega) \approx \tan^{-1}(-\infty) = -90^{\circ}$$

Where  $a = \frac{1}{RC}$ , the cutoff value of  $\omega$ 

The phase changes from  $0^{\circ}$  to  $90^{\circ}$  as  $\omega$  increases, it reaches -45° at  $\omega = \frac{1}{RC}$ 

$$Phase = \begin{cases} 0^{\circ}, & \omega < 0.1a \\ \text{Slope} \\ -90^{\circ}, & \omega > 10a \end{cases}$$

#### 5.3 Observations and Calculations

Let us now verify the values obtained on the oscilloscope with the ones obtained on simulation

• Frequency = 0.0723Hz



- Gain = -3.316
- Phase =  $-44.98 \approx -45$
- Frequency = 7.23Hz



- Gain = -37.921
- Phase = -89.42

• Frequency = 723Hz



- Gain  $\approx -45$
- Phase =  $-89.99 \approx -90$

# 5.4 Plotting Bode Plot





# 6 2-Stage

# 6.1 Circuit Diagram



#### 6.2 Mathematical Analysis for Bode Plot

#### 6.2.1 Magnitude Plot

The Transfer function for a two-stage RC circuit is given by:

$$H(j\omega) = \frac{1}{(1+j\omega RC)^2}$$

The magnitude of the transfer function is:

$$|H(j\omega)| = \frac{1}{1 + (\omega RC)^2}$$

For the given values of R and C:

$$RC = 2.2$$

Thus, the magnitude simplifies to:

$$|H(j\omega)| = \frac{1}{1 + 4.84\omega^2}$$

The gain in decibels is given by:

Gain = 
$$20 \log_{10} (|H(j\omega)|) = -20 \log_{10} (1 + 4.84\omega^2)$$

For different values of  $\omega$ :

- When  $\omega \ll a$ :

- When  $\omega = a$  (cutoff frequency):

$$Gain \approx -20 \log_{10} 2 \approx -6.0205 \, dB$$

- When  $\omega \gg a$  (high frequency):

Gain 
$$\approx -20 \times 2 \log_{10}(2.2\omega) \approx -40 \log(2.2\omega)$$

#### 6.2.2 Phase plot

For a two-stage RC circuit, the transfer function is given by

$$H(j\omega) = \frac{1}{(1+j\omega RC)^2}$$

The phase response is

$$\angle H(j\omega) = \tan^{-1}(-\omega RC) + \tan^{-1}(-\omega RC)$$

$$\angle H(j\omega) = 2 \tan^{-1}(-\omega RC)$$

On substituting  $R = 10k\Omega$  and  $C = 220\mu F$ 

$$RC = 2.2$$

$$\angle H(i\omega) = 2 \tan^{-1}(-2.2\omega)$$

• When  $\omega \ll a$ : Using small angle approximations  $\tan^{-1}(x) = x$ 

$$\angle H(j\omega) \approx 2(-2.2\omega) \approx -4.4\omega$$

• When  $\omega = a$ : The phase is approximately  $-90^{\circ}$ 

$$\angle H(j\omega) = 2 \tan^{-1}(-1) = 2(-45^\circ) = 2(-45^\circ) = -90^\circ$$

• When  $\omega \gg a$ : The phase reaches  $-180^{\circ}$ 

$$\angle H(j\omega) \approx 2 \tan^{-1}(-\infty) = 2(-90^{\circ}) = -180^{\circ}$$

Where  $a = \frac{1}{RC}$ , the cutoff value of  $\omega$ 

Thus, for a two-stage RC filter, the phase shifts from  $0^{\circ}$  to  $-180^{\circ}$ , reaching  $-90^{\circ}$  at  $\omega = \frac{1}{RC}$  with a steeper slope of  $-90^{\circ}$ /decade compared to the  $-45^{\circ}$ /decade slope of a single-stage RC filter.

Phase = 
$$\begin{cases} 0^{\circ}, & \omega < 0.1a \\ \text{Slope} = -90^{\circ} \text{ dB/dec}, & \omega \approx a \\ -180^{\circ}, & \omega > 10a \end{cases}$$

#### 6.3 Observations and Calculations

Let us now verify the values obtained on the oscilloscope with the ones obtained on simulation

• Frequency = 0.0723Hz



- Gain = -9.967
- Phase = -89.96
- Frequency = 7.23Hz



- Gain = -69.963
- Phase = -178.84



- Gain  $\approx -128.062$
- Phase = -178.98





#### 7 3-Stage

#### 7.1 Circuit Diagram



#### 7.2 Mathematical Analysis for Bode Plot

#### 7.2.1 Magnitude Plot for Three-Stage RC Circuit

The Transfer function for a three-stage RC circuit is given by:

$$H(j\omega) = \frac{1}{(1+j\omega RC)^3}$$

The magnitude of the transfer function is:

$$|H(j\omega)| = \frac{1}{(1 + (\omega RC)^2)^{3/2}}$$

For the given values of R and C:

$$RC = 2.2$$

Thus, the magnitude simplifies to:

$$|H(j\omega)| = \frac{1}{(1 + 4.84\omega^2)^{3/2}}$$

The gain in decibels is given by:

Gain = 
$$20 \log_{10} (|H(j\omega)|) = -30 \log_{10} (1 + 4.84\omega^2)$$

For different values of  $\omega$ :

- When  $\omega \ll a$  (low frequency):

Gain 
$$\approx 0$$

In this case, the gain is very close to 0 dB because the frequency is much lower than the cutoff frequency.

- When  $\omega = a$  (cutoff frequency):

Gain 
$$\approx -30 \log_{10} 2 \approx -30 \times 0.3010 = -9.03 \, dB$$

- When  $\omega \gg a$  (high frequency):

Gain 
$$\approx -60 \log_{10}(2.2\omega)$$

This reflects the roll-off of the third-order filter with a slope of  $-60 \, dB/decade$ .

#### 7.2.2 Phase plot

For a three-stage RC circuit, the transfer function is given by

$$H(j\omega) = \frac{1}{(1 + j\omega RC)^3}$$

The phase response is

$$\angle H(j\omega) = \tan^{-1}(-\omega RC) + \tan^{-1}(-\omega RC) + \tan^{-1}(-\omega RC)$$

$$\angle H(j\omega) = 3 \tan^{-1}(-\omega RC)$$

On substituting  $R = 10k\Omega$  and  $C = 220\mu F$ 

$$RC = 2.2$$

$$\angle H(j\omega) = 3 \tan^{-1}(-2.2\omega)$$

• When  $\omega \ll a$ : Using small angle approximations  $\tan^{-1}(x) = x$ 

$$\angle H(j\omega) \approx 3(-2.2\omega) \approx -6.6\omega$$

• When  $\omega = a$ : The phase is approximately  $-135^{\circ}$ 

$$\angle H(j\omega) = 3 \tan^{-1}(-1) = 3(-45^{\circ}) = -135^{\circ}$$

• When  $\omega \gg a$ : The phase reaches  $-180^{\circ}$ 

$$\angle H(j\omega) \approx 3 \tan^{-1}(-\infty) = 3(-90^{\circ}) = -270^{\circ}$$

Where  $a = \frac{1}{RC}$ , the cutoff value of  $\omega$ 

Thus, for a three-stage RC filter, the phase shifts from 0° to  $-270^\circ$ , reaching  $-135^\circ$  at  $\omega = \frac{1}{RC}$  with a steeper slope of  $-135^\circ$ /decade compared to the  $-90^\circ$ /decade slope of a two-stage RC filter.

Phase = 
$$\begin{cases} 0^{\circ}, & \omega < 0.1a \\ \text{Slope} = -135^{\circ} \text{ dB/dec}, & \omega \approx a \\ -270^{\circ}, & \omega > 10a \end{cases}$$

# भारतीय प्रौद्योगिकी संस्थान हैदराबाद

# 7.3 Observations and Calculations Technology Hyderabad

Let us now verify the values obtained on the oscilloscope with the ones obtained on simulation

• Frequency = 0.0723Hz



- Gain = -15.98
- Phase = -134.94

• Frequency = 7.23Hz



- Gain = -69.96
- Phase = -268.26 indian Institute of Technology Hyderabad

• Frequency = 723Hz



- Gain = -192.094
- Phase = -269.97









भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad