UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO DEPARTAMENTO DE INFORMÁTICA

PROGRAMAÇÃO LINEAR E INTRODUÇÃO À OTIMIZAÇÃO OTIMIZAÇÃO NA ALOCAÇÃO DE DISCIPLINAS A PROFESSORES

Alunos: Felipe Daniel Dias dos Santos Matheus Batista Silva Paulo Roberto de Jesus Gonçalves

1. INTRODUÇÃO

Este relatório é parte do trabalho realizado para a disciplina de Programação Linear e Introdução à Otimização do Departamento de Informática da Universidade do Espírito Santo, desenvolvido com intuito de aprimorar um aprendizado específico sobre modelagem de dados lineares e um problema existente no meio de estudo em questão: a otimização de custo.

O trabalho tem como objetivo apresentar o enunciado do problema selecionado, assim como sua definição matemática, e três exemplos de instâncias do problema, contendo os dados selecionados e suas fontes. Todas as instâncias apresentadas serão utilizadas para resolução através da ferramenta Gurobi, especializada em problemas de otimização.

2. ENUNCIADO DO PROBLEMA

O presente trabalho consiste em resolver o problema de alocação de professores às disciplinas, utilizando a linguagem Python e a ferramenta Gurobi de modo a automatizar o processo, tanto de entrada e saída de dados, quanto de resolução de instâncias do problema. O algoritmo requisita a matriz de custos como entrada, que pode ser gerada automaticamente, de maneira aleatória, ou confeccionada manualmente, utilizando os dados desejados. A saída será uma tabela de alocação, informando qual professor será responsável por cada disciplina, levando-se em conta o melhor benefício de combiná-los (menor custo) e as restrições impostas por eles.

Em um problema deste tipo, têm-se dois conjuntos e deve-se encontrar uma função que ligue elementos destes dois conjuntos. Pode haver restrições e requisitos para a ligação de um par de elementos, constituindo um custo para a designação. O problema está em encontrar a função que minimiza a soma de todas as alocações, respeitando as restrições existentes. Utilizando-se dos Grafos e da Programação Linear pode-se modelar o problema de forma científica de modo a quantificar o problema e buscar uma solução mais eficiente em casos de minimizar custos (emparelhamento mínimo). Uma alocação com o menor custo possível é denominada uma alocação ótima. O problema da alocação consiste em encontrar uma alocação ótima a partir de uma matriz custo dada.

No problema em questão, existe um número de professores e um número de disciplinas. Podemos alocar qualquer professor a qualquer uma das disciplinas, porém, cada alocação tem um custo que pode variar dependendo de cada disciplina e professor específicos. É necessário que todas as disciplinas sejam ofertadas, isto é, possuam algum professor responsável, designando exatamente um professor para cada disciplina, de modo que o custo total da soma de todas as alocações seja minimizado. O problema é modelado como uma instância de grafo bipartido, no qual cada vértice é uma entidade (professor ou disciplina) e cada aresta conecta um professor a uma disciplina.

3. DESCRIÇÃO DO MODELO

O modelo da alocação de disciplinas a professores possui uma variável de decisão, que chamaremos de *fluxo_na_aresta*, que determina se uma aresta específica será selecionada para a alocação ótima. Em outras palavras, a variável *fluxo_na_aresta* de uma aresta *(prof, disc)* determina se o professor *prof* será responsável pela disciplina *disc*. Assim, temos que:

 $fluxo_na_aresta = \{1 \text{ se o professor leciona a disciplina e } 0 \text{ caso contrário} \}$

O modelo possui um parâmetro que chamaremos de *custo_da_aresta*, que define o peso de uma aresta qualquer. Assim, *custo_da_aresta* de uma aresta *(prof, disc)* determina qual é o custo do professor *prof* lecionar a disciplina *disc*. Os valores dos custos de todas as arestas do modelo estão contidos na matriz de custo, que é uma das entradas do algoritmo. Esse custo leva alguns fatores em consideração, como a afinidade do professor em relação à disciplina, sua especialidade, etc.

Com a definição da variável de decisão e parâmetro de custo, podemos caracterizar a função objetivo, isto é, aquela da qual se deseja obter o custo mínimo. A função objetivo nada mais é que a soma dos custos das arestas selecionadas na alocação, ou seja, a soma do produto entre as variáveis *fluxo_na_aresta* e *custo_da_aresta*, para todas as arestas. Matematicamente:

 $soma_{(para\ todo\ v\'ertice_professor,\ para\ todo\ v\'ertice_disciplina)}fluxo_na_aresta\ *\ custo_da_aresta$

Para formalizar a alocação de disciplinas a professores como um problema de Programação Linear completo, é necessário definir as restrições do problema. A primeira restrição clara é a domínio da variável de decisão, que precisa ser binária:

fluxo_na_aresta∈{0, 1} para todo vértice_professor e para todo vértice_disciplina

Além disso, cada disciplina possui somente um professor responsável pela mesma e cada professor é responsável por somente uma disciplina. Isto é, cada professor está associado a somente uma disciplina e vice-versa. Assim sendo, o fluxo total de todos os vértices, tanto professor quanto disciplina, são iguais a 1. Matematicamente:

para todo vértice_professor, a soma do fluxo_na_aresta originados naquele vértice = 1 para todo vértice_disciplina, a soma do fluxo_na_aresta originados naquele vértice = 1

Logo, o problema de Programação Linear da alocação de disciplinas a professores é matematicamente descrito como:

Minimize:

 $soma_{(para\ todo\ v\'ertice_professor,\ para\ todo\ v\'ertice_disciplina)}fluxo_na_aresta\ *\ custo_da_aresta$

Sujeito a:

para todo vértice_professor, a soma dos fluxo_na_aresta originados naquele vértice =1 para todo vértice_disciplina, a soma dos fluxo_na_aresta originados naquele vértice =1 fluxo_na_aresta $\in \{0,1\}$ para todo vértice_professor e para todo vértice_disciplina

4. IMPLEMENTAÇÃO

4.1. GERAÇÃO DE DADOS

```
import xlsxwriter
from random import randint

##uncão de geração de dados referentes às demandas, ofertas e custos, todos aleatórios
def geracaoDeDados(qnt_professores, qnt_disciplinas):

#Criando o arquivo de nome "Dados", que conterá as planilhas de custos
#Oferta de professores e demanda de disciplinas
dados = xlsxwriter.Workbook("Dados.xlsx")
planilha_custos = dados.add_worksheet("Custos")
planilha_professores = adados.add_worksheet("Florfessores")
planilha_disciplinas = dados.add_worksheet("Disciplinas")

#Nomeando as colunas das planilhas
planilha_professores.write(0, 0, "Professor")
planilha_professores.write(0, 0, "Professor")
planilha_disciplinas.write(0, 0, "Disciplina")
planilha_disciplinas.write(0, 0, "Disciplina")
planilha_disciplinas.write(0, 1, "Demanda")

#Definindo o nome dos professores e a quantidade de turmas que cada um pode assumir
for prof in range(qnt_professores):

linha = prof + 1
nome = "Professor " + str(linha)
planilha_custos.write(linha, 0, nome)

planilha_professores.write(linha, 0, nome)

#O professor x pode assumir de 1 a 3 turmas
#planilha_professores.write(linha, 1, randint(1, 3))

#O professor, nesse modelo, assume somente uma turma
planilha_professores.write(linha, 1, randint(1, 3))

#O professor, nesse modelo, assume somente uma turma
planilha_professores.write(linha, 1, 1)

#Definindo o nome das disciplinas e a quantidade de professores demandada
for disc in range(qnt_disciplinas):
```

```
coluna = disc + 1
nome = "Disciptina" + str(coluna)
planilha_custos.write(0, coluna, nome)

#Cada disciplinas.write(coluna, 0, nome)

#Cada disciplinas.write(coluna, 1, 1)

#Preenchendo a planilha de custos: a matriz de custos conterá valores aleatórios

for prof in range(qnt_professores):

#Adicionando custos aleatórios à planilha de custos

for disc in range(qnt_disciplinas):

#O custo de um professor assumir uma disciplina varia de 1 a 100,
#determinado aleatoriamente
planilha_custos.write(prof + 1, disc + 1, randint(1, 100))

dados.close()

#Chamando a função principal com dois argumentos: a quantidade de professores e disciplinas

geracaoDeDados(10, 10)
```

4.2. DESCRIÇÃO DO MODELO

```
#Importando as bibliotecas necessățias
import gurobipy as gp
import visxuriter

#Imprimindo soluășăfo e salvando em um arquivo
def imprimirSalvarSolucao(modelo, arestas, custos, fluxo_na_aresta):

if modelo.status == gp.GRB.OPTIMAL:

print("\nSoluășăfo existente para essa instățncia do problema. Imprimindo resultados:")

#Criando o arquivo de nome "Resultados", que conterăț os dados resultantes
resultados = xlsxwriter.Norkbook("Resultados.xlsx")
planilha alocacao.write(0, 0, "Professor")
planilha alocacao.write(0, 0, "Professor")
planilha alocacao.write(0, 1, "Oisciplina")
planilha_alocacao.write(0, 2, "Custo")

linha = 1
custo_total = 0

print("\nCusto mānimo:", modelo.objVal)
print("\nAlocaășăfo para atingir o custo mānimo:\n")

for aresta in arestas:

#Para cada aresta alocada, imprimi-la e armazenăț-la na planilha, assim como seu
#custo
if fluxo_na_aresta[aresta].x > 0.0001:

print("Alocaășăfo:", aresta, "Custo:", custos[aresta])

planilha_alocacao.write(linha, 0, aresta[0])
planilha_alocacao.write(linha, 1, aresta[1])
planilha_alocacao.write(linha, 2, austos[aresta])
```

```
linha += 1
custo_total += custos[aresta]

planilha_alocacao.write(linha, 2, custo_total)

resultados.close()

print("\nSoluħÄ£o armazenada com sucesso no arquivo Resultados.xlsx\n")

else:

print("Não existe soluħão para essa instÄ¢ncia do problema. Tente com outros dados.")

##unħão de resoluħão do problema de programação linear de alocação de disciplinas a professores def resolver(professores, qnt_professores, disciplinas, qnt_disciplinas, arestas, custos):

#Definição do modelo
modelo = gp.Model("Alocação de Disciplinas")

#Adição de variável de decisão no modelo (o fluxo em cada aresta)
fluxo_na_aresta = modelo.addVars(arestas, ub = 1, name = 'x')

#Função objetivo: minimizar a soma dos custos das arestas selecionadas modelo.setObjective(gp.quicksum(custos[(prof, disc)] * fluxo_na_aresta[prof, disc] for prof, disc in aresta

#Restriçµes: cada disciplina e professor sã£o alocados tantas vezes quanto requisitado
#Nesse caso, deve existir um professor em cada disciplina e cada professor leciona
#somente uma disciplina (ou conforme as informaçAµes disponÃveis nas planilhas)
modelo.addConstrs((fluxo_na_aresta.sum('*', disc) == qnt_disciplinas[disc]
modelo.addConstrs((fluxo_na_aresta.sum(prof, '*') == qnt_professores[prof]
#Resolvendo e imprimindo o modelo
modelo.optimize()
imprimirSalvarSolucao(modelo, arestas, custos, fluxo_na_aresta)
```

4.3. OBTENÇÃO DE DADOS

```
#Importando as bibliotecas necessárias
import os
import vor
import gurobipy as gp

#Extraindo e formatando os dados da planilha de professores
def obterProfessores(planilha_professores):

professores = {}
linha = 1

#A planilha é percorrida uma excessão de índice inválido ocorrer
while True:

try:

professores[planilha_professores.cell_value(linha, 0)] = planilha_professores.cell_value(linha, 1)
linha += 1

except IndexError:

break

#Transformando o dicionário em um multidict
professores, qnt_professores = gp.multidict(professores)

return professores, qnt_professores

#Extraindo e formatando os dados da planilha de disciplinas
def obterDisciplinas(planilha_disciplinas):

disciplinas = {}
linha = 1

#A planilha é percorrida uma excessão de índice inválido ocorrer
while True:
```

```
disciplinas[planilha_disciplinas.cell_value(linha, 0)] = planilha_disciplinas.cell_value(linha, 1)
linha += 1

except IndexError:

break

#Transformando o dicionário em um multidict
disciplinas, qnt_disciplinas = gp.multidict(disciplinas)

return disciplinas, qnt_disciplinas

#Extraindo e formatando os dados da planilha de custos
def obterCustos(planilha_custos, professores, disciplinas):

arestas = []
custos = {}

for linha in range(len(professores)):

for coluna in range(len(disciplinas)):

#Extraindo as tuplas (professor, disciplina) disponíveis e armazenando em um
#dicionário cuja chave é a tupla e valor o custo associado
tupla = (planilha_custos.cell_value(linha + 1, 0), planilha_custos.cell_value(0, coluna + 1))
custos[tupla] = planilha_custos.cell_value(linha + 1, coluna + 1)

#Armazenando as arestas em uma lista
arestas.append(tupla)

#Transformando o dicionário em um multidict e a lista em um tuplelist
arestas = gp.tuplelist(arestas)
_, custos = gp.multidict(custos)
```

```
return arestas, custos

#Função para extrair todos os dados das planilhas, armazenando-os em estruturas adequadas

#para utilização no solucionador do problema de programação linear

def obterDados():

#Abrindo o arquivo e obtendo as planilhas

dados = xlrd.open_workbook("Dados.xlsx")

planilha_professores = dados.sheet_by_name("Professores")

planilha_disciplinas = dados.sheet_by_name("Disciplinas")

planilha_custos = dados.sheet_by_name("Custos")

#Obtendo os dados de cada planilha

professores, qnt_professores = obterProfessores(planilha_professores)

disciplinas, qnt_disciplinas = obterDisciplinas(planilha_disciplinas)

arestas, custos = obterCustos(planilha_custos, professores, disciplinas)

#Retornando todo o conteúdo necessário

return professores, qnt_professores, disciplinas, arestas, custos
```

4.4. INSTALAÇÃO DE BIBLIOTECAS

```
#Importando as bibliotecas necessárias
import sys
import subprocess
import pkg_resources

#Verificando os pacotes necessários que estão faltando e instalando-os na máquina
def setup():

requeridos = {"xlrd == 1.2.0", "gurobipy", "xlsxwriter"}
instalados = {pkg.key for pkg in pkg_resources.working_set}
faltando = requeridos - instalados

if faltando:

subprocess.check_call([sys.executable, "-m", "pip", "install", *faltando])
```

4.5. FUNÇÃO PRINCIPAL

```
#Importanto as bibliotecas necessárias

from setup import setup

from modelo import resolver

from obtencaoDeDados import obterDados

#FunçÃfo principal: instalaçÃfo de pacotes, obtençÃfo de dados e resoluçÃfo do problema

def main():

#Instalando os pacotes necessários, caso estejam faltando

setup()

#Obtendo os dados necessários, gerados e armazenados nas planilhas

professores, qnt_professores, disciplinas, qnt_disciplinas, arestas, custos = obterDados()

#Resolvendo o problema com os dados obtidos

resolver(professores, qnt_professores, disciplinas, qnt_disciplinas, arestas,

if __name__ == "__main__":

main()

main()
```

5. EXEMPLOS DE APLICAÇÃO

5.1. CASO DE TESTE 5x5

Matriz de custos:

Custos	Disciplina 1	Disciplina 2	Disciplina 3	Disciplina 4	Disciplina 5
Professor 1	92	15	87	60	66
Professor 2	37	3	92	50	78
Professor 3	61	5	30	50	56
Professor 4	88	56	91	68	50
Professor 5	67	85	17	67	31

Resultados:

Professor	Disciplina	Custo
Professor 1	Disciplina 2	15
Professor 2	Disciplina 1	37
Professor 3	Disciplina 4	50
Professor 4	Disciplina 5	50
Professor 5	Disciplina 3	17
		169

5.2. CASO DE TESTE 10x10

Matriz de custos:

	Discipli									
Custos	na 1	na 2	na 3	na 4	na 5	na 6	na 7	na 8	na 9	na 10
Profess										
or 1	70	54	39	38	29	63	78	18	100	1
Profess										
or 2	70	70	99	60	51	74	9	79	13	3
Profess										
or 3	74	61	37	47	69	96	40	86	77	57
Profess										
or 4	18	41	48	74	33	66	60	20	36	13
Profess										
or 5	55	74	38	55	13	52	69	64	50	77

Profess										
or 6	63	7	94	35	41	48	70	11	4	73
Profess										
or 7	35	91	83	73	74	15	71	32	98	45
Profess										
or 8	9	94	28	22	35	22	10	59	86	51
Profess										
or 9	83	5	21	98	83	23	88	78	43	30
Profess										
or 10	83	27	66	50	71	8	29	2	4	59

Resultados:

Professor	Disciplina	Custo
Professor 1	Disciplina 10	1
Professor 2	Disciplina 7	9
Professor 3	Disciplina 3	37
Professor 4	Disciplina 1	18
Professor 5	Disciplina 5	13
Professor 6	Disciplina 9	4
Professor 7	Disciplina 6	15
Professor 8	Disciplina 4	22
Professor 9	Disciplina 2	5
Professor 10	Disciplina 8	2
		126

5.3. CASO DE TESTE 15x15

Matriz de custos:

	Disci														
Custo	plina														
S	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Profes															
sor 1	58	27	16	50	16	51	39	69	55	41	48	13	91	84	51
Profes															
sor 2	46	12	41	74	83	20	56	6	69	20	38	49	91	8	70
Profes															
sor 3	58	17	45	74	16	31	63	15	76	20	55	83	71	61	86
Profes															
sor 4	92	1	75	6	30	60	4	86	8	97	48	25	95	97	58
Profes	100	31	53	34	30	26	15	61	40	6	40	71	76	37	46

sor 5															
Profes															
sor 6	77	60	58	9	74	82	2	68	46	92	85	85	97	10	83
Profes															
sor 7	48	77	49	83	88	89	85	70	68	12	53	77	65	10	22
Profes															
sor 8	83	47	58	86	30	15	44	38	94	30	41	32	14	25	4
Profes															
sor 9	85	29	98	77	94	15	96	16	73	65	22	56	21	97	71
Profes															
sor 10	93	24	37	65	35	80	85	6	31	96	16	96	90	7	91
Profes															
sor 11	77	91	76	32	37	37	76	86	9	84	29	29	27	81	9
Profes															
sor 12	38	6	49	43	85	54	70	6	26	62	43	61	96	2	100
Profes															
sor 13	69	11	100	73	57	54	33	75	69	46	23	23	97	68	95
Profes															
sor 14	10	69	65	41	89	97	23	83	4	68	80	3	22	31	87
Profes															
sor 15	28	50	18	38	83	17	19	13	78	39	74	28	12	54	43

Resultados:

Professor	Disciplina	Custo
Professor 1	Disciplina 3	16
Professor 2	Disciplina 8	6
Professor 3	Disciplina 5	16
Professor 4	Disciplina 4	6
Professor 5	Disciplina 10	6
Professor 6	Disciplina 7	2
Professor 7	Disciplina 14	10
Professor 8	Disciplina 15	4
Professor 9	Disciplina 6	15
Professor 10	Disciplina 11	16
Professor 11	Disciplina 9	9
Professor 12	Disciplina 2	6
Professor 13	Disciplina 12	23
Professor 14	Disciplina 1	10
Professor 15	Disciplina 13	12
		157