Cours Algorithmique des systèmes parallèles et distribués Exercices

Série 2 : Protocoles de communication par Alessio Coltellacci et Dominique Méry 20 janvier 2025

Exercice 1 $(disapp_td2_ex1.tla)$

Modéliser en TLA⁺ l'envoi d'un message m à un processus P2 via un canal CHAN par P1

Exercice 2 (disapp_td2_ex2.tla)

Trois processus P_1 , P_2 et P_3 réalisent les actions suivantes :

- P_1 calcule la fonction f_1 en appliquant cette fonction sur les valeurs se trouvant sur un tas T.
- P_2 calcule la somme des valeurs produites par le processus P_1 .
- P_3 produit les valeurs utilisées par P_1 .

Modéliser ce système en TLA⁺.

Exercice 3 (disapp_td2_ex3.tla)

On peut définir un algorithme réparti comme un ensemble d'algorithmes locaux et on définit les systèmes de transition associées comme suit.

Given a set \mathcal{LC} of configurations a set $\mathcal{LI} \subseteq \mathcal{LC}$ of initial configurations, and a set \mathcal{M} of messages, a local algorithm \mathcal{LA} is a structure $(\mathcal{LC}, \mathcal{LI},$

$$\longrightarrow_i, \longrightarrow_s, \longrightarrow_r, \mathcal{M})$$
 with:

A distributed algorithm for a collection of processes is a collection $\{\mathcal{L}A_1,\ldots,\mathcal{L}A_n\}$ of local algorithms, one algorithm $\mathcal{L}A_k=(\mathcal{L}\mathcal{C}_k,\mathcal{L}\mathcal{I}_k,\longrightarrow_i^k,\longrightarrow_s^k,\longrightarrow_r^k,\mathcal{M})$ for each process P_k , with a transition relation \longrightarrow defined over the set $\mathcal{C}=\mathcal{L}\mathcal{C}_1\times\ldots\times\mathcal{L}\mathcal{C}_n\times(\mathcal{M}\to\mathbb{N})$ of configurations : let $C=(C_1,\ldots,C_n,M)$ and $C'=(C'_1,\ldots,C'_n,M')$ two configurations and let define $C\longrightarrow C'$:

— internal transition
$$\exists k \in \{1, ..., n\} : (\forall j \in 1..n : j \neq k : C_j = C'_j) \land C_k \longrightarrow_i^k C'_k \land M' = M$$

$$C'_k \wedge M' = M$$

$$- send \ transition \ \exists k \in \{1, \dots, n\} : \exists m \in \mathcal{M} : \begin{cases} \forall j \in 1..n : j \neq k : C_j = C'_j \\ \land \forall o \in \mathcal{M} \backslash \{m\} : M'(o) = M(o) \\ \land M'(m) = M(m) + 1 \land (C_k, m, C'_k) \in \longrightarrow_s^k \end{cases}$$

$$- receive \ transition \ \exists k \in \{1, \dots, n\} : \exists m \in \mathcal{M} : M(m) \neq 0 : \begin{cases} \forall j \in 1..n : j \neq k : C_j = C'_j \\ \land \forall o \in \mathcal{M} \backslash \{m\} : M'(o) = M(o) \\ \land M(m) = M'(m) + 1 \land (C_k, m, C'_k) \in \longrightarrow_r^k \end{cases}$$
where we modula TLA+ and déscrit les algorithmes locaux constituent un also.

Ecrire un module TLA⁺ qui décrit les algorithmes locaux constituant un algorithme réparti et modéliser l'algorithme réparti lui-même. Traduire la modélisation des algorithmes locaux et répartis dans la notation TLA⁺.

Exercice 4 (distapp_td2_ex4.tla)

Nous considérons les protocoles de communication selon diverses hypothèses. Ecrire une solution pour la communication FIFO en intégrant les différents cas d'erreurs ou non.

Exercice 5 $(distapp_td2_ex5.tla)$

L'algorithme du bit alterné permet de contrôler la perte possible de messages en proposant un mécanisme basé sur un accusé de réception. Ecrire une solution pour l'algorithme du bit alterné.

$\textbf{Exercice 6} \ pluscalabp.tla$

Reprendre le protocole du bit alterné en PlusCal.