K-MEANS vs DBSCAN

Algorithms for solving clustering problem

By:

- Ahmed Abd-elsattar Mahmoud
- Ahmed Abouabah Owais Tantawy
- Mohamed Salah-el-den Hussien
- Mohamed Ahmed Sayed
- Omar wael abdellatif
- Suhaib Ali Hassan Muhammed

Agenda

- Clustering problem
- Different approaches
- K-means algorithm
- K-means problems
- DBSCAN algorithm
- K-means vs DBSCAN
- Conclusion

Machine learning

UN-Supervised

- No labels are given to the learning algorithm
- goal is to discovering hidden patterns in data
- Ex : Clustering problem

Supervised

- The system is presented with example inputs and their desired outputs
- the goal is to learn a general rule that maps inputs to outputs
- EX: regression problem

Machine learning

Clustering definition

"the process of organizing objects into groups whose members are similar in some way"

Clustering problem Algorithm

Clustering applications

Identifying Fake News

 by taking in the content of the fake news article, the corpus, examining the words used and then clustering them

Spam filter

- looking at the different sections of the email (header, sender, and content).
- The data is then grouped together.
- These groups can then be classified to identify which are spam

Marketing and Sales

 group together people with similar traits and likelihood to purchase

Different approaches to solve clustering

Clustering types

Hard Clustering:

each data point either belongs to a cluster completely or not.

Soft Clustering:

instead of putting each data point into a separate cluster, a probability or of that data point to be in those clusters is assigned.

Clustering types

Hard Clustering

- DBSCAN
- K-Means
- Hierarchical clustering

Soft Clustering

- Gaussian Mixture Model
- Fuzzy K-means

K-means algorithm

K-means algorithm

K-means algorithm

- The approach behind this simple algorithm is just about some iterations and updating clusters as per distance measures that are computed repeatedly.
- "k" is the number of clusters that are to be formed
- The "means" part because we update the center of the cluster by the mean of the near points

K-means algorithm steps

K-means problems steps

- Specify the K "number of clusters"
- 2. Randomly initialize the centroids
- 3. Assign each data point to a cluster
- 4. Calculate the means of the clusters
- 5. Update the centroids with the new means
- 6. Iterate until the update is so small "converge"

Try it yourself

https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Input

Randomly initialize centroids

Algorithm implementation

- 1. Let $x = \{x_1, x_2, x_3, ..., x_n\}$ be the data points and $c = \{c_1, c_2, ..., c_k\}$ be the centroids with randomly initialized values
- Calculate the distance between each data point and each centroid
- 3. Assign the data point to the closest centroid
- 4. Recalculate the new cluster center using

$$c_i = \frac{\sum_{i=0}^{l_i} x_i}{l_i}$$
 \rightarrow l_i represents the number of data point in the c_i cluster

Algorithm implementation (continued)

- 5. Recalculate the distance between each data point and the new cluster centers
- 6. If centroids are no more updated ... stop

Problems with K-means

- How many clusters k = ?
- the results depends on value of K
- The way we initialize the centroids is not specified one way is to initialize it randomly
- Different run could lead to different results
- It can happen to have **empty cluster** "the centroid is never updated"
- Strongly affected with outliers
- Cannot handle arbitrary shape

Arbitrarily shaped clusters with K-means

To view and run the code

https://github.com/MohamedSalahElden/clustering algorithms/blob/main/K means algo 7.3.ipynb

DBSCAN

a new approach to solve K-means problems

DBSCAN algorithm

- Density Based Spatial Clustering of Application with Noise
- Discover clusters with arbitrary shape
- A Cluster is defined as a set of density connected points

DBSCAN algorithm

DBSCAN parameters

- Eps "n": max radius of the neighborhood
- Min_pts: minimum number of points in Eps neighborhood of points "how dense is this region should be"

Core, border, Noise

Each point in data set could be either

1. Core

number of points within the Eps region greater than or equal MinPts

2. Noise

number of points within the Eps region equals to 0

3. Border

number of points within the Eps region less than MinPts and it has a core point in it's region

DBSCAN algorithm

- Randomly select a point p
- Get all points that are densityreachable with respect to Eps, MinPts
- ullet If p is core point , a cluster is formed
- If p is boarder , visit the next point
- Continue the process until all points have been processed

Arbitrarily shaped clusters with DBSCAN

K-mean **VS** DBSCAN

Cluster shape

K-means Clustering

Clusters formed are more or less spherical shape and must have same feature size.

DBSCAN Clustering

Clusters formed are **arbitrary** in shape and **may not have same feature size.**

Number of clusters

K-means Clustering

DBSCAN Clustering

K-means clustering is sensitive to the number of clusters specified.

For K=10

Number of clusters need not be specified.

Number of parameters

K-means Clustering

It requires one parameter Number of clusters (K)

DBSCAN Clustering

It requires two parameters: Radius(R) and Minimum Points(M)

- (R) determines a chosen radius such that if it includes enough points within it, it is a dense area.
- (M) determines the minimum number of data points required in a neighborhood to be defined as a cluster.

Outliers

K-means Clustering

K-means Clustering does not work well with outliers and noisy datasets.

DBSCAN Clustering

DBSCAN clustering efficiently handles outliers and noisy datasets.

Conclusion

References

- https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a
- https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering/
- https://towardsdatascience.com/k-means-clustering-algorithm-implementation-da0f735ab0f9
- http://cs.joensuu.fi/sipu/datasets/
- https://www.geeksforgeeks.org/difference-between-k-means-anddbscan-clustering/

Thank you