Vision and Image Processing: Shading, Photometric Stereo

François Lauze

Department of Computer Science University of Copenhagen

Plan for today and January 3rd

- Image Formation and reflectance.
- Lighting Models.
- The Photometric Stereo Problem.

Outline

What is Photometric Stereo

2 Lighting Models

3 Photometric Stered

- 1 fixed camera + 1 "fixed" scene
- m lightings

- 1 fixed camera + 1 "fixed" scene
- m lightings

Slide by Y. Quéau

- 1 fixed camera + 1 "fixed" scene
- m lightings

Slide by Y. Quéau

- 1 fixed camera + 1 "fixed" scene
- m lightings

- 1 fixed camera + 1 "fixed" scene
- m lightings

Goal:

3D-reconstruction of the scene from the 2D images

Slide by Y. Quéau

Photometric Stereo

ullet φῶς/φωτός : (phõs, gen. photós): light

- μέτρον (métron): measure

Photometric

- φῶς/φωτός : (phõs, gen. photós): light
- μέτρον (métron): measure
- στερεός (stereós): solid/volume

Photometric Stereo

μέτρον (métron): measure

στερεός (stereós): solid/volume

Suggest. Volume recovery from measured light. Needed:

Photometric Stereo

- μέτρον (métron): measure
- στερεός (stereós): solid/volume

Suggest. Volume recovery from measured light. Needed:

- Understand reflectance: how is light reflected from an object.
- How can we measure it.
- How object geometry is linked to light.

Outline

What is Photometric Stereo

2 Lighting Models

Photometric Stereo

- Object
- Camera

- Object
- Camera
- Light source

- Object
- Camera
- Light source
- Light reflection by object surface.

Ingredients

- Object
- Camera
- Light source
- Light reflection by object surface.

 Image formation inside camera: when light, scene and camera parameters known: reflectance function.

- Object
- Camera
- Light source
- Light reflection by object surface.

- Image formation inside camera: when light, scene and camera parameters known: reflectance function.
- BTW: Camera detectors react almost truly linearly to received luminance.

- Object
- Camera
- Light source
- Light reflection by object surface.

- Image formation inside camera: when light, scene and camera parameters known: reflectance function.
- BTW: Camera detectors react almost truly linearly to received luminance.

- Object
- Camera
- Light source
- Light reflection by object surface.

- Image formation inside camera: when light, scene and camera parameters known: reflectance function.
- BTW: Camera detectors react almost truly linearly to received luminance.
- Can image formation model give enough information about the object surface to reconstruct it?

Materials and Light

Materials and Light

From now, only opaque objects.

Matte vs Brilliant

Bidirectional Reflectance Distribution Function – BRDF

Bidirectional Reflectance Distribution Function – BRDF

 Luminance emitted by punctual object x on a surface S with normal direction n(x) at x, in emission direction v characterized by spherical angles (θ_e, φ_e) w.r.t n(x):

$$L(\mathbf{x}, \theta_{e}, \varphi_{e}) = \int_{\theta_{i}=0}^{\frac{\pi}{2}} \int_{\varphi_{i}=0}^{2\pi} \kappa(\mathbf{x}, \theta_{i}, \varphi_{i}, \theta_{e}, \varphi_{e}) \overline{L}(\theta_{i}, \varphi_{i}) \sin \theta_{i} \cos \theta_{i} d\theta_{i} d\varphi.$$

Bidirectional Reflectance Distribution Function – BRDF

• Luminance emitted by punctual object \mathbf{x} on a surface \mathcal{S} with normal direction $\mathbf{n}(\mathbf{x})$ at \mathbf{x} , in emission direction \mathbf{v} characterized by spherical angles (θ_e, φ_e) w.r.t $\mathbf{n}(\mathbf{x})$:

$$L(\mathbf{x}, \theta_e, \varphi_e) = \int_{\theta_i=0}^{\frac{\pi}{2}} \int_{\varphi_i=0}^{2\pi} \kappa(\mathbf{x}, \theta_i, \varphi_i, \theta_e, \varphi_e) \overline{L}(\theta_i, \varphi_i) \sin \theta_i \cos \theta_i \, d\theta_i d\varphi.$$

• Nice formula but I won't explain what it means!

Specular Vs. Matte Objects

Two standard reflection models: specular: mirror like surface, diffuse: rough surface (at very small scale): Lambertian model. Others, especially useful in Computer Graphics.

Diffuse Reflection

Image Source GianniG46, Wikipedia

Diffuse Reflection

Rough surface at micro-scale.

- Light bounces.
- Reflections in all directions
- Some light is absorbed.
- Only a percentage of light energy is reemitted.

Image Source GianniG46, Wikipedia

Reflectance

- Linearised Lambertian model: $I(\mathbf{p}) = \rho(\mathbf{x})\mathbf{s}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})$
- $\rho(\mathbf{x})$ is the *albedo* at \mathbf{x} material light absorption property, $\rho \in [0, 1]$. Assumes matter material such as chalk...

Reflectance

- Linearised Lambertian model: $I(\mathbf{p}) = \rho(\mathbf{x})\mathbf{s}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})$
- $\rho(\mathbf{x})$ is the *albedo* at \mathbf{x} material light absorption property, $\rho \in [0, 1]$. Assumes matter material such as chalk...

Reflectance

- Linearised Lambertian model: $I(\mathbf{p}) = \rho(\mathbf{x})\mathbf{s}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})$
- $\rho(\mathbf{x})$ is the *albedo* at \mathbf{x} material light absorption property, $\rho \in [0, 1]$. Assumes matter material such as chalk...

Reflectance

- Linearised Lambertian model: $I(\mathbf{p}) = \rho(\mathbf{x})\mathbf{s}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})$
- $\rho(\mathbf{x})$ is the *albedo* at \mathbf{x} material light absorption property, $\rho \in [0, 1]$. Assumes matter material such as chalk...

In words

 Local orientation of object w.r.t. light: In surface 1: surface area matches ray "section". In surface 2: surface area larger than ray section, but receive same amount of light.

Shadows

- Self shadow: surface is behind the light source. $\mathbf{s} \cdot \mathbf{n} \leq 0$.
- Cast shadow: part of the scene occludes another part.

Shadows again

- Lambert's law and self-shadows: $I = \rho \max(\mathbf{s} \cdot \mathbf{n}, 0)$.
- Cast shadows: Non local phenomenon, Lambert's law is local...

Outline

What is Photometric Stereo

2 Lighting Models

Photometric Stereo

Type of Light Sources

- Top: near light source, radial.
- Bottom: far light source: parallel. Our choice in these lectures.
- Other types?

Shape From Shading (SfS) – B. Horn 1970

- Use Lambert's Law to gain information on visible surface via normal vector n(x).
- Need link between surface equations and normal vector.

Settings

• Representation of the surface. Assume surface parameterized by $(u, v) \mapsto S(u, v) \in \mathbb{R}^3$. Even better: depth map:

$$S(u, v) = [u, v, z(u, v)]^T$$
: Monge Patch.

Settings

• Representation of the surface. Assume surface parameterized by $(u, v) \mapsto S(u, v) \in \mathbb{R}^3$. Even better: depth map:

$$S(u, v) = [u, v, z(u, v)]^T$$
: Monge Patch.

Tangent vectors at $\mathbf{x}(u, v) = [u, v, z(u, v)]^{\top}$

$$\frac{\partial \mathcal{S}}{\partial u} = \mathcal{S}_u = \begin{bmatrix} 1 \\ 0 \\ \frac{\partial z}{\partial u} \end{bmatrix}, \quad \frac{\partial \mathcal{S}}{\partial v} = \mathcal{S}_v \begin{bmatrix} 0 \\ 1 \\ \frac{\partial z}{\partial v} \end{bmatrix},$$

Settings

• Representation of the surface. Assume surface parameterized by $(u, v) \mapsto S(u, v) \in \mathbb{R}^3$. Even better: depth map:

$$S(u, v) = [u, v, z(u, v)]^T$$
: Monge Patch.

Tangent vectors at $\mathbf{x}(u, v) = [u, v, z(u, v)]^{\top}$

$$\frac{\partial \mathcal{S}}{\partial u} = \mathcal{S}_u = \begin{bmatrix} 1 \\ 0 \\ \frac{\partial z}{\partial u} \end{bmatrix}, \quad \frac{\partial \mathcal{S}}{\partial v} = \mathcal{S}_v \begin{bmatrix} 0 \\ 1 \\ \frac{\partial z}{\partial v} \end{bmatrix},$$

• Normal vector $\mathbf{n}(u, v) = \mathbf{n}(\mathbf{x}(u, v))$

$$\mathbf{n}(\mathbf{x}) = \frac{\mathcal{S}_u \times \mathcal{S}_v}{|\mathcal{S}_u \times \mathcal{S}_v|} = \frac{1}{\sqrt{|\nabla z|^2 + 1}} \begin{bmatrix} -z_u \\ -z_v \\ 1 \end{bmatrix}$$

Camera Model

- Two Choices: pinhole and orthographic.
- Orthographic Camera Model.
 - $[x = u, y = v, z] \mapsto [u, v]$: orthographic projection.
 - Formula from previous slide: Coordinates of normal vector in orthographic projection:

$$\mathbf{n} = \frac{1}{\sqrt{|\nabla z|^2 + 1}} \begin{bmatrix} -z_u \\ -z_v \\ 1 \end{bmatrix}$$

- Pinhole Camera model.
 - Projection

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} u = \frac{fx}{z} \\ v = \frac{fy}{z} \end{bmatrix}$$

Normal vector in camera coordinates: complicated!

$$\mathbf{n} = \frac{1}{\sqrt{|\nabla z|^2 + \left(\frac{z + [u,v]\nabla z}{f}\right)^2}} \begin{bmatrix} -z_u \\ -z_v \\ \frac{z + [u,v]\nabla z}{f} \end{bmatrix}$$

Camera Model

- Two Choices: pinhole and orthographic.
- Orthographic Camera Model.
 - $[x = u, y = v, z] \mapsto [u, v]$: orthographic projection.
 - Formula from previous slide: Coordinates of normal vector in orthographic projection:

$$\mathbf{n} = \frac{1}{\sqrt{|\nabla z|^2 + 1}} \begin{bmatrix} -z_u \\ -z_v \\ 1 \end{bmatrix}$$

- Pinhole Camera model.
 - Projection

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} u = \frac{fx}{z} \\ v = \frac{fy}{z} \end{bmatrix}$$

Normal vector in camera coordinates: complicated!

$$\mathbf{n} = \frac{1}{\sqrt{|\nabla z|^2 + \left(\frac{z + [u,v]\nabla z}{f}\right)^2}} \begin{bmatrix} -z_u \\ -z_v \\ \frac{z + [u,v]\nabla z}{f} \end{bmatrix}$$

Complicated Math and Research Topics

Examples, Problems

Examples, Problems

SfS (Counter)Example

SfS (Counter)Example

SfS (Counter)Example

Why Does It Go Wrong

Assume Light **s** known and constant (far light source with known intensity).Per Pixel:

- Number of unknowns:
 - Normal vector $\mathbf{n}(u, v)$, 3 components $[\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3]$, but

$$\|\mathbf{n}\| = 1 : \mathbf{n}_1^2 + \mathbf{n}_2^2 + \mathbf{n}_3^2 = 1.$$

2 degrees of freedom (DoF).

- Albedo $\rho(u, v)$: 1 value, 1 DoF.
- Total: 3 DoF.
- Known information per pixel:
 - Reflectance $I(u, v) = \rho(u, v)\mathbf{s} \cdot \mathbf{n}(u, v)$: 1 equation linking 3 unknowns.

- Remaining DoFs: 2.
- For unambiguous solution, need remaining DoF = 0.
- In counterexample, 1DoF removed by assuming $\rho(u, v) \equiv 1$: Wrong!

• How to remove Degrees of Freedom?

- How to remove Degrees of Freedom?
- Woodham Solution: Use more images $l^1, l^2, ..., l^k$.

- How to remove Degrees of Freedom?
- Woodham Solution: Use more images $l^1, l^2, ..., l^k$.
- Don't change Camera Position keep same depth function, normals, change lights.

- How to remove Degrees of Freedom?
- Woodham Solution: Use more images $l^1, l^2, ..., l^k$.
- Don't change Camera Position keep same depth function, normals, change lights.
- k far (parallel) light sources $s^1, ..., s^k$: k equations

$$\begin{cases} I^{1}(u, v) &= \rho(u, v)\mathbf{s}^{1} \cdot \mathbf{n}(u, v) \\ I^{2}(u, v) &= \rho(u, v)\mathbf{s}^{2} \cdot \mathbf{n}(u, v) \\ \dots & \dots \\ I^{k}(u, v) &= \rho(u, v)\mathbf{s}^{k} \cdot \mathbf{n}(u, v) \end{cases}$$
$$(\mathbf{s}^{i} \cdot \mathbf{n} = \mathbf{s}_{1}^{i} \mathbf{n}^{1} + \mathbf{s}_{2}^{i} \mathbf{n}_{2} + \mathbf{s}_{3}^{i} \mathbf{n}_{3})$$

- How to remove Degrees of Freedom?
- Woodham Solution: Use more images $l^1, l^2, ..., l^k$.
- Don't change Camera Position keep same depth function, normals, change lights.
- k far (parallel) light sources $s^1, ..., s^k$: k equations

$$\begin{cases} I^{1}(u, v) &= \rho(u, v)\mathbf{s}^{1} \cdot \mathbf{n}(u, v) \\ I^{2}(u, v) &= \rho(u, v)\mathbf{s}^{2} \cdot \mathbf{n}(u, v) \\ \dots & \dots \\ I^{k}(u, v) &= \rho(u, v)\mathbf{s}^{k} \cdot \mathbf{n}(u, v) \end{cases}$$
$$(\mathbf{s}^{i} \cdot \mathbf{n} = \mathbf{s}_{1}^{i} \mathbf{n}^{1} + \mathbf{s}_{2}^{i} \mathbf{n}_{2} + \mathbf{s}_{3}^{i} \mathbf{n}_{3})$$

• Which k to choose? 3 DoF: $k \ge 3$. Exactly 3, more?

- How to remove Degrees of Freedom?
- Woodham Solution: Use more images $l^1, l^2, ..., l^k$.
- Don't change Camera Position keep same depth function, normals, change lights.
- k far (parallel) light sources $s^1, ..., s^k$: k equations

$$\begin{cases} I^{1}(u,v) &= \rho(u,v)\mathbf{s}^{1} \cdot \mathbf{n}(u,v) \\ I^{2}(u,v) &= \rho(u,v)\mathbf{s}^{2} \cdot \mathbf{n}(u,v) \\ \dots & \dots \\ I^{k}(u,v) &= \rho(u,v)\mathbf{s}^{k} \cdot \mathbf{n}(u,v) \end{cases}$$
$$(\mathbf{s}^{i} \cdot \mathbf{n} = \mathbf{s}_{1}^{i} \mathbf{n}^{1} + \mathbf{s}_{2}^{i} \mathbf{n}_{2} + \mathbf{s}_{3}^{i} \mathbf{n}_{3})$$

- Which k to choose? 3 DoF: $k \ge 3$. Exactly 3, more?
- Answer is geometric!

- How to remove Degrees of Freedom?
- Woodham Solution: Use more images $l^1, l^2, ..., l^k$.
- Don't change Camera Position keep same depth function, normals, change lights.
- k far (parallel) light sources $s^1, ..., s^k$: k equations

$$\begin{cases} I^{1}(u,v) &= \rho(u,v)\mathbf{s}^{1} \cdot \mathbf{n}(u,v) \\ I^{2}(u,v) &= \rho(u,v)\mathbf{s}^{2} \cdot \mathbf{n}(u,v) \\ \dots & \dots \\ I^{k}(u,v) &= \rho(u,v)\mathbf{s}^{k} \cdot \mathbf{n}(u,v) \end{cases}$$
$$(\mathbf{s}^{i} \cdot \mathbf{n} = \mathbf{s}_{1}^{i} \mathbf{n}^{1} + \mathbf{s}_{2}^{i} \mathbf{n}_{2} + \mathbf{s}_{3}^{i} \mathbf{n}_{3})$$

- Which k to choose? 3 DoF: k ≥ 3. Exactly 3, more?
- Answer is geometric!
- From (u, v) → n(u, v) to surface? Integration of normals: out of scope;
 Matlab / Python functions will be provided.

• Woodham idea: Normal + Albedo Simultaneously

$$\mathbf{m} := \rho \mathbf{n}, \quad \rho = \|\mathbf{m}\|, \mathbf{n} = \frac{\mathbf{m}}{\|\mathbf{m}\|}$$

Woodham idea: Normal + Albedo Simultaneously

$$\mathbf{m} := \rho \mathbf{n}, \quad \rho = \|\mathbf{m}\|, \mathbf{n} = \frac{\mathbf{m}}{\|\mathbf{m}\|}$$

• Problem if $\rho = 0$: absolutely black object – shadow.

Woodham idea: Normal + Albedo Simultaneously

$$\mathbf{m} := \rho \mathbf{n}, \quad \rho = \|\mathbf{m}\|, \mathbf{n} = \frac{\mathbf{m}}{\|\mathbf{m}\|}$$

- Problem if $\rho = 0$: absolutely black object shadow.
- k Lambert's laws for a given pixel at [u, v]

$$\underbrace{\begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_k \end{bmatrix}}_{\text{Image vector I}, k \times 1} = \underbrace{\begin{bmatrix} \mathbf{s}_1^1 & \mathbf{s}_1^2 & \mathbf{s}_1^3 \\ \mathbf{s}_2^1 & \mathbf{s}_2^2 & \mathbf{s}_2^3 \\ \vdots & \vdots & \vdots \\ \mathbf{s}_k^1 & \mathbf{s}_k^2 & \mathbf{s}_k^3 \end{bmatrix}}_{\text{Light matrix } \mathbf{M}_{\mathbf{s}}, k \times 3} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix}$$

Woodham idea: Normal + Albedo Simultaneously

$$\mathbf{m} := \rho \mathbf{n}, \quad \rho = \|\mathbf{m}\|, \mathbf{n} = \frac{\mathbf{m}}{\|\mathbf{m}\|}$$

- Problem if $\rho = 0$: absolutely black object shadow.
- k Lambert's laws for a given pixel at [u, v]

$$\underbrace{\begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_k \end{bmatrix}}_{\text{Image vector } \mathbf{I}, k \times 1} = \underbrace{\begin{bmatrix} \mathbf{s}_1^1 & \mathbf{s}_1^2 & \mathbf{s}_1^3 \\ \mathbf{s}_2^1 & \mathbf{s}_2^2 & \mathbf{s}_2^3 \\ \vdots & \vdots & \vdots \\ \mathbf{s}_k^1 & \mathbf{s}_k^2 & \mathbf{s}_k^3 \end{bmatrix}}_{\text{Light matrix } \mathbf{M}_{\mathbf{s}}, k \times 3} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix}$$

• Number of solutions?

Woodham idea: Normal + Albedo Simultaneously

$$\mathbf{m} := \rho \mathbf{n}, \quad \rho = \|\mathbf{m}\|, \mathbf{n} = \frac{\mathbf{m}}{\|\mathbf{m}\|}$$

- Problem if $\rho = 0$: absolutely black object shadow.
- k Lambert's laws for a given pixel at [u, v]

$$\underbrace{\begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_k \end{bmatrix}}_{\text{Image vector } \mathbf{I}, k \times 1} = \underbrace{\begin{bmatrix} \mathbf{s}_1^1 & \mathbf{s}_1^2 & \mathbf{s}_1^3 \\ \mathbf{s}_2^1 & \mathbf{s}_2^2 & \mathbf{s}_2^3 \\ \vdots & \vdots & \vdots \\ \mathbf{s}_k^1 & \mathbf{s}_k^2 & \mathbf{s}_k^3 \end{bmatrix}}_{\text{Light matrix } \mathbf{M}_{\mathbf{S}}, k \times 3} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix}$$

- Number of solutions?
- Can vary from none to a lot!

Linear Algebra Again

System of equations in 2 unknown.

- Need at least 2 independent equations! ...but not 3!
- For 3 or more: concept of "closest solution in least squares".

In 3D

Same light source, incompatible measurements, b) coplanar light sources, compatible measurements, c) 2 light source, 3 incompatible measurements, d) coplanar light sources, incompatible measurements, e) 3 non coplanar light sources

Picture from Guillermo Bautista, mathandmultimedia.com

- Parameters / devices:
 - Measurement errors: Camera?
 - Coplanar light sources: example?
- Reflectance
 - Lambert's law only valid for matte materials: specularities.
 - Shadows / penumbra: non black cast shadow areas.
- More?

- Parameters / devices:
 - Measurement errors: Camera?
 - Coplanar light sources: example?
- Reflectance
 - Lambert's law only valid for matte materials: specularities.
 - Shadows / penumbra: non black cast shadow areas.
- More?

- Parameters / devices:
 - Measurement errors: Camera?
 - Coplanar light sources: example?
- Reflectance
 - Lambert's law only valid for matte materials: specularities.
 - Shadows / penumbra: non black cast shadow areas.
- More?

- Parameters / devices:
 - Measurement errors: Camera?
 - Coplanar light sources: example?
- Reflectance
 - Lambert's law only valid for matte materials: specularities.
 - Shadows / penumbra: non black cast shadow areas.
- More?

- Parameters / devices:
 - Measurement errors: Camera?
 - Coplanar light sources: example?
- Reflectance
 - Lambert's law only valid for matte materials: specularities.
 - Shadows / penumbra: non black cast shadow areas.
- More?

Solving For Normals: Pseudo-Inverse Approach

Assume 3 or more non coplanar light sources.

- Equation $I = M_s \mathbf{m}$ may not have solution if M_s is $k \times 3$, k > 3.
- Via Moore-Penrose Pseudo-Inverse M_s^{\dagger} , solution of

m such that
$$\|\mathbf{I} - M_{\mathbf{s}}\mathbf{m}\|^2 = \min : \mathbf{m} = M_{\mathbf{s}}^{\dagger}\mathbf{I}$$
.

Pros.

 Good news: Matlab pinv function, Python pinv function in package numpy.linalg.

Cons.

Does not separate wrong and accurate measurements.

Solving For Normals: Equations Selection - I

In a nutshell.

Per pixel: find best constraints: 3 "good measurements" I^a, I^b, I^c and corresponding "good lights" s^a, s^b, s^c.

$$\underbrace{ \begin{bmatrix} I^{a} \\ I^{b} \\ I^{c} \end{bmatrix}}_{\mathbf{I}_{abc}} = \underbrace{ \begin{bmatrix} \mathbf{S}_{1}^{a} & \mathbf{s}_{2}^{a} & \mathbf{S}_{3}^{a} \\ \mathbf{S}_{1}^{b} & \mathbf{S}_{2}^{b} & \mathbf{S}_{3}^{b} \\ \mathbf{S}_{1}^{c} & \mathbf{S}_{2}^{c} & \mathbf{S}_{3}^{c} \end{bmatrix}}_{M_{abc}} \underbrace{ \begin{bmatrix} \mathbf{m}^{1} \\ \mathbf{m}^{2} \\ \mathbf{m}^{3} \end{bmatrix}}_{\mathbf{I}_{abc}}$$

Good measurements.

- I_i good measurement: not too small (shadow, penumbra) and not too large (saturation, potential specularity).
- Good light sources: $\det M_{abc}$ as large as possible.

Solving For Normals: Equations Selection - II

Pros.

Best system of equations per pixel.

Cons.

- Lack of spatial coherence: different lights can be chosen for neighbor pixels.
- Need thresholds for intensities: parameters of the algorithm.
- More complicated to code.

Size Matters.

- For relatively small k: equation selection can be a good idea.
- For very large k (1000, more...) pseudo-inverse very good: statistical reason.

Algorithm in a Nutshell

Input.

• k known parallel light sources $\mathbf{s}_1, \dots \mathbf{s}_k$. k recorded images l_1, \dots, l_k .

Normals and Albedo recovery.

- For each (valid) pixel [u, v] in image domain:
 - **1** Solve $\mathbf{m}(u, v)$ either via pseudo-inverse or equation selection.
 - Get albedo and normal:

$$\rho(u,v) = \|\mathbf{m}(u,v)\|, \quad \mathbf{n}(u,v) = \frac{1}{\rho(u,v)}\mathbf{m}(u,v).$$

Surface Recovery.

- Get surface from normals via surface integration.
- May "paint surface" with albedo.

Process

Top left: 1 of the input images, right: normal field. Bottom left: albedo, right: a 3D reconstruction.

Mezigue

Mezigue

Mezigue

Literature, available in Abaslon

- Horn, Shape from shading 1970
- Woodham, Photometric Stereo, 1980

Summary

- φῶς/φωτός
- μέτρον
- στερεός

Summary

- φῶς/φωτός
- μέτρον
- στερεός

Summary

- φῶς/φωτός
- μέτρον
- στερεός

