Supervised learning (VII) Support Vector Machine (SVM)

Séverine Affeldt

Université de Paris Centre Borelli, CNRS

2021 - 2022

	x		
	x ₁	x2	У
i	1	9 6 8	-1
ii	2	6	-1
iii	2	8	-1
iv	3	10	-1
v	4	9	-1
v vi vii	5	3	1
vii	5	8	-1
viii	5	10	-1
ix	6		1
×	6	5	1
xi	6	9	-1
xii	8	2 5 9 4	1
xiii	8	6	1
xiv	1 2 2 3 4 5 5 6 6 6 8 8 9	2	-1 -1 -1 -1 -1 1 -1 1 1 1 1 1
xv	9	2 5	1
xvii	10	3	1

Objective

Find the decision boundary that will indicate the class of a new data point x ?

- data point **x**: p-dimensional vector (eg. $\mathbf{x}_1 = (x_{1,1}, x_{1,2}))$
- decision boundary \mathbf{H} : (p-1)-dimensional hyperplane (eg. $\mathbf{H}_1,\mathbf{H}_2,\mathbf{H}_3)$

	x		
	x ₁	x2	у
i	1	9 6	-1
ii	2	6	-1
iii	2	8	-1
iv	1 2 2 3 4 5 5 5 6 6 6	10 9	-1 -1 -1 -1 -1 1 -1 1 1 1
٧	4	9	-1
vi vii	5	3	1
vii	5	8	-1
viii	5	10	-1
ix	6	2	1
×	6	2 5 9 4	1
xi	6	9	-1
×ii	8	4	1
xiii	8	6	1
xiv	9	2 5	1
xv	9	5	1
xvii	10	3	1

Objective

Find the decision boundary that will indicate the class of a new data point ${\bf x}$?

- data point **x**: p-dimensional vector (eg. $\mathbf{x}_1 = (x_{1,1}, x_{1,2})$)
- $\frac{\text{decision boundary } \mathbf{H}}{\text{c}}$: (p-1)-dimensional hyperplane (eg. $\mathbf{H_1},\mathbf{H_2},\mathbf{H_3})$

SVM

 H_3 is a reasonnable choice: maximises the **margin** between the two classes (Vaplnik & Chervonenkis, 1963)

Decision boundary

Let us consider a training dataset of the form $\{(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),...,(\mathbf{x}_n,y_n)\}$, where \mathbf{x}_i is a p dimensional **real** vector and $y_i \in \{-1,1\}$. We want to find a hyperplane that maximizes the distance to the nearest \mathbf{x}_i .

<u>Hyperplane *H*</u> with parameters $\{w_i\} \Leftrightarrow \{x\}, \sum_{i=1}^n w_i x_i + b = \langle \mathbf{w}. \mathbf{x} \rangle + b = 0$

Linearly separable data

 \exists **two parallel** hyperplanes that separate the data, such that the **distance** between them is as **large** as possible. This distance is the **margin**.

- (1) $\langle \mathbf{w}.\mathbf{x} \rangle + b = 1$
- $(2) \langle \mathbf{w}.\mathbf{x} \rangle + b = -1$

Where does the margin come from?

Objective

Maximizing the margin \Leftrightarrow find \mathbf{w} s.t. $max(\frac{2}{\|\mathbf{w}\|}) \Leftrightarrow$ find \mathbf{w} s.t. $min(\|\mathbf{w}\|)$, $\|\mathbf{w}\| = \sqrt{w_1^2 + w_2^2 + \dots}$

Supplementary constraint

 $\forall i$,

$$\langle \mathbf{w}.\mathbf{x}^{s_i} \rangle + b \geq 1$$
 , if $y_i = 1$

or

$$\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b \leq -1$$
, if $y_i = -1$

All in all,

$$\forall \ 1 \leq i \leq n, \ y_i(\langle \mathbf{w}.\mathbf{x}^{s_i} \rangle + b) \geq 1$$

No data point within the margin!

Full SVM objective

Minimizing $\|\mathbf{w}\|$, where $\|\mathbf{w}\| = \sqrt{w_1^2 + w_2^2 + ...}$, and subject to $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i} \rangle + b) \ge 1, \ \forall \ 1 \le i \le n$

Our classifier is defined by \mathbf{w} and b that satisfy this requirements. It is **fully** determined by the closest samples \mathbf{x}^{s_i} , which are named **support vectors**.

Primal form of the optimization problem

Minimizing
$$\frac{1}{2}(w_1^2+w_2^2+...+w_p^2)$$
 subject to $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle+b)\geq 1, \ \forall \ 1\leq i\leq n$

- ⇒ a well known quadratic optimization problem, where we have a **quadratic objective** function subject to **linear constraints**.
- \Rightarrow not possible for large p (> few hundreds)...
- ⇒ not applicable to non linearly separable data...

Toy example with the Excel Solver(12 constraints)

 $\text{Minimizing } \ \tfrac{1}{2}(w_1^2 + w_2^2 + \ldots + w_p^2) \quad \text{subject to} \quad y_i(\langle \mathbf{w}.\mathbf{x}^{\mathbf{s}_i} \rangle + b) \ \geq \ 1, \ \forall \ 1 \leq i \leq \ n$

Set up a Lagrange function and derive the solution analytically

¹Karush, Kuhn & Tucker

 $\label{eq:minimizing} \ \ \tfrac{1}{2}(w_1^2+w_2^2+\ldots+w_p^2) \quad \ \ \text{subject to} \quad \ \ y_i(\langle \mathbf{w}.\mathbf{x}^{\mathbf{s}_i}\rangle+b) \ \geq \ 1, \ \forall \ 1 \leq i \leq \ n$

Set up a Lagrange function and derive the solution analytically

Rewrite the constraint,

$$y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b) - 1 \geq 0$$

Multiple by Lagrange multipliers (α_i) and subtract from the objective function,

$$argmin_{\mathbf{w},b} \ L(\mathbf{w},b,\alpha) = \frac{1}{2} \langle \mathbf{w}^\mathsf{T}.\mathbf{w} \rangle - \sum_{i=1}^n \alpha_i (y_i (\langle \mathbf{w}.\mathbf{x}^{\mathsf{s}_i} \rangle + b) - 1), \text{ where } \alpha_i \geq 0$$

NB: minimizing with respect to **w** and b...but maximizing with respect to $\{\alpha_i\}$

¹Karush, Kuhn & Tucker

Minimizing $\frac{1}{2}(w_1^2+w_2^2+...+w_p^2)$ subject to $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle+b)\geq 1, \ \forall \ 1\leq i\leq n$

Set up a Lagrange function and derive the solution analytically

Rewrite the constraint,

$$y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b) - 1 \geq 0$$

Multiple by Lagrange multipliers (α_i) and subtract from the objective function,

$$argmin_{\mathbf{w},b} \ \ L(\mathbf{w},b,lpha) = \frac{1}{2} \langle \mathbf{w}^\mathsf{T}.\mathbf{w} \rangle - \sum_{i=1}^n \underline{\alpha}_i (y_i (\langle \mathbf{w}.\mathbf{x}^{s_i} \rangle + b) - 1), \ \text{where} \ \alpha_i \geq 0$$

NB: minimizing with respect to \mathbf{w} and b…but maximizing with respect to $\{\alpha_i\}$

A quadratic optimization problem must satisfied the KKT¹ conditions,

- (1) $\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha) = 0 \& \frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = 0$
- (2) $\alpha_i \geq 0$
- (3) $\alpha_i(y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b) 1) = 0$
- (4) $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b) 1 \geq 0$

 $\underline{\text{Caution}}: \alpha_i > 0 \Rightarrow x_i \text{ is a support vector}$

¹ Karush, Kuhn & Tucker

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \langle \mathbf{w}.\mathbf{w} \rangle - \sum_{i=1}^{n} \alpha_{i} (y_{i} (\langle \mathbf{w}.\mathbf{x}^{s_{i}} \rangle + b) - 1)$$

- (1) $\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha) = 0$ & $\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = 0$
- (2) $\alpha_i \geq 0$
- (3) $\alpha_i(y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle+b)-1)=0$
- (4) $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle+b)-1 \geq 0$

Lagrangian expansion

$$\begin{split} &L(\mathbf{w},b,\alpha) \!=\! \frac{1}{2} \left\langle \mathbf{w}.\mathbf{w} \right\rangle \!-\! \sum_{i=1}^{n} \alpha_{i} (y_{i} \left\langle \mathbf{w}.\mathbf{x}^{\mathbf{S}i} \right\rangle \!+\! y_{i}b \!-\! 1) \\ &L(\mathbf{w},b,\alpha) \!=\! \frac{1}{2} \left\langle \mathbf{w}.\mathbf{w} \right\rangle \!-\! \sum_{i=1}^{n} \alpha_{i} y_{i} \left\langle \mathbf{w}.\mathbf{x}^{\mathbf{S}i} \right\rangle \!+\! \sum_{i=1}^{n} \alpha_{i} y_{i}b \!-\! \sum_{i$$

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \langle \mathbf{w}.\mathbf{w} \rangle - \sum_{i=1}^{n} \alpha_{i} (y_{i} (\langle \mathbf{w}.\mathbf{x}^{s_{i}} \rangle + b) - 1)$$

- (1) $\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha) = 0$ & $\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = 0$
- (2) $\alpha_i \ge 0$
- (3) $\alpha_i(y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle+b)-1)=0$
- (4) $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b) 1 \geq 0$

Lagrangian expansion

$$\begin{split} &L(\mathbf{w},b,\alpha) \!=\! \frac{1}{2} \left\langle \mathbf{w}.\mathbf{w} \right\rangle \!-\! \sum_{i=1}^{n} \alpha_{i} (y_{i} \left\langle \mathbf{w}.\mathbf{x}^{\mathbf{s}_{i}} \right\rangle \!+\! y_{i} b \!-\! 1) \\ &L(\mathbf{w},b,\alpha) \!=\! \frac{1}{2} \left\langle \mathbf{w}.\mathbf{w} \right\rangle \!-\! \sum_{i=1}^{n} \alpha_{i} y_{i} \left\langle \mathbf{w}.\mathbf{x}^{\mathbf{s}_{i}} \right\rangle \!+\! \sum_{i=1}^{n} \alpha_{i} y_{i} b \!-\! \sum_{i=1}^{n} \alpha_{i} y_{i}$$

Getting the dual formulation

(1)
$$\nabla_{\mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}^{s_i} \Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}^{s_i}$$

(2)
$$\frac{\partial L(\mathbf{w},b,\alpha)}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i \Rightarrow -\sum_{i=1}^{n} \alpha_i y_i = 0$$

...substituting in expanded Lagrangian...

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}^{s_i} \mathbf{x}^{s_j} \rangle$$

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \langle \mathbf{w}.\mathbf{w} \rangle - \sum_{i=1}^{n} \alpha_{i} (y_{i}(\langle \mathbf{w}.\mathbf{x}^{s_{i}} \rangle + b) - 1)$$

- (1) $\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha) = 0$ & $\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = 0$
- (2) $\alpha_i \geq 0$
- (3) $\alpha_i(y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle+b)-1)=0$
- (4) $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b) 1 \geq 0$

Lagrangian expansion

$$\begin{split} &L(\mathbf{w},b,\alpha) \! = \! \frac{1}{2} \left\langle \mathbf{w}.\mathbf{w} \right\rangle \! - \! \sum_{i=1}^{n} \alpha_{i}(y_{i}\langle \mathbf{w}.\mathbf{x}^{\mathbf{s}_{i}} \rangle \! + \! y_{i}b \! - \! 1) \\ &L(\mathbf{w},b,\alpha) \! = \! \frac{1}{2} \left\langle \mathbf{w}.\mathbf{w} \right\rangle \! - \! \sum_{i=1}^{n} \alpha_{i}y_{i}\langle \mathbf{w}.\mathbf{x}^{\mathbf{s}_{i}} \rangle \! + \! \sum_{i=1}^{n} \alpha_{i}y_{i}b \! - \! \sum_{i=1}^{n} \alpha_{i}y_$$

Dual formulation of the optimization problem

$$\underset{i=1}{\operatorname{argmax}_{\alpha}} \ L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}^{s_{i}} \mathbf{x}^{s_{j}} \rangle, \quad \text{where} \quad \alpha_{i} \geq 0 \ \& \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \langle \mathbf{w}.\mathbf{w} \rangle - \sum_{i=1}^{n} \alpha_{i} (y_{i} (\langle \mathbf{w}.\mathbf{x}^{s_{i}} \rangle + b) - 1)$$

- (1) $\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha) = 0$ & $\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = 0$
- (2) $\alpha_i \geq 0$
- (3) $\alpha_i(y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle+b)-1)=0$
- (4) $y_i(\langle \mathbf{w}.\mathbf{x}^{s_i}\rangle + b) 1 \geq 0$

Lagrangian expansion

$$\begin{split} & L(\mathbf{w},b,\alpha) \!=\! \frac{1}{2} \, \langle \mathbf{w}.\mathbf{w} \rangle \!-\! \sum_{i=1}^{n} \alpha_{i} (y_{i} \langle \mathbf{w}.\mathbf{x}^{\mathsf{S}i} \rangle \!+\! y_{i} b \!-\! 1) \\ & L(\mathbf{w},b,\alpha) \!=\! \frac{1}{2} \, \langle \mathbf{w}.\mathbf{w} \rangle \!-\! \sum_{i=1}^{n} \alpha_{i} y_{i} \langle \mathbf{w}.\mathbf{x}^{\mathsf{S}i} \rangle \!+\! \sum_{i=1}^{n} \alpha_{i} y_{i} b \!-\! \sum_$$

Dual formulation of the optimization problem

$$\underset{\alpha \in \mathbb{N}}{\operatorname{argmax}}_{\alpha} \ L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}^{s_{i}} \mathbf{x}^{s_{j}} \rangle}{\alpha_{i} \alpha_{i} \gamma_{i} \gamma_{i} \langle \mathbf{x}^{s_{i}} \mathbf{x}^{s_{j}} \rangle}, \quad \text{where} \quad \underset{i=1}{\alpha_{i} \geq 0} \ \& \sum_{i=1}^{n} \frac{\alpha_{i} y_{i}}{\alpha_{i} \gamma_{i}} = 0$$

 $\overline{\text{NB}}$: Instead of minimizing over **w** and *b* subject to linear constraints, we can maximize over α

In practice, there is no perfect separation!

- $\bullet \xi$ est un vecteur de taille n
- $\xi_i \ge 0$ matérialise l'erreur de classement pour chaque observation
- \bullet $\xi_i=0$, elle est nulle lorsque l'observation est du bon côté de la droite « marge » associée à sa classe
- ξ_i < 1, le point est du bon côté de la frontière, mais déborde de la droite « marge » associée à sa classe
- ξ_i > 1, l'individu est mal classé

In practice, there is no perfect separation!

$$\min_{\beta,\beta_0,\xi_i} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$

Formulation primale

S.C.
$$V_i \times (X_i^T \beta + \beta_0) \ge 1 - \xi_i, \forall i = 1, ..., n$$

$$\xi_i \geq 0, \ \forall i$$

 $\max_{\alpha} L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{i} y_{i} y_{i} \langle x_{i}, x_{i} \rangle$

Formulation duale

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i} = 0$$

$$0 \le \alpha_i \le C, \forall i$$

La tolérance aux erreurs est plus ou moins accentuée avec le paramètre C ("cost" parameter)

- → C trop élevé, danger de surapprentissage
- → C trop faible, sous-apprentissage

In practice, there is no perfect separation!

'Soft' Primal formulation

 $argmin_{\mathbf{w},b,\xi^{s_i}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i, \quad \xi^{s_i} \text{ tolerance or classification error, } C \text{ cost with constraints.}$

$$\forall i, 1 \leq i \leq n, \quad y_i(\langle \mathbf{w}.\mathbf{x}^{S_i} \rangle + b) \geq 1 - \xi^{s_i} \quad \& \quad \xi^{S_i} \geq 0$$

'Soft' Primal formulation

$$\underset{i=1}{\textit{argmax}}_{\alpha} \ L(\alpha) \ = \ \sum_{i=1}^{n} \alpha_{i} - \tfrac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}^{\mathbf{s}_{i}} \mathbf{x}^{\mathbf{s}_{j}} \rangle$$

with constraints,

$$\forall i, 1 \leq i \leq n, \quad 0 \leq \alpha_i \leq C \quad \& \quad \sum_{i=1}^n \alpha_i y_i = 0$$

About the cost ξ^{s_i} and C

 $\mathsf{OK} \Rightarrow \xi^{s_i} = 0$; OK but within margin $\Rightarrow \xi^{s_i} < 1$; not $\mathsf{OK} \Rightarrow \xi^{s_i} > 1$ C too high \Rightarrow overfitting; C too low \Rightarrow underfitting With appropriate variable transformations, we can turn a non linearly separable problem into a linearly separable one!

An example: $\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, x_1 x_2)$

$$\underset{i=1}{\operatorname{argmax}_{\alpha}} \ L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}^{\mathbf{s}_{i}} \mathbf{x}^{\mathbf{s}_{j}} \rangle, \quad \text{where} \quad \alpha_{i} \geq 0 \ \& \ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\underset{argmax_{\alpha}}{argmax_{\alpha}} \ L(\alpha) = \sum_{i=1}^{n} \frac{\alpha_{i} - \frac{1}{2}}{\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}^{\mathbf{s}_{i}} \mathbf{x}^{\mathbf{s}_{j}} \rangle}, \quad \text{where} \quad \underset{i=1}{\alpha_{i} \geq 0} \ \& \ \sum_{i=1}^{n} \frac{\alpha_{i} y_{i}}{\alpha_{i} y_{i}} = 0$$

Directly transforming the variables

An example: $\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{(2)}x_1x_2, x_2^2)$

We need to compute all the $\langle \Phi(\mathbf{x}^{s_i}) \Phi(\mathbf{x}^{s_j}) \rangle$, and we need to manipule 3 variables instead of 2... This is time and memory costly...

$$\underset{\alpha_i \geq 0}{\operatorname{argmax}}_{\alpha} \ L(\alpha) = \sum_{i=1}^n \underline{\alpha_i} - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \underline{\alpha_i} \underline{\alpha_j} y_i y_j \langle \mathbf{x}^{s_j} \mathbf{x}^{s_j} \rangle, \quad \text{where} \quad \underline{\alpha_i} \geq 0 \ \& \ \sum_{i=1}^n \underline{\alpha_i} y_i = 0$$

Directly transforming the variables

An example: $\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{(2)}x_1x_2, x_2^2)$

We need to compute all the $\langle \Phi(\mathbf{x}^{\mathbf{s}_i}) \Phi(\mathbf{x}^{\mathbf{s}_i}) \rangle$, and we need to manipule 3 variables instead of 2... This is time and memory costly...

Using a Kernel function

$$\mathcal{K}(\boldsymbol{x}^{s_i},\boldsymbol{x}^{s_j}) = \langle \Phi(\boldsymbol{x}^{s_i}), \Phi(\boldsymbol{x}^{s_j}) \rangle$$

Here, we compute the scalar product (as before), and convert only the result with K! We manipulate only 2 variables, but still, we are in a higher dimension.

$$\underset{\alpha_i \geq 0}{\operatorname{argmax}} \mathcal{L}(\alpha) = \sum_{i=1}^n \frac{\alpha_i - \frac{1}{2}}{\sum_{i=1}^n \sum_{j=1}^n \frac{\alpha_i \alpha_j y_i y_j}{\lambda_i^{s_i} x^{s_j}}}, \quad \text{where} \quad \underset{i=1}{\alpha_i \geq 0} \; \& \; \sum_{i=1}^n \frac{\alpha_i y_i}{\lambda_i^{s_i} y_i} = 0$$

Let us consider two data points/vectors, $\mathbf{u}=(4,7)\ \&\ \mathbf{v}=(2,5) \Rightarrow \langle \mathbf{u},\mathbf{v}\rangle = 4\times 2 + 5\times 7 = 43$

Example (a)

$$\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)
\Phi(\mathbf{u} = (16, 39.6, 49)) & \Phi(\mathbf{v} = (4, 14.1, 25))
\Rightarrow \langle \Phi(\mathbf{u}), \Phi(\mathbf{v}) \rangle = 1849$$

Using the corresponding K, $K_1(\mathbf{u}, \mathbf{v}) = (\langle \mathbf{u}, \mathbf{v} \rangle)^2 = 43^2 = 1849$

$$\underset{\alpha_i \geq 0}{\operatorname{argmax}} \mathcal{L}(\alpha) = \sum_{i=1}^n \frac{\alpha_i - \frac{1}{2}}{\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \langle \mathbf{x}^{s_i} \mathbf{x}^{s_j} \rangle}, \quad \text{where} \quad \underset{i=1}{\alpha_i \geq 0} \; \& \; \sum_{i=1}^n \frac{\alpha_i y_i}{\alpha_i y_i} = 0$$

Let us consider two data points/vectors,

$$\mathbf{u} = (4,7) \& \mathbf{v} = (2,5) \Rightarrow \langle \mathbf{u}, \mathbf{v} \rangle = 4 \times 2 + 5 \times 7 = 43$$

Example (a)

$$\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)
\Phi(\mathbf{u} = (16, 39.6, 49)) & \Phi(\mathbf{v} = (4, 14.1, 25))
\Rightarrow \langle \Phi(\mathbf{u}), \Phi(\mathbf{v}) \rangle = 1849$$

Using the corresponding K, $K_1(\mathbf{u}, \mathbf{v}) = (\langle \mathbf{u}, \mathbf{v} \rangle)^2 = 43^2 = 1849$

Example (b)

$$\Phi(\mathbf{x} = (x_1, x_2)) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2, x_2^2)
\Phi(\mathbf{u} = (1, 5.7, 9.9, 16, 49, 39; 6)) & \Phi(\mathbf{v} = (1, 2.8, 7.1, 4, 25, 14.1))
\Rightarrow \langle \Phi(\mathbf{u}), \Phi(\mathbf{v}) \rangle = 1936$$

Using the corresponding K, $K_2(\mathbf{u}, \mathbf{v}) = (1 + \langle \mathbf{u}, \mathbf{v} \rangle)^2 = (1 + 43)^2 = 1936$

With a kernel function K, computations are equivalent, but we project all data points into a higher dimensional space without explicitly transforming the data points.

'Soft' Dual formulation of the optimization problem with a kernel function

$$\underset{argmax_{\alpha}}{argmax_{\alpha}} L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}^{s_{i}} \mathbf{x}^{s_{j}}), \quad \text{where} \quad 0 \leq \alpha_{i} \leq C \& \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

Classification with a kernel function

$$f(x_i) = \sum_{i \in SV} \alpha_i y_i K(\mathbf{x_i}.\mathbf{x}) + b$$

Polynomial Kernel

$$K(\mathbf{u}, \mathbf{v}) = (coef 0 + \langle \mathbf{u}, \mathbf{v} \rangle)$$

Radial basis Kernel

$$K(\mathbf{u}, \mathbf{v}) = exp(-\gamma \times \|\mathbf{u} - \mathbf{v}\|^2)$$

Sigmoid Kernel

$$K(\mathbf{u}, \mathbf{v}) = tanh(-\gamma \times \langle \mathbf{u}, \mathbf{v} \rangle + coef0)$$

NB: More kernel functions in LIBSVM, available in scikit-learn or e1071

Bibliography

- Ng, Andrew. "CS 229 Lecture Notes: Support Vector Machines.", cs229. stanford. edu/notes (2012)
- Rakotomalala, Ricco. "Machines à Vecteurs de Support."

A reminder on normal vector and direction vector

Normal vector

If (d) is a line defined by the equation ax + by + c = 0, then v = (a, b) is a vector normal to (d).

Let's choose two points, $A=(x_A,y_A)$ and M=(x,y) that belong to (d). If v is normal to (d), then $< AM.v> = <(x_A-x,y_A-y).(a,b)> = 0$.

Hence, A and M are such that $a(x - x_A) + b(y - y_A) = 0 \Leftrightarrow ax + by + c = 0$, with $c = -(ax_A + by_A)$

Direction vector

A direction vector of (d) is u = (-b, a).

Distance $d(A, A_h)$

$$w = (w_1, w_2)^T$$
 is a vector **normal** to H .
 $\forall M \in H$, $\langle AM.w \rangle = \langle (AA_h + A_hM).w \rangle = \langle AA_h.w \rangle$

$$\begin{split} \langle \mathbf{A}\mathbf{A}_{\mathbf{h}}.\mathbf{w} \rangle &= \ w_1(\mathbf{x}_{A_h} - \mathbf{x}_A) + w_2(\mathbf{y}_{A_h} - \mathbf{y}_A) \\ \langle \mathbf{A}\mathbf{A}_{\mathbf{h}}.\mathbf{w} \rangle &= \ w_1\mathbf{x}_{A_h} + w_2\mathbf{y}_{A_h} - w_1\mathbf{x}_A - w_2\mathbf{y}_A \\ \langle \mathbf{A}\mathbf{A}_{\mathbf{h}}.\mathbf{w} \rangle &= -w_1\mathbf{x}_A - w_2\mathbf{y}_A - b \end{split}$$

...and...

$$\begin{split} \langle \mathbf{A} \mathbf{A}_{\mathbf{h}}.\mathbf{w} \rangle &= \|\mathbf{A} \mathbf{A}_{\mathbf{h}}\| \|\mathbf{w}\| \\ \Rightarrow & d(A, A_{\mathbf{h}}) = \|\mathbf{A} \mathbf{A}_{\mathbf{h}}\| = \frac{|\mathbf{w}_{1} \mathbf{x}_{A} + \mathbf{w}_{2} \mathbf{y}_{A} + b|}{\|\mathbf{w}\|^{2}} \end{split}$$

If
$$A \in \mathcal{H}_1$$
 or $A \in \mathcal{H}_{-1}$, $\|\mathbf{A}\mathbf{A}_{\mathbf{h}}\| = \frac{1}{\|\mathbf{w}\|}$

...hence...

$$Margin = \frac{2}{\|\mathbf{w}\|}$$

