Teoria grafów – podstawy

Materiały pomocnicze do wykładu

wykładowca: dr Magdalena Kacprzak

Grafy zorientowane i niezorientowane

Przykład 1

Dwa pociągi i jeden most – problem wzajemnego wykluczania się

Dwa pociągi i jeden most – graf możliwych tranzycji

Dwa pociągi i jeden most – przykładowe obliczenie

Dwa pociągi i jeden most – drzewo możliwych obliczeń

Przykład 2

Sieć logiczna

Czy istnieje wartościowanie spełniające formułę $\neg z \land (x \lor y) \land (\neg x \lor \neg y)$?

Przykład 3

Algorytm

Przykład 4

Mapa drogowa

Graf zorientowany

Grafem zorientowanym (digrafem albo grafem skierowanym)

nazywamy parę uporządkowaną

$$G=(V,E),$$

gdzie V jest niepustym zbiorem, E podzbiorem produktu V×V. Elementy zbioru V nazywamy węzłami lub wierzchołkami grafu, a elementy zbioru E nazywamy krawędziami grafu.

Graf jako relacja

Odwrotnie, każda relacja binarna r w zbiorze X, wyznacza jednoznacznie graf zorientowany, którego węzłami są elementy zbioru X, a krawędziami uporządkowane pary (x,x') należące do r.

Relacja sąsiedztwa

Relację r będziemy nazywać relacją sąsiedztwa.

Wierzchołki połączone krawędzią będziemy nazywać sąsiednimi.

O krawędzi (x,x') mówimy, że jest incydentna

z wierzchołkami x i x'.

Petle

Wierzchołek x nazywamy początkiem, a x' końcem krawędzi (x,x'). Krawędź, której początek jest identyczny z końcem nazywa się pętlą w grafie.

Przykład

Zbiór wierzchołków: V={1,2,3,4,5,6,7}

Zbiór krawędzi:

E={(1,1),(1,2),(2,2),(2,1),(3,3),(4,4,),(5,5),(5,6),(6,6),(6,5),(7,7)}

Pętle: (1,1), (2,2,), (3,3,) itp..

Graf skończony

Powiemy, że graf zorientowany jest skończony, jeśli zbiór jego wierzchołków jest skończony.

Stopnie wierzchołków

Dla każdego wierzchołka grafu zorientowanego definiujemy stopień wejściowy d+(v) i stopień wyjściowy d-(v) wierzchołka v następująco:

Stopnie wierzchołków

- d+(v) jest liczbą krawędzi, których końcem jest v, tzn. liczbą krawędzi wchodzących do v,
- d⁻(v) jest liczbą krawędzi, których początkiem jest v, tzn. liczbą krawędzi wychodzących z wierzchołka v.

Przykład

Ilość wierzchołków wychodzących z wierzchołka 2 d+(2)=1

Ilość wierzchołków wchodzących do wierzchołka 2 d-(2)=2

Lemat

Niech G=(V,E) będzie grafem zorientowanym skończonym. Wtedy

$$\Sigma_{v \in V} d^+(v) = \Sigma_{v \in V} d^-(v).$$

Przykład

$$\Sigma_{v \in V} d^+(v) =$$
 $d^+(1) + d^+(2) + d^+(3) + d^+(5) + d^+(6) + d^+(7) =$
 $1 + 1 + 2 + 1 + 2 + 1 = 8$

$$\Sigma_{v \in V} d^{-}(v) =$$
 $d^{-}(1) + d^{-}(2) + d^{-}(3) + d^{-}(5) + d^{-}(6) + d^{-}(7) =$
 $2 + 2 + 0 + 1 + 2 + 1 = 8$

Graf niezorientowany

Powiemy, że graf G=(V,E) jest **niezorientowany**,

jeżeli relacja sąsiedztwa tego grafu jest symetryczna, tzn. dla dowolnych dwóch wierzchołków v,v'∈V,

 $(v,v')\in E$ wttw $(v',v)\in E$.

Lemat o uściskach dłoni

Jeśli pewne osoby witają się, podając sobie dłonie, to łączna liczba uściśniętych dłoni jest parzysta – dlatego, że w każdym uścisku uczestniczą dokładnie dwie dłonie.

Lemat (Leonard Euler - 1736)

W każdym grafie niezorientowanym suma stopni wszystkich wierzchołków jest liczbą parzystą i jest równa podwojonej liczbie krawędzi.

Lemat

Każdy graf niezorientowany ma parzystą liczbę wierzchołków stopnia nieparzystego.

Reprezentacja macierzowa

Macierz sąsiedztwa

Jeśli G jest grafem, którego wierzchołki są oznakowane liczbami ze zbioru {1,2,...,n}, to

macierzą sąsiedztwa

jest macierz wymiaru n×n, której wyraz o indeksach i, j jest równy liczbie krawędzi łączących wierzchołek i z wierzchołkiem j.

Macierz sąsiedztwa - przykład

Macierz sąsiedztwa

$$egin{pmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{pmatrix}$$

Typy grafów

Graf prosty

Graf prosty

jest to graf spełniający warunki:

- graf niezorientowany bez pętli,
- dowolne dwa wierzchołki mogą być połączone co najwyżej jedną krawędzią.

Graf prosty - przykład

Relacja sąsiedztwa między państwami

Multigraf

Grafy, w których istnieją wierzchołki połączone więcej niż jedną krawędzią nazywamy multigrafami.

Multigraf - przykład

Graf regularny i pełny

Grafy, których wszystkie wierzchołki mają ten sam stopień nazywamy regularnymi.

Graf, w którym każdy wierzchołek jest połączony krawędzią z każdym innym, nazywamy grafem

pełnym.

Graf regularny - przykład

Graf pełny - przykład

Niech A={Asia, Krysia, Piotr}, $r = \{(a,b): a lubi b\}$

Graf dwudzielny

Grafem dwudzielnym

nazywamy graf G, w którym zbiór wierzchołków może być podzielny na dwa rozłączne zbiory A i B w taki sposób, że każda krawędź grafu łączy wierzchołek zbioru A z wierzchołkiem zbioru B.

Graf dwudzielny - przykład

Podgraf

Podgrafem

grafu G = (V,E) nazywamy graf G' = (V',E')

taki, że V' jest podzbiorem zbioru V, a zbiór krawędzi E' składa się ze wszystkich tych krawędzi zbioru E, których końce należą do wybranego zbioru wierzchołków V'.

Podgraf - przykład

Zastosowania

Przykład 1: Sześć osób na przyjęciu

Problem

Udowodnij, że w dowolnej grupie sześciu osób zawsze istnieją albo trzy osoby znające się nawzajem, albo trzy osoby, z których żadna nie zna pozostałych dwóch.

Opis problemu w teorii grafów

3 osoby znające się nawzajem

3 osoby, z których żadna nie zna

Przykład 2: Twierdzenie o kojarzeniu małżeństw

Problem kojarzenia małżeństw

Jeśli dany jest skończony zbiór dziewcząt, z których każda zna pewną liczbę chłopców, to jakie warunki muszą być spełnione, by każda dziewczyna mogła poślubić któregoś ze znanych jej chłopców?

Opis problemu w teorii grafów

Opis problemu w teorii grafów

Twierdzenie (Philip Hall - 1935)

Warunkiem koniecznym i wystarczającym na to, by problem kojarzenia małżeństw miał rozwiązanie, jest, by dla każdego zbioru k dziewcząt, wszystkie one łącznie znały co najmniej k chłopców, gdzie $1 \le k \le m$ oraz m jest liczbą wszystkich dziewcząt.

Drogi i cykle

Droga

Niech G=(V,E) będzie grafem.

Drogą

w grafie G nazywamy ciąg wierzchołków $V_0, V_1, ..., V_n$ taki, że kolejne wierzchołki ciągu są połączone krawędzią, tzn. $(v_i, v_{i+1}) \in E$ dla każdego i=0,1,...,n-1.

Droga-przykład

Długość drogi i droga zamknięta

Długość drogi,

to liczba krawędzi, przez które droga przechodzi.

Jeśli $v_0 = v_n$, to powiemy, że droga jest zamknięta.

Cykl

Jeśli wszystkie wierzchołki drogi zamkniętej są różne z wyjątkiem pierwszego i ostatniego wierzchołka, to taką drogę nazywamy cyklem.

Cykl-przykład

Droga prosta

Drogę nazwiemy

prostą,

jeżeli wierzchołki, przez które przechodzi są parami różne.

Droga prosta nigdy nie przechodzi dwukrotnie po tej samej krawędzi.

Droga acykliczna

Jeśli droga nie zawiera cyklu, to nazywamy ją

acykliczną.

Lemat

Jeżeli w grafie G istnieje droga łącząca dwa różne wierzchołki u i v, to istnieje też droga prosta i acykliczna prowadząca od u do v.

Relacja osiągalności

Niech G=(V,E) będzie dowolnym grafem. Relacją osiągalności

w grafie G nazywamy relację binarną r w zbiorze wierzchołków grafu, taką że (u,v)∈r wttw w grafie G istnieje droga prowadząca od u do v.

Relacja osiągalności-przykład

Spójność i acykliczność

Graf spójny

Powiemy, że graf niezorientowany jest spójny

wtedy i tylko wtedy, gdy dowolne dwa wierzchołki grafu są połączone drogą.

Graf który nie jest spójny-przykład

Graf który jest spójny-przykład

Lemat

Jeżeli G=(V,E) jest grafem niezorientowanym, spójnym, o n wierzchołkach, to ma co najmniej n-1 krawędzi.

Spójna składowa grafu

Spójny podgraf grafu, który nie jest zawarty w żadnym większym spójnym podgrafie nazywa się spójną składową grafu.

Spójna składowa grafu-przykład

Graf acykliczny

Powiemy, że graf jest acykliczny wttw nie istnieje cykl w tym grafie.

Lemat

Niech G=(V,E) będzie grafem niezorientowanym, acyklicznym, o n wierzchołkach, to G ma co najwyżej n-1 krawędzi.

Droga Eulera

Problem mostów królewieckich

Przez Królewiec przepływała rzeka, w której rozwidleniach znajdowały się dwie wyspy. Ponad rzeką przerzucono siedem mostów, z których jeden łączył obie wyspy,

a pozostałe mosty łączyły wyspy z brzegami rzeki. Czy można przejść kolejno przez wszystkie mosty tak, żeby każdy przekroczyć tylko raz i wrócić do miejsca, z którego się wyruszyło?

Problem mostów królewieckich

Czy można przejść dokładnie jeden raz przez każdy z siedmiu mostów?

Problem mostów królewieckich

Czy można przejść dokładnie jeden raz przez każdy z siedmiu mostów?

Droga Eulera

Drogą Eulera

nazywamy drogę w grafie, która przechodzi przez wszystkie krawędzie i przez każdą dokładnie raz.

Cykl Eulera

Jeżeli ta droga jest cyklem, to nazywamy ją

cyklem Eulera.

Graf posiadający cykl Eulera nazywamy Eulerowskim.

Twierdzenie

Warunkiem koniecznym i dostatecznym na to, by skończony graf niezorientowany i spójny posiadał cykl Eulera jest by wszystkie wierzchołki tego grafu miały rząd parzysty.

Twierdzenie

Warunkiem koniecznym i dostatecznym na to by w grafie niezorientowanym skończonym i spójnym istniała droga Eulera łącząca wierzchołki A i B jest by jedynymi wierzchołkami rzędów nieparzystych były co najwyżej wierzchołki A i B.

Wniosek

Jeśli każdy wierzchołek ma rząd parzysty, to taki graf posiada cykl i drogę Eulera. Jeśli w grafie są wierzchołki rzędu nieparzystego, to albo są dokładnie dwa takie wierzchołki i wtedy istnieje łącząca je droga Eulera, albo nie istnieje żadna droga Eulera w tym grafie.

Droga Hamiltona

Problem komiwojażera

Komiwojażer ma do odwiedzenia pewna liczbę miast. Chciałby dotrzeć do każdego z nich i wrócić do miasta, z którego wyruszył. Dane są również odległości między miastami. Jak powinien zaplanować trasę podróży, aby w sumie przebył możliwie najkrótsza drogę?

Droga Hamiltona

Drogą Hamiltona

w grafie G nazywamy drogę przechodzącą przez wszystkie wierzchołki grafu i to przez każdy wierzchołek dokładnie raz.

Czy ten graf posiada ścieżkę Hamiltona?

Czy ten graf posiada ścieżkę Hamiltona?

Cykl Hamiltona

Jeżeli droga ta jest cyklem, to nazywamy ją

cyklem Hamiltona.

Graf posiadający cykl Hamiltona nazywamy Hamiltonowskim.

Uwaga

Nie jest znany żaden warunek konieczny i dostateczny na to, by graf był Hamiltonowski. Nie jest też znany żaden efektywny algorytm znajdowania drogi lub cyklu Hamiltona.

Drzewa

Przykład - Pierwsi Piastowie

Drzewo możliwych obliczeń

Drzewo

Drzewem

nazywamy graf niezorientowany, spójny i acykliczny.

Korzeń drzewa

W drzewie wyróżniamy zwykle jeden wierzchołek i nazywamy go

korzeniem.

Każdy inny wierzchołek jest połączony dokładnie jedną drogą z korzeniem.

Wszystkie wierzchołki znajdujące się w takiej samej odległości od korzenia tworzą w tym drzewie

poziom.

Poprzednik i następnik

Jeśli dwa wierzchołki x, y są połączone krawędzią i x znajduje się na poziomie niższym (bliżej korzenia) niż y, to wierzchołek x nazywamy poprzednikiem, albo ojcem wierzchołka y, a y nazywamy następnikiem lub synem wierzchołka x.

Liście i wierzchołki wewnętrzne

Wierzchołki, które nie mają następników nazywa się

liśćmi

drzewa, a pozostałe wierzchołki – wierzchołkami wewnętrznymi.

Drzewo-przykład

Drzewo binarne

Drzewo, w którym każdy wierzchołek wewnętrzny ma co najwyżej dwa następniki nazywamy drzewem binarnym.

Wysokość drzewa

Długość najdłuższej drogi od korzenia do liścia nazywamy

wysokością drzewa.

Twierdzenie

Każde drzewo o n wierzchołkach ma dokładnie n-1 krawędzi.