Algèbre

Martin Mugnier

DD ENSAE-HEC, 2019

Chapitre 3: Réduction d'endomorphismes, partie 2

Réduction d'endomorphismes : suite

2 Décomposition des noyaux et des sous-espaces caractéristiques

Réduction d'endomorphismes

Proposition

Les valeurs propres d'une matrice triangulaire sont exactement ses coefficients diagonaux.

A priori il y a un seul vecteur propre évident : e_1 pour une matrice triangulaire supérieure.

Un **pôlynome annulateur** P d'un endomorphisme u est un polynôme qui vérifie $P(u) = 0_{\mathcal{L}(E)}$ (*i.e* $\forall x \in E$, $P(u)(x) = O_E$).

Proposition (Polynome annulateur et valeurs propres)

Si λ est valeur propre de u et $P(u) = 0_{L(E)}$ alors λ est racine de P.

Réduction d'endomorphismes : Triangularisation

On considère un espace vectoriel de dimension finie.

Définition (Endomorphisme triangularisable)

On dit qu'un endomorphisme u est triangularisable si et seulement si il existe une base E sur laquelle u est représenté par une matrice triangulaire.

Théorème

u est triangularisable si et seulement si son polynôme caractéristique P_c est scindé, soit $P_c(X) = \prod_{i=1}^n (\lambda_i - X)$, où $\lambda_1, \ldots, \lambda_n$ sont les n valeurs propres non nécessairement distinctes de u.

Réduction d'endomorphismes : suite

Théorème

Si P_c est scindé alors $Trace(u) = \sum_{i=1}^n \lambda_i$ et $det(u) = \prod_{i=1}^n \lambda_i$, où $\lambda_1, \ldots, \lambda_n$ sont les n valeurs propres non nécessairement distinctes de u.

Théorème

En notant $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On a donc l'équivalence entre

- La matrice A est triangularisable (i.e semblable à une matrice triangulaire)
- **2** L'endomorphisme canoniquement associé à A dans \mathbb{K}^n est triangularisable
- 3 Le polynôme caractéristique de A est scindé.

Note : Dans $\mathbb C$, tout polynôme est scindé, donc toute matrice est trigonalisable dans $\mathbb C.$

Théorème de décomposition des noyaux

Théorème (Théorème de décomposition des noyaux)

Soient P_1, \ldots, P_p p polynômes premiers entre eux, et $P = \prod_{i=1}^p P_i$. Alors

$$Ker(P(u)) = \bigoplus_{i=1}^{p} Ker(P_i(u))$$

Définition (Sous-espaces caractéristiques ou spectraux)

Soit λ une valeur propre de u de multiplicité $m(\lambda)$ alors

 $N(\lambda) = Ker((u - \lambda Id_E)^{m(\lambda)})$ est un s.e.v de E appelé sous espace caractéristique associé à la valeur propre λ

Sous-espaces caractéristiques ou spectraux

Théorème

Si u admet p valeurs propres distinctes $\lambda_1, \ldots, \lambda_p$ et que $P_c(X) = \prod_{i=1}^p (\lambda_i - X)^{m(\lambda_i)}$ et si on note $\forall i = 1, \ldots, p$, u_i l'application définie sur $N(\lambda_i)$ par $\forall x \in N(\lambda_i)$, $u_i(x) = u(x)$, alors

- **1** Le polynôme caractéristique de u_i est donné par $P_c^{u_i}(X) = (\lambda_i X)^{m(\lambda_i)}$.
- Il existe une base de E sur laquelle u est représentée par une matrice de la forme

$$\left(\begin{array}{cccc}
T_1 & 0 & 0 & 0 \\
0 & T_2 & & 0 \\
0 & & \ddots & \\
0 & 0 & & T_p
\end{array}\right)$$

où T_i sont triangulaires supérieures.

Martin Mugnier Algèbre

Endomorphisme induit sur un sous-espace stable

Proposition

Si u est un endomorphisme diagonalisable de E et F est un sous-espace vectoriel de E stable par u, alors l'endomorphisme induit sur F par u est diagonalisable.