Robot motion planning in dynamic environment: A comparative study

Dharmin Bakaraniya Advisors:

Prof. Erwin Prassler Dr. Cesar Lopez

'

Hochschule Bonn-Rhein-Sieg

May 27, 2019

Introduction

What is it?

- A mobile robot needs to
 - Reach goal in minimal time
 - Avoid static and moving obstacle
 - Consider kinematics and dynamic constraints
- Our aim: Find out the "best" planner

Figure: Robot motion planning in dynamic environment

Introduction Cont.

What are the benefits?

- Safer environment for humans and for robots
- Cost effective transportation of goods

State of the art

Survey of motion planning in dynamic environment (2018)¹

- Covers 101 research papers published between 1985 and 2016
- Only introduces approaches. Virtually no comparison.

Motion planning algorithm survey $(2015)^2$

- Compares collision avoiding algorithms in detail.
- Does not validate the comparison with common experiments.

 $^{^1}$ Mohanan and Salgoankar, "A survey of robotic motion planning in dynamic environments".

²Hoy, Matveev, and Savkin, "Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey".

State of the art cont.

Field contribution survey (2009)³

- Introduces 150 papers from 1986 to 2008. Compares contribution in different area of motion planning
- Only states. Does not compare the approaches at all.

Dated comparison (1992)⁴

■ Surveys papers from 1979 to 1989 for all types of motion planning.

³Keshmiri and Payandeh, "An overview of mobile robotic agents motion planning in dynamic environments".

⁴Hwang and Ahuja, "Gross motion planning-a survey".

What is lacking?

- The surveys do not test the approaches.
- The approaches test themselves
 - on different robots
 - with <u>different</u> kinodynamic constraints⁵
 - with <u>different</u> assumptions
 - in different environments
 - to optimize <u>different</u> parameters

⁵Hoy, Matveev, and Savkin, "Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey".

Qualitative Comparison

We qualitatively compare 30+ planners based on

Vehicle type

Holonomic, unicycle or bicycle

Restrictions on obstacle

- Constant or varying direction
- Constant or varying velocity

Obstacle shape

Circular or polygonal

Experiment environment

Simulated and/or real

Experimental setup

Setup

- Robot: KUKA youbot with 2 laser rangefinder
- Environment: Gazebo simulator
- **Obstacle**: Cylinders with varying velocity and varying direction

Measured values

- Travel time
- Number of collisions
- Number of re-plans

Test case 1

(a) t=0.0s

(b) t=10.0s

Description

- Room size: 4 meters x 3 meters
- Starting position: x=-1.0, y=0.0, theta=0.0
- Goal position: x=1.0, y=1.0, theta=0.0

Test case 2

Test case 3

Figure: Test case 3 (Total size: 8m x 6m)

Planners

- Timed elastic band planner (TEB)⁶
- Spline based planner⁷.
- Elastic band approach (EBand)⁸.
- Eband* (EBand2)
- Dynamic window approach* (DWA)⁹

^{*} with obstacle position look ahead of 3 seconds

 $^{^6\}mbox{Rosmann},$ Hoffmann, and Bertram, "Planning of multiple robot trajectories in distinctive topologies".

⁷Mercy, Van Parys, and Pipeleers, "Spline-based motion planning for autonomous guided vehicles in a dynamic environment".

⁸Quinlan and Khatib, "Elastic bands: Connecting path planning and control".

⁹Fox, Burgard, and Thrun, "The dynamic window approach to collision avoidance".

Results (travel time)

Planner	Static single room	Test case 1	Test case 2	Static double room	Test case 3
TEB	5.205	5.972	6.083	27.139	35.330
Spline based	5.421	5.574	5.819	-	-
DWA	19.526	17.625	17.114	39.004	-
EBand	6.270	6.570	6.240	30.862	71.968
EBand2	6.270	6.025	6.234	30.862	-

Table: Average time of travel for planners for different test cases

Results (re-plans)

Static single room	Test case 1	Test case 2	Static double room	Test case 3
0	0	1	0	4
0	0	0	Fail	Fail
0	0	2	0	Fail
0	1	Fail	0	Fail
0	1	1	0	Fail
	single room 0 0 0	single room 1 0 0 0 0 0 0 0 0 0 1	single room 1 2 0 0 1 0 0 0 0 0 2 0 1 Fail	room room 0 0 1 0 0 0 0 Fail 0 0 2 0 0 1 Fail 0

Table: Maximum re-plan attempts of planners for different test cases

Results (collisions)

Planner	Static single room	Test case 1	Test case 2	Static double room	Test case 3
TEB	0	0	0	0	0.75
Spline based	0	0	0	-	-
DWA	0	0	0	0	-
EBand	0	0.25	0.5	0	4
EBand2	0	0	0	0	-

Table: Average collisions of planners for different test cases

Results visualised

- (a) Ranking comparison for test (b) Ranking comparison for all case 1 and 2
 - test cases

Verdict

TEB planner performs best for our experiments out of 5 planners.

Conclusion and future work

Conclusion

- Qualitative comparison of motion planning approaches for dynamic environments.
- Develop an open source framework to test motion planners
- TEB planner performs "best" for given scenario out of 5 planners

Future work

- Test more planners with this framework.
- Test with humans as obstacles for real robots.
- Test with different models of robots.

References I

Fox, Dieter, Wolfram Burgard, and Sebastian Thrun. "The dynamic window approach to collision avoidance". In: *IEEE Robotics & Automation Magazine* 4.1 (1997), pp. 23–33.

Hoy, Michael, Alexey S. Matveev, and Andrey V. Savkin. "Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey". In: *Robotica* 33.3 (2015), pp. 463 –497. DOI: 10.1017/S0263574714000289.

Hwang, Yong K and Narendra Ahuja. "Gross motion planning—a survey". In: ACM Computing Surveys (CSUR) 24.3 (1992), pp. 219–291.

Keshmiri, Soheil and Shahram Payandeh. "An overview of mobile robotic agents motion planning in dynamic environments". In: Proceedings of the 14th IASTED International Conference, Robotics and Applications (RA20), MA, Boston. 2009, pp. 152–159.

Mercy, Tim, Ruben Van Parys, and Goele Pipeleers. "Spline-based motion planning for autonomous guided vehicles in a dynamic environment". In: IEEE Transactions on Control Systems Technology (2017).

References II

Mohanan, M.G. and Ambuja Salgoankar. "A survey of robotic motion planning in dynamic environments". In: Robotics and Autonomous Systems 100 (2018), pp. 171-185. ISSN: 0921-8890. DOI: https://doi.org/10.1016/j.robot.2017.10.011. URL: http://www.sciencedirect.com/science/article/pii/S0921889017300313.

Quinlan, Sean and Oussama Khatib. "Elastic bands: Connecting path planning and control". In: IEEE International Conference on Robotics and Automation. 1993, pp. 802–807.

Rosmann, Christoph, Frank Hoffmann, and Torsten Bertram. "Planning of multiple robot trajectories in distinctive topologies". In: European Conference on Mobile Robots (ECMR). 2015, pp. 1–6.