NETWORK ANALYSIS

ST. LOUIS CRIME

GROUP 10

August - Chrisanna - Danielle - Maria - Moneeca - Sabrina

IT-UNIVERSITETET I KBH

p745: La Thomasson, [0]

AGENDA

- Introduction Data and Network
- Network Statistics & EDA
- Research Question
- Analysis & Results
- Conclusion
- Limitations
- Questions

INTRODUCTION - THE DATA

• Derived from police records using Snowball sampling from five initial homicides in St. Louis in the 1990s

- Metadata includes:
 - Name
 - Gender
 - Person's role in the crime

- Roles include:
 - Victim
 - Suspect
 - Victim/suspect
 - Witness

INTRODUCTION - THE NETWORK

- Undirected, unweighted, bipartite network
- 1380 nodes $\begin{cases} 829 \text{ people} \\ 551 \text{ crimes} \end{cases}$
- 1476 edges
- Nodes = people and crimes
- Edges = connect people to particular crime events

NETWORK STATISTICS

Created a configuration model based on the same degree distribution to compare basic statistics of our network with a random model.

Crim	e Network	Configuration Model
• Density:	0.003	0.003
• Average Clustering:	0.427	0.335
• Global Clustering:	0.0505	0.005

Higher than random global clustering → makes sense with social network

RESEARCH QUESTION

Is it possible to find people of interest in a crime network, using link prediction and community detection?

ANALYSIS - LCC

- 20 connected components
- The largest connected component (LCC):
 - 1263 nodes (out of 1380)
 - represents 91.5% of all nodes

LCC representative of entire network

ANALYSIS - PROJECTION

Create a unipartite graph of people

Reasons:

- To detect communities of people
- To predict new edges between people
- Metadata only available for people

Simple weighting is sufficient:

 Edge weight = number of crimes shared between two people

Number of crimes that connect two people

• Most of the people are linked by one crime and max value is five crimes

ANALYSIS - COMMUNITY DETECTION

Assumption: People in same crime and same community \rightarrow they know each other!

- Used two algorithms for community detection :
 - greedy_modularity_communities → highest modularity score (separate)
 - K-cliques → overlapping communities

Community detection alone is not insightful

ANALYSIS - LINK PREDICTION

Method: RESOURCE ALLOCATION INDEX - allocates connections to nodes whose common neighbors have low degree.

Reasons:

- 1. Limit number of crimes a person can participate in
- 2. Consideration of distance between nodes
- 3. Size of the network log scale

RESULTS - LINK PREDICTION

Top 9 of predicted links

node1	node2	RA_score
p336	p815	0.708333
p695	p691	0.500000
p74	p237	0.500000
p132	p690	0.500000
p301	p815	0.500000
p215	p214	0.500000
p293	p797	0.500000
p155	p269	0.500000
p228	p514	0.500000
	p336 p695 p74 p132 p301 p215 p293 p155	p336 p815 p695 p691 p74 p237 p132 p690 p301 p815 p215 p214 p293 p797 p155 p269

Possible people of interest

ID	Name	Gender	Class	Degree
p815	Jenny Willis	F	Criminal	25
<u>p695</u>	Thomas Michael Smith	М	Criminal	11
p336	Liz Hall	F	Criminal	9
p691	Percy Small	F	Criminal	1
p301	Brian Godfrey	М	Innocent	1

p815 - two times in the list of top 9 predicted links and highest value of RA scorep695 - list of people in overlap communities

CONCLUSION

- Community detection alone does not add additional insight.
 - O Crime re-detection, not community detection
 - Communities tend to form around 1-2 crimes
 - Those placed in overlapping communities were in multiple crimes
- Through link prediction, possible people of interest could be identified.
 - O A predicted link predicts a crime involving the two people
 - Although their role in the possible crime is unknown

LIMITATIONS

- Small sample size
- Lacking information (type of crime, time and date, etc.)
- Missing nature of connection when projecting onto people

Thank You For Your Attention! Presentation is over!