

CERTIFICATION UNDER 37 CFR 1.10

EI 6850613921US

Express Mail Mailing Number

February 13, 2001

Date of Deposit

I hereby certify that this paper or fee, and any documents referred to as enclosed herein, are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Box PCT, Washington, D.C. 20231.

Cederic Rodgers

Name of Person Mailing Application

Signature of Person Mailing Application

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

**TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371**

ATTORNEY'S DOCKET NUMBER
VOS-101U.S. APPLICATION NO. (If known, see 37 CFR 1.5) **09/7762767**
Not knownINTERNATIONAL APPLICATION NO.
PCT/DE99/02601INTERNATIONAL FILING DATE
16 August 1999PRIORITY DATE CLAIMED
14 August 1998

TITLE OF INVENTION

ISOLATED AND PURIFIED HUMAN SOLUBLE GUANYLYLCYCLOLASE $\alpha 1/\beta 1$ (hsGC $\alpha 1/\beta 1$)

APPLICANT(S) FOR DO/EO/US

Harald SCHMIDT, Ulrike ZABEL and Wolfgang POLLER

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) 35 U.S.C. 371(c)(4)) and **Power of Attorney** (Unexecuted).
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11 to 16 below concern other document(s) or information included:

11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13. A **FIRST** preliminary amendment.
- A **SECOND** or **SUBSEQUENT** preliminary amendment.

US APPLICATION NO. (if known, see 37 CFR 1.5) 097762767	INTERNATIONAL APPLICATION NO. PCT/DE99/02601	ATTORNEYS DOCKET NUMBER VOS-101
14. <input type="checkbox"/> A substitute specification and claims amended to conform the translated application to US practice 15. <input type="checkbox"/> A change of power of attorney and/or address letter. 16. <input checked="" type="checkbox"/> Other items or information: (a) copy of the First Page of International Publication; (b) copy of International Search Report; (c) copies of Written Opinion and International Preliminary Examination Report		
17. <input checked="" type="checkbox"/> The following fees are submitted:		CALCULATIONS PTO USE ONLY
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):		
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1,000.00		
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$860.00		
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search fee (37 CFR 1.445(a)(2)) paid to USPTO \$710.00		
International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$690.00		
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4) \$100.00		
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$860.00
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		
Claims	Number Filed	Number Extra
Total Claims	19	0
Independent Claims	6	•
MULTIPLE DEPENDENT CLAIM(S) (if applicable)		\$270.00
TOTAL OF ABOVE CALCULATIONS =		\$1,370.00
<input type="checkbox"/> Small Entity Status: Applicant claims small entity status. (See 37 CFR 1.27.) Reduction of 1/2 for filing by small entity (if applicable).		\$0.00
SUBTOTAL =		\$1,370.00
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).		\$0.00
TOTAL NATIONAL FEE =		\$1,370.00
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) \$40 per property		\$0.00
TOTAL FEES ENCLOSED =		\$1,370.00
		Amount to be refunded \$
		charged \$

US APPLICATION NO. (if known, see 37 CFR 1.5) 097762767

INTERNATIONAL APPLICATION NO.
PCT/DE99/02601ATTORNEYS DOCKET NUMBER
VOS-101

- a. A check in the amount of \$1,370.00 to cover the above fees is enclosed.
- b. Please charge my Deposit Account No. _____ in the amount of _____ to cover the above fees. A duplicate copy of this sheet is enclosed.
- c. The Commissioner is hereby authorized to charge any additional filing fees which may be required, or credit any overpayment to Deposit Account No. 15-0508. A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

OLSON & HIERL, LTD.
20 North Wacker Drive
36th Floor
Chicago, Illinois 60606

Telephone: (312) 580-1180
Customer No.: 002387

SIGNATURE

Talivaldis Cepuritis

NAME

20,818

REGISTRATION NO.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

Applicant(s): Harald Schmidt, et al.)
Serial No.: 09/762,767)
Filed: February 13, 2001)
For: ISOLATED AND PURIFIED HUMAN)
SOLUBLE GUANYLYLCYCLASE)
 $\alpha 1/\beta 1$ (hsGCa1/ $\beta 1$)) Atty. Docket No.: VOS-101

5000

COMMUNICATION

Box PCT
Commissioner for Patents
Washington, D.C. 20231

Sir:

In response to the Notification of a Defective Response dated 20 September 2001, we submit the following in compliance with 37 CFR 1.821-1.825:

- (a) New paper copy of Sequence Listing; and
- (b) Computer-readable form of the Sequence Listing.

These submissions do not constitute new matter and are supported in the application as filed. To the best of my information and belief, the sequence listing information recorded in computer-readable form is identical to the paper copy of the sequence listing.

Please charge any additional fees concerning this matter or credit any overpayment to our

Deposit Account No. 15-0508.

Respectfully submitted,

By Valivaldis Cepuritis (Reg. No 20,818)

OLSON & HIERL, LTD.
20 North Wacker Drive
36th Floor
Chicago, Illinois 60606
(312) 580-1180

Serial No. 09/762,767 - - - - - 2

CERTIFICATION UNDER 37 CFR 1.10

"Express Mail" mailing label number: **EL 841695088 US**

I hereby certify that this correspondence, together with any other documents and/or fees referred to as enclosed herein, is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service on October 17, 2001 and is addressed to: Box PCT, Commissioner for Patents, Washington, D.C. 20231.

Cederic Rodgers
(Typed or printed name of person mailing paper or fee)

(Signature of person mailing paper or fee)

Isolated and purified human soluble guanylyl cyclase $\alpha 1/\beta 1$
(hsGC $\alpha 1/\beta 1$)

The technical field of the invention

5

The present invention relates to the expression of the cDNA clones for the subunits $\alpha 1$ (hsGC $\alpha 1$) and $\beta 1$ (hsGC $\beta 1$) of human soluble guanylyl cyclase and the subsequent purification of the active enzyme and the use thereof, the medical application of the expression of these clones by gene transfer, as well as antibodies 10 to peptides derived from the sequence and the use thereof.

10

State of the art

15 The endogenous NO/cGMP signaling system mediates important functions such as vasodilation, inhibition of platelet aggregation, neurotransmission, and the immune response. In addition, it is involved in the development of various disease states such as ischemia-reperfusion and inflammatory injuries (Schmidt and Walter, 1994). Therefore, the NO/cGMP system has long been an important starting point for the 20 development of novel drugs for the therapy of coronary heart disease, susceptibility to thrombosis, cardiac insufficiency, angina pectoris, cardiac-dependent pulmonary oedema, hypertensive crises, inflammatory states and cardiac infarction. Until now, such therapies have employed various so-called NO donors, e.g. nitroglycerin, that release NO, thereby replacing endogenous NO and activating soluble guanylyl 25 cyclase (sGC) (Fig. 1). sGC forms cGMP, which mediates the effects of the NO/cGMP pathway via various intracellular receptor enzymes. The application of NO donors has two limitations: I) The repeated application of NO donors results in tolerance in the patient, i.e. loss of activity, when reapplied; II) NO reacts with O₂⁻ to form peroxynitrite, which is cytotoxic and less effective in activating sGC. Thus, direct 30 activation of sGC by novel, non-NO-containing pharmaceuticals for therapy or gene transfer of sGC would be desirable strategies. Non-NO-releasing activators of sGC are potentially lacking tolerance and NO toxicification. Recently, "YC-1" (3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazol) has been described as the first non-NO-releasing activator of sGC in platelets (Ko et al., 1994; Wu et al., 1995). YC-1 also

activates purified sGC from bovine lung and potentiates the activation of NO (Friebe et al., 1996). The effect on human sGC has not been investigated. The human isoform of sGC is not yet available for pharmacological screening.

5 The NO receptor sGC consists of two subunits, α and β , which together form an enzymatically active heterodimer. Three different isoforms of the α and three of the β subunits have been described in the literature, although from different species. The best investigated isoforms, the bovine $\alpha 1/\beta 1$ and the rat $\alpha 1/\beta 1$ isoforms, have particular significance for cardiovascular research. Until recently, a human homologue of the bovine and rat sGC (e.g. sGC $\alpha 1$ /sGC $\beta 1$ heterodimers) was unknown. cDNA sequences have been published that reportedly correspond to a human sGC $\alpha 3$ and $\beta 3$ isoform (Giulii et al., 1992). While sGC $\beta 3$ showed a high homology to sGC $\beta 1$ (bovine/rat), the sGC $\alpha 3$ sequence contained two restricted regions without homology to sGC $\alpha 1$ (bovine/rat), here designated S1 and S2 (Fig. 2).

10 In addition, it was unknown whether sGC $\alpha 3$ and sGC $\beta 3$ can form a functional sGC heterodimer and which role the S1 and S2 regions play. Furthermore, no other human sGC subunit has yet been expressed as a protein. Recently, a sequence designated hsGC $\alpha 1$ was published in the GeneBank (Accession No. U58855) that lacks the sequence differences to sGC $\alpha 1$ from bovine and rat tissues in the regions

15 S1 and S2. In addition, an alternatively spliced product of hsGC $\beta 3$ was recently published in the GeneBank (Accession No. AF020340) that was designated by the authors as an alternatively spliced form of hsGC $\beta 1$. The physiological significance of this splice variant of hsGC $\beta 1/3$ is unclear. Thus, the question arises as to which of these isoforms is responsible for which physiological function in which cell types.

20

25 Furthermore, no antibodies to the human sGC $\alpha 1/\beta 1$ are currently available that are monospecific, directed against the human sequences, or that have been shown to be suitable for immunoblots with human tissues. Peptide antibodies reported thus far only partially show these features: Harteneck et al. and Guthmann et al. used a peptide sequence (VYKVETVGDKYMTVSGLP) that is highly conserved in guanylyl cyclases. Therefore, cross-reaction with particulate guanylyl cyclases (e.g. GC-C) can be expected. Guthmann et al. used a peptide sequence (YGPEVWEDIKKEA) identical to hsGC $\beta 1$ and a peptide sequence (KKDVEEANANFLGKASGID) identical

to hsGC α 1 except for two amino acid exchanges. However, the function of these antibodies in immunoblots was only shown for enriched hsGC from human platelets. In addition, the antisera to hsGC α 1 detect a second, unspecific product. Humbert et al. and Koesling et al. used a peptide sequence (SRKNTGTEETEQDEN) of bovine sGC β 1 that partially (amino acids 1-10) overlaps with the peptide used here for the human sGC β 1 (amino acids 13-22) and is identical in this region. The C-terminus of this bovine peptide (amino acids 11-15), however, is clearly different from the human sequence. On the other hand, the antiserum to this peptide was not tested with a human protein but rather only used for immunoprecipitation of the bovine sGC.

10

Thus, for the human isoform α 1/ β 1 which is important for cardiovascular research, neither *native* protein nor *recombinant* protein, nor a one-step purification protocol, nor specific antibodies have been available. An approach for gene therapy (e.g. with adenoviruses or the like) has also not been described yet.

15

The technical problem of the invention

The NO-independent activation of the human sGC α 1/ β 1 is a promising approach to finding novel drugs or gene transfer techniques for cardiovascular therapy that neither result in tolerance in the patient nor form cytotoxic peroxynitrite. To find such pharmaceuticals, a mass screening for suitable active substances is necessary. Such a pharmacological screening for specific activators or inhibitors via animal testing is too expensive and is not reasonable due to species differences, possible side effects, and effects on other isoforms. Cell culture systems have the disadvantage that only with substantial additional effort can it be determined at which points of the signaling cascade substances are effective. In addition, cell culture is expensive and touchy. The purification of a protein from animal tissues is labor-intensive and results in a low yield. More importantly, because of species differences the results of such a screening are not generally transferable. Here, in particular, the question arises of the significance of the isoforms hsGC α 1 and hsGC α 3 and whether hsGC β 3 in fact corresponds to a human hsGC β 1. This is an important factor to consider in selecting the appropriate target protein for pharmacological screening or gene therapy. For optimal screening, the human homologue of the protein sGC α 1/ β 1 would have to be

purified in large amounts and to be available at low cost. A purification of large amounts of human native sGC α 1/ β 1 protein from human tissues is not possible. Thus, other methods are needed for the drug screening protocol. In addition, no purified antibodies are available for the detection of human sGC α 1/ β 1 that have been shown to be suitable for diagnostic uses, e.g. in normal immunoblotting, ELISA, RIA, or EIA, among other techniques. An approach for the artificial expression of hsGC by gene transfer in humans that could be used therapeutically is also not available.

Therefore, the present invention is based on the technical problem of providing isolated and purified human sGC α 1/ β 1 as well as a process for its production and purification. In addition, a further technical problem of the present invention is to provide antibodies directed against human sGC α 1/ β 1. A further technical problem is the provision of expression vectors containing the cDNA of human sGC α 1/ β 1 based on adenoviruses. Finally, the technical problem of the present invention is the provision of human sGC α 1/ β 1 in purified form and in manageable amounts for drug screening assays aimed at detecting modulators, inhibitors, and activators of human sGC α 1/ β 1.

20 The solution of the technical problem

The solution to the above technical problem is provided by the subject-matter of the claims and the following description of the invention.

25 An object of the invention is a human soluble guanylyl cyclase α 1/ β 1 (hsGC α 1/ β 1) in an isolated form purified to apparent homogeneity.

Another object of the invention is a process for the production of subunit α 1 and/or β 1 of human soluble guanylyl cyclase comprising the expression of expression vectors 30 containing the DNA sequence for hsGC α 1 and/or hsGC β 1 in prokaryotic and eukaryotic host cells, and obtaining of the subunit or subunits.

In a preferred embodiment of the process of the present invention for the production of subunit α 1 and/or β 1 of human soluble guanylyl cyclase, the step of obtaining the

subunit or subunits comprises the lysis of cells, affinity chromatography of the cell lysate, and finally, the elution of the subunit or subunits.

In a further preferred embodiment of the process of the present invention for the production of subunit $\alpha 1$ and/or $\beta 1$ of human soluble guanylyl cyclase, the expression vector contains additionally at least one DNA sequence of a domain for specific affinity chromatography (affinity tag) with attached protease cleavage site.

Another object of the present invention is a process for the production of human soluble guanylyl cyclase $\alpha 1/\beta 1$ ($hsGC\alpha 1/\beta 1$) comprising the separate expression of an expression vector containing the DNA sequence for $hsGC\alpha 1$ or $hsGC\beta 1$ in prokaryotic or eukaryotic host cells, obtaining the subunits, and combining the subunits $hsGC\alpha 1$ and $hsGC\beta 1$ into the dimeric guanylyl cyclase $\alpha 1/\beta 1$ ($hsGC\alpha 1/\beta 1$).

A further preferred embodiment of the process of the present invention for the production of human soluble guanylyl cyclase $\alpha 1/\beta 1$ ($hsGC\alpha 1/\beta 1$) also comprises the coexpression of the DNA sequences for $hsGC\alpha 1$ and $hsGC\beta 1$ in prokaryotic or eukaryotic host cells, the lysis of the cells containing $hsGC\alpha 1$ and $hsGC\beta 1$, affinity chromatography, and the subsequent elution of $hsGC\alpha 1/\beta 1$.

Another object of the present invention is the use of a nucleic acid sequence that codes for subunits $hsGC\alpha 1$ and/or $hsGC\beta 1$ of human soluble guanylyl cyclase $\alpha 1/\beta 1$ for somatic gene therapy, particularly for the prevention and therapy of atherosclerosis and its complications, restenosis, ischemia (infarction), peripheral occlusive diseases, and arterial hypertension, as well as, in patients with risk factors, for the prevention of atherosclerosis, transient ischemic attacks, cerebral ischemia, stroke, coronary heart disease, status post coronary bypass grafting, carotid stenosis, heart insufficiency and liver dysfunction, and as a supplement to therapy with sGC activators, sGC-sensitizing substances, NO donors, or phosphodiesterase inhibitors.

In a particularly preferred embodiment, adenoviral vectors containing $hsGC\alpha 1$ or $hsGC\beta 1$ cDNA are used in somatic gene therapy. Other vector systems, however, can also be applied for gene therapeutic, medicinal use.

In a preferred embodiment, adenoviral Ad5 and other suitable vectors that contain the nucleic acid sequence of human soluble guanylyl cyclase $\alpha 1$ (hsGC $\alpha 1$) and/or human soluble guanylyl cyclase $\beta 1$ (hsGC $\beta 1$) are used for prevention and therapy of the diseases mentioned above. Likewise, a mixture of two vectors in which one vector contains the nucleic acid sequence of human soluble guanylyl cyclase $\alpha 1$ (hsGC $\alpha 1$) and the second that of human soluble guanylyl cyclase $\beta 1$ (hsGC $\beta 1$) can be used for somatic gene transfer. Especially preferred is somatic gene transfer into endothelial cells, vascular smooth muscle cells, neointimal cells, fibroblasts, and other vascular cells as well as into blood particles (platelets, leukocytes, and others) and the liver.

The methods of gene transfer described in the present invention can also be used for gene transfer of human soluble guanylyl cyclase $\alpha 2$ (GeneBank: x63282) and of the human homologue of soluble guanylyl cyclase $\beta 2$ (from rat; GeneBank: m57507) as well as for other human soluble guanylyl cyclases.

Another object of the present invention relates to antibodies to human soluble guanylyl cyclase $\alpha 1/\beta 1$ (hsGC $\alpha 1/\beta 1$), obtainable by immunization of a mammal with hsGC $\alpha 1/\beta 1$, either of subunits $\alpha 1$ or $\beta 1$, or immunogenic peptide fragments thereof, as well as isolation of the antibodies.

Figures:

25

Figure 1 shows various possibilities of modulation of soluble guanylyl cyclase (CsGC- $\alpha 1/sGC-\beta 1$). Normal activation is mediated by NO synthase (NOS) and NO. NO, however, reacts with oxygen radicals to form peroxynitrite (ONOO $^{\cdot}$), which is cytotoxic and only poorly activates sGC. NO can also be released by NO donors such as nitroglycerin or sodium nitroprusside. sGC can be directly activated by modulators of sGC (e.g. YC-1); alternatively, the activation by NO of sGC is potentiated by these modulators. Additionally, sGC can be overexpressed by use of gene transfer (e.g. using adenoviral vectors) or a pathologically low expression level of sGC can be compensated. Adenoviral (or other) vectors with mutated sGC that

has a higher basal activity can also be used. Thus, an elevated cGMP level could be achieved permanently independent of NOS, NO, NO donors, or sGC modulators.

Figure 2 shows a schematic comparison of the bovine and rat sGC α 1 subunits together with the published sequence of the human cDNA clone termed 'sGC α 3' (Giulii et al., 1992). The bars represent the protein. 'N' represents the N-terminus and 'C' the C-terminus. The functional segments 'regulatory domain', 'sGC homology domain', and 'cyclase domain' of these proteins are marked with different patterns. The regions 'S1' and 'S2' for which no homologous regions are found in the bovine and rat sGC α 1 proteins are marked in black.

Figure 3 shows a schematic illustration of the human sGC α 3 clone with the sequence errors published (Giulii et al., 1992). The cDNA is shown above: the bar represents the coding region of the cDNA, the lines left and right of the bar represent the 5' and 3' untranslated regions, respectively. 'S1' and 'S2' represent the regions that have no homology to the bovine and rat isoforms of sGC α 1 (see Fig. 2). The positions of the sequence errors are marked below: line a shows the nucleotide insertions, line b the deletion, and line c the exchanges. A base-pair (bp) scale is shown below. The sequence errors for each of the 3 lines a, b, and c are listed at the bottom: the letter specifies the type of the base concerned, and the number its position in the cDNA.

Figure 4 shows the verification of the expression of human sGC α 1 (A) and sGC β 1 (B) in human tissues by means of PCR using cDNA libraries. Shown is a photo of an ethidium bromide-stained agarose gel under UV light with separated PCR products. The arrow on the left points to the specific product. The PCR primers are visible at the bottom of the photo. The tissues from which the cDNA libraries were produced are indicated at the top. No cDNA was added in the negative control, and in the positive control, plasmid containing the cDNA of hsGC α 1 was added.

Figures 5 and 6 show the baculovirus transfer vectors pVL1393 and pAcG2T, respectively (both without the hsGC cDNA), which were used for the construction of recombinant baculoviruses for the expression of human sGC α 1/ β 1 in Sf9 cells. The circular plasmid with the restriction sites (short names and position in base pairs), the gene for ampicillin resistance (Amp R), the 'origin of replication' (ColE ori), the

polyhedrin promotor, the glutathione-S-transferase sequence (only in Fig. 6), and the multiple cloning site (MCS) are shown at the top of the figures. Figure 5 shows the multiple cloning site with its unique restriction sites at the bottom. Figure 6 shows the multiple cloning site with the unique restriction sites as well as a thrombin cleavage site normal at the bottom.

Figure 7 shows the construction of the plasmids hsGC β 1-pVL1393 (without GST-tag) with the hsGC β 1 cDNA, which was used to obtain genetically modified, hsGC β 1-expressing baculovirus by homologous recombination. The procedure for the plasmid pAcG2T-hsGC β 1 (with GST-tag = glutathione-S-transferase cDNA from *Schistosoma japonicum*) is identical. A fragment was produced that carries an additional BamHI-site at its 5' end by means of PCR with the primers A (bases 89-116 of the hsGC β 1 cDNA + BamHI site at its 5' end) and B (bases 692-711 of the hsGC β 1 cDNA [noncoding strand] with natural KpnI site). Due to the additional restriction sites, fragment 1 (PCR fragment with new BamHI site) and fragment 2 (hsGC β 1 cDNA from KpnI site to EcoRI site) could be inserted together into the BamHI and EcoRI sites of the plasmid pVL1393. Thus, the complete hsGC β 1 cDNA is under the control of the polyhedrin promotor (PHP).

Figure 8 shows the construction of the plasmid hsGC α 1-pVL1393 (without GST-tag) with the hsGC α 1 cDNA which was used to obtain genetically modified, hsGC α 1-expressing baculovirus by homologous recombination. The procedure for the plasmid pAcG2T-hsGC α 1 (with GST-tag = glutathione-S-transferase cDNA from *Schistosoma japonicum*) is identical. A fragment was produced that carries an additional BamHI site at its 5' end and a natural BsaAI site within the sequence by means of PCR with the primers C (bases 524-541 of the hsGC α 1 cDNA + BamHI site at its 5' end) and D (bases 1232-1249 of the hsGC α 1 cDNA [noncoding strand]). Due to the added restriction site, fragment 3 cut with BsaAI (PCR fragment with new BamHI site to the BsaAI site) and fragment 4 (hsGC α 1 cDNA from BsaAI site to EcoRI site) could be inserted together into the BamHI and EcoRI sites of the plasmid pVL1393. Thus, the complete hsGC α 1 cDNA is under the control of the polyhedrin promotor (PHP).

Figure 9 shows the verification of the expression of hsGC α 1/β1 in Sf9 cells, which were infected with the genetically modified viruses described above (with hsGC α 1 or hsGC β 1 cDNA; both without GST-tag = glutathione-S-transferase cDNA from *Schistosoma japonicum*). On the left (A) a Coomassie-stained 10% SDS-polyacrylamide gel is shown on which were loaded the cell homogenates that had been separated into pellet (P) and supernatant (S) by centrifugation (20,000 x g). 'Co' designates the control with noninfected Sf9 cells. 'α1' designates Sf9 cells that were infected with viruses containing the hsGC α 1 cDNA, and 'β1' designates Sf9 cells that were infected with viruses containing the hsGC β 1 cDNA. The position of hsGC α 1 and hsGC β 1 in the gel are marked (α1 or β1). On the right an immunoblot is shown with supernatant (S) and pellet (P) of the cell homogenate from Sf9 cells that were either noninfected (Co) or coinfecte^d with hsGC α 1 and hsGC β 1 baculoviruses (α1+β1). The peptide antibodies to hsGC β 1 described above (anti-hsGC β 1) were used in immunoblotting first (Fig. 9B, lanes 1-4). Afterwards, the blot was redeveloped with the peptide antibodies to hsGC α 1 (anti-hsGC α 1; Fig. 9B, lanes 5-8), which additionally revealed the hsGC β 1 bands.

Figure 10 shows the activity of guanylyl cyclase (formation of cGMP from GTP) in intact Sf9 cells that were coinfecte^d with the genetically modified baculoviruses containing hsGC α 1 and hsGC β 1 cDNA described here (both without GST-tag). Shown is the content of cGMP in pmol per 10⁶ cells with different treatments, indicated at the bottom of the figure. Sample 1 is untreated in both panels A and B. 1 mM IBMX (3-isobutyl-1-methylxanthine) was added to each of the other samples (top line: black crossbar). In the middle line, the concentration of SNP added to the samples is indicated in μM. The bottom line shows the concentration of added YC-1 (A, left) or ODQ (B, right) in μM.
YC-1 = 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazol;
ODQ = 1H-[1,2,4]oxadiazolo[4,3,-a]chinoxalin-1-on;
SNP = sodium nitroprusside;
cGMP = cyclic 3', 5'-guanosine monophosphate

Figure 11 shows the activity of guanylyl cyclase (formation of cGMP from GTP) in homogenates of Sf9 cells that were coinfecte^d with the genetically modified baculoviruses containing hsGC α 1 and hsGC β 1 cDNA described here (both without

GST-tag). As shown at the top, (A), the soluble cell fraction (supernatant after centrifugation at 20,000 x g) was used, and at the bottom, (B), the respective pellet. In each case, the amount of cGMP formed in pmol per mg protein per minute is shown for homogenates of cells that were harvested at different time points 5 (indicated in hours) after infection with the baculoviruses. cGMP formation was measured with (black boxes) and without (white boxes) the addition of 100 μ M SNP.

Figure 12 shows the activity of guanylyl cyclase (formation of cGMP from GTP) in Sf9 10 cells that were coinfecte with the genetically modified baculoviruses containing hsGC β 1 cDNA (without GST-tag) and hsGC α 1 cDNA (with GST-tag = glutathione-S- transferase cDNA from *Schistosoma japonicum*). The formation of cGMP in pmol per mg protein per minute during the purification procedure (affinity chromatography on glutathione sepharose 4B) is shown. In each case, activity was measured in the lysate (after removing the insoluble part by centrifugation at 20,000 x g), in the supernatant after binding of hsGC to glutathione sepharose 4B (flow-through), in both supernatants of the washes of hsGC bound to glutathione sepharose 4B (1. and 2. wash), as well as in the supernatant after elution of hsGC with reduced glutathione 15 (1. and 2. elution). The formation of cGMP was determined without (black boxes, 'basal') and with (grey boxes, '+ 100 μ M SNP') addition of 100 μ M SNP.

Figure 13 shows the natural, endogenous expression of hsGC α 1 and hsGC β 1 in 20 different human tissues in an immunoblot.

The peptide antibodies to hsGC α 1 described above (anti-hsGC α 1) were used on the left (A), and the peptide antibodies to hsGC β 1 (anti-hsGC β 1) were used on the right 25 (B). On the right, the peptide to which the antibodies were raised was added as negative control (peptide: +), while no peptide was added on the left (peptide: -). The SDS extracts of rhsGC α 1- (in panel A of the figure) or rhsGC β 1-overexpressing Sf9 cells (in panel B of the figure) (Sf9), of human cerebral cortex (cortex), of human cerebellum (cerebellum), and of human lung (lung) were loaded on an 8% 30 polyacrylamide gel. The specific bands of hsGC α 1 (α 1) and hsGC β 1 (β 1) are indicated by an arrow.

Figure 14 shows in immunoblots the purification of hsGC α 1 (as a hsGC α 1/hsGC β 1 dimer) from Sf9 cells that were coinfecte with the genetically modified baculoviruses

containing hsGC α 1 cDNA with GST-tag (= glutathione-S-transferase cDNA from *Schistosoma japonicum*) and hsGC β 1 cDNA (without GST-tag). Cell lysate was incubated with glutathione sepharose 4B, and after binding, the supernatant was loaded (supernatant after binding). The sepharose was washed twice and the
5 respective supernatants of this wash were loaded (1. and 2. wash). Subsequently, elution was performed by cleavage of the hsGC α 1 protein from the GST-tag with thrombin and an aliquot was loaded ('elution with thrombin'). Then, SDS stop buffer was added to the glutathione sepharose 4B and an aliquot was loaded (GSH
10 sepharose after elution). In addition, glutathione sepharose 4B with bound hsGC α 1 without prior thrombin elution to which SDS buffer had been added was loaded (GSH sepharose before elution). The immunoblot was developed with the affinity-purified peptide antibodies to the C-terminus of hsGC α 1 described here. The arrows on the right point to the specific bands of hsGC α 1 with the GST-tag (GST-hsGC α 1) and hsGC α 1 without the GST-tag (hsGC α 1).

15

Figure 15 shows the purification of hsGC α 1/ β 1 from Sf9 cells that were coinjected with the genetically modified baculoviruses containing hsGC α 1 cDNA with GST-tag (= glutathione-S-transferase cDNA from *Schistosoma japonicum*) and hsGC β 1 cDNA without GST-tag in a Coomassie Brilliant Blue R250-stained SDS-polyacrylamide gel.
20 Cell lysate of these infected Sf9 cells (lysate) was incubated with glutathione sepharose 4B, and the supernatant loaded after the binding (supernatant after binding). The glutathione sepharose 4B was washed twice and the respective supernatants of this wash buffer were loaded (1. and 2. wash). In one sample, the bound GST-hsGC α 1/ β 1 was eluted by incubation with reduced glutathione and loaded (elution with glutathione). In the other samples, the glutathione sepharose
25 was washed with the buffer for the thrombin cleavage—without thrombin—and the supernatant of this buffer was loaded (3. wash). Then, the hsGC α 1/ β 1 dimer was eluted by incubation with different amounts of thrombin and the eluates were loaded (elution with 0.25-1 U/ml thrombin) [U = unit]. The same relative amount of each of
30 the samples was used. The bands visible with the different elution methods are indicated on the right: GST-hsGC α 1 = hsGC α 1 with GST-tag; hsGC α 1 = hsGC α 1 without GST-tag; hsGC β 1 = hsGC β 1 without GST-tag. On the left are the molecular

weight standards loaded on the gel, the size of which (in kDa) is indicated on the far left side.

Figure 16 shows the construction of the recombinant adenoviral hsGC vectors. The cDNAs of hsGC α 1 and hsGC β 1 (grey bars) were inserted in the adenoviral transfer plasmid pZS2, which has a deletion in the adenovirus E1 region (Δ E1) and a unique XbaI site in this plasmid. This resulted in the plasmids hsGC α 1-pZS2 and hsGC β 1-pZS2, respectively. hsGC α 1-pZS2 and hsGC β 1-pZS2 cut with the restriction enzyme XbaI (middle bar, indicated as 'sGcpZS2') were ligated into the XbaI site of the long arm (upper bar, 'RR5') of Ad5. This resulted in the adenovectors Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1, respectively (lower bar, 'Ad 5 CMV sGC') in which the sGC cDNAs lie under the control of the CMV promotor and CMV enhancer (CMV = cytomegalovirus).

Figure 17 shows the stimulation of sGC activity by 100 μ M SNP (= sodium nitroprusside) in EA.hy926 cells that were coinjected with both hsGC adenoviruses Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 (samples A-C) and in noninfected EA.hy926 cells (sample D). The amount of pmol cGMP formed per mg protein per minute is plotted on the Y axis. The dark bars represent basal cGMP formation without SNP stimulation, and the light bars represent cGMP formation with SNP stimulation.

Figure 18 shows the DNA sequence of human soluble guanylyl cyclase α 1 (hsGC α 1); SEQ ID NO: 1.

Figure 19 shows the amino acid sequence of human soluble guanylyl cyclase α 1 (hsGC α 1); SEQ ID NO: 2.

Figure 20 shows the DNA sequence of human soluble guanylyl cyclase β 1 (hsGC β 1); SEQ ID NO: 3.

Figure 21 shows the amino acid sequence of human soluble guanylyl cyclase β 1 (hsGC β 1); SEQ ID NO: 4.

Figure 22 shows the amino acid sequence of the peptide that was used for the production of antibodies to human soluble guanylyl cyclase α 1 (hsGC α 1) (corresponds to amino acids 634-647 of hsGC α 1); SEQ ID NO: 5.

5 Figure 23 shows the amino acid sequence of the peptide that was used for the production of antibodies to human soluble guanylyl cyclase β 1 (hsGC β 1) (corresponds to amino acids 593-614 of hsGC β 1); SEQ ID NO: 6.

10 Figure 24 shows the DNA sequence of the PCR primer pair for human soluble guanylyl cyclase α 1 (hsGC α 1). Upper primer (corresponds to nucleotides 524-541 of the hsGC α 1 cDNA sequence with added BamHI restriction site); SEQ ID NO: 7. Lower primer (corresponds to nucleotides 1249-1232 of the hsGC α 1 cDNA sequence [noncoding strand]); SEQ ID NO: 8.

15 Figure 25 shows the DNA sequence of the PCR primer pair for human soluble guanylyl cyclase β 1 (hsGC β 1). Upper primer (corresponds to nucleotides 89-106 of the hsGC β 1 cDNA sequence with added BamHI restriction site); SEQ ID NO: 9. Lower primer (corresponds to nucleotides 692-711 of the hsGC β 1 cDNA sequence [noncoding strand]); SEQ ID NO: 10.

20 Figure 26 shows the stimulation of sGC activity by 100 μ M SNP (sodium nitroprusside) in ECV 304 cells that had been coinjected with different amounts of both hsGC adenoviruses Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 (samples 1-6) and in noninfected ECV 304 cells (sample 7). The amount of pmol cGMP formed per mg protein per minute is plotted on the Y axis. The dark bars represent basal cGMP formation without SNP stimulation, and the light bars represent cGMP formation with SNP stimulation.

30 Figure 27 shows the stimulation of sGC activity by 100 μ M SNP (sodium nitroprusside) in A10 cells that had been coinjected with different amounts of both hsGC adenoviruses Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 (samples 1-6) and in noninfected A10 cells (sample 7). The amount of pmol cGMP formed per mg protein per minute is plotted on the Y axis. The dark bars represent basal cGMP formation

without SNP stimulation, and the light bars represent cGMP formation with SNP stimulation.

Figure 28 shows the stimulation of sGC activity by 100 μ M SNP (sodium nitroprusside) in ECV 304 cells that had been coinfecte⁵d with 5×10^{10} of each of the hsGC adenoviruses Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 and then have been harvested at different time points as well as the activity in noninfected ECV 304 cells. The time point of the harvest, in days after infection (0, no infection), is plotted on the X axis. The amount of pmol cGMP formed per mg protein per minute is plotted on the Y axis. The dark bars represent basal cGMP formation without SNP stimulation, and the light bars represent cGMP formation with SNP stimulation.

Figure 29 shows the stimulation of sGC activity by 100 μ M SNP (sodium nitroprusside) in A10 cells that had been coinfecte¹⁵d with 5×10^{10} of each of the hsGC adenoviruses Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 and then have been harvested at different time points as well as the activity in noninfected A10 cells. The time point of the harvest, in days after infection (0, no infection), is plotted on the X axis. The amount of pmol cGMP formed per mg protein per minute is plotted on the Y axis. The dark bars show basal cGMP formation without SNP stimulation, and the light bars represent cGMP formation with SNP stimulation.

Figure 30 shows the detection of sGC subunits in E304 cells and A10 cells, respectively, that had been coinfecte²⁵d with 5×10^{10} of each of the hsGC adenoviruses Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 for two days in a protein immunoblot with the peptide antibodies to hsGC α 1 and hsGC β 1 described above. Lane 1, purified hsGC (according to Figure 12); lane 2, ECV 304 cells with hsGC gene transfer; lane 3, A10 cells with hsGC gene transfer; lane 4, purified hsGC (according to Figure 12).

Advantages of the present invention and solution of the above-mentioned technical problems according to the present invention

1.) The cDNA clones described in the literature as sGC α 3 and sGC β 3 were identified as human homologues of bovine and rat sGC α 1 and sGC β 1, and in the following are termed human sGC α 1 (hsGC α 1) and human sGC β 1 (hsGC β 1).

5 According to present knowledge, this sGC α 1/ β 1 isoform is pharmacologically more important due to its function in the cardiovascular system. Because the original clone of hsGC α 3 was examined, it could be shown that hsGC α 1 and hsGC α 3 do not exist in parallel but rather only the form hsGC α 1. Thus, an 10 obvious target protein for pharmacological mass screening and gene therapy has been identified.

2.) With the methods described by the present invention, a functional, active 15 expression of human sGC has been obtained for the first time. Thus, the respective protein can be produced by genetic methods for the first time.

3.) By use of the peptide antibodies to sGC of the present invention, it is possible to determine the expression of sGC in human tissues as well as diagnose 20 dysfunctional conditions (if expression of sGC is too high, too low, or absent). In addition, the present invention provides the technical prerequisites needed to further elucidate the control of transcription and translation of hsGC. The peptide

25 antibodies of the invention have the advantage that they are monospecific, directed at the human sequence, and that their suitability for immunoblots with human tissues has been demonstrated. Other peptide antibodies exhibit these features only partially: Harteneck et al. and Guthmann et al. used a peptide sequence (VYKVETVGDKYMTVSLP) that is relatively highly conserved in guanylyl cyclases. Thus, cross-reaction with particulate guanylyl cyclases (e.g. GC-C) would be expected. Furthermore, Guthmann et al. used a peptide

30 sequence (YGPEVVWEDIKKEA) identical to hsGC β 1 and a peptide sequence identical to hsGC α 1 except for two amino acid exchanges (KKDVVEEANANFLGKASGID), but the function of these antibodies in immunoblotting has only been shown for enriched hsGC from human platelets. In addition, these antibodies to hsGC α 1 recognized a second, unspecific product.

Humbert et al. and Koesling et al. used a peptide sequence (SRKNTGTEETEQDEN) from bovine sGC β 1 that is in part (amino acids 1-10) identical to the peptide used here (amino acids 13-22) for hsGC β 1, although the C-terminus (amino acids 11-15) differed markedly from that of the human sequence. The antiserum to this peptide, however, has not been tested on human protein and has only been used for immunoprecipitation of bovine sGC.

In addition to the peptides shown in Figures 22 and 23 and their immunogenic fragments for the production of the antibodies to hsGC α 1 or hsGC β 1 in rabbits of the present invention, the production of monoclonal or polyclonal antibodies to the whole hsGC α 1/ β 1 protein or its cleavage products is possible. Various animal species (preferably mouse, rat, or rabbit) can be used for the production of these antibodies.

15 4.) By use of the eukaryotic baculovirus/Sf9 expression system of the present invention, human soluble guanylyl cyclase α 1/ β 1 can be produced in high amounts. The attachment of a nucleotide sequence that codes for a polypeptide suitable for affinity chromatography (affinity tag, e.g. glutathione-S-transferase = GST-tag) with an attached protease cleavage site at the N-terminus of the cDNA 20 of the α 1 subunit allows the rapid and simple purification of the coexpressed dimeric protein by means of a single affinity chromatographic step. The attached affinity tag is subsequently removed by digestion with a protease. Thus, a protein identical in primary structure to the native protein is obtained. This revolutionary, fast, and clean purification yielding high amounts of very pure, functional human 25 sGC results in new possibilities for a mass screening for specific activators and inhibitors as well as for the pharmacological characterization of potential drugs.

Purification of hsGC α 1/ β 1 can also be accomplished by ion exchange chromatography, gel filtration, immunoaffinity chromatography, and other 30 chromatographic procedures, e.g. on ATP-, GTP-, cGMP- or Blue-sepharose, and other similar chromatographic media.

5.) The process of the present invention can also be used for other isoforms of the human, rat, and bovine enzyme in an identical manner. In the process provided

in the present invention, various affinity tags (e.g. histidine oligomer) and different expression systems (e.g. *E. coli*) can be used. Other parts of the hsGC α 1 and hsGC β 1 sequences can also be used for the production of antibodies to peptides or the whole protein.

5

6.) The availability of high amounts of an isolated human protein in high purity and in high quality is essential for modern pharmaceutical development. Until now, this requirement was not fulfilled in the search for alternatives to the classical NO donors. Mass screening for specific activators or inhibitors in animal testing is too expensive and would not make sense due to species differences, possible side effects, and effects on other isoforms. Cell culture systems have the disadvantage of requiring substantial additional effort to determine precisely at which point within the signaling cascades substances act. In addition, cell culture is expensive and touchy. Compared with the expression of a protein using recombinant DNA technology, the purification of a protein from animal tissues is more labor intensive and results in lower yields. In particular, the results of a pharmacological screening can only be generalized to a limited extent because of differences between species. In contrast, processes of the present invention provide for recombinant, inexpensive hsGC α 1/ β 1 in high amounts, and unequivocal predictions concerning modulation, activation, or inhibition of this particular human enzyme can be made from a screening procedure. Species differences and lack of applicability to human are excluded a priori by the use of a human enzyme.

10

15

20

25

In addition, hsGC is available thereby in high amounts and adequate purity for crystallization and clarification of its structure. Thus, an important prerequisite for rational drug design by means of molecular modeling is fulfilled.

30

7.) In addition to the use of isolated hsGC α 1/ β 1, intact Sf9 cells that express hsGC α 1/ β 1 by being infected with the recombinant baculoviruses described here can be used in *in vitro* experiments.

8.) Transient (e.g. with adenoviral vectors) or stable overexpression can be achieved by means of gene transfer. Thus, the cGMP level can be elevated even at low

NO concentration or in the case of poor activation of sGC due to peroxynitrite formation. This approach also has conceptional advantages compared to the gene transfer of NOS (NO synthase) because the formation of cytotoxic peroxynitrite, which is less effective in activating sGC, is circumvented with the
5 approach of the present invention. Furthermore, a permanent increase in the cGMP level could be achieved (e.g. for therapeutic purposes) independently of NOS, NO, NO donors, or sGC modulators by gene transfer of mutated sGC with elevated basal activity.

10 9.) In addition to the purification procedure for hsGC α 1/ β 1 described here, purification from Sf9 cells is also possible after infection with the described baculoviruses containing hsGC α 1 or hsGC β 1 cDNA if coinfection is performed with hsGC α 1 baculoviruses without a GST-tag (GST-tag = appended glutathione-
15 S-transferase sequence from *Schistosoma japonicum*) and hsGC β 1 baculoviruses having a GST-tag as well as with hsGC α 1 baculoviruses having a GST-tag and hsGC β 1 baculoviruses having a GST-tag.

Furthermore, use of a column containing glutathione sepharose 4B is possible in addition to the use of glutathione sepharose 4B alone in a batch-wise step.

20 Purification can also be performed by digesting the dimeric fusion protein GST-hsGC α 1/ β 1 with thrombin after elution of the fusion protein from the glutathione sepharose 4B with reduced glutathione. After dialysis (to remove the reduced glutathione), the GST-tag which has been cleaved from the protein can be removed from the mixture by additional affinity chromatography on glutathione
25 sepharose 4B.

30 10.) The process of the present invention can also be used for human soluble guanylyl cyclase α 2 (GeneBank: x63282) and any potentially existing human homologue of the soluble guanylyl cyclase β 2 (from rat; GeneBank: m57507) as well as for other human soluble guanylyl cyclases (in all technical variations described in the present invention).

11.) Using the adenoviral, somatic gene transfer of hsGC α 1 or hsGC β 1 by means
of coinfection with Ad5CMVhsGC α 1 or Ad5CMVhsGC β 1, respectively, it was
demonstrated in endothelial (ECV 304) and smooth muscle (A10) cells that the
intracellular sGC activity measured as cGMP content after stimulation of sGC
5 with SNP was increased from undetectable levels (\leq 100 pmol/mg/min) to 12-fold
higher values. An optimal concentration, regarding the amount of adenovirus
(pfu) as well as an equimolar ratio of both adenoviruses (based on pfu),
corresponding to the homodimeric structure of the enzyme, was determined. This
effect on intracellular sGC activity was still detectable 15 days after a single
10 infection, a period sufficient for the intended applications.

The examples illustrate the present invention.

15

Example 1

The corrected sequence of hsGC α 1 and hsGC β 1

The original clone of the human isoform sGC α 3 and sGC β 3 (Giuli et al., 1992) was
sequenced again. While the sequence of the sGC β 3 clone was confirmed (see SEQ
20 ID NO: 3 and Figure 20), the sequencing of sGC α 3 showed that the original
publication (Giuli et al., 1992) contained 19 sequencing errors, which are
summarized in Figure 3. The corresponding corrected α 3-cDNA sequence is shown
in SEQ ID NO: 1 and Figure 18. The deduced amino acid sequence is shown in SEQ
ID NO: 2 and Figure 19. Furthermore, the corrected sequence (see SEQ ID NO: 1
25 and Figure 18) is identical with the human sGC α 1 sequence published in the
GeneBank (accession No. U58855), whereby the 5' untranslated region of the
sequence provided here is 506 base pairs longer. Therefore, 'sGC α 3' is now
30 classified as human sGC α 1 (hsGC α 1). Thus, it was shown that two different hsGC α
subunits α 1 and α 3 do not both exist in humans, which could be important for
cardiovascular research but rather—in analogy to the situation in bovine and rat
tissues—only hsGC α 1.

Table 1 Revised terminology of soluble guanylyl cyclase cDNAs and proteins and their detection in human tissue.

	human sGC subunits	
	α	β
isoform 1	cDNA and protein detectable active, when coexpressed	cDNA and protein detectable
isoform 2	cDNA detectable active, when coexpressed with bovine $\beta 1$	

5 The expression of sGC $\alpha 1$ and sGC $\beta 1$ mRNA in human tissues was demonstrated by means of PCR (Figure 4). The amplification of a hsGC $\beta 1$ fragment with a PCR primer pair (5'-AAAAGGATCCATGTACGGATTGTGAAT-3' = nucleotides 89-106 of the hsGC $\beta 1$ cDNA sequence with added restriction site; 5'-ATGCGTGATTCCCTGGGTACC-3' = 692-711 of the hsGC $\beta 1$ cDNA sequence) with an annealing temperature of 54°C resulted in one specific band each in cDNA libraries from brain, heart, kidney, lung, pancreas, and skeletal muscle. The identity of the amplified fragment was confirmed by sequencing. The amplification of a hsGC $\alpha 1$ fragment with a PCR primer pair (5'-AAAAGGATCCATGTTCTGCACGAAGCTC-3' = nucleotide 524-541 of the hsGC $\alpha 1$ cDNA sequence with added restriction site; 5'-ATTATGGAAGCAGGGAGG-3' = 1249-1232 of the hsGC $\alpha 1$ cDNA sequence) with an annealing temperature of 54°C resulted in one specific band each in cDNA libraries from heart (Figure 4A) and lung (not shown). In each case, the sequencing of the fragments resulted in the corrected hsGC $\alpha 1$ sequence; and the 'hsGC $\alpha 3$ ' sequence published by Giuli et al. was not found. Thus, it was shown that in humans, only one hsGC $\alpha 1/\beta 1$ exists, and that the potential hsGC $\alpha 3/\beta 3$ is a result of sequencing errors. This results in a clear picture for cardiovascular research concerning which sGC isoform should be the target protein for pharmacological screening.

*Example 2**Construction of recombinant baculoviruses for the expression of human sGC α and sGC β in insect cells*

5 In order to verify that hsGC α 1 and hsGC β 1 can form a functional, heterodimeric sGC protein, both cDNAs were inserted into baculoviruses. Using these baculoviruses, the recombinant protein was expressed under the control of the strong polyhedrin promotor in insect cells (Sf9 cells). For the production of the recombinant baculoviruses, the baculovirus transfer vector pVL1393 (Pharmingen, San Diego, California, USA; Figure 5) and the baculovirus transfer vector pAcG2T (with glutathione-S-transferase sequence from *Schistosoma japonicum* and thrombin cleavage site; Pharmingen; Figure 6) were used in which the foreign genes hsGC α 1 and hsGC β 1 were cloned, respectively. The cotransfection of such a recombinant pVL1393 or pAcG2T plasmid with BaculoGold baculovirus DNA (Pharmingen) 10 allowed the direct isolation of the genetically modified baculoviruses with hsGC α 1 or hsGC β 1 cDNA formed by homologous recombination from the cell culture media.

15

The construction of pVL1393-hsGC β 1 is schematically shown in Figure 7 (identical procedure for pAcG2T-hsGC β 1). The coding region of the hsGC β 1 cDNA with the 3' untranslated region but without the 5' untranslated region was cloned into pVL1393. 20 For this, a BamHI site was introduced by means of PCR with primers A and B immediately upstream of the codon coding for the start methionine. The thus amplified fragment 1 was digested with BamHI/KpnI; fragment 2 was isolated from the sGC β 1 cDNA clone with KpnI/EcoRI. Fragments 1 and 2 as well as the vector 25 opened with BamHI and EcoRI were ligated (see Figure 7).

The construction of pVL1393-hsGC α 1 is shown schematically in Figure 8 (identical procedure for pAcG2T-hsGC α 1). The coding region of the hsGC α 1 cDNA with the 3' untranslated region but without the 5' untranslated region was cloned into pVL1393. 30 For this, a BamHI site was introduced by means of PCR with primers C and D immediately upstream of the codon coding for the start methionine. The thus amplified fragment 3 was digested with BamHI/BsaAI; fragment 4 was isolated from

the sGC α 1 cDNA clone with BsaAI/EcoRI. Fragments 3 and 4 as well as the vector opened with BamHI and EcoRI were ligated (see Figure 8).

For the production of the recombinant hsGC α 1 and hsGC β 1 baculoviruses, the 5 baculovirus transfer vectors (pVL1393-hsGC α 1, pAcG2T-hsGC α 1, pVL1393-hsGC β 1, pAcG2T-hsGC β 1) were each cotransfected with baculovirus DNA (Baculo-Gold; Pharmingen, San Diego, California, USA) in monolayers of Sf9 cell cultures. For this, the cells were cultivated at 27°C in IPL-41 media (Gibco) supplemented with 10% (vol/vol) fetal calf serum (Biochrom), 4% (vol/vol) tryptose-phosphate-broth 10 (Gibco), 1% (vol/vol) Pluronic F68 (Gibco), 0,5% amphotericin B (Gibco), 80 µg/ml gentamycin sulfate (Gibco), and 0.5 mM δ -aminolevulinic acid (Merck). Recombinant hsGC α 1 and hsGC β 1 baculovirus clones were obtained from the culture media by means of plaque purification. For the production of virus stock solutions with high titer, Sf9 shaking cultures (0.5×10^6 cells/ml) were infected with a M.O.I. (multiplicity of infection) of 0.1 pfu/cell (pfu = plaque forming units) and harvested 6 days after infection.

Example 3

Production of recombinant hsGC α 1 and hsGC β 1 in Sf9 cells

20 Ten of each recombinant hsGC α 1 and hsGC β 1 baculovirus clones were tested for expression of recombinant protein in Sf9 cells. For this, Sf9 monolayer cell cultures were infected with plaque-purified, recombinant hsGC α 1 or hsGC β 1 baculoviruses, incubated at 27°C for 5 days, harvested with a cell scraper, resuspended in 0.5 ml 25 lysis buffer (25 mM TEA, pH 7.8, 50 mM NaCl, 1 mM EDTA, 5 mM DTT, 1 µM leupeptin, 0.5 mg/l trypsin inhibitor), and homogenized by sonication ('Sonifier 250', 'standard'-tip, Branson; 15 times, 'duty cycle': 15%, intensity: 1). After centrifugation of the homogenates at 20,000 x g, the supernatant and pellet were analyzed by SDS-PAGE. Three of the hsGC β 1 baculovirus clones and two of the hsGC α 1 baculovirus 30 clones yielded recombinant protein in amounts that were visible in the insoluble fraction by staining with Coomassie Brilliant Blue R250. Recombinant human sGC α and sGC β (rhsGC α and rhsGC β) migrated with an apparent molecular weight of 79.5 (hsGC α 1) and 68.5 kDa (hsGC β 1), which is very close to the predicted molecular

weights deduced from the amino acid sequence (77.5 and 70.5 kDa, respectively) (representative clones in Figure 9). The baculovirus clones that showed the highest expression of recombinant proteins in the immunoblot were used for the expression of functional heterodimeric hsGC [see examples 4-7].

5

Example 4

Recombinant human sGC in intact insect cells is active and stimulated by NO

10 For the production of functional heterodimeric human sGC, rhsGC α 1 and rhsGC β 1 were coexpressed in Sf9 cells with recombinant baculoviruses. For this, Sf9 monolayer cultures [2.5×10^6 cells/dish, Ø 90 mm; supplements see example 2] were coinfectected with a M.O.I. (multiplicity of infection) of 2 pfu/cell of each recombinant baculovirus (rhsGC α 1 and rhsGC β 1; both without GST-tag) and cultivated for 48 hours
15 at 27°C. The basal as well as the NO-stimulated activity of the sGC in the cells was determined by measurement of the cGMP content in the cells in the presence of the phosphodiesterase inhibitor IBMX (3-isobutyl-1-methylxanthine).

For the determination of the cGMP content, the culture media was replaced by
20 Krebs-Ringer-buffer (KRB; 119 mM NaCl; 4.74 mM KCl; 2.54 mM CaCl₂; 1.19 mM MgSO₄; 1.19 mM KH₂PO₄; 25 mM NaHCO₃; 10 mM HEPES; pH 7.4; 0.1% BSA) which, in addition, contained 1 mM IBMX. The cells were incubated for one hour at 27°C. Then the cells were washed with ice-cold KRP and harvested in 1 ml ice-cold ethanol (80 %) with a cell scraper. The cells were homogenized by sonication [see
25 Example 3] and centrifuged at 20,000 x g for 20 minutes. The supernatant was dried in a speed-vac and the residue resuspended in 25 mM TEA, pH 7.8. The cGMP content was determined by means of RIA (Biotrend).

The coexpression of rhsGC α 1 and rhsGC β 1 resulted in the formation of functional
30 sGC with basal activity in Sf9 cells (Figure 10): While noninfected Sf9 cells contained approximately 0.1 pmol cGMP/ 10^6 cells (not shown), approximately 20 pmol cGMP/ 10^6 cells was found in rhsGC-expressing cells (Figure 10). This basal activity of recombinant hsGC was increased by an NO donor, SNP (sodium nitroprusside). When the cells were incubated with 10, 100, or 1000 μ M SNP for 2 minutes prior to

the harvest, the cGMP content increased in a concentration-dependent manner by up to 50 fold (Figure 10).

5

Example 5

Recombinant human sGC in insect cell extracts is active and stimulated by NO

The activity of the recombinant hsGC (after expression with the recombinant baculoviruses described above) was not only determined in intact Sf9 cells but also 10 in Sf9 cell extracts. For the production of such extracts, Sf9 shaking cultures [2×10^6 cells/ml; supplements see Example 2] were coinjected with a M.O.I. (multiplicity of infection) of 1 pfu/cell of each virus (hsGC α 1 and hsGC β 1; both without GST-tag) and incubated at 27°C. Samples were taken (4 ml) at 0, 24, 48, 72, 96, and 118 hours after infection, the cells sedimented, resuspended in 1 ml lysis buffer and 15 homogenized by sonication [see Example 3]. The homogenates were centrifuged at 20,000 x g for 15 minutes and the insoluble pellet was resuspended again in lysis buffer. The samples were adjusted to 50% glycerin (vol/vol) and stored at -20°C. The protein concentration was determined spectrophotometrically with the standard method of Bradford (Bradford, 1976). The sGC activity was determined by the 20 formation of [32 P]cGMP from [α^{32} P]GTP (Schultz and Böhme, 1984). The reactions contained 50 mM TEA (pH 7.4), 3 mM MgCl₂, 3 mM DTT, 1 mM IBMX, 1 mM cGMP, 5 mM creatine phosphate, 0.25 mg/ml creatine kinase, and 500 μ M GTP in a total volume of 100 μ l. After incubation at 37°C for 10 minutes, the reaction was started by simultaneous addition of cell extract and the sGC activators SNP, CO, or YC-1. The 25 [32 P]cGMP formed was measured as described (Schultz and Böhme, 1984). Basal rhsGC activity (i.e. cGMP formation by rshGC *without* activation of the enzyme by addition of NO or other activators), mainly found in the soluble Sf9 cell fraction (Figure 11A), reached its maximum 72 hours after infection of the cells and was increased up to 5 fold with 100 μ M SNP (Figure 11A). The pellet fraction did not 30 contain measurable basal sGC activity at any time point; although in the presence of SNP a low degree of sGC activity was found (Figure 11B).

*Example 6**Influence of YC-1 and ODQ on recombinant human sGC*

YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazol) and ODQ (1H-[1,2,4]oxadiazol[4,3,-a]chinoxalin-1-on) are substances that were described to specifically influence the activity of sGC. Thus, it was investigated if this also holds true for rhsGC.

After expression with the recombinant baculoviruses (without GST-tag) described above, rhsGC was activated in intact Sf9 cells by YC-1. The NO-potentiating effect was also found: the cGMP content of cells expressing rhsGC was increased 3.4 fold by incubation with 10 µM YC-1 for 2 minutes (Figure 10A). 100 µM YC-1 had the same effect (Figure 10A). When the cells were simultaneously treated with YC-1 and 100 µM SNP, the cGMP levels doubled compared to the cGMP levels after stimulation with SNP alone (Figure 10A). Similar results were obtained with rhsGC in cell extracts.

ODQ is described as a selective inhibitor of NO-stimulated sGC that, however, does not inhibit the basal activity (Garthwaite et al., 1995). In Sf9 cells expressing rhsGC (after expression with the recombinant baculoviruses described above, without GST-tag), ODQ did not have an influence on the basal cGMP levels; the stimulation of rhsGC in intact cells with SNP, however, was inhibited by simultaneous incubation with ODQ (Figure 10B).

*Example 7**Extraction of the purified human soluble guanylyl cyclase α1/β1 (hsGCα1/β1)*

For the purification of recombinant human hsGCα1/β1 from Sf9 cells, a recombinant baculovirus [see Example 2] was used in which a fusion protein composed of hsGCα1 and attached GST [so-called GST-tag, GST = glutathione-S-transferase from *Schistosoma japonicum*; see Example 2] is formed. Using this GST-tag, which binds to glutathione with high affinity, specific affinity chromatography on glutathione sepharose 4B (Pharmacia, Freiburg, Germany) can be performed. The Sf9 cells coinfectected with hsGCα1 baculoviruses (with GST-tag) and hsGCβ1 baculoviruses (without GST-tag) were lysed in 25 mM triethanolamine pH 7.8 / 1 mM EDTA / 5 mM DTT / 1 µM leupeptin / 0.5 µg/ml trypsin inhibitor / 0.2 mM PMSF (30 min hypotonic

lysis at 4°C). After addition of NaCl (75 mM final concentration), the homogenate was centrifuged at 75,000 x g for 1 hour at 4°C. The supernatant was mixed with the GSH sepharose 4B for 1 hour at room temperature. The glutathione sepharose 4B was then pelleted by centrifugation at 500 x g for 5 minutes and the supernatant removed.

5 A 10-fold volume of 50 mM Tris-HCl (pH 8.0) / 150 mM NaCl / 2.5 mM CaCl₂ / 0.1% 2-mercaptoethanol was added to the glutathione sepharose 4B and mixed for 1 minute. The mixture was centrifuged again at 500 x g for 5 minutes. The supernatant was removed and the glutathione sepharose 4B was washed again in the same way.
To elute from the sepharose, the hsGCα1 protein (with the bound hsGCβ1) was
10 cleaved by thrombin from the GST-tag, which remained bound to the glutathione sepharose 4B at the specific cleavage site. Digestion with thrombin was performed in 50 mM Tris-HCl (pH 8.0) / 150 mM NaCl / 2.5 mM CaCl₂ / 0.1% 2-mercaptoethanol with 0.25 to 1 units thrombin/ml buffer for 1 or 3 hours at room temperature. The glutathione sepharose 4B (with the GST-tag) was pelleted again by centrifugation at
15 500 x g for 5 minutes and the supernatant containing the hsGCα1/β1 was removed. Another elution method was performed by addition of 50 mM Tris-HCl (pH 8.0) / 5 mM reduced glutathione and mixing for 30 minutes at room temperature. In this manner, hsGCα1/β1 with the GST-tag bound was removed from the glutathione sepharose 4B. After centrifugation at 500 x g for 5 minutes, the supernatant
20 containing dissolved GST-hsGCα1/β1 was removed.

By the elution with thrombin, a two-fold selectivity is achieved in a single affinity chromatographic step:

1.) Only proteins that have an affinity to reduced glutathione are able to bind.
25 2.) Of these proteins, only the proteins that are cleaved by thrombin will elute (as cleavage products).

The thrombin can be separated from the sample with a p-aminobenzamidine column to which thrombin binds specifically.

30 Figure 12 shows the specific enrichment of sGC activity after elution from the GSH sepharose 4B with glutathione compared with the activity in the lysate of infected Sf9 cells.

Figure 14 shows the binding of GST-hsGC α 1 to glutathione sepharose 4B and the cleavage of hsGC α 1 from the GST-tag by thrombin in an immunoblot.

Figure 15 shows the purification of coexpressed hsGC α 1 with GST-tag and hsGC β 1 without GST-tag by affinity chromatography on glutathione sepharose 4B in a Coomassie Brilliant Blue R250-stained SDS-polyacrylamide gel. Upon elution with reduced glutathione, only two bands were visible, which correspond to GST-hsGC α 1 (larger product) and hsGC β 1 (smaller product) (detected in an immunoblot). After elution with thrombin (0.25, 0.5, or 1 unit/ml for three hours at room temperature), however, the lower band was identical (hsGC β 1; estimated molecular weight according to the migration in the gel of approximately 70 kDa), whereas the upper band was significantly smaller compared to elution with glutathione (hsGC α 1; estimated molecular weight of approximately 80 kDa) because the GST-tag was cleaved off by use of the thrombin elution. This approximately corresponds to the molecular weights of 77.5 kDa for hsGC α 1 and 70.5 kDa for hsGC β 1 deduced from the amino acid sequences. In contrast to the elution with reduced glutathione, an additional very small band of approximately 25 kDa was visible after the thrombin elution, which is likely thrombin itself. Thrombin can be removed from the eluate by means of an aminobenzamidine sepharose column to which thrombin binds specifically. Additional bands were not detectable in this experiment.

Example 8

Production of polyclonal rabbit antisera to hsGC α 1 and hsGC β 1

Antisera were obtained by immunization of rabbits with synthetic peptides corresponding to sequences from hsGC α 1 (Phe-Thr-Pro-Arg-Ser-Arg-Glu-Glu-Leu-Pro-Pro-Asn-Phe-Pro [Figure 22/SEQ ID NO: 5]; amino acids 634-647) and from hsGC β 1 (Lys-Gly-Lys-Lys-Glu-Pro-Met-Gln-Val-Trp-Phe-Leu-Ser-Arg-Lys-Asn-Thr-Gly-Thr-Glu-Glu-Thr [Figure 23/SEQ ID NO: 6] amino acids 593-614) that were coupled to KLH (keyhole limpet hemocyanin) via an additional C-terminal (α 1) or N-terminal (β 1) cysteine residue. The antisera were affinity-purified with the corresponding peptides coupled to epoxy-activated sepharose (Pharmacia, Freiburg, Germany) according to the manufacturer's instructions.

*Example 9**Detection of hsGC α 1 and hsGC β 1 in different human tissues by immunoblotting*

5 Human lung tissue was obtained from a tumor-free area of a lung resection, and
human cortex and cerebellum were from a normal autopsy. All tissues were
immediately frozen in liquid nitrogen and stored at -70°C. The frozen tissues were
homogenized in a mortar and double-concentrated, hot SDS stop buffer (130 mM
Tris-HCl, pH 6.8 / 16% [v/v] glycerol / 4% [w/v] SDS / 0.025% [w/v] bromphenol blue /
10 6.5% [v/v] 2-mercaptoethanol) was added to the powder. This was incubated at 95°C
for 10 minutes and then centrifuged at 20,000 x g for 20 minutes. The supernatant
was used for immunoblotting (for antibodies used, see above).

Expression of both subunits (α 1 and β 1) was detected in all three tissues (Figure 13).
15 In contrast, expression could not be detected in kidney, liver, and pancreas (data not
shown).

*Example 10**Construction of recombinant adenoviral hsGC vectors*

20 The cDNAs for hsGC α 1 and hsGC β 1 were isolated from the original plasmid with the
restriction enzyme EcoRI as 3.0 kb (hsGC α 1) and 2.4 kb (hsGC β 3) fragments. The
fragments were each inserted into the EcoRI restriction sites of the adenoviral
transfer plasmid pZS2 (Figure 16), which contains an adenovirus type 5 sequence
25 (Ad5) with a deletion in the E1 region (Δ E1), followed by an expression cassette with
a CMV (cytomegalovirus) promotor/enhancer and a unique XbaI restriction site.
hsGC α 1-pZS2 and hsGC β 1-pZS2 digested with XbaI were inserted into the XbaI site
of the long arm (RR5) of Ad5 (Figure 16). The resulting recombinant adenoviral
vectors Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 are replication deficient because
30 they lack the E1 region. To propagate the viruses, 293 cells that express E1 were
infected with these viruses. Viral plaques appeared 12-24 hours after the
transfection. Viruses from single plaques were purified according to a standard
procedure. Plaques containing recombinant viruses (Ad5CMVhsGC α 1 or
Ad5CMVhsGC β 1) were identified by means of PCR analysis: The plaque material

was freeze-thawed three times, incubated at 37°C for 30 minutes in lysis buffer (16.6 mM ammonium sulfate / 67 mM Tris-HCl pH 6.8 / 6.7 mM MgCl₂ / 5 mM 2-mercaptoethanol / 6.7 mM EDTA / 1.7 mM SDS / 50 µg/ml proteinase K), and thereafter heat inactivated for 10 minutes at 85°C. Finally, the DNA was isolated from
5 the lysate with a standard phenol/chloroform extraction and used for PCR analysis.

Example 11

Detection of cGMP formation in EA.hy926 cells after coinfection with the hsGC adenovectors Ad5CMVhsGCα1 and Ad5CMVhsGCβ1

10 Ten 10-cm cell culture dishes with 'EA.hy926' cells were coinjected with each of the adenovectors Ad5CMVhsGCα1 and Ad5CMVhsGCβ1 at 2 × 10¹⁰ pfu (plaque forming units) per dish. After 72 hours, the cells were harvested by adding hypotonic lysis buffer (25 mM triethanolamine pH 7.8 / 1 mM EDTA / 5 mM DTT / 1 µM leupeptin /
15 0.5 mg/l trypsin inhibitor / 0.2 mM PMSF) and detaching with a cell scraper. The homogenate was centrifuged at 500 × g for 15 minutes and the supernatant was mixed with an equal volume of glycerol and stored at -20°C. The stimulation of hsGC by 100 µM SNP (sodium nitroprusside) was determined by measurement of the basal cGMP level and the cGMP level after treatment with SNP according to the procedure
20 described above (see Example 5). In three samples (A, B, C), a 7-fold to 10.75-fold elevation in the cGMP concentration compared to the basal activity was detectable after SNP stimulation, while no significant elevation was measurable in the control without adenovirus infection (Figure 17).

25 *Example 12*

Detection of the cGMP formation in ECV 304 and A10 cells after coinfection with the hsGC adenoviruses Ad5CMVhsGCα1 and Ad5CMVhsGCβ1

30 Three 10-cm cell culture dishes with 'ECV 304' cells were coinjected with 10⁹ - 5 × 10¹⁰ pfu (plaque forming units) of each of Ad5CMVhsGCα1 and Ad5CMVhsGCβ1. After 72 hours, the cells were harvested by two washes with PBS buffer (phosphate-buffered saline), addition of hypotonic lysis buffer, and then further treated according to the procedure described in Example 11. The samples were stored and the activity was determined (cGMP content in pmol/mg/min) as described in Example 5. A

significant basal activity (without SNP) and a significant maximal activity (with addition of 100 μ M SNP to the assay) was only detectable after the gene transfer of Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 (5×10^{10} pfu each) (Figure 26). In control experiments without Ad5CMVhsGC α 1 or Ad5CMVhsGC β 1, no significant increase in cGMP formation by SNP was detectable. Qualitatively similar results were obtained in 'A10' vascular smooth muscle cells if these cells were also coinfecte⁵d with $10^9 - 5 \times 10^{10}$ pfu Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1. Here, too, a significant basal activity (without SNP) and a significant maximal activity (with addition of 100 μ M SNP to the assay) was only detectable after the gene transfer of Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1 (5×10^{10} pfu of each) (Figure 26). In control experiments without Ad5CMVhsGC α 1 or Ad5CMVhsGC β 1, again no significant increase in cGMP formation by SNP was detectable (Figure 28).

Example 13

15 *Kinetics of cGMP formation in ECV 304 and A10 cells after coinfection with the hsGC adenovectors Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1*

Three 10-cm cell culture dishes containing either 'ECV 304' or 'A10' cells were coinfecte²⁰d with 5×10^{10} pfu (plaque forming units) Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1. The cells were harvested, and further treatment, storage, and determination of activity was performed as described in Examples 12, 11, and 5. Whereas at day 0 (before the coinfection), no significant increase in cGMP formation by SNP was detectable, 15 days after the gene transfer of Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1, a significant increase in cGMP formation after SNP addition was detectable (Figure 28). Qualitatively similar results were obtained in 'A10' vascular smooth muscle cells if these cells were also coinfecte²⁵d with 5×10^{10} pfu Ad5CMVhsGC α 1 and Ad5CMVhsGC β 1. Here, 15 days after coinfection, an increase in cGMP formation by SNP was also still detectable (Figure 29). Again, at day 0 (before the coinfection), there was still no significant increase in cGMP formation by SNP. In the same experiments, sGC subunits were detectable after adenoviral gene transfer, but not in noninfected control cells (Figure 30).

References:

Bradford, M.M. (1976) *Annal. Biochem.* **72**: 248-254.

5 Friebe, A.; Schultz, G.; Koesling, D. (1996) *EMBO J.* **15**: 6863-6868.

Garthwaite, J.; Southam, E.; Boulton, C. L.; Nielsen, E. B.; Schmidt, K.; Mayer, B. (1995) *Mol. Pharmacol.* **48**: 184-188.

10 Giuili, G.; Scholl, U.; Bulle, F.; Guellaen, G. (1992) *FEBS Lett.* **304**: 83-88.

Guthmann, F.; Mayer, B.; Koesling, D.; Kukovetz, W.R.; Böhme, E. (1992) *Naunyn-Schmiedeberg's Arch. Pharmacol.* **346**: 537-541.

15 Harteneck, C.; Wedel, B.; Koesling, D.; Malkewitz, J.; Böhme, E.; Schultz, G. (1991) *FEBS Lett.* **292**: 217-222.

Humbert, P.; Niroomand, F.; Fischer, G.; Mayer, B.; Koesling, D.; Hinsch, K.-D.; Gausepohl, H.; Frank, R.; Schultz, G.; Böhme, E. (1990) *Eur. J. Biochem.* **190**: 273-278.

20 Ko, F. N.; Wu, C. C.; Kuo, S.-C.; Lee, F.-Y.; Teng, C.M. (1994) *Blood* **84**: 4226-4233.

Koesling,D.; Herz, J.; Gausepohl, H.; Niroomand, F.; Hinsch, K.-D.; Mülsch, A.; Böhme, E.; Schultz, G.; Frank, R. (1988) *FEBS Lett.* **239**: 29-34.

Schmidt, H. H. H. W.; Walter, U. (1994) *Cell* **78**: 919-925.

30 Schultz, G.; Böhme, E. (1984) published in: Bergmeyer, H. U.; Bergmeyer, J.; Graßl, M. (Eds.): *Methods of Enzymatic Analysis*, Vol. 4, Verlag Chemie, Weinheim, pages 379-389.

Wu, C.-C.; Ko, F.-N.; Kuo, S.-C.; Lee, F.-Y.; Teng, C.-M. (1995) *British J. Pharmacol.* **116**: 1973-1978.

Claims:

1. Isolated human soluble guanylyl cyclase α 1 (hsGC α 1; SEQ ID NO: 2)/ β 1 (hsGC β 1; SEQ ID NO: 4) purified to apparent homogeneity.
2. A method for the production of α 1 (hsGC α 1; SEQ ID NO: 2) and β 1 (hsGC β 1; SEQ ID NO: 4) subunits of human soluble guanylyl cyclase comprising the expression in prokaryotic or eukaryotic host cells of expression vectors containing the DNA sequence of hsGC α 1 and hsGC β 1 and obtaining the subunits.
3. The method for producing the α 1 and β 1 subunits of human soluble guanylyl cyclase according to claim 2, wherein the step of obtaining the subunits comprises a lysis of the cells, the affinity chromatography of the cell lysate, and the subsequent elution of the subunits.
4. The method for producing the α 1 and β 1 subunits of human soluble guanylyl cyclase according to claim 2 or 3, wherein the expression vector contains at least one additional DNA sequence coding for a domain for the specific affinity chromatography (affinity tag) with appended protease cleavage site.
5. The method for producing α 1 and β 1 subunits of human soluble guanylyl cyclase according to claim 4, wherein the expression vector contains the DNA sequence for hsGC α 1 with affinity tag, the DNA sequence for hsGC β 1 with affinity tag, the DNA sequence for hsGC α 1 with affinity tag, and the DNA sequence for hsGC β 1, the DNA sequence for hsGC β 1 with affinity tag and the DNA sequence for hsGC α 1, or the DNA sequence hsGC α 1 with affinity tag and the DNA sequence for hsGC β 1 with affinity tag.
6. The method for producing human soluble guanylyl cyclase α 1 (hsGC α 1; SEQ ID NO: 2)/ β 1 (hsGC β 1; SEQ ID NO: 4) comprising the separate expression in prokaryotic or eukaryotic host cells of an expression vector containing the DNA sequence for hsGC α 1 or hsGC β 1, extraction of the subunits, and

reconstitution of subunits hsGC α 1 and hsGC β 1 to form the dimeric guanylyl cyclase α 1/ β 1 (hsGC α 1/ β 1).

7. The method for producing human soluble guanylyl cyclase α 1/ β 1 according to claim 6, wherein the step for the purification of the subunits consists of a separate lysis of cells containing hsGC α 1 or hsGC β 1, the separate affinity chromatography of the cell lysates, and the subsequent elution of the subunits.

8. The method for producing human soluble guanylyl cyclase α 1 (hsGC α 1; SEQ ID NO: 2)/ β 1 (hsGC β 1; SEQ ID NO: 4) consisting of the coexpression of the DNA sequences of hsGC α 1 and hsGC β 1 in prokaryotic or eukaryotic host cells, a lysis of the cells containing hsGC α 1 and hsGC β 1, and affinity chromatography and subsequent elution of hsGC α 1/ β 1.

9. Use of a nucleotide sequence encoding the hsGC α 1(SEQ ID NO: 2) and/or hsGC β 1 (SEQ ID NO: 4) subunits of human soluble guanylyl cyclase α 1/ β 1 for somatic gene therapy.

10. Use according to claim 9, wherein vectors or a mixture of vectors contain the nucleotide sequence of human soluble guanylyl cyclase α 1 (hsGC α 1) and/or human soluble guanylyl cyclase β 1 (hsGC β 1).

11. Use according to claim 9 or 10 for the prevention and therapy of atherosclerosis and its complications, of restenosis, ischemia (infarction), peripheral arterial occlusive diseases, and arterial hypertension as well as for the prevention of atherosclerosis in patients with risk factors, transient ischemic attacks, cerebral ischemia, stroke (Apoplex), coronary heart disease, status post coronary bypass grafting, carotid stenosis, heart insufficiency and liver dysfunction, and as a supplement to therapy with sGC activators, sGC-sensitizing substances, NO donors, or phosphodiesterase inhibitors.

12. Use according to claims 9 to 11, wherein the somatic gene transfer is carried out with endothelial cells, vascular smooth muscle cells, neointimal cells,

fibroblasts, or other vascular cells or blood particles (platelets, leukocytes, and others), or liver.

13. Antibodies against human soluble guanylyl cyclase α 1 (hsGC α 1; SEQ ID NO: 2)/ β 1 (hsGC β 1; SEQ ID NO: 4) obtainable by immunization of a mammal with the peptide fragment Phe-Thr-Pro-Arg-Ser-Arg-Glu-Glu-Leu-Pro-Pro-Asn-Phe-Pro, or parts thereof, or immunogenic peptide fragments that overlap with this fragment, or obtainable by immunization of a mammal with the peptide fragment Lys-Gly-Lys-Lys-Glu-Pro-Met-Gln-Val-Trp-Phe-Leu-Ser-Arg-Lys-Asn-Thr-Gly-Thr-Glu-Glu-Thr or immunogenic fragment or immunogenic peptide fragments that overlap with this fragment and isolation of the antibodies.

Abstract

The invention relates to the expression of the cDNA clone for sub-units a1
5 (hsGCa1) and b1 (hsGCb1) of human soluble guanylylcyclase and the
subsequent purification of the active enzyme and use thereof, the medical
application of the expression of this clone by gene transfer, in addition to
antibodies against peptides derived from said sequence and the use thereof.

Fig. 1

Figure 2

Figure 3**a: nucleotide insertions**

C95, C367, T891, G900, T903, G913, T1006, G1074, G1487, A1488, A1489, G2108, G2555, T2560

b: nucleotide deletions

T between G111 and T112, T between T2128 and G2129, T between G2975 and T2976

c: nucleotide exchanges

C1525>G, G2125>A

09 / 762767

4/28

Figure 4

A

PCR
determination
of hsGC α 1

B

PCR
determination
of hsGC β 1

Figure 5**pVL1393 Baculovirus Transfer Vector**

multiple cloning site (MCS) of pVL1393 with the unique restriction sites

Figure 6**pAcG2T Baculovirus Transfer Vector**

multiple cloning site (MCS) of pAcG2T downstream of glutathione-S-transferase sequence (GST) with the thrombin cleavage site and the unique restriction sites

Figure 7: Cloning of hsGC β in pVL1393

Primer: A 5' AAAA **GGATCC** ATGTACGGATTGTGAAT 3'
 BamHI (89) (116)

B 3' **CCATGG** GTCCCTTAGTGCCTA 5'
 (692) KpnI (711)

Figure 8: Cloning of hsGC α in pVL1393

Primer: C 5' AAAA **GGATCC** ATGTTCTGCACGAAGCTC 3'
(541)
BamHI (524)

D 3' GGAGGGACGAAGGTATT A 5'
(1249)
(1232)

09762767, 060101

09 / 762767

9 / 28

Figure 9

09762767, 060103
09 / 762767

10/28

Fig. 10

04762767
09/762767

11/28

Fig. 11

09762767, 060101

09 / 762767

12/28

Figure 12: Purification of GST-hsG α 1/beta1 on GSH-Sepharose
4B

Figure 13

Figure 14

09762767 060114
09 / 762767

15/28

Figure 15: Purification of hsGC $\alpha 1/\beta 1$ in a Coomassie stained SDS polyacrylamide gel

Figure 16: Construction of the hsGC-adenovectors

Figure 17:
Expression of human sGC in
adenovirus-infected EA.hy926
cells

09762767**Figure 18**

CCTTTATGGC GATTGGCGG CTGCAGAGAC CAGGACTCG TTCCCTGCC CTAGTCTGAG
 CCTAGTGGGT GGGACTCAGC TCAGAGTCAG TTTTCCAGAA GCAGGTTTCA GTGCAGAGTT
 TCCCTACACT TTCTCTGCCG TAGCAGCGC AGCAGCTGG AACAGACCA GGCGGAGGAC
 ACCCTGCGGG GAGGGAGGGC CTGGAGGAGC TTAGACGCC CAGCGGGGG TGACTTCACC
 ATGTGCGGT TTGGCAGGGC CGCCCTGGG CTGCTAGAGA TCCGGAACCA CAGCCCCGAG
 GTGTGCGGAAG CCACCAAGAC TGGGCTCTT GGAGAAAGCG TGAGCAGGGG GCCACCCGGG
 TCTCCCGCC TGTCTGCCG CTGCGGCCG AGCTGCCCTG CAGTGACAT GACATCCCAG
 TTACCACTGT CCTTGAATTG ATAGTGCCTT CTGTTTGTCA GTCTCATATA AGAACTACAG
 CTCTACAGGA GGAGATCGCA GCACGGTAAG ACAGACCAAAC ACCATGTTCT GCACGAAGCT
 CAAGGATCTC AAGATCACAG GAGACTTCC TTCTCTTCA CTGGCACAG GTCAAGTCCC
 TAACGAGCTT CAAGGAGGAG CAGCAGGAGC CTAGAGACGC TCCAAGGCA CCGTGCCTCAT
 CTGTCAGAGC ATTCTCTGAGA AGAACATACA AGAAACTCTT CCTCAAAGAA AAACCACTCG
 GAGCCGAGC TATCTTCATA CTTGGCAGA GAGTATTGCA AAACGTATT TCCCCAGAGTT
 TGAACCGCTG ATAGTGCAC TTAGCAGAAC ATTGGCAAG CACAAAATAA AGAAAGCAG
 GAAATTTTG GAAAGAGAA ACITTTGAAA AACAAATTGCA GAGCAAGCAG TTGCACAGGG
 AGTTCCATG AGGAGTTATCA AAGAATCTCT TGGTGAAGAG GTTTTTAAAAA TATGTTACGA
 GGAAGATGAA ACATCTCTTG GGGTGTGTTG AGGCACCCCTT AAAGATTTTT TAAACAGCTT
 CACTACCCCTT CTGAAACAGA GCAGGCTTCC CCAAGAACGA GGAAAAGGG GCAGGCTTGA
 GGACGCCCTC ATTCTATGCC TTGATAAGGA GGATGATTCTT CTACATGTTT ACTACTCTT
 CCTCTAGAGA AACATCTCTT TGATTTCTTCC CGGCATCATATA AAGGCAGCTG CTACAGTATT
 ATATGAACCC GAAGTGGAAAG TGTCTTTAAT GCTCTCTTCC TTCCATAATG ATTGCAGCGA
 GTTTGTGAAT CAGCCCTACT TGTGTTACTC CGITCACTAG AAAACCCACCA AGCCATCCCT
 GTCCCCCAGC AACCTCCAGT CCTCGCTGGT GATTCCCCACA TCGCTATTCT GCAAGACATT
 TCCATTCTCAT TTCACTGTTG ACAAAAGTAT GACAATTCTG CAATTTGGCA ATGGCATCAG
 AAGGCTGATG AACAGGAGAG ACTTTCAAGG AAAGCTTAAT TTGAAGAAT ACTTTGAAAT
 TCTGACTCCA AAAATCAACG AGACGTTTACG CGGGATCATG ACTATGTTGA ATATGCACTT
 TGTGTCAGCA GTGAGGAGT GGGACAATC TGTTGAAGAAA TTCTCAAGGG TTATGGACCT
 CAAAGGCCA ATGATCTACA TTGTTGGAATC CAGTGCATC TTGTTTTTTGG GGTACCCCTG
 TGTGGAAGACA TTAGAAGATT TTACAGGAGC AGGGCTCTAC CTCTCAGACA TCCCAATTCA
 CAATGCACTG AGGGATGCTG TTCTTAATGG GGAAACAGGC CGAGCTCAAG ATGGCTGAA
 GAAGAGGCTG GGGAAAGCTGA AGGCTACCTT TGAGCAAGCC CACCAAGCCC TTGGAGGAGA
 GAAGAAAAG ACAGTACCC TCTCTGCTC CATATTTCG TGTTGAGGTT CTCAGCAGCT
 GTGCAAGGG CAAGTGTGTC AGGCAAGAA GTTCAGTATG GTCACCATGC TCTCTCAGA
 CATGTTGGG TTCACTGCCA TCTGCTCCC TTGCTCACC CGTCAGCTCA TACCCATCT
 CAATGCACTG TACACTGCCT CGACCAAGCA GTGTTGGAGG CTGGATGCT ACAAGGTGGA
 GACCATGGC GATGCTTATT TGTTGAGCTT GGGATTACAC AAAGAGAGTG ATACTCATGC
 TGTTGAGATA GGCCTGATGG CCTCTGAGAT GTGAGGCTC TCTGATGAAAG TTATGTCCTC
 CCATGGAGAA CCTATCAAGA TCGCAATTG ACTGCACTTC GGATGATTGTT TTGCTGGCGT
 CGTTGGAGTT AAAATCCCCC GTTACTGCTT TTGTTGGAAAC AATGTCACTC TGGCTAACAA
 ATTTGAGTCC TTGCACTGTC CACGAAAGAA CAATGTCAGC CCACACACTT ACAGATTACT
 CAAAGACTGT CCTGGTTCTC TTCTTACCCC TCAGTCAAGG GAGGAACCTT CACCAAACTT
 CCCTAGTGAA ATCCCCGGAA TCTGCCATT TCTGGATGCT TACCAACAG GAACAAACTC
 AAAACCATGC TTCCAAAAGA AAAGATGTGGA AGATGCCAAT GCCAATTTTT TAGGCAAGC
 ATCAGGAATA GATTACAAAC CTATATACCT ATTATATAAGT CTTGGGGTT TGACTCATTC
 AAGATGTTA GAGCCTCTGA AAGCACTTA GGGATTGAG ATGGCTAACCA AGCAGTATTAA
 AAATTCAGG AGGCAAGTC CAATCTTCTT CCTCTTTAAC ATGACAAAT GTACTCACTT
 CAGTACTTCAG GCTCTTCAAG AAAAAGAAA AAACCTTAAAC AAACCTACTT TTGTTGGAGTA
 TTTCTATTAT ATAACACAGCA CTTACTACCT GTACTCAAA TTCAAGCACCT TGTACATATA
 TCAGATAATG TGAGTCAATT GTACAACTG ATGGGTCAC CTGCAACTTC ATATCCTGGT
 GGAATGCCAT GTTATTAAAG GTGTTTTGTG ATGAGTGTGCA TCACAAAAAA AAAA
 AAAAAAAA AAAAA

09/762767

19/28

Figure 19

Met Phe Cys Thr Lys Leu Lys Asp Leu Lys Ile Thr Gly Glu Cys Pro
Phe Ser Leu Leu Ala Pro Gly Gln Val Pro Asn Glu Ser Ser Glu Glu
Ala Ala Gly Ser Ser Glu Ser Cys Lys Ala Thr Val Pro Ile Cys Lys
Asp Ile Pro Glu Lys Asn Ile Glu Ser Leu Pro Gln Arg Lys Thr
Ser Arg Ser Arg Val Tyr Leu His Thr Leu Ala Glu Ser Ile Cys Lys
Leu Ile Phe Pro Glu Phe Glu Arg Leu Asn Val Ala Leu Glu Arg Thr
Leu Ala Lys His Ile Lys Glu Ser Arg Lys Ser Leu Glu Arg Glu
Asp Phe Glu Lys Thr Ile Ala Glu Gln Ala Val Ala Ala Gly Val Pro
Val Glu Val Ile Lys Glu Ser Leu Glu Glu Val Phe Lys Ile Cys
Tyr Glu Glu Asp Glu Asn Ile Leu Gly Val Val Gly Gly Thr Leu Lys
Asp Phe Leu Asn Ser Phe Ser Thr Leu Leu Lys Gln Ser Ser His Gln
Gln Glu Ala Gly Lys Arg Gly Arg Leu Glu Asp Ala Ser Ile Leu Cys
Leu Asp Lys Glu Asp Asp Phe Leu His Val Tyr Tyr Phe Phe Pro Lys
Arg Thr Thr Ser Leu Ile Leu Pro Gly Ile Ile Lys Ala Ala Ala His
Val Leu Tyr Glu Thr Glu Val Glu Val Ser Leu Met Pro Pro Cys Phe
His Asn Asp Cys Ser Glu Phe Val Asn Gln Pro Tyr Leu Leu Tyr Ser
Val His Met Lys Ser Thr Lys Pro Ser Leu Ser Pro Ser Lys Pro Gln
Ser Ser Leu Val Ile Pro Thr Ser Leu Phe Cys Lys Thr Phe Pro Phe
His Phe Met Phe Asp Lys Asp Met Thr Ile Leu Gln Phe Gly Asn Gly
Ile Arg Arg Leu Met Asn Arg Arg Asp Phe Gln Gly Lys Pro Asn Phe
Glu Glu Tyr Phe Glu Ile Leu Thr Pro Lys Ile Asn Gln Thr Phe Ser
Gly Ile Met Thr Met Leu Asn Met Gln Phe Val Val Arg Val Arg Arg
Trp Asp Asn Ser Val Lys Lys Ser Ser Arg Val Met Asp Leu Lys Gly
Gln Met Ile Tyr Ile Val Glu Ser Ser Ala Ile Leu Phe Leu Gly Ser
Pro Cys Val Asp Arg Leu Glu Asp Phe Thr Gly Arg Gly Leu Tyr Leu
Ser Asp Ile Pro Ile His Asn Ala Leu Arg Asp Val Val Leu Ile Gly
Glu Gln Ala Arg Ala Gln Asp Gly Leu Lys Lys Arg Leu Gly Lys Leu
Lys Ala Thr Leu Glu Gln Ala His Gln Ala Leu Glu Glu Lys Lys
Lys Thr Val Asp Leu Leu Cys Ser Ile Phe Pro Cys Glu Val Ala Gln
Gln Leu Trp Gln Gly Gln Val Val Gln Ala Lys Lys Phe Ser Asn Val
Thr Met Leu Phe Ser Asp Ile Val Gly Phe Thr Ala Ile Cys Ser Gln
Cys Ser Pro Leu Gln Val Ile Th Met Leu Asn Ala Leu Tyr Thr Arg
Phe Asp Gln Gln Cys Gly Glu Leu Asp Val Tyr Lys Val Glu Thr Ile
Gly Asp Ala Tyr Cys Val Ala Gly Gly Leu His Lys Glu Ser Asp Thr
His Ala Val Gln Ile Ala Leu Met Ala Leu Lys Met Met Glu Leu Ser
Asp Glu Val Met Ser Pro His Gly Glu Pro Ile Lys Met Arg Ile Gly
Leu His Ser Gly Ser Val Phe Ala Gly Val Gly Val Lys Met Pro
Arg Tyr Cys Leu Phe Gly Asn Asn Val Thr Leu Ala Asn Lys Phe Glu
Ser Cys Ser Val Pro Arg Lys Ile Asn Val Ser Pro Thr Tyr Arg
Leu Leu Lys Asp Cys Pro Gly Phe Val Phe Thr Pro Arg Ser Arg Glu
Glu Leu Pro Pro Asn Phe Pro Ser Glu Ile Pro Gly Ile Cys His Phe
Leu Asp Ala Tyr Gln Gln Gly Thr Asn Ser Lys Pro Cys Phe Gln Lys
Lys Asp Val Glu Asp Gly Asn Ala Asn Phe Leu Gly Lys Ala Ser Gly
Ile Asp End

09/762767

20/28

Figure 20

CCCCCCCCCG CGCCTGCCG CTCTGCCCTGG GTCCCTTCGG CGCTACCTCT CGCTGGGGCG
TGCTCTCCCG GCTCCCGGTAGACAGACCAT GTACGGATTG GTGAATCAGG CCCTGGAGTT
GCTGGTGAATC CGCAATTACCG GCCCCCAGGT GTGGGAGAC ATCAAAAAG AGGCACAGTT
AGATGAAGAA GGAGAGTTTC TTGTCAGAAT AAATAATGAT GACTCCAAA CTTATGATT
GGTTGCTGCT GCAAGCAAAG TCTCTAACAT CTAACTGGA GAAATCCTCC AAATGTTGG
GAAGATGTTT TTGCTCTTTT GCCAAGAATC TGTTATGAT ACAATCTGCG GTGCTCTGGG
CTCTAACATGIC AGAGAATTTTACAGAACCT TGATGCTCTG CACGACACC TTGCTACCAT
CTACCCAGGA ATGGCTGCCA CTTCCTTGTAG GTGCACTGAT GCAGAAAAGG CCAAGGACT
CATTCTGCAC TACTACTCG AGAGAGAAGG ACTTCAGGAT ATTGTCATG GAATCATCAA
AACACTGCCA CAACAAATCC ATGGCAGCTGA AAACAGACATG AAGGTTTAC ACCAAAGAAA
TGAAGAATGT GATCATACTC AATTTTTAT TGAAAGAAAA GAGTCAAAAG AAGGAGTT
TTATGAAGAT CTTGACAGAT TTGAAAGAAA TGGTACCCAG GAATCACCGA TCAGCCCTATA
TACATCTGCA AGAACCTTTT CTTTCTACAA AATATTGAC CGGGACCTG TGTCACTCA
GTGCTGCAAT GCTATACACAGA GTGCTCTCC CGACGCTCCAG CCTGGGAAATT GCAGCTCTCT
GTCTGCTCTTC TCGCTGGTTG TCCTCTCATG TGATATTAGT TTCCATGGGA TCCCTTCTCA
CATCAAAACT GTTTTGTAT TGAGAACCA GGAAGGATTG TTGGATGTGG AGAAATTAGA
ATGAGGAGT GAACGACTG GGAACGAGAT GAGCTCTTA CTCCTCAAGG GTCAAATGAT
CTACTTACCT GAAAGCAGAT GCTACATTTT TCATATGTC CCAACTGTCA TGAACTGGGA
CGATTGACA AGGAGAGGGC TGATATCAAG TGACATCCCT CTGATGATG CCACGGCGGA
TCTCTTCTT TTGGGAGAAC AATTTAGAGA GGAAATACAAA CTCACCCAGG AACTGGAAAT
CCTCACTGAC AGGCTCACCG TCACCTTAAG AGCCCTGGAA GATGAAAAAGA AAAAGACAGA
CACATCTGCTG TATTCGTCC TTCTCTCGTC TGTTGCCAAT GAGCTGGGG ACAGCGTCC
AGTGGAGGATC AAAAGATATG ACATGTGAC CATCCCTCTT AGTGGCATTTG TGGGCTTCAA
TCTCTTCTGT ACCAACAGATG CATCTGGAGA AGGACCCATG AAATGCTCA ACCTCTCAA
CGACCTCTAC ACCAGATTG ACACATGAC TGATTTCTGGG AAAAACCCTG TTGTTTATAA
GTTGGAGACT GTTGGTGAAC ACTATATGAC ACTGAGTGGT TTACAGAGG CATGCATTC
CCATGCCGA TCCATCTGCC ACCTGGCTT GGACATGATG GAAATTGCTG GCCAGGTTCA
AGTAGATGTT GAATCTCTTC AGATAACAT AGGGATACAC ACTGGAGAGG TAGTTACAGG
TGTCTATAGGA CAGGGATGTC CTGATGACT TCCTTTTGGG AATACTGTCA ACCTCACAAG
CCGAACACAGG ACCACAGGG AAAAGGAA AATAAATGTC TCTGAATATA CATAACAGATG
TCTTATGTC CCAGAAAATTT CAGATCCACA ATTCACCTTG GAGCACAGG GCCCCAGTGTG
CATGAAGGGC AAAAAGAAC CAACTGCAAGT TTGGTTCTA TCCAAAAAA ATACAGGAAC
AGAGGAACAA AAGCAGGATG ATGACTGAAT CTGGATGAT GGGGTGAAGA GGAGTACAGA
CTAGGTTCCA GTTCTCTCTT AACACGTCGAA GAGCCAGGA CGAGTTCTT CCTATGGATA
CAGATTTCTT TTGCTCTTTC TCCATTACCG CAAGACTTTC TTCTAGATPAT ATCTCTCACT
ATCCGTTATT CAACCTTAGC TCTGCTTCTT ATTACTTTT AGGCTTGTAGT ATATATCTA
AAGTTGGCT TTGATGTGG ATGATGTGAG CTTCATGTCG CITAAATCTT ACTACAGCA
TTACCTAACAA TGGTGTACTG CAAGACTGAG GCACCCATAA ATATTTGTT GAATTGTT
AAATGAAACT GAACAGTGTG TGGCCATGTG TATATTTATA TCATOTTTAC CAAATCTGTT
TAGTGTCTCA CATATATGTA TATGTATATT TTAAATGACTA TAATGTAATA AAGTTTATA
CATGTTGGTG TATATCTTAA TAGAAATCAT TTCTAAAGG AGT

09/26/2013

21/28

Figure 21

Met Tyr Gly Phe Val Asn His Ala Leu Glu Leu Leu Val Ile Arg Asn
 Tyr Gly Pro Glu Val Trp Glu Asp Ile Lys Lys Glu Ala Gln Leu Asp
 Glu Glu Gly Gln Phe Leu Val Arg Ile Ile Tyr Asp Asp Ser Lys Thr
 Tyr Asp Leu Val Ala Ala Ala Ser Lys Val Leu Asn Leu Asn Ala Gly
 Glu Ile Leu Gln Met Phe Gly Lys Met Phe Val Phe Cys Gln Glu
 Ser Gly Tyr Asp Thr Ile Leu Arg Val Leu Gly Ser Asn Val Arg Glu
 Phe Leu Gln Asn Leu Asp Ala Leu His Asp His Leu Ala Thr Ile Tyr
 Pro Gly Met Arg Ala Pro Ser Phe Arg Cys Thr Asp Ala Glu Lys GLY
 Lys Gly Leu Ile Leu His Tyr Tyr Ser Glu Arg Glu Gly Leu Gln Asp
 Ile Val Ile Gly Ile Ile Lys Thr Val Ala Gln Gln Ile His Gly Thr
 Glu Ile Asp Met Lys Val Ile Gln Gln Arg Asn Glu Glu Cys Asp His
 Thr Gln Phe Leu Ile Glu Glu Lys Glu Ser Lys Glu Glu Asp Phe Tyr
 Glu Asp Leu Asp Arg Phe Glu Glu Asn Gly Thr Gln Glu Ser Arg Ile
 Ser Pro Tyr Thr Phe Cys Lys Ala Phe Pro Phe His Ile Ile Phe Asp
 Arg Asp Leu Val Val Thr Gln Cys Gly Asn Ala Ile Tyr Arg Val Leu
 Pro Gln Leu Gln Pro Gly Asn Cys Ser Leu Leu Ser Val Phe Ser Leu
 Val Arg Pro His Ile Asp Ile Ser Phe His Gly Ile Leu Ser His Ile
 Asn Thr Val Phe Val Leu Arg Ser Lys Glu Gly Leu Leu Asp Val Glu
 Lys Leu Glu Cys Glu Asp Glu Leu Thr Gly Thr Glu Ile Ser Cys Leu
 Arg Leu Lys Gly Gln Met Ile Tyr Leu Pro Glu Ala Asp Ser Ile Leu
 Phe Leu Cys Ser Pro Ser Val Met Asn Leu Asp Asp Leu Thr Arg Arg
 Gly Leu Tyr Leu Ser Asp Ile Pro Leu His Asp Ala Thr Arg Asp Leu
 Val Leu Leu Gly Glu Gln Phe Arg Glu Gln Tyr Lys Leu Thr Gln Glu
 Leu Glu Ile Leu Thr Asp Arg Leu Gln Leu Thr Leu Arg Ala Leu Glu
 Asp Glu Lys Lys Thr Asp Thr Leu Leu Tyr Ser Val Leu Pro Pro
 Ser Val Ala Asn Glu Leu Arg His Lys Arg Pro Val Pro Ala Lys Arg
 Tyr Asp Asn Val Thr Ile Leu Phe Ser Gly Ile Val Gly Phe Asn Ala
 Phe Cys Ser Lys His Ala Ser Gly Glu Gly Ala Met Lys Ile Val Asn
 Leu Leu Asn Asp Leu Tyr Thr Arg Phe Asp Thr Leu Thr Asp Ser Arg
 Lys Asn Pro Phe Val Tyr Lys Val Glu Thr Val Gly Asp Lys Tyr Met
 Thr Val Ser Gly Leu Pro Glu Pro Cys Ile His His Ala Arg Ser Ile
 Cys His Leu Ala Leu Asp Met Met Glu Ile Ala Gly Gln Val Glu Val
 Asp Gly Glu Ser Val Gln Ile Thr Ile Gly Ile His Thr Gly Glu Val
 Val Thr Gly Val Ile Gly Gln Arg Met Pro Arg Tyr Cys Leu Phe GLY
 Asn Thr Val Asn Leu Thr Ser Arg Thr Glu Thr Thr Gly Glu Lys Gly
 Lys Ile Asn Val Ser Glu Tyr Thr Tyr Arg Cys Leu Met Ser Pro Glu
 Asn Ser Asp Pro Glu Phe His Leu Glu His Arg Gly Pro Val Ser Met
 Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
 Thr Gly Thr Glu Glu Thr Lys Gln Asp Asp Asp end

09/762767

22/28

Figure 22

Phe Thr Pro Arg Ser Arg Glu Glu Leu Pro Pro Asn Phe Pro

Figure 23

Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
Thr Gly Thr Glu Glu Thr

09762767 060101

23/28

Figure 24

upper primer

AAAAGGATCC ATGTTCTGCA CGAAGCTC

lower primer

ATTATGGAAG CAGGGAGG

Figure 25

upper primer

AAAAGGATCC ATGTACGGAT TTGTGAAT

lower primer

ATGCGTGATT CCTGGGTACC

09/762767

24/28

Figure 26

Figure 27

Figure 28

Figure 29

09 / 762767

28/28

Figure 30

DECLARATION FOR UTILITY OR DESIGN PATENT APPLICATION (37 CFR 1.63)		Attorney Docket Number	VOS-101
		First Named Inventor	SCHMIDT, Harald
COMPLETE IF KNOWN			
		Application Number	09/762,767
		Filing Date	August 16, 1999
		Group Art Unit	
		Examiner Name	

As a below named inventor, I hereby declare that:

My residence, post office address, and citizenship are as stated below next to my name.

I believe I am the original, first, and sole inventor (if only one name is listed) or an original, first, and joint inventor (if more than one name is listed) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

the specification of which:

is attached hereto;
 was filed on August 16, 1999 as United States Application Number or PCT International Application Number PCT/DE99/02601 and was amended on September 5, 2000.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability of this application, as defined in 37 CFR 1.56.

I hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or of any PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application Number(s)	Country	Foreign Filing Date (MM/DD/YYYY)	Priority Not Claimed	Certified Copy Attached? YES NO
198 37 015.6	Germany	08/14/98	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>

Additional foreign application numbers are listed on a supplemental priority data sheet attached hereto.

I hereby claim the benefits under 35 U.S.C. 119(e) of any United States provisional application listed below.

Application Number(s)	Foreign Filing Date (MM/DD/YYYY)	<input type="checkbox"/> Additional provisional application numbers are listed on a supplemental priority data sheet attached hereto.

DECLARATION**- Utility or Design Patent Application**

I hereby claim the benefit under 35 U.S.C. 120 of any United States application(s), or 365(c) of any PCT international application designating the United States of America, listed below, and, insofar as the subject matter of each of such claims this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35 U.S.C., 112, I acknowledge the duty to disclose information which is material to patentability, as defined in 37 C.F.R. 1.56, which became available between the filing date of the prior application and the national or PCT international filing date of this application.

U.S. Parent Application or PCT Parent Number	Parent Filing Date (MM/DD/YYYY)	Parent Patent Number (if applicable)

Additional U.S. or PCT international application numbers are listed on a supplemental priority data sheet attached hereto.

As a named inventor, I hereby appoint the following registered practitioner(s) to prosecute this application and to transact all business connected therewith in the Patent and Trademark Office:

Customer Number _____ or Registered Practitioner(s) name/registration numbers listed below

Name	Registration Number	Name	Registration Number
Arne M. Olson	<u>30,203</u>	Michael A. Hierl	<u>29,807</u>
Dolores T. Kenney	<u>31,269</u>	Talivaldis Cepuritis	<u>20,818</u>
Seymour Rothstein	<u>19,369</u>	Daniel J. Deneufbourg	<u>33,675</u>

Additional registered practitioner(s) named on supplemental Registered Practitioner Information sheet attached hereto.

Direct all correspondence to: Customer Number _____ or Correspondence address below

Name CEPURITIS, Talivaldis
OLSON & HIERL, LTD.

Address 20 North Wacker Drive, 36th Floor

City Chicago State IL ZIP 60606

Country US Telephone (312) 580-1180 Fax (312) 580-1189

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Name of Sole or First Inventor: A petition has been filed for this unsigned inventor

Given Name (first and middle, if any) _____ Family Name or Surname _____

60 Harald SCHMIDT

Inventor's signature Bachm W Date: 4/3/01

Residence City Wiesbaden State _____ Country DE Citizenship DE

Post Office Address Langen Gräfein 26 Arndtstr. 14

City Wiesbaden State _____ ZIP 65078 DE ZIP 35392 DE Citizenship DE

Additional inventors are being named on the 1 supplemental Additional Inventor(s) Sheet(s) attached hereto

DEX

DECLARATION**ADDITIONAL INVENTOR(S)
Supplemental Sheet**

Page 1 of 1

Name of Additional Joint Inventor, if any:		<input type="checkbox"/> A petition has been filed for this unsigned inventor		
Given Name (first and middle, if any)		Family Name or Surname		
2- c) Inventor's signature	<u>Ulrike Zabel</u>			Date: <u>4/27/01</u>
Residence	City <u>Rottendorf</u>	State	Country DE	Citizenship DE
Post Office Address	<u>Am Seelein 26</u>			
City Rottendorf		State	ZIP 97228	Citizenship DE
Name of Additional Joint Inventor, if any:		<input type="checkbox"/> A petition has been filed for this unsigned inventor		
Given Name (first and middle, if any)		Family Name or Surname		
3- c) Inventor's signature	<u>Wolfgang Poller</u>			Date: <u>5/8/01</u>
Residence	City Berlin <u>Berlin 14612 Falkensee</u>	State	Country DE	Citizenship DE
Post Office Address	<u>Hippokratstrasse 161 Roterbecke Weg 43C</u>			
City Berlin		State	ZIP 12469	Citizenship DE
Name of Additional Joint Inventor, if any:		<input type="checkbox"/> A petition has been filed for this unsigned inventor		
Given Name (first and middle, if any)		Family Name or Surname		
Inventor's signature				Date:
Residence	City	State	Country	Citizenship
Post Office Address				
City		State	ZIP	Citizenship

DECLARATION		REGISTERED PRACTITIONER INFORMATION (Supplemental Sheet)	
Name	Reg. No.	Name	Reg. No.
Joseph M. Kuo Martin J. Corn Richard L. Robertson David A. Gottardo Robert J. Ross	38,943. 35,847. 31,415. 46,736. <u>45,058</u>		

SEQUENCE LISTING

<110> SCHMIDT, Harald
ZABEL, Ulrike
POLLER, Wolfgang

<120> Isolated and Purified Human Soluble
Guanylylcyclase alpha 1/beta 1 (hsGCalphal/beta 1)

<130> VOS-101

<140> US 09/762,767
<141> 2001-02-13

<150> PCT/DE99/02601
<151> 1999-08-16

<150> DE 198 37 015.6
<151> 1998-08-14

<160> 10

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3015
<212> DNA
<213> genomic DNA

<400> 1
cccttatggc gattggcg ctcgagagac caggactcg tttccctgc ctatgtcttag 60
ccatgtgggt gggactcagc tcagactcgat tttcccgaaa gcaaggtttca gtgcagagg 120
ttcttactact ttccctgcgc tagaggcagc acgacgttgg aacagacccaa ggccggggac 180
acctgtgggg gaggagcgcg ctggaggagc tttagagaccc cagccggcg tgatctccacc 240
atgtgcggat ttgcggggcg cgccccggag ctgtcttagaga tccggaaagca cagccccgag 300
gtgtgcgaag ccaccaaaagc tgccggctttt ggagaaaaacgc tgacgggggg gcacacgggg 360
tcccccgcgc tgcgtgcacc ctgtcgcttg agctgccttg caagtgcacat gacatcccg 420
ttaccatgtt ctgtttatgg atatgtgtttt ctgtttgtca gtctcatata agaactacag 480
ctcatcgaga ggagatcgcc gcagggttaag agacaccaaa accatgtttt gcacgaagct 540
caaggatctc aagatccacag gagatgttcc ttcttcctta ctggcacccag gtaaagtcc 600
taacgagttc tcaagaggagg cagcaggaaat ctcagagacg tcaaagcaaa ccgtgccccat 660
ctgtcaagac attccgttgcgaa agaacatatac aaaaatgtttt cttccaaagaa aaaccatgtcg 720
gagcccgatgc tatccatcaca ctggccgcaga gagatatttgc aaacctgttcc tcccaaggatgtt 780
tgaacggctgt aatgttgcac ttccagaaatc atggcaaaatg cacaatataa aagaagcag 840
gaaatcttgc gaaagagaag actttggaaaa aacaaatgtca ggcacccggatggc ttgcggcagg 900
agtccatgtt gagggttatac aagaatctt tggtaaagat gttttttttaaatgttacgt 960
ggaaatgttgc aacatcttcgg ggggtttttgg aggacccctt aaagatttt taaaacatgtt 1020
cagttacccctt ctggaaacaga gacggccatgg ccaagaacgc gggaaaaaggg gcaggctgtca 1080
ggacgcctcc attctatgtcc tgatccatggaa ggatgtttt ctatcatgtt actatctttt 1140
ccctaagaga accacccccc tgatcttcc cggccatata aaggcagctgc ctccacgtt 1200
atatggaaacgc gaaatgttgcggatgg tggatgttgc ttccatataatg attcgcggatgg 1260
gttttgtatc cagccctact tggatgttgc tggccatcatc aaaaacccca accatccct 1320

gtccccccagc aaaccccaagt ctcgctgg tattccaca tgcattttct gcaagacatt 1380
 tcctatccat ttcatgttgc acaaagat gaaatcttc caatttggca atggcatcg 1440
 aaggctatgat aacaggagag acctttcaagg aaaggctta ttgaagaat acttggaaat 1500
 tctgactcca aaaatcaacc agacgtttag cgggatcatg actatgttg atatgtcagg 1560
 tggtgttacga gtgaggagat gggacaactc ttgtgaagaa ttgtcaaggg ttatggacct 1620
 caaaggccaa atgtatccata ttgttgaate cagtgcatac ttgttttgg ggtcacccctg 1680
 tgtggacaga ttagaagatt ttacaggacg agggtctac ctctcagaca tcccaattca 1740
 caatgcactg agggtgtgg ttctaatagg ggaaacaagcc cgagctcaag atggctgaa 1800
 gaagaggctg gggaaatgtga aggttacccct tgagaacgccc caccaaaggcc 1860
 gaagaaaaag acatgatgcc ttctgtgtc catatttccc ttgtgaggtagt ctccagcactg 1920
 gtggcaaggaa caatgttgc aggcaaaagaa ttgtcaataat gtcacccatgc tttttcaga 1980
 catcggttggg ttcaactgcca ttctgtccca ttgtctccca ttgcacccgg ctgcaggctca ttccatgtc 2040
 caatgcactg tacatgtcgat ttgcacccga gtgtggagag ctgtatgtctt acaagggtgg 2100
 gatcgatgg gatgttcattt ttgtatgtgg ggatttacaa aaagagatgt atactatgtc 2160
 ttgttcagata ggcgtgtgg ctcttgcataatgg agtgcgttc ttgtatgtgg 2220
 ccatggagaa ctatcaaaat tgcaatgttgc actgtcgttgc ttgtatgtgg 2280
 cttgtggatggg aaaaatgtcccc ttgttggaaa aatgttacttc ttgtcaacaa 2340
 atttgtgtcc ttgcgtgtac caatggaaat caatgtcagc ccaacaactt acagattact 2400
 caaagactgt ctgtgttgc ttgttacccca ttgtatgtgg gggaaacttc caccaactt 2460
 ccctgtatggaa atccccggaa ttgcgttgcattt ttgtatgtgtc ttccaaacaag gaaacaactc 2520
 aaaaactatgc ttccaaaaga aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc 2580
 atcaggatata gatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc 2640
 aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc 2700
 aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc 2760
 cttgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc aatgttgc 2820
 ttcttattat ttacccatca ttctacttactt gtactcaaaa ttccacactt ttgtatata 2880
 tcagataatt ttgtatgttgc ttacaaactt gtggatgttgc atggatgttgc ttccaaatctc atatcttgc 2940
 ggaatgtccat gtttattttttt ttgtgtttttt gatgtgttgc ttccaaaaaaa aaaaaaaaaaa 3000
 aaaaaaaaaa aaaaaa 3015

<210> 2

<211> 690

<212> PRT

<213> human soluble guanylyl cyclase al (hsGCal)

<400> 2

Met	Phe	Cys	Thr	Lys	Leu	Lys	Asp	Leu	Lys	Ile	Thr	Gly	Glu	Cys	Pro
1															15
Phe	Ser	Leu	Leu	Ala	Pro	Gly	Gln	Val	Pro	Asn	Glu	Ser	Ser	Glu	
															25
															30
Ala	Ala	Gly	Ser	Ser	Glu	Ser	Cys	Lys	Ala	Thr	Val	Pro	Ile	Cys	Gln
															35
Asp	Ile	Pro	Glu	Lys	Asn	Ile	Gln	Glu	Ser	Leu	Pro	Gln	Arg	Lys	Thr
															50
															55
Ser	Arg	Ser	Arg	Val	Tyr	Leu	His	Thr	Leu	Ala	Glu	Ser	Ile	Cys	Lys
															65
Leu	Ile	Phe	Pro	Glu	Phe	Glu	Arg	Leu	Asn	Val	Ala	Leu	Gln	Arg	Thr
															85
Leu	Ala	Lys	His	Lys	Ile	Lys	Glu	Ser	Arg	Lys	Ser	Leu	Glu	Arg	Glu
															100
Asp	Phe	Glu	Lys	Thr	Ile	Ala	Glu	Gln	Ala	Val	Ala	Ala	Gly	Val	Pro
															115
Val	Glu	Val	Ile	Lys	Glu	Ser	Leu	Gly	Glu	Glu	Val	Phe	Lys	Ile	Cys
															130
Tyr	Glu	Glu	Asp	Glu	Asn	Ile	Leu	Gly	Val	Val	Gly	Gly	Thr	Leu	Lys
															135
															140

145	150	155	160
Asp Phe Leu Asn Ser Phe Ser Thr Leu Leu Lys Gln Ser Ser His Cys			
165	170	175	
Gln Glu Ala Gly Lys Arg Gly Arg Leu Glu Asp Ala Ser Ile Leu Cys			
180	185	190	
Leu Asp Lys Glu Asp Asp Phe Leu His Val Tyr Tyr Phe Pro Lys			
195	200	205	
Arg Thr Thr Ser Leu Ile Leu Pro Gly Ile Ile Lys Ala Ala Ala His			
210	215	220	
Val Leu Tyr Glu Thr Glu Val Glu Val Ser Leu Met Pro Pro Cys Phe			
225	230	235	240
His Asn Asp Cys Ser Glu Phe Val Asn Gln Pro Tyr Leu Leu Tyr Ser			
245	250	255	
Val His Met Lys Ser Thr Lys Pro Ser Leu Ser Pro Ser Lys Pro Gln			
260	265	270	
Ser Ser Leu Val Ile Pro Thr Ser Leu Phe Cys Lys Thr Phe Pro Phe			
275	280	285	
His Phe Met Phe Asp Lys Asp Met Thr Ile Leu Gln Phe Gly Asn Gly			
290	295	300	
Ile Arg Arg Leu Met Asn Arg Arg Asp Phe Gln Gly Lys Pro Asn Phe			
305	310	315	320
Glu Glu Tyr Phe Glu Ile Leu Thr Pro Lys Ile Asn Gln Thr Phe Ser			
325	330	335	
Gly Ile Met Thr Met Leu Asn Met Gln Phe Val Val Arg Val Arg Arg			
340	345	350	
Trp Asp Asn Ser Val Lys Lys Ser Ser Arg Val Met Asp Leu Lys Gly			
355	360	365	
Gln Met Ile Tyr Ile Val Glu Ser Ser Ala Ile Leu Phe Leu Gly Ser			
370	375	380	
Pro Cys Val Asp Arg Leu Glu Asp Phe Thr Gly Arg Gly Leu Tyr Leu			
385	390	395	400
Ser Asp Ile Pro Ile His Asn Ala Leu Arg Asp Val Val Leu Ile Gly			
405	410	415	
Glu Gln Ala Arg Ala Gln Asp Gly Leu Lys Lys Arg Leu Gly Lys Leu			
420	425	430	
Lys Ala Thr Leu Glu Gln Ala His Gln Ala Leu Glu Glu Lys Lys			
435	440	445	
Lys Thr Val Asp Leu Leu Cys Ser Ile Phe Pro Cys Glu Val Ala Gln			
450	455	460	
Gln Leu Trp Gln Gly Gln Val Val Gln Ala Lys Lys Phe Ser Asn Val			
465	470	475	480
Thr Met Leu Phe Ser Asp Ile Val Gly Phe Thr Ala Ile Cys Ser Gln			
485	490	495	
Cys Ser Pro Leu Gln Val Ile Thr Met Leu Asn Ala Leu Tyr Thr Arg			
500	505	510	
Phe Asp Gln Gln Cys Gly Glu Leu Asp Val Tyr Lys Val Glu Thr Ile			
515	520	525	
Gly Asp Ala Tyr Cys Val Ala Gly Gly Leu His Lys Glu Ser Asp Thr			
530	535	540	
His Ala Val Gln Ile Ala Leu Met Ala Leu Lys Met Met Glu Leu Ser			
545	550	555	560
Asp Glu Val Met Ser Pro His Gly Glu Pro Ile Lys Met Arg Ile Gly			
565	570	575	
Leu His Ser Gly Ser Val Phe Ala Gly Val Val Gly Val Lys Met Pro			
580	585	590	

```
<210> 3
<211> 2443
<212> DNA
<213> genomic DNA
```

ctaggttcca	gtttttcct	aacacgtgcc	aaagcccaagga	gcagtttcttc	octatggata	2040
cagattttct	tttgttcctt	tccattttacc	caacgacttc	ttttcatatgt	atcttcact	2100
atccgttatt	ccatccatgc	tctgtttttttt	atattttttt	aggcttttttt	atattatcta	2160
aagttttgtt	tttgatgtgg	atgtatgttag	cttcatgtgt	tttttttttttt	actacaagca	2220
ttacatcaaca	ttgtgtatctg	caatgtatgc	tttttttttttt	tttttttttttt	tttttttttttt	2280
aatatggaaat	gaacatgttt	ttggccatgtt	tttttttttttt	tttttttttttt	tttttttttttt	2340
tagttgttcca	cataatgtttt	ttatgtatattt	tttttttttttt	tttttttttttt	tttttttttttt	2400
cataatgtttt	ttttatccat	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	2443

<210> 4
<211> 619

<212> PRT
<213> (human soluble guanylyl cyclase b1 (hsGCB1))

<400> 4
 Met Tyr Gly Phe Val Asn His Ala Leu Glu Leu Leu Val Ile Arg Asn
 1 5 10 15
 Tyr Gly Pro Glu Val Trp Glu Asp Ile Lys Lys Glu Ala Gln Leu Asp
 20 25 30
 Glu Glu Gly Gln Phe Leu Val Arg Ile Ile Tyr Asp Asp Ser Lys Thr
 35 40 45
 Tyr Asp Leu Val Ala Ala Ser Lys Val Leu Asn Leu Asn Ala Gly
 50 55 60
 Glu Ile Leu Gln Met Phe Gly Lys Met Phe Phe Val Phe Cys Gln Glu
 65 70 75 80
 Ser Gly Tyr Asp Thr Ile Leu Arg Val Leu Gly Ser Asn Val Arg Glu
 85 90 95
 Phe Leu Gln Asn Leu Asp Ala Leu His Asp His Leu Ala Thr Ile Tyr
 100 105 110
 Pro Gly Met Arg Ala Pro Ser Phe Arg Cys Thr Asp Ala Glu Lys Gly
 115 120 125
 Lys Gly Leu Ile Leu His Tyr Tyr Ser Glu Arg Glu Gly Leu Gln Asp
 130 135 140
 Ile Val Ile Gly Ile Ile Lys Thr Val Ala Gln Gln Ile His Gly Thr
 145 150 155 160
 Glu Ile Asp Met Lys Val Ile Gln Gln Arg Asn Glu Glu Cys Asp His
 165 170 175
 Thr Glu Phe Leu Ile Glu Glu Lys Glu Ser Lys Glu Glu Asp Phe Tyr
 180 185 190
 Glu Asp Leu Asp Arg Phe Glu Glu Asn Gly Thr Gln Glu Ser Arg Ile
 195 200 205
 Ser Pro Tyr Thr Phe Cys Lys Ala Phe Pro Phe His Ile Ile Phe Asp
 210 215 220
 Arg Asp Leu Val Val Thr Gln Cys Gly Asn Ala Ile Tyr Arg Val Leu
 225 230 235 240
 Pro Gln Leu Gln Pro Gly Asn Cys Ser Leu Leu Ser Val Phe Ser Leu
 245 250 255
 Val Arg Pro His Ile Asp Ile Ser Phe His Gly Ile Leu Ser His Ile
 260 265 270
 Asn Thr Val Phe Val Leu Arg Ser Lys Glu Gly Leu Leu Asp Val Glu
 275 280 285
 Lys Leu Glu Cys Glu Asp Glu Leu Thr Gly Thr Glu Ile Ser Cys Leu
 290 295 300
 Arg Leu Lys Gly Gln Met Ile Tyr Leu Pro Glu Ala Asp Ser Ile Leu
 305 310 315 320

Phe Leu Cys Ser Pro Ser Val Met Asn Leu Asp Asp Leu Thr Arg Arg
 325 330 335
 Gly Leu Tyr Leu Ser Asp Ile Pro Leu His Asp Ala Thr Arg Asp Leu
 340 345 350
 Val Leu Leu Gly Glu Gln Phe Arg Glu Glu Tyr Lys Leu Thr Gln Glu
 355 360 365
 Leu Glu Ile Leu Thr Asp Arg Leu Gln Leu Thr Leu Arg Ala Leu Glu
 370 375 380
 Asp Glu Lys Lys Lys Thr Asp Thr Leu Leu Tyr Ser Val Leu Pro Pro
 385 390 395 400
 Ser Val Ala Asn Glu Leu Arg His Lys Arg Pro Val Pro Ala Lys Arg
 405 410 415
 Tyr Asp Asn Val Thr Ile Leu Phe Ser Gly Ile Val Gly Phe Asn Ala
 420 425 430
 Phe Cys Ser Lys His Ala Ser Gly Glu Gly Ala Met Lys Ile Val Asn
 435 440 445
 Leu Leu Asn Asp Leu Tyr Thr Arg Phe Asp Thr Leu Thr Asp Ser Arg
 450 455 460
 Lys Asn Pro Phe Val Tyr Lys Val Glu Thr Val Gly Asp Lys Tyr Met
 465 470 475 480
 Thr Val Ser Gly Leu Pro Glu Pro Cys Ile His His Ala Arg Ser Ile
 485 490 495
 Cys His Leu Ala Leu Asp Met Met Glu Ile Ala Gly Gln Val Gln Val
 500 505 510
 Asp Gly Glu Ser Val Gln Ile Thr Ile Gly Ile His Thr Gly Glu Val
 515 520 525
 Val Thr Gly Val Ile Gly Gln Arg Met Pro Arg Tyr Cys Leu Phe Gly
 530 535 540
 Asn Thr Val Asn Leu Thr Ser Arg Thr Glu Thr Thr Gly Glu Lys Gly
 545 550 555 560
 Lys Ile Asn Val Ser Glu Tyr Thr Tyr Arg Cys Leu Met Ser Pro Glu
 565 570 575
 Asn Ser Asp Pro Gln Phe His Leu Glu His Arg Gly Pro Val Ser Met
 580 585 590
 Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
 595 600 605
 Thr Gly Thr Glu Glu Thr Lys Gln Asp Asp Asp
 610 615

<210> 5
<211> 14
<212> PRT
<213> peptide (amino acids 634-647 of hsGCal)

<400> 5
Phe Thr Pro Arg Ser Arg Glu Glu Leu Pro Pro Asn Phe Pro
 1 5 10

<210> 6
<211> 22
<212> PRT
<213> peptide (amino acids 593-614 of hsGCb1)

```

<400> 6
Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
          5                   10                      15
1          5
Thr Gly Thr Glu Glu Thr
          20

```

```
<210> 7  
<211> 28  
<212> DNA  
<213> genomic DNA
```

<400> 7
aaaaggatcc atgttctgca cgaagctc 28

```
<210> 8
<211> 18
<212> DNA
<213> genomic DNA
```

<400> 8
attatggaaag caggagg 18

<210> 9
<211> 28
<212> DNA
<213> genomic DNA

<400> 9
aaaaqqatcc atgtacqqat ttgtqaat 28

<210> 10
<211> 20
<212> DNA
<213> genomic DNA

<400> 10
atgcgtgatt cctgggtacc 20

09762767-060103
09 / 762767
PTO/PCT Rec'd 01 JUN 2001

1

#3

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANTS:

SCHMIDT, Harald
ZABEL, Ulrike
POLLER, Wolfgang

5

(ii) TITLE OF THE INVENTION: Isolated and purified human soluble
guanylyl cyclase al/B1 (hsGcal/B1)

10

(iii) VOS-101

(iv) US 09/762,767
2001-02-13

15

(iv) PCT/DE99/02601
1999-08-16

20

(iv) DE 198 37 015.6
1998-08-14

(v) NUMBER OF SEQUENCES: 10

(vi) COMPUTER-READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

30

(2) DATA TO SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3015 basepairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: doublestrand
(D) TOPOLOGY: linear

35

(ii) MOLECULE TYPE: genomic DNA

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCCTTATGGC	GATTGGCGG	CTGCAGAGAC	CAGGACTCG	TTCCTCTGCC	CTAGTCTGAG	60
CTCTAGGGT	GGGACTCAGC	TCAGACTCG	TTTCCCAAAG	GCAGGTTTCA	GTGCGAGAGTT	120
TTCCTACACT	TTTCTCTGCC	TAGAGCAGGG	AGCACCTTG	AACAGACCCA	GGCGGAGGAC	180
ACCTGTGGGG	GAGGGAGGCG	CTGGAGGAGC	TTAGAGGACCG	CAGCCGGGG	TGATCTCACC	240
ATGTGGGAT	TTGGCAGGGC	CGCCCTGGAG	CTGCTAGAGA	TGGAAAGCGA	CAGCCCCGAG	300
GTGTGCGAAG	CCACCAAGAC	TGCGGCTCTT	GGRAAAGCG	TGRCAGGGG	GGCACCGGCG	360
TCTCCGGCG	TGTGCGCAC	CTGTCGCCCTG	AGCTGCCTGA	CAGTGCAAT	GACATCCCAG	420
TTAACCAAGTGT	CCTTGAATTG	ATAGTGGCTT	CTGTTTGTCA	GTCTCATATA	AGAACTACAG	480
CTCATCAGGA	GGAGATCGGC	CGAGGGTAAG	AGACACCAAAC	ACCATGTTCT	GCAGGAAGCT	540
CAAGGATCTC	AAAGATCACAG	GAGAGTGTCC	TTTCTCTTCA	CTGGCACCG	GTCAAAGTTCC	600
TAACGAGTCT	TCAGAGGGG	CAGCAGGAAG	CTCAGAGAGC	TGCAAAAGCAA	CCGTGCCCAT	660
CTGTCAAAGAC	ATTCTCTGAGA	RGACRATACA	AGAAAAGCTT	CCTCAAAAGGA	AAACCACTCG	720
GAGCCGAGTC	TATCTTCACA	CTTGGCAGA	GAGTATTGTC	AAACTGTTT	TCCAGAGTT	780
TGAACGGCTG	AAATTTGCAC	TTCAAGAGAAC	ATTTGCAARAG	CACAAATTA	AGAAAGCAG	840
55	GAATATCTTG	GAARAGAGAAC	ACTTTGAAAAA	AAACATTGCA	GAGCAAGCAG	900
AGTTCCAGTG	GAGGGATATCA	AAAGAATCTCT	TTGGTAAGAG	GTTTTTAAAAA	TATGTTAACGA	960
GGAAAGATGAA	AACATCTCTG	GGGTGGTTGG	AGGCACCCCTT	AAAGATTTT	AAACAGCTT	1020
CACTACCCCTT	CTGAAACAGCA	CGACGCTTGTG	CCAAAGAGCA	GGAAAAAGGG	GCAGGCTTGA	1080
60	GGACGCCCTC	ATTCTATGCC	TGGATRAAGGA	GGATGTTT	CTCACATTT	1140
CCCTAAAGAGA	ACCACCTCCC	TGATTCTTCC	CGGCATCAT	AAAGGAGCTG	CTCACGTATT	1200
ATATGAGGAA	GAAGTGGAG	TGTCGTTAAT	GCCTCTCTGC	TTCCATAATG	ATTCAGCAGGA	1260
TTTTGTAAT	CAGCCCTACT	TGTTGACTC	CGTTCCACAT	AAAAGACCA	AGCCATCCCT	1320
GTCCCCCAGC	AAACCCCAAGT	CCTCGTGGT	GATTCCCACA	TGCCTATTCT	GCAAGACATT	1380

	TCCATTCCAT	TTCATGTTG	ACAAAGATAT	GACAATTCTG	CAATTGGCA	ATGGCATCAG	1440
	AAGGGCTATG	ACACCGAGAG	ACTTTCAGG	AAAGCTTCAAT	TTTGAAGATA	ACTTGTGAAAT	1500
	TCTGACTCCC	AAAATCAACC	ACAGCTTGA	CGGGATCATG	ACTATGTTGA	ATATCGGACT	1560
5	TCTTGTCAGA	GTGAGGAGAT	GGGACCACTC	TGTAAAGRAA	TCTTCARGGG	TTATGGACCT	1620
	CAAAAGCCCA	ATGATCTACA	TTGTTGATC	GTGCGCATC	TTGTTTGGG	GTCACCCCTG	1680
	TCTGGCACCAA	TTAGAACGAT	TTACAGGAG	AGGGCTCTAC	CTCTCAGACAG	CAAACTTCA	1740
	CAATGCTACTG	AGGGATGTTG	TCTTAATAGG	GGAAACAAGCC	CGAGCTCAAG	ATGGCCTGAA	1800
	GAAGAGGCTG	GGGAAGCTGA	AGGCCTACCT	TGAGCACGCC	CACCAAGCCC	TGGAGGAGGA	1860
10	GAAGAAAAAA	ACAGTAGACG	TCTTCGTCCT	CATATTTCCC	TTGTGAGTTG	CTICACAGCT	1920
	GTGCGCAAGG	CAAGCTTGTG	AAGCCAAGAA	TTCTGAGTAT	GTCCACATGC	TCTCTTCAGA	1980
	CATCGTGTGG	TTCACTGCCA	TCGTCTCCC	GTGTCACCGG	CTCGAGGCTCA	TCATCATGCT	2040
	CAATGCTACT	TAACCTCGCT	TCGAGCACGA	GTGTTGGAGAG	CTGGATGTCT	ACAAGGTGGA	2100
	GACCATGTCG	GATCTGGCTT	GTGTCATCTGG	GGGATTACAC	AAAGAGATG	ATATCCTACG	2160
15	TCTTCAGATA	GCGCTGTATGG	CCCTGAAAGAT	GGAGGACTTC	TCTGTGAAAG	TTATGCTCTCC	2220
	CCATGGGAAA	CCTATCAAGA	TGCGAATTGG	ACTGCACTCT	GGATCAGTTT	TTGTCGGCGT	2280
	CTTGGAGCTT	AAAATGGCCCC	TTTGTACTCT	TTTTGGAAC	AAATGTCATC	TTGGCTAACAA	2340
	ATTTCAGCTC	TCGAGCTTGTAC	CACGGAAAAT	CAATGTCAGC	CCAAACACTT	ACAGATTACT	2400
	CAARAGCTGT	CCTGGTTTCTG	TGTTTACCCC	TGTCATCAGG	GAGGAACTCT	CACCAAACCT	2460
20	CCTCTAGTGA	ATCCCGGGAA	TCTGCCATT	TCTGGATCTT	TACCAACAG	GAACRAACTC	2520
	AAAACCATCC	TTCCAAAAGA	AGATAGTGGG	AGATGCGNAT	CAACATTTTT	TAGGCRAAAC	2580
	ATCAGGAAATA	GATTAGCACC	CTATATACCT	ATTTATAAGT	CTTTGGGGTT	TAAGCTCATTTG	2640
	AGATGTGTA	GAGCCCTCTGA	AAAGCCTTTA	GGGATGTTAG	ATGGCTAACAA	AGCAGTATTAA	2700
25	AAATTTCAGC	GGCCAACTG	CAATCTTTCT	CTGTGTTAAC	ATGACAAATA	TGACTCTACTT	2760
	CAGCTACTCA	GCTCTTCAG	AAAAAAAAAA	AAACCTTTAA	AACTACTT	TGTGGGAGTA	2820
	TTTCATTTAT	ATAACCGCAG	CTTACACTAC	GTACTCAAA	TCAGCACCT	TGACATATATA	2880
	TCAGATAATT	GTAGTCATT	GTACAAACTG	ATGGAGTCAC	CTGCAATCTC	ATATCCTGGT	2940
	GGGATGCTCAT	GGTTTATAAA	GTGTGTTGT	GATAGTGTGCG	TCAAAAAAA	AAAAAAA	3000
	AAAAAAA	AAAAA					3015

(2) DATA TO SEQ ID NO: 2:

35 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 695 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein (human soluble guanylyl cyclase a1 (hsGCa1))

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

45	Met Phe Cys Thr Lys Leu Lys Asp Leu Lys Ile Thr Gly Glu Cys Pro 5 10 15
	Phe Ser Leu Leu Ala Pro Gly Gln Val Pro Asn Glu Ser Ser Glu Glu 20 25 30
	Ala Ala Gly Ser Ser Glu Ser Cys Lys Ala Thr Val Pro Ile Cys Gln 35 40 45
50	Asp Ile Pro Glu Lys Asn Ile Gln Glu Ser Leu Pro Gln Arg Lys Thr 50 55 60
	Ser Arg Ser Arg Val Tyr Leu His Thr Leu Ala Glu Ser Ile Cys Lys 65 70 75 80
	Leu Ile Phe Pro Glu Phe Glu Arg Leu Asn Val Ala Leu Gln Arg Thr 85 90 95
55	Leu Ala Lys His Lys Ile Lys Glu Ser Arg Lys Ser Leu Glu Arg Glu 100 105 110
	Asp Phe Glu Lys Thr Ile Ala Glu Gln Ala Val Ala Ala Gly Val Pro 115 120 125
60	Val Glu Val Ile Lys Glu Ser Leu Gly Glu Val Phe Lys Ile Cys 130 135 140

Tyr Glu Glu Asp Glu Asn Ile Leu Gly Val Val Gly Gly Thr Leu Lys
 145 150 155 160
 Asp Phe Leu Asn Ser Phe Ser Thr Leu Leu Lys Gln Ser Ser His Cys
 165 170 175
 5 Gln Glu Ala Gly Lys Arg Gly Arg Leu Glu Asp Ala Ser Ile Leu Cys
 180 185 190
 Leu Asp Lys Glu Asp Asp Phe Leu His Val Tyr Tyr Phe Phe Pro Lys
 195 200 205
 Arg Thr Thr Ser Leu Ile Leu Pro Gly Ile Ile Lys Ala Ala Ala His
 10 210 215 220
 Val Leu Tyr Glu Thr Glu Val Glu Val Ser Leu Met Pro Pro Cys Phe
 2225 230 235 240
 His Asn Asp Cys Ser Glu Phe Val Asn Gln Pro Tyr Leu Leu Tyr Ser
 245 250 255
 15 Val His Met Lys Ser Thr Lys Pro Ser Leu Ser Pro Ser Lys Pro Gln
 260 265 270
 Ser Ser Leu Val Ile Pro Thr Ser Leu Phe Cys Lys Thr Phe Pro Phe
 275 280 285
 His Phe Met Phe Asp Lys Asp Met Thr Ile Leu Gln Phe Gly Asn Gly
 20 290 300 305
 Ile Arg Arg Leu Met Asn Arg Arg Asp Phe Gln Gly Lys Pro Asn Phe
 310 315 320 325
 Glu Glu Tyr Phe Glu Ile Leu Thr Pro Lys Ile Asn Gln Thr Phe Ser
 330 335 340
 25 Gly Ile Met Thr Met Leu Asn Met Gln Phe Val Val Arg Val Arg Arg
 345 350 355
 Trp Asp Asn Ser Val Lys Lys Ser Ser Arg Val Met Asp Leu Lys Gly
 360 365 370
 Gln Met Ile Tyr Ile Val Glu Ser Ser Ala Ile Leu Phe Leu Gly Ser
 30 375 380 385
 Pro Cys Val Asp Arg Leu Glu Asp Phe Thr Gly Arg Gly Leu Tyr Leu
 390 395 400 405
 Ser Asp Ile Pro Ile His Asn Ala Leu Arg Asp Val Val Leu Ile Gly
 410 415 420
 35 Glu Gln Ala Arg Ala Gln Asp Gly Leu Lys Lys Arg Leu Gly Lys Leu
 425 430 435
 Lys Ala Thr Leu Glu Gln Ala His Gln Ala Leu Glu Glu Glu Lys Lys
 440 445 450
 Lys Thr Val Asp Leu Leu Cys Ser Ile Phe Pro Cys Glu Val Ala Gln
 40 455 460 465
 Gln Leu Trp Gln Gly Gln Val Val Gln Ala Lys Lys Phe Ser Asn Val
 470 475 480 485
 Thr Met Leu Phe Ser Asp Ile Val Gly Phe Thr Ala Ile Cys Ser Gln
 490 495 500
 45 Cys Ser Pro Leu Gln Val Ile Thr Met Leu Asn Ala Leu Tyr Thr Arg
 505 510 515
 Phe Asp Gln Gln Cys Gly Glu Leu Asp Val Tyr Lys Val Glu Thr Ile
 520 525 530
 Gly Asp Ala Tyr Cys Val Ala Gly Gly Leu His Lys Glu Ser Asp Thr
 535 540 545
 His Ala Val Gln Ile Ala Leu Met Ala Leu Lys Met Met Glu Leu Ser
 550 555 560 565
 Asp Glu Val Met Ser Pro His Gly Glu Pro Ile Lys Met Arg Ile Gly
 570 575 580
 55 Leu His Ser Gly Ser Val Phe Ala Gly Val Val Gly Val Lys Met Pro
 585 590 595
 Arg Tyr Cys Leu Phe Gly Asn Asn Val Thr Leu Ala Asn Lys Phe Glu
 600 605 610
 Ser Cys Ser Val Pro Arg Lys Ile Asn Val Ser Pro Thr Thr Tyr Arg
 615 620 625
 60 Leu Leu Lys Asp Cys Pro Gly Phe Val Phe Thr Pro Arg Ser Arg Glu

630	635	640	645
Glu	Leu	Pro	Pro
Asn	Phe	Pro	Ser
Glu	Ile	Pro	Gly
Ile	Cys	His	Phe
650	655	660	
Leu	Asp	Ala	Tyr
Gln	Gly	Gly	Thr
Asn	Asn	Ser	Lys
665	670	675	
Lys	Asp	Val	Gly
Asn	Ala	Asn	Phe
680	685	690	
Ile	Asp		Ser
695			Gly

10

(2) DATA TO SEQ ID NO: 3:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2443 basepairs
 (B) TYPE: nucleotide
 (C) STRANDEDNESS: doublestrand
 (D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

25	CCCCCCCCCG	CCGCTGCCGC	CTCTGCTTGG	GTCCCCCTCGG	CCGTACCTCT	GCGTGGGGCG	60
	TGCCCTCCCG	GCTCCCGTGC	CAGACACCAT	GTACGGATT	GTGAATCACG	CCCTGGAGTT	120
	GCTGGTGATC	CGCAATTAGC	GCCCCGAGGT	GTGGGAAGAC	ATCAAAAAAG	AGGCACAGTT	180
	AGATGAAGAA	GGACAGTTTC	TTGTCGAAT	ATATATGAT	GACTCCAAA	CTTATGATT	240
	GTTGCTGCT	GCAACAAAG	TCCTCACTAT	CAATCTGGAA	GAATCTTCCC	AAATGTTTGG	300
30	GAGATGTTT	TTGCTCTTT	GCCNAGAAC	TTGTTTATGAT	AAATCTTGC	GTGTCCTGGG	360
	CTCTAATGTC	AGAGAAATT	TACAGAACCT	TGATGCTCTG	CACGACCA	TTGCTACCAT	420
	CTACCCAGGA	ATGCGTGCAC	CTTCCCTTAC	GTGCACTG	GCAGAAAANG	GCAAGGACT	480
	CATTATGCA	TACTACTCA	AGAGAGAACG	ACCTTCAGGAT	ATTGTCATG	GAATCATCAA	540
	AACACTGGCA	CAACAAATCC	ATGCCACTGA	AAATAGACATG	ARGGTTATT	AGCAAAGAAA	600
35	TGAAGAAATGT	GATCATACATC	AATTTTTAAT	TGAAGAAAAA	GAGTCAGATT	AGAGGAGATT	660
	TTATGAGAT	CTTGACAGAT	TTGAGAAAAA	GTGACCCAG	TAATCACCCA	TCAGCCCCATA	720
	TACATTCTTC	AAAGCTTTTC	CTTTCTCATAT	AAATATTGAC	CGGGACCTAG	TGGTCACTCA	780
	GTGTGCAAT	GCTATATACA	GAGTTCTCCC	CGACGTCAG	CTGGGAATT	CGACCTTCT	840
	GTCTGTCITC	TCGCTGGTC	TCCTCTATAT	TGATATTAGT	TTCCATGGGA	TCCTTTCTCA	900
40	CATCATCACT	GTTTTTGTAT	TGAGAACGAC	GGAGGATT	TTGGATGTGG	AGAAATTAGA	960
	ATGTGAGGAT	GAACGTGACT	GGACTGAGAT	CAGTCCTTA	CTCTCTCAAGG	GTCAAATGAT	1020
	CTAATTTACCT	GAAGCAGATA	GCATACATT	TCTATGTTCA	CCAAGTGTCA	TGAACCTGGA	1080
	CGATTTGCA	AGGAGAGGGG	TGATCTCAAG	TGACATCCCT	CTGCATGATC	CCAGGGCGGA	1140
	TCTTGTCTT	TTGGGAGAAA	AATTAGAGA	GGAAATCAAA	CTCACCCAA	AACTGGAAT	1200
45	CCTCACTGAC	AGGCTACAGC	TCAGCTTAA	AGCCCTGGA	GATGAAAAGA	AAAAGACAGA	1260
	CACATGCTG	TATTCTGTCC	TTCTCCCGTC	TTGTTGCAAT	GAGCTGCGGC	ACAAGCGTCC	1320
	AGTGGCTGCC	AAAAGATATO	ACATCTGAC	TCATCTCTT	AGTGGCAAT	TGGGCTTCAA	1380
	TGCTTCTGT	AGCAAGCATG	CATCTGGAGA	AGGAGCCATG	AGATGTC	ACCTCCCTCAA	1440
	CGACCTCTAC	ACCAGACAGG	ACACACTGAC	TGATTCCCCG	AAAAACCCAT	TGTTTTATAA	1500
50	GCTGGAGACT	GTGGTGACA	AGTATATGAC	AGTAGTGGT	TTACCAAGAGC	CATGCATTCA	1560
	CCATGCAAGA	TCCATCTGCC	ACCTGGCCTT	GGACATGATG	GAAATTGCTG	GGCAGGTTCA	1620
	AGTAGATGTT	GAATCTGTC	AGATAAACAT	AGGGATACAC	ACTGGAGAGG	TAGTTACAGG	1680
	TGTCATAGGA	CAGCGGATGC	CTCGATACTG	TCTTTTGGG	AATACTGTC	ACCTCACAAG	1740
	CCGAACAGAA	ACCACAGGG	AAAAGGGAAA	AATAAAATGT	TCTGAATATA	CATACAGATG	1800
55	TCTTATGCT	CCAGAAATT	CAGATCCACA	ATTCACCTAT	GAGCACAGAC	GGCCAGTGT	1860
	CATGAAGGGC	AAAAAGAAC	CAATGCAAGT	TTGGTTTCTA	TCCAGAAAAA	ATACAGGAAC	1920
	AGAGGAAACA	AAGCGGATG	ATGACTGAAT	CTTGGATTAT	GGGGTAAGA	GGAGTACAGA	1980
	CTAGTTCTCA	TGTTTCTCT	AAACACTGCC	AGGCCAGGA	CGACTTCTT	CCTATGATA	2040
	CAGATTTCT	TTTGTCTCTG	TCCGATACCC	CAAGACTTT	TTCTAGATAT	ATCTCTCACT	2100
60	ATCCGTTATT	CAACCTTACG	TCTGTTCT	ATTACTTTT	AGGCTTATG	ATATTATCTA	2160
	AGATTTGGCT	TTTGATGTGG	ATGATGTGAC	CTTCATGTTG	CTTAAATCT	ACTACAAAGCA	2220

TTACCTAACAA	TGGTGTACTG	CAAGTAGTAG	GCACCCAAATA	AATATTGTT	GAATTTAGTT	2280
AAATGAAACT	GAACATGTT	TGGCCATGTC	TATATTATA	TCATGTTTAC	CAATCTGTGTT	2340
TAGTGTTCCA	CATATATGTA	TATGTATTATT	TTAAGTACTA	TATGTAAATA	AAGTTTATAT	2400
CATTTGGTC	TATATCATTA	TAGAAATCAT	TTTCTAAAGC	AGT		2443

5

(2) DATA TO SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 619 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(iii) MOLECULE TYPE: protein (human soluble guanylyl cyclase b1 (hsGCB1))

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

20	Met Tyr Gly Phe Val Asn His Ala Leu Glu Leu Leu Val Ile Arg Asn 5 10 15
	Tyr Gly Pro Glu Val Trp Glu Asp Ile Lys Lys Glu Ala Gln Leu Asp 20 25 30
25	Glu Glu Gly Gln Phe Leu Val Arg Ile Ile Tyr Asp Asp Ser Lys Thr 35 40 45
	Tyr Asp Leu Val Ala Ala Ser Lys Val Leu Asn Leu Asn Ala Gly 50 55 60
	Glu Ile Leu Gln Met Phe Gly Lys Met Phe Val Phe Cys Gln Glu 65 70 75 80
30	Ser Gly Tyr Asp Thr Ile Leu Arg Val Leu Gly Ser Asn Val Arg Glu 85 90 95
	Phe Leu Gln Asn Leu Asp Ala Leu His Asp His Leu Ala Thr Ile Tyr 100 105 110
35	Pro Gly Met Arg Ala Pro Ser Phe Arg Cys Thr Asp Ala Glu Lys Gly 115 120 125
	Lys Gly Leu Ile Leu His Tyr Tyr Ser Glu Arg Glu Gly Leu Gln Asp 130 135 140
	Ile Val Ile Gly Ile Ile Lys Thr Val Ala Gln Gln Ile His Gly Thr 145 150 155 160
40	Glu Ile Asp Met Lys Val Ile Gln Gln Arg Asn Glu Glu Cys Asp His 165 170 175
	Thr Gln Phe Leu Ile Glu Glu Lys Glu Ser Lys Glu Glu Asp Phe Tyr 180 185 190
45	Glu Asp Leu Asp Arg Phe Glu Glu Asn Gly Thr Gln Glu Ser Arg Ile 195 200 205
	Ser Pro Tyr Thr Phe Cys Lys Ala Phe Pro Phe His Ile Ile Phe Asp 210 215 220
	Arg Asp Leu Val Val Thr Gln Cys Gly Asn Ala Ile Tyr Arg Val Leu 225 230 235 240
50	Pro Gln Leu Gln Pro Gly Asn Cys Ser Leu Leu Ser Val Phe Ser Leu 245 250 255
	Val Arg Pro His Ile Asp Ile Ser Phe His Gly Ile Leu Ser His Ile 260 265 270
55	Asn Thr Val Phe Val Leu Arg Ser Lys Glu Gly Leu Leu Asp Val Glu 275 280 285
	Lys Leu Glu Cys Glu Asp Glu Leu Thr Gly Thr Glu Ile Ser Cys Leu 290 295 300
	Arg Leu Lys Gly Gln Met Ile Tyr Leu Pro Glu Ala Asp Ser Ile Leu 305 310 315 320
60	Phe Leu Cys Ser Pro Ser Val Met Asn Leu Asp Asp Asp Leu Thr Arg Arg 325 330 335

Gly Leu Tyr Leu Ser Asp Ile Pro Leu His Asp Ala Thr Arg Asp Leu
 340 345 350
 Val Leu Leu Gly Glu Gln Phe Arg Glu Glu Tyr Lys Leu Thr Gln Glu
 355 360 365
 5 Leu Glu Ile Leu Thr Asp Arg Leu Gln Leu Thr Leu Arg Ala Leu Glu
 370 375 380
 Asp Glu Lys Lys Lys Thr Asp Thr Leu Leu Tyr Ser Val Leu Pro Pro
 385 390 395 400
 Ser Val Ala Asn Glu Leu Arg His Lys Arg Pro Val Pro Ala Lys Arg
 10 405 410 415
 Tyr Asp Asn Val Thr Ile Leu Phe Ser Gly Ile Val Gly Phe Asn Ala
 420 425 430
 Phe Cys Ser Lys His Ala Ser Gly Glu Gly Ala Met Lys Ile Val Asn
 435 440 445
 15 Leu Leu Asn Asp Leu Tyr Thr Arg Phe Asp Thr Leu Thr Asp Ser Arg
 450 455 460
 Lys Asn Pro Phe Val Tyr Lys Val Glu Thr Val Gly Asp Lys Tyr Met
 465 470 475 480
 Thr Val Ser Gly Leu Pro Glu Pro Cys Ile His His Ala Arg Ser Ile
 20 485 490 495
 Cys His Leu Ala Leu Asp Met Met Glu Ile Ala Gly Gln Val Gln Val
 500 505 510
 Asp Gly Glu Ser Val Gln Ile Thr Ile Gly Ile His Thr Gly Glu Val
 515 520 525
 25 Val Thr Gly Val Ile Gly Gln Arg Met Pro Arg Tyr Cys Leu Phe Gly
 530 535 540
 Asn Thr Val Asn Leu Thr Ser Arg Thr Glu Thr Thr Gly Glu Lys Gly
 545 550 555 560
 Lys Ile Asn Val Ser Glu Tyr Thr Tyr Arg Cys Leu Met Ser Pro Glu
 30 565 570 575
 Asn Ser Asp Pro Gln Phe His Leu Glu His Arg Gly Pro Val Ser Met
 580 585 590
 Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
 595 600 605
 35 Thr Gly Thr Glu Glu Thr Lys Gln Asp Asp Asp
 610 615

(2) DATA TO SEQ ID NO: 5:

40 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: peptide (amino acids 634-647 of hsGCal)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

50 Phe Thr Pro Arg Ser Arg Glu Glu Leu Pro Pro Asn Phe Pro
 5 10

(2) DATA TO SEQ ID NO: 6:

55 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 22 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide (amino acids 593-614 of hsGCb1)

(xi) SEQUENCEDESCRIPTION: SEQ ID NO: 6:

5 Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
5 10 15
Thr Gly Thr Glu Glu Thr
20

10 (2) DATA TO SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 28 basepairs
(B) TYPE: nucleotide
15 (C) STRANDEDNESS: single strands
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

20 (iii) HYPOTHETICAL: no

(iv) ANTISENSE: no

25 (xi) SEQUENCEDESCRIPTION: SEQ ID NO: 7:

AAAAGGATCC ATGTTCTGCA CGAACGCTC

28

30 2) DATA TO SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 basepairs
35 (B) TYPE: nucleotide
(C) STRANDEDNESS: single strands
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

40 (iii) HYPOTHETICAL: no

(iv) ANTISENSE: no

45 (xi) SEQUENCEDESCRIPTION: SEQ ID NO: 8:

ATTATGGAAG CAGGGAGG

18

50 2) DATA TO SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 28 basepairs
55 (B) TYPE: nucleotide
(C) STRANDEDNESS: single strands
(D) TOPOLOGY: linear

60 (ii) MOLECULE TYPE: genomic DNA

(iii) HYPOTHETICAL: no

(iv) ANTISENSE: no

5 (xi) SEQUENCEDESCRIPTION: SEQ ID NO: 9:

AAAAGGATCC ATGTACGGAT TTGTGAAT

28

10 2) DATA TO SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 basepairs
- (B) TYPE: nucleotide
- (C) STRANDEDNESS: single strands
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

20 (iii) HYPOTHETICAL: no

(iv) ANTISENSE: no

25 (xi) SEQUENCEDESCRIPTION: SEQ ID NO: 10:

ATGCCTGATT CCTGGGTACC

20