Espacios metricos

• Espacio métrico: Un conjunto $\mathcal X$ (cuyos elementos debemos llamar puntos) para el cual cada par de puntos p y q de $\mathcal X$ tienen asociado un numero real d (p,q) tal que

a)
$$d(p,q) > 0$$
 if $p \neq q$ $d(p,p) = 0$

b)
$$d(p,q) = d(q,p)$$

c) Para cualquier $r \in \mathcal{X}$ la "desigualdad del triangulo" se cumple:

$$d(p,q) \le d(p,r) + d(r,q)$$

Cualquier función con estas propiedades es una función de distancia o métrica.

Ejemplos:

- a) Longitud, Área, Volumen existen físicamente.
- b) Métrica euclidiana. d(p,q) = ||p-q||
- c) Métrica discreta $\ d\left(p,q\right)=\left\{ egin{array}{ll} 0 & \mbox{if }p=q\\ 1 & \mbox{if }p\neq q \end{array} \right.$
- d) Tan extrañas como se necesiten: Prokhorov $\frac{\sqrt{-q}}{d(p,q)} = \frac{\|p-q\|}{1+\|p-q\|} \in [0,1)$

- Estructuras de conjuntos: Sea ${\mathcal X}$ un espacio métrico y $x\in{\mathcal X}$:
 - a) La **vecindad** de un punto x es el conjunto $\mathcal{N}_{r}(x)$ definido como

$$\mathcal{N}_r(x) := \{ x \in \mathcal{X} : d(x, y) < r \}$$

donde r es el "radio" de $\mathcal{N}_r(x)$.

- b) Un punto $x \in \mathcal{X}$ es un **punto limite** del conjunto $\mathcal{E} \subset \mathcal{X}$ si cada vecindad posible de x contiene un punto $y \neq x$ tal que $y \in \mathcal{E}$.
- c) Si $x \in \mathcal{E}$ y x no es un punto limite entonces x en un **punto aislado** (isolated point).
- d) $\mathcal{E} \subset \mathcal{X}$ es **cerrado** si todo punto limite de \mathcal{E} es un punto de \mathcal{E} .
- e) Un punto $x \in \mathcal{E}$ es un **punto interior** de \mathcal{E} si existe una vecindad $\mathcal{N}_r(x)$ de x tal que $\mathcal{N}_r(x) \subset \mathcal{E}$.
 - f) \mathcal{E} es **abierto** si cada uno de sus puntos es un punto interior.

- g) El **complemento** \mathcal{E}^c de \mathcal{E} es el conjunto de puntos $x\in\mathcal{X}$ tales que $x\notin\mathcal{E}$.
- h) $\mathcal E$ esta **acotado** si existe un numero real My un punto $x \in \mathcal E$ tales que $d\left(x,y\right) < M$ para todo $y \in \mathcal E$.
- i) \mathcal{E} es **denso** en \mathcal{X} si cada punto $x \in \mathcal{X}$ es o un punto limite de \mathcal{E} o un punto de \mathcal{E} o ambas cosas.
- j) ${\cal E}$ esta **conectado** en ${\cal X}$ si no es una unión de dos conjuntos no vacíos separados. Es decir ${\cal E}={\cal A}\cup{\cal B}\;$ donde

$$\mathcal{A} \neq \emptyset$$
, $\mathcal{B} \neq \emptyset$ and $\mathcal{A} \cap \mathcal{B} = \emptyset$.

Para pensar:

- Toda vecindad $\mathcal{N}_r\left(x
 ight)\subset\mathcal{E}$ es un conjunto abierto.
- Si x es un punto limite de $\mathcal E$ entonces toda vecindad $\mathcal N_r\left(x\right)\subset\mathcal E$ contiene una cantidad infinita de puntos de $|\mathcal E$.

• Teorema : Sea $\{\mathcal{E}_{\alpha}\}$ una colección (finita o infinita) de conjuntos $\mathcal{E}_{\alpha}\subseteq\mathcal{X}$ Entonces

$$\left(igcup_lpha \mathcal{E}_lpha
ight)^c = igcap_lpha \mathcal{E}_lpha^c$$

Prueba: Si $x \in \left(\bigcup_{\alpha} \mathcal{E}_{\alpha}\right)^{c}$ entonces, evidentemente, $x \notin \bigcup_{\alpha} \mathcal{E}_{\alpha}$

y por ello $x \notin \mathcal{E}_{\alpha}$ para cualquier α . Esto significa que $x \in \bigcap \mathcal{E}_{\alpha}^c$. Por ello:

$$\left(\bigcup_{lpha}\mathcal{E}_{lpha}
ight)^{c}\subseteq\bigcap_{lpha}\mathcal{E}_{lpha}^{c}$$

Contrariamente, si $x\in\bigcap\mathcal{E}_{\alpha}^{c}$ entonces $x\in\mathcal{E}_{\alpha}^{c}$ para cada a y, por ello, $x\notin\bigcup_{\alpha}\mathcal{E}_{\alpha}$. Así $x\in\left(\bigcup_{\alpha}\mathcal{E}_{\alpha}\right)^{c}$ que implica $\bigcap_{\alpha}\mathcal{E}_{\alpha}^{c}\subseteq\left(\bigcup_{\alpha}\mathcal{E}_{\alpha}\right)^{c}$ combinando

ambas expresiones se obtiene la primera expresión.

Corolarios:

- a) Un conjunto \mathcal{E} es abierto si y solo si su complemento \mathcal{E}^c es cerrado.
- b) Un conjunto ${\mathcal E}$ es cerrado si y solo si su complemento ${\mathcal E}^c$ es abierto.
- c) Para cualquier colección $\{\mathcal{E}_{\alpha}\}$ de conjuntos abiertos \mathcal{E}_{α} el conjunto $\bigcup_{\alpha} \mathcal{E}_{\alpha}$ es abierto.
- d) Para cualquier colección $\{\mathcal{E}_{\alpha}\}$ de conjuntos cerrados \mathcal{E}_{α} el conjunto $\bigcap_{\alpha} \mathcal{E}_{\alpha}^{c}$ es cerrado.
- e) Para cualquier colección finita $\{\mathcal{E}_1,...,\mathcal{E}_n\}$ de conjuntos abiertos \mathcal{E}_{α} el conjunto $\bigcap_{\alpha} \mathcal{E}_{\alpha}$ es abierto también. f) Para cualquier colección finita $\{\mathcal{E}_1,...,\mathcal{E}_n\}$ de conjuntos cerrados \mathcal{E}_{α}
- f) Para cualquier colección finita $\{\mathcal{E}_1,...,\mathcal{E}_n\}$ de conjuntos cerrados \mathcal{E}_α el conjunto $\bigcup_{\alpha} \mathcal{E}_\alpha$ es cerrado también.

• Cerradura: Sea $\mathcal X$ un espacio métrico y $\mathcal E\subset\mathcal X$. Denote por $\mathcal E'$ el conjunto de todos los puntos limite de $\mathcal E$. Entonces el conjunto $\mathrm{cl}\mathcal E$ se define como

$$cl\mathcal{E} := \mathcal{E} \cup \mathcal{E}'$$

y se le conoce como la cerradura de \mathcal{E} .

Propiedades:

- a) $\mathbb{C}[\mathcal{E}]$ es cerrado.
- b) $\mathcal{E} = cl \mathcal{E}$ si y solo si \mathcal{E} es cerrado.
- c) $cl\mathcal{E}\subset\mathcal{P}$ para cada conjunto cerrado $\mathcal{P}\subset\mathcal{X}$ tal que $\mathcal{E}\subset\mathcal{P}$
- d) Si $\varnothing \neq \mathcal{E} \subset \mathbb{R}$ y $y := \sup \mathcal{E} < \infty$ entonces $y \in \operatorname{cl} \mathcal{E}$ y por lo tanto $y \in \mathcal{E}$ si \mathcal{E} es cerrado.

- Puntos de frontera: Sea $\mathcal E$ un conjunto de un espacio métrico $\mathcal X$ Un punto x en $\mathcal E$ es un punto de frontera de $\mathcal E$ si cualquier vecindad $\mathcal N_r(x)$ de este punto contiene al menos un punto de $\mathcal E$ y un punto de $\mathcal X \mathcal E$
- Conjunto de puntos de frontera: Denotado como $\partial \mathcal{E}$ es el conjunto de todos los puntos de frontera de \mathcal{E} . Se puede verificar que

$$\partial \mathcal{E} = \operatorname{cl} \mathcal{E} \cap \operatorname{cl} (\mathcal{X} - \mathcal{E})$$

Denotando a $\mathrm{int}\mathcal{E}:=\mathcal{E}-\partial\mathcal{E}$ (el conjunto de todos los puntos internos) se cumple que:

$$\operatorname{int} \mathcal{E} = \mathcal{X} - \operatorname{cl} (\mathcal{X} - \mathcal{E})$$

$$\operatorname{int} (\mathcal{X} - \mathcal{E}) = \mathcal{X} - \operatorname{cl} \mathcal{E}$$

$$\operatorname{int} (\operatorname{int} \mathcal{E}) = \operatorname{int} \mathcal{E}$$
If $\operatorname{cl} \mathcal{E} \cap \operatorname{cl} \mathcal{D} = \emptyset$ then $\partial (\mathcal{E} \cup \mathcal{D}) = \partial \mathcal{E} \cup \partial \mathcal{D}$

Conjuntos compactos:

a) La **cubierta abierta de un conjunto** $\mathcal E$ en un espacio metrico $\mathcal X$ es una colección $\{\mathcal G_\alpha\}$ de subconjuntos abiertos de $\mathcal X$ tales que

$$\mathcal{E} \subset \bigcup_{\alpha} \mathcal{G}_{\alpha}$$

b) Un subconjunto K de un espacio metrico X es **compacto** si existe un numero finito de indices $\alpha_1, ..., \alpha_n$ tales que

$$\mathcal{K} \subset \mathcal{G}_{\alpha_1} \cup \cdots \cup \mathcal{G}_{\alpha_n}$$

*** Nota: todo conjunto finito es compacto.

c) Teorema: Un conjunto $|\mathcal{K} \subset \mathcal{Y} \subset \mathcal{X}|$ es compacto con respecto a XX y solo si XK s compacto con respecto a Y

Prueba. *Necesidad*. Suponga que \mathcal{K} es compacto con respecto a \mathcal{X} . Por definición, existe una cubierta finita tal que

$$\mathcal{K} \subset \mathcal{G}_{\alpha_1} \cup \cdots \cup \mathcal{G}_{\alpha_n} \tag{14.31}$$

donde \mathcal{G}_{α_i} es un coniunto abierto con respecto a \mathcal{X} . Por otro lado suponga que $\mathcal{K} \subset \bigcup \mathcal{V}_{\alpha}$ donde $\{\mathcal{V}_{\alpha}\}$ es una colección de conjuntos

abiertos con respecto \mathcal{Y} . Pero cualquier conjunto abierto \mathcal{V}_{α} suede ser representado como $\mathcal{V}_{\alpha}=\mathcal{Y}\cap\mathcal{G}_{\alpha}$ Así reescribimos (14.31)

$$\mathcal{K} \subset \mathcal{V}_{\alpha_1} \cup \cdots \cup \mathcal{V}_{\alpha_n} \tag{14.32}$$

Suficiencia. Alternamente, si $\mathcal K$ es compacto con respecto a ' $\mathcal Y$ entonces existe una colección finita $\{\mathcal V_\alpha\}$ de conjuntos abiertos en $\mathcal Y$ tal que (14.32) es valida. Haciendo $\mathcal V_\alpha=\mathcal Y\cap\mathcal G_\alpha$ para alguna selección particular de $\alpha_1,...,\alpha_n$ sigue que ' $\mathcal V_\alpha\subset\mathcal G_\alpha$ que implica (14.31).

d) Teorema: Conjuntos compactos de espacios métricos son cerrados.

Prueba. Suponga que \mathcal{K} es un subconjunto de un espacio métrico \mathcal{X} . Permita que $x \in \mathcal{X}$ pero $x \notin \mathcal{K}$ y $y \in \mathcal{K}$. Considere las vecindades $\mathcal{N}_r(x)$ y $\mathcal{N}_r(y)$ de estos puntos con r < d(x,y)/2. Como \mathcal{K} es compacto existen un numero finito de puntos $y_1, ..., y_n$ tales que

$$\mathcal{K} \subset \mathcal{N}_r(y_1) \cup \cdots \cup \mathcal{N}_r(y_n) = \mathcal{N}$$

Si $\mathcal{V}=\mathcal{N}_{r_1}\left(x\right)\cap\cdots\cap\mathcal{N}_{r_n}\left(x\right)$ entonces evidentemente \mathcal{V} es una vecindad de x que no toca \mathcal{N} y, por lo tanto, $\mathcal{V}\subset\mathcal{K}^c$ Por ello, x es un punto interior de \mathcal{K}^c por lo que \mathcal{K}^c es un conjunto abierto.

e) Teorema: si \mathcal{E} es un subconjunto infinito de un conjunto compacto K \mathcal{K} tonces E \mathcal{E} ene un punto limite en K \mathcal{K}

Prueba. Si ningún punto de $\mathcal K$ fuese un punto limite de $\mathcal E$ entonces cualquier $y\in\mathcal K$ debería tener una vecindad $\mathcal N_r(y)$ que contuviese a lo mas un punto de $\mathcal E$ (por eiemplo, y si y en $\mathcal E$). Es claro que ninguna subcolección finita $\{\mathcal N_{r_k}(y)\}$ puede cubrir $\mathcal E$. Lo mismo es cierto para $\mathcal K$ dado que $\mathcal E\subset\mathcal K$. Sin embargo, esto contradice la compacticidad de $\mathcal K$.

<u>Teorema:</u> Compacticidad en \mathbb{R}^n . Si un conjunto $\mathcal{E} \subset \mathbb{R}^n$, entonces las siguientes tres propiedades son equivalentes:

- a) \mathcal{E} es cerrado y acotado.
- b) \mathcal{E} es compacto.
- c) Cualquier subconjunto infinito de ${\mathcal E}$ tiene un punto limite en ${\mathcal E}$

- Convergencia de secuencias en espacios métricos
 - a) Convergencia: Una secuencia $\{x_n\}$ en un espacio metrico \mathcal{X} converge si existe un punto $x \in \mathcal{X}$ para el cual dada alguna $\varepsilon > 0$ existe un entero n_{ε} tal que si $n \geq n_{\varepsilon}$ implica que $d\left(x_{n}, x\right) < \varepsilon$ En este caso decimos que $\{x_n\}$ converge ax o quex es un limite $de\{x_n\}$ y escribimos

$$\lim_{n\to\infty} x_n = x \text{ or } x_n \underset{n\to\infty}{\longrightarrow} x$$

 $\lim_{n\to\infty}x_n=x\ \ or\ x_n\underset{n\to\infty}{\longrightarrow}x$ Ejemplo: La secuencia $\{1/n\}$ converge a 0 en $\mathbb R$, pero no converge er \mathbb{R}_+ .

Teorema.

1. $\{x_n\}$ converge a $x \in \mathcal{X}$ si y solo si cada vecindad $\mathcal{N}_{\varepsilon}(x)$ de xcontiene todos los términos de $\{x_n\}$ excluyendo una cantidad finita de ellos fuera de $\mathcal{N}_{\varepsilon}(x)$

- 2. Si $x', x'' \in \mathcal{X}$ y $x_n \underset{n \to \infty}{\longrightarrow} x'$ and $x_n \underset{n \to \infty}{\longrightarrow} x''$ entonces x' = x''
- 3. Si $\{x_n\}$ converge entonces $\{x_n\}$ esta acotada.
- 4. Si $\mathcal{E} \subset \mathcal{X}$ y x es un punto limite de \mathcal{E} entonces existe una secuencia $\{x_n\}$ en \mathcal{E} tal que

$$x = \lim_{n \to \infty} x_n$$

b) Subsecuencias: Dada una secuencia $\{x_n\}$, considere una secuencia $\{n_k\}$ de enteros positivos satisfaciendo $n_1 < n_2 < \cdots$ Entonces, la secuencia $\{x_{n_k}\}$ se conoce como una subsecuencia de $\{x_n\}$.

Teorema. Si una secuencia $\{x_n\}$ converge a x entonces cualquier subsecuencia $\{x_{n_k}\}$ de $\{x_n\}$ onverge al mismo punto limite x.

Prueba. Por contradicción. Ciertamente, asumiendo que dos diferentes subsecuencias $\{x_{n_k}\}$ y $\{x_{n_i}\}$ tienen dos puntos limites distintos x' y x'', entonces existe $0 < \varepsilon < d(x', x'')$ y por lo tanto un numero k_ε tal que para toda $k \ge k_\varepsilon$ se debe cumplir que $d(x_{n_k}, x_{n_j}) > \varepsilon$ que es una contradicción a la supocision de que $\{x_n\}$ converge.

Teorema. Si $\{xn\}$ es una secuencia $\{x_n\}$ en un espacio metrico compacto X entonces obligatoriamente contiene algunas $\{x_{n_k}\}$ subsecuencias convergentes a un punto de X.