Comment résoudre une équation ou une inéquation où figure la fonction logarithme ou la fonction exponentielle ?

• l'équation
$$\ln x = a$$
 a pour solution : $x = e^a$.

- In a = In b équivaut à a = b.
- In a < In b équivaut à a < b.
- l'équation $e^x = a$, avec a > 0, a pour solution : $x = \ln a$.
- $e^a = e^b$ équivaut à a = b.
- $e^a < e^b$ équivaut à a < b.

Exemple 1 : Résoudre l'équation $e^{-0.5x+1}-2=0$.

$$e^{-0.5x+1} = 2 \Leftrightarrow -0.5x+1 = \ln 2 \Leftrightarrow x = \frac{\ln 2 - 1}{-0.5} = 2(1 - \ln 2)$$
.

L'ensemble des solutions est $S = \{2(1-\ln 2)\}$.

Exemple 2 : Résoudre l'inéquation $2\ln(x+4) > \ln(2-x)$.

Ensemble de définition : x+4>0 et 2-x>0 soit -4< x<2 donc D=]-4;2[.

$$\ln(x+4)^2 > \ln(2-x) \Leftrightarrow (x+4)^2 > 2-x \Leftrightarrow x^2 + 9x + 14 > 0 \Leftrightarrow x < -7 \text{ ou } x > -2$$
.

On doit avoir $x \in D$, donc l'ensemble des solutions est S =]-2;2[.

Exemple 3 : Résoudre l'équation $e^x - 10 = -3e^{2x}$.

$$3e^{2x}+e^x-10=0 \Leftrightarrow 3(e^x)^2+e^x-10=0$$
.

Changement de variable : $X = e^x$, on obtient l'équation $3X^2 + X - 10 = 0$.

Cette équation a pour solutions : $X_1 = -2$ et $X_2 = \frac{5}{3}$.

Il faut alors résoudre les équations d'inconnue x:

- $e^x = -2$ n'a pas de solution, car $e^x > 0$.
- $e^x = \frac{5}{3}$ a pour solution $x = \ln \frac{5}{3}$.

L'ensemble des solutions est $S = \left\{ \ln \frac{5}{3} \right\}$.