Edge Detection from Fourier Phase Data

Alexander Reynolds Advisor Dr. Anne Gelb

Arizona State University School of Mathematical and Statistical Sciences

2016 Southwestern Undergraduate Mathematics Research Conference

Overview

- Introduction
 - Edge Detection
 - Fourier Analysis Background
 - Concentration Factor Method
- Recent Results
- Current Work
 - Fourier Phase Data
 - Analysis
 - Computational Examples
- 4 Future Work
- 5 Acknowledgements

What is Edge Detection?

Primary applications:

• Magnetic Resonance Imaging (MRI)

Primary applications:

- Magnetic Resonance Imaging (MRI)
- Synthetic Aperture Radar (SAR)

Primary applications:

- Magnetic Resonance Imaging (MRI)
- Synthetic Aperture Radar (SAR)
- Computer/Machine Vision (e.g. Kinect)

Primary applications:

- Magnetic Resonance Imaging (MRI)
- Synthetic Aperture Radar (SAR)
- Computer/Machine Vision (e.g. Kinect)
- 1-D Case: Discontinuities of a Function

Fourier Analysis and Synthesis

A Fourier series is a harmonic expansion of a periodic function

Fourier Series (Synthesis)

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ikx}$$

$$S_N f(x) = \sum_{k=-N}^{N} \hat{f}_k e^{ikx}$$

Fourier Analysis and Synthesis

A Fourier series is a harmonic expansion of a periodic function

Fourier Series (Synthesis)

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ikx}$$

$$S_N f(x) = \sum_{k=-N}^{N} \hat{f}_k e^{ikx}$$

where the Fourier coefficients \hat{f}_k are given by the Fourier transform of f .

Fourier Transform (Analysis)

$$\hat{f}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

Convolution

We can also express $S_N f(x)$ via convolution

Convolution with the Dirichlet Kernel

$$(f * D_N)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x - y) \, dy = S_N f(x)$$

where D_N is the N-th Dirichlet Kernel, given by

Dirichlet Kernel

$$D_N(x) = \sum_{k=-N}^{N} e^{ikx}$$

Concentration Edge Detection Method

Define the **jump function** of f, [f](x), as the difference between the right and left hand limits of the function f at every point x; viz.,

$$[f](x) = f(x^+) - f(x^-).$$

Concentration Edge Detection Method

Define the **jump function** of f, [f](x), as the difference between the right and left hand limits of the function f at every point x; viz.,

$$[f](x) = f(x^{+}) - f(x^{-}).$$

There exists a relationship between these limits and the Fourier partial sum approximation $S_N f(x)$

Dirichlet's Theorem (1824)

$$(f * D_N)(x) = S_N f(x) = \sum_{k=-N}^{N} \hat{f}_k e^{ikx} \longrightarrow \frac{1}{2} (f(x^+) + f(x^-))$$

Concentration Edge Detection Method (cont.)

The edge detection method developed by Gelb and Tadmor (1999) introduces a function $\sigma(k)$, called a **concentration factor**, which modifies the Dirichlet kernel to *concentrate* the partial sum along the singular support of the underlying function.

Concentration Edge Detection Method (cont.)

The edge detection method developed by Gelb and Tadmor (1999) introduces a function $\sigma(k)$, called a **concentration factor**, which modifies the Dirichlet kernel to *concentrate* the partial sum along the singular support of the underlying function.

Concentration Factor Jump Detector

$$(f * K_N)(x) = S_N^{\sigma}[f](x) = \sum_{k=-N}^{N} \sigma(k)\hat{f}_k e^{ikx} \longrightarrow [f](x)$$

Analytical Concentration Factors

Examples of some analytical concentration factors:

Factor	Expression	Remarks
Trigonometric	$\sigma(\eta) = \frac{\pi \sin(\pi \eta)}{\operatorname{Si}(\pi)}$	$\operatorname{Si}(\pi) = \int_0^\pi \frac{\sin(x)}{x} dx$
Polynomial	$\sigma(\eta) = p\pi\eta^p$	p is the order of the factor
Exponential	$\sigma(\eta) = C\eta e^{\frac{1}{\alpha\eta(\eta-1)}}$	lpha is the order
		${\cal C}$ is a normalizing constant
_		$\frac{\pi}{C} = \int_{\frac{1}{N}}^{1 - \frac{1}{N}} \exp\left(\frac{1}{\alpha \tau(\tau - 1)}\right) d\tau$

Jump Reconstruction from Fourier Data

Figure: $S_N[f](x)$ with various concentration factors σ .

Designed Concentration Factors

How can we design other concentration factors?

Designed Concentration Factors

How can we design other concentration factors? We want

Partial Sum Approximation of [f](x)

$$S_N^{\sigma}[f](x) = \sum_{k=-N}^N \sigma(k) \hat{f}_k e^{ikx} \longrightarrow [f](x).$$

Designed Concentration Factors

How can we design other concentration factors? We want

Partial Sum Approximation of [f](x)

$$S_N^{\sigma}[f](x) = \sum_{k=-N}^{N} \sigma(k) \hat{f}_k e^{ikx} \longrightarrow [f](x).$$

We can engineer σ for a function g(x) where we know what [g](x) is.

Consider the ramp function r(x) with the associated jump function [r](x) on the interval $[-\pi,\pi)$:

$$r(x) = \begin{cases} \frac{1}{2\pi}(-x - \pi) & \text{if } x < 0, \\ \frac{1}{2\pi}(-x + \pi) & \text{if } x \ge 0. \end{cases}$$

$$[r](x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Consider the ramp function r(x) with the associated jump function [r](x) on the interval $[-\pi,\pi)$:

$$\begin{split} r(x) &= \begin{cases} \frac{1}{2\pi}(-x-\pi) & \text{if } x < 0, \\ \frac{1}{2\pi}(-x+\pi) & \text{if } x \geq 0. \end{cases} \\ [r](x) &= \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Partial Sum Approximation of [r](x)

$$S_N^{\sigma}[r](x) = \sum_{k=-N}^{N} \sigma(k)\hat{r}_k e^{ikx} \longrightarrow [r](x)$$

We can solve the system $S\sigma = [r](x)$ for a solution $\sigma(k)$ to the equation

$$S_N^{\sigma}[f](x) = \sum_{k=-N}^N \sigma(k)\hat{f}_k e^{ikx} \longrightarrow [f](x)$$

We can solve the system $S\sigma = [r](x)$ for a solution $\sigma(k)$ to the equation

$$S_N^{\sigma}[f](x) = \sum_{k=-N}^N \sigma(k)\hat{f}_k e^{ikx} \longrightarrow [f](x)$$

Figure: $S_N[f](x)$ from σ and \hat{f}

What is Fourier Phase Data?

What is Fourier Phase Data? Recall

Fourier Series

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ikx}, \text{ where } \hat{f}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

The Fourier coefficients \hat{f}_k are complex numbers, i.e., $\hat{f}_k = \alpha_k e^{i\theta_k}$, where α_k is the **amplitude** and $e^{i\theta_k}$ is the **phase**.

What is Fourier Phase Data? Recall

Fourier Series

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ikx}, \text{ where } \hat{f}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

The Fourier coefficients \hat{f}_k are complex numbers, i.e., $\hat{f}_k = \alpha_k e^{i\theta_k}$, where α_k is the **amplitude** and $e^{i\theta_k}$ is the **phase**.

Let $ilde{f}_k$ be the Fourier phase data, i.e., $ilde{f}_k = rac{\hat{f}_k}{\|\hat{f}_k\|} = e^{i heta_k}.$

What is Fourier Phase Data? Recall

Fourier Series

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ikx}, \text{ where } \hat{f}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

The Fourier coefficients \hat{f}_k are complex numbers, i.e., $\hat{f}_k = \alpha_k e^{i\theta_k}$, where α_k is the **amplitude** and $e^{i\theta_k}$ is the **phase**.

Let \tilde{f}_k be the Fourier phase data, i.e., $\tilde{f}_k = \frac{\hat{f}_k}{\|\hat{f}_k\|} = e^{i\theta_k}$.

Is it still possible to reconstruct the jumps from \tilde{f}_k ?

Jump Location from Fourier Phase

Suppose f is a 2π -periodic function on $[-\pi,\pi)$ with a single jump discontinuity at $x=\xi$. Integration by parts reveals a relationship Fourier coefficients of f and the jump function [f].

Fourier Coefficients

$$\hat{f}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

$$\approx \frac{[f](\xi)e^{-ik\xi}}{2\pi ik} + \mathcal{O}\left(\frac{1}{k^2}\right)$$

$$\approx \frac{[f](\xi)}{2\pi k}e^{-i(k\xi + \pi/2)}$$

Jump Reconstruction from Fourier Phase Data

We can again solve the system $S\tilde{\sigma}=[r](x)$ for a solution $\tilde{\sigma}$ to

$$S_N^{\tilde{\sigma}}[f](x) = \sum_{k=-N}^N \tilde{\sigma}(k)\tilde{f}_k e^{ikx} \longrightarrow [f](x)$$

Jump Reconstruction from Fourier Phase Data

We can again solve the system $S\tilde{\sigma}=[r](x)$ for a solution $\tilde{\sigma}$ to

$$S_N^{\tilde{\sigma}}[f](x) = \sum_{k=-N}^N \tilde{\sigma}(k)\tilde{f}_k e^{ikx} \longrightarrow [f](x)$$

Figure: Reconstruction of [f](x) from $\tilde{\sigma}$ and \tilde{f}

Jump Reconstruction from Fourier Phase Data

Figure: Reconstructions of multiple functions from $\tilde{\sigma}$ and \tilde{f} .

Noisy Data

We used the MATLAB command awgn(data, SNR) to generate additive white Gaussian (complex) noise onto the Fourier data.

Noisy Data

We used the MATLAB command awgn(data, SNR) to generate additive white Gaussian (complex) noise onto the Fourier data.

Figure: Ramp jump approximation with and without noise

Noisy Data

We used the MATLAB command awgn(data, SNR) to generate additive white Gaussian (complex) noise onto the Fourier data.

Figure: Ramp jump approximation with and without noise

We can compare how different concentration factors hold up in different levels of noise.

Noisy Phase Data Jump Approximations

Figure: Jump approximations given noisy Fourier phase data using analytical trigonometric $\tilde{\sigma}$.

Noisy, Banded Phase Data Jump Approximations

Finally, we can consider noisy, banded Fourier phase data

Figure: Jump approximations given noisy, low-frequency banded Fourier phase data using the designed $\tilde{\sigma}$ from ℓ_2 -norm.

Future Work

Computational possibilities:

- Combining multiple (orthogonal) concentration factors
- Generalizations to two dimensions
- Non-uniform sampling methods

Analytical work ahead:

- Investigate quantity of data necessary for accurate jump height
- Statistical analysis for noisy phase data

Other directions:

- Application specific priors
- Comparing with real data
- Corners from edges

Acknowledgements

This work was started over the summer of 2015 as part of ASU's MCTP program. I would like to thank the NSF for their gracious support of the program, and Dr. Kostelich for his dedication in continuing this program at ASU.

I would also like to thank my advisor Dr. Gelb and everyone in our research group for their mentorship:

- Dr. Anne Gelb
- Dr. Douglas Cochran
- Dr. Rodrigo Platte
- Shane Lubold
- Rachel Nahon

