#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

다중선형회귀

독립변수가 두 개 이상인 경우의 회귀분석

분석 정확도를 높이기 위해 적절하지 않은 변수를 추려내는 과정을 반복적으로 수행하여 최적의 독립변수 그룹을 찾아내는 것을 목표로 한다.

#01. 작업 준비

1) 패키지 참조

```
from pandas import read_excel, DataFrame
from statsmodels.formula.api import ols
from matplotlib import pyplot as plt
import seaborn as sb
import sys
import os
import statsmodels.api as sm
```

```
sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))
from helper import ext_ols
```

2) 데이터 가져오기

다중선형회귀

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

필드	설명
CRIM	범죄율
ZN	25,000 평방피트를 초과 거주지역 비율
INDUS	비소매상업지역 면적 비율
CHAS	찰스강의 경계에 위치한 경우는 1, 아니면 0
NOX	일산화질소 농도
RM	주택당 방 수
AGE	1940년 이전에 건축된 주택의 비율
DIS	직업센터의 거리
RAD	방사형 고속도로까지의 거리
TAX	재산세율
PTRATIO	학생/교사 비율
В	인구 중 흑인 비율
LSTAT	인구 중 하위 계층 비율
MEDV	집값
CAT.MEDV	\$3000 이상 여부

df = read_excel("https://data.hossam.kr/E04/boston.xlsx")
df

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222
•••					•••	•••		•••		
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273
4										•

506 rows × 15 columns

#02. 파이썬의 ols 객체로 분석 (맛보기)

임의의 독립변수를 선정하여 분석 수행

```
model = ols("MEDV ~ CRIM + INDUS", data=df)
fit = model.fit()
```

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

OLS Regression Results

fit.summary()

Dep. Variable:	MEDV	R-squared:	0.278
Model:	OLS	Adj. R-squared:	0.275
Method:	Least Squares	F-statistic:	96.83
Date:	Tue, 25 Jul 2023	Prob (F-statistic):	2.66e-36
Time:	15:49:43	Log-Likelihood:	-1757.8
No. Observations:	506	AIC:	3522.
Df Residuals:	503	BIC:	3534.
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	29.2483	0.670	43.624	0.000	27.931	30.566
CRIM	-0.2455	0.044	-5.536	0.000	-0.333	-0.158
INDUS	-0.5234	0.056	-9.414	0.000	-0.633	-0.414

Omnibus:	193.751	Durbin-Watson:	0.739
Prob(Omnibus):	0.000	Jarque-Bera (JB):	653.883
Skew:	1.800	Prob(JB):	1.03e-142

다중선형회귀

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 이

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

Kurtosis:	7.248	Cond. No.	27.7
-----------	-------	-----------	------

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트로 생성

```
cls = list(df.columns)
cls.remove("MEDV")
cls.remove("CAT. MEDV")
cls
```

```
['CRIM',
'ZN',
'INDUS',
'CHAS',
'NOX',
'RM',
'AGE',
'DIS',
'RAD',
'TAX',
'PTRATIO',
```

23. 7. 25. 오후 4:29

다중선형회귀

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

```
'B',
'LSTAT']
```

model, fit, summary, table, result, goodness, varstr = ext_ols(df, x=cls

```
['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
```

summary

OLS Regression Results

Dep. Variable:	MEDV	R-squared:	0.741
Model:	OLS	Adj. R-squared:	0.734
Method:	Least Squares	F-statistic:	108.1
Date:	Tue, 25 Jul 2023	Prob (F-statistic):	6.72e-135
Time:	16:14:35	Log-Likelihood:	-1498.8
No. Observations:	506	AIC:	3026.
Df Residuals:	492	BIC:	3085.
Df Model:	13		_
Covariance Type:	nonrobust		

다중선형회귀

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

	coef	std err	t	P> t	[0.025	0.975]
Intercept	36.4595	5.103	7.144	0.000	26.432	46.487
CRIM	-0.1080	0.033	-3.287	0.001	-0.173	-0.043
ZN	0.0464	0.014	3.382	0.001	0.019	0.073
INDUS	0.0206	0.061	0.334	0.738	-0.100	0.141
CHAS	2.6867	0.862	3.118	0.002	0.994	4.380
NOX	-17.7666	3.820	-4.651	0.000	-25.272	-10.262
RM	3.8099	0.418	9.116	0.000	2.989	4.631
AGE	0.0007	0.013	0.052	0.958	-0.025	0.027
DIS	-1.4756	0.199	-7.398	0.000	-1.867	-1.084
RAD	0.3060	0.066	4.613	0.000	0.176	0.436
TAX	-0.0123	0.004	-3.280	0.001	-0.020	-0.005
PTRATIO	-0.9527	0.131	-7.283	0.000	-1.210	-0.696
В	0.0093	0.003	3.467	0.001	0.004	0.015
LSTAT	-0.5248	0.051	-10.347	0.000	-0.624	-0.425

Omnibus:	178.041	Durbin-Watson:	1.078
Prob(Omnibus):	0.000	Jarque-Bera (JB):	783.126
Skew:	1.521	Prob(JB):	8.84e-171

다중선형회귀

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

Kurtosis:	8.281	Cond. No.	1.51e+04
-----------	-------	-----------	----------

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

분석 결과 표 확인

table

		В	표준오차	β	t	유의확률	VIF
종속변수	독립변수						
MEDV	CRIM	-0.1080	0.033	0	-3.287*	0.001	2.160156
	ZN	0.0464	0.014	0	3.382*	0.001	3.043697
	INDUS	0.0206	0.061	0	0.334*	0.738	14.755787
	CHAS	2.6867	0.862	0	3.118*	0.002	1.180552
	NOX	-17.7666	3.820	0	-4.651*	0.000	74.549360
	RM	3.8099	0.418	0	9.116*	0.000	136.875365
	AGE	0.0007	0.013	0	0.052*	0.958	21.541039
	DIS	-1.4756	0.199	0	-7.398*	0.000	16.044949

23. 7. 25. 오후 4:29

다중선형회귀

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

05_다중선형회귀.ipynb

		В	표준오차	β	t	유의확률	VIF
종속변수	독립변수						
	RAD	0.3060	0.066	0	4.613*	0.000	15.404871
	TAX	-0.0123	0.004	0	-3.280*	0.001	61.939733
	PTRATIO	-0.9527	0.131	0	-7.283*	0.000	91.819346
	В	0.0093	0.003	0	3.467*	0.001	21.669504
	LSTAT	-0.5248	0.051	0	-10.347*	0.000	12.824787

산점도 행렬을 통한 상관관계 확인

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform == 'darwin'
plt.rcParams["font.size"] = 12
plt.rcParams["figure.figsize"] = (15, 15)
plt.rcParams["axes.unicode_minus"] = False
```

```
sb.pairplot(df)
plt.show()
plt.close()
```

23. 7. 25. 오후 4:29

다중선형회귀

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

VIF가 10 이상인 값을 제외하고 다시 분석

model2, fit2, summary2, table2, result2, goodness2, varstr2 = ext_ols(df

['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',

table2

		В	표준오차	β	t	유의확률	VIF
종속변수	독립변수						
MEDV	CRIM	-0.3398	0.042	0	-8.108*	0.000	2.160156
	ZN	0.1199	0.015	0	7.761*	0.000	3.043697
	CHAS	6.1729	1.392	0	4.435*	0.000	1.180552

result2

'R(0.263), R^2(0.258), F(59.67), 유의확률(5.23e-33), Durbin-Watson(0.821)

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 이

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

goodness2

'MEDV에 대하여 CRIM,ZN,CHAS로 예측하는 회귀분석을 실시한 결과, 이 회귀모형은 통계

varstr2

['CRIM의 회귀계수는 -0.3398(p<0.05)로, MEDV에 대하여 유의미한 예측변인인 것으로 'ZN의 회귀계수는 0.1199(p<0.05)로, MEDV에 대하여 유의미한 예측변인인 것으로 나타 'CHAS의 회귀계수는 6.1729(p<0.05)로, MEDV에 대하여 유의미한 예측변인인 것으로 I

#04. 결과 비교하기

실제집값 = df["MEDV"]

0 24.0

실제집값

1 21.6

2 34.7

3 33.4

4 36.2

• • •

•

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

```
501 22.4

502 20.6

503 23.9

504 22.0

505 11.9

Name: MEDV, Length: 506, dtype: float64
```

```
result1 = fit.predict(df.filter(cls))
result1
```

```
0
       30.003843
1
       25.025562
2
       30.567597
3
       28.607036
4
       27.943524
       23.533341
501
502
       22.375719
503
      27.627426
    26.127967
504
505
       22.344212
Length: 506, dtype: float64
```

```
result2 = fit2.predict(df.filter(['CRIM','ZN','CHAS']))
result2
```

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

```
24.127287
0
       21.962235
1
       21.962242
2
3
       21.960515
4
       21.948050
          • • •
501
       21.950232
502
       21.956131
503
       21.950867
504
       21.934273
505
       21.955404
Length: 506, dtype: float64
```

```
result_df = DataFrame({
    "실제집값":실제집값,
    "예측집값1":result1,
    "예측집값2":result2
})
result_df
```

	실제집값	예측집값1	예측집값2
0	24.0	30.003843	24.127287
1	21.6	25.025562	21.962235
2	34.7	30.567597	21.962242
3	33.4	28.607036	21.960515

다중선형회귀

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

	실제집값	예측집값1	예측집값2
4	36.2	27.943524	21.948050
•••			
501	22.4	23.533341	21.950232
502	20.6	22.375719	21.956131
503	23.9	27.627426	21.950867
504	22.0	26.127967	21.934273
505	11.9	22.344212	21.955404

506 rows × 3 columns

```
plt.figure()
sb.lineplot(data=result_df)
plt.show()
plt.close()
```

다중선형회귀

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기

23. 7. 25. 오후 4:29

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

모든 독립변수의 이름을 리스트 로 생성

분석 결과 표 확인

산점도 행렬을 통한 상관관계 확 인

VIF가 10 이상인 값을 제외하고 다시 분석

#04. 결과 비교하기