七大实数理论简介

(一) 确界原理

定义1.1: S 是一个非空数集, β 是一个常数,若 $\forall x \in S$,有 $x \leq \beta$,则称 β 是数集 S 的一个上界。同理,若 $\forall x \in S$,有 $x \geq \beta$,则称 β 是数集 S 的一个下界。 定义1.2:若 β 是数集 S 的一个上界,并且有 $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in S$,满足 $x_{\varepsilon} > \beta - \varepsilon$,则称 β 是数集 S 的上确界。类似的,若 β 是数集 S 的一个下界,并且有 $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in S$,满足 $x_{\varepsilon} < \beta + \varepsilon$,则称 β 是数集 S 的下确界。

定理1.1: 若数集S有上确界,则上确界是唯一的。

证明:使用反证法,若 β 是数集S的上确界,假设还有 α 也是上确界。

若 $\alpha>\beta$,根据定义1.2的否定,取 $\varepsilon=\alpha-\beta$,此时 $\alpha-\varepsilon=\beta$,有 $\forall x\in S$,有 $x\leq \alpha-\varepsilon$,因此 α 不是数集 S 的上确界。

若 $\alpha<\beta$,根据定义1.2,取 $\varepsilon=\beta-\alpha$,那么 $\exists x\in S$,使得 $x>\beta-\varepsilon=\alpha$,因此 α 不是数集 S 的上确界。

综上所述, $\alpha = \beta$, 上确界唯一。

类似的, 我们有:

定理1.2: 若数集S有下确界,则下确界是唯一的。

定理1.3:若数集 B 的下确界为 β ,定义数集 $C=\{-x|x\in B\}$, 那么数集 C 的上确界是 $-\beta$ 。

证明:由于 β 是数集 B的下界,根据定义1.1,有 $x\geq \beta$, $-x\leq -\beta$, $-\beta$ 是数集 C 的上界。根据定义1.2有 $\forall \varepsilon>0$, $\exists x_{\varepsilon}\in B$,满足 $x_{\varepsilon}<\beta+\varepsilon$,也就 $\exists -x_{\varepsilon}\in C$,满足 $-x_{\varepsilon}>-\beta-\varepsilon$ 。因此 $-\beta$ 是数集 C 的上确界。

类似的, 我们有:

定理1.4: 若数集 B 的上确界为 β ,定义集合 $C=\{-x|x\in B\}$,那么数集 C 的下确界是 $-\beta$ 。

在定理1.3的证明过程中我们可以得到如下结论:

定理1.5: 若 b 是数集 B 的下界,定义数集 $C = \{-x | x \in B\}$, 那么 -b 是数集 C 的上界。

定理1.6:若 b 是数集 B 的上界,定义数集 $C = \{-x|x \in B\}$,那么 -b 是数集C 的下界。 定理 1.7(确界原理):有上界的非空数集必有上确界。

推论: 有下界的非空数集必有下确界。

证明:设 b 是数集 B 的一个下界,定义数集 $C = \{-x|x \in B\}$,根据定理1.5,-b 是数集 C 的上界。再根据定理1.7(确界原理),数集 C 必有上确界 γ ,再根据定理1.4,数集B的下确界为 $-\gamma$ 。

注:确界原理可以被看做公理,它是实数的连续性或完备性的体现,即实数包含了数轴上所有的点,没有空隙。数集 S 的上确界常被记作 $\sup S$,下确界记作 $\inf S$ 。

(二) 区间套定理

定理2.1 (区间套定理) : 数列 $\{a_n\}$ 和 $\{b_n\}$ 构成闭区间列 $\{[a_n,b_n]\}$, 满足

- (1) $orall n \in N^+$ 有 $[a_{n+1},b_{n+1}] \subseteq [a_n,b_n]$
- (2) $\lim_{n\to\infty} (b_n-a_n)=0$

则区间列 $\left\{[a_n,b_n]
ight\}$,存在唯一公共点 ξ ,且 $\lim_{n o\infty}a_n=\lim_{n o\infty}b_n=\xi$ 。

注:该定理闭区间条件必不可少,例如区间列 $\left\{\left(0,\frac{1}{n}\right)\right\}$ 和 $\left\{\left[n,+\infty\right]\right\}$ 都不存在公共点 ξ 。

(三) 单调有界原理

定义3.1: 若一个数集既有上界,又有下界,则称这个数集有界。

定理3.1 (单调有界原理) : 单调有界的数列必有极限。

注:后面我们会证明,若数列单调递增,则极限为上确界,若单调递减,则极限为下确界。

(四) 柯西收敛原理

定理4.1(柯西收敛准则): 若对于数列 $\{x_n\}$, $\forall \varepsilon>0$, $\exists N\in N^+$, 当 m>N 时,对一切自然数 p ,有 $|x_{m+p}-x_m|<\varepsilon$ 。则数列 $\{x_n\}$ 收敛。

定理4.2(柯西收敛准则逆命题)若数列 $\{x_n\}$ 收敛,则 $\forall \varepsilon>0$, $\exists N\in N^+$,当 m>N 时,对一切自然数 p ,有 $|x_{m+p}-x_m|<\varepsilon$ 。

证明:设 $\lim_{n\to\infty}x_n=\xi$,根据极限定义, $\forall \varepsilon>0$,, $\exists N\in N^+$, 当 m>N 时, $|x_m-\xi|<\frac{\varepsilon}{2}$,同时因为 m+p>m>N , 也有 $|x_{m+p}-\xi|<\frac{\varepsilon}{2}$ 。因此 $|x_{m+p}-x_m|\leq |x_{m+p}-\xi|+|\xi-x_m|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ 。得证。

注:多数教科书上把以上两个命题称为柯西收敛准则,笔者认为这是不妥的。定理4.2的证明完全来自于极限的定义,不依赖与其他六个实数理论中的任何一个,与他们不能互推。因此,柯西收敛准则在本文中指的就是定理4.1。

(五) 致密性定理

定义5.1:在一个数列中,按原顺序任意选出无穷多项,构成一个新的数列。这个新的数列称为原数列的 子列。

定理5.1 (致密性定理): 有界数列必有收敛子列。

(六) 聚点定理

定义6.1: $\delta > 0$, 开区间 $(a - \delta, a + \delta)$ 称为 a 的 δ 邻域,记作 $U(a, \delta)$, δ 称作该邻域的半径。

定义6.2: $\delta > 0$, $U(a, \delta) - \{a\}$ 称为 a 的去心 δ 邻域,记作 $U(a, \delta)$ 。

定义6.3: 设 E 是数集,实数a满足, $\forall \delta > 0$,满足 $U^{\cdot}(a,\delta) \cap E \neq \varnothing$,则称 a 为 E 的聚点。

定理6.1 (聚点定理): 有界无穷点集至少有一个聚点。

定理6.2: $\exists a$ 为 E 的聚点,则a 的任何 δ 邻域均包含无限个 E 中的点。

证明:假设 a 的任何 δ_1 邻域仅仅包含 m 个 E 中的点,记作 $x_i (1 \le i \le m)$,令 $\delta = \min\{|x_i - a|\}$,则有 $U^{\cdot}(a,\delta) \cap E = \varnothing$, a 不是聚点。

(七) 有限覆盖定理

定理7.1 (有限覆盖定理) : 若开区间所成的区间集 E 覆盖闭区间 [a,b] ,则可以从 E 中选出有限个区间覆盖 [a,b] 。

注:区间集 E 必须为开区间集,否则集合不能成立。

七大实数理论互推

(一) 确界原理 ⇒ (三) 单调有界定理

定理3.1(单调有界原理):单调有界的数列必有极限。

不妨设数列 $\{x_n\}$ 单调递增。显然它有上界,根据确界原理,记上确界为 ξ 。

根据上确界的定义, $\forall \varepsilon>0$, $\exists \,x_N>\xi-\varepsilon$,由于单调递增, n>N 时有 $x_n\geq x_N>\xi-\varepsilon$ 。同时显然有 $x_n\leq \xi$ 。故 $|x_n-\xi|<\varepsilon$ 成立,故 $\{x_n\}$ 的极限就是上确界 ξ 。

同理可证, 当 $\{x_n\}$ 单调递减时, 极限为下确界。

(三) 单调有界定理 ⇒ (二) 区间套定理

定理2.1(区间套定理):数列 $\{a_n\}$ 和 $\{b_n\}$ 构成闭区间列 $\{[a_n,b_n]\}$,满足 (1) $\forall n\in N^+$ 有 $[a_{n+1},b_{n+1}]\subseteq [a_n,b_n]$ (2) $\lim_{n\to\infty}(b_n-a_n)=0$ 则区间列 $\{[a_n,b_n]\}$,存在唯一公共点 ξ ,且 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 。

由于 $\{b_n\}$ 单调递减, $\{a_n\}$ 单调递增,且 $a_1 \leq a_n \leq b_n \leq b_1$,根据单调有界原理,两个数列的极限均存在。 $0 = \lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n$ 。显然两者极限相等,记为 ξ ,并且 ξ 为 $\{b_n\}$ 的下确界, $\{a_n\}$ 的上确界。故有 $a_n \leq \xi \leq b_n$ 。

若 ξ 不唯一,假设有 $a_n \leq \xi_2 \leq b_n$,由夹逼定理得, $\xi \leq \xi_2 \leq \xi$,故 $\xi = \xi_2$,因此 ξ 唯一。

(二) 区间套定理 ⇒ (一) 确界原理

定理1.7 (确界原理): 有上界的非空数集必有上确界。

设 S 为任一非空有上界数集,若实数 s 是 S 的最大值,可以验证 s 就是上确界。

若 S 没有最大值,则随意取 $a_1\in S$, b_1 为 S 的任一上界。若 $\frac{a_1+b_1}{2}$ 为上界,则令 $a_2=a_1$, $b_2=\frac{a_1+b_1}{2}$,反之,则令 $a_2=\frac{a_1+b_1}{2}$, $b_2=b_1$ 这样依次取得数列 $\{a_n\}$ 和 $\{b_n\}$,构成区间套 $\{[a_n,b_n]\}$,且 $\lim_{n\to\infty}(b_n-a_n)=\lim_{n\to\infty}\frac{b_1-a_1}{2^{n-1}}=0$ 。根据区间套定理,存在唯一 ξ ,使 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 。

由于 b_n 是上界, $\forall x \in S$ 有 $x \leq b_n$,两侧取极限有 $x \leq \xi$ 。故 ξ 是 S 的上界。

由于 $\lim_{n\to\infty}a_n=\xi$, $\forall \varepsilon>0$, 有 N , 使得 n>N 时有 $a_n>\xi-\varepsilon$, 又因为 a_n 不是上界,故 $\exists x\in S$,有 $x>a_n>\xi-\varepsilon$ 。因此 ξ 是上确界。

(二) 区间套定理 ⇒ (五) 致密性定理

定理5.1(致密性定理):有界数列必有收敛子列。

设 $\{x_n\}$ 为一有界数列,有 $a \leq x_n \leq b$,将区间 [a,b] 分成 $\left[a,\frac{a+b}{2}\right]$ 和 $\left[\frac{a+b}{2},b\right]$ 两部分,显然至少一个区间包含无穷多项,取那个区间的下界记作 a_1 ,上界记作 b_1 。在该区间任取一项记作 c_1 。依次取下去得到数列 $\{a_n\}$ 和 $\{b_n\}$ 和闭区间列 $\{[a_n,b_n]\}$,且 $\lim_{n\to\infty}(b_n-a_n)=\lim_{n\to\infty}\frac{b-a}{2^n}=0$ 。根据区间套定理, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$,由于每一个区间包含无穷多项,因而可以取到完整的子列 $\{c_n\}$,并且有 $a_n\leq c_n\leq b_n$,根据夹逼定理有 $\lim_{n\to\infty}a_n=\xi$ 。

(二) 区间套定理 ⇒ (六) 聚点定理

定理6.1 (聚点定理):有界无穷点集至少有一个聚点。

证明方法与上面一个类似。

(二) 区间套定理 ⇒ (七) 有限覆盖定理

定理7.1(有限覆盖定理):若开区间所成的区间集 E 覆盖闭区间 [a,b] ,则可以从 E 中选出有限 个区间覆盖 [a,b] 。

假设区间 [a,b] 不能被 E 中有限个开区间覆盖,则将区间 [a,b] 分成 $\left[a,\frac{a+b}{2}\right]$ 和 $\left[\frac{a+b}{2},b\right]$ 两部分,至少有一个不能被有限个开区间覆盖,记为 $[a_1,b_1]$,这样依次等分,得到一区间列 $\{[a_n,b_n]\}$,不难验证该区间列满足区间套定理的使用条件,因而有 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 。由于 E 能覆盖闭区间 [a,b],因此存在开区间 (α,β) ,有 $\alpha<\xi<\beta$,由数列极限的定义, $\exists N\in N^+$,当 n>N 时有 $\alpha< a_n< b_n<\beta$ 。即 $[a_n,b_n]\subset(\alpha,\beta)$ 。与假设矛盾。

(五) 致密性定理 ⇒ (四) 柯西收敛原理

定理4.1(柯西收敛准则): 若对于数列 $\{x_n\}$, $\forall \varepsilon>0$, $\exists N\in N^+$,当 m>N 时,对一切自然数 p ,有 $|x_{m+p}-x_m|<\varepsilon$ 。则数列 $\{x_n\}$ 收敛。

取 $\varepsilon=1$, $\exists N\in N^+$, 当 m>N 时,对一切自然数 p ,有 $|x_{m+p}-x_m|<1$ 。取 m=N+1。则有 n>N+1 时有 $|x_n|<|x_{N+1}|+1$,因此 $\{x_n\}$ 有界。由致密性定理, $\{x_n\}$ 存在收敛子列 $\{x_{n_k}\}$,不妨设 $\lim_{n\to\infty}x_{n_k}=\xi$ 。根据极限定义, $\forall \varepsilon>0$, $\exists N_1\in N^+$,当 $k>N_1$ 时有 $|x_{n_k}-\xi|<\frac{\varepsilon}{2}$,再考虑柯西列的定义, $\exists N_2\in N^+$,当 $n,n_k>N_2$ 时有 $|x_{n_k}-x_n|<\frac{\varepsilon}{2}$,从而当上述两条件均满足时有 $|x_n-\xi|<\varepsilon$,故数列 $\{x_n\}$ 收敛。

(四) 柯西收敛原理 ⇒ (二) 区间套定理

设闭区间列 $\{[a_n,b_n]\}$, 满足

- (1) $\forall n \in N^+$ 有 $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$
- (2) $\lim_{n \to \infty} (b_n a_n) = 0$

由条件(2), $\forall \varepsilon>0$, $\exists N\in N^+$, 当 n>N 时有, $|b_n-a_n|<\varepsilon$ 。对一切自然数 p ,有 $a_n\leq a_{n+p}\leq b_{n+p}\leq b_n$,因而有 $|a_{n+p}-a_n|<\varepsilon$, $|b_{n+p}-b_n|<\varepsilon$ 。由柯西收敛准则,数列 $\{a_n\}$ 和 $\{b_n\}$ 都收敛。再根据 $\lim_{n\to\infty}(b_n-a_n)=0$ 。有 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 。由于极限的唯一性, ξ 唯一。

(五) 致密性定理 ⇒ (六) 聚点定理

设点集 S 为一有界无穷点集,依次任取 S 中不重复的点构成数列 $\{a_n\}$,根据致密性定理,必存在收敛子列满足 $\lim_{k\to\infty}a_{n_k}=\xi$,由极限定义, $\forall \varepsilon>0$, $\exists N\in N^+$,使 k>N 时有 $|a_{n_k}-\xi|<\varepsilon$,因而 ξ 是聚点。

(六) 聚点定理 ⇒ (五) 致密性定理

设数列 $\{a_n\}$ 有界,显然可以看做一无穷点集,根据聚点定理,至少存在一个聚点 ξ 。依次从 ξ 的 $\frac{1}{i}$ 邻域中取一项,记作 x_i ,根据定理6.2,可以无限取下去构成子列 $\{x_n\}$,且有 $|x_n-\xi|<\frac{1}{n}$,易证 $\lim_{n\to\infty}x_n=\xi$ 。

(七) 有限覆盖定理 ⇒ (六) 聚点定理

设 S 为一有界无限点集, $\forall x \in S$, $a \leq x \leq b$ 。假设 S 没有聚点,即 $\forall \xi \in [a,b]$,在 ξ 的 ε_{ξ} 去心领域内只包含有限多项,这些领域可以构成开区间集 J ,根据有限覆盖定理,该开覆盖必有有限子覆盖 J_1 能够覆盖区间 [a,b] 。然而 J_1 中的有限个开区间必然只包含有限个 S 中的点,与已知矛盾。

(七) 有限覆盖定理 ⇒ (五) 致密性定理

将数列看作无穷点集,证明与上类似。

至此,我们完成了七大实数理论的连接,即从任何一个实数理论出发可以推出其它六个定理(如文章开始的图所示)。

该图所展示的逻辑架构为多数国内数学分析教材的论证过程,事实上,任何两个实数理论之间均可以互推,具体内容如下:

七大实数理论互推完整版 https://zhuanlan.zhihu.com/p/83426407

以下这篇文章讲述了实数理论在数学分析中的应用:

实数理论的基本应用 https://zhuanlan.zhihu.com/p/89843274