Appunti di Algoritmi e Strutture Dati

Luca Facchini Matricola: 245965

Corso tenuto dal prof. Montresor Alberto Università degli Studi di Trento

A.A. 2024/2025

Sommario

Appunti del corso di Algoritmi e Strutture Dati tenuto dal prof. Montresor Alberto presso l'Università degli Studi di Trento nell'anno accademico 2024/2025.

INDICE

Indice

1	Ana		Algoritmi	3
	1.1	Model	li di calcolo	3
		1.1.1	Definizioni	3
		1.1.2	Esempi di Analisi	4
		1.1.3	Ordini di Complessità	5
	1.2	Notaz	ione asintotica	5
		1.2.1	Notazioni O, Ω, Θ	5
		1.2.2	Esempi e Esercizi	6
	1.3	Comp	lessità problemi v/s algoritmi	7
		1.3.1	Moltiplicazione numeri complessi	7
		1.3.2	Sommare numeri binari	7
		1.3.3	Moltiplicare numeri binari	7
	1.4	Algori	tmi di Ordinamento	8
		1.4.1	Selection Sort	9
		1.4.2	Insertion Sort	9
		1.4.3	Merge Sort	10
2	A ===	dia: di	funzioni	12
4	Alla	ansi ai	TUHZIOHI	12
	0.1	Motor	ione esintatica	
	2.1			12
		2.1.1	Definizioni	12 12
	2.1	2.1.1 Propri	Definizioni	12 12 12
		2.1.1 Propri 2.2.1	Definizioni	12 12 12 12
		2.1.1 Propri 2.2.1 2.2.2	Definizioni	12 12 12 12 13
		2.1.1 Propri 2.2.1 2.2.2 2.2.3	Definizioni . ietà della notazione asintotica	12 12 12 12 13 15
		2.1.1 Propri 2.2.1 2.2.2 2.2.3 2.2.4	Definizioni . ietà della notazione asintotica . Regola Generale . Proprietà delle notazioni . Altre funzioni di costo . Giocando con le espressioni .	12 12 12 12 13 15
	2.2	2.1.1 Propri 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Definizioni . ietà della notazione asintotica . Regola Generale . Proprietà delle notazioni . Altre funzioni di costo . Giocando con le espressioni . Classificazione delle funzioni .	12 12 12 13 15 15
		2.1.1 Propri 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Ricorr	Definizioni . ietà della notazione asintotica . Regola Generale . Proprietà delle notazioni . Altre funzioni di costo . Giocando con le espressioni . Classificazione delle funzioni . renze .	12 12 12 13 15 15 15
	2.2	2.1.1 Propri 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Ricorr 2.3.1	Definizioni . ietà della notazione asintotica . Regola Generale . Proprietà delle notazioni . Altre funzioni di costo . Giocando con le espressioni . Classificazione delle funzioni . enze . Introduzione .	12 12 12 13 15 15 15 15
	2.2	2.1.1 Propri 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Ricorr 2.3.1 2.3.2	Definizioni . ietà della notazione asintotica . Regola Generale . Proprietà delle notazioni . Altre funzioni di costo . Giocando con le espressioni . Classificazione delle funzioni . enze . Introduzione . Metodo dell'albero di ricorsione, o per livelli .	12 12 12 13 15 15 15 15 15
	2.2	2.1.1 Propri 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Ricorr 2.3.1	Definizioni . ietà della notazione asintotica . Regola Generale . Proprietà delle notazioni . Altre funzioni di costo . Giocando con le espressioni . Classificazione delle funzioni . enze . Introduzione . Metodo dell'albero di ricorsione, o per livelli . Metodo di sostituzione .	12 12 12 13 15 15 15 15

Capitolo 1

Analisi di Algoritmi

1.1 Modelli di calcolo

1.1.1 Definizioni

Complessità

Definizione 1.1. La complessità di un algoritmo è definita come la quantità di tempo necessaria per eseguirlo in funzione della dimensione dell'input.

Le domande spontanee che ci si pone sono dunque:

- Come definire la dimensione dell'input?
- Come misurare il tempo?

Dimensione dell'input

Definizione 1.2. Per definire la dimensione dell'input abbiamo due criteri:

Costo Logaritmico Il costo logaritmico è definito come il numero di bit necessari per rappresentare l'input.

Costo Uniforme La taglia dell'input è definita come il numero di elementi da cui è composto.

Ma in molti casi possiamo assumere che tutti gli elementi siano rappresentati dallo stesso numero di bit costante e che coincidono a meno di costante moltiplicativa

Tempo

Definizione 1.3. Un'istruzione si considera elementare se può essere eseguita in tempo "costante" dal processore, dunque un esempio ne è la moltiplicazione o una funzione matematica ad esempio $\cos(d)$, ma una istruzione come il massimo tra due numeri non è elementare.

Modello di calcolo

Definizione 1.4. Un modello di calcolo è definito come la rappresentazione astratta di un calcolatore che rispetta i seguenti criteri:

Astrazione Il modello deve permettere di nascondere i dettagli.

Realismo Il modello deve riflettere una situazione reale.

Potenza Matematica Il modello deve permettere di dimostrare "formalmente" la complessità di un algoritmo.

Esempio di modello di calcolo è la Macchina di Turing.

1.1.2 Esempi di Analisi

Tempo di calcolo min()

Sappiamo che ogni istruzione richiede un tempo costante per essere eseguita e che ogni operazione potenzialmente ha una costante diversa dalle altre e che ogni istruzione viene eseguita un numero di volte diversa dalle altre.

ITEM $min(ITEM[]A, int n)$	
	Costo # Volte
ITEM $min = A[1]$	$c_1 \hspace{1cm} 1$
for $i = 2$ to n do	$c_2 \hspace{1cm} n$
if $A[i] < min$ then	$c_3 \qquad n-1$
$\bigsqcup \ min = A[i]$	$c_4 \qquad n-1$
return min	c_5 1

Otteniamo quindi che il tempo di calcolo è:

$$T(n) = c_1 + c_2 n + c_3 (n - 1) + c_4 (n - 1) + c_5$$

= $(c_2 + c_3 + c_4)n + (c_1 + c_5 - c_3 - c_4) = an + b$

Tempo di calcolo di binarySearch()

In questo algoritmo il vettore viene suddiviso in due parti: Parte SX: $\lfloor (n-1)/2 \rfloor$ e Parte DX: $\lfloor n/2 \rfloor$.

	Costo	$\# \ (i>j)$	$\# (i \leq j)$
i > j then	c_1	1	1
return 0	c_2	1	0
lse			
$\int \mathbf{int} \ m = \lfloor (i+j)/2 \rfloor$	c_3	0	1
$ \mathbf{if} \ A[m] = v \ \mathbf{then} $	c_4	0	1
$\mathbf{return} m$	c_5	0	0
else if $A[m] < v$ then	c_6	0	1
return binarySearch $(A, v, m + 1, j)$	$c_7 + T(\lfloor n/2 \rfloor)$	0	0/1
else			
return binarySearch $(A, v, i, m-1)$	$c_7 + T((n-1)/2 $) 0	1/0

A questo punto dobbiamo fare delle assunzioni:

- Assumiamo che la n potenza di 2 sia: $n = 2^k$.
- L'elemento cercato non è presente.
- Ad ogni passo andiamo sempre a destra in quanto il numero di elementi da valutare è maggiore: n/2.

possiamo ora suddividere il problema in due casistiche:

$$i > j$$
 $(n = 0)$ $T(n) = c_1 + c_2$
 $i \le j$ $(n > 0)$ $T(n) = T(n/2) + c_1 + c_2 + c_3 + c_4 + c_6 + c_7$
 $= T(n/2) + d$

unendo i due casi otteniamo la Relazione di ricorrenza:

$$T(n) = \begin{cases} c & \text{se } n = 0\\ T(n/2) + d & \text{se } n > 0 \end{cases}$$

ottenuta la relazione generalmente per un numero n di elementi otteniamo che il tempo è dato da:

$$T(n) = T(n/2) + d$$

= $T(n/4) + 2d$
...
= $T(1) + kd$
= $T(0) + (k+1)d$
= $kd + (c+d)$ = $d \log n + e$

ottenendo quindi che il tempo di calcolo è $O(\log n)$ di natura logaritmica.

1.1.3 Ordini di Complessità

f(n)	$n = 10^1$	$n = 10^2$	$n = 10^3$	$n = 10^4$	Tipo
$\log n$	3	6	9	13	Logaritmica
\sqrt{n}	3	10	31	100	sub-lineare
n	10	100	1000	10000	Lineare
$n \log n$	30	664	9965	132877	log-lineare
n^2	10^{2}	10^{4}	10^{6}	10^{8}	Quadratica
n^3	10^{3}	10^{6}	10^{9}	10^{12}	Cubica
2^n	1024	10^{30}	10^{301}	10^{3010}	Esponenziale

1.2 Notazione asintotica

1.2.1 Notazioni O, Ω, Θ

Notazione O

Definizione 1.5. Sia g(n) una funzione di costo; indichiamo con O(g(n)) l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \ \exists m \ge 0 : f(n) \le cg(n), \ \forall n \ge m$$

La seguente notazione si legge: f(n) è "O grande" (big O) di g(n), con un abuso di notazione si scrive $f(n) = O(g(n))^1$. Inoltre per la precedente definizione possiamo dire che g(n) è un **limite asintotico** superiore per f(n), in quanto dopo qualche valore m la funzione g(n) è sempre maggiore di f(n). Inoltre per questo motivo sappiamo che f(n) cresce al più come g(n).

Notazione Ω

Definizione 1.6. Sia g(n) una funzione di costo; indichiamo con $\Omega(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \ \exists m \ge 0 : f(n) \ge cg(n), \ \forall n \ge m$$

La seguente notazione si legge: f(n) è "Omega" di g(n), con un abuso di notazione si scrive $f(n) = \Omega(g(n))^1$. Inoltre per la precedente definizione possiamo dire che g(n) è un **limite asintotico inferiore** per f(n), in quanto dopo qualche valore m la funzione g(n) è sempre minore di f(n). Inoltre per questo motivo sappiamo che f(n) cresce almeno come g(n).

¹ Questo è un abuso di notazione in quanto O(g(n)) è una classe di funzioni e non può essere eguagliata una singola funzione, il simbolo più appropriato sarebbe $f(n) \in O(g(n))$

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Notazione Θ

Definizione 1.7. Sia g(n) una funzione di costo; indichiamo con $\Theta(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c_1 > 0, \ \exists c_2 > 0, \ \exists m \ge 0 : c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge m$$

La seguente notazione si legge: f(n) è "Theta" di g(n), con un abuso di notazione si scrive $f(n) = \Theta(g(n))^1$. Inoltre per la precedente definizione possiamo dire che f(n) cresce esattamente come g(n), detto ciò $f(n) = \Theta(g(n))$ se e solo se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$.

Esempio grafico

1.2.2 Esempi e Esercizi

Esempio 1

$$f(n) = 10n^3 + 2n^2 + 7 \stackrel{?}{=} O(n^3)$$

Dobbiamo provare che $\exists c > 0, \ \exists m \ge 0 : f(n) \le cn^3, \ \forall n \ge m.$

$$f(n) = 10n^{3} + 2n^{2} + 7$$

$$\leq 10n^{3} + 2n^{3} + 7 \qquad \forall n \geq 1$$

$$\leq 10n^{3} + 2n^{3} + n^{3} \qquad \forall n \geq \sqrt[3]{7}$$

$$= 13n^{3} \stackrel{?}{\leq} cn^{3}$$

Che è verificata per qualsiasi $c \ge 13$ e $m \ge \sqrt[3]{7}$, arrotondiamo m ad un intero superiore ottenendo m = 2.

1.3 Complessità problemi v/s algoritmi

1.3.1 Moltiplicazione numeri complessi

Per moltiplicare numeri complessi bisogna svolgere la seguente operazione:

$$(a+bi)(c+di) = [ac-bd] + [ad+bc]i$$

dunque dai parametri a, b, c, d otteniamo che il risultato da restituire: ac - bd e ad + bc.

Domande Considerando che addizioni e sottrazioni costino $c_1 = 0.01$ e moltiplicazione costi $c_2 = 1$ possiamo chiederci:

- Quanto costa l'algoritmo?
- Si può fare meglio?
- Qual'è il ruolo del modello di calcolo?

Dato che si devono fare almeno 4 moltiplicazioni e 2 somme otteniamo che il costo totale è $4c_2 + 2c_1 = 4.02$. Ora si può fare meglio? La risposta è no in quanto se si potesse fare meglio si potrebbe fare meglio allora bisognerebbe trovare un algoritmo che esegua meno di 4 moltiplicazioni e 2 somme, ma per fare ciò bisognerebbe cambiare il modello di calcolo.

1.3.2 Sommare numeri binari

Algoritmo elementare della somma - sum()

Ipotizziamo che l'operazione da fare sia la somma di due bit singoli e generare il riporto, assegniamo a questa operazione costo c. Dopo ciò indichiamo con n il numero massimo di bit tra i due numeri da sommare, otteniamo dunque che:

- ullet Richiede di esaminare tutti gli n bit
- Costo totale cn = O(n)

Esiste allora un algoritmo più efficiente?

La risposta è no in quanto se esistesse un algoritmo di tale genere allora potremmo cambiare un solo bit di uno dei due numeri e ottenere un risultato diverso senza che l'algoritmo lo vada ad analizzare, il che è impossibile.

1.3.3 Moltiplicare numeri binari

Algoritmo elementare del prodotto - prod()

L'operazione elementare per moltiplicare due numeri binari è la seguente:

deduciamo che:

- Dobbiamo accedere a tutti i bit
- Il costo totale è $cn^2 = O(n^2)$ perché dobbiamo fare n somme di n bit.

Soluzione Divide-et-impera

La base del principio **Divide-et-impera** è la seguente:

Divide Dividere il problema in sotto-problemi più piccoli.

Impera risolvi i sotto-problemi in modo ricorsivo.

Combina combina le soluzioni dei sotto-problemi per ottenere la soluzione del problema originale.

La soluzione divide-et-impera per il problema della moltiplicazione binaria è la seguente:

$$\begin{array}{lll} X=a\cdot 2^{n/2}+b & X=\operatorname{Parte\ SX} & \operatorname{Parte\ DX} \\ Y=c\cdot 2^{n/2}+d & X=\operatorname{Parte\ SX} & \operatorname{Parte\ DX} \\ XY=ac\cdot 2^n+(ad+bc)\cdot 2^{n/2}+bd & Y=\operatorname{Parte\ SX} & \operatorname{Parte\ DX} \end{array}$$

Ora possiamo scrivere l'algoritmo: La funzione di costo associata all'algoritmo è:

Algorithm 1 boolean[] pdi(boolean[] X, boolean[] Y, int n)

- 1: **if** n = 1 **then**
- 2: **return** $X[1] \cdot Y[1]$
- 3: **else**
- 4: spezza X in $a \in b \in Y$ in $c \in d$
- 5: **return** $pdi(a, c, n/2) \cdot 2^n + (pdi(a, d, n/2) + pdi(b, c, n/2)) \cdot 2^{n/2} + pdi(b, d, n/2)$

$$T(n) = \begin{cases} c_1 & n = 1\\ 4T(n/2) + c_2 \cdot n & n > 1 \end{cases}$$

Nota: moltiplicare per 2^n corrisponde a uno shift a sinistra di n posizioni, svolta in tempo lineare.

Ora in quanto abbiamo 4 chiamate ricorsive, assumendo che c_1 sia il tempo per moltiplicare due bit e che c_2 sia il tempo per sommare due numeri binari otteniamo che il tempo di calcolo è $c_2 \cdot 4^i \cdot \frac{n}{2^i} = T(1) \cdot 4^{\log_2 n} = c_1 \cdot n^{\log_2 4} = c_1 \cdot n^2$.

Ma allora è possibile fare meglio? Long story short: si in quanto è stato provato nel 2021 l'esistenza di un algoritmo di complessità $O(n \log n)$.

1.4 Algoritmi di Ordinamento

Introduzione L'obbiettivo di questa sezione è valutare la complessità degli algoritmi in base all'input, in alcuni casi gli algoritmi si comportano differentemente in base all'input se siamo a conoscenza dell'input questa ci consente di scegliere un algoritmo più adeguato alla nostra soluzione.

Come analiziamo gli algoritmi Possiamo analizzare l'efficienza degli algoritmi in base a diversi casi:

Caso Pessimo Questa analisi è la più importante in quanto sappiamo che questa restituisce il limite superiore al tempo di esecuzione qualsiasi sia l'input.

Caso Medio Questa analisi è la più complessa in quanto bisogna definire il "caso medio" e cosa si intende per "medio", ma è utile con una distribuzione uniforme degli input.

Caso Ottimo Utile solo se conosciamo qualcosa sull'input, altrimenti non risulta utile se abbiamo un input arbitrario.

1.4.1 Selection Sort

Algoritmo Selection Sort:

Algorithm 2 selectionSort(Item[] A, int n)

```
1: for i = 1 to n - 1 do

2: int min \leftarrow \min(A, i, n)

3: A[i] \leftrightarrow \min(A, i, n)
```

Algoritmo di supporto min: Avendo analizzato il seguente algoritmo notiamo come in ogni caso, ottimo,

Algorithm 3 int min(Item[] A, int i, int n)

```
1: \operatorname{int} \min \leftarrow i
2: \operatorname{for} j = i + 1 \operatorname{to} n \operatorname{do}
3: \operatorname{if} A[j] < A[min] \operatorname{then}
4: \min \leftarrow j
5: \operatorname{return} \min
```

medio e pessimo, il "ciclo" esterno della funzione selectionSort() viene eseguito n-1 volte, mentre il ciclo interno della funzione min() viene eseguito n-i dove i è il valore dell'iterazione del ciclo esterno, quindi $n-1+n-2+n-3+\ldots+1=\frac{n(n-1)}{2}$ volte, otteniamo quindi che il tempo di calcolo è $O(n^2)$ in quanto questo si può approssimare a $\frac{n^2}{2}$.

$$\sum_{i=1}^{n-1} n - i = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = O(n^2)$$

1.4.2 Insertion Sort

L'algoritmo di insertion sort è efficiente per ordinare piccoli insiemi, il concetto dietro a questo si bassa sull'inserimento dell'elemento preso in analisi al posto giusto.

Algoritmo Insertion Sort:

Algorithm 4 insertionSort(Item[] A, int n)

```
1: for i = 2 to n do
2: Item temp \leftarrow A[i]
3: int j \leftarrow i
4: while j > 1 and A[j - 1] > temp do
5: A[j] \leftarrow A[j - 1]
6: j \leftarrow j - 1
7: A[j] \leftarrow temp
```

Il costo di esecuzione non dipende esclusivamente dalla dimensione ma anche dall'ordine degli elementi in ingresso.

Caso Pessimo Il costo dunque nel **caso pessimo** è $O(n^2)$ in quanto vengono eseguiti n-1 cicli esterni e n-1 cicli interni, ottenendo dunque $(n-1)+(n-2)+\ldots+1=\frac{n(n-1)}{2}=O(n^2)$.

Caso Medio Nel caso medio il costo rimane $O(n^2)$ in quanto il ciclo interni viene eseguito n/2 volte, ottenendo dunque $\frac{n(n-1)}{4} = O(n^2)$.

Caso Ottimo Nel caso ottimo il costo è O(n) in quanto il ciclo interno non viene mai eseguito.

Questo ci porta a dire che il insertionSort() è un algoritmo di ordinamento utile nei casi in cui l'input è già ordinato o quasi ordinato, nei casi nei quali non conosciamo la natura dell'input è meglio utilizzare un algoritmo di ordinamento differente.

1.4.3 Merge Sort

L'algoritmo di mergeSort() è un algoritmo di ordinamento basato sul principio divide-et-impera.

Divide: Spezza virtualmente il vettore di n elementi in sotto-vettori di n/2 elementi.

Impera: Chiama mergeSort() ricorsivamente sui due sotto-vettori.

Combina: Unisci (merge) i due sotto-vettori ordinati in un unico vettore ordinato.

In input si ha:

- \bullet A: vettore di n elementi.
- start, end, mid sono tali che $1 \le \text{start} < \text{mid} < \text{end} \le n$.
- I sotto-vettori $A[\text{start}, \dots, \text{mid}]$ e $A[\text{mid} + 1, \dots, \text{end}]$ sono ordinati.

In output si hanno i due sotto-vettori fusi in un unico sotto-vettore ordinato, tramite un vettore di appoggio B.

Funzione di appoggio Merge:

```
Algorithm 5 Merge(Item[] A, int start, int end, int mid)
```

```
1: int i, j, k, h
 2: int i \leftarrow \text{start}
 3: int j \leftarrow \text{mid} + 1
 4: int k \leftarrow \text{start}
 5: while i \leq \text{mid} and j \leq \text{end} do
           if A[i] \leq A[j] then
 6:
 7:
                 B[k] \leftarrow A[i]
                i \leftarrow i + 1
 8:
           else
 9:
                 B[k] \leftarrow A[j]
10:
11:
                j \leftarrow j + 1
           k \leftarrow k+1
12:
13: j \leftarrow \text{end}
14: for h = \text{mid downto } i \text{ do}
15:
           A[j] \leftarrow A[h]
           j \leftarrow j - 1
16:
17: for j = \text{start to } k - 1 \text{ do}
           A[j] \leftarrow B[j]
18:
```

Il costo computazionale di Merge() è O(n), questa è la base del costo computazionale di mergeSort().

Funzione completa mergeSort():

Algorithm 6 mergeSort(Item[] A, int start, int end)

- 1: $\mathbf{if} \ \mathrm{start} < \mathrm{end} \ \mathbf{then}$
- 2: **int** $mid \leftarrow (start + end)/2$
- 3: mergeSort(A, start, mid)
- 4: $\operatorname{mergeSort}(A, \operatorname{mid} + 1, \operatorname{end})$
- 5: merge(A, start, end, mid)

Assumendo per semplificare che $n=2^k$ dove k è un intero allora l'altezza dell'albero è esattamente $k=\log n$, in questo modo tutti i sotto-vettori hanno dimensione che è potenza di 2. Così facendo il costo computazionale di mergeSort() è:

$$T(n) = \begin{cases} c & n = 1\\ 2T(n/2) + dn & n > 1 \end{cases}$$

dove c è il costo di un'operazione elementare, d è il costo di Merge() e n è il costo di copiare i valori da B a A.

Capitolo 2

Analisi di funzioni

2.1 Notazione asintotica

2.1.1 Definizioni

Si rimanda al sezione 1.2 per le definizioni di O, Ω e Θ .

2.2 Proprietà della notazione asintotica

2.2.1 Regola Generale

Da qui si prende in considerazione la seguente espressione polinomiale:

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0, \quad a_k > 0 \Rightarrow f(n) = \Theta(n^k)$$

 $\textbf{Limite Superiore} \quad \exists c>0, \exists m\geq 0: f(n)\leq cn^k, \forall n\geq m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\leq a_k n^k + |a_{k-1}| n^{k-1} + \dots + |a_1| n + |a_0|$$

$$\leq a_k n^k + |a_{k-1}| n^k + \dots + |a_1| n^k + |a_0| n^k$$

$$= (a_k + |a_{k-1}| + \dots + |a_1| + |a_0|) n^k \quad \forall n \geq 1$$

$$\stackrel{?}{\leq} c n^k$$

questa è vera per $c \ge (a_k + |a_{k-1}| + \ldots + |a_1| + |a_0|) > 0$ e per m = 1

Limite Inferiore $\exists d > 0, \exists m \geq 0: f(n) \geq dn^k, \forall n \geq m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\geq a_k n^k - |a_{k-1}| n^{k-1} - \dots - |a_1| n - |a_0|$$

$$\geq a_k n^k - |a_{k-1}| n^k - \dots - |a_1| n^k - |a_0| n^k$$

$$= (a_k - |a_{k-1}| - \dots - |a_1| - |a_0|) n^k \qquad \forall n \geq 1$$

$$\stackrel{?}{\geq} dn^k$$

questa è vera se: $d \le a_k - \frac{|a_{k-1}|}{n} - \ldots - \frac{|a_1|}{n} - \frac{|a_0|}{n} > 0 \Leftrightarrow n > \frac{|a_{k-1}|+\ldots+|a_1|+|a_0|}{a_k}$

Casi Particolari

Complessità di f(n) = 5

$$f(n) = 5 \ge c_1 n^0 \Rightarrow c_1 \le 5$$

$$f(n) = 5 \le c_2 n^0 \Rightarrow c_2 \ge 5$$

$$\Rightarrow f(n) = \Theta(n^0) = \Theta(1)$$

Complessità di $f(n) = 5 + \sin(n)$ La complessità di calcolo di f(n) è $\Theta(1)$, in quanto $\sin(n)$ è una funzione oscillante tra -1 e 1, quindi $5 + \sin(n)$ oscilla tra 4 e 6.

2.2.2 Proprietà delle notazioni

Dualità

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Dimostrazione.

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow & f(n) \leq cg(n), \forall n \geq m \\ & \Leftrightarrow & g(n) \geq \frac{1}{c} f(n), \forall n \geq m \\ & \Leftrightarrow & g(n) \geq c' f(n), \forall n \geq m, c' = \frac{1}{c} \\ & \Leftrightarrow & g(n) = \Omega(f(n)) \end{split}$$

Eliminazione di costanti

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow af(n) = O(g(n)), \forall a > 0 \\ f(n) &= \Omega(g(n)) \Leftrightarrow af(n) = \Omega(g(n)), \forall a > 0 \end{split}$$

Dimostrazione.

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow & f(n) \leq cg(n), \forall n \geq m \\ & \Leftrightarrow & af(n) \leq acg(n), \forall n \geq m, \forall a > 0 \\ & \Leftrightarrow & af(n) \leq c'g(n), \forall n \geq m, c' = ac > 0 \\ & \Leftrightarrow & af(n) = O(g(n)), \forall a > 0 \end{split}$$

Sommatoria (sequenza di algoritmi)

$$f_1(n) = O(g_1(n)), f_2(n) = O(g_2(n)) \Rightarrow f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

$$f_1(n) = \Omega(g_1(n)), f_2(n) = \Omega(g_2(n)) \Rightarrow f_1(n) + f_2(n) = \Omega(\max(g_1(n), g_2(n)))$$

Dimostrazione (Lato O).

$$\begin{split} f_1(n) &= O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow \\ f_1(n) &\leq c_1 g_1(n) \land f_2(n) \leq c_2 g_2(n) \Rightarrow \\ f_1(n) + f_2(n) &\leq c_1 g_1(n) + c_2 g_2(n) \Rightarrow \\ f_1(n) + f_2(n) &\leq \max\{c_1, c_2\}(2 \cdot \max(g_1(n), g_2(n))) \Rightarrow \\ f_1(n) + f_2(n) &= O(\max(g_1(n), g_2(n))) \end{split}$$

Prodotto (cicli annidati)

$$f_1(n) = O(g_1(n)), f_2(n) = O(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$$

$$f_1(n) = \Omega(g_1(n)), f_2(n) = \Omega(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = \Omega(g_1(n) \cdot g_2(n))$$

Dimostrazione.

$$f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow$$

 $f_1(n) \le c_1 g_1(n) \land f_2(n) \le c_2 g_2(n) \Rightarrow$
 $f_1(n) \cdot f_2(n) \le c_1 c_2 g_1(n) g_2(n)$

Simmetria

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Dimostrazione. Grazie alla proprietà della dualità, si ha che:

$$\begin{split} f(n) &= \Theta(g(n)) \quad \Rightarrow \quad f(n) = O(g(n)) \Rightarrow g(n) = \Omega(f(n)) \\ f(n) &= \Theta(g(n)) \quad \Rightarrow \quad f(n) = \Omega(g(n)) \Rightarrow g(n) = O(f(n)) \end{split}$$

Transitività

$$f(n) = O(g(n)), g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

Dimostrazione.

$$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow$$

$$f(n) \le c_1 g(n) \land g(n) \le c_2 h(n) \Rightarrow$$

$$f(n) \le c_1 c_2 h(n) \Rightarrow$$

$$f(n) = O(h(n))$$

2.2.3 Altre funzioni di costo

Logaritmi v/s funzioni lineari

Proprietà dei Logaritmi Vogliamo provare che log(n) = O(n). Dimostriamo per induzione che

$$\exists c > 0, \exists m \geq 0 : \log n \leq cn, \forall n \geq m$$
 definizione di O

Dimostrazione.

Caso Base.
$$(n = 1)$$
: $\log 1 = 0 \le 0$. $\sum_{i=0}^{n} 1 = 0$
Ipotesi induttiva: $\log k < ck, \forall k < n$.

Passo Induttivo. Dimostriamo la proprietà per n + 1:

$$\log(n+1) \leq \log(n+n) = \log 2n \qquad \forall n \geq 1$$

$$= \log 2 + \log n \qquad \log ab = \log a + \log b$$

$$= 1 + \log n \qquad \log 2 = 1$$

$$\leq 1 + cn \qquad \text{per induzione}$$

$$\stackrel{?}{\leq} c(n+1) \qquad \text{Obbiettivo}$$

$$1 + cn \leq c(n+1) \Leftrightarrow c \geq 1$$

2.2.4 Giocando con le espressioni

Es 1 È vero che
$$\log_a n = \Theta(\log n)$$
?
Si: $\log_a n = (\log_a 2) \cdot (\log_2 n) = \Theta(\log n)$

Es 2 È vero che
$$\log n^a = \Theta(\log n)$$
, per $a > 0$?
Si: $\log n^a = a \log n = \Theta(\log n)$

Es 3 È vero che
$$2^{n+1} = \Theta(2^n)$$
?
Si: $2^{n+1} = 2 \cdot 2^n = \Theta(2^n)$

Es 4 È vero che
$$2^n = \Theta(3^n)$$
?
Ovviamente $2^n = O(3^n)$

Ma:
$$3^n = \left(\frac{3}{2} \cdot 2\right)^n = \left(\frac{3}{2}\right)^n \cdot 2^n$$
: Quindi non esiste $c > 0$ tale per cui $\left(\frac{3}{2}\right)^n \cdot 2^n \le c2^n$, quindi $2^n \ne O(3^n)$

2.2.5 Classificazione delle funzioni

È possibile definire un ordinamento delle principali classi estendendo le relazioni che abbiamo dimostrato: Per ogni r < s, h < k, a < b:

$$o(1) \subset O(\log^r n) \subset O(\log^s n) \subset O(n^h) \subset O(n^h \log^r n) \subset O(n^h \log^s n) \subset O(n^k) \subset O(a^n) \subset O(b^n)$$

2.3 Ricorrenze

2.3.1 Introduzione

Equazioni di ricorrenza Quando si calcola la complessità di un algoritmo ricorsivo, questa viene espressa tramite un'**equazione di ricorrenza**, ovvero una formula definita in maniera ricorsiva.

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

MergeSort

$$T(n) = \begin{cases} 1 & \text{se } n = 1\\ 2T\left(\frac{n}{2}\right) + n & \text{se } n > 1 \end{cases}$$

Forma Chiusa L'obbiettivo è quello di ottenere, quando possibile, una formula chiusa che rappresenti la classe di complessità della funzione.

MergeSort

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & n > 1 \\ \Theta(1) & n \le 1 \end{cases} \Longrightarrow T(n) = \Theta(n \log n)$$

2.3.2 Metodo dell'albero di ricorsione, o per livelli

Introduzione "Srotoliamo" la ricorrenza in un albero i costi ai vari livelli della ricorsione.

Esempio 1

$$T(n) = \begin{cases} T(n/2) + b & n > 1\\ c & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = b + T(n/2)$$

$$= b + b + T(n/4)$$

$$= b + b + b + T(n/8)$$

$$= \dots$$

$$= \underbrace{b + b + \dots + b}_{\log n} + T(1)$$

Assumiamo per semplicità che $n=2^k$. $T(n)=b\log n+c=\Theta(\log n)$

Esempio 2

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n \sum_{j=0}^{\log(n-1)} 2^{j}$$
somma degli $T(1)$

$$\Rightarrow n \cdot \frac{2^{\log n}}{2-1}$$

$$\forall x \neq 1: \sum_{j=0}^{k} x^{j} = \frac{x^{k+1}-1}{x-1}$$

$$= n(n-1)$$

$$+4^{\log n}$$

$$+4^{\log n}$$
cambiamento di base
$$= n^{2} - n$$

$$= 2n^{2} - n = \Theta(n^{2})$$

Esempio 3

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Da questa equazione notiamo che il primo livello ha costo n^3 , il secondo $4\left(\frac{n}{2}\right)^3$ il terzo $4^2\left(\frac{n}{2^2}\right)^3$ e così via. Quindi possiamo scrivere la sommatoria:

$$T(n) = n^{3} + 4\left(\frac{n}{2}\right)^{3} + \dots + 4^{\log n - 1}\left(\frac{n}{2^{\log n - 1}}\right)^{3} + 4^{\log n}$$

$$= \sum_{i=0}^{\log n - 1} 4^{i}\left(\frac{n}{2^{i}}\right)^{3} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{2^{2i}}{2^{3i}}\right) + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(2^{2i - 3i}\right) + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(2^{-1 \cdot i}\right) + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + n^{2}$$

$$\leq n^{3} \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} + n^{2}$$

$$= n^{3} \cdot \frac{1}{1 - \frac{1}{2}} + n^{2}$$

$$= 2n^{3} + n^{2}$$

Abbiamo dunque dimostrato che $T(n) \leq 2n^3 + n^2 = O(n^3)$ però non possiamo, tramite la dimostrazione precedente, dire che $T(n) = \Theta(n^3)$ in quanto siamo passati ad una disequazione. In questo particolare caso d'altra parte possiamo notare che $T(n) \geq n^3$ il che ci porta ad affermare che $T(n) = \Omega(n^3)$ e quindi $T(n) = \Theta(n^3)$.

2.3.3 Metodo di sostituzione

Introduzione È il metodo in cui si cerca di indovinare (guess) la soluzione e si prova a dimostrarla per induzione.

Primo esempio

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

 $^{^1}$ In quanto la sommatoria tende a crescere allora abbiamo potuto sostituire log n con ∞ e modificare il segno di uguaglianza con quello di \leq in quanto la sommatoria verso l'infinito converge è più grande di quella finita

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Notiamo come il costo dei vali livelli sia $n + n/2 + n/4 + \dots$ Dunque possiamo ipotizzare di poter scrivere:

$$T(n) = n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^{i}$$

$$\leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i}$$

$$= n \cdot \underbrace{\frac{1}{1 - \frac{1}{2}}}_{\text{usando } \forall x, |x| < 1: \sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x}}_{=2n}$$

2

Limite superiore Tentiamo quindi ora di dire che T(n) = O(n):

Caso Base
$$T(1) = 1 \stackrel{?}{\leq} 1 \cdot c \Leftrightarrow \forall c \geq 1$$

Passo Induttivo Dimostriamo la disequazione per T(n)

$$T(n) = T(\lfloor n/2 \rfloor) + n$$

$$\text{ipotizzato}O(n)$$

$$\leq c \lfloor n/2 \rfloor + n$$

$$\text{intero inferiore}$$

$$\leq c \cdot n/2 + n$$

$$= n(c/2 + 1)$$

$$\stackrel{?}{\leq} cn$$

$$\Leftrightarrow c/2 + 1 \leq c \Leftrightarrow c \geq 2$$

Dunque abbiamo provato che: $T(n) \le cn$, nel caso base $c \ge 1$ e nel passo induttivo $c \ge 2$. In quanto deve valere per entrambi i casi allora il primo valore utile di c è 2, avendo provato che per n = 1 la disequazione vale e che per tutti i successivi valori di n la disequazione vale allora possiamo dire che T(n) = O(n).

Limite Inferiore Tentiamo di dimostrare che $T(n) = \Omega(n)$:

Caso Base Dimostriamo che $T(1) = 1 \stackrel{?}{\geq} 1 \cdot d \Leftrightarrow \forall d \leq 1$

 $^{^2}$ Abbiamo potuto usare il \leq in quanto la sommatoria in questione all'infinito è sempre maggiore di quella finita e ci stiamo calcolando il costo massimo

Passo Induttivo Dimostriamo la disequazione per T(n):

$$T(n) = T(\lfloor n/2 \rfloor) + n$$
per ipo. induttiva sostituzione
$$\geq \frac{d \lfloor n/2 \rfloor}{d \lfloor n/2 \rfloor} + n$$
intero inferiore
$$\geq d \cdot \frac{n}{2} - 1 + n$$

$$= \left(\frac{d}{2} - \frac{1}{n} + 1\right) n \stackrel{?}{\geq} dn$$

$$\Leftrightarrow \frac{d}{2} - \frac{1}{n} + 1 \geq d$$

$$\Leftrightarrow d \leq 2 - \frac{2}{n}$$

Abbiamo quindi dimostrato che $T(n) \ge dn$, nel caso base $d \le 1$ e nel passo induttivo $d \le 2 - \frac{2}{n}$. In quanto deve valere per entrambi i casi allora il primo valore utile di d è 1, avendo provato che per n = 1 la disequazione vale e che per tutti i successivi valori di n la disequazione vale allora possiamo dire che $T(n) = \Omega(n)$.

Conclusione Avendo provato che T(n) = O(n) e $T(n) = \Omega(n)$ e ricordando che se $T(n) = O(n) \wedge T(n) = \Omega(n) \Leftrightarrow T(n) = \Theta(n)$ concludendo che la funzione di costo di T(n) cresce in maniera lineare.

Terzo esempio - Difficoltà matematiche

$$T(n) = \begin{cases} T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 & n > 1\\ 1 & n \le 1 \end{cases}$$

Limite Superiore Dalla seguente si può notare come il costo di ogni livello sia 1 e che il numero di livelli sia $\log n$. Inoltre la ricorsione viene eseguita su due rami, quindi possiamo scrivere la seguente sommatoria:

$$T(n) = \sum_{i=0}^{\log n} 2^{i}$$

= 1 + 2 + 4 + ... + $\frac{n}{4}$ + $\frac{n}{2}$ + n
= $O(n)$

Proviamo ora a dimostrare che T(n) = O(n):

Passo Induttivo Ipotizzando che $\forall k < n : T(k) \le ck$, dimostriamo che $T(n) \le cn$:

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$\leq c \left\lfloor \frac{n}{2} \right\rfloor + c \left\lceil \frac{n}{2} \right\rceil + 1$$

$$\leq cn + 1$$

$$\geq cn \Rightarrow 1 \leq 0$$
 impossibile

Sebbene la dimostrazione sia fallita ma l'intuizione ci dice che T(n) = O(n)Proviamo dunque a dimostrarlo per un **ordine inferiore**: $cn + 1 \le cn$ **Passo Induttivo** Ipotizzando che $\exists b > 0, \forall k < n : T(k) \le ck - b$ allora dimostriamo la disequazione per T(n):

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$\leq c \left\lfloor \frac{n}{2} \right\rfloor - b + c \left\lceil \frac{n}{2} \right\rceil - b + 1$$

$$= cn - 2b + 1$$

$$\stackrel{?}{\leq} cn - b$$

$$\Rightarrow cn - 2b + 1 \leq cn - b \Rightarrow b \geq 1$$

Dimostriamo il passo base per b=1: $T(1)=1 \stackrel{?}{\leq} 1 \cdot c - b \Leftrightarrow \forall c \geq b+1$

Limite Inferiore Proviamo ora a dimostrare che $T(n) = \Omega(n)$:

Passo Induttivo Ipotizzando che $\forall k < n : T(k) \ge dk$, dimostriamo che $T(n) \ge dn$:

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$\geq d\left\lfloor \frac{n}{2} \right\rfloor + d\left\lceil \frac{n}{2} \right\rceil + 1$$

$$= dn + 1$$

$$\stackrel{?}{>} dn \Rightarrow 1 > 0$$

Il che è vero $\forall d$ in quanto d è positivo per ipotesi.

Caso base Dimostriamo la disequazione per T(1):

$$T(1) = 1 \ge 1 \cdot d \Leftrightarrow d \le 1$$

Dunque abbiamo provato che $T(n) = \Omega(n)$

Avendo dimostrato in precedenza che T(n) = O(n) e T(n) = O(n) possiamo concludere che T(n) = O(n) e quindi la funzione di costo cresce linearmente.

2.3.4 Metodo dell'esperto, o delle ricorrenze comuni

Riccorenze comuni Esiste un'ampia classe di ricorrenze che si risolvono facilmente facendo ricorso a qualche teorema, ogni teorema è applicabile ad una particolare classe di ricorrenze.

Ricorrenze lineari con partizione bilanciata

Teorema 2.1. Siano a, b costanti intere tali che $a \ge 1$ e $b \ge 2$, e esistano c, β costanti reali tali che c > 0 e $\beta \ge 0$. Sia T(n) data dalla seguente relazione di ricorrenza:

$$T(n) = \begin{cases} aT(n/b) + cn^{\beta} & n > 1\\ 1 & n \le 1 \end{cases}$$

$$(2.1)$$

Posto: $\alpha = \frac{\log a}{\log b} = \log_b a$ allora:

$$T(n) = \begin{cases} \Theta(n^{\alpha}) & \alpha > \beta \\ \Theta(n^{\alpha} \log n) & \alpha = \beta \\ \Theta(n^{\beta}) & \alpha < \beta \end{cases}$$
 (2.2)

Assunzioni Assumiamo che n sia una potenza intera di b, ovvero $n = b^k$, $k = \log_b n$.

Influisce sul risultato?

- \bullet Supponendo che l'input abbia dimensione b^k+1
- Estendiamo l'input fino alla dimensione b^{k+1} (padding)
- ullet L'input è stato esteso di un fattore b
- Il che non cambia la complessità computazionale

Dimostrazione caso 1

Dimostrazione caso 2 $\alpha = \beta$

Dimostrazione. Ne segue che: $q = b^{\alpha-\beta} = 1$ e dunque la funzione T(n):

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^i$$
 (2.3)

$$=n^{\alpha}d + cn^{\beta}k \qquad q^i = 1^i = 1 \tag{2.4}$$

$$=n^{\alpha}d + cn^{\alpha}k \qquad \qquad \alpha = \beta \tag{2.5}$$

$$=n^{\alpha}(d+ck) \tag{2.6}$$

$$=n^{\alpha} \left[d + c \frac{\log n}{\log b} \right] \qquad k = \log_b n \tag{2.7}$$

e come conseguenza $T(n) = \Theta(n^{\alpha} \log n)$