ДОМАШНЕЕ ЗАДАНИЕ

5.1. Закон распределения дискретного случайного вектора (X,Y) задан таблицей:

$X \setminus Y$	10	20	30	40
0.5	0.05	0.12	0.08	0.04
2.5	0.09	0.3	0.11	0.21

Требуется:

- а) найти ряды распределения случайных величин X и Y;
- б) найти значения совместной функции распределения F(x,y) в точках (2.5, 25) И (9, 11);
- в) найти вероятность события $\{2 \leqslant X < 9, \ 10 \leqslant Y \leqslant 30\};$
- Γ) проверить, являются ли X и Y независимыми.
- 5.2. Совместная плотность распределения случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} 0, & (x-3)^2 + (y-2)^2 > 4; \\ C\left(2 - \sqrt{(x-3)^2 + (y-2)^2}\right), & (x-3)^2 + (y-2)^2 < 4. \end{cases}$$

Требуется:

- а) найти постоянную C;
- б) найти маргинальные плотности распределения случайных величин X и Y;
- в) найти вероятность события $\{(x-3)^2 + (y-2)^2 < 1\}$;
- Γ) проверить, являются ли X и Y независимыми.
- 5.3. Совместная плотность распределения случайных величин X и Y имеет вид

$$f(x,y) = \left\{ \begin{array}{ll} 0, & x \leqslant 0, \text{ или } y \leqslant 0; \\ Ce^{-4x-2y}, & x > 0, \ y > 0. \end{array} \right.$$

Требуется:

- а) найти постоянную C;
- б) совместную функцию распределения случайных величин X и Y;
- в) найти маргинальные плотности распределения случайных величин X и Y;
- г) найти вероятность попадания случайного вектора (X,Y) в область, ограниченную прямыми y=x, x+y=2, x=0.
- д) проверить, являются ли X и Y независимыми.
- 5.4. Закон распределения дискретного случайного вектора (X,Y) задан таблицей: Требуется:

$X \setminus Y$	0.1	0.15	0.20
0.3	0.25	0.15	0.32
0.6	0.10	0.05	0.13

5. Случайные векторы 15

а) найти условное распределение случайной величины X при условии, что случайная величина Y приняла значение $y_i, j = \overline{1;3};$

- б) найти условное распределение случайной величины Y при условии, что случайная величина X приняла значение x_i , $i = \overline{1;2}$;
- в) с использованием найденных условных распределений сделать вывод о независимости случайных величин X и Y.
- 5.5. Двумерный случайный вектор (X, Y) равномерно распределен в прямоугольнике с вершинами в точках (-3, -10), (-3, 10), (3, 10), (3, -10). Требуется:
 - а) условную плотность распределения случайной величины X при условии, что случайная величина Y приняла значение y;
 - б) условную плотность распределения случайной величины Y при условии, что случайная величина X приняла значение x;
 - в) с использованием найденных условных плотностей сделать вывод о независимости случайных величин X и Y.
- 5.6. Непрерывный случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} Cy, & (x,y) \in D; \\ 0, & (x,y) \notin D, \end{cases}$$

где D – область, ограниченная кривыми $y = x^2$ и y = 1. Требуется:

- а) найти постоянную C;
- б) условную плотность распределения случайной величины X при условии, что случайная величина Y приняла значение y;
- в) условную плотность распределения случайной величины Y при условии, что случайная величина X приняла значение x;
- г) с использованием найденных условных плотностей исследовать независимость случайных величин X и Y.