

Master-Studiengang Maschinenbau Informationen zum Schwerpunkt "Thermodynamik"

U. Maas, Institut für Technische Thermodynamik

Einleitung

- Thermodynamik bildet Grundlage für Prozesse in der Natur und der Technik
- Aus Thermodynamik im 3. und 4. Semester:
 - Hauptsätze
 - Wärmekraftmaschinen
 - Chemische Thermodynamik
 - Wärmeübertragung

- SP "Thermodynamik": Vertiefung und Erweiterung auf irreversible Thermodynamik
- Schwerpunkt auf reagierenden Strömungen und Modellbildung

Beispiel für reagierende Strömungen: Verbrennungsprozesse

- Verbrennung begleitet den Menschen seit Jahrtausenden:
 - als ungebändigte Naturgewalt und als wichtiges Mittel zur Verbesserung der Lebensqualität.
- Aber:
 - Ressourcenknappheit
 - Emissionen
- Notwendigkeit der Optimierung von Verbrennungssystemen.

Problematik

Schadstoffproblematik

Figure, Scienceses, SN4825 and navy streets to the design of the pattern of the p

The bottom of Gause continues years of the risk of an out-with the same of the cold are in transport or object weather that agreed a control towards or short was a substantial toward or the cold present services for agreed and the cold present services for the bottom of the same and the same 2000 control coldings and services and the same 2000 cold from same agree and the same and the same and the same and the same 2000 cold from same agree and the same and same and the same and the same and the same same and the same and the same and the same same and the same and sa

This reference call spaced insider an opticion on the international public which against the first them the production of the control of the

hoper or polition conducts to seem rure communities and post-upon deather. Referenties to be largely grant by the word community.

WHO - http://www.who.int/indoorair/publications/fuelforlife.pdf

CO2-Problematik

H. Grobe

Energiebedarf

Biomass includes traditional renewables such as wood, dung, etc.

Weitere Beispiele reagierender Strömungen

Chemical Vapor Deposition/Infiltration

 Schadstofftransport in der Atmosphäre

Zündung durch Plasmen

Schwerpunkt

- mindestens 16 LP pro Schwerpunkt
- 8 LP Kernmodulfächer (K) KP = Pflicht
- andere LP auch aus Ergänzungsfächern (E)
- nicht mehr als 4 LP aus Praktika
- andere Vorlesungen möglich mit Genehmigung des SP-Verantwortlichen
- maximal 20 LP

Vorlesungen im Kernbereich

VNr	Kat	Vorlesung	Dozent	sws	LP	Sem	Inst
2165515	К	Grundlagen der technischen Verbrennung I	Maas	2	4	WS	ITT
2166538	К	Grundlagen der technischen Verbrennung II	Maas	2	4	SS	ITT
2167523	К	Modellierung thermodynamischer Prozesse	Schießl / Maas	3	6	ww	ITT

Empfohlenes Wahlpflichtfach: Wärme- und Stoffübertragung

Grundlagen der technischen Verbrennung I (WS)

- Erhaltungsgleichungen
- chemische Kinetik
- **Experimentelle Methoden**
- laminare Flammen
- Schadstoffbildung

Rußbildung bei der Biomasseverbrennung

Laser-Diagnostik

Grundlagen der technischen Verbrennung II (SS)

Karlsruhe Institute of Technology

- Turbulente Flammen
- Motorische Verbrennungsprozesse
- Verbrennung flüssiger und fester Brennstoffe

turbulente Flamme

Zündprozesse

DNS einer turbulenten Flamme

Flammenausbreitung und Motorklopfen in einem Ottomotor

5.5 ms

Ausbreitung eines Zündkerns

Mathematische Modellierung thermodynamischer Prozesse

- Modellbildung
- Simulationsverfahren
- Numerische Behandlung komplexerZustandsgleichungen
- Berechnung chemischer Gleichgewichte
- Optimierungsverfahren
- Wärmeleitungsprobleme
- Modelle reagierender Strömungen

Ergänzungsfächer

- Sehr breite Auswahl an Grundlagen- und Anwendungsfächern
- Vorlesungen des ITT aber auch anderer Institute
- Nach Absprache auch weitere Vorlesungen möglich

2134112	Е	Aufladung von Verbrennungsmoto- ren	Golloch	2	4	SS	IFKM
2167541	Е	Ausgewählte Kapitel der Verbren- nung	Maas	2	4	ww	ITT
2186126	Е	Automobil und Umwelt	Kubach / Spicher / Maas / Wirbser	2	4	SS	IFKM/ ITT
2165514	Е	Biogas-Chancen und Möglichkeiten	Drausnigg	2	4	ws	ITT
22012	Е	Grundlagen der Kältetechnik	Oellrich	2	4	WS	ciw
2165525	Е	Mathematische Modelle und Me- thoden der Theorie der Verbren- nung	Bykov / Maas	2	4	WS	ITT

Ergänzungsfächer

VNr	Kat	Vorlesung	Dozent	sws	LP	Sem	Inst
2134134	Е	Methoden zur Analyse der motori- schen Verbrennung	Wagner	2	4	SS	IFKM
2166543	E	Reduktionsmethoden für die Model- lierung und Simulation von Verbrennungsprozessen	Bykov / Maas	2	4	SS	ITT
2131114	E	Simulation von Spray- und Ge- mischbildungsprozessen in Verbrennungsmotoren	Baumgar- ten	2	4	WS	ifkm
2153406	Е	Strömungen mit chemischen Reak- tionen	Class	2	4	WS	ISL
2169453	Е	Thermische Turbomaschinen I	Bauer	3	6	WS	ITS
2170476	Е	Thermische Turbomaschinen II	Bauer	3	6	SS	ITS
22010	Е	Thermodynamik disperser Systeme	Schaber	2	4	SS	ITK
2167048	Е	Verbrennungsdiagnostik	Schießl / Maas	2	4	ww	ITT
2133101	Е	Verbrennungsmotoren A	Spicher	6	8	WS	IFKM
2166534	Е	Wärmepumpen	Wirbser / Maas	2	4	SS	ITT

Möglichkeiten für Masterarbeiten

- experimentelle Untersuchung und mathematische Modellierung von Verbrennungsprozessen
- von physikalisch-chemischen Grundlagen zu praktischen Anwendungen
- von chemischer Kinetik bis zu Anwendungen
- von Laser-Diagnostik zu mathematischen Modellen

Funkenzündung

Zündung und Verbrennung von Sprays

Direkte Numerische Simulationen

Diagnostik motorischer Verbrennungsprozesse

Zündeigenschaften von Kohlenwasserstoffen

Entwicklung von Pflanzenölkochern

- Verdampfung des Brennstoffs unter Zersetzung
- Austritt aus der Düse, Mischen mit Luft
- Verbrennung in der Gasphase

Schadstoffe bei der Holzverbrennung

- Entgasung
- Abbrand der flüchtigen Bestandteile

Wärmeübergang

Koksabbrand

