Lecture 6: Posterior distribution and posterior consistency

Tianpei Xie

Aug.11st., 2015

${\bf Contents}$

1 Prior, Posterior, and Predictive Distributions

 $\mathbf{2}$

1 Prior, Posterior, and Predictive Distributions

• **Definition** (*Prior Distribution*) [Ghosh and Ramamoorthi, 2003, Schervish, 2012] Let $(\Omega, \mathscr{P}, \mathbb{P})$ be a *probability space*, and let $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ and $(\Theta, \mathcal{B}(\Theta))$ be *Borel spaces*. Let $X: \Omega \to \mathcal{X}$ and $\theta: \Omega \to \Theta$ be *measurable*. Then θ is called a *parameter* and Θ is called a *parameter space*.

The conditional distribution for X given θ is called a parametric family of distributions of X. The parametric family is denoted by

$$\mathcal{P}_0 = \left\{ \mathcal{P}_{\theta_0} : \forall A \in \mathcal{B}(\mathcal{X}), \mathcal{P}_{\theta_0}(A) = \mathbb{P} \left\{ X \in A | \theta = \theta_0 \right\}, \theta_0 \in \Theta \right\}.$$

We also use the symbol $\mathbb{P}_{\theta_0}[X \in A]$ to stand for $\mathcal{P}_{\theta_0}(A)$. **The prior distribution** of θ is the probability measure μ_{θ} over $(\Theta, \mathcal{B}(\Theta))$ induced by θ from $\overline{\mathbb{P}}$.

• Definition (*Likelihood Function and Conditional Density*) [Schervish, 2012] Suppose that each \mathcal{P}_{θ_0} , when considered as a measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, is absolutely continuous with respect to a measure ν on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$. Let

$$f_{X|\theta}(x|\theta_0) = \frac{d\mathcal{P}_{\theta_0}}{d\nu}.$$

We can assume that $f_{X|\theta}$ is **measurable** with respect to **the product** σ -**field** $\mathcal{B}(\mathcal{X}) \otimes \mathcal{B}(\Theta)$. This will allow us to integrate this function with respect to measures on **both** \mathcal{X} and Θ . The function $f_{X|\theta}(x|\theta_0)$, considered as **a function of** θ after X = x is observed, is often called **the likelihood function** $L(\theta)$.

For each $\theta \in \Theta$, the function $f_{X|\theta}(x|\theta_0)$ is **the conditional density** with respect to ν of X given $\theta = \theta_0$. That is for each $A \in \mathcal{B}(\mathcal{X})$,

$$\mathcal{P}_{\theta}(A) = \int_{A} f_{X|\theta}(x|\theta) d\nu(x)$$

• Definition (Marginal Distribution) [Schervish, 2012] Let μ_X be the marginal distribution so that

$$\mu_X(A) = \mathbb{P}\left[X \in A\right]$$

Using *Tonelli's theorem*, we have

$$\mu_X(A) = \int_{\Theta} \left[\int_A f_{X|\theta}(x|\theta) d\nu(x) \right] d\mu_{\theta}(\theta) = \int_A \left[\int_{\Theta} f_{X|\theta}(x|\theta) d\mu_{\theta}(\theta) \right] d\nu(x)$$

It follows that μ_X is absolutely continuous with respect to ν with density

$$f_X(x) = \int_{\Theta} f_{X|\theta}(x|\theta) d\mu_{\theta}(\theta)$$

This density is often called the *(prior)* predictive density of X or the marginal density of X.

• Theorem 1.1 (Bayes' Theorem). [Schervish, 2012]

Suppose that X has a parametric family \mathcal{P}_0 of distributions with **parameter space** Θ . Suppose that $\mathcal{P}_{\theta} \ll \nu$ in X for all $\theta \in \Theta$, and let $f_{X|\theta}(x|t)$ be the **conditional density** (with respect to ν) of X given $\theta = t$. Let μ_{θ} be the **prior distribution** of θ .

Let $\mu_{\theta|X}(\cdot|x)$ denote the conditional distribution of θ given X = x. Then $\mu_{\theta|X} \ll \mu_{\theta}$, a.s. with respect to the marginal of X, and the Radon-Nikodym derivative is

$$\frac{d\mu_{\theta|X}}{d\mu_{\theta}}(\theta|x) = \frac{f_{X|\theta}(x|\theta)}{\int_{\Theta} f_{X|\theta}(x|t)d\mu_{\theta}(t)} \tag{1}$$

for those x such that the **denominator** is **neither** 0 **nor infinite**. The **prior predictive probability** of the set of x values such that the denominator is 0 or infinite is 0, hence the posterior can be defined arbitrarily for such x values.

- **Definition** (*Posterior Distribution*) [Schervish, 2012] The conditional distribution of θ given X = x is called the posterior distribution of θ , denoted as $\mu_{\theta|X}$.
 - 1. $\mu_{\theta|X}(\cdot|x)$ is a **measure** on $\mathcal{B}(\Theta)$ given X = x;

The Bayes theorem confirms that $\mu_{\theta|X} \ll \mu_{\theta}$ and for all $B \in \mathcal{B}(\Theta)$, and the following equation holds almost surely with respect to μ_X

$$\mu_{\theta|X}(B|x) = \int_{B} \frac{f_{X|\theta}(x|s)}{\int_{\Theta} f_{X|\theta}(x|t) d\mu_{\theta}(t)} d\mu_{\theta}(s), \quad \mu_{X}\text{-a.s.}$$
 (2)

- 2. $\mu_{\theta|X}(B|\cdot)$ is a $\mathcal{B}(\mathcal{X})$ -measurable function of X given any $B \in \mathcal{B}(\Theta)$;
- 3. $\mu_{\theta|X}(B|\cdot)$ is *integrable* with respect to *marginal distribution* μ_X and

$$\mathbb{P}[X \in A, \theta \in B] = \int_{A} \mu_{\theta|X}(B|x) d\mu_X(x) \tag{3}$$

References

Jayanta K Ghosh and RV Ramamoorthi. Bayesian nonparametrics. Springer Science & Business Media, 2003.

Mark J Schervish. Theory of statistics. Springer Science & Business Media, 2012.