Part 1

1. Let $X_1, ..., X_5$ be iid with pdf

$$f(x) = \frac{3}{(1+x)^4}, \qquad 0 < x < \infty.$$

a. Show that the cdf is $F(x) = 1 - (1 + x)^{-3}$, x > 0.

b. Find $P(\min X_i > 0.1)$.

2. Let *X* and *Y* be independent random variables with mgfs,

$$M_X(t) = \frac{3}{4} + \frac{1}{4}e^t, \qquad t \in R$$
 $M_Y(t) = \frac{1}{2} + \frac{1}{2}e^t, \qquad t \in R$

Find the pmf for W = X + Y.

3. Consider random variables X_1 and X_2 with $E(X_1) = 2$, $E(X_2) = 2$, $Var(X_1) = 2$, $Var(X_2) = 1$, and $Cov(X_1, X_2) = 1$. Let $Y_1 = X_1 - X_2$ and $Y_2 = X_1 + X_2$. Find the correlation between Y_1 and Y_2 .

$$f(x,y) = \frac{2}{5}$$
, $0 < y < 1$, $0 < x < 3 - y$, zero otherwise

Let U = X/Y. Find the cdf of U. (Be sure to specify the support)

$$f(x,y) = \frac{2}{5}$$
, $0 < y < 1$, $0 < x < 3 - y$, zero otherwise

Let W = X + Y. Find the cdf of W. (Be sure to specify the support)

$$f(x,y) = \frac{60}{77}x^3y$$
, $0 < x < 1$, $0 < y < 4 - x$

a. Show that the marginal distribution of X is,

$$f(x) = \frac{30}{77}x^3(4-x)^2$$
, $0 < x < 1$.

b. Find E(Y|X).

$$f(x,y) = \frac{60}{77}x^3y$$
, $0 < x < 1$, $0 < y < 4 - x$

Let U = X and V = XY. Find the joint pdf of U and V. (Be sure to specify the support)

Part 2

8. Let $X_1, ..., X_n$ be iid with pdf

$$f(x;\theta) = \frac{1}{\theta} \sqrt{\frac{2}{\pi}} \exp\left(-\frac{1}{2}\frac{x^2}{\theta^2}\right), \quad 0 < x < \infty, \quad 0 < \theta < \infty.$$

and mean and variance,

$$E(X) = \theta \sqrt{\frac{2}{\pi}}, \quad Var(X) = \theta^2 \left(1 - \frac{2}{\pi}\right).$$

a) Show that the method of moments estimator $\tilde{\theta}$, of θ is

$$\tilde{\theta} = \bar{X}_n \sqrt{\frac{\pi}{2}}.$$

b) For problem 8, is $\tilde{\theta}$ an efficient estimator of θ ?

$$f(x; \lambda) = \frac{\lambda}{2\sqrt{x}} \exp(-\lambda\sqrt{x}), \quad 0 < x < \infty, \quad 0 < \lambda < \infty.$$

Note that,

$$E(X) = \frac{2}{\lambda^2}, \ Var(X) = \frac{20}{\lambda^4}$$

Find the limiting distribution of the method of moments estimator

$$\tilde{\lambda} = \sqrt{\frac{2}{\bar{X}_n}}.$$

$$f(x; \lambda) = \frac{\lambda}{2\sqrt{x}} \exp(-\lambda\sqrt{x}), \quad 0 < x < \infty, \quad 0 < \lambda < \infty.$$

Find $I(\lambda)$.

$$f(x; \lambda) = \frac{\lambda}{2\sqrt{x}} \exp(-\lambda\sqrt{x}), \quad 0 < x < \infty, \quad 0 < \lambda < \infty.$$

a) Show that $Y_i = \sqrt{X_i} \sim Exponential(\lambda)$.

b) Show that the maximum likelihood estimator

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \sqrt{X_i}},$$

is a consistent estimator of λ .

$$f(x;\theta) = \frac{1}{\theta} \sqrt{\frac{2}{\pi}} \exp\left(-\frac{1}{2}\frac{x^2}{\theta^2}\right), \qquad 0 < x < \infty, \qquad 0 < \theta < \infty.$$

Show that,

$$Y = \sum_{i}^{n} X_i^2$$

is a sufficient statistic for θ .

$$f(x; \lambda) = \frac{\lambda}{x^{\lambda+1}}, \qquad 1 < x < \infty, \qquad 2 < \lambda < \infty.$$

a) Show that the maximum likelihood estimator is,

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \ln x_i},$$

b) For problem 13, find the likelihood ratio statistic $\Lambda(\mathbf{x})$ for, the hypothesis test: $H_0: \lambda = 3$ vs. $H_1: \lambda \neq 3$.

Part 3

14. Consider the following model for an iid sample $X_1, ..., X_n$

$$X_i | \lambda \sim Poisson(\lambda)$$

$$\lambda \sim Gamma\left(\alpha = a, \theta = \frac{1}{b}\right)$$

so the prior distribution is proportional to,

$$h(\lambda) \propto \lambda^{a-1} e^{b\lambda}$$

a) Show that the posterior distribution of λ is $Gamma\left(\alpha = \alpha + \sum_{i=1}^{n} x_i, \theta = \frac{1}{b+n}\right)$.

b) What is the squared loss Bayes estimator of λ ?

15.Let $\lambda > 0$ and let X_1, \dots, X_8 be an iid sample of size n = 8 with pdf,

$$f(x;\lambda) = \frac{\lambda}{(1+x)^{\lambda+1}}, \qquad 0 < x < \infty.$$

a) Show that $W = \ln(1 + X) \sim Exponential(\lambda)$.

b) We wish to test H_0 : $\lambda = 4$ vs. H_1 : $\lambda < 4$. Show that the uniformly most powerful rejection region with a 1% level of significance is "Reject H_0 if $\sum_{i=1}^{8} w_i \ge 4$ ".

c) Find the power of the test in part (a) if $\lambda = 2.25$.

Answer: ______.

d) Suppose we observe $\sum_{i=1}^{8} \ln(1+x_i) = 3.5$. Find the p-value of the test.

Answer: ______.