МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет информационных технологий и программирования

Кафедра информационных систем

Лабораторная работа № 1

Методы одномерного поиска экстремума. Методы многомерного поиска экстремума. Методы первого порядка: метод наискорейшего спуска

Выполнили студенты: Ивниций Алексей M3305 Шеремет Сергей M3305 Шипкова Мария M3303

Проверил: Москаленко Мария Александровна **Цель работы:** ознакомиться с методами одномерного поиска, используемыми в многомерных методах минимизации функций переменных. Сравнить различные алгоритмы по эффективности на тестовых примерах.

Методы одномерного поиска экстремума

Рассмотрим функцию sin(x)

Результаты:

Method	Result
Binary search	-1,570356143
GoldDiv	-1,570356451
search	
Fibo search	-1,570296327
Direct search	-1,570796327
search	

Метод дихотомии

e=0.01

Interval	Ratio	Left value	Right value
3,141593	1	-1	1
1,571286	0,500156	-1	0,00049
0,786133	0,500312	-1	-0,70659
0,393557	0,500623	-1	-0,92355
0,197268	0,501245	-1	-0,98061
0,099124	0,502484	-1	-0,99509
0,050052	0,504943	-1	-0,99875
0,025516	0,50979	-1	-0,99967
0,013013	0,51	-1	-0,99992
0,006637	0,51	-1	-0,99998
0,003385	0,51	-1	-0,99999
0,001726	0,51	-1	-1
0,00088	0,51	-1	-1

Метод золотого сечения

Interval	Ratio	Left value	Right value
3,14159			
3	1	-1	1
1,94161			
1	0,618034	-1	0,362375
1,19998	0,618034	-1	-0,36237

2			
0,74162			
9	0,618034	-1	-0,73737
0,45835			
2	0,618034	-1	-0,89678
0,28327			
7	0,618034	-1	-0,96014
0,17507			
5	0,618034	-1	-0,98471
0,10820			
2	0,618034	-1	-0,99415
0,06687			
3	0,618034	-1	-0,99776
0,04133	0,618034	-1	-0,99915
0,02554			
3	0,618034	-1	-0,99967
0,01578			
6	0,618034	-1	-0,99988
0,00975			
7	0,618034	-1	-0,99995
0,00603	0,618034	-1	-0,99998
0,00372			
7	0,618034	-1	-0,99999
0,00230			
3	0,618034	-1	-1
0,00142			
3	0,618034	-1	-1
0,00088	0,618034	-1	-1

Метод Фибоначчи

Interval	Ratio	Left value	Right vale
3,14159			
3	1	-1	1
1,94161	0,618034	-1	0,362374
1,19998			
2	0,618034	-1	-0,36237
0,74163			
2	0,618035	-1	-0,73737
0,45834			
9	0,618027	-1	-0,89678
0,28328			
4	0,618054	-1	-0,96014
0,17506	0,617979	-1	-0,98472

4			
0,10822			
1	0,61818	-1	-0,99415
0,06684			
3	0,617649	-1	-0,99777
0,04137			
9	0,619046	-1	-0,99914
0,02546			
4	0,615386	-1	-0,99968
0,01591			
5	0,624998	-1	-0,99987
0,00954			
9	0,600002	-1	-0,99995
0,00636			
6	0,666665	-1	-0,99998
0,00318			
3	0,500001	-1	-0,99999

Поиск минимума функции на прямой

Interval	Ratio	Left value	Right value
3,14159			
3	1	-1	1

Зависимость количества вычислений минимизируемой функции от логарифма задаваемой точности ϵ .

Eps	Дихотомии	Золотого		
		сечения	Фибоначчи	Директ
0,1	12	10	8	3
0,01	18	14	13	3
0,001	24	19	17	3
0,0001	32	24	22	3
0,00001	38	29	27	3
0,000001	44	34	32	3
1E-07	52	38	37	3

ВЫВОД: полученные зависимости совпадают с теоретическими, так как для достижения точности ϵ потребуется $\ln ((b0 - a0) \epsilon) / \ln 2$ итераций. Исключением является поиск минимум на прямой. Его зависимость не совпадает из-за особенностей данных прямых: начальная точка и есть минимумом и алгоритм находит его не делаю больше одной итерации.

Методы многомерного поиска экстремума. Методы первого порядка: метод наискорейшего спуска

Рассмотрим функцию $100(x_2 - x_1^2)^2 + (1 - x_1)^2$

Start point	FunctionEpsilon	IterationCount	CallCount	Result point	Result value
100,0000; 100,0000	0,1	2	102	-10,0286; 100,5501	121,6839631
100,0000; 100,0000	0,01	2	123	10,0228; 100,4499	81,4158096
100,0000; 100,0000	0,001	2	153	-10,0272; 100,5501	121,6021029
100,0000; 100,0000	0,0001	2	189	10,0222; 100,4499	81,40290228
100,0000; 100,0000	0,00001	24096	970258	1,0084; 1,0170	7,20694E-05
100,0000; 100,0000	0,000001	3710	339762	0,9782; 0,9569	0,000473639
100,0000; 100,0000	0,0000001	30330	3531397	1,0061; 1,0123	3,73331E-05

Вывод: Алгоритм наискорейшего спуска очень плохо работает при больших значениях допустимой погрешности из-за низкой точности. Также при очень маленьких значениях допустимой погрешности функция вызывается очень большое количество раз, то есть возрастает время работы функции, что говорит о низкой производительности метода в данном случае.

Сравнение аналитического и численного методов вычисления производной: аналитические решения теоретически не имеют погрешности, однако не всегда задача решается аналитически; численные методы проще формализовать