## Regularization

TOTAL POINTS 5

1. You are training a classification model with logistic

1 point

regression. Which of the following statements are true? Check

all that apply.

- Adding a new feature to the model always results in equal or better performance on examples not in the training set.
- Adding many new features to the model makes it more likely to overfit the training set.
- Introducing regularization to the model always results in equal or better performance on examples
- Introducing regularization to the model always results in equal or better performance on the training set.
- 2. Suppose you ran logistic regression twice, once with  $\lambda=0$  , and once with  $\lambda=1$  . One of the times, you got

1 point

parameters  $\theta = \begin{bmatrix} 81.47 \\ 12.69 \end{bmatrix}$  , and the other time you got

$$heta = egin{bmatrix} 13.01 \\ 0.91 \end{bmatrix}$$
 . However, you forgot which value of

 $\lambda$  corresponds to which value of  $\theta.$  Which one do you

think corresponds to  $\lambda=1$ ?

$$\bigcirc \quad \theta = \begin{bmatrix} 81.47 \\ 12.69 \end{bmatrix}$$

$$\bullet = \begin{bmatrix} 13.01 \\ 0.91 \end{bmatrix}$$

3. Which of the following statements about regularization are

1 point

true? Check all that apply.

- Using too large a value of  $\lambda$  can cause your hypothesis to overfit the data; this can be avoided by reducing  $\lambda$
- Because logistic regression outputs values  $0 \le h_{\theta}(x) \le 1$ , its range of output values can only be "shrunk" slightly by regularization anyway, so regularization is generally not helpful for it.
- ightharpoonup Consider a classification problem. Adding regularization may cause your classifier to incorrectly classify some training examples (which it had correctly classified when not using regularization, i.e. when  $\lambda=0$ ).
- Using a very large value of  $\lambda$  cannot hurt the performance of your hypothesis; the only reason we do not set  $\lambda$  to be too large is to avoid numerical problems.
- 1 point
- 4. In which one of the following figures do you think the hypothesis has overfit the training set?





Figure:





O Figure:



O Figure:



5. In which one of the following figures do you think the hypothesis has underfit the training set?

1 point

Figure:



O Figure:



O Figure:



O Figure:



☑ I, Amrit Kumar, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

6 P P

Learn more about Coursera's Honor Code

Save

Submit