$HP = \{ M \# > c \mid M \text{ halts on > c} \}.$ $MP = \{ M \# > c \mid M \text{ balts on > c} \}.$

Q1. Is HP recursive?

Does Here exists a total TM M 8.+ L(M) = HP

02. Is MP recursive?

Does there exists a total TM M s.+ L(M) = MP

Working of the universal TM U.

U takes as injut an encoding of a TM M and a String of and simulates mon x.

- halts and accepts if M halts and accepts oc
- halts and rejects if M halts and rejects x.
- loops if M loops on x.

U simulates in step by step.

Question. Con we do better than blind simulation?

Eg. If M halts on x then simulate Mon x If not skip the simulation.

Build a U that takes as input M#x and

- halts and accepts if M halts and accepts x.
- halts and rejects if M halts and rejects x.
- halts and rejects if M loops on x.

Thus L(U') = L(U) = MP is a recursive set.

Theorem. HP is not recursive

Proof technique. Centor's Diagonalization

There does not exist a one-to-one correspondence

between natural number N and its powerset 2^N.

Theorem. HP is not recursive

Proof technique. Contor's Diagonalization

For $x \in \{0,1\}^{\times}$, let M_{x} denote the TM with input alphabet $\{0,1\}$ whose encoding is x.

	ϵ	0	l	00	01	11	000	001	
M_{ϵ}	Н	L	Н	11	L	L	L	H	
m_o	L	H	L	L	H	7	Н	Н	_
m,	Н	L	H	H	L	H	L	H	_
M00	L	L	L	H	L	升	H	け	_
Mol	H	H	L	H	H	L	L	L	
M_{II}	L	L	H	Н	H	L	H	L	_
M ₀₀₀	L	H	L	Н	L	H	}}	L	
M 001	H	L	Н	H	٧	H	#	H	_
•									

xth now describes for inputy if Mx halts ony.

Suppose 3 atotal TM K S.+ L(K) = HP.

For any of and y, K can determine the enty in the oxyth entry in the table.

On input M#x, - Khalts and accepts if Mhaltsonx - Khalts and rejects if M loops on x

Suppose Fatotal TM K S.+ L(K) = HP.

For any or and y, K can determine the enty in the oxyth entry in the table.

On input M#x, - Khalts and accepts if Mhaltsonx - Khalts and rejects if M loops on x

Consider a machine N that on input xc {0,13*

- 1) Constructs Mx from x and writes Mx#x on Ite tape
- 2) Runs Kon input Mx#x, accepting if K rejects and going into a trivial loop if Kaccepts.

For any oce {0,1}*, N halts onx iff Krejects M#X iff Mx loops on X.

That is, N is different from every mx on at least one string - the string x.
This gives a contradiction.