Introucción a Redes Neuronales

I302 - Aprendizaje Automático y Aprendizaje Profundo Roberto Bunge Universidad de San Andrés

Pereceptrón Simple

Supongamos dos entradas (features) y una salida (target):

$$egin{aligned} a &= w_0 + w_1 x_1 + w_2 x_2 = [w_0 \,\, w_1 \,\, w_2][1 \,\, x_1 \,\, x_2]^T \ \hat{y} &= h(a) \end{aligned}$$

Ejemplos funciones de activación:

- Regresión: salida no tiene activación o ReLu
 - Regresión lineal = perceptrón simple sin activación de salida
- Clasificación: salida con activación sigmoide (o softmax)

Perceptrón Multi-capa (Multi layer perceptron, MLP)

 $M^{(l)}:$ cantidad de unidades ocultas en la capa ℓ

Notación MLP

 $w_{ij}^{(l)}\,$: peso que se aplica a la salida del nodo j de la capa (l-1) y se suma al nodo i de la capa (l)

 $a_j^{(l)} \;\;:$ señal de <u>pre-activación</u> del nodo j de la capa (l)

 $z_i^{(l)}$: señal de <u>activación</u> (salida) del nodo j de la capa (l)

Red con tres unidades ocultas

MLP con una entrada y una capa oculta con 3 unidades ocultas

- La salida es lineal por tramos:
 - Por cada unidad oculta se agrega un "codo"

^{*} Grafico tomado de "Understanding Deep Learning", Prince (2023).

Teoremas de Aproximación Universal

 Podemos aproximar cualquier función con infinita precisión con un MLP con una sola capa oculta, si tenemos suficientes unidades ocultas en dicha capa

 A medida que agregamos mas unidades ocultas, la expresividad del modelo aumenta (pero la cantidad de parámetros también aumenta!)

Features Internos

 A medida que agregamos mas capas ocultas el MLP puede aprender features de orden superior

Aprender (optimizar) los pesos en MLP

- Cascada de productos internos y no-linealidades
 - Problema de optimzación no-convexo ⇒ Habran multiples minimos locales
 - No puedo encontrar mínimos analíticamente ⇒ Tengo que optimizar numéicamente
- Si hay muchas neuronas ⇒ Metodo de Newton es demasiado costoso
 - ⇒ Nos limitamos a Gradiente Descendiente
- En cualquier caso, vamos a necesitar computar el gradiente

Computo de Gradiente

- 1. Escribir L(w) explicitamente y computar gradiente analiticamente
 - a. Es artesanal, proclive a error
 - b. Toma mucho trabajo humano
- Diferenciación simbólica.
 - a. Puede dar expresiones MUY grandes
 - b. No puede manejar loops (recurrencias, etc.)
- 3. Diferenciación numérica (diferencia finitas)
 - a. Error numerico
 - b. Costo computacional, O(D^2)
- 4. Aprovechar recursividad
 - a. Backpropagation
 - b. Automatic Differentiation

Notación de señales de MLP

NOTA: cada unidad oculta también tiene un bias $w_{j0}^{(l)}$

Representación Vectorial de MLP

Relación entre señales de una capa y la siguiente:

$$a^{(l)} = W^{(l)}z^{(l-1)} + w_0^{(l)}$$

$$z^{(l)} = h^{(l)}(a^{(l)})$$

$$a^{(l+1)} = W^{(l+1)}z^{(l)} + w_0^{(l+1)}$$

$$W^{(l)} = \begin{bmatrix} w_{11}^{(l)} & \dots & w_{1M^{(l-1)}}^{(l)} \\ \vdots & \ddots & \vdots \\ w_{M^{(l)}1}^{(l)} & \dots & w_{M^{(l)}M^{(l-1)}}^{(l)} \end{bmatrix} \in \mathbb{R}^{M^{(l)} \times M^{(l-1)}}$$

$$w_0^{(l)} = \begin{bmatrix} w_{10}^{(l)} \\ \vdots \\ w_{M^{(l)}0}^{(l)} \end{bmatrix}, \quad a^{(l)} = \begin{bmatrix} a_1^{(l)} \\ \vdots \\ a_{M^{(l)}}^{(l)} \end{bmatrix}, \quad z^{(l)} = \begin{bmatrix} z_1^{(l)} \\ \vdots \\ z_{M^{(l)}}^{(l)} \end{bmatrix} \in \mathbb{R}^{M^{(l)} \times 1}$$

Backpropagation (I)

$$\mathcal{D} = \{(x_1, y_1), ..., (x_i, y_i), ..., (x_N, y_N)\}$$

$$L(w) = \sum_{i \in \mathcal{D}} L_i(w)$$

$$w^* = \min_w L(w)$$

$$\nabla_w L(w) = \sum_{i \in D} \nabla_w L_i(w)$$

Backpropagation (II)

Podemos computar el gradiente de $L_i(w)$ con respecto a los pesos $W^{(l)}$ de una capa l, aplicando la regla de la cadena:

$$\frac{\partial L_{i}}{\partial W^{(l)}} = \frac{\partial L_{i}}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial W^{(l)}} = \frac{\partial L_{i}}{\partial a^{(l)}} z^{(l-1)^{T}}$$

$$\frac{\partial L_{i}}{\partial w_{0}^{(l)}} = \frac{\partial L_{i}}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial w_{0}^{(l)}} = \frac{\partial L_{i}}{\partial a^{(l)}} I = \frac{\partial L_{i}}{\partial a^{(l)}}$$

$$\frac{\partial L_{i}}{\partial a^{(l)}} = \frac{\partial z^{(l)}}{\partial a^{(l)}} \frac{\partial L_{i}}{\partial z^{(l)}} = \operatorname{diag}(h'^{(l)}(a^{(l)})) \frac{\partial L_{i}}{\partial z^{(l)}}$$

$$\frac{\partial L_{i}}{\partial z^{(l)}} = \frac{\partial a^{(l+1)}}{\partial z^{(l)}} \frac{\partial L_{i}}{\partial a^{(l+1)}} = W^{(l+1)^{T}} \frac{\partial L_{i}}{\partial a^{(l+1)}}$$

Definiendo $\delta^{(l)} \triangleq \frac{\partial L_i}{\partial a^{(l)}}$, y juntando las ecuaciones anteriores tenemos:

$$\begin{split} \delta^{(l)} &= \operatorname{diag}(h'^{(l)}(a^l))W^{(l+1)}{}^T \delta^{l+1} \\ \frac{\partial L_i}{\partial W^{(l)}} &= \delta^{(l)} z^{(l-1)}{}^T \\ \frac{\partial L_i}{\partial w_0^{(l)}} &= \delta^{(l)} \end{split}$$

$$\frac{\partial f(x)}{\partial x} \equiv \nabla_x f(x)$$

Backpropagation (III)

Para la capa de salida podemos computar $\delta^{(L)}$ volviendo a la definicion de $\delta^{(l)}$ y aplicando la regla de la cadena sobre L_i con respecto a \hat{y}_i y $a^{(L)}$ (donde $\hat{y}_i = \hat{y}(x_i, w)$:

$$\delta^{(L)} \triangleq \frac{\partial L_i}{\partial a^{(L)}} = \frac{\partial \hat{y}_i}{\partial a^{(L)}} \frac{\partial L_i}{\partial \hat{y}_i} = \operatorname{diag}(h'^{(L)}(a^L)) \frac{\partial L_i}{\partial \hat{y}_i}$$
(12)

Teniendo $\delta^{(L)}$, podemos computar $\frac{\partial L_i}{\partial W^{(L)}}$ y $\frac{\partial L_i}{\partial w^{(L)}}$ aplicando la formula de backpropagation:

$$\frac{\partial L_i}{\partial W^{(L)}} = \delta^{(L)} z^{(L-1)^T} \tag{13}$$

$$\frac{\partial L_i}{\partial W^{(L)}} = \delta^{(L)} z^{(L-1)^T}$$

$$\frac{\partial L_i}{\partial w_0^{(L)}} = \delta^{(L)}$$
(13)

Computo mas eficiente

En la práctica, se puede hacer una mejora notando que la mutiplicacion matricial entre una matriz diagonal diag(a) y vector columna b se puede computar mas eficientemente mediante el producto elemento a elemento de la diagonal y el vector columna:

$$diag(a)b = a \odot b$$

Algoritmo Backpropagation

Algorithm 1 Algoritmo backpropagation

$$\begin{split} & \text{INPUTS: } x_i, W^{(:)}, w_o^{(:)} \\ & \# \text{ Forward-pass} \\ z^{(0)} = x_i \\ & \text{ for } l = 1 \text{ to } L \text{ do} \\ & a^{(l)} = W^{(l)}z^{(l-1)} + w_0^{(l)} \\ & z^{(l)} = h^{(l)}(a^{(l)}) \\ & \text{ end for } \\ \hat{y}_i = z^{(L)} \\ & L_i = L_i(y_i, \hat{y}_i) \end{split}$$

$$& \# \text{ Backward-pass} \\ \delta^{(L)} = h'^{(L)}(a^l) \odot \frac{\partial L_i}{\partial \hat{y}_i} \\ & \frac{\partial L_i}{\partial W^{(L)}} = \delta^{(L)}z^{(L-1)^T} \\ & \text{ for } l = L - 1 \text{ to } 1 \text{ do} \\ & \delta^{(l)} = h'^{(l)}(a^{(l)}) \odot W^{(l+1)^T}\delta^{(l+1)} \\ & \frac{\partial L_i}{\partial W^{(l)}} = \delta^{(l)}z^{(l-1)^T} \\ & \frac{\partial L_i}{\partial w_o^{(l)}} = \delta^{(l)} \\ & \text{ end for } \\ & \text{OUTPUTS: } \hat{y}_i, L_i, \frac{\partial L_i}{\partial W^{(i)}}, \frac{\partial L_i}{\partial w_o^{(i)}} \end{split}$$