Text Files to proper csv File.

This section comprises of the following steps:

- Extracting dataset from compressed rar file.
- Getting file-paths of B and M labelled data.
- · Reading each text file line-by-line and converting it into one big space seperated line of sys-calls.
- Storing this data in a dataframe final data in the format:

```
(Filename, Sys-Calls, Label (B/M) )
```

```
In [ ]:
!unrar x 'App Dataset.rar' #Extract the Data
In [ ]:
!ls
'App Dataset' 'App Dataset.rar'
                                   sample data
In [ ]:
#Importing required libraries
import os
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
In [ ]:
B dataset path = os.getcwd() + '/App Dataset/Dataset/B/sys' #Get file paths, for rea
ding
M dataset path = os.getcwd() + '/App Dataset/Dataset/M/sys'
files B = os.listdir(B dataset path)
files M = os.listdir(M dataset path)
list sys calls = []
for filename in files B:
    file = open( ( B dataset path + '/' + filename ), 'r' )
    sys calls = file.read().splitlines()
    list_sys_calls.append([filename, ' '.join(sys_calls), 'B']) #Store and label the d
ata
```

Out[]:

for filename in files M:

	File	Calls	Label
0	com.chinadeals.apk.sys_names.txt	ioctl pread rt_sigprocmask rt_sigprocmask rt_s	В
1	chat.cristianogratis.apk.sys_names.txt	dup fcntl close epoll_ctl ioctl ioctl getuid e	В
2	com.eterno.apk.sys_names.txt	futex ioctl epoll_pwait read recvfrom writev s	В
3	com.andromo.dev551559.app531086.apk.sys_names.txt	read writev write read read write read read re	В
4	$com.blinks labs.blink ist.and roid.apk.sys_names.txt$	read read ioctl ioctl writev futex ioctl ioctl	В

file = open((M dataset path + '/' + filename), 'r')

final data #Final dataframe of sys-calls, labeled

list sys calls.append([filename, ' '.join(sys calls), 'M'])

final data = pd.DataFrame(list sys calls, columns=['File','Calls','Label'])

sys calls = file.read().splitlines()

	 File	 Calls	 Label
-5817	a0bffe11168e65beb59e326d88f144f0d750634252a507	newfstatat ioetl ioetl getuid newfstatat newfs	——M
5818	02c9bddf966b59a8850a7395e7ce5af21ca16c442a0389	$recvfrom\ recvfrom\ writev\ send to\ getuid\ epoll_p$	М
5819	6113bc8bbbdfe89114a12ddfa25ad54eed63367cf21462	dup fcntl close epoll_ctl ioctl ioctl getuid e	М
5820	3 ddcdc 882166b87d3db9d5cc21ccd4c7009e1f134edeeb	ioctl ioctl faccessat mprotect mprotect mprote	М
5821	66d6c067ca2c6e500caac92977f19c513436b2ae276ab9	getuid epoll_pwait getuid epoll_pwait read new	М

5822 rows × 3 columns

Task 1 - Analysis of Sys-Calls with different Unigram Models

In this task, we analyse different models for representation of features, sys-calls. Sys-Calls are taken one at a time, hence they're Unigram Models.

For each data model, i.e., Bag of Words, Boolean Occurrence and TF-IDF the following steps are performed:

- Data is prepared by extracting the sys-calls from final_data and vectorizing it. The CountVectorizer is used for the first two models and TfidfVectorizer is used for TF-IDF.
- After this, the data is fit and transformed using the vectorizer. This data serves as the input variables, X. The Labels, Y, are extracted from final data, being either B/M for each input.
- Data is split into train and test data.
- Three different SVM Kernels, Linear, Polynomial and RBF are trained and analysed.

Bag of Words (No. of Occurrences of Calls)

['llseek', 'bind', 'capget', 'clock gettime', 'clone']

This data model counts the occurence of a particular feature in the dataset.

Prepare the Data

```
In [ ]:
from sklearn.feature extraction.text import CountVectorizer
text = final data['Calls']
print(text)
       ioctl pread rt sigprocmask rt sigprocmask rt s...
       dup fcntl close epoll ctl ioctl ioctl getuid e...
       futex ioctl epoll_pwait read recvfrom writev s...
3
       read writev write read read write read read re...
       read read ioctl ioctl writev futex ioctl ioctl...
     newfstatat ioctl ioctl getuid newfstatat newfs...
5817
5818
      recvfrom recvfrom writev sendto getuid epoll p...
5819
      dup fcntl close epoll ctl ioctl ioctl getuid e...
ioctl ioctl faccessat mprotect mprotect mprote...
5821
      getuid epoll pwait getuid epoll pwait read new...
Name: Calls, Length: 5822, dtype: object
In [ ]:
vectorizer = CountVectorizer()
transformed text = vectorizer.fit transform(text)
vectorizer.get feature names()[:5] #First five features
Out[]:
```

```
from sklearn import preprocessing
X = transformed text.toarray()
X = preprocessing.normalize(X)
Χ
Out[]:
array([[0.
                            , 0.
                                  , ..., 0.
                                                        , 0.26287891,
                 , 0.
       0.11385516],
                 , 0.
                                       , ..., 0.
      [0.
                            , 0.
                                                        , 0.16569688,
       0.1347668],
                            , 0.
                                       , ..., 0.
      [0.
                                                        , 0.18283549,
       0.09310442],
                 , 0.
                            , 0.
                                                        , 0.19940531,
      [0.
                                       , ..., 0.
       0.17339592],
                 , 0.
                            , 0.
                                       , ..., 0.
                                                       , 0.53886354,
      [0.
       0.06260463],
                            , 0.
                                                       , 0. ,
      [0. , 0.
                                       , ..., 0.
       0.01377167]])
In [ ]:
from sklearn import model selection, svm #Split the data
X train, X test, Y train, Y test = model selection.train test split(X, final data['Labe
1'], test size=0.2 , random state=45 )
Linear SVM Kernel
In [ ]:
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
Linear Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear Kernel.fit(X train, Y train)
#predictions
Linear Kernel Predictions = Linear Kernel.predict(X test)
#accuracy score
print("Linear Kernel accuracy is ", accuracy score(Linear Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Linear Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Linear Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(Linear Kernel, X test, Y test)
plt.show()
Linear Kernel accuracy is 0.9218884120171674
Confusion matrix:
[[480 30]
[ 61 594]]
Classification Report:
                        recall f1-score support
             precision
```

0.89

R

0.94

0.91

510

In []:

```
0.95
                              0.91
                                         0.93
                                                     655
                                         0.92
                                                    1165
    accuracy
                              0.92
                                         0.92
                    0.92
                                                    1165
   macro avg
                                         0.92
                    0.92
                              0.92
                                                    1165
weighted avg
```

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
Polynomial Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
Polynomial Kernel.fit(X train, Y train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy score(Polynomial Kernel Predictions, Y t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Polynomial Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test, Polynomial_Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(Polynomial Kernel, X test, Y test)
plt.show()
Polynomial Kernel accuracy is 0.9536480686695279
Confusion matrix:
```

[[486 24] [30 625]]

Classification Report:

support	f1-score	recall	precision	
510 655	0.95 0.96	0.95 0.95	0.94 0.96	В М
11/5	0 0E			~ ~

```
      accuracy
      0.95
      0.95
      0.95
      1165

      macro avg
      0.95
      0.95
      0.95
      1165

      weighted avg
      0.95
      0.95
      0.95
      1165
```

ROC Plot

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
RBF_Kernel = svm.SVC(C=1.5, kernel='rbf', gamma='auto')
RBF Kernel.fit(X_train,Y_train)
#predictions
RBF Kernel Predictions = RBF Kernel.predict(X test)
#accuracy score
print("RBF Kernel accuracy is ", accuracy score(RBF Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,RBF_Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test, RBF_Kernel_Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(RBF Kernel, X test, Y test)
```

RBF Kernel accuracy is 0.855793991416309

Confusion matrix:

[[468 42] [126 529]]

Classification Report:

support	f1-score	recall	precision	
510 655	0.85 0.86	0.92 0.81	0.79 0.93	B M
1165 1165 1165	0.86 0.86 0.86	0.86	0.86 0.87	accuracy macro avg weighted avg

Boolean Occurrence

Prepare the Data

```
In [ ]:
X = np.where(transformed text.toarray() >= 1,1,0)
                                                           #Same as Bag of words, but Boole
an. So all values >=1 are replaced with 1.
Χ
Out[]:
array([0, 0, 0, ..., 0, 1, 1],
       [0, 0, 0, \ldots, 0, 1, 1],
       [0, 0, 0, ..., 0, 0, 1]])
In [ ]:
from sklearn import model selection, svm
                                                  #Split the data
X train, X test, Y train, Y test = model selection.train test split( X, final data['Labe
1'], test size=0.2 , random state=45 )
```

Linear SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve

#train model
Linear_Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear_Kernel.fit(X_train,Y_train)

#predictions
Linear_Kernel_Predictions = Linear_Kernel.predict(X_test)

#accuracy score
print("Linear Kernel accuracy is ", accuracy_score(Linear_Kernel_Predictions, Y_test))

#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,Linear_Kernel_Predictions))

#Classification Report for the rest of the metrics
```

```
print("\nClassification Report:\n")
print(classification_report(Y_test, Linear_Kernel_Predictions))

#ROC Plot
print("\nROC Plot")
plot_roc_curve(Linear_Kernel, X_test, Y_test)
plt.show()
```

Linear Kernel accuracy is 0.9218884120171674

Confusion matrix:

[[480 30] [61 594]]

Classification Report:

	precision	recall	f1-score	support
E M		0.94 0.91	0.91 0.93	510 655
accuracy macro avo		0.92	0.92	1165 1165
weighted avo		0.92	0.92	1165

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
roc curve
#train model
Polynomial Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
Polynomial Kernel.fit(X train, Y train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy_score(Polynomial_Kernel_Predictions, Y t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test, Polynomial_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Polynomial Kernel Predictions))
```

```
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Polynomial_Kernel, X_test, Y_test)
plt.show()
```

Polynomial Kernel accuracy is 0.9536480686695279

Confusion matrix:

```
[[486 24]
[ 30 625]]
```

Classification Report:

	precision	recall	f1-score	support
B M	0.94 0.96	0.95 0.95	0.95 0.96	510 655
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	1165 1165 1165

ROC Plot

RBF SVM Kernel

In []:

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
RBF Kernel = svm.SVC(C=1.5, kernel='rbf', gamma='auto')
RBF Kernel.fit(X train, Y train)
#predictions
RBF Kernel Predictions = RBF Kernel.predict(X test)
#accuracy score
print("RBF Kernel accuracy is ", accuracy score(RBF Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,RBF_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test,RBF_Kernel_Predictions))
#ROC Plot
print("\nROC Plot")
```

```
plot_roc_curve(RBF_Kernel, X_test, Y_test)
plt.show()
```

RBF Kernel accuracy is 0.855793991416309

Confusion matrix:

```
[[468 42]
[126 529]]
```

Classification Report:

	precision	recall	f1-score	support
В	0.79	0.92	0.85	510
М	0.93	0.81	0.86	655
accuracy			0.86	1165
macro avg	0.86	0.86	0.86	1165
weighted avg	0.87	0.86	0.86	1165

ROC Plot

TF-IDF

Prepare the Data

```
In [ ]:
```

```
from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(text).toarray()

# print(X)
# print(vectorizer.vocabulary_)
```

```
In [ ]:
```

```
from sklearn import model_selection, svm #Split the data

X_train, X_test, Y_train, Y_test = model_selection.train_test_split( X, final_data['Labe
1'], test_size=0.2 , random_state=45 )
```

Linear SVM Kernel

```
In [ ]:
```

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve

```
#train model
Linear Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear_Kernel.fit(X_train,Y_train)
#predictions
Linear Kernel Predictions = Linear Kernel.predict(X test)
#accuracy score
print("Linear Kernel accuracy is ", accuracy score(Linear Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test,Linear Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Linear Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Linear_Kernel, X_test, Y_test)
plt.show()
```

Linear Kernel accuracy is 0.9218884120171674

Confusion matrix:

[[480 30] [61 594]]

Classification Report:

	precision	recall	f1-score	support
В	0.89	0.94	0.91	510
М	0.95	0.91	0.93	655
accuracy			0.92	1165
macro avg	0.92	0.92	0.92	1165
weighted avg	0.92	0.92	0.92	1165

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve
#train model
Polynomial_Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
```

```
Polynomial_Kernel.fit(X_train,Y_train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy_score(Polynomial_Kernel_Predictions, Y_t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Polynomial Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Polynomial Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Polynomial_Kernel, X_test, Y_test)
plt.show()
```

Polynomial Kernel accuracy is 0.9545064377682403

Confusion matrix:

```
[[487 23]
[ 30 625]]
```

Classification Report:

	precision	recall	f1-score	support
В	0.94	0.95	0.95	510
М	0.96	0.95	0.96	655
accuracy			0.95	1165
macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95	1165 1165

ROC Plot

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve
#train model
RBF_Kernel = svm.SVC(C=1.5, kernel='rbf', gamma='auto')
RBF_Kernel.fit(X_train,Y_train)
```

```
#predictions
RBF_Kernel_Predictions = RBF_Kernel.predict(X_test)

#accuracy score
print("RBF Kernel accuracy is ", accuracy_score(RBF_Kernel_Predictions, Y_test))

#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,RBF_Kernel_Predictions))

#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test,RBF_Kernel_Predictions))

#ROC Plot
print("\nROC Plot")
plot_roc_curve(RBF_Kernel, X_test, Y_test)
plt.show()
```

RBF Kernel accuracy is 0.855793991416309

Confusion matrix:

[[468 42] [126 529]]

Classification Report:

	precision	recall	f1-score	support
В	0.79	0.92	0.85	510
М	0.93	0.81	0.86	655
accuracy			0.86	1165
macro avg	0.86	0.86	0.86	1165
weighted avg	0.87	0.86	0.86	1165

ROC Plot

Task 2 - Bigram Model

In this task, we now analyse two sequence of sys-calls. This task in therefore similar to the first task, the only difference being that we now use bigram models.

For each vectorizer, we add a constraint - ngram_range=(2,2).

Bag of Words

This data model counts the occurrence of a particular feature in the dataset.

Prepare the Data

```
In [ ]:
from sklearn.feature extraction.text import CountVectorizer
text = final data['Calls']
print(text)
       ioctl pread rt sigprocmask rt sigprocmask rt s...
       dup fcntl close epoll ctl ioctl ioctl getuid e...
1
2
       futex ioctl epoll pwait read recvfrom writev s...
3
       read writev write read read write read read re...
4
       read read ioctl ioctl writev futex ioctl ioctl...
                             . . .
5817
       newfstatat ioctl ioctl getuid newfstatat newfs...
      recvfrom recvfrom writev sendto getuid epoll p...
5818
5819
     dup fcntl close epoll ctl ioctl ioctl getuid e...
     ioctl ioctl faccessat mprotect mprotect mprote...
getuid epoll_pwait getuid epoll_pwait read new...
5820
5821
Name: Calls, Length: 5822, dtype: object
In [ ]:
vectorizer = CountVectorizer(ngram range=(2,2))
transformed text = vectorizer.fit transform(text)
vectorizer.get_feature_names()[:5] #First five features
Out[]:
['_llseek _llseek',
 llseek clock gettime',
' llseek close',
 ' llseek faccessat',
 'llseek fcntl64']
In [ ]:
from sklearn import preprocessing
X = transformed text.toarray()
X = preprocessing.normalize(X)
Χ
Out[]:
array([[0.
                 , 0.
                                       , ..., 0.
                             , 0.
                                                        , 0.00826803,
       0.0950823 ],
      [0. , 0.
                             , 0.
                                       , ..., 0.
                                                        , 0.00446945,
       0.14469859],
      [0. , 0.
                                        , ..., 0.
                                                        , 0.01349764,
                             , 0.
       0.057364991,
      . . . ,
                            , 0.
                                                        , 0.01105867,
                 , 0.
                                       , ..., 0.
      .01
      0.14376274],
                                       , ..., 0. , 0.00649589,
      [0. , 0.
                            , 0.
       0.04929233],
      [0. , 0.
                            , 0.
                                        , ..., 0. , 0. ,
                ]])
       0.
In [ ]:
from sklearn import model selection, svm #Split the data
X train, X test, Y train, Y test = model selection.train test split(X, final data['Labe
1'], test size=0.2 , random state=45 )
```

Linear SVM Kernel

In []:

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
```

```
_roc_curve
#train model
Linear_Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear Kernel.fit(X train, Y train)
#predictions
Linear Kernel Predictions = Linear Kernel.predict(X test)
#accuracy score
print("Linear Kernel accuracy is ", accuracy score(Linear Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Linear Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Linear Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Linear_Kernel, X_test, Y_test)
plt.show()
```

Linear Kernel accuracy is 0.9493562231759657

Confusion matrix:

[[494 16] [43 612]]

Classification Report:

support	f1-score	recall	precision	
510 655	0.94	0.97	0.92 0.97	B M
		0.30	0.0	
1165	0.95			accuracy
1165	0.95	0.95	0.95	macro avg
1165	0.95	0.95	0.95	weighted avg

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve
#train model
```

```
Polynomial_Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
Polynomial_Kernel.fit(X_train,Y_train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy score(Polynomial Kernel Predictions, Y t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Polynomial Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Polynomial Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(Polynomial Kernel, X test, Y test)
plt.show()
```

Polynomial Kernel accuracy is 0.9648068669527897

Confusion matrix:

[[491 19] [22 633]]

Classification Report:

support	f1-score	recall	precision	
510	0.96	0.96	0.96	В
655	0.97	0.97	0.97	М
1165	0.96			accuracy
1165	0.96	0.96	0.96	macro avg
1165	0.96	0.96	0.96	weighted avg

ROC Plot

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve

#train model
RBF_Kernel = svm.SVC(C=5, kernel='rbf', gamma='auto')
RBF_Kernel.fit(X_train,Y_train)
```

```
#predictions
RBF_Kernel_Predictions = RBF_Kernel.predict(X_test)

#accuracy score
print("RBF Kernel accuracy is ", accuracy_score(RBF_Kernel_Predictions, Y_test))

#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test, RBF_Kernel_Predictions))

#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test, RBF_Kernel_Predictions))

#ROC Plot
print("\nROC Plot")
plot_roc_curve(RBF_Kernel, X_test, Y_test)
plt.show()
```

RBF Kernel accuracy is 0.8566523605150215

Confusion matrix:

[[460 50] [117 538]]

Classification Report:

	precision	recall	f1-score	support
В М	0.80 0.91	0.90 0.82	0.85 0.87	510 655
accuracy macro avg	0.86	0.86	0.86	1165 1165
weighted avg	0.86	0.86	0.86	1165

ROC Plot

Boolean Occurrence

Prepare the Data

```
In [ ]:
```

```
X = np.where(transformed_text.toarray() >= 1,1,0)  #Same as Bag of words, but Boole
an. So all values >=1 are replaced with 1.
X
```

```
Out[]:
```

4550 0 0 0 1 13

```
array([[0, 0, 0, ..., 0, 1, 1],
       [0, 0, 0, \ldots, 0, 0, 0]]
In [ ]:
                                            #Split the data
from sklearn import model selection, svm
X train, X test, Y train, Y test = model selection.train test split( X, final data['Labe
1'], test size=0.2 , random state=45 )
Linear SVM Kernel
In [ ]:
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
Linear Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear Kernel.fit(X train, Y train)
#predictions
Linear Kernel Predictions = Linear Kernel.predict(X test)
#accuracy score
print("Linear Kernel accuracy is ", accuracy score(Linear Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,Linear_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Linear Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(Linear Kernel, X test, Y test)
plt.show()
```

Linear Kernel accuracy is 0.9682403433476395

Confusion matrix:

[[499 11] [26 629]]

Classification Report:

	precision	recall	f1-score	support
В	0.95	0.98	0.96	510
М	0.98	0.96	0.97	655
accuracy			0.97	1165
macro avg	0.97	0.97	0.97	1165
weighted avg	0.97	0.97	0.97	1165

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
#train model
Polynomial Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
Polynomial_Kernel.fit(X_train,Y_train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy score(Polynomial Kernel Predictions, Y t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,Polynomial_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test, Polynomial Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Polynomial_Kernel, X_test, Y_test)
plt.show()
```

Polynomial Kernel accuracy is 0.9682403433476395

Confusion matrix:

```
[[480 30]
[ 7 648]]
```

Classification Report:

	precision	recall	f1-score	support
B M	0.99	0.94	0.96 0.97	510 655
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	1165 1165 1165

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
roc curve
#train model
RBF Kernel = svm.SVC(C=1.5, kernel='rbf', gamma='auto')
RBF_Kernel.fit(X_train,Y_train)
#predictions
RBF Kernel Predictions = RBF Kernel.predict(X test)
#accuracy score
print("RBF Kernel accuracy is ", accuracy_score(RBF_Kernel_Predictions, Y_test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,RBF_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test,RBF Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc_curve(RBF_Kernel, X_test, Y_test)
plt.show()
```

RBF Kernel accuracy is 0.975107296137339

Confusion matrix:

```
[[489 21]
[ 8 647]]
```

Classification Report:

	precision	recall	f1-score	support
В М	0.98 0.97	0.96	0.97 0.98	510 655
accuracy macro avq	0.98	0.97	0.98	1165 1165
weighted avg	0.98	0.98	0.98	1165


```
0.0 - SVC (AUC = 0.99)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
```

O 01

0 00

TF-IDF

Prepare the Data

```
In []:
from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(ngram_range=(2,2))
X = vectorizer.fit_transform(text).toarray()

# print(X)
# print(vectorizer.vocabulary_)
In []:
```

```
from sklearn import model_selection, svm #Split the data

X_train, X_test, Y_train, Y_test = model_selection.train_test_split( X, final_data['Labe
1'], test_size=0.2 , random_state=45 )
```

```
Linear SVM Kernel
In [ ]:
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
Linear Kernel = svm.SVC(C=1, kernel='linear', gamma='auto')
Linear Kernel.fit(X train, Y train)
#predictions
Linear_Kernel_Predictions = Linear_Kernel.predict(X_test)
#accuracy score
print("Linear Kernel accuracy is ", accuracy_score(Linear_Kernel_Predictions, Y_test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Linear Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test, Linear_Kernel_Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve (Linear Kernel, X test, Y test)
Linear Kernel accuracy is 0.9390557939914163
Confusion matrix:
[[490 20]
 [ 51 604]]
Classification Report:
              precision
                        recall f1-score support
```

```
0.93
            Þ
                    U. 91
                               U.90
                                                      JIU
           M
                    0.97
                               0.92
                                          0.94
                                                      655
                                          0.94
                                                     1165
    accuracy
                    0.94
                               0.94
                                          0.94
                                                     1165
   macro avg
weighted avg
                    0.94
                               0.94
                                          0.94
                                                     1165
```

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
Polynomial Kernel = svm.SVC(C=1, kernel='poly', degree=3)
Polynomial Kernel.fit(X train, Y train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy score(Polynomial Kernel Predictions, Y t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test, Polynomial_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Polynomial Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(Polynomial Kernel, X test, Y test)
```

Polynomial Kernel accuracy is 0.9553648068669528

Confusion matrix:

[[489 21] [31 624]]

Classification Report:

	precision	recall	f1-score	support
В	0.94	0.96	0.95	510
M	0.97	0.95	0.96	655

```
      accuracy
      0.96
      1165

      macro avg
      0.95
      0.96
      0.95
      1165

      weighted avg
      0.96
      0.96
      0.96
      1165
```

ROC Plot

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
RBF Kernel = svm.SVC(C=5, kernel='rbf', gamma='auto')
RBF Kernel.fit(X train, Y train)
#predictions
RBF Kernel Predictions = RBF Kernel.predict(X test)
#accuracy score
print("RBF Kernel accuracy is ", accuracy_score(RBF_Kernel_Predictions, Y_test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test,RBF Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, RBF Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(RBF Kernel, X test, Y test)
plt.show()
```

RBF Kernel accuracy is 0.8600858369098713

Confusion matrix:

[[468 42] [121 534]]

Classification Report:

support	f1-score	recall	precision	
510 655	0.85 0.87	0.92 0.82	0.79 0.93	В М
1165 1165 1165	0.86 0.86 0.86	0.87 0.86	0.86 0.87	accuracy macro avg weighted avg

Task 2 - Tigram Model

from sklearn import preprocessing
X = transformed text.toarray()

We now analyse three sequence of sys-calls.

We change ngram range to (3,3) and repeat the steps in the earlier tasks.

Bag of Words (No. of Occurrences of Calls)

Prepare the Data

```
In [ ]:
from sklearn.feature extraction.text import CountVectorizer
text = final data['Calls']
print(text)
0
        ioctl pread rt sigprocmask rt sigprocmask rt s...
1
        dup fcntl close epoll ctl ioctl ioctl getuid e...
2
        futex ioctl epoll pwait read recvfrom writev s...
3
        read writev write read read write read read re...
        read read ioctl ioctl writev futex ioctl ioctl...
5817
        newfstatat ioctl ioctl getuid newfstatat newfs...
5818
        recvfrom recvfrom writev sendto getuid epoll p...
        dup fcntl close epoll ctl ioctl ioctl getuid e...
5819
5820
        ioctl ioctl faccessat mprotect mprotect mprote...
        getuid epoll pwait getuid epoll pwait read new...
Name: Calls, Length: 5822, dtype: object
In [ ]:
vectorizer = CountVectorizer(ngram range=(3,3))
transformed text = vectorizer.fit transform(text)
vectorizer.get_feature_names()[:5]
                                           #First five features
Out[]:
['_llseek _llseek _llseek',
'_llseek _llseek clock_get
           llseek clock gettime',
   _llseek _llseek close',
 '_llseek _llseek fcntl64',
'_llseek _llseek futex']
In [ ]:
```

```
Χ
Out[]:
array([[0.
                                                         , 0.00053259,
                 , 0.
                             , 0.
                                  , ..., 0.
       0.0958666 ],
      [0. , 0.
                             , 0.
                                       , ..., 0.
                                                         , 0.
       0.15532401],
                 , 0.
                             , 0.
                                        , ..., 0.
                                                         , 0.
       0.05505922],
                             , 0.
      .01
                 , 0.
                                        , ..., 0.
                                                         , 0.
       0.15491933],
                 , 0.
      [0.
                             , 0.
                                        , ..., 0.
                                                         , 0.
       0.05260622],
      [0. , 0.
                             , 0.
                                        , ..., 0.
                                                         , 0.
       0.
                 ]])
In [ ]:
from sklearn import model selection, svm #Split the data
X train, X test, Y train, Y test = model selection.train test split( X, final data['Labe
1'], test size=0.2 , random state=45 )
Linear SVM Kernel
In [ ]:
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
Linear Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear Kernel.fit(X train, Y train)
#predictions
Linear Kernel Predictions = Linear Kernel.predict(X test)
#accuracy score
print("Linear Kernel accuracy is ", accuracy score(Linear Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Linear Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Linear Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(Linear Kernel, X test, Y test)
Linear Kernel accuracy is 0.9570815450643777
Confusion matrix:
[[492 18]
 [ 32 623]]
Classification Report:
             precision
                         recall f1-score support
                  0.94
                           0.96
                                     0.95
                                                510
          В
                           0.95
                                     0.96
                  0.97
                                                655
          M
                                     0.96
                                               1165
   accuracy
```

0.96

0.96

1165

0.96

macro avg

X = preprocessing.normalize(X)

weighted avg 0.96 0.96 0.96 1165

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve
#train model
Polynomial Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
Polynomial Kernel.fit(X train, Y train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy score(Polynomial Kernel Predictions, Y t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test, Polynomial_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test, Polynomial Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(Polynomial Kernel, X test, Y test)
plt.show()
```

Polynomial Kernel accuracy is 0.9605150214592275

Confusion matrix:

[[489 21] [25 630]]

Classification Report:

support	f1-score	recall	precision	
510 655	0.96 0.96	0.96 0.96	0.95 0.97	B M
1165 1165 1165	0.96 0.96 0.96	0.96 0.96	0.96 0.96	accuracy macro avg weighted avg

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
roc curve
#train model
RBF Kernel = svm.SVC(C=1, kernel='rbf', gamma='auto')
RBF_Kernel.fit(X_train,Y_train)
#predictions
RBF Kernel Predictions = RBF Kernel.predict(X test)
#accuracy score
print("RBF Kernel accuracy is ", accuracy score(RBF Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, RBF Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, RBF Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot_roc_curve(RBF_Kernel, X_test, Y_test)
plt.show()
```

RBF Kernel accuracy is 0.5622317596566524

Confusion matrix:

[[0 510] [0 655]]

Classification Report:

	precision	recall	f1-score	support
В	0.00	0.00	0.00	510 655
	0.30	1.00		
accuracy	0 00	0 50	0.56	1165
macro avg weighted avg	0.28 0.32	0.50 0.56	0.36	1165 1165

MetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

Boolean Occurrence

Prepare the Data

Linear SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve

#train model
Linear_Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear_Kernel.fit(X_train,Y_train)

#predictions
Linear_Kernel_Predictions = Linear_Kernel.predict(X_test)

#accuracy score
print("Linear Kernel accuracy is ", accuracy_score(Linear_Kernel_Predictions, Y_test))

#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,Linear_Kernel_Predictions))

#Classification Report for the rest of the metrics
```

```
print("\nClassification Report:\n")
print(classification_report(Y_test, Linear_Kernel_Predictions))

#ROC Plot
print("\nROC Plot")
plot_roc_curve(Linear_Kernel, X_test, Y_test)
plt.show()
```

Linear Kernel accuracy is 0.9836909871244636

Confusion matrix:

[[498 12] [7 648]]

Classification Report:

	precision	recall	f1-score	support
В	0.99	0.98	0.98	510
М	0.98	0.99	0.99	655
accuracy			0.98	1165
macro avg	0.98	0.98	0.98	1165
weighted avg	0.98	0.98	0.98	1165

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
roc curve
#train model
Polynomial Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
Polynomial Kernel.fit(X train, Y train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy_score(Polynomial_Kernel_Predictions, Y t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test, Polynomial_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Polynomial Kernel Predictions))
```

```
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Polynomial_Kernel, X_test, Y_test)
plt.show()
```

Polynomial Kernel accuracy is 0.944206008583691

Confusion matrix:

```
[[455 55]
[ 10 645]]
```

Classification Report:

	precision	recall	f1-score	support
В М	0.98 0.92	0.89	0.93 0.95	510 655
accuracy macro avg weighted avg	0.95 0.95	0.94	0.94 0.94 0.94	1165 1165 1165

ROC Plot

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
_roc_curve
#train model
RBF Kernel = svm.SVC(C=1, kernel='rbf', gamma='auto')
RBF Kernel.fit(X train, Y train)
#predictions
RBF Kernel Predictions = RBF Kernel.predict(X test)
#accuracy score
print("RBF Kernel accuracy is ", accuracy score(RBF Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,RBF_Kernel_Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test,RBF_Kernel_Predictions))
#ROC Plot
print("\nROC Plot")
```

```
plot_roc_curve(RBF_Kernel, X_test, Y_test)
plt.show()
```

RBF Kernel accuracy is 0.9725321888412017

Confusion matrix:

```
[[486 24]
[ 8 647]]
```

Classification Report:

	precision	recall	f1-score	support
В	0.98	0.95	0.97	510
М	0.96	0.99	0.98	655
accuracy			0.97	1165
macro avg	0.97	0.97	0.97	1165
weighted avg	0.97	0.97	0.97	1165

ROC Plot

TF-IDF

Prepare the Data

```
In [ ]:
```

```
from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(ngram_range=(3,3))
X = vectorizer.fit_transform(text).toarray()

# print(X)
# print(vectorizer.vocabulary_)
```

```
In [ ]:
```

```
from sklearn import model_selection, svm

X_train, X_test, Y_train, Y_test = model_selection.train_test_split( X, final_data['Labe
1'], test_size=0.2 , random_state=45 )
```

Linear SVM Kernel

```
In [ ]:
```

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve

```
#train model
Linear Kernel = svm.SVC(C=1.5, kernel='linear', gamma='auto')
Linear_Kernel.fit(X_train,Y_train)
#predictions
Linear Kernel Predictions = Linear Kernel.predict(X test)
#accuracy score
print("Linear Kernel accuracy is ", accuracy score(Linear Kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test,Linear Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Linear Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Linear_Kernel, X_test, Y_test)
plt.show()
```

Linear Kernel accuracy is 0.9545064377682403

Confusion matrix:

```
[[493 17]
[ 36 619]]
```

Classification Report:

	precision	recall	f1-score	support
В	0.93	0.97	0.95	510
M	0.97	0.95	0.96	655
accuracy			0.95	1165
macro avg	0.95	0.96	0.95	1165
weighted avg	0.96	0.95	0.95	1165

ROC Plot

Polynomial SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve
#train model
Polynomial_Kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
```

```
Polynomial_Kernel.fit(X_train,Y_train)
#predictions
Polynomial Kernel Predictions = Polynomial Kernel.predict(X test)
#accuracy score
print("Polynomial Kernel accuracy is ", accuracy_score(Polynomial_Kernel_Predictions, Y_t
est))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test, Polynomial Kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test, Polynomial Kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot_roc_curve(Polynomial_Kernel, X_test, Y_test)
plt.show()
```

Polynomial Kernel accuracy is 0.9639484978540772

Confusion matrix:

```
[[494 16]
[ 26 629]]
```

Classification Report:

	precision	recall	f1-score	support
В	0.95	0.97	0.96	510
М	0.98	0.96	0.97	655
accuracy			0.96	1165
macro avg weighted avg	0.96 0.96	0.96 0.96	0.96	1165 1165
werdured ava	0.90	0.90	0.90	1100

ROC Plot

RBF SVM Kernel

```
In [ ]:
```

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, plot
_roc_curve
#train model
RBF_Kernel = svm.SVC(C=1, kernel='rbf', gamma='auto')
RBF_Kernel.fit(X_train,Y_train)
```

```
#predictions
RBF_Kernel_Predictions = RBF_Kernel.predict(X_test)

#accuracy score
print("RBF Kernel accuracy is ", accuracy_score(RBF_Kernel_Predictions, Y_test))

#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion_matrix(Y_test,RBF_Kernel_Predictions))

#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification_report(Y_test,RBF_Kernel_Predictions))

#ROC Plot
print("\nROC Plot")
plot_roc_curve(RBF_Kernel, X_test, Y_test)
plt.show()
```

RBF Kernel accuracy is 0.5622317596566524

Confusion matrix:

```
[[ 0 510]
[ 0 655]]
```

Classification Report:

	precision	recall	f1-score	support
В М	0.00 0.56	0.00	0.00 0.72	510 655
accuracy macro avg weighted avg	0.28 0.32	0.50 0.56	0.56 0.36 0.40	1165 1165 1165

ROC Plot

/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:1272: Undefined MetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

Task 3 - Feature Selection

This task is an attempt to find the best features in two and three sequence models of sys-calls. For both these data models, the following steps are performed:

- The data is vectorized using the TfidfVectorizer with ngram_range being (2,2) and (3,3) for bigram and trigram respectfully.
- A light-weight model, DecisionTreeClassifier is trained with max-features = 30. This is to find the

features with most Feature Importance.

• Finally, a bar graph is plot between the top 30 features and their feature importance.

Additionally, for the 2 sequence data model, a Polynomial SVM Kernel is trained and analysed.

Feature selection for 2 sequence

```
In [ ]:
from sklearn.feature extraction.text import TfidfVectorizer
text = final_data['Calls']
vectorizer = TfidfVectorizer(ngram range=(2,2))
X = vectorizer.fit transform(text)
Χ
Out[]:
<5822x2425 sparse matrix of type '<class 'numpy.float64'>'
with 1192807 stored elements in Compressed Sparse Row format>
In [ ]:
bigram features = list(vectorizer.vocabulary .keys())
print(bigram features[:7])
['ioctl pread', 'pread rt sigprocmask', 'rt sigprocmask rt sigprocmask', 'rt sigprocmask
openat', 'openat ioctl', 'ioctl ioctl', 'ioctl mmap']
In [ ]:
from sklearn.tree import DecisionTreeClassifier
Y = final data['Label']
model = DecisionTreeClassifier(max features=30)
model.fit(X,Y)
feature df = pd.DataFrame(list(zip(model.feature importances ,bigram features)), columns
= ['Feature Importance', 'Features'])
feature df = feature df.sort values(by='Feature Importance',ascending=False)
print("Top 30 features (2 Sequence):")
feature df.head(n=30)
```

Top 30 features (2 Sequence):

Out[]:

	Feature Importance	Features
1805	0.202945	fcntl64 ftruncate
1101	0.107995	fstat64 close
1400	0.072044	sendto getrlimit
2355	0.058309	clone prctl
1817	0.056940	ioctl geteuid
1206	0.039688	sendmsg getuid
1025	0.032005	geteuid32 openat
1035	0.022775	prctl clock_gettime
2320	0.020981	openat readlinkat
1019	0.019145	mmap2 faccessat
1236	0.016981	read rt_sigreturn
235	0.014451	write mprotect
102	0.011937	ioctl write

231	0.009610 Feature Importance	read sendto Features
1041	0.009583	newfstatat clone
1478	0.009254	getuid32 rt_sigprocmask
2339	0.008020	mmap getrlimit
2077	0.006301	recvfrom sendmsg
1783	0.005343	rt_sigprocmask fstatat64
1678	0.005339	clock_gettime setrlimit
1018	0.005250	fcntl64 recvfrom
320	0.005167	prctl futex
1991	0.004847	getegid32 faccessat
1089	0.004743	openat ppoll
720	0.004307	munmap mmap2
1422	0.004296	newfstatat sendto
1000	0.003961	fstat64 ftruncate64
1319	0.003848	futex geteuid
1537	0.003812	fchmodat madvise
1526	0.003811	recvfrom fchmodat

In []:

```
feature_df.iloc[:30].plot(x = 'Features', y = 'Feature Importance', kind = 'bar', figsiz
e = (20,7), title = '2 Sequence Features and their Feature Importance')
```

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f9bcdb40550>

Model for 2 sequence based on top 30 features

Prepare the Data

In []:

```
bigram_tfidf_data = pd.DataFrame(X.toarray(),columns = vectorizer.get_feature_names())
bigram_tfidf_data['File'] = final_data['File']
cols = list(bigram_tfidf_data.columns)
```

```
cols = [cols[-1]] + cols[:-1]
bigram_tfidf_data = bigram_tfidf_data[cols]
In [ ]:
bigram tfidf data
Out[]:
                                                                llseek
                                                                               llseek
                                                                                        llseek
                                                                                                   _llseek
                                                                                                           _llseek
                                                                                                                    llseek
                                                                                                                              lis
                                                          File
                                                                       clock_gettime
                                                                llseek
                                                                                        close
                                                                                               faccessat
                                                                                                           fcntl64
                                                                                                                   fstat64
                                                                                                                            fstata
    0
                                                                   0.0
                                                                                           0.0
                            com.chinadeals.apk.sys_names.txt
                                                                                  0.0
                                                                                                      0.0
                                                                                                               0.0
                                                                                                                       0.0
    1
                                                                   0.0
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                               0.0
                                                                                                                       0.0
                        chat.cristianogratis.apk.sys_names.txt
    2
                                                                   0.0
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                              0.0
                                                                                                                       0.0
                                com.eterno.apk.sys_names.txt
        com.andromo.dev551559.app531086.apk.sys_names.txt
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                               0.0
                                                                                                                       0.0
             com.blinkslabs.blinkist.android.apk.sys_names.txt
                                                                   0.0
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                               0.0
                                                                                                                       0.0
5817
         a0bffc11168c65beb59c326d88f144f0d750634252a507...
                                                                   0.0
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                               0.0
                                                                                                                       0.0
5818
        02c9bddf966b59a8850a7395e7ce5af21ca16c442a0389...
                                                                   0.0
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                              0.0
                                                                                                                       0.0
5819
        6113bc8bbbdfe89114a12ddfa25ad54eed63367cf21462...
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                               0.0
                                                                                                                       0.0
                                                                   0.0
      3ddcdc882166b87d3db9d5cc21ccd4c7009e1f134edeeb...
5820
                                                                   0.0
                                                                                  0.0
                                                                                           0.0
                                                                                                      0.0
                                                                                                               0.0
                                                                                                                       0.0
5821
        66d6c067ca2c6e500caac92977f19c513436b2ae276ab9...
5822 rows × 2426 columns
In [ ]:
a = list(feature df['Features'].head(n=30))
top30 bigram tfidf data = bigram tfidf data[a]
top30 bigram tfidf data
Out[]:
         fcntl64
                 fstat64
                           sendto
                                              ioctl
                                                    sendmsg
                                                              geteuid32
                                                                                   prcti
                                                                                            openat
                                                                                                       mmap2
                                   clone
                                                                                                                      read
                          getrlimit
      ftruncate
                   close
                                    prctl
                                           geteuid
                                                       getuid
                                                                         clock_gettime
                                                                                         readlinkat faccessat
                                                                 openat
                                                                                                               rt_sigreturn
                                                                                                                             mpr
   0
             0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                    0.0
                                                                                                0.0
                                                                                                           0.0
                                                                                                                        0.0
                                                                                                                             0.00
    1
             0.0
                     0.0
                               0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                    0.0
                                                                                                0.0
                                                                                                           0.0
                                      0.0
                                                                                                                        0.0
                                                                                                                             0.00
             0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                     0.0
                                                                                                0.0
                                                                                                           0.0
                                                                                                                        0.0
                                                                                                                             0.00
                                                                                                           0.0
    3
             0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                    0.0
                                                                                                0.0
                                                                                                                             0.00
                                                                                                                        0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                                           0.0
                                                                                                                             0.00
5817
             0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                    0.0
                                                                                                0.0
                                                                                                           0.0
                                                                                                                        0.0
                                                                                                                             0.00
5818
             0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                    0.0
                                                                                                0.0
                                                                                                           0.0
                                                                                                                        0.0
                                                                                                                             0.00
5819
             0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                    0.0
                                                                                                0.0
                                                                                                           0.0
                                                                                                                        0.0
                                                                                                                             0.00
5820
             0.0
                     0.0
                               0.0
                                      0.0
                                               0.0
                                                          0.0
                                                                     0.0
                                                                                    0.0
                                                                                                0.0
                                                                                                           0.0
                                                                                                                        0.0
                                                                                                                             0.00
```

Train the model on top 30 features

0.0

In []:

5821

0.0

5822 rows × 30 columns

from cklearn import model calection com

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.00

```
X_train, X_test, Y_train, Y_test = model_selection.train_test_split( top30_bigram_tfidf_
data, final_data['Label'], test_size=0.2 , random_state=45 )
```

In []:

```
from sklearn.metrics import classification report, confusion matrix, accuracy score, plot
#train model
top30 feature kernel = svm.SVC(C=1.5, kernel='poly', degree=4)
top30 feature kernel.fit(X train, Y train)
#predictions
top30 feature kernel Predictions = top30 feature kernel.predict(X test)
#accuracy score
print("For Polynomial Kernel trained on top30, features accuracy is ", accuracy score(top
30 feature kernel Predictions, Y test))
#Confusion Matrix
print("\nConfusion matrix:\n")
print(confusion matrix(Y test,top30 feature kernel Predictions))
#Classification Report for the rest of the metrics
print("\nClassification Report:\n")
print(classification report(Y test,top30 feature kernel Predictions))
#ROC Plot
print("\nROC Plot")
plot roc curve(top30 feature kernel, X test, Y test)
plt.show()
```

For Polynomial Kernel trained on top30, features accuracy is 0.5871244635193134

Confusion matrix:

[[33 477] [4 651]]

Classification Report:

	precision	recall	f1-score	support
В	0.89	0.06	0.12	510
M	0.58	0.99	0.73	655
accuracy			0.59	1165
macro avg	0.73	0.53	0.43	1165
weighted avg	0.71	0.59	0.46	1165

Feature selection for 3 sequence

```
In [ ]:
from sklearn.feature extraction.text import TfidfVectorizer
text = final_data['Calls']
vectorizer = TfidfVectorizer(smooth idf=False, sublinear tf=False, norm=None, analyzer='
word',ngram_range=(3,3))
X = vectorizer.fit transform(text)
Out[]:
<5822x23331 sparse matrix of type '<class 'numpy.float64'>'
with 3442893 stored elements in Compressed Sparse Row format>
In [ ]:
trigram_features = list(vectorizer.vocabulary_.keys())
print(trigram features[:7])
['ioctl pread rt_sigprocmask', 'pread rt_sigprocmask rt_sigprocmask', 'rt_sigprocmask rt_
sigprocmask rt sigprocmask', 'rt sigprocmask rt sigprocmask openat', 'rt sigprocmask open
at ioctl', 'openat ioctl ioctl', 'ioctl ioctl mmap']
In [ ]:
from sklearn.tree import DecisionTreeClassifier
Y = final data['Label']
model = DecisionTreeClassifier(max features=15)
model.fit(X,Y)
feature_df = pd.DataFrame(list(zip(model.feature_importances_, trigram_features)), columns
= ['Feature Importance', 'Features'])
feature df = feature df.sort values(by='Feature Importance',ascending=False)
print("Top 30 features (3 Sequence):")
feature df.head(n=15)
```

Top 30 features (3 Sequence):

Out[]:

In []:

Features	Feature Importance	
ioctl writev fsync	0.109745	22452
read newfstatat mmap	0.062664	20601
mprotect futex pipe2	0.047965	9315
ioctl epoll_pwait read	0.042854	479
munmap write pread64	0.028177	10624
ioctl epoll_ctl rt_sigprocmask	0.021520	21798
clone getuid32 dup	0.019237	13829
madvise mprotect fchmodat	0.015724	17760
futex madvise fcntl	0.014135	11238
getuid sendto clock_gettime	0.013475	21807
fstat64 _llseek _llseek	0.011935	3330
fstatat64 fstatat64 mprotect	0.010983	3689
dup dup openat	0.010563	14929
recvfrom epoll_ctl newfstatat	0.010319	13804
getuid32 futex read	0.009827	17460

feature_df.iloc[:30].plot(x = 'Features', y = 'Feature Importance', kind = 'bar', figsiz
e = (20,7), title = '3 Sequence Features and their Feature Importance')

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f9bb012d940>

Task 4 - Clustering Techniques

This task is an attempt to understand three different clustering methods, namely - K Means, Hierarchial Clustering and DBSCAN.

This task has been performed in the following steps -

- First, the data has been prepared. The sys-calls have been vectorized, fit and transformed using <code>TfidfVectorizer</code>. This is stored in a DataFrame <code>unigram_tfidf_data</code>. Then, we find the top 30 features by training this data using <code>ExtraTreesClassifier</code> and . Finally, we extract the data of these top 30 features from <code>X</code> and store it in a DataFrame, <code>top30</code> features data.
- K Means clustering is performed on data from top30_features_data. A KMeans model is fit with number of clusters from 1 to 5. Then, a graph of Number of Clusters vs Within Cluster Sum of Squares. This is done to find optimum number of clusters, i.e., The Elbow Method. Finally, a graph is plotted for two random features and their cluster number.
- Hierarchial Clustering is performed. The data from top30_features_data is trained on an
 AgglomerativeClustering model and optimum number of clusters are found. and a graph is plotted for
 two random features and their cluster number.
- DBSCAN clustering is performed. The data from top30_features_data is trained on a DBSCAN model and optimum number of clusters are found. Finally, a graph is plotted for two random features and their cluster number.

Preparing the Data

```
In [ ]:
```

```
from sklearn.feature_extraction.text import TfidfVectorizer

text = final_data['Calls']
```

```
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(text)

In []:
features = list(vectorizer.vocabulary .keys())
```

['ioctl', 'pread', 'rt sigprocmask', 'openat', 'mmap', 'close', 'mprotect']

In []:

print(features[:7])

```
from sklearn.ensemble import ExtraTreesClassifier
Y = final_data['Label']

model = ExtraTreesClassifier(n_estimators=10)
model.fit(X,Y)

feature_df = pd.DataFrame(list(zip(model.feature_importances_, features)), columns = ['Feature Importance', 'Features'])
feature_df = feature_df.sort_values(by='Feature Importance', ascending=False)
print("Top 30 features:")
feature_df.head(n=30)
```

Top 30 features:

Out[]:

	Feature Importance	Features
70	0.162134	ftruncate
65	0.072768	connect
100	0.072081	eventfd2
45	0.043114	Iseek
49	0.042371	rt_sigaction
25	0.032815	setpriority
10	0.032499	futex
40	0.031677	pipe2
43	0.031334	getdents64
3	0.026308	openat
72	0.025985	tgkill
81	0.025618	stat64
55	0.023089	mmap2
34	0.022299	unlinkat
75	0.020741	mknodat
66	0.020246	gettid
7	0.019560	madvise
9	0.018031	epoll_pwait
83	0.015769	setsockopt
61	0.014429	fstatat64
53	0.014157	clock_gettime
62	0.013475	geteuid32
33	0.012164	fchmodat
59	0.011870	_llseek
5	0.011279	close
8	0.011176	getuid
4.4	^ ^4^-	

```
In [ ]:
```

```
unigram_tfidf_data = pd.DataFrame(X.toarray(), columns = features)
unigram_tfidf_data
```

Out[]:

	ioctl	pread	rt_sigprocmask	openat	mmap	close	mprotect	madvise	getuid	epoll_pwait	futex	munmap
0	0.0	0.0	0.0	0.0	0.000593	0.027595	0.0	0.007276	0.000000	0.015406	0.486590	0.0
1	0.0	0.0	0.0	0.0	0.000730	0.019107	0.0	0.007357	0.000000	0.018643	0.317636	0.0
2	0.0	0.0	0.0	0.0	0.005048	0.021287	0.0	0.003402	0.000000	0.009913	0.207178	0.0
3	0.0	0.0	0.0	0.0	0.009158	0.047608	0.0	0.011388	0.000873	0.011964	0.509608	0.0
4	0.0	0.0	0.0	0.0	0.005554	0.068540	0.0	0.014597	0.000000	0.032828	0.316841	0.0
•••												
5817	0.0	0.0	0.0	0.0	0.007177	0.065576	0.0	0.044014	0.000000	0.006318	0.374608	0.0
5818	0.0	0.0	0.0	0.0	0.000701	0.016487	0.0	0.007774	0.000000	0.007195	0.470133	0.0
5819	0.0	0.0	0.0	0.0	0.020579	0.094020	0.0	0.027045	0.000000	0.027176	0.281335	0.0
5820	0.0	0.0	0.0	0.0	0.000544	0.049521	0.0	0.017649	0.000000	0.022527	0.203664	0.0
5821	0.0	0.0	0.0	0.0	0.000000	0.136429	0.0	0.000000	0.000000	0.000000	0.067378	0.0

5822 rows × 102 columns

In []:

```
top30_features = feature_df['Features'].head(n=30)
pd.DataFrame(top30_features)
```

Out[]:

	Features
70	ftruncate
65	connect
100	eventfd2
45	Iseek
49	rt_sigaction
25	setpriority
10	futex
40	pipe2
43	getdents64
3	openat
72	tgkill
81	stat64
55	mmap2
34	unlinkat
75	mknodat
66	gettid

```
7
          Featyies
       epoll_pwait
  9
 83
        setsockopt
 61
          fstatat64
     clock_gettime
 53
 62
         geteuid32
 33
         fchmodat
 59
            _llseek
  5
             close
  8
            getuid
     epoll_create1
 41
 71
           getcwd
  4
            mmap
         ugetrlimit
101
```

In []:

```
top30 features data = unigram tfidf data[top30 features]
top30_features_data
```

Out[]:

1	ftruncate	connect	eventfd2	lseek	rt_sigaction	setpriority	futex	pipe2	getdents64	openat	tgkill	si
0	0.180168	0.001213	0.267231	0.363398	0.007414	0.031091	0.486590	0.354401	0.0	0.0	0.518655	0.31
1	0.101963	0.000000	0.166216	0.259153	0.001574	0.032454	0.317636	0.146693	0.0	0.0	0.646377	0.57
2	0.054056	0.001190	0.182486	0.232233	0.018742	0.038095	0.207178	0.184826	0.0	0.0	0.672197	0.60
3	0.035253	0.000906	0.081974	0.356077	0.017824	0.083732	0.509608	0.539019	0.0	0.0	0.355259	0.29
4	0.067061	0.001622	0.156857	0.513908	0.005471	0.163663	0.316841	0.309751	0.0	0.0	0.435994	0.35
5817	0.523352	0.000000	0.429397	0.528391	0.024743	0.042127	0.374608	0.244462	0.0	0.0	0.124806	0.00
5818	0.354499	0.000239	0.380667	0.279326	0.049914	0.060897	0.470133	0.487238	0.0	0.0	0.304561	0.26
5819	0.170535	0.031548	0.205216	0.493704	0.008869	0.017257	0.281335	0.305562	0.0	0.0	0.026841	0.00
5820	0.493119	0.001947	0.548576	0.352653	0.034256	0.004794	0.203664	0.193298	0.0	0.0	0.350787	0.31
5821	0.006607	0.000000	0.000000	0.427389	0.000000	0.060170	0.067378	0.065457	0.0	0.0	0.000000	0.00

```
5822 rows × 30 columns
```

K-Means

Cluster 1 denot

Finding optimum number of clusters using elbow method

```
In [ ]:
from sklearn.cluster import KMeans
WCSS = []
for cluster in range(1,6):
    kmeans = KMeans(n_clusters= cluster, init='k-means++', random state=0)
   kmeans.fit(top30 features data)
    print("Cluster", cluster, "done!")
    WCSS.append(kmeans.inertia)
```

```
Cluster 2 done!
Cluster 3 done!
Cluster 4 done!
Cluster 5 done!

In []:
```

```
plt.plot(range(1,6), WCSS)
plt.title('The Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('Within Cluster Sum of Squares')
plt.show() #Elbow is at 2, therefore 2 is the optimum number of clusters
```


Model Creation with optimum number of clusters

```
In [ ]:
```

CIUSCEI I UONE;

```
two_cluster_kmeans = KMeans(n_clusters= 2, init='k-means++', random_state=0)
random_two_features = top30_features_data.iloc[:,[6,9]]
random_two_features_model = two_cluster_kmeans.fit(random_two_features)
random_two_features
```

Out[]:

futex	openat
0.486590	0.0
0.317636	0.0
0.207178	0.0
0.509608	0.0
0.316841	0.0
0.374608	0.0
0.470133	0.0
0.281335	0.0
0.203664	0.0
0.067378	0.0
	0.486590 0.317636 0.207178 0.509608 0.316841 0.374608 0.470133 0.281335 0.203664

5822 rows × 2 columns

In []:

```
# random_two_features
plt.figure(figsize=(20, 6))
plt.scatter(random_two_features['futex'], random_two_features['openat'], c=random_two_features[
```

```
tures_model.labels_.astype(float), label=['Cluster1','Cluster2'], s=500)
plt.legend(handles=scatter.legend_elements()[0], labels=['Cluster 1', 'Cluster 2'])
plt.xlabel('futex')
plt.ylabel('openat')
plt.title('K Means Clustering')
plt.show()
```


Hierarchial Clustering

In []:

```
from sklearn.cluster import AgglomerativeClustering

two_cluster_HC = AgglomerativeClustering(n_clusters = 2, affinity = 'euclidean', linkage
= 'ward')
two_cluster_HC_model = two_cluster_HC.fit(random_two_features)
```

In []:

```
# random_two_features
plt.figure(figsize=(20, 6))
plt.scatter(random_two_features['futex'], random_two_features['openat'], c=two_cluster_HC
    _model.labels_.astype(float), label=['Cluster1','Cluster2'], s=500)
plt.legend(handles=scatter.legend_elements()[0], labels=['Cluster 1', 'Cluster 2'])
plt.xlabel('futex')
plt.ylabel('openat')
plt.title('Hierarchial Clustering')
plt.show()
```


DBSCAN

In []:

```
from sklearn.cluster import DBSCAN
two_feature_DB=DBSCAN(eps=10,min_samples=5,metric='euclidean')
two_feature_DB.fit(random_two_features)
```

```
print("Optimum No. of clusters, according to DBSCAN = ", len(set(two_feature_DB.labels_))
```

Optimum No. of clusters, according to DBSCAN = 1

In []:

```
# random_two_features
plt.figure(figsize=(20, 6))
plt.scatter(random_two_features['futex'], random_two_features['openat'], c=two_feature_DB
.labels_.astype(float), label=['Cluster1','Cluster2'], s=500)
plt.legend(handles=scatter.legend_elements()[0], labels=['Cluster 1', 'Cluster 2'])
plt.xlabel('futex')
plt.ylabel('openat')
plt.title('DBSCAN Clustering')
plt.show()
```


Conclusion

In this series of tasks, analysis of sys-calls has been done. A sequence of sys-calls is either labeled as B/M.

In the first two tasks, we see that the two sequence/bigram models produce the most convincing results, with <code>TF-IDF</code> being the most effective vectorizing technique.

Trigram models take significantly longer time to train, with marginal better accuracy in some cases. Some RBF models crashed the runtime while training, which is the reason for some errors in classification report.

In the third task, we find the top features in two sequence and three sequence models. These features are plot to analyse visually. The model prepared with the top 30 two sequence features gives un-satisfactory output. Bigram models trained on all features are still the better models.

In the last task, we use three different clustering techniques to cluster sys-calls sequences into clusters. From the three techniques performed, we find that two clusters are the ideal number of clusters in the data.