

AKADEMIA GÓRNICZO-HUTNICZA W KRAKOWIE

Wydział Fizyki i Informatyki Stosowanej

Metody Numeryczne

Laboratorium 13: Całkowanie numeryczne przy użyciu kwadratur Gaussa

Andrzej Świętek

Contents

1	$\mathbf{W}\mathbf{s}$ 1	tęp teoretyczny	2
	1.1	Kwadratura Gaussa-Legendre'a	2
	1.2	Kwadratura Gaussa-Hermite'a	2
	1.3	Kwadratura Gaussa-Laguerre'a	3
	1.4	Podsumowanie	3
2	\mathbf{Pro}	blem	3
3	Imp	olementacja	4
	3.1	Zadanie 1	4
	3.2	Zadanie 2	5
	3.3	Zadanie 3	6
4	Wy	niki	7
	4.1	Zadanie 1:	7
	4.2	Zadanie 2:	8
	4.3	Zadanie 3:	10
5	Wiz	zualizacja wyników	11
6	Ana	aliza wyników	15
	6.1	Zadanie 1: Kwadratura Gaussa-Legendre'a	15
	6.2	Zadanie 2: Kwadratura Gaussa-Laguerre'a	15
	6.3	~	16
7	Wn	ioski	16

1. Wstęp teoretyczny

Kwadratury Gaussa to metoda numerycznego całkowania, która wykorzystuje specjalnie dobrane węzły i wagi, aby jak najdokładniej aproksymować wartość całki oznaczonej. Główna idea polega na przekształceniu całki w skończoną sumę wartości funkcji w określonych punktach (węzłach), przemnożonych przez odpowiednie współczynniki (wagi). Dzięki temu można uzyskać bardzo precyzyjne wyniki przy relatywnie małej liczbie obliczeń w porównaniu z innymi metodami numerycznymi.

W przypadku kwadratur Gaussa, węzły i wagi są dobierane w taki sposób, aby metoda była dokładna dla wielomianów o jak najwyższym stopniu. W zależności od wyboru wielomianów ortogonalnych, na których opiera się kwadratura, możemy wyróżnić różne typy kwadratur Gaussa: Gaussa-Legendre'a, Gaussa-Hermite'a i Gaussa-Laguerre'a.

1.1. Kwadratura Gaussa-Legendre'a

Kwadratura Gaussa-Legendre'a jest jedną z najczęściej stosowanych metod całkowania numerycznego. W tej metodzie węzły i wagi są wyznaczane na podstawie wielomianów Legendre'a, które są ortogonalne względem przedziału [-1,1]. Całka w przedziałe [-1,1] jest aproksymowana jako:

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i), \tag{1}$$

gdzie x_i to węzły (pierwiastki wielomianu Legendre'a $P_n(x)$), a w_i to odpowiadające im wagi.

Aby zastosować kwadraturę Gaussa-Legendre'a do całek w dowolnym przedziale [a,b], dokonuje się odpowiedniego przekształcenia zmiennej.

1.2. Kwadratura Gaussa-Hermite'a

Kwadratura Gaussa-Hermite'a jest stosowana do całkowania funkcji z wagą e^{-x^2} w przedziale od $-\infty$ do ∞ . W tej metodzie węzły i wagi są wyznaczane na podstawie wielomianów Hermite'a, które są ortogonalne względem funkcji wagowej e^{-x^2} . Całka z funkcji f(x) jest aproksymowana jako:

$$\int_{-\infty}^{\infty} f(x)e^{-x^2} dx \approx \sum_{i=1}^{n} w_i f(x_i), \tag{2}$$

gdzie x_i to węzły (pierwiastki wielomianu Hermite'a $H_n(x)$), a w_i to odpowiadające im wagi.

1.3. Kwadratura Gaussa-Laguerre'a

Kwadratura Gaussa-Laguerre'a jest stosowana do całkowania funkcji z wagą e^{-x} w przedziale od 0 do ∞ . W tej metodzie węzły i wagi są wyznaczane na podstawie wielomianów Laguerre'a, które są ortogonalne względem funkcji wagowej e^{-x} . Całka z funkcji f(x) jest aproksymowana jako:

$$\int_0^\infty f(x)e^{-x} dx \approx \sum_{i=1}^n w_i f(x_i), \tag{3}$$

gdzie x_i to węzły (pierwiastki wielomianu Laguerre'a $L_n(x)$), a w_i to odpowiadające im wagi.

1.4. Podsumowanie

Kwadratury Gaussa oferują efektywne i dokładne metody całkowania numerycznego, które są szczególnie przydatne w przypadkach, gdy analityczne wyznaczenie wartości całki jest trudne lub niemożliwe. Wybór odpowiedniego rodzaju kwadratury zależy od specyfiki funkcji podcałkowej oraz zakresu całkowania.

2. Problem

Zadanie 1

Obliczyć numerycznie przy użyciu kwadratury Gaussa-Legendre'a wartość całki:

$$c_1 = \int_0^2 \frac{x}{4x^2 + 1} \, dx \tag{4}$$

Wartość dokładną można obliczyć korzystając z rozwiązania analitycznego:

$$c_{1,a} = \int_{x}^{a} \frac{2x^{2} \pm c^{2}}{dx} = \frac{1}{2a^{2}} \ln|a^{2}x^{2} \pm c^{2}|$$
 (5)

Wykonać wykres $|c_1 - c_{1,a}| = f(n)$, dla liczby węzłów $n = 2, 3, \dots, 20$. W sprawozdaniu dodatkowo należy:

- a) sprawdzić ile wynosi suma współczynników kwadratury dla każdego n,
- b) umieścić wykres całkowanej funkcji.

Zadanie 2

Obliczyć numerycznie przy użyciu kwadratury Gaussa-Laguerre'a wartość całki:

$$c_2 = \int_0^\infty x^k \exp(-x) \, dx \tag{6}$$

Wartość dokładną można obliczyć korzystając z rozwiązania analitycznego:

$$c_{2,a} = \int_0^\infty x^k \exp(-x) \, dx = k!$$
 (7)

Wykonać wykresy:

- a) $|c_2 c_{2,a}| = f(n)$, dla k = 5 i dla liczby węzłów n = 2, 3, ..., 20,
- b) $|c_2-c_{2,a}|=f(n)$, dla k=10 i dla liczby węzłów $n=2,3,\ldots,20$.

W sprawozdaniu należy dodatkowo:

- a) przedyskutować dokładność oszacowania wartości całki ze względu na stopień wielomianu podcałkowego i liczbę użytych węzłów,
- b) sprawdzić ile wynosi suma współczynników kwadratury dla każdego n,
- c) sporządzić wykres całkowanej funkcji.

Zadanie 3

Obliczyć numerycznie przy użyciu kwadratury Gaussa-Hermite'a wartość podwójnej całki:

$$c_3 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin^2(x) \sin^4(y) \exp(-x^2 - y^2) \, dx \, dy$$
 (8)

(wartość dokładna: $c_{dok} = 0.1919832644$).

Uwaga: węzły i wagi kwadratury wyznaczamy tylko raz, które wykorzystujemy do obliczenia wartości całki w podwójnej pętli (bo całkujemy w 2 wymiarach).

Proszę wykonać wykres $|c_3 - c_{dok}| = f(n)$, dla liczby węzłów $n = 2, 3, \dots, 15$.

3. Implementacja

3.1. Zadanie 1

```
1 double integrand(double x) {
       return x / (4 * x * x + 1);
3 }
       double a = 0;
       double b = 2;
       int max_n = 20;
       std::cout << "n\tApprox Integral\tExact Integral\tError" << std::endl;</pre>
       //double exact = 1/8 * log(16.0 / 3.0); // derived from the provided
       analytical solution
       double exact = 0.3542;
       for (int n = 2; n <= max_n; ++n) {
           std::vector<double> x, w;
           gauleg(a, b, x, w, n);
           double integral = 0.0;
           for (int i = 0; i < n; i++) {
13
               integral += w[i] * integrand(x[i]);
14
           double error = fabs(integral - exact);
           std::cout << n << "\t" << integral << "\t" << exact << "\t" << error << std::endl;
19
20
       }
```

3.2. Zadanie 2

```
1 double integrand(double x, double k){
     return pow(x, k);
3 }
1 int n = 20;
      int k1 = 5;
      int k2 = 10;
      std::cout << "\n\n=======\n\n";
5
      for (int i = 2; i <= n; ++i) {
         std::vector<double> x;
9
         std::vector < double > w;
         gaulag(x, w, i, 0);
10
11
         double integral = 0.0;
         for(int j=0;j<=i;j++){
13
14
             integral += w[j] * integrand(x[j], k1);
15
         cout <<i<" <<integral << endl;
16
     }
17
18
      std::cout << "\n\n=======\n\n";
19
20
     for (int i = 2; i <= n; ++i) {
21
22
         std::vector<double> x;
         std::vector<double> w;
23
         gaulag(x, w, i, 0);
24
25
         double integral = 0.0;
26
         for(int j=0;j<=i;j++){
27
             integral += w[j] * integrand(x[j], k2);
29
30
         cout <<i<" "<<integral<< endl;</pre>
     }
31
```

3.3. Zadanie 3

```
1 double integrand(double x, double y) {
      return sin(x) * sin(x) * sin(y) * sin(y) * sin(y) * sin(y);
 3 }
       int max_n = 15;
       double exact = 0.1919832644;
       std::cout << "n\tApprox Integral\tExact Integral\tError" << std::endl;</pre>
      for (int n = 2; n <= max_n; ++n) {
           std::vector < double > x, w;
           gauher(x, w, n);
           double integral = 0.0;
10
           for (int i = 0; i < n; i++) {
11
                for (int j = 0; j < n; j++) {
   integral += w[i] * w[j] * integrand(x[i], x[j]);</pre>
13
14
           }
15
16
            double error = fabs(integral - exact);
            std::cout << n << "\t" << integral << "\t" << exact << "\t" << error << std::endl;
18
19
       }
```

4. Wyniki

4.1. Zadanie 1:

Table 1: Porównanie Wyniku działania programu z wartością dokładną

\overline{n}	Przybliżenie całki	Rozwiązanie dokładne	Błąd
2	0.390533	0.3542	0.0363325
3	0.35436	0.3542	0.000160228
4	0.352174	0.3542	0.00202611
5	0.353945	0.3542	0.000255342
6	0.354238	0.3542	3.80348e-05
7	0.354172	0.3542	2.84919e-05
8	0.354149	0.3542	5.09814 e-05
9	0.35415	0.3542	4.9664 e - 05
10	0.354152	0.3542	4.83243 e-05
11	0.354152	0.3542	4.82599 e-05
12	0.354152	0.3542	4.83251 e-05
13	0.354152	0.3542	4.83352 e-05
14	0.354152	0.3542	4.83327e-05
15	0.354152	0.3542	4.83319 e-05
16	0.354152	0.3542	4.83319 e-05
17	0.354152	0.3542	4.8332 e-05
18	0.354152	0.3542	4.8332 e-05
19	0.354152	0.3542	4.8332 e-05
_ 20	0.354152	0.3542	4.8332 e-05

4.2. Zadanie 2:

Table 2: Porównanie Wyniku działania programu z wartością dokładną dla $k=5\,$

$\underline{}$	Przybliżenie całki	Rozwiązanie dokładne	Błąd
2	68	120	52
3	120	120	0
4	120	120	0
5	120	120	0
6	120	120	0
7	120	120	0
8	120	120	0
9	120	120	0
10	120	120	0
11	120	120	0
12	120	120	0
13	120	120	0
14	120	120	0
15	120	120	0
16	120	120	0
17	120	120	0
18	120	120	0
19	120	120	0
_ 20	120	120	0

Table 3: Porównanie Wyniku działania programu z wartością dokładną dla $k=10\,$

n	Approx Integral	Exact Integral	Error
2	$1.03857\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	$2.59023\mathrm{e}{+06}$
3	$1.00818\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	$2.62062\mathrm{e}{+06}$
4	$5.46768\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	$1.83888\mathrm{e}{+06}$
5	$3.6144\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	$1.44\mathrm{e}{+04}$
6	$3.86767\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	$2.3887\mathrm{e}{+05}$
7	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
8	$3.63416\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	$5.36\mathrm{e}{+03}$
9	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
10	$3.62885\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	$5.0\mathrm{e}{+01}$
11	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
12	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
13	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
14	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
15	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
16	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
17	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
18	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
19	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0
20	$3.6288\mathrm{e}{+06}$	$3.6288\mathrm{e}{+06}$	0

4.3. Zadanie 3:

Table 4: Porównanie Wyniku działania programu z wartością dokładną

n	Przybliżenie całki	Rozwiązanie dokładne	Błąd
2	0.236142	0.191983	0.0441592
3	0.241918	0.191983	0.0499345
4	0.148112	0.191983	0.0438714
5	0.212304	0.191983	0.0203209
6	0.18458	0.191983	0.00740342
7	0.194241	0.191983	0.00225751
8	0.191387	0.191983	0.000596327
9	0.192122	0.191983	0.000139153
10	0.191954	0.191983	2.90909e-05
11	0.191989	0.191983	5.50834 e-06
12	0.191982	0.191983	9.53129 e-07
13	0.191983	0.191983	1.51814 e-07
14	0.191983	0.191983	2.24095 e-08
15	0.191983	0.191983	3.07811e-09

5. Wizualizacja wyników

Figure 1: Całkowanie metodą Kwadratur Gaussa-Legendre'a

Figure 2: Całkowanie metodą Kwadratur Gaussa-Legendre'a - róznica wyniku a wartości dokładnej

Figure 3: Całkowanie metodą Kwadratur Gaussa-Laguerre'a

Całkowanie przy użyciu kwadratury Gaussa-Laguerre'a Exact Integral Approx Integral Approx Integral 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Kolejna iteracja

Figure 4: Całkowanie metodą Kwadratur Gaussa-Laguerre'a

ąd Całkowania przy użyciu kwadratury Gaussa-Legendı

Figure 5: Całkowanie metodą Kwadratur Gaussa-Laguerre'a - róznica wyniku a wartości dokładnej

ad Całkowania przy użyciu kwadratury Gaussa-Legendi

Figure 6: Całkowanie metodą Kwadratur Gaussa-Laguerre'a - róznica wyniku a wartości dokładnej

Figure 7: ałkowanie metodą Kwadratur Gaussa-Hermite'a

Figure 8: Całkowanie metodą Kwadratur Gaussa-Hermite'a - róznica wyniku a wartości dokładnej

Analiza wyników 6.

Zadanie 1: Kwadratura Gaussa-Legendre'a

W celu rozwiązania całki numerycznie przy użyciu kwadratury Gaussa-Legendre'a, obliczyliśmy wartość całki $\int_0^2 \frac{x}{4x^2+1} dx$ dla różnych liczby węzłów n. Wartość dokładna tej całki wynosi 0.3542.

Wyniki przedstawione w tabeli pokazują, że metoda kwadratury Gaussa-Legendre'a zbiega do wartości analitycznej już przy stosunkowo niewielkiej liczbie węzłów. Dla n=3, błąd wynosi jedynie 0.000160228. Przy n=6 i większej liczbie węzłów, błąd jest na poziomie rzędu 10^{-5} , co świadczy o wysokiej precyzji metody.

Dodatkowo można zaobserwować że pozostały błąd jaki widoczny jest w kolumnie błędu wynika nie z samego wyniku pracy programu a z zaokrąglenia rozwiązania analitycznego. W związku z tym można uznać że metoda ta dała rozwiązanie powyżej oczekianej precyzji.

Zadanie 2: Kwadratura Gaussa-Laguerre'a 6.2.

Na począdku przybliżenia całki oscylują lecz dla n > 6 Funkcja momentalnie wygasza oscylacje i dostarcza poprawny wynik. Choć ta metoda potrzebowała większego n dla otrzymania wyniku bardzo dokładnego to była również w stanie wykonać cięższą całkę.

6.3. Zadanie 3: Kwadratura Gaussa-Hermite'a

Użycie metody kwadratury Gaussa-Hermite'a pozwoliło nam na wykonanie całki podwójnej. Wynik zaczyna być bardzo bliski wartości analitycznej dla ilości węzłów $n \geq 7$.

7. Wnioski

Przeprowadzone eksperymenty z różnymi kwadraturami Gaussa (Legendre'a, Hermite'a i Laguerre'a) pozwoliły na głębokie zrozumienie ich zastosowań oraz skuteczności w numerycznym całkowaniu funkcji. Na podstawie wyników uzyskanych z zadań 1, 2 i 3, można wyciągnąć następujące wnioski:

1. Skuteczność kwadratury Gaussa-Legendre'a:

- Kwadratura Gaussa-Legendre'a okazała się bardzo skuteczna w całkowaniu funkcji na przedziałach skończonych.
- \bullet Już przy niewielkiej liczbie węzłów (n = 3) uzyskano wynik bardzo bliski wartości analitycznej.
- Metoda ta charakteryzuje się wysoką precyzją i szybką zbieżnością, co czyni ją idealnym narzędziem do numerycznego całkowania w wielu zastosowaniach.

2. Zastosowanie kwadratury Gaussa-Laguerre'a:

- Kwadratura Gaussa-Laguerre'a wykazała swoją skuteczność w całkowaniu funkcji na przedziałach nieskończonych z wagą e^{-x} .
- Wyniki pokazały, że przy k=5 i k=10 metoda szybko zbiega do wartości analitycznej już przy n>5.
- \bullet Metoda ta jest szczególnie przydatna w sytuacjach, gdzie funkcje mają istotne wartości dla dużych x, jak na przykład w fizyce statystycznej.

3. Precyzja kwadratury Gaussa-Hermite'a:

- Kwadratura Gaussa-Hermite'a okazała się skuteczna w całkowaniu funkcji na przedziałach nieskończonych z wagą e^{-x^2} , jak również w obliczaniu podwójnych całek.
- Wyniki z zadania 3 pokazują, że metoda ta osiąga dużą precyzję już przy $n \geq 7$.
- Jej zastosowanie jest szerokie, zwłaszcza w problemach związanych z całkowaniem funkcji gaussowskich w wyższych wymiarach.

4. Ogólne wnioski na temat kwadratur Gaussa:

 Kwadratury Gaussa oferują wydajne i precyzyjne metody numerycznego całkowania, które są szczególnie przydatne w przypadkach trudności analitycznych.

- Wybór odpowiedniego typu kwadratury zależy od charakterystyki funkcji podcałkowej oraz zakresu całkowania.
- Wszystkie trzy typy kwadratury Gaussa wykazały, że są zdolne do osiągania wysokiej dokładności z relatywnie niewielką liczbą węzłów.