Contents

Day 22	2
Confidence Intervals	2
How confident are we?	3
Problem	3
Affecting Width	3
Example	4
Solution	4
Tying Example Back into Theory [Interpretation]	5
Other Frameworks	5
Γ erms	6
Example: Book Exercise 7.71	7
Interpretations	7
Hypothetical Scenarios	8

Day 22

Test is next Thursday 11/21.

Confidence Intervals

Neyman-Pearson Ideas:

Figure 1: Two Sided Test

If $t_{observed}$ is anywhere in the area $1 - \alpha = C$, we accep H_0 .

One-sample t-Test: For what values of μ_0 will we accept H_0 : $\mu = \mu_0$?

$$-t^{**} < t_{\text{observed}} < t^{**}$$

$$-t^{**} < \frac{\bar{x}_{\text{observed}} - \mu_0}{\frac{s_{\text{observed}}}{\sqrt{n}}}$$

Any value of μ between

$$\bar{x}_{\text{observed}} - t^{**} \times \frac{s_{\text{observed}}}{\sqrt{n}}$$

and

$$\bar{x}_{\rm observed} + t^{**} \times \frac{s_{\rm observed}}{\sqrt{n}}$$

We will accept.

The interval $(\bar{x}_{\text{observed}} - t^{**} \times \frac{s_{\text{observed}}}{\sqrt{n}}, \bar{x}_{\text{observed}} + t^{**} \times \frac{s_{\text{observed}}}{\sqrt{n}})$, represents the <u>range of values</u> within which we resonably would believe μ to be. This interval is called a <u>confidence interval</u> for μ .

In many situations, we either don't know what μ_0 should be or don't care to make a decision - just want to estimate μ .

How confident are we?

We define confidence level as the proportion of samples for which we would accept H_0 : $\mu = \mu_0$ when H_0 is true.

So confidence level $C = 1 - \alpha \leftarrow$ depends on H_0 is true.

- $\uparrow \alpha \Longrightarrow \downarrow C$
- $\downarrow \alpha \implies \uparrow C$

Problem

We don't know $\mu_0!$

Confidence is in our <u>estimate</u> of μ .

If μ is in our interval - "good" sample, correctly accept H_0 If μ is not in our interval - "bad" sample, make a Type 1 Error

We always assume we got a "good" sample.

Affecting Width

What affects the width of the confidence interval?

$$\bar{x} \pm t^{**} \times \frac{s}{\sqrt{n}}$$

- \bar{x} : center
- t^{**} : comes from t(df) and is also dependent on α
 - $-df\uparrow, t^{**}\downarrow$, width \downarrow
 - $-\alpha\uparrow, t^{**}\downarrow$, width \downarrow
 - $-C\uparrow$, $t^{**}\uparrow$, width \uparrow
- n: sample size \uparrow , width \downarrow
- s: sample standard deviation \(\frac{1}{2}\), width \(\frac{1}{2}\)

Example

Suppose we take a simple random sample of 8 college students and ask how much time they spend per week watching broadcast TV. In the sample, $\bar{x}=14.5$ hrs/week and s=14.884 hrs/week. Use this information to <u>estimate</u> with <u>95% confidence</u> the <u>population mean</u> time college students spend watching TV per week.

Is this data symmetric?

• This data is **not** because the sample standard deviation is quite large.

Solution

Step 1: Assume this is a good sample. So for any value in μ in:

$$y = mx + b$$

Step 2: Plug in for \bar{x}, s, n

$$y = ax^2 + bx + c$$

Step 3: Find t^{**}

$$df = 7, C = 0.95 \implies \alpha = 0.05$$

$$\begin{array}{l} {\tt qt(0.025,\ df=7,\ lower.tail=FALSE)} \\ {\tt [1]} \ 2.305 \\ &\frac{\alpha}{2}=0.025 \implies t^{**} \\ &\frac{{\tt Step\ 4:}}{=(14.5-23.05(\frac{14.854}{\sqrt{8}}),14.5+23.05(\frac{14.854}{\sqrt{8}}))} \\ &=(2.08,26.92) \end{array}$$

Tying Example Back into Theory [Interpretation]

We are $\underline{95\%}$ confident (in our estimate) that the $\underline{\text{population mean}}$ (number of hours per week) is between $\underline{2.08}$ and $\underline{26.92}$.

Other Frameworks

Matched Pairs

-
$$t_{\text{observed}} = \frac{\bar{x}_{\text{d}} - \mu_{\text{d}}}{\frac{s_{\text{d}}}{\sqrt{n}}}$$

• Confidence Interval for μ_d :

$$\begin{split} \bar{x}_{\mathrm{d}} &\pm t^{**} \times \frac{s_{\mathrm{d}}}{\sqrt{n}} \\ (\bar{x}_{\mathrm{d}} - t^{**} \times \frac{s_{\mathrm{d}}}{\sqrt{n}}, \, \bar{x}_{\mathrm{d}} + t^{**} \times \frac{s_{\mathrm{d}}}{\sqrt{n}}) \end{split}$$

Two-Sample

Terms

Point Estimate: statistic whose value is our "best guess" as to the value of a parameter

• $\bar{x}, \bar{x}_{d}, \bar{x}_{1} - \bar{x}_{2}, etc$

<u>Margin of Error:</u> how much to add/subtract to create an interval estimate we are C% confident in: t critical value \times standard error [for two sided N-P test]

Example: Book Exercise 7.71

202 "early" eaters [Population 1]

- $\bar{x} = 23.1$ grams of fat
- s = 12.5 grams

200 "late" eaters [Population 2]

- $\bar{x} = 21.4$ grams of fat
- s = 8.2 grams

Estimate with 95% confidence the difference in population mean fat consumption. $(\mu_1 - \mu_2)$: (-0.4, 3.8)

We are $\underline{95\%}$ confident in our estimate that the difference in population mean fat consumption between early & late eaters is between $\underline{-0.4}$ and $\underline{3.8}$ grams.

Suppose H_0 : $\mu_1 - \mu_2 = 0$. H_1 : $\mu_1 - \mu_2 = \Delta$

Can I accept H_0 [in Neyman-Pearson Framework] using this sample.

• Yes because -0.4 < 0 < 3.8

Can I reject H₀: $\mu_1 - \mu_2 = 0$ [NHST] in favor of H_a: $\mu_1 = \mu_2 \neq 0$? (Using $\alpha = 0.05$)

• No because -0.4 < 0 < 3.8

Based on our sample:

- 1. μ_1 and μ_2 could be =
- 2. μ_1 could be as much as 3.8 bigger than μ_2
- 3. μ_1 could be as much as 0.4 smaller than μ_2

Interpretations

We are 95% confident in our estimate that, on average (in the population), early eaters consume between 0.4 grams less & 3.8 grams more fat compared to late eaters.

```
↑ SAME THING ↓
```

 μ_1 = population mean late eaters, μ_2 = population mean early eater (-3.8, 0.4)

Hypothetical Scenarios

Suppose both bounds are positive:

$$\mu_{\rm early} - \mu_{\rm late} \implies {\rm CI:} (0.4, 3.8)$$

Only possibility: $\mu_{\text{early}} > \mu_{\text{late}}$

We are 95% confident in our estimate that, on average (in the population), early eaters consume between 0.4 grams more and 3.8 grams more than late eaters

Suppose both bounds are negative:

. . . .

insert chart from picture

NOTE:

We can always $\underline{\underline{\text{always}}}$ perform hypothesis testing by constructing a confidence interval with confidence level

$$C = 1 - \alpha$$

and seeing i the null value is in the confidence interval!

Prefer confidence interval over hypothesis testing:

- Additional information!
- Confidence interval screws up in the interpretation are $\underline{\text{much}}$ less costly than hypothesis testing screws ups.

Generally only use hypothesis for Fisher-type tests (χ^2, ANOVA)

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

Reject H_0 : at least 1 μ is different.

- $\rightarrow Estimate$:
 - $\mu_1 \mu_2$
 - $\mu_1 \mu_3$
 - $\mu_2 \mu_3$

Knowing at least one of the differences exists.