Enumeration of Simple Complete Topological Graphs

Jan Kynčl

Charles University, Prague

Graph:
$$G = (V, E), |V| < \infty, E \subseteq \binom{V}{2}$$

Topological graph: a drawing of a graph in the plane

vertices = points

edges = simple curves

- edges do not pass through any vertices other than their end-points
- any two edges have only finitely many common points
- any intersection point of two edges is either a common end-point or a **crossing** (no touching allowed)
- at most two edges can intersect in one crossing

simple: any two edges have at most one common point

complete: $E = \binom{V}{2}$

topological graph

simple complete topological graph

Topological graphs G, H are

isomorphic if there exists a homeomorphism (of the sphere) which maps ${\cal G}$ onto ${\cal H}$

weakly isomorphic if the same pairs of edges cross in ${\cal G}$ and in ${\cal H}$

T(n)= number of isomorphism classes $T_{\rm w}(n)=$ number of weak isomorphism classes of simple complete topological graphs on n vertices Theorem [J. Pach, G. Tóth, 2004]:

$$2^{\Omega(n^2)} \le T_{\mathbf{w}}(n) \le 2^{O(n^2 \log n)}$$

Theorem 1:

$$T(n) = 2^{\Theta(n^4)}$$

Lower bounds are attained even for extendable graphs

Remark: The number of weak isomorphism classes of complete **geometric** graphs on n vertices is $2^{O(n \log n)}$

Graphs with maximum number of crossings

 $T_{\rm w}^{\rm max}(n)=$ number of weak isomorphism classes of simple complete topological graphs on n vertices with $\binom{n}{4}$ crossings

Theorem [H. Harborth, I. Mengersen, 1992]:

$$T_{\rm w}^{\rm max}(n) \ge e^{c\sqrt{n}}$$

Theorem 2:

$$T_{\mathbf{w}}^{\max}(n) \ge 2^{n(\log n - O(1))}$$

Proof of Theorem 1

Lower bound: $T(n) \ge 2^{\Omega(n^4)}$

Upper bound: $T(n) \leq 2^{O(n^4)}$

Proposition: There is a two-to-one correspondence between rotation systems and weak isomorphism classes of simple complete topological graphs.

star-cut representation:

Upper bound: $T(n) \leq 2^{O(n^4)}$

Proposition: There is a two-to-one correspondence between rotation systems and weak isomorphism classes of simple complete topological graphs.

star-cut representation:

Upper bound: $T(n) \leq 2^{O(n^4)}$

Proposition: There is a two-to-one correspondence between rotation systems and weak isomorphism classes of simple complete topological graphs.

star-cut representation:

Proposition: The number of non-isomorphic simple arrangements of n pseudochords with fixed perimetric order inducing k crossings is at most 2^k .

- $2^{O(n^2 \log n)}$ weak isomorphism classes
- $O(n^3)$ pseudochords
- $\Rightarrow 2^{O(n^3 \log n)}$ perimetric orders
- $O(n^4)$ crossings
- $\Rightarrow 2^{O(n^4)}$ arrangements
- $\Rightarrow 2^{O(n^4)}$ isomorphism classes