

19年**杭州信子科找大学**高数下A期末考试题——补考卷

HDII 数学营

(2019年)

本次码字与排版,均由知乎 ID:她的糖(QQ: 1138472374)完成。由于其水平有限,难免会出现一些编排上的小错误,敬请各位同学批评指正。

一、选择题(本题共8小题,每小题3分,共24分)

- 1. 设两平面x-2y+2z+1=0与-x+y+5=0,则两平面的夹角为().
 - A. $\frac{\pi}{6}$

B. $\frac{\pi}{4}$

C. $\frac{\pi}{3}$

D. $\frac{\pi}{2}$

- 2. $\lim_{(x,y)\to(0,2)} \frac{\tan(xy)}{x} = ($).
 - A. 1

B. 2

C. 0

D. 不存在

- 3. $z = x^2y 3y^2$, $|y| dz|_{x=1,y=1} = ($).
 - A. 4dx + 4dy
- B. 2dx 5dy
- C. dx + dy
- D. 0

- 4. 二次积分 $I = \int_0^4 dx \int_x^{2\sqrt{x}} f(x,y) dy$ 交换积分次序为().
 - A. $\int_0^4 dy \int_y^{2\sqrt{y}} f(x,y) dx$

 $B. \int_0^4 dy \int_{\frac{y^2}{4}}^4 f(x,y) dx$

C. $\int_0^4 dy \int_{\frac{y^2}{4}}^y f(x,y) dx$

- D. $\int_0^4 dy \int_0^y f(x,y) dx$
- 5. 过点P(1,0,2)且垂直于平面x-2y+z=1的直线方程为().
 - A. (x-1)-2y+(z-2)=0

B. (x-1)-2y+(z-2)=1

C. $\frac{x-1}{1} = \frac{y}{-2} = \frac{z-2}{1}$

- D. $\frac{x+1}{1} = \frac{y-2}{0} = \frac{z}{2}$
- 6. 设 Ω 是由 $z=x^2+y^2,x^2+y^2=1,z=0$ 围成的闭区域,则 $\iiint_{\Omega} xzdv$ 可以化为三次积分().
 - A. $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_0^{\rho} \rho \cos\theta z dz$

B. $\int_{0}^{2\pi} d\theta \int_{0}^{1} d\rho \int_{0}^{\rho^{2}} \rho \cos \theta z dz$

C. $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_0^{\rho^2} \rho^2 \cos\theta z dz$

D. $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_0^{\rho} \rho^2 \cos\theta z dz$

7. 设 $\sum_{n=0}^{\infty} C_n x^n$ 在点x = -2处条件收敛,则该级数的收敛半径().

- A. 等于2
- B. 大于2
- C. 小于2
- D. 不能确定

8. 下列级数收敛的是().

A.
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$
 B. $\sum_{n=1}^{\infty} \frac{3^n}{2^n}$

B.
$$\sum_{1}^{\infty} \frac{3^n}{2^n}$$

C.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

D.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n+1}$$

二、填空题(本题共4小题,每小题3分,共12分)

9. 已知向量 \vec{a} , \vec{b} 满足 $\vec{a}=-\vec{b}$, $|\vec{a}|=\left|\vec{b}\right|=3$,则 $\vec{a}\cdot\vec{b}=$ ______.

10. 设方程 $x+y+z=e^z$ 确定z是x,y的函数,则 $\frac{\partial z}{\partial x}=$ ______.

11. 有向曲线为L: 圆域 $x^2 + y^2 \le 1$ 的正向周界,则对坐标的曲线积分 $\oint_{r} (x - y) dx + (x - y) dy = ______.$

12. 函数f(x)以 2π 为周期且在 $[-\pi,\pi]$ 上有 $f(x) = \begin{cases} 1, & -\pi < x \leq 0, \\ -1 + x^2, & 0 < x \leq \pi \end{cases}$,则其傅里叶级数在点 $x = \pi$ 收敛于

三、简单计算题(本题共5小题,每题6分,共30分)

13. 设 $z = \arctan x^y$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$.

14. 设直线 $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{\lambda}$ 与直线 x = y = z 相交于一点,求 λ .

HDU 数学营: 797646975 $15. 求 I = \iint_D e^{x^2+y^2} dx dy , \quad 其中 D = \{(x,y) | 1 \le x^2+y^2 \le 4\}.$

16. 将函数 $f(x) = \frac{1}{2-x}$ 展开成(x-1)的幂级数,并求其收敛域.

17. 求积分 $I = \int_L \frac{1}{y} dx + \frac{1}{x} dy$, $L \ni y = \sqrt{x} \perp \mathbb{M}(1,1) \mathfrak{D}(4,2)$ 一段曲线弧.

四、计算题(本题共3小题,每题7分,共21分)

18. 求函数 $f(x,y) = 4(x-y) - x^2 - y^2$ 的极值.

19. 计算
$$\iint_{\Sigma} x dS$$
 , 其中 Σ 为平面 $x+y+z=1$ 在第一卦限部分.

20. 已知有向曲线L是从起点A(0,0)沿着 $x = \sqrt{2y-y^2}$ 到达终点B(1,1),求解积分

$$I = \int_L (\sin x - y^2) dx - (2xy + \sin y) dy$$
 时,

- (1) 验证该积分是否跟路径有关;
- (2) 求出该积分I的值.

五、综合题(本题8分)

21. 求
$$\iint_{\Sigma} (y-z) dy dz + z^2 dx dy$$
 ,其中 Σ : $z = \sqrt{x^2 + y^2}$, $(0 \le z \le h)$ 取外侧.

六、证明题(本题5分)

22. 设正项级数
$$\sum_{n=1}^{\infty} u_n$$
 和 $\sum_{n=1}^{\infty} v_n$ 收敛, 证明 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 也收敛.