[METHOD FOR GENERATING 2D OVSF CODES IN MULTICARRIER DS-CDMA SYSTEMS]

Abstract of Disclosure

A code tree of two-dimensional orthogonal variable spreading factor (2D-OVSF) code matrices for a multicarrier direct-sequence code-division multiple-access (MC-DS/CDMA) communications system is generated by providing two sets of 2 \times 2

orthogonal matrices {A (2×2) , A (2×2) } and {B (2×2) , B (2×2) }. The first set of 2 \times 2 matrices is used to generate a pair of sibling nodes in the code tree that respectively represent matrices $\mathbf{A}^{(1)}(2 \times 2^n)$ and $\mathbf{A}^{(2)}(2 \times 2^n)$ by iterating the relationship:

 $\mathbf{A}(1)_{\{2\times2^{1+\beta}\}} = [\mathbf{A}(1)_{\{2\times2^{\beta}\}} \quad \mathbf{A}(2)_{\{2\times2^{\beta}\}}],$ The matrices $\mathbf{A}^{(1)}(2\times2^{\alpha})$ and $\mathbf{A}^{(2)}(2\times2^{\alpha})$ are $\mathbf{A}(2)_{\{2\times2^{1+\beta}\}} = [\mathbf{A}(1)_{\{2\times2^{\beta}\}} \quad -\mathbf{A}(2)_{\{2\times2^{\beta}\}}].$

used to generate a child node of one of the sibling nodes. The child node contains an $M \times N$ matrix, which is found by iterating the relationship:

 ${\tt A}^{(i-1)}_{\{0\times P\}} = [{\tt B}^{(1)}_{\{2\times 2\}} \overset{\otimes}{\to} {\tt A}^{(i/2)}_{\{0/2\times P/2\}}] \ \ \text{where} \otimes \text{indicates a Kronecker product.}$ ${\tt A}^{(i)}_{\{0\times P\}} = [{\tt B}^{(2)}_{\{2\times 2\}} \overset{\otimes}{\to} {\tt A}^{(i/2)}_{\{0/2\times P/2\}}],$