Regression mit dem CART Algorithmus und Pruning

Prof. Dr. Jörg Frochte

Maschinelles Lernen

 $G = 1 - \sum_{i=1}^{c} N(i)^2$

CART-Algorithmus

Wir haben den CART (Classification and Regression Trees) als einen Algorithmus zum Lernen eines binären Entscheidungsbaum kennengelernt.

- Bisher haben wir uns beim CART auf die Klassifikation konzentriert.
- Dieses Mal geht es um die Regression und ...
- ... das Problem der Überanpassung.

Unterschiede bei einer Regression

- Im Fall einer Regression besteht der Datensatz aus dem Featurevektor x und dem Funktionswert $y=f(x)\in\mathbb{R}.$
- Zwei Änderungen sind nötig für den Wechsel von der Klassifikation zur Regression:
 - Einmal brauchen wir einen Ersatz für die Gini Impurity und
 - zum anderen eine andere Art, den Wert an einem Blattknoten zu berechnen.
- Zunächst ersetzen wir die Gini Impurity durch ein Regressionsmaß wie z.B. den den mittleren quadratischen Fehler (MSE):

$$r_y = rac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2 \; ext{mit} \; \bar{y} = rac{1}{n} \sum_{i=1}^n y_i$$

• Der Wert am Blattknoten ist einfach der Mittelwert \bar{y} . Über jeweils den Bereich, den ein Blattknoten abdeckt, ist die so enstandene Funktion also konstant.

- Anstatt dem MSE, könnte man als
 Optimierungskriterium auch die Residuenquadratsumme
 verwenden. Der Unterschied ist hierbei nur die
 Skalierung mit der Anzahl der verwendeten Beispiele.
- Das erste ist eine analytische Funktion

$$y = (\sin(2\pi x_0) + \cos(\pi x_1)) \cdot e^{1 - x_0^2 - x_1^2},$$

die wir mit verschiedenen Stärken von additivem weißen Rauschen versehen.

- Rechts oben sehen wir die Regression mittels CART für unterschiedlich starkes Rauschen und minLeafNodeSize=3
- Statt einem konstanten Wert wie auf der letzten Folie wäre es auch möglich in jedem Knoten ein lineares Modell zu verwenden, wenn genug Sampels vorliegen.

Approximation mit 20% Rauschen

Beispiel

- Als Beispiel verwenden wir das Bike Sharing Data Set
 (https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset).
- Es besteht aus 17389 protokollierten Daten über das Ausleihverhalten von Fahrrädern in einer Großstadt.
- Der Datenbestand enthält Daten bzgl. des Wetters und des Ausleihverhaltens für Fahrräder protokolliert nach Uhrzeit, Feiertag usw.
- Die Originaldatei enthält die Informationen zum Datum bzw. der Uhrzeit teilweise redundant in einem Zeitstempel und einzelnen Spalteneinträgen.
- In dieser bereinigten Form haben wir 13 Merkmale, die in Tabelle auf der nächsten Seite notiert sind.

Merkmale des Bike Sharing Data Set (2013)

Nr.	Merkmal	Bedeutung	Wertebereich
0	season	Frühling(1), Sommer(2), Herbst(3), Winter(4)	$\{1, 2, 3, 4\}$
1	yr	Jahr 2011 (0) oder 2012 (1)	$\{0,1\}$
2	mnth	Monat des Jahres	1 bis 12
3	day	Tag des Monats	1 bis 31
4	hr	Stunde des Tages	0 bis 23
5	holiday	Ist es ein Feiertag?	0 (False) oder 1 (True)
6	weekday	Welcher Wochentag	$\{1, 2, 3, 4, 5, 6, 7\}$
7	workingday	Kein Wochenende und kein Feiertag?	0 (False) oder 1 (True)
8	weathersit	Qualität des Wetters in Abstufungen	$\{1, 2, 3, 4\}$
9	temp	Normierte Temperatur	[0,1]
10	atemp	Normierte gefühlte Temperatur	[0, 1]
11	hum	Normierte relative Luftfeuchtigkeit	[0, 1]
12	windspeed	Normierte Windgeschwindigkeit	[0,1]
13	casual	Anzahl Fahrräder von Gelegenheitsradlern	$\in { m I\!N}$
14	registered	Anzahl Fahrräder von registrierten Nutzern	$\in {\rm I\! N}$
15	cnt	Gesamtanzahl verliehener Fahrräder	$\in { m I\!N}$

- Dieser Datenbestand ist ein ganz realistischer Fall, in dem nicht alle Merkmale mit der von uns gesuchten Größe korrelieren müssen und sicherlich mehrere voneinander nicht statistisch unabhängig sind.
- Beispielsweise sind natürlich die Temperatur und die gefühlte Temperatur nicht statistisch unabhängig.
- Auch typisch ist, dass wir hier sehr unterschiedliche Arten von Merkmalen haben.
- Wie man sieht, sind die Merkmale 5 (holiday) und 7 (workingday) einer Nominalskala und 8 (temp) einer Ordinalskala zuzuordnen.
- Trotz der Tatsache, dass nicht alle Merkmale rational sind, müssen wir an unserem Code nichts ändern.
- In der Praxis ist man hier oft weit entspannter, man muss sich nur die Auswirkungen und Gefahren klar machen.

Ergebnisse für den CART-Baum

Wir erhalten hier einen mittleren Fehler von ca. 31 Fahrrädern, um die sich die Vorhersage auf der Testmenge verschätzt.

Erste Ebenen des CART Entscheidungsbaumes

- Wie man am oberen Ende des Baumes sieht, ist die Uhrzeit Merkmal 4 ein sehr wichtiger Aspekt.
- Ansonsten spielen die Jahreszeit (Nr. 0), das Jahr (Nr. 1), Feiertag: ja oder nein (Nr. 7) und die Temperatur (Nr. 9) eine große Rolle.
- Andere Merkmale kommen erst weiter unten als Feinabstimmung im Baum vor.

Einordnung der Ergebnisse

- Wie man sieht, schwankt die Anzahl der entliehenen Fahrräder beträchtlich.
- Im Mittel ist unser Ergebnis eigentlich sehr gut, was jedoch daran liegt, wie wir unser Testset gebildet haben.
- Unsere Testmenge wurde zufällig aus der Gesamtmenge der Daten gezogen.
- Das bedeutet, dass zur Trainingsmenge zum Beispiel die ausgeliehenen Fahrräder an einem bestimmten Tag um 09:00, 10:00 und 12:00 gehören und die Testmenge den Wert um 11:00 enthält.
- Eine solche Interpolation auf zeitlichen Daten ist wesentlich leichter als eine Extrapolation.

Overfitting

 Ohne Einschränkung, wann CART aufhören soll, bricht der Algorithmus erst ab, wenn keine Verbesserung mehr erreicht werden kann.

Overfitting

- Ohne Einschränkung, wann CART aufhören soll, bricht der Algorithmus erst ab, wenn keine Verbesserung mehr erreicht werden kann.
- Der Baum passt sich den Trainingsdaten bestmöglichst an.
- Bei verrauschten oder schwer zu trennenden Daten ist das nicht gewollt und nennt sich overfitting.

Pre-Pruning

- Overfitting wirkt sich im Allgemeinen negativ auf die Verallgemeinerung von Daten ausanders gesagt: Die Trainingsdaten werden auswendig gelernt.
- Das gilt für beiden Anwendungsgebiete also Regression und Klassifikation.
- Unser Ziel ist es also, diese unsinnige Verästelung zu reduzieren und den Baum auf die notwendige Komplexität zurechtzustutzen.
- Dies nennt man **Pruning**. Man unterscheidet zwischen **Pre-Pruning** und **Post-Pruning**.
- Beim Pre-Pruning wird eigentlich nichts gestutzt, sondern beim Aufstellen des Baumes zu starke Verästelung vermieden.
- Typische Beispiele sind die maximale Tiefe des Baumes, Mindestverbesserungsraten oder Mindestgrößen für die Blätter (Anzahl der Samples)
- Wir haben also schon etwas Pre-Pruning

Post-Pruning

- Beim **Post-Pruning** werden an einem fertigen Baum Knoten durch Blätter ersetzt, um die Komplexität zu verbessern.
- Die Beurteilung, was zurückgeschnitten wird, geschieht auch hierbei über eine Validierungsmenge.
- Ein einfacher und trotzdem sehr effektiven Ansatz ist der Reduced-Error Ansatz.
- Hierbei testet man einen Knoten innerhalb des Baumes darauf, wie sich der Fehler auf der Validierungsmenge entwickelt, wenn dieser Knoten durch ein Blatt ersetzt wird.
- Das Blatt wird dabei nach den allgemeinen Regeln für den Baum gebildet, also zum Beispiel nach einer Mehrheitsentscheidung für die Klassifizierung oder eine Mittelwertbildung für die Regression.
- Verbessert sich der Baum durch diesen Rückschnitt auf der Validierungsmenge oder ist der Fehlerzuwachs in einem tolerierbaren Maß, so wird der unter t liegende Teilbaum abgeschnitten und durch ein Blatt ersetzt.

Post-Pruning illustriert

Komplexität

Nun bleibt die Frage wie der Algorithmus für größere Datenmengen in der Theorie skaliert? Für diese Frage muss man das Lernen und die Auswertung des Baumes unterscheiden.

- Sei n_S die Anzahl Samples in der Trainingsmenge und n_F die Anzahl Merkmale.
- Wir nehmen an, dass ein perfekt ausbalancierter Baum entsteht.
- Die Komplexität für eine Auswertung liegt bei $\mathcal{O}(\log(n_S))$, weil die Tiefe des Baums mit n_S logarithmisch wächst.
- Die Komplexität für das Training beträgt:

$$\mathcal{O}(n_F \cdot n_S^2 \cdot \log(n_S))$$
 mit zusätzlichen Annahmen jedoch $\mathcal{O}(n_F \cdot n_S \cdot \log(n_S))$