

a complete subspace of a metric space is closed

 ${\bf Canonical\ name} \quad {\bf AComplete Subspace Of AMetric Space Is Closed}$

Date of creation 2013-03-22 16:31:29
Last modified on 2013-03-22 16:31:29
Owner ehremo (15714)
Last modified by ehremo (15714)

Numerical id 5

Author ehremo (15714)

Entry type Result Classification msc 54E50 Let X be a metric space, and let Y be a complete subspace of X. Then Y is closed.

Proof

Let $x \in \overline{Y}$ be a point in the closure of Y. Then by the definition of closure, from each ball $B(x, \frac{1}{n})$ centered in x, we can select a point $y_n \in Y$. This is clearly a Cauchy sequence in Y, and its limit is x, hence by the completeness of Y, $x \in Y$ and thus $Y = \overline{Y}$.