Examen Parcial 01

Ernesto A. Vázquez Navarro Ileana A. González Escalante

> Geometría Moderna II Semestre 2019-2

Facultad de Ciencias Universidad Nacional Autónoma de México

Presentación del examen: 08 de marzo de 2019

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: Dado que $|\angle BDH| = |\angle BFH| = \bot$ y $|\angle BEA| = |\angle BDA| = \bot$ se tiene que $\{B, D, H, F\}$ y $\{B, D, E, A\}$ son conjuntos concíclicos de puntos.

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: Dado que $|\angle BDH| = |\angle BFH| = \bot$ y $|\angle BEA| = |\angle BDA| = \bot$ se tiene que $\{B, D, H, F\}$ y $\{B, D, E, A\}$ son conjuntos concíclicos de puntos. Así, $|\angle HDF| = |\angle HBF|$ y $|\angle EBA| = |\angle EDA|$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: Dado que $|\angle BDH| = |\angle BFH| = \bot$ y $|\angle BEA| = |\angle BDA| = \bot$ se tiene que $\{B, D, H, F\}$ y $\{B, D, E, A\}$ son conjuntos concíclicos de puntos. Así, $|\angle HDF| = |\angle HBF|$ y $|\angle EBA| = |\angle EDA|$ (subtienden el mismo arco en cada circunferencia que los contiene).

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: Dado que $|\angle BDH| = |\angle BFH| = \bot$ y $|\angle BEA| = |\angle BDA| = \bot$ se tiene que $\{B, D, H, F\}$ y $\{B, D, E, A\}$ son conjuntos concíclicos de puntos. Así, $|\angle HDF| = |\angle HBF|$ y $|\angle EBA| = |\angle EDA|$ (subtienden el mismo arco en cada circunferencia que los contiene). Como $\{E, H, B\} \subseteq \overline{EH}$ y $\{A, F, B\} \subseteq \overline{AB}$ se tiene que $|\angle EDA| = |\angle EBA| = |\angle HBF| = |\angle HDF| = |\angle ADF|$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: Dado que $|\angle BDH| = |\angle BFH| = \bot$ y $|\angle BEA| = |\angle BDA| = \bot$ se tiene que $\{B, D, H, F\}$ y $\{B, D, E, A\}$ son conjuntos concíclicos de puntos. Así, $|\angle HDF| = |\angle HBF|$ y $|\angle EBA| = |\angle EDA|$ (subtienden el mismo arco en cada circunferencia que los contiene). Como $\{E, H, B\} \subseteq \overline{EH}$ y $\{A, F, B\} \subseteq \overline{AB}$ se tiene que $|\angle EDA| = |\angle EBA| = |\angle HBF| = |\angle HDF| = |\angle ADF|$ es decir, $|\angle EDA| = |\angle ADF|$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: $|\angle EDA| = |\angle ADF|$.

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: $|\angle EDA| = |\angle ADF|$.

Notemos que

$$\angle(\overline{DE} \to \overline{DB}) = \angle(\overline{DE} \to \overline{DA}) + \angle(\overline{DA} \to \overline{DB})$$
$$= \angle(\overline{DE} \to \overline{DA}) + \bot$$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración: $|\angle EDA| = |\angle ADF|$. Notemos que

$$\angle(\overline{DE} \to \overline{DB}) = \angle(\overline{DE} \to \overline{DA}) + \angle(\overline{DA} \to \overline{DB})$$

$$= \angle(\overline{DE} \to \overline{DA}) + \bot$$

$$\angle(\overline{DB} \to \overline{DF}) = \angle(\overline{DB} \to \overline{DA}) - \angle(\overline{DA} \to \overline{DF})$$

$$= \bot - \angle(\overline{DE} \to \overline{DA})$$

$$= -(\angle(\overline{DE} \to \overline{DA}) - \bot)$$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración:
$$|\angle EDA| = |\angle ADF|$$
.
 $\angle(\overline{DE} \to \overline{DB}) = \angle(\overline{DE} \to \overline{DA}) + \bot$
 $\angle(\overline{DB} \to \overline{DF}) = -(\angle(\overline{DE} \to \overline{DA}) - \bot)$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap BC = \{D\}, h_B \cap CA = \{E\} \text{ y } h_C \cap AB = \{F\}$ entonces $D\{DE, DF, DA, DB\} = -1$.

Demostración:
$$|\angle EDA| = |\angle ADF|$$
.
 $\angle (\overline{DE} \to \overline{DB}) = \angle (\overline{DE} \to \overline{DA}) + \bot$
 $\angle (\overline{DB} \to \overline{DF}) = -(\angle (\overline{DE} \to \overline{DA}) - \bot)$

Por lo tanto

$$D\{\overline{DE},\overline{DF};\overline{DA},\overline{DB}\} = \frac{\frac{\mathsf{sen}(\angle(\overline{DE} \to \overline{DA}))}{\mathsf{sen}(\angle(\overline{DA} \to \overline{DF}))}}{\frac{\mathsf{sen}(\angle(\overline{DE} \to \overline{DB}))}{\mathsf{sen}(\angle(\overline{DB} \to \overline{DF}))}}$$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración:
$$|\angle EDA| = |\angle ADF|$$
.
 $\angle (\overline{DE} \to \overline{DB}) = \angle (\overline{DE} \to \overline{DA}) + \bot$
 $\angle (\overline{DB} \to \overline{DF}) = -(\angle (\overline{DE} \to \overline{DA}) - \bot)$

Por lo tanto

$$D\{\overline{DE},\overline{DF};\overline{DA},\overline{DB}\} = \frac{\frac{\operatorname{sen}(\angle(\overline{DE}\to\overline{DA}))}{\operatorname{sen}(\angle(\overline{DA}\to\overline{DF}))}}{\frac{\operatorname{sen}(\angle(\overline{DE}\to\overline{DB}))}{\operatorname{sen}(\angle(\overline{DB}\to\overline{DF}))}} = \frac{\frac{\operatorname{sen}(\angle EDA)}{\operatorname{sen}(\angle ADF)}}{\frac{\operatorname{sen}(\angle(\overline{DE}\to\overline{DA})+\bot)}{\operatorname{sen}(-(\angle(\overline{DE}\to\overline{DA})-\bot))}}$$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración:

$$D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = \frac{\frac{\frac{\text{sen}(\angle EDA)}{\text{sen}(\angle ADF)}}{\frac{\text{sen}(\angle(\overline{DE} \to \overline{DA}) + \bot)}{\text{sen}(-(\angle(\overline{DE} \to \overline{DA}) - \bot))}}$$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración:

$$D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = \frac{\frac{\frac{\text{sen}(\angle EDA)}{\text{sen}(\angle ADF)}}{\frac{\text{sen}(\angle(\overline{DE} \to \overline{DA}) + \bot)}{\text{sen}(-(\angle(\overline{DE} \to \overline{DA}) - \bot))}} = -1$$

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración:

$$D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = \frac{\frac{\operatorname{sen}(\angle EDA)}{\operatorname{sen}(\angle ADF)}}{\frac{\operatorname{sen}(\angle(\overline{DE} \to \overline{DA}) + \bot)}{\operatorname{sen}(-(\angle(\overline{DE} \to \overline{DA}) - \bot))}} = -1$$

(pues $\angle(\overline{DE} \to \overline{DA}) + \bot \text{ y } -(\angle(\overline{DE} \to \overline{DA}) - \bot)$ son suplementarios.

[1] Sean $\triangle ABC$ y h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.

Demostración:

$$D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = \frac{\frac{\operatorname{sen}(\angle EDA)}{\operatorname{sen}(\angle ADF)}}{\frac{\operatorname{sen}(\angle(\overline{DE} \to \overline{DA}) + \bot)}{\operatorname{sen}(-(\angle(\overline{DE} \to \overline{DA}) - \bot))}} = -1$$

(pues $\angle(\overline{DE} \to \overline{DA}) + \bot$ y $-(\angle(\overline{DE} \to \overline{DA}) - \bot)$ son suplementarios.

[2] Sea Γ una familia de circunferencias coaxiales. Demostrar que para cualquier punto P en el plano existe $\zeta(A,\alpha)\in\Gamma$ y $\zeta(B,\beta)\in\Gamma^{\perp}$ tal que $P\in\zeta(A,\alpha)\cap\zeta(B,\beta)$.

[2] Sea Γ una familia de circunferencias coaxiales.

Demostrar que para cualquier punto P en el plano existe $\zeta(A,\alpha) \in \Gamma$ y $\zeta(B,\beta) \in \Gamma^{\perp}$ tal que $P \in \zeta(A,\alpha) \cap \zeta(B,\beta)$.

Demostración: Sea P un punto en el plano.

Consideremos 3 casos:

- Caso 1) Γ es una familia de circunferencias que se intersecan en dos puntos.
- Caso 2) Γ es una familia de circunferencias que se intersecan en un punto.
- Caso 3) Γ es una familia de circunferencias que no se intersecan.

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Como *P* es cualquier punto en el plano, Tenemos que:

• $\{P, Q, R\}$ **no** es un conjunto de puntos en posición general.

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Como *P* es cualquier punto en el plano, Tenemos que:

■ $\{P, Q, R\}$ **no** es un conjunto de puntos en posición general. De ser así, $P \in \overline{QR}$

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Como *P* es cualquier punto en el plano, Tenemos que:

■ $\{P, Q, R\}$ **no** es un conjunto de puntos en posición general. De ser así, $P \in \overline{QR} = I$

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Como *P* es cualquier punto en el plano, Tenemos que:

■ $\{P, Q, R\}$ **no** es un conjunto de puntos en posición general. De ser así, $P \in \overline{QR} = I \in \Gamma$.

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Como P es cualquier punto en el plano, Tenemos que:

- $\{P, Q, R\}$ **no** es un conjunto de puntos en posición general. De ser así, $P \in \overline{QR} = I \in \Gamma$.
- $\{P, Q, R\}$ es un conjunto de puntos en posición general.

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Como P es cualquier punto en el plano, Tenemos que:

- $\{P, Q, R\}$ **no** es un conjunto de puntos en posición general. De ser así, $P \in \overline{QR} = I \in \Gamma$.
- $\{P, Q, R\}$ es un conjunto de puntos en posición general. Sabemos que existe una única circunferencia que contiene a $\{P, Q, R\}$, a la que llamaremos $\zeta(A, \alpha)$.

Demostración: Sean Q y R los puntos donde se intersecan las circunferencias de la familia Γ , I el eje radical de Γ y n la línea de los centros de Γ .

Como P es cualquier punto en el plano, Tenemos que:

- $\{P, Q, R\}$ **no** es un conjunto de puntos en posición general. De ser así, $P \in \overline{QR} = I \in \Gamma$.
- $\{P,Q,R\}$ es un conjunto de puntos en posición general. Sabemos que existe una única circunferencia que contiene a $\{P,Q,R\}$, a la que llamaremos $\zeta(A,\alpha)$. $\zeta(A,\alpha) \in \Gamma$ pues incide en Q y R; además, la línea de los centros de Γ es la mediatriz de Q y R entonces $\zeta(A,\alpha)$ tiene centro en

◆□▶◆圖▶◆臺▶★臺▶ 臺 ∽९(

Demostración: Sólo nos queda encontrar un elemento de Γ^{\perp} que incida en P.

Demostración: Sólo nos queda encontrar un elemento de Γ^{\perp} que incida en P. Si p es la tangente a $\zeta(A,\alpha)$ por P, sea $p \cap I = \{B\}$.

Demostración: Sólo nos queda encontrar un elemento de Γ^{\perp} que incida en P. Si p es la tangente a $\zeta(A,\alpha)$ por P, sea $p \cap I = \{B\}$.

Observación

Si $p \cap I$ no está en el plano entonces $\{P,A\} \subseteq n$. Así, p es paralela a I y por ende n es ortogonal a $\zeta(A,\alpha)$. Como $n \in \Gamma^{\perp}$, n cumple lo que buscamos.

Demostración: Sólo nos queda encontrar un elemento de Γ^{\perp} que incida en P. Si p es la tangente a $\zeta(A,\alpha)$ por P, sea $p \cap I = \{B\}$.

Observación

Si $p \cap I$ no está en el plano entonces $\{P,A\} \subseteq n$. Así, p es paralela a I y por ende n es ortogonal a $\zeta(A,\alpha)$. Como $n \in \Gamma^{\perp}$, n cumple lo que buscamos.

 $\zeta(B, |BP|)$, por construcción, es ortogonal a $\zeta(A, \alpha)$ en P.

Demostración: Sólo nos queda encontrar un elemento de Γ^{\perp} que incida en P. Si p es la tangente a $\zeta(A, \alpha)$ por P, sea $p \cap I = \{B\}$.

Observac<u>ión</u>

Si $p \cap I$ no está en el plano entonces $\{P,A\} \subseteq n$. Así, p es paralela a I y por ende n es ortogonal a $\zeta(A,\alpha)$. Como $n \in \Gamma^{\perp}$, n cumple lo que buscamos.

 $\zeta(B,|BP|)$, por construcción, es ortogonal a $\zeta(A,\alpha)$ en P. Como $\zeta(A,\alpha) \in \Gamma$, $B \in I$ y $\zeta(B,|BP|)$ es ortogonal a $\zeta(A,\alpha)$ se tiene que $\zeta(B,|BP|)$ es ortogonal a todas las circunferencias de Γ , por lo que $\zeta(B,|BP|) \in \Gamma^{\frac{1}{2}}$.

Caso 2: Γ es una familia de circunferencias tangentes.

Sea Q el punto donde se intersecan las circunferencias de Γ , I su eje radical y n la línea de los centros de las circunferencias en Γ

Trazamos $m_{P,Q}$ la mediatriz de P y Q. Sean $m_{P,Q} \cap I = \{B\}$ y $m_{P,Q} \cap n = \{A\}$

Observación

Si $m_{P,Q}\cap I$ no está en el plano, entonces $P\in n$ y si $m_{P,Q}\cap n$ no está en el plano, entonces $P\in I$

Si $P \in n$, entonces $\zeta(A, \alpha) \in \Gamma$ es tal que $A \in n$ y QA = AP, $\alpha = |PA|$, además, sabemos que $n \in \Gamma^{\perp}$ y además, n es ortogonal a $\zeta(A, \alpha)$ pues es paralela a la línea de los centros de Γ^{\perp} .

Y así, se cumple lo que buscamos.

Ahora, si $P \in I$, sabemos que $I \in \Gamma$ y la $\zeta(B, \beta)$ que buscamos ortogonal a esta es tal que $B \in I$, PB = BQ y $\beta = |PB|$ y es ortogonal pues es paralela a la línea de los centros de Γ .

Si no pasa ninguno de los dos casos anteriores, entonces, $m_{P,Q} \cap I = \{B\}$ y $m_{P,Q} \cap n = \{A\}$ están en el plano.

Así, trazamos $\zeta(A, \alpha)$, donde $\alpha = |AP|$ y $\zeta(B, \beta)$, donde $\beta = |BP|$ y por construcción $P \in \zeta(B, \beta) \cap \zeta(A, \alpha)$.

Además, $Q \in \zeta(B, \underline{\beta}) \cap \zeta(A, \alpha)$, puesto que $\{B, A\} \subset m_{P,Q}$, así $\zeta(A, \alpha) \in \Gamma$. Y \overline{BQ} es ortogonal a \overline{QA} pues $B \in I$ y $A \in n$, entonces $\zeta(B, \beta)$ es ortogonal a $\zeta(A, \alpha)$.

Por último, como $B \in I$ y $\zeta(B, \beta)$ es ortogonal a $\zeta(A, \alpha)$, entonces $\zeta(B, \beta) \in \Gamma^{\perp}$.

Caso 3: Γ es una familia de circunferencias que no se intersecan.

Notemos que si Γ es una familia de circunferencias que no se intersecan, entonces Γ^{\perp} es una familia de circunferencias que se intersecan en dos puntos, a saber los puntos límites de Γ .

Así, el caso 3 se resuelve de la misma manera que el caso 1.

Por lo tanto, para todo P punto en el plano, existe $\zeta(A,\alpha) \in \Gamma$ y $\zeta(B,\beta) \in \Gamma^{\perp}$ tal que $P \in \zeta(A,\alpha) \cap \zeta(B,\beta)$.

Proposición

3.- Sean $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ circunferencias con $A \neq B$ cuyo eje radical es la recta I. Demostrar que para cualquier $C \in I$ si m y n son rectas tales que $m \cap n = \{C\}$ y $m \cap \zeta(A,\alpha) = \{P,Q\}$ y $n \cap \zeta(B,\beta) = \{R,S\}$ entonces $\{P,Q,R,S\}$ es un conjunto concíclico de puntos.

Prueba: Como $C \in I$, entonces sabemos que

$$Pot_{\zeta(A,\alpha)}(C) = Pot_{\zeta(B,\beta)}(C)$$
, así $CP \cdot CQ = CR \cdot CS$.

Entonces, $\frac{CP}{CS} = \frac{CR}{CQ}$, además, $|\angle PCR| = |\angle QCS|$, pues $\{C, Q, P\} \subset m$ y $\{R, S, C\} \subset n$, así $\triangle CSQ \cong \triangle CPR$.

De lo anterior, $|\angle CQS| = |\angle CRP|$, entonces, $|\angle CRP| + |\angle PQS| = 2r$.

Por lo tanto, $\{P, Q, R, S\}$ es un conjunto concíclico de puntos.

Proposición

4.- Demostrar que si $\{A, B, C\}$ es un conjunto de puntos en posición general y $\{\alpha, \beta, \gamma\} \subseteq \mathbb{R}^+$ entonces existe una circunferencia ortogonal a $\zeta(A, \alpha)$, $\zeta(B, \beta)$ y $\zeta(C, \gamma)$ simultáneamente.

Sean $\zeta(A, \alpha)$, $\zeta(B, \beta)$ y $\zeta(C, \gamma)$.

Como $\{A,B,C\}$ es un conjunto de puntos en posición general, entonces sabemos que $\{\zeta(A,\alpha),\zeta(B,\beta)\}\subset \Gamma_1$, $\{\zeta(B,\beta),\zeta(C,\gamma)\}\subset \Gamma_2$ y $\{\zeta(A,\alpha),\zeta(C,\gamma)\}\subset \Gamma_3$, donde estas familias son diferentes a pares. Así sean I,m y n los ejes radicales de Γ_1,Γ_2 y Γ_3 respectivamente.

Sea $I \cap m = \{X\}$, entonces $Pot_{\zeta(A,\alpha)}(X) = Pot_{\zeta(B,\beta)}(X)$ y $Pot_{\zeta(B,\beta)}(X) = Pot_{\zeta(C,\gamma)}(X)$, entonces $Pot_{\zeta(A,\alpha)}(X) = Pot_{\zeta(C,\gamma)}(X)$ y así $X \in n$.

Ahora, tracemos t la tangente por X a $\zeta(C, \gamma)$ y sea $\{P\} = \zeta(C, \gamma) \cap t$.

Notemos que $\zeta(X,|XP|)$ es ortogonal a $\zeta(C,\gamma)$ por construcción y además, como $X \in m$, entonces también lo es a las circunferencias de Γ_2 , en particular a $\zeta(B,\beta)$.

Además, $\zeta(X, |XP|)$ es ortogonal a $\zeta(B, \beta)$ y además, como $X \in I$, entonces también lo es a las circunferencias de Γ_1 , en particular a $\zeta(A, \alpha)$.

Así, $\zeta(X, |XP|)$ cumple ser ortogonal a las tres circunferencias simultáneamente.

Proposición

5.- Sea Γ una familia de circunferencias coaxiales y $\zeta(A,\alpha) \notin \Gamma$. Demostrar que los ejes radicales de $\zeta(A,\alpha)$ y cada circunferencia de Γ son rectas concurrentes.

Prueba: Sean I el eje radical de Γ y $\zeta(D, \delta) \in \Gamma$. Como $\zeta(A, \alpha) \notin \Gamma$, entonces sea m el eje radical de $\zeta(D, \delta)y\zeta(A, \alpha)$. Sea $I \cap m = \{O\}$.

Como $O \in I$, entonces $Pot_{\zeta(D,\delta)}(O) = Pot_{\zeta(P,\rho)}(O)$, $\forall \zeta(P,\rho) \in \Gamma$. Además, como $O \in m$, entonces $Pot_{\zeta(D,\delta)}(O) = Pot_{\zeta(A,\alpha)}(O)$.

Así, $Pot_{\zeta(A,\alpha)}(O) = Pot_{\zeta(P,\rho)}(O)$, $\forall \zeta(P,\rho) \in \Gamma$. Por lo tanto, los ejes radicales de $\zeta(A,\alpha)$ y cada circunferencia de Γ inciden en O, es decir, son rectas concurrentes.