Section 6, p66 #9,11,17,19,23-25,27,35,37,50

In E	xercises 8 through 11, find the number of generators of a cyclic group having the given order
9.	8
	8 has prime factorization of 2^3 , so generators are $\{1, 3, 5, 7\}$.
11.	60
	60 has prime factorization of $2^2 \cdot 3 \cdot 5$, so generators are $\{1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59$
In E	xercises 17 through 21, find the number of elements in the indicated cyclic group.
17.	The cyclic subgroup of \mathbb{Z}_30 , generated by 25
	$\langle 25 \rangle = \{25, 20, 15, 10, 5, 0\}$
19.	The cyclic subgroup $\langle i \rangle$ of the group \mathbb{C}^* of nonzero complex numbers under multiplication
	$\{i, -1, -i, 1\}$
	xercises 22 through 24, find all the subgroups of the given group, and draw the subgroup diagram for ubgroups.
23.	\mathbb{Z}_{36}
	answer
24.	\mathbb{Z}_8
	answer
In E	xercises 25 through 29, find all the orders of the subgroups of the given group.
25.	\mathbb{Z}_6
	answer
27.	\mathbb{Z}_12
	answer
	xercises 33 through 37, either give an example of a group with the property described, or explain why cample exists.
35.	A cyclic group having only one generator
	answer

37.	A finite cyclic group having four generators	
	answer	
Theo	ory	
50.	Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the <i>unique</i> such element. Show that $ax = xa$ for all $x \in G$. Hint: Consider $(xax^{-1})^2$	
	answer	