Practical DS in NLP

Supervised Learning and Pattern Recognition

Big picture

- · Labeled data
- · Direct feedback
- · Predict outcome/future

- No labels
- No feedback
- · "Find hidden structure"

- Decision process
- · Reward system
- · Learn series of actions

Unsupervised Learning

Supervised Learning

Today's topic

SUPERVISED LEARNING

Super classical example: IRIS

WorkFlow

FEATURE ENGINEERING

"At the end of the day, some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used. If you have many independent features that each correlate well with the class, learning is easy. On the other hand, if the class is a very complex function of the features, you may not be able to learn it. Often, the raw data is not in a form that is amenable to learning, but you can construct features from it that are. This is typically where most of the effort in a machine learning project goes." Pedro Domingos

comment

share

more

downvote

Data2Vec

AUDIO

IMAGES

TEXT

0 0 0 0.2 0 0.7 0 0 0 ...

Audio Spectrogram

DENSE

Image pixels

DENSE

Word, context, or

document vectors

SPARSE

NLP

Understanding and Representing text and meaning

Structural/Hierarchical

Anh oi anh dang o dau vay, den day le em dang coi quan ne, anh den nho mua bao nha, o day toan bao cu ko ah, ma thoi anh khoi mua vi em vua mat kinh roi, anh den le di em chiu het noi roi, anh oi

gare (nhà ga) Hát câu i tờ đón Xuân về ...

What the British say	What the British mean	What others understand
I hear what you say	I disagree and do not want to discuss it further	He accepts my point of view
With the greatest respect	I think you are an idiot	He is listening to me
That's not bad	That's good	That's poor
That is a very brave proposal	You are insane	He thinks I have courage
Quite good	A bit disappointing	Quite good
I would suggest	Do it or be prepared to justify yourself	Think about the idea, but do what you like
Oh, incidentally/ by the way	The primary purpose of our discussion is	That is not very important
I was a bit disappointed that	I am annoyed that	It doesn't really matter
Very interesting	That is clearly nonsense	They are impressed
I'll bear it in mind	I've forgotten it already	They will probably do it
I'm sure it's my fault	It's your fault	Why do they think it was their fault?
You must come for dinner	It's not an invitation, I'm just being polite	I will get an invitation soon
I almost agree	I don't agree at all	He's not far from agreement
I only have a few minor comments	Please re-write completely	He has found a few typos
Could we consider some other options	I don't like your idea	They have not yet decided

What they say: Merry Christmas! What they mean: It's the middle of summer; let's

have a BBQ and drink outdoors.

Australian quy:)

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

Seeking Life's Bare (Genetic) Necessities

Haemophilas

genome 1703 gares

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive. Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's arganisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The

required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

* Genome Mapping and Sequencing, Cold Spring Harbor, New York,

May 8 to 12.

"are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of the side of the 800 marker. But coming up with a consensus answer may be more than just a proceed numbers some conticularly more and more genomes are considered, mapped and sequenced. "It may be a way of organization any newly sequenced genome," explains

Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland, Comparing an

Stripping down. Computer analysis yields an estimate of the minimum modern and ancient genomes.

SCIENCE • VOL. 272 • 24 MAY 1996

VSM

Vector Space Model

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

```
"You better call Kenny Loggins"

tokenizer

['you', 'better', 'call', 'kenny', 'loggins']

Sparse matrix encoding

aardvak better call you zyxst

[0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]
```

Word2Vec

Male-Female

Verb tense

Country-Capital

Categorical Variables

3	color	size	prize	class
0	green	М	10.1	class1
1	red	L	13.5	class2
2	blue	XL	15.3	class1
nominal			ordi	inal
green \rightarrow (1,0,0)	$M \rightarrow 1$			
red → (0,1,0)	L → 2			
blue \rightarrow (0,0,1)			XI →	3

3 3	class	color=blue	color=green	color=red	prize	size
0	0	0	1	0	10.1	1
1	1	0	0	1	13.5	2
2	0	1	0	0	15.3	3

Cross Validation

CV

Complete dataset Training dataset Test dataset

Feature Selection

PCA: component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

good projection: separates classes well

PCA

LDA

Learning Algos and hyperparameters tuning

Non-Parametric Classifiers: K-Nearest Neighbor

- Simple!
- Lazy learner
- Very susceptible to curse of dimensionality

Iris Example

Decision Tree

Entropy =
$$\sum_{i} -p_i \log_k p_i$$

e.g.,
$$2(-0.5 \log_2(0.5)) = 1$$

Information Gain = entropy(parent) - [avg entropy(children)]

"No Free Lunch" :(

D. H. Wolpert. The supervised learning no-free-lunch theorems. In Soft Computing and Industry, pages 25–42. Springer, 2002.

Our model is a simplification of reality

Simplification is based on assumptions (model bias)

Assumptions fail in certain situations

Roughly speaking:

"No one model works best for all possible situations."

Generalization Error and Overfitting

Evaluation metrics

predicted class

	Spam	Ham
Spam	True Positive (TP)	False Negative (FN)
Ham	False Positive (FP)	True Negative (TN)

predicted class

		Spam	Ham
Class	Spam	100	50
anıı	Ham	10	800

Error Metrics

$$Accuracy = \frac{TP + TN}{FP + FN + TP + TN}$$
$$= 1 - Error$$

False Positive Rate =
$$\frac{FP}{N}$$

True Positive Rate =
$$\frac{TP}{P}$$

$$Precision = \frac{TP}{TP + FP}$$

Part 2: Black art in ML

laampt@gmail.com

Ensemble: Voting

Ensemble: Stacking

Q&A

Sometimes the questions are complicated but the answers are simple. Dr. Seuss