

A-EMS TAGENTER

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

Date: 09-Apr-2021

(7-0)

TITLE

Calculation of the volumetric efficiency correction

OBJECT OF THE DOCUMENT

This document specifies the calculation of the cylinder fill-up efficiency depending on pressure, engine speed,VVT angle and VVL position.

BACKGROUND HISTORY

Revision	Delivery	Author	Nature of Modification	
7-0	MD13	f046779	<is130624>: AEMS / EAL computational problem during a smooth start HR12DDV <is130784>: AEMS / Wrong calculation of trapping efficiency</is130784></is130624>	
			<is130844>: AEMS / Insufficient air filling correction in altitude</is130844>	
6-0	MD12	p080490	<is129656>: AEMS / Estimated trapping efficiency impact on exhaust richness setpoint</is129656>	
5-0	MD11	p097653	<cr010224>: [IS][AEMS Step2]Issue correction for AE MD11 modules <cr009896>: [AEMS Step2][LPG][Archi]Legacy Mi- gration pour MD11 <is128079>: AEMS / Wrong air filling model correction with atmospheric pressure and deltaP_GPF</is128079></cr009896></cr010224>	
4-0	MD10	a002701	<cr009236>: [AEMS Step1.9][Gasoline]Update of Engine model improvement (part2)</cr009236>	
3-0	MD09	p095922	<cr009534>: [IS][A-EMS]Issue correction for AE MD09 modules <is124783>: AEMS /Wrong constant (Nxx_atm_hpa) used for atmospheric pressure (kpa) related calculation <is124785>: AEMS /Wrong IGR mass caculation of air filling model</is124785></is124783></cr009534>	
2-0	MD08	a002701	<cr006368>: [A-ems step2][EFE]Engine model in provement <cr006372>: VVT drift learning usage</cr006372></cr006368>	
1-0	MD07.02	p095922	CR006362>: [A-ems step2][SUPAS]Intake manifold & boost pressure setpoint <cr008239>: Engine filling & Air flow sensor manage ment <is122176>: AEMS / [MDL] Underflow occurs for the Output variable Vxx_fill_efv_fuel_rat_raw_20ms</is122176></cr008239>	
0-0	MD06.02	p092015	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration</cr007978></pre>	
Rev 35.0	LM55_01	Vuong-son LUONG	CR007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI04672: [WAMA]: Needed dictionary update for LM55)	
Rev 34.0	LM52_01	Rodolphe BOU TAYEH	<cr007978>: [AEMS Step1.9][Gasoline]GE-R mi gration (DMFI04008 [LPG]New labels for a specific LPG tuning - Torque management)</cr007978>	
Rev 33.0	LM50_01	Bada NDOYE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI03942: [MXAM]: MXAM rules update for LM50)</cr007978>	
CONFIDENT	IAL ©	1	RENAULT NISSAN Property	

$\mathsf{DEA}\text{-}\mathsf{MW}$ / UMx

(7-0) Date: 09-Apr-2021 $a_ASXX_MWIN_FLW_filupxxxxg_A$

Delivery: MD13

			<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (DMFI03944 [Tool]Models conversion into slx format for LM50)</cr007978></pre>
Rev 32.0	LM49	Sarah TALEB	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI03797 [FLEX]Fill-up correction during transient conditions in Flex Fuel applications)</cr007978>
Rev 31.0	LM47_01	R.IRAQI	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI03552 [MXAM]: MXAM rules update for LM47) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI03553: [WAMA]: Needed dictionary update for LM47)</cr007978></cr007978>
Rev 30.0	LM42_01	Hugo DAMANCE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI02878 [MXAM]: MXAM rules update for LM42)</cr007978>
Rev 29.0	LM41_01	Antoine NAIIM HABIB	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMET27009 K3: [SPEC]Wrong use of Interp library with shared axis in IN_ASI_IAF_2) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI02746: [Floating]Actual integer data typing to reach one click auto-coding) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMET29395 K4: [SPEC]Evolution of range for coherency in a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></cr007978></cr007978>
Rev 28.0	AEG_39_01	Cheng-Qiang HE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISSUP21633 K3: Issue in model La table Ct-p_fill_efy_cor_dyn_amp_rat ne doit pas avoir d'axes partages) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI02368: [Floating]Modification of specification to comply with floating autocoding LM39)</cr007978></cr007978>
Rev 27.0	AEG_34_01	YOBOUE Konan	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (IS19506 (K2): Ctb_mat2 is not anymore ref- erenced by InAsilat)</cr007978></pre>
Rev 26.0	LM_XX	KIEFFER Steve	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (ISMAP18189 : Altitude correction for fill-up model)</cr007978></pre>
Rev 25.0	LM_XX	KIEFFER Steve	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISSUP K2 13588 : Breakpoints shall be given under referenced section in MID) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMAP K3 15074 : Range correction of cm-p_n_map_fill_efv_ofs_alco)</cr007978></cr007978>
Rev 24.0	LM_XX	THOUVENEL Nicolas	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (ISMET13261 : Modification for dynamic fill-up efficiency computation)</cr007978></pre>
Rev 23.0	LM_XX	THOUVENEL Nicolas	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMAP 11648 : Dynamic Over fill-up) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMET 12293 : Taking into account of injected fuel flow drift function as Tcarb over F4Rt87x) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMET 12394 : Dictionary to be modified for dissociating variables Vxx_fill_efy_cor_dyn_amp_raw & mp; Vxx_fill_efy_cor_dyn_raw) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMAP 12637 : Basic tuning impossible with ASG_26 (implementation of cylinder deactivation)</cr007978></cr007978></cr007978></cr007978>

a_ASXX_MWIN_FLW_filupxxxxg_A (7-0)
Delivery: MD13 Date: 09-Apr-2021

			<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMET 12912 : Modification of logical naming for cartography of cylinder deactivation)</cr007978>
Rev 22.0	LM_XX	BANZET Sebastien	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI Amont 207 : Cylinder deactivation) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (DMFI 833 : [Flex/Gasoline]: Separated management for Flex & Step1.9][Gasoline]GE-R migration (ISMET 10136 : implementation of intermediate variables for fill-up efficiency calculation) <cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMET 10468 : Check revision of timer block)</cr007978></cr007978></cr007978>
Rev 21.0	LM_XX	THOUVENEL Nicolas	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMET 09504 : Fill-up and Trapping models correction with taking into account atmospheric pressure)</cr007978>
Rev 20.0	LM_XX	HEBERT	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE- R migration (ISMET05853: Modification of Vxx_vvt_fill_efv_cor_fac1 range and resol. Cor- rection of Cmp_vvt_fill_efv_cor_fac1 bounds) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 19.3	LM_XX	THOUVENEL	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Update to ISMET 05742) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 19.2	LM_XX	THOUVENEL	<pre><cr007978>: [AEMS Step1.9][Gaso- line]GE-R migration (Correction of resolution of Vxx_fill_efy_cor_dyn) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 19.1	LM_XX	THOUVENEL	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE- R migration (IS 04502 : "Missing documenta- tion in a_in_asi_iaf_filupxx_xxx_xx_g_a(19.0)") (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 19.0	LM_XX	THOUVENEL	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Implementation of volumet- ric correction for Dual VVT (intake, exhaust)) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 18.0	LM_XX	LENOIR	CR007978>: [AEMS Step1.9][Gasoline]GE-R migration (ISMAP_2163: Add New calibration Cmp_n_map_cor_dyn_amp, Ctp_fill_efy_cor_dyn_amp_rat, Ct-b_fill_efy_cor_dyn_amp, New Input Vxx_amp, Change resolution of Cmp_n_map_cor_dyn_th) (a_in_asi_iaf_filupxx_xxx_xx_g_a)
Rev 17.0	LM_XX	LENOIR	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (IS_MAP 420 : Add the "thermic" factor to correct the fill-up efficiency (figure 4) => New Inputs : Vsx_eng, Vxx_tco=> New internal variables :Vxx_fill_efy_cor_dyn, Vxx_fill_efy_cor_dyn_raw.=> New calibrations : Cmp_n_map_cor_dyn_th, Ct-b_n_fill_efy_cor_dyn, Ctb_tco2, Ctp_map_n_ftc, Cxx_fill_efy_cor_dyn_max, Cxx_fill_efy_cor_dyn_min, Nsx_eng_aut) (a_in_asi_iaf_filupxx_xxx_xx_xz_g_a)</cr007978></pre>

CONFIDENTIAL ©	2	RENAULT
CONFIDENTIAL	3	NISSAN Property

$\mathsf{DEA}\text{-}\mathsf{MW}$ / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A (7-0)
Delivery: MD13 Date: 09-Apr-2021

Rev 16.0	LM_XX	WALRAVE	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (reopening of ISMAP 32 : Resolutions of Cm- p_vvt_fill_efv_cor_fac1,</cr007978></pre>
Rev 15.0	LM_XX	WALRAVE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Alcool settings added offset of fill up efficiency coming form alcoxxx spec as well as specific temperature correction for alcool LPG removed new document model) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978>
Rev 14.0	LM_XX	WALRAVE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Bug correction on VVT parameter. Cm-p_vvt_fill_efv_cor_fac1 and fac2 have a new resolution and range. As well as Vxx_vvt_fill_efv_cor_fac1 and fac2. Bloc names changed to respect rules) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978>
Rev 13.0	LM_XX	ALLACH	<pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre>CR007978>: [AEMS Step1.9][Gaso- line]GE-R migration (Add Shared index Vxb_n in Cmp_vvt_fill_efv_cor_fac1 Cm- p_vvt_fill_efv_cor_fac2 Cmp_n_map_fill_efv Cm- p_n_map_fill_efv_lpg RSA_BKPT_2D block) (a_in_asi_iaf_filupxx_xxx_xx_g_a) </pre></pre></pre></pre>
Rev 12.0	LM_XX	WALRAVE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Engine speed IVLD removed. VVT IVLD removed. Slew rate is now before the deadzone on filtered fill-up efficiency. Comments corrected) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978>
Rev 11.0	LM_XX	WALRAVE	CR007978>: [AEMS Step1.9][Gasoline]GE-R migration (Update of the IVLD construction. Added init values. Removed replacement values for inputs Document model modified) (a in_asi_iaf_filupxx_xxx_xx_g_a)
Rev 10.0	LM_XX	WALRAVE	CR007978>: [AEMS Step1.9][Gasoline]GE-R migration (Modification for IS 109 : Library blocks are used instead in the filter block for the throttle command) (a_in_asi_iaf_filupxx_xxx_xx_g_a)
Rev 9.0	LM_XX	WALRAVE	<pre><cr007978>: [AEMS Step1.9][Gaso- line]GE-R migration (strategy for ON/OFF VVT removed. Vbx_vvt_cart_ti removed) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 8.0	LM_XX	WALRAVE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Coherency done. vvt variables changed into standard types) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978>
Rev 7.0	LM_XX	WALRAVE	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (New output Vxx_eng_vol_fill_efy_fil created for throttle command. Deadzone filter + rate limiter) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 6.0	LM_XX	WALRAVE	
Rev 5.0	LM_XX	PORCHEROT	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (Comment and state changed for Vsx_n_vld) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>

CONFIDENTIAL	1	RENAULT
CONFIDENTIAL ©	4	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13 (7-0) Date: 09-Apr-2021

Rev 4.0	LM_XX	WALRAVE	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (Bloc "Validity_indicator" modified (two NOT added). Correction of Ctb_mat2 (input variable)) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 3.0	LM_XX	WALRAVE	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE-R mi- gration (Validity indicators added. Correction for RSI 63 : resolution of Cmp_vvt_fill_efv_cor_fac1 modified) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 2.1	LM_XX	ADMIN	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE- R migration (Ctb_prs (New max = 20000]), Vxx_in_vvtc_angl (New max = 96 [New unit = DegCrk), Vxx_map (New max = 20000])) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 2.0	LM_XX	WALRAVE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Dictionary update + cartography dimension changed) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978>
Rev 1.1	LM_XX	WALRAVE	<pre><cr007978>: [AEMS Step1.9][Gasoline]GE- R migration (Range & mp; resol corrected) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978></pre>
Rev 1.0	LM_XX	WALRAVE	<cr007978>: [AEMS Step1.9][Gasoline]GE-R migration (Fillup efficiency is now physical (ratio near 1).It includes the effect of temperature that was in a im_airxx_a5_a) (a_in_asi_iaf_filupxx_xxx_xx_g_a)</cr007978>

CONFIDENTIAL ©

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Contents

I	GENERAL INFORMATION	7
1	Specification information	7
2	SIGNALS 2.1 INPUT VARIABLES 2.2 OUTPUT VARIABLES 2.3 INTERNAL VARIABLES	13
3	PARAMETERS 3.1 CALIBRATIONS	
4	CONTROL FLOWS 4.1 INPUT TRIGGERS	37 37
II	FUNCTIONAL DEFINITION	38
5	STRUCTURE	38
6	ASXX_MWIN_FLW_FILUPXXXXG_10MS 6.1 A_PARABOLIC_MODEL 6.1.1 A1_ALTIMETRIC_CORRECTION 6.1.2 A2_DYNAMIC_FILL_EFV 6.1.2.1 A11_DYNAMIC_FILL_EFV_THERMAL_CORRECTION 6.1.2.1.1 A111_FILTER_CONSTANT 6.1.2.1.2 A112_THERMAL_AND_ATMOSPHERE_PRESSURE_CORRECTION 6.1.3 A3_FIL_EFV_CYLNDR_DEACTIVATE 6.1.4 A4_ADM_PARABOLIC_CORRECTION 6.1.5 A5_VLV_AIR_TEMP_CORRECTION 6.1.5 A5_VLV_AIR_TEMP_CORRECTION 6.2.1 B1_PUMPED_MASS_CACULATION 6.2.1 B1_PUMPED_MASS_CACULATION 6.2.1.1 B11_NORMALIZATION_FACTOR 6.2.1.2 B12_EXHAUST_PRESSURE_CORRECTION 6.2.1.2.1 B12_INTK_MFLD_PRS_DIFF 6.2.1.2.2 B122_EX_MFLD_PRS_DIFF 6.2.1.2.1 B13_IN_CYLINDER_IVC_MASS 6.2.1.4 B14_IN_CYLINDER_IVC_MASS 6.2.1.5 B15_IN_CYLINDER_OVERLAP_MASS 6.2.1.6 B16_THERMAL_CORECTION 6.2.2 B2_OPTIONAL_CYLINDER_FILLING_EFFICIENCY 6.2.3 B3_OPTIONAL_CYLINDER_TRAPPING_EFFICIENCY 6.2.3.1 B31_TRAPPING_AREA	40 40 41 42 42 43 45 46 50 50 52 53 53
	6.3 C_CONSOLIDATION	

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

(7-0) Date: 09-Apr-2021

Part I

GENERAL INFORMATION

1 Specification information

ASIL Level	QM
Property	R/N Alliance
Language	Simulink
Level of reuse	No reuse
Calibration ROM	249 bytes
NVM Variables	0 bytes
Variables RAM	229 bytes
Real-Time Context	Sched10ms

2 SIGNALS

2.1 INPUT VARIABLES

Name Alias		Description	- Description		
		Description			
DataType Dim		Min - Max	Units		
NVM Parameters		Init Value	,		

Vxx_avg_eng_spd		-Average Engine Speed		
Vxx_avg_eng_spd			/Wording Engine Opecu	
single 1*1		[4	016384]	rpm
		·	double(single(0))	

Vxx_intk_mfld_prs		Manifold pres	-Manifold pressure value	
Vxx_intk_mfld_prs		Marillold pres		
single 1*1		[02000]		kPa
			double(single(101.3))	

Vxx_vvt_intk_angl		Actual Intake VTC angle (with	Actual Intake VTC angle (without learning)	
Vxx_vvt_intk_a	angl	, lotaal mano V i o aliigio (mai	out.our.m.g/	
single	1*1	[-720720]	degCrk	
		double(single(0))	·	

CONFIDENTIAL ©	7	RENAULT
CONFIDENTIAL	/	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

Vxx_tq_fuel_typ_rat		Ratio dedicated to the tor	Ratio dedicated to the torque management adjustment	
Vxx_tq_fuel_typ_rat		rtatio dedicated to the tor		
single	1*1	[01]	wu	
		double(single	e(0))	

Vxx_intk_vlv_temp		In	Intake valve temperature	
Vxx_intk_vlv_tem	р		take valve temperature	
single	1*1	[-5	50200]	degC
			double(single(2	(0))

Vxx_cyl_fill_efy_temp_cor_bifuel Vxx_cyl_fill_efy_temp_cor_bifuel		Table of correction of cy	Table of correction of cylinder fill-up efficiency with valve gaz temperature for bifuelol	
		ature for bifuelol		
single	1*1	[02]	wu	
		double(sin	gle(1))	

Vxx_cyl_fill_efy_bas_bifuel		corrective term	corrective term of fill up efficiency applied on gazoline settings	
Vxx_cyl_fill_efy_bas_bifuel		corrective term		
single	1*1	[02]	wu	
		do	ouble(single(0))	

Vxx_eng_cool_temp		Engine outlet coolant temp	Engine outlet coolant temperature	
Vxx_eng_cool	I_temp	Engine outlet coolant temp	Claudio	
single 1*1		[-50200]	degC	
	·	double(single	(0))	

Vnx_eng_1st_sta_stt Vnx_eng_1st_sta_stt			Engine State (0: Engine stopped, 1: Engine starting, 2: Engine run-	
		ning, 3: Engine wait)		
uint8	1*1	Nnx_eng_stop_stt Nnx_eng_sta_stt Nnx_eng_run_stt Nnx_eng_wait_stt	wu	
		Nnx_eng_wait_stt		

CONFIDENTIAL	0	RENAULT
CONFIDENTIAL ©	ŏ	NISSAN Property

RENAULT NISSAN MITSUBISHI

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

(7-0) Date: 09-Apr-2021

wu

Vxx_atm_prs		Atmospheric	c pressure	
Vxx_atm_prs				
single	1*1	[40106.7]		kPa
SHUT_DOWN_MODE RESET_SAFE NOT_RESISTANT_TO SINGLE 101.3 [Not Applicable] YES [Not Applicable]			double(single(101.3))	
Vxx_cyl_fill_efy_vvt_ir Vxx_cyl_fill_efy_vvt_ir		——Fill-up efficie	ency correction for dual VV	T (intake, exhaust)
single	1*1	[-11]		wu
			double(single(0))	
Vbx_aj_accel_decl Vbx_aj_accel_decl		Vehicle acce	eleration flag (0:deceleratio	on, 1:acceleration)
boolean	1*1	[01]		bool
			0	
	cor_accel_t_cst_bifuel	Thermal tim		I-up efficiency during vehicle
single	1*1	[0655.35]		s
			double(single(0))	
Vxx_cyl_fill_efy_dyn_c		— Map of theri	mic efficiency for power est	imate for bifuel

Vxx_cyl_fill_efy_dyn_cor_atm_prs_bifuel Vxx_cyl_fill_efy_dyn_cor_atm_prs_bifuel		Map of thermic efficien	Map of thermic efficiency for power estimate, for a low atmospheric		
		pressure for bifuel			
single	1*1	[02]	wu		
		double(sir	ngle(0))		
CONFIDENTIA	AL &	0	RENAULT		

double(single(0))

CONFIDENTIAL ®	0	RENAULT
CONFIDENTIAL ©	9	NISSAN Property

[0..2]

1*1

single

Α

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

Vxx_cyl_fill_efy_dyn_l_fill_fac_bifuel		Corrective factor f	Corrective factor for low fill-up efficiency for bifuel	
Vxx_cyl_fill_efy_dyn_l_fill_fac_bifuel		Corrective ractor r	or low iiii up ciliolorioy for blider	
single	1*1	[02]	wu	
		doub	le(single(0))	

Vxx_cyl_fill_efy_dyn_cor_cool_temp_bifuel		hifuel Engin	-bifuel Engine coolant temperature correction	
Vxx_cyl_fill_efy_dyn_cor_cool_temp_bifuel		blider Erigili		
single 1*1		[01]		wu
			double(single(0))	

Vxx_cyl_fill_efy_dyn_cor_decl_t_cst_bifuel Vxx_cyl_fill_efy_dyn_cor_decl_t_cst_bifuel			Thermal time constant for dynamic fill-up efficiency during vehicle	
		deceleration for bifuel		
single	1*1	[0655.35]	s	
	·	double(single(0))		

Vxx_cyl_fill_efy_vvt_intk_cor_fac_1_bifuel Vxx_cyl_fill_efy_vvt_intk_cor_fac_1_bifuel			First coefficient of the parabolic correction of fill-up efficiency for con-	
		tinuous intake VVT for bifuel		
single	1*1	[-0.0390630.039063]	wu	
		double(single(0))	

		uel Secor	Second coefficient of the parabolic correction of fill-up efficiency for continuous intake VVT for bifuel	
single 1*1		[-0.03	90630.039063]	wu
			double(single(0))

Vxx_vvl_intk_I_lift_rat		VVL intake low lift ratio 2ms			
Vxx_vvl_intk_I_lift_rat					
single	1*1		[01]		wu
				double(single(0))	

Vxx_vvl_intk_l	l_lift_rat_sp	VVL intake low lift ratio	setnoint
Vxx_vvl_intk_l	l_lift_rat_sp	VVE make low increase	Sotponit
single	1*1	[01]	wu
		double(sin	gle(0))

Vxx_vvt_ex_angl_cls		-VVT exhaust closing angle		
Vxx_vvt_ex_angl_cls				
single	1*1		[-720720]	degCrk
			double(single(0))	

Vxx_vvt_intk_angl_cls_I_lift		intake valve closing angle in	intake valve closing angle in low lift	
Vxx_vvt_intk_angl_cls_l_lift		make valve desing angle ii	THOW INC	
single	1*1	[0720]	degCrk	
		double(single(0))	

Vxx_vvt_intk_angl_cls		VVT	VVT intake closing angle	
Vxx_vvt_intk_angl_cls				
single	1*1	[072	20]	degCrk
			double(single(0))	·

Vxx_vvt_ex_angl		Actual ExhaustVTC angle (v	- Actual ExhaustVTC angle (without learning)	
Vxx_vvt_ex_angl		retadi Exiladett i e diigie (t	Maroat loan ing)	
single	1*1	[-720720]	degCrk	
	·	double(single(0	0))	

Vxx_ex_mfld_	temp	Exhaust manifold temperature	
Vxx_ex_mfld_	_temp	Exhaust manifold temperature	
single	1*1	[-501050]	degC
		double(single(20))	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Vxx_pft_rel_diff_prs Vxx_pft_rel_diff_prs		Relative difference with regard	Relative difference with regard to the particulate filter pressure dif-		
		ference in vacuum			
single 1*1		[-10001000]	kPa		
		double(single(0))			

Vxx_ex_mfld_prs		Exhaust manifold pressure	Exhaust manifold pressure		
Vxx_ex_mfld_	prs	Extradst marmora pressure			
single 1*1		[02000]	kPa		
	·	double(single((101.3))		

Vxx_mdl_ref_ex_mfld_prs		Exhaust manifold reference	Exhaust manifold reference pressure in Steady State		
Vxx_mdl_ref_ex_mfld_prs		Exhaust manifold reference	- Exhaust manifold reference pressure in Steady State		
single	1*1	[02000]	kPa		
		double(single((101.3))		

Vxx_cyl_fill_mdl_pump_mass_bas_bifuel Vxx_cyl_fill_mdl_pump_mass_bas_bifuel			Basic Cylinder pumped mass estimated by optional air filling model		
		for bifuel	for bifuel		
single 1*1		[05000]	mg/str		
		double(single(1))			

Vxx_cyl_igr_mass_bifuel Vxx_cyl_igr_mass_bifuel		In-cylinder residual hurned	In-cylinder residual burned gas mass for bifuel		
		in-cylinder residual burned			
single 1*1		[05000]	mg/str		
	·	double(single	(0))		

			Basic In-cylinder gas mass during overlap of optional air filling model		
Vxx_cyl_fill_mdl_ovlp_mass_bifuel		without exhaust pressure corr	ection for bifuel		
single 1*1		[-50005000]	mg/str		
	·	double(single(0))			

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

(7-0) Date: 09-Apr-2021

2.2 OUTPUT VARIABLES

	I VARIABLES				
Name		Description			
Alias		—— Description			
DataType Dim		Min - Max	Units		
NVM Paramete	ers	Init Value			
Vxx_cyl_fill_efy	/	Cylinder fill up officiency			
Vxx_cyl_fill_efy	1	Cylinder fill-up efficiency			
single	1*1	[02]	wu		
		double(single(1))			
Vxx_cyl_fill_efy	/_fil	Cylinder fill-up efficiency (filtered for throttle command)		
Vxx_cyl_fill_efy	/_fil		,		
single	1*1	[02]	wu		
		double(single	e(1))		
Vxx_cyl_fill_efy	/_intk_mfld_prs_atm_prs_cor	Manifold pressure value c	orrected from atmospheric pressure		
Vxx_cyl_fill_efy_intk_mfld_prs_atm_prs_cor					
single	1*1	[02000]	kPa		
		double(single	e(101.3))		
			•		

			Cylinder fill-up efficiency taking into account the VVL intake low lift		
		ratio set	ratio setpoint effect		
single	1*1	[02]			wu
			double(single(1))	

			Cylinder fill-up efficiency (filtered for throttle command), taking into		
		acco	account the VVL intake low lift ratio setpoint		
single 1*1		[02	[02] wu		wu
			double(single(1))		

CONFIDENTIAL ©	12	RENAULT
CONFIDENTIAL	13	NISSAN Property

 $a_ASXX_MWIN_FLW_filupxxxxg_A$ Delivery: MD13

Vxx_cyl_igr_mass Vxx_cyl_igr_mass		In-cylinder residual hurned	In-cylinder residual burned gas mass		
		in-cylinder residual barried	gas mass		
single 1*1		[05000]	mg/str		
		double(single(0))		

Vxx_eng_vol_fill_efy		Cylinder fill-up efficie	- Cylinder fill-up efficiency		
Vxx_eng_vol_fill_efy		Gyillidel IIII-up ellicit	ency		
single 1*1		[02]	wu		
	·	double	(single(1))		

Vxx_eng_vol_fill_efy_fil		Cylinder fill-un effici	Cylinder fill-up efficiency (filtered for throttle command)	
Vxx_eng_vol_fill_efy_fil		Gymraer mi-up emer		
single	1*1	[02]	wu	
		double	(single(1))	

Vxx_cyl_fill_trap_efy_opt		Trapping efficiency of optinal air filling model			
Vxx_cyl_fill_trap_efy_opt		Trapping emolency of optimal all lilling model			
single	1*1		[02]		wu
				double(single(1))	

Vxx_cyl_fill_mdl_ex_mfld_prs_rat_cor			Corrected exhaust pressure ratio for EVC masse correction of cylin-	
		der filling model		
		[010]	wu	
		double(sir	ngle(1))	

Vxx_cyl_fill_mdl_intk_mfld_prs_diff_cor		Corrected differenfial intake	Corrected differential intake manifold pressure for overlap mass cac-	
Vxx_cyl_fill_mdl_intk_mfld_prs_diff_cor		ulation		
single 1*1		[-10001000]	kPa	
		double(single(0	0))	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

2.3 INTERNAL VARIABLES

Name Alias		Decembries	Description		
		Description			
DataType	Dim	Min - Max	Units		
NVM Parameter	rs .	Init Value	·		
Vbt_cyl_fill_trap	_area		at engine speed and VVT position could		
Vbt_cyl_fill_trap_area		leads to a scavenging area			
boolean	1*2	[01]	bool		
		[O 0 1	·		

		Cylinder fill-up efficiency				
Vxt_cyl_fill_ef	у					
single	1*2		[02]		wu	
				double(single([1 1]))	·	

Vxt_cyl_fill_efy_bas		Cylinder fill-up efficiency	Cylinder fill-up efficiency without temperature effect (raw calculation)	
Vxt_cyl_fill_efy_bas		Gymaer im-up emolericy		
single	1*2	[02]	wu	
		double(sing	le([1 1]))	

Vxt_cyl_fill_efy_cor_rat		Cylinder fill-up efficiency	Cylinder fill-up efficiency without temperature effect	
Vxt_cyl_fill_efy_cor_rat		Gyillider IIII-up ellicitory		
single	1*2	[02]	wu	
		double(sing	le([1 1]))	

Vxt_cyl_fill_efy_fil		Cylinder fill-up efficiency	Cylinder fill-up efficiency (filtered for throttle command)		
Vxt_cyl_fill_efy_fil		Symider im up emoienes	Gymnaci im-up emolericy (intered for unotile command)		
single	1*2	[02]	wu		
		double(sing	gle([1 1]))		

CONFIDENTIAL ©	15	RENAULT
CONFIDENTIAL ©	15	NISSAN Property

Α

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Vxt_cyl_fill_efy_opt		Cylinder fill-up efficiency calulated by optinal air filling model		air filling model	
Vxt_cyl_fill_efy_opt				an minig model	
single	1*2		[02]		wu
				double(single([1 1]))	

Vxt_cyl_fill_efy_para_mdl		Cylinder fill	-Cylinder fill-up efficiency calulated by parabolic model	
Vxt_cyl_fill_efy_para_mdl		- Oyiiildei iiii		
single	1*2	[02]		wu
			double(single([1 1]))	

Vxt_cyl_fill_e	fy_temp	Temporary result of the 2D	carto linked to the number of active cylin-	
Vxt_cyl_fill_efy_temp		ders	ders	
single	1*2	[02]	wu	
		double(single	e([0 0]))	

Vxt_cyl_fill_efy	y_vvt_intk_cor	Fill-up efficiency correction	on for continuous intake VVT
Vxt_cyl_fill_efy_vvt_intk_cor		i iii-up emolency correcte	THO COMMUNICATION OF THE PROPERTY OF THE PROPE
single	1*2	[-11]	wu
	·	double(singl	e([0 0]))

		First	First coefficient of the parabolic correction of fill-up efficiency for continuous intake VVT	
		tinuou		
single 1*2		[-0.03	90630.039063]	wu
			double(single([0 0])))

		Second coefficient of the parabolic	Second coefficient of the parabolic correction of fill-up efficiency for	
Vxt_cyl_fill_efy_vvt_intk_cor_fac_2		continuous intake VVT		
single 1*2		[-0.0390630.039063]	wu	
		double(single([0 0]))	·	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Vxt_cyl_fill_mdl_e	ex_vlv_cls_mass_bas_gas		mass at exhaust valve closing of optional air	
Vxt_cyl_fill_mdl_e	ex_vlv_cls_mass_bas_gas	filling model		
single	1*2	[05000]	mg/str	
			ngle([0 0]))	
			3 (L1)/	
Vxt_cyl_fill_mdl_e	ex_vlv_cls_mass_bas_nomi		mass at exhaust valve closing of optional air	
Vxt_cyl_fill_mdl_e	ex_vlv_cls_mass_bas_nomi	9		
single	1*2	[05000]	mg/str	
Vxt_cyl_fill_mdl_e	ex_vlv_cls_mass_gas		mass at exhaust valve closing of optional air	
Vxt_cyl_fill_mdl_e	ex_vlv_cls_mass_gas	filling model without ex	khaust pressure correction	
single	1*2	[05000]	mg/str	
-		double(si	ngle([0 0]))	
Vxt_cyl_fill_mdl_i 		Corrected differential i	ntake manifold pressure for overlap mass cac-	
single	1*2	[02000]	kPa	
.				
Vxt_cyl_fill_mdl_d	ovlp_mass		gas mass during overlap of optional air filling	
Vxt_cyl_fill_mdl_d	ovlp_mass	model		
single	1*2	[-50005000]	mg/str	
Vxt_cyl_fill_mdl_c	ovlp_mass_bas_gas	— Basic In-cylinder gas n	nass during overlap of optional air filling model	
Vxt_cyl_fill_mdl_d	ovlp_mass_bas_gas			
single	1*2	[-50005000]	mg/str	
	·	double(si	ngle([0 0]))	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Vxt_cyl_fill_mo	dl_ovlp_mass_bas_nomi		ass during overlap of optional air filling model	
Vxt_cyl_fill_mo	dl_ovlp_mass_bas_nomi	without exhaust pressure correction		
single	1*2	[-50005000]	mg/str	
		,		
Vxt_cyl_fill_mo	dl_ovlp_mass_gas		gas mass during overlap of optional air filling	
Vxt_cyl_fill_mo	dl_ovlp_mass_gas	model		
single	1*2	[-50005000]	mg/str	
	<u>'</u>	double(sin	gle([0 0]))	
Vxt_cyl_fill_mc	dl_pump_mass			
Vyt cyl fill mo	dl_pump_mass	Cylinder pumped mass	estimated by optional air filling model	
VXL_Cyl_IIII_IIIC				
single	1*2	[05000]	mg/str	
Vxt_cyl_fill_mo	dl_pump_mass_bas			
		Basic Cylinder pumped	mass estimated by optional air filling model	
Vxt_cyl_fill_mo	dl_pump_mass_bas			
single	1*2	[05000]	mg/str	
			·	
Vxt_cyl_fill_mo	dl_pump_mass_bas_gas			
		Basic Cylinder pumped	mass estimated by optional air filling model	
Vxt_cyl_fill_mo	dl_pump_mass_bas_gas			
single	1*2	[05000]	mg/str	
	1	double(sin		
Vxt cyl fill mo	d tot mass bas gas			
_ ,		Basic In-cylinder total g	as mass of optional air filling model	
Vxt_cyl_fill_mo	dl_tot_mass_bas_gas			
single	1*2	[05000]	mg/str	
double(single([0 0]))			gle([0 0]))	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Vxt_cyl_fill_mdl_trap_mass Vxt_cyl_fill_mdl_trap_mass		In-cylinder total trapped gas mass coming from intake valve of op-	
		tional air filling model	tional air filling model
single 1*2		[05000]	mg/str

Vxt_cyl_fill_trap_area		Trapping area coefficient	Tranning area coefficient	
Vxt_cyl_fill_trap_area		Trapping area coefficient		
single	1*2	[01]	wu	
	·	double(single	e([0 0]))	

Vxt_cyl_fill_trap_efy_opt		Trapping efficiency of optinal air filling model			
Vxt_cyl_fill_trap_efy_opt		Trapping emotericy of optimal all filling model			
single	1*2		[02]		wu
				double(single([1 1]))	

Vxt_cyl_fill_trap_efy_opt_raw			Trapping efficiency of optinal air filling model before consolidation	
Vxt_cyl_fill_trap_efy_opt_raw		with scavenging area		
single 1*2		[01]	wu	
		double(single([1 1]))	

Vxt_cyl_igr_mass Vxt_cyl_igr_mass		In-cylinder residual hurned da	In-cylinder residual burned gas mass	
		in-cylinder residual burned ga	3 111033	
single	1*2	[05000]	mg/str	
Sirigio	1 2	[[05000]	mg/su	

Vxt_cyl_igr_mass_gas		In-cylinder residual burned	In-cylinder residual burned gas mass		
Vxt_cyl_igr_mass_gas		in-cylinder residual barried	gas mass		
single	1*2	[05000]	mg/str		
		double(single([0 0]))		

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Vxt_vvt_intk_angl_cls_cor			Signal of corrected intake valve closing angle for interpolation of op-		
Vxt_vvt_intk_angl_cls_cor		tional air filling model			
single 1*2		[-60720]	[-60720] degCrk		

Vxx_cyl_fill_efy_dyn_cor		Thermic correction	Thermic correction on fill-up efficiency		
Vxx_cyl_fill_efy_dyn_cor		The mile correction	or ini-up emotericy		
single 1*1		[-11]	wu		
		doub	ple(single(0))		

Vxx_cyl_fill_efy_dyn_cor_accel_t_cst Vxx_cyl_fill_efy_dyn_cor_accel_t_cst		Thermal time constant for dyn	Thermal time constant for dynamic fill-up efficiency during accelera-		
		tion			
single 1*1		[0655.35]	s		
		double(single(0))			

Vxx_cyl_fill_efy_dyn_cor_atm_prs_fil		Filtered thermal co	Filtered thermal correction with atmospheric effet on fill-up efficiency	
Vxx_cyl_fill_efy_dyn_cor_atm_prs_fil				
single 1*1		[-11]	wu	
		doub	le(single(0))	

Vxx_cyl_fill_efy_dyn_cor_atm_prs_fil_para			Filter parameter for fill up efficiency correction		
Vxx_cyl_fill_efy_dyn_cor_atm_prs_fil_para			The parameter for mi up emolerley correction		·
single 1*1		[0	[01] wu		wu
			double(single(0))	

Vxx_cyl_fill_efy_dyn_cor_atm_prs_raw Vxx_cyl_fill_efy_dyn_cor_atm_prs_raw			Thermal correction with atmospheric effet on fill-up efficiency		
		Thermal consistent	ian daniespinone ener en im ap emeioney		
single 1*1		[-11]	wu		
	·	double(s	single(0))		

 $a_ASXX_MWIN_FLW_filupxxxxg_A$

Delivery: MD13

Vxx_cyl_fill_efy	y_dyn_cor_cool_temp	Engine coolant temperature	Engine coolant temperature correction with bifuel setting adjustment	
Vxx_cyl_fill_efy_dyn_cor_cool_temp				
single 1*1		[-11]	wu	
		double(single(0))	

Vxx_cyl_fill_efy_dyn_cor_decl_t_cst		Thermal time constant for dyn	Thermal time constant for dynamic fill-up efficiency during decelera-		
		tion			
		[0655.35]	s		
	·	double(single(0))			

Vxx_cyl_fill_efy_dyn_cor_l		Corrective factor for low fil	Corrective factor for low fill-up efficiency with bifuel settings adjust-		
		ment			
		[02]	wu		
		double(single	(0))		

Vxx_cyl_fill_efy_dyn_cor_raw		thermic correction on fill-	thermic correction on fill-up efficiency before coolant factor	
Vxx_cyl_fill_efy_dyn_cor_raw				
single 1*1		[-11]	wu	
		double(sing	gle(0))	

Vxx_cyl_fill_efy_dyn_cor_t_cst		Thermal time constant for dyr	Thermal time constant for dynamic fill-up efficiency	
Vxx_cyl_fill_efy_dyn_cor_t_cst			iamic im ap omoionoy	
single 1*1		[0655.35]	s	
	·	double(single(0))	

Vxx_cyl_fill_efy_temp_cor		Correction of cylinder fill-up efficiency with valve gaz temperature.		
Vxx_cyl_fill_efy_temp_cor		- Correction of Symiaer init-up emolericy with valve gaz temperature.		ive gaz temperature.
single	1*1	[02]		wu
			double(single(0))	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Vxx_cyl_fill_mdl_ex_mfld_prs_rat			Modulated exhaust pressure ratio for EVC masse correction of cylin-		
Vxx_cyl_fill_mdl_ex_mfld_prs_rat		der filling model	der filling model		
single	1*1	[010]	wu		

Vxx_cyl_fill_mdl_ex_mfld_prs_rat_bas Vxx_cyl_fill_mdl_ex_mfld_prs_rat_bas		· · · · · · · · · · · · · · · · · · ·	Basic exhaust pressure ratio for EVC masse correction of cylinder		
		filling model			
single 1*1		[010]	[010] wu		

Vxx_cyl_fill_mdl_intk_mfld_prs_cor Vxx_cyl_fill_mdl_intk_mfld_prs_cor single 1*1		Corrected intake manifold p	Corrected intake manifold pressure by exhaust pressure for overlap mass caculation		
		mass caculation			
		[02000]	kPa		

Vxx_cyl_fill_mdl_intk_mfld_prs_diff		Modulated differenfial intake mani	Modulated differenfial intake manifold pressure for overlap mass cac-		
Vxx_cyl_fill_mdl_intk_mfld_prs_diff		ulation	ulation		
single	1*1	[-10001000]	kPa		

Vxx_cyl_fill_m	dl_intk_mfld_prs_diff_bas		Basic differenfial intake manifold pressure for overlap mass cacula-		
Vxx_cyl_fill_mdl_intk_mfld_prs_diff_bas		tion			
single 1*1		[-10001000]	kPa		

Vxx_cyl_fill_mdl_mass_cor_fac		Normalization factor of	Normalization factor of optional air filling model mass caculation	
Vxx_cyl_fill_mdl_mass_cor_fac		Normalization laster of v		
single 1*1		[02]	wu	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

3 PARAMETERS

3.1 CALIBRATIONS

Name		De	-Description		
Alias					
DataType X Axis	aType Dim		in - Max	Units	
		·	Y Axis		
Value					

		Boolean to activate manifold air pressure correction as function of altitude		
0				

Cbx_cyl_fill_efy_opt_cho Cbx_cyl_fill_efy_opt_cho boolean		Roolean to activate onti	Boolean to activate optinal air filling model caculation		
		boolean to activate opti			
		[01]	bool		
0					

Cbx_cyl_fill_igr_opt_cho Cbx_cyl_fill_igr_opt_cho		Boolean to activate internal gas mass estimation of optional filling			
		model			
boolean 1*1		[01]	bool		
0					

			Exhaust pressure correction choice on cylinder filling model: no correction (0), turbine model based exhaust pressure correction (1), atmospheric pressure and GPF loading based correction (2)		
uint8	uint8 1*1]	wu	
	·	·		·	
0					

CONFIDENTIAL	22	RENAULT
CONFIDENTIAL ©	23	NISSAN Property

single

1*9

65 70 75 80 85 90 95 100 105

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A

kPa

Delivery: MD13

(7-0) Date: 09-Apr-2021

Cnx_cyl_nr_		Number of cylinders configuration	management
uint8 1*1		Nnx_cyl_nr_3_conf Nnx_cyl_nr_4_conf Nnx_cyl_nr_6_conf Nnx_cyl_nr_8_conf	wu
4			
Cxb_cyl_fill_	_efy_dyn_cor_atm_prs_rat	Atmospheric pressure breakpoint	
Cxb_cyl_fill_efy_dyn_cor_atm_prs_rat		Authospheric pressure breakpoint	

Cxb_cyl_fill_efy_dyn_cor_eng_spd Cxb_cyl_fill_efy_dyn_cor_eng_spd		Engine speed breakpoints fo	Engine speed breakpoints for first order filter time constant compu-	
		tation		
single	1*10	[016384]	rpm	
1000 1500 2	000 2500 3000 3500 4000	4500 5000 6000		

[40..106.7]

Cxb_cyl_fill_	efy_dyn_cor_intk_mfld_p		Pressure breakpoints for first order filter time constant computation	
Cxb_cyl_fill_efy_dyn_cor_intk_mfld_prs		·	- Pressure breakpoints for first order filter time constant computation	
single	1*6	[02000]	kPa	
10 30 50 80	100 200			

Cxb_cyl_fill_eng_spd Cxb_cyl_fill_eng_spd		16 programmable engine	-16 programmable engine speed breakpoints map	
		To programmable origina		
single	1*16	[016384]	[016384] rpm	
600 750 850	1000 1250 1500 1750 20	00 2500 3000 3500 4000 4500 5000 5	5500 6000	

a_ASXX_MWIN_FLW_filupxxxxg_A

Delivery: MD13

Cxb_cyl_fill_intk_mfld_prs Cxb_cyl_fill_intk_mfld_prs		16 programmable pressure	-16 programmable pressure breakpoints table	
		To programmable pressure		
single	1*16	[02000]	kPa	
12 24 36 48 (66 84 102 120 138 156 18	0 204 228 252 276 300		

Cxb_cyl_fill_mdl_ex_mfld_prs_rat_bas Cxb_cyl_fill_mdl_ex_mfld_prs_rat_bas			Breakpoint of basic exhaust pressure ratio modulation table			
		•				
single 1*16		[010]	wu			
0 0.33 0.67	0 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3 3.33 3.67 4 4.33 4.67 5					

Cxb_cyl_fill_r	mdl_ex_vlv_cls_angl_cyl_v	Breakpoint (exhaust vvt po	Breakpoint (exhaust vvt position) of cylinder volume map at exhaust	
Cxb_cyl_fill_mdl_ex_vlv_cls_angl_cyl_vol		valve closing of optional cy	valve closing of optional cylinder filling model	
single	1*16	[-720720]	degCrk	
340 346.6667 433.3333 440		373.3333 380 386.6667 393.3333 400 4	06.6667 413.3333 420 426.6667	

Cxb_cyl_fill_mdl_intk_mfld_prs_diff_bas		Breakpoint of basic differential intake manifold pressure modulation		
		table	table	
single	1*16	[-10	001000]	kPa
·		•		
-100 -86.67 -73.33 -60 -46.67 -33.33 -20 -6.67 6.67 20 33.33 46.67 60 73.33 86.67 100				

		Breakpoint (intake vvt position) of cylinder volume map at intake valve closing of optional cylinder filling model	
460 466.6667 473.5 553.3333 560	3333 480 486.6667 493.3333 50	0 506.6667 513.3333 520 526.6667 533.3333	540 546.6667

0 10 20 30 40 50 60 61

single

Cxb_cyl_fill_mdl_vvt_ex_angl_ovlp_fac

Cxb_cyl_fill_mdl_vvt_ex_angl_ovlp_fac

1*8

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A

Delivery: MD13

		skpoint x (intake vvt position g model) of overlap factor map of optional air
[-720720] degCrk			

Cxb_cyl_fill_mdl_vvt_intk_angl_ovlp_fac Cxb_cyl_fill_mdl_vvt_intk_angl_ovlp_fac single 1*8		Breakpoint y (exhaust vvt pos	Breakpoint y (exhaust vvt position) of overlap factor map of optional		
		air filling model	air filling model		
		[-720720]	degCrk		
0 10 20 30 4	10 50 60 61				

Cxb_cyl_fill_trap_area_vvt_ex Cxb_cyl_fill_trap_area_vvt_ex		Exhaust VVT breakpoints	Exhaust VVT breakpoints which enables to define the scavenging	
		area		
single 1*8		[-720720]	degCrk	
0 10 20 30 4	0 50 60 61			

Cxb_cyl_fill_trap_area_vvt_intk Cxb_cyl_fill_trap_area_vvt_intk		Intal	Intake VVT breakpoints which enables to define the scavenging area		
		IIItar			
single	1*8	[-72	[-720720] degCrk		
0 10 20 30 40 5	60 60 61				

Cxb_eng_cool_temp_2 Cxb_eng_cool_temp_2		Eng	Engine coolant temperature breakpoints		
single	1*9	[-50.	[-50200] degC		
-40 -20 -10 0 10 20 40 80 110					
-40 -20 - 10 0 10 20 40 80 110					

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A

Cxb_intk_mfld_temp_2 Cxb_intk_mfld_temp_2		table of 0 programable bro	table of 9 programable breakpoints of intake manifold temperature		
		table of 9 programable bre			
single	1*9	[-50200]	degC		
-40 -20 0 20	40 50 60 80 120				

		Мар	Map based on engine speed and intake manifold pressure which		
		give	give;the basic filling efficiency		
single	16*16	[02	2]		wu
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

			Map based on engine speed and intake manifold pressure which		
		give	give;the basic filling efficiency in VVL low lift		
single	16*16	[02	2]	wu	
Cxb_cyl_fill_eng_spd		Cxb_cyl_fill_intk_mfld_prs			
16*16 matrix					

		The	Thermal time constant for dynamic fill-up efficiency during vehicle acceleration		
		acc			
single	10*6	[06	[0655.35]		s
Cxb_cyl_fill_efy_dyn_cor_eng_spd			Cxb_cyl_fill_efy_dyn_cor_intk_mfld_prs		
10*6 matrix					

		Мар	Map of thermic efficiency for power estimate, for a low atmospheric pressure			
		pres				
single	16*16	[02	2]		wu	
Cxb_cyl_fill_eng_spd		Cxb_cyl_fill_intk_mfld_prs				
16*16 matrix						

 $a_ASXX_MWIN_FLW_filupxxxxg_A$

(7-0)

Delivery: MD13

Cxm_cyl_fill_efy_dyn_cor_decl_t_cst Cxm_cyl_fill_efy_dyn_cor_decl_t_cst		The	Thermal time constant for dynamic fill-up efficiency during vehicle deceleration		
		dec			
single	10*6	[06	655.35]	S	
Cxb_cyl_fill_efy_dyn_cor_eng_spd		•	Cxb_cyl_fill_efy_dyn_cor_intk_mfld_prs		
10*6 matrix					

Cxm_cyl_fill_efy_dyn_cor_thrml Cxm_cyl_fill_efy_dyn_cor_thrml		Mar	Map of thermic efficiency for power estimate			
		IVIA				
single	16*16	[02	2]	wu		
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs			
16*16 matrix						

Cxm_cyl_fill_efy_dyn_l_fill_fac Cxm_cyl_fill_efy_dyn_l_fill_fac		Cor	Corrective factor for low fill-up efficiency			
		-001	Corrective factor for low fill-up efficiency			
single	16*16	[02	2]	wu		
Cxb_cyl_fill_eng_spd		Cxb_cyl_fill_intk_mfld_prs				
16*16 matrix						

			Correction of cylinder fill-up efficiency as function of valve gaz tem-		
		pera	perature and manifold pressure		
single	9*16	[02	2:]		wu
Cxb_intk_mfld_temp_2			Cxb_cyl_fill_intk_mfld_prs		
9*16 matrix					

		Мар	Map of first coefficient of the parabolic correction of fill-up efficiency		
		for o	for continuous intake VVT		
single	16*16	[-0.0	390630.039063]		wu
Cxb_cyl_fill_eng_spd		Cxb_cyl_fill_intk_mfld_prs			
16*16 matrix					

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A

		Maj	Map of first coefficient of the parabolic corrrection of fill-up efficiency for continuous in VVT with VVL in low lift		
		for			
single	16*16	[-0.	[-0.0390630.039063] wu		wu
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

Cxm_cyl_fill_efy_vvt_cor_fac_2 Cxm_cyl_fill_efy_vvt_cor_fac_2			Map of second coefficient of the parabolic corrrection of fill-up effi-			
		cier	ciency for continuous in VVt			
single	16*16	[-0.0	0390630.039063]		wu	
Cxb_cyl_fill_eng_spd		Cxb_cyl_fill_intk_mfld_prs				
16*16 matrix						

			Map of second coefficient of the parabolic corrrection of fill-up efficiency for continuous in VVT with VVL in low lift		
		cier			
single	16*16		0390630.039063]	wu	
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

Cxm_cyl_fill_mdl_cor_1 Cxm_cyl_fill_mdl_cor_1		Fire	First corrective map of optional cylinder filling model		
		ı iis			
single	16*16	[02	2]		wu
Cxb_cyl_fill_eng_spd		,	Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

Cxm_cyl_fill_mdl_cor_1_vvl_intk_l_lift Cxm_cyl_fill_mdl_cor_1_vvl_intk_l_lift		Firet	First corrective map of optional cylinder filling model with vvl low lift		
		T list	First corrective map of optional cylinder miling model with vvi low in		
single	16*16	[02	[02]		wu
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A

Cxm_cyl_fill_mdl_cor_2 Cxm_cyl_fill_mdl_cor_2		Second corrective man of ont	Second corrective map of optional cylinder filling model		
		Occord corrective map of opt			
single	16*16	[-1010]	wu		
Cxb_cyl_fill_eng_spd		Cxb_cyl_fill_intk_mfld_p	rs		
16*16 matrix					

Cxm_cyl_fill_mdl_cor_2_vvl_intk_l_lift Cxm_cyl_fill_mdl_cor_2_vvl_intk_l_lift		Sec	Second corrective map of optinal cylinder filling model with vvl low		
		lift			
single	16*16	[-10	10]		wu
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

Cxm_cyl_fill_mdl_cor_3 Cxm_cyl_fill_mdl_cor_3		Thir	Third corrective map of optional cylinder filling model		
		11111			
single	16*16	[-10	10]	wu	
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

Cxm_cyl_fill_mdl_cor_3_vvl_intk_l_lift Cxm_cyl_fill_mdl_cor_3_vvl_intk_l_lift		Thi	Third corrective map of optional cylinder filling model with vvl low lift		
		1111			
single	16*16	[-10	[-1010] wu		wu
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

		Valu	Value of exhaust pressure ratio correction table based on engine speed and intake manifold pressure			
		spe				
single	16*16	[0′	0]	wu		
Cxb_cyl_fill_eng_spd		Cxb_cyl_fill_intk_mfld_prs				
16*16 matrix						

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A (

Cxm_cyl_fill_mdl_intk_mfld_prs_diff_cor_fac Cxm_cyl_fill_mdl_intk_mfld_prs_diff_cor_fac		Value of correction talble of differential intake manifold pressure			
			based on engine speed and intake manifold pressure		
single	16*16	[010]		wu
Cxb_cyl_fill_eng_spd		<u> </u>	Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix			·		

Cxm_cyl_fill_mdl_vvt_intk_ex_angl_ovlp_fac Cxm_cyl_fill_mdl_vvt_intk_ex_angl_ovlp_fac			Overlap factor map of optional cylinder filling model			
single	8*8		010]		wu	
Cxb_cyl_fill_mdl_vvt_intk_angl_ovlp_fac		fac	Cxb_cyl_fill_mdl_vvt_ex_angl_ovlp_fac			
8*8 matrix						

Cxm_cyl_fill_mdl_v	vt_intk_ex_angl_ovlp_fac_vvl_in		_	model with yyl low lift
Cxm_cyl_fill_mdl_vvt_intk_ex_angl_ovlp_fac_vvl_in		Overlap factor map of optional cylinder filling model with vvl low lift tk_l_lift		
single	8*8	[-10	10]	wu
Cxb_cyl_fill_mdl_vvt_intk_angl_ovlp_fac		Cxb_cyl_fill_mdl_vvt_ex_angl_ovlp_fac		
8*8 matrix				

		Ma	Map based on engine speed and corrected intake manifold pressure which enables to define the scavenging area		
		whi			
single 16*16		[0	1]	wu	
Cxb_cyl_fill_eng_spd			Cxb_cyl_fill_intk_mfld_prs		
16*16 matrix					

		Мар	Map based on intake VVT and exhaust VVT which enables to define the scavenging area		
		the			
single 8*8 [0		1]	wu		
Cxb_cyl_fill_trap_area_vvt_intk			Cxb_cyl_fill_trap_area_vvt_ex		
8*8 matrix					

8*8 matrix

DEA-MW / UMx

 $a_ASXX_MWIN_FLW_filupxxxxg_A$

Delivery: MD13

		Ma the	Map based on intake VVT and exhaust VVT which enables to define the scavenging area in low lift		
			[01] wu		wu
Cxb_cyl_fill_trap_area_vvt_intk			Cxb_cyl_fill_trap_area_vvt_e	ex	

		Ratio	Ratio depending of the atmospheric pressure , for the interpolation of dynamic correction		
		of dy			
single 1*9		[01	1	wu	
Cxb_cyl_fill_efy_dyn_cor_atm_prs_rat		·			
1 1 1 0.8 0.6 0.4 0.2 0 0					

Cxp_cyl_fill_efy_dyn_cor_cool_temp		Engi	Engine coolant temperature correction		
Cxp_cyl_fill_efy_dyn_cor_cool_temp		Eligi			
single 1*9		[01]		wu
Cxb_eng_cool_temp_2		·			
11111111					

Cxp_cyl_fill_efy_dyn_off_dly Cxp_cyl_fill_efy_dyn_off_dly		libil	Inhibition time after start		
		Iririis			
single 1*9		[06]	55.35]	5	S
Cxb_eng_cool_temp_2					
00000000					

Cxp_cyl_fill_mdl_ex_mfld_prs_rat Cxp_cyl_fill_mdl_ex_mfld_prs_rat		Value of exhaust pressure ratio modulation table		
Cxb_cyl_fill_mdl_ex_mfld_prs_rat_bas				
0 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3 3.33 3.67 4 4.33 4.67 5				

 $a_ASXX_MWIN_FLW_filupxxxxg_A$

Delivery: MD13

		vol Cylinder volume map at e	Cylinder volume map at exhaust valve closing of optional cylinder filling model			
		vol filling model				
single	1*16	[00.004]	m^3			
Cxb_cyl_fill_r	ndl_ex_vlv_cls_angl_cyl_v	vol	·			
	.22e-05 4.35e-05 3.81e-05 3.63e-05 3.81e-05 4.35e-05 5.22e-05 6.42e-05 7.91e-05 9.67e-05 0.0001166 .0001382 0.0001612 0.0001852 0.0002096 0.000234					

Cxp_cyl_fill_mdl_intk_mfld_prs_diff Cxp_cyl_fill_mdl_intk_mfld_prs_diff		Valu	Value of differenfial intake manifold pressure modulation table		
		vaic			
single 1*16		[-10	001000]	kPa	
Cxb_cyl_fill_mdl_intk_mfld_prs_diff_bas		•			
100 -86.67 -73.33 -60 -46.67 -33.33 -20 -6.67 6.67 20 33.33 46.67 60 73.33 86.67 100					

			Intake valve closing angle corrective map of optional cylinder filling model		
		mod			
single 1*16		[-60.	.60]	deg	Crk
Cxb_cyl_fill_eng_spd		·		·	
0000000000	000000				

		Intake va	Intake valve closing angle corrective map of optional cylinder filling model with vvl low lift	
		model wi		
single	1*16	[-6060]		degCrk
Cxb_cyl_fill_en	g_spd			·
00000000	0000000	·		

		Cylinder volume map at intake valve closing of optional cylinder filling model	
Cxb_cyl_fill_mdl_intk_vlv_cls_angl_cyl_vol			
0.0003034 0.0003242 0.0003435 0.000361 0.0003768 0.0003908 0.0004028 0.000413 0.0004213 0.0004277 0.0004323 0.0004359 0.000435 0.0004323 0.0004277			

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Cxx_cyl_fill_efy_drv_max		Maximum slone for fill up eff	Maximum slope for fill up efficiency.	
Cxx_cyl_fill_efy_drv_max		iviaximum slope for hir up em		
single	1*1	[0.001525950]	wu	
20.0012				

Cxx_cyl_fill_efy_dyn_max		Maximum thormic correction	Maximum thermis correction on fill up officionay		
Cxx_cyl_fill_efy_dyn_max		iviaximum trieffilic correction	Maximum thermic correction on fill-up efficiency		
single	1*1	[-11]	wu		
0.5					

Cxx_cyl_fill_efy_dyn_min		Minimum thermic correct	Minimum thermic correction on fill up officioney		
Cxx_cyl_fill_	efy_dyn_min	William the mic correc	Minimum thermic correction on fill-up efficiency		
single 1*1		[-11]	wu		
-0.5					

Cxx_cyl_fill_efy_dz Cxx_cyl_fill_efy_dz		Fill up efficiency deadzone		
		In up eniciency deadzone		
single	1*1	[-1	1]	wu
0.45776				

Cxx_cyl_fill_efy_vvt_ofs Cxx_cyl_fill_efy_vvt_ofs		Offset angle for calculation	Offset angle for calculation of VVT fill-up efficiency relative correction		
		e need angle ter careananen			
single 1*1		[-360360]	DegCrk		
0					

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

Cxx_cyl_fill_trap_area_h_thd		High threshold to detect that so	High threshold to detect that scavenging could occur in this area	
Cxx_cyl_fill_trap_area_h_thd		riigh uneshold to detect that se		
single	1*1	[01]	wu	
0.2				

Cxx_cyl_fill_trap_area_l_thd Cxx_cyl_fill_trap_area_l_thd		Low	Low threshold to detect that scavenging could occur in this area		
		Low			
single	single 1*1]	wu	
		·			
0.1					

Cxx_cyl_fill_trap_efy_dz_l_thd Cxx_cyl_fill_trap_efy_dz_l_thd		Lover	Lower limit of trapping efficiency deadzone		
		Lowe			
single 1*1		[01]	wu	
0.95					

Cxx_cyl_fill_trap_efy_dz_neg_slop			Negative slop limit of trapping efficiency dead zone switchpe limit of		
		trap	trapping efficiency dead zone switch		
		[-10	00]	wu/s	
-0.5					

Cxx_cyl_fill_trap_efy_dz_pos_slop		Positive slope limit of tra	Positive slope limit of trapping efficiency dead zone switch		
Cxx_cyl_fill_	trap_efy_dz_pos_slop	. Solave slope limit of the	T ostave stope in the strapping emotoricy dead zerie switch		
single	1*1	[0100]	wu/s		
0.5					

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Cxx_cyl_vol Cxx_cyl_vol		Eng	Engine capacity displacement		
		Engine capacity displacement			
single 1*1		[00]	0.004]	m^3	
0.0016					

Cxx_min_cyl_fill_mdl_ex_mfld_prs_rat_cor		_	-Minimum value for alpha 3 correction factor		
Cxx_min_cyl_fill_mdl_ex_mfld_prs_rat_cor					
single	1*1	[01	0]	wu	
0					

3.2 CONSTANTS

Name		- Description		
Alias		Des	Chiption	
DataType	Dim	Valu	le	Units
X Axis			Y Axis	

Nnx_eng_rur	n_stt	F	ingine in running state		
Nnx_eng_rur	n_stt		ingine in railling state		
uint8	1*1	2		W	'u
	·	·			

Nxb_fil_para	3	Breakpoint used for filter parameter calculation
Nxb_fil_para	a	Breakpoint used for filter parameter calculation
single	1*9	0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 wu

Nxp_fil_para	1	Table constant used for filter parameter calculation
Nxp_fil_para	ı	Table Constant used for filter parameter calculation
single	1*9	1 0.8825 0.7788 0.68729 0.60653 0.53526 wu 0.47237 0.41686 0.36788
Nxb_fil_para	l	

CONFIDENTIAL ©	26	RENAULT
CONFIDENTIAL ©	36	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A

Delivery: MD13

(7-0) Date: 09-Apr-2021

Nxx_atm_kpa		-Multiplicative conversion from atm to kPa		
Nxx_atm_kpa				
single 1*1		101.	325	wu

Nxx_k_degc		-Additive conversion from degKel vin to degCelsius		
Nxx_k_degc				
single	1*1	273.	15	degC

Nxx_kilo_bas		Mul	Multiplicative conversion from kilo to basic unit (ex: km to m)		
Nxx_kilo_bas		iviui			Kill to III)
single 1*1		100	0	m	

Nxx_wht_pgc_j_kg		Massic perfect das con	Massic perfect gas constant (r in pV=mrT) in J/(kg*K)	
Nxx_wht_pgc_j_kg		Widosio periodi gas com		
single	1*1	287	J/(kg*K)	

4 CONTROL FLOWS

4.1 INPUT TRIGGERS

Name	
Comment	

Sched10ms_ASXX_MWIN_FLW_filupxxxxg	

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Part II

FUNCTIONAL DEFINITION

5 STRUCTURE

Figure 1: STRUCTURE

6 ASXX_MWIN_FLW_FILUPXXXXG_10MS

Depending on engine camshaft configuration, fill-up efficiency correction can be computed three ways. These configurations are the following ones:

- * continuous intake VVT.
- * no VVT.
- * alcohol fuel

In the first case, basic fill-up efficiency correction is calculated by an interpolation through a (manifold pressure, Engine speed) map. A parabola correction is then added to it.

In the second case fill-up efficiency correction is calculated by an interpolation through a (manifold pressure, Engine speed) map.

		DENALUT
CONFIDENTIAL ©	38	RENAULI
CONFIDENTIAL	30	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

(7-0) Date: 09-Apr-2021

For an alcohol running engine, a fill-up efficiency corrector is added to the standard gasoline fillup efficiency map.

Then, an air temperature correction is multiplicated to obtain the final fill-up efficiency
This temperature corrector is a proportion of the gasoline and the alcohol settings depending on alcohol proportion

If a major default is seen (NOK), fillup efficiency is replaced by 1.

Figure 2: ASXX_MWIN_FLW_FILUPXXXXG_10MS

6.1 A_PARABOLIC_MODEL

RENAULT NISSAN MITSUBISHI

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 3: A_PARABOLIC_MODEL

6.1.1 A1_ALTIMETRIC_CORRECTION

For needs of fill-up in altimetric cases, it is necessary to take into account atmospheric pressure and its impact over fill-up phenomenon. Indeed, for altimetric case with, for instance, atmospheric pressure around 800mbar, the exhaust pressure will be lower than for atmospheric pressure around 1000mbar. So it is necessary to take it into account for avoiding errors over fill-up efficiency model.

Figure 4: A1_ALTIMETRIC_CORRECTION

6.1.2 A2_DYNAMIC_FILL_EFV

This block computes Vxx fill efy cor dyn: Thermic correction on fill-up efficiency.

The correction models the variation of the engine fill up efficiency (depending on engine conditions (N, MAP) and of the spent time in full load) and Alcohol settings (adjusted with Vxx_tq_fuel_typ_rat: Ratio dedicated to the torque management adjustment).

CONFIDENTIAL ©	40	RENAULT
CONFIDENTIAL ©	40	NISSAN Property

Delivery: MD13

RENAULT NISSAN MITSUBISHI

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A (7-0)Date: 09-Apr-2021

The factor is then corrected depending on the water coolant temperature, and inhibited after start during a time depending on the water coolant temperature.

Figure 5: A2_DYNAMIC_FILL_EFV

6.1.2.1 A11_DYNAMIC_FILL_EFV_THERMAL_CORRECTION

Figure 6: A11_DYNAMIC_FILL_EFV_THERMAL_CORRECTION

CONFIDENTIAL ©	44	RENAULT
CONFIDENTIAL ©	41	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

(7-0) Date: 09-Apr-2021

6.1.2.1.1 A111_FILTER_CONSTANT

Figure 7: A111_FILTER_CONSTANT

6.1.2.1.2 A112_THERMAL_AND_ATMOSPHERE_PRESSURE_CORRECTION

Figure 8: A112_THERMAL_AND_ATMOSPHERE_PRESSURE_CORRECTION

6.1.3 A3_FIL_EFV_CYLNDR_DEACTIVATE

Cartography for all cylinders activated.

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 9: A3_FIL_EFV_CYLNDR_DEACTIVATE

6.1.4 A4_ADM_PARABOLIC_CORRECTION

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

The parabola correction is calculated as following:

$$Fill_up_eff_{corr} = b(P,N) \cdot \left(Camshaft_shift - Camshaft_offset\right)$$

$$-a(P,N) \cdot \left(Camshaft_shift - Camshaft_offset\right)^{2}$$

$$Fill_up_eff_{corr} = b(P,N) \cdot \left(Camshaft_shift - Camshaft_offset\right)$$

$$-a(P,N) \cdot \left(Camshaft_shift - Camshaft_offset\right)^{2}$$

where Camshaft_offset is chosen from two possibilities depending on tuning team choices from a compromise depending on volumetric efficiency computing accuracy versus tests complexity on tests bench:

- On one hand it corresponds to the value of Camshaft_shift for which map of basic correction
 (Cmp_n_map_fill_efy) is tuned. It is preferable to choose to tune this map on a quite central value of camshaft
 shift to minimise calculation error which depends to square difference between.camshaft shift and this position.
 The calibration which corresponds to this camshaft shift is Cxx_vvt_fill_efv_cam_ofs.
- On the other hand it correspond to the strategy giving nominal setpoints for intake VVT (see map of references positions from "VVT management" specification in sheet "a_cd_vvtxx_xx..")
 The reference volumetric efficiency map (Cmp_n_map_fill_efy) is tuned with VVT reference positions from nominal VVT position VVT in hot conditions (see map of references positions from "VVT management" specification in sheet "a_cd_vvtxx_xx..")

To disable this correction, Cmp_vvt_fill_efv_cor_fac1 and Cmp_vvt_fill_efv_cor_fac2 must be filling with zero.

RENAULT NISSAN MITSUBISHI

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 10: A4_ADM_PARABOLIC_CORRECTION

6.1.5 A5_VLV_AIR_TEMP_CORRECTION

Type your documentation here

Figure 11: A5_VLV_AIR_TEMP_CORRECTION

6.2 B_OPTIONAL_AIR_FILLING_ESTIMATION

CONFIDENTIAL ©	15	RENAULT
CONFIDENTIAL	45	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 12: B_OPTIONAL_AIR_FILLING_ESTIMATION

6.2.1 B1_PUMPED_MASS_CACULATION

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0)Date: 09-Apr-2021

Basic model

The optional cylinder filling model aiming at modeling the aspired mass from intake pipe m_{asp}^{INT} which is linked to m_{IVC} , the total mass inside the cylinder at IVC (intake valve closing) and m_{asp}^{EXH} the aspirated mass from exhaust, by applying the law of conservation of energy (assuming specific heats are the same for air and burned gas):

$$\begin{split} T_{IVC}*m_{IVC} &= T_{INT}*m_{asp}^{INT} + T_{EXH}*m_{asp}^{EXH} \\ m_{asp}^{INT} &= \frac{T_{IVC}}{T_{INT}}*m_{IVC} - \frac{T_{EXH}}{T_{INT}}*m_{asp}^{EXH} \end{split}$$

 m_{IVC} 's calculation relies on ideal gas law with $P_{IVC} = \alpha_1 P_{INT}$:

$$m_{IVC} = \alpha_1 * \frac{P_{INT} * V_{IVC}}{R * T_{IVC}}$$

 $m_{asp}^{\it EXH}$ is the then combined of two parts: the mass flows from intake to exhaust pipe (scavenging) or from exhaust to intake pipe (back-flow) and the mass trapped at EVC (exhaust valve closing):

$$m_{asp}^{\it EXH} = m_{\it ovlp} + m_{\it EVC}$$

 m_{ovlp} represents the mass flow rate across valves using the equations of Barré de Saint-Venant which can be characterized by $\alpha'_2 * \Psi(P_2, P_3, T_2, T_3)$.

$$m_{ovlp} = \alpha'_2 * \Psi(P_2, P_3, T_2, T_3) * \frac{OF}{Ne}$$

 m_{EVC} relies also on ideal gas law with $\dfrac{P_{EVC}}{T_{EVC}}=\dfrac{lpha r_3*P_{EXH}}{T_{EXH}}$: $m_{EVC}=lpha '_3*\dfrac{P_{EXH}*V_{EVC}}{R*T_{EXH}}$

$$m_{EVC} = \alpha'_3 * \frac{P_{EXH} * V_{EVC}}{R * T_{EXH}}$$

The m_{asp}^{EXH} then becomes:

$$m_{asp}^{EXH} = \alpha'_{2} * \Psi(P_{2}, P_{3}, T_{2}, T_{3}) * \frac{OF}{Ne} + \alpha'_{3} * \frac{P_{EXH} * V_{EVC}}{R * T_{EXH}}$$

 m_{asp}^{INT} can be deduced as :

$$\begin{split} m_{asp}^{\mathit{INT}} = & \;\; \alpha_1 * \frac{P_{\mathit{INT}} * V_{\mathit{IVC}}}{R * T_{\mathit{INT}}} - \left(m_{ovlp} + m_{\mathit{EVC}} \right) * \frac{T_{\mathit{EXH}}}{T_{\mathit{INT}}} \\ m_{asp}^{\mathit{INT}} = & \;\; m'_{\mathit{IVC}} - \left(m'_{ovlp} + m'_{\mathit{EVC}} \right) \end{split}$$

Where:

$$\begin{aligned} m'_{IVC} &= \alpha_1 * \frac{P_{INT} * V_{IVC}}{R * T_{INT}} \\ m'_{ovlp} &= m_{ovlp} * \frac{T_{EXH}}{T_{INT}} \\ m'_{EVC} &= m_{EVC} * \frac{T_{EXH}}{T_{INT}} \end{aligned}$$

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0)Date: 09-Apr-2021

The aspirated mass from intake m_{asp}^{INT} can be solved as:

$$m_{asp}^{INT} = \alpha_{1} * \frac{P_{INT} * V_{IVC}}{R * T_{INT}} - \alpha'_{2} * \Psi * \frac{OF}{Ne} * \frac{T_{EXH}}{T_{INT}} - \alpha'_{3} * \frac{P_{EXH} * V_{EVC}}{R * T_{INT}}$$

As we are not able to have reliable measurement or estimation of P_{EXH} , T_{EXH} , the two variables will be simplified and considered as part of calibration:

$$\alpha_2 = \alpha'_2 * \Psi * \frac{T_{EXH}}{T_{INT}}$$

$$\alpha_3 = \alpha'_3 * \frac{P_{EXH}}{R * T_{INT}}$$

Then the equation of aspirated mass from intake becomes:

$$m_{asp}^{INT} = m'_{ivc} - (m'_{ovlp} + m'_{evc})$$

$$m_{asp}^{INT} = \alpha_1(N_e, P_{col}) \frac{P_{INT}V_{IVC}(IVC - \delta_{ivc}(N_e))}{r \cdot T_{INT}} - \left[\alpha_2(N_e, P_{intk}) \cdot \frac{OF(VVT_i, VVT_e)}{N_e} + \alpha_3(N_e, P_{col}) \cdot V_{EVC}(EVC)\right]$$

Where: m_{asp}^{INT} . Vxt_cyl_fill_mdl_pump_mass

 m'_{IVC} : Vxt_cyl_fill_mdl_tot_mass_bas

 m'_{ovlp} : Vxt_cyl_fill_mdl_ovlp_mass_bas

 m'_{EVC} : Vxt_cyl_fill_mdl_ex_vlv_cls_mass_bas

Vxt_cyl_fill_mdl_tot_mass_bas: is calculated based on ideal gas equation and then characterized by a basic 2D map (Cxm_cyl_fill_mdl_cor_1/ Cxm_cyl_fill_mdl_cor_1_vvl_intk_l_lift), law of cylinder volume at IVC (Cxp_cyl_fill_mdl_intk_vlv_cls_angl_cyl_vol) and a supplementary correction of IVC function of engine speed (Cxp_cyl_fill_mdl_intk_vlv_cls_angl_cor/ Cxp_cyl_fill_mdl_intk_vlv_cls_angl_cor_vvl_intk_l_lift)

Vxt_cyl_fill_mdl_ovlp_mass_bas: is calculated by a basic 2D map (Cxm_cyl_fill_mdl_cor_2/ Cxm_cyl_fill_mdl_cor_2_vvl_intk_l_lift) and then an overlap factor map (Cxm_cyl_fill_mdl_vvt_intk_ex_angl_ovlp_fac/Cxm_cyl_fill_mdl_vvt_intk_ex_angl_ovlp_fac_vvl_intk_l_lift)

Vxt_cyl_fill_mdl_ex_vlv_cls_mass_bas: is calculated by a basic 2D map (Cxm_cyl_fill_mdl_cor_3/ Cxm_cyl_fill_mdl_cor_3_vvl_intk_l_lift) and the volume law at EVC (Cxp_cyl_fill_mdl_ex_vlv_cls_angl_cyl_vol)

Volumetric efficiency:

Finally, the aspired mass from intake pipe will be converted to filling efficiency with mean pressure and temperature at intake pipe (Vxt_cyl_fill_efy_opt).

$$\eta_{vol} = m_{asp}^{INT} / \left(\frac{P_{INT}V_{cyl}}{rT_{INT}}\right)$$

IGR mass:

In order to reconstruct m_{ovlp} (Vxt_cyl_fill_mdl_ovlp_mass) from m'_{ovlp} (Vxt_cyl_fill_mdl_ovlp_mass_bas)

CONFIDENTIAL ©	18	RENAULT
CONFIDENTIAL ©	40	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

and m_{EVC} (Vxt_cyl_fill_mdl_ex_vlv_cls_mass) from m'_{EVC} (Vxt_cyl_fill_mdl_ex_vlv_cls_mass_bas), a normalization factor (Vxx_cyl_fill_mdl_mass_cor_fac - ratio between intake temperature and exhaust temperature) should be used:

$$\begin{split} m_{ovlp} &= {m'}_{ovlp} * \frac{T_{\mathit{INT}}}{T_{\mathit{EXH}}} \\ m_{\mathit{EVC}} &= {m'}_{\mathit{EVC}} * \frac{T_{\mathit{INT}}}{T_{\mathit{EXH}}} \end{split}$$

And the aspirated mass from exhaust m_{asp}^{EXH} which can be also considered as internal burnt gas mass ($Vxt_cyl_igr_mass$) is calculated by:

$$m_{asp}^{\it EXH} = \, m_{\it ovlp} + m_{\it EVC}$$

		RENAULT
L CONFIDENTIAL ©	49	1 12 11 10 2 1
OOM IDENTIAL ®	10	NISSAN Property
		14100/1141 Topolty

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 13: B1_PUMPED_MASS_CACULATION

6.2.1.1 B11_NORMALIZATION_FACTOR

Figure 14: B11_NORMALIZATION_FACTOR

6.2.1.2 B12_EXHAUST_PRESSURE_CORRECTION

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

_filupxxxxg_A (7-0) Date: 09-Apr-2021

Exhaust pressure increase due to GPF loading and transient operations will lead to increased back-flow and residual gas concentration at EVC, and will have a significant impact on the aspirated mass from intake. As the three alpha tables are calibrated at nominal conditions (nominal exhaust pressure), to adresse the exhaust pressure correction, we are using the turbine model to generate a nominal exhaust pressure P_{EXH}^{nomi} (Vxx_mdl_ref_ex_mfld_prs) based on turbine control setpoints in addition to the exhaust pressure based on real conditions P_{EXH} (Vxx_ex_mfld_prs),. The relativeness between the two pressures enables the intergration of exhaust pressure correction on alpha tables based formulation.

• For the overlap mass part m'_{ovlp} , we take into account the increased backflow (or reduced scavenging) due to increased P_{EXH} (Vxx_ex_mfld_prs), compared to P_{EXH}^{nomt} (Vxx_mdl_ref_ex_mfld_prs), as an intake pressure drop in α_2 which is dictated as well by overlap:

$$lpha_2(N_e, P_{\mathit{INT}} + P_{\mathit{EXH}}^{\mathit{nomi}} - P_{\mathit{EXH}}) \, rac{OF(VVT_i, VVT_e)}{N_e}$$

• For the EVC mass part m'_{EVC} , higher P_{EXH} leads to larger residual concentration at EVC which is considered as proportional to exhaust pressure variation ratio:

$$lpha_3(N_e, P_{\mathit{INT}}) \cdot V_{\mathit{EVC}} \cdot rac{P_{\mathit{EXH}}}{P_{\mathit{EXH}}^{\mathit{nomi}}}$$

CONFIDENTIAL ©	51	RENAULT NISSAN Property
		NISSAN Property

RENAULT NISSAN MITSUBISHI

DEA-MW / UMx

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 15: B12_EXHAUST_PRESSURE_CORRECTION

6.2.1.2.1 B121_INTK_MFLD_PRS_DIFF

Figure 16: B121_INTK_MFLD_PRS_DIFF

CONFIDENTIAL ©	F2	RENAULT
	52	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0)Date: 09-Apr-2021

6.2.1.2.2 B122_EX_MFLD_PRS_COR_FAC

RENAULT NISSAN MITSUBISHI

Figure 17: B122_EX_MFLD_PRS_COR_FAC

6.2.1.3 B13_IN_CYLINDER_IVC_MASS

Figure 18: B13_IN_CYLINDER_IVC_MASS

6.2.1.4 B14_IN_CYLINDER_OVERLAP_MASS

CONFIDENTIAL	52	RENAULT
CONFIDENTIAL ©	53	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 19: B14_IN_CYLINDER_OVERLAP_MASS

6.2.1.5 B15_IN_CYLINDER_EVC_MASS

Figure 20: B15_IN_CYLINDER_EVC_MASS

6.2.1.6 B16_THERMAL_CORECTION

CONFIDENTIAL	E.A	RENAULT
CONFIDENTIAL ©	54	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

The two correction terms rely on the same principle as the legacy filling model, so the existing corrections $(Vxx_cyl_fill_efy_temp_cor \& Vxx_cyl_fill_efy_dyn_cor)$ will be reused to correct estimated aspirated mass $Vxt_cyl_fill_mdl_pump_mass_bas$

CONFIDENTIAL ©	55	RENAULT NISSAN Proporty
		NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 21: B16_THERMAL_CORECTION

6.2.2 B2_OPTIONAL_CYLINDER_FILLING_EFFICIENCY

Figure 22: B2_OPTIONAL_CYLINDER_FILLING_EFFICIENCY

6.2.3 B3_OPTIONAL_CYLINDER_TRAPPING_EFFICIENCY

CONFIDENTIAL ©	EG	RENAULT
CONFIDENTIAL	56	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

The trapping efficiency ($Vxt_cyl_fill_trap_efy_opt$) will be calculated as following:

$$\begin{split} m_{trap} = &\begin{cases} m_{asp} + m_{ovlp}, m_{ovlp} < 0 \\ m_{asp}, m_{ovlp} \geq 0 \end{cases} \\ \eta_{trap} = m_{trap}/m_{asp} \end{split}$$

In case of scavenging, mass during overlap will flow through from intake valve to exhaust valve, so aspirated mass from intake is not totally trapped in cylinder. Trapped mass (Vxt_cyl_fill_mdl_trap_mass) is calculated with aspirated mass form intake by removing mass during overlap. (Mass during overlap will be negative in the given model)

In case of back-flow, mass during overlap will flow from exhaust valve to intake valve, so aspirated mass from intake can be totally trapped in cylinder.

		RENAULT
CONFIDENTIAL ©	57	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CONFIDENTIAL	37	NISSAN Property

a_ASXX_MWIN_FLW_filupxxxxg_A
Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 23: B3_OPTIONAL_CYLINDER_TRAPPING_EFFICIENCY

6.2.3.1 B31_TRAPPING_AREA

Figure 24: B31_TRAPPING_AREA

6.3 C_CONSOLIDATION

a_ASXX_MWIN_FLW_filupxxxxg_A Delivery: MD13

(7-0) Date: 09-Apr-2021

Figure 25: C_CONSOLIDATION

6.3.1 C1_FILTER_FOR_THROTTLE_COMMAND

The engine fill up efficiency goes through a deadzone and also a rate limiter.

This is to avoid too much movement on the throttle command. (Noise on command or oscillations)

Figure 26: C1_FILTER_FOR_THROTTLE_COMMAND