

Improving aerosol representation in NU-WRF in support of the emerging GEO-LEO satellite observation of air quality

Zhining Tao^{1,2}, Huisheng Bian^{2,3}, Dongchul Kim^{2,3}, Carlos A. Cruz^{2,4}, and Mian Chin²

- 1. Morgan State University
- 2. Goddard Space Flight Center, NASA
- 3. University of Maryland Baltimore County
 - 4. Science System and Applications Inc.

Acknowledgement

NASA Modeling, Analysis, and Prediction (MAP)
 Program

NASA Interdisciplinary Research in Earth Science (IDS)
 Program

 NASA Center for Climate Simulation (NCCS) for computing supports

Background

- 1) The GEO-LEO space observing system provides new opportunities in measuring atmospheric composition at higher temporal resolution valuable to understanding of diurnal pollution evolution, dust/wildfire plume transport, pollution-weather interactions
- 2) Numerical models are indispensable for integration and analysis of collected data
- NASA model portfolio: GEOS-5, GISS Model E, and NASA Unified WRF (NU-WRF)

The emerging geostationary satellite constellation (GEMS, TEMPO, Sentinel-4) and complementary GEO and LEO satellites. Adapted from CEOS (2019) with modification. (Shaded areas are GEO-AQ viewing area.)

What separate NU-WRF from community WRF?

- a) Superset of community WRF
- b) Connect to GEOS-5/
 MERRA-2 & MINDS:
 IC/LBC and GOCART
 background
- c) GOCART, a bulk aerosol module, simple, effective, and computational efficiency
- d) GOCART lacks functionality of nitrate aerosol simulation

Update GOCART aerosols (consistent with the one in GEOS-5)

- Implement Secondary Organic Aerosol (SOA) parameterization
 - 1) AVOC (g) = 0.069 * A-EMISco
 - 2) BBVOC (g) = 0.013 * BB-EMISco
 - 3) AVOC/BBVOC + OH \longrightarrow SOA + other products

Hodzic & Jimenez, GMD, 2011

Kim et al., ACP, 2015

- Add nitrate
 - 1) solve for $SO_4/NO_3/NH_3/H_2O$ system based on equilibrium thermodynamics
 - 2) nitrate heterogeneous reaction

$$HNO_3 \frac{k}{dust/seasalt} NO_{3(an1\sim3)} + \text{other products}$$

Bian et al., ACP, 2017

- Aerosol removal processes

dry deposition, settling, wet deposition (large scale or microphysics wet scavenging, and convective or cumulus wet scavenging)

NU-WRF configuration

- Microphysics: Goddard 4-ice
- SW/LW: Goddard
- PBL scheme: MYJ
- Surface layer: Monin-Obukhov
- Land surface: Noah
- Urban canopy: Single-layer
- Chem/Aerosol: RADM2-GOCART
- Emissions:CEDS/GFEDv4s/MEGAN2
- Resolutions: 3/1 km with 40 vertical layers up to 10,000 HPa

AMS 103rd Annual Meeting, Denver, January 2023

Observations for model evaluation

(16-22 June 2013)

- Colored : AQS sites
- Δ: Meteorology sites
- ☆: AERONET sites
- : Major city

• • • • • • • •

AERONET – daily mean AOD at 500 nm

UH Coastal Center (-95.04°, 29.39°)

University of Houston (-95.34°, 29.72°)

Simulated multi-day average aerosol composition at each AQS site

AQS – weekly average 24-hr mean PM2.5 at surface

AQS – temporal evolution (averaged over all sites)

AQS – regression analysis (incl. all sites)

Take-home message

- In support of the emerging GEO-LEO satellite observations of atmospheric composition, NU-WRF's aerosol module has been improved to 1) parameterize SOA, and 2) account for nitrate
- Application of the modified NU-WRF to the Houston metropolitan areas demonstrates the good model skill in reproducing the observed meteorology and aerosol spatiotemporal distribution (PM2.5 and AOD)
- In the future, NU-WRF will be set up over North America (TEMPO) and East Asia (GEMS) to analyze satellite observations and better understand processes that control the spatiotemporal distribution of key atmospheric components
- Questions