2020 MCM/ICM Summary Sheet Team Control Number 2010638

C

Sales Strategy Recommendation Based on Commodity Data Mining

Summary

We conduct data analysis and information mining from the following four aspects: correlation between review, star rating and helpfulness rating, product brand rating, prediction of product's reputation and impact of star rating on reviews, so as to propose reliable sales strategies and suggestions for product improvement.

Firstly, after data pre-processing, We perform word segmentation and preliminary sentiment analysis on the text data through the NLTK tool, and quantify it as emotion score, ranging from [-1,1]. We adopt the methods of data visualization, descriptive statistics and correlation analysis, and further construct a multivariate Logistic regression model to analyze the relationship between helpfulness rating and review length, star rating and compound. The results show that helpfulness rating has an inverted "U-type" relationship with review length and a positive "U-type" relationship with star rating.

The next step, we conduct analysis based on the rating and evaluation model. The LDA analysis model is constructed to find the topic feature of each product, based on which we can propose suggestions for improvement of products. At the same time, we summarize five indexes that affect the product sales from the topic features, namely quality, price, appearance, service and size. Then a computer search algorithm based on the text similarity is used to calculate the index score of each review. In addition, we combine the score with the analytic hierarchy process to determine the weight of each index and build a weighted brand scoring system. Finally, we cluster all product brands through systematic clustering to select potential high-quality brands and recommend them to sunshine company.

Further, we calculate the comprehensive score of review and star rating, and take it as the product's reputation, which is conducive to forecast the future reputation of three products through time series analysis. And it depicts that the three products have seasonal characteristics and will probably maintain a stable seasonal cycle in the near future. However, the peak time of reputation comprehensive score of the three products is discrepant, and further analysis illustrates that the product sales figure is larger during the peak period of reputation score, according to which sunshine company can make a sales plan.

Finally, we analyze the relationship between star rating and review. Through the establishment of distributed lag model, it is found that customers' reviews in the current period will be affected by other customers' ratings and reviews. Meanwhile, we observe the time-varying synchrony between emotional score and star rating, which is clear that reviews containing positive words result in higher star ratings, while reviews containing negative words result in lower star ratings. In other words, there is a strong correlation between star ratings and specific quality descriptors.

Key words: correlation analysis, multinomial logistic regression, natural language processing, time series analysis

Team # 2010638 Page 1 of 20

Content

1.	INTRODUCTION	2
	1.1 Background	
2.	ASSUMPTIONS AND NOMENCLATURE	3
	2.1 Assumptions	
	2.2 Nomenclature	
3.	MODEL 1-ANALYSIS OF STAR RATING, HELPFULNESS RATING AND REVIEW	, 4
	3.1 Data Pre-processing	∠
	3.2 Word Segmentation and Sentiment Analysis	5
	3.3 Data Description and Visual Analysis	<i>6</i>
	3.4 Correlation Analysis	
	3.5 Multinomial Logistic Regression Model	
4.	MODEL 2-ESTABLISH A SCORING SYSTEM TO DETERMINE PRODUCT POSITION	ING9
	4.1 LDA Model	9
	4.2 Determine index score	11
	4.3 Analytic hierarchy process (AHP)	
	4.3.1 The introduction of analytic hierarchy process	
	4.3.2 AHP Consistency Test	
	4.3.3 Results of AHP	
	4.4System Clustering Analysis	
	4.4.2 Classification results	
5.		
Э.		
6.	MODEL 4-DISTRIBUTED LAG MODEL	17
	6.1 Distributed lag model	17
	6.2 Almon Method	18
	6.3 Correlation Analysis between Star Rating and Comments	18
7.	SENSITIVITY ANALYSIS	19
8.	MODEL ASSESSMENT	20
	8.1 Strengths	20
	8.2 Weaknesses	20
Rl	EFERENCE	20
LI	ETTER	1
A 1	PPFNNIX	1

Team # 2010638 Page 2 of 20

1. Introduction

1.1 Background

With the popularization and development of the Internet, online sales are gradually replacing offline sales and occupy a major position in the sales industry. The transformation of sales mode will also be a huge challenge for commodity companies. Analyzing and mining market information and consumer feedback has become the key of network marketing.

The online marketplace created by Amazon provides an opportunity for customers to evaluate their purchases. Customers can use quantities from 1 (low rating, low satisfaction) to 5 (high rating, high satisfaction) to express their satisfaction with the product. In addition, customers can submit their own reviews on the products to express their opinions. Other customers can use these reviews to gain an initial understanding of the product before purchasing it, and to distinguish between the reviews (called "helpfulness ratings") that are helpful or not. The data will be fed back to the company which can use the data to conduct in-depth analysis of the markets, determine the timing of their participation, and modify products based on customer suggestions.

1.2 Problems Restatement

Sunshine Company plans to launch and sell microwave ovens, hair dryers and baby pacifiers in the online marketplace. In order to understand these three commodity markets and develop sales strategies, it is necessary to analyze the customer feedback data. We will accomplish the following tasks according to the given data:

- (1) Develop sales strategy for sunshine company.
- (2) Identify potential important design features that would enhance product desirability.

In order to accomplish the above two tasks, our specific work is as follows:

- Analyze the relationship between star rating, helpful vote and review.
- Make in-depth analysis of reviews and ratings, and distinguish the advantages and disadvantages of products, so as to make suggestions for product improvement.
- Establish a product rating system based on the analysis of reviews and ratings, and select high-quality brand products to recommend to Sunshine Company for sales.
- Establish the reputation scoring system and predict the development trend of reputation.
- Analyze whether current reviews are influenced by prior star ratings and reviews.
- Analyze whether specific quality descriptors of text-based reviews strongly associated with rating levels.

Team # 2010638 Page 3 of 20

Figure 1: The Flow Chart in This Paper

2. Assumptions and Nomenclature

2.1 Assumptions

We make several assumptions in our model. Later we may relax some of these assumptions to optimize our model making it more applicable in the complex reality environment.

- All reviews are from customers and there is no automated review.
- There is no deliberate attempt to smear the product in customer rating and review.
- Unverified orders are not sold on Amazon. The sum of confirmed sales in the data set is total sales.
- The review of members certified by Amazon Vine has high credibility.

2.2 Nomenclature

Symbols	Definition
SS	Star ratings squared
count	The number of words in each review.
CS	The number of words squared
compound	Emotional score
H_{r}	The percentage of helpful votes in the total votes.
W_i	The weight of the i^{th} index
SQ	Total score of six indexes(quality, size, service, price, appearance, star ratings)
SR	Total score of product reputation

Team # 2010638 Page 4 of 20

3. Model 1-Analysis of Star rating, Helpfulness rating and Review

3.1 Data Pre-processing

Before data analysis, the availability of data must be guaranteed. No measures, regardless of its value, can provide accurate assessments if based on unreliable data. We first remove useless information including product title, marketplace and product category, on the basis of which we can carry out data pre-processing.

To ameliorate the condition of data set, there are four steps: data classification, data cleaning, information filtration, set-up of new attribute and data-measuring, as shown in the figure.

Figure 2: Data Pre-processing Flow Chart

- Step 1: Firstly, divide the data into numeric and textual types and process them separately.
- **Step 2**: In the stage of data cleaning, initially we check the missing value by using the "duplicated () method" in python, while no item with a missing value was found.
 - **Step 3**: Outlier processing is mainly used in the text data. Take the pacifier as an example, it includes the following contents:
 - Processing non-alphabetic text data. There are some non-alphabetic data like:
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 - Spelling correction. Generally, English text may contain spelling errors, so a spelling check is required. Based on "PyEnchant library" in python program, all the review texts are checked and corrected.
 - Lowercase: the computer will react differently to the two texts: "Five stars" and "five stars", whereas we expect them to be the same word when we count them. Therefore, we unify all text data to lowercase characters.

Step 4: After the above steps, our data set has become more acceptable, but when we look more closely at the review content, we find that a lot of the review content is irrelevant to the product and can be regarded as redundant information, such as:

Team # 2010638 Page 5 of 20

- "good cleaning cloths"
- "I bought hits basket to store magazines and newspapers. It looks very nice in our room"
- "I received this blanket as a gift from my mom and have never felt anything so soft."

Take the pacifier as an example, reviews that have nothing to do with the pacifier is needed to be weeded out. We identify the redundant information according to the text similarity, and the process is as follows:

The product review is regarded as a set of words, and the feature vector of the text is established by calculating the number of each word in the text. Afterwards, the cosine similarity between vectors is used to calculate the similarity between texts. If the average similarity between a review and others is less than the threshold value set by us, the review is removed.

Step 5:Set-up of new attribute. To better analyze the usefulness of reviews, we establish a new attribute named helpfulness rating (Hr), which is obtained by dividing "helpful votes" by "total votes"

3.2 Word Segmentation and Sentiment Analysis

Although the text data has been initially processed aforementioned, the information from reviews is s till needed to assess. However, the review data is unstructured and requires a different mechanism to ex tract the information. Emotion analysis or opinion mining is the process of computing to identify wh ether the author's attitude towards a text is positive, negative or neutral. For the review data, we con ducted a preliminary Sentiment analysis through data mining to determine and quantify the emotional inclination of each review, and further analysis will be discussed in the following questions. Based on this, NLTK (natural language toolkit), which is a leading platform that is able to work with human language data by python program, is used for sentiment analysis.

A basic sentiment analysis model is built in Python 3 using the NLTK library. The preprocessin g is operated by marking the text, normalizing the words, and removing the noise. Next, the NTLK emotional analyzer is used to build a model and associate the text with a specific emotion and quant ify it.

Figure 3: Implementation process

Team # 2010638 Page 6 of 20

3.3 Data Description and Visual Analysis

The table below describes the total, average and variance of the star rating of these three products. The average of the helpful votes and the number of the words in the review are also calculated. The figures below describe their distribution.

Descriptive	Total	Star rating	Star rating	Helpful votes	Count	Count
statistics	10141	average	variance	average	Count	average
Pacifier	18939	4.30456	1.19043	0.827182	4841870	256
Microwave oven	1615	3.44458	1.64524	5.62167	748130	463
Hair dryer	11470	4.11604	1.30033	2.17908	3268716	285

Table 1: Data Statistic

Figure 4: Box Figure

Figure 5: Stacked Barplot

Figure 6:Star Rating Distributon

The data is visualized to dig into the inherent rules, which is helpful for modeling.

The figures below describe the relationship between the helpfulness rating, and star ratings, review length and emotional score.

Figure 7:Heat Map of Correlation

Note: sr represents "star rating"; cp represents "compound"; ct represents "count"; hr represents "helpfulness rating"

The darker the color in the figure is, the greater the correlation between the two indicators will be. We can find that the emotional score and star ratings has a strong correlation in the three figures. The helpfulness rating and the review length has a light correlation.

Team # 2010638 Page 7 of 20

3.4 Correlation Analysis

We apply the methods of correlation analysis on the percentage of helpful votes (H_r), star ratings, the number of words in each review (count) and emotional score (compound)., which is measured by Pearson correlation coefficient is as follows:

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}}$$
(1)

 \underline{X}_i represents the star rating, review length, emotional score, etc. Y_i represents the helpfulness rating,. \overline{X} , \overline{Y} represents the average number of these indexes. The r is the correlation coefficient between H_r and star rating, count, compound, etc.

The results of the correlation analysis are

Correlation Correlation coefficient(Hair Correlation Index coefficient(Microwave coefficient(Pacifier) dryer) oven) -0.149** -0.138** -0.151** star rating -0.071** count 0.356** 0.332** -0.024** compound 0.057** -0.101**

Table 2: Correlation Coefficient

Note: ** means the result is significant at 0.01 level (two-side test)

From the table above we can see that, for the three data sets, there is a significant correlation between H_r and star rating, count and compound (all of which are significant in the two-tailed test), which is consistent with the results of visual analysis. More concretely, the star rating and emotional score of microwave oven, hair dryer and pacifier are negatively correlated with H_r . The counts of hair dryer and pacifier are positively correlated with H_r , while the counts of microwave oven are negatively correlated with H_r . Besides, there is a negative correlation between the compound of microwave oven, pacifier and H_r , while the correlation between the compound of hair dryer and H_r is positive.

3.5 Multinomial Logistic Regression Model

Multinomial logistic regression model is adopted to further analyze the impact of star rating, review length and emotional score on the helpfulness rating. In fact, the helpfulness rating is the cumulative result of each consumer's voting (yes or no). Therefore, the number of helpful votes is subject to binomial distribution, and logistic model is suitable for empirical analysis of such kind of data.

Multivariate logistic regression can determine the role and intensity of the explanatory variable X_n in predicting the probability of occurrence of strain Y. Suppose X is the response variable and P is the response probability of the model, and the corresponding regression model is as follows:

$$\ln(\frac{p_1}{1 - p_1}) = \alpha + \sum_{k=1}^{k} \beta_k x_{ki}$$
 (2)

 $p_1 = P(y_i = 1 | x_{1i}, x_{2i}, \dots, x_{ki})$ is the possibility that case i happens in case the values of $x_{1i}, x_{2i}, \dots, x_{ki}$ are given. Also p_1 is a binomial distribution parameter, which is the probability that a review receives a helpful vote. x_{ki} represents a series of independent variables. β is the corresponding estimation coefficient, and α is the intercept, which reflects the random effect at the product level.

Team # 2010638 Page 8 of 20

The probability of an event happening of an event is a non-linear function composed of the explanatory variable X_i . Here is the expression:

$$p = \frac{\exp(\alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}{1 + \exp(\alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}$$
(3)

On top of these 3 indexes, we introduce two additional variables: star rating square(SQ) and review length square(CS) in order to further explore the influence of star rating and review length on the helpfulness ratings of reviews.

Meanwhile, considering the impact of whether the customers are vine members and whether the purchase is verified on the authenticity and validity of reviews, we take these two indicators as independent variables.

Independent variables are divided into three levels, which represent the intuitive evaluation (star rating, star rating square) respectively, characteristics of review content (review length, review length square, emotional score), and *reviewers'* characteristics (vine, VP), to explore the various reasons that affect the helpfulness ratings in detail.

As for dependent variables, we divide them into four categories according to their numerical values, namely:

$$helpfulness\ ratings = \begin{cases} 1,0.75 < compound \le 1\\ 2,0.50 < compound \le 0.75\\ 3,0.25 < compound \le 0.50\\ 4,0 \le compound \le 0.25 \end{cases} \tag{4}$$

The independent variables are divided into blocks and do regression analysis respectively. The independent variables in models 1, 2 and 3 and the regression coefficients obtained by SPSS are summarized as Table. For reasons of space, the results of hair dryer and pacifier are included in the appendix.

	independent variables	Abbreviations	Model 1	Model 2	Model 3
Tutuitiva	star rating	star rating	0.213**	0.469**	0.423**
Intuitive evaluation	star rating square	SS	0.314**	0.207**	0.110**
	review length	count		-0.020**	-0.019**
Characteristics of review	review length square	CS		0.002**	0.002**
content	emotional score	compound		-0.146**	-0.160**
D	vine	vine			0.033**
Reviewers' characteristics	verified purchase	verified purchase			0.398**

Table 3: Index and regression coefficient

Note: *: p < 0.05; **: p < 0.01; +: p < 0.1; ns: not significant

It is clear from the above table, each variable passed the significance test. The regression coefficients of star ratings of microwave oven, hair dryer and pacifier are all positive, and the regression coefficients of star rating square terms are also positive. It indicates that there is a "U-type" relationship between star ratings and

Team # 2010638 Page 9 of 20

the helpfulness ratings of reviews, which is contrary to the research conclusions of Mudambi and Schuff [8]. Our analysis suggests that the reviewers who score higher or lower star ratings may be more willing to express a clear attitude towards the products, so as to provide more valuable reviews; while the reviewers who give intermediate star ratings may lack reference value due to their less distinctive attitude.

Based on model 1, review length, review length square and emotion score are added into the model. From the data in the table, it is clear that the regression coefficient of the review length term is negative, while one of the square term of the review length is positive, which indicates that the review length and helpfulness rating are of an inverted-U-type. According to our analysis, reviews that are too short are often limited in content and cannot provide sufficient useful information. However, overlong reviews may provide a lot of valuable information though, other customers may not be patient to spend time and energy reading them. Therefore, reviews with high helpfulness ratings should be of moderate length.

On the basis of model 2, in model 3 we introduce other reviewer-related features such as Vine and Verified Purchase. It can be seen that most customers are not vine members and many purchase are not verified in the sample data, thus it is difficult to analyze and draw valuable conclusions about these two indicators. In spite of this, they make the model more complete and more applicable.

4. Model 2-Establish a Scoring System to Determine Product

Positioning

According to the three data sets, each product has hundreds of different brands. If sunshine company hopes to enter the market of microwave oven, hair dryer and pacifier, it is of great significance to accurately grasp the market positioning of each brand. The market positioning of different brands is mainly determined by the star rating and review from customers. The processing of star rating is relatively simple, so we mainly process text of customers' reviews in detail.

4.1 LDA Model

Latent Dirichlet Allocation is a generative thematic model proposed by Blei et al [2] in 2003. It is also known as three-tier Bayesian probability model with three-tier structure of document (d), topic (z) and word (W), which can effectively model the text. Based on LDA topic model, we are able to mine the potential topics in the data set, and then analyze the main information of the data sets and related feature words.

Table 4:Symbol Explanation					
α , β	prior parameters of the Dirichlet function				
$ heta$, ϕ	the parameter of the topic's multiple distribution in the document.				

LDA model assumes that each review is randomly mixed by each subject according to a certain proportion. And the mixing proportion is subject to multiple distribution, which is recorded as follows:

Team # 2010638 Page 10 of 20

Each topic is made up of the words in the glossary in a certain proportion, and the proportion of the mixture is also subject to multiple distribution.

$$W \mid Z, \phi = Multionmial(\phi)$$
 (6)

Under the condition of review d_i , the probability of generating word w_i is expressed as:

$$P(w_j | d_j) = \sum_{i=1}^{K} P(w_i | z = s) \times P(z = s | d_j)$$
 (7)

 $P(w_i | z = s)$ is the probability that the word w_i belongs to the s^{th} topic. $P(z = s | d_i)$ the probability that the s^{th} topic is in the review.

After sentiment analysis based on LDA, the review text is gathered into three topics, as a result 10 most frequently used words and their corresponding probability are generated under each topic. Table 5 shows the potential topics in the positive evaluation text of microwave ovens, and the other one depicts the negative evaluation. Considering the limited space of the article, we put the results of hair dryer and pacifier in the appendix.

Theme	Theme 2	Theme 1	Theme 3	Theme 2	Theme 1
sma	product	product	well	good	great
nic	no	space	great	great	well
200	mico	1211 00	good	vv.011	1:1,0

Table 5:Microwave Oven Positive Topics

ce easy lıke price well good price good use use use nice product like no

small size like like Table 6:Microwave Oven Negative Topics

	Those difficionate oven regulite ropies								
Theme 3	Theme 2	Theme 1	Theme 3	Theme 2	Theme 1				
no	time	time	like	no	new				
old	service	more	new	use	use				
more	great	product	use	like	easy				
small	small	model	service	more	no				
well	good	service	time	new	like				

According to the extraction of three potential subject words for positive and negative evaluation, we can determine the customer's attitudes towards 5 aspects of microwave oven characteristics.

Figure 8:Index of Microwave Oven

Figure 9: Word Cloud

Team # 2010638 Page 11 of 20

These high-frequency words in reviews can also reflect the focus of customers when purchasing microwave ovens, that is the quality, price, size, service and appearance. These five indicators can reflect a product comprehensively. We conduct the same analysis on pacifiers and hair dryers, then it is found that these five indicators can also be taken as the criteria to consider whether they are worth purchasing.

Taking the quality, price, size, service, appearance and star rating as the evaluation indexes, we establish a scoring system to comprehensively evaluate these 3 product sold in the current market, so as to obtain the accurate market positioning of each brand of products, and then formulate a good sales strategy for sunshine company.

The steps of our brand scoring system are as below:

4.2 Determine index score

After implementing LDA algorithm, complex network is introduced to calculate the importance degree of each review. We use traversing search algorithm to implement the process, through which we can get weighted average score of each topic feature for all products. Here is the algorithm:

Team # 2010638 Page 12 of 20

4.3 Analytic hierarchy process (AHP)

4.3.1 The introduction of analytic hierarchy process

Analytic hierarchy process (AHP) can be used deeply analyze the essence, influencing factors and their internal relations of complex decision problems. It makes use of less quantitative information to make the thinking process of decision mathematical, so as to provide a simple method for complex decision problems. AHP can decompose the evaluation criteria into different hierarchical structures, and then calculate the weight of each factor by solving the eigenvectors of judgment matrix.

According to the LDA model, the indicators we extracted are quality, appearance, price, size and service satisfaction level. Now we construct the judgment matrix of the first-level evaluation index:

$$A = \begin{bmatrix} \frac{W_1}{W_1} & \frac{W_1}{W_2} & \frac{W_1}{W_3} & \frac{W_1}{W_4} & \frac{W_1}{W_5} & \frac{W_1}{W_6} \\ \frac{W_2}{W_1} & \frac{W_2}{W_2} & \frac{W_2}{W_3} & \frac{W_2}{W_4} & \frac{W_2}{W_5} & \frac{W_2}{W_6} \\ \frac{W_3}{W_1} & \frac{W_3}{W_2} & \frac{W_3}{W_3} & \frac{W_3}{W_4} & \frac{W_3}{W_5} & \frac{W_3}{W_6} \\ \frac{W_4}{W_1} & \frac{W_4}{W_2} & \frac{W_4}{W_3} & \frac{W_4}{W_4} & \frac{W_4}{W_5} & \frac{W_4}{W_6} \\ \frac{W_5}{W_1} & \frac{W_5}{W_2} & \frac{W_5}{W_3} & \frac{W_5}{W_4} & \frac{W_5}{W_5} & \frac{W_5}{W_6} \\ \frac{W_6}{W_1} & \frac{W_6}{W_2} & \frac{W_6}{W_3} & \frac{W_6}{W_4} & \frac{W_6}{W_5} & \frac{W_6}{W_7} \end{bmatrix}$$

$$(8)$$

Calculate the product of the elements:

$$M_i = \prod_{i=1}^n a_{ii} (i = 1, 2, 3, 4, 5, 6)$$
 (9)

Take the NTH root of M_i .

$$\overline{W_i} = \sqrt[n]{M_i} \tag{10}$$

Calculate the eigenvector:

$$W_{i} = \frac{\overline{W_{i}}}{\sum_{i=1}^{n} \overline{W_{j}}}$$
 (11)

Calculate the maximum eigenvalue:

$$\lambda_{\text{max}} = \frac{1}{n} \sum_{i=1}^{n} \frac{(AW)_i}{W_i} \tag{12}$$

Where $W = \begin{bmatrix} W_1 & W_2 & W_3 & W_4 & W_5 & W_6 \end{bmatrix}^T$

Team # 2010638 Page 13 of 20

4.3.2 AHP Consistency Test

After the judgment matrix is constructed, the relative weight of each element in two levels is calculated by the judgment matrix, and the consistency test is carried out. It is not allowed for the judgment to deviate too much from the consistency, so the consistency test of the judgment matrix is needed. The specific test steps are as follows:

Step1: Calculated consistency index *CI*:

$$CI = \frac{\lambda_{\text{max}} - n}{n - 1} \tag{13}$$

Step2:Check the criteria for testing the consistency of the judgement matrix from the relevant data RI(n)

Table 7: Relation Between RI and n

n	1	2	3	4	5	6	7	8	9
RI	0	0	0.52	0.89	1.12	1.26	1.36	1.41	1.46

Note: if the consistency ratio is less than 0.1, the judgment matrix of AHP has satisfactory consistency **Step3**:Calculate the random consistency ratio of the judgment matrix *CR*:

$$CR = \frac{CI}{RI}$$
 (14)

If the consistency ratio is less than 0.1, the judgement matrix of AHP has satisfactory consistency, namely its consistency degree is acceptable.

4.3.3 Results of AHP

After the sentiment analysis based on LDA, we screened out 5 indexes with significant influence, and combined with the star ratings, there were 6 evaluation indexes. The judgment matrix of each index is given by the expert scoring method to reflect its relative critical degree. According to the result of data processing, the judgment matrix of these indexes has passed the consistency test, which is shown in the appendix.

Table 8:Index judgment matrix

			, 3			
	quality	appearance	price	size	service	star ratings
quality	1	2	1	2	2	1
appearance	0.5	1	1	1	2	1
price	1	1	1	2	1	1
size	0.5	1	0.5	1	0.5	1
service	0.5	0.5	1	2	1	0.5

Table 9:Evaluation Index and Weight

	quality	appearance	price	size	service	star ratings
Weight(microwave oven)	0.21	0.13	0.20	0.13	0.13	0.20
Weight(hair dryer)	0.22	0.14	0.21	0.10	0.13	0.20
Weight(pacifier)	0.28	0.27	0.10	0.15	0.10	0.10

Team # 2010638 Page 14 of 20

4.4 System Clustering Analysis

4.4.1 Model establishment

Cluster analysis is a method of classification step by step. Its main idea is to reasonably merge and classify the research objects according to certain similarity indexes. It is called system clustering when it is used to solve the classification problem of samples and R-clustering when it is used to solve the classification problem of variables. We mainly uses cluster analysis to solve the problem of brand classification and evaluation. According to the observation indexes (star rating, quality, service, appearance, price, size) and system clustering algorithm of different brands, it calculates the similarity degree between brands, and classifies the similar brands into one category and the different brands into another. The closely related to a small classification unit, the not closely related to a large classification unit.

In a word, the result of system clustering analysis is to form a large to small classification pedigree or cluster diagram. Clustering graph can not only intuitively represent the similarity relationship and classification among the research objects, but also reflect all kinds of brands and quantitatively indicate the degree of similarity, so as to provide a good basis for the comprehensive evaluation.

Distance coefficient is a common statistic in system cluster analysis. If n brands observed on m variables are regarded as n points in m dimension space, the similarity between any two brands points x_j and x_k can be expressed by the distance between two points in m dimension space, then the distance coefficient is defined as:

$$d_{jk} = \left[\frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{ij} - \mathbf{x}_{ik})^2\right]^{\frac{1}{2}}$$
 (15)

Similarity coefficient is a measure of similarity between brands. Each brand is regarded as a vector of m-dimensional space, and the similarity between two brands x_j and x_k is defined as the cosine of the angle between two vectors, that is

$$\cos \theta_{jk} = \frac{\sum_{i=1}^{m} x_{ij} x_{ik}}{\sqrt{\sum_{i=1}^{m} x_{ij}^{2} \cdot \sum_{i=1}^{m} x_{ij}^{2}}}$$
(16)

4.4.2 Classification results

We use SPSS to cluster different parents and divide them into 10 grades. The first-class products are the best, and the tenth class products are the worst. In our sales strategy, we will recommend the first-class brands with better response in the sales market of sunshine company. Limited to space, only 5 first-class brands of each product are listed in the text.

Table 10:Part of Classification results

Microwave oven	862802057	423421857	692404913	464779766	423421857
Hair dryer	244516305	266176173	468944538	741916038	112413045
Pacifier	22060147	22189989	51496920	62352351	79207704

Note: The number in the table corresponds to the product parent.

Team # 2010638 Page 15 of 20

5. Model 3-Time Series Analysis

In this section, we construct a time series analysis model to analyze microwave reputation, hair dryer reputation and pacifier reputation. Afterwards the product reputation could be predicted after analyzing the reviews and star ratings about the products.

The product reputation is consisted with star rating and emotional inclination. According to statist ics, the customers are apt to pay more attention to the reviews when they buy goods, so the review shows greater impact on the product reputation than the star rating. Because of this, we assign 70% weight to the average emotional score and 30% weight to the average star rating. The sum of them is the comprehensive score of product reputation.

Due to hypotheses, the product reputation score will be influenced by autocorrelation in time seri es. As a consequence, we choose p^{th} -order Auto-Regression Model to fit curve, namely AR(p).

$$Y_n = a_1 Y_{n-1} + a_2 Y_{n-2} + \dots + a_p Y_{n-p} + \mu_n$$
(17)

Where Y represents the product reputation score in year n.

 $a_1 ext{.....} a_n$ represent the influential coefficients of different lag orders.

 μ_n represents the error term whose mean value is 0 and variance is σ^2 . The distribution matches White Noise Process WN(0, σ^2)

Firstly, we collected the time series data of three products' reputation scores. Then we solve the auto-regession model of the reputation score and calculate the time-series autocorrelation function and partial autocorrelation function of the reputation scores to identify the order, and specifically calculated the parameter p.

The sequence correlation of the comprehensive scores of each product's reputation depicts an obvious autoregressive structure AR1, which means the involved functions don't possess the property of truncation, and the partial functions possess the property of truncation. Therefore, we conclude that p=1 and the reputation score of all the three products share the same model setting.

$$N_t = \phi_1 N_{t-1} + \varepsilon_t \tag{18}$$

The mean variance of the coefficient ϕ_1 and the error term \mathcal{E} is different from the reputation changing. By calculation, we apply the MLE to estimate the coefficient of these three products. Here we list the results:

Table 11: ARE Model for Different Products

Tuble 11. IIII Mouet for Different 1 rouncis							
product	AR (1)	σ	P-Value	R^2			
Hair dryer	0.125	0.046	0.007	0.901			
pacifier	0.054	0.043	0.021	0.930			
Microwave oven	-0.075	0.050	0.000	0.952			

It is clear that the results of coefficients testing are significant, meanwhile the overall fitting gets a good result with a high R-squared.

Afterwards we conduct over-fitting and under fitting test, which contributes to the accuracy of p=1. The test uses the Algorithm of information guidelines to consider both the error term and the parameters' complexity.

$$AIC = \ln \sigma^2 + \frac{2p}{n} \tag{19}$$

Team # 2010638 Page 16 of 20

$$BIC = \ln \sigma^2 + \frac{p}{n} \ln n \tag{20}$$

Where n represents the size of sample.

The test illustrates that when p=1, AIC and BIC get the minimum value. Therefore, we consider the fitting of AR(1) is reasonable.

The AR (1) model is constructed to predict the comprehensive scores of product reputations. The results are as follows:

Taking the hair dryer as an example, in order to observe the relationship between the comprehensive score of product reputation and the time changing trends, we analyzed and predicted the time series in SPSS.

Figure 10: Sequence Figure

Through the above sequence diagram, we find that the seasonal fluctuation of the time series is basically constant, so we choose the addition model to decompose the seasonal factors. After removing the seasonal factors, the value of error sequence is very small, so the long-term trend and cyclic change sequence (long-term trend + cyclic change) and the sequence after seasonal factor correction (long-term trend + cyclic change + irregular change, that is, error Poor) can basically coincide.

Figure 11:A sequence chart that eliminates seasonal trends Figure 12: The original sequence

By analyzing the seasonal trend, it can be found that the trend first drops in the first quarter of each year, then rises to the first peak. Then after a sharp decline, there is an obvious upward trend, reaching the second peak in about the eighth month, then comes a small decline. After that it reaches the peak in about October, and then falling till the beginning of the next year. In order to analyze the reasons for the seasonal changes, we introduced the annual sales volume with the time chart. It can be seen that the timing of reputation and sales have roughly the same seasonal trend, indicating that with the increase of sales, customers are more likely to give favorable reviews. So we conclude that it is consistent with the actual situation. In summer, people wash their hair more frequently. Therefore, they are apt to buy hair dryers from June to August and have a higher probability of making favorable reviews. However, when winter comes around October, the temperature is

Team # 2010638 Page 17 of 20

colder and the blowing time becomes longer, which might also improve the demand and reputation of hair dryer.

Figure 13: Time Series Forecasting

Figure 14:Annual sales for Three products

Through the prediction of time series, the data of 2016-2019 are obtained. It is found that the reputation and demand of hair dryer are highly related to the seasonality, and it is very likely to maintain a stable seasonal cycle mode in the future. Microwave ovens and pacifiers are about the same. The comprehensive score of the microwave oven reaches the peak in April and October, and that of the pacifier reaches the peak in November.

From the analysis above, it is believed that the market of hair dryer, microwave oven and pacifier is roughly stable. By referring to seasonal trend, sunshine company is capable to increase the sales share when the score of the product reputation rises up, or reduce the sales investment before the score is about to slump.

6. Model 4-Distributed lag model

6.1 Distributed lag model

In this part, we apply the distributed lag model to determine if the customer's reviews will be affected by others' star ratings.

The distributed lag model is based on the fact that the explained variables are affected by the explanatory variables and distributed on the lagged values of the explanatory variables in different periods.

$$Y_{t} = \alpha + \beta_{0} X_{t} + \beta_{1} X_{t-1} + \dots + \beta_{s} X_{t-s}$$
(21)

s is the lag length.

Each coefficient in this model reflects the different influence of each lag value of the explanatory variable on the explained variable, which is commonly referred to as multiplier effect:

- β_0 : Short-term multiplier, which represents the average influence of one unit of star rating change on the emotional score of the review;
- β_i : Delay multiplier, which represents the average influence of the change of one unit in the previous period star rating on the emotional score of the review;
- $\sum_{i=0}^{s} \beta_{i}$: The long-term multiplier, which indicates the total impact of the star rating changing due to the lag effect.

Team # 2010638 Page 18 of 20

6.2 Almon Method

The second-order Almon polynomial distribution lag model with a lag of 3 periods is used to establish the regression equation between current reviews and previous star ratings and reviews, so as to determine whether there is a phenomenon that previous star ratings affect current customer reviews. We select the data of the hair dryer whose product parent is 732252283, the pacifier of 392768822 and the microwave oven of 423421857 for analysis.

The following finite distribution lag model is estimated by Almon method. And the coefficients are approximated by quadratic polynomials.

$$Y_{t} = \alpha + \beta_{0}X_{t} + \beta_{1}X_{t-1} + \beta_{2}X_{t-2} + \beta_{3}X_{t-3} + u_{t}$$

$$\beta_{0} = \alpha_{0}$$

$$\beta_{1} = \alpha_{0} + \alpha_{1} + \alpha_{2}$$

$$\beta_{2} = \alpha_{0} + 2\alpha_{1} + 4\alpha_{2}$$

$$\beta_{3} = \alpha_{0} + 3\alpha_{1} + 9\alpha_{2}$$
(22)

Then the original model can be transformed into

$$Y_{t} = \alpha + \alpha_{0} Z_{0t} + \alpha_{1} Z_{1t} + \alpha_{2} Z_{2t} + \mu_{t}$$

$$Z_{0t} = X_{t} + X_{t-1} + X_{t-2} + X_{t-3}$$

$$Z_{1t} = X_{t-1} + 2X_{t-2} + 3X_{t-3}$$

$$Z_{2t} = X_{t-1} + 4X_{t-2} + 9X_{t-3}$$
(23)

The final estimation formula of the distribution lag model can be obtained by regression. The regression results are as follows:

Table 12:Regression Results

	eta_0	$oldsymbol{eta}_1$	$oldsymbol{eta}_2$	eta_3	R^2
Hair dryer	1.13221**	0.32379**	-0.05354	0.00020	0.902197
Pacifier	0.79191**	0.21743**	-0.03039 (0)	0.04845	0.929296
Microwave	1.05871**	0.17710**	-0.13628	0.11858	0.835728

Note: *: p < 0.05; **: p < 0.01; +: p < 0.1; ns: not significant

The regression equation between the comprehensive scores of past star ratings and the emotional score of the current reviews of the three products is as follows:

$$Y_{t} = -0.342472 + 1.13221X_{t} + 0.32379X_{t-1}$$

$$Y_{t} = -0.054537 + 0.79191X_{t} + 0.21743X_{t-1}$$

$$Y_{t} = -0.226388 + 1.05871X_{t} + 0.17710X_{t-1}$$
(24)

Therefore, it can be explained that there is a correlation between the current reviews of customers and the past star ratings and reviews, that is, the current evaluation of customers will be affected by the past ratings and evaluations.

6.3 Correlation Analysis between Star Rating and Comments

According to the time series model, the inflection points of customer reviews can be gotten quickly. By analyzing the specific quality descriptors in the reviews corresponding to these inflection points, and

Team # 2010638 Page 19 of 20

comparing them with the star ratings corresponding to the reviews, it is easy to know whether these words are closely related to the star ratings. In the above model, the average score of reviews and star ratings in each time period has been obtained. By comparing the synchronicity of the two changes over time, we can draw the conclusion that the star ratings corresponding to the reviews with positive words are higher, while the star ratings corresponding to the reviews with negative words are lower. (Due to the space, we only put the picture of microwave oven in the text, the picture of hair dryer and pacifier in the appendix.)

Figure 15: Sequence Diagram of Star rating and Review

However, it still can be seen from the diagrams that some reviews with higher star ratings have lower emotional scores, so it is not excluded that there are high scores, poor reviews (or vice versa) and false reviews.

7. Sensitivity Analysis

In the time series analysis model, we give star ratings and reviews 0.3 and 0.7 weight respectively, representing the comprehensive evaluation of each customer on the products they buy. Based on the principle that the importance of reviews is higher than that of star ratings, in order to test the rationality of the weight, we change the weight of star ratings to test whether the results of the model change significantly under the weight ratio of 0.4 and 0.2 respectively. The results are as follows:

Table 13: Sensitivity Analysis on Weight of Star Rating

		, , ,	, ,	
Product	$AR (1)^a$	Change (in %)	$AR (1)^b$	Change (in %)
Hair Dryer	0.126	0.8%	0.127	20%
Pacifier	0.054	-0.9%	0.054	18%
Microwave Oven	-0.075	0.3%	-0.074	-0.6%

Note: $AR(1)^a$: weight of star ratings: 0.4; $AR(1)^b$: weight of star ratings: 0.2

From the table, we can see that the deviation of regression coefficient is not more than 1.8%, which shows that the change of weight has no significant impact on the results of the model, so the weight of 0.3 and 0.7 we set has certain rationality.

Team # 2010638 Page 20 of 20

8. Model Assessment

8.1 Strengths

• Data visualization technology is applied to interpret the original data, and the results are presented intuitively and concisely.

- Through the analysis of LDA topic model, the strengths and weaknesses of the products can be given, which is helpful for the design of products.
- Our products brand rating system has a wide range of applicability, which can help sales companies grasp customer reviews on the market.

8.2 Weaknesses

- Our product scoring system uses AHP to determine the weight of each index, which is to some extent subjective.
- Our time series model uses monthly data, which is not very accurate and does not take into account special circumstances such as holidays, and may have a large gap with the actual results, and cannot effectively predict the product's reputation in the long term.

Reference

[1]Arreola Elsa Vazquez, Wilson Jeffrey R. Bayesian multiple membership multiple classification logistic regression model on student performance with random effects in university instructors and majors. [J]. PloS one, 2020, 15(1).

[2]Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:2003.

[3]Cao Juan, Xia Tian, Li Jin Tao, A density method for adaptive LDA model selection[J]. Neurocomputing 2009(72):1775-1781.

[4]Connors, L., Mudambi, S.M., Schuff, D.. Is It the Review or the Reviewer? a Multi-Method Approach to Determine the Antecedents of Online Review Helpfulness[P]. System Sciences (HICSS), 2011 44th Hawaii International Conference on, 2011.

[5] Changxuan Wan, Yun Peng, Keli Xiao, Xiping Liu, Tengjiao Jiang, Dexi Liu. An association-constrained LDA model for joint extraction of product aspects and opinions [J]. Information Sciences, 2020, 519.

[6] Cheung, Christy M. K., and Dimple R. Thadani. "The Effectiveness of Electronic Word-of-Mouth Communication: A Literature Analysis." Bled EConference, 2010, p. 18.

[7]Kim, Soo-Min, et al. "Automatically Assessing Review Helpfulness." Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, 2006, pp. 423–430.

[8] Mudambi, Susan M., Schuff, David, Zhang, Zhewei. Why Aren't the Stars Aligned? An Analysis of Online Review Content and Star Ratings[P]. ,2014.

[9]Yan Leng, Weiwei Zhao, Chan Lin, Chengli Sun, Rongyan Wang, Qi Yuan, Dengwang Li. LDA-based data augmentation algorithm for acoustic scene classification [J]. Knowledge-Based Systems, 2020.

Team # 2010638 Page 1 of 2

Letter

Dear Sunshine Company Marketing Director:

We are honored to inform you of our recommendations for product improvement and sales strategies for your company after data analysis and modeling. The following are some suggestions based on our analysis.

1. Suggestions for product improvement

We apply the LDA analysis model to find the topic feature of each product, in which the negative topic words can reflect the customers' dissatisfaction with the existing products in the market.

Analysis of the review text revealed that the words like "cost", "heavy", "smoking" and "noise" appeared on the top of the list of negative reviews on the hair dryer. After analyzing these high-frequency words one by one, we discovered that there were some drawbacks with hair dryers from the customers' point of view:

- Inefficiency: it takes a long time to blow-dry.
- Weight: it is too heavy to use conveniently.
- Bad quality: when using the product, there will be a lot of noise sometimes.

Therefore, according to the feedback above, we believe that the improvement of hair dryer products is supposed to start from improving the working efficiency and quality of hair dryer. Lightweight materials can be used in the production, reducing the weight of the hair dryer, should also reduce the noise when it works. For instance, lightweight materials can be used to reduce the weight of the hair dryer and reduce the noise while it is working.

As for microwave oven, words like "service" and "small" appeared on the top of the list of negative reviews. According to the feedback, we believe that the microwave oven may have the following defects:

- Size: someone considered that microwave ovens are too small, while others reckon that small ones are more convenient to use.
 - Service: the after-sale service of some microwave ovens is not consummate.

In view of the above two points, we hold that microwave oven products can be designed in different sizes to meet the diverse needs of different customers. Moreover, improving service level and customer satisfaction is also a top priority.

"Hot" is the most frequently used negative word for a pacifier. Some customers think that the insulation function of the pacifier is poor, which reminds us that we should enhance the thermal insulation function in the design of the pacifier. In addition, we have noticed that customers attach great importance to the "appearance" of the pacifier and hence the cute product design will help to sell the product.

2. Sales strategy

Through the in-depth analysis of star ratings and reviews, we will propose sales suggestions and strategies from three aspects: the product brand, the time of selling products and the evaluation psychology of customers.

> Recommend the product brand for sale.

Team # 2010638 Page 2 of 2

Based on the analysis of star rating and review, we summarized five indexes that affect product sales, namely quality, price, appearance, service and size, as well as index weight, then built a brand scoring system based on this. Through the systematic clustering of each score, all product brands were clustered, and the high-quality product brands were selected eventually. The product parent of some premium brands is as follows:

microwave	862802057	423421857	692404913	464779766	423421857
Hair-dryer	244516305	266176173	468944538	741916038	112413045
pacifier	22060147	22189989	51496920	62352351	79207704

Our brand rating system takes full account of the characteristics of each product, so the conclusions are very reliable. It is believed that the high quality brands recommended for sale will be favored by more customers.

> Sales opportunities analysis.

we predict the future reputation of the three products through time series analysis. The results demonstrate that the three products are highly correlated with seasonality, and the seasonal cycle pattern is likely to be stable in the future. However, the peaks of reputation composite scores of the three products occurred at different times.

Pacifiers peaked around November, hairdryers around August and October, and microwave ovens around April and October. The peak of reputation will lead to an increase in sales, so we suggest that your company adjust the sales structure according to the peak time of different products. When the product reputation is about to peak, your company can increase the sales investment of the product to obtain higher revenue.

Psychological analysis of customer reviews.

We analyze the relationship between star rating and review. Through the research of distributed lag model, it is found that customers' reviews in the current period will be influenced by other customers' ratings and reviews. Therefore, we suggest that your company should still pay attention to the customer's rating of the goods after selling the products, and try to make the rating of its own products at a high level, so as not to gain a bad impact on future sales. To sum up, by keeping an eye on customers' preferences and regarding them as standards for improving products and services, your company can gradually increase product sales and market share.

These are all suggestions and strategies our team has provided to your company. Thank you again for taking the time to read our suggestions.

Hope that our models and these suggestions can be helpful to you!

Sincerely, MCM Team Members

Team # 2010638 Page 1 of 20

Appendix

Appendix 1

Correlation analysis

The distribution of the number of words

• Consistency test of AHP

Consistency check ratio table

Consis	qu	appeara	nrice	size	servi	Star
tency ratio	ality	nce	price	SIZC	ce	ratings
CD	0.0	0.00057	0.00	0.00	0.00	0.00
CR	0000	0.00857	688	0817	053	047

Appendix 2

Regression results of distribution lag model

1. Hair dryer

Variable	Coefficie nt	Std. Error	t-Statistic	Prob.
	-0.34247	0.06643		
C	2	0	-5.155354	0.0000
		0.04057		
PDL01	0.323795	2	7.980680	0.0000
	-0.59287	0.04035		
PDL02	8	2	-14.69277	0.0000
		0.02861		
PDL03	0.215540	2	7.533150	0.0000

Team # 2010638 Page 2 of 20

						0.64829
	R-squared	0.902197		Mean depen	ident var	0.04823
	it squared	0.702177		Wear depen	ident var	0.22365
	Adjusted R-squared	0.896444		S.D. depend	lent var	9
	.,					-2.3550
	S.E. of regression	0.071974		Akaike info	criterion	86
	C					-2.2090
	Sum squared resid	0.264190		Schwarz cri	terion	99
						-2.2986
	Log likelihood	68.76488		Hannan-Qui	inn criter.	32
						1.71152
	F-statistic	156.8187		Durbin-Wat	son stat	2
	Prob(F-statistic)	0.000000				
	Lag Distribution			Coeffici		t-Statisti
	of TOTAL		ent	Cocinei	Std. Error	c
_						
	. *			1.13221	0.05595	20.2356
	. *			0.32379	0.04057	7.98068
				-0.0535		-1.3294
	*.			4	0.04027	8
	*			0.00020	0.05539	0.00358
		Sum of		1.4026		15.175
		Lags		6	0.09243	1
_	2. Pacifier					
_						
		Coefficie		Std.		
	Variable	Coefficie nt		Std. Error	t-Statistic	Prob.
	Variable	nt		Error	t-Statistic	Prob.
						Prob. 0.6201
	Variable C	nt -0.05453		Error 0.10941	t-Statistic -0.498424	
		nt -0.05453		Error 0.10941 9		
	С	-0.05453 7		0.10941 9 0.05220	-0.498424	0.6201
	С	nt -0.05453 7 0.217428		0.10941 9 0.05220 1	-0.498424	0.6201
	C PDL01	-0.05453 7 0.217428 -0.41115		0.10941 9 0.05220 1 0.05242	-0.498424 4.165216	0.6201
	C PDL01	-0.05453 7 0.217428 -0.41115		0.10941 9 0.05220 1 0.05242 4	-0.498424 4.165216	0.6201
_	C PDL01 PDL02	-0.05453 7 0.217428 -0.41115 2		0.10941 9 0.05220 1 0.05242 4 0.03664	-0.498424 4.165216 -7.842873	0.6201 0.0001 0.0000 0.0000
_	C PDL01 PDL02 PDL03	nt -0.05453 7 0.217428 -0.41115 2 0.163331		0.10941 9 0.05220 1 0.05242 4 0.03664	-0.498424 4.165216 -7.842873 4.457639	0.6201 0.0001 0.0000
_	C PDL01 PDL02	-0.05453 7 0.217428 -0.41115 2		0.10941 9 0.05220 1 0.05242 4 0.03664	-0.498424 4.165216 -7.842873 4.457639	0.6201 0.0001 0.0000 0.0000
_	C PDL01 PDL02 PDL03 R-squared	nt -0.05453 7 0.217428 -0.41115 2 0.163331		0.10941 9 0.05220 1 0.05242 4 0.03664 1	-0.498424 4.165216 -7.842873 4.457639	0.6201 0.0001 0.0000 0.0000 0.73679 9
_	C PDL01 PDL02 PDL03	nt -0.05453 7 0.217428 -0.41115 2 0.163331		0.10941 9 0.05220 1 0.05242 4 0.03664	-0.498424 4.165216 -7.842873 4.457639	0.6201 0.0000 0.0000 0.73679 9 0.16242
_	C PDL01 PDL02 PDL03 R-squared	nt -0.05453 7 0.217428 -0.41115 2 0.163331		0.10941 9 0.05220 1 0.05242 4 0.03664 1	-0.498424 4.165216 -7.842873 4.457639 Ident var	0.6201 0.0001 0.0000 0.0000 0.73679 9 0.16242 3

Team # 2010638 Page 3 of 20

					1 5265
Sum squared resid	0.586774		Schwarz cri	terion	-1.5365 47
Sum squared resid	0.500774		Schwarz en	action .	-1.6207
Log likelihood	55.08642		Hannan-Qu	inn criter.	17
ū					1.59103
F-statistic	32.25389		Durbin-Wa	tson stat	8
Prob(F-statistic)	0.000000				
Lag Distribution			Coeffici		t-Statisti
of TOTAL		ent		Std. Error	c
. *			0.79191	0.08171	0.60200
*			0.79191	0.05220	9.69200 4.16522
. "			-0.0303	0.03220	-0.6099
*.			9	0.04982	-0.00 <i>99</i> 9
.*			0.04845	0.06081	0.79669
.			0.04043	0.00001	0.77007
	Sum of		1.0273		7.2225
	Lags		9	0.14225	3
3. Microwave oven					
	Coefficie		Std.		
Variable	nt		Error	t-Statistic	Prob.
	-0.22638		0.07200		
C	8		6	-3.144010	0.0030
			0.05482		
PDL01	0.177103		2	3.230494	0.0023
	-0.59749		0.05752		
PDL02	4		5	-10.38663	0.0000
			0.04604		
PDL03	0.284116		5	6.170329	0.0000
					0.52140
R-squared	0.835728		Mean deper	ndent var	9
					0.22024
Adjusted R-squared	0.824528		S.D. depend	dent var	0
					-1.8488
S.E. of regression	0.092257		Akaike info	criterion	16
					-1.6928
Sum squared resid	0.374502		Schwarz cri	terion	83
					-1.7898
Log likelihood	48.37159		Hannan-Qu	inn criter.	89
					1.49272
F-statistic	74.61626		Durbin-Wat	tson stat	4

Team # 2010638 Page 4 of 20

Prob(F-statistic)	0.000000			
]	Lag Distribution		Coeffici		t-Statisti
of	TOTAL		ent	Std. Error	c
	*		1.05871	0.07634	13.8681
.*	I		0.17710	0.05482	3.23049
			-0.1362		-2.4775
*.			8	0.05500	9
. *			0.11858	0.07611	1.55802
		Sum of	1.2181		10.594
		Lags	2	0.11498	4

Appendix 3

Partial system clustering results

Team # 2010638 Page 5 of 20

12:311592	6	6	5	5	5	l 4
014	O	0	3	3		-
13:313983	7	7	6	6	6	5
847						
14:379992	4	4	4	4	4	2
322 15:392967	2	2	2	2	2	2
251	2	2	2	2	2	2
16:423421	1	1	1	1	1	1
857						
17:454581	7	7	6	6	6	5
724						
18:459626 087	1	1	1	1	1	1
19:464779	4	4	4	4	4	2
766						
20:486381	5	5	4	4	4	2
187						
21:494028	2	2	2	2	2	2
22:494668	5	5	4	4	4	2
275					·	_
23:522487	6	6	5	5	5	4
135						
24:523301	1	1	1	1	1	1
25:539049	2	2	2	2	2	2
610	2	2	2	2	2	2
26:542519	5	5	4	4	4	2
500						
27:542731	2	2	2	2	2	2
946						2
28:544821 753	2	2	2	2	2	2
29:550562	8	8	7	7	5	4
680				·		

2.

	10	9	8	7	6	5
Pacifier	clusters	clusters	clusters	clusters	clusters	clusters
1:	1	1	1	1	1	1
723849						
2:	2	2	2	2	2	2
1006724						

Team # 2010638 Page 6 of 20

		1	1	1	1	1
3:	3	3	1	1	1	1
1398002						
4:	3	3	1	1	1	1
1439995						
5:	4	2	2	2	2	2
1448183						
6:	3	3	1	1	1	1
1696639						
7:	4	2	2	2	2	2
1892472						
8:	5	4	3	3	3	3
2143250						
9:	4	2	2	2	2	2
2332208						
10:	4	2	2	2	2	2
2341622						
11:	4	2	2	2	2	2
2775015						
12:	6	5	4	4	3	3
3090006						
13:	3	3	1	1	1	1
3146962						
14:	5	4	3	3	3	3
3179934						
15:	2	2	2	2	2	2
3729223						
16:	4	2	2	2	2	2
3916839						
17:	1	1	1	1	1	1
4145037						
18:	4	2	2	2	2	2
4569674						
19:	3	3	1	1	1	1
4649401						
20:	2	2	2	2	2	2
4792175	_		_	_		
21:	2	2	2	2	2	2
5180901	_	_	_	_	_	_
22:	2	2	2	2	2	2
5471085	_	_				
23:	4	2	2	2	2	2
5645959	7	_	2			
24:	4	2	2	2	2	2
5747909	1	2				
3171707						

Page 7 of 20 Team # 2010638

25:	4	2	2	2	2	2
5749221						
26:	4	2	2	2	2	2
5848633						
27:	4	2	2	2	2	2
5981131						
28:	2	2	2	2	2	2
6156155						
29:	2	2	2	2	2	2
6744486						
30:	2	2	2	2	2	2
6784496						
31:	4	2	2	2	2	2
7090204						

3.					
Hair	10	9	8	7	6
dryer	clusters	clusters	clusters	clusters	clusters
1:	1	1	1	1	1
423960					
2:	2	2	2	1	1
4120409					
3:	3	3	3	2	2
11468070					
4:	2	2	2	1	1
12536427					
5:	2	2	2	1	1
14552349					
6:	1	1	1	1	1
16483457					
7:	2	2	2	1	1
16983648					
8:	2	2	2	1	1
21033180					
9:	2	2	2	1	1
21750700					
10:	1	1	1	1	1
26711891					
11:	3	3	3	2	2
30965255					
12:	4	4	4	3	3
44138644					
13:	5	5	5	4	4
44703144					

Team # 2010638 Page 8 of 20

		ı	i	İ	İ
14:	1	1	1	1	1
45575190					
15:	2	2	2	1	1
46450049					
16:	2	2	2	1	1
46677591					
17:	1	1	1	1	1
47684938					
18:	2	2	2	1	1
50000317					
19:	2	2	2	1	1
54378879					
20:	4	4	4	3	3
54987170					
21:	1	1	1	1	1
55445525					
22:	2	2	2	1	1
55520986					
23:	1	1	1	1	1
57056668					
24:	4	4	4	3	3
61225676					
25:	6	1	1	1	1
62808517					
26:	2	2	2	1	1
64142513					
27:	1	1	1	1	1
66014174					
28:	1	1	1	1	1
66259499					
29:	2	2	2	1	1
66279275					
30:	1	1	1	1	1
68100320					
31:	2	2	2	1	1
68816102					
32:	4	4	4	3	3
71698270					
33:	7	6	6	5	5
74202592					
34:	1	1	1	1	1
74735317					
35:	2	2	2	1	1
77898021					

Team # 2010638 Page 9 of 20

36:	8	7	7	6	2
80193353					
37:	1	1	1	1	1
84440271					
38:	2	2	2	1	1
91277457					
39:	1	1	1	1	1
98133587					
40:	2	2	2	1	1
99665579					
41:10734	1	1	1	1	1
1965					
42:10819	1	1	1	1	1
1918					
43:10910	1	1	1	1	1
6777					
44:11093	2	2	2	1	1
5305					
45:11241	9	8	5	4	4
3045					
46:11526	2	2	2	1	1
4052					

Appendix 4

Part of the monthly score of review and star rating

1. Hair dryer

	review		star_r	comp
_dat	te	ating	g	ound
	2002/3		3	0.97
/31				36
	2002/4		5	0.73
/30				13
	2002/5		3.829	0.50
/31		601		5325
	2002/6		3.829	0.50
/30		601		5325
	2002/7		5	0.95
/31				92
	2002/8		3	0.57
/31				93
	2002/9		3.829	0.50
/30		601		5325

Team # 2010638 Page 10 of 20

2002/1		3.829	0.50
0/31	601		5325
2002/1	001	4	0.92
1/30		7	61
2002/1		5	-0.12
2/31		3	97
2003/1		4.5	0.75
/31		4.3	76
2003/2		4	0.89
/28		4	9
2003/3		4	0.88
/31		4	425
		5	
/30		J	0.82
2003/5		3.829	0.50
/31	601	3.829	
	001	3.829	0.50
2003/6	601	3.829	
/30	601	2.020	5325
2003/7	CO1	3.829	0.50
/31	601	2.020	5325
2003/8	601	3.829	0.50
/31	601	2.020	5325
2003/9	601	3.829	0.50
/30	601	2.020	5325
2003/1	604	3.829	0.50
0/31	601		5325
2003/1		3.829	0.50
1/30	601		5325
2003/1		3.829	0.50
2/31	601		5325
2004/1		2.5	0.08
/31			485
2004/2		3.829	0.50
/29	601		5325
2004/3		5	0.95
/31			955
2004/4		3.829	0.50
/30	601		5325
2004/5		1	-0.47
/31			67
2004/6		3.829	0.50
/30	601		5325
2004/7		3.829	0.50
/31	601		5325

Team # 2010638 Page 11 of 20

2004/8	2	0.45
/31	2	88
2004/9	3.829	0.50
/30	601	5325
2004/1	3.829	0.50
0/31	601	5325
2004/1	4	0.15
1/30		315
2004/1	3.829	0.50
2/31	601	5325
2005/1	3.829	0.50
/31	601	5325
2005/2	3.829	0.50
/28	601	5325
2005/3	3.829	0.50
/31	601	5325
2005/4	1	-0.47
/30		14
2005/5	1	-0.29
/31		66
2005/6	5	0.20
/30		08
2005/7	5	-0.40
/31		66
2005/8	3	0.82
/31		55
2005/9	4.333	0.80
/30	333	87
2005/1	5	0.83
0/31		9467
2005/1	3.5	0.88
1/30		995
2005/1	4.5	0.68
2/31		685
2006/1	3.357	0.66
/31	143	7943
2006/2	2.875	0.45
/28		3613
2006/3	3.309	0.21
/31	524	46
2006/4	3	0.39
/30		6333
2006/5	1.666	0.24
/31	667	26

Team # 2010638 Page 12 of 20

	2006/6		2	0.37
/30				806
	2006/7		3.333	0.44
/31		333		7167

2. Pacifier

	2. Pacifier				
	review		star_r	comp	
_date	e	ating	3	ound	
	2003/4		2	0.58	
/30				35	
	2003/5		4.4	0.60	
/31				842	
	2003/6		4.333	0.77	
/30		333		0685	
	2003/7		3.375	0.74	
/31				2837	
	2003/8		4.111	0.48	
/31		111		7467	
	2003/9		4.210	0.57	
/30		547		1278	
	2003/1		4.55	0.75	
0/31				1675	
	2003/1		3.605	0.52	
1/30		442		3395	
	2003/1		1	0.92	
2/31					
	2004/1		4.137	0.69	
/31		209		7009	
	2004/2		4.196	0.70	
/29		297		3307	
	2004/3		4.146	0.45	
/31		052		704	
	2004/4		4.5	0.67	
/30				37	
	2004/5		2	0.91	
/31				86	
	2004/6		2	0.81	
/30				08	
	2004/7		4.499	0.65	
/31		116		3345	
	2004/8		4.455	0.64	
/31		441		6819	
	2004/9		4.361	0.58	
/30		652		1429	
-					

Team # 2010638 Page 13 of 20

2004/1	4.452	0.64
0/31	883	6562
2004/1	4.379	+
1/30	498	2509
2004/1	4.344	
2/31	347	298
2005/1	4.333	0.59
/31	011	3006
2005/2	5	0.96
/28		96
2005/3	3.534	0.49
/31	091	2098
2005/4	3.883	0.63
/30	333	9112
2005/5	4.391	0.50
/31	507	169
2005/6	4.296	0.49
/30	748	209
2005/7	4.434	
/31	554	5116
2005/8	4.332	
/31	839	5799
2005/9	4.344	
/30	876	9694
2005/1 0/31	3	0.84
2005/1	5	0.96
1/30	3	89
2005/1	4.541	0.72
2/31	667	4842
2006/1	4.637	0.75
/31	5	9315
2006/2	4	0.94
/28		06
2006/3	5	0.94
/31		94
2006/4	3.534	0.49
/30	091	2098
2006/5	2.7	0.75
/31		511
2006/6	3.666	0.21
/30	667	575
2006/7	4.267	0.54
/31	442	0129

Team # 2010638 Page 14 of 20

2006/8	5	0.96
/31		91
2006/9	4.25	0.73
/30		5613
2006/1	5	0.95
0/31		905
2006/1	3	0.73
1/30		49

3. Microwave oven

3. Microwave oven					
review	star_r	comp			
_date	ating	ound			
2004/6	4	0.70			
/30		5233			
2004/7	3	-0.79			
/31		92			
2004/8	1	-0.42			
/31		15			
2004/9	1.333	0.24			
/30	333	1867			
2004/1	5	0.99			
0/31		25			
2004/1	3	0.50			
1/30		63			
2004/1	3	0.98			
2/31		18			
2005/1	5	0.98			
/31		54			
2005/2	3	0.34			
/28		7794			
2005/3	2.773	0.16			
/31	333	9515			
2005/4	2.865	0.36			
/30	385	0717			
2005/5	3	0.32			
/31		0475			
2005/6	3	0.41			
/30		8019			
2005/7	5	-0.52			
/31		67			
2005/8	2.773	0.16			
/31	333	9515			
2005/9	2.865	0.36			
/30	385	0717			

Team # 2010638 Page 15 of 20

2005/1 0/31	4	0.87
2005/1	5	0.99
1/30	3	25
	2	
2005/1	2	-0.57
2/31		07
2006/1	3.294	0.25
/31	118	3166
2006/2	3.857	0.48
/28	143	14
2006/3	3.177	0.29
/31	083	0946
2006/4	3.156	0.35
/30	25	2928
2006/5	3.115	0.60
/31	385	2631
2006/6	1	-0.42
/30		15
2006/7	3.634	0.31
/31	921	9398
2006/8	3.384	0.12
/31	615	6777
	3.291	0.51
2006/9		
/30	667	0772
2006/1	3.533	0.44
0/31	333	5201
2006/1	3.793	0.31
1/30	333	3961
2006/1	3.378	0.29
2/31	788	0235
2007/1	5	0.98
/31		68
2007/2	4.5	0.92
/28		94
2007/3	5	0.94
/31		59
2007/4	3.177	0.29
/30	083	0946
2007/5	3.156	0.35
/31	25	2928
2007/6	5	0.86
/30		13
2007/7	4	0.68
/31		0.08
/31		100

Team # 2010638 Page 16 of 20

20	0.5./0		2		0.50
	07/8		3		0.58
/31				66	
20	07/9		4		-0.55
/30				29	
20	07/1		2.364		-0.08
0/31		583		993	
	07/1		4.5	,,,,	0.70
	0//1		T. J	06	0.70
1/30	07/1			00	0.07
	07/1		5		0.97
2/31				7667	
20	08/1		2.364		-0.08
/31		583		993	
20	08/2		3.666		-0.28
/29		667		567	
	08/3		3		0.67
/31			-	05	,
	08/4		2	0.5	-0.51
	00/4		<u> </u>	06	-0.51
/30	00/5		2.4	06	0.44
	08/5		3.4		0.41
/31				524	
20	08/6		2.865		0.36
/30		385		0717	7
	00/7		2666		-0.13
20	08/7		2.666		-0.13
	08//	667	2.000	823	-0.13
/31		667		823	
/31	08/8		3.666		0.79
/31 20 /31	08/8	667	3.666	823 5633	0.79
/31 20 /31 20		667		5633	0.79
/31 20 /31 20 /30	08/8		3.666 2.364		0.79
/31 20 /31 20 /30 20	08/8	583	3.666	5633 993	0.79 3 -0.08
/31 20 /31 20 /30	08/8	667	3.666 2.364 3.433	5633	0.79 3 -0.08 0.17
/31 20 /31 20 /30 20 0/31	08/8	583	3.666 2.364	5633 993	0.79 3 -0.08
/31 20 /31 20 /30 20 0/31	08/8 08/9 08/1	583	3.666 2.364 3.433	5633 993	0.79 3 -0.08 0.17
/31 20 /31 20 /30 20 0/31 20 1/30	08/8 08/9 08/1	583 333	3.666 2.364 3.433	5633 993 2403	0.79 3 -0.08 0.17
/31 20 /31 20 /30 20 0/31 20 1/30	08/8 08/9 08/1 08/1	583 333	3.666 2.364 3.433 2.364	5633 993 2403	0.79 3 -0.08 0.17 3 -0.08
/31 20 /31 20 /30 20 0/31 20 1/30 20 2/31	08/8 08/9 08/1 08/1	583 333	3.666 2.364 3.433 2.364 4	5633 993 2403 993	0.79 3 -0.08 0.17 3 -0.08
/31 20 /31 20 /30 20 0/31 20 1/30 20 2/31 20	08/8 08/9 08/1 08/1	583 333	3.666 2.364 3.433 2.364	5633 993 2403 993 69	0.79 3 -0.08 0.17 3 -0.08
/31 20 /31 20 /30 20 0/31 20 1/30 20 2/31 20 /31	08/8 08/9 08/1 08/1 08/1	583 333	3.666 2.364 3.433 2.364 4 3.1	5633 993 2403 993	0.79 3 -0.08 0.17 3 -0.08 0.63
/31 20 /31 20 /30 20 0/31 20 1/30 20 2/31 20 /31	08/8 08/9 08/1 08/1	583 333	3.666 2.364 3.433 2.364 4	5633 993 2403 993 69 467	0.79 3 -0.08 0.17 3 -0.08
/31 20 /31 20 /30 20 0/31 20 1/30 2/31 20 /31 20 /28	08/8 08/9 08/1 08/1 08/1 09/1 09/2	583 333	3.666 2.364 3.433 2.364 4 3.1	5633 993 2403 993 69	0.79 3 -0.08 0.17 3 -0.08 0.63 0.22 0.21
/31 20 /31 20 /30 20 0/31 20 1/30 20 2/31 20 /31 20 /28	08/8 08/9 08/1 08/1 08/1	583 333 583	3.666 2.364 3.433 2.364 4 3.1	5633 993 2403 993 69 467	0.79 3 -0.08 0.17 3 -0.08 0.63 0.22 0.21
/31 20 /31 20 /30 20 0/31 20 1/30 2/31 20 /31 20 /28	08/8 08/9 08/1 08/1 08/1 09/1 09/2	583 333	3.666 2.364 3.433 2.364 4 3.1	5633 993 2403 993 69 467	0.79 3 -0.08 0.17 3 -0.08 0.63 0.22 0.21
/31 20 /31 20 /30 20 0/31 20 1/30 2/31 20 /31 20 /28 20 /31	08/8 08/9 08/1 08/1 08/1 09/1 09/2	583 333 583	3.666 2.364 3.433 2.364 4 3.1	5633 993 2403 993 69 467	0.79 3 -0.08 0.17 3 -0.08 0.63 0.22 0.21
/31 20 /31 20 /30 20 0/31 20 1/30 2/31 20 /31 20 /28 20 /31	08/8 08/9 08/1 08/1 08/1 09/1 09/2 09/3	583 333 583	3.666 2.364 3.433 2.364 4 3.1 3	5633 993 2403 993 69 467	0.79 3 -0.08 0.17 3 -0.08 0.63 0.22 0.21
/31 20 /31 20 /30 20 0/31 20 1/30 2/31 20 /31 20 /38 20 /31 20 /38	08/8 08/9 08/1 08/1 08/1 09/1 09/2 09/3	583 333 583	3.666 2.364 3.433 2.364 4 3.1 3	5633 993 2403 993 69 467 4	0.79 3 -0.08 0.17 3 -0.08 0.63 0.22 0.21
/31 20 /31 20 /30 20 0/31 20 1/30 2/31 20 /31 20 /38 20 /31 20 /38	08/8 08/9 08/1 08/1 08/1 09/1 09/2 09/3 09/4	583 333 583	3.666 2.364 3.433 2.364 4 3.1 3 2.865 5	5633 993 2403 993 69 467 4	0.79 3 -0.08 0.17 3 -0.08 0.63 0.22 0.21 0.36 7 0.92

Team # 2010638 Page 17 of 20

	2009/6	5	0.49
/30			495
	2009/7	1	-0.85
/31			16
	2009/8	1	0
/31			

Appendix 5

='utf8')

```
1. Code of LDA model
    import pandas as pd
from snownlp import SnowNLP
import re
from gensim import corpora, models
#from nltk.tokenize import word tokenize
data = pd.DataFrame(test2)
print(type(data))
#data null = data.drop duplicates()
#data null.to csv('C:/Users/lenovo/Desktop/comments null.csv')
#data null comments = data null['contents']
#data null comments.to csv('C:/Users/lenovo/Desktop/contents.txt',index=False,enco
ding='utf-8')
#data len = data null comments[data null comments.str.len()>4]
#print(data len)
#data len.to csv('contents.txt',index=False,encoding='utf-8')
coms = []
coms = data[0].apply(lambda x:SnowNLP(x).sentiments)
data post = data[coms \ge 0.01]
data neg = data[coms < 0.01]
print(data post)
print(data neg)
data_post[0].to_csv('C:/Users/lenovo/Desktop/comments_positive.txt',encoding=&apos
;utf-8',header=None)
data neg[0].to csv('C:/Users/lenovo/Desktop/comments negative.txt',encoding=&apos
;utf-8-sig',header=None)
with open('C:/Users/lenovo/Desktop/comments positive.txt',encoding='utf-8&ap
os;) as fn1:
  string data1 = fn1.read()
  string data1 = re.sub(pattern, ' ' string data1)
  print(string data1)
  fp = open('C:/Users/lenovo/Desktop/comments post.txt','a',encoding
```


Team # 2010638 Page 18 of 20

```
fp.write(string data1 + '\n')
  fp.close()
with open('C:/Users/lenovo/Desktop/comments nagative.txt',encoding='utf-8&a
pos;) as fn2:
  string data2 = fn2.read()
  pattern = re.compile(u\' \t|\n|\.|-|---|: |! |, |, |, |, |; |) | (|\?|"\')
  string data2 = re.sub(pattern, ' ', string data2)
  print(string data2)
  fp = open('C:/Users/lenovo/Desktop/comments neg.txt','a',encoding
='utf8')
  fp.write(string data2 + '\n')
  fp.close()
data1 = pd.read csv('C:/Users/lenovo/Desktop/comments post.txt',encoding='utf
-8',header=None)
data2 = pd.read csv('C:/Users/lenovo/Desktop/comments neg.txt',encoding='utf
-8',header=None)
#mycut = lambda s: ' '.join(word tokenize(s))
\#data1 = data1[0].apply(mycut)
\#data2 = data2[0].apply(mycut)
#mycut = lambda s: ' '.join(word tokenize(s))
data1 = data1[0]
data2 = data2[0]
data1.to csv('C:/Users/lenovo/Desktop/comments post cut.txt',index=False,header=Fa
lse,encoding='utf-8')
data2.to csv('C:/Users/lenovo/Desktop/comments neg cut.txt',index=False,header=Fal
se,encoding='utf-8')
print(data2)
post = pd.read csv('C:/Users/lenovo/Desktop/comments post cut.txt',encoding=&apos
;utf-8',header=None,error bad lines=False)
neg = pd.read csv('C:/Users/lenovo/Desktop/comments neg cut.txt',encoding='
utf-8',header=None,error bad lines=False)
stop = pd.read csv('C:/Users/lenovo/Desktop/stoplist.txt',encoding='utf-8'
,header=None,sep='tipdm',engine='python')
stop = [\' \',\' \'] + list(stop[0])
post[1] = post[0].apply(lambda s: s.split(' '))
post[2] = post[1].apply(lambda x: [i for i in x if i not in stop])
neg[1] = neg[0].apply(lambda s: s.split(' '))
neg[2] = neg[1].apply(lambda x: [i for i in x if i not in stop])
post dict = corpora.Dictionary(post[2])
post corpus = [post dict.doc2bow(i) for i in post[2]]
post lda = models.LdaModel(post corpus, num topics=4, id2word=post dict)
for i in range(3):
  print(post lda.print topic(i))
print(&apos)
```


Team # 2010638 Page 19 of 20

```
neg dict = corpora.Dictionary(neg[2])
neg corpus = [neg dict.doc2bow(i) for i in neg[2]]
neg lda = models.LdaModel(neg corpus, num topics=4, id2word=neg dict)
for i in range(3):
  print(neg lda.print topic(i))
2. Code of word segmentation and NLTK model
    import pandas as pd
import seaborn as sns
import numpy as np
from nltk.tokenize import word tokenize, sent tokenize
import matplotlib.pyplot as plt
pacifier=pd.read csv('C:/Users/lenovo/Desktop/pacifier.tsv', sep='\t')
b = pacifier['review body'].duplicated()
pacifier['marketplace'] = pacifier['marketplace'].str.lower()
pacifier['product category'] = pacifier['product category'].str.lower()
pacifier['vine'] = pacifier['vine'].str.lower()
pacifier['verified purchase'] = pacifier['verified purchase'].str.lower()
text a count = []
for i in pacifier['review body']:
  if isinstance(i,str):
    print(i,type(i))
    print(len(i))
  elif isinstance(i,float):
    print(i,type(i))
    i = str(i)
  text a count.append(len(i))
\#plt.figure(figsize = (8,6))
u = pacifier['helpful votes']
x = np.array(text \ a \ count)
y = np.array(u)
p = pd.DataFrame({'review body length':x,'helpful votes':y})
#p = p.drop duplicates(['helpful votes'])
#color = ['r','y','k'g','m']
#plt.scatter(p['review body length'],p['helpful votes'],c=color,marker=&
apos;>')
#plt.legend()
#plt.show()
v = pacifier.describe()
    import pandas as pd
import nltk
import numpy as np
from nltk.tokenize import word tokenize, sent tokenize
pacifier=pd.read excel('C:/Users/lenovo/Desktop
```


Team # 2010638 Page 20 of 20

```
/pacifier lower.xlsx', sep='\t')
b = pacifier['review body'].duplicated()
test11 = pacifier.groupby('product_parent').sum()
pacifier['marketplace'] = pacifier['marketplace'].str.lower()
pacifier['product category'] = pacifier['product category'].str.lower()
pacifier['vine'] =pacifier['vine'].str.lower()
pacifier['verified purchase'] = pacifier['verified purchase'].str.lower()
test2 = pacifier['review body'].tolist()
text a count = []
text b count = []
for sent in test2:
  words = word tokenize(sent)
    text b count.append(words)
  for word in words:
    if word.isalpha() == False:
      words.remove(word)
  text a count.append(len(words))
  counts1 = \{\}
  for word in words:
    counts1[word] = counts1.get(word,0) + 1
    items = list(counts1.items())
    items.sort(key=lambda x:x[1], reverse=True)
  for i in range(len(items)):
    word, count1 = items[i]
    print ("{0:<10} {1:>5}".format(word, count1))
    from collections import Counter
import pandas as pd
import numpy as np
c={"counts" : text_a_count,
 "split": text b count}
data=pd.DataFrame(c)
w = Counter(text \ a \ count)
print(w)
w1 = set(text_a\_count)
print(text a count)
w2 = w.most common(len(w))
m = []
for i in range(305):
  m.append(list(w2[i]))
df = pd.DataFrame(m, columns=['number', 'count'])
color = ['r','y','k','g','m']
plt.scatter(df['number'],df['count'],c=color,marker='>')
plt.legend()
plt.show()
```

