Energetický audit na projekt

ZIMNÍ STADION CHEB – OSAZENÍ TEPELNÉHO ČERPADLA

Město Cheb

Obsah:

1	IDENTIFIKAČNÍ ÚDAJE	4
	1.1 OBJEDNATEL A MAJITEL:	4
	1.2 PROVOZOVATEL PŘEDMĚTU EA (PRO MĚSTO CHEB)	
	1.3 ZPRACOVATEL EA:	
	1.4 PŘEDMĚT EA:	
	1.5 ÚČEL ENERGETICKÉHO AUDITU:	
	1.6 ZADÁNÍ ENERGETICKÉHO AUDITU:	
2	POPIS VÝCHOZÍHO STAVU	5
	2.1 CHARAKTERISTIKA LOKALITY	5
	2.2 STÁVAJÍCÍ STAV	
3	BILANCE ENERGIÍ	
4	ÚDAJE O SPOTŘEBĚ PALIV A ENERGIE	
5 EN	ZHODNOCENÍ SOUČASNÉHO STAVU ENERGETICKÉHO HOSPODÁŘSTVÍ, POTEN NERGETICKÝCH ÚSPOR	
6	NÁVRH OPATŘENÍ KE SNÍŽENÍ SPOTŘEBY ENERGIE	14
	6.1 <u>VARIANTA Č.1 VYSOKONÁKLADOVÝCH OPATŘENÍ</u>	14
NA	AVRHOVANÉ TECHNICKÉ ŘEŠENÍ	14
	OKRUH VODNÍHO KONDENZÁTORU ČPAVKOVÝCH PAR	14
	PRIMÁRNÍ OKRUH TEPELNÉHO ČERPADLA	
	PARAMETRY TEPELNÉHO ČERPADLA	
	SEKUNDÁRNÍ OKRUH TEPELNÉHO ČERPADLA	
	NA VÝSTUPNÍM POTRUBÍ TEPELNÉHO ČERPADLA BUDE UMÍSTĚN POJISTNÝ VENTIL, UKAZOVACÍ TEPL	
	TLAKOMĚR	
	VÝMĚNÍKOVÁ STANICE ZIMNÍHO STADIONU	
	6.2 <u>VARIANTA Č.2. TEPELNÉ ČERPADLO ČPAVEK X VODA S VYSOKOTLAKÝM</u>	10
	KOMPRESOREM	21
	SEKUNDÁRNÍ OKRUH TEPELNÉHO ČERPADLA	22
	VÝMĚNÍKOVÁ STANICE ZIMNÍHO STADIONU	
	CHLAZENÍ OLEJE	
	VÝMĚNÍKOVÁ STANICE PLAVECKÝ BAZÉN	25
7	PÉČE O ŽIVOTNÍ PROSTŘEDÍ	30
8.	UPRAVENÉ ENERGETICKÁ BILANCE	30
8	DALŠÍ MOŽNÁ ÚSPORNÁ OPATŘENÍ	33
9	EKONOMICKÉ VYHODNOCENÍ	33
10	VÝBĚR OPTIMÁLNÍ VARIANTY	34
11		
12	ZÁVĚR	34
13		
	YCHOZÍ STAV	
EN	VERGETICKY ÚSPORNÝ PROJEKT	37
14	TABULKY PODLE VYHLÁŠKY Č 425/2004 SB.	38
15	SEZNAM PŘÍLOH	30

Seznam použitých zkratek

EA energetický audit ZS zimní stadion

PD projektová dokumentace

PK plynová kotelna TO topné období ÚT ústřední vytápění

TUV teplá voda (dříve teplá užitková voda)

CIR cirkulace

VZT vzduchotechnika EL elektroinstalace MaR měření a regulace

MT měřič tepla

DN technicky: dimenze potrubí (armatur)

Ts prostá doba návratnosti investice – doba splacení

Tsd diskontovaná doba návratnosti investice

I₀ investiční náklady

CF roční Cash - Flow projektu NPV čistá současná hodnota

CFt Cash - Flow projektu v roce t

r diskont

t hodnocené období (1 až n let) IRR vnitřní výnosové procento projektu

TRV termoregulační ventil TČ tepelné čerpadlo

1 Identifikační údaje

1.1 OBJEDNATEL A MAJITEL:

Město Cheb se sídlem náměstí Krále Jiřího z Poděbrad 14, PSČ: 350 20

Zastoupen: MUDr.Janem Svobodou, starostou města

IČ : 00253979 DIČ : CZ00253979

Bank.spoj.: Komerční banka, a.s. Cheb, č. ú.: 528337/0100

Telefon : 354 440 111 Fax : 354 440 553

1.2 PROVOZOVATEL PŘEDMĚTU EA (pro město Cheb)

CHETES s.r.o.

Pelhřimovská 2268/1

350 02 Cheb

IČ: 25208845 DIČ: CZ25208845

Provoz zimního stadionu:

Zdeněk Jánský

Tel: 354 433 908, 731 410 684 e-mail: zimnistadion@chetes.cz

Provoz plaveckého bazénu:

Dana Rozporková

Tel: 354 433 500, 607 601 712 e-mail: rozporkova@chetes.cz

1.3 ZPRACOVATEL EA:

Kalora a.s. se sídlem Cheb, Baltazara Neumanna č.6

Zastoupen : ing.Josefem Řezníčkem, ředitelem společnosti a předsedou

představenstva

IČ : 18 23 30 58 DIČ : CZ 18 23 30 58

Spi.značka : Krajský soud Plzeň, oddíl B, vložka 85 Bank.spoj. : KB Cheb,č.ú.: 214745 – 331/0100

Telefon : 354 400 321,604 235 265

Odpovědný auditor:

Pokorný Miroslav – číslo oprávnění 130 ze dne 9.12.2002

Trvalý pobyt: B. Němcové 1825, 511 01 Turnov, Mob. 602 171 070

Další zpracovatelé: Dipl.lng. Stanislav Kučera

Trvalý pobyt : Sedlčany, Pod cihelným vrchem čp.737

Evid. číslo: 029

Telefon: 602 714 606

Jaroslav Votík - číslo oprávnění 260 ze dne 15.11.2006

Trvalý pobyt: Libá čp.358, 351 31

Telefon: 777720424

1.4 PŘEDMĚT EA:

Energetický audit na energeticky úsporný projekt pro stavební povolení (z.č. 10PM110) : **ZIMNÍ STADION CHEB – OSAZENÍ TEPELNÉHO ČERPADLA** na Zimním stadionu, ul. Valdštejnova 70, 350 02 Cheb pro využití odpadního tepla z chlazení , na zimním stadionu a na Plaveckém bazénu, ul. Obětí nacismu 16, 350 02 Cheb.

1.5 ÚČEL ENERGETICKÉHO AUDITU:

Energetický audit bude sloužit jako dokument k rozhodnutí o realizaci opatření ke snížení energetické náročnosti objektu Zimního stadionu Cheb i jako podklad pro dotaci ze SFŽP.

1.6 ZADÁNÍ ENERGETICKÉHO AUDITU:

- Analýza energetických vstupů
- > Analýza spotřeby energie
- Sestavení energetické bilance
- Návrh optimální varianty
- > Zjištění a ocenění potenciálu úspor
- Ekonomické vyhodnocení
- Enviromentální vyhodnocení
- Závěrečná doporučení

2 Popis výchozího stavu

2.1 CHARAKTERISTIKA LOKALITY

Místo: Cheb

Venkovní výpočtová teplota: - 17 °C, teplotní oblast 3,

Nadmořská výška 448m n.m. Počet topných dnů v roce: 255 dnů

Krajina: normální, bez intenzivních větrů

Poloha: nechráněná

Střední průměrná teplota v TO: 3,7 °C

2.2 STÁVAJÍCÍ STAV

Zimní stadion

Objekt zimního stadionu se nachází v ul. Valdštejnova 70, 350 02 Cheb a slouží jako zimní stadion s malou (venkovní) a velkou (krytou) ledovou plochou a zázemím zimního stadionu.

Vytápění zimního stadionu

Pro vytápění kryté haly zimního stadionu slouží výměníková stanice umístěné v suterénu zimního stadionu o výkonu 610 kW připojená na rozvod centrálního zásobování teplem (CZT) z plynové kotelny v ul. Riegrova firmy Terea a.s. Cheb. Ze stanice jsou zásobovány teplovodní radiátorové okruhy o jmenovitém výkonu 210 kW a okruh vzduchotechniky o výkonu 400 kW. Součástí stanice je také modul pro ohřev teplé vody sestávajících z výměníku a dvou sériově řazených akumulačních nádob. Hospodářská budova zimního stadionu je vytápěna samostatnou plynovou kotelnou umístěnou v suterénu.

Technologie chlazení

Technologie chlazení slouží pro chlazení malé venkovní ledové plochy o rozměru 30x30m a pro chlazení vnitřní velké ledové plochy o rozměru 59,5x29m. Technologie chlazení byla rekonstruována v roce 2007. Jedná se o technologii přímého chlazení kde je chladivo odpařováno přímo v ledové ploše. Jako chladivo je použit čpavek (NH3) R717 obsah činí 1900 kg. Chladící technologie sestává z kompresorové jednotky o 4 kompresorech (a 55 kW) a 2 expanzních nádrží (a 2,25 m3) a 2 čpavkových čerpadel. Na střeše strojovny jsou osazeny vzduchové kondenzátory čpavkových par, kterými se odpadní teplo předává do vnějšího vzduchu. Stávající technologie chlazení obsahuje chladič přehřátých par z něhož je teplo ukládáno do dvou akumulačních nádob 3m3 a využíváno pro rozpouštění sněžné jámy a jako teplá voda pro rolbu velké ledové plochy. Chlazení oleje 4 čpavkových kompresorů je realizováno čpavkovým chladičem, tedy vyrobeným chladem.

Technické údaje nosné stávající technologie chlazení:

- Sdružená kompresorová jednotka sestávající z chladivových šroubových kompresorů poháněná dvoupólovými asynchronními elektromotory patkovém provedení (4 ks) Brematech, 55 kW el. motory M 250 Siemens 400V, 96A, 2970 ot. /min.
- Kondenzační strana je nyní osazena čtyřmi vzduchovými kondenzátory BNDR 1005A s celkovým výkonem 900 kW při .t_m /t_{k....} +33/+42 °C.
- 1 ks výměník Alfa-Laval pro chlazení čpavku pro předehřev teplé vody pro rolbu
- 1 ks výměník Alfa-Laval pro chlazení oleje kompresoru chladivem
- Čerpadla WITT (2+2 ks), typ GP 51A pro čpavek 4 ks, 2,2 kW, 400 V
- Čerpadlo oběhové EBARA LPS 32/40, 0,4 kW, 230 V výměníku horkých par a chladiče oleje
- Čerpadlo oběhové EBARA 3 M 32-160/1.5, oběhové čerpadlo vody pro sněžnou jámu a rolbu, 2 ks, 2 kW,

STROJOHODINY KOMPRESORŮ CHLAZENÍ skutečné r. 2007/2008/2009

měsíce	K1	K2	<u> </u>	K3		K4	celkem		
•	11	206	216	2	218	C)	640	hod.
	12	258	304	2	252	123	}	937	hod.
	1	501	444	4	446	302) -	1693	hod.
	2	221	236	2	226	234		917	hod.
	3	240	245	2	223	298	}	1006	hod.
	4	276	271	2	273	242		1062	hod.
	5							0	hod.
	6							0	hod.
	7							0	hod.
	8	120	105		123	163		511	hod.
	9	184	174		162	253		773	hod.
	10	159	168		136	237		700	hod.
	11	291	282	2	246	385	;	1204	hod.
•	12	210	222	1	186	308		926	hod.
	1	171	177	3	358	189)	895	hod.
	2	262	262		0	265	,	789	hod.
	3	381	380		0	388	}	1149	hod.
	4	548	544		0	545	,	1637	hod.
	5	0	0		0	C)	0	hod.
	6	0	0		0	C)	0	hod.
	7	0	0		0	C)	0	hod.
	8	211	197	3	312	243	}	963	hod.
	9	280	285	3	308	494		1367	hod.

Ohřev TUV pro rolbu

Teplá užitková voda pro rolbu malé ledové plochy je ohřívána v plynových zásobníkových ohřívačích o objemu 820l umístěných v přízemí hospodářské budovy. Běžně je používán pouze jeden z ohřívačů. Sněžná jáma malé ledové plochy není

STAVEBNĚ-FYZIKÁLNÍ VLASTNOSTI OBJEKTU ZS

S ohledem na to že se jedná o energetický audit na projekt nebyly prováděny výpočty tepelných ztrát objektů.

PŘÍPOJKY INŽENÝRSKÝCH SÍTÍ OBJEKTU ZS

Objekt je připojen k veřejnému vodovodu a kanalizaci firma CHEVAK s.r.o. Cheb, je v něm zavedena elektrická energie síť TN-C, 3+PEN, stř. 50Hz, 400/230V od dodavatele firmy LUMIUS s.r.o. Frýdek- Místek .

Teplo pro účely vytápění je do objektu dodáváno ze sekundárního rozvodu firmy Terea a.s. Cheb do rozdělovací výměníkové stanice objektu. Teplá voda je vyráběna ve výměníkové stanici ZS i v hospodářské budově ZS.

Plavecký bazén

Objekt plaveckého bazénu je přistavěn k 6-té základní škole v ulici Obětí nacismu byl uveden do provozu v roce 1993. Objekt plaveckého bazénu je třípodlažní. V suterénu se nachází technickoprovozní zázemí objektu tj. strojovna topení,strojovna ohřevu TUV,filtrační zařízení pro bazénovou vodu strojovna vzduchotechniky, dílenské prostory a zázemí obsluhy strojoven.

V přízemí budovy jsou prostory vstupu k bazénu,kanceláře a samotný bazén se zázemím – sprchy šatny apod.. V prvním nadzemním podlaží je tělocvična 6-té základní školy se zázemím.

Zdrojem tepla plaveckého bazénu pro vytápění, vzduchotechniku, ohřev teplé vody a ohřev bazénové vody je výměníková stanice umístěná v suterénu plaveckého bazénu –strojovně, připojená na centrální zásobování teplem z plynové kotelny v ul. Riegrova firmy Terea a.s. Cheb. Pro ohřev bazénové vody jsou instalovány 2 výměníky. Provozním výměníkem je vlásečnicový výměník JAD regulovaný dvoucestným ventilem s el. pohonem. Záložním výměníkem je deskový výměník bez automatické regulace výkonu. Průtok bazénové vody výměníky je zajištěn seškrcením průtoku hlavního potrubí uzavírací klapkou.

Stavební a konstrukční systém objektu se skládá z převážné části z prosklených sklobetonových stěn a skleněných panelů "Boletického typu".

Objekt má rovnou střechu.

Západní průčelí je zatepleno

Objekt bazénu je zapuštěn ve svahu a jeho cca 1/3 je zapuštěna v terénu.

STAVEBNĚ-FYZIKÁLNÍ VLASTNOSTI OBJEKTU

S ohledem na to že se jedná o energetický audit na projekt nebyly prováděny výpočty tepelných ztrát objektů.

3 Bilance energií

Níže je uvedená bilance stávajících spotřeb a potřeb ZS Cheb rozdělená na jednotlivé nositele energ. potřeb:

Dle údajů zadavatele EA byla roční skutečná průměrná spotřeba el. energie zimního stadionu celkem **632,285 MWh** (včetně restaurace) v celkové ceně s DPH (19 %) **2305835,60 Kč,** z toho vychází průměrná cena el. energie **3,647 Kč/kWh**. Tomu odpovídá níže uvedené teoretické rozdělení dle instalovaného výkonu a soudobosti:

Zimní stadion Cheb rozdělení spotřeb elektrické energie

spotřeby jednotlivých měsíců jsou průměrem spotřeb v letech 2007-9 při provozu nové technologie od 1/2 září 2007

	•	chlazení	osvětlení	VZT	čerpadla	ostatní	
instal.výkon		230	76	45	10	5	
současnos	t	25%	20%	20%	50%	40%	poznámka
využitelnos	st	57,5	15,2	9	5	2	89
rozdělení	MWh	65%	17%	10%	6%	2%	
leden	67,2	43,6	11,5	6,8	3,8	1,5	s malou led.plochou
únor	68,8	44,6	11,8	7,0	3,9	1,6	s malou led.plochou
březen	85,1	55,2	14,6	8,6	4,8	1,9	s malou led.plochou
							velká plocha 1/2
duben	24,8	16,1	4,2	2,5	1,4	0,6	měsíce
květen	4,9	0,0	3,0	1,3	0,3	0,3	chlazení mimo provoz
červen	4,8	0,0	3,0	1,2	0,3	0,3	chlazení mimo provoz
červenec	4,5	0,0	3,0	0,9	0,3	0,3	chlazení mimo provoz
srpen	57,9	37,5	9,9	5,9	3,3	1,3	velká plocha
září	64,2	41,6	11,0	6,5	3,6	1,4	velká plocha
říjen	63,6	41,2	10,9	6,5	3,6	1,4	velká plocha
listopad	85,8	55,6	14,7	8,7	4,8	1,9	s malou led.plochou
prosinec	75,2	48,7	12,9	7,6	4,2	1,7	s malou led.plochou
Σ	606,8	384,2	110,6	63,5	34,2	14,4	
výsledné ro	ozdělení	63%	18%	10%	6%	2%	

MWh restaurace ZS cca

25 MWh

Dle údajů zadavatele EA byla stávající průměrná spotřeba tepla z CZT pro vytápění a ohřev teplé vody za roky 2008 a 2009 z **VS** v zimním stadionu celkem **2617 GJ/rok** při ceně **1711449,-Kč s 9% DPH tj. 653,97 Kč/GJ** .

Spotřeba tepla v objektu ZS z CZT:

	Terea	Chevak	22%			
měsíc	CZT = UT+TUV MWh	studená voda m3	podíl TUV m3	TUV (GJ)	UT (GJ)	Celkem GJ
1	114,2	761	167	32	379	411
2	105,3	761	167	32	347	379
3	104,2	750	165	31	344	375
4	54,7	360	79	15	182	197
5	10,0	20	4	1	35	36
6	5,3	10	2	0	19	19
7	3,9	10	2	0	14	14
8	12,5	351	77	15	30	45
9	45,3	524	115	22	141	163
10	73,9	524	115	22	244	266
11	96,9	524	115	22	327	349
12	100,8	748	165	31	332	363
	726,9	5343	1175	221	2396	2617

Celkem

2617 GJ/rok

Dále na samostatný ohřev teplé vody a vytápění hospodářské budovy je dále spotřebovávaný zemní plyn jako palivo pro 2 stacionární atmosférické kotle FERRO MAT a 2 plynové ohříváky teplé vody Tezap Štěnovice Z 0820 o objemu 820 litrů.

Celková roční průměrná spotřeba zemního plynu činí cca 339,2 GJ/ rok při ceně 125651 Kč/rok včetně DPH.

Pozn.

Posouzení stávající spotřeby tepla na vytápění a ohřev TUV zimního stadionu není předmětem tohoto EA.

4 Údaje o spotřebě paliv a energie

Soupis základních údajů o energetických vstupech a výstupech dle přílohy č.2 k vyhlášce č. 213/2001 Sb. za 3 roky 2007, 2008 a 2009

Stávající stav - průměr		1			
			Výhřevnost	Přepočet	
Vstupy paliv a energie	Jednotka	Množství	GJ/jednotku	GJ	Roční náklady v Kč
Nákup el.energie	MWh	632,29	3,60	2 276,23	2 305 836 Kč
Nákup tepla	GJ	2617,00	1,00	2 617,00	1 711 449 Kč
Zemní plyn v tis.	tis.m3	10,0	34,05	339,17	125 651 Kč
Hnědé uhlí	t	0,00	16,74	0,0	0 Kč
Černé uhlí	t	0,00	0,00	0,0	0 Kč
Koks	t	0,00	0,00	0,0	0 Kč
Jiná pevná paliva (Dřevo)	t	0,00	11,00	0,0	0 Kč
TTO	t	0,00	0,00	0,0	0 Kč
LTO	t	0,00	0,00	0,0	0 Kč
Nafta	t	0,00	0,00	0,0	0 Kč
Jiné plyny (propan)	t	0,00	0,00	0,0	0 Kč
Pára	GJ	0,00	0,00	0,0	0 Kč
Obnovitelné zdroje**	GJ (MWh)	0,00	0,00	0,0	0 Kč
Jiná paliva	m3	0,00	0,00	0,0	0 Kč
Celkem vstupy paliv a energie				5 232,4	4 142 936 Kč
Změna stavu zásob				0,0	0 Kč
Celkem spotřeba paliv a					
energie				5 232,4	4 142 936 Kč

Pozn. Ceny včetně DPH

Roční energetická bilance průměr za roky 2007-2009 po rekonstrukci ZS - dle přílohy č.4 k vyhlášce č. 213/2001 Sb.

			tis.
ř.	Ukazatel	GJ/r	Kč/r
1	Vstupy paliv a energie	5 232,4	4 142,9
1a	z toho elektrická energie	2 276,2	2 305,8
1b	z toho palivo zemní plyn	339,2	125,7
1c	z toho nákup tepla z CZT	2 617,0	1 711,4
2	Změna zásob paliv	0,0	0,0
3	Spotřeba paliv a energie	5 232,4	4 142,9
4	Prodej energie cizím (UT + TUV)	0,0	0,0
5	Konečná spotřeba paliv a energie v objektu	5 232,4	4 142,9
6	Ztráty ve vlastním zdroji a rozvodech ÚT	50,9	18,8
7	Spotřeba energie na ÚT a ohřev TUV	2 905,3	1 818,3
8	Spotřeba energie na technologické procesy	2 276,2	2 305,8

Množství nakoupeného tepla i elektřiny včetně cen jsou převzaty od zadavatele EA z předaných podkladů.

5 Zhodnocení současného stavu energetického hospodářství, potenciál energetických úspor

V uvedené energetické bilanci jsou v technických jednotkách a finančních objemech (s DPH) uvedeny vstupy a výstupy jednotlivých energií. Na základě předchozích informací z kapitoly 2 je zřejmé,že hlavní energetickou složkou je nakupované teplo z CZT na vytápění, ohřev TUV a výrobu technologické vody a dále spotřeba el. energie pro technologické potřeby provozu ZS, tato je kryta nákupem elektřina od firmy Lumius s.r.o. Frýdek-Místek..

Odpadní teplo z chlazení čpavkových přehřátých par stávajících šroubových kompresorů je částečně využíváno pro předehřev TUV pro rolby čpavkovým chladičem přehřátých par a chladičem oleje kompresorů.

Energetický potenciál zbývajícího kondenzačního odpadního tepla čpavkových par je však ještě značný viz tabulka níže.

kompresory el. energie						GJ/měsíc	
MWh/měsíc	výpočtové strojohod. /den	výpočtové strojohod./ měs	současnost kompresorů v běhu	teoretický chl.faktor	Odpadní teplo přehřátých parGJ	stávající chladič přehřátýc h par	kondenzační ODPADNÍ TEPLO - Využitelné
40,9	24	745	2,0	2,9	452	67,0	385
41,9	25	762	2,0	2,8	450	68,6	381
51,9	30	943	2,5	2,6	516	84,9	432
15,1	9	275	0,7	2,4	139	24,7	114
0,0	0	0	0,0		0	0,0	0
0,0	0	0	0,0		0	0,0	0
0,0	0	0	0,0		0	0,0	0
35,3	21	641	1,7	2,3	311	57,7	253
39,1	23	711	1,9	2,4	360	64,0	296
38,8	23	705	1,9	2,6	386	63,4	322
52,3	31	951	2,6	2,7	541	85,6	455
45,8	27	833	2,2	2,8	491	75,0	416
361,1	212	6566	17,6		3645	590,9	3054

Celkem

Na základě vypočtených výše uvedených hodnot se předpokládá maximální využití potenciálu energetických úspor zbývajícího odpadního tepla z chlazení při úspoře tepla odebíraného zimním stadionem a plaveckým bazénem z CZT pro ÚT a ohřev TUV resp. pro předehřev bazénové vody v plaveckém bazénu. Částečně dojde k úspoře spalovaného zemního plynu v hospodářské budově ZS pro předehřev TUV .

Naopak dojde k navýšení spotřeby el. energie pro pohon tepelných čerpadel, částečná úspora el. energie stávajících vzduchových střešních chladičů čpavkových par bude vyvážená navýšenou spotřebou ostatních instalovaných el. zařízení (čerpadla, ventily aj.).

Detailní popis a vyčíslení viz níže jednotlivé varianty energetických úspor.

6 Návrh opatření ke snížení spotřeby energie

- Beznákladová a Nízkonákladová opatření byla realizována již v minulých letech
- Vysokonákladová opatření jsou následující:
 - Využití odpadního tepla kompresorů chlazení

Z technologie chladícího zařízení s přímým vypařováním čpavku pro chlazení dvou ledových ploch na zimním stadionu Cheb osadit tepelné čerpadlo s využitím odpadního tepla z provozovaného čpavkového 1°chladícího zařízení se stávajícími 4 šroubovými kompresory Bitzer 55kW s průměrným provozem 2 kompresorů.

6.1 VARIANTA Č.1 VYSOKONÁKLADOVÝCH OPATŘENÍ

Varianta č. 1. PROJEKT OSAZENÍ TEPELNÉHO ČERPADLA voda x voda na Zimním stadionu, ul. Valdštejnova 70, 350 02 Cheb pro využití odpadního tepla z chlazení, na zimním stadionu a na Plaveckém bazénu, ul. Obětí nacismu 16, 350 02 Cheb .

Předmětem projektu je instalace tepelného čerpadla/del (2 ks, 2 x 70 kW max. jm. tepelného výkonu) pro využití odpadního tepla ze stávající chladící technologie zimního stadionu v Chebu. Součástí projektu jsou úpravy výměníkových stanic zimního stadionu a plaveckého bazénu pro napojení na tepelné čerpadlo, úpravy technologie chlazení, elektroinstalace včetně samostatného napojení a měření TČ elektroinstalace nového zařízení, MaR a nutné stavební úpravy. Samostatnou částí dokumentace je teplovodní přípojka plaveckého bazénu, která zajistí přenos tepelného výkonu ze ZS a umožní využití odpadního tepla v plaveckém bazénu.

Účelem úsporného projektu je využití zbývajícího odpadního tepla čpavkových par a oleje šroubových kompresorů pro předehřev vytápění zimního stadionu, předehřev teplé vody, ohřev bazénové vody plaveckého bazénu a ohřev teplé užitkové vody pro rolbu. Využitím odpadního tepla dojde ke snížení emisí z místních zdrojů centrálního zásobování teplem z PK Riegrova ul. a k úspoře primárních energetických zdrojů a ke snížení provozních nákladů.

Navrhované technické řešení

Okruh vodního kondenzátoru čpavkových par

Výkon vodního kondenzátoru čpavkových par je navržen s ohledem na provoz stávajících čpavkových kompresorů, kdy na 1 kompresor připadá výkon cca 175 kW a v provozu jsou průměrně 2-3 kompresory. Výkon 530 kW tak odpovídá chodu 3 čpavkových kompresorů. Výkon vodního kondenzátoru bude regulován regulačním ventilem s el. pohonem osazeným na výstupu čpavkových par na vzduchové kondenzátory podle snímače přetlaku par. Pokud bude přetlak stoupat nad kondenzační tlak, znamená to, že vodní kondenzátor nemá odběr tepla a ventil začne otevírat vstup do stávajícího vzduchového kondenzátoru čpavkových par na střeše hospodářské budovy. Připojení vodního kondenzátoru k okruhu chlazení a konstrukční návrh kondenzátoru je předmětem části projektu Chlazení.

Teplo z vodního kondenzátoru čpavkových par o max. výkonu 530 kW bude ukládáno do otevřené akumulační nádoby o objemu 10 m3 naplněné změkčenou vodou. Na výstupu z vodního kondenzátoru bude osazen pojistný ventil, ukazovací tlakoměr a teploměr a snímač teploty. Na přívodu kondenzátoru bude osazeno oběhové čerpadlo s elektronickou změnou otáček, které budou regulovány podle

vypouštěním ze dna nádrže, vodoznakem, ukazovacími teploměry ve spodní a horní části nádoby. Nádrž bude zastropena a opatřena vstupním otvorem min Ø 600 mm s uzavíracím poklopem. Strop nádoby musí mít pochozí nosnost. Akumulační nádoba bude tepelně izolována minerální vatou o tl. 100mm s hliníkovým polepem. Strop nádoby navrhuji izolovat deskami z pěnového plastu tl.100mm.

snímače teploty na výstupu z kondenzátoru tak, aby na výstupu byla teplota 25°C. Před čerpadlo bude vřazen filtr.

Akumulační nádoba bude osazena na nový betonový základ. Nádoba bude vyrobena z plastu nebo z ocelového plechu opatřeného oboustranně nátěrem. Teplota vody v akumulační nádobě bude 5 až 30°C. Akumulační nádoba bude vybavena přepadem svedeným nad podlahovou vpust, Rozsah teploměrů primárního okruhu bude -20 až +60°C.

Primární okruh tepelného čerpadla

Z horní části akumulační nádoby bude voda přiváděna k tepelnému čerpadlu. Na přívodu tepelného čerpadla bude umístěn trojcestný regulační ventil pro směšování přívodní a vratné vody, tak aby teplota vstupní vody do tepelného čerpadla nepřesáhla maximum požadované výrobcem tepelného čerpadla. Obvykle max. 20°C. Na přívodním potrubí bude umístěno oběhové čerpadlo s konstantními otáčkami.

Parametry tepelného čerpadla

Jedná se o tepelné čerpadlo voda – voda o celkovém tepelném výkonu 140 kW. Je navržena kaskáda **2 jednotek** o tepelném výkonu **70 kW při W20/W60** s el. příkonem 16,1 kW.

Max. el. příkon tepelného čerpadla 17,5 kW, max. proud 60A.

Topný faktor tepelného čerpadla podle EN 255 je 6,1 při W10/W35

Požadovaná max. výstupní teplota sekundárního média 60°C.

Výkon tepelného čerpadla je závislý na teplotě vstupní a výstupní vody.

(Tepelný výkon při W5/W50 je 47 kW)

Reálný tepelný výkon jednotky se bude tedy pohybovat mezi 50-70 kW podle aktuální teploty vody.

Požadavkem je spínání výkonu ve dvou výkonových stupních. Navrhovaný tepelný spád na primáru i sekundáru tepelného čerpadla je cca 5°C.

Max. provozní přetlak na primární i sekundární straně PN 3 bar.

Jednotky tepelného čerpadla budou umístěny přímo na podlaze strojovny chlazení na stavitelných odpružených nohách.

Sekundární okruh tepelného čerpadla

Na výstupním potrubí tepelného čerpadla bude umístěn pojistný ventil, ukazovací teploměr a tlakoměr.

Na přívodním potrubí bude oběhové čerpadlo s konstantními otáčkami a zpětný ventil.

Rozsah teploměrů sekundárního okruhu bude 0 až +80°C.

Vyrobené teplo bude ukládáno do stojaté uzavřené akumulační nádoby o objemu 3 m3. V nejvyšším místě nádoby bude osazen odvzdušňovací ventil. V nejnižším místě vypouštěcí kohout. Nádoba bude vybavena dvěma ukazovacími teploměry ve spodní a horní části nádoby a revizním otvorem. Nádoba bude ocelová s vnějším ochranným nátěrem a bude opatřena tepelnou izolací z min. vláken o tl. 100 mm s hliníkovým polepem. K nádobě bude připojena tlaková expanzní nádoba s membránou o objemu 600l, PN6. Doplňování vody do soustavy bude upravenou

vodou prostřednictvím stávajícího doplňování vody do soustavy výměníkové stanice zimního stadionu.

Výměníková stanice zimního stadionu

Předehřev vytápění

Přívod topné vody z akumulační nádoby tepelného čerpadla do výměníkové stanice zimního stadionu bude veden ocelovým potrubím zavěšeným pod stropem suterénu hospodářské budovy. Mezi hospodářskou budovou a krytou halou bude provedeno potrubí z předizolovaných trub v zemi.

Teplo z tepelného čerpadla bude využíváno na předehřev zpátečky topné vody ze systému vytápění, který zásobuje i vzduchotechniku. Teplo bude dodáváno do zpátečky pomocí směšovacího čerpadla s el. změnou otáček, které budou řízeny podle žádané teploty smísené vody tak, aby odpovídala ekvitermní křivce požadované teploty topných okruhů. V případě nadměrného odebíraného výkonu, nebo nízké teplotě topné vody, bude dohřev topné vody probíhat ve stávajícím výměníku připojeném na centrální zásobování teplem. Dodané teplo z tepelného čerpadla bude měřeno měřičem tepla osazeným na vratné potrubí do akumulační nádoby. Měření tepla bude podkladem pro vyhodnocení úspor.

Předehřev teplé vody

Předehřev teplé vody bude sériově předřazen stávajícímu ohřevu teplé vody ve výměníkové stanici. Z prostorových důvodů byl ohřev teplé vody umístěn do vedlejší místnosti – skladu vedle výměníkové stanice. Teplá voda bude předehřívána v deskovém výměníku o výkonu 70 kW a ukládána do vrstveného zásobníku o objemu 1,4 m3. Na přívodu topné vody bude osazeno oběhové čerpadlo s konstantními otáčkami, na zpátečce pak měřič vyrobeného tepla. Na výstupu výměníku bude pojistný ventil, teploměr a tlakoměr. Nabíjecí čerpadlo studené vody bude v nerezovém nebo bronzovém provedení. Akumulační nádoba bude vybavena revizním otvorem, úprava vnitřního povrchu bude smaltováním nebo nátěrem s atestem pro pitnou a teplou vodu. Do nádoby bude instalována elektrická topná vložka o výkonu 6 kW pro termickou desinfekci nádoby. Běžná provozní teplota vody v nádobě bude 10-50°C. Na přívodu studené vody do nádoby bude osazen pojistný ventil. Na přívodu studené vody do stanice bude osazen zpětný ventil a expanzní nádoba teplé vody 33 l PN10.

Chlazení oleje

Vsazení vodního chladiče oleje do série ke stávajícímu čpavkovému chladiči je předmětem části projektu chlazení. Odpadní teplo z vodního chladiče oleje o výpočtovém výkonu 40 kW bude využíváno pro předehřev teplé užitkové vody pro rolbu malé ledové plochy (v období kdy je malá ledová plocha v provozu = listopad – březen) Stávající zásobníkové plynové ohřívače teplé vody 820l budou zapojeny do série, kdy první bude nabíjen chladičem oleje a druhý bude sloužit pro případný dohřev pomocí plynového hořáku. Spotřeba TUV pro rolbu malé ledové plochy je cca 3,5 m3/den 45°C.

V období kdy není malá ledová plocha provozována, ale je v provozu velká ledová plocha (srpen-říjen a duben bude chlazení oleje ručně přepnuto do stávajících akumulačních nádob pro rolbu velké ledové plochy a sněžnou jámu. Přepínání provozu bude při odstavení oběhového čerpadla pomocí uzavíracích kohoutů. Nabíjecí čerpadlo bude s konstantními otáčkami, ale připojené na externí frekvenční měnič, který je součástí měření a regulace chladícího zařízení. Výstupní teplota z chladiče oleje bude udržována na žádané hodnotě změnou otáček nabíjecího čerpadla. Na výstupu výměníku bude osazen pojistný ventil, teploměr a tlakoměr. Na

přívodu studené vody bude umístěn měřič vyrobeného tepla pro vyhodnocení úspor. Na přívodu studené vody budou připojeny 2 expanzní nádoby 33l/PN10.

Voda ohřívaná olejovým výměníkem nesmí být z hygienických důvodů použita pro jiný účel než je úprava ledové plochy rolbou a pro rozpouštění sněhu ve sněžné jámě. Nesmí být přivedena k umyvadlům a sprchám. Všechny výtoky této teplé užitkové vody musí být označeny, že se nejedná o vodu pitnou!

ZIMNÍ STADION CHEB BILANCE CHLAZENÍ OLEJE 40 kW

1	ı			
		odpadní teplo chlazení oleje	Úspora tepla Rolba malá led. plocha získané teplo	teplo pro rolbu velké led.plochy a sněžnou jámu
	dní	GJ	GJ	GJ
leden	31	19	16	
únor	28	17	14	
březen	31	24	16	
duben	30	7		7
květen	31	0		
červen	30	0		
červenec	31	0		
srpen	31	16		16
září	30	17		17
říjen	31	18		18
listopad	30	23	15	
prosinec	31	21	16	
Σ		162	77,4	58

běží 12 hod/den

současnost kompresorů v běhu	výkon 10 kW / kompresor
ks	kW
2,0	20
2,0	20
2,5	25
0,7	7
0,0	0
0,0	0
0,0	0
1,7	17
1,9	19
1,9	19
2,6	26
2,2	22

Využitelné teplo 3,5 m3/den 45°C

bezpečnostní součinitel **0,7**

chladící faktor čpavkového chlazení je 2,6 stávající spotřeba elektřiny pro chlazení oleje

14,5 MWh/rok

Pozn. Do ekonomického vyhodnocení a bilance bude započtena úspora 77,4 GJ/rok v teple zemního plynu (58 GJ/rok bude očekávaný nezapočtený bonus) a další úspora v el. Energii cca 14,5 MWh/rok (na chladivu stávajících kompresorů) při použití vodního chladiče oleje.

Výkon tepelného čerpadla

Výkon tepelného čerpadla je navržen s ohledem na maximální využití odpadního tepla, při současné minimalizaci investičních nákladů a maximálním využití strojohodin tepelného čerpadla.

Navrhovaný tepelný výkon tepelného čerpadla voda-voda je 140 kW (W20/W60).

Pracovní výkon tepelného čerpadla se mění v souvislosti s teplotou vstupní a výstupní vody, bude tedy pohybovat mezi 100-140 kW.

Výpočtový výkon chladiče oleje je 40 kW, je však závislý na počtu kompresorů v chodu a na teplotě oleje. Chladič je navržen na chod všech 4 kompresorů.

Teplovodní přípojka plaveckého bazénu

Teplovodní přípojka z předvolovaného potrubí DN 50, 240 bm (480 m potrubí) bude sloužit k distribuci odpadního tepla ze zimního stadionu, kde zdrojem tepla bude nově osazené TČ. Projekt přípojky bezprostředně souvisí s projektem osazení tepelného čerpadla pro zimní stadion Cheb pro využití odpadního tepla z chladící technologie zimního stadionu. Jedná se o stavbu trvalou.

Meziobjektová část přípojky začíná ve strojovně chlazení hospodářské budovy zimního stadionu a končí v technickém suterénu 6.ZŠ odkud bude pokračovat do strojovny plaveckého bazénu.

Teplovodní přípojka bude provedena z předizolovaného potrubí DN 50/PN6 pokládaného do země s přenosem tepelného výkonu 60-100 kW s teplotním spádem max. 60°C/30°C. Přípojka bude v celé délce vedena ve zpevněném terénu tvořeném chodníky a vozovkami. Trasa přípojky je volena s ohledem na křížení s ostatními inženýrskými sítěmi a v souvislosti s řešením kompenzací teplotní délkové roztažnosti potrubí. Stavba bude provedena před plánovanou rekonstrukcí povrchu ul. Obětí nacismu.

Níže je uvedená upravená konečná energetická bilance varianty č.1 z posuzovaného projektu osazení TČ na zimní stadion Cheb. Úspory jsou vyčísleny s ohledem na stávající a budoucí provoz chlazení na ZS Cheb spolu s očekávaným využitím odpadního tepla v ZS Cheb a plaveckém bazénu Cheb.

ZIMNÍ STADION CHEB BILANCE VYROBENÉHO TEPLA TEPELNÝM ČERPADLEM VČETNĚ DODÁVEK TEPLA z CZT, NAVÝŠENÍ ODBĚRU EL. ENERGIE

			1 1 , 1 1 2			L. LIVLIN			1	1				
	teplo	topný faktor TČ	vyrobitelné teplo TČ s topným faktorem cop		stávající spotřeba tepla TV zimní stad.	stávající spotřeba tepla bazén	Spotřeba stávající celkem	průměrný potřebný výkon	max výkon TČ	odhadovaný podíl TČ na výrobě tepla	tepla z TČ	dodávka z CZT	ztráty systému TČ 5%	spotřeba elektřiny TČ
	GJ	COP	GJ	GJ	GJ	GJ	GJ	kW	kW	%	GJ	GJ	GJ	kWh
leden	385	3,60	533	379	32	126	537	201	110	40	204	333	11	16 583
únor	381	3,60	527	347	32	115	494	184	115	50	235	259	12	19 048
březen	432	4,35	560	344	31	126	501	187	140	60	286	216	15	19 206
duben	114	4,60	146	182	15	61	258	96	140	90	125	133	7	7 929
květen	0		0	35	1	0	36	13			0	36	0	
červen	0		0	19	0	0	19	7			0	19	0	
červenec	0		0	14	0	0	14	5			0	14	0	
srpen	253	4,60	323	30	15	51	96	36	140	90	82	14	4	5 230
září	296	4,60	378	141	22	122	285	107	140	90	244	41	13	15 512
říjen	322	4,00	430	244	22	126	392	146	130	70	260	133	15	19 069
listopad	455	3,60	630	327	22	122	471	176	120	55	242	229	17	20 006
prosinec	416	3,60	577	332	31	126	489	183	110	48	221	268	14	18 121
Σ	3054		4104	2395	221	977	3594				1898	1696	108	140 703

6.2 <u>VARIANTA Č.2. TEPELNÉ ČERPADLO ČPAVEK X VODA S VYSOKOTLAKÝM</u> KOMPRESOREM

Popis variantní navrhované řešení č. 2 využití odpadního tepla z chladicího zařízení pomocí vysokotlakého TČ čpavek x voda

Stávající čpavkové čtyři šroubové kompresory vytlačují páry čpavku o teplotě +50+80°C do vzduchem chlazených kondenzátorů čpavku ve venkovním prostoru. Vzduchem chlazené kondenzátory odvádí kondenzační teplo cca Qc = 175 kW / 1 šroubový kompresor s průměrnou/ výtlačnou kond. teplotou TC / TD = +30/ +65°C do okolního vzduchu.

Navrhované tepelné čerpadlo 1 ks soustrojí Grasso 35HP/6P-NH3/W umístěné ve stávající strojovně chlazení o jm. tepelném výkonu 160 kW nasává páry čpavku před vzduchem chlazenými kondenzátory do odlučovače – chladiče par čpavku TČ kde se páry čpavku ochladí z teploty výtlaku cca TD=+65°C na teplotu kondenzace cca TC=+30°C. Páry čpavku odsává pístový vysokotlaký vzduchem chlazený kompresor Grasso 35HP (PS25/50bar) a vytlačuje je na teplotu kondenzace čpavku TC=+71°C va teplotou výtlaku TD=+110-+120°C. Vytlačené páry čpavku zkondenzuji v deskovém svařovaném kondenzátoru STPHE PS40 bar ohřevem TV +55/+70°C. Zkondenzovaný čpavek je nastřikován zpět do odlučovače – chladiče par čpavku TČ a společného výtlaku par čpavku před vzduchem chlazenými kondenzátory.

TČ bude dodáno ve dvou skidech, samostatně skid 1 - kompresorové soustrojí Grasso 35HP s oddělěným silovým rozvaděčem s PLC pro řízení, jištění a monitorování TČ a skid 2 – sací odlučovač-chladič par s kondenzátorem čpavku a sněračem čpavku. TČ bude vybaveno silovým rozvaděčem pro elm. kompresoru 37 kW Y/D a ohřev oleje ve skříni kompresoru 1,2kW, dále bude obsahovat řídící, jistící a monitorovací PLC s CPU VIPA a ovládácí 4 řádkovým displejem. Výkonové parametry TČ:

Varianta 2: Qt = 160 kW - TČ Grasso 35HP/6p-NH3/W (elm. 37 kW) :

- min. kond. teplota čpavku stávajícího chladícího zařízení TC = +20°C : chladící výkon / el.příkon / kondenzační-topný výkon : Qo / Pe / Qc(t) = 96 / 25 / 110 kW s chladícím/topným faktorem COP = 3,84 / 4,4 při ohřevu 9,18 m3/h TV +59,5/+70°C
- prům. kond. teplota čpavku stávajícího chladícího zařízení TC = +30°C : chladící výkon / el.příkon / kondenzační-topný výkon : Qo / Pe / Qc(t) = 139 / 26 /160 kW s chladícím/topným faktorem COP = 5,34 / 6,15 při ohřevu 9,18 m3/h TV +55/+70°C
- max. kond. teplota čpavku stávajícího chladícího zařízení TC = +40°C : chladící výkon / el.příkon / kondenzační-topný výkon : Qo / Pe / Qc(t) = 194 / 26 / 215 kW s chladícím/topným faktorem COP = 7,46 / 8,26 při ohřevu 9,18 m3/h TV +50 / +70°C

Uvedený provoz TČ je podmíněn provozem min. / optimálně 1 / 2 šroubových kompresorů Bitzer. Za předpokladu 100% topného výkonu uspoří stávající tepelné čerpadlo provoz 2-3 ventilátorů čpavkových vzduchem chlazených kondenzátorů Pe =2-3 x 2,5 kW

Požadavky na provozní energie

Celkový instalovaný elektrický příkon dle štítkových hodnot elektromotorů chladícího systému a čerpadel vody.

Instalovaný elektrický příkon spotřebičů štítkový pro 39,6 kW 400V

Efektivní el. příkon instalovaných spotřebičů 27 kW 400 V

Požadavky na ostatní profese:

1. Elektrická energie pro potřeby montáže

Napětí: 400V, 50HZ,32A

2. Přívodní kabel do rozvaděče EMI.

Specifikace hl. soustrojí : 1 ks pístový kompresor Typ Grasso 35HP(6p)

chladivo NH3

max.prov. tlak NH3 saní / výtlak : 16 / 36 bar G

max.návrhový tlak NH3 saní / výtlak : 23 / 40 bar G podle EN378

chladicí výkon 139 kW el. příkon 25,8 kW

el. motor: 37kW 980 ot./min 3x400V, 50 Hz, IP23, Y/D

spojka pružná s muzikusem a krytem

vypařovací teplota +30°C, kondenzační teplota +71°C

regulace výkonu automatická, elektrická 33-67-100%

odlučovač oleje OS3HP 50 bar s aut, vracením oleje do kompresoru

armatura uzav. ventil na sání PS25, na výtlaku zpětný a uzav. ventil a poj. ventil Pset40bar

rám ocelový pro umístění na betonový blok cca 2,2x1,2xV=0,3m

snímače tlakové jističe a snímače teploty Pt100

el. ohřev oleje 0,4 + 2 x 0,6 kW ve skříni kompresoru pro zajištěný vypař. čpavku při teplotě strojovny pod kond. teplotu čpavkového zařízení

hmotnost cca: 1250 kg

max. rozměry : cca : $2,01 \times 1,2 \times V = 1,2m$

provozní náplň oleje : cca : 30 dm3

Výměníková sestava : kondenzátor NH3 pro ohřev TV, sběrač čpavku a chladič par

NH3 na spol. rámu

1 ks deskový výměník (kondenzátor) – svařovaný deskový výměník

S&P PHE PSHE-44FF-82(52)/1/1

Termodynamická data Studená strana teplá strana

Médium: Voda TV Čpavek kondenzace a podchlazení

Tepelný výkon: 160 kW kW Hmotnostní průtok: 2,55 0,141 kg/s °C Teplota na vstupu: 55 110 °C Teplota na výstupu: 70 61 Tlaková ztráta: kPa max.10 Max.5 0,10584 0,10408 m³ Objem náplně: Objem náplně: 10 14 dm3 -1/40 bar G Návrhová tlak -1/16 bar G

aj. ostatní příslušenství pro chod celé technologie TČ Grasso 35HP(6p).

Jednotka tepelného čerpadla bude umístěna přímo na podlaze strojovny chlazení na stavitelných odpružených nohách.

Sekundární okruh tepelného čerpadla

S ohledem na to, že popsané TČ čpavek x voda může běžet pouze při běhu 1 až 2 stávajících šroubových kompresorů je nutné pro vytvoření volné kapacity využití tepelného výkonu TČ instalovat akumulační nádrže na straně ÚT o objemu cca 3 x 3 m3 pro akumulaci teplé vody až 70 °C při předpokládaném teplotním spádu 60/70°C. Tyto lze umístit ve strojovně chlazení nebo ve vedlejší místnosti stávající plynové kotelny hospodářské budovy.

K nádobě budou připojeny tlakové expanzní nádoby s membránou o celkovém objemu 900l, PN6. Doplňování vody do soustavy bude upravenou vodou prostřednictvím stávajícího doplňování vody do soustavy výměníkové stanice zimního stadionu.

Výměníková stanice zimního stadionu

Vytápění

Přívod topné vody z akumulačních nádob tepelného čerpadla do výměníkové stanice zimního stadionu bude veden ocelovým potrubím zavěšeným pod stropem suterénu hospodářské budovy. Mezi hospodářskou budovou a krytou halou bude provedeno potrubí z předizolovaných trub DN 80 v zemi.

Teplo z tepelného čerpadla bude využíváno na vytápění popř. předehřev zpátečky topné vody ze systému vytápění, který zásobuje i vzduchotechniku. Teplo bude dodáváno ÚT pomocí směšovacího čerpadla s el. změnou otáček, které budou řízeny podle žádané teploty smísené vody tak, aby odpovídala ekvitermní křivce požadované teploty topných okruhů. V případě nadměrného odebíraného výkonu, nebo nízké teplotě topné vody, bude dohřev topné vody probíhat ve stávajícím výměníku připojeném na centrální zásobování teplem. Dodané teplo z tepelného čerpadla bude měřeno měřičem tepla osazeným na vratné potrubí do akumulační nádoby. Měření tepla bude podkladem pro vyhodnocení úspor.

Ohřev teplé vody

Ohřev teplé vody bude rozšířen oproti stávajícímu ohřevu teplé vody ve výměníkové stanici. Z prostorových důvodů byl ohřev teplé vody umístěn do vedlejší místnosti – skladu vedle výměníkové stanice. Teplá voda bude ohřívána v deskovém výměníku o výkonu 70 kW a ukládána do vrstveného zásobníku o objemu 1,4 m3. Na přívodu topné vody bude osazeno oběhové čerpadlo s konstantními otáčkami, na zpátečce pak měřič vyrobeného tepla. Na výstupu výměníku bude pojistný ventil, teploměr a tlakoměr. Nabíjecí čerpadlo studené vody bude v nerezovém nebo bronzovém provedení. Akumulační nádoba bude vybavena revizním otvorem, úprava vnitřního povrchu bude smaltováním nebo nátěrem s atestem pro pitnou a teplou vodu.

Chlazení oleje

S ohledem na to, že i v této variantě č.2 lze využít odpadního tepla z chlazení oleje stávajících šroubových kompresorů je toto navrženo, teplotní spád je sice nižší oproti TČ, ale v samostatném okruhu předehřevu teplé vody.

Vsazení vodního chladiče oleje do série ke stávajícímu čpavkovému chladiči je předmětem části projektu chlazení. Odpadní teplo z vodního chladiče oleje o výpočtovém výkonu 40 kW bude využíváno pro předehřev teplé užitkové vody pro rolbu malé ledové plochy (v období kdy je malá ledová plocha v provozu = listopad – březen) Stávající zásobníkové plynové ohřívače teplé vody 820l budou zapojeny do série, kdy první bude nabíjen chladičem oleje a druhý bude sloužit pro případný dohřev pomocí plynového hořáku. Spotřeba TUV pro rolbu malé ledové plochy je cca 3,5 m3/den 45°C.

V období kdy není malá ledová plocha provozována, ale je v provozu velká ledová plocha (srpen-říjen a duben bude chlazení oleje ručně přepnuto do stávajících akumulačních nádob pro rolbu velké ledové plochy a sněžnou jámu. Přepínání

provozu bude při odstavení oběhového čerpadla pomocí uzavíracích kohoutů. Nabíjecí čerpadlo bude s konstantními otáčkami, ale připojené na externí frekvenční měnič, který je součástí měření a regulace chladícího zařízení. Výstupní teplota z chladiče oleje bude udržována na žádané hodnotě změnou otáček nabíjecího čerpadla. Na výstupu výměníku bude osazen pojistný ventil, teploměr a tlakoměr. Na přívodu studené vody bude umístěn měřič vyrobeného tepla pro vyhodnocení úspor. Na přívodu studené vody budou připojeny 2 expanzní nádoby 33l/PN10.

Voda ohřívaná olejovým výměníkem nesmí být z hygienických důvodů použita pro jiný účel než je úprava ledové plochy rolbou a pro rozpouštění sněhu ve sněžné jámě. Nesmí být přivedena k umyvadlům a sprchám. Všechny výtoky této teplé užitkové vody musí být označeny, že se nejedná o vodu pitnou!

ZIMNÍ STADION CHEB BILANCE CHLAZENÍ OLEJE 40 kW

		odpadní teplo chlazení	Úspora tepla Rolba malá led. plocha získané	teplo pro rolbu velké led.plochy
		oleje	teplo	a sněžnou jámu
	dní	GJ	GJ	GJ
leden	31	19	16	
únor	28	17	14	
březen	31	24	16	
duben	30	7		7
květen	31	0		
červen	30	0		
červenec	31	0		
srpen	31	16		16
září	30	17		17
říjen	31	18		18
listopad	30	23	15	
prosinec	31	21	16	
Σ		162	77.4	58

Využitelné teplo 3,5 m3/den 45°C

chladící faktor čpavkového chlazení je 2,6 stávající spotřeba elektřiny pro chlazení oleje hěží 12 hod/den

DEZI IZ 1100/	Jen
současnost kompresorů v běhu	výkon 10 kW / kompresor
ks	kW
2,0	20
2,0	20
2,5	25
0,7	7
0,0	0
0,0	0
0,0	0
1,7	17
1,9	19
1,9	19
2,6	26
2,2	22

bezpečnostní součinitel **0,7**

14,5 MWh/rok

Pozn. Do ekonomického vyhodnocení a bilance bude započtena úspora 77,4 GJ/rok v teple zemního plynu (58 GJ/rok bude očekávaný nezapočtený bonus) a další úspora v el. Energii cca 14,5 MWh/rok (na chladivu stávajících kompresorů) při použití vodního chladiče oleje.

Teplovodní přípojka plaveckého bazénu

Teplovodní přípojka z předvolovaného potrubí DN 50, 240 bm (480 m potrubí) bude sloužit k distribuci odpadního tepla ze zimního stadionu, kde zdrojem tepla bude nově osazené TČ dle varianty č.2. Projekt přípojky bezprostředně souvisí s projektem osazení tepelného čerpadla pro zimní stadion Cheb pro využití odpadního tepla z chladící technologie zimního stadionu. Jedná se o stavbu trvalou.

Meziobjektová část přípojky začíná ve strojovně chlazení hospodářské budovy zimního stadionu a končí v technickém suterénu 6.ZŠ odkud bude pokračovat do strojovny plaveckého bazénu.

Teplovodní přípojka bude provedena z předizolovaného potrubí DN 50/PN6 pokládaného do země s přenosem tepelného výkonu 60-100 kW s teplotním spádem max. 70°C/30°C. Přípojka bude v celé délce vedena ve zpevněném terénu tvořeném chodníky a vozovkami. Trasa přípojky je volena s ohledem na křížení s ostatními inženýrskými sítěmi a v souvislosti s řešením kompenzací teplotní délkové roztažnosti potrubí. Stavba bude provedena před plánovanou rekonstrukcí povrchu ul. Obětí nacismu.

Výměníková stanice plavecký bazén

Do plaveckého bazénu bude vedena teplovodní přípojka DN50 z předizolovaného potrubí uloženého v zemi v komunikaci ulice Obětí nacismu. Teplovodní přípojka končí v prostoru technického suterénu pod spojovacím traktem budov bazénu a základní školy ZŠ 6. V prostoru technického suterénu bude potrubí provedeno z ocelových trub zavěšených na stropní konstrukci. Lze využít stávající závěsy pro ostatních instalací. Potrubí bude opatřeno základním nátěrem a tepelnou izolací z minerálních vláken s hliníkovým polepem.

V prostoru strojovny tepelného čerpadla bude na samostatném výstupu z akumulační nádoby osazeno oběhové čerpadlo přípojky plaveckého bazénu. Oběhové čerpadlo bude s el. řízenými otáčkami podle nastaveného variabilního diferenčního tlaku dp-v. Spínání chodu oběhového čerpadla bude řízeno potřebou výměníkové stanice plaveckého bazénu. (součástí přípojky je i komunikační kabel)

Výměník pro ohřev bazénové vody o výkonu 100 kW bude umístěn v blízkosti stávajících výměníků ohřevu bazénové vody. Ohřev tepelným čerpadlem bude předřazen ohřevu stávajícími výměníky, proto odběr bazénové vody a navrácení ohřáté bazénové vody musí být před místem odběru stávajících výměníků. Výkon výměníku bude regulovaný dvoucestným ventilem s elektrickým pohonem. Na zpátečce topné vody bude umístěn regulátor tlakové diference a měřič dodaného tepla. Mezi přívodem a zpátečkou bude proveden zkrat s osazením kohoutu s el.pohonem pro udržování natopeného přívodu na provozní hodnotě. Na přívodu topné vody i na přívodu bazénové vody bude před výměníkem osazen filtr. Na výstupu bazénové vody z výměníku bude osazen pojistný ventil, teploměr a tlakoměr. Průtok bazénové vody výměníkem bude zajištěn seškrcením průtoku hlavním cirkulačním potrubím bazénu pomocí vloženého mezipřírubového ventilu.

ZIMNÍ STADION CHEB BILANCE VYROBENÉHO TEPLA TEPELNÝM ČERPADLEM ČPAVEK X VODA VČETNĚ DODÁVEK TEPLA z CZT, NAVÝŠENÍ ODBĚRU EL. ENERGIE

	0 = 2 11 = 11		AZ CZI, NA		DDLING L							•		
	teplo	topný faktor TČ	vyrobitelné teplo TČ s topným faktorem cop	spotřeba tepla UT zimní stad.	spotřeba tepla TV zimní stad.	spotřeba tepla bazén	Spotřeba celkem	průměrný potřebný výkon	max výkon TČ	odhadovaný podíl TČ na výrobě tepla	tepla z TČ	dodávka z CZT	ztráty systému TČ 5%	spotřeba elektřiny TČ
	GJ	COP	GJ	GJ	GJ	GJ	GJ	kW	kW	%	GJ	GJ	GJ	kWh
leden	385	4,86	484	379	32	126	537	201	120	30	153	384	8	9 213
únor	381	4,86	480	347	32	115	494	184	140	32	150	344	8	9 030
březen	432	4,86	543	344	31	126	501	187	150	40	190	311	10	11 460
duben	114	4,86	144	182	15	61	258	96	160	90	123	135	6	7 395
květen	0		0	35	1	0	36	13			0	36	0	
červen	0		0	19	0	0	19	7			0	19	0	
červenec	0		0	14	0	0	14	5			0	14	0	
srpen	253	4,86	319	30	15	51	96	36	160	90	82	14	4	4 950
září	296	4,86	372	141	22	122	285	107	160	70	190	96	10	11 419
říjen	322	4,86	406	244	22	126	392	146	150	50	186	206	10	11 210
listopad	455	4,86	573	327	22	122	471	176	140	40	179	292	9	10 778
prosinec	416	4,86	524	332	31	126	489	183	120	30	139	350	7	8 389
Σ	3054		3845	2395	221	977	3594				1394	2200	73	83 845

Investiční náklady varianty č.2 v tis. Kč s DPH

invocacin manady variantly of the me	 				
úprava systému chlazení (vsazení vodního					
kondenzátoru, chladiče oleje, úprava MaR)					1120
strojovna tepelná čerpadla, přípojka					
bazénu, VS bazén, VS zimák					7040
elektro-silnoproud strojovna TČ					132
MaR strojovna TČ					240
el+MaR VS bazén, VS zimák					440
CELKEM					8972

Orientační schéma zapojení TČ s vysokotlakým kompresorem varianty č. 2

7 Péče o životní prostředí

Enviromentální vyhodnocení varianty č.1

	Výchozí stav	Stav po realizaci	Rozdíl
Znečišťující látka	(t/rok)	(t/rok)	(t/rok)
Tuhé látky	0,0035	0,0025	0,0010
SO_2	0,0017	0,0012	0,0005
NO_x	0,3358	0,2382	0,0976
CO	0,0570	0,0404	0,0166
CO ₂	337,02	239,06	97,964

Z úspory plynu na CZT a při výrobě tepla na ZS. Enviromentální vyhodnocení varianty č.2

	Výchozí stav	Stav po realizaci	Rozdíl
Znečišťující látka	(t/rok)	(t/rok)	(t/rok)
Tuhé látky	0,0035	0,0027	0,0008
SO ₂	0,0017	0,0013	0,0004
NO _x	0,3358	0,2574	0,0784
CO	0,0570	0,0437	0,0133
CO ₂	337,02	258,35	78,667

Z úspory plynu na CZT a při výrobě tepla na ZS.

8. Upravené energetická bilance

Upravená roční energetická bilance - varianta 1

- dle přílohy č.6 k vyhlášce č. 213/2001 Sb.

		Před realiz	ací opatření	Po realizaci opatření		
ř.	Ukazatel	GJ/r	tis. Kč/r	GJ/r	tis. Kč/r	
1	Vstupy paliv a energie	5 232,4	4 142,9	3 711,4	3 333,3	
1a	z toho elektrická energie	2 276,2	2 305,8	2 730,6	2 766,1	
1b	z toho palivo zemní plyn	339,17	125,7	261,77	97,0	
1c	z toho nákup tepla z CZT	2 617,0	1 711,4	719,0	470,2	
2	Změna zásob paliv	0,0	0,0	0,0	0,0	
3	Spotřeba paliv a energie	5 232,4	4 142,9	3 711,4	3 333,3	
4	Prodej energie cizím (UT + TUV)	0,0	0,0	0,0	0,0	
5	Konečná spotřeba paliv a energie v objektu	5 232,4	4 142,9	3 711,4	3 333,3	
6	Ztráty ve vlastním zdroji ÚT z plynu	50,9	18,8	39,3	14,5	
7	Spotřeba energie na ÚT a ohřev TUV	2 905,3	1 818,3	1395,9	1 012,9	
	Spotřeba energie na technologické					
8	procesy	2 276,2	2 305,8	2276,2	2 305,8	
9	Energetická účinnost	99%		99%		

Pozn. Energetická bilance počítá s využitím tepla pro předehřev bazénové vody plaveckého bazénu , jedná se o stejného provozovatele a stejné ceny za dodávky tepla

Rekapitulace Varianty č. 1 vysokonákladových úsporných opatření

Předpokládané investiční náklady uvedené v projektu (Kč včetně DPH 20%):

- MaR pro technologii chlazení, VS ZS a plaveckého bazénu, komunikační kabel a rozšíření stávajícího velínu
 = 771 000,-Kč
- Technologie úpravy chlazení, TČ, zařízení ve VS ZS a plavecký bazén = 3 907 000,- Kč
- Elektroinstalace pro úpravy technologických zařízení = 351 000,-Kč
- Potrubní přípojka z předizolovaného potrubí = 630 000,-Kč
- Stavební úpravy pro montáž technologie včetně zemních prací = 535 000,-Kč

Celkové investiční náklady

= 6 194 000,-Kč

Projektové náklady územního a stavebního řízení, výše nezapočtené = 269 000,-Kč

Předpokládané úspory:

- snížení spotřeby tepla na ÚT a ohřev teplé vody v ZS (CZT) = 1898 GJ/rok
- roční úspora ve stávající ceně tepla (653,973 Kč/GJ s DPH) = **1241,218 tis. Kč/rok**
- snížení spotřeby tepla na ohřev teplé vody v ZS pro rolbu (ZP) = 77,4 GJ/rok
- roční úspora ve stávající ceně ZP (370,463 Kč/GJ s DPH) = **28,685 tis. Kč/rok**
- snížení spotřeby el. Energie vlivem úspory chlazení oleje v ZS(el. energie)=14,5 MWh/rok
- roční úspora ve stávající ceně el. energie (3,646 Kč/kWh s DPH) = **52,800 tis. Kč/rok**

Zvýšení spotřeby el. energie:

- zvýšení spotřeby el. energie při chodu TČ

- = 140,703 kWh/rok
- zvýšené roční nákl. ve stávající ceně el. energie (3,646 Kč/kWh s DPH)=513,042tis. Kč/rok

Varianta č. 1 – rekapitulace

Celková roční výše dosažitelných úpor, které lze jednoznačně vyčíslit:

Celkem potenciál úspor v nákladech na teplo z CZT, ZP, el. energie = 1521 GJ/rok

(Pozn. Po odečtu navýšení spotřeby el. Energie za TČ)

= 809,654 tis. Kč/rok

<u>Celkem potenciál úspor varianty č.1 v Kč s DPH</u> Předpokládané investiční náklady celkem varianta č.1

= 6 194 000 Kč

Předpokládaná výše dotace ze SFŽP celkem varianta č.1 (70 %)

= 4335800 Kč

Upravená roční energetická bilance - varianta 2

- dle přílohy č.6 k vyhlášce č. 213/2001 Sb.

		Před realiz	ací opatření	Po realizaci opatření		
ř.	Ukazatel	GJ/r	tis. Kč/r	GJ/r	tis. Kč/r	
1	Vstupy paliv a energie	5 232,4	4 142,9	4 011,0	3 455,8	
1a	z toho elektrická energie	2 276,2	2 305,8	2 525,9	2 558,7	
1b	z toho palivo zemní plyn	339,2	125,7	261,8	97,0	
1c	z toho nákup tepla z CZT	2 617,0	1 711,4	1 223,4	800,1	
2	Změna zásob paliv	0,0	0,0	0,0	0,0	
3	Spotřeba paliv a energie	5 232,4	4 142,9	4 011,0	3 455,8	
4	Prodej energie cizím (UT + TUV)	0,0	0,0	0,0	0,0	
5	Konečná spotřeba paliv a energie v objektu	5 232,4	4 142,9	4 011,0	3 455,8	
6	Ztráty ve vlastním zdroji a rozvodech ÚT	50,9	18,8	39,3	14,5	
7	Spotřeba energie na ÚT a ohřev TUV	2 905,3	1 818,3	1445,9	882,5	
8	Spotřeba energie na technologické procesy	2 276,2	2 305,8	2525,9	2 558,7	
9	Energetická účinnost	99,0%		99%		

Pozn. Energetická bilance počítá s využitím tepla pro předehřev bazénové vody plaveckého bazénu , jedná se o stejného provozovatele a stejné ceny za dodávky tepla

Rekapitulace Varianty č. 2 vysokonákladových úsporných opatření

Předpokládané investiční náklady uvedené v projektu (Kč včetně DPH 20%):

Celkové investiční náklady

= 8 972 000,-Kč

Odhadované projektové náklady

= 270~000,-Kč

Předpokládané úspory:

- snížení spotřeby tepla na ÚT a ohřev teplé vody v ZS (CZT) = 1394 GJ/rok
- roční úspora ve stávající ceně tepla (653,973 Kč/GJ s DPH) = **911,38 tis. Kč/rok**
- snížení spotřeby tepla na ohřev teplé vody v ZS pro rolbu (ZP) = 77.4 GJ/rok
- roční úspora ve stávající ceně ZP (370,463 Kč/GJ s DPH) = **28,685 tis. Kč/rok**
- snížení spotřeby el. Energie vlivem úspory chlazení oleje v ZS(el. energie)=14,5 MWh/rok
- roční úspora ve stávající ceně el. energie (3,646 Kč/kWh s DPH) = **52,800 tis. Kč/rok**

Zvýšení spotřeby el. energie:

zvýšení spotřeby el. energie při chodu TČ

= 83.845 kWh/rok

- zvýšené roční nákl. ve stávající ceně el. energie (3,646 Kč/kWh s DPH)=302,4tis. Kč/rok

Varianta č. 2 – rekapitulace

Celková roční výše dosažitelných úpor, které lze jednoznačně vyčíslit:

<u>Celkem potenciál úspor v nákladech na teplo z CZT, ZP, el. energie = 1221,4 GJ/rok</u> (Pozn. Po odečtu navýšení spotřeby el. Energie za TČ)

Celkem potenciál úspor varianty č.2 v Kč s DPH= 687,164 tis. Kč/rokPředpokládané investiční náklady celkem varianta č.2= 8 972 000 Kč

Předpokládaná výše dotace ze SFŽP celkem varianta č.2 (70 %) = 6 280 400 Kč

8 Další možná úsporná opatření

Možné další úsporné opatření - instalace kogenerační jednotky pro dohřev ÚT na vyšší teplotní spád a výrobu el. energie pro vlastní spotřebu ZS popř. i plaveckého bazénu.

9 Ekonomické vyhodnocení

Pro investiční opatření navržená v EA se stanoví:

0. prostá doba návratnosti investice – doba splacení (DN)

$$DN = I_0 / C$$
 kde I_0 = investiční náklady CF = roční Cash - Flow projektu

reálná doba návratnosti (výpočtem z diskontovaného Cash – Flow projektu)

Základními ukazateli ekonomické efektivnosti investičních opatření jsou:

2. čistá současná hodnota (NPV)

$$NPV = \sum_{t=1}^{n} \frac{CFt}{(1+r)^{t}} - I_0$$
 kde: CFt - Cash - Flow projektu v roce t
 r - diskont
 t - hodnocené období (1 až n let)

3. vnitřní výnosové procento (IRR)

Pro
$$I_0 - \sum_{t=1}^n \frac{CFt}{(1+r)^t} = 0$$
 platí: $IRR = r$

Ekonomické výpočty jsou uvedeny v příloze č. 1

Rekapitulace ekonomických ukazatelů varianty č. 1:

Prostá návratnost s dotací 5,31 let Reálná návratnost s dotací 5,83 let IRR (s dotací) 21,75%

Průměrno roční diskontovaný zisk 325 ti. Kč/rok

Prostá návratnost bez dotace 14 let

Rekapitulace ekonomických ukazatelů varianty č. 2:

Prostá návratnost s dotací 8,9 let Reálná návratnost s dotací 10,7 let IRR (s dotací) 8,74%

Průměrno roční diskontovaný zisk 157 ti. Kč/rok Prostá návratnost bez dotace nenávratné

10 Výběr optimální varianty

Auditor prověřil různé možnosti úsporných opatření ve formě návrhu projektů a propočtů ekonomické návratnosti provedených opatření a zjistil, že <u>varianta č.1</u> PROJEKT OSAZENÍ TEPELNÉHO ČERPADLA voda x voda na Zimním stadionu, ul. Valdštejnova 70, 350 02 Cheb pro využití odpadního tepla z chlazení, na zimním stadionu a na plaveckém bazénu, ul. Obětí nacismu 16, 350 02 Cheb je ekonomicky návratný a z hlediska potenciálu dosažitelných úspor nejvýhodnější.

Předmětem projektu je instalace tepelného čerpadla/del (2 ks, 2 x 70 kW max. jm. tepelného výkonu) pro využití odpadního tepla ze stávající chladící technologie zimního stadionu v Chebu. Součástí projektu jsou úpravy výměníkových stanic zimního stadionu a plaveckého bazénu pro napojení na tepelné čerpadlo, úpravy technologie chlazení, elektroinstalace nově instalovaných zařízení včetně samostatného napojení a měření TČ, MaR a nutné stavební úpravy. Samostatnou částí dokumentace je teplovodní přípojka plaveckého bazénu, která zajistí přenos tepelného výkonu ze ZS a umožní využití odpadního tepla v plaveckém bazénu.

Účelem úsporného projektu je využití zbývajícího odpadního tepla čpavkových par a oleje šroubových kompresorů pro předehřev vytápění zimního stadionu, předehřev teplé vody, ohřev bazénové vody plaveckého bazénu a ohřev teplé užitkové vody pro rolbu.

Využitím odpadního tepla dojde ke snížení emisí z místních zdrojů centrálního zásobování teplem z PK Riegrova ul. a k úspoře primárních energetických zdrojů a ke snížení provozních nákladů.

Tato varianta nejlépe vystihuje provozně technické možnosti chladícího zařízení na zimním stadionu, představuje úspory energií a snižuje zátěž životního prostředí.

11 Závazné výstupy energetického auditu

Celkový potenciál úspor energie

Je vypočten za předpokladu realizace navržených opatření na úrovni cca 868 GJ/rok. Potenciál úspor je dosažitelný za podmínek provozu zařízení dle navrženého projektu úsporných opatření.

12 Závěr

Závěrečná doporučení

Energetický auditor <u>doporučuje projekt pro realizaci varianty č. 1</u> - **OSAZENÍ TEPELNÉHO ČERPADLA** voda x voda na Zimním stadionu, ul. Valdštejnova 70, 350 02 Cheb pro využití odpadního tepla z chlazení, na zimním stadionu a na plaveckém bazénu, ul. Obětí nacismu 16, 350 02 Cheb .

Datum zpracování energetického auditu: duben 2010	
Za Zpracovatele:	
Podpis energetického auditora:	
Razítko energetického auditora	

13 Evidenční list energetického auditu

Předmět EA	Energeticky úsporný projekt pro nebytový objekt Zimní stadion								
Adresa	Zimní sta	imní stadion Valdštejnova čp. 70, 350 02 Cheb							
Zadavatel EA	Město C	heb		Zá	stupce	MUDr Jan Svoboda			
Adresa zadavatele	Náměstí	KráleJiřího	z Poděbra	d 14, Che	b				
Telefon 354 440	555	Fax	354 440 5	556	E-mail				
Charakteristika						energetické diska možnosti			
předmětu EA	využití o	dpadního	tepla z chl	azení.					
Výchozí stav									
Stručný popis			•	•	•	vá v objektové			
energetického						e je objekt osazen ení odběru tepla			
hospodářství	objektu,	objektov	ého rozvo	odu tepla	a. Techn	ologie stávajícího			
(vč. budov)					•	avku pro chlazení jednostupňového			
	chladící	ho zaříze	ní se skl	ládá ze	stávající	ch 4 šroubových			
		kompresorů Bitzer 55kW s využitím pouze odpadního tepla							
	z prenra	átých par. Instal. ⁻	Гер. výkon	Instal	el. Výkon (MW)				
Vlastní energetický z	droj				· · · · · · · · · · · · · · · · · · ·				
,	,	0,63			0				
Typ energosoustrojí	(protitla	ká, odběr	ová, konc	denzační	, 0	0			
spalovací, vodní, větr	ná turbín	rbína, spalovací motor, atd.)							
Teplo	Výroba ve vlastním zdroji (GJ/r)				0	0			
	Nákup (GJ/r)		2617	2617				
	Prodej (GJ/r)		0					
Elektřina	Výroba	ve vlastnír	n zdroji (M	Wh/r)	0	0			
	Nákup (MWh/r)			632,29				
	Prodej (MWh/r)			0				
Spotřeba paliv a er (GJ/r)	nergie	5232,4	Z toh	o přímá t spotřeb	_	echnologická 0 (G.l/r)			
Spotřebič energie		•	Ztráta N)		oa energie GJ/r)	Nositel energie			
Vytápěné objekty		630	,	2617	,	Teplá voda			
Výroba TUV		50		339,17		Zemní plyn			
Výroba technologické	e vody	0		0		Teplá voda			

Energeticky úsporný projekt												
Stručný popis doporučené varianty	Energetický auditor doporučuje projekt pro realizaci varianty č. 1 - OSAZENÍ TEPELNÉHO ČERPADLA voda x voda na Zimním stadionu, ul. Valdštejnova 70, 350 02 Cheb pro využití odpadního tepla z chlazení, na zimním stadionu a na Plaveckém bazénu, ul. Obětí nacismu 16, 350 02 Cheb . Ekonomické vyhodnocení uvažuje s dotací od SFŽP ve výši 70 % rozpočtových investičních nákladů tj. 4 335 800,-Kč.											
Investiční náklady (ti	is. Kč)	6194	4	Z	z toho	tech	nologie	tis.	Kč))	5659	9
Konečná spotřeba p	aliv a enei	rgie	pře	d re	alizac	í pro	jektu	р	o rea	alizac	i pro	jektu
			((ergi 3J/r) 232,4		(tis.	klady Kč/r) 42,9	Energie (GJ/r) 3711,4		r)	Náklady (tis. Kč/r 3333,3	
Potenciál energetických úspor			GJ/r				22.14			GJ	GJ/r	
		Fnv	ironm	ent	ální n	říno	SV			152	21	
Znečišťující látka						ıv po	v po realizaci (t/r)			Rozdíl (t/r)		
Tuhé látky	0,0035				0,0025			0,0	0,0010			
SO ₂	0,0017				0,0012				0,0005			
NO _x	0,3358				0,2382				0,0976			
CO	0,0570				0,040)4)4			166		
CO ₂	337,02				239,0	06			97,	964		
			nomi	cká	efekt							
Cash - Flow projektu	ı (tis. Kč/r)) ;	324			Do	ba hod	noce	ení (ı	roky)	15	
Prostá doba návratnosti (roky)						Dis	skont (%	6)			2	
Reálná doba návratr	nosti (roky)	5,8 NPV (tis.			Kč)	(č) 3246,345			IRR ((%)	21,75
Energetický auditor	Miroslav I	Poko	corný			Č. osvědčení				130		
Podpis	Datum 15.4.2010				0							

14 Tabulky podle vyhlášky č 425/2004 Sb.

Tabulka č. 5

Ř						Roční	úspory		
1 1	Číslo opatření		Pořizovací výdaje	Úspora	energie	Úspora osobních výdajů	Úspora výdajů na opravy	Úspora ostatních výdajů	Úspora celkem
2			Kč	GJ/rok			Kč/rok		
3		Navržená	úsporná	Opatření	Varianty č.1				
4		Využití odpadního tepla TČ		1898					
5		Instalace vodního chladiče oleje kompresorů		129,5					
6	3								
7	4								
8	5								
9	6								
10	7	_							
11	varianta celkem		6194 000	2027,5					1322703

Závěrečná tabulka č. 6 vstupních hodnot a výsledků ekonomického hodnocení

Údaje	Kč ost.jedn.
Investiční výdaje projektů	6 194 000,- Kč
Změna nákladů na energii (-snížení, + zvýšení)	- 809654,- Kč/rok
Změna ostatních provozních nákladů, v tom:	
změna osobních nákladů - mzdy	
změna ostatních provozních nákladů- revize, opravy	
Změna tržeb	0
Přínosy projektů celkem cca	501000,-Kč/rok
Doba hodnocení	15 let
Diskont	2
Hodnoty kritérií IRR	21,75
Hodnoty kritérií NVP	3246345
Hodnoty kritérií T _{sd}	5,8
Hodnoty kritérií T _s	5,3
Daň z příjmu	0
Případné další údaje – dotace SFŽP	4335800

15 Seznam příloh:

1. Ekonomické hodnocení variant č. 1, č. 2