# Infraestructura Computacional Virtualización

Rafael Gómez Francisco Rueda Sandra Rueda

### Sistema Operativo Multiusuario

- Administración de los recursos de la máquina
  - Manejo de usuarios
  - Asignación de recursos
  - Virtualización de recursos
  - Contabilidad
  - Protección



Los recursos son compartidos



Los recursos son compartidos



Los recursos son compartidos



Los recursos son compartidos



#### Mapear

Llamado al sistema

RVi

Monitor de virtualización

RR

Traducción (mapeo)



Recurso Virtual (RV)
Recurso Real (RR)

### Virtualización del Procesador





Direccionamiento real

| ••••• |                                         |       |
|-------|-----------------------------------------|-------|
| ••••• |                                         | 10000 |
| mov   | REG1,                                   | 10000 |
| ••••• | ••••••                                  |       |
| ••••• | • • • • • • • • • • • • • • • • • • • • |       |

Mover el contenido de la ubicación 10000 de memoria al registro 1.

Direccionamiento real



| ••••• |                                         |       |  |
|-------|-----------------------------------------|-------|--|
| ••••• |                                         | 10000 |  |
| mov   | REG1,                                   | 10000 |  |
| ••••• | •••••                                   |       |  |
| ••••• | • • • • • • • • • • • • • • • • • • • • |       |  |

- Memoria real y múltiples procesos
  - ¿Dónde deberían ser cargados los procesos?
  - ¿Podría haber intersección en el espacio de direcciones?

| ••••• |       |       |  |
|-------|-------|-------|--|
| mov l | REG1, | 10000 |  |
| ••••• | ••••• |       |  |
| ••••• | ••••• |       |  |

### **Múltiples Programas**

Direcciones relativas





### **Propuesta**

- Registros
  - base
  - límite





### **Programas Grandes**



### **Propuesta**



- Preguntas
  - Un proceso debe estar en memoria para ser ejecutado.
    - ¿Cómo cargar un programa que es más grande que la memoria física disponible?

- Preguntas
  - Un proceso debe estar en memoria para ser ejecutado.
    - ¿Cómo mantener múltiples procesos en memoria para que puedan ser ejecutados de forma concurrente?

- Preguntas
  - Varios procesos pueden usar el mismo código (una librería por ejemplo).
    - ¿Cómo permitir que varios procesos tengan acceso a una parte de memoria que es compartida?

#### Memoria Virtual

- Los programas manejan direcciones virtuales
  - Deben ser traducidas a direcciones en memoria real



### Memoria Virtual y Memoria Real



#### Características

- La mayoría de los sistemas hoy en día tienen memoria virtual (MV)
- La Memoria virtual es más grande que la memoria principal (el espacio de direcciones es más grande)
- Los programas generan direcciones virtuales que deben ser automáticamente traducidas a memoria real

#### Direccionamiento



En un sistema sin memoria virtual esta dirección corresponde a la dirección en la memoria real.

En un sistema con memoria virtual debemos establecer la dirección real correspondiente.

#### Direccionamiento



#### **Memoria Virtual**

Tabla de Tabla Páginas Auxiliar



Infracomp 2.

#### Traducción de Direcciones

- La traducción se hace por medio de una tabla de páginas (TP)
  - reside en la memoria real
  - indica en qué parte de la memoria están las páginas de la MV (no todas las páginas están en memoria)
- Además hay una tabla auxiliar (TA)
  - indica en qué parte del disco está cada una de las páginas de la MV

#### Traducción de Direcciones

- Para hacer la traducción se usan diferentes mecanismos:
  - paginación
  - paginación en varios niveles
  - segmentación

### Paginación

- El espacio de direcciones virtuales se divide en unidades del mismo tamaño: Páginas
- El espacio real se divide en unidades similares: Marcos de página
- Por lo general las páginas y los marcos de página son del mismo tamaño



# Paginación



### Paginación

Una dirección virtual tiene dos partes:



## **Ejemplo**

Página: 3

Desplazamiento: 2



### **Ejemplo**



Tamaño de la página es 2<sup>12</sup> posiciones Número de páginas en memoria física 2<sup>18</sup> Número de páginas en memoria virtual 2<sup>20</sup>

### Traducción de Direcciones



### Tabla de Páginas



| 15 | Х |
|----|---|
| 14 |   |
| 13 |   |
| 12 |   |
| 11 |   |
| 10 |   |
| 9  |   |
| 8  |   |
| 7  |   |
| 6  |   |
| 5  |   |
| 4  |   |
| 3  | 1 |
| 2  | Х |
| 1  | 0 |
| 0  | 7 |

### Tabla de Páginas

- Suponga que tenemos un sistema con:
  - direcciones virtuales de 32 bits,
  - páginas de memoria de 2<sup>12</sup> posiciones y
  - 4 bytes por entrada en la tabla de páginas.
- Calcule el tamaño de la tabla de páginas

Número de páginas (entradas en la tabla)

Tamaño de la tabla

| 15 | Х |
|----|---|
| 14 |   |
| 13 |   |
| 12 |   |
| 11 |   |
| 10 |   |
| 9  |   |
| 8  |   |
| 7  |   |
| 6  |   |
| 5  |   |
| 4  |   |
| 3  | 1 |
| 2  | х |
| 1  | 0 |
| 0  | 7 |

### Tabla de Páginas

- Suponga que tenemos un sistema con:
  - direcciones virtuales de 32 bits,
  - páginas de memoria de 2<sup>12</sup> posiciones , y
  - 4 bytes por entrada en la tabla de páginas.
- Calcule el tamaño de la tabla de páginas

#### Número de páginas (entradas en la tabla)

= espacio de direcciones/tamaño por página

 $= 2^{32} / 2^{12}$ 

#### Tamaño de la tabla

2<sup>20</sup> (entradas) \* 4 bytes por entrada

= 4 MB

| 15 | Х |
|----|---|
| 14 |   |
| 13 |   |
| 12 |   |
| 11 |   |
| 10 |   |
| 9  |   |
| 8  |   |
| 7  |   |
| 6  |   |
| 5  |   |
| 4  |   |
| 3  | 1 |
| 2  | Х |
| 1  | 0 |
| 0  | 7 |



- La página no está en memorial real
  - Debe ser recuperada de disco y cargada en memoria real
  - La recuperación puede generar la salida de una página de memoria real y su envío al espacio auxiliar







## Tiempo de Acceso

Memoria RAM 50 – 150 nanosegundos

**Disco**20 milisegundos

50 nanosegundos



20 \* 10<sup>6</sup> nanosegundos



# Tiempo de Acceso

Suponga que se tiene un sistema con una probabilidad de falla de página de 0,2, tiempo de acceso a memoria de 100 nanosegundos y tiempo promedio de servicio por falla de página de 25 milisegundos.

```
Tiempo de acceso efectivo (TAE) =
```

# Servicio por Falla de Página

- 1. Generación de la falla de página
- 2. Sacar página (la que será reemplazada)
- 3. Cargar página (la página requerida)
- 4. Reinicio

## Características del Sistema



# Sobrepaginación (thrashing)

- La tasa de fallas de paginación es muy alta
  - Bajo uso de CPU
  - El proceso no
     avanza porque
     gasta la mayoría del
     tiempo en cambios
     de página hacia y
     desde memoria
     principal



## Traducción

- Existen otros mecanismos de traducción
  - segmentación,
  - paginación-segmentación,
  - paginación a dos niveles,

**–** ...

## Traducción

• En un sistema de paginación a dos niveles las direcciones tienen tres partes



## Traducción

- Para hacer la traducción se usan una tabla de hiperpáginas y una tabla de páginas
- Esto permite que las tablas de soporte de la MV ocupen menos espacio en memoria real



# En un sistema con paginación, ¿cuánto ocupa una tabla de páginas ?. ¿En un sistema de paginación a dos niveles?





#### Paginación de un nivel: Tamaño de la tabla de páginas

```
Tamaño de la memoria = 2^{32}

Tamaño de una página = 2^{12} posiciones de memoria

Número de páginas = 2^{32} / 2^{12}

Tamaño de la tabla = 2^{20} * 4 bytes = 4 MB
```

#### Paginación de dos niveles:

#### Tamaño de la tabla de hiperpáginas:

```
Tamaño por hiperpágina = 212 entradas
Número de hiperpáginas =

Tamaño de la tabla =

Tamaño de una tabla interior: =
```

#### Paginación de un nivel: Tamaño de la tabla de páginas

```
Tamaño de la memoria = 2^{32}

Tamaño de una página = 2^{12} posiciones de memoria

Número de páginas = 2^{32} / 2^{12}

Tamaño de la tabla = 2^{20} * 4 bytes = 4 MB
```

#### Paginación de dos niveles:

#### Tamaño de la tabla de hiperpáginas:

```
Tamaño por hiperpágina = 2^{12} entradas

Número de hiperpáginas = 2^{20} páginas/ (2^{12} páginas/hiperpágina)

= 2^{8} hiperpáginas

Tamaño de la tabla = 2^{8} * 4 bytes = 1 KB
```

#### Tamaño de una tabla interior:

```
= (2^{12} \text{ entradas/hiperpágina}) * 4 \text{ bytes}
= 2^{14} \text{ B}
= 16 KB
```

# El uso de memoria virtual de varios niveles podría aumentar el tiempo de acceso a la memoria. ¿Cuánto?



### **TLB**

- Un buffer TLB es una zona de memoria caché que guarda información de correspondencias de direcciones de memoria que se usaron recientemente
- Ahorra tiempo de acceso a la tabla de páginas
  - Es un subconjunto de la información en la tabla de páginas



Infracomp

55

# ¿Cuánto es el tiempo promedio de acceso a la memoria en un sistema sin TLBs ? Con TLBs?

#### TLB

| Tamaño                | 16-512 entradas        |
|-----------------------|------------------------|
| Tiempo si encuentra   | 0.5-1 ciclo de reloj   |
| Tiempo si falla       | 10-100 ciclos de reloj |
| Probabilidad de falla | 1%                     |



#### Tabla de páginas (en memoria)

| Tiempo si encuentra | 100 ciclos de reloj |
|---------------------|---------------------|
|---------------------|---------------------|

# ¿Cuánto es el tiempo promedio de acceso a la memoria en un sistema sin TLBs ? Con TLBs?

#### TLB

| Tamaño                | 16-512 entradas        |
|-----------------------|------------------------|
| Tiempo si encuentra   | 0.5-1 ciclo de reloj   |
| Tiempo si falla       | 10-100 ciclos de reloj |
| Probabilidad de falla | 1%                     |



#### Tabla de páginas (en memoria)

| Tiempo si falla | 10,000,000 - 100,000,000 |
|-----------------|--------------------------|
|                 | ciclos de reloj          |

### Construir un algoritmo que muestre la lógica de lo que debe hacer el hardware para traducir una dirección virtual a una dirección real en un sistema con TLBs





- El tamaño del espacio virtual depende de
  - ♦ Espacio de Direcciones
  - ♦ Capacidad del espacio auxiliar
  - ♦ Tamaño de la memoria real







- El tamaño del espacio virtual depende de
  - ♦ Espacio de Direcciones
  - ♦ Capacidad del espacio auxiliar
  - ♦ Tamaño de la memoria real
    - La proporción memoria virtual/memoria real no debería ser muy grande (2,4,8)
    - ¿Qué pasa si es superior?

# Ventajas de Memoria Virtual

- Una de las ventajas de la memoria virtual es que permite cargar múltiples procesos (programas) de forma simultánea
  - sólo se carga una parte de cada uno
- La otra ventaja es que permite compartir recursos
  - librerías por ejemplo, cargarlas varias veces sería desperdiciar recursos

## Referencias

 Fundamentos de Sistemas Operativos, Silberschatz, Galvin y Gagne,. Ed. McGrawHill, 2006. Capítulos Administración de la memoria y Memoria virtual.