0.1 基本性态分析模型

命题 0.1 (多个函数取最值或者中间值)

设 f,g,h 是定义域上的连续函数,则 $(a):\max\{f,g\},\min\{f,g\}$ 是定义域上的连续函数. $(b):\min\{f,g,h\}$ 是定义域上的连续函数.

 $\mathbf{\dot{z}}$ 这里 $\mathrm{mid}\{f,g,h\}$ 表示取中间值函数,显然这个命题可以推广到多个函数的情况.

证明 只需要注意到

$$\begin{split} \max\{f,g\} &= \frac{f+g+|f-g|}{2}, \\ \min\{f,g\} &= \frac{f+g-|f-g|}{2}, \\ \min\{f,g,h\} &= f+g+h-\max\{f,g,h\} - \min\{f,g,h\}. \end{split}$$

命题 0.2

若 f 是区间 I 上处处不为零的连续函数, 则 f 在区间 I 上要么恒大于零, 要么恒小于零.

证明 用反证法, 若存在 $x_1, x_2 \in I$, 使得 $f(x_1) = f(x_2) = 0$, 则由零点存在定理可知, 存在 $\xi \in (\min x_1, x_2, \max x_1, x_2)$, 使得 $f(\xi) = 0$ 矛盾.

命题 0.3

设f为区间I上的可微函数.证明:f'为I上的常值函数的充分必要条件是f为线性函数.

证明 充分性显然, 下证必要性. 设 $f'(x) \equiv C$, 其中 C 为某一常数. $\forall x \in I$, 任取固定点 $x_0 \in I$, 由 Lagrange 中值定理可知, 存在 $\xi \in (\min\{x_0, x\}, \max\{x_0, x\})$, 使得

$$f(x) = f'(\xi)(x - x_0) + f(x_0) = C(x - x_0) + f(x_0).$$

故 f(x) 为线性函数.

定理 0.1 (闭区间上单调函数必可积)

设 f 在 [a,b] 上单调,则 $f \in R[a,b]$.

证明

命题 0.4 (连续的周期函数的基本性质)

设 $f \in C(\mathbb{R})$ 且以T > 0为周期,则

- (1) ƒ在 ℝ 上有界.
- (2) f在 R上一致连续.

证明

- (1)
- (2)

命题 0.5 (导数有正增长率则函数爆炸)

设 f 在 $[a, +\infty)$ 可微且 $\lim_{x \to a} f'(x) = c > 0$, 证明

$$\lim_{x \to +\infty} f(x) = +\infty.$$

全 笔记 类似的还有趋于 -∞ 或者非极限形式的结果,读者应该准确理解含义并使得各种情况都能复现,我们引用本结论时未必就是本结论本身,而是其蕴含的思想.

证明 因为 $\lim_{x\to +\infty} f'(x)=c>0$,所以存在 X>a,使得 $f'(x)>\frac{c}{2}$, $\forall x\geqslant X$. 于是由 Lagrange 中值定理得到,对 $\forall x\geqslant X$,存在 $\theta\in (X,x)$,使得

$$f(x) = f(X) + f'(\theta)(x - X) \geqslant f(X) + \frac{c}{2}(x - X), \forall x \geqslant X.$$

让 $x \to +\infty$ 就得到

$$\lim_{x \to +\infty} f(x) = +\infty.$$

命题 0.6 (函数不爆破则各阶导数必然有趋于 0 的子列)

设 $k \in \mathbb{N}, a \in \mathbb{R}$ 且 $f \in D^k[a, +\infty)$,若 $\lim_{x \to +\infty} |f(x)| \neq +\infty$,那么存在趋于正无穷的 $\{x_n\}_{n=1}^{\infty} \subset [a, +\infty)$ 使得 $\lim_{x \to +\infty} f^{(k)}(x_n) = 0.$

Ŷ 笔记

(1) 存在 X > 0 使得 $f^{(k)}$ 在 $(X, +\infty)$ 要么恒正, 要么恒负的原因: 否则, 对 $\forall X > 0$, 存在 $x_1, x_2 \in (X, +\infty)$, 使得 $f^{(k)}(x_1) > 0$, $f^{(k)}(x_2) < 0$. 从而由导数的介值性可知, 存在 $\xi_X \in (x_1, x_2)$, 使得 $f^{(k)}(\xi_X) = 0$. 于是

令
$$X = 1$$
, 则存在 $y_1 > 1$, 使得 $f^{(k)}(y_1) = 0$;
令 $X = \max\{2, y_1\}$, 则存在 $y_2 > \max\{2, y_1\}$, 使得 $f^{(k)}(y_2) = 0$;
......
令 $X = \max\{n, y_{n-1}\}$, 则存在 $y_n > \max\{n, y_{n-1}\}$, 使得 $f^{(k)}(y_n) = 0$;

• • • • •

这样得到一个数列 $\{y_n\}_{n=1}^{\infty}$ 满足

$$\lim_{n \to \infty} y_n = +\infty \mathbb{E} f^{(k)}(y_n) = 0, \forall n \in \mathbb{N}_+.$$

这与假设矛盾!

(2) 存在 m > 0, 使得 $f^{(k)}(x) \ge m > 0$, $\forall x \ge X$ 的原因: 假设对 $\forall m > 0$, 有 $m > f^{(k)}(x) > 0$, $\forall x \ge X$. 再令 $m \to 0^+$, 则由夹逼准则可得 $f^{(k)}(x) = 0$, $\forall x \ge X$. 这与假设矛盾! (也可以用下极限证明)

证明 注意到若不存在 $\{x_n\}_{n=1}^{\infty}$ 使得 $\lim_{n\to\infty} f^{(k)}(x_n) = 0$ 成立那么将存在 X>0 使得 $f^{(k)}$ 在 $(X,+\infty)$ 要么恒正, 要么恒负 (见笔记 (1)).如果找不到子列使得 $\lim_{n\to\infty} f^{(k)}(x_n) = 0$ 成立, 那么不妨设存在 X>0 使得

$$f^{(k)}(x) > 0, \forall x \geqslant X.$$

从而一定存在m > 0(见笔记(2)), 使得

$$f^{(k)}(x) \geqslant m > 0, \forall x \geqslant X. \tag{1}$$

则由 Taylor 中值定理, 我们知道对每个x > X, 运用(1), 都有

$$f(x) = \sum_{i=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{f^{(k)}(\theta)}{k!} (x - X)^k \geqslant \sum_{i=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{m}{k!} (x - X)^k,$$

于是 $\lim_{x\to +\infty} f(x) = +\infty$, 这就是一个矛盾! 因此我们证明了必有子列使得 $\lim_{n\to \infty} f^{(k)}(x_n) = 0$ 成立.

定理 0.2 (严格单调和导数的关系)

- 1. 设 $f \in C[a,b] \cap D(a,b)$ 且 f 递增, 则 f 在 [a,b] 严格递增的充要条件是对任何 $[x_1,x_2] \subset [a,b]$ 都存在 $c \in (x_1,x_2)$ 使得 f'(c) > 0.
- 2. 设 $f \in C[a,b] \cap D(a,b)$ 且 f 递减, 则 f 在 [a,b] 严格递减的充要条件是对任何 $[x_1,x_2] \subset [a,b]$ 都存在 $c \in (x_1,x_2)$ 使得 f'(c) < 0.

证明 若 f 在 [a,b] 严格递增,则对任何 $[x_1,x_2] \subset [a,b]$,由 Lagrange 中值定理可知,存在 $c \in (x_1,x_2)$,使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0.$$

反之对任何 $[x_1,x_2] \subset [a,b]$ 都存在 $c \in (x_1,x_2)$ 使得 f'(c) > 0. 任取 $[s,t] \subset [a,b]$, 现在有 $c \in (s,t)$ 使得 f'(c) > 0, 则根据 $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{f(c) - f(c-h)}{h} > 0$, 再结合 f 递增, 可知存在充分小的 h > 0 使得 $f(s) \leq f(c-h) < f(c) < f(c+h) \leq f(t)$,

这就证明了 f 严格递增. 严格递减是类似的, 我们完成了证明.

定理 0.3 (单侧导数极限定理)

设 $f \in C[a,b] \cap D^1(a,b]$ 且 $\lim_{x \to a^+} f'(x) = c$ 存在, 证明 f 在 a 右可导且 $f'_+(a) = c$.

注 本结果当然也可对应写出左可导的版本和可导的版本,以及对应的无穷版本 (即 a,b,c 相应的取 $\pm \infty$).

笔记 本结果告诉我们可在 f 连续的时候用 f' 的左右极限存在性来推 f 可导性.

证明 运用 Lagrange 中值定理, 我们知道

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{+}} f'(\theta(x)) = c,$$

其中 $\theta(x) \in (a,x)$, $\lim_{x \to a^+} \theta(x) = a$. 这就完成了这个定理的证明.

例题 0.1 经典光滑函数 考虑

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & |x| > 0\\ 0, & |x| = 0 \end{cases}$$

则 $f \in C^{\infty}(\mathbb{R})$ 且 $f^{(n)}(0) = 0, \forall n \in \mathbb{N}$.

证明 我们归纳证明, 首先 $f \in C^0(\mathbb{R}) = C(\mathbb{R})$, 假定 $f \in C^k(\mathbb{R})$, $k \in \mathbb{N}$. 注意到存在多项式 $p_{k+1} \in \mathbb{R}[x]$, 使得

$$f^{(k+1)}(x) = p_{k+1}\left(\frac{1}{x}\right)e^{-\frac{1}{x^2}}, \forall x \neq 0.$$

于是

$$\lim_{x \to 0} f^{(k+1)}(x) = \lim_{x \to 0} p_{k+1} \left(\frac{1}{x}\right) e^{-\frac{1}{x^2}} = \lim_{x \to \infty} p_{k+1}(x) e^{-x^2} = 0,$$

运用导数极限定理, 我们知道 $f^{(k+1)}(0)=0$. 由数学归纳法我们知道 $f^{(n)}(0)=0, \forall n\in\mathbb{N}$, 这就完成了证明.

定理 0.4 (连续函数中间值定理)

设 $p_1, p_2, \cdots, p_n \geqslant 0$ 且 $\sum_{j=1}^n p_j = 1$. 则对有介值性函数 $f: [a, b] \to \mathbb{R}$ 和 $a \leqslant x_1 \leqslant x_2 \leqslant \cdots \leqslant x_n \leqslant b$, 必然 存在 $\theta \in [x_1, x_n]$, 使得

$$f(\theta) = \sum_{j=1}^{n} p_j f(x_j).$$

 \Diamond

 $\stackrel{ extstyle }{ extstyle }$ 笔记 中间值可以通过介值定理取到是非常符合直观的. 特别的当 $p_1=p_2=\cdots=p_n=rac{1}{n}$, 就是所谓的平均值定理

$$f(\theta) = \frac{1}{n} \sum_{j=1}^{n} f(x_j).$$

证明 设

$$M = \max_{1 \le i \le n} f(x_i), m = \min_{1 \le i \le n} f(x_i).$$

于是

$$m = m \sum_{j=1}^{n} p_{j} \leqslant \sum_{j=1}^{n} p_{j} f(x_{j}) \leqslant M \sum_{j=1}^{n} p_{j} = M.$$

因此由 f 的介值性知: 必然存在 $\theta \in [x_1, x_n]$, 使得 $f(\theta) = \sum_{j=1}^n p_j f(x_j)$ 成立.

命题 0.7

若 $f \in C[a,b] \cap D(a,b)$, 则 f' 没有第一类间断点与无穷间断点.

注 也可以利用 Darboux 定理进行证明.

证明 若 f' 存在第一类间断点 $c \in [a,b]$, 则由单侧导数极限定理可知

$$f'(c^{-}) = f'_{-}(c), \quad f'(c^{+}) = f'_{+}(c).$$

又因为 f 在 x = c 处可导, 所以 $f'_{-}(c) = f'_{+}(c)$. 从而

$$f'(c^{-}) = f'_{-}(c) = f'_{+}(c) = f'(c^{+}).$$

即 f 在 x = c 处既左连续又右连续, 故 f 在 x = c 处连续, 矛盾!

由于单侧导数极限定理同样适用于单侧导数为无穷大的情况,因此对于无穷大的情况可同理证明.

命题 0.8

设 f 是一个定义在区间 $I \subset \mathbb{R}$ 上的单调函数, 并且满足 f(I) = I', 其中 $I' \subset \mathbb{R}$ 是一个区间, 则 f 在区间 I 上 连续, 即 $f \in C(I)$.

证明 反证, 假设 f 在某个点 $c \in I$ 处间断. 若 c 在区间 I 的内部, 则由 f 在区间 I 上单调递增, 利用单调有界定理 可知 $\lim_{x \to c^+} f(x)$ 和 $\lim_{x \to c^-} f(x)$ 存在, 并且

$$\lim_{x \to c^{-}} f(x) \leqslant f(c) \leqslant \lim_{x \to c^{+}} f(x).$$

又因为 f(x) 在 x = c 处间断, 所以上式至少有一个严格不等号成立, 故不妨设

$$\lim_{x \to c^-} f(x) \leqslant f(c) < \lim_{x \to c^+} f(x).$$

对 $\forall x > c$, 固定 x, 由 f 在 I 上递增可知

$$f(x) > f(y), \quad \forall y \in (c, x).$$

令 $y \to c^+$, 得 $f(x) \ge \lim_{x \to c^+} f(x)$. 对 $\forall x < c$, 由 f 在 I 上递增可知 $f(x) \le f(c)$. 因此 $f(I) \subset (-\infty, f(c)] \cup [\lim_{x \to c^+} f(x), +\infty)$, 故 $(f(c), \lim_{x \to c^+} f(x)) \not\subset f(I)$, 但 $(f(c), \lim_{x \to c^+} f(x)) \subset I'$. 这与 f(I) = I' 矛盾!

若 c 是区间 I 的端点,则同理可得矛盾!

命题 0.9

定义在区间 I 上的单调函数 f 只有第一类间断点,特别地,若 x_0 在区间 I 的内部,则 x_0 要么是跳跃间断点,要么就是连续点.

证明

命题 0.10 (连续单射等价严格单调)

设 f 是区间 I 上的连续函数, 证明 f 在 I 上严格单调的充要条件是 f 是单射.

证明 必要性是显然的,只证充分性. 如若不然,不妨考虑 $f(x_3) < f(x_1) < f(x_2), x_1 < x_2 < x_3$ (其他情况要么类似,要么平凡),于是由连续函数介值定理知存在 $\theta \in [x_2, x_3]$ 使得 $f(\theta) = f(x_1)$,这就和 f 在 I 上单射矛盾! 故 f 严格单调.

例题 0.2 证明不存在 \mathbb{R} 上的连续函数 f 满足方程

$$f(f(x)) = e^{-x}.$$

Ŷ 笔记 注意积累二次复合的常用处理手法,即运用命题 0.10.

证明 假设存在满足条件的函数 f. 设 f(x) = f(y), 则

$$e^{-x} = f(f(x)) = f(f(y)) = e^{-y}$$
.

由 e^{-x} 的严格单调性我们知 x = y, 于是 f 是单射. 由命题 0.10知 f 严格单调. 又递增和递增复合递增, 递减和递减复合也递增, 我们知道 $f(f(x)) = e^{-x}$ 递增, 这和 e^{-x} 严格递减矛盾! 故这样的 f 不存在.

例题 0.3 求 $k \in \mathbb{R}$ 的范围, 使得存在 $f \in C(\mathbb{R})$ 使得 $f(f(x)) = kx^9$.

证明 当 k < 0 时, 假设存在满足条件的函数 f. 设 f(x) = f(y), 则

$$kx^9 = f(f(x)) = f(f(y)) = ky^9.$$

由 kx^9 的严格单调性我们知 x = y, 于是 f 是单射. 由命题 0.10知 f 严格单调. 又递增和递增复合递增, 递减和递减复合也递增, 我们知道 $f(f(x)) = kx^9$ 递增. 这和 kx^9 严格递减矛盾! 故这样的 f 不存在.

当
$$k \ge 0$$
 时,取 $f(x) = \sqrt[4]{k}x^3$, 此时 $f(x)$ 满足条件.

命题 **0.11** ([a,b] 到 [a,b] 的连续函数必有不动点)

设 $f:[a,b] \rightarrow [a,b]$ 是连续函数,证明 f 在 [a,b] 上有不动点.

堂 笔记 注意 [a,b] → [a,b] 表示 f 是从 [a,b] → [a,b] 的映射, 右端的 [a,b] 是像集而不是值域, f 可能取不到整个 [a,b].

证明 考虑 $g(x) = f(x) - x \in C[a, b]$, 注意到 $g(a) \ge 0$, $g(b) \le 0$, 由连续函数的零点定理知道 f 在 [a, b] 上有不动点.

命题 0.12 (没有极值点则严格单调)

设 $f \in C[a,b]$ 且 f 在 (a,b) 没有极值点, 证明 f 在 [a,b] 严格单调.

证明 因为闭区间上连续函数必然取得最值,且在(a,b)的最值点必然是极值点,因此由假设我们不妨设 f 在 [a,b]端点取得最值.不失一般性假设

$$f(a) = \min_{x \in [a,b]} f(x), f(b) = \max_{x \in [a,b]} f(x).$$

此时若在 [a,b] 上 f 严格单调,则只能是严格单调递增. 若在 [a,b] 上 f 不严格递增,则存在 $x_2 > x_1$,使得 $f(x_2) \leq f(x_1)$.

若 $x_1 = a, x_2 < b$, 则注意到 $f(x_2) \leq \min\{f(a), f(b)\}$, 同样的 f 在 (a, b) 取得极小值而矛盾.

$$au_1 = a, x_2 = b,$$
则 f 恒为常数而矛盾! 这就完成了证明.

命题 0.13 (函数值相同的点导数值相同就一定单调)

设 $f \in D(a,b)$ 满足 $f(x_1) = f(x_2), x_1, x_2 \in (a,b)$, 必有 $f'(x_1) = f'(x_2)$, 证明 f 在 (a,b) 是单调函数.

 $\widehat{\mathbf{C}}$ 笔记 $\boldsymbol{\diamond} \boldsymbol{\sigma} = \max \left\{ \boldsymbol{x} \in [\boldsymbol{c}, \boldsymbol{\xi}] : f(\boldsymbol{x}) = f(\boldsymbol{d}) \right\}$ 的原因: 设 $E = \{ \boldsymbol{x} \in [\boldsymbol{c}, \boldsymbol{\xi}] : f(\boldsymbol{x}) = f(\boldsymbol{d}) \}$. 实际上, 这里取 $\boldsymbol{\sigma} = \sup \{ \boldsymbol{x} \in [\boldsymbol{c}, \boldsymbol{\xi}] : f(\boldsymbol{x}) = f(\boldsymbol{d}) \}$ 也可以, 效果类似.

(1) σ 的存在性证明: 由 f 的介值性知, 存在 $\eta \in (c, \xi)$, 使得

$$f(\xi) \leqslant f(\eta) = f(d) \leqslant f(c)$$
.

从而 $\eta \in E = \{x \in [c, \xi] : f(x) = f(d)\}$, 故 E 非空. 又由 E 的定义, 显然 E 有界, 故由确界存在定理可知, E 存在上确界. 于是令 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\} \le [c, \xi]$. 下证 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\} = \max\{x \in [c, \xi] : f(x) = f(d)\}$, 即 $\sigma \in E = \{x \in [c, \xi] : f(x) = f(d)\}$.

由上确界的性质可知, 存在 $\{x_n\}_{n=1}^\infty$ 满足 $x_n \in E$ 且 $\lim_{n \to \infty} x_n = \sigma$. 从而 $f(x_n) = f(d)$. 于是由 f 的连续性可得

$$\lim_{n\to\infty}f\left(x_{n}\right)=f\left(\lim_{n\to\infty}x_{n}\right)=f\left(\sigma\right)=f\left(d\right).$$

故 $\sigma \in E$. 这样就完成了证明.

(2) 取 $\sigma = \max \{x \in [c, \xi] : f(x) = f(d)\}$ 的原因: 当 $f(c) \ge f(d)$ 时, $E = \{x \in [c, \xi] : f(x) = f(d)\}$ 中的其他点 $a \in E$, 可能有 f'(a) > 0, 也可能有 $f'(a) \le 0$. 而 σ 一定只满足 $f'(\sigma) \le 0$.

证明 若 f 不在 (a,b) 是单调,则不妨设 a < c < d < b, 使得 f'(c) < 0 < f'(d).

由 $f'(d) = \lim_{x \to d^-} \frac{f(x) - f(d)}{x - d} > 0$ 知在 d 的左邻域内, f(x) < f(d). 由 $f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} < 0$ 知 f 在 c 的 右邻域内有 f(x) < f(c),于是 f(c),f(d) 不是 f 在 [c,d] 上的最小值, 又由 $f \in C[c,d]$ 可知 f 在 [c,d] 上一定存在最小值. 故可以设 f 在 [c,d] 最小值点为 $\mathcal{E} \in (c,d)$.

当 $f(c) \ge f(d)$ 时,令

$$\sigma = \max\{x \in [c, \xi] : f(x) = f(d)\}.$$

注意到 $\sigma < \xi$. 显然 $f'(\sigma) \le 0$, 因为如果 $f'(\sigma) > 0$ 会导致在 σ 右邻域内有大于 f(d) 的点, 由介值定理可以找到 $\xi > \sigma' > \sigma$, 使得 $f(\sigma') = f(d)$ 而和 σ 是最大值矛盾! 而函数值相同的点导数值也相同, 因此 $f'(\sigma) = f'(d) > 0$, 这与 $f'(\sigma) \le 0$ 矛盾!

当 $f(c) \leq f(d)$ 时类似可得矛盾! 我们完成了证明.

命题 0.14 (一个经典初等不等式)

设 $a,b \ge 0$, 证明:

$$\begin{cases} a^{p} + b^{p} \leq (a+b)^{p} \leq 2^{p-1}(a^{p} + b^{p}), & p \geq 1, p \leq 0 \\ a^{p} + b^{p} \geq (a+b)^{p} \geq 2^{p-1}(a^{p} + b^{p}), & 0
(2)$$

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 不等式左右是奇次对称的, 我们可以设 $t=\frac{a}{b}\in[0,1]$, 于是(2)两边同时除以 b^p 得

$$\begin{cases} t^p + 1 \leq (t+1)^p \leq 2^{p-1}(t^p + 1), & p \geq 1, p \leq 0 \\ t^p + 1 \geq (t+1)^p \geq 2^{p-1}(t^p + 1), & 0$$

证明 考虑 $f(t) \triangleq \frac{(t+1)^p}{1+t^p}, t \in [0,1]$, 我们有

$$f'(t) = p(t+1)^{p-1} \frac{1 - t^{p-1}}{(1 + t^p)^2} \begin{cases} \ge 0, & p \ge 1, p \le 0 \\ < 0, & 0 < p < 1 \end{cases}$$

于是

$$\begin{cases} 2^{p-1} = f(1) \geqslant f(t) \geqslant f(0) = 1, & p \geqslant 1, p \leqslant 0 \\ 2^{p-1} = f(1) \leqslant f(t) \leqslant f(0) = 1, & 0$$

这就完成了证明.

定理 0.5 (反函数存在定理)

设 $y = f(x), x \in D$ 为严格增 (滅) 函数, 则 f 必有反函数 f^{-1} , 且 f^{-1} 在其定义域 f(D) 上也是严格增 (减) 函数.

证明 设 f 在 D 上严格增. 对任一 $y \in f(D)$, 有 $x \in D$ 使 f(x) = y. 下面证明这样的 x 只能有一个. 事实上, 对于 D 中任一 $x_1 \neq x$, 由 f 在 D 上的严格增性, 当 $x_1 < x$ 时, $f(x_1) < y$, 当 $x_1 > x$ 时, 有 $f(x_1) > y$, 总之 $f(x_1) \neq y$. 这就说明, 对每一个 $y \in f(D)$, 都只存在唯一的一个 $x \in D$, 使得 f(x) = y, 从而函数 f 存在反函数 $x = f^{-1}(y)$, $y \in f(D)$.

现证 f^{-1} 也是严格增的. 任取 $y_1, y_2 \in f(D), y_1 < y_2$. 设 $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2),$ 则 $y_1 = f(x_1), y_2 = f(x_2)$. 由 $y_1 < y_2$ 及 f 的严格增性, 显然有 $x_1 < x_2$, 即 $f^{-1}(y_1) < f^{-1}(y_2)$. 所以反函数 f^{-1} 是严格增的.

定理 0.6 (反函数连续定理)

若函数 f 在 [a,b] 上严格单调并连续,则反函数 f^{-1} 在其定义域 [f(a),f(b)] 或 [f(b),f(a)] 上连续.

证明 不妨设 f 在 [a,b] 上严格增. 此时 f 的值域即反函数 f^{-1} 的定义域为 [f(a),f(b)]. 任取 $y_0 \in (f(a),f(b))$, 设 $x_0 = f^{-1}(y_0)$, 则 $x_0 \in (a,b)$. 于是对任给的 $\varepsilon > 0$, 可在 (a,b) 上 x_0 的两侧各取异于 x_0 的点 $x_1, x_2(x_1 < x_0 < x_2)$, 使它们与 x_0 的距离小于 ε .

设与 x_1, x_2 对应的函数值分别为 y_1, y_2 ,由f的严格增性知 $y_1 < y_0 < y_2$.令

$$\delta = \min\{y_2 - y_0, y_0 - y_1\}$$

则当 $y \in U(y_0; \delta)$ 时, 对应的 $x = f^{-1}(y)$ 的值都落在 x_1 与 x_2 之间, 故有

$$|f^{-1}(y) - f^{-1}(y_0)| = |x - x_0| < \varepsilon$$

这就证明了 f^{-1} 在点 y_0 连续, 从而 f^{-1} 在 (f(a), f(b)) 上连续.

类似地可证 f^{-1} 在其定义区间的端点 f(a) 与 f(b) 分别为右连续与左连续. 所以 f^{-1} 在 [f(a),f(b)] 上连续.

定理 0.7 (反函数求导定理)

设 y=f(x) 为 $x=\varphi(y)$ 的反函数, 若 $\varphi(y)$ 在点 y_0 的某邻域上连续, 严格单调且 $\varphi'(y_0)\neq 0$, 则 f(x) 在点 $x_0(x_0=\varphi(y_0))$ 可导, 且

$$f'(x_0) = \frac{1}{\varphi'(y_0)}.$$

证明 设 $\Delta x = \varphi(y_0 + \Delta y) - \varphi(y_0)$, $\Delta y = f(x_0 + \Delta x) - f(x_0)$. 因为 φ 在 y_0 的某邻域上连续且严格单调, 故 $f = \varphi^{-1}$ 在 x_0 的某邻域上连续且严格单调. 从而当且仅当 $\Delta y = 0$ 时 $\Delta x = 0$, 并且当且仅当 $\Delta y \to 0$ 时 $\Delta x \to 0$. 由 $\varphi'(y_0) \neq 0$, 可得

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y}} = \frac{1}{\varphi'(y_0)}$$