DETERMINING SYSTEM PROPERTIES

System Function of an LTI System

$$x(t)$$
 $h(t)$ $\longrightarrow y(t)$ $h(t) \longleftrightarrow H(s)$ – the system function

The system function characterizes the system

System properties correspond to properties of H(s) and its ROC

A first example:

System is stable
$$\Leftrightarrow \int_{-\infty}^{\infty} |h(t)| dt < \infty \Leftrightarrow \frac{\text{ROC of } H(s)}{\text{includes the } j\omega \text{ axis}}$$

LTI Systems - Causality

 For a causal LTI system, the impulse response is zero for t < 0 and thus is right-sided

The ROC associated with the system function for a causal system is a right-half plane

If *H*(*s*) is rational, then we can determine whether the system is causal simply by checking to see if its ROC is a right-half plane.

For a system with a rational system function, causality of the system is equivalent to the ROC being the right-half plane to the right of the rightmost pole.

LTI Systems Causality - Example 1

Consider a system with impulse response

$$h(t) = e^{-t}u(t)$$

• Since h(t) = 0 for t < 0, this system is causal, with system function

$$H(s) = \frac{1}{s+1}$$
, $\text{Re}\{s\} > -1$

 The system function is rational, and the ROC is to the right of the right-most pole, consistent with the statement that causality for systems with rational system functions is equivalent to the ROC being to the right of the right-most pole.

LTI Systems Causality - Example 2

Consider a system with impulse response

$$h(t) = e^{-|t|}$$

LTI Systems Causality - Example 2

Since h(t) ≠ 0 for t < 0, this system is not causal.
The system function is:

$$H(s) = \frac{-2}{s^2 - 1} = \frac{-2}{(s+1)(s-1)}, \quad -1 < \text{Re}\{s\} < +1$$

• Thus H(s) is rational and has an ROC that is not to the right of the rightmost pole (s = 1), consistent with the fact that the system is not causal.

- Stability of an LTI system is equivalent to its impulse response being absolutely integrable, in which case the FT of the impulse response converges.
- Since the Fourier transform of a signal equals the Laplace transform evaluated along the $j\omega$ axis, we have the following:

An LTI system is stable, if and only if the ROC of its system function, H(s), includes the $j\omega$ -axis (i.e., $\text{Re}\{s\}=0$)

- For one very important class of systems, stability can be characterized very simply in terms of the locations of the poles.
- Consider a causal LTI system with a rational system function H(s).
- Since the system is causal, the ROC is to the right of the rightmost pole.
- For this system to be stable, the rightmost pole of H(s) must be to the left of the $j\omega$ -axis, i.e.,

A causal system with rational system function H(s) is stable if and only if all of the poles of H(s) lie in the left-half of the s-plane -- i.e., all of the poles have negative real parts.

Consider an LTI system with system function:

$$H(s) = \frac{s-1}{(s+1)(s-2)}$$

 If the system is Causal, determine the time domain impulse response

$$h(t) = \left(\frac{2}{3}e^{-t} + \frac{1}{3}e^{2t}\right)u(t)$$
 (Using Partial Fractions and Laplace Transform table)

Consider an LTI system with system function:

$$H(s) = \frac{s-1}{(s+1)(s-2)}$$

 If the system is Stable, determine the time domain impulse response

$$h(t) = \left(\frac{2}{3}e^{-t}u(t)\right) - \left(\frac{1}{3}e^{2t}u(-t)\right)$$

Consider an LTI system with system function:

$$H(s) = \frac{s-1}{(s+1)(s-2)}$$

 If the system is non-causal and un-stable, determine the time domain impulse response

$$h(t) = -\left(\frac{2}{3}e^{-t} + \frac{1}{3}e^{2t}\right)u(-t)$$

LTI Systems - Stability/Causality

Consider a system with impulse response

$$h(t) = e^{-t}u(t)$$

• Since h(t) = 0 for t < 0, this system is causal, with system function

$$H(s) = \frac{1}{s+1}$$
, $\text{Re}\{s\} > -1$

- The impulse response is absolutely integrable, and thus the system is stable with a pole at s=-1 which is in the left-half of the s-plane.
- Now consider the causal system with impulse response $h(t) = e^{2t}u(t)$
- This system is unstable, since h(t) is not absolutely integrable. Also we see that the system has a pole at s = 2 in the right half of the s-plane.

Laplace Transform Pairs

Signal	Transform	ROC	Signal	Transform	ROC
$\delta(t)$	1	All s	$\delta(t-T)$	e^{-sT}	All s
u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
-u(-t)	$\frac{1}{s}$	$\Re e\{s\} < 0$	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
$\frac{t^{n-1}}{(n-1)!}u(t) - \frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	S ⁿ	All s
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\alpha$	$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{n \text{ times}}$	$\frac{1}{S^n}$	$\Re \mathscr{E}\{s\} > 0$
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$	0.0000000000000000000000000000000000000	I	I
$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} < -\alpha$			

END