Tong Shen, Ziyuan Shen

Conten

Backgrour

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta

Conclusion

30-Day Readmission Prediction

Tong Shen, Ziyuan Shen

Instructor: Michael Gao, Xiling Shen

Department of Biomedical Engineering
Department of Electrical and Computer Engineering
Duke University

May 3, 2019

Tong Shen, Ziyuan Shen

Content

Backgroun

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Camaluaian

- Background
- Data Processing
- Data Exploration
- Algorithmic Pipeline
- Experimental Results
- Conclusion

Tong Shen, Ziyuan Shen

Content

Background

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

- Background
- Data Processing
- Data Exploration
- Algorithmic Pipeline
- Experimental Results
- Conclusion

Tong Shen, Ziyuan Shen

Content

 ${\sf Background}$

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

Background

Motivation

- Early identification of high risk patients
- Prevent early discharging
- Improve managing ICU care and resources

Tong Shen, Ziyuan Shen

Background

Background

Existing works:

- Feature Extraction
 - Demographic characteristics: age, gender, race etc.
 - Lab results, chart events etc. monitored in ICU¹
 - Electronic health record data: length of stay, number of admissions, admission type etc.²³
- Techniques
 - Random Forest
 - Artificial Neural Network⁴

¹Yaron Blinder. Predicting 30-day ICU readmissions from the MIMIC-III database.

https://github.com/YaronBlinder/MIMIC-III readmission, 2017.

²Oanh Kieu Nguyen et al. "Predicting all-cause readmissions using electronic health record data from the entire hospitalization; model development and comparison". In: Journal of hospital medicine 11.7 (2016). pp. 473-480.

³Frida Kareliusson, Lina De Geer, and Anna Oscarsson Tibblin. "Risk prediction of ICU readmission in a mixed surgical and medical population". In: Journal of intensive care 3.1 (2015), p. 30.

⁴Ricardo Bento Afonso. "Feature Extraction and Selection for Prediction of ICU Patient's Readmission Using Artificial Neural Networks", In: (2013).

Tong Shen, Ziyuan Shen

Conten

 ${\sf Background}$

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Duke

Background

Existing works:

- Feature Extraction
 - Demographic characteristics: age, gender, race etc.
 - Lab results, chart events etc. monitored in ICU
 - Electronic health record data: length of stay, number of admissions, admission type etc.
- Techniques
 - Random Forest
 - Artificial Neural Network

Overall Performance⁵:

Accuracy: 0.48 ∼ 0.61

• Sensitivity: $0.72 \sim 0.77$

• Specificity: $0.44 \sim 0.60$

⁵Ricardo Bento Afonso. "Feature Extraction and Selection for Prediction of ICU Patient's Readmission Using Artificial Neural Networks". In: (2013).

Tong Shen, Ziyuan Shen

Conten

Backgroun

Data Processing

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

- Background
- Data Processing
- Data Exploration
- Algorithmic Pipeline
- Experimental Results
- Conclusion

Tong Shen, Ziyuan Shen

Content

ackgroun

Data Processing

Data Exploration

Algorithmic Pipeline

Experimenta Results

Camaluaian

Feature Generation

• Data source: MIMIC III⁶

Summary statistics

Data Info.	Diagnosis Information	ICU Monitoring Data
Tables Used	ICD_DIAGNOSES	CHARTEVENTS LABEVENTS
Readmission Proportion	5.9%	6.2%
Data Type	Categorical	Categorical & Numerical
# Dims	6776	57
# Samples	58925	42228

 $^{^6}$ Alistair EW Johnson et al. "MIMIC-III, a freely accessible critical care database". In: Scientific data 3 (2016), p. 160035.

Tong Shen, Ziyuan Shen

Conten

Backgroun

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

- Background
- Data Processing
- Data Exploration
- Algorithmic Pipeline
- Experimental Results
- Conclusion

Tong Shen, Ziyuan Shen

Conton

Packerou

Data

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

Data Exploration

Figure: Readmission proportion of diagnosis dataset.

Tong Shen, Ziyuan Shen

Conton

Daalianaiii

Data

Data Exploration

Algorithmic

Experimenta Results

Conclusion

Data Exploration

Figure: Readmission proportion of ICU dataset.

Tong Shen, Ziyuan Shen

Conton

Daalianaiii

Data Processir

Data Exploration

Algorithmic

Experimenta

Conclusion

Scatter plot of numerical data

Tong Shen, Ziyuan Shen

Conten

Backgrour

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

- Background
- Data Processing
- Data Exploration
- Algorithmic Pipeline
- Experimental Results
- Conclusion

Tong Shen, Ziyuan Shen

Content

Background

Data Processin

Data Exploration

Algorithmic Pipeline

Experimental

Conclusion

Data and Truth

Preprocessing	
	M Classifiers

Tong Shen, Ziyuan Shen

Content

2 a alvaraun

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

M Classifiers

Tong Shen, Ziyuan Shen

Cambani

Data Processin

Data Exploration

Algorithmic Pipeline

Experimental

Tong Shen, Ziyuan Shen

Content

Rackgroup

Data Processin

Data Exploration

Algorithmic Pipeline

Experimental

Tong Shen, Ziyuan Shen

Conten

Data

Data Exploration

Algorithmic Pipeline

Experimental Results

Tong Shen, Ziyuan Shen

Content

Backgrour

Data Processir

Data Exploration

Algorithmic Pipeline

Experimenta

Conclusion

Tong Shen, Ziyuan Shen

Content

Backgroui

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

Tong Shen, Ziyuan Shen

Conten

Backgrou

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta

Conclusion

Tong Shen, Ziyuan Shen

Conten

Backgrou

Data

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

Duke

Tong Shen, Ziyuan Shen

Conten

. .

Data

Data

Algorithmic Pipeline

Experimenta

Results

Conclusion

Duke

Tong Shen, Ziyuan Shen

Conten

Backgroun

Data Processin

Data Exploration

Algorithmic Pipeline

Experimental Results

Conclusion

- Background
- Data Processing
- Data Exploration
- Algorithmic Pipeline
- Experimental Results
- Conclusion

Tong Shen, Ziyuan Shen

Content

Data

Data Exploration

Algorithmic

Experimental Results

Conclusion

Performance Scores-Diagnosis

Tong Shen, Ziyuan Shen

Content

Rackerour

Data

Exploration

Algorithmic Pipeline

Experimental Results

Conclusion

Confusion Matrix-Diagnosis

Tong Shen, Ziyuan Shen

Content

la ekaraun

Processir

Data

Algorithmic

Experimental Results

Conclusion

Confusion Matrix-Diagnosis

Tong Shen, Ziyuan Shen

Content

. .

Data

Data Evploration

Algorithmic

Experimental Results

Conclusion

Duke

Performance Scores-ICU

Tong Shen, Ziyuan Shen

Content

Backgroun

Data Processing

Data Exploration

Algorithmic Pipeline

Experimental Results

Conclusion

Confusion Matrix-ICU

Tong Shen, Ziyuan Shen

Conten

Backgrour

Data Processin

Data Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

- Background
- Data Processing
- Data Exploration
- Algorithmic Pipeline
- Experimental Results
- Conclusion

Tong Shen, Ziyuan Shen

Conten

ackgrour

Data Processin

Data Exploratio

Algorithmic Pipeline

Experimenta Results

Conclusion

- Fair performance in general
 - feature extraction and data cleaning
 - class imbalance
 - high dimensional data
- Ensemble methods
 - can increase performance
 - usually perform well with structured data unless we have a lot of data
- Neural Network
 - achieve average performance with careful design
 - not as efficient as traditional classifiers
 - usually apply to unstructured data such as images or natural text

Tong Shen, Ziyuan Shen

Conten

Rackgroun

Data

Data

Exploration

Algorithmic Pipeline

Experimenta Results

Conclusion

Thank you for listening!

Q&A

