FUNZIONI DI COMMUTAZIONE

sabato 15 ottobre 2022 1

FUNZIONI DI COHHUTAZIONE

GLI OPERATORI SUND ad ORA INTRODOM POSSOND ESSERE UTILIZZATI PER definite le junzioni di connunzione.

$$9 = {(x_1, x_2, x_3, ..., x_m)}$$

 ${g: \{0, 4\}}^m \longrightarrow \{0, 4\}$

la data una funzione di commutazione preconfuta il valore della mia funzione, per tute le possibili configurazion delle mie vociabili.

SE RIESCO A FARE quetto, ottengo la osidetta forma tabellare.

QUESTA E LA TABELLA DI VERTIÀ

Le mie vouciabili della funzione compaiono una sola volta.

• Una tabella di verità di una funzione di n variabili è costituita da 2^n righe

- 2 configurationi.

ESEMPIO.

X XA X2 5 0 0 0 1 1 0 1 0 2 1 0 0 3 1 1 1

QUESTO È UN METODO PIÙ COMPATIO, MA NON È DETTO

CHE SIA IL METODO PIÙ SEMPLICE PER TRASFORM ARE UNA FUNZIONE di COMMUTAZIONE,
IN UN CTRCUTTO ELETTRONICO.

ESEMPIO DI UN ALTRA TABELLA DI VERITO &(X1, X2, X3):

PER TUTTE LE CONFIGURAZIONI DELLE VARIABILI, CALSOLO Y.

CIASCUNA FUNZIONE AURA LA SUA TABELLA DI VERTA!

X	x_1	<i>x</i> ₂	x_3	у
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
	0	1	1	1
4	1	0	0	0
5	1	0	1	0
5 6 7	1	1	0	1
7	1	1	1	0

OR

SONHA (+) = (OR) = (V)

X	74	χ	4
٥	0	0	٥
1	0	1	1
ટ	1	0	1
3	1	1	1

$$g(x_A) = \overline{x_A}$$

x_1	у	
0	1	NOT
1	0	

$$\xi(x_1, x_2) = x_1 \cdot x_2$$

<i>x</i> ₁	<i>x</i> ₂	y
0	0	0
0	1	0
1	0	0
1	1	1

AUD

DA QUESTI, POSSO DEFINIRE TUTTO. PARTO DA QUI PER DEFINIRE GLI OPERATORI DERIVATI!

·OPERATORE XOR: 0

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

· NAND :

x_1	x_2	у
0	0	1
0	1	1
1	0	1
1	1	0

albic ... LON SIFLO force: Avant Move

quanti sono i bit serrati a 1: lo
usiomo per colcolara la parcità:

a (1) b (1) c (1) d = #UNI

E IL valore del bit di parcità!

OPPURE PER VERIFICARO SE dell purde

SONO capadi.

OPPURE PER AZZERARE I REGISTRI di
memorip.

NOR:
$$\downarrow$$
 $a \downarrow b = \overline{a + b} = \overline{a \cdot b}$

1	x_1	x_2	
	0	0	1
	0	1 '	0
	1	0	0
	1	1	0

NON e association!

• XNOR: \odot Equivalente alla somma modula z. $a \odot b = (\bar{a} + b) \cdot (a + \bar{b})$

<i>x</i> ₁	<i>x</i> ₂	у
0	0	1
0	1	0
1	0	0
1	1	1

PRIMA DI DESCRIVERE LA SECONOM FORMA PER RAPPRESENTARE LE FUNZIONI BOOLEANS, INTRODICIANO IL: TECREMA DI SHANUON.