Admitere * Universitatea Politehnica din București 2017 Disciplina: Algebră și Elemente de Analiză Matematică M1 * Varianta A

- 1. Să se rezolve inecuația 3x 1 < 2x + 2. (6 pct.)
 - a) (1,4); b) (-1,1); c) $(2,\infty)$; d) (5,11); e) $(10,\infty)$; f) $(-\infty,3)$.
- 2. Să se rezolve ecuația $log_2(x+1) = 3$. (6 pct.)
 - a) x = 4; b) x = 2; c) x = 1; d) x = 5; e) x = 6; f) x = 7.
- 3. Suma soluțiilor reale ale ecuației $\sqrt{2x+1} = x-1$ este: (6 pct.)
 - a) 4; b) 0; c) 1; d) 2; e) 3; f) 5.
- 4. Mulțimea soluțiilor ecuației $x^2 + 4x + 3 = 0$ este: (6 pct.)
 - a) $\{2, 4\}$; b) $\{-2, 1\}$; c) $\{-3, -1\}$; d) $\{-4, 0\}$; e) $\{0, 1\}$; f) $\{-2, 3\}$.
- 5. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x$. Să se calculeze f'(1). (6 pct.)
 - a) 3; b) -1; c) 4; d) 6; e) 7; f) 5.
- 6. Să se calculeze determinantul $\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix}$. **(6 pct.)**
 - a) 4; b) 2; c) -11; d) -3; e) -2; f) 9.
- 7. Să se calculeze suma soluțiilor reale ale ecuației $x^3 + 2x^2 3x = 0$. (6 pct.)
 - a) -3; b) -1; c) 3; d) 4; e) 2; f) -2.
- 8. Să se rezolve sistemul $\begin{cases} 2x y = 7 \\ x + 2y = 6 \end{cases}$. (6 pct.)
 - a) x = 4, y = 1; b) x = 1, y = 4; c) x = 2, y = 4; d) x = 1, y = 3; e) x = 2, y = 3; f) x = 2, y = 2.
- 9. Mulțimea soluțiilor inecuației $x^2 3x \le 0$ este: (6 pct.)
 - a) $(3, \infty)$; b) [0, 3]; c) [-1, 3]; d) $[1, \infty)$; e) $[2, \infty)$; f) (-3, 3).
- 10. Să se determine $a \in \mathbb{R}$ astfel încât sistemul $\begin{cases} ax y + z = 0 \\ 2x + y z = 0 \end{cases}$ să aibă şi soluții nenule. (6 pct.) x + y + 2z = 0
 - a) a = -5; b) a = 5; c) a = 1; d) a = -2; e) a = 4; f) a = -4.
- 11. Să se determine $x \in \mathbb{R}$ astfel încât numerele x, 8, 3x + 2 să fie (în această ordine) în progresie aritmetică. (6 pct.)
 - a) $\frac{2}{5}$; b) $\frac{3}{4}$; c) $\frac{5}{2}$; d) $\frac{1}{3}$; e) $\frac{7}{2}$; f) $\frac{1}{6}$.
- 12. Să se rezolve ecuația $3^{2x-1} = 27$. (6 pct.)
 - a) x = 4; b) x = 0; c) x = -1; d) x = 1; e) x = 2; f) x = -2.
- 13. Să se determine abscisa punctului de extrem local al funcției $f:(0,\infty)\to\mathbb{R}, f(x)=x^2-\ln x$. (6 pct.)
 - a) $x = \sqrt{2}$; b) $x = \frac{e}{2}$; c) x = 2; d) x = 3; e) x = 1; f) $x = \frac{\sqrt{2}}{2}$.
- 14. Să se calculeze integrala $\int_{0}^{1} xe^{x} dx$. (6 pct.)
 - a) $\frac{e}{3}$; b) 3 e; c) 1; d) $\frac{e}{2}$; e) e; f) e 1.
- 15. Fie polinoamele $f, g \in \mathbb{R}[X]$, $f = (X-1)^{2017} + (X-3)^{2016} + X^2 + X + 1$ şi $g = X^2 4X + 4$. Să se determine restul împărțirii polinomului f la polinomul g. (6 pct.)
 - a) 6X + 1; b) X 1; c) 6X 3; d) 2X + 1; e) 2X 3; f) X + 1.