10. 并行接口芯片8255A应用设计

• 前面我们用74LS373、 74LS374、 74LS245等芯片设计的简单的接口电路,其工作方式是固定不变的、不可编程的;而8255A的工作方式(输入/输出)是可以通过程序改变的,即可编程的。

10. 并行接口芯片8255A应用设计

■ 8255A是通用可编程并行接口芯片:

- 有3个8位并行输入/输出端口,即A口、B口和C口,可利用编程方法来设置这3个端口是作为输入端口还是作为输出端口;
- 有3种工作方式,分别为方式0、方式1、方式2;
- 有3种数据传送方式,分别为无条件传递方式、查询式传递方式和中断传送方式。
- ■8255A芯片的另一个特点是对端口C的操作,C口既可作 为数据口也可作为控制口:
 - 当C口作为数据口时,可以输出8位数据或分别作为两个4位数据口输出;
 - 还可对端口C的每—位进行操作,比如设置某一位为输入或输出, 这样可以为位控方式提供便利条件。

10.1 8255A引脚功能及特点

8255A的外部特性(引脚图

8255A是Intel系列的 8位并行接口芯片,通 用性强,使用灵活, 可用程序设置和改变 芯片的工作方式,是 一种常用的可编程并 行接口芯片。

4	D0	PAO	4
3	Dl	PA1	3
2	D2	PA2	2
1	D3	PA3	1
0	D4	PA4	40
9	DS	PAS -	39
8	D6	PA6	38
7	D7	PA7	37
5	RD	PB0	18
6	WR	PB1	19
9	AO	PB2	20
8	Al	PB3	21
5	RESET	PB4	22
6	CS CS	PBS	23
	00	PB6	24
		PB7	25
		7.00	14
		PC0	15
		PC1	16
		PC2	17
		PC3	13
		PC4	12
		PC5	11
		PC6	10
		PC7	

10.1 8255A引脚功能及特点

8255A端口的识别

一片8255A接口芯片内部包含了PA口、PB口、PC口和方式控制寄存器端口四个I/O端口, CPU对8255A读/写操作,是对哪个端口的读/写操作,是用CS、A1和A0三个引脚的状态来识别的。其规则如下:

10.1 8255A的原理结构及工作原理

8255A端口的识别

片外寻址							
CS	A1	AO	选中端口				
0	0	0	端口A				
0	0	1	端口B				
0	1	0	端口C				
0	1	1	方式控制端口				
1	X	X	未选中				

10.1 8255A的原理结构及工作原理

8255A内部结构(以PA口为例)

10.1 8255A的原理结构及工作原理

8255A有三种基本工作方式:

方式0:基本的输入/输出;

方式1:有联络信号的输入/输出;

方式2:双向传送。

方式	说明	适用端口
方式0	基本的输入输出	A、B、C上半口、C下半口
方式1	选通的输入输出	A、B (C配合)
方式2	双向传输	A (C配合)
(非基本控制方式)	单独控制每个位的输出电平	С

■ 当向A₁=1、A₀=1的端口寄存器(即控制寄存器)发送D7=1的 控制字时,其作用为方式控制字,各个位的含义如下图所示。

■当向A₁=1、A₀=1的端口寄存器(即控制寄存器)发送D7=0的控制字时,其作用为PC口位管理,各个位的含义如下图所示。

工作方式

8255A的3种工作方式如下:

(1)方式0:基本输入/输出方式

方式0是一种基本输入/输出方式,它不需要应答式的联络信号,不使用中断,有两个8位端口(A口和B口)和两个4位端口(C口的上半部和C口的下半部),任何一个端口都可以作为输入或输出端口。输出数据可被锁存,输入数据不锁存。

(2)方式1:选通输入/输出方式

在这种工作方式下,端口A和端口B为数据传输口,可通过工作方式控制字设定为数据输入或数据输出。端口C的某些位作为控制端口,配合A口和B口进行数据的输入和输出。方式1通常用于查询方式或中断方式传送数据。

- 三个端口的信号分为A、B两组;
- PC₄ ~PC₇作为A组的联络信号,PC₃ ~PC₀作为B组的联络信号;
- PC₃ PC₀固定作为A组和B组向CPU发送的中断请求信号;
- 为对中断请求信号进行管理,8255A中专门设置了中断屏蔽触发器 INTEA和INTEB,它们是通过对端口C某一位的置位控制字进行控制。

分组	中断屏蔽触发字	输入/输出方式	端口C中的控制位
A组	INTEA	输入	PC ₄
A组	INTEA	输出	PC ₆
B组	INTEB	输入/输出	PC ₂

● 利用置位控制字对INTE对应端口C口的位置位时,INTE=1,表示允许 产生中断请求信号;对INTE对应端口C口的位清零时,INTE=0 ,表示 不允许(屏蔽)产生中断请求信号。

◆ 方式1输入

当将A组和B 组设置成方 式1输入时, 其方式控制 字与端口数 据线如下图 所示,注意 D。用于控制 PC_{6.7}的传 送方向。

- 方式1下的输入方式,8255A与CPU通过INTR(中断请求信号) 联络;
- 它与外设有两个联络信号:
 - STB(选通输入)与外设提供的选通脉冲相连,将外设送来的数据锁存到端口寄存器,这相当于"数据准备好"信号;
 - IBF(输入缓冲满)向外设发送数据输入响应(高电平有效),表示端口寄存器已收到数据,但尚未被CPU取走;当IBF信号无效时,表示"接收准备好"。

◆ 方式1输出

当将A组和B 组设置成方 式1输出时, 其方式控制 字与端口数 据线如下图 所示,注意 D₃用于控制 PC_{4.5}的传 送方向。

- 方式1下的输出方式,8255A与CPU通过INTR(中断请求信号)联络;
- 它与外设有两个联络信号:
 - OBF(输出缓冲器满)有效表示CPU已将数据写入端口寄存器,这相当于"数据准备好"信号。
 - > ACK(回执)有效表示外设已将数据取走,CPU可发来新的数据。

(3)方式2:双向选通输入/输出方式

只有A口可以采用这种工作方式。在这种方式下,可以使外部设备利用端口A的8位数据线与CPU之间分时进行双向数据传送,也就是说,可在单一的8位数据线上既输出数据给外部设备,也从外部设备输入数据。输入或输出的数据都是锁存的。工作时既可采用查询方式,也可采用中断方式传输数据。

当端口A工作在方式2时,使用PC₃ ~ PC₇作为控制和状态信息,也就是把方式1输入数据和方式1输出数据的控制信号组合起来。端口B可工作在方式0或方式1,如果工作在方式1,可利用PC₀ ~ PC₂作为控制和状态信号。

8255A的初始化

例. 设分配给8255A的端口地址为280H~283H。将8255A的PA口设置成方式0输出, PB口设置成方式1输入, PC口设置成方式0输出。试编写8255A的初始化程序。

①地址分析

对应280H端口的地址信号为(取A9~A0):

②初始化程序

MOV DX,283H MOV AL,10000110B; 86H OUT DX,AL

;若欲将PC2置1,PC口位管理方法如下 MOV AL,0XXX0101B OUT DX,AL

8255A的方式0应用

例.在PC/XT系统总线上扩充一片8255A接口芯片,分配给8255A的端口地址为280H~283H。PA口为输出,输出设备为8个LED发光二极管($L_0\sim L_7$),PA $_i$ ($i=0\sim 7$)输出1,对应 L_i 亮;PA $_i$ 输出0,对应 L_i 灭。PB口为输入,输入设备为8个乒乓开关($K_0\sim K_7$),开关断开(低电平),开关闭合(高电平)。

- ①试画出8255A与PC/XT系统总线和设备的接口电路图。
- ②编写将开关状态送LED灯的显示程序。
- ③编写将L₀ ~ L₇每间隔1秒循环亮1位的显示程序(假如1秒延时子程序DELAY1S可调用)。

①试画出8255A与PC/XT系统总线和设备的接口电路图。

确定系统总线及设计此电路所需的总线信号

地址分析

对应280H端口的地址信号为(取A9~A0):

②编写将开关状态送LED灯的显示程序。

MOV DX,283H

MOV AL,10000010B; 82H

OUT DX,AL

MOV DX,281H

IN AL,DX

MOV DX,280H

OUT DX,AL

③编写将L₀ ~ L₇每间隔1秒循环亮1位的显示程序 (假如1秒延时子程序DELAY1S可调用)。

MOV DX,283H

MOV AL,10000010B; 82H

OUT DX,AL

MOV DX,280H

MOV AL,0000001B

NT: OUT DX,AL

CALL DELAY1S

ROL AL,1

JMP NT

- 例. 在8088最大方式系统中,有一片8255A,其端口地址为20H 、22H、24H、26H。
 - (1)设计译码电路及与系统总线的连接图。
- (2)编写完整的程序实现使端口A的低4位产生如图所示的信号(各个信号的节拍不必严格相等)。

(1) 系统总线的连接图

(2)程序实现

CODE SEGMENT

ASSUME CS:CODE

START:

MOV DX, 26H

MOV AL, 1000000B

OUT DX, AL

MOV DX, 20H

REP1:

XOR AL, AL

MOV CX, 7

REP2:

OUT DX, AL

INC AL

LOOP REP2

MOV AL, 0FH

OUT DX, AL

JMP REP1

MOV AH, 4CH

INT 21H

CODE ENDS

END START