Dokumentacja do zadania 2.5

Marcin Horoszko, Radosław Głombiowski, Jacek Dermont 7 listopada 2012

1 Zadanie 2.5

Dla równania f(x) = 0, gdzie $f(x) = \ln x + x - 5$, wczytać a,b $\in R$ takie, by 0 < a < b oraz $f(a) \cdot f(b) < 0$. Następnie, dopóki "użytkownik się nie znudzi", wczytywać wartość $0 < \epsilon < 1$ i metodą połowienia na [a,b] przybliżyć z dokładnością ϵ rozwiązanie tego równania. Rozwiązanie to przybliżyć również metodą Newtona z $x_0 = a$, przy czym x_k będzie dobrym przybliżeniem, gdy $|x_k - x_{k-1}| \le \epsilon$. Porównać ilość kroków wykonanych metodą połowienia i metodą Newtona.

2 Podstawowe pojęcia

- **2.1** (Metoda połowienia (równego podziału, bisekcji)). Jedna z metod rozwiązywania równań nieliniowych. Opiera się ona na twierdzeniu Bolzano-Cauchy'ego: Jeżeli funkcja ciągła f(x) ma na końcach przedziału domkniętego wartości różnych znaków, to wewnątrz tego przedziału, istnieje co najmniej jeden pierwiastek równania f(x) = 0.
- **2.2** (Metoda Newtona (metoda stycznych)). Iteracyjny algorytm wyznaczania przybliżonej wartości pierwiastka funkcji. Można ją zastosować, gdy w przedziale [a,b] funkcja jest ciągła, $f(a) \cdot f(b) < 0$ oraz pierwsza i druga pochodna funkcji mają stały znak na tym przedziale.

3 Metoda numeryczna

Posiadając a, b (0<a

 i $f(a)\cdot f(b)$ <0) oraz ϵ (0< ϵ <1) możemy przybliżyć wartość pierwiastka f(x)=lnx+x-5 powyższymi metodami.
 Dla metody połowienia:

• tworzymy pętlę **while**, której warunkiem działania jest $|a-b| > \epsilon$:

- c =
$$\frac{a+b}{2}$$

- jeśli $f(a) \cdot f(c) < 0$, to b = c
- w przeciwnym przypadku a = c

- $\bullet\,$ zmienna ajak i zmienna bsą zadanymi przybliżeniami
- Dla metody Newtona:
 - \bullet definiujemy pochodną $f'(x) = \frac{1}{x} + 1$
 - $x_0 = a$
 - $\bullet\,$ tworzymy nie kończącą się pętlę **while**:

$$-x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

 $-\text{ jeśli } |x_0 - x_1| \le \epsilon, \text{ to przerywamy } \mathbf{pętle}$
 $-x_0 = x_1$

 $\bullet\,$ zmienna x_1 będzie naszym szukanym przybliżeniem