

SC600Y&SC600T Hardware Design

Smart LTE Module Series

Rev: SC600Y&SC600T_Hardware_Design_V1.0

Date: 2019-07-01

Status: Preliminary

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2019-07-01	Light WANG/ Rock CHEN	Initial

Contents

Ab	About the Document	2
Со	Contents	3
Та	able Index	6
Fiç	igure Index	8
1	Introduction	14
	1.1. Safety Information	15
2	Product Concept	16
	2.1. General Description	16
	2.2. Key Features	19
	2.3. Functional Diagram	23
	2.4. Evaluation Board	24
3	Application Interfaces	25
	3.1. General Description	25
	3.2. Pin Assignment	26
	3.3. Pin Description	27
	3.4. Power Supply	43
	3.4.1. Power Supply Pins	43
	3.4.2. Decrease Voltage Drop	43
	3.4.3. Reference Design for Power Supply	44
	3.5. Turn on and off Scenarios	45
	3.5.1. Turn on Module Using the PWRKEY	
	3.5.2. Turn off Module	47
	3.6. VRTC Interface	48
	3.7. Power Output	49
	3.8. Battery Charge and Management	49
	3.9. USB Interface	51
	3.10. UART Interfaces	54
	3.11. (U)SIM Interfaces	56
	3.12. SD Card Interface	58
	3.13. GPIO Interfaces	60
	3.14. I2C Interfaces	63
	3.15. I2S Interface	64
	3.16. SPI Interfaces	64
	3.17. ADC Interfaces	65
	3.18. Vibrator Drive Interface	65
	3.19. LCM Interfaces	66
	3.20. Touch Panel Interfaces	70
	3.21. Camera Interfaces	71

	3.21.1. Design Considerations	77
	3.21.2. Flashlight Interfaces	79
	3.22. Sensor Interfaces	80
	3.23. Audio Interfaces	80
	3.23.1. Reference Circuit Design for Microphone Interfaces	82
	3.23.2. Reference Circuit Design for Earpiece Interface	83
	3.23.3. Reference Circuit Design for Headphone Interface	83
	3.23.4. Reference Circuit Design for Loudspeaker Interface	84
	3.23.5. Audio Interfaces Design Considerations	84
	3.24. Emergency Download Interface	85
4	Wi-Fi and BT	86
•	4.1. Wi-Fi Overview	
	4.1.1. Wi-Fi Performance	
	4.2. BT Overview	
	4.2.1. BT Performance	
5	GNSS	
	5.1. GNSS Performance	
	5.2. GNSS RF Design Guidelines	91
6	Antenna Interfaces	92
	6.1. Main/Rx-diversity Antenna Interfaces	92
	6.1.1. Main and Rx-diversity Antenna Interfaces Reference Design	95
	6.1.2. Reference Design of RF Layout	96
	6.2. Wi-Fi/BT Antenna Interface	98
	6.3. GNSS Antenna Interface	99
	6.3.1. Recommended Circuit for Passive Antenna	99
	6.3.2. Recommended Circuit for Active Antenna	100
	6.4. Antenna Installation	
	6.4.1. Antenna Requirements	100
	6.4.2. Recommended RF Connector for Antenna Installation	101
7	Electrical, Reliability and Radio Characteristics	103
	7.1. Absolute Maximum Ratings	
	7.2. Power Supply Ratings	103
	7.3. Operation and Storage Temperatures	104
	7.4. Current Consumption	105
	7.5. RF Output Power	111
	7.6. RF Receiving Sensitivity	114
	7.7. Electrostatic Discharge	116
8	Mechanical Dimensions	118
_	8.1. Mechanical Dimensions of the Module	
	8.2. Recommended Footprint	
	8.3. Top and Bottom View of the Module	
	•	

9	Stora	ge, Manufacturing and Packaging	.122
	9.1.	Storage	. 122
		Manufacturing and Soldering	
	9.3.	Packaging	. 124
10	Appe	ndix A References	.126
11	Appe	ndix B GPRS Coding Schemes	.129
12	Appe	ndix C GPRS Multi-slot Classes	.130
13	Appe	ndix D EDGE Modulation and Coding Schemes	.132

Table Index

TABLE 1: SC600Y-EM*/SC600T-EM* FREQUENCY BANDS	16
TABLE 2: SC600Y-NA*/SC600T-NA* FREQUENCY BANDS	17
TABLE 3: SC600Y-JP*/SC600T-JP* FREQUENCY BANDS	17
TABLE 4: SC600Y-WF*/SC600T-WF* FREQUENCY BANDS	18
TABLE 5: SC600Y&SC600T KEY FEATURES	19
TABLE 6: I/O PARAMETERS DEFINITION	27
TABLE 7: PIN DESCRIPTION	
TABLE 8: POWER DESCRIPTION	
TABLE 9: PIN DEFINITION OF CHARGING INTERFACE	50
TABLE 10: PIN DEFINITION OF USB INTERFACE	
TABLE 11: USB TRACE LENGTH INSIDE THE MODULE	54
TABLE 12: PIN DEFINITION OF UART INTERFACES	54
TABLE 13: PIN DEFINITION OF (U)SIM INTERFACES	56
TABLE 14: PIN DEFINITION OF SD CARD INTERFACE	59
TABLE 15: SD CARD SIGNAL TRACE LENGTH INSIDE THE MODULE	60
TABLE 16: PIN DEFINITION OF GPIO INTERFACES	60
TABLE 17: PIN DEFINITION OF I2C INTERFACES	63
TABLE 18: PIN DEFINITION OF I2S INTERFACE	64
TABLE 19: PIN DEFINITION OF SPI INTERFACES	65
TABLE 20: PIN DEFINITION OF ADC INTERFACES	
TABLE 21: PIN DEFINITION OF VIBRATOR DRIVE INTERFACE	66
TABLE 22: PIN DEFINITION OF LCM INTERFACES	
TABLE 23: PIN DEFINITION OF TOUCH PANEL INTERFACES	70
TABLE 24: PIN DEFINITION OF CAMERA INTERFACES	72
TABLE 25: MIPI TRACE LENGTH INSIDE THE MODULE	77
TABLE 26: PIN DEFINITION OF FLASHLIGHT INTERFACES	79
TABLE 27: PIN DEFINITION OF SENSOR INTERFACES	80
TABLE 28: PIN DEFINITION OF AUDIO INTERFACES	81
TABLE 29: WI-FI TRANSMITTING PERFORMANCE	86
TABLE 30: WI-FI RECEIVING PERFORMANCE	87
TABLE 31: BT DATA RATE AND VERSIONS	89
TABLE 32: BT TRANSMITTING AND RECEIVING PERFORMANCE	89
TABLE 33: GNSS PERFORMANCE	90
TABLE 34: PIN DEFINITION OF MAIN/RX-DIVERSITY ANTENNA INTERFACES	92
TABLE 35: SC600Y-JP*/SC600T-JP* MODULE OPERATING FREQUENCIES	92
TABLE 36: SC600Y-EM*/SC600T-EM* MODULE OPERATING FREQUENCIES	93
TABLE 37: SC600Y-NA*/SC600T-NA* MODULE OPERATING FREQUENCIES	94
TABLE 38: PIN DEFINITION OF WI-FI/BT ANTENNA INTERFACE	98
TABLE 39: WI-FI/BT FREQUENCY	98
TABLE 40: PIN DEFINITION OF GNSS ANTENNA	99
TABLE 41: GNSS FREQUENCY	99

TABLE 42: ANTENNA REQUIREMENTS	100
TABLE 43: ABSOLUTE MAXIMUM RATINGS	103
TABLE 44: SC600Y&SC600T MODULES POWER SUPPLY RATINGS	103
TABLE 45: OPERATION AND STORAGE TEMPERATURES	104
TABLE 46: SC600Y-JP*/SC600T-JP* CURRENT CONSUMPTION	105
TABLE 47: SC600Y-EM*/SC600T-EM* CURRENT CONSUMPTION	106
TABLE 48: SC600Y-NA*/SC600T-NA* CURRENT CONSUMPTION	
TABLE 49: SC600Y-JP*/SC600T-JP* RF OUTPUT POWER	111
TABLE 50: SC600Y-EM*/SC600T-EM* RF OUTPUT POWER	112
TABLE 51: SC600Y-NA*/SC600T-NA* RF OUTPUT POWER	113
TABLE 52: SC600Y-JP*/SC600T-JP* RF RECEIVING SENSITIVITY	114
TABLE 53: SC600Y-EM*/SC600T-EM* RF RECEIVING SENSITIVITY	115
TABLE 54: SC600Y-NA*/SC600T-NA* RF RECEIVING SENSITIVITY	116
TABLE 55: ESD CHARACTERISTICS (TEMPERATURE: 25°C, HUMIDITY: 45%)	117
TABLE 56: RECOMMENDED THERMAL PROFILE PARAMETERS	123
TABLE 57: REEL PACKAGING	125
TABLE 58: RELATED DOCUMENTS	126
TABLE 59: TERMS AND ABBREVIATIONS	126
TABLE 60: DESCRIPTION OF DIFFERENT CODING SCHEMES	129
TABLE 61: GPRS MULTI-SLOT CLASSES	130
TABLE 62: EDGE MODULATION AND CODING SCHEMES	132

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM	23
FIGURE 2: PIN ASSIGNMENT (TOP VIEW)	26
FIGURE 3: VOLTAGE DROP SAMPLE	43
FIGURE 4: STAR STRUCTURE OF POWER SUPPLY	44
FIGURE 5: REFERENCE CIRCUIT OF POWER SUPPLY	45
FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT	46
FIGURE 7: TURN ON THE MODULE USING KEYSTROKE	46
FIGURE 8: TIMING OF TURNING ON MODULE	47
FIGURE 9: TIMING OF TURNING OFF MODULE	48
FIGURE 10: RTC POWERED BY COIN CELL	48
FIGURE 11: REFERENCE DESIGN FOR BATTERY CHARGING CIRCUIT	51
FIGURE 12: USB 2.0 INTERFACE REFERENCE DESIGN	
FIGURE 13: USB TYPE-C INTERFACE REFERENCE DESIGN	53
FIGURE 14: REFERENCE CIRCUIT WITH LEVEL TRANSLATOR CHIP (FOR UART5)	55
FIGURE 15: RS232 LEVEL MATCH CIRCUIT (FOR UART5)	
FIGURE 16: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNEC	TOR
FIGURE 17: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECT	
FIGURE 18: REFERENCE CIRCUIT FOR SD CARD INTERFACE	
FIGURE 19: REFERENCE CIRCUIT FOR VIBRATOR CONNECTION	
FIGURE 20: REFERENCE CIRCUIT DESIGN FOR LCM0 INTERFACE	
FIGURE 21: REFERENCE CIRCUIT DESIGN FOR LCM1 INTERFACE	
FIGURE 22: REFERENCE DESIGN OF LCM1 EXTERNAL BACKLIGHT DRIVING CIRCUIT	
FIGURE 23: REFERENCE CIRCUIT DESIGN FOR TOUCH PANEL INTERFACES	
FIGURE 24: REFERENCE CIRCUIT DESIGN FOR TWO-CAMERA APPLICATIONS	
FIGURE 25: REFERENCE CIRCUIT DESIGN FOR THREE-CAMERA APPLICATIONS	
FIGURE 26: REFERENCE CIRCUIT DESIGN FOR FLASHLIGHT INTERFACES	
FIGURE 27: REFERENCE CIRCUIT DESIGN FOR ANALOG ECM-TYPE MICROPHONE	
FIGURE 28: REFERENCE CIRCUIT DESIGN FOR MEMS-TYPE MICROPHONE	
FIGURE 29: REFERENCE CIRCUIT DESIGN FOR EARPIECE INTERFACE	
FIGURE 30: REFERENCE CIRCUIT DESIGN FOR HEADPHONE INTERFACE	
FIGURE 31: REFERENCE CIRCUIT DESIGN FOR LOUDSPEAKER INTERFACE	
FIGURE 32: REFERENCE CIRCUIT DESIGN FOR EMERGENCY DOWNLOAD INTERFACE	
FIGURE 33: REFERENCE CIRCUIT DESIGN FOR MAIN AND RX-DIVERSITY ANTENNA INTERFACE:	
FIGURE 34: MICROSTRIP DESIGN ON A 2-LAYER PCB	
FIGURE 35: COPLANAR WAVEGUIDE DESIGN ON A 2-LAYER PCB	
FIGURE 36: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GRO	
FIGURE 37: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GRO	,
	97

FIGURE 38: REFERENCE CIRCUIT DESIGN FOR WI-FI/BT ANTENNA INTERFACE	98
FIGURE 39: REFERENCE CIRCUIT DESIGN FOR GNSS PASSIVE ANTENNA	99
FIGURE 40: REFERENCE CIRCUIT DESIGN FOR GNSS ACTIVE ANTENNA	100
FIGURE 41: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)	101
FIGURE 42: MECHANICALS OF U.FL-LP CONNECTORS	102
FIGURE 43: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)	102
FIGURE 44: MODULE TOP AND SIDE DIMENSIONS	118
FIGURE 45: MODULE BOTTOM DIMENSIONS (TOP VIEW)	119
FIGURE 46: RECOMMENDED FOOTPRINT (TOP VIEW)	
FIGURE 47: TOP VIEW OF SC600Y/SC600T MODULES	121
FIGURE 48: BOTTOM VIEW OF SC600Y/SC600T MODULES	121
FIGURE 49: RECOMMENDED REFLOW SOLDERING THERMAL PROFILE	123
FIGURE 50: TAPE DIMENSIONS	124
FIGURE 51: REEL DIMENSIONS	125

OEM/Integrators Installation Manual

Important Notice to OEM integrators

- 1. This module is limited to OEM installation ONLY.
- 2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b).
- 3. The separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and different antenna configurations
- 4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with Part
- 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are complaint with the transmitter(s) rule(s).

The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed.

End Product Labeling

When the module is installed in the host device, the FCC/IC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: "Contains FCC ID: XMR2019SC600NA"

"Contains IC: 10224A-2019SC600NA"

The FCC ID/IC ID can be used only when all FCC/IC compliance requirements are met.

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC/IC authorization is no longer considered valid and the FCC ID/IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the party responsible for compliance could void

the user's authority to operate this equipment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Industry Canada Statement

This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

- (1) This device may not cause interference; and
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement."

The device could automatically discontinue transmission in case of absence of information to transmit, or operational failure. Note that this is not intended to prohibit transmission of control or signaling information or the use of repetitive codes where required by the technology.

The device for operation in the band 5150–5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;

The maximum antenna gain permitted for devices in the bands 5250–5350 MHz and 5470–5725 MHz shall comply with the e.i.r.p. limit; and

The maximum antenna gain permitted for devices in the band 5725–5825 MHz shall comply with the e.i.r.p. limits specified for point-to-point and non point-to-point operation as appropriate.

L'appareil peut interrompre automatiquement la transmission en cas d'absence d'informations à transmettre ou de panne opérationnelle. Notez que ceci n'est pas destiné à interdire la transmission d'informations de contrôle ou de signalisation ou l'utilisation de codes répétitifs lorsque cela est requis par la technologie.

Le dispositif utilisé dans la bande 5150-5250 MHz est réservé à une utilisation en intérieur afin de réduire le risque de brouillage préjudiciable aux systèmes mobiles par satellite dans le même canal;

Le gain d'antenne maximal autorisé pour les dispositifs dans les bandes 5250-5350 MHz et 5470-5725 MHz doit être conforme à la norme e.r.p. limite; et

Le gain d'antenne maximal autorisé pour les appareils de la bande 5725-5825 MHz doit être conforme à la norme e.i.r.p. les limites spécifiées pour un fonctionnement point à point et non point à point, selon le cas.

CAN ICES-3(B)/ NMB-3(B)

Radiation Exposure Statement

This equipment complies with FCC/IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

1 Introduction

This document defines the SC600Y&SC600T modules and describes their air interfaces and hardware interfaces which are connected with customers' applications.

This document can help customers quickly understand module interface specifications, electrical and mechanical details as well as other related information of SC600Y&SC600T modules. Associated with application note and user guide, customers can use SC600Y&SC600T modules to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating SC600Y&SC600T modules. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength.

The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

SC600Y&SC600T are a series of Smart LTE modules based on Qualcomm platform and Android operating system, and provide industrial grade performance. Their general features are listed below:

- Support worldwide LTE-FDD, LTE-TDD, DC-HSDPA, DC-HSUPA, HSPA+, HSDPA, HSUPA, WCDMA, EDGE and GPRS coverage
- Support short-range wireless communication via Wi-Fi 802.11a/b/g/n/ac and BT4.2 LE standards
- Integrate GPS/GLONASS/BeiDou satellite positioning systems
- Support multiple audio and video codecs
- Built-in high performance AdrenoTM 506 graphics processing unit
- Provide multiple audio and video input/output interfaces as well as abundant GPIO interfaces

SC600Y&SC600T modules are composed of standard version (SC600Y-XX) and high-performance version (SC600T-XX). They are available in SC600Y-EM*/ SC600T-EM*, SC600Y-NA*/ SC600T-NA*, SC600Y-JP*/ SC600T-JP*, SC600Y-WF*/ SC600T-WF*.

The following table shows the supported frequency bands of SC600Y&SC600T.

Table 1: SC600Y-EM*/SC600T-EM* Frequency Bands

Туре	Frequency Bands
LTE-FDD	B1/B2/B3/B4/B5/B7/B8/B20/B28A/B28B
LTE-TDD	B38/B39/B40/B41
WCDMA	B1/B2/B4/B5/B8
TD-SCDMA	I
EVDO/CDMA	I
GSM	850/900/1800/1900MHz

Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz
BT4.2 LE	2402MHz~2480MHz
	GPS: 1575.42MHz±1.023MHz
GNSS	GLONASS: 1597.5MHz~1605.8MHz
	BeiDou: 1561.098MHz±2.046MHz

Table 2: SC600Y-NA*/SC600T-NA* Frequency Bands

Туре	Frequency Bands
LTE-FDD	B2/B4/B5/B7/B12/B13/B14/B17/B25/B26/B66/B71
LTE-TDD	B41
WCDMA	B2/B4/B5
TD-SCDMA	I
EVDO/CDMA	I
GSM	1
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz
BT4.2 LE	2402MHz~2480MHz
GNSS	GPS: 1575.42MHz±1.023MHz GLONASS: 1597.5MHz~1605.8MHz BeiDou: 1561.098MHz±2.046MHz

Table 3: SC600Y-JP*/SC600T-JP* Frequency Bands

Туре	Frequency Bands
LTE-FDD	B1/B3/B5/B8/B11/B18/B19/B21/B26/B28A/B28B
LTE-TDD	B41
WCDMA	B1/B6/B8/B19
TD-SCDMA	1
EVDO/CDMA	1
GSM	1

Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz
BT4.2 LE	2402MHz~2480MHz
	GPS: 1575.42MHz±1.023MHz
GNSS	GLONASS: 1597.5MHz~1605.8MHz
	BeiDou: 1561.098MHz±2.046MHz

Table 4: SC600Y-WF*/SC600T-WF* Frequency Bands

Туре	Frequency Bands
LTE-FDD	1
LTE-TDD	1
WCDMA	1
TD-SCDMA	1
EVDO/CDMA	1
GSM	1
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz
BT4.2 LE	2402MHz~2480MHz
GNSS	1

NOTE

"*" means under development.

SC600Y&SC600T are SMD-type modules which can be embedded into applications through its 323 pins (including 152 LCC pads and 171 LGA pads). With a compact profile of 43.0mm × 44.0mm × 2.85mm, SC600Y&SC600T can meet almost all requirements for M2M applications such as smart metering, smart home, security, routers, wireless POS, mobile computing devices, PDA phone, tablet PC, etc.

2.2. Key Features

The following table describes the detailed features of SC600Y&SC600T modules.

Table 5: SC600Y&SC600T Key Features

Features	Details
Application Processor	SC600Y-XX Octa-core ARM Cortex-A53 64-bit CPU @1.8GHz Two quad-core processors with 512KB L2 cache SC600T-XX Octa-core ARM Cortex-A53 64-bit CPU @2.0GHz (high performance) One quad-core with 1MB L2 cache One quad-core with 512KB L2 cache
Modem system	Hexagon DSP v56 core up to 850MHz 768KB L2 cache
GPU	SC600Y-XX Adreno [™] 506 with 64-bit addressing, designed for 600MHz SC600T-XX Adreno [™] 506 with 64-bit addressing, designed for 650MHz
Memory	16GB eMMC + 2GB LPDDR3 (default) 32GB eMMC + 4GB LPDDR3 (optional)
Operating System	Android OS 9.0
Power Supply	VBAT Supply Voltage: 3.55V~4.4V Typical: 3.8V
Transmitting Power	Class 4 (33dBm±2dB) for GSM850 Class 4 (33dBm±2dB) for EGSM900 Class 1 (30dBm±2dB) for DCS1800 Class 1 (30dBm±2dB) for PCS1900 Class E2 (27dBm±3dB) for GSM850 8-PSK Class E2 (27dBm±3dB) for EGSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (24dBm+3/-1dB) for EVDO/CDMA BC0 Class 2 (24dBm+1/-3dB) for TD-SCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-FDD bands
	Support 3GPP R8 Cat 6* and Cat 4

	Support Multiuser MIMO in DL direction
	 Cat 6* FDD: Max 300Mbps (DL)/Max 50Mbps (UL)
	 Cat 6* TDD: Max 265Mbps (DL)/Max 30Mbps (UL)
	 Cat 4 FDD: Max 150Mbps (DL)/Max 50Mbps (UL)
	 Cat 4 TDD: Max 130Mbps (DL)/Max 30Mbps (UL)
	Support 3GPP R9 DC-HSDPA/DC-HSUPA/HSPA+/HSDPA/HSUPA/WCDMA
	Support QPSK, 16-QAM and 64-QAM modulation
UMTS Features	 DC-HSDPA: Max 42Mbps (DL)
	DC-HSUPA: Max 11.2Mbps (UL)
	 WCDMA: Max 384Kbps (DL)/Max 384Kbps (UL)
	R99
	CSD: 9.6kbps, 14.4kbps
	GPRS
	Support GPRS multi-slot class 33 (33 by default)
	Coding scheme: CS-1, CS-2, CS-3 and CS-4
	Max 107Kbps (DL), 85.6Kbps (UL)
GSM Features	EDGE
	Support EDGE multi-slot class 33 (33 by default)
	Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme)
	Downlink coding schemes: CS 1-4 and MCS 1-9
	Uplink coding schemes: CS 1-4 and MCS 1-9
	Max 296Kbps (DL), 236.8Kbps (UL)
	2.4GHz/5GHz, support 802.11a/b/g/n/ac, maximally up to 433Mbps
WLAN Features	Support AP and STA mode
Bluetooth Features	BT4.2 LE
GNSS Features	GPS/GLONASS/BeiDou
	Text and PDU mode
SMS	Point-to-point MO and MT
	SMS cell broadcast
	Support two groups of 4-lane MIPI DSI
	Support dual LCDs
	Support WUXGA up to (1920×1200) at 60fps
LCM Interfaces	Provide one high voltage output for powering a string of WLEDs
	Provide four drivers for sinking the current from WLED strings, and each sink
	current can reach up to 25mA
	Support three groups of 4-lane MIPI CSI, up to 2.1Gbps per lane
	Support 3 cameras (4-lane + 4-lane + 4-lane) or 4 cameras (4-lane + 4-lane +
	2-lane + 1-lane)
Camera Interfaces	SC600Y-XX
Jamesa interfaceo	up to 21MP with dual ISP
	SC600T-XX
	up to 24MP with dual ISP
	ap to 2-tivil with dual for

SC600Y-XX Video encoding and decoding: up to 1080P @60fps Wi-Fi Video: encoding up to 1080P @30fps; decoding up to 1080P @60fps SC600T-XX Video encoding and decoding: up to 4K @30fps, up to 1080P @60fps Wi-Fi Video: encoding up to 1080P @30fps; decoding up to 1080P @60fps
Audio Input Three analog microphone inputs, integrating internal bias voltage Audio Output Class AB stereo headphone output Class AB earpiece differential output Class D speaker differential amplifier output
G711, QCELP, EVRC, EVRC-B, EVRC-WB, AMR-NB, AMR-WB, GSM-EFR, GSM-FR, GSM-HR
Support with USB 3.0 or 2.0 specifications, with transmission rates up to 5Gbps on USB 3.0 and 480Mbps on USB 2.0. Support USB OTG Used for AT command communication, data transmission, software debugging and firmware upgrade
 UART Interfaces: UART5, UART6, UART4 and UART2 UART5 & UART6: 4-wire UART interface with RTS/CTS hardware flow control, baud rate up to 4Mbps UART4: 2-wire UART interface UART2: 2-wire UART interface used for debugging
Drive ERM vibrator
Support SD 3.0 Support SD card hot-plug
2 (U)SIM interfaces Support USIM/SIM card: 1.8V/2.95V Support Dual SIM Dual Standby (supported by default)
Five I2C interfaces, used for peripherals such as TP, camera, sensor, etc.
Support for I2S peripherals
 2 high current Flash and torch LED driver 1A each for Flash mode and 300mA each for torch mode by default 1.5A each for Flash mode and 300mA each for torch mode maximally
2 general purpose ADC interfaces Support up to 15-bit sampling accuracy
Two SPI interfaces, only support master mode One SPI interface used for peripheral device One SPI interface used for sensor application, such as fingerprint sensors

Charging Interface	Used for battery voltage detection, fuel gauge, battery temperature detection
Real Time Clock	Supported
Antenna Interfaces	Main antenna, Rx-diversity antenna, GNSS antenna and Wi-Fi/BT antenna interfaces
Physical Characteristics	Size: (43.0±0.15)mm × (44.0±0.15)mm × (2.85±0.2)mm Package: LCC + LGA Weight: approx. 13.0g
Temperature Range	Operating temperature range: -35°C ~ +65°C ¹⁾ Extended temperature range: -40°C ~ +75°C ²⁾ Storage temperature range: -40°C ~ +90°C
Firmware Upgrade	Over USB interface
RoHS	All hardware components are fully compliant with EU RoHS directive

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.
- 3. "*" means under development.

2.3. Functional Diagram

The following figure shows a block diagram of SC600Y&SC600T and illustrates the major functional parts.

- Power management
- Radio frequency
- Baseband
- LPDDR3+eMMC flash
- Peripheral interfaces
 - -- USB interface
 - -- (U)SIM interfaces
 - -- UART interfaces
 - -- SD card interface
 - -- I2C interfaces
 - -- ADC interfaces
 - -- LCM (MIPI) interfaces
 - -- TP (touch panel) interfaces
 - -- Camera (MIPI) interfaces
 - -- Audio interfaces

Figure 1: Functional Diagram

2.4. Evaluation Board

In order to help customers develop applications with SC600Y&SC600T conveniently, Quectel supplies the evaluation board, USB to RS232 converter cable, USB Type-C data cable, power adapter, earphone, antenna and other peripherals to control or test the module. For more details, please refer to **document** [1].

3 Application Interfaces

3.1. General Description

SC600Y&SC600T are equipped with 323-pin 1.0mm pitch SMT pads that can be embedded into cellular application platform. The following chapters provide the detailed description of pins/interfaces listed below.

- Power supply
- VRTC interface
- Charging interface
- USB interface
- UART interfaces
- (U)SIM interfaces
- SD card interface
- GPIO interfaces
- I2C interfaces
- I2S interfaces
- SPI interfaces
- ADC interfaces
- Vibrator drive interface
- LCM interfaces
- TP (touch panel) interfaces
- Camera interfaces
- Flashlight interfaces
- Sensor interfaces
- Audio interfaces
- Emergency download interface

3.2. Pin Assignment

The following figure shows the pin assignment of SC600Y&SC600T modules.

Figure 2: Pin Assignment (Top View)

3.3. Pin Description

Table 6: I/O Parameters Definition

Туре	Description
Ю	Bidirectional
DI	Digital input
DO	Digital output
PI	Power input
РО	Power output
Al	Analog input
AO	Analog output
OD	Open drain

The following tables show the SC600Y&SC600T's pin definitions and electrical characteristics.

Table 7: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT	36, 37, 38	PI/PO	Power supply for the module	Vmax=4.4V Vmin=3.55V Vnorm=3.8V	It must be able to provide sufficient current up to 3.0A. It is suggested to use a TVS to increase voltage surge withstand capability.
VDD_RF	1, 2	РО	Connect to external bypass capacitors to eliminate voltage fluctuation of RF part.	V _O max=4.4V V _O min=3.55V V _O norm=3.8V	Do not load externally.
VPH_PWR	220, 221	РО	Power supply for peripheral	Vmax=4.4V Vmin=3.55V	It can provide a maximum continuous

				Vnorm=3.8V	current of 1A approximately.
VRTC	16	PI/PO	Power supply for internal RTC circuit	V _O max=3.2V V _I =2.0V~3.25V	
LDO5_1P8	9	РО	1.8V output power supply	Vnorm=1.8V I _O max=20mA	Power supply for external GPIO's pull up circuits and level shift circuit.
LDO10_2P8	11	PO	2.8V output power supply	Vnorm=2.8V I _O max=150mA	Power supply for VDD of sensors and TPs. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
LDO6_1P8	10	РО	1.8V output power supply	Vnorm=1.8V I _o max=300mA	Power supply for I/O VDD of cameras, LCDs and sensors. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.
LDO17_2P85	12	РО	2.85V output power supply	Vnorm=2.85V I _O max=300mA	Power supply for cameras and LCDs. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
LDO23_1P2	15	PO	1.2V output power supply	Vnorm=1.2V I _O max=600mA	Power supply for DVDD of front cameras. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.
LDO2_1P1	13	PO	1.1V output power supply	Vnorm=1.1V I _O max=1200mA	Power supply for DVDD of rear cameras. Add a 1.0uF~2.2uF bypass capacitor if

					used. If unused, keep this pin open.
LDO22_2P8	14	РО	2.8V output power supply	Vnorm=2.8V I _O max=150mA	Power supply for AVDD of cameras. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
GND	3, 4, 18, 20, 31, 34, 35, 40, 43, 47, 56, 62, 87, 98, 101, 112, 125, 128, 130, 133, 135, 148, 150, 159, 163, 170, 173, 176, 182, 193, 195, 219, 225, 243, 257~323		Ground		

Audio Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MIC_BIAS	167	AO	Microphone bias voltage	V _O =1.6V~2.85V	
MIC1_P	44	Al	Microphone positive input for channel 1		
MIC1_N	45	Al	Microphone negative input for channel 1		
MIC_GND	168		Microphone reference ground		If unused, connect this pin to the ground.
MIC2_P	46	Al	Microphone positive input for headset		

MIC3_P	169	Al	Microphone positive input for channel 3		
EAR_P	53	AO	Earpiece positive output		
EAR_N	52	AO	Earpiece negative output		
SPK_P	55	AO	Speaker positive output		
SPK_N	54	AO	Speaker negative output		
HPH_R	51	AO	Headphone right channel output		
HPH_REF	50	Al	Headphone reference ground		
HPH_L	49	AO	Headphone left channel output		
HS_DET	48	Al	Headset insertion detection		Pulled up internally.
USB Interface)				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	41, 42	PI/ PO	Charging power input. Power supply output for OTG device. USB/charger insertion detection.	Vmax=10V Vmin=4.0V Vnorm=5.0V	
USB_DM	33	Ю	USB 2.0 differential data bus (minus)	USB 2.0 standard	90Ω differential
USB_DP	32	Ю	USB 2.0 differential data bus (plus)	compliant	impedance.
USB_ID					
	30	Al	USB ID detection		High level by default
USB_SS_RX _P	171	Al	USB ID detection USB 3.0 differential receive (plus)		High level by default 90Ω differential
			USB 3.0 differential	USB 3.0 standard	
_P USB_SS_RX	171	Al	USB 3.0 differential receive (plus) USB 3.0 differential	USB 3.0 standard compliant	90Ω differential
_P USB_SS_RX _M USB_SS_TX	171 172	AI AI	USB 3.0 differential receive (plus) USB 3.0 differential receive (minus) USB 3.0 differential		90Ω differential impedance.
_P USB_SS_RX _M USB_SS_TX _P USB_SS_TX	171 172 174	AI AI AO	USB 3.0 differential receive (plus) USB 3.0 differential receive (minus) USB 3.0 differential transmit (plus) USB 3.0 differential		impedance. 90Ω differential

		AO	configuration channel 2		
USBC_CC1	224	AI/ AO	USB Type-C control configuration channel 1		
USB_SS_SEL	226	DO	USB Type-C switch control		
USB_OPT	217	Al	Type-C/ Micro USB select control		Float, select Type-C. Connect 1K to GND, select Micro USB.
(U)SIM Interfac	ces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM1_DET	145	DI	(U)SIM1 card hot-plug detection	V _{IL} max=0.63V V _{IH} min=1.17V	Active Low. Require external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software configuration.
USIM1_RST	144	DO	(U)SIM1 card reset signal	V_{OL} max=0.4 V V_{OH} min= $0.8 \times USIM1_VDD$	
USIM1_CLK	143	DO	(U)SIM1 card clock signal	V _{OL} max=0.4V V _{OH} min= 0.8 × USIM1_VDD	
USIM1_DATA	142	Ю	(U)SIM1 card data signal	$V_{IL} max = \\ 0.2 \times USIM1_VDD \\ V_{IH} min = \\ 0.7 \times USIM1_VDD \\ V_{OL} max = 0.4V \\ V_{OH} min = \\ 0.8 \times USIM1_VDD$	
USIM1_VDD	141	PO	(U)SIM1 card power supply	1.8V (U)SIM: Vmax=1.85V Vmin=1.75V 2.95V (U)SIM: Vmax=3.1V Vmin=2.8V	Either 1.8V or 2.95V (U)SIM card is supported.

USIM2_DET	256	DI	(U)SIM2 card detection	V _{IL} max=0.63V V _{IH} min=1.17V	Active Low. Need external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software configuration.
USIM2_RST	207	DO	(U)SIM2 card reset signal	V_{OL} max=0.4 V V_{OH} min= 0.8 × USIM2_VDD	
USIM2_CLK	208	DO	(U)SIM2 card clock signal	V_{OL} max=0.4 V V_{OH} min= $0.8 \times USIM2_{VDD}$	
USIM2_DATA	209	Ю	(U)SIM2 card data signal	$V_{IL} max = \\ 0.2 \times USIM2_VDD \\ V_{IH} min = \\ 0.7 \times USIM2_VDD \\ V_{OL} max = 0.4V \\ V_{OH} min = \\ 0.8 \times USIM2_VDD$	
USIM2_VDD	210	PO	(U)SIM2 card power supply	1.8V (U)SIM: Vmax=1.85V Vmin=1.75V 2.95V (U)SIM: Vmax=3.1V Vmin=2.8V	Either 1.8V or 2.95V (U)SIM card is supported.
UART Interface	es				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
UART2_TXD	5	DO	UART2 transmit data. Debug port by default.	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep these pins open.
UART2_RXD	6	DI	UART2 receive data. Debug port by default.	V _{IL} max=0.63V V _{IH} min=1.17V	
UART4_TXD	7	DO	UART4 transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	

8	DI	UART4 receive data	V _{IL} max=0.63V V _{IH} min=1.17V	
198	DI	UART5 receive data	V _{IL} max=0.63V V _{IH} min=1.17V	
199	DO	UART5 transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	
245	DO	UART5 request to send	V _{OL} max=0.45V V _{OH} min=1.35V	_
246	DI	UART5 clear to send	V _{IL} max=0.63V V _{IH} min=1.17V	_
асе				
Pin No.	I/O	Description	DC Characteristics	Comment
70	DO	High speed digital clock signal of SD card	1.8V SD card: V _{OL} max=0.45V V _{OH} min=1.4V 2.95V SD card: V _{OL} max=0.37V V _{OH} min=2.2V	
69	Ю	Command signal of SD card	1.8V SD card: V _{IL} max=0.58V V _{IH} min=1.27V V _{OL} max=0.45V V _{OH} min=1.4V 2.95V SD card: V _{IL} max=0.73V V _{IH} min=1.84V V _{OL} max=0.37V V _{OH} min=2.2V	
68	Ю	High speed bidirectional digital signal lines of SD	1.8V SD card: V _{IL} max=0.58V V _{IH} min=1.27V	
			V _{OH} min=1.4V	
67	Ю	signal lines of SD card	2.95V SD card:	
	198 199 245 246 Ace Pin No. 70	198 DI 199 DO 245 DO 246 DI ace Pin No. I/O 69 IO	198 DI UART5 receive data 199 DO UART5 transmit data 245 DO Send 246 DI UART5 clear to send Acce Pin No. I/O Description 70 DO Clock signal of SD card 69 IO Command signal of SD card High speed bidirectional digital	B

SD_DATA3	65	Ю		V _{OH} min=2.2V	
SD_DET	64	DI	SD card insertion detection	V _{IL} max=0.63V V _{IH} min=1.17V	Active low.
SD_LDO11	63	РО	Power supply for SD card	Vnorm=2.95V I _O max=800mA	
SD_LDO12	179	РО	1.8V/2.95V output	Vnorm=1.8V/2.95V I _O max=50mA	Power supply for SD card's pull-up circuit.
TP (Touch Pane	el) Interfac	es			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
TP0_RST	138	DO	Reset signal of touch panel (TP0)	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
TP0_INT	139	DI	Interrupt signal of touch panel (TP0)	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
TP0_I2C_SCL	140	OD	I2C clock signal of touch panel (TP0)		1.8V power domain.
TP0_I2C_SDA	206	OD	I2C data signal of touch panel (TP0)		1.8V power domain.
TP1_RST	136	DO	Reset signal of touch panel (TP1)	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
TP1_INT	137	DI	Interrupt signal of touch panel (TP1)	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
TP1_I2C_SDA	204	OD	I2C data signal of touch panel (TP1)		1.8V power domain.
TP1_I2C_SCL	205	OD	I2C clock signal of touch panel (TP1)		1.8V power domain.
LCM Interfaces	;				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
LCD_BL_A	21	РО	Current output for LCD backlight		
LCD_BL_K1	22	Al	Current sink for LCD backlight		
LCD_BL_K2	23	Al	Current sink for LCD backlight		

LCD_BL_K3	24	AI	Current sink for LCD backlight		
LCD_BL_K4	25	AI	Current sink for LCD backlight		
PMU_MPP4	152	DO	PWM signal output		
LCD0_RST	127	DO	LCD0 reset signal	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
LCD0_TE	126	DI	LCD0 tearing effect signal	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
LCD1_RST	113	DO	LCD1 reset signal	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
LCD1_TE	114	DI	LCD1 tearing effect signal	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
DSI0_CLK_N	116	АО	LCD0 MIPI clock signal (negative)		
DSI0_CLK_P	115	AO	LCD0 MIPI clock signal (positive)		
DSI0_LN0_N	118	AO	LCD0 MIPI lane 0 data signal (negative)		
DSI0_LN0_P	117	AO	LCD0 MIPI lane 0 data signal (positive)		
DSI0_LN1_N	120	АО	LCD0 MIPI lane 1 data signal (negative)		
DSI0_LN1_P	119	AO	LCD0 MIPI lane 1 data signal (positive)		
DSI0_LN2_N	122	AO	LCD0 MIPI lane 2 data signal (negative)		
DSI0_LN2_P	121	AO	LCD0 MIPI lane 2 data signal (positive)		
DSI0_LN3_N	124	AO	LCD0 MIPI lane 3 data signal (negative)		
DSI0_LN3_P	123	AO	LCD0 MIPI lane 3 data signal (positive)		
DSI1_CLK_N	103	AO	LCD1 MIPI clock signal (negative)		
DSI1_CLK_P	102	AO	LCD1 MIPI clock signal (positive)		
DSI1_LN0_N	105	AO	LCD1 MIPI lane 0		

			data signal (negative)		
DSI1 LN0 P	104	AO	LCD1 MIPI lane 0		
			data signal (positive)		
DSI1_LN1_N	107	AO	LCD1 MIPI lane 1		
			data signal (negative)		
DSI1 LN1 P	106	AO	LCD1 MIPI lane 1		
			data signal (positive)		
DSI1_LN2_N	109	AO	LCD1 MIPI lane 2		
			data signal (negative)		
DSI1_LN2_P	108	AO	LCD1 MIPI lane 2		
			data signal (positive)		
DSI1_LN3_N	111	AO	LCD1 MIPI lane 3		
			data signal (negative)		
DSI1 LN3 P	110	AO	LCD1 MIPI lane 3		
			data signal (positive)		
Camera Interfa	ices				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
			MIPI clock signal of		
CSI0_CLK_N	89	Al	rear camera		
			(negative)		
CSI0_CLK_P	88	Al	MIPI clock signal of		
			rear camera (positive)		
			MIPI lane 0 data		
CSI0_LN0_N	91	Al	signal of rear camera		
			(negative)		
			MIPI lane 0 data		
CSI0_LN0_P	90	Al	signal of rear camera		
			(positive)		
0010 1111 11			MIPI lane 1 data		
CSI0_LN1_N	93	Al	signal of rear camera		
			(negative)		
0010 1114 5	00		MIPI lane 1 data		
CSI0_LN1_P	92	Al	signal of rear camera		
			(positive)		
CCIO I NIO NI			MIPI lane 2 data		
	OF	٨١	aignal of rear samers		
CSI0_LN2_N	95	Al	signal of rear camera		
CSIO_LINZ_IN	95	Al	(negative)		
			(negative) MIPI lane 2 data		
CSI0_LN2_P	95	AI	(negative)		

CSI0_LN3_N	97	AI	MIPI lane 3 data signal of rear camera (negative)	
CSI0_LN3_P	96	Al	MIPI lane 3 data signal of rear camera (positive)	
CSI1_CLK_N	184	AI	MIPI clock signal of depth camera (negative)	
CSI1_CLK_P	183	AI	MIPI clock signal of depth camera (positive)	
CSI1_LN0_N	186	Al	MIPI lane 0 data signal of depth camera (negative)	
CSI1_LN0_P	185	AI	MIPI lane 0 data signal of depth camera (positive)	
CSI1_LN1_N	188	AI	MIPI lane 1 data signal of depth camera (negative)	
CSI1_LN1_P	187	AI	MIPI lane 1 data signal of depth camera (positive)	
CSI1_LN2_N	190	AI	MIPI lane 2 data signal of depth camera (negative)	Can be multiplexed into differential data of the fourth camera (negative).
CSI1_LN2_P	189	AI	MIPI lane 2 data signal of depth camera (positive)	Can be multiplexed into differential data of the fourth camera (positive).
CSI1_LN3_N	192	AI	MIPI lane 3 data signal of depth camera (negative)	Can be multiplexed into differential clock of the fourth camera (negative).
CSI1_LN3_P	191	AI	MIPI lane 3 data signal of depth camera (positive)	Can be multiplexed into differential clock of the fourth camera (positive).
CSI2_CLK_N	78	AI	MIPI clock signal of front camera (negative)	

CSI2_CLK_P	77	AI	MIPI clock signal of front camera (positive)		
CSI2_LN0_N	80	Al	MIPI lane 0 data signal of front camera (negative)		
CSI2_LN0_P	79	Al	MIPI lane 0 data signal of front camera (positive)		
CSI2_LN1_N	82	AI	MIPI lane 1 data signal of front camera (negative)		
CSI2_LN1_P	81	AI	MIPI lane 1 data signal of front camera (positive)		
CSI2_LN2_N	84	AI	MIPI lane 2 data signal of front camera (negative)		
CSI2_LN2_P	83	Al	MIPI lane 2 data signal of front camera (positive)		
CSI2_LN3_N	86	AI	MIPI lane 3 data signal of front camera (negative)		
CSI2_LN3_P	85	Al	MIPI lane 3 data signal of front camera (positive)		
MCAM_MCLK	99	DO	Master clock signal of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_MCLK	100	DO	Master clock signal of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
MCAM_RST	74	DO	Reset signal of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
MCAM_PWDN	73	DO	Power down signal of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_RST	72	DO	Reset signal of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_PWDN	71	DO	Power down signal of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.

CAM_I2C_SCL	75	OD	I2C clock signal of camera		1.8V power domain.
CAM_I2C_SDA	76	OD	I2C data signal of camera		1.8V power domain.
DCAM_MCLK	194	DO	Master clock signal of depth camera	V _{OL} max=0.45V V _{OH} min=1.35V	
CAM4_MCLK	236	DO	Master clock signal of fourth camera	V _{OL} max=0.45V V _{OH} min=1.35V	
DCAM_RST	180	DO	Reset signal of depth camera	V _{OL} max=0.45V V _{OH} min=1.35V	
DCAM_PWDN	181	DO	Power down signal of depth camera	V _{OL} max=0.45V V _{OH} min=1.35V	
DCAM_I2C_ SDA	197	OD	I2C data signal of depth camera		1.8V power domain.
DCAM_I2C_ SCL	196	OD	I2C clock signal of depth camera		1.8V power domain.
Keypad Interfac	es				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	39	DI	Turn on/off the module	V _{IL} max=0.63V V _{IH} min=1.17V	Pull-up to 1.8V internally. Active low.
VOL_UP	146	DI	Volume up	V _{IL} max=0.63V V _{IH} min=1.17V	If unused, keep this pin open.
VOL_ DOWN	147	DI	Volume down	V _{IL} max=0.63V V _{IH} min=1.17V	If unused, keep this pin open.
SENSOR_I2C In	iterfaces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SENSOR_I2C_ SCL	131	OD	I2C clock signal of external sensors		1.8V power domain.
SENSOR_I2C_ SDA	132	OD	I2C data signal of external sensors		1.8V power domain.
ADC Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PMI_ADC	153	Al	General purpose ADC interface		Maximum input voltage: 1.5V.

PMU_MPP2	151	Al	General purpose ADC interface		Maximum input voltage: 1.7V.
Charging Inter	face				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
BAT_PLUS	27	Al	Differential input signal of battery voltage detection (plus)		Must be connected.
BAT_MINUS	28	Al	Differential input signal of battery voltage detection (minus)		Must be connected.
Antenna Interf	aces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	19	Ю	Main antenna interface		
ANT_DRX	149	AI	Diversity antenna interface		- 500 impodance
ANT_GNSS	134	Al	GNSS antenna interface	———— 50Ω impedano	
ANT_WIFI/BT	129	Ю	Wi-Fi/BT antenna interface		
GPIO Interface	s				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO_0	248	Ю	GPIO		
GPIO_1	247	Ю	GPIO	_	
GPIO_2	201	Ю	GPIO	_	
GPIO_3	200	Ю	GPIO	_	
GPIO_33	238	Ю	GPIO	V _{IL} max=0.63V V _{IH} min=1.17V	
GPIO_36	237	Ю	GPIO	V _{OL} max=0.45V	
GPIO_42	252	Ю	GPIO	V _{OH} min=1.4V	
GPIO_43	253	Ю	GPIO		

GPIO_44	254	Ю	GPIO		
GPIO_45	255	Ю	GPIO		
GPIO_66	234	Ю	GPIO		
GPIO_89	232	Ю	GPIO		
GPIO_90	231	Ю	GPIO		
GPIO_96	230	Ю	GPIO		
GPIO_97	229	Ю	GPIO		
GPIO_98	177	Ю	GPIO		
GPIO_99	178	Ю	GPIO		
GPIO_105	242	Ю	GRFC1		GRFC is only used
GPIO_107	241	Ю	GRFC2		for RF Tuner control.
SPI Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SPI_CS	58	DO	Chip selection signal		Can be multiplexed
3F1_03	30	ЪО	of SPI interface		into UART6_CTS.
SPI_CLK	59	DO	of SPI interface Clock signal of SPI interface		into UART6_CTS. Can be multiplexed into UART6_RTS.
			Clock signal of SPI		Can be multiplexed
SPI_CLK	59	DO	Clock signal of SPI interface Master out slave in of		Can be multiplexed into UART6_RTS. Can be multiplexed
SPI_CLK SPI_MOSI	59 60	DO DO	Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of		Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed
SPI_CLK SPI_MOSI SPI_MISO	59 60 61	DO DO	Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal		Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed
SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS	59 60 61 203	DO DO DI	Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI		Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed
SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS FP_SPI_CLK	59 60 61 203 250	DO DO DI DO DO	Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of		Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed into I2S_SCK. Can be multiplexed
SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS FP_SPI_CLK FP_SPI_MOSI	59 60 61 203 250 249 251	DO DI DO DO DO	Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master out slave out of		Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed into I2S_SCK. Can be multiplexed into I2S_DO. Can be multiplexed
SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS FP_SPI_CLK FP_SPI_MOSI FP_SPI_MISO	59 60 61 203 250 249 251	DO DI DO DO DO	Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master out slave out of	DC Characteristics	Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed into I2S_SCK. Can be multiplexed into I2S_DO. Can be multiplexed
SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS FP_SPI_CLK FP_SPI_MOSI FP_SPI_MISO Vibrator Drive I	59 60 61 203 250 249 251 nterface	DO DO DO DO DO DO	Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface	DC Characteristics	Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed into I2S_SCK. Can be multiplexed into I2S_D0. Can be multiplexed into I2S_D1.

			(negative)		negative terminal of vibrator.
VIB_DRV	161	AO	Vibrator drive (positive)		Connected to the positive terminal of vibrator.
Flashlight Interf	aces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
FLASH_LED1	26	AO	Flash/torch current driver output		Support flash and
FLASH_LED2	162	АО	Flash/torch current driver output		torch modes.
Emergency Dov	vnload Inter	face			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_BOOT	57	DI	Force the module to enter into emergency download mode		Pulled up to LDO5_1P8 during power-up will force the module to enter into emergency download mode.
Other Interfaces	;				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
BAT_ID	17	Al	Battery type detection		If unused, keep this pin open.
BAT_THERM	29	Al	Battery temperature detection		Internally pulled up. Externally connected to GND via a 47K NTC resistor.
GNSS_LNA_EN	202	DO	LNA enable control		For test purpose only. If unused, keep this pin open.
GNSS_LNA_EN S1A	202	DO	S1A and S1B are		If unused, keep this
		DO			If unused, keep this
S1A	215	DO	S1A and S1B are connected together in the module S2A and S2B are		If unused, keep this
S1A S1B	215 216	DO	S1A and S1B are connected together in the module		If unused, keep this

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
	154, 155,				
	156, 157,				
	158, 164,		Reserved pins		
DE0ED\ (ED	165, 166,				Keep these pins
RESERVED	212, 213,				open.
	214, 218,				
	222, 235,				
	239, 240,				

3.4. Power Supply

3.4.1. Power Supply Pins

SC600Y&SC600T provide 3 VBAT pins, 2 VDD_RF pins and 2 VPH_PWR pins. VBAT pins are dedicated for connection with an external power supply. VDD_RF pins are designed for module's RF part, and are used to connect bypass capacitors so as to eliminate voltage fluctuation of RF part. VPH_PWR pins can supply power for peripherals, and it can provide a maximum continuous current of 1A approximately.

3.4.2. Decrease Voltage Drop

The power supply range of the module is from 3.55V to 4.4V, and the recommended value is 3.8V. The power supply performance, such as load capacity, voltage ripple, etc. directly influences the module's performance and stability. Under ultimate conditions, the module may have a transient peak current up to 3A. If the power supply capability is not sufficient, there will be voltage drops, and if the voltage drops below 3.1V, the module will be powered off automatically. Therefore, please make sure the input voltage will never drop below 3.1V.

Figure 3: Voltage Drop Sample

To decrease voltage drop, a bypass capacitor of about $100\mu\text{F}$ with low ESR (ESR= 0.7Ω) should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT/VDD_RF/VPH_PWR pins. The width of VBAT trace should be no less than 3mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to get a stable power source, it is suggested to use a 0.5W TVS and place it as close to the VBAT pins as possible to increase voltage surge withstand capability. The following figure shows the structure of the power supply.

Figure 4: Star Structure of Power Supply

3.4.3. Reference Design for Power Supply

The power design for the module is very important, as the performance of module largely depends on the power source. The power supply of SC600Y&SC600T should be able to provide sufficient current up to 3A at least. By default, it is recommended to use a battery to supply power for SC600Y&SC600T. But if battery is not intended to be used, it is recommended to use a regulator for SC600Y&SC600T. If the voltage difference between the input and output is not too high, it is suggested to use an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +5V input power source which adopts an LDO (MIC29502WU) from MICROCHIP. The typical output voltage is 3.8V and the maximum rated current is 5.0A.

Figure 5: Reference Circuit of Power Supply

NOTES

- 1. It is recommended to switch off the power supply for module in abnormal state, and then switch on the power to restart the module.
- 2. The module supports battery charging function by default. If the above power supply design is adopted, please make sure the charging function is disabled by software, or connect VBAT to Schottky diode in series to avoid the reverse current to the power supply chip.
- 3. When the battery power is reduced to 0%, the system will trigger automatic shutdown, so the design of power supply should be consistent with the configuration of fuel gauge driver.

3.5. Turn on and off Scenarios

3.5.1. Turn on Module Using the PWRKEY

The module can be turned on by driving PWRKEY pin to a low level for at least 1.6s. PWRKEY pin is pulled to 1.8V internally. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

Figure 6: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

Figure 7: Turn on the Module Using Keystroke

The turning on scenario is illustrated in the following figure.

Figure 8: Timing of Turning on Module

NOTES

- 1. The turn-on timing might be different from the above figure when the module powers on for the first time.
- 2. Make sure that VBAT is stable before pulling down PWRKEY pin. The recommended time between them is no less than 30ms. PWRKEY cannot be pulled down all the time.

3.5.2. Turn off Module

Pull down PWRKEY for at least 1s, and then choose to turn off the module when the prompt window comes up.

Another way to turn off the module is to drive PWRKEY to a low level for at least 8s. The module will execute forced shutdown. The forced power-down scenario is illustrated in the following figure.

Figure 9: Timing of Turning off Module

3.6. VRTC Interface

The RTC (Real Time Clock) can be powered by an external power source through VRTC when the module is powered down and there is no power supply for the VBAT. The external power source can be rechargeable battery (such as coil cells) according to application demands. The following reference circuit design when an external battery is utilized for powering RTC.

Figure 10: RTC Powered by Coin Cell

If RTC is ineffective, it can be synchronized through network after the module is powered on.

- 2.0V~3.25V input voltage range and 3.0V typical value for VRTC, when VBAT is disconnected.
- When powered by VBAT, the RTC error is 50ppm. When powered by VRTC, the RTC error is about 200ppm.
- If the rechargeable battery is used, the ESR of battery should be less than 2K, and it is recommended to use the MS621FE FL11E of SEIKO.

3.7. Power Output

SC600Y&SC600T support output of regulated voltages for peripheral circuits. During application, it is recommended to use parallel capacitors (33pF and 10pF) in the circuit to suppress high frequency noise.

Table 8: Power Description

Pin Name	Default Voltage (V)	Drive Current (mA)	Idle
LDO5_1P8	1.8	20	Keep
LDO6_1P8	1.8	300	/
LDO10_2P8	2.8	150	/
LDO17_2P85	2.85	300	/
LDO2_1P1	1.1	1200	/
LDO22_2P8	2.8	150	1
LDO23_1P2	1.2	600	/
SD_LDO12	1.8/2.95	50	1
SD_LDO11	2.95	800	1
USIM1_VDD	1.8/2.95	50	1
USIM2_VDD	1.8/2.95	50	1

3.8. Battery Charge and Management

SC600Y&SC600T modules support a fully programmable switch-mode Li-ion battery charge function. It can charge single-cell Li-ion and Li-polymer battery. The battery charger of SC600Y&SC600T modules supports trickle charging, pre-charge, constant current charging and constant voltage charging modes, which optimize the charging procedure for Li-ion batteries.

- **Trickle charging:** When the battery voltage is below 2.1V, a 75mA trickle charging current is applied to the battery.
- **Pre-charge:** When the battery voltage is charged up and is between 2.1V and 3.0V (the maximum pre-charge voltage is 2.3V~3.0V programmable, 3.0V by default), the system will enter into

- pre-charge mode. The charging current is 450mA (100mA~450mA programmable, 450mA by default).
- Constant current mode (CC mode): When the battery voltage is increased to between the maximum pre-charge voltage and 4.2V (3.6V~4.5V programmable, 4.2V by default), the system will switch to CC mode. The charging current is programmable from 300mA~3000mA. The default charging current is 500mA for USB charging and 2A for adapter.
- Constant voltage mode (CV mode): When the battery voltage reaches the final value 4.2V, the system will switch to CV mode and the charging current will decrease gradually. When the charging current reduces to about 100mA, the charging is completed.

Table 9: Pin Definition of Charging Interface

Pin Name	Pin No.	I/O	Description	Comment	
			Charging power input.		Vmax=10V
USB_VBUS	41, 42	PI/PO	Power supply output for OTG de	vice.	Vmin=4.0V
			USB/charger insertion detection.		Vnorm=5.0V
	36, 37,				Vmax=4.4V
VBAT	38	PI/PO	Power supply for the module		Vmin=3.55V
	30				Vnorm=3.8V
DAT ID	17	Al	Dattery type detection		If unused, keep this
BAT_ID	17	AI	Battery type detection		pin open.
BAT_PLUS	27	Al	Differential input signal of battery detection (plus)	voltage	Must be connected.
BAT_MINUS	28	Al	Differential input signal of battery detection (minus)	voltage	Must be connected.
					Internally pulled up.
BAT THERM	29	Al	Rattery temperature detection		Externally connected
DAI_I NEKW	23	ΑI	Battery temperature detection		to GND via a 47K
					NTC resistor.

SC600Y&SC600T modules support battery temperature detection in the condition that the battery integrates a thermistor (47K 1% NTC thermistor with B-constant of 4050K by default; SDNT1608X473F4050FTF of SUNLORD is recommended) and the thermistor is connected to BAT_THERM pin. If BAT_THERM pin is not connected, there will be malfunctions such as boot error, battery charging failure, battery level display error, etc.

A reference design for battery charging circuit is shown as below.

Figure 11: Reference Design for Battery Charging Circuit

SC600Y&SC600T offer a fuel gauge algorithm that is able to accurately estimate the battery's state by current and voltage monitor techniques. Using precise measurements of battery voltage, current, and temperature, the fuel gauge provides a dependable state of charge estimate throughout the entire life of the battery and across a broad range of operating conditions. It effectively protects the battery from over-discharging, and also allows users to estimate the battery life based on the battery level so as to timely save important data before completely power-down.

Mobile devices such as mobile phones and handheld POS systems are powered by batteries. When different batteries are utilized, the charging and discharging curve has to be modified correspondingly so as to achieve the best effect.

If thermistor is not available in the battery, or adapter is utilized for powering the module, then there is only a need for VBAT and GND connection. In this case, the system may be unable to detect the battery, which will cause power-on failure. In order to avoid this, BAT_THERM should be connected to GND with a 47KΩ resistor. BAT_PLUS and BAT_MINUS must be connected, otherwise there may be abnormalities in use of the module. Among them, BAT_PLUS and BAT_MINUS are used for battery level detection, and they should be routed as differential pair to ensure accuracy.

3.9. USB Interface

SC600Y&SC600T provide one integrated Universal Serial Bus (USB) interface which complies with the USB 3.0/2.0 specifications and supports super speed (5Gbps) on USB 3.0, high speed (480Mbps) on USB 2.0 and full speed (12Mbps) modes. The USB interface supports USB OTG function, and is used for AT command communication, data transmission, software debugging and firmware upgrade.

The following table shows the pin definition of USB interface.

Table 10: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	41, 42	PI/PO	Charging power input; Power supply output for OTG device; USB/charger insertion detection.	Vmax=10V Vmin=4.0V Vnorm=5.0V
USB_DM	33	Ю	USB 2.0 USB differential data bus (minus)	Require differential
USB_DP	32	Ю	USB 2.0 USB differential data bus (plus)	impedance of 90Ω
USB_ID	30	Al	USB ID detection	High level by default
USB_SS_RX_P	171	Al	USB 3.0 differential receive (plus)	
USB_SS_RX_M	172	Al	USB 3.0 differential receive (minus)	Require differential
USB_SS_TX_P	174	АО	USB 3.0 differential transmit (plus)	impedance of 90Ω
USB_SS_TX_M	175	АО	USB 3.0 differential transmit (minus)	
USBC_CC2	223	AI/ AO	USB Type-C control configuration channel 2	
USBC_CC1	224	AI/ AO	USB Type-C control configuration channel 1	
USB_SS_SEL	226	DO	USB Type-C switch control	
USB_OPT	217	Al	Type-C/ Micro USB select control	Float, select Type-C. Connect 1K to GND, select Micro USB.

USB_VBUS can be powered by USB power or adapter. It is used for USB connection detection and power supply input for battery charging. Its input voltage ranges from 4.0V to 10.0V, and the typical value is 5.0V. SC600Y&SC600T modules support charging management for a single cell Li-ion battery, but varied charging parameters should be set for batteries with varied models or capacities. The maximum charging current is up to 3.0A.

The module also supports USB On-The-Go (OTG) function, through using USB_ID pin to detect whether the OTG device is attached: when USB_ID is kept open (high level by default), SC600Y&SC600T are in USB slave mode; if USB_ID is connected to ground, it is in OTG mode and USB_VBUS is used to supply power for peripherals with maximum output of 5V/1A.

The switch between Type-C and Micro USB is determined by USB_OPT of pin 217. If USB_OPT is floating, It is only need to select Type-C. If USB_OPT connects to GND via 1K, It is only need to select Micro USB.

The following is a reference design for USB interface:

Figure 12: Micro USB Interface Reference Design

Figure 13: USB Type-C Interface Reference Design

In order to ensure USB performance, please follow the following principles while designing USB interface.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance
 of USB differential trace is 90Ω.
- Pay attention to the influence of junction capacitance of ESD protection devices on USB data lines.
 Typically, the capacitance value should be less than 2pF for USB 2.0 and less than 0.5pF for USB 3.0.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
 important to route the USB differential traces in inner-layer with ground shielding on not only upper
 and lower layers but also right and left sides.
- Keep the ESD protection devices as close as possible to the USB connector.
- Make sure the trace length difference between USB 2.0 DM/DP differential pair and that between USB 3.0 RX/TX differential pairs both do not exceed 0.7mm.

Table 11: USB Trace Length Inside the Module

Pin No.	Signal	Length (mm)	Length Difference (DP-DM)
33	USB_DM	39.52	-0.45
32	USB_DP	39.07	-0.43
171	USB_SS_RX_P	28.55	0.32
172	USB_SS_RX_M	28.23	0.32
174	USB_SS_TX_P	19.58	0.22
175	USB_SS_TX_M	19.35	0.23

3.10. UART Interfaces

The module provides the following four UART interfaces:

- UART5: 4-wire UART interface, hardware flow control supported, 1.8V power domain
- UART6: 4-wire UART interface, hardware flow control supported, multiplexed from SPI interface
- UART2: 2-wire UART interface, used for debugging
- UART4: 2-wire UART interface

The following table shows the pin definition of UART interfaces.

Table 12: Pin Definition of UART Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
UART2_TXD	5	DO	UART2 transmit data. Debug port by default.		
UART2_RXD	6	DI	UART2 receive data. Debug port by default.	_	
UART4_TXD	7	DO	UART4 transmit data	1.8V power domain.	
UART4_RXD	8	DI	UART4 receive data	If unused, keep these pins open.	
UART5_RXD	198	DI	UART5 receive data	· -	
UART5_TXD	199	DO	UART5 transmit data	_	
UART5_CTS	246	DI	UART5 clear to send		

UART5_RTS 245 DO UART5 request to send SPI interface pin by default. Can be multiplexed into UART6_RXD. SPI_MOSI 60 DO UART6 transmit data Can be multiplexed into UART6_TXD. SPI_CS 58 DI UART6 clear to send Can be multiplexed into UART6_CTS. SPI interface pin by default. SPI_CS 59 DO UART6 request to send Can be multiplexed into UART6_CTS. SPI interface pin by default. Can be multiplexed into UART6_CTS. SPI interface pin by default. Can be multiplexed into UART6_CTS.					
SPI_MISO 61 DI UART6 receive data Can be multiplexed into UART6_RXD. SPI interface pin by default. Can be multiplexed into UART6_TXD. SPI interface pin by default. SPI_CS 58 DI UART6 clear to send Can be multiplexed into UART6_TXD. SPI interface pin by default. Can be multiplexed into UART6_CTS. SPI interface pin by default.	UART5_RTS	245	DO	UART5 request to send	
SPI_MOSI 60 DO UART6 transmit data Can be multiplexed into UART6_TXD. SPI interface pin by default. SPI_CS 58 DI UART6 clear to send Can be multiplexed into UART6_CTS. SPI interface pin by default.	SPI_MISO	61	DI	UART6 receive data	Can be multiplexed into
SPI_CS 58 DI UART6 clear to send Can be multiplexed into UART6_CTS. SPI interface pin by default.	SPI_MOSI	60	DO	UART6 transmit data	Can be multiplexed into
·	SPI_CS	58	DI	UART6 clear to send	Can be multiplexed into
UART6_RTS.	SPI_CLK	59	DO	UART6 request to send	Can be multiplexed into

UART5 is a 4-wire UART interface with 1.8V power domain. A level translator chip should be used if customers' application is equipped with a 3.3V UART interface. A level translator chip TXS0104EPWR provided by Texas Instruments is recommended.

The following figure shows a reference design.

Figure 14: Reference Circuit with Level Translator Chip (for UART5)

The following figure is an example of connection between SC600Y&SC600T and PC. A voltage level translator and a RS-232 level translator chip are recommended to be added between the module and PC, as shown below:

Figure 15: RS232 Level Match Circuit (for UART5)

NOTE

UART2, UART4 and UART6 are similar to UART5. Please refer to UART5 reference circuit design for UART2, UART4 and UART6's.

3.11. (U)SIM Interfaces

SC600Y&SC600T provide two (U)SIM interfaces which both meet ETSI and IMT-2000 requirements. Dual SIM Dual Standby is supported by default. Both 1.8V and 2.95V (U)SIM cards are supported, and the (U)SIM interfaces are powered by the dedicated low dropout regulators from SC600Y&SC600T modules.

Table 13: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_DET	145	DI	(U)SIM1 card detection	Active Low. Need external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software configuration.
USIM1_RST	144	DO	(U)SIM1 card reset signal	

USIM1_CLK	143	DO	(U)SIM1 card clock signal	
USIM1_DATA	142	Ю	(U)SIM1 card data signal	Pull up to USIM1_VDD with a 10K resistor.
USIM1_VDD	141	РО	(U)SIM1 card power supply	Either 1.8V or 2.95V (U)SIM card is supported.
USIM2_DET	256	DI	(U)SIM2 card insertion detection	Active low. Need external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software configuration.
USIM2_RST	207	DO	(U)SIM2 card reset signal	
USIM2_CLK	208	DO	(U)SIM2 card clock signal	
USIM2_DATA	209	Ю	(U)SIM2 card data signal	Pull-up to USIM2_VDD with a 10K resistor.
USIM2_VDD	210	РО	(U)SIM2 card power supply	Either 1.8V or 2.95V (U)SIM card is supported.

SC600Y&SC600T support (U)SIM card hot-plug via the USIM_DET pin, which is disabled by default and can be enabled through software configuration. A reference circuit for (U)SIM interface with an 8-pin (U)SIM card connector is shown as below.

Figure 16: Reference Circuit for (U)SIM Interface with an 8-pin (U)SIM Card Connector

If there is no need to use USIM_DET, please keep it open. The following is a reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector.

Figure 17: Reference Circuit for (U)SIM Interface with a 6-pin (U)SIM Card Connector

In order to ensure good performance and avoid damage of (U)SIM cards, please follow the criteria below in (U)SIM circuit design:

- Keep placement of (U)SIM card connector as close to the module as possible. Keep the trace length
 of (U)SIM card signals as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- A filter capacitor shall be reserved for USIM_VDD, and its maximum capacitance should not exceed 1uF. The capacitor should be placed near to (U)SIM card.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with ground. USIM_RST also needs ground protection.
- In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 50pF. The 22Ω resistors should be added in series between the module and (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The 22pF capacitors should be added in parallel on USIM_DATA, USIM_CLK and USIM_RST signal
 lines so as to filter RF interference, and they should be placed as close to the (U)SIM card connector
 as possible.

3.12. SD Card Interface

SC600Y&SC600T modules support SD 3.0 specifications. The pin definition of the SD card interface is shown below.

Table 14: Pin Definition of SD Card Interface

Pin Name	Pin No.	I/O	Description	Comment
SD_LDO11	63	РО	Power supply for SD card	Vnorm=2.95V I _O max=800mA
SD_LDO12	179	РО	SD card pull-up power supply	Support 1.8V or 2.95V power supply. The maximum drive current is 50mA.
SD_CLK	70	DO	High speed digital clock signal of SD card	
SD_CMD	69	I/O	Command signal of SD card	
SD_DATA0	68	I/O		Control characteristic impedance as
SD_DATA1	67	I/O	High speed bidirectional	50Ω.
SD_DATA2	66	I/O	digital signal lines of SD card	
SD_DATA3	65	I/O		
SD_DET	64	DI	SD card insertion detection	Active low.

A reference circuit for SD card interface is shown as below.

Figure 18: Reference Circuit for SD Card Interface

SD_LDO11 is a peripheral driver power supply for SD card. The maximum drive current is approximate 800mA. Because of the high drive current, it is recommended that the trace width is 0.5mm or above. In order to ensure the stability of drive power, a 4.7uF and a 33pF capacitor should be added in parallel near the SD card connector.

CMD, CLK, DATA0, DATA1, DATA2 and DATA3 are all high speed signal lines. In PCB design, please control the characteristic impedance of them as 50Ω , and do not cross them with other traces. It is recommended to route the trace on the inner layer of PCB, and keep the same trace length for CLK, CMD, DATA0, DATA1, DATA2 and DATA3. CLK additionally needs ground shielding.

Layout guidelines:

- Control impedance as 50Ω±10%, and ground shielding is required.
- The total trace length difference between CLK and other signal line traces should not exceed 1mm.

Table 15: SD Card Signal Trace Length Inside the Module

Pin No.	Signal	Length (mm)	Comment
70	SD_CLK	32.11	
69	SD_CMD	32.11	
68	SD_DATA0	32.11	
67	SD_DATA1	32.11	
66	SD_DATA2	32.11	
65	SD_DATA3	32.11	

3.13. GPIO Interfaces

SC600Y&SC600T have abundant GPIO interfaces with power domain of 1.8V. The pin definition is listed below.

Table 16: Pin Definition of GPIO Interfaces

Pin Name	Pin No.	GPIO	Default Status	Comment
GPIO_0	248	GPIO_0	B-PD:nppukp 1)	
GPIO_1	247	GPIO_1	B-PD:nppukp	Wakeup ²⁾
GPIO_2	201	GPIO_2	B-PD:nppukp	
GPIO_3	200	GPIO_3	B-PD:nppukp	

UART2_TXD	5	GPIO_4	B-PD:nppukp	
UART2_RXD	6	GPIO_5	B-PD:nppukp	
TP1_I2C_SDA	204	GPIO_6	B-PD:nppukp	
TP1_I2C_SCL	205	GPIO_7	B-PD:nppukp	
TP1_RST	136	GPIO_8	B-PD:nppukp	
TP1_INT	137	GPIO_9	B-PD:nppukp	Wakeup
TP0_I2C_SDA	206	GPIO_10	B-PD:nppukp	
TP0_I2C_SCL	140	GPIO_11	B-PD:nppukp	
UART4_TXD	7	GPIO_12	B-PD:nppukp	
UART4_RXD	8	GPIO_13	B-PD:nppukp	Wakeup
SENSOR_I2C_SDA	132	GPIO_14	B-PD:nppukp	
SENSOR_I2C_SCL	131	GPIO_15	B-PD:nppukp	
UART5_TXD	199	GPIO_16	B-PD:nppukp	
UART5_RXD	198	GPIO_17	B-PD:nppukp	Wakeup
UART5_CTS	246	GPIO_18	B-PD:nppukp	
UART5_RTS	245	GPIO_19	B-PD:nppukp	
SPI_MOSI	60	GPIO_20	B-PD:nppukp	
SPI_MISO	61	GPIO_21	B-PD:nppukp	Wakeup
SPI_CS	58	GPIO_22	B-PD:nppukp	
SPI_CLK	59	GPIO_23	B-PD:nppukp	
LCD0_TE	126	GPIO_24	B-PD:nppukp	
LCD1_TE	114	GPIO_25	B-PD:nppukp	Wakeup
MCAM_MCLK	99	GPIO_26	B-PD:nppukp	
SCAM_MCLK	100	GPIO_27	B-PD:nppukp	
DCAM_MCLK	194	GPIO_28	B-PD:nppukp	Wakeup
CAM_I2C_SDA	76	GPIO_29	B-PD:nppukp	
CAM_I2C_SCL	75	GPIO_30	B-PD:nppukp	

DCAM_I2C_SDA	197	GPIO_31	B-PD:nppukp	Wakeup
DCAM_I2C_SCL	196	GPIO_32	B-PD:nppukp	
GPIO_33	238	GPIO_33	B-PD:nppukp	
GPIO_36	237	GPIO_36	B-PD:nppukp	Wakeup
MCAM_PWDN	73	GPIO_39	B-PD:nppukp	
MCAM_RST	74	GPIO_40	B-PD:nppukp	
GPIO_42	252	GPIO_42	B-PD:nppukp	Wakeup
GPIO_43	253	GPIO_43	B-PD:nppukp	Wakeup
GPIO_44	254	GPIO_44	B-PD:nppukp	Wakeup
GPIO_45	255	GPIO_45	B-PD:nppukp	Wakeup
LCD0_RST	127	GPIO_61	B-PD:nppukp	
TP0_RST	138	GPIO_64	B-PD:nppukp	
TP0_INT	139	GPIO_65	B-PD:nppukp	Wakeup
GPIO_66	234	GPIO_66	B-PD:nppukp	
VOL_UP	146	GPIO_85	B-PD:nppukp	Wakeup
LCD1_RST	113	GPIO_87	B-PD:nppukp	Wakeup
GPIO_89	232	GPIO_89	B-PD:nppukp	
GPIO_90	231	GPIO_90	B-PD:nppukp	Wakeup
GPIO_96	230	GPIO_96	B-PD:nppukp	
GPIO_97	229	GPIO_97	B-PD:nppukp	Wakeup
GPIO_98	177	GPIO_98	B-PD:nppukp	
GPIO_99	178	GPIO_99	B-PD:nppukp	
GPIO_105	242	GPIO_105	B-PD:nppukp	GRFC is only
GPIO_107	241	GPIO_107	B-PD:nppukp	used for RF Tuner control
CAM4_MCLK	236	GPIO_128	B-PD:nppukp	
SCAM_RST	72	GPIO_129	B-PD:nppukp	
SCAM_PWDN 3)	71	GPIO_130	B-PD:nppukp	

DCAM_RST	180	GPIO_131	B-PD:nppukp	Wakeup
DCAM_PWDN 3)	181	GPIO_132	B-PD:nppukp	Wakeup
SD_DET	64	GPIO_133	B-PD:nppukp	Wakeup
FP_SPI_CLK	250	GPIO_135	B-PD:nppukp	
FP_SPI_CS	203	GPIO_136	B-PD:nppukp	
FP_SPI_MOSI	249	GPIO_137	B-PD:nppukp	Wakeup
FP_SPI_MISO	251	GPIO_138	B-PD:nppukp	Wakeup
USB_SS_SEL	226	GPIO_139	B-PD:nppukp	Wakeup

NOTES

- 1. ¹⁾B: Bidirectional digital with CMOS input; PD: nppukp = default pulldown with programmable options following the colon (:).
- 2. ²⁾ Wakeup: interrupt pins that can wake up the system.
- 3. ³⁾ SCAM PWDN and DCAM PWDN cannot be pulled up when the module starts up.
- 4. More details about GPIO configuration, please refer to document [2].

3.14. I2C Interfaces

SC600Y&SC600T provide five I2C interfaces. As an open drain output, each I2C interface should be pulled up to 1.8V voltage. The SENSOR_I2C interface supports only sensors of the aDSP architecture. CAM/DCAM_I2C bus is controlled by Linux Kernel code and supports connection to video output related devices.

Table 17: Pin Definition of I2C Interfaces

Pin Name	Pin No	I/O	Description	Comment
TP0_I2C_SCL	140	OD	I2C clock signal of touch panel	Used for TP0
TP0_I2C_SDA	206	OD	I2C data signal of touch panel	— Osed for TPO
TP1_I2C_SCL	205	OD	I2C clock signal of touch panel	Head for TD4
TP1_I2C_SDA	204	OD	I2C data signal of touch panel	─ Used for TP1

CAM_I2C_SCL	75	OD	I2C clock signal of camera	Used for
CAM_I2C_SDA	76	OD	I2C data signal of camera	cameras
DCAM_I2C_SCL	196	OD	I2C clock signal of depth camera	Used for depth
DCAM_I2C_SDA	197	OD	I2C data signal of depth camera	cameras
SENSOR_I2C_SCL	131	OD	I2C clock signal for external sensor	Used for external
SENSOR_I2C_SDA	132	OD	I2C data signal for external sensor	sensors

3.15. I2S Interface

SC600Y&SC600T provide one I2S interface. The I2S interface is multiplexed from FP_SPI, with power domain of 1.8V .

Table 18: Pin Definition of I2S Interface

Pin Name	Pin No	I/O	Description	Comment
FP_SPI_CS	203	DO	Chip selection signal of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_WS.
FP_SPI_CLK	250	DO	Clock signal of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_SCK.
FP_SPI_MOSI	249	DO	Master out slave in of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_D0.
FP_SPI_MISO	251	DI	Master in salve out of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_D1.
LCD1_TE	114	DI	Tearing effect signal	LCM interface pin by default. Can be multiplexed into I2S_MCLK_A.
GPIO_66	234	DI/DO	General GPIO	GPIO by default. Can be multiplexed into I2S_MCLK_B.

3.16. SPI Interfaces

SC600Y&SC600T provide two SPI interfaces which only support master mode. The two interfaces are typically applied for fingerprint identification.

Table 19: Pin Definition of SPI Interfaces

Pin Name	Pin No	I/O	Description	Comment
SPI_CS	58	DO	Chip selection signal of SPI interface	Can be multiplexed into UART6_CST.
SPI_CLK	59	DO	Clock signal of SPI interface	Can be multiplexed into UART6_RTS.
SPI_MOSI	60	DO	Master out slave in of SPI interface	Can be multiplexed into UART6_TXD.
SPI_MISO	61	DI	Master in salve out of SPI interface	Can be multiplexed into UART6_RXD.
FP_SPI_CS	203	DO	Chip selection signal of SPI interface	_ Used for fingerprint
FP_SPI_CLK	250	DO	Clock signal of SPI interface	identification by default. Can be
FP_SPI_MOSI	249	DO	Master out slave in of SPI interface	multiplexed into I2S
FP_SPI_MISO	251	DI	Master in salve out of SPI interface	interface.

3.17. ADC Interfaces

SC600Y&SC600T provide two analog-to-digital converter (ADC) interfaces, and the pin definition is shown below.

Table 20: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PMI_ADC	153	Al	General purpose ADC interface	Maximum input voltage: 1.5V.
PMU_MPP2	151	Al	General purpose ADC interface	Maximum input voltage: 1.7V.

The resolution of the ADC is up to 15 bits.

3.18. Vibrator Drive Interface

The pin definition of vibrator drive interface is listed below.

Table 21: Pin Definition of Vibrator Drive Interface

Pin Name	Pin No	I/O	Description	Comment
VIB_GND	160	Al	Vibrator GND (negative)	Connected to the negative terminal of avibrator.
VIB_DRV	161	AO	Vibrator drive (positive)	Connected to the positive terminal of vibrator.

The Vibrator is driven by an exclusive circuit, and a reference circuit design is shown below.

Figure 19: Reference Circuit for Vibrator Connection

3.19. LCM Interfaces

SC600Y&SC600T modules provide two LCM interfaces, and supports dual LCDs with WUXGA (1900×1200) display. The interfaces support high speed differential data transmission, with up to eight lanes.

Table 22: Pin Definition of LCM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
LDO6_1P8	10	РО	1.8V output power supply for LCM logic circuit and DSI	
LDO17_2P85	12	РО	2.85V output power supply for LCM analog circuits	
PMU_MPP4	152	DO	PWM signal output	

LCD_BL_A	21	РО	Current output for LCD backlight	
LCD_BL_K1	22	Al	Current sink for LCD backlight	
LCD_BL_K2	23	Al	Current sink for LCD backlight	
LCD_BL_K3	24	Al	Current sink for LCD backlight	
LCD_BL_K4	25	Al	Current sink for LCD backlight	
LCD0_RST	127	DO	LCD0 reset signal	Active low.
LCD0_TE	126	DI	LCD0 tearing effect signal	
LCD1_RST	113	DO	LCD1 reset signal	Active low.
LCD1_TE	114	DI	LCD1 tearing effect signal	
DSI0_CLK_N	116	АО	LCD0 MIPI clock signal (negative)	
DSI0_CLK_P	115	AO	LCD0 MIPI clock signal (positive)	
DSI0_LN0_N	118	АО	LCD0 MIPI lane 0 data signal (negative)	
DSI0_LN0_P	117	АО	LCD0 MIPI lane 0 data signal (positive)	
DSI0_LN1_N	120	АО	LCD0 MIPI lane 1 data signal (negative)	
DSI0_LN1_P	119	AO	LCD0 MIPI lane 1 data signal (positive)	
DSI0_LN2_N	122	АО	LCD0 MIPI lane 2 data signal (negative)	
DSI0_LN2_P	121	АО	LCD0 MIPI lane 2 data signal (positive)	
DSI0_LN3_N	124	АО	LCD0 MIPI lane 3 data signal (negative)	
DSI0_LN3_P	123	АО	LCD0 MIPI lane 3 data signal (positive)	
DSI1_CLK_N	103	АО	LCD1 MIPI clock signal (negative)	
DSI1_CLK_P	102	АО	LCD1 MIPI clock signal (positive)	
DSI1_LN0_N	105	АО	LCD1 MIPI lane 0 data	

			signal (negative)
DSI1 LN0 P	104	АО	LCD1 MIPI lane 0 data
DSII_LNU_F	104		signal (positive)
DSI1 LN1 N	107	AO	LCD1 MIPI lane 1 data
DSII_LNI_N	107	AO	signal (negative)
DSI1 LN1 P	106	AO	LCD1 MIPI lane 1 data
DSII_LNI_P	100		signal (positive)
DSI1 LN2 N	109	АО	LCD1 MIPI lane 2 data
DSH_LNZ_N			signal (negative)
DSI1 LN2 P	108	АО	LCD1 MIPI lane 2 data
DSH_LNZ_F			signal (positive)
DCI1 I N2 N	444	AO	LCD1 MIPI lane 3 data
DSI1_LN3_N	111	AU	signal (negative)
DSI1 I N3 D	110	AO	LCD1 MIPI lane 3 data
DSI1_LN3_P	110 AO	AU	signal (positive)

The following are the reference designs for LCM interfaces.

Figure 20: Reference Circuit Design for LCM0 Interface

Figure 21: Reference Circuit Design for LCM1 Interface

MIPI are high speed signal lines. It is recommended that common-mode filters should be added in series near the LCM connector, so as to improve protection against electromagnetic radiation interference.

When compatible design with other displays is required, please connect the LCD_ID pin of LCM to the module's ADC pin, and please note that the output voltage of LCD_ID cannot exceed the voltage range of ADC pin.

Backlight driving circuits should be designed for LCMs. SC600 provides backlight driving output which can be used to drive LCM backlight WLEDs directly. The features are listed below:

- Use the high voltage output (LCD_BL_A) for powering WLED strings, and the output voltage can be configured from VBAT to 29.5V.
- Support 4 current sinks (LCD_BL_K1, LCD_BL_K2, LCD_BL_K3, LCD_BL_K4,), with maximum sink current up to 25mA for each.

- Power two strings of WLEDs (about 16 WLEDs) with two current sink drivers, or power four strings of WLEDs (about 28 WLEDs) with four current sink drivers.
- The frequency of PWM can be configured by software to adjust the backlight brightness.

LCM0 uses the internal backlight driving circuit provided by SC600Y&SC600T by default. LCM1 can use the internal circuit or an external backlight driving circuit according to customers' demands. The following is a reference design for LCM1 external backlight driving circuit where PMU_MPP4 is used to adjust the backlight brightness.

Figure 22: Reference Design of LCM1 External Backlight Driving Circuit

3.20. Touch Panel Interfaces

SC600Y&SC600T provide two I2C interfaces for connection with Touch Panel (TP), and also provides the corresponding power supply and interrupt pins. The pin definition of touch panel interfaces is illustrated below.

Table 23: Pin Definition of Touch Panel Interfaces

Pin Name	Pin No	I/O	Description	Comment
LDO10_2P8	11	РО	2.8V output power supply for TP VDD power	Vnorm=2.8V I _O max=150mA
LDO6_1P8	10	РО	1.8V output power supply	Pull-up power supply of I2C Vnorm=1.8V I _O max=300mA
TP0_INT	139	DI	Interrupt signal of touch panel (TP0)	
TP0_RST	138	DO	Reset signal of touch panel (TP0)	Active low
TP0_I2C_ SCL	140	OD	I2C clock signal of touch panel (TP0)	

TP0_I2C_ SDA	206	OD	I2C data signal of touch panel (TP0)
TP1_INT	137	DI	Interrupt signal of touch panel (TP1)
TP1_RST	136	DO	Reset signal of touch panel (TP1) Active low
TP1_I2C_ SCL	205	OD	I2C clock signal of touch panel (TP1)
TP1_I2C_ SDA	204	OD	I2C data signal of touch panel (TP1)

A reference design for touch panel interfaces is shown below.

Figure 23: Reference Circuit Design for Touch Panel Interfaces

NOTE

TP is powered by LDO10_2P8 by default and LDO10_2P8 can output 150mA current. It is recommended to use an external LDO power supply if dual-TP or other applications need to be supported.

3.21. Camera Interfaces

Based on standard MIPI CSI input interface, SC600Y&SC600T modules support 3 cameras (4-lane + 4-lane + 4-lane) or 4 cameras (4-lane + 4-lane + 1-lane), with maximum pixels up to 21MP for SC600Y-XX and 24MP for SC600T-XX. The video and photo quality are determined by various factors such as camera sensor, camera lens quality, etc.

Table 24: Pin Definition of Camera Interfaces

Pin Name	Pin No.	I/O	Description	Comment
LDO2_1P1	13	РО	1.1V output power supply for digital core circuit of rear camera	Vnorm=1.1V I _O max=1200mA
LDO6_1P8	10	РО	1.8V output power supply for digital I/O circuit of camera	Vnorm=1.8V I _O max=300mA
LDO17_2P85	12	РО	2.85V output power supply auto focus circuit	Vnorm=2.85V I _O max=300mA
LDO22_2P8	14	РО	2.8V output power supply for AVDD of cameras	Vnorm=2.8V I _O max=150mA
LDO23_1P2	15	РО	1.2V output power supply for digital core circuit of front camera	Vnorm=1.2V I _O max=600mA
CSI0_CLK_N	89	Al	MIPI clock signal of rear camera (negative)	
CSI0_CLK_P	88	Al	MIPI clock signal of rear camera (positive)	
CSI0_LN0_N	91	Al	MIPI lane 0 data signal of rear camera (negative)	
CSI0_LN0_P	90	Al	MIPI lane 0 data signal of rear camera (positive)	
CSI0_LN1_N	93	Al	MIPI lane 1 data signal of rear camera (negative)	
CSI0_LN1_P	92	Al	MIPI lane 1 data signal of rear camera (positive)	
CSI0_LN2_N	95	Al	MIPI lane 2 data signal of rear camera (negative)	
CSI0_LN2_P	94	Al	MIPI lane 2 data signal of rear camera (positive)	
CSI0_LN3_N	97	Al	MIPI lane 3 data signal of rear camera (negative)	
CSI0_LN3_P	96	Al	MIPI lane 3 data signal of rear camera (positive)	
CSI1_CLK_N	184	Al	MIPI clock signal of depth camera (negative)	
CSI1_CLK_P	183	Al	MIPI clock signal of depth camera (positive)	
CSI1_LN0_N	186	Al	MIPI lane 0 data signal of depth camera (negative)	
			. (3)	

CSI1_LN0_P	185	Al	MIPI lane 0 data signal of depth camera (positive)	
CSI1_LN1_N	188	Al	MIPI lane 1 data signal of depth camera (negative)	
CSI1_LN1_P	187	Al	MIPI lane 1 data signal of depth camera (positive)	
CSI1_LN2_N	190	Al	MIPI lane 2 data signal of depth camera (negative)	Can be multiplexed into differential data of the fourth camera (negative)
CSI1_LN2_P	189	AI	MIPI lane 2 data signal of depth camera (positive)	Can be multiplexed into differential data of the fourth camera (positive)
CSI1_LN3_N	192	Al	MIPI lane 3 data signal of depth camera (negative)	Can be multiplexed into differential clock of the fourth camera (negative)
CSI1_LN3_P	191	Al	MIPI lane 3 data signal of depth camera (positive)	Can be multiplexed into differential clock of the fourth camera (positive)
CSI2_CLK_N	78	Al	MIPI clock signal of front camera (negative)	
CSI2_CLK_P	77	Al	MIPI clock signal of front camera (positive)	
CSI2_LN0_N	80	Al	MIPI lane 0 data signal of front camera (negative)	
CSI2_LN0_P	79	Al	MIPI lane 0 data signal of front camera (positive)	
CSI2_LN1_N	82	Al	MIPI lane 1 data signal of front camera (negative)	
CSI2_LN1_P	81	Al	MIPI lane 1 data signal of front camera (positive)	
CSI2_LN2_N	84	Al	MIPI lane 2 data signal of front camera (negative)	
CSI2_LN2_P	83	Al	MIPI lane 2 data signal of front camera (positive)	
CSI2_LN3_N	86	Al	MIPI lane 3 data signal of front camera (negative)	
CSI2_LN3_P	85	Al	MIPI lane 3 data signal of front camera (positive)	
MCAM_MCLK	99	DO	Master clock signal of rear camera	
SCAM_MCLK	100	DO	Master clock signal of front camera	

MCAM_RST	74	DO	Reset signal of rear camera
MCAM_PWDN	73	DO	Power down signal of rear camera
SCAM_RST	72	DO	Reset signal of front camera
SCAM_PWDN	71	DO	Power down signal of front camera
CAM_I2C_SCL	75	OD	I2C clock signal of camera
CAM_I2C_SDA	76	OD	I2C data signal of camera
DCAM_MCLK	194	DO	Clock signal of depth camera
CAM4_MCLK	236	DO	Master clock signal of fourth camera
DCAM_RST	180	DO	Reset signal of depth camera
DCAM_PWDN	181	DO	Power down signal of depth camera
DCAM_I2C_SDA	197	OD	I2C data of depth camera
DCAM_I2C_SCL	196	OD	I2C clock of depth camera

The following is a reference circuit design for two-camera applications.

Figure 24: Reference Circuit Design for Two-Camera Applications

NOTE

CSI0 is used for rear camera, CSI1 is used for depth camera, and CSI2 is used for front camera.

The following is a reference circuit design for three-camera applications.

Figure 25: Reference Circuit Design for Three-Camera Applications

NOTE

CSI1 data lines CSI1_LN2_P, CSI_LN2_N, CSI_LN3_P and CSI_LN3_N can be multiplexed into MIPI signals for the fourth camera in four-camera application.

3.21.1. Design Considerations

- Special attention should be paid to the pin definition of LCM/camera connectors. Assure the SC600Y&SC600T and the connectors are correctly connected.
- MIPI are high speed signal lines, supporting maximum data rate up to 2.1Gbps. The differential impedance should be controlled as 100Ω. Additionally, it is recommended to route the trace on the inner layer of PCB, and do not cross it with other traces. For the same group of DSI or CSI signals, all the MIPI traces should keep the same length. In order to avoid crosstalk, it is recommended to maintain the intra-lane spacing as trace width and the inter-lane spacing as two times of the trace width. Any cut or hole on GND reference plane under MIPI signals should be avoided.
- It is recommended to select a low capacitance TVS for ESD protection and the recommended parasitic capacitance is below 1pF.
- Route MIPI traces according to the following rules:
 - a) The total trace length should not exceed 305mm;
 - b) Control the differential impedance as $100\Omega \pm 10\%$;
 - c) Control intra-lane length difference within 0.67mm;
 - d) Control inter-lane length difference within 1.3mm.

Table 25: MIPI Trace Length Inside the Module

Pin No.	Pin Name	Length (mm)	Length Difference (P-N)
116	DSI0_CLK_N	20.82	-0.45
115	DSI0_CLK_P	20.37	-0.43
118	DSI0_LN0_N	24.84	0
117	DSI0_LN0_P	24.84	0
120	DSI0_LN1_N	24.85	0.02
119	DSI0_LN1_P	24.82	-0.03
122	DSI0_LN2_N	25.94	0.24
121	DSI0_LN2_P	26.18	0.24
124	DSI0_LN3_N	29.31	0.2
123	DSI0_LN3_P	29.51	0.2
103	DSI1_CLK_N	9.52	0.05
102	DSI1_CLK_P	9.47	-0.05

105	DSI1_LN0_N	10.27	0.44
104	DSI1_LN0_P	10.16	-0.11
107	DSI1_LN1_N	11.75	0.45
106	DSI1_LN1_P	11.58	-0.17
109	DSI1_LN2_N	14.86	
108	DSI1_LN2_P	14.5	-0.36
111	DSI1_LN3_N	15.73	
110	DSI1_LN3_P	15.88	0.15
89	CSI0_CLK_N	16.54	0.55
88	CSI0_CLK_P	16.57	0.03
91	CSI0_LN0_N	17.47	0.07
90	CSI0_LN0_P	17.4	-0.07
93	CSI0_LN1_N	12.13	-0.05
92	CSI0_LN1_P	12.08	-0.05
95	CSI0_LN2_N	9.56	0.14
94	CSI0_LN2_P	9.7	0.14
97	CSI0_LN3_N	8.73	0.13
96	CSI0_LN3_P	8.86	0.10
184	CSI1_CLK_N	20.32	-0.23
183	CSI1_CLK_P	20.09	-0.20
186	CSI1_LN0_N	12.09	0.57
185	CSI1_LN0_P	12.66	0.31
188	CSI1_LN1_N	11.33	0.37
187	CSI1_LN1_P	11.70	0.31
190	CSI1_LN2_N	5.86	0.40
189	CSI1_LN2_P	6.05	0.19

192	CSI1_LN3_N	10.49	-0.43
191	CSI1_LN3_P	10.06	-0.43
78	CSI2_CLK_N	22.00	0.17
77	CSI2_CLK_P	22.17	0.17
80	CSI2_LN0_N	22.07	-0.07
79	CSI2_LN0_P	22.00	-0.07
82	CSI2_LN1_N	22.54	-0.49
81	CSI2_LN1_P	22.05	-0.49
84	CSI2_LN2_N	22.03	-0.11
83	CSI2_LN2_P	21.92	-0.11
86	CSI2_LN3_N	21.90	0.59
85	CSI2_LN3_P	22.49	0.59

3.21.2. Flashlight Interfaces

SC600Y&SC600T modules support 2 flash LED drivers, with maximal output current up to 1.5A per channel in flash mode and 300mA in torch mode. The default output current is 1A in flash mode and 300mA in torch mode.

Table 26: Pin Definition of Flashlight Interfaces

Pin Name	Pin No.	I/O	Description	Comment
FLASH_LED1	26	AO	Flash/torch drive signal output	
FLASH_LED2	162	AO	Flash/torch drive signal output	

A reference circuit design is shown below.

Figure 26: Reference Circuit Design for Flashlight Interfaces

3.22. Sensor Interfaces

SC600Y&SC600T modules support communication with sensors via I2C interface, and it supports various sensors such as acceleration sensor, gyroscopic sensor, compass, optical sensor, temperature sensor.

Table 27: Pin Definition of Sensor Interfaces

Pin Name	Pin No.	I/O	Description	Comment
SENSOR_I2C_SCL	131	OD	I2C clock signal of external sensor	
SENSOR_I2C_SDA	132	OD	I2C data signal of external sensor	
GPIO_43	253	DI	Interrupt signal of optical sensor	
GPIO_44	254	DI	Interrupt signal of direction sensor (compass)	
GPIO_42	252	DI	Interrupt signal of acceleration sensor	
GPIO_45	255	DI	Interrupt signal of gyroscopic sensor	

3.23. Audio Interfaces

SC600Y&SC600T modules provide three analog input channels and three analog output channels. The following table shows the pin definition.

Table 28: Pin Definition of Audio Interfaces

Pin Name	Pin No.	I/O	Description	Comment
MIC1_P	44	Al	Microphone positive input for channel 1	
MIC1_N	45	Al	Microphone negative input for channel 1	
MIC_GND	168		Microphone reference ground	If unused, connect this pin to the ground.
MIC2_P	46	Al	Microphone positive input for headset.	
MIC3_P	169	Al	Microphone positive input for channel 2	
MIC_BIAS	167	AO	Microphone bias voltage	
EAR_P	53	AO	Earpiece positive output	
EAR_N	52	АО	Earpiece negative output	
SPK_P	55	AO	Speaker positive output	
SPK_N	54	АО	Speaker negative output	
HPH_R	51	AO	Headphone right channel output	
HPH_REF	50	Al	Headphone reference ground	
HPH_L	49	АО	Headphone left channel output	
HS_DET	48	Al	Headset insertion detection	High level by default.

- The module offers three audio input channels, including one differential input pair and two single-ended channels. The three sets of MICs are integrated with internal bias voltage.
- The output voltage range of MIC_BIAS is programmable between 1.6V and 2.85V, and the maximum output current is 3mA.
- The earpiece interface uses differential output.
- The loudspeaker interface uses differential output as well. The output channel is available with a Class-D amplifier whose maximum output power is 1.5W when load is 8Ω.
- The headphone interface features stereo left and right channel output, and headphone insertion detection function is supported.

3.23.1. Reference Circuit Design for Microphone Interfaces

Figure 27: Reference Circuit Design for Analog ECM-type Microphone

Figure 28: Reference Circuit Design for MEMS-type Microphone

3.23.2. Reference Circuit Design for Earpiece Interface

Figure 29: Reference Circuit Design for Earpiece Interface

3.23.3. Reference Circuit Design for Headphone Interface

Figure 30: Reference Circuit Design for Headphone Interface

3.23.4. Reference Circuit Design for Loudspeaker Interface

Figure 31: Reference Circuit Design for Loudspeaker Interface

3.23.5. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10pF and 33pF) for filtering out RF interference, thus reducing TDD noise. The 33pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900. Without placing this capacitor, TDD noise could be heard. The 10pF capacitor here is used for filtering out RF interference at DCS1800. Please note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customers would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, a suitable capacitor can be selected based on the test results. Sometimes, even no RF filtering capacitor is required.

In order to decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

3.24. Emergency Download Interface

USB_BOOT is an emergency download interface. Pull up to LDO5_1P8 during power-up will force the module enter into emergency download mode. This is an emergency option when there are failures such as abnormal startup or operation. For convenient firmware upgrade and debugging in the future, please reverse the reference circuit design shown as below.

Figure 32: Reference Circuit Design for Emergency Download Interface

4 Wi-Fi and BT

SC600Y&SC600T modules provide a shared antenna interface ANT_WIFI/BT for Wi-Fi and Bluetooth (BT) functions. The interface impedance is 50Ω. External antennas such as PCB antenna, sucker antenna and ceramic antenna can be connected to the module via the interface, so as to achieve Wi-Fi and BT functions.

4.1. Wi-Fi Overview

SC600Y&SC600T modules support 2.4GHz and 5GHz dual-band WLAN wireless communication based on IEEE 802.11a/b/g/n/ac standard protocols. The maximum data rate is up to 433Mbps.

The features are as below:

- Support Wake-on-WLAN (WoWLAN)
- Support ad hoc mode
- Support WAPI SMS4 hardware encryption
- Support AP mode
- Support Wi-Fi Direct
- Support MCS 0-7 for HT20 and HT40
- Support MCS 0-8 for VHT20
- Support MCS 0-9 for VHT40 and VHT80

4.1.1. Wi-Fi Performance

The following table lists the Wi-Fi transmitting and receiving performance of SC600Y&SC600T modules.

Table 29: Wi-Fi Transmitting Performance

	Standard	Rate	Output Power
	802.11b	1Mbps	16dBm±2.5dB
2.4GHz	802.11b	11Mbps	16dBm±2.5dB
	802.11g	6Mbps	16dBm±2.5dB

	802.11g	54Mbps	14dBm±2.5dB
	802.11n HT20	MCS0	15dBm±2.5dB
	802.11n HT20	MCS7	13dBm±2.5dB
	802.11n HT40	MCS0	14dBm±2.5dB
	802.11n HT40	MCS7	13dBm±2.5dB
	802.11a	6Mbps	14dBm±2.5dB
	802.11a	54Mbps	13dBm±2.5dB
	802.11n HT20	MCS0	15dBm±2.5dB
	802.11n HT20	MCS7	13dBm±2.5dB
	802.11n HT40	MCS0	15dBm±2.5dB
5GHz	802.11n HT40	MCS7	13dBm±2.5dB
ЭСПИ	802.11ac VHT20	MCS0	15dBm±2.5dB
	802.11ac VHT20	MCS8	13dBm±2.5dB
	802.11ac VHT40	MCS0	14dBm±2.5dB
	802.11ac VHT40	MCS9	13dBm±2.5dB
	802.11ac VHT80	MCS0	13dBm±2.5dB
	802.11ac VHT80	MCS9	12dBm±2.5dB

Table 30: Wi-Fi Receiving Performance

	Standard	Rate	Sensitivity	
	802.11b	1Mbps	-94.5	
	802.11b	11Mbps	-87	
2.4GHz	802.11g	6Mbps	-89	
	802.11g	54Mbps	-71.5	
	802.11n HT20	MCS0	-88.5	

	802.11n HT20	MCS7	-70
	802.11n HT40	MCS0	-85
	802.11n HT40	MCS7	-67
	802.11a	6Mbps	-90
	802.11a	54Mbps	-71.5
	802.11n HT20	MCS0	-86dBm
	802.11n HT20	MCS7	-67dBm
5GHz	802.11n HT40	MCS0	-84dBm
	802.11n HT40	MCS7	-64dBm
	802.11ac VHT20	MCS8	-68dBm
	802.11ac VHT40	MCS9	-62dBm
	802.11ac VHT80	MCS9	-58dBm

Reference specifications are listed below:

- IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June 2007
- IEEE Std 802.11b, IEEE Std 802.11d, IEEE Std 802.11e, IEEE Std 802.11g, IEEE Std 802.11i: IEEE 802.11-2007 WLAN MAC and PHY, June 2007

4.2. BT Overview

SC600Y&SC600T modules support BT4.2 (BR/EDR+BLE) specifications, as well as GFSK, 8-DPSK, π /4-DQPSK modulation modes.

- Maximally support up to 7 wireless connections
- Maximally support up to 3.5 piconets at the same time
- Support one SCO or eSCO (Extended Synchronous Connection Oriented) connection

The BR/EDR channel bandwidth is 1MHz, and can accommodate 79 channels. The BLE channel bandwidth is 2MHz, and can accommodate 40 channels.

Table 31: BT Data Rate and Versions

Version	Data rate	Maximum Application	Throughput	Comment
1.2	1Mbit/s	> 80Kbit/s		
2.0+EDR	3Mbit/s	> 80Kbit/s		
3.0+HS	24Mbit/s	Reference to 3.0+HS		
4.0	24Mbit/s	Reference to 4.0 LE		

Reference specifications are listed below:

- Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1+ EDR/3.0/3.0 + HS, August 6, 2009
- Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009

4.2.1. BT Performance

The following table lists the BT transmitting and receiving performance of SC600Y&SC600T modules.

Table 32: BT Transmitting and Receiving Performance

Transmitter Performance					
Packet Types	DH5	2-DH5	3-DH5		
Transmitting Power	10dBm±2.5dB	8dBm±2.5dB	8dBm±2.5dB		
Receiver Performance					
Packet Types	DH5	2-DH5	3-DH5		
Receiving Sensitivity	-91dBm	-92dBm	-86dBm		

5 GNSS

SC600Y&SC600T modules integrate a Qualcomm IZat™ GNSS engine (Gen 8C) which supports multiple positioning and navigation systems including GPS, GLONASS and BeiDou. With an embedded LNA, the module provides greatly improved positioning accuracy.

5.1. GNSS Performance

The following table lists the GNSS performance of SC600Y&SC600T modules in conduction mode.

Table 33: GNSS Performance

Parameter	Description	Тур.	Unit
	Cold start	-144	dBm
Sensitivity (GNSS)	Reacquisition	-155	dBm
	Tracking	-155	dBm
	Cold start	35	s
TTFF (GNSS)	Warm start	30	s
	Hot start	<5	S
Static Drift (GNSS)	CEP-50	<80	m

5.2. GNSS RF Design Guidelines

Bad design of antenna and layout may cause reduced GNSS receiving sensitivity, longer GNSS positioning time, or reduced positioning accuracy. In order to avoid these, please follow the design rules listed below:

- Maximize the distance between the GNSS RF part and the GPRS RF part (including trace routing and antenna layout) to avoid mutual interference.
- In user systems, GNSS RF signal lines and RF components should be placed far away from high speed circuits, switched-mode power supplies, power inductors, the clock circuit of single-chip microcomputers, etc.
- For applications with harsh electromagnetic environment or high ESD-protection requirements, it is recommended to add ESD protective diodes for the antenna interface. Only diodes with ultra-low junction capacitance such as 0.5pF can be selected. Otherwise, there will be effects on the impedance characteristic of RF circuit loop, or attenuation of bypass RF signal may be caused.
- Control the impedance of either feeder line or PCB trace as 50Ω , and keep the trace length as short as possible.
- Refer to *Chapter 6.3* for GNSS antenna reference circuit designs.

6 Antenna Interfaces

SC600Y&SC600T provide four antenna interfaces for main antenna, Rx-diversity/MIMO antenna, GNSS antenna, and Wi-Fi/BT antenna, respectively. The antenna ports have an impedance of 50Ω .

6.1. Main/Rx-diversity Antenna Interfaces

The pin definition of main/Rx-diversity antenna interfaces is shown below.

Table 34: Pin Definition of Main/Rx-diversity Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	19	Ю	Main antenna interface	50Ω impedance
ANT_DRX	149	Al	Diversity and MIMO antenna interface	50Ω impedance

The operating frequencies of SC600Y&SC600T modules are listed in the following table.

Table 35: SC600Y-JP*/SC600T-JP* Module Operating Frequencies

3GPP Band	Receive	Transmit	Unit
WCDMA B1	2110~2170	1920~1980	MHz
WCDMA B6	875~885	830~840	MHz
WCDMA B8	925~960	880~915	MHz
WCDMA B19	875~890	830~845	MHz
LTE-FDD B1	2110~2170	1920~1980	MHz
LTE-FDD B3	1805~1880	1710~1785	MHz
LTE-FDD B5	869~894	824~849	MHz

LTE-FDD B8	925~960	880~915	MHz
LTE-FDD B11	1475.9~495.9	1427.9~1447.9	MHz
LTE-FDD B18	860~875	815~830	MHz
LTE-FDD B19	875~890	830~845	MHz
LTE-TDD B21	1495.9~1510.9	1447.9~1462.9	MHz
LTE-TDD B26	758~788	703~733	MHz
LTE-FDD B28A	758~788	703~733	MHz
LTE-FDD B28B	773~803	718~748	MHz
LTE-TDD B41 1)	2496~2690	2496~2690	MHz

Table 36: SC600Y-EM*/SC600T-EM* Module Operating Frequencies

3GPP Band	Receive	Transmit	Unit
GSM850	869~894	824~849	MHz
EGSM900	925~960	880~915	MHz
DCS1800	1805~1880	1710~1785	MHz
PCS1900	1930~1990	1850~1910	MHz
WCDMA B1	2110~2170	1920~1980	MHz
WCDMA B2	1930~1990	1850~1910	MHz
WCDMA B4	2110~2155	1710~1755	MHz
WCDMA B5	871~892	826~847	MHz
WCDMA B8	925~960	880~915	MHz
LTE-FDD B1	2110~2170	1920~1980	MHz
LTE-FDD B2	1930~1990	1850~1910	MHz
LTE-FDD B3	1805~1880	1710~1785	MHz

LTE-FDD B5	869~894	824~849	MHz
LTE-FDD B7	2620~2690	2500~2570	MHz
LTE-FDD B8	925~960	880~915	MHz
LTE-FDD B20	791~821	832~862	MHz
LTE-FDD B28A	758~788	703~733	MHz
LTE-FDD B28B	773~803	718~748	MHz
LTE-TDD B38	2570~2620	2570~2620	MHz
LTE-TDD B39	1880~1920	1880~1920	MHz
LTE-TDD B40	2300~2400	2300~2400	MHz
LTE-TDD B41 1)	2496~2690	2496~2690	MHz

Table 37: SC600Y-NA*/SC600T-NA* Module Operating Frequencies

3GPP Band	Receive	Transmit	Unit
WCDMA B2	1930~1990	1850~1910	MHz
WCDMA B4	2110~2155	1710~1755	MHz
WCDMA B5	871~892	826~847	MHz
LTE-FDD B2	1930~1990	1850~1910	MHz
LTE-FDD B4	2110~2155	1710~1755	MHz
LTE-FDD B5	869~894	824~849	MHz
LTE-FDD B7	2620~2690	2500~2570	MHz
LTE-FDD B12	729~746	699~716	MHz
LTE-FDD B13	746~756	777~787	MHz
LTE-FDD B14	758~768	788~798	MHz
LTE-FDD B17	734~746	704~716	MHz
LTE-FDD B25	1930~1995	1850~1915	MHz

LTE-FDD B26	859~894	814~849	MHz
LTE-FDD B66	2110~2200	1710~1780	MHz
LTE-FDD B71	617 – 652	663 – 698	MHz
LTE-TDD B41 1)	2496~2690	2496~2690	MHz

NOTES

 The bandwidth of LTE-TDD B41 for SC600Y-EM*/SC600T-EM*, SC600Y-JP*/SC600T-JP*, SC600Y-NA*/SC600T-NA* is 200MHz (2496MHz~2690MHz), and the corresponding channel ranges from 39650 to 41589.

6.1.1. Main and Rx-diversity Antenna Interfaces Reference Design

A reference circuit design for main and Rx-diversity antenna interfaces is shown as below. A π -type matching circuit should be reserved for better RF performance, and the π -type matching components (R1/C1/C2, R2/C3/C4) should be placed as close to the antennas as possible. The capacitors are not mounted by default and resistors are 0Ω .

Figure 33: Reference Circuit Design for Main and Rx-diversity Antenna Interfaces

6.1.2. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the clearance between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

Figure 34: Microstrip Design on a 2-layer PCB

Figure 35: Coplanar Waveguide Design on a 2-layer PCB

Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 37: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 500
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times as wide as RF signal traces (2*W).

For more details about RF layout, please refer to document [3].

6.2. Wi-Fi/BT Antenna Interface

The pin definition of Wi-Fi/BT antenna interfaces and operating frequencies is shown below.

Table 38: Pin Definition of Wi-Fi/BT Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_WIFI/BT	129	Ю	Wi-Fi/BT antenna interface	50Ω impedance

Table 39: Wi-Fi/BT Frequency

Туре	Frequency	Unit
802.11a/b/g/n/ac	2402~2482 5180~5825	MHz
BT4.2 LE	2402~2480	MHz

A reference circuit design for Wi-Fi/BT antenna interface is shown as below. A π -type matching circuit is recommended to be reserved for better RF performance. The capacitors are not mounted by default and resistors are 0Ω .

Figure 38: Reference Circuit Design for Wi-Fi/BT Antenna Interface

6.3. GNSS Antenna Interface

The pin definition of GNSS antenna interfaces and operating frequencies is shown below.

Table 40: Pin Definition of GNSS Antenna

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	134	Al	GNSS antenna Interface	50Ω impedance
GNSS_LNA_EN	202	DO	LNA enable control	For test purpose only. If unused, keep it open.

Table 41: GNSS Frequency

Туре	Frequency	Unit
GPS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
BeiDou	1561.098±2.046	MHz

6.3.1. Recommended Circuit for Passive Antenna

GNSS antenna interface supports passive ceramic antennas and other types of passive antennas. A reference circuit design is given below.

Figure 39: Reference Circuit Design for GNSS Passive Antenna

NOTE

When the passive antenna is placed far away from the module (that is, the antenna trace is long), it is recommended to add an external LNA circuit for better GNSS receiving performance, and the LNA should be placed close to the antenna.

6.3.2. Recommended Circuit for Active Antenna

The active antenna is powered by a 56nH inductor through the antenna's signal path. The common power supply voltage ranges from 3.3V to 5.0V. Although featuring low power consumption, the active antenna still requires stable and clean power supplies. It is recommended to use high performance LDO as the power supply. A reference design of GNSS active antenna is shown below.

Figure 40: Reference Circuit Design for GNSS Active Antenna

6.4. Antenna Installation

6.4.1. Antenna Requirements

The following table shows the requirements on main antenna, Rx-diversity, Wi-Fi/BT antenna and GNSS antenna.

Table 42: Antenna Requirements

Antenna Type	Requirements
	VSWR:≤2
	Gain (dBi): 1
	Max Input Power (W): 50
	Input Impedance (Ω): 50
CCMAN/CDMA/	Polarization Type: Vertical
GSM/WCDMA/ LTE	Cable Insertion Loss: <1dB
LIE	(GSM850, EGSM900, WCDMA B5/B6/B8/B19, LTE
	B5/B8/B12/B13/B14/B17/B18/B19/B20/B26/B28A/B28B/B71)
	Cable Insertion Loss: <1.5dB
	(DCS1800, PCS1900, WCDMA B1/B2/B4,
	LTE B1/B2/B3/B4/B11/B21/B25/B34/B39/B66)

	Cable Insertion Loss: <2dB (LTE-FDD B7, LTE-TDD B38/B40/B41)
	VSWR: ≤2
Wi-Fi/BT	Gain (dBi): 1
	Max Input Power (W): 50
	Input Impedance (Ω): 50
	Polarization Type: Vertical
	Cable Insertion Loss: <1dB
	Frequency range: 1559MHz~1609MHz
	Polarization: RHCP or linear
	VSWR: <2 (Typ.)
GNSS 1)	Passive Antenna Gain: >0dBi
GNSS 17	Active Antenna Noise Figure: <1.5dB (Typ.)
	Active Antenna Gain: >-2dBi
	Active Antenna Embedded LNA Gain: <17dB (Typ.)
	Active Antenna Total Gain: <17dBi (Typ.)

NOTE

¹⁾ It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.

6.4.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by HIROSE.

Figure 41: Dimensions of the U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	24		3.4	87	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 42: Mechanicals of U.FL-LP Connectors

The following figure describes the space factor of mated connector.

Figure 43: Space Factor of Mated Connector (Unit: mm)

For more details, please visit http://www.hirose.com.

7 Electrical, Reliability and Radio Characteristics

7.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 43: Absolute Maximum Ratings

Parameter	Min	Max	Unit
VBAT	-0.5	6	V
USB_VBUS	-0.5	16	V
Current on VBAT	0	3	А
Voltage on Digital Pins	-0.3	2.3	V

7.2. Power Supply Ratings

Table 44: SC600Y&SC600T Modules Power Supply Ratings

Parameter	Description	Conditions	Min	Тур.	Max	Unit
VBAT	VBAT	The actual input voltages must stay between the minimum and maximum values.	3.55	3.8	4.4	V
	Voltage drop during transmitting burst	Maximum power control level at EGSM900			400	mV

Parameter	Description	Conditions	Min	Тур.	Max	Unit
I _{VBAT}	Peak supply current (during transmission slot)	Maximum power control level at EGSM900		1.8	3.0	A
USB_VBUS			4.0	5.0	10	V
VRTC	Power supply voltage of backup battery.		2.0	3.0	3.25	V

7.3. Operation and Storage Temperatures

The operation and storage temperatures are listed in the following table.

Table 45: Operation and Storage Temperatures

Parameter	Min	Тур.	Max	Unit
Operating temperature range 1)	-35	+25	+65	°C
Extended temperature range ²⁾	-40		+75	°C
Storage temperature range	-40		+90	°C

NOTES

- 1. ¹⁾Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

7.4. Current Consumption

The current consumption of different conditions is listed in the following table.

Table 46: SC600Y-JP*/SC600T-JP* Current Consumption

	OFF state	Power down	80	uA
		Sleep (USB disconnected) @DRX=6	4.568	mA
	WCDMA supply current	Sleep (USB disconnected) @DRX=8	3.093	mA
		Sleep (USB disconnected) @DRX=9	2.995	mA
	LTE-FDD supply	Sleep (USB disconnected) @DRX=6	4.128	mA
	current	Sleep (USB disconnected) @DRX=8	3.148	mA
	LTE-TDD supply	Sleep (USB disconnected) @DRX=6	3.952	mA
	current	Sleep (USB disconnected) @DRX=8	3.025	mA
		B1 @max power	567	mA
I _{VBAT}	WCDMA voice call	B6 @max power	586	mA
	WCDIVIA VOICE CAII	B8 @max power	554	mA
		B19 @max power	589	mA
		B1 (HSDPA) @max power	500	mA
		B6 (HSDPA) @max power	530	mA
		B8 (HSDPA) @max power	500	mA
	WCDMA data	B19 (HSDPA) @max power	535	mA
	transfer	B1 (HSUPA) @max power	512	mA
		B6 (HSUPA) @max power	545	mA
		B8 (HSUPA) @max power	506	mA
		B19 (HSUPA) @max power	550	mA

	LTE-FDD B1 @max power	535	mA
	LTE-FDD B3 @max power	590	mA
	LTE-FDD B5 @max power	505	mA
	LTE-FDD B8 @max power	520	mA
	LTE-TDD B11 @max power	512	mA
LTE data transfer	LTE-TDD B18 @max power	555	mA
LIE data transier	LTE-TDD B19 @max power	500	mA
	LTE-TDD B21 @max power	520	mA
	LTE-TDD B26 @max power	530	mA
	LTE-TDD B28A @max power	640	mA
	LTE-TDD B28B @max power	585	mA
	LTE-TDD B41 @max power	490	mA

Table 47: SC600Y-EM*/SC600T-EM* Current Consumption

Parameter	Description	Conditions	Min	Тур.	Max	Unit
	OFF state	Power down		80		uA
I _{VBAT}	GSM supply current	Sleep (USB disconnected) @DRX=2		TBD		mA
		Sleep (USB disconnected) @DRX=5		TBD		mA
		Sleep (USB disconnected) @DRX=9		TBD		mA
	WCDMA supply current	Sleep (USB disconnected) @DRX=6		3.471		mA
		Sleep (USB disconnected) @DRX=8		3.109		mA
		Sleep (USB disconnected) @DRX=9		2.747		mA
	LTE-FDD supply current	Sleep (USB disconnected) @DRX=6		3.85		mA

	Sleep (USB disconnected) @DRX=8	2.959	
LTE-TDD supply	Sleep (USB disconnected) @DRX=6	4.273	
current	Sleep (USB disconnected) @DRX=8	3.173	
	GSM850 @PCL 5	230	
	GSM850 @PCL 12	95	
	GSM850 @PCL 19	80	
	EGSM900 @PCL 5	240	
	EGSM900 @PCL 12	100	
GSM voice call	EGSM900 @PCL 19	80	
GSIVI VOICE CAII	DCS1800 @PCL 0	175	
	DCS1800 @PCL 7	108	
	DCS1800 @PCL 15	103	
	PCS1900 @PCL 0	170	
	PCS1900 @PCL 7	107	
	PCS1900 @PCL 15	103	
	B1 @max power	550	
	B2 @max power	520	
WCDMA voice call	B4 @max power	480	
	B5 @max power	550	
	B8 @max power	500	
	GSM850 (1UL/4DL) @PCL 5	TBD	
	GSM850 (2UL/3DL) @PCL 5	TBD	
GPRS data transfer	GSM850 (3UL/2DL) @PCL 5	TBD	
	GSM850 (4UL/1DL) @PCL 5	TBD	
	EGSM900 (1UL/4DL) @PCL 5	TBD	

	EGSM900 (2UL/3DL) @PCL 5	TBD	mA
	EGSM900 (3UL/2DL) @PCL 5	TBD	mA
	EGSM900 (4UL/1DL) @PCL 5	TBD	mA
	DCS1800 (1UL/4DL) @PCL 0	TBD	mA
	DCS1800 (2UL/3DL) @PCL 0	TBD	mA
	DCS1800 (3UL/2DL) @PCL 0	TBD	mA
	DCS1800 (4UL/1DL) @PCL 0	TBD	mA
	PCS1900 (1UL/4DL) @PCL 0	TBD	mA
	PCS1900 (2UL/3DL) @PCL 0	TBD	mA
	PCS1900 (3UL/2DL) @PCL 0	TBD	mA
	PCS1900 (4UL/1DL) @PCL 0	TBD	mA
	GSM850 (1UL/4DL) @PCL 8	TBD	mA
	GSM850 (2UL/3DL) @PCL 8	TBD	mA
	GSM850 (3UL/2DL) @PCL 8	TBD	mA
	GSM850 (4UL/1DL) @PCL 8	TBD	mA
	EGSM900 (1UL/4DL) @PCL 8	TBD	mA
	EGSM900 (2UL/3DL) @PCL 8	TBD	mA
EDOE data turn fan	EGSM900 (3UL/2DL) @PCL8	TBD	mA
EDGE data transfer	EGSM900 (4UL/1DL) @PCL 8	TBD	mA
	DCS1800 (1UL/4DL) @PCL 2	TBD	mA
	DCS1800 (2UL/3DL) @PCL 2	TBD	mA
	DCS1800 (3UL/2DL) @PCL 2	TBD	mA
	DCS1800 (4UL/1DL) @PCL 2	TBD	mA
	PCS1900 (1UL/4DL) @PCL 2	TBD	mA

	PCS1900 (3UL/2DL) @PCL 2	TBD	mA
	PCS1900 (4UL/1DL) @PCL 2	TBD	mA
	B1 (HSDPA) @max power	540	mA
	B2 (HSDPA) @max power	480	mA
	B4 (HSDPA) @max power	470	mA
	B5 (HSDPA) @max power	490	mA
WCDMA data	B8 (HSDPA) @max power	470	mA
transfer	B1 (HSUPA) @max power	560	mA
	B2 (HSUPA) @max power	490	mA
	B4 (HSUPA) @max power	480	mA
	B5 (HSUPA) @max power	505	mA
	B8 (HSUPA) @max power	480	mA
	LTE-FDD B1 @max power	670	mA
	LTE-FDD B2 @max power	600	mA
	LTE-FDD B3 @max power	730	mA
	LTE-FDD B4 @max power	570	mA
	LTE-FDD B5 @max power	560	mA
	LTE-FDD B7 @max power	780	mA
LTE data transfer	LTE-FDD B8@max power	570	mA
	LTE-FDD B20 @max power	510	mA
	LTE-FDD B28A @max power	640	mA
	LTE-FDD B28B @max power	650	mA
	LTE-TDD B38 @max power	490	mA
	LTE-TDD B39 @max power	320	mA
	LTE-TDD B40 @max power	370	mA

LTE-TDD B41 @max power 450 mA

Table 48: SC600Y-NA*/SC600T-NA* Current Consumption

Parameter	Description	Conditions	Min	Тур.	Max	Unit
	OFF state	Power down		80		uA
		Sleep (USB disconnected) @DRX=6		3.724		mA
	WCDMA supply current	Sleep (USB disconnected) @DRX=8		3.076		mA
		Sleep (USB disconnected) @DRX=9		2.603		mA
	LTE-FDD supply	Sleep (USB disconnected) @DRX=6		3.835		mA
	current	Sleep (USB disconnected) @DRX=8		2.998		mA
	LTE-TDD supply	Sleep (USB disconnected) @DRX=6	4.192			mA
	current	Sleep (USB disconnected) @DRX=8		2.987		mA
I_{VBAT}		B2 @max power		600		mA
	WCDMA voice call	B4@max power		600		mA
		B5 @max power		540		mA
		B2 (HSDPA) @max power		530		mA
		B4 (HSDPA) @max power		550		mA
	WCDMA data	B5 (HSDPA) @max power		490		mA
	transfer	B2 (HSUPA) @max power		550		mA
		B4 (HSUPA) @max power		545		mA
		B5 (HSUPA) @max power		490		mA
	LTC data for or for	LTE-FDD B2 @max power		610		mA
	LTE data transfer	LTE-FDD B4 @max power		660		mA

LTE-FDD B5 @max power	550	mA
LTE-FDD B7 @max power	780	mA
LTE-FDD B12 @max power	520	mA
LTE-FDD B13 @max power	560	mA
LTE-TDD B14 @max power	500	mA
LTE-TDD B17 @max power	470	mA
LTE-TDD B25 @max power	670	mA
LTE-TDD B26 @max power	560	mA
LTE-TDD B66 @max power	650	mA
LTE-TDD B71 @max power	580	mA
LTE-TDD B41 @max power	370	mA

7.5. RF Output Power

The following table shows the RF output power of SC600Y&SC600T modules.

Table 49: SC600Y-JP*/SC600T-JP* RF Output Power

Frequency	Max	Min
WCDMA B1	24dBm+1/-3dB	<-49dBm
WCDMA B6	24dBm +1/-3dB	<-49dBm
WCDMA B8	24dBm +1/-3dB	<-49dBm
WCDMA B19	24dBm +1/-3dB	<-49dBm
LTE-FDD B1	23dBm±2dB	<-39dBm
LTE-FDD B3	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B8	23dBm±2dB	<-39dBm

LTE-FDD B11	23dBm±2dB	<-39dBm
LTE-FDD B18	23dBm±2dB	<-39dBm
LTE-FDD B19	23dBm±2dB	<-39dBm
LTE-FDD B21	23dBm±2dB	<-39dBm
LTE-FDD B26	23dBm±2dB	<-39dBm
LTE-FDD B28A	23dBm±2dB	<-39dBm
LTE-TDD B28B	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

Table 50: SC600Y-EM*/SC600T-EM* RF Output Power

Max	Min
33dBm±2dB	5dBm±5dB
33dBm±2dB	5dBm±5dB
30dBm±2dB	0dBm±5dB
30dBm±2dB	0dBm±5dB
24dBm+1/-3dB	<-49dBm
23dBm±2dB	<-39dBm
	33dBm±2dB 33dBm±2dB 30dBm±2dB 30dBm±2dB 24dBm+1/-3dB 24dBm+1/-3dB 24dBm+1/-3dB 24dBm+1/-3dB 24dBm+1/-3dB 23dBm±2dB 23dBm±2dB

LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B7	23dBm±2dB	<-39dBm
LTE-FDD B8	23dBm±2dB	<-39dBm
LTE-FDD B20	23dBm±2dB	<-39dBm
LTE-FDD B28A	23dBm±2dB	<-39dBm
LTE-FDD B28B	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

Table 51: SC600Y-NA*/SC600T-NA* RF Output Power

Frequency	Max	Min
WCDMA B2	24dBm+1/-3dB	<-49dBm
WCDMA B4	24dBm+1/-3dB	<-49dBm
WCDMA B5	24dBm+1/-3dB	<-49dBm
LTE-FDD B2	23dBm±2dB	<-39dBm
LTE-FDD B4	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B7	23dBm±2dB	<-39dBm
LTE-FDD B12	23dBm±2dB	<-39dBm
LTE-FDD B13	23dBm±2dB	<-39dBm
LTE-FDD B14	23dBm±2dB	<-39dBm
LTE-FDD B17	23dBm±2dB	<-39dBm
LTE-FDD B25	23dBm±2dB	<-39dBm
LTE-FDD B26	23dBm±2dB	<-39dBm
LTE-FDD B66	23dBm±2dB	<-39dBm
LTE-FDD B71	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

NOTE

In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. This design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

7.6. RF Receiving Sensitivity

The following table shows the conducted RF receiving sensitivity of SC600Y&SC600T modules.

Table 52: SC600Y-JP*/SC600T-JP* RF Receiving Sensitivity

Frequency	R Primary	eceive Sensitivity (Diversity	Typ.) SIMO	3GPP (SIMO)
WCDMA B1	-109.5	-111.5	TBD	-106.7dBm
WCDMA B6	-112	-109.5	TBD	-106.7dBm
WCDMA B8	-111.5	-111.5	TBD	-104.7dBm
WCDMA B19	-111.5	-109.5	TBD	-106.7dBm
LTE-FDD B1 (10M)	-99	TBD	-101.2	-96.3dBm
LTE-FDD B3 (10M)	-98.4	TBD	-101.2	-93.3dBm
LTE-FDD B5 (10M)	-99	TBD	-101.7	-94.3dBm
LTE-FDD B8 (10M)	-98.7	TBD	-101.2	-93.3dBm
LTE-FDD B11 (10M)	-98.2	TBD	-100.5	-96.3dBm
LTE-FDD B18(10M)	-99.2	TBD	-102.2	-96.3dBm
LTE-FDD B19 (10M)	-99.2	TBD	-101.7	-96.3dBm
LTE-FDD B21(10M)	-97.7	TBD	-100.7	-96.3dBm
LTE-FDD B26 (10M)	-99	TBD	-101.7	-93.8dBm
LTE-FDD B28A (10M)	-96.7	TBD	-100.6	-94.8dBm
LTE-FDD B28B(10M)	-96.5	TBD	-100.4	-94.8dBm
LTE-TDD B41 (10M)	-96.8	TBD	-99.7	-94.3dBm

Table 53: SC600Y-EM*/SC600T-EM* RF Receiving Sensitivity

Frequency	R Primary	eceive Sensitivity (Diversity	Typ.) SIMO	3GPP (SIMO)
GSM850	-111	1	1	-102.4dBm
EGSM900	-100.9	1	1	-102.4dBm
DCS1800	-109.3	1	1	-102.4dBm
PCS1900	-109.3	1	1	-102.4dBm
WCDMA B1	-112	-111	TBD	-106.7dBm
WCDMA B2	-112	-110	TBD	-106.7dBm
WCDMA B4	-112	-111	TBD	-10dBm
WCDMA B5	-113	-111	TBD	-104.7dBm
WCDMA B8	-111	-111	TBD	-104.7dBm
LTE-FDD B1 (10M)	-97.4	-98.1	TBD	-96.3dBm
LTE-FDD B2 (10M)	-97.9	-97.9	TBD	-94.3dBm
LTE-FDD B3 (10M)	-96.8	-98	TBD	-93.3dBm
LTE-FDD B4 (10M)	-97.7	-97.8	TBD	-96.3dBm
LTE-FDD B5 (10M)	-98.2	-98.7	TBD	-94.3dBm
LTE-FDD B7 (10M)	-96.5	-97.3	TBD	-94.3dBm
LTE-FDD B8 (10M)	-98.7	-98.5	TBD	-93.3dBm
LTE-FDD B20 (10M)	-97.9	-98.9	TBD	-93.3dBm
LTE-FDD B28A (10M)	-98.3	-97.9	TBD	-94.8dBm
LTE-FDD B28B (10M)	-97.7	-97.4	TBD	-94.8dBm
LTE-TDD B38 (10M)	-97.8	-97.2	TBD	-96.3dBm
LTE-TDD B39 (10M)	-97	-98.7	TBD	-96.3dBm
LTE-TDD B40 (10M)	-97.9	-96.9	TBD	-96.3dBm

LTE-TDD B41 (10M) -97.7 -96.7 TBD -94.3dBm
--

Table 54: SC600Y-NA*/SC600T-NA* RF Receiving Sensitivity

Frequency		eceive Sensitivity (• • •	3GPP (SIMO)
	Primary	Diversity	SIMO	(3)
WCDMA B2	-110	-110.5	TBD	-106.7dBm
WCDMA B4	-110.5	-110.5	TBD	-104.7dBm
WCDMA B5	-111	-111	TBD	-104.7dBm
LTE-FDD B2 (10M)	-98.9	TBD	-101.2	-94.3dBm
LTE-FDD B4 (10M)	-99	TBD	-100	-96.3dBm
LTE-FDD B5 (10M)	-100.2	TBD	-101.7	-94.3dBm
LTE-FDD B7 (10M)	-97.8	TBD	-99.7	-94.3dBm
LTE-FDD B12 (10M)	-97.8	TBD	-100	-93.3dBm
LTE-FDD B13 (10M)	-97.1	TBD	-100.5	-93.3dBm
LTE-FDD B14 (10M)	-98.5	TBD	-100.3	-93.3dBm
LTE-FDD B17 (10M)	-97.9	TBD	-100.7	-93.3dBm
LTE-FDD B25 (10M)	-99.3	TBD	-100.7	-92.8dBm
LTE-FDD B26 (10M)	-100.2	TBD	-101.7	-93.8dBm
LTE-FDD B66 (10M)	-99.2	TBD	-101.2	-95.8dBm
LTE-FDD B71 (10M)	-97.6	TBD	-100.3	-93.5dBm
LTE-TDD B41 (10M)	-97.7	TBD	-99.7	-94.3dBm

7.7. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it should be subject to ESD handling precautions that are typically applied to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the electrostatic discharge characteristics of SC600Y&SC600T modules.

Table 55: ESD Characteristics (Temperature: 25°C, Humidity: 45%)

Test Points	Contact Discharge	Air Discharge	Unit
VBAT, GND	+/-5	+/-10	KV
All Antenna Interfaces	+/-5	+/-10	KV
Other Interfaces	+/-0.5	+/-1	KV

8 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the tolerances for dimensions without tolerance values are ± 0.05 mm.

8.1. Mechanical Dimensions of the Module

Figure 44: Module Top and Side Dimensions

Figure 45: Module Bottom Dimensions (Top View)

8.2. Recommended Footprint

Figure 46: Recommended Footprint (Top View)

NOTES

- 1. For easy maintenance of the module, keep about 3mm between the module and other components on host PCB.
- 2. All RESERVED pins should be kept open and MUST NOT be connected to ground.

8.3. Top and Bottom View of the Module

Figure 47: Top View of SC600Y&SC600T Modules

Figure 48: Bottom View of SC600Y&SC600T Modules

NOTE

These are renderings of SC600Y&SC600T modules. For authentic dimension and appearance, please refer to the module that you receive from Quectel.

9 Storage, Manufacturing and Packaging

9.1. Storage

SC600Y&SC600T are stored in a vacuum-sealed bag. They are rated at MSL 3, and their storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Mounted within 168 hours at the factory environment of ≤30°C/60%RH.
 - Stored at <10%RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
 - When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60%.
- 4. If baking is required, devices may be baked for 8 hours at 120°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devic es before high temperature (120°C) baking. If shorter baking time is desired, please refer to *IPC/J EDECJ-STD-033* for baking procedure.

9.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18mm~0.20mm. It is recommended to slightly reduce the amount of solder paste for LGA pads, thus avoiding short-circuit. For more details, please refer to **document [4]**.

It is suggested that the peak reflow temperature is 238~245°C, and the absolute maximum reflow temperature is 245°C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Figure 49: Recommended Reflow Soldering Thermal Profile

Table 56: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max slope	1 to 3°C/sec
Soak time (between A and B: 150°C and 200°C)	60 to 120 sec

Reflow Zone	
Max slope	2 to 3°C/sec
Reflow time (D: over 220°C)	40 to 60 sec
Max temperature	238°C ~ 245°C
Cooling down slope	1 to 4°C/sec
Reflow Cycle	
Max reflow cycle	1

9.3. Packaging

SC600Y&SC600T are packaged in tape and reel carriers. Each reel is 330mm in diameter and contains 200 modules. The following figures show the package details, measured in mm.

Figure 50: Tape Dimensions

Figure 51: Reel Dimensions

Table 57: Reel Packaging

Model Name	MOQ for MP	Minimum Package: 200pcs	Minimum Package×4=800pcs
SC600Y& SC600T	200	Size: 398mm × 383mm × 83mm N.W: 1.92kg G.W: 3.67kg	Size: 420mm × 350mm × 405mm N.W: 8.18kg G.W: 15.18kg

10 Appendix A References

Table 58: Related Documents

SN	Document Name	Remark
[1]	Quectel_Smart_EVB-G2_User_Guide	EVB User Guide for SC600Y&SC600T
[2]	Quectel_SC600Y&SC600T_GPIO_Configuration	GPIO Configuration of SC600Y&SC600T
[3]	Quectel_RF_Layout_Application_Note	RF Layout Application Note
[4]	Quectel_Module_Secondary_SMT_User_Guide	Module Secondary SMT User Guide
[5]	Quectel_ SC600Y&SC600T_Reference_Design	Reference Design for SC600Y&SC600T

Table 59: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-rate
bps	Bits per Second
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DRX	Discontinuous Reception
EFR	Enhanced Full Rate
EGSM	Extended GSM900 band (includes standard GSM900 band)
ESD	Electrostatic Discharge

FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPS	Global Positioning System
GPU	Graphics Processing Unit
GSM	Global System for Mobile Communications
HR	Half Rate
HSDPA	High Speed Down Link Packet Access
HSPA	High Speed Packet Access
I/O	Input/Output
IQ	Inphase and Quadrature
LCD	Liquid Crystal Display
LCM	LCD Module
LED	Light Emitting Diode
LNA	Low Noise Amplifier
LRA	Linear Resonant Actuator
MIPI	Mobile Industry Processor Interface
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PMI	Power Management Interface
PMU	Power Management Unit
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RH	Relative Humidity

RHCP	Right Hand Circularly Polarized
RTC	Real Time Clock
Rx	Receive
SMS	Short Message Service
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
UMTS	Universal Mobile Telecommunications System
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
Vı	Voltage Input
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
Vo	Voltage Output
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access

11 Appendix B GPRS Coding Schemes

Table 60: Description of Different Coding Schemes

Scheme	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
Data Rate Kb/s	9.05	13.4	15.6	21.4

12 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Table 61: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA

15	5	5	NA	
16	6	6	NA	
17	7	7	NA	
18	8	8	NA	
19	6	2	NA	
20	6	3	NA	
21	6	4	NA	
22	6	4	NA	
23	6	6	NA	
24	8	2	NA	
25	8	3	NA	
26	8	4	NA	
27	8	4	NA	
28	8	6	NA	
29	8	8	NA	
30	5	1	6	
31	5	2	6	
32	5	3	6	
33	5	4	6	

13 Appendix D EDGE Modulation and Coding Schemes

Table 62: EDGE Modulation and Coding Schemes

Coding Schemes	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	GMSK	1	9.05kbps	18.1kbps	36.2kbps
CS-2:	GMSK	1	13.4kbps	26.8kbps	53.6kbps
CS-3:	GMSK	1	15.6kbps	31.2kbps	62.4kbps
CS-4:	GMSK	1	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	С	8.80kbps	17.60kbps	35.20kbps
MCS-2	GMSK	В	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	С	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	A	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	A	59.2kbps	118.4kbps	236.8kbps

IC & FCC Requirement

FCC Certification Requirements.

According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device.

And the following conditions must be met:

1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna

installation and operating configurations of this transmitter, including any applicable source-based timeaveraging

duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091.

2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body

and must not transmit simultaneously with any other antenna or transmitter.

- 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR2019SC600NA
- 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:

Operating Band	FCC Max Antenna Gain (dBi)	IC Max Antenna Gain (dBi)	
WCDMA BAND II	9	8	
WCDMA BAND IV	6	5	
WCDMA BAND V	10.42	8.26	
LTE BAND 2	9	8	
LTE BAND 4	6	5	
LTE BAND 5	10.41	8.25	
LTE BAND 7	9	8	
LTE BAND 12	9.7	7.76	
LTE BAND 13	10.16	8.09	
LTE BAND 14	10.23	8.13	
LTE BAND 17	9.7	7.79	
LTE BAND 25	9	8	
LTE BAND 26(814-824)	10.36	NA	
LTE BAND 26(824-849)	10.41	8.25	
LTE BAND 41	9	8	
LTE BAND 66	6	5	
LTE BAND 71	8.15	7.62	
Bluetooth/ Bluetooth BLE	NA	NA	

WIFI 2.4G/5G	NA	NA

- 5. This module must not transmit simultaneously with any other antenna or transmitter
- 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines. For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093

If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:

A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph).

For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module:"Contains Transmitter Module FCC ID: XMR2019SC600NA" or "Contains FCC ID: XMR2019SC600NA" must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID.

The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Supplier's Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements.

Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

IC Statement

IRSS-GEN

"This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device." or "Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

1) l'appareil ne doit pas produire de brouillage; 2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement."

Déclaration sur l'exposition aux rayonnements RF

L'autre utilisé pour l'émetteur doit être installé pour fournir une distance de séparation d'au moins 20 cm de toutes les personnes et ne doit pas être colocalisé ou fonctionner conjointement avec une autre antenne ou un autre émetteur.

The host product shall be properly labeled to identify the modules within the host product.

The Innovation, Science and Economic Development Canada certification label of a module shall be

clearly visible at all times when installed in the host product; otherwise, the host product must be labeled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word "Contains" or similar wording expressing the same meaning, as follows: "Contains IC: 10224A-2019SC600NA" or "where: 10224A-2019SC600NA is the module's certification number".

Le produit hôte doit être correctement étiqueté pour identifier les modules dans le produit hôte. L'étiquette de certification d'Innovation, Sciences et Développement économique Canada d'un module doit être clairement visible en tout temps lorsqu'il est installédans le produit hôte; sinon, le produit hôte doit porter une étiquette indiquant le numéro de certification d'Innovation, Sciences et Développement économique Canada pour le module, précédé du mot «Contient» ou d'un libellé semblable exprimant la même signification, comme suit:

"Contient IC: 10224A-2019SC600NA" ou "où: 10224A-2019SC600NA est le numéro de certification du module".