ECE 322L Electronics 2

02/06/20 - Lecture 6

Amplifiers: models and characteristics

FET-based amplifiers: basic configurations

Common source amplifiers

Updates and Overview

- ➤ Homework 2 and Lab 3 are online
- ➤ Amplifiers: Models and Characteristics (S&S 1.5.1, 1.5.3, 1.5.5, 5.6.2)
- FET amplifiers configurations: overview (Neamen 4.2, S&S 5.6.1)
- Common source (CS) amplifier configurations (Neamen 4.3, S&S 5.6.3, 5.6.4)

Amplifiers: Models and Characteristics

Important characteristics or performance parameters of an amplifier

- Input resistance
- Output resistance
- Open circuit/Short circuit gain

Voltage Amplifier

Definitions

 $= \frac{\vec{i}}{R_L} \quad \text{Input resistance } R_{in} = \frac{v_i}{i_i} = R_i$

Open circuit amplifier gain (R_L infinite)

$$A_{vo} = \frac{v_o}{v_i}$$

Total amplifier gain (R_L finite)

$$A_{v} = \frac{v_{o}}{v_{i}} = A_{vo} \frac{R_{L}}{R_{L} + R_{o}}$$

Overall Gain
$$G_v = \frac{v_o}{v_{sig}} = A_v \frac{R_i}{R_i + R_{sig}}$$

Output resistance

$$R_{out} = \frac{v_x}{i_x} = R_o$$

Voltage Amplifier

Desired characteristics

- Input resistance
 Infinite
- Output resistanceZero
- Open circuit gainHigh

Transconductance Amplifier

Definitions

Input resistance $R_{in} = \frac{v_i}{i_i} = R_i$

Short-circuit amplifier gain $(R_L=0)$

$$A_o = \frac{i_o}{v_i} = G_m$$

Total amplifier gain (R₁ finite)

$$A_{V} = \frac{i_{o}}{v_{i}} = A_{o} \frac{R_{o}}{R_{L} + R_{o}}$$

Overall Gain $G_{V} = \frac{i_{o}}{v_{sig}} = A_{V} \frac{R_{i}}{R_{i} + R_{sig}}$

Output resistance

$$R_{out} = \frac{v_x}{i_x} = R_o$$

Transconductance Amplifier

Desired characteristics

- Input resistance
 Infinite
- Output resistance
 Infinite
- TransconductanceHigh

Amplifiers: Models and Characteristics

Type	Circuit Model	Gain Parameter	Ideal Characteristics
Voltage Amplifier	$ \begin{array}{c cccc} R_o & i_o \\ \downarrow & \downarrow \\ v_i & \downarrow \\ R_i & \downarrow \\ A_{vo}v_i & v_o \\ \downarrow & \downarrow \\ \end{array} $	Open-Circuit Voltage Gain $A_{vo} \equiv \frac{v_o}{v_i}\bigg _{i_o=0} (\text{V/V})$	$R_i = \infty$ $R_o = 0$
Current Amplifier	$ \begin{array}{c c} & i_o \\ & \downarrow \\ & \downarrow$	Short-Circuit Current Gain $A_{is} \equiv \frac{i_o}{i_i} \bigg _{v_o=0} (\text{A/A})$	$R_i = 0$ $R_o = \infty$
Transconductance Amplifier	$ \begin{array}{c c} & i_{o} \\ & \downarrow \\ &$	Short-Circuit Transconductance $G_m \equiv \frac{i_o}{v_i} \bigg _{v_o = 0} (A/V)$	$R_i = \infty$ $R_o = \infty$
Transresistance Amplifier	$R_{i} \longrightarrow R_{m}i_{i} \qquad V_{o}$	Open-Circuit Transresistance $R_m \equiv \frac{v_o}{i_i} \bigg _{i_o=0} (\text{V/A})$	$R_i = 0$ $R_o = 0$

Basic configurations for FET amplifiers

There are three basic configurations for connecting the MOSFET as an amplifier. Each of these configurations is obtained by connecting one of the three MOSFET terminals to ground, thus creating a two-port network with the grounded terminal being *common* to the input and output ports.

Common source (CS) Amplifiers

Common Source (CS) Amplifier

Internal resistance of a signal source or Thevenin equivalent of the output circuit of another amplifier stage.

 C_{c1} ~10s μF . This value guarantees a much smaller capacitor impedance than R_{si} for signal with frequencies higher than 2 kHz.

$$|Z_C| = \frac{1}{2\pi f C_C} = \frac{1}{2\pi (2 \times 10^3)(10 \times 10^{-6})} \cong 8 \,\Omega$$

Cc1 can then be replaced with a short-circuit in ac analysis of high frequency signals

2/11/2020

In-class Problem 1

Sketch the DC and the AC and the small-signal equivalent circuit of the common source amplifier below. Determine the expressions for the input and output resistance, for the open circuit voltage gain, the amplifier gain and the overall voltage gain. Assume the frequency of the input signal is midrange, i.e., high enough for the coupling capacitor C_{C1} to act as a short circuit in ac but low enough for the gate capacitor to act as an open circuit in AC.

In-class Problem 1, Solution

In Class Problem 1, Solution

Open circuit voltage gain $(R_1 = \infty)$

Total voltage gain

$$A_v = \frac{V_o}{V_i} = -g_m(r_o \parallel R_D)$$

Overall voltage gain

$$G_v = \frac{V_o}{V_i} = -g_m(r_o \parallel R_D) \frac{R_i}{R_i + R_{si}}$$

Common Source (CS) Amplifier w/ R_s

Internal resistance of a signal source or Thevenin equivalent of the output circuit of another amplifier stage.

2/11/2020

 C_{c1} is typically of the order of ~10s μF . This value guarantees a much smaller capacitor impedance than R_{si} for signal with frequencies higher than 2 kHz.

$$|Z_C| = \frac{1}{2\pi f C_C} = \frac{1}{2\pi (2 \times 10^3)(10 \times 10^{-6})} \cong 8 \,\Omega$$

C_{c1} can then be replace with a short-circuit in ac analysis of high frequency signals

15

In-class Problem 2

Sketch the DC and the AC and the small-signal equivalent circuit of the common source amplifier below. Determine the expressions for the input and output resistance, for the open circuit voltage gain, the amplifier gain and the overall voltage gain. Assume the frequency of the input signal is midrange, i.e., high enough for the coupling capacitor C_{C1} to act as a short circuit in ac but low enough for the gate capacitor to act as an open circuit in AC.

V_{sig}/

In class Problem 2, Solution

DC circuit

AC circuit

In class Problem 2, Solution

In-class Problem 2, Solution

Input resistance and open-circuit voltage gain

SS (RS	- gm + 1 + RD - Rs-2)- gm 5i =	0 (14))
$\sqrt{2} = \frac{1}{8}$	m 5i - + fm + 1 + F	- Co	15)	
50=	20 - fm vi	+ 1 + R	05.50	(16
	~ RD 5i + g~ RS + RS +		(17)	
- fr	RD 51 fm RS + 1 (1	52+50)	(18)	
A 50 = 50	= - gm RD 5% 1+ gm RS.	+ 1 (Rs+	RD)	8
A10 = 50	= jm RD 1+fmRS+	1 (RS+RD)	(20)	
Fox N=0	D 20 = 00	***************************************		
10- 30 Si	= - fru RD 1 + fru RS			-

In-class Problem 2, Solution

The open circuit voltage gain and the amplifier gain are the same in this example as there is no load connect at the output terminal.

The overall voltage gain is

$$G_v \approx -\frac{g_m R_D}{1 + g_m R_S} \times \frac{R_1 \parallel R_1}{R_1 \parallel R_1 + R_{sig}}$$

In-class Problem 2, Solution

Output resistance

Determine
$$R'_{o}$$

$$R'_{o} = \frac{v_{\chi}}{i'_{\chi}} \tag{1}$$

$$v_{as} = -v_s \tag{2}$$

KCL at S

$$\frac{v_s}{R_s} + \frac{v_s - v_x}{r_o} - g_m(-v_s) = 0$$
 (3)

$$\frac{v_s}{R_s} = \frac{v_x}{r_o + (1 + g_m r_o)R_s}$$
 (4)

$$i_{x}' = \frac{v_{s}}{R_{s}} = \frac{v_{x}}{r_{o} + (1 + g_{m}r_{o})R_{s}}$$
 (5)

$$\frac{1}{R'_o} = \frac{v_x}{i'_x} = \frac{1}{r_o + (1 + g_m r_o)R_s}$$
(6)

$$R_o = R_D \| [r_o + (1 + g_m r_o) R_s] \approx R_D$$

Common Source (CS) Amplifier w/ Bypass Capacitor

Note: the internal resistance of a real current source would affect the Q point just as R_s in the circuit on the lhs.

the resistor on the source

In-class Problem 3

Sketch the AC and the small-signal equivalent circuit of the common source amplifier below. Determine the expressions for the input and output resistance, for the open circuit voltage gain, the amplifier gain and the overall voltage gain. Assume the frequency of the input signal is midrange, i.e., high enough for the coupling capacitor C_{C1} to act as a short circuit in ac but low enough for the gate capacitor to act as an open circuit in ac.

Consider λ =0

In-class Problem 3, Solution

In class Problem 3, Solution

$$R_o = R_D$$

Overview of Lecture 7

- ➤ Basic amplifier configurations
- Common source (CS) FET amplifiers (Neamen 4.3, S&S 5.6.3, 5.6.4)
- Common Gate (CG) FET amplifiers (Neamen 4.5, S&S 5.6.5)
- Common Drain (CD) FET amplifiers (Neamen 4.4, S&S 5.6.6)
- Comparison among the three configurations (Neamen 4.6, S&S 5.6.7)