III – Rappels et compléments d'algèbre linéaire, 2ème partie

- I. Expression et éléments caractéristiques d'un projecteur ou d'une symétrie
- 1) On calcule p^2 : on trouve $p^2 = p$, donc p est un projecteur.
- **2)** On trouve Im f = Vect((1,1,1),(-1,3,1)) et Ker f = Vect(1,1,-1).

II. Endomorphismes de rang 1

- 1) Puisque A est de rang 1, elle comporte au moins une colonne non nulle. Appelons-la C. Toutes les autres colonnes de A de lui sont alors proportionnelles, *i.e.* si les colonnes de A sont C_1, \ldots, C_n , alors pour tout $j \in [\![1, n]\!]$, il existe λ_j tel que $C_j = \lambda_j C$. Posons alors la matrice ligne $L = (\lambda_1 \ldots \lambda_n)$. Alors A = CL.
- 2) On remarque que $A^2 = CLCL$. Posons $\alpha = LC$, qui est une matrice 1×1 , que l'on assimile donc à un scalaire. D'où $A^2 = \alpha CL = \alpha A$. On peut alors conjecturer que pour tout $n \in \mathbb{N}^*$, $A^n = \alpha^{n-1}A$, ce qui se démontre facilement par récurrence.
- 3) En revenant aux notations de la première question, si l'on note $C=\begin{pmatrix}c_1\\\vdots\\c_n\end{pmatrix}$, alors le coefficient (i,i) de A est $\lambda_i c_i$, donc $\operatorname{tr} A=\sum_{i=1}^n \lambda_i c_i$. Or la formule du produit de deux matrices assure que $\alpha=LC=\sum_{i=1}^n \lambda_i c_i$, d'où le résultat.
- 4) $(1+\operatorname{tr} A)(A+\operatorname{I}_n)-(1+\operatorname{tr} A)\operatorname{I}_n=(1+\operatorname{tr} A)A=A+A^2=A(A+\operatorname{I}_n).$ Donc $(A+\operatorname{I}_n)^2=(A+\operatorname{I}_n)+A(A+\operatorname{I}_n)=(2+\operatorname{tr} A)(A+\operatorname{I}_n)-(1+\operatorname{tr} A)\operatorname{I}_n.$ Un polynôme annulateur de $A+\operatorname{I}_n$ est donc $X^2-(2+\operatorname{tr} A)X+(1+\operatorname{tr} A).$ Si $\operatorname{tr} A\neq 1,$ alors $\operatorname{I}_n=\frac{1}{1+\operatorname{tr} A}(A+\operatorname{I}_n)(A+\operatorname{I}_n(\operatorname{tr} A-1)).$ $A+\operatorname{I}_n$ est donc inversible et $(A+\operatorname{I}_n)^{-1}=A+\operatorname{I}_n(\operatorname{tr} A-1).$ Si $\operatorname{tr} A=-1,$ il existe une matrice $B=A+\operatorname{I}_n(\operatorname{tr} A-1)$ telle que AB=0. Mais $\operatorname{tr} B=-1-2n\neq 0$ donc A=00, donc A=01, donc A=02.

III. Matrice à diagonale dominante

A est inversible si et seulement si $\operatorname{Ker}(A) = \{0\}$. Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \operatorname{Ker} A$,

supposons que $X \neq 0$. Il existe donc $j \in [1, n]$ tel que $|x_j| \neq 0$. On peut donc prendre $i \in [1, n]$ tel que $|x_i|$ est maximal. Notamment, $|x_i| > 0$. Considérons la i^e ligne de AX:

$$\sum_{i=1}^{n} a_{i,j} x_j = 0,$$

donc

$$a_{i,i}x_i = -\sum_{j \neq i} a_{i,j}x_j.$$

Par l'inégalité triangulaire,

$$|a_{i,i}| \cdot |x_i| \leqslant \sum_{j \neq i} |a_{i,j}| \cdot |x_j|.$$

Par maximalité de $|x_i|$, on a alors

$$|a_{i,i}| \cdot |x_i| \leqslant |x_i| \sum_{j \neq i} |a_{i,j}|.$$

Comme $|x_i| > 0$, on a

$$|a_{i,i}| \leqslant \sum_{j \neq i} |a_{i,j}|,$$

ce qui est absurde.

Ainsi, A est inversible.

IV. Une caractérisation de la trace

Analyse: soit f une telle fonction. Soit $i, j, k \in [1, n]$.

Notons $\lambda = f(E_{1,1})$. Puisque $E_{i,1}E_{1,i} = E_{i,i}$ et $E_{1,i}E_{i,1} = E_{1,1}$, il vient $f(E_{i,i}) = \lambda = \lambda \operatorname{tr} E_{i,i}$. Si $i \neq j$, alors $E_{i,k}E_{k,j} = E_{i,j}$ et $E_{k,j}E_{i,k} = 0$, donc $f(E_{i,j}) = 0 = \lambda \operatorname{tr} E_{i,j}$.

Finalement, pour tout $i, j \in [1, n]$, $f(E_{i,j}) = \lambda \operatorname{tr} E_{i,j}$. Puisque les $E_{i,j}$ forment une base de $\mathcal{M}_n(\mathbb{K})$, il vient $f = \lambda \operatorname{tr}$.

Synthèse : on sait que pour tout $\lambda \in \mathbb{K}$, λ tr vérifie la propriété étudiée.

Conclusion : l'ensemble des formes linéaires f sur $\mathcal{M}_n(\mathbb{K})$ vérifiant $\forall A, B \in \mathcal{M}_n(\mathbb{K}), f(AB) = f(BA)$ est

 $\{\lambda \operatorname{tr}, \ \lambda \in \mathbb{K}\}.$