Future flooding and coastal erosion risks

Edited by

Colin R. Thorne, Edward P. Evans and Edmund C. Penning-Rowsell

Published by Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay, London E14 4JD. www.thomastelford.com

Distributors for Thomas Telford books are *USA:* ASCE Press, 1801 Alexander Bell Drive, Reston, VA 20191-4400 *Japan:* Maruzen Co. Ltd, Book Department, 3–10 Nihonbashi 2-chome, Chuo-ku, Tokyo 103 *Australia:* DA Books and Journals, 648 Whitehorse Road, Mitcham 3132, Victoria

First published 2007

Also available from Thomas Telford Books

Flood Risk Management. Edited by G. Fleming. ISBN 0 7277 3112 3 Coastal Defence – ICE Design and Practice Guide. Institution of Civil Engineers. ISBN 0 7277 3005 3

A catalogue record for this book is available from the British Library

ISBN: 978-0-7277-3449-5

© Queen's Printer and Controller of HMSO 2007 Copyright in the typographical arrangement and design vests in the Crown

Published under licence for the Department of Trade and Industry

Applications for reproduction should be made in writing to:

The Licensing Division, Her Majesty's Stationery Office, St Clements House, 2–16 Colegate, Norwich NR3 1BQ

The contents of this publication is for information purposes only. The Crown accepts no liability for loss or damage of any kind howsoever arising as a result of actions taken in reliance on information contained in this publication.

All rights, including translation, reserved. Except as permitted by the Copyright, Designs and Patents Act 1988, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the Publishing Director, Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay, London E14 4JD.

This book is published on the understanding that the authors are solely responsible for the statements made and opinions expressed in it and that its publication does not necessarily imply that such statements and/or opinions are or reflect the views or opinions of the publishers. While every effort has been made to ensure that the statements made and the opinions expressed in this publication provide a safe and accurate guide, no liability or responsibility can be accepted in this respect by the authors or publishers.

Typeset by Academic + Technical, Bristol Printed and bound in Great Britain by MPG Books, Bodmin, Cornwall

Contents

Dec	incation	X
Pre	face – Professor Sir David King	xi
List	t of contributors	xiii
Par	t 1 Introduction	
1	Overview Edward P. Evans, Jim W. Hall, Edmund C. Penning-Rowsell and Colin R. Thorne	3
	The task we have undertaken The evolving policy context The science and technology backdrop Flood impacts and policy change New directions in risk analysis Scenario analysis Post-project perspective References	3 4 5 6 8 9 10
2	Introduction to the Foresight 'Future Flooding' methodology Jim W. Hall, Jonathan D. Simm and Edward P. Evans	13
	Overview Conceptual framework Scenario analysis Quantified flood risk assessment Quantified analysis of responses Expert analysis of drivers Expert analysis of responses to flood risk Discussion References	13 15 18 22 24 24 25 26 27
3	Environmental impacts of future flood risk Andrew R. Watkinson, Robert J. Nicholls, David A. Sear and Laure Ledoux	29
	Introduction Environmental impacts of flood management Environmental impacts of changes in flooding	29 30 33

	Implications of current trends of change in flood management for the	
	environment	36
	Foresight futures and the environment	37
	Environmental economics	41
	Conclusions	44
	Acknowledgements	44
	References	44
Par	t 2 Drivers of flood risk	
4	Climate change Nick S. Reynard	49
	Introduction	49
	Precipitation	49
	Temperature	50
	Evapotranspiration	50
	Changes in precipitation, temperature and evapotranspiration	50
	Estimating the effects of climate change on flooding	56
	Uncertainty	59
	Conclusions	61
	References	62
5	Catchment land-use Joe Morris and Howard Wheater	64
	Introduction	64
	Rural land-use management	65
	Urbanisation	68
	Agricultural impacts	70
	Driver interactions	75
	Driver behaviour under possible future scenarios	77
	Conclusions	79
	References	80
6	River processes Stuart N. Lane and C.R. Thorne	82
	Introduction	82
	Morphology and sediment supply	83
	Conveyance	89
	Environment, ecosystems and habitats	93
	Case example: sediment delivery, morphological response and flood risk	96
	Conclusions	97
	References	98
7	Human behaviour David J. Ball and Colin H. Green	100
	Introduction	100
	The human behaviour drivers	102
	Stakeholder behaviour	104
	Public attitudes and expectations	106
	Forecasting the effect of the human behaviour drivers on flood risk	112
	Concluding remarks	114
	References	114

8	Socio-economic drivers, cities and science Colin H. Green and Edmund C. Penning-Rowsell	116
	Introduction	116
	Social impacts	116
	Economic and sectoral impacts	119
	Urban impacts	123
	Infrastructure impacts	126
	Science and technology	128
	Conclusions	130
	References	130
9	Coastal processes Claire Hinton, Ian H. Townend and Robert J. Nicholls	132
	Introduction	132
	Coastal process driver set	132
	Future risk of coastal flooding	146
	References	147
10	Urban change	149
	Adrian J. Saul and Richard M. Ashley	
	Background	149
	The extent of the urban flooding	150
	Flood mechanisms in the intra-urban zone	151
	Primary flood mechanisms	151
	Secondary factors that increase or reduce flooding risk	154
	Summary of factors that influence urban flood risk	156
	Identification of relevant drivers	156
	Driver ranking and uncertainty	156
	Quantified flood risk – intra-urban	161
	Future research needs	168
	Summary	168
	References	169
11	Other flood risks and their drivers Stuart N. Lane	173
	Groundwater flooding in permeable catchments	173
	Muddy floods	180
	Floods related to infrastructure and ordinary water courses outside	
	indicative floodplains	182
	References	183
12	Driver impact scoring, ranking and uncertainty Jonathan D. Simm, Colin R. Thorne and Jim W. Hall	185
		105
	Introduction	185
	Driver impacts on local flood risk	186
	National driver impact scores	192
	Ranking driver impacts on future flood risk	193
	Uncertainty assessment	197
	Reconciliation of driver scores with the results of quantitative	202
	assessment of flood risk drivers	202
	Concluding remarks	204
	References	205

Par	t 3 Assessment of drivers and risks	
13	Quantitative assessment of driver impacts on future flood risk in England and Wales Jim W. Hall, Paul B. Sayers, Mike Panzeri and Robert Deakin	209
	Introduction	209
	Overview of the methodology	210
	Methods for scenario-based future flood risk assessment	212
	Results for the present situation	214
	Results for future scenarios	216
	The influence of global emissions on future flood risk	223
	Conclusions References	225 225
14	Driver impacts in Scotland	227
14	Alan Werritty	221
	Introduction	227
	Climate change	228
	Catchment land-use	230
	River processes	232
	Coastal processes	233
	Human behaviour	236
	Socio-economics Populing of drivers	238 239
	Ranking of drivers References	242
15	Driver impacts in Northern Ireland John Chatterton and Stuart Suter	244
	Background to flood risk in Northern Ireland	244
	Climate change	252
	River processes	255
	Coastal processes and climate change	258
	Socio-economic drivers	260
	Closure	262
	References	263
Par	t 4 Coastal erosion drivers and risks	
16	Drivers of coastal erosion	267
	Kevin Burgess, Helen Jay and Robert J. Nicholls	
	Introduction	267
	Drivers – natural morphology and processes	268
	Drivers – human intervention	270
	Drivers – climate change	273
	Case studies Peferences	274
	References	279
17	Assessment of future coastal erosion risk Kevin Burgess, Helen Jay, Robert J. Nicholls, Colin Green and Edmund C. Penning-Rowsell	280

280

280

Introduction

Rates of change

	Coastal defence The economic impacts of coastal erosion References	287 289 292
Par	t 5 Responses to future flood and coastal erosion risks	
18	Managing the rural landscape	297
	Stuart N. Lane, Joe Morris, P. Edna O'Connell and Paul F. Quinn	
	Introduction	297
	Management of infiltration	298
	Catchment-wide storage	305
	Management of hillslope and river conveyance	311
	Conclusions	315
	References	317
19	Responses to future intra-urban flood risks Richard M. Ashley and Adrian J. Saul	320
	Introduction	320
	The potential responses	320
	Response groups and effectiveness	321
	Quantification of responses	329
	Sustainability assessment	334
	References	338
20	Flood event management Sue Tapsell and David Ball	340
	Introduction	340
	Data collection	341
	Response measures for managing flood events	342
	Real-time flood forecasting and warning dissemination	343
	Flood fighting: actions to manage flood waters and defences during the event	345
	Collective-scale damage-avoidance actions: evacuation of floodplains	34.
	and coastal areas at risk	347
	Individual-scale damage-avoidance actions: temporary flood proofing	
	and moving of assets at risk to safety	348
	Potential application of measures to future scenarios	349
	Sustainability issues	353
	Future uncertainty	357
	Conclusions References	357 358
	References	330
21	Reducing flood losses Nigel W. Arnell and John Chatterton	360
	Introduction: A classification of approaches	360
	Facilitating recovery from loss: insurance and public relief	360
	Spatial planning for reducing flood losses	363
	Flood-proofing and building standards	367
	Implications for future national flood losses	369
	Sustainability appraisal of measures to reduce flood losses	372
	Conclusions References	373 373

22	River engineering responses	375
	Peter H. von Lany and John Palmer	
	Introduction	375
	Response group descriptions	376
	Governance, costs and standards of service	381
	Flood risk multipliers under the Foresight scenarios	385
	Sustainability	386
	Summary	389
	References	390
23	The management of coastal flooding and erosion	392
	Robert J. Nicholls, Nicholas J. Cooper and Ian H. Townend	
	Introduction	392
	Coastal defences	392
	Coastal energy reduction measures	396
	Re-alignment of defence infrastructure	399
	Morphological protection	402
	Use of the coastal response groups	404
	Conclusions and emerging issues	410
	Acknowledgements	411
	References	411
24	Response scoring, ranking, uncertainty and sustainability Jonathan D. Simm and Colin R. Thorne	414
	Introduction	414
	Expert scoring of potential flood risk reductions	416
	Process support using electronic spreadsheets	417
	Response group scoring	418
	Combining interdependent response groups	419
	Ranking responses to future flood risk	421
	Commentary	421
	Uncertainty assessment	423
	Sustainability analysis	426
	Reference	429
Par	t 6 Assessment of flood risk responses	
25	Quantitative assessment of future flood risk management portfolios in	
	England and Wales	433
	Paul B. Sayers, Jim W. Hall, Mike Panzeri and Robert Deakin	
	Introduction	433
	Overview of the methodology	433
	Future fluvial and coastal flood risk	444
	Results of the investment analysis	451
	Conclusions	457
	References	457
Par	t 7 Sustainability and governance	
26	Sustainability of flood risk management responses	461
	Andrew R. Watkinson, Sarah E. Cornell and Robert Tinch	.01
	A long-term view of sustainability	461

	Sustainability implications of responses to flood risk	462
	Cost-effectiveness	465
	Environmental quality	468
	Social justice	471
	Decisions today for future sustainability	472
	References	473
27	The Governance of responses	475
	Andrew R. Watkinson, Sarah E. Cornell and Andrew Jordan	
	Introduction	475
	Governance in the future	477
	Governance options for a portfolio approach	484
	Obstacles and opportunities	484
	References	487
Par	rt 8 Synthesis	
28	Strategic choices	491
	Andrew R. Watkinson, Edward P. Evans, Jim W. Hall,	
	Edmund C. Penning-Rowsell and Colin R. Thorne	
	Introduction	491
	Options for managing flood risk	491
	A route map for flood management	495
	Building a portfolio of responses	500
	Conclusion	503
	References	504
Ind	ex	505

Contents

Dedicated to

Elieen, Pia and Jacky

Preface

I am delighted to provide a preface to this publication on the research that lay behind the important and highly influential Foresight Future Flooding Report, published in two volumes in 2004.

Flooding is an issue that affects us all. Over £200 billion worth of assets are at risk around British rivers and coasts and those risks are likely to increase over the next 100 years due to changes in climate and society. In 2002 I therefore commissioned the Foresight Project on Flood and Coastal Defence to address a number of issues surrounding how the flood risk might change and how government and the private sector might best respond to the future challenges. The report that emerged had several key messages for government – flood risk would continue to rise to unacceptable levels; those risks had to be tackled on a broad front and hard choices would have to be made regarding where to direct investment. This work established a new paradigm for futures work and, with the issues of flooding and flood prevention continuing to be in the headlines worldwide, it rightly continues to command widespread interest.

This book is edited by three of the team who undertook the original Foresight study and elaborates on the work undertaken by approximately 60 leading experts in the field, over 20 months between 2002 to 2004. A great deal of work was necessary to produce the evidence base that underpins the Future Flooding Report. However, the published documents contain only brief summaries of the deep descriptions, quantitative analyses and risk models developed and applied in the study. It is therefore most welcome that Thomas Telford have published this monograph as a detailed record of the science and engineering research performed during the Foresight Project on Flood and Coastal Defence.

The UK government fully appreciates the threats posed by flooding and is already supporting cutting-edge techniques and policies for managing flood risk. It is investing heavily in research to develop new and innovative approaches to flood risk management, based on applying holistic principles and achieving sustainable outcomes. However, the government is not complacent and recognises that more needs to be done. At the conclusion of the Foresight Project in 2004, the Minister with responsibility for flood management acknowledged the important role that the results of that research would play in preparing a government-wide strategy for managing the risks of flooding and coastal erosion. In order to capitalise on the knowledge gained during the study, he therefore established a Flood Action Plan, which is on-going. It involves all the relevant branches of government – a fine example of how scientific evidence can be used to inform better policy decisions.

Of course, the benefits of taking a long-term and far-sighted approach to flood risk management in a changing world are not unique to the UK. There has been a great deal of international interest in the Foresight model – the Foresight team have had

some very useful discussions with interested parties from the Netherlands, Japan, the USA and India, and there have also been Foresight Future Flooding missions to China and Russia.

Clearly, the work begun with the Foresight Flooding Project has not ended but will continue in the coming years and decades, both in the UK and overseas. The issues covered by the Foresight study are likely to assume increasing importance as we enter an era of climate change, economic growth and societal evolution. This volume will therefore be a valuable resource to scientists, engineers and a wide range of stakeholders who share a common concern for flood risk management and an interest in evidence-based policy making.

Sir David King Government Chief Scientific Adviser June 2006

List of contributors

Nigel W. Arnell Tyndall Centre for Climate Change Research, School of

Geography, University of Southampton, Southampton,

Hampshire SO17 1BJ

Richard M. Ashley Pennine Water Group, Department of Civil and Structural

Engineering, University of Sheffield, Sheffield S1 3JD

David Ball Centre for Decision Analysis and Risk Management,

Middlesex University, Enfield, London EN3 4SA

Kevin Burgess Halcrow, Burderop Park, Swindon, Wiltshire SN4 0QD

John Chatterton Associates, 32 Windermere Road, Moseley,

Birmingham B13 9JP

Nick J. Cooper ABP Marine Environmental Research Ltd, Suite B,

Waterside House, Southampton, Hampshire SO14 2AQ

Now, Royal Haskoning, Marlborough Crescent,

Newcastle upon Tyne NE1 4EE

Sarah E. Cornell Tyndall Centre for Climate Change Research, Department of

Earth Sciences, University of Bristol, Bristol BS8 1RJ

Rob Deakin Halcrow, Burderop Park, Swindon, Wiltshire SN4 0QD

Edward P. Evans 'Bevis', Great Somerford, Chippenham, Wiltshire

SN15 5JA

Colin H. Green Flood Hazard Research Centre, Middlesex University,

Enfield, London EN3 4SA

Jim W. Hall School of Civil Engineering and Geosciences, University of

Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU

Claire Hinton ABP Marine Environmental Research Ltd, Suite B,

Waterside House, Southampton, Hampshire SO14 2AQ

Helen Jay Halcrow, Burderop Park, Swindon, Wiltshire SN4 0QD

Andrew Jordan School of Environmental Sciences, University of East Anglia,

Norwich, Norfolk NR4 7TJ

Stuart N. Lane Department of Geography, University of Durham, Durham

DH1 3LE

Peter H. von Lany Halcrow, Burderop Park, Swindon, Wiltshire SN4 0QD

Laure Ledoux Environmental Futures, 54 Rue Jean Baptiste Esch L1473,

Luxembourg

Joe Morris Institute of Water and Environment, Cranfield University, Silsoe, Bedfordshire MK45 4DT Robert J. Nicholls Tyndall Centre for Climate Change Research, School of Civil Engineering and the Environment, University of Southampton, Southampton, Hampshire SO17 1BJ P. Enda O'Connell School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU John Palmer Halcrow, Burderop Park, Swindon, Wiltshire SN4 OQD Mike Panzeri HR Wallingford, Howbery Park, Wallingford, Oxfordshire OX10 8BA Edmund C. Flood Hazard Research Centre, Middlesex University, Penning-Rowsell Enfield, London EN3 4SA Paul F. Quinn School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU Nick S. Reynard Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB Adrian J. Saul Pennine Water Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD Paul B. Savers HR Wallingford, Howbery Park, Wallingford, Oxfordshire OX10 8BA David A. Sear School of Geography, University of Southampton, Southampton, Hampshire SO17 1BJ Jonathan D. Simm HR Wallingford, Howbery Park, Wallingford, Oxfordshire OX10 8BA Stuart Suter Halcrow, Burderop Park, Swindon, Wiltshire SN4 0QD Sue Tapsell Flood Hazard Research Centre, Middlesex University, Enfield, London EN3 4SA Colin R. Thorne School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD Robert Tinch Tyndall Centre for Climate Change Research, Schools of Biological and Environmental Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ Ian H. Townend ABP Marine Environmental Research Ltd, Suite B, Waterside House, Southampton, Hampshire SO14 2AQ Now, Hydraulics Research Wallingford Ltd, Howbery Park, Wallingford, Oxfordshire OX10 8BA Andrew R. Tyndall Centre for Climate Change Research, Schools of Watkinson Biological and Environmental Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ

Department of Geography, University of Dundee, Dundee

Imperial College London, South Kensington, London

Alan Werritty

Howard Wheater

DD1 4HN

SW7 2AZ

7 Human behaviour

David J. Ball and Colin H. Green

Introduction

From a social science perspective our primary interest is in the nature of, and relationships between, individuals and groups, where those relationships notably include power and the roles of each group. It is through these relationships in particular by which we attempt to understand the world.

Thus, from a social science perspective, the Foresight 'Future Flooding' exercise is itself worthy of study as a social experience, and as an expression of the clash of what Braudel (1995) would describe as 'civilisations'; the Foresight process sought to reconcile the two quite different understandings of the world represented by the physical sciences and the social sciences. As a social process, it expressed quite different understandings of such concepts as risk, uncertainty, vulnerability and the future

Of these two conflicting worldviews, that of the physical sciences dominated and while the determinism was reassuring we nonetheless experienced a degree of discomfort in seeking to fit our understandings into a strong physical science framework. But the challenge laid down by the physical scientists, namely, how can we predict the future and how, consequently, can we choose the future, is one which social scientists should welcome, not least because it is revealing of one's own preconceptions and assumptions.

The approach taken by the Foresight programme on flood risk management and coastal defence was anchored in an essentially deterministic worldview. This is readily apparent from the way in which the process of risk change is seen to result directly from an array of factors, physical, climatological, and even social, termed 'drivers,' whose effects on the socio-environmental system can be modelled to predict consequences.

The power of this type of approach is that change can be simulated, by computer if necessary, predictions made on the state of the future, and if the predictions are not liked, then the effect of hypothetical interventions of various kinds can be simulated by adjusting the model accordingly. Such systems, if they work, are invaluable to decision makers. Of course, it is now recognised that even those processes which are outwardly deterministic are not entirely certain or predictable, as chaos theory and even experience demonstrate. For example, the Pioneer 10 spacecraft which was launched in the 1970s and is now far beyond the orbit of Pluto, has steadily deviated by some 400 000 km from its predicted course. No one has so far been able to explain

this curious behaviour (Anon., 2005). Hence, even in the presence of a seemingly deterministic system, uncertainties are present and estimating these constitutes an important element of any study including the Foresight one.

However, while the above classical worldview, which some call the Rational Action Worldview (or Paradigm, hence *RAP*) (Jaeger *et al.*, 2001), is more or less a taken-for-granted of Western thought and provides the foundation for a wide variety of institutions – markets, governments, international security, industrial management, healthcare – it is not the only conceivable theoretical approach. Indeed, behavioural and social science usually has more modest, or at least different, ambitions, recognising that human behaviour is a rather complex business and subject to influence by a vast array of factors, only some of which are amenable to deterministic-style forecasting (Eiser, 2004).

Thus, the world is taken to exist 'out there' whereas the social science approach both tends to see the world as being constructed and as being constructed through human interaction. From this viewpoint, floods are not simply extreme physical events inflicting themselves upon innocent and unsuspecting people, but highly interactive processes that involve inputs from both nature and society. As such, the very definition of a 'flood' becomes problematic. Within this framing, such complex systems are arguably more readily analysed by recourse to alternative sociological models, some of which are located in Fig. 7.1, but these could not be expected to produce the kinds of outputs demanded by the Foresight methodology. This figure can be contrasted to the models presented elsewhere in this volume.

For this reason, while bearing in mind the inevitable shortcomings of any model, an attempt was made to fashion an approach which would lend itself to Foresight as originally envisaged by its designers. In particular, in each of the four scenarios adopted in the Foresight study, the social scientist is inclined to the view that each then determines how floods will be understood, how decisions will be made, and how the flood risk will be managed. Thus, concepts such as 'vulnerability' and

Fig. 7.1. Renn (1994) has classified the major sociological perspectives on risk according to their anchorage in a) an individualistic versus structural dimension and b) an objectivist versus constructivist dimension. The Rational Actor Paradigm of the Foresight programme inhabits the bottom left (individualistic-objective) quadrant of this classification

'risk' will be defined uniquely by each society in different ways. Rather than it being possible to define such terms as vulnerability, risk and uncertainty in ontological terms, they must then be understood epistemologically.

So, for example, a probability is a claim as to what we can know and how or why we can know it, and a claim which can properly be expressed in terms consistent with Kolmogorov's mathematics of probability. In that there are competing theories of probability, there are different claims as to what we can know and the basis upon which we can know it. In short, if we could determine which form of society would exist, then there would be no choices left to make except in that each society would be faced with resolving its own internal contradictions. Similarly, the distinction between society and technology should be regarded a false dichotomy.

The human behaviour drivers

With the above important caveat in mind, human behaviour was deemed for the purposes of this study to comprise two drivers, denoted as 'stakeholder behaviour' and 'public preferences' (attitudes and expectations). These were defined as follows.

Stakeholder behaviour

Stakeholders include any group, cohesive or dispersed, with a direct or indirect interest or influence on flood risk and its management. The public is clearly an important stakeholder but is not seen as having a single opinion. Stakeholder behaviour, expert or lay, is seen as motivated by numerous factors besides risk. These include beliefs, values, ways of working, and perceived fairness of decision processes.

Public attitudes and expectations

In line with cultural theory (Douglas, 1985; Schwarz and Thompson, 1990) the public is not regarded as a single entity with one position on matters related to flood risk. Attitudes and expectations are seen to be determined by multiple factors including actual and perceived risk, equity concerns, issues of process (i.e. the means and manner by which risk management decisions are made) and world view.

It is self-evident that these drivers are closely inter-related. The 'public' has been singled out as one stakeholder group in terms of its preferences, and is clearly one contributor to 'stakeholder behaviour' overall, which will be driven partly by public preferences. Social impacts (see Chapter 8) will clearly influence preferences, especially those of the public, and hence behaviour. Other stakeholder groups – farming, insurance, etc. – will have their own strong preferences too. Because the ways in which the livelihoods of these latter communities are linked with flood risk management are better defined, it may be expected, though is not guaranteed, that their preferences will be less diverse within their own group than those of the public at large.

This framing positions people and groups as though they were physical phenomena to be taken into account in decision making. But people differ from physical phenomena in two key aspects. First, people are the decision makers; it is out of the cognitions and relationships between individuals and groups that decisions will emerge. Second, if research is about learning, when the researcher seeks to learn about the physical world the physical world does not learn anything about the researcher. But when the researcher seeks to learn about the social world, the people studied are changed to a greater or lesser extent by the experience.

Hence, the main impact of these drivers upon flood risk is likely to be by way of their influence upon other actors, such as regulators. Thus there will be strong feedback loops, e.g. between stakeholder behaviour and regulation and other drivers. Regulators will be tuned in to stakeholder behaviour and public expectations in

deciding on risk management interventions. But stakeholder behaviour and public expectations will in turn be influenced by the ways in which regulators make choices, as well as actual choices made. In turn, the roles of individuals and groups, and the inter-relations between them, are both defined by and define the society and can be taken to reflect the worldview of that society.

The concept of 'regulators' is itself predicated upon the existence of a particular form of society, being most closely associated with the form of society defined as 'national enterprise'. In the world markets model, with its emphasis upon both the market and individualism, and a desire to minimise the scope of government, the emphasis would be on the use of prices and formal regulation would be minimised. Under the purist form of cultural theory (Adams, 1995), once the nature of the society is determined, there are no choices left to make.

Overall feedback is thus strong, complicated, and perhaps even unfathomable. Furthermore, the stakeholder groups that have the most influence upon regulatory decisions, and who are therefore most likely to feel enfranchised and therefore satisfied, will vary from one Foresight scenario to another, though not in a simple or predictable way. This is because it is as much the 'fine structure' of the scenarios which will be important as their broad brush nature. Self-interest, beliefs, (dis-) satisfaction and ways of working will provide the energy to drive the stakeholder behaviour-regulation cycle, and this energy will in turn be topped up by, among other things, that stakeholder group denoted as 'the public' in the driver listing. 'Public preferences' will in turn be fuelled as much if not more by perception of the regulatory process than the actual risk, and this in its turn will be fed by other drivers such as 'institutions', 'science, engineering and technology' and 'risk compensation and insurance' through their attitudes to the public and the public's then view of their rights to involvement and say in regulatory choice.

In view of the large number of stakeholders, there are inevitably other kinds of stakeholder behaviour which will impinge on other drivers. Agricultural practices, for example, could clearly have a big impact on runoff. Similarly, the insurance industry can be regarded as a separate player or the actions of the insurance industry can be understood in relation to the actions of other players (Green and Penning-Rowsell, 2004). Notably, flooding is seen as uninsurable risk except through some form of public–private partnership (Gaschen *et al.*, 1998).

Likewise, the behaviour of the insurance sector – an essentially free market – will have an effect on what is demanded of flood risk managers. Already there is speculation that the insurance sector, faced with rising flood-related claims, might opt for novel risk-transfer or hedging instruments such as catastrophe bonds which transfer the risks to global capital markets (Linnerooth-Bayer and Amendola, 2003).

Mitchell (2003) gives the following salutary example of the complexity of stakeholder behavioural impacts, this in the context of the selection of port locations for industries:

... the burgeoning emphasis on port locations for industries is facilitated by changes in a complex web of factors that includes, among other things, marine transportation, navigation, and dredging technologies; shipboard labor practices; vessel registration and regulation rules; the acquisition of new electronic skills by mariners; the profitability of the shipping industry; and the state of competition between different transportation modes. In turn these components are embedded in a dominant consumeroriented economy that is made possible by fluid supplies of investment capital and preferences for entrepreneurial risk-taking, coupled with precisely segmented and targeted marketing strategies that rely on vast quantities of timely and comprehensive information about consumer tastes and surplus income.

Index

Page numbers in italics refer to diagrams and illustrations. The abbreviation WM/NE/LS/GS refers to the world markets, national enterprise, local stewardship and global sustainability scenarios of the Foresight Future Flooding Project.

above-ground storage	shingle nourisment 397, 398
intra-urban flood management 326, 327	stabilisation
WM/NE/LS/GS 337	breakwaters 271, 272
sustainability 327	groynes 271, 271
types 326, 327	below-ground storage
afforestation	intra-urban flood management 326–327
catchment run-off 67	WM/NE/LS/GS 337
flood damage 71	types 326–327
flood risk adjustments 302	breakwaters, as coastal defences 396, 396,
agri-environmental schemes 299,	397
303–304	Brunn Rule, coastal erosion 284
agriculture	buffer strips 301–302
see also afforestation; rural land	buildings
management; rural land-use	design, flood risk management 321-322
buffer strips 301–302	flood proofing 367–368
coastal grazing marshes 32, 36, 40, 41	roof drainage 322
crop sensitivity 71–72	stormwater storage 322
drivers 70–71, 197	sustainability, WM/NE/LS/GS 335
farm management practices 299-300	temporary flood measures 349
field drainage 67, 301	
flooding economics 73–75	catchments 64
impact	drivers
Northern Ireland 250–251	rankings 194–197
Scotland 232	Scottish 239–240
land drainage 251, 300-301	and future flood risks 77–79
livestock management 300	storage 308–309
ploughing times 299	and conveyance management
soil flooding impact 73–75	313-314
tillage regimes 300	governance 307
water table depths 72-73	impoundments 306-307
WM/NE/LS/GS damage projections 222,	ponds, bunds and ditches 306
223, 455	sustainability 307-308
annual average damage 188, 210	uncertainty 309-311
aquifers 177, 178	wetlands and washlands 306
	WM/NE/LS/GS uncertainties 199-201
bank erosion, rivers and streams 301	charitable relief, flood losses 362
beaches	cliff erosion 272
future unstability 287	hard-rock 277, 277
regeneration 397, 398	as sediment provider 272

climate change	coastal erosion
and coastal defences 287-288	Brunn Rule 284
and coastal erosion 273-274, 284-287,	cliffs 272
286	and climate change 273-274, 284-287,
controlling, implications 494-495	286
and emissions 223, 224, 457	and coastal morphology 268-270
evapotranspiration rates 55-56, 56	current shoreline changes 280–282, 281
and flooding frequency 56-57, 58, 59, 218,	economic impacts 289-292, 290
219	hard-rock cliffs 277, 277
as flooding source 496-497	hotspots 291–292
precipitation 19, 51, 53–55, 164	impact of 32
scenarios 18–20, 18, 19	and land values 290
Scottish drivers 239–240	Northern Ireland 259–260
and sea levels 5, 19	and sea levels 285–287
temperatures 19	shoreline changes, shoreline 282–284
and urban flooding 155	storm surges 268
vegetative growth 258	wave action 268
coastal defences 392	WM/NE/LS/GS
	drivers 270
see also storm surges	
beaches	rates 285–287, 286, 290–291, 290
regeneration 397, 398	coastal flooding
stabilisation 271, 271, 272	concentrations of 215–216
breakwaters, offshore 396, 396, 397	driver rankings 193–196
by energy reduction 396–397	evacuation 347–348
sustainability 408–409	and morphology 146
by morphological protection 402–404	Northern Ireland 247–248, 260–261
and climate change 287–288	perceived risks from 384
costs 394	risk reduction, social justice 471–472
current expenditure 284	sustainability responses 462-463, 465-466
dune stabilisation 271–272	urban inundation 153
environmental implications 399, 468–469	WM/NE/LS/GS
failure, overtopping 393–394, 393, 394	projections 218, 223
future investments 288–289, 289	uncertainties 199–201
geomorphological engineering 402-403	coastal grazing marshes 32, 36
glacial sediment beaches 275, 275	loss of 40, 41, 469
interactions 395	coastal morphology 143-144
and land values 468	and coastal erosion 268-270
lifespan 289	future uncertainty 145, 146
maintenance 394–395	and sea levels 144-145
man-made 269	sediment supply 144–145
morphological protection 402-404, 469	WM/NE/LS/GS sensitivity 269–270
sustainability 408–409	coastal processes, Scottish drivers 240-241
Northern Ireland 247–248	coastal squeeze, estuaries 33, 273
re-alignments	coincident flooding, cost per property,
managed 399-402, 410, 469	future 331
sustainability 408–409	communal solidarity
transport implications 400–401	flood event management 353
reclaimed land 278, 278	and natural disasters 117
reduction implications 399–400	Community Flood Log Books 343
renewable energy production 396,	community funding, flood-proofing 349
398–399, 410–411	computational hydraulic modelling,
response groups	development 5
effectiveness 407–410	conveyance see river conveyance
	conveyance see river conveyance
WM/NE/LS/GS 404–407	domestic losses
responsibilities for 394	assets 349
saltmarsh regeneration 398 Scotland 394	
	minimising 349
shingle beaches 276, 276	property, expected annual damage
sustainability 408–409	329-330

WM/NE/LS/GS 119-120, 121	fauna, river entrainment 233
sewerage causes 165–166	field drainage 67, 301
storms 165–166	flood damage
drainage	current estimates 215-216
see also field drainage; sewers	definitions 187–188
form, maintenance and operations,	economics 187, 212
WM/NE/LS/GS 338	estimates 6, 188
infiltration, groundwater table levels	social vulnerability 212
325-326	WM/NE/LS/GS
drivers 16	agricultural production 222, 223,
analysis of 24–25	455
catchment rankings 194-197	estimated annual 452-453, 455
classifications 17, 25	projections 218, 221
coastal flooding rankings 193-196	flood defences
impacts on local flood risks 186-191	see also coastal defences; river defences
public attitudes as 190	costs 383
ranking compilation 189	failure probability 211
reconciled future impact 202-204	and flood risk assessments 211
science and technology 190-191	Foresight Futures Project, cost estimates
uncertainty sources 197-199	441
WM/NE/LS/GS	future investment costs 456–457
multipliers 191–193	intertidal area reduction 31–32
rankings 193–197	and land values 468
dune stabilisation 271–272	reclaimed land 278, 278
	reliance on 4–5
economic impacts, coastal erosion 289–292,	and shoreline movement 282–284
290	Standard of Protection 211
economic output, definitions 128–129	technical basis for 5
ecosystems	traditional 315–316
see also environments	flood event management
as defined user groups 93–94	data sources 341
flood management impact 31	evacuation 347–348, 351
protected habitats 94–95	flood fighting
within fluvial systems 34–35	temporary measures 348–349
emissions, and climate change 223, 224, 457	water-level control structures
environments	345–347
see also ecosystems; environments by	forecasting 343–344, 351
name	funding 345
agri-environment schemes 299	governance 345
coastal defences 399, 468–469	information dissemination 343–345
economics 41–44	responses 344–345
flood risk impacts 30–33, 94 intra-urban flood management 470–471	global sustainability scenario 352 governance 345, 485
regulatory changes 94, 95–96	local stewardship 353
uncertainties within 95–96	national enterprise scenario 351–352
WM/NE/LS/GS scenarios 38–40, 41, 95–96	pre-event 342
estuaries	planning 342–343
coastal grazing marshes 32, 36, 40, 41	public awareness raising 342–343
coastal squeeze 33, 273	risk logbooks 343
land reclamation 31–32	risk maps 343
morphological modifications to 272–273,	sustainability 354, 354
273	sustainability issues
evacuation 347–348, 351	flood defence schemes 354, 355
decision making 348	floodplain evacuation 356, 357
evapotranspiration rates 50, 55–56, 56	forecasting 354, 355
extreme event management 324–325	pre-event 354, <i>354</i>
	temporary flood proofing 356, 357
farming see agriculture	uncertainties 357
fatalities, and flood risks 118	world markets scenario 350–351

flood insurance 360-361, 481-482, 481	governance 501–503
future 369–370, 482–483	portfolio 500–501
international aspects 361	time factors 498–499
provision 361–362	rivers 381–382
public charitable relief 362	costs 382–383
sector, as stakeholders 103	governance 382
self- 362–363	proportionate responses 383–384
state aid/compensation 362	Scotland 227-228, 233, 236-237
flood losses	sustainability 37, 237
see also flood insurance; flood reduction	WM/NE/LS/GS 109
domestic 349	flood risks
expected annual damage 329-330	see also coastal flooding
minimising 349	afforestation 302
WM/NE/LS/GS 119-120, 121, 165-166	as annual average damage 188, 210
governance 486	changes to 17
flood mapping 5	definitions 16, 210
flood plans, family and community 343	fatalities, potential 118
flood proofing, retro-fitting 367–368	future projections 112–113, 123
flood reduction	intangible 118–119, <i>118</i>
future measures, effectiveness 370-372	low income groups 117
policies 363-364, 370	mapping 343
social justice 471–472	morphology 82
spatial planning 363–364	multipliers 188-189
sustainability 372–373, 372	Northern Ireland 246-247, 248, 260, 261
through planning controls 364–366	262-263
WM/NE/LS/GS 369, 371	public attitudes 102–103
flood return periods, Northern Ireland	quantified analysis 24
256–258, 257	responses to 25–26
flood risk assessments 22–23, 23	rivers
data availability 211, 212-213	future increases 384–385
defences failures 211	WM/NE/LS/GS multipliers 385-386
and flood defences 211	social impacts 116–117
and flood risk management 213-214	and temperatures 50
floodplain areas 214–215, 215	WM/NE/LS/GS 78-79, 191-193, 216
methodology 210, 211, 225	flood storage, rivers 378-379
flood risk management	flood victims
costs, future 491–494	fatalities 118
ecosystems, impact 31	social support 119
environmental impacts 30–33, 38–41	flood waves, urban 152
evolution of 4, 6–7	flood-water transfer, rivers 379–380
expected annual damage, WM/NE/LS/GS	flooding frequencies
452–453, 455	changes 53–54, 54
and flood risk assessments 213-214	and climate change 56-57, 58, 59, 218,
Foresight Futures Project, responses	219
437–440	flooding systems
and insurance 483	changes in 15–17
Northern Ireland 244, 248-250	definitions 15, 16
policies 36–37, 93	instantaneous states 16
reduction responses	risk estimates 17, 17
defence engineering 418–419	floodplains
interdependance 419–420	see also washlands
methodology 416–417	agricultural management on 67–68
multipliers 417–419	classifications 215, 215
sustainability analysis 426–429, 429	evacuation 347–348
urban fabric 418–419	flood risks
WM/NE/LS/GS rankings 421–423	assessments 22–23, 214–215, <i>215</i>
WM/NE/LS/GS uncertainties 423–426	social vulnerability 445 inundation
response mechanisms 496 adaptability 499–500	
adaptaointy 499-300	expected annual damage 444-445

expected annual probability 444,	definitions 475–477
446-447, 450	flood events 345, 485
land-use in 215	flood losses 486
Northern Ireland 246, 246	flood risk management
populations	costs of 480–482, 481
changes in 218, 444, 445 flooding risk exposure 444, 448–449,	response mechanisms 501–503 rivers 382, 486
451	framework of 479–480, 480
WM/NE/LS/GS 442–443, 445	history 478–479
reversion to 469–470	infiltration 302–303
storm surge vulnerability 139	response portfolios 484
urbanisation 7, 69, 497–498	rivers, conveyance 312
WM/NE/LS/GS population vulnerability	rural land management 316–317, 316,
216, 217, 218	484
fluvial systems	urbanisation 484–485
see also estuaries; rivers	WM/NE/LS/GS 414–416, 477–478
driver impacts 197	policy response themes 415–416,
ecosystems within 34–35	484–485
modulation of flow 31	greenhouse gas emissions, future 18, 18
morphological changes within 33–34	greenspaces, in flood management 323,
forecasting	470
flood events 343–344, 351	groundwater
funding 345	aquifers 177, <i>178</i>
governance 345	definitions 174
information dissemination 343–345	flooding 50, 176
responses 344–345	future uncertainties 179
Foresight Futures Project	intra-urban flood management 325–326
costs of implementing 436	WM/NE/LS/GS 337
flood risk management, responses	recharge 174, 176–177, 177
437–440	rising levels 177, 179, 179
methodology 13, 14	trends in water level 174, 175, 176
scenario-based approach 9–10, 21	
socio-economic scenarios 20–22, 20	hard surface controls, urban flood
sociological aspects 100–102, 101	management 323
structural responses, cost estimates 441	hard-rock cliffs, erosion 277, 277
target defence condition grades 435	hillslopes
target standards of protection 433–434,	connectivity management 312–313
436, 492–494	conveyance, slowing 311–312
uncertainties within 26–27	household expenditure, WM/NE/LS/GS 122
future investments, coastal defences	housing development see urbanisation
288–289, 289	human behaviour, Scottish drivers 240–241
	Humber Estuary Shoreline Management
Geographical Information System (GIS) 5	Plan 401
geomorphological engineering, coastal	
defences 402–403	impoundments, flood management 306-307
glacial sediments, coastal erosion 275, 275	industrial losses
global sustainability scenario	potential risk uncertainty 128
see also Foresight Futures Project	WM/NE/LS/GS 119–121, 127
coastal defence responses 405, 406	infiltration
cooperation 352	drainage, groundwater table levels
environmental impact 38–40, <i>41</i> , 95–96	325–326
flood event management 352	governance 302–303
flood risks	management 303, 304
management 384	and runoff 298–299
reduction 422–423	sustainability 303
future flood risks 78–79, 191–193, 216	insurance see flood insurance
summaries 21–22	intertidal areas
governance	reduction 31–32
catchment storage 307	sedimentary balance 35–36
	· · · · · · · · · · · · · · · · · · ·

intra-urban flood management	muddy floods 180, 181
area development 336	driver interactions 181–182, 181
building design/development 321–322, 335	factors affecting 180–181
cost per property	future uncertainties 182
coincident flooding 331	rural land management 304-305
expected annual damage 329-330	mudflats, inundations 36
definitions 320–321	,
environmental implications 470–471	national enterprise scenario
extreme event management 324–325	see also Foresight Futures Project
financing 323	coastal defence responses 405, 406
Č .	
greenspace promotion 323, 470	environmental impact 38–40, 95–96
groundwater control 325–326, 338	flood event management 351–352
hard surface controls 323	flood risks 384, 421–423
rainfall-runoff measures 324–325	future flood risks 78–79, 191–193, 216
regional 324	summaries 21–22
response measures	Northern Ireland
annual costs 331-332, 332	agriculture 250–251
sustainability assessments 334–335,	coasts
335–338	defences 247-248, 260, 394
uncertainties 332–333	erosion 259–260
WM/NE/LS/GS 333	flooding 247–248, 260–261
sewer systems 328	flood alleviation benefits 262
WM/NE/LS/GS 338	flood management authorities 244, 248–250
source control 336	flood return periods 256–258, 257
storage	flood risks 246–247, 248, 260, <i>261</i> ,
above-ground 326, 327	262–263
below-ground 326–327	flooding areas 244, <i>245</i>
WM/NE/LS/GS 337	floodplains 246, 246
sustainability, flood risk management	housing development 251–252
responses 463–467	planning services 250, 251–252
inundation	precipitation changes 252–253, 253, 254
floodplains	predicted warming 253–254
expected annual damage 444–445	relief 244, 245
expected annual probability 444,	rivers 246–247, 246, 255–256, 258
446–447, 450	sea level rise 258–259
	soil types 256
land drainage, and agriculture 251, 300–301	storm surges 259
land movements, and sea levels 133-134	nuclear power stations, coastal erosion 278,
land values, and coastal erosion 290	<i>278</i> , 291–292
local stewardship scenario	
see also Foresight Futures Project	pathways, definitions 16
coastal defence responses 405, 406	planning
environmental impact 38–40, 95–96	for flood reduction 363–364
flood event management 353	controls 364–366
flood risks 384, 422–423	land-use conflicts 124–126
future flood risks 78–79, 191–193, 216	services
summaries 21–22	Northern Ireland 250, 251–252
summaries 21–22	Scotland 237
manning flood vistes 242	
mapping, flood risks 343	urbanisation 167
micro-morphology, and conveyance 90-91	pluvial flooding, urban 152
morphological protection	policy response themes, governance, WM/
coastal defences 402-404	NE/LS/GS 415-416, 484-485
sustainability 408-409	ponds, bunds and ditches, as runoff storage
morphology	306
coastal 143-146, 235-236	population
and coastal flooding 146	mobility and land-use 123-124, 124
flood risks 82	urbanisation 125-126
modified estuarine 272-273, 273	WM/NE/LS/GS vunerability 216, 217,
river channel changes 83 96-97 97 98	218 220

precipitation	river engineering responses 376, 390
changes	sustainability assessments 386-387,
future 19, 51, 53-55, 164	387-389
Northern Ireland 252-253, 253, 254	WM/NE/LS/GS 377
Scotland 228–230	River Thames Windsor and Maidenhead
as flooding driver 49-50, 51, 152	flood relief scheme 70, 378
high intensity 54	rivers
property, WM/NE/LS/GS expected annual	see also fluvial systems
damage 452–453, 454	alluvial channels 86–87, 86
public attitudes	bank erosion 301
as drivers 190	defences 380–381
flood risks 102–103	interactions 381
and preferences 106–108	
_	sustainability 389, 389
and risk perception 108, 110–112, 111	effective bed roughness 90–91
. 6.11	flood risk management 381–382
rainfall	costs 382–383
extreme 182–183	governance 382
runoff measures 324–325	proportionate responses 383–384
urban flooding 152, 322	WM/NE/LS/GS attitudes 384
receptors, definitions 16	flood risks
reclaimed land, coastal erosion 278, 278	future increases 384–385
recreation land values 468	governance 486
renewable energy production, coastal 396,	WM/NE/LS/GS multipliers 385–386
398-399, 410-411	flood storage
responses 16	interactions 379
to flood risks 25–26	objectives 378–379
risk analysis 8–9	sustainability 386–387, 388
risk assessments 106	flood-water transfer
floods 22–23, <i>23</i>	interactions 380
sociological perspectives 101, 101	objectives 379–380
stakeholder attitudes 104	sustainability 387, 388
urban flooding 23, 157–158, 161–162,	management policies 93
163, 164–165	morphology 82–83
risk estimates, flooding systems 17, 17	changes 83, 96–97, 97, 98
risk management strategies	realignment 312
adoption 8	restoration 312
integrated management through 10–11	Scottish processes 232–233, 239–241
risk perception and awareness 483	sediment supply variables 83–85, 98
public attitudes to 108, 110–112, 111	uncertainties 87, 98
river conveyance 89–93	WM/NE/LS/GS impacts 88
altering	runoff
interactions 378	due to livestock 300
objectives 377–378	farm management practices 299–300
sustainability 386, 387	and infiltration 298-299
definitions 89	rural land management 65
effective bed roughness 90–91	see also agriculture
governance 312	and flood defences, traditional
hillslope, slowing 311–312	315–316
management	flood risks responses 317
and catchment storage 313-314	governance, options 316-317, 316
uncertainties 314–315	hillslope conveyance, slowing 311–312
micro-morphology and 90-91	infiltration 298–299
reducing 312	governance 302-303
vegetation and 89-90	muddy floods 304-305
WM/NE/LS/GS flood increases 92–93	on-farm practices 299
river defences	responses 298
interactions 381	riperian conveyance, reducing 312
Northern Ireland 247	rivers 312
objectives 380–381	sustainability 303–304, 313
00Jeeuve0 200 201	Sustantiuonity 303 307, 313

rural land-use	storm surges 136–137, 138, 140
see also agriculture	wave actions 140-143, 141
afforestation 67	sediment providers, cliff erosion 272
arable 66–67	sedimentary balance, intertidal areas 35-36
coastal grazing marshes 32, 36, 40, 41	sewers
driver interactions 75, 76, 77	below-ground storage in 326-327
floodplain 67–68	combined 328
runoff pathways 65	dynamic management of 329
Scotland 231–232	flooding by, prevention 328-329
soil structure 65–66	groundwater infiltration 154
upland 66	sediments in 154–155
	separate 328
saltmarshes	urban flooding and 151, 152-153
inundations 36	WM/NE/LS/GS projected losses 165-166
loss of 40-41, 273	shingle beaches
regeneration 398	coastal erosion 276, 276
scenario-based approach, Foresight Project	loss of 33
9–10	nourishment 397, 398
scenarios, definitions 16	shorelines
science and technology, as drivers 190-191	changes 280–284, 281, 283
Scotland	management, impacts of 32-33
agricultural impacts 232	social justice, flooding risk reduction
climate change driver 239–240	471–472
coastal process drivers 240–241	social support, flood victims 119
coasts	socio-economic impacts
cells 235–236, 235	domestic losses 119–120, 121, 123
defences 394	Foresight Futures Project 20-22, 20
morphology 235-236	industrial losses 119–121
driver rankings 239–242	regional uncertainties 129-130
flood management	Scotland
authorities 227–228	drivers 240–241
legislation 233, 236-237	flooding 238-241
human behaviour drivers 240–241	sociological aspects
land-use drivers 239–240	communal solidarity 117
planning applications 237	cultural theory types 110–111, 111
precipitation changes 228–230, 239	floods 212
public flooding awareness 237–238	intangible losses 118–119, <i>118</i>
relative sea-level rise 234	risk impact 116–117
rivers 232–233, 239–241	low income groups 117
rural land-use management 231–232	public attitudes 106–108, 110–112, <i>111</i>
snowmelt changes 230	risk attitudes 100–102, 101
socio-economic drivers 238–241	world markets scenario 350–351
storm surges 233–234	soil structure
sustainable flood management 237	compaction 67, 300
temperature changes 230	flooding impact 73–75
urban drainage 237	rural land-use 65–66
urbanisation 230–231	soil types, Northern Ireland 256
WM/NE/LS/GS driver rankings	sources, definitions 16
239–242	stakeholders
WM/NE/LS/GS flood scenario 230	as drivers 102, 103–106
sea levels	future flood risks 112–114
and climate change 5, 19, 287	insurance sector as 103
and coastal erosion 285–287	motivation of 104, 105
and coastal morphology 144–145	public preferences 106–108
current trends 132–135, <i>134</i> , <i>135</i>	regulatory influences 103
future trends 132–134, 136–137	risk attitudes 104
and land movements 133–134	urban flooding 155–156
Northern Ireland 258–259	Standards of Protection (SoP), flood
relative rises in 234	defences 211

state aid/compensation, flood losses 362	uncertainties
storm surges	assessments of 26
causes 136-137, 268	cascades 60-61
and climate change 287	conveyance management 314-315
estuarine barriers 395, 395	flood event management 357
floodplain vulnerability 139	flood risks, reduction responses 423-426
future projections 137, 138, 140	intra-urban flood risks, response measures
Northern Ireland 259	332–333
Scotland 233–234	types of 59–60
stormwater	water retention, catchment storage
domestic storage 322	309–311
drainage systems 68	within Foresight Futures Project 26–27
flooding from 151	Wynne classification 315–316, 423–424
stream back-up, urban flooding 153	uncertainty analysis 185–186, 199
surges see storm surges	United Kingdom Climate Impact
sustainability	Programme (UKCIP) 7
above-ground storage 327	urban flooding
analysis, flood risk reduction responses	see also intra-urban flood management
	causes 320–321
426–429, 429	
catchment storage 307–308	and climate change 155
coastal defence response groups 408–409	driver identification 156–157
definitions 461	flood waves 152
domestic stormwater storage 322	increasing potential 123
flood event management 353–354,	rainwater 152
354–356, 357	responses 162, 163, 164
flood reduction 372–373, 372	risk assessments 23, 157–158, 161–162,
flood risk responses	163, 164–165
coastal zones 462–463, 465–466	risk reduction responses 418–419
cost effectiveness 465–468	sewer inadequacies 151, 152–153
intra-urban zones 463–466	spatial scales 150, 150
future 461–462, 472–473	stakeholder attitudes 155–156
metrics 426, 427–428, <i>429</i>	stream back-up 153
river conveyance, altering 386, 387	surface runoff 151–152
rivers	and urbanisation 154
defences 389, 389	WM/NE/LS/GS
flood storage 386–387, 388	annual damages 166-167
flood-water transfer 387, 388	driver ranking 158–159, 161
rural land management 303-304, 313	driver uncertainty 160–161
urban drainage management 325,	urban infrastructure, definitions 126–127
334–335	urban land-use 64
WM/NE/LS/GS 335-338	average run off 69
	culverting and 154
target defence condition grades,	driver interactions 75, 76, 77
WM/NE/LS/GS 435	driver uncertainty 69–70
target standards of protection,	flood detention measures 68-69
WM/NE/LS/GS 433-434, 436,	floodplains 69
492-494	new developments 237
taxation, flood loss relief 481-482, 481	and planning conflicts 124–126
temperatures	and population mobility 123-124, 124
driver impact 197	storm water drainage systems 68,
and flood risks 50	150-151
and flooding frequencies 55	urbanisation
future global rises 19	floodplains 7, 69, 497-498
trends	governance 484–485
Northern Ireland 252, 253–254	Northern Ireland 251–252
Scotland 230	planned 167
Thames Barrier 395, 395	Scotland 230–231
transport implications, coastal defence re-	and surface run-off 154
alignments 400–401	WM/NE/LS/GS risk changes 167–168

washlands environmental economics 42-43, 42 conversion to 308 NGO funding 308 as storage areas 31, 306 as storage areas 306 world markets scenario water recycling systems 154 water table depths, agricultural areas 72-73 see also Foresight Futures Project water-level control structures coastal defence responses 404-406 flood fighting 345-347 environmental impact 38-40, 95-96 responsibility for 345, 347 flood event management 350-351 waves flood risks 384, 421-422 action 140-141 future flood risks 78-79, 191-193, coastal erosion 268 high/low emissions scenarios 223, definitions 140 future changes 142-143, 287 224 heights 141-142, 141 sociological aspects 350-351 summaries 21-22 urban flood 152 wetlands Wynne classification of uncertainty conversion to 308 315-316, 423-424