微分積分学・同演習 A

演習問題 8

1.	次の関数の $x =$	0における	Taylor	多項式を,	最初の3	項目まで求めよ *1
----	-------------	-------	--------	-------	------	-----------------

(1)
$$\frac{x}{e^x - 1}$$
 (2) $\sqrt{1 + x}$ (3) $(1 + x)^x$ (4) $\sqrt[3]{1 + x^2}$

$$(2) \quad \sqrt{1+x}$$

$$(3) \quad (1+x)^x$$

$$(4) \quad \sqrt[3]{1+x^2}$$

 2^{\dagger} 次の関数の x=0 における Taylor 多項式を , 最初の 3 項目まで求めよ .

(1)
$$\sec x = \frac{1}{\cos x}$$
 (2) $\frac{x}{\sin x}$ (3) $\frac{x^2}{1 - \cos x}$ (4) $\sin^2 x$ (5) $\cos^2 x$ (6) $\frac{1}{\tan x}$ (7) $\arcsin x$ (8) $\sqrt{1 + \sin x}$

(2)
$$\frac{x}{\sin x}$$

$$(3) \quad \frac{x^2}{1 - \cos x}$$

$$(4)$$
 $\sin^2 x$

$$(5)$$
 $\cos^2 x$

(6)
$$\frac{1}{\tan x}$$

$$(8) \quad \sqrt{1 + \sin x}$$

3. 次の関数の x=0 における 5 次の Taylor 多項式を求めよ.

$$(1) \quad 2\sin x + \tan x - 3x$$

(1)
$$2\sin x + \tan x - 3x$$
 (2) $\sqrt{1+x} + \sqrt{1-x}$

- 4. $\tan x$ の x = 0 における Taylor 多項式を 9 次の項まで計算せよ.
- 5 次の極限を求めよ.

(1)
$$\lim_{x\to 0} (1-\cos x)^{\sin x}$$

$$(2) \quad \lim_{x \to +0} x^{\sin x}$$

(1)
$$\lim_{x \to 0} (1 - \cos x)^{\sin x}$$
 (2) $\lim_{x \to +0} x^{\sin x}$ (3) $\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x^3}$

(4)
$$\lim_{x \to 0} \frac{\operatorname{Arcsin} x + \sin x - 2x}{x^2(x - \operatorname{Arctan} x)}$$

(4)
$$\lim_{x \to 0} \frac{\operatorname{Arcsin} x + \sin x - 2x}{x^2(x - \operatorname{Arctan} x)}$$
 (5)
$$\lim_{x \to 0} \frac{2 \sec x - 2 \cos^2 x - 3 \sin^2 x}{(\sin x - x) \log(1 + 2x)}$$

次の極限を求めよ*2.

$$(1) \quad \lim_{x \to 0} \frac{x^2 \sin(1/x)}{\sin x}$$

(1)
$$\lim_{x \to 0} \frac{x^2 \sin(1/x)}{\sin x}$$
 (2) $\lim_{x \to +0} \frac{x^2 \sin(2\log x) + x^2 \cos(2\log x)}{x \sin(\log x)}$

適当な計算道具を用いて,x が十分小さいときに成立する次の近似式 $(1+x)^{lpha}$ \coloneqq $1-\alpha x+rac{lpha(lpha-1)}{2}x^2$ を用いて,次の値の近似値を求めよ.

$$(1)$$
 $\sqrt[5]{30}$ (少数第 3 位まで) (2) $\sqrt[3]{130}$ (少数第 6 位まで)

$$(3)$$
 $\sqrt[5]{240}$ (少数第 5 位まで)

適当な計算道具を用いて,次の値の少数第4位までの近似値を求めよ.

(1)
$$\sin \frac{1}{2}$$
 (2) $\cos \frac{1}{2}$ (3) $\tan \frac{1}{2}$ (4) \sqrt{e}

$$(2)$$
 $\cos\frac{1}{2}$

(3)
$$\tan \frac{1}{2}$$

$$(4)$$
 \sqrt{e}

⁶月6日分(凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017C.html

^{#1} たとえば $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)$ など・*2 L'Hôpital の定理を適用できない例.また,(2) においては $\sin x$, $\cos x$ の Taylor 多項式による近似もでき ないことに注意 $(x \to +0$ のとき $\log x \to -\infty$ なので).