FICHE 05-04: Sur les carrés de \mathbb{F}_p .

Yvann Le Fay

Août 2019

Enoncé

Dénombrer les carrés de \mathbb{F}_p puis démontrer que $\forall x \in \mathbb{F}_p^*$, x est un carré $\iff x^{\frac{p-1}{2}} = 1$.

Solution

L'ensemble des carrés de \mathbb{F}_p^* est l'image de \mathbb{F}_p^* par l'application $f:x\mapsto x^2$ qui est un morphisme. Ainsi,

on sait que im $f \equiv \mathbb{F}_p^*/\ker f$. Or $\ker f = \{-1,1\}$, ainsi, il y a exactement $\frac{p-1}{2}$ carrés dans \mathbb{F}_p . D'après le petit théorème de Fermat, tout élément x de \mathbb{F}_p^* est solution de $x^{p-1}-1=0$. Or $x^{p-1}-1=(x^{\frac{p-1}{2}}-1)(x^{\frac{p-1}{2}}+1)$. On vérifie bien que $\forall x \in \mathbb{F}_p^*$, $(x^2)^{\frac{p-1}{2}}=1$, et de plus, le premier membre de la factorisation égalisé à 0, a dans \mathbb{F}_p^* au plus $\frac{p-1}{2}$ solutions. Nécessairement, ce sont les carrés de \mathbb{F}_p^* . Or aucun de ces carrés n'est solution de l'équation du second membre de la factorisation. De plus nécessairement par le petit théorème de Fermat, $\forall x \in \mathbb{F}_p^*, x^{\frac{p-1}{2}} \in \{-1,1\}$. Ainsi, les non-carrés de \mathbb{F}_p^* sont exactement les solutions du second membre de la factorisation.

Ce qui permet de conclure, que x est un carré (ou non) dans \mathbb{F}_p^* est équivalent à $x^{\frac{p-1}{2}}=1$ (ou -1) respectivement.

On a par exemple que si ni 2 ni 3 ne sont des carrés dans \mathbb{F}_p , alors 6 en est forcément un.