Linear Algebra Exam 2 November 23, 2022

Name:	UID:
	C1D:

- The exam consists of FIVE problems.
- Unsupported answers will receive little or no credit.
- Anyone caught writing after time has expired will be given a mark of zero.
- Time: 75 minutes.

Problem	Score	Points
1		6
2		6
3		8
4		10
5		12
Total		42

Best wishes!

Dr. Isabel Muller and Dr. Eslam Badr

Problem 1. (6 points) Determine if each of the following sets is a subspace.

(i) Is $W = \{(x, y, z) \in \mathbb{R}^3 : 2xz = y\}$ a subspace of $(\mathbb{R}^3, +, \cdot)$ with the standard addition and multiplication?

(ii) Is $W = \{f(x) \in \mathcal{F}(-\infty, \infty) : f(-x) = -f(x)\}$ a subspace of $(\mathcal{F}(-\infty, \infty), +, \cdot)$ with the standard addition and multiplication?

Problem 2. Consider the set of vectors

$$S = \left\{1 - x, x - x^3, 1 + x - kx^2 + x^3\right\}$$

in $\mathcal{P}_{\leq 3}$, the space of polynomials in x of degree ≤ 3 .

(i) (4 points) Determine the value(s) of k for which S is linearly independent.

(ii) (2 points) Can S be a basis for $\mathcal{P}_{\leq 3}$? Justify your answer.

Problem 3. (8 points) Consider the set

$$\mathbb{R}^2 = \{(x, y) : x, y \text{ real numbers}\},$$

equipped with the following addition and scalar multiplication:

$$(x,y) + (x',y') = (x x', y y')$$

 $\alpha \cdot (x,y) = (\alpha x + 1, \alpha y + 1)$

The triple $(\mathbb{R}^2, +, \cdot)$ is **not** a vector space because . . .

Choose all answers that apply and justify why the property fails.

- (i) it does not satisfy the additive commutativity axiom,
- (ii) it does not satisfy the additive identity axiom,
- (iii) it does not satisfy the scalar multiplicative identity axiom,
- (iv) it does not satisfy the compatibility axiom for scalar multiplication,
- (v) it does not satisfy the additive inverse axiom.

MACT 2132

Problem 4. Suppose that the following two matrices are row-equivalent

$$A = \begin{bmatrix} 1 & 2 & a \\ 1 & 1 & b \\ 1 & 0 & c \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

(i) (6 points) Describe NullSpace(A) and RowSpace(A) as vector spaces by finding a basis and the dimension of each of them.

(ii) (2 points) Find the column vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

(iii) (2 points) For A and B as given above, are $\mathrm{ColSpace}(A)$ and $\mathrm{ColSpace}(B)$ equal? Justify.

Problem 5. (4 points each) True or False? Circle one and prove your answer.

(i) The map \langle , \rangle given by

$$\langle (x, y, z), (x', y', z') \rangle = x x' + y y' + (z + z')^2$$

is an inner product on \mathbb{R}^3 .

Reason: True False

(ii) Let $(V, +, \cdot)$ be a vector space such that $\dim(V) = n < \infty$. For any set S containing exactly n many vectors, if S is linearly independent, then S must span V.

Reason: True False

(iii) Let $A \in M_{m \times n}$. If m > n, then the *m*-many rows of A cannot form a basis for \mathbb{R}^m .

Reason: True False

Draft: