

Proseminar

Lineare Algebra f. Informatik

SoSe 2020

Test 2: 04.06.2020

Name:	Matrikelnummer:

1. Gegeben ist ein Teilraum $U \subseteq \mathbb{R}^5$:

$$U = LIN \{w_1, w_2\} \text{ mit } w_1 = \begin{pmatrix} 4\\0\\-2\\-4\\0 \end{pmatrix} \text{ und } w_2 = \begin{pmatrix} 5\\1\\-2\\-3\\1 \end{pmatrix}.$$

- \bullet Zeigen Sie, dass die beiden Vektoren w_1 und w_2 linear unabhängig sind.
- ullet Berechnen Sie eine Orthonormalbasis von U durch Verwendung des Gram-Schmidt-Verfahrens.

(10)

2. • Bilden Sie den Vektor $v = \begin{pmatrix} -5 + m_{n-3} \\ -5 + m_{n-2} \\ -5 + m_{n-1} \\ -5 + m_n \end{pmatrix} \in \mathbb{R}^4$, wobei m_{n-3} die viertletzte Ziffer Ihrer

Matrikelnummer ist, m_{n-2} deren drittletzte Ziffer, m_{n-1} deren zweitletzte Ziffer und m_n deren letzte Ziffer.

(Beispiel: Für die Matrikelnummer 76543210 wäre
$$v = \begin{pmatrix} -5+3 \\ -5+2 \\ -5+1 \\ -5+0 \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \\ -4 \\ -5 \end{pmatrix}$$
.)

- Geben Sie drei Vektoren a_1 , b_1 und c_1 an, die die Basis eines dreidimensionalen Teilraums U_1 des \mathbb{R}^4 bilden, sodass v nicht in U_1 enthalten ist oder begründen Sie, warum es keine solchen Vektoren gibt.
- Geben Sie drei Vektoren a_2 , b_2 und c_2 an, die die Basis eines dreidimensionalen Teilraums U_2 des \mathbb{R}^4 bilden, sodass v in U_2 enthalten ist oder begründen Sie, warum es keine solchen Vektoren gibt.

(6)