Implications of multifractal theory for fictional narratives

A dynamic perspective on sentiment-based story arcs exemplified by Ishiguro's Never Let $Me\ Go$

K. Nielbo, Q. Hu, B. Liu, M.R. Thomsen & J. Gao kln@cas.dk knielbo.github.io

> Center for Humanities Computing Aarhus | chcaa.io Aarhus University, Denmark

outline

1 INTRODUCTION problem dynamic properties data and task

2 METHODS story arcs adaptive filtering fractal analysis

3 RESULTS global behavior local behavior

4 DISCUSSION summary

ITRODUCTION

dynamic properties

METHOD:

adaptive filtering

RESULTS

global behavior

DISCUSSIOI

problem specification

problem

dynamic properties

METHODS

adaptive filtering

RESULTS

local hehavi

iocai benavioi

summary

hemingway's affective theory of narrative

The moods, feelings and attitudes represented in a novel will resonate in the reader by activating similar sentiments.

- ⇒ extract and quantify the narrative structure that is responsible for eliciting affective reader response
- computational narratology with affective computing has already 'solved' this issue with story arcs
- BUT, they tend to ignore fundamental dynamics properties of story arcs (the evolution of)
- in the context of DH, we (indirectly) propose to automate close reading of fiction

Hu, Q., Liu, B, Thomsen, M.R., Gao, J. & Nielbo, K.L. (2020). Dynamic evolution of sentiments in Never Let Me Go: Insights from multifractal theory and its implications for literary analysis, DSH.

dynamic properties of cultural systems

Wevers, M., Gao, J., & Nielbo, K.L. (2020). Tracking the Consumption Junction: Temporal Dependencies between Articles and Advertisements in Dutch Newspapers, DHQ.

NTRODUCTION

problem

dynamic properties

METHODS

adaptive filterin

RESULTS

local behavior

Nielbo, K.L., Baunvig, K.F., Liu, B. & Gao, J. (2018). A Curious Case of Entropic Decay: Persistent Complexity in Textual Cultural Heritage, DSH.

data and task

kazuo ishiguro's dystopian novel from 2005 evolves around a a group of clones raised to be organ-donors. (credit: wikipedia)

extract story arc using the using a the syuzhet sentiment dictionary (not the tool)

- apply adaptive filtering at multiple time scales (segments of n+1 sentences)
- estimate global coherence using the Hurst parameter
- estimate local narrative dynamics
 using time-windowed H

nb. behavior was confirmed with labMT dictionary (not the hedonometer)

NTRODUCTION

ynamic properties

data and task

ME I HODS

adaptive filtering

RESULTS

local beha

emotional arc of harry potter and the deathly hallows, by j.k. rowling. the entire seven book series display similar story arcs (credit: hedonometer / a. reagan)

```
'Did Crooked Hillary help disgusting (check out sex tape and past) Alicia M become a U.S. citizen so she could use her in the debate?'

Positive sex, citizen

Negative crooked, hillary, disgusting, out

Sentiment Score (2+1) + (-2-1-3-1) = -4

Sentiment Polarity Negative

Overall Score Sum of all sentence scores
```


NTRODUCTION

dynamic properties

METHODS

story arcs

adaptive filtering

RESULTS

local behavior

DISCUSSI

adaptive filtering

fitting of local polynomial functions for smoothing $% \left(1\right) =\left(1\right) \left(1\right) \left$

- partition a time series into segments (or windows) of length w=2n+1 points, where neighboring segments overlap by n+1
- fit a best polynomial of order D w. standard least-squares
- polynomials in overlapping regions are combined using:

$$y^{(c)}(I_1) = w_1 y^{(i)}(I+n) + w_2 y^{(i)}(I),$$

 $I = 1, 2, ..., n+1$

such that the **global fit** will be the best (smoothest) fit of the overall time series

INTRODUCTION

dynamic properties

NETHODS

story arcs

adaptive filtering

mactar anarysis

global behav

DISCUSS

fractal analysis

- construct a random walk $u(n) = \sum_{k=1}^{n} (x_k \overline{x}), \quad n = 1, 2, \dots, N,$
- divide the random walk process into non-overlapping segments
- determine the local trends of each segment as the best polynomial fit
- determine the average variance over all the segments and residual u(i) v(i) of the fit
- is fluctuations around global trend and its variance is the Hurst parameter (\dot{H}) \Rightarrow H quantifies persistence in time series: 0 < H < 0.5 is an anti-persistent process,
- H = 0.5 is a short-memory process, and 0.5 < H < 1 is a persistent process

NTRODUCTION

ynamic properties

METHODS

adaptive filterin

fractal analysis

RESULTS

local behavior

global dynamic behavior

0.5 < H < 1 indicates a **coherent narrative**; H = 0.5 indicates a narrative that is **incoherent**, almost random (i.e., a collection of short stories); and H < 0.5 indicates a overly **rigid** and potentially bland narrative (i.e., a monotonous and predictable story)

NTRODUCTION

ynamic properties

METHOD:

tory arcs daptive filtering

global behavior

local behavior

local dynamic behavior

a-j indicate change points in the narrative (suspense), e.g., temporal shift (a: present-to-past), change in cognitive or emotional states (e.g., c: Miss Lucy informs about actual state/clones)

 local minima reflect disruptions or points of narrative change, positive incline reflect continuous (persistent) narrative development, and decline a movement towards disruptions NTRODUCTION

dynamic properties

METHODS

story arcs adaptive filterin

ractal analysis

local behavior

DISCUSSIO

- the (global) Hurst exponent of a novel's sentiment story arc provides an index of a novel's narrative coherence. This index can be used as an evaluation metric of how the novel's moods, feelings and attitudes will be perceived by a reader.
- as an evaluation metric, the Hurst exponent of a novel can be interpreted accordingly: 0.5 < H < 1 indicates a coherent narrative; H = 0.5 indicates a narrative that is incoherent, almost random (i.e., a collection of short stories); and H < 0.5 indicates a overly rigid and potentially bland narrative (i.e., a monotonous and predictable story).
- the **optimal narrative** manages the reader's experience and motivation by neither being completely coherent $(H\approx 1)$ nor incoherent (H=0.5), but somewhere in between.
- for H > 0.5, the (local) time-varying Hurst exponents reflects variation in the novel's plot, such that local minima reflect disruptions or points of narrative change, positive incline reflect continuous (persistent) narrative development, and decline a movement towards disruptions.

THANKS

kln@au.dk knielbo.github.io chcaa.io

SLIDES

 $knielbo.github.io/files/kln_narrative.pdf$

ITRODUCTION

problem

dynamic properties

data and task

METHODS

story arcs

fractal analysis

RESULIS

global behavior

DISCUSSION

