

Points-of-Interest Relationship Inference with Spatial-enriched Graph Neural Networks

Proceedings of the VLDB Endowment November 2021

Yile Chen¹, Xiucheng Li¹, Gao Cong¹, Cheng Long¹, Zhifeng Bao², Shang Liu¹, Wanli Gu³, Fuzheng Zhang³

¹Nanyang Technological University ²RMIT University ³Meituan

Agenda

- · Background & Related Work & Issue
- Problem & Methodology
- Experiments
- · Q&A

Background & Related Work & Issue

Background – Pols & Pol Relationship

Pols

- · A specific point location that someone may find useful or interesting.
- Have coordinates & attributes (e.g., category, human flow, rating,)
- · Example:
 - Eiffel Tower
 - · A hotel
 - · A restaurant
 - · A beverage shop

•

Background – Pols & Pol Relationship

Pol Relationship

- · POIs are correlated under different relationships
- · Example:
 - · competitive relationship

· complementary relationship

Background – Pol Relationship Inference

Pol Relationship Inference

- · Bring significant benefits for different groups of people
- · Example:
 - For business owners: Design targeted operation strategies
 - For customers: be recommended with places of their interests based on complementary POIs
 - · For government: understand regional functionality, and hence make sustainable urban plannings

Infer the relationships between entities

- · Early Methods:
 - Solution 1: Focus on modeling text content
 Kaiquan Xu et al. "Mining comparative opinions from customer reviews for Competitive Intelligence" decision support systems (2011): n. pag.
 - · Solution 2: Focus on using social networks

Infer the relationships between entities

· Some Thought: Recall Recommendation System

Infer the relationships between entities

- · Recent Methods: Graph representation learning methods
 - Heuristic path constraints

Zihan Wang et al. "A Path-constrained Framework for Discriminating Substitutable and Complementary Products in E-commerce" web search and data mining (2018): n. pag.

Node proximity

Shijie Zhang et al. "Inferring substitutable products with deep network embedding" international joint conference on artificial intelligence (2019): n. pag.

· Graph Neural Networks

Yiding Liu et al. "Decoupled Graph Convolution Network for Inferring Substitutable and Complementary Items" conference on information and knowledge management (2020): n. pag.

Infer the relationships between entities

· Some Thought: Knowledge Graph?

Infer the relationships between entities

· Some Thought: Meta-path?

Infer the relationships between entities

- Recent Pol-specific Methods
 - Extract POI pairwise features & send these features to neural networks to infer the relationship Jingbo Zhou et al. "Competitive Relationship Prediction for Points of Interest: A Neural Graphlet Based Approach" IEEE Transactions on Knowledge and Data Engineering (2021): n. pag.
 - Use GNN to aggregation different geographical sectors, brand and aspect knowledge Shuangli Li et al. "Competitive Analysis for Points of Interest" knowledge discovery and data mining (2020): n. pag.

Issue 1: Some methods only focus on a particular type of relationship

· Recent POI-specific methods consider the competitiveness relationship only.

- · Intuitive Solutions:
 - Use multiple sub-graphs
 - · Each sub-graph containing only one relation type
- · Shortcoming of intuitive solutions:
 - · Fail to model the inherent interactions of POIs under different types of relationships
- · Remarks:
 - We can use GNNs on Heterogeneous Graphs & multi-view joint learning Mingyang Zhang et al. "Multi-View Joint Graph Representation Learning for Urban Region Embedding" international joint conference on artificial intelligence (2020): n. pag.

Issue 2: Spatial features have important effects on POI relationships

- · A strong competitive relationship if they are close
- · But have no relationship if far away

· Remarks: Maybe some previous methods have implicitly learned

Issue 3: Hard to use structural knowledge

- · Enhance the model with structural knowledge
- · Require either heavy processing or efforts on manually designed constraints
 - · (e.g., fuzzy logics or graphlet patterns)

Zihan Wang et al. "A Path-constrained Framework for Discriminating Substitutable and Complementary Products in E-commerce" web search and data mining (2018): n. pag.


```
(Prod_{A}, Subst, Prod_{B}) \land (Prod_{B}, Subst, Prod_{C}) \\ \Rightarrow (Prod_{A}, Subst, Prod_{C}), \\ (Prod_{A}, Compl, Prod_{B}) \land (Prod_{B}, Subst, Prod_{C}) \\ \Rightarrow (Prod_{A}, Compl, Prod_{C}), \\ (Prod_{A}, Subst, Prod_{B}) \land (Prod_{B}, Compl, Prod_{C}) \\ \Rightarrow (Prod_{A}, Compl, Prod_{C}), \\ (Prod_{A}, Compl, Prod_{B}) \land (Prod_{B}, Compl, Prod_{C}) \\ \Rightarrow (Prod_{A}, Compl, Prod_{C}). \\ \end{cases}
```

Issue 3: Hard to use structural knowledge

- · Enhance the model with structural knowledge
- · Require either heavy processing or efforts on manually designed constraints
 - · (e.g., fuzzy logics or graphlet patterns)

Jingbo Zhou et al. "Competitive Relationship Prediction for Points of Interest: A Neural Graphlet Based Approach" IEEE Transactions on Knowledge and Data Engineering (2021): n. pag.

Issue 3: Hard to use structural knowledge

- · Remarks:
 - Meta-path related method?
 - · Optimizing with Meta-path Generation and Mining
 - · Still need heavy efforts or lead to low efficiency

Issue 4: Lack considering the context information of target POIs

- · Existing methods only focus on its connected POIs that have relationships with it.
- · POIs that are spatially close to the target POI can also provide rich context information.
- A POI with shopping centers and entertainment spots nearby
- · A residential area
- · Different degree of competitive environment

- · Remarks:
 - · Negative. Most work on urban computing takes this into account.
 - · Maybe related to spatial eminence

Problem & Methodology

POI Relationship Inference Problem

Definition 3.4. (**POI Relationship Inference Problem**). Given a heterogeneous POI relationship graph G, a category taxonomy T, a distance threshold d, and candidate relation types $\mathcal{R}^* = \mathcal{R} \cup \{\phi\}$, we aim to learn a predictive function $f(\mathcal{P} \times \mathcal{P} | G, T, d) \to \mathcal{R}^*$ that maps a POI pair (p_i, p_j) to a certain relation type.

Methodology - Architecture

- PRIM consists of four components:
 - · weighted relational graph neural network
 - taxonomy integration module

- · self attentive spatial context extractor
- · distance-specific scoring function.

Methodology - Weighted Relational GNN

- · Propose a two-level aggregation process
 - · Intra-relationship: neighbors connected by the same relation type are first aggregated
 - · Inter-relationship: then results from different types of relationships are further aggregated

$$\mathbf{h}_{p_i}^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{p_j \in \mathcal{N}_{p_i}^r} \alpha_{ij}^r \mathbf{W}^{(l)} \gamma(\mathbf{h}_{p_j}^{(l)}, \mathbf{h}_r^{(l)}) \right) \qquad \qquad \mathbf{h}_r^{(l+1)} = \mathbf{W}_r^{(l)} \mathbf{h}_r^{(l)}$$

Here, $h_{pi}^{(l)}$, $h_r^{(l)}$ are the representations of pi and relationship of type r in the l-th layer

- · Advantages:
 - These two types of representations are highly coupled
 - · Can complement each other to learn rich semantic characteristics from the heterogeneous POI relationship graph.

Methodology - Weighted Relational GNN

- · Spatial-aware attention mechanism
 - · In traditional GNN, neighbors in each relationship are treated equally

$$\alpha_{ij}^r = \frac{1}{\left| N_{pi}^r \right|}$$

· Use spatial-aware attention mechanism

$$e_{ij}^{r} = \sigma \left(\mathbf{a}_{r}^{\top} \cdot \left[\mathbf{W}_{a} \mathbf{h}_{p_{i}}^{(l)} \left\| \mathbf{W}_{a} \mathbf{h}_{p_{j}}^{(l)} \right\| \mathbf{W}_{d} \mathbf{d}_{ij} \right] \right),$$

$$\alpha_{ij}^{r} = \operatorname{softmax} \left(e_{ij}^{r} \right) = \frac{\exp \left(e_{ij}^{r} \right)}{\sum_{k \in \mathcal{N}_{p_{i}}^{r}} \exp \left(e_{ik}^{r} \right)},$$

 d_{ij} is spatial distance between pi and pj, II denotes the vector concatenation operation

- · The above attention mechanism can be extended to multiple heads.
- · Remarks: Over all, the Weighted Relational above is a very routine operation

Methodology - Taxonomy Integration Module

Intuitions

 POIs whose categories are close in category taxonomy tend to be more semantically similar and show higher degree of competitiveness

Solutions

• Derive the category representation by backtrack to retrieve all the nodes E.g., the category path for bar is [root, entertainment, nightlife spot, bar]

$$\mathbf{q}_{p_i} = \sum_{t \in Q_{p_i}} \mathbf{e}_t$$

· Concatenate the original representations and the category representations

$$\mathbf{h}_{p_i}^{*(l)} = [\mathbf{h}_{p_i}^{(l)} \| \mathbf{q}_{p_i}]$$

- Advantages
 - · Do not apply more complicated techniques
 - · more efficient

Methodology - Taxonomy Integration Module

· Authors:

 Note that we do not apply more complicated techniques, such as Tree-LSTM and hyperbolic embedding, to model category taxonomy because they are less efficient and found to show no improvement over the proposed solution in our preliminary experiments.

Remarks

- How to get the representations of all categories in the tree?
- · Still need to build the tree
- · Indeed no need to manually define category relationships

Methodology – Self-attentive Spatial Context Extractor

- · Spatial neighbors can be leveraged to provide extra spatial context
- · Solutions:
 - · Calculate the spatial context as

$$\mathbf{h}_{p_i}^s = \sum_{p_j \in \mathcal{S}_{p_i}} \beta_{ij} (\mathbf{W}_V \mathbf{h}_{p_j}^{(L)})$$
$$\beta_{ij} = \operatorname{softmax}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{p_m \in \mathcal{S}_{p_i}} \exp(e_{im})}$$

In which, considering semantic & spatial correlation

$$e'_{ij} = \frac{\left(\mathbf{W}_{Q}\mathbf{h}_{p_{i}}^{(L)}\right)^{\top} \cdot \left(\mathbf{W}_{K}\mathbf{h}_{p_{j}}^{(L)}\right)}{\sqrt{d_{p}}} \qquad \qquad D\left(l_{p_{i}}, l_{p_{j}}\right) = \exp\left(-\theta \left\|l_{p_{i}} - l_{p_{j}}\right\|^{2}\right) \qquad \qquad e_{ij} = e'_{ij} \cdot D\left(l_{p_{i}}, l_{p_{j}}\right)$$

• For each Pol , fuse heterogeneous POI relationship graph view and the spatial context view $\mathbf{h}_{p_i} = \mathbf{h}_{p_i}^{(L)} + \mathbf{h}_{p_i}^s$

Methodology – Self-attentive Spatial Context Extractor

· Remarks

- · In a heterogeneous graph, we can add edges representing geographical adjacency
- · I don't see how to solve the issue, This context is not explicitly used for relationship inference

Methodology – Distance-specific Scoring Function

· In the previous issue, spatial features have important effects on POI relationships

· Solutions:

- Project the learned POI representations to a distance-specific hyperplane
 - Split the distance into non-overlapping bins (e.g., 0-1km, 1-2km, etc)
 - Project p_i into the hyperplane specified by distance

$$\mathbf{h}_{p_i}^d = \mathbf{h}_{p_i} - \mathbf{w}_{g(d_{ij})}^{\top} \mathbf{w}_{g(d_{ij})} \mathbf{h}_{p_i}$$

 Compute the likelihood of different relationships based on the projected POI & relationship representations.

$$s_{ij}^r = \mathbf{h}_{p_i}^{d \top} \operatorname{diag}\left(\mathbf{h}_r^{(L)}\right) \mathbf{h}_{p_j}^d$$

· Remarks

• Different category should have a different representations in different hyperplane. There should exist a category-related learnable parameter to be learned when doing projection.

Methodology – Training and Inference

- · Training method: cross-entropy loss with negative sampling
 - \cdot For each observed positive triplet, sample ω negative pairs by replacing a POI with a randomly sampled one

$$\mathcal{L} = \sum_{(p_i, r, p_j) \in \mathcal{D}} y_{ij}^r \log \sigma(s_{ij}^r) + (1 - y_{ij}^r) \log \sigma(1 - s_{ij}^r)$$

- · Inference
 - · Calculate the likelihood score w.r.t. each relation type
 - · Rank the scores and select the relationship with the highest score as the prediction result

$$\hat{r}_{ij} = \arg\max_{r \in \mathcal{R}^*} s_{ij}^r$$

- · Remarks
 - · What if the two POIs don't have any relationship?

Methodology – Overall Review

- Different issues and modules to solve them
 - · Issue 1: Some methods only focus on a particular type of relationship
 - Module: Weighted Relational GNN
 - · Issue 2: Spatial features have important effects on POI relationships
 - · Module: Spatial-aware Weighted Relational GNN & Distance-specific Scoring Function
 - · Issue 3: Hard to use structural knowledge
 - Module: Taxonomy Integration Module
 - · Issue 4: Lack considering the context information of target POIs
 - Module: Self-attentive Spatial Context Extractor
- · Authors: Although existing methods have made progress in inferring the relationships for POIs, they still suffer from at least one of the issues.

Experiments

Experiments – Datasets

- Datasets
 - · Beijing and Shanghai, from Meituan
 - · Construct relationships between POIs from user logs extracted from these two datasets
 - Note that the proposed methods do not use user logs for evaluation, and are applicable when the user logs are unavailable

Table 1: Statistics of the datasets

Dataset	Taxono	my	#POIs	#Relational Edges		
	#Non-leaf nodes	#Categories	#1 015			
Beijing	95	805	13,334	122,462		
Shanghai	93	803	10,090	112,848		

Experiments – Training Data Generation

- Training Data Generation
 - · Generate the ground truth of competitive relationship for a POI pair if the two POIs in the pair are "viewed/clicked together" by users within a query session
 - · Generate the ground truth of complementary relationships for a POI pair if the two POIs in the pair are "also viewed/clicked" by same users across different query sessions

Experiments – Baselines

- Five types of baseline methods
 - · rule-based methods
 - · CAT, CAT-D
 - · random walk based graph embedding methods
 - · Deepwalk, node2vec
 - · vanilla GNN
 - · GCN, GAT
 - heterogeneous GNN
 - · HAN, HGT, R-GCN, CompGCN
 - · SOTA relationship inference methods
 - · DecGCN, DeepR

Experiments – Experiment Results

· Basic results

Table 2: Results on the two datasets in terms of Macro-F1 and Micro-F1 (with best in bold and second-best underlined

Dataset	Metric	Train%	CAT	CAT-D	Deepwalk	node2vec	GCN	GAT	HAN	HGT	R-GCN	CompGCN	DecGCN	DeepR	PRIM
ВЈ -	Macro-F1	40%	0.464	0.519	0.638	0.640	0.707	0.724	0.782	0.779	0.789	0.794	0.757	0.783	0.845
		50%	0.464	0.519	0.691	0.692	0.737	0.748	0.811	0.814	0.814	0.832	0.801	0.815	0.870
		60%	0.464	0.519	0.731	0.734	0.755	0.776	0.839	0.842	0.820	0.860	0.811	0.842	0.882
		70%	0.464	0.519	0.757	0.761	0.770	0.795	0.857	0.857	0.828	0.870	0.823	0.861	0.895
	Micro-F1	40%	0.559	0.579	0.707	0.710	0.729	0.753	0.817	0.813	0.808	0.827	0.805	0.820	0.879
		50%	0.559	0.579	0.758	0.762	0.766	0.776	0.842	0.845	0.827	0.859	0.823	0.847	0.895
		60%	0.559	0.579	0.783	0.784	0.780	0.804	0.867	0.869	0.832	0.882	0.826	0.871	0.907
		70%	0.559	0.579	0.816	0.817	0.796	0.821	0.882	0.883	0.839	0.892	0.843	0.887	0.913
SH	Macro-F1	40%	0.443	0.509	0.652	0.655	0.673	0.692	0.788	0.790	0.777	0.776	0.765	0.786	0.822
		50%	0.443	0.509	0.682	0.684	0.704	0.711	0.807	0.811	0.802	0.808	0.797	0.808	0.844
		60%	0.443	0.509	0.698	0.702	0.713	0.729	0.834	0.838	0.828	0.837	0.817	0.839	0.861
		70%	0.443	0.509	0.707	0.711	0.731	0.735	0.853	0.858	0.839	0.857	0.832	0.852	0.875
	Micro-F1	40%	0.551	0.573	0.724	0.727	0.744	0.769	0.843	0.841	0.822	0.836	0.824	0.845	0.886
		50%	0.551	0.573	0.766	0.768	0.775	0.788	0.861	0.864	0.837	0.860	0.846	0.863	0.896
		60%	0.551	0.573	0.783	0.786	0.793	0.806	0.886	0.888	0.864	<u>0.891</u>	0.856	0.890	0.909
		70%	0.551	0.573	0.796	0.798	0.804	0.811	0.897	0.901	0.872	0.903	0.869	0.898	0.920

Experiments – Experiment Results

- · Remarks: What kind of experiments we can do?
 - · Use different fractions of datasets as training data
 - Evaluate Model Scalability
 - · Randomly generate subdatasets of different sizes from a large dataset
 - Ablation Study

Q & A

Thank you