Sistema eterogeneo

stato o fase?

Sistema eterogeneo

grandezze estensive del sistema eterogeneo costituito da due stati (o fasi) α e β

$$\mathbf{M} = \mathbf{M}_{\alpha} + \mathbf{M}_{\beta}$$

$$E = E_{\alpha} + E_{\beta}$$

$$e = \frac{M_{\alpha}}{M} e_{\alpha} + \frac{M_{\beta}}{M} e_{\beta}$$

Le grandezze
estensive specifiche
risultano dalla
media pesata sulle
masse dei valori
delle grandezze
estensive specifiche
delle singole fasi

Sistema eterogeneo

grandezze estensive del sistema eterogeneo costituito da due stati (o fasi) α e β

$$\begin{split} \mathbf{M} &= \mathbf{M}_{\alpha} + \mathbf{M}_{\beta} \\ \mathbf{x}_{\alpha} &= \frac{\mathbf{M}_{\alpha}}{\mathbf{M}} \qquad \mathbf{x}_{\beta} = \frac{\mathbf{M}_{\beta}}{\mathbf{M}} \qquad \begin{array}{l} \textit{frazione} \\ \textit{massica} \end{array} \end{split}$$

$$\mathbf{e} = \mathbf{x}_{\alpha} \mathbf{e}_{\alpha} + \mathbf{x}_{\beta} \mathbf{e}_{\beta} \qquad \mathbf{x}_{\alpha} + \mathbf{x}_{\beta} = 1$$
$$\mathbf{e} = (1 - \mathbf{x}_{\beta}) \mathbf{e}_{\alpha} + \mathbf{x}_{\beta} \mathbf{e}_{\beta}$$

REGOLA DI GIBBS

$$V = C + 2 - F$$

 $V = n^{\circ}$ di variabili INTENSIVE atte a descrivere il sistema

 $C = n^{\circ}$ di componenti

 $F = n^{\circ} di fasi$

Per il sistema monocomponente bifase V=1

Pressione e temperatura non sono variabili indipendenti durante una transizione di fase

Transizione di fase= passaggio da uno stato di aggregazione a un altro dh = dq + vdP La transizione di fase avviene a P cost quindi dh = dq

Sistema eterogeneo monocomponente

solido
stati monofasi
liquido
aeriforme (gas)

stati bifasi

coesistenza di solido e liquido coesistenza di solido e aeriforme (vapore) coesistenza di liquido e aeriforme (vapore)

stati tripli

coesistenza di solido, liquido e aeriforme (vapore)

LIQUIDO SOTTORAFFREDDATO

Liquido NON in procinto di evaporare

LIQUIDO SATURO

Liquido in procinto di evaporare

MISCELA SATURA LIQUIDO-VAPORE

VAPORE SATURO

vapore in condizioni di incipiente condensazione

VAPORE SURRISCALDATO

Vapore NON in procinto di condensare

TEMPERATURA DI SATURAZIONE

Temperatura alla quale una sostanza pura comincia ad evaporare, fissata la pressione

Diagramma PVT di una sostanza monocomponente

Diagramma PVT di una sostanza monocomponente

Diagramma PVT di una sostanza monocomponente

Diagramma PVT di una sostanza monocomponente che solidificando aumenta volume

Diagramma PT di una sostanza monocomponente

Sostanze che solidificando aumentano di volume

Sostanze che solidificando diminuiscono di volume

Diagramma PT di una sostanza monocomponente

entalpia (calore) di transizione di fase

$$h_{sol} < h_{liq} < h_{vap}$$

entalpia di liquefazione

$$h_{liq} - h_{sol} > 0$$

entalpia di solidificazione

$$h_{sol}$$
 - h_{liq} < 0

entalpia di evaporazione

$$h_{\text{vap}} - h_{\text{liq}} > 0$$

entalpia di condensazione

$$h_{liq} - h_{vap} < 0$$

entalpia di sublimazione

$$h_{\text{vap}} - h_{\text{sol}} > 0$$

entalpia di brinamento

$$h_{sol}$$
 - h_{vap} < 0

Le proprietà termodinamiche dei sistemi trifase

titolo di vapore
$$x_v = \frac{M_v}{M}$$

titolo di liquido
$$x_1 = \frac{M_1}{M}$$

titolo di solido
$$x_s = \frac{M_s}{M}$$

$$x_{v} + x_{1} + x_{s} = 1$$

Le proprietà termodinamiche dei sistemi trifase

$$v = (1 - x_1 - x_v)v_s + x_1v_1 + x_vv_v$$

$$u = (1 - x_1 - x_v)u_s + x_1u_1 + x_vu_v$$

$$s = (1 - x_1 - x_v)s_s + x_1s_1 + x_vs_v$$

$$h = (1 - x_1 - x_v)h_s + x_1h_1 + x_vh_v$$

Le proprietà termodinamiche dei sistemi bifase (liquido-vapore)

titolo di vapore
$$x = x_v = \frac{M_v}{M}$$

titolo di liquido
$$x_1 = \frac{M_1}{M}$$

$$x_{v} + x_{1} = 1$$

Le proprietà termodinamiche dei sistemi bifase (liquido-vapore)

$$v = (1 - x)v_l + xv_v = v_l + xv_{lv}$$

$$u = (1 - x)u_l + xu_v = u_l + xu_{lv}$$

$$s = (1 - x)s_l + xs_v = s_l + xs_{lv}$$

$$h = (1 - x)h_l + xh_v = h_l + xh_{lv}$$

Diagramma Pv di una sostanza monocomponente

Diagramma Tv di una sostanza monocomponente

Diagramma hs di una sostanza monocomponente

Diagramma Ts di una sostanza monocomponente

Diagramma Ph di una sostanza monocomponente

Tabella di saturazione dell'acqua

T (°C)	P (kPa)	volume specifico (m³/kg)			entalpia specifica (kJ/kg)			entropia specifica (kJ/kgK)		
	(111 00)	$v_1 \cdot 10^3$	$V_{ m lv}$	\mathbf{V}_{v}	h_1	h_{lv}	$h_{\rm v}$	S_1	S_{lv}	$S_{ m V}$
50	12.335	1.0121	12.045	12.046	209.26	2382.9	2592.2	0.7035	7.3741	8.0776
55	15.741	1.0145	9.578	9.579	230.17	2370.8	2601.0	0.7677	7.2249	7.9926
60	19.920	1.0171	7.678	7.679	251.09	2358.6	2609.7	0.8310	7.0798	7.9108
65	25.009	1.0199	6.201	6.202	272.02	2346.3	2618.4	0.8933	6.9389	7.8322
70	31.160	1.0228	5.045	5.046	292.97	2334.0	2626.9	0.9548	6.8017	7.7565
75	38.549	1.0259	4.133	4.134	313.94	2321.5	2635.4	1.0154	6.6681	7.6835
80	47.360	1.0292	3.408	3.409	334.92	2308.8	2643.8	1.0753	6.5379	7.6132
85	57.810	1.0326	2.828	2.829	355.92	2296.1	2652.0	1.1343	6.4111	7.5454
90	70.110	1.0361	2.3603	2.3613	376.94	2283.2	2660.1	1.1925	6.2874	7.4799

Tabella del vapore surriscaldato dell'acqua

Pressione (kPa)		Temperatura (°C)									
$(T_{sat} (\circ C))$		50	100	150	200	250	300	350	400	450	
100	V		1.6955	1.9362	2.1723	2.4061	2.6387	2.8708	3.1025	3.3340	
(99.63)	h		2676.2	2776.3	2875.4	2974.5	3074.5	3175.6	3278.2	3382.4	
	S		7.3618	7.6137	7.8349	8.0342	8.2166	8.3859	8.5442	8.6935	
150	v			1.2851	1.4444	1.6013	1.7570	1.9122	2.0669	2.2215	
(111.4)	h			2772.5	2872.9	2972.9	3073.3	3174.7	3277.5	3381.8	
	S			7.4194	7.6439	7.8447	8.0280	8.1976	8.3562	8.5057	
200	v			0.9595	1.0804	1.1989	1.3162	1.4328	1.5492	1.6653	
(120.2)	h			2768.5	2870.5	2971.2	3072.1	3173.8	3276.7	3381.1	
	S			7.2794	7.5072	7.7096	7.8937	8.0638	8.2226	8.3722	

Interpolazione dei dati tabulati

1) Interpolazione lineare

$$\frac{X - X_1}{X_2 - X_1} = \frac{T - T_1}{T_2 - T_1}$$

$$\frac{X - X_1}{X_2 - X_1} = \frac{P - P_1}{P_2 - P_1}$$

Espressioni approssimate per il calcolo di entalpia ed entropia specifica

Espressioni approssimate per il calcolo di entalpia ed entropia specifica per l'acqua

stato di riferimento:

stato solido (1)

stato triplo liquido saturo

$$h = h_o + h_{lst} + c_s (T - T_o) + v (P - P_o)$$

$$s = s_o + s_{lst} + c_s \ln \frac{T}{T_o} = s_o + \frac{h_{lst}}{T_o} + c_s \ln \frac{T}{T_o}$$

stato liquido (2)

$$h = h_o + c_l (T - T_o) + v (P - P_o)$$

$$s = s_o + c_l \ln \frac{T}{T_o}$$

Proprietà termodinamiche dell'acqua

Stato triplo T_t = 273.16 K P_t = 611.2 Pa Stato critico T_{cr} = 647.29 K P_{cr} = 220.9 bar

calore specifico del ghiaccio c_s = 2093 J/kgK calore specifico del liquido c_l = 4186 J/kgK calore specifico medio a pressione costante del vapore c_{Pv} = 2009 J/kgK entalpia di solidificazione allo stato triplo h_{lst} = -333 kJ/kgK entalpia di evaporazione allo stato triplo h_{lvt} = 2501.6 kJ/kgK