AFOSR-TR-9999

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

FINAL REPORT 01 Jun 93 - 31 Dec 96

A TITLE AND SUBTITLE

(AASERT-92) OBJECT-ORIENTED FORMULATIONS FOR PARTICLE-IN-CELL (PIC) plasma simulations

5. FUNDING NUMBERS

61103D 3484/TS

6. AUTHOR(S)

Professor Rine

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

George Mason University Fairfax, Virginia 22030-4444 19970207 020

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NE 110 Duncan Avenue Suite B115 Bolling AFB DC 20332-8050

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

F49620-93-1-0375

11. SUPPLEMENTARY NOTES

124. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The problem that I solved is the lack of a method and validated measurements that allow software engineers to measure the quality of 00 code. Software quality is composed of two collections of attributes, directly and indirectly measurable. In this study, directly measurable attributes were computed by inspecting the static code. The problem with the measurements proposed to date in the literature has been the lack of validation for their use with 00 code. In addition, the literature does not contain definitions of a validated method for measuring the indirectly measurable quality attributes (or attributes that cannot be measured by an inspsection or study of the static code), such as reusability. During the Fall Semester 1996, I made some progres in validating the empirical study instrument (il.e. the scale or the survey). I am planning, under the continued direction of Dr Rine, to present and defend my research results by the Summer of 1997.

14. SUBJECT TERMS	
-------------------	--

DAM CHARLES INCHES

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

18. SECURITY CLASSIFICATION OF THIS PAGE

19. SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

<u>UNCLASSIFIED</u>

NSN 7540-01-280-5500

UNCLASSIFIED __

UNCLASSIFIED

Stanuard Form 298 (Rev. 2-69) Prescribed by ANSI Std 239-18

FINAL ERECTES REPORT

Submitted to

The General Contracting Office

of the AFOSR

by

Fatma Dandashi (AASERT PhD GRA)

David Rine (5-25011)

SPRING 1997

1. Introduction

The problem that I propose to solve is the lack of a method and validated measurements that allow software engineers to measure the quality of OO code. Software quality is composed of two collections of attributes, directly and indirectly measurable. In this study, directly measurable attributes are computed by inspecting the static code. The problem with the measurements proposed to date in the literature has been the lack of validation for their use with OO code. In addition, the literature does not contain definitions of a validated method for measuring the indirectly measurable quality attributes (or attributes that cannot be measured by an inspection or study of the static code), such as reusability.

During the Fall Semester 1996, I made some progress in validating the empirical study instrument (i.e. the scale or the survey). I am planning, under the continued direction of Dr. Rine, to present and defend my research results by the Summer of 97. The remainder of this report contains a statement of the research goals and a presentation of the scale validation.

2. Goals

This research is aimed at achieving two goals:

- I. The first goal is concerned with direct quality attribute measurement:
 - A. To identify a set of measurements that may be used by software engineers to automatically and directly measure static and syntactic attributes of Object-Oriented code components.
 - B. To provide a set of abstract conditions that permit the formal comparison of OO measurements that directly measure static and syntactic attributes of OO code components.
 - C. To provide analytical and empirical proof of the validity of measurements that directly measure static and syntactic attributes of OO code components.
- II. The second goal is concerned with measuring indirect quality attributes: To provide software engineers with an empirically validated method for evaluating Object-Oriented code components. This method will allow the assessment of indirectly measurable quality attributes through the automatic measurement of direct quality attributes.

3. Accomplished Goals:

- 1. To identify and validate measurements for direct quality attributes of OO software.
- 2. To measure direct quality attributes of some OO software.
- 3. To identify a measure or scale for quantifying indirect quality attributes.
- 4. To assess indirect quality attributes of the same OO software used in step 2 above.
- 5. To validate the scale used to measure indirect quality attributes by means of statistical analysis of the measurements resulting from the use of the scale defined in step 3 above, and to interpret the results (the validation follows in section 5).

4. Goals In-Progress:

- 6. Interpretation of results, and
- 7. Recommendations.

5. Goal 5 Validation

The method that was used to validate the scale construct consisted of correlating the groups of marrions in the survey that were designed to measure different aspects of the same indirect quality mute. The following subsections consist of a listing of the questions that appeared in the survey. Each group of questions that was designed to gauge a certain indirect attribute appears in a separate subsection. The correlation coefficients that were computed for each group appear next. Three sets of correlation coefficients appear for each class used in the survey. The first three sets consist of data gathered for the class Conductor (scientific computation domain). The second three sets consist of data gathered for the class XYPlot (GUI domain). This separation was necessary because some attributes are expected to have high measures for one but not for the other domain (e.g. portability). For each domain, the 3 sets of data represent:

- 1) all the responses corresponding to that domain,
- 2) the sorted responses for respondents whose C++ programming experience is stated as 2 (intermediate), and whose level of expertise in the domina is either 2 or 3 (somewhat experienced or experienced), and,
- 3) sorted responses for respondents whose C++ programming experience is stated as 3 (experienced), and whose level of expertise in the domina is either 2 or 3 (somewhat experienced or experienced).

This stratification of the data was necessary because the data that was collected from inexperienced respondents was found to be inconsistent with the responses gathered from the other two groups.

At the end of each indirect quality attribute subsection, a table appears that shows a matrix for correlation coefficients computed by the package SPSS for each indirect quality attribute. The lower triangle contains an A (All) if responses for both domains show a correlation, AG (All GUI) indicates a correlation between GUI responses, AC (All Scientific Computation) indicates a correlation between Scientific Computation responses, and C2, C3, or G2, G3 indicate correlations appearing among responses given by somewhat experienced or experienced programmers in the Scientific Computation or GUI domains respectively.

An initial evaluation shows that various aspects of each attribute (e.g. aspects GEN1, GEN2, & GEN3 for the attribute Generality) are indeed correlated. Further analysis of the correlations was conducted where inconsistencies appeared. This analysis, if applicable, appears at the end of the subsection.

5.1 Attribute Correlations

A. ADAPTABILITY:

ADAP1

- 1. It is easy to expand the class to add new user requirements.
- 5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

ADAP2

- 2. It is easy to modify the class to meet changing user needs.
- 5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

ADAP3

- 3. It is easy to modify the class to meet differing system constraints.
- 5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

ADAP4

- 4. The class implementation is dependent on certain storage requirements.
- 1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

ADAP5

- 5. All dependencies on outside resources are properly documented within the class definition.
- 5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All responses

-- Correlation Coefficients --

(Coefficient / (Cases) / 1-tailed Significance)

[&]quot;. " is printed if a coefficient cannot be computed

Scientific 2-2/3

-- Correlation Coefficients --

ADAP5 ADAP3 ADAP4 ADAP2 ADAP1 .2037 -.0325 .5806 1.0000 .8324 ADAP1 (16) (16) (16) (16) (16) P= .000 P= .018 P= .449 P= .905 P= . .8324 1.0000 .6214 .0404 .0348 ADAP2 (16) (16) (16) (16) P = .000 P = .P= .010 P= .882 P= .898 .6214 1.0000 -.1597 -.0626 .5806 ADAP3 (16) (16) (16) (16) P = .018 P = .010 P = . P = .555 P = .818.0404 -.1597 1.0000 -.4174 ADAP4 .2037 (16) (16) (16) (16) (16) P= .449 P= .882 P= .555 P= . P= .108 .0348 -.0626 -.4174 1.0000 ADAP5 -.0325 (16) (16) (16) (16) (16) P = .905 P = .898 P = .818 P = .108 P = .

Scientific 3-2/3

-- Correlation Coefficients --

ADAP4 ADAP5 ADAP3 ADAP1 ADAP2 1.0000 .9818 .6550 -.0852 .0226 ADAP1 (9) (9) (9) (8) (9) P=.000 P=.056 P=.841 P=.954 1.0000 .6695 .0357 .1371 .9818 ADAP2 (9) (10) (10) (9) (10) P= .034 P= .927 P= .706 P = .000 P = .1.0000 -.1130 -.0071 .6695 .6550 ADAP3 (9) (10) (10) (9) (10) P= .056 P= .034 P= . P= .772 P= .984 .0357 -.1130 1.0000 -.0852 ADAP4 (8) (9) (9) (9) (9) P=.841 P=.927 P=.772 P=. P=.052 -.0071 .6614 1.0000 .1371 ADAP5 .0226 (9) (10) (10) (9) (10) P = .954 P = .706 P = .984 P = .052 P = .

Attribute Correlations for the class XYPlot (GUI domain)

All responses

-- Correlation Coefficients --

ADAP4 ADAP5 ADAP1 ADAP2 ADAP3 .1192 .3646 -.4117 ADAP1 1.0000 .8512 (26) (26) (22) (26) (26) P=.000 P=.281 P=.048 P=.018 .1049 ADAP2 .8512 1.0000 .1148 -.4928 (26) (26) (26) (22) (26) P= .305 P= .305 P= .005 P = .000 P = ..5893 .1049 1.0000 .3907 ADAP3 .1192 (26) (26) (26) (22) (26) $P = .281 \quad P = .305 \quad P = .$ $P = .002 \quad P = .024$ ADAP4 .3646 .1148 .5893 1.0000 .2613 (22) (22) (22) (22) P=.048 P=.305 P=.002 P=. P = .120-.4117 -.4928 .3907 .2613 1.0000 ADAP5 (26) (26) (26) (22) (26) P = .018 P = .005 P = .024 P = .120 P = .

GUI 2-2/3 -- Correlation Coefficients --

ADAP1 ADAP2 ADAP3 ADAP4 ADAP5

ADAP1 1.0000 .8700 -.2530 .7859 -.3435 (13) (13) (13) (9) (13) P= . P= .000 P= .404 P= .012 P= .250

ADAP2 .8700 1.0000 -.1502 .7819 -.2228 (13) (13) (13) (9) (13) P= .000 P= . P= .624 P= .013 P= .464

ADAP3 -.2530 -.1502 1.0000 .6548 .7854 (13) (13) (13) (9) (13) P= .404 P= .624 P= . P= .056 P= .001

ADAP4 .7859 .7819 .6548 1.0000 .3833 (9) (9) (9) (9) (9) P= .012 P= .013 P= .056 P= . P= .308

ADAP5 -.3435 -.2228 .7854 .3833 1.0000 (13) (13) (13) (9) (13) P= .250 P= .464 P= .001 P= .308 P= .

GUI 3-2/3 -- Correlation Coefficients --

ADAP1 ADAP2 ADAP3 ADAP4 ADAP5

ADAP1 1.0000 .8189 .8737 .4364 -.0867 (8) (8) (8) (8) (8) P= . P= .013 P= .005 P= .280 P= .838

ADAP2 .8189 1.0000 .7538 .1443 -.3441 (8) (8) (8) (8) (8) (8) P= .013 P= . P= .031 P= .733 P= .404

ADAP3 .8737 .7538 1.0000 .5222 -.0692 (8) (8) (8) (8) (8) (8) P= .005 P= .031 P= . P= .184 P= .871

ADAP4 .4364 .1443 .5222 1.0000 .0000 (8) (8) (8) (8) (8) P= .280 P= .733 P= .184 P= . P=1.000

ADAP5 -.0867 -.3441 -.0692 .0000 1.0000 (8) (8) (8) (8) (8) P= .838 P= .404 P= .871 P=1.000 P= .

(Coefficient / (Cases) / 2-tailed Significance)

". " is printed if a coefficient cannot be computed

By visually examining the correlation coefficients computed for the survey answers, we find that:

1. For the class Conductor:

There exists some correlation between ADAP1 & ADAP2. There exists some correlation between ADAP1 & ADAP3. There exists some correlation between ADAP2 & ADAP3.

There exists some correlation between ADAP4 & ADAP5 only among answers given by respondents who listed their C++ programming experience level as 3, and their scientific computation programming experience level as 2 or 3.

2. For the class XYPlot:

There exists some correlation between ADAP1 & ADAP2. There exists some correlation between ADAP3 & ADAP4.

There exists some correlation between ADAP1 & ADAP4, ADAP2 & ADAP4, ADAP3 & ADAP5 only among answers given by respondents who listed their C++ programming experience level as 2, and their GUI programming experience level as 2 or 3.

There exists some correlation between ADAP1 & ADAP3, ADAP2 & ADAP3, only among answers given by respondents who listed their C++ programming experience level as 3, and their GUI programming experience level as 2 or 3.

There exists some correlation between ADAP1 & ADAP3 only among answers given by respondents who listed their C++ programming experience level as 3, and their GUI programming experience level as 2 or 3.

These results are summarized in the table below:

ADAP1	ADAP2	ADAP3	ADAP4	ADAP5
ADAP1				
ADAP2	Α			
ADAP3	Α	Α		
ADAP4	G2	G2	AG	
ADAP5			G2	C 3

Analysis: The attribute Adaptability is defined by NIST as:

- The ease with which software can accommodate to change.
- The ease with which software can be modified to meet new requirements.
- The ease with which a system or component can be modified for use in applications or environments other than those for which it was specifically designed.
- The ease with which software allows differing system constraints and user needs to be satisfied.

In addition, the processing performed by a module should be independent of storage size, buffer space, array sizes, etc. Provisions for these entities should be provided dynamically, e.g. array sizes passed as parameters.

An examination of the survey Adaptability questions listed below helps to explain the adaptability correlations. That is correlations exist between all aspects of adaptability (desired) except those between ADAP1 & ADAP5 and ADAP2 & ADAP5. Further examination of the class texts reveals that both contain "include" statements to other classes that the respondents did not have access to. This lack of explanation of what functions these other classes perform helps explain this low correlation. In other words, the respondents while agreeing that the class is easy to change and modify, (this means that they can clearly understand its purpose, and that it is a well defined class), the lack of documentation resulted in a low score for the documentation level. in retrospect it seems that this question was misstated (emphasis is on documentation levels as opposed to dependance on outside resource levels), or does not belong in the adaptability category.

B. COMPLETENESS

COMP1

6. The name of the class is synonymous with the real-world object you had perceived this class to represent.

5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

COMP2

7. Based on what you perceive to be the base-line functionality of the real-world object (what the class should do, as opposed to a "would be nice to have"), the class meets all your requirements.

5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

COMP3

8. It is possible to remove methods from the class definition without diminishing the functionality normally associated with the real world object that this class represents.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

COMP4

9. It is possible to add methods to this class definition without adding functionality that would not normally be associated with the real world object that this class represents.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

COMP5

10. Each method in the class consists of code that implements one function.

5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All Responses

-- Correlation Coefficients --

(Coefficient / (Cases) / 1-tailed Significance)

[&]quot; " is printed if a coefficient cannot be computed

Scientific 2-2/3 -- Correlation Coefficients --

COMP5 COMP3 COMP4 COMP2 COMP1 .2420 -.0040 -.0649 .5086 1.0000 COMP1 (16) (16) (16) (16) (16) P=.367 P=.988 P=.811 P=.044 P=. .0103 .2953 .4258 1.0000 .2420 COMP2 (16) (16) (16) (16) (16) P= .970 P= .267 P= .100 P = .367 P = ..0103 1.0000 .1794 -.4323 -.0040 COMP3 (16) (16) (16) (16) (16) P=.988 P=.970 P=. $P = .506 \quad P = .094$ 1.0000 -.1751 .1794 .2953 COMP4 -.0649 (16) (16) (16) (16) P=.811 P=.267 P=.506 P=. P=.517

COMP5 .5086 .4258 -.4323 -.1751 1.0000 (16) (16) (16) (16) (16) (16) P= .044 P= .100 P= .094 P= .517 P= .

Scientific 3-2/3

-- Correlation Coefficients --

	COMP1 COMP2 COMP3 COMP4 COM	P5
COMP1	1.0000 .6883 .7023 .5726 .4294 (10) (10) (10) (10) (10) P= . P= .028 P= .024 P= .084 P= .216	
COMP2	.6883 1.0000 .6833 .6482 .8250 (10) (10) (10) (10) (10) P= .028 P= . P= .029 P= .043 P= .003	
COMP3	.7023 .6833 1.0000 .6690 .4212 (10) (10) (10) (10) (10) P= .024 P= .029 P= . P= .034 P= .225	
COMP4	.5726 .6482 .6690 1.0000 .7222 (10) (10) (10) (10) (10) P= .084 P= .043 P= .034 P= . P= .018	
COMP5	.4294 .8250 .4212 .7222 1.0000 (10) (10) (10) (10) (10) P= 216 P= 003 P= .225 P= .018 P= .	

Attribute Correlations for the class XYPlot (GUI domain)

All responses

-- Correlation Coefficients --

GUI 2-2/3

-- Correlation Coefficients --

COMP5 COMP1 COMP2 COMP3 COMP4 .1718 .7130 .6419 COMP1 1.0000 .5993 (13) (13) (13) (13) P=.030 P=.575 P=.006 P=.018 P=-.2907 .2590 .6173 COMP2 .5993 1.0000 (13) (13) (13) (13) P= .335 P= .393 P= .025 P = .030 P = .COMP3 .1718 -.2907 1.0000 .5568 -.1231 (13) (13) (13) (13) $P = .048 \quad P = .689$ $P = .575 \quad P = .335 \quad P = .$.2590 .5568 1.0000 .1809 .7130 COMP4 (13) (13) (13) (13) P=.006 P=.393 P=.048 P=. P=.554 .6173 -.1231 .1809 1.0000 COMP5 .6419 (13) (13) (13) (13) P = .018 P = .025 P = .689 P = .554 P = .

GUI 3-2/3

-- Correlation Coefficients --

COMP1 COMP2 COMP3 COMP4 COMP5

COMP1 1.0000 .8341 .0629 .5517 .2408 (8) (8) (8) (8) (8) P= . P= .010 P= .882 P= .156 P= .566

COMP2 .8341 1.0000 .3015 .7559 .2887 (8) (8) (8) (8) (8) P= .010 P= . P= .468 P= .030 P= .488

COMP3 .0629 .3015 1.0000 .5698 .8704 (8) (8) (8) (8) (8) (8) P= .882 P= .468 P= . P= .140 P= .005

COMP4 .5517 .7559 .5698 1.0000 .4364 (8) (8) (8) (8) (8) (8) P= .156 P= .030 P= .140 P= . P= .280

COMP5 .2408 .2887 .8704 .4364 1.0000 (8) (8) (8) (8) (8) (8) P= .566 P= .488 P= .005 P= .280 P= .

(Coefficient / (Cases) / 2-tailed Significance)

". " is printed if a coefficient cannot be computed

By visually examining the correlation coefficients computed for the survey answers, we find that:

1. For the class Conductor:

There exists some high correlation between all completeness questions, but only among answers given by respondents who listed their C++ programming experience level as 3, and their scientific computation programming experience level as 2 or 3. The group whose C++ programming experience is level 2, do not exhibit the same correlation among their answers.

2. For the class XYPLot:

There exists some correlation between COMP1 & COMP2, COMP1 & COMP4, COMP3 & COMP5.

Exceptions for C++ programming level 2, and GUI programming experience level 2 or 3 we find: There exists some correlation between COMP1 & COMP5, COMP2 & COMP5, COMP3 & COMP4.

Exceptions for C++ programming level 3, and GUI programming experience level 2 or 3 we find: There exists some correlation between COMP2 & COMP4, COMP3 & COMP4.

These results are summarized in the table below:

	COMP1	COMP2	COMP3	COMP4	COMP5
COMP1					
COMP2	Α				
COMP3	C3	C 3			
COMP4	Α	Α	Α		
COMP5	Α	Α	Α	C 3	

C. CORRECTNESS

CORREC2

- 11. The methods contained in the class correctly implement the functions that the real world object performs and that this class represents.
- 5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

CORREC3

- 12. The class methods meet your expectations in terms of the number of input and output parameters.
- 5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

CORREC5

- 13. The class methods meet your expectations in terms of the types of input and output parameters.
- 5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All responses

-- Correlation Coefficients --

CORREC2 CORREC3 CORREC5

(Coefficient / (Cases) / 1-tailed Significance)

". " is printed if a coefficient cannot be computed

Scientific 2-2/3 -- Correlation Coefficients --

CORREC2 CORREC3 CORREC5

CORREC2 1.0000 .7525 .4542 (16) (16) (16) P= . P= .001 P= .077

CORREC3 .7525 1.0000 .2120 (16) (16) (16) (16) P= .001 P= . P= .431

CORREC5 .4542 .2120 1.0000 (16) (16) (16) (16) P= .077 P= .431 P= .

(Coefficient / (Cases) / 2-tailed Significance)
"." is printed if a coefficient cannot be computed

Scientific 3-2/3

-- Correlation Coefficients --

CORREC2 CORREC3 CORREC5

CORREC2 1.0000 .6740 .2647 (10) (10) (10) P= . P= .033 P= .460

CORREC3 .6740 1.0000 .1150 (10) (10) (10) P= .033 P= . P= .752

CORREC5 .2647 .1150 1.0000 (10) (10) (10) P= .460 P= .752 P= .

Attribute Correlations for the class XYPlot (GUI domain) All responses

-- Correlation Coefficients --

CORREC2 CORREC3 CORREC5

(Coefficient / (Cases) / 1-tailed Significance)
"." is printed if a coefficient cannot be computed

GUI 2-2/3

-- Correlation Coefficients --

CORREC2 CORREC3 CORREC5

GUI 3-2/3

-- Correlation Coefficients --

CORREC2 CORREC3 CORREC5

(Coefficient / (Cases) / 2-tailed Significance)
" is printed if a coefficient cannot be computed

By visually examining the correlation coefficients computed for the survey answers, we find that:

1. For the class Conductor:

There exists some correlation between CORREC2 & CORREC3.

2. For the class XYPLot:

There exists some correlation between CORREC2 & CORREC3, CORREC2 & CORREC5.

These results are summarized in the table below:

CORREC2 CORREC3 CORREC5

CORRE C2

CORRE C3 A

CORRE C5 AG

D. GENERALITY

GEN1

14. It is hard to use the class with minor modifications to build another application in a related domain.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

GEN2

15. It is hard to use the class with minor modifications to build another application in a different domain.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

GEN3

16. It is possible to use the class as is to run more than one domain-related application.

5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All responses

-- Correlation Coefficients --

GEN1 GEN2 GEN3

Scientific 2-2/3 -- Correlation Coefficients --

GEN1 GEN2 GEN3

(Coefficient / (Cases) / 2-tailed Significance)
"." is printed if a coefficient cannot be computed

Scientific 3-2/3

-- Correlation Coefficients --

GEN1 GEN2 GEN3

Attribute Correlations for the class XYPlot (GUI domain)

All responses

-- Correlation Coefficients --

GEN2

GEN3

GEN1 1.0000 .2567 .5123 (26) (26) (26) P= . P= .103 P= .004

GEN1

GEN2 .2567 1.0000 .5263 (26) (26) (26) P= .103 P= . P= .003

GEN3 .5123 .5263 1.0000 (26) (26) (26) P= .004 P= .003 P= .

(Coefficient / (Cases) / 1-tailed Significance)
"." is printed if a coefficient cannot be computed
GUI 2-2/3

-- Correlation Coefficients --

GEN1 GEN2 GEN3

GEN1 1.0000 .3841 .4818 (13) (13) (13) P= . P= .195 P= .095

GEN2 .3841 1.0000 .3701 (13) (13) (13) P= .195 P= . P= .213

GEN3 .4818 .3701 1.0000 (13) (13) (13) P= .095 P= .213 P= .

GUI 3-2/3

-- Correlation Coefficients --

GEN2

GEN3

GEN1

1.0000 -.5136 .3612 **GEN1** (8) (8) (8) P= .193 P= .379

GEN2 -.5136 1.0000 .1707 (8) (8) (8) P = .686P = .193 P = .

.1707 1.0000 .3612 GEN3 (8) (8) (8) P = .379 P = .686 P = .

By visually examining the correlation coefficients computed for the survey answers, we find that:

1. For the class Conductor:

There isn't any significant correlation between the various aspects of generality.

2. For the class XYPLot:

There exist some correlations between GEN1 & GEN3, GEN2 & GEN3.

These results are summarized in the table below:

GEN1 GEN2 GEN3

GEN1

GEN2

GEN3 AG AG

Analysis: The generality attributes are readily apparent for the GUI class (it is not generic). However, respondents seemed to differ in evaluating the generality of the Conductor class. This may be due to a number of reasons, such as the questions were too similar, the questions were not clearly stated, the respondents had varying backgrounds/outlooks on what did or did not constitute generality in the Scientific Computation domain. Further investigation is warranted.

E. MAINTAINABILITY

MAINT1

17. It is difficult to follow the methods' text and documentation in order to understand the

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

MAINT2

18. It is difficult to make changes to the class methods for the purpose of making the code more run-time efficient.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

MAINT3

19. It is difficult to make changes to the class methods for the purpose of making the code more storage efficient.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All responses

-- Correlation Coefficients --

MAINT1 MAINT2 MAINT3

(Coefficient / (Cases) / 1-tailed Significance)

" . " is printed if a coefficient cannot be computed

Scientific 2-2/3 -- Correlation Coefficients --

MAINT1 MAINT2 MAINT3

Scientific 3-2/3

-- Correlation Coefficients --

MAINT1 MAINT2 MAINT3

(Coefficient / (Cases) / 2-tailed Significance)
. " is printed if a coefficient cannot be computed

Attribute Correlations for the class XYPlot (GUI domain)

All responses

-- Correlation Coefficients --

MAINT1 MAINT2 MAINT3

GUI 2-2/3

-- Correlation Coefficients --

MAINT1 MAINT2 MAINT3

MAINT1 1.0000 .5681 .6117 (13) (13) (13) P= . P= .043 P= .026

MAINT2 .5681 1.0000 .4236 (13) (13) (13) P= .043 P= . P= .149

MAINT3 .6117 .4236 1.0000 (13) (13) (13) P= .026 P= .149 P= .

(Coefficient / (Cases) / 2-tailed Significance)
"." is printed if a coefficient cannot be computed

GUI 3-2/3

-- Correlation Coefficients --

MAINT1 MAINT2 MAINT3

MAINT1 1.0000 7737 -.7288 (8) (8) (8) P= . P= .024 P= .040

MAINT2 .7737 1.0000 -.8256 (8) (8) (8) P= .024 P= . P= .012

MAINT3 -.7288 -.8256 1.0000 (8) (8) (8) P= .040 P= .012 P= .

By visually examining the correlation coefficients computed for the survey answers, we find that:

1. For the class Conductor:

There exists some correlation between all maintainability responses.

2. For the class XYPLot:

There exists some correlation between MAINT1 & MAINT2.

Exceptions for C++ programming level 2, and GUI programming experience level 2 or 3 we find: Some Correlation between MAINT1 & MAINT3.

Exceptions for C++ programming level 3, and GUI programming experience level 2 or 3 we find: None.

These results are summarized in the table below:

MAINT1 MAINT2 MAINT3

MAINT1

MAINT2 A

MAINT3 A C

F. MODULARITY

MOD1.1

20.1 It is difficult to add methods to the class without affecting other methods within the same class

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

MOD1.2

20.2 It is difficult to delete methods to the class without affecting other methods within the same class.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

MOD2

21. It is difficult to modify the class methods without impacting other methods within the same class.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

MOD3

22. It is easy to modify the class methods without impacting methods in other classes.

5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1Strongly Disagree 0 Not Applicable

MOD4

23. It is easy to change the name of class attributes without impacting methods in other classes.
5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1Strongly Disagree 0 Not Applicable

MOD5

24. It is easy to change the storage size of class attributes without impacting methods in other classes.

5 Strongly Agree 4 Agree 3 Neutral 2 Disagree 1 Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All Responses

-- Correlation Coefficients --

(Coefficient / (Cases) / 1-tailed Significance)

[&]quot;. " is printed if a coefficient cannot be computed

Scientific 2-2/3 -- Correlation Coefficients --

MOD1.1 MOD1.2 MOD2 MOD3 MOD4 MOD5

(Coefficient / (Cases) / 2-tailed Significance)

[&]quot;. " is printed if a coefficient cannot be computed

Scientific 3-2/3

-- Correlation Coefficients --

MOD4 MOD5 MOD3 MOD1.2 MOD2 MOD1.1 .9347 .5455 .0564 -.0493 .2704 MOD1.1 1.0000 (10) (10) (10) (10) (10) (10) P= .000 P= .103 P= .877 P= .892 P= .450 .6095 -.0657 .0575 .3739 .9347 1.0000 MOD1.2 (10) (10) (10) (10) (10) (10) P= .061 P= .857 P= .875 P= .287 P = .000 P = ..2712 .2940 1.0000 .3101 .5455 .6095 MOD2 (10) (10) (10) (10) (10) (10) P = .103 P = .061 P = .061 P = .383 P = .449 P = .410.3101 1.0000 .4709 .1287 .0564 -.0657 MOD3 (10) (10) (10) (10) (10) (10) P = .877 P = .857 P = .383 P = . P = .170 P = .723.2712 .4709 1.0000 .4126 -.0493 .0575 MOD4 (10) (10) (10) (10) (10) (10) P= .892 P= .875 P= .449 P= .170 P= . P= .236 .2940 .1287 .4126 1.0000 .2704 .3739 MOD5 (10) (10) (10) (10) (10) P= .450 P= .287 P= .410 P= .723 P= .236 P= .

(Coefficient / (Cases) / 2-tailed Significance)

[&]quot;. " is printed if a coefficient cannot be computed

Attribute Correlations for the class XYPlot (GUI domain)

All responses

-- Correlation Coefficients --

(Coefficient / (Cases) / 1-tailed Significance)

[&]quot;. " is printed if a coefficient cannot be computed

GUI 2-2/3

-- Correlation Coefficients --

MOD1.1 MOD1.2 MOD2 MOD3 MOD4 MOD5

GUI 3-2/3

-- Correlation Coefficients --

(Coefficient / (Cases) / 2-tailed Significance)

By visually examining the correlation coefficients computed for the survey answers, we find that:

1. For the class Conductor:

There exists some correlation between MOD1.1 & MOD1.2, MOD 1.2 & MOD2, and between MOD4 & MOD5.

2. For the class XYPLot:

There exists some correlation between MOD1.1 & MOD1.2, MOD4 & MOD5.

[&]quot;. " is printed if a coefficient cannot be computed

Exceptions for C++ programming level 2, and GUI programming experience level 2 or 3 we find: Some Correlation between MOD1.1 & MOD4, MOD 1.2 & MOD2, MOD1.2 & MOD4, MOD2 & MOD5.

Exceptions for C++ programming level 3, and GUI programming experience level 2 or 3 we find: Some Correlation between MOD1.2 & MOD4, MOD1.2 & MOD5, MOD2 & MOD3, MOD2 & MOD4, MOD3 & MOD4.

Note: some correlation appears between MOD2 & MOD4, for both GUI experienced programmers (levels 2 and 3), but not in the overall data that includes novice C++ programmers. This fact re-enforces and further justifies our decision to stratify the raw data and ignore those responses sent by novice programmers.

These results are summarized in the table below:

	MOD1.1	MOD1.2	MOD2	MOD3	MOD4	MOD5
MOD1	.1	•				
MOD1	.2 A					
MOD2	•	Α				
MOD3			G3			
MOD4	G2	G	G	G3		
MOD5	;	G3	G2		Α	

G. PORTABILITY

PORT1

25. The attributes used within the class methods are storage-size-dependant on the specific C++ compiler.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

PORT2

26. The attributes used within the class methods are type-dependant on the specific C++ compiler.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

PORT3

27. It is difficult to use the class on a different system configuration.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

PORT4

28. It is difficult to use the class with a different C++ compiler.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

PORT5

29. It is difficult to use the class with a different operating systems.

1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All responses

-- Correlation Coefficients --

PORT5 PORT1 PORT2 PORT3 PORT4 .4789 .1484 .1278 PORT1 1.0000 .3921 (33) (33) (33) (33) P=.012 P=.205 P=.002 P=.239 .7925 .7816 .5598 PORT2 .3921 1.0000 (33) (33) (33) (33) P = .000 P = .000 P = .000P = .012 P = ..7925 1.0000 .7867 .6598 PORT3 .1484 (33) (33) (33) (33) $P = .205 \quad P = .000 \quad P = .$ P = .000 P = .000PORT4 .4789 .7816 .7867 1.0000 .5001 (33) (33) (33) (33) P = .002 P = .000 P = .000 P = .000P = .002.6598 .5001 1.0000 PORT5 .1278 .5598 (33) (33) (33) (33) P=.239 P=.000 P=.000 P=.002 P=.

Scientific 2-2/3

-- Correlation Coefficients --

PORT5 PORT4 PORT2 PORT3 PORT1 .0000 .3187 -.0719 .4871 1.0000 PORT1 (16) (16) (16) (16) (16) P=.229 P=.791 P=.056 P=1.000 P= . .4285 .7716 .3187 1.0000 .8078 PORT2 (16) (16) (16) (16) (16) P= .000 P= .000 P= .098 P = .229 P = .1.0000 .6445 .5315 .8078 PORT3 -.0719 (16) (16) (16) (16) (16) $P = .791 \quad P = .000 \quad P = .$ $P = .007 \quad P = .034$ 1.0000 .2560 .7716 .6445 .4871 PORT4 (16) (16) (16) (16) P=.056 P=.000 P=.007 P=. P=.339 .2560 1.0000 .4285 .5315 PORT5 .0000 (16) (16) (16) (16) P=1.000 P=.098 P=.034 P=.339 P=.

Scientific 3-2/3

-- Correlation Coefficients --

-	PORT1	PORT2	PORT3	PORT4	PORT5
PORT1	(10)	(10) (1	25 .3943 (0) (10) = .212 P=	(10)	456
PORT2	(10)	(10) (1	.27 .8462 10) (10) = .003 P =	(10)	.007
PORT3	(10)	(10) (000 .9627 10) (10) P= . P=	(10)	.000
PORT4	(10)	(10) (27 1.0000 10) (10) P= .000 P	(10)	.000
PORT5	(10)	(10) (89 .9476 10) (10) P= .000 P	(10)	=.

Attribute Correlations for the class XYPlot (GUI domain)

All responses

-- Correlation Coefficients --

GUI 2-2/3

-- Correlation Coefficients --

PORT4 PORT5 PORT1 PORT2 PORT3 .2300 PORT1 1.0000 .5567 -.1494 .2961 (13) (13) (13) (13) P=.048 P=.626 P=.326 P=.450 .5509 .2558 .1539 .5567 1.0000 PORT2 (13) (13) (13) (13) $P = .048 \quad P = .$ P= .051 P= .399 P= .616 .5509 1.0000 .2609 .2336 -.1494 PORT3 (13) (13) (13) (13) P= .626 P= .051 P= . P= .389 P= .442 .2609 1.0000 .9361 .2961 .2558 PORT4 (13) (13) (13) (13) P=.326 P=.399 P=.389 P=. P=.000

PORT5 .2300 .1539 .2336 .9361 1.0000 (13) (13) (13) (13) (13) (13) P= .450 P= .616 P= .442 P= .000 P= .

GUI 3-2/3

-- Correlation Coefficients --

PORT1 PORT2 PORT3 PORT4 PORT5

By visually examining the correlation coefficients computed for the survey answers, we find that:

1. For the class Conductor:

There exist significant correlations between all portability responses among answers given by respondents who listed their C++ programming experience level as 3, and their scientific computation programming experience level as 2 or 3. The group whose C++ programming experience is level 2, do not exhibit the same degree of correlation among their answers although they are consistent with the other group's responses.

2. For the class XYPLot:

There exists some correlation between PORT1 & PORT2, PORT1 & PORT4, PORT2 & PORT3, PORT3 & PORT4, PORT4 & PORT5.

Exceptions for C++ programming level 2, and GUI programming experience level 2 or 3 we find: none.

Exceptions for C++ programming level 3, and GUI programming experience level 2 or 3 we find: Some Correlation between PORT1 & PORT3, PORT2 & PORT4, PORT2 & PORT5, PORT3 & PORT5.

These results are summarized in the table below:

PORT1		PORT2	PORT3	PORT4	PORT5
PORT1					
PORT2	Α				
PORT3	Α	Α			
PORT4	Α	Α	Α		
PORT5	C	Α	Α	Α	

H. UNDERSTANDABILITY

UNDERS1

- 30. It is hard to keep track of the attributes defined in the class.
- 1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

UNDERS2

- 31. It is hard to keep track of the number of functions implemented in each method.
- 1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

UNDERS3

- 32. It is hard to keep track of those methods within this class that share the same name.
- 1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

UNDERS5

- 33. It is hard to keep track of those classes or methods in other classes, that this class's methods impact.
- 1 Strongly Agree 2 Agree 3 Neutral 4 Disagree 5 Strongly Disagree 0 Not Applicable

Sorted Data: Class Conductor, Scientific Computation Domain All responses

-- Correlation Coefficients --

UNDERS1 UNDERS2 UNDERS3 UNDERS5

Scientific 2-2/3

-- Correlation Coefficients --

UNDERS1 UNDERS2 UNDERS3 UNDERS5

Scientific 3-2/3

-- Correlation Coefficients --

UNDERS1 UNDERS2 UNDERS3 UNDERS5

Attribute Correlations for the class XYPlot (GUI domain)

All responses

-- Correlation Coefficients --

UNDERS1 UNDERS2 UNDERS3 UNDERS5

GUI 2-2/3

-- Correlation Coefficients --

UNDERS1 UNDERS2 UNDERS3 UNDERS5

GUI 3-2/3

-- Correlation Coefficients --

UNDERS1 UNDERS2 UNDERS3 UNDERS5

By visually examining the correlation coefficients computed for the survey answers, we find that:

For the class Conductor:

There exists a significant correlation between all UNDERS1 & UNDERS2, but only among answers given by respondents who listed their C++ programming experience level as 3, and their scientific computation programming experience level as 2 or 3. The group whose C++ programming experience is level 2, do not exhibit the same correlation among their answers for these aspects of understandability.

However, both groups show some correlation between answers to UNDERS3 & UNDERS5.

2. For the class XYPLot:

There exists some correlation between UNDERS2 & UNDERS3, UNDERS2 & UNDERS5, UNDERS3 & UNDERS5.

Exceptions for C++ programming level 2, and GUI programming experience level 2 or 3 we find: None.

Exceptions for C++ programming level 3, and GUI programming experience level 2 or 3 we find: None.

These results are summarized in the table below:

UNDERS1 UNDERS2 UNDERS3 UNDERS5
UNDERS1
UNDERS2 C3
UNDERS3 G
UNDERS5 G A

Analysis: Upon inspection of the survey questions, we find that the aspects that do not show a correlation with each other are measuring disjoint aspects (e.g. attribute and method properties do not necessarily correlate within the same class).

5.2 Expected Results

As a result of this research, it is expected that a method will be identified and validated through an empirical study, whereby measures for a set of static, syntactic quality measurements that can be computed automatically from OO code, will empower software development managers to reach valid conclusions about the indirectly measurable quality attributes such as reliability and maintainability that have, to date, eluded measurement. Direct results that are expected of this research are:

- 1. The identification, via a set of properties, of a validated set of measurements for OO code components that measure static, syntactic attributes of the code.
- 2. The definition of a taxonomy that maps directly measurable software quality attributes to a set of quality attributes that can only be indirectly measured.
- 3. The identification, via an empirical study, of a validated method for the measurement of software quality attributes that cannot be measured directly from the software.

It is expected that these results will fill the gap that still exists in the area of software quality measurement thereby enabling software development managers to control production quality and cost. The method that will be validated during this research will allow the reliable certification of software artifacts, and will facilitate their reuse in a product-line manufacturing process. As a result, the software engineering field may mature in terms of acquiring a predefined set of product standards and product quality certification procedures.