浙江大学 20_20_ - 20_21_学年_春夏_学期 《 大学物理乙1》课程期末考试试卷(A)

课程号: 761T0030_, 开课学院: <u>物理学系</u>,

考试试卷: A √卷、B 卷 (请在选定项上打 √)

考试形式:闭√、开卷(请在选定项上打√),允许带 无存储功能的计算器_入场

诚信考试,沉着应考,杜绝违纪.

考生姓名	学号				任课老师		编号	<u> </u>
题序	填空	计 1	ो 2	计3	计4	计 5	计6	总 分
得分								
评卷人								

普适气体常量 $R = 8.31 \text{ (J·mol}^{-1} \cdot \text{K}^{-1} \text{)}$ 阿伏伽德罗常量 $N_A = 6.02 \times 10^{23} \text{ (mol}^{-1} \text{)}$ 真空介电常数 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ (C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2} \text{)}$ 电子静止质量 $m_e = 9.11 \times 10^{-31} \text{ (kg)}$

玻尔兹曼常量 $k=1.38\times10^{-23}$ (J·K⁻¹) 真空中光速 $c=3\times10^8$ (m/s) 电子伏特 1 (eV)=1.6×10⁻¹⁹ (J) 1 atm=1.013×10⁵ (Pa)

一、填空题: (每题 4 分, 共 48 分)

1. (本题 4分) 3567

如图所示为振幅矢量图示法表示的简谐振动,其中矢量长度为 $0.04\,\mathrm{m}$,旋转角速度 $\omega=4\pi\,\mathrm{rad/s}$. 若以余弦函数表示此简谐振动,则该振动的表达式为

2. (本题 4分) w001

已知一简谐振动系统的振幅为 A,则该简谐振动的动能为总能量的 2/3 时,振子的振动 位移为 x=

3. (本题 4分) w002

平面简谐波在同一各向同性的均匀媒质中传播,波的周期为 2 s. 在波线上有 A、B 两点,B 点的相位比 A 点落后 $\pi/6$. 若已知 A、B 两点间的距离为 2.0 cm,则平面简谐波的波长为 $\lambda=$ ____cm,波速为 u= ___cm/s.

4. (本题 4分) w003

两列相干的平面简谐波在同一各向同性的均匀媒质中传播,若它们的强度之比为 $I_1/I_2=4$,则两列波的振幅之比为 $A_1/A_2=$

5. (本题 4分) w004 汽车与火车的速度均为 10 m/s,火车汽笛的固有频率为 500 Hz,空气中的声速为 340 m/s,若两车沿同一直线且同方向行驶,则汽车上的观测者测得火车汽笛声的频率为 以 Hz;若两车沿同一直线且相互远离,则汽车上的观测者测得火车汽笛声
6. (本题 4 分) w005 处于平衡态的刚性双原子分子理想气体,压强为 p,体积为 V,则它的内能为
7. (本题 4 分) w006 设氧气分子的有效直径为 d = 3.0×10 ⁻¹⁰ m,则标准状态下,氧气分子的平均速率为m/s、平均自由程为m.
8. (本题 4 分) w007 在常温下,氦气可视为刚性分子的理想气体,则氦气的定压摩尔热容为
9. (本题 4分) w008
10. (本题 4 分) w009 v mol 的刚性双原子理想气体由平衡态 A (V,T) 经历某一热力学过程后到平衡态 B ($2V$ T),则该过程中理想气体熵的增量为 ΔS =
$11.$ (本题 4 分)w010 静电场中,若一高斯面所包围的体积内,电荷的代数和为 $\Sigma q=8.850\times 10^{-12}$ C,则穿过整个高斯面的电通量为
12. (本题 4分) w011 如图所示,正电荷 Q 均匀地分布在长为 L 的细棒上,则在棒的延长线且离棒中心为 r 处的电场强度大小为

二、计算题: (共6题, 共52分; 必须有必要的解题过程)

1、(本题 10分) w012

如图所示,一劲度系数为 k 的轻弹簧,一端固定在墙上,另一端连接一质量为 m_1 的物体 A、物体 A 置于光滑的水平桌面上,现通过一质量为 m、半径为 R 的定滑轮 B (可视为 勾质圆盘) 用细绳连接另一质量为 m_2 的物体 C. 设细绳不可伸长,且与滑轮间无相对滑动,若以系统平衡时 A 的质心处为坐标原点,水平向右为 x 轴正向,试求系统的振动角频率.

2. (本题 10分) jt001

一沿x轴负方向传播的平面简谐波,波速为 1 m/s,t=2 s 时的波形图如图所示. 试求: (1) x=0 m 处质点的振动方程; (2) 该行波的波函数.

3. (本题 8 分) w013

 S_1 和 S_2 为同一各向同性均匀媒质中的两相干波源,波源的振动方程可分别表示为 y_1 = $0.1\cos(2\pi t)$ m, y_2 = $0.1\cos(2\pi t+\pi)$ m,两列波传播到 P 点相遇. 已知波速 u = 20 m/s, PS_1 = 40 m, PS_2 = 50 m,试求 P 点合振动的振幅.

4. (本题 8 分) w014

在容积为 2.0×10^{-3} m³ 的容器中,有内能为 6.75×10^2 J 的刚性双原子分子的理想气体. 试求: (1) 气体的压强: (2) 若容器内分子总数为 5.4×10^{22} 个,分子的平均平动动能和气体的温度.

5. (本题 8分) w015

一定量的某种理想气体进行如图所示的循环过程. 已知气体在状态 A 的温度为 $T_A = 300$ K, 试求:

- (1) 气体在状态 B、C 的温度;
- (2) AB 过程中气体对外所做的功;
- (3) 整个循环过程中, 气体与外界交换的净热量.

6. (本题 8分) w016

如图所示,无限长平行直导线相距为 r_0 ,均匀带有等量异号电荷,电荷线密度为 λ . 图中 P 点到左直导线的垂直距离为x,试求:

- (1) 左直导线在 P 点产生的电场强度;
- (2) 两直导线在 P 点产生的电场强度;
- (3) 每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.

2020-2021 学年春夏学期《大学物理乙 1》期末考试试卷参考答案 A

一、填空题: (每题 4 分, 共 48 分)

1.
$$x = 0.04\cos(4\pi t - \frac{\pi}{2})$$

2.
$$\frac{1}{2}kx^2 = (1 - \frac{2}{3})\frac{1}{2}kA^2$$
, $x^2 = \frac{1}{3}A^2$, $x = \pm \sqrt{\frac{1}{3}}A = \pm \frac{\sqrt{3}}{3}A$

3.
$$\Delta \varphi = 2\pi \frac{\Delta x}{\lambda}$$
, $\frac{\pi}{6} = 2\pi \frac{2.0}{\lambda}$, $\lambda = 24$ cm. $u = \frac{\lambda}{T} = \frac{24}{2} = 12$ cm/s

4.
$$\frac{1}{2}\rho uA_1^2\omega^2: \frac{1}{2}\rho uA_2^2\omega^2 = 4:1: A_1^2: A_2^2 = 4:1: A_1/A_2 = 2$$

5.
$$v_1 = \frac{u + v_{R1}}{u - v_{s1}} v = \frac{340 + 10}{340 - (-10)} \times 500 = 500 \text{ Hz}$$
, $v_2 = \frac{u + v_{R2}}{u - v_{s2}} v = \frac{340 + (-10)}{340 - (-10)} \times 500 = 471.4 \text{ Hz}$

6.
$$E = v \frac{i}{2} RT = \frac{i}{2} pV = \frac{5}{2} pV$$

7.
$$\overline{v} = \sqrt{\frac{8RT}{\pi M}} = 425 \text{ m/s}, \quad \overline{\lambda} = \frac{kT}{\sqrt{2\pi d^2 p}} = 9.3 \times 10^{-8} \text{ m}$$

8.
$$i=3$$
, $C_{p,m} = \frac{i}{2}R + R = \frac{5}{2}R$

9.
$$\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{273}{373} \approx 26.8\%$$
, $W = \eta Q_{\text{W}} = 1000 \times 26.8\% = 268 \text{ J}$. $Q_2 = Q_1 - W = 732 \text{ J}$

10.
$$\Delta S = \nu R \ln \frac{V_2}{V_1} = \nu R \ln 2$$

11.
$$\iint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \sum_{in} q_i = \frac{1}{\varepsilon_0} \sum_{i} q = 1 \text{ N} \cdot \text{m}^2/\text{C}$$

12.
$$E = \int dE = \int_{-U^2}^{U^2} \frac{Q dx}{4\pi \varepsilon_0 L (r - x)^2} = \frac{Q}{\pi \varepsilon_0 (4r^2 - L^2)}$$

二、计算题: (共6题,共52分)

1. 解: 平衡位置时,弹簧的伸长为:
$$x_0 = \frac{m_2 g}{k}$$
,

当A的质心位于x处时

对 A:
$$T_1 - F = m_1 a$$
, $F = k(x_0 + x)$

对 B:
$$T_2R - T_1R = I\alpha$$
, $I = \frac{1}{2}mR^2$

对 C:
$$m_2g - T_2 = m_2a$$
, $a = R\alpha$

$$a = -\frac{k}{m_1 + m_2 + (m/2)}x \qquad \overrightarrow{\text{EL}}: \qquad \frac{d^2x}{dt_2} + \frac{k}{m_1 + m_2 + (m/2)}x = 0$$

$$\omega = \sqrt{\frac{k}{m_1 + m_2 + (m/2)}}$$

2. M: (1)
$$A = 0.05 \text{ m}$$
; $\lambda = 4 \text{ m}$; $u = 1 \text{ m/s}$; $\omega = 2\pi v = 2\pi \frac{u}{\lambda} = \frac{\pi}{2} \text{ (rad/s)}$

$$x = 0$$
 $\&$ $y(0,2) = 0.05\cos(\frac{\pi}{2} \times 2 + \varphi) = 0$; $\exists v(0,2) > 0$, $\exists x + \varphi = \frac{3\pi}{2}$, $\varphi = \frac{\pi}{2}$ $\exists x \neq 0$

o 点的振动方程为:
$$y(0,t) = 0.05\cos(\frac{\pi}{2}t + \frac{\pi}{2})$$
 (m) 或 $y(0,t) = 0.05\cos(\frac{\pi}{2}t - \frac{3\pi}{2})$ (m)

(2) 波函数:
$$y = 0.05\cos\left[\frac{\pi}{2}(t+x) + \frac{\pi}{2}\right]$$
 (m) 或: $y = 0.05\cos\left[\frac{\pi}{2}(t+x) - \frac{3\pi}{2}\right]$ (m)

3. 解:
$$v = \frac{\omega}{2\pi} = 1 \,\text{Hz}$$
, $\lambda = \frac{u}{v} = \frac{20}{1} = 20 \,\text{m}$

$$\Delta \phi = \varphi_2 - \varphi_1 - 2\pi \frac{r_2 - r_1}{\lambda} = \pi - 2\pi \frac{50 - 40}{20} = 0$$
 干涉相强
$$A = A_1 + A_2 = 0.2 \,\text{m}$$

(2)
$$T = \frac{p}{nk} = \frac{pV}{kN} = 362.3 \text{ K}, \quad \overline{\varepsilon}_k = \frac{3}{2}kT = 7.5 \times 10^{-21} \text{ J}$$

或:
$$E_k = \frac{3}{i}E = \frac{3}{5}E = 4.05 \times 10^2 \text{ J}$$
, $\overline{\varepsilon}_k = \frac{E_k}{N} = 7.5 \times 10^{-21} \text{ J}$, $T = \frac{2\overline{\varepsilon}_k}{3k} = 362.3 \text{ K}$

5. 解: 由图,
$$p_A = 300 \text{ Pa}$$
, $p_B = p_C = 100 \text{ Pa}$; $V_A = V_C = 1 \text{ m}^3$; $V_B = 3 \text{ m}^3$;

(1) C
$$\rightarrow$$
A 为等体过程, $p_A/T_A = p_C/T_C$, $T_C = \frac{p_C}{p_A}T_A = 100 \text{ K}$

B
$$\rightarrow$$
 C 为等压过程, $V_{\rm B}/T_{\rm B} = V_{\rm C}/T_{\rm C}$, $T_{\rm B} = \frac{V_{\rm B}}{V_{\rm C}}T_{\rm C} = 300~{\rm K}$

(2)
$$W_{AB} = \frac{1}{2}(p_A + p_B) \cdot (V_B - V_C) = 400 \text{ J}$$
, $W_{BC} = p_B(V_C - V_B) = -200 \text{ J}$, $W_{CA} = 0$.

(3)
$$W = W_{AB} + W_{BC} + W_{CA} = 200 \text{ J}, \quad \Delta E = 0, \quad Q = W + \Delta E = 200 \text{ J}$$

6. 解: (1)
$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \sum_{in} q_i$$
, $E_1 = \frac{\lambda}{2\pi\varepsilon_0 x}$, 方向为 x 正向; 或: $\vec{E}_1 = \frac{\lambda}{2\pi\varepsilon_0 x} \vec{i}$

(2)
$$\bar{E} = \bar{E}_1 + \bar{E}_2 = \frac{\lambda}{2\pi\varepsilon_0} \left(\frac{1}{x} + \frac{1}{r_0 - x}\right) \bar{i} = \frac{\lambda r_0}{2\pi\varepsilon_0 x (r_0 - x)} \bar{i}$$
 或方向为 x 正向

(3)
$$F_{+} = \lambda \bar{E}_{-} = \frac{\lambda^2}{2\pi\varepsilon_0 r_0} \bar{i}$$

$$F_{-} = -\lambda \bar{E}_{+} = -\frac{\lambda^{2}}{2\pi\varepsilon_{0}r_{0}} \,\bar{i}$$

显然有
$$\bar{F}_{+} = -\bar{F}_{-}$$
,相互作用力大小相等,方向相反,两导线相互吸引.

