

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Redes Móveis e Sem Fios

Lab 1

Trabalho realizado por:	$N\'umero:$
Diogo Moura	86976
Diogo Alves	86980
Luís Crespo	87057

Turno L03 - Grupo 1 - 5a feira 14h:00m-15h30m

Conteúdo

1	Intr	roduçã	0	1
2 Work Description		cription	1	
2.1 Impact of Distance in Ad Hoc Point-to-Point Communications		Impac	t of Distance in Ad Hoc Point-to-Point Communications	1
		2.1.1	Maximum communication range	1
		2.1.2	Impact of distance and packet size.	
			Application throughput, message latency (s), percentage of packets received with errors	2
		2.1.3	Impact of distance and packet size with rtsThreshold $= 500B$.	
			Application throughput, message latency (s), percentage of packets received with errors	4
		2.1.4	Communication range with backgroundNoise.power=-84dBm	6
	2.2	Perfor	mance of IEEE 802.11 Ad Hoc under Contention	6
		2.2.1	Average total throughput	7
		2.2.2	Average total throughput outside of interference range	7
		2.2.3	Average total throughput outside of interference range and with $\it rtsThreshold=500$	8
		2.2.4	Based on the simulations performed in Q.2.2.1, calculate the average total through-	
			put measured at the MAC layer and compare with the application layer throughput.	
			Explain the found differences	9
	2.3 Performance in Infrastructure Mode		10	

1 Introdução

Neste trabalho estudamos, na 1ª secção, a influência da distância de comunicação, tamanho dos pacotes, ruído na comunicação e dum protocolo CSMA/CA (RTS/CTS), abstraindo-nos da comunicação com vários terminais de modo a estudar esta influência destes parâmetros de forma isolada na comunicação, nomeadamente no througput, MAC retries e delay.

Na 2ª secção do trabalho, estudamos a comunicação à luz desses mesmos parâmetros, adicionando-se uma nova variável que é a existência de vários terminais. Assim, estuda-se uma possível solução para resolver este problema, o protocolo de CSMA/CA, o RTS/CTS, que diminui a probabilidade de colisão entre pacotes.

Na $3^{\underline{a}}$ secção estuda-se a utilização de um *access point*, uma infraestrutura de comunicação utilizada para estender o alcance da comunicação.

O estudo da influência destes parâmetros e soluções é importante para o dimensionamento de uma rede de comunicação sem-fios num cenário real com um ou vários terminais.

2 Work Description

2.1 Impact of Distance in Ad Hoc Point-to-Point Communications

No simulador definiu-se o cenário descrito no enunciado para comunicação de duas entidades, o cliente e o servidor.

2.1.1 Maximum communication range

O Two-Ray Model que diz que a potência do sinal recebido é dada por

$$P_r = \frac{P_t \cdot G_t \cdot G_r \cdot \lambda^2}{(4 \cdot \pi \cdot d)^2} \tag{1}$$

se a distância for inferior à distância de crossover $(d < d_c)$, ou seja, caso o sinal se propague em free space e segundo

$$P_r = \frac{P_t \cdot G_t \cdot G_r \cdot (h_t \cdot h_r)^2}{d^2} \tag{2}$$

se a distância for superior à distância de crossover $(d > d_c)$, ou seja, caso exista apenas uma única reflexão no solo. A distância de crossover é dada por

$$d_c = \frac{4.\pi . h_t . h_r}{\lambda} \tag{3}$$

e substituindo os valores correspondentes ao cenário em causa obtém-se $d_c = 100.53 \,\mathrm{m}$.

A distância máxima de comunicação corresponde a uma potência de recepção igual à sensibilidade do receptor (-85 dBm). Assim, através da equação (1), deduz-se

$$d_{max} = \sqrt{\frac{P_t \cdot G_t \cdot G_r \cdot \lambda^2}{P_r \cdot (4 \cdot \pi)^2}} \tag{4}$$

e obtém-se $d_{max} = 2122.66 \,\mathrm{m}$. Como a esta distância é superior à distância de crossover e a equação utilizada é para propagação em *free space*, esta expressão não é valida nesta situação. Utiliza-se portanto a equação (2),

$$d_{max} = \sqrt[4]{\frac{P_t \cdot G_t \cdot G_r \cdot (h_t \cdot h_r)^2}{P_r}}$$
 (5)

e obtém-se $d_{max} = 274.674 \,\mathrm{m}$ que corresponde à máxima distância de comunicação calculada teoricamente.

Através do simulador, variando a distância entre o cliente e o servidor verificou-se que a distância a partir da qual não eram recebidos pacotes no servidor corresponde à calculada teoricamente.

2.1.2 Impact of distance and packet size.

Application throughput, message latency (s), percentage of packets received with errors

De forma a saturar a rede, utilizou-se um tamanho de pacote de 25 octetos e uma distância entre cliente e servidor de 1 m e diminuiu-se sucessivamente o intervalo entre pacotes até se verificar uma saturação no número de pacotes recebidos no servidor. Desta forma, obteve-se um intervalo entre pacotes de 0.05 ms. Com este intervalo, simulou-se durante 20 s o cenário para 25, 600 e 1100 octetos e para distâncias entre 1 m e 275.67 m. Dos resultados guardou-se o valor dos pacotes recebidos no servidor para calcular o throughput, o end to end delay para calcular a latência da mensagem e os pacotes recebidos com erros de forma a calcular a sua percentagem. Para além disto, calculou-se também o número médio de retries na camada MAC do cliente através da fórmula

$$averageMACretries = \frac{sentToLower : count(client) - sentToUpper : count(srv)}{sentToLower : count(client)}$$
 (6)

A partir dos dados retirados da simulação construiu-se o gráfico da Figura 1.

Analisando o gráfico da Figura 1, verifica-se que quanto maior o número de octetos, maior é o throughput. Isto acontece porque cada pacote tem um tamanho de overhead fixo. Assim, a percentagem de overhead em pacotes pequenos é superior à percentagem de overhead em pacotes maiores, por este motivo, o throughput ao nível da aplicação é superior em pacotes maiores. Verifica-se também que não há muita variação do throughput com a distância, com excepção nos últimos valores (distância superior ao alcance

Figura 1: Throughput como função da distância entre os nós.

máximo), em que o throughput passa repentinamente para 0. Isto acontece porque se trata de um simulador, ou seja, não corresponde exatamente à realidade, de facto, no código do simulador, encontra-se um if o que explica este comportamento. Numa situação real, seria de esperar um decréscimo do throughput à medida que a distância aumenta.

Figura 2: Latency como função da distância entre os nós.

Quanto à latência, verifica-se pelo gráfico da figura 2 que esta é tanto maior quanto maior é o tamanho do pacote e varia muito pouco com a distância, uma vez que neste caso o tempo de propagação (à velocidade da

luz) é desprezável face ao tempo de transmissão (à velocidade de 1Mbps), somado ao tempo de processamento do pacote nos vários níveis.

Em relação ao número médio de *retries* MAC (figura 3) , para este caso, como existe só um nó a transmitir e não existe outro tipo de interferência, este número é praticamente sempre 0.

Figura 3: $N^{\underline{o}}$ médio de retries MAC como função da distância entre os nós.

2.1.3 Impact of distance and packet size with rtsThreshold = 500B.

Application throughput, message latency (s), percentage of packets received with errors

Repetiu-se o cenário da alínea anterior mas com o campo *rtsThreshold* de 500 B em vez de 3000 B. O campo *rtsThreshold* define qual é o tamanho mínimo do pacote a partir do qual será estabelecido um *handshake* RTS/CTS antes do envio do pacote. Na situação da alínea anterior nunca foi estabelecido nenhum *handshake* RTS/CTS.

A partir dos pacotes recebidos no servidor construiu-se o gráfico da Figura 4.

Comparando os valores obtidos nas duas situações, verifica-se que para um tamanho de pacote igual a 25 B os valores de throughput são exatamente iguais, como seria de esperar, uma vez que não foi utilizado handshake RTS/CTS (25 B < rtsThreshold). Relativamente aos pacotes de 600 B e 1100 B verifica-se uma ligeira diminuição do throughput face à situação anterior. Isto acontece porque nesta situação é utilizado o handshake RTS/CTS (600 B, 1100 B > rtsThreshold) e portanto, antes de cada pacote, o cliente envia um frame RTS (Request to send) ao servidor e espera pela resposta (frame CTS (clear to send)). Naturalmente, esta troca de frames faz com que o tempo de cada pacote aumente, o que reduz o throughput.

Figura 4: Throughput como função da distância entre os nós.

O handshake RTS/CTS é utilizado para reservar o canal e impedir que outros hosts transmitam durante um período de tempo, mas como neste caso não existem transmissões simultâneas, a utilização deste protocolo tem um efeito negativo no throughput.

Figura 5: Latency como função da distância entre os nós.

Relativamente à *latency* (figura 5) , esta tem um comportamento semelhante à situação anterior, assumindo apenas valores ligeiramente superiores quando é utilizado o *handshake* RTS/CTS.

Figura 6: N^{ϱ} médio de retries MAC como função da distância entre os nós.

Já quanto ao número médio de retries MAC (figura 6), para calcular este valor nas situações em que é usado RTS/CTS (600B, 1100B), temos que usar a fórmula

$$averageMACretries = \frac{(sentToLower: count(client)/2 - sentToUpper: count(srv))}{sentToLower: count(client)} \tag{7}$$

de modo a ter em conta os *frames* RTS enviados pelo cliente e recebidos na camada MAC do servidor e que não são enviados para a camada acima. Os resultados obtidos são, mais uma vez, muito semelhantes aos obtidos na questão anterior (praticamente 0).

2.1.4 Communication range with backgroundNoise.power=-84dBm

Alterou-se o valor do ruído de fundo para -84 dBm e simulou-se o cenário para pacotes de 25 B e várias distâncias. Verificou-se que o número de pacotes recebidos no servidor é 0 para todas as distâncias (incluindo d=0 m). Após uma análise mais detalhada, verificou-se que os pacotes que chegam à camada MAC do cliente não estão a ser enviados para a camada fisíca. De facto, como backgroundNoise.power=-84dBm > receiver.energyDetection = -85dBm, o cliente está constantemente a detetar outras transmissões e portanto a camada MAC nunca é capaz de enviar um pacote.

2.2 Performance of IEEE 802.11 Ad Hoc under Contention

Definiu-se o cenário no simulador que consiste em clientes distribuídos uniformemente segundo um círculo de raio a definir com centro no servidor com parâmetros de forma a saturar a rede.

2.2.1 Average total throughput

Nesta situação, utilizou-se um raio de 100 m sendo a distância máxima entre *hosts* de 200 m, que é inferior ao alcance máximo. Efectuou-se a simulação e os resultados estão no gráfico da Figura 7.

Figura 7: Throughput como função do número de clientes.

Como já foi referido, o throughput aumenta quando o tamanho dos pacotes aumenta devido ao overhead. Quanto à variação do throughput com o número de clientes, verificou-se que para pacotes de 25 octetos, o throughput mantém-se praticamente constante à medida que o número de clientes aumenta, mas para 600 e 1100 octetos, o throughput diminui à medida que o número de clientes aumenta. Isto pode ser explicado pelo facto de que cada host tem que "ouvir" o canal antes de começar a transmitir e se detectar alguma transmissão, tem que esperar um intervalo de tempo aleatório (backoff) aumentado exponencialmente cada vez que isto acontece. Deste modo, quantos mais hosts, maior a probabilidade de ser detetada uma colisão e maior se torna o intervalo de backoff, resultando num throughput mais baixo. Para um tamanho de pacote igual a 25 octetos isto não se verifica porque o tamanho de cada frame não é suficiente para que a probabilidade de colisão aumente significativamente.

2.2.2 Average total throughput outside of interference range

Para esta situação, o raio do círculo foi aumentado para 140m de forma a que dois hosts em lados opostos não estejam ao alcance um do outro. Observando o gráfico (Figura 8), verifica-se que o throughput decresce muito mais rapidamente com o aumento do número de clientes do que na situação anterior: para 600 e 1100 octetos, a partir dos 25 clientes o throughput já é praticamente zero. Isto acontece porque, como os hosts de lados opostos do círculo não estão ao alcance um do outro, eles não conseguem saber quando é

que o host do lado oposto está a transmitir e acabam por transmitir os dois simultaneamente, pelo que o servidor não consegue receber nenhum corretamente.

Figura 8: Throughput como função do número de clientes.

2.2.3 Average total throughput outside of interference range and with rtsThreshold=500

Nesta situação, alterou-se o parâmetro rtsThreshold para 500 B o que na prática significa que o protocolo RTS/CTS irá ser utilizado para o tamanho do pacote igual a 600B e 1100B. Através o gráfico (Figura 9), verifica-se que para 25 octetos, como seria de esperar, os valores de throughput são iguais à situação anterior. Já para 600 e 1100 octetos, verificamos que os valores de throughput são praticamente constantes à medida que se aumenta o número de clientes, Como neste caso é utilizado o handshake RTS/CTS, cada host precisa de enviar um frame RTS ao servidor e esperar pela resposta (frame CTS) antes de poder enviar o pacote de dados. Desta forma, é impossível dois hosts transmitirem pacotes de dados em simultâneo, mesmo que não estejam ao alcance um do outro, o que faz com que o throughput se mantenha praticamente constante.

Figura 9: Throughput como função do número de clientes.

2.2.4 Based on the simulations performed in Q.2.2.1, calculate the average total throughput measured at the MAC layer and compare with the application layer throughput. Explain the found differences

Voltando à simulação da questão 2.2.1 e retirando os pacotes recebidos ao nível da camada MAC, é possível calcular o *throughput* nesta camada.

Observando o gráfico obtido (figura 10) e comparando com o obtido na questão 2.2.1 (figura 7), verificase que os valores obtidos para o throughput são sempre superiores na nova situação, mas a diferença é mais acentuada quando o tamanho do pacote é de 25B. Isto acontece porque a camada MAC tem um header de tamanho fixo (31B neste caso) e portanto quanto menor for o payload da aplicação, maior será o throughput utilizado para transmitir este header.

Observámos também que, ao contrário do que acontece na situação anterior, nesta situação o throughput aumenta com o número de clientes. Como seria de esperar, como não está a ser utilizado o handshake RTS/CTS, todos os clientes enviam os pacotes em simultâneo e estes são recebidos na camada MAC do servidor, daí que o throughput aumente assintoticamente com o número de clientes. No entanto, inevitalmente muitos destes frames serão recebidos incorretamente devido a interferências entre as diferentes transmissões e serão perdidos na camada MAC, não contribuindo para o número de pacotes recebidos ao nível da aplicação, razão pela qual o throughput diminui ao nível da aplicação mas aumenta ao nível MAC.

Figura 10: Throughput como função do número de clientes.

2.3 Performance in Infrastructure Mode

Esta situação é bastante semelhante à da questão 2.2.1, com a excepção de que é usado um access point como intermediário entre o cliente e o servidor. Verifica-se então pelo gráfico (Figura 11) que os valores obtidos para o throughput são inferiores aos obtidos na alínea 2.2.1 e também decrescem mais rapidamente com o aumento do número de clientes. Analisando as estatísticas ao nível da camada MAC do access point, verificamos que isto se deve à existência de uma grande percentagem de frames que são perdidos devido ao overflow da fila de espera (packetDropQueueOverflow). De facto, o ritmo ao qual os pacotes chegam ao access point é superior ao ritmo ao qual este os consegue retransmitir, pelo que a fila eventualmente enche e há pacotes que são perdidos.

Figura 11: Throughput como função do número de clientes.

Na situação da alínea 2.2.1, como se tratava de uma ligação *ad-hoc*, os pacotes eram enviados pelos clientes e recebidos diretamente pelo servidor, pelo que não existia este problema uma vez que não passavam por filas de espera de retransmissão.