1.2. Используя понятие «сумма линейных подпространств», доказать неравенство ${\rm rk}\;({\rm A}+{\rm B})\leqslant {\rm rk}\;{\rm A}+{\rm rk}\;{\rm B},$ где A и B — матрицы порядка $m\times n$. При каких условиях имеет место равенство?

1.3. Доказать, что линейное пространство квадратных матриц порядка n является прямой суммой верхнетреугольных и кососимметричных матриц порядка n. Найти проекции матрицы $A = \begin{pmatrix} 1 & -2 & 5 \\ 2 & 3 & 4 \\ 5 & 1 & 1 \end{pmatrix}$ на каждое из этих подпространств параллельно другому подпространству.

Подпространству.

A
$$\in$$
 Mn . $A = A^7 + A^9 = A^7 + A^{97} + A^{10} - A^{10}$

Reprit perp Radown

 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$
 $A = \begin{pmatrix} 1 - 25 \\ 237 \\ 511 \end{pmatrix}$

2.1. В пространстве P - многочленов с действвительными коэффициентами степени не выше 3 даны подпространства $U = \langle 1+t+t^2+t^3; \ -1-2t+t^3 \rangle$ и $V = \langle -1-t+t^2-t^3; \ 2+2t+t^3 \rangle$. Доказать, что $P = U \oplus V$. Найти проекцию вектора $4+2t+4t^2+4t^3$ на подпространство U параллельно подпространству V.

2.2. Пусть L_1 и L_2 — подпространства конечномерного линейного пространства V. Доказать, что если $\dim (L_1 + L_2) = 1 + \dim (L_1 \cap L_2)$, то пересечение равно одному из этих подространств, а сумма другому.

dim Li= dim (Linlz) => dim lz=dim (linlz)

dim Li= dim (Linlz) => dim lz=dim (linlz)

dim Li=dim (Linlz) => dim lz=dim (linlz)

2.3. Найдите какую-нибудь максимальную линейно независимую систему векторов в \mathbb{R}^4 относительно подпространства решений СЛОУ

относительно подпространства решений СЛОУ
$$\begin{cases} x_1 + x_2 + x_3 &= 0 \\ x_3 + x_4 &= 0. \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 & 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 &= 0 \\ 0 - 1 \end{cases}$$

$$\begin{cases} 1 + x_2 + x_3 +$$