Dark Matter Halo: the behavior under tidial forces in M33

Adrien Masini¹
(LaTeX collaboration)

¹ University of Arizona Tucson, Az 85719, USA

(Dated: May 6, 2020) Submitted to AJ

ABSTRACT

The topic we are studying here is the behavior of Dark Matter halo due to mass loss. Understanding this behavior can help us understand how galaxies evolve and a better comprehension of dark matter itself. How does dark matter behave under the influence of tidal forces? We do not know much about dark matter and there is still a lot to discover about it. Especially what it is and the properties it has. In this study, we found that the density profile of M33's halo looks like a Hernquist profile until the point when the merger MW-M31 exert the greatest gravitational force on the halo. Then it start loosing mass mostly in the center. As we get further from the center, the trend looks similar as Hernquist profile. That first means that dark matter halos react to strong gravitational field in the same way as Baryonnic matter does. Also, we will be exploring cored theory in more details to explain what happens.

Keywords: Galaxy, Galaxy evolution, Local Group, Hernquist Profile, Dark matter halo, galaxy merger

1. INTRODUCTION

The behavior of the dark matter halo in M33 due to the tidal forces caused by MW and M31 is yet to be understood. M33 is a spiral galaxy, third most massive member of the local group with the Milky Way (MW) and Andromeda (M31). It is believed that M33 is a satellite of M31 because it is gravitationally bound to the Andromeda galaxy. In detail, we will quantify and plot the evolution of M33's dark matter halo while it orbits the MW-M31 system. Specifically, I will study the change in M33's dark matter profile owing to mass loss from tides and quantify the mass loss rate as a function of time.

According to the definition from Willman & Strader (2012) a packet of stars hold together by more than baryon matter and gravitation define a galaxy. Baryon matter means gas and stars. So a galaxy also bound stars with dark matter. Galaxy evolution is defined by the modification of the morphology and/or the internal dynamics due to collision, star age or the super massive black hole in the center (Willman & Strader 2012). The local group describes galaxies bound together by gravity and is composed of two major spiral galaxies Andromeda (M31) and the Milky Way (MW). A Hernquist profile is an analytic model shown by Lars Hernquist in 1990(Hernquist 1990). Dark matter halo represent all the dark matter that is tidaly bound to a galaxy. A galaxy merger is a new system of galaxies that has collided and are now bound to form a bigger galaxy.

Dark matter play an important role in galaxy formation and evolution. The depth of the potential well is increased by Dark Matter, which allow the galaxy to form stars by accretion of gas. Dark matter halo merge to form bigger structures, but as they merge, the smaller halo is not necessarily absorbed immediately and can become a sub-halo of the all structure (Delos 2019). This phenomenon is due to "Violent relaxation", defined from Lynden-Bell (1967) as a loss in the equilibrium of the system. The potential evolve due to a redistribution of the gravitational forces that

2 Masini

makes the kinetic energy of the stars chaotic. By studying how the density profile of a satellite sub-halo of smaller size evolves due to tidal forces, we will be able to understand how dark matter mass loss impacts how galaxies are able to retain their baryonic matter. Since most of the mass comes from the dark matter halo, if it is tydaly removed, it is easier for the baryonic matter to escape. We would be able to predict how a subhalo merge with a larger Dark Matter halo by understanding the evolution of the mass profile of dark matter due to tidal forces. Figure 1 below shows the density profile of a Dark Matter Halo as a function of radius at different times. This study did not take into account the dynamical friction between the small sub-halo and the larger halo that merged together. We will also ignore friction in our analysis. In this figure we can see how the density profile of a Dark Matter halo is distributed without any tidal forces acting on it. This model will be helpful to compare the result we get under tidal forces and owing to mass loss. We know almost nothing about the behavior of Dark Matter except that even though we cannot see it, it interacts with normal matter via gravity. That property will allow us to predict the behavior of Dark Matter structure as the galaxies and halos merge during a collision using a simulation. Also, Wechsler & Tinker (2018) describes well how galaxies and dark matter halos are connected.

Figure 1. Delos (2019) Density Profile Evolution Of Halo as a function of radius at different times.

An important question in the field is how the growth and evolution of galaxies is connected to the growth and evolution of dark matter halos. Scientists think that the Baryonic matter has a direct impact in the density profile of dark matter halo (Grillo 2012).

2. THIS PROJECT:

In this paper we will study the change in M33's dark matter profile owing to mass loss from MW and M31 tides and quantify the mass loss rate as a function of time.

We will be able to answer the connection of growth and evolution between the galaxy and the dark matter halo.

The galaxies are constantly changing under mass loss or gain. Analyzing how the density profile of the dark halo evolve over time owing to mass loss will describe the connection between dark matter halo and the galaxy

3. METHODOLOGY:

A plot of density profile shows how the density is distributed over some radius. Therefore, studying its evolution under some tidal forces I will show how the density profile of M33 halo evolve over time using snapshots as MW and M31 approaches one another. Figure 2 below is an example of density profile using different mass ratio of dark matter halo over stellar mass. This plot comes from Conroy et al. (2011) and give us more information about what the density profile of a dark matter halo look like ignoring mass loss.

Using the mass enclosed over some radius (30 Kpc) dividing by the volume we get a density. For the hernquist density, it is given From Hernquist (1990) by:

We worked out plots for density profile of halo in Lab 6. Density profile will help us analyze the behavior of dark matter halo under tidal forces and mass loss. This will makes more sense as MW and M31 merge together to result in a system with a strong gravitational potential that will make M33 dark matter halo to react significantly.

I expect the mass distribution to change fast due to mass loss and try to reach an equilibrium which will correspond to the initial trend.

Figure 2. Conroy et al. (2011) Dark Matter Halo density profile with different mass ratio.

$$\rho(r) = \frac{M}{2\pi} \frac{a}{r} \frac{1}{(r+a)^3},$$

Figure 3. Hernquist (1990) Hernquist Density as a function of radius.

4. RESULT:

The graph show the Hernquist density profile of M33 at snapshot 0, meaning our time frame. The tidal forces come mostly from M31 and is increasing as a function of time but is not enought for Halo to react significantly yet.

Figure 4. (Masini, 2020) Hernquist Density Profile of M33 galaxy today.

Figure 5 below show the density profile of the Dark Matter Halo of M33 galaxy. It is using snapshots 400 to 500 for the orbit the galaxy under the tidal influences of MW and M31, which correspond to 5.7 Gyr to 7.1 Gyr from now. Now the combined gravitational potential from the merger MW-M31 is huge and the Dark Matter Halo of M33 react immediately to the tidal forces.

Both plots have the same axis: logarithmic density in Y over a given radius in X. The density is given in Mass of the sun over spherical volume enclose using the given radius in X. The radius is given in Kilo Parsec.

5. DISCUSSION:

From the graph in figure 5, we can see that M33's Dark matter halo react really fast to the MW-31 system. In fact, we calculated in the code that the merger happened to be at 6.5 Gyr which represent the snapshot 455. Looking at the graph we see that the trend is pretty similar from 400 to 440 and in fact, it look almost the same from snapshot 0 to 440. But at snapshot 455 the density decrease faster and faster as time goes on. Moreover, mass loss can be

4 Masini

Figure 5. (Masini, 2020) Density Profile Of The M33's Dark Matter Halo from 5.7 Gyr to 7.1 Gyr.

observed later on where the density enclosed starts at near 0.5 Kpc at snap 400 and ends up starting around 2.5 Kpc for snapshot 500.

This result confirm our expectation of the fast respond of the halo due to the tidal forces.

The figure below from Boylan-Kolchin & Ma (2004) show the density profile of the halo core particles after a simulation of a merger at 5 Gyr. Even though the radius shown on the X axis is larger than our plot, we see the trend looks similar of our result in figure 5.

Figure 6. Boylan-Kolchin & Ma (2004) Density Profile of core particles of a collision simulation at 0 and 5 Gyr, as unit of density over some radius.

We see on figure 6 a similar trend that we got into our density profile in figure 5 from radius 2.5 Kpc to 7.5 Kpc and from 0 to about 1 $h^{-1}Kpc$.

In the literature, we can observe two different models of density profile. de Blok (2010) defined both the core and the cusp model. In the cusp model the density increase fast and is more centered at some points. The core model has a density that is approximately constant. Those models describe the way dark matter is spread inside galaxies.

6. CONCLUSIONS:

We studied the behavior of M33's dark matter halo owing mass loss in order to have a better understanding of dark matter and galaxy evolution.

Then we learned that tidal forces was affecting the halo and have a direct impact on his structure, the density of the halo. The density decrease like an exponential decay and look similar for about 6.5 billion years, until the MW-M31 system merge and create a strong gravitational field that perturb M33.

Exploring more about core/cusp models, we could look at the density profile of the merger (MW-M31) and see how its dark matter halo has evolved. We could also compare how the dark matter halo of M33 and the merger behave, does the mass loss from M33 halo goes into the new major halo?

7. ACKNOWLEDGMENTS:

Astropy: Price-Whelan et al. (2018), matpotlib: Hunter (2007) Numpy: van der Walt et al. (2011), Python: Van Rossum & Drake Jr (1995) Besla (2020)

REFERENCES

Besla, G. 2020

Boylan-Kolchin, M., & Ma, C.-P. 2004, Monthly Notices of the Royal Astronomical Society, 349, 1117–1129, doi: 10.1111/j.1365-2966.2004.07585.x

Conroy, C., Loeb, A., & Spergel, D. N. 2011, The Astrophysical Journal, 741, 72, doi: 10.1088/0004-637x/741/2/72

de Blok, W. J. G. 2010, Advances in Astronomy, 2010, 1–14, doi: 10.1155/2010/789293

Delos, M. S. 2019, Physical Review D, 100, doi: 10.1103/physrevd.100.063505

Grillo, C. 2012, The Astrophysical Journal, 747, L15, doi: 10.1088/2041-8205/747/1/115

Hernquist, L. 1990, ApJ, 356, 359, doi: 10.1086/168845

Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90, doi: 10.1109/MCSE.2007.55

Lynden-Bell, D. 1967, MNRAS, 136, 101, doi: 10.1093/mnras/136.1.101

Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science Engineering, 13, 22

Van Rossum, G., & Drake Jr, F. L. 1995, Python reference manual (Centrum voor Wiskunde en Informatica Amsterdam)

Wechsler, R. H., & Tinker, J. L. 2018, Annual Review of Astronomy and Astrophysics, 56, 435–487, doi: 10.1146/annurev-astro-081817-051756

Willman, B., & Strader, J. 2012, The Astronomical Journal, 144, 76, doi: 10.1088/0004-6256/144/3/76