

Multiunits and truncated networks

V. Batagelj

Fractiona approach

Truncated

Linking through a

Conclusions

References

Derived bibliographic networks

The impact of multi-person units and truncated networks

Vladimir Batagelj

UP FAMNIT Koper and IMFM Ljubljana

1340. sredin seminar Ljubljana, 22. november 2023

Outline

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractiona approach

Truncate

Linking through a

Conclusions

References

- 1 Multiple units
- 2 Fractional approach
- 3 Truncated networks
- 4 Linking through a network
- 5 Conclusions
- 6 References

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si Current version of slides (November 22, 2023 at 03:35): PDF https://github.com/bavla/biblio/

The multipersonality's effect on the results of bibliographic analyses

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractiona approach

Truncate networks

Linking through network

Conclusions

References

We would like to study the effect of multipersons in derived networks [5]. Let $\mathbf{M} = [m[u,v]]$ is a matrix on $U \times V$ and $\mathbf{C}_U = \{C_1,C_2,\ldots,C_k\}$ a partition of the set $U,\emptyset \subset C_i \subseteq U$, $C_i \cap C_j = \emptyset$ for $i \neq j$, and $\bigcup_i C_i = U$. The set U is the (ground truth) set of real units (persons). The partition \mathbf{C}_U corresponds to units (for example authors) identified by the network construction process. A cluster $C \in \mathbf{C}_U$ with |C| > 1 represents a multi-unit; and for |C| = 1 a correctly identified unit.

We introduce the *shrinking* transformation S of matrix \mathbf{M} by partition \mathbf{C}_U into $S_r(\mathbf{M}, \mathbf{C}_U) = \mathbf{S} = [s[C, v]]$ on $\mathbf{C}_U \times V$ determined by the rule

$$s[C, v] = \sum_{u \in C} m[u, v]$$

The shrinking transformation can be extended to a partition \mathbf{C}_V of the set V by

$$s[u,C] = \sum_{v \in C} m[u,v]$$

Multiunits' effect

Multiunits and truncated networks

ileerroi ko

V. Batagelj
Multiple units

......

approach

networks

Linking through network

Conclusions

References

or

$$S_c(\mathbf{M}, \mathbf{C}_V) = S_r(\mathbf{M}^T, \mathbf{C}_V)^T$$

and to partitions C_U and C_V of both sets by

$$S(\mathbf{M}, (\mathbf{C}_U, \mathbf{C}_V)) = S_c(S_r(\mathbf{M}, \mathbf{C}_U), \mathbf{C}_V)$$

Consider now the case of two compatible matrices $\mathbf{M} = [m[u,t]]$ on $U \times T$ and $\mathbf{N} = [n[t,v]]$ on $T \times V$. For a partition \mathbf{C}_U of the set U it holds

$$S_r(\mathbf{M} \cdot \mathbf{N}, \mathbf{C}_U) = S_r(\mathbf{M}, \mathbf{C}_U) \cdot \mathbf{N}$$

To check this let's denote with ${\bf L}$ and ${\bf R}$ the left and right sides of this expression. We have

$$I[C, v] = \sum_{n \in \mathbb{N}} \mathbf{M} \cdot \mathbf{N}[u, v] = \sum_{n \in \mathbb{N}} \sum_{t \in \mathbb{N}} m[u, t] \cdot n[t, v]$$

and

$$r[C,v] = \sum_{t \in T} S_r(\mathbf{M}, \mathbf{C}_U)[C,t] \cdot n[t,v] = \sum_{t \in T} (\sum_{u \in C_v} m[u,t]) \cdot n[t,v] = I[C,v]$$

Multiunits' effect

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractiona approach

Truncate

Linking through network

Conclusions

References

For the partition \mathbf{C}_V of the set V we get

$$S_c(\mathbf{M} \cdot \mathbf{N}, \mathbf{C}_V) = S_r((\mathbf{M} \cdot \mathbf{N})^T, \mathbf{C}_V)^T = S_r(\mathbf{N}^T \cdot \mathbf{M}^T, \mathbf{C}_V)^T =$$

$$= (S_r(\mathbf{N}^T, \mathbf{C}_V) \cdot \mathbf{M}^T)^T = \mathbf{M} \cdot S_r(\mathbf{N}^T, \mathbf{C}_V)^T = \mathbf{M} \cdot S_c(\mathbf{N}, \mathbf{C}_V)$$

Therefore

$$S_c(\mathbf{M} \cdot \mathbf{N}, \mathbf{C}_V) = \mathbf{M} \cdot S_c(\mathbf{N}, \mathbf{C}_V)$$

For partitions of both sets U and V we have

$$S(\mathbf{M} \cdot \mathbf{N}, (\mathbf{C}_U, \mathbf{C}_V)) = S_c(S_r(\mathbf{M} \cdot \mathbf{N}, \mathbf{C}_U), \mathbf{C}_V) =$$

$$= S_c(S_r(\mathbf{M}, \mathbf{C}_U) \cdot \mathbf{N}, \mathbf{C}_V) = S_r(\mathbf{M}, \mathbf{C}_U) \cdot S_c(\mathbf{N}, \mathbf{C}_V)$$

and finally

$$S(\mathbf{M} \cdot \mathbf{N}, (\mathbf{C}_U, \mathbf{C}_V)) = S_r(\mathbf{M}, \mathbf{C}_U) \cdot S_c(\mathbf{N}, \mathbf{C}_V)$$

Multiunits' effect

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractiona

approach

networks

Linking through a network

Conclusions

References

For $C_u \in \mathbf{C}_U$ and $C_v \in \mathbf{C}_V$ we have

$$S(\mathbf{M} \cdot \mathbf{N}, (\mathbf{C}_U, \mathbf{C}_V))[C_u, C_v] = S_c(S_r(\mathbf{M} \cdot \mathbf{N}, \mathbf{C}_U), \mathbf{C}_V)[C_u, C_v] =$$

$$\sum_{z \in C} S_r(\mathbf{M} \cdot \mathbf{N}, \mathbf{C}_U)[C_u, z] = \sum_{z \in C} \sum_{w \in C} \mathbf{M} \cdot \mathbf{N}[w, z] = \sum_{w \in C} \sum_{z \in C} \mathbf{M} \cdot \mathbf{N}[w, z]$$

In a special case of singelton clusters $\mathcal{C}_u = \{u\}$ and $\mathcal{C}_v = \{v\}$ we get

$$S(\mathbf{M} \cdot \mathbf{N}, (\mathbf{C}_U, \mathbf{C}_V))[\{u\}, \{v\}] = \sum_{w \in \{u\}} \sum_{z \in \{v\}} \mathbf{M} \cdot \mathbf{N}[w, z] = \mathbf{M} \cdot \mathbf{N}[u, v]$$

We see that the multi-units don't affect the values of relations between singletons in the derived networks.

Multiunits and truncated networks

V. Batagelj

Fractional approach

Assume that we have the authorship network represented by a matrix **WA** = [wa[w, a]] where wa[w, a] = 1 iff the author a is (co)author of the work w, and wa[w, a] = 0 otherwise.

We will discuss two normalizations. The standard normalization $n(\mathbf{WA}) = [nwa[w, a]]$ where

$$nwa[w, a] = \frac{wa[w, a]}{\max(1, \deg(w))}$$

and *strict* or *Newman's* normalization n'(WA) = [nwa'[w, a]] where

$$nwa'[w, a] = \frac{wa[w, a]}{\max(1, \deg(w) - 1)}$$

We have $\sum nwa[w, a] = sign(deg(w))$ and

$$\sum_{m,m} nwa'[w,a] = \frac{\deg(w)}{\max(1,\deg(w)-1)}.$$

Multiunits and truncated networks

V. Batagelj

Multiple uni

Fractional approach

Truncated networks

Linking through network

Conclusions

Reference

The meaning of the weighted degree of node a in the network $n(\mathbf{WA})$, $wdeg_{n(WA)}(a) = \sum_{w \in W} nwa[w, a]$, is the fractional contribution of the author a to all works.

Note that if deg(w) = 0 then both nwa[w, a] = 0 and nwa'[w, a] = 0, and if deg(w) = 1 then both nwa[w, a] = 1 and nwa'[w, a] = 1.

The standard co-appearance network matrix Cn = [cn[a, b]] is obtained as

$$Cn = n(WA)^T \cdot n(WA)$$

and the *strict* co-appearance network matrix Ct = [ct[a, b]] is obtained as

$$\mathbf{Ct} = D_0(n(\mathbf{WA})^T \cdot n'(\mathbf{WA}))$$

where $D_0(\mathbf{M})$ sets the diagonal of matrix \mathbf{M} to 0.

Let's look at an entry of Cn

$$cn[a,b] = \sum_{w \in W} nwa^{T}[a,w] \cdot nwa[w,b] = \sum_{w \in W} nwa[w,a] \cdot nwa[w,b] = cn[b,a]$$

(familian) ... Fractional approach

Multiunits and truncated networks

V. Batageli

Fractional approach

Linking

and for Ct

$$ct[a,b] = \sum_{w \in W} nwa^T[a,w] \cdot nwa'[w,b] = \sum_{w \in W} \frac{wa[w,a]}{\max(1,\deg(w))} \cdot \frac{wa[w,b]}{\max(1,\deg(w)-1)}$$

$$= \sum_{w \in W} \frac{wa[w,b]}{\max(1,\deg(w))} \cdot \frac{wa[w,a]}{\max(1,\deg(w)-1)} = ct[b,a]$$

The fractional co-appearance matrices **Cn** and **Ct** are symmetric.

From

$$\mathsf{wdeg}_{\mathit{Cn}}(a) = \sum_{b \in \mathit{A}} \mathit{cn}[a,b] = \sum_{w \in \mathit{W}} \mathit{nwa}[w,a] \cdot \sum_{b \in \mathit{A}} \mathit{nwa}[w,b] =$$

$$= \sum_{w \in W} nwa[w, a] \cdot \operatorname{sign}(\deg(w)) = \sum_{w \in W} nwa[w, a] = \operatorname{wdeg}_{n(WA)}(a)$$

we see that the authors have the same weighted degree in networks n(WA) and Cn.

Multiunits and truncated networks

V. Batagelj

iviuitipie uni

Fractional approach

networks

Linking through a network

Conclusions

Reference:

Similarly for the network Ct. Because by definition, ct[a,a]=0, we have

$$\mathsf{wdeg}_{\mathit{Ct}}(a) = \sum_{b \in A \setminus \{a\}} \mathit{ct}[a,b] = \sum_{w \in W} \frac{\mathit{nwa}[w,a]}{\mathsf{max}(1,\mathsf{deg}(w)-1)} \sum_{b \in A \setminus \{a\}} \mathit{wa}[w,b] =$$

If wa[w,a]=0 the term in the $\sum_{w\in W}$ has value 0. So we can assume wa[w,a]=1. This means that $a\in N(w)$ and wa[w,b]=1 means that also $b\in N(w)$. Therefore

$$\sum_{b\in A\setminus\{a\}}wa[w,b]=|N(w)\setminus\{a\}|=\deg(w)-1$$

Now, we can continue

$$=\sum_{w\in W}\frac{\mathit{nwa}[w,a]}{\mathsf{max}(1,\deg(w)-1)}(\deg(w)-1)=\sum_{w\in W}\mathit{nwa}[w,a]=\mathsf{wdeg}_{\mathit{n(WA)}}(a)$$

The authors have the same weighted degree also in networks n(WA) and Ct.

Multiunits and truncated networks

V. Batagelj

Fractional approach

Truncated

Linking through a

Conclusions

References

Package bibmat

> wdeg <- wodeg

```
> normalize <- function(M) t(apply(M,1,function(x) x/max(1,sum(x))))
> newman <- function(M) t(apply(M,1,function(x) x/max(1,sum(x)-1)))
> D0 <- function(M) {diag(M) <- 0; return(M)}
> binary <- function(M) {B <- t(apply(M,1,function(x) as.integer(x!=0)))
+ colnames(B) <- colnames(M); return(B)}
> wodeg <- function(M) apply(M,1,sum)
> wideg <- function(M) apply(M,2,sum)</pre>
```

> odeg <- function(M) wodeg(binary(M))
> ideg <- function(M) wideg(binary(M))</pre>

Multiunits and truncated networks

V. Batagelj

Fractional approach

Truncate

networks

Linking through network

Conclusions

References

Github/bavla/biblio

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractional approach

Truncated networks

Linking through a network

Conclusions

References

```
> wdir <- "C:/Users/vlado/test/biblio"</pre>
> setwd(wdir)
> source(
  "https://raw.githubusercontent.com/bavla/biblio/master/code/bibmat.R")
> urlEx <-
  "https://github.com/bavla/biblio/raw/master/Eu/Data/ExNets.RDS"
> download.file(url=urlEx,destfile=paste0(wdir,"/ExNets.RDS",sep=""))
> Ex <- readRDS("ExNets.RDS")</pre>
> Ci <- Ex$Ci: WA <- Ex$WA: AC <- Ex$AC
> WAn <- normalize(WA)</p>
> Cn <- t(WAn)%*%WAn
> wideg(WAn)
AB CD EF GH IJ KL MN OP RS 1.0333 1.1500 0.7000 0.5333 1.1500 0.3667 0.4500 0.3667 0.2500
> wideg(Cn)
> Ct <- DO(t(WAn)%*%WAt)</pre>
> wideg(Ct)
AB CD EF GH IJ KL MN OP RS
```


Totals

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractional approach

Truncated

Linking through a network

Conclusion

References

For a matrix \mathbf{M} on $U \times V$ we define its *total* $T(\mathbf{M})$ as the sum of all its entries, $T(\mathbf{M}) = \sum_{u \in U} \sum_{v \in V} m[u, v]$. Let's compute

$$T(\mathbf{Cn}) = \sum_{a \in A} \sum_{b \in A} cn[a,b] = \sum_{w \in W} \sum_{a \in A} \sum_{b \in A} nwa[w,a] \cdot nwa[w,b] = \sum_{w \in W} T(w)$$

where

$$T(w) = \sum_{a \in A} \sum_{b \in A} \mathsf{nwa}[w, a] \cdot \mathsf{nwa}[w, b] = \sum_{a \in A} \mathsf{nwa}[w, a] \cdot \sum_{b \in A} \mathsf{nwa}[w, b] =$$

$$= sign(deg(w))^2 = sign(deg(w))$$

We see that the contribution of each work $w \in W$ with $\deg(w) > 0$ is 1. Therefore

$$T(\mathbf{Cn}) = \sum_{w \in W} \operatorname{sign}(\deg(w)) = |W_1|$$

where
$$W_1 = \{ w \in W : \deg(w) \ge 1 \}.$$

Totals

Multiunits and truncated networks

V. Batagelj

Multiple unit

Fractional approach

Truncated

Linking through a

Conclusion

References

For matrices n(WA) and Cn we have

$$T(n(\mathbf{WA})) = \sum_{a \in A} \sum_{w \in W} nwa[w, a] = \sum_{a \in A} wdeg_{n(WA)}(a) =$$

$$= \sum_{a \in A} wdeg_{Cn}(a) = \sum_{a \in A} \sum_{v \in W} cn[a, b] = T(\mathbf{Cn})$$

$$= \sum_{a \in A} \operatorname{wdeg}_{Cn}(a) = \sum_{a \in A} \sum_{b \in A} \operatorname{cn}[a, b] = I(Cn)$$

And

$$T(\mathbf{Ct}) = \sum_{a \in A} \sum_{b \in A \setminus \{a\}} ct[a, b] =$$

$$\sum_{w \in W} \sum_{a \in A} \sum_{b \in A \setminus \{a\}} nwa[w, a] \cdot nwa'[w, b] = \sum_{w \in W} T'(w)$$

where

$$T'(w) = \sum_{a \in A} \sum_{b \in A \setminus \{a\}} nwa[w, a] \cdot nwa'[w, b] =$$

$$\sum_{a \in A} \frac{nwa[w, a]}{\max(1, \deg(w) - 1)} \cdot \sum_{b \in A \setminus \{a\}} wa[w, b]$$

Totals

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractional approach

Truncated

Linking through a network

Conclusions

Reference

If wa[w,a]=0 or $wa[w,b]\leq 1$ the term in $\sum_{a\in A}$ has value 0. For wa[w,a]=1 and $wa[w,b]\geq 2$ (or $deg(w)\geq 2$) we have $\sum_{b\in A\setminus\{a\}}wa[w,b]=\deg(w)-1$. Therefore

$$T'(w) = \left\{ egin{array}{ll} 1 & deg(w) \geq 2 \\ 0 & ext{otherwise} \end{array}
ight.$$

and finally

$$T(\mathbf{Ct}) = \sum_{w \in W} T'(w) = |W_2|$$

where $W_2 = \{ w \in W : deg(w) \ge 2 \}.$

...Totals

Multiunits and truncated networks

V. Batagelj

Multiple unit

Fractional approach

Truncate

Linking through a network

Conclusion

References

```
> sum(Cn)
Γ17 6
> sum(Ct)
Γ17 6
> empty <- rep(0,length(A))</pre>
> WA1 <- rbind(WA,empty,empty)</pre>
> rownames(WA1)[7:8] <- c("w7","w8")
> WA1["w8","CD"] <- 1
      CD EF
             GH IJ
                    KL MN
                            0P
    1110100
               0101000
                                 00000100
           normalize(WA1)
  Cn1 <- t(WAn1)%*%WAn1
> sum(Cn1)
Γ17 7
> WAt1 <- newman(WA1)</pre>
> Ct1 <- DO(t(WAn1)%*%WAt1)
> sum(Ct1)
[1] 6
```


Truncated fractional co-appearance networks

Multiunits and truncated networks

V. Batagelj

Fractiona

approach

Truncated networks

Linking through network

Conclusions

References

A usual approach to the analysis of a two-mode network is its projection to its selected mode. The obtained weighted one-mode network is afterward analyzed using standard methods. Most bibliographic two-mode networks are sparse - they have a small average degree. If the other mode has some nodes of very large degree the projection can "explode" - it is not a sparse network (increased time and space complexity) [3]. In fractional projections, the contribution of the nodes of large degree is very small and mostly doesn't affect the resulting important subnetworks – the important part of the result can be obtained by projection of a two-mode subnetwork on a subset of important nodes – a truncated projection. This idea is elaborated in the following.

Truncated standard fractional network

Multiunits and truncated networks

V. Batagelj

Mariana and

Fractiona

Truncated networks

Linking through network

Conclusions

Reference

Let's split the set of authors A into two sets A_1 (selected authors) and A_0 (remaining authors), $A_1 \cup A_0 = A$ and $A_1 \cap A_0 = \emptyset$. We call a *truncated (standard) fractional network* the network

$$Cn_{11} = Cn[A_1, A_1] = n(WA)[W, A_1]^T \cdot n(WA)[W, A_1]$$

For a selected author $a \in A_1$, we denote with $\alpha(a) = \operatorname{wdeg}_{Cn_{11}}(a)$ her/his *internal* fractional contribution, and with $\beta(a) = \operatorname{wdeg}_{n(WA)}(a) - \alpha(a)$ her/his *external* fractional contribution.

We reorder the nodes of the network \mathbf{Cn} according to the A_1 , A_0 split (see next slide). The network matrix is split into four submatrices $\mathbf{Cn}_{ij}, i,j \in \{0,1\}$. We denote their totals $T_{ij} = T(\mathbf{Cn}_{ij})$. Because the matrix \mathbf{Cn} is symmetric we have $T_{01} = T_{10}$. T_{11} is the fractional contribution of collaboration among selected authors,

 $T_{10} + T_{01} = 2T_{10}$ is the fractional contribution of collaboration of selected authors with remaining authors, and T_{00} is the fractional contribution of collaboration among remaining authors.

... Truncated standard fractional network

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractiona approach

Truncated networks

Linking through a network

Conclusion

References

... Truncated standard fractional network

Multiunits and truncated networks

V. Batagelj

approach

Truncated

networks

Linking through a

We can compute $T_{11} = T(\mathbf{Cn}_{11})$ and $T_{10} = \sum_{a \in A_1} \beta(a)$, and finally $T_{00} = T(n(WA)) - T_{11} - 2T_{10}$. Note that we used only information from n(WA) and Cn_{11} .

A primary application of the truncated standard fractional network scheme is for the set of the most active authors

$$A_1 = \{a \in A : \mathsf{wideg}_{n(WA)}(a) \ge t\}$$

where t is a selected threshold value.

Note that the computation of the vector **wideg**_{n(WA)} is cheap.

Truncated strict fractional network

Multiunits and truncated networks

V. Batagelj

Multiple unit

Fractiona approach

Truncated networks

Linking through network

Conclusions

References

Again we have $\operatorname{wdeg}_{Ct}(a) = \operatorname{wideg}_{n(WA)}(a)$. Therefore the scheme used for the truncated standard fractional network can be applied also for *truncated strict fractional network*

$$Ct_{11} = Ct[A_1, A_1] = D_0(n(WA)[W, A_1]^T \cdot n'(WA)[W, A_1])$$

Sizes of truncated networks

Multiunits and truncated networks

iMetrics network [2] and Nataliya's HKUST1 network.

V. Batagelj

Multiple units

Fractional

Truncated

networks

Linking through a network

Conclusions

References

		iMetrics			HKUST1	
interval	n	m = A	avdeg	n	m = A	avdeg
≥ 0	33919	225931	13.32	28108	45365272	3227.92
$\geq 1/10$	32418	191888	11.84	17656	3216796	364.39
$\geq 1/5$	26247	134049	10.21	10213	86529	16.94
$\geq 1/3$	14381	71967	10.01	5171	45845	17.73
$\geq 1/2$	12781	60587	9.48	4032	32806	16.27
≥ 1	6211	32395	10.43	1799	13723	15.26
≥ 2	1832	14900	16.27	689	4195	12.18
≥ 3	964	9306	19.31	369	1743	9.45
≥ 5	446	4646	20.83	172	646	7.51
<u>≥</u> 10	162	1450	17.90	55	125	4.55

Density of $log_{10}(wdeg_{WAn}(a))$

Multiunits and truncated networks

V. Batagelj

Multiple units

Truncated networks

Linking

Linking through a network

Multiunits and truncated networks V. Batagelj

Multiple units

Fractiona approach

Truncated networks

Linking through a network

Conclusions

References

Assume that another network **S** on $W \times W$ is given. The network

$$\mathbf{Q} = n(\mathbf{WA})^T \cdot \mathbf{S} \cdot n(\mathbf{WA})$$

links authors to authors through the network **S**. From [1] we know that

- If **S** is symmetric, $\mathbf{S}^T = \mathbf{S}$, then also **Q** is symmetric, $\mathbf{Q}^T = \mathbf{Q}$.
- $T(\mathbf{Q}) = T(\mathbf{S})$.

...Linking through a network

Multiunits and truncated networks

V. Batagelj

Multiple units

Fractiona approach

Truncated networks

Linking through a network

Conclusions

References

Let's look at

$$\operatorname{wdeg}_Q(a) = \sum_{b \in A} q[a, b] = \sum_{b \in A} \sum_{w \in W} \sum_{z \in W} nwa[w, a] \cdot s[w, z] \cdot nwa[z, b] =$$

$$= \sum_{w \in W} \sum_{z \in W} nwa[w, a] \cdot s[w, z] \cdot sign(deg(w)) =$$

$$\sum_{w \in W} nwa[w, a] \cdot \sum_{z \in W} s[w, z] = \sum_{w \in W} nwa[w, a] \cdot wdeg_{S}(w)$$

or in a vector form

$$\mathsf{wdeg}_Q = n(\mathsf{WA})^T \cdot \mathsf{wdeg}_S$$

The most active authors are

$$A_1 = \{a \in A : \mathsf{wdeg}_O(a) \ge t\}$$

Again the truncation scheme can be applied Again the truncation the truncation scheme can be applied Again the truncation of the truncation o

Authors co-citation

Multiunits and truncated networks

V. Batagelj

Multiple unit

Fractiona approach

Truncate

Linking through a network

Conclusions

Reference

The co-citation network is defined as $\mathbf{CoCi} = \mathbf{Ci}^T \cdot \mathbf{Ci}$ and the fractional co-citation network as $\mathbf{CoCin} = \mathbf{Cin}^T \cdot \mathbf{Cin}$. Both \mathbf{CoCi} and \mathbf{CoCin} are symmetric. Authors fractional co-citation network is obtained by linking authors through the fractional co-citation network

$$CoCan = n(WA)^T \cdot CoCin \cdot n(WA) =$$

$$= n(WA)^T \cdot Cin^T \cdot Cin \cdot n(WA) = Can^T \cdot Can$$

where $Can = Cin \cdot n(WA)$.

As in the case of **WA** we have $\operatorname{wdeg}_{Cn}(a) = \operatorname{wdeg}_{n(WA)}(a)$, for **Ci** it holds also $\operatorname{wdeg}_{CoCin}(w) = \operatorname{wideg}_{n(Ci)}(w)$. Therefore

$$wdeg_{CoCan} = n(WA)^T \cdot wdeg_{CoCin} = n(WA)^T \cdot wideg_{n(Ci)}$$

and it is easy to see that also

$$wideg_{Can} = n(WA)^T \cdot wideg_{n(Ci)} = wdeg_{CoCan}$$

... Authors co-citation

Multiunits and truncated networks

V. Batagelj

Multiple uni

Fractiona approach

Truncated

Linking through a network

Conclusions

References

Conclusions

Multiunits and truncated networks

V. Batagelj

Multiple unit

approach

1 runcated networks

Linking through network

Conclusions

References

- the fractional version(s) of bibliographic coupling
 biCo = Ci · Ci^T are more complicated [1]. The corresponding "through" constructions are still on the "to do" list.
- efficient implementation as Pajek macros and in Python Nets package.

Acknowledments

Multiunits and truncated networks

V. Batagelj

Aultiple unit

Fractiona approach

Truncated

Linking through network

Conclusions

References

This work is supported in part by the Slovenian Research Agency (research program P1-0294, research program CogniCom (0013103) at the University of Primorska, and research projects J5-2557, J1-2481, and J5-4596), and prepared within the framework of the COST action CA21163 (HiTEc).

References I

Multiunits and truncated networks V. Batagelj

Batagelj, V: On fractional approach to the analysis of linked networks. Scientometrics 123 (2020), 621–633. Springer

Maltseva, D., Batagelj, V. iMetrics: the development of the discipline with many names. Scientometrics 125 (2020), pages 313–359. https://doi.org/10.1007/s11192-020-03604-4

Linking through a network

approach

https://doi.org/10.1007/s11192-012-0940-1

Conclusion

Anne-Wil Harzing: harzing.com

Anne-Wil Harzing: Health warning: Might contain multiple personalities. The problem of homonyms in Thomson Reuters Essential Science Indicators. Scientometrics 105(3):2259-2270. paper