3. СКС- общая идеология и основные положения.

Структурированная Кабельная Система — основа информационной инфраструктуры предприятия, позволяющая свести в единую систему множество информационных сервисов разного назначения: локальные вычислительные и телефонные сети, системы безопасности, видеонаблюдения и т.д. СКС представляет собой иерархическую кабельную систему здания или группы зданий, разделенную на структурные подсистемы. Д. обеспечиваться выполнение следующих основных требований — структуризация, универсальность и избыточность.

Структуризация КС означает, что вся система (кабели, устройства для прокладки, коммутационное оборудование) разбита на отдельные подсистемы, каждая из которых предназначена для выполнения определенных функций и имеет стандартизированный интерфейс для связи с другими подсистемами и оборудованием сетей. Универсальность означает, что при построении нет привязки к определенному сетевому стандарту, способу доставки информации, а сама идеология построения такова, что позволяет реализовать на его основе информационную сеть практически любого стандарта (конечно, если ему соответствуют технические характеристики СКС, закрепленные в нормативах). При этом типов кабелей, используемых в системе, два — симметричный (на основе витой пары), и волоконно-оптический.

<u>Избыточность</u> обеспечивается прокладкой большего, чем требуется на начальном этапе, количества кабелей, установкой большего количества информационных розеток, коммутационного оборудования. При этом количество и размещение кабелей, информационных розеток и коммутационного оборудования определяется площадью и схемой помещений здания, а не начальным планом размещения служб и сотрудников.

Основным преимуществам СКС перед традиционными кабельными системами:

- 1) возможность использования одной кабельной системы для передачи информации разного вида;
- 2) возможность развития информационных сетей и систем здания без значительного переоборудования кабельной системы;
- 3) возможность комбинирования оптических и электрических трактов передачи информации при организации информационной сети;
- 4) возможность создания интегрированной системы управления всеми подсистемами здания (системы «интеллектуальное здание»);
- 5) возможность интегрирования разных информационных сетей в единую для обеспечения большей гибкости;
- б)возможность использования в одной систем разных сетевых протоколов и стандартов;
- 7) независимость от производителя сетевого и другого оборудования;
- 8)более высокая надежность кабельной системы;
- 9) существенная экономия полных затрат за счет длительного срока эксплуатации и низких эксплуатационных расходов при относительно высоких начальных вложениях;
- 10) возможность создания единой службы эксплуатации информационных систем.

Принципы построения и использования СКС

Существует два варианта архитектуры проводки:

архитектура иерархической звезды (древовидная топология);

архитектура одноточечного управления.

Архитектура иерархической звезды

Архитектура иерархической звезды может применяться как для группы зданий, так и для одного отдельно взятого здания. Узлами системы является коммутационное оборудование различного вида (дистрибьютор по терминологии стандарта ISO/IEC 11801), которое, как правило, устанавливается в технических помещениях и соединяется друг с другом и с информационными розетками на рабочих местах электрическими и оптическими кабелями. Стандарты не регламентируют тип коммутационного оборудования, а определяют только его параметры.

На объекте, состоящем из группы зданий, иерархическая звезда состоит из центрального кросса системы, главных кроссов зданий и горизонтальных этажных кроссов. Центральный кросс связан с главными кроссами зданий при помощи внешних кабелей. Этажные кроссы связаны с главным кроссом здания кабелями вертикального ствола. В случае отдельного здания звезда состоит из главного кросса здания и горизонтальных этажных кроссов, соединенных между собой кабелями вертикального ствола. Архитектура иерархической звезды обеспечивает максимальную гибкость управления и максимальную способность адаптации системы к новым приложениям.

Архитектура одноточечного администрирования

Архитектура одноточечного администрирования разработана для максимальной простоты управления. Обеспечивая прямое соединение всех рабочих мест с главным кроссом, она позволяет управлять системой из одной точки, оптимальной для расположения централизованного активного оборудования.

Администрирование в одной точке обеспечивает простейшее управление цепями, возможное благодаря исключению необходимости кроссировки цепей во многих местах. Архитектура одноточечного администрирования не применяется для группы зданий.

Подсистемы СКС

Структура СКС определяется международным стандартом ISO/IEC 11801, и в самом общем виде состоит из следующих подсистем:

- 1. Подсистема внешних магистралей (campus backbone cabling, CBC, магистраль комплекса зданий), или первичная подсистема (по терминологии некоторых европейских производителей). Состоит из внешних магистральных кабелей между техническими помещениями кроссовой внешних магистралей (КВМ) и кроссовой здания (КЗ), коммутационного оборудования, к которому подключаются внешние магистральные кабели, и коммутационных шнуров, и/или перемычек в КВМ. Подсистема внешних магистралей является основой для построения СКС в комплексе зданий, компактно расположенных на одной территории. В СКС, охватывающем одно здание подсистема, естественно, отсутствует.
- 2. Подсистема внутренних магистралей (building backbone cabling, BBC, магистраль зданий), или вертикальная (вторичная) подсистема (по терминологии некоторых европейских производителей). Состоит из внутренних магистральных кабелей между кроссовой здания (КЗ) и кроссовой этажа (КЭ), коммутационного оборудования, к которому подключаются эти магистральные кабели, и коммутационных шнуров, и/или перемычек в КЗ. Т.о., данная подсистема связывает между собой этажи одного здания (или пространственно разнесенные помещения здания).
- 3. Горизонтальная подсистема (horizontal cabling, HC), или третичная подсистема, включает в себя внутренние горизонтальные кабели, проложенные между КЭ и информационными розетками рабочих мест, сами информационные розетки, коммутационное оборудование в КЭ, коммутационные шнуры, и/или перемычки в КЭ.

Таково самое общее и обязательное деление СКС на подсистемы. Оно позволяет определить структурные составляющие СКС для разработки единых интерфейсов между ними, а также между ними и сетевым оборудованием.

В настоящее время действуют 3 основных стандарта в области СКС:

EIA/TIA-568B Commercial Building Telecommunications Wiring Standard (американский стандарт); ISO/IEC IS 11801 Information Technology. Generic cabling for customer premises (международный стандарт); CENELEC EN 50173 Information Technology. Generic cabling systems (европейский стандарт).

В стандарте EIA/TIA-568В для кабельных линий и для компонентов (кабелей и разъемов) определены следующие категории: категория 3, пропускающая сигнал в полосе частот до 16 МГц, категория 5е - полоса частот до 100 МГц, категория 6 - полоса частот до 250 МГц, категория 6А - полоса частот до 500 МГц.В стандарте ISO 11801 и EN 50173 определены классы для кабельных линий: в полосе частот 16 МГц класс С, в полосе 100 МГц класс D, в полосе 250 МГц класс E, в полосе 500 МГц класс E(A).