证明思路

习题 2.8

 $K = \mathbb{Q}[\sqrt{-3}]$, the ring of integers (corresponding to K) $\mathcal{O}_K = \mathbb{Z}[\omega], \omega = \frac{1+\sqrt{-3}}{2}$ and \mathcal{O}_K is a PID.

涉及到的数学概念及其定义:

- ▶ 代数整数: 代数数 α 称为代数整数如果 $\exists f \in \mathbb{Z}[x]$ 是首一整系数多项式,使得 $f(\alpha) = 0$.
- ► 二次域 K 的整数环 \mathcal{O}_{K} : K 中所有代数整数的集合,它事实上是一个环.

证明思路

Partl Thm (二次域中代数整数的分类)

$$\mathcal{K}=\mathbb{Q}[\sqrt{d}], \quad d\equiv 1 (\mathit{mod}4), ext{ then } \mathcal{O}_{\mathcal{K}}=\{\mathit{a}+\mathit{b}\omega|\omega=\frac{1+\sqrt{d}}{2}\}$$

- ▶ 二次域的商表示 $\mathbb{Q}[X]/x^2 + 3$ 和它的基 $\{[1], [X]\}$
- ► 二次代数整数的极小多项式 $\alpha + \beta x \in \mathcal{O}_K \longleftrightarrow minpoly \mathbb{Q} \quad \alpha + \beta x,$
- ▶ 极小多项式为整系数: Gauss Lemma & Coprime & Dvd
- ▶ 得到关于系数因子的讨论

$$\mathbf{x}^2 - 2\alpha \mathbf{x} + \alpha^2 - \beta^2 \mathbf{d} : \mathbb{Z}[\mathbf{X}]$$
 algebraMap $\mathbb{Z}\mathbb{Q}$ $\mathbf{Q}[\mathbf{X}]$

证明思路

PartII \mathcal{O}_K is a PID

- ▶ Norm 及其化简公式
- ▶ 证明所需有关 Norm 的性质
- ightharpoonup ED \Rightarrow PID

Reference in Mathlib

- 1. 代数数域 Mathlib.NumberTheory.NumberField.Basic NumberField.mem_ringOfIntegers
 AdjoinRoot.instNumberFieldAdjoinRootRatCommRingFieldField 添加根得到的二次数域
- 2. 添加根 Adjoining roots of polynomials
- 3. 多项式 Mathlib.Data.Polynomial.Basic
- 4. 素数和因子 Mathlib.Data.Nat.Prime
- 5. 有理数 Std.Data.Rat.Basic