RHybrid cell indexing

- cell volume average
 - Bx, By, Bz
- upper front corner node (+i,+j,+k)
 - Ex, Ey, Ez
 - Bx, By, Bz
 - Jx, Jy, Jz
- three face surface averages
 - $\Phi x = dA \times Bx$ (+i face)
 - $\Phi x = dA \times By (+j face)$
 - $\Phi z = dA \times Bz$ (+k face)
- edges
 - Jx, Jy, Jz

face to cell interpolation


```
celldata_x = 0.5 \times (facedata_x(1,1,1) + facedata_x(0,1,1))

celldata_y = 0.5 \times (facedata_y(1,1,1) + facedata_y(1,0,1))

celldata_z = 0.5 \times (facedata_z(1,1,1) + facedata_z(1,1,0))
```

cell to node interpolation

face to node interpolation

node to cell interpolation

node to face interpolation

face to r interpolation

node to r interpolation

Weight factors: $w_i = 1/|r_{node_i} - r|$ Sum of weights: wsum = sum_i(w_i)

upwind node data

Displacement vector: $\mathbf{d} = 0.5 \times \mathbf{U}_{e} / |\mathbf{U}_{e}|$ Upwind position: $\mathbf{r}_{upwind} = \mathbf{r}_{node} - \mathbf{d}$ Weight factors: $\mathbf{w}_{i} = 1 / |\mathbf{r}_{cell_{i}} - \mathbf{r}_{upwind}|$ Sum of weights: wsum = sum i(w i)

```
Nodedata(1,1,1) \rightarrow nodedata(1,1,1) =  (w(1,1,1) \times celldata(1,1,1) + w(1,1,2) \times celldata(1,1,2) + w(1,2,1) \times celldata(1,2,1) + w(2,1,1) \times celldata(2,1,1) + w(1,2,2) \times celldata(1,2,2) + w(2,2,1) \times celldata(2,2,1) + w(2,1,2) \times celldata(2,2,2) \times celldata(2,2,2) \times celldata(2,2,2) / wsum
```

Calculation of Node Jx

Calculation of Node Jy

Calculation of Node Jz

propagation of B on xface / xface curl

propagation of B on yface / yface curl

$$\frac{\partial (\int d\textbf{A}_{y} \cdot \textbf{B})}{\partial t} = -\int d\textbf{A}_{y} \cdot (\nabla \times \textbf{E}) \\ = 0.5 \times dx \times (-E_{4x} - E_{8x} + E_{8z} + E_{7z} + E_{7x} + E_{3x} - E_{3z} - E_{4z}) \\ = (\nabla \times \textbf{B})_{y} / \mu_{0} \\ = -0.5 \times dx \times (-B_{4x} - B_{8x} + B_{8z} + B_{7z} + B_{7x} + B_{3x} - B_{3z} - B_{4z})$$

propagation of B on zface / zface curl

$$E_{1} = E(0,0,1)$$

 $E_{5} = E(1,0,1)$
 $E_{8} = E(1,1,1) = local$
 $E_{4} = E(0,1,1)$

node2node average


```
nodedata(1,1,1) =
C1*nodedata(1,1,1) +
C2*[ # direct neighbors
nodedata(1,1,0) +
nodedata(0,1,1) +
nodedata(1,2,1) +
nodedata(2,1,1) +
nodedata(1,0,1) +
nodedata(1,1,2) +
C3*[ # diagonal sqrt(2)
nodedata(0,1,0) +
nodedata(1,0,0) +
nodedata(1,2,0) +
nodedata(2,1,0) +
nodedata(0,0,1) +
nodedata(0,2,1) +
nodedata(2,2,1) +
nodedata(2,0,1) +
nodedata(0,1,2) +
nodedata(1,2,2) +
nodedata(2,1,2) +
nodedata(1,0,2)] +
C4*[ # diagonal sqrt(3)
nodedata(0,0,2) +
nodedata(0,2,2) +
nodedata(2,0,2) +
nodedata(2,2,2) +
nodedata(0,0,0) +
nodedata(0,2,0) +
nodedata(2,0,0) +
nodedata(2,2,0)]
```

node2node average: six direct neighbor nodes


```
nodedata(1,1,1) =
C1*nodedata(1,1,1) +
C2*[ # direct neighbors
nodedata(1,1,0) +
nodedata(0,1,1) +
nodedata(1,2,1) +
nodedata(2,1,1) +
nodedata(1,0,1) +
nodedata(1,1,2) +
C3*[ # diagonal sqrt(2)
nodedata(0,1,0) +
nodedata(1,0,0) +
nodedata(1,2,0) +
nodedata(2,1,0) +
nodedata(0,0,1) +
nodedata(0,2,1) +
nodedata(2,2,1) +
nodedata(2,0,1) +
nodedata(0,1,2) +
nodedata(1,2,2) +
nodedata(2,1,2) +
nodedata(1,0,2) +
C4*[ # diagonal sqrt(3)
nodedata(0,0,2) +
nodedata(0,2,2) +
nodedata(2,0,2) +
nodedata(2,2,2) +
nodedata(0,0,0) +
nodedata(0,2,0) +
nodedata(2,0,0) +
nodedata(2,2,0)]
```

node2node average: twelwe sqrt(2) diagonal neighbor nodes


```
nodedata(1,1,1) =
C1*nodedata(1,1,1) +
C2*[ # direct neighbors
nodedata(1,1,0) +
nodedata(0,1,1) +
nodedata(1,2,1) +
nodedata(2,1,1) +
nodedata(1,0,1) +
nodedata(1,1,2) +
C3*[ # diagonal sqrt(2)
nodedata(0,1,0) +
nodedata(1,0,0) +
nodedata(1,2,0) +
nodedata(2,1,0) +
nodedata(0,0,1) +
nodedata(0,2,1) +
nodedata(2,2,1) +
nodedata(2,0,1) +
nodedata(0,1,2) +
nodedata(1,2,2) +
nodedata(2,1,2) +
nodedata(1,0,2) +
C4*[ # diagonal sqrt(3)
nodedata(0,0,2) +
nodedata(0,2,2) +
nodedata(2,0,2) +
nodedata(2,2,2) +
nodedata(0,0,0) +
nodedata(0,2,0) +
nodedata(2,0,0) +
nodedata(2,2,0)]
```

node2node average: eight sqrt(3) diagonal neighbor nodes


```
nodedata(1,1,1) =
C1*nodedata(1,1,1) +
C2*[ # direct neighbors
nodedata(1,1,0) +
nodedata(0,1,1) +
nodedata(1,2,1) +
nodedata(2,1,1) +
nodedata(1,0,1) +
nodedata(1,1,2) +
C3*[ # diagonal sqrt(2)
nodedata(0,1,0) +
nodedata(1,0,0) +
nodedata(1,2,0) +
nodedata(2,1,0) +
nodedata(0,0,1) +
nodedata(0,2,1) +
nodedata(2,2,1) +
nodedata(2,0,1) +
nodedata(0,1,2) +
nodedata(1,2,2) +
nodedata(2,1,2) +
nodedata(1,0,2) +
C4*[ # diagonal sqrt(3)
nodedata(0,0,2) +
nodedata(0,2,2) +
nodedata(2,0,2) +
nodedata(2,2,2) +
nodedata(0,0,0) +
nodedata(0,2,0) +
nodedata(2,0,0) +
nodedata(2,2,0)]
```


facedata z(1,1,1) = facedata z(1,2,1)

facedata z(1,1,1) = ghost outer face

facedata_x(1,1,1) = facedata_x(1,0,2)facedata_y(1,1,1) = ghost outer face facedata_z(1,1,1) = facedata_z(1,0,1)

Ghost (+y,+z) edge

Cells in the simulation domain

Local ghost cell


```
facedata_x(1,1,1) = facedata_x(1,0,0)
facedata_y(1,1,1) = ghost outer face
facedata z(1,1,1) = ghost outer face
```


