

Chapter. 01

머신러닝의 개요

1가설함수, 비용, 손실함수

FAST CAMPUS ONLINE

직장인을 위한 파이썬 데이터분석

강사. 이경록

Chapter. 01

가설함수, 비용, 손실함수 Hypothesis, Cost, Loss Function

X	Y
1	3
2	5
3	7

\mathbf{X}	\mathbf{Y}
1	3
2	5
3	7

\mathbf{X}	${f Y}$
1	3
2	5
3	7

X	Trial	Y Predict	Y
1		1	3
2	w=0.5, b=0.5	1.5	5
3		2	7
1		2	3
2	w=1, b=1	3	5
3		4	7
1		3	3
2	w=2, b=1	5	5
3		7	7

$$H(x) = W * X + b$$

X	Trial	Y Predict	Y
1		1	3
2	w=0.5, b=0.5	1.5	5
3		2	7
1	w=1, b=1	2	3
2		3	5
3		4	7
1	w=2, b=1	3	3
2		5	5
3		7	7

$$H(x) = W * X + b$$

X	Trial	Y Predict	Y
1		1	3
2	w=0.5, b=0.5	1.5	5
3		2	7
1		2	3
2	w=1, b=1	3	5
3		4	7
1		3	3
2	w=2, b=1	5	5
3		7	7

$$H(x) = W * X + b$$

$$H(x) = Y Predict$$

I손실함수

X	Trial	Y Predict	\mathbf{Y}
1		1	3
2	w=0.5, b=0.5	1.5	5
3		2	7
1		2	3
2	w=1, b=1	3	5
3		4	7
1		3	3
2	w=2, b=1	5	5
3		7	7

$$H(x) = W * X + b$$

$$H(x) = Y Predict$$

I손실의 총합

Y Predict	Y	Loss
1	3	-2
1.5	5	-3.5
2	7	-5
2	3	-1
3	5	-2
4	7	-3
3	3	0
5	5	0
7	7	0

손실함수 = W * X + b - Y

Trial	Y
w=0.5, b=0.5	-2 + -3.5 + -5 = -10.5
w=1, b=1	-5 + -1 + -2 = -8
w=2, b=1	= 0 $= 0$

I손실의 총합의 오류?

X	Y	Loss	X2	Y2	Loss
1	3	0	1	2	-1
2	5	0	2	5	0
3	7	0	3	8	1

I 손실의 총합의 제곱 오차 (Mean Squared Error)

X	Y	Loss	X2	Y2	Loss
1	3	0	1	2	1
2	5	0	2	5	0
3	7	0	3	8	1

I제곱 오차 (Mean Squared Error)

손실함수 (Loss Function) = W * X + b – Y = (W * X + b – Y)² 의 전체 합 = ∑(W * X + b – Y)²

I 제곱 오차 (Mean Squared Error)

손실함수 (Loss Function) = W * X + b - Y = (W * X + b - Y)² 의 전체 합 = ∑(W * X + b - Y)²

데이터의 개수가 많아지면 손실이 커지므로 전체 손실의 평균을 구합니다 = ∑(W * X + b – Y) ² / N(데이터 개수)

I 제곱 오차 (Mean Squared Error)

데이터의 개수가 많아지면 손실이 커지므로 전체 손실의 평균을 구합니다 = ∑(W * X + b – Y) ² / N(데이터 개수)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

I최적의 W를 찾는 것 = 최소 오차

11.5

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

I 경사하강법 (Gradient Descent)

...

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

I scikit-learn

https://scikit-learn.or

FAST CAMPUS ONLINE

Classification

Identifying which category an object belongs

Applications: Spam detection, image recognition

Algorithms: SVM, nearest neighbors, random forest, and more...

Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: k-Means, feature selection, nonnegative matrix factorization, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms:** SVR, nearest neighbors, random forest, and more...

Examples

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, and more...

Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms.

Algorithms: preprocessing, feature extraction, and more...

Examples

