Valor Esperado

Temos ainda um elemento central e fundamental para a teoria da probabilidade que precisamos abordar. Este é o conceito de *esperança* ou *valor esperado*.

Intuitivamente, o valor esperado de uma variável aleatória *X* é a generalização do conceito de média ponderada dos valores que *X* assume ou equivalentemente, de modo mais geométrico, o centro de massa dos valores que *X* assume.

Como motivação considere X é uma variável simples dada por

$$X = \sum_{k=1}^{n} a_k \cdot \mathbb{1}_{A_k},$$

com A_1, A_2, \ldots, A_n disjuntos. Então a média ponderada m(X) dos valores que X assume é

$$m(X) = \sum_{k=1}^{n} a_k \mathbf{P}(A_k) = \int X d\mathbf{P}.$$

o que motiva a definição:

7.1 **DEFINIÇÃO (VALOR ESPERADO OU ESPERANÇA)** Se X é uma variável aleatória definida em $(\Omega, \mathcal{F}, \mathbf{P})$, seu **valor esperado**, **esperança** ou **média** é definido como

$$\mathbf{E}[X] := \int_{\Omega} X d\mathbf{P}$$

Usaremos aqui a mesma nomenclatura usada em integrais de Lebesgue, e diremos que X é **integrável** se $E[X] < \infty$ (o que é equivalente a dizer que $E[X^+] < \infty$ e $E[X^-] < \infty$ e de

modo mais geral falaremos em esperança de X se X for quasi-integrável, isto é se $E[X^+]$ ou $E[X^-]$ for finita.

Agora podemos retomar o exemplo de variáveis aleatórias simples de posse da definição da esperança

7.2 Exemplo (Variáveis Aleatórias Simples) Seja X uma variável aleatória X dada por

$$X = \sum_{k=1}^{n} a_k \cdot \mathbb{1}_{A_k},$$

 $com A_1, A_2, \ldots, A_n$ disjuntos. Então

$$\mathbf{E}[X] = \int X \, d\mathbf{P} = \sum_{k=1}^{n} a_k \, \mathbf{P}(A_k).$$

Se além disso, os valores $a_1, \ldots, a_k \in \mathbb{R}$ são distintos, então $A_k = X^{-1}(\{a_k\}) = \{X = a_k\}, e$

$$\mathbf{E}[X] = \sum_{k=1}^{n} a_k \, \mathbf{P}(X = a_k).$$

Podemos restringir o exemplo anterior é obter um dos exemplos mais simples e também um dos mais úteis.

7.3 Exemplo (A Esperança da Função Indicadora) Seja $\mathbb{1}_A$ a indicadora de um eventos $A \in \mathcal{F}$. $\mathbb{1}_A$ é uma variável aleatória simples, e pelo exemplo anterior, o seu valor esperado é dado por

$$\mathbf{E}[\mathbb{1}_A] = \mathbf{P}(A).$$

Ao ser definida como a integral de Lebesgue, a esperança herda uma série de propriedades importantes, que listaremos a seguir.

- 7.4 **TEOREMA** Suponha que X, Y sejam variáveis aleatórias integráveis. Então
 - 1 (Linearidade) E[aX + bY] = aE[X] + bE[Y] para quaisquer números reais a, b.
 - **2** Se $X \equiv b \in \mathbb{R}$, constante, então $\mathbf{E}[X] = b$ (escrevemos também que $\mathbf{E}[b] = b$).
 - **3** Se $X \ge 0$ então $\mathbf{E}[X] \ge 0$.
 - **4** (Monotonicidade) Se $X \ge Y$ então $E[X] \ge E[Y]$.
 - [5] (Designal dade triangular) $|E[X]| \le E[|X|]$
 - **6** Se $X_n \uparrow X$ então $E[X] = \lim_{n \to \infty} E[X_n]$

Demonstração. Essas propriedades são herança direta das propriedades das integrais de Lebesgue, e não serão demonstradas.

Mostraremos apenas a propriedade 2, que é típica de medidas de probabilidade.

Tome então uma variável aleatória X constante igual a b. Ou seja, $X(\omega) = b$ para todo ω . Essa variável é uma variável simples, dada por

$$X = b \cdot \mathbb{1}_{\Omega}$$

e portanto

$$\mathbf{E}[b] = \mathbf{E}[X] = b \cdot \mathbf{P}(\Omega) = b.$$

7.5 Exemplo Se uma esfera é colorida de modo que 90% de sua área seja vermelha e 10% seja azul, então existe um modo de inscrever um cubo de modo que os 8 vértices estejam tocando pontos vermelhos da esfera.

Sejam X_1, \ldots, X_8 as variáveis aleatórias indicadoras do fato de cada vértice ser vermelho ou não. Então, claramente $X_1 + \cdots + X_8$ é o número de vértices vermelhos. Por linearidade da esperança,

$$\mathbf{E}[X_1 + \dots + X_8] = \mathbf{E}[X_1] + \dots + \mathbf{E}[X_8] = 8 \cdot 0.9 = 7.2.$$

Para que o número médio de vértices seja 7.2, deve haver algum cubo com mais de 7 vértices vermelhos, e portanto deve ter 8 vértices vermelhos.

Esse é um exemplo da utilização de técnicas probabilísticas para provar fatos determinísticos.

Observe que não exigimos que as variáveis sejam independentes. Verifique que de fato isso não é necessário. ⋖

Temos também a seguinte caracterização do operador esperança.

- **7.6 Teorema (Caracterização da Esperança)** A esperança é o único operador $\mathbf{E}:\mathcal{L}^1(\Omega)\to\mathbb{R}$ que satisfaz:
 - \Box Linearidade. Para $a, b \in \mathbb{R}$, $\mathbf{E}[aX + bY] = a\mathbf{E}[X] + b\mathbf{E}[Y]$.
 - \Box Continuidade. Se $X_n \to X$ então $E[X_n] \to E[X]$
 - \square Relação com a probabilidade. Para cada evento A, $\mathbf{E}[\mathbb{1}_A] = \mathbf{P}(A)$.

Demonstração. Veja que

$$\mathbf{E}_1[\mathbf{X}] := \int_{\Omega} \mathbf{X} d\mathbf{P}$$

tem as propriedades pedidas. Assim temos trivialmente a existência.

Vamos provar a unicidade mostrando a coincidência de um operador \mathbf{E} com as propriedades listadas e \mathbf{E}_1 .

O item 3. e a linearidade nos permite mostrar a coincidência para funções simples.

Se
$$X = \sum_i a_i \mathbb{1}_{A_i}$$
 então $\mathbf{E}_1[X] = \sum_i a_i \mathbf{P}(A_i) = \mathbf{E}[X]$.

Provaremos agora para funções positivas. Dado X > 0, temos que existem funções simples X_n com $X_n \uparrow X$. Por continuidade

$$\mathbf{E}_1[\mathbf{X}] = \lim \mathbf{E}_1[\mathbf{X}_n] = \lim \mathbf{E}[\mathbf{X}_n] = E[\mathbf{X}]$$

Para funções quaisquer. Consideramos a decomposição $X = X^+ + X^-$ e usamos a linearidade

ntes de darmos continuidade, vamos estabelecer uma nomenclatura que será central deste ponto em diante.

7.7 DEFINIÇÃO Dada um espaço de probabilidade $(\Omega, \mathcal{F}, \mathbf{P})$, diremos que uma afirmativa \mathbb{A} ocorre quase-certamente se

$$\mathbf{P}(\{\omega \in \Omega : \omega \text{ satisfaz a afirmativa } \mathbb{A}\}) = 1.$$

De notaremos isso por "A ocorre q.c.".

Em particular, dadas duas variáveis aleatórias X,Y definidas em Ω , temos que X = Y q.c., se $\mathbf{P}(X = Y) = 1$. Ou ainda que $X \le Y$ q.c se $\mathbf{P}(X \le Y) = 1$.

Integrais de Lebesgue ignoram eventos de medida nula, e isso é mostrado no seguinte resultado.

- **7.8 Proposição** Dadas variáveis aleatórias X e Y, vale que

 - **2** Se X = Y q.c e X é integrável ou $\mathbf{E}[X] = \pm \infty$, então $\mathbf{E}[Y] = \mathbf{E}[X]$;
 - **3** Se $X \le Y$ q.c. e Y é integrável, então $E[X] \le E[Y]$ (E[X] pode ser -∞).
 - 4 Se $X \ge 0$ e $\mathbf{E}[X] = 0$, então X = 0 q.c..

Demonstração.

1 Suponha que X é simples. Temos então que

$$X = \sum_{k=1}^{n} a_k \mathbb{1} A_k,$$

e como P(X = 0) = 1, então $P(A_k) = 0$ sempre que $a_k \neq 0$. Com isso, temos que E[X] = 0.

Para X não negativa, tome $(X_n)_{n\geq 1}$ uma sequência não-decrescente de variáveis aleatórias simples e não-negativas tal que $X_n\uparrow X$. Como $0\leq X_n\leq X$ e $\mathbf{P}(X=0)=1$, temos que $X_n=0$ q.c e portanto $\mathbf{E}[X_n]=0$. Assim, pelo Teorema da Convergência Monótona, $\mathbf{E}[X]=\lim_{n\to\infty}\mathbf{E}[X_n]=0$.

Para X qualquer, basta notar que se X = 0 q.c, então $X^+ = 0$ q.c. e $X^- = 0$ q.c.

- **2** Exercício (aplique o item anterior em X Y)
- **3** Tome X, Y variáveis aleatórias tais que $X \leq Y$ q.c. e Y integrável. Defina

$$X^* = X \cdot \mathbb{1}_{X \le Y} + Y \cdot \mathbb{1}_{X > Y}.$$

Como P(X > Y) = 0, então $X^* = X$ q.c., e além disso $X^* \le Y$ pontualmente.

Se X^* é integrável, então a monotonicidade da esperaça nos dá que $\mathbf{E}[X^*] \leq \mathbf{E}[Y]$, e pelo item anterior $\mathbf{E}[X] = \mathbf{E}[X^*] \leq \mathbf{E}[Y]$.

Caso contrário, temos $(X^*)^+ \le Y^+$, de modo que $\mathbf{E}(X^*)^+ \le \mathbf{E}[Y^+] < \infty$ e $\mathbf{E}[(X^*)^-] = \infty$, de modo que $\mathbf{E}[X^*] = -\infty$.

Agora basta usar o item anterior para X^+ e X^- para concluir o resultado.

4 Dado $\epsilon > 0$, defina $Y_{\epsilon} = \epsilon \mathbb{1}_{\{X > \epsilon\}}$ e observe que $Y_{\epsilon} \leq X$ para todo $\epsilon > 0$. Segue que

$$\epsilon \mathbf{P}(X > \epsilon) = \mathbf{E}[Y_{\epsilon}] \le \mathbf{E}[X] = 0$$

e portanto $\mathbf{P}(X > \epsilon) = 0$ para todo $\epsilon > 0$.

Fazendo $\epsilon \to 0$, vemos que $\mathbf{P}(X > 0) = 0$, e como $\mathbf{P}(X \ge 0) = 1$, o resultado segue.

7.1 Calculando a Esperança

Nesta seção veremos como a esperança de uma variável aleatória pode ser determinada a partir de sua distribuição. Para isso, vamos seguir a estratégia de três passos, mas de um ponto de vista bem específico.

Tome agora uma variável aleatória X qualquer, e $\phi:\mathbb{R}\to\mathbb{R}$ uma função mensurável e simples e não-negativa, dada por

$$\phi(x) = \sum_{k=1}^n a_k \mathbb{1}_{A_k}(x),$$

 $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$ disjuntos.

Temos assim que

$$\phi(X) = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}(X) = \sum_{k=1}^{n} a_k \mathbb{1}_{X \in A_k},$$

que é uma variável aleatória simples.

Segue que

$$\mathbf{E}[\phi(X)] = \sum_{k=1}^{n} a_k \mathbf{P}(X \in A_k) = \sum_{k=1}^{n} a_k \mathbf{P}_X(A_k) = \int_{\mathbb{R}} \phi(x) \, d\mathbf{P}_X(x).$$

Dada agora uma função $\varphi: \mathbb{R} \to \mathbb{R}$ mensurável e não negativa, tome uma sequencia não-decrescente de funções simples e mensuráveis $\phi_n: \mathbb{R} \to \mathbb{R}$, $n \ge 1$, não-negativas e tais que $\phi_n(x) \uparrow \varphi(x)$, para todo $x \in \mathbb{R}$.

Pelos mesmos argumentos anteriores, $\phi_n(X)$, $n \ge 1$ é uma sequência de variáveis aleatórias simples e não-negativas, tais que $\phi_n(X) \uparrow \varphi(X)$.

Segue do Teorema da Convergência Monótona, que

$$\mathbf{E}[\varphi(X)] = \lim_{n \to \infty} \mathbf{E}[\phi_n(X)] = \lim_{n \to \infty} \int_{\mathbb{R}} \phi_n(x) \, d\mathbf{P}_X(x) = \int_{\mathbb{R}} \varphi(x) \, d\mathbf{P}_X(x).$$

Dada agora uma função $\varphi:\mathbb{R}\to\mathbb{R}$ mensurável, podemos escrever $\varphi=\varphi^+-\varphi^-$, e aplicando o que descobrimos até agora, vemos que

$$\mathbf{E}[\phi(X)] = \mathbf{E}[\phi^+(X)] - \mathbf{E}[\phi^-(X)] = \int_{\mathbb{R}} \varphi^+(x) \, d\mathbf{P}_X(x) - \int_{\mathbb{R}} \varphi^-(x) \, d\mathbf{P}_X(x) = \int_{\mathbb{R}} \varphi(x) \, d\mathbf{P}_X(x).$$

Com isso mostramos que

7.9 Teorema (Teorema da Mudança de Variáveis) Dada uma variável aleatória X definida em um espaço de probabilidade $(\Omega, \mathcal{F}, \mathbf{P})$ com distribuição \mathbf{P}_X , e uma função mensurável $\varphi : \mathbb{R} \to \mathbb{R}$, então

$$\mathbf{E}[\varphi(X)] = \int_{\mathbb{R}} \varphi(x) \, d\mathbf{P}_X(x).$$

Ou seja, se qualquer um dos lados da equação acima estiver bem definido, o outro também está e a igualdade vale.

Em particular

$$\mathbf{E}[X] = \int_{\mathbb{D}} x \, \mathrm{d}\mathbf{P}_X(x)$$

Uma consequência direta do resultado anterior é a seguinte.

7.10 Corolário (Distribuição Determina a Esperança) Dado X integrável então se $X \stackrel{d}{=} Y$ então Y é integrável e E[X] = E[Y].

Agora que sabemos que a esperança de uma variável aleatória é determinada unicamente pela sua distribuição, falta apenas entender como surgem aquelas expressões para variáveis discretas e absolutamente contínuas.

Variáveis Aleatórias Discretas

Vamos lembrar que uma variável aleatória discreta é aquela que assumi uma quantidade enumerável de valores. Ou seja, existe um conjunto $S = \{x_1, x_2, ...\}$ tal que $P(X \in S) = 1$.

Com isso, temos que a distribuição P_X é totalmente definida pelos valores de $P(\{x_k\}) = P(X = x_k)$.

De fato, para qualquer $A \in \mathcal{B}(\mathbb{R})$

$$\mathbf{P}_X(A) = \sum_{k: x_k \in A} \mathbf{P}_X(\{x_k\}).$$

Perceba também que

$$X = \sum_{k=1}^{\infty} x_k \, \mathbb{1}_{A_k},$$

onde $A_k = \{X = x_k\} \in \mathcal{F}$.

Para simplificar nossa vida, suponha que $X \ge 0$. Ou seja $x_k \ge 0$ para todo $k \ge 1$. Nestas condições, as variáveis

$$X_n = \sum_{k=1}^n x_k \, \mathbb{1}_{A_k},$$

são simples e portanto

$$\mathbf{E}[X_n] = \sum_{k=1}^n x_k \, \mathbf{P}(A_k) = \sum_{k=1}^n x_k \, \mathbf{P}(X = x_k).$$

Além disso, temos que $X_n \uparrow X$ e o Teorema da Convergência Monótona nos diz que

$$\mathbf{E}[X] = \lim_{n \to \infty} \mathbf{E}[X_n] = \sum_{k=1}^{\infty} x_k \, \mathbf{P}(X = x_k).$$

Deixamos como exercício o caso onde *X* não assume apenas valores positivos.

Fica assim (quase) demonstrado então o seguinte resultado.

7.11 Proposição Para uma variável aleatória discreta X positiva ou integrável, assumindo valores em $\{x_1, x_2, \ldots\}$, temos que

$$\mathbf{E}[X] = \sum_{k=1}^{\infty} x_k \, \mathbf{P}(x = x_k), \tag{7.1}$$

de modo que a série à direita é absolutamente convergente sempre que X for integrável.

Variáveis Absolutamente Contínuas

Vamos recordar que uma variável aleatória é absolutamente contínua se existe uma função mensurável $f: \mathbb{R} \to \mathbb{R}^+$, conhecida como **função densidade de probabilidade de** X (ou simplesmente densidade de X) tal que

$$\mathbf{P}_X(A) = \mathbf{P}(X \in A) = \int_A f(x) \, \mathrm{d}\mu,$$

onde a integral à direita é a integral de Lebesgue (feita em relação à medida de Lebesgue da reta).

Para entender quem é $\mathbf{E}[\varphi(X)]$ devemos primeiro entender como calcular

$$\int_{\mathbb{R}} \varphi(x) \, \mathrm{d}\mathbf{P}_X(x).$$

Para isso, tome primeiro uma função simples

$$\phi(x) = \sum_{k=1}^n a_k \mathbb{1}_{A_k},$$

e note que

$$\int_{\mathbb{R}} \phi(x) d\mathbf{P}_X(x) = \sum_{k=1}^n a_k \mathbf{P}_X(A_k)$$

$$= \sum_{k=1}^n a_k \int_{A_k} f(x) d\mu$$

$$= \sum_{k=1}^n a_k \int_{\mathbb{R}} \mathbb{1}_{A_k}(x) f(x) d\mu$$

$$= \int_{\mathbb{R}} \sum_{k=1}^n a_k \mathbb{1}_{A_k}(x) f(x) d\mu$$

$$= \int_{\mathbb{R}} \phi(x) f(x) dx.$$

Tomando uma sequência de funções simples ϕ_n , $n \ge 1$ não negativas, com $\phi_n \uparrow \varphi \ge 0$, concluímos pelo Teorema da Convergência Monótona que

$$\int_{\mathbb{R}} \varphi(x) d\mathbf{P}_X(x) = \lim_n \int_{\mathbb{R}} \phi_n(x) d\mathbf{P}_X(x) = \lim_n \int_{\mathbb{R}} \phi_n(x) f(x) dx = \int_{\mathbb{R}} \varphi(x) f(x) dx.$$

E separando uma função mensurável φ em parte positiva e negativa, concluímos o seguinte resultado.

7.12 Proposição Para variável aleatória absolutamente contínua X com função densidade de probabilidade $f: \mathbb{R} \to \mathbb{R}^+$, e uma função mensurável $\phi: \mathbb{R} \to \mathbb{R}$ vale que

$$\mathbf{E}[\varphi(X)] = \int_{\mathbb{R}} \varphi(x) f(x) \, \mathrm{d}x,\tag{7.2}$$

onde um lado da equação está bem definido se, e somente se, o outro também está.

7.2 Funções de Vetores Aleatórios

Nesta seção falaremos brevemente sobre o cálculo da esperança para funções de vetores aleatórios.

Mas especificamente, dado um vetor aleatório $X=(x_1,\ldots,X_n)$ definido em um espaço de probabilidade $(\Omega,\mathcal{F},\mathbf{P})$ e uma função mensurável $\varphi:\mathbb{R}^n\to\mathbb{R}$, queremos entender como calcular $\mathbf{E}[\varphi(X_1,\ldots,X_n)]$.

Vamos olhar primeiro para a distribuição \mathbf{P}_X do vetor aleatório X. Lembre-se que, de modo análogo a variáveis aleatórias, \mathbf{P}_X é uma medida de probabilidade em $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ dada por

$$\mathbf{P}_X(A) = \mathbf{P}((X_1, \dots, X_n) \in A),$$

para $A \in \mathcal{B}(\mathbb{R}^n)$.

De posse da distribuição P_X podemos recuperar as **distribuições marginais** das variáveis X_k , fazendo

$$\mathbf{P}_{X_k}(B) = \mathbf{P}(X_k \in B)$$

$$= \mathbf{P}(X_k \in B; X_j \in \mathbb{R}; j \neq k)$$

$$= \mathbf{P}((X_1, \dots, X_n) \in \mathbb{R}^{k-1} \times B \times \mathbb{R}^{n-k})$$

$$= \mathbf{P}_X(\mathbb{R}^{k-1} \times B \times \mathbb{R}^{n-k}).$$

A relação entre P_X e as marginais P_{X_k} pode ser complicada, e em geral precisamos de informações adicionais sobre o vetor para descreve-la com mais precisão. Uma das situações onde esta relação está bem definida é no caso onde as variáveis X_1, \ldots, X_n são independentes. Deixaremos os detalhes para a lista de exercícios.

Voltando ao nosso problema, não é difícil mostrar, usando os mesmos argumentos usados para mostrar o Teorema 7.9, que vale o seguinte resultado.

7.13 TEOREMA Dado um vetor aleatório $X = (X_1, ..., X_n)$ definido em um espaço de probabilidade $(\Omega, \mathcal{F}, \mathbf{P})$ com distribuição \mathbf{P}_X , e uma função mensurável $\varphi : \mathbb{R}^n \to \mathbb{R}$, então

$$\mathbf{E}[\varphi(X_1,\ldots,X_n)] = \int_{\mathbb{R}^n} \varphi(x_1,\ldots,x_n) \, d\mathbf{P}_X(x_1,\ldots,x_n).$$

Ou seja, se qualquer um dos lados da equação acima estiver bem definido, o outro também está e a igualdade vale.

No caso em que as variáveis X_1, \ldots, X_n são discretas, assumindo valores em S_1, \ldots, S_n respectivamente, então o vetor é também simples, assumindo valores em $S_1 \times \cdots \times S_n$, e a variável $\phi(X_1, \ldots, X_n)$ é discreta, assumindo valores $\phi(x_1, \ldots, x_n) \in \phi(S_1 \times \cdots \times S_n)$ com probabilidade $\mathbf{P}(X_1 = x_1, \ldots, X_n = x_n)$.

Vale então o seguinte resultado.

7.14 Proposição Dadas variáveis aleatórias X_1, \ldots, X_n discretas assumindo valores em S_1, \ldots, S_n , respectivamente, e uma função mensurável $\varphi : \mathbb{R}^n \to \mathbb{R}$, então

$$\mathbf{E}[\varphi(X_1,\ldots,X_n)] = \sum_{x_1 \in S_1} \cdots \sum_{x_n \in S_n} \varphi(x_1,\ldots,x_n) \, \mathbf{P}(X_1 = x_1,\ldots,X_n = x_n),$$

quando os dois lados estiverem bem definidos.

O caso onde X_1, \ldots, X_n são absolutamente contínuas é um pouco mais complicado, pois não garante que o vetor X seja absolutamente contínuo. Ou seja, a existência de densidades $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$ não garante a existência de uma função densidade $f : \mathbb{R}^n \to \mathbb{R}^+$ tal que

$$\mathbf{P}_{X}(A) = \mathbf{P}((X_{1}, \dots, X_{n}) \in A)$$

$$= \int_{\mathbb{R}^{n}} f(x_{1}, \dots, x_{n}) \, d\lambda_{n}(x_{1}, \dots, x_{n})$$

$$= \int_{\mathbb{D}} \dots \int_{\mathbb{D}} f(x_{1}, \dots, x_{n}) \, dx_{1} \dots \, dx_{n},$$

para $A \in \mathcal{B}(\mathbb{R}^n)$, onde λ_n é a medida de Lebesgue em \mathbb{R}^n .

7.15 Observação Para $X = (X_1, ..., X_n)$ é um vetor aleatório absolutamente contínuo, também é usual dizer que as variáveis $X_1, ..., X_n$ são conjuntamente absolutamente contínuas.

Não vamos entrar em maiores detalhes sobre esse tipo de vetor, mas podemos mostrar que

7.16 Proposição Para um vetor aleatório absolutamente contínuo X com função densidade de probabilidade $f: \mathbb{R}^n \to \mathbb{R}^+$, e uma função mensurável $\phi: \mathbb{R}^n \to \mathbb{R}$ vale que

$$\mathbf{E}[\varphi(X)] = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \varphi(x_1, \dots, x_n) f(x_1, \dots, x_n) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_n, \tag{7.3}$$

onde um lado da equação está bem definido se, e somente se, o outro também está.

7.3 Variância, Covariância e Momentos de uma Variável Aleatória

A esperança mede, como já discutimos, o comportamento médio de uma variável aleatória. Uma média, ponderada pelas probabilidades, dos diversos valores assumidos pela variável. Porém, essa a média falha em captar a dispersão dos valores e suas probabilidades.

Para entender isso, vamos ver um exemplo simples.

7.17 Exemplo *Tome X e Y variáveis aleatórias discretas tais que*

$$P(X = -1) = P(X = 1) = \frac{1}{2}$$

е

$$\mathbf{P}(Y = -100) = \mathbf{P}(Y = -50) = \mathbf{P}(Y = 50) = \mathbf{P}(Y = 100) = \frac{1}{4}.$$

Calculando, encontramos que $\mathbf{E}[X] = \mathbf{E}[Y] = 0$, mas a variável aleatória Y assume valores muito mais dispersos em torno da média.

Uma das alternativas que temos para medir essa dispersão é medir uma espécie de "distância média" (usado aqui de forma livre) entre a variável e sua média. É isso que motiva as próximas definições.

É isso que motiva as próximas definições.

7.18 **Definição** (Momentos, Variância e Covariância) Se X é uma variável aleatória em $(\Omega, \mathcal{F}, \mathbf{P})$:

 \square Dado $n \in \mathbb{N}^*$ e X tal que X^n seja integrável então

$$m_k := \mathbf{E}[X^k]$$
 $M_k := \mathbf{E}[|X|^k]$ para $k = 1, \ldots, n$

são denominados o k-ésimo **momento** e k-ésimo **momento** absoluto de X respectivamente.

□ Se X é quadrado integrável, então

$$Var[X] := E[(X - E[X])^2]$$

é a variância de X. O número $\sigma := \sqrt{Var[X]}$ é denominado desvio padrão de X.

□ Se X e Y são quadrado integráveis definimos a covariância de X e Y como

$$Cov[X,Y] := E[(X - E[X])(Y - E[Y])]$$

As variáveis X e Y são ditas não correlacionadas se Cov[X,Y] = 0.

□ o **coeficiente de correlação** de X e Y não constantes por

$$\rho(\mathsf{X},\mathsf{Y}) = \frac{\mathbf{Cov}(X,Y)}{\sigma_X \sigma_Y};$$

- **7.19 Proposição (Propriedades da Variância e Covariância)** Dadas X e Y variáveis aleatórias integráveis. Então:
 - $\boxed{\mathbf{1}} \mathbf{Var}[X] \ge 0$
 - **2** $Var[X] = E[X^2] E[X]^2.$
 - **3** $Var[X] = 0 \iff X = E[X]$ quase certamente.
 - **4** A aplicação $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \mathbb{E}[(X-x)^2]$ tem um mínimo em $\mathbb{E}[X]$ com $f(\mathbb{E}[X]) = \mathbb{Var}[X]$.
 - $[5] \mathbf{Var}[aX + b] = a^2 \mathbf{Var}[X] \ para \ a,b \in \mathbb{R}.$

 - $\boxed{7} \operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}[X,Y]$

Demonstração. 1 Segue direto da definição e das propriedades da esperança, uma vez que $(X - E[X])^2 \ge 0$;

2 Segue da linearidade da esperança. De fato

$$Var[X] = E[(X - E[X])^{2}]$$

$$= E[X^{2} - 2XE[X] + E[X]^{2}]$$

$$= E[X^{2}] - 2E[X]^{2} + E[X]^{2}$$

$$= E[X^{2}] - E[X]^{2}.$$

- **3** Se $\mathbf{E}[(X \mathbf{E}[X])^2] = \mathbf{Var}[X] = 0$, então $(X \mathbf{E}[X])^2 = 0$ q.c., e o resultado segue.
- 4 Imediato.
- **5** $\operatorname{Var}[aX+b] = \operatorname{E}[(aX+b)^2] \operatorname{E}[aX+b]^2 = a^2 \operatorname{E}[X^2] + 2ab \operatorname{E}[X] + b^2 (a^2 \operatorname{E}[X]^2 + 2ab \operatorname{E}[X] + b^2) = a^2 \operatorname{Var}[X].$
- 6 Segue da linearidade da esperança que

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - XE[Y] - YE[X] + E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y].$$

7 Segue da linearidade da esperança e dos itens anteriores que

$$Var(X + Y) = E[(X + Y)^{2}] - E[X + Y]^{2}$$

$$= E[X^{2} + Y^{2} + 2XY] - (E[X]^{2} + E[Y^{2}] + 2E[X]E[Y])$$

$$= Var[X] + Var[Y] + 2Cov[X,Y].$$

8 Segue direto da definição.

O item $\boxed{4}$ nos fornece uma descrição geométrica: imagine que queremos minimizar o erro quadrático médio de uma estimativa x da variável X. Nesse caso a estimativa que minimiza esse erro é a esperança e a variância é o menor valor do erro quadrático médio.

7.20 Exemplo Seja $X \in \mathcal{L}^2(\mathbf{P})$ integrável e Y = aX + b, com $a,b \in \mathbb{R}$ não nulos. Temos então que $\mathbf{Var}(X) < \infty$, $\mathbf{E}[Y] = a\mathbf{E}[X] + b$ e que $\mathbf{Var}[Y] = \mathbf{Var}[aX + b] = a^2\mathbf{Var}[X]$.

Da mesma forma temos que $\mathbf{Cov}[X,Y] = \mathbf{E}[(X - \mathbf{E}[X])(aX + b - (a\mathbf{E}[X] + b))] = a\mathbf{Var}[X]$. Segue que

$$\rho(X,Y) = \frac{a\mathbf{Var}[X]}{\sqrt{a^2(\mathbf{Var}[X])^2}} = \operatorname{sinal}(a) = \begin{cases} 1; & a > 0 \\ -1; & a < 0 \end{cases}.$$

A covariância a correlação servem para medir o "nível de correlação" entre as variáveis. Nesse exemplo vimos que se Y = aX + b então $\mathbf{Cov}[X,Y]$ tem o mesmo sinal de a e $\rho(X,Y)$ é 1 ou -1, de acordo com o sinal de a.

7.21 Teorema (Variáveis Aleatórias Independentes são Não Correlacionadas) Sejam X, Y são variáveis aleatórias independentes integráveis. Então (XY) é integrável e

$$E[XY] = E[X]E[Y]$$

Em particular, variáveis aleatórias independentes não estão correlacionadas.

Demonstração. Assuma primeiro que as variáveis X e Y sejam simples, de modo que X e Y são discretas assumindo uma quantidade finita de valores cada uma.

Nestas condições XY também toma apenas um número finito de valores, de modo que XY é

integrável e

$$\begin{aligned} \mathbf{E}[\mathbf{X}\mathbf{Y}] &= \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j} \mathbf{P}[\mathbf{X} = x_{i}, \mathbf{Y} = y_{j}] \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j} \mathbf{P}[\mathbf{X} = x_{i}] \mathbf{P}[\mathbf{Y} = y_{j}] \quad (pela independência) \\ &= \left(\sum_{i=1}^{n} x_{i} \mathbf{P}[\mathbf{X} = x_{i}]\right) \left(\sum_{j=1}^{m} y_{i} \mathbf{P}[\mathbf{Y} = y_{j}]\right) \\ &= \mathbf{E}[\mathbf{X}] \mathbf{E}[\mathbf{Y}]. \end{aligned}$$

Agora suponha X,Y ≥ 0 , e tome uma sequência crescente $(\phi_n)_{n\geq 0}$ de funções $\phi_n : \mathbb{R}^+ \to \mathbb{R}^+$ simples, tal que $\phi_n(x) \uparrow x$, para todo $x \in \mathbb{R}^+$.

Para cada $n \ge 1$ defina agora $X_n = \phi_n(X)$ e $Y_n = \phi_n(Y)$.

Como X,Y são independentes, X_n , Y_n são independentes e simples, para cada $n \ge 1$. Além disso, $X_n \uparrow X$ e $Y_n \uparrow Y$. Assim, pelo Teorema da Convergência Monótona, segue que

$$\mathbf{E}[XY] = \lim_{n \to \infty} \mathbf{E}[X_n Y_n] = \lim_{n \to \infty} \mathbf{E}[X_n] \mathbf{E}[Y_n] = \mathbf{E}[X] \mathbf{E}[Y] < \infty.$$

Para variáveis quaisquer basta utilizar a decomposição em parte positiva e negativa e observar que as famílias $\{X^+,Y^+\}$, $\{X^+,Y^-\}$, $\{X^-,Y^+\}$ e $\{X^-,Y^-\}$ são formadas por variáveis independentes. \Box

Vimos assim que variáveis independentes tem realmente covariância nula. Mas a recíproca não é verdadeira. Vamos deixar esse fato como exercício.

Exercício: Dê um exemplo de variáveis X e Y dependentes, mas com Cov[X,Y] = 0.

(Dica: tente pensar em uma variável X com $\mathbf{E}[X] = 0$ e uma variável Y tal que Y = 0 sempre que $X \neq 0$.)

Uma outra consequência importante é sobre a variância da soma de variáveis independentes.

7.22 Corolário Se X_1, \ldots, X_n são variáveis aleatórias independentes, então

$$\operatorname{Var}[X_1 + \cdots + X_n] = \operatorname{Var}[X_1] + \cdots + \operatorname{Var}[X_n].$$

Demonstração. Para n = 2 temos

$$Var[X_1 + X_2] = Var[X_1] + Var[X_2] + 2Cov[X_1, X_2] = Var[X_1] + Var[X_2].$$

Os demais casos segue por indução.

7.23 Proposição A aplicação $Cov : \mathcal{L}^2(P) \times \mathcal{L}^2(P) \to \mathbb{R}$ é uma forma simétrica bilinear positiva semidefinida e Cov[X, Y] = 0 se Y é constante quase certamente.

Demonstração. A demonstração é direta e será deixada como exercício.

7.24 Proposição (Desigualdade de Cauchy-Schwarz) Se $X, Y \in \mathcal{L}^2(\mathbf{P})$, então

$$Cov[X, Y]^2 \le Var[X]Var[Y].$$

A igualdade é válida se, e somente se, existirem a, b, $c \in \mathbb{R}$, não todas nulas, e tais que aX + bY + c = 0 q.c.

Demonstração. A desigualdade de Cauchy-Schwarz é verdadeira para qualquer forma bilinear positiva semidefinita e, portanto, em particular para a covariância. Ainda assim, faremos uma demonstração aqui para deixar o texto mais completo e auto-contido.

Faremos a demonstração supondo que Var[Y] > 0. O caso no qual Var[Y] = 0 será deixada como exercício.

Dada
$$\mathbf{Var}[Y] > 0$$
, seja $\theta := -\frac{\mathbf{Cov}[X,Y]}{\mathbf{Var}[Y]}$.

Temos assim $\theta \mathbf{Var}[Y] = -\mathbf{Cov}[X,Y]$, e portanto
$$0 \le \mathbf{Var}[X + \theta Y]\mathbf{Var}[Y]$$

$$= (\mathbf{Var}[X] + 2\theta \mathbf{Cov}[X,Y] + \theta^2 \mathbf{Var}[Y])\mathbf{Var}[Y]$$

$$= \mathbf{Var}[X]\mathbf{Var}[Y] - \mathbf{Cov}[X,Y]^2.$$

Note que $Var[X + \theta Y] = 0$ *se, e somente se,* $X + \theta Y$ *for constante quase certamente.*

Com isso, como supomos $Var[Y] \neq 0$, segue que a igualdade na primeira inequação acima vale se, e somente se, $X + \theta Y$ for constante quase certamente.

7.25 COROLÁRIO Dadas variáveis $X,Y \in \mathcal{L}^2(\mathbf{P})$ então

$$|\rho(X,Y)| \leq 1$$
,

com igualdade apenas se existirem constantes a,b,c $\in \mathbb{R}$, não todas nulas, tais que aX + bY + c = 0.

7.4 Integração com respeito à Distribuição

Nesta seção, definimos integrais em relação às funções de distribuição. Essas integrais, conhecidas como **integrais de Lebesgue- Stieltjes**, podem ser definidas a partir do zero, mas no entanto, elas são simplesmente as integrais com respeito a probabilidades induzidas em \mathbb{R} . Nossa principal aplicação ao cálculo de esperanças.

7.26 DEFINIÇÃO Dado uma função de distribuição F em \mathbb{R} , existe uma única probabilidade \mathbf{P}_F em $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ tal que $\mathbf{P}_F((a,b]) = F(b) - F(a)$ para todo intervalo (a,b].

A demonstração desse fato é análoga a construção que fizemos na seção 2.4 da Integral de Lebesgue e foi feita no exercício 2.3.

7.27 DEFINIÇÃO (Integração com respeito à distribuição) Dada F uma função de distribuição em \mathbb{R} . Para toda função $g \in \mathcal{L}^1(\mathbf{P}_F)$ definimos a integral de g com respeito a F

$$\mathbf{E}_F[g] := \int_{\mathbb{R}} g(x) dF(x)$$

onde estamos considerando g como uma variável aleatória no espaço de probabilidade $(\mathbb{R},\mathcal{B}(\mathbb{R}),\mathbf{P}_F)$.

7.28 Proposição Se $F(t) = \sum p_i \mathbb{1}_{(t_i \le t)}$ então para toda $g \ge 0$

$$\mathbf{E}_F[g] = \int_{\mathbb{R}} g dF = \sum_i p_i g(t_i).$$

Demonstração. Para provar esse fato suponha que $g = \sum_{j=1}^m b_j \mathbb{1}_{B_j}$ é uma função aleatória simples.

$$\mathbf{E}_{F}[g] := \sum_{j=1}^{m} b_{j} \mathbf{P}_{X}(B_{j}) = \sum_{j=1}^{m} b_{j} \sum_{i} p_{i} \mathbb{1}_{t_{i} \in B_{j}}$$
(7.4)

$$= \sum_{i} p_{i} \sum_{j=1}^{m} b_{j} \mathbb{1}_{B_{j}}(t_{i})$$
 (7.5)

$$=\sum_{i}p_{i}g(t_{i})\tag{7.6}$$

Para provar para as funções mensuráveis $g \ge 0$ basta utilizar o Teorema da Convergência Monótona. Se $g \ge 0$ e $g_n \uparrow g$

$$\mathbf{E}_{F}[g] = \lim_{n \to \infty} \mathbf{E}_{F}[g_n] = \lim_{n \to \infty} \sum_{i} p_i g_n(t_i) = \sum_{i} p_i g(t_i)$$

7.29 Proposição Suponha que F é absolutamente contínua com densidade contínua por partes f. Então se g é positiva e contínua por partes

$$\mathbf{E}_{F}[g] = \int_{\mathbb{R}} g dF = \int_{-\infty}^{\infty} g(x) f(x) dx$$

◁

Demonstração. Para provar esse fato suponha que $g = \sum_{j=1}^m b_j \mathbb{1}_{B_j}$ é uma função aleatória do tipo escada. Então

$$\mathbf{E}_{F}[g] := \sum_{j=1}^{m} b_{j} \mathbf{P}(B_{j}) = \sum_{j=1}^{m} b_{j} \int_{B_{j}} f(x) dx$$
 (7.7)

$$= \sum_{j=1}^{m} b_{j} \int_{-\infty}^{\infty} f(x) \mathbb{1}_{B_{j}} dx$$
 (7.8)

$$= \int_{-\infty}^{\infty} f(x) \left[\sum_{j=1}^{m} b_j \mathbb{1}_{B_j} \right] dx \tag{7.9}$$

$$= \int_{-\infty}^{\infty} f(x)g(x)dx \tag{7.10}$$

A demonstração para uma função geral g > 0 segue, aproximando g por funções escadas, o que é possível porque g é contínua por partes e, em seguida, usando o Teorema de Convergência Monótona.

Utilizando as Proposições 7.28 e 7.29 podemos integrar com respeito a uma distribuição que seja combinação de uma discreta e uma absolutamente contínua.

7.30 Teorema (Mudança de Variáveis) Dada uma variável aleatória $X \in \mathcal{L}^1$ e F_X a função de distribuição de X então

$$\mathbf{E}[X] = \int_{\mathbb{R}} x \ dF_{X}(x)$$

e de modo mais geral,

$$\mathbf{E}[g(\mathsf{X})] = \int_{\mathbb{R}} g(x) \, dF_{\mathsf{X}}(x).$$

Demonstração. Provaremos primeiro para funções simples não negativas $X = \sum_{i=1}^{n} a_i \mathbb{1}_{A_i}$. Nesse caso $E[X] = \sum_{i=1}^{n} a_i P(A_i)$. Por outro lado $F_X(t) = \sum_i P(A_i) \mathbb{1}_{a_i \le t}$ de modo que

$$\int_{\mathbb{R}} x \ dF_{X}(x) = \sum_{i=1}^{n} a_{i} \mathbf{P}(A_{i})$$

Deixaremos o restante da demonstração, que segue a estratégia usual de 3 passos, como exercício.

7.31 Exemplo Se $X \sim \mathcal{N}(0; 1)$ então $\mathbf{E}(X) = 0$.

$$\mathbf{E}[X] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{\frac{-x^2}{2}} dx = -\frac{1}{\sqrt{2\pi}} \int_{*}^{*} e^{u} du = -\frac{1}{\sqrt{2\pi}} e^{-x^2/2} \bigg|_{-\infty}^{\infty} = 0.$$

7.32 EXEMPLO Se $X \sim \text{Exp}(\lambda)$ então $\mathbf{E}[X^n] = \frac{n!}{\lambda^n}$.