2019 级理科数学分析(I)期终考试试题 A 卷

题 号	1	2	3	4	5	6	7	8	9	10
得分										
签 名										

1. (8分) 求下列极限

(1)
$$\lim_{x \to 0} \frac{\sin x - x}{x^2 \ln(1+x)}$$

(2)
$$\lim_{x \to 0} (x + 2^x)^{\frac{1}{x}}$$

2. (8分) 求下列积分

$$(1) \int \frac{x-4}{x^2-5x+6} dx$$

$$(2) \int_0^1 x e^x dx$$

3. (12分)

(1) 求由
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$$
 所确定的函数 $y = y(x)$ 的一阶导数 $\frac{dy}{dx}$ 和二阶导数 $\frac{d^2y}{dx^2}$.

(2) 设函数
$$y = y(x)$$
 是由方程 $e^y + xy = e$ 所确定的隐函数, 求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.

4. (12分) 求下列微分方程的通解

(1)
$$y' = 2x(y+1)$$

(2)
$$y'' + y' - 2y = e^{5x}$$

5. (6 分)证明不等式:
$$\frac{1-x}{1+x} \le e^{-2x}$$
, $0 \le x \le 1$.

6. (6 分) 设 f(x) 在区间 [a,b] 连续,在(a,b) 可导,且 $f'(x) \le 0, \forall x \in (a,b)$,又

设
$$F(x) = \frac{1}{x-a} \int_a^x f(t)dt$$
.证明: $F(x)$ 在 (a,b) 单调递减.

7. (10 分) 设
$$f(x) = \arctan x - \frac{1}{1 + ax^2} (a \neq 0)$$
.

- (1) 求 f(x) 在 x = 0 的 4 阶泰勒多项式;
- (2) 若 f''(0) = 1, 求出 a 的值.
- 8. (10 分) 设 f(x) 在区间[0,1]二阶可导,且 f(1) > 0, $\lim_{x \to 0+0} \frac{f(x)}{x} = -1$. 证明:
- (1) 存在 $x_0 \in (0,1)$, 使得 $f(x_0) = 0$;
- (2)在(0,1)中存在两个不同的点, 使得 $f(x)f''(x) + (f'(x))^2 = 0$.

9. (10 分) 设
$$a_n = \int_0^1 x^n \sqrt{1-x^2} dx$$
, $n = 1, 2, \dots$

(1)证明: $\{a_n\}$ 单调递减;

(2) 证明:
$$a_n = \frac{n-1}{n+2}a_{n-2}$$
, $n = 3, 4, \dots$;

- 10. (8分)
- (1) 设f(x)在 $[a,+\infty)$ 连续,且 $\lim_{x\to+\infty} f(x)=0$.证明: f(x)在 $[a,+\infty)$ 有界.
- (2) 证明: $f(x) = x^{\frac{1}{3}}$ 在[0,+∞)一致连续.