MODELING NEURAL CIRCUITS MADE SIMPLE

with Python
ROBERT ROSENBAUM

All models are wrong, but some models are useful. – George Box
Everything should be made as simple as possible, but no simpler. — Paraphrased from Einstein
Robert Rosenbaum: <i>Modeling Neural Circuits Made Simple</i> © 2022

CONTENTS

1	SIM	PLIFIED MODELS OF SINGLE NEURONS 2
	1.1	The Leaky Integrator Model 3
	1.2	The Exponential Integrate-and-Fire (EIF) Model 7
	1.3	Modeling Synapses 10
2	MEA	SURING AND MODELING NEURAL VARIABILITY 16
	2.1	Spike Train Variability, Firing Rates, and Tuning 16
	2.2	Modeling Spike Train Variability with Poisson Processes 22
	2.3	Modeling a Neuron with Noisy Synaptic Input 26
3	МОД	DELING NETWORKS OF NEURONS 33
	3.1	Feedforward Spiking Networks and Their Mean-Field Approximation 33
	3.2	Recurrent Spiking Networks and Their Mean-Field Approximation 37
	3.3	Rate Network Models, Suppression, and Competition 43
4		DELING PLASTICITY AND LEARNING 49
	4.1	Synaptic Plasticity 49
	4.2	Training Recurrent Neural Network Models 54
	4·3	Perceptrons and Artificial Neural Networks 59
	13	
	APPENDICES	
Α	MAT	HEMATICAL BACKGROUND 66
	A.1	Introduction to Python and NumPy 66
	A.2	Introduction to Ordinary Differential Equations 67
	A.3	Exponential Decay as a Linear, Autonomous ODE 69
	A.4	Convolutions 71
	A.5	One-dimensional Linear ODEs with Time-Dependent Forcing 76
	A.6	The Forward Euler Method 78
	A.7	Fixed Points, Stability, and Bifurcations in One Dimensional ODEs 81
	A.8	Dirac Delta Functions 85
	A.9	Fixed Points, Stability, and Bifurcations in Systems of ODEs 88
В	ADD	ITIONAL MODELS AND EXAMPLES 95
	B.1	Modeling Ion Channel Currents 95
	B.2	The Hodgkin-Huxley Model 97
	в.3	Other Simplified Models of Single Neurons 104
	B.4	Conductance-Based Synapse Models and the High Conductance State 121
	В.5	Neural Coding 126
	в.6	Synaptic Scaling and Excitatory-Inhibitory Balance 134
	в.7	Derivations and Alternative Formulations of Rate Network Models 139
	в.8	Hopfield Networks 142
	в.9	Deep Neural Networks and Backpropagation 146
	BIBL	IOGRAPHY 151

iii

PREFACE

HOW TO USE THIS BOOK. This book is assumes a background in first-semester calculus (derivatives and integrals), basic linear algebra (matrix products), and first-semester probability or statistics (expectations and variance). All other mathematical background is covered in Appendix A. Next to each paragraph that introduces a new mathematical topic, there is reference to the relevant section in Appendix A in red text in the margin. If you need to review that topic, follow the reference before reading on. Otherwise, you can ignore the reference and continue reading.

References to Appendix A look like this. See Appendix A.1 for a brief introduction to Python.

Figures in the book are accompanied by Python notebooks containing code to reproduce the figure. The file names of each Python notebook is referenced in the associated figure caption. If you are not familiar with Python or NumPy, or if you just need a review, see Appendix A.1 and the Python notebook PythonIntro.ipynb. Important equations in the book appear in boxes like this:

A very important equation

 $E = mc^2$

The main text of this book was whittled down to include a minimal thread of material to build a backbone for modeling neural circuits. This approach assures that the book can be covered in a one-semester course and also makes the book more amenable to self-learning. Many important topics and models are omitted from the book, but Appendix B contains a supplementary treatment of some additional models and topics. References to Appendix B appear as blue text in the margin.

References to Appendix B of extended models look like this.

Some sections in this book were inspired by similar sections in the two excellent textbooks, *Theoretical Neuroscience* [1] and *Neuronal Dynamics* [2], which can serve as supplements to this book. For a very nice exposition on the history of computational neuroscience and some of its fundamental concepts, see Grace Lindsay's popular science book, *Models of the Mind* [3].

ACKNOWLEDGMENTS I would like to thank Adam Kohn, Matthew Smith, Micheal Okun, and Ilan Lampl for providing the data used in Chapter 2, Appendix B.5, and Exercise 4.3.1. I would also like to thank David Toth, Vicky Zhu, and all of the other students whose feedback and comments helped shape the contents of this book. Thank you to André Miede and Ivo Pletikosić for designing the Classic Thesis LaTeX package that was used to format early versions of the book.

SIMPLIFIED MODELS OF SINGLE NEURONS

Neurons are arguably the most important type of cell in the nervous system. In this book, we will develop mathematical and computational models of neurons and networks of neurons, focusing primarily on neurons in the **cerebral cortex**, which is widely viewed as the central processing area of mammal's brains. There is a huge diversity of neuron types with different properties, but the prototypical cortical neuron is in the ballpark of $10\mu m$ (micrometers) in size and composed of three parts (Figure 1.1A): the soma, axon, and dendrites. **Dendrites** are tree-like structures on which neurons receive input from other neurons at connections called **synapses**. The **soma** is the cell body where these inputs are integrated. The neuron's response to its inputs propagates down the **axon** where it can be communicated to other neurons.

Neurons maintain a negatively charged electrical potential across their membrane, meaning that the ratio of negatively to positively charged ions is greater inside the cell than outside the cell. Specifically, the potential across the neuron's membrane is usually somewhere in the ballpark of -70mV (millivolts). This electrical potential is called the neuron's **membrane potential**, which we denote V. The membrane itself is highly resistive, meaning that it is not easily permeated by ions. Instead, the membrane potential is primarily modulated by ions flowing through **ion pumps** and **ion channels** in the membrane. The flow of charged ions through ion channels and pumps creates electrical currents that affect the neuron's membrane potential.

When a neuron's membrane potential reaches a threshold around $V \approx -55 \text{mV}$, the opening and closing of different ion channels creates an **action potential** or **spike**, which is a deviation of V to around 0-10mV that lasts about 1-2ms (Figure 1.1B). The sequence of a neuron's action potentials is called its **spike train**.

Spikes propagate down the neuron's axon where they activate synapses. The synapses open ion channels on the postsynaptic neuron's membrane, causing a brief pulse of current across the postsynaptic neuron's membrane (Figure 1.1B). Synapses are a primary means of communication between neurons.

Neurons encode information in the timing and frequency of their spikes and they communicate this information to other neurons through synapses. The frequency with which a neuron spikes over a period of time is called the neuron's **firing rate**. To see a nice illustration of how properties of visual stimuli affect a neuron's firing rate, search online for videos of Hubel and Wiesel's recordings from neurons in cat primary visual cortex. In these videos, each little clicking sound is an action potential. You can hear that the recorded neuron's firing rate is elevated by bars of light at a particular angle and particular location in the cat's visual field. The neuron's spike train reflects information about the cat's visual stimulus. This information is communicated to other neurons in the cat's brain and ultimately these neurons piece together the cat's perception of what it sees and how it responds to this perception. Understanding exactly how all of this happens is an enormous unsolved puzzle, one of the greatest frontiers of modern science. One piece of the puzzle is to understand the dynamics that emerge

Figure 1.1: A) A diagram of two neurons. An electrode (gray) injects electrical current into the presynaptic neuron (red), which connects to the postsynaptic neuron (blue) at a synapse. **B)** The membrane potentials (V_{pre} and V_{post}) of the two neurons in response to current pulses injected into the presynaptic neuron. Sufficiently strong injected current evokes action potentials or "spikes" in the presynaptic neuron's membrane potential, which then evoke responses in the postsynaptic neuron's membrane. This book describes mathematical models of the dynamics sketched in this figure, and of networks of interconnected neurons.

from networks of interconnected neurons. In this book, we will build a basic toolbox of mathematical and computational approaches for tackling this piece of the puzzle.

THE LEAKY INTEGRATOR MODEL 1.1

We will use the variable V to denote a neuron's **membrane potential**, or V(t) when we want to make the time dependence explicit. The membrane potential can be modeled as a leaky capacitor which gives rise to the ordinary differential equation (ODE)

See Appendix A.2 for an introduction to ODEs.

$$C_m \frac{dV}{dt} = I$$

where I is the current across the membrane and C_m is the membrane's capacitance. You may have seen this equation before when studying resistor-capacitor (RC) circuits.

Really, I and C_m represent the average current and capacitance per unit area of the membrane, but we will ignore that fact and ignore spatial variations in V along the neuron's membrane. A real neuron for which *V* does not vary much across space is called "electronically compact." A neuron model that ignores the spatial variation is called a "point neuron" model. We only consider point neuron models in this text.

A current that increases the membrane potential (I > 0) is called an **inward** or **depolarizing** current. A current that decreases the membrane potential (I < 0) is called an outward or hyperpolarizing current. With this terminology, we are implicitly assuming that the neuron is negatively charged and we are measuring the inside potential versus the outside. Because of the way that currents are recorded in experiments, they are sometimes measured backwards (outside-vs-inside) so that I > 0 is outward and I < 0is inward, but we will stick to the " $I > 0 \leftrightarrow$ inward" convention in this book.

The lipid bi-layer making up a neuron's membrane is highly resistive, so ions do not pass through the membrane itself very easily. For the most part, ions pass through the membrane through two mechanisms: ion pumps and ion channels. Ion pumps use

energy to maintain ion concentration differences across cell membrane. Ion pumps allow neurons to maintain a negative potential.

Ion channels can be thought of as pores that allow selected ion types to pass through membrane. Ions diffuse through on their own based on the concentration gradient and the electrical gradient (unlike pumps where ions are forced through). There are thousands of types of channels in brain and often dozens of types on a single neuron's membrane. Different channels admit different types of ions to pass through and ion channels are driven to open and close based on a variety of different factors. For example, ion channels in your ear are opened and closed mechanically by vibrations of tiny hairs!

For most cortical neurons, the overall effects of many ion channels and pumps are relatively steady when the membrane potential is near rest (V around -70mV). As a result, we can get a reasonable approximation to the membrane current near rest by lumping together the currents induced by many ion pumps and ion channels into one *effective* current called the **leak current**, which is defined by

$$I_L = -g_L(V - E_L).$$
 (1.1)

The constant $g_L > 0$ is called the **leak conductance** and approximately quantifies how easily ions pass through the membrane's ion channels. The constant E_L is the **equilibrium** or **resting potential** of the neuron, sometimes also called the **leak reversal potential**. The idea is that different ion pumps and ion channels pull V in different directions with different strengths. The equilibrium potential, E_L , is the value of V at which all of these forces cancel out, so there is no current. When V is away from E_L , then g_L measures how strongly V is pulled back toward E_L . When $V > E_L$, we say that the membrane potential is **depolarized** and when $V < E_L$, we say that it is **hyperpolarized**. A more detailed derivation of Eq. (1.1) and a description of how to model ion channels more generally is given in Appendix B.1.

In addition to the leak current, I_L , we might also want to model additional sources of current such as the current injected by a scientist's electrode (as in Figure 1.1A). To this end, we define the membrane current as

$$I = I_L + I_x$$

where I_x is any external source of current that we want to model. We will sometimes refer to I_x as the neuron's **input current**, **external input**, or simply **input**. Putting this together gives:

$$C_m \frac{dV}{dt} = -g_L(V - E_L) + I_x(t)$$

Despite its simplicity, this model is a decent approximation to the **sub-threshold** or **passive** properties of some neurons, *i.e.* the behavior of V(t) below the spiking threshold and therefore in the absence of spikes. The model can be simplified by setting

$$\tau_m = \frac{C_m}{g_L}$$

and rescaling the input current by taking $I_x \leftarrow I_x/g_L$ to get the version of the model that we will use in this textbook,

See Appendix B.1 for a more detailed description of ion currents and a derivation of Eq. (1.1).

Figure 1.1: Leaky integrator model with time-constant and time-dependent input. The membrane potential, V(t), and input current, I_x , of the leaky integrator model with time-constant input current, $I_x(t) = I_0 = 4$ mV (Left) and with a square-wave time-dependent input, $I_x(t)$ (Right). Parameters are $\tau_m = 15$ ms, $E_L = -72$, and V(0) = -70. See LeakyIntegrator.ipynb for code to produce these figures.

The leaky integrator model
$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_x(t). \tag{1.2}$$

Eq. (1.2) defines the **leaky integrator model**. The parameter, τ_m , is called the **membrane** time constant and sets the timescale of the membrane potential dynamics. Typical cortical neurons have membrane time constants around 5-20ms.

Note that $I_x(t)$ is, strictly speaking, not a current in Eq. (1.2) because it has dimensions of electrical potential (same as V(t)), typically measured in units mV. This is due to our rescaling by g_L . However, we will still refer to it as a "current" since it is proportional to the actual external current and it still models a current.

We next derive and interpret solutions to Eq. (1.2), first for the case of time-constant input, $I_x(t) = I_0$. When $I_x(t) = I_0$, Eq. (1.2) is an autonomous, linear (and also separable) differential equation, which has a solution given by

$$V(t) = (V_0 - E_L - I_0) e^{-t/\tau_m} + E_L + I_0$$
(1.3)

where $V(0) = V_0$ is the initial condition. Eq. (1.3) represents an exponential decay to $E_L + I_0$. The timescale of this decay is set by τ_m . Roughly speaking, τ_m is the amount of time required for the membrane potential to get a little past halfway from V(0) to $E_L + I_0$ (specifically, it gets a proportion $1 - e^{-1} \approx 0.63$ of the way).

In Python, we would implement the solution as

where time is a NumPy array representing discretized time. See Figure 1.1A,B and LeakyIntegrator.ipynp for a complete simulation of the leaky integrator with timeconstant input.

We next consider the leaky integrator with a time-dependent input, $I_x(t)$. When there is a time-dependent input current, $I_x(t)$, Eq. (1.2) is an inhomogeneous, linear See Appendices A.4 and A.5 for a review of convolutions and linear ODEs with time-dependent forcing.

differential equation. The solution to Eq. (1.2) can be written as a convolution of $I_x(t)$ with a kernel. Specifically, the solution can be written as

$$V(t) = (V_0 - E_L) e^{-t/\tau_m} + E_L + (k * I_x)(t)$$
(1.4)

where $V_0 = V(0)$, * denotes convolution, and the kernel is defined by

$$k(s) = \begin{cases} \frac{1}{\tau_m} e^{-s/\tau_m} & t \ge 0\\ 0 & s < 0 \end{cases}$$
$$= \frac{1}{\tau_m} e^{-s/\tau_m} H(s)$$

Here,

$$H(s) = \begin{cases} 1 & s \ge 0 \\ 0 & s < 0 \end{cases}$$

is the Heaviside step function. We have implicitly assumed that $I_x(t) = 0$ for t < 0, i.e., the input starts at t = 0.

When $V_0 = E_L$ (or $t \gg \tau_m$), the first term in Eq. (1.4) can be ignored so

$$V(t) = E_{I_x} + (k * I_x)(t).$$

In other words, the membrane potential is a filtered version of the input (plus E_L). Since k(s) = 0 for s < 0, this is a causal filter, meaning that $V(t_0)$ only depends on values of $I_x(t)$ in the past $(t < t_0)$. Also, $\int k(t)dt = 1$, so V(t) is a running, weighted average of the recent history of $I_x(t)$. The membrane time constant, τ_m , determines how quickly the neuron responds to changes in $I_x(t)$, equivalently how far in the past it averages $I_{x}(t)$. Another way of thinking about this equation for V(t) is that changes to $I_{x}(t)$ get integrated into V(t) and then forgotten over a timescale of τ_m .

In Python, we would implement the solution as

```
# Define the convolution kernel
s=np.arange(-5*taum,5*taum,dt)
k=(1/taum)*np.exp(-s/taum)*(s>=0);
# Define V by convolution
V=EL+np.convolve(Ix,k,mode='same')*dt
```

Note that we defined the kernel, k(s), over a time-interval $[-5\tau_m, 5\tau_m]$ because the time-window must be centered at s = 0 and because k(s) is close to zero outside of this window (the window contains most of the "mass" of k(s)). A complete example of the leaky integrator with time-dependent input is given in Figure 1.1C,D and the second code cell of LeakyIntegrator.ipynb. Try out different time series for $I_x(t)$ to get an intuition for the model.

The leaky integrator does a reasonable job of describing sub-threshold (non-spiking) membrane dynamics, but does not capture action potentials, which occur when the membrane potential exceeds a threshold around -55mV. Referring back to Figure 1.1B, the leaky integrator model captures the membrane potential responses to the first three current pulses, but does not capture the action potential responses to the last two pulses. In Appendix B.2, we discuss the Hodgkin-Huxley model that describes how sodium and potassium ion channels produce action potentials. In the next section, we discuss a simpler model that captures many of the salient features of action potential generation.

THE EXPONENTIAL INTEGRATE-AND-FIRE (EIF) MODEL 1.2

When the membrane potential of a neuron gets close to -55mV, sodium channels begin opening, causing an influx of sodium, which pushes the membrane potential higher (because sodium is positively charged). This causes more sodium channels to open, creating a positive feedback loop and a rapid upswing in the membrane potential. This rapid upswing is eventually shut down by the closing of sodium channels and the opening of potassium channels that pulls the membrane potential back down toward rest. The Hodgkin-Huxley model from Appendix B.2 captures these dynamics in great detail, but it is very complicated and computationally expensive to simulate, so we focus on a simplified model here.

The upswing of action potentials and the effects of sub-threshold sodium currents can be captured by adding an exponential term to the leaky integrator model. The subsequent "reset" of the membrane potential back toward rest can be captured by a simple rule saying that every time V(t) exceeds some threshold, V_{th} , we record a spike and reset V(t) to V_{re} . Putting this together gives the exponential integrate-and-fire (EIF) model [4],

The exponential integrate-and-fire (EIF) model

$$\tau_m \frac{dV}{dt} = -(V - E_L) + De^{(V - V_T)/D} + I_x(t)$$

$$V(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } V(t) \leftarrow V_{re}.$$
(1.5)

The second line in this equation describes the resetting of the membrane potential and it defines the class of "integrate-and-fire" models. More integrate-and-fire models are discussed in Appendix B.3. The term

$$\Phi(V) = De^{(V - V_T)/D}$$

models the current induced by the opening of sodium channels that initiates the upswing of an action potential.

The parameter V_T should be chosen near the potential at which action potential initiation begins, i.e., where sodium channels begin opening more rapidly ($V_T \approx$ -55mV). Parameters for the EIF must satisfy V_{re} , V_T < V_{th} and D > 0. Typically, V_{re} is near E_L . If we want to faithfully model the peak of an action potential, then we should choose $V_{th} \approx 0 - 10$ mV, but choosing smaller values will not greatly affect spike times.

A detailed mathematical analysis shows that the membrane potential dynamics of the more detailed Hodgkin-Huxley model during the upswing of an action potential are accurately approximated by the sum of an exponential and linear function of V, as appear on the right side of Eq. (1.5) (see [5] or Chapter 5.2 of [2] for details). And careful experiments with real neurons also indicate that the EIF model accurate captures the upswing of an action potential [6]. For these and other reasons, the EIF See Appendix B.2 for a description of the Hodgkin Huxley model.

See Appendix B.3 for a description of other simplified neuron models.

Figure 1.2: Simulation of an EIF neuron model. A) The input current and B) the membrane potential of an EIF neuron model. Red circles indicate the times at which the neuron spiked. Relevant parameters are $E_L = -72$, $V_{th} = 5$, $V_{re} = -75$, and $V_T = -55$ mV. See EIF.ipynb for code to produce this figure.

model is sometimes regarded as an ideal **one-dimensional neuron model** [2, 4, 5] ("one-dimensional" meaning that the model is defined by a one-dimensional ODE).

Unlike the leaky integrator model, we cannot write an equation for the solution to Eq. (1.5). Instead, we can find an approximate, numerical solution to Eq. (1.5) using the forward Euler method as follows,

See Appendix A.6 for a review of the forward Euler method.

```
for i in range(len(time)-1):
    # Euler step
    V[i+1]=V[i]+dt*(-(V[i]-EL)+DeltaT*np.exp((V[i]-VT)/DeltaT)+Ix[i])/
    taum
    # Threshold-reset condition
    if V[i+1]>=Vth:
        V[i+1]=Vre
        V[i]=Vth # This makes plots nicer
        SpikeTimes=np.append(SpikeTimes,time[i+1])
```

See Figure 1.2 and EIF.ipynb for a complete simulation. The line V[i]=Vth sets the membrane potential to V_{th} just before it is reset to V_{re} in the event of a spike. This is added to make the plots of V(t) look nicer, but has no effect on spike timing or dynamics. Try commenting out this line in EIF.ipynb to understand why it helps.

To better understand the dynamics of the EIF model, we begin with an intuitive explanation, then perform a more precise analysis. The intuitive explanation proceeds by considering two regimes of V.

- 1. The leaky integrator regime. When $V \ll V_T$ (meaning V is "way less than" V_T), then $\Phi(V) \approx 0$ so the EIF model behaves like a leaky integrator. The membrane potential is pulled toward $E_L + I_x$. The first 600ms in Figure 1.2 illustrates the leaky integrator regime.
- 2. **Spiking regime.** If V is larger than V_T , then $\Phi(V)$ gets larger and produces an inward current that models the opening of sodium channels. For sufficiently large V, this inward current creates a positive feedback loop: Increasing V causes $\Phi(V)$ to increase, which increases V further, causing $\Phi(V)$ to increase further, etc. This feedback loop models the upswing of the membrane potential at the initiation of an action potential. The EIF in Figure 1.2 is pushed into the spiking regime by the larger input pulse beginning at 600ms.

Figure 1.3: Phase line for the EIF model. A) Phase line for the EIF model with $I_0 = 5$ mV and **B)** $I_0 = 20$ mV. Parameters are $\tau_m = 15$ ms, $E_L = -72$, $V_{th} = 5$, $V_{re} = -75$, $V_T = -55$, and D = 2. Draw the arrows and determine stability yourself. See EIFphaseLine.ipynb for code to produce this figure.

There is an intermediate regime in which the inward current, $\Phi(V)$, is appreciably larger than zero, but not strong enough to produce a positive feedback loop and initiate an action potential by itself. Instead, $\Phi(V)$ reduces the amount of positive input, $I_x > 0$, required to initiate an action potential. In this sense, $\Phi(V)$ implements a kind of **soft** threshold for the EIF model near V_T : When $V > V_T$, an action potential is likely to occur, but it is not guaranteed.

The parameter D determines how soft the soft threshold is, i.e. how gradually the inward current increases as V increases toward V_T and beyond. When D is small, $\Phi(V) \approx 0$ whenever V is even just a little bit below V_T , but $\Phi(V)$ is large when V is just a little bit above V_T . This leads to a sharper threshold near V_T and a faster action potential upswing. When D is larger, $\Phi(V)$ increases more gradually when V is near V_T , leading to a softer threshold near V_T and a slower action potential upswing. Typically, we should choose $D \approx 1 - 5$ mV.

To understand the dynamics of the EIF more precisely, we can consider the constant input case, $I_x(t) = I_0$, and perform a phase line analysis. The sub-threshold dynamics of the EIF with time-constant input obey

See Appendix A.7 for a review of phase lines, fixed points, and stability for 1D ODEs.

$$\frac{dV}{dt} = f(V)$$

where

$$f(V) = \frac{-(V - E_L) + De^{(V - V_T)/D} + I_0}{\tau_m}.$$

The phase line for $I_0 = 5$ mV is plotted in Figure 1.3A. There is a stable fixed point near $E_L + I_0$ and an unstable fixed point just above V_T . Therefore, as long as $V(0) < V_T$, no spike will occur because V(t) will converge to the fixed point near $E_L + I_0$, similar to the leaky integrator model. Note also that f(V) is approximately linear near $E_L + I_0$, because $\Phi(V)$ is small there, so the EIF behaves like the leaky integrator in this regime.

Increasing I_0 is equivalent to shifting up the blue curve, f(V), in Figure 1.3. When we increase the input to $I_0 = 20 \text{mV}$ (Figure 1.3B), both fixed points disappear because f(V) > 0 for all V. Regardless of the initial condition, V(0), the membrane potential will increase to V_{th} then reset to V_{re} and this process will repeat. Note that f(V) grows exponentially when $V > V_T$, which means that V'(t) = f(V) increases very rapidly whenever $V > V_T$. This explains the fast upswing in the action potentials in Figure 1.2B.

The existence of a stable and unstable fixed point when $I_0 = 5$ mV and their disappearance when $I_0 = 20$ mV in Figure 1.3 is a signature of a Saddle-Node bifurcation. Define I_{th} to be the value of I_0 at which the bifurcation occurs (where the two fixed points collide). This value allows us to precisely characterize the two regimes for an EIF with time-constant input.

- 1. **Sub-threshold regime:** If $I_0 \leq I_{th}$, the membrane potential decays exponentially toward a fixed point and the neuron never spikes.
- 2. **Super-threshold regime:** If $I_0 > I_{th}$, the membrane potential eventually reaches V_{th} , the neuron spikes, V is reset to V_{re} , and this process repeats indefinitely.

These two regimes are demonstrated by the response to the two different inputs given in Figure 1.2. Interestingly, despite the fact that the fixed points in the sub-threshold regime cannot be derived as a closed form expression, the threshold input can be written in closed form.

Exercise 1.2.1. The threshold input, I_{th} , of the EIF with time-constant input is defined as the value at which the neuron eventually spikes if $I_0 > I_{th}$, but never spikes $I_0 \leq I_{th}$. Derive a closed form equation for I_{th} for the EIF model. To verify your solution, plot the phase line and numerical simulations of the EIF model for $I_0 = I_{th} - 1$ mV and $I_0 = I_{th} + 1$ mV.

Hint: The minimum of f(V) can be found by setting f'(V) = 0, solving for V, then plugging this value of V back into f(V). From Figure 1.3, we can see that the EIF spikes whenever the minimum of f(V) is larger than zero. In your derivation, you will need to make a reasonable assumption that V(0) and E_L are sufficiently smaller than V_T .

Exercise 1.2.2. The EIF model with super-threshold, time-constant input, $I_x(t) =$ $I_0 > I_{th}$, spikes periodically. The interspike interval (ISI) is defined as the interval of time between a pair of consecutive spikes. We cannot derive an equation for the duration of an ISI, but we can compute it numerically by simulating the EIF with Euler's method. Use numerical simulations of the EIF model to compute the ISI duration, t_{ISI} , for several values of $I_0 > I_{th}$. Make a plot of t_{ISI} as a function of I_0 . When a neuron spikes periodically, its firing rate is the reciprocal of the ISI duration, $r = 1/t_{ISI}$. Make a plot of r as a function of I_0 . This is called an f-I curve (for "frequency-input").

MODELING SYNAPSES 1.3

We have so far considered very simple forms of external input, $I_x(t)$, modeling current injected by an electrode. We will now consider currents that model inputs from other neurons. A synapse is a connection between two neurons, the presynaptic neuron and postsynaptic neuron (see Fig. 1.1 and surrounding discussion). There are two fundamental types of synapses: ionotropic and metabotropic. We will focus on ionotropic synapses, which are faster and more "direct" than metabotropic synapses and we will not consider metabotropic synapses in this book.

When the presynaptic neuron spikes, neurotransmitter molecules are released and diffuse across the synapse to receptors on the postsynaptic neuron's membrane. These neurotransmitters open ion channels, which evokes a current across the postsynaptic neuron's membrane, called a **post-synaptic current (PSC)**. A PSC is transient because the ion channels close again over the course of several milliseconds. Each PSC causes a transient response in the membrane potential of the postsynaptic neuron, called a postsynaptic potential (PSP). In Figure 1.1B, the two bumps in the blue curve are PSPs evoked by the two spikes in the red curve.

There are two broad classes of (ionotropic) synapses: excitatory and inhibitory. Excitatory synapses evoke positive (inward) synaptic currents, pushing the membrane potential closer to threshold, thereby "exciting" the neuron. Inhibitory synapses evoke negative (outward) synaptic currents, pushing the membrane potential away from threshold, thereby "inhibiting" action potentials.

The polarity (excitatory or inhibitory) of a synapse is determined by the type of neurotransmitter released and the type of receptor on the postsynaptic neuron's membrane. The most common type of excitatory neurotransmitter in the cortex is **glutamate**. A common type of receptor for glutamate are α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The most common type of inhibitory neurotransmitter in cortex is γ -aminobutyric acid (GABA) and a common receptor type is $GABA_B$. The decay timescales of AMPA and $GABA_B$ receptors is around $\tau_{\rm s} \approx 3-10$ ms with AMPA a little bit faster than GABA_B.

Dales Law says that a presynaptic neuron connects to all of its postsynaptic targets with the same "type" of synapse. For our purposes, this will be taken to mean that all postsynaptic targets of a single neuron are either excitatory or inhibitory. Laws in neuroscience are almost never completely universal, but Dale's law has very few exceptions. When considering cortical neurons of adult mammals under healthy conditions, one can safely assume Dale's law.

Because of Dale's law, we can classify neurons as excitatory neurons or inhibitory **neurons**, instead of just classifying *synapses* as excitatory or inhibitory. An excitatory neuron is a neuron that connects to all of its postsynaptic targets with excitatory synapses, and similarly for inhibitory neurons. In cortex, about 80% of neurons are excitatory neurons and 20% are inhibitory. Most excitatory neurons in cortex are pyramidal neurons, named for the pyramid-like appearance of their soma. Most inhibitory neurons in cortex are classified as cortical interneurons, where the "interneuron" label reflects the fact that they only project locally, to nearby neurons in the same cortical area or layer. In the cortex, long range projections to other cortical areas are almost exclusively made by excitatory (pyramidal) neurons.

The current generated by a synapse across the postsynaptic neuron's membrane is called the synaptic current. We will consider a model in which synaptic currents are generated directly from presynaptic spike times. This is called a current-based synapse model. A more biologically realistic approach generates a synaptic conductance from spike times and the synaptic current is generated from this conductance. These conductance-based synapse models are discussed in Appendix B.4 along with an approach to approximate conductance-based models with current-based models.

See Appendix B.4 for a description of conductance-based synapse models.

Figure 1.4: A leaky integrator model driven by two synapses. A) Excitatory spike density. Each vertical bar represents a spike in the excitatory presynaptic neuron, modeled as a Dirac delta function. B) Excitatory synaptic current generated by the spikes in A using an exponential synapse model. C) Inhibitory spike density. D) Inhibitory synaptic current. E) Schematic of an excitatory and inhibitory neuron connected to a postsynaptic neuron. F) Membrane potential of the postsynaptic neuron modeled as a leaky integrator. See Synapses.ipynb for code to produce this figure.

To construct out current-based model, first consider an excitatory presynaptic neuron and define s_j^e be the time of its jth spike. We can model the synaptic current for an excitatory synapse as a sum of excitatory PSCs (EPSCs),

$$I_e(t) = J_e \sum_j \alpha_e(t - s_j^e). \tag{1.6}$$

The term $\alpha_e(t) \geq 0$ is a non-negative function called the **excitatory post-synaptic current (EPSC) waveform** and I_e is a **synaptic weight** or **synaptic strength** which scales the sign and magnitude of the synaptic current. Hence, Eq. (1.6) can be interpreted as adding a "copy" of the EPSC waveform, $\alpha_e(t)$, scaled by the weight, J_e , at each presynaptic spike time, s_i^e . Figure 1.4B shows synaptic current generated by presynaptic spikes that are indicated by the vertical bars in Figure 1.4A. The e subscripts and superscript in Eq. (1.6) refers to the fact that this is an excitatory synapse. For inhibitory synapses, we just replace e with i. Note that we must have $J_e > 0$ and $J_i < 0$. We can additionally model the postsynaptic neuron's membrane potential using a leaky integrator model. Putting this all together gives a model of a postsynaptic neuron driven by an excitatory and inhibitory synapse,

$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_e(t) + I_i(t)$$

$$I_e(t) = J_e \sum_j \alpha_e(t - s_j^e)$$

$$I_i(t) = J_i \sum_j \alpha_i(t - s_j^i)$$
(1.7)

Which function should we use for the PSC waveforms, $\alpha_e(t)$ and $\alpha_i(t)$? We should always have $\alpha_e(t) = \alpha_i(t) = 0$ when t < 0 because the postsynaptic response cannot precede the presynaptic spike. Since the sign and strength of the synapse is captured by I, we can always assume that

$$\int_0^\infty \alpha_a(t)dt = 1 \quad \text{for } a = e, i$$

because we can absorb the sign and magnitude of $\alpha_a(t)$ into J_a .

Most synaptic currents rise much faster than they decay, and their decay is approximately exponential. A very simple model of a synaptic current is therefore given by an instantaneous rise and exponential decay,

$$\alpha_a(t) = \frac{1}{\tau_a} e^{-t/\tau_a} H(t) = \begin{cases} \frac{1}{\tau_a} e^{-t/\tau_a} & t \ge 0\\ 0 & t < 0 \end{cases}$$

for a = e, i where

$$H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

is the Heaviside step function and τ_a is the synaptic time constant or decay time **constant** that controls how quickly the PSC decays. The $1/\tau_a$ factor in the definition of $\alpha_a(t)$ assures that $\int \alpha_a(t)dt = 1$. This form of $\alpha_a(t)$ is sometimes called an **exponential** synapse model. Synaptic timescales of many ionotropic synapses in the cortex are around $\tau_a \approx 5 - 10$ ms.

Figure 1.4 shows a full simulation of the model in Eqs. (1.7) exponential synapse models for $\alpha_e(t)$ and $\alpha_i(t)$. You can see in Figure 1.4F that each isolated presynaptic spike evokes a PSP. PSPs from excitatory presynaptic spikes are called excitatory postsynaptic potentials (EPSPs) and those from inhibitory presynaptic spikes are called an **inhibitory postsynaptic potentials (IPSPs)**. The **PSP amplitude** is the height of a PSP (the distance from the peak of the PSP to the resting membrane potential). PSP amplitudes in cortex are often between 0 and 1mV. PSP amplitudes are proportional to the synaptic weight, J_e or J_i , but also depend on the synaptic timescales, τ_e or τ_i , and membrane time constant, τ_m . When building simulations, it's easiest to choose the timescales and time constants first, then choose the synaptic weights by trial-and-error to get the PSP amplitude you want.

Before describing how to simulate the model in Eqs. (1.7) to generate Figure 1.4, we first need to describe two ways of reformulating the model that make it easier to simulate. First, we write the presynaptic spike trains as sums of Dirac delta functions,

See Appendix A.8 for a review of Dirac delta functions.

$$S_e(t) = \sum_j \delta(t - s_j^e)$$

$$S_i(t) = \sum_j \delta(t - s_j^i)$$
(1.8)

This representation of a spike train is called a **spike density**. Specifically, the spike density representation of a spike train is a time series with a Dirac delta function at each spike time. Spike density representations of spike trains can simplify the mathematics and coding in many situations in computational neuroscience. Figures 1.4A,C show spike density representations of the presynaptic spike trains when vertical bars are used to represent Dirac delta functions. Python code for turning a list of spike times into a spike density is given

```
Se=np.zeros_like(time)
Si=np.zeros_like(time)
```

```
Se[(ExcSpikeTimes/dt).astype(int)]=1/dt
Si[(InhSpikeTimes/dt).astype(int)]=1/dt
```

where ExcSpikeTimes and InhSpikeTimes are vectors of spike times. This code sets indices corresponding to spike times to the value 1/dt, representing a Dirac delta function in discrete time. Conversion to an integer using astype(int) always rounds down in NumPy, so this code should avoid indexing errors if time=np.arange(0,T,dt) and all the entries in the spike time vectors are less than *T*.

Using the spike density representation of the presynaptic spike train allows us to write the synaptic currents as convolutions, so we can reformulate our model as

$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_e(t) + I_i(t)$$

$$I_e(t) = J_e(\alpha_e * S_e)(t)$$

$$I_i(t) = J_i(\alpha_i * S_i)(t)$$
(1.9)

Think about why Eqs. (1.7) and (1.9) are equivalent. To simulate this formulation of the model in Python, we would use the code

```
# Use convolutions to define synaptic currents
s=np.arange(-5*taue,5*taue,dt)
alphae=(1/taue)*np.exp(-s/taue)*(s>=0)
alphai=(1/taui)*np.exp(-s/taui)*(s>=0)
Ie=Je*np.convolve(Se,alphae,'same')*dt
Ii=Ji*np.convolve(Si,alphai,'same')*dt
# Euler solver to compute Is and V
V[0]=EL
for i in range(len(time)-1):
    V[i+1]=V[i]+dt*(-(V[i]-EL)+Ie[i]+Ii[i])/taum
```

The first code cell of Synapses.ipynb contains the full code to generate Figure 1.4 using this formulation.

The second way to reformulate the synapse model from Eqs. (1.7) only works for exponential synapse models. For exponential synapse models, the exponential decay that occurs between spikes can be represented by a linear ODE. Therefore, the synapse model can be defined by a linear ODE with the added condition that we increment I_s at each presynaptic spike. The spike density representation again makes the model easier to formulate. Specifically, the model can be written as

```
Leaky integrator with excitatory and inhibitory synapses
        \tau_m \frac{dV}{dt} = -(V - E_L) + I_e(t) + I_i(t)
         \tau_e \frac{dI_e}{dt} = -I_e + J_e S_e
                                                                                                           (1.10)
         \tau_i \frac{dI_i}{dt} = -I_i + J_i S_i
```

where $S_e(t)$ and $S_i(t)$ are given by Eq. (1.8). The idea is that each delta function in $S_e(t)$ causes a jump of size I_e/τ_e in $I_e(t)$, then $I_e(t)$ decays exponentially toward zero between spikes (and similarly for $I_i(t)$). Indeed, Eq. (1.10) is equivalent to Eqs. (1.7) and (1.9) when exponential synapse models are used and initial conditions are $I_{\ell}(0) = I_{i}(0) = 0$. In Python, we can use the forward Euler method to solve Eqs. (1.10) as follows,

```
V[0]=EL
for i in range(len(time)-1):
    V[i+1]=V[i]+dt*(-(V[i]-EL)+Ie[i]+Ii[i])/taum
    Ie[i+1]=Ie[i]+dt*(-Ie[i]+Je*Se[i])/taue
    Ii[i+1]=Ii[i]+dt*(-Ii[i]+Ji*Si[i])/taui
```

The second code cell in Synapses.ipynb contains the full code to generate Figure 1.4 using this formulation.

The different formulations of the synapse model described above each have their own advantages and disadvantages. The formulation in Eqs. (1.7) is easy to understand and does not require a spike density representation of the presynaptic spike trains, but it is difficult to implement directly in code. The formulation in Eqs. (1.9) is easy to implement in code, but it requires knowledge of all spike times ahead of time. Later, we will consider networks in which spikes are generated while simulating membrane potentials, so we cannot define synaptic currents before solving for the membrane potentials. The formulation in Eqs. (1.10) is also easy to implement in code and allows us to solve for membrane potentials and synaptic currents simultaneously, which will be useful when modeling networks. Before we can start modeling networks, however, we must learn to model neural variability.

Exercise 1.3.1. Using the exponential PSC waveform causes $I_e(t)$ and $I_i(t)$ to jump discontinuously after each presynaptic spike. In reality, the currents rise continuously, but quickly. Some studies use a difference of exponentials,

$$\alpha_a(t) = \frac{1}{\tau_2 - \tau_1} \left(e^{-t/\tau_2} - e^{-t/\tau_1} \right) H(t)$$

for a = e, i to obtain a continuous PSC. In a new file, reproduce Figure 1.4, but replace the exponential PSCs with a difference of exponentials, using $\tau_2 = 4$ ms and $\tau_1 = 0.5$ ms (called the "decay" and "rise" timescales respectively). This is more difficult to represent with ODEs, so you should use the formulation of the model from Eqs. (1.9) (the first code cell in Synapses.ipynb). Visually compare the results in the two cases. If the ultimate goal is to model V(t), do we need the more realistic, but more complicated difference of exponentials model?

Exercise 1.3.2. On the opposite side of the spectrum from the previous exercise, some studies use instantaneous or delta synapses, which cause an instant jump in V(t). These can be obtained by taking $\alpha_a(t) = \delta(t)$ or, more simply by taking $I_a(t) = J_a S_a(t)$ so Eq. (1.10) becomes much simpler,

$$\tau_m \frac{dV}{dt} = -(V - E_L) + J_e S_e(t) + J_i I_i(t).$$

Reproduce Figure 1.4F, but replace the exponential PSCs with delta synapses. Visually compare the membrane potential traces in the two cases.

2.1 SPIKE TRAIN VARIABILITY, FIRING RATES, AND TUNING

Figure 2.1A shows a recording of a membrane potential from a real neuron in the brain of a rat¹ [7]. Some features match what we say in Chapter 1: The membrane potential hovers near -70mV with the exception of brief action potentials to near 0mV. However, there are other features that are noticeably different. Most notably, the membrane potential fluctuates in a seemingly random fashion between spikes and the spike times are irregular. These types of irregularity are ubiquitous in recordings made from living animals and are broadly known as **neural variability**. The causes and effects of neural variability are a topic of active research and debate.

To model and quantify neural variability, we will begin by studying the irregularity of spike times, which is often called **spike timing variability**. To begin studying neural variability, we first define the **spike count** over a time interval,

Spike count definition

N(a,b) = # of spikes in [a,b].

Given a single recording, we can compute the spike count over the entire recording interval, for example N(0,5000)=11 for the recording in Figure 2.1A. We can also compute the spike counts over consecutive intervals of a given length. The following code computes firing rates over consecutive intervals of length 500ms,

```
dtRate=500
SpikeCountTime=np.arange(0,5001,dtRate)
SpikeCounts=np.histogram(SpikeTimes,SpikeCountTime)[0]
```

The call to the histogram function counts the number of elements in SpikeTimes between every pair of consecutive elements in SpikeCountTime. The results are shown in Figure 2.1B and full code to produce the figure is given in OneRealSpikeTrain.ipynb.

As discussed in Chapter 1, a neuron will not typically spike twice within a 2ms time window. Therefore, if we discretize time into very small intervals, dt < 2ms, then each bin should contain either one spike or zero spikes. This is called a **binarized spike train** because it is a binary time series (0's and 1's). See Figure 2.1C for an example of a binarized spike train with bin width dt = 0.1ms.

We're often interested in the frequency of spikes, *i.e.*, the number of spikes per unit time, which is called a neuron's **firing rate** or just **rate**,

¹ Thanks to Micheal Okun and Ilan Lampl for sharing the data from Figure 2.1. More information about the data and its collection can be found in [7].

Figure 2.1: Membrane potential, spike counts, and time dependent firing rate of a real neuron. A) The membrane potential recorded from a rat cortical neuron. The potential was shifted downward to correct for possible recording artifacts. B) Spike counts over consecutive 500ms intervals. C) Time-dependent firing rate computed over the same intervals. See OneRealSpikeTrain.ipynb for code to produce this plot.

Firing rate definition
$$r = \text{firing rate} = \frac{\text{\# of spikes}}{\text{length of time window}} = \frac{N(a,b)}{b-a}.$$

Firing rates have dimension "number of spikes per unit time." If we think of "number of spikes" as dimensionless, then this is a frequency. If time is measured in ms then r has units "spike per ms" or kiloHertz (kHz). But we usually report firing rates in units of spikes per second or Hertz (Hz). Since we usually keep track of time in ms, this often requires us to rescale firing rates to Hz by multiplying by 1000 (because 1kHz=1000Hz). Neurons in the cortex usually spike at around 1-50Hz.

Each measure of the spike count discussed above has an analogue in firing rates. As with spike counts, we can measure the firing rate over an entire recording, which can be called the **time-averaged firing rate**. For example, the time-averaged rate in the recording from Figure 2.1A is 2.2Hz. We can also measure the firing rate over sequential time intervals, which is called a **time-dependent firing rate**, such as the time-dependent rate plotted in Figure 2.1D. Note that the firing rates in Figure 2.1D are just the spike counts from Figure 2.1B scaled by a factor of 2 since the time intervals are b - a = 0.5 seconds long. If we measure firing rates over small time intervals, dt < 2ms, then each bin in the time-dependent rate should contain either a zero or a 1/dt. This is just a discrete-time representation of the spike density,

$$S(t) = \sum_{j} \delta(t - s_{j})$$

where s_j is the jth spike time. Figure 2.1E shows the time-dependent firing rate (or discretized spike density) with a time bin size of dt = 0.1ms.

The firing rate estimate in Figure 2.1D is discontinuous and jagged because we counted spikes over non-overlapping intervals. We often want an estimate of the firing rate that is continuous in time. One option is to use overlapping time intervals. A more parsimonious example is to convolve the spike density with a smoothing kernel,

$$r(t) = (k * S)(t)$$

where k(t) is a kernel satisfying $\int k(t)dt = 1$. The resulting time series, r(t), is also called a time-dependent firing rate, but it is smoother than the one defined by counting spikes over disjoint time intervals. Using a Gaussian-shaped kernel is common and can be accomplished in code as follows

```
sigma=250
s=np.arange(-3*sigma,3*sigma,dt)
k=np.exp(-(s**2)/(2*sigma**2))
k=k/(sum(k)*dt)
SmoothedRate=np.convolve(k,S,'same')*dt
```

Figure 2.1F shows the smoothed rate obtained by applying this method to the spike times from that figure. See OneRealSpikeTrain.ipynb for the complete code.

The interspike intervals (ISIs) of a spike train are defined as the time intervals between consecutive spikes. Specifically, if s_i is the jth spike time then the jth ISI is

$$I_j = s_{j+1} - s_j$$

and they can be computed in NumPy using the diff function,

```
ISIs=np.diff(SpikeTimes)
```

Spike timing variability is often quantified by the **coefficient of variation (CV)** of the ISIs, defined as the standard deviation of the ISIs divided by their mean ISI,

$$CV = \frac{\text{std}(ISI)}{\text{mean}(ISI)}$$

where std stands for the standard deviation. Because the mean and standard deviation of the ISIs have the same units, the CV is a dimensionless quantity. A periodic spike train has $\sigma_{ISI} = 0$ so CV = 0. A larger CV implies more irregular spike times.

Exercise 2.1.1. Compute the CV for the spike train in OneRealSpikeTrain.ipynb

If all you think all of this analysis seems over-the-top for the handful of spikes in Figure 2.1, you're correct. More commonly, a neuron will be recorded for a longer duration, or it will be recorded across repetitions of the same experiment (e.g., several presentations of the same stimulus). Each repetition is sometimes called a trial.

The data file SpikeTimes1Neuron1Theta.npz contains spike times recorded from a neuron in a monkey's visual cortex over the course of 200 trials². During each 1s trial,

² Thanks to Adam Kohn and Matthew Smith for sharing the data which was recorded from an array of extracellular electrodes. More information about the data and its collection can be found in [8]

Figure 2.2: Analysis of spike trains recorded from a real neuron across 200 trials. A) Example of a drifting grating visual stimulus. The white/black lines drift slowly across the circle. B) Raster plot. Each dot is a spike at the indicated time and trial. C) Time-dependent, trial-averaged firing rate computed by counting the number of spikes across all neurons in each time bin. D) Smoothed, trial-averaged firing rate. E) Histogram of spike counts across trials. Code to produce this figure can be found in MultiTrialSpikeTrains.ipynb.

the monkey watched the same "drifting grating" movie in which angled bars drifted across part of the monkey's visual field (see Figure 2.2A for a still image of a drifting grating). The file has a variable theta representing the angle of the stimulus for this recording, which is 300° .

The spike times of every spike across all trials is stored in SpikeTimes and the corresponding trial numbers are stored in TrialNumbers. For example, SpikeTimes[3]==4.36 and TrialNumbers[3]==42, indicating that there was a spike on trial number 42 at 4.36ms after the start of the trial. Figure 2.2B shows a **raster plot** of the spike times. In a raster plot, each dot represents a spike at the corresponding time and trial. A raster plot can be generated as follows,

```
plt.plot(SpikeTimes,TrialNumbers,'.')
```

See MultiTrialSpikeTrains.ipynb for the full code to generate Figure 2.2B.

The list of spike times and trial numbers is a memory-efficient way to store multiple spike trains, but it can make it difficult to perform operations on the data. Another option is to use an array of spike densities. Mathematically, we can think of this as a vector, S, of spike densities where the kth entry of the vector represents the spike density of the kth trial,

$$S_k(t) = \sum_{j} \delta(t - s_j^k)$$

In NumPy, it would be represented with an array in which S[k,:] is the kth spike density. This array can be created as follows,

```
S=np.zeros((NumTrials,len(time)))
S[TrialNumbers,(SpikeTimes/dt).astype(int)]=1/dt
```

Once this array is created, it becomes very easy to compute firing rates by taking averages of S across time and/or trials. The time-averaged, trial-averaged firing rate is a single number computed by

```
TrialAvgTimeAvgRate=np.mean(S)
```

For the data shown in Figure 2.2, we get 15.175Hz. We can alternatively compute the time-dependent, trial-averaged firing rates by averaging over trials only,

```
TrialAvgRates=np.mean(S,axis=0)
```

The result is plotted in Figure 2.2C. The oscillations apparent in Figure 2.2C are caused by the periodic movement of the drifting grating stimulus as it drifts. While the oscillatory trend in Figure 2.2C is visible, it appears choppy and noisy. A smoothed firing rate can be obtained by convolving with a Gaussian kernel. You might be tempted to convolve each S[k,:] with a kernel and then average, but it is equivalent (and much simpler) to convolve TrialAvgRates with the same kernel,

```
sigma=10
s=np.arange(-3*sigma,3*sigma,dt)
k=np.exp(-(s**2)/(2*sigma**2))
k=k/(sum(k)*dt)
SmoothedRate=np.convolve(k,TrialAvgRates,'same')*dt
```

The result is plotted in Figure 2.2D and the oscillations are more clearly visible.

So far, we have averaged the data across trials, but Figure 2.2B shows clear variability across trials as well. We can compute the spike count on each trial as the Riemmann sum of S across time

```
SpikeCounts=np.sum(S,axis=1)*dt
```

After running this line of code, SpikeCounts is a vector for which each entry is the spike count on a corresponding trial. The spike count data can be visualized by plotting a histogram,

```
plt.hist(SpikeCounts)
```

The result is plotted in Figure 2.2E. Even though the average spike count is 15.175, there is substantial variability across trials. In other words, even though the animal is viewing the same drifting grating stimulus on every trial, the neuron emits a different number of spikes on each trial. This is known as trial-to-trial variability or simple trial variability. Trial variability of spike counts is often measured using the Fano factor, defined as the ratio between the variance and mean of spike counts across trials,

$$FF = \frac{\text{variance of spike counts}}{\text{mean spike count}} = \frac{\text{var}(N(a,b))}{\text{mean}(N(a,b))}$$

Figure 2.3: Orientation tuning curve and spike count histograms from one neuron. A) Tuning curve (trial averaged rate as a function of orientation) for a neuron recorded in monkey visual cortex. Blue and pink dots mark the orientations $\theta_1 = 120^{\circ}$ and $\theta_2 = 150^{\circ}$. B) Histogram of spike counts across trials for the θ_1 and θ_2 . Code to produce this plot can be found in OrientationTuningCurve.ipynb.

The Fano factor can be computed over any interval, [a, b], but we often just use the entire recording, [0, T]. If a neuron spikes exactly the same number of times on every trial then var(N) = 0 so FF = 0. More generally, a larger Fano factor implies greater trial-to-trial variability.

Exercise 2.1.2. Compute the Fano Factor for the spike trains MultiTrialSpikeTrains.ipynb

Neurons encode information about stimuli and behavior in their spike trains. For example, neurons in the visual cortex change their firing rates in response to changes in a visual stimulus and, similarly, neurons in the motor cortex change their firing rates during motor behavior. It is widely believed that the encoding of information in neurons' spike trains forms the basis of perception, cognition, and behavior, but the details of how this happens are not understood.

A classical example of neural coding is **orientation tuning** in primary visual cortex (V1). In the 1950s and 60s, David Hubel and Torsten Wiesel discovered that some neurons in cat V1 increased their firing rates when a bar of light passed through a small region of the cat's visual field. Different neurons respond to bars of light in different regions of the visual field. A neuron's receptive field is the region to which it responds. Many neurons' firing rates depend on the angle or "orientation" of the bar of light. The orientation that evokes the highest firing rate is called the neuron's preferred orientation. Hence, firing rates of neurons in V1 encode the location and orientation of bars of light. The encoding of orientations in V1 is still widely studied today.

The spike trains shown in Figure 2.2 were recorded in response to a drifting grating at one particular orientation ($\theta = 300^{\circ}$), but the neuron was actually recorded across 12 different orientations $(0,30,60,\ldots,330^\circ)$ with several trials for each orientation. The file SpikeCounts1Neuron12Thetas.npz contains an array with the spike counts for all 100 trials on each of the 12 orientations. Trial-averaged firing rates for each orientation can be computed an plotted by

Rates=SpikeCounts/T TrialAvgRates=np.mean(Rates,axis=0) plt.plot(AllOrientations,1000*TrialAvgRates) The result (Figure 2.3A) is called the neuron's tuning curve because it depicts how the neuron is "tuned" to each orientation, i.e., how the neuron's trial-averaged firing rate is affected by each orientation. Why do there appear to be two preferred orientations? Think about the properties of the drifting grating stimulus to answer this question.

See Appendix B.5 for a more in-depth discussion of neural coding.

Figure 2.3A only shows the trial-averaged response of the neuron, but we know from above that there is trial-to-trial variability. Indeed, Figure 2.3B shows the histograms of spike counts for each of the two orientations. Let's suppose you tried to decode infer the orientation of the stimulus by looking at the neuron's spike count. You would not be able to correctly infer the orientation on every trial (why?). However, there are millions of neurons in the animal's visual cortex, each with their own tuning curve. If you could observe the spike counts of all of them (and you knew their tuning curves), you could infer the orientation more accurately. The science of understanding how stimuli are encoded in neural activity, and how they can be decoded, is called **neural coding**. Appendix B.5 discusses neural population coding in more depth. The last exercise in Section 4.3, uses an artificial neural network to decode spike counts from neural populations.

2.2 MODELING SPIKE TRAIN VARIABILITY WITH POISSON PRO-**CESSES**

The causes and effects of spike timing variability are not fully understood, but we often need to model it. To account for the variability of real spike trains, we can model them as a stochastic process. A stochastic process is similar to a random variable, but it is a random function of time. Specifically, we will model a spike train as a special type of stochastic process called a **point process**, which is a stochastic process representing discrete events in time. Here, those events are spikes. Two common ways to represent point processes are the counting process,

$$n(t) = \# \text{ of spike in } [0, t] = N(0, t)$$

and the spike density, S(t). Modeling spike trains as stochastic processes allows us to make precise definitions of probabilities, statistics, and other properties. For example, the instantaneous firing rate is defined as

Instantaneous firing rate definition

$$r(t) = \lim_{\delta \to 0} \frac{E[N(t, t + \delta)]}{\delta} = \frac{d}{dt} E[n(t)] = E[S(t)]$$
 (2.1)

where $E[\cdot]$ denotes expectation. The last equality is difficult to make precise because S(t) is an unusual type of process (being composed of Dirac delta functions), but it will be useful later. Intuitively, $\frac{d}{dt}n(t) = S(t)$ because $n(t) = \int_0^t S(\tau)d\tau$, so $\frac{d}{dt}E[n(t)] =$ E[n'(t)] = E[S(t)]. This intuition will have to suffice for our purposes. The spike count, N(a,b), is a random number and

$$E[N(a,b)] = \int_a^b r(t)dt.$$

A stochastic process is said to be **stationary** if its statistics do not change across time, *i.e.*, the statistics of x(t) are the same as those of $y(t) = x(t + t_0)$. For point processes, stationarity can be phrased as follows,

Definition: A point process is stationary if N(a, b) has the same distribution as $N(a + t_0, b + t_0)$ for any t_0 and any a < b.

In other words, the distribution of N(a, b) only depends on b - a. Therefore, for stationary point processes, we can often just talk about n(t) instead of N(a,b) since they have the same statistics when t = b - a. This property gives the following useful theorem:

Theorem: A stationary point process has a constant rate, r(t) = r, and therefore E[n(t)] = rt.

Poisson processes provide a canonical statistical model of noisy spike trains. The simplest and most common version of a Poisson process is the homogeneous Poisson process, sometimes called the stationary Poisson process. We will use the term Poisson process to mean "homogeneous Poisson process." Inhomogeneous Poisson processes are discussed later. A Poisson process is defined as follows,

Definition: A (homogeneous) Poisson process is any stationary point process having the **memoryless property**: $N(t_1, t_2)$ is independent from $N(t_3, t_4)$ whenever $[t_1, t_2]$ is disjoint from $[t_3, t_4]$.

The basic idea is that a spike is equally likely to occur in a Poisson process at any point of time, regardless of how many spikes occur over any interval of time before or after it. This is, of course, not exactly true of real spike trains, but it serves as a simplifying approximation.

The Poisson process gets its name from the following property:

Theorem: The spike counts of a Poisson process obey a Poisson distribution,

$$Pr(n(t) = n) = \frac{(rt)^n}{n!}e^{-rt}.$$

A Poisson distribution has the same variance and mean, var(n(t)) = E[n(t)] = rt, which implies that Poisson processes have a Fano factor of 1 over any time window:

$$FF_{Poisson} = \frac{\text{var}(N(a,b))}{E[N(a,b)]} = 1.$$

for any a < b. Of course, a sample Fano factor computed from sample Poisson processes will not be exactly equal to 1, but it should converge to 1 as the number of trials goes to ∞ , by the law of large numbers. A Fano factor of 1 is interpreted as a baseline amount of trial-to-trial variability. The phrases sub-Poisson and super-Poisson are sometimes used to refer to spike trains with FF < 1 or FF > 1 respectively.

We can also consider variability in the ISIs, $I_i = s_{i+1} - s_i$ where s_i is the jth spike time. Poisson processes have exponentially distributed ISIs,

Theorem: The inter-spike intervals (ISIs) of a Poisson process are i.i.d. with an exponential probability density function

$$p_I(t) = re^{-rt}H(t)$$

where H(t) is the Heaviside step function.

Figure 2.4: Poisson processes. A) Raster plot of a single Poisson process with r = 15Hz. Each vertical bar is a spike. B) Raster plot of 100 i.i.d. realizations of a Poisson processes with r = 15Hz. Each dot is a spike. **C,D)** Firing rate and raster plot of 100 i.i.d. realizations of an inhomogeneous Poisson process. See PoissonProcesses.ipynb for code to produce these plots.

Since exponential distributions have the same mean and standard deviation (std(I_i) = $E[I_i] = 1/r$, the CV of a Poisson process is 1,

```
CV_{Poisson} = 1.
```

Therefore, CV = 1 is interpreted as a baseline amount of ISI variability. The phrases **sub-Poisson** and **super-Poisson** are sometimes also used to refer to CV < 1 and CV > 1respectively. If CV < 1 then spikes are closer to periodic. If CV > 1 then spikes occur in a bursty manner (periods of fast spiking and periods of relative silence).

There are several different algorithms for generating realizations of Poisson processes and we will consider two of them. First, an algorithm that generates spike times directly

Poisson Process Algorithm 1: To generate spike times of a Poisson process in the interval [0, T], first generate the spike count from a Poisson distribution with mean rT, then distribute the spike times uniformly in the interval.

In Python, this is implemented by:

```
N=np.random.poisson(r*T)
SpikeTimes=np.sort(np.random.rand(N)*T)
```

Exercise 2.2.1. Generate a Poisson process with rate r = 10Hz over a time interval of duration T = 5s and compute the sample CV. Repeat this process 5 times with a newly generated Poisson process to see how the sample CV varies each time. Then do the same thing for T = 20s and T = 100s.

The next algorithm generates a spike density, S(t), instead of spike times.

Poisson Process Algorithm 2: To generate a spike density representation of a Poisson process over the interval [0, T], first make sure that r * dt is small. Then set each bin of S(t) to 1/dt independently with probability r * dt and set all other bins to zero.

For a binarized spike train, you would just set the bins to 1 instead of 1/dt. In Python, this algorithm can be implemented in a single line,

```
S=np.random.binomial(1, r*dt, len(time))/dt
```

Figure 2.4A shows a spike density of a Poisson process. Algorithm 2 assumes that r*dtis small enough so that you can safely ignore the small probability of two spikes in the same bin. You can avoid this assumption by sampling each bin from a Poisson distribution with mean r * dt,

```
S=np.random.poisson(r*dt, len(time))/dt
```

This approach can produce multiple spikes per bin and it runs more slowly when time is large, but it will produce more accurate Poisson statistics when r * dt is not small.

We can easily switch between spike-time and time-series representations of spike trains as follows:

```
# From spike density to spike times
SpikeTimes=np.nonzero(S)[0]*dt
# From spike times to spike density
S=zeros_like(time)
S[(SpikeTimes/dt).astype(int)]=1/dt
```

To generate multiple i.i.d. trials of a Poisson process (e.g., to model multiple trials), we can just change the size of the generated spike density,

```
S=np.random.binomial(1, r*dt, (NumTrials, len(time)))/dt
```

Figure 2.4B shows a raster plot of 100 trials of a Poisson process with r = 15Hz.

Exercise 2.2.2. Generate 10 realizations of a Poisson process with rate r = 10Hz over a time interval of duration T = 1s and compute the sample Fano factor. Repeat this process 5 times with newly generated Poisson processes to see how the sample Fano factor varies over trials. Then do the same thing for 100 Poisson processes.

Poisson processes provide a rough approximation to cortical spike train statistics. For example, the ISI distributions of cortical neurons often resemble exponential distributions (except for a lack of very short ISIs), the CV of cortical neurons are often in the range of 0.75 - 1.25 and Fano factors are also close to 1 [9–12].

One caveat to the claim that cortical spike trains are Poisson-like is that it implicitly assumes the spike trains are stationary. However, we often want to model neurons responding to time-dependent stimuli with time-dependent changes in firing rate. For example, in Figure 2.2, the firing rate of the neuron oscillated due to the periodic nature

of the drifting grating stimulus. In these cases, we should model the spike train as a non-stationary point process. A standard model for non-stationary spike trains is the **inhomogeneous Poisson process**, which is defined as follows,

Inhomogeneous Poisson Process Definition: Given a non-negative function, r(t), an inhomogeneous Poisson process with rate r(t) is a point process that has the memoryless property and satisfies

$$E[N(a,b)] = \int_{a}^{b} r(t)dt$$

for any $a \leq b$.

An inhomogeneous Poisson process with a constant rate, $r(t) = r_0$, is a homogeneous Poisson process. Just like the homogeneous Poisson process, the inhomogeneous Poisson process has a Fano Factor equal to 1 over any time interval.

To generate an inhomogeneous Poisson process, we can generalize the Poisson Process Algorithm 2 to a time-dependent rate:

Inhomogeneous Poisson Process Algorithm: First choose a dt small enough so that r(t) * dt is very small for all t. Then set the value of each bin to 1/dt with probability r(t) * dt and other bins to zero.

In Python, we can generate spike density representations of inhomogeneous Poisson processes in exactly the same way we do for homogeneous processes, except that r is a time series (it has the same size as time) instead of a scalar. For example, the code below generates an inhomogeneous Poisson process with a sinusoidal rate,

```
r=(20+16*np.sin(2*np.pi*time/200))/1000
S=np.random.binomial(1,r*dt,(NumTrials,len(time)))/dt
```

The resulting rate and raster plot is shown in Figure 2.4C,D. Compare to the real spike trains from Figure 2.2B. Complete code for Figure 2.4 can be found in PoissonProcesses.ipynb.

Now that we understand how to model spike trains with spike timing variability, let's look at neurons driven by synapses with variable presynaptic spike times.

2.3 MODELING A NEURON WITH NOISY SYNAPTIC INPUT

In Section 1.3, we modeled a postsynaptic neuron receiving input from a single excitatory and single inhibitory synapse, which was not sufficient to drive the membrane potential to threshold. We now consider a model in which a single EIF receives input from K_e excitatory and K_i inhibitory synapses (Figure 2.5A). The model is defined by the following equations:

EIF with input from several excitatory and inhibitory synapses

$$\tau_{m} \frac{dV}{dt} = -(V - E_{L}) + De^{(V - V_{T})/D} + I_{e}(t) + I_{i}(t)$$

$$\tau_{e} \frac{dI_{e}}{dt} = -I_{e} + \mathbf{J}^{e} \cdot \mathbf{S}^{e}$$

$$\tau_{i} \frac{dI_{i}}{dt} = -I_{i} + \mathbf{J}^{i} \cdot \mathbf{S}^{i}$$

$$V(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } V(t) \leftarrow V_{re}$$
(2.2)

Here, $S^{e}(t)$ and $S^{i}(t)$ are $K_{e} \times 1$ and $K_{i} \times 1$ vectors of spike densities. We use superscripts in place of subscripts for vectors and matrices so that we can use subscripts for indices. Specifically, $S_k^e(t)$ is the spike density of presynaptic excitatory neuron k. Similarly, J^e and J^i are vectors of synaptic weights, so J_k^e is the synaptic weight from presynaptic excitatory neuron k. The dot product represents the sum,

$$J^a \cdot S^a(t) = \sum_{k=1}^{K_a} J_k^a S_k^a(t), \quad a = e, i$$

We generate Poisson presynaptic spike trains the same way we generated multi-trial Poisson processes,

```
Se=np.random.binomial(1,re*dt,(Ke,len(time)))/dt
```

and similarly for Si. The shape of re determines whether all the neurons have the same rates or different rates and whether the Poisson processes are homogeneous. For example, if re is a scalar, then all neurons will have the same rate and all spike trains will be homogeneous. To generate inhomogeneous processes, all with different rates, you'd need to use an re that has shape (Ke, len(time)). Synaptic weight vectors can also be uniform or heterogeneous. Uniform weights ($J_k^e = j_e$) can be generated using

```
ie=15.0
Je=je+np.zeros(Ke)
```

and similarly for Ji. Figure 2.5 shows the results with $K_e = 200$ excitatory neurons with rates $r_e = 8$ Hz and $K_i = 50$ inhibitory neurons with rates $r_i = 15$ Hz. Since a sum of Poisson processes is a Poisson process, only the product of K_a and r_a are important whenever J^a is uniform. For example postsynaptic neuron in Figure 2.5 is mathematically equivalent to one in a simulation with $K_e = 100$ and $r_e = 16$ Hz. The Euler step to update synaptic currents is written as

where @ is the NumPy symbol for a dot product or matrix multiplication. Euler step updates to Ii and V are similar. Complete code for Figure 2.5 is given in EIFwithPoissonSynapses.ipynb.

The membrane potential and postsynaptic spike times in Figure 2.5F are noisy and qualitatively similar to the real neuron in Figure 2.1A. Hence, Poisson presynaptic spike times provide a simple approach to modeling postsynaptic neural variability.

Figure 2.5: An EIF driven by synaptic input from several Poisson-spiking presynaptic neurons. A) Schematic of the model with $K_e=8$ excitatory and $K_i=2$ inhibitory presynaptic neurons. B) Raster plot of $K_e=200$ excitatory presynaptic neurons. B) The resulting excitatory synaptic current. Dashed line shows the stationary mean. C,D) Same, but for $K_i=50$ inhibitory presynaptic neurons. F) Membrane potential of the postsynaptic neuron. Dashed line shows the mean free membrane potential. G) Total synaptic input. See EIFwithPoissonSynapses.ipynb for code to produce these plots.

We can use the resulting mathematical model to better understand how the statistics of presynaptic spike trains map to the statistics of the postsynaptic spike train. First consider the expectation, $E[I_e(t)]$. This is what you would get if you simulated the model in Eq. (2.2) many times (with new random numbers each time), then averaged $I_e(t)$ over trials. To compute $E[I_e(t)]$, we can take expectations in Eq. (2.2) to get

$$\tau_e \frac{dE[I_e]}{dt} = -E[I_e] + E[\boldsymbol{J}^e \cdot \boldsymbol{S}^e] = -E[I_e] + \boldsymbol{J}^e \cdot \boldsymbol{r}^e$$

where r^e is the vector of firing rates and the first equality follows from Eq. (2.1). When J^e and r^e are uniform ($J_k^e = j_e$ and $r_k^e = r_e$, as in Figure 2.5), then we have

$$J^e \cdot r^e = K_e j_e r_e$$
.

When they are not uniform the derivation below can proceed without this substitution. Repeating this analysis for $I_i(t)$, we see that mean synaptic inputs obey,

$$\tau_e \frac{dE[I_e]}{dt} = -E[I_e] + K_e j_e r_e$$
$$\tau_i \frac{dE[I_i]}{dt} = -E[I_i] + K_i j_i r_i$$

These equations are valid for homogeneous and inhomogeneous presynaptic spike trains $(r_e(t))$ and $r_i(t)$ time-dependent or time-constant). When r_e and r_i are time-constant, $E[I_e(t)]$ and $E[I_i(t)]$ decay exponentially to the fixed points

$$\overline{I}_e = \lim_{t \to \infty} E[I_e(t)] = K_e j_e r_e
\overline{I}_i = \lim_{t \to \infty} E[I_i(t)] = K_i j_i r_i.$$
(2.3)

These are called the **stationary mean values** of $I_{\ell}(t)$ and $I_{i}(t)$. The expectation approaches these values after a brief transient determined by the synaptic time constants, τ_e , $\tau_i \approx$ 5ms. In Figure 2.5B,D, you can see that the synaptic currents (red and blue) tend to fluctuate around their stationary mean values (black dashed) after a brief transient. Along these lines, Eq. (2.3) can be interpreted as saying that, after a transient,

$$I_e(t) = \overline{I}_e + ext{noise}$$
 $I_i(t) = \overline{I}_i + ext{noise}$ (2.4)

One way of interpreting these results is that, if you averaged $I_e(t)$ over many trials, then the trial-average at each t would converge to \bar{I}_e . Another interpretation is that, if you take a single trial of $I_e(t)$, but average it over a long time interval, then the time-average would also converge to \bar{I}_e . In other words,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T I_e(t)dt=\overline{I}_e.$$

Exercise 2.3.1. Compare trial-averaged currents to time-averaged currents in simulations. Simulate a synaptic current, $I_e(t)$ (you do not need to simulation V(t) or $I_i(t)$ over a fixed time interval of duration T=100ms. Repeat this in a for-loop over many trials and compute the trial-averaged value of $I_e(T)$. Compare the trial-average to $I_e = K_e J_e r_e$ as the number of trials increases. Then simulate $I_e(t)$ for one trial and compute the time-average. Compare the time-average to $\bar{I}_e = K_e J_e r_e$ for increasing values of T. The time-average is more accurate if you throw away the transient from the first 25ms. This is called a burn-in period. An estimate of an expectation obtained by averaging across trials or time is called a Monte-Carlo estimate. When we don't have a closed form expression for an expectation, sometimes Monte-Carlo estimates are the best we can do.

This analysis of the expectations of I_e and I_i by taking expectations in Eq. (2.2) is an example of a mean-field theory of neural networks. Our analysis relied on linearity of the ODEs defining I_e and I_i in Eq. (2.2) (How?). The equations that define V(t) in Eqs. (2.2) are not linear, so mean-field theory cannot be applied so easily. Indeed, there is no known closed form expression for the postsynaptic firing rate or stationary mean membrane potential, but some approximations can be obtained. Combining Eqs. (2.2) and (2.4) gives

$$\tau_m \frac{dV}{dt} = -(V - E_L) + De^{(V - V_T)/D} + \overline{I} + \text{noise}$$
(2.5)

where

$$\overline{I} = \overline{I}_e + \overline{I}_i \tag{2.6}$$

is the stationary mean input. In other words, the model in Eq. (2.2) behaves like an EIF driven by time-constant input with added noise.

Here's the interesting part: In the exercise at the end of Section 1.2, you were asked to derive the threshold input required to drive an EIF with time-constant input to spike. If you apply your result to the EIF from Figure 2.5, you should get $I_{th} = 15$ mV. The neuron in Figure 2.5 clearly spikes, but I = 12.75mV is sub-threshold. Without the

noise term in Eq. (2.5), the EIF wouldn't spike, but in the presence of noise, it does spike! This is known as **noise-driven** or **fluctuation-driven** spiking. The idea is that the stationary mean input drives the membrane potential toward threshold, but not over threshold. Then the membrane potential fluctuations (produced by noisy synaptic input) occasionally push the membrane potential over threshold to generate spikes [9, 11, 13]. In this way, noise can increase the firing rate of neurons.

Another way to understand noise-driven spiking is to first replace the EIF model in Eq. (2.2) with a leaky integrator,

$$\tau_m \frac{dV_0}{dt} = -(V_0 - E_L) + I_e(t) + I_i(t)$$

This V_0 , which we get by ignoring active currents and spiking, is sometimes called the free membrane potential. This equation is linear, so we can apply the same mean-field approach that we used above to get

$$\tau_m \frac{dE[V_0]}{dt} = -(E[V_0] - E_L) + E[I_e] + E[I_i].$$

Therefore, the stationary mean free membrane potential is given by

$$\overline{V}_0 = \lim_{t \to \infty} E[V_0(t)] = E_L + \overline{I}$$

which is plotted as a dashed line in Figure 2.5F. Hence, the dynamics of the free membrane potential look like

$$V_0(t) = \overline{V}_0 + \text{noise}$$

In Figure 2.5F, the *free* membrane potential, $V_0(t)$, would just fluctuate around $\overline{V}_0 =$ -59.25mV (the dashed line). The actual membrane potential (gray curve in Figure 2.5F) also fluctuates around V_0 , but whenever the fluctuations drive it near $V_T = -55$ mV, they recruit the nonlinear, exponential terms in the ODE for V (which are absent in the equation for V_0) and a spike can be generated. The resulting postsynaptic spike train is irregular and Poisson-like because it is driven by random fluctuations over threshold. Hence, spike timing variability in the presynaptic spike trains drives spike timing variability in the postsynaptic spike train.

If parameters are chosen differently (e.g., by increasing r_e or j_e), then we can have $\bar{I} > I_{th}$, in which case the neuron is driven to spike by the mean input, *i.e.*, the neuron would spike even if we replaced the time varying input $I_e(t) + I_i(t)$ with its stationary mean, I. However, noise still introduces some irregularity in the spike times. This is called **mean-driven** or **drift-driven** spiking.

Figure 2.6A,B compares the membrane potentials in fluctuation- and drift-driven regimes. The black curve in Figure 2.6C shows how the firing rate depends on the stationary mean synaptic input as r_e is increased. This curve, showing a neuron's firing rate as a function of its mean input, is called an f-I curve.

The exercise at the end of Section 1.2 asked you to plot an f-I curve for an EIF driven by time-constant input, $I(t) = I_0$. The f-I curve in Figure 2.6C shows the same thing, but for a neuron driven by Poisson synaptic input. The vertical dashed line shows the cutoff, I_{th} , between the fluctuation- and drift-driven regimes. An f-I curve for an EIF with time-constant input (such as the one from the exercise in Section 1.2) would be

Figure 2.6: Computing an f-I curve for an EIF driven by Poisson synaptic input. A,B) Membrane potential of an EIF in fluctuation-driven and drift-driven regimes. C) An f-I curve for an EIF. The firing rate was plotted as a function of stationary mean synaptic input, I, as r_e was varied. The blue and red dots correspond to the membrane potentials from A and B. The vertical dashed line shows the cutoff between the fluctuation-driven and drift-driven regimes (at $\overline{I} = I_{th}$). See EIFfIcurve.ipynb for code to produce this figure.

zero to the left of the dashed line. Hence, the positivity of the f-I curve to the left of the dashed line in Figure 2.6C demonstrates noise-driven spiking.

The f-I curve in Figure 2.6 gives the impression that the firing rate is a function of the stationary mean input, \bar{I} alone, but this is not true. Two sets of parameter values that give the same value of \overline{I} might produce two different firing rates. For example, if you multiply the value of i_i by 2 and multiply value of r_i by 1/2, then I does not change, but the postsynaptic firing rate will change. However, as the exercise below demonstrates, the f-I curve is approximately a function of \bar{I} across a reasonably large range of parameters.

Exercise 2.3.2. Repeat the simulations in EIFfIcurve.ipynb, but increase and/or decrease the values of j_e , r_i , and/or j_i by a factor of up to 2. Compare the f-I curve you get to the original dashed-green curves from Figure 2.6C by plotting them together on the same axis. You might need to change the range of r_e values to get a similar range of \overline{I} values for a side-by-side comparison. Next, repeat the simulations in EIFfIcurve.ipynb, but generate the f-I curve by varying j_e , r_i , or j_i while keeping r_e fixed. Make the same side-by-side comparison. You should see that the f-I curve is similar in each case.

Motivated by these observations, we can make the approximation

$$r \approx f(\overline{I}).$$

Combining this with equations Eq. (2.3) and Eq. (2.6) gives

Stationary mean-field approximation for a neuron with several synaptic inputs

$$r \approx f(w_e r_e + w_i r_i) \tag{2.7}$$

where

$$w_a = K_a j_a$$

is called a mean-field synaptic weight which quantifies the combined strength of all synapses from presynaptic population a = e, i onto the postsynaptic neuron.

Eq. (2.7) provides an **mean-field approximation** of postsynaptic firing rates. To predict the postsynaptic firing rates from a set of parameters, we only need to specify a function, f, to use as the approximate f-I curve. A simple but useful family of f-I curves are given by rectified linear or threshold-linear functions [14],

$$f(I) = (I - \theta)gH(I - \theta) = \begin{cases} (I - \theta)g & I \ge \theta \\ 0 & I < \theta \end{cases}$$

where $H(\cdot)$ is the Heaviside step function, θ is a threshold below which the firing rate is zero and g is a gain, which quantifies the slope or derivative of the f-I curve when r > 0. In Python, we can use a curve fitting function to fit θ and g to our simulated data,

```
from scipy.optimize import curve_fit
def f(IBar, g, theta):
    return g*(IBar-theta)*(IBar>theta)
params,_=curve_fit(fIfit, IBars, rs)
gfit=params[0]
thetafit=params[1]
```

The dashed green curve in Figure 2.6C shows the fit. While it's not perfect, it does provide a reasonable approximation. In the next chapter, we will use these approximations to understand the behavior of networks of neurons. Improved approximations can be achieved by using stochastic analysis to account for the effect of presynaptic spike timing variability on postsynaptic firing rates [13, 15–19], but this approach is outside the scope of this book.

Exercise 2.3.3. Repeat the simulations in EIFfIcurve.ipynb, but instead of plotting the postsynaptic firing rate on the vertical axis, plot the CV of the postsynaptic neuron's spike train. You'll want to increase T and restrict to parameter values in which the neuron spikes at least 30 times to make sure you get enough spikes for a decent estimate of the CV. How does the CV compare in the fluctuationdominated versus drift-driven regimes?

A network of neurons is a group of neurons with some synaptic connections between them. We have already considered two networks in which one neuron receives synaptic input from all the other neurons (Figures 1.4 and 2.5). A network is called **recurrent** if you can follow arrows to get from one neuron back to itself. Otherwise, a network is called **feedforward**. Cortical neuronal networks are recurrent, but we will begin by modeling feedforward networks because they are simpler and studying them first will help us study recurrent networks next. Network models that represent individual spikes (like those in Figures 1.4 and 2.5) are called **spiking network models**. In this chapter, we begin with spiking network models and then derive **rate network models** in which neurons' firing rates are modeled directly without representing individual spike times.

3.1 FEEDFORWARD SPIKING NETWORKS AND THEIR MEAN-FIELD APPROXIMATION

Feedforward networks are often arranged in **layers** where each layer except for the first receives synaptic input from the layer before it. Let's begin by modeling a simple network with two layers (Figure 3.1A). The first layer has N_e excitatory and N_i inhibitory neurons, which provide synaptic input to a second layer of N neurons.

Figure 3.1A shows two ways to sketch the network. In the top, each circle represents a neuron and arrows are individual synapses. This approach is cumbersome for large networks. The bottom shows a simpler approach in which each circle is a population and arrows indicate connected populations. An arrow between two populations does not mean that *every* pair of neurons are connected, but only that *some* connections exist in the indicated direction. The network in Figure 3.1A can be modeled as

Feedforward spiking network model.

$$\tau_m \frac{d\mathbf{V}}{dt} = -(\mathbf{V} - E_L) + De^{(\mathbf{V} - V_T)/D} + \mathbf{I}^e(t) + \mathbf{I}^i(t)$$

$$\tau_e \frac{d\mathbf{I}^e}{dt} = -\mathbf{I}^e + J^e \mathbf{S}^e$$

$$\tau_i \frac{d\mathbf{I}^i}{dt} = -\mathbf{I}^i + J^i \mathbf{S}^i$$

$$\mathbf{V}_j(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } \mathbf{V}_j(t) \leftarrow V_{re}$$

This is similar to Eqs. (2.2) in Section 2.3 except the equations now have a slightly different interpretation. Specifically, V(t) now represents an $N \times 1$ vector of membrane potentials. Also, J^e is now a $N \times N_e$ matrix of synaptic weights and J^i is an $N \times N_i$ matrix. These are called **connectivity matrices** or **weight matrices**. The entry, J^e_{jk} , represents the synaptic weight from excitatory neuron $k = 1, \ldots, N_e$ to postsynaptic neuron $j = 1, \ldots, N_e$

Figure 3.1: A feedforward spiking network. A) Two ways to schematicize a feedforward network. A layer of postsynaptic neurons (gray) receives synaptic input from a layer of presynaptic excitatory neurons (red) and inhibitory neurons (blue). In the top schematic, each circle is a neuron. In the bottom, each circle is a population. B,C,D) Raster plots of 100 excitatory, inhibitory, and postsynaptic neurons from a simulation with $N_e = 2000$ excitatory, $N_i = 500$ inhibitory, and N = 100 postsynaptic neurons. E) Estimated time-dependent firing rate of postsynaptic neurons (gray) and the mean-field approximation of the firing rates (black dashed). Code to reproduce this figure can be found in FeedFwdSpikingNet.ipynb.

and similarly for the $N \times N_i$ weight matrix, J^i . Note that, counter to intuition, the first index in a weight matrix refers to the postsynaptic neuron and the second index refers to the presynaptic neuron (J_{jk}^e is "from k to j" not "from j to k"). While this seems backwards, it is necessary for the matrix multiplication to make sense. Specifically, the jth element of the matrix products are expanded as

$$[J^boldsymbol{S}^b]_j=\sum_{k=1}^{N_b}J^b_{jk}oldsymbol{S}^b_k$$

for b = e, i and j = 1, ..., N. In the cortex, most neurons are not synaptically connected, even if they are nearby, and connectivity appears to be partly random. A simple model of this randomness is provided by a random connection matrix defined by

$$J_{jk}^{b} = \begin{cases} j_{b} & \text{with probability } p_{b} \\ 0 & \text{otherwise} \end{cases}$$

where p_b is the connection probability and j_b is the synaptic weight for neurons from presynaptic population b = e, i. These connection matrices can be generated as

```
Je=je*np.random.binomial(1,pe,(N,Ne))
```

and similarly for Ji. As in Section 2.3, each presynaptic spike train, $S_i^e(t)$ and $S_i^i(t)$, can be modeled as a Poisson process with rates r_e and r_i .

The code to simulate this network model is similar to the code in EIFwithPoissonSynapses.ipynb from Section 2.3 except for a few differences. The terms V, Ie, or Ii need to be initialized as arrays, e.g.,

```
Ie=np.zeros((N,len(time)))
```

and updated like

See FeedFwdSpikingNet.ipynb for complete code.

Each individual postsynaptic neuron behaves just like the single postsynaptic neuron modeled in Section 2.3 except the number of excitatory and inhibitory synapses, K_{ℓ} and K_i , received by each neuron is random instead of fixed. The *expected* number of excitatory and inhibitory synaptic inputs received by each postsynaptic neuron are given by $E[K_e] = p_e N_e$ and $E[K_i] = p_i N_i$. Therefore, the stationary mean-field synaptic inputs are now given by

$$\overline{I}_e = N_e p_e j_e r_e
\overline{I}_i = N_i p_i j_i r_i$$

Mathematically speaking,

$$\overline{I}_a = \lim_{t \to \infty} E[I_j^a(t)]$$

where the expectation is taken over randomness in $S^a(t)$ and randomness in J_a .

Exercise 3.1.1. In an exercise in Section 2.3, we pointed out that that \overline{I}_e could be estimated by averaging over trials or over time. This is no longer true because randomness in J^e cannot be averaged out by a time-average. This type of randomness is called **quenched randomness**. Instead, randomness in J^e can be averaged over postsynaptic neurons. Specifically,

$$\lim_{T,N\to\infty}\frac{1}{N}\sum_{i=1}^N\frac{1}{T}\int_0^TI_j^e(t)dt=\overline{I}_e$$

From a more practical perspective, an accurate estimate of the mean can be obtained by averaging over postsynaptic neurons and over time. Try averaging over both in a simulation and compare the averages to $\bar{I}_e = N_a p_a j_a r_e$ for increasing values of N and/or T.

As in Section 2.3, we cannot derive an exact mean-field theory of postsynaptic firing rates, but we can again use an approximate f-I curve, $r \approx f(\bar{I})$ where

$$\overline{I} = \overline{I}_e + \overline{I}_i = N_e p_e j_e r_e + N_i p_i j_i r_i.$$

Putting this together gives an approximation to the stationary mean postsynaptic rates,

Stationary mean-field approximation for a feedforward network.

$$r = f(w_e r_e + w_i r_i). (3.1)$$

where

$$w_a = N_a E[J_{ik}^a] = N_a p_a j_a$$

Figure 3.2: Diagram of a simplified cortical circuit model. A) Cortex is layered in two senses. Cortical areas form layered hierarchies, and there is a stereotyped architecture of layers within each area. This diagram, adapted from the "canonical" architecture described in [20], shows some of the dominant connectivity pathways between cortical areas and layers. B) Viewing the cortex as a wrinkled sheet, cortical areas are arranged along the surface of the sheet and layers are arranged along its depth.

is the mean-field synaptic weight for this network model. Eq. (3.1) is identical to Eq. (2.7) except that w_e and w_i are defined using the expected number of inputs, $E[K_a] = N_a p_a$, in place of the deterministic number of inputs, K_a , used in Eq. (2.7).

Figure 3.1E shows the mean-field approximation from Eq. (3.1) (dashed line) compared to the mean rate estimated from the full simulation (gray curve). This comparison shows that the relatively simple Eq. (3.1) does a decent job of describing firing rates without needing to simulate an entire network (although note that we needed to simulate the network to fit the f-I curve initially).

Eq. (3.1) applies to networks with just two layers with one population in the first layer and two populations in the second, but it is easily extended to feedforward networks with arbitrary numbers of layers and populations, giving rise to equations of the form

Multi-layered feedforward rate network model.
$$r_1 = f(W_1 r_0)$$

$$r_2 = f(W_2 r_1)$$

$$\dots$$

$$r_L = f(W_L r_{L-1})$$

$$(3.2)$$

where r_{ℓ} is a vector of stationary mean firing rates in layer ℓ and W_{ℓ} is the mean-field connectivity matrix from layer $\ell-1$ to layer ℓ . Eq. (3.2) is often used as a model in itself (instead of an approximation to a spiking network model), in which case it's called a **feedforward rate network model**. In Section 4.3 and Appendix B.9, we will see how Eq. (3.2) can be used to build artificial neural networks for machine learning. Multilayered networks like Eq. (3.2) mimic the layered architecture of the cortex. In particular, the cortex is layered in two separate senses:

First, some **cortical areas** are arranged in a layered, hierarchical fashion (Figure 3.2A). A well known cortical hierarchy is the ventral stream of the visual cortex. Visual stimuli from the retina pass through the thalamus to the primary visual cortex (V1) which responds to simple visual features like the orientation (angle) of edges. V1 transmits its

responses to V2, and so on to higher visual cortical areas that respond to increasingly complex visual features like shapes and faces. Connections between cortical areas are primarily excitatory. If we visualize the cortex as a crinkled up sheet, cortical areas are located in different regions along the surface of the sheet (Figure 3.2B).

Secondly, each cortical area is composed of several cortical layers and these layers are connected with some stereotyped motifs (Figure 3.2A). For example, cortical layer 4 typically receives input from lower cortical areas, then sends synaptic projections to layers 2/3. Cortical layers are arranged along the depth of the cortical sheet (Figure 3.2B).

Despite its layered architecture, the cortex is by no means feedforward, as you can see in Figure 3.2A. First, connections between cortical areas exist in both directions of the hierarchy: feedforward and feedback (e.g., V1 project to V2 and V2 projects back to V1). Secondly, nearby neurons within the same cortical area and cortical layer are interconnected with each other, forming "local" recurrent networks. We next develop recurrent spiking networks that model local recurrent connectivity within a layer.

RECURRENT SPIKING NETWORKS AND THEIR MEAN-FIELD 3.2 **APPROXIMATION**

Despite the complexity of Figure 3.2A, it is still a gross simplification of a real cortical circuit. Among other factors, there are many connectivity pathways not pictured in the diagram. Moreover, within a single layer and area, there are numerous subtypes of inhibitory neurons and connectivity depends on the neurons' subtype and the distance between neurons. It would be an enormous task to account for most of these details in a single model, so we start with a much simpler model of a local patch of neurons within a single area and layer.

The model is sketched in Figure 3.3A. The excitatory and inhibitory neurons connect to each other and also receive synaptic input from an external population, x, representing synaptic input from different cortical layers or areas. Since connections between cortical areas are primarily excitatory, we will assume that x is an excitatory presynaptic population. The spiking model for this network is defined by the equations

A recurrent spiking network model.

$$\tau_{m} \frac{d\mathbf{V}^{e}}{dt} = -(\mathbf{V}^{e} - E_{L}) + De^{(\mathbf{V}^{e} - V_{T})/D} + \mathbf{I}^{ee}(t) + \mathbf{I}^{ei}(t) + \mathbf{I}^{ex}(t)$$

$$\tau_{m} \frac{d\mathbf{V}^{i}}{dt} = -(\mathbf{V}^{i} - E_{L}) + De^{(\mathbf{V}^{i} - V_{T})/D} + \mathbf{I}^{ie}(t) + \mathbf{I}^{ii}(t) + \mathbf{I}^{ix}(t)$$

$$\tau_{b} \frac{d\mathbf{I}^{ab}}{dt} = -\mathbf{I}^{ab} + J^{ab}\mathbf{S}^{b}, \quad a = e, i, \quad b = e, i, x$$

$$\mathbf{V}_{j}^{a}(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } \mathbf{V}_{j}^{a}(t) \leftarrow V_{re}, \quad a = e, i$$
(3.3)

The first equation describes the $N_e \times 1$ vector of excitatory neurons' membrane potentials, the second equation is the same for inhibitory neurons, and the last equation defines their threshold-reset conditions. The term $I^{ab}(t)$ is the synaptic input from population b to population a. For example, $I^{ei}(t)$ is the $N_e \times 1$ vector of total inhibitory input to excitatory neurons. The connection matrix, J^{ab} , is an $N_a \times N_b$ matrix of synaptic

Figure 3.3: Simulation of a recurrent spiking network. A) A schematic of the network. An external excitatory population sends synaptic input to excitatory and inhibitory populations, which are recurrently connected. B) Raster plot of the external spike trains, which are modeled as Poisson processes. C) Raster plot of the excitatory spike trains, which are modeled using EIF neuron models. D) Smoothed estimate of the population-averaged, time-dependent firing rate of the excitatory population. Dashed black line shows mean-field approximation to the firing rates. E,F) Same as C,D, but for the inhibitory population. Code to reproduce this figure can be found in RecurrentSpikingNet.ipynb.

weights. Spikes in the external population are generated as Poisson processes, each with firing rate r_x . As above, connection matrices are random,

$$J_{jk}^{ab} = \begin{cases} j_{ab} & \text{with probability } p_{ab} \\ 0 & \text{otherwise.} \end{cases}$$

Simulating large networks can be computationally expensive in terms of runtime and memory. One source of inefficiency is the use of large arrays to represent time-varying vectors. For example, the excitatory membrane potential, $V^{e}(t)$, can be stored as a $N_e \times N_t$ vector where $N_t = T/dt$ is the number of time bins. For example, the update to $I^{ee}(t)$ in an Euler step might look like

as in the FeedFwdSpikingNet.ipynb code used generate Figure 3.1. However, if we don't need to keep track of the history of Iee then we can store it as a $N_e \times 1$ vector. In this case, an Euler step looks like

```
Iee=Iee+dt*(-Iee)/taue
```

The new value of Iee overwrites the old value. We can of course do the same for all synaptic currents, $I^{ab}(t)$, and membrane potentials, $V^{a}(t)$. The downside to this approach is that you cannot generate plots or compute statistics of the membrane potentials or synaptic currents after the simulation, but this is not a problem if we're only interested in spike trains and firing rates, which is often the case.

We generally want to keep track of the spike trains across time, so we would not use the same approach to store the spike densities $S^{e}(t)$, $S^{t}(t)$, and $S^{x}(t)$. However, we can gain a lot of efficiency by storing the spike trains as lists of spike times instead of spike densities. To generate the external spike trains as Poisson processes, we can do

```
nsx=np.random.poisson(rx*T*Nx) # Number of spikes
SxTimes=np.sort(np.random.rand(nsx)*T) # Random spike times
SxIndices=np.random.randint(Nx,size=nsx) # Random neuron Indices
```

Here, nsx is the total spike count across all external neurons. Once the spike count is set, the spike times are uniformly distributed on the interval [0, T], and the associated neuron indices are uniformly distributed on the integers from 0 to $N_x - 1$. It's a bit tricky to update the external synaptic currents using this representation of the external spike trains. On iteration i through the time loop, we can do

```
while iX<len(SxTimes) and SxTimes[iX]<i*dt:</pre>
    Iex=Iex+Jex[:,SxIndices[iX]]/taux
    Iix=Iix+Jix[:,SxIndices[iX]]/taux
    iX+=1
```

where iX is initialized to zero outside the time loop. This code finds all spike times in SxTimes that occur before the current time (t = i * dt) and increments the synaptic currents using the associated column of the weight matrices. Spike times must be sorted for this approach to work.

Representing the spike trains, $S^{e}(t)$ and $S^{i}(t)$, using the same convention is even trickier because the spike times are generated during the simulation, not before it. We can initialize them to store a maximum number of spikes. For example, if we expect the average excitatory firing rate to be less than 50Hz, we can do

```
eMaxNumSpikes=int(Ne*T*50/1000)
SeTimes=np.zeros(eMaxNumSpikes)
SeIndices=np.zeros(eMaxNumSpikes)
```

Inside the time loop, we have

```
Inds=np.nonzero(Ve>=Vth)[0] # Find which neurons spiked
Ve[Inds]=Vre # Reset membrane potentials
if eNumSpikes<eMaxNumSpikes and len(Inds)>0:
    SeTimes[eNumSpikes:eNumSpikes+len(Inds)]=i*dt # Store times
   SeIndices[eNumSpikes:eNumSpikes+len(Inds)]=Inds # and indices
Iee=Iee+np.sum(Jee[:,Inds],axis=1)/taue # Update synaptic currents
Iie=Iie+np.sum(Jie[:,Inds],axis=1)/taue
eNumSpikes+=len(Inds) # Update spike count
```

where eNumSpikes is initialized to zero outside the time loop. Complete code to simulate a recurrent spiking network can be found in RecurrentSpikingNet.ipynb

We could also increase the efficiency of the code by taking advantage of the sparsity of the connection matrices, J_{ab} , but this is only very beneficial for networks with more than 50,000 neurons, so we won't bother.

Figure 3.3 shows spike trains from a simulation with $N_x = N_e = 2000$ and $N_i = 500$. Early in the simulation, firing rates increase and then decrease quickly (Figure 3.3C-F) because the initial conditions of the membrane potentials cause many neurons to cross threshold at nearly the same time. After this transient, firing rates settle down and fluctuate around a steady state or "stationary" value.

To describe the steady state, we can adapt the mean-field theory we developed for feedforward networks. The mean-field synaptic inputs to excitatory and inhibitory neurons are given by

$$\bar{I}_{e} = w_{ee}r_{e} + w_{ei}r_{i} + w_{ex}r_{x}
\bar{I}_{i} = w_{ie}r_{e} + w_{ii}r_{i} + w_{ix}r_{x}$$
(3.4)

where

$$w_{ab} = N_b E[J_{jk}^{ab}] = N_b p_{ab} j_{ab} (3.5)$$

is a mean-field synaptic weight and r_b is the stationary firing rate of population b. We can again use the mean-field approximation, $r_a \approx f(\overline{I_a})$, from Section 3.1 to get an approximation of the form

$$r_e = f(w_{ee}r_e + w_{ei}r_i + w_{ex}r_x)$$

 $r_i = f(w_{ie}r_e + w_{ii}r_i + w_{ix}r_x)$

where f is an f-I curve that approximates the dependence of firing rates on inputs. It is useful to write this approximation in vector form,

Stationary mean-field approximation for a recurrent network

$$r = f(Wr + X). (3.6)$$

where

$$r = \begin{bmatrix} r_e \\ r_i \end{bmatrix}$$
, $W = \begin{bmatrix} w_{ee} & w_{ei} \\ w_{ie} & w_{ii} \end{bmatrix}$, and $X = W_x r_x = \begin{bmatrix} w_{ex} \\ w_{ix} \end{bmatrix} r_x$.

In contrast to the mean-field Eq. (3.1) for feedforward networks, r appears on both sides of Eq. (3.6). This is called an **implicit equation** because r is defined implicitly as a solution. Recurrent networks produce implicit mean-field equations and feedforward networks produce explicit mean-field equations. In general, Eq. (3.6) can have one solution, many solutions, or no solutions.

For some choices of f, we can find explicit solutions to Eq. (3.6). If we use the threshold-linear f-I curve, $f(I) = (I - \theta)gH(I - \theta)$ from Section 2.3, we can look for solutions in which $r_e, r_i > 0$. Any such solution satisfies the linear equation

$$r \approx (Wr + X - \theta)g$$

which has the explicit solution,

$$r \approx [I - gW]^{-1}(X - \theta)g \tag{3.7}$$

where I is the 2×2 identity matrix. This solution is plotted as dashed lines in Figure 3.3D,F. Despite its simplicity, Eq. (3.7) provides a reasonable approximation to firing rates in the spiking network.

The spiking network in Figure 3.3 contains $N = N_e + N_i = 2500$ neurons, but local cortical circuits are arguably much larger. Mean-field approximations like Eq. (3.6) are often interpreted in the limit of large N, but Eq. (3.5) shows that mean-field synaptic weights will become infinite in this limit unless p_{ab} and/or j_{ab} are scaled to be smaller as N increases. Appendix B.6 discusses different approaches to scaling j_{ab} and p_{ab} as in the large N limit. One such approach leads to a balance between strong excitatory and inhibitory synaptic inputs, which is widely observed in cortical recordings. These "balanced network models" produce a simpler mean-field approximation that does not require an approximation to neurons' f-I curves.

Eq. (3.6) describes stationary firing rates, but it does not describe the stability of these rates or the intrinsic dynamics of the network. To describe stability and intrinsic dynamics, we need to derive a dynamical mean-field equation, which is a system of ODEs that approximates the dynamics of mean firing rates. Different derivations lead to different mean-field formulations. We relegate those details to Appendix B.7 and focus on a particular formulation given by

See Appendix B.6 for a description of synaptic scaling laws and excitatory-inhibitory balance in recurrent network models.

See Appendix B.7 for derivations and alternative formulations of dynamical mean-field equations.

Dynamical mean-field approximation for a recurrent network.

$$\tau_{e} \frac{dr_{e}}{dt} = -r_{e} + f(w_{ee}r_{e} + w_{ei}r_{i} + X_{e})
\tau_{i} \frac{dr_{i}}{dt} = -r_{i} + f(w_{ie}r_{e} + w_{ii}r_{i} + X_{i})$$
(3.8)

In Eq. (3.8), τ_e and τ_i no longer represent synaptic time constants, but instead represent the combined timescales of synaptic dynamics and membrane potential dynamics (see Appendix B.7 for more details). Generally, they should be in the range of 10-50ms and should be larger for populations with slower synaptic dynamics or slower membrane dynamics. Eq. (3.8) is easily extended to networks with several populations and it can be interpreted as a model in itself, which is the topic of the next section. Eq. (3.8) is very similar to a mean-field model called the "Wilson-Cowan equations," that were first proposed by Hugh Wilson and Jack Cowan for modeling interacting excitatory and inhibitory populations [21, 22].

Fixed points of Eq. (3.8) are given by Eq. (3.6), so the two equations are consistent. The stability of the fixed points is determined by the Jacobian matrix (see Appendix A.9),

$$J = \begin{bmatrix} (g_e w_{ee} - 1)/\tau_e & g_e w_{ei}/\tau_e \\ g_i w_{ei}/\tau_i & (g_i w_{ii} - 1)/\tau_i \end{bmatrix}$$

where $g_a = f'(w_{ae}r_e + w_{ai}r_i + w_{ax}r_x)$ is called the **gain** of population a, which quantifies the sensitivity of the rate to input perturbations. If all the eigenvalues of J have negative real part at a particular fixed point, then that fixed point is stable. If any eigenvalues have positive real part, it's unstable.

Figure 3.4A,B shows a simulation of Eq. (3.8) using parameters from the spiking network simulation in Figure 3.3. Checking the eigenvalues shows that the fixed point is stable, which is confirmed numerically by the convergence of the firing rates toward the fixed points (dashed lines). The steady state rates in Figures 3.4A,B are close to those

Figure 3.4: Simulation of dynamical mean-field equations for a recurrent network. A,B) Excitatory (red) and inhibitory (blue) firing rates from a simulation of Eq. (3.8) with $\tau_e = 30$ ms and $\tau_i = 15$ ms. Rates quickly approach their fixed point (dashed lines), indicating stability. **C,D)** Same simulation with $\tau_e = 15$ ms and $\tau_i = 30$ ms. Rates oscillate around their fixed points, indicating a Hopf bifurcation. Parameters were chosen to match the mean-field theory from Figure 3.3, so the dashed lines are in the same place. Code to reproduce this figure can be found in DynamicalMeanField.ipynb.

in Figure 3.3, but the dynamics during the relaxation to steady state are very different. This is because the mean-field equations do not capture the effect where many neurons reach the threshold at the same time in the spiking model. Regardless, Eq. (3.8) can help us understand instabilities in the spiking model, as we describe next.

Oscillations in systems of ODEs can emerge through a Hopf bifurcation where a pair of complex eigenvalues changes from having negative to positive real part (see Appendix A.9). In two-dimensional systems like Eq. (3.8), this happens when the trace of the Jacobian matrix changes from negative to positive while the determinant remains positive. For Eq. (3.8), the trace is given by

$$Tr(J) = \frac{g_e w_{ee} - 1}{\tau_e} + \frac{g_i w_{ii} - 1}{\tau_i}$$
(3.9)

and recall that stability requires Tr(J) < 0. Note that $w_{ii} < 0$, so the only positive contribution to the trace is the $g_e w_{ee}$ term. When $g_e w_{ee} < 1$, the trace is always negative. Excitatory-inhibitory networks with stable fixed points satisfying

$$g_e w_{ee} > 1$$

are called inhibitory-stabilized networks (ISNs) because the network would be unstable without an inhibitory population (check this for yourself), so inhibition stabilizes the network [23, 24]. Let's assume that the network is inhibitory stabilized ($g_e w_{ee} > 1$) which is the case for the network in Figure 3.4A,B. Then stability requires that the inhibitory term in Eq. (3.9) is large enough in magnitude to cancel the excitatory term,

$$\left|\frac{g_i w_{ii} - 1}{\tau_i}\right| > \left|\frac{g_e w_{ee} - 1}{\tau_e}\right|.$$

Let's focus on the impact of the time constants here. Stability is encouraged by fast inhibition and comparatively slower excitation (τ_i smaller and/or τ_e larger). If inhibition becomes too slow compared to excitation (τ_i too large compared to τ_e), the trace will become positive, producing oscillations through a Hopf bifurcation. In summary, if the system in Eq. (3.8) is in the inhibitory-stabilized regime, sufficiently slow inhibition or fast excitation will give rise to oscillations. Indeed, Figure 3.4C,D demonstrates oscillations that arise when we swap the values of τ_e and τ_i .

The oscillations can be understood as follows: Recurrent excitation is strong enough to produce a runaway positive feedback loop, but inhibition shuts down this loop before it can blow up. This is the defining property of an ISN. If inhibition is fast enough, it shuts down the runaway excitation before it can grow at all. This is the stable condition. If inhibition is too slow, the runaway excitation starts taking off before inhibition can shut it down, then process starts over again, producing an oscillation. This is called a PING oscillations since it arises from the interaction between Pyramidal (excitatory) and INhibitory neurons (or INterneurons). PING oscillations are believed to be a source of fast (Gamma) oscillations in the brain [25–28].

Exercise 3.2.1. Let's test whether slow inhibition or fast excitation produce oscillations in a spiking network. Repeat the simulation from Figure 3.4, but slow down inhibition by taking $\tau_i = 8$ ms. You should see strong oscillations emerge. Computational models in the literature (including many of my own papers) often take inhibition to be slower than excitation to avoid strong oscillations. However, in real cortical circuits, inhibition is a little bit slower than the fastest form of excitation (AMPAergic synapses). This raises the question of how cortex avoids strong oscillations. Some hypotheses have been proposed [29, 30], but the full answer to this question is not known.

Exercise 3.2.2. ISNs predict a surprising phenomenon, sometimes called the paradoxical effect. The paradoxical effect occurs when a small increase in external input to inhibitory neurons causes inhibitory firing rates to decrease. In other words, increasing X_i by a small amount leads to a decrease in the fixed point of r_i . Paradoxical effects have been observed in cortical recordings and it can be shown that they arise in the model from Eq. (3.8) only when the network is in an inhibitory stabilized state [23, 24, 31]. Starting from the model in Figure 3.4A,B, increase X_i by a small amount and test whether a paradoxical effect occurs. Now decrease w_{ee} until the network is no longer an ISN and repeat the test.

RATE NETWORK MODELS, SUPPRESSION, AND COMPETITION 3.3

The mean-field equations in the previous section did a good job of approximating steady state mean firing rates, but did not capture the dynamics of the rates while they approach their steady states (compare Figure 3.3 to Figure 3.4A). Similar, they captured the general phenomenon in which slower excitation causes oscillations (compare Figure 3.4B to Exercise 3.2.1), but they cannot accurately predict the values of τ_e and τ_i at which oscillations occur or the frequency and amplitude of oscillations in spiking networks.

This mixed success might seem damning for rate models, but recall that spiking models are already a major simplification of real neural circuits. When using simplified models of complex systems, it is not practical to seek quantitatively accurate results. In other words, we shouldn't expect our model to tell us whether firing rates in a real biological neural circuit are closer to 10Hz or 15Hz. Instead, simplified models should provide insight into general principles and qualitative phenomena, like the presence of oscillations when τ_i is too large compared to τ_e .

To this end, if we only care about understanding phenomena related to firing rates, then detailed spiking network models are unnecessary. We can skip the details and just model firing rates directly. The dynamical mean-field in Eq. (3.8) is a good place to start. Generalizing Eq. (3.8) to an arbitrary number of populations gives

Dynamical rate network model.

$$\tau \circ \frac{d\mathbf{r}}{dt} = -\mathbf{r} + f(W\mathbf{r} + \mathbf{X}(t))$$
(3.10)

Eq. (3.10) models the dynamics of M firing rates, stored in the $M \times 1$ vector, \mathbf{r} . The term τ is an $M \times 1$ vector of time constants. The \circ represents an element-wise product or "Hadamard product" between two vectors. If $\mathbf{z} = \mathbf{x} \circ \mathbf{y}$ then $\mathbf{z}_k = \mathbf{x}_k \mathbf{y}_k$. In other words, \circ performs the same operation as * in NumPy. In Eq. (3.10), this means that each term in the vector can have its own time constant. If a single time constant is chosen, then we can use a scalar τ and omit the \circ .

Eq. (3.8) is a special case of Eq. (3.10) and fixed points are given by Eq. (3.6). The stability of a fixed point is determined by the eigenvalues of the Jacobian matrix

$$J = \frac{1}{\tau} \circ [-I + GW]$$

where I is the identity matrix and G is a diagonal matrix with entries given by the gains, $G_{kk} = g_k = f'(I_k)$ where I = Wr + X is the input at the fixed point. Eq. (3.10) can be used to model a feedforward network by setting W = 0, but static rate models (like Eqs. (3.1) and (3.2)) are more commonly used for feedforward networks because their dynamics are uninteresting (they just decay exponentially to their fixed points).

Eq. (3.10) can have two different interpretations. Each element of r can be interpreted as the mean firing rate of a population of neurons (as in Eq. (3.8)), or each element can be interpreted as an individual neuron. In other words, Eq. (3.10) can model a network with M populations or a network with M neurons.

An alternative formulation of rate networks uses a system of ODEs for the synaptic inputs instead of the rates,

$$\tau \frac{d\mathbf{I}}{dt} = -\mathbf{I} + Wf(\mathbf{I} + \mathbf{X}) \tag{3.11}$$

where firing rates are given by r = f(I + X). Eq. (3.11) is discussed more in Appendix B.7, but we will focus on the formulation in Eq. (3.10) here.

Dynamical rate network models (discussed in this section) are mathematically equivalent to dynamical mean-field equations (discussed in the previous section). The difference is that, in this section, we do not attempt to relate the rate equations to spiking network models, but instead interpret them as models in themselves. This leads to a much simpler modeling approach since Eq. (3.10) has far fewer parameters than a spiking network model. Since the parameters are not tied to biophysical quantities, we

Figure 3.5: A simple model of surround suppression. A) Illustration of surround suppression. The "center" stimulus is presented inside of a neuron's visual field causes an increase in the neuron's firing rate. When a "surround" stimulus is added outside of the neuron's visual field, the neuron's firing rate is suppressed. A simple network model of surround suppression has separate "center" and "surround" excitation populations coupled together through a shared inhibitory population. B) The model captures the suppression of the center neuron's firing rates. C) The model predicts an increase in inhibition to the center neurons when they are suppressed. Code to reproduce this figure can be found in the first code cell of SurroundSuppression.ipynb.

can non-dimensionalize them. Whereas w_{ab} in Eq. (3.8) have units mV·ms, we can take W in Eq. (3.10) to be dimensionless if we define f to also be dimensionless, for example,

$$f(I) = [I]^+ = IH(I) = \begin{cases} I & I > 0 \\ 0 & I < 0 \end{cases}$$

which is a dimensionless version of the rectified linear f-I curve from Section 2.3. Under this convention, every term in Eq. (3.10) has units ms, 1/ms = kHz, or is dimensionless. Hence, rate networks allow us to model firing rates without explicitly quantifying any biophysical quantities like membrane potentials or synaptic currents.

To demonstrate how rate network models make it easy to model cortical phenomena, we next consider the phenomenon of **surround suppression**. As mentioned in Section 2.1, individual neurons in primary visual cortex (V1) increase their firing rates in response to visual stimuli inside a small region of the visual field, called the neuron's **receptive field**. A drifting grating stimulus at the neuron's preferred orientation that lies entirely inside the neuron's receptive field is called a **center stimulus** and it will typically increase the neuron's firing rate (Figure 3.5A, first half of red curve). The region of the visual field just outside of a neuron's receptive field is called its **surround**. Interesting, a larger stimulus that lies partly outside the neuron's visual field (a "center+surround" stimulus) will often evoke a lower firing rate than a center stimulus (Figure 3.5A, second half of red curve). In other words, a neuron's firing rates is *suppressed* by stimuli in its surround [32]. These results show that neuron's firing rates are affected by stimuli outside their receptive field, so the term "classical receptive field" is sometime used in place of "receptive field" to explicitly exclude the surround.

What causes surround suppression? Computational models of surround suppression are abundant, but they almost all come down to one explanation: *One neuron's surround is another neuron's center*. When the surround stimulus is turned on, it elevates the firing rates of neurons whose receptive fields overlap with the surround. These elevated rates can increase the inhibition and/or decrease the excitation to the neurons whose receptive fields contain the center stimulus.

A simple and classical model of surround suppression has two excitatory populations, e_c and e_s , which do not connect directly to each other, but form reciprocal connections to the same inhibitory population (Figure 3.5A, bottom). Population e_c models neurons with receptive fields in the center and e_s models neurons with receptive fields in the surround. Connectivity is given by

$$m{r} = \left[egin{array}{c} r_{e_c} \\ r_{e_s} \\ r_i \end{array}
ight] ext{ and } W = \left[egin{array}{ccc} w_{ee} & 0 & w_{ei} \\ 0 & w_{ee} & w_{ei} \\ w_{ie} & w_{ie} & 0 \end{array}
ight].$$

The external input is modeled by

$$oldsymbol{X} = \left[egin{array}{c} X_{e_c} \ X_{e_s} \ 0 \end{array}
ight] = \left[egin{array}{c} CX_e \ SX_e \ 0 \end{array}
ight].$$

where C=1 and S=0 corresponds to the center-only stimulus and C=S=1 corresponds to the center+surround stimulus. Excluding the time constants (which are not important for capturing the fixed point effects), this model has only four free parameters. A spiking network model would have many more parameters to choose.

Figure 3.5B shows firing rates from a simulation of the model. When the surround stimulus is turned on, firing rates in the center population decrease. Examining the network diagram in Figure 3.5A, it is easy to see why the suppression occurs: Increased excitation to e_s (by turning on X_{e_s}) causes r_{e_s} to increase, which increases r_i , thereby increasing the inhibition to e_c and suppressing its firing rates. This intuition is supported by observing that the surround stimulus increases inhibitory input to population e_c (Figure 3.5C).

In 2009, this classical model of surround suppression was challenged by recordings in cat V1 collected by neuroscientists Hirofumi Ozeki and Ian Finn working in the laboratory of David Ferster. Their recordings showed that the surround stimulus causes a *decrease* in inhibition to neurons tuned to the center stimulus. The decreased inhibition is paired with a decrease in excitation, which together leads to a net decrease in firing rates. The Ferster lab teamed up with experimental neuroscientists Evan Schaffer and Kenneth Miller to model and understand these observations [24].

The simplest model they developed included just one excitatory and one inhibitory population, both representing neurons tuned to the center stimulus (Figure 3.6A). The surround stimulus was modeled by increased input to the inhibitory population. This surround stimulus represents extra input to inhibitory neurons in the presence of a surround stimulus and it can model synaptic input from the neurons in the same layer, a different layer, or a different cortical area. Putting this together gives Eq. (3.10) with

$$W = \begin{bmatrix} w_{ee} & w_{ei} \\ w_{ie} & w_{ii} \end{bmatrix}$$
 and $X = \begin{bmatrix} CX_e \\ CX_i + SX_i \end{bmatrix}$.

Figure 3.6: A simple model of surround suppression. A) Illustration of the model of surround suppression from Ozeki, *et al.* [24]. B) The model captures the suppression of the center neuron's firing rates. C) When the model is in an inhibitory stabilized state, it also captures the decrease in inhibition to excitatory neurons during suppression. Code to reproduce this figure can be found in the second code cell of SurroundSuppression.ipynb.

The authors proved that this model exhibits surround suppression with an increase in inhibition to the excitatory neurons exactly when the network is in an inhibitory stabilized state. This conclusion is related to the paradoxical effect described in Exercise 3.2.2 since the extra input to the inhibitory population *decreases* inhibitory rates, leading to decreased inhibition to the excitatory population. Therefore, not only does the model capture the decrease in inhibition during surround suppression, but it also supports the conclusion that cat V1 is in an inhibitory stabilized state. Figure 3.5B,C shows results from a simulation of the model in an inhibitory stabilized state. Note that the surround stimulus suppresses r_{ℓ} while decreasing inhibition to population ℓ .

Exercise 3.3.1. In the inhibitory stabilized state, the model from [24] predicts that the surround stimulus suppresses the excitatory firing rates while increasing the inhibition they receive. What does the model predict when it is not in the inhibitory stabilized state? Re-run the simulation from Figure 3.6 but replace W by cW where c < 1 is small enough that the network is no longer in the inhibitory stabilized state.

Exercise 3.3.2. We have focused on steady state firing rates, but the model in [24] also makes a prediction about transient rate dynamics. In particular, if the surround stimulus is turned on while the center stimulus is already on (*i.e.*, a direct transition from "center" to "center+surround) then the inhibitory input to excitatory neurons should transiently increase before it decreases. This effect was observed in recordings from cat V1 [24]. Modify the simulation from Figure 3.5 to verify that this occurs when the network is in an inhibitory stabilized state. Then check whether it occurs when the network is not inhibitory stabilized.

Both of the models discussed above are major simplifications of the actual circuit dynamics underlying surround suppression. The first model inexplicably omits inhibitoryto-inhibitory connections (w_{ii}) and connections between e_c and e_s . The second model does not model a surround population at all and it assumes no surround-evoked change in external input to e neurons. Many of these details can be added in without changing the basic conclusions reached with the models [24].

A more detailed model might have 4 populations: e_c , i_c , e_s , and i_s with connections between all pairs of populations (so 16 weights in W). Moreover, there are at least 3 different subtypes of inhibitory neurons that differ in their connectivity properties [33] and their roles in surround suppression [34], so a more complete model might have as many as 8 populations with 64 weights in W.

Ultimately, the model chosen to model a phenomenon like surround suppression should be as simple as possible, but detailed enough to capture the question(s) being asked and to make testable predictions. The two-population model considered above is very simple, but sufficient to capture the suppression of inhibitory currents and make predictions about the transient dynamics of inhibition. Overall, rate network models are much simpler than spiking models and they are sufficient for modeling most rate-based phenomenon like surround suppression.

4 MODELING PLASTICITY AND LEARNING

All of the models considered so far in the book don't really *do* anything in the sense that they don't learn or solve any problems. The primary purpose of the brain is presumably to *do* things, or at least to tell the body to do things. Hence, all of the models considered so far arguably ignore the central purpose of the brain. This does not necessarily mean that the models are useless. They can be useful for understanding and interpreting recorded neural data, and they can be viewed as building blocks from which we can build models that actually "do something."

That said, there is an argument to be made that we should focus on models that can do things. If we were modeling an electric motor, we would presumably want to use a model that actually rotates a rotor. Likewise, if we are modeling the brain, perhaps we should use models that actually learn some task, even a simple one. In this chapter, we start building models that can learn and perform simple tasks. To begin with, we need to understand how to model synaptic plasticity, which is a primary mechanism of learning in the brain.

4.1 SYNAPTIC PLASTICITY

In neural circuits, the strength of synaptic connections changes slowly over time, an effect known as **synaptic plasticity**. An increase in synaptic strength is called **facilitation** and a decrease is called **depression**. Synapses can change strength transiently, for a duration of milliseconds or seconds, which is called **short term plasticity**. We will not discuss short term plasticity in this book, but instead focus on **long term plasticity** in which changes to synaptic strengths are static. Long term plasticity is widely believed to be the primary mechanism behind learning and memory in the brain, but the precise mechanics of how learning and memory emerge from plasticity are not fully understood.

We will not go into the biophysical details of why synapses change strength, but it is partially caused by an influx of Calcium into a neuron after an action potential. As such, changes to the strength of a synapse can depend on the spike times and firing rates of the pre- and post-synaptic neurons.

The most well-known type of plasticity is **Hebbian plasticity** (named after Donald Hebb) in which the increase in synaptic strength is proportional to the firing rates of pre- and post-synaptic neurons [35]. Hebbian plasticity is often described using the idiom

"Neurons that fire together wire together."

In other words, if two neurons tend to spike nearby in time, or increase their firing rates at the same time, then their synaptic coupling gets stronger. In Appendix B.8, we describe how a form of Hebbian plasticity can give rise to assembly formation and associative memory in **Hopfield network models**.

See Appendix B.8 for a description of Hopfield networks in which Hebbian plasticity implements associative memory.

For a the dynamical rate network model from Eq. (3.10), a simple form of pure Hebbian plasticity can be defined by

$$\frac{dW_{jk}}{dt} = c\boldsymbol{r}_j \boldsymbol{r}_k.$$

or, equivalently,

$$\frac{dW}{dt} = c r r^T$$

where *c* is a constant. The problem with this form of pure Hebbian plasticity is that it can be unstable. Since W_{ik} can only increase, it has a tendency to grow without bound. This effect is amplified by a positive feedback loop: If W_{jk} increases, it cases r_j to increase, which causes W_{jk} to increase, etc. There are many biologically motivated approaches for resolving this instability. We will discuss a form of Hebbian-like plasticity that is self-stabilizing.

In particular, we will build and analyze a model of homeostatic inhibitory synaptic plasticity in which inhibitory synapses onto excitatory neurons are modulated in a way that pushes the excitatory firing rates toward a stable target rate [36–42]. First consider a single excitatory neuron receiving synaptic input from a single inhibitory neuron with synaptic strength J_{ei} < 0. The rule is defined by

$$\frac{dJ_{ei}}{dt} = -\epsilon \left[(y_e - 2r_0) S_i - S_e y_i \right]
\tau_y \frac{dy_e}{dt} = -y_e + S_e
\tau_y \frac{dy_i}{dt} = -y_i + S_i$$
(4.1)

Here, $S_e(t)$ and $S_i(t)$ are spike densities for the excitatory and inhibitory spike trains, J_{ei} < 0 is the synaptic weight from the *i* neuron to the *e* neuron, $r_0 > 0$ is a parameter called the **target rate** (for reasons we'll see soon), and $\epsilon > 0$ is a **learning rate** which controls how quickly the synaptic weight changes. The terms $y_e(t)$ and $y_i(t)$ are called eligibility traces, and they serve as continuous-time estimates of the neurons' recent firing rates. Note that their mean-field values are the rates, r_e and r_i . The timescale, τ_v , of the eligibility traces is related to the timescale of intracellular calcium and should be taken to be around $\tau_{\nu} \approx 100 - 1000$ ms.

The last equation in (4.1) is the plasticity rule itself. Let's interpret what it is saying. Since $S_e(t)$ and $S_i(t)$ are sums of Dirac delta functions, J_{ei} is only updated after a spike in one of the neurons. After each inhibitory spike, J_{ei} is decremented by $y^e(t) - 2r_0$. After each excitatory spike, it is decremented by $y^{i}(t)$. Note that $J_{ei} < 0$ since it is inhibitory, so decrementing it makes the synapse stronger (more inhibitory).

Plasticity rules that depend on the timing of pre- and/or post-synaptic spikes are called spike-timing dependent plasticity (STDP) rules. They are widely observed in cortical networks. To understand the dependence of the weight change on spike timing, let's consider how the synaptic weight changes in response to a single spike in each neuron (Figure 4.1A). Suppose that the inhibitory neuron (which is presynaptic) spikes at time $t_{pre} > 0$ and the excitatory neuron (which is postsynaptic) spikes at time $t_{post} > 0$. Further assume that those are the only two spikes in recent history, so we can set initial conditions $y_e(0) = y_i(0) = 0$.

Figure 4.1: Inhibitory synaptic plasticity in a pair of neurons and a network. A) Diagram of a single inhibitory synapse onto an excitatory neuron. B) Each neuron spikes once and $\Delta t = t_{post} - t_{pre}$ is the delay between spikes. **C)** The change in synaptic weight, ΔJ_{ei} as a function of Δt . **D,E)** A recurrent spiking network like the one in Figure 3.3 except J^{ei} evolves through synaptic plasticity, which pushes excitatory firing rates (red) toward their target (black dashed). F) A mean-field rate network model approximated the firing rate dynamics from the spiking network. Code to reproduce this figure can be found in SynapticPlasticity.ipynb.

Let's first consider what happens when the inhibitory (presynaptic) neuron spikes first ($t_{pre} < t_{post}$). All terms are zero before the presynaptic spike time. In particular, $y_e(t_{pre}) = 0$, so at the time of the presynaptic spike, the synaptic weight will change by

$$\Delta I_{ei} = 2\epsilon r_0$$
.

Next, the excitatory (postsynaptic) neuron spikes and causes an additional change given by

$$\Delta I_{ei} = -\epsilon y_i(t_{nost}).$$

Now note that $y_i(t)$ is defined by an exponential decay after the inhibitory (presynaptic) spike time, so

$$y_i(t_{post}) = \frac{1}{\tau_y} e^{-(t_{post} - t_{pre})/\tau_y}$$

Taken together, the total change caused by the two spikes is given by

$$\Delta J_{ei} = -\frac{\epsilon}{\tau_{\nu}} \left(e^{-(t_{post} - t_{pre})/\tau_y} - 2r_0 \right).$$

Now let's compute the weight change when the excitatory (postsynaptic) neuron spikes first. By similar reasoning, we have

$$\Delta J_{ei} = -\frac{\epsilon}{\tau_y} \left(e^{-(t_{pre}-t_{post})/\tau_y} - 2r_0 \right).$$

Putting this all together, gives an unconditional weight change of

$$\Delta J_{ei} = -rac{\epsilon}{ au_{y}} \left(e^{-|\Delta t|/ au_{y}} - 2r_{0}
ight)$$

where

$$\Delta t = t_{post} - t_{pre}$$

is the time elapsed between the two spikes. This curve is plotted in Figure 4.1B. Synaptic plasticity is often measured in experiments using paired pulse protocol in which a pair of synaptically connected neurons is driven to spike consecutively. The change in synaptic strength is computed (averaged across many trials) and plots like Figure 4.1B are created for real neurons.

This paired pulse approach for quantifying the synaptic plasticity in simulations or experiments is lacking. Under natural settings, pairs of spikes in pre-synaptic and postsynaptic neurons do not occur in isolation, but the neurons are spiking continuously in response to inputs from other neurons. To capture this more realistic scenario, we next consider a recurrent spiking network with inhibitory plasticity, defined by

$$\tau_{m} \frac{d\mathbf{V}^{e}}{dt} = -(\mathbf{V}^{e} - E_{L}) + De^{(\mathbf{V}^{e} - V_{T})/D} + \mathbf{I}^{ee}(t) + \mathbf{I}^{ei}(t) + \mathbf{I}^{ex}(t)$$

$$\tau_{m} \frac{d\mathbf{V}^{i}}{dt} = -(\mathbf{V}^{i} - E_{L}) + De^{(\mathbf{V}^{i} - V_{T})/D} + \mathbf{I}^{ie}(t) + \mathbf{I}^{ii}(t) + \mathbf{I}^{ix}(t)$$

$$\tau_{b} \frac{d\mathbf{I}^{ab}}{dt} = -\mathbf{I}^{ab} + J^{ab}\mathbf{S}^{b}, \quad a = e, i, \quad b = e, i, x$$

$$\mathbf{V}_{j}^{a}(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } \mathbf{V}_{j}^{a}(t) \leftarrow V_{re}, \quad a = e, i$$

$$\tau_{y} \frac{d\mathbf{y}^{a}}{dt} = -\mathbf{y}^{a} + \mathbf{S}^{a} \quad a = e, i$$

$$\frac{dJ^{ei}}{dt} = -\epsilon \left[(\mathbf{y}^{e} - 2r_{0}) [\mathbf{S}^{i}]^{T} - \mathbf{S}^{e}[\mathbf{y}^{i}]^{T} \right] \circ \Omega^{ei}$$

Eq. (4.2) is arguably the most complicated model that we will consider in this book. The first four equations are the same as in Section 3.2 and the last two implement the inhibitory plasticity rule at the network level. The notation $[S^i]^T$ and $[y^i]^T$ denoted the transpose of each vector. The matrix Ω_{ei} is just a binarized version of J^{ei} ,

$$\Omega_{jk}^{ei} = egin{cases} 1 & J_{jk}^{ei}(0)
eq 0 \ 0 & J_{jk}^{ei}(0) = 0. \end{cases}$$

where $J^{ei}(0)$ is the initial value of the matrix J^{ei} . Recall that \circ denotes element-wise multiplication. Hence, the inclusion of Ω^{ei} in Eq. (4.2) makes sure that the plasticity rule is only applied to connected neurons, so the strength of connection between unconnected neurons remains zero.

In code, we do not store the spike trains as spike densities, so the updates to $y^a(t)$ and $J^{ei}(t)$ need to be implemented more carefully. To update $y^a(t)$ and J^{ei} in response to excitatory spike, we do

```
Inds=np.nonzero(Ve>=Vth)[0]
ye[Inds]=ye[Inds]+1/tauy
Jei[Inds,:]=Jei[Inds,:]-dt*eta*yi*Omegaei[Inds,:]
```

The first line of code finds which excitatory neurons spikes and the next two lines update y^e and J^{ei} accordingly. The updates to y^i and J^{ei} after an inhibitory spike are implemented similarly. Note that elements in J^{ei} can become positive from this plasticity rule, which is not biologically realistic. If we want to prevent this, we can add the line

after updating weights. See SynapticPlasticity.ipynb for a full implementation of the model in Eqs. (4.2). Figure 4.1D shows firing rates from a simulation. Note that the excitatory firing rates (red) seem to approach the target rate (dashed black). We next use a mean-field model to explain this result.

To derive a dynamical mean-field model of the spiking network simulation in Eqs. (4.2), we can first use the rate network model from Eq. (3.8) to model firing rate dynamics. The entire matrix, J^{ei} , is reduced to a single mean-field weight, w_{ei} , in this approximation. Now we need to use the last equation in Eqs. (4.2) to derive a mean-field approximation to the dynamics of w_{ei} . Recall from Section 3.1 that the relationship between w_{ei} and J^{ei} should be

$$w_{ei} = E[J^{ei}]N_i$$
.

Now note that the expectation of the spike densities and the eligibility traces are equal to the rates, $E[S^a] = E[y^a] = r_a$. Putting these two facts together with the last equation in Eq. (4.2) gives

$$\frac{dw_{ei}}{dt} = -\epsilon \left[(r_e - 2r_0)r_i + r_e r_i \right] p_{ei} N_i.$$

Simplifying this expression and putting it into a mean-field rate model gives

A rate network model with homeostatic inhibitory plasticity

$$\tau_e \frac{dr_e}{dt} = -r_e + f_e(w_{ee}r_e + w_{ei}r_i + X_e)$$

$$\tau_i \frac{dr_i}{dt} = -r_i + f_e(w_{ie}r_e + w_{ii}r_i + X_i)$$

$$\frac{dw_{ei}}{dt} = -\epsilon_r(r_e - r_0)r_i$$

$$(4.3)$$

where

$$\epsilon_r = 2\epsilon p_{ei} N_i$$

is a rescaled learning rate, $X_e = w_{ex}r_x$, and $X_i = w_{ix}r_x$. The last equation in Eq. (4.3) shows that the inhibitory plasticity rule is almost like a pure Hebbian rule, except for the subtraction of r_0 from r_e .

Figure 4.1 shows simulations of this rate model, which capture the overall trends seen in the spiking network. More importantly, Eq. (4.3) helps us understand why excitatory rates approach r_0 : Any fixed point of the system in Eq. (4.3) must satisfy $r_e = r_0$ (unless $r_i = 0$, which is not the case here). Hence, the inhibitory synaptic plasticity rule pushes excitatory firing rates toward the target rate, r_0 .

Figure 4.2: Training readouts from a chaotic recurrent neural network. A) Diagram of a recurrent neural network (RNN) with readout trained to produce a target time series. B) Hyperbolic tangent function used as an f-I curve. C) Eigenvalues of W. Unit circle shown in red. D) A sample of 7 firing rates out of W = 200 from a network simulation without external input, W = 0. E) Output (W = 0) and target (W = 1) Learning and feedback were only enabled after time W = 2500. The target is a one-dimensional (W = 1) sine wave. Code to reproduce this figure can be found in RNN.ipynb.

Exercise 4.1.1. The fixed point analysis above only applies for time-constant input $X_e(t) = X_e$ and $X_i(t) = X_i$. When external input changes in time, the network cannot generally maintain a fixed firing rate $r_e = r_0$. Try running a rate network simulation in which external input changes in time. For example, try a simulation where $X_e(t)$ and $X_i(t)$ change their values halfway through the simulation.

4.2 TRAINING RECURRENT NEURAL NETWORK MODELS

We began this chapter by saying that we will build models that learn to "do something," but the model in the previous section hardly fulfills that promise because it only learns to produce a constant target rate, which is not a very useful task. We are gradually building up to models that can perform more difficult and useful tasks. In this section, we raise the bar just a little higher to build a model that can produce a time-varying target, y(t), instead of a constant target, r_0 .

As our models become more capable of solving real tasks, they will also become more abstract and removed from biology. In this section, we omit the biological details of spiking to start with a recurrent rate network model. Specifically, the model is defined by (Figure 4.2A)

Recurrent neural network (RNN) model

$$\tau \frac{d\mathbf{r}}{dt} = -\mathbf{r} + f(W\mathbf{r} + \mathbf{X} + Q\mathbf{z})$$

$$\mathbf{z} = R\mathbf{r}$$
(4.4)

Similar to the rate network model in Eq. (3.10) from Section 3.3, $r(t) \in \mathbb{R}^N$ is vector of firing rates, $\tau > 0$ is a time constant, f is an f-I curve, and X(t) is external input. An alternative formulation of RNN models [43] starts from the formulation of rate networks from Eq. (3.11) instead of Eq. (3.10).

Unlike Eq. (3.10), we have an additional term $z(t) \in \mathbb{R}^M$, which is a **readout** from the network, which is interpreted as output from the network. The goal is to find an R that makes z(t) match a target time series, y(t). The matrix $R \in \mathbb{R}^{M \times N}$ is a readout matrix and $Q \in \mathbb{R}^{N \times M}$ is a feedback matrix that injects the readout back into the network.

The presence of feedback from the readout, z(t), is the only technical difference between Eqs. (4.4) and (3.10), but we will also use very different parameters. In Section 3.3, we considered rate network models with just two populations, representing the average excitatory and inhibitory firing rates. For Eq. (4.4), we will consider a much larger network. In general, we should use at least N=100 for things to work well. For the example considered here, we choose N=200. Firing rates are also interpreted more abstractly. Instead of interpreting r(t) as a vector of literal firing rates in physical units like Hz, we assume that rates take values in the interval [-1,1], meaning that they can even be negative. To achieve this, we use the hyperbolic tangent as an f-I curve,

$$f(z) = \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1}.$$

This is an "S-shaped" function, which is strictly increasing and bounded above and below by 1 and -1 respectively (Figure 4.2B). Such S-shaped functions are called **sigmoidal** functions. While allowing negative rates might seem odd, the idea is that more realistic rate values can be re-scaled and shifted to lie in [-1,1], so it shouldn't matter. Moreover, this model is more abstract and the "rates" here might not be intended to represent literal firing rates, but are just a proxy for "neural activity" in general. We similarly allow entries in the connectivity matrices to take on positive and negative values, without obeying Dale's law. The recurrent connectivity matrix, W, is drawn with independent normally distributed entries with variance given by ρ/N . In PyTorch, the matrix is generated by

To better understand the dynamics of the network, let's first analyze the network without feedback, Q=0, and without input, X=0. In the absence of feedback, the model is equivalent to the rate network model from Eq. (3.10). Since $f(0)=\tanh(0)=0$ there is a fixed point at r=0. Moreover, since $f'(0)=\tanh'(0)=1$, the corresponding Jacobian matrix is

$$J=\frac{1}{\tau}\left[-I+W\right].$$

where *I* is the identity matrix. It is not difficult to check that the eigenvalues of *J* satisfy

$$\Lambda(J) = \frac{1}{\tau} \left[-1 + \Lambda(W) \right] \tag{4.5}$$

where $\Lambda(W)$ are the eigenvalues of W. Therefore, we can determine the stability of the fixed point from the eigenvalues of W. But what are the eigenvalues of a large, random matrix like W? Fortunately, **Girko's circular law** says that if W is a random $N \times N$ matrix with i.i.d. entries satisfying $E[W_{jk}] = 0$ then its eigenvalues are approximately uniformly distributed in a circle centered at the origin in the complex plane. The radius of this circle is called the matrix's **spectral radius** and it is approximated by [44–46]

$$r \approx \sqrt{N \text{var}(W_{jk})}$$

where $\text{var}(W_{jk})$ is the variance of the entries of W and the approximation becomes increasingly accurate as $N \to \infty$. A precise statement of the theorem requires more background in probability theory than is appropriate for this book. Figure 4.2C shows the eigenvalues of W when N=200 and $\rho=1.5$. The red circle shows a circle of radius 1 for comparison.

From Eq. (4.5), we can conclude that the eigenvalues of J lie in a circle of radius r/τ centered at $-1/\tau$ where r is the spectral radius of W. Hence, stability is likely whenever $\rho < 1$ and instability is likely when $\rho > 1$. It might be easier to think about the eigenvalues of τJ . The fixed point is stable when the eigenvalues of τJ have negative real part. The eigenvalues of τJ are given by $\Lambda(\tau J) = \Lambda(W) - 1$, *i.e.*, they are given by shifting the points in Figure 4.2C to the left by one unit. Hence, the fixed point is stable if the spectral radius of W is smaller than 1, *i.e.*, if all of the dots in Figure 4.2C lie within the red circle. Randomness in the eigenvalues can make the true spectral radius different from ρ , but when N is large, the transition between stability and instability is very likely to occur very close to $\rho = 1$.

In summary, if ρ is sufficiently smaller than 1, the fixed point at r=0 is stable and $r(t) \to 0$ as t increases. When ρ is sufficiently larger than 1, the fixed point is unstable. What kind of dynamics are produced by this instability? Note that $r_j(t) \in [0,1]$, so the rates can't blow up. Instead, stability is lost through a high-dimensional bifurcation that produces intricate, chaotic dynamics [46, 47]. Essentially, each rate $r_j(t)$ traces out a complicated, but relatively smooth time series. The magnitude of τ and ρ control the timescale and disorderliness of the dynamics. The first half of Figure 4.2D (up to time 2500) shows a sample of firing rates when $\rho=1.5$, feedback is turned off.

The idea behind the RNN models studied in this section is that the dynamics of r(t) are rich and high-dimensional, so we should be able to "mine" them to produce an arbitrary time series. In other words, there should be a readout matrix, R, for which z(t) = Rr(t) match our target time series, y(t). We can quantify the "error" of the network by the Euclidean distance between z(t) and y(t),

$$e = \|z - y\|^2 = \sum_{j=1}^{M} (z_j - y_j)^2.$$

We'd like to find an update to *R* that reduces *e*. Let's consider what happens when we change *R* by a little bit to get a new matrix,

$$R' = R + \Delta R$$

and we assume that ΔR is small in the sense that $\|\Delta Ru\|$ is much smaller than $\|u\|$ for any vector, u. This is a common way of quantifying the magnitude of a matrix. The change to R causes a change to the readout given by

$$\Delta z = z' - z = R'r - Rr = \Delta Rr$$

where we assume that we're measuring z' just after the change to R and measuring zjust before. Note that $\|\Delta z\| = \|\Delta Rr\|$ is small because of our assumption that ΔR is small and because ||r|| cannot be very large. Above, we assumed that changing R does not affect r. This assumption would be clearly valid in the absence of feedback (Q = 0). In the presence of feedback, it is still valid because we measure z' immediately after updating R, before feedback has a chance to change r. Let's now compute the change to the error,

$$\begin{aligned} \Delta e &= e' - e \\ &= \| \boldsymbol{z}' - \boldsymbol{y} \|^2 - \| \boldsymbol{z} - \boldsymbol{y} \|^2 \\ &= (\boldsymbol{z}' - \boldsymbol{y})^T (\boldsymbol{z}' - \boldsymbol{y}) - (\boldsymbol{z} - \boldsymbol{y})^T (\boldsymbol{z} - \boldsymbol{y}) \\ &= (\boldsymbol{z} + \Delta \boldsymbol{z} - \boldsymbol{y})^T (\boldsymbol{z} + \Delta \boldsymbol{z} - \boldsymbol{y}) - (\boldsymbol{z} - \boldsymbol{y})^T (\boldsymbol{z} - \boldsymbol{y}) \\ &= 2(\boldsymbol{z} - \boldsymbol{y})^T \Delta \boldsymbol{z} + \| \Delta \boldsymbol{z} \|^2 \end{aligned}$$

Since $\|\Delta z\|$ is small, we therefore have

$$\Delta e \approx 2(z - y)^T \Delta z = 2(z - y)^T \Delta R r \tag{4.6}$$

To decrease the error, we want to make sure that $\Delta e < 0$. To achieve this, we can take

Least mean squares (LMS) update rule for readout matrices.

$$\Delta R = -\epsilon(z - y)r^{T} \tag{4.7}$$

where $\epsilon > 0$ is a small learning rate that is included to make sure that ΔR is small in magnitude.

Exercise 4.2.1. Use Eq. (4.6) to prove $\Delta e < 0$ for the LMS update in Eq. (4.7). **Note:** You implicitly assume that $\epsilon > 0$ is sufficiently small when you use Eq. (4.6). For a more formal derivation, use $\Delta e = 2(z-y)^T \Delta z + \mathcal{O}(\epsilon^2)$ in place of Eq. (4.6) where $\mathcal{O}(\epsilon^2)$ goes to zero like ϵ^2 as $\epsilon \to 0$.

The first half of Figure 4.2C,D (after time 2500) shows firing rates, readout, and targets after feedback and learning are turned on (using the LMS rule to update R). The readout quickly converges to the target.

The practice of training a RNN by updating only a set of readout weights is called reservoir computing and the corresponding network model is called an echo state **network** or **liquid state machine** [43, 48–51]. There are many variants of reservoir computing algorithms. For example, some models do not use feedback (Q = 0), but feedback tends to improve learning. Some models include an input, X(t), and use a target that depends on the input so the network needs to learn a mapping from an input time series, X(t), to an output time series, z(t). Improved learning rules have been developed [43] in addition to "reward-modulated" learning rules that do not require knowledge y(t), but only need $e(t) = ||z(t) - y(t)||^2$ to update R [52–54].

The exercises below identify some weaknesses of the LMS learning rule as it is defined above and provide some approaches to improve it.

Exercise 4.2.2. In Figure 4.2, we only compared the feedback and target while learning was turned on. Ideally, the network would produce small error even after learning is turned off (R held fixed after learning). Repeat the simulation in Figure 4.2, but turn off learning by holding R fixed after some time (keep the feedback turned on). You will see that the output does not match the target after learning is turned off. This is due to the fact that our derivation of ΔR only required that the error is smaller immediately after updating R, but it will not necessarily keep the error small if R is not updated again on the next time step. In essence, with the LMS learning rule, the network doesn't really learn to produce the target, but the readout just "chases" the target around [43].

Exercise 4.2.3. Previous work by David Sussillo and Larry Abbott [43] showed that more stable learning can be achieved by modified learning rules called "FORCE learning." One form of FORCE learning uses an improved learning rule called recursive least squares (RLS),

$$\Delta R = -\epsilon(z - y)r^{T}P$$

$$\Delta P = -\frac{\epsilon_{P}}{1 + r^{T}Pr}Prr^{T}P$$

where $\epsilon_P > 0$ and P is an $N \times N$ matrix initialized to P = cI where I is the identity matrix and c > 0 is a constant. Under this rule, $P = \sum_t r(t)r^T(t) + (1/c)I$ where *I* is the identity matrix and the sum is over all discrete time points used in the Euler loop. This is a "regularized" estimate of the un-normalized correlation between elements of r(t) across time where the (1/c)I term is a regularizer. Smaller values of c produce faster learning, but too small values can cause instabilities. We should always choose c much larger than 1/N and typically values in $c \in [0.01, 1]$ tend to work well. This rule is computationally expensive because the computation of P is expensive, but the computation time can be improved by storing the value of Pr into a temporary variable like,

$$u = Pr$$

$$\Delta P = -\frac{\epsilon_P}{1 + r^T u} u u^T$$

Using the fact that *P* is symmetric, you can see that this produces the same value of ΔP , but requires fewer matrix products. Repeat the previous exercise using RLS learning in place of LMS learning. Find parameters that produce small error even after learning is turned off. The RLS learning rule is capable of learning complex tasks with multiple output dimensions (M > 1) and where the target, y(t), depends on the history of the input, X(t) [43].

While the RNN models and learning rules considered here are far removed from biology, the dynamics of r(t) in a trained RNN share statistical features of neural activity recorded in animals performing similar motor tasks and can therefore be used as abstract models of neural activity during motor tasks [53–57].

Technically, the feedback matrix, R, represents a recurrent connectivity matrix (at least when $Q \neq 0$) because there is a recurrent loop from r to z and back to r [43]. However, most of the recurrence in the network is contained in the matrix, W, which is not trained by the learning rules considered in this section. If we want to learn W, it is more common to use gradient descent methods developed for artificial neural networks, which are the topic of the next section.

PERCEPTRONS AND ARTIFICIAL NEURAL NETWORKS 4.3

You may have heard of "deep neural networks" which are a leading method for machine learning. Even if you haven't heard of them, you've very likely used them. If you've ever translated a webpage online, used an app that utilizes facial recognition or voice recognition, or many of the other seemingly magical modern applications of artificial intelligence, then you have very likely benefited from the power of deep neural networks. What is the word "neural" doing in "deep neural networks"? The development of deep neural networks and their predecessors were inspired by biological neural networks. Indeed, deep neural networks are a type of artificial neural networks, which are closely related to rate network models.

Let us start by considering a feedforward, single-layer, fully connected artificial **neural network (ANN)** which is also called a **single-layer perceptron** [58]. A singlelayer perceptron is equivalent to a feedforward mean-field equation. In particular a single-layer perceptron can be defined by removing recurrent connections (setting W =0) in Eq. (3.6) to get $r = f(W_x r_x)$. However, we will switch to notational conventions more commonly used for artificial neural networks,

which can also be written as v = f(z) where

$$z = Wx$$
.

This gives us a mapping from a vector of inputs, $x \in \mathbb{R}^{N_0}$ to outputs, $v \in \mathbb{R}^{N_1}$. The outputs are also sometimes called **activations**, $W \in \mathbb{R}^{N_1 \times N_0}$ is the **feedforward weight matrix**, and $f: \mathbb{R} \to \mathbb{R}$ is called the **activation function** which is applied pointwise. The term "fully connected" refers to the fact that W connects every element of x to every element of z or v. Perceptrons are fully connected by definition, but ANNs are a more general class of networks.

In **supervised learning**, we begin with a data set of *m* inputs and labels

$$\{\boldsymbol{x}^i, \boldsymbol{y}^i\}_{i=1}^m$$

We use superscripts instead of subscripts to enumerate the data because subscripts are used to index the vectors (so x_i^t is the jth entry of input i). The goal in supervised

Figure 4.3: A perceptron trained on MNIST classification. A) Diagram of a perceptron with images as input and one-hot encoded labels. B) The logistic sigmoid loss function. C,D) The cost and accuracy on the training and test data, as a function of the gradient descent iteration step. Accuracy is defined as the proportion of inputs guessed correctly. Code to reproduce this figure can be found in Perceptron.ipynb.

learning is to find a weight matrix, W, so that the relationship between x and v in Eq. (4.8) approximates the relationship between x^i and y^i from the data.

To measure how well the current value of W performs, we use a **loss function**, L(v, y), which measures some notion of distance or error between v and y. We can then quantify the performance of our network by a **cost function**, which averages the loss over the entire data set

$$J(W) = \frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{v}^{i}, \boldsymbol{y}^{i})$$

where $v^i = f(Wx^i)$ is the output of the network on input x^i . Sometimes the word "loss" is used to refer to the cost, but it's usually easy to tell which one is meant from context.

For a specific example of supervised learning, we consider the MNIST data set [59], which consists of 28×28 grayscale images of hand-written digits, which are the inputs. The full MNIST data set contains 70,000 images, but we will restrict ourselves to a subset of m = 1000 images. We represent the inputs as vectors in $N_0 = 28 * 28 = 784$ dimensions, *i.e.*, each input is a list of pixel values. The labels are 10-dimensional binary vectors with a 1 in the entry associated with the digit. This is called a **one-hot encoding**. For example, the one-hot encoded label for a hand-written 2 is

$$y = [0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T$$

where note that the first entry corresponds to digit 0, so 2 is the third digit. Outputs of the network should therefore have dimension $N_1 = 10$ and W should be 10×784 . Figure 4.3A shows a diagram of the network. Since the entries of the labels are in the

interval [0,1], we should use an activation function that returns outputs in [0,1]. We will use the logistic sigmoid function,

$$f(z) = \sigma(z) = \frac{e^z}{e^z + 1}.$$

This is similar to the tanh sigmoid from Section 4.2 except its outputs lie in [0,1] instead of [-1,1] (Figure 4.3B). One nice property of the logistic sigmoid is that its derivative can be written in terms of the function itself,

$$\sigma'(z) = \sigma(z)(1 - \sigma(z)).$$

We will use a mean squared error (MSE) loss function,

$$L(\boldsymbol{v}, \boldsymbol{y}) = \frac{1}{2} \|\boldsymbol{v} - \boldsymbol{y}\|^2 = \frac{1}{2} \sum_{j=1}^{10} (\boldsymbol{v}_j - \boldsymbol{y}_j)^2.$$
 (4.9)

which is proportional to the squared Euclidean distance between v and y. Technically, we should divide by 10 instead of 2 to get a "mean" squared error, but the difference is not important and the coefficient of 1/2 makes the math work out nicely later.

Our goal is to find a matrix, W, that achieves a small cost. The idea behind learning or training W is to start with some initial value of W, compute the loss or cost using that value of W, and then update W in such a way that the loss or cost tends to decrease. We then repeat this procedure iteratively. To learn effectively, we need to estimate how changing each term, W_{ik} , affects the cost. This is called **credit assignment** because we need to assign "credit" to each weight for its affect on the loss.

For small changes to the weights, we can use calculus to perform credit assignment. Suppose we compute an output, v = f(Wx), and loss, L(v, y), for one data point using some initial matrix, W. Then consider a small update,

$$W_{new} = W_{old} + \Delta W$$
 where $\Delta W = \epsilon U$

Here, *U* is a matrix and $\epsilon > 0$ is a learning rate. A Taylor expansion of L(v, y) to first order in ϵ gives

$$L_{new} = L_{old} + \epsilon \sum_{i,k} U_{jk} \frac{\partial L}{\partial W_{jk}} + \mathcal{O}(\epsilon^2)$$

where $\mathcal{O}(\epsilon^2)$ denotes terms that go to zero quadratically as $\epsilon \to 0$. From this equation, we can see that choosing

$$U_{jk}=-\frac{\partial L}{\partial W_{ik}}.$$

will cause all of the terms in the sum above to be negative (except where they are zero). Therefore, when $\epsilon > 0$ is sufficiently small, if we set $\Delta W_{jk} = -\epsilon \frac{\partial L}{\partial W_{ik}}$ then the loss will decrease (unless all the partial derivatives are zero). This choice of update is called gradient descent and it can be written more concisely as

$$\Delta W = -\epsilon \nabla_W L \tag{4.10}$$

where $\nabla_W L$ is the **gradient** of L(v, y) with respect to W, which is a matrix with entries given by $[\nabla_W L]_{ik} = \partial L/\partial W_{ik}$. Gradient descent gives the direction of **steepest descent** in the sense that, for small ϵ , no other update with the same magnitude can decrease the loss by more.

For a single-layer perceptron, the gradient descent update is given by

$$\Delta W = -\epsilon [\nabla_{\boldsymbol{v}} L(\boldsymbol{v}, \boldsymbol{y})] \circ f'(\boldsymbol{z}) \boldsymbol{x}^T$$

where \circ is element-wise multiplication, x^T is the transpose of x, $\nabla_v L(v,y)$ is the gradient of the loss with respect to v, and f'(z) is the derivative of f applied pointwise to z. For the MSE loss from Eq. (4.9), $\nabla_v L(v, y) = v - y$ and the resulting update rule is known as the delta rule [60],

The delta rule
$$\Delta W = -\epsilon({\pmb v}-{\pmb y})\circ f'({\pmb z}){\pmb x}^T \tag{4.11}$$

Note that the LMS learning rule in Eq. (4.7) is actually a special case of the delta rule with f'(z) = 1. Indeed, our derivation of Eq. (4.7) was just a derivation of the gradient of e with respect to R for the feedforward network z = f(Rr) with f(z) = z.

In **online gradient descent**, we iteratively apply the update in Eq. (4.10) for each of the m data points, x^i and y^i . Each update to W is called one **iteration** and each loop through the whole data set (i.e., m iterations) is called one **epoch**. In NumPy, online gradient descent with MSE loss (i.e., using the delta rule) can be implemented as

```
for k in range(NumEpochs):
   for i in range(m):
       z=W@X[:,i] # compute inputs
                # compute activations
       DeltaW=-epsilon*np.outer((v-Y[:,i])*fprime(Z),X[:,i])
       W=W+DeltaW
```

where the *i*th input and label are stored as X[:,i] and Y[:,i] respectively. The function, outer, takes the outer product, xy^T between two vectors.

We could instead update W based on the gradient of the cost function by choosing

$$\Delta W = -\epsilon \nabla_W J(W) = -\frac{\epsilon}{m} \sum_{i=1}^m \nabla_W L(\boldsymbol{v}^i, \boldsymbol{y}^i).$$

This procedure, which is sometimes called **full batch gradient descent**, is different from online gradient descent because it updates W using the average gradient over the entire data set instead of updating it once for each data point. Alternatively, we could average the gradient over a random subset of the data points for each update, which is called stochastic gradient descent (SGD). SGD is the most common learning algorithm used to train neural networks for machine learning applications. Online gradient descent is arguably more similar to biological learning and synaptic plasticity because updates to W are computed based on the current activity of the network, without needing to store a history of gradients as we iterate through the data set.

Figure 4.3C shows the loss of a single-layer perceptron on MNIST trained with online gradient descent. Code to reproduce the figure can be found in Perceptron.ipynb. It's difficult to interpret performance looking at the loss alone. Instead, we can define the network's best "guess" on an input by the value of j at which v_j is the largest. We can then ask whether the network was correct, i.e., whether the guess matches the true label. The accuracy of the network is then defined as the proportion of inputs on which the network's guess is correct. Figure 4.3D shows the accuracy during training.

So far, we only checked the network's accuracy on the data set on which it was trained. This is cheating in some sense because the network could just learn to memorize those inputs. Typically, the true goal of learning is to perform well on unseen inputs. In Perceptron.ipynb, we also checked the performance on separate set of data that was hidden from the network during training, which is called the test data or validation data. In this context, the data used to train the model is called the training data. The ability to perform well on unseen data is called generalization. The model performed similarly on the test and training data (Figure 4.3C,D), but slightly worse on the test data as expected. Animals are excellent at generalizing and artificial neural networks strive to approximate this ability.

Exercise 4.3.1. This is my favorite exercise in the book. It ties everything together! Let's create a more biologically relevant task than MNIST. In Section 2.1, we looked at how the orientation of a bar is encoded in the spike count of a real neuron. Appendix B.5 extends this analysis to populations of neurons using statistical approaches. Let's now train a single-layer perceptron (which is a biologically inspired model) to classify orientations from real spike counts. This can be viewed as a model of how the spiking activity of recorded neurons might be decoded by a downstream population (modeled by the perceptron) that computes what the monkey is seeing. The code in DecodeSpikeCountsWithPerceptron.ipynb loads a matrix, X, of spike counts from $N_0 = 112$ neurons in a monkey's visual cortex recorded over m = 1000 trials. On each trial, the monkey viewed a drifting grating stimulus with one of $N_1 = 12$ orientations. The matrix Y contains the one-hot encoded orientations for each trial.

Train a single-layer perceptron to predict the orientation from the spike counts. Test your trained model on the test data in XTest and YTest.

After you complete this exercise, you will have built an algorithm that can read a monkey's brain! This approach can be extended to build brain-machine interfaces to create artificial eyes, control control robotic arms, etc.

The computational power of perceptrons is increased dramatically by adding more layers (as in Eq. (3.2)) to obtain a multi-layered perceptron. Credit assignment in multilayered perceptrons is a little bit more difficult, but is typically achieved using an algorithm called backpropagation, which can be interpreted as propagating gradients or "errors" backwards in the network. It is still unknown whether or how the brain might implement or approximate backpropagation and this is currently a highly active area of research [61–63]. Appendix B.9 discusses backpropagation and the issues with its potential approximation in biological neural circuits.

In addition to adding more layers, a few more changes to the perceptron model can produce powerful machine learning algorithms capable of solving much more See Appendix B.9 for a description of the backpropagation algorithm for training multi-layered neural networks and the associated problem of credit assignment.

difficult tasks. For example, the matrix multiplication in some layers can be replaced two-dimensional convolutions or other functions. This more flexible class of multilayered networks in which each layer can implement an arbitrary function are called artificial neural networks or (when they have several layers) deep neural networks. Deep neural networks are state-of-the-art for many machine learning applications.

We started our discussion of artificial neural networks by linking them to feedforward rate models, which were derived from an approximation to more biologically detailed spiking network models. However, artificial neural networks are very different from biological neural circuits. For example, artificial neural networks don't have action potentials, don't have separate excitatory and inhibitory neurons (they don't obey Dale's law), and the delta rule and backpropagation are very different from synaptic plasticity. Nevertheless, artificial neural networks are becoming one of the most popular and successful class of models for studying neural circuits. There are two perspectives for using artificial neural networks as models of biological neural circuits.

One perspective is that the finer details shouldn't matter. Representations of stimuli learned by artificial neural networks should approximate those learned by real brains even if the details of their implementation are very different. This perspective implicitly relies on some form of universality, i.e., that different learning algorithms and models trained on similar tasks will have similar representations. This perspective has some support: Networks designed for machine learning produce activations that are correlated with neural activity recorded from animals viewing the same inputs as stimuli [64–66].

Another perspective is that artificial neural networks *do* approximate the details of biological networks to some extent (via their relationship to rate models, for example) and we should be able to obtain more accurate models by making artificial neural networks operate more like biological neural networks [67]. For example, we could impose Dale's law onto artificial neural networks [68], train the networks with biologically plausible plasticity rules, or train spiking networks instead of rate networks [69–74].

Each perspective likely has some merit. There are probably some biological details that are important when modeling learning in neural circuits and some biological details that do not matter much. Which details are important likely depends on which data are being modeled and/or what questions are being asked.

If we only care about modeling neural activity or behavior in a trained animal, then using biologically realistic learning rules might not be important. If we care about neural activity or behavior during learning, then it might be more important to use biologically realistic learning rules. If we are interested in the role of different ion channels or neurotransmitter molecules in learning, then we should use models that let us account for those details.

As in many applications of computational and mathematical modeling, a primary challenge is the choice and design of the model, which is more of an art than a science. The model needs to be chosen in such a way that it can be expected to capture the phenomena being modeled, answer the questions being asked, and make experimentally testable predictions. But the model should be as simple as possible under those constraints. The following relevant quotation is often attributed to Einstein. It is probably apocryphal, but it paraphrases some of his writing [75],

"Everything should be made as simple as possible, but no simpler."

This advice should serve as a guide for designing models of neural circuits and for designing mathematical models of natural phenomena more generally.

Part APPENDICES

A.1 INTRODUCTION TO PYTHON AND NUMPY

Python is a general purpose programming language that is very popular in academic research. Some advantages of Python are that it's freely available, widely used, and there are many freely available Python packages that provide tools for all sorts of tasks. The NumPy package for Python provides a framework and many functions for common operations in numerical computing. The MatPlotLib package offers support for plotting data. The NumPy and MatPlotLib packages use syntax that is very similar to the standard syntax in Matlab.

One disadvantage of Python is that it is an interpreted language in contrast to compiled languages like C. Interpreted languages tend to be slower than compiled languages for many tasks. For example, loops in Python are much slower than those in C. But C is more difficult to learn, write, and debug. Fortunately, NumPy has built-in functions that allow you to avoid using loops when performing many common numerical operations. These built-in functions call pre-compiled C code that run much faster than the same function written directly in Python. The practice of using built-in functions instead of hand-written functions is called **vectorizing** your code.

There are several alternatives to Python. Matlab arguably has a simpler syntax, but it is expensive. Octave is a free, open source alternative to Matlab, but lacks some packages available in Matlab. Julia is an increasingly popular language that executes loops with similar speed to C using "just in time" (JIT) compilation.

All of the code associated with this book is written in Python notebooks, which are interactive environments for running blocks of Python code. Each block of code is called a "code cell" and there are also "text cells" used for documenting the code, etc. Notebooks are great for learning and for building small projects, but usually not appropriate for building larger projects, which are typically written in plain text files with a .py file extension.

The best way to learn a programming language is to use it, but first you need a basic understanding of the syntax, etc. The code in PythonIntro.ipynb provides explanations, examples, and exercises to get familiar with the basics of Python, NumPy, and MatPlotLib. Go through the code in PythonIntro.ipynb, make sure you understand everything, and complete all of the exercises. After that, you should be able to learn new concepts and tools as you go through the book. If you feel like you need more instruction after working through the code in PythonIntro.ipynb, there are numerous free resources for learning Python online. There will inevitably be programming problems that you get stuck on, bugs that you can't resolve, and things that you don't know how to do. This is true even for people who have years of experience in a programming language. One of the most important skills in programming is the ability to resolve problems like this by looking things up online and by experimenting with your code to find a solution.

A.2 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

A differential equation is an equation that relates an unknown function to its derivatives. For example, consider the equation

$$\frac{dy}{dt} = f(y, t) \tag{A.1}$$

where *f* is a known function, $y: \mathbb{R} \to \mathbb{R}$ is an unknown function, and dy/dt = y'(t) is the derivative of y. The notation $y: \mathbb{R} \to \mathbb{R}$ means that y is a function that takes a real number as input and returns a real number. ODEs like Eq. (A.1) are sometimes also written using the notation

$$y' = f(y, t)$$
 or $\dot{y} = f(y, t)$.

All of these equations mean the same thing: We are looking for a function y(t) satisfying

$$y'(t) = f(y(t), t)$$

for all values of t in the domain being considered. Of course, y, t, and f can have different names too, like u'(x) = g(u, x), V'(t) = f(V, t), or x'(t) = h(x, t), and the meaning is the same.

Eq. (A.1) is an **ordinary differential equation (ODE)** because y(t) only depends on one variable, t, so the equation only contains "ordinary" derivatives, not partial derivatives like $\partial y(x,t)/\partial x$ or $\partial y(x,t)/\partial t$ (which give rise to partial differential equations (PDEs)). All differential equations considered in this book are ODEs. Eq. (A.1) is a first order ODE because it only contains first order derivatives, not higher derivatives like y''(t). We will only consider first order equations in this book.

Eq. (A.1) is an ODE in **one-variable** because it contains only one unknown function, y(t), which is a scalar, not a vector. First order ODEs in one-variable are sometimes called one-dimensional ODEs or ODEs in one dimension.

We will also consider **ODEs** in higher dimensions, which are sometimes called systems of ODEs. They can be written in vector form, like

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{F}(\boldsymbol{u}, t)$$

where $u: \mathbb{R} \to \mathbb{R}^n$, meaning that u is a function that takes a real number as input and returns an $n \times 1$ vector. Similarly, $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$, meaning that \mathbf{F} takes and returns a vector. We use boldface to denote vectors. Systems of ODEs can also be written as a list of *n* one-dimensional equations like

$$\frac{dx}{dt} = f(x, y, t)$$

$$\frac{dy}{dt} = g(x, y, t)$$

where $x : \mathbb{R} \to \mathbb{R}$ and $y : \mathbb{R} \to \mathbb{R}$. This is a system of two ODEs or a two-dimensional system. We can write this in vector form by defining the vector

$$u(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \in \mathbb{R}^2.$$

We will initially focus on ODEs in one dimension, but will consider ODEs in higher dimensions later in the book.

ODEs like the one in Eq. (A.1) are typically paired with **initial conditions** of the form

$$y(t_0) = y_0$$

which specifies the value at some time t_0 . An ODE paired with an initial condition is called an **initial value problem (IVP)**,

$$\frac{dy}{dt} = f(y,t)$$

$$y(t_0) = y_0$$
(A.2)

Eq. (A.2) should be interpreted to mean that we are looking for a function, y(t), satisfying

$$y'(t) = f(y(t), t)$$
 and $y(t_0) = y_0$.

In many cases, we will take $t_0 = 0$ so the IVP will be written as

$$\frac{dy}{dt} = f(y, t)$$
$$y(0) = y_0.$$

If f(y,t) is continuous in t and $\partial f/\partial y$ is a continuous and bounded function of y and t then there exists a unique solution, y(t), to the IVP in Eq. (A.2), at least over some interval $t \in [-T,T]$. Uniqueness means that there is only one function satisfying the IVP. The assumptions on f(y) can be relaxed to some extent and, in many cases, the IVP will have a unique solution for all $t \in (-\infty,\infty)$. See a textbook on ODEs for a more in-depth discussion of the existence and uniqueness of solutions to ODEs.

In this book, we will forgo the theory of existence and uniqueness and just always assume that f is sufficiently nice that there is a unique solution to the IVP under consideration over the time interval under consideration.

For some ODEs, we can write down **closed form** solutions. A closed form solution is a solution for y(t) that can be written in terms of known functions. For example, try the following exercise:

Exercise A.2.1. Find a solution the IVP

$$\frac{dy}{dt} = 2t$$
$$y(0) = 0.$$

Hint: We are just looking for an anti-derivative or "indefinite integral" of y'(t) = 2t. Then find a solution to

$$\frac{dy}{dt} = at$$
$$y(0) = y_0.$$

in terms of the parameters, a and y_0 .

This approach of finding a closed form solution can work well for some simple ODEs. For example, this is the approach that we take for linear ODEs in Sections A.3 and A.5. However, for many ODEs, we cannot write down a closed form solution. For example, try to find a closed form solution to

$$\frac{dy}{dt} = e^{\cos(y)} + t$$
$$y(0) = 0.$$

You will not succeed. If we cannot find a closed form solution, there are two alternative approaches we can use instead:

- 1. Find a numerical approximation to the solution. This approach requires plugging in specific numbers for any parameters that define the ODE and initial value. This approach is used in Section A.6.
- 2. Analyze properties of solutions without actually solving the equation. This approach can sometimes be more informative than a numerical solution because it can help you understand what happens for a variety of initial conditions and/or parameters. This approach is used in Section A.7.

EXPONENTIAL DECAY AS A LINEAR, AUTONOMOUS ODE A.3

We begin by considering an IVP of the form

$$\tau \frac{dx}{dt} = -x$$

$$x(0) = x_0$$
(A.3)

where $x : \mathbb{R} \to \mathbb{R}$ is a scalar function and $\tau > 0$ is a scalar parameter. This ODE is **autonomous** because the right side, f(x,t) = -x, does not depend on t and it is **linear** because the right hand side is a linear function of x. This is one of the simplest differential equations, but understanding this equation can help to understand more complicated equations that come up in a lot of applications. You can check that the solution is given by

$$x(t) = x_0 e^{-t/\tau}. (A.4)$$

Eq. (A.4) is the quintessential example of **exponential decay**: As time progresses, x(t)decays exponentially toward zero. See the blue curve in Figure A.1 for a plot of a solution and Exponential Decay. m for code to produce this plot.

Note that Eq. (A.4) is a solution to Eq. (A.3) for all $t \in (-\infty, \infty)$, not just t > 0. Therefore, Eq. (A.5) tells us about the future and the past values of x(t).

The parameter, τ , is called the **time constant** of the decay and it determines how quickly the decay occurs. Larger τ means slower decay and smaller τ means faster decay. This can be seen by computing the proportion by which x changes over a time window of duration τ , starting at some time $t = t_1$,

$$\frac{x(t_1+\tau)}{x(t_1)} = \frac{x_0 e^{-(t_1+\tau)/\tau}}{x_0 e^{-t_1/\tau}} = e^{-1} \approx 0.37.$$

Figure A.1: Exponential decay. The exponentially decaying functions, x(t) and y(t), as defined by Eqs. (A.4) and (A.6). Parameters are $\tau = 10$ and c = 5. See ExponentialDecay.ipynb for Matlab code to produce this plot.

In other words, every τ units of time, x is multiplied by a factor of about 0.37. If you make the ballpark approximation $0.37 \approx 0.5$ then τ is a rough estimate of the half life of x, defined as the time it takes for x to be reduced by half. The true half life is actually closer to

$$t_{half} \approx 0.7\tau$$
.

So the true half life is a little shorter than τ , but τ gives a ballpark approximation that's easier to remember and compute in your head. To see an illustration of this conclusion, note that the blue curve in Figure A.1 reaches the halfway point, x(t) = 5, just before time $t = \tau = 10$.

Exercise A.3.1. Derive an exact equation for the true half life and verify that it is approximately equal to 0.7τ .

Eq. (A.3) can be used to model processes that decay exponentially toward zero, but we often want to model processes that decay exponentially to other values. This is easily achieved by setting

$$y(t) = x(t) + c$$

which decays exponentially to c (since x(t) decays to zero). What differential equation does y(t) obey? This can be derived by computing

$$\tau \frac{dy}{dt} = \frac{dx}{dt} = -x = -(y - c) = -y + c$$

where we used the assumption that y = x + c. This tells us that the IVP

$$\tau \frac{dy}{dt} = -y + c$$

$$y(0) = y_0$$
(A.5)

should give solutions that decay exponentially to c. Indeed, you can check that the solution to Eq. (A.5) is given by

$$y(t) = (1 - e^{-t/\tau})c + y_0 = c + (y_0 - c)e^{-t/\tau}.$$
(A.6)

While Eq. (A.6) looks more complicated than Eq. (A.4), it is easy to verify that it just represents exponential decay toward c starting at $y(0) = y_0$. The half life now represents the time to get halfway to c, instead of halfway to 0. See the red curve in Figure A.1 for a plot of a solution and Exponential Decay. m for code to produce this plot.

Sometimes, initial conditions are given at some non-zero time, i.e.,

$$\tau \frac{dy}{dt} = -y + c$$

$$y(t_0) = y_0$$
(A.7)

It is easy to check that the solution to Eq. (A.7) is just given by sliding Eq. (A.6) over by t_0 to get

$$y(t) = c + (y_0 - c)e^{-(t - t_0)/\tau}$$
(A.8)

which also represents exponential decay toward c. Note that Eq. (A.8) is equivalent to Eq. (A.6) if we take $t_0 = 0$ and equivalent to Eq. (A.4) if we additionally take c = 0, so Eq. (A.8) is the most general form of exponential decay.

The next step will be to replace the c in Eq. (A.7) with a term that depends on time. First, we need to take a detour to introduce convolutions.

A.4 CONVOLUTIONS

Given two scalar functions, $f, g : \mathbb{R} \to \mathbb{R}$, their **convolution** is another scalar function denoted (f * g)(t) defined by

$$(f * g)(t) = \int_{-\infty}^{\infty} f(s)g(t - s)ds.$$

If f or g has a bounded domain, we compute the integral assuming that they are zero outside of their domain. Convolution is commutative,

$$(f * g)(t) = (g * f)(t) = \int_{-\infty}^{\infty} g(s)f(t - s)ds$$

so you can use either of the two integrals above to represent the convolution. Convolution is also linear in each argument in the sense that

$$((f+g)*h)(t) = (f*h)(t) + (g*h)(t)$$

and

$$((cf) * g)(t) = c(f * g)(t)$$

for scalars, $c \in \mathbb{R}$.

Convolutions arise in many different contexts. For example, if X and Y are independent continuous random variables with probability density functions f_X and f_Y , then the probability density function of Z = X + Y is $f_Z = f_X * f_Y$. The solution to many ordinary and partial differential equations can be written as a convolution. Convolutions are also used in signal processing, for example to smooth data. A two-dimensional

Figure A.2: Illustration of a convolution. A) A kernel, k(s), is flipped to get $k^-(s) = k(-s)$, then shifted by t_0 to get $k^-(s-t_0)=k(t_0-s)$. **B)** A signal, x(s) (blue), is multiplied by the flipped and shifted kernel, $k^-(s-t_0)$ (red). The product (purple curve) is integrated to get the value of $y(t_0)$ (purple dot). Repeating this process for all values of $t = t_0$ gives the full curve, y(t) (gray).

version of convolutions, defined for functions $f,g:\mathbb{R}^2\to\mathbb{R}$, is widely used for image processing and machine learning.

In this textbook, we focus on the convolution of a **signal**, x(t), with a **kernel**, k(t), which is sometimes called a filter. The absolute value of the kernel should have a finite integral,

$$\int_{-\infty}^{\infty} |k(s)| ds < \infty, \tag{A.9}$$

and should satisfy

$$\lim_{s\to\pm\infty}k(s)=0.$$

Therefore, we normally think of a kernel as some kind of "bump," often centered at s = 0, for example $k(s) = e^{-s^2}$. The signal, x(t), does not need to have a finite integral or converge to zero as $t \to \pm \infty$, but it must be bounded above and below

$$\max_{t} |x(t)| < \infty \tag{A.10}$$

More precisely, there needs to exist a finite number M for which |x(t)| < M for all t. Unlike the kernel, the signal can be a time series that fluctuates indefinitely, for example $x(t) = \sin(t)$. The result of the convolution is given by

$$y(t) = (k * x)(t) = \int_{-\infty}^{\infty} x(s)k(t-s)ds.$$
 (A.11)

When Eqs. (A.9) and (A.10) are satisfied, a theorem known as Young's inequality tells us that $\max_t |y(t)| < \infty$. In other words, the convolution of a kernel with a signal produces another signal. What does this new signal, y(t), represent in terms of the kernel and the original signal, x(t)?

To get an intuition, let's think about the value of the convolution for some particular time, $t = t_0$. We have

$$y(t_0) = \int_{-\infty}^{\infty} x(s)k(t_0 - s)ds.$$

Now consider define the flipped version of the kernel: $k^-(s) = k(-s)$. In other words, $k^-(s)$ is just k(s) with the time axis flipped (see Figure A.2, Left). The convolution can be written in terms of the flipped kernel as

$$y(t_0) = \int_{-\infty}^{\infty} x(s)k^-(s - t_0)ds.$$

Treated as a function of s, note that $k^-(s-t_0)$ is just the function $k^-(s)$ shifted to the right by an amount t_0 (see Figure A.2, Left). To get $y(t_0)$, we take $k^-(s-t_0)$, multiply it by an unshifted x(s), then integrate the product. This operation is illustrated in Figure A.2, Right.

In summary, when performing a convolution at $t = t_0$, we are taking the integral of x(s) weighted by the flipped and shifted kernel, $k^-(s-t_0)$. If we think of k(s) as a bump centered at s = 0 then the convolution is given by flipping the bump, shifting it sideways, and taking the integral of x(s) weighted by the flipped and shifted kernel.

If we additionally assume that $k(s) \ge 0$ and

$$\int_{-\infty}^{\infty} k(s)ds = 1$$

then the integral that defines $y(t_0)$ represents a **sliding**, weighted average of x(s) near $s=t_0$. The shape of the bump represented by k(s) determines how we weight the values of x(s) near $s = t_0$ when computing the weighted average. If the the bump is wide and decays slowly, then we include values of x(s) far from $s = t_0$ in our weighted average. If the bump is very narrow, then we only include values very close to $s = t_0$.

If k(s) = 0 for s < 0, i.e., the bump represented by k(s) lies solely on the positive time axis, then $k(t_0 - s) = 0$ whenever $s > t_0$ so we can write $y(t_0)$ as

$$y(t_0) = \int_{-\infty}^{\infty} x(s)k(t_0 - s)ds = \int_{-\infty}^{t_0} x(s)k(t_0 - s)ds.$$

This implies that the value of $y(t_0)$ only depends on values of s with $s < t_0$. In other words, y(t) only depends on the past values of x(t). For this reason, kernels for which k(s) = 0 for s < 0 are called **causal kernel** or, more commonly, a causal filter.

In applications of convolution, it is rare that the integral defining the convolution can be computed by hand. Instead, we typically approximate it numerically. If we wanted to use standard numerical integration, this could be a computationally expensive task because we need to approximate a new integral for each value of t. If we discretized time into 1000 bins, we would need to perform numerical integration 1000 times.

Fortunately, numerical approximations to convolutions can be computed very efficiently using an algorithm called the Fast Fourier Transform (FFT). More precisely, the FFT can be used to very efficiently perform a "discrete-time convolution." A discretetime convolution is a convolution defined on discrete series in which the continuoustime functions, x(t) and k(t), in Eq. (A.11) are replaced by discrete-time sequences, x_n and k_n , and the integrals are replaced by sums. A discrete-time convolution can be

Figure A.3: Smoothing a noisy signal by convolving with a Gaussian kernel. A noisy sine wave, x(t), is convolved with a Gaussian kernel, k(t), and the results is a smoothed version of the signal, y(t) = (k * x)(t). Code to produce this figure can be found in ConvolutionExample.ipynb.

used to represent a Riemann approximation to the integrals in Eq. (A.11). Therefore, a Riemann approximation to (continuous-time) convolutions can be computed efficiently using the FFT.

In Python, discrete time convolutions are implemented using the built in NumPy function, convolve. The code snippet below convolves a noisy signal with a Gaussian kernel to smooth the noise. The results are shown in Figure A.3 and the full code can be found in ConvExample.ipynb.

```
# Discretized time
T=50; dt=.1; time=np.arange(0,T,dt)
# Define a noisy signal
x=np.sin(2*np.pi*time/20)+.25*np.random.randn(len(time))
# Define a Gaussian kernel and normalize it
sigma=3
s=np.arange(-2*sigma,2*sigma,dt)
k=np.exp(-(s**2)/sigma)
k=k/(np.sum(k)*dt)
# Perform convolution
y=np.convolve(x,k,'same')*dt
```

Let's go through this line of code step-by-step. The first line There are a few caveats for defining a kernel:

- Recall that convolution involves sliding the flipped kernel along the signal. For this to work well, the kernel must be much shorter than the signal, otherwise there's no room for sliding. To see this better, visualize sliding the red kernel along the blue signal in Figure A.2, Right. If the kernel were as wide as the signal, there would be no room to slide it. This is why we define the kernel over a much shorter discretized time vector than time.
- Due to the way np.convolve is defined, the numerical convolution only approximates the integrals defining the convolution if the kernel is centered at t = 0. This is why the discretized time vector s must be centered at 0.

- The time vector, s, should be wide enough to capture all of the values of k that are not close to zero. Since k is a Gaussian with width parameter sigma, using and interval of radius 2*sigma is sufficient.
- If we want the convolution to represent an average then the integral of the kernel should be 1. This is why we divided k by the Riemann approximation to its integral in the line k=k/(np.sum(k)*dt). Of course, there might also be instances where we don't want the convolution to represent an average, so we would not need this line.

The last line performs the convolution to get the resulting signal, y. There are a few things to note about this line too:

- The option 'same' tells convolve that the output, y, should be the same size as the first input, x. Recall that the convolution is performed by sliding the flipped kernel along the signal. Visualize sliding k along x in Figure A.3. If we slide the kernel all the way to the leftmost part of the signal, then it slides off the edge where x is not defined, and the same thing happens on the right edge. Specifically, it slides off when we're trying to compute $y(t_0)$ for t_0 that is within one "kernel-radius" of each edge. The kernel-radius is 2*sigma in the code above. One solution to this problem is to slide the kernel only as far as it can go without sliding off the edge, but then we could not compute y(t) at values of t that are close to the edge, so y(t) would necessarily be shorter than x(t) by two kernel radii. If we wanted to use this option, we'd use the option 'valid' in place of 'same'. The 'same' option produces a y that is the same size as x by sliding the kernel past the edges of x and assuming that x(t) is zero beyond its edges. This is called "zero padding" because it is equivalent to padding x with zeros on either side, then performing a 'valid' convolution. Problems known as **boundary effects** can arise when x(t)very far from zero at its edges. These boundary effects only affect the value of y(t)within a kernel-radius of each edge. As long as our kernel-radius is much shorter than our signals, these boundary effects might not be a big deal.
- We multiply the output of convolve by dt in the last line. This is because convolve performs a discrete-time convolution, which is defined by sums instead of integrals. Multiplying by dt turns these sums into Riemann sums that approximate the integrals in Eq. (A.11).

Exercise A.4.1. Run ConvolutionExample.m and try changing the signal, kernel, and other variables to get a feel for how convolutions work. For example, adding a large constant to x (moving it "up") can help visualize boundary effects. Changing the kernel radius will exaggerate these effects. Try changing the kernel to implement a causal filter. What do boundary effects look like for causal kernels? Why?

Figure A.4: Solutions to linear ODEs with time-dependent forcing. A) A step function forcing term, I(t), defined by Eq. (A.13) and B) the resulting solution, y(t), to Eq. (A.12) given by Eqs. (A.14) and (A.15) with c=5, y(0)=2, and $\tau=10$. C) The kernel, k(s), defined by Eq. (A.17) and C) the flipped kernel, $k^-(s)=k(-s)$. D) The solution, y(t) under an oscillating forcing term, I(t). The solution is obtained by sliding k^- along I(t) and computing a weighted average (compare to Figures A.2 and A.3). Code to produce these plots can be found in LinODE.ipynb.

A.5 ONE-DIMENSIONAL LINEAR ODES WITH TIME-DEPENDENT FORCING

We now consider a single variable ODE driven by a time-dependent forcing term,

$$\tau \frac{dy}{dt} = -y + I(t)$$

$$y(0) = y_0$$
(A.12)

where I(t) is some function of time. For simplicity, we assumed an initial condition at $t_0 = 0$ in Eq. (A.12) because solutions with initial conditions of the form $y(t_0) = y_0$ for $t_0 \neq 0$ are identical, but shifted in time.

If I(t) = c then Eq. (A.12) is equivalent to Eq. (A.8), which produces exponential decay. Now, we are interested in solutions with time-dependent I(t). The function, I(t), is sometimes called a **forcing term.**

To get an intuition for solutions with time-dependent I(t), first consider taking a step function forcing term,

$$I(t) = \begin{cases} 0 & t < t_1 \\ c & t \ge t_1 \end{cases}$$
 (A.13)

This function starts off at 0, then jumps to c at some time $t_1 > 0$.

Without solving the equation for this I(t), we can already visualize what the solution should look like. Up until time t_1 , we are just solving Eq. (A.3), so y(t) will decay exponentially toward zero from the initial condition, y_0 . After time t_1 , we are solving Eq. (A.5), so y(t) will decay exponentially toward c. In other words,

$$y(t) = y_0 e^{-t/\tau}, \quad t < t_1$$
 (A.14)

and $y(t_1) = y_0 e^{-t_1/\tau}$ so

$$y(t) = c + (y_0 e^{-t_1/\tau} - c)e^{-(t-t_1)/\tau}, \quad t \ge t_1.$$
 (A.15)

We are basically gluing together two solutions with constant I(t). See Figure A.4, Left for an example of this solution and LinODEstep.m for code to produce these plots. Technically, the solution we found is not differentiable at $t = t_1$, so Eq. (A.12) is not satisfied at $t = t_1$, but it is still satisfied everywhere else and this is the only solution that makes any sense, so we won't worry about it.

We can, of course, extend this idea to any piece-wise constant function, I(t). The solution to Eq. (A.12) will just decay exponentially toward the new value of I(t) every time that I(t) changes. But what about functions, I(t), that change continuously in time? The same idea is valid: The solution, y(t), is constantly trying to decay toward I(t), but can't catch up because I(t) is always changing. This is easy to see if you approximate a continuous I(t) with a piecewise constant function that is constant over very short time intervals, which is exactly what we do when we define functions on discretized time intervals in Matlab.

Specifically, you can verify that the solution to Eq. (A.12) is given by

$$y(t) = y_0 e^{-t/\tau} + (k * I)(t)$$
(A.16)

where * denotes convolution and

$$k(s) = \frac{1}{\tau}e^{-s/\tau}H(t) = \begin{cases} \frac{1}{\tau}e^{-s/\tau} & s \ge 0\\ 0 & s < 0 \end{cases}$$
 (A.17)

is an exponential kernel where H(t) is the Heaviside step function $(H(s) = 1 \text{ for } s \ge 0)$ and H(s) = 0 for s < 0). See Figure A.4, Right for a visualization of this solution and LinODEsin.m for code to produce these plots.

The function, k(s), is called the "Greens function" for the ODE in Eq. (A.12). Note that k(s) = 0 for s < 0, so this is a causal filter. In other words, y(t) only depends on I(s) for s < t. Also note that

$$\int_{-\infty}^{\infty} k(s)ds = 1$$

so y(t) represents a running, weighted average of I(t). Specifically, the value of y(t) is given by the average values of I(s) in the past (s < t) weighted by an exponential that decays with time-constant, τ . More recent values of I(s) are weighted more heavily and values of I(s) in the past are weighted less heavily. The parameter τ determines how quickly y(t) "forgets" past values of I(s). Roughly speaking, y(t) is only affected by values of I(s) in the interval $[t-5\tau,0]$ because the interval $[0,5\tau]$ contains the almost all of the "mass" of k(s), i.e., because $\int_0^{5\tau} k(s) ds = 0.993 \approx 1$.

Exercise A.5.1. Consider the case where there is an additive constant in the ODE,

$$\tau \frac{dy}{dt} = -y + c + I(t)$$
$$y(0) = y_0.$$

Show that the solution is

$$y(t) = y_0 e^{-t/\tau} + c + (k * I)(t).$$

A.6 THE FORWARD EULER METHOD

We now consider a simple method for numerically approximating solutions to ODEs that is useful when we cannot find closed form solutions. We first consider ODEs in one dimension of the form

$$\frac{dx}{dt} = f(x,t)$$

$$x(t_0) = x_0.$$
(A.18)

Numerically approximating solutions to differential equations is a major subject in applied mathematics, but most research is devoted to solving partial differential equations (PDEs) because ODEs, especially IVPs like Eq. (A.18), are much easier to solve numerically. The idea behind most numerical approximations is to first re-write Eq. (A.18)

$$dx = f(x,t)dt$$
.

This equation does not have a precise mathematical meaning because dx/dt does not represent a literal fraction. However, the equation can be interpreted to mean that

$$dx = x(t + dt) - x(t) \approx f(x(t), t)dt$$

when dt is sufficiently small. This can, in turn, be written as

$$x(t+dt) \approx x(t) + f(x(t),t)dt. \tag{A.19}$$

This is known as an Euler step. If we want to be more mathematically precise, suppose we know the value of x(t) and we interpret x(t) + f(x(t),t)dt as an approximation to the value of x(t + dt). Then the error made by this approximation is decays to zero faster than dt decays to zero, specifically

$$\lim_{dt \to 0} \frac{\text{error}}{dt} = \frac{x(t+dt) - (x(t) + f(x(t), t)dt)}{dt} = 0.$$
 (A.20)

How can we use Eq. (A.20) to approximation solutions to the ODE in Eq. (A.18)? We are implicitly assuming that we already know $x(t_0)$ as our initial condition. Now we can plug in $t = t_0$ into Eq. (A.19) to obtain an approximation to $x(t_0 + dt)$,

$$x(t_0 + dt) \approx x(t_0) + f(x(t_0), t_0)dt = x_0 + f(x_0, t_0).$$

Now that we have an approximation to $x(t_0 + dt)$, we can take another Euler step to obtain an approximation to $x(t_0 + 2dt)$,

$$x(t_0 + 2dt) \approx x(t_0 + dt) + f(x(t_0 + dt), t_0 + dt)dt$$

where we would need to plug-in our previous approximation for $x(t_0 + dt)$. We can repeat this procedure to obtain approximations to $x(t_0 + 3dt)$, $x(t_0 + 4dt)$, etc. In summary, if we start with a discretized time vector starting at $t = t_0$, then we can approximate the solution to Eq. (A.18) at time points along this vector. The algorithm is arguably simpler written in Python:

Figure A.5: Forward Euler Method Example. The numerical solution obtained by the forward Euler method with $f(x,t) = \sin(x)\cos(t)$, dt = 0.01, $t_0 = 0$, and $x_0 = 1$. Code to produce this figure can be found in ForwardEuler.ipynb

```
# Initialize x
x=np.zeros_like(time)
# set initial condition
x[0]=x0
# Loop through time and perform Euler steps
for i in range(len(time)-1):
   x[i+1]=x[i]+f(x[i],time[i])*dt
```

or we can replace f(x(i),time(i)) in the loop with a string of code representing the right hand side of our ODE. This procedure for approximating x(t) is called the Forward Euler method or sometimes, just Euler's method. It is the simplest method for numerically approximating solutions to ODEs. Note that we can still apply Euler's method if the right hand side of our ODE does not depend on t. We just omit t and write f(x). Everything else works out just the same. A more complete example of applying Euler's method is given in EulersMethod.ipynb and the results are plotted in Figure A.5.

Exercise A.6.1. Modify the code in EulersMethod.m to solve an ODE for which you know a closed form solution (e.g., an ODE from Sections A.3 or A.5) and compare the true solution to the approximation obtained using Euler's method for different values of dt.

If we replace Eq. (A.19) by an approximation that gives higher powers of dt in the denominator of Eq. (A.20), like dt^2 , we get a **higher order** method, whereas the forward Euler method is a first order method. With higher order methods, you can use a larger time step, dt, and still get a smaller error. When dt is larger, the for loop will be shorter so the method will run faster. Higher order methods require smoothness assumptions on f(x,t) and/or x(t) so they can't be directly applied to integrate-and-fire neuron models (due to the discontinuity of V(t) at reset) or to equations with Dirac delta functions like our synapse models. Firing rate models can benefit from higher order methods, but we will to stick with the forward Euler method in this textbook. See any good textbook on numerical analysis for more information on higher order methods.

The forward Euler method is easily extended to ODEs in higher dimensions or "systems of ODEs." Consider the system of two ODEs

$$\begin{aligned}
\frac{dx}{dt} &= f(x, y, t) \\
\frac{dy}{dt} &= g(x, y, t) \\
x(t_0) &= x_0, \quad y(t_0) = y_0
\end{aligned}$$

The forward Euler method for solving this system is essentially the same, but with two variables instead of one:

```
x=np.zeros_like(time)
y=np.zeros_like(time)
x[0]=x0
y[0]=y0
for i in range(len(time)-1):
   x[i+1]=x[i]+f(x[i],y[i],time[i])*dt
   y[i+1]=y[i]+g(x[i],y[i],time[i])*dt
```

Then we can do plot(time,x) and plot(time,y) to plot each solution or plot(x,y) to plot the trajectory of the solution in two dimensions. We can use the same approach to solve a system of any number of ODEs. If the equation is written in vector form:

$$\frac{d\mathbf{u}}{dt} = \mathbf{F}(\mathbf{u}, t)$$
$$\mathbf{u}(0) = \mathbf{u}_0$$

where u = (x, y) is a vector then we can do

```
u=np.zeros((2,len(time)))
u[:,0]=u0
for i in range(len(time)-1):
   u[:,i+1]=u[:,i]+F(u[:,i],time[i])*dt
```

Then we would do plot(time, u(1,:)) and plot(time, u(2,:)) or plot(u(1,:), u(2,:)) to plot the solution. Euler's method ODEs in more than two dimensions is similar.

Exercise A.6.2. The Lorenz system is defined by

$$x' = 10(y - x)$$

 $y' = x(28 - z) - y$
 $z' = xy - (8/3)z$

It was originally developed as a model of convection in the atmosphere. It's not an accurate model, but it's widely studied for its mathematical properties. Use the forward Euler method with a time step of dt = 0.01 to solve the Lorenz system over the time interval [a, b] = [0, 20] with initial conditions x(0) = y(0) =z(0) = 1. Plot the solution in three dimensions using the plot3(x,y,z) then use the rotate tool in Matlab to look at the solution from different angles after you plot it.

FIXED POINTS, STABILITY, AND BIFURCATIONS IN ONE DI-**A.7** MENSIONAL ODES

In this chapter, we consider ODEs where f(x,t) does not depend on time,

$$\frac{dx}{dt} = f(x)$$

$$x(t_0) = x_0$$
(A.21)

Eq. (A.21) should be interpreted to mean that

$$x'(t) = f(x(t))$$

for all t in the domain under consideration. ODEs that can be written in the form of Eq. (A.21), where the right hand side depends only on x, are called **autonomous ODEs**. The LIF and EIF models with time-constant input, $I(t) = I_0$, can be written in this form by dividing both sides by τ and are therefore autonomous ODEs.

Autonomous ODEs have the advantage that we can understand the behavior of solutions without needing to solve them explicitly, either in closed form or numerically. This approach to studying the behavior of solutions to autonomous ODEs without computing solutions is sometimes called **dynamical systems theory**. The advantage to this approach is that we can understand the behavior of solutions across a range of different parameter values and initial conditions. Dynamical systems theory is a beautiful and fun area of mathematics to learn. This section and Section A.9 cover some of the basic topics in dynamical systems theory. For a more in-depth treatment, see the excellent book by Steven Strogatz [76], which is my favorite mathematics book.

The most important concept for understanding the behavior of solutions to autonomous ODEs is the notion of a fixed point. A fixed point to Eq. (A.21) is defined as a number, x^* , for which

$$f(x^*) = 0.$$

Some texts use x_0 to denote a fixed point, but we are using x_0 to denote an initial condition, so we use x^* to denote a fixed point instead.

Now consider what happens if we start at a fixed point $(x_0 = x^*)$, i.e., if our initial condition satisfies $f(x_0) = 0$. Let's first compute $x'(t_0)$ in that case:

$$x'(t_0) = f(x(t_0)) = f(x_0) = 0.$$

Hence, if x(t) starts at a fixed point, its derivative starts at zero. Indeed, it is easy to verify that Eq. (A.21) is satisfied by the constant function

$$x(t) = x_0$$

when x_0 is a fixed point, *i.e.*, when $f(x_0) = 0$. Therefore, if an initial condition coincides with a fixed point then the solution to the ODE is a constant function. In other words,

If x(t) starts at a fixed point, it stays there.

This very simple principle is our first step in understanding solutions to ODEs. To check your understanding, try this exercise:

Exercise A.7.1. Consider the IVP

$$x' = x^2 - 1$$
$$x(0) = 1$$

Find the solution, x(t), in closed form (don't overthink it; this step should be very easy if you think about the discussion above). Use Euler's method to compute a numerical solution with dt = 0.01 and T = 5. Compare the numerical solution to the closed form solution. Now think about exactly what the Euler step is doing in this example and why Euler's method gives the solution that it does.

The discussion above tells us how solutions behave when they start at fixed points, but this only gets us so far. What happens when initial conditions do not occur at fixed points? We know that solutions cannot reach a fixed point in that case, but what do they do instead?

First consider solutions to Eq. (A.21) that start with $x'(t_0) = f(x_0) > 0$ and consider what the solution is doing at any other time $t_1 \neq t_0$.

We first show that the solution can never reach a fixed point if $x'(t_0) > 0$ using a proof by contradiction. Assume that $x'(t_0) = f(x_0) > 0$ and that $x_1 = x(t_1)$ is a fixed point, *i.e.*, that $f(x_1) = 0$. Then note that x(t) satisfies a new IVP of the form

$$\frac{dx}{dt} = f(x)$$
$$x(t_1) = x_1$$

where x_1 is a fixed point because $f(x_1) = 0$. But, if we assume that solutions are unique (see Section A.2 for a discussion of this assumption), then the only solution to this new IVP is the constant solution

$$x(t) = x_1.$$

This contradicts our original assumption that $x'(t_0) = f(x_0) > 0$ since the constant solution satisfied x'(t) = 0 for all t. Therefore, it is impossible to start at some x_0 with $f(x_0) > 0$ and reach a fixed point, x_1 .

We next show that the solution can never change from increasing to decreasing using a proof by contradiction. Suppose that $x'(t_0) = f(x_0) > 0$ and $x'(t_1) < 0$ at some other time $t_1 \neq t_0$. Note that x'(t) = f(x(t)) is continuous whenever x(t) and f(x) are continuous functions (and x(t) is continuous because it is differentiable). Therefore, by the intermediate value theorem, there must be some t_2 for which $x'(t_2) = 0$. But, similar to the argument above, this implies that $x(t) = x_2$ for all t, which contradicts our assumption that $x'(t_0) > 0$.

The two proofs above show that, if $x'(t_0) > 0$ then x'(t) > 0 for all t (since it is impossible to have x'(t) = 0 or x'(t) < 0). A similar argument shows that if $x'(t_0) < 0$ then x'(t) < 0 for all t. Putting this all together gives the following conclusion

If x(t) satisfies an ODE of the form in Eq. (A.21), then the sign of x'(t)does not change in time.

Note that this conclusion relies on an assumption that f(x) is continuous.

Figure A.6: Example of a Phase Line. A phase line (black line with arrows) for the ODE x' = $f(x) = x^2 - 1$. The function f(x) is plotted in blue, the fixed points are indicated by black dots, and the arrows indicate whether x(t) increases (rightward facing) or decreases (leftward facing) on each side of the fixed points. See PhaseLine.ipynb for code to generate this figure without the arrows.

Exercise A.7.2. Consider the IVP

$$x' = x^2 - 1$$
$$x(0) = 0$$

What is the sign of x'(3)? Use Euler's method to compute a numerical solution with dt = 0.01 and T = 5 to verify that x(t) increases or decreases consistent with your conclusion. Now repeat both steps with the initial condition changed to x(0) = -2.

With these conclusions, we can understand the behavior of solutions using a phase **line**, which is a sign chart for f(x) that indicates which direction solutions go starting from which initial conditions. Fixed points are marked on the x-axis. On either side of each fixed point, we draw an arrow pointing to the right if f(x) > 0 in that region and pointing to the left if f(x) < 0 in that region. These arrows indicate which direction a solution, x(t), would change if it is within that region. Figure A.6 illustrates a phase line for the ODE

$$x' = x^2 - 1$$

There are two fixed points at $x^* = \pm 1$. For initial conditions in the regions $x_0 < -1$ and $x_0 > 1$, solutions increase. For initial conditions satisfying $-1 < x_0 < 1$, solutions decrease. Compare the intuition implied by this phase line to the numerical solutions you computed in the exercise above.

Notice that both arrows surrounding the fixed point at $x^* = -1$ are pointing toward the fixed point. As a result, solutions that start near that fixed point converge toward it. This motivates the idea of stable fixed points. A fixed point is called asymptotically stable if solutions that start sufficiently close to the fixed point converge to the fixed point (see below for a discussion of why we need to specify "asymptotically"). More precisely:

Definition. A fixed point, x^* , to Eq. (A.21) is called asymptotically stable if there is an $\epsilon > 0$ such that whenever $|x_0 - x^*| < \epsilon$, $\lim_{t \to \infty} x(t) = x^*$.

Now let's look more closely at why the fixed point at $x^* = -1$ is asymptotically stable. Since x^* is a fixed point, $f(x^*) = 0$. To the left of the fixed point, f(x) > 0, which is why we drew a right-facing arrow. Immediately to the right of the fixed point, f(x) < 0, so we drew a left-facing arrow. In other words, f(x) changed from positive to negative at $x^* = -1$ and this is what caused the arrows to point toward $x^* = -1$. A smooth function that changes from positive to negative at x^* is necessarily decreasing at x^* , *i.e.*, its derivative is negative. This motivates the following theorem,

Theorem. Suppose x^* is a fixed point of Eq. (A.21) and $f'(x^*)$ exists. If $f'(x^*) < 0$ then x^* is an asymptotically stable fixed point.

Now notice that both arrows surrounding the fixed point at $x^* = 1$ are pointing away from the fixed point. Therefore, solutions that start near $x^* = 1$ go away from it. This motivates the idea of unstable fixed points. A fixed point is asymptotically unstable if it is not stable, i.e., if solutions can start arbitrarily close to the fixed point without converging to it. More specifically,

Definition. A fixed point, x^* , to Eq. (A.21) is called asymptotically unstable if for any $\epsilon > 0$, there is an x_0 such that $|x_0 - x^*| < \epsilon$ and $\lim_{t \to \infty} x(t) \neq x^*$.

The fixed point at $x^* = 1$ is asymptotically unstable because f(x) < 0 to the left of the fixed point and f(x) > 0 to the right of the fixed point, so the arrows point away from $x^* = 1$. Mirroring the discussion above, this motivates the following theorem,

Theorem. Suppose x^* is a fixed point of Eq. (A.21) and $f'(x^*)$ exists. If $f'(x^*) > 0$ then x^* is an asymptotically unstable fixed point.

Exercise A.7.3. Consider the ODE

$$x' = -(x+1)(x-1)(x-2)$$

Draw a phase line, find all fixed points, and classify their stability. Solve the equation numerically using Euler's method with different initial conditions to verify your results.

The reason that we needed to specify "asymptotically" in the definitions of stable/unstable above is that there are some borderline cases in which a fixed point is stable in some senses, but not others. Notably, for one-dimensional autonomous ODEs like Eq. (A.21), these only occur when $f'(x^*) = 0$. To see what can happen when $f'(x^*) = 0$, first consider the fixed point $x^* = 0$ for $f(x) = x^2$. By our definitions above, this fixed point is asymptotically unstable, but some texts classify it as "semi-stable" since $x(t) \to x^*$ for initial conditions on one side of the fixed point, but not the other. Indeed, "asymptotically unstable" is sometimes defined in a way that excludes semi-stable fixed points. Regardless of how this fixed point is classified, the behavior of solutions is still easily understood by drawing a phase line. Note that $f'(x^*) = 0$ does not imply that a fixed point is semi-stable. Consider, for example, $f(x) = x^3$.

Another example where stability is less clear is given by the trivial ODE defined by a constant zero function, f(x) = 0. Every x is a fixed point and the solution to Eq. (A.21) is constant, $x(t) = x_0$, for any initial condition $x(0) = x_0$. Solutions that start near a fixed point (but not at the fixed point) do not converge to that fixed point, but also do not travel away from it, i.e., they stay near it. Some texts would classify these fixed points as "stable" but not "asymptotically stable" and some texts use the phrase "neutrally stable" for such fixed points.

The previous two paragraphs seem to cloud the waters around stability, but the core of the idea is still simple in almost all cases. Whenever $f'(x^*) < 0$ or $f'(x^*) > 0$, a fixed point is stable/unstable in every sense. When $f(x^*) = 0$, stability can be trickier to classify, but a phase line can still help understand the behavior of solutions. Generally speaking, drawing a phase line is an easier and more informative way to understand properties of a fixed point than computing $f'(x^*)$. To simplify terminology, we will drop the "asymptotically" label and simply refer to fixed points with $f'(x^*) < 0$ or $f'(x^*) > 0$ as **stable** or **unstable** when there is no ambiguity.

One of the most useful things about the dynamical systems approach to ODEs described in this section is that we can understand the behavior of solutions to ODEs without even solving them. This is especially useful because it lets us study how solutions depend on parameter values. For example, the existence and stability of fixed points can depend on the parameters that define an ODE. A parameter value at which the number or stability of fixed points changes is called a bifurcation. The study of bifurcations is a central theme in dynamical systems. The most common type of bifurcation in one-dimensional ODEs is a saddle-node bifurcation in which two fixed points collide and disappear as a parameter is changed. The following exercise demonstrates a saddle-node bifurcation.

Exercise A.7.4. Consider the ODE

$$x' = x^2 + a$$

that depends on the parameter, a. Draw a phase line and classify all fixed points and their stability for the three cases: a > 0, a = 0, and a < 0. There is a saddle-node bifurcation at a = 0.

8.A **DIRAC DELTA FUNCTIONS**

When modeling spike trains and when modeling ODEs with time-dependent forcing, we often want to model a very fast "pulse." We can define a pulse of width Δt at time t = 0 as

$$I(t) = \begin{cases} \frac{1}{\Delta t} & t \in [-\Delta t/2, \Delta t/2] \\ 0 & \text{otherwise} \end{cases}$$

This is just a rectangle of width Δt and height $1/\Delta t$ centered at t=0. Note that

$$\int_{-a}^{a} I(t)dt = 1$$

whenever $a > \Delta t$, i.e., the area under the rectangle is 1. A fast pulse is modeled by taking small Δt . As a mathematical abstraction, it is often useful to consider an infinitely fast pulse by taking $\Delta t \to 0$. However, note that $I(0) \to \infty$ in this limit, so I(t) does not converge to a function in the usual sense. Dirac delta functions give us a way to work with infinitely fast pulses and treat them like functions.

The **Dirac delta function**, $\delta(t)$, is a "function" defined by $\delta(t) = 0$ for $t \neq 0$ and

$$\int_{-a}^{a} \delta(t)dt = 1$$

for any a > 0. We will use the term **delta function** as a shorthand for Dirac delta function.

We put "function" in quotation marks above because the Dirac delta function is not actually a function in the strict sense of the word. Any real function that satisfies $\delta(t)=0$ for $t\neq 0$ would also satisfy $\int_a^b \delta(t)dt=1$ for all $a,b\in\mathbb{R}$. Intuitively, we can think of a Dirac delta function as an infinitely narrow and infinitely tall pulse, so " $\delta(0)=\infty$." There is a mathematically precise way to define Dirac delta functions as a "distribution," "generalized function," or "measure." Under these definitions, the delta function can only be evaluated inside of an integral, so we never need to ask about the value of $\delta(0)$.

The delta function can also be interpreted as a Gaussian probability density with mean zero and standard deviation zero,

$$\delta(t) = \lim_{\sigma \to 0} \frac{1}{\sigma \sqrt{2\pi}} e^{-t^2/\sigma^2}$$

and this interpretation also represents the limit of an infinitely narrow pulse at t = 0.

We often want to consider a pulse centered at some $t \neq 0$. To do this, we can just translate $\delta(t)$ to get $\delta(t-t_1)$, which has the property

$$\int_{a}^{b} \delta(t - t_1) = \begin{cases} 1 & a < t_1 < b \\ 0 & \text{otherwise} \end{cases}$$

and should be interpreted as an infinitely narrow pulse centered at $t = t_1$. It is sometimes useful to define the translated delta function as

$$\delta_{t_1}(t) = \delta(t - t_1).$$

Dirac delta functions have the following important property

$$\int_{-a}^{a} x(t)\delta(t)dt = x(0)$$

for a > 0 and, more generally,

$$\int_a^b x(t)\delta(t-t_1)dt = \int_a^b x(t)\delta_{t_1}(t)dt = x(t_1)$$

when $a < t_1 < b$. Indeed, in a more mathematically rigorous setting, this is essentially the definition of the delta function. As a consequence, delta functions are identities under convolution

$$(x * \delta)(t) = x(t)$$

and convolution with a translated delta functions implements a translation

$$(x * \delta_{t_1})(t) = x(t - t_1).$$
 (A.22)

Figure A.7: Numerical representation of a Dirac delta function driving a linear ODE. A) A numerical representation of $I(t) = \delta(t - t_1)$ with $t_1 = 20$ using a bin size of dt = 0.1. **B)** Numerical solution of Eq. (A.23) obtained using the I(t) from A. Code to produce this figure can be found in DiracDeltaFunctions.ipynb.

Now consider what happens when a Dirac delta function is the forcing term in a one-dimensional linear ODE,

$$\tau \frac{dx}{dt} = -x + \delta(t - t_1)$$

$$x(0) = 0$$
(A.23)

and let's assume that $t_1 > 0$. The first way to approach this problem is to use the solution derived in Section A.5. Specifically, from Eq. (A.16), we have

$$x(t) = (k * \delta_{t_1})(t)$$

where $\delta_{t_1}(t) = \delta(t - t_1)$ is the forcing term and $k(s) = \frac{1}{\tau}e^{-s/\tau}H(s)$ is an exponential kernel with H(t) the Heaviside step function. From Eq. (A.22), therefore, we have

$$x(t) = \frac{1}{\tau}e^{-(t-t_1)/\tau}H(t-t_1) = \begin{cases} \frac{1}{\tau}e^{-(t-t_1)/\tau} & t \ge 0\\ 0 & t < 0 \end{cases}.$$
 (A.24)

In other words, x(t) = 0 for $t < t_1$, then jumps up to $1/\tau$ at time $t = t_1$, then decays back toward zero for $t > t_1$. Put more simply, x(t) is just the exponential kernel, k(t), shifted in time by t_1 .

So far, we have considered the mathematical definition of a Dirac delta function, but how should we represent it numerically in code? If we are using discretized time with a step size of dt, we can represent a delta function by placing 1/dt in the associated time bin. For example, to represent the signal $I(t) = \delta(t - t_1)$, we would do

```
time=np.arange(0,T,dt)
I=np.zeros_like(time)
I[np.int(t1/dt)]=1/dt
```

This code assumes that $0 \le t_1 < T$. Figure A.7A shows a numerical representation of a delta function with $t_1 = 20$ and dt = 0.1. This way of defining Dirac delta functions interacts nicely with Riemman integration, discrete convolutions, and the forward Euler method. For example, if we use the Riemman integral,

```
integralOT=sum(I)*dt
```

to approximate $\int_0^T I(t)dt$ then we will get the correct result because the *dt in this line of code cancels with the 1/dt in the associated bin in *I* to give 1. To see how numerical representations of Dirac delta functions interact with discrete convolutions and the forward Euler method, let's consider the numerical solution of Eq. (A.23). The forward Euler method would look like

```
x[0]=0
for i in range(len(time)-1):
    x[i+1]=x[i]+dt*(-x[i]+I[i])/tau
```

where I is defined in the code snippet above. In this loop, x[i+1] will remain zero until we reach the time bin i==np.int(t1/dt) corresponding to time t_1 . After that time bin, x will jump up to x[i+1]=dt*(1/dt)/tau which is equal to 1/tau. After that, x will decay exponentially back to zero. This is exactly the behavior of the true solution in Eq. (A.24). Similarly, we can compute the solution from Eq. (A.23) using a discrete convolution

```
s=np.arange(-5*tau,5*tau,dt)
k=(1/tau)*np.exp(-s/tau)*(s>=0)
x=np.convolve(I,k,'same')*dt
```

which gives similar results. Figure A.7B shows a numerical solution to Eq. (A.23). The file DiracDeltaFunctions.ipynb contains code to produce Figure A.7B using the forward Euler method and using a numerical convolution.

A.9 FIXED POINTS, STABILITY, AND BIFURCATIONS IN SYSTEMS OF ODES

In Section A.7, we looked at fixed points and stability for autonomous ODEs in one dimension. We now extend some of those results to systems of ODEs, which can be viewed as ODEs in higher dimensions (n > 1). Recall that an autonomous system of ODEs can be written in the form

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{F}(\boldsymbol{u}) \tag{A.25}$$

where $u: \mathbb{R} \to \mathbb{R}^n$ and $F: \mathbb{R}^n \to \mathbb{R}^n$. Given a system of ODEs and an initial condition, $u(0) = u^0$, the system has a unique solution satisfying the initial condition (under some assumptions on F). A system can also be written as a list of one-dimensional equations, for example if n = 2 then

$$\frac{\partial x}{\partial t} = f(x, y)$$

$$\frac{\partial y}{\partial t} = g(x, y)$$
(A.26)

where $x, y\mathbb{R} \to \mathbb{R}$ and the two conventions are related by defining

$$u(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}.$$

As in one-dimensional ODEs, a fixed point for the system in Eq. (A.25) is again defined by a value, $u^* \in \mathbb{R}^n$ satisfying

$$F(u^*) = 0$$

and fixed points again satisfy the property that

If u(t) starts at a fixed point, it stays there.

In other words, if $u^0 = u^*$ where $F(u^*) = 0$ then $u(t) = u^*$ for all t. Additionally, if a solution does not start at a fixed point then it cannot ever equal one. In other words, if $F(u^0) \neq 0$ then $F(u(t)) \neq 0$ for all t.

The definitions of stable and unstable fixed points are also the same for systems as for one-dimensional ODEs: A fixed point is stable if initial conditions sufficiently close to the fixed point converge to it, and it is unstable otherwise (see Section A.7 for more detailed definitions).

However, determining whether a fixed point is stable or unstable is more complicated for systems of ODEs. We will begin by considering linear systems of ODEs which are systems in which F(u) = Au is a linear function, so

$$\frac{d\mathbf{u}}{dt} = A\mathbf{u}$$

$$\mathbf{u}(0) = \mathbf{u}^0$$
(A.27)

for some $n \times n$ matrix, A. Linear systems always have a fixed point at the zero vector,

$$u^* = 0.$$

If A is non-singular (i.e., invertible), then this is the only fixed point. The stability of the fixed point at zero is determined by the eigenvalues of A. Recall that eigenvalues are numbers, λ , for which there exists a vector, v, satisfying

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

The vector, v, is called the eigenvector associated with the eigenvalue, λ . Eigenvalues and eigenvectors can be real, imaginary, or complex. Complex eigenvalues always come in conjugate pairs, $\lambda = a \pm bi$. In general, an $n \times n$ matrix has n eigenvalues. To compute eigenvalues, note that $A\vec{v} = \lambda v$ implies that $[A - \lambda Id]\vec{v} = 0$ so that $A - \lambda Id$ is a singular matrix (where Id is the $n \times n$ identity matrix). Hence, we only need to solve $\det(A - \lambda Id) = 0$ for λ . Recall that, for a 2 × 2 matrix, the determinant is:

$$\det\left(\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]\right) = ad - bc.$$

In NumPy, eigenvalues and eigenvectors can be found by

Figure A.8: Solutions of linear systems of ODEs with different eigenvalue patterns. The system in Eq. (A.27) solved using the forward Euler method for five different matrices, A. Eigenvalues, λ appear in the titles. Code to produce this figure can be found in LinearSystemsOfODEs.ipynb.

```
lam, v=np.linalg.eig(A)
```

which returns a vector of all eigenvalues in lam and a matrix of eigenvectors in v.

The stability of linear systems is determined by the sign of the real part of the eigenvalues of A, as explained in the following theorem,

Theorem. If all eigenvalues of A have negative real part then the fixed point at zero is stable for Eq. (A.27). If at least one eigenvalue of A has positive real part then the fixed point at zero is **unstable** for Eq. (A.27).

We will not consider systems for which A has eigenvalues with zero real part, which are singular matrices.

Figure A.8 shows numerical solutions of linear systems in n = 2 dimensions for various A with different eigenvalues. Two systems are stable and three unstable. Note that the qualitative appearance of the solutions are quite different: In some cases, the solutions spiral in or out, in other cases they do not. These properties are also determined by the eigenvalues. In particular,

Consider Eq. (A.27) in n = 2 dimensions. If the eigenvalues of A are complex, then solutions draw spirals in the plane.

When the eigenvalues have negative real part, this is called a stable spiral or spiral sink and when they have positive real part, this is called an unstable spiral or spiral **source**. Spirals in the u(t) plane translate to oscillations of the individual components, $u_1(t)$ and $u_2(t)$, as shown in Figure A.9.

Figure A.9: Solutions of linear systems of ODEs with different eigenvalue patterns. Same as Figure A.8, but $u_1(t)$ and $u_2(t)$ are plotted as functions of t. Code to produce this figure can be found in LinearSystemsOfODEs.ipynb.

When all eigenvalues are real and negative, solutions just decay exponentially to zero and the system is called a stable node or nodal sink. When all eigenvalues are real and positive, solutions grow exponentially and the system is called an unstable node or nodal source. When all eigenvalues are real, but have different signs, solutions decay in some directions, but almost all solutions eventually grow exponentially. This is called a saddle. All of these solution types can be found in Figures A.8 and A.9.

Exercise A.9.1. Come up with an arbitrary 2×2 matrix on your own. Compute the eigenvalues by hand and determine the stability and classification of the system. Now use the forward Euler method to solve the system numerically and compare the solution to what you expected from your classification. Try this a couple of times.

Two-dimensional systems can be classified without even computing the eigenvalues. First note that the determinant of a matrix is the product of its eigenvalues and the trace of a matrix is the sum of the eigenvalues. For n = 2,

$$det(A) = \lambda_1 \lambda_2, \quad Tr(A) = \lambda_1 + \lambda_2. \tag{A.28}$$

Recall that the trace is defined as the sum of the diagonal entries,

$$\operatorname{Tr}\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=a+d.$$

From Eq. (A.28), it can be shown that a two-dimensional system has eigenvalues with negative real part (and is therefore stable) if and only if

$$det(A) > 0$$
 and $Tr(A) < 0$.

We can also use Eq. (A.28) to classify the type of system. If the determinant is negative, then the eigenvalues must be real (since $(a + bi)(a - bi) = a^2 + b^2 \ge 0$) and must have

Figure A.10: The trace-determinant plane. The plane of all values of the trace (*T*) and determinant nant (D) of the matrix A from Eq. (A.27). The plane is split into five regions by the lines T = 0 and D = 0 along with the curve $D = T^2/4$. Each of these regions represents a different type of solution to Eq. (A.27). A Hopf bifurcation occurs during a transition between a stable and unstable spiral, i.e., when T changes sign with D > 0.

opposite sign, so the system must be a saddle. Distinguishing between nodes and spirals is a little bit trickier. From Eq. (A.28), it can be shown that

$$\lambda_{1,2} = \frac{T \pm \sqrt{T^2 - 4D}}{2} \tag{A.29}$$

where T = Tr(A) and D = det(A). From this, we can show that so $T^2 > 4D$ produces real eigenvalues (a node), and $T^2 < 4D$ means complex eigenvalues (a spiral). Putting this together, we can make a picture of the Trace-Determinant plane, in which the five different types of solutions discussed above are represented by five different regions on the plane of all T and D values (Figure A.10). Note that Eq. (A.29) can also be used to compute the eigenvalues directly, but it is only valid in n = 2 dimensions.

Exercise A.9.2. Repeat the previous exercise, but use the trace and determinant to determine the stability and classification without computing eigenvalues.

We have so far only considered stability for *linear* systems of ODEs. It turns out that we can use what we learned for linear systems to determine the stability of nonlinear systems of ODEs.

Recall that for one-dimensional ODEs, stability is determined by the sign of f'(x) at the fixed point. A similar result holds for systems of ODEs, but we need to generalize the notion of a derivative to a vector function $F: \mathbb{R}^n \to \mathbb{R}^n$. The derivative of such a function is a matrix called a **Jacobian matrix**. Specifically, the Jacobian matrix of *F* at a point u^* is defined by an $n \times n$ matrix, I, with entries defined by

$$J_{jk} = \left. \frac{\partial \mathbf{F}_j}{\partial \mathbf{u}_k} \right|_{\mathbf{u} = \mathbf{u}^*}$$

In other words, the j, kth entry of the Jacobian is the derivative of the j entry of F with respect to the kth entry of its input, evaluated at the fixed point. This equation is easier to understand when we write it out for a system written in the form of Eq. (A.26). For this system, the Jacobian is given by

$$J = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$$

where the derivatives are evaluated at the fixed point in question. Jacobian matrices are derivatives in the sense that they represent the best linear approximation to F at the fixed point. For this reason,

The solution of a nonlinear system like Eq. (A.25) or Eq. (A.26) near its fixed point looks like the solution to the system

$$\frac{d\boldsymbol{u}}{dt} = J\boldsymbol{u}$$

In particular, this means that the eigenvalues of the Jacobian tell us about the stability of the fixed point,

Theorem. Consider the system given by Eq. (A.25) or Eq. (A.26) and let I be the Jacobian matrix computed at a fixed point. If all eigenvalues of J have negative real part then the fixed point is stable. If at least one eigenvalue of J has positive real part then the fixed point unstable.

Moreover, if the Jacobian has complex eigenvalues then solutions will tend to draw spirals, just like in the associated linear system.

Exercise A.9.3. Consider the nonlinear system

$$\frac{\partial x}{\partial t} = -(1 - y^2)x - y$$
$$\frac{\partial y}{\partial t} = x$$

Find the unique fixed point, find its stability, and classify it (node, spiral, or saddle). Then use the forward Euler method to simulate the system. Try different initial conditions and adjust the duration of the solution (T) to make sure you can see the asymptotic behavior.

For one-dimensional ODEs, we looked at saddle-node bifurcations in which changing a parameter of the ODE changed the stability of a fixed point. Systems of ODEs can exhibit saddle node bifurcations too when the sign of an eigenvalue changes sign to switch between a stable node and a saddle (hence the name). Looking a the tracedeterminant plane we can see that this happens when D changes sign with T > 0(Figure A.10).

Systems of ODEs can produce a different kind of bifurcation that cannot be produced by one-dimensional ODEs. When the stability of a spiral changes, it is called a **Hopf** bifurcation. Looking a the trace-determinant plane we can see that this happens when T changes sign with D > 0 (Figure A.10). When a stable spiral becomes unstable, it usually gives rise to a stable limit cycle, which is a periodic solution to which nearby solutions converge. The periodicity of limit cycles implies that they generate oscillations. Exercise A.9.4. Consider the nonlinear system

$$\frac{\partial x}{\partial t} = -c(1 - y^2)x - y$$
$$\frac{\partial y}{\partial t} = x$$

where μ is a parameter. Note that when c = 1, this is the same system considered in the previous exercise. Determine a value of *c* at which a Hopf bifurcation occurs. Then use the forward Euler method to simulate the system with different values of c on either side of the bifurcation. Plot the solution in the x-y plane (like the plots in Figure A.8), but also plot the solutions as functions of time (like the plots in Figure A.9) to see the oscillations.

B | ADDITIONAL MODELS AND EXAMPLES

B.1 MODELING ION CHANNEL CURRENTS

In Section 1.1, we used the leaky integrator model to approximate the membrane potential of a neuron below the action potential threshold. The leaky integrator model combines the effects of multiple ion channels and pumps into a single leak current. In this section, we describe how to model the effects that individual types of ion channels have on the membrane potential. The presentation here loosely follows that in Dayan and Abbott's textbook [1], which gives more detail.

There are two general categories of ion channels: **Ungated (passive) channels** are always open, so they passively allow ions to pass through all the time. **Gated (active) channels** open and close. The permeability of membrane to a particular ion depends on the number of ion channels open and therefore on the probability that each channel is open. The open probability of gated ion channels can depend on many things, for example the membrane potential, light, and the concentration of certain ions, neuromodulators, or neurotransmitters.

There are two factors that contribute to the flow of ions across an open channel: the concentration gradient and the electrical gradient. The effect of the concentration gradient is simple: When the concentration of a certain type of ion is greater inside the cell than outside the cell, then the concentration gradient tries to push this type of ion out. When the concentration is higher outside the cell, the concentration gradient tries to pull them in. In other words, the concentration gradient tries to equilibrate the inside and outside concentrations of each type of ion.

However, open channels do not simply cause inside/outside ion concentrations to equilibrate because electrical potential also plays a role. As mentioned before, the membrane potential is usually negative. This negative potential tries to pull positive ions inside the cell and push negative ions out. The strength of this force depends on the neuron's membrane potential: A more hyperpolarized membrane potential will push and pull the ions more strongly.

An ion's **reversal potential** is the membrane potential at which the effects of the concentration gradient and the electrical gradient cancel out. This is also sometimes called the **equilibrium potential** or **Nernst potential**. The reversal potential for ion type a is typically denoted E_a (e.g., E_{Na} for sodium channels). When the membrane potential is at the reversal potential ($V = E_a$), the channel produces no current because the effect of the electrical and diffusive forces cancel. In other words, the net flow of ions is zero (just as many flow in as out).

What about when $V \neq E_a$? In this case, there will be a flow of ions, *i.e.*, a current. Ion channels act as resistors. They allow ions to pass through, but with some resistance (because ions only flow so fast). You might have learned Ohm's law, V = -IR, in a physics class. Ohm's law can be re-written as

$$I = -gV$$

where I is the current across a resistor and $g = 1/R \ge 0$ is its conductance. However, this equation is for purely electrical circuits. The effects of concentration gradients changes the equation. In particular, the current should be zero when $V = E_a$, not necessarily when V = 0. The equation that describes the currents across an ion channel is

$$I_a = -g_a(V - E_a).$$

When $V > E_a$, there is a negative current which pulls V back down toward E_a . When $V < E_a$, there is a positive current that pulls V up toward E_a . So the membrane potential is pulled toward E_a by the ion channel. Therefore, ion channels with reversal potentials well above rest ($E_a > -55$ mV) are generally depolarizing while those with reversal potentials well below rest ($E_a < -77$ mV) are hyperpolarizing. Reversal potentials close to rest can be hyperpolarizing, depolarizing, or neutral depending on the value of V.

Note that each ion channel induces a current of the form given above. The currents induced by several parallel ion channels combine additively, so

$$I_{total} = -\sum_{a} g_a (V - E_a)$$

The effect of individual channels of the same type can be lumped together, so we really have one term in the sum for each type of ion channel, *a*. Some types of ion channels only (or at least mostly) allow a certain type of ion through, for example only sodium or potassium. Other ion channels allow multiple types of ions through. The types of ions that pass through an open ion channel is called the channel's **ion selectivity**.

There are numerous types of ion channels with different reversal potentials, etc. and there are also ion pumps that are not accounted for by this equation. We don't want to model all of these explicitly because it would give us a huge equation with an enormous number of parameters. We don't know the values of all of these parameters and we don't even know all of the ion types to include for a particular neuron. Instead of trying to model all of the ion channels, we can lump them all together into one effective current, $I_L = -g_L(V - E_L)$ to get the leaky integrator model from Section 1.1.

However, what if we want to model the effects of an individual type of ion channel? This could be important, for example, if we are modeling an experiment or drug that modifies some property of an ion channel. It will also be important in the next section when we model action potential generation. We can model individual ion channel types simply by adding them onto the leaky integrator model to get

$$C_m \frac{dV}{dt} = -g_L(V - E_L) + I_x(t) - g_a(V - E_a)$$

or, if we don't want to model the capacitance directly, we can use

$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_x(t) - g_{a/L}(V - E_a)$$

where $g_{a/L} = g_a/g_L$ is just the ratio of the two conductances which can be chosen without specifying g_a or g_L individually. We could also add an ion current onto the EIF model if we wanted to include spiking,

$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_x(t) + De^{(V - V_T)/D} + I_x(t) - g_{a/L}(V - E_a)$$

$$V(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } V(t) \leftarrow V_{re}.$$

For a passive ion channel, the models above are complete. We simply need to choose values of E_a and $g_a > 0$ or $g_{a/L} > 0$ that match experimental recording.

For gated ion channels, the value of g_a is not constant, but depends on the number of open channels. Specifically,

$$g_a(t) = g_{a,max} p_a(t)$$

where $g_{a,max}$ is the conductance if they were all open and $p_a(t) \in [0,1]$ is the proportion that are open. Ion channels open and close stochastically. If the cell membrane contains many ion channels and each channel is in an open state with independent probability, then the proportion that are open is approximately given by the probability that any given channel is open. To this end, we will interpret $p_a(t)$ as the probability that a channel is open, *i.e.*, we are modeling the mean value of $g_a(t)$ and ignoring its variability. A more realistic model would treat $g_a(t)$ as a stochastic process.

Many different factors can affect the open probability, $p_a(t)$, of a particular type of gated ion channel. In the next section, we will consider voltage-gated ion channels, which are affected by the membrane potential. The following exercise introduces a simpler example.

Exercise B.1.1. Optogenetics is a method for genetically modifying neurons to have ion channels that are sensitive to light. Some of the first optogenetic techniques were developed by genetically modifying animal neurons to express channelrhodopsins, which are a type of light-sensitive ion channel first discovered in algae. When a specific type of neuron expresses the channelrhodopsin, experimenters can evoke currents in that type of neuron by shining a laser on the brain. Optogenetics help neuroscientists study the effects of different neuron types in circuit function, and might someday be used for prosthetics or therapeutic purposes. Optogenetic ion channels can be engineered to have different ion selectivities. Simulate an EIF model with channelrhodopsin channels that are selective for sodium (Na⁺). As a very simple model of the open probability of the channelrhodopsin channels, use

$$\tau_{ChR} \frac{dp_{ChR}}{dt} = -p_{ChR} + L(t)$$

where L(t) = 1 when the light is on and L(t) = 0 when the light is off. Use $\tau_{ChR} = 2$ ms, $E_{ChR} = E_{Na} = 50$ mV, $I_x(t) = 0$, and experiment with different values of $g_{ChR/L,max} > 0$ to get a steady-state firing rate of around 20Hz when the light is on.

B.2 THE HODGKIN-HUXLEY MODEL

In Section 1.2, we used the EIF model to approximate action potential generation. The model was derived as a rough approximation of the membrane potential dynamics during the inflow and outflow of sodium and potassium ions during an action potential. In this section, we derive a more detailed model of action potential generation famously developed by Alan Hodgkin and Andrew Huxley in the 1950s.

Hodgkin and Huxley began their work by performing experiments on the squid giant axon (not to be confused with a giant squid axon) to study its electrical properties. They ultimately derived a mathematical description of an action potential, through a series of three papers. They won the Nobel Prize in 1963 for their work.

The model they constructed is now referred to as the **Hodgkin-Huxley (HH) model**. For modeling other types of neurons in other species, parameters can be changed and other channel types can be added. Models that have the same basic structure as the HH model, but with different parameters or added ion channels are called **Hodgkin-Huxley style models** and are widely used today. Most neuron models used today can be viewed as either simplifications or extensions of the HH model. This chapter provides a brief review of the original HH model. A more in-depth discussion can be found in many different textbooks and websites.

In the previous section, we wrote the conductance of an active channel in terms of its open probability, but we did not describe how to properly model the open probability. The opening and closing of ion channels depends on complicated biophysical processes. A common approximation is to assume that the channel being open requires the opening of one or more "gates." The opening of a gate requires multiple identical, independent processes to all be in an "active" state. We will refer to these processes as sub-gates. Consider an ion channel with one gate and k sub-gates. If n(t) is the probability that each sub-gate is active, then the open probability of the channel is

$$p_a(t) = n^k(t).$$

The variable n(t) is called an **activation variable** or **gating variable**. In reality, the opening and closing of ion channels is more complicated and parameters like k are typically fit to data instead of being derived from biophysical properties of the channel, but the model above does a good job of describing ion channel currents in many cases.

For voltage-gated ion channels, n depends on the membrane potential, V, but V changes in response to changes in n since open channels induce a current. This makes it difficult to study the effects of channels, but also imparts neurons with most of their interesting and useful properties. To start with, we will get around this bi-directional dependence by assuming the neurons are "clamped" to a fixed voltage.

In actual recordings, the voltage can be held fixed using **voltage clamp**, which is a recording protocol in which the membrane potential (voltage) is held at specified fixed value by an electrode. This allows currents to be measured at fixed voltage. Voltage clamp is used to study properties of ion channels.

The first voltage-dependent ion channel we will study is the **voltage-dependent potassium** (K_v) **channel**. For the K_v channel, there is one gate with k = 4 sub-gates so

$$I_K = -\overline{g}_K n^4 (V - E_K).$$

where $P_0 = n^4$ is the probability that a K_v channel is open, equivalently the proportion of K_v channels that are open. Hodgkin and Huxley fit this model to experiments and found: $\overline{g}_K = 36 \text{ mS/cm}^2$, $E_K = -77 \text{ mV}$ (mS=millisiemens is a measure of conductance). Note that, since \overline{g}_K measures conductance per unit area, current is also measured per unit area. This will be true throughout our calculations, but we will still just call them "conductance" and "current" and leave off the "per unit area"

 K_v is a voltage-dependent channel (hence, the v subscript), so we also need to model the dependence of the gating variable, n(t), on V. Recall that we are currently treating

V as a constant since we are assuming the cell is in voltage clamp. The sub-gates open and close stochastically and the rate at which they open and close depends on voltage. Define $\alpha_n(V)$ to be the rate at which closed sub-gates open and $\beta_n(V)$ to be the rate at which open sub-gates close when the membrane potential is at V. This can be used to write a differential equation of the form

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n. \tag{B.1}$$

The first term represents the rate at which newly opened sub-gates are added (by closed sub-gates becoming open). The second term quantifies the rate at newly opened sub-gates are added (by open sub-gates becoming closed). One way of deriving and interpreting this equation is that a single sub-gate is a stochastic process, N(t), called a continuous-time Markov chain that switches between two states, $N(t) \in \{0,1\}$, representing closed and open respectively. Under this model, $n(t) = \Pr(N(t) = 1) = E[N(t)]$, obeys Eq. (B.1) which is sometimes called a mean-field equation or rate equation (not to be confused with the mean-field and firing rate equations studied in Chapter 3).Hence, n(t) models the probability of a single sub-gate being open, but also approximates the proportion of sub-gates that are open whenever we are modeling a large number of channels.

While Eq. (B.1) is easy to interpret biophysically, it can be re-written in a way that is easier to interpret dynamically:

$$\tau_n(V)\frac{dn}{dt} = n_{\infty}(V) - n$$

where

$$\tau_n(V) = \frac{1}{\alpha_n(V) + \beta_n(V)}.$$

and

$$n_{\infty}(V) = \frac{\alpha_n(V)}{\alpha_n(V) + \beta_n(V)}$$

When V is clamped (*i.e.*, constant in time), this is just a one-dimensional linear ODE for exponential decay $(\tau_n dn/dt = -n + n_\infty)$, which has the solution (see Appendix A.3)

$$n(t) = (n_0 - n_\infty)e^{-t/\tau_n} + n_\infty.$$

In other words, when V is clamped, n(t) decays exponentially to $n_{\infty}(V)$ with time constant $\tau_n(V)$. If $\tau_n(V)$ is large, it converges slowly. If $\tau_n(V)$ is small, it converges quickly.

The dependence of α_n and β_n on V is related to complicated molecular and cellular processes. Instead of modeling them explicitly, Hodgkin and Huxley empirically fit the dependence to experimental observations to get equations for α_n and β_n in terms of V.

$$\alpha_n(V) = \frac{0.01(V+55)}{1 - e^{-0.1(V+55)}}$$

$$\beta_n(V) = 0.125e^{-0.0125(V+65)}$$

which have units 1/ms=kHz and V is measured in mV.

The other type of ion channel responsible for action potentials is the voltage-dependent sodium (Na_v) channel. Voltage dependent sodium channels are more complicated than potassium channels because they produce a **transient conductance** meaning that as V increases, they can switch from open to closed, then back to open again. This is because they essentially have two types of gates. When V is increased, one opens quickly while the other closes slowly. To distinguish between these two gates, it is common to say "open" and "closed" for the fast gate, and say "active" and "inactive" for the slow gate.

The fast gate is represented by the gating variable m and has k=3 sub-gates. The slow gate is represented with an h and has k = 1 sub-gates. This gives a current of the form

$$I_{Na} = -\overline{g}_{Na}m^3h(V - E_{Na})$$

where $\bar{g}_{Na} = 120 \text{ mS/cm}^2$, $E_{Na} = 50 \text{ mV}$, m is the open probability, h is the active probability. As above, the gating variables obey rate equations of the form

$$\frac{dm}{dt} = (1 - m)\alpha_m - m\beta_m$$

$$\frac{dh}{dt} = (1 - h)\alpha_h - h\beta_h$$

where

$$\alpha_m = \frac{0.1(V+40)}{1 - e^{-0.1(V+40)}},$$

$$\beta_m = 4e^{-0.0556(V+65)}$$

$$\alpha_h = 0.07e^{-0.05(V+65)}$$

and

$$\beta_h = \frac{1}{1 + e^{-0.1(V + 35)}}$$

As above, these can also be written in terms of $m_{\infty}(V)$, $\tau_m(V)$, $h_{\infty}(V)$ and $\tau_h(V)$. In general, for all the gating variables a = n, h, m, we have

$$\tau_a(V)\frac{da}{dt} = a_{\infty}(V) - a$$

where

$$au_a(V) = rac{1}{lpha_a(V) + eta_a(V)}.$$

and

$$a_{\infty}(V) = \frac{\alpha_a(V)}{\alpha_a(V) + \beta_a(V)}$$

The variables $a_{\infty}(V)$ give the "steady state" or fixed point of the gating variables a = n, h, m when V is clamped and $\tau_a(V)$ gives the timescale over which this steady state value is approached. The dependence of each $a_{\infty}^{k}(V)$ and $\tau_{a}(V)$ on V is plotted in

Figure B.1: Steady states and timescales for the three gating variables in the Hodgkin-Huxley model. Plots of $a_{\infty}^k(V)$ (Left) and $\tau_a(V)$ (Right) for a=n,h,m. See HHgating.ipynb for code to produce this plot.

Figure B.1. We can use these plots to think through the membrane currents we should expect at different values of *V*.

At rest, V < -60 mV or so, the Na channels are essentially closed because $m_\infty^3(V) \approx 0$ for V < -60 mV, so $I_{Na} \approx 0$. The K channels are mostly closed at -60 mV because n_∞^4 is just a little bit above zero. But even to the extent that they are open, they only help to keep the membrane potential below -60 mV because $E_K = -77 \text{mV}$, so I_K pulls the membrane potential down. Hence, if V starts below -60 mV and we unclamp it, it will stay below -60 mV unless an extra inward current is applied.

Now consider what would happen if we unclamp V and apply an inward current strong enough to bring V toward -50 mV or so. The Na channels would start to open very quickly (because $m_{\infty}^3(V)$ is no longer so close to zero and $\tau_m(V)$ is very small). This opening of Na channels pulls V up more because $E_{Na} = 50 \text{mV}$. This creates a positive feedback loop where V is increasing, causing m(V) to get larger, which causes V to increase more, etc. This positive feedback loop is responsible for the fast "upswing" of the action potential.

As V increases, h slowly starts to decrease (because $h_{\infty}(V) \approx 0$ for larger V, but $\tau_h(V)$ is not so small), which slowly shuts down the positive feedback loop (because $h \approx 0$ closes the Na channels). At the same time, the K channels are slowly opening (because $n_{\infty}^4(V) > 0$ for larger V and $\tau_n(V)$ is not so small), which works to pull the membrane potential back down (because $E_K = -77 \text{mV}$), also slowing the positive feedback loop. These combined effects of n(t) and h(t) end the action potential and pull the membrane potential back down toward rest.

To see how all this plays out in practice, we need to put all of the pieces together into one large model. At the expense of repeating some equations from above, the Hodgkin Huxley model in its entirety is given by

$$C_{m} \frac{dV}{dt} = -\overline{g}_{L}(V - E_{L}) - \overline{g}_{K}n^{4}(V - E_{K}) - \overline{g}_{Na}m^{3}h(V - E_{Na}) + I_{app}$$

$$\frac{dn}{dt} = (1 - n)\alpha_{n}(V) - n\beta_{n}(V)$$

$$\frac{dh}{dt} = (1 - h)\alpha_{h}(V) - h\beta_{h}(V)$$

$$\frac{dm}{dt} = (1 - m)\alpha_{m}(V) - m\beta_{m}(V)$$

Figure B.2: Simulations of the Hodgkin-Huxley model. A-D) Simulation in which a single pulse of input evokes a single action potential. E,F) Response to three pulsatile inputs of different amplitudes and a sustained input. See HHspikes.ipynb for code to produce this figure.

where

$$\alpha_n(V) = \frac{0.01(V + 55)}{1 - e^{-0.1(V + 55)}},$$

$$\beta_n(V) = 0.125e^{-0.0125(V + 65)},$$

$$\alpha_m(V) = \frac{0.1(V + 40)}{1 - e^{-0.1(V + 40)}},$$

$$\beta_m(V) = 4e^{-0.0556(V + 65)},$$

$$\alpha_h(V) = 0.07e^{-0.05(V + 65)},$$

and

$$\beta_h(V) = \frac{1}{1 + e^{-0.1(V + 35)}}$$

with V measured in mV. Parameters values are $C_m = 1 \mu F/cm^2$, $g_L = 0.3 \text{ mS/cm}^2$, $E_L=-54.387$, $\overline{g}_K=36$ mS/cm², $E_K=-77$ mV, $\overline{g}_{Na}=120$ mS/cm², $E_{Na}=50$ mV. The injected current, $I_{app}(t)$, models a current applied by an experimenter.

In HHspikes.ipynb, we use the forward Euler method to solve these equations numerically for two different inputs, $I_{app}(t)$. Figure B.2A-D shows a simulation with a single action potential. A brief input pulse causes an increase in V, which results in a sharp increase in m^3 , causing a sharp increase in I_{Na} , which produces the positive feedback loop that creates the upswing of the action potential. In the meantime, n^4 slowly increasing and h is slowly decreasing, which causes a slow decrease in I_K and I_{Na} that produces the downswing of the action potential. We used a Gaussian-shaped function for $I_{app}(t)$ instead of a square wave pulse because the HH model can respond in unexpected ways to rapid jumps in the applied current. The right panel shows the membrane potential response to multiple pulses of different strengths as well as a sustained, step-like input.

The role of each gating variable in an action potentials can be summarized as:

m causes V to increase

- *h* stops *V* from increasing
- *n* causes *V* to decrease

The processes underlying the generation of an action potential can be summarized in more detail as follows:

- 1. A positive I_{app} causes an increase in V.
- 2. The increase in V causes an increase in m (since m_{∞}^3 is an increasing function of V) and the increase in m also causes an increase in V (since $E_{Na} = 55$ mV). This creates a positive feedback loop and rapid increase in V. This all happens before *h* or *n* can change much because $\tau_m < \tau_h, \tau_n$.
- 3. After a millisecond or so, h starts to go to zero (because h_{∞} is near zero for large *V*) causing the Na channels to close, which shuts down the positive feedback loop.
- 4. In the meantime, *n* has increased (i.e., K channels have opened) so, once the Na channels close, the membrane potential is pulled back down to negative values (since $E_K = -77$ mV) as K ions rush *out* of the cell. This ends the action potential.
- 5. After h recovers, the cycle can repeat as long as there is still a positive I_{app} to push *V* large enough to start the positive feedback loop.

The mathematical biologist, Jim Keener, developed an interpretive dance for this process called the "Hodgkin-Huxley macarena." Search for videos of the dance online.

Some important concepts related to action potentials are listed below along with some instructions for investigating each one numerically.

- Threshold: For an action potential to occur, V needs to get large enough to start the positive feedback loop. The cutoff V to initiate an action potential is called the **threshold potential**, often denoted V_{th} or θ . When action potentials are driven by an applied current, $I_{app}(t)$, then the **threshold current** is the value of $I_{app}(t)$ needed to evoke an action potential. But note that the threshold current and potentials can depend on the shape of the current used to evoke the action potential. For example, a sharply rising current might evoke an action potential more easily than a slowly rising current. Use a step-like or pulse-like applied current to find the threshold potential and current for the HH model by changing the height of the step or pulse. Notice how sharp the threshold is.
- **Refractory Period:** Directly after an action potential, h is near zero so the Na channels are closed and therefore the neuron can't spike again until the h gates open back up. This lasts for about 2 ms after a spike. Try eliciting two action potentials close together with two strong pulsatile inputs. See how close together you can get them.
- All-or-None Response: An action potential either occurs or doesn't occur. And the magnitude and shape of the action potential is independent of the input that evoked it. These statements are not exactly true because, for example, a miniature action potential can be evoked by an input near the threshold current, but it needs to be very close. An input just a little above or below the threshold will evoke a

stereotyped spike or no spike at all. Try evoking multiple action potentials with pulsatile inputs of varying strengths. You should see that the action potential waveform is essentially the same across a large range of pulse strengths.

PROBLEMS WITH THE HODGKIN-HUXLEY MODEL FOR MODELING LARGE NETWORKS.

One problem with the HH model is that its parameters were fit to the dynamics of the squid giant axon. While the basic mechanisms of action potential generation is the same in other types of neurons, the specific dynamics can differ greatly across different types of neurons. Indeed, you may have noticed that the resting potential for the HH model with $I_{app}(t) = 0$ is very different from the ≈ -70 mV that is more typical of mammalian cortical neurons. HH style models that more accurately model mammalian cortical neurons can be developed by changing parameter values and adding other ion channels.

HH style models have many complicated properties beyond the simple property of producing an action potential in response to depolarizing input. These more complicated properties can make it difficult to understand the mechanisms underlying different dynamics observed in simulations. Simplified neuron models have much simpler dynamics so it is easier to understand what is going on in simulations. This simplicity comes at the expense of possibly omitting important properties of real neurons, though.

The time step, dt, we used for simulating the HH model is very small. The small time step is needed to capture the fast dynamics underlying action potential generation. You can verify this by increasing the time step, dt, in the HH simulations to see how it changes the dynamics. The use of a smaller time step causes simulations of the HH model to take longer. A larger time step could be used if we used a higher-order ODE solver instead of using forward Euler method, but this can only help so much because the fast dynamics during an action potential still require a relatively small time step. This computational inefficiency is not be an issue when modeling a single neuron for a short amount of time, but it can be an issue when simulating networks of many neurons over longer periods of time.

OTHER SIMPLIFIED MODELS OF SINGLE NEURONS B.3

Other Integrate-and-Fire Models B.3.1

The EIF model introduced in Section 1.2 used a threshold-reset condition to model the recovery of the membrane potential back to rest after an action potential. Models of this form are called integrate-and-fire (IF) models. A more general formulation of IF models takes the form

$$\frac{dV}{dt} = f(V, I_x)$$

$$V(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } V(t) \leftarrow V_{re}$$
(B.2)

where

$$f_{EIF}(V, I_x) = \frac{-(V - E_L) + De^{(V - V_T)/D} + I_x}{\tau_m}$$

for the EIF model. In this section, we describe several alternative IF models.

REFRACTORY PERIODS IN INTEGRATE-AND-FIRE MODELS. One phenomenon that is not captured by the EIF model or by Eq. (B.2) is the refractory period: After a neuron spikes, it is very unlikely to spike again for the next few milliseconds. Refractory periods arise naturally in the Hodgkin-Huxley model from Appendix B.2, but they need to be added explicitly into IF models. An IF with a refractory period can be modeled as

$$\frac{dV}{dt} = f(V, I_x)$$
 $V(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } V(s) = V_{re} \text{ for } s \in [t, t + \tau_{ref}]$

where τ_{ref} is the refractory period, which should be 1-4ms. This rule says that the membrane potential should be held at V_{re} for a duration τ_{ref} after a spike. Cortical neurons typically only spike at 1-20Hz, meaning that the average time between spikes is typically around 50 - 1000ms long. Therefore, a 1 - 4ms refractory period will not have a substantial effect on spike timing. But refractory periods might be important when modeling neurons that spike at higher rates or when modeling phenomena where precise spike timing is important.

Exercise B.3.1. How could we implement a refractory period when simulating an EIF or a network of EIF models using Euler's method? Try modifying EIF.ipynb to include refractory periods.

THE LEAKY INTEGRATE-AND-FIRE (LIF) MODEL. The EIF (exponential IF) model is named for the exponential term, $De^{(V-V_T)/D}$, that captures the upswing of an action potential. This upswing of the action potential initiation does not have a large impact on spike timing: If D is small, then the neuron is very likely to spike shortly after V crosses V_T and is very unlikely to spike if V does not cross V_T . As such, we do not lose much by ignoring the action potential initiation and just recording a spike whenever V crosses V_T . This line of reasoning gives rise to the leaky integrate-and-fire (LIF) model, which is identical to the EIF model without the exponential term,

$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_x(t)$$

$$V(t) > V_T \Rightarrow \text{spike at time } t \text{ and } V(t) \leftarrow V_{re}.$$
(B.3)

In other words, we drop the exponential term from f_{EIF} to get

$$f_{LIF}(V,I_x) = \frac{-(V-E_L) + I_x}{\tau_m}.$$

The LIF model was one of the first neuron models ever developed, being first proposed in 1907 by Marcelle and Louis Lapicque [77-79]. As a result, it is sometimes referred to as the **Lapicque model**.

Note that we used V_T in place of V_{th} for the threshold. This is because the soft threshold from the EIF serves as a hard threshold for the LIF in the sense that a spike occurs as soon as the membrane potential enters the region near the onset of an action potential, $V_T \approx -55$ mV. The functions $f_{EIF}(V, I_0)$ and $f_{LIF}(V, I_0)$ are compared in Figure B.3A,B and membrane potential traces are compared in Figure B.3C. In the limit as $D \to 0$, the spike times of the EIF model converge to those of the LIF model, so the

Figure B.3: Comparing the EIF, LIF, and QIF models. A) The functions f(V) for all three models when $I_x(t) = I_0 = I_{th}$. Parameters for the QIF were chosen to match the second order Taylor expansion of the EIF at $V = V_T$ (see text). B) Same as A, but for a larger value of I_0 . C) Membrane potentials for all three models using the parameters from B. Exercises B.3.2 and B.3.4 ask you to reproduce this plot.

models become effectively equivalent. The LIF model lacks the upward deflection of the membrane potential before the spike times, so the membrane potential traces look less realistic, but the spike times are similar.

Exercise B.3.2. Consider the LIF with time constant input, $I_x(t) = I_0$. Compute the threshold input, I_{th} for which the neuron spikes if $I_0 > I_{th}$ and does not spike if $I_0 < I_{th}$. Compare to the threshold you computed for the EIF model in Exercise 1.2.1. Recreate the EIF and LIF curves from Figure B.3 by using and modifying code from EIF.ipynb and EIFPhaseLine.ipynb. Experiment with different values of D to see how it affects the relationship between the EIF and LIF.

It is a common practice to perform a **change of coordinates** to simplify the equations of a neuron model. For example the LIF model is often written as

$$\begin{split} \frac{d\tilde{V}}{d\tilde{t}} &= -\tilde{V} + \tilde{I}_x(\tilde{t}) \\ \tilde{V}(\tilde{t}) &> 1 \Rightarrow \text{spike at time } \tilde{t} \text{ and } \tilde{V}(\tilde{t}) \leftarrow \tilde{V}_{re}. \end{split} \tag{B.4}$$

This approach is often described as simply taking $E_L = 0$, $\tau_m = 1$, and $V_T = 1$, but a better explanation is that we are changing coordinates from V and t to $\tilde{V} =$ $(V-E_L)/(V_T-E_L)$ and $\tilde{t}=t/\tau_m$. Since this change of coordinates is linear (or, more strictly speaking, affine), we can also view Eq. (B.4) as a rescaled version of Eq. (1.5). This also means that we can view the change of coordinates as simply changing the units in which V and t are measured. Specifically, \tilde{t} is measured in units of τ_m (so t=3should be interpreted as t = 30ms if $\tau_m = 10$) and \tilde{V} measures the distance of V from E_L in units of $V_T - E_L$. The advantage of the formulation in Eq. (B.4) is that it is simpler. The disadvantage is that V and t are no longer represented explicitly in familiar units like *mV* and *ms*. But both formulations are equivalent, as the exercise below shows.

Exercise B.3.3. The change of coordinates should satisfy the following:

If
$$V(t)$$
 satisfies Eq. (B.3) and $\tilde{V}(\tilde{t})$ satisfies Eq. (B.4) and $V(0) = (\tilde{V}(0) - E_L)/(V_T - E_L)$ then $V(t) = (\tilde{V}(\tilde{t}) - E_L)/(V_T - E_L)$ for all t and $\tilde{t} = t/\tau_m$.

Derive the values of $\tilde{I}(\tilde{t})$ and \tilde{V}_{re} that make this true.

THE QUADRATIC INTEGRATE-AND-FIRE (QIF) MODEL. The LIF replaces f_{EIF} with a linear function, which does not model the upswing of the action potential. The quadratic integrate-and-fire (QIF) model replaces f_{EIF} with a quadratic function that can still capture the action potential upswing,

$$\frac{dV}{dt} = c(V - V_1)(V - V_2) + I_x(t)$$

$$V(t) > V_{th} \Rightarrow \text{spike at time } t \text{ and } V(t) \leftarrow V_{re}.$$

where c > 0. In other words, $f_{QIF}(V) = c(V - V_1)(V - V_2) + I_x(t)$. If we want to approximate the EIF with the QIF, we need to relate their parameters in such a way that $f_{QIF}(V, I_x) \approx f_{EIF}(V, I_x)$. It is impossible for the approximation to be accurate at all values of V and I_x . Instead, we can focus on approximating the EIF with time constant input, $I_x(t) = I_0$, near the bifurcation point given by $I_0 = I_{th}$ and $V = V_T$. This is the point at which the EIF transitions from never spiking to spiking through a saddle-node bifurcation (see Section 1.2 and Exercise 1.2.1). The second-degree Taylor polynomial expansion of $F_{EIF}(V, I_0)$ at $V = V_T$ gives the approximation

$$f_{EIF}(V, I_0) \approx \frac{1}{2D\tau_m}(V - V_T)^2 + \frac{I_0 + V_T - E_L + D}{\tau_m}$$
 (B.5)

Therefore, if we take $V_1 = V_2 = V_T$, $c = 1/(2D\tau_m)$ and $I_0^{QIF} = (I_0^{EIF} + V_T - E_L +$ $D)/\tau_m$ then the two models behave similarly near the bifurcation point. Indeed, the approximation is accurate when V is near V_T even when I_0 is not near I_{th} for the EIF since Eq. (B.5) is valid for any value of I_0 . Figure B.3 compares the EIF and QIF models with this parameter substitution and panel A is for the case $I_0 = I_{th}$. Note that they are similar near $V = V_T$, but very different away from $V = V_T$ and the spike times are very different. The values of V_1 , V_2 , and c can be chosen to better approximate the EIF at different values of V and for different values of I_0 , but there is no choice of parameters that provides good approximation at all V and I_0 .

Exercise B.3.4. Recreate the QIF curves in Figure B.3. Experiment with different values of time-constant input, $I_x(t) = I_0$, to see how it changes the relationship between the three models. Try to find parameters for the QIF model that give a better approximation to the EIF model.

A linear change of coordinates (or "rescaling") of V and t can transform the QIF model to

$$\frac{d\tilde{V}}{d\tilde{t}} = \tilde{V}^2 + \tilde{I}_x. \tag{B.6}$$

When $\tilde{I}_x(\tilde{t}) = \tilde{I}_0$ is constant, the bifurcation between spiking and not spiking occurs at $\tilde{I}_0 = \tilde{I}_{th} = 0$. Hence, \tilde{I}_x and \tilde{I}_0 should be interpreted as the excess input above threshold. Since the parameters for the QIF can be chosen to approximate the EIF near the bifurcation point, the EIF can also be rescaled in such a way that Eq. (B.6) approximates the rescaled EIF near the bifurcation point. Indeed, Eq. (B.6) is called a "normal form" for a saddle-node bifurcation, meaning that almost any ODE undergoing a saddle-node bifurcation can be rescaled in such a way that it is approximated by Eq. (B.6) near the bifurcation point. The "almost" qualifier is needed because the statement does not apply to ODEs for which the Taylor series around the bifurcation point has a vanishing quadratic term, but this is unlikely to occur without a symmetry that produces it explicitly.

In this sense, the QIF model approximates a large class of neuron models that transition between spiking and not spiking through a saddle-node bifurcation. However, the usefulness of this approximation is limited by the fact that it only applies near the bifurcation point (near $V = V_T$ and $I_x(t) = I_{th}$). In neuron models, we are often interested in the dynamics away from this bifurcation point. The EIF model does a better job of capturing the phase line of the Hodgkin-Huxley model away from the bifurcation point, so it is often viewed as a more accurate model [2, 4, 5]. However, the QIF model is more amenable to rigorous mathematical analysis, as we will explore more in Section B.3.2.

ADAPTIVE INTEGRATE-AND-FIRE MODELS. IF models can also be modified by adding additional currents that model the effects of active ion channels and other phenomena. A common example is spike frequency adaptation (often just called "adaptation" when there is no ambiguity), which is the tendency for consecutive inter-spike intervals (ISIs) to get longer over time during sustained spiking. In other words, the "frequency" of spiking decreases as the neuron continues to spike. Adaptation can be caused by different mechanisms, but one common mechanism is the presence of hyperpolarizing ion channels that are opened by action potentials and close slowly afterwards. The more spikes that occur, the more these ion channels open, making the neuron less excitable after each spike. Adaptation can be modeled by adding an adaptation variable, w, to the EIF model to obtain the adaptive EIF (AdEx or AdEIF) model,

$$\begin{split} &\tau_m \frac{dV}{dt} = -(V - E_L) + \Delta_T e^{(V - V_T)/\Delta_T} + I_{app}(t) - w \\ &\tau_w \frac{dw}{dt} = -w + a(V - E_L) \\ &V(t) > V_{th} \Rightarrow \text{spike at time } t, \ \ V(t) \leftarrow V_{re}, \ \text{and} \ \ w \leftarrow w + b \end{split}$$

where $\tau_w > 0$ determines the timescale of adaptation (around $\tau_w \approx 100 - 1000$ ms), and $a, b \ge 0$ determine the intensity of adaptation.

When the neuron spikes, w is increased by the explicit $w \leftarrow w + b$ rule and/or by the $a(V - E_L)$ term. Since these two effects are often similar, it is often simpler to set a = 0 so that w is only changed by the reset rule. An increase in w helps to depolarize V, making it less excitable. When provided a super-threshold, time-constant input, $I_{app}(t) = I_0$, this can lead to adaptation. Figure B.4 shows a simulation of the AdEx model. The adaptive EIF model is simple and is highly accurate when its parameters are fit to recordings of real neurons and it has won at least one "modeling competition" [80,

Figure B.4: Simulation of an adaptive EIF (AdEx) model. A) The membrane potential and B) the adaptation variable for an AdEx model with time-constant input, $I_x(t) = I_0$. Exercise B.3.5 asks you to reproduce this plot.

81]. For these reasons, some people consider it an ideal model that balances simplicity with biological realism.

Exercise B.3.5. Recreate Figure B.4. Parameters are the same as EIF.ipynb except $I_0 = 19$ mV, a = 0.1, b = 0.75mV, and $\tau_w = 400$ ms.

Adaptive LIF and adaptive QIF models can similarly be defined by adding an adaptation variable. The adaptive QIF model is sometimes called the Izhikevich model, named after Eugene Izhikevich who popularized the model. Eugene Izhikevich and his colleagues have shown that adaptive QIF models can exhibit a rich diversity variety of spike-timing dynamics by changing various parameters. For example, the adaptation variable can be made depolarizing (e.g., by setting $a \le 0$ and/or $b \le 0$). This makes the model useful for modeling many different types of neurons with various dynamical properties [82–84].

THE PERFECT INTEGRATE-AND-FIRE (PIF) MODEL. The EIF, QIF, and adaptive models are slightly more realistic versions of the classic, but simple LIF model. However, we can also go in the opposite direction from the LIF: We can make it even simpler. This is achieved by the perfect integrate-and-fire (PIF) model, which is the LIF model with the leak conductance removed to get

$$au_m rac{dV}{dt} = I_x(t)$$
 $V(t) > V_{th} \Rightarrow ext{spike at time } t, \ V(t) \leftarrow V_{re}.$

The membrane potential just integrates the input and spikes when the integral reaches V_{th} . The PIF is an accurate approximation of the LIF when the input current is much larger than the leak, $|I_x(t)| \gg |g_L(V - E_L)|$. The PIF model is not widely used, but it can be useful for mathematical studies because simple, closed form equations can be derived for firing rates and other spike train statistics when the input is noisy [85].

Neural Oscillators and Phase Models

NEURAL OSCILLATORS. Neural oscillator models can be motivated by first noting that IF models with time-constant, super-threshold input ($I_x(t) = I_0 > I_{th}$) have periodic membrane potentials that oscillate around the state space $[V_{re}, V_{th}]$. The idea behind

oscillator models is to wrap the interval $[V_{re}, V_{th}]$ around a circle in such a way that V_{re} and V_{th} become the same point. In this case, the membrane potential, V(t), can be visualized as a point on the circle. The key insight to oscillator models is that it is more natural to keep track of the angle, $\theta(t)$, of the vector that points from the origin to V(t)on the circle. This idea is illustrated in Figure B.5A,C. This mapping can work even with time-dependent input, $I_x(t)$, for which spiking is not periodic. The dynamics can be written in terms of the angle

$$\frac{d\theta}{dt} = F(\theta, I_x) \tag{B.7}$$

where $\theta(t) \in [0, 2\pi)$ is the angle in radians. Note that $\theta(t)$ lives on a periodic state space meaning that any arithmetic on θ needs to be performed modulo 2π . For example, the forward Euler update for Eq. (B.7) should be

```
theta[i+1]=theta[i]+F(theta[i],Ix[i])*dt
theta[i+1]=np.mod(theta[i+1], 2*np.pi)
```

where the second line takes the modulus with 2π . This assures that whenever $\theta(t)$ exceeds 2π it is reset to 0 and when it falls below 0, it is reset to 2π .

If $\theta(t)$ and $F(\theta, I_x)$ are properly derived from a change of coordinates from some IF model, then the oscillator model will be equivalent to the IF model with one caveat: In most IF models, the membrane potential can potentially take on values $V < V_{re}$. In an oscillator model, this would cause the membrane potential to re-enter at the threshold, which is not equivalent to the IF model and not biologically realistic. Hence, oscillator models should only be used to replace IF models in situations where the membrane potential rarely or never falls below V_{re} . This assumption is valid in IF models where the input is a small perturbation away from super-threshold input ($I_x(t) = I_0 + \epsilon I(t)$ with $I_0 > I_{th}$ and ϵ small), which implies that spiking is nearly periodic.

The QIF is especially amenable to representing as an oscillator model if we take $V_{re} = -\infty$ and $V_{th} = \infty$. This may seem like a strange choice of parameters, but it makes the mathematics work out nicely. To understand this choice, first note that the membrane potential of the QIF model with super-threshold input would reach $V(t) = \infty$ in finite time if we did not have the threshold-reset condition. In other words, it would have a vertical asymptote. Hence, mathematically speaking, it is valid to take $V_{th} = \infty$ because the membrane potential will still reach threshold. In simulations, of course, we cannot actually take $V_{th} = \infty$, but taking a large value of V_{th} achieves similar numerical results. Similarly, if the membrane potential is reset to $V_{re} = -\infty$, it can recover in finite time (another vertical asymptote), but in simulations we just choose V_{re} large and negative. To better see how this works, consider the (rescaled) QIF model,

$$\frac{dV}{dt} = V^2 + I_x(t). ag{B.8}$$

When $I_x(t) = I_0$, a closed form solution is given by

$$V(t) = -\sqrt{I_0}\cot\left(t\sqrt{I_0}\right). \tag{B.9}$$

where $V(0) = V_{re} = -\infty$ is the initial condition. More generally, $V(t) = \sqrt{I_0} +$ $\tan(t\sqrt{I_0}+c)$ is the general solution with $\tan(c)=V(0)/\sqrt{I_0}$, but we will focus on the

Figure B.5: Integrate-and-fire model transformed to an oscillator and phase model. A) The membrane potential for an IF model with time-constant input is periodic on the interval $[V_{re}, V_{th}]$ and the spike times are periodic on $[0, T_p]$ where T_p is the interspike interval. **B)** The membrane potential of the QIF from Eq. (B.8) with $I_0 = 4$ and $V(0) = V_{re} = -\infty$. The solid blue curve is the closed form solution from Eq. (B.9). The dashed red curve was obtained using the forward Euler method with $V_{th} = 100$, $V_{re} = -100$, and dt = 0.001. C) An oscillator model is obtained by mapping the state space of the membrane potential onto a circle and measuring the angle, $\theta(t)$, of the state. D) A simulation of the theta oscillator model obtained by applying the change of coordinates in Eq. (B.12) to the blue curve in B (solid blue) and by applying the forward Euler method to Eq. (B.11). E) A phase model is obtained by keeping track of the amount of time since the last spike, which gives the phase $\phi(t) = \text{mod}(t, T_p) \in [0, T_p)$. F) A phase model for the QIF in A. Exercises B.3.6 and B.3.8 ask you to reproduce panels B and D from this figure.

solution in Eq. (B.9) for simplicity. We don't need to write the usual threshold-reset conditions in Eq. (B.8) because an action potential occurs naturally when the cot term in Eq. (B.9) has a vertical asymptote: V(t) blows up to ∞ and is then reset to $-\infty$ at the spike times $s_n = n\pi/\sqrt{I_0}$ for n = 1, 2, ..., so the period of spiking is

$$T_p = \frac{\pi}{\sqrt{I_0}}$$

and the firing rate is $r = 1/T_p = \sqrt{I_0}/\pi$. Figure B.5B compares the closed form solution from Eq. (B.9) (solid blue) to a numerical solution obtained using the forward Euler method with V_{th} , $V_{re} = \pm 100$ (dashed red). Note that when using the forward Euler method to solve the QIF with large values of V_{re} and/or V_{th} , you must choose a smaller time step, dt, to prevent large numerical errors caused by large values of V(t).

Exercise B.3.6. Show that Eq. (B.9) satisfies Eq. (B.8). Then reproduce Figure B.5B. For Euler's method, use dt = 0.001. For the closed form solution, adjust the y-axis using plt.ylim([-100,100]) so it is not zoomed out too far. Try changing the values of V_{th} and/or V_{re} to see how it changes the match between the numerical and closed form solutions. Note that larger values of V_{th} and/or $|V_{re}|$ require smaller values of dt for numerical accuracy.

The QIF with $V_{re} = -\infty$ and $V_{th} = \infty$ is ideal for representing as an oscillator model in part because of the existence of simple closed form solutions like Eq. (B.9), but also because we can never have $V < V_{re}$ when $V_{re} = -\infty$, so we don't need to worry about

the caveat mentioned above. Note that the membrane potential of the EIF would also have a vertical asymptote without the threshold-reset condition, but the EIF does not recover from $V_{re} = -\infty$ in finite time and does not admit simple closed form solutions, so it is less amenable an oscillator representation than the QIF.

To represent the QIF with $V_{th}=\infty$ and $V_{re}=-\infty$ as an oscillator, we can make a change coordinates from $V(t) \in [-\infty, \infty]$ to $\theta(t) \in [0, 2\pi)$ satisfying

$$V = \tan(\theta/2) \tag{B.10}$$

The transformed system satisfies

$$\frac{d\theta}{dt} = 1 - \cos(\theta) + (1 + \cos(\theta))I_x(t). \tag{B.11}$$

Spikes in the neuron occur when $\theta(t) = \pi$ since this is where $V = \tan(\theta/2)$ has a vertical asymptote. Note that we can also write the change of coordinates as

$$\theta = 2 \tan^{-1}(V), \tag{B.12}$$

but this is ambiguous because the tan function is not invertible. To make this relationship work, you need to define tan^{-1} to return values on $[0,2\pi)$. Unfortunately, the np.arctan function in NumPy returns values on $[-\pi, \pi)$. To correctly convert from V to $\theta \in [0, 2\pi)$, you can do the following:

When $I_x(t) = I_0$ is constant, Eq. (B.11) has a saddle-node bifurcation at $I_0 = 0$. Eq. (B.11) is called the theta model or Ermentrout-Kopell canonical model named after mathematical neuroscientists, Bard Ermentrout and Nancy Kopell who derived it as a "canonical model" of a saddle-node bifurcation on a periodic domain like the circle [86]. This is bifurcation is sometimes called a saddle node on an invariant circle (SNIC).

Figure B.5D shows a solution to Eq. (B.11) found by changing coordinates from the closed form solution in Figure B.5B (solid blue) and from applying Euler's method to Eq. (B.11) (dashed red). Note that the solution is continuous despite the jumps in the plot because $0 = 2\pi$ in the periodic domain.

Exercise B.3.7. Show that $\theta(t)$ defined in Eq. (B.10) satisfies Eq. (B.11) whenever V(t) satisfies Eq. (B.8). You will need to use some trigonometric identities.

Exercise B.3.8. Reproduce Figure B.5D. One advantage of the theta model is that you can use larger values of dt without losing numerical accuracy. Increase dt and then compare how the accuracy of the forward Euler method differs between the solutions for V(t) and $\theta(t)$.

In some ways, oscillator models are a more natural way to represent IF models since the threshold-reset condition is represented naturally. Similarly, a SNIC bifurcation is a more natural way to think about the bifurcation underlying spiking in most IF models. However, as noted above, oscillators cannot accurately represent IF models when $V(t) < V_{re}$, which limits their applicability.

Figure B.6: Phase resetting for the QIF model. A) The unperturbed (blue) and perturbed (red) membrane potentials satisfying Eqs. (B.8) and (B.15) respectively with $V(0) = V_{re}$ $-\infty$. The perturbation is a pulse of amplitude a delivered at time $t=\phi_0$. B) The phase representation of the membrane potentials. The pulse causes the phase to jump by an amount given by the PRC, $G_a(\phi_0)$, which advances the next spike by the same amount (purple lines, which are the same length). C) The PRC ($G_a(\phi)$; purple) and the infinitesimal PRC ($aG(\phi)$; green) as a function of ϕ . All plots have $I_0 = 4$, a = 1, and $\phi_0 = \pi/4$. Exercise B.3.10 asks you to reproduce these plots.

Like oscillator models, phase models are also motivated by the PHASE MODELS. observation that V(t) is a periodic function when $I_x(t) = I_0 > I_{th}$. But instead of mapping V(t) onto a circle and measuring the angle, we just keep track of the time since the last spike, called the phase of the oscillation. Specifically, we can change coordinates to $\phi(t) \in [0, T_p)$ where T_p is the period of the oscillation and $\phi(t)$ is the time that has elapsed since most recent spike previous to t. Like $\theta(t)$, $\phi(t)$ also lives on a periodic domain (Figure B.5E). While this representation is not very useful when $I_x(t) = I_0$, it can become useful when we include a weak perturbation away from time-constant input, $I_x(t) = I_0 + \epsilon I(t)$.

As an illustrative example, consider the QIF model from Eq. (B.8) with solution given by Eq. (B.9). A phase model is obtained by a change of coordinates satisfying

$$V(t) = -\sqrt{I_0}\cot\left(\phi(t)\sqrt{I_0}\right). \tag{B.13}$$

where $\phi(t)$ is restricted to the periodic domain, $\phi(t) \in [0, T_p)$, determined by the period $T_p = \pi/\sqrt{I_0}$ of the QIF. Notice that Eq. (B.13) is just obtained by plugging $\phi(t)$ in for t in the solution from Eq. (B.9). This is a general approach for changing coordinates to a phase model because it assures that $\phi(t) = t$ when $t \in [0, T_p)$. More generally, we have

$$\frac{d\phi}{dt} = 1.$$

Since $\phi \in [0, T_p)$ lives on a periodic domain, this means that

$$\phi(t) = \operatorname{mod}(t, T_p) \tag{B.14}$$

with spikes occurring whenever $\phi(t) = 0$. This model is not very useful because it can't tell us anything we don't already know about the QIF.

To show how phase models can be useful, let us generalize to a QIF with timedependent input. Specifically, consider the QIF with $V_{th} = \infty$, $V(0) = V_{re} = -\infty$, and a delta function pulse delivered at some time $t = \phi_0 \in [0, T_p)$,

$$\frac{d\hat{V}}{dt} = \hat{V}^2 + I_0 + a\delta(t - \phi_0). \tag{B.15}$$

We use the notation $\hat{V}(t)$ to distinguish the perturbed solution from the unperturbed

Figure B.6A shows the membrane potential of a perturbed $(\hat{V}(t); \text{ red})$ and unperturbed (V(t); blue) QIF. Notice the small jump at time $t = \phi_0$, which causes the spike to happen earlier in the perturbed QIF. After time $t = \phi_0$, the perturbed QIF follows the same trajectory as the unperturbed QIF, except it is advanced in time. In other words,

$$\hat{V}(t) = V(t + \Delta\phi)$$

for $t > \phi_0$ where $\Delta \phi$ is called a **phase shift**. Note that all spike times in the perturbed QIF are advanced by $\Delta \phi$ (occurring sooner if $\Delta \phi > 0$ and later if $\Delta \phi < 0$). The phase shift depends on the amplitude, a, of the perturbation and on the phase, ϕ_0 , at which it was delivered, so we define the function

$$G_a(\phi_0) = \Delta \phi$$

to measure the phase shift for given values of a and $\phi_0 \in [0, T_p)$. The function $G_a(\phi)$ is called the phase resetting curve (PRC) for the QIF model. It is perhaps more natural to talk about PRCs using a phase model. The unperturbed phase, $\phi(t)$, satisfies Eqs. (B.13)– (B.14) above. The perturbed phase jumps up by $\Delta \phi = G_a(\phi_0)$ at the perturbation, which is equivalent to shifting the phase in time by the same amount, i.e., the purple lines in Figure B.6B has the same length. Specifically, the perturbed phase satisfies

$$\frac{d\hat{\phi}}{dt} = 1 + G_a(\phi_0)\delta(t - \phi_0).$$

The PRC can be calculated in closed form by noting that $\Delta \phi$ measures the amount of time for V(t) to evolve from $V(\phi_0)$ to $V(\phi_0 + a)$. In other words, right after the pulse, we have $\hat{V}(\phi_0) = V(\phi_0) + a$ and we also have $\hat{V}(\phi_0) = V(\phi_0 + \Delta \phi)$, which implies that

$$V(\phi_0 + \Delta\phi) = V(\phi_0) + a. \tag{B.16}$$

Using the closed form solution from Eq. (B.9), we can solve for $\Delta \phi = G_a(\phi_0)$ to get

$$G_a(\phi) = \frac{1}{\sqrt{I_0}} \tan^{-1} \left(\frac{\sqrt{I_0} \tan \left(\sqrt{I_0} \phi \right)}{\sqrt{I_0} - a \tan \left(\sqrt{I_0} \phi \right)} \right)$$
(B.17)

which is plotted in Figure B.6C (purple).

The QIF is somewhat special in having a relatively simple closed form equation for V(t), which we can use to derive a closed form equation for the PRC. In other situations, the PRC cannot easily be derived in closed form, but we can instead use the infinitesimal PRC,

$$G(\phi) = \lim_{a \to 0} \frac{G_a(\phi)}{a} = \left. \frac{\partial G_a(\phi)}{\partial a} \right|_{a=0}.$$
 (B.18)

The infinitesimal PRC can be used to approximate phase differences when a is small using

$$\Delta \phi = G_a(\phi) \approx aG(\phi).$$

For the QIF model, we can derive $G(\phi)$ directly from Eq. (B.17) to get

$$G(\phi) = \frac{1}{\sqrt{I_0}} \sin^2(\sqrt{I_0})$$
 (B.19)

which is plotted in Figure B.6C (green). For other models, the infinitesimal PRC can often be derived or measured more easily than the true PRC.

Exercise B.3.9. The infinitesimal PRC generally satisfies [87]

$$G(\phi) = \frac{1}{V'(\phi)} \tag{B.20}$$

Show that Eq. (B.20) also gives Eq. (B.19) by plugging in $V'(\phi) = V(\phi)^2 +$ I_0 then plugging in Eq. (B.9) and simplifying. Eq. (B.20) is derived from the "adjoint" dynamics of V(t) (don't worry if you don't know what this means), so the infinitesimal PRC is sometimes also called the adjoint PRC. Note that Eq. (B.20) can be used to easily derive the phase shift, $\Delta \phi$, as a function of the membrane potential, $V(\phi)$, at the time of the perturbation, even when a closed form equation for V(t) is not known. If you want a challenge, try deriving Eq. (B.20) by combining Eqs. (B.16) and (B.18).

Exercise B.3.10. Reproduce the plots in Figure B.6 using the same parameters you used to reproduce plots in Figure B.5.

Phase models are useful for studying networks of weakly coupled neurons. As a simple example, consider a network in which one QIF neuron spikes periodically and provides pulsatile synaptic input to another neuron

$$\frac{dV_A}{dt} = V_A^2 + I_0
\frac{dV_B}{dt} = V_B^2 + I_0 + w\delta(V_A - V_{th})$$
(B.21)

with $V_{th} = \infty$ and $V_{re} = -\infty$, but the initial conditions are arbitrary and not necessarily equal $(V_A(0) \neq V_B(0))$ in general), so the neurons do not necessarily spike at the same times. The delta function term should be interpreted as a kick delivered to V_B each time that V_A spikes. Changing to phase coordinates, $V_X = -\sqrt{I_0} \cot (\phi_X \sqrt{I_0})$, we can write

$$\begin{aligned} \frac{d\phi_A}{dt} &= 1\\ \frac{d\phi_B}{dt} &= 1 + w \sum_n G(s_n^A) \end{aligned}$$

where s_n^A is the *n*th spike time of neuron *A*, *i.e.*, $\phi_A(s_n^A) = 0$. This system is called a **periodically forced oscillator** because V_B is an oscillator and the perturbation from spikes in neuron A are periodic. The model was first studied in 1964 in the context of pacemaker neurons that spike almost periodically [88].

Now let's measure the time, ϕ_n , from the *n*th spike in neuron *B* to the next spike in neuron A. This is called the **phase difference** between the neurons. From the diagram in Figure B.7A, you can see that

$$T_p + \psi_n = T_p - G_w(\psi_n) + \psi_{n+1}$$

Figure B.7: Using a coupled phase oscillator model to analyze a QIF receiving pulsatile input from another QIF. A) QIF neuron A (red) receives pulsatile input from QIF neuron B (blue) as defined by Eq. (B.21). The phase difference, ψ_n , measures the time from the *n*th spike in neuron A (red bars) until the next spike in neuron B (blue bars). Neuron B spikes periodically with period T_p while the next spike in neuron Ais advanced by an amount $G_w(\psi_n)$, so the time between consecutive spikes in A is $T_p - G_w(\psi_n)$. **B)** A simulation of the model shows spikes in A advancing (occurring sooner) until they become nearly synchronous with the pervious spike in B. C) The relationship between $\psi_{n+1} - \psi_n$ and ψ_n (black dots from simulation) is described by the PRC (purple) and approximated by the infinitesimal PRC (green) according to Eq. (B.22). Parameters were $I_0=4$, w=1, and $V_A(0)=V_{re}$, and $V_B(0)=\pi/4$. Simulations used V_{th} , $V_{re}=\pm 200$ with dt=0.0001. Exercises B.3.11 asks you to reproduce these plots.

which can be solved to obtain

$$\psi_{n+1} = \psi_n + G_w(\psi_n). \tag{B.22}$$

This equation tells us how the phase difference evolves over time. In deriving this equation, we have implicitly assumed that there is exactly one spike in neuron B between every pair of spikes in neuron A (i.e., the neurons spike consecutively), but this approach can be generalized to situations where this assumption is not true. Eq. (B.22) is called a **map** on the state space $[0, T_p)$. It can easily be used to compute all ψ_n starting from any initial ψ_0 . A map can be viewed as a discrete-time differential equation if we interpret n as discrete time. Fixed points of this map satisfy

$$\psi^* = \psi^* + G_w(\psi^*)$$

which is equivalent to

$$G_w(\psi^*)=0.$$

For the QIF PRC, there is a unique fixed point at $\psi^* = 0$ or, equivalently, $\psi^* = 2\pi$. Moreover, the PRC is strictly positive for $\phi \neq 0$, so the phase increases monotonically toward the stable fixed point at $\psi^* = 2\pi$. In other words, the phase difference between a spike in A and the next spike in B approaches 2π , so the spike in A becomes nearly synchronous with the previous spike in B. In other words, neuron B spikes right before neuron *A* in the steady state.

Exercise B.3.11. Reproduce the plots in Figure B.7B,C. For the simulation in Figure B.7, what is the first phase difference, ψ_1 ? Use this to compute the next several phase differences using Eq. (B.22) and compare your results to the simulations. Now try reproducing Figure B.7B,C for inhibitory coupling (w < 0). Do the neurons still synchronize? Does neuron *B* still spike just before neuron A in the steady state? Note that small errors accumulate, so you should use V_{th} , $V_{re} = \pm 200$ and dt = 0.0001 to get accurate simulations.

This approach can be generalized to networks of recurrently coupled oscillators. The literature on oscillators and phase models is vast and rich, with numerous applications beyond neuroscience [86-98]. In neuroscience, oscillator models are useful for modeling neurons that spike nearly periodically, which is not uncommon outside of the cerebral cortex or even outside of the brain, but they are arguably less useful for modeling cortical neurons, which spike irregularly and often satisfy $V(t) < V_{re}$.

B.3.3 Binary Neuron Models

Binary neuron models offer a drastic simplification of IF models by ignoring membrane potential dynamics entirely and just mapping inputs to spikes. In binary neuron models, the "state" of each neuron is binary, i.e., it is either spiking or not spiking. We ignore the membrane potential and just model a mapping from inputs directly to the binary spiking state.

The first binary neuron models were developed by Walter Pitts, Warren McCulloch, and Jerome Lettvin in the 1940s and 50s [99]. Their model was similar to a single-layer feedforward ANN, but with binary inputs and activations. Specifically, the McCulloch-Pitts model model can be described by

$$S = H(W_x S^x - \theta)$$

where $H(\cdot)$ is the Heaviside function, θ is a threshold, and S^x is an $N_x \times 1$ vector of presynaptic inputs, and W_x is a $1 \times N_x$ feeedforward connectivity matrix (really, just a vector here), and S is an output. The presynaptic inputs and the output are binary, S_i , $S \in \{0,1\}$ and are meant to represent the state of a postsynaptic (S) and presynaptic (S) neurons where S=1 represents a spiking state and S=0 represents a non-spiking state. The weights, W_x , can be designed to perform logical operations on S^x . Pitts, McCulloch, and Lettvin hoped that the weights could be trained to model human-like cognition, memory, and reasoning. However, the model can only implement simple functions of binary inputs. While the McCulloch-Pitts model is important for historical reasons and it can be viewed as a predecessor to powerful, modern ANNs, it is not widely used today.

Modern binary network models are similar to the McCulloch-Pitts model, but with time-dependent states and recurrent connections. Binary models are typically studied with discrete time, n = 1, 2, ..., T instead of continuous time. Specifically, consider a recurrent network of N neurons and let S(n) be the $N \times 1$ vector of spike trains at time step n. Then

$$S_i(n) \in \{0,1\}$$

Figure B.8: Raster plot and input distribution for a binary neural network. A) Raster plot with a dot each time a neuron is in a spiking state. B) Histogram of inputs (gray; normalized to represent a density) compared to the density estimated by the meanfield theory in Eq. (B.27) using the empirical firing rate for r. The dashed black line shows the threshold, θ . Parameters were N=200, $\theta=1$, $\sigma_x=0.5$, $\mu_x=0.2$, $\mu_w=0$, and $\sigma_w = 0.5/\sqrt{N}$. Exercise B.3.12 asks you to reproduce these plots.

where $S_i(n)$ is the state of neuron j at time step n with 1 corresponding to spiking and 0 corresponding to not-spiking or "silent." The vector of inputs at time step n is defined as

$$\boldsymbol{I}(n) = W\boldsymbol{S}(n) + \boldsymbol{X}(n)$$

where W is a recurrent connectivity matrix and X(n) is the external input. There are two common conventions for updating the spike trains. The first is an asynchronous update in which a single neuron, j, is chosen randomly and then updated according to

$$S_j(n+1) = H(I_j(n) - \theta) = \begin{cases} 1 & I_j(n) \ge \theta \\ 0 & I_j(n) < \theta \end{cases}$$

or they can be updated all at once, which is called a synchronous update,

$$S(n+1) = H(I - \theta).$$

You can also select a random subset of neurons to update on each time step. An alternative formulation of binary networks uses $S_i(n) = -1$ for the silent state, which makes binary neuron models equivalent to "spin glass" models studied in physics. The two formulations can be made equivalent by modifying θ and I^x . Binary neuron models capture the opposite limit from the PIF model: They roughly approximate the spiking dynamics of an LIF model when the leak is very strong (τ_m small).

While binary neuron models are a rough abstraction from real neurons, they have provided a lot of insight into the dynamics of recurrent networks of neurons. Networks of binary neurons were the first neural network models for which mean-field theories were extensively developed, borrowing techniques from statistical physics [100–103]. As a simple demonstration, consider a binary neural network with

$$W_{jk} \sim \mathcal{N} (\mu_w, \sigma_w)$$

 $\boldsymbol{X}_j(n) \sim \mathcal{N} (\mu_x, \sigma_x)$

where $z \sim \mathcal{N}(\mu, \sigma)$ should be interpreted to mean that z follows a normal (or "Gaussian") distribution with mean μ and standard deviation σ , and where all W_{ik} and $X_i(n)$ are assumed independent. Figure B.8A shows a raster plot from a simulation of this model. Interestingly, the distribution of total inputs, $I_i(n)$, appears to approximately follow a normal distribution (Figure B.8B).

To understand why $I_i(n)$ might look approximately normally distributed, consider the total input to a single neuron,

$$I_j(n) = \sum_{k=1}^{N} W_{jk} S_k(n) + X_j(n).$$
 (B.23)

Note that $X_i(n)$ are normally distributed by assumption. The $S_k(n)$ obey a Bernoulli distribution, but as long as they are approximately independent from each other and from the W_{ik} terms, then then the central limit theorem tells us that the sum in Eq. (B.23) is approximately normally distributed. Moreover, if $S_k(n)$ are approximately independent from $X_i(n)$ then $I_i(n)$ is approximately normally distributed. These independence assumptions are difficult to justify rigorously and they do not hold in all parameter regimes, but the mean-field theory can proceed by assuming that they are valid.

A naive mean-field theory (analogous to the approach in Section 2.3 for spiking networks) would take expectations of $I_i(t)$ and making the approximation that r = 1 $H(I-\theta)$, but this would give a firing rate of 0 or 1, which is inaccurate. An accurate mean-field theory requires us to account for the variability in $I_i(n)$ across time, n. This approach is sometimes called stochastic mean-field theory. Let us first define the expectation of $I_i(n)$ over n,

$$\boldsymbol{\mu}_j = E_n[\boldsymbol{I}_j(n)] = \sum_{k=1}^N W_{jk} \boldsymbol{r}_k + \mu_x$$
 (B.24)

where

$$r_k = E_n[S_k(n)]$$

is the firing rate of neuron j. Similarly, we can take the variance across n to get

$$\sigma_j^2 = \operatorname{var}_n(\mathbf{I}_j(n)) = \sum_{k=1}^N W_{jk}^2 \mathbf{r}_k (1 - \mathbf{r}_k) + \sigma_x^2$$
(B.25)

where we used the fact that $S_k(n)$ is a Bernoulli random variable to derive its variance. We can then make the approximation that $I_i(n)$ follows a normal distribution for each i. If this is the case, then the firing rate of neuron *j* is equal to the proportion of time that $I_i(n)$ spends above threshold (see the black dashed line in Figure B.8B),

$$\mathbf{r}_{j} = E_{n}[H(\mathbf{I}_{j}(n)) - \theta] = 1 - F(\theta; \boldsymbol{\mu}_{j}^{I}, \boldsymbol{\sigma}_{j}^{I})$$
(B.26)

where

$$F(x;\mu,\sigma) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}$$

is the cumulative distribution function of the normal distribution which can be computed in Python as follows,

```
from scipy.stats import norm
y=norm.cdf(x,loc=mu,scale=sigma)
```

Eqs. (B.24), (B.25), and (B.26) give a heterogeneous, stochastic mean-field theory because they describe the statistics of each neuron individually (hence, representing the heterogeneity of statistics in the network). This can help quantify the variability across neurons inherited from the "quenched" variability in W, and it can also be applied when the external inputs statistics, μ_x and σ_x , vary across neurons. When the network is statistically homogeneous, like the one considered here, a simpler stochastic mean-field theory is obtained by taking expectations over neurons, j, to obtain

$$\mu_{I} = N\mu_{w}r + \mu_{x}$$

$$\sigma_{I}^{2} = N\mu_{w}^{2}r(1-r) + \sigma_{x}^{2}$$

$$r = 1 - F(\theta; \mu_{I}, \sigma_{I})$$
(B.27)

where μ_I , σ_I^2 , and r approximate the average input mean, input variance, and firing rate in the network. Note that this derivation is not completely rigorous. We had to make several independence assumptions (for example, assuming that $S_k(n)$, W_{ik} , and $X_k(n)$ are independent) and also had to pass expectations inside of nonlinear functions (for example, assuming that $E[F(\theta; \boldsymbol{\mu}_i^I, \boldsymbol{\sigma}_i^I)] = F(\theta; \mu_I, \sigma_I)$). Some of these approximations can be justified with more detailed calculations and some of them do not hold in all parameter regimes. Nevertheless, Eq. (B.27) represents an approximation that we can test empirically. A simple way to test Eq. (B.27) is to compute r empirically from simulations,

and then plug in this value of r into Eq. (B.27) to compute μ_I and σ_I . These values can then be used to approximate the probability density function of $I_i(n) \sim \mathcal{N}(\mu_I, \sigma_I)$. The red curve in Figure B.8B shows the result of this approximation, which agrees well with the empirical distribution. The consistency of the approximation can then be checked further by computing $r_{mf} = 1 - F(\theta; \mu_I, \sigma_I)$ and comparing its value to r=np.mean(S).

The binary neural network model described here is an extension of the first The stochastic mean-field theory of binary networks has been developed much more deeply than the relatively simple approximation described here, and it has parallels in statistical physics [100-104].

Exercise B.3.12. Reproduce Figure B.8. Then compute $r_{mf} = 1 - F(\theta; \mu_I, \sigma_I)$ and compare it to r=np.mean(S).

Exercise B.3.13. Note that computing μ_I , σ_I , and r_{mf} in Exercise B.3.12 still requires a simulation since we need to first compute r=np.mean(S). An alternative approach is to numerically search for solutions (μ_I , σ_I , and r) that satisfy Eq. (B.27). Try this. You can write your own numerical solver or you can use scipy.optimize.fsolve.

CONDUCTANCE-BASED SYNAPSE MODELS AND THE HIGH CON-**B.4 DUCTANCE STATE**

In Section 1.3, we defined a model of synapses in which each presynaptic spike from a given presynaptic neuron evokes the same synaptic current waveform. In particular, excitatory and inhibitory synaptic currents were modeled by

$$I_e(t) = J_e \sum_j \alpha_e(t - s_j^e)$$

 $I_i(t) = J_i \sum_j \alpha_i(t - s_j^i)$

where the $\alpha_a(t)$ are postsynaptic current (PSC) waveforms. This is called a **current-based** synapse model because each presynaptic spike directly evokes a current. In reality, presynaptic spikes do not evoke currents directly. The neurotransmitter molecules released by a presynaptic spike open ion channels that change the *conductance* of the postsynaptic neuron's membrane to specific types of ions. The synaptic current comes from the resulting flow of ions through these channels. A more detailed model of this process is given by the conductance-based synapse model,

$$I_{e}(t) = -g_{e}(t)(V(t) - E_{e})$$

$$I_{i}(t) = -g_{i}(t)(V(t) - E_{i})$$

$$g_{e}(t) = J_{e} \sum_{j} \alpha_{e}(t - s_{j}^{e})$$

$$g_{i}(t) = J_{i} \sum_{j} \alpha_{i}(t - s_{j}^{i})$$
(B.28)

where $g_a(t)$ is the synaptic conductance, $\alpha_a(t)$ is the postsynaptic conductance (PSC) waveform, and E_a is the synaptic reversal potential. Confusingly, the abbreviation "PSC" is often used to refer to "postsynaptic current" and "postsynaptic conductance," and the difference often needs to be inferred from context.

To understand how conductance-based synapse models work, first consider a single presynaptic excitatory spike under the model in Eq. (B.28). The spike causes a transient increase in $g_{e}(t)$ at the spike time. During this increase, V(t) is pulled toward the reversal potential, E_e . Similarly, an inhibitory presynaptic spike transiently pulls the membrane potential toward E_i . The value of the reversal potentials depends on the type of neurotransmitter released by the synapse.

Glutamate (a common excitatory neurotransmitter) has a reversal potential near $E_e = 0$ mV, so excitatory spikes pull the membrane potential toward 0mV. Since the membrane potential is usually closer to -70mV, this essentially always results in a positive (i.e., inward or depolarizing) current. GABA is a common type of inhibitory neurotransmitter. The reversal potential of GABAergic synapses actually changes during development (as an animal grows from the womb to adulthood), but in developed mammals it is around $E_i = -75$ mV.

Note that I_e and I_i have different units for conductance-based than they do for currentbased synapses, so we will use different values for them. Indeed, in conductance-based synapses models, J_i is positive since conductance, $g_i(t)$, is always positive. The inhibitory nature of the inhibitory synapses comes from the fact that $V - E_i$ is typically positive, so $-g_i(t)(V-E_i)$ is typically negative.

Figure B.9: Comparing conductance-based and current-based synapse models. A,B,C) Postsynaptic conductance waveforms evoked by two excitatory (red) and two inhibitory (blue) presynaptic spikes. D) An additional hyperpolarizing current was turned on halfway through the simulation. E) The resulting membrane potential from the conductance-based synapse model in Eq. (B.29). The second IPSP is smaller than the first due to shunting. Relevant parameters are $J_e = 4$, $J_i = 0.25$, $E_e = 0$ mV, $E_i = -75$ mV, $\tau_e = \tau_i = 5$ ms, $E_L = -72$ mV, and $\tau_m = 10$ ms. F) The membrane potential from the current-based approximation in Eq. (B.31) using $V_0 = -73$ mV. **G)** Histogram of the membrane potential from the same model with $K_e = 400$ and $K_i = 500$ excitatory and inhibitory presynaptic neurons with rates $r_e = 10$ Hz and $r_i = 8$ Hz from a simulation of duration T = 5000ms. H) Same as G, but using the current-based approximation from Eq. (B.29) with V_0 equal to the mean membrane potential from G. I) Same as G, but using the corrected current-based approximation from Eq. (B.33). Exercises B.4.1 asks you to reproduce these plots.

Current-based synapse models are simpler and easier to analyze mathematically, but conductance-based synapse models are more biologically realistic. In this section, we evaluate the accuracy with which current-based models can be used to approximate conductance-based models.

If we use an exponential waveform for $\alpha_a(t)$ (as in Section 1.3), then a leaky integrator model with conductance-based synapses can be written as (compare to Eq. (1.10))

$$\tau_{m} \frac{dV}{dt} = -(V - E_{L}) - g_{e}(t)(V - E_{e}) - g_{i}(t)(V - E_{i}) + I_{x}(t)$$

$$\tau_{e} \frac{dg_{e}}{dt} = -g_{e} + \mathbf{J}^{e} \cdot \mathbf{S}^{e}$$

$$\tau_{i} \frac{dg_{i}}{dt} = -g_{i} + \mathbf{J}^{i} \cdot \mathbf{S}^{i}$$
(B.29)

where all parameters are equivalent to those described in Section 2.3. This model is easy to generalize to an EIF model or other models. Recall from Section 1.1 that we normalized our original leaky integrator equation by the leak conductance, g_L , to get $\tau_m = C_m/g_L$. As a result of this normalization, the conductances, $g_e(t)$ and $g_i(t)$, in Eq. (B.29) are actually dimensionless. Effectively, they measure the synaptic conductances in units of the original leak conductance, g_L .

Figure B.9A-E shows a simulation with four presynaptic spikes. Halfway through the simulation, a hyperpolarizing external current $I_x(t) = -2$ mV was turned on (Figure B.9D), which pushed the membrane potential toward -74mV. Note that the second IPSP has a smaller amplitude than the first. This is due to an effect known as **inhibitory shunting**: When the membrane potential is hyperpolarized near the inhibitory reversal potential of $E_i = -75$ mV, inhibitory spikes have a smaller effect on the membrane potential because the $(V - E_i)$ term in Eq. (B.28) is smaller in magnitude. Indeed, if $V(t) = E_i = -75$ mV exactly, then the inhibitory spike would have no effect on the membrane potential. Conversely, if we were to depolarize the membrane potential with a positive current, the IPSP would have a larger amplitude. If $V(t) < E_i$, then the spike from the inhibitory neuron would have an *excitatory* (depolarizing) effect! Note that the two excitatory PSPs have a similar amplitude because the relative distance to $E_e = 0$ mV did not change much when V(t) changed from -72mV to -74mV.

Exercise B.4.1. Reproduce Figure B.9E. Then try changing the value of $I_x(t)$ during the last half of the simulation to change the amplitude and polarity of the second IPSP. Try a positive value of $I_x(t)$, a value that eliminates the IPSP altogether, and a value that forces $V(t) < E_i$ at the spike time.

For current-based synapse models, PSP amplitudes do not depend on V(t), so there is no shunting (Figure B.9F). Shunting is a real biological phenomenon that is captured by conductance-based synapse models, but not by current-based synapse models. Nevertheless, we can derive a current-based model to approximate the conductance-based model by choosing synaptic weights in a way that leads to similar PSP amplitudes. To derive this approximation, first replace the $g_a(t)(V - E_a)$ terms in Eq. (B.29) with $(V_0 - E_a)$ to get an approximation of the form

$$\tau_{m} \frac{dV}{dt} = -(V - E_{L}) - g_{e}(t)(V_{0} - E_{e}) - g_{i}(t)(V_{0} - E_{i}) + I_{x}(t)$$

$$\tau_{e} \frac{dg_{e}}{dt} = -g_{e} + \mathbf{J}^{e} \cdot \mathbf{S}^{e}$$

$$\tau_{i} \frac{dg_{i}}{dt} = -g_{i} + \mathbf{J}^{i} \cdot \mathbf{S}^{i}$$
(B.30)

where V_0 is chosen to be close to a "typical" value of V(t). The idea is that a PSP from Eq. (B.30) will have a similar amplitude to a PSP from Eq. (B.29) when $V(t) = V_0$ at the time of the presynaptic spike. When $V(t) \neq V_0$, the PSP amplitudes will be different, but the amplitudes will tend to be similar if V(t) tends to stay close to V_0 . Now, rewrite Eq. (B.30) as

$$\tau_{m} \frac{dV}{dt} = -(V - E_{L}) + I_{e}(t) + I_{i}(t) + I_{x}(t)$$

$$\tau_{e} \frac{dI_{e}}{dt} = -I_{e} + \mathbf{J}_{curr}^{e} \cdot \mathbf{S}^{e}$$

$$\tau_{i} \frac{dI_{i}}{dt} = -I_{i} + \mathbf{J}_{curr}^{i} \cdot \mathbf{S}^{i}$$
(B.31)

where

$$\boldsymbol{J}_{curr}^{a}=(E_{a}-V_{0})\boldsymbol{J}^{a}$$

and J^a are the synaptic weights for the conductance-based model in Eq. (B.29). Hence, Eq. (B.31) is a current-based approximation to the conductance-based model from Eq. (B.29). Figure B.9F shows the membrane potential obtained from approximation when $V_0 = -73$ mV, which agrees closely with the conductance-based model.

Figure B.9E,F is encouraging for the prospects of approximating conductance-based synapse models with current-based models, but it only shows the response to four presynaptic spikes. In reality, cortical neurons receive inputs from many presynaptic neurons, leading to a constant barrage of synaptic input. It turns out that this barrage of synaptic inputs affects the membrane potential dynamics of the conductance-based model in a way that is not captured by the current-based approximation in Eq. (B.31), but can be captured by a modified approximation [105–107] as we now show.

Figure B.9G shows a histogram of the membrane potential obtained from the conductance-based model with $K_e = 400$ excitatory and $K_i = 100$ inhibitory presynaptic neurons. Figure B.9H shows a histogram obtained from the current-based approximation from Eq. (B.29) where V_0 was set to the mean membrane potential from Figure B.9G. The approximation captures the mean membrane potential accurately, but the variance is much larger. What is going on?

To answer this question, first note that we can rewrite the conductance-based model in Eq. (B.29) as

$$\tau_m \frac{dV}{dt} = -(V - E_L) - g_e(t)(V_0 - E_e) - g_i(t)(V_0 - E_i) + I_x(t) - (g_e(t) + g_i(t))(V - V_0)$$

$$\tau_e \frac{dg_e}{dt} = -g_e + \mathbf{J}^e \cdot \mathbf{S}^e$$

$$\tau_i \frac{dg_i}{dt} = -g_i + \mathbf{J}^i \cdot \mathbf{S}^i$$

Comparing this to Eq. (B.30), we see that the current-based approximation is missing the term $-(g_e(t) + g_i(t))(V - V_0)$. This term acts like an extra source of leak, pulling V(t) toward V_0 . Hence, Eq. (B.30) (and therefore in Eq. (B.31)) effectively lacks an extra leak term. The idea of an extra leak term is more easily seen by taking $V_0 = E_L$ to get

$$\tau_{m} \frac{dV}{dt} = -(1 + g_{e}(t) + g_{i}(t))(V - E_{L}) - g_{e}(t)(E_{L} - E_{e}) - g_{i}(t)(E_{L} - E_{i}) + I_{x}(t)$$

$$\tau_{e} \frac{dg_{e}}{dt} = -g_{e} + \mathbf{J}^{e} \cdot \mathbf{S}^{e}$$

$$\tau_{i} \frac{dg_{i}}{dt} = -g_{i} + \mathbf{J}^{i} \cdot \mathbf{S}^{i}$$
(B.32)

Cortical neurons receive a large number of synaptic inputs, so $g_e(t)$ and $g_i(t)$ are both large. This is called the **high conductance state**. In this state, the neuron effectively has a strong leak current because $(1 + g_e(t) + g_i(t))$ is large. The $g_e(t)(V_0 - E_e)$ and $g_i(t)(V_0 - E_i)$ terms in Eq. (B.32), approximate the excitatory and inhibitory synaptic current. They are also large in the high-conductance state, but they have the opposite sign, so they cancel to some extent and their sum is not necessarily very large. Indeed, cancellation between strong excitation and strong inhibition (often called "excitatory-inhibitory balance") is widely observed in cortical recordings and discussed in more detail in Appendix B.6.

The network in Figure B.9G is in a high-conductance state. Therefore, the approximation in Figure B.9H underestimates the effective leak current, which causes a much

larger variance in the membrane potential since there is less leak to keep the membrane potential under control. Fortunately, we can derive a current-based approximation that corrects for the effective increase in the leak conductance in the high-conductance state.

The distinguishing feature of a conductance-based model is that it contains terms where V(t) is multiplied by time-dependent forcing terms (namely, $g_e(t)$ and $g_i(t)$). When $g_e(t)$ and $g_i(t)$ are noisy processes (as they are here), this is called **multiplicative noise**. Current-based models on the other hand, only have **additive noise** in which the noisy, time-dependent terms are only added to the ODE. To account for the increased leak in a model with just additive noise, we can replace $g_e(t)$ and $g_i(t)$ in Eq. (B.32) with their stationary mean values (see Section 2.3),

$$\overline{g_a} = K_a E[\mathbf{J}^a] r_a = K_a j_a r_a.$$

to get

$$\tau_m \frac{dV}{dt} = -(1 + \overline{g_e} + \overline{g_i})(V - E_L) - g_e(t)(E_L - E_e) - g_i(t)(E_L - E_i) + I_x(t)$$

$$\tau_e \frac{dg_e}{dt} = -g_e + \boldsymbol{J}^e \cdot \boldsymbol{S}^e$$

$$\tau_i \frac{dg_i}{dt} = -g_i + \boldsymbol{J}^i \cdot \boldsymbol{S}^i.$$

This can be re-written as a current-based model of the form

$$\tau_{m} \frac{dV}{dt} = -g_{L}^{eff}(V - E_{L}) + I_{e}(t) + I_{i}(t) + I_{x}(t)$$

$$\tau_{e} \frac{dI_{e}}{dt} = -I_{e} + \mathbf{J}_{curr}^{e} \cdot \mathbf{S}^{e}$$

$$\tau_{i} \frac{dI_{i}}{dt} = -I_{i} + \mathbf{J}_{curr}^{i} \cdot \mathbf{S}^{i}$$
(B.33)

where

$$g_I^{eff} = 1 + \overline{g_e} + \overline{g_i}$$

is the **effective leak conductance**, which accounts for the increase in the effective leak in the high-conductance state. Note that we have taken $V_0 = E_L$, so

$$\boldsymbol{J}_{curr}^{a}=(E_{a}-E_{L})\boldsymbol{J}^{a}$$

for this model. Eq. (B.33) represents a corrected version of the current-based approximation in Eq. (B.31). Figure B.9I shows a histogram of membrane potentials from the corrected model. While it does not match the conductance-based model perfectly, it does a much better job than the uncorrected approximation because it accounts for the decreased variance caused by the increased effective leak.

The approximation in Eq. (B.33) is useful for approximating a conductance-based network model with a current-based network model. However, note that the parameter g_L^{eff} depends on parameters like r_e and r_i . Hence, if we want to model a network in which the firing rates change across time then g_L^{eff} would need to change with them or we would need to use a fixed value of g_L^{eff} , which would likely diminish the accuracy of the approximation.

Figure B.10: Spike counts of two visual cortical neurons recorded under two stimuli. A) A histogram of spike counts recorded from a neuron in monkey visual cortex during the presentation of drifting grating stimuli with two different orientations, θ_1 (red) and θ_2 = (blue). The vertical red and blue lines show the mean spike counts under each stimulus and the dashed line shows the decision boundary, z. The decision algorithm (B.37) guesses θ_1 if a spike counts is larger than z, and guesses θ_2 if it's smaller. **B)** Same as A, but for a different neuron. **C)** The spike counts of both neurons under both conditions. Each dot is one trial. The stars show the mean spike counts under each condition and the dashed line is the decision boundary for the decision algorithm in (B.39).

Perhaps more importantly than its role as an approximation, Eq. (B.33) and its derivation tell us something important about cortical circuits in the high-conductance state (i.e., in a state where neurons receive a large number of synaptic inputs). Specifically, the effective leak conductance (quantified by g_L^{eff}) is increased in this state, which means that neurons' membrane potentials are pulled more strongly and more quickly toward the leak reversal potential. This effect is stronger when $\overline{g_e}$ and $\overline{g_i}$ are larger.

NEURAL CODING B.5

In Section 2.1, we saw how the orientation of a drifting grating stimulus was encoded in the firing rate of a visual cortical neuron. In this section, we develop methods for decoding the orientation of a drifting grating stimulus from recordings of neurons. Effectively, we are developing methods for reading an animal's brain!

DECODING A SINGLE NEURON. For illustrative purposes, let's begin by decoding orientation from a single neuron before moving to a population of neurons. Figure B.10A shows a histogram of spike counts of a single neuron recorded from a monkey's visual cortex while the monkey watched drifting grating stimuli at two orientations, $\theta_1 = 120^\circ$ and $\theta_2 = 150^{\circ}$, for 50 trials each (same as Figure 2.3B in Section 2.1, but a different neuron and different orientations). Looking at this histogram, we can see that if a neuron spiked more than 30 times on a trial, it would be a safe bet that the orientation was θ_1 . If the neuron spiked fewer than 5 times, it would be a safe bet that the orientation was θ_2 . But spike counts near 15 are more ambiguous. Given a spike count, how should we guess the orientation and how accurate will we be?

Let us abstract away from the data first and consider a statistical model. Let N be a random variable representing the spike count on a given trial and define

$$P(N|\theta_1) = \Pr(\text{spike count} = N \mid \text{orientation} = \theta_1)$$

to be the probability distribution of spike counts under orientation θ_1 and similarly for $P(N|\theta_2)$. These are the distributions estimated by the histograms in Figure B.10A. For neural decoding, we care about the opposite distributions: The probability of θ_1 or θ_2 given a spike count. These can be computed using Bayes' theorem

$$P(\theta_1 \mid N) = \frac{P(N \mid \theta_1) P(\theta_1)}{P(N)}$$

$$P(\theta_2 \mid N) = \frac{P(N \mid \theta_2) P(\theta_2)}{P(N)}$$
(B.34)

These are called the **likelihoods** of θ_1 and θ_2 . Our best guess would be to guess θ_1 when θ_1 is more likely than θ_2 , *i.e.*, when

$$P(\theta_1 \mid N) > P(\theta_2 \mid N).$$

In many cases (including the data from Figure B.10), θ_1 and θ_2 occur with equal probability, $P(\theta_1) = P(\theta_2) = 0.5$. Combining this with Eq. (B.34), we find the following algorithm:

Guess
$$\theta_1$$
 whenever $P(N \mid \theta_1) > P(N \mid \theta_2)$. (B.35)

This is an optimal decision algorithm in the sense that it maximizes the probability of guessing correctly under the assumptions made above.

The only thing left to do is to estimate $P(N | \theta_1)$ and $P(N | \theta_2)$. It might be tempting to use the raw data to estimate the probabilities. For example, since N=3 occurred on 5 out of the 50 trials on which θ_1 was presented, we could take $P(N=3 | \theta_1) = 0.1$. But this approach would overfit the noise in the trials. Instead, we should use a **parameterized distribution** to represent $P(N | \theta_i)$. A common choice is a univariate Gaussian distribution,

$$P(N \mid \theta_j) = \frac{1}{\sigma\sqrt{2}} e^{-(N-\mu_j)^2/(2\sigma^2)}$$
(B.36)

where μ_i and σ are the parameters of the distribution for j = 1, 2. We have made an implicit assumption that the variance is the same under each stimulus. This is called a **homoscedastic assumption**. To estimate σ from spike count data, you can use

$$\sigma = \frac{\sigma_1 + \sigma_2}{2}$$

where $\sigma_i = \text{var}(N \mid \theta_i)$ is the sample variance under stimulus j = 1, 2.

Eq. (B.36) is a **statistical model** of neurons' spike counts. This is fundamentally different from the other models in this book, which are derived from the actual biophysics of the neurons themselves. Statistical models allow us to abstract away from the physical neurons. This Gaussian model is obviously a rough approximation because spike counts must be positive integers, but this approximation will still allow us to derive useful decoding methods.

Under the model in Eq. (B.36), we can simplify (B.35) to

Guess
$$\theta_1$$
 whenever $|N - \mu_1| < |N - \mu_2|$ (B.37)

In other words, we should guess θ_1 if N is closer to μ_1 and guess θ_2 if N is closer to μ_2 . We can estimate μ_1 and μ_2 by averaging the spike counts under each condition. We can visualize the decision algorithm in Eq. (B.37) by drawing a vertical line at the midpoint,

$$z = \frac{\mu_1 + \mu_2}{2}$$

between the two means (see the black dotted line in Figure B.10A). Then our guess is determined by which side of the vertical line our spike count lies on. When we apply this algorithm to the data in Figure B.10A, we guess correctly on 78% of the trials.

The decision algorithm will guess correctly more often (i.e., the two angles are easier to distinguish) when the mean spike counts are further apart and/or the spike count variance is smaller. To this end, we can define the signal-to-noise ratio,

$$SNR = \frac{(E[N \mid \theta_2] - E[N \mid \theta_1])^2}{\text{var}(N \mid \theta_i)} = \frac{(\mu_2 - \mu_1)^2}{\sigma^2}.$$

Here, $var(N \mid \theta_i) = \sigma^2$ is the variance of the spike counts under either of the two stimuli. We should not write var(N) in place of σ^2 because taking the variance across different stimuli would lead to an artificially increased estimate of the variance (why?). When *SNR* is large, it is easier to decode the orientations from the spike counts. When *SNR* is small, it is more difficult.

Exercise B.5.1. Apply the analysis above to the neuron shown in Figure 2.3B from Section 2.1 for the values of θ_1 and θ_2 displayed in that figure panel. See the file OrientationTuningCurve.ipynb for code to load the data. How often does the algorithm above guess correctly for this neuron and orientations? Compute the discriminability, d. Now try different pairs of θ_1 and θ_2 values.

Exercise B.5.2. The homoscedastic assumption makes the decision algorithm simpler when using a Gaussian model. However, the Gaussian model and the homoscedastic assumption are somewhat unrealistic for spike counts, which might be better fit by a Poisson model of the form

$$P(N \mid \theta_j) = \frac{\mu_j^N}{N!} e^{-\mu_j}.$$

Here, λ_i is both the mean *and* the variance of the distribution, so the model is heteroscedastic despite having only one parameter. Derive an optimal decision algorithm for this Poisson model starting from (B.35). How does the heteroscedasticity change the decision boundary? Apply this decision algorithm to the same data you analyzed in Exercise B.5.1.

Monkeys are perfectly capable of discriminating between a 120° and a 150° orientation, but we were only able to guess correctly on 78% of the trials. What gives? One problem is that we only used the spike train of one neuron, but the monkey's visual cortex has millions of neurons. Figure B.10B shows the spike count histograms for a second neuron that was recorded simultaneously with the neuron in Figure B.10A. Applying the same decision algorithm above to this neuron leads us to guess correctly on 66% of the trials. And Figure B.10C shows a scatter plot of the spike counts of both neurons. This plot potentially contains more information than Figures B.10A and B combined because it shows how the two neurons' spike counts change together. How can we use this extra information to improve our decoding accuracy? How can we use the information from a large population of simultaneously recorded neurons to decode the stimulus? Answering these questions has driven a large body of research in **neural population** coding, which is the study of how information is encoded in populations of neurons' spike trains and how it can be decoded.

DECODING A POPULATION OF NEURONS. Let's now consider a heterogeneous population of *K* neurons. Let $N = [N_1 \ N_2 \ \dots N_K]^T$ be a $K \times 1$ multivariate random variable representing the spike counts of all K neurons. Generalize the Gaussian model above to a multivariate Gaussian model with probability density function

$$P(\boldsymbol{N} \mid \theta_j) = \sqrt{2\pi |\Sigma|} \exp\left(-\frac{1}{2} (\boldsymbol{N} - \boldsymbol{\mu}^j)^T \Sigma^{-1} (\boldsymbol{N} - \boldsymbol{\mu}^j)\right)$$
(B.38)

where $|\Sigma|$ is the determinant of Σ . Here, $\mu^j = E[N | \theta_i]$ is the expectation of N under stimulus j = 1, 2. Hence, μ_k^j is the mean spike count of neuron k under stimulus j. The covariance matrix, Σ , quantifies the covariance between spike counts. Specifically, Σ is a $K \times K$ matrix with entries defined by

$$\Sigma_{k,k'} = \operatorname{cov}(N_k, N_{k'}).$$

for k, k' = 1, ..., K. The covariance matrix, Σ , is symmetric and non-negative definite. In other words, it must satisfy $\Sigma_{k,k'} = \Sigma_{k',k}$ (i.e., $\Sigma^T = \Sigma$), all of its eigenvalues are real, and none of its eigenvalues is negative. Note that we again make a homoscedastic assumption, *i.e.*, we assume that the covariance matrix is Σ under both stimuli. We can estimate Σ by averaging the covariance matrix under the two stimuli,

$$\Sigma = \frac{\Sigma_1 + \Sigma_2}{2}$$

where Σ_i is the covariance matrix under stimulus *j*. In NumPy, the covariance matrix can be estimated from data by doing

```
Sigmal=np.cov(SpikeCounts[:,0,:])
Sigma2=np.cov(SpikeCounts[:,1,:])
Sigma=(Sigma1+Sigma2)/2
```

where SpikeCounts[i,j,k] contains the spike count of neuron k on trial i of stimulus j. This code averages the covariance matrices under the two conditions. The matrix of correlation coefficients can be found using np.corrcoef in place of np.cov. The spike count covariance, $cov(N_k, N_{k'})$, quantifies the amount of trial-to-trial variability is shared by the two neurons. This shared variability is more commonly quantified by the spike count correlation,

$$c = c_{k,k'} = \frac{\operatorname{cov}(N_k, N_{k'})}{\sqrt{\operatorname{var}(N_k)\operatorname{var}(N_{k'})}} = \Sigma_{k,k'} / \sqrt{\Sigma_{k,k}\Sigma_{k',k'}}.$$

also known as the Pearson correlation coefficient. We will write c when it's not necessary to identify which neurons we are talking about and $c_{k,k'}$ when it is necessary. Note that $c_{k,k} = 1$ and $c_{k,k'} \in [0,1]$ for all k and k'.

The correlation measures the *proportion* of shared variability between N_k and $N_{k'}$. For Gaussian distributions, the value of c determines how skewed we should expect the clouds of points in Figure B.10C to be. If c = 0, the spike counts are uncorrelated and the clouds should be approximately circular. If c > 0, then the clouds are skewed along a diagonal line with positive slope and larger value of c correspond to more tightly skewed clouds. If c = 1, then all of the points would lie on a line with positive slope. If c < 0, then they are skewed along a diagonal line with negative slope. The data in Figure B.10C have a sample correlation coefficient of c = 0.15 under stimulus θ_1 and 0.16 under θ_2 . Figure B.11 shows some artificially generated spike counts with different correlation values.

Assuming again that both stimuli are equally likely, $P(\theta_1) = P(\theta_2) = 0.5$, the optimal decision algorithm (B.35) simplifies to

$$egin{aligned} & m{w} = \Sigma^{-1}(m{\mu}_1 - m{\mu}_2) \ & z = m{w} \cdot (m{\mu}_1 + m{\mu}_2)/2 \ & ext{Guess } \theta_1 ext{ if } m{w} \cdot m{N} > z ext{ and guess } \theta_2 ext{ if } m{w} \cdot m{N} < z. \end{aligned}$$

To visualize this decision algorithm, note that the set of all N satisfying $w \cdot N = z$ defines a **hyperplane** orthogonal to w that contains the point $E[N] = \mu = (\mu_1 + \mu_2)/2$. A hyperplane is a generalization of a plane. When K = 2, a hyperplane is a line. When K = 3, it is a plane. For any K, a hyperplane is a (K - 1)-dimensional surface that cuts the space into two halves. One half contains points satisfying $w \cdot N > z$ and the other half contains points satisfying $w \cdot N < z$. The decision algorithm (B.39) defines the optimal hyperplane for classifying stimuli under the multivariate Gaussian model in Eq. (B.38). The dashed line in Figure B.10C shows the optimal hyperplane for the data in the figure. If the spike counts of the two neurons lie above the dashed line, we should guess θ_1 . If the spike counts are below the line, we should guess θ_2 .

We can visualize the impact of correlations on decoding by generating synthetic data. Consider the model Eq. (B.38) with K = 2. The covariance matrix can be written as

$$\Sigma = \begin{bmatrix} \sigma^2 & c\sigma^2 \\ c\sigma^2 & \sigma^2 \end{bmatrix}$$
 (B.40)

where *c* is the correlation coefficient between the spike counts of neuron 1 and neuron 2. Figure B.11A shows points drawn randomly from this model with c = 0. The more the two point clouds overlap, the more difficult it is to discriminate the two stimuli, and the more errors we will make with our decision algorithm. Figure B.11B shows the model with the same parameters except c > 0. Positive correlations stretch the distributions along an axis with positive slope, causing the distributions to overlap more and therefore making it more difficult to discriminate between the stimuli. This result might lead you to conclude that positive correlations are "bad" for coding, but consider the data in Figure B.11C, which were drawn from the same model with c > 0 except the mean spike counts are different. In this case, correlations decrease the overlap between the point clouds and therefore improve coding.

Figure B.11: Synthetic spike counts to visualize the effects of correlations on decoding accuracy. A) Random spike counts sampled from a bivaraite Gaussian distribution (Eq. (B.38) and (B.40) with K = 2) with $\mu_1 = \begin{bmatrix} 25 & 25 \end{bmatrix}^T$, $\mu_2 = \begin{bmatrix} 15 & 15 \end{bmatrix}^T$, $\sigma^2 = 5$, and c = 0. B) Same as A, but c = 0.8. C) Same as B, but $\mu_1 = \begin{bmatrix} 25 & 15 \end{bmatrix}^T$ and $\mu_2 = [15 \ 25]^T$. D) Same as A, but c = -0.8. E) Same as D, but c = -0.8. F) Same as A, but $\Sigma_{1,1} = \sigma_1^2 = 2$, $\Sigma_{2,2} = \sigma_2^2 = 7.5$, and $\Sigma_{1,2} = \Sigma_{2,1} = 0$. SNRs were computed from Eq. (B.41).

How can we understand the salient difference between Figure B.11A-E? The stimulus correlation between two spike counts measures how similarly they are tuned,

$$s_c = \frac{E[N_2 \mid \theta_2] - E[N_2 \mid \theta_1]}{E[N_1 \mid \theta_2] - E[N_1 \mid \theta_1]} = \frac{\mu_{2,2} - \mu_{2,1}}{\mu_{1,2} - \mu_{1,1}}$$

where $\mu_{k,i}$ is the mean spike count of neuron k under stimulus θ_i . If you draw a line connecting the two means in Figure B.10C (i.e., from one star to the other star), then the stimulus correlation is the slope of this line. Positive stimulus correlations imply that the two neurons change their mean firing rates in a similar way when the stimulus changes (when one increases, the other also increases). Negative stimulus correlations imply that they change their mean firing rates oppositely (when one increases, the other decreases). The correlation coefficient, c, sometimes called the **noise correlation** to distinguish it from the stimulus correlation. The idea is that *c* measures the similarity between the "noise" in the spike counts (i.e., the variability around the means) while s_c measures the similarity between changes in the "signals" (i.e., the means).

You can see from the examples in Figure B.11A-E that correlations improve coding whenever the stimulus correlation, s_c , has the opposite sign as the noise correlation, c. When s_c and c have the same sign, correlations make coding worse.

While Figure B.11A-E provides nice intuition, it is restricted to the case of K = 2neurons and we should also seek a more precise quantification of discriminability. To achieve this, we can generalize the SNR from above to multiple neurons. To derive the SNR, first define

$$u = \boldsymbol{w} \cdot N.$$

Figure B.12: Population decoding. A) The histogram of $u = w \cdot N$ under two stimulus conditions computed from the K=2 visual cortical neurons in Figure B.10. B) Same as A, but for K = 112 neurons. C) The SNR as a function of the number of neurons (Eq. (B.42)) for different values of c under a model with homogeneous spike count statistics [108]. This model ignores heterogeneous spike count statistics and can thereby lead to an incorrect conclusion that correlations are always detrimental to coding in large populations.

Because linear operations preserve Gaussianity, u obeys a univariate Gaussian distribution whenever N obeys a multivariate Gaussian distribution. Therefore (B.39) corresponds to applying a univariate decision algorithm (like the one in (B.37)) to $u = w \cdot N$. Hence, we can define the SNR of (B.39) in terms of the mean and variance of u,

$$SNR = \frac{(E[u \mid \theta_2] - E[u \mid \theta_1])^2}{\text{var}(u \mid \theta_j)} = (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)$$
(B.41)

This expression for the SNR is applicable for any number of neurons, K. The SNR values are given in Figure B.11 and confirm our intuitions from above.

Note that the optimality of (B.39) depends on our homoscedastic assumption (Σ_1 = $\Sigma_2 = \Sigma$). Figure B.11F shows an example under a heteroscedastic model in which the variance is larger under stimulus 2. The means are the same ($\mu_1 = \mu_2$), so (B.39) is ineffective and the SNR given by Eq. (B.41) is zero. However, the variances are different under the two distributions, which allows us to do better than chance when decoding the stimuli. In particular, we can guess θ_2 (blue) whenever the spike counts are further from their mean, and guess θ_1 (red) when they are closer. This example demonstrates that the decision algorithm in (B.39) is not optimal for heteroscedastic models, but optimal decision algorithms for heteroscedastic models do not always have simple, linear decision boundaries like the hyperplane defined by (B.39).

The interpretation of (B.39) as performing univariate discrimination ((B.37)) on ugives us another way to visualize (B.39) and the SNR that we can apply to K > 2. In particular, we can plot histograms of u under each condition and draw the thresholds at z (much like the histograms of N in Figures B.10) Figure B.12A shows this visualization applied to the K=2 data from Figure B.10. The histograms are slightly better separated than they are in Figures B.10A,B. Figure B.12B shows the same visualization applied to K = 112 neurons from the same experiments. The histograms are extremely well separated, implying that the two angles can easily be distinguished with enough neurons.

Exercise B.5.3. Reproduce some of the panels in Figures B.10, B.11, and/or B.12. Spike counts for the two neurons in Figure B.10 can be loaded from

the file SpikeCounts2Neurons2Thetas.npz (see OrientationTuningCurve.ipynb for code to load the data) which contains the array SpikeCounts with data for the K = 2 neurons. Specifically, SpikeCounts[k,j,i] contains the spike count of neuron k = 1, 2 on trial i = 1, ..., 50 with stimulus j = 1, 2. Similarly, the file SpikeCounts112Neurons2Thetas.npz contains the spike count data from Figure B.12B with K = 112 neurons.

A HISTORICAL NOTE. Early theoretical work on the impact of correlations in neural coding assumed a homogeneous population of neurons (i.e., all neurons have the same mean spike count under each stimulus and all pairs of neurons have the same correlation). In other words,

$$\boldsymbol{\mu}_j = E[\boldsymbol{N} \mid \theta_j] = \left[\mu_j \; \mu_j \dots \mu_j\right]^T$$

for j = 1,2 and and

$$\Sigma_{k,k'} = \begin{cases} c\sigma^2 & k \neq k' \\ \sigma^2 & k = k' \end{cases}.$$

Under these assumptions,

$$SNR = \frac{SNR_1}{c + (1 - c)/K} \tag{B.42}$$

where $SNR_1 = (\mu_2 - \mu_1)^2/\sigma^2$ is the SNR for K = 1 neuron. Figure B.12C shows the SNR under this homogeneous model for various values of c. When c = 0, the SNR grows without bound. However, even small values of c > 0 have a large impact on the SNR when K is large. Note that we cannot have c < 0 at large K because this would violate the requirement that Σ is non-negative definite. It was concluded that positive correlations are detrimental to coding, even when they are weak. This result can be understood as follows: When c = 0, the "noise" in the spike counts are independent, so it can be averaged out by summing all K spike counts, so the SNR grows without bound for increasing K. When c > 0, there is some shared noise that cannot be averaged out, so the SNR is bounded even at large *K*.

This argument that correlations are detrimental to coding was famously laid out by Ehud Zohary, Micheal Shadlen, and Willian (Bill) Newsome in 1994 [108]. The resulting conclusion that correlated spike counts are bad for coding remained a widely repeated mantra in computational neuroscience for a decade before the subtleties about noise versus stimulus correlations (described above) became more widely known and accepted [109, 110]. The story of the impact of spike train correlations ons neural coding has developed further from there [111, 112]. Some researchers have argued that this picture of neural coding in which each neuron encodes some stimulus feature in its firing rate is oversimplified, counterproductive, or even flat out wrong [113].

Exercise B.5.4. Do correlations help or hurt coding in a real neural population? Using the data from K = 112 from Figure B.12B (see Exercise B.5.3), compute the SNR. Then create a new Σ by setting all values except for the diagonals to zero (you can do SigmaNew=np.diag(np.diag(Sigma))). Compute the SNR from this

new Σ that ignores correlations. Which SNR is larger?

Important: Since Σ is a large, ill-conditioned matrix, you should use the pseudoinverse (np.linalg.pinv) in place of the actual inverse to compute the SNR.

FISHER INFORMATION AND ITS RELATIONSHIP TO SNR. Animals are often trained to distinguish between similar orientations ($d\theta = \theta_2 - \theta_1$ small) and their discrimination errors are compared to neural recordings and stimulus properties. These experiments are often modeled using the same model above in the limit of a small difference between stimuli ($d\theta = \theta_2 - \theta_1 \rightarrow 0$). If

$$\mu(\theta) = E[N | \theta]$$

is a continuous function of θ then

$$\lim_{\theta_2 \to \theta_1} SNR = 0.$$

since $\mu_2 \to \mu_1$ as $\theta_2 \to \theta_1$. But we can normalize by $d\theta^2 = (\theta_2 - \theta_1)^2$ to define the Fisher information

$$F(\theta_1) = \lim_{\theta_2 \to \theta_1} \frac{SNR}{(\theta_2 - \theta_1)^2} = \boldsymbol{\mu}'(\theta_1)^T \Sigma^{-1} \boldsymbol{\mu}'(\theta_1)$$

where $\mu'(\theta)$ is the $K \times 1$ vector of derivatives of $\mu(\theta)$. Mathematical properties of the Fisher information and its dependence on experimental parameters can produce experimentally testable predictions that can be compared to behavior and/or neural recordings from animals that are trained to discriminate between similar orientations. Many of the properties of SNR that we describe above were originally described in the literature in terms of the Fisher information instead of the SNR, but the two quantities are analogous.

в.6 SYNAPTIC SCALING AND EXCITATORY-INHIBITORY BALANCE

The recurrent network in Section 3.2 was meant to model a local patch of cortex, but only contained $N = N_e + N_i = 2500$ neurons. The interpretation and size of a "local" recurrent network is debatable, but it should likely contain a much larger number of neurons. However, simulating very large networks can be computationally expensive. An alternative approach is to consider the dynamics and fixed point firing rates in the limit of large N. While cortical circuits are obviously finite in size, the limit can be useful for understanding the behavior of large, finite networks. When taking such a limit, you must carefully consider how parameters in the model scale as N increases. The stationary mean-field equations derived in Section 3.2 can help choose and understand different scaling rules.

From the spiking network model in Section 3.2, consider the mean synaptic input received by a single neuron in population a = e, i from neurons in population b = e, i, x(see Eq. (3.4)),

$$\overline{I}_{ab} = N_b p_{ab} j_{ab} r_b \sim \mathcal{O}(NpJ)$$

where $x \sim \mathcal{O}(y)$ is used to denote that x scales like y as $N \to \infty$. Specifically, it means that $\lim_{N\to\infty}(x/y)$ is finite and non-zero. The parameters N, p, and J quantify how N_b , p_{ab} , and j_{ab} are scaled as $N \to \infty$. These are free parameters, so we get to choose their scaling. We implicitly assumed that $r \sim \mathcal{O}(1)$, *i.e.*, rates do not converge to zero or infinity as $N \to \infty$, but this needs to be checked.

To avoid excessive synaptic input in the large network limit (*i.e.*, to avoid $\bar{I}_{ab} \to \pm \infty$), different scalings of parameters have been proposed. Sparsely coupled networks [114] take small connection probabilities, $p_{ab} \sim \mathcal{O}(1/N)$, so the number of inputs received by neurons does not grow with N. Weakly coupled networks take $j_{ab} \sim \mathcal{O}(1/N)$ so neurons receive weak inputs in the limit of large N. In both cases, we get $I_{ab} \sim \mathcal{O}(1)$, *i.e.*, neurons do not receive increasingly large synaptic as N grows.

Which scaling is more accurate in the large *N* limit? This is perhaps an ambiguous question because cortical circuits are fixed in size, so we cannot really measure how j_{ab} and p_{ab} "scale" with N. However, on some level, we can still ask which limit is more consistent with data.

Let's first consider the sparsely coupled scaling, $p_{ab} \sim \mathcal{O}(1/N)$. The actual values of p_{ab} can be difficult to measure and they are a topic of debate among experts [115– 117], but connection probabilities are often estimated to be in the ballpark of $p \approx 0.1$ for nearby cortical neurons [118]. One can argue that values in this range are not consistent with sparsely coupled networks and are instead consistent with densely **coupled networks** defined by $p_{ab} \sim \mathcal{O}(1)$.

Now, let's consider the weakly connected scaling, $j_{ab} \sim \mathcal{O}(1/N)$. It is difficult to say whether PSP amplitudes in the range of 0.1 - 1mV are consistent with this scaling or not, but there is a different way to test the plausibility of weakly coupled networks. If presynaptic spike trains are uncorrelated or weakly correlated, then the variance of synaptic input across time scales like [114]

$$\operatorname{var}(I_{ab}(t)) \sim \mathcal{O}\left(N_b p_{ab} j_{ab}^2 r_b\right).$$

In weakly coupled networks, defined by $j_{ab} \sim \mathcal{O}(1/N)$, the variance would vanish in the large network limit, $var(I_{ab}(t)) \sim \mathcal{O}(1/N)$, and therefore spike trains would either be nearly periodic or silent for large N. These conclusions are not consistent with the irregular neural activity and Poisson-like spike train statistics observed in cortical recordings.

The assumption that presynaptic neurons are uncorrelated is not realistic, but these and other observations still lead Carl vanVreeswik and Haim Sompolinsky to question the validity of weakly coupled networks and derive an alternative scaling in the 1990s [103, 119]. The alternative scaling takes $p_{ab} \sim \mathcal{O}(1)$ and

$$j_{ab} \sim \mathcal{O}\left(\frac{1}{\sqrt{N}}\right).$$

For reasons we will see below, network models with this scaling are often called balanced networks. In keeping with the naming conventions of sparsely coupled networks and weakly coupled networks, it might be more instructive to call them strongly coupled networks.

Balanced networks are also sometimes defined by taking $j_{ab} \sim \mathcal{O}(1/\sqrt{K})$ where $K \sim \mathcal{O}(Np)$ is the average number of inputs received by neurons in the network. When $p_{ab} \sim \mathcal{O}(1)$, the two scalings are mathematically identical. The original work by van Vreeswik and Sompolinsky assumed that p_{ab} was small (but did not scale p_{ab} with N) to avoid correlated spike trains, but later work showed that this assumption was unnecessary: Correlations remain small in the large N limit even when $p_{ab} \sim \mathcal{O}(1)$ is not small [104, 120-123]. Hence, the balanced network scaling yields

$$var(I_{ab}(t)) \sim \mathcal{O}(1)$$

as intended. However, as you might have noticed, this scaling does not work so nicely with the mean inputs since we get

$$\overline{I}_{ab} \sim \mathcal{O}(\sqrt{N}).$$

In other words, coupling is strong and dense enough in the network that mean synaptic currents grow to ∞ as $N \to \infty$. This might seem like a hopeless limit to study, but let's try. First, define the normalized mean-field synaptic weights

$$\widetilde{w}_{ab} = \frac{N_b p_{ab} j_{ab}}{\sqrt{N}} \sim \mathcal{O}(1)$$

and the matrices

$$\widetilde{W} = \begin{bmatrix} \widetilde{w}_{ee} & \widetilde{w}_{ei} \\ \widetilde{w}_{ie} & \widetilde{w}_{ii} \end{bmatrix}$$
 and $\widetilde{W}_{x} = \begin{bmatrix} \widetilde{w}_{ex} \\ \widetilde{w}_{ix} \end{bmatrix}$.

Then the vector of mean-field synaptic inputs can be written as

$$I = \sqrt{N} \left(\widetilde{W} r + \widetilde{W}_x r_x \right) \tag{B.43}$$

Every term inside the parenthesis in this equation is assumed to scale like $\mathcal{O}(1)$. This appears to imply that synaptic inputs are $\mathcal{O}(\sqrt{N})$, which would be a problem, but there is a subtle way in which we can keep $I \sim \mathcal{O}(1)$ in Eq. (B.43). Specifically, the two terms added together inside the parenthesis can cancel,

$$\widetilde{W}r + \widetilde{W}_x r_x \sim \mathcal{O}(1/\sqrt{N})$$
 (B.44)

so that $I \sim \mathcal{O}(1)$. In other words, neurons in the network can receive strong synaptic input from each source ($I_{ab} \sim \mathcal{O}(\sqrt{N})$ for all a, b) that cancel to obtain moderate total synaptic input ($I_a = I_{ae} + I_{ai} + I_{ax} \sim \mathcal{O}(1)$ for a = e, i). Interestingly, this cancellation arises naturally itself in many computational models with strong coupling. The cancellation in Eq. (B.44) can only be obtained if

$$\lim_{N \to \infty} r = -\widetilde{W}^{-1}\widetilde{W}_{x}r_{x}. \tag{B.45}$$

Of course, biological and simulated networks are finite in size, but Eq. (B.45) still gives us an approximation to the firing rates that we can use in finite sized networks,

$$r \approx -W^{-1}W_x r_x. \tag{B.46}$$

Notably, Eq. (B.46) provides a mean-field approximation to firing rates without assuming an f-I curve. Eq. (B.46) can be applied to any network, regardless of whether the network was obtained using the $1/\sqrt{N}$ scaling of synaptic weights. It should be more accurate for networks in which mean-field connectivity is stronger ($|w_{ab}|$ large) while firing

Figure B.13: Interpreting a spiking network simulation as a balanced network. A,B) Mean firing rates from the same recurrent spiking network from Figure 3.3. The dashed lines show the approximation obtained by balanced network theory from Eq. (B.46). C) The mean excitatory (red), inhibitory (blue) and total (purple) synaptic input to excitatory neurons in the network shows some degree of excitatory-inhibitory balance. Synaptic currents were smoothed by convolving with the same Gaussian kernel used for firing rates. Exercise B.6.1 asks you to reproduce this figure.

rates stay moderate in magnitude (r_a not large). In practice, Eq. (B.46) often gives a rough approximation that can be used to gain insights into how firing rates depend on different parameters in a model [124–126]. Figure B.13A,B compares the approximation (dashed lines) to the actual firing rates from the same spiking network simulation from Figure 3.3.

Are balanced networks more consistent with neural data than sparse networks or weakly coupled networks? To answer this question, we can look at the predictions made by balanced network models. One prediction from Eqs. (B.44) is that recurrent or "local" synaptic input (W_r) is large and approximately cancels with external synaptic input ($W_x r_x$). However, it is difficult to isolate local from external input in recordings. Instead, we can separate the total synaptic input into its excitatory and inhibitory components, *i.e.*,

mean excitatory input to e neurons = $I_{ee} + I_{ex}$ mean inhibitory input to e neurons = I_{ei}

and similarly for input to inhibitory neurons. Since $I_{ab} \sim \mathcal{O}(\sqrt{N})$ and $I_a = I_{ae} + I_{ai} + I_{ax} \sim \mathcal{O}(1)$ in balanced networks, we should also see cancellation between excitatory and inhibitory synaptic input. In other words, balanced network models predict that strong excitatory synaptic input cancels with similarly strong inhibitory synaptic input. This prediction is easier to test because excitatory and inhibitory synaptic currents can be isolated in intracellular recordings under voltage clamp. Such recordings verify that excitation balances inhibition, at least to some extent [127]. Figure B.13C shows the mean excitatory and inhibitory inputs to excitatory neurons from the simulation. The currents balance to some extent, but the excitatory and inhibitory inputs are not extremely large because N=2500 is arguably pretty small. Nevertheless, the approximation from Eq. (B.46) is relatively accurate (Figure B.13A,B).

Exercise B.6.1. Reproduce Figure B.13. Try changing the value of a connection strength, j_{ab} , a connection probability, p_{ab} , or the external input rate, r_x , by a small amount. Before running the simulation, use Eq. (B.46) to predict whether the excitatory and inhibitory rates will increase or decrease. Then test this prediction in a simulation.

The idea that excitatory and inhibitory synaptic inputs are balanced in cortical circuits is known as excitatory-inhibitory (EI) balance. Some degree of EI balance has been observed in a wide variety of cortical recordings, EI balance has been conjectured to play a role in various aspects of cortical function [127–133]. Of course, since excitation is always "positive" and inhibition always "negative," we should always expect some degree of excitatory-inhibitory balance, so it is not clear to what extent these data support the theory of balanced networks and the scaling laws that produce it.

It is difficult to measure scaling laws directly because we cannot scale N in cortex, but they can be estimated in cortical cultures (which are networks of neurons grown in a dish in a lab) by growing cultures with different numbers of neurons. This approach was taken by Jérémie Barral and Alex Reyes [133] who grew several cortical cultures in their lab. All of the cultures had the same physical size, but some cultures had more neurons (larger N) than other cultures, i.e., the density of neurons varied. Barral and Reyes measured connectivity in the cultures and found that connection probabilities did not change noticeably with N while synaptic weights scaled approximately like $\mathcal{O}(N^{-0.59})$. This is conspicuously close to the $\mathcal{O}(N^{-0.5})$ scaling assumed in balanced network models. Hence, scaling laws that were originally proposed for abstract mathematical reasons in computational models in the 1990s were observed in experiments about 20 years later!

There is a large literature on the theory of balanced networks that makes the theory more mathematically rigorous, verifies some predictions from cortical recordings, and extends the theory to account for several neural populations, spatial connectivity topologies, and spike train correlations [104, 120-126, 134-138]. There are also many valid criticisms of balanced network theory. For example, Eq. (B.46) represents a linear function from external input, $X = W_x r_x$, to firing rates. But cortical circuits are surely able to implement nonlinear computations [30, 139]. Some theoretical work has extended balanced networks to represent nonlinear functions [140, 141], but this theory necessarily deviates from the original balanced network theory and it is not clear whether it is sufficient to explain nonlinearities in cortical responses. Another criticism is the large Nlimit and strong coupling assumptions underlying the derivation of balanced networks: Careful consideration of collected data suggests that excitation and inhibition might not be very strong after all, and balance might not be very tight [30].

If balanced networks are interpreted literally in their $N \to \infty$ limit, then they are doomed to be unrealistic: The cortex does not balance enormous excitatory currents with enormous inhibitory currents. However, balanced network theory might still be useful as a first order approximation to understand firing rates in cortical circuits and how they depend on various parameters. For example, Eq. (B.46) gives a decent approximation to firing rates in Figure B.13 despite the fact that balance is not very strong. And unlike the approximations in Eq. (3.6), it does not require us to assume an f-I curve.

DERIVATIONS AND ALTERNATIVE FORMULATIONS OF RATE **B.7** NETWORK MODELS

In Section 3.3, we introduced dynamical rate network models, but we did not show exactly how they are derived from spiking networks. In this section, we give a derivation as well as alternative formulations of rate models.

Let's begin by considering the equation for the synaptic input from population b to population a in a recurrent spiking network model in Eq. (3.3),

$$\tau_b \frac{d\mathbf{I}^{ab}}{dt} = -\mathbf{I}^{ab} + J^{ab}\mathbf{S}^b, \quad a = e, i, \quad b = e, i, x$$

There are two sources of randomness in the network: randomness in the entries of *J*^{ab} and randomness in the spike times in $S^{b}(t)$. Fortunately, since this is a linear system of ODEs, we can take expectations of both sides of the equation. Linear ODEs interact well with expectations: the expectation of the solution is given by solving an ODE for the expectations. If we take the expectation over both sources of randomness, we get

$$\tau_b \frac{dI_{ab}}{dt} = -I_{ab} + w_{ab}r_b(t) \tag{B.47}$$

where $w_{ab} = N_b E[J_{ik}^{ab}] = N_b p_{ab} j_{ab}$, r_b is the mean instantaneous firing rate of neurons in population b, and $I_{ab}(t) = E[\mathbf{I}_i^{ab}(t)]$ does not depend on j. Eq. (B.47) is exact for external presynaptic inputs (b = x). For recurrent inputs (b = e, i), Eq. (B.47) is technically an approximation because its derivation assumed that J_{ik}^{ab} and $S_k^b(t)$ are uncorrelated, which is not a valid assumption. Nevertheless, it is an accurate approximation in practice. Taken together, Eq. (B.47) represents a system of six ODEs, one for each value of a = e, iand b = e, i, x.

Eq. (B.47) is not useful by itself because we do not know r_e and r_i . They are determined by the complicated dynamics of the network. Deriving a mean-field equation for r_e and r_i is not so simple due to the highly nonlinear dynamics of the EIF neurons that determine the mapping from inputs to firing rates. Instead, we can use a mean-field approximation given by

$$\tau_{r,e} \frac{dr_e}{dt} = -r_e + f_e (I_{ee} + I_{ei} + I_{ex})
\tau_{r,i} \frac{dr_i}{dt} = -r_i + f_i (I_{ie} + I_{ii} + I_{ix})
\tau_b \frac{dI_{ab}}{dt} = -I_{ab} + w_{ab}r_b$$
(B.48)

where $\tau_{r,a}$ is a time-constant modeling how quickly firing rates settle to their fixed points and f_e is an f-I curve for population a = e, i. Typically, we would take $\tau_{r,e} = \tau_{r,i} = \tau_r$ and $f_e = f_i = f$ if neurons in both populations are the same or similar. We might also take $\tau_r \approx \tau_m$ since firing rates dynamics are determined by membrane potential dynamics. Eq. (B.48) gives a system of eight ODEs that can be solved to approximate the dynamics of a recurrent network. Fixed points of Eq. (B.48) satisfy Eq. (3.6), so the dynamical mean-field theory is consistent with the stationary mean-field in Eq. (3.6).

Eq. (B.48) can easily be extended to networks with more populations. It can also be modified to derive mean-field equations for feedforward networks, but this is rarely

done because the dynamics are usually uninteresting. However, Eq. (B.48) is rarely used in practice because it is unnecessarily high-dimensional, which can make it more difficult to study. Ideally, we would have one ODE for each population in the recurrent network, i.e., we would have a system of two ODEs for the network considered here. Systems of two ODEs are especially nice because they are easier to study using the dynamical systems methods from Appendix A.9.

We next discuss three approaches to obtaining dynamical mean-field models with one ODE for each population.

REDUCING THE DIMENSION OF THE MEAN-FIELD EQUATIONS BY IGNORING SYNAP-The first approach ignores synaptic dynamics by omitting the last TIC DYNAMICS. equations for $I_{ab}(t)$ and replacing them with

$$I_{ab} = w_{ab}r_b$$
.

in the first two equations. This is called a quasi-steady-state approximation since it replaces I_{ab} with the value that its fixed point ("steady-state") would take if r_b were fixed in time (see derivations in Section 2.3). This replacement would be mathematically justified if the synaptic time constants were much smaller than the rate time constants $(\tau_e, \tau_i \ll \tau_r)$ since $I_{ab}(t)$ would converge to its fixed point much faster than $r_a(t)$. In reality, the τ values are similar in magnitude, so this assumption is not justified. In any case, the substitution produces the much simpler set of equations

$$\tau_{r,e} \frac{dr_e}{dt} = -r_e + f_e(w_{ee}r_e + w_{ei}r_i + X_e)
\tau_{r,i} \frac{dr_i}{dt} = -r_i + f_i(w_{ie}r_e + w_{ii}r_i + X_i)$$
(B.49)

where $X_a = w_{ax}r_x$ is the external input. However, Eq. (B.49) completely ignores synaptic dynamics and the effects of synaptic timescales (τ_e and τ_i), which prevents it from capturing some phenomena. For example, Eq. (B.49) cannot capture the oscillations studied in Section 3.3 since they were caused by a mismatch between the timescales of excitatory and inhibitory synapses (τ_e and τ_i). Of course, we only need to replace $\tau_{r,e}$ and $\tau_{r,i}$ in Eq. (B.49) by τ_e and τ_i to get Eq. (3.8). Hence, the only difference between Eqs. (3.8) and (B.49) is the interpretation of the time constants. We return to this point toward the end of this section.

REDUCING THE DIMENSION OF THE MEAN-FIELD EQUATIONS BY IGNORING RATE DY-The second approach to reducing the dimension of Eq. (B.48) ignores rate dynamics by omitting the first equations for r_e and r_i and instead makes the substitution

$$r_a = f(I_{ae} + I_{ai} + I_{ax})$$

in the first two equations. This replacement would be mathematically justified if the firing rates evolved much more quickly than the synaptic dynamics ($\tau_r \ll \tau_e, \tau_i$). We can additionally write the external input explicitly as a time series $I_{ax}(t) = X_a(t)$. Together, this yields a system of four ODEs

$$\tau_b \frac{dI_{ab}}{dt} = -I_{ab} + w_{ab} f(I_{be} + I_{bi} + X_b), \quad a, b = e, i$$
(B.50)

This system of equations accounts for synaptic timescales (so it can be used to describe the oscillations in Section 3.3), but it is four dimensional whereas we would like a two dimensional system for two populations (e and i).

Eq. (B.50) can be reduced to a system of two equations by taking $\tau_e = \tau_i = \tau$ and then modeling the total synaptic inputs, $I_e = I_{ee} + I_{ei}$ and $I_i = I_{ie} + I_{ii}$. These two simplifications allow us to write the synaptic inputs as a system of two equations

$$\tau \frac{dI_e}{dt} = -I_e + w_{ee} f(I_e + X_e) + w_{ei} f(I_i + X_i)
\tau \frac{dI_i}{dt} = -I_i + w_{ie} f(I_e + X_e) + w_{ii} f(I_i + X_i)$$
(B.51)

which is more often written as

$$\tau \frac{dI_e}{dt} = -I_e + w_{ee}r_e + w_{ei}r_i$$

$$\tau \frac{dI_i}{dt} = -I_i + w_{ie}r_e + w_{ii}r_i$$

$$r_e = f(I_e + X_e)$$

$$r_i = f(I_i + X_i)$$
(B.52)

Even though Eq. (B.52) is written as four equations, it is still a system of two ODEs and it is completely equivalent to Eq. (B.51). Generalizing this approach to an arbitrary number of populations gives Eq. (3.11) from Section 3.3.

Eq. (B.52) is a two-dimensional system, but it does not account for two different synaptic timescales because we had to take $\tau_e = \tau_i = \tau$ to derive it. Therefore, like Eq. (B.49), it cannot capture the oscillations studied in Section 3.3. Sometimes, two synaptic timescales, τ_e and τ_i , are used in place of τ in Eq. (B.52). However, this approach is not mathematically justified because it implicitly assumes that synaptic time constants depend on the postsynaptic cell type, whereas they should depend on the presynaptic cell type. For example, this approach would assume that the timescale of $I_e = I_{ee} + I_{ei}$ is τ_e whereas the timescale of I_{ei} is τ_i .

REDUCING THE DIMENSION OF THE MEAN-FIELD EQUATIONS BY MODELING LOW-PASS FILTERED FIRING RATES. The third approach to reducing the dimension of Eq. (B.48) requires a little trick that is not obvious at first, but gives a nicer result in the end. The trick is to define new quantities, $y_e(t)$ and $y_i(t)$, satisfying

$$\tau_a \frac{dy_a}{dt} = -y_a + r_a.$$

These are just low-pass filtered firing rates, i.e., they are the firing rates convolved with an exponential kernel (see Appendix A.5). Now note that the synaptic inputs from Eq. (B.48) can be written in terms of $y_a(t)$ using

$$I_{ab}(t) = w_{ab}y_b(t).$$

Now, we make the same substitution

$$r_a = f(I_{ae} + I_{ai} + X_a)$$

for the rates that we made for the previous approach. Combining these three equations gives

$$\tau_{e} \frac{dy_{e}}{dt} = -y_{e} + f(w_{ee}y_{e} + w_{ei}y_{i} + X_{e})
\tau_{i} \frac{dy_{i}}{dt} = -y_{i} + f(w_{ie}y_{e} + w_{ii}y_{i} + X_{i})$$
(B.53)

Eq. (B.53) is a system of two equations and it represents both synaptic timescales, which was our goal. The only caveat is that $y_a(t)$ represents a low-pass filtered firing rate instead of the firing rate itself. However, the dynamics should be similar. For this reason, Eq. (B.53) is often used with y_a replaced by r_a to get Eq. (3.8) from Section 3.2. Generalizing to an arbitrary number of populations gives (3.10) from Section 3.3.

Eqs. (B.49) and (B.53) have the same mathematical form, but different interpretations. Most notably, the time constants in Eq. (B.49) correspond to the timescale at which firing rates evolve while the time constants in Eq. (B.53) correspond to the timescale at which synaptic currents evolve. This difference arises because the derivation of Eq. (B.49) ignored synaptic dynamics with the substitution $I_{ab} = w_{ab}r_b$ while the derivation of Eq. (B.53) ignored rate dynamics by making the substitution $r_a = f(I_{ae} + I_{ai} + X_a)$. Neither of these substitutions are justified. Instead of using one interpretation or the other, we can interpret τ_e and τ_i as the *combined* timescales of the synapses and firing rate dynamics. In particular, populations with slower synapses or neuron dynamics should have larger time constants. This is the interpretation used in Section 3.2 and 3.3. This interpretation is not precise and does not tell you exactly how to choose the actual values of the time constants, but it is still useful. If you need to be more precise in accounting for the various time constants, then you should use the system of eight ODEs described by Eqs. (B.47) and (B.48), but this might not provide any more insight or simplicity than a spiking model itself.

в.8 HOPFIELD NETWORKS

John Hopfield is an Amer*can physic*st wh* is famo*s f*r devel*ping c*mput*tional m*del of pattern completion now kn*wn as th* Hopfield model. Pat*ern compl*tion o*curs wh*n y*u obs*rve a part*ally obsc*red stim*lus and y*ur bra*n fi*ls in the mis*i*g d*tails. For exa*ple, you are pro*ab*y ab*e to re*d th*s p*ragr*ph ev*n tho*gh m*ny let*ers are mis*i*g.

In case you are unable to parse the paragraph above, here is an un-edited version

John Hopfield is an American physicist who is famous for developing a computational model of pattern completion, now known as the Hopfield model [100]. Pattern completion occurs when you observe a partially obscured stimulus and your brain fills in the missing details. For example, y*u ar* probably able to read this paragraph even though many letters are missing.

As another example of pattern completion, consider the image in Figure B.14A. Despite the fact that some pixels are corrupted, you can tell that the image is a handwritten 3 (Figure B.14B). Pattern completion is important and common because stimuli that you

Figure B.14: Pattern completion in a Hopfield network. A) A corrupted image of a handwritten digit. The image was corrupted by flipping the sign of 80 randomly chosen pixels. This pattern was used as the initial condition in a Hopfield network with N = 28 * 28 = 784 neurons. B) The original uncorrupted digit. The digit was obtained from an MNIST digit by finding all pixels with values larger than 0.5 and setting them to 1. All other pixels were set to -1. This pattern was trained into the Hopfield network by setting the weights according to Eq. (B.56). C) The energy of the resulting Hopfield network during a simulation. D) The final state of the Hopfield network matches the trained attractor state.

observe on a daily basis are often partially obscured. Pattern completion is an example of associative memory in which stimulus features that commonly appeared together in the past are associated with one another so that the presentation of one stimulus feature conjures memories of the others. For example, you may associate certain smells with your childhood home. Those smells will conjure memories of your childhood home even when you come across them in different settings.

The basic idea behind Hopfield networks is to build a network with a stable fixed point associated to each stimulus that needs to be remembered. These fixed points are called attractor states or attractors. When a corrupted stimulus is presented, the network converges to the nearest attractor, which should be the uncorrupted stimulus. The neurons that are activated by a particular stimulus are sometimes called a **neural** assembly. In a Hopfield network, if part of an assembly is activated by a partially obscured stimulus, then they should activated the other neurons in the assembly to complete the stimulus, hence the name "pattern completion." For this to occur, neurons that are frequently activated together by a particular stimulus should be connected more strongly with positive weights, which is a key component of Hebbian plasticity (see Section 4.1). Moreover, since each stimulus should only be associated with one attractor state, the activation of one neural assembly should suppress the others, which is a form of suppression or competition (see Section 3.3).

Now let's define the network more precisely. Hopfield networks are recurrent binary neural networks (see Section B.3.3) defined in discrete time, n = 1, 2, ... instead of the continuous time. In place of spike trains, Hopfield networks have an $N \times 1$ vector, S(n). At each point in time, each neuron is in one of two states:

$$S_j(n) = 1 \text{ or } S_j(n) = -1$$

where 1 corresponds to the spiking or active state, and -1 corresponds to the silent or non-spiking state. The $N \times 1$ vector of inputs is defined by

$$I(n) = WS(n)$$

where W is an $N \times N$ connectivity matrix. At each time step, one neuron, j, is chosen at random to update. The randomly chosen neuron is updated according to the rule,

$$S_j(n+1) = \begin{cases} 1 & I_j(n) \ge 0 \\ -1 & I_j(n) < 0 \end{cases}$$
 (B.54)

This practice of choosing a random neuron to update is called a stochastic update scheme. Since only neuron j is updated on a particular time step, you only need to compute $I_i(n)$ on that time step, not all of I. In summary, the following steps define how to run a Hopfield network,

- 1. Choose a random neuron, *j*.
- 2. Compute $I_i \sum_k W_{ik} S_k$.
- 3. Update S_i using Eq. (B.54).
- 4. Repeat.

This process is repeated until S(n) converges toward a fixed point.

A major advantage of the Hopfield model is that, under certain conditions, we can understand fixed points and their stability very well. To this end, define the energy the network in state, S, as

$$E = -\sum_{j,k=1}^{N} W_{jk} S_j S_k = -S^T W S$$
(B.55)

The term "energy" is often used for a quantity that is either conserved or strictly decreasing in a model. Indeed, the following theorem is central to the study of Hopfield networks

Theorem: If network connectivity is symmetric ($W_{jk} = W_{kj}$) and there are no self-connections ($W_{kk} = 0$) then E decreases over time and S(n) converges to fixed points, S^0 that are local minima of E.

Exercise B.8.1. Simulate a Hopfield network with N=50 neurons and use a random W satisfying the conditions in the theorem above. Plot E(n) and verify that it is decreasing.

The goal, then, is to learn a matrix, W, for which the target stimuli are local minima of E. For example, if we want to perform pattern completion on digits like the one in Figure B.14A, then we can define a Hopfield network with N = 28 * 28 = 784 neurons, each representing one pixel. If each of the ten digits is a local minimum of E then they will be attractor states for the network. Then, if we start with a corrupted digit as an initial condition, the network will converge to the nearest attractor state, which is likely to be the original digit.

How can we choose W to promote particular attractor states? Suppose that S^0 is a vector that we want to be an attractor state. Then we want E to be smaller (i.e., more negative) for that particular state. To achieve this, we would want to set $W_{ik} > 0$ whenever $S_i^0 = S_k^0 = 1$. Note that we also want to set $W_{jk} > 0$ whenever $S_i^0 = S_k^0 = -1$ (why?). On the other hand, we want to set $W_{jk} < 0$ whenever $S_j^0 \neq S_k^0$. Recall that we must also have $W_{jk} = W_{kj}$ and $W_{kk} = 0$. Therefore, if there is just one desired attractor state, we can set

$$W_{jk} = \begin{cases} cS_j^0 S_k^0 & j \neq k \\ 0 & j = k \end{cases}$$
 (B.56)

where c > 0 can be any constant. The choice $c = 1/N^2$ allows Eq. (B.55) to be interpreted as an average. This can be implemented efficiently in NumPy as

Here, np.outer(S0,S0) returns the outer product of S0 with itself and diag(S0) returns a diagonal matrix with S0 along the diagonal. Figure B.14C shows the energy of a Hopfield network simulation with initial condition given by the pattern in Figure B.14A where W was chosen using Eq. (B.56) with S^0 being the pattern in Figure B.14B. Figure B.14D shows the final state of the Hopfield network.

Note that if S^0 is an attractor then so is $-S^0$ since they have the same energy, so Eq. (B.56) produces two attractors. However, if the initial condition, S(0), is closer to S^0 then we should expect S(n) to converge toward S^0 instead of $-S^0$.

Of course, we would like to be able to train more than one attractor state. Now suppose that there are M attractors, $\{S^m\}_{m=1}^M$. We would like the Hopfield network to converge to the attractor that is "closest" to the initial condition. To achieve this, we can just average the W's that we would obtain from Eq. (B.56)

$$W_{jk} = \begin{cases} \frac{1}{MN^2} \sum_{m=1}^{M} S_j^m S_k^m & j \neq k \\ 0 & j = k \end{cases}$$
 (B.57)

If we imagine that the stimuli, S^m , are presented to the network sequentially during a learning phase, then Eq. (B.57) can be written as a Hebbian plasticity rule,

$$W_{ik} = W_{ik} + \eta S_i S_k$$

which is applied sequentially for $S = S^1, S^2, ..., S^M$ at all indices $j \neq k$.

Note that $S_j^m S_k^m = 1$ when $S_j^m = S_k^m$ and $S_j^m S_k^m = -1$ when $S_j^m \neq S_k^m$. Hence, this update rule increases W_{jk} whenever S_j^m and S_k^m tend to be active together in the training stimuli, and it decreases W_{ik} when they do not tend to be active together. In summary, this rule enforces a form of Hebbian plasticity and suppression or competition: Neurons that fire together wire together in the sense that they form positive connections, while neurons that do not fire together suppress each other through negative connections.

Exercise B.8.2. Train a Hopfield network on M=3 MNIST digits (similar to Figure B.14, but use Eq. (B.57) in place of Eq. (B.56)). Use three different digits for the 3 images (e.g., do not choose two hand drawn 2's). Then try running the Hopfield network using corrupted versions of the training images as initial conditions. Next try running the network with a different image representing one of the same digits (e.g., if one of your training digits is a handwritten 2, then use a different handwritten 2 from the MNIST data set).

Numerous generalizations of Hopfield networks have been developed, but the overall concept remains the same: Memories are stored as attractors in a recurrent network and convergence to these attractors is quantified by the minimization of an energy function. Models of this type are sometimes called **energy-based models**. Hopfield networks and other energy based model are a vast abstraction away from biological neural circuits, and they only solve a relatively simple task. These factors might lead you to question their relevance and usefulness, but they are more useful than they appear at first.

One useful property of Hopfield networks and many other energy based models is that the learning dynamics can often be understood mathematically. For example, under various conditions, you can derive how a network's memory capacity (i.e., the maximum number of attractors that can be stored robustly) scales with network size, N, and you can derive statistical properties of the synaptic weights under assumptions about the optimal use of storage capacity. These properties can be compared to estimates from cortical measurements to gain insight into how memories might be stored in cortical circuits [142]. Additionally, a modified version of Hopfield networks have shown to be functionally equivalent to a form of "attention" used in "transformer" models, which are state-of-the-art machine learning models for language processing and other complex tasks [143].

DEEP NEURAL NETWORKS AND BACKPROPAGATION B.Q

In Section 4.3, we considered single-layered perceptrons and how to train them with gradient descent. We now extend this discussion to multi-layered perceptrons, which are defined by equations of the form

$$x = v^{0}$$

$$v^{1} = f_{1}(W^{1}v^{0})$$

$$\dots$$

$$v = v^{L} = f_{L}(W^{L}v^{L-1})$$
(B.58)

In other words,

$$v^{\ell} = f_{\ell}(W^{\ell}v^{\ell-1}), \ \ell = 1, \dots, L$$

for $\ell = 1, \dots, L$ where $v^0 = x$ is the input to the network and $v^L = v$ is the output from the network. The vectors v^{ℓ} for $0 < \ell < L$ are called **hidden states** or **hidden layers**. Each v^{ℓ} is called the **activation** of layer ℓ . The function $f_{\ell}: \mathbb{R} \to \mathbb{R}$ is applied pointwise and it is called the **activation function** for layer ℓ . The number, L, of layers is called the **depth** of the network. Each $v^{\ell} \in \mathbb{R}^{n_{\ell}}$ is a vector and its dimension, n_{ℓ} , is called the width of layer ℓ . Note that each W^{ℓ} is an $n_{\ell} \times n_{\ell-1}$ matrix. When L > 1, *i.e.*, when the network has at least one hidden layer, it is called a multi-layered perceptron, which is a type of deep neural network. It is useful to define the inputs or logits,

$$z^{\ell} = W^{\ell} n^{\ell-1}$$

which satisfy $v^{\ell} = f(z^{\ell})$.

Multi-layered perceptrons are powerful algorithms. Indeed, universal approximation **theorem** says (roughly) that a multi-layered perceptron with just one hidden layer (i.e., with L=2) can approximate any (reasonable) function from x to v to any desired degree of accuracy [144]. However, the theorem does not tell us how wide the hidden layer needs to be or how we can learn the weights that approximate the desired function, so the theorem is less useful from a practical perspective.

We can again considered a supervised learning task with training data, $\{x^i, y^i\}_{i=1}^m$ and a cost function of the form

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{v}^{i}, \boldsymbol{y}^{i})$$

where $\theta = \{W^{\ell}\}_{\ell=1}^{L}$ is the collection of all parameters, *i.e.*, all weight matrices, and L(v, y) is a loss function. And we can again learn through gradient descent on L for online gradient descent, or on I for full batch gradient descent. We will focus on online gradient descent here, but the calculations are analogous for full batch or stochastic gradient descent.

We now need to update all L matrices, W^{ℓ} , on each gradient descent step. This is more difficult for deep networks than it is for single-layer networks. The gradients of the loss with respect to W^{ℓ} are a little bit more difficult to derive for deep networks. We will not give a detailed derivation here, but outline the basic equations and result. The update to W^{ℓ} can be written as

$$\Delta W^{\ell} = -\epsilon \nabla_{W^{\ell}} L = -\epsilon e^{\ell} \left[v^{\ell-1} \right]^{T}$$
(B.59)

where

$$e^{\ell} = \nabla_{\mathbf{z}^{\ell}} L$$

is the gradient of the loss with respect to the input, z^ℓ . We will call the e^ℓ the **error** of layer ℓ . The last layer's error is given by

$$e^{L} = [\nabla_{\boldsymbol{v}} L] \circ f'_{\ell}(\boldsymbol{z}^{\ell}) \tag{B.60}$$

The error terms from earlier layers can then be defined in terms of the layer after them,

$$e^{\ell} = \left[B^{\ell} e^{\ell+1} \right] \circ f'_{\ell}(\boldsymbol{z}^{\ell}) \tag{B.61}$$

where

$$B^{\ell} = \left[W^{\ell+1} \right]^T$$

is the transpose of the weight matrix from the next layer.

The equations above can be used to compute the errors and gradient descent updates by working our way from the last layer backwards to the first layer of the network. Specifically, after we compute the output and loss of the network, we can use Eq. (B.60) to compute e^L . We can then use Eq. (B.61) to compute e^{L-1} , e^{L-2} , etc., working our way backwards to e^1 . As we go, we can compute the weight updates of each layer using Eq. (B.59). This procedure is known as **backpropagation**.

Figure B.15: A diagram of forward and backward passes for training a deep neural network with backpropagation. A forward pass (red pathways) computes the activations and loss according to Eq. (B.58). Then a backward pass (blue pathways) computes gradients and errors according to Eq. (B.62). The activations and errors are combined to compute the updates, ΔW^{ℓ} , to the connection matrices according to Eq. (B.59). The backward pass is sometimes interpreted as a separate feedforward network.

Backpropagation can be viewed as propagating the error terms, e^ℓ , backwards through the network. In particular, Eq. (B.61) represents a network in which layer $\ell+1$ connects to layer ℓ with the connection matrix $B^{\ell} = [W^{\ell+1}]^T$. Specifically, we have

$$e^{L} = [\nabla_{v}L] \circ f'_{\ell}(z^{\ell})$$

$$e^{L-1} = [B^{L-1}e^{L}] \circ f'_{L-1}(z^{L-1})$$

$$\cdots$$

$$e^{1} = [B^{1}e^{2}] \circ f'_{1}(z^{1})$$
(B.62)

This is similar to the "forward" network in Eq. (B.58) except information flows backwards through the network, we use the derivative of the activation function, and we multiply the activation function by the matrix product.

When training a network using backpropagation, we first apply Eq. (B.58) to compute activations and then we compute the loss. This is called a forward pass through the network. We then use Eq. (B.62) to compute the errors and use Eq. (B.59) to compute the weight updates. This is called a backward pass through the network. These ideas are illustrated in Figure B.15.

Exercise B.9.1. Extend the network from Perceptron.ipynb to L=3 layers and train the weights using backpropagation.

Backpropagation is an efficient way to compute gradients in deep neural networks, and gradient-based learning is a highly effective method for training deep neural networks to perform difficult tasks. Partly for these reasons, many computational neuroscientists have tried to understand how backpropagation might be implemented or approximated in the brain [61–63]. The basic idea behind many of these approaches is that Eqs. (B.58) and (B.62) are like feedforward rate networks (in opposite directions) and Eq. (B.59) is similar to a plasticity rule. There are many difficulties with the direct interpretation of backpropagation in terms of neural circuits, of course.

A common interpretation is that the backward pathway represents separate populations of neurons from the forward pathway (i.e., e^{ℓ} represent a separate population of neurons from v^{ℓ}). In this case, the update, ΔW_{ik}^{ℓ} , to the weight that connects $v_k^{\ell-1}$ to

 v_i^ℓ depends on $e_k^{\ell-1}$. Plasticity rules in the brain are often believed to be largely **local**, meaning that an update to a synaptic weight should be a function of the activity of the neurons that the weight connects. In other words, ΔW_{ik}^{ℓ} should be a function of $v_k^{\ell-1}$ and v_i^ℓ . Hence, backpropagation is not a local plasticity rule under this interpretation.

An alternative interpretation is that v_i^ℓ and e_i^ℓ represents the same neuron during two phases, an inference phase during which information flows forward in the network to compute v^{ℓ} , and a learning phase during which information flows backward through the same network to compute e^{ℓ} . This idea is appealing because there are feedback pathways in the cortex (i.e., V1 connects to V2 and V2 connects back to V1). One problem with this interpretation is that it is not clear how the brain would distinguish between activity during the two phases.

A major problem with both interpretations above is that the backward connectivity matrices need to be equal to the transpose of the forward connectivity matrices, $B^{\ell} = [W^{\ell+1}]^T$, for backpropagation. This requirement that is sometimes called **weight** transport. There is no strong evidence of weight transport in cortical circuits and it is not clear how it could be enforced.

A third interpretation that was posed more recently is that $m{v}_i^\ell$ and $m{e}_i^\ell$ are represented by the same neuron, but in different ways [74, 145, 146]. Calcium channels and some other mechanism can cause neurons to emit short bursts of spikes. Under this third interpretation, neurons differentially encode v^{ℓ} and e^{ℓ} in the rate of spikes and the rate of bursts. Through a combination of architecture, "short term" synaptic plasticity, and burst-dependent long term synaptic plasticity, this "multiplexed" encoding of v^ℓ and e^ℓ can approximate a backpropagation. While this interpretation is more complicated than the other two interpretations mentioned above, it is consistent with many features of cortical circuits. Cortical circuits are complicated, so a more complicated explanation of learning should not necessarily be ruled out.

BIBLIOGRAPHY

- [1] P. Dayan and L. F. Abbott. *Theoretical Neuroscience*. Cambridge, MA: MIT Press, 2001.
- [2] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. *Neuronal dynamics: From single neurons to networks and models of cognition*. Cambridge University Press, 2014.
- [3] G. Lindsay. *Models of the Mind: How Physics, Engineering and Mathematics Have Shaped Our Understanding of the Brain.* Bloomsbury Publishing, 2021.
- [4] N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk, and N. Brunel. "How spike generation mechanisms determine the neuronal response to fluctuating inputs." In: *J Neurosci* 23 (2003), pp. 11628–11640.
- [5] R. Jolivet, T. J. Lewis, and W. Gerstner. "Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy." In: *J Neurophysiol* 92.2 (2004), pp. 959–976.
- [6] L. Badel, S. Lefort, T. K. Berger, C. C. Petersen, W. Gerstner, and M. J. Richardson. "Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves." In: *Biological cybernetics* 99.4 (2008), pp. 361–370.
- [7] M. Okun, A. Naim, and I. Lampl. "The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats." In: *Journal of neuroscience* 30.12 (2010), pp. 4440–4448.
- [8] M. A. Smith and A. Kohn. "Spatial and temporal scales of neuronal correlation in primary visual cortex." In: *Journal of Neuroscience* 28.48 (2008), pp. 12591–12603.
- [9] W. R. Softky and C. Koch. "The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs." In: *Journal of neuroscience* 13.1 (1993), pp. 334–350.
- [10] M. N. Shadlen and W. T. Newsome. "Noise, neural codes and cortical organization." In: *Current opinion in neurobiology* 4.4 (1994), pp. 569–579.
- [11] M. N. Shadlen and W. T. Newsome. "The variable discharge of cortical neurons: implications for connectivity, computation, and information coding." In: *Journal of Neuroscience* 18.10 (1998), pp. 3870–3896.
- [12] M. M. Churchland, M. Y. Byron, J. P. Cunningham, L. P. Sugrue, M. R. Cohen, G. S. Corrado, W. T. Newsome, A. M. Clark, P. Hosseini, B. B. Scott, et al. "Stimulus onset quenches neural variability: a widespread cortical phenomenon." In: *Nature neuroscience* 13.3 (2010), pp. 369–378.
- [13] G. L. Gerstein and B. Mandelbrot. "Random walk models for the spike activity of a single neuron." In: *Biophysical journal* 4.1 (1964), pp. 41–68.
- [14] C. Curto, A. Degeratu, and V. Itskov. "Encoding binary neural codes in networks of threshold-linear neurons." In: *Neural computation* 25.11 (2013), pp. 2858–2903.

- [15] B. W. Knight. "Dynamics of encoding in a population of neurons." In: The Journal of general physiology 59.6 (1972), pp. 734–766.
- [16] L. M. Ricciardi and L. Sacerdote. "The Ornstein-Uhlenbeck process as a model for neuronal activity." In: Biological cybernetics 35.1 (1979), pp. 1–9.
- [17] D. J. Amit and M. Tsodyks. "Quantitative study of attractor neural network retrieving at low spike rates. I. Substrate-spikes, rates and neuronal gain." In: Network: Computation in neural systems 2.3 (1991), p. 259.
- [18] B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier. "Effects of noise in excitable systems." In: *Physics reports* 392.6 (2004), pp. 321–424.
- M. J. Richardson. "Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive." In: *Physical Review E* 76.2 (2007), p. 021919.
- A. M. Bastos, W. M. Usrey, R. A. Adams, G. R. Mangun, P. Fries, and K. J. Friston. "Canonical microcircuits for predictive coding." In: Neuron 76.4 (2012), pp. 695-711.
- [21] H. R. Wilson and J. D. Cowan. "Excitatory and inhibitory interactions in localized populations of model neurons." In: Biophysical journal 12.1 (1972), pp. 1–24.
- [22] H. R. Wilson and J. D. Cowan. "A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue." In: Kybernetik 13.2 (1973), pp. 55-
- [23] M. V. Tsodyks, W. E. Skaggs, T. J. Sejnowski, and B. L. McNaughton. "Paradoxical effects of external modulation of inhibitory interneurons." In: Journal of neuroscience 17.11 (1997), pp. 4382-4388.
- H. Ozeki, I. M. Finn, E. S. Schaffer, K. D. Miller, and D. Ferster. "Inhibitory stabilization of the cortical network underlies visual surround suppression." In: *Neuron* 62.4 (2009), pp. 578–592.
- [25] G. Kopell Nancyand Ermentrout, M. Whittington, and R. Traub. "Gamma rhythms and beta rhythms have different synchronization properties." In: Proceedings of the National Academy of Sciences 97.4 (2000), pp. 1867–1872.
- M. A. Whittington, R. D. Traub, N. Kopell, B. Ermentrout, and E. H. Buhl. "Inhibition-based rhythms: experimental and mathematical observations on network dynamics." In: International journal of psychophysiology 38.3 (2000), pp. 315-336.
- N. Brunel and X.-J. Wang. "What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitationinhibition balance." In: *Journal of neurophysiology* 90.1 (2003), pp. 415–430.
- J. A. Cardin, M. Carlén, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth, L.-H. Tsai, and C. I. Moore. "Driving fast-spiking cells induces gamma rhythm and controls sensory responses." In: Nature 459.7247 (2009), pp. 663–667.
- [29] C Huang, D. Ruff, R. Pyle, R. Rosenbaum, M. Cohen, and B Doiron. "Circuit Models of Low-Dimensional Shared Variability in Cortical Networks." In: Neuron 101.2 (2019), pp. 337-348.

- [30] Y. Ahmadian and K. D. Miller. "What is the dynamical regime of cerebral cortex?" In: Neuron 109.21 (2021), pp. 3373-3391.
- [31] A. Sanzeni, B. Akitake, H. C. Goldbach, C. E. Leedy, N. Brunel, and M. H. Histed. "Inhibition stabilization is a widespread property of cortical networks." In: Elife 9 (2020), e54875.
- [32] J. Allman, F. Miezin, and E. McGuinness. "Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for localglobal comparisons in visual neurons." In: Annual review of neuroscience (1985).
- [33] C. K. Pfeffer, M. Xue, M. He, Z. J. Huang, and M. Scanziani. "Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons." In: Nat. Neurosci. 16.8 (2013), pp. 1068–76. ISSN: 1546-1726. DOI: 10.1038/nn.3446. eprint: NIHMS150003.
- [34] H Adesnik, W Bruns, H Taniguchi, Z. J. Huang, and M Scanziani. "A neural circuit for spatial summation in visual cortex." In: Nature 490.7419 (2012), pp. 226-31. ISSN: 1476-4687. DOI: 101038/nature11526.
- [35] D. O. Hebb. The organization of behavior: A neuropsychological theory. Wiley and Sons, New York, NY, 1949.
- [36] P. E. Castillo, C. Q. Chiu, and R. C. Carroll. "Long-term plasticity at inhibitory synapses." In: Current opinion in neurobiology 21.2 (2011), pp. 328–338.
- [37] T. P. Vogels, H Sprekeler, F Zenke, C Clopath, and W Gerstner. "Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks." In: Science 334.6062 (2011), pp. 1569–73. ISSN: 1095-9203.
- [38] Y. Luz and M. Shamir. "Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity." In: PLoS computational biology 8.1 (2012), e1002334.
- [39] T. P. Vogels et al. "Inhibitory synaptic plasticity: spike timing-dependence and putative network function." In: Frontiers in Neural Circuits 7.119 (2013). ISSN: 1662-5110.
- [40] G. Hennequin, E. J. Agnes, and T. P. Vogels. "Inhibitory Plasticity: Balance, Control, and Codependence." In: Annu. Rev. Neurosci. 40.1 (2017), pp. 557–579. ISSN: 0147-006X.
- [41] A. Schulz, C. Miehl, M. J. Berry II, and J. Gjorgjieva. "The generation of cortical novelty responses through inhibitory plasticity." In: Elife 10 (2021), e65309.
- [42] M. Capogna, P. E. Castillo, and A. Maffei. "The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles." In: European Journal of Neuroscience 54.8 (2021), pp. 6882–6901.
- [43] D. Sussillo and L. F. Abbott. "Generating coherent patterns of activity from chaotic neural networks." In: Neuron 63.4 (2009), pp. 544-557.
- [44] J. Ginibre. "Statistical ensembles of complex, quaternion, and real matrices." In: Journal of Mathematical Physics 6.3 (1965), pp. 440-449.
- [45] V. L. Girko. "Circular law." In: Theory of Probability & Its Applications 29.4 (1985), pp. 694-706.

- [46] K. Rajan and L. F. Abbott. "Eigenvalue spectra of random matrices for neural networks." In: Physical review letters 97.18 (2006), p. 188104.
- [47] H. Sompolinsky, A. Crisanti, and H.-J. Sommers. "Chaos in random neural networks." In: Physical review letters 61.3 (1988), p. 259.
- [48] H. Jaeger. "The "echo state" approach to analysing and training recurrent neural networks-with an erratum note." In: Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148.34 (2001), p. 13.
- [49] W. Maass, T. Natschläger, and H. Markram. "Real-time computing without stable states: A new framework for neural computation based on perturbations." In: Neural computation 14.11 (2002), pp. 2531-2560.
- [50] H. Jaeger. "Harnessing Nonlinearity: Predicting Chaotic." In: Science 1091277.78 (2004), p. 304.
- [51] M. Lukoševičius and H. Jaeger. "Reservoir computing approaches to recurrent neural network training." In: Computer Science Review 3.3 (2009), pp. 127–149.
- [52] G. M. Hoerzer, R. Legenstein, and W. Maass. "Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning." In: Cerebral cortex 24.3 (2014), pp. 677–690.
- [53] R. Pyle and R. Rosenbaum. "A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity." In: Neural Computation 31.7 (2019), pp. 1430-1461.
- [54] J. M. Murray and G. S. Escola. "Remembrance of things practiced with fast and slow learning in cortical and subcortical pathways." In: Nature Communications 11.1 (2020), pp. 1–12.
- [55] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome. "Context-dependent computation by recurrent dynamics in prefrontal cortex." In: Nature 503.7474 (2013), pp. 78–84.
- [56] D. Sussillo. "Neural circuits as computational dynamical systems." In: Current opinion in neurobiology 25 (2014), pp. 156-163.
- [57] D. Sussillo, M. M. Churchland, M. T. Kaufman, and K. V. Shenoy. "A neural network that finds a naturalistic solution for the production of muscle activity." In: *Nature neuroscience* 18.7 (2015), pp. 1025–1033.
- [58] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.
- [59] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.
- [60] B. Widrow and M. E. Hoff. Adaptive switching circuits. Tech. rep. Stanford Univ Ca Stanford Electronics Labs, 1960.
- [61] J. C. Whittington and R. Bogacz. "Theories of error back-propagation in the brain." In: Trends in cognitive sciences 23.3 (2019), pp. 235–250.
- [62] T. P. Lillicrap and A. Santoro. "Backpropagation through time and the brain." In: Current opinion in neurobiology 55 (2019), pp. 82–89.

- [63] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. "Backpropagation and the brain." In: Nature Reviews Neuroscience 21.6 (2020), pp. 335-346.
- [64] S.-M. Khaligh-Razavi and N. Kriegeskorte. "Deep supervised, but not unsupervised, models may explain IT cortical representation." In: PLoS computational biology 10.11 (2014), e1003915.
- [65] A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, and J. H. McDermott. "A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy." In: Neuron 98.3 (2018), pp. 630-644.
- [66] M. Schrimpf, J. Kubilius, M. J. Lee, N. A. R. Murty, R. Ajemian, and J. J. DiCarlo. "Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence." In: Neuron (2020).
- [67] B. A. Richards, T. P. Lillicrap, P. Beaudoin, Y. Bengio, R. Bogacz, A. Christensen, C. Clopath, R. P. Costa, A. de Berker, S. Ganguli, et al. "A deep learning framework for neuroscience." In: Nature neuroscience 22.11 (2019), pp. 1761–1770.
- [68] J. Cornford, D. Kalajdzievski, M. Leite, A. Lamarquette, D. M. Kullmann, and B. A. Richards. "Learning to live with Dale's principle: ANNs with separate excitatory and inhibitory units." In: International Conference on Learning Representations. 2020.
- [69] J. Guerguiev, T. P. Lillicrap, and B. A. Richards. "Towards deep learning with segregated dendrites." In: ELife 6 (2017), e22901.
- [70] D. Huh and T. J. Sejnowski. "Gradient descent for spiking neural networks." In: Advances in neural information processing systems 31 (2018).
- [71] E. O. Neftci, H. Mostafa, and F. Zenke. "Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks." In: IEEE Signal Processing Magazine 36.6 (2019), pp. 51–63.
- [72] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and W. Maass. "A solution to the learning dilemma for recurrent networks of spiking neurons." In: Nature communications 11.1 (2020), pp. 1–15.
- [73] Y. Li, Y. Guo, S. Zhang, S. Deng, Y. Hai, and S. Gu. "Differentiable Spike: Rethinking Gradient-Descent for Training Spiking Neural Networks." In: Advances in Neural Information Processing Systems 34 (2021).
- [74] A. Payeur, J. Guerguiev, F. Zenke, B. A. Richards, and R. Naud. "Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits." In: Nature neuroscience 24.7 (2021), pp. 1010-1019.
- [75] A. Robinson. "Did Einstein really say that?" In: *Nature* 557.7703 (2018), pp. 30–31.
- [76] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC press, 2018.
- [77] L. Lapique. "Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization." In: Journal of Physiology and Pathololgy 9 (1907), pp. 620-635.

- [78] L. F. Abbott. "Lapicque's introduction of the integrate-and-fire model neuron (1907)." In: Brain research bulletin 50.5-6 (1999), pp. 303-304.
- [79] N. Brunel and M. C. Van Rossum. "Lapicque's 1907 paper: from frogs to integrateand-fire." In: Biological cybernetics 97.5 (2007), pp. 337–339.
- R. Brette and W. Gerstner. "Adaptive exponential integrate-and-fire model as an effective description of neuronal activity." In: Journal of neurophysiology 94.5 (2005), pp. 3637–3642.
- [81] R. Jolivet, F. Schürmann, T. K. Berger, R. Naud, W. Gerstner, and A. Roth. "The quantitative single-neuron modeling competition." In: Biological cybernetics 99.4-5 (2008), p. 417.
- [82] E. M. Izhikevich. "Simple model of spiking neurons." In: IEEE Transactions on neural networks 14.6 (2003), pp. 1569–1572.
- [83] E. M. Izhikevich. "Which model to use for cortical spiking neurons?" In: IEEE transactions on neural networks 15.5 (2004), pp. 1063-1070.
- [84] E. M. Izhikevich. *Dynamical systems in neuroscience*. MIT press, 2007.
- [85] R Rosenbaum and K Josić. "Mechanisms that modulate the transfer of spiking correlations." In: Neural Computation 23.5 (2011).
- [86] G. B. Ermentrout and N. Kopell. "Parabolic bursting in an excitable system coupled with a slow oscillation." In: SIAM journal on applied mathematics 46.2 (1986), pp. 233–253.
- [87] G. B. Ermentrout and D. H. Terman. Mathematical foundations of neuroscience. Vol. 35. Springer Science & Business Media, 2010.
- D. H. Perkel, J. H. Schulman, T. H. Bullock, G. P. Moore, and J. P. Segundo. "Pacemaker neurons: effects of regularly spaced synaptic input." In: Science 145.3627 (1964), pp. 61-63.
- [89] N Kopell and G. Ermentrout. "Phase transitions and other phenomena in chains of coupled oscillators." In: SIAM Journal on Applied Mathematics 50.4 (1990), pp. 1014-1052.
- S. H. Strogatz and I. Stewart. "Coupled oscillators and biological synchronization." In: Scientific American 269.6 (1993), pp. 102–109.
- B. Ermentrout. "Type I membranes, phase resetting curves, and synchrony." In: *Neural computation* 8.5 (1996), pp. 979–1001.
- [92] F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural networks. Vol. 126. Springer Science & Business Media, 1997.
- [93] S. H. Strogatz. "From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators." In: Physica D: Nonlinear Phenomena 143.1-4 (2000), pp. 1-20.
- [94] F. C. Hoppensteadt and E. M. Izhikevich. "Synchronization of MEMS resonators and mechanical neurocomputing." In: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48.2 (2001), pp. 133–138.
- S. Oprisan, A. Prinz, and C. Canavier. "Phase resetting and phase locking in hybrid circuits of one model and one biological neuron." In: Biophysical journal 87.4 (2004), pp. 2283–2298.

- [96] S. Achuthan and C. C. Canavier. "Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators." In: Journal of Neuroscience 29.16 (2009), pp. 5218-5233.
- [97] C. C. Canavier and S. Achuthan. "Pulse coupled oscillators and the phase resetting curve." In: Mathematical biosciences 226.2 (2010), pp. 77–96.
- [98] K. M. Stiefel and G. B. Ermentrout. "Neurons as oscillators." In: Journal of neurophysiology 116.6 (2016), pp. 2950-2960.
- [99] W. S. McCulloch and W. Pitts. "A logical calculus of the ideas immanent in nervous activity." In: *The bulletin of mathematical biophysics* 5.4 (1943), pp. 115–133.
- [100] J. J. Hopfield. "Neural networks and physical systems with emergent collective computational abilities." In: Proceedings of the national academy of sciences 79.8 (1982), pp. 2554–2558.
- [101] D. J. Amit, H. Gutfreund, and H. Sompolinsky. "Spin-glass models of neural networks." In: *Physical Review A* 32.2 (1985), p. 1007.
- [102] I. Ginzburg and H. Sompolinsky. "Theory of correlations in stochastic neural networks." In: *Physical review E* 50.4 (1994), p. 3171.
- [103] C. van Vreeswijk and H. Sompolinsky. "Chaotic balanced state in a model of cortical circuits." In: Neural computation 10.6 (1998), pp. 1321-1371.
- [104] A. Renart, J. De La Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, and K. D. Harris. "The asynchronous state in cortical circuits." In: science 327.5965 (2010), pp. 587-590.
- [105] a Destexhe and D Paré. "Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo." In: J. Neurophysiol. 81.4 (1999), pp. 1531-47. ISSN: 0022-3077.
- [106] A. Destexhe, M. Rudolph, and D. Paré. "The high-conductance state of neocortical neurons in vivo." In: Nat. Rev. Neurosci. 4.4 (2003), pp. 739-51. URL: http://www.ncbi.nlm.nih.gov/pubmed/10200189.
- [107] A. Kuhn, A. Aertsen, and S. Rotter. "Neuronal integration of synaptic input in the fluctuation-driven regime." In: J. Neurosci. 24.10 (2004), pp. 2345–56. ISSN: 1529-2401.
- [108] E. Zohary, M. N. Shadlen, and W. T. Newsome. "Correlated neuronal discharge rate and its implications for psychophysical performance." In: Nature 370.6485 (1994), pp. 140–143.
- [109] B. B. Averbeck and D. Lee. "Effects of noise correlations on information encoding and decoding." In: Journal of neurophysiology 95.6 (2006), pp. 3633-3644.
- B. B. Averbeck, P. E. Latham, and A. Pouget. "Neural correlations, population coding and computation." In: *Nature reviews neuroscience* 7.5 (2006), pp. 358–366.
- [111] R. Moreno-Bote, J. Beck, I. Kanitscheider, X. Pitkow, P. Latham, and A. Pouget. "Information-limiting correlations." In: Nature neuroscience 17.10 (2014), pp. 1410-1417.
- [112] S. Panzeri, M. Moroni, H. Safaai, and C. D. Harvey. "The structures and functions of correlations in neural population codes." In: Nature Reviews Neuroscience (2022), pp. 1-17.

- [113] R. Brette. "Is coding a relevant metaphor for the brain?" In: Behavioral and Brain Sciences 42 (2019).
- [114] N. Brunel. "Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons." In: Journal of computational neuroscience 8.3 (2000), pp. 183-208.
- [115] X. Jiang, S. Shen, C. R. Cadwell, P. Berens, F. Sinz, A. S. Ecker, S. Patel, and A. S. Tolias. "Principles of connectivity among morphologically defined cell types in adult neocortex." In: Science 350.6264 (2015), aac9462.
- A. L. Barth et al. "Comment on " Principles of connectivity among morphologically defined cell types in adult neocortex"" in: Science 353.6304 (2016), pp. 1108-1108. DOI: 10.1126/science.aaf5663.
- X. Jiang, S. Shen, F. Sinz, J. Reimer, C. R. Cadwell, P. Berens, A. S. Ecker, S. Patel, G. H. Denfield, E. Froudarakis, et al. "Response to Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex"." In: Science 353.6304 (2016), pp. 1108-1108.
- R. B. Levy and A. D. Reyes. "Spatial profile of excitatory and inhibitory synaptic [118] connectivity in mouse primary auditory cortex." In: Journal of Neuroscience 32.16 (2012), pp. 5609–5619.
- C. Van Vreeswijk and H. Sompolinsky. "Chaos in neuronal networks with balanced excitatory and inhibitory activity." In: Science 274.5293 (1996), pp. 1724-1726.
- M. Helias, T. Tetzlaff, and M. Diesmann. "The correlation structure of local neuronal networks intrinsically results from recurrent dynamics." In: PLoS Comput Biol 10.1 (2014), e1003428.
- R. Rosenbaum, M. Smith, A Kohn, J. Rubin, and B Doiron. "The spatial structure of correlated neuronal variability." In: *Nature Neuroscience* 20.1 (2017), p. 107.
- R. Darshan, C. van Vreeswijk, and D. Hansel. "Strength of correlations in strongly recurrent neuronal networks." In: *Phys Rev X* 8.3 (2018), p. 031072.
- C. Baker, C. Ebsch, I. Lampl, and R. Rosenbaum. "Correlated states in balanced neuronal networks." In: Physical Review E 99.5 (2019), p. 052414.
- K. Wimmer, A. Compte, A. Roxin, D. Peixoto, A. Renart, and J. de la Rocha. "The dynamics of sensory integration in a hierarchical network explains choice probabilities in MT." In: *Nat Commun* 6 (2015), pp. 1–13. ISSN: 2041-1723. DOI: 101038/ncomms7177.
- [125] I. D. Landau, R. Egger, V. J. Dercksen, M. Oberlaender, and H. Sompolinsky. "The impact of structural heterogeneity on excitation-inhibition balance in cortical networks." In: Neuron 92.5 (2016), pp. 1106–1121.
- [126] C. Ebsch and R. Rosenbaum. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits." In: PLoS Computational Biology 14.3 (2018), e1006048.
- [127] M. Okun and I. Lampl. "Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities." In: Nat Neurosci 11.5 (2008), pp. 535-537.

- [128] M. Wehr and A. M. Zador. "Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex." In: *Nature* 426.6965 (2003), pp. 442–446.
- [129] B. Haider, A. Duque, A. R. Hasenstaub, and D. A. McCormick. "Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition." In: J Neurosci 26.17 (2006), pp. 4535-4545.
- [130] A. L. Dorrn, K. Yuan, A. J. Barker, C. E. Schreiner, and R. C. Froemke. "Developmental sensory experience balances cortical excitation and inhibition." In: Nature 465.7300 (2010), pp. 932-936.
- [131] H. Adesnik and M. Scanziani. "Lateral competition for cortical space by layerspecific horizontal circuits." In: Nature 464.7292 (2010), p. 1155.
- [132] M. Xue, B. V. Atallah, and M. Scanziani. "Equalizing excitation-inhibition ratios across visual cortical neurons." In: Nature 511.7511 (2014), pp. 596-600. ISSN: 0028-0836. DOI: 10.1038/nature13321.
- [133] J. Barral and A. D. Reyes. "Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal network dynamics." In: Nature neuroscience 19.12 (2016), pp. 1690–1696.
- [134] C van Vreeswijk and H Sompolinsky. "Methods and Models in Neurophysics Course 9: Irregular activity in large networks of neurons." In: Les Houches 80 (2005), pp. 341-406.
- [135] R. Rosenbaum and B Doiron. "Balanced Networks of Spiking Neurons with Spatially Dependent Recurrent Connections." In: Physical Review X 4.2 (2014), p. 021039.
- [136] R. Pyle and R. Rosenbaum. "Highly connected neurons spike less frequently in balanced networks." In: *Physical Review E* 93 (4 2016), p. 040302.
- [137] D. Dahmen, S. Grün, M. Diesmann, and M. Helias. "Second type of criticality in the brain uncovers rich multiple-neuron dynamics." In: Proc. Natl. Acad. Sci. U. S. A. 116.26 (2019), pp. 13051–13060.
- [138] C. Ebsch and R. Rosenbaum. "Spatially extended balanced networks without translationally invariant connectivity." In: Journal of Mathematical Neuroscience 10.1 (2020), pp. 1–14.
- [139] P. Ekelmans, N. Kraynyukova, and T. Tchumatchenko. "Targeting diverse operational regimes in recurrent spiking networks." In: bioRxiv (2022).
- [140] G. Mongillo, D. Hansel, and C. Van Vreeswijk. "Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission." In: Physical review letters 108.15 (2012), p. 158101.
- [141] C. Baker, V. Zhu, and R. Rosenbaum. "Nonlinear stimulus representations in neural circuits with approximate excitatory-inhibitory balance." In: PLoS Computational Biology 16.9 (2020), e1008192.
- [142] N. Brunel. "Is cortical connectivity optimized for storing information?" In: Nature neuroscience 19.5 (2016), pp. 749-755.
- [143] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, T. Adler, D. Kreil, M. K. Kopp, et al. "Hopfield Networks is All You Need." In: *International Conference on Learning Representations.* **2020**.

- [144] K. Hornik, M. Stinchcombe, and H. White. "Multilayer feedforward networks are universal approximators." In: Neural networks 2.5 (1989), pp. 359-366.
- [145] R. Naud and H. Sprekeler. "Sparse bursts optimize information transmission in a multiplexed neural code." In: Proceedings of the National Academy of Sciences 115.27 (2018), E6329–E6338.
- [146] B. A. Richards and T. P. Lillicrap. "Dendritic solutions to the credit assignment problem." In: Current opinion in neurobiology 54 (2019), pp. 28–36.