Introduction of Renewable Energy

Fujin Deng
School of Electrical Engineering

Email: fdeng@seu.edu.cn

Course Assessment

- 1 Total Achievement =
 - Course Presentation
 - Examination

Reference Books

- 1程明,张建忠,王念春编著.可再生能源发电技术. 机械工业出版社,2012.
- 2 B. Wu, Y. Lang, Power Conversion and Control of Wind Energy Systems, 2011.
- 3 F. Blaabjerg, Z. Chen, Power Electronics for Modern Wind Turbines, 2006.
- 4 王长贵、崔容强、周篁主编. 新能源发电技术. 中国电力出版社, 2003.

Overview

- Why "Renewable Energy"?
- Wind Power
- Wind Turbine
- Wind Farms
- Wind Power Transmission

Overview

- Why "Renewable Energy"?
- > Wind Power
- Wind Turbine
- Wind Farms
- Wind Power Transmission

Non-Renewable Energy?

Non-Renewable Energy?

Coal

Gasoline

Features of Non-Renewable Energy?

Features of Non-Renewable Energy?

Fossil Fuel

- Non-renewable energy
- Not clean
- Air pollution
- Water pollution
- Climate change

Carbon Dioxide Emission in China

What should we do?

What is Renewable Energy?

■ What is Renewable Energy?
The energy that is collected from renewable resources, which are naturally replenished on a human timescale.

Why Renewable Energy?

Growth in energy demand

Security of energy supply

Reduction of CO2-emission

Demographic Dynamics

- Features of Renewable Energy?
 - Sustainable
 - Clean
 - High quality at a competitive cost
 - Reliable

Renewable Energy?

Renewable Energy Technologies

Wave

Small Hydro

Solar energy photovoltaic

■ Wind power

Solar Power

■ Solar Power

Hydro Power

Hydro Power

Ocean Power

Ocean Power

Biomass Power

Biomass Power

Renewable Energy System

Overview

- ➤ Why "Renewable Energy"?
- Wind Power
- Wind Turbine
- Wind Farms
- Wind Power Transmission

Wind Power

- Renewable energy
- Clean
- Almost no pollution
- Cost-effective

Early Wind Power Utilization

As early as 3000 B.C., people used wind energy for the first time in the form of sail boats in Egypt.

The earliest windmills, used to grind grain, came about in 2000 B.C.

Early Wind Turbine Utilization

Dutch wind turbines, in the Middle Ages, 16. Century

Early Wind Turbine Utilization

America wind turbines around 1900

Modern Wind Turbines

European Union (EU) Power

EU Power Mix in 2000

EU Power Mix in 2015

Growth of Wind Turbine Size

Development in Wind Energy Technology

Current developments, Vestas A/S Denmark

0	Wind concert and rightning conductors	0	WRIP-Top controller with converter	0	Courbox	0	Risds nooring
0	cooler for gearbox. generator and hydraelics	0	obustesq. tesecator	•	Machine foundation	0	Brade Nub
0	Converter cooler	0	Composite disc coupling	0	Main shaft	0	Hub controller
0	Heliticist platform (Option)	0	Sarvica crana	0	Van goare	0	Pitch cylinder
0	Autación agric (Option)	0	Machanical disc brace	0	Natr tearing	0	Brasa

Vestas off-shore turbine Rated power: 4,500 kW Rotor diameter: 120 m

Hub height: 90 m

Turbine concept: Gearbox, variable

speed, variable pitch

Generator: HV DFIG

Haliade™ 150-6MW New generation offshore wind turbine

6MW offshore wind turbine with 150m rotor

- Robust: ALSTOM PURE TORQUE®
- Simple: Direct Drive PMG
- Efficient: Large rotor gives higher yield

E126/7,580 kW

Rated power:	7,580 kW
Rotor diameter:	127 m
Hub height:	135 m
Type:	Upwind rotor with active pitch control
Rotational direction:	Clockwise
No. of blades:	3
Swept area:	12,668 m ²
Blade material:	GRP (epoxy resin); integrated lightning protection
Rotational speed:	variable, 5 – 11.7 rpm

Vestas V164-8.0

Technical Specifications Operational data

Rated power: 8,000 kW Cut-in wind speed: 4 m/s

Operational rotor speed: 4.8 - 12.1 rpm

Nominal rotor speed: 10.5 rpm

Operational temperature range: -10 to +25°C

Extreme temperature range: -15 to +35°C

Rotor

Rotor diameter: 164 m Swept area: 21,124 m²

Electrical

Frequency: 50 Hz

Converter type: Full scale converter Generator type: Permanent magnet Nominal voltage: 33 - 35 and 66 kV

Danish Energy Industry

 Denmark is one of the earliest wind power developers

- Denmark produces 47% of electricity consumption from wind source in 2019
- Aims for a 50% wind share by 2020
- Denmark also has large number of CHP installations which supply both heat and electricity load with a high efficiency.

Future: A fossil fuel free energy society

Danish Energy Development

Primary energy consumption if Danish energy system is converted into 100 percent RES.

Henrik Lund, Renewable energy strategies for sustainable development.

Wind Power to Households

Image

Normally, how many households can be supported by one 5 MW wind turbine

7

(10? 50? 100? 500? 1000? 2000? 5000?)

Wind Power to Households

Chinese Wind Energy

Wind Energy in China

The total amount of wind energy is 1 billion KW available

Wind energy is distributed widely

Overview

- Why "Renewable Energy"?
- Wind Power
- Wind Turbine
- Wind Farms
- Wind Power Transmission

Wind Turbine

- Power capture
- Drive system

Generator

Power electronic converter

Captured Wind Turbine

Does wind turbine with high speed $\omega_{\rm w}$ lead to higher $P_{\rm w}$? (Yes or No)

Drive System

Generators

Converter

Power Electronic Converters

Conclusions

Overview

- ➤ Why "Renewable Energy"?
- Wind Power
- Wind Turbine
- Wind Farms
- Wind Power Transmission

Wind Farm

	Offshore Wind Farm		Land Wind Farm	
Wind Source	Better	>	Normal	
Wind speed	Higher	>	Normal	
Electricity	More	>	Normal	

Typical Offshore Wind Farm

Mature AC Technology

33 kV collection AC voltage

50 Hz transformer at offshore station

Danish Offshore Wind Farms

Developments in Wind Energy Technology

Developments -off-shore wind farms

Official Name:	Horns Rev 2	
Alternative Name:	Horns Reef 2	
Development Status:	Commissioned	
Area of Wind Farm:	$33 \; \mathrm{km}^2$	
Number of Rows/Turbines:	13 x 7 turbines	
Location:	Blåvandshuk	
Region:	Esbjerg, Vestjylland	
Country:	Denmark	
Sea Name:	North Sea	
GPS Latitude:	55.6008	
GPS Longitude:	7.5825	
Distance From Shore:	30 km	
Water Depth:	9-17 m	

Total Installed Capacity:	209.3 MW
Total Number of Turbines:	91
Annual Production:	956.03 GWh in 2012
Capacity Factor:	52.14 % in 2012

Overview

- ➤ Why "Renewable Energy"?
- Wind Power
- Wind Turbine
- Wind Farms
- Wind Power Transmission

Wind Power Transmission

- High Voltage Alternative Current (HVAC) Technology
- High Voltage Direct Current (HVDC) Technology

Thanks!