Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

${\bf ELE2715}$ - circuitos digitais - Semana 6

Grupo 01

Líder	Matricula	Nome
	20170040919	EDUARDO GARCIA ZACCHARIAS
•	20160142657	JOAO MATHEUS BERNARDO RESENDE
	20200150293	JOSE LINDENBERG DE ANDRADE
	20180151241	MARCELO FERREIRA MOTA JÚNIOR
	20160106801	MARIA LUIZA DE LIMA ROCHA

${\bf Grupo}~{\bf 02}$

Líder	Matricula	Nome
	20170043358	ALBERTHO SIZINEY COSTA
	20170036273	IGOR MICHAEL ARAUJO DE MACEDO
	20170040418	PEDRO HENRIQUE DE FREITAS SILVA
•	20170038779	STHEFANIA FERNANDES SILVA

${\bf Grupo}~{\bf 03}$

Líder	Matricula	Nome
•	20170138246	ALYSSON FERREIRA DA SILVA
	20170117907	ISAAC DE LYRA JUNIOR
	20150126669	LUCAS BATISTA DA FONSECA
	20190071752	VINICIUS SOUZA FONSÊCA
	20160159144	WESLEY BRITO DA SILVA

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

Disciplina: ELE2715 - Circuitos Digitais Período: 2020.2
Aluno: Problema: 03

Projete um circuito digital capaz de implementar um contador inteligente (ver Figura 1). O contador fará uma contagem crescente sempre que a entrada $\mathbf{up/dw}$ estiver em nível lógico alto e fará uma contagem decrescente quando a entrada $\mathbf{up/dw}$ estiver em nível lógico baixo. A faixa de valores que o contador irá operar fica entre um valor mínimo e máximo definidos pelo usuário através da entrada $\mathbf{mx/mi}$ em conjunto com a entrada \mathbf{load} e os valores definidos nas entradas de 4 bits A_2 , A_1 e A_0 . O contador irá crescer ou decrescer de acordo com o passo definido pelo usuário através da entrada \mathbf{step} em conjunto com a entrada \mathbf{load} e o valor definido na entrada de 4 bits A_0 . Quando a entrada \mathbf{clr} estiver em nível lógico alto, o contador será automaticamente ajustado para contar entre 0 e 999 com passo de 1. Por fim, a saída LED irá para nível lógico alto sempre que o valor da contagem atingir o valor máximo ou o mínimo definidos e as saídas de 4 bits Q_2 , Q_1 e Q_0 representam o valor da contagem, em BCD, a qualquer instante.

Figura 1: Circuito do contador inteligente

Observações

- Para o aluno desenvolver uma solução para o problema, ele deverá consultar livros de circuitos digitais, datasheet de componentes eletrônicos e quaisquer referências técnicas que possam auxiliar. Todas as referências consultadas devem ser citadas de forma adequada e identificadas nos relatórios.
- Na semana de projeto, deve-se realizar todas as definições necessárias, deve-se especificar, detalhar e realizar o projeto de forma estruturada e, por fim, deve-se elaborar um relatório técnico, o qual será auto-contido, ou seja, todas as informações necessárias para a implementação do projeto devem constar no relatório.
- Na semana da implementação deverão ser desenvolvidos a simulação em VHDL e esquemáticos eletrônicos do circuito projetado e, além disso, deve-se elaborar um relatório técnico com o detalhamento da implementação, com as correções do projeto e com a apresentação dos resultados que comprovem a correta implementação do projeto.