

Marco Listanti

Esercizi strato di rete (parte 2)

Esercizio 1 (1)

- Si consideri un router che connette tre sottoreti: sottorete 1, sottorete 2 e sottorete 3.
- Tutte le interfacce delle sottoreti hanno il prefisso 223.1.17/24 e che la sottorete 1 deve servire almeno 60 interfacce, la sottorete 2 almeno 90 interfacce, mentre la sottorete 3 deve servire almeno 12 interfacce
- Si scrivino tre indirizzi di rete (nella forma a.b.c.d/x) che soddisfino tali vincoli
- In base agli indirizzi ipotizzati nel punto precedente, quanti indirizzi rimangono ancora non assegnati

Esercizio 1 (2)

- Per soddisfare i vincoli la lunghezza dei campi di host_id deve essere almeno uguale a
 - Sottorete 1: 6 bit (26=64 > 60 host)
 - Sottorete 2: $\frac{7}{100}$ bit (2^{7} =128 > 90 host)
 - Sottorete 3: 4 bit (24=16 > 12 host)
- Considerando che è consigliabile iniziare l'assegnazione dalla rete di dimensioni maggiori, possibili indirizzi possono essere
 - Sottorete 2: 223.1.17.0/25 \rightarrow 223.1.17.[0 0000000]
 - Sottorete 1: 223.1.17.128/26 \rightarrow 223.1.17.[10 000000]
 - Sottorete 3: $223.1.17.192/28 \rightarrow 223.1.17.[1100 0000]$
- L'intervallo di indirizzi non assegnati è il seguente
 - 223.1.17.1101 0000
 - 223.1.17.1111 1111

3 blocchi da 16 indirizzi, ovvero 48 indirizzi

Esercizio 2 (1)

- Si consideri una sottorete con prefisso 128.119.40.128/26
- Si scriva un indirizzo W (nella forma xxx.xxx.xxx.xxx)
 che può essere assegnato a questa rete
- Si assuma che un ISP possieda il blocco di indirizzi 128.119.40.64/26 a partire dal quale voglia creare quattro sottoreti, e che ciascun blocco abbia lo stesso numero di indirizzi IP
- Quali sono i prefissi (nella forma a.b.c.d/x) per le quattro sottoreti ?

Esercizio 2 (2)

- A partire dalla sottorete con prefisso 128.119.40.128/26 si può assegnare qualsiasi indirizzo nell'intervallo:
 - [128.119.40.10000000; 128.119.40.10111111]
 - ovvero
 - [128.119.40.128 ; 128.119.40.191]
 - In totale: 64 indirizzi
- Devo avere ulteriori 2 bit per discriminare le quattro sottoreti (in totale 28 bit di subnet_id) e dovendo essere le reti di uguale dimensione sono necessari 24=16 indirizzi per il campo host_id.
- I prefissi di sottorete avranno quindi 28 bit e possono essere:
- $128.119.40.80/28 \rightarrow [128.119.40.144; 128.119.40.159] \rightarrow [10010000]$
- $128.119.40.96/28 \rightarrow [128.119.40.160; 128.119.40.175] \rightarrow [10100000]$

Esercizio 3 (1)

- Si consideri la topologia di rete mostrata in figura.
- (1) Si assegnino gli indirizzi di rete alle sei sottoreti, con i seguenti vincoli
 - (a) tutti gli indirizzi devono essere allocati a partire da 214.97.254.0/23
 - (b) la sottorete A deve supportare 250 interfacce
 - (c) le sottoreti B e C devono supportarne 120 interfacce ciascuna
 - (d) le sottoreti D, E e F hanno inveve 2 interfacce
 - Per ciascuna sottorete, l'assegnazione deve assumere la forma a.b.c.d/x
- (2) Utilizzando la risposta del quesito (1), si scriva le tabelle di routing per i tre router (si usi l'algoritmo «longest prefix matching»).

Esercizio 3 (2)

- Quesito 1 Una possibile assegnazione è la seguente:
 - Indirizzo di partenza

- Subnet A: 214.97.254.0/24 (256 indirizzi)
 - **214.01100001.111111110.**00000000
- Subnet B: 214.97.255.0/25 (128 indirizzi)
 - **214.01100001.11111111.0**00000000
- Subnet C: 214.97.255.128/25 (128 indirizzi) (esaurito lo spazio 97.x.x/24)
 - **214.01100001.11111111.1**0000000
- Subnet D: 214.98.0.0/31 (2 indirizzi)
 - **214.01100010.00000000.0000000**0
- Subnet E: 214.98.0.2/31 (2 indirizzi)
 - **214.01100010.00000000.0000001**0
- Subnet F: 214.98.0.4/30 (4 indirizzi totali, 2 indirizzi non utilizzati)
 - **214.01100010.00000000.000001**00

Esercizio 3 (3)

Router R1 (tre interfacce: subnet A,D,F)

11010110 01100001 11111110 (214.97.254.0/24) Subnet A

11010110 01100010 00000000 0000000 (214.98.0.0/31) Subnet D

11010110 01100010 00000000 0000001 **(214.98.0.2/31)** Subnet E

Router R2 (tre interfacce: subnet B,E,F)

11010110 01100001.11111111.0 (214.97.255.0/25) Subnet B

11010110 01100010 00000000 0000001 **(214.98.0.2/31)** Subnet E

11010110 01100010 00000000 000001 (214.98.0.4/30) Subnet F

Router R3 (tre interfacce: subnet C,D,F)

11010110 01100001 11111111 1 (214.97.255.128/25) Subnet C

11010110 01100010 00000000 0000000 (214.98.0.0/31) Subnet D

■ 11010110 01100010 00000000 000001 **(214.98.0.4/30)** Subnet F

Esercizio 4 (1)

- Si consideri la trasmissione di un pacchetto di lunghezza uguale a 2400 byte su un collegamento che ha una MTU di 700 byte
- Si assuma che il pacchetto abbia l'identificatore 422
- Si determini quanti frammenti vengono generati e quali sono i valori dei campi nei pacchetti IP generati dalla frammentazione

Esercizio 4 (2)

 Considerando che a partire nei frammenti occorre ripetere l'header IP (20 byte), lo schema di frammentazione è il seguente

20 byte	680 byte	680 byte	680 byte	340 byte
Dyle				

- Il numero di frammenti è dato da $\left| \frac{L-20}{L_E} \right| = \left| \frac{2400-20}{680} \right| = 4$
- Campi degli header dei frammenti
 - Frammento 1: ID: 422; MF: 1; Offset: 0
 - Frammento 2: ID: 422; MF: 1; Offset: 680/8 = 85
 - Frammento 3: ID: 422; MF: 1; Offset: 85 + 680/8 = 170
 - Frammento 4: ID: 422; MF: 0; Offset: 170 + 680/8 = 255

Esercizio 5 (1)

- Si consideri il trasferimento di un file MP3 in una rete IP in cui il protocollo di trasporto sia TCP
- La lunghezza massima dei pachetti è L_{MAX} =1500 byte (header inclusi) e che l'header IP e TCP sono di lunghezza L_H =20 byte ciascuno
- Il file MP3 ha una lunghezza L_{MP3}= 5·10⁶ byte
- Si determini il numero L_P di pacchetti necessari al trasferimento del file e la loro lunghezza

Esercizio 5 (2)

- Ogni pacchetto avrà un header di lunghezza L_{Htot}=2·L_H=40 byte
- Il campo informativo utile in ogni pacchetto avrà lunghezza massima L_{Imax}=L_{MAX}-L_{Htot}=1460 byte
- Il numero totale N_p di pacchetti sarà uguale a

$$N_p = \frac{L_{MP3}}{L_{Imax}} = \left[\frac{5 \cdot 10^6}{1.460 \cdot 10^3} \right] = 3425$$

- Tutti i primi 3424 pacchetti avranno lunghezza uguale 1500 byte
- L'ultimo pacchetto avrà lunghezza L_{last} uguale a

$$L_{last} = L_{MP3} - (N_p - 1) \cdot L_{Imax} + 40 = 1000 \ byte$$

Esercizio 6 (1)

Si consideri il seguente schema di rete

- (a) Si assegnino gli indirizzi a tutte le interfacce della rete domestica
- (b) Supponete che gli host abbiano due connessioni TCP in uscita, verso la porta 80 del server 128.119.40.86 Si scriva la tabella di traduzione del NAT

Esercizio 6 (2)

Considerando che: a) si hanno a disposizione 256 indirizzi e b) le configurazioni "0" e "1" sono riservate, una possibile assegnazione di indirizzi alle quattro interfacce della rete domestica è

Interfaccia A

192.168.1.10/24

Interfaccia B

192.168.1.20/24

Interfaccia C

192.168.1.30/24

Interfaccia D (router)

192.168.1.1/24

Esercizio 6 (3)

Considerando che sono attive 6 connessioni TCP, la tabella di conversione del NAT sarà ad esempio:

Lato WAN		Lato LAN		
Indirizzo	Porta	Indirizzo	Porta	
24.34.112.235	4030	192.168.1.10	3300	
24.34.112.235	4031	192.168.1.10	3301	
24.34.112.235	4032	192.168.1.20	3500	
24.34.112.235	4033	192.168.1.20	3501	
24.34.112.235	4034	192.168.1.30	3300	
24.34.112.235	4035	192.168.1.30	3301	

