

**Beschreibung****Mit Oberflächenwellen arbeitender Wandler**

5 Die Erfindung betrifft einen mit Oberflächenwellen arbeitenden Wandler (SAW-Wandler, SAW = Surface Acoustic Wave).

10 Ein SAW-Wandler umfaßt in der Regel zwei kammartige Elektroden, die ineinandergreifende Elektrodenfinger aufweisen. Diese Struktur ist auf einem piezoelektrischen Substrat angeordnet und dient zur elektroakustischen Umwandlung eines (hochfrequenten) elektrischen Signals in eine akustische Welle und umgekehrt. Die SAW-Wandler werden 15 insbesondere in Bandpaßfiltern von Datenübertragungssystemen verwendet.

20 Das elektrische Verhalten eines Filters wird in der Regel durch eine Übertragungsfunktion (Frequenzgang des Betrags und der Phase des übertragenen Signals) definiert. Eine wichtige Charakteristik der Übertragungsfunktion ist insbesondere die Welligkeit der Gruppenlaufzeit im Durchlaßbereich des 25 Filters.

25 Das akustische Verhalten eines Wandlers kann (lokal in longitudinaler Richtung) durch Wichtungsfunktionen (Anregungsfunktion bzw. Reflexionsfunktion) charakterisiert werden. Die Wichtungsfunktionen hängen von der longitudinalen Koordinate ab und beschreiben die Verteilung der Anregungs- 30 bzw. Reflexionsstärke im Wandler. Die Wichtungsfunktionen eines Wandlers können aufgrund der vorgegebenen elektrischen Filtereigenschaften bestimmt werden. Aus der errechneten Wichtungsfunktion kann man auf die erforderliche Anschlußfolge und Ausgestaltung der Elektrodenfinger 35 schließen. Dieser Zusammenhang ist jedoch nicht eindeutig.

Bekannt sind z. B. so genannte SPUDT-Filter (SPUDT = Single Phase Unidirectional Transducer), die sich dadurch auszeichnen, daß ihre Zellen - SPUDT-Zellen - jeweils zur gerichteten Abstrahlung der akustischen Welle dienen. Die 5 gerichtete Abstrahlung kommt durch die konstruktive Überlagerung der angeregten und der reflektierten Welle in eine Richtung bzw. destruktive Überlagerung der angeregten und der reflektierten Welle in die entgegengesetzte Richtung zustande.

10

Beim Filter-Design wird eine niedrige Einfügedämpfung des elektrischen Signals im Durchlaßbereich und gleichzeitig eine hohe Unterdrückung des Signals in Sperrbereichen des Filters angestrebt. Um gleichzeitig eine niedrige Einfügedämpfung des 15 Signals im Durchlaßbereich und eine hohe Unterdrückung des Signals in den Sperrbereichen gewährleisten zu können, die in der Nähe des Durchlaßbereichs spezifiziert sind, wird eine hohe Flankensteilheit der Übertragungsfunktion des Filters angestrebt. Um die Flankensteilheit der Übertragungsfunktion 20 zu erhöhen, muß die Impulsantwort des Filters im Zeitbereich verlängert werden. Dazu wird z. B. bei SPÜDT-Filtern die Zellenfolge so gewählt, daß es zu einer mehrfachen Reflexion der akustischen Welle im Wandler kommt, wodurch sich die Laufstrecke der Welle im Wandler entsprechend verlängert. Die 25 angeregte Welle und die (mehrfaech) reflektierten Wellenkomponenten überlagern sich je nach ihren relativen Phasen konstruktiv oder destruktiv. Die dazu notwendige Erhöhung der Reflexionsstärke hat den Nachteil, daß dabei auch die Welligkeit in der Frequenzcharakteristik der 30 Gruppenlaufzeit zunimmt.

Eine niedrige Einfügedämpfung im Durchlaßbereich bei einer hohen Unterdrückung in den Sperrbereichen kann im Prinzip in einem zweispurigen SPUDT-Filter erreicht werden. Bei 35 frequenzmäßig dicht beieinander angeordneten Durchlaß- und Sperrbereichen ist der Übergang von einer konstruktiven Überlagerung zu einer destruktiven Überlagerung der

Wellenkomponenten in den beiden Spuren jedoch erschwert.  
Dieser Übergang definiert die Flankensteilheit der  
Übertragungsfunktion des Filters. Es gelingt insbesondere  
nicht, eine geringe Welligkeit von z. B. unter 50 ns in der  
5 Frequenzcharakteristik der Gruppenlaufzeit im Durchlaßbereich  
des Filters bei einer hohen Flankensteilheit der  
Übertragungsfunktion zu erzielen.

Der Zusammenhang zwischen der für die Ausbreitung der  
10 akustischen Welle maßgeblichen Filtergeometrie und den  
elektrischen Filtereigenschaften ist äußerst komplex und läßt  
sich für die gegebene Filtergeometrie nur mit Hilfe  
aufwendiger numerischer Simulationen unter Berücksichtigung  
von allen mehrfach reflektierten Wellenkomponenten  
15 abschätzen. Daher kann man nicht ohne Weiteres ableiten, wie  
ein Filter mit vorgegebenen elektrischen Eigenschaften  
ausgebildet sein sollte.

Darüber hinaus ist es bekannt, daß die Wichtungsfunktion  
20 eines Filters durch eine entsprechende Optimierung derart  
verbessert werden kann, daß die Nichtlinearität des  
Phasenganges in begrenztem Umfang reduziert wird. Dies ist  
jedoch mit einer unerwünschten Verringerung der  
Reflexionsstärke im Wandler verbunden und führt im Hinblick  
25 zur erreichbaren Welligkeit der Gruppenlaufzeit im  
Durchlaßbereich zu unzureichenden Ergebnissen.

Aufgabe der vorliegenden Erfindung ist es, einen Wandler  
anzugeben, der in einem SAW-Filter einsetzbar ist und der  
30 dazu dient, eine geringe Welligkeit in der  
Frequenzcharakteristik der Gruppenlaufzeit im Durchlaßbereich  
dieses Filters bei einer hohen Unterdrückung im Sperrbereich  
ohne Reduzierung der Reflexionsstärke zu erreichen.

35 Diese Aufgabe wird erfindungsgemäß durch einen  
elektroakustischen Wandler mit den Merkmalen von Anspruch 1

Die akustische Spur ist in longitudinaler Richtung in Zellen aufgeteilt. Zumindest einige der Zellen sind als Funktionszellen (SPUDT-Zellen) ausbildet, die zur Anregung und/oder Reflexion der akustischen Welle dienen, wobei zumindest zwei Funktionszellen eines bestimmten Zelltyps vorgesehen sind.

Ein Zelltyp ist durch 1) die Anschlußfolge der Finger, 2) die auf die Wellenlänge bezogene, relative Breite der Finger und 3) den auf die Wellenlänge bezogenen, relativen Abstand zwischen den Fingern definiert.

Die absolute Zellenlänge einer Funktionszelle ist z. B. durch den Abstand von der linken Kante des ersten Elektrodenfingers der Funktionszelle, die dem entsprechenden Zelltyp zugeordnet ist, bis zur entsprechenden Kante des ersten Elektrodenfingers der darauffolgenden Zelle definiert, wobei die bei der Mittenfrequenz angeregte akustische Welle beim Durchgang der Laufstrecke, die der absoluten Zellenlänge gleich ist, im Wesentlichen eine Phasendrehung von  $2\pi$  oder einem ganzzahligen Vielfachen von  $2\pi$  erfährt.

Dabei gilt für zumindest zwei - insbesondere anregende - Funktionszellen des gleichen Zelltyps, daß die akustische Welle, die bei der Mittenfrequenz des Filters im Wandler angeregt wird, beim Durchlaufen einer Laufstrecke vom Anfang der Funktionszelle des entsprechenden Zelltyps bis zum Anfang der darauffolgenden Zelle in jeweiligen Funktionszellen 30 voneinander unterschiedliche Phasendrehungen  $\phi$  und  $\phi'$  erfährt.

Die absoluten Zellenlängen von allen Funktionszellen in einem bekannten Wandler werden so ausgewählt, daß die Welle mit einer bestimmten Frequenz (z. B. Mittenfrequenz) beim Durchlaufen dieser Zellen stets eine Phasendrehung von genau  $2\pi n$  erfährt.

Hingegen erfährt die der Mittenfrequenz entsprechende Welle, die auf eine Funktionszelle mit einer erfindungsgemäß modifizierten Laufstrecke trifft, beim Durchlaufen dieser 5 Funktionszelle eine vom Wert  $2\pi n$  abweichende Phasendrehung. Daher trifft diese Welle nach dem Durchlaufen der modifizierten Funktionszelle nicht mehr genau phasenrichtig auf die nachfolgenden Zellen. Die Beiträge einzelner Funktionszellen zur resultierenden Welle werden einander 10 gegenüber leicht phasenverschoben, was eine Anpassung der Phase der resultierenden Welle erlaubt.

Ein erfindungsgemäßer Wandler hat den Vorteil, daß eine Phasenanpassung der akustischen Welle im Durchlaßbereich des 15 entsprechenden Filters ohne Verringerung der Reflexionsstärke und folglich ohne Verringerung der Flankensteilheit der Übertragungsfunktion erreicht wird. Dabei kann in diesem Wandler bei einer geeigneten Optimierung der Zellenlängen eine geringe Welligkeit der Gruppenlaufzeit erreicht werden.

20 In der bevorzugten Variante der ersten Ausführungsform der Erfindung sind zumindest zwei der Funktionszellen eines bestimmten Zelltyps vorgesehen, die in longitudinaler Richtung eine geometrische Ähnlichkeit, d. h. einen bis auf 25 die Skalierung in longitudinaler Richtung identischen Aufbau aufweisen, wobei sie in dieser Richtung einander gegenüber unterschiedlich skaliert sind, so daß sie jeweils voneinander unterschiedliche Laufstrecken für die akustische Welle mit einer bestimmten Frequenz darstellen.

30 Der Unterschied in der Skalierung der unterschiedlich skalierten Funktionzellen des gleichen Zelltyps beträgt vorzugsweise zwischen 0,1 % und 20 %.

35 In einer weiteren vorteilhaften Variante der Erfindung wird vorgeschlagen, bei zumindest zwei Funktionszellen desselben Zelltyps, die identisch aufgebaute Elektrodenfinger-Gruppen

aufweisen, den Abstand zwischen dem endständigen Elektrodenfinger der entsprechenden Funktionszelle und dem diesem Elektrodenfinger zugewandten Elektrodenfinger der darauffolgenden Zelle in unterschiedlichen Funktionszellen desselben Zelltyps unterschiedlich zu wählen. Unter einer Elektrodenfinger-Gruppe versteht man in dieser Schrift alle Elektrodenfinger der entsprechenden Funktionszelle. Die identisch aufgebauten Elektrodenfinger-Gruppen weisen insbesondere eine gleiche Anschlußfolge der Elektrodenfinger, die gleiche (auf die Wellenlänge bezogene) Fingerbreite der entsprechenden Elektrodenfinger und die in den beiden Gruppen untereinander gleichen jeweiligen (auf die Wellenlänge bezogenen) Abstände zwischen den Elektrodenfingern auf.

15 Die Breite der Elektrodenfinger ist vorzugsweise so gewählt, daß sie im Wesentlichen  $m\lambda/16$  beträgt oder um maximal 20 % von diesem Wert abweicht, wobei m eine ganze Zahl ist.

20 In einer weiteren Variante der Erfindung ist zumindest eine weitere akustische Spur vorgesehen, die im Wesentlichen gleiche Merkmale wie die zuerst genannte akustische Spur aufweist, wobei die akustischen Spuren parallel zueinander angeordnet und elektrisch miteinander verbunden sind.

25 Die zweite Ausführungsform der Erfindung betrifft einen Wandler mit einer akustischen Spur, die in longitudinaler Richtung in Zellen unterschiedlichen Zelltyps aufgeteilt ist, wobei zumindest zwei Funktionszellen des gleichen Zelltyps jeweils mindestens einen breiten und mindestens einen schmalen Elektrodenfinger aufweisen. In den unterschiedlichen Funktionszellen des gleichen Zelltyps werden erfindungsgemäß voneinander unterschiedliche Reflexionsstärken erreicht, indem die Zellen des gleichen Zelltyps wie folgt optimiert werden.

35

Bei der zu optimierenden Funktionszelle wird, je nachdem ob die Reflexionsstärke reduziert oder erhöht werden soll, z. B.

ein Teil der Fingerbreite der schmalen, d. h. nicht-reflektierenden Finger abgeschnitten und dieser Teil der Fingerbreite den breiten, d. h. reflektierenden Fingern hinzugefügt, oder ein Teil der Fingerbreite der breiten 5 Finger abgeschnitten und dieser Teil der Fingerbreite den schmalen Fingern hinzugefügt. Bei der erfindungsgemäß optimierten Zelle ist die Summe der auf die Zellenlänge bezogenen relative Breitenänderungen aller Elektrodenfinger Null.

10

Unter einem schmalen Elektrodenfinger versteht man im Sinne der Erfindung einen Elektrodenfinger, dessen Breite im Vergleich zu der Breite eines als breit bezeichneten Elektrodenfingers z. B. um mindestens Faktor 2 kleiner ist.

15

Die optimierte Zelle unterscheidet sich von der nicht optimierten Zelle dadurch, daß die Summe der auf die Zellenlänge bezogenen relativen Breiten aller schmalen Elektrodenfinger um die Differenz  $+α$  ( $α ≠ 0$ , vorzugsweise  $|α| < 0,1$ ) 20 unterschiedlich gewählt ist. Gleichzeitig ist in der optimierten Zelle die Summe der auf die Zellenlänge bezogenen relativen Breiten aller breiten Elektrodenfinger um die Differenz  $-α$  unterschiedlich gewählt, so daß die relative Breitenänderung aller Elektrodenfinger Null ist. Die Abstände 25 zwischen den Fingern bleiben in den unterschiedlichen Zellen des gleichen Zelltyps vorzugsweise konstant.

Mehrere Zellen gleichen Zelltyps unterscheiden sich voneinander darin, daß maximal 20% der Breite eines oder mehrerer 30 Finger auf einen anderen oder mehrere andere Finger verteilt werden.

Die erfindungsgemäße Änderung der relativen Fingerbreiten im Wandler ist durch eine Wichtungsfunktion (der Reflexion) 35 definiert, die durch nur wenige Parameter definiert ist.



Die zweite Ausführungsform der Erfindung hat den Vorteil, daß die Reflexionsstärke einzelner Zellen mit vertretbarem Aufwand der Rechenzeit kontinuierlich variiert werden kann.

- 5    Welche Finger bei der erfindungsgemäßen Optimierung der Reflexionsstärke verschmälert und welche verbreitert werden, hängt von der Zellklasse (z. B. EWC-Zellklasse, Hanma-Hunsinger Zellklasse) und vom Zelltyp ab. Das Ausmaß, um welches die Finger verbreitert bzw. verschmälert werden, kann  
10   leicht aus einer über wenige Parameter definierten Wichtungsfunktion bestimmt werden.

Durch die erfindungsgemäße Optimierung der Reflexionsstärke einzelner Zellen gelingt es insbesondere, die Diskretisierungsfehler bei der Umsetzung kontinuierlicher Wichtungsfunktionen der Reflexion in eine diskrete Wandlergeometrie - mit einer begrenzten Anzahl der Zellen in der akustischen Spur - auszugleichen. Dies ist insbesondere bei Filtern mit einer niedrigen Mittenfrequenz und einer daraus resultierenden großen Wellenlänge wichtig, da auf der zur Verfügung stehenden Länge nur wenige Zellen untergebracht werden können, wobei die Abtastung der kontinuierlichen Wichtungsfunktionen sehr grob mit entsprechend großen Diskretisierungsfehlern ausfällt.

- 25   Die erste und die zweite Ausführungsform der Erfindung können miteinander kombiniert werden, wobei eine nach der zweiten Ausführungsform optimierte Funktionszelle z. B. zusätzlich gegenüber der Länge einer nicht optimierten Zelle gestaucht oder gedehnt wird. Dabei ist das Metallisierungsverhältnis und folglich auch die Ausbreitungsgeschwindigkeit der akustischen Welle in einer optimierten und in einer nicht optimierten Zelle gleich.

- 35   Durch die zusätzliche Skalierung der gemäß der zweiten Ausführungsform der Erfindung veränderten Zellen gelingt es insbesondere, die ungewollte Verschiebung der Reflexions- und

10

Anregungszentren, die durch die Fingerbreitenänderung zustande kommt, zu kompensieren.

- Im folgenden wird die Erfindung anhand von  
5 Ausführungsbeispielen und der dazugehörigen Figuren näher erläutert. Die Figuren zeigen anhand schematischer und nicht maßstabsgetreuer Darstellungen verschiedene Ausführungsbeispiele der Erfindung. Gleiche oder gleich wirkende Teile sind mit gleichen Bezugszeichen bezeichnet.  
10 Es zeigen in schematischer Draufsicht

Figur 1 ausschnittsweise die erste Ausführungsform eines erfindungsgemäßen Wandlers

15 Figur 2 ausschnittsweise eine weitere Variante der ersten Ausführungsform eines erfindungsgemäßen Wandlers

Figur 3 beispielhafte Zelltypen, die in einem erfindungsgemäßen Wandler verwendet werden

20 Figur 4 ausschnittsweise die zweite Ausführungsform eines erfindungsgemäßen Wandlers mit Zellen der HH-Zellklasse (Hanma-Hunsinger Zellen)

25 Figur 5 ausschnittsweise die zweite Ausführungsform eines erfindungsgemäßen Wandlers mit Zellen des EWC-Zellklasse (Electrode Width Control Zellen)

30 Figur 6 Vergleich der Kennlinien der Filter mit einem Wandler nach Stand der Technik und mit einem erfindungsgemäßen Wandler

Figur 7 die Kennlinien nach Figur 6 ausschnittsweise im Durchgangsbereich

35 Figur 1 zeigt ausschnittsweise schematisch einen erfindungsgemäßen Wandler mit einer akustischen Spur AS. Die

- akustische Spur AS ist auf einem piezoelektrischen Substrat angeordnet und weist zwei Stromschienen SS1 und SS2 einer ersten und einer zweiten kammartigen Elektrode auf. An die jeweilige Stromschiene sind Elektrodenfinger angeschlossen, 5 wobei die Elektrodenfinger der ersten und der zweiten Elektrode ineinander greifen. Zwei nebeneinander in longitudinaler Richtung angeordnete Elektrodenfinger unterschiedlicher Elektroden regen eine akustische Welle an. Zwei benachbarte Elektrodenfinger derselben Elektrode wirken 10 meist reflektierend, es sei denn, sie sind um  $\lambda/8$  voneinander beabstandet und weisen eine Breite von  $\lambda/8$ , d. h. wenn sie zusammen einen Splitfinger bilden, siehe Kommentare zu den Zellen H00 und E00 in Figur 3.
- 15 Die akustische Spur AS ist in longitudinaler Richtung in Zellen aufgeteilt. Beispielhafte Zelltypen und -klassen sind in Figur 3 beschrieben. In Figur 1 sind Funktionszellen Z1, Z2, Z1', Z3', Z2' und Z1'' zu sehen. Die Zellen Z1 und Z2 sind unterschiedlich ausgebildet, aber an dieselbe Frequenz 20 angepaßt. Die Zellen Z1', Z2' und Z3' sind erfindungsgemäß modifizierte Zellen.
- Dabei sind die Zellen Z1 und Z1' eines ersten Zelltyps im geometrischen Sinne ähnlich und können ineinander durch eine 25 entsprechende Skalierung in longitudinaler Richtung überführt werden. Die absolute Länge L1 der Zelle Z1, gemessen von der linken Kante des ersten Fingers 1 dieser Zelle bis zur linken Kante des ersten Fingers 11 der darauffolgenden Zelle Z2, unterscheidet sich dabei von der Länge L1' der skalierten 30 Zelle Z1', wodurch die akustische Welle beim Durchgang der beiden Zellen unterschiedliche Laufstrecken zurücklegt und folglich auch unterschiedliche Phasendrehungen erfährt. Auf diese Weise kann man die Anfangsphase, mit der die Welle beim Beginn der nächsten Zelle (Z2 bzw. Z3) ankommt, zweckmäßig 35 einstellen.

12

Die auch zum ersten Zelltyp gehörende  $Z_1''$  ist gegenüber der Zelle  $Z_1$  nicht skaliert.

Die Zellen  $Z_2$  und  $Z_2'$  sind die Zellen eines zweiten Zelltyps und sind wie die Zellen des ersten Zelltyps einander gegenüber skaliert, wobei der Skalierungsgrad für verschiedene Zelltypen gleich oder unterschiedlich gewählt werden kann.

- 10 Die Zellen  $Z_1$  und  $Z_1'$  entsprechen dem Zelltyp E11 in Figur 3. Sie wirken sowohl reflektierend als auch anregend. Die Zellen  $Z_2$  und  $Z_2'$  entsprechen dem Zelltyp H02 in Figur 3. Sie wirken nur reflektierend.
- 15 Figur 2 zeigt eine weitere Variante der Erfindung. Die an eine bestimmte Frequenz angepaßten Zellen  $Z_1$ ,  $Z_1''$  und  $Z_2$  und die modifizierten Zellen  $Z_1'$ ,  $Z_2'$  und  $Z_3'$  weisen jeweils eine einzige Elektrodenfinger-Gruppe FG1, FG2 bzw. FG3 (s. Figur) auf, die alle Elektrodenfinger der jeweiligen Zelle umfaßt.
- 20 Die Zellen  $Z_1$  und  $Z_1'$  des ersten Zelltyps weisen in dieser Variante der Erfindung jeweils gleich aufgebaute Elektrodenfinger-Gruppen FG1 auf.
- 25 Dabei sind die Zellen  $Z_1$  und  $Z_1'$  unterschiedlich lang. Die unterschiedlichen Zellenlängen in den Funktionszellen desselben Zelltyps werden dadurch erreicht, daß sich der Abstand L zwischen dem letzten Finger 10 der Fingergruppe FG1 der entsprechenden Funktionszelle  $Z_1$  und dem ersten Finger 11 der nächsten Zelle  $Z_2$  vom Abstand  $L'$  zwischen dem letzten Finger 10' der Fingergruppe FG1 der modifizierten Funktionszelle  $Z_1'$  und dem ersten Finger 11' der Zelle  $Z_3$  unterscheidet.
- 35 Analog dazu weisen die Zellen  $Z_2$  und  $Z_2'$  des zweiten Zelltyps jeweils gleich aufgebaute Elektrodenfinger-Gruppen FG2 auf.

Die Zelle Z2' ist gegenüber der Zelle Z2 wie eben beschrieben modifiziert.

Die Änderung der Laufstrecke bzw. der absoluten Zellenlänge  
5 kann in unterschiedlichen Zelltypen gleich oder unterschiedlich gewählt werden.

Figur 3 zeigt beispielhafte Zelltypen der SPUDT-Zellen, die in einem erfindungsgemäßen Wandler eingesetzt werden können.

10 Die in der Figur oben angeordneten Zelltypen gehören zu einer Zellklasse HH (Hanma-Hunsinger Zellen). Die in der Figur oben angeordneten Zelltypen gehören zu einer Zellklasse EWC (EWC-Zellen, EWC = Electrode Width Controlled).

15 Jede Zelle wird durch Anregung (Bezugszeichen E in Figur 3) und Reflexion (Bezugszeichen R in Figur 3) charakterisiert. Die Anregung bzw. Reflexion kann positiv, negativ oder gleich Null sein. Die Funktionszellen im Sinne der Erfindung sind die Zellen, die im Hinblick auf akustische Wellen  
20 reflektierend und/oder anregend wirken, also  $E \neq 0$  und/oder  $R \neq 0$  aufweisen.

Mehrere Zelltypen vorzugsweise derselben Zellklasse (z. B.  
die Zelltypen E00 – E22 der Zellklasse EWC) können in  
25 derselben akustischen Spur gemischt vorkommen. Die Reihenfolge der Zelltypen im Wandler ist durch die gewünschte Übertragungsfunktion und die daraus bestimmte Anregungs-Wichtungsfunktion und die Reflexions-Wichtungsfunktion des Wandlers bestimmt, wobei die Anregung und die Reflexion  
30 einzelner Zellen an die entsprechende Wichtungsfunktion angepaßt wird.

Die Zelltypen bis auf die Zelltypen E00 und H00 haben eine Länge, die  $n\lambda$  entspricht. Die Zelltypen E00 und H00 mit der  
35 Länge  $\lambda/2$  weisen einen Splitfinger auf und haben keine reflektierende oder anregende Funktion. Sie dienen ausschließlich zur Phasendrehung der Welle um  $180^\circ$  und werden

- beim Übergang von einer Gruppe der Funktionszellen mit einem bestimmten Vorzeichen der Anregung zur anderen Gruppe der Funktionszellen (mit dem umgekehrten Vorzeichen) zwischen den Zellengruppen eingesetzt. Wenn eine solche Zelle zwischen 5 zwei Zellen mit erfindungsgemäß modifizierten Zellenlängen (z. B. Z1' und Z3' in Figuren 1 und 2, wobei die Zelle Z3' allerdings umgepolt werden sollte) vorgesehen sind, so wird sie vorzugsweise entsprechend skaliert bzw. gestreckt. Auch wenn eine solche Zelle zwischen einer an die Frequenz 10 angepaßten und einer modifizierten Funktionszelle vorgesehen ist, kann ihre Dimension so angepaßt werden, daß beim Durchgang dieser Zelle die Phasendrehung der Welle um genau oder annähernd  $180^\circ$  erzielt wird.
- 15 Durch den entsprechend ausgewählten Skalierungsgrad der Zellen E00 und H00 kann die Anfangsphase der Welle in der nächsten Funktionszelle auch beeinflußt werden.

Eine reflektierend wirkende EWC-Zelle (z. B. E01, E02, E11, 20 E12, E21, E22) ist eine Funktionzelle, die auf der Längenskala von einer Wellenlänge drei Finger aufweist, von denen ein Finger breiter als die beiden anderen ausgebildet ist und eine Breite von  $3\lambda/8$  hat. Es ist vorgesehen, daß die Breite des breiteren der Elektrodenfinger im 25 erfindungsgemäßen Wandler vom Wert  $3\lambda/8$  um maximal 20 % abweichen kann.

Die EWC-Zelle (E10, E20), die zur Anregung der Welle dient und dabei nicht zur Reflexion beiträgt, ist eine 30 Funktionszelle, die auf der Längenskala von einer Wellenlänge vier Finger aufweist, wobei der erste Finger einer ersten Elektrode bzw. die darauffolgenden drei Finger einer zweiten Elektrode zugeordnet sind. Die Breite der Elektrodenfinger ist in einer solchen EWC-Zelle vorzugsweise im Wesentlichen 35 gleich gewählt.

15

Die Hanma-Hunsinger Zelle (H11, H12, H10, H21, H22, H20), die zur Anregung der Welle dient, ist eine Funktionszelle, die auf der Längenskala von einer Wellenlänge vier Finger aufweist, wobei der erste und der zweite Elektrodenfinger der ersten Elektrode angehören, und wobei der dritte und der vierte Elektrodenfinger der zweiten Elektrode angehören.

Eine Hanma-Hunsinger Zelle (H10, H20), die ausschließlich zur Anregung der Welle dient, weist vier Elektrodenfinger mit der gleichen Breite auf. Bei einer Hanma-Hunsinger Zelle (H11, H12, H21, H22), die sowohl zur Anregung als auch zur Reflexion ausgelegt ist, sind die Elektrodenfinger unterschiedlich breit gewählt.

- 15 Die Hanma-Hunsinger Zelle H01, H02, die ausschließlich zur Reflexion der akustischen Welle dient, ist eine Funktionszelle, die auf der Längenskala von einer Wellenlänge vier Finger aufweist, die an dieselbe Elektrode angeschlossen sind.
- 20 In Figur 4 ist ausschnittsweise ein Wandler gemäß der zweiten Ausführungsform der Erfindung gezeigt. Der Wandler weist nicht optimierte Funktionszellen Z1 - Z4 des Hanma-Hunsinger Zelltyps sowie entsprechende optimierte Funktionszellen Z1' - Z4' und Z1'' - Z4'' auf, die alle in einer akustischen Spur angeordnet sind.

Die Zelle Z1 und die optimierten Zellen Z1' und Z1'' entsprechen je nach Anschlußfolge der Elektrodenfinger dem Zelltyp H11 oder H21. Diese Zellen reflektieren positiv (nach rechts).

Die Zelle Z2 und die optimierten Zellen Z2' und Z2'' entsprechen je nach Anschlußfolge der Elektrodenfinger dem Zelltyp H12 oder H22. Diese Zellen reflektieren negativ (nach links).

35 Die Zelle Z3 und die optimierten Zellen Z3' und Z3'' entsprechen je nach Anschlußfolge der Elektrodenfinger dem Zelltyp

H10 oder H20. Die Zelle Z4 und die optimierten Zellen Z4' und Z4'' entsprechen dem Zelltyp H00. Diese Zellen sind nicht-reflektierend.

- 5 Die Zelle Z1 weist zwei schmale Elektrodenfinger SF1 und SF2 (1. und 3. Finger) und zwei breite Elektrodenfinger BF1 und BF2 (2. und 4. Finger) auf. Mit dem Bezugszeichen Z1' ist eine optimierte Zelle mit einer in positiver Richtung erhöhten Reflexionsstärke und mit dem Bezugszeichen Z1'' eine 10 optimierte Zelle mit einer in positiven Richtung verringerten Reflexionsstärke bezeichnet. Die optimierte Zelle Z1' weist Elektrodenfinger SF1', BF1', SF2' und BF2' auf, deren Breite gegenüber den entsprechenden Fingern der Zelle Z1 optimiert ist. Die optimierte Zelle Z1'' weist Elektrodenfinger SF1'', 15 BF1'', SF2'' und BF2'' auf, deren Breite gegenüber den entsprechenden Fingern der Zelle Z1 optimiert ist.

Um die Reflexionsstärke einer in eine bestimmte Richtung abstrahlenden Zelle zu erhöhen, werden die breiten und daher 20 reflektierend wirkenden Finger noch weiter, vorzugsweise gleichermaßen verbreitert und die schmalen Finger entsprechend, vorzugsweise auch gleichermaßen verschmälert. Um die Reflexionsstärke einer in eine bestimmte Richtung abstrahlenden Zelle zu reduzieren, werden die breiten und daher 25 reflektierend wirkenden Finger verschmälert und die schmalen Finger entsprechend verbreitert.

- Bei einer nicht-reflektierenden Zelle, also Zelle, welche mehrere Finger gleicher Breite aufweist, ist es möglich, 30 durch eine geringfügige Breitenänderung bestimmter Finger - erfindungsgemäß unter Beibehaltung der Gesamtfingerbreite rpo Zelle - die ursprüngliche Null-Reflexion in positive oder negative Richtung zu verschieben.
- 35 Um die Reflexionsstärke der in positiver Richtung abstrahlenden Zelle Z1 in positiver Richtung zu erhöhen, wird ein Teil der Fingerbreite von allen schmalen Fingern abgeschnitten und

- den breiten Fingern hinzugefügt, siehe Zelle  $Z_1'$ . Dabei wird vorzugsweise von jedem schmalen Finger der gleiche Teil  $\alpha/2$  der (relativen) Fingerbreite abgenommen und derselbe Teil der (relativen) Fingerbreite dem benachbarten breiten Finger hinzugefügt, so daß die Summe aller Fingerbreiten bzw. relativer Fingerbreiten konstant bleibt.

Um die Reflexionsstärke der in positiver Richtung abstrahlenden Zelle  $Z_1$  (in positive Richtung) zu reduzieren, wird ein Teil der Fingerbreite von allen breiten (d. h. reflektierend wirkenden) Fingern abgeschnitten und auf die schmalen Finger umverteilt, siehe Zelle  $Z_1''$ . Dabei wird vorzugsweise von jedem breiten Finger der gleiche Teil  $\alpha/2$  der relativen Fingerbreite abgenommen und derselbe Teil der relativen Fingerbreite dem benachbarten schmalen Finger hinzugefügt, so daß die Summe aller Fingerbreiten bzw. relativer Fingerbreiten konstant bleibt.

Die Zellen  $Z_2'$  -  $Z_4'$  entsprechen den optimierten Zellen mit einer in positiver Richtung erhöhten Reflexionsstärke. Die Zellen  $Z_2''$  -  $Z_4''$  entsprechen den optimierten Zellen mit einer in positiver Richtung reduzierten bzw. in negativer Richtung erhöhten Reflexionsstärke.

Die nicht-optimierten nicht-reflektierenden Zellen  $Z_3$  und  $Z_4$  weisen vier bzw. zwei gleich breite Finger auf. Um die Reflexion in die positive Richtung zu erhöhen, wird der erste und der dritte Finger verschmälert bzw. der zweite und der vierte Finger entsprechend verbreitert, siehe Zellen  $Z_3'$  und  $Z_4'$ . Um die Reflexion in die negative Richtung zu erhöhen, wird der erste und der dritte Finger verbreitert bzw. der zweite und der vierte Finger entsprechend verschmälert, siehe Zelle  $Z_3''$  und  $Z_4''$ .

Die nicht optimierten und die erfindungsgemäß optimierten Zellen können grundsätzlich direkt nebeneinander angeordnet

oder voneinander durch eine Abfolge der Zellen anderer Zelltypen getrennt sein.

In Figur 5 ist ausschnittsweise ein weiterer Wandler gemäß 5 der zweiten Ausführungsform der Erfindung gezeigt. Der Wandler weist nicht optimierte Funktionszellen Z1 - Z4 des EWC-Zelltyps sowie entsprechende optimierte Funktionszellen Z1' - Z3' und Z1'' - Z3'' auf, die alle in einer akustischen Spur angeordnet sind.

10

Die Zelle Z1 und die optimierten Zellen Z1' und Z1'' entsprechen je nach Anschlußfolge der Elektrodenfinger dem Zelltyp E11 oder E21. Diese Zellen reflektieren positiv (nach rechts).

15

Die Zelle Z2 und die optimierten Zellen Z2' und Z2'' entsprechen je nach Anschlußfolge der Elektrodenfinger dem Zelltyp E12 oder E22. Diese Zellen reflektieren negativ (nach links).

20

Die Zelle Z3 und die optimierten Zellen Z3' und Z3'' entsprechen je nach Anschlußfolge der Elektrodenfinger dem Zelltyp E10 oder E20. Diese Zellen sind nicht-reflektierend.

25 Die Zelle Z1 weist zwei schmale Elektrodenfinger SF1 und SF2 (1. und 2. Finger) und einen breiten Elektrodenfinger BF1 (3. Finger) auf. Mit dem Bezugssymbol Z1' ist eine optimierte Zelle mit erhöhter Reflexionsstärke und mit dem Bezugssymbol Z1'' eine optimierte Zelle mit verringelter Reflexionsstärke 30 bezeichnet.

Der reflektierend wirkende Finger BF1' der in positiver Richtung abstrahlenden Zelle Z1' ist gegenüber dem entsprechenden breiten Finger BF1 der Zelle Z1 etwas verbreitert und dabei die schmalen Finger SF1' und SF2' jeweils entsprechend verschmälert. Dadurch wird die Reflexion der Zelle Z1' in

positiver Richtung erhöht. Die Reflexion der Zelle  $Z_1''$  ist gegenüber der Zelle  $Z_1$  reduziert.

Bei der in negativer Richtung abstrahlender Zelle  $Z_2$  wird

5 eine in positiver Richtung höhere bzw. in negativer Richtung reduzierte Reflexion dadurch erreicht, daß der breite Finger (2. Finger) verschmälert und die schmalen Finger (1. und 3. Finger) entsprechend verbreitert werden, siehe Zelle  $Z_2'$ .

Umgekehrt wird in der optimierten Zelle  $Z_2''$  dieses Zelltyps

10 eine in negativer Richtung erhöhte bzw. in positiver Richtung reduzierte Reflexion dadurch erreicht, daß der breite Finger (2. Finger) verbreitert und die schmalen Finger (1. und 3. Finger) entsprechend verschmälert werden.

15 Bei der nicht-reflektierenden Zelle  $Z_3$  mit vier gleich breiten Fingern werden zur Verschiebung der Reflexion in positiver Richtung die ersten zwei Finger und zur Verschiebung der Reflexion in negativer Richtung der erste und der letzte Finger verschmälert.

20

Figur 6 zeigt die Übertragungsfunktion 22 eines Filters mit einem erfindungsgemäß optimierten Wandler gegenüber der Übertragungsfunktion 21 eines Filters mit einem nicht-optimierten Wandler. Das optimierte Filter weist einerseits eine niedrigere Einfügedämpfung und andererseits eine höhere nahe Selektion auf.

Figur 7 zeigt vergrößert den Durchlaßbereich der Übertragungsfunktionen 22 und 21 gemäß Figur 6.

30

Die relative Breitenänderung eines optimierten Fingers beträgt vorzugsweise bis 10% der Fingerbreite.

In einer Ausführungsform der Erfindung ist es vorgesehen, daß 35 der Wandler mit erfindungsgemäßen Eigenschaften in einem breitbandigen Filter, auch FAN genannt, eingesetzt wird, wobei der absolute Finger-Mittenabstand oder der Finger-

20

Mittenabstand und die Fingerbreite des Wandlers in einer transversalen Richtung abnimmt.

Obwohl in den Ausführungsbeispielen nur eine beschränkte Anzahl möglicher Weiterbildungen der Erfindung beschrieben werden konnte, ist die Erfindung nicht auf diese beschränkt. Es ist möglich, elektroakustisch aktive Strukturen wie z. B. Wandler und Reflektoren in beliebiger Anzahl und Formgebung herzustellen, um die Eigenschaften des Filters in einer gewünschten Weise zu verändern. Ein erfindungsgemäßes Filter ist auch nicht auf die angegebenen Materialien, auf die Anzahl der dargestellten Elemente oder auf bestimmte Frequenzbereiche beschränkt.

15

## Bezugszeichenliste

- AS akustische Spur  
Z1, Z2, Z3, Z1', Z1'' Funktionszellen  
5 Z1, Z2 nicht modifizierte Funktionszellen  
Z1', Z2' modifizierte Funktionszellen  
Z1'', Z2'' modifizierte Funktionszellen  
Z1, Z1' Funktionszellen desselben Zelltyps  
SS1 Stromschiene der ersten Elektrode  
10 SS2 Stromschiene der zweiten Elektrode  
L1 absolute Zellenlänge der Zelle Z1  
L1' absolute Zellenlänge der Zelle Z1'  
L Abstand zwischen dem endständigen Elektrodenfinger  
(10) der Funktionszelle Z1 und dem diesem  
15 Elektrodenfinger zugewandten Elektrodenfinger (11)  
der darauffolgenden Zelle Z2  
L Abstand zwischen dem endständigen Elektrodenfinger  
(10') der Funktionszelle Z1' und dem diesem  
Elektrodenfinger zugewandten Elektrodenfinger (11')  
20 der darauffolgenden Zelle Z3  
1 1. Elektrodenfinger der Zelle Z1  
10 letzter Elektrodenfinger der Zelle Z1  
11 1. Elektrodenfinger der Zelle Z2  
10' letzter Elektrodenfinger der Zelle Z1'  
25 11' 1. Elektrodenfinger der Zelle Z3  
21 Kennlinie eines Filters mit einem nicht  
modifizierten Wandler  
22 Kennlinie eines Filters mit einem erfindungsgemäß  
modifizierten Wandler (2. Ausführungsform)  
30 SF1, SF2 schmale Elektrodenfinger  
BF1, BF2 breite Elektrodenfinger  
FG1 Elektrodenfinger-Gruppe der Zelle Z1  
FG1' Elektrodenfinger-Gruppe der modifizierten Zelle Z1'  
EWC Zellen des EWC-Typs (Electrode Width Controlled)  
35 HH Zellen des Typs Hanma-Hunsinger  
E Anregung der Zelle  
R Reflexion der Zelle

22

E00, E01 - E22 Zellen des EWC-Typs (Electrode Width  
Controlled)

H00, H01 - H22 Zellen des Typs Hanma-Hunsinger

## Patentansprüche

1. Wandler für ein mit Oberflächenwellen arbeitendes Filter,  
mit einer akustischen Spur (AS), in der bei der  
5 Mittenfrequenz des Filters eine akustische  
Oberflächenwelle anregbar ist,  
wobei die akustische Spur (AS) in longitudinaler Richtung  
in Zellen unterschiedlichen Zelltyps aufgeteilt ist,  
wobei ein Zelltyp durch die Anschlußfolge der  
10 Elektrodenfinger einer Zelle definiert ist,  
wobei zumindest einige Zellen als Funktionszellen  
ausbildet sind, die zumindest eine Funktion, ausgewählt  
aus der Anregung und der Reflexion der akustischen Welle,  
erfüllen,  
15 wobei die Länge der Funktionszellen im Wesentlichen einer  
Phasendrehung der bei der Mittenfrequenz angeregten  
akustischen Welle um  $2\pi n$  entspricht, wobei n eine ganze  
Zahl ist,  
wobei zumindest zwei Funktionszellen ( $Z_1, Z_1'$ ) des  
20 gleichen Zelltyps vorgesehen sind,  
wobei die akustische Welle, die bei der Mittenfrequenz im  
Wandler angeregt wird, beim Durchlaufen zumindest zweier  
unterschiedlicher Laufstrecken, die jeweils vom Anfang  
der Funktionszelle des gleichen Zelltyps bis zum Anfang  
25 der darauffolgenden Zelle ( $Z_2, Z_3$ ) bemessen sind,  
voneinander unterschiedliche Phasendrehungen  $\phi$  und  $\phi'$   
erfährt.
2. Wandler für ein mit Oberflächenwellen arbeitendes Filter,  
30 mit einer akustischen Spur (AS), in der bei der  
Mittenfrequenz des Filters eine akustische  
Oberflächenwelle anregbar ist,  
wobei die akustische Spur (AS) in longitudinaler Richtung  
in Zellen unterschiedlichen Zelltyps aufgeteilt ist,  
35 wobei ein Zelltyp durch die Anschlußfolge der  
Elektrodenfinger einer Zelle definiert ist,  
wobei zumindest einige Zellen als Funktionszellen

ausbildet sind, die zumindest eine Funktion, ausgewählt aus der Anregung und der Reflexion der akustischen Welle, erfüllen,

wobei zumindest zwei Funktionszellen ( $Z_1, Z_1'$ ) des gleichen Zelltyps vorgesehen sind, die jeweils mindestens einen breiten (BF) und mindestens einen schmalen Elektrodenfinger (SF) aufweisen,

wobei in den unterschiedlichen Funktionszellen des gleichen Zelltyps voneinander unterschiedliche

Reflexionsstärken durch folgende Maßnahmen erreicht werden:

bei unterschiedlichen Funktionszellen des gleichen Zelltyps unterscheiden sich die Summen der auf die Zellenlänge bezogenen relativen Breiten aller schmalen

Elektrodenfinger um die Differenz  $+a$ , wobei sich gleichzeitig die Summen der auf die Zellenlänge bezogenen relativen Breiten aller breiten Elektrodenfinger um die Differenz  $-a$  unterscheiden, so daß in den unterschiedlichen Funktionszellen des gleichen Zelltyps

die Summe der relativen Breitenänderung aller Finger Null ist.

3. Wandler nach Anspruch 2,

bei dem die Länge der Funktionszellen im Wesentlichen einer Phasendrehung der bei der Mittenfrequenz angeregten akustischen Welle um  $2\pi n$  entspricht, wobei  $n$  eine ganze Zahl ist,

wobei die akustische Welle, die bei der Mittenfrequenz im Wandler angeregt wird, beim Durchlaufen zumindest zweier unterschiedlicher Laufstrecken, die jeweils vom Anfang der Funktionszelle desselben Zelltyps bis zum Anfang der darauffolgenden Zelle ( $Z_2, Z_3$ ) bemessen sind, voneinander unterschiedliche Phasendrehungen  $\phi$  und  $\phi'$  erfährt.

35 4. Wandler nach einem der Ansprüche 1 bis 3,

bei dem zumindest zwei Funktionszellen ( $Z_1, Z_1'$ ) des gleichen Zelltyps den gleichen Aufbau aufweisen, aber in

longitudinaler Richtung unterschiedlich skaliert sind.

5. Wandler nach Anspruch 4,  
bei dem mehr als nur ein Zelltyp mit unterschiedlich  
skalierten Funktionszellen vorgesehen ist.
- 10 6. Wandler nach Anspruch 4 oder 5,  
bei dem zumindest zwei Funktionzellen des gleichen  
Zelltyps unterschiedlich skaliert sind, wobei der  
Unterschied in der Skalierung zwischen 0,1 % und 20 %  
beträgt.
- 15 7. Wandler nach Anspruch 1 oder 2,  
bei dem alle Elektrodenfinger einer Funktionszelle ( $Z_1$ ,  
 $Z_1'$ ) zusammen eine Elektrodenfinger-Gruppe ( $FG_1$ ,  $FG_1'$ )  
bilden,  
wobei zumindest zwei Funktionszellen ( $Z_1$ ,  $Z_1'$ ) desselben  
Zelltyps identisch aufgebaute Elektrodenfinger-Gruppen  
( $FG_1$ ,  $FG_1'$ ) aufweisen,  
20 wobei die Funktionszellen ( $Z_1$ ,  $Z_1'$ ) desselben Zelltyps  
unterschiedliche absolute Zellenlängen aufweisen,  
wobei der jeweilige Abstand zwischen dem endständigen  
Elektrodenfinger (10) einer Funktionszelle und dem diesem  
Elektrodenfinger zugewandten Elektrodenfinger (11) der  
25 darauffolgenden Zelle in einer anderen Funktionszelle mit  
identisch aufgebauter Elektrodenfinger-Gruppe  
unterschiedlich gewählt ist.
- 30 8. Wandler nach einem der Ansprüche 1 bis 7,  
bei dem Zellen mit der Länge  $\lambda/2$  vorgesehen sind, die  
weder zur Reflexion noch zur Anregung der akustischen  
Welle beitragen.
- 35 9. Wandler nach einem der Ansprüche 1 bis 7,  
bei dem die Funktionszellen desselben Zelltyps jeweils  
vier Elektrodenfinger aufweisen.

10. Wandler nach einem der Ansprüche 1 bis 8,  
bei dem alle Funktionszellen eines Zelltyps jeweils drei  
Elektrodenfinger umfassen,  
wobei die Breite des breiteren der Elektrodenfinger im  
5 Wesentlichen  $3\lambda/8$  beträgt oder  
wobei die Breite des breiteren der Elektrodenfinger vom  
Wert  $3\lambda/8$  um maximal 20 % abweicht.

11. Wandler nach einem der Ansprüche 1 bis 10,  
10 bei dem Elektrodenfinger vorgesehen sind, deren Breite im  
Wesentlichen  $m\lambda/16$  beträgt oder um maximal  $\pm 20\%$  von  
diesem Wert abweicht, wobei m eine ganze Zahl ist.

12. Wandler nach einem der Ansprüche 1 bis 11,  
15 bei dem zumindest eine weitere akustische Spur vorgesehen  
ist, die im Wesentlichen gleiche Merkmale wie die zuerst  
genannte akustische Spur (AS) aufweist,  
wobei die akustischen Spuren parallel zueinander  
angeordnet und elektrisch miteinander verbunden sind.

1/7



FIG 1



FIG 2



FIG 3

FIG 4



FIG 5



FIG 6



FIG 7



## INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/009371

## A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H03H9/145

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H03H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, IBM-TDB

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                   | Relevant to claim No. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | PATENT ABSTRACTS OF JAPAN<br>vol. 2000, no. 25,<br>12 April 2001 (2001-04-12)<br>-& JP 2001 237666 A (MATSUSHITA ELECTRIC<br>IND CO LTD), 31 August 2001 (2001-08-31)<br>abstract; figure 1<br>----- | 1,4-12                |
| A          | US 5 831 492 A (SOLIE LELAND P)<br>3 November 1998 (1998-11-03)<br>figure 13<br>-----                                                                                                                | 1,4-12                |

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

## ° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

8 December 2004

Date of mailing of the International search report

04.02.2005

## Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
 Fax: (+31-70) 340-3016

Authorized officer

Radomirescu, B-M

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/EP2004/009371

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
  
3.  Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

**SEE SUPPLEMENTAL SHEET**

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
  1. Claim 1 and claims 4-12 (when dependent on claim 1)

**Remark on Protest**

- The additional search fees were accompanied by the applicant's protest.  
 No protest accompanied the payment of additional search fees.

**PCT/EP2004/009371****PCT/ISA/210****Continuation of Box III**

The International Searching Authority has determined that this international application contains multiple (groups of) inventions, as follows:

1. Claim 1 and claims 4-12 (when dependent on claim 1)

Transducer operating with surface waves and having cells that are similar but scaled.

2. Claims 2-12 (when dependent on claim 2)

Transducer operating with surface waves and having cells that are width-weighted.

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP2004/009371

| Patent document cited in search report |   | Publication date |    | Patent family member(s) |  | Publication date |
|----------------------------------------|---|------------------|----|-------------------------|--|------------------|
| JP 2001237666                          | A | 31-08-2001       | JP | 3395752 B2              |  | 14-04-2003       |
| US 5831492                             | A | 03-11-1998       | AU | 5521996 A               |  | 01-04-1997       |
|                                        |   |                  | DE | 69515917 D1             |  | 27-04-2000       |
|                                        |   |                  | DE | 69515917 T2             |  | 05-10-2000       |
|                                        |   |                  | EP | 0850510 A1              |  | 01-07-1998       |
|                                        |   |                  | JP | 11500593 T              |  | 12-01-1999       |
|                                        |   |                  | WO | 9710646 A1              |  | 20-03-1997       |

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/009371

## A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 H03H/145

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

## B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole )  
IPK 7 H03H

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, IBM-TDB

## C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie <sup>a</sup> | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                              | Betr. Anspruch Nr. |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A                      | PATENT ABSTRACTS OF JAPAN<br>Bd. 2000, Nr. 25,<br>12. April 2001 (2001-04-12)<br>-& JP 2001 237666 A (MATSUSHITA ELECTRIC<br>IND CO LTD), 31. August 2001 (2001-08-31)<br>Zusammenfassung; Abbildung 1<br>----- | 1,4-12             |
| A                      | US 5 831 492 A (SOLIE LELAND P)<br>3. November 1998 (1998-11-03)<br>Abbildung 13<br>-----                                                                                                                       | 1,4-12             |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Rechercheberichts

8. Dezember 2004

04.02.2005

Name und Postanschrift der Internationalen Recherchenbehörde  
Europäisches Patentamt, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Radomirescu, B-M

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen  
PCT/EP2004/009371

## Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1.  Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2.  Ansprüche Nr. weil sie sich auf Teile der Internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3.  Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

## Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

siehe Zusatzblatt

1.  Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2.  Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3.  Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4.  Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:  
1, 4-12 (wenn Ansprüche 4-12 von Anspruch 1 abhängen)

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.  
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, dass diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1,4-12 (wenn Ansprüche 4-12 von Anspruch 1 abhängen)

Mit Oberflächenwellen arbeitender Wandler, der ähnliche aber skalierte Zellen hat.

---

2. Ansprüche: 2-12 (wenn Ansprüche 4-12 von Anspruch 2 abhängen)

Mit Oberflächenwellen arbeitender Wandler, der breitgewichtete Zellen hat.

---

**INTERNATIONALER RECHERCHENBERICHT**

Internationales Aktenzeichen

PCT/EP2004/009371

| Im Recherchenbericht<br>angeführtes Patentdokument | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie |             | Datum der<br>Veröffentlichung |
|----------------------------------------------------|-------------------------------|-----------------------------------|-------------|-------------------------------|
| JP 2001237666                                      | A 31-08-2001                  | JP                                | 3395752 B2  | 14-04-2003                    |
| US 5831492                                         | A 03-11-1998                  | AU                                | 5521996 A   | 01-04-1997                    |
|                                                    |                               | DE                                | 69515917 D1 | 27-04-2000                    |
|                                                    |                               | DE                                | 69515917 T2 | 05-10-2000                    |
|                                                    |                               | EP                                | 0850510 A1  | 01-07-1998                    |
|                                                    |                               | JP                                | 11500593 T  | 12-01-1999                    |
|                                                    |                               | WO                                | 9710646 A1  | 20-03-1997                    |