

Figure 1: Circuit 5



Figure 2:  $V_{in}$  for Small-Signal Test of Circuit 5



Figure 3:  $V_{out}$  for Small-Signal Test of Circuit 5

The small-signal gain can simply be acquired by taking the ratio of the amplitude of  $V_{out}$  to the amplitude of  $V_{in}$ . This should also be multiplied by a factor of -1 since the signals are out of phase by  $180^{\circ}$ . The gain can be determined theoretically from  $-g_m(R_D||R_L)$ .

Table 1: Common-Source Amplifier Gain

| Measured Gain [V/V] | Theoretical Gain [V/V] | Error from Theoretical |
|---------------------|------------------------|------------------------|
| -1.54               | -1.55                  | 0.16%                  |



Figure 4: Two-Stage Amplifier

The common-drain amplifier at the output will present nearly the same output voltage, but with a much lower output resistance. The theoretical gain can be calculated by multiplying a common-source gain with a common-drain gain (assumed to be about 1) and then applying the voltage division equation.

$$A_{cascade} = -\frac{g_{m,CSA}R_L(R_D||r_{o,CSA})}{r_{out,CDA} + R_L}$$
(1)

Table 2: Gain of Cascaded Amplifier

| Measured Gain [V/V] | Theoretical Gain [V/V] | Error from Theoretical |
|---------------------|------------------------|------------------------|
| -8.50               | -10.13                 | 16.12%                 |