Due:Oct 8 at noon

24 points

1. Give the sequence of configurations that Turing machine M1 enters when started on input string 110#11.

$$M1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$$

- $Q = \{q_1, q_2, ..., q_8, q_{accept}, q_{reject}\}$
- $\Sigma = \{0, 1, \#\}$
- $\Gamma = \{0, 1, \#, x, \bot\}$
- We describe δ with a table and a state diagram (see the following table and figure)
- The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} respectively.

Figure 1: M_1 from Sipser chapter 3

state/ symbol	0	1	#	x	u
$\overline{q_1}$	(q_2, x, R)	(q_3, x, R)	(q_8,R)		
q_2	(q_2,R)	(q_2,R)	(q_4,R)		
q_3	(q_3,R)	(q_3,R)	(q_5,R)		
q_4	(q_6, x, L)			(q_4,R)	
q_5		(q_6, x, L)		(q_5,R)	
q_6	(q_6, L)	(q_6, L) (q_7, L)	(q_7, L)	(q_6,L)	
q_7	(q_7, L)	(q_7, L)		(q_1,R)	
q_8				(q_8,R)	(q_{accept}, R)
q_{accept}					
q_{reject}					

To simplify the figure, we don't show the reject state or the transitions going to the reject state. Those transitions occur implicitly whenever a state lacks an outgoing transition for a particular symbol. Thus because in state q_5 no outgoing arrow with a # is present, if a # occurs under the head when the machine is in state q_5 , it goes to q_{reject} .

- 2. For the language $A = \{w \# w^R : w \in \{0, 1\}^*\}$:
 - (a) Describe an algorithm (implementation-level description) for a Turing Machine that decides A.
 - (b) Formally define your Turing machine. Describe the transition function with a table or a state diagram.