Схемы оценивания 9 класс

Задание 1. Как Уильям Томсон стал лордом Кельвином

Пункт	Содержание	Всего	Всего	Баллы	Оценки
	- September		3a	Burnibi	одения
			пункт		
	Задача 1.	10			
Засчитываются правильные ответы с					
	циентами в обыкновенных дробях				
1.1	Значения сил токов 6х0,5=3		3	3	
1.2	Значение сопротивления всей цепи		5	5	
	Значение силы тока I_0			1	
	Значение силы тока I_3			1	
1.3	Значение отношения I_1/I_0		2	1	
	Значение отношения I_2 / I_1			1	
Задача	2.	10			
2.1	Основная идея – начальное пренебрежение		4	3	
	токами через поперечные резисторы				
	Значения сил токов $I_0 \approx I_1$			1	
2.2	Разность токов $\Delta I = (I_0 - I_1)$ есть сумма токов		6	2	
	утечки				
	Значения напряжений на поперечных			1	
	резисторах (5)			1	
	Значения сил токов (6)			1	
	Суммирование сил токов (8)			1	
	Численное значение			1	
Задача	T	15			
3.1	Идея расчета – отбросить первое звено		5	2	
	Уравнение (9)			1	
	Решение (11)			1	
	Результат (12)			1	
3.2	Рекуррентное соотношение (13)		3	1	
	Формула для геометрической прогрессии (14) с			2	
2.2	указанием отношения сил токов (16)				
3.3	Формула (16)		2	2	
3.4	Приближенное выражение (17)		5	2	
	Значение знаменателя прогрессии			1	
	Сила тока в цепи I_0			1	
	Формула (19)			1	
Задача 4		15			
(за не правильное округление штраф -1 балл)			•	1	
4.1	Формула для сопротивления (20)		3	1	
	Численное значение (21)			1	
	Сопротивление всего кабеля (22)			1	

4.2	Формула для сопротивления изоляции		4	1	
	Использованное среднее значение площади			1	
	радиуса изоляции				
	Численное значение			1	
	Сопротивление всей изоляции			1	
4.3	Эквивалентная схема цепочка Задачи 3		2	2	
4.4	Использование формулы (24)		6	2	
	Формула (27) при N > 100			2	
	Численное значение отношения сил токов			2	
	ВСЕГО за задание	50			

Задание 2. Вытекание

Пункт	Содержание	Всего	Всего	Баллы	Оценки
liyiiki	2 sAckymmic		3a	Basisibi	оценин
		часть	пункт		
Часть 1. Бросок			•		
1.1	Формула (3)		2	2	
1.2	Проекции ускорения и начальной скорости (1+1)		2	2	
1.3	Формула для $v_z(z)$ (6)		4	3	
	Указан знак минус			1	
1.4	Закон равноускоренного движения		4	1	
	Формула (9)			3	
1.5	График зависимости $z(t)$:		4		
	-парабола ветви вверх;			1	
	- максимальные значения h_0 ;			1	
	- вершина параболы - $ au$;			l	
	- максимальное время 2τ .			1	
1.6	Показатели степеней α и β (1+1)		2	2	
1.7	Значение C (решение квадратного уравнения)		2	1	
	выбран меньший корень			1	
Часть 2	2. Дырявый сосуд	20			
2.1	Использование закона сохранения энергии		6	2	
	Изменение потенциальной энергии			1	
	Кинетическая энергия струи			1	
	формула (18)			2	
2.2	Уравнение равенства объемов (19)		5	2	
	Отношение площадей через отношение			1	
	диаметров				
	Формула (21)			1	
2.2	указание знака			1	
2.3	Использование аналогии с движением шарика		5	2	
	формула для ускорения			2	
	правильный знак			1	

2.4	Формула (23)		1	1	
	Подстановка выражения для начальной			1	
	скорости				
2.5	Формула для времени (24)		1	1	
2.6	Численное значение времени		2	2	
	(за не правильное округление -1)				
	ВСЕГО за задание	40			

Задание 3. Теплокровный сферический кот

Пункт	Содержание	Всего	Всего	Баллы	Оценки
)	, , r	3a	3a		,
			пункт		
Часть 1. Спящие коты		18			
	Основная идея – тепловой баланс		6	2	
	Уравнение баланса (2)			2	
	Выражение для температур (3)			1	
1.1	Формула для температуры		3	2	
	Численное значение			1	
1.2.1	Формула для температуры		3	2	
	Численное значение			1	
1.2.2	Уравнение баланса (9)		6	3	
	Температура границы (10)			1	
	Уравнение (11)			1	
	Формула для коэффициента (12)			1	
Часть	2. «Живая» модель	42			
2.1	Оптимальная температура:		2	2	
	формула, численное значение (1+1)			_	
2.2	Нормировочная постоянная $C = \alpha_0$;		5	1	
	физический смысл;			<u>I</u> 1	
	формулы для $\overline{W}, \overline{q} \ (1+1);$			2	
	численное значение постоянной \overline{A} ;			_	
2.3	График $\overline{W}(t)$:		7	1	
	- парабола, ветви вниз;			1 1	
	- указаны точки нулей;			1	
	- правильные координаты вершины; График $\overline{q}(t)$:			1	
	график <i>q(t)</i> . - прямая;			1	
	- прямая, - коэффициент наклона 1;			1	
	- проходит через вершину параболы;			l	
	- правильное значение нуля.			1	
2.4	Уравнение (18);		14	2	
	Графическая иллюстрация: две «правильные»				
	прямые;			2	
	температура $t_0 = 35^{\circ}$:			2	
	Численные значения корней уравнения (18)			1	
	Выбран больший корень			_	

	температура $t_0 = 25^\circ$:				
	Численные значения корней уравнения (18);			2	
	Выбран больший корень;			1	
	Показана устойчивость и неустойчивость				
	корней.			4	
2.5	Графическая иллюстрация:		6		
	- прямая для максимальной температуры;			1	
	- прямая для минимальной температуры				
	(касательная к параболе)			1	
	Указана максимальная температура			1	
	Касательная – дискриминант равен нулю			2	
	Численное значение минимальной температуры			1	
2.6	Уравнение баланса (23)		3	1	
	Зависимость (24)			1	
	Графическая иллюстрация (прямые,			1	
	проходящие через вершину параболы)				
2.7	График зависимости $ lpha(t_0) $		2	2	
	кривая, выпуклостью вниз;				
2.8	Приближение (прямая проходит через вершину		3	2	
	параболы)				
	Численное значение коэффициента			1	
	ВСЕГО за задание 3	60			

Итоговая ведомость

Код работы	

	Задание 1	Задание 2	Задание 3	Всего за ТТ
Оценки после проверки				
Подпись проверяющего				
Изменения после ознакомления				
Итоговые баллы				
Подпись участника				
Подпись члена жюри				