Diplomatura de Ciencia de Datos Machine Learning - Algoritmos y Aplicaciones

UNA GRAN UNIVERSIDAD

Modelo de Estimación de Producción de Soja

Buzarquis, Maia - 1142683

Calp, Diego - 1143421

Marzocca, Tomas Raul - 1088865

Tejada Borges, Alejandro - 1132294

Agenda

Producción de Soja

- El ciclo de crecimiento de soja es de 5/7 meses, se produce en el verano, desde septiembre hasta junio del próximo año.
- Producción de la última campaña (2020/2021): 43,5 millones de t
- Superficie sembrada 2020/2021:17 millones de ha
- Uso de la soja: aceite de soja, alimentación animal, biodiesel.

Dataset

- Registro de productores agropecuarios para el cultivo de soja desde 2004-5 hasta 2020-1 con 259 variables y más de 120.000 registros.
- Luego de la limpieza y preparación de datos nos quedamos con 43 variables.
- Variable Target: producción

Machine Learning Pipeline

Limpieza y Preparación de Datos

- Variables categóricas a numéricas
- Fechas a períodos en días
- Tratamiento de Nulos
- Transformaciones
- Variable Fenómeno Enos (Niño o Niña)
- Escalado de Variables

Modelo: Regresión Lineal Múltiple

	Nulos = 0	Nulos = Media	Nulos = Mediana
\mathbb{R}^2	0,898	0,901	0,903
MAE	35,92	33,95	33,92
MSE	3901,38	3730,99	3676,14
RMSE	62,46	61,08	60,63

Modelo: Random Forest

Validaciones

Cross Validation	Nulos = 0	Nulos = media	Nulos = mediana
Regresión Múltiple	0,885	0,886	0,892
Random Forest	0,983	0,983	0,981
Ridge Regression	0,901	0,905	0,906
Árbol de Decisión	0,963	0,969	0,969

PCA - Principal Component Analysis

PCA(0.95) = 36 componentes
Nulos = mediana
Standard Scaler

	Regresión	Random Forest
\mathbb{R}^2	0,86	0,98

Cross Validation	Nulos = mediana
Regresión Múltiple	0,892
Random Forest	0,981
Ridge Regression	0,906
Árbol de Decisión	0,969

Conclusiones

- La Regresión Lineal Múltiple tiene buenos ajustes pero errores altos.
- Esto se repitió con otros modelos y en las validaciones cruzadas.
- Aún eliminando variables relacionadas (por ej. adversidades del cultivo), se mantuvo el nivel de ajuste y errores.
- Ocurrió lo mismo con selección de variables por PCA.

Próximos Pasos

- Métodos de reemplazo de nulos más elaborados: MICE o KNN.
- Hacer un análisis exhaustivo de Multicolinealidad.
- Evaluar nuevos métodos de selección de las variables independientes.
- Simulación seleccionando para test un rango del negocio, por ej. una campaña.
- Otros modelos de pronóstico.
- Probar métodos de Auto ML.

Diplomatura de Ciencia de Datos Machine Learning - Algoritmos y Aplicaciones

UNA GRAN UNIVERSIDAD

Muchas gracias!

Buzarquis, Maia - 1142683

Calp, Diego - 1143421

Marzocca, Tomas Raul - 1088865

Tejada Borges, Alejandro - 1132294

Conversión de fechas a días

