ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 12

Cap 3 – Máquinas de Turing

Profa. Ariane Machado Lima ariane.machado@usp.br

Cap. 3

A tese de Church-Turing

Cap. 3 - A tese de Church-Turing

3.1 – Máquinas de Turing

3.2 – Variantes da Máquinas de Turing

3.3 – A Definição de Algoritmo

3.1 - Máquinas de Turing

- Autômatos como modelos de computação:
 - AF: memória pequena
 - AP: memória ilimitada mas utilizável apenas em sistema LIFO (last in, first out) de leitura

3.1 - Máquinas de Turing

- Propostas por Alan Turing em 1936
 - Memória ilimitada e irrestrita
 - Modelo de um computador real (possibilidades e limitações)

Máquinas de Turing

Máquinas de Turing

- Uma máquina de Turing pode tanto escrever sobre a fita quanto ler a partir dela.
- 2. A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita.
- 3. A fita é infinita.
- 4. Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Máquinas de Turing - Exemplo

B= { w # w | w pertence a {0,1}*}

Máquinas de Turing - Exemplo

B= { w # w | w pertence a {0,1}*}

 M_1 = "Sobre a cadeia de entrada w:

- 1. Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanescente à direita do #. Se resta algum símbolo, rejeite; caso contrário, aceite."

Máquinas de Turing - Exemplo

```
011000#011000 ...
 x 1 1 0 0 0 # 0 1 1 0 0 0 U ···
 x 1 1 0 0 0 # X 1 1 0 0 0 U
 * 1 1 0 0 0 # x 1 1 0 0 0 U
                       aceita
```

Máquinas de Turing – Definição formal

Uma *máquina de Turing* é uma 7-upla, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{aceita}}, q_{\text{rejeita}})$, onde Q, Σ, Γ são todos conjuntos finitos e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada sem o símbolo em branco \Box ,
- **3.** Γ é o alfabeto de fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- **5.** $q_0 \in Q$ é o estado inicial,
- **6.** $q_{\text{aceita}} \in Q$ é o estado de aceitação, e
- 7. $q_{\text{rejeita}} \in Q$ é o estado de rejeição, onde $q_{\text{rejeita}} \neq q_{\text{aceita}}$.

Máquinas de Turing – Definição formal

Uma *máquina de Turing* é uma 7-upla, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{aceita}}, q_{\text{rejeita}})$, onde Q, Σ, Γ são todos conjuntos finitos e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada sem o *símbolo em branco* \Box ,
- **3.** Γ é o alfabeto de fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- 5. $q_0 \in Q$ é o estado inicial,

Cursor da fita vai para a esquerda ou direita

- **6.** $q_{\text{aceita}} \in Q$ é o estado de aceitação, e
- 7. $q_{\text{rejeita}} \in Q$ é o estado de rejeição, onde $q_{\text{rejeita}} \neq q_{\text{aceita}}$.

Máquinas de Turing – Definição formal

Uma *máquina de Turing* é uma 7-upla, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{aceita}}, q_{\text{rejeita}})$, onde Q, Σ, Γ são todos conjuntos finitos e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada sem o símbolo em branco \Box ,
- **3.** Γ é o alfabeto de fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- 5. $q_0 \in Q$ é o estado inicial,
- 6. $q_{\text{aceita}} \in Q$ é o estado de aceitação, e
- 7. $q_{\text{rejeita}} \in Q$ é o estado de rejeição, onde $q_{\text{rejeita}} \neq q_{\text{aceita}}$.

$$\delta \colon Q' \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$$
, onde $Q' \notin Q$ sem $q_{\text{aceita}} \in q_{\text{rejeita}}$

- A entrada fica na porção mais à esquerda da fita
- O símbolo em branco marca o fim da entrada
- A máquina começa apontando para a primeira posição da fita
- Se a máquina está na primeira posição e tenta fazer um movimento para a esquerda, permanece no lugar
- Pára SOMENTE quando entra em um estado de aceitação ou rejeição

Configuração - situação atual da máquina:

- Configuração situação atual da máquina:
 - Estado atual
 - Conteúdo da fita
 - Posição da cabeça de fita

Dizemos que uma configuração C_1 origina uma configuração C_2 se a máquina puder ir de C_1 a C_2 em um **único** passo.

Suponha que tenhamos a, b e c em Γ , assim como u e v em Γ^* e os estados q_i e q_j . Nesse caso ua q_i bv e u q_j acv são duas configurações. Digamos que

 $ua q_i bv$ origina $u q_j acv$

se na função de transição

Suponha que tenhamos $a, b \in c$ em Γ , assim como $u \in v$ em Γ^* e os estados q_i e q_j . Nesse caso $ua q_i bv$ e $u q_j acv$ são duas configurações. Digamos que

 $ua q_i bv$ origina $u q_j acv$

se na função de transição $\delta(q_i, b) = (q_j, c, E)$.

Suponha que tenhamos $a, b \in c$ em Γ , assim como $u \in v$ em Γ^* e os estados q_i e q_j . Nesse caso $ua q_i bv$ e $u q_j acv$ são duas configurações. Digamos que

 $ua q_i bv$ origina $u q_j acv$

se na função de transição $\delta(q_i, b) = (q_j, c, E)$.

 $ua q_i bv$ origina $uac q_j v$

Suponha que tenhamos $a, b \in c$ em Γ , assim como $u \in v$ em Γ^* e os estados q_i e q_j . Nesse caso $ua \ q_i \ bv \in u \ q_j \ acv \ são duas configurações. Digamos que$

 $ua q_i bv$ origina $u q_j acv$

se na função de transição $\delta(q_i, b) = (q_j, c, E)$.

 $ua q_i bv$ origina $uac q_j v$

se $\delta(q_i, b) = (q_j, c, D)$.

- Configuração inicial:
- Configuração de aceitação:
- Configuração de rejeição:

- Configuração inicial: q₀w
- Configuração de aceitação:
- Configuração de rejeição:

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição:

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição: estado atual = q_{rejeita}

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição: estado atual = q_{rejeita}

Uma máquina de

Turing M aceita a entrada w se uma sequência de configurações C_1, C_2, \ldots, C_k existe, onde

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição: estado atual = q_{rejeita}

Uma máquina de

Turing M aceita a entrada w se uma seqüência de configurações C_1, C_2, \ldots, C_k existe, onde

- 1. C_1 é a configuração inicial de M sobre a entrada w,
- 2. cada C_i origina C_{i+1} e
- 3. C_k é uma configuração de aceitação.

Máquinas de Turing

A coleção de cadeias que M aceita é a linguagem de M, ou a linguagem reconhecida por M, denotada L(M).

DEFINIÇÃO 3.5

Chame uma linguagem de *Turing-reconhecível*, se alguma máquina de Turing a reconhece.¹

1 - Ou linguagem recursivamente enumerável ou linguagem irrestrita

Máquinas de Turing (MT) Decisoras

Uma MT é decisora se ela nunca entra em loop (isto é, sempre pára em um estado de aceitação ou de rejeição).

Dizemos que um decisor que reconhece uma linguagem decide essa linguagem.

DEFINIÇÃO 3.6

Chame uma linguagem de *Turing-decidível* ou simplesmente *de-cidível* se alguma máquina de Turing a decide.²

2 - Ou linguagem recursiva

Máquinas de Turing - Exemplos

EXEMPLO 3.7

Aqui descrevemos uma máquina de Turing (MT) M_2 que decide $A = \{0^{2^n} | n \ge 0\}$, a linguagem consistindo em todas as cadeias de 0s cujo comprimento é uma potência de 2.

Ideia: Uma potência de 2, sempre que eu divido por 2, terei um número par

Máquinas de Turing - Exemplos

EXEMPLO 3.7

Aqui descrevemos uma máquina de Turing (MT) M_2 que decide $A = \{0^{2^n} | n \ge 0\}$, a linguagem consistindo em todas as cadeias de 0s cujo comprimento é uma potência de 2.

M_2 = "Sobre a cadeia de entrada w:

- Faça uma varredura da esquerda para a direita na fita, marcando um 0 não, e outro, sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, rejeite.
- 4. Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Agora, damos a descrição formal de $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{aceita}}, q_{\text{rejeita}})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{aceita}}, q_{\text{rejeita}}\},$
- $\Sigma = \{0\} e$
- $\Gamma = \{0, x, \bot\}$.
- Descrevemos δ com um diagrama de estados (veja a Figura 3.8).
- Os estados inicial, de aceitação e de rejeição são $q_1,\,q_{\rm aceita}$ e $q_{\rm rejeita}.$

Exemplo para a cadeia 0000

q_1 0000	$\sqcup q_5 \mathbf{x} 0 \mathbf{x} \sqcup$	$\sqcup \mathbf{x}q_5\mathbf{x}\mathbf{x}\sqcup$
ப q_2 000	q_5 \sqcup \mathbf{x} 0 \mathbf{x} \sqcup	$\sqcup q_5$ xxx \sqcup
$\sqcup \mathbf{x}q_3$ 00	$\sqcup q_2$ x 0 x \sqcup	q_5 ப $\mathbf{x}\mathbf{x}\mathbf{x}$ ப
$\sqcup x0q_40$	$\sqcup \mathtt{x} q_2 \mathtt{0} \mathtt{x} \sqcup$	$\sqcup q_2$ xxx \sqcup
$\sqcup \mathtt{x} \mathtt{0} \mathtt{x} q_3 \sqcup$	$\sqcup \mathtt{xx}q_3\mathtt{x}\sqcup$	$\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$
$\sqcup \mathtt{x} 0q_5\mathtt{x} \sqcup$	$\sqcup \mathbf{x}\mathbf{x}\mathbf{x}q_3$ ப	$\sqcup \mathbf{x} \mathbf{x} q_2 \mathbf{x} \sqcup$
ப $\mathbf{x}q_50\mathbf{x}$ ப	\sqcup хх q_5 х \sqcup	$\sqcup \mathtt{xxx} q_2 \sqcup$
		$\sqcup XXX \sqcup q_{aceita}$

Revendo esse exemplo

B= { w # w | w pertence a {0,1}*}

 M_1 = "Sobre a cadeia de entrada w:

- 1. Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanescente à direita do #. Se resta algum símbolo, rejeite; caso contrário, aceite."

```
011000#011000 ...
 x 1 1 0 0 0 # 0 1 1 0 0 0 U ···
 x 1 1 0 0 0 # x 1 1 0 0 0 U ····
 * 1 1 0 0 0 # X 1 1 0 0 0 U
 x x 1 0 0 0 # x 1 1 0 0 0 U ···
 x x x x x x x # x x x x x x <math>\square
                          aceita
```

EXEMPLO 3.9

O que segue é uma descrição formal de $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{aceita}}, q_{\text{rejeita}})$, a máquina de Turing que descrevemos informalmente na página 145, para decidir a linguagem $B = \{w \# w | w \in \{0,1\}^*\}$.

- $Q = \{q_1, \ldots, q_{14}, q_{\text{aceita}}, q_{\text{rejeita}}\},$
- $\Sigma = \{0,1,\#\}, e \Gamma = \{0,1,\#,x,\sqcup\}.$
- Descrevemos δ com um diagrama de estados (veja a figura seguinte).
- Os estados inicial, de aceitação e de rejeição são q_1 , $q_{\rm aceita}$ e $q_{\rm rejeita}$.

Transições implícitas para $q_{rejeita}$ (indo para a direita, por convenção) quando aparece um símbolo não definido na transição.

37