

			Camlin Page Date / /
	Conversion Table.		
	Present State	input = a	input=b
	5 → []	[2,4]	[3]
	[2,4]	4	
	[3]	4	[1,3,4]
	[1,3,4]	C2,4)	[1,3,4]
1	Dr.A. b.		
Conserva	D - 2,4) -	3 3 - 3	D (1,3,4)
Minneil		<u>a</u>	

In our contradiction, our language contains equal number of 0's and 1's. so this is the incorrect part of the proof. as 0+1+ allows an arbitrary no. of 0's. cannot be the same in this purping lemme. The ener is in choosing o. 4. To prove using pumping Lemma Assume L is regular let L' = [11 # 1* L' = & 1 # 1 m: n > col. Assume (is regular and k is the constant Chose w= 1k #1k, which is is L and
patisfies 10/2/k. For every possible wary of
writing w= xy2 such that |xy| < k and |y|2/1 We have x=1", y=15, 2=1k-r-5 #1k, here rts Ck and Exil Tala xy'z where i = 0, then 116-3 # 16 Dince 5 ?11 it follows that w&L is a contradiction and hence not regular.

