les suites extraites $(t_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers une meme limite ℓ . R. Montrer que (u_n) converge vers f. 2. On suppose que $(u_{2n}) \cdot (u_{2n+1})$ et (u_{mn}) convergent. Montrer que (t_n) eonverge. xercice 6 Soit (u_s) une suite de termes strictement positifs. On suppose que $\frac{u_{n-1}}{u_n} \frac{1}{\pi + \infty} \ell_4$ avec $\ell > 1$. 1. Mantrer que la suite (u_n) est croisfante A partir diun certain rang. 2. Montrer que $t_n \to +\infty$ Exercice 7 Soit (x_N) une suite de recels 1. Montrer que si $x_{n+1} - x_{ni} \to \ell$, $\frac{\pi}{n} \to \ell$ Indication : Lemme de Cesaro. 2. On suppose que $\forall n \in \mathbb{N}_1$, Fn > 0 et $\frac{x_{n-1}}{x_n} \to \ell$. Montrer que $\sqrt[3]{x_n} \to \ell$ 3. Déterminer les limites eventuelles des suites $\sqrt[n]{\binom{2n}{n}}$ et $\frac{5\sqrt[n]{\pi}}{n}$. Exercice 8 Soit (u_n) , (v_n) deux suites a valeurs dans [0,1] telles que $u_nv_n \to 1$. Montrer que $u_n \to 1$ et $v_n \to 1$. Exercice 9 On suppose $u_n \to \ell$, $v_n \to \ell'$. Montrer que $\max(u_n, v_a) \to \max(\ell, \ell')$. Exercice 10. Déterminer la limite; quand $n \to +\infty$; de $\left(\sin\frac{1}{n} + y^3 \cos n\right)^n$. Exercice 11 Etudier la limite de $\left(x_n \to v_n \to v$

TD Suites Exercice 1 Pour chacune des assertions suivantes, dire si elle est vraie ou fausse, 5i elle est vraie donner une preuve, sinon, donner un contre-exemple. Fxercice 5 Soit (u_N) une suite reclle. 1. On suppose que

Exercice 17 Soit (u_n) une suite minorée telle que $u_n + (\tan u_n)^2$ converge. 1. Montrer que (u_n) est majorée. 2. Montrer que $(\tan^2 u_n)$ est bornée. 3. On suppose que $(\tan u_n)$ est croissante. Montrer que (u_n) converge. Exercice 18 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n}$ 1. Montrer que $\forall n \in \mathbb{N}, u_n \geq 0$. 2. Montrer que $u_n \to +\infty$. 3. Déterminer la limite de $u_{n+1}^2 - u_n^2$. En utilisant le théorème de Cesàro, montrer que $u_n \sim \sqrt{2n}$. Exercice 19 On considère les suites définies par $u_n = \sum_{p=0}^n \frac{1}{p!}$ et $v_n = u_n + \frac{1}{n!}$. 1. Montrer que ces deux suites sont adjacentes. On admet que leur limite est $e = e^1$. 2. Montrer que leur limite est irrationnelle. Indication: Procéder par l'absurde et écrire les inégalités pour un n bien choisi. Exercice $20 \star \text{Soit}(u_n)$ une suite réelle positive vérifiant $\forall n \in \mathcal{N}, u_{n+2} \leq \frac{u_{n+1}+u_n}{3}$. 1. Soit $v_n = \max(u_n, u_{n+1})$. Montrer que v_n est décroissante. 2. Montrer que $v_n \to 0$, puis que $u_n \to 0$. Exercice 21 Distance À UNE PARTIE Soit $A \subset \mathbb{R}$ non vide. Pour $x \in \mathbb{R}$, on pose $d(x, A) = \inf_{y \in A} |x - y|$. 1. Justifier la définition de d(x, A). 2. Montrer que $v_n \mapsto d(x, A)$ est 1 -lipschitzienne, c'est-à-dire

$$\forall x, y \in \mathbb{R}, \quad |d(x, A) - d(y, A)| \le |x - y|$$

En particulier, la fonction $x \mapsto d(x, A)$ est continue. Exercice 22 Soit (u_n) une suite réelle et $\ell \in R$. Montrer que (u_n) ne tend pas vers ℓ si et seulement s'il existe $\ell' \in \bar{R}, \ell' \neq \ell$ et une suite (v_n) extraite de (u_n) tels que $v_n \to \ell'$. Exercice 23 LIMITES INFÉRIEURE ET SUPÉRIEURE Soit $(u_n)_{n \in \mathbb{N}}$ une suite bornée. Pour $n \in \mathbb{N}$ On pose

$$\alpha_n = \inf \{u_k, k \ge n\}$$
 et $\beta_n = \sup \{u_k, k \ge n\}$.

1. Montrer que $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ convergent. On note $\alpha=\lim_{n\to+\infty}\alpha_n$, appelé limite inférieure de $(u_n)_{n\in\mathbb{N}}$, et $\beta=\lim_{n\to+\infty}\beta_n$ sa limite supérieure. 2. Montrer que (u_n) converge si et seulement si $\alpha=\beta$. 3. Montrer que β est la plus grande valeur d'adhérence de (u_n) . En particulier, on a démontré le théorème de Bolzano-Weierstrass. Exercice 24 On considère une suite (u_n) vérifiant $u_{n+1}-u_n\to 0$ et $u_n\to+\infty$. 1. Justifier que si $|u_{n+1}-u_n|\leq \varepsilon$ à partir du rang n_0 , et que $x\geq x_{n_0}$, il existe $p\in\mathbb{N}$ tel que $|u_p-x|\leq \varepsilon$. 2. Soit $(v_n)_{n\in\mathbb{N}}$ une suite telle que $v_n\to+\infty$. Montrer que $\{u_n-v_m,n,m\in\mathbb{N}\}$ est dense dans \mathbb{R} . 3. En déduire que $\{u_n-\lfloor u_n\rfloor,n\in\mathbb{N}\}$ est dense dans [0,1]. 4. Montrer que $\{\sin\ln(n),n\in\mathbb{N}\}$ est dense dans [-1,1]. Exercice 25 1. Soit $(a_n),(b_n)$ deux suites réelles telles que $a_n+b_n\to 0$ et $e^{a_n}+e^{b_n}\to 2$. Montrer que (a_n) et (b_n) convergent. 2. Soit $(a_n),(b_n),(c_n)$

trois suites réelles telles que $a_n + b_n + c_n \to 0$ et $e^{a_n} + e^{b_n} + e^{c_n} \to 3$. Montrer que (a_n) , (b_n) , (c_n) convergent. Exercice $26 \star \$$ Suites sous-AdDitives Soit (u_n) une suite réelle vérifiant $\forall p,q \in \mathbb{N}, u_{p+q} \le u_p + u_q$. Montrer que la suite $\left(\frac{u_n}{n}\right)$ converge vers sa borne inférieure $\inf_{n \in \mathbb{N}^*} \frac{u_n}{n}$. 2