

Foundational Techniques for Machine Learning and Data Science

K-means and Gaussian Mixture Models for Clustering Credit Card Data Final Project

Addie Duncan, Paulina Hoyos, Liangchen Liu, Will Porteous

Department of Mathematics

April 22, 2022

Outline

Credit Card Dataset

Data Preprocessing

Clustering Algorithms K-means Gaussian Mixture Models

Clustering Error Metrics

Implementation and Results

Conclusions

Knowing your data is important

- Anonymized credit card user data over 6 months of time, from Kaggle.
- ▶ Data matrix X with n = 8950 rows and d = 18 columns.
- d features for each customer:

Measured in USD	Credit Limit Purchases	Balance One off Purchases (Max.)		
	Installment Purchases	Cash Advance		
	Payments	Minimum Payments		
Frequency $\in [0,1]$	Balance Frequency	Purchase Frequency		
	One off Purchase Frequency	Installment Purchase Frequency		
	Cash Advance Frequency	Percent of Full Payments		
Nonnegative integers	Purchases Transactions	Cash Advance Transactions		
	Tenure	Customer ID		

We use the first d=14 features in our clustering. We also remove customers with incomplete data and keep the remaining $n \approx 8600$ customers.

But the data can still be naughty...

Population Level Feature Histogram

What can you do?

- No dimension reduction: $d \le 18$ is small
 - No computational necessity
 - No theoretical guarantees for k-means cost if d < k
- Main issues:
 - Outliers, dominate Euclidean metric
 - Scaling across features are different.
- Two solutions:
 - Standardization and outlier removal
 - Quantization

Outlier Removal and Standardization

- For each feature, remove top and bottom 1% of the data. (The data remaining are within the middle 98% of the data in every feature)
- 2. Rescale each feature so that they take value in [0,1].

Although being naive, only 7-9% of the total data is removed (as opposed to 2%*14 (features) = 28%), meaning the data (customers) thrown out are outliers in several features.

Quantization

- 1. Divide each feature into 11 quantiles by population percentage and assign each quantile a value $0^*, 1, \ldots, 10$ (the first 10% is assigned 1, the second is 2, etc).
- 2. If the first k quantiles all have original value 0, assign 0 to those quantiles, and start assigning next non-zero quantile from k+1* e.g. $[0,0,0,4,5,\ldots]$

*Some of the features have more than 50% valued at 0.

Why Quantization?

- Removes influence of outliers without removing them.
- Sets all features to take values $\in [0, ..., 10]$ so that each feature is weighted equally in the clustering.

Now the data is nicely behaved

Population Level Feature Histogram

K-means

- ▶ $\mathcal{X} = \{x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}^d$ data points.
- ▶ We want to find a partition $P = C_1 \cup \cdots \cup C_k$ of \mathcal{X} and a set of means $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ such that the cost function

$$Cost_{\mathcal{X}}(C_1, \dots, C_k) = \min_{C_1, \dots, C_k} \sum_{i=1}^k \sum_{x_i \in C_i} ||x_j - \mu_i||^2$$

is minimized.

Gaussian Mixture Models (GMMs)

▶ A multivariate Gaussian random variable $X \in \mathbb{R}^n$ has pdf

$$f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

We denote this as $X \sim \mathcal{N}(\mu, \Sigma)$.

 A Gaussian Mixture Model is a finite convex combination of multivariate Gaussians, denoted as

$$X \sim \sum_{j=1}^{m} \lambda_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}),$$

with
$$\lambda_i \in [0,1]$$
 and $\sum_{i=1}^m \lambda_i = 1$.

 \triangleright λ_j is the probability of drawing from the j-th component $\mathcal{N}(\mu_i, \Sigma_i)$.

Parameter Estimation of a GMM

- Consider the data points $\{x_1, x_2, \dots, x_n\}$ as n independent realizations a GMM $X \sim \sum_{j=1}^m \lambda_j \mathcal{N}(\mu_j, \Sigma_j)$ whose parameters $\theta = \{(\lambda_j, \mu_j, \Sigma_j)\}_{j=1}^m$ we ignore.
- We want to efficiently estimate the parameters θ so that the joint pdf of x_1, \ldots, x_n , called the likelihood function,

$$\mathcal{L}(\theta;x_1,\ldots,x_n)=\prod_{j=1}^n f_{\theta}(x_j),$$

where f_{θ} is the pdf of X, is maximized.

ightharpoonup The Maximum Likelihood Estimate (MLE) of θ is

$$\theta_{MLE} = arg \max \mathcal{L}(\theta; x_1, \dots, x_n)$$

= arg max log $\mathcal{L}(\theta; x_1, \dots, x_n)$.

Expectation Maximization

► The log-likelihood function is

$$\log \mathcal{L}(\theta; x_1, \dots, x_n) = \sum_{i=1}^n \log f_{\theta}(x_i).$$

We lower bound each term

$$\log f_{\theta}(x_i) \geq \sum_{j=1}^{m} w_{j,i}^{(0)} \log f(x_i; \mu_j, \Sigma_k) = Q_{x_i}(\theta \mid \theta^{(0)}).$$

Expectation Maximization Algorithm

Input: Implementations of the E-step $E(\cdot)$ and M-step $M(\cdot,\cdot)$ Output: A parameter θ_{MLE}

- 1. Initialize $\theta^{(1)}$
- **2.** For t = 1, 2, ..., T do
- 3. $Q(\cdot \mid \theta^{(t)}) \leftarrow E(\theta^{(t)})$
- 4. $\theta^{(t+1)} \leftarrow M(\theta^{(t)}, Q_t)$
- 5. return $\theta^{(T+1)}$

Expectation Maximization

E-step: Given the current estimate of the parameters $\theta^{(t)}$, we compute weights as

$$w_{j,i}^{(t)} = \frac{\lambda_j^{(t)} f(x_i; \mu_j^{(t)}, \Sigma_j^{(t)})}{\sum_{k=1}^m \lambda_k^{(t)} f(x_i; \mu_k^{(t)}, \Sigma_k^{(t)})},$$

and then compute the *Q*-function as

$$Q(\theta \mid \theta^{(t)}) = \sum_{i=1}^{n} \sum_{j=1}^{m} w_{j,i}^{(t)} \log f(x_i; \mu_j, \Sigma_j).$$

► M-step: Maximizes the *Q*-function to generate the next iterate of the parameters

$$\theta^{(t+1)} = \arg\max Q(\theta \mid \theta^{(t)}).$$

Cluster Assignment with GMM

- ▶ Clusters are determined by the Gaussian components $\mathcal{N}(\mu_j, \Sigma_j)$ for $j \in \{1, ..., m\}$.
- ► The E-step finds the weight $w_{j,i}^{(T)}$ encoding the probability that the data point x_i belongs to the cluster C_j given by the jth Gaussian $\mathcal{N}(\mu_j, \Sigma_j)$:

$$w_{j,i}^{(T)} = \frac{\lambda_j^{(T)} f(x_i; \mu_j^{(t)}, \Sigma_j^{(T)})}{\sum_{k=1}^m \lambda_k^{(T)} f(x_i; \mu_k^{(T)}, \Sigma_k^{(T)})}$$

ightharpoonup We select the cluster C_j that maximizes this probability.

Geometry of GMM Clusters

GMM clusters have an ellipsoidal shape that varies according to the covariance matrices Σ_j . There are three cases:

1.
$$\Sigma_j = \sigma_j \cdot \mathsf{Id}$$

2.
$$\Sigma_j = \operatorname{diag}(\sigma_{ji})$$

3. Full Σ

GMM and Data Quantization

Quantization defines a sample-dependent map

$$Q_{\mathcal{D}} \colon \mathbb{R}^d \to (\{0,\ldots,10\})^d \text{ via } Q(x_1,\ldots,x_d) = (Q^1(x_1),\ldots,Q^d(x_d))$$

Quantized Problem

Given data $\mathcal{D}'=\{Q(x_i)\}_{i=1}^p\in (\{0,\ldots,10\})^d$ sampled from a random variable $Q(X)\in \{0,\ldots,10\}^d\subset \mathbb{R}^d$ we seek

$$f_{ heta_0} = \sum_{j=1}^m \lambda_j \mathcal{N}(\mu_j, \Sigma_j) \sim X \in \mathbb{R}^d \quad ext{for } \theta_0 \in ext{arg max} \log \mathcal{L}(\theta; \mathcal{D})$$

Clustering Error Metrics - Inertia

Inertia: Within-Cluster-Sum-of-Squares

$$\sum_{j=0}^{\kappa} \sum_{x_i \in C_j} \|x_i - \mu_j\|^2$$

where μ_j is the center of the j^{th} cluster, C_j .

- ► This is the objective function we aim to minimize in the *k*-means algorithm.
- Measures how dense the clusters are.
- We want to find the cluster number that gives us low inertia AND low number of clusters. (What happens when #clusters = #data points?)
- Drawbacks: Favors convex, spherical clusters. k-means specific.

Clustering Error Metrics - Inertia

How can we use inertia to find the optimal value for k?

Elbow/Knee Method

Plot the values of k vs k-means inertia. Find the value of k for which this graph has maximum curvature.

Problem: Data is noisy and discrete, so using derivatives to find the point of maximum curvature is not accurate.

Figure from https://www.oreilly.com/library/view/statistics-for-machine/9781788295758/

Clustering Error Metrics - Inertia

Solution: Kneedle Method

- Invert the graph if the function is concave up. Standardize the data.
- 2. Draw a vertical line from each point to the diagonal.
- Graph the lengths of these lines and choose the k corresponding to the maximum of this difference graph.

Figure from https://towardsdatascience.com/detecting-knee-elbow-points-in-a-graph-d13fc517a63c

Clustering Error Metrics - Silhouette Score

Silhouette Score

Let x_s be a sample point assigned to cluster C_j .

$$a := \frac{1}{|C_j| - 1} \sum_{x_i \in C_i, x_j \neq x_s} ||x_j - x_s||$$

= mean inter-cluster distance from x_s

$$b:=\min_{m\neq j}\frac{1}{|C_m|}\sum_{x_i\in C_m}\|x_i-x_s\|$$

= mean distance of next nearest cluster points from x_s

Silhouette score for
$$x_s = \frac{b-a}{\max(a,b)}$$

- Measures how dense AND well-separated the clusters are.
- \triangleright Can be used for k-means and GMM.
- Drawbacks: Favors convex clusters.

Clustering Error Metrics - Silhouette Score

- In general we want to maximize the Silhouette score.
- We can also plot the Silhouette scores for each sample to visually analyze our clusters.
 - Are large clusters dense? Are small clusters sparse?
 - Negative Silhouette scores may indicate inaccurate assignments.
 - Favor uniformity in Silhouette cluster averages.

Figure from

Clustering Error Metrics - CH Index & DB Index

Calinski-Harabasz Index

CH score is the ratio of the between-cluster dispersion and the inter-cluster dispersion.

Higher scores indicate dense and well-separated clusters.

Davies-Bouldin Index

DB score is the ratio of the "cluster diameter" and the distance between cluster centers.

Lower scores indicate dense and well-separated clusters.

- ▶ Both can be used for *k*-means and GMM.
- Drawbacks: Both favor convex geometry.

Implementation

- ightharpoonup Use scikit-learn k-means++ and GMM algorithms.
- Our code allows us to select the costumer features we want to use for clustering. In our final results we cluster the first 14 features (dollar amounts and frequencies)
- We obtain 4 different clustering results:

Choosing the Number of Clusters - k-means

Quantization: optimal k is 9

Standardization: optimal k is 13

Silhouette Score

Choosing the Number of Clusters - GMM

Quantization: optimal k is 9

Standardization: optimal k is 8

Silhouette Score

Results

Preprocessing	Clustering	Optimal k	CH Index	DB Index	Silhouette Score
Quantization	k-means	9	2962	1.1926	0.343
Quantization	GMM	9	2934	1.1974	0.342
Standardization	k-means	13	2074	1.1956	0.262
Standardization	GMM	8	242	4.6616	-0.108

Quantization:

PCA View of KMeans Optimal Clustering

Transport of the control of the cont

Standardization:

PCA View of KMeans Optimal Clustering

PCA View of GM Optimal Clustering

Conclusions on Customer Behavior

- Believe your eyes: optimal Kmeans and GMM are close
- ► GMM: likelihood interpretation and predictive distribution function $X \sim f(x; \theta)$
- KMeans: provides convex region assignment with piece-wise linear boundary
- These clusters persist (with some rearrangement)
 across both model sets

If you are in the top 10% cash advance users (by freq.) it is probable that you belong to cluster 7; in that case, you do not use your card for regular purchases, irrespective of your credit

Cluster '0': Cluster '4':

If you are in the top 20% strata of card purchase users (clusters o 4, 3), it is probable that you make most of your payments in full, and do not use cash advances, irrespective of your limit distribution

References

- [1] 2.3.10 Clustering performance evaluation. URL: https://scikit-learn.org/stable/modules/ clustering.html#clustering-performance-evaluation.
- [2] Barath Raghaven, Ville Satopaa, Jeannie Albrecht, and David Irwin. Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior. In: *IEEE ICDCS SIMPLEX Workshop* (June 2011).
- [3] Arjun Bhasin. *Credit card dataset for Clustering*. Mar. 2018. URL: https://www.kaggle.com/datasets/arjunbhasin2013/ccdata.

Clustering the Transpose Data

- ▶ If we transpose our data matrix (to a 14×8636 matrix) we can think about clustering on our features.
- Using 3 clusters, we now have theoretical guarantees to reduce dimension to 3.

Full dimension:

PCA View of KMeans Optimal Clustering

Clustering the Transpose Data

SVD reduction to 3 dimensions:

PCA View of KMeans Optimal Clustering

We observe the clustering is consistent.

The University of Texas at Austin Department of Mathematics

College of Natural Sciences