Трехкристальная рентгеновская дифрактометрия

I. Atknin^{1,2,3} F. Chukhovsky² N. Marchenkov^{2,3}

¹Department of optics, spectroskopy and physics of nanosystems Moscow State University

 $^2\rm X$ -ray analysis technique and synchrotron radiation laboratory Shubnikov Institute of Crystallography, Russian Academy of Sciences.

 $^3{\rm National}$ Research Centre "Kurchatov Institute" Department of Nano-, Bio-, Info-, and Cognitive Sciences and Technologies

qz and qy [1]

q - the deviation of the scattering vector, h - the reciprocal lattice point. The left figure – illustrates the case when the specimen angle, $\boxed{\psi}$, and the analyser angle, $\boxed{\phi}$, are set so as to satisfy the Bragg condition.

gz and gy [1]

 q_1 :

$$\frac{\mathbf{q}_{\mathbf{y}}}{|\mathbf{k}|} = \cos\alpha - \cos(\alpha - \Delta\alpha) \tag{1}$$

$$\frac{\mathbf{q}_{\mathbf{y}}}{|\mathbf{k}|} = \cos\alpha - \cos(\alpha - \Delta\alpha) \tag{1}$$

$$\frac{\mathbf{q}_{\mathbf{z}}}{|\mathbf{k}|} = \sin(\alpha + \Delta\alpha) - \sin\alpha \tag{2}$$

 q_2 :

$$\frac{\mathbf{q}_{\mathbf{y}}}{|\mathbf{k}|} = \cos\psi - \cos(\psi - \Delta\psi) \tag{3}$$

$$\frac{\mathbf{q_z}}{|\mathbf{k}|} = \sin(\psi + \Delta\psi) - \sin\psi \tag{4}$$

where:

$$\sin(a + b) = \sin(a) \cdot \cos(b) - \sin(b) \cdot \cos(a)$$
$$\cos(a + b) = \cos(a) \cdot \cos(b) - \sin(b) \cdot \sin(a)$$
$$\cos\Delta\alpha = \cos\Delta\psi = 1$$
$$\sin\Delta\alpha = \Delta\alpha$$
$$\sin\Delta\psi = \Delta\psi$$

gz and gy [1]

$$\frac{\mathbf{q}_{1\mathbf{y}} + \mathbf{q}_{2\mathbf{y}}}{|\mathbf{k}|} = \frac{\mathbf{q}_{\mathbf{y}}}{\mathbf{k}} = -\Delta\alpha \cdot \sin\alpha + \Delta\psi \cdot \sin\psi \tag{5}$$

$$\frac{\mathbf{q_{1z}} + \mathbf{q_{2z}}}{|\mathbf{k}|} = \frac{\mathbf{q_z}}{\mathbf{k}} = \Delta\alpha \cdot \cos\alpha + \Delta\psi \cdot \cos\psi \tag{6}$$

where

$$\alpha = \phi - \psi$$
$$\Delta \alpha = \Delta \phi - \Delta \psi$$

for the result we have

$$\frac{\mathbf{q}_{\mathbf{y}}}{|\mathbf{k}|} = \Delta \psi \cdot \sin \psi - (\Delta \phi - \Delta \psi) \cdot \sin(\phi - \psi) \tag{7}$$

$$\frac{\mathbf{q}_{\mathbf{z}}}{|\mathbf{k}|} = \Delta \psi \cdot \cos \psi + (\Delta \phi - \Delta \psi) \cdot \cos(\phi - \psi) \tag{8}$$

$$\frac{\mathbf{q}_{\mathbf{z}}}{|\mathbf{k}|} = \Delta \psi \cdot \cos \psi + (\Delta \phi - \Delta \psi) \cdot \cos(\phi - \psi)$$
 (8)

for symmetric reflection:

$$\psi = \theta_{\rm B}$$
$$\phi - \psi = \theta_{\rm B}$$

Any region of the specimen which also has lattice parameter d but is tilted with respect to the original region will never provide scattering which reaches the detector;

Any region of the specimen which also has lattice parameter d but is tilted with respect to the original region will never provide scattering which reaches the detector;

Any region of the specimen which also has lattice parameter d but is tilted with respect to the original region will never provide scattering which reaches the detector;

Any region of the specimen which also has lattice parameter d but is tilted with respect to the original region will never provide scattering which reaches the detector;

Any region of the specimen which also has lattice parameter d but is tilted with respect to the original region will never provide scattering which reaches the detector;

A scattering map in reciprocal space.

Total intensity

$$I(\varepsilon, \omega, \Delta\theta_1) = \int_{-\infty}^{\infty} R_1(\Delta\theta_1) R_2(\Delta\theta_1 + \omega) R_3(\Delta\theta_1 + 2\omega - \varepsilon) \cdot d\Delta\theta_1 \quad (9)$$

CASE A $|\omega| \gg \Delta \theta_{\rm B}$

where, $\Delta\theta_{\rm B}$ - full width at half maximum, abbreviated as FWHM

• $\Delta\theta_1 = 0$ – the condition for maximum intensity from the monochromator

$$I(\varepsilon,\omega,0) = \int_{-\infty}^{\infty} R_1(0)R_2(\omega)R_3(2\omega - \varepsilon) \cdot \mathbf{d}\Delta\theta_1$$

Maximum intensity for the specimen is $\varepsilon = 2\omega$ (take in to account the condition $|\omega| \gg \Delta\theta_{\rm B}$) - MAIN PEAK (MP)

$$I_{MP}^{max} = R_1(0)R_2(\omega)R_3(0) \cdot \mathbf{d}\Delta\theta_1$$

The MP intensity is defined by the intensity $R_2(\omega)$ on the ROCKING CURVE tail for the specimen

CASE A
$$|\omega| \gg \Delta \theta_{\rm B}$$

- $\Delta\theta_1 = -\omega$ the condition for maximum intensity from the specimen
 - c Maximum intensity is $\varepsilon = \omega$ -

PSEUDO-PEAK (PP) or MONOCHROMATOR PSEUDO-PEAK

$$I_{PPM}^{max} = R_1(-\omega)R_2(0)R_3(0) \cdot \mathbf{d}\Delta\theta_1$$

The PP intensity is defined by the intensity $R_1(-\omega)$ on the ROCKING CURVE tail for the monochromator

CASE B
$$|\varepsilon| \gg \Delta \theta_{\rm B}$$

 \bullet $\Delta \theta_1 = 0$

$$I(\varepsilon,\omega,0) = \int_{-\infty}^{\infty} R_1(0)R_2(\omega)R_3(2\omega - \varepsilon) \cdot \mathbf{d}\Delta\theta_1$$

There are two conditiond to have maximima

• $\omega = 0$ - R₃($-\varepsilon$) ANALYSER PSEUDO-PEAK - realize on the ROCKING CURVE tail for the analyser

$$I_{PPA} = R_1(0)R_2(0)R_3(-\varepsilon) \cdot \mathbf{d}\Delta\theta_1$$

• $\omega = \varepsilon/2$ MAIN PEAK

$$I_{PPA} = R_1(0)R_2(\varepsilon/2)R_3(0) \cdot \mathbf{d}\Delta\theta_1$$

CASE B
$$|\varepsilon| \gg \Delta \theta_{\rm B}$$

• $\Delta \theta = -\varepsilon$

$$I_{PPM} = R_1(-\varepsilon)R_2(\omega - \varepsilon)R_3(2\omega - 2\varepsilon) \cdot \mathbf{d}\Delta\theta_1$$

the condition for maximum intensity $\omega=\varepsilon$ The pseudo-peak is defined by the intensity on the ROCKING CURVE tail for the monochromator

$$I_{PPM}^{max} = R_1(-\varepsilon)R_2(0)R_3(0) \cdot \mathbf{d}\Delta\theta_1$$

CASE C $\theta/2\theta$ - scan $\varepsilon = 2\omega$

incipient questions

Here I will ask you for some questions.

References

[1] Bowen D.K., Tanner B.K. High resolution X-ray Diffractometry and Topography p.169