Software Engineering Übungsblatt 4

14. Juni 2018

Aufgabe 2

Datenflüsse

Number: $u d r [(r)^number] u d$; für number >=1

Result: $u [r d r [r d] (r d r)^{(number-1)}] (r r d r | r r) u$; für number >=1

<u>Datenanomalien</u>

- ur-Anomalie zu Beginn des Datenflusses von result
 --> kritisch, da in Java Variablen vor dem Zugriff initialisiert werden müssen
- falls *result* gerade ist, wird der Inhalt der while-Schleife unerreichbar (toter Code) --> nicht kritisch, das Programm bleibt semantisch gleich

b)

- Nullpointer-Referenz
- Array-Length größer 0
- Gleiche Objekte müssen gleichen Hashcode haben
- Vergleich von Objekten (equals vs ==)
- Typkorrektheit (Casts)

Aufgabe 3

a)

b)

Variable x	Knoten n_i	$dcu(x, n_i)$	$dpu\left(x,n_{i}\right)$
result	n_1	$\{n_{3,}n_{7,}n_{out}\}$	$\{ (n_{6}, n_{7}), (n_{6}, n_{out}) \}$
result	n_3	$\{n_{2,}n_{5,}n_{7,}n_{out}\}$	$\{ (n_4, n_2), (n_4, n_5), (n_6, n_7), (n_6, n_{out}) \}$
result	n_5	$\{n_{2,}n_{3,}n_{7,}n_{out}\}$	$\{ (n_4, n_2), (n_4, n_5), (n_6, n_7), (n_6, n_{out}) \}$
result	n_7	$\{n_{out}\}$	{/}
number	$n_{(in)}$	{/}	$\{ (n_{2}, n_{3}), (n_{2}, n_{6}) \}$

c), d), f)

Eingabe: number = 1 Pfad: $(n_{Start}, n_{(in)}, n_{2}, n_{3}, n_{4}, n_{5}, n_{4}, n_{2}, n_{6}, n_{7}, n_{out}, n_{Final})$

result = 99

Ausgabe: result = 2

e)

1. Eingabe: number = 1 Pfad: $(n_{Start}, n_{(in)}, n_{2}, n_{3}, n_{4}, n_{5}, n_{4}, n_{2}, n_{6}, n_{7}, n_{out}, n_{Final})$

result = 99

Ausgabe: result = 2

2.

Eingabe: number = 1 Pfad: $(n_{Start}, n_{(in)}, n_{2}, n_{3}, n_{4}, n_{5}, n_{4}, n_{2}, n_{6}, n_{out}, n_{Final})$

result = 1