Localization of triangulated category

Jixiang lin

 $\ensuremath{\mathsf{ABSTRACT}}.$ Here is a summary of the results of each chapter.

Chapter 1 introduces S-roof and S-coroof, both induces localization of an additive category.

Chapter 2 gives definition of triangulated category and proves the localization of a triangulated category at a localizing class is triangulated if the localizing class is compatible with translation functor. For general properties of triangulated category, see [Nee01].

Contents

Chapter 1. Localization of additive category	5
1. Localizing class	5
2. S-roof	5
3. S-coroof	S
4. Localization of additive category	11
Chapter 2. Triangulated category	13
1. Definition of triangulated category	13
2. Localization of triangulated category	15
Bibliography	19

Localization of additive category

1. Localizing class

The localization of a category is basically "adding" inverse of some morphism. As we will see, some constructions involved in localization will make Hom-set between a pair of object a class. We still call them "category" here.

DEFINITION 1.1. Let C be a category, S class of morphisms in C, a functor $F:C\to D$ is called localization if F(f) is isomorphism for f in S and for any functor $G:C\to E$ with G(f) is isomorphism for f in S, there exists a unique functor $H:D\to E$ such that $G=H\circ F$. For localization F,D is usually denoted by $C[S^{-1}]$.

REMARK 1.2. The localization of a category always exist if we allow $C[S^{-1}]$ to be a generalized category [Pan16]. However, in such case, it has a complicated structure. So we consider a special type of S to make $C[S^{-1}]$ simple.

DEFINITION 1.3. Let C be a category, S is a class of morphisms in C. S is called localizing class if it satisfies the following conditions

- (1) $id_x \in S \ \forall \ x \in S \ f, g \text{ in } S \text{ implys } g \circ f \in S \text{ (if } g \circ f \text{ is defined)}$
- (2) Consider the following diagrams

where $s,s'\in S$ and $f,g\in C$, they can be completed to

(3) Let $f,g:X\to Y$ be morphisms. Then there exists morpism $s\in S$ s.t. sf=sg if and only if there exists morphism s' s.t. fs'=gs'.

2. S-roof

DEFINITION 2.1. A S-roof from $X \to Y$, denoted by (s, f), is a diagram

where $s \in S$, $f \in C$. We say two roofs (s, f) and (t, g) are equivalent, denoted by $(s, f) \sim (t, g)$ if there is a such diagram

where $ss' \in S$, $h \in C$.

PROP 2.2. Roof equibalence \sim is equivalence relation.

PROOF. Reflexivity and Symmetry is obvious. For transitivity, consider the following diagram

use def 1.3 for

we can compelete the diagram to

where $M \to T$ and $M \to W \in S$.

2. S-ROOF 7

use def 1.3 again, we have $M' \to M \in S$ s.t.

DEFINITION 2.3. For roofs (s, f) from $X \to Y$ and (s', g) from $Y \to Z$, their composition is defined to be the roof

where $ss'' \in S$ and fs'' = s'h. The composition always exists due to def 1.3.

PROP 2.4. Composition is well-defined for roof equivalent class.

PROOF. First we consider the same representative for roofs.

use def1.3 we have

where $T \to W$ and $T \to W' \in S$ use def 1.3 again

$$T' \to T \to W \to T_1 = T' \to T \to W' \to T_1$$

$$T' \to W \to T_2 \to Y$$

$$= T' \to W \to T_1 \to Y$$

$$= T' \to W' \to T_1 \to Y$$

$$= T' \to W' \to T_2 \to Y$$

there exists
$$T'' \to T' \in S$$
 s.t. $T'' \to W \to T_2 = T'' \to W' \to T_2$ $(W \to X, W \to Z) \sim (T'' \to W \to X, T'' \to W \to Z) \sim (W' \to X, W' \to Z)$

where $ss'', ss''s''' \in S$. Therefore it's also composition of (s, f) and (s', g). Let $(s, f) \sim (s_1, f_1)$, then $(s', g) \circ (s, f) \sim (s', g) \circ (s_1, f_1)$

9

where
$$s's'', ss''' \in S$$
. It is composition of (s, f) and (s', g) .
 Let $(s', g) \sim (s_2, g_2)$. Then $(s', g) \circ (s, f) \sim (s_2, g_2) \circ (s, f)$.
 $(s', g) \circ (s, f) \sim (s_2, g_2) \circ (s, f) \sim (s_2, g_2) \circ (s_1, f_1)$

DEFINITION 2.5. Let \tilde{C}_S be the category consisting of objects of C. $Hom(X,Y)=\{[(s,f)]|s\in S, f\in C, cods=X, codf=Y\}$. Composition is defined from S-roof.

PROP 2.6. Let C be a category, S localizing class, then $F: C \to \tilde{C}_S$, which is id on object, send f to [(id, f)], is localization of C.

PROOF. let $s \in S$

which shows F maps morphisms in S to isomorphisms in \tilde{C}_S .

Let $G: C \to D$ be a functor that send morphisms in S to isomorphisms in D. Let $H: \tilde{C}_S \to D$ be a functor s.t. $G = H \circ F$.

$$H([(s,f)]) = H([(id,f)])H([(id,s)])^{-1} = G(f)G(s)^{-1}$$

we show H is well-defined functor.

Let
$$(s,f) \sim (s',g)$$
. Then $(ss'',fs'') = (s's'',gs'')$ where $ss'' \in S$ $G(f)G(s)^{-1} = G(fs'')G(ss'')^{-1} = G(g)G(s')^{-1}$. Thus H is well-defined. $H([(id,id)]) = G(id)G(id)^{-1} = id, [(s',g)][(s,f)] = [(ss'',gh)]$. $H([(fs'',gh)]) = G(gh)G(ss'')^{-1} = G(g)(G(h)G(s'')^{-1})G(s)^{-1} = G(g)(G(s')^{-1}G(f))G(s)^{-1}$

3. S-coroof

LEMMA 3.1. Let S be a category, S localizing class. Then S^{op} is localizing class of C^{op} .

Proof. Just reserve all arrows in def 1.3.

DEFINITION 3.2. Let C be a category, S localizing class. A S-coroof is a diagram of the form

where $s \in S$, denoted by (f, s). Two coroofs (f, s), (g, s') are equivalent if there is a diragram of the form

where $s''s' \in S$ and $h \in C$, denoted by $(f,s) \sim^{\vee} (g,s')$ The composition of (f,s) and (g,s') is define to be the following diagram

where $h \in C$, $s''s' \in S$.

PROP 3.3. \sim^{\vee} is equivalence relation. Coroof composition exists and is well-defined for equivalent class of coroofs. There is a category with object the same as C, its morphism consists of equivalent class of coroofs, composition defined in this way, denoted by \check{C}_S , and it is isomorphic to \widetilde{C}_S .

PROOF. S^{op} -roof $Y \to X$ has a bijection to S-coroof $X \to Y$

which send (s^{op}, f^{op}) to (f, s). We carry the equivalent class of S^{op} -roof to S-coroof.

The induced equivalence relation on S-coroof is \sim^{\vee} . $W(X,Y)=\{S\text{-coroof equivalent class from }X\text{ to }Y\}$. Then $Hom_{(\tilde{C^{o_p}}_{S^{o_p}})^{o_p}}(X,Y)\simeq W(X,Y)$. Then the isomorphisms create a category with object the same as C, morphisms as equivalent classes of coroof, and composition as coroof composition.

Note that $G: C \to C^{op}[S^{op-1}]^{op}$ is localization of C, so the induced morphism

 $R: C[S^{-1}] \to C^{op}[S^{op-1}]^{op}$ is isomorphism. Therefore the composite $\tilde{C_S} \to (\tilde{C^{op}}_{S^{op}})^{op} \to \check{C_S}$ is isomorphism. Which send $[(s,f)] \to [(f,id)][(s,id)]^{-1} = [(f',s')]$

where f', s' rise from def 1.3. So [(f', s')][(s, id)] = [(f's, s')] = [(s'f, s')] = [(f, id)].

4. Localization of additive category

THEOREM 4.1. Let A be additive category, S localizing class. Then $A[S^{-1}]$ is additive category and the localization functor $Q: A \to A[S^{-1}]$ is additive functor.

PROOF. (1) 0 (in A) is zero object. If we have two roofs

where $f \in S$.

$$[(f,0)] = [(id \circ f, 0 \circ f)] = [(id,0)]$$
$$[(0,h)] = [(0 \circ h), id \circ h] = [(0,id)].$$

(2) $Hom_{A[S^{-1}]}(X,Y)$ is abelian group.

$$[(s,f)] + [(s',f')] := [(ss'',fs'' + f's''')]$$

where ss'' = s's''', s'' and $s''' \in S$.

To see it's well-defined, let $(s, f) \sim (s', f'), (s, g) \sim (s', g')$

$$(ss'', fs'') = (s's''', f's''')$$

$$(ss'', gs'') \sim (s's''', g's''')$$

$$(ss''s_1, gs''s_1) = (s's'''s_1, g's'''s_1) *$$

where $s'', s''', s_1 \in S$

$$(s, f+g) \sim (ss''s_1, (f+g)s''s_1) = (s's'''s_1, (f'+g')s'''s_1) \sim (s', f'+g')$$

(3) Existence of biproduct.

let l_X, l_Y, π_X, π_Y be biproduct of X and Y in A. Then $[(id, l_X)], [(id, l_Y)], [(id, \pi_X)], [(id, \pi_Y)]$ is biproduct of X and Y in $C[S^{-1}]$

$$\begin{aligned} [(id,\pi_X)][(id,l_X)] &= [(id,id)], [(id,\pi_Y)][(id,l_Y)] = [(id,id)] \\ [(id,\pi_Y)][(id,l_X)] &= [(id,0)], [(id,\pi_X)][(id,l_Y)] = [(id,0)] \\ [(id,l_X)][(id,\pi_X)] + [(id,l_Y)][(id,\pi_Y)] &= [(id,l_X\pi_X + l_Y\pi_Y)] = [(id,0)] \end{aligned}$$

(4) Distributive law

where $s_1, s_2 \in S, s''s_1 = s'''s_2, s_3 \coloneqq s''s_1$

(5) Q is additive.

$$Q(f+g) = [(id,f+g)] = [(id,f)] + [(id,g)] = Q(f) + Q(g)$$

CHAPTER 2

Triangulated category

1. Definition of triangulated category

DEFINITION 1.1. Let A be an additive category, T additive automorphism of A.A triangle in A is

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

Denoted by (X, Y, Z, u, v, w), where X[1] := TX, T is sometimes called translation functor. Morphism from (X, Y, Z, u, v, w) to (X', Y', Z', u', v', w') is a triple (f, g, h) s.t. the diagram commutes

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

$$f \downarrow \qquad g \downarrow \qquad h \downarrow \qquad f[1] \downarrow$$

$$X' \longrightarrow Y' \longrightarrow Z' \longrightarrow X'[1]$$

where f[1] := Tf. Then (f, g, h) is isomorphism (in the category of some triangles) if and only if f, g, h are isomorphisms.

DEFINITION 1.2. Let A be an additive category, T additive automorphism of A, P a collection of triangles in A, called distinguished triangles. Then A is called triangulated category w.r.t T and P if the following conditions are satisfied

- (1) For any X in $A,(X,X,0,id,0,0) \in P$
- (2) $(X, Y, Z, u, v, w) \in P$ if and only if $(Y, Z, X[1], v, w, -u[1]) \in P$.
- (3) A triangle isomorphic a triangle in P is in P.
- (4) For any f in A, there is a triangle (X, Y, Z, u, v, w) in P s.t. u = f.
- (5) For two distinguished triangles (X,Y,Z,u,v,w),(X',Y',Z',u',v',w') and f,g s.t the diagram commutes

Then there exist h s.t the diagram commutes

$$\begin{array}{cccc} X & \xrightarrow{u} & Y & \xrightarrow{v} & Z & \xrightarrow{w} & X[1] \\ f \downarrow & & g \downarrow & & h \downarrow & & f[1] \downarrow \\ X' & \longrightarrow & Y' & \longrightarrow & Z' & \longrightarrow & X'[1] \end{array}$$

(6) For distinguished triangles (X,Y,Z,u,v,w),(Y,Y',Z'',u',v',w') and (X,Y',Z',u'u,v'',w''), there exists distinguished triangle

13

(Z, Z', Z'', u''', v''', w''') s.t. the diagram commutes

[SIG96] provides the commutative condition in a octahedral, called "The octahedral axiom".

REMARK 1.3. Let A be a triangulated category, (X, Y, Z, u, v, w), (X', Y', Z', u', v', w') distinguished triangles. If the diagram commutes

Then there exist f s.t.

If the diagram commutes

Then there exists g s.t.

$$\begin{array}{cccc} X & \xrightarrow{u} & Y & \xrightarrow{v} & Z & \xrightarrow{w} & X[1] \\ f \downarrow & & g \downarrow & & \downarrow & & f[1] \downarrow \\ X' & \xrightarrow{u'} & Y' & \xrightarrow{v'} & Z' & \xrightarrow{w'} & X'[1] \end{array}$$

2. Localization of triangulated category

DEFINITION 2.1. Let A be a triangulated category, S localizing class, T translation functor. T is called compatible with S if

- (1) $T(f) \in S$ if and only if $f \in S$.
- (2) In condition 5 of triangulated category, for $f, g \in S$, there exists $h \in S$.

LEMMA 2.2. Let A be an additive category, S localizing class, Q localization functor. For the diagrams in $A[S^{-1}]$ and A respectively

The first diagram is commutative if and only if there exists $s_1, s_2 \in S, f_1, f_2, w \in A$ s.t. $t = [(s_1, f_1)], r = [(s_2, f_2)]$ and the second diagram is commutative.

$$\begin{split} r \circ Qu = & [(s_2,f_2)][(id,u)] = [(s_1,f_2w)] = [(s_1,u'f_1)] = Qu' \circ t \\ \text{Conversely, let } t = & [(s_1,f_1)], r = [(s_2,f_2)].Qu' \circ t = [(s_1,u'f_1)].r \circ Qu = (s',f_2g'), \\ \text{where } us' = & s_2g', s' \in S.(s_1,u'f_1) \sim (s',f_2g').s's'' = s_1s''', \text{ where } s'', s''' \in S.(s's'',f_2g's'') \sim (s_1s''',u'f_1s'''). \text{ Then } f_2g's''s_3 = u'f_1s'''s_3.s's'''s_3 \in S.\tilde{f}_1 = f_1s'''s_3.\tilde{s}_1 = s_1s'''s_3, w = g's''s_3. \text{ Then } u\tilde{s}_1 = s_2w.u'\tilde{f}_1 = f_2w. \ [(s_1,f_1)] = [(\tilde{s}_1,\tilde{f}_1)] \end{split}$$

THEOREM 2.3. Let A be a triangulated category, S localizing class, Q localization functor, T translation functor compatible with S. Then $A[S^{-1}]$ is triangulated category with \tilde{T} as translation functor and triangles isomorphic to Q applied distinguished triangles in A as distinguished triangles.

PROOF. (1)
$$X \xrightarrow{id} X \xrightarrow{0} 0 \xrightarrow{0} X[1]$$

$$X \xrightarrow{[(id,id)]} X \xrightarrow{[(id,0)]} 0 \xrightarrow{[(id,0)]} X[1]$$

$$X \xrightarrow{Qu} Y \xrightarrow{Qv} Z \xrightarrow{Qw} X[1]$$

$$f \downarrow \qquad g \downarrow \qquad h \downarrow \qquad \tilde{T}(f) \downarrow$$

$$X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} X'[1]$$

$$(2)$$

$$Y \xrightarrow{Qv} Z \xrightarrow{Qw} TX \xrightarrow{\tilde{T}(Qu)} TY$$

$$g \downarrow \qquad h \downarrow \qquad \tilde{T}(f) \downarrow \qquad \tilde{T}(g) \downarrow$$

$$Y' \xrightarrow{v'} Z' \xrightarrow{w'} TX' \xrightarrow{\tilde{T}(u')} TY'$$

- (3) Trivial
- (4) Give $[(s,f)]: X \to Y$ in $A[S^{-1}]$. Let (Z,Y,K,f,v,w) be a distinguished triangle in A.

$$X \xrightarrow{[(s,f)]} Y \xrightarrow{Qv} K \xrightarrow{Q(Ts \circ w)} TX$$

$$Qs \uparrow \qquad Q(id) \uparrow \qquad Q(id) \uparrow \qquad Q(Ts) \uparrow$$

$$Z \xrightarrow{Qf} Y \xrightarrow{Qv} K \xrightarrow{Qw} TZ$$

(5) First we consider the case when two distinguished triangles are Q applied triangles in A.

$$X \xrightarrow{Qu} Y \xrightarrow{Qv} Z \xrightarrow{Qw} TX$$

$$f' \downarrow \qquad \qquad g' \downarrow \qquad \qquad \qquad X' \xrightarrow{Qu'} Y' \xrightarrow{Qv'} Z' \xrightarrow{Qw'} TX'$$

We have the following commutative diagram in A

where $s_1, s_2 \in S, f' = [(s_1, f_1)], g' = [(s_2, f_2)].$ Then we have

Therefore we have the following in $A[S^{-1}]$

For the general case

(6) First we consider the case when 3 distinguished triangles in $A[S^{-1}]$ is Q applied distinguished triangles in A. We get the new distinguished triangle in A and apply Q. We have $Q(Tf) = \tilde{T}(Qf)$, so it satisfies the commutative condition.

Bibliography

- [Nee01] Amnon Neeman. Triangulated category. Ann.Math.Studies 148. Princeton University Press, 2001.
- $[{\rm Pan16}]$ Tomi Pannila. An Introduction to Homological Algebra. Lecture notes, version 28 mar 2016 edition, 2016.
- $[SIG96] \ \ Yuri\ I.\ Manin\ S.\ I.\ Gelfand.\ \textit{Methods of homological algebra}.\ Springer,\ 1st\ edition,\ 1996.$