GETTING STARTED WITH IBM Q EXPERIENCE

Step 1

- 1. Open https://quantum-computing.ibm.com
- 2. Click on Create an IBMid account
- 3. Click on Create an IBMid
- 4. Fill in the details and click on continue
- 5. You will get a 7-digit code that you will enter in the form after clicking on continue.
- 6. Account setup is done!

Step 2

- 1. Open https://quantum-computing.ibm.com
- 2. Click on Sign in to get started, and sign in with your new account details
- 3. Read the privacy and terms, accept the End User License Agreement
- 4. Click on accept and continue
- 5. You're ready to start coding!

Qiskit cheat sheet

Circuit Basics

Create a classical register wiith 3 bits

cr = ClassicalRegister(3)

Create a quantum register with 3 qubits

qr = QuantumRegister(3)

Create an initial circuit with classical and quantum registers

circ = QuantumCircuit(qr,cr)

Gates

X on qubit 0: circ.x(qr[0])

H on qubit 0: circ.h(qr[0])

CNOT on qubit 0,1: circ.cx(qr[0], qr[1])

<u>Measurement</u>

circ.measure(qr, cr)

Visualization

circ.draw(output = 'mpl')

Running experiments on a simulator

simulator = Aer.get_backend('qasm_simulator')

Execute a job

result = execute (circ, backend=simulator, shots=1024).result()

Plot a histogram

plot_histogram(result.get_counts(circ))

Running experiments on a real quantum computer

Load accounts

from qiskit import IBMQ

IBMQ.load account()

Get Backends

provider = IBMQ.get provider(hub='ibm-q')

provider.backends()

Choose a backend

mel= provider.get backend('ibmq 16 melbourne')

Execute a job

job mel16 = execute(circ, backend=mel)

Job Monitor

from giskit.tools.monitor import job monitor

job monitor(job mel16)

Plot a histogram

result mel16 = job mel16.result()

plot_histogram(result_mel16.get_counts(circ))

QUANTUM STATES FOR SINGLE QUBIT SYSTEMS

Question 1

We define a state $|\psi>=\alpha|0>+\beta|1>$ to be a valid quantum state if $|\alpha|^2+|\beta|^2=1$. Which of the following equations describe a valid quantum state?

(a) Example: $|\psi>=\frac{1}{\sqrt{2}}|0>+\frac{1}{\sqrt{2}}|1>$

$$\alpha = \frac{1}{\sqrt{2}}, \beta = \frac{1}{\sqrt{2}}$$

$$\alpha^2 + \beta^2 - (\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 - (\frac{1}{\sqrt{2}$$

 $\alpha^2 + \beta^2 = (\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 = 1$

Since $\alpha^2+\beta^2=1$, $|\psi>=\frac{1}{\sqrt{2}}|0>+\frac{1}{\sqrt{2}}|1>$ is a valid quantum state.

(b) $|\psi>=\frac{1}{4}|0>+\frac{3}{4}|1>$

(c) $|\psi>=|0>+|1>$

(d) $|\psi>=\frac{5}{13}|0>+\frac{12}{13}|1>$

(e) $|\psi>=\frac{3}{5}|0>+\frac{4}{5}|1>$

(f) $|\psi>=|1>$

(g) $|\psi>=\frac{1}{4}|0>$

(h) $|\psi>=\frac{\sqrt{3}}{2}|0>+\frac{1}{2}|1>$

(i) $|\psi> = \frac{\sqrt{7}}{4}|0> + \frac{\sqrt{5}}{4}|1>$

QUANTUM GATES AND MEASUREMENT

Question 2

What is the resulting states for each of the circuits below?

(a)

(b)

(c)

(d)

$$rac{|0>+|1>}{\sqrt{2}}$$
 H

Question 3

What can we expect on measurement?

(a)

(b)

(c)

(d)

$$\frac{|0>+|1>}{\sqrt{2}}$$
 H | $0>$

QUANTUM STATES FOR TWO QUBIT SYSTEMS

Question 1

We define a state $|\psi>=\alpha|00>+\beta|01>+\gamma|10>+\delta|11>$ to be a valid quantum state if $|\alpha|^2+|\beta|^2+|\gamma|^2+|\delta|^2=1$. Which of the following equations describe a valid quantum state?

(a) Example: $\frac{1}{2}|00>+\frac{1}{2}|01>+\frac{1}{2}|10>+\frac{1}{2}|11>$

$$\alpha = \frac{1}{2}, \beta = \frac{1}{2}, \gamma = \frac{1}{2}, \delta = \frac{1}{2}$$
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2 = 1$$

Since $\alpha^2+\beta^2+\gamma^2+\delta^2=1$, $|\psi>$ is a valid quantum state.

(b) $|\psi> = \frac{\sqrt{7}}{5}|00> + \frac{\sqrt{7}}{\sqrt{5}}|01> + \frac{3}{5}|10> + \frac{\sqrt{2}}{5}|11>$

(c) $|\psi>=|00>$

(d) $|\psi>=|00>+|01>+|10>+|11>$

(e) $ \psi>$ =	$= \frac{3}{5} 00> +\frac{4}{5} 01>$	
	MEASUREMENT	

Question 2

For the following, quantum states, what would the qubits most likely collapse to?

(a) Example: $\frac{1}{2}|00>+\frac{1}{2}|01>+\frac{1}{2}|10>+\frac{1}{2}|11>$

This state is in an equal superposition of the four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$. Therefore, we can equally expect the states to be:

First Qubit: 0, Second Qubit: 0

First Qubit: 0, Second Qubit: 1

First Qubit: 1, Second Qubit: 0

First Qubit: 1, Second Qubit: 1

(b)	$ \psi$	>=	00>	

(d) $|\psi> = \frac{1}{\sqrt{2}}|00> + \frac{1}{\sqrt{2}}|11>$

(e) For $|\psi>=\frac{1}{\sqrt{2}}|00>+\frac{1}{\sqrt{2}}|11>$, if we measure the first qubit to result in 0, what can we say about the second qubit?

(f) For $|\psi>=\frac{1}{\sqrt{2}}|01>+\frac{1}{\sqrt{2}}|10>$, if we measure the first qubit to result in 0, what can we say about the second qubit?

(g) For $|\psi>=\frac{1}{\sqrt{2}}|00>+\frac{1}{\sqrt{2}}|11>$, if we measure the first qubit to result in 1, what can we say about the second qubit?

(h) For $|\psi>=\frac{1}{\sqrt{2}}|00>+\frac{1}{\sqrt{2}}|01>$, if we measure the first qubit to result in 0, what can we say about the second qubit?

ENTANGLEMENT: BELL STATES

Question 3

Prepare bell states starting with the states |00>, |01>, |10>, |11>. What is the resulting state?

