TEMPORAL FUSION TRANSFORMERS FOR INTERPRETABLE MULTI-HORIZON TIME SERIES FORECASTING

2021_03_28

백지윤

목차

- 1. 연구 의의, 목적 등
- 2. 용어 정리
- 3. 모델 구조
- 4. Loss function
- 5. 데이터 셋 / 실험 결과
- 6. 실제 활용 예시
- 7. 결론
- 8. 코드

1. 연구 의의 및 목적

TFT VS RNN

ARCHITECTURE > GATING MECHANISMS

VARIABLE SELECTION NETWORKS

STATIC COVARIATE ENCODERS

input > Static covariates (contexts)
 Observed inputs
 Known inputs

ARCHITECTURE > GATING MECHANISMS X

VARIABLE SELECTION NETWORKS. X

STATIC COVARIATE ENCODERS X

input >
Observed inputs

연구 목적

- Forecasting 에 영향을 줄 수 있는 보다 유연하고 풍부한 데이터를 모두 활용할수 있는 모델을 만들겠다
- 모델 forecasting 도중 해당 시점의 연산에서 필수적인 레이어와 features 만을 필터링하여 사용하겠다
- Multi-head attention 의 변형 방식으로 다양한 헤드를 앙상블 느낌으로 각 타임스텝의 관계성을 폭넓게 해석하겠다 (interpretability)

2. 용어 정리

용어 정리

• Horizon : 예측 범위 / <u>Multi</u>- Horizon : <u>여러 개의</u> 예측 범위

- Static (=time invariant) covariates : 독립 변수가 종속 변수에 미치는 효과에 영향을 줄 수 있는 변수 ex. A 수학 문제집과 수학 성적과의 관계에서 학생들의 원 수학 실력
 => 메타데이터
- Observed inputs (z), known inputs (x) ex. The way of week at time t

용어 정리

Horizon : 예측 범위 / <u>Multi</u>- Horizon : <u>여러 개의</u> 예측 범위

Static (=time invariant) covariates : 독립 변수가 종속 변수에 미치는 효과에

영향을 줄 수 있는 변수 ex. A 수학 문제집과 수학 성적과의 관계에서 학생들의 <u>원 수학 실력</u> =>메타데이터

Observed inputs (z), known inputs (x) ex. The way of week at time t

$$S_i \in \mathbb{R}^{m_s}$$
 $X_{i,t} = \left[\mathbb{E}_{i,t}^T, x_{i,t}^T\right]$
 $y_{i,t} \in \mathbb{R}$

Static covariates

Inputs; (observed, known)

Outputs

$$\hat{y}_{i}(q,t,T) = f_{q}(\tau, y_{i,t-K:t}, z_{i,t-K:t}, x_{i,t-K:t}, s_{i})$$

이용할 variables 4가지

3. 모델 구조

모델 핵심 요소 6가지

자유도 크게

자유도 크게

자유도 작게

자유도 작게

모델 구조

자유도 크게

=> 정제된 features

자유도 작게

Variable Selection Networks

Gating Mechanisms

S,X,Y 중 각 시점에 꼭 필요한 features 필터링

Static Covariate Encoders

S 메타 데이터를 features 를 이해할 수 있는 context화

Interpretable Multi-Head Attention

Decoder

각 time step 의 장기간 상호관계 도출

Quantile Outputs

Gating Mechanisms = GRN layer

Gate 는 TFT 모델의 거의 모든 층에 사용 되는 핵심 테크닉 GRN layer 에도 gate 가 사용됨!

Gating Mechanisms = GRN layer

Gate

$$\eta_2 = \text{ELU} (W_{2,\omega} \ a + W_{3,\omega} \ c + b_{2,\omega}),$$
 (4)

$$\eta_1 = W_{1,\omega} \eta_2 + b_{1,\omega},$$
 (3)

 $GLU_{\omega}(\gamma) = \sigma(W_{4,\omega} \gamma + b_{4,\omega}) \odot (W_{5,\omega} \gamma + b_{5,\omega}),$ (5)

Dropout (training)

 $GRN_{\omega}(\boldsymbol{a}, \boldsymbol{c}) = LayerNorm(\boldsymbol{a} + GLU_{\omega}(\boldsymbol{\eta}_1)),$ (2)

Variable Selection Networks = VSN

각 시점 input 의 여러 features 중 예측값에 확실히 관여하는 알맹이들만 남기기

VSN layer 는 GRN layer 을 포함 모든 inputs 는 VSN layer 을 거침

Variable Selection Networks = VSN

12월 아이스크림의 예측 판매량은 ?

T일 input 값

공휴일 여부	엄마는 외계인	민트초코
0	200개	100개

Categorical

Categorical

Continuous

Linear transformation nn.linear(1,D Model vector)

200

Linear transformation nn.linear(1,D Model vector)

Variable Selection Weights $\tilde{\epsilon}^{(m_{\chi})}$ Softmax GRN **GRN** GRN ... **Transformed Inputs** Flattened External (Linear/Embedding) Inputs Context (Optional) Linear Variable Selection Network

Variable Selection Weights

0.7 0.2 0.1

Feature 개수만큼 (j개)

Static Covariate Encoders

S 메타 데이터를 features 을 이해할 수 있는 context 로 사용

각기 다른 4개의 GRN 을 사용하여서 쓰임이 다른 4개의 문맥 생성

Interpretable Multi-Head Attention

각 time step 의 장기간 상호관계 도출

원 Multi-head attention

TFT Multi-head
attention

Multi-attention 아키텍처 그대로 갖고가되, query,key,value 중 value 는 모든 head 에서 동일

Interpretable Multi-Head Attention

각 time step 의 장기간 상호관계 도출

TFT Multi-head attention

$$MultiHead(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = [\mathbf{H}_1, \dots, \mathbf{H}_{m_H}] \mathbf{W}_H, \tag{11}$$

$$\boldsymbol{H}_{h} = \operatorname{Attention}(\boldsymbol{Q} \ \boldsymbol{W}_{Q}^{(h)}, \boldsymbol{K} \ \boldsymbol{W}_{K}^{(h)}, \boldsymbol{V} \ \boldsymbol{W}_{V}^{(h)}), \tag{12}$$

InterpretableMultiHead(
$$Q, K, V$$
) = $\tilde{H} W_H$, (13)

$$\tilde{\boldsymbol{H}} = \tilde{A}(\boldsymbol{Q}, \boldsymbol{K}) \boldsymbol{V} \boldsymbol{W}_{V}, \tag{14}$$

$$= \left\{ 1/H \sum_{h=1}^{m_H} A\left(\boldsymbol{Q} \ \boldsymbol{W}_Q^{(h)}, \boldsymbol{K} \ \boldsymbol{W}_K^{(h)}\right) \right\} \boldsymbol{V} \ \boldsymbol{W}_V, \tag{15}$$

$$= 1/H \sum_{h=1}^{m_H} \text{Attention}(\boldsymbol{Q} \ \boldsymbol{W}_Q^{(h)}, \boldsymbol{K} \ \boldsymbol{W}_K^{(h)}, \boldsymbol{V} \ \boldsymbol{W}_V), \tag{16}$$

같은 timestep 은 다른 head 에서도 동일한 value 를 갖게 함으로써 앙상블하는 방식으로 작용

ex. Timestep 2 의 어텐션 결과

=> 앙상블 느낌!

Temporal Fusion Decoder - (1) Seq2Seq layer

Temporal Fusion Decoder 에 들어가는 final inputs

각 시점의 특징 추출, 각 시점 정보 추가

$$\tilde{\phi}(t,n) = \text{LayerNorm}\left(\tilde{\xi}_{t+n} + \text{GLU}_{\tilde{\phi}}(\phi(t,n))\right),$$
 (17)

Temporal Fusion Decoder - (2) Static Enrichment Layer

Temporal Fusion Decoder 에 들어가는 final inputs

temporal features 에 메타데이터를 활용해 풍부한 문맥 추가

$$\boldsymbol{\theta}(t,n) = GRN_{\theta}\left(\tilde{\boldsymbol{\phi}}(t,n), \boldsymbol{c}_{e}\right),$$
 (18)

각 time step 의 장기간 상호관계 도출

각 time step 의 장기간 상호관계 도출

$$\theta(t) = [\theta(t, +k), \dots, \theta(t, \tau)]^T$$

Static enrichment layer 에서 나온 값들을 하나의 단일 벡터로 뭉치기

TFT masked Multi-head attention : 이전 시점들과의 관계(;attention) 만을 이용하도록 하기 위해서

$$\delta(t,n) = \text{LayerNorm}(\theta(t,n) + \text{GLU}_{\delta}(\beta(t,n))). \tag{20}$$

n > t

Temporal Fusion Decoder - (4) Position-wise Feed-forward layer

non-linear 층 (GRN) 추가

$$\psi(t, n) = GRN_{\psi}(\delta(t, n)),$$
 (21)

$$\tilde{\psi}(t, n) = \text{LayerNorm} \left(\tilde{\phi}(t, n) + \text{GLU}_{\tilde{\psi}}(\psi(t, n)) \right),$$
 (22)

n < t

Quantile Outputs

최종 quantile 확률별 outputs 출력

$$\hat{y}(\mathbf{q}, t, \tau) = \mathbf{W}_{\mathbf{q}} \tilde{\psi}(t, \tau) + b_{\mathbf{q}},$$
 (23)

각 quantile 마다 각자의 linear 층으로 output 값 계산 Quantile : 해당 예측값이 나올 확률이 quantile %

4. LOSS FUNCTION

LOSS FUNCTION

Quantile Forecasts $\{ \hat{y}_{t+1}(0.1) \ \hat{y}_{t+1}(0.5) \ \hat{y}_{t+1}(0.9) \ \dots \ \hat{y}_{t+\tau}(0.1) \ \hat{y}_{t+\tau}(0.5) \ \hat{y}_{t+\tau}(0.9) \ \dots \ \hat{y}_{t+\tau}(0.9) \ \dots \ \hat{y}_{t+\tau}(0.9) \ \dots \ \hat{y}_{t+\tau}(0.9) \ \hat{y}_{t+\tau}(0.9) \ \dots \ \hat{y}_{t+\tau}(0.9) \ \dots \ \hat{y}_{t+\tau}(0.9) \ \hat{y}_{t+\tau}(0.9) \ \dots \ \hat{y}_{t+\tau}(0.9) \ \hat{y}_{t+\tau}(0.9) \ \dots \ \hat{y}_{t$

해당 데이터셋 內

해당 데이터셋 저
$$\mathcal{L}(\Omega, \mathbf{W}) = \sum_{y_t \in \Omega} \sum_{\{0.1, 0.5, 0.9\}}^{\tau_{max}} \frac{QL(y_t, \hat{y}(q, t - \tau, \tau), q)}{M \tau_{max}}$$
 예측할 개수 (24)

$$QL(y, \hat{y}, q) = q(y - \hat{y})_{+} + (1 - q)(\hat{y} - y)_{+},$$

$$\max_{\text{max}(0,x)} (25)$$

- Quantile loss function 출처: https://arxiv.org/pdf/1711.11053.pdf
- 조금 변형된 loss function 으로 out of sample test 도 같이 진행

$$q\text{-Risk} = \frac{2\sum_{y_t \in \tilde{\Omega}} \sum_{\tau=1}^{\tau_{max}} QL(y_t, \ \hat{y}(q, t - \tau, \tau), \ q)}{\sum_{y_t \in \tilde{\Omega}} \sum_{\tau=1}^{\tau_{max}} |y_t|},$$
(26)

where $\hat{\Omega}$ is the domain of test samples. Full details on hyperparameter optimization and training can be found in Appendix A.

5. 데이터 셋 / 실험 결과

데이터 셋 1 - The UCI electricity Load Diagrams Dataset

Electricity consumption of 370 customers (168 x 370)

현재 시점 - 168 ; Window 현재 시점 (t) <u>다음 24시간 예측값은?</u>

이용할 features 4가지 2가지

440 route freeways (열)

```
_column_definition = [
    ('id', DataTypes.REAL_VALUED, InputTypes.ID),
    ('hours_from_start', DataTypes.REAL_VALUED, InputTypes.TIME),
    ('values', DataTypes.REAL_VALUED, InputTypes.TARGET),
    ('time_on_day', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT),
    ('day_of_week', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT),
    ('hours_from_start', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT),
    ('categorical_id', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
]
```

총<mark> 168</mark> 시간 (행) – window

이용할 features 4가지 2가지

메타데이터 4개

총 8개의 dataset https://www.kaggle.com/c/favorita-grocery-sales-forecasting/rules

	items		
item_nbr	family	class	perishable
96995	GROCERY I	1093	0
99197	GROCERY I	1067	0
103501	CLEANING	3008	0
103520	GROCERY I	1028	0
103665	BREAD/BAKERY	2712	1
105574	GROCERY I	1045	0
105575	GROCERY I	1045	0
105576	GROCERY I	1045	0
105577	GROCERY I	1045	0
105693	GROCERY I	1034	0

		stores		
store_nbr	city	state	typ e	cluster
1	Quito	Pichincha	D	13
2	Quito	Pichincha	D	13
3	Quito	Pichincha	D	8
4	Quito	Pichincha	D	9
5	Santo Domingo	Santo Domingo de los Tsachilas	D	4
6	Quito	Pichincha	D	13
7	Quito	Pichincha	D	8
8	Quito	Pichincha	D	8
9	Quito	Pichincha	В	6
10	Quito	Pichincha	С	15

date	type	locale	locale_name	description	transferred
2012-03-0 2	Holiday	Local	Manta	Fundacion de Manta	FALSE
2012-04-0 1	Holiday	Regional	Cotopaxi	Provincializacion de Cotopaxi	FALSE
2012-04-1 2	Holiday	Local	Cuenca	Fundacion de Cuenca	FALSE
2012-04-1 4	Holiday	Local	Libertad	Cantonizacion de Libertad	FALSE
2012-04-2 1	Holiday	Local	Riobamba	Cantonizacion de Riobamba	FALSE
2012-05-1 2	Holiday	Local	Puyo	Cantonizacion del Puyo	FALSE
2012-06-2 3	Holiday	Local	Guaranda	Cantonizacion de Guaranda	FALSE
2012-06-2 5	Holiday	Regional	Imbabura	Provincializacion de Imbabura	FALSE
2012-06-2 5	Holiday	Local	Latacunga	Cantonizacion de Latacunga	FALSE

C	il
date	dcoilwtico
2013-01-0 1	
2013-01-0 2	93.14
2013-01-0 3	92.97
2013-01-0 4	93.12
2013-01-0 7	93.2
2013-01-0 8	93.21
2013-01-0 9	93.08
2013-01-1 0	93.81
2013-01-1 1	93.6
2013-01-1 4	94.27
2013-01-1 5	93.26

데이터 셋 3 - Favorita Grocery Sales Dataset

```
Training, Test dataset
```

```
column definition = [
   ('traj_id', DataTypes.REAL_VALUED, InputTypes.ID),
   ('date', DataTypes.DATE, InputTypes.TIME),
   ('log_sales', DataTypes.REAL_VALUED, InputTypes.TARGET),
   ('onpromotion', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
   ('transactions', DataTypes.REAL_VALUED, InputTypes.OBSERVED_INPUT),
   ('oil', DataTypes.REAL_VALUED, InputTypes.OBSERVED_INPUT),
   ('day_of_week', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
   ('day_of_month', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT),
   ('month', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT),
   ('national_hol', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
   ('regional_hol', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
   ('local_hol', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
   ('open', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT),
   ('item_nbr', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('store_nbr', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('city', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('state', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('type', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('cluster', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('family', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('class', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
   ('perishable', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT)
```

총 90 일 (행) – window

•••

이용할 features 4가지

Training Set

•••

```
31 Stock indices (열)
                 _column_definition = [
                    ('Symbol', DataTypes.CATEGORICAL, InputTypes.ID),
                    ('date', DataTypes.DATE, InputTypes.TIME),
                    ('log_vol', DataTypes.REAL_VALUED, InputTypes.TARGET),
                    ('open_to_close', DataTypes.REAL_VALUED, InputTypes.OBSERVED_INPUT),
                    ('days_from_start', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT),
                    ('day_of_week', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
                    ('day_of_month', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
                    ('week_of_year', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
총 252 일
                    ('month', DataTypes.CATEGORICAL, InputTypes.KNOWN_INPUT),
                    ('Region', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT),
(행) -
window
                                                                                                features <del>4가지</del> 2가지
```

현재 시점 - 252 ; Window 현재 시점 (t) <u>다음 5일 예측값은?</u>

실험 결과

• 하이퍼파라미터 정보 (random search 를 해가면서 발견 – validation loss 기준)

Table 1: Information on dataset and optimal TFT configuration.

	Electricity	Traffic	Retail	Vol.
Dataset Details				12
Target Type	\mathbb{R}	[0, 1]	\mathbb{R}	\mathbb{R}
Number of Entities	370	440	130k	41
Number of Samples	500k	500k	500k	$\sim 100 \mathrm{k}$
Network Parameters				
\overline{k}	168	168	90	252
$ au_{max}$	24	24	30	5
Dropout Rate	0.1	0.3	0.1	0.3
State Size	160	320	240	160
Number of Heads	4	4	4	1
Training Parameters	Ī			35
Minibatch Size	64	128	128	64
Learning Rate	0.001	0.001	0.001	0.01
Max Gradient Norm	0.01	100	100	0.01

GRN 을 이용하여 효과적으로 연산 비용을 줄임. (V100) train – 6시간, validate – 8분 소요

실험 결과

Table 2: P50 and P90 quantile losses on a range of real-world datasets. Percentages in brackets reflect the increase in quantile loss versus TFT (lower q-Risk better), with TFT outperforming competing methods across all experiments, improving on the next best alternative method (underlined) between 3% and 26%.

	ARIMA	ETS	TRMF	DeepAR	DSSM
Electricity Traffic	0.154 (+180%) 0.223 (+135%)	0.102 (+85%) 0.236 (±148%)	0.084 (+53%) 0.186 (+96%)	0.075 (+36%) 0.161 (+69%)	0.083 (+51%) 0.167 (+76%)
26	ConvTrans	Seq2Seq	MQRNN	TFT	
Electricity Traffic	$\begin{array}{c} 0.059 \ (\underline{+7\%}) \\ 0.122 \ (\underline{+28\%}) \end{array}$	0.067 (+22%) 0.105 (+11%)	0.077 (+40%) 0.117 (+23%)	0.055* 0.095*	

(a) P50 losses on simpler univariate datasets.

	ARIMA	ETS	TRMF	DeepAR	$\mathbf{D}\mathbf{S}\mathbf{S}\mathbf{M}$
Electricity Traffic	0.102 (+278%) 0.137 (+94%)	0.077 (+185%) 0.148 (+110%)		0.040 (+48%) 0.099 (+40%)	0.056 (+107%) 0.113 (+60%)
3 .	ConvTrans	Seq2Seq	MQRNN	TFT	
Electricity Traffic	$\begin{array}{c} 0.034 \ (+26\%) \\ 0.081 \ (+15\%) \end{array}$	0.036 (+33%) 0.075 (+6%)	0.036 (+33%) 0.082 (+16%)	0.027* 0.070*	

(b) P90 losses on simpler univariate datasets.

	DeepAR	CovTrans	Seq2Seq	MQRNN	TFT
Vol.	0.050 (+28%)	0.047 (+20%)	0.042 (+7%)	0.042 (+7%)	0.039*
Retail	0.574 (+62%)	0.429 (+21%)	$0.411 \ (+16\%)$	$0.379 \ (+7\%)$	0.354*

⁽c) P50 losses on datasets with rich static or observed inputs.

	\mathbf{DeepAR}	CovTrans	Seq2Seq	MQRNN	\mathbf{TFT}
Vol.	0.024 (+21%)	0.024 (+22%)	0.021 (+8%)	0.021 (+9%)	0.020*
Retail	$0.230\ (+56\%)$	$0.192\ (+30\%)$	$0.157 \ (+7\%)$	$0.152 \ (\underline{+3\%})$	0.147*

⁽d) P90 losses on datasets with rich static or observed inputs.

는 direct methods cf. iterative methods

TFT 는 타 모델들에 비해 평균적으로 7% 낮은 P50 loss 와 9% 낮은 P90 loss 를 보여줌

Iterative 방법을 사용한 핵심 모델 ConvTrans 의 경우 observed Input 등 다양하고 복잡한 데이터에서는 성능이 떨어짐

⇒ 즉 iterative methods 는 고정적인 input 값을 취해야한다는 한계를 넘지 못하였음을 보여줌

ABLATION ANALYSIS

ABLATION ANALYSIS

ABLATION RESULTS

- Capturing temporal relationships, local processing ☆☆: 비활성화 시켰더니 P90 loss 평균 6% 증가
- Local processing: 비활성화 시켰더니 traffic, retail, volatility 는 모두 악영향, electricity 는 오히려 P50 loss 높게 나옴: Electricity data 의 경우 daily 단위로 seasonality 가 발견되기 때문에 direct attention to previous days > adjacent time steps
- Static covariate encoder, variable selection: 비활성화 시켰더니 P90 loss 평균 4.1% 증가, electricity 에 제일 영향을 많이 미친 것으로 파악
- Gating layer : 비활성화 시켰더니 P90 loss 평균 1.9% 증가, 노이즈가 많은 volatility 에 제일 영향을 많이 미친 것으로 파악