

Probability and Stochastic Processes

Conditional Probability, Bayes' Theorem, Independence of Events, Independence of σ -Algebras, Borel–Cantelli Lemma, Random Variables, CDF and its Properties

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

19/22 August 2024

Conditional Probabilities

Conditional Probability Measure

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Conditional Probability)

Given $B \in \mathscr{F}$ such that $\mathbb{P}(B) > 0$, define

$$\mathbb{P}_B:\mathscr{F} o [0,1] \qquad ext{via} \qquad \mathbb{P}_B(A)\coloneqq rac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}, \quad A\in \mathscr{F}.$$

Then, \mathbb{P}_B is a valid probability measure on (Ω, \mathscr{F}) , and is called the conditional probability measure conditioned on the event B.

Notation: $\mathbb{P}_B(A)$ is denoted more commonly as $\mathbb{P}(A|B)$.

\mathbb{P}_B is a Valid Probability Measure

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

•
$$\mathbb{P}_B(\emptyset) = 0$$

\mathbb{P}_B is a Valid Probability Measure

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

•
$$\mathbb{P}_B(\emptyset) = 0$$

•
$$\mathbb{P}_B(\Omega) = 1$$

\mathbb{P}_{B} is a Valid Probability Measure

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

• $\mathbb{P}_B(\emptyset) = 0$

• $\mathbb{P}_B(\Omega) = 1$

• For any mutually disjoint collection of sets $A_1, A_2, \ldots \in \mathscr{F}$,

$$\mathbb{P}_B\left(igcup_{i=1}^\infty A_i
ight) = \sum_{i=1}^\infty \mathbb{P}_B(A_i).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• Fix $B \in \mathscr{F}$ such that $0 < \mathbb{P}(B) < 1$. Then, for any $A \in \mathscr{F}$,

$$\mathbb{P}(A) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) + \mathbb{P}(A|B^c) \cdot \mathbb{P}(B^c).$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• (Law of Total Probability)

Let $B_1, B_2, \ldots \in \mathscr{F}$ be a partition of Ω , i.e., $B_i \cap B_j = \emptyset$ for all $i \neq j$, and $\bigcup_{i=1}^{\infty} B_i = \Omega$. Further, let $\mathbb{P}(B_i) > 0$ for all $i \in \mathbb{N}$. Then, for any $A \in \mathscr{F}$,

$$\mathbb{P}(A) = \sum_{i=1}^{\infty} \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• (Bayes' Theorem) Let $B_1, B_2, \ldots \in \mathscr{F}$ be as before. For any $A \in \mathscr{F}$ such that $\mathbb{P}(A) > 0$,

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_{j=1}^{\infty} \mathbb{P}(A|B_j) \cdot \mathbb{P}(B_j)}.$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• (Decomposition Rule for Conditional Probabilities) Let $A_1, A_2, \ldots \in \mathscr{F}$. Then,

$$\mathbb{P}\left(igcap_{i=1}^{\infty}A_i
ight)=\mathbb{P}(A_1)\cdot\mathbb{P}(A_2|A_1)\cdot\mathbb{P}(A_3|A_1\cap A_2)\cdot\cdot\cdot \ =\mathbb{P}(A_1)\cdot\prod_{i=2}^{\infty}\mathbb{P}\left(A_iigg|igcap_{j=1}^{i-1}A_j
ight),$$

provided each of the conditional probabilities on the right-hand side is defined.

Independence

Independence of Events

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of Events)

Events $A, B \in \mathscr{F}$ are said to be independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

We write $A \perp \!\!\! \perp B$ as a shorthand notation to denote that A and B are independent.

- The definition of independence does not involve conditional probabilities
- If $\mathbb{P}(B) > 0$, then

$$A \perp \!\!\!\perp B \iff \mathbb{P}(A|B) = \mathbb{P}(A).$$

Independence of Events

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of Events)

• Events $A_1, A_2, \ldots, A_n \in \mathscr{F}$ are said to be independent if for all $\mathcal{I}_0 \subseteq \{1, 2, \ldots, n\}$,

$$\mathbb{P}\left(igcap_{i\in\mathcal{I}_0}A_i
ight)=\prod_{i\in\mathcal{I}_0}\mathbb{P}(A_i).$$

• Let \mathcal{I} be an arbitrary index set. A collection of events $\{A_i : i \in \mathcal{I}\}$ is independent if for every finite subset $\mathcal{I}_0 \subseteq \mathcal{I}$, the collection of events $\{A_i : i \in \mathcal{I}_0\}$ is independent.

Independence of σ -Algebras

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of \sigma-Algebras)

Let $\mathscr{F}_1,\mathscr{F}_2\subseteq\mathscr{F}$ be sub- σ -algebras of \mathscr{F} . Then, \mathscr{F}_1 and \mathscr{F}_2 are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \qquad \forall A \in \mathscr{F}_1, \ B \in \mathscr{F}_2.$$

More generally, for an arbitrary index set \mathcal{I} , the sub- σ -algebras $\{\mathscr{F}_i: i \in \mathcal{I}\}$ are said to be independent if for all choices of $A_i \in \mathscr{F}_i, i \in \mathcal{I}$, the events $\{A_i: i \in \mathcal{I}\}$ are independent.

Borel-Cantelli Lemma

Borel-Cantelli Lemma - Part 1

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Lemma (Borel-Cantelli Lemma, Part 1)

Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are such that $\sum_{i=1}^\infty\mathbb{P}(A_i)<+\infty.$ Then,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=0.$$

Borel-Cantelli Lemma - Part 2

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Lemma (Borel-Cantelli Lemma, Part 2)

Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are independent and satisfy $\sum_{i=1}^\infty\mathbb{P}(A_i)=+\infty$. Then,

$$\mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = 1.$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}).$$

Remarks:

A random variable is neither random nor a variable; it is a deterministic function

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}).$$

- A random variable is neither random nor a variable; it is a deterministic function
- The definition of a random variable is closely tied to the underlying σ -algebra ${\mathscr F}$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}).$$

- A random variable is neither random nor a variable; it is a deterministic function
- The definition of a random variable is closely tied to the underlying σ -algebra ${\mathscr F}$
- If X is a random variable with respect to \mathscr{F} , it is called an \mathscr{F} -measurable function

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}).$$

- A random variable is neither random nor a variable; it is a deterministic function
- The definition of a random variable is closely tied to the underlying σ -algebra ${\mathscr F}$
- If X is a random variable with respect to \mathscr{F} , it is called an \mathscr{F} -measurable function
- ullet The definition of a random variable does not involve ${\mathbb P}$

A Figure to Keep in Mind

$$orall B\in \mathscr{B}(\mathbb{R}), \quad X^{-1}(B)\in \mathscr{F}$$

Figure: A pictorial representation of the definition of an \mathscr{F} -measurable function

Simpler, Yet Equivalent, Definition of Random Variable

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Recall from your homework that $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{D})$, where

$$\mathscr{D} = \left\{ (-\infty, x] : x \in \mathbb{R} \right\}.$$

Definition (Random Variable)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$X^{-1}((-\infty, \mathbf{x}]) = \{\omega \in \Omega : X(\omega) \le \mathbf{x}\} \in \mathscr{F} \qquad \forall \mathbf{x} \in \mathbb{R}.$$

Random Variable Simplified

Figure: Simplified, yet equivalent, definition of random variable

•
$$\Omega = \{1, 2, \dots, 6\}, \qquad \mathscr{F} = \{\emptyset, \Omega\}, \qquad X(\omega) = \omega$$

Is X a random variable with respect to \mathscr{F} ?

• What functions X are random variables with respect to \mathscr{F} ?

•
$$\Omega = [0, 1],$$
 $\mathscr{F} = \left\{\emptyset, \Omega, A, A^c\right\}$ for a fixed $A \subseteq \Omega$ What functions X are random variables with respect to \mathscr{F} ?

•
$$\Omega = \{1, 2, 3, 4, 5\},$$
 $\mathscr{F} = \sigma\left(\left\{\{1\}, \{2, 3\}\right\}\right)$ What functions X are random variables with respect to

What functions X are random variables with respect to \mathscr{F} ?

• $\Omega = \mathbb{N}$, $\mathscr{F} = 2^{\Omega}$

What functions X are random variables with respect to \mathscr{F} ?

Indicator Functions

Fix a sample space Ω .

Fix a subset $A \subseteq \Omega$.

Definition (Indicator Function)

The indicator function of set *A* is a function $X: \Omega \to \mathbb{R}$ such that

$$X(\omega) = egin{cases} 1, & \omega \in A, \ 0, & \omega \in A^c. \end{cases}$$

The indicator function of set A is commonly denoted as $\mathbf{1}_A$

Exercise

Show that the function $\mathbf{1}_A$ is \mathscr{F} -measurable if and only if $A \in \mathscr{F}$.

Probability Law of a Random Variable

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Probability Law)

Given a random variable $X:\Omega\to\mathbb{R}$ with respect to \mathscr{F} , its probability law \mathbb{P}_X is a probability measure on $(\mathbb{R},\mathscr{B}(\mathbb{R}))$ defined as

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) \quad \forall B \in \mathscr{B}(\mathbb{R}).$$

Remarks:

• \mathbb{P}_X is sometimes called the pushforward of \mathbb{P} under the random variable X

Probability Law of a Random Variable

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Probability Law)

Given a random variable $X:\Omega\to\mathbb{R}$ with respect to \mathscr{F} , its probability law \mathbb{P}_X is a probability measure on $(\mathbb{R},\mathscr{B}(\mathbb{R}))$ defined as

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) \quad \forall B \in \mathscr{B}(\mathbb{R}).$$

- \mathbb{P}_X is sometimes called the pushforward of \mathbb{P} under the random variable X
- \mathbb{P}_X is sometimes denoted as $\mathbb{P} \circ X^{-1}$

Probability Law of a Random Variable

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Probability Law)

Given a random variable $X:\Omega\to\mathbb{R}$ with respect to \mathscr{F} , its probability law \mathbb{P}_X is a probability measure on $(\mathbb{R},\mathscr{B}(\mathbb{R}))$ defined as

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) \quad \forall B \in \mathscr{B}(\mathbb{R}).$$

- \mathbb{P}_X is sometimes called the pushforward of \mathbb{P} under the random variable X
- \mathbb{P}_X is sometimes denoted as $\mathbb{P} \circ X^{-1}$
- $\mathbb{P}_X(B)$ for every $B \in \mathscr{B}(\mathbb{R})$ gives the full probabilistic description of X

Completing the Picture

$$\mathbb{P}_{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) \quad orall B \in \mathscr{B}(\mathbb{R})$$

Figure: Pictorial representation of probability law

Cumulative Distribution Function

Cumulative Distribution Function (CDF)

$$F_X(x)=\mathbb{P}_X((-\infty,x])=\mathbb{P}(X^{-1}((-\infty,x])),\quad x\in\mathbb{R}$$

Definition (Cumulative Distribution Function)

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Given a random variable $X: \Omega \to \mathbb{R}$ with respect to \mathscr{F} , its cumulative distribution function (CDF) $F_X: \mathbb{R} \to [0, 1]$ is defined as

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \mathbb{P}(X^{-1}(\infty, x]), \qquad x \in \mathbb{R}.$$

CDF ←→ **Probability Law**

• If we know $\mathbb{P}_X = \{ \mathbb{P}_X(B) : B \in \mathscr{B}(\mathbb{R}) \}$, then we can extract the CDF $F_X : \mathbb{R} \to [0,1]$ by using the formula

$$F_X(x) = \mathbb{P}_X((-\infty, x]), \qquad x \in \mathbb{R}.$$

• Given the CDF $F_X : \mathbb{R} \to [0, 1]$, let

$$\mathbb{P}_X((-\infty,x]) = F_X(x), \qquad x \in \mathbb{R}.$$

Then, there exists a unique extension of \mathbb{P}_X to all Borel subsets of \mathbb{R} For a proof of this, see [Folland, 1999, Theorem 1.16]

Notation

- $\{\omega \in \Omega : X(\omega) \le x\} = \{X \le x\}$
- $\mathbb{P}_X((-\infty, \mathbf{x}]) = \mathbb{P}(X^{-1}((-\infty, \mathbf{x}])) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le \mathbf{x}\}) = \mathbb{P}(X \le \mathbf{x})$

Properties of CDF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Let $X:\Omega\to\mathbb{R}$ be a random variable with respect to \mathscr{F} with CDF F_X

• $\lim_{x\to-\infty} F_X(x) = 0$, $\lim_{x\to+\infty} F_X(x) = 1$

• (Monotonicity) If $x \le y$, then $F_X(x) \le F_X(y)$

• (Right-Continuity) F_X is right-continuous, i.e., for all $x \in \mathbb{R}$,

$$\lim_{\varepsilon \downarrow 0} F_X(x + \varepsilon) = F_X(x).$$

References

Folland, G. B. (1999).

Real analysis: modern techniques and their applications, volume 40. John Wiley & Sons.