Digital Logic and Design CMPS4252 Final Project Osborn Collins and Mark Pascual 15th November 2022

INSTRUCTIONS

NOTE: This project can be done in PAIRS (both persons must present) or individually.

DUE DATE: November 21, 2022, by 11:30 pm

Note: Provide a link to your YouTube video and a link to your PowerPoint slides on GitHub

QUESTION:

You have been enlisted to design a soda machine dispenser for the IT department students' lounge. Sodas are partially subsidized by the student chapter of the ACM, so they cost only 25 cents each. The machine accepts 5 cents, 10 cents, and shillings. When enough coins have been inserted, it dispenses the soda and returns any necessary change. Design an FSM controller for the soda machine. The FSM inputs are 5 cents, 10 cents, and shilling, indicating which coin was inserted. Assume that exactly ONE coin is inserted on each cycle. The outputs are Dispense, Return5Cents, Return10Cents, and ReturnTwo10Cents. When the FSM reaches 25 cents, it asserts Dispense and the necessary Return outputs required to deliver the appropriate change. Then it should be ready to start accepting coins for another soda.

NOTE: I have given you the FSM except that it uses nickels (5), dimes (10), and quarters (25).

TASKS:

PART 1

Provide:

- 0. The modified FSM (showing 5 cents, 10 cents and shillings instead of nickels, dimes, and quarters)
- 1. The State Encoding table

[HINT: Use 10 bits to represent each of the 10 states (S0 - S45).

Use a one-hot encoding scheme with SO = 0000000001 and S45 = 1000000000

- 2. The State Transition table and the resulting simplified equations
- 3. The Output table and the resulting simplified equations
- 4. The circuit

PART 2

Provide:

0. A PowerPoint presentation (between 25-30 minutes). This presentation will explain how the FSM works, how you arrived at the state transition equations, how you arrived at the output equations, and how the circuit works.

GRADING CRITERIA

- Clarity of explanation (conciseness)
- 2. Length of presentation (between 25 30 minutes)

State encoding

<u>State</u>	Encoding S _{9:0}
S0	000000001
S5	000000010
S10	000000100
S25	000001000
S30	0000010000
S15	0000100000
S20	0001000000
S35	001000000
S40	010000000
S45	100000000

Definitions:

5 cents – F

10 cents – T

Shilling – Z

State transition table

<u>Current</u> state		Next state		
S	F (five cent)	T (ten cent)	Z (shilling)	S'
<u>=</u> S0	0	0	0	<u>=</u> S0
S0	0	0	1	S25
S0	0	1	0	S10
S0	1	0	0	S5
S5	0	0	0	S5
S5	0	0	1	S30
S5	0	1	0	S15
S5	1	0	0	S10
S10	0	0	0	S10
S10	0	0	1	S35
S10	0	1	0	S20
S10	1	0	0	S15
S25	Х	Х	Х	S0
S30	Х	X	Х	S0
S15	0	0	0	S15
S15	0	0	1	S40
S15	0	1	0	S25
S15	1	0	0	S20
S20	0	0	0	S20
S20	0	0	1	S45
S20	0	1	0	S30
S20	1	0	0	S25
S35	X	X	X	S0
S40	X	X	X	S0
S45	X	X	X	S0

State transition table with encoding

Current State S							Inputs	5	Next State S'													
S ₉	S ₈	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁	So	F	Т	Z										
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	S' ₀
0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	1	0	0	0	0	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	Χ	Χ	Х	0	0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	Χ	Х	Х	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0	1

Boolean Equations

$$S'_9 = S_6 Z$$

$$S'_{8} = S_{5}Z$$

$$S'_7 = S_2Z$$

$$S'_6 = S_2T + S_5F + S_6\overline{F}\overline{T}\overline{Z}$$

$$S'_5 = S_1T + S_2F + S_5\overline{F}\overline{T}\overline{Z}$$

$$S'_4 = S_1 Z + S_6 T$$

$$S'_3 = S_0Z + S_5T + S_6F$$

$$S'_2 = S_0T + S_1F + S_2\overline{F}\overline{T}\overline{Z}$$

$$S'_1 = S_0 F + S_1 \overline{F} \overline{T} \overline{Z}$$

$$S'_0 = S_1 \overline{F} \overline{T} \overline{Z} + S_3 + S_4 + S_7 + S_8 + S_9$$

Definitions:

rF – Return 5 Cent

rT – Return 10 Cent

r2T – Return two 10 Cent

Output Table

Current State	<u>Dispense</u>	<u>rF</u>	<u>rT</u>	<u>r2T</u>
S25	1	X	X	X
S30	1	1	X	X
S35	1	X	1	X
S40	1	1	1	X
S45	1	X	X	1

Output Table with Encoding

Current State										Output			
S ₉	S ₈	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁	S ₀	Dispense	rF	rT	r2T
0	0	0	0	0	0	1	0	0	0	1	Χ	Х	X
0	0	0	0	0	1	0	0	0	0	1	1	Х	Х
0	0	1	0	0	0	0	0	0	0	1	Χ	1	Х
0	1	0	0	0	0	0	0	0	0	1	1	1	Х
1	0	0	0	0	0	0	0	0	0	1	Χ	Х	1

Boolean Equations for the Output

Dispense =
$$S_3 + S_4 + S_7 + S_8 + S_9$$

$$rF = S_4 + S_8$$

$$rT = S_7 + S_8$$

$$r2T = S_9$$

Circuit Diagram

