

No Ayuda Memoria by elsuizo

Numeros Complejos

1.1. Parte Real e imaginaria

Definición 1.1. Consideramos a los numeros de la forma: a + jb, donde a y b son numeros reales y j es un numero con la propiedad: $j^2 = -1$. Lo llamaremos numero complejo.

Ejemplo 1.1. La parte real del numero: a + jb, que se anota $Re\{a + jb\} = a$ La parte imaginaria del numero a + jb, que se anota $Im\{a + jb\} = b$

Definición 1.2. Un numero complejo z = a + jb se puede representar en el plano coordenado mediante el punto (a,b) o mediante una flecha o vector de origen (0,0) y extremo en (a,b)

1.2. Modulo y argumento de un numero complejo

Definición 1.3. El modulo de un numero complejo z = a+bj representa su distancia al origen, v se anota: $|z| = +\sqrt{a^2 + b^2}$

De lo anterior surge que la distancia entre dos puntos en el plano cartesiano (a,b) y (c,d) se puede calcular: |(a+bj)-(c+dj)|

Definición 1.4. El argumento de un numero complejo z = a + bj es el angulo orientado que forma con el semieje positivo de x y por lo tanto tiene ∞ argumentos. Basta elegir uno de ellos que lo llamaremos θ y todos los demas son : $\theta + 2k\pi$ con $k = \pm 1, \pm 2, ...$

Si |z| = r y $Arg[z] = \theta$ entonces llamaremos al par ordenado (r, θ) a la representacion del numero complejo z en coordenadas polares. Y como $x = r\cos(\theta)$ e $y = r\sin(\theta)$ se conoce como la representacion trigonometrica $z = r(\cos(\theta) + j\sin(\theta))$.

Definición 1.5. Potencias: Dado un numero complejo $z = r(\cos(\theta) + j\sin(\theta))$ sus potencias son:

$$z^{n} = r^{n}(\cos(n\theta) + j\sin(n\theta)) \tag{1}$$

La representacion trigonometrica nos ayuda a entender el producto y el cociente de los numeros complejos.

$$z_1 z_2 = r_1(\cos(\theta_1) + j\sin(\theta_1))r_2(\cos(\theta_2) + j\sin(\theta_2))$$
(2)

$$z_1 z_2 = r_1 r_2 [(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)) + j(\cos(\theta_1)\sin(\theta_2) + \cos(\theta_2)\sin(\theta_1))]$$
 (3)

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + j(\sin(\theta_1 + \theta_2))]$$
(4)

Definición 1.6. El modulo del producto es el producto de los modulos: $|z_1 z_2| = |z_1||z_2|$

Definición 1.7. Un argumento (ya que hay ∞) del producto es la suma de los argumentos: $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$

Definición 1.8. Raices n-esimas de la unidad: En general se tienen n raices n-esimas de la unidad, ya que $z^n = r^n(\cos(n\theta) + j\sin(n\theta)) = 1$ entonces r = 1 y $n\theta = 2k\pi$ Tomando sucesivamente n = 0, 1, 2, 3, ..., n-1 encontramos las n raices $\cos(\frac{2k}{n}\pi) + j\sin(\frac{2k}{n}\pi)$ que son potencias sucesivas de: $\omega = \cos(\frac{2n}{n}\pi) + j\sin(\frac{2n}{n}\pi)$. Se disponen como vertices de un poligono regular de n lados inscriptos dentro de la circunferencia unidad

Definición 1.9. Raices de un numero: Sea $\omega = r(\cos(\theta) + j\sin(\theta))$ si $z = s(\cos(\theta) + j\sin(\theta))$ es una raiz n-esima de ω tenemos: $z^n = s^n(\cos(n\phi) + j\sin(n\phi)) = r(\cos(\theta) + j\sin(\theta))$. De donde se obtiene que $s^n = r$ entonces $s = r^{1/n} > 0$ y $n\phi = \theta + 2k\pi$ con k entero.

Luego: $\phi = \frac{\theta}{n} + \frac{2k\pi}{n}$ con $k = 0, \pm 1, \pm 2, \pm 3..., \pm (n-1)$. para k = 0, 1, 2, 3, ..., n-1 obtenemos n raices distintas:

$$z_k = r^{1/n} \left(\cos\left(\frac{\theta + 2k\pi}{n}\right) + j\sin\left(\frac{\theta + 2k\pi}{n}\right)\right) \tag{5}$$

2. Polinomios

Definición 2.1. Polinomios: Un polinomio en la variable x es de la forma $a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$

Definición 2.2. Dos polinomios son iguales si los coeficientes de igual grado son iguales: Sean $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n$ y $q(x) = b_0 + b_1x + b_2x^2 + b_3x^3 + \cdots + b_nx^n$ entonces decimos que p(x) = q(x) si y solo si:

$$a_0 = b_0 \tag{6}$$

$$a_1 = b_1 \tag{7}$$

$$a_2 = b_2 \tag{8}$$

$$a_3 = b_3 \tag{9}$$

$$a_n = b_n \tag{13}$$

Teorema 2.1. Teorema del resto: Al dividir un polinomio p(x) por x-a se obtiene como resto p(a)

Teorema 2.2. Un polinomio de grado n no puede tener mas de n raices distintas

Teorema 2.3. Principio de identidad de Polinomios: Si dos polinomios de grado $\leq n$ valen lo mismo en n+1 puntos distintos entonces son iguales

Teorema 2.4. Criterio de Gauss: Sea $\frac{p}{q}$ una raiz racional del polinomio con coeficientes enteros: $z(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n$ Si $a_0a_n \neq 0$ y p, q son coprimos entonces $p|a_0$ y $q|a_n$

Ejemplo 2.1. Sea el polinomio: $p(x) = x^3 + x^2 - 4x - 4$ vemos que como $a_3 = 1$ las unicas posibles raices son enteras: $\pm 1, \pm 2, \pm 4$. Hemos acotado el problema a solo 6 posibles raices!!!. Si evaluamos cada una de las 6 raices veremos que -1, 2, -2 son las que satisfacen, y como son tres y el polinomio es de grado 3 entonces son todas las raices que buscabamos.

Definición 2.3. Se dice que una raiz a de un polinomio p(x) tiene multiplicidad r si (x-a) es factor de p(x) pero $(x-a)^{r-1}$ no lo es. Dicho de manera equivalente: $p(x) = (x-a)^r q(x)$ y a no es raiz de q(x)

Teorema 2.5. Si $z = \alpha + j\beta$ es una raiz compleja de un polinomio con coeficientes reales p(x) su conjugada $\overline{z} = \alpha - j\beta$ tambien es raiz de p(x)

Teorema 2.6. Teorema fundamental del Algebra (Gauss): Todo polinomio real o complejo no constante tiene al menos una raiz entre los numeros complejos

Corolario 2.1. Un polinomio p(x) de grado n > 0 con coeficientes complejos tiene exactamente n raices.

Definición 2.4. Sea $p(x) = a_0 + a_1 x + x^2$ de grado 2 monico, es decir, el coeficiente principal es 1. Si α y β son sus raices se tiene:

$$p(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta \tag{14}$$

3. Sistemas Lineales

3.1. Matrices

Una matrix A de tamanio $m \times n$ es un arreglo rectangular de mn numeros dispuestos en m filas y n columnas. Por ejemplo: $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & 7 \end{bmatrix}$ Una matriz generica de tamanio $m \times n$ la anotamos: $A = (a_{ij})$ de tal manera que su elemento en la fila i columna j es a_{ij} . La fila i de

A es:
$$[a_{i1} \quad a_{i2} \quad a_{i3} \quad \cdots \quad a_{in}]$$
 y la columna j de A es:
$$\begin{bmatrix} a_{i1} \\ a_{2j} \\ \vdots \\ a_{nt} \end{bmatrix}$$