Forcing and the independence of the continuum hypothesis

Jesse Han

September 6, 2018

Abstract

In these notes, intended as the plaintext part of the Flypitch project, we give a complete account of the independence of the continuum hypothesis from ZFC, with special attention paid to comparing the different approaches: generic sets, Boolean-valued models, and double-negation sheaves.

1 Preliminaries

1.1 First-order logic

1.1.1 General logical symbols

Definition 1.1. We reserve the following general logical symbols:

$$\begin{array}{cccc} \neg & & \text{not} \\ \vee & & \text{or} \\ \wedge & & \text{and} \\ \forall & & \text{for all} \\ \exists & & \text{exists} \\ = & & \text{equals} \\ (,) & & \text{parentheses} \\ (x_i)_{i:\mathbb{N}}, (y_i)_{i:\mathbb{N}}, (z_i)_{i:\mathbb{N}} & \text{variables} \end{array}$$

1.1.2 First-order languages

Definition 1.2. A (first-order, one-sorted) language \mathcal{L} comprises the following data:

- (i) A collection of constant symbols $Const(\mathcal{L})$,
- (ii) a collection of relation symbols $Rel(\mathcal{L})$,
- (iii) a collection of function symbols $Funct(\mathcal{L})$, and
- (iv) an assignment of each symbol $S : \mathsf{Const}(\mathcal{L}) \cup \mathsf{Rel}(\mathcal{L}) \cup \mathsf{Funct}(\mathcal{L})$ to a natural number $\mathsf{arity}(S) : \mathbb{N}$.

Whenever we interpret a language on some carrier A, we mean for constants c to be interpreted as elements of $A^{\operatorname{arity}(c)}$, relations R to be interpreted as subsets of $A^{\operatorname{arity}(R)}$, and for function symbols to be interpreted as functions $A^{\operatorname{arity}(f)} \to A$.

- **Example 1.3.** The language of groups comprises a 1-ary constant symbol for the identity and a 2-ary function for group multiplication.
 - The language of rings comprises constant symbols 0 and 1 and 2-ary functions for addition and multiplication.
 - The language of set theory comprises just one 2-ary relation \in .

1.1.3 Terms, formulas, and sentences

Definition 1.4. A **term** is a string of symbols defined by structural induction as follows:

- 1. Any variable v is a term.
- 2. Any constant c is a term.
- 3. If t_1, \ldots, t_n are terms of arities a_1, \ldots, a_n , then (t_1, \ldots, t_n) is a term of arity $a_1 + \cdots + a_n$.
- 4. If t is a term and f is a function symbol with matching arities, then ft is a term.

Whenever we interpret our language on a carrier A, we mean for terms to be interpreted as functions into A which we can construct by composing existing constants (constant functions), basic functions (i.e. the interpretations of the function symbols), and variables (identity).

Definition 1.5. A formula is defined by structural induction as follows:

- 1. If t_1 and t_2 are terms of the same arity, $t_1 = t_2$ is a formula.
- 2. If t is a term and R is a relation symbol, and t and R have the same arity, then Rt is a formula.
- 3. If φ is a formula, $\neg \varphi$ is a formula.
- 4. If φ and ψ are formulas, then $\varphi \vee \psi$ is a formula.
- 5. If φ and ψ are formulas, then $\varphi \wedge \psi$ is a formula.
- 6. If φ is a formula containing a variable v, then $\exists v \varphi$ is a formula.
- 7. If φ is a formula containing a variable v, then $\forall v \varphi v$ is a formula.

Definition 1.6. Let φ be a formula containing the variables x_1, \ldots, x_n . We say that the variable x_k is **free** if x_k is not contained in a subformula of the form $\exists x_k \psi$ or $\forall x_k \psi$.

 x_k is **bound** if it is not free.

Definition 1.7. A formula is a **sentence** (or **statement**) if it contains no free variables.

We write $\mathsf{Formulas}(\mathcal{L})$ for all the first-order formulas of \mathcal{L} , and we write $\mathsf{Sentences}(\mathcal{L})$ for all the first-order sentences of \mathcal{L} .

By convention, we always include sentences called "true" and "false".

1.1.4 Predicate calculus and provability

Throughout this section, we fix a language \mathcal{L} .

Definition 1.8. A propositional function is a function $f : \mathsf{Prop}^k \to \mathsf{Prop}$, for some $1 < k : \mathbb{N}$ which we define inductively as follows:

- 1. Each projection $(P_1, \ldots, P_k) \mapsto P_j$ is a propositional function.
- 2. If f and g are propositional functions, so are

$$\neg f, f \land g, f \lor g, f \to g, \text{ and } f \leftrightarrow g,$$

where the operations above are carried out pointwise in Prop.

. f is a **tautology** if $\vdash \forall \vec{p} : \mathsf{Prop}^k, f\vec{p} \leftrightarrow \mathsf{true}$.

Definition 1.9. A propositional combination is a function f: Sentences $(\mathcal{L})^k \to \text{Sentences}(\mathcal{L})^k$, for some $1 < k : \mathbb{N}$ which we define inductively as follows:

- 1. Each projection $(B_1, \ldots, B_k) \mapsto B_j$ is a propositional combination.
- 2. If f and g are propositional combinations, so are

$$\neg f, f \land g, f \lor g, f \to g, \text{ and } f \leftrightarrow g,$$

where the operations are carried out pointwise in Sentences(\mathcal{L}).

By sending projections to projections and symbols $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$ to the corresponding operations on Prop, every propositional combination $f: Sentences(\mathcal{L})^k \to Sentences(\mathcal{L})$ can be realized as a propositional function $\mathbf{r}(f): \mathsf{Prop}^k \to \mathsf{Prop}$.

Definition 1.10. The **predicate calculus** comprises the following rules for deducing sentences from other sentences. We call deducible sentences **valid**.

- (a) (Rule of the propositional calculus) if f is a propositional combination taking k arguments such that $\mathbf{r}(f)$ is a tautology, then for any k sentences A_1, \ldots, A_k , the value of the propositional combination $f(\varphi_1, \ldots, \varphi_k)$ is a valid sentence.
- (b) (Rule of modus ponens) If A and $A \to B$ are valid, then B is valid.
- (c) (Rules of equality)
 - (i) $\forall x, x = x, \forall x \forall y, x = y \land y = x$, and $\forall x \forall y \forall z, x = y \land y = z \rightarrow x = z$ are all valid.
 - (ii) Let $\varphi(x)$ be a formula whose only free variable is x. Then

$$\forall x \forall y, (x = y) \rightarrow (\varphi(x) \rightarrow \varphi(y))$$

is valid.

- (d) (Change of variable) If A is a sentence and A' represents A with all instances of a variable x switched to y, then $A \leftrightarrow A'$ is valid.
- (e) (Rule of specialization " \forall -elimination") Let c be any constant symbol, and let $\varphi(x)$ be a formula whose only free variable is x. Then $(\forall x \varphi(x)) \to \varphi(c)$ is valid.
- (f) $A \leftrightarrow (A \to \text{true})$ is valid.
- (g) (" \neg -introduction") If $\neg A \leftrightarrow (A \rightarrow \text{false})$ is valid.

- (h) (Generalization of constants " \forall -introduction") Let B be a sentence which does not contain the constant c or the variable x. Let $\varphi(x)$ be some formula such that $\varphi(x) \to B$ is valid. Then $\exists x \varphi(x) \to B$ is also valid.
- (i) (de Morgan laws) Let $\varphi(x)$ have x as its only free variable. Let B be a sentence which does not contain x. Then the following are valid statements:

$$(\neg(\forall x\varphi(x))) \leftrightarrow (\exists x\neg\varphi(x))$$
$$((\forall x\varphi(x)) \land B) \leftrightarrow ((\forall x(\varphi(x) \land B)$$
$$((\exists x\varphi(x)) \land B) \leftrightarrow ((\exists x(\varphi(x) \land B)$$

Definition 1.11. Let S be a collection of sentences.

- (i) We say that A is provable from S if there exist finitely many $B_1, \ldots, B_n : S$ such that $(B_1 \wedge \cdots \wedge B_n) \to A$ is valid.
- (ii) We say that S is consistent if false is not valid.

1.2 Models and satisfiability

For the remainder of this section we fix a language \mathcal{L} .

Definition 1.12. An \mathcal{L} -theory is a collection of sentences from Sentences(\mathcal{L}).

Definition 1.13. An \mathcal{L} -structure comprises the following data:

- (i) A carrier type A,
- (ii) an assignment of every $c : Const(\mathcal{L})$ to a $c^A : A^{arity(c)}$,
- (iii) an assignment of every $R : Rel(\mathcal{L})$ to a subtype $R^A : A^{arity(R)} \to Prop.$
- (iv) an assignment of every $f : \mathsf{Funct}(\mathcal{L})$ to a function $f^A : A^{\mathsf{arity}(f)} \to A$.

Definition 1.14. Let A be an \mathcal{L} -structure. Using the data of A being an \mathcal{L} -structure, we can inductively assign to every term t (of arity k and containing n free variables) a **realization** $\mathbf{r}(t)$: $A^n \to A^k$, as follows:

- 1. If t = v for a variable v, $\mathbf{r}(t) = \mathrm{id}_A = \lambda v$, v.
- 2. If t = c for a constant symbol c, $\mathbf{r}(t) = A^0 \stackrel{c^A}{\longrightarrow} A$.
- 3. If $t = (t_1, \ldots, t_m)$, then $\mathbf{r}(t) = \mathbf{r}(t_1) \times \cdots \times \mathbf{r}(t_m)$.
- 4. If $t = f(t_0)$ for some function symbol f, then $\mathbf{r}(t) = f^A \circ \mathbf{r}(t_0)$.

Definition 1.15. Let A be an \mathcal{L} -structure. Using the data of A being an \mathcal{L} -structure, we can inductively assign to every formula $\varphi(x_1, \ldots, x_n)$ (where x_1, \ldots, x_n exhaust the free variables of φ) a **realization** $\mathbf{r}(\varphi) : A^n \to \mathsf{Prop}$, as follows:

1. If φ is of the form $t_1 = t_2$, then $\mathbf{r}(\varphi)$ is $\mathbf{r}(t_1) = \mathbf{r}(t_2)$ (where symbolic equality is realized as true equality).

¹In particular, using the next rule, if $\neg \varphi(c) \rightarrow$ false is valid, so is $\exists x \neg \varphi(x) \rightarrow$ false, so is $\neg \exists x \neg \varphi(x)$, and therefore so is $\forall x \varphi(x)$.

- 2. If φ is of the form R(t), $\mathbf{r}(R(t))$ is $R^A(\mathbf{r}(t))$.
- 3. If φ is of the form $\neg \psi$, then $\mathbf{r}(\varphi)$ is $\neg \mathbf{r}(\psi)$.
- 4. If φ is of the form $\psi \vee \psi'$, then $\mathbf{r}(\varphi)$ is $\mathbf{r}(\psi) \vee \mathbf{r}(\psi')$.
- 5. If φ is of the form $\psi \wedge \psi'$, then $\mathbf{r}(\varphi)$ is $\mathbf{r}(\psi) \wedge \mathbf{r}(\psi')$.
- 6. If φ is of the form $\exists v\psi$, then $\mathbf{r}(\varphi)$ is $\exists v\mathbf{r}(\varphi)$.
- 7. If φ is of the form $\forall v\psi$, then $\mathbf{r}(\varphi)$ is $\forall v\mathbf{r}(\varphi)$.

In particular, each sentence φ is sent to a Prop $\mathbf{r}(\varphi)$.

Definition 1.16. Let A be an \mathcal{L} -structure, and let φ be a sentence. We say that A satisfies φ , written

$$A \models \varphi$$
,

if $\vdash \mathbf{r}(\varphi)$.

Definition 1.17. Let T be an \mathcal{L} -theory, and let A be an \mathcal{L} -structure. We say that A is a **model** of T if for every sentence $\varphi : T$, $A \models \varphi$.

1.3 The completeness theorem

TODO(jesse)

1.4 The Löwenheim-Skolem theorem

TODO(kody)

- 2 Generic sets: Cohen's original proof
- 3 Boolean-valued models
- 4 Sheaves and filterquotients