Отчёт по лабораторной работе номер 6

Операционные системы

Нитусова Диана Денисовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Контрольные вопросы	16
5	Выводы	23

List of Tables

List of Figures

3.1	Рисунок 1.																8
3.2	Рисунок 2.																8
3.3	Рисунок 3.																9
3.4	Рисунок 4.																10
3.5	Рисунок 5.																10
3.6	Рисунок 6.																11
3.7	Рисунок 7.																12
3.8	Рисунок 8.																12
3.9	Рисунок 9.																13
3.10	Рисунок 10																14
3.11	Рисунок 11																15
3.12	Рисунок 12																15

1 Цель работы

Ознакомление с файловой системой Linux, её структурой, именами и содержанием каталогов. Приобретение практических навыков по применению команд для работы с файлами и каталогами, по управлению процессами (и работами), по проверке использования диска и обслуживанию файловой системы.

2 Задание

Ознакомиться с файловой системой.

3 Выполнение лабораторной работы

Для начала выполним примеры, описанные в первой части описания лабораторной работы.

(рис. 3.1)

- 1. Скопируем файл ~/abc1 в файл april и в файл may. Для этого создадим файл abc1, используя команду «touch abc1», далее осуществим копирование с помощью команд «cp abc1 april» и «cp abc1 may».
- 2. Скопируем файлы april и may в каталог monthly, используя команды «mkdir monthly» для создания каталога monthly и «cp april may monthly» для копирования.
- 3. Скопируем файл monthly/may в файл с именем june. Выполним команды «cp monthly/may monthly/june» и «ls monthly»
- 4. Скопируем каталог monthly в каталог monthly.00. Для этого создадим каталог monthly.00 командой «mkdir monthly.00» и осуществим копирование, используя команду «cp -r monthly monthly.00»
- 5. Скопируем каталог monthly.00 в каталог /tmp, используя команду «cp -r monthly.00 /tmp».

Figure 3.1: Рисунок 1

(рис. 3.2)

- 1. Изменим название файла april на july в домашнем каталоге, используя команду «mv april july».
- 2. Переместим файл july в каталог monthly.00 с помощью команды «mv july monthly.00». Проверим результат командой «ls monthly.00».
- 3. Переименуем каталог monthly.00 в monthly.01, используя команду «mv monthly.00 monthly.01».
- 4. Переместим каталог monthly.01 в каталог reports. Для этого создадим каталог reports с помощью команды «mkdir reports» и выполним перемещение командой «mv monthly.01 reports».
- 5. Переименуем каталог reports/monthly.01 в reports/monthly командой «mv reports/monthly.01 reports/monthly».

```
[ddnitusova@ddnitusova ~]$ cd
[ddnitusova@ddnitusova ~]$ mv april july
[ddnitusova@ddnitusova ~]$ mv july monthly.00
[ddnitusova@ddnitusova ~]$ ls monthly.00
july monthly
[ddnitusova@ddnitusova ~]$ mv monthly.00 monthly.01
[ddnitusova@ddnitusova ~]$ mkdir reports
nkdir: невозможно создать каталог «reports»: Файл существует
[ddnitusova@ddnitusova ~]$ mv monthly.01 reports
[ddnitusova@ddnitusova ~]$ mv reports/monthly.01 reports/monthly
[ddnitusova@ddnitusova ~]$ mv reports/monthly.01 reports/monthly
```

Figure 3.2: Рисунок 2

(рис. 3.3)

- 1. Создадим файл ~/may с правом выполнения для владельца. Для этого выполним следующие команды: «touch may», «ls -l may», «chmod u+x may», «ls -l may».
- 2. Лишаем владельца файла ~/may права на выполнение, используя команды: «chmod u-x may», «ls -l may».
- 3. Создаем каталог monthly с запретом на чтение для членов группы и всех остальных пользователей. Выполняем команды: «mkdir monthly», «chmod go-r monthly».
- 4. Создаем файл ~/abc1 с правом записи для членов группы, используя команды: «touch abc1», «chmod g+w abc1».

```
[ddnitusova@ddnitusova ~]$ touch may
[ddnitusova@ddnitusova ~]$ ls -l may
-rw-rw-r--. 1 ddnitusova ddnitusova 0 май 14 21:55 may
[ddnitusova@ddnitusova ~]$ chmod u+x may
[ddnitusova@ddnitusova ~]$ ls -l may
-rwxrw-r--. 1 ddnitusova ddnitusova 0 май 14 21:55 may
[ddnitusova@ddnitusova ~]$ chmod u-x may [ddnitusova@ddnitusova ~]$ ls -l may
-rw-rw-r--. 1 ddnitusova ddnitusova 0 май 14 21:55 may
[ddnitusova@ddnitusova ~]$ mkdir monthly
nkdir: невозможно создать каталог «monthly»: Файл существует
[ddnitusova@ddnitusova ~]$ chmod g-r, o-r monthly
chmod: неверный режим: «g-r,»
lo команде «chmod --help» можно получить дополнительную информацию.
[ddnitusova@ddnitusova ~]$ chmod go-r monthly
[ddnitusova@ddnitusova ~]$ touch abc1
[ddnitusova@ddnitusova ~]$ chmod g+w abc1
[ddnitusova@ddnitusova ~]$
```

Figure 3.3: Рисунок 3

Выполняем следующие действия: (рис. 3.4)

- 1. Копируем файл /usr/include/aio.h (т.к. у меня нет каталога /usr/include/sys/, то беру произвольный файл из каталога /usr/include/) в домашний каталог (команда «cp /usr/include/aio.h ~»)и называем его equipment (команда «mv aio.h equipment»).
- 2. В домашнем каталоге создаем директорию ~/ski.plases (команда «mkdir ski.plases»).
- 3. Перемещаем файл equipment в каталог ~/ski.plases (команда «mv equipment ski.plases»).

- 4. Переименовываем файл ~/ski.plases/equipment в ~/ski.plases/equiplist (команда «mv ski.plases/equipment ski.plases/equiplist»).
- 5. Создаем в домашнем каталоге файл abc1 (команда «touch abc1») и копируем его в каталог ~/ski.plases (команда «cp abc1 ski.plases»), называем его equiplist2 (команда «mv ski.plases/abc1 ski.plases/equiplist2»).
- 6. Создаем каталог с именем equipment в каталоге ~/ski.plases (команда «mkdir ski.plases/equipment»).
- 7. Перемещаем файлы ~/ski.plases/equiplist и equiplist 2 в каталог ~/ski.plases/equipment (команда «mv ski.plases/equiplist ski.plases/equiplist ski.plases/equipment»).
- 8. Создаем (команда «mkdir newdir») и перемещаем каталог ~/newdir в каталог ~/ski.plases (команда «mv newdir ski.plases») и называем его plans (команда «mv ski.plases/newdir ski.plases/plans»).

```
[ddnitusova@ddnitusova ~]$ cp /usr/include/aio.h ~
[ddnitusova@ddnitusova ~]$ mv aio.h equipment
[ddnitusova@ddnitusova ~]$ mv dio.h equipment
[ddnitusova@ddnitusova ~]$ mv equipment ski.plases
[ddnitusova@ddnitusova ~]$ mv equipment ski.plases
[ddnitusova@ddnitusova ~]$ mv ski.plases/equipment ski.plases/equiplist
[ddnitusova@ddnitusova ~]$ touch abc1
[ddnitusova@ddnitusova ~]$ mv ski.plases/abc1 ski.plases/equiplist2
[ddnitusova@ddnitusova ~]$ mv ski.plases/equiplist ski.plases/equiplist2
[ddnitusova@ddnitusova ~]$ mv ski.plases/equiplist ski.plases/equiplist2 ski.plases/equiplist0
[ddnitusova@ddnitusova ~]$ mv ski.plases/mujist ski.plases/equiplist2 ski.plases/equiplist2
[ddnitusova@ddnitusova ~]$ mv newdir mewdir
[ddnitusova@ddnitusova ~]$ mv newdir»: Нет такого файла или каталога
[ddnitusova@ddnitusova ~]$ mv fewdir ski.plases
[ddnitusova@ddnitusova ~]$ mv ski.plases/plans
[ddnitusova@ddnitusova ~]$ mv ski.plases/newdir ski.plases/plans
[ddnitusova@ddnitusova ~]$ mv ski.plases/newdir ski.plases/plans
```

Figure 3.4: Рисунок 4

Определяем опции команды chmod, необходимые для того, чтобы присвоить соответствующим файлам выделенные права доступа, считая, что в начале таких прав нет. Предварительно создаем необходимые файлы, используя команды: «mkdir australia», «mkdir play», «touch my os», «touch feathers». (рис. 3.5)

```
[ddnitusova@ddnitusova ~]$ mkdir australia
[ddnitusova@ddnitusova ~]$ mkdir play
[ddnitusova@ddnitusova ~]$ touch my_os
[ddnitusova@ddnitusova ~]$ touch feathers
[ddnitusova@ddnitusova ~]$
```

Figure 3.5: Рисунок 5

drwxr-r-... australia: команда «chmod 744 australia» (это каталог, владелец имеет

право на чтение, запись и выполнение, группа владельца и остальные – только чтение).

drwx-x-x ... play: команда «chmod 711 play» (это каталог, владелец имеет право на чтение, запись и выполнение, группа владельца и остальные – только выполнение).

-r-xr-r- ... my_os: команды «chmod 544 my_os» (это файл, владелец имеет право на чтение и выполнение, группа владельца и остальные – только чтение).

-rw-rw-r-... feathers: команды «chmod 664 feathers» (это файл, владелец и группа владельца имеют право на чтение и запись, остальные – только чтение).

Командой «ls -l» проверяем правильность выполненных действий. (рис. 3.6)

```
ddnitusova@ddnitusova:~
 Файл Правка Вид Поиск Терминал Справка
[ddnitusova@ddnitusova -]$ chmod 744 australia
[ddnitusova@ddnitusova -]$ chmod 711 play
[ddnitusova@ddnitusova -]$ chmod 544 my_os
[ddnitusova@ddnitusova -]$ chmod 664 feathers
[ddnitusova@ddnitusova -]$ ls -l
0 май 14 22:04 abc1
6 май 14 22:11 australia
0 май 14 22:12 feathers
18 май 1 15:53 lab03
18 май 13 23:54 lab05
                                                                                                       0 май 13 23:54 tabbs
0 май 14 21:55 may
6 май 14 22:08 mewdir
42 май 14 21:50 monthl
0 май 14 22:11 my_os
6 май 13 21:47 nemdir
                              1 ddnitusova ddnitusova
2 ddnitusova ddnitusova
2 ddnitusova ddnitusova
1 ddnitusova ddnitusova
  rw-rw-r--
drwxrwxr-x. 2 ddnitusova ddnitusova
drwx-wxr-x. 2 ddnitusova ddnitusova
-r-xr--r-- 1 ddnitusova ddnitusova
drwxrwxr-x. 2 ddnitusova ddnitusova
 drwxrwxr-x. 3 ddnitusova ddnitusova
                                                                                                       18 май 13 22:26 OS
  rwx-wx-x. 2 ddnitusova ddnitusova
rwxrwxr-x. 3 ddnitusova ddnitusova
rwxrwxr-x. 4 ddnitusova ddnitusova
rwxrwxr-x. 3 ddnitusova ddnitusova
                                                                                                      16 Man 13 22:10 play
16 Man 14 22:11 play
21 Man 14 21:54 reports
36 Man 14 22:09 ski.plases
21 Man 14 22:00 usr
 drwxrwxr-x.
                               4 ddnitusova ddnitusova
                                                                                                       35 май 13 22:26 work
                               3 ddnitusova ddnitusova
2 ddnitusova ddnitusova
2 ddnitusova ddnitusova
4 ddnitusova ddnitusova
                                                                                                       23 mai 13 22:15
6 anp 30 19:00
6 anp 30 19:00
204 mai 14 01:15
   rwxr-xr-x.
    rwxr-xr-x.
rwxr-xr-x.
rwxr-xr-x.
   rwxr-xr-x. 2 ddnitusova ddnitusova 6 anp 30 19:00 Apw
rrwxr-xr-x. 4 ddnitusova ddnitusova 204 maŭ 14 01:15 3ar
rrwxr-xr-x. 2 ddnitusova ddnitusova 4096 maŭ 13 23:19 Nao
```

Figure 3.6: Рисунок 6

Выполняем следующие действия: (рис. 3.7) (рис. 3.8) 1. Просмотрим содержимое файла /etc/passwd (команда «cat /etc/passwd»). 2. Копируем файл ~/feathers в файл ~/file.old (команда «cp feathers file.old»). 3. Переместим файл ~/file.old в каталог ~/play (команда «mv file.ord play»). 4. Скопируем каталог ~/play в каталог ~/fun (команда «cp -r play fun»). 5. Переместим каталог ~/fun в каталог ~/play (команда «mv fun play») и назовем его games (команда «mv play/fun play/games»). 6. Лишим владельца файла ~/feathers права на чтение (команда «chmod u-r feathers»). 7.

Если мы попытаемся просмотреть файл ~/feathers командой саt, то получим отказ в доступе, т.к. в предыдущем пункте лишили владельца права на чтение данного файла. 8. Если мы попытаемся скопировать файл ~/feathers, например, в каталог monthly, то получим отказ в доступе, по причине, описанной в предыдущем пункте. 9. Дадим владельцу файла ~/feathers право на чтение (команда «chmod u+r feathers»). 10. Лишим владельца каталога ~/play права на выполнение (команда «chmod u-x play»). 11. Перейдем в каталог ~/play (команда «cd play»). Получим отказ в доступе, т.к. в предыдущем пункте лишили владельца права на выполнение данного каталога. 12. Дадим владельцу каталога ~/play право на выполнение (команда «chmod u+x play»).

```
| Dask |
```

Figure 3.7: Рисунок 7

```
[ddnitusova@ddnitusova ~]$ cp feathers file.old
[ddnitusova@ddnitusova ~]$ mv file.old play
[ddnitusova@ddnitusova ~]$ mv file.old play
[ddnitusova@ddnitusova ~]$ mv fun play
[ddnitusova@ddnitusova ~]$ mv play/fun play/games
[ddnitusova@ddnitusova ~]$ chmod u-r feathers
[ddnitusova@ddnitusova ~]$ cat feathers
cat: feathers: Отказано в доступе
[ddnitusova@ddnitusova ~]$ cp feathers monthly
cp: невозможно открыть «feathers» для чтения: Отказано в доступе
[ddnitusova@ddnitusova ~]$ chmod u-r feathers
[ddnitusova@ddnitusova ~]$ chmod u-r play
[ddnitusova@ddnitusova ~]$ cd play
bash: cd: play: Отказано в доступе
[ddnitusova@ddnitusova ~]$ cd play
```

Figure 3.8: Рисунок 8

Используя команды «man mount», «man fsck», «man mkfs», «man kill», получим информацию о соответствующих командах.

Команда mount: (рис. 3.9) предназначена для монтирования файловой системы. Все файлы, доступные в Unix системах, составляют иерархическую файловую структуру, которая имеет ветки (каталоги) и листья (файлы в каталогах). Корень этого дерева обозначается как /. Физически файлы могут располагаться на различных устройствах. Команда mount служит для подключения файловых систем разных устройств к этому большому дереву. Наиболее часто встречающаяся форма команды mount выглядит следующим образом: «mount -t vfstype device dir» Такая команда предлагает ядру смонтировать (подключить) файловую систему указанного типа vfstype, расположенную на устройстве device, к заданному каталогу dir, который часто называют точкой монтирования.

Figure 3.9: Рисунок 9

Команда fsck: (рис. 3.10) это утилита командной строки, которая позволяет выполнять проверки согласованности и интерактивное исправление в одной или нескольких файловых системах Linux.Он использует программы, специфичные для типа файловой системы, которую он проверяет. У команды fsck следующий синтаксис: fsck [параметр] – [параметры ФС] [...] Например, если нужно восстановить («починить») файловую систему на некотором устройстве /dev/sdb2,

следует воспользоваться командой: «sudo fsck -y /dev/sdb2» Опция -у необходима, т. к. при её отсутствии придётся слишком часто давать подтверждение.

Figure 3.10: Рисунок 10

Команда mkfs: (рис. 3.11) создаёт новую файловую систему Linux. Имеет следующий синтаксис: mkfs [-V] [-t fstype] [fs-options] filesys [blocks] mkfsиспользуется для создания файловой системы Linux на некотором устройстве, обычно в разделе жёсткого диска. В качестве аргумента filesys для файловой системы может выступать или название устройства (например, /dev/hda1, /dev/sdb2) или точка монтирования (например, /, /usr, /home). Аргументом blocks указывается количество блоков, которые выделяются для использования этой файловой системой. По окончании работы mkfs возвращает 0 - в случае успеха, а 1 - при неудачной операции. Например, команда «mkfs -t ext2/dev/hdb1» создаёт файловую систему типа ext2 в разделе /dev/hdb1 (второй жёсткий диск).

Figure 3.11: Рисунок 11

Команда kill: (рис. 3.12) посылает сигнал процессу или выводит список допустимых сигналов. Имеет следующий синтаксис: kill [опции] PID, где PID – это PID (числовой идентификатор) процесса или несколько PID процессов, если требуется послать сигнал сразу нескольким процессам. Например, команда «kill -KILL 3121» посылает сигнал KILL процессу с PID 3121, чтобы принудительно завершить процесс.

Figure 3.12: Рисунок 12

4 Контрольные вопросы

1) Чтобы узнать, какие файловые системы существуют на жёстком диске моего компьютера, использую команду «df -Th». На моем компьютере есть следующие файловые системы: devtmpfs, tmpfs, ext4, iso9660. devtmpfs позволяет ядру создать экземпляр tmpfs с именем devtmpfs при инициализации ядра, прежде чем регистрируется какое-либо устройство с драйверами. Каждое устройство с майором / минором будет предоставлять узел устройства в devtmpfs. devtmpfs монтируется на /dev и содержит специальные файлы устройств для всех устройств.

tmpfs – временное файловое хранилище во многих Unix-подобных ОС. Предназначена для монтирования файловой системы, но размещается в ОЗУ вместо ПЗУ. Подобная конструкция является RAM диском. Данная файловая система также предназначенная для быстрого и ненадёжного хранения временных данных. Хорошо подходит для /tmp и массовой сборки пакетов/образов. Предполагает наличие достаточного объёма виртуальной памяти. Файловая система tmpfs предназначена для того, чтобы использовать часть физической памяти сервера как обычный дисковый раздел, в котором можно сохранять данные (чтение и запись). Поскольку данные размещены в памяти, то чтение или запись происходят во много раз быстрее, чем с обычного HDD диска.

ext4 – имеет обратную совместимость с предыдущими версиями ФС. Эта версия была выпущена в 2008 году. Является первой ФС из «семейства» Ext, использующая механизм «extent file system», который позволяет добиться меньшей фрагментации файлов и увеличить общую производительность файловой системы.

Кроме того, в Ext4 реализован механизм отложенной записи (delayed allocation – delalloc), который так же уменьшает фрагментацию диска и снижает нагрузку на CPU. С другой стороны, хотя механизм отложенной записи и используется во многих ФС, но в силу сложности своей реализации он повышает вероятность утери данных.

ISO 9660 – стандарт, выпущенный Международной организацией по стандартизации, описывающий файловую систему для дисков CD- ROM. Также известен как CDFS (Compact Disc File System). Целью стандарта является обеспечить совместимость носителей под разными операционными системами, такими, как Unix, Mac OS, Windows.

2) Файловая система Linux/UNIX физически представляет собой пространство раздела диска разбитое на блоки фиксированного размера, кратные размеру сектора – 1024, 2048, 4096 или 8120 байт. Размер блока указывается при создании файловой системы. В файловой структуре Linux имеется один корневой раздел – / (он же root, корень). Все разделы жесткого диска (если их несколько) представляют собой структуру подкаталогов, "примонтированных" к определенным каталогам.

/ – корень Это главный каталог в системе Linux. По сути, это и есть файловая система Linux. Адреса всех файлов начинаются с корня, а дополнительные разделы, флешки или оптические диски подключаются в папки корневого каталога. Только пользователь root имеет право читать и изменять файлы в этом каталоге.

/BIN – бинарные файлы пользователя Этот каталог содержит исполняемые файлы. Здесь расположены программы, которые можно использовать в однопользовательском режиме или режиме восстановления.

/SBIN – системные испольняемые файлы Так же как и /bin, содержит двоичные исполняемые файлы, которые доступны на ранних этапах загрузки, когда не примонтирован каталог /usr. Но здесь находятся программы, которые можно выполнять только с правами суперпользователя.

/ETC – конфигурационные файлы В этой папке содержатся конфигурационные файлы всех программ, установленных в системе. Кроме конфигурационных файлов, в системе инициализации Init Scripts, здесь находятся скрипты запуска и завершения системных демонов, монтирования файловых систем и автозагрузки программ.

/DEV – файлы устройств В Linux все, в том числе внешние устройства являются файлами. Таким образом, все подключенные флешки, клавиатуры, микрофоны, камеры – это просто файлы в каталоге /dev/. Выполняется сканирование всех подключенных устройств и создание для них специальных файлов.

/PROC – информация о процессах По сути, это псевдофайловая система, содержащая подробную информацию о каждом процессе, его Pid, имя исполняемого файла, параметры запуска, доступ к оперативной памяти и так далее. Также здесь можно найти информацию об использовании системных ресурсов.

/VAR – переменные файлы Содержит файлы, которые часто изменяются. Размер этих файлов постоянно увеличивается. Здесь содержатся файлы системных журналов, различные кеши, базы данных и так далее.

/TMP – временные файлы В этом каталоге содержатся временные файлы, созданные системой, любыми программами или пользователями. Все пользователи имеют право записи в эту директорию.

/USR – программы пользователя Это самый большой каталог с большим количеством функций. Здесь находятся исполняемые файлы, исходники программ, различные ресурсы приложений, картинки, музыку и документацию.

/НОМЕ – домашняя папка В этой папке хранятся домашние каталоги всех пользователей. В них они могут хранить свои личные файлы, настройки программ и т. д.

/BOOT – файлы загрузчика Содержит все файлы, связанные с загрузчиком системы. Это ядро vmlinuz, образ initrd, а также файлы загрузчика, находящие в каталоге /boot/grub.

/LIB – системные библиотеки Содержит файлы системных библиотек, которые

используются исполняемыми файлами в каталогах /bin и /sbin.

/ОРТ – дополнительные программы В эту папку устанавливаются проприетарные программы, игры или драйвера. Это программы созданные в виде отдельных исполняемых файлов самими производителями.

/MNT – монтирование В этот каталог системные администраторы могут монтировать внешние или дополнительные файловые системы.

/MEDIA – съемные носители В этот каталог система монтирует все подключаемые внешние накопители –USB флешки, оптические диски и другие носители информации.

/SRV – сервер В этом каталоге содержатся файлы серверов и сервисов.

/RUN - процессы Каталог, содержащий PID файлы процессов, похожий на /var/run, но в отличие от него, он размещен в TMPFS, а поэтому после перезагрузки все файлы теряются.

- 3) Чтобы содержимое некоторой файловой системы было доступно операционной системе необходимо воспользоваться командой mount.
- 4) Целостность файловой системы может быть нарушена из-за перебоев в питании, неполадок в оборудовании или из-за некорректного/внезапного выключения компьютера. Чтобы устранить повреждения файловой системы необходимо использовать команду fsck.
- 5) Файловую систему можно создать, используя команду mkfs.
- 6) Для просмотра текстовых файлов существуют следующие команды: cat Задача команды cat очень проста она читает данные из файла или стандартного ввода и выводит их на экран. Синтаксис утилиты: cat [опции] файл1 файл2 ... Основные опции: -b нумеровать только непустые строки -E показывать символ \$ в конце каждой строки -n нумеровать все строки -s удалять пустые повторяющиеся строки -T отображать табуляции в виде ^I -h отобразить справку -v версия утилиты

nl Командаnlдействует аналогично команде cat, новыводит еще и номера строк в столбце слева.

less Существенно более развитая команда для пролистывания текста. При чтении данных со стандартного ввода она создает буфер, который позволяет листать текст как вперед, так и назад, а также искать как по направлению к концу, так и по направлению к началу текста. Синтаксис аналогичный синтаксису команды саt. Некоторые опции: -g — при поиске подсвечивать только текущее найденное слово (по умолчанию подсвечиваются все вхождения) -N — показывать номера строк

head Команда head выводит начальные строки (по умолчанию – 10) из одного или нескольких документов. Также она может показывать данные, которые передает на вывод другая утилита. Синтаксис аналогичный синтаксису команды саt. Основные опции: -c (-bytes) – позволяет задавать количество текста не в строках, а в байтах -п (-lines) – показывает заданное количество строк вместо 10, которые выводятся по умолчанию -q (-quiet, -silent) – выводит только текст, не добавляя к нему название файла -v (-verbose) – перед текстом выводит название файла -z (-zero-terminated) – символы перехода на новую строку заменяет символами завершения строк

tail Эта команда позволяет выводить заданное количество строк с конца файла, а также выводить новые строки в интерактивном режиме. Синтаксис аналогичный синтаксису команды саt. Основные опции: -с – выводить указанное количество байт с конца файла -f – обновлять информацию по мере появления новых строк в файле -n – выводить указанное количество строк из конца файла –pid – используется с опцией -f, позволяет завершить работу утилиты, когда завершится указанный процесс -q – не выводить имена файлов –retry – повторять попытки открыть файл, если он недоступен -v – выводить подробную информацию о файле

7) Утилита ср позволяет полностью копировать файлы и директории. Синтаксис: ср [опции] файл-источник файл-приемник После выполнения команды

файл-источник будет полностью перенесен в файл-приемник. Если в конце указан слэш, файл будет записан в заданную директорию с оригинальным именем. Основные опции: –attributes-only – не копировать содержимое файла, а только флаги доступа и владельца -f, –force – перезаписывать существующие файлы -i, –interactive – спрашивать, нужно ли перезаписывать существующие файлы -L – копировать не символические ссылки, а то, на что они указывают -п – не перезаписывать существующие файлы -Р – не следовать символическим ссылкам -г – копировать папку Linux рекурсивно -s – не выполнять копирование файлов в Linux, а создавать символические ссылки -u – скопировать файл, только если он был изменён -х – не выходить за пределы этой файловой системы -р – сохранять владельца, временные метки и флаги доступа при копировании -t – считать файл-приемник директорией и копировать файл-источник в эту директорию

8) Команда mv используется для перемещения одного или нескольких файлов (или директорий) в другую директорию, а также для переименования файлов и директорий. Синтаксис: mv [-опции] старый файл файл файл Основные опции: -help - выводит на экран официальную документацию об утилите –version – отображает версию mv -b – создает копию файлов, которые были перемещены или перезаписаны -f – при активации не будет спрашивать разрешение у владельца файла, если речь идет о перемещении или переименовании файла -і – наоборот, будет спрашивать разрешение у владельца -n - отключает перезапись уже существующих объектов -striptrailing-slashes — удаляет завершающий символ / у файла при его наличии -t [директория] — перемещает все файлы в указанную директорию -u осуществляет перемещение только в том случае, если исходный файл новее объекта назначения -v - отображает сведения о каждом элементе во время обработки команды Команда rename также предназначена, чтобы переименовать файл. Синтаксис: rename [опции] старое имя новое имя файлы Основные опции: -v - вывести список обработанных файлов -n -

- тестовый режим, на самом деле никакие действия выполнены не будут -f принудительно перезаписывать существующие файлы
- 9) Права доступа совокупность правил, регламентирующих порядок и условия доступа субъекта к объектам информационной системы (информации, её носителям, процессам и другим ресурсам) установленных правовыми документами или собственником, владельцем информации. Права доступа к файлу или каталогу можно изменить, воспользовавшись командой chmod. Сделать это может владелец файла (или каталога) или пользователь с правами администратора. Синтаксис команды: chmod режим имя_файла Режим имеет следующие компоненты структуры и способ записи: = установить право
 - лишить права
 - дать право r чтение w запись x выполнение u (user) владелец файла g (group) группа, к которой принадлежит владелец файла о (others) все остальные

5 Выводы

В ходе выполнения данной лабораторной работы я ознакомилась с файловой системой Linux, её структурой, именами и содержанием каталогов, получила навыки по применению команд для работы с файлами и каталогами, по управлению процессами (и работами), по проверке использования диска и обслуживанию файловой системы.