

CSC 301: Data Structures and Algorithms

Course Overview

Denis L. Nkweteyim

CSC 301: Data Structures and Algorithms

- · Schedule
 - Mondays: 07:00 09:00 @ Amphi 150 D
 - Wednesdays: 13:00 15:00 @ CRB II, 150A
- Instructors
 - Dr. Denis L. Nkweteyim

11/21/18

Recommended Readings

- Algorithms in C: Fundamentals, data structures, sorting, searching by Sedgewick (1998)
- Algorithms in C: Graph algorithms by Sedgewick (2002)

Expected Pedagogic Activities

Teaching

Lectures: 35 hours

Tutorials: 5 hours

Practicals: 20 hours

Largely practical course

- Student should spend significantly more time outside class hours than indicated above, doing practical work (writing and understanding code)
- Tutorials are designed to reinforce the lectures
 - · Will be given at appropriate times in the course of the semester
- No substitute for attending class
 - Understanding concepts presented will be essential
 - Simply trying to cram the material will not help

Evaluation

· CA - 30 %

· Semester Exam: 70 %

· Note

Both CA and semester exam will be highly biased towards programming

Some advice

- · Don'ts
 - Skip lectures & tutorials
 - Cram close to exam time
 - Expect the exam to be a memory test
- · Dos
 - Attend lectures & tutorials
 - Practice the skills you learn immediately
 - Expect a problem-solving exam

Course overview

- Algorithm
 - A problem-solving method
 - Implemented in a computer as a program
 - Generally
 - Independent of the machines on which they are implemented
 - Independent on a particular compiler or programming language

Course overview

- Data structure
 - Most algorithms involve methods of organizing the data involved in the computation
 - Data objects created in this way are called data structures

- Problem-solving
 - Programmer chooses from a number of different algorithms
 - For small problems
 - Does not matter much which approach is used
 - Gain in time if the most efficient algorithm is chosen might be negligible
 - For large complex problems
 - Need to choose algorithms that manage space (memory) and time well
 - Carefully designed algorithm may reduce computation time by a factor of thousands, if not millions of times over a poorly designed one
 - Well-designed algorithms pay off far better than more sophisticated hardware (faster processors, larger memories)
 - Improvement factor of thousand or even millions vs improvement factor of about 10 – 100

Course overview

- Choice of which algorithm to use can be complicated, involving sophisticated mathematical analysis
 - Course examines algorithms and data structures
 - Algorithms
 - Basic methods to analyze algorithms to determine their efficiencies
 - Consideration of a number of standard algorithms
 - Data structures
 - Study of a range of data structures
 - · Arrays, linked lists, strings, recursive data structures, and abstract data types like stacks and queues, and
 - Algorithms that make use of these data structures
 - · Sorting, searching, tree and graph algorithms
 - Concrete implementations of data structures and algorithms in the C programming language