Assignment Date: 21/3/2023

Due Date : 4/4/2023 at 23:59

- Student must do the homework without getting any help or collaboration.
- If significant similarities are found between submitted files, it will be considered as plagiarism, and those homework grades will be zero.
- File should be submitted to Ninova only, email submissions are not accepted.
- Your solution should be in one *.cpp file, without programmer-defined *.h header files.
- Program should work without compiler errors and give correct results as expected.

CUBE CLASS

- Write C++ codes for the UML class diagram given. (+ is public)
- Parametered constructor: Initializes all member datas with parameters.
- volume function: Calculates and returns the volume of Cube.
 - Formula = length * width * height
- print function: Displays dimension values and the calculated volume.

Cube				
+ length : int + width : int				
+ height: int				
+ Cube () + Cube (int length, int width, int height) + volume() : int + print() : void				

NONMEMBER OVERLOADED OPERATOR > FUNCTION

- Write nonmember oveloaded operator > function. Prototype: bool operator > (Cube& Cube1, Cube& Cube2)
- Function takes two Cubes as arguments and compares calculated volumes of them.
- If volume1 > volume2, then function returns true, otherwise returns false.
- Example calling of operator: if (Cube1 > Cube2) ...

NONMEMBER OVERLOADED OPERATOR + FUNCTION

- Write nonmember oveloaded operator + function. Prototype: Cube operator+ (Cube& Cube1, Cube& Cube2)
- Function takes two Cubes as arguments, adds them and returns a New Cube object.
- The sum of two Cube objects is a New Cube object, that is large enough to contain the two original Cubes stacked on their heights.
- Dimensions of the New Cube is determined as follows.

New length = Maximum of Length1 and Length2

New width = Maximum of Width1 and Width2

New height = Height1 + Height2

NewCube = Cube1 + Cube2

MAIN PROGRAM

Write a C++ program to do followings. No STL built-in classes or STL functions should be used.

• Define an array of Cube objects (maximum 10 elements), and initialize with constructor parameters below.

Cube No	length	width	height
1	25	56	83
2	5	50	86
3	50	60	76
4	44	35	75
5	40	28	117
6	13	34	95
7	47	32	60
8	43	38	74
9	46	70	78
10	22	26	102

- By calling print function, display all information about the Unsorted Cubes.
- By looping and calling overloaded > operator, sort array of Cubes from smallest volume to biggest volume.
- Display all information about the Sorted Cubes.
- By looping and calling overloaded + operator, build a New Cube object cumulatively, so that all Sorted Cubes are added. Display all information about the New Cube, at each iteration of loop.
- User should not enter any data inputs from keyboard, program assigns all datas through class constructors.
- Use C++ output formatters to obtain column alignments on screen output.

EXAMPLE SCREEN OUTPUT

	EXAMPLE	SCREEN OU	JIPUI		
CUBES (UNSORTED)					
LWI	H Volume				
1.Cube 25 56 8	83 116200				
2.Cube 5 50 8	86 21500				
3.Cube 50 60	76 228000				
4.Cube 44 35	75 115500				
5.Cube 40 28 13	17 131040				
6.Cube 13 34 9	95 41990				
7.Cube 47 32 6	60 90240				
8.Cube 43 38	74 120916				
9.Cube 46 70	78 251160				
10.Cube 22 26 10	ð2 58344				
CURES (CORTED BY VOLU	IME \				
CUBES (SORTED BY VOLU	UME) H Volume				
	86 21500				
	95 41990				
	02 58344				
	60 90240				
	75 115500				
	83 116200				
	74 120916				
	17 131040				
9.Cube 50 60	76 228000				
10.Cube 46 70	78 251160				
CUMULATIVE SUMS OF CO	UBES AFTER SORTING	L W	H Volu	ma	
Number of cubes added	d = 2 , NewCube	L W 13 50	H Volui 181 1176		
Number of cubes added	•	22 50	283 3113		
Number of cubes added		47 50	343 8060		
Number of cubes added	•	47 50	418 9823		
Number of cubes added		47 56	501 13186		
Number of cubes added	•	47 56	575 15134		
Number of cubes added	. ,	47 56	692 182134		
Number of cubes added	•	50 60	768 23040		
Number of cubes added	,	50 70	846 29610		
	,,				
PROGRAM FINISHED.					