Notes for General Topology

Zhao Wenchuan

November 22, 2021

Contents

1	Topological Spaces		
	1.1	Open Sets	2
	1.2	Closed Sets	4
	1.3	Interiors	4
	1.4	Limit Points and Isolated Points	7
2 1	Metric Spaces		8
	2.1	Review of the Metric Spaces	8
	2.2	Metrizability	10

Chapter 1.

$Topological\ Spaces$

§1.1 Open Sets

Definition 1.1.1. Let X be any set, and let $\mathcal{T} \subseteq 2^X$, where 2^X denotes the power set of X.

Then \mathcal{T} is called a **topology on** X iff it satisfies the **open set axioms**. That is,

- O1. $\emptyset, X \in \mathcal{T}$
- O2. For any $\mathcal{U} \subseteq \mathcal{T}$, $\bigcup \mathcal{U} \in \mathcal{T}$; i.e., \mathcal{T} is closed under arbitrary union.
- O3. For any finite $\mathcal{V} \subseteq \mathcal{T}$, $\bigcap \mathcal{V} \in \mathcal{T}$; i.e., \mathcal{T} is closed under finite intersection.

The ordered pair $\mathbb{X} = (X, \mathcal{T})$ is called a **topological space**.

A subset $U \subseteq X$ is said to be **open** iff it is an element of \mathcal{T} .

Note 1.1.1. Rigorously, $\emptyset \in \mathcal{T}$ is not necessary for O1 in Definition 1.1.1, because it can be proved in a simple way.

As empty set is an element of any set, it is also an element of \mathcal{T} . Therefore,

$$\emptyset = \bigcup \emptyset \in \mathcal{T}.$$

The most intuitive example of topological space is no doubt the **Euclidean topological space**, it is a topological space $\mathbb{X} = (X, \mathcal{T})$ with X is the cartesian product of a sequence of sets $(X_i)_{i=1}^n$ and the **Euclidean topology** \mathcal{T} on X. That is, for any U open in \mathbb{X} (i.e., $U \in \mathcal{T}$), for any $A \subseteq U$ and for any $x \in A$, there exists $\varepsilon_x \in \mathbb{R}_{>0}$, such that U can be represented as the union of all ε_x -balls around x; i.e.,

$$U = \bigcup_{x \in A} B_d(x, \varepsilon_x),$$

where d is the **Euclidean metric** on X; i.e., $d: X \times X \to \mathbb{R}_{>0}$ is a function defined by the Pythagoras theorem,

$$d(x,y) := \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{1}{2}},$$

where a_i denotes the *i*-th projection of $a \in X$ on X.

In this case, the topology \mathcal{T} is said to be induce by metric d. As a general consequence, any metric space can induce a unique topology. This will be proved later.

In Euclidean spaces, the idea of "open" represents intuitively, but it doesn't mean that every topological space should be induce in such a natural way. Here is an easy example.

Example 1.1.1. Let $X = \{1, 2, 3, 4\}$ and let \mathcal{T} be the smallest topology on X containing $\{1, 2\}$ and $\{2, 3\}$, i.e., for topology \mathcal{T}' on X containing these two sets is a superset of \mathcal{T} .

By Open Set Axiom O1, \emptyset , $X \in \mathcal{T}$.

By Open Set Axiom O2, $\{1, 2, 3\} = \{1, 2\} \cup \{2, 3\} \in \mathcal{T}$.

By Open Set Axiom O3, $\{2\} = \{1,2\} \cap \{2,3\} \in \mathcal{T}$.

Therefore

$$\mathcal{T} = \{\emptyset, X, \{1, 2, 3\}, \{1, 2\}, \{2, 3\}, \{2\}\}.$$

Definition 1.1.2. Let X be any set and let \mathcal{T}_1 and \mathcal{T}_2 be topologies on X.

Then \mathcal{T}_1 is said to be **coarser** than \mathcal{T}_2 , or \mathcal{T}_2 is said to be **finer** thatn \mathcal{T}_1 , iff $\mathcal{T}_1 \subseteq \mathcal{T}_2$.

Example 1.1.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

Then X is a discrete topological space, namely, \mathcal{T} is a discrete topology on X iff $\mathcal{T} = 2^X$.

It is the finest topology on X.

Example 1.1.3. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

Then X is a **indiscrete topological space**, namely, T is a **indiscrete topology** on X iff $T = {\emptyset, X}$.

It is the coarsest topology on X.

§1.2 Closed Sets

Definition 1.2.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. Then A is said to be **closed in** \mathbb{X} iff there is a $U \in \mathcal{T}$ such that

$$A = X \setminus U$$
.

Proposition 1.2.1. Closed set axioms...

§1.3 Interiors

Definition 1.3.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

A point $x \in A$ is said to be **interior to** A iff there is a $U \in \mathcal{T}$ with $x \in U$, such that $U \subseteq A$.

The **interior of** A, denoted $Int_{\mathcal{T}}(A)$, is defined as the set of all interior points of A.

Sometime, we write A° for $Int_{\mathcal{T}}(A)$, if the confusion of topology is unlikely in the context.

Proposition 1.3.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. Then we have

$$A^{\circ} = \bigcup (\mathcal{T} \cap 2^A).$$

Proof. Let $\mathcal{U} = \mathcal{T} \cap 2^A$.

$$x \in \bigcup (\mathcal{T} \cap 2^A) \iff x \in \bigcup_{U \in \mathcal{U}} U$$

 $\iff (\exists U \in \mathcal{U}) \ x \in U.$

By assumption, $\mathcal{U} \subseteq \mathcal{T}$, thus for any $U \in \mathcal{U}$, $U \in \mathcal{T}$. Also, $\mathcal{U} \subseteq 2^A$ implies that for any $U \in \mathcal{U}$, $U \subseteq A$.

Now, we have $x \in \bigcup (\mathcal{T} \cap 2^A)$ iff

$$(\exists U \in \mathcal{T} \mid U \subseteq A) \quad x \in U.$$

By the definition of existential quantifier and the associativity of logical conjunction, we have

$$(U \in \mathcal{T} \land U \subseteq A) \land x \in U \iff (U \in \mathcal{T} \land x \in U) \ U \subseteq A$$
$$\iff (\exists U \in \mathcal{T} \mid x \in U) \ U \subseteq A.$$

This is precisely the statement of Definition 1.3.1

Proposition 1.3.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A, B \subseteq X$.

Then $A^{\circ} \subseteq B^{\circ}$ if $A \subseteq B$.

Proof. As $A \subseteq B$, we have

$$2^{A} \subseteq 2^{B} \implies \mathcal{T} \cap 2^{A} \subseteq \mathcal{T} \cap 2^{B}$$
$$\implies \bigcup (\mathcal{T} \cap 2^{A}) \subseteq \bigcup (\mathcal{T} \cap 2^{B})$$

By Definition 1.3.1, $A^{\circ} \subseteq B^{\circ}$.

Note that $A^{\circ} \subseteq B^{\circ}$ does not imply $A \subseteq B$. For example, let $\mathbb{X} = (X, \mathcal{T})$ with $X = \{1, 2\}$ and $\mathcal{T} = \{\emptyset, X, \{2\}\}$, and let

$$A = \{1\}, B = \{2\}.$$

Then, $A^{\circ} = \emptyset$ and $B^{\circ} = \{2\}$. In this case, $A^{\circ} \subseteq B^{\circ}$, but $A \not\subseteq B$.

Proposition 1.3.3. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. Then $A \in \mathcal{T}$ iff $A = A^{\circ}$.

Proof. Assume $A \in \mathcal{T}$.

As $A \in 2^A$ also, then $A \in \mathcal{T} \cap 2^A$. In the term of family, we have

$${A} \subseteq \mathcal{T} \cap 2^A \implies \bigcup {A} \subseteq \bigcup (\mathcal{T} \cap 2^A)$$

 $\implies A \subseteq A^{\circ}.$

By Definition 1.3.1, $A^{\circ} \subseteq A$ is clear, therefore $A = A^{\circ}$. \Box Conversely, Assume $A = A^{\circ}$.

By Proposition 1.3.1 that is

$$A = \bigcup (\mathcal{T} \cap 2^A).$$

Clearly, $\mathcal{T} \cap 2^A \subseteq \mathcal{T}$, thus, by O2, Definition 1.1.1, $A \in \mathcal{T}$.

Proposition 1.3.4. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $\mathcal{A} \subseteq 2^X$. Then we have

$$\left(\bigcap \mathcal{A}\right)^{\circ} \subseteq \bigcap_{A \in \mathcal{A}} A^{\circ}.$$

Proof. By Definition 1.3.1, for any $x \in (\bigcap A)^{\circ}$, there exists $U \in \mathcal{T}$ with $x \in U$ such that $U \subseteq \bigcap A$. Thus, for any $A \in A$, $U \subseteq A$.

As $U \in \mathcal{T}$ and $U \subseteq A$, $U \subseteq A^{\circ}$.

As $x \in U$ and $U \subseteq A^{\circ}$ for any $A \in \mathcal{A}$, we have

$$x \in \bigcap_{A \in \mathcal{A}} A^{\circ}.$$

6

Note that the relation \subseteq in Proposition 1.3.4 cannot be reversed. Consider $X=\{1,2,3\}$ and $\mathcal{T}=\{\emptyset,X,\{1,2\},\{2,3\}\}$, then

$$(\{1,2\} \cap \{2,3\})^{\circ} = \emptyset,$$

but,

$$\{1,2\}^{\circ} \cap \{2,3\}^{\circ} = \{2\}.$$

§1.4 Limit Points and Isolated Points

Definition 1.4.1. Limit point and derived set...

Definition 1.4.2. Isolated points and the set of isolated points

Proposition 1.4.1.

$$A \subseteq L(A) \sqcup I(A)$$

Proposition 1.4.2. A is closed iff $L(A) \subseteq A$.

Chapter 2.

Metric Spaces

§2.1 Review of the Metric Spaces

Definition 2.1.1. Let X be any set, and let $d: X \times X \to \mathbb{R}_{>0}$.

Then d is a **metric on** X iff it satisfies the **metric axioms**. That is, for any $x, y, z \in X$:

M1.
$$d(x, y) = 0$$
 iff $x = y$;

M2.
$$d(x, y) = d(y, x)$$
;

M3.
$$d(x, z) \le d(x, y) + d(y, z)$$
.

The ordered pair $\mathbb{X} = (X, d)$ is called **metric space**.

Definition 2.1.2. Let $\mathbb{X} = (X, d)$ be a metric space, let $x \in X$ and let $\varepsilon \in \mathbb{R}_{>0}$.

An **open** ε -ball, or just ε -ball, about x is defined to be the set

$$B_d(x,\varepsilon) := \{ y \in X : d(x,y) < \varepsilon \}.$$

A closed ball is defined to be the set

$$\overline{B}_d(x,\varepsilon) := \{ y \in X : d(x,y) \le \varepsilon \}.$$

Proposition 2.1.1. Let $\mathbb{X} = (X, d)$ be a metric space, let $x \in X$ and let $\varepsilon \in \mathbb{R}_{>0}$.

Then, for any $y \in B_d(x, \varepsilon)$, there exists $\delta \in \mathbb{R}_{>0}$, such that

$$B_d(y,\delta) \subseteq B_d(x,\varepsilon)$$
.

Proof. Aiming for a contradiction, suppose there exists a $y \in B_d(x, \varepsilon)$, for any $\delta \in \mathbb{R}_{>0}$,

$$\exists z \in B_d(y, \delta) \setminus B_d(x, \varepsilon).$$

By Definition 2.1.2, we have

$$z \notin B_d(x,\varepsilon) \implies d(x,z) > \varepsilon,$$

 $y \in B_d(z,\varepsilon) \implies d(x,y) < \varepsilon,$

$$z \in B_d(y, \delta) \implies d(y, z) < \delta.$$

By metric axioms O3, we have

$$\delta > d(y, z) \ge d(x, z) - d(x, y).$$

This implies that there exists an $r = d(x, y) \in \mathbb{R}_{(0,\varepsilon)}$, such that for any $\delta \in \mathbb{R}_{>0}$,

$$\delta > \varepsilon - r$$
,

which is impossible. Thus, such a y can not exist.

Proposition 2.1.2. Let $\mathbb{X} = (X, d)$ be a metric space, and let \mathcal{O} be a family of open balls in \mathbb{X} .

Then, for any $y \in \bigcup \mathcal{O}$, there is a $\delta \in \mathbb{R}_{>0}$, such that

$$B_d(y,\delta)\subseteq\bigcup\mathcal{O}.$$

Proof. As $y \in \bigcup \mathcal{O}$, there is an $O \in \mathcal{O}$ such that $y \in O$. As \mathcal{O} is a family of open balls, that is, there is an $x \in \bigcup \mathcal{O}$ an $\varepsilon \in \mathbb{R}_{>0}$, such that $y \in B_d(x, \varepsilon)$.

9

§2.2 Metrizability

Proposition 2.2.1. Let $\mathbb{X} = (X, d)$, let $x \in X$, and let $\varepsilon \in \mathbb{R}_{>0}$.

Then for any $y \in B_d(x, \varepsilon)$, there is a $\delta \in \mathbb{R}_{>0}$, such that

$$B_d(y,\delta) \subseteq B_d(x,\varepsilon)$$
.

Proof.

Proposition 2.2.2. Let $\mathbb{X} = (X, d)$ be a metric space, and let $\mathcal{T} \subseteq 2^X$ such that for any $U \in \mathcal{T}$ and for any $x \in U$, there exists an $\varepsilon_x \in \mathbb{R}_{>0}$ such that

$$B_d(x, \varepsilon_x) \subseteq U$$
.

Then \mathcal{T} is a topology on X.

Proof. \mathcal{T} is a topology on X iff it satisfies the open set axioms (Definition 1.1.1.

Proof for O1. By the definition of \mathcal{T} here, for any $x \in X$, there exists an $\varepsilon \in \mathbb{R}$ such that $B_d(x, \varepsilon) \subseteq U$.

For any $x \in \emptyset$, the statement is vacuously true.

Proof for O2. Let $\mathcal{U} \subseteq \mathcal{T}$, then for any $U \in \mathcal{U}$ and for any $x \in U$, there exists an $\varepsilon_x \in \mathbb{R}_{>0}$ such that $B_d(x, \varepsilon_x) \subseteq U$. Thus, for any $x \in U$, there exists $\varepsilon_x \in \mathbb{R}_{>0}$, such that

$$U = \bigcup_{x \in U} B_d(x, \varepsilon_x).$$

Now, we need to show that $\bigcup \mathcal{U} \in \mathcal{T}$.

• • •