Corrigés – première partie

Table des matières

1 R	Réponses	2
1.1	Calcul numérique	2
12	Ensembles et intervalles	3

- Exercices - première partie SECTION 1 —

Réponses

Calcul numérique

1.1.1 Division euclidienne

Corrigé 1

- a) $0,\overline{3}$
- b) $0,\overline{1}$
- c) $1,\overline{076923}$
- d) 0,1176470588235294

Corrigé 2

a)
$$\frac{1}{7} = 0,\overline{142857}; \frac{2}{7} = 0,\overline{285714}; \frac{3}{7} = 0,\overline{428571}; \frac{4}{7} = 0,\overline{571428}; \frac{5}{7} = 0,\overline{714285}; \frac{6}{7} = 0,\overline{857142}.$$

b) À remarquer.

c)
$$\frac{22}{23} = 0.9565217391304347826086$$

Corrigé 3

On note un nombre à cinq chiffres

$$a + b \cdot 10 + c \cdot 10^2 + d \cdot 10^3 + e \cdot 10^4$$
 où $a,b,c,d,e \in \mathbb{N}, e \neq 0$

Si le nombre a quatre chiffres, alors on prend e = 0 et $d \neq 0$.

- a) On a a = 4 et b = 2. Par ailleurs la somme a + b + c + d + e doit être divisible par 3 pour que le nombre soit un multiple de 3. On a 2 + 4 = 6 qui est déjà un multiple de 3. Le nombre recherché est donc 99924.
- b) Le nombre recherché est 1224.
- c) Le nombre recherché est 2046.
- d) Le nombre recherché est 9753.

Corrigé 4

- a) 1; 4; 9, on les appelle des carrés parfaits.
- b) Ce sont des nombres premiers. {2; 3; 5; 7; 11; 13; 17; ...}.

Corrigé 5

- a) 21,05
- b) $3.0\overline{6}$
- c) $4,\overline{2857140}$
- d) $5,\overline{63}$

1.1.2 Nombres rationnels

Corrigé 6

a)
$$\frac{35}{100} = \frac{7}{20}$$

b)
$$\frac{35}{99}$$

c)
$$\frac{349}{999}$$

d)
$$\frac{3}{10} + \frac{49}{990} = \frac{173}{495}$$

a)
$$\frac{35}{100} = \frac{7}{20}$$
 b) $\frac{35}{99}$ c) $\frac{349}{999}$ d) $\frac{3}{10} + \frac{49}{990}$ e) $\frac{3}{10} + \frac{5}{90} = \frac{32}{90} = \frac{16}{45}$ f) $\frac{34}{100} + \frac{9}{900} = \frac{7}{20}$. g) $1 + \frac{2}{9} = \frac{11}{9}$ h) $\frac{325}{100} = \frac{13}{4}$ Noter que $0,0\overline{9} = 0,01$.

f)
$$\frac{34}{100} + \frac{9}{900} = \frac{7}{20}$$
.

g)
$$1 + \frac{2}{9} = \frac{11}{9}$$

h)
$$\frac{325}{100} = \frac{13}{4}$$

i)
$$\frac{15}{100} = \frac{3}{20}$$

i)
$$\frac{15}{100} = \frac{3}{20}$$
 j) $1 + \frac{4}{10000} = \frac{251}{250}$ k) $\frac{80}{99}$

k)
$$\frac{80}{90}$$

$$1) \quad \frac{16}{100} = \frac{4}{25}$$

n)
$$3 + \frac{141}{999} = \frac{1046}{333}$$

Corrigé 7

- a) $\frac{12}{10}$; $\frac{13}{10}$; $\frac{14}{10}$;
- b) $1,\overline{1} = \frac{10}{9}; \frac{11}{9}; \frac{12}{9};$ c) $\sqrt{2}; \sqrt{3}; \frac{\sqrt{5}}{2}.$

1.1.3 Racines

Corrigé 8

- a) $7\sqrt{3}$ b) $14\sqrt{2} 2\sqrt{5}$ c) -2 e) $5 7\sqrt{3}$ f) $16 + 8\sqrt{5}$ g) $20\sqrt{3}$
- d) $5 2\sqrt{6}$

- h) 6

Corrigé 9

On utilise la multiplication par l'expression conjuguée et les propriétés des racines.

Corrigé 10

a)
$$\frac{4\sqrt{5} - 10\sqrt{2}}{3}$$
 b) $\frac{11}{3}$

- c) $-2\sqrt{3}$
- d) $-2\sqrt{15}$

Corrigé 11

a)
$$\frac{5\sqrt{3}}{3}$$

a)
$$\frac{5\sqrt{3}}{3}$$
 b) $-\frac{203\sqrt{3}}{18}$ c) $\frac{41\sqrt{5}}{20}$

c)
$$\frac{41\sqrt{5}}{20}$$

d)
$$-\frac{3\sqrt{5}+\sqrt{7}}{2}$$
.

Corrigé 12

$$(3 + 2\sqrt{2})^2 = 17 + 12\sqrt{2}$$
, ainsi, $\sqrt{17 + 12\sqrt{2}} = 3 + 2\sqrt{2}$

1.2 **Ensembles et intervalles**

Ensembles de nombres

 $\frac{2}{7} \in \mathbb{Q} \; ; \; \sqrt{100} \in \mathbb{N} \; ; \; \sqrt{200} \in \mathbb{R} \; ; \; \pi+1 \in \mathbb{R} \; ; \; -\sqrt{1,21} \in \mathbb{Q} \; ; \; 3,14 \in \mathbb{Q} \cdot 10^5 \in \mathbb{N} \; ; \; -\frac{17}{2} \in \mathbb{Q}.$

Corrigé 14

	N	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	aucun
$\frac{3}{2}$			Х	X	
$\frac{3,14}{0,01}$	Х	Х	Х	Х	
$\sqrt{7}$				Х	
$\frac{2-\sqrt{8}}{\sqrt{2}-1}$		X	Х	Х	
$\sqrt{9}$	Х	Х	Х	Х	
π				Х	
$-\sqrt{100}$		Х	Х	Х	

Corrigé 15

a) Vrai

- b) Faux, semi-ouvert à gauche
- c) Vrai

- d) Faux, ce n'est pas l'intervalle
- e) Vrai

f) Faux, il y appartient

- g) Faux, 0 est dans l'intersection
- h) Vrai

i) Vrai

Corrigé 16

Plusieurs possibilités, par exemple la suite suivante (à réduire) :

$$\left\{ \frac{1}{3} + \frac{k}{20} \cdot \left(\frac{2}{3} - \frac{1}{3} \right) \mid k = 1, ..., 10 \right\}$$

Corrigé 17

a)
$$\frac{3-7}{2} = \frac{-4}{2} = -2 \in \mathbb{Z}$$

c)
$$2.5:3+1=\frac{25}{30}+1=\frac{5}{6}+1=\frac{11}{6}\in\mathbb{Q}$$

e)
$$(\sqrt{2} - 1) : 2 = \frac{\sqrt{2}}{2} - \frac{1}{2} \in \mathbb{R}$$

g)
$$\sqrt{3 \cdot 27} = \sqrt{81} = 9 \in \mathbb{N}$$

i)
$$\sqrt{25 - \frac{3}{\sqrt{9}}} = \sqrt{5 - \frac{3}{3}} = \sqrt{4} = 2 \in \mathbb{N}$$

k)
$$\frac{\sqrt{2}}{\sqrt{81} - \frac{16}{2}} = \frac{\sqrt{2}}{9 - 8} = \frac{\sqrt{2}}{1} = \sqrt{2} \in \mathbb{R}$$

b)
$$\frac{4}{4-1} = \frac{4}{3} \in \mathbb{Q}$$

d)
$$\frac{2^0}{1^2} = \frac{1}{1} = 1 \in \mathbb{N}$$

f)
$$\frac{3-\sqrt{9}}{\pi} = \frac{3-3}{\pi} = 0 \in \mathbb{N}$$

h)
$$\frac{\sqrt{3} - \sqrt{12}}{\sqrt{27}} = \frac{\sqrt{3} - 2\sqrt{3}}{3\sqrt{3}} = \frac{1 - 2}{3} = -\frac{1}{3} \in \mathbb{Q}$$

j)
$$\frac{14}{\sqrt{25} - \sqrt{144}} = \frac{14}{5 - 12} = \frac{14}{-7} = -2 \in \mathbb{Z}$$

$$1) \quad \frac{5 - \sqrt{3}}{\sqrt{3} - 5} = \frac{5 - \sqrt{3}}{-(5 - \sqrt{3})} = -1 \in \mathbb{Z}$$

1.2.2 Ensembles quelconques

Corrigé 18

$$\notin$$
 , \in , \subset , $\not\subset$

Corrigé 19

a)
$$A = \{-1; 1; 3; 5; 7; 9\}$$

c)
$$C = \{-1, 0\}$$

e)
$$E = \{-\sqrt{2}, \sqrt{2}\}$$

Corrigé 20

a)
$$A = \{x \in \mathbb{N}^* \mid 1 \le x \le 8\}$$

c)
$$C = \{3n + 1 \mid n \in \mathbb{N}, 0 \le n \le 6\}$$

e)
$$E = \{ \frac{n-1}{n+1} \mid n \in \mathbb{N}^* \}$$

b) $B = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}\}$

d)
$$D = \emptyset$$

f)
$$F = \emptyset$$

b) B = $\{n^2 \mid n \in \mathbb{N}^*, 1 \le n \le 13\}$

d)
$$D = \left\{ \frac{1}{n^2 + 1} \mid n \in \mathbb{N}^*, 1 \le n \le 5 \right\}$$

f)
$$F = \{2^n \mid n \in \mathbb{N}, 0 \le n \le 10\}$$

Corrigé 21

a)
$$\{-3; -1; 1; 3; 5; 7\}$$

b)
$$\left\{1; \frac{1}{2}; \frac{1}{3}; ...\right\}$$

c)
$$\left\{0; \frac{1}{6}; \frac{3}{20}; \frac{2}{15}\right\}$$

Corrigé 22

a) La taille des diagrammes n'est pas représentative b) de la « taille » des ensembles.

- I ∩ E = I, car l'ensemble des triangles équilatéraux est contenu dans l'ensemble de triangles isocèles.
- R \cap E = \emptyset , car il n'existe aucun triangle qui est équilatéral et rectangle (par le théorème de Pythagore, si $a \in \mathbb{R}_+^*$ est la longueur du côté du triangle, alors $a^2 + a^2 \neq a^2$).
- I \cap R est l'ensemble des triangles dont les deux cathètes mesure $a \in \mathbb{R}_+^*$ et l'hypoténuse mesure $a\sqrt{2}$ (par Pythagore).

Corrigé 23

Il y a plusieurs possibilité, en voici une

$$A = \{a; b; c; d; e\}$$
 $B = \{d; e; f\}$ $C = \{f; g; h; i\}$

Corrigé 24

- a) $\{2n+1 \mid n \in \mathbb{Z}\}$
- b) $\{2n \mid n \in \mathbb{N}\}$
- c) $\{n^2 \mid n \in \mathbb{N}^*\}$

Corrigé 25

Il y a plusieurs réponses possibles.

a) $A = \{1; 2\}$ et $B = \{0; 3; 4\}$

b) $A = \{0; 1; 2; 3; 4\}$ et $B = \{2; 3; 4\}$

c) $A = \{0; 2; 3; 4\} \text{ et } B = \{0; 1\}$

d) $A = \{0; 2; 3\}$ et $B = \{1; 4\}$

Corrigé 26

a)

i)
$$A \cup B = \{-5, 2, 3, 4, 6, 8, 9, 10\}$$

ii)
$$A \cap B = \{3, 4, 8\}$$

iii)
$$B \setminus A = \{2; 10\}$$

iv)
$$A \setminus B = \{-5, 6, 9\}$$

b)
$$C = \{1; 2; 3; 4\}, D = \{2; 3; 4; 5\}$$

c)

i)
$$E = \{2; 3; 4; 5\}, F = \{2; 4\}$$

ii)
$$E = \{2; 3; 4\}, F = \{2; 4; 5\}$$

iii)
$$E = \{2, 4, 5\}, F = \{2, 3, 4\}$$

iv)
$$E = \{2; 4\}, F = \{2; 3; 4; 5\}$$