KUPC2020 - C Grid and Substrings 解説

原案:zaki 解答:yamunaku, nikutto

Kyoto University

October 10, 2020

Contents

1 問題概要

2 考察

3 解答例

問題概要

- すいばかくんに正方形のグリッドをプレゼントしたい
- 各グリッドには英小文字を書き込む
- グリッドから得られる文字列が相異なるようにしたい
- N = 13 で満点

考察

- 長さ3以上の文字列は考えなくて良い
- 長さ 2 の英小文字から成る文字列は 26² 個存在する
- ullet 一辺の長さ N のグリッドからは N(N-1) 個の長さ 2 の文字列が 得られる
- N = 18 が最大
- 一つ手元で見つけたら埋め込んでしまえば ○K

解答例 1

● 手で頑張る

а	b	b	С	С	d	d	е	е	f	f	g	g
С	а	d	b	е	С	f	d	g	е	h	f	i
z	е	а	f	b	g	С	h	d	i	е	j	f
d	z	g	а	h	b	i	С	j	d	k	е	I
У	f	z	i	а	j	b	k	С	ı	d	m	е
С	у	h	z	k	а	ı	b	m	С	n	d	О
х	е	у	j	z	m	а	n	b	o	С	р	d
d	x	g	У	1	z	0	а	р	b	q	С	r
w	f	х	i	у	n	z	q	а	r	b	s	С
С	w	h	x	k	у	р	z	s	а	у	b	u
v	е	w	j	х	m	у	r	z	u	а	v	b
d	v	g	w	ı	х	0	у	t	z	w	а	x
u	f	٧	i	w	n	х	q	у	х	z	у	а

解答例 2 (nikutto)

- 以下の条件を満たす整数列 a, b を見つける
 - $a_1, a_2, \ldots, a_{N-1}, b_1, b_2, \ldots, b_{N-1}$ は 1以上 26未満の distinct な整数
 - ullet $(a_i + a_{i+1} + \ldots + a_j)$, $1 \leq i < j \leq N-1$ が 26 の倍数でない
 - \bullet $(b_i + b_{i+1} + \ldots + b_j)$, $1 \le i < j \le N-1$ が 26 の倍数でない
- 乱択で十分高速に見つかる
- ullet ans[i][j] = 'a' + $(\Sigma_{p=0}^{i-1}a_p + \Sigma_{q=0}^{j-1}b_q)$ %26 で定める

解答例3

- 一点更新山登り法で見つける
- N = 18 まで見つかる

(部分点) 解答例 4

- 枝刈り DFS で見つける
- 探索順・枝刈り規則を工夫しないと厳しいかも
- writer は N=12 まで解けたので 180 点を獲得することができた