RL class - quiz on chapter 1

Total des points 3/7 ?

Student last name *	
IGBIDA	
Student first name *	
Rayanne	
X Question 1 How many stationary deterministic memory-less policies are there in an MDP with 5 states and 3 actions?	*0/1
O 8	
5	×
O 15	
O 20	
Bonne réponse	

X Question 3 0/1

An MDP equipped with a policy $\pi = (\pi_t)_{t \in \mathbb{N}}$ defines a sequence on state random variables $(S_t)_{t \in \mathbb{N}}$ that is a Markov chain.

True

False

Bonne réponse

True

X Question 4 0/1

Take a finite state space MDP, a stationary, memoryless, stochastic policy π and an initial state distribution $\mathbb{P}(S_0 = s) = \mu(s)$. What is the size of the transition matrix p^{π} whose p^{π}_{ij} element is $\mathbb{P}(s' = s_j | s = s_i)$? What is the dependence of p^{π}_{ij} on π , on the transition model p(s'|s,a), on the initial state distribution μ ?

X

 $|S| \times |S|$ and $p_{ij} = \int_A p(s'|s,a) \pi(a|s) da$

Option 1

 $|S| \times |A|$ and $p_{ij} = \int_A p(s'|s,a) \pi(a|s) da$

Option 2

 $|S||A|\times |S|$ and $p_{ij}=\int_A p(s'|s,a)\pi(a|s)\mu(s)dsda$

Option 3

 $|S| \times |S|$ and $p_{ij} = \int_A p(s'|s,a) \pi(a|s) \mu(s) ds da$

Option 4Bonne réponse

Option 1

Question 5 *

1/1

Take a finite state and action space MDP and a fixed policy. Suppose the corresponding Markov chain on states is irreducible and aperiodic. What does $(p^{\pi})^k$ tend to when $k \to \infty$?

A diagonal matrix

A matrix whose lines are all equal to the stationary distribution

/

A matrix whose columns are all equal to the stationary distribution

✓ Question 6 *

1/1

Take a finite state and action space MDP, a fixed policy, and a given probability distribution $\mu(s)$ on starting states. What is the probability distribution on states after k transitions?

$$\mu\left(\left(p^{\pi}\right)^{k}\right)^{-1}$$

	_		•	— .1
\sim	<i>(</i>):	Jest i	ın	/ 7
\sim	V	JESL	IUII	

0/1

Take a finite state and action space MDP, a fixed policy, and a given probability distribution $\mu(s)$ on starting states. Pick the true statement(s) about the state occupancy measure ρ_{μ}^{π} .

$$\rho_{\mu}^{\pi}(s) = \lim_{t \to \infty} \mu \left(p^{\pi} \right)^{t}$$

Option 1

$$\rho_{\mu}^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} \mu \left(p^{\pi}\right)^{t}$$

Option 2

 $\rho_{\mu}^{\pi}(s)$ sums to 1

Option 2
Option 5
Option 6

Ce contenu n'est ni rédigé, ni cautionné par Google. - <u>Conditions d'utilisation</u> - <u>Règles de confidentialité</u>

Google Forms