

Universidad Tecnológica Nacional Facultad Regional Córdoba

Trabajo Práctico 2

Analisis de Senales y Sistemas 2R1

Ernst Pedro 400624

Fecha de entrega: 17 / 08 / 2025

Índice

1	Ejercicio 1	•
2	Ejercicio 1	Ę

Ejercicio 1

Ejercicio 1. Dada la secuencia de senales $\varphi_n(t) = e^{j(n\omega)t} : n \in \mathbb{Z}$, con $T = \frac{2\pi}{\omega}$. Demostrar:

- A) El periodo fundamental de la senal $\varphi_n(t)$ es $T_n = \frac{2\pi}{n\omega}$. ¿Por qué se puede afirmar que la suma entre estas señales está bien definida $\varphi_n(t)$?
 - i. Lo primero que realizaremos seria corroborar que T_n es un periodo.

$$\varphi_n(t+T_n) = \varphi_n(t)$$

$$e^{jn\omega(t+T_n)} = e^{jn\omega(t)}$$

$$e^{jn\omega(t+\frac{2\pi}{n\omega})} = e^{jn\omega(t)}$$

$$e^{jn\omega(t)+jn\omega} \frac{2\pi}{n\omega} = e^{jn\omega(t)}$$

$$e^{jn\omega(t)+j2\pi} = e^{jn\omega(t)}$$

$$e^{jn\omega(t)} \cdot e^{j2\pi} = e^{jn\omega(t)}$$

$$e^{jn\omega(t)} \cdot 1 = e^{jn\omega(t)}$$

ii. Para ver que T_n es el periodo fundamental, suponemos que exisite un T' > 0 con $T' < T_n$, tal que.

 $e^{jn\omega(t)} = e^{jn\omega(t)}$

$$\varphi_n(t+T') = \varphi_n(t)$$

Entonces $e^{jn\omega T'}=1$, por lo que existe $k\in\mathbb{Z}$ tal que

$$n\omega T' = 2\pi k$$

Despejando $n\omega$

$$T' = \frac{2\pi k}{n\omega}$$

Donde si k=0 entonces T'=0, lo cual contradic lo que postulamos al principio que T'>0

Si $|k| \ge 1$, entonces

$$T' \ge \frac{2\pi}{|n|\omega} = T_{|n|}$$

Lo cual contradice que $T' < T_n$. Por lo tanto no existe $T' \in (0, T_n)$ que sea periodo. iii) Para decir que la suma entre senales esta bien definida por $\varphi_n(t)$

Ejercicio 1