Workshop week 7 Correlation

COMP20008 2020 S2

Week 7 Correlation

- Correlation
 - Can hint at potential causal relationships
 - Does not imply causality!
- Pearson Correlation
 - Assess linear relationship
 - Range [-1,1]
- Mutual Information
 - Detect non-linear relationship
 - Need preprocessing (discretise into bins)
 - Entropy: measure uncertainty $H(p) = -\sum_{i=1}^{k} p(i) \log p(i)$
 - Conditional entropy: $H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x)$

What is Correlation?

- Correlation is used to detect pairs of variables that might have some relationship.
- Visually can be identified via inspecting scatter plots

Remember!

- Correlation does not necessarily imply causality!
- Feature ranking: select the best features for building better predictive models:
 - A good feature to use, is a feature that has high correlation with the outcome one is trying to predict

https://rpsychologist.com/d3/correlation/

Assessing linear correlation – Pearson correlation

- Assess how close their scatter plot is to a straight line (a linear relationship)
- Range of r_{xy} lies within [-1,1]:
 - 1 for perfect positive linear correlation
 - -1 for perfect negative linear correlation
 - 0 means no correlation
 - Absolute value |r| indicates strength of linear correlation

Calculation

$$ho_{X,Y} = rac{ ext{cov}(X,Y)}{\sigma_X \sigma_Y}
ightharpoonup
ho_{X,Y} = rac{ ext{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$$

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

Micro Example (Warm Up)

Calculate Pearson Correlation
 Coefficient between X and Y

 $x_i - \bar{x}$

Sum??

X

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \bar{x})^2).(\sum_{i=1}^{n} (y_i - \bar{y})^2)}}$$

$y_i - \bar{y}$	
-2	
-1	
0	
3	
Sum??	

X	У
1	1
2	2
2	3
3	6

$-\overline{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$	$(y_i - \bar{y})^2$	
2	2	1	4	
1	0	0	1	
0	0	0	0	
3	3	1	9	
m??	5	2	14	

$$r_{xy} = \frac{5}{\sqrt{2 \times 14}} = 0.9449$$

- Range within [-1,1]
- Scale invariant: r(x,y)= r(x, Ky)
 - Multiplying a feature's values by a constant K makes no difference

- Location invariant: r(x,y)= r(x, K+y)
 - Adding a constant K to one feature's values makes no difference

Can only detect linear relationships

$$y = a.x + b + noise$$

1. Compute the Pearson correlation between Average Steps per day and Average Resting Heart Rate. Show your working. How would you interpret this correlation value?

	Average	Average	
Person ID	Steps per	Resting	
	day	Heart Rate	
1	1000	100	
2	2500	105	
3	3000	80	
4	5000	77	
5	6000	74	
6	9000	70	
7	11000	65	
8	14000	63	
9	18000	62	
10	19000	61	
11	19500	60.5	
12	22000	55	

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \bar{x})^2).(\sum_{i=1}^{n} (y_i - \bar{y})^2)}}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$r_{xy} = ??$$

Scatter Plot

$$Y_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \bar{x})^2).(\sum_{i=1}^{n} (y_i - \bar{y})^2)}} = \frac{(-1128833.3)}{\sqrt{616166666.7 \times 2736.2}} = -0.86937$$

Person ID	Average Steps per day	Average Resting Heart Rate	$x_i - \bar{x}$ -9833.3	$y_i - \overline{y}$ 27.3	$(x_i - \bar{x})(y_i - \bar{y})$ -268368	$(x_i - \bar{x})^2$ 96694444.44	$(y_i - \bar{y})^2$ 744.8351
1	1000	100	-8333.3	32.3	-269097	69444444.44	1042.752
2	2500	105	-7833.3	7.3	-57118.1	61361111.11	53.1684
3	3000	80	-5833.3	4.3	-25034.7	34027777.78	18.4184
4	5000	77	-4833.3	1.3	-6243.06	23361111.11	1.668403
5	6000	74	-1833.3	-2.7	4965.278	3361111.111	7.335069
6	9000	70	166.7	-7.7	-1284.72	27777.77778	59.4184
7	11000	65	3166.7	-9.7	-30743.1	10027777.78	94.25174
8	14000	63	7166.7	-10.7	-76743.1	51361111.11	114.6684
9	18000	62					
10	19000	61	8166.7	-11.7	-95618.1	66694444.44	137.0851
11	19500	60.5	8666.7	-12.2	-105806	75111111.11	149.0434
12	22000	55	11166.7	-17.7	-197743	124694444.4	313.5851
mean	10833.3	72.7	Sum??	Sum??	-1128833.3	616166666.7	2736.2

- 2. Based on the Pearson correlation value, can one conclude that doing more steps per day will cause one's average resting heart rate to decrease? How else might it be interpreted? $r_{xy} = -0.86937$
- There is a relationship between the two factors, but can't conclude it is causal.
- Data sample is very small, could be a biased sample.
- Could also be a 3rd factor controlling both (e.g. high blood pressure could cause high heart rate, high blood pressure could also cause a person to be less physically active (and thus take lower steps)

- THM: Correlation does not imply Causality
- Limitation of Pearson Correlation Coefficient

Correlation Coefficient

2017 Exam Q3(a)

Instance ID	Predicted class	Actual class
1	X	X
2	X	Y
3	Y	Y
4	X	X
5	X	Y
6	Y	X
7	X	X
8	Y	Y
9	Y	X
10	Y	Y

a) (1 mark) Would Pearson correlation be suitable to compute the correlation between the *Predicted class* and *Actual class*? Why or why not?

How do we measure non-linear correlation

How do we measure non-linear correlation

Variable discretization: Techniques

- Domain knowledge
- Equal-length bin
- Equal frequency bin

Micro Example (Warm Up)

Discretization techniques

- Manual thresholds (domain knowledge)
- Equal-width bin
- Equal-frequency bin
- Discretize X and Y
 - X: 2 bin equal width discretisation
 - Y: 2 bin equal frequency discretisation

X	x_d
1	0
2	1
2	1
3	1

У	y_d
1	0
2	0
3	1
6	1

X	У
1	1
2	2
2	3
3	6

- 3. Discretise the data as follows: Apply 3 bin equal frequency discretisation to Average Steps per day and 4 bin equal frequency discretisation to Average Resting Heart Rate. Show the values of the discretised features.
- Discretization techniques: Manual thresholds (domain knowledge), Equal-width bin and Equal-frequency bin

Column 1 = Sorted

1000	
2500	
3000	
5000	
6000	
9000	
11000	
14000	
18000	
19000	
19500	
22000	

Discrete

1
1
1
1
2
2
2
2
3
3
1 2 2 2 2 3 3 3
3

Person ID	Average Steps per day	Disc Average Steps per day	Average Resting Heart Rate	Disc Average Resting Heart Rate
1	1000	1	100	4
2	2500	1	105	4
3	3000	1	80	4
4	5000	1	77	3
5	6000	2	74	3
6	9000	2	70	3
7	11000	2	65	2
8	14000	2	63	2
9	18000	3	62	2
10	19000	3	61	1
11	19500	3	60.5	1
12	22000	3	55	1

- 3. Discretise the data as follows: Apply 3 bin equal frequency discretisation to Average Steps per day and 4 bin equal frequency discretisation to Average Resting Heart Rate. Show the values of the discretised features.
- Discretization techniques: Manual thresholds (domain knowledge), Equal-width bin and Equal-frequency bin

Column 2	Sorted	Discrete
100	55	1
105	60.5	1
80	61	1
77	62	2
74	63	2
70	65	2
65	70	3
63	74	3
62	77	3
61	80	4
60.5	100	4
55	105	4

Person ID	Average Steps per day	Disc Average Steps per day	Average Resting Heart Rate	Disc Average Resting Heart Rate
1	1000	1	100	4
2	2500	1	105	4
3	3000	1	80	4
4	5000	1	77	3
5	6000	2	74	3
6	9000	2	70	3
7	11000	2	65	2
8	14000	2	63	2
9	18000	3	62	2
10	19000	3	61	1
11	19500	3	60.5	1
12	22000	3	55	1

Entropy and Mutual Information

Entropy

- Quantify the amount of uncertainty in an entire probability distribution
- The entropy of a variable is the "amount of information" contained in the variable
- Describe it in the sense of randomness, surprise

Conditional entropy

 H(Y|X) Measures how much information needed to describe outcome Y, given that outcome X is known

Mutual Information

- a measure of correlation, the amount of information shared between two variables X and Y
- MI(X,Y)>=0, large \rightarrow highly correlated

 Given a feature X. Then H(X) is its entropy. Assuming X uses a number of categories(bins)

$$H(\mathbf{X}) = -\sum_{i=1}^{\#bins} p_i \log p_i$$

- p_i : proportion of points in the *i*-th bin
- May sometimes write p(i) instead of p_i

Micro Example (Warm Up)

Calculate entropies H(X),H(Y)

Entropy:
$$H(p) = -\sum_{i=1}^{k} p(i) \log p(i)$$

$$H(X) = -\sum_{\substack{i=1\\k}}^{k} p(i) \log p(i) = -\frac{1}{4} \log \frac{1}{4} - \frac{3}{4} \log \frac{3}{4} = 0.5 + 0.3113 = 0.8113$$

$$H(Y) = -\sum_{i=1}^{k} p(i) \log p(i) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = 0.5 + 0.5 = 1$$

Х	У
0	0
1	0
1	1
1	1

Micro Example (Warm Up)

Calculate conditional entropies H(X|Y),H(Y|X)

X	У
0	0
1	0
1	1
1	1

$$H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x)$$

$$H(X|Y) = \sum_{y \in Y} p(y) H(X|Y = y) = p(y = 0)H(X|Y = 0) + p(y = 1)H(X|Y = 1)$$
$$= \frac{1}{2}H(X|Y = 0) + \frac{1}{2}H(X|Y = 1) = \frac{1}{2} \times \left(-\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2}\right) + \frac{1}{2} \times \left(-1\log 1\right) = 0.5$$

$$H(Y|X) = \sum_{x \in X} p(x) H(Y|X = X) = p(x = 0)H(Y|X = 0) + p(x = 1)H(Y|X = 1)$$
$$= \frac{1}{4}H(Y|X = 0) + \frac{3}{4}H(Y|X = 1) = \frac{1}{4} \times (-1\log 1) + \frac{3}{4} \times (-\frac{2}{3}\log \frac{2}{3} - \frac{1}{3}\log \frac{1}{3}) = 0.6887$$

$$MI(X,Y) = H(Y) - H(Y|X)$$
$$= H(X) - H(X|Y)$$

- Where X and Y are features (columns) in a dataset.
- MI (mutual information) is a measure of correlation
 - the amount of information about X we gain by knowing Y, or
 - The amount of information about Y we gain by knowing X

- Pearson: -0.0864
- NMI: 0.43 (3-bin equal frequency discretization)

Pearson: 0.08

NMI: 0.009

Micro Example (Warm Up)

Calculate mutual information

Mutual Information:

$$MI(X,Y) = H(X) - H(X|Y)$$

$$MI(X,Y) = H(Y) - H(Y|X)$$

$$NMI(X,Y) = \frac{MI(X,Y)}{\min(H(X),H(Y))}$$

$$H(X) = 0.8113$$

 $H(Y) = 1$
 $H(X|Y) = 0.5$
 $H(Y|X) = 0.6887$

•
$$MI(X,Y) = H(X) - H(X|Y) = 0.8113 - 0.5 = 0.3113$$

•
$$MI(Y,X) = H(Y) - H(Y|X) = 1 - 0.6887 = 0.3113$$

•
$$NMI(X,Y) = \frac{MI(X,Y)}{\min(H(X),H(Y))} = \frac{0.3113}{0.8113} = 0.3837$$

- H(Average Steps per day)
- H(Average Resting Heart Rate)
- H(Average steps per day | Average Resting Heart Rate)
- H(Average Resting Heart Rate | Average Steps per day).

Enti			
Hnn	~/ \	r 1 (/	•
பாப	·	υv	
		LJ	

$$H(p) = -\sum_{i=1}^{R} p(i) \log p(i)$$

$$H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x)$$

Person ID	Disc Average Steps per day	Disc Average Resting Heart Rate
1	1	4
2	1	4
3	1	4
4	1	3
5	2	3
6	2	3
7	2	2
8	2	2
9	3	2
10	3	1
11	3	1
12	3	1

1. H(Average Steps per day)

• =
$$-\sum_{i=1}^{k} p(i) \log p(i)$$

• =
$$-\left(\frac{4}{12}\log\frac{4}{12}\right) - \left(\frac{4}{12}\log\frac{4}{12}\right) - \left(\frac{4}{12}\log\frac{4}{12}\right)$$

$$\bullet = -3\left(\frac{4}{12}\log\frac{4}{12}\right)$$

• =
$$-3\left(\frac{1}{3}*-1.585\right)$$
 = 1.585

Person ID	Disc Average Steps per day	Disc Average Resting Heart Rate
1	1	4
2	1	4
3	1	4
4	1	3
5	2	3
6	2	3
7	2	2
8	2	2
9	3	2
10	3	1
11	3	1
4.0	2	4

Entropy:

$$H(p) = -\sum_{i=1}^{\kappa} p(i) \log p(i)$$

$$H(Y|X) = \sum_{x \in Y} p(x) H(Y|X = x)$$

2. H(Average Resting Heart Rate)

• =
$$-\sum_{i=1}^{k} p(i) \log p(i)$$

• =
$$-\left(\frac{3}{12}\log\frac{3}{12}\right) - \left(\frac{3}{12}\log\frac{3}{12}\right) - \left(\frac{3}{12}\log\frac{3}{12}\right) - \left(\frac{3}{12}\log\frac{3}{12}\right)$$

$$\bullet = -4\left(\frac{3}{12}\log\frac{3}{12}\right)$$

• =
$$-4\left(\frac{1}{4}*-2\right)=2$$

Person ID	Disc Average Steps per day	Disc Average Resting Heart Rate
1	1	4
2	1	4
3	1	4
4	1	3
5	2	3
6	2	3
7	2	2
8	2	2
9	3	2
10	3	1
11	3	1
4.2	2	4

Entropy:

$$H(p) = -\sum_{i=1}^{\kappa} p(i) \log p(i)$$

$$H(Y|X) = \sum_{x \in Y} p(x) H(Y|X = x)$$

3. H(Average Steps per day | Average Resting Heart Rate)→ H(S|R)

• =
$$\sum_{r \in R} p(r) H(S|R = r)$$

•
$$= p(R = 4)H(S|R = 4) + p(R = 3)H(S|R = 3) + p(R = 2)H(S|R = 2) + p(R = 1)H(S|R = 1)$$

•
$$=\frac{3}{12}H(S|R=4) + \frac{3}{12}H(S|R=3) + \frac{3}{12}H(S|R=2) + \frac{3}{12}H(S|R=1)$$

•
$$H(S|R=4) = -1 \log 1 = 0$$

•
$$H(S|R=3) = -(\frac{1}{3}\log\frac{1}{3}) - (\frac{2}{3}\log\frac{2}{3}) = .918$$

•
$$H(S|R=2) = -(\frac{2}{3}\log\frac{2}{3}) - (\frac{1}{3}\log\frac{1}{3}) = .918$$

•
$$H(S|R=1) = -1 \log 1 = 0$$

•
$$= .25 (0 + 0 + .918 + .918) = 0.459$$

T-0					
ID	S	R=4	ID	S	R=2
1	1	4	7	2	2
2	1	4	8	2	2
3	1	4	9	3	2

ID	S	R=3	ID	S	R=1
4	1	3	10	3	1
5	2	3	11	3	1
6	2	3	12	3	1

Person ID	Disc Average Steps per day (S)	Disc Average Resting Heart Rate (R)
1	1	4
2	1	4
3	1	4
4	1	3
5	2	3
6	2	3
7	2	2
8	2	2
9	3	2

Entropy:

$$H(p) = -\sum_{i=1}^{\kappa} p(i) \log p(i)$$

Conditional Entropy:
$$H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x)$$

$$2 \\ 0 \\ 3 \\ 1 \\ 3 \\ 1$$

$$2 \\ 3 \\ 1$$

4. H(Average Resting Heart Rate | Average Steps per day) → H(R|S)

• =
$$\sum_{s \in S} p(s) H(R|S = s)$$

•
$$= p(S = 1)H(R|S = 1) + p(S = 2)H(R|S = 2) + p(S = 3)H(R|S = 3)$$

•
$$=\frac{4}{12}H(R|S=1) + \frac{4}{12}H(R|S=2) + \frac{4}{12}H(R|S=3)$$

•
$$H(R|S=1) = -(.75 \log .75) - (.25 \log .25) = 0.311 + 0.5$$

•
$$H(R|S=2) = -(.5\log.5) - (.5\log.5) = .5 + .5 = 1$$

•
$$H(R|S=3) = -(.25 \log .25) - (.75 \log .75) = 0.5 + 0.311$$

•
$$=\frac{1}{3}(1+.811+.811)=0.874$$

ID	S=1	R
1	1	4
2	1	4
3	1	4
4	1	3

ID	S=2	R
5	2	3
6	2	3
7	2	2
8	2	2
ID	S=3	R
ID 9	S=3	R 2
9	3	2

Person ID	Disc Average Steps per day (S)	Disc Average Resting Heart Rate (R)
1	1	4
2	1	4
3	1	4
4	1	3
5	2	3
6	2	3
7	2	2
8	2	2
	2	1

Entropy:

$$H(p) = -\sum_{i=1}^{\kappa} p(i) \log p(i)$$

Conditional Entropy:
$$H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x)$$

$$2$$

$$3$$

$$0$$

$$3$$

$$1$$

$$1$$

$$2$$

$$3$$

$$1$$

5. Using the above information, compute the mutual information between Average Steps per day and Average Resting Heart Rate.

- H(Average Steps per day) = H(S) = 1.585
- H(Average Resting Heart Rate) = H(R) = 2
- H(Average steps per day | Average Resting Heart Rate) = H(S|R) = 0.459
- H(Average Resting Heart Rate | Average Steps per day) = H(R|S) = 0.874
- MI(R,S) = H(R) H(R|S) = 2 0.874 = 1.126
- MI(R,S) = H(S) H(S|R) = 1.585 0.459 = 1.126

Mutual Information:

$$MI(R,S) = H(R) - H(R|S)$$

$$MI(R,S) = H(S) - H(S|R)$$

$$NMI(R,S) = \frac{MI(R,S)}{\min(H(S),H(R))}$$

Advantage

- Can detect both linear and non linear dependencies (unlike Pearson)
- Applicable and very effective for use with discrete features (unlike Pearson correlation)

Disadvantage

- If feature is continuous, it first must be discretised to compute mutual information. This involves making choices about what bins to use.
 - This may not be obvious. Different bin choices will lead to different estimations of mutual information