

Towards the development of a continuous model for the assessment of bacteremia, bloodstream infection and sepsis

Óscar Escudero-Arnanz
oscar.escudero@urjc.es
Department of Signal Theory and Communications, Telematics and
Computing Systems
Rey Juan Carlos University
https://github.com/oscarescuderoarnanz

Joint work with Bernard Hernandez, Cristina Soguero-Ruiz, Inmaculada Mora-Jiménez, and A. G. Marques

June 21st, 2024

Academic journey

IMPERIAL

Rey Juan Carlos University (URJC), Madrid, Spain

- B.Sc. in Telecommunications
- M.Sc. in Telecommunications
- Ph.D. in Artificial Intelligence and Data Science

Università Campus Bio-Medico (UCBM), Roma, Italy

Visiting researcher (PhD)

Imperial College London (ICL), London, United Kingdom

Visiting researcher (PhD)

Rey Juan Carlos University (URJC), Madrid, Spain. Ph.D. in Artificial Intelligence and Data Science

- Electronic Health Record
- Irregular Multivariate Time Series
- Distance measures and kernel methods
- Multimodal Architectures
- Interpretable Recurrent Neural Networks
- Interpretable Spatio-Temporal Graph Neural Networks

Clinical Task

- [1] Escudero-Arnanz Ó, Mora-Jiménez I, Martínez-Agüero S, Álvarez-Rodríguez J, Soguero-Ruíz C. Temporal Feature Selection for Characterizing Antimicrobial Multidrug Resistance in the Intensive Care Unit. InAAI4H@ ECAI 2020 Sep (pp. 54-59)
- [2] Escudero-Arnanz, Óscar, Rodríguez-Álvarez, J., Mikalsen, K. Ø., Jenssen, R., & Soguero-Ruiz, C. On the Use of Time Series Kernel and Dimensionality Reduction to Identify the Acquisition of Antimicrobial Multidrug Resistance in the Intensive Care Unit. KDD 2021 Health Day and 2021 KDD Workshop on Applied Data Science for Healthcare.
- [3] Escudero-Arnanz Ó, Mora-Jiménez I, Martínez-Agüero S, Álvarez-Rodríguez J, Soguero-Ruíz C.
- Feature Selection and Tree-based Models to Predict Multidrug-Resistance. CASEIB 2020.
- [4] Oscar Escudero-Arnanz, Antonio G. Marques, Cristina Soguero-Ruiz, Inmaculada Mora-Jiménez, Gregorio Robles. dtwParallel: A Python Package to Efficiently Compute Dynamic Time Warping Between Time Series. SoftwareX, 2023.
- [5] Oscar Escudero-Arnanz, Antonio G. Marques, Rosa Sicilia, Cristina Soguero-Ruiz. Low-Rank Tensor Completion for Heart Failure Detection in Multivariate Time Series with Missing Data. IEEE 37th International Symposium on Computer Based Medical Systems 2024.
- [6] Oscar Escudero-Arnanz, Antonio G. Marques, Inmaculada Mora-Jiménez, Joaquín Álvarez-Rodríguez, Cristina Soguero-Ruiz. Leveraging Multivariate Time Series Analysis and Machine Learning for the Characterization of Antimicrobial Resistance in the Intensive Care Unit. Engineering Applications of Artificial Intelligence. (submitted, 2024, under review)
- [7] Oscar Escudero-Arnanz, Cristina Soguero-Ruiz, Inmaculada Mora-Jiménez, Joaquín Álvarez-Rodríguez, Antonio G. Marques. Explainable AI Techniques for Irregular Temporal Prediction of Antimicrobial Multidrug Resistance Acquisition in Intensive Care Unit Patients. Engineering Applications of Artificial Intelligence. (to submit on 30th in June 2024)
- [8] Oscar Escudero-Arnanz, Cristina Soguero-Ruiz, Inmaculada Mora-Jiménez, Joaquín Álvarez-Rodríguez, Antonio G. Marques. Explainable Spatio-Temporal Graph Architecture for Irregular Multivariate Time Series in Inference Tasks. IEEE TSIPN. (to submit on 30th in July 2024)

Problem definition

Bacteremia

The presence of bacteria in the bloodstream, which can originate from various sources such as wounds, surgical procedures, or other infections

Bloodstream Infection (BSI)

Bacteremia with systemic signs of infection

Sepsis

A severe systemic response to infection, often marked by widespread inflammation, organ dysfunction, and a high risk of mortality

Objective

Data Sources

We will use data from four public datasets...

• Focusing on patients in the Intensive Care Unit (ICU).

Inclusion Criteria for Patients

Exclude patients with more than 85% missing values.

Labels definition. Bacteremia

Labels definition. Suspected Infection

Labels definition. Sepsis

Pre-processing

IMPERIAL

Pre-processing

Each patient has been segmented into windows

• Window Size: Fixed at 6 hours

• Look Back Period: 6 hours

• Look Ahead Period: 1 hour

Prediction Goal

The aim is to predict within a 6-hour look back and 1-hour look ahead window whether the patient will develop:

- Bacteriemia
- BSI
- Sepsis

IMPERIAL

Post Preprocessing

$$\begin{split} &D_{vs}^t = \{ \left(\boldsymbol{X}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{X}_p \in \mathbb{R}^{WxFxT} \\ &D_{bm}^t = \{ \left(\boldsymbol{X}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{X}_p \in \mathbb{R}^{WxFxT} \\ &D^s = \{ \left(\boldsymbol{x}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{x}_p \in \mathbb{R}^{WxF} \\ &D_t = \{ \left(\boldsymbol{Y}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{Y}_p \in \mathbb{R}^{WxLxT} \text{, beeing } L = \{ Bac, BSI, Sepsis \} \end{split}$$

Approach 1

IMPERIAL

Approach 1

Results

Bacteremia

Specificity: 74.6 +- 2.58

Sensitivity: 61.44 +- 6.88

AUC: 76.97 +- 2.5

BSI

Specificity: 69.91 +- 2.65

Sensitivity: 48.39 +- 7.2

AUC: 64.99 +- 1.37

Sepsis

Specificity: 70.15 +- 2.65

Sensitivity: 55.58 +- 11.45

AUC: 67.17 +- 4.22

ÜRJC

Approaches

IMPERIAL

Results						
Bacteremia	BSI	Sepsis				
Running	Running	Running				

IMPERIAL

IMPERIAL

Results

Bacteremia

Specificity: 71.29 +- 3.27

Sensitivity: 64.26 +- 7.86

AUC: 75.67 +- 2.72

BSI

Specificity: 69.67 +- 3.1

Sensitivity: 49.49 +- 7.98

AUC: 65.3 +- 1.92

Sepsis

Specificity: 70.02 +- 3.39

Sensitivity: 56.93 +- 10.25

AUC: 68.34 +- 3.2

IMPERIAL

Post Preprocessing

$$\begin{split} &D_{vs}^t = \{ \left(\boldsymbol{X}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{X}_p \in \mathbb{R}^{WxFxT} \\ &D_{bm}^t = \{ \left(\boldsymbol{X}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{X}_p \in \mathbb{R}^{WxFxT} \\ &D^s = \{ \left(\boldsymbol{x}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{x}_p \in \mathbb{R}^{WxF} \\ &D_t = \{ \left(\boldsymbol{Y}_p \right) \}_{p=1}^P \text{, with } \boldsymbol{Y}_p \in \mathbb{R}^{WxLxT} \text{, beeing } L = \{Bac, BSI, Sepsis\} \end{split}$$

IMPERIAL

Results					
Bacteremia	BSI	Sepsis			
Running	Running	Running			

IMPERIAL

Results					
Bacteremia	BSI	Sepsis			
Running	Running	Running			

IMPERIAL

Results						
Bacteremia	BSI	Sepsis				
Running	Running	Running				

Future work

- Implement multitask learning as a third approach
- Predict outcomes at T time steps look forward
- Evaluate different window sizes and sliding intervals (look backward)
- Assess interpretable architectures to identify the most relevant variables for the prediction task

THANK YOU FOR YOUR ATTENTION!

For any further doubt or suggestion

Óscar Escudero-Arnanz, <u>oscar.escudero@urjc.es</u>

PhD Student

Department of Signal Theory and Communications, Telematics and Computing Systems Rey Juan Carlos University

ÜRJC Features considered

Biochemical markers

- 1. Albumin (alb) [g/dL]
- 2. Alkaline phosphatase (alp) [IU/L]
- 3. Alanine aminotransferase (alt) [IU/L]
- 4. Aspartate aminotransferase (ast) [IU/L]
- 5. Band form neutrophils (bnd) [%]
- 6. Base excess (be) [mEq/L]
- 7. Basophils (basos) [%]
- 8. Bicarbonate (bicar) [mEq/L]
- 9. Bilirubin direct (bildir) [mg/dL]
- 10. Blood urea nitrogen (bun) [mg/dL]
- 11. Calcium (ca) [mg/dL]
- 12. Carboxyhemoglobin (hbco) [-]
- 13. Chloride (cl) [mEq/L]
- 14. CO2 partial pressure (pcO2) [mmHg]
- 15. Creatine kinase (ck) [IU/L]
- 16. Creatine kinase MB (ckmb) [ng/mL]
- 17. Creatinine (crea) [mg/dL]
- 18. C-reactive protein (crp) [mg/L]
- 19. Endtidal CO2 (etcO2) [mmHg]
- 20. Eosinophils (eos) [%]

- 20. Eosinophils (eos) [%]
- 21. Erythrocyte distribution width (rdw) [%]
- 22. Erythrocyte sedimentation rate (esr) [mm/hr]
- 23. Fibrinogen (fgn) [mg/dL]
- 24. Glucose (glu) [mg/dL]
- 25. Hematocrit (hct) [%]
- 26. Hemoglobin (hgb) [g/dL]
- 27. Lactate (lact) [mmol/L]
- 28. Lymphocytes (lymph) [%]
- 29. Magnesium (mg) [mg/dL]
- 30. Mean cell hemoglobin (mch) [pg]
- 31. Mean corpuscular hemoglobin concentration (mchc) [%]
- 32. Mean corpuscular volume (mcv) [fL]
- 33. Methemoglobin (methb) [%]
- 34. Neutrophils (neut) [%]
- 35. O2 partial pressure (po2) [mmHg]
- 36. Partial thromboplastin time (ptt) [sec]
- 37. Phosphate (phos) [mg/dL]
- 38. pH of blood (ph) [-]
- 39. Platelet count (plt) [K/ul]
- 40. Potassium (k) [mEq/L]

- 40. Potassium (k) [mEq/L]
- 41. Prothrombin time (inrpt) [-]
- 42. Prothrombine time (pt) [K/ul]
- 43. Red blood cell count (rbc) [m/uL]
- 44. Sodium (na) [mEq/L]
- 45. Total bilirubin (bili) [mg/dL]
- 46. Total CO₂ (tco₂) [mEq/L]
- 47. Troponin I (tri) [ng/mL]
- 48. Troponin T (tnt) [ng/mL]
- 49. White blood cell count (wbc) [K/ul]
- 50. Respiratory rate (resp) [insp/min]
- 51. Endtidal CO2 (etco2) [mmHg]
- 52. O2 partial pressure (po2) [mmHg]
- 53. CO2 partial pressure (pco2) [mmHg]
- 54. Urine output (urine) [mL]
- 55. Duration of ventilation (vent_dur) [sec]

ÜRJC Features considered

Vital signs

1.mean arterial pressure (map) [mmHg]

2.heart rate (hr) [bpm]

3.temperature (temp) [C]

4.systolic blood pressure (sbp) [mmHg]

5.diastolic blood pressure (dbp) [mmHg]

6.oxygen saturation (o2sat) [%]

7.calcium ionized (cai) [mmol/L]

Statics

1.age [years]

2.sex [-]

3.weight [kg]

4.height [cm]

Features considered

Biochemical markers				Vital signs	Statics	
Albumin (alb) [g/dL]	alkaline phosphatase (alp) [IU/L]	alanine aminotransferase (alt) [IU/L]	aspartate aminotransferase (ast) [IU/L]	band form neutrophils (bnd) [%]	mean arterial pressure (map) [mmHg]	age [years]
base excess (be) [mEq/L]	Basophils (basos) [%]	Bicarbonate (bicar) [mEq/L]	bilirubin direct (bildir) [mg/dL]	blood urea nitrogen (bun) [mg/dL]	heart rate (hr) [bpm]	sex []
Calcium (ca) [mg/dL]	Carboxyhemoglobin (hbco) [-]	Chloride (cl) [mEq/L]	CO2 partial pressure (pcO2) [mmHg]	creatine kinase (ck) [IU/L]	temperature (temp) [C]	weight [kg]
creatine kinase MB (ckmb) [ng/mL]	Creatinine (crea) [mg/dL]	C-reactive protein (crp) [mg/L]	endtidal CO2 (etcO2) [mmHg]	Eosinophils (eos) [%]	systolic blood pressure (sbp) [mmHg]	height [cm]
erythrocyte distribution width (rdw) [%]	erythrocyte sedimentation rate (esr) [mm/hr]	Fibrinogen (fgn) [mg/dL]	Glucose (glu) [mg/dL]	Hematocrit (hct) [%]	diastolic blood pressure (dbp) [mmHg]	
Hemoglobin (hgb) [g/dL]	Lactate (lact) [mmol/L]	Lymphocytes (lymph) [%]	Magnesium (mg) [mg/dL]	mean cell hemoglobin (mch) [pg]	oxygen saturation (o2sat) [%]	
mean corpuscular hemoglobin concentration (mchc) [%]	mean corpuscular volume (mcv) [fL]	Methemoglobin (methb) [%]	Neutrophils (neut) [%]	O2 partial pressure (po2) [mmHg]	calcium ionized (cai) []	
partial thromboplastin time (ptt) [sec]	Phosphate (phos) [mg/dL]	pH of blood (ph) [-]	platelet count (plt) [K/uL]	Potassium (k) [mEq/L]		
prothrombin time (inrpt) [-]	prothrombine time (pt) [K/ul]	red blood cell count (rbc) [m/uL]	respiratory rate (resp) [insp/min]	Sodium (na) [mEq/L]		
total bilirubin (bili) [mg/dL]	totcal CO2 (tco2) [mEq/L]	troponin I (tri) [ng/mL]	troponin t (tnt) [ng/mL]	white blood cell count (wbc) [K/uL]		