MODERN ANALYSIS Problem Pool

I. Real Numbers.

- 1. Prove that $a \cdot 0 = 0$ for all real numbers a. Use only the axioms of the real numbers.
- 2. Let A be a non-empty set of real numbers that is bounded above. Let $\alpha = \sup A$ and let $b < \alpha$. Prove there exists $x \in A$ such that $b < x \le \alpha$.
- 3. Let A and B be two bounded, non-empty, sets of real numbers. Prove: If $A \subset B$, then $\sup(A) \leq \sup(B)$.
- 4. Let A, B be non-empty subsets of \mathbb{R} ; assume A, B are bounded above. Prove that A+B is non-empty and bounded above and that $\sup(A+B) = \sup A + \sup B$.
- 5. Let A, B be two sets of real numbers. Assume that if $a \in A$ and $b \in B$, then a < b. Assume also that for every real number $\epsilon > 0$ there exists $a \in A$, $b \in B$ such that $b a < \epsilon$. Prove $\sup A$, $\inf B$ exist and $\sup A = \inf B$.

II. Sequences

1. Consider the sequence

$$1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \dots;$$

that is, the sequence defined by

$$a_n = \frac{1}{k}$$
 if $2^{k-1} \le n < 2^k, k = 1, 2, 3, \dots$

Prove that it converges to 0 using only the definition of limit.

- 2. Prove only using the definition of limit that the sequence $\left\{\frac{3n^2}{(2n+1)^2}\right\}$ converges to 3/4.
- 3. Let $\{a_n\}$ be a sequence of real numbers; assume that $\lim_{n\to\infty} a_n = a > 0$. Prove there exists $N \in \mathbb{N}$ such that $a_n > a/2$ if $n \geq N$.
- 4. Let $\{a_n\}$ be a sequence of real numbers. Prove: $\{a_n\}$ converges to L if both subsequences $\{a_{2n}\}$ and $\{a_{2n+1}\}$ converge to L.

III. Continuous functions, functional limits.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Prove using only the definition that $\lim_{x\to 2} f(x) = 4$.
- 2. Let

$$f(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ x, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Prove: f is continuous at 0, 1; discontinuous everywhere else.

- 3. Prove: If f is increasing and bounded in the interval (a, b), then $\lim_{x\to b^-} f(x)$, $\lim_{x\to a^+} f(x)$ exist.
- 4. Let $f:[0,1] \to [0,1]$ be continuous. Prove that f has a fixed point; that is, there exists $x \in [0,1]$ such that f(x) = x.

5. Show that $f: x \mapsto 1/x : [1, \infty) \to \mathbb{R}$ is uniformly continuous.

IV. Differentiability.

- 1. Let $f: \mathbb{R}^{\to}\mathbb{R}$ satisfy $|f(x) f(y)| \leq C|x y|^{\alpha}$ for all $x, y \in \mathbb{R}$, where $\alpha > 1$. Prove that f is constant.
- 2. Let $f(x) = x^5 + 4x^3 + 2x + 3$ has exactly one real zero.
- 3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous. Assume also that f is differentiable at all $x \neq 0$ and that $\lim_{x \to 0} f'(x)$ exists. Prove that f is differentiable at 0 and $f'(0) = \lim_{x \to 0} f'(x)$.
- 4. Let $g:(-1,1)\to\mathbb{R}$ be bounded (there exists M such that $|g(x)|\leq M$ for all $x\in(-1,1)$). Let $f:(-1,1)\to\mathbb{R}$ be defined by $f(x)=x^2g(x)$. Prove that f is differentiable at 0.
- 5. Prove using only the definition of differentiability (do not use the chain rule!): If $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}$, then defining g by g(x) = f(2x+1), g is differentiable at (a-1)/2 and g'((a-1)/2) = 2f'(a). An easier version is:

Prove using only the definition of differentiability (do not use the chain rule!): If $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}$,, then defining g by g(x) = f(x+1), g is differentiable at g(a-1) = f'(a).

- 6. Let $f:[0,2]\to\mathbb{R}$ be continuous. Assume also that f is twice differentiable in (0,2). Assume $f(0)=0,\ f(1)=1,$ and f(2)=2. Prove there exists $c\in(0,2)$ such that f''(c)=0.
- 7. Prove that if f is differentiable at a, then f is continuous at a. Give an example of a function continuous at x = 2 and not differentiable at x = 2.
- 8. Show that the equation $xe^x = 1$ has exactly one real solution.

IV. Integration.

1. Let $f:[0,1] \to [0,1]$ be defined by

$$f(x) = \begin{cases} x, & x \in \mathbb{Q}, \\ 0, & x \in [0, 1] \backslash \mathbb{Q}. \end{cases}$$

Compute

$$\int_0^1 f(x), dx, \quad \int_0^1 f(x), dx,$$

and prove f is not Riemann integrable over [0,1].

2. Let $f:[a,b]\to\mathbb{R}$ be integrable. Prove: $\int_a^b f>0$ if and only if there exists a positive lower sum. In symbols:

$$\int_a^b f > 0 \quad \Leftrightarrow \quad \exists \text{ a partition } P \text{ of } [a, b] \text{ such that } \quad L(f, P) > 0.$$

3. (a) State at least one version of the Fundamental Theorem of Calculus.

2

(b) Prove: There exists a differentiable function $\Phi: \mathbb{R} \to \mathbb{R}$ such that $\Phi'(x) = e^{-x^2}$ for all $x \in \mathbb{R}$ and such that $\Phi(0) = 1$. To prove this you may quote any theorem proved in the course, there is no need to reproduce any proof.