# TSM2450 Oblig 2

- Student: Jonas (267431@usn.no)
- Emne: Termo- og fluidmekanikk
- Tid: Vår 2025 USN Porsgrunn
- Repo: https://github.com/Arxcis/TSM2450-termo-og-fluid/oblig2

## Oppgave 1

### 1.1 Mål

Finne hvilket trykk, volumstrøm og effekt pumpen må ha, for tre dyser med ulike dysestrømningsfaktorer (K\_dysestrømning) og konstant overtrykk.

### 1.2 Forutsetninger:

- K\_dysestrømning: 17, 56, 107
- Ønsket overtrykk ved dyse: 7.0 bar
- Diameter på alle rør: 50mm
- Ruheten på alle rør: 0.50mm
- Lengde på alle rør: 50 meter
- Rørstrekket inneholder 4 albuer og 1 seteventil
  - K-faktor albue: 0.9 (fra tabell 10.2)
  - K-faktor seteventil: 10 (fra tabell 10.2)
- Trykket på toppen av tanken: 1atm eller 0 overtrykk
- Høydeforskjell mellom toppen av tank og dyse: 13 meter



Figure 1: image

### 1.3 Metode

1. Finner først volumstrømmen for en dyse med en gitt dysefaktor og gitt overtrykk.

$$Q[dm3/min] = K_{dyestr \otimes mning = 17,56,107} \cdot \sqrt{7.0[bar]}$$

$$Q[m^3/s] = \frac{Q[dm^3/min]}{1000 \cdot 60}$$

2. Finner deretter gjennomsnittshastigheten på vannet i røret.

$$v_{snitt}[m/s] = \frac{Q[m^3/s]}{A_{r \varnothing rtverrsnitt}[m^2]} = \frac{Q[m^3/s]}{\frac{\pi}{4} \cdot (D_{r \varnothing r}[m])^2}$$

3. hdyn regnes ut.

$$h_{dyn} = \frac{v_{snitt}^2}{2 \cdot g}$$

5. hf regnes ut for røret.

$$hf_{r \otimes r} = f_{r \otimes r} \cdot \frac{L_{r \otimes r}}{D_{r \otimes r}} \cdot h_{dyn}$$

7. h0 regnes ut for albue.

$$h0_{albue} = 0.9 \cdot h_{dun}$$

8. h0 regnes ut for seteventil.

$$h0_{sete} = 10 \cdot h_{dun}$$

9. Endelig brukes bernouli for å finne pumpehøyden (hp).

$$hp = \Delta Z + \Delta h_{statisk} + \Delta h_{dynamisk} + h f_{r\varnothing r} + h 0_{sete} + 4 \cdot h 0_{albue}$$

hp\_pumpemeter = Z\_forskjellmeter\

- + hstat\_statiskmeter\
- + hdyn\_dynamiskmeter\
- + hf\_rørtapmeter\
- + h0\_setetapmeter\
- + h0\_albuetapmeter \* antall\_albuer
- 10. Til slutt regnes effekten til pumpa som en funksjon av pumpehøyde (hp) og volumstrømmen (Q).

$$P = \rho g Q h_{pumpe}$$

### 1.4 Resultat

oppg1.py oppg2.py README.md

(.venv) jonas@pop-os:~/git/TSM2450-termo-og-fluid/oblig2\$ python oppg1.py

dysefaktor: [ 17 56 107]

volumstrøm: [0.00239338 0.00788408 0.01506423 0.005 ] [m3/sekund] volumstrøm: [143.60297516 473.04509465 903.85402013 300. ] [l/min]

pumpetrykk: [8.27656552 8.28711457 8.31655435 8.28027217] [Bar]

effekt: [ 1980.89905577 6533.63149159 12528.25180008 4140.13608357] [Watt]



Figure 2: Plot av volumstrøm mot effekt

### 1.5 Diskusjon oppg 1a)

Resultatet viser en tydelig lineær kobling mellom ønsket volumstrøm og påkrevd pumpeeffekt. Ved den minste volumstrømmen holder det med en pumpe som kan levere 2000 watt for å opprettholde 7 bar ved dyse. Under den høyeste volumstrømmen kreves en pumpe godt over 12 000 watt (!). Med andre ord, vil en 6-dobling i dysefaktor føre til en 6-dobling i volumstrømmen, som igjen vil føre til en 6-dobling i effektbehovet.

|            | min  | max       | max/min |
|------------|------|-----------|---------|
| dysefaktor | 17   | 107       | 6.3x    |
| Q [l/min]  | 144  | 904       | 6.3x    |
| P [W]      | 1981 | $12\ 528$ | 6.3x    |

### 1.6 Diskusjon oppg 1b)

I oppg1b) foreslår RMG-engineering en pumpe med volumstrøm på  $0.005~[\mathrm{m}3/\mathrm{s}]$  og en pumpeeffekt på  $3800~[\mathrm{Watt}]$ . Om en plotter ønsket volumstrøm på den lineære modellen fra resultatet til oppg1a), ser man at pumpen ikke vil fungere da den er for svak. Q = 0.005 vil nemlig kreve over  $4000~[\mathrm{Watt}]$  fra pumpa for å kunne opprettholde ønsket trykk på  $7.0\mathrm{bar}$  ved dyse.



Figure 3: Plot av volumstrøm mot effekt

# Oppg2

### 2.1 Mål

Beregn kreftene på et kompressorbend som er en del av utløpet til en fontene.



Figure 4: kompressorbend

### 2.2 Forutsetninger

- Ovetrykk inn (p\_inn): 0.2 bar overtrykk
- Volumstrøm (Q): 0.4 liter per minutt.
- Rørdiameter inn (D\_inn): 10mm
- Rørdiameter ut (D\_ut): 3mm

### 2.3 Metode

```
#
# Forutsetninger
#
rho_vann = 1000
Q_volumstrøm_dm3_min = 4.0
Q_volumstrøm = Q_volumstrøm_dm3_min / (1000*60)
p_inn = 0.2e5
D_inn = 10e-3
D_ut = 3e-3
#
# Beregninger
#
from math import pi
A_inn = (pi/4)*D_inn**2
```

```
A_ut = (pi/4)*D_ut**2
v_inn = Q_volumstrøm/A_inn
v_ut = Q_volumstrøm/A_ut
# Bernouli / energiloven
p_ut + p_dynamisk_ut = p_inn + p_dynamisk_inn
p_ut = p_inn + p_dynamisk_inn - p_dynamisk_ut
p_ut = p_inn + (rho/2)(v_inn^2 - v_ut^2)
p_ut = p_inn + (rho_vann/2) * (v_inn**2 - v_ut**2)
# Newtons 2. og 3. lov
n n n
sum(F) = m * a
        = kg * m/(s*s)
        = kg/s * m/s
        = kg/m3 * m3/s * m/s
        = rho * Q * v
sum(F) = F - Fmotkraft = m * a
    -p_inn*A_inn + Rx = rho * Q * (-v_inn)
    -p\_ut*A\_ut + Ry = rho * Q * (v\_ut)
Rx = rho_vann*Q_volumstrøm*(-v_inn) + p_inn*A_inn
Ry = rho_vann*Q_volumstrøm*(+v_ut) + p_ut*A_ut
from math import atan
alpha = (atan(Ry/Rx)/pi) * 180
2.4 Resultater
$ python oppg2.py
        Q_liter
                         4 liter/min,
        v_inn
                     0.849 \text{ m/s},
        v_ut
                      9.43 \text{ m/s},
                     2e+04 Pa,
        p_inn
                 -2.41e+04 Pa,
        p_ut
        Rx
                      1.51 N,
                     0.458 N,
        Ry
                     16.8°,
        alpha
```



Figure 5: kompressorbend-resultat

### 2.5 Diskusjon

Trykket blir lavere ved utgangen enn ved inngangen til bendet. Det blir rett og slett et undertrykk på 0.24 Bar, eller -0.24 bar overtrykk. Dette undertrykket sørger for å redusere kraftbehovet som trengs i y-retning, fordi undertrykket skaper en sugekraft på resten av bendet som peker oppover.

Utløpshastigheten  $(9.43 \, \text{m/s})$  er over 10 ganger høyere enn inn-hastigheten  $(0.849 \, \text{m/s})$  og fontenespruten vil stå 4.5 meter opp i lufta.

$$h = \frac{v^2}{2g} = \frac{9.43^2}{2(9.81)} \approx 4.5m$$

Det er kanskje i høyeste laget for en fontene i et nøkternt nabolag.