WHAT IS CLAIMED IS:

- 1. A polymerizable composition comprising:
- (A) a compound which causes at least one of decarboxylation and dehydration by heat;
 - (B) a radical initiator;
- (C) a compound having at least one ethylenically unsaturated bond; and
 - (D) an infrared ray absorber.
- 2. The polymerizable composition according to claim 1, wherein the compound(A) is one which causes at least one of decarboxylation and dehydration at a temperature of 100°C to 300°C.
- 3. The polymerizable composition according to claim 1, wherein the compound (A) is one having a structure capable of forming a 4 to 6-membered lactone ring, a 4 to 6-membered lactam ring or a 4 to 6-membered cyclic acid anhydride.
- 4. The polymerizable composition according to claim 1, wherein the compound (A) is one having at least one group represented by the following formula (I):

wherein:

5

10

X represents a divalent connection group selected from -O-, -S-, $-SO_2-$, -NH-, $-N(R^3)-$, and -CO-,

R³ represents a hydrogen atom or a monovalent substituent,

 R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , or either one of R^1 and R^2 and R^3 may be taken together to form a ring structure.

5. The polymerizable composition according to claim 1, wherein the compound (A) is a monocarboxylic acid compound represented by the following formula (I-2):

$$R^{1}$$
 $A-X^{1}-C-CO_{2}H$
 R^{2} (1-2)

wherein

5

15

25

A represents an aromatic group or a heterocyclic group, R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either

one of R^1 and R^2 and X^1 , either one of R^1 and R^2 and A, or A and X^1 may be taken together to form a ring structure,

 X^1 represents a divalent connection group selected from -O-, -S-, -SO₂-, -NH-, -N(\mathbb{R}^3)-, -CH₂-, -CH(\mathbb{R}^4)-, and -C(\mathbb{R}^4)(\mathbb{R}^5)-, and

10 R³, R⁴, and R⁵ each independently represents a hydrogen atom or a monovalent substituent.

6. The polymerizable composition according to claim 1, wherein the compound (A) is a compound represented by the following formula:

20 wherein

A represents an aromatic group or a heterocyclic group,

 R^1 , R^2 , R^6 , R^7 and R^8 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either one of R^1 and R^2 and R^3 , or R^8 and R^3 may be taken together to form a ring structure,

and

Z represents a monovalent substituent.

- 7. A polymerizable composition comprising:
- 5 (A-1) a monocarboxylic acid compound represented by the following formula (I-2);
 - (B) a radical initiator;
 - (C) a .compound having at least one ethylenically unsaturated bond; and
- 10 (D) an infrared ray absorber:

$$R^{1}$$
 $A-X^{1}-C-CO_{2}H$
 R^{2}
 $(1-2)$

wherein

A represents an aromatic group or a heterocyclic group,

 R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either one of R^1 and R^2 and X^1 , either one of R^1 and R^2 and R^3 , or A and R^4 may be taken together to form a ring structure,

 X^1 represents a divalent connection group selected from 20 -O-, -S-, -SO₂-, -NH-, -N(R³)-, -CH₂-, -CH(R⁴)-, and -C(R⁴)(R⁵)-, and

- ${\bf R}^3$, ${\bf R}^4$, and ${\bf R}^5$ each independently represents a hydrogen atom or a monovalent substituent.
- 8. The polymerizable composition according to claim 7,

 wherein X¹ in the formula (I-2) is a divalent connection group

 selected from -NH-, -N(R³)-, -CH₂-, -CH(R⁴)-, and -C(R⁴)(R⁵)-.
 - 9. The polymerizable composition according to claim 7, wherein X^1 in the formula (I-2) is a divalent connection group selected from -NH- and -N(R^3)-.

- 10. The polymerizable composition according to claim 7, wherein X^1 in the formula (I-2) is $-N(R^3)$ -.
- 11. The polymerizable composition according to claim 7, wherein the substituent represented by R^3 contains at least one of $-CO_2$ and $-CON(R^8)$ in its structure in which R^8 represents a hydrogen atom or a monovalent substituent.
- 20 12. The polymerizable composition according to claim 7, wherein the substituent represented by R³ is represented by one of the following formulae (i) and (ii):

$$R^{6}-C-R^{7}$$
 $C-O-Z$
 $C-N-Z$
 O
 R^{8}
(i)

wherein, R^6 , R^7 and R^8 each independently represents a hydrogen atom or a monovalent substituent, Z represents a monovalent substituent, and R^8 and Z may be taken together to form a ring structure.

5

10

- 13. The polymerizable composition according to claim 7, wherein the monovalent substituent represented by R¹ and R² is a halogen atom, an optionally substituted amino group, an alkoxycarbonyl group, a hydroxyl group, an ether group, a thiol group, a thioether group, a silyl group, a nitro group, a cyano group, an optionally substituted alkyl group, an optionally substituted alkynyl group, an optionally substituted aryl group, or an optionally substituted heterocyclic group.
 - 14. A lithographic printing plate precursor comprising

a support and a recording layer containing a polymerizable composition which comprises: (A) a compound which causes at least one of decarboxylation and dehydration by heat; (B) a radical initiator; (C) a compound having at least one ethylenically unsaturated bond; and (D) an infrared ray absorber.

a support and a recording layer containing a polymerizable composition which comprises: (A-1) a monocarboxylic acid compound represented by the following formula (I-2); (B) a radical initiator; (C) a compound having at least one ethylenically unsaturated bond; and (D) an infrared ray absorber:

$$R^{1}$$

 $A-X^{1}-C-CO_{2}H$
 R^{2} (1-2)

15

20

wherein

A represents an aromatic group or a heterocyclic group, R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either one of R^1 and R^2 and X^1 , either one of R^1 and R^2 and R^2 and R^3 and R^4 and R

 X^1 represents a divalent connection group selected from -O-, -S-, $-SO_2-$, -NH-, -N(R^3) -, $-CH_2-$, -CH(R^4) -, and -C(R^4) (R^5) -, and

R³, R⁴, and R⁵ each independently represents a hydrogen stom or a monovalent substituent.