Lab 6
School of Computer Science Engineering and Technology

Course	B. Tech.	Туре	Core
Course Code	CSET301	Course Name	Artificial Intelligence and Machine Learning
Year	2025	Semester	Odd
Date	14/08/2025	Batch	2023–2027

CO-Mapping

	CO1	CO2	CO3	CO4	CO5	CO6
Q1			$\sqrt{}$			

AI/ML Lab -Logistic Regression with scikit-learn

Objective: Total Marks: 1.0

1

This lab aims to make the students understand and implement classification model using Logistic Regression algorithm. Perform data preprocessing including handling missing values and encoding. Visualize relationships and model performance. Evaluate the model using standard classification metrics.

Problem Statement:

Use Titanic dataset identify the survival probability. You can download the dataset from the given link: https://www.kaggle.com/datasets/yasserh/titanic-dataset

Instructions:

Perform the following tasks:

- 1. To load the data and print first 5 rows.
- 2. Explore and visualize the dataset using different columns such as **total number of people survived**, **survival rate based on gender**, survival rate based on age (Hint: for age column create bins and divide age data into different categories).
- 3. Pre-process the data by dropping irrelevant columns, filling missing values, encoding categorical columns, etc.
- 4. Define X matrix (independent features) and y vector (target feature).
- 5. Split the dataset into training and testing subsets.
- 6. Train Logistic Regression Model (from sklearn.linear_model import LogisticRegression).
- 7. Print the classification metrics for train and test subsets.