Problem statement 8:

Design frame_generate and forward logic in VHDL using Xilinx ISE. Write a testbench that include all possible test cases in order to verify your design using simulation. Implement your verified design on the ATLYS board to verify the proper functionality of your design on hardware.

Top-Level block diagram for your design is shown in Fig.16. The descriptions of the interfaces are given in table-IX. For design of your logic you need to use only the given interfaces at the top level of the design. Internally you can have temporary signals of your choice.

Fig. 16. Frame_generate_Forwardtop level interface.

Table IX. Signal Description

	Direction	Description List appeares the availability of
Interface iData_av	Input	This is al-bit signal. A logic high represents the availability of the data for this module at the remote interface.
	Output	This is a -bit signal. This signal is driven by your togic to
iRd_Data		reading data from remote interface. This is a 144 bit signal. This is the incoming data to your logic.
iData	Input	You receive a valid data for each clock cycle when year
oData_av	Output	This is a 1-bit signal. A logic high represents the data at the output interface of your logic. This signal is driven
oData_rd	Input	by your logic. This is a 1-bit signal. This signal is driven by remote logic for reading data from your logic. This is a 144 bit signal. This is the outgoing data from your logic.
oData	Output	This is a 144 bit signal. This is the outgoing data. You provide a valid data for each clock cycle when you assert oDota resignal is high. This is a 32-bit signal. Each bit represents an output port. If a bit
Output port mask	Output	This is a 32-bit signal. Each on representation

Fig. 17, CFM Frame format

Fig. 1812, write ack message format.

Fig. 139. Hello ack message format

Tasks to perform:

- Check the idata_av signal for logic high.
- Check if FSM_bsysignal of your design is low.
- Check if opcode input to logic is = 1.
 - In case opcode=0x"1" start reading the packet by asserting the iRd_Data='1'; a.
 - b. Mark the FSM_bsy='1';
 - Extract the sequence number from the packet.
 - d. Forward this packet to all the core ports except the input port.
 - e. Generate a hello ack frame using the extracted sequence number.
 - Send this generated reply frame on the output_port by providing f. output_port_mask(input_port)='1'.
 - Identify the end of the packet marker. Once you find the end of packet marker assert "Rd_opcode" signal for I clock cycle.
 - Mark FSM_bsy='0';
- 4. In case no data is available on idata av.
- Check if send_wr_ack or gen_cfm signals are high.
 - If the signals are high, Mark the FSM bsy='1';
 - b. Use the respective sequence number and other relevant information to generate the message.
 - Provide the output port by masking respective bit in output_port_mask signal to 'l'
 - Mark FSM bsy='0';
- Create the FSM based on above tasks.

		is asserted high, available data should be sent on the respective
A TOTAL STATE OF THE PARTY OF THE		output port.
MAC	Input	This is a 48-bit signal. This represents the MAC address of your design.
Opcode	Input	This is a 3-bits signal. This represents classification of incoming packet.
Rd opcode	Output	This is a 1-bit signal to read the opcode from your logic.
Input port	Input	This is a 5-bit signal representing the input port of the packet.
Port_mask	Input	This is a 32-bit signal, where index of each bit represents an output port. Respective index bit is made high by the remote logic representing the destination port for the packet, otherwise it remains at logic low.
Port_number	Output	This is 5-bit signal, indicating the port number for reading the
Rd_port_info	Output	This is 1-bit signal. This is asserted to request a port's status
Port_info	Input	This is an 80-bit signal. This provides status of the requested
Port_info_valid	Input	This is a 1-bit signal, it represents that the status available on Port, info signal is valid.
CFM_Sequence_number	Input	This is 16-bit signal, it represents the sequence number for the
Output_port	Input	This is 5-bit signal, this represents the port where generated CFM m to be sent.
CFM_Information	Input	This is a 256-bit, information. This information is used to generate the CFM frame.
Gen_CFM	Input	This is 1-bit signal, input to this logic. This signal represents a request to generate the CFM frame.
CFM_sent	Output	This is 1-bit signal, it is sent in response to Gen_CFM. Once the CFM frame is generated and sent to respective output port.
Wr_Sequence_number	Input	This is 16-bit signal, it represents the sequence number of the wr ack packet.
Output_port	Input	This is 5-bit signal, this represents the port, where generated wr ack packet need to be sent.
Send_wr_ack	output	This is 1-bit signal, This signal is request to this logic to generate the Wr ack message.
Ack_sent	Input	This is 1-bit signal, In response to Wr ack message this signal is asserted by this logic to indicate that ack message is sent
Core_ports	Input	This is a 32 bit signal. If a bit is high in this signal, it represents that the respective port is marked as core port.
MAC	Input	This is 32-bit signal. It is the MAC address of the design.
clk	Input	This is a 1-bit clock signal for the logic.
rst	Input	This is a 1-bit reset signal for the logic.

Design description:

In this design, you need to generate various messages and send them to desired port. This logic is also used for forwarding an incomingpacket to desired output port. Output port is provided by masking the index of output port in Output_port_mask signal. Generated messages are stored in a FIFO. Remote logic read the message from output fifo based on the availability of the data in fifo. Format of different messages to be generated are shown in Fig 17-19.