ANOVA Part 2

Grinnell College

May 2, 2025

Review

Suppose we had daily average temperatures for Grinnell for the period of one calendar year

- What makes day of the week a poor candidate for predicting mean values?
- What makes month of the year a good candidate for predicting mean values?
- What kind of attributes make a categorical variable a good or bad candidate? (general conversation question)

STA 209 May 2, 2025 2/25

	Df	Sum Sq	Mean Sq	F value	<i>p</i> -value
Weekday	6	342.71	57.12	0.12	0.9939
Residuals	355	168524.83	474.72		

	Df	Sum Sq	Mean Sq	F value	<i>p</i> -value
Month	11	138048.06	12549.82	142.52	< 0.0001
Residuals	350	30819.48	88.06		

Ants and sandwiches

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	49	14041.68	286.56		

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Butter	1	757.90	757.90	2.74	0.1045
Residuals	48	13283.78	276.75		

Grinnell College STA 209 May 2, 2025

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bread	3	1519.82	506.61	1.86	0.1494
Residuals	46	12521.86	272.21		

Grinnell College STA 209 May 2, 2025

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Filling	2	5455.83	2727.92	14.93	0.0000095
Residuals	47	8585.85	182.68		

Grinnell College STA 209 May 2, 2025 14 / 25

	Df	Sum Sq	Mean Sq
Individual	49	14041.68	286.56

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	49	14041.68	286.56		
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Butter	1	757.90	757.90	2.74	0.1045
Residuals	48	13283.78	276.75		
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bread	3	1519.82	506.61	1.86	0.1494
Residuals	46	12521.86	272.21		
	Df	Sum Sa I	Moon Sa	E value	Dr(\F

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Filling	2	5455.83	2727.92	14.93	0.0000095
Residuals	47	8585.85	182.68		

Grinnell College STA 209 May 2, 2025

To t or Not to t

Recall that for ANOVA we are testing the null hypothesis that *all* of our means our equal

$$H_0: \mu_A = \mu_B = \mu_C$$

Why not instead just stick with our t-test, doing

$$H_0: \mu_A = \mu_B, \ \mu_A = \mu_C, \ \text{and} \ \mu_B = \mu_C$$

Multiple tests

15 groups, all generated with the same mean value:

- ▶ 105 pair-wise tests
- 6 with p-value < 0.05</p>

Distribution of p-values under H_0 for 106 t-tests

Multiple tests

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Group	14	15.40	1.10	1.10	0.3504
Residuals	14985	14964.85	1.00		

Grinnell College STA 209 May 2, 2025 21 / 25

Post-hoc Tests

ANOVA only tells us *that* a difference exists, not where it is or to what degree

If our ANOVA test is such that we rejet the null hypothesis, we can use *post-hoc* testing via the **Tukey Range Test** or the **Tukey Honest Significant Difference Test** to identify any statistically significant pair-wise differences

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Filling	2	5455.83	2727.92	14.93	0.0000095
Residuals	47	8585.85	182.68		

Grinnell College STA 209 May 2, 2025 23 / 25

Review

- ANOVA allows us to test equality of many means
 - ▶ By comparing ratio of between-group and within-group means
- Ameliorates problem of multiple testing
- ▶ Post-hoc testing can be done to determine which groups are different
- ► Tukey Honest Statistical Difference (TukeyHSD)