

1-LIPSCHITZ LAYERS COMPARED: MEMORY, SPEED AND CERTIFIABLE ROBUSTNESS

Bernd Prach^{*}, Fabio Brau^{*}, Giorgio Buttazzo, and Christoph H. Lampert

OVERVIEW

Rating robust accuracy (RA), accuracy (A), training time (TT), inference time (IT), training memory (TM) and inference memory (IM).

SUMMARY

Comparison of 7 methods for creating 1-Lipschitz convolutions from the literature using 6 metrics on 4 datasets with 4 model sizes and 4 training time budgets.

NTRODUCTION

Adversarial Examples: 1

Definition 1. We call f 1-Lipschitz, if for all x and y

$$||f(x) - f(y)||_2 \le ||x - y||_2$$
.

(difference of outputs) (difference of inputs)

Lemma 1. An input x is classified robustly by a classifier f for perturbations of size up to $\mathcal{M}_f(x)$, where

$$\mathcal{M}_f(x) = \frac{1}{\sqrt{2}} [f_l(x) - \max_{i \neq l} f_i(x)]_+$$

C. Szegedy, 2014, Intriguing properties of neural networks

THEORETICAL ANALYSIS

For batch size b and input size $s \times s \times c$:

Method	FLOPs $\mathcal{O}(\cdot)$	Memory $\mathcal{O}(\cdot)$
Standard	bs^2c^2	$bs^2c + c^2$
AOL^1	$bs^2c^2+c^3$	$bs^2c + c^2$
$BCOP^2$	$bs^2c^2+c^3$	$bs^2c + c^2$
Cayley ³	$bs^2c^2 + s^2c^3$	$bs^2c + s^2c^2$
CPL ⁴	bs^2c^2	$bs^2c + c^2$
LOT ⁵	$bs^2c^2 + s^2c^3$	$bs^2c + s^2c^2$
SLL ⁶	$bs^2c^2 + c^3$ bs^2c^2	$bs^2c + c^2$
SOC ⁷	bs^2c^2	$bs^2c + c^2$ $bs^2c + c^2$

- ¹ B.Prach, 2022, Almost-orthogonal layers for efficient general-purpose Lipschitz networks
- ² Q. Li, 2019, Preventing gradient attenuation in Lipschitz constrained convolutional networks
- ³ A.Trockman, 2021, Orthogonalizing convolutional layers with the Cayley transform
- [†] L. Meunier, 2022, A dynamical system perspective for Lipschitz neural networks
- ⁵ X. Xu, 2022, Lot: Layer-wise orthogonal training on improving L2 certified robustness ⁶ A. Araujo, 2023, A unified algebraic perspective on Lipschitz neural networks
- [/] S. Singla, 2021, Skew orthogonal convolutions

ARCHITECTURE

- MaxMin activation instead of ReLU
- 2. Squared Convolutions ($c_{in}=c_{out}$)
- 3. Pixel Unshuffle reduces spatial dimension increasing channels ($\times 4$)
- 4. Proj. First reduces channels ($\div 2$)
- 5. Final Projection on first c-channels

CONCLUSION & INTERPRETATION

- → CPL seems most promising, followed by SOC.
- \rightarrow Skip connections or identity initialization seem useful.
- ightarrow Computation on kernels helps with larger input resolution.

CONTACT INFORMATION

https://berndprach.github.io/ Web:

https://fabiobrau.github.io/

bprach@ist.ac.at **Email:**

> f.brau@santannapisa.it Paper: \rightarrow

