Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Data 22 /01 /2021

	Date:22/01/2021	
Name: O P Joy Jefferson	SRN:PES2UG19CS270	Section:
Week#1	Program Number:	1
Title of	f the Program	
subtract two 32 bit nu	RM instruction set to acumbers .Both numbers egisters.	
I. ARM Assembly Co	ode for each program	

.text

MOV r0, #10

MOV r1, #20

ADD r2, r0, r1

MOV r0, #10

MOV r1, #20

SUB r3, r0, r1

.end

II. Output Screen Shot (Register Window, Output window)

The output should be verified with 2 test cases (one example shown in class, one example of own choice)

Example

R0=10=Hex 0A

R1=20=Hex 14

After Addition R2=30=Hex 1E

After Subtraction R3 = -10 = -Hex 0A

RO	R1	Arithmetic Operation	Result
0x0A	0x14	ADD	R2 =0x1E
0x0A	0x14	SUBTRACT	R3=- 0x0A

	Hex 5		
R0	R1	Arithmetic Operation	Result
0x05	0x05	ADD	R2 =0x0a
0x05	0x05	SUBTRACT	R3=0x00

R1=5= After	ple :Hex 3 :Hex 2 Addition R2=5=I Subtraction R3 =		
RO	R1	Arithmetic Operation	Result
0x03	0x03	ADD	R2 =0x05
0x02	0x02	SUBTRACT	R3=0x01

R1=13 After	ole .=Hex 15 S=Hex 0d Addition R2=34= Subtraction R3 =		
RO	R1	Arithmetic Operation	Result
0x15	0x0d	ADD	R2 =0x22
0x15	0x0d	SUBTRACT	R3=0x08

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:22/01/2021

Name: O P JOY	SRN:	Section:E
JEFFERSON	PES2UG19CS270	

Week#____1___ Program Number: ____2__

Title of the Program

Write an ALP to demonstrate logical operations. All operands are in registers.

ARM Assembly Code for each program .text

MOV r0,#5

MOV r1,#6

AND r2,r0,r1

MOV r0,#5

MOV r1,#6

ORR r3,r0,r1

MOV r0,#5

MVN r4,r0

MOV r0,#5

MOV r1,#6

EOR r5,r0,r1

.end

II. Output Screen Shot (Register Window, Output window)

The output should be verified with 2 test cases

(one example shown in class, one example of own choice)

1).

RO	R1	Logical Operation	Instruction	Result	
0x03	0x03	AND	AND	RO	=0x03
0x05	0x06	OR	ORR	R0	=0x03
0x05	0x06	EX-OR	EOR	R0	=0x03
0x05		NOT	MVN	R0	=0xfffffffc

2).

RO	R1	Logical	Instruction	Result
		Operation		

0x05	0x06	AND	AND	R0	
					=0x04
0x05	0x06	OR	ORR	R0	
					=0x07
0x05	0x06	EX-OR	EOR	R0	
					=0x03
0x05		NOT	MVN	R0	
					=0xfffffffa

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:

Name: O P JOY	SRN:PES2UG19CS270	Section:E
JEFFERSON		

Week#	1	Program Number:	3
-------	---	-----------------	---

Title of the Program

Write an ALP to add 5 numbers where values are present in registers.

I. ARM Assembly Code for each program

.text

MOV r0,#5

MOV r1,#6

MOV r2,#7

MOV r3,#6

MOV r4,#21

ADD r5,r0,r1

ADD r6,r5,r2

ADD r7,r6,r3

ADD r8,r7,r4

.end

II. Output Screen Shot (Register Window, Output window)

The output should be verified with 2 test cases (one example shown in class, one example of own choice)

1).

,		
RO		0x05
R1		0x06
R2		0x07
R3		0x06
R4		0x0f
R5	R0+R1	0x0b
R6	R5+R2	0x12
R7	R6+R3	0x18
R8	R7+R4	0x2d

2).

RO	0x01
R1	0x02

R2		0x03
R3		0x04
R4		0x05
R5	R0+R1	0x03
R6	R5+R2	0x06
R7	R6+R3	0x0a
R8	R7+R4	0x0f

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:

Name: OP Joy Jefferson	SRN:PES2UG19CS270	Section:E

Week#	_1	Program Number:	4

Title of the Program

Write an ALP using ARM instruction set to check if a number stored in a register is even or odd. If even, store 00 in R0, else store FF in R0

ARM Assembly Code for each program .text

```
MOV r0, #6

ANDs r0, r0, #1

BEQ condition

MOV r1, #255

B exit

condition:

MOV r2, #0

exit:

SWI 0x011
```

.end

II. Output Screen Shot (Register Window, Output window)

The output should be verified with 2 test cases (one example shown in class, one example of own choice)

CASE 1	R1		0x06
	R2	After AND operation	0x00
	RO	(EVEN)	0x00
CASE 2	R1		0x05
	R2	After AND operation	0x01
	RO	(ODD)	0xFF

Disclaimer:

• The programs and output submitted is duly written, verified and executed by me.

- I have not copied from any of my peers nor from the external resource such as internet.
- If found plagiarized, I will abide with the disciplinary action of the University.

Signature:

Name: O P JOY JEFFERSON

SRN:PES2UG19CS270

Section: E

Date:22/01/2021