Mathematical Methods (MA31007)

Test-2

Time: 1hr 05 min, Date:21.9.21

12 - 1:05 P.M. Full Marks 25

All six questions are compulsory. No negative marking or part marking is there.

Q1. (a) The BVP y"+ y = x, y(0) = 0 and y'(1) = 0 is reduced to the Fredholm integral equation $y(x) = \int_0^1 G(x,t) y(t) dt - \frac{1}{6} \left(k_1 x - \frac{5}{k_2} x^3 \right)$. Then $k_1 =$ _____ and $k_2 =$ _____

Q1. (b) In Q1. (a), G(x,t) is the Green's function of the associated homogeneous BVP and $G(x,t) = \frac{2}{k_3}x, \ 0 \le x < t \ \text{and} \ G(x,t) = k_4t, \ t < x \le 1. \ \text{Then} \ k_3 = \underline{\hspace{1cm}} \ \text{and} \ k_4 = \underline{\hspace{1cm}}$

Q1. (c) In Q1. (a), if the first boundary condition is changed to y(0) = 1, then the Fredholm integral equation takes the form

$$y(x) = \int_0^1 G(x,t)y(t)dt - \frac{1}{k_5}(x^3 + k_6x + k_7)$$
. Then $k_5 = \underline{\qquad} k_6 = \underline{\qquad}$ and $k_7 = \underline{\qquad}$

1+1+1=3M

Q2. (a) To solve $y''-2y'+y=xe^x\log x, \ x>0$, method of variation of parameter is adopted. The particular integral is of the form $\frac{1}{k_1}x^3e^x\log x-\frac{k_2}{k_3}x^3e^x$, k_2 and k_3 are prime to each other.

Then $k_1 = ____k_2 = ____$ and $k_3 = ____$.

Q2. (b) Using the method of variation of parameter, the solution of $y''+9y=\varphi(x)$ satisfying the initial conditions y(0)=0 and y'(0)=0 is obtained as

$$y = c_1 \cos 3x + c_2 \sin 3x + \frac{1}{c_3} \int_0^x \phi(t) \sin c_4(x - t) dt.$$

Then
$$c_1 = \underline{\hspace{1cm}} c_2 = \underline{\hspace{1cm}} c_3 = \underline{\hspace{1cm}}$$
 and $c_4 = \underline{\hspace{1cm}}$

2+2=4M

Q3. (a) With the help of $1,x,x^2$ three functions $arphi_0,arphi_1$ and $arphi_2$ are constructed which are orthogonal with respect to e^{-x} over $0 \le x < \infty$. If $\varphi_2(x)$ has the form $k_1 x^2 - k_2 x + k_3$, then

$$k_1 = \underline{\hspace{1cm}} k_2 = \underline{\hspace{1cm}}$$
 and $k_3 = \underline{\hspace{1cm}}$.

Q3. (b) Consider three functions $f_1(x) = a_0$, $f_2(x) = b_0 + b_1 x$ and $f_3(x) = c_0 + c_1 x + c_2 x^2$

where a_0,b_0,b_1,c_0,c_1,c_2 are real constants. If the given functions form an orthonormal set on the interval $-1 \le x \le 1$, then the values of $b_0 = \underline{\hspace{1cm}}$ and $c_1 = \underline{\hspace{1cm}}$. If c_0 and c_2 are connected by $c_2 = -kc_0$, then $k = \underline{\hspace{1cm}}$

2+3=5M

Q4. (a) Consider a second order eigenvalue problem

$$-P(x)y''-Q(x)y'+R(x)y = \lambda y$$
-----(1)

which is converted into Strum-Liouville eigenvalue problem

$$Ly = \lambda ry$$
 where $Ly = -(py')' + qy$ -----(2)

with boundary conditions $\alpha_1 y(0) + \alpha_2 y'(0) = 0$, $\beta_1 y(l) + \beta_2 y'(l) = 0$, p(x) > 0, r(x) > 0.

Multiplying by a suitable factor $\mu(x)$, Eq. (1) is converted into Eq.(2) Then the form of $\mu(x)$ is

$$\text{(no constant is considered) (i) } \frac{e^{\int \frac{P}{Q} dx}}{Q} \text{ (ii) } \frac{e^{-\int \frac{P}{Q} dx}}{Q} \text{ (iii) } \frac{e^{\int \frac{Q}{P} dx}}{P} \text{ (iv) } \frac{e^{-\int \frac{Q}{P} dx}}{P}$$

Q4. (b) Hence if $y''+xy'+\lambda y=0$, y(0)=0=y(1), is reduced in the form of Eq. (2) of Q4.(a),

then
$$p(x)=e^{\frac{x^2}{k_1}}$$
 and $r(x)=e^{\frac{2x^2}{k_2}}$. Then $k_1=$ ___and $k_2=$ ___

Q4. (c) Define the Strum-Liouville problem as given in Q4(a). If u and v satisfy the S-L differential equation, then $\int_{0}^{t} (vLu - uLv) dx =$

(i)
$$(pvu')_0^l - (puv')_0^l$$

(ii)
$$\left(-qvu'\right)_0^l + \left(quv'\right)_0^l$$

(iii)
$$(-pvu')_0^l + (puv')_0^l$$
 (iv) $(qvu')_0^l - (quv')_0^l$

(iv)
$$\left(qvu'\right)_0^l - \left(quv'\right)_0^l$$

Q4. (d) In continuation to Q4.(c), if u and v both satisfy S-L boundary condition also, given in Q4(a), then the value of $\int_0^t (vLu - uLv) \ dx$ is ______.

2+1+2+1=6M

- Q5. (a) Consider the ODE $(5-x^2)y'' + \frac{1+x}{x}y' \left(\frac{3}{x^2} + x\right)y = 0$. The number of singular points are _____
- Q5. (b) If a power series solution $y(x) = \sum_{n=0}^{\infty} c_n x^n$ for $(x^2 + 1)y'' 4xy' + 6y = 0$ about x = 0 is obtained, then the number of terms in the power series will be _____
- Q5. (c) For the ODE in Q5.(b), if a recurrence relation between $\,c_{\scriptscriptstyle n+2}$ and $\,c_{\scriptscriptstyle n}$ is obtained as

$$c_{n+2} = -\frac{\left(n - k_1\right)\left(n - k_2\right)}{\left(n + k_3\right)\left(n + k_4\right)}c_n, \quad n \geq 2 \text{ , then } k_1 = \underline{\qquad} k_2 = \underline{\qquad} k_3 = \underline{\qquad} \text{ and } k_4 = \underline{\qquad} .$$

$$k_1 < k_2, k_4 < k_3.$$

$$\mathbf{1+1+1=3M}$$

- Q6. (a) If a power series solution $y(x) = \sum_{n=0}^{\infty} c_n x^{r+n}$, $c_0 \neq 0$ is found for $2x^2y'' xy' + (1+x)y = 0$, then the roots of the indicial equation are k_1 and $\frac{1}{k_2}$, $k_1 < k_2$. Then $k_1 = \underline{\hspace{1cm}}$ and $k_2 = \underline{\hspace{1cm}}$
- Q6. (b)If an ascending power series solution $y(x) = \sum_{m=0}^{\infty} c_m x^{k+m}$, $c_0 \neq 0$ is obtained for Legendre equation $\left(1-x^2\right)y$ "—2xy"+ n(n+1)y=0 and the roots of the indicial equation are k_1 and k_2 then $k_1 = \underline{\hspace{1cm}}$ and $k_2 = \underline{\hspace{1cm}}$ $k_1 < k_2$.
- Q6. (c) If a recurrence relation between $\,c_{\scriptscriptstyle m}^{}$ and $\,c_{\scriptscriptstyle m-2}^{}$ for the problem in Q.6(b)

Is obtained as
$$c_m = \frac{\left(k+m-a-n\right)\left(k+m-b+n\right)}{\left(k+m\right)\left(k+m-1\right)}c_{m-2}$$
 , then $a=$ ____and $b=$ ___.

2+1+1=4M