Abstraction et observation macroscopique des systèmes

Après-midi traces 20 mars 2012

Robin Lamarche-Perrin

Jean-Marc Vincent (MESCAL)

Yves Demazeau (MAGMA)

Problème général

- Systèmes
 - Décentralisés
 - Asynchrones
 - Complexes
 - De très grande taille

Problématique : comment avoir un point de vue macroscopique de processus microscopiques ?

Réponse : engendrer des abstractions !

Qu'est-ce qu'une abstraction ?

Conception du système

Description du système

Niveau macroscopique

Niveau microscopique

Entités microscopiques

COMMENT MESURER ET ÉVALUER LES DESCRIPTIONS

Descriptions et complexité

Exemple minimal de descriptions

Entropie des descriptions

- Mesure la quantité d'information nécessaire pour coder une description donnée
- Mesure l'ordre des éléments selon les valeurs de la description

Formule de Shannon

$$H = -\sum_{i \in V} \frac{E_k}{E} \log_2 \left(\frac{E_k}{E}\right)$$

Entropie minimale

Entropie maximale

Agrégation de descriptions

Gain entropique d'une agrégation

- Mesure la quantité d'information économisée par une agrégation
- Dépend de la distribution initiale et de la fonction d'agrégation

$$G = H_{source} - H_{agrégée}$$

Gain minimal

Gain maximal

Perte d'information d'une agrégation

- Mesure la quantité d'information nécessaire pour désagréger une description
- Dépend uniquement de la fonction d'agrégation

$$L = -\sum_{k \in V'} \frac{E'_k}{E} \log_2 \left(\frac{1}{V_k}\right)$$

Information conservée

Information perdue

Divergence d'une agrégation

- Mesure l'écart entre une description agrégée et sa description source
- Dépend de la distribution initiale et de la fonction d'agrégation

Formule de Kullback-Leibler

$$D = -\sum_{k \in V} \frac{E_k}{E} \log_2 \left(\frac{E'_k}{E \times V_k} \right)$$

$$D = L - G$$

Mesure globale

Représente un compromis

- $\alpha = 0 \rightarrow$ pas d'agrégation, information conservée
- $\alpha = 1 \rightarrow$ agrégation de toute les valeurs
- Principe d'agrégation : trouver les descriptions qui minimisent la mesure globale

DESCRIPTIONS CAUSALES

Description de la causalité

Temps logique global : $e_1 < e_2 < e_3 < e_4$

Indépendance causale : $e_0 \parallel e_1$

F. Mattern, Virtual Time and Global States of Distributed Systems, *Parallel and Distributed Algorithms*, p. 215–226, North-Holland, Elsevier, 1989.

Agrégations spatiales

Agrégations temporelles

Robin Lamarche-Perrin, Yves Demazeau, Jean-Marc Vincent. Observation macroscopique et émergence dans les SMA de très grande taille. JFSMA'11:53-62, Valenciennes, France, oct. 2011.

AGRÉGATION D'INFORMATIONS MÉDIATIQUES

Objectif de l'analyse

Objectif de l'analyse

Objectif de l'analyse

Données et difficultés

- Projet GEOMEDIA
 - Collaboration avec le CIST (Paris 7)
 - Plateforme d'analyse des informations médiatiques
- 1. Données hétérogènes, non-structurées
- 2. Grandes quantités d'information
 - 70 flux RSS pendant 10 mois → 500 000 items
 - The Gardian : 100 items/jours
 - Les 10 plus actifs : 62 items/jours
 - Exemple : analyse d'un phénomène sur 5 ans selon 10 points de vus → 1 130 000 articles !

Descriptions médiatiques

Dimensions		Références	Références		
		Absolues	Relatives	directes	
Espace	Où ?	« France » « Allemagne »	« Nos voisins »	Lieu de publication	
Temps	Quand?	« 12 octobre 2006 »	« En mai dernier »	Date de publication	
Thèmes	Quoi ?	« Accords diplomatiques »	« Selon l'article X »	Ligne éditoriale	

Descriptions multidimensionnels

« Causalité » médiatique → Comment ?

Source : Le Monde international, 3520 articles du 02 mai au 20 nov.

Espace × Temps

Variation du poids médiatique des territoires

	USA	Libye	Syrie	France	Israël		Total
2 mai	25	12	11	10	4	:	142
9 mai	14	6	12	12	5		108
16 mai	20	11	12	6	9		142
23 mai	15	9	6	13	5		120
30 mai	10	16	17	9	4		137
6 juin	14	16	16	9	4		114
13 juin	15	14	17	9	6		119
20 juin	17	13	12	12	7		123
27 juin	7	6	7	20	2		103
4 juill.	12	13	8	10	6		129
11 juill.	21	10	10	14	3		107
18 juill.	7	3	8	4	5		61
25 juill.	16	7	6	13	4		128
1 août	21	1	9	7	4		88
8 août	16	4	10	11	4		112
15 août	12	10	7	11	9		108
22 août	13	31	7	5	3		106
Total	423	308	260	248	153		3520

Espace²

Poids des relations médiatiques entre les territoires

Source : Le Monde international, 3520 articles du 02 mai au 20 nov.

	USA	France	Libye	Israël	Syrie	Palestine	Afghanistan		Total
USA	×	25	19	18	24	24	24	;	423
France	25	×	36	10	15	15	30		248
Libye	19	36	×	0	7	0	2		308
Israël	18	10	0	×	4	62	0		153
Syrie	24	15	7	4	×	1	0		260
Palestine	24	15	0	62	1	×	0		126
Afghanistan	24	30	2	0	0	0	×		131
Total	423	248	308	153	260	126	131	•••	3520

Algèbre sur les dimensions

Espace × Temps × Thème

Faits médiatiques

Espace² × Temps² × Thème Interactions spatio-temporelles

terrorisme

Espace² × Temps × Thème

Interactions spatiales

Quelle sémantique donner aux structures multidimensionnelles ?

Agrégation a priori

Micro → Macro

Espace Communes → Pays

Temps Jours → Mois

Thèmes Mots-clés → Catégories

Agrégation a posteriori

Principe d'agrégation

$$D_{\alpha} = (1 - \alpha) \times L - \alpha \times G$$

• Une valeur de α pour chaque dimension...

Agrégation a posteriori

Principe d'agrégation

$$D_{\alpha} = (1 - \alpha) \times L - \alpha \times G$$

 Une valeur de α pour chaque dimension...

 Agréger les entités qui ont « le même comportement médiatique », i.e. qui sont fortement corrélées

CALCUL DES AGRÉGATIONS

Observation macroscopique

Observation macroscopique

Expérimentations

Sondes macroscopiques et agrégation spatiale

- Centralisation de l'information
- Agents agrégés : fourmis partant d'une sonde
- Interactions entre sondes: transfert d'une fourmi d'une piste à l'autre

Temps distribué et agrégation temporelle

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

Temps distribué et agrégation temporelle

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

Temps distribué et agrégation temporelle

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- **Interaction entre sonde :** flux d'activité pendant un aller-retour

Temps distribué et agrégation temporelle

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

Temps distribué et agrégation temporelle

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- **Interaction entre sonde :** flux d'activité pendant un aller-retour

Description macroscopique

BILAN DES PROBLÈMES POSÉS

Problèmes posés

- Qu'est-ce qu'une abstraction ?
- Comment mesurer/évaluer une description ?
- Comment agréger des relations causales ?
- Comment agréger l'information médiatique ?
- Comment calculer efficacement les agrégations ?