CSE 392/CS 395T/M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025 Lecture 20: Randomized Tucker, TensorSketch

Outline

Randomized Tucker

2 TensorSketch

3 Tensor Train Decomposition

Recall: Tucker Decomposition

• The Tucker decomposition of a three-mode tensor $\mathcal{X} \in \mathbb{R}^{m \times n \times p}$ is given by:

$$\mathcal{X} \approx \mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C} =: [\![\mathcal{G}; \mathbf{A}, \mathbf{B}, \mathbf{C}]\!],$$

where $\mathcal{G} \in \mathbb{R}^{k_1 \times k_2 \times k_3}$ is called the core tensor and $\mathbf{A} \in \mathbb{R}^{m \times k_1}$, $\mathbf{B} \in \mathbb{R}^{n \times k_2}$ and $\mathbf{C} \in \mathbb{R}^{p \times k_3}$ are factor matrices.

• Elementwise:

$$x_{ij\ell} \approx \sum_{q=1}^{k_1} \sum_{r=1}^{k_2} \sum_{s=1}^{k_3} g_{qrs} d_{iq} b_{jr} c_{\ell s} \text{ for } i \in [m], j \in [n], \ell \in [p]$$

HOSVD Algorithm

Inputs: Tensor $A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, ranks $\{r_1, \dots, r_d\} \in \mathbb{N}$.

- **1** for $\ell = 1, ..., d$ do
- $\textbf{0} \qquad \textbf{\textit{U}}^{(\ell)} \leftarrow r_\ell \text{ leading left singular vectors of } \textbf{\textit{A}}_{(\ell)}$
- end for
- \mathbf{o} return $\mathcal{G}, \boldsymbol{U}^{(1)}, \boldsymbol{U}^{(2)}, \cdots, \boldsymbol{U}^{(d)}$

HOOI Algorithm

Inputs: Tensor $A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, ranks $\{r_1, \dots, r_d\} \in \mathbb{N}$.

- Initialize $U^{(\ell)} \in \mathbb{R}^{n_{\ell} \times r_{\ell}}$ for all $\ell \in [d]$
- 2 repeat
- **6 for** $\ell = 1, ..., d$ **do**
- $\mathcal{Y} = \mathcal{A} \times_1 \boldsymbol{U}^{(1)\top} \cdots \times_{\ell-1} \boldsymbol{U}^{(\ell-1)\top} \times_{\ell+1} \boldsymbol{U}^{(\ell+1)\top} \cdots \times_d \boldsymbol{U}^{(d)\top}$
- $oldsymbol{U}^{(\ell)} \leftarrow r_\ell$ leading left singular vectors of $oldsymbol{Y}_{(\ell)}$
- o end for
- **o** until fit ceases to improve or maximum iterations exhausted
- $\mathbf{8} \ \mathcal{G} = \mathcal{A} \times_1 \mathbf{U}^{(1)\top} \times_2 \mathbf{U}^{(2)\top} \cdots \times_d \mathbf{U}^{(d)\top}$
- $oldsymbol{9}$ return $\mathcal{G}, oldsymbol{U}^{(1)}, oldsymbol{U}^{(2)}, \cdots, oldsymbol{U}^{(d)}$

Sequential Truncated HOSVD (ST-HOSVD)

- Choose an ordering in which to visit the modes
- Once left singular vectors for a mode are computed, immediately project. Then only operate on the projected core result
- Example (ordering 1,2,3 and truncation (k_1, k_2, k_3)):
 - ▶ Compute $U^{(1)}$ from SVD of $A_{(1)}$
 - ► Compute $U^{(2)}$ from SVD of $\widehat{\mathcal{C}} := \mathcal{A} \times_1 (U^{(1)})^{\top}$
 - ▶ Compute $U^{(3)}$ from SVD of $\widetilde{\mathcal{C}} := \widehat{\mathcal{C}} \times_2 (U^{(2)})^{\top}$
 - $\mathcal{C} = \tilde{\mathcal{C}} \times_3 (\mathbf{U}^{(3)})^{\top}$
- Now let $\mathcal{A} \approx [\mathcal{C}; \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)}]$. Worst case error bound is same as for tr-HOSVD.
- Computing on successively smaller objects, more efficient; often near-comparable, or better, behavior than tr-HOSVD!

Towards Randomized Tucker

Both HOSVD and STHOSVD rely on matrix SVDs. The obvious first choice for randomization - use calls to matrix routine randSVD.

Matrix RandSVD: Given $\mathbf{X} \in \mathbb{R}^{m \times n}$, target rank r, oversampling parameter $p \geq 0$ such that $r + p \leq \min\{m, n\}$,

- Draw Gaussian random matrix $\Omega \in \mathbb{R}^{n \times (r+p)}$
- Multiply $\mathbf{Y} \leftarrow \mathbf{X}\Omega$
- Thin QR factorization $\mathbf{Y} = \mathbf{Q}\mathbf{R}$
- Form $\mathbf{B} \leftarrow \mathbf{Q}^{\top} \mathbf{X}$
- Calculate thin SVD $\mathbf{B} = \widehat{\mathbf{U}}_{\mathbf{B}} \widehat{\mathbf{S}} \widehat{\mathbf{V}}^{\top}$
- Form $\widehat{\mathbf{U}} \leftarrow \mathbf{Q}(\widehat{\mathbf{U}}_{\mathbf{B}})_{:,1:r}$
- Compress $\widehat{\mathbf{S}} \leftarrow \widehat{\mathbf{S}}_{1:r,1:r}$, and $\widehat{\mathbf{V}} \leftarrow \widehat{\mathbf{V}}_{:,1:r}$, so $\mathbf{X} = \widehat{\mathbf{U}} \widehat{\mathbf{S}} \widehat{\mathbf{V}}$

Halko, Martinsson, Tropp, SIREV, 2011

Towards Randomized Tucker

Both HOSVD and STHOSVD rely on matrix SVDs. The obvious first choice for randomization - use calls to matrix routine randSVD.

Given:
$$A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$$
; target rank vector $\mathbf{r} \in \mathbb{N}^d$; oversampling parameter $p \geq 0$

$$j = 1 : d$$

- Draw random Gaussian matrix $\Omega_j \in \mathbb{R}^{\prod_{i \neq j} n_i \times (r_j + p)}$
- $[\widehat{\mathbf{U}}, \widehat{\mathbf{\Sigma}}, \widehat{\mathbf{V}}] = \text{RandSVD}(\mathcal{A}_{(j)}, r_j, p, \mathbf{\Omega}_j)$
- Set $\mathbf{U}^{(j)} \leftarrow \widehat{\mathbf{U}}$

Form
$$C = A \times_{j=1}^{d} (\mathbf{U}^{(j)})^{\top}$$

G. Zhou, A. Cichocki, and S. Xie, Decomposition of Big Tensors with Low Multilinear Rank, arXiv 1412.1885, 2014

Result¹

The output (with minor assumptions) satisfies

Theorem (Randomized HOSVD)

$$\mathbb{E}_{\{\Omega_k\}_{k=1}^d} \|\mathcal{A} - \widehat{\mathcal{A}}\|_F \le \left(d + \frac{\sum_{j=1}^d r_j}{p-1}\right)^{1/2} \|\mathcal{A} - \widehat{\mathcal{A}}_{opt}\|_F.$$

special cases: Let $r = \max_{1 \le j \le d} r_j$. Then, if p = r + 1,

$$\mathbb{E}_{\{\Omega_k\}_{k=1}^d} \|\mathcal{A} - \widehat{\mathcal{A}}\|_F \leq \sqrt{2} \|\mathcal{A} - \widehat{\mathcal{A}}_{\text{HOSVD}}\|_F \leq \sqrt{2d} \|\mathcal{A} - \widehat{\mathcal{A}}_{opt}\|_F.$$

If $p = \lceil \frac{r}{\epsilon} \rceil + 1$ for some $\epsilon > 0$,

$$\mathbb{E}_{\{\Omega_k\}_{k=1}^d} \|\mathcal{A} - \widehat{\mathcal{A}}\|_F \leq \sqrt{1+\epsilon} \|\mathcal{A} - \widehat{\mathcal{A}}_{\text{HOSVD}}\|_F \leq \sqrt{d(1+\epsilon)} \|\mathcal{A} - \widehat{\mathcal{A}}_{opt}\|_F.$$

UT Austin

¹Minster, Saibaba, Kilmer, SIMODS, 2020

Randomized Sequentially Truncated-HOSVD (r-STHOSVD)

- Similar structure, except feed current intermediate (mode-wise unfolded) core tensor.
- Complication for the theoretical result: at each intermediate step, the partially truncated core tensor is a random tensor.
- The theoretical result gives the same upper bound (fix the processing order; but ultimately independent of this)!
- Again, we see that in the worst case, the randomized versions of either algorithm can have the same performance.
- The latter is cheaper, and in practice can perform better. Use processing order that makes it cheapest.

Dynamic Randomized HOSVD and STHOSVD ³

If target rank is unknown, how to find $\widehat{\mathcal{A}}$ such that

$$\|\mathcal{A} - \widehat{\mathcal{A}}\|_F \le \epsilon \|\mathcal{A}\|_F$$
?

Utilize matrix adaptive randomized range finders² for interim calculations. Given a matrix **A** and a tolerance $\varepsilon > 0$, the goal is to find a matrix **Q** with orthonormal columns that satisfies

$$\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}}\mathbf{A}\| \le \varepsilon \|\mathbf{A}\|.$$

No. columns in $\mathbf Q$ is assumed rank of the low rank approximation.

Example: equally apportioned per mode: choose the factor matrices \mathbf{U}_j to satisfy

$$\|\mathcal{A}_{(j)} - \mathbf{U}^{(j)}(\mathbf{U}^{(j)})^{\top} \mathcal{A}_{(j)}\|_F = \|\mathcal{A} \times_j (\mathbf{I} - \mathbf{U}^{(j)}(\mathbf{U}^{(j)})^{\top})\|_F \le \frac{\varepsilon}{\sqrt{d}} \|\mathcal{A}\|_F.$$

²See W. Yu, Y. Gu, and Y. Li, SIMAX, 2018 and references therein.

³Minster, Saibaba, Kilmer, SIMODS, 2020

Preserving Structure?

We know that the (intermediate) core can be dense in any of the above mentioned processes.

What if A is sparse, or has other structure (e.g. non-negativity)?

Can we compute a factorization such that the core tensor inherits properties of A?

Yes!

Process for a matrix X

Instead of using $\mathbf{X} \approx \mathbf{Q}\mathbf{Q}^{\top} \mathbf{X}$ where $\mathbf{Q}\mathbf{R} = (\mathbf{X}\Omega_{r+p})$ do:

Compute strong RRQR of Q^{\top}

$$\mathbf{Q}^{ op} \mathbf{S} = \mathbf{Z} \mathbf{N},$$

then $\mathbf{P} = \mathbf{S}_{:,1:s}$, so $\mathbf{P}^{\top} \mathbf{Q}$ well-conditioned rows of \mathbf{Q} .

Define the oblique projector:

$$\mathbf{Q}(\mathbf{P}^{\top}\boldsymbol{Q})^{-1}\boldsymbol{P}^{\top}$$

and apply this to X.

$$X \approx (\mathbf{Q}(\mathbf{P}^{\top}\mathbf{Q})^{-1})\underbrace{\mathbf{P}^{\top}X}_{\widehat{X}}.$$

Note that \widehat{X} is subselected rows of X.

Structure Preserving STHOSVD

Idea:

- pick an order to visit
- apply the previous idea to the current unfolded core
- update the current core (it will have subselected rows), and the resulting factor matrix is the left matrix product.

The final core will have multirank $(r_1 + p, r_2 + p, \dots, r_d + p)$ and contain portions of the original tensor. The factor matrices are not orthogonal.

Randomized Variants that Handle Sparsity

Formidable Repository of Sparse Tensors and Tools database.

Tensor	Dimensions	Nonzeros
NELL-2	$12092 \times 9184 \times 28818$	76,879,419
Enron	$6066 \times 5699 \times 244268 \times 1176$	$54,\!202,\!099$

<u>NELL-2</u>: entity \times relation \times entity (NELL is a machine learning system that relates different categories)

Enron: sender \times receiver \times word \times date (word counts in emails released during an investigation by the FERC)

Approximate truncated (r, r, r) HOSVD and ST-HOSVD

Results

Relative Error			Runtime in seconds	
r	SP-STHOSVD	R-STHOSVD	SP-STHOSVD	R-STHOSVD
20	0.6015	0.2081	0.4086	31.5615
45	0.3854	0.1259	0.7965	34.5802
145	0.0976	0.0332	3.5659	42.0969
195	0.0578	0.0180	6.8285	50.2907

Table: Results, Subsampled Enron dataset.

Taking advantage of the sparsity structure allows for faster compression⁴.

UT Austin

⁴R. Minster, A.K. Saibaba, and M. E. Kilmer, "Randomized Algorithms for low-rank Decompositions in the Tucker Format," SIMODS, 2020.

Recall: TUCKER-ALS

• Minimize the objective function:

$$F(\mathcal{G}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}) = \|\mathcal{X} - [\mathcal{G}; \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}]\|_F^2$$

• The canonical TUCKER-ALS - repeatedly solve until convergence:

$$A_{t+1} = \operatorname{arg\,min}_{\boldsymbol{A}} F\left(\mathcal{G}_{t}, \boldsymbol{A}, \boldsymbol{B}_{t}, \boldsymbol{C}_{t}\right) = \operatorname{arg\,min}_{\boldsymbol{A}} \left\| \left(\boldsymbol{C}_{t} \otimes \boldsymbol{B}_{t}\right) \boldsymbol{G}_{(1), t}^{\top} \boldsymbol{A}^{\top} - \boldsymbol{X}_{(1)}^{\top} \right\|_{F}^{2}$$

$$\mathbf{B}_{t+1} = \operatorname{arg\,min}_{\mathbf{B}} F\left(\mathcal{G}_{t}, \mathbf{A}_{t+1}, \mathbf{B}, \mathbf{C}_{t}\right) = \operatorname{arg\,min}_{\mathbf{B}} \left\| \left(\mathbf{C}_{t} \otimes \mathbf{A}_{t+1}\right) \mathbf{G}_{(2), t}^{\top} \mathbf{B}^{\top} - \mathbf{X}_{(2)}^{\top} \right\|_{F}^{2}$$

$$\blacktriangleright \ \mathcal{G}_{t+1} = \arg\min_{\mathcal{G}} \left\| (\boldsymbol{C}_{t+1} \otimes \boldsymbol{B}_{t+1} \otimes \boldsymbol{A}_{t+1}) \boldsymbol{g}_{(:)} - \boldsymbol{x}_{(:)} \right\|_2^2$$

Recall: Kronecker FJLTs

$$\min_{oldsymbol{B}} \|oldsymbol{Z}oldsymbol{B}^ op - oldsymbol{X}^ op \|_F^2$$

$$\min_{oldsymbol{B}} \|oldsymbol{S}ar{\mathcal{F}}ar{oldsymbol{D}}oldsymbol{Z}oldsymbol{B}^{ op} - oldsymbol{S}ar{\mathcal{F}}ar{oldsymbol{D}}oldsymbol{X}^{ op}\|_F^2$$

- S is $s \times N$ sampling matrix
- $\bar{\mathcal{F}} = \mathcal{F}_d \otimes \cdots \otimes \mathcal{F}_{k+1} \otimes \mathcal{F}_{k-1} \otimes \cdots \otimes \mathcal{F}_1$.
- $\bar{\boldsymbol{D}} = \boldsymbol{D}_d \otimes \cdots \otimes \boldsymbol{D}_{k+1} \otimes \boldsymbol{D}_{k-1} \otimes \cdots \otimes \boldsymbol{D}_1.$

$$Z = A_d \odot \cdots \odot A_{k+1} \odot A_{k-1} \odot \cdots \odot A_1$$

Mixing Kronecker product Efficiently Using KFJLT

$$egin{aligned} egin{aligned} ar{S}ar{\mathcal{D}}al{Z} &= m{S}(\mathcal{F}_2\otimes\mathcal{F}_1)(m{D}_2\otimesm{D}_1)(m{A}_2\odotm{A}_1) \ &= m{S}\left((\mathcal{F}_2m{D}_2)\otimes(\mathcal{F}_1m{D}_1)\right)(m{A}_2\odotm{A}_1) \ &= m{S}\left((\mathcal{F}_2m{D}_2m{A}_2)\odot(\mathcal{F}_1m{D}_1m{A}_1)
ight) \ &= m{S}(\hat{m{A}}_2\odot\hat{m{A}}_1) \end{aligned}$$

Same approach holds for Kronecker products too:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} ar{S}ar{m{D}}m{Z} &= m{S}(\mathcal{F}_2\otimes\mathcal{F}_1)(m{D}_2\otimesm{D}_1)(m{A}_2\otimesm{A}_1) \ &= m{S}\left((\mathcal{F}_2m{D}_2)\otimes(\mathcal{F}_1m{D}_1)\right)(m{A}_2\otimesm{A}_1) \ &= m{S}\left((\mathcal{F}_2m{D}_2m{A}_2)\otimes(\mathcal{F}_1m{D}_1m{A}_1)
ight) \ &= m{S}(\hat{m{A}}_2\otimes\hat{m{A}}_1) \end{aligned}$$

Structured Gaussian sketch

Standard Gaussian sketch: $\boldsymbol{S} \in \mathbb{R}^{m \times n_2 n_3}$ All entries are i.i.d Gaussian, $\boldsymbol{S}_{ij} \sim \mathbb{N}(0, 1)$. Structured Gaussian sketch [BBB15]: $\boldsymbol{S} = (\boldsymbol{S}_C \odot \boldsymbol{S}_B)^{\top}$, where $\boldsymbol{S}_C \in \mathbb{R}^{n_3 \times m}$ and $\boldsymbol{S}_B \in \mathbb{R}^{n_2 \times m}$. Then,

$$\left(oldsymbol{S}_{C}\odot oldsymbol{S}_{B}
ight) ^{ op}\left(oldsymbol{C}\odot oldsymbol{B}
ight) =\left(oldsymbol{S}_{C}^{ op} oldsymbol{C}
ight) *\left(oldsymbol{S}_{B}^{ op} oldsymbol{B}
ight)$$

Efficient! Can prove JL-type results.

TensorSketch

- TensorSketch: Structured CountSketch.
- CountSketch: S is of the form:

$$\begin{bmatrix} 0 & -1 & 0 & 0 & \cdots & 0 \\ +1 & 0 & 0 & +1 & \cdots & 0 \\ 0 & 0 & -1 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \cdots & -1 \end{bmatrix}$$

One random ± 1 per column. Row A_{i*} of A contributes $\pm A_{i*}$ to one of the rows of SA.

- TensorSketch was first introduced in [Pham & Pagh, 2013] for compressed matrix multiplication and approximating SVM polynomial kernels efficiently.
- Avron et al. show that TensorSketch provides an oblivious subspace embedding.

TensorSketch: Structured CountSketch

TensorSketch:

Countsketch: $S = PD \in \mathbb{R}^{m \times N}$ $S = P(D_C \otimes D_B)$, where $D_C \in \mathbb{R}^{n_3 \times n_3}$ and $D_B \in$ where **P** has 1 nonzero per column $\mathbb{R}^{n_2 \times n_2}$. Then,

 $P_{:,i} \sim Unif(e_1,\ldots,e_N).$

tries.

$$\mathbf{P}_{:,j} \sim Unif(\mathbf{e}_1, \dots, \mathbf{e}_N).$$

and \mathbf{D} is diagonal with i.i.d ± 1 en- $\mathbf{S}(\mathbf{C} \odot \mathbf{B}) = FFT^{-1} \left(FFT(\mathbf{S}_C \mathbf{C}) * FFT(\mathbf{S}_B \mathbf{B}) \right)$
tries.
$$\mathbf{S}(\mathbf{C} \otimes \mathbf{B}) = FFT^{-1} \left(\left(FFT(\mathbf{S}_C \mathbf{C})^\top \odot FFT(\mathbf{S}_B \mathbf{B})^\top \right)^\top \right)$$

TuckerTS Algorithm

Algorithm 2: TUCKER-TS (proposal)

```
input: \mathcal{Y}, target rank (R_1, R_2, \dots, R_N), sketch dimensions (J_1, J_2)
    output: Rank-(R_1, R_2, \dots, R_N) Tucker decomposition [G; \mathbf{A}^{(1)}, \dots, \mathbf{A}^{(N)}] of \mathcal{Y}
 1 Initialize G, A^{(2)}, A^{(3)}, \dots, A^{(N)}
 2 Define TENSORSKETCH operators \mathbf{T}^{(n)} \in \mathbb{R}^{J_1 \times \prod_{i \neq n} I_i}, for n \in [N], and \mathbf{T}^{(N+1)} \in \mathbb{R}^{J_2 \times \prod_i I_i}
 3 repeat
          for n = 1, \ldots, N do
        \mathbf{A}^{(n)} = \arg\min_{\mathbf{A}} \left\| \left( \mathbf{T}^{(n)} \bigotimes_{i=N, i \neq n}^{1} \mathbf{A}^{(i)} \right) \mathbf{G}_{(n)}^{\top} \mathbf{A}^{\top} - \mathbf{T}^{(n)} \mathbf{Y}_{(n)}^{\top} \right\|_{\Gamma}^{2}
          end
        9 = \arg\min_{\mathbf{z}} \left\| \left( \mathbf{T}^{(N+1)} \bigotimes_{i=N}^{1} \mathbf{A}^{(i)} \right) \mathbf{z}_{(:)} - \mathbf{T}^{(N+1)} \mathbf{y}_{(:)} \right\|_{2}^{2}
           Orthogonalize each A^{(i)} and update G
 9 until termination criteria met
10 return 9, A^{(1)}, \dots, A^{(N)}
```

$$\mathbf{T}\mathbf{A} = \mathbf{T} \bigotimes_{i=N}^{1} \mathbf{A}^{(i)} = \mathbf{F}\mathbf{F}\mathbf{T}^{-1} \left(\left(\bigodot_{i=N}^{1} \left(\mathbf{F}\mathbf{F}\mathbf{T} \left(\mathbf{S}^{(i)} \mathbf{A}^{(i)} \right) \right)^{\top} \right)^{\top} \right).$$

TensorSketch: Results

[Avron et al, 2014]

(AMM) Given $\mathbf{A} \in \mathbb{R}^{n^q \times d}$; $\mathbf{B} \in \mathbb{R}^{d' \times n^q}$; $\epsilon, \delta > 0$.

Let $S \in \mathbb{R}^{m \times n^q}$ be a TensorSketch matrix, and if $m \ge \frac{(2+3^q)}{\epsilon^2 \delta}$, then with probability at least $1 - \delta$:

$$\|\boldsymbol{B}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{A} - \boldsymbol{B}\boldsymbol{A}\|_{F} \leq \epsilon \|\boldsymbol{A}\|_{F} \|\boldsymbol{B}\|_{F}.$$

(Subspace embedding) For any fixed r-dimensional subspace U, if $m \ge \frac{r^2(2+3^q)}{\epsilon^2 \delta}$, then with probability at least $1 - \delta$:

$$\|\boldsymbol{U}^{\top}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{U} - \boldsymbol{I}\|_{2} \leq \epsilon$$

TensorSketch: Results

[Malik & Becker, 2018]

Assume $T^{(q+1)}$ be a TensorSketch matrix as in TuckerTS algorithm, and let

$$oldsymbol{M} := \left(oldsymbol{T}^{(q+1)} \otimes_{i=q}^1 oldsymbol{A}^{(i)}
ight)^ op \left(oldsymbol{T}^{(q+1)} \otimes_{i=q}^1 oldsymbol{A}^{(i)}
ight), ext{ where all } oldsymbol{A}^{(i)} ext{ have orthonormal columns.}$$

If $m \ge \frac{(\prod_i r_i)^2 (2+3^q)}{\epsilon^2 \delta}$, then with probability at least $1 - \delta$:

$$\|\boldsymbol{M} - \boldsymbol{I}\|_2 \le \epsilon$$

Tensor Train Decomposition

• Based on the notion of variable splitting, consider an unfolding \boldsymbol{A} of a tensor $\boldsymbol{\mathcal{A}}$

$$\mathbf{A}(i_1 i_2; i_3 i_4 i_5 i_6) = \sum_{\alpha_2} \mathbf{U}(i_1 i_2; \alpha_2) \mathbf{V}(i_3 i_4 i_5 i_6; \alpha_2)$$

- Provided a-priori knowledge as for separability of variables, the dimension has reduced (e.g. 6-dimensional tensor is decomposed into a product of 3- and 5-dimensional tensors)
- The process can obviously be repeated recursively leading to the Tensor Train decomposition

Tensor Train Decomposition

TT format of a tensor A

$$\mathcal{A}(i_1,\ldots,i_d) = \sum_{\alpha_0,\ldots,\alpha_d} \mathcal{G}_1(\alpha_0,i_1,\alpha_1) \mathcal{G}_2(\alpha_1,i_2,\alpha_2),\ldots,\mathcal{G}_d(\alpha_{d-1},i_d,\alpha_d)$$

Can be represented compactly as a matrix product:

$$\mathcal{A}(i_1,\ldots,i_d) = \underbrace{\mathcal{G}_1[i_1]}_{1\times r_1} \underbrace{\mathcal{G}_2[i_2]}_{r_1\times r_2} \ldots \underbrace{\mathcal{G}_d[i_d]}_{r_{d-1}\times 1}$$

- \mathcal{G}_i : TT-cores (collections of matrices)
- r_i : TT-ranks
- $r = \max r_i$: the maximal TT-rank

TT uses $\mathcal{O}(dnr^2)$ memory to store $\mathcal{O}(nd)$ elements

Efficient only if the ranks are small

Oseledets, Tensor-train decomposition, 2011

References:

- Biagioni, David J., Daniel Beylkin, and Gregory Beylkin. "Randomized interpolative decomposition of separated representations." Journal of Computational Physics 281 (2015): 116-134.
- Pham, Ninh, and Rasmus Pagh. "Fast and scalable polynomial kernels via explicit feature maps" Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013.
- Avron, Haim, Huy Nguyen, and David Woodruff. "Subspace embeddings for the polynomial kernel." Advances in neural information processing systems 27 (2014).
- Malik, Osman Asif, and Stephen Becker. "Low-rank tucker decomposition of large tensors using tensorsketch." Advances in neural information processing systems 31 (2018).

Questions?