Subiendo la Escalera con PD - Ruta en Grafos Mediante Algoritmos Greedy Diseño y Análisis de Algoritmos - INFO145

Académico: Héctor Ferrada Instituto de Informática, Universidad Austral de Chile.

Junio 31 de 2023

Entrega. Debe subir todo a siveduc en un archivo, Apellidos.zip (3 o 4 integrantes por grupo), con su implementación (incluya todo lo necesario para su ejecución, como Makefile en el caso de C++) y su informe. Fecha de entrega: **Miércoles 21 de Junio, 2023**.

Informe. El informe debe ser claro, objetivo y detallado, este debe contemplar: resumen, introducción, metodología —la cual debe incluir un análisis teórico y las hipótesis de investigación—, experimentación y conclusiones. Se debe introducir adecuadamente el contexto del problema, explicar la lógica que usó en sus implementaciones y la justificación de ello, detallar la experimentación realizada, incluir gráficas de sus resultados y dar buenas conclusiones de su trabajo; con todo esto debe validar o rechazar sus hipótesis iniciales justificando detallada y objetivamente.

Introduccion

El desafío de este trabajo radica en la aplicación de su conocimiento y dominio en el análisis de algoritmos y estructuras de datos para resolver los problemas planteados. Se espera que pueda realizar un análisis teórico sólido en cada caso, brindando soluciones correctas y eficientes que permitan medir y comparar el rendimiento tanto asintótico como empírico de sus propuestas. Es fundamental demostrar su capacidad para combinar la teoría con la práctica, para proporcionar soluciones prácticas y concisas respaldadas por una base solidas.

1. Subiendo la Escalera con Programación Dinámica

1.1. Definición del problema

Subir una escalera es un problema trivial en nuestra vida cotidiana. Sin embargo, ¿Qué sucedería si nos encontramos frente a una escalera con un gran número de escalones y algunos de ellos están rotos?, desde luego, no es posible pisar los escalones rotos. Usted se enfrenta a este problema que formalmente definimos a continuación:

Se debe subir una escalera de n escalones, representada como un array E[1...n], llegando al escalón n-ésimo. Esta posee r escalones rotos distribuidos de forma aleatoria, donde $r \in \mathbb{N} : r < n$. A favor tiene que se puede subir con saltos de super Mario, los cuales están limitados exclusivamente a potencias de p; es decir, puede saltar de $x \in \{p^0, p^1, p^2, \dots p^k\}$ escalones, con $p^k \le n$. De este modo, puede escoger la cantidad de escalones x a saltar en cada paso y evitar los escalones dañados, teniendo mucho cuidado de no saltar mas allá de la cima (escalon n-ésimo), ya que al otro lado hay un precipicio que le causaría una gran tragadia.

El objetivo final es determinar todas las formas posibles alcanzar el escalón n-ésimo sin pisar escalones rotos.

Ejemplo: Si se considera una escalera E[1..n] donde n=10 escalones, de los cuales r=3 escalones rotos, como muestra la imagen, y puede saltar en potencias de p=2: $x \in \{2^0, 2^1, 2^2, 2^3\} = \{1, 2, 4, 8\}$ escalones.

Para prevenir una caida, se debe calcular de antemano las combinaciones posibles para llegar a la cima. Para este ejemplo existe 8 formas posibles para llegar sin caerse:

- -Forma 1: pisando los escalones: 1 2 3 7 9 10
- -Forma 2: pisando los escalones: 1 2 6 7 9 10
- -Forma 3: pisando los escalones: 1 2 6 10
- -Forma 4: pisando los escalones: 1 2 10
- -Forma 5: pisando los escalones: 1 3 7 9 10

-Forma 6: pisando los escalones: 1 9 10 -Forma 7: pisando los escalones: 2 3 7 9 10 -Forma 8: pisando los escalones: 2 6 7 9 10 -Forma 9: pisando los escalones: 2 6 10 -Forma 10: pisando los escalones: 2 10

1.2. Análisis Teórico

En su informe realice lo siguiente:

- Describa con palabras breves, claras y objetivas, una solución utilizando un algoritmo de fuerza bruta y otro usando programación dinámica.
- Escriba los pseudocódigos y determine los tiempos de ejecución asintóticos.
- ¿Es posible esperar un compartamiento muy diferente en la eficiencia de la PD si el valor de r es muy pequeño o muy grande?. Del mismo modo: ¿Qué se espera en los casos que el valor de la potencia p sea muy grande o pequeño?
- Explique de manera clara y objetiva por qué la utilización de la programación dinámica resulta beneficiosa para la solución de este problema.

1.3. Experimentacion

Implemente y ejecute ambas soluciones (fuerza bruta y dinámica). Realice pruebas que le permitan inferir conclusiones claras, testeando los algoritmos con distintos tipos de variables en x y r. Procure utilizar un valor alto para n de manera que los escalones rotos se distribuyan de forma adecuada y exista la posibilidad de llegar a la cima. El experimento debe considerar el tiempo de cómputo para los distintos tipos de x y r. Por supuesto, se espera que incluya rutinas que aseguren que los métodos devuelvan los resultados correctos. Debe de graficar los resultados de sus experimentos para luego analizar y concluir sobre los eventos.

Es importante que comente sobre la metodología empleada y las condiciones en las que se llevó a cabo la experimentación, incluyendo detalles que permitan la reproducción de los resultados obtenidos.

2. Ruta en Grafos Mediante Algoritmos Greedy

2.1. Definición del problema

Para el siguiente problema, consideramos una zona geográfica terrestre de un país que consta de n ciudades conectadas por un conjunto E de rutas, representadas mediante un grafo dirigido G=(V,E). Aquí, |V|=n y las rutas en E son pares ordenados (u,v), donde $u,v\in V$. Además, tenemos una función de costo $w:E\to\mathbb{R}^+$ que asigna un costo w(u,v) para ir de la ciudad u a la ciudad v.

Adicionalmente, el país posee un archipiélago con m islas, las cuales se encuentran separadas del continente. Este archipiélago también tiene un conjunto E' de rutas entre las islas, representadas mediante un grafo **no** dirigido G' = (V', E'), donde |V'| = m. Asimismo, existe una ruta marítima entre las islas x e y, representada por el par (x, y) en E', y w'(x, y) > 0 denota el costo de viajar entre x e y.

El objetivo es encontrar la ruta más económica entre la capital continental del país, denotada como $s \in V$, y la capital regional del archipiélago ubicada en la isla $z \in E'$. Para lograrlo, debemos tener en cuenta que entre las n ciudades, solo k de ellas, donde k < n, tienen un puerto marítimo, los cuales se representan como p_i para $1 \le i \le k$. Además, solo $\lfloor \log m \rfloor$ islas están habilitadas para recibir un barco desde el continente, islas denotadas como q_j , con $1 \le j \le \lfloor \log m \rfloor$. De esta manera, es posible partir desde un puerto p_i hacia una isla q_j con un costo determinado por la función $costoBarco(p_i, q_j)$, donde p_i representa una ciudad con puerto y q_j es una isla habilitada para recibir barcos desde el continente. Este costo $costoBarco(p_i, q_j) \in \mathbb{R}$ puede incluso ser negativo, ya que algunas islas ofrecen bonificaciones a los barcos.

A continuación, se presenta un ejemplo del problema modelado, donde n = 5, k = 2, m = 9, y $\lfloor \log m \rfloor = 3$. Las líneas segmentadas representan los viajes que son posibles realizar entre los k puertos del continente y las $\lfloor \log m \rfloor$ islas habilitadas para recibir barcos.

2.2. Analisis Teorico

En su informe realice lo siguiente:

- Describa con palabras breves, claras y objetivas, una solución utilizando un algoritmo de fuerza bruta
- Describa con palabras un algoritmo greedy que encuentre la ruta de costo mínimo entre s y z. Séa breve, claro y objetivo al mismo tiempo. Se espera que reutilice y/o adapte y/o mejore alguno(s) de lo(s) algoritmo(s) para grafos que se estudiaron en clase, indicando cuales son las adecuaciones.
- Escriba el pseudocódigo de su algoritmo determine el tiempo de ejecución asintótico.
- ¿Cómo afecta la variación de valores de k en el tiempo de ejecución del pseudocódigo?
- ¿Es posible aplicar alguna mejora a su propuesta greedy a fin de acelerar el tiempo de ejecución de su algoritmo para ciertos casos especiales? Justifiue su respuesta.

2.3. Experimentation

De acuerdo al problema planteado, se sugiere proponer tamaños adecuados para las variables n, k y m, considerando su relevancia en la experimentación, con el fin de obtener conclusiones sólidas. Además, se requiere calcular el tiempo promedio de ejecución de cada solución y representar gráficamente los resultados de los experimentos para un análisis detallado y concluyente de los eventos.

Es importante que comente sobre la metodología empleada y las condiciones en las que se llevó a cabo la experimentación, incluyendo detalles que permitan la reproducción de los resultados obtenidos.

Evaluación

Su trabajo será evaluado con dos notas:

- Nota de Informe. Una nota por el informe que pondera un 60 % del trabajo. En esta se evaluará el trabajo teórico y el análisis que ha realizado. Además de la estructura, presentación y calidad de su escrito; la cual además incluye la presentación de los resultados obtenidos y sus conclusiones.
- Nota de Implementación. Una nota por las implementaciones pedidas que pondera un 40 % del trabajo. No solo se espera que entregue códigos correctos, sino que además esten ordenados, sean modulares y que esten debidamente documentados. Se pide que su código sea implementado en C++ con el mayor grado de optimización (basta con el flag -O3 en su Makefile). Por favor incluya un archivo README.txt con las instrucciones de como se ejecuta su código.