

#### Not all languages are regular

- So what happens to the languages which are not regular?
- Can we still come up with a language recognizer?
  - i.e., something that will accept (or reject) strings that belong (or do not belong) to the language?



#### **Context-Free Languages**

A language class larger than the class of regular languages

Supports natural, recursive notation called "context-

free grammar"

Applications:

- Parse trees, compilers
- XML





#### An Example

- A palindrome is a word that reads identical from both ends
  - E.g., madam, redivider, malayalam, 010010010
- Let L = { w | w is a binary palindrome}
- Is L regular?
  - No.
  - Proof:
    - Let w=0N10N (assuming N to be the p/l constant)
    - By Pumping lemma, w can be rewritten as xyz, such that xy<sup>k</sup>z is also L (for any k≥0)
    - But |xy|≤N and y≠ε
    - ==> y=0+
    - ==> xy<sup>k</sup>z will NOT be in L for k=0
    - ==> Contradiction



# But the language of palindromes...

is a CFL, because it supports recursive substitution (in the form of a CFG)

This is because we can construct a "are report" like this:

"grammar" like this:

1. 
$$A ==> \varepsilon$$
  
2.  $A ==> 0$  Terminal

Same as:  $A => 0A0 | 1A1 | 0 | 1 | \epsilon$ 

Productions 4

 $A = \ge 1$ 

A ==> 0A0

5.  $A ==> 1A^2$ 

Variable or non-terminal

How does this grammar work?



# How does the CFG for palindromes work?

An input string belongs to the language (i.e., accepted) iff it can be generated by the CFG

- Example: w=01110
- G can generate w as follows:

```
\frac{G:}{A => 0A0 \mid 1A1 \mid 0 \mid 1 \mid \epsilon}
```

- 1. A => 0A0
- => 01A10
- => 01110

#### Generating a string from a grammar:

- Pick and choose a sequence of productions that would allow us to generate the string.
- 2. At every step, substitute one variable with one of its productions.



- A context-free grammar G=(V,T,P,S), where:
  - V: set of variables or non-terminals
  - T: set of terminals (= alphabet U {ε})
  - P: set of productions, each of which is of the form  $V ==> \alpha_1 | \alpha_2 | \dots$ 
    - Where each α<sub>i</sub> is an arbitrary string of variables and terminals
  - S ==> start variable

CFG for the language of binary palindromes:  $G=(\{A\},\{0,1\},P,A)$ P: A==>0 A 0 | 1 A 1 | 0 | 1 |  $\epsilon$ 



#### More examples

- Parenthesis matching in code
- Syntax checking
- In scenarios where there is a general need for:
  - Matching a symbol with another symbol, or
  - Matching a count of one symbol with that of another symbol, or
  - Recursively substituting one symbol with a string of other symbols



#### Example #2

- Language of balanced paranthesis
  - e.g., ()(((())))((()))....
- CFG?

How would you "interpret" the string "(((()))())" using this grammar?



#### Example #3

- A grammar for  $L = \{0^m1^n \mid m \ge n\}$
- CFG?

$$\frac{G:}{S \Rightarrow 0S1 \mid A}$$
  
 $A \Rightarrow 0A \mid \epsilon$ 

How would you interpret the string "00000111" using this grammar?

## Example #4

```
A program containing if-then(-else) statements

if Condition then Statement else Statement

(Or)

if Condition then Statement

CFG?
```



#### More examples

- $L_1 = \{0^n \mid n \ge 0\}$
- $L_2 = \{0^n \mid n \ge 1\}$
- $L_3 = \{0^i 1^j 2^k \mid i=j \text{ or } j=k, \text{ where } i,j,k \ge 0\}$
- $L_4 = \{0^i 1^j 2^k \mid i=j \text{ or } i=k, \text{ where } i,j,k \ge 1\}$



#### Applications of CFLs & CFGs

- Compilers use parsers for syntactic checking
- Parsers can be expressed as CFGs
  - Balancing paranthesis:
    - B ==> BB | (B) | Statement
    - Statement ==> ...
  - 2. If-then-else:
    - S ==> SS | if Condition then Statement else Statement | if Condition then Statement | Statement
    - Condition ==> ...
    - Statement ==> ...
  - 3. C paranthesis matching { ... }
  - 4. Pascal begin-end matching
  - 5. YACC (Yet Another Compiler-Compiler)



#### More applications

- Markup languages
  - Nested Tag Matching
    - HTML
      - <html> ... ... <a href=...> ... </a> ... </html>
    - XML
      - <PC> ... <MODEL> ... </MODEL> .. <RAM> ...
        </RAM> ... </PC>

## 4

### Tag-Markup Languages

```
Roll ==> <ROLL> Class Students </ROLL> Class ==> <CLASS> Text </CLASS> Text ==> Char Text | Char Char ==> a \mid b \mid ... \mid z \mid A \mid B \mid ... \mid Z Students ==> Student Students | $\varepsilon$ Student ==> <STUD> Text </STUD>
```

Here, the left hand side of each production denotes one non-terminals (e.g., "Roll", "Class", etc.)

Those symbols on the right hand side for which no productions (i.e., substitutions) are defined are terminals (e.g., 'a', 'b', '|', '<', '>', "ROLL", etc.)

## 4

### Structure of a production



The above is same as:

1. 
$$A ==> \alpha_1$$

2. 
$$A ==> \alpha_2$$

3. 
$$A ==> \alpha_3$$

. . .

K. 
$$A ==> \alpha_k$$



### **CFG** conventions

- Terminal symbols <== a, b, c...</p>
- Non-terminal symbols <== A,B,C, ...</p>
- Terminal or non-terminal symbols <== X,Y,Z</p>
- Terminal strings <== w, x, y, z</p>
- Arbitrary strings of terminals and nonterminals  $\leftarrow = \alpha, \beta, \gamma, ...$



### Syntactic Expressions in Programming Languages



#### Regular languages have only terminals

- Reg expression = [a-z][a-z0-1]\*
- If we allow only letters a & b, and 0 & 1 for constants (for simplification)
  - Regular expression = (a+b)(a+b+0+1)\*



#### String membership

How to say if a string belong to the language defined by a CFG?

- Derivation
  - Head to body
- 2. Recursive inference
  - Body to head

#### **Example:**

- W = 01110
- Is w a palindrome?

Both are equivalent forms

$$G:$$
A => 0A0 | 1A1 | 0 | 1 |  $\epsilon$ 



#### Simple Expressions...

- We can write a CFG for accepting simple expressions
- G = (V,T,P,S)
  - V = {E,F}
  - $T = \{0,1,a,b,+,*,(,)\}$
  - S = {E}
  - P:
    - E ==> E+E | E\*E | (E) | F
    - F ==> aF | bF | 0F | 1F | a | b | 0 | 1



## Generalization of derivation

Derivation is head ==> body

- A==>X (A derives X in a single step)
- $A ==>^*_G X$  (A derives X in a multiple steps)

#### Transitivity:

IFA ==> $^*_G$ B, and B ==> $^*_G$ C, THEN A ==> $^*_G$  C



#### Context-Free Language

The language of a CFG, G=(V,T,P,S), denoted by L(G), is the set of terminal strings that have a derivation from the start variable S.

• 
$$L(G) = \{ w \text{ in } T^* \mid S ==>^*_G w \}$$



<u>G:</u> E => E+E | E\*E | (E) | F F => aF | bF | 0F | 1F | ε

Derive the string  $\underline{a}^*(ab+10)$  from G:

$$E = ^* = >_G a^*(ab+10)$$

Left-most derivation:

Always substitute leftmost variable

```
■E
■=> E * E
■=> F * E
■=> a * E
■=> a * (E)
■=> a * (E + E)
■=> a * (F + E)
■=> a * (aF + E)
■=> a * (ab + E)
■=> a * (ab + F)
■=> a * (ab + 1F)
■=> a * (ab + 10F)
■=> a * (ab + 10F)
```

```
•E
  •==> E * E
  ■==> E * (E)
  ■==> E * (E + E)
 ■==> E * (E + F)
! ■==> E * (E + 1F)
! •==> E * (E + 10F)
  ■==> E * (E + 10)
  ■==> E * (F + 10)
  •==> E * (aF + 10)
 •==> E * (abF + 0)
  ■==> E * (ab + 10)
  •==> F * (ab + 10)
  ==> aF * (ab + 10)
  ==> a * (ab + 10)
```

Right-most derivation:

Always substitute rightmost variable



## Leftmost vs. Rightmost derivations

Q1) For every leftmost derivation, there is a rightmost derivation, and vice versa. True or False?

True - will use parse trees to prove this

Q2) Does every word generated by a CFG have a leftmost and a rightmost derivation?

Yes – easy to prove (reverse direction)

Q3) Could there be words which have more than one leftmost (or rightmost) derivation?

Yes – depending on the grammar