Rough Draft Q2

Considering the constraint of the Climate Change Act and other government targets, produce a model forecasting the carbon emissions of the evolving profile of vehicles on the UK road network.

```
# load data
all <- read.csv("GB_all_data.csv")
colnames(all)[1] <- "Year"

# take the date out - this new df will be used for subset regression coming up
df <- all[,-c(1, 2, 3)]

# remove 2019
df <- df[1:25,]

# turn into df
df <- data.frame(df)</pre>
# use all predictors
```

1.) Best subset regression selection

m1 <- lm(Total_GHGs ~., data = df)

The number of models that this procedure fits multiplies quickly. If you have 10 independent variables, it fits 1024 models. However, if you have 20 variables, it fits 1,048,576 models

```
# https://statisticsbyjim.com/regression/guide-stepwise-best-subsets-regression/
# https://olsrr.rsquaredacademy.com/articles/variable_selection.html
# change the ols() function, there are cool ones to pick from
ols_step_best_subset(m1)
```

```
##
                                                                                  Best Subsets Regression
## Model Index
                  Predictors
##
##
                  Total_Production
        1
                  Unemployment_rate Total_Production
##
##
       3
                  Hybrid_Electric Range_Extended_Electric Total_Vehicles
##
                  Diesel Hybrid_Electric Range_Extended_Electric Total_Production
##
       5
                  Hybrid_Electric BE Gas Other Total_Vehicles
##
                  Diesel Hybrid_Electric Plug.in_HE Gas Other Unemployment_rate
        7
                  Diesel Hybrid_Electric Plug.in_HE Fuel_Cell_Electric Gas Other Unemployment_rate
##
```

```
##
                  Petrol Hybrid_Electric Plug.in_HE Fuel_Cell_Electric Gas Other Total_Vehicles Unemplo
##
       9
                  Petrol Diesel Hybrid_Electric Fuel_Cell_Electric Gas Other Total_Vehicles Unemploymen
                  Petrol Diesel Hybrid_Electric Plug.in_HE BE Fuel_Cell_Electric Other Total_Vehicles U
##
       10
                  Petrol Diesel Hybrid_Electric Plug.in_HE BE Range_Extended_Electric Gas Total_Vehicle
##
       11
##
                  Petrol Diesel Hybrid_Electric Plug.in_HE BE Range_Extended_Electric Fuel_Cell_Electri
                  Petrol Diesel Hybrid_Electric Plug.in_HE BE Range_Extended_Electric Fuel_Cell_Electri
##
       13
                  Petrol Diesel Hybrid_Electric Plug.in_HE BE Range_Extended_Electric Fuel_Cell_Electri
##
##
##
```

Subsets Regression Summary

	Model	R-Square	Adj. R-Square	Pred R-Square	C(p)	AIC	SBIC	SBC	MSEP
## ##	1	0.7611	0.7507	0.7122	96.2483	454.5695	NA	458.2262	98685865.023
##	2	0.8019	0.7839	0.745	78.2418	451.8922	NA	456.7677	85744141.566
##	3	0.9019	0.8879	0.8712	31.1448	436.3175	NA	442.4119	44574854.5119
##	4	0.9313	0.9176	0.8828	18.7141	429.4101	NA	436.7234	32857117.2218
##	5	0.9612	0.9510	0.9277	6.0237	417.1043	NA	425.6364	19570107.887
##	6	0.9686	0.9581	0.9322	4.4187	413.8517	NA	423.6027	16794590.317
##	7	0.9716	0.9598	0.9419	4.9592	413.3656	NA	424.3355	16155162.644
##	8	0.9744	0.9615	0.9339	5.5875	412.7797	NA	424.9685	15538834.975
##	9	0.9760	0.9616	0.9246	6.7696	413.1002	NA	426.5078	15566981.426
##	10	0.9765	0.9598	0.9188	8.5204	414.5652	NA	429.1917	16409538.8450
##	11	0.9773	0.9581	0.922	10.1459	415.7390	NA	431.5843	17199064.174
##	12	0.9775	0.9549	0.9091	12.0551	417.5345	NA	434.5988	18609783.017
##	13	0.9776	0.9511	0.889	14.0000	419.4096	NA	437.6927	20368712.8150
##	14	0.9776	0.9511	0.889	14.0000	421.4096	NA	440.9116	20368712.815
##									

AIC: Akaike Information Criteria

SBIC: Sawa's Bayesian Information Criteria

SBC: Schwarz Bayesian Criteria

MSEP: Estimated error of prediction, assuming multivariate normality

FPE: Final Prediction Error

HSP: Hocking's Sp

##

##

APC: Amemiya Prediction Criteria

This takes a very long time if you use all 14 X variables.

```
# based on OLS results we selected these two variables
m2 <- lm(Total_GHGs ~ Hybrid_Electric + Range_Extended_Electric + Total_Vehicles, data = df)
# check out model
summary(m2)</pre>
```

```
##
## Call:
## lm(formula = Total_GHGs ~ Hybrid_Electric + Range_Extended_Electric +
## Total_Vehicles, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2279.4 -766.1 -55.6 638.3 3646.0
```

```
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                           8.856e+04 4.103e+03 21.585 8.12e-16 ***
## (Intercept)
## Hybrid Electric
                          -1.309e-01 1.004e-02 -13.042 1.55e-11 ***
## Range Extended Electric 4.263e+00 3.599e-01 11.845 9.25e-11 ***
## Total Vehicles
                           1.203e-03 1.662e-04 7.241 3.92e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1332 on 21 degrees of freedom
## Multiple R-squared: 0.9019, Adjusted R-squared: 0.8879
## F-statistic: 64.36 on 3 and 21 DF, p-value: 9.334e-11
# https://www.researchgate.net/post/How_high_of_VIF_value_in_regression_can_be_accepted
# check for colinearity
vif(m2)
##
          Hybrid Electric Range Extended Electric
                                                           Total Vehicles
##
                18.719487
                                        11.993388
                                                                 3.521579
```

A VIF above 5 is not good, a VIF above 10 is very bad, so we will go to the 2 X-variable model, which is Unemployment_rate Total_Production = Yhat.

```
# based on OLS results we selected these two variables
m3 <- lm(Total_GHGs ~ Unemployment_rate + Total_Production, data = df)
# check out model
summary(m3)
##
## lm(formula = Total_GHGs ~ Unemployment_rate + Total_Production,
##
       data = df
##
## Residuals:
             1Q Median
##
     Min
                           3Q
                                 Max
##
   -3749 -1550
                    289
                         1284
                                 2982
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     34168.7
                                11862.8
                                           2.880 0.00869 **
## Unemployment_rate
                     -600.3
                                   282.1 -2.128 0.04483 *
## Total_Production
                       842.0
                                  110.0
                                         7.655 1.22e-07 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1850 on 22 degrees of freedom
```

Multiple R-squared: 0.8019, Adjusted R-squared: 0.7839
F-statistic: 44.52 on 2 and 22 DF, p-value: 1.847e-08

```
# https://www.researchgate.net/post/How_high_of_VIF_value_in_regression_can_be_accepted
# check for colinearity
vif(m3)
## Unemployment_rate Total_Production
## 1.175879 1.175879
```

2.) Forecasting our X variables

https://otexts.com/fpp2/the-forecast-package-in-r.html

If the first argument is of class ts, it returns forecasts from the automatic ETS algorithm discussed in Chapter 7.

```
# use only needed data
future_df <- all[,c("Year", "Unemployment_rate", "Total_Production")]</pre>
# turn into time series data
future_df <- ts(future_df)</pre>
# forecast 4 ahead (4 is arbitrary)
fore_df <- forecast(future_df, h = 4) %>% data.frame()
# keep only point forecast
fore_df <- fore_df[,1:3]</pre>
# turn df into long shape
fore_df_long <- pivot_wider(fore_df, names_from = Series, values_from = Point.Forecast)</pre>
coef(m3)
##
         (Intercept) Unemployment_rate Total_Production
##
          34168.6941
                              -600.2673
                                                   841.9804
```

Now add those to df as constants.

```
fore_df_long$Intercept <- 34168.6941
fore_df_long$UR_coef <- -600.2673
fore_df_long$TP_coef <- 841.9804</pre>
```

3.) Final predictions

```
# predictions
final <- fore_df_long %>%
   mutate(Y_hat = (Intercept + (Unemployment_rate * UR_coef) + (Total_Production * TP_coef)))
head(final)
```

```
## # A tibble: 4 x 8
##
     Time
            Year Unemployment_ra~ Total_Production Intercept UR_coef TP_coef Y_hat
                             <dbl>
                                               <dbl>
                                                         <dbl>
                                                                          <dbl> <dbl>
##
     <chr> <dbl>
                                                                 <dbl>
## 1 27
            2020
                              3.48
                                                97.9
                                                        34169.
                                                                 -600.
                                                                           842. 1.15e5
## 2 28
                                                                 -600.
            2021
                              3.17
                                                97.9
                                                        34169.
                                                                           842. 1.15e5
## 3 29
            2022
                              2.85
                                                97.9
                                                        34169.
                                                                 -600.
                                                                           842. 1.15e5
## 4 30
            2023
                              2.54
                                                97.9
                                                        34169.
                                                                 -600.
                                                                           842. 1.15e5
```

```
# just see the predicted values
print(final$Y_hat)
```

[1] 114507.3 114696.2 114885.1 115073.9

From 2015 - 2018 our data was * 111,973.846 * 114,585.172 * 114,785.965 * 113,280.299

Thoughts

- To be honest, not a big fan of using total production for an X variable. Maybe a lag variable instead?
- Changing the forecasting approach. This was just a quick example
- X columns with a lot of 0's? not sure it's good to have, if okay to have we can add other ones such as Electric charging points