Convex optimization

Soft-margin SVMs

Soft-margin SVM optimization problem defined by training data $\{(x_i, y_i)\}_{i=1}^n$:

$$\min_{\boldsymbol{w} \in \mathbb{R}^d, t \in \mathbb{R}} \qquad \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{n} \sum_{i=1}^n \left[1 - y_i \left(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - t \right) \right]_+.$$

Compare with Empirical Risk Minimization (i.e., minimize training error rate):

$$\min_{oldsymbol{w} \in \mathbb{R}^d, t \in \mathbb{R}} \qquad rac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ y_i \left(\langle oldsymbol{w}, oldsymbol{x}_i
angle - t
ight) \leq 0
ight\}.$$

In both cases, *i*-th term in summation is function of $y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - t)$.

Zero-one loss vs. hinge loss

$-\ell_{\text{hinge}}(\boldsymbol{w},t;\boldsymbol{x},y)$ $-1 \{y(\langle \boldsymbol{w},\boldsymbol{x}\rangle - t) \leq 0\}$ $y(\langle \boldsymbol{w},\boldsymbol{x}\rangle - t)$

Hinge loss: an upper-bound on zero-one loss.

$$\mathbb{1}\Big\{y\big(\langle \boldsymbol{w},\boldsymbol{x}\rangle-t\big)\leq 0\Big\} \leq \left[1-y\big(\langle \boldsymbol{w},\boldsymbol{x}\rangle-t\big)\right]_{+} =: \ell_{\mathrm{hinge}}(\boldsymbol{w},t;\boldsymbol{x},y).$$

Soft-margin SVM minimizes an upper-bound on the training error rate, plus a term that encourages large margins.

General form

Soft-margin SVM:

$$\min_{\boldsymbol{w} \in \mathbb{R}^d, t \in \mathbb{R}} \qquad \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{n} \sum_{i=1}^n \ell_{\text{hinge}}(\boldsymbol{w}, t; \boldsymbol{x}_i, y_i).$$

Empirical risk minimization (i.e., minimize training error rate):

$$\min_{\boldsymbol{w} \in \mathbb{R}^d, t \in \mathbb{R}} \qquad \frac{1}{n} \sum_{i=1}^n \mathbb{1} \Big\{ y_i \big(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - t \big) \leq 0 \Big\} \,.$$

Generic learning objective:

$$\min_{oldsymbol{w} \in \mathbb{R}^d} \qquad R(oldsymbol{w}) + rac{1}{n} \sum_{i=1}^n \ell(oldsymbol{w}; oldsymbol{x}_i, y_i) \,.$$

- ▶ Regularization term: encodes "learning bias" (e.g., prefer large margins).
- ▶ Training loss term: how poor is the "fit" to the training data.

Learning via optimization

- ▶ Many different choices for regularization and loss.
 - $R(w) = \lambda ||w||_2^2/2$: encourage large margins

 - ► $R(w) = \lambda ||w||_1$: encourage w to be sparse ► $R(w) = \lambda \sum_{i=1}^{d-1} |w_{i+1} w_i|$: useful for ordered features.
 - $\ell(\boldsymbol{w}; \boldsymbol{x}, y) = [\langle \boldsymbol{w}, \boldsymbol{x} \rangle y]_{+}^{2}$
 - $\ell(\boldsymbol{w},t;\boldsymbol{x},y) = \ln(1 + \exp(-y\langle \boldsymbol{w}, \boldsymbol{x} \rangle))$ (logistic regression)

 - ► Also used beyond classification (e.g., regression, parameter estimation, clustering)
- \blacktriangleright For classification problems, often want ℓ to be an upper-bound on zero-one loss—i.e., a surrogate loss.
- ▶ Trade-off parameter $\lambda > 0$: usually determine using cross validation.
- ► Computationally easier when overall objective function is **convex**: possible to efficiently find global minimizer in polynomial time.

Introduction to convexity

Convex sets

A set A is **convex** if, for every pair of points $\{x, x'\}$ in A, the line segment between x and x' is also contained in A.

Examples:

- ightharpoonup All of \mathbb{R}^d .
- ► Empty set.
- ► Affine hyperplanes.
- ▶ Half-spaces: $\{a \in \mathbb{R}^d : \langle a, x \rangle b \leq 0\}$.
- ▶ Intersections of convex sets.
- Convex hulls: $conv(S) := \{ \sum_{i=1}^k \alpha_i x_i : k \in \mathbb{N}, x_i \in S, \alpha_i \ge 0, \sum_{i=1}^k \alpha_i = 1 \}.$

Convex functions

For any function $f: \mathbb{R}^d \to \mathbb{R}$, the **epigraph** of f, denoted epi(f), is the set

$$epi(f) := \{(x, b) \in \mathbb{R}^{d+1} : f(x) \le b\}.$$

A function f is **convex** if epi(f) is a convex set in \mathbb{R}^{d+1} .

Examples:

- $f(x) = c^x$ for any c > 0 (on \mathbb{R})
- $ightharpoonup f(x) = |x|^c$ for any $c \ge 1$ (on \mathbb{R})
- f(x) = c for any constant $c \in \mathbb{R}$.
- $f(x) = \langle a, x \rangle$ for any $a \in \mathbb{R}^d$.
- $f(x) = ||x|| \text{ for any norm } ||\cdot||.$
- $f(x) = \langle x, Ax \rangle$ for symmetric positive semidefinite A.

Jensen's inequality

Equivalent definition of convex functions

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex iff for any $\boldsymbol{x}, \boldsymbol{x}' \in \mathbb{R}^d$ and $\alpha \in [0, 1]$,

$$f((1-\alpha)\boldsymbol{x} + \alpha \boldsymbol{x}') \leq (1-\alpha) \cdot f(\boldsymbol{x}) + \alpha \cdot f(\boldsymbol{x}').$$

Jensen's inequality

If $f: \mathbb{R}^d \to \mathbb{R}$ is convex, then for any $x_1, x_2, \dots, x_n \in \mathbb{R}^d$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in [0, 1]$ such that $\sum_{i=1}^n \alpha_i = 1$,

$$f\left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i\right) \leq \sum_{i=1}^n \alpha_i \cdot f(\boldsymbol{x}_i).$$

Convex optimization problems

Convexity of differentiable functions

Differentiable functions

If $f \colon \mathbb{R}^d \to \mathbb{R}$ is differentiable, then f is convex if and only if

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_0) + \langle \nabla f(\boldsymbol{x}_0), \boldsymbol{x} - \boldsymbol{x}_0 \rangle$$

for all $\boldsymbol{x}, \boldsymbol{x}_0 \in \mathbb{R}^d$.

Twice-differentiable functions

If $f: \mathbb{R}^d \to \mathbb{R}$ is twice-differentiable, then f is convex if and only if

$$\nabla^2 f(\boldsymbol{x}) \succeq \boldsymbol{0}$$

for all $x \in \mathbb{R}^d$ (i.e., the Hessian, or matrix of second-derivatives, is positive semidefinite for all x).

10 / 2

Optimization problems

A typical optimization problem (in standard form) is written as

$$egin{array}{ll} \min_{m{x}\in\mathbb{R}^d} & f_0(m{x}) \\ ext{s.t.} & f_i(m{x}) \ \leq \ 0 & ext{for all } i=1,2,\ldots,n \,. \end{array}$$

- ▶ $f_0: \mathbb{R}^d \to \mathbb{R}$ is the **objective function**;
- $f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$ are the constraint functions;
- ▶ inequalities $f_i(x) \le 0$ are constraints;
- $lacksquare A:=\left\{m{x}\in\mathbb{R}^d:f_i(m{x})\leq 0 ext{ for all } i=1,2,\ldots,n
 ight\}$ is the feasible region.
- ▶ The goal: Find $x \in A$ so that $f_0(x)$ is as small as possible.
- ▶ (Optimal) value of the optimization problem is the smallest such value of $f_0(x)$ achieved by a feasible point $x \in A$.
- Point $x \in A$ achieving the optimal value is a (global) minimizer of the problem.

Convex optimization problems

Example: Soft-margin SVM

Standard form of a convex optimization problem:

$$egin{array}{ll} \min_{m{x}\in\mathbb{R}^d} & f_0(m{x}) \ & ext{s.t.} & f_i(m{x}) < 0 & ext{for all } i=1,2,\ldots,n \end{array}$$

where $f_0, f_1, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$ are convex functions.

Fact: the feasible set $A:=\left\{ {m x} \in \mathbb{R}^d: f_i({m x}) \le 0 \text{ for all } i=1,2,\dots,n \right\}$ is a convex set.

$$\begin{split} \min_{\boldsymbol{w} \in \mathbb{R}^d, t \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^n} & \quad \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{n} \sum_{i=1}^n \xi_i \\ \text{s.t.} & \quad y_i \big(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - t \big) \ \geq \ 1 - \xi_i \quad \text{ for all } i = 1, 2, \dots, n \,, \\ \xi_i \ \geq \ 0 \quad \text{ for all } i = 1, 2, \dots, n \,. \end{split}$$

Bringing to standard form:

$$\begin{split} \min_{\boldsymbol{w} \in \mathbb{R}^d, t \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^n} & \quad \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{n} \sum_{i=1}^n \xi_i \quad \text{(sum of two convex functions, also convex)} \\ \text{s.t.} & \quad 1 - \xi_i - y_i \big(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - t \big) \ \leq \ 0 \quad \text{for all } i = 1, \dots, n \quad \text{(linear)} \end{split}$$

 $-\xi_i < 0$ for all $i = 1, \dots, n$ (linear)

13 / 26

Local minimizers

Consider an optimization problem (not necessarily convex):

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \qquad f_0(oldsymbol{x})$$

s.t.
$$x \in A$$
.

We say $\tilde{x} \in A$ is a **local minimizer** if there is an open ball

$$U \ := \ \left\{ oldsymbol{x} \in \mathbb{R}^d : \|oldsymbol{x} - ilde{oldsymbol{x}}\|_2 < r
ight\}$$

of positive radius r>0 such that $ilde{m{x}}$ is a global minimizer for

$$\min_{oldsymbol{x} \in \mathbb{R}^d} f_0(oldsymbol{x})$$

s.t.
$$x \in A \cap U$$
.

Nothing looks better than \tilde{x} in the immediate vicinity of \tilde{x} .

Local minimizers of convex opt. problems

If the optimization problem is convex, and $\tilde{x} \in A$ is a local minimizer, then it is also a global minimizer.

15 / 26

.

Local optimization algorithms

Unconstrained convex optimization

Unconstrained convex optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x})$$

(f is the convex objective function; feasible region is \mathbb{R}^d).

Optimality condition for differentiable convex objectives

 $m{x}^{\star}$ is a global minimizer if and only if $\nabla f(m{x}^{\star}) = m{0}$.

Unfortunately, can't always find closed-form solution to system of equations $\nabla f(x) = 0$. \longrightarrow Resort to iterative methods to find a solution.

Local optimization for convex objectives

Locally change $x \to x + \delta$.

Hopefully improve objective value $f(x) \to f(x + \delta)$.

How to pick δ ?

By convexity of f: $f(x+\delta) > f(x) + \langle \nabla f(x), \delta \rangle$.

If $\langle \nabla f(\boldsymbol{x}), \boldsymbol{\delta} \rangle \geq 0$, then

 $f(x+\delta) \geq f(x)$. Clearly a bad direction.

 ${f Moral}$: to be useful, the change ${f \delta}$ must satisfy

$$\langle \nabla f(\boldsymbol{x}), \boldsymbol{\delta} \rangle < 0.$$

For example, $\delta := -\eta \nabla f(\boldsymbol{x})$ for some $\eta > 0$:

$$\langle \nabla f(\boldsymbol{x}), -\eta \nabla f(\boldsymbol{x}) \rangle = -\eta \|\nabla f(\boldsymbol{x})\|_2^2 < 0$$

as long as $\nabla f(x) \neq 0$.

Gradient descent

Gradient descent for differentiable objectives

- ▶ Start with some initial $x^{(1)} \in \mathbb{R}^d$.
- lackbox For $t=1,2,\ldots$ until some stopping condition is satisfied.
 - ▶ Compute gradient of f at $x^{(t)}$:

$$\boldsymbol{\lambda}^{(t)} := \nabla f(\boldsymbol{x}^{(t)}).$$

Update:

$$\boldsymbol{x}^{(t+1)} := \boldsymbol{x}^{(t)} - \eta_t \boldsymbol{\lambda}^{(t)}$$
.

Here, $\eta_1, \eta_2, \ldots > 0$ are the **step sizes**. Common choices include:

- 1. Set $\eta_t := c$ for some constant c > 0.
- 2. Set $\eta_t := c/\sqrt{t}$ for some constant c > 0.
- 3. Set η_t using a line search procedure.

19 / 26

Step sizes via line search

Illustration of gradient descent

Backtracking line search

Goal: given $x \in \mathbb{R}^d$ and $\lambda = \nabla f(x) \in \mathbb{R}^d$, find $\eta > 0$ so that $f(x - \eta \lambda) < f(x)$ by a reasonable amount.

- Start with $\eta := 1$.
- ▶ While $f(x \eta \lambda) > f(x) \frac{1}{2}\eta \|\lambda\|_2^2$: Set $\eta := \frac{1}{2}\eta$.

Main idea: $f(x - \eta \lambda) \approx f(x) - \eta ||\lambda||_2^2$ when η is small, so can optimistically hope to decrease value by about $\eta ||\lambda||_2^2$.

Settle for decreasing by $\frac{1}{2}\eta \|\boldsymbol{\lambda}\|_2^2$: upon termination of while-loop,

$$f(\boldsymbol{x} - \eta \boldsymbol{\lambda}) \leq f(\boldsymbol{x}) - \frac{1}{2} \eta \|\boldsymbol{\lambda}\|_2^2.$$

Many other line search methods are possible.

If f is convex (and satisfies some other smoothness and curvature conditions), then $f(x^{(t)})$ converges to the optimal value at a geometric rate.

21 / 26

Example: logistic regression $(y \in \{-1, +1\})$

$\min_{m{w} \in \mathbb{R}^d} \qquad f(m{w}) \qquad ext{where} \qquad f(m{w}) \; := \; rac{1}{|S|} \sum_{(m{x},y) \in S} \ln \Bigl(1 + \exp igl(-y \langle m{w}, m{x} angle igr) \Bigr) \, .$

Easy to check that f is convex.

Question: How do we compute its gradient at a given point $oldsymbol{w} \in \mathbb{R}^d$?

Example: logistic regression $(y \in \{-1, +1\})$

Gradient of f at w:

$$\nabla f(\boldsymbol{w}) = -\frac{1}{|S|} \sum_{(\boldsymbol{x}, y) \in S} \frac{1}{1 + e^{y\langle \boldsymbol{w}, \boldsymbol{x} \rangle}} y \boldsymbol{x}$$
$$= -\frac{1}{|S|} \sum_{(\boldsymbol{x}, y) \in S} (1 - P_{\boldsymbol{w}}(Y = y \mid \boldsymbol{X} = \boldsymbol{x})) y \boldsymbol{x}.$$

Gradient descent algorithm for logistic regression:

- ▶ Start with some initial $w^{(1)} \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$ until some stopping condition is satisfied.

$$\mathbf{w}^{(t+1)} := \mathbf{w}^{(t)} - \eta_t \nabla f(\mathbf{w}^{(t)})$$

$$= \mathbf{w}^{(t)} + \eta_t \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} (1 - P_{\mathbf{w}^{(t)}}(Y = y \mid \mathbf{X} = \mathbf{x})) y \mathbf{x}.$$

22 / 2

23 / 2

Stopping condition

Key takeaways

▶ In many applications of (convex) optimization, care about solving problems to very high precision.

Example: stop when gradient is close enough to zero $(\|\nabla f(x)\|_2 \le \epsilon$ for some small parameter $\epsilon > 0$).

► For machine learning applications: optimization problem based on training data often just a means-to-an-end.

We really just care about true error rate.

► Running gradient descent to convergence not strictly necessary: may be beneficial to stop early (e.g., when hold-out error rate starts to increase significantly).

- 1. Formulate learning with a general loss function and regularizer as an optimization problem.
- 2. Convex sets, convex functions, ways to check convexity of a function.
- 3. Standard form of convex optimization problems, concept of local and global minimizers.
- 4. Gradient descent algorithm (for unconstrained problems with differentiable objectives); high-level idea of backtracking line search.
- 5. Stopping condition for machine learning applications.