1 Maximum Likelihood Estimator

Three properties of maximum likelihood esti-

- 1. θ_{ML} is consistent. $\theta_{ML} \to \theta_0$ when $n \to \infty$.
- 2. θ_{ML} is asymptotically normal. $\sqrt{n}(\theta_{ML} \theta_0$) ~ $\mathcal{N}(0, I_n(\theta_0))$ when $n \to \infty$ and $I_n(\theta_0)$ is the fisher information.
- 3. θ_{ML} is asymptotically efficient. θ_{ML} mi- **3** BLR and GP nimizes $\mathbb{E}(\theta - \theta_0)^2$ when $n \to \infty$ because the asymptotic variance equals the Rao-Cramer bound (MLE is asymptotically unbiased). Note: when *n* is finite, θ_{ML} is not necessarily efficient, e.g., Stein estimator is

Rao-Cramer bound: for any unbiased estimator $\hat{\theta}$ of θ_0 , $\mathbb{E}(\hat{\theta} - \theta_0)^2 \geq 1/I_n(\theta_0)$, where $I_n(\theta) = -\mathbb{E}(\frac{\partial^2}{\partial \theta^2} \log f(X; \theta) \mid \theta) =$ $\mathbb{E}(\frac{\partial}{\partial \theta} \log f(X; \theta) \mid \theta)^2$ is the fisher informati-

Sketch of Proof: define $\Lambda = \frac{\partial \log P(X;\theta)}{\partial \theta}$. Cauchy-Schwarz says $Cov^2(\Lambda, \hat{\theta}) \leq Var(\Lambda)Var(\hat{\theta}) =$ $\mathbb{E}(\Lambda^2)$ **Var** $(\hat{\theta})$ because $\mathbb{E}\Lambda = 0$. Note that $\mathbf{Cov}(\Lambda, \hat{\theta}) = \mathbb{E}(\Lambda \hat{\theta}) = \int_{X} \hat{\theta}(x) \frac{\partial}{\partial \theta} f(x; \theta) dx =$ $\frac{\partial}{\partial \theta} \int_X \hat{\theta}(x) f(x;\theta) dx = \frac{\partial}{\partial \theta} \mathbb{E} \hat{\theta} = 1$. Therefore, A function is a kernel iff k(x,x') = k(x',x) (sym- $\operatorname{Var}(\hat{\theta}) \geq 1/\mathbb{E}(\Lambda^2)$.

However, when the dimension of problem goes to infinity while keeping the data-dim ratio fixed, MLE is biased and the p-values are unreliable.

2 Regression

Bias-Variance trade-off

Let D be the training dataset and \hat{f} be the predictive function. $\mathbb{E}_D \mathbb{E}_{Y|X} (\hat{f}(X) - Y)^2 =$ $\mathbb{E}_D \mathbb{E}_{Y|X} [(\hat{f}(X) - \mathbb{E}_{Y|X}Y)^2 + (\mathbb{E}_{Y|X}Y - Y)^2] =$ $\mathbb{E}_D(\hat{f}(X) - \mathbb{E}(Y \mid X))^2 + \mathbb{E}_D(\mathbb{E}(Y \mid X) - Y)^2 =$ $\mathbb{E}_D(\hat{f}(x) - \mathbb{E}_D\hat{f}(x))^2 + \left(\mathbb{E}_D\hat{f}(x) - \mathbb{E}(Y \mid X)\right)^2 +$ $\mathbb{E}_D(\mathbb{E}(Y \mid X) - Y)^2$. It means that expected square error (training) = variance of prediction + squared bias + variance of noise.

The optimal trade-off is achieved by avoiding under-fitting (large bias) and over-fitting (large variance). Note that here the variance of output is computed by refitting the regressor on a new dataset.

Regularization

Ridge and Lasso can be viewed as MAP (maximum a posterior) estimation. A Gaussian prior on β is equivalent to Ridge and a Laplacian prior is equivalent to Lasso. Using

tion: $X\beta^{\text{Ridge}} = \sum_{i=1}^{d} [d_i^2/(d_i^2 + \lambda)] u_i u_i^T Y$ (each $u_i u_i^T Y$ can be viewed as a model). Lasso has more sparse estimations because the gradient of regularization does not shrink as in the case of Ridge.

Bayesian Linear Regression

 $Y = X\beta + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and a prior $\beta \sim$ $\mathcal{N}(0,\Lambda^{-1})$. By Bayesian, $\beta \mid X,Y \sim \mathcal{N}(\mu_{\beta},\Sigma_{\beta})$, where $\mu_{\beta} = (X^T X + \sigma^2 \Lambda)^{-1} X^T Y$ and $\Sigma_{\beta} =$ universally more efficient for single sam- $\sigma^2(X^TX + \sigma^2\Lambda)^{-1}$. MAP estimation of this prior (i.e., μ_{β}) is equivalent to Ridge regression given $\Lambda = \lambda I$ and $\sigma = 1$.

When $\Lambda = \lambda I$, under the prior, $Y \sim$ $\mathcal{N}(0, \frac{1}{1}X^TX + \sigma^2I)$. Therefore, $\mathbf{Cov}(y_i, y_i) =$ $\frac{1}{\lambda}x_i^Tx_i$. It means a prior that closer samples is more similar, i.e., $Cov(y_i, y_i)$ is large when $x_i^T x_i$ is large. The kernel $X^T \Lambda^{-1} X$ is thus called linear kernel. When a general kernel is used, Gaussian Process appears.

Gaussian Process

Kernel Function

metry) and $\int_{\Omega} k(x,x')f(x)f(x')dxdx' \ge 0$ for any $f \in L_2$ and $\Omega \in \mathbb{R}^d$ (semi-positiveness in continuous case) or K(X) is a valid covariance matrix for any X (semi-positiveness in discrete case). The latter is equivalent to either (1) $\sum_{i,j} a_i a_j K(x_i, x_j) \ge 0$ for any $a_{i,j}$ and $k_{i,j}$, or (2) $k(x,x') = \phi(x)^T \phi(x')$ for some ϕ .

Assume $k_{1,2}$ are valid kernels, then the following are valid kernels:

- 1. $k(x, x') = k_1(x, x') + k_2(x, x')$.
- 2. $k(x,x') = k_1(x,x') \cdot k_2(x,x')$. Proof: let $V \sim \mathcal{N}(0, K_1), W \sim \mathcal{N}(0, k_2)$ and is independent to V, then $Cov(V_iW_i, V_iW_i) =$ $Cov(V_i, V_i) Cov(W_i, W_i) = k_1 \cdot k_2(x_i, x_i).$
- 3. $k(x, x') = ck_1(x, x')$ for constant c > 0.
- 4. $k(x,x') = f(k_1(x,x'))$ if f is a polynomial with positive coefficients or the exp. Proof: polynomial can be proved by applying the product, positive scaling and addition. Exp can be proved by taking limit on the poly-
- 5. $k(x, x') = f(x)k_1(x, x')f(x')$.
- 6. $k(x, x') = k_1(\phi(x), \phi(x'))$ for any function ϕ . Example: RBF kernel $k(x,y) = \exp(-\frac{1}{2\sigma^2}||x - y||^2)$ $|y|^2 = \exp(-\frac{1}{2\sigma^2}||x||^2)\exp(\frac{1}{\sigma^2}x^Ty)\exp(-\frac{1}{2\sigma^2}||y||^2)$ However, naive gradient descent has two separable.

SVD, we get Ridge has built-in model selec- is valid. Since x^Ty is the linear kernel and thus $\exp(\frac{1}{\sigma^2}x^Ty)$ is a valid kernel, let $f(x) = \exp(-\frac{1}{2\sigma^2}||x||^2)$, we get the RBF function equals f(x)k(x,y)f(y), which is a valid kernel.

Mercer's Theorem

Assume k(x, x') is a valid kernel. Then there exists an orthogonal basis e_i and $\lambda_i \geq 0$, s.t. $k(x, x') = \sum_{i} \lambda_{i} e_{i}(x) e_{i}(x').$

Conditional Gaussian

 $\mathbb{E}(y_2 \mid y_1) = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (y_1 - \mu_1), \mathbf{Var}(y_2 \mid y_1) =$ $\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.

4 Linear Methods for Classification **Concept Comparison**

- 1. Probabilistic Generative, modeling p(x, y): (1) can create new samples, (2) outlier detection, (3) probability for prediction, (4) high computational cost and (5) high bias.
- 2. Probabilistic Discriminative, modeling $p(y \mid x)$: (1) probability for prediction, (2) medium computational cost and (3) medium bias.
- 3. Discriminative, modeling y = f(x): (1) no probability for prediction, (2) low computational cost and (3) low bias.

Infer p(x, y) for classification problems

Use $p(x,y) = p(y)p(x \mid y)$. Since y has finite states, model p(y) and $p(x \mid y)$ for different y. The modeling requires to (1) guess a distribution family and (2) infer parameters by MLE.

Compute $p(y \mid x)$ by discriminant analysis (DA) Linear DA

Goal: classify a sample into two Gaussian distribution with $\Sigma_0 = \Sigma_1$. After calculation, $p(y = 1 \mid x) = 1/(1 + \exp(-\log \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)})) =$

 $1/(1 + \exp(w_1^T x + w_0))$ since the quadratic term is eliminated due to $\Sigma_0 = \Sigma_1$.

Quadratic DA

Goal: classify a sample into two Gaussian distribution with $\Sigma_0 \neq \Sigma_1$. After calculation, $p(y = 1 \mid x) = 1/(1 + \exp(x^T W x + w_1^T x + w_0)).$

Optimization Methods

Optimal Learning Rate for Gradient Descent

Goal: find $\eta^* = \operatorname{argmin}_n L(w^k - \eta \cdot \nabla L(w^k))$. By Taylor expansion of $L(w^{k+1})$ at w^k and solve for the optimal η , we get $\eta^* =$ $||\nabla L(w^k)||^2$ $\overline{\nabla L(w^k)^T H_L(w^k) \nabla L(w^k)}$.

weaknesses: (1) it often has a zig-zag behavior, especially in a very narrow, long and slightly downward valley; (2) the gradient update is small near the stationary point. This can be mitigated by adding a momentum term in the update: $w^{k+1} = w^k - \eta \nabla L(w^k) + \mu^k (w^k - w^{k-1})$ which speeds the update towards the "common" direction.

Newton's Method

Taylor-expand L(w) at w_k to derive the optimal w^{k+1} : $L(w) \approx L(w) + (w - w^k)^T \nabla L(w^k) +$ $\frac{1}{2}(w-w^k)^T H_L(w^k)(w-w^k) \implies w^{k+1} = w^k - w^k$ $H_{\tau}^{-1}(w^k)\nabla L(w^k)$.

Pros: (1) better updates compared to GD since it uses the second Taylor term and (2) does not require learning rate.

Cons: requires H_L^{-1} which is expensive.

Bayesian Method

In most cases, the posterior is intractable. Use approximation of posterior instead.

Laplacian Method

Idea: approximate posterior near the MAP estimation with a Gaussian distribution. $p(w \mid$ $(X,Y) \propto p(w,X,Y) \propto \exp(-R(w))$, where R(w) = $-\log p(w, X, Y)$. Let $w^* = \operatorname{argmin} R(w)$ be the MAP estimation and Taylor-expand R(w) at $w^*: R(w) \approx R(w^*) + \frac{1}{2}(w - w^*)^T H_R(w^*)(w - w^*).$ Therefore, $p(w \mid X, Y) \propto \exp(-R(w^*) - \frac{1}{2}(w - w^*))$ $(w^*)^T H_R(w^*)(w-w^*)$ and thus $(w \mid X,Y) \sim$ $\mathcal{N}(w^*, H_R^{-1}(w^*)).$

AIC & BIC

- Define BIC = $k \log N 2 \log \hat{L}$, where k is #parameters and \hat{L} is the likelihood $p(x \mid w^*)$. A lower BIC means a better model.
- Define AIC = $2k 2\log \hat{L}$. A lower AIC means a better model.

LDA by loss minimization

Perceptron

Goal: for $y_i \in \{0,1\}$, find w, s.t. $y_i w^T x_i > 0$ for any i. The classification function is c(x) = $sgn(w^Tx)$.

L(y,c(x)) = 0 if $yw^Tx > 0$ and L(y,c(x)) = $-yw^Tx$ o.w. By gradient descent, the Perceptron is guaranteed to converge if (1) the data is linearly separable, (2) learning rate $\eta(k) > 0$, (3) $\sum_{k} \eta(k) \rightarrow +\infty$ and (4) $(\sum_k \eta(k)^2)/(\sum_k \eta(k))^2 \rightarrow 0$. However, there exists multiple solutions if the data is linearly

Fisher's LDA

Idea: project the two distribution into one dimension and maximize the ratio of the variance between the classes and the variance within the classes, i.e., $\max(w^T u_1 - w^T u_0)^2 / (w^T S w)$, where $S = \Sigma_0 + \Sigma_1$. Let gradient be zero and solve for w^* , we get $w^* \propto S^{-1}(u_1 - u_0)$.

We first compute w^* and fit distributions of the two-class projection. Then apply Bayesian decision theory to make classification.

5 Convex Optimization

Definition: the objective is convex and the feasible set is convex. The standard form is to minimize a convex function (f(w)) for convex f) under affine equality constraint $(g_i(w) = 0)$ for affine g_i) and convex non-positive constraint $(h_i(w) \leq 0 \text{ for convex } h_i)$.

How to Solve

- (1) Define Lagrangian: $L(w, \lambda, \alpha) = f(w) +$ $\sum_{i} \lambda_{i} g_{i}(w) + \sum_{i} \alpha_{i} h_{i}(w)$ and $\alpha_{i} \geq 0$.
- (2) Check whether strong duality holds using Slater's condition (sufficient but not necessary): there is a strictly feasible point, i.e., $\exists w_0$, s.t. $g_i(w_0) = 0$ and $h_i(w_0) < 0$.
- (3) Solve for dL(w) = 0, $g_i(w) = 0$, $\alpha \ge 0$, $h_i(w) \leq 0$ and $\alpha_i h_i(w) = 0$ (complementary slackness).
- (4) Weak duality always holds and when Slater's condition holds it equals $\min_{w} f(w)$: solve $\max_{\lambda,\alpha} \Theta(\lambda,\alpha)$ s.t. $\alpha \geq 0$, where $\Theta(\lambda,\alpha) =$ $\min_{w} L(w, \lambda, \alpha)$. The optimal in the weak duality is a lower bound for $\min_{w} f(w)$ since $\Theta(\lambda, \alpha) \leq \min_{w} f(w)$ for any λ and α .

6 Support Vector Machine Hard-Margin SVM

The optimization form is to minimize $\frac{1}{2}||w||^2$, s.t. $y_i(w^Tx_i + w_0) \ge 1$ $(y_i \in \{-1, 1\})$. It is convex and the Slater's condition holds under the assumption of linear separability.

By solving $\min_{w,w_0} L(w, w_0, \alpha)$, the duality form is $\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_i \alpha_i$, s.t. 4. It falls into the double descent regime: $\alpha_i \ge 0$, $\sum_i \alpha_i y_i = 0$. $w^* = \sum_{i \in \text{support vec}} \alpha_i^* y_i x_i$.

Soft-Margin SVM & Kernel SVM

When the data is not linearly separable, one solution is to add slack variables: $\min_{\xi, w, w_0} \frac{1}{2} ||w||^2 + C \sum_i \xi_i$, s.t. $y_i(w^T x_i + w_0) \ge$ $1 - \xi_i$ and $\xi_i \ge 0$. Note: when the data is linearly separable, soft-margin does not necessarily produce the same cut-plane as the hard-margin SVM, especially when the margin is small due to few support vectors. When $C \to \infty$, it becomes hard-margin SVM.

The only difference in the dual form is that we need an extra condition $0 \le \alpha \le C$. $\xi_i^* =$ $\max(0, 1 - y_i(w^{*T}x_i + w_0)).$

Another solution, Kernel SVM, is to use $K(x_i, x_i) = \phi(x_i)^T \phi(x_i)$ to replace $x_i^T x_i$.

Multi-class SVM

Idea: use M := #class hyperplanes and maximize the generalized margin: min $\sum_{i=1}^{M} w_i^T w_i$ s.t. $w_{v_i}^T x_i + w_{v_i,0} - \max_{v \neq v_i} w_v^T x_i + w_{v,0} \ge 1$.

Structural SVM

Goal: predict a structured output label, e.g.,

Difficulty of predicting structures:

- 1. Compact representation of output space. Sol: use a score function and feature map $\hat{y} = \mathbf{argmax}_v \, w^T \Psi(x, y).$
- 2. Efficient prediction (cannot use bruteforce search to find argmax). Sol: assume structures such as decomposable output
- 3. Define prediction error (cannot use 0/1 errors). Sol: use a loss function $\Delta(\psi, \hat{\psi})$.
- 4. Efficient training (cannot evaluate all constraints). Sol: iteratively add new constraints to the training

 $\min_{\mathbf{w}, \boldsymbol{\xi} \geq 0} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \sum_{i=1}^{n} \xi_i$, s.t. $\mathbf{w}^{\top} \Psi (z_i, \mathbf{y}_i) \max_{z \neq z_i} \left[\Delta(z, z_i) + \mathbf{w}^\top \Psi(z, \mathbf{y}_i) \right] \ge -\xi_i, \forall \mathbf{y}_i \in \mathcal{Y}.$

7 Ensemble

Random Forest

Random feature selection induces regulation. **Adaboost**

Classifier weight $\alpha_t = \frac{1}{\text{weighted err}} - 1$. Sample weight $w_{t+1} = \alpha_t w_t$ for mislabeled samples, o.w. unchanged.

Adaboost has following properties:

1. It minimizes exponential loss forwardly.

2. It trains max-margin classifiers.

- 3. It, as well as Random Forest, is spiky selfaveraging interpolators, which localize the effect of noise.
- over-parameterized models can have better generalization.

8 Generative Models

Variational Autoencoder: use approximated probability to model $p(z \mid x)$ and the $p(x \mid z)$.

- Pro: can be used as feature representation.
- Con: generated images are blurrier and relatively low compared to GAN.

Generative Adversarial Network: use 2-player game to sample from p(x).

Pro: SOTA.

Con: (1) unstable, (2) potential mode collapse and (3) cannot solve p(x).

9 Non-parametric Bayesian Method **Property of NIW**

Normal Inverse Wishart distribution $\mu, \Sigma \sim$ $NIW(m_0, k_0, v_0, S_0)$ is the conjugate prior of multivariate Gaussian distribution. It has the following properties:

- $\mu \mid m_0, k_0, \Sigma \sim \mathcal{N}(m_0, \frac{1}{k_0}\Sigma)$.
- $\Sigma \mid v_0, S_0 \sim \mathcal{W}^{-1}(S_0, v_0)$, where \mathcal{W}^{-1} is the inverse Wishart distribution.
- Assume $X \sim \mathcal{N}(\mu, \Sigma)$. Then $\mu, \Sigma \mid X \sim$ $NIW(\boldsymbol{m}_p, k_p, v_p, \boldsymbol{S}_p)$, where $\boldsymbol{m}_p = \frac{k_0}{k_0 + N} \boldsymbol{m}_0 +$ $\frac{N}{k_0+N}\overline{X}$, $k_p=k_0+N$, $v_p=v_0+N$ and $S_p=v_0+N$ $S_0 + S_{\overline{X}} + k_0 m_0 m_0^{\top} - k_p m_p m_p^{\top}$ ($S_{\overline{X}}$ is the sample covariance of X). That is, the posterior only depends on sample mean and cova-

Bayesian Inference for Multivariate Gaussian with Semi-Conjugate Prior

Goal: estimate μ , Σ given the NIW prior and X. The problem is μ , $\Sigma \mid X$ is hard to sample from while we can easily sample from $\mu \mid \Sigma, X \sim$ $\mathcal{N}(m_p, \frac{1}{k}\Sigma)$ and $\Sigma \mid X \sim \mathcal{W}^{-1}(S_p, v_p)$. Apply

Gibbs sampling, we use $\mu_t \stackrel{\$}{\leftarrow} p(\mu \mid \Sigma_{t-1}, X)$ and $\Sigma_t \stackrel{\$}{\leftarrow} p(\Sigma \mid \mu_{t-1}, X)$.

BI for Gaussian Mixture Model

Setting: μ and Σ follows the same prior, and we add a "class index" variable $z_i \sim \text{Cat}(\pi)$, where $\pi \sim \text{Dir}(\alpha)$. $\text{Dir}(\alpha)$ is the Dirichlet distribution which generates π satisfying $\sum_{i=1}^{k} \pi_i = 1$ and is the conjugate prior for categorical distribution. Use Gibbs sampling, we can estimate μ, Σ, z_i, π . Note that here since #classes is predetermined, α is actually not

Concept here: d-separation, used to convert connectedness in the causal graph to conditional independence. If two variables are dseparated, then they are independent; o.w. not guaranteed to be dependent. Two variables are d-separated if all *undirected* paths between them are inactive. If any triple (x, y, z) in a path is of the following inactive form, then the whole path is inactive: (1) x-y-z is not of the form $x \to y \leftarrow z \land y$ is observed (conditioned); (2) x - y - z is of the form $x \to y \leftarrow z \land$ no descendants of y (y included) is observed. $\mathcal{N}(\mu, \Sigma)$: $\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$.

BI for Non-Parametric GMM

GEM distribution is a special case of Dirichlet process which only takes one parameter (indicating no difference between classes). It gives a probability π of a categorical distribution with infinite #classes. We sample π_i sequentially (stick-breaking): $\beta_i \sim \beta(1, \alpha)$, $\pi_1 = \beta_1$ and $\pi_t = \prod_{i < t} (1 - \beta_i) \beta_t$. We can use GEM distribution to adaptively learn the required #clusters. Another approach is to directly model z_i instead of drawing z_i from $Cat(\pi)$ by Chinese Restaurant Process. The $CRP(\alpha)$ decides for every incoming sample X_n which cluster z_n it belongs to by $p(z_n = k) =$ #{samples in cluster k}/ $(\alpha + n - 1)$ and $p(z_n =$ $k = \alpha/(\alpha + n - 1)$ for the left most cluster that contains no samples (a new cluster). α is the concentration parameter that defines how likely a sample belongs to an old cluster. In expectation, #clusters = $O(\alpha \log N)$. The order of the samples incoming does not change the distribution of the partition.

Note that z_n in CRP only depends on $z_{i < n}$. Therefore, we can use collapsed Gibbs sampling for z^t : $z^t \sim p(z | z^{t-1}, X)$.

10 PAC Learning

Definitions:

- A learning algorithm A can learn $c \in C$ if there is a poly(.,.), s.t. for (1) any distribution \mathcal{D} on \mathcal{X} and (2) $\forall 0 < \epsilon < \frac{1}{2}, 0 <$ $\delta < \frac{1}{2}$, \mathcal{A} outputs $\hat{c} \in \mathcal{H}$ given a sample of size at least poly($\frac{1}{\epsilon}$, $\frac{1}{\delta}$, size(c)) such that $P(\mathcal{R}(\hat{c}) - \inf_{c \in C} \mathcal{R}(c) \le \epsilon) \ge 1 - \delta.$
- A is called an efficient PAC algorithm if it runs in polynomial of $\frac{1}{6}$ and $\frac{1}{8}$.
- C is (efficiently) PAC-learnable from \mathcal{H} if there is an algorithm A that (efficiently) learns C from \mathcal{H} .

VC inequality:

- For an ERM \hat{c}_n^* , $\mathbf{P}(\mathcal{R}(\hat{c}_n^*) \inf_{c \in \mathcal{C}} \mathcal{R}(c) > \epsilon) \le$ $2|\mathcal{C}|\exp\left(-\frac{n\epsilon^2}{2}\right)$.
- Finite VC-dimension means PAC-learnable.

A Appendix

$$\begin{split} &\frac{\partial}{\partial \Sigma} \log |\Sigma| = \Sigma^{-T}.\\ &\frac{\partial \overrightarrow{u}^T \overrightarrow{v}}{\partial x} = \frac{\partial \overrightarrow{u}}{\partial x} \overrightarrow{v} + \frac{\partial \overrightarrow{v}}{\partial x} \overrightarrow{u}.\\ &\frac{\partial A \overrightarrow{u}}{\partial x} = \frac{\partial \overrightarrow{u}}{\partial x} A^T.\\ &\mathcal{N}(\mu, \Sigma): \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)) \end{split}$$