Categorías. Parte 4.

Silvio Reggiani

Complementos de Matemática II (LCC) Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

26 de noviembre de 2020

Funtores

Idea: los funtores son los morfismos de categorías.

Definición

Sean \mathscr{C},\mathscr{D} dos categorías. Un **funtor** $F:\mathscr{C}\to\mathscr{D}$ asigna:

- ▶ a cada objeto $A \in ob \mathscr{C}$, un objeto $F(A) \in ob \mathscr{D}$;
- ▶ a cada morfismo $f: A \to B$ en mor \mathscr{C} , un morfismo $F(f): F(A) \to F(B)$ en mor \mathscr{D} tal que:
- ▶ para todo $A \in ob \mathscr{C}$, $F(id_A) = id_{F(A)}$;
- ▶ para todos $f, g \in \text{mor } \mathscr{C}$ tales que tenga sentido la composición $g \circ f$, se tiene $F(g \circ f) = F(g) \circ F(f)$.

$$A \xrightarrow{f} B \xrightarrow{g} C \qquad F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C)$$

$$F(g \circ f) = F(g) \circ F(f)$$

Ejemplo

▶ Dado un conjunto *S*, construimos

$$\mathsf{List}(S) := \{L : \mathsf{listas} \; (\mathsf{finitas}) \; \mathsf{de} \; \mathsf{elementos} \; \mathsf{de} \; S\}.$$

- List : Set → Set es un funtor: ¿cómo se define en morfismos?
- ▶ Si $f: S \to S'$ es una función, $\mathsf{List}(f) : \mathsf{List}(S) \to \mathsf{List}(S')$ es la función que en $L = [s_1, \dots, s_n] \in \mathsf{List}(S)$ vale

$$\mathsf{List}(f)(L) = [f(s_1), \dots, f(s_n)].$$

- Claramente se tienen:
 - $\blacktriangleright \mathsf{List}(\mathsf{id}_S) = \mathsf{id}_{\mathsf{List}(S)};$
 - $\blacktriangleright \ \mathsf{List}(g \circ f) = \mathsf{List}(g) \circ \mathsf{List}(f).$

Ejemplo bis

Para cada conjunto S, tenemos que $\mathsf{List}(S)$ es un monoide. Luego, lo que en realidad obtuvimos en el ejemplo anterior es un funtor $\mathsf{List}: \mathbf{Set} \to \mathbf{Mon}$. Sólo hay que chequear que para cada función $f: S \to S'$, la función $\mathsf{List}(f): \mathsf{List}(S) \to \mathsf{List}(S')$ es un morfismo

- de monoides (ejercicio): $\blacktriangleright \operatorname{List}(f)([\]) = [\];$
 - $\blacktriangleright \ \forall L_1, L_2 \in \mathsf{List}(S),$

$$List(f)(L_1 * L_2) = List(f)(L_1) * List(f)(L_2).$$

Ejemplo (funtor olvido)

Un ejemplo de funtor olvido es fgt : $Grp \rightarrow Set$:

- ▶ fgt(G) = G (como conjunto, se olvida que G es un grupo);
- ▶ $fgt(f: G \rightarrow H) = f: G \rightarrow H$ (como función, se olvida que f es un morfismo de grupos).

En general, si $\mathscr C$ es una categoría concreta (los objetos son conjuntos y los morfismos funciones que preservan una estructura), siempre tenemos un funtor olvido

$$\mathsf{fgt}:\mathscr{C}\to \mathbf{Set}.$$

Aunque también tiene sentido considerar funtores que se olvidan sólo una parte de la estructura. Por ejemplo:

- ▶ fgt : $Vect_{\mathbb{R}} \to Grp$ ▶ fgt : $Vect_{\mathbb{C}} \to Vect_{\mathbb{R}}$
- ▶ fgt : $Grp \rightarrow Mon$ ▶ fgt : $Poset \rightarrow PreOrd$

Ejemplo

Si $\mathscr C$ es una categoría con productos binarios y $B\in {\sf ob}\,\mathscr C$ está fijo, podemos construir un **funtor producto:**

$$- \times B : \mathscr{C} \to \mathscr{C}.$$

- \blacktriangleright $(- \times B)(A) = A \times B$;
- ightharpoonup para cada $f:A\to A'$,

$$(-\times B)(f) = f \times id_B : A \times B \to A' \times B$$

Ejemplo/Ejercicio: composición de funtores

Dados dos funtores $F:\mathscr{C}\to\mathscr{D}$ y $G:\mathscr{D}\to\mathscr{E}$ podemos definir un funtor

$$G \circ F : \mathscr{C} \to \mathscr{E}$$

por

$$\blacktriangleright (G \circ F)(A) = G(F(A)),$$

$$\blacktriangleright (G \circ F)(f) = G(F(f)).$$

$$A \xrightarrow{f} A'$$

$$F(A) \xrightarrow{F(f)} F(A')$$

$$G(F(A)) \xrightarrow{G(F(f))} G(F(A'))$$

Ejemplo: Cat

- ► Cat es la categoría cuyos objetos son las categorías pequeñas
- y cuyos morfismos son los funtores.

Cat es una categoría grande: **Cat** ∉ ob **Cat**. ¿Por qué?

Ejemplo/Ejercicio

Sea $\mathscr C$ una categoría localmente pequeña (es decir, $\mathsf{Hom}(A,B)$ es un conjunto para todos A,B.)

Fijando $A \in \mathsf{ob}\,\mathscr{C}$ podemos definir un funtor

$$\mathsf{Hom}(A,-):\mathscr{C}\to \mathbf{Set}$$

- $ightharpoonup \operatorname{Hom}(A,-)(B) = \operatorname{Hom}(A,B)$
- ► Hom(A, -)(f) = Hom(A, f) = ???

$$\operatorname{Hom}(A,B) \xrightarrow{\operatorname{Hom}(A,f)} \operatorname{Hom}(A,B') \qquad B \xrightarrow{f} \xrightarrow{f} B'$$

$$g \longmapsto f \circ g \qquad A$$

Chequear que si $B \xrightarrow{f} B' \xrightarrow{f'} B''$, entonces

$$\operatorname{\mathsf{Hom}}(A,f'\circ f)=\operatorname{\mathsf{Hom}}(A,f')\circ\operatorname{\mathsf{Hom}}(A,f)$$

Ejemplo*

- ► **Vect**^{fin} categoría de espacios vectoriales de dimensión finita.
- ightharpoonup dual : $\mathbf{Vect}^{\mathsf{fin}}_{\mathbb{R}} o \mathbf{Vect}^{\mathsf{fin}}_{\mathbb{R}}$.
- ightharpoonup dual(V) = V^* .
- ightharpoonup dual $(T) = T^t$.

$$V \stackrel{T}{\longrightarrow} W \qquad W^* \stackrel{T^t}{\longrightarrow} V^*$$

No es funtor con la definición que dimos pues cambia el sentido de las flechas. Sin embargo, sí respeta las composiciones:

$$dual(T_1 \circ T_2) = (T_1 \circ T_2)^t = T_2^t \circ T_1^t$$
$$= dual(T_2) \circ dual(T_1).$$

Estos funtores se llaman contravariantes, en contraposición a los funtores covariantes, que definimos al principio.

Funtores contravariantes

►
$$F : \mathscr{C} \to \mathscr{D}$$

► $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$
► $F(g \circ f) = F(f) \circ F(g)$
► $F(g \circ f) = F(f) \circ F(g)$
► $F(g \circ f) = F(g) \circ F(g)$
F : $\mathscr{C}^{\mathsf{op}} \to \mathscr{D}$
F : $\mathscr{C}^{\mathsf{op}} \to \mathscr{D}$
F : $\mathscr{C}^{\mathsf{op}} \to \mathscr{D}$
F : $\mathscr{C}^{\mathsf{op}} \to \mathscr{D}$

Es decir, los funtores contravariantes pueden pensarse como funtores covariantes pasando a la categoría opuesta.

Ejemplo

Sea $\mathscr C$ categoría localmente pequeña:

- ▶ $\mathsf{Hom}(-,B):\mathscr{C}\to \mathbf{Set}$ funtor contravariante
- ▶ $\mathsf{Hom}(-,-): \mathscr{C} \times \mathscr{C} \to \mathbf{Set}$ es un **bifuntor** (covariante en la primera variable y contravariante en la segunda).

Transformaciones naturales

Motivación: **Set**→

Recordemos que **Set** → es la categoría cuyos objetos son las funciones y cuyos morfismos son los "cuadrados conmutativos"

$$f \xrightarrow{(a,b)} f'$$

O sea, un morfismo en $\mathbf{Set}^{\rightarrow}$ es una "flecha entre flechas".

Idea informal

Las transformaciones naturales son los "morfismos" entre funtores.

Definición

Sean $F,G:\mathscr{C}\to\mathscr{D}$ dos funtores (entre las mismas categorías). Una **transformación natural** $\eta:F\stackrel{\cdot}{\longrightarrow}G$ asigna a cada $A\in \operatorname{ob}\mathscr{C}$ un morfismo $\eta_A:F(A)\to G(A)$ tal que el siguiente diagrama conmuta para todo $f\in \operatorname{mor}\mathscr{C}$.

$$\begin{array}{ccc}
A & F(A) \xrightarrow{\eta_A} G(A) \\
\downarrow f & \downarrow & \downarrow G(f) \\
B & F(B) \xrightarrow{\eta_B} G(B)
\end{array}$$

También se suele decir que el morfismo η_A es **natural** en A. Se dice que η_A es un **isomorfismo natural** si η_A es un isomorfismo para todo A.

Ejemplo

gempio

$$F:\mathscr{C} o\mathscr{D}$$
 es naturalmente isomorfo a sí mismo.
$$\eta:F\stackrel{\cdot}{\longrightarrow}F,\qquad \eta_A=\mathrm{id}_{F(A)}$$

$$\eta: F \xrightarrow{\cdot} F, \qquad \eta_A = \mathrm{id}_{F(A)}$$

$$A \qquad F(A) \xrightarrow{\mathrm{id}_{F(A)}} F(A)$$

$$f \downarrow \qquad F(f) \downarrow \qquad \downarrow F(f)$$

$$B \qquad F(B) \xrightarrow{\mathrm{id}_{F(B)}} F(B)$$

Ejemplo no trivial

- ▶ Recordemos el funtor List : Set → Set.
- rev : List → List (invertir el orden de los elementos de una lista) es una transformación natural.
- ▶ $\operatorname{rev}_S : \operatorname{List}(S) \to \operatorname{List}(S)$ invierte las listas armadas con elementos de S, por ejemplo, $\operatorname{rev}_{\mathbb{N}}([1,2,3]) = [3,2,1]$.
- ▶ Si $f: S \rightarrow S'$, entonces conmuta el diagrama

$$\begin{array}{ccc} \mathsf{List}(S) & \xrightarrow{\mathsf{rev}_S} & \mathsf{List}(S) \\ \mathsf{List}(f) & & & & & & & \\ \mathsf{List}(S') & \xrightarrow{\mathsf{rev}_{S'}} & \mathsf{List}(S') \end{array}$$

Además $rev_S \circ rev_S = id_{List(S)}$, de donde sigue que η es un isomorfismo natural.

Pregunta

¿Se puede hacer lo mismo con

List : **Set** \rightarrow **Mon**?

Eiemplo en **Set**

- ightharpoonup Fijamos $A \in \mathsf{ob} \, \mathbf{Set} \, (\mathsf{un} \, \mathsf{conjunto})$
- ▶ Definimos un funtor F_A : **Set** \rightarrow **Set**

$$ightharpoonup F_A(B) = B^A \times A$$

$$F_A(f) = (f \circ -) \times \mathrm{id}_A$$

Más precisamente:
•
$$f: B \rightarrow C$$

$$f \circ -: B^A \to C^A$$

Recordar:

$$B^A = \{\beta : A \to B\}$$

$$C^A = \{\gamma : A \to C\}$$

Luego:

 $ightharpoonup \varepsilon: F_A o \mathrm{id}_{\mathbf{Set}}$ es una transformación natural.

$$ightharpoonup arepsilon = ext{evaluación en elementos de } A$$

▶ id_{Set} = funtor identidad de la categoría **Set**

$$F_{A}(B) = B^{A} \times A \xrightarrow{\varepsilon_{B}} B = \mathrm{id}_{\mathsf{Set}}(B)$$

$$F_{A}(f) = (f \circ -) \times \mathrm{id}_{A} \downarrow \qquad \qquad f = \mathrm{id}_{\mathsf{Set}}(f)$$

$$F_{A}(C) = C^{A} \times A \xrightarrow{\varepsilon_{C}} C = \mathrm{id}_{\mathsf{Set}}(C)$$

$$f \circ \varepsilon_{B} = \varepsilon_{C} \circ (f \circ -) \times \mathrm{id}_{A}$$

$$(f \circ \varepsilon_B)(\beta, a) = f(\varepsilon_B(\beta, a)) = f(\beta(a))$$

$$(\varepsilon_C \circ (f \circ -) \times id_A)(\beta, a) = \varepsilon_C((f \circ -) \times id_A(\beta, a))$$

$$= \varepsilon_C(f \circ \beta, a)$$

$$= (f \circ \beta)(a) = f(\beta(a))$$

Ejemplo/Definición

Las transformaciones naturales se pueden componer:

- ▶ $F, G, H : \mathscr{C} \to \mathscr{D}$ funtores
- $ightharpoonup \eta: F \xrightarrow{\cdot} G$, $\tau: G \xrightarrow{\cdot} H$ transformaciones naturales
- ► Entonces $\tau \circ \eta : F \xrightarrow{\cdot} H$ es una transformación natural

 Como conmutan los cuadrados interiores, conmuta el rectángulo exterior (esto es un ejercicio de la práctica).

Consecuencia importante

Si $\mathscr C$ es una categoría pequeña, entonces $\mathscr D^{\mathscr C}$ es una categoría con:

- ▶ ob $\mathscr{D}^{\mathscr{C}} = \{\text{funtores } F : \mathscr{C} \to \mathscr{D}\}$
- $\qquad \qquad \mathsf{mor}\, \mathscr{D}^{\mathscr{C}} = \{\mathsf{transformaciones}\,\,\mathsf{naturales}\}$
- Completar los detalles como ejercicio, pero ya vimos todos los ingredientes:
 - acabamos de definir la composición y
 - para definir la transformación natural identidad id_F, recordar lo que hicimos cuando vimos que todo funtor es naturalmente isomorfo a sí mismo.

Corolario

Cat es una CCC.

Demostración.

Ejercicio.

Ejemplo

► Sea 𝒞 una categoría sin flechas (discreta). Es decir,

$$\operatorname{\mathsf{mor}}\mathscr{C} = \{\operatorname{\mathsf{id}}_A : A \in \operatorname{\mathsf{ob}}\mathscr{C}\}$$

- \blacktriangleright \mathscr{C} es esencialmente un conjunto.
- ightharpoonup Si \mathscr{D} es otra categoría discreta, entonces

$$\mathscr{D}^{\mathscr{C}} \simeq (\mathsf{ob}\,\mathscr{D})^{\mathsf{ob}\,\mathscr{C}}$$

pues al no haber flechas no triviales, cualquier funtor $F:\mathscr{C}\to\mathscr{D}$ queda determinado por lo que vale en objetos: $F: \operatorname{ob}\mathscr{C} \to \operatorname{ob}\mathscr{D}$.

 Como cualquier conjunto puede pensarse como una categoría discreta, tenemos que la noción de funtor generaliza a la noción de función.

Ejemplo: categoría 1

- ightharpoonup ob $\mathbf{1} = \{ ullet \}$, mor $\mathbf{1} = \{ \mathrm{id}_{ullet} : ullet \to ullet \}$
- ▶ Si \mathscr{C} es una categoría pequeña: $\mathscr{C}^1 = ???$
- $ightharpoonup \mathscr{C}$ y \mathscr{C}^1 son objetos isomorfos en Cat, es decir, existe un par de funtores

$$F:\mathscr{C}\to\mathscr{C}^1$$
 $G:\mathscr{C}^1\to\mathscr{C}$

tales que

$$F \circ G = \mathrm{id}_{\mathscr{C}^1}$$
 $G \circ F = \mathrm{id}_{\mathscr{C}}$

$$lackbox{ ob }\mathscr{C}^{\mathbf{1}}=\{ ext{funtores }lpha:\mathbf{1}
ightarrow\mathscr{C}\}$$

$$\alpha: \mathbf{1} \to \mathscr{C} \iff \alpha(\bullet) \in \mathscr{C}$$

$$\alpha: \mathbf{1} \to b \iff \alpha(\bullet) \in b$$

$$\blacktriangleright \text{ mor } \mathscr{C}^{\mathbf{1}} = \{ \text{transformaciones naturales } \eta: \alpha \xrightarrow{\cdot} \beta \}$$

$$\eta: \alpha \xrightarrow{\cdot} \beta \iff \eta_1: \alpha(\bullet) \to \beta(\bullet)$$

$$\eta: \alpha \xrightarrow{\cdot} \beta \iff \eta_1: \alpha(\bullet) \to \beta(\bullet)$$

$$\eta : \alpha \longrightarrow \beta \longrightarrow \eta_1 : \alpha(\bullet) \longrightarrow \beta(\bullet)$$

$$\alpha(ullet) \xrightarrow{\eta_{ullet}} \beta(ullet)$$

$$\operatorname{id}_{\alpha(\bullet)}$$
 \downarrow $\operatorname{id}_{\beta(\bullet)}$ η_{\bullet} es cualquier morfismo

$$\alpha(\bullet) \xrightarrow{\eta_{\bullet}} \beta(\bullet)$$

$$\alpha(\bullet) \xrightarrow{\eta_{\bullet}} \beta(\bullet)$$

- ▶ Definimos $F : \mathscr{C} \to \mathscr{C}^1$
 - ▶ Para $A \in \mathsf{ob}\,\mathscr{C}$,

$$F(A) = \alpha$$
 donde $\alpha(\bullet) = A$

▶ Para $f: A \rightarrow B$ en mor \mathscr{C}

$$F(f) = \eta : \alpha \xrightarrow{\cdot} \beta$$
, donde $\eta_{\bullet} = f : \alpha(\bullet) \to \beta(\bullet)$

▶ Definimos $G: \mathscr{C}^1 \to \mathscr{C}$

$$G(\alpha) = \alpha(\bullet)$$

$$G(\eta) = \eta_{\bullet}$$

ightharpoonup Chequear $F = G^{-1}$

Resumen

$$\label{eq:definition} \begin{split} \operatorname{ob}\mathscr{C}^1 &= \{\operatorname{funtores}\ \alpha: \mathbf{1} \longrightarrow \mathscr{C}\} \simeq \operatorname{ob}\mathscr{C} \\ \operatorname{mor}\mathscr{C}^1 &= \{\operatorname{transf.}\ \operatorname{nat.}\ \eta: \alpha \stackrel{\cdot}{\longrightarrow} \beta\} \simeq \operatorname{mor}\mathscr{C} \end{split}$$

Ejemplo: categoría 2

$$\begin{array}{c}
 \text{id}_{\bullet_1} \\
 \downarrow \\
 f_{\bullet}
 \end{array}$$

$$\blacktriangleright \operatorname{Hom}^{\rightarrow}(f, f') = \left\{ \begin{matrix} A & \xrightarrow{f} & B \\ (a, b) : a \downarrow & \downarrow b \text{ conmuta} \\ A' & \xrightarrow{f'} & B' \end{matrix} \right\}$$

- ▶ Una transformación natural $\eta: \alpha \xrightarrow{\cdot} \alpha'$ entre los funtores $\alpha, \alpha': \mathbf{2} \to \mathscr{C}$
 - $\bullet \quad \alpha \iff \alpha(f_{\bullet}) = f : A \to B$

queda determinada por

► Los siguientes tres diagramas deben conmutar

$$\alpha(\bullet_{1}) \xrightarrow{\eta_{\bullet_{1}}} \alpha'(\bullet_{1}) \qquad A \xrightarrow{a} A'$$

$$\alpha(\mathsf{id}_{\bullet_{1}}) \downarrow \qquad \downarrow \alpha'(\mathsf{id}_{\bullet_{1}}) \iff \mathsf{id}_{A} \downarrow \qquad \downarrow \mathsf{id}_{A'}$$

$$\alpha(\bullet_{1}) \xrightarrow{\eta_{\bullet_{1}}} \alpha'(\bullet_{1}) \qquad A \xrightarrow{a} A'$$

$$\alpha(\bullet_{2}) \xrightarrow{\eta_{\bullet_{2}}} \alpha'(\bullet_{2}) \qquad B \xrightarrow{b} B'$$

$$\alpha(\mathsf{id}_{\bullet_{2}}) \downarrow \qquad \downarrow \alpha'(\mathsf{id}_{\bullet_{2}}) \iff \mathsf{id}_{B} \downarrow \qquad \downarrow \mathsf{id}_{B'}$$

$$\alpha(\bullet_{2}) \xrightarrow{\eta_{\bullet_{2}}} \alpha'(\bullet_{2}) \qquad B \xrightarrow{b} B'$$

$$\alpha(\bullet_{2}) \xrightarrow{\eta_{\bullet_{2}}} \alpha'(\bullet_{2}) \qquad B \xrightarrow{b} B'$$

$$\alpha(\bullet_{1}) \xrightarrow{\eta_{\bullet_{1}}} \alpha'(\bullet_{1}) \qquad A \xrightarrow{a} A'$$

$$\alpha(f_{\bullet}) \downarrow \qquad \downarrow \alpha'(f_{\bullet}) \iff f \downarrow \qquad \downarrow f'$$

$$\alpha(\bullet_{2}) \xrightarrow{\eta_{\bullet_{2}}} \alpha'(\bullet_{2}) \qquad B \xrightarrow{b} B'$$

- Luego, η está unívocamente determinada por un par $(a,b) \in \text{Hom}^{\rightarrow}(f,f')$.
- ▶ Esto define un funtor $F: \mathscr{C}^2 \to \mathscr{C}^{\to}$

$$F(\alpha) = f$$
 $F(\eta) = (a, b)$

► Ejercicio: chequear que *F* es un isomorfismo en **Cat** encontrando explícitamente una inversa.

Ejemplo: doble dual

- ▶ En álgebra lineal se suele decir (coloquialmente) que dos espacios vectoriales V y W son "naturalmente isomorfos" si uno puede probar que existe un isomorfismo (de espacios vectoriales) $\varphi: V \to W$ que puede ser definido sin usar bases.
- ► Por ejemplo, para espacios vectoriales reales de dimensión finita uno tiene un isomorfismo entre *V* y su dual

$$V^* = \{f : V \to \mathbb{R} : f \text{ lineal}\}.$$

- ightharpoonup Dada una base e_1, \ldots, e_n de V.
- $lackbox{\sf Construimos}$ la base dual e_1^*,\ldots,e_n^* : $\left|e_i^*(e_j)=\delta_{ij}
 ight|$
- $ightharpoonup e_i
 ightharpoonup e_i^*$ induce un isomorfismo de espacios vectoriales (que no es natural porque depende de la base que elijamos inicialmente).

- ▶ Sin embargo, V es naturalmente isomorfo a V^{**} .
- ► En efecto, podemos definir un isomorfismo $\varepsilon: V \to V^{**}$ como $\varepsilon(v) = \varepsilon_v: V^* \to \mathbb{R}$

$$\varepsilon_{\mathbf{v}}(\alpha) = \alpha(\mathbf{v})$$

▶ Usando categorías esto se interpreta diciendo que hay un isomorfismo natural ε : id $_{\mathbf{Vect}_{\mathbf{fin}}}$ $\overset{\cdot}{\longrightarrow}$ dual \circ dual

$$egin{array}{ccc} V & \stackrel{\eta_V}{\longrightarrow} & V^{**} \ f & & & \downarrow (f^t)^t \ W & \stackrel{\eta_W}{\longrightarrow} & W^{**} \end{array}$$

 $ightharpoonup \eta_V$ corresponde a la evaluación ε definida más arriba, pero ahora varían los espacios vectoriales V.

Observación

V nunca puede ser naturalmente isomorfo a V^* :

- ▶ id : Vect → Vect covariante
- ▶ dual : Vect → Vect contravariante

Aunque parezca extraño, este hecho es una demostración de que cualquier isomorfismo que podamos definir entre V y V^* depende de la elección de una base.