LECTURE 13

REAL NUMBERS

How do we represent non-integers?

Keeping in mind:

- ullet If we consider n bits of memory,
 - their values can take 2^n combinations
 - lacksquare so we can represent 2^n numbers at best with those n bits
- We have a finite amount of memory,
 - so we cannot represent all real numbers
- We (typically) want fast operations,
 - so (ideally) we need hardware to perform them.
 - Hardware has tight limits on the number of logic gates available
 - meaning we use very few bits (say 16, 32 or 64, like for integers)
 - ... further restricting how many real numbers we can represent

Practical limitations

- Integer are restricted in one way:
 - their range (e.g. [INT_MIN, INT_MAX])
- Reals are restricted in two ways:
 - their range (e.g. $[-10^{308}, 10^{308}]$)
 - the number of reals we can represent in that range

(e.g.
$$\{\ldots,0,10^{-200},2\times 10^{-200},\ldots\}$$
)

i.e. their precision

FIXED-POINT ARITHMETIC

Decimal example

Instead of computing money values in €, we could use ¢:

then use integer operations.

- This is fixed-point arithmetic
- specifically, with 2 decimal places reserved for the fractional part.

If $+, -, \times, /$ are the elementary integer operations:

- $\mathtt{euro_to_cent}(e) := e \times 100$
 - euro_to_cent(5 €) = 500 ¢
- $cent_to_euro(a) := a/100$
 - cent_to_euro(700 ¢) = 7 €
- $\operatorname{\mathtt{cent_add}}(a,b) := a+b$
 - cent_add(700 ¢, 500 ¢) = 1200 ¢
- $cent_sub(a,b) := a-b$
 - cent_sub(700 ¢, 500 ¢) = 200 ¢
- $\mathtt{cent_mul}(a,b) := (a \times b)/100$
 - 5 € × 7: cent_mul(500 ¢, 700) = 500 × 700 / 100 = 3500 ¢
- $\bullet \ \mathtt{cent_div}(a,b) := (a \times 100)/b$
 - 8 € / 4: cent_div(800 ¢, 400 ¢) = (800 × 100) / 400 = 200 ¢

Binary fixed-point arithmetic

- There is no universally accepted standard for fixed-point arithmetic
- But there is no real need for one:
 - Only two parameters:
 - n: total number of bits
 - \circ p: number of bits after the decimal point
 - All the operations are just integer operations
 - For mul and div, two integer operations each

Binary example

64-bit integer

32-bit integer part 32-bit fractional part

• i64_to_fix
$$(e):=e imes 2^{32}$$

• fix_to_i64(a) :=
$$a/2^{32}$$

•
$$fix_add(a,b) := a+b$$

•
$$fix_sub(a,b) := a - b$$

•
$$\mathtt{fix_mul}(a,b) := (a \times b)/2^{32}$$

•
$$\mathtt{fix_div}(a,b) := (a \times 2^{32})/b$$

```
typedef int64_t fix;
static inline fix to_fix(int64_t e)
    return e << 32;
static inline int64_t from_fix(fix a)
    return a >> 32;
static inline fix fix_add(fix a, fix b)
    return a + b;
static inline fix fix_sub(fix a, fix b)
    return a - b;
static inline fix fix_mul(fix a, fix b)
   return ((__int128)a * b) >> 32;
static inline fix fix_div(fix a, fix b)
    return ((__int128)a << 32) / b;
```

Fixed-point arithmetic

Pros:

- fast, no need for extra hardware
- easy to understand and study (predictible):
 - ullet uniform absolute precision (e.g. 2^{-32} over whole range)

Cons:

- limited range (e.g. [-2147483648.999, 2147483647.999])
- limited precision (e.g. $2^{-32} \simeq 0.000000002328$)

Possible improvements:

- larger range
- better absolute precision around zero
- lower absolute precision for big numbers

FLOATING-POINT ARITHMETIC

Scientific notation

Take the number -2147483648.999:

$$\begin{array}{rcl} & - & 2147483648.999 \\ = & - & 2.147483648999 & \times & 10^9 \end{array}$$

= -2.147483648999e+9

Similarly, take the number 0.000000002328:

$$= \frac{0.000000002328}{2.328} \times 10^{-10}$$
= 2.328e-10

Scientific notation (definition)

```
-2.147483648999 \times 10^{+9}
±d.mmmmm... \times 10^{\pm xxx}...
```

- ± + or -
- d single digit between 1 and 9
- mmmmm... predeterminated number of digits between 0 and 9
- ±xxx... + or -, predeterminated number of digits between 0 and 9

Binary floating-point numbers

```
\pm d.mmmmm... \times 2^{\pm xxx}..
```

- ± sign bit + or -
- d single bit 1 and 1

Binary floating-point numbers

```
\pm 1. \text{mmmmm} \dots \times 2^{\pm x \times x} \dots
```

- ± sign bit + or -
- mmmmm... "mantissa" bits
- ±xxx.. "exponent" bits

Now we just need to all agree on how many bits for each...

Floating-point standard

- In 1985, the Institute of Electrical and Electronics Engineers publishes standard #754 about floating-point arithmetic (IEEE-754)
- Most hardware makers adopt the standard very quickly thereafter (Intel 30387, launched in 1987, is fully compliant)
- x86_64 natively supports binary32 and binary64 formats
- AArch64 natively supports binary16, binary32 and binary64 formats

component	binary16	binary32	binary64
± sign bit	1	1	1
mmmmm mantissa bits	10	23	52
±xxx exponent bits	5	8	11
exponent range	-1415	-126127	-10221023

Precision

Let $\mathrm{fl}(x)$ be the floating-point representation of the real number $x \in \mathbb{R}$.

• Absolute precision: For a given x, the smallest e such that

$$\mathrm{fl}(x+e) \neq \mathrm{fl}(e)$$

• Relative precision: For a given x,

$$arepsilon := rac{e}{x}$$

binary64 vs. fixed-point 32+32

fixed-point 32+32

floating-point binary64

	absolute	relative	absolute	relative
precision at 10^{-9}	$2.33 imes10^{-10}$	0.0233	$2.07 imes10^{-25}$	$2.22 imes10^{-16}$
precision at 10^{-6}	$2.33 imes10^{-10}$	$2.33 imes10^{-5}$	$2.12 imes10^{-22}$	$2.22 imes10^{-16}$
precision at 10^{-3}	2.33×10^{-10}	$2.33 imes10^{-8}$	$2.17 imes10^{-19}$	$2.22 imes 10^{-16}$
precision at 1	$2.33 imes10^{-10}$	2.33×10^{-11}	$2.22 imes10^{-16}$	$2.22 imes10^{-16}$
precision at 10^{+3}	$2.33 imes10^{-10}$	$2.33 imes10^{-14}$	$1.14 imes 10^{-13}$	$2.22 imes10^{-16}$
precision at 10^{+6}	$2.33 imes10^{-10}$	$2.33 imes10^{-17}$	$1.16 imes 10^{-10}$	$2.22 imes10^{-16}$
precision at 10^{+9}	2.33×10^{-10}	2.33×10^{-20}	$1.19 imes 10^{-7}$	$2.22 imes 10^{-16}$
precision at 10^{+16}	X		2.00	2.22×10^{-16}
range	$ x \leq 2.3$	$15 imes 10^9$	$ x \leq 1.8$	$0 imes 10^{308}$

The floating-point number line

Languages that mandate IEEE-754 for floating-point

language	since	binary32	binary64
С	C99	float	double
C++	C++03	float	double
Fortran	Fortran 2003	real	double
Rust		f32	f64
Python			✓
JavaScript			✓

Inaccuracy

In base 10,

- $1/3 \simeq 0.3333$
- $2/3 \simeq 0.6666$
- $1/3 + 2/3 \simeq 0.9999$

In base 2,

```
>>> a = 0.1
>>> f'{a:.50f}'
'0.100000000000000000555111512312578270211815834045410
```

Numerical instability

Consider the following approximation of the derivative of f:

$$rac{d}{dx}f(x)\simeqrac{f(x+\delta)-f(x)}{\delta}$$

Let us consider the function f:

$$f(x) = x$$
 so $\frac{d}{dx}f(x) = 1$

and compute its derivative with $\delta=10^{-6}$.

ullet at $x=10^{+5}$,

>>> ((1e+5 + 1e-6) - 1e+5) / 1e-6 0.9999930625781417

ullet at $x=10^{+8}$,

>>> ((1e+8 + 1e-6) - 1e+8) / 1e-6 0.998377799987793

ullet at $x=10^{+10}$,

>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6 1.9073486328125

What is happening?

```
>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6
1.9073486328125
```

- ullet At $x=10^{+10}$, we first compute (1e+10 + 1e-6)
 - which is a big number, close to 1e+10
 - lacktriangle floating-point numbers have a good *relative* accuracy everywhere, $\simeq 2.22 imes 10^{-16}$
 - lacksquare but at 10^{+10} , the *absolute* accuracy is not great, $\simeq 1.91 imes 10^{-6}$
 - lacksquare so the result of (1e+10 + 1e-6) may be off by roughly $1.91 imes 10^{-6}$
- We then subtract 1e+10.
 - If we were using exact arithmetic, we would get 1e-6 exactly,
 - but we are using floating-point arithmetic,
 - so we get something close to 1e-6...
 - lacksquare ... but potentially off by roughly $1.91 imes10^{-6}$
- We divide by 1e-6,
 - lacksquare and get a number in $[1-1.91, \quad 1+1.91]$

Therefore,

- floating-point accuracy is often great
- but some algorithms are unstable
- we need to be extremely careful before trusting floating-point results

Never do exact comparisons

>>> 1.0 + 1e-16 <= 1.0 True

So how do we do comparisons?

- If exact comparisons are important, do not use floating-point arithmetic.
- If we care about speed and can tolerate some errors...

```
>>> 0.1 + 0.2 == 0.3 False
```

becomes

```
>>> tolerance = 1e-10
>>> abs( (0.1 + 0.2) - 0.3 ) <= tolerance
True
```

```
>>> x >= 0.0
```

becomes

>>> x >= -tolerance

FLOATING-POINT ROUNDING

Given a floating point number a, we want to compute x=a/3.

Q: If a/3 cannot be represented exactly by a floating-point number, what value do we give x?

A: We "round" x to the floating-point number "closest" to the real value a/3.

Rounding modes

- Round to nearest, ties to even (default)
 - nearest value
 - in case of ties, set last mantissa bit to zero
- Round to nearest, ties away from zero
 - nearest value
 - in case of ties, set last mantissa bit to one
- Round toward zero
 - if between two numbers, choose the one nearest to zero
 - even if it is not the nearest to the real value
- Round toward +∞: always round up
- Round toward -∞: always round down

Determinism

- Floating-point arithmetic is sometimes inaccurate
- but it is deterministic:
 - the result of most operations is precisely defined
 - we can predict the result of such operations bit-for-bit

Let us denote by $\mathrm{fl}(x)$ the floating-point representation of the real number $x \in \mathbb{R}$.

The IEEE-754 standard mandates correct rounding as specified by the currently-selected rounding mode for:

$$ullet$$
 addition, negation, subtraction: ${\sf x}$ + ${\sf y}$ gives ${\sf fl}(x+y)$

$$ullet$$
 multiplication, division: x / y gives $\mathrm{fl}(x/y)$

• square root:
$$\operatorname{sqrt}(x) = \operatorname{fl}\left(\sqrt{x}\right)$$

$$ullet$$
 fused multiply-add: $extstyle extstyle exts$

Division example

When executing

$$z = x / y$$

- we first take the floating-point numbers x and y, and consider them as if the were (exact, infinite-precision) real numbers
- ullet we compute the (exact, infinite-precision) real quotient x/y.
- ullet we round the result according to the current rounding mode: $\mathrm{fl}(\mathrm{x}\ /\ \mathrm{y})$
- we store the rounded floating-point value into z

Expression example

$$(y * (x + 4.0)) / (z - 3.0)$$

gives:

$$\mathrm{fl}\left(\mathrm{fl}(y\times\mathrm{fl}(x+4))\ /\ \mathrm{fl}(z-3)\right)$$

About fused multiply-add

Beware:

$$fma(x, y, z) \neq x * y + z$$

Indeed:

- $fma(x,y,z) = fl(x \times y + z)$
- but x * y + z gives $\mathrm{fl}(\mathrm{fl}(x \times y) + z)$

More floating-point non-identities

- associativity does not hold: $x + (y + z) \neq (x + y) + z$
- distributivity does not hold: $x * (y + z) \neq x * y + x * z$

The IEEE-754 standard mandates correct rounding for: +, -, ×, /, sqrt(), fma()

The IEEE-754 standard does not mandate correct rounding for most other functions, in particular:

- sin, cos, tan
- asin, acos, atan
- sinh, cosh, tanh
- pow, log, log2, log10, exp, exp2, exp10

Floating-point and compilers

- C99 and C++03 mandate IEEE-754
- which in turn mandates correct rounding for +, -, ×, /, sqrt(), fma().
- However, if we do not specify a C or C++ standard (e.g. std=c17 or std=c++20),
 gcc and clang do not follow IEEE-754
 - they will happily exploit associativity and distributivity
 - they will replace x * y + z by fma(x, y, z)

Why does correct rounding matter?

- (generally) not because of accuracy
- ullet but because for any real number x, there is exactly one correct rounding
- as a result, there is no ambiguity:
 - given a set of floating-point numbers
 - given any expression involving those numbers and +, -, ×, /, sqrt(), fma()
 - there is exactly one correct answer
 - which is precisely specified by IEEE-754, down to its bit representation

What happens without correct rounding?

Results can change when:

- we change architecture
- we change compiler
- we change the standard C library
- we change the version of the compiler
- we change the version of the standard C library
- we change our code (even a completely unrelated part)

Note: If we use sin, cos, log, exp, ..., which are not correctly rounded, then we are exposed to result changes whenever we change the version of the standard C library (which could be dynamically linked!)

BEYOND FLOATING-POINT ARITHMETIC

Interval arithmetic

We represent every real number $x \in \mathbb{R}$ by a pair of floating-point number (l,u) with $x \in [l,u]$.

We exploit the Round toward +∞ and Round toward -∞ modes to compute the appropriate interval for every operation.

Pros

- fast
- we always know how accurate a result is

Cons

 \bullet the interval [l,u] often becomes large very quickly (the bounds are usually too pessimistic)

Unum

- introduced in 2015, latest revision 2017
- For a given fixed bit width, claims better allocation of available precision
- optional interval arithmetic
- very limited adoption (no hardware support on any mainstream platforms)

The GNU multi-precision library

GMP is a C library that provides support for:

- variable-width (a.k.a. arbitrary-size) integers
- arbitrary-size rational numbers (i.e. fractions):

$$fraction = \frac{numerator}{denominator},$$

where gcd(numerator, denominator) = 1

> gmplib.org

The GNU MPFR library

MPFR builds on top of GMP to add arbitrary-size floating-point numbers

> mpfr.org

Python fractions

Python integers are already variable-width by default:

```
>>> -2 ** 65
-36893488147419103232  # <-- correct result, no overflow
```

Python fractions add support for (variable-width) rationals in top of them:

```
import fractions
a = fractions.Fraction(numerator, denominator)
```

Why don't we always use exact rational numbers?

- convenience (unfortunately)
 - need to use GMP in C
 - need "import fractions" in Python
- memory
 - the size of the numerator and denominator can explode in iterative algorithms (despite gcd reductions)
- speed
 - since arbitrary-sized integers don't come with native hardware support,
 operations are much slower (typically 10× for small numbers, then it grows with size)

Should we use exact rational numbers more often?

(in particular when exactness matters)

(or when and speed does not matter)

YES

Symbolic computations

In a symbolic algebra system:

• $\sqrt{2}$ is never evaluated to $\simeq 1.4142$:

```
sage: sqrt(8)
2*sqrt(2)
```

We can also carry variables that have no specific value:

```
sage: x, y, z = var('x y z')
sage: sqrt(8) * x
2*sqrt(2)*x
```

This allows us to solve problems symbolically:

```
sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0], x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]
```

Symbolic algebra systems

- SageMath (free software, syntax similar to Python)
- Maple
- Wolfram Mathematica

> wolframalpha.com