

Trench™ **Power MOSFET**

IXTA180N10T IXTP180N10T

N-Channel Enhancement Mode Avalanche Rated

G o	

$V_{\rm DSS}$	=	100V
I _{D25}	=	180A
R _{DS(on)}	≤	$6.4 \mathrm{m}\Omega$

TO-220 (IXTP)	
	G D (Tab)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Features	

- Ultra-Low On Resistance
- Avalanche Rated
- Low Package Inductance
- Easy to Drive and to Protect
- 175°C Operating Temperature
- Fast Intrinsic Diode

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Automotive
 - Motor Drives
 - 42V Power Bus
 - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Current Switching **Applications**
- High Voltage Synchronous Recifier

Symbol	Test Conditions	Maximum	Ratings
V _{DSS}	$T_{J} = 25^{\circ}C \text{ to } 175^{\circ}C$	100	V
V _{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	100	V
V _{GSS}	Continuous	± 20	V
V _{GSM}	Transient	± 30	V
I _{D25}	T _C = 25°C (Chip Capability)	180	Α
I _{L(RMS)}	External Lead Current Limit	120	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	450	Α
IA	$T_{c} = 25^{\circ}C$	25	Α
E _{AS}	$T_{c} = 25^{\circ}C$	750	mJ
P _D	T _c = 25°C	480	W
T _J		-55 +175	°C
T_{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	Maximum Lead Temperature for Soldering	ng 300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _C M _d	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in
Weight	TO-263 TO-220	2.5 3.0	g

Symbol $(T_J = 25^{\circ}C)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic	Value Max.	
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		4.5	V
I _{GSS}	$V_{gs} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			5	μΑ
	$T_J = 150$ °C			100	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 25A, Notes 1\& 2$		5.7	6.4	mΩ

Symbo	ı	Test Conditions	Charac	teristic	Values
$(T_J = 25)$	5°C, ι	Jnless Otherwise Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}		$V_{DS} = 10V, I_{D} = 60A, \text{ Note } 1$	70	110	s
C _{iss})			6900	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		923	pF
C _{rss}	J			162	pF
t _{d(on)}	١	Resistive Switching Times		33	ns
t _r		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		54	ns
t _{d(off)}		$R_{\rm G} = 3.3\Omega$ (External)		42	ns
t _f	J	G (31	ns
Q _{g(on)})			151	nC
Q _{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		39	nC
\mathbf{Q}_{gd}	J			45	nC
R _{thJC}					0.31 °C/W
R _{thCH}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol	Test Conditions Cl	hara	cteristi	c Values	
$(T_{J} = 25^{\circ}C, U)$	Jnless Otherwise Specified) M	in.	Тур.	Max.	
I _s	$V_{GS} = 0V$			180	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			450	Α
V _{SD}	$I_F = 25A, V_{GS} = 0V, \text{ Note 1}$			0.95	V
t _{rr}	$I_{\rm F} = 90A, \ V_{\rm GS} = 0V$		72		ns
I _{RM}	$v_{\rm F} = 30$ A, $v_{\rm GS} = 0$ -di/dt = 100A/ μ s, $v_{\rm R} = 50$ V		5.1		Α
$Q_{_{\mathrm{RM}}}$	$-di/dt = 100A/\mu s, v_{R} = 50V$		0.18		μC

Notes: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\mathrm{DS(on)}}$ Kelvin test contact location must be 5mm or less from the package body.

SYM	INC	HES MILLIMETE		METER
SIM	MIN	MAX	MIN	MAX
Α	.170	.185	4.30	4.70
A1	.000	.008	0.00	0.20
A2	.091	.098	2.30	2.50
Ь	.028	.035	0.70	0.90
b2	.046	.060	1.18	1.52
С	.018	.024	0.45	0.60
C2	.049	.060	1.25	1.52
D	.340	.370	8.63	9.40
D1	.300	.327	7.62	8.30
Ε	.380	.410	9.65	10.41
E1	.270	.330	6.86	8.38
е	.100	BSC	2.54	BSC
Н	.580	.620	14.73	15.75
L	.075	.105	1.91	2.67
L1	.039	.060	1.00	1.52
L2	_	.070	_	1.77
L3	.010	BSC	0.254 BSC	

SYM INCHES		HES	MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.169	.185	4.30	4.70	
A1	.047	.055	1.20	1.40	
A2	.079	.106	2.00	2.70	
Ь	.024	.039	0.60	1.00	
b2	.045	.057	1.15	1.45	
С	.014	.026	0.35	0.65	
D	.587	.626	14.90	15.90	
D1	.335	.370	8.50	9.40	
(D2)	.500	.531	12.70	13.50	
Ε	.382	.406	9.70	10.30	
(E1)	.283	.323	7.20	8.20	
е	.100	.100 BSC		BSC	
e1	.200 BSC		5.08	BSC	
H1	.244	.268	6.20	6.80	
L	.492	.547	12.50	13.90	
L1	.110	.154	2.80	3.90	
ØΡ	.134	.150	3.40	3.80	
Q	.106	.126	2.70	3.20	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ $T_J = 150$ °C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 90A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 90A Value vs.

Fig. 6. Drain Current vs. Case Temperature

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

