Sumário

1.	Pre	edefinições	1
2.	Re	sultados obtidos com uma placa	2
3.	Со	nfiguração em Série	2
	3.1.	Duas Placas em Série com mesma intensidade luminosa	2
	3.2.	Três Placas em Série com mesma intensidade luminosa	3
	3.3.	Duas Placas em Série com intensidades luminosas diferentes	4
	3.4.	Três Placas em Série com intensidades luminosas diferentes	5
4.	Со	nfiguração em Paralelo	5
	4.1.	Duas Placas em Paralelo com mesma intensidade luminosa	5
	4.2.	Três Placas em Paralelo com mesma intensidade luminosa	6
5.	Со	nfiguração Mista	7
	5.1.	Seis agrupamentos de seis módulos em série conectados em paralelo	7

1. Predefinições

Configuração padrão da placa, obtida através do datasheet:

Valor da Capacitância e Diodo adicionado:

O diodo é necessário caso cada módulo possua intensidade de luz e temperatura ambiente diferentes.

O capacitor é necessário em cada módulo para convergência numérica. Nessas simulações foi capacitância total de 120nF.

2. Resultados obtidos com uma placa

S = 1000W/m² (Intensidade Luminosa Padrão)

 $T = 25^{\circ}C$ (Temperatura)

Após a variação inicial, a tensão de saída é um valor constante de 37,196984V.

3. Configuração em Série

3.1. Duas Placas em Série com mesma intensidade luminosa

Duas placas ligadas em série

Após a variação inicial, a tensão de saída é um valor constante de 74,393968V (2 x 37,196984V).

3.2. Três Placas em Série com mesma intensidade luminosa

Três placas ligadas em série

Após a variação inicial, a tensão de saída é um valor constante de 111,59095V (3 x 37,196984V).

3.3. Duas Placas em Série com intensidades luminosas diferentes

Duas placas em série com intensidades luminosas distintas

A tensão se estabiliza em 74,393968 V – mesmo valor da configuração com mesma intensidade. A variação de insolação não interfere muito com a tensão de saída.

3.4. Três Placas em Série com intensidades luminosas diferentes

4. Configuração em Paralelo

4.1. Duas Placas em Paralelo com mesma intensidade luminosa

Duas placas ligadas em paralelo

Após oscilação inicial, tensão de saída é 37,196977. Mesmo valor obtido na simulação de apenas uma placa, pois estas estão em paralelo (mesma tensão).

4.2. Três Placas em Paralelo com mesma intensidade luminosa

5. Configuração Mista

5.1. Seis agrupamentos de seis módulos em série conectados em paralelo

Configuração definida para 6 módulos em série:

