

Félix Houphouët – Boigny SERVICE DES CONCOURS

Concours A2GP session 20

Composition : **Physique 6** (mécanique, électricité, optique)

Durée : 3 Heures

Consignes pour les candidats	Merci de ne rien marquer sur le sujet. Pour chaque question de l'épreuve, une seule bonne réponse possible. Répondez sur la grille séparée qui comporte 40 questions (Q01 à Q40). Seules les grilles correctement remplies seront corrigées.
------------------------------	---

PARTIE OPTIQUE

- 1) Un miroir sphérique de centre C et de sommet S est plongé dans un milieu homogène et isotrope d'indice n. Dans la suite, toutes les distances algébriques sont comptées positivement dans le sens de propagation de la lumière incidente.
- **Q01.** Exprimer la vergence V du miroir.

$A. V = -\frac{2}{n\overline{SC}}$	$B. V = -\frac{2n}{\overline{SC}}$	$C. V = \frac{n}{\overline{SC}}$	$D. V = -\frac{\overline{SC}}{2n}$
E. Aucune réponse			

- **Q02.** Donner les positions des foyers objet F et image F' du miroir.
 - A. F est situé au milieu du segment [SC] et F' est symétrique de F par rapport au sommet S.
 - B. F' est situé au milieu du segment [SC] et F est symétrique de F' par rapport au centre C.
 - C. F et F' sont confondus et situés au milieu du segment [SC].
 - D. F et F' sont rejetés à l'infini.
 - E. Aucune réponse.
- 2) On considère un miroir sphérique placé dans l'air (indice n = 1) qui donne d'un objet réel placé à 10 m du sommet, une image droite (de même sens que l'objet) et réduite dans le rapport 5.
- **Q03.** Quelle est la vergence V de ce miroir ?

A. $V = -0.4 \delta$	B. $V = -12,2 δ$	C. $V = 3.7 \delta$	D. V = 12 δ
E. Aucune réponse			

Q04. Quelle est la nature d'un tel miroir ?

A. Convergent et	B. Divergent et concave.	C. Divergent et convexe.	D. Convergent et
convexe.			concave.
E. Aucune réponse			

Q05. Un objet est placé dans un plan orthogonal à l'axe optique du miroir passant par le centre C. Où se trouve l'image?

]	A. L'image se trouve dans le même plan passant par C. B. L'image se trouve dans le plan focal image du miroir. C. L'image est rejetée à l'infini. D. L'image se trouve dans le plan passant par le sommet S du miroir. E. Aucune réponse.

3) On dispose un objet $\overline{A_0B_0}$ orthogonalement à l'axe optique d'une lentille divergente L_1 de distance focale image $f_1=-20$ cm.

Q06. Quelle doit être la valeur $\overline{O_1A_0}$ de la position de l'objet par rapport au centre optique O_1 de L_1 pour que le grandissement transversal G_t soit égal à $\frac{1}{2}$?

A. $\overline{O_1 A_0} = -20 \text{ cm}$	$B. \overline{O_1 A_0} = 10 \text{ cm}$	$C. \overline{O_1 A_0} = -10 \text{ cm}$	$D. \overline{O_1 A_0} = -40 \text{ cm}$
E. Aucune réponse			

Q07. Quelle est alors la position $\overline{O_1A_1}$ de l'image $\overline{A_1B_1}$ par rapport à O_1 ?

$A. \overline{O_1 A_1} = -20 \text{ cm}$	$B. \overline{O_1 A_1} = -10 \text{ cm}$	$C. \overline{O_1 A_1} = 15 \text{ cm}$	$D. \overline{O_1 A_1} = 40 \text{ cm}$
E. Aucune réponse			

Q08. On place après L_1 un viseur constitué d'une lentille convergente L_2 , de même axe optique que L_1 , de distance focale image $f_2 = 40$ cm et un écran E disposé orthogonalement à l'axe optique à une distance $\overline{O_2E} = 80$ cm du centre optique O_2 de L_2 . Quelle est la distance $\overline{O_1O_2}$ entre les centres optiques des lentilles L_1 et L_2 pour que l'on observe sur l'écran une image nette de l'objet $\overline{A_0B_0}$?

A. $\overline{0_1 0_2} = 50 \text{ cm}$	$B. \overline{O_1 O_2} = 10 \text{ cm}$	$C. \overline{O_1 O_2} = 70 \text{ cm}$	$D. \overline{O_1 O_2} = 5 \text{ cm}$
E. Aucune réponse			

Q09. On désire utiliser le système optique constitué par l'association de la lentille L_1 suivie de la lentille L_2 , pour transformer un faisceau cylindrique de rayons parallèles à l'axe optique et de diamètre d à l'entrée du système, en un faisceau cylindrique de rayons parallèles à l'axe optique et de diamètre D à la sortie du système. Calculer la distance $\overline{O_1O_2}$ qui permet de réaliser un tel système.

A. $\overline{0_1 0_2} = 30 \text{ cm}$	B. $\overline{0_1 0_2} = 10 \text{ cm}$	C. $\overline{0_1 0_2} = 40 \text{ cm}$	D. $\overline{0_1 0_2} = 20 \text{ cm}$
E. Aucune réponse			

Q10. Calculer le rapport $\frac{D}{d}$ des diamètres.

$A. \frac{D}{d} = 1$	$B. \frac{D}{d} = 2$	$C. \frac{D}{d} = 3$	$D. \frac{D}{d} = 4$
E. Aucune réponse			

PARTIE ELECTRICITE

I. Régime transitoire

Le montage ci-contre modélise une bobine réelle (L, R) en série avec un condensateur réel (C, R) initialement déchargé.

On ferme l'interrupteur K à la date t = 0.

On impose la relation suivante : $\tau = \frac{L}{R} = RC$.

Initialement : $i(0^{-}) = 0$ et $u(0^{-}) = 0$.

Q11. Indiquer la combinaison exacte.

- a. La tension électrique aux bornes d'une bobine idéale ne subit jamais de discontinuité au cours du temps.
- b. Une bobine est dipôle non linéaire.
- c. Un condensateur est dipôle linéaire.
- d. La tension électrique aux bornes d'un condensateur idéal ne subit pas de discontinuité au cours du temps.

A. a + b	B. $c + d$	C. a + b + c	D. a + b + c + d
E. Aucune réponse			

Q12. Donner la valeur de $\frac{du}{dt}(0^+)$.

A. $\frac{du}{dt}(0^+) = 0 \text{ V. s}^{-1}$	$B.\frac{du}{dt}(0^+) = 0 V$	$C.\frac{du}{dt}(0^+) = 2 \text{ mA}$	D. $\frac{du}{dt}(0^+) = -1.5 \text{ A}$
E. Aucune réponse			

Q13. Donner l'équation différentielle vérifiée par la tension u(t).

$A. \frac{du}{dt} + \frac{2}{\tau}u(t) = E$	B. $\frac{d^2u(t)}{dt^2} + \frac{1}{\tau}\frac{du(t)}{dt}$	$+\frac{2}{\tau^2}u(t)=\frac{E}{\tau}$	C. $\frac{d^2u}{dt}$	$\frac{u(t)}{t^2} + \frac{2}{\tau} \frac{du(t)}{dt} + \frac{2}{\tau^2} u(t) = \frac{E}{\tau^2}$
D. $4\frac{d^2u(t)}{dt^2} + \tau \frac{du(t)}{dt} +$	$-\frac{2}{\tau^2}u(t) = \frac{E}{\tau^2}$	E. Aucune répons	e	

Q14. Donner l'expression de u(t) pour $t \ge 0$.

A.
$$u(t) = \frac{E}{2} \left[1 - \left(\cos\left(\frac{t}{\tau}\right) + \sin\left(\frac{t}{\tau}\right) \right) \exp\left(-\frac{t}{\tau}\right) \right]$$
. B. $u(t) = \frac{E}{2} \left[1 + \left(\cos\left(\frac{t}{\tau}\right) + \sin\left(\frac{t}{\tau}\right) \right) \exp\left(-\frac{t}{\tau}\right) \right]$. C. $u(t) = \frac{E}{2} \left[1 - \left(\cos\left(\frac{t}{\tau}\right) - \sin\left(\frac{t}{\tau}\right) \right) \exp\left(-\frac{t}{\tau}\right) \right]$. D. $u(t) = \frac{E}{2} \left[1 - \left(\cos\left(\frac{t}{\tau}\right) + \sin\left(\frac{t}{\tau}\right) \right) \exp\left(\frac{t}{\tau}\right) \right]$

E. Aucune réponse.

Q15. Donner l'expression de i(t) pour $t \ge 0$.

$$A. \ i(t) = \frac{E}{2} \left[1 + \left(-\cos\left(\frac{t}{\tau}\right) + \sin\left(\frac{t}{\tau}\right) \right) \exp\left(-\frac{t}{\tau}\right) \right]. \qquad B. \ i(t) = \frac{E}{R} \left[1 + \left(-\cos\left(\frac{t}{\tau}\right) + \sin\left(\frac{t}{\tau}\right) \right) \exp\left(-\frac{t}{\tau}\right) \right].$$

$$\text{C. i}(t) = \frac{E}{2R} [1 - \left(-\cos\left(\frac{t}{\tau}\right) + \sin\left(\frac{t}{\tau}\right)\right) \exp\left(\frac{t}{\tau}\right)].$$

$$\text{D. i}(t) = \frac{E}{2R} [1 + \left(-\cos\left(\frac{t}{\tau}\right) + \sin\left(\frac{t}{\tau}\right)\right) \exp\left(-\frac{t}{\tau}\right)].$$

$$\text{E. Aucune réponse.}$$

Q16. Donner les valeurs de u(t) et i(t).

A. $u(\infty) = \frac{E}{2}$ et $i(\infty) = \frac{E}{2R}$	B. $u(\infty) = E$ et $i(\infty) = \frac{E}{2R}$	C. $u(\infty) = E$ et $i(\infty) = \frac{E}{R}$
D. $u(\infty) = 0$ et $i(\infty) = 0$	E. Aucune réponse	

Q17. Donner la valeur du facteur de qualité Q.

	A. $Q = -\frac{1}{2}$	B. $Q = \frac{1}{2}$	$C. Q = \frac{1}{\sqrt{2}}$	$D. Q = \frac{\sqrt{3}}{2}$
-	E Auguno mámonao			

E. Aucune réponse

II. Régime sinusoïdal forcé

Le dipôle AB représenté sur le schéma de la figure ci-contre est alimenté par une source tension parfaite de force électromotrice instantanée : $e(t) = E_0 \sin(\omega t)$.

Λ Ι _ RCω	R^2C	R^2C	D. I. — RCω
A. L = $\frac{1+(RC\omega)^2}{1+(RC\omega)^2}$	$B.L = \frac{1}{1 + BCO}$	$C. L = \frac{1}{1 + (BC_0)^2}$	D. L = $\frac{1-RC\omega}{1-RC\omega}$
TT(RCW)	1+RCω	1+(κιω) ²	1 NCW
F Aucune réponse			

Q19. Calculer L sachant que R = 100 Ω , C = $\frac{100}{3}$ μ F et ω = 400 rad. s⁻¹.

A. $L = 120 \text{ mH}$	B. $L = 200 \text{ mH}$	C. L = 50 mH	D. $L = 37 \text{ mH}$
E. Aucune réponse			

Q20. La valeur efficace de la force électromotrice du générateur vaut $E_0 = 180 \text{ V}$. Calculer les valeurs efficaces U_{AD} et U_{DB} des différences de potentiel u_{AD} et u_{DB} .

A. $U_{AD} = 100 \text{ V} \text{ et } U_{DB} = 250 \text{ V}$	B. $U_{AD} = 45 \text{ V et } U_{DB} = 135 \text{ V}$	C. $U_{AD} = 240 \text{ V et } U_{DB} = 300 \text{ V}$
D. $U_{AD} = 180 \text{ V et } U_{DB} = 45 \text{ V}$	E. Aucune réponse	

PARTIE MECANIQUE

I. Brouillard

On disperse un brouillard de fines gouttelettes sphériques d'huile, de masse volumique $\rho_h=1,3.10^3 kg.\,m^{-3}$ dans l'espace séparant les deux plaques horizontales d'un condensateur plan distantes de $d=2.10^{-2}$ m. Les gouttelettes obtenues sont chargées négativement

en raison des frottements qu'elles subissent à la sortie du pulvérisateur et sont supposées ne pas avoir de vitesses initiales. Toutes les gouttelettes sphériques ont même rayon R mais n'ont pas forcément la même charge -q. En l'absence de champ électrique \vec{E} , une gouttelette est soumise à son poids (on prendra pour l'accélération de la pesanteur la valeur $g=9.81~\text{m. s}^{-2}$) à la poussée d'Archimède de la part de l'air ambiant de masse volumique $\rho_a=1.3~\text{kg. m}^{-3}$ et à une force de frottement visqueux \vec{f} , proportionnelle et opposée à sa vitesse \vec{v} de norme $f=6\pi\eta R ||\vec{v}||$, où $\eta=1.8.10^{-5} \text{S. I SI}$ est le coefficient de viscosité de l'air.

Q21. Le vecteur vitesse \vec{v} des gouttelettes a pour expression :

A. $\vec{v}(t) = v_0 \left(1 + \exp(-\frac{t}{\tau}) \right) \vec{e}_z$	B. $\vec{v}(t) = -v_0 \left(1 - \exp(-\frac{t}{\tau})\right) \vec{e}_x$	C. $\vec{v}(t) = -v_0 \left(1 - \exp(-\frac{t}{\tau})\right) \vec{e}_z$
D. $\vec{\mathbf{v}}(t) = \mathbf{v}_0 \left(1 - \exp(-\frac{t}{\tau}) \right) \vec{\mathbf{e}}_{\mathbf{y}}$	E. Aucune réponse	

Q22. Donner l'expression de τ :

A. $\tau = \frac{9\rho_h R^3}{2\eta}$	B. $\tau = \frac{2\rho_a R}{3\eta}$	$C. \tau = \frac{4\rho_a R^2}{9\eta}$
$D. \tau = \frac{2\rho_h R^2}{9\eta}$	E. Aucune réponse	

Q23. Exprimer v_0

A. $v_0 = \frac{2R^2}{9\eta} (\rho_h - \rho_a)g$	$B. v_0 = \frac{9R^2}{2\pi\eta} (\rho_h - \rho_a)g$	C. $v_0 = \frac{9R^2}{2\eta} (\rho_a - \rho_h)g$
D. $v_0 = \frac{4\pi R^3}{3\eta} (\rho_h + \rho_a)g$	E. Aucune réponse	

Q24. On mesure une vitesse limite $v_0 = 2.10^{-4} \text{m. s}^{-1}$. Calculer le rayon R des gouttelettes d'huile.

A. $R = 2,53.10^{-6} \text{m}$	B. $R = 7,42.10^{-6} \text{m}$	C. $R = 1,13.10^{-6} \text{m}$
D. $R = 4,67.10^{-6} \text{m}$	E. Aucune réponse	

Q25. On applique une différence de potentiel $U = V_1 - V_2 > 0$ aux bornes du condensateur de façon à ce que le champ électrique \vec{E} uniforme et constant qui apparaît dans l'espace compris entre les armatures soit dirigé suivant la verticale descendante. Une gouttelette est immobilisée pour U = 3200 V. Calculer la valeur absolue q de sa charge.

A. $q = 4.8.10^{-19}C$	B. $q = 1.6.10^{-19} C$	C. $q = 8.0.10^{-19} C$
D. $q = 3.2.10^{-19}C$	E. Aucune réponse	

II. Ressort

Dans le référentiel du laboratoire R supposé galiléen, une masselotte A que l'on assimile à un point matériel de masse M=200 g est fixée à l'extrémité d'un ressort de masse m, de raideur k=10 N. m^{-1} et de longueur à vide L_0 , disposé verticalement comme le montre la figue ci-dessous. L'autre extrémité O du ressort est fixe dans R, car solidaire d'un bâti. On désigne par $\vec{g}=g$. \vec{e}_z , où g=9,80 m. s^{-2} le champ de pesanteur terrestre.

Q26. En négligeant tout frottement et en supposant m=0, exprimer la période T_0 des oscillations de la masselotte lorsque cette dernière est mise en mouvement.

$A. T_0 = 2\pi \left(\frac{L_0}{g}\right)^{1/2}$	$B. T_0 = \left(\frac{L_0}{g}\right)^{1/2}$	$C. T_0 = 2\pi \left(\frac{M}{k}\right)^{1/2}$
$D. T_0 = \left(\frac{k}{M}\right)^{1/2}$	E. Aucune réponse	

Q27. En négligeant tout frottement et en supposant m=0, déterminer l'allongement ΔL du ressort lorsque la masselotte occupe sa position d'équilibre.

A. $\Delta L = 9,80 \text{ cm}$	B. Δ L = 19,6 cm	C. $\Delta L = 5,10 \text{ cm}$
D. $\Delta L = 44.2 \text{ cm}$	E. Aucune réponse	

Q28. Afin d'étudier l'influence de la masse m du ressort sur la pulsation des oscillations, on considère à l'instant t une tranche T infinitésimale du ressort, de cote z, de masse dm, d'épaisseur dz et de vitesse $\vec{v}(z) = \left(\frac{z}{z_A}\right)\vec{v}_A$, $\vec{v}_A = v_A\vec{e}_z$ étant la vitesse de A et z_A sa cote. Exprimer l'énergie cinétique dE_k^T de T.

A. $dE_k^T = \frac{mz^2v_A^2}{2z_A^2} dz$	$B. dE_k^T = \frac{mz^2v_A^2}{z_A^3}dz$	$C. dE_k^T = \frac{2mz^2v_A^2}{z_A^3} dz$
D. $dE_k^T = \frac{mzv_A^2}{2z_A^3}dz$	E. Aucune réponse	

 $\mbox{\bf Q29.}$ Exprimer l'énergie cinétique totale E_k^T du ressort.

$A. E_k^T = \frac{mv_A^2}{3}$	$B. E_k^T = \frac{mv_A^2}{6}$	$C. E_k^T = 2mv_A^2$
$D. E_k^T = \frac{mv_A^2}{4}$	E. Aucune réponse	

Q30. En admettant la conservation de l'énergie mécanique E_m du ressort et de la masselotte : $E_m = E_k^T + E_k^A + E_P$, où E_k^A et E_P désignent respectivement l'énergie cinétique de la masselotte A et l'énergie potentielle élastique du ressort. Quelle est la combinaison exacte ?

- a. L'équation différentielle qui du mouvement de la masselotte est de la forme : $\left(\frac{dz_A}{dt}\right)^2 + \omega^2(z_A L_0)^2 = C$, où C est une grandeur indépendante du temps.
- b. L'équation différentielle qui du mouvement de la masselotte est de la forme : $\left(\frac{dz_A}{dt}\right)^2 + \omega^2(z_A + L_0)^2 = C$, où C est une grandeur indépendante du temps.
- c. L'équation différentielle qui du mouvement de la masselotte est de la forme : $\left(\frac{dz_A}{dt}\right)^2 + \omega^2(L_0 z_A)^2 = C$, où C est une fonction exponentielle du temps.

d.
$$\omega = \left(\frac{k}{M + \frac{m}{3}}\right)^{1/2}$$
.
e. $\omega = \left(\frac{k}{(M+m)/2}\right)^{1/2}$.

A. a + b + e	B. b + e	C. c + d
D. a + d	E. Aucune réponse	

III. Vidange

Un réservoir à symétrie de révolution, muni d'une bonde de fond (trou) circulaire de rayon a = 5 mm et de centre O, contient de l'eau, de masse volumique $\rho_m=1000$ kg. m^{-3} . La forme du réservoir est donnée par l'équation de sa paroi en coordonnées cylindriques : r = f(z), r désignant la distance d'un point M de la paroi à l'axe de symétrie de révolution Oz, z étant la cote de M et f une fonction de z. La pression atmosphérique vaut

 $P_0 = 10^5 Pa$ et le champ de pesanteur a pour intensité $g_0 = 10 \text{ m. s}^{-2}$. La hauteur d'eau est initialement $h_0 = 50 \text{ cm}$, le fluide supposé parfait est au repos dans le réservoir et la bonde est obstruée.

Q31. On suppose le réservoir de forme cylindrique, de sorte que f(z) = R = 20 cm. On ouvre la bonde de fond à l'instant origine. Exprimer la vitesse v(t) du fluide en O, en fonction de la hauteur h(t) à l'instant t :

A.
$$v(t) = [g_0 h(t) (1 - (\frac{a}{R})^2)^{-1}]^{1/2}$$

B.
$$v(t) = [g_0 h(t)(1 - (\frac{a}{R})^4)^{-1}]^{1/2}$$
D. $v(t) = [2g_0 h(t)(1 - (\frac{a}{R})^2)^{-1}]^{1/2}$

C.
$$v(t) = \left[2g_0h(t)\left(1 - \left(\frac{a}{R}\right)^4\right)^{-1}\right]^{1/2}$$

D.
$$v(t) = [2g_0h(t)(1 - (\frac{a}{R})^2)^{-1}]^{1/2}$$

E. Aucune réponse.

Q32. En tenant compte de l'approximation R >> a, l'équation différentielle d'évolution de la hauteur d'eau s'écrit:

$$A. \frac{dh(t)}{dt} - kh(t) = 0$$

$$B.\frac{dh(t)}{dt} + kh(t) = 0$$

C.
$$\frac{dh(t)}{dt} + k[h(t)]^{1/2} = 0$$

A.
$$\frac{dh(t)}{dt} - kh(t) = 0$$
B.
$$\frac{dh(t)}{dt} + kh(t) = 0$$
D.
$$\frac{dh(t)}{dt} - k[h(t)]^{1/2} = 0$$
E. Aucune réponse.

Q33. Exprimer le coefficient k :

A.
$$k = \left(\frac{R}{a}\right)^2 \sqrt{2g_0}$$

B.
$$k = \left(\frac{a}{R}\right)^2 \sqrt{2g_0}$$

C.
$$k = \sqrt{\frac{Rg_0}{a}}$$

D.
$$k = \left(\frac{a}{R}\right)^4 \sqrt{2g_0}$$

E. Aucune réponse.

Q34. Evaluer la durée de vidange τ_v du réservoir :

A.
$$\tau_v \approx 60 \text{ s}$$
.

B.
$$\tau_v \approx 500 \text{ s}$$

C.
$$\tau_v \approx 40$$
 min.

D.
$$\tau_{\rm v} \approx 2 \text{ h}$$

B. $\tau_v \approx 500$ s. C. $\tau_v \approx 40$ min. D. $\tau_v \approx 2$ h. E. Aucune réponse.

Q35. La forme du réservoir n'est plus cylindrique, mais obéit à l'équation $f(z) = k'z^{1/4}$ ce qui conduit à une variation de la hauteur d'eau proportionnelle au temps : $h(t) = h_0 - vt$ où v est une constante. En supposant $f(z) \gg a$, exprimer v: A. $v = \sqrt{\frac{g_0}{2} \left(\frac{a}{k'}\right)^2}$. B. $v = \frac{2a\sqrt{g_0}}{k'}$. C. $v = \frac{a\sqrt{3g_0}}{k'}$. D. $v = \sqrt{2g_0} \left(\frac{a}{k'}\right)^2$. E. Aucune réponse.

A.
$$v = \sqrt{\frac{g_0}{2}} \left(\frac{a}{k'}\right)^2$$
.

B.
$$v = \frac{2a\sqrt{g_0}}{1}$$

$$C. v = \frac{a\sqrt{3g_0}}{k_1}.$$

D.
$$v = \sqrt{2g_0} \left(\frac{a}{k'}\right)^2$$

Q36. Evaluer k' afin que la durée τ' de la vidange du réservoir précédent soit de 250 s :

A.
$$k' \approx 0.2 \text{ m}^{3/4}$$

B.
$$k' \approx 10 \text{ m}^{1/2}$$

C.
$$k' \approx 0.01 \text{ m}$$

C. k'
$$\approx 0.01 \text{ m}$$
 D. k' $\approx 2000 \text{ m}^{-3/4}$.

E. Aucune réponse.

IV. Ecoulement laminaire du sang

On considère l'écoulement laminaire du sang dans une artère de 2 mm de rayon. On donne la viscosité du sang à 37°C : $\eta = 2.10^{-3}$ Pa. s et sa masse volumique $\rho_{sang} = 10^3$ kg. m⁻³. Sachant que la température est de 37°C et que la vitesse moyenne du sang dans cette artère vaut $v_{mov} = 3$ cm. s⁻¹.

Q37. Quelle est la vitesse maximale du sang dans l'artère?

A.
$$v_{max} = 6 \text{ cm. s}^{-1}$$

B.
$$v_{max} = 1.5 \text{ cm. s}^{-1}$$

C.
$$v_{max} = 1.18 \text{ cm. s}^{-1}$$

D.
$$v_{max} = 2,36 \text{ cm. s}^{-1}$$

Q38. Quelle est la valeur du débit volumique ?

A.
$$D_v = 11,3 \text{ mL. min}^{-1}$$

B.
$$D_v = 3,77.10^{-4} \text{ m}^3.\text{ s}^{-1}$$

C.
$$D_v = 45 \text{ mL. min}^{-1}$$

D.
$$D_v = 22,6 \text{ mL}.\text{min}^{-1}$$

Q39. Quelle sera la perte de charge sur 5 cm si l'artère est en position horizontale?

A.
$$\Delta P = 12 Pa$$

B.
$$\Delta P = 0.16 \text{ kPa}$$

C.
$$\Delta P = 6 \text{ Pa}$$

D.
$$\Delta P = 624 \text{ Pa}$$

Q40. Jusqu'à quelle vitesse du sang l'écoulement est-il parfaitement laminaire ?

A.
$$v_c = 1.2 \text{ m. s}^{-1}$$

B.
$$v_c = 59 \text{ cm. s}^{-1}$$

C.
$$v_c = 2.4 \text{ m. s}^{-1}$$

D.
$$v_c = 4.7 \text{ m. s}^{-1}$$