ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

SUMMER SEMESTER, 2019-2020

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4803: Graph Theory

Answer all the questions. Figures in the right margin indicate marks.

Note: Write Student-ID and Name on top of the first page and write Student-ID and Page-Number in every page of the answer script. Submission pdf should be named as "Full Student ID<space>Course Code.pdf"

JP Hammond is an alien pet hobbyist and has a number of pet aliens at his personal zoo. For redecoration of his zoo, he needs to transport the aliens to a nearby zoo. During this transfer, he wants to minimize the number of cages needed. But some of the aliens cannot be kept together as they have predator-prey relationship as shown below:

> Alphas - BetosCertas – Delatos Certas – Espas Fetas – Espas Delatos – Fetas Espas – Betos Alphas – Certas Betos – Certas

a)	What is the minimum number of cages needed for the transfer? [Hint: use graph coloring]			
b)	Find a possible transfer arrangement of the aliens.			
c)	What are the chromatic numbers for the following graphs:			raphs:
	i.	$W_n \ge m +$	vi.	r-Regular graph n+1, h 2
	ii.	K_n \checkmark	vii.	Q_3 2
	iii.	$K_{5,3}$	viii.	Complete multipartite graphs, $K_{r1,r2,,rt}$
	iv.	A tree with 28 vertices 2	ix.	A maximal planar graph with 5 vertices
	v.	A path of length 19 🚬	х.	A closed walk of length n 2 \sim 3

- a) Determine a cut-set matrix and a circuit matrix for the graph in question 1(a).
- 8+5 Is it possible to determine the diameter of a connected graph from the adjacency matrix? If yes, then give an example. If not, then discuss the reason behind it.

[Hint: The diameter of a connected graph is defined as the largest distance between two vertices in the graph.]

- Circuit matrix and cut-set matrix do not provide unique representation of graphs. But they 5 have their own benefits. Discuss some of their uses.
- Show that, a clique in a graph corresponds to an independent set in the compliment of the 3. a) 5 graph.
 - b) Draw a single graph and highlight the followings:

6+2

- maximal clique i.
- ii. maximal independent set

What are the *clique number* and *independence number* of the graph?

- Draw two non-isomorphic, connected, simple, and non-separable graphs G₁ and G₂, with as 6 small a number of edges as you can, such that the circuit matrices $B(G_1) = B(G_2)$.
 - For the graph drawn for question 3(b), find a fundamental cut-set matrix (consider a spanning 6 tree as you like). How does this matrix reflect the rank and nullity of the graph?