Лекция 19. Геометрический смысл производной; производная параметрически заданных функций

19.1. Геометрический смысл производной

Выясним свойства графика функции, соответствующие существованию производной.

Рис. 1: Геометрическая интерпретация производной в точке.

Пусть функция f(x) непрерывна в точке x_0 . Будем придавать аргументу f в точке x_0 малые приращения Δx , чтобы точки $x_0 + \Delta x$ не выходили из области определения функции.

Отметим на графике функции f (рис. 1) точки $A(x_0; f(x_0)), B(x_0 + \Delta x; f(x_0 + \Delta x))$ и проведём через эти точки прямую AB. Эту прямую называют с е к у щ е й.

Пусть α — угол, который прямая AB образует с осью абсцисс OX. Угол α считаем положительным, если прямая AB правее точки пересечения с осью OX лежит выше оси (как на рис. 1), в противном случае α считаем отрицательным. Если прямая AB параллельна оси OX, полагаем $\alpha = 0$.

Разным Δx будут соответствовать разные $\Delta f(x_0)$ и соответственно — разные секущие. Напишем уравнение секущей AB. Точка с координатами (x;y) принадлежит прямой, проходящей через точки $A(x_0;f(x_0))$ и $B(x_0+\Delta x;f(x_0+\Delta x))$ тогда и только тогда, когда

 $\frac{y - f(x_0)}{\Delta f(x_0)} = \frac{x - x_0}{\Delta x}.$

Отсюда

 $y - f(x_0) = \frac{\Delta f(x_0)}{\Delta x} (x - x_0),$

где

$$\frac{\Delta f(x_0)}{\Delta x} = \operatorname{tg} \alpha. \tag{19.1}$$

В силу непрерывности функции f в точке x_0 точка B при $\Delta x \to 0$ приближается к точке A. При этом значение угла α зависит от Δx : $\alpha(\Delta x)$.

Равенство (19.1) показывает, что существование производной $f'(x_0)$ равносильно существованию предела tg $\alpha(\Delta x)$ при $\Delta x \to 0$.

Так как на интервале $(-\pi/2, \pi/2)$ тангенс является непрерывной строго монотонной функцией, существование предела $\operatorname{tg} \alpha(\Delta x)$ равносильно существованию предельного значения угла $\alpha(\Delta x)$, обозначим его α_0 . Значит, при $\Delta x \to 0$ секущая AB занимает предельное положение (на рис. 1 положение AC), соответствующее углу наклона $\alpha_0 = \angle KAC$.

Прямую, являющуюся предельным положением секущей, называют к а с а т е л ь н о й к графику функции f(x) в точке x_0 . При этом $\operatorname{tg} \alpha_0 = f'(x_0)$ и касательная не параллельна оси OY, её называют н а к л о н н о й.

Таким образом, справедливо следующее утверждение.

Теорема 19.1.1. Для существования наклонной касательной к графику функции y=f(x) в точке $(x_0; f(x_0))$ необходимо и достаточно существование производной $f'(x_0)$. При этом тангенс угла наклона касательной равен значению производной; уравнение касательной имеет вид

$$y = f(x_0) + f'(x_0)(x - x_0). (19.2)$$

Приращению аргумента Δx в точке x_0 соответствует некоторая точка с координатами $(x_0 + \Delta x, y)$, принадлежащая касательной к графику функции f(x) в точке x_0 (точка C на рис. 1). Разность $y - f(x_0)$ называют приращению аргумента Δx .

На рис. 1 для выбранного Δx приращение ординаты касательной в точке x_0 есть длина отрезка CK. Из прямоугольного треугольника ΔKAC , в котором $|AK| = \Delta x$, $\operatorname{tg}(\angle KAC) = f'(x_0)$ имеем

$$|CK| = f'(x_0)\Delta x = df(x_0),$$

т. е. $\partial u \phi \phi$ еренциал ϕy нкции равен приращению ординаты касательной при заданном Δx . Таким образом, дифференциал — это линейная функция, графиком которой является касательная.

19.2. Обобщение понятия производной

Определение 19.1. Если $\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = +\infty$, то говорят, что функция f в точке x_0 имеет бесконечную положительную производную. Аналогично, функция f в точке x_0 имеет бесконечную отрицательную производную, если $\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = -\infty$.

Заметим, что это обобщение понятия производной. В этом случае f не имеет производной в смысле ранее сформулированного определения¹, т. е. f является недифференцируемой в точке x_0 .

Пример 19.1. Доказать, что функция $y = \sqrt[3]{x}$ в точке x = 0 имеет бесконечную положительную производную.

 \diamond Дадим приращение Δx аргументу функции в точке x=0. Функция при этом получит приращение $\Delta y(0)=y(\Delta x)-y(0)=\sqrt[3]{\Delta x}$. Составим отношение $\frac{\Delta y(0)}{\Delta x}=\frac{1}{\sqrt[3]{(\Delta x)^2}}$ и найдем

его предел при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} \frac{\Delta y(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\sqrt[3]{(\Delta x)^2}} = +\infty,$$

что и требовалось доказать.

¹Функция y = f(x) имеет в точке x_0 производную, если существует конечный предел $\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$.

Рис. 2: $y = \sqrt[3]{x}$ и секущие к графику функции в точке x = 0.

Для существования производной функции, в том числе и в смысле обобщения, необходимо и достаточно существование в этой точке правой и левой производных и их равенство.

Пример 19.2. Доказать, что функция $y = \sqrt[3]{|x|}$ в точке x = 0 не имеет производной даже в смысле обобщения.

Рис. 3: $y = \sqrt[3]{|x|}$ и секущие к графику функции в точке x = 0.

 \Rightarrow Дадим приращение Δx аргументу функции в точке x=0. Функция при этом получит приращение $\Delta y(0)=y(\Delta x)-y(0)=\sqrt[3]{|\Delta x|}$. Составим отношение

$$\begin{split} \frac{\Delta y(0)}{\Delta x} &= \begin{cases} \frac{1}{\sqrt[3]{(\Delta x)^2}}, & \text{если } \Delta x > 0; \\ -\frac{1}{\sqrt[3]{(\Delta x)^2}}, & \text{если } \Delta x < 0. \end{cases} \\ y'_+(0) &= \lim_{\Delta x \to +0} \frac{\Delta y(0)}{\Delta x} = \lim_{\Delta x \to +0} \frac{1}{\sqrt[3]{(\Delta x)^2}} = +\infty, \\ y'_-(0) \lim_{\Delta x \to -0} \frac{\Delta y(0)}{\Delta x} = -\lim_{\Delta x \to -0} \frac{1}{\sqrt[3]{(\Delta x)^2}} = -\infty. \end{split}$$

Так как $y'_{+}(0) \neq y'_{-}(0)$, то функция $y = \sqrt[3]{|x|}$ в точке x = 0 не имеет производной даже в смысле обобщения.

Определение 19.2. Если функция y = f(x) непрерывна в точке x_0 и $\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = \infty$, то касательная к графику функции в точке x_0 называется вертикальной, ее уравнение $x = x_0$.

В этом случае график функции y = f(x) в окрестности точки x_0 имеет вид, схематически изображенный на рис. 2-4.

Рис. 4: Вертикальные касательные.

19.3. Обобщение производной обратной функции

Формула для нахождения производной обратной функции к y = f(x)

$$\frac{df^{-1}}{dy}(y_0) = \frac{1}{f'(x_0)} \tag{19.3}$$

не имеет смысла, если $f'(x_0) = 0$. Выясним, что можно сказать о производной обратной функции в этом случае.

Если функция f строго возрастает, то приращения Δy и Δx имеют одинаковые знаки. Поэтому их отношение положительно и при $\Delta y \to 0$ (или, что то же самое, при $\Delta x \to 0$), видим, что

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{1}{\Delta y / \Delta x} = +\infty.$$

А если f строго убывает, то отношение приращений Δy и Δx отрицательно. Значит, в этом случае

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = -\infty.$$

Таким образом, можно считать, что формула (19.3) справедлива и при $f'(x_0) = 0$, если договориться, что в этом случае она означает существование бесконечной производной обратной функции, равной $+\infty$ или $-\infty$ в зависимости от того, возрастает или убывает функция f.

В соответствии с этим соглашением считают, что если существует одна из производных $\frac{df}{dx}(x_0)$ или $\frac{df^{-1}}{dy}(y_0)$, конечная или бесконечная, то существует и другая производная и их значения связаны соотношением (19.3).

Пример 19.3.

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \quad (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

Эти равенства справедливы при всех $x \in [-1; 1]$. Они показывают, что при $x = \pm 1$ существуют бесконечные односторонние производные.

19.4. Физический смысл производной и дифференциала

Физический смысл производной: производная — это скорость изменения зависимой переменной y как функции независимой переменной x.

Предположим, что функция y = f(x) описывает закон движения материальной точки по прямой линии (т. е. зависимость пути y, пройденного точкой от начала отсчета, от времени x). Тогда, как известно, разностное отношение

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{19.4}$$

определяет среднюю скорость точки за промежуток времени от x до $x + \Delta x$. В таком случае производная f'(x), т. е. предел разностного отношения (19.4) при $\Delta x \to 0$, определяет мгновенную скорость точки в момент времени x. Итак, производная функции, описывающей закон движения, определяет мгновенную скорость точки.

Пусть функция y = f(x) определяет количество электричества y, протекшего через поперечное сечение проводника за время x. (При этом момент времени x = 0 берется за начало отсчета.) В таком случае производная f'(x) будет определять $cuny\ moka$, проходящего через поперечное сечение проводника в момент времени x.

Вообще, если функция описывает некоторый процесс, то производная характеризует скорость протекания этого процесса в данный момент.

Дифференциал показывает, как менялась бы функция (в приведенных выше примерах это путь или количество электричества), если бы в течение всего времени изменение функции проходило с той же скоростью, что и в данный момент x.

Применение дифференциалов основано на том, что "в малом", т. е. при достаточно малых Δx , приращение дифференцируемой функции незначительно отличается от дифференциала и, таким образом, при малых Δx дифференциал дает хорошее приближение для приращения функции:

$$\Delta f(x) \approx df(x) = f'(x)\Delta x.$$

19.5. Производная параметрически заданной функции

Простейший пример параметрического задания функции даёт параметрическое уравнение прямой на плоскости

$$x = at + b, \quad y = ct + d, \tag{19.5}$$

где $t \in (-\infty; +\infty)$. Если $a \neq 0$, то t = (x - b)/a и, подставив это значение t во второе уравнение (19.5), получим $y = \frac{c}{a}(x - b) + d$. Таким образом, исключив из (19.5) параметр t, мы нашли явное выражение y через x.

Сложнее обстоит дело с параметрическим заданием эллипса

$$x = a\cos t, \quad y = b\sin t, \quad a > 0, \ b > 0, \quad t \in [0; 2\pi).$$
 (19.6)

Исключив из уравнений (19.6) параметр t, получим $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$. Отсюда

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}. (19.7)$$

Поскольку для каждого x знак перед корнем можно брать произвольно, то формула (19.7) задаёт бесконечно много функций y аргумента x. Если потребовать непрерывность функций на [-a;a], то таких функций будет две.

В общем случае, когда заданы функции

$$x = x(t), \quad y = y(t) \tag{19.8}$$

на некотором промежутке изменения параметра t, исключить из (19.8) параметр t и получить явное выражение y через x не всегда просто, а иногда невозможно.

Покажем, что при некоторых естественных условиях на функции (19.8) можно найти параметрическое представление производной функции y = f(x) через производные функций x(t) и y(t).

Теорема 19.5.1. Пусть функции x = x(t), y = y(t) определены в некоторой окрестности точки t_0 и функция x(t) строго монотонна в этой окрестности. Тогда, если x(t) и y(t) имеют в точке t_0 производные $\frac{dx}{dt}(t_0) = x_t'(t_0)$, $\frac{dy}{dt}(t_0) = y_t'(t_0)$ и $x_t'(t_0) \neq 0$, то функция y = y(t(x)) = f(x) в точке $x_0 = x(t_0)$ также имеет производную $\frac{df}{dx}(x_0) = f_x'(x_0)$, которая находится по формуле

$$f_x'(x_0) = \frac{y_t'(t_0)}{x_t'(t_0)}. (19.9)$$

Доказательство. Если в некоторой окрестности точки t_0 функция x(t) строго монотонна, то в некоторой окрестности точки $x_0 = x(t_0)$ существует функция t = t(x), обратная x(t), и формулы (19.8) параметрически задают функцию y(t(x)) = f(x). Производную функции f(x) находим по правилу дифференцирования суперпозиции функций: $f'_x = y'_t \cdot t'_x$, где производная t'_x функции, обратной для x(t), вычисляется по формуле $t'_x = 1/x'_t$. Таким образом, в точке $x_0 = x(t_0)$ справедлива формула (19.9). Теорема доказана.

Мы получили f'_x как функцию от t, таким образом, производная функции y = f(x), задаваемой параметрическими уравнениями (19.8), также задается параметрически:

$$x = x(t), \quad f'_x = \frac{y'_t}{x'_t} = \psi(t).$$