

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para

Voltando do Concatenativo para

Conclusão

Indo e Voltando de Combinadores para Concatenativo From Combinators to Concatenative and Back Again

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Instituto de Computação (UFRJ)

Fevereiro 2024

Programação Tácita

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade Programação tácita (ou pointfree) é um estilo de programação que evita dar nomes para variáveis e valores intermediários

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusã

Programação Tácita

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatória

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclução

Programação tácita (ou pointfree) é um estilo de programação que evita dar nomes para variáveis e valores intermediários

Composição

Programação Tácita

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatória

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

Programação tácita (ou pointfree) é um estilo de programação que evita dar nomes para variáveis e valores intermediários

Composição

Outras funções de alta ordem

```
NB. Média é a soma dividido pelo tamanho (da lista) avg =: +/ % # avg 1 1 1 3 3 3 NB. (Linguagem J)
```


Máquina de Pilha

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores
Regulares para

Voltando do Concatenativo para

- . ~

Aritmética aplicativa (matemática usual)

Aritmética de pilha (calculadora HP)

$$f(x) = x * x + 1$$

$$f = dup * 1 +$$

Objetivo do Trabalho

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários

para Concatenativo

Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

Queremos generalizar a relação entre os dois lados

Objetivo do Trabalho

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

Queremos generalizar a relação entre os dois lados

Mas queremos preservar os passos de redução

Não é só um no-op

Sumário

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

- 1 Lógica Combinatória (Revisão)
- 2 Cálculo Concatenativo (Revisão)
- 3 Combinadores Arbitrários para Concatenativo
- 4 Combinadores Regulares para Concatenativo
- 5 Voltando do Concatenativo para Combinadores
- 6 Conclusão

Lógica Combinatória

Daniel Kiyoshi Hashimoto Vouzella de Andrade

$$agrupa/compõe$$
 $B a b c = a (b c)$
 $reordena$ $C a b c = a c b$
 $descarta$ $K a b = a$
 $copia$ $W a b = a b b$
 $funde$ $S a b c = a c (b c)$
 $identifica$ $I a = a$

Moses Schönfinkel (1924), Haskell Curry (1930).

Redução de Combinadores

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatória

Cálculo Concatenativo

Combinadores Arbitrários para

Concatenativo

Concatenativo

Voltando do Concatenativo para

~ . . . l . . ~ .

Redução de Combinadores Passarinhos

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatória

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores
Regulares para

Voltando do Concatenativo para

Raymond Smullyan (1985).

Cálculo Concatenativo

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclus

Tem blocos (quotations) e instruções

Thun (1994), Kerby (2002), Kleffner (2017).

Executando Instruções

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatória

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para

Voltando do Concatenativo para

Conclução

```
Pilha | Instruções

| [ dup ] [ zap ] swap call

[ dup ] | [ zap ] swap call

[ dup ] [ dup ] | call

[ zap ] [ dup ] | dup

[ zap ] [ zap ] |
```


Executando no Meio da Pilha

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores
Regulares para

Voltando do Concatenativ para

Conclusão

dip permite executar instruções mais fundo na pilha

Objetivo do Trabalho (relembrando)

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores

para Concatenative

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

Queremos generalizar a relação entre os dois lados

$$C f x y$$

 $\Rightarrow f y x$

$$\Leftrightarrow$$

$$y \times | swap f$$

 $\Rightarrow x y | f$

Mas queremos preservar os passos de redução

$$C(Cf) \times y$$
$$\Rightarrow f \times y$$

$$\Leftrightarrow$$

$$y \times | swap swap f$$

 $\Rightarrow v \times | f$

Combinadores Arbitrários para Concatenativo

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores

Arbitrários para

Combinadores Regulares para

Voltando do Concatenativo para

Conclusão

Queremos achar quem é b, c, k, \ldots

Combinadores Arbitrários → Concatenativo

Daniel Kiyoshi

Daniel Kiyosh Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários

Combinadores Regulares para

Voltando do Concatenativo para

Conclusão

 $\lceil \alpha \rfloor$ é a tradução de um combinador α

Combinadores Arbitrários → Concatenativo

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários

para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo

Conclusão

 $\lceil \alpha \rfloor$ é a tradução de um combinador α

$$b := [[cons] dip] \qquad s := [[sons] dip]$$

$$c := [[swap] dip] \qquad w := [[dup] dip]$$

$$k := [[zap] dip] \qquad i := [[\varepsilon] dip]$$

$$\lceil \alpha \beta \rfloor := [\lceil \beta \rfloor \lceil \alpha \rfloor call]$$

Precisamos inventar o *sons*! Ele é uma mistura de *sip* com *cons*

$$x [A] sip \Rightarrow x A x$$

 $x [A] cons \Rightarrow [x A]$
 $x [A] sons \Rightarrow [x A] x$

Exemplo

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Arbitrários para

Combinadores

Regulares para Concatenativo

Voltando do Concatenativo para

Combinador

Conclu

Simula o passo a passo, como queríamos!

```
(B(BK) C f \times y z) \mapsto [z y \times f c [k b call] b call] | call^4
B(BK) C f x y z \mapsto z y x f c [k b call] b | call call^3
(BK)(Cf) \times yz \mapsto zyx[fccall][kbcall]|call^3
BK(Cf)xyz
                                      z v x [f c call ] k b | call call^2
                      \mapsto
                                        z y [x f c call] k | call^2
K(C f x) y z
                       \mapsto
                                             z \lceil x f c call \rceil \mid call^1
(C f x) z
                        \mapsto
Cfxz
                                                      z \times f \in c \mid call
                        \mapsto
f z x
                                                        xzf
                        \mapsto
```

Inserimos os calls para poder executar

Conversão Direta

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários

Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Por que $\lceil B (B K) C \rfloor$ é tão grande?

```
[\;[\;[\;swap\;]\;dip\;]\;[\;[\;[\;zap\;]\;dip\;]\;[\;[\;cons\;]\;dip\;]\;call\;]\;[\;[\;cons\;]\;dip\;]\;call\;]
```


Conversão Direta

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatór

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para

Voltando do Concatenativo para

Conclusão

Se $C \approx swap$ e $K \approx zap$, poderia ser [zap] dip swap?

Agora, q aparece no final

Funciona com Quais Combinadores?

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclus

Quando o primeiro argumento q é uma Continuação

Mantém o q no lugar, sem duplicar ou ignorar ele

$$B q x y = q (x y)$$
 $S q x y = q y (x y)$
 $C q x y = q y x$ $W q x = q x x$
 $K q x = q$ $I q = q$

Combinadores Regulares têm o q e não introduzem nada novo no lado direito

Combinadores Bagunceiros

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Alguns combinadores não são regulares

$$(T) \qquad CI \ q \ x \quad \Rightarrow \quad x \ c$$

$$\begin{array}{cccc} (T) & & & CI \ q \ x & \Rightarrow & x \ q \\ (Q) & & CB \ q \ x \ y & \Rightarrow & x \ (q \ y) \\ (M) & & WI \ q & \Rightarrow & q \ q \\ \end{array}$$

$$WI q \Rightarrow q q$$

Combinadores Bagunceiros

Daniel Kiyoshi

Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

Alguns combinadores não são regulares

$$(T)$$
 $CI q x \Rightarrow x q$

$$M)$$
 $WI q \Rightarrow q q$

Outros combinadores são regulares, mas bagunceiros Eles fazem algo de errado com o q e depois consertam

$$W K q$$

$$K q q$$

$$Q Y$$

$$Q Y$$

$$Q Y$$

$$Q Y$$

$$Q X$$

$$Q X$$

$$Q X$$

$$Q X$$

$$S (K S) K Q X Y$$

$$K S Q (K Q) X Y$$

$$S (K Q) X Y$$

$$S (K Q) X Y$$

$$K Q Y (X Y)$$

$$Q (X Y)$$

Combinadores Regulares por Construção

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

Os <u>Combinadores Regulares por Construção</u> nunca são bagunceiros, por construção

B C K S W I $B \alpha$ $B \alpha \beta$

Combinador Regular → Concatenativo

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores
Regulares para

Voltando do Concatenativo para

Conclusão

O B em posições diferentes traduzem para instruções diferentes

A Volta da Conversão Direta

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Concatenativo

Voltando do Concatenativo

concatenativ para Combinadore

~ l . . . ~ .

Bonito Simples Agora, dá para voltar?

A Volta da Conversão Direta

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

nclueão

Bonito Simples Agora, dá para voltar?

Não exatamente, mas sim!

A composição é boazinha demais!

$$|B(B \alpha \beta) \gamma\rangle = |B \alpha (B \beta \gamma)\rangle$$

$$|B \mid \alpha\rangle = |\alpha\rangle = |B \mid \alpha \mid \rangle$$

Concatenativo (1^a ordem) \mapsto Combinadores

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores
Regulares para

Voltando do Concatenativo para

Conclução

Se a entrada for um programa de 1^a ordem, conseguimos inverter o último algorítmo!

Empilhando valores

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Concatenativo

Voltando do Concatenativo para

Conclusão

Para empilhar valores precisaríamos desse comportamento:

$$\{push \ v\} \ q \times y \ z \dots$$

 $q \ \{v\} \times y \ z \dots$

Empilhando valores

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para Combinadores

C = = = |...= = =

Para empilhar valores precisaríamos desse comportamento:

$${push v} q \times y z \dots$$

 $q {v} \times y z \dots$

Esse é o combinador T = CI

$$(T v) q \Rightarrow q v$$

Empilhando valores

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para Combinadores Para empilhar valores precisaríamos desse comportamento:

$${push v} q \times y z \dots$$

 $q {v} \times y z \dots$

Esse é o combinador T = CI

$$(T v) q \Rightarrow q v$$

Mas (T v) não é regular!

Usando os blocos

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Concatenativo

Voltando do Concatenativo para

Agora faltam call e dip:

$$\{call\} \ q \ \alpha \times y \ z \dots$$

 $\alpha \ q \times y \ z \dots$

$$\{dip\} \ q \ \alpha \ x \ y \ z \ \dots$$

 $\alpha \ (q \ x) \ y \ z \ \dots$

Usando os blocos

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para Combinadores

nclusão

Agora faltam call e dip:

$$\{call\} \ q \ \alpha \times y \ z \dots$$

 $\alpha \ q \times y \ z \dots$

$$\{dip\}\ q \alpha x y z \dots$$

 $\alpha (q x) y z \dots$

Solução

$$T = CI$$

$$T \ q \ \alpha \quad \Rightarrow \ \alpha \ q$$

$$Q = CB$$

$$Q \ \mathbf{q} \ \alpha \ x \ \Rightarrow \ \alpha \ (\mathbf{q} \ x)$$

Também não são regulares!

Concatenativo → Combinadores

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para Combinadores

nclusão

Primeira ordem

Alta ordem

Redescobertas

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para

Voltando do Concatenativo para

Conclusão

 Combinadores Regulares lembram programação no Continuation-Passing Style

- *B* tem 3 interpretações:
 - $0 B \Rightarrow cons$
 - 1 $B\alpha \Rightarrow dip$
 - $2 B\alpha\beta \Rightarrow composição$

Contribuições Principais

Daniel Kiyoshi Hashimoto Vouzella de Andrade

- Encontramos o problema da inserção de calls
 - Call-by-Name
 - Call-by-Value

- Três algorítimos de conversão (dois indo e um voltando):
 - Qualquer combinador \mapsto um bloco
 - Combinadores regulares → instruções
 - Combinadores bagunceiros ← quaisquer instruções

Visualização das Conversões

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para

Voltando do Concatenativo

Conclusão

Conversão Geral: subconjunto do Cálculo Concatenativo
 Lógica Combinatória
 Cálculo Concatenativo

Conversão Direta: subconjunto da Lógica Combinatória
 Lógica Combinatória
 Cálculo Concatenativo

Próximos Passos

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatór

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusão

■ Formalizar as provas de simulação

O problema de inserção de calls

O que fazer com os combinadores regulares bagunceiros?

■ Repetir isso na base *SKI* (que é bagunceira)

Obrigado!

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Ordens de Redução de Combinadores

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Calculo Concatenativo

Combinadores Arbitrários para

para Concatenativo

Combinadores Regulares para Concatenativo

Voltando do Concatenativo

Conclusão

B (B C) K f x y z B C (K f) x y z C (K f x) y z K f x z y f z y

Call-by-Name

B (B C) K f x y z B C (K f) x y z C (K f x) y z C f y z f z y

Call-by-Value

Conversão Geral (Call-by-Value)

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatór

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores

Regulares para Concatenativo

Concatenativo para Combinadoro

Conclusão

Definições de Agrupadores (Call-by-Value)

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para

Voltando do Concatenativo para

Conclusão

```
b := [[cons] dip] = [[cons] dip[] dip]

s := [[sons] dip] = [[sons] dip[] dip_2]
```


Equivalencia Conversão Geral e Direta

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatór

Cálculo Concatenativo

Combinadores Arbitrários para

Combinadores Regulares para Concatenativo

Voltando do Concatenativo para

Conclusã

```
q \sqcap B (B K) C \rfloor
q [c [k b call] b call] call] call
g c [ [k b call ] b call ] call call^4
g \in [k \ b \ call ] b \ call \ call^4
g c cons [k b call] call^4
[ q c call ] [ k b call ] call<sup>4</sup>
[ q c call ] k b call call^3
[ q c call ] cons k call^3
[ swap q ] cons k call<sup>3</sup>
[ swap q ] cons [ zap ] dip call^2
[ zap ] dip [ swap q ] call call
[ zap ] dip swap q call
|B(BK)C\rangle q call
```

conversão geral definição de call definição de call definição de b call definição de cons definição de call expansão de b call expansão de c call expansão de k call teorema cons-dip definição de call direct conversion

Teorema cons-dip

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatór

Cálculo Concatenativo

Combinadores Arbitrários para Concatenativo

Combinadores Regulares para Concatenativo

Concatenativo para

Conclusão

f cons g dip call $\Leftrightarrow g$ dip f call

f cons g dip call
x f cons g dip call
[x f call] g dip call
g call [x f call] call
g call x f call
x g dip f call
g dip f call

adiciona x arbitrário na esquerda definição de *cons* definição de *dip* definição de *call* definição inversa de *dip* remove x na esquerda

Teorema cons-dip Geral (Caso Base)

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatór

Cálculo Concatenativo

Arbitrários
para

Combinadores Regulares para Concatenativo

Voltando do Concatenativ

para Combinadore

Conclusão

 $f cons^n g dip call \Leftrightarrow g dip_n f call$

Caso base:

 $f cons^0 g dip call$ f g dip call g call f call $g dip_0 f call$ definição de *cons*⁰ definição de *dip* definição inversa de *dip*₀

Teorema cons-dip Geral (Passo Indutivo)

Daniel Kiyoshi Hashimoto Vouzella

de Andrade

Lógica Combinatór

Cálculo Concatenativo

Arbitrários para

Combinadores
Regulares para

Voltando do Concatenativo para

Conclusão

 $f cons^n g dip call \Leftrightarrow g dip_n f call$

Passo indutivo:

 $f cons^{n+1} g dip call$ $x f cons^{n+1} g dip call$ $[x_n f call] cons^n g dip call$ $g dip_n [x f call] call$ $g dip_n x f call$ $x [g dip_n] dip f call$ $x g dip_{n+1} f call$ $g dip_{n+1} f call$ adiciona x arbitrário definição de cons hipótese indutiva definição de call definição inversa de dip definição inversa de dipnemove x arbitrário

Dummy end

LC ⇔ CC

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Lógica Combinatóri

Cálculo Concatenativo

Combinadores Arbitrários

Concatenativo

Voltando do Concatenativo

Combinadoi

Conclusão