

CLAIMS

I claim:

- 1 1. A process for the combustive destruction of noxious substances in a gas 2 stream which comprises injecting the gas stream in to a heated chamber 3 with sufficient oxygen to allow substantially complete combustion therein, 4 wherein hydrogen is also present in the chamber as a fuel gas.
- 1 2. A process according to Claim 1 in which the chamber comprises a heated 2 metal tube.
- 1 3. A process according to Claim 1 or Claim 2 in which the chamber is heated by electrical means.
- 1 4. A process according to any preceding claim in which the hydrogen and
 2 the oxygen are introduced in to the gas stream prior to the stream being
 3 injected in to the chamber.
- 1 5. A process according to any preceding claim in which the mixture has a 10 to 150% stoichiometric excess of oxygen over the fuel gas.
- 1 6. A process according to Claim 5 in which the mixture has an 80 to 150% stoichiometric excess of oxygen over the fuel gas.

1	7.	A process according to any preceding claim in which the hydrogen is
2		present in at least the stoichiometric amount by volume in respect of the
3		species being combusted.
1	8.	A process according to Claim 7 in which the hydrogen is present in at
2		least twice the stoichiometric amount by volume in respect of the species
3		being combusted.
1	9.	A process according to Claim 7 or Claim 8 in which the hydrogen is
2		present in at least five times the stoichiometric amount by volume in
3		respect of the species being combusted.
1	10.	The process according to claim 1 in which the mixture has a 10 to 150%
2		stoichiometric excess of oxygen over the fuel gas.
1	11.	The process according to claim 10 in which the mixture has an 80 to
2		150% stoichiometric excess of oxygen over the fuel gas.
1	12.	The process according to claim 11 in which the hydrogen is present in at
2		least the stoichiometric amount by volume in respect of the species being
3		combusted.
1	13.	The process according to claim 12 in which the hydrogen is present in at
2		least twice the stoichiometric amount by volume in respect of the species
3		being combusted.

4	14.	The present apparding to claim 12 in which the hydrogen is present in at
1	14.	The process according to claim 12 in which the hydrogen is present in at
2		least five times the stoichiometric amount by volume in respect of the
3		species being combusted.
1	15.	The process according to claim 13 in which the hydrogen is present in at
2		least five times the stoichiometric amount by volume in respect of the
3		species being combusted.
1	16.	The process according to claim 1 in which the chamber comprises a
2		heated metal tube.
1	17.	The process according to claim 16 in which the chamber is heated by
2		electrical means.
1	18.	The process according to claim 17 in which the hydrogen and the oxygen
2		are introduced into the gas stream prior to the stream being injected in to
3		the chamber.
1	19.	The process according to claim 18 in which the mixture has a 10 to 150%
2		stoichiometric excess of oxygen over the fuel gas.
1	20.	The process according to claim 19 in which the mixture has an 80 to
2		150% stoichiometric excess of oxygen over the fuel gas.
1	21.	The process according to claim 20 in which the hydrogen is present in at
2		least the stoichiometric amount by volume in respect of the species being
3		combusted.

2

1	22.	The process according to claim 21 in which the hydrogen is present in at
2		least twice the stoichiometric amount by volume in respect of the species
3		being combusted.
1	23.	The process according to claim 21 in which the hydrogen is present in at
2		least five times the stoichiometric amount by volume in respect of the
3		species being combusted.
1	24.	The process according to claim 22 in which the hydrogen is present in at
2		least five times the stoichiometric amount by volume in respect of the
3		species being combusted.
1	25.	The process according to claim 1 in which the chamber is heated by
2		electrical means.
1	26.	The process according to claim 25 in which the hydrogen and the oxygen
2		are introduced into the gas stream prior to the stream being injected in to
3		the chamber.
1	27.	The process according to claim 26 in which the mixture has a 10 to 150%
2		stoichiometric excess of oxygen over the fuel gas.
1	28.	The process according to claim 27 in which the mixture has an 80 to

150% stoichiometric excess of oxygen over the fuel gas.

PATENT Atty. Dkt. M00B130

1 2 3	29.	The process according to claim 28 in which the hydrogen is present in at least the stoichiometric amount by volume in respect of the species being combusted.
1 2 3	30.	The process according to claim 29 in which the hydrogen is present in at least twice the stoichiometric amount by volume in respect of the species being combusted.
1 2 3	31.	The process according to claim 29 in which the hydrogen is present in at least five times the stoichiometric amount by volume in respect of the species being combusted.
1 2 3	32.	The process according to claim 30 in which the hydrogen is present in at least five times the stoichiometric amount by volume in respect of the species being combusted.