

MEMORIAL DESCRITIVO PROJETO SUBESTAÇÃO AÉREA DE 112,5 kVA

- VILMAR DE SALES LINS MOTEL LTDA -

SUMÁRIO

1	IN	FRODUÇÃO	2
	1.1	OBJETIVO	2
	1.2	LOCALIZAÇÃO	2
	1.3	DERIVAÇÃO	2
2	CA	RACTERÍSTICAS DA SUBESTAÇÃO	2
	2.1	PROTEÇÃO PRIMÁRIA	3
	2.2	PROTEÇÃO SECUNDÁRIA E MEDIÇÃO	4
	2.3	ATERRAMENTO	4
	2.4	DIMENSIONAMENTO MECÂNICO DE POSTE	4
	2.5	CÁLCULO DE DEMANDA	9
	2.5	5.1 DEMANDA PREVISTA PARA OS PRÓXIMOS 5 ANOS	11
	2.6	DIVERGÊNCIAS	11
	2.7	OBEDIÊNCIA ÀS NORMAS	11

1 INTRODUÇÃO

1.1 OBJETIVO

Atender os requisitos da norma DIS-NOR-036 para o FORNECIMENTO DE ENERGIA ELÉTRICA EM MEDIA TENSÃO DE DISTRIBUIÇÃO À EDIFICAÇÃO INDIVIDUAL das instalações elétricas da VILMAR DE SALES LINS MOTEL LTDA, CNPJ 43.691.159/0001-02, de acordo com os desenhos do ANEXO II da respectiva norma para atender a unidade consumidora TRIFÁSICA, com carga instalada total de 110,2 kW. ART de N°20210688441.

1.2 LOCALIZAÇÃO

Rua Dois, Boa Esperança, Petrolina - PE, CEP 56320-700

1.3 CONFORMIDADE AMBIELTAL

Declaro que, para todos os fins o projeto em questão encontra-se em conformidade com o cumprimento de todas as legislações e requisitos ambientais.

1.4 DERIVAÇÃO

A derivação deverá ser efetuada a partir da rede de distribuição trifásica existente 13,8 kV, do poste de barramento V116661, que se encontra nas coordenadas 9°21'10,2" S, 40°28'27,7" W.

2 CARACTERÍSTICAS DA SUBESTAÇÃO

Com base nos cálculos apresentados no item 2.5 *CÁLCULO DE DEMANDA*, será adotado o transformador com as seguintes características:

Potência: 112,5 kVA

Tensão primária: 13,8 kV

Tensão secundária: 380/220 V

Ligação primária: **DELTA**

Ligação secundária: ESTRELA COM O NEUTRO ATERRADO

Refrigeração: ÓLEO MINERAL PARAFÍNICO

Frequência: **60 HZ** Impedância: **5,75** %

Os transformadores trifásicos devem possuir os enrolamentos primários ligados em delta e no mínimo três taps adequados as tensões de operação e de fornecimento padronizadas pela distribuidora para o município onde a unidade consumidora está localizada. Para o município de PETROLINA – PE onde a tensão nominal é 13,8 kV, o transformador utilizado terá **Tap inferior em 13,2 kV** e **Tap superior em 13,8 kV**, conforme regulamentado na Tabela 02 do Anexo I da norma DIS–NOR–036.

Tabela 2 – Tap's dos Transformadores Particulares

Tap's dos Transformadores Particulares						
Tensão Nominal do	Tensão de Fornecimento					
Município	Tap Inferior em kV	Tap Superior em kV				
11,95 kV	11,4 kV	12,0 kV				
13,2 kV	12,6 kV	13,2 kV				
13,8 kV	13,2 kV	13,8 kV				
34,5 kV	33,0 kV	34,5 kV				

Tipos de postes: Será utilizado poste dimensionado de concreto com altura de 11m.

Tipo e seção do condutor: Tipo e seção do condutor de baixa tensão utilizada para o circuito.

CONDUTOR PADRONIZADO E TRAÇÃO DE PROJETO				
DESCRIÇÃO	TRAÇÃO DE PROJETO			
Cabo Rede Primária – 4 CAA	315 daN			

O circuito possuí comprimento total de 0,082 km

2.1 PROTECÃO PRIMÁRIA

A proteção das instalações elétricas contra sobretensões transitórias (surtos) deve ser feita com a utilização de para raios de óxido metálico em invólucro polimérico e devem possuir desligamento automático, observando-se as recomendações da norma ABNT NBR 14039.

Serão instaladas chaves fusíveis unipolares, classe de tensão **15 kV**, corrente de curto **10 kA**.

2.2 PROTEÇÃO SECUNDÁRIA E MEDIÇÃO

A proteção secundária será feita através de disjuntor termomagnético tripolar, fixo ou ajustável e corrente nominal de 175 A, tensão nominal 380 V e corrente de curto 10 kA.

A caixa de medição será indireta utilizando um TC 200/5, conforme quadro 1 da norma DIS-NOR-036 (Fornecimento de Energia Elétrica em Média Tensão de Distribuição à edificação Individual). A caixa para medição é apropriada para instalação do medidor em baixa tensão com medição indireta, conforme apresentado em planta.

Para permitir a leitura remota, deve ser previsto um eletroduto com diâmetro de 20 mm, a partir da caixa de medição, para fora do cubículo em área aberta, com no máximo 5 m de distância, saída a no mínimo 3 m de altura e no máximo duas curvas com 90°, para instalação de antena externa, definida em função do nível do sinal na área.

2.3 ATERRAMENTO

O condutor de neutro da subestação será aterrado na origem da ligação secundária. O sistema de aterramento será uma malha formada por **quatro hastes** copperweld **5/8"x2,4m**, interligadas por meio de um **cabo de cobre nu** de seção mínima de **50 mm²** a conexão entre eles será feita com solda exotérmica.

As hastes serão protegidas por caixas de alvenaria **30x30x40 cm**, conforme desenho em planta.

2.4 DIMENSIONAMENTO DE POSTE PARA INSTALAÇÃO DO TRANSFORMADOR.

Para o dimensionamento das características do poste é necessário avaliar e calcular alguns parâmetros como força do vento, momento fletor do transformador e esforço resultante no poste. Todos os cálculos foram baseados na apostila de Dimensionamento Mecânico de Postes – Departamento corporativo de Engenharia de Normalização.

PROJETO DE ACORDO COM AS NORMAS E PADRÕES

NEOENERGIA
PERNAMBUCO

George Silva Paiva

George Silva Paiva

A força do vento é determinada pela fórmula:

$$F_{\nu} = k * V^2 * S$$

Sendo:

V = Velocidade do vento horizontal - km/h;

S = Área do poste determinado pela fórmula seguinte;

K = Coeficiente para cálculo da pressão do vento (Vale 0,00471 para elementos cilíndricos e 0,00754 para elementos planos).

$$S = \frac{(db + dt) * h}{2}$$

No qual:

db = Diâmetro da base na seção do engastamento;

dt = Diâmetro do topo;

h = Altura útil do poste;

Com isso a força do vento é definida por:

$$F_v = k * V^2 * \frac{(db + dt) * h}{2}$$

A distância do ponto de aplicação da resultante do esforço do vento sobre o poste (hcg) (NBR 8421-1 e NBR 8421-2)

• Poste 9 m: Hcg = 3,21m

• Poste 11 m: Hcg = 3,90m

• Poste 12 m: Hcg = 4,24m

Poste 14 m: Hcg = 4,91m

Obs: Esses coeficientes se aplicam para postes de 400 e 600 daN.

Com isso podemos achar a força do vento referida no topo do poste:

$$F_{vt} = F_v * \left(\frac{H_{cg}}{H_a}\right) [daN]$$

Ha = Altura de aplicação

(Deve-se atentar que o ponto de aplicação é 0,2 m do topo).

Para se determinar a força do vento referida no topo do poste: (Para essa situação será utilizado o poste com altura de **11m** e esforço **600 daN**):

Condições:

- a) Velocidade do vento = 60km/s
- b) Superfície = plana
- c) Conicidade = 28mm/m
- d) Diâmetro do topo: 0,14m

Passos:

 O poste a ser utilizado é de 11 m esforço 600 daN, determinando o diâmetro da base na seção de engastamento (db = dt + h * conicidade):

$$db = 0.14 + [11 - (11*01+60)]*0.028 = 0.40m$$

2. Cálculo da área do poste:

$$S = ((db+dt)/2)*h = ((0,40+0,14)/2)*(11-1,7) = 2,51 m^2$$

3. Cálculo da força do vento:

$$F_v = 0.00754 * 60^2 * 2.51 = 68.21 \, daN$$

4. Determinar o H_{cg} através da altura do poste (NBR 8421-1 e NBR 8421-2):

$$H_{ca} = 3,90m$$

5. Cálculo da força do vento referenciada no topo do poste:

$$F_{vt} = F_v * \left(\frac{H_{cg}}{H_a}\right) = 68,21 * \left(\frac{3,90}{9,3-0,2}\right) = 29,26 \ daN_{\text{ROJETO DE ACORDO COM AS NORMAS E PADRÕES}}$$

- Para essa subestação foi considerado um transformador TRIFÁSICO
 112,5kVA de 13,8kV 220/380V (instalar a 7,2m do solo), com as seguintes características:
 - Altura (A) = 1190mm
 - Comprimento (C) = 1180mm
 - Largura (L) = 800mm
 - Peso (P) = **560kg**
- 7. Tem-se que:

$$M_{ptr} = P * d1$$

- d1 = $\frac{L_t}{2}$ + (largura do poste a (11000 7200)mm do topo /2)
- Calculando a largura do poste a 3800mm

Considerando que ele parte do topo de 110 mm e que tem conicidade de 20 mm/m, ou seja, cresce 20 mm a cada metro.

Com isso a largura do poste a 3800 mm será:

$$L_p = 110 + 20 + 20 + 20 + 16 = 186mm$$

8. O poste fica submetido a uma carga vertical que não está atuando no eixo do poste e por isso gera um momento. O momento resultante do peso do transformador no poste (M_{ntr}) é.

 $M_{ptr} = P * d1$, onde d1 é à distância do eixo do poste ao eixo

vertical do transformador

Admitindo-se 1kgf = 1 daN e d1 = (L/2 + (largura do poste a (11000-7200) mm do topo)/2) em m:

$$M_{ptr} = 560 * \left(\frac{0.610}{2} + \frac{0.186}{2}\right) = 222,88 \ daN.m$$

Transferindo-se M_{ptr} para o ponto de aplicação dos esforços (20 cm do topo do poste, M_{ptr} 20):

$$M_{ptr}20 = 222,88*7,2/[11-(11*0,1+0,6+0,2)] = 176,37 \text{ daN.m}$$

Esforço provocado unicamente pelo transformador = 176,37 daN.m.

AS NORMAS E PADRÕES

NEOENERGIA
PERNAMBUCO

George Silva Paiva

- 9. Para o cálculo do esforço do cabo
 - Considerando uma rede trifásica com cabo 4 CAA e um vão de 80m. A tração de projetos de cabos e dada na tabela (NORR. DISTRIBU-ENGE-0123)

Tabela 5 - Trações de Projeto dos Condutores da Rede Primária de Aluminio

	Tração de Projeto (daN) Vão Regulador								
Condutor									
	10 m	20 m	30 m	40 m	50 m	60 m	70 m	80 m	
4 CAA	2	9	19	34	54	77	105	137	
F(m)	0,50								
1/0 CAA	4	17	39	70	109	157	214	279	
F(m)	0,62								
4/0 CAA	8	31	70	124	194	279	380	496	
F(m)	0,70								
336,4 CAA	12	49	109	195	304	438	596	-	
F(m)				0,74		0),	1		

Tcabos = 3*137 = 411 daN.

10. Assim, considera-se a tração resultante o somatório dos esforços referidos a 0,20m do topo, ou seja:

$$M_{ptr}20_{total} = 176,37 + 411 = 587,37 \; daN.m$$

Portanto, o poste a ser adota foi o 600 daN com uma altura de 11m, haja vista que o Mfposte (600 daN.m) > $M_{ptr}20_total$ (587,37 daN.m). Em conformidade com o poste dimensionado na tabela 11 da norma DIS-NOR-036. (Fornecimento de Energia Elétrica em Média Tensão de Distribuição à edificação Individual).

Tabela 11 - Dimensionamento de Postes para Instalação de Transformadores

Transformador (kVA)	13,8	kV	34,5 kV		
		Poste de concreto (daN)		oncreto N)	
	Circular	DT	Circular	DT	
≤ 112,5	400	600	400	600	
150	600	600	600	600	
225	600	600	600	3	
300	600		000	-	

CREA: PE 28725D 10/11/2021

2.5 CÁLCULO DE DEMANDA

Os cômodos do empreendimento são divididos da seguinte forma: 2 Quartos, 24 Suítes tipo 02, 04 Suítes tipo 03, 02 Suítes Master, 01 lavanderia, 01 escritório, 01 cozinha, 01 deposito de limpeza, 01 recepção, 01 área externo. O levantamento de carga para esses cômodos é apresentado na tabela 4.

Tabela 4 – Levantamento de Carga.

		Suite			
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)	
Televisão 30 POL	1	0,15	0,16	0,16	
Lâmpada	2	0,012	0,01	0,03	
Tomada de uso Geral	2	1	1,09	2,17	
Total		1,162		2,36	
	1	uiteTipo 02		1	
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)	
Ar condicionado 9000 BTUS	2	2,2	2,39	4,78	
Lâmpada	5	0,012	0,01	0,07	
Tomada de uso Geral	3	1	1,09	3,26	
Total		3,212		8,11	
	Sı	uiteTipo 03		1	
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)	
Ar condicionado 9000 BTUS	2	2,2	2,39	4,78	
Televisão 30 POL	1	0,15	0,16	0,16	
Lâmpada	2	0,012	0,01	0,03	
Tomada de uso Geral	3	1	1,09	3,26	
Total		3,362		8,23	
	Sı	iite Master			
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)	
Ar condicionado 9000 BTUS	2	2,2	2,39	4,78	
Televisão 30 POL	2	0,15	0,16	0,33	
Lâmpada	5	0,012	0,01	0,07	
Tomada de uso Geral	4	1	1,09	4,35	
Bomba Para Piscina	1	1	1,09	1,09	
Total		4,362		10,61	
	Lavanc	leria e Rouparia			
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)	
Lavadoura de Roupa	1	1,5	1,63	1,63	
Tomada	5	1	1,09	5,43	
Lâmpada	5	0,012	0,01	0,07	
Total		2,512		7,13	
	Escritório				

PROJETO DE ACORDO COM AS NORMAS E PADRÕES

NEOENERGIA
PERNAMBUCO

George Silva Paiva

Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)
Ar Condicionado 9000 Btus	1	1,1	1,20	1,20
Lâmpada	2	0,012	0,01	0,03
Tomada	2	1	1,09	2,17
Total		2,112		3,40
		Cozinha		
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)
Geladeira Duplex 480L	1	0,38	0,41	0,41
Liquidificador industrial	1	1	1,09	1,09
Lâmpada	2	0,012	0,01	0,03
Tomada de uso Geral	3	1	1,09	3,26
Total		2,392		4,79
Deposito limpeza	de ma	teriais/ Deposito	Seco/Dispensa	
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)
Lâmpada	6	0,012	0,01	0,08
Total		0,012		0,08
Į.	tendin	nento/Recepição		
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)
Televisão 30 POL	1	0,15	0,16	0,16
Computador	1	0,25	0,27	0,27
Lâmpada	2	0,012	0,01	0,03
Tomada de uso Geral	2	1	1,09	2,17
Total		1,412		2,63
	Ár	ea Externa		
Equipamento	Qnt.	Potência (kW)	Potência (kVA)	Total (kVA)
Luminária	5	0,06	0,07	0,33
Motor Para Portão	1	0,12	0,13	0,13
Total		0,18		0,46

Total	110,204	49,5918
-------	---------	---------

A carga instalada total do empreendimento é 110,2 kW

Tomando como referência **Tabela 10 – Fatores de Demanda e de Carga** da norma **DIS-NOR-036**, tem-se:

Carga instalada: 110,2 kW

Fator de potência (COMÉRCIO DIVERSOS): 0,88

Carga demandada: 96,98 kVA

Fator de demanda (COMÉRCIO DIVERSOS S): 0,45

Potência demandada: 49,5 kVA

2.5.1 DEMANDA PREVISTA PARA OS PRÓXIMOS 5 ANOS

O cálculo da demanda prevista para os próximos 5 anos foi realizado a partir do Quadro 04 da norma DIS-NOR-012 (Critérios para Elaboração de Projetos de Rede de Distribuição Aérea). O empreendimento em questão foi classificado como uma área com potencial de expansão dentro da média e o fator de utilização do transformador projetado foi calculado em 0,92, em conformidade com o quadro 04 da norma DIS-NOR-012 (Critérios para Elaboração de Projetos de Rede de Distribuição Aérea.

Quadro 4 – Fatores de Utilização Recomendados

Emprego	Fator de Utilização
Áreas sem potencial de expansão	1,10 a 0,90
Áreas com potencial de expansão dentro da média	1,00 a 0,80
Áreas com potencial de expansão acima da média	0,90 a 0,70

2.6 CARGAS PERTUBADORAS

Não há equipamento que são classificados como carga perturbadora.

2.7 DIVERGÊNCIAS

Havendo discrepância de informações entre o projeto apresentado a **CELPE** e a situação encontrada em campo durante o processo de inspeção do projeto, o responsável técnico deve reapresentar de acordo como na norma **DIS-NOR-036**.

OBEDIÊNCIA ÀS NORMAS

Distribuição à edificação Individual.

Declaro para os devidos fins que os itens que não foram citados neste memorial descritivo atendem aos requisitos das normas:

descritivo atendem aos requisitos das normas: ■ DIS-NOR–036 – Fornecimento de Energia Elétrica em Média Tensão de

NEOENERGIA
PERNAMBUCO
George Silva Paiva

- DIS-NOR-012 (Critérios para Elaboração de Projetos de Rede de Distribuição Aérea).
- NBR 13570 Instalações Elétricas em locais de afluência de público requisitos
 NBR 14039 Instalações Elétricas de Média Tensão de 1,0 a 36,2 kV;
- NBR 5410 Instalações Elétricas de Baixa Tensão;
- NBR 5413 Iluminância de interiores Procedimento:
- NBR 15688 Rede de Distribuição Urbana e Rural de Energia Elétrica -Padronização;
- NBR NM 280 Condutores de cabos isolados;
- NBR62271 Conjunto de manobras de Alta-Tensão em invólucro metálico para tensão de 1 a 52kV;
- NBR13534 Requisitos específicos para instalação em estabelecimentos de assistência da saúde;
- NR 10 Segurança em Instalações e Serviços em Eletricidade;
 Resolução Nº 414 Condições Gerais de Fornecimento de Energia Elétrica;
 NBR ISO 9001- Sistemas de Gestão da Qualidade.

Na ausência de normas específicas da ABNT ou em casos de omissão das mesmas, devem ser observados os requisitos das últimas edições das normas e recomendações das seguintes instituições:

- ANSI American National Standard Institute, inclusive o NationalelectricSafetyCode (NESC);
- NEMA NationalElectricalManufacturersAssociation
- NEC NationalElectricalCode
- IEEE InstituteofElectricalandElectronicsEnginee

PROJETO DE ACORDO COM AS NORMAS E PADRÕES

NEOENERGIA PERNAMBUCO

George Silva Paiva

George Silva Paiva Engº Eletricista CREA: PE 28725D 10/11/2021

LEONARDO FERREIRA LOIOLA Engenheiro Eletricista CREA-BA/RNP: 051452173-2

Cenardo Ferrira Goida

