Initial Results of DeepAtom on DUD-E Weekly update

Week 2 April, 2021

Overview

Recap of network architecture

- i. Atom information integration block
- ii. Stacked feature extraction block
- iii. Classification block

Results on DUD-E

- i. Data
- ii. Performance

Updates Since Last Week

- 1. Implemented the data pipeline.
- 2. Implemented DeepAtom's Shufflenet-based CNN architecture.
- 3. Did some optimization for DeepAtom on DUD-E to understand areas of improvement.

- i. Atom information integration block
- ii. Stacked feature extraction block
- iii. Classification block

The three block overview

DeepAtom has three blocks:

- 1. Atom information integration block.
- 2. Stacked feature extraction block.
- Classification block.

- i. Atom information integration block
- II. Stacked feature extracti
 - iii. Classification block

i. Atom information integration block

Atomic information across the 24 8 channels is aggregate in a pointwise fashion, and the output is then pooled.

- 1. PWConv $(W, h)_{(i,j,k)} = \sum_{m=0}^{24} W_m \cdot h_{(i,j,k,m)}$ is used to map the 8×32^3 input to 32^3 .
- 2. The max-pooling downsamples the tensor to 16^3 .

Semantically, this block processes the input into non-linear function of the linear combination of the various channels (interaction types), parsimoniously.

- Atom information integration block ii. Stacked feature extraction block

ii. Stacked feature extraction block

Three 3D shuffle groups are stacked, each containing a parsimonious combination of pointwise and depthwise convolutions.

Shuffling, splitting, and then processing only certain channels encourages parsimonious while maintaining performance.

$$\mathsf{DWConv}(W,h)_{(i,j,k)} =$$

$$\Sigma_{s,t,r}^{S,T,R} W_{s,t,r} \odot h_{(i+s,j+t,k+r)}$$

- Atom information integration block
 Stacked feature extraction block
- iii. Classification block

iii. Classification Block

Previously, an ensemble of eight fully-connected networks, derived from the eight channels of the output of the second block, are used to create predictions.

Due to overfitting issues, I tried a few simpler approaches, settling on this:

- 1. A 3D pointwise convolution.
- 2. Average pooling.
- 3. Flattening into a 976-vector to be passed through a single 976-to-1 fully-connected layer.

Data: a simplified attempt

For this initial test, the model had it easy.

- ▶ A limited number of proteins: the model was trained and validated on examples from the same 10 proteins.
- ► A high actives ratio: the ratio of active ligands to decoys was 1:3, far greater than what occurs naturally.
- No lack of data: the training set had $\sim 13,000$ cocomplexes in total: about double than when this architecture was used for BAP originally.

However,

► The rasterized 3D cocomplex grid was "channelized" into 8 rather than 24 channels, based on the MoleculeKit rather than the Arpeggio package.

Loss curves

Accuracy curves

Validation confusion matrix and associated statistics

		Truth	
		(+)	(-)
	+)	TPR = 439	FPR = 247
Prediction (-)	FNR = 184	TNR = 1847

The model has middling performance, and overfits very quickly.

- ► The shuffle groups, while designed to save parameters without increasing the model's bias, are likely too many in number.
- ► The reduced dimensionality of the input due to the fewer channels likely did not help.
- The model does not cope well with class imbalance.

Therefore, some next steps:

- Use Arpeggio's channelization.
- Use more data, and weight positive data more highly.
- ► Tune discrete aspects of the network architecture (e.g.: number of layers).
- ▶ Enable better data processing and optimization using NSCC.

For More Details...

DeepAtom:

Li, Y., Rezaei, M. A., Li, C., & Li, X. (2019)

DeepAtom: A framework FOR Protein-Ligand binding affinity prediction *IEEE/ACM Transactions on Computational Biology and Bioinformatics*.