Theory and Applications

Bokun Wang and Tianbao Yang

$$\min_{h \in \mathcal{H}} \hat{R}(h), \ \ \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$

$$\min_{h \in \mathcal{H}} \hat{R}(h), \;\; \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$
 Hypothesis parameterized by \mathbf{w} $\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \;\; F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$

$$\min_{h \in \mathcal{H}} \hat{R}(h), \;\; \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$
 Hypothesis parameterized by \mathbf{w} $\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \;\; F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$

 $n=|\mathcal{D}|$

Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}}
abla \ell(\mathbf{w}; \mathbf{z}_i)$$

$$\min_{h \in \mathcal{H}} \hat{R}(h), \;\; \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$
 Hypothesis parameterized by \mathbf{w} $\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \;\; F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$

Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta
abla F(\mathbf{w})$$

$$\min_{h \in \mathcal{H}} \hat{R}(h), \;\; \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$
 Hypothesis parameterized by \mathbf{w} $\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \;\; F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \hat{
abla} F(\mathbf{w})$$

Unbiased estimator, e.g., $abla \ell(\mathbf{w}; \mathbf{z}_i)$ $\mathbb{E}[\hat{
abla} F(\mathbf{w})] =
abla F(\mathbf{w})$

$$\min_{h \in \mathcal{H}} \hat{R}(h), \;\; \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$
 Hypothesis parameterized by \mathbf{w} $\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \;\; F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \hat{
abla} F(\mathbf{w})$$

Unbiased estimator, e.g., $\nabla \ell(\mathbf{w}; \mathbf{z}_i)$

Independent of n. Looks good?

$$\min_{h \in \mathcal{H}} \hat{R}(h), \;\; \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$
 Hypothesis parameterized by \mathbf{w} $\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \;\; F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta
abla \ell(\mathbf{w}; \mathbf{z}_i)$$

$$\min_{h \in \mathcal{H}} \hat{R}(h), \;\; \hat{R}(h) = rac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i).$$
 Hypothesis parameterized by \mathbf{w} $\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \;\; F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \ell(\mathbf{w}; \mathbf{z}_i)$$
 Could still be expensive (if not infeasible)!

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}$$

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{+}} rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_{i}))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_{i}))}$$
Positive Sample

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{+}} rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_{i}))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_{i}))}$$
Positive Total $\mathcal{S} = \mathcal{S}_{+} \cup \mathcal{S}_{-}$
Sample Sample

$$\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$$

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} \overbrace{rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \overbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}}^{\mathbf{x}_i \in \mathcal{S}_{+}}^{\mathbf{x}_i$$

Smooth Average Precision (AP)

Maximization

$$\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$$

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} \overbrace{rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}}^{\mathbf{z}_{\mathbf{x} \in \mathcal{S}_{+}}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{z}_{\mathbf{x} \in \mathcal{S}_{+}}} \ell(\mathbf{w}; \mathbf{z}_i)}$$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta
abla \ell(\mathbf{w}; \mathbf{z}_i)$$

$$\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i).$$

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} \overbrace{rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \overbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \overbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}} \underbrace{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}^{\mathbf{x}_i \in \mathcal{S}_{+}}}^{\mathbf{x}_i \in \mathcal{S}_{+}}$$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta
abla \ell(\mathbf{w}; \mathbf{z}_i)$$

Unbiased estimator is still expensive!

$$\min_{\mathbf{w}} rac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}} igl[\log igl(1 + \expigl(-y_i \mathbb{E}_{\xi | \mathbf{x}_i} igl[ar{\xi}^T \mathbf{w} igr] igr) igr]$$

$$\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$$

$$\min_{\mathbf{w}} rac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}} igl[\log igl(1 + \expigl(-y_i \mathbb{E}_{\xi | \mathbf{x}_i} igl[oldsymbol{\xi}^T \mathbf{w} igr] igr) igr] }{\ell(\mathbf{w}; \mathbf{z}_i)}$$

$$\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i).$$

$$\min_{\mathbf{w}} rac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}} igl[\log igl(1 + \expigl(-y_i \mathbb{E}_{\xi | \mathbf{x}_i} igl[\xi^T \mathbf{w} igr] igr) igr] }{\ell(\mathbf{w} \cdot \mathbf{z})}$$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \ell(\mathbf{w}; \mathbf{z}_i)$$

$$\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i).$$

$$\min_{\mathbf{w}} rac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}} igl[\log igl(1 + \expigl(-y_i \mathbb{E}_{\xi | \mathbf{x}_i} igl[oldsymbol{\xi}^T \mathbf{w} igr] igr) igr] }{\ell(\mathbf{w}; \mathbf{z}_i)}$$

Stochastic Gradient Descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta
abla \ell(\mathbf{w}; \mathbf{z}_i)$$
 Infeasible!

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

How is it related to finite-sum stochastic optimization?

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Finite-Sum Stochastic Optimization

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$$

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Take into account the cost of S_i

Finite-Sum Stochastic Optimization

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i)$$

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Stochastic Gradient (Biased);

Sample both \mathcal{D} and \mathcal{S}_{i}

Finite-Sum Stochastic Optimization

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i).$$

Stochastic Gradient (Unbiased); Sample $oldsymbol{\mathcal{D}}$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i)).$$

Finite-Sum Coupled Compositional Stochastic Optimization (FCCO)

AP Maximization

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}$$

Bipartite ranking by p-norm Push

$$F(\mathbf{w}) = rac{1}{|\mathcal{S}_{-}|} \sum_{\mathbf{z}_i \in \mathcal{S}_{-}} \left(rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{z}_j \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{z}_j) - h_{\mathbf{w}}(\mathbf{z}_i))
ight)^p$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

AP Maximization

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}$$

Bipartite ranking by p-norm Push

$$F(\mathbf{w}) = rac{1}{|\mathcal{S}_{-}|} \sum_{\mathbf{z}_i \in \mathcal{S}_{-}} \left(rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{z}_j \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{z}_j) - h_{\mathbf{w}}(\mathbf{z}_i))
ight)^p$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i).$$

Finite-Sum Stochastic Optimization

Logistic regression

$$F(\mathbf{w}) = rac{1}{n} \sum_{i=1}^n \ln\Bigl(1 + e^{-y_i \langle \mathbf{w}, \mathbf{x}_i
angle}\Bigr)$$

Ridge regression

$$F(\mathbf{w}) = rac{1}{2n} \sum_{i=1}^n \left\| \mathbf{x}_i^ op \mathbf{w} - y_i
ight\|_2^2 + rac{\lambda}{2} \| \mathbf{w} \|_2^2.$$

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i)).$$

Wait! We have already seen something similar ...

Hu et al. "Biased stochastic first-order methods for conditional stochastic optimization and applications in meta learning." NeurIPS 2020.

Conditional Stochastic Optimization (CSO)

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

$$F(\mathbf{w}) = \mathbb{E}_{\xi} f_{\xi}ig(\mathbb{E}_{\zeta|\xi}[g_{\zeta}(\mathbf{w}; \xi)]ig)$$

Hu et al. "Biased stochastic first-order methods for conditional stochastic optimization and applications in meta learning." NeurIPS 2020.

Conditional Stochastic Optimization (CSO)

Special Case:

$$\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \qquad \min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \ F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i)) \qquad F(\mathbf{w}) = \mathbb{E}_{\xi} f_{\xi} ig(\mathbb{E}_{\zeta | \xi} [g_{\zeta}(\mathbf{w}; \xi)] ig)$$

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Wang et al. "Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions." Math. Program. 161(1-2):419–449, 2017.

Finite-Sum
Compositional
Stochastic
Optimization (FCO)

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) = rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathcal{S}))$$

 $\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(\widehat{g}(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Wang et al. "Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions." Math. Program. 161(1-2):419–449, 2017.

Finite-Sum
Compositional
Stochastic
Optimization (FCO)

$$\min_{\mathbf{w}\in\Omega}F(\mathbf{w}),$$

$$F(\mathbf{w}) = rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathcal{S}))$$

Wang et al. "Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions." Math. Program. 161(1-2):419-449, 2017.

Finite-Sum Compositional **Stochastic Optimization (FCO)**

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

How about reformulating

FCCO as FCO?

$$F(\mathbf{w}) = rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathcal{S}))$$

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Doable. But the FCCO formulation

leads to more efficient algorithm!

Wang et al. "Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions." Math. Program. 161(1-2):419-449, 2017.

Finite-Sum Compositional **Stochastic Optimization (FCO)**

$$F(\mathbf{w}) = rac{1}{n} \sum_{i=1}^n \hat{f}_i(\mathbf{g}(\mathbf{w}; \mathcal{S})) \ \mathbf{g}(\mathbf{w}; \mathcal{S}) = \left[g(\mathbf{w}; \mathbf{z}_1, \mathcal{S}_1)^ op, \ldots, g(\mathbf{w}; \mathbf{z}_n, \mathcal{S}_n)^ op
ight]^ op$$

$$egin{aligned} \mathcal{S} &= \mathcal{S}_1 \cup \cdots \mathcal{S}_i \cdots \cup \mathcal{S}_n \ \hat{f}_{|i|}(\cdot) &= f_i(\mathbb{I}_i \cdot) \end{array} \mathbb{I}_i := [0_{d imes d}, \ldots, I_{d imes d}, \ldots, 0_{d imes d}] \end{aligned}$$

Algorithm and Theory

The NASA Algorithm for Finite-Sum Compositional Stochastic Optimization (FCO)

Ghadimi et al. "A single timescale stochastic approximation method for nested stochastic optimization." SIAM J. Optim., 30:960–979,2020.

$$F(\mathbf{w}) = rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathcal{S}))$$

Sample mini-batches $\mathcal{B}_1 \subset \mathcal{D}, \mathcal{B}_2 \subset \mathcal{S}$

$$u \leftarrow (1 - \gamma)u + \gamma g(\mathbf{w}; \mathcal{B}_2)$$

$$\mathbf{v} \leftarrow (1-eta)\mathbf{v} + eta rac{1}{|\mathcal{B}_1|} \sum_{\mathbf{z} \in \mathcal{B}_1}
abla g(\mathbf{w}; \mathcal{B}_2)
abla f_i(u)$$

$$\mathbf{w} \longleftarrow \mathbf{w} - \eta \mathbf{v}$$

Apply NASA to Finite-Sum Coupled Compositional Stochastic Optimization?

$$\boxed{u \leftarrow (1-\gamma)u + \gamma g(\mathbf{w}; \mathcal{B}_2)}$$

All n components of u are updated

in every iteration!

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

$$F(\mathbf{w}) = rac{1}{n} \sum_{i=1}^n \hat{f}_i(\mathbf{g}(\mathbf{w}; \mathcal{S}))$$

$$\mathbf{g}(\mathbf{w}; \mathcal{S}) = \left[g(\mathbf{w}; \mathbf{z}_1, \mathcal{S}_1)^{ op}, \dots, g(\mathbf{w}; \mathbf{z}_n, \mathcal{S}_n)^{ op}
ight]^{ op} \ \mathcal{S} = \mathcal{S}_1 \cup \dots \mathcal{S}_i \dots \cup \mathcal{S}_n$$

$$\hat{f}_i(\cdot) = f_i(\mathbb{I}_i \cdot) \;\; \mathbb{I}_i := [0_{d imes d}, \dots, I_{d imes d}, \dots, 0_{d imes d}]$$

Apply NASA to Finite-Sum Coupled Compositional Stochastic Optimization?

$$u \leftarrow (1-\gamma)u + \gamma g(\mathbf{w};\mathcal{B}_2)$$

All n components of u are updated in every iteration!

Not efficient when n is large.

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \hat{f}_i(\mathbf{g}(\mathbf{w}; \mathcal{S}))$$

$$\mathbf{g}(\mathbf{w}; \mathcal{S}) = \left[g(\mathbf{w}; \mathbf{z}_1, \mathcal{S}_1)^ op, \ldots, g(\mathbf{w}; \mathbf{z}_n, \mathcal{S}_n)^ op
ight]^ op$$

$$\mathcal{S} = \mathcal{S}_1 \cup \cdots \mathcal{S}_i \cdots \cup \mathcal{S}_n$$

$$\hat{f}_i(\cdot) = f_i(\mathbb{I}_i \cdot) \ \ \mathbb{I}_i := [0_{d \times d}, \dots, I_{d \times d}, \dots, 0_{d \times d}]$$

Compositional Stochastic Optimization (FCCO)

(NEW) The SOX Algorithm
$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Sample mini-batches $\mathcal{B}_1^t \subset \mathcal{D}, \mathcal{B}_{i,2}^t \subset \mathcal{S}_i$

$$u_i^t = egin{cases} (1-\gamma)u_i^{t-1} + \gamma gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig), & \mathbf{z}_i \in \mathcal{B}_1^t \ u_i^{t-1}, & \mathbf{z}_i
otin \mathcal{B}_1^t \end{cases}$$

$$\mathbf{v}^t = (1-eta)\mathbf{v}^{t-1} + eta rac{1}{B_1} \sum_{\mathbf{z}_i \in \mathcal{B}_z^t}
abla gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig)
abla f_iig(u_i^{t-1}ig)$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \mathbf{v}^t$$

Compositional Stochastic Optimization (FCCO)

(NEW) The SOX Algorithm
$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Sample mini-batches $\mathcal{B}_1^t \subset \mathcal{D}, \mathcal{B}_{i,2}^t \subset \mathcal{S}_i$

$$oxed{u_i^t = egin{dcases} (1-\gamma)u_i^{t-1} + \gamma gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig), & \mathbf{z}_i \in \mathcal{B}_1^t \ u_i^{t-1}, & \mathbf{z}_i
otin \mathcal{B}_1^t \end{cases}}$$

$$\mathbf{v}^t = (1-eta)\mathbf{v}^{t-1} + eta rac{1}{B_1} \sum_{\mathbf{z}_i \in \mathcal{B}_1^t}
abla gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig)
abla f_iig(u_i^{t-1}ig)$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \mathbf{v}^t$$

Only update those sampled components in the outer loop!

Compositional Stochastic Optimization (<u>FCCO</u>)

(NEW) The SOX Algorithm

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Sample mini-batches $\mathcal{B}_1^t \subset \mathcal{D}, \mathcal{B}_{i,2}^t \subset \mathcal{S}_i$

$$oxed{u_i^t = egin{dcases} (1-\gamma)u_i^{t-1} + \gamma gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig), & \mathbf{z}_i \in \mathcal{B}_1^t \ u_i^{t-1}, & \mathbf{z}_i
otin \mathcal{B}_1^t \end{cases}}$$

$$\mathbf{v}^t = (1-eta)\mathbf{v}^{t-1} + eta rac{1}{B_1} \sum_{\mathbf{z}_i \in \mathcal{B}_1^t}
abla gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig)
abla f_iig(u_i^{t-1}ig)$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \mathbf{v}^t$$

Only update those sampled components in the outer loop!

Data sampling is independent of n (unlike NASA)

Compositional Stochastic Optimization (FCCO)

$$(\textbf{NEW}) \textbf{ The SOX Algorithm} \quad F(\mathbf{w}) := \frac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i)) \\ u_i^t = \begin{cases} (1-\gamma)u_i^{t-1} + \gamma g(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^t), & \mathbf{z}_i \in \mathcal{B}_1^t \\ u_i^{t-1}, & \mathbf{z}_i \not\in \mathcal{B}_1^t \end{cases}$$

$$u_i^t = egin{cases} u_i^{t-1} - \gammaig(u_i^{t-1} - gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig)ig), & \mathbf{z}_i \in \mathcal{B}_1^t \ u_i^t, & \mathbf{z}_i
otin \mathcal{B}_1^t \end{cases}$$

$$\min_{\mathbf{u}=[u_1,\ldots,u_n]^ op} rac{1}{2} \sum_{\mathbf{z}_i \in \mathcal{D}} \left\| u_i - g(\mathbf{w}^t; \mathbf{z}_i, \mathcal{S}_i)
ight\|^2$$
 Stochastic block coordinate descent

Compositional Stochastic Optimization (FCCO)

(NEW) The SOX Algorithm
$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Sample mini-batches $\mathcal{B}_1^t \subset \mathcal{D}, \mathcal{B}_{i,2}^t \subset \mathcal{S}_i$

$$u_i^t = egin{cases} (1-\gamma)u_i^{t-1} + \gamma gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig), & \mathbf{z}_i \in \mathcal{B}_1^t \ u_i^{t-1}, & \mathbf{z}_i
otin \mathcal{B}_1^t \end{cases}$$

$$\mathbf{v}^t = (1-eta)\mathbf{v}^{t-1} + eta rac{1}{B_1} \sum_{\mathbf{z}_i \in \mathcal{B}_i^t}
abla gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig)
abla f_iig(u_i^{t-1}ig)$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \mathbf{v}^t$$

u,t is more intuitive (and also works in practice).

Compositional Stochastic Optimization (<u>FCCO</u>)

(NEW) The SOX Algorithm

$$F(\mathbf{w}) := rac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathcal{S}_i))$$

Sample mini-batches $\mathcal{B}_1^t \subset \mathcal{D}, \mathcal{B}_{i,2}^t \subset \mathcal{S}_i$

$$u_i^t = egin{cases} (1-\gamma)u_i^{t-1} + \gamma gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig), & \mathbf{z}_i \in \mathcal{B}_1^t \ u_i^{t-1}, & \mathbf{z}_i
otin \mathcal{B}_1^t \end{cases}$$

$$\mathbf{v}^t = (1-eta)\mathbf{v}^{t-1} + eta rac{1}{B_1} \sum_{\mathbf{z}_i \in \mathcal{B}_1^t}
abla gig(\mathbf{w}^t; \mathbf{z}_i, \mathcal{B}_{i,2}^tig)
abla f_iig(u_i^{t-1}ig)$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \mathbf{v}^t$$

u,t is more intuitive (and also works in practice).

But u_i^{t-1} can help us circumvent some difficulty in theory and derive improved rates.

Convergence Rates

Method	NC	С	SC (PL)	Outer Batch Size $ \mathcal{B}_1 $	Inner Batch Size $ \mathcal{B}_{i,2} $	Parallel Speed-up
BSGD (Hu et al., 2020)	$O(\epsilon^{-4})$	$O\left(\epsilon^{-2}\right)$	$O\left(\mu^{-1}\epsilon^{-1}\right)^{\dagger}$	1	$O(\epsilon^{-2})$ (NC) $O(\epsilon^{-1})$ (C/SC)	N/A
SOAP (Qi et al., 2021)	$O(n\epsilon^{-5})$	-	-	1	1	N/A
MOAP (Wang et al., 2021)	$O\left(\frac{n\epsilon^{-4}}{B_1}\right)$	-	-	B_1	1	Partial
SOX/SOX-boost (this work)	$O\left(\frac{n\epsilon^{-4}}{B_1B_2}\right)$	$O\left(\frac{n\epsilon^{-3}}{B_1B_2}\right)$	$O\left(\frac{n\mu^{-2}\epsilon^{-1}}{B_1B_2}\right)$	B_1	B_2	Yes
SOX ($\beta = 1$) (this work)	-	$O\left(\frac{n\epsilon^{-2}}{B_1}\right)^*$	-	B_1	B_2	Partial

Convergence Rates

Nonconvex

Method	NC	С	SC (PL)	Outer Batch Size $ \mathcal{B}_1 $	Inner Batch Size $ \mathcal{B}_{i,2} $	Parallel Speed-up
BSGD (Hu et al., 2020)	$O(\epsilon^{-4})$	$O\left(\epsilon^{-2}\right)$	$O\left(\mu^{-1}\epsilon^{-1}\right)^{\dagger}$	1	$O(\epsilon^{-2})$ (NC) $O(\epsilon^{-1})$ (C/SC)	N/A
SOAP (Qi et al., 2021)	$O(n\epsilon^{-5})$	-	-	1	1	N/A
MOAP (Wang et al., 2021)	$O\left(\frac{n\epsilon^{-4}}{B_1}\right)$	-	-	B_1	1	Partial
SOX/SOX-boost (this work)	$O\left(\frac{n\epsilon^{-4}}{B_1B_2}\right)$	$O\left(\frac{n\epsilon^{-3}}{B_1B_2}\right)$	$O\left(\frac{n\mu^{-2}\epsilon^{-1}}{B_1B_2}\right)$	B_1	B_2	Yes
SOX ($\beta = 1$) (this work)	-	$O\left(\frac{n\epsilon^{-2}}{B_1}\right)^*$	-	B_1	B_2	Partial

Convergence Rates

	vonconv	ex C	onvex			
Method	NC	C	SC (PL)	Outer Batch Size $ \mathcal{B}_1 $	Inner Batch Size $ \mathcal{B}_{i,2} $	Parallel Speed-up
BSGD (Hu et al., 2020)	$O(\epsilon^{-4})$	$O\left(\epsilon^{-2}\right)$	$O\left(\mu^{-1}\epsilon^{-1}\right)^{\dagger}$	1	$O(\epsilon^{-2})$ (NC) $O(\epsilon^{-1})$ (C/SC)	N/A
SOAP (Qi et al., 2021)	$O(n\epsilon^{-5})$	-	-	1	1	N/A
MOAP (Wang et al., 2021)	$O\left(\frac{n\epsilon^{-4}}{B_1}\right)$	-	-	B_1	1	Partial
SOX/SOX-boost (this work)	$O\left(\frac{n\epsilon^{-4}}{B_1B_2}\right)$	$O\left(\frac{n\epsilon^{-3}}{B_1B_2}\right)$	$O\left(\frac{n\mu^{-2}\epsilon^{-1}}{B_1B_2}\right)$	B_1	B_2	Yes
SOX ($\beta = 1$) (this work)	-	$O\left(\frac{n\epsilon^{-2}}{B_1}\right)^*$	-	B_1	B_2	Partial

Convergence Rates Strongly Nonconvex Convex Convex Outer Batch Inner Batch Parallel SC (PL) Method NC Size $|\mathcal{B}_1|$ Size $|\mathcal{B}_{i,2}|$ Speed-up $O(\epsilon^{-2})$ (NC) $O\left(\mu^{-1}\epsilon^{-1}\right)^{\dagger}$ $O\left(\epsilon^{-2}\right)$ BSGD (Hu et al., 2020) $O(\epsilon^{-4})$ N/A $O(\epsilon^{-1})$ (C/SC) SOAP (Qi et al., 2021) $O(n\epsilon^{-5})$ N/A MOAP (Wang et al., 2021) B_1 **Partial** SOX/SOX-boost (this work) B_1 B_2 Yes SOX ($\beta = 1$) (this work) B_1 B_2 Partial

Originally proposed for AP maximization

Numerical Results

AP Maximization

Iterations

6

1e4

2

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}$$

AP Maximization

$$F(\mathbf{w}) = -rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{x}_i \in \mathcal{S}_{+}} rac{\sum_{\mathbf{x} \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}{\sum_{\mathbf{x} \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}_i))}$$

Bipartite Ranking by p-norm Push

$$F(\mathbf{w}) = rac{1}{|\mathcal{S}_{-}|} \sum_{\mathbf{z}_i \in \mathcal{S}_{-}} \left(rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{z}_j \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{z}_j) - h_{\mathbf{w}}(\mathbf{z}_i))
ight)^p$$

covtype							
Algorithms	BS-PnP	BSGD	SOAP	MOAP	SOX		
Test Loss (↓)	0.778	0.625 ± 0.018	0.523 ± 0.004	0.559 ± 0.011	$\textbf{0.516} \pm \textbf{0.003}$		
Time (s) (\downarrow)	6043.90	$\textbf{4.20} \pm \textbf{0.08}$	4.32 ± 0.15	4.89 ± 0.06	4.62 ± 0.10		
ijcnn1							
Algorithms	BS-PnP	BSGD	SOAP	MOAP	SOX		
Test Loss (↓)	0.268	0.202 ± 0.001	$\textbf{0.128} \pm \textbf{0.002}$	0.147 ± 0.001	$\textbf{0.128} \pm \textbf{0.002}$		
Time (s) (\downarrow)	648.06	$\textbf{4.02} \pm \textbf{0.04}$	4.04 ± 0.11	4.42 ± 0.05	4.15 ± 0.06		

Bipartite Ranking by p-norm Push

$$F(\mathbf{w}) = rac{1}{|\mathcal{S}_{-}|} \sum_{\mathbf{z}_i \in \mathcal{S}_{-}} \left(rac{1}{|\mathcal{S}_{+}|} \sum_{\mathbf{z}_j \in \mathcal{S}_{+}} \ell(h_{\mathbf{w}}(\mathbf{z}_j) - h_{\mathbf{w}}(\mathbf{z}_i))
ight)^T$$

A boosting-style deterministic algorithm

			covtype		
Algorithms	BS-PnP	BSGD	SOAP	MOAP	SOX
Test Loss (↓)	0.778	0.625 ± 0.018	0.523 ± 0.004	0.559 ± 0.011	$\textbf{0.516} \pm \textbf{0.003}$
Time (s) (\downarrow)	6043.90	$\textbf{4.20} \pm \textbf{0.08}$	4.32 ± 0.15	4.89 ± 0.06	4.62 ± 0.10
			ijenn1		
Algorithms	BS-PnP	BSGD	ijenn1 SOAP	MOAP	SOX
Algorithms Test Loss (↓)	BS-PnP 0.268	$\begin{array}{c} \text{BSGD} \\ 0.202 \pm 0.001 \end{array}$		MOAP 0.147 ± 0.001	$\begin{array}{c} \text{SOX} \\ \textbf{0.128} \pm \textbf{0.002} \end{array}$

Neighborhood Component Analysis

$$F(A) = -\sum_{\mathbf{x}_i \in \mathcal{D}} \frac{\sum_{\mathbf{x} \in \mathcal{C}_i} \exp(-\|A\mathbf{x}_i - A\mathbf{x}\|^2)}{\sum_{\mathbf{x} \in \mathcal{S}_i} \exp(-\|A\mathbf{x}_i - A\mathbf{x}\|^2)}$$
$$\mathcal{C}_i = \{\mathbf{x}_j \in \mathcal{D} : y_j = y_i\}$$
$$\mathcal{S}_i = \mathcal{D} \setminus \{\mathbf{x}_i\}$$

More Potential Applications

Listwise Ranking

$$F(\mathbf{w}) = -\sum_{q} \sum_{\mathbf{x}_i^q \in \mathcal{S}_q} P(y_i^q) \log rac{\exp(h_{\mathbf{w}}(\mathbf{x}_i^q; \mathbf{q})}{\sum_{\mathbf{x} \in \mathcal{S}_q} \exp(h_{\mathbf{w}}(\mathbf{x}; \mathbf{q}))}$$
 $ext{queries } \mathcal{Q} = \{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ $ext{items with relavance scores} \quad \mathcal{S}_q = \left\{ (\mathbf{x}_1^q, y_1^q), \dots, \left(\mathbf{x}_{n_q}^q, y_{n_q}^q\right)
ight\}$

Survival Analysis

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i:E_i=1} \log \left(\sum_{j \in \mathcal{S}(T_i)} \exp(h_{\mathbf{w}}(\mathbf{x}_j) - h_{\mathbf{w}}(\mathbf{x}_i)) \right)$$

 \mathbf{x}_i : patient feature $h_{\mathbf{W}}(\mathbf{x}_i)$: risk predicted by the model

 $E_i = 1$: observable event of interest (e.g., death)

 T_i : time interval between data collection and the event

 $\mathcal{S}(t) = \{i: T_i \geq t\}$ denotes the set of patients still at risk at time t

Thank you!