#### Curso: Algoritmos Paralelos y Computación de Altas Prestaciones



#### BLAS

Domingo Giménez Departamento de Informática y Sistemas Universidad de Murcia, Spain

dis.um.es/~domingo

#### Motivación

- Muchas veces son la parte más costosa de la resolución del problema
- Identificar rutinas básicas, estandarizar e implementarlas eficientemente:
  - Programación más fácil
  - Mantenimiento más fácil
  - Más portabilidad
  - Códigos eficientes

#### Motivación

- Un gran número de aplicaciones científicas hacen uso del Álgebra Lineal Numérica:
  - Simulación de moléculas (problemas de valores propios)
  - Econometría (mínimos cuadrados)
  - Radiosidad (sistemas de ecuaciones)
  - Búsqueda de información en web (valores propios)
  - Reconocimiento de caras (valores propios)
     Universidad de Murcia

# Antecedentes históricos (fuente: Enrique Quintana, UJI)

- 1962: Rounding errors, Wilkinson
- 1965: The Algebraic Eigenvalue
   Problem, Wilkinson. SVD, Golub, Kahan
- 1969: NAG. Strassen
- 1972: EISPACK. QZ, Moler, Stewart
- 1973: BLAS Report
- 1974: Inicio LINPACK. Inicio BLAS-1

# Antecedentes históricos (II)

- 1975: ACM Trans. on Math. Soft.
- 1976: EISPACK 2.0
- 1977: Fortran 77
- 1978: LINPACK. BLAS1 en ACM TOMS
- 1980: DV, Cupper
- 1982: Inicio BLAS-2
- 1983: Matrix computation, Golub, Van
   Loan Universidad de Murcia

# Antecedentes históricos (III)

- 1984: **EISPACK 3.0.** netlib
- 1986: Inicio BLAS3
- 1987: Inicio LAPACK. BLAS2 en ACM TOMS
- 1990: BLAS3 en ACM TOMS.
- 1992: LAPACK 3.0
- 1993: Inicio ScaLAPCK

# Antecedentes históricos (IV)

- 1996: ARPACK
- 1997: Scalapack. Plapack
- 1999: SuperLU
- 2000: ATLAS, PETSc
- 2002: GotoBLAS
- FLAME LAPACK07
   HeteroScaLAPACK

## Jerarquía de librerías



### Jerarquía de librerías

PDE Solver

Se puede extender la jerarquía resolviendo problemas de alto coste computacional. Necesarios algoritmos eficientes en sistemas de altas prestaciones.



Universidad de Murcia

9

# Obteniendo información

- www.netlib.org/liblist.html
- www.netlib.org/utk/people/JackDongarra/la-sw.html



- Conjunto de rutinas para realizar operaciones básicas sobre vectores y matrices
  - C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic Linear Algebra Subprograms for FORTRAN usage, ACM Trans . Math. Soft., 5 (1979), pp. 308--323.
  - J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 14 (1988), pp. 1--17.
  - J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1--17.

Hay tres niveles según el coste computacional:

tipo coste accesos operaciones computacional memoria

BLAS1 vector-vector n n

BLAS2 matriz-vector  $n^2$   $n^2$ 

BLAS3 matriz-matriz  $n^3$   $n^2$ 

Universidad de Murcia

#### Level 1 BLAS

```
dim scalar vector vector scalars 5-element array
                                             A, B, C, S
SUBROUTINE XROTG (
                                       D1, D2, A, B,
SUBROUTINE xROTMG(
                                                        PARAM )
SUBROUTINE XROT ( N, X, INCX, Y, INCY, C, S)
SUBROUTINE XROTM ( N, X, INCX, Y, INCY,
                                                        PARAM )
SUBROUTINE xSWAP ( N, X, INCX, Y, INCY )
SUBROUTINE xSCAL ( N, ALPHA, X, INCX )
SUBROUTINE xCOPY ( N, X, INCX, Y, INCY )
SUBROUTINE XAXPY ( N, ALPHA, X, INCX, Y, INCY )
FUNCTION xDOT ( N, X, INCX, Y, INCY )
FUNCTION xDOTU (N, X, INCX, Y, INCY)
FUNCTION xDOTC (N, X, INCX, Y, INCY)
       xxDOT ( N, ALPHA, X, INCX, Y, INCY )
FUNCTION
       xNRM2 (N, X, INCX)
FUNCTION
FUNCTION XASUM (N, X, INCX)
        IXAMAX( N, X, INCX )
FUNCTION
```

Universidad de Murcia

14

Ejemplo ddot.f

Calcula el producto escalar de dos vectores

Se puede usar en el bucle más interno de la multiplicación de matrices, dando lugar a una

#### versión con BLAS 1

Se compila con (depende del sistema) cc -O3 mb1.c -Iblas -Im Universidad de Murcia 15

Formato de las funciones (niveles 2 y 3): XYYZZZ

X: Tipo de datos:

S: REAL

D: DOUBLE PRECISION

C: COMPLEX

Z : DOUBLE COMPLEX

YY: Tipo de matriz: GE, GB, HE, HP, HB, SY, SP, TR, TP, TB

ZZZ: Operación:

MV: productor matriz vector

MM: producto matriz matriz

SV: sistema de ecuaciones ...

Universidad de Murcia

```
options
                       dim b-width scalar matrix vector scalar vector
XCENV (
            TRANS,
                      M. M. ALPHA, A. LDA, X. INCX, BETA, Y. INCY )
                  M. M. KL. KU. ALPHA. A. LDA. X. INCX. BETA. Y. INCY.)
XCERMV (
       TRAINS.
XHEMV ( UPLO,
                                  ALPHA, A., LDA, X., INCX, BETA, Y., INCY )
XHBMV ( UPLO,
                       M.K.
                                  ALPHA, A. LDA, X. INCX, BETA, Y. INCY )
XHEMV ( UPLO.
                         M,
                                  ALPHA, AP, X, INCX, BETA, Y, INCY)
XSYMV ( UPLO,
                       M. ALPHA, A. LDA, X. INCX, BETA, Y. INCY )
                        III., K., ALPHA, A., LDA, X., INCX, BETA, Y., INCY ).
xSBMV ( UPLO...
                         M. ALPHA, AP, X, INCX, BETA, Y, INCY )
xSPMV ( UPLO,
                                A, LDA, X, INCX )
XTRMV (UPLO, TRANS, DIAG, M.
XTEMV (UPLO, TRANS, DIAG, N.K.
                                       A, LDA, X, INCX )
                                       AP, X, INCX )
XTPMV ( UPLO, TRANS, DIAG,
                         XTRSV ( UPLO, TRANS, DIAG, M,
                                      A, LDA, X, INCX )
XTBSV ( UPLO, TRANS, DIAG, N. K. A. LDA, X. INCX )
                            AP, X, INCX )
XTPSV ( UPLO, TRANS, DIAG, M,
                      Universidad de iviurcia
```

```
options
                         dim scalar vector vector matrix
                         M. M. ALPHA, X. DECX, Y. DECY, A. LDA )
xCEER (
                         M. M. ALPHA, X. INCX, Y. INCY, A. LDA ).
xCERU (
XCEERC (
                         M. M. ALPHA, X. INCX, Y. INCY, A. LDA )
XHER (UPLO.
                            M. ALPHA, X. IDCX. A. LDA )
XHPR (UPLO.
                            M. ALPHA, X. INCX. AP )
XHER2 ( UPLO.,
                            M. ALPHA, X. IMCX, Y. IMCY, A. LDA ).
xHPR2 ( UPLO.
                            M. ALPHA, X. IMCX, Y. IMCY, AP ).
xSYR (UPLO.
                            M. ALPHA, X. INCX.
                                              A, LDA )
                            DI, ALPHA, X, DRCX, AP 5
xSPR ( UPLO.
xSYR2 ( UPL0.
                            M. ALPHA, X. IDCX, Y. IDCY, A. LDA ).
xSPR2 ( UPL0.
                            M. ALPHA, X. INCX, Y. INCY, AP )
                    Universidad de iviurcia
                                                10
```

Ejemplo dgemv.f

Calcula el producto de una matriz por un vector

Se puede usar en el segundo bucle en la multiplicación de matrices, dando lugar a una

versión con BLAS 2

Se compila con cc -O3 mb2.c -Iblas -Im Universidad de Murcia

| option        | Ø              | (                   | dim                 |    | $\operatorname{scalar}$ | ma: | trix | ma.            | trix      | scalar | Mā: | trix |   |
|---------------|----------------|---------------------|---------------------|----|-------------------------|-----|------|----------------|-----------|--------|-----|------|---|
| XXIIIM (      | TRAINSA,       | TRANSB, I           | M, II,              | K, | ALPHA,                  | Å,  | LDA, | В,             | LDB,      | BETA,  | Ċ,  | LIX  | ) |
| xSYMM ( SIDE, | UPLO,          | 1                   | M, N,               |    | ALPHA,                  | Å,  | ĽΔλ, | В,             | LDB,      | BETA,  | Ċ,  | LDC  | þ |
| XHEMM ( SIDE, | TIPLO,         | 1                   | M, N,               |    | ALPHA,                  | ٨,  | LDA, | В,             | LDB,      | BETA,  | Ċ,  | LDC  | þ |
| xSYRK (       | UPLO, TRAINS,  |                     | N,                  | K, | ALPHA,                  | Å,  | LDA, |                |           | BETA,  | Ċ,  | LDC  | ) |
| XHERK (       | UPLO, TRAINS,  |                     | N,                  | K, | ALPHA,                  | Å,  | LDA, |                |           | BETA,  | Ċ,  | LDC  | þ |
| xSYR2K(       | UPLO, TRAINS,  |                     | N,                  | K, | ALPHA,                  | Ă,  | LDA, | В,             | LDB,      | BETA,  | Ċ,  | LDC  | þ |
| xHER2K(       | UPLO, TRAINS,  |                     | N,                  | K, | ALPHA,                  | Å,  | LDA, | В,             | LDB,      | BETA,  | Ċ,  | LIX  | þ |
| XTRMM ( SIDE, | UPLO, TRAINSA, | DIAG, E             | H, II,              |    | ALPHA,                  | Ä,  | LDA, | В,             | LDB       | )      |     |      |   |
| XTRSM ( SIDE, | UPLO, TRAINSA, | MM, I<br>Universida | <b>II</b> ,<br>d de | M  | MPM.<br>lurcia          | A,  | ĽΔÅ, | B <sub>1</sub> | LDB<br>20 | )      |     |      |   |

Ejemplo dgemm.f

Calcula el producto de una matriz por un vector

Se puede hacer la multiplicación de matrices llamando directamente a la rutina correspondiente de BLAS

Se compila con icc -O3 mb3.c -lgslcblas -lm

Multiplicación de matrices (en kefren, pentium 4):

| <b>Método\tam</b> | 200    | 400    | 800    |
|-------------------|--------|--------|--------|
| Normal            | 0.0463 | 0.7854 | 7.9686 |
| Blas 1            | 0.0536 | 0.8190 | 8.2311 |
| Blas 2            | 0.0501 | 0.5861 | 5.9997 |
| Blas 3            | 0.0429 | 0.6115 | 4.7252 |
|                   |        |        |        |

#### Versiones de BLAS

- BLAS de referencia: los códigos, los podemos instalar en nuestro sistema, no optimizado
- BLAS propietario: optimizado? por los vendedores para su sistema
  - Intel: mkl
  - IBM: ESSP ...
- GotoBLAS: muy eficiente en algunos casos
- Multitud de versiones libres optimizadas? para distintos sistemas, precompiladas
- ATLAS se autoinstala



- En vez de realizar operaciones elemento a elemento realizarlas con bloques de elementos: menos accesos a memoria para el mismo volumen de computación ⇒menor tiempo de ejecución.
- Técnica utilizada desde los años 80. Se utiliza en LAPACK para obtener rutinas eficientes independientemente del sistema donde se ejecuten.