Probleme rezolvate din primele 2 liste

(Prb. 1/Lista 1)

Demonstrație Vom demonstra echivalența afirmațiilor în felul următor: $i) \Rightarrow ii) \Rightarrow iii) \Rightarrow iv) \Rightarrow v) \Rightarrow vi) \Rightarrow vii) \Rightarrow i)$.

- $i) \Rightarrow ii)$ Fie $f_*(X_1) = f_*(X_2)$, adică $f(X_1) = f(X_2)$ pentru $X_1, X_2 \in \mathcal{P}(M)$. Vom arăta că $X_1 = X_2$. Într-adevăr, dacă $x \in X_1$, atunci $f(x) \in f(X_1) = f(X_2)$, deci există $y \in X_2$ astfel încât f(x) = f(y). Cum f este injectivă rezultă că $x = y \in X_2$, deci $X_1 \subseteq X_2$. Analog, se arată că $X_2 \subseteq X_1$, de unde $X_1 = X_2$.
- $ii) \Rightarrow iii)$ Pentru $X \subseteq M$ şi $X_1 = f^{-1}(f(X))$ avem evident $X \subseteq X_1$. Dacă $x \in X_1$, atunci $f(x) \in f(X)$, deci există $y \in X$ cu $f_*(\{x\}) = f_*(\{y\})$. Cum f_* este injectivă, rezultă că $x = y \in X$ şi deci $X_1 \subseteq X$.
 - $iii) \Rightarrow iv)$ evident.
- $iv) \Rightarrow v)$ Fie $Y_1, Y_2 \in \mathcal{P}(N)$ cu $f^{-1}(Y_1) = X_1, f^{-1}(Y_2) = X_2$. Avem $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$. Pentru $y \in f(X_1) \cap f(X_2)$ există $x_1 \in X_1, x_2 \in X_2$ cu $y = f(x_1) = f(x_2)$. Cum $f(x_1) \in Y_1, f(x_2) \in Y_2$, rezultă că $y \in Y_1 \cap Y_2$, deci $f^{-1}(y) \in f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2) = X_1 \cap X_2$, deci există $x \in X_1 \cap X_2$ cu f(x) = y. Astfel, $f(X_1) \cap f(X_2) \subseteq f(X_1 \cap X_2)$, şi cum incluziunea $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$ este evidentă, obţinem că $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$. $v) \Rightarrow vi$ Luând $X_1 = X$ și $X_2 = C_M X$ obținem $f(X) \cap f(C_M X) = f(X \cap C_M X) = f(\emptyset) = \emptyset$
- $v) \Rightarrow vi$) Luând $X_1 = X$ şi $X_2 = C_M X$ obţinem $f(X) \cap f(C_M X) = f(X \cap C_M X) = f(\emptyset) = \emptyset$, de unde $f(C_M X) \subseteq C_N f(X)$.
- $vi) \Rightarrow vii)$ Fie $x_1 \in M$ şi $X = \{x_1\}, x_2 \in C_M X$, adică $x_1 \neq x_2$. Din $x_1 \in X$ rezultă că $f(x_1) \in f(X)$, iar din $x_2 \in C_M(X)$ rezultă că $f(x_2) \in f(C_M(X))$. Dar $f(C_M X) \subseteq C_N f(X)$ deci $f(x_2) \in C_N f(X)$, adică $f(x_2) \in C_N \{f(x_1)\}$, deci $f(x_1) \neq f(x_2)$, ceea ce ne arată că f este injectivă. Apoi, din f(g(x)) = f(h(x)) pentru orice $x \in L$ rezultă că g(x) = h(x) pentru orice $x \in L$, adică g = h.
- $vii) \Rightarrow i$) Fie $y_1, y_2 \in M$ astfel încât $f(y_1) = f(y_2)$. Să luăm $L = \{x\}$ şi să definim $g: L \mapsto M$ punând $g(x) = y_1$, iar $h: L \mapsto M$ punând $h(x) = y_2$. Atunci $f \circ g = f \circ h$. Conform (vii), g = h, deci $y_1 = g(x) = h(x) = y_2$ şi deci f este injectivă.

(Prb 3, Lista 1)

Demonstrație Fac doar injectivitatea (putem discuta surjectivitatea la consultații).

Dacă m < 0, funcția este descrescătoare pe (0,1) și are mulțimea de valori (m,0). Pe mulțimea $(-\infty,0)$ funcția f ia mulțimea de valori $[m,+\infty)$, și deci f nu este injectivă.

Pentru m = 0, funcția este constantă pe (0, 1), deci nu este injectivă.

Pentru m > 0, observăm că $f((-\infty, 0]) = [m, +\infty)$, f((0, 1)) = (0, m) și $f([1, +\infty)) = (-\infty, m^2 - 1]$. Deci, pentru ca funcția să fie injectivă trebuie ca $m^2 - 1 \le 0$, adică $m \in (0, 1]$. \square

(Prb 4, Lista 1)

Demonstrație Dacă m = 0 atunci f(x) = x pentru orice $x \in \mathbb{R}$, deci f este injectivă.

Dacă $m \neq 0$ atunci $f(\frac{1}{1+m^2}) = \frac{1}{1+m^2} + m^2 \cdot \{\frac{1}{1+m^2}\} = \frac{1}{1+m^2} + \frac{m^2}{1+m^2} = 1$, deoarece $\frac{1}{1+m^2} < 1$, m fiind nenul, ceea ce înseamnă că $\{\frac{1}{1+m^2}\} = \frac{1}{1+m^2}$. Însă și $f(1) = 1 + m^2\{1\} = 1$, deoarece $\{1\} = 0$, de unde obţinem că $f(1) = f(\frac{1}{1+m^2})$. Prin urmare, cum $1 \neq \frac{1}{1+m^2}$ deoarece $m \neq 0$, rezultă că f nu este injectivă pentru orice $m \in \mathbb{R} \setminus \{0\}$.

(Prb 9, Lista 1)

Demonstrație Pentru p=1, f(n)=3(n+1) și f nu e surjectivă. Dacă $p\geq 4$, atunci f(0)=f(1)=0 și f nu este injectivă. Rezultă că $p\in\{2,3\}$ și verificând observ că doar p=3 verifică. Într-adevăr, pentru p=2 este ușor de verificat că f(0)=1, f(1)=2, f(2)=4 și $f(n)\geq 5$ pentru orice $n\geq 3$, deci $3\notin \mathrm{Im}(f)$, i.e. f nu este surjectivă.

Pentru p=3 (folosind identitatea lui Hermite, sau nu!) avem că $f(n)=[3\cdot \frac{n}{3}]=[n]=n$ pentru orice $n\in\mathbb{N}$.

(Prb 11, Lista 1)

Demonstrație Presupunem prin absurd că $A_1 \cap \ldots \cap A_n = \emptyset$. Fie $A_1 = \{x_1, \ldots, x_r\}$. Atunci există $i_1, \ldots, i_r \in \{1, \ldots, n\}$, nu neapărat distincte, astfel încât $x_1 \notin A_{i_1}, \ldots, x_r \notin A_{i_r}$. De aici rezultă că $A_1 \cap A_{i_1} \cap \ldots \cap A_{i_r} = \emptyset$. Prin urmare, am găsit o intersecție vidă cu cel mult r+1 mulțimi, adică o contradicție cu ipoteza (intersecția oricăror r+1 dintre mulțimi este nevidă). Asta înseamnă că presupunerea este falsă și $A_1 \cap \ldots \cap A_n = \emptyset$.

(Prb 12, Lista 1)

Demonstraţie Notez cu $u = \max(f, g)$ şi $v = \min(f, g)$. Presupunem prin absurd că $f \neq g$. Rezultă că există $x_0 \in \mathbb{N}$ astfel încât $f(x_0) \neq g(x_0)$, şi să presupunem fără a restrânge generalitatea că $f(x_0) > g(x_0)$. Atunci $u(x_0) = f(x_0)$ şi $v(x_0) = g(x_0)$. Cum u este surjectivă există $x_1 \in \mathbb{N}$ astfel încât $u(x_1) = v(x_0)$. Dar $u(x_1) \geq v(x_1)$, deci $v(x_0) \geq v(x_1)$; dacă am avea $v(x_0) = v(x_1)$, atunci $x_0 = x_1$ (deoarece v este injectivă) şi prin urmare $u(x_0) = v(x_0)$,

contradicție. Deci $v(x_0) > v(x_1)$. Fie acum $x_2 \in \mathbb{N}$ astfel încât $u(x_2) = v(x_1)$ (există un astfel de x_2 deoarece u este surjectivă). La fel ca în cazul lui x_1 avem că $v(x_1) \geq v(x_2)$, iar dacă am avea $v(x_1) = v(x_2)$ am obține că $x_1 = x_2$, de unde $u(x_1) = v(x_1)$, și în consecință $v(x_0) = v(x_1)$, contradicție. Procedând similar putem construi două șiruri de numere naturale $(x_n)_n$ și $(v(x_n))_n$, acesta din urmă fiind strict descrescător, contradicție. Obținem așadar că presupunerea este falsă și f = g.

(Prb 5, Lista 2) Fie ρ o relație de echivalență pe mulțimea A astfel încât mulțimea factor A/ρ are două clase de echivalență, i.e. $A/\rho = \{X,Y\}$, unde $X,Y \subseteq A$. Cum mulțimea claselor de echivalență formează o partiție a mulțimii A obținem că $Y = C_A X$ și X,Y sunt nevide. Pe de altă parte, partiția $\{X,C_AX\}$ induce aceeași relație de echivalență ca și $\{C_AX,X\}$, deci numărul relațiilor de echivalență cu exact doučlase de echivalență este egal cu jumătate din numărul submulțimilor diferite de \emptyset și A, adică $2^{2019} - 1$.

(**Prb 7, Lista 2**) Observație Dacă $a \equiv b \pmod{n}$ și $k \in \mathbb{N}$ atunci $a^k \equiv b^k \pmod{n}$. (dem: $a^k - b^k = (a - b)(a^{k-1} + a^{k-2}b + \ldots + b^{k-1})$ și cum n|a - b rezultă că $n|a^k - b^k$.)

Comentariu Pentru rezolvarea acestei probleme vom folosi mai târziu Lema chineză a resturilor; soluții mai scurte se pot da folosind teorema lui Euler şi/sau Mica Teoremă a lui Fermat. Soluția aleasă de mine mai jos este mai lungă, dar nu foloseşte decât lucruri elementare.

Soluţie $2019^{2019} \equiv 4^{2019} \pmod{31} \equiv 2^{4038} \pmod{31} \equiv (2^5)^{807} \cdot 2^3 \pmod{31} \equiv 1 \cdot 8 \pmod{31} \equiv 8 \pmod{31}$. (am folosit că $32 \equiv 1 \pmod{31}$.)

 $2020^{2020} \equiv 5^{2020} \pmod{31} \equiv (5^3)^{673} \cdot 5 \pmod{31} \equiv 1 \cdot 5 \pmod{31} \equiv 5 \pmod{31}$ (am folosit că $125 \equiv 1 \pmod{31}$.)

 $2021^{2021} \equiv 6^{2021} \pmod{31} \equiv (6^2)^{1010} \cdot 6 \pmod{31} \equiv 5^{1010} \cdot 6 \pmod{31} \equiv (5^3)^{336} \cdot 5^2 \cdot 6 \pmod{31} \equiv 1 \cdot 26 \cdot 6 \pmod{31} \equiv 26 \pmod{31}.$

Pentru partea a doua se face similar, vă las vouă 2 dintre ele. De exemplu $2020^{2020} \equiv 20^{2020} \pmod{100} \equiv (20^2)^{1010} \pmod{31} \equiv 400^1010 \pmod{100} \equiv 0 \pmod{100}$.