What is claimed is:

1.	An	apparatus	useful	for	disposal	of	hydrogen	in	a	fluid	comprising
hydrogen and	resid	dual amour	nts of H	F ar	nd aerosol	ele	ectrolyte fro	om	a f	luorin	e generator,
the apparatus	com	orising:									

- a) an electrolyte aerosol removal unit comprising an aerosol removal composition therein through which the fluid is adapted to flow;
- b) a catalytic unit comprising a catalytically activated combustion surface, the catalytic unit adapted to be positioned inside of a forced convection duct, the catalytic unit fluidly connected to the aerosol removal unit by a conduit, the catalytically activated combustion surface adapted to combust the hydrogen in an oxygen-containing stream, typically air or exhaust gases comprising air flowing through the forced convection duct.
- 2. The apparatus of claim 1 wherein the apparatus is modular.
- 1 3. The apparatus of claim 1 wherein the apparatus is portable.
- 1 4. The apparatus of claim 1 wherein the aerosol removal component is in bed 2 form.
 - 5. The apparatus of claim 1 wherein the aerosol removal composition comprises a composition selected from the group consisting of soda lime, sodium fluoride, heated activated aluminum oxide, finely divided nickel, or combination thereof.
 - 6. The apparatus of claim 1 wherein the conduit that fluidly connects the aerosol removal unit and the catalytic unit is selected from the group consisting of a nickel tube and a nickel-lined tube.
- 7. The apparatus of claim 1 wherein the aerosol removal unit is maintained at a temperature ranging from about 25°C to about 200°C.
 - 8. The apparatus of claim 1 wherein the catalytic unit is maintained at a temperature of at least 70°C.

1	9. The apparatus of claim 1 wherein the catalytic unit is maintain at a
2	temperature of at least 200°C.
1 2	10. The apparatus of claim 1 wherein the catalytically activated combustion surface is maintain at a temperature of at least 70°C.
1	11. The apparatus of claim 10 wherein the catalytically activated combustion
2	surface is maintain at a temperature of at least 200°C.
1	12. The apparatus of claim 1 wherein the aerosol removal unit and catalytic
2	unit are position at a distance from a fluorine generator.
1	13. The apparatus of claim 1 wherein the aerosol removal unit and the
1 2	catalytic unit are mounted on top of and within the footprint of a fluorine generator.
4	catalytic aint are mounted on top of and within the recipinit of a macrine generator.
1	14. The apparatus of claim 1 wherein the catalytically activated combustion
2	surface comprises one or more layers of wire screen, wherein individual wires of the wire
3	screen may be the same or different in composition, diameter, and orientation.
1	15. The apparatus of claim 14 wherein the catalytically activated combustion
2	surface is a 10-ply layer of 95 percent platinum, 5 percent rhenium alloy screen.
1	16. A method for disposal of hydrogen in a fluid comprising hydrogen and
2	residual amounts of HF and aerosol electrolyte from a fluorine generator, the method
3	comprising the steps of: a) flowing the fluid through an electrolyte aerosol removal component
4 5	comprising an aerosol removal composition, wherein the fluid contacts
6	the aerosol removal composition thereby forming a hydrogen-rich fluid
7	reduced in aerosol; and
8	b) contacting the hydrogen-rich fluid reduced in aerosol with a
9.	catalytically activated combustion surface positioned inside of a forced
10	convection duct, while a gas comprising oxygen flows through the
11	forced convection duct, thereby combusting the hydrogen with oxygen
12	in the oxygen-containing stream.

1	17.	An apparatus useful for generating fluorine, the apparatus comprising:
2		a) a fluorine generator adapted to produce a hydrogen-rich fluid; and
3		b) the apparatus of claim 1, wherein the aerosol removal unit is fluidly
4		connected to the fluorine generator and adapted to accept the
5		hydrogen-rich fluid.
1	18.	A method for generating fluorine and disposal of by-product hydrogen in a
2	fluid compris	ing hydrogen, residual amounts of HF and aerosol electrolyte from a
3	fluorine gener	rator, the method comprising the steps of:
4	a)	generating a fluorine-rich stream and a hydrogen-rich stream, the
5		hydrogen-rich stream comprising minor amounts of electrolyte and
6		hydrogen fluoride;
7	b)	routing the fluorine-rich stream to a cleanup train to produce a purified
8		fluorine stream; and
9	c)	routing the hydrogen-rich stream to the apparatus of claim 1, thereby
10		substantially reducing the aerosol content and combusting the hydrogen.