Statistics One

Lecture 16 Analysis of Variance (ANOVA)

Two segments

- One-way ANOVA
- Post-hoc tests

2

Lecture 16 ~ Segment 1

One-way ANOVA

3

Analysis of Variance (ANOVA)

- Appropriate when the predictors (IVs) are all categorical and the outcome (DV) is continuous
 - Most common application is to analyze data from randomized controlled experiments

Analysis of Variance (ANOVA)

- More specifically, randomized controlled experiments that generate more than two group means
 - If only two group means then use:
 - Independent t-test
 - Dependent t-test

5

Analysis of Variance (ANOVA)

- If more than two group means then use:
 - Between groups ANOVA
 - Repeated measures ANOVA

6

Example

- · Working memory training
 - Four independent groups (8, 12, 17, 19)
 - IV: Number of training sessions
 - DV: IQ gain
 - Null hypothesis: All groups are equal

8 days 12 d

Working memory training

Analysis of Variance (ANOVA)

- ANOVA typically involves NHST
- The test statistic is the F-test (F-ratio)
 - F = (Variance between groups) / (Variance within groups)

Analysis of Variance (ANOVA)

- Like the t-test and family of t-distributions
- The F-test has a family of F-distributions
 - The distribution to assume depends on
 - Number of subjects per group
 - Number of groups

10

One-way ANOVA

• F-ratio

 $F = between-groups\ variance\ /\ within-groups\ variance$

 $F = MS_{Between} / MS_{Within}$

 $F = MS_A / MS_{S/A}$

One-way ANOVA

- $F = MS_A / MS_{S/A}$
- $MS_A = SS_A / df_A$
- $MS_{S/A} = SS_{S/A} / df_{S/A}$

One-way ANOVA

- $SS_A = n \Sigma (Y_j Y_T)^2$
 - Y_j are the group means
 Y_T is the grand mean

One-way ANOVA

- $SS_{S/A} = \Sigma(Y_{ij} Y_{j})^2$

 - Y_{ij} are individual scores
 Y_j are the group means

One-way ANOVA

- df_A = a 1
 df_{S/A} = a(n 1)
 df_{TOTAL} = N 1

Summary Table

Source	SS	df	MS	F
A	$n \Sigma (Y_j - Y_T)^2$	a - 1	SS _A /df _A	MS _A /MS _{S/A}
S/A	$\Sigma(Y_{ij} - Y_j)^2$	a(n -1)	SS _{S/A} /df _{S/A}	
Total	$\Sigma(Y_{ij} - Y_T)^2$	N - 1		

17

Effect size

- $R^2 = \eta^2$ (eta-sqaured)
- $\eta^2 = SS_A / SS_{Total}$

18

Assumptions

- DV is continuous (interval or ratio variable)
- · DV is normally distributed
- Homogeneity of variance
 - Within-groups variance is equivalent for all groups
 Levene's test

Homogeneity of variance

- If Levene's test is significant then homogeneity of variance assumption has been violated
 - Conduct pairwise comparisons using a restricted error term

Example

- Working memory training
 - Four independent groups (8, 12, 17, 19)
 - IV: Number of training sessions
 - DV: IQ gain
 - Null hypothesis: All groups are equal

21

Working memory training

Working memory training

→ order, NPT <- cov(NRTS1Q ~ NPTScend(tion)
→ summer/(corous, NPT)
→ Summer/(corous, NPT)
NPTScend(tion)
NPTScend(tion 3 196.1 6), 38 136.49 7,474-46 ***
NPTScend(tion)

Marchitan 9 19.7.1 0.5.20 10.99 7.47-0-0-10

Significance Codes 1.00

Significance Codes 1.0

Results from t-test: 12 vs. 17

> t.test(Days12, Days17, var.equal=T)

data: Days12 and Days17 $t=-2.868,\ df=38,\ p-value=0.006706$ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -3.7534458 = -0.6471965 sample estimates: mean of \times mean of \times mean of \times 13.90319

> cohensD(Days12, Days17, method='pooled')
[1] 0.9069322

Segment summary

- · ANOVA is used to compare means, typically in experimental research
 - Categorical IV
 - Continuous DV

Segment summary

- · ANOVA assumes homogeneity of variance
 - Evaluate with Levene's test

Segment summary

• Post-hoc tests, such as Tukey's procedure, allow for multiple pairwise comparisons without an increase in the probability of a Type I error

END SEGMENT

Lecture 16 ~ Segment 2

Post-hoc tests

30

Post-hoc tests

 Post-hoc tests, such as Tukey's procedure, allow for multiple pairwise comparisons without an increase in the probability of a Type I error

31

Post-hoc tests

- Many procedures are available; the degree to which p-values are adjusted varies according to procedure
 - Most liberal: No adjustment
 - Most conservative: Bonferroni procedure

NHST review					
		Experimen	ter Decision		
		Retain H ₀	Reject H ₀	7	
Truth	H ₀ true	Correct Decision	Type I error (False alarm)		
Truur	H ₀ false	Type II error	Correct	1	
		(Miss)	Decision	╛	

NHST review				
		Experimen	ter Decision	
		Retain H ₀	Reject H ₀	
Truth	H ₀ true	Correct Decision	Type I error p = .05	
	H ₀ false	Type II error (Miss)	Correct Decision	

Working memory training Training Gains Training Gains 12 days 17 days 19 days 37

Tukey's procedure - **ora.Wf* < **ov(**K152 * WiScondition)** - **smarry(**ora.wift)** WiScondition** - **State **State **ov(***F**)* **Miscondition** **Miscondition** **Miscondition** **Feath to Clowy)* - **Targets(**core*)* **Targets(**core*)* **Title **over)** **Title **over)** **Title **over)** **Miscondition** **Title **over)** **Miscondition** **Title **over)** **Miscondition** **Title **over)** **Miscondition** **Jitle **over)** **Jitle **

Results from t-test: 12 vs. 17

```
> t.test(Days12, Days17, var.equal=T)

Two Sample t-test

deta: Days12 and Days17

t = -2.868, df = 38, p-value = 0.006706

alternative hypothesis; true difference in means is not equal to 0

3.7534453 or 0.677306

sample estimates:
mean of x mean of y

11.70287 13.90319

cohensD(Cays12, Days17, method='pooled')

[1] 0.9069322
```

Bonferroni procedure

> p.adjust(.006706, method="bonferroni", 6) [1] 0.040236

Comparison of procedures

1. 1 1	
Independent t-test	0.0067
Tukey	0.0327
Bonferroni	0.0402

Post-hoc tests

- Post-hoc tests, such as Tukey's procedure, allow for multiple pairwise comparisons without an increase in the probability of a Type I error

 • Procedures vary from liberal to
- conservative

END SEGMENT

END LECTURE 16