Advanced Statistical Computing

Fall 2012 Lecture 1

Steve Qin

Instructors

Hao Wu Yijuan Hu Tianwei Yu Steve Qin

What is this class about?

- Survey the most used computational techniques crucial in modern biostatistics research.
- Discuss practical programming skills that will save your time, effort and even your career.
- Prepare students to take on RA projects.

Outline

- Week 1-2: MCMC (Qin)
- Week 3-4: EM algorithm and extensions (Hu)
- Week 5: HMM and inference (Yu)
- Week 6-7: Linear Programming (Wu)

Evaluation

- Four sets of homework
- Requires real programming
- Each worth 25% of the final grade

Reference books

Class website

http://www.sph.emory.edu/~hwu/teaching/statcomp/statcomp.html

In the first 2 weeks

Today

- Examples of computation problems in science and engineering,
- Introduction to Monte Carlo strategy and methods,
- Random number generation,
- Importance sampling.

In the first 2 weeks

- 9/4
 - Introduction to data augmentation, MCMC idea,
 - Gibbs Sampler,
 - Metropolis-Hastings algorithms.
- 9/6.
 - Check for convergence,
 - Techniques to accelerate Markov chain mixing.
- 9/11.
 - Implementations of Monte Carlo methods,
 - Examples of MCMC applications.

Examples

 How protein fold molecular dynamics

- Phylogeny, inheritance pattern in large pedigree
- Next generation sequencing mapping, assembly, ...

Moore's law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Computation speed

Computation speed

 Intel Core i750 	7 GFlops
-------------------------------------	----------

- The Intel Core2Quad 6.9 GFlops.
- AMD Phenom II X4 7.5 Gflops.
- Core2Dup E8200Celeron M 5402.9 GFlops.0.9 GFlops.
- Pentium4 0.74 GFlops.
- nVidia GeForce 8800GS 264 Gflops
- nVidia GeForce 9800GT 336 GFlops. (Results from MaxxPi^2)

What is Monte Carlo?

- Rely on repeated sampling to study the results of a experiment or study the properties of certain procedure.
 - Often used in complex and uncertain scenarios
 - Difficult to formulate, high correlation.
 - Cheap
 - Take advantage of faster computers
- History
 - John von Neumann, Stanislaw Ulam, Nicholas Metropolis

Buffon's needle

Georges-Louis Leclerc, Comte de Buffon (1707-1788)

Given a needle of length a and an infinite grid of parallel lines with common distance d between them, what is the probability P(E) that a needle, tossed at the grid randomly, will cross one of the parallel lines?

Buffon's needle

• Assume a < d

$$P(E) = \int_0^{\pi} \frac{a \sin \theta d\theta}{\pi d} = (a/\pi d) \int_0^{\pi} \sin \theta d\theta = 2a/\pi d.$$

http://web.student.tuwien.ac.at/~e9527412/buffon.html

Random variate generation

• Generate uniform r.v.

Uniform(0,1)

- Important techniques
 - Direct method
 - Inverse method
 - Relationship to other distributions
 - Accept-reject method

Direct method

Directly use the definition of the distribution.

- Bernoulli distribution Bernoulli(p)
 Generate r ~ Uniform (0,1)
- Binomial distribution Binom(n,p)Generate $r_1,...,r_n$ $iid \sim Uniform (0,1)$

Inverse method

- Theorem: If $U \sim Uniform$ (0,1), then using $X = F^{-1}(U)$ generates a random number X from a continuous distribution with specified cdf F.
 - Exponential: generate $r \sim Uniform$ (0,1), $F(x) = 1 e^{-x}$ then $-\log(1-r)$ or $-\log(r) \sim Exponential(1)$

Example

```
r=runif(1000) ## generate 1000 U(0,1) random numbers x=-log(1-r) ## convert to exp(1) random numbers ## compare with exp(1) y=rexp(1000) qqplot(x,y); abline(0,1)
```


Numerical approximation

- Is Monte Carlo a "exact" method?
- Use numerical method to approximate complex functions, then use in inverse method to simulate random variates.
- Example: Abramowitz and Stegun 1964 provided numerical approximation to the normal cdf.
 - Error order 10⁻⁸

Transformation method (I)

- If a distribution f is linked to another distribution g which is easy to simulate from.
- Examples: if X_i 's ~ iid Exp(1)then $Y = 2\sum_{j=1}^{\nu} X_j \sim \chi_{2\nu}^2,$ $Y = \beta \sum_{j=1}^{a} X_j \sim Gamma(a, \beta),$

$$Y = \frac{\sum_{j=1}^{a} X_{j}}{\sum_{j=1}^{a+b} X_{j}} \sim Beta(a,b).$$

Transformation method (II)

• More examples:

– Normal distribution: Box-Muller generate U_1 , $U_2 \sim iid\ Uniform(0,1)$, define

$$\begin{cases} x_1 = \sqrt{-2\log(u_1)}\cos(2\pi u_2), \\ x_2 = \sqrt{-2\log(u_1)}\sin(2\pi u_2). \end{cases}$$

then x_1 , $x_2 \sim iid N(0,1)$.

Example

Transformation method (III)

- Discrete random variables
 - To generate $X \sim P_{\theta}$, calculate

$$p_0 = P_\theta(X \le 0), p_1 = P_\theta(X \le 1), p_2 = P_\theta(X \le 2), \dots$$

then generate $U \sim Uniform(0,1)$ and take

$$X = k \text{ if } p_{k-1} < U < p_k.$$

- Beta
 - Generate from Uniform then use order statistics.
- Gamma
 - From Beta and Exponential.

Fundamental theorem of simulation

• Simulating $X \sim f(x)$ is equivalent to simulating

 $(X, U) \sim Uniform\{(x, u): 0 < u < f(x)\}.$

f is the marginal density of the joint distribution.

Accept-reject method

- The accept-reject method
 - 1. Generate $X \sim g$, $U \sim Uniform(0,1)$,
 - 2. Accept Y = X if $U \le f(X)/Mg(X)$,
 - 3. Repeat.

Accept-reject method example

• Beta (α,β) , $\alpha \ge 1$, $\beta \ge 1$, simulate $Y \sim Uniform(0,1)$ and $U \sim Uniform(0,m)$,

m is the max of the Beta density.

select X = Y if under curve

what is the acceptance rate?

Importance sampling

• Importance sampling:

to evaluate
$$E_f[h(X)] = \int h(x)f(x)dx$$

based on generating a sample X_1, \dots, X_n from a given distribution g and approximating

$$E_f[h(X)] \approx \frac{1}{m} \sum_{j=1}^m \frac{f(X_j)}{g(X_j)} h(X_j)$$

which is based on

$$E_f[h(X)] = \int_{\aleph} h(x) \frac{f(x)}{g(x)} g(x) dx$$

Importance sampling example (I)

• Small tail probabilities:

$$Z \sim N(0,1), P(Z > 4.5)$$

naïve: simulate $Z_i \sim N(0,1)$, i=1,...,M.

calculate

$$P(Z > 4.5) \approx \frac{1}{M} \sum_{i=1}^{M} I(Z_i > 4.5)$$

Importance sampling example (II)

Let $Y \sim TExp(4.5,1)$ with density

$$f_Y(y) = e^{-(x-4.5)} / \int_{4.5}^{\infty} e^{-x} dx.$$

Now simulated from f_Y and use importance sampling, we obtain

$$P(Z > 4.5) \approx \frac{1}{M} \sum_{i=1}^{M} \frac{\varphi(Y_i)}{f_Y(Y_i)} I(Y_i > 4.5) = .000003377.$$

Importance sampling example

```
## theoretical value
p0=1-pnorm(4.5)
## sample directly from normal distribution
## this needs large number of samples
z = r n o r m (10000000)
p1=mean(z>4.5)
## importance sampling
n0=10000
Y = r \exp(n0, 1) + 4.5
a=dnorm(Y)/dexp(Y-4.5)
p2=mean(a[Y>4.5])
c(p0, p1, p2) ##
[1] 3.397673e-06 2.600000e-06 3.418534e-06
```

Programming

- In R
 - Lots of functions: runif, rnorm, rbeta, ...
- In C/C++
 - Use numerical recipe,
 - Use NAG,
 - Other libraries.

Additional references

Online resources

Numerical recipe

http://www.nr.com/

• Luc Devroye's website

http://luc.devroye.org/rng.html

Luc Devroye's book

http://luc.devroye.org/rnbookindex.html