ЛАБОРАТОРНАЯ РАБОТА №5.1.2

Исследование эффекта Комптона

Автор работы: Хоружий Кирилл

От: 17 ноября 2021 г.

Цель работы

- 1. Исследование энергетического спектра γ -квантов, рассеянных на графите, с помощью сцинтилляционного спектрометра;
- 2. Определение энергии рассеянных γ -квантов в зависимости от угла рассеяния;
- 3. Определение энергии покоя частиц, на которых происходит комптоновское рассеяние.

Оборудование

Источник излучения, графитовый стержень, сцинтилляционный счётчик, ФЭУ, ЭВМ.

Экспериментальная установка

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее $\Phi \ni V$) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом $\Phi \ni V$. Сигналы, возникающие на аноде $\Phi \ni V$, подаются на $\ni BM$ для амплитудного анализа. Кристалл и $\Phi \ni V$ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге.

Рис. 1: Блок схема устаноки по рассеянию γ -квантов

Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота θ отсчитывается по лимбу 6. Погрешность измерения угла поворота оценим в 2° , и выберем сдвиг на постоянный угол, как независимый параметр.

Теория

Смещение длины волны при рассеянии (эффект Комптона):

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} \left(1 - \cos \theta \right). \tag{1}$$

Считая, что $\varepsilon(\theta)=\frac{E_{\gamma}}{mc^2}=AN$ — энергия рассеянных γ -квантов линейно зависит от номера соответствующего канала, найдём, что

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta), \qquad mc^2 = E_{\gamma}(0) \frac{N_{90}}{N_0 - N_{90}}, \tag{2}$$

где N_i – номер канала, соотетствующего максимуму при угле в i° , и $E_{\gamma}(0)=E_0$ – энергия испускаемых источникм γ -квантов: $E_{\gamma}(0)=E_0=662$ кэВ.

Таблица 1: Зависимость номера канала N от угла рассеяния θ

\overline{N}	857	795	747	648	578	507	459	414	376	345	318	296
θ	10	20	30	40	50	60	70	80	90	100	110	120

Измерения

При различных углах рассеяния θ , измерим спектр детектируемых на сциотилляционном счётчике, а именно, найдём на каком канале N счётчика наблюдается максимум (см. таблицу 1). По измеренным данным, построим зависимость $1/N = f(1 - \cos \theta)$ (см. рис. 2).

Рис. 2: Зависимость $1/N = f(1 - \cos \theta)$

Найдём коэффициенты линейной зависимости f(x) = ax + b, как $1/N = f(1 - \cos \theta)$ (см. рис. 2). Далее, найдём погрешность значений N_0 и N_{90} , исходя из

$$N_0 = f(0) = b, \quad \sigma\left[N_0\right] = \sigma\left[b\right], \quad N_{90} = f(1), \quad \sigma\left[N_{90}\right] = \sqrt{\binom{1}{1}}^{\mathrm{T}} \cdot \operatorname{Cov} \cdot \binom{1}{1},$$

откуда находим

$$N_0 = 896 \pm 7$$
 $N_{90} = 393 \pm 1.$

Подставляя в формулу (2), находим

$$mc^2 = E \frac{N_{90}}{N_0 - N_{90}} = (517 \pm 10) \text{ кэВ}, \qquad (mc^2)^{\mathrm{table}} = 512 \text{ кэВ},$$

где, как видим, полученное значение в пределах погрешности совпадает с табличным значением для энергии покоя электронов.

Вывод

Исследован эффект Комптона по спектру излучения γ -квантов на графите. Определена энергия покая частиц, на которых происходит комптоновское рассеяние:

$$mc^2=Erac{N_{90}}{N_0-N_{90}}=(517\pm 10)\ {
m кэB}, \qquad (mc^2)_{
m электронов}^{
m table}=512\ {
m кэB},$$
 значение энергии в пределах погрешности совпало со значением энергии покоя электронов.