Cavallaro, Jeffery Math 221a Homework #4

1.4.2

a) Let H be the cyclic subgroup (of order 2) of S_3 generated by (12). Prove: No left coset of H (except H itself) is also a right coset.

$$S_3 = \{(), (12), (13), (23), (123), (132)\}$$

 $H = \{(), (12)\}$
 $()H = \{(), (12)\} = H$
 $(13)H = \{(13), (123)\}$
 $(23)H = \{(23), (132)\}$
 $H(23) = \{(23), (123)\}$

Thus, no left coset matches a right coset (other than H).

Prove:
$$\exists \, a \in S_3, aH \cap Ha = \{a\}$$

Let $a = (13)$
 $(13)H \cap H(13) = (13)$

b) Prove: If K is the cyclic group (of order 3) generated by (123) then every left coset of K is also a right coset of K

$$H = \{(), (123), (132)\}$$

$$()H = \{(), (123), (132)\} = H$$

$$(12)H = \{(12), (13), (23)\}$$

$$H() = \{(), (123), (132)\} = H$$

$$H(12)H = \{(12), (13), (23)\}$$

$$()H = H() \text{ and } (12)H = H(12)$$

1.4.3

Let G be a finite group and p be a prime number. Prove: TFAE:

- 1). |G| = p
- 2). $G \neq \langle e \rangle$ and G has no proper (non-trivial) subgroups
- 3). $G \simeq \mathbb{Z}_p$

$$1 \implies 2 \text{: Assume } |G| = p$$

$$p > 1 \text{ so } G \neq \langle e \rangle = \{e\}.$$

ABC: G has a proper (non-trivial) subgroup H

|H| divides |G| (Lagrange)

But
$$|H| \neq 1$$

So
$$|H| = p = |G|$$

$$H = G$$

CONTRADICTION!

 \therefore G has no proper (non-trivial) subgroups.

 $2 \implies 3$: Assume $G \neq \langle e \rangle$ and G has no proper (non-trivial) subgroups

Assume $a \in G$

$$\langle a \rangle = G$$

G is finite cyclic of order p

$$G \simeq \mathbb{Z}_p$$
.

 $3 \implies 1$: Assume $G \simeq \mathbb{Z}_p$

 \therefore *G* is cyclic finite of order *p*.

1.4.11

Let G be a group of order 2n

a) Prove: G contains an element of order 2.

ABC: G does not contain an element of order 2

Thus, no element other than e is its own inverse

Since inverses are unique, there is a one-to-one correspondence between a non-identity element and its inverse, resulting in an even number of elements

But
$$|G - \{e\}| = 2n - 1$$
, which is odd

CONTRADITION!

 \therefore G must contain at least one element of order 2.

b) Prove: n is odd and G abelian $\implies G$ has exactly one element of order 2.

Assume G has more than one element of order 2, say a and b

Since G is abelian, $\langle a, b \rangle = \{a^s b^t \mid s, t \in \mathbb{Z}^+ \cup \{0\}\}\$

But since a is order 2:

$$a^s = \begin{cases} e, & s \text{ even} \\ a, & s \text{ odd} \end{cases}$$

Likewise for b^t

So
$$\langle a, b \rangle = \{e, a, b, ab\}$$

$$\mathsf{ABC} \mathpunct{:} ab = e$$

$$a = b^{-1} = b$$

CONTRADICTION!

$$ABC: ab = a$$

$$b = e$$

CONTRADICTION!

ABC: ab = b

a = e

CONTRADICTION!

So $|\langle a, b \rangle| = 4$

But $\langle a,b\rangle \leq G$, and thus by Lagrange $|\langle a,b\rangle|$ must divide |G|

 $4 \nmid 2$ and $4 \nmid n$, which is odd

So $4 \nmid 2n$

CONTRADICTION!

So G has at most one element of order 2

But by part (a), there is at least one

 \therefore G has exactly one element of order 2.

1.4.13

Let p and q be prime numbers such that p > q and let G be a group of order pqProve: G has at most one subgroup of order p

ABC: G has more than one subgroup of order p, say H and K

Since $H \cap K \leq H$, $|H \cap K|$ must divide |H| = p (Lagrange)

Thus, $|H \cap K| = 1$ or p

But $|H \cap K| \neq p$, otherwise H = K, but it was assumed that H and K are distinct

So $|H \cap K| = 1$, meaning $H \cap K = \{e\}$

 $|HK| = \frac{|H||K|}{|H\cap K|} = \frac{p^2}{1} = p^2$ Thus $|H\vee K| \geq p^2$

But $H \vee K \leq G$ and so $|H \vee K|$ must divide |G|

But $p^2 > pq$

CONTRADICTION!

 \therefore G has at most one subgroup of order p.

1.5.1

Prove: $N \leq G$ and $(G:N) = 2 \implies N \triangleleft G$

Assume (G:N)=2

Assume $a \in G, a \notin N$

N and aN are the two distinct left cosets

N and Na are the two distinct right cosets

aN = Na

 $\therefore N \triangleleft G$

1.5.2

Let $\{N_i \mid i \in I\}$ be a family of normal subgroups of G. Prove: $\bigcap_{i \in I} N_i \lhd G$ Let $N = \bigcap_{i \in I} N_i$ Assume $g \in G$ Assume $n \in N$ $\forall i \in I, n \in N_i$ $\forall i \in I, gng^{-1} \in N_i$, since $N_i \lhd G$ So $gng^{-1} \in N$ $\therefore N \lhd G$

1.5.5

Let
$$N = \{ \sigma \in S_4 \mid \sigma(4) = 4 \}$$

Is $N \triangleleft G$?

No. Here is a counterexample:

Let
$$\sigma = (12) \in N$$

Let $g = (14) \in S_4$
 $g^{-1} = (14)$
 $g\sigma g^{-1} = (14)(12)(14) = (24) \notin N$

1.5.6

Let H < G. Prove: $\forall \, a \in G, aHa^{-1} < G \text{ and } H \simeq aHa^{-1}$ Assume $a \in G$ Assume $h_1, h_2 \in H$ By closure, $h_1h_2 \in H$ $(ah_1a^{-1})(ah_2a^{-1}) = ah_1h_2a^{-1} \in aHa^{-1}$ $\therefore aHa^{-1}$ is closed under the operation. $e \in H$ $aea^{-1} = aa^{-1} = e$ $e \in aHa^{-1}$ $\therefore aHa^{-1}$ has the identity. Assume $h \in H$ $h^{-1} \in H$ $ah^{-1}a^{-1} \in aHa^{-1}$

 $(aha^{-1})(ah^{-1}a^{-1}) = ahh^{-1}a^{-1} = aa^{-1} = e$

```
(ah^{-1}a^{-1})(aha^{-1}) = ah^{-1}ha^{-1} = aa^{-1} = e
\therefore aHa^{-1} is closed under inverses.
\therefore aHa^{-1} < G
Now, let \phi_a: H \to aHa^{-1} be defined by \phi_a(h) = aha^{-1}
Assume \phi_a(h_1) = \phi_a(h_2)
ah_1a^{-1} = ah_2a^{-1}
So, by left and right cancellation, h_1 = h_2
\therefore \phi_a is one-to-one.
Assume q \in aHa^{-1}
\exists h \in H, g = aha^{-1}
a^{-1}ga = h
So a^{-1}qa \in H
\phi_a(a^{-1}qa) = a(a^{-1}qa)a^{-1} = q
\therefore \phi_a is onto and thus a bijection.
Assume h_1, h_2 \in H
By closure, h_1h_2 \in H
\phi_a(h_1h_2) = ah_1h_2a^{-1} = (ah_1a^{-1})(ah_2a^{-1}) = \phi_a(h_1)\phi_a(h_2)
\therefore \phi is a homomorphism and thus an isomorphism.
```

1.5.7

 $\therefore H \simeq aHa^{-1}$

Let G be a finite group and H < G where |H| = n. Prove: H is the only subgroup of order $n \implies H \triangleleft G$ By problem (6): $\forall \, a \in G, aHa^{-1} < G \text{ and } H \simeq aHa^{-1}$ But H is the only subgroup of order n, So $H = aHa^{-1}$ $\therefore H \triangleleft G$

1.5.9

a) Let G be a group and H=Z(G). Prove: $H \triangleleft G$ It was previously proven that $H \leq G$, so need to show normality.

Assume $g \in G$ Assume $h \in H$ gh = hggH = Hg $\therefore H \triangleleft G$ b) Prove: $Z(S_n) = \{(1)\}, n \ge 3$ $() \in S_n$ always commutes with everything, so $() \in Z(S_n)$ Assume $\sigma \in S_n, \sigma \neq ()$ $\exists i, j \in [n], i \neq j \text{ and } \sigma(i) = j$ Since σ is a bijection, $\sigma(j) \neq j$ Since $n \geq 3$, $\exists k \in [n], k \neq j$ and $k \neq \sigma(j)$ Let $\tau = (jk) \in S_n$ Let $\sigma(j) = \ell$ $\ell \neq i$ and $\ell \neq k$ $(\tau\sigma)(j) = \tau(\sigma(j)) = \tau(\ell) = \ell = \sigma(j)$ $(\sigma\tau)(j) = \sigma(\tau(j)) = \sigma(k)$ But σ is a permutation, and thus a bijection, and thus one-to-one $j \neq k \implies \sigma(j) \neq \sigma(k)$ $\tau \sigma \neq \sigma \tau$ So $\sigma \notin Z(S_n)$ $\therefore Z(S_n) = \{e\}$

1.5.12

Let $H \triangleleft G$ such that H and G/H are finitely-generated. Prove: G is finitely-generated

Let $H = \langle X \rangle$ where $X = \{x_1, \dots, x_r\}$

Let $G/H = \langle Y \rangle$ where $Y = \{y_1H, \dots, y_sH\}$, such that the y_i are the selected representatives of each left coset in the generating set

Since the cosets partition G:

$$G = \bigcup gH = \bigcup \prod (y_i H)^{n_i} = \bigcup (\prod y_i^{n_i}) H = \bigcup (\prod y_i^{n_i}) \left(\prod x_j^{m_j}\right)$$
 So $G = \langle X \cup Y \rangle$

But X and Y finite $\implies X \cup Y$ finite

Therefore G is finitely-generated

1.5.16

Let $f:G\to H$ be a homomorphism of groups, H is abelian, and $\ker(f)\leq N\leq G$.

 $\mathsf{Prove} \mathpunct{:} N \triangleleft G$

Let $K = \ker(f)$

 $f[G] \leq H$ and so f[G] is abelian

But by the FIT, $f[G] \simeq G/K$

So G/K is also abelian

Assume $q \in G$

Assume $n \in N$

$$(gK)nK(g^{-1}K)=(gK)(g^{-1}K)nK=(eK)(nK)=nK$$
 Thus $N/K \lhd G/K$ Therefore, by Cor 5.12, $N \lhd G$

1.5.19

Let $N \triangleleft G$, (G:N) finite, H < G, |H| finite, and ((G:N),|H|) = 1. Prove: $H \le N$ Since $N \triangleleft G$, $HN \le G$. This results in the following subgroup relationships:


```
\begin{split} &(G:N) = (G:HN)(HN:N) \\ &(HN:N) = (H:H\cap N) \quad \text{(prop I.4.8)} \\ &(G:N) = (G:HN)(H:H\cap N) \\ &|H| = (H:\{e\}) = (H:H\cap N)(H\cap N:\{e\}) \\ &((G:N),|H|) = ((G:HN)(H:H\cap N),(H:H\cap N)(H\cap N:\{e\})) = 1 \\ &\text{So } (H:H\cap N) = 1, \text{ meaning } H = H\cap N \\ &\therefore H \leq N \end{split}
```