[4]

Marking Scheme

EC3CO20 (T) VLSI Design

Q.1	i)	A	1
	ii)	C	1
	iii)	C	1
	iv)	C	1
	v)	A	1
	vi)	В	1
	vii)	A	1
	viii)	D	1
	ix)	A	1
	x)	A	1
Q.2	i.	Pass transistor logic	1
		Demerits, remedies	1
	ii.	Y-chart	1
		VLSI design process	2
	iii.	Operation of MOSFET	3
		Equation for drain current in linear and saturation region	2
OR	iv.	Structure and working of a transmission gate	3
		4×1 multiplexer using transmission gates	2
Q.3	i.	DC transfer characteristics of CMOS inverter	2
	ii.	Two input CMOS XOR gate	4, 4
OR	iii.	Various types of power dissipation	4
		Expression for total power dissipation	4
Q.4	i.	Steps involved in the design	3
	ii.	Mealy and Moore machines	7
OR	iii.	Design the circuit with (a) JK flip-flops, (b) D flip-flops	4, 3
Q.5	i.	Hazards in combinational logic circuits	2
		Differentiate between static and dynamic hazards?	2
	ii.	Design an asynchronous circuit	6
OR	iii.	Design an asynchronous circuit	6

Q.6	i.	What is FPGA?	1
		Constructional details with diagram.	3
		Advantages of FPGA.	1
	ii.	Draw logic structure of an IC 7575 PLA	2
		Explain logic structure of an IC 7575 PLA	2
		Common method of PLA design interconnects.	1
	iii.	N-well CMOS IC fabrication	5

P.T.O.

[4]

Q.6 Attempt any two:

- What is FPGA? Explain its constructional details with diagram. What 5 are the advantages of FPGA?
- ii. Draw and explain logic structure of an IC 7575 PLA with 14 inputs 5 and 8 outputs. Describe common method of PLA design interconnects.
- iii. Explain N-well CMOS IC fabrication sequence with the help of neat 5 diagrams.

Total No. of Questions: 6

Total No. of Printed Pages:4

Branch/Specialisation: EC

1

1

Enrollment No.....

01-6	Faculty of	Engineering
DI-C PS	End Sem Examination May-2024	
VIVERSITY	EC3CO20 VLSI Design	
wledge is Power	Programme: B.Tech.	Branch/Speciali

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. The design flow of VLSI system is-
 - I. Architecture design
 - II. Market requirement
 - III. Logic design
 - IV. HDL coding
 - (a) II-I-III-IV (b) IV-I-III-II
 - (c) III-II-I-IV (d) I-II-III-IV
 - ii. Increasing V_{sb} the threshold voltage.
 - (a) Does not effect
 - (b) Decreases
 - (c) Increases
 - (d) Exponentially increases
 - iii. In CMOS Invertor, if p-transistor is conducting and has small voltage 1 between source and drain, then it is said to work in
 - (a) Linear region
 - (b) Saturation region
 - (c) Non saturation resistive region
 - (d) Cut-off region
 - iv. When both nMOS and pMOS transistors of CMOS logic design are in 1 OFF condition, the output is:
 - (a) 1 or V_{dd} or HIGH state
 - (b) 0 or ground or LOW state
 - (c) High impedance or floating(Z)
 - (d) None of these

P.T.O.

- v. Statement 1: Mealy machine reacts faster to inputs
 Statement 2: Moore machine has more circuit delays
 Choose the correct option:
 - (a) Statement 1 is true and Statement 2 is true
 - (b) Statement 1 is true but Statement 2 is false
 - (c) Statement 1 is false and Statement 2 is true
 - (d) None of these
- vi. Finite state machines are used for-

1

- (a) Deterministic test patterns
- (b) Algorithmic test patterns
- (c) Random test patterns
- (d) Pseudo random test patterns
- vii. How to eliminate critical races?

1

Statement 1: Use transition state(s)

Statement 2: Use other secondary assignment, so that all transitions involve only 1 secondary change.

- (a) Statement 1 is true and Statement 2 is true
- (b) Statement 1 is true but Statement 2 is false
- (c) Statement 1 is false and Statement 2 is true
- (d) None of these
- viii. If the value of the output remains at a static condition "0", but goes to logic 1 immediately during the changes of input states, then the hazards are known as-
 - (a) Static 1 hazards
- (b) Static 2 hazards
- (c) Dynamic hazards
- (d) Static 0 hazards
- ix. The process by which Aluminium is grown over the entire wafer, also 1 filling the contact cuts is?
 - (a) Sputtering
- (b) Chemical vapour deposition
- (c) Epitaxial growth
- (d) Ion Implantation
- x. Positive photo resists are used more than negative photo resists 1 because-
 - (a) Negative photo resists are more sensitive to light, but their photo lithographic resolution is not as high as that of the positive photo resists
 - (b) Positive photo resists are more sensitive to light, but their photo lithographic resolution is not as high as that of the negative photo resists
 - (c) Negative photo resists are less sensitive to light
 - (d) Positive photo resists are less sensitive to light

- Q.2 i. Explain pass transistor logic. What are its demerits and how it can be 2 remedied?
 - ii. Draw the Y-chart and explain VLSI design process.
 - iii. Explain the operation of MOSFET with necessary diagrams. Also 5 derive equation for drain current in linear and saturation region of operation.
- OR iv. Explain the structure and working of a transmission gate. Implement 5 4×1 multiplexer using transmission gates.
- Q.3 i. Draw and explain the DC transfer characteristics of CMOS inverter.
 - ii. Draw the circuit diagram and layout of a two input CMOS XOR gate.
- OR iii. Explain the various types of power dissipation in CMOS inverter. **8**Derive the expression for total power dissipation of a CMOS inverter.
- Q.4 i. Write down the steps involved in the design of synchronous sequential 3 circuits.
 - ii. Explain Mealy and Moore machines with the help of state diagram and state table. Take suitable example.
- OR iii. A sequential circuit has one input and one output. The state diagram is 7 shown below. Design the circuit with (a) JK flip-flops, (b) D flip-flops.

- Q.5 i. How are hazards found in combinational logic circuits? Differentiate 4 between static and dynamic hazards.
 - ii. Design an asynchronous circuit that will output only the first pulse 6 received and will ignore any other pulses.
- OR iii. Design an asynchronous sequential circuit that has two inputs x_1 and x_2 6 and one output Z. The output Z = 1 if x_1 changes from 0 to 1, Z = 0 if x_2 changes from 0 to 1, and Z = 0 otherwise. Realize the circuit using D flip-flop.

P.T.O.

3