Practical 2:

1 – Create a data set with the following properties:

Symbol	Description	Truth
Ne ₁	Effective size of Population 1	10000 individuals
Ne ₂	Effective size of Population 2	20000 individuals
Ne _A	Effective size of ancestral population	5000 individuals
t	Splitting time between modern populations	5000 years
m₁	Migration rate entering Population 1	0.0001 mig rate per gen
m ₂	Migration rate entering Population 2	0.0001 mig rate per gen
Mutation rate		0.001 mut per loc per gen
Generation time		1 year

2 – Summarize the created data set with the following summary statistics:

Symbol	Description	Prior distribution
π	Mean of the pairwise difference	Uniform(0, 12500)
S	Number of segregating sites	Uniform(0, 40000)
k	Number of different haplotypes	Uniform(0, 10000)

3 – Run 500,000 simulations with the following priors:

Symbol	Description	Prior distribution
Ne₁	Effective size of Population 1	Uniform(0, 12500)
Ne ₂	Effective size of Population 2	Uniform(0, 40000)
Ne _A	Effective size of ancestral population	Uniform(0, 10000)
T	Splitting time between modern populations	Uniform(0, 10000)
m₁	Migration rate entering Population 1	Uniform(0, 0.0005)
m_2	Migration rate entering Population 2	Uniform(0, 0.0005)

- 4 Perform the rejection-step with a tolerance of 0.004
- 5 Perform the regression-step with the log transformation.