計量経済 I:復習テスト 11

学籍番号	氏名		
	2024年6月25日		

注意:すべての質問に解答しなければ提出とは認めない.正答に修正した上で,復習テスト $9\sim14$ を左上で ホチキス止めし,定期試験実施日(7月 23日の予定)にまとめて提出すること.

1. 確率ベクトル (Y_1, Y_2, X) は次の連立方程式を満たす.

$$Y_{1} = -\gamma Y_{2} + U_{1}$$

$$Y_{2} = \beta X + U_{2}$$

$$E\left(\begin{pmatrix} U_{1} \\ U_{2} \end{pmatrix} | X\right) = \mathbf{0}$$

$$\operatorname{var}\left(\begin{pmatrix} U_{1} \\ U_{2} \end{pmatrix} | X\right) = \begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{bmatrix}$$

- 第1式のOLS推定を考える.
- (a) $cov(Y_2, U_1)$ を求めなさい.

(b) $\sigma_{1,2} = \sigma_{2,1} = 0$ なら $cov(Y_2, U_1)$ はどうなるか?

2. $((y_1, x_1, z_1), \dots, (y_n, x_n, z_n))$)を無作為標本とする.	y_i の x_i 上への定数項なしの線形モデルは
--	-------------	-------------------------------

$$y_i = \beta x_i + u_i$$
$$E(u_i) = 0$$

 β の OLS 推定量を b_n とする.

(a) 次の命題を示しなさい.

$$E(x_i u_i) = 0 \iff cov(x_i, u_i) = 0$$

(b) $\operatorname{cov}(x_i,u_i) \neq 0$ なら b_n が β の一致推定量でないことを示しなさい.

(c) 操作変数の定義を書きなさい.

(d) β の IV 推定量 $b_{{\rm IV},n}$ を定義しなさい.

(e) $b_{\mathrm{IV},n}$ が β の一致推定量であることを示しなさい.

解答例

1. (a)

$$cov(Y_2, U_1) = cov(\beta X + U_2, U_1)$$

= $cov(\beta X, U_1) + cov(U_2, U_1)$
= $\beta cov(X, U_1) + \sigma_{2,1}$

共分散の計算公式より

$$cov(X, U_1) = E(XU_1) - E(X) E(U_1)$$

繰り返し期待値の法則より

$$E(XU_1) = E(E(XU_1|X))$$

$$= E(X E(U_1|X))$$

$$= 0$$

$$E(U_1) = E(E(U_1|X))$$

$$= 0$$

したがって $cov(Y_2, U_1) = \sigma_{2,1}$.

- (b) 前問の結果に $\sigma_{2,1} = 0$ を代入すると $cov(Y_2, U_1) = 0$.
- 2. (a) 共分散の計算公式と $\mathrm{E}(u_i)=0$ より

$$cov(x_i, u_i) = E(x_i u_i) - E(x_i) E(u_i)$$
$$= E(x_i u_i)$$

したがって $E(x_i u_i) = 0 \iff cov(x_i, u_i) = 0.$

(b) OLS 推定量は

$$b_n = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

 $y_i = \beta x_i + u_i$ を代入すると

$$b_n = \frac{\sum_{i=1}^n x_i (\beta x_i + u_i)}{\sum_{i=1}^n x_i^2}$$

$$= \beta + \frac{\sum_{i=1}^n x_i u_i}{\sum_{i=1}^n x_i^2}$$

$$= \beta + \frac{(1/n) \sum_{i=1}^n x_i u_i}{(1/n) \sum_{i=1}^n x_i^2}$$

大数の法則より

$$\operatorname{plim}_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \operatorname{E}\left(x_i^2\right)$$

$$\underset{n\to\infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} x_i u_i = E(x_i u_i)$$

スルツキーの定理より

$$\operatorname{plim}_{n \to \infty} b_n = \beta + \frac{\operatorname{E}(x_i u_i)}{\operatorname{E}(x_i^2)}$$

前問より $cov(x_i, u_i) \neq 0$ なら $E(x_i u_i) \neq 0$ なので第 2 項 $\neq 0$.

(c) $\mathrm{E}(z_i x_i) \neq 0$ で $\mathrm{E}(z_i u_i) = 0$ なら z_i は β の推定の操作変数という.

(d)

$$b_{\text{IV},n} := \frac{\sum_{i=1}^{n} z_i y_i}{\sum_{i=1}^{n} z_i x_i}$$

(e) $b_{\mathrm{IV},n}$ に $y_i = \beta x_i + u_i$ を代入すると

$$b_{\text{IV},n} = \frac{\sum_{i=1}^{n} z_i(\beta x_i + u_i)}{\sum_{i=1}^{n} z_i x_i}$$

$$= \beta + \frac{\sum_{i=1}^{n} z_i u_i}{\sum_{i=1}^{n} z_i x_i}$$

$$= \beta + \frac{(1/n) \sum_{i=1}^{n} z_i u_i}{(1/n) \sum_{i=1}^{n} z_i x_i}$$

大数の法則より

$$\operatorname{plim}_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} z_i x_i = \operatorname{E}(z_i x_i)$$

$$\operatorname{plim}_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} z_i x_i = \operatorname{E}(z_i x_i)$$

$$\underset{n\to\infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} z_i u_i = E(z_i u_i)$$

スルツキーの定理より

$$\underset{n \to \infty}{\text{plim}} b_{\text{IV},n} = \beta + \frac{\mathrm{E}(z_i u_i)}{\mathrm{E}(z_i x_i)}$$

IV の定義より $E(z_iu_i)=0$ なので第 2 項= 0.