General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

MASA CA- 1668/0

THE UNIVERSITY OF TEXAS AT AUSTIN

(NASA-CR-166810) SATELLITE BANGING DATA ANALYSIS UNDER LAGEOS A. C. NC. OSTA 76-2 Final Report, 21 Nov. 1979 - 20 Aug. 1981 (Texas Univ.) 33 p HC AJ3/NF AJ1 CSCI 22A

N82-25274

Unclas G3/13 21930

FINAL REPORT

Submitted to

The National Aeronautics and Space Administration

for

Satellite Ranging Data Analysis

under

LAGEOS A.O. No. OSTA 78-2

NASA Contract NAS5-25898

FINAL REPORT

Submitted to

The National Aeronautics and Space Administration

for

Satellite Ranging Data Analysis

under

LAGEOS A.O. No. OSTA 78-2

NASA Contract NAS5-25898

Peter J. Shelus

Social Security Number

Department of Astronomy and McDonald Observatory

The University of Texas at Austin

Austin, Texas 78712 USA

1981 December

Table of Contents

l.	Introduction	
2.	MERIT Campaign Back-up Analysis Center	:
3.	Intercomparison of LLR Results with Other Techniques	3
4.	Simultaneous LLR and LAGEOS Data Reduction	4
5.	Administrative Summary	
	Appendix A	A-1
	Appendix B	B-1
	Appendix C	C-1
	Appendix D	D-1

1. Introduction

NASA Contract NASS-25898 entitled "Satellite Ranging Data Analysis" provided funding for the Department of Astronomy of the University of Texas at Austin under the direction of Dr. Peter J. Shelus, Principal Investigator, during the time interval 21 November 1979 through 20 August 1981.

The original proposal spoke to six basic tasks which were to be undertaken as part of the contract. Subsequent negotiations toward an acceptable Statement of Work gave high priority to two of the original six proposed tasks, i.e.,

- Task 1: Apply LAGEOS-derived polar motion components (x,y) to LLR data;
- Task 4: Using multi-station LLR data alone, compute values of Earth rotation components (x,y) and UT1.

Somewhat lower priority was assigned to two other of the proposed tasks, i.e.,

- Task 5: Relate LLR and LAGEOS reference frames;
- Task 6: Compare Earth rotation components as derived using LAGEOS and LLR data against each other and against other techniques.

Finally, the remaining two proposed tasks were not supported:

- Task 2: Using residuals of JAGEOS ranging data with respect to a well-defined model, compute values of Earth rotation components (x,y) and UT1;
- Task 3: Provide long-term calibration bench-marks for LAGEOS-derived UT1 values.

2. MERIT Campaign Back-Up Analysis Center

Under the subject contract, the University of Texas at Austin operated satisfactorily as a back-up Analysis Center (in addition to its role, under other funding, as a Computational Center) for the lunar laser ranging data type during the short MERIT Campaign which was held 1 August 1980 through 31 October 1981. The term "back-up" refers to the circumstance that we were not obligated to respond in near-real-time. Our responsibilities as back-up Analysis Center were to process LLR data gathered during the MERIT interval, subject it to suitable physical and mathematical modelling to produce a

UT1-UTC data product and to forward same to the MERIT Coordinating Center at the Bureau Internationale de l'Heure in Paris. Using a continually evolving system, designed for the extraction of Earth rotation information from the LLR data type (partially funded under this contract), this task was satisfactorily handled in a routine manner. The data file transmitted to the BIH and the text report which accompanied that data transfer is included as Appendix A of this report. An informal comparison was made among the various LLR UT-1 data products at IAU Colloquium No. 63 at Grasse, France last spring. comparisons were startling in their agreements. A formal report of this comparison will be included in the Proceedings of the Colloquium which should be available soon. Also, the McDonald Observatory LLR UT-1 MERIT data set is available in machine readable form either from the Principal Investigator or from the BIH. Since the results outlined above can employ polar motion parameters other than those supplied by the BIH in their monthly Circular D mailings, they satisfy, in part, contract requirements under Task 1 of our original proposal.

Even though there was LLR data obtained from the Orroral Valley station in Australia, the data set forwarded to the BIH for the short MERIT Campaign contained only the results of analysis of McDonald Observatory data. Because of start-up problems at the Australian station during the interval of MERIT, this data set is still in the process of final filtering and data quality analysis. Part of this work of iteration to a final data set was performed at the University of Texas under this contract in cooperation with Dr. Peter J. Morgan of the Australian station. The soft-ware system used and modified under this contract can process multi-station data and the work performed within the contract was included in our original statement of work, i.e., "...Using multi-station LLR data alone, compute values of Earth rotation components (x,y) and UT1..." and therefore satisfy, in part, contract requirements under Task 4 of our original proposal.

3. Intercomparison of LLR Results with Other Techniques

Part of our efforts under this contract stressed some t.he quick-turnaround and service oriented requirements of Earth rotation analysis. Therefore we strived to structure our algorithms and data processing systems to satisfy as many of these requirements as possible. Even though, by the expiration date of the contract, we were not able to transmit Earth rotation data products of the best possible quality because of temporary modelling deficiencies at the University of Texas, we were able to put into place all of the operational procedures for accomplishing same. These modelling problems concern mainly the lunar libration situation since we are totally dependent on external sources for this data product. Although efforts are underway both at the Massachusetts Institute of Technology and the Jet Propulsion Laboratory to supply us adequate modelling, such is not yet available. In spite of this, however, as already has been mentioned, preliminary intercomparisons of UT-1 results have been made among the various analysis groups and observing techniques with very good results. Also, within days of contract termination, a file of some 18 months of UT1-UTC information derived from McDonald Observatory LLR data was transferred by the University of Texas at Austin via the General Electric Mark III System to researchers at the U.S. Naval Observatory and the U.S. National Geodetic Survey for intercomparison with other research groups and various observing techniques. The data file transmitted to the USNO and the NGS is included as Appendix B of this report. The file can be supplied in machine-readable form to any and all persons who request it.

Again, even though the data transferred to USNO and NGS consisted of information derived solely from McDonald Observatory LLR data, the entire system as designed and implemented can perform with multi-station data as well. Also, even though funding under this contract has expired, we remain in close contact, and are coordinating in whatever ways we can, with researchers from USNO and NGS to participate in the intercomparison among the various techniques in a scientifically meaningful way. Reports and publications

concerning these studie are expected within the near future. The results reported in this section satisfy, in part, contract requirements under Task 6 of our original proposal.

4. Simultaneous LLR and LAGEOS Data Reduction

Perhaps the most important output product which is a result of this contract and is also the task which received the greatest amount of effort during the term of this contract concerns the creation of a system which has the capabilities of simultaneously reducing LLR and LAGEOS laser ranging observations. Unlike most other studies of this type, we are not primarily interested in combining the Earth rotation results produced from the various techniques. Instead, we are interested in obtaining the Earth rotation parameters from the simultaneous reduction of the actual observational data itself. We feel that this is especially important when we consider both the lunar and the LAGEOS data types. Our study is trying to take advantage of the strong points of each data type and to eliminate, as much as possible, their weak points. We also stress the convenience for performing this task provided by the close proximity of the LLR analysis system within the UT Astronomy Department and the LAGEOS analysis system within the UT Department of Aerospace Engineering and Engineering Mechanics.

As one might expect, the realization of such a reduction system has been fraught with many pitfalls. We have checked out this system with a rather large number of LLR data sets. As of the time of this final report, only two LAGEOS data sets have been made available to us for processing. However, based on only a modest checkout with respect to the LAGEOS data type, I feel that the system can accomplish all that had been planned and that the system can form the nucleus of a more complete system. It is hoped that additional funding will be provided by other means to make full use of this system.

Regular status reports of the evolution of this system were made at the regular semi-annual meetings of the LAGEOS Investigators Meetings which were held at Goddard Space Flight Center. The definitive description of the

present state of this system was presented at the IAU Colloquium No. 63 entitled "High Precision Earth Rotation and Earth-Moon Dynamics, Lunar Distances and Related Observations" which was held in Grasse, France during 22-27 May 1981. A preprint of the presented paper entitled "Earth Rotation from a Simultaneous Reduction of LLR and LAGEOS Laser Ranging Data" by Shelus, Zarate and Eanes is included as Appendix C of this report.

The above-mentioned preprint covers the results of the efforts undertaken herein. The results presented in this section satisfy, in part, contract requirements under Task 5 of our original contract.

5. Administrative Summary

As required under the terms of this contract, monthly financial summary reports, (NASA FORM 533M) were submitted to personell at GSFC (Code 269 and Code 942). Manpower expended during the tenure of this contract includes: Dr. Peter J. Shelus, Principal Investigator (3.6 mm); Dr. J. Derral Mulholland, Research Scientist (2.2 mm); Wen-Jing Jin, Research Associate (3.0 mm); Gary Kern, Research Associate (0.9 mm); Alice Herzog, Clerk-typist (0.75 mm). Trips were made by the Principal Investigator to the semi-annual LAGEOS Investigators Meetings at GSFC and travel support to attend the IAU Colloquium Np. 63 was supplied by this contract. The foreign trip report submitted for that trip is attatched as Appendix D of this report. Finally, as of this writing, one formal publication has been submitted to the open literature, i.e., the paper by Shelus, Zarate and Eanes which is to appear in the Proceedings of IAU Colloquium No. 63.

The Principal Investigator wishes to that his colleagues at the University of Texas at Austin and elsewhere who collaborated on the efforts of this contract and who are too numerous to mention individually. He also wishes to acknowledge the support furnished to him by the GSFC Contracting Officer, Lauria A. Caria and the GSFC Technical Officer, C. C. Stephanides.

APPENDIX A

MERIT UT Results using McDonald LLR Observations at the University of Texas at Austin

Peter J. Shelus and Nelson R. Zarate
McDonald Observatory and Department of Astronomy
University of Texas at Austin
Austin, Texas 78712 USA

These are UT results computed from McDonald Observatory lunar laser ranging observations at the University of Texas at Austin. Since only single station data is being used, the analysis is similar to that performed by Shelus et al (1). The lunar data set consists of some 63 normal points which represent some 600-700 individual shot-by-shot ranges. Range residuals and partial derivatives are supplied by the standard LLR reduction packages in regular use at the University of Texas.

The LLR residuals are "post-fit", linearized residual and were obtained after a global parameter improvement on 17 months of data approximately centered on the MERIT data set. Parameters in the global solution included linear, annual, and lunar nodal period terms in UT. Linearly interpolated values of BIH Circular D x, y, and UT1-UTC were used. Corrections to the Woolard nutation series, diurnal nutation terms in x and y, and diurnal tidal terms in UT as summarized by Williams (2) here applied. We are presently upgrading our LLR reduction system to more recent treatments of these corrections and the new IAU system of fundamental constants.

An additional note is in order concerning our results. Although a "window width" for observation selection is chosen similar to most other investigations (for instance, when computing 2-day averages, a window width of two days is chosen: all observations falling in that window enter into that particular solution), we do not necessarily slide the window one full window width before performing the next solution. Note that each individual solution is therefore not independent from neighboring solutions. In these results a window width of two days was used and we have slid this window by 0.04 days after each solution. A solution is performed only if there are at least three observations in a particular data set. After sliding the window, a new solution is performed only if the observation set has changed.

- (1) Shelus, P. J., Evans, S. W., and Mulholland, J. D.: 1975, in Scientific Applications of Lunar Laser Ranging, ed. J. D. Mulholland, D. Reidel, Co, Dordrecht, P. 201.
- (2) Williams, J. G.: 1974, JPL Engineering Memorandum 391-592.

POOR QUALITY

OBS	MODIFIED JD	UT1-UTC	STD. DEV.
ID	(.001 DAYS)	(.00001SEC)	(,00001SEC)
725	44452597	15747	33
726	44452860	15737	28
725	44452987	15722	22
725	44453115	15671.	17
726	44453330	15620	î3
725	44453502	15586	13
725	44453672	15552	12
725	44453889	15522	10
72.6	44454015	15493	13
725	44454184	15452	4
726	44480431	10836	2.4
72.5	44480583	10773	22
725	44480807	10760	47
725	44482233	10285	95
726	44484951	9756	75
725	44485132	9705	60
72.6	44485313	9690	25
726	44498762	5584	200
725	44499078	6528	65
725	444945+,0	6565	48
725	44499698	6506	47
725	44499913	6493	2.9
726	44500251	5420	27
725	44500473	6348	25
725	44500593	6317	20
725	44500925	6280	18
726	44501093	6242	20
726	44501487	6155	27
725	44501613	5141	22
725	44501738	6130	25
726	44502134	5057	1.8
725	44502308	5015	30
726	44502530	5965	40
725	44502555	5957	33
726	44502783	5953	39
725	44502943	5915	48
726	44503176	5855	77
726	44512532	3188	27
725	44512758	3135	15
725	44512921	3097	12
725	44513046	31.05	34
725	44513172	3086	45
725	44513385	3009	35
725	44513555	2971	36
725	44513783	2943	42
725	44513899	2905	65

ORIGINAL PAGE IS OF POOR QUALITY

72 ዓ	44514302	2821	41
725	44514546	2779	29
726	44514813	2712	33
725	44515193	2546	49
726	44515323	2597	39
729	44515614	2561	42
725	44515846	2500	26
725	44515957	2481	41
726	44534242	-2067	42
726	44534467	-2133	25
726	44534627	-2187	27
726	44534753	-2210	30
726	44534925	-2252	38
725	44537348	-3112	15
726	44538044	-3300	22
726	44538738	-3490	40

APPENDIX B

ORIGINAL PAGE IS OF POOR QUALITY

OBS ID	MODIFIED JD (.001 DAYS)	UT1-UTC (.00001SEC)	STD. DEV. (.00001SEC)
726	44302650	48726	116
726	44302839	49757	110
725	44302978	48707	55
726	44303153	48528	54
725	44303383	48527	51
725	44303632	48477	45
725	44303792	48439	37
726	44303919	48405	27
725	44304046	48340	4
725	44304206	48301	5
726	44304429	48245	8
726	44333031	40871	13
726	44334796	40522	105
726	44335487	40234	2 5
726	44335720 44335880	40200 40156	33
725 726	44335008	401.64	39 33
726	44335008	40122	43
725	4435618	34751	94
725	44356954	34702	38
726	44357241	34593	2
726	44364475	32829	21
726	44384162	28079	17
725	44384391	28047	$\frac{1}{2}$
726	44384548	28012	22
725	44384674	27969	20
725	44384800	27957	21
725	44385016	27866	34
726	44385188	27828	40
726	44385413	27760	55
725	44385525	27695	25
726	44393120	26308	50
725	44393233	25295	34
726	44393465	25257	29
726	44393696	26215	42
726	44393812	26227	27
725	44395205	25853	21
726	44395900	25585	25
726	44396309	25517	88
726	44396553	25476	123
726	44415562	21609	1
725	44416740	21582	1
726	44417239	21519	13
726	44417452	21480	33
726	44417729	21407	55
725	44417925	21400	94
726	44418257	21388	77
726	44418583	21270	84

726	44418779	21200	52
726	44418975	21214	73
725	44419297	21222	57
726	44419528	21145	45
726	44419818	21083	57
726	44420007	21087	54
726	44440782	17596	1.09
		17153	100
726	44443789		
726	4444112	17202	100
725	44444607	17075	95
726	44444727	17032	69
726	4444894	17037	76
726	44445131	15983	136
726	44449364	16405	11
725	44449595	16354	13
725	44449714	16327	20
726	44450111	16252	12
726	44450361	16207	2
726	44452041	15997	56
	44452041 44452177	15921	29
726			23
725	44452468	15839	
725	44452697	15767	33
726	44452860	15737	28
726	44452987	15722	22
726	44453115	15671	17
726	44453330	15520	13
725	44453502	15586	13
725	44453672	15552	12
726	44453889	15522	10
726	44454015	15493	13
725	44454184	15452	4
725	44480421	10836	2.4
725	44480583	10773	22
725	44480807	10750	47
	-	10286	94
725	4448.2233		75
72.5	44484951	9756	
725	44485132	9705	50 25
725	44485313	9590	25
726	44498762	5684	200
726	44499078	6628	45
725	44499580	6565	49
726	44499598	450A	47
726	44499913	6493	29
726	44500251	6420	27
726	44500473	6348	25
726	44500593	6317	20
725	44500925	5280	18
726	44501093	6242	20
726	44501487	6155	27
726	44501513	5141	22
	44501738	6130	25
726	44301/30	7.00	4)

725	44502134	6057	18
726	44502308	5015	30
725	44502530	5965	40
726	44502656	5957	33
725	44502783	5953	39
72.5	44502943	5915	48
725	44503176	5855	77
725	44512532	3188	2.7
726	44512758	3135	15
725	44512921	3097	12
726	44513046	3106	34
726	44513172	3085	45
725	44513385	3009	35
725	44513555	2971	36
725	44513783	2943	42
726	44513899	2906	65
726	44514302	2821	41
725	44514546	2779	29
726	44514813	2712	33
725	44515193	2546	4.9
725	44515323	2597	39
725	44515614	2561	42
72.5	44515846	2500	26
725	44515957	2481	41
726	44534242	-2067	42
726	44534467	-2133	25
726	44534627	-2187	27
726	44534753	-2210	30
726	44534925	-2252	38
726	44537348	-3112	15
725	44538044	-3300	22
726	44538738	-3490	40
725	44600139	-18625	50
726	44600867	-18765	4
726	44532558	-26363	59
725	44548708	-30112	43
726	44548845	-30085	29
726	44649135	-30132	31
725	44649364	-30169	25
726	44549525	-30207	2.1
725	44649655	-30219	20
726	44549783	-30225	16
726	44549945	-30263	17
725	44650174	-30305	24
725	44650863	-30383	14
726	44551551	-30530	83
726	44652242	-30557	96
726	44652473	-30582	57
726	44652635	-30731	72
726	44652765	-30593	56
725	44552940	-30733	92
	· · · · · · · · · · · · · · · · · · ·		

ORIGINAL PAGE IS OF POOR QUALITY.

726	44659778	-32276	12
726	44559950	-32313	29
726	44550095	-32315	33
		-32356	50
726	44660283		
726	44660510	-32368	А
726	44677449	-37303	51
725	44577522	-37344	36
725	44677793	-37387	14
726	44680545	-38093	1.05
	44681233	-38167	42
726			
726	44581923	-38342	64
725	44682040	-38387	42
725	44682272	-38438	31
726	44682497	-38527	29
726	44682617	-38532	20
726	44686381	-39501	2
			3 ຈ
726	44705483	-44548	
725	44719481	-48285	26
726	44719712	-48328	21
726	44719876	-48362	20
725	44720003	-48392	30
726	44720294	-4.451	21
	44720497	-48512	22
726			
726	44720798	-48539	2.0
726	44736797	-52572	11
725	44737482	-52733	1.16
725	44738206	-52595	35
725	44739149	-53110	18
726	44746672	-54981	82
726	44745855	-55128	105
	44747003	-55083	
726			
726	44747182	-55133	90
725	44747442	-55183	121
725	44748130	-55292	102
725	44748820	-55425	79
725	44749198	-55484	21
726	44749738	-55585	57
72.5	44749853	-55688	28
		-55716	71
726	44750251		
726	44750509	-55776	104
72.5	44751176	-55730	162
725	44751299	-55933	98
726	44751580	-55968	145
726	44751833	-55945	388
725	44751949	-55602	732
725	44765470	-59352	19
726	44766660	-59387	14
726	44766943	-59471	2.2
725	44767149	-59513	20
72.6	44767351	-59552	28
725	44757529	-59617	45
 -			

726	44767760	-59656	30
726	44767938	-59704	41
726	44768173	-59773	44
726	44768844	-50003	90
725	44777465	-61281	45
726	44796771	35777	17
726	44796893	35758	7
725	44797126	35713	19
726	44797378	35694	23
726	44797538	35684	22
726	44797663	35688	19
726	44797785	35664	18
726	44797946	- 35649	17
72.5	44798197	35626	22
726	44798431	35528	21
725	44798605	35595	28
725	44798744	35553	53
726	44798932	35520	78
725	44799251	35613	142
726	44799585	35539	249
72.5	44806721	34873	149
725	44805915	34862	87
726	44807058	34838	45
725	44807241	34752	27
725	44807472	34751	25
726	44807725	34719	27
725	44807907	34719	32
726	44808040	34722	38
726	44808220	34595	54
726	44837096	30038	144
726	44837235	29912	74
726	44837528	29807	47
726	44837755	29745	45
725	44837871	29692	9

APPENDIX C

Earth rotation from a simultaneous reduction of LLR and LAGEOS laser ranging data

Peter J. Shelus*, Nelson R. Zarate* and Richard J. Eanes*
*McDonald Observatory and Department of Astronomy
+Department of Aerospace Engineering and Engineering Mechanics
University of Texas at Austin
Austin, Texas 78712 USA

1. INTRODUCTION

As the techniques of lunar and artificial satellite laser ranging mature, emphasis is being placed upon the use of these observations to monitor the Earth's rotation. It is important to note, however, that at the present time neither technique alone can furnish all three components of this rotation to an accuracy which surpasses those results obtained from classical techniques. In the case of LAGEOS laser ranging, unmodeled secular orbital effects couple with axial Earth rotation in such a way that these effects are not separable in the analysis of those observations. In the case of lunar laser ranging, observations have been regularly available only from a single station for the past ten years or so with the result that a change in latitude along the McDonald Observatory meridian is not separable into the ordinary (x,y) components of polar motion. The main purpose of this paper is to present the first stages of an investigation to combine LAGEOS and lunar laser observations. It is hoped that the proper implementation of sucl. a process might eliminate the shortcomings inherent in each technique, while accentuating the advantages of each. This has the potential of producing all three components of the Earth's rotation to an accuracy and precision which is compatible with the present observational uncertainties.

II. DATA AND MODEL COMPATIBILITIES

As is the case in all investigations which seek to combine two different observation types, a great deal of ground work must first be laid before the data synthesis can be begun. Care must be taken to insure that the various data types to be combined are totally compatible and consistent with one another. Not only must such mundane matters as units and formats be unambiguously defined, but standards for such things as reference frames, theoretical and empirical models as well as fundamental and derived constants must be strictly and totally adhered to.

At the University of Texas at Austin, two parallel efforts are underway to obtain Earth rotation information from artificial satellite and lunar laser ranging observations. That within the Department of Aerospace Engineering and Engineering Mechanics has been concerned with the artificial satellite analysis; that within the Department of Astronomy and McDonald Observatory has been Although each has been concerned with the lunar analysis. performing its tasks completely independently of the other, each uses the extensive computing facilities of the University's main This happy circumstance has alleviated many of computer systems. the problems associated with the transfer of data and information between independent reduction and analysis systems. Also, the close proximity of the personnel of both groups assures precise communications and thereby has eased the reference compatibility problems.

As might be expected, our initial efforts have been applied to testing algorithms and applying them to the LAGEOS and LLR data sets which were obtained during the short MERIT campaign which ran from August through October of 1980. The lunar data set consists of some 63 normal points which represents some 600-700 individual lunar laser ranging observations. Specific information about this data set can be found in the MERIT Campaign Report which should be generally available from the Bureau Internationale de l'Heure in The LAGEOS data set contains in excess of 20,000 individual LAGEOS ranges and will be described elsewhere. In both cases, our analysis efforts are concerned with range residuals and partial derivatives which are supplied by the standard LLR and LAGEOS reduction packages which have been in regular use over the past few years at the University of Texas. Although, to the best of our knowledge, the current data sets are internally consistent and compatible, additional checks will be made continuously throughout the course of the total investigation to preserve and/or extend this integrity.

III. ANALYSIS TECHNIQUES

Because of the short term nature of the effects being sought by this investigation, our "observational equation" is a simple one and, for the LLR case, is similar to that presented by Stolz and Larden (1976), i.e.,

$$\rho_{O}-\rho_{C} = r [\sin \phi \cos \phi \cos(\lambda - H) - \cos \lambda \sin \phi \cos \phi] x$$

$$-r [\sin \phi \cos \phi \sin(\lambda - H) - \sin \lambda \sin \phi \cos \phi] y$$

$$+r \cos \phi \cos \phi \sin H \phi (UT1-UTC)$$

where ρ_0 - ρ_C is the range residual (observed minus computed); r is the radius of the Earth and λ is its east longitude; H is the local hour angle of the retroreflector and δ is its declination; x, y, and δ (UT1-UTC) are improvements to the nominal values of these Earth rotation parameters. Although the above expression is that which is

specifically used for LLR, a similar one has been used for the LAGEOS case.

This investigation is seeking values for the Earth rotation parameters averaged over 5 day intervals or less. In the case of LLR these short-term effects are well-separated from any unmodelled long term effects because it is believed that all short term (less than two weeks or so) lunar orbital and librational effects down to the few centimeter level are known. This is, of course, not yet the case for LAGEOS and it is certainly recognized that analysis efforts to extract orbital information from the LAGEOS data also extract axial Earth rotation information from that data, thus decreasing one's ability for obtaining accurate UTI-UTC information from this data type. It is believed that this study is the first attempt to obtain Earth rotation parameters by the simultaneous reduction of LLR and LAGEOS data at the observation level.

The LLR residuals which were used in this study are "post-fit", linearized residuals having been obtained after a normal global parameter improvement run on some 17 months of data centered approximately on the MERIT data set. Parameters in the global solution runs include linear, annual and lunar nodal period terms in UT. Linearly interpolated values of smoothed BIH Circular D x, y, and UT1-UTC which were modified by corrections given by Williams (1974) based on McClure (1973) have been used. Also used was the Woolard (1953, 1959) nutation series as modified by Melchoir (1971). Simple checks have shown slight differences with the Wahr (1980) nutation series and the Yoder et al (1081) treatment of UT diurnal tidal terms, although we are presently upgrading our LLR reduction systems to these more recent treatments and the new IAU system of fundamental constants.

The LAGEOS residuals were computed with the model used to generate the LAGEOS long-arc trajectory designated LLA80.11. The gravity field used was LGM80.11.1; this geopotential is a preliminary LAGEOS-derived adjustment to the GEM10 field. The model includes the Wahr nutation series, the short period variations in UT from Yoder et al (1981), and BIH Circular D smoothed values for polar motion and UT1. The station positions were the LAGEOS-derived set designated LSC20.11. Orbit initial conditions were estimated from a sampled set of LAGEOS observations from 16 sites over the 124 day period from 30 June to 31 October 1980 (MJD = 44420-44543). The full set of data contained 508,000 observations while the sampled set, obtained by requiring that no two observations from any one site be less than one minute apart, contained 22,000 ranges. The unweighted RMS of the post-fit residuals was 0.42m. The estimated "single-shot" precision was 0.25m when averaged over all of the laser systems involved.

The remaining unmodelled long-period variations in the LAGEOS orbital elements were removed by smoothing the element residuals

from LLA80.11 with a Vondrak filter using £=1.0E-06 (half power at 60 days). Because of the high correlation of errors in UT and errors in the LAGEOS orbit node, this empirical adjustment to the LAGEOS orbital elements effectively filters a portion of any signal present in UT1-UY3. The small correlation of polar motion components x and y to the orbital elements implies that they are only slightly affected by the empirical adjustment. As the LAGEOS dynamical model matures the use of an empirically corrected orbit will be discontinued.

IV. NUMERICAL RESULTS

Using an observational equation of the type give in Section III, we have computed observational residuals and partial derivatives using standard lunar and LAGEOS data analysis packages. Several of the initial solution attempts are being reported here. To assess the solution algorithms of this package the first solution run was performed to obtain UT1-UTC and a constant bias from observations alone. Since only single station LLR data is being used in this study the analysis is similar to that performed by Shelus et al (1976). The second solution run was performed to obtain x, y, and UT1-UTC estimates from LAGEOS observations alone. Only those LAGEOS observations which were close in time to LLR observations were used (a full analysis of the LAGEOS-only results is beyond the scope of this paper). Each of these two runs provided results which were similar to those obtained from analyses performed independently of this study. The results, which give deviations to BIH Circular D 5-day smoothed values, can be seen for UT1-UTC in Figures 1 for the LLR-only case and for x, y, and UT1-UTC in Figure 2 for the LAGEOS-only case.

From an examination of these figures we see that our initial expectation that UT1-UTC "power" has been lost from the LAGEOS observations is confirmed since the deviations from BIH values for UT1-UTC are much smaller from the LAGEOS-only results than from the This assumes, of course, that the LLR-only LLR-only results. results are "correct". Having confirmed our expectations, we next proceed to the next step whereby we may "tie" the short-term signature from the LAGEOS data type to the long term signature from the LLR data type by attempting simultaneous solutions. Figure 3 shows the results for our first such attempt. In this case we have opted to only consider the x and y partial derivatives (not UTI-UTC) from the LAGEOS data set simultaneously with all three partial derivatives (x, y, and UT1-UTC) from the LLR set. All observations going into the solutions are given equal weight in spite of the overwhelming amount of LAGEOS data with respect to the LLR data. The signature for the UT1-UTC results are similar to the LLR-only results, and the signatures for the x and y results are similar to the LAGEOS-only results, as would be expected.

A very important sidelight of this investigation surfaces from our

processing of the observations in a manner different from most. Alchough a "window width" is selected similar to most other investigations (for instance, when one is computing two day averages, one chooses a window width of two days; all observations which fall through that window are allowed to enter into that solution), we do not necessarily move our window one full window width before performing the next solution. We feel that this technique can give a more complete representation of the information content of each data set. However it does have the drawback that each individual solution run is not completely independent from neighboring solutions. In all of the results which are presented here we have used a "window width" of two days and have "slid" this window by 0.04 days after each solution. A solution is performed only if there are at least three LLR observations in a particular data set. After sliding the window, a new solution is performed only if the LLR data set has changed.

The results presented in Figure 3 are not satisfying from several points of view. First, there were no attempts made to normalize the effects of each observation type through proper weighting parameters. As has already been mentioned, the LLR data are normal points while the LAGEOS data are shot-by-shot data. A far more serious objection arises from the fact that only a very weak tie is established between the two data types because the UT information from the LAGEOS data has been ignored and only single station LLR data exists. A crude attempt at normalization was made for the fourth solution run (Figure 4) wherein the third solution was performed again except that the LLR normal points were given a weight 5.0 with respect to unity for the LAGEOS shot-by-shot points. As might be expected, Figures 4 and 5 are quite similar.

V. DISCUSSION

Although the results presented here are preliminary, they are indicative of the great progress which has been realized recently at the observation by observation level in the combination of LAGEOS and LLR results for Earth rotation. Each technique is certainly mature enough that consistency and compatibilty between such different data types has been accomplished. The presence of such a two-pronged analysis effort opens the door to a more proper and satisfying data synthesis. Our next steps will progress to more realistic ties between the two data types. This will entail using the LLR results to help separate the unmodelled orbital effects of LAGEOS from axial Earth rotation instead of merely ignoring the effects of UT1-UTC in the LAGEOS data. Simultaneously the x and y results from LAGEOS will be used to improve the LLR results. separation is obtained the short term LAGEOS results will be "anchored" by the long-term LLR results, thereby giving the UT1-UTC parameter the same significance and resolution as the x and y parameters.

Further progress will be also accomplished by a firther investigation of the relative weighting schemes for LAGEOS versus LLR data to more reasonably combine normal point and shot-by-shot data. It may be also attempted to work with LLK shot-by-shot data and/or LAGEOS normal point data to obtain this next level of compatibility.

VI. ACKNOWLEDGEMENTS

This work has been supported in part by National Aeronautics and Space Administration Contracts NASS-25898 and NASS-25991 to the University of Texas at Austin.

VII. REFERENCES

McClure, P.:1973, Goddard Report X-592-73-259.

Melchoir, P.: 1971, Celestial Mechanics 4, 190.

- Shelus, P. J., Evans, S. W., and Mulholland, J. D.: 1975, in Scientific Applications of Lunar Laser Ranging, ed. J. D. Mulholland, D. Reidel Co., Pordrecht, p. 191.
- Stolz, A. and Larden, D.: 1975, in Scientific Applications of Lunar Laser Ranging, ed. J. D. Mulholland, D. Reidel Co., Dordrecht, P. 201.
- Wahr, J. M.: 1979, The Tidal Motions of a Rotating, Elliptical, Elastic and Oceanless Earth, Ph.D. thesis, University of Colorado, Boulder.
- Williams, J. G.: 1974, JPL Engineering Memorandum 391-592.
- Woolard, E. W.: 1953, Astronomical Papers of the American Ephemeris and Nautical Almanac 15, part 1.
- Woolard, E. W.: 1959, Astronomical Journal 64, 140.
- Yoder, C. F., Williams, J. G., and Parke, M. E.: 1981, Journal of Geophysical Research 86, 881.

Figure Captions

- Figure 1. Differences in UT1-UTC determined by LLR with respect to BIH Circular D 5-day smoothed values.
- Figure 2. Differences in x, y, and UT1-UTC determined by LAGEOS with respect to BIH Circular D 5-day smoothed values.
- Figure 3. Differences in x, y, and UT1-UTC determined by LLR and LAGEOS with respect to BIH Circular D 5-day smoothed values (LAGEOS sampled shot-by-shot data and LLR normal point data equally weighted).
- Figure 4. Differences in x,y, and PT1-UTC determined by LLR and LAGEOS with respect to BIH Circular D 5-day smoothed values (LLR normal point data weighted by a factor 5 with respect to LAGEOS shot-by-shot data).

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX D

THE UNIVERSITY OF TEXAS AT AUSTIN

COLLEGE OF NATURAL SCIENCES Department of Astronomy AUSTIN, TEXAS 78712

Date: 2 June 1981

MEMORANDUM

To:

C. C. Stephanides (Code 904) and L. E. Walker (Code 269)

From:

Peter J. Shelus

Subject:

Foreign Travel Trip Report (Contract NAS5-25898)

During May 18-21 I attended the Project Merit Workshop which was held in Grasse, France. This workshop was held under the auspices of the IAU/IUGG Joint Working Group on the Rotation of the Earth.

Informal sessions were held among participants on Monday morning. On Monday afternoon brief formal summary reports were presented by the directors of the various observation, analysis, computing and communication centers. These summary reports were mainly concerned with what went right and what went wrong during the short MERIT campaign. A short discussion on changes which might be recommended to insure a successful long campaign followed.

The entire day Tuesday was dedicated to expanded reports on the short MERIT Campaign from the various technique coordinators and their sub-coordinators. During these sessions I presented a report on the McDonald Observatory participation in the short MERIT campaign. The report summarized the data acquisition and data communications tasks which were accomplished.

Formal reports continued into Wednesday. I also attended meetings of the MERIT Standards Committee chaired by W. G. Melbourne, the lunar laser ranging sub-group for MERIT chaired by J. D. Mulholland and the EROLD Steering Committee also chaired by Mulholland. Topics related to LLR were related to the modelling standards which would be used during the regular MERIT campaign. Most crucial to LLR are of course the lunar orbit and rotation models. Along those lines I was assigned the action item of communicating with appropriate individuals and submitting a final report to the MERIT Standards Committee by October 1981 with LLR recommendations.

A General discussion on the short MERIT campaign and a review of aims and tasks for the regular campaign occupied us on Thursda. Of most importance for LLR was the decision to separate LLR and SLR. During the short campaign Aardoom and Mulholland were subcoordinators for the artificial satellite and lunar techniques respectively under Silverberg. For the main campaign O. Calame (of CERGA) will be the

Memorandum to Stephanides & Walker Page-2 2 June 1981

coordinator for the LLR technique while J. Lattimer (of SAO) will be the coordinator for the SLR technique. There will be no "overall" coordinator for the laser techniques. A final decision was to hold the regular MERIT campaign from September 1, 1982 through October 31, 1983.

In summary, it was generally accepted that most of the goals of the short MERIT campaign were successfully attained. Each of the techniques were able to observe, reduce and transmit Earth rotation information to the Coordinating center at BIH in a timely manner. The use of the electronic transfer of information was of great importance. However, a significant amount of cooperation and communication will need to be exercised to assure the efficient and economical use of the system during the up-coming long MERIT campaign. A sub-group consisting of Peter Morgan, Jim Lattimer, Martine Feissel and myself were assigned the task of looking into these matters.

Finally, it was acknowledged that the short MERIT campaign also formed the incentive for many of the techniques to come "up to speed" earlier than they might have under ordinary circumstances. The effect of the Chinese classical data did much to improve the results of that technique. We are all looking forward to an equal success of the regular campaign.

On Friday, May 22 and Monday through Wednesday, May 25-27, I attended the sessions of IAU Colloquium No.63 entitled "High Precision Rotation and Earth-Moon Dynamics, Lunar Distances and Related Observations" at Grasse, France.

Friday served as a transition day as the MERIT Workshop wound down and the Colloquium commenced. A total of 12 papers were presented on Friday which summarized the scientific results which were obtained by the various observational techniques for Earth Rotation monitoring during the short MERIT technique. I presented a paper as this session which was entitled "Earth Rotation from a Simultaneous reduction of LLR/LAGEOS Data".

On Monday 4 papers were presented in the morning which supplied historical and complimentary material related to the concepts of Earth rotation monitoring. The afternoon was spent in a meeting of the EROLD Steering Committee. This meeting was essentially a continuation of that begun by the LLR group during the MERIT Workshop the previous week. Mainly discussed were the relations, if any, which should be eliminated, maintained or inaugurated between the EROLD and the MERIT campaigns.

Memorandum to Stephanides & Walker Page-3 2 June 1981

Tuesday and Wednesday saw a total of 18 papers being presented on many of the aspects of lunar dynamics. These papers ran the gamut from energy dissipation, tidal friction and relativistic perturbations to analytical and semi-analytical theories of the Moon as well as reference frame determinations.

I returned to the U.S. on Thursday, 28 May 1981.

PJS/ah