- 1) a) Coloring: {1: '(B)', 2: '(B)', 3: '(R)', 4: '(B)', 5: '(R)', 6: '(R)', 7: '(R)', 8: '(B)'}
 - 1(B) + 2(B) = 3(R)
 - 1(B) + 3(R) = 4(B)
 - 1(B) + 4(B) = 5(R)
 - 1(B) + 5(R) = 6(R)
 - 1(B) + 6(R) = 7(R)
 - 1(B) + 7(R) = 8(B)
 - 2(B) + 3(R) = 5(R)
 - 2(B) + 4(B) = 6(R)
 - 2(B) + 5(R) = 7(R)
 - 2(B) + 6(R) = 8(B)
 - 3(R) + 4(B) = 7(R)
 - 3(R) + 5(R) = 8(B)
 - b) inputToDemacs(9) Python code

Fazit: Ab 9 Zahlen ist es unsatisfiable!

Code ist weiter unten im Dokument.

- 4) Zu zeigen ist, dass die Folge $\phi \vdash \psi$ valid ist genau unter der Bedingung, dass die Formel $\phi \rightarrow \psi$ ein Theorem ist. Folgende zwei Bedingungen müssen gezeigt werden.
 - 1. Gilt die Folge $\varphi \vdash \psi$, so ist die Formel $\varphi \rightarrow \psi$ ein Theorem.
 - 2. Wenn die Formel $\phi \rightarrow \psi$ ein Theorem ist, dann gilt die Folge $\phi \vdash \psi$.

Für die erste Bedingung müssen wir zeigen, dass jede True Anweisung von ϕ auch für ψ gilt. Wir nehmen an, dass die Bedingung $\phi \to \psi$ kein Theorem ist. Daraus folgt, dass es eine True Anweisung in ϕ gibt welche nicht ψ zutrifft. Allerdings durch die Bedingung, dass $\phi \vdash \psi$ gilt, kann so ein Fall nicht eintreten. \Rightarrow wir haben einen Wiederspruch. Daher gilt die Aussage, dass $\phi \to \psi$ kein Theorem ist nicht!

Die zweite Bedingung besagt, dass wenn die Formel $\phi \to \psi$ ein Satz ist, die Folge $\phi \vdash \psi$ gelten muss. Wenn $\phi \to \psi$ ein Theorem ist kann man daraus schlussfolgern, dass jeder True wert, der $\phi \to \psi$ erfüllt, auch ϕ und ψ erfüllt. Da allerdings $\phi \to \psi$ äquivalent mit $\phi \vdash \psi$ ist, wissen wir dass jeder True Wert der für ϕ gilt auch für ψ gelten muss, was wiederum bedeutet, dass $\phi \vdash \psi$ valid ist.