Mi primer documento escrito en LaTeX

Octavio Saucedo Avila

November 4, 2020

Contents

Ι	Lógica proposicional						
1	Proposiciones						
			eptos primitivos				
	1.2	Conec	ctivos lógicos	. 7			
		1.2.1	La conjunción	. 7			
		1.2.2	La identidad de Euler	. 7			
		1.2.3	La ecuación de onda	. 8			

4 CONTENTS

Part I Lógica proposicional

Chapter 1

Proposiciones

1.1 Conceptos primitivos

Definición. Una proposición es cualquier afirmación de la cual podemos decir si es falsa o verdadera.

1.2 Conectivos lógicos

Conjunción, disyunción, implicación, doble implicación y disyunción exclusiva.

1.2.1 La conjunción

Aprovecho este espacio para aclarar que es mi primera vez escribiendo en La-TeX y quise explorar algunas otras opciones además de la plantilla que nos proporcionaron.

1.2.2 La identidad de Euler

$$e^{i\pi} + 1 = 0$$

Esta igualdad matemática es considerada una de las más hermosas porque involucra a las constantes más importantes de esta ciencia: el número de Euler, el número π , la unidad imaginaria i, el elemento neutro de la suma y el elemento neutro del producto.

Se trata de la forma de Euler para escribir un número complejo cuando $\theta = \pi$. Es decir, al partir de la siguiente relación:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

sustituimos θ por π y tendremos lo siguiente:

$$e^{i\pi} = \cos \pi + i \sin \pi$$

$$e^{i\pi} = 1 + i(0) \Rightarrow e^{i\pi} = 1 \Rightarrow e^{i\pi} + 1 = 0$$

obteniendo así de manera informal la famosa identidad de Euler.

1.2.3 La ecuación de onda

Una relación que aún no comprendo, pero se ve muy elegante; y de la cual tuve que investigar su forma de escribirse en LaTeX es la **ecuación de onda**:

$$\nabla^2 \psi(\vec{r},t) = \frac{1}{v^2} \frac{\partial^2 \psi(\vec{r},t)}{\partial t^2}$$