15. Спряжені оператори, спектр і компактні оператори

Нехай E і F — лінійні топологічні простори. Розглянемо неперервний лінійний оператор $A:E \to F$ і функціонал $g \in F^*$. Застосуємо функціонал g до елемента y = Ax. Це визначає функціонал $f \in E^*$, який визначається формулою f(x) = g(Ax).

Озн. 15.1. Оператор $A^*: F^* \to E^*$, що визначається формулою f(x) = g(Ax) і ставить кожному функціоналу g із простору F^* функціонал f із простору E^* , називається спряженим до оператора A.

Приклад 15.1. Розглянемо оператор

$$A: \mathbb{R}^n \to \mathbb{R}^m$$

і функціонал

$$y = Ax$$
,

який визначається як

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, 2, ..., m.$$

Тоді

$$f(x) = g(Ax) = \sum_{i=1}^{m} g_i y_i = \sum_{i=1}^{n} \sum_{j=1}^{m} g_i a_{ij} x_j = \sum_{i=1}^{n} x_j \sum_{j=1}^{m} g_i a_{ij}.$$

Отже,

$$f_i = \sum_{i=1}^m g_i a_{ij}, \quad j = 1, 2, ..., n.$$

З цього випливає, що

$$f = A^* g \Rightarrow A^* = A^T$$
.

Це означає, що спряжений оператор визначається транспонованою матрицею. ■

Позначивши значення функціонала f на елементі x символом (f,x), отримаємо, що

$$(g,Ax) = (f,x) = (A^*g,x).$$

Теорема 15.1. Якщо $A \in \mathcal{L}(E, F)$, де E, F — банахові простори, то $||A|| = ||A^*||$.

Доведення. З одного боку

$$|(A^*g, x)| = |(g, Ax)| \le ||g|| ||A|| ||x|| \Rightarrow ||A^*g|| \le ||A|| ||g||$$
$$\Rightarrow ||A^*|| \le ||A||.$$

3 іншого боку, для $x \in E$ і $Ax \neq 0$ існує елемент

$$y_0 \stackrel{\text{def}}{=} \frac{Ax}{\|Ax\|} \in F \Rightarrow \|y_0\| = 1.$$

Отже, за теоремою Хана-Банаха існує функціонал g , такий що $\|g\|=1$, $(g,y_0)=1$. 3 цього випливає, що

$$(g, y_0) = \left(g, \frac{Ax}{\|Ax\|}\right) = \frac{1}{\|Ax\|}(g, Ax) = 1.$$

Тоді

$$(g,Ax) = ||Ax||.$$

Таким чином,

$$(g,Ax) = ||Ax|| = |(A^*g,x)| \le ||A^*|| ||g|| ||x|| = ||A^*|| ||x|| \implies ||A|| \le ||A^*||.$$

3 цього випливає, що $||A|| = ||A^*||$. \blacksquare

Озн. 15.2. Нехай $A: E \to E$, де E — комплексний банахів простір. Число λ називається **регулярним** для оператора A, якщо оператор $R_{\lambda} = \left(A - \lambda I\right)^{-1}$ визначений на всьому просторі E.

Озн. 15.3. Оператор $R_{\lambda} = (A - \lambda I)^{-1}$ називається **резольвентою**.

Озн. 15.4. Сукупність всіх чисел λ , які не є регулярними для оператора A, називається його **спектром**.

Озн. 15.5. Число λ , таке що рівняння

$$Ax = \lambda x$$

має ненульові розв'язки, називається власним числом оператора A.

Озн. 15.6. Всі власні числа оператора A належать його спектру і утворюють **точковий спектр**.

Озн. 15.7. Доповнення до точкового спектру називається **неперервним спектром**.

Приклад 15.2. Розглянемо простір C[a,b] і оператор

$$Ax(t) = tx(t)$$
.

Тоді

$$(A - \lambda I)x(t) = (t - \lambda)x(t).$$

Із умови

$$(t-\lambda)x(t)=0 \quad \forall \lambda \in \mathbb{R}$$

випливає, що неперервна функція x(t) тотожно дорівнює нулю, тому оператор $(A - \lambda I)^{-1}$ існує для довільного λ .

Проте при $\lambda \in [a,b]$ обернений оператор, що діє за формулою

$$(A - \lambda I)^{-1} x(t) = \frac{1}{t - \lambda} x(t)$$

визначений не на всьому просторі C[a,b] і не є обмеженим. Таким чином, спектром є весь відрізок [a,b], власних чисел немає, тобто оператор A має лише неперервний спектр.

Зауваження 15.1. У скінченновимірних просторах неперервний спектр оператора ϵ порожньою множиною, спектр збігається із точковим спектром і складається лише із власних чисел. У нескінченновимірних просторах кожне число відносно оператора ϵ регулярним значенням, власним значенням або елементом точкового спектру.

Теорема 15.2. Якщо $A \in \mathcal{L}(E,E)$, де E — банахів простір і $|\lambda| > ||A||$, то λ — регулярне значення для оператора A.

Доведення. Оскільки

$$A - \lambda I = -\lambda \left(I - \frac{1}{\lambda} A \right),\,$$

то

$$R_{\lambda} = \left(A - \lambda I\right)^{-1} = -\frac{1}{\lambda} \left(I - \frac{A}{\lambda}\right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{A^{k}}{\lambda^{k}}.$$

За умови $|\lambda| > ||A||$ цей ряд збігається і визначає на E обмежений оператор (теорема 14.4).

Зауваження 15.2. З теореми 15.2 випливає, що спектр оператора A міститься в колі радіусу ||A|| з центром в нулі.

Озн. 15.8. Оператор A, що діє із банахового простору E в банахів простір F називається **компактним**, або **цілком неперервним**, якщо кожну обмежену множину він переводить у відносно компактну множину.

Приклад 15.2. Лінійний неперервний оператор A, що переводить банахів простір E в його скінченновимірний підпростір, є компактним.

Теорема 15.3. Якщо послідовність компактних операторів $\left\{A_n\right\}_{n=1}^{\infty}$ в банаховому просторі E збігається до оператора A рівномірно, то оператор A теж є компактним.

Доведення. Для доведення компактності оператора A доведемо, що для будь-якої обмеженої послідовності $\left\{x_n\right\}_{n=1}^{\infty} \subset E$ із послідовності $\left\{Ax_n\right\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність.

Оператор $A_{\rm l}$ — компактний, тому із послідовності $\left\{A_{\rm l}x_n\right\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність. Нехай $\left\{x_n^{(1)}\right\}_{n=1}^{\infty} \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\left\{A_{\rm l}x_n\right\}_{n=1}^{\infty}$.

Оператор A_2 — компактний, тому із послідовності $\left\{A_2 x_n^{(1)}\right\}_{n=1}^\infty$ можна виділити збіжну підпослідовність. Нехай $\left\{x_n^{(2)}\right\}_{n=1}^\infty \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\left\{A_2 x_n^{(1)}\right\}_{n=1}^\infty$.

Продовжимо цей процес і виділимо діагональну послідовність

$$X_1^{(1)}, X_2^{(2)}, ..., X_n^{(n)}, ...$$

Оператори $A_1,A_2,...,A_n,...$ переводять її у збіжну послідовність. Покажемо, що оператор A теж переводить її в збіжну послідовність. Простір E — повний, тому достатньо показати, що $\left\{Ax_n^{(n)}\right\}_{n=1}^\infty$ ϵ фундаментальною послідовністю.

$$\begin{split} & \left\| A x_{n}^{(n)} - A x_{m}^{(m)} \right\| \leq \\ & \leq \left\| A x_{n}^{(n)} - A_{k} x_{n}^{(n)} + A_{k} x_{n}^{(n)} - A_{k} x_{m}^{(m)} + A_{k} x_{m}^{(m)} - A x_{m}^{(m)} \right\| \leq \\ & \leq \left\| A x_{n}^{(n)} - A_{k} x_{n}^{(n)} \right\| + \left\| A_{k} x_{n}^{(n)} - A_{k} x_{m}^{(m)} \right\| + \left\| A_{k} x_{m}^{(m)} - A x_{m}^{(m)} \right\| \end{split}$$

Нехай $\left\|x_{n}\right\| \leq C$. Оскільки $\left\|A_{n}-A\right\| \to 0$ при $n \to \infty$,

$$\exists K \in \mathbb{N} : \forall k \geq K \quad ||A - A_k|| < \frac{\varepsilon}{3C}.$$

Крім того, оскільки послідовність $\left\{A_k x_n^{(n)}\right\}$ є збіжною,

$$\exists N \in \mathbb{N} : \forall n, m \ge N \ \left\| A_k x_n^{(n)} - A_k x_m^{(m)} \right\| < \frac{\varepsilon}{3}.$$

Вибравши $M = \max(K, N)$, отримуємо

$$\forall n,m \geq M \ \left\| Ax_n^{(n)} - Ax_m^{(m)} \right\| < \varepsilon. \blacksquare$$

Теорема 15.4. Якщо A — лінійний компактний оператор, оператор B — лінійний обмежений, то оператори AB і BA ϵ компактними.

Доведення. Якщо множина $M \subset E$ є обмеженою, то BM — обмежена множина, оскільки обмежений оператор переводить будь-яку обмежену множину в обмежену множину. Отже, множина ABM є відносно компактною. Це означає, що оператор AB є компактним. Аналогічно, якщо множина $M \subset E$ є обмеженою, то AM — відносно компактна множина, оскільки компактний оператор переводить будь-яку обмежену множину у відносно компактну множину. Оператор B — неперервний, тому множина BAM є відносно компактною. Це означає, що оператор BA є компактним.

Наслідок 15.1. В нескінченновимірному просторі E компактний оператор не може мати обмеженого оберненого оператору.

Теорема 15.4. Оператор, спряжений до компактного, ϵ компактним. (Без доведення).

Спряжені, самоспряжені і компактні оператори відіграють особливо важливу роль у гільбертових просторах. Саме на цих поняттях побудована теорія розв'язності операторних рівнянь в гільбертових просторах.

Література

1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — М.: Наука, 1981. — с. 230–250.