Matrix theory - Assignment 10

Shreeprasad Bhat AI20MTECH14011

 ${\it Abstract} {\it \bf - This} \ \ {\it \bf document} \ \ {\it \bf illustrates} \ \ {\it \bf applications} \ \ {\it \bf of} \ \ {\it \bf Rank-Nullity} \ \ {\it \bf Theorem}$

3 Solution

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment10/

1 Problem

Let **A** be an $m \times n$ matrix with entries in F and let T be the linear transformation from $F^{n \times 1}$ into $F^{m \times l}$ defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$. Show that

- 1) if m < n it may happen that T is onto without being non-singular
- 2) if m > n we may have T non-singular but not onto.

2 Definitions

A linear transformation $T(\mathbf{X}): \mathbb{R}^n \to \mathbb{R}^m$ is said to be		
	if \exists some $\mathbf{X} \in \mathbb{R}^m$ s.t	
singular	$T(\mathbf{X}) = 0$ and $\mathbf{X} \neq 0$	
	i.e $Nullity(T) \neq 0$	
non-singular	if \exists some $\mathbf{X} \in \mathbb{R}^m$ s.t	
	$T(\mathbf{X}) = 0 \implies \mathbf{X} = 0$	
	i.e $Nullity(T) = 0$	
onto	if for every $\mathbf{b} \in \mathbb{R}^m$,	
	$T(\mathbf{X}) = \mathbf{b}$ has at least one solution $\mathbf{X} \in \mathbb{R}^n$	
	i.e $Rank(T) = m \&$	
	$Rank(T) \le n$	

Let A be an $m \times n$ matrix with entries in F and let T be the linear transformation from $F^{n \times l}$ into $F^{m \times l}$			
defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$. If,			
	<i>m</i> < <i>n</i>	m > n	
singular	$\implies rank(\mathbf{A}) < n$	$\implies rank(\mathbf{A}) > n$	
	From Rank-Nullity Theorem,	If $T(\mathbf{X}) = 0, \mathbf{A}\mathbf{X} = 0$	
	$Rank(\mathbf{A}) + Nullity(\mathbf{A}) = n$	$\implies X = 0$	
	$\implies Nullity(\mathbf{A}) \neq 0$	Hence T(X) is non-singular.	
	$T(\mathbf{X})$ is a singular.	$\implies Nullity(\mathbf{A}) = 0$	
	$\implies rank(\mathbf{A}) < n$	$Rank(\mathbf{A}) + Nullity(\mathbf{A}) > n.$	
onto	Hence $T(\mathbf{X})$ can be onto.	Rank-Nullity Theorem is, $T(\mathbf{X})$ do not span $F^{m \times 1}$. $\therefore T$ is not onto.	