How Computers Work

Lecture 8

Asynchronous State Machines and Metastability

How Computers Work Lecture 8 Page 1

page 2

page 3

page 5

page 7

The Remarkable Fact

The perfect arbiter:

 T_{margin} and T_{pd} finite and constant Correct Ouput if $\mid T_a - T_b \mid > T_{margin}$ Any Output if $\mid T_a - T_b \mid <= T_{margin}$ Answer valid and stable after T_{pd}

IT IS IMPOSSIBLE TO BUILD!!!!

_ How Computers Work Lecture 8 Page 16

page 11

How Small must Vin(0) be to make time to saturation take longer than time t?

$$V_{in}(t) = V_{in}(0)e^{t/t} = \frac{1}{A}$$

$$V_{in}(0) = \frac{1/(A e^{t/tau}) = e^{-t/tau}/A}{}$$

_ How Computers Work Lecture 8 Page 23

If Vin(0) is uniformly distributed: Vin $p_{\text{metastable}}(t) = \frac{1/(A e^{t/tau}) = e^{-t/tau}/A}{But \text{ if Vin is in linear rise/fall a certain fraction}}$ $(p_{\text{transition}}) \text{ of the time:}$ Vin $p_{\text{metastable}}(t) = \frac{p_{\text{transition}}/(A e^{t/tau}) = (p_{\text{transition}}/A) e^{-t/tau}}{How Computers Work Lecture 8 Page 24}$

How much time do we need to achieve a certain p_{metastable}?

$$P_{metstable}(t) = \frac{P_{transition}}{A} e^{-t/t}$$

$$e^{t/t} = \frac{P_{transition}}{A \times P_{metstable}(t)}$$

$$t = t \ln(\frac{P_{transition}}{A \times P_{metstable}(t)})$$

How Computers Work Lecture 8 Page 25

Example: How Long for 1 failure / year?

100 MHz Clock (t = 10 ns)

$$p_{transition} = 0.1$$

$$A = 10$$

 $\tau = 1 \text{ ns}$

$$P_{metstable} = \frac{P_{transition}}{A} e^{-t/t}$$
$$t = t \ln(\frac{P_{transition}}{A \times P_{metstable}})$$

$$t = t \ln(\frac{P_{transition}}{A \times P_{metstable}})$$

$$\begin{split} P_{metstable} &= 1 \, / \, (100 MHz \; . \; 1 \; year) \\ &= 1 \, / \, (10^8 \; x \; \pi \; x \; 10^{\; 7}) = \pi \; x \; 10^{\; -16} \end{split}$$

$$t=10^{\text{ -9}} \, ln($$
 0.1 / (10 x π x 10 $^{\text{ -16}}$)) = about 31 ns

How about 10 years instead of 1?

 $t = (10^{-9})\ln(pi \times 10^{-15}) = 33ns$

_ How Computers Work Lecture 8 Page 26

How often will failures occur if we wait 100 ns?

$$P_{metstable}(t) = \frac{P_{transition}}{A} e^{-t/t}$$
$$= \frac{0.1}{10} e^{-100} = 10^{-2} \times 10^{\frac{-100}{\ln(10)}}$$
$$\approx 10^{-45.4}$$

At 100 MHz, this is about 1 failure every 1030 YEARS!

Age of Hominids: 10 7
Age of Earth: 10 9
Age of Universe: 10 10

How Computers Work Lecture 8 Page 27

What did we Learn Today?

- If we violate setup or hold times, a flip-flop can give a random digital output.
- If we violate setup or hold times, we can't bound the propagation delay of a flip-flop.
- Metastability usually causes strange outputs, but flip-flops are sold that have valid, stable, outputs while internal nodes are metastable. They can still change their minds when coming out of metastability.
- In practice, we can choose a propagation time that will have a forever stable output "most" of the time.
- If we wait long enough (typ. 10-100 ns) "most of the time" is almost all of the time.
- We can easily detect when settling happens, but we can't say how long it will take.

_ How Computers Work Lecture 8 Page 29