David Salinas, Dominique Attali, André Lieutier

ips complex

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Simplification of simplicial complexes Towards the intrinsic dimension

David Salinas<sup>1</sup> Dominique Attali<sup>1</sup> André Lieutier<sup>2</sup>

<sup>1</sup>Gipsa-lab, Grenoble

<sup>2</sup>Dassault-système, Aix en provence

Workshop on Computational Topology at SoCG 2012

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Reconstruction problem

Data A finite point cloud P of a *d*-dimensional manifold M



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

## Reconstruction problem

Data A finite point cloud P of a d-dimensional manifold M

Goal Find a simplicial complex K that approximates M (such that  $K \simeq M$  or  $K \approx M$ )



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

#### Reconstruction problem

Data A finite point cloud  $P \subset \mathbb{R}^D$  of a d-dimensional manifold M

- D : ambient dimension
- d: intrinsic dimension

Hypothesis D >> d

Goal Find a simplicial complex K that approximates M in O(D)

#### Previous work

- α-shape [Edelsbrunner et al.]
- Tangential Delaunay Complexes [Boissonat et al.]
- Witness Complexes [Silva et al.]

David Salinas, Dominique Attali, André Lieutier

Rips complex

Extende

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Starting point : the Rips complex

$$\mathit{Rips}(P,\alpha) = \{ \sigma \mid \emptyset \neq \sigma \subset P, \mathit{diam}(\sigma) \leq 2\alpha \}$$



David Salinas, Dominique Attali, André Lieutier

#### Rips complex

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Starting point : the Rips complex

$$\mathit{Rips}(P,\alpha) = \{\sigma \mid \emptyset \neq \sigma \subset P, \mathit{diam}(\sigma) \leq 2\alpha\}$$



#### **Property**

The Rips complex is a flag complex

David Salinas, Dominique Attali, André Lieutier

#### Rips complex

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

## Rips complex

#### Rips complex



Compact data structure in high dimension [SOCG'11][IJCGA 12]

David Salinas, Dominique Attali, André Lieutier

#### Rips complex

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Rips complex



- © Compact data structure in high dimension [SOCG'11][IJCGA 12]
- © Correct homotopy type if the point cloud is "dense" enough [SOCG'10][SOCG'11]

David Salinas, Dominique Attali, André Lieutier

Rips complex

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

### Rips complex



- © Compact data structure in high dimension [SOCG'11][IJCGA 12]
- © Correct homotopy type if the point cloud is "dense" enough [SOCG'10][SOCG'11]
- © May have large simplicial dimension

David Salinas, Dominique Attali, André Lieutier

Rips complex

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary



David Salinas, Dominique Attali, André Lieutier

Rips complex

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary



David Salinas, Dominique Attali, André Lieutier

#### Rips complex

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summar



- Goal: find a sequence of simplification that will "crush the thickness"
- More formally, get a complex K such that :

$$K \approx M \text{ or } dim(K) = d$$

David Salinas, Dominique Attali, André Lieutier

#### Rips complex

Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Simplification of simplicial complexes

#### Edge contractions



David Salinas, Dominique Attali, André Lieutier

#### Rips complex

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Simplification of simplicial complexes

Edge contractions



Extended collapses



David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### Extended Collapse - cone

#### Definition

*K* is a **cone** if there exists  $o \in Vert(K)$  such that:

$$\forall \sigma \in K, o \cup \sigma \in K$$

In this case, K is a cone with apex o.



David Salinas, Dominique Attali, André Lieutier

Rips comple

### Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### Extended Collapse - cone

#### Definition

*K* is a **cone** if there exists  $o \in Vert(K)$  such that:

$$\forall \sigma \in K, o \cup \sigma \in K$$

In this case, K is a cone with apex o.



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibiliof Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summarv

## Extended Collapse - cone



David Salinas, Dominique Attali, André Lieutier

Rins comple

### Extended Collapse

Collapsibili of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## Extended Collapse - cone



David Salinas, Dominique Attali, André Lieutier

Rips comple:

## Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional

Experimenta

Summary

## Extended Collapse - cone



David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summar

#### Extended Collapse

#### Lemma

Let  $\sigma \in K$ 

If  $\mathsf{Lk}_{\mathcal{K}}(\sigma)$  is a cone then

• There exists a sequence of collapses from K to  $K \setminus \operatorname{St}_K(\sigma)$ 

David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summar

#### Extended Collapse

#### Lemma

Let  $\sigma \in K$ 

If  $Lk_K(\sigma)$  is a cone then

- There exists a sequence of collapses from K to  $K \setminus \operatorname{St}_K(\sigma)$
- $K \simeq K \setminus \operatorname{St}_K(\sigma)$

David Salinas, Dominique Attali, André Lieutier

Rips comple

### Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summar

#### Extended Collapse

#### Lemma

Let  $\sigma \in K$ 

If  $Lk_K(\sigma)$  is a cone then

- There exists a sequence of collapses from K to  $K \setminus \operatorname{St}_K(\sigma)$
- $K \simeq K \setminus \operatorname{St}_K(\sigma)$

#### **Definition**

If  $Lk_K(\sigma)$  is a cone then the operation  $K \to K \setminus St_K(\sigma)$  is called an **extended collapse** 

David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

## A less restrictive condition for the extended collapse operation

 The condition that allows one to make extended collapse is simple but quite restrictive



$$K \to K \setminus \mathsf{St}_K(ab)$$
 is an extended collapse



$$K o K \setminus \operatorname{St}_K(ab)$$
 is not an extended collapse but  $K \simeq K \setminus \operatorname{St}_K(ab)$ 

David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

# A less restrictive condition for the extended collapse operation

#### Lemma

Let  $\sigma \in K$ 

If  $Lk_K(\sigma)$  is a cone then

- There exists a sequence of collapses from K to  $K \setminus \operatorname{St}_K(\sigma)$
- $K \simeq K \setminus \operatorname{St}_K(\sigma)$

David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

# A less restrictive condition for the extended collapse operation

#### Lemma

Let  $\sigma \in K$ 

If  $Lk_K(\sigma)$  is a cone then

- There exists a sequence of collapses from K to  $K \setminus \operatorname{St}_K(\sigma)$
- $K \simeq K \setminus \operatorname{St}_K(\sigma)$

David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

# A less restrictive condition for the extended collapse operation

#### Lemma

Let  $\sigma \in K$ 

If  $Lk_K(\sigma)$  is collapsible then

- There exists a sequence of collapses from K to  $K \setminus \operatorname{St}_K(\sigma)$
- $K \simeq K \setminus \operatorname{St}_K(\sigma)$

David Salinas, Dominique Attali, André Lieutier

ips comple

## Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summar

## A less restrictive condition for the extended collapse operation

#### Lemma

Let  $\sigma \in K$ 

If  $Lk_K(\sigma)$  is collapsible then

- There exists a sequence of collapses from K to  $K \setminus St_K(\sigma)$
- $K \simeq K \setminus \operatorname{St}_K(\sigma)$

#### (new) Definition

If  $Lk_K(\sigma)$  is collapsible then the operation  $K \to K \setminus St_K(\sigma)$  is called an **extended collapse** 

David Salinas, Dominique Attali, André Lieutier

Rips comple

#### Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

## The collapsibility problem

#### Collapsibility problem:

Given a finite simplicial complex K, decide if there is a sequence of collapses from K to a point

David Salinas, Dominique Attali, André Lieutier

Rips comple

## Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

## The collapsibility problem

#### Collapsibility problem:

Given a finite simplicial complex K, decide if there is a sequence of collapses from K to a point

- Hard problem in general ( for example, deciding whether a 3-dimensional complex collapses to a 1-complex is NP-complete [Malgouyres] )
- Some geometric conditions known [Chillingworth et al]
   [Adiprasito et al]
- Here we are looking for a condition for collapsibility on Rips complexes

David Salinas, Dominique Attali, André Lieutier

Rips complex

Extende Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensiona

Experimenta

Summary

#### A result for 0-dimensional manifold

#### Theorem

Let  $\emptyset \neq P \subset \mathbb{R}^D$ . If Hull  $P \subset P^{\varepsilon}$  then

(i) 
$$K = \mathcal{R}(P, \alpha)$$
 is collapsible for  $\alpha \geq (2 + \sqrt{3})\varepsilon$ 

David Salinas, Dominique Attali, André Lieutier

Rips complex

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensiona manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

#### **Theorem**

Let  $\emptyset \neq P \subset \mathbb{R}^D$ . If Hull  $P \subset P^{\varepsilon}$  then

- (i)  $K = \mathcal{R}(P, \alpha)$  is collapsible for  $\alpha \ge (2 + \sqrt{3})\varepsilon$
- (ii) We can compute a sequence of extended collapse (vertices and edges) from  ${\cal K}$  to a single point

David Salinas, Dominique Attali, André Lieutier

Rips complex

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

#### Theorem

Let  $\emptyset \neq P \subset \mathbb{R}^D$ . If Hull  $P \subset P^{\varepsilon}$  then

- (i)  $K = \mathcal{R}(P, \alpha)$  is collapsible for  $\alpha \ge (2 + \sqrt{3})\varepsilon$
- (ii) We can compute a sequence of extended collapse (vertices and edges) from  ${\cal K}$  to a single point

 $Hull(P) \not\subset P^{\varepsilon}$ 



David Salinas, Dominique Attali, André Lieutier

Rips complex

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summar

#### A result for 0-dimensional manifold

#### Theorem

Let  $\emptyset \neq P \subset \mathbb{R}^D$ . If Hull  $P \subset P^{\varepsilon}$  then

- (i)  $K = \mathcal{R}(P, \alpha)$  is collapsible for  $\alpha \ge (2 + \sqrt{3})\varepsilon$
- (ii) We can compute a sequence of extended collapse (vertices and edges) from  ${\cal K}$  to a single point

$$Hull(P) \subset P^{\varepsilon}$$



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental

Summarv

#### A result for 0-dimensional manifold

#### **Theorem**

Let  $\emptyset \neq P \subset \mathbb{R}^D$ . If Hull  $P \subset P^{\varepsilon}$  then

- (i)  $K = \mathcal{R}(P, \alpha)$  is collapsible for  $\alpha \ge (2 + \sqrt{3})\varepsilon$
- (ii) We can compute a sequence of extended collapse (vertices and edges) from K to a single point



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

# A simplification algorithm for noiseless sample

 $\rightarrow$  Keep collapsing largest edge whose link is collapsible.

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

# A simplification algorithm for noiseless sample

ightarrow Keep collapsing largest edge whose link is collapsible.

$$H:=Edges(\mathcal{R}(P,\alpha))$$

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

### A simplification algorithm for noiseless sample

ightarrow Keep collapsing largest edge whose link is collapsible.

$$H:=Edges(\mathcal{R}(P,\alpha))$$
 While  $H \neq \emptyset$ 

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

### A simplification algorithm for noiseless sample

 $\rightarrow$  Keep collapsing largest edge whose link is collapsible.

$$H:=Edges(\mathcal{R}(P,\alpha))$$
 While  $H \neq \emptyset$ 

e:= extract the largest edge from H

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

### A simplification algorithm for noiseless sample

 $\rightarrow$  Keep collapsing largest edge whose link is collapsible.

$$\begin{aligned} \mathsf{H} &:= Edges(\mathcal{R}(P,\alpha)) \\ \mathbf{While} \ \ & H \neq \emptyset \\ & e := \ \mathsf{extract} \ \mathsf{the} \ \mathsf{largest} \ \mathsf{edge} \ \mathsf{from} \ \mathsf{H} \\ & \mathbf{If} \ (\mathsf{Lk}_{\mathcal{K}}(e) \ \mathsf{is} \ \mathsf{collapsible}) \ \mathbf{Then} \\ & \mathcal{K} := \mathcal{K} \setminus \mathsf{St}_{\mathcal{K}}(e) \end{aligned}$$

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende

Collapsibility of Rips

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

### A result for 1-dimensional manifold and noiseless sample

#### **Theorem**

Let M be a 1-dimensional manifold and  $P \subset M$  a finite point cloud.

If  $d_H(P, M) < \alpha < Reach(M)$  then the previous algorithm returns a complex homeomorphic to M

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

## An experiment on a 1-dimensional manifold

 A cat statue is placed on a motorized turntable



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional

Experimental results

Summarv

## An experiment on a 1-dimensional manifold



- A cat statue is placed on a motorized turntable
- Images of the statue are taken at pose interval of 5 degrees

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

## An experiment on a 1-dimensional manifold



- A cat statue is placed on a motorized turntable
- Images of the statue are taken at pose interval of 5 degrees
- We get 72 images of size 128×128

(drawing from Dominique Attali)

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summar

## An experiment on a 1-dimensional manifold



- A cat statue is placed on a motorized turntable
- Images of the statue are taken at pose interval of 5 degrees
- We get 72 images of size 128x128

(images originated from Columbia University Image Library database)

David Salinas, Dominique Attali, André Lieutier

Rips comple:

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

## An experiment on a 1-dimensional manifold

• Data: 72 images of the cat statue



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

# An experiment on a 1-dimensional manifold

- Data: 72 images of the cat statue
- We build the rips complex of these points



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

## An experiment on a 1-dimensional manifold

- Data: 72 images of the cat statue
- We build the rips complex of these points
- We get a complex of dimension 1 which is a discrete
   1-dimensional manifold



David Salinas, Dominique Attali, André Lieutier

Rips complex

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensiona manifold

Experimental results

Summary

- Now let just suppose that  $d_H(P, M) \le \varepsilon$
- Previous algorithm does not work anymore



David Salinas, Dominique Attali, André Lieutier

Rips complex

Extende

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

- Now let just suppose that  $d_H(P, M) \le \varepsilon$
- Previous algorithm does not work anymore



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

- Now let just suppose that  $d_H(P, M) \le \varepsilon$
- Previous algorithm does not work anymore



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

- Now let just suppose that  $d_H(P, M) \le \varepsilon$
- Previous algorithm does not work anymore
- But it seems to work with vertex extended-collapses



David Salinas, Dominique Attali, André Lieutier

Rins comple

Extende

Collapsibilit of Rips complexes

A theoretical result for 1-dimensiona

Experimental results

Summary

### New simplification algorithm

 $\rightarrow$  Keep collapsing vertex whose link is collapsible.

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

### New simplification algorithm

→ Keep collapsing vertex whose link is collapsible.

→ Keep collapsing largest edge whose link is collapsible.

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende

Collapsibilit of Rips complexes

A theoretical result for 1-dimensiona manifold

Experimental results

Summary

### An experiment on a 2-dimensional manifold A 2-sphere



 Data: 200000 points on a Ramesses statue

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

### An experiment on a 2-dimensional manifold A 2-sphere



- Data: 200000 points on a Ramesses statue
- We build the Rips complex of these points (1804581 tetrahedrons)

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extende

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summarv

## An experiment on a 2-dimensional manifold A 2-sphere



- Data: 200000 points on a Ramesses statue
- We build the Rips complex of these points (1804581 tetrahedrons)
- We get a 2-dimensional simplicial complex that is homeomorphic to the 2-sphere

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibili of Rips complexes

A theoretical result for 1-dimensiona manifold

Experimental results

Summary

# An experiment on a 3-dimensional manifold SO(3)

• We sample SO(3) with 10000 points in  $\mathbb{R}^9$ 

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

# An experiment on a 3-dimensional manifold SO(3)

- We sample SO(3) with 10000 points in  $\mathbb{R}^9$
- We build the Rips complex of these points

10000 vertices 195664 edges 1108808 triangles 3000682 tetrahedrons 4642250 4-simplices

. . .

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

# An experiment on a 3-dimensional manifold SO(3)

- We sample SO(3) with 10000 points in  $\mathbb{R}^9$
- We build the Rips complex of these points

10000 vertices

195664 edges

1108808 triangles

3000682 tetrahedrons

4642250 4-simplices

. . .

• We get a simplicial complex with

4602 vertices

31948 edges

54716 triangles

27370 tetrahedrons and ...

David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimental results

Summary

# An experiment on a 3-dimensional manifold SO(3)

- We sample SO(3) with 10000 points in  $\mathbb{R}^9$
- We build the Rips complex of these points

10000 vertices

195664 edges

1108808 triangles

3000682 tetrahedrons

4642250 4-simplices

. . .

• We get a simplicial complex with

4602 vertices

31948 edges

54716 triangles

27370 tetrahedrons and ...

0 4-simplices

David Salinas, Dominique Attali, André Lieutier

ps comple

Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensiona manifold

Experimenta results

Summary

### Summary

Collapses seem efficient for simplifying Rips complexes

0-dimensional Possible to collapse rips complex of points close from a convex

- 1-dimensional We can simplify a Rips complex to a complex homeomorphic to the original manifold (without noise)
- 2-dimensional Good behavior in practice, we often get a complex homeomorphic to the original manifold

#### Future work:

 Prove that under density conditions, our algorithm always return a complex homeomorphic to the original manifold

David Salinas, Dominique Attali, André Lieutier

Rins comple

Extende

Collapsibility of Rips complexes

A theoretical result for 1-dimensiona manifold

Experimenta

Summary



David Salinas, Dominique Attali, André Lieutier

Rips comple

Extended

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof

David Salinas, Dominique Attali, André Lieutier

ips comple

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof

Let 
$$o \in P$$
 and  $G(t) = Flag(Nerve(\{B(p, \alpha) \cap B(o, t), p \in P\}))$ 



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

#### A result for 0-dimensional manifold

Idea of the proof



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta results

Summary

#### A result for 0-dimensional manifold

Idea of the proof

Let 
$$o \in P$$
 and  $G(t) = Flag(Nerve(\{B(p, \alpha) \cap B(o, t), p \in P\}))$ 



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof

Let 
$$o \in P$$
 and  $G(t) = Flag(Nerve(\{B(p, \alpha) \cap B(o, t), p \in P\}))$ 



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended Collapse

Collapsibilit of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof

Let 
$$o \in P$$
 and  $G(t) = Flag(Nerve(\{B(p, \alpha) \cap B(o, t), p \in P\}))$ 



David Salinas, Dominique Attali, André Lieutier

ips comple

Extended Collapse

Collapsibility of Rips complexes

A theoretical result for 1-dimensional manifold

Experimenta

Summary

#### A result for 0-dimensional manifold

Idea of the proof

