Stability analysis of linear systems

University of Ulsan Prof. KIM

©2023-2024 All rights reserved

Contents

- Preliminaries
- Hurwitz stability (for linear systems)
- Lyapunov stability (for linear systems)
- Robust stability (for uncertain linear systems)
- \mathcal{H}_{∞} stability (for linear systems with disturbances)

1 Preliminaries

• The state-space model of linear time-invariant systems is given as

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

where $x(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$ denote the state vector and the control input vector, respectively.

• When $u(t) \equiv 0$, the state-space model reduces to

$$\dot{x}(t) = Ax(t) \tag{2}$$

which is called the **autonomous** system.

2 Stability analysis

Definition 1. Stability is the ability of an autonomous system to drive its state towards a desired equilibrium point (often denoted as the origin) over time, even if the system starts from non-zero initial conditions.

More formally, if for every initial state x(0), the following condition holds when $u(t) \equiv 0$:

$$\lim_{t \to \infty} x(t) = 0 \tag{3}$$

then system (2) can be said to be **stable** at the origin.

2.1 Hurwitz stability criterion

ullet It is worth noting that the eigenvalue of matrix A corresponds to the pole of the transfer function.

Example 2.1. Consider

$$\ddot{y}(t) + a\dot{y}(t) + by(t) = u(t).$$

• The autonomous system is stable if and only if matrix A has all its eigenvalues in the open left-half plane \mathbb{C}^- .

"system is stable"
$$\Leftrightarrow \mathbf{Re}[\lambda(A)] < 0, \forall i = 1, 2, \dots, n.$$

Example 2.2. Find the eigenvalue of A given by

$$A = \left[\begin{array}{cc} -1 & -2 \\ 1 & -4 \end{array} \right]$$

and assess the stability of $\dot{x}(t) = Ax(t)$.

Example 2.3. Find the range of k such that $\dot{x}(t) = Ax(t)$ is stable, where

$$A = \left[\begin{array}{cc} -1+k & -2 \\ 1 & -4 \end{array} \right].$$

2.2 Lyapunov stability

• The Lyapunov stability is a well-known method for evaluating the stability of

$$\dot{x}(t) = Ax(t).$$

• To employ the Lyapunov stability method effectively, our first step is to select a proper **Lyapunov function**, described as V(t).

• In linear systems, the standard choice for a Lyapunov function is as follows:

$$V(t) = x^{T}(t)Px(t) \tag{4}$$

and $P \in \mathbb{R}^{n \times n}$ must be symmetric and positive definite.

• The Lyapunov function becomes a positive real-valued function:

$$V(t) = x^{T}(t)Px(t) > 0, \ \forall x(t) \neq 0.$$

Lemma 1 (Lyapunov stability criterion). If it holds that

$$\dot{V}(t) < 0 \tag{5}$$

system (2) can be said to be stable at the origin.

Proof: If (5) holds, then V(t) is strictly monotonically decreasing. Accordingly, V(t) converges to zero as time goes to infinity:

$$\lim_{t \to \infty} x^T(t) Px(t) = 0.$$

Since P > 0, this limitation is achieved when the state x(t) converges to the origin, written as follows:

$$\lim_{t \to \infty} x(t) = 0.$$

As a result, according to Definition 1, we can claim that system (2) is stable at the origin.

- Now, the Lyapunov stability criterion in (5) will be transformed into a set of linear matrix inequalities (LMIs).
- This is because LMIs can be solved through numerical tools that use various optimization techniques.

With this aim, the following lemma provides a set of LMIs to assess the stability of (2).

Lemma 2. Suppose that there exists a symmetric matrix P that satisfies

$$P > 0 \tag{6}$$

$$A^T P + PA < 0. (7)$$

Then, system (2) is stable at the origin.

Proof: From (4), it follows that

$$\dot{V}(t) = \dot{x}^T(t)Px(t) + x^T(t)P\dot{x}(t)$$

$$= x^T(t)A^TPx(t) + x^T(t)PAx(t)$$

$$= x^T(t)\left(A^TP + PA\right)x(t).$$

Thus, if (7) holds, it is satisfied that $\dot{V}(t) < 0$.

Therefore, according to Lemma 1, we can claim that system (2) is stable at the origin. \blacksquare

Example 2.4. By specifying $P = \operatorname{diag}(p_1, p_2) > 0$, show the stability of (2) with

$$A = \left[\begin{array}{cc} -1 & -2 \\ 1 & -4 \end{array} \right].$$

And when $p_1 = 1$, provide a possible value of $p_2 > 0$.

Example 2.5. Using the robust toolbox in MATLAB, analyze the stability of (2) with

$$A = \left[\begin{array}{cc} -1 & -2 \\ 1 & -4 \end{array} \right].$$

Example 2.6. The following inequality provides the exponential stability criterion:

$$\dot{V}(t) < -\alpha V(t), \ \alpha > 0.$$

Please formulate a set of linear matrix inequalities to check this stability criterion.

2.3 Robust stability

- Robust stability is the ability of an autonomous system to remain stable despite variations or uncertainties in its parameters.
- For this reason, robust stability analysis is addressed considering the following uncertain linear system:

$$\dot{x}(t) = (A + \Delta A)x(t) \tag{8}$$

where $\Delta A \in \mathbb{R}^{n \times n}$ denotes the parameter uncertainty.

Definition 2. If system (8) maintains stability even in the presence of uncertainty, it is said that the system is **robustly stable**.

• As studied in Chap. 1, the following decomposition is available:

$$\Delta A = E \Upsilon H \tag{9}$$

where $E \in \mathbb{R}^{n \times p}$ and $H \in \mathbb{R}^{q \times n}$ are known real constant matrices; and $\Upsilon \in \mathbb{R}^{p \times q}$ is an unknown time-varying or time-invariant matrix satisfying

$$\Upsilon^T \Upsilon \le I. \tag{10}$$

The following two lemmas will be used to obtain the robust stability condition in terms of LMIs.

Lemma 3. For a positive scalar ϵ and any matrices $M \in \mathbb{R}^{r \times s}$ and $N \in \mathbb{R}^{s \times r}$, the following inequality holds:

$$\mathbf{He}\{MN\} \le \epsilon^{-1} M M^T + \epsilon N^T N.$$

Example 2.7. For

$$M = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ N = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

provide ϵ to minimize the maximum eigenvalue of

$$\epsilon^{-1}MM^T + \epsilon N^T N$$
.

Lemma 4 (Schur complement). For any matrices $S = S^T$, $R = R^T$, and N, if the following condition is satisfied:

$$\begin{bmatrix} S & N \\ ---+- \\ N^T & R \end{bmatrix} < 0 \left(\text{ or } \begin{bmatrix} R & N^T \\ --+-- \\ N & S \end{bmatrix} < 0 \right)$$
 (11)

then it holds that

$$S - NR^{-1}N^T < 0, \ S < 0, \ R < 0. \tag{12}$$

Example 2.8. Without using the eigenvalue approach, provide the condition of k such that the following inequality holds:

$$\begin{bmatrix} -1+k & 2\\ 2 & -5 \end{bmatrix} < 0.$$

Example 2.9. Find the condition of k such that the following inequality holds:

$$\begin{bmatrix} -1+k & 2 & 1 \\ 2 & -5 & 0 \\ 1 & 0 & -1 \end{bmatrix} < 0.$$

The following theorem provides a set of linear matrix inequalities (LMIs) for robust stability.

Theorem 1. System (8) is robustly stable at the origin if there exist a symmetric matrix P and a positive scalar ϵ satisfying

$$P > 0 \tag{13}$$

Example 2.10. Analyze the robust stability of (8) through the utilization of MATLAB:

$$A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}, E = \begin{bmatrix} 1 \\ 0.1 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Remark 1. Let us recall the following robust stability condition:

$$\mathbf{He}\{PA\} + \underbrace{\left(\epsilon^{-1}PEE^{T}P + \epsilon H^{T}H\right)}_{>0} < 0.$$

If the maximum eigenvalues of matrices EE^T and H^TH are larger, then it becomes more difficult to identify a feasible matrix P.

For instance, from
$$\Delta A = \begin{bmatrix} -\delta R & -\delta \\ 0 & 0 \end{bmatrix}$$
 with $\delta \in [-0.1, 0.1]$, it

follows that

$$\Delta A = \begin{bmatrix} -1 \\ 0 \end{bmatrix} (\delta) \begin{bmatrix} R & 1 \end{bmatrix} \mapsto \lambda_{\max}(EE^T) = 1$$

$$= \begin{bmatrix} -0.1 \\ 0 \end{bmatrix} (10\delta) \begin{bmatrix} R & 1 \end{bmatrix} \mapsto \lambda_{\max}(EE^T) = 0.01.$$

2.4 \mathcal{H}_{∞} stability

• This stability requires to simultaneously analyze (i) the stability and (ii) the \mathcal{H}_{∞} performance for the following linear systems with external disturbances:

$$\begin{cases} \dot{x}(t) = Ax(t) + Nw(t) \\ z(t) = Gx(t) \end{cases}$$
 (18)

- As mentioned, $w(t) \in \mathbb{R}^d$ denotes the external disturbances, and $z(t) \in \mathbb{R}^q$ denotes the performance output.
- To consider the \mathcal{H}_{∞} performance, it is essential to assume that $w(t) \in \mathcal{L}_2$, that is,

$$\int_0^\infty w^T(\tau)w(\tau)d\tau < \infty.$$

Definition 3. If the following two conditions hold:

- (i) for $x(0) \neq 0$ and w(t) = 0,
 - $\dot{V}(t) < 0 :\sim \text{stability criterion}$
- (ii) for x(0) = 0 and $w(t) \neq 0$,

$$\int_0^\infty z^T(\tau)z(\tau)d\tau \le \gamma^2 \int_0^\infty w^T(\tau)w(\tau)d\tau :\sim \mathcal{H}_\infty \text{ performance}$$

then it can be said that (18) is stable and has an \mathcal{H}_{∞} disturbance attenuation level γ .

The following lemma provides the \mathcal{H}_{∞} stability criterion.

Lemma 5. If it holds that

$$\dot{V}(t) + z^{T}(t)z(t) - \gamma^{2}w^{T}(t)w(t) < 0$$
(19)

then system (18) is stable and has an \mathcal{H}_{∞} disturbance attenuation level γ .

The following theorem provides a set of linear matrix inequalities (LMIs) for (19).

Theorem 2. System (18) is stable and has an \mathcal{H}_{∞} disturbance attenuation level γ , if there exist a symmetric matrix $P \in \mathbb{R}^{n \times n}$ and a positive scalar γ satisfying

$$P > 0 (22)$$

$$\begin{bmatrix} \mathbf{He}\{PA\} + G^T G & PN \\ N^T P & -\gamma^2 I \end{bmatrix} < 0.$$
 (23)

Example 2.11. Analyze the \mathcal{H}_{∞} stability of (8) through the utilization of MATLAB:

$$A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}, \ N = \begin{bmatrix} 1 \\ 0.1 \end{bmatrix}, \ G = \begin{bmatrix} 1 & 0 \end{bmatrix}, \ \gamma = 0.64.$$

What happens when γ becomes less than 0.64?

Example 2.12. Obtain a set of linear matrix inequalities (LMIs) that ensures the robust \mathcal{H}_{∞} stability of

$$\begin{cases} \dot{x}(t) = (A + \Delta A)x(t) + Nw(t) \\ z(t) = Gx(t). \end{cases}$$

Simulation report: Recall Example 2.2 in Chap.1, which addresses the state-space model of a dc servomotor. The parameter values are configured as follows:

$$R_a = 5.385, \ L_a = 3.694 \times 10^{-3}, \ K_T = K_\theta = 0.0583$$

 $J = 6.88627 \times 10^{-6}, \ B = 3.1346 \times 10^{-5} \pm 20\%.$

Note that B (:~ viscous friction coefficient) has an uncertainty of $\pm 20\%$. Using the LMIs obtained in Example 2.12, for

$$N = \left[egin{array}{c} 0.1 \\ 0.01 \\ 0 \end{array}
ight], \; G = \left[egin{array}{ccc} 1 & 0 & 0 \end{array}
ight]$$

(1) find the minimum value of γ (i.e., \mathcal{H}_{∞} performance level) through the utilization of MATLAB, and (2) **report** the overall process.