

р-п Преход

1

Формиране на р-п преход

Основни токоносители – свободни електрони и дупки, дифундират през прехода поради разликата в концентрациите им от двете страни на прехода.

Обратно на свободните токоносители, **йоните никога не се движат**. Те остават фиксирани във възлите на кристалната решетка поради ковалентни връзки в полупроводниковата структура.

Обеднен слой

Когато електрон напусне n областта, той оставя след себе си некомпенсиран положителен йон. При това се създава положителен обемен заряд от дясно на прехода в n-областта.

Аналогично, при напускане на дупки, от лявата страна на прехода в р-областта ще се създаде отрицателен обемен заряд.

3

Бариерен потенциал и ел.поле

Некомпенсираните положително- и отрицателно-заредени йони в обеднения слой формират електрическо поле E_0 и бариерен потенциал U_0 .

При стайна температура (25 °C) бариерният потенциал за Si диоди е приблизително 0.7V.

Волт-Амперна характеристика на диод с р-п преход 30 25 Reverse Breakdown Forward 20 15 (Am) / 10 $V_{\rm d}$ -52 -51 -50 -49 V (V) 8

Уравнение на идеализиран диод (уравнение на Шокли)

$$I = I_s(e^{\frac{U}{\varphi_T}} - 1)$$

$$\varphi_T = \frac{kT}{q}$$
 $\varphi_T = 0.0258 \, \text{V}$ sa $T = 25 \, ^{\circ}\text{C}$

I – ток през диода

Is – ток на насищане при обратно включване

U – напрежение върху диода

 $\varphi_{\scriptscriptstyle T}$ – топлинен потенциал

k – константа на Болцман

Т – абсолютна температура

q – заряд на електрона

$$U = \varphi_T \ln \left(\frac{I}{I_S} + 1 \right)$$

9

Ток на насищане

Figure 2. Typical Reverse Current

 $I_{\rm s}$ се удвоява на всеки 10 °С увеличение на температурата.

Тъй като обратният ток се формира от топлинно генерирани неосновни токоносители, той силно зависи от изменението на температурата.

Пробив

Пробивът е явление, при което рязко нараства обратният ток при оставащо почти постоянно обратно напрежение U_{BR} .

Според механизма на пробив се различават:

- Топлинен пробив
- Електрически пробив
 - Лавинен пробив
 - Ценеров пробив

13

Лавинен пробив

Влияние на температурата – положителен температурен коефициент

Ако Т↑ то U ↑ при I=const

Неосновните токоносители, ускорени от полето, при сблъсък с атомите ги йонизират и се създават електрон и дупка. Процесът продължава лавинообразно, причинявайки рязко нарастване на тока.

Лавинният пробив настъпва в широки PN преходи при обратни напрежения над 6.2V.

Ценеров пробив

Влияние на температурата – отрицателен температурен коефициент

Ако Т↑ то U↓ при I=const

При достатъчно голямо електрическо поле се разкъсват ковалентни връзки и се създават допълнителни електрони и дупки – Ценеров ефект. Изискват се стойности на полето от порядъка на 300 000 V/cm.

Ценеров пробив настъпва при много тесни PN преходи при обратни напрежения под 5V.

15

Топлинен пробив

Топлинният е необратим и довежда до разрушаване на диода.

С увеличаване на околната температура пробивът настъпва при по-ниско напрежение, защото нараства обратният ток и се влошават условията за охлаждане