BOLYAI-KÖNYVEK SOROZAT

A könyv a Műszaki Kiadó Bolyai sorozatának hetedik tagja, amely a matematikai logika legfontosabb alapfogalmaival és alkalmazásaival ismerteti meg az olvasót. A példatár előnye, hogy az elméleti anyagot feladatsorokon keresztül dolgozza fel, az alapoktól indulva eljut a matematikán belüli alkalmazások bemutatásáig (axiómarendszerek vizsgálata) és a műszaki alkalmazásokig.

A könyv szerkezete igen alkalmas az önálló tanulásra is. Az egyes fejezetek három részre oszlanak: a szerző először a legfontosabb tételeket, fogalmakat foglalja össze, ezekhez példák kapcsolódnak, majd az önálló megoldásra szánt feladatok következnek, amelynek megoldásait az olvasó minden fejezet végén megtalálhatja.

A könyvben helyet kaptak többek között a halmazalgebra és logikai alkalmazásai, a kijelentés-logika és alkalmazásai, a következtetési szabályok, az axiomatizálás, valamint az elsőrendű logikák és alkalmazásaik.

A könyvet elsősorban egyetemi és főiskolai hallgatóknak ajánljuk, illetve azoknak a középiskolás diákoknak, akik a reáltudományok terén kívánják folytatni a tanulmányaikat.

BOLYAI-KÖNYVEK

URBÁN JÁNOS

MATEMATIKAI LOGIKA

$$A \wedge \{B \vee C\} = (A \wedge B) \vee \{A \wedge C\} \qquad A \vee \{B \wedge C\} = (A \vee B) \wedge (A \vee C)$$

$$A \wedge (A \vee B) = A \qquad \qquad A \vee (A \wedge B) = A$$

$$A \wedge A = A \qquad \qquad A \vee A = A$$

$$\neg (A \wedge B) = \neg A \vee \neg B \qquad \neg (A \vee B) = \neg A \wedge \neg B$$

$$\neg \neg A = A.$$

$$A \rightarrow B = \neg A \vee B \qquad A \leftrightarrow B = (\neg A \vee B) \wedge (A \vee \neg B)$$

$$A \mid B = \neg (A \wedge B) \qquad A \mid B = \neg (A \vee B)$$

$$A \oplus B = (A \wedge \neg B) \vee (\neg A \wedge B)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \qquad \neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\forall x (P(x) \wedge Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x) \qquad \exists x (P(x) \vee Q(x)) \equiv \exists x P(x) \vee \exists x Q(x).$$

Következtetési szabályok:

$$A, A \to B \vDash B \qquad \qquad \neg A \to \neg B, B \vDash A$$

$$A \to B \vDash \neg B \to \neg A \qquad \neg A \to B \vDash B \to A$$

$$A \to B, B \to C \vDash A \to C \qquad \neg A \to B, \neg A \to \neg B \vDash A$$

$$\forall x(P(x) \to Q(x)), \forall x(Q(x) \to R(x)) \vDash \forall x(P(x) \to R(x))$$

$$\forall x \neg R(x, x), \forall x \forall y \forall z((R(x, y) \land R(y, z)) \to R(x, z)) \vDash \forall x \forall y(R(x, y) \to \neg R(y, x))$$

$$\forall x \forall y(R(x, y) \to R(y, x)), \forall x \forall y \forall z((R(x, y) \land R(y, z)) \to \neg R(x, z)), \forall x \exists y R(x, y) \vDash \forall x R(x, x).$$

URBÁN JÁNOS

A BOLYAI-SOROZAT KÖTETEI:

Bárczy Barnabás: Differenciálszámítás Solt György: Valószínűségszámítás Lukács Ottó: Matematikai statisztika

Scharnitzky Viktor: Differenciálegyenletek

Bárczy Barnabás: Integrálszámítás Scharnitzky Viktor: Mátrixszámítás Urbán János: Matematikai logika Urbán János: Határérték-számítás

Fekete Zoltán-Zalay Miklós: Többváltozós függvények analízise

MATEMATIKAI LOGIKA

PÉLDATÁR

4. kiadás

Lektorálta: Szécsényi Tibor okl. matematikus

TARTALOM

© Dr. Urbán János, Budapest, 1983, 20	O	Dr. U	rbán .	János,	Budapest,	1983,	200
---------------------------------------	---	-------	--------	--------	-----------	-------	-----

© Hungarian edition Műszaki Könyvkiadó, 2001

ISBN: 963 10 4683 4 (első kiadás)

ISBN: 963 16 3035 8 ISSN: 1216-5344

Bevezetés	
I. A halmazalgebra és logikai alkalmazásai	
I. Halmaz, részhalmaz	
2. Műveletek halmazokkal	14
3. A halmazalgebra logikai alkalmazásai	22
Az I. fejezetben kitűzött feladatok megoldásai	20
II. A kijelentėslogika	
I. A logikai műveletek és tulajdonságaik	3
2. Igazságfüggvények, normálformák	
3. Az igazságfüggvények néhány fontos osztálya	5
4. Teljes függvényrendszerek	6
A II. fejezetben kitűzőtt feladatok megoldásai	7
III. A kijelentéslogika alkalmazásai	9
I. Logikai áramkörök, automaták	9
2. Minimalizálási módszerek	
3. Relés áramkörök szerkezete és bonyolultsága	12
A III. fejezetben kitűzött feladatok megoldásai	14
IV. Következtetési szabályok, axiomatizálás	
I. A következményfogalom	16
2. A kijelentėslogika axiomatizalasa	
3. Boole-algebrák	
A IV. fejezetben kitűzött feladatok megoklásai	
V. Elsőrendű logikák és alkalmazásaik	
1. Relációk és kvantorok	
2. Modellek, azonosságok, azonosan igaz formulák, következt	tetė-
si szabályok	
3. Kielégithetőség, eldöntésprobléma, bizonyításelmélet	
Az V. fejezetben kitűzött feladatok megoldásai	

BEVEZETÉS

Ennek a feladatgyűjteménynek az a célja, hogy a matematikai logika legfontosabb alapfogalmaival és alkalmazásaival ismertesse meg az Olvasót. A feladatgyűjtemény anyagának megértése nagyon kevés konkrét matematikai előismeretet tételez fel (nagyjából a gimnázium első két osztályának matematika-tananyagát), de a fogalmak megértése, a feladatok megoldása komoly matematikai érdeklődést és absztrakciós készséget igényel. A matematikai logika olyan részeit itt nem tárgyaljuk, amelyeknek megértéséhez szükség lenne a végtelen halmazok számosságával, ill. matematikai axiómarendszerekkel kapcsolatos ismeretekre.

A példatár egyes pontjai általában három részre tagolódnak. A bevezetőben röviden összefoglaljuk a legfontosabb fogalmakat, tételeket. Ezek alkalmazásaként gyakorló feladatok következnek – ezek megoldása közvetlenül a kitűzés után következik – majd a pont végén önálló megoldásra szánt feladatok következnek. A kitűzött feladatok megoldását minden fejezet végén, egy helyen találja meg az Olvasó.

A gyakorló feladatok és a feladatok anyagában sok fontos elméleti ismeret található. Az is előfordul, hogy fogalmak definicióját, tételek megfogalmazását is itt találja meg az Olvasó. Aki a matematikai logika alapjainak rendszeres felépítését akarja megismerni, annak számára fontos, hogy sorra vegye és lehetőleg önállóan oldja meg – a gyakorló feladatokat és feladatokat.

Az azonosságokban – amint azt a tárgyalás során majd indokoljuk – mindenhol egyenlőségjelet írtunk.

A képletek, formulák, gyakorló feladatok és feladatok számozása minden római számmal jelzett fejezetben újra kezdődik. Ha egy formula sorszámára vagy gyakorló feladatra, feladatra hivatkozunk, akkor annak a fejezetnek a megfelelő formulájáról, gyakorló feladatáról, feladatáról van szó, amelyben a hivatkozás előfordul. Ellenkező esetben mindig utalunk a megfelelő fejezetre is.

Könnyebben követhető, a többi rész ismerete nélkül is feldolgozható részt alkotnak a feladatgyűjtemény következő fejezetei és pontjai: I. fejezet, II. fejezet 1. és 2. szakasz, IV. fejezet 1. szakasz, V. fejezet 1. és 2. szakasz. Az elméleti logikai ismereteket az I., II., IV. és V. fejezet tartalmazza; ez a rész is önálló, összefüggő egészet alkot. A III. fejezet a matematikai logika műszaki alkalmazásaival foglalkozik.

Megjegyezzük még, hogy a matematikai logikában – a matematika sok más ágához hasonlóan – nem alakult ki egységesen elfogadott jelölésrendszer és terminológia. Ebben a feladatgyűjteményben a magyar nyelven általában meghonosodott – nagyrészt Kalmár László által bevezetett – terminológiát használjuk, de esetenként megemlítünk más, újabb elnevezéseket is.

A szerző

I. A HALMAZALGEBRA ÉS LOGIKAI ALKALMAZÁSAI

1. Halmaz, részhalmaz

A hétköznapi életben, a tudományokban és különösen a matematikában nagyon gyakran találkozunk bizonyos tárgyak, dolgok, fogalmak összességével. A matematikában ezeket az összességeket halmazoknak nevezzük. A hétköznapi szóhasználatban általában bizonyos közös tulajdonság alapján szoktunk tárgyakat, dolgokat egy csoportba, egy halmazba tartozónak tekinteni. A halmaz matematikai fogalmában ez a szempont nem lényeges. A matematikában egy halmazt akkor tekintünk adottnak, ha tudjuk, mik az elemei, azaz bármely dologról meg tudjuk mondani, hogy a halmaznak eleme-e vagy sem. Ennek megfelelően két halmazt egyenlőnek tekintünk, ha ugyanazok az elemei. Például az "Anna" szó betűiből álló halmaz azonos a "na" szó betűiből álló halmazzal, ezt a halmazt igy is szoktuk jelölni: {a, n}, azaz kapcsos zárójelben felsoroljuk a halmaz elemeit. Azt a tényt, hogy az "a" betű eleme az $\{a, n\}$ halmaznak, röviden így jelöljük:

$$a \in \{a, n\}.$$

Annak rövid jelölésére pedig, hogy a "b" betű nem eleme az {a, n} halmaznak, a következő jelsorozatot használjuk:

$$b \notin \{a, n\}.$$

A kapcsos zárójeles jelölést halmazok megadására akkor is alkalmazzuk, ha ténylegesen nem tudjuk, vagy nem akarjuk felsorolni a halmaz öszszes elemét, például:

```
\{n: n \text{ természetes szám}, 0 \le n \le 100\}
```

jelöli a 100-nál nem nagyobb természetes számok halmazát. A természetes számok végtelen sok elemet tartalmazó halmazának szokásos jelölése

 $\{0, 1, 2, \dots, n, \dots\},\$

vagy

$$\left\{\frac{p}{q}: p, q > 0, p, q \text{ egész}\right\}$$

a pozitív törtszámok halmazát jelöli.

Ha egy A halmaz minden eleme eleme a B halmaznak is, akkor azt mondjuk, hogy A részhalmaza B-nek. Röviden: "A része B-nek", és ezt így jelöljük:

$$A \subset B$$
.

Érdemes megjegyezni, hogy ez a megállapodás egyben azt is jelenti, hogy minden A halmaz része saját magának, azaz tetszőleges A halmazra igaz, hogy $A \subset A$. Ha az A és a B halmazról tudjuk, hogy $A \subset B$, de $A \neq B$, azaz B-nek van olyan eleme, ami nem eleme A-nak, akkor azt mondjuk, hogy A valódi része B-nek.

Gyakorló feladatok

- 1. lgazoljuk, hogy tetszőleges A. B és C halmazokra teljesül:
- a) ha $A \subseteq B$ és $B \subseteq A$, akkor A = B;
- b) ha $A \subset B$ és $B \subset C$, akkor $A \subset C$.

Megoldás:

- a) A részhalmazfogalom alapján $A \subset B$ azt jelenti, hogy ha $x \in A$, akkor $x \in B$ is, másrészt tudjuk, hogy $B \subset A$ is igaz, tehát $x \in B$ -ből $x \in A$ következik. Ez azt jelenti, hogy az A és B halmaznak ugyanazok az elemci, tehát A = B.
- h) Mivel $A \subset B$, tetszőleges $x \in A$ -ról tudjuk, hogy $x \in B$ is igaz, de $B \subset C$ miatt akkor $x \in C$ is teljesül. Ez azt jelenti, hogy A minden eleme eleme C-nek is, tehát $A \subset C$.
- **2.** Jelöljük |A|-kel az A véges halmaz elemeinek számát. Igazoljuk, hogy ha |A| = n, akkor A-nak 2^n számú különböző részhalmaza van!

Megoldás:

Először vizsgáljuk az n = 3 esetet, azaz legyen

$$A = \{a, b, c\}.$$

Az A összes részhalmazát a következőképpen sorolhatjuk fel:

az üres halmaz: Ø.

egyelemű halmazok: $\{a\}, \{b\}, \{c\},$

kételemű halmazok: $\{a, b\}$, $\{a, c\}$, $\{b, c\}$,

az A halmaz: $\{a, b, c\}$.

A részhalmazok száma: 8. Érdemes észrevenni, hogy az egyes részhalmazokat a következő módszerrel is kiválaszthatjuk: a halmaz elemeinek jele alá rendre a 0 vagy 1 számjegyet írjuk, a 0 azt jelöli, hogy a felette álló elemet nem választjuk be a részhalmaz elemei közé, az 1 pedig azt, hogy az elemet beválasztjuk a részhalmazba. Például az $\{a,c\}$ részhalmaz kiválasztását így végezhetjük:

$$\{a,b,c\}.$$

1.0 I

Ez a módszer adja az ötletet az általános eset vizsgálatához is. Legyen |A| = n és jelöljük a_i -vel (i = 1, 2, ..., n) az A halmaz elemeit. Ekkor az $A = \{a_1, a_2, ..., a_n\}$ halmaznak annyi különböző részhalmazát tudjuk kiválasztani, ahányféleképpen az elemek alá 0-kból és 1-esekből álló különböző sorozatot tudunk irni. Ez utóbbiak számát könnyű összeszámolni, hiszen az n hely mindegyikére 0-t vagy 1-et írhatunk. Így minden helyre két lehetőségünk van, ez összesen 2^n lehetőség, ennyi tehát a részhalmazok száma is. (Láttuk, hogy n = 3 esetén ez a szám $8 \neq 2^3$.)

A 2. gyakorló feladatra érdemes még egy másik bizonyítási módot is végiggondolni. Most először azt a speciális esetet vizsgáljuk, amikor az A halmaz kételemű:

$$A = \{a, b\}.$$

Ennek részhalmazai:

$$\{a\}, \ \frac{\emptyset,}{\{a,b\},} \ \{b\},$$

Vizsgáljuk meg, hogyan változik meg a részhalmazok száma, ha az A halmazhoz még egy új elemet hozzáveszünk!

 $\{a, b, c\}$ részhalmazai között most is szerepelnek az előző halmazok, de mindegyikből még egy további részhalmazt kapunk, ha az új, c elemet hozzávesszük:

$$\{a,c\}, \frac{\{c\},}{\{a,b,c\},} \{b,c\},$$

Azt állapíthatjuk meg, hogy ha a halmazhoz egy új elemet hozzáveszünk, akkor a részhalmazok száma megduplázódik. Ebből már következik az állitás az általános esetre is, mert egy egyelemű halmaznak nyilván két részhalmaza van: az üres halmaz és maga a halmaz, tehát $n\!=\!1$ esetén a részhalmazok száma $2\!=\!2^1$. Minden további elem hozzávételével a részhalmazok száma kettővel szorzódik, tehát a 2 kitevője 1-gyel nő. Ezt a gondolatmenetet egészen pontosan a következőképpen lehet megfogalmazni:

I. ha n = 1, akkor a részhalmazok száma 2^1 , tehát a feladat állítása n = 1-re igaz;

II. tegyük fel, hogy az n elemű halmaz részhalmazainak száma 2^n , és mutassuk meg, hogy ebből az következik, hogy az n+1 elemű halmaz részhalmazainak száma 2^{n+1} . Ez valóban igaz, mert az n elemű halmazhoz egy új elemet hozzávéve a részhalmazok száma megduplázódik.

Az I. és II. együttesen biztosítják az állítás igaz voltát tetszőleges n pozitív egész számra, hiszen n=1-re. I. szerint igaz, n=2-re pedig a II. szerint öröklődik az állítás az n=1 esetről, erről n=3-ra is öröklődik, és így tovább. Ezt a bizonyítási módot teljes indukciónak nevezik.

Általában egy természetes számokra vonatkozó A_n állítást teljes indukcióval a következőképpen igazolhatunk:

I. megmutatjuk, hogy igaz az állítás n=1-re (esetleg n=0-ra), majd

II. feltéve, hogy n-re igaz az állítás, megmutatjuk, hogy ebből a feltételből következik n+1-re is az állítás igaz volta.

Az I. és II. együtt biztosítja, hogy az A_n állítás tetszőleges természetes számra igaz. A következőkben többször fogjuk használni a teljes indukciós bizonyítási módot.

Nézzünk még egy példát a részhalmazok körében!

Az a kérdés lesz vizsgálódásunk tárgya, hogy hány adott elemű részhalmaza van egy halmaznak. Kételemű halmaz például a {0,1} halmaz; ennek 1 üres részhalmaza, 2 egyelemű részhalmaza van: {0}, {1} és 1 kételemű részhalmaza, amely önmaga. Növeljük eggyel a halmaz elemeinek számát, vizsgáljuk a

$$\{0, 1, 2\}$$

halmaz részhalmazait.

1 üres halmaz: Ø,

3 egyelemű halmaz: {0}, {1}, {2},

3 kételemű halmaz: $\{0,1\}, \{0,2\}, \{1,2\},$

1 háromelemű halmaz: {0, 1, 2}.

Hasonló módon adódik, hogy a {0,1,2,3} négyelemű halmaz különböző elemszámú részhalmazai: 1 üres, 4 egyelemű, 6 kételemű, 4 háromelemű és 1 négyelemű. A könnyebb áttekinthetőség kedvéért írjuk most le egymás alatti sorokba az eddig vizsgált eseteket:

a halmaz elemeinek száma	a különböző elemszámú részhalmazok száma
2	1 2 1
3	1 3 3 1
4	1 4 6 4 1

Észrevehető szabályszerűséget látunk: a sorban két egymás melletti szám összege a következő sor megfelelő eleme. Ezt pontosabban így fogalmazhatjuk meg mindjárt általánosan: az (n+1) elemű halmaz k elemű részhalmazainak száma egyenlő az n elemű halmaz (k-1) elemű és k elemű részhal-

mazai számának összegével, azaz a binomiális együtthatók-kal felírva:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

Gyakorló feladat

3. Igazoljuk az előbb megfogalmazott állítást!

Megoldás:

Láttuk, hogy az állítás n=2-re és n=3-ra igaz. Az adott n elemű halmaz (mivel csak az elemek száma érdekes) legyen $\{0,1,2,...,n-1\}$, az n+1 elemű halmazt ebből ügy kapjuk, hogy n-et hozzávesszük üj elemként. A $\{0,1,2,...,n\}$ halmaz k elemű részhalmazait a következőképpen számolhatjuk össze. A k elemű részhalmazok között először azokat vesszük sorra, amelyeknek eleme n, ezek száma annyi, ahány k-1 elemű részhalmazt ki tudok választani a $\{0,1,2,...,n-1\}$ n elemű halmazból, majd azokat számoljuk össze, amelyeknek nem eleme n. Ez utóbbiak száma éppen annyi, ahány k elemű halmazt ki tudok választani a $\{0,1,2,...,n-1\}$ n elemű halmazból. A két szám összege adja a keresett számot, azaz az n+1 elemű halmaz k elemű részhalmazainak számát.

A felírt táblázatot ezek alapján könnyen folytathatjuk is, a kapott háromszög alakú számtáblázat az ún. Pascul-háromszög.

2. Műveletek halmazokkal

Halmazok körében műveleteket is végezhetünk. Két adott halmaz, A és B egyesítése (uniója) az a halmaz, amelynek elemei vagy az A, vagy a B halmaznak elemei, és más eleme nincs. A kapott halmazt így jelöljük:

$$A \cup B$$

és egy megadási módja:

$$A \cup B = \{x: x \in A \text{ vagy } x \in B\}.$$

Például az $A = \{k: k \text{ pozitiv páros szám}\}$ és

 $B = \{l: l \text{ pozitív páratlan szám}\}$ halmazok egyesítése: a pozitiv egész számok halmaza.

Két adott halmaz, A és B közös része (metszete) az a halmaz, amelynek elemei az A és B közös elemei és más eleme nincs. A kapott halmazt igy jelöljük:

$$A \cap B$$

és igy adhatjuk meg:

$$A \cap B = \{x: x \in A \text{ és } x \in B\}.$$

Például, ha A jelőli a 3-mal osztható pozitív egész számok. B pedig a pozitív páros számok halmazát, akkor $A \cap B$ a pozitív, 3-mal osztható páros számok halmaza, tehát a 6-tal osztható pozitív számok halmaza.

Két adott halmaz, A és B különhsége az a halmaz, amelynek elemei azok az A-beli elemek, amelyek nem elemei B-nek.

és egy megadási módja:

A - B.

$$A-B = \{x: x \in A \text{ és } x \notin B\}.$$

Például, ha A jelöli a pozitív racionális számok halmazát, B pedig az I-nél nem kisebb racionális számok halmazát, akkor A-B az I-nél kisebb pozitív racionális számok halmaza.

Érdemes megemlíteni még, hogy a halmazok körében végzett műveleteket, az ún. *halmazalgebrai* műveleteket az 1., 2., 3. ábrákkal szemléltethetjük:

Az ilyen típusú ábrákat Venn-diagramnak nevezzük. A megfelelő műveleti azonosságok szemléltetésére szintén alkalmasak az ilyen ábrák, hangsúlyozni kell azonban, hogy ezek csak szemléltetik, de nem bizonyítják az azonosságokat.

A O B

1. ábra

2. ábra

3. ábra

Gyakorló feladat

4. Igazoljuk, hogy

a) az ∪ művelet kommutativ és asszociativ;

h) a ∩ művelet kommutatív és asszociatív:

c) érvényes a következő két (disztributív) azonosság: tetszőleges A, B és C halmazokra

 $(1) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$

 $(2) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Megoldás:

Az azonosságokat közvetlenül a műveleti definiciók alapján könnyen igazolhatjuk. Példaképpen megmutatjuk, hogy az \cup művelet asszociativ. Legyen A, B és C tetszőlegesen adott három halmaz. Azt kell igazolnunk, hogy

(*)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
.

Két halmaz egyenlőségét úgy igazolhatjuk, hogy megmutatjuk, hogy a két halmaznak ugyanazok az elemei:

 $x \in (A \cup B) \cup C$ akkor és csak akkor, ha

 $x \in A \cup B$, vagy $x \in C$, azaz

 $x \in A$, vagy $x \in B$, vagy $x \in C$.

Az $x \in A \cup (B \cup C)$ akkor és csak akkor áll fenn, ha

 $x \in A$, vagy $x \in B \cup C$, azaz

 $x \in A$, vagy $x \in B$, vagy $x \in C$.

Ezzel megmutattuk, hogy a (*) egyenlőség két oldalán álló halmaznak ugyanazok az elemei, azaz a két halmaz egyenlő. Hasonlóan igazolható az a) és h) többi azonossága is.

Mutassuk még meg például a c) (1) azonosság érvényességét:

 $x \in A \cup (B \cap C)$ akkor és csak akkor teljesül, ha

 $x \in A$, vagy $x \in B \cap C$, azaz

 $x \in A$, vagy $x \in B$ és $x \in C$.

Ezt pedig így is kifejezhetjük:

 $x \in A$, vagy $x \in B$ és $x \in A$ vagy $x \in C$.

Az utoljára kapott összefüggés éppen azt fejezi ki, hogy x eleme az (1) egyenlőség jobb oldalán álló halmaznak, tehát a két halmaz valóban egyenlő.

5. Szemléltessük és igazoljuk a következő összefüggéseket:

a) ha $A \subset C$ és $B \subset C$, akkor $A \cup B \subset C$;

b) ha $A \subseteq B$ és $A \subseteq C$, akkor $A \subseteq B \cap C$;

c) $A \cup (B \cap A) = A$ és $A \cap (B \cup A) = A$ (clinyelési szabály).

Megoldás:

Az a) állítást a következőképpen szemléltethetjük (4. ábra):

4. abra

A bizonyítás is egyszerű. A feltételekből következik, hogy ha $x \in A$ vagy $x \in B$, akkor $x \in C$, tehát

ha $x \in A \cup B$, akkor $x \in C$, vagyis $A \cup B \subset C$.

5. ábra

A bizonyítást így végezhetjük el: ha $x \in A$, akkor a feltételekből következik, hogy $x \in B$ és $x \in C$ is fennáll, tehát $x \in B \cap C$ is igaz.

A c) azonosságok közül például az első így látható be: mivel $A \subseteq A \cup (B \cap A)$, ezért elég belátni, hogy a fordított irányú tartalmazás is igaz. Mivel $B \cap A \subseteq A$, ezért $A \cup (B \cap A) \subseteq A$ is igaz.

A halmazalgebra alkalmazása során, de különösen a logikai alkalmazások során az egyik leggyakoribb eset az, amikor a szóban forgó halmazok egy rögzített alaphalmaz részhalmazai, és a műveleteket e részhalmazok körében végezzük. A logikai alkalmazásokban ezt az alaphalmazt gyakran "univerzum"-nak is nevezik, és *U*-val jelölik.

Ezzel kapcsolatban érdemes bevezetni a komplementerképzésnek nevezett egyváltozós műveletet: tetszőleges $A \subset U$ halmazhoz az A komplementereként az $\bar{A} = U - A$ halmazt rendeljük hozzá.

Gyakorló feladatok

6. lgazoljuk a következő azonosságokat:

$$a)\ \overline{A} \cup B = \bar{A} \cap \bar{B};$$

b)
$$\overline{A} \cap B = \overline{A} \cup \overline{B}$$
;

c)
$$A \cup \bar{A} = U$$
;

d)
$$A \cap \bar{A} = \emptyset$$
:

e)
$$\tilde{A} = A$$
.

Megoldás:

Az a) azonosságot a következőképpen igazolhatjuk:

 $x \in \overline{A \cup B}$ akkor és csak akkor, ha $x \notin A \cup B$, azaz $x \notin A$ és $x \notin B$, ami pedig ekvivalens az $x \in \overline{A}$ és $x \in \overline{B}$ feltétellel, azaz az $x \in \overline{A} \cap \overline{B}$ feltétellel, ez pedig azt jelenti, hogy a két halmaz egyenlő.

Teljesen hasonló módon igazolható a b) azonosság.

A c) azonosságot is hasonló módszerrel igazolhatjuk, de könnyű végiggondolni helyességét a következő módon is. Mivel $\bar{A} = (U - A) \subset U$ és $A \subset U$, ezért $A \cup \bar{A} \subset U$, másrészt ha $x \in U$, akkor vagy $x \in A$ vagy $x \notin A$ és ekkor $x \in \bar{A}$, tehát $x \in A \cup \bar{A}$ mindenképpen teljesül. Ez azt jelenti, hogy $U \subset A \cup \bar{A}$ is igaz, tehát a két halmaz egyenlő.

7. Ha adott az U alaphalmaz két tetszőleges részhalmaza, A és B, akkor ez a két halmaz az U alaphalmazt általában négy részre bontja fel; az egyes részek a következőképpen fejezhetők ki A és B felhasználásával:

$$A \cap B$$
, $A \cap \bar{B}$, $\bar{A} \cap B$ es $\bar{A} \cap \bar{B}$

(6. ábra).

6. ábra

a) Legyenek A. B és C tetszőleges részhalmazai U-nak. Állapítsuk meg, hány részre bontják ezek az U alaphalmazt, és fejezzük ki a kapott részeket A. B és C felhasználásával.

h) Legyenek A_1, A_2, \ldots, A_n az U alaphalmaz tetszőleges részhalmazai. Állapítsuk meg, hány részre bontják ezek az U alaphalmazt, és fejezzük ki az egyes részeket A_1, A_2, \ldots, A_n felhasználásával.

Megoldás:

a) Az alaphalmazt és az A, B, C részhalmazokat a következőképpen ábrázolhatjuk (7. ábra):

7. ábra

Az egyes részeket a következőképpen fejezhetjük ki:

1.: $\bar{A} \cap \bar{B} \cap \bar{C}$,

2.: $A \cap \bar{B} \cap \bar{C}$.

3.: $\bar{A} \cap B \cap \bar{C}$,

4.: $\bar{A} \cap \bar{B} \cap C$,

5.: $A \cap \bar{B} \cap C$,

6.: $A \cap B \cap \bar{C}$.

7.: $A \cap B \cap C$.

8.: $A \cap B \cap C$.

h) A teljes indukció módszerével könnyen látható, hogy az U alaphalmazt az $A_1, A_2, ..., A_n$ n darab részhalmaz 2^n részre "vágja szét". A kapott részeket a következőképpen fejezhetjük ki:

$$A_1^{i_1} \cap A_2^{i_2} \cap \ldots \cap A_n^{i_n}$$
,

ahol

$$i_j = 0, 1 \ (j = 1, 2, ..., n)$$
 és $A_t^0 = \bar{A}_b \ A_t^1 = A_b$

Feladatok

- 1. Számoljuk össze egy 2n+1 elemű halmaz $(n \ge 0$, egész szám) páratlan számú elemet tartalmazó részhalmazait!
- 2. Számoljuk össze egy 2n elemű halmaz páratlan számú elemet tartalmazó részhalmazait!

3. Két adott halmaz, A és B szimmetrikus differenciájának nevezzük és $A\triangle B$ -vel jelöljük azt a műveletet, amelyet így definiálunk:

$$A\triangle B=(A-B)\cup(B-A).$$

Igazoljuk, hogy a \triangle műveletre érvényesek a következő azonosságok:

a) $A\triangle B = B\triangle A$;

b) $(A\triangle B)\triangle C = A\triangle (B\triangle C);$

c) $A\triangle A = \emptyset$;

d) $A\triangle\emptyset = A$;

e) $A\triangle(A\triangle B)=B$.

4. Legyen A és B két tetszőleges halmaz, és jelölje \circ az \cup , \cap , ill. \triangle művelet valamelyikét. Állapítsuk meg, hogy az $A \circ X = B$ egyenletnek melyik művelet esetén van egyértelmű megoldása X-re!

5. Ha A véges halmaz, akkor jelölje |A| az A elemeinek számát. Igazoljuk a következő azonosságokat!

a) tetszőleges A és B halmazra:

$$|A \cup B| = |A| + |B| + |A \cap B|;$$

b) tetszőleges A, B és C véges halmazra:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| -$$
$$-|B \cap C| + |A \cap B \cap C|.$$

6. Általánosítsuk az **5.** feladatban szereplő összefüggéseket n számú véges halmaz esetére!

7. A 6. feladatban talált formula felhasználásával igazoljuk, hogy tetszőleges n pozitiv egész számra fennáll a következő összefüggés: ha n összes különböző prímosztói p_1, p_2, \ldots, p_n akkor az n-nél kisebb, n-hez relativ prím számok száma:

$$n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\ldots\left(1-\frac{1}{p_r}\right).$$

8. Jelöljön A és B tetszőleges véges halmazt! Igazoljuk, hogy

$$|A\triangle B| = |A| + |B| - 2|A \cap B|.$$

9. A 3. b) feladat szerint a \triangle művelet asszociatív, tehát tetszőleges véges számú halmazra értelmezhető a művelet. Igazoljuk, hogy az

$$A_1 \triangle A_2 \triangle ... \triangle A_n$$

halmaznak azok és csak azok az elemei, amelyek az A_1 , A_2 , ..., A_n halmazok közül páratlan soknak az elemei!

10. Általánosítsuk a 8. feladatban szereplő formulát n számú véges halmaz esetére!

3. A halmazalgebra logikai alkalmazásai

A klasszikus logikának az "osztálykalkulus" vagy a "tulajdonságok logikája" néven ismert ága a matematika eszközeivel egyszerűen a halmazalgebra egy alkalmazásaként tárgyalható.

Tegyük fel, hogy kiindulásként adott egy nem üres U halmaz (az univerzális halmaz vagy röviden univerzum) és a halmaz elemein értelmezett t_1, t_2, \ldots tulajdonságok. Ekkor a t_k tulajdonság vízsgálatát visszavezethetjük a

$$T_k = \{x : x \in U \text{ és } x \text{ } t_k \text{ tulajdonságú}\}$$

halmaz vizsgálatára. Megfordítva is igaz. Az U halmaz T_1 , T_2 , ... részhalmazainak vizsgálata azt jelenti, hogy egyben a t_k : "a T_k halmaz elemének lenni" tulajdonságokat vizsgáljuk. Az osztálykalkulusban a részhalmazokra az osztály elnevezést szokás használni. Például, ha U a természetes számok halmaza, akkor a "prímszám", "páros szám", "négyzetszám" stb. tulajdonságok vizsgálatát visszavezethetjük a prímszámok, páros számok, négyzetszámok halmazának vizsgálatára.

Az osztályok logikájának egyik fő vizsgálati területe az osztálykalkulus eszközeivel vizsgálható következtetések elemzése. Az ilyen tipusú következtetések közé tartoznak a klasszikus logika által is vizsgált kategorikus szillogizmusok.

Gyakorló feladatok

8. Az osztálykalkulus eszközeivel fogalmazzuk meg a minden 6-tal osztható szám osztható 3-mal,

minden 3-mal osztható szám számjegyeinek összege osztható 3-mal, tehát:

minden 6-tal osztható szám számjegyeinek összege osztható 3-mal, következtetést, és igazoljuk, hogy a következtetés helyes!

Megoldás:

Válasszuk alaphalmaznak a természetes számok N halmazát! A következtetésben előforduló tulajdonságokat a következő részhalmazokkal jellemezhetjük:

P a 6-tal osztható számok halmaza,

Q a 3-mal osztható számok halmaza,

R azoknak a számoknak a halmaza, amelyek számjegyeinek összege 3-mal osztható. Ezeknek a jelöléseknek a felhasználásával a két feltételt a premisszákat a következőképpen írhatjuk le:

$$P \subset O$$
 és $O \subset R$,

a következményt a konklúziót pedig igy fogalmazhatjuk meg formálisan (formalizálhatjuk):

$$P \subset R$$
.

A következtetés szerkezetét röviden így jelöljük:

$$P \subset O$$
, $O \subset R \models P \subset R$

(olv.: ${}_{n}P \subset Q$ és $Q \subset R$ -ből következik $P \subset R^{n}$).

A két premisszának nyilván következménye a konklúzió, hiszen ezt már az 1. b) gyakorló feladatban igazoltuk. A következtetés szerkezetét Venndiagrammal is könnyen szemléltethetjük (8. ábra) (a bevonalkázott részek azt jelzik, hogy a rész üres).

8. ábra

9. Formalizátjuk a következő következtetést és ígazoljuk is helyességét:

A négyzetszámok utolsó számjegye nem lehet 3.

A 63-ra végződő számok utolsó számjegye 3.

tehát

a 63-ra végződő számok nem négyzetszámok.

Megoldás:

Alaphalmaznak válasszuk ismét a természetes számok halmazát, N-et, és a következtetésben előforduló tulajdonságoknak feleltessük meg a következő részhalmazokat:

P a négyzetszámok halmaza;

Q azok a természetes számok, amelyeknek utolsó számjegye 3:

R a 63-ra végződő természetes számok.

A két premisszát igy formalizálhatjuk:

$$P \subset \hat{Q}$$
, $R \subset Q$.

A konklúziót a következőképpen írhatjuk fel szokásos jelöléseinkkel:

$$R \subset \bar{P}$$
.

Tehát a következtetés szerkezete: $P \subset \bar{Q}$, $R \subset Q = R \subset \bar{P}$. A következtetés helyességét könnyen igazolhatjuk. Mivel $R \subset Q$ és $P \subset \bar{Q}$, ezért ha $x \in R$, akkor $x \in Q$, tehát $x \notin P$, azaz $x \in \bar{P}$, tehát $R \subset P$ teljesül. A következtetést a 9. ábrán szemléltettük (a bevonalazott részek üresek).

9. ábra

A 8. és 9. gyakorló feladatban tárgyalt következtetések a kategorikus szillogizmusok körébe tartoznak. A kategorikus szillogizmusok olyan típusú következtetések, amelyekben akár premisszaként, akár konklúzióként a következő alakú kijelentések fordulhatnak elő:

Minden P-Q; A típusů;

Minden P-nem Q; \mathbf{E} tipusú;

Van olyan P, ami Q; I típusú;

Van olyan P, ami nem Q; O típusú.

A kijelentéstipusokban szereplő P,Q egy U alaphalmazon értelmezett tulajdonságokat jelölhetnek. Jelöljük ugyanezekkel a betűkkel az U-nak P, ill. Q tulajdonságú elemeiből álló részhalmazát. Ekkor az előző négy típusú kijelentés szerkezete a következő módon írható le az osztálykalkulusban:

A
$$P \subset Q$$
 (10. ábra);

(az ábrán a * azt jelenti, hogy a megfelelő rész nemüres). Egy kategorikus szillogisztikus következtetésben mindkét premissza és a konklúzió is a fenti négy típusú kijelentés kö-

premissza és a konklúzió is a fenti négy típusú kijelentés közül kerülhet ki, és a három kijelentésben *U*-nak összesen 3 különböző részhalmaza szerepelhet. Ilyenekre láttunk példát a 7. és a 8. gyakorló feladatban.

Feladatok

- 11. Igazoljuk az osztálykalkulus eszközeivel a következő tipusú kategorikus szillogizmusok helyességét:
 - a) $Q \subset R$, $P \subset Q \models P \subset \overline{R}$;
 - b) $\tilde{Q} \subset \bar{R}$, $P \cap \tilde{Q} \neq \emptyset \models P \cap \tilde{R} = \emptyset$
- 12. Döntsük el a következő típusokról, hogy helyes következtetési formák-e! Ha nem helyesek, egészítsük ki ezeket újabb premissza felvételével helyes következtetésekké!
 - a) $Q \subset R$, $Q \subset P \models P \cap \tilde{R} \neq \emptyset$;
 - b) $R \cap Q \neq \emptyset$, $Q \subset P \models P \cap R \neq \emptyset$.

Az I. fejezetben kitűzött feladatok megoldásai

1. Oldjuk meg először a feladatot abban a speciális esetben, amikor n = 2, azaz számoljuk össze egy háromelemű

halmaz páratlan számú elemet tartalmazó részhalmazait! Legyen az adott halmaz $\{0,1,2\}$ és csoportosítsuk a részhalmazokat annak megfelelően, hogy páros vagy páratlan számú elemet tartalmaznak:

páros	páratlar	
Ø,	$\{0,1,2\},$	
$\{0,1\},$	{2}	
$\{0, 2\},$	{1},	
[1, 2],	$\{0\}.$	

Azt tapasztaljuk, hogy a részhalmazoknak pontosan a fele, tehát 4 részhalmaz tartalmaz páratlan számú elemet. Észrevehetjük azt is, hogy mindig össze tudunk párosítani egy páratlan és egy páros számú elemet tartalmazó részhalmazt úgy, hogy a két halmaznak nincs közös eleme, és egyesítésük éppen a teljes halmazt adja. Ez az észrevétel adja az általános eset bizonvításához is az ötletet.

Legyen A olyan véges halmaz, amelyre |A|=2n+1. Jelölje A_1, A_2, \ldots, A_k az A páratlan, B_1, B_2, \ldots, B_l az A páros számú elemet tartalmazó különböző részhalmazait. Tetszőleges A_i -hez egyértelműen hozzárendelhetjük az $A+A_i$ halmazt, amely szintén A részhalmaza, és nyilván páros számú elemet tartalmaz, tehát valamelyik B_i -vel egyenlő. Mivel ha $i_1 \neq i_2, A_{i_1} \neq A_{i_2}$, ezért $A-A_{i_1} \neq A-A_{i_2}$. A páros és páratlan számú elemet tartalmazó részhalmazokat tehát ezen a módon úgy tudjuk összepárositani, hogy mindegyik A_i -nek megfelel egy B_i , és különbözőknek különböző felel meg. Ez azt jelenti, hogy számuk megegyezik: k=l és mivel $k+l=2^{2n+1}$ (az összes részhalmazok száma), $k=2^{2n}$, azaz az összes részhalmazok fele tartalmaz páratlan számú elemet.

2. Az előző feladatban alkalmazott módszer itt nem használható, mert egy páros számú elemet tartalmazó részhalmazt elvéve a 2n elemű halmazból, szintén páros számú elemet tartalmazó részhalmazt kapunk. Helyette a következő ötlet segít. Használjuk fel, hogy az előző feladatból tudjuk,

hány páratlan számú elemet tartalmazó részhalmaza van egy páratlan sok elemű halmaznak.

Legyen az adott 2n elemű halmaz $A = \{0, 1, 2, ..., 2n-1\}$. A (2n-1)-gyel jelölt elem elhagyásával A-ból egy 2n-1, azaz páratlan számű elemet tartalmazó halmazt kapunk. Csoportosítsuk ennek részhalmazait, külön a páros számű elemet tartalmazókat, külön a páratlanokat. Ezek mind részhalmazai A-nak is, és A többi részhalmazát úgy kapjuk, hogy ezekhez hozzávesszük a (2n-1)-gyel jelölt elemet. Így a párosokból páratlan, a páratlanokból páros részhalmazokat kapunk. Mivel eredetileg ugyanarnyi páros volt, mint páratlan, a hozzávétellel is ugyanez a helyzet, tehát az A összes részhalmazainak szintén a fele páratlan. Tehát 2^{2n-1} számű páratlan sok elemet tartalmazó részhalmaza van A-nak.

3. a) Megmutatjuk, hogy a két oldalon álló halmaznak ugyanazok az elemei. Tegyük fel, hogy $x \in A \triangle B$, ez azzal ekvivalens, hogy $x \in A$ és $x \notin B$ vagy $x \in B$ és $x \notin A$, ez viszont ugyanazt jelenti, mint $x \in B \triangle A$.

Hasonló módon igazolható a b) azonosság is.

A c) igazolásához használjuk fel a \triangle definícióját: $x \in A \triangle A$ akkor és csak akkor, ha $x \in A$ és $x \notin A$, ez viszont egyetlen x-re sem teljesülhet, tehát $A \triangle A = \emptyset$.

Mivel $x \in A \triangle \emptyset$ akkor igaz, ha $x \in A$ és $x \notin \emptyset$, ez pedig azzal egyenértékű, hogy $x \in A$, azaz a d) azonosság igaz.

Az e) azonosságot az előzőkben igazolt azonosságok felhasználásával könnyű bizonyítani:

$$A\triangle(A\triangle B) = (A\triangle A)\triangle B = \emptyset \triangle B = B\triangle \emptyset = B.$$

4. Jelölje először az \cup műveletet, azaz vizsgáljuk meg az $A \cup X = B$ egyenlet megoldhatóságát. Mivel $A \cup X$ -nek eleme az A halmaz minden eleme, ezért az egyenletnek csak akkor lehet megoldása, ha $A \subset B$. Ebben az esetben viszont minden olyan X halmaz megoldás, amire teljesül, hogy

$$B-A \subset X \subset B$$
.

tehát (az $A = \emptyset$ eset kivételével) több megoldás is van.

Ha \circ a \cap műveletet jelöli, azaz az $A \cap X = B$ egyenlet megoldhatóságát vizsgáljuk, akkor nyilván ki kell kötni, hogy $B \subseteq A$ teljesüljön. Ha ez a feltétel teljesül, akkor minden olyan X halmaz megoldás, amire

$$B \subset X$$
 és $(A-B) \cap X = \emptyset$.

- 5. a) Az $A \cup B$ halmaz elemeinek számát megkapjuk, ha összeszámoljuk A elemeinek számát, B elemeinek számát és ezek összegéből levonjuk azoknak az elemeknek a számát, amiket kétszer számoltunk, azaz $A \cap B$ elemeinek a számát.
- b) Az a) feladat megoldásában megismert módon okoskodhatunk. Az $A \cup B \cup C$ halmaz elemeinek számánál általában többet kapunk, ha összeadjuk A, B és C elemeinek számát. Ha az összegből levonjuk azoknak az elemeknek a számát, amiket kétszer számoltunk, azaz $A \cap B$, $A \cap C$ és $B \cap C$ elemeinek számát, akkor lehet, hogy kevesebbet kapunk a helyes eredménynél, hiszen a mindhárom halmazba beletartozó elemeket 3-szor számoltuk hozzá, de 3-szor le is vontuk. Így végül ezeknek a számát, azaz az $A \cap B \cap C$ halmaz elemeinek számát még hozzá kell adni a kapott eredményhez.
- 6. Az áttekinthetőség kedvéért először írjuk fel az összefüggést négy véges halmaz esetére:

$$\begin{split} |A_1 \cup A_2 \cup A_3 \cup A_4| &= |A_1| + |A_2| + |A_3| + |A_4| - \\ &- |A_1 \cap A_2| - |A_1 \cap A_3| - \\ &- |A_1 \cap A_4| - |A_2 \cap A_3| - \\ &- |A_2 \cap A_4| - |A_3 \cap A_4| + \\ &+ |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + \\ &+ |A_2 \cap A_3 \cap A_4| - |A_1 \cap A_2 \cap A_3 \cap A_4|. \end{split}$$

Az összefüggést bizonyíthatjuk közvetlenül azon az úton is, ahogy két és három halmaz esetén igazoltuk ezeket. Válasszunk most egy másik utat is, a teljes indukcióét, amely az általános eset bizonyításához is alkalmas módszer!

Az $A_1 \cup A_2 \cup A_3 \cup A_4$ halmazt két halmaz, az $A_1 \cup A_2 \cup A_3$ és A_4 halmaz egyesítésének tekintjük és felhasználjuk a két halmazra már bizonyított összefüggést:

(1)
$$|A_1 \cup A_2 \cup A_3 \cup A_4| = |A_1 \cup A_2 \cup A_3| + |A_4| - - |(A_1 \cup A_2 \cup A_3) \cap A_4|.$$

Az (1) egyenlőség jobb oldalának első tagja a már bizonyított, három halmazra vonatkozó összefüggés szerint igy irható fel:

(2)
$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Az (1) jobb oldalának harmadik tagját alakítsuk át a halmazalgebrai azonosságok felhasználásával:

(3)
$$(A_1 \cup A_2 \cup A_3) \cap A_4 = (A_1 \cap A_4) \cup (A_2 \cap A_4) \cup (A_3 \cap A_4)$$
.

A (3) jobb oldalán álló alakra ismét alkalmazzuk a három halmazra vonatkozó igazolt összefüggést (itt egy-egy halmaznak tekintjük az $A_1 \cap A_4$, $A_2 \cap A_4$, $A_3 \cap A_4$ halmazokat), és közben alkalmazzuk az ismert halmazalgebrai azonosságokat:

$$\begin{aligned} (4) \ |(A_1 \cap A_4) \cup (A_2 \cap A_4) \cup (A_3 \cap A_4)| &= \\ &= |A_1 \cap A_4| + |A_2 \cap A_4| + |A_3 \cap A_4| - \\ &- |A_1 \cap A_2 \cap A_4| - |A_1 \cap A_3 \cap A_4| - \\ &- |A_2 \cap A_3 \cap A_4| + |A_1 \cap A_2 \cap A_3 \cap A_4|. \end{aligned}$$

A (2) és (4) egyenlőségek jobb oldalát (1)-be helyettesítve megkapjuk a bizonyítandó egyenlőséget. Az általános esetre vonatkozó formulát így írhatjuk fel:

(5)
$$|A_1 \cup A_2 \cup ... \cup A_n| = |A_1| + |A_2| + ... + |A_n| - -(|A_1 \cap A_2| + |A_1 \cap A_3| + ... + |A_1 \cap A_n| + + |A_2 \cap A_3| + ... + |A_{n-1} \cap A_n|) + + (|A_1 \cap A_2 \cap A_3| + ... + |A_{n-2} \cap A_{n-1} \cap A_n|) - - ... + (-1)^{n-1} |A_1 \cap A_2 \cap ... \cap A_n|.$$

Az összefüggés igazolását teljes indukcióval végezhetjük. Az n=2 esetre láttuk, hogy igaz az állítás. Ha feltesszűk, hogy n-re igaz, akkor n+1 halmazra a következő módon igazolhatjuk:

az $A_1 \cup ... \cup A_n \cup A_{n+1}$ halmazt két halmaz egyesítésének tekintjük, és erre a kettőre alkalmazzuk a már bizonyított összefüggést:

(6)
$$|A_1 \cup ... \cup A_n \cup A_{n+1}| = |A_1 \cup ... \cup A_n| + |A_{n+1}| - |(A_1 \cup ... \cup A_n) \cap A_{n+1}|.$$

A (6) egyenlőség jobb oldalát az (1) bizonyitásánál követett módszer szerint alakítjuk át, az első tagra felhasználjuk az (5) egyenlőséget (indukciós feltevés), majd a harmadik tagot szintén átalakítjuk az azonosságok és az indukciós feltevés felhasználásával.

7. A bizonyítást az r=3 esetre végezzük el, az általános eset teljesen hasonló módon tárgyalható. Legyenek n különböző prímosztói: p_1 , p_2 , p_3 , azaz tegyük fel, hogy $n=p_1^{x_1}p_2^{x_2}p_3^{x_3}$ (például $n=2^3\cdot 3\cdot 7^2$). Az n-hez relatív prím, n-nél kisebb pozitív számok számát úgy kapjuk meg, hogy először összeszámoljuk a p_1 -gyel vagy p_2 -vel vagy p_3 -mal osztható, n-nél nem nagyobb számok számát, és ezt levonjuk az összes, n-nél nem nagyobb számok számából. Jelölje A_1 a p_1 -gyel,

 A_2 a p_2 -vel, A_3 a p_3 -mal osztható, n-nél nem nagyobb számok halmazát; ekkor az

$$A_1 \cup A_2 \cup A_3$$

halmaz elemeinek számát kell összeszámolnunk. Ezt az 5. feladatban bizonyított összefüggés felhasználásával számolhatjuk ki:

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| -$$

$$-|A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| +$$

$$+|A_1 \cap A_2 \cap A_3|.$$

Az A_1 halmaz elemeinek száma $\frac{n}{p_1}$. Mivel minden p_1 szám osztható p_1 -gyel, hasonlóan számítható ki A_2 , A_3 elemeinek száma, de az $A_1 \cap A_2$ elemeinek száma is ezzel a módszerrel kapható meg:

$$|A_1 \cap A_2| = \frac{n}{p_1 p_2}$$
 stb.

Ennek megfelelően

$$|A_1 \cup A_2 \cup A_3| = \frac{n}{p_1} + \frac{n}{p_2} + \frac{n}{p_3} - \frac{n}{p_1 p_2} - \frac{n}{p_1 p_3} - \frac{n}{p_1 p_3} - \frac{n}{p_1 p_2 p_3}$$

Az n-nél kisebb, n-hez relatív prím számok száma tehát:

$$n + \frac{n}{p_1} - \frac{n}{p_2} - \frac{n}{p_3} + \frac{n}{p_1 p_2} + \frac{n}{p_1 p_3} + \frac{n}{p_2 p_3} - \frac{n}{p_1 p_2 p_3} = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right).$$

8. Az $A \triangle B$ halmaznak azok és csak azok az elemei amelyek az A és B halmazok közül pontosan egyiknek az elemei. Az $A \triangle B$ halmaz elemeinek számát tehát úgy számíthatjuk ki, hogy a két halmaz elemei számának összegéből kivonjuk a két halmaz közös része elemei számának a kétszeresét.

9. Vizsgáljuk először a \triangle műveletet három tagra! A definícióból könnyen ellenőrizhető, hogy az $A_1 \triangle A_2 \triangle A_3$ halmaznak azok és csak azok az elemei, amelyek a három közül pontosan egyik halmaznak elemei vagy mindháromnak elemei (14. ábra).

14. abra

A bizonyítást az általános esetre teljes indukcióval végezzük. A feladat állítása n=2-re igaz. Tegyük fel, hogy az állítás igaz n halmaz esetére, és mutassuk meg: ebből következik, hogy n+1 halmaz esetére is igaz.

A \(\triangle \) művelet definíciója szerint

(7)
$$x \in (A_1 \triangle A_2 \triangle ... \triangle A_n) \triangle A_{n+1}$$

akkor és csak akkor, ha

(8)
$$x \in A_1 \triangle A_2 \triangle ... \triangle A_n$$
 vagy $x \in A_{n+1}$.

de x nem eleme mindkettőnek. Az indukciós feltevés értelmében tudjuk, hogy az $A_1 \triangle A_2 \triangle ... \triangle A_n$ halmaznak azok és csak azok az elemei, amelyek a tagok közül páratlan számú halmaznak elemei. Ezek közül a (8) feltételnek csak azok tesznek eleget, amelyek nem elemei A_{n+1} -nek, tehát ezekre

változatlanul igaz, hogy az $A_1, \ldots, A_n, A_{n+1}$ halmazok közül is csak páratlan számú halmaznak elemei. Vizsgáljuk A_{n+1} elemeit! Ezek közül azok, amelyek az A_1, A_2, \ldots, A_n halmazok közül páros soknak elemei, nem elemei az $A_1 \triangle A_2 \triangle \ldots \triangle A_n$ halmaznak, tehát eleget tesznek a (8) feltételnek. Az A_{n+1} halmaznak azok az elemei, amelyek az A_1, A_2, \ldots, A_n halmazok közül páratlan számúnak elemei, elemei a $A_1 \triangle A_2 \triangle \ldots \triangle A_n$ halmaznak is, tehát nem tesznek eleget a (8) feltételnek. Ezek az $A_1, \ldots, A_n, A_{n+1}$ halmazok közül páros számúnak elemei. Ezzel igazoltuk az állítást. A négy halmazra alkalmazott \triangle művelet eredményét a 15. ábrán bevonalkázott rész jelzi.

15. ábra

10. A 6. feladat megoldásában követett gondolatmenet mintájára keressük itt is a megoldást. Először egy olyan segédeszközt igazolunk, ami a \triangle és \cap művelet kapcsolatára világít rá. Megmutatjuk, hogy a \cap művelet disztributív a \triangle műveletre nézve, azaz

$$(9) (A\triangle B) \cap C = (A \cap C) \triangle (B \cap C).$$

A (9) azonosság igazolása igy történhet: $x \in (A \triangle B) \cap C$ akkor és csak akkor igaz, ha $x \in A \triangle B$ és $x \in C$ is fennáll. Ez utóbbi pedig akkor és csak akkor teljesül, ha $x \in A$ és $x \in C$ vagy $x \in B$ és $x \in C$ közül pontosan az egyik teljesül. A legutoljára kapott feltétel azt jelenti, hogy x eleme (9) jobb ol-

dalának. A \triangle művelet asszociatívitása miatt a (9) azonosságot így általánosíthatjuk:

$$(10) (A_1 \triangle A_2 \triangle ... \triangle A_n) \cap B =$$

$$= (A_1 \triangle B) \cap (A_2 \triangle C) \cap ... \cap (A_n \triangle C).$$

A 8. feladatban igazolt azonosságot először három véges halmaz esetére terjesztjük ki: legyenek A_1 , A_2 , A_3 véges halmazok, és a 8. feladat azonosságának felhasználásával számítsuk ki $A_1 \triangle A_2 \triangle A_3$ elemeinek számát:

(11)
$$|A_1 \triangle A_2 \triangle A_3| = |A_1 \triangle A_2| + |A_3| - 2|(A_1 \triangle A_2) \cap A_3|$$
.

A (11) egyenlőség jobb oldalát a két halmaz esetére igazolt azonosság és (9) felhasználásával átalakítva ezt kapjuk:

$$|A_1 \triangle A_2 \triangle A_3| = |A_1| + |A_2| + |A_3| -$$

$$-2(|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) +$$

$$+4|A_1 \cap A_2 \cap A_3|.$$

A 6. feladat megoldásában alkalmazott módszerrel teljes indukcióval könnyen igazolható a következő általános formula:

$$|A_{1} \triangle A_{2} \triangle A_{3} \triangle ... \triangle A_{n}| = |A_{1}| + |A_{2}| + ... + |A_{n}| +$$

$$-2(|A_{1} \cap A_{2}| + ... + |A_{n-1} \cap A_{n}|) +$$

$$+4(|A_{1} \cap A_{2} \cap A_{3}| + ... + |A_{n-2} \cap A_{n-1} \cap A_{n}|) - ... +$$

$$+(-1)^{n-1}2^{n-1} |A_{1} \cap A_{2} \cap ... \cap A_{n}|.$$

11. Az a) feladat egyszerűen igazolható: a \subset reláció tranzitivitása miatt a $P \subset Q$ és $Q \subset \overline{R}$ premisszáknak nyilván következménye a $P \subset \overline{R}$ konklúzió (16. ábra).

16. ábra

b) Mivel $P \cap Q \neq \emptyset$, ezért van olyan x, amelyre $x \in P \cap Q$, tehát $x \in P$ és $x \in Q$. Ekkor viszont $Q \subset \overline{R}$ miatt $x \in \overline{R}$ is teljesül, tehát $P \cap \overline{R} \neq \emptyset$ (17. ábra).

17. ábra

12. a) Szemléltessük először a következtetést (18. ábra)! Látható, hogy a $P \cap R \neq \emptyset$ premissza igaz voltát biztosító jelölés hiányzik az ábráról. Logikailag végiggondolva azt találjuk, hogy a premisszákból annyi következik, hogy

$$Q \subset P \cap R$$
.

18. ábra

Ebből a konklúzióra csak akkor következtethetünk, ha például feltesszük még, hogy $Q \neq \emptyset$. E premissza pótlólagos felvételével a következtetés helyessé tehető.

b) A következtetés helyes, hiszen ha van olyan x, amelyre $x \in R \cap Q$ és $Q \subset P$, akkor $x \in P \cap R$ is igaz, tehát $P \cap R \neq \emptyset$ (19. ábra).

19. ábra

II. A KIJELENTÉSLOGIKA

1. A logikai műveletek és tulajdonságaik

Példaképpen már vizsgáltunk következtetéseket, ezekben a premisszák és a konklúzió is kijelentés volt. A kijelentések lehetnek igazak vagy hamisak, úgy mondjuk ezt, hogy egy kijelentés *logikai értéke* lehet *igaz* vagy *hamis*. A következőkben olyan kijelentések körében végzett műveleteket fogunk vizsgálni, amelyekben a művelet eredményének logikai értéke csak komponenseinek logikai értékétől fiigg. Ezeket a műveleteket *logikai műveleteknek* nevezzük. A logikai műveletek tulajdonságainak tanulmányozása megkönnyíti a következtetések vizsgálatát.

A következtetésekben csak a kijelentések szerkezetét fogjuk vizsgálni, a helyes következtetések a bennük szereplő kijelentések szerkezete miatt lesznek helyesek.

A tagadás az egyik legegyszerűbb logikai művelet. Igaz kijelentés tagadása hamis, hamis kijelentés tagadása igaz. A tagadás műveletének matematikai modellje a negáció művelete, ezt az i és h logikai értékekből álló halmazon, az $\{i, h\}$ kételemű halmazon értelmezzük. A művelet jelölésére a jelet használjuk, és a műveletet a következőképpen definiáljuk:

$$(1) \qquad \frac{A}{i} \qquad \frac{\neg A}{h}$$

Gyakran használjuk azt a logikai műveletet is, amikor két kijelentést az "és" kötőszóval kapcsolunk össze egy kijelentéssé. Például az "öt primszám és a kilenc négyzetszám" kijelentés az "öt primszám" és "a kilenc négyzetszám" kijelentésekből keletkezett az "és" művelettel. Mível mindkét kijelentéskomponens igaz, az összetett kijelentés is igaz. Az "és" művelet használatát végiggondolva azt találjuk, hogy a művelet eredményét pontosan ebben az egy esetben tekintjük igaznak, minden más esetben hamisnak. Ennek megfelelően a művelet matematikai modelljét, a konjunkciót a következőképpen definiáljuk az $\{i, h\}$ kételemű halmazon (a művelet jele \land):

 $(2) \begin{array}{c|cccc} A & B & A \wedge B \\ \hline i & i & i \\ i & h & h \\ h & i & h \\ h & h & h \end{array}$

Egy további, szintén gyakran használt logikai műveletet a "vagy" kötőszóval fejezünk ki. A "vagy" kötőszót többféle értelemben is használjuk a hétköznapi nyelvben. Ezek közül a matematika számára és logikai szempontból is az ún. megenyedő vagy használata a legfontosabb. Például az "ez a szám vagy prímszám, vagy páros szám" kijelentést igaznak tekintjük akkor is, ha a szóban forgó szám páros is és prímszám is, azaz a szám 2. Ennek megfelelően a művelet matematikai modelljét a diszjunkciót (alternációt) (jele: v) a következő módon definiálhatjuk:

	A	B	$A \vee B$
	i	i	i
(3)	i	h	i
	h	i	į
	h	h	h

Gyakorló feladatok

1. lgazoljuk a következő azonosságokat:

- $a)\ A\wedge B=B\wedge A,$
- b) $A \vee B = B \vee A$,
- c) $(A \wedge B) \wedge C = A \wedge (B \wedge C)$,
- d) $(A \vee B) \vee C = A \vee (B \vee C)$.

Megoldás:

Mindegyik azonosság közvetlenül igazolható úgy, hogy a definiáló értéktáblázatokat elkészítjük, és észrevesszük, hogy a jobb és bal oldalon álló kifejezések értékei sorról sorra megegyeznek. Példaképpen igazoljuk ezzel a módszerrel a c) azonosságot:

A	В	C	$A \wedge B$	$(A \wedge B) \wedge C$	B ∧ C	$A \wedge (B \wedge C)$
i	i	i	i	i	i	i
i	i	h	i	h	h	h
i	h	i	h	j h	h	h
i	h	h	h	h	h	h
h	i	i	h	h i	i	h
h	i	h	h	h	h	h
h	h	i .	h	h	h	h
h	h	h	h	h	h	h

A táblázat 5. és 7. oszlopa sorról sorra megegyezik, igy a két kifejezés értéke A, B és C minden lehetséges értékére azonos.

Egy másik, szintén jól használható módszer azonosságok igazolására az, amikor megmutatjuk, hogy a bizonyítandó azonosság két oldalán álló kifejezés a változóknak ugyanazokra az értékeire lesz jgaz (vagy hamis, mikor melyiket célszerűbb vizsgálni). Igazoljuk például ezzel a módszerrel a d) azonosságot. Ebben az esetben a diszjunkció értéktáblázatát megnézve azt látjuk, hogy a művelet eredménye pontosan egy esetben hamis, akkor, amikor mindkét tag hamis. Célszerű ezért azt vizsgálni, hogy milyen esetben vesz fel hamis értéket mindkét oldal. Használjuk a következő rövid jelölést: pl. |A| = h jelöh, hogy A értéke hamis. A bal oldalon álló disziunkció pontosan akkor hamis, ha mindkét tagja hamis, vagyis $|A \vee B| = h$ és |C| = h. Az $|A \vee B| = h$ csak abban az esetben áll fenn, ha |A| = h és |B| = h, végeredményben tehát a bal oldal akkor és csak akkor hamis, ha |A| = |B| = |C| = h. A jobb oldalon álló diszjunkció értéke csak akkor hamis, ha |A| = h és $|B \vee C| = h$, azaz |A| = |B| = |C| = h. Ezzel igazoltuk az azonosságot.

Érdemes megjegyezni, hogy az a), h) azonosságok szerint a konjunkció és diszjunkció kommutativ, a c) és d) azonosságok szerint pedig asszociativ műveletek.

- 2. lgazoljuk a következő azonosságokat:
 - a) $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$.
 - b) $A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$,

- c) $A \wedge (A \vee B) = A$,
- $d \vdash A \lor (A \land B) = A$,
- e) $A \wedge A = A$.
- $f(A \vee A = A)$

Megoldás:

Az a) és h) azonosságokat disztributívitási szabályoknak nevezzük. Ha ∧ helyett a szorzás jelét, ∨ helyett pedig az összeadás jelét írjuk, akkor az a) azonosság ilyen alaků:

(4)
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
,

a b) azonosságot pedig így "fordithatjuk le":

(5)
$$A+B\cdot C = (A+B)\cdot (A+C).$$

Ha most A, B, C például valós számokat jelentenek, és + pedig a valós számok körében értelmezett szorzást és összeadást, akkor a (4) azonosság igaz, de az (5) azonosság nyilván nem. Ez mutatja a lénveges eltérést a számok algebrája és a logikai algebra között.

Igazolínk a b / azonosságot (az a) bizonyitása ennek mintájára könnyen elvégezhető). A h) azonosság bal oldala akkor és csak akkor hamis, ha |A| = h és B és C közül valamelyik hamis. A jobb oldal akkor és csak akkor hamis, ha $|A \vee B| = h$, vagy $|A \vee C| = h$, azaz A hamis és B és C közül valamelyik hamis.

A c) azonosság igazolását is ezen a módon könnyű elvégezni. A bal oldal akkor és csak akkor igaz, ha A igaz (hiszen ekkor $|A \vee B| = i$ is teljesül). Nyilván pontosan ekkor igaz a jobb oldal is.

Hasonlóan igazolható a d) azonosság is. A c) és d) azonosságokat szokás elnyelési szabályoknak is hivni.

Még könnyebb az e) és az f) azonosságok (rövidítési szabály) igazolása; ezek jobb és bal oldala nyilván egyszerre igaz a konjunkció, ill. a diszjunkció definiciója alapján. Ha ismét a A jel helyett i jelet, a V jel helyett + jelet képzelünk, akkor ezt a két azonosságot úgy fejezhetjük ki, hogy a logikai algebrában nincs I-nél nagyobb kitevő, és nincs I-nél nagyobb együttható sem.

3. lgazoljuk a következő, negációt is tartalmazó azonosságokat:

- a) $\neg (A \land B) = \neg A \lor \neg B$,
- b) $\neg (A \lor B) = \neg B \land \neg B$,
- c) $\exists A \land A = h$,
- d) $\exists A \forall A = i$,
- e $\exists \exists A = A$.

Az a) azonosság igazolásakor azt érdemes vizsgálni, hogy mikor hamis a két oldal. A bal oldal akkor és csak akkor hamis, ha $|A \wedge B| = i$, azaz A is és B is igaz. A jobb oldal akkor és csak akkor hamis, ha $\neg A$ és $\neg B$ is hamis, azaz A is és B is igaz. Ugyanezzel a módszerrel igazolható a B) azonosság is.

Az a) és h) azonosságot De Morgan-azonosságoknak is szokás nevezni. A c) azonosság az ellentmondásmentesség logikai elvét formalizálja. Azt fejezi ki, hogy egy állítás és a tagadása nem lehet egyszerre igaz. Bizonyítása közvetlenül adódik a negáció és a konjunkció definiciója alapján.

A d) azonosság a harmadik kizárásának logikai elvét fejezi ki; azt, hogy egy állitás és a tagadása közül valamelyik feltétlenül igaz. Az azonosság igazolása a negáció és diszjunkció definíciója alapján nagyon könnyen elvégezhető.

Az e) azonosság, a kettős πegáció szabálya szintén azonnal igazolható a negáció definíciója alapján.

Az eddig vizsgált három logikai művelet – a negáció, konjunkció és diszjunkció – mellett további két fontos és (különösen a matematikában) nagyon gyakran használt logikai műveletet fogunk most bevezetni: az *implikációt* (kondicionális) és az *ekvivalenciát* (bikondicionális).

Az implikáció logikai művelete a "ha..., akkor..." kötőszavakkal kifejezett állítások körében végzett művelet logikai modellje. Vizsgáljuk meg, hogyan célszerű definiálni az implikációt, ha összhangban akarunk maradni a "ha..., akkor..." nyelvi használatával. A számelméletből tudjuk, hogy a "Ha a osztója b-nek, akkor a osztója bc-nek" összetett állítás igaz. Ezen azt értjük, hogy akármilyen pozitív egész számokat helyettesítünk is a, b és c helyére, az így kapott állítás mindig igaz lesz. Nézzük meg, hogy milyen esetek lehetségesek:

$$a=2$$
, $b=4$, $c=3$; "2 osztója 4-nek" $igaz$,
"2 osztója 3·4-nek" $igaz$;
 $a=2$, $b=3$, $c=4$; "2 osztója 3-nak" $hamis$,
"2 osztója 3·4-nek" $igaz$;

$$a=2$$
, $b=3$, $c=5$; "2 osztója 3-nak" hamis, "2 osztója 3·5-nek" hamis.

Az összetett állítást mindhárom esetben igaznak kell tekintenünk. Az a negyedik eset, amikor "a osztója b-nek" igaz és "a osztója bc-nek" hamis, nem fordulhat elő, hiszen akkor hamisnak mondanánk az összetett itéletet.

Az elmondottak alapján az implikációt (jele: →) a következőképpen definiáljuk:

$$\begin{array}{c|cccc} A & A & A \rightarrow B \\ \hline i & i & i \\ i & h & h \\ h & i & i \\ h & h & i \end{array}$$

Az ekvivalencia az "akkor és csak akkor, ha..." kapcsolattal kifejezett művelet logikai modellje. Az " $a \cdot b = 0$ akkor és csak akkor, ha a = 0 vagy b = 0" állítás azt fejezi ki tömör formában, hogy a két összekapcsolt állítás egyszerre igaz vagy hamis. Ennek megfelelően az *ekvivalencia* (jele: \leftrightarrow) logikai műveletét így definiáljuk:

A	B	$A \leftrightarrow B_{\perp}$
i	i	i
i	h	h
h	i	h
h	h	i

Gyakorló feladatok

4. lgazoljuk a következő azonosságokat:

- $a) \quad A \to B = \Box A \vee B,$
- $(b) \quad A \leftrightarrow B = (A \to B) \land (B \to A),$
- c) $(A \wedge B) \rightarrow C = A \rightarrow (B \rightarrow C)$
- $d) \ A \rightarrow A = i$
- e) $A \leftrightarrow A = i$.

Megoldás

Az a) azonosság bal oldala akkor és csak akkor hamis, ha |A| = i és |B| = h. A jobb oldal akkor és csak akkor hamis, ha |A| = h, azaz |A| = i és |B| = h.

A b) azonosság igazolásához készítsünk értéktáblázatot:

A	В	$A \leftrightarrow B$	$A \rightarrow B$	$B \rightarrow A$	$(A \rightarrow B) \land (B \rightarrow A)$
T	i	i	i	i	i
i	h	h	h	i	h
h	i	h	l ï	h	h
h	h	i	l i	i	į

A táblázat harmadik és utolsó oszlopa sorról sorra megegyezik, tehát az azonosság fennáll.

A c) azonosság igazolásához vizsgáljuk meg, mikor hamis a bal oldal! Ez $|A \wedge B| = i$ és |C| = h esetben teljesül, azaz akkor és csak akkor, ha |A| = |B| = i és |C| = h. A jobb oldal akkor és csak akkor hamis, ha |A| = i és $|B| \rightarrow C| = h$, azaz |A| = |B| = i és |C| = h. Azt kaptuk, hogy a két oldal logikai értéke minden esetben egyenlő.

A d) és e) azonosságok igaz volta közvetlenül leolvasható a műveleti definíciókból.

Feladatok

- 1. Készítsük el a következő formulák értéktáblázatát:
 - $a) \quad \neg A \wedge \neg (\neg A \vee B);$
 - b) $A \rightarrow (B \rightarrow A)$;
 - $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)).$
- 2. Igazoljuk a következő azonosságokat:
 - $(A \leftrightarrow B) \leftrightarrow C = A \leftrightarrow (B \leftrightarrow C);$
 - $b) \quad A \leftrightarrow B = (\neg A \lor B) \land (\neg B \lor A);$
 - c) $A \rightarrow B = \neg B \rightarrow \neg A$.
- 3. Igazoljuk, hogy a következő formulák a bennük szereplő változók minden értékére igazak:
 - $a) (A \wedge (A \rightarrow B)) \rightarrow B;$
 - $(A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C);$
 - c) $((A \lor B \lor C) \land \neg B \land \neg C) \rightarrow A$.

- **4.** Igazoljuk, hogy tetszőleges α és β formulák esetén az $\alpha = \beta$ azonosság csak akkor teljesül, ha az $\alpha \leftrightarrow \beta$ formula a benne szereplő változók minden értékére igaz. (Azonosan igaz.)
- 5. Ha α olyan formula, amelyben a változójeleken kívül csak a \neg , \wedge , \vee logikai jelek fordulnak elő, akkor azt az α * formulát, amelyet α -ból úgy kapunk, hogy az \wedge jeleket \vee jelekre, a \vee jeleket \wedge jelekre cseréljük ki, α duálisának nevezzük.

Gyakorlásképpen írjuk fel néhány formula duálisát:

$$\alpha: (A \lor B) \land \neg C, \quad \alpha^*: (A \land B) \lor \neg C;$$

$$\beta: \quad A \land (\neg (B \lor \neg C) \lor (B \land \neg C)),$$

$$\beta^*: \quad A \lor (\neg (B \land \neg C) \land (B \lor \neg C));$$

$$\gamma: \quad \neg A \land \neg (B \lor (A \land \neg C)),$$

$$\gamma^*: \quad \neg A \lor \neg (B \land (A \lor \neg C)).$$

Igazoljuk, hogy

- a) ha $\alpha = \beta$, akkor $\alpha^* = \beta^*$;
- b) ha α azonosan igaz, akkor $\neg \alpha^*$ is azonosan igaz.
- 6. Igazoljuk, hogy egy olyan α formula, amelyik csak \leftrightarrow műveleti jelet tartalmaz, akkor és csak akkor azonosan igaz, ha minden változó páros számszor szerepel benne.

2. lgazságfüggvények, normálformák

Az előző pontban olyan egy- és kétváltozós műveletekkel foglalkoztunk, amelyek az $\{i,h\}$ halmazon vannak értelmezve. A megvizsgált logikai műveletek ismert, gyakran használt logikai műveletek matematikai modelljei voltak. Vizsgáljuk most ezt a kérdést általánosan is – elvonatkoztatva a műveletek nyelvi tartalmától!

Az $\{i, h\}$ kételemű halmazon értelmezett, $\{i, h\}$ halmazbeli értékeket felvevő n-változós függvényekkel foglalkozunk általánosan is. Egy ilyen függvényt – mivel az értelmezési tartománya véges halmaz – értéktáblázattal adhatunk meg kényelmesen. Azt a kérdést fogjuk megvizsgálni, hogy egy ily módon definiált *igazságfüggvény* az előző pontban megismert logikai műveletekkel kifejezhető-e, és ha igen, hogyan.

Gyakorló feladatok

5. Fejezzük ki \neg , \land ės \lor művelettel a következő értéktáblázattal definiált kétváltozós f igazságfüggvényt:

A	B	f(A, B)
ī	i	h
i	h	i
i h h	i l	i
h	h	i

Megoldás:

Az értéktáblázatról megfigyelhetjük, hogy az f(A, B) értékek között csak egy hamis van, a többi érték mind igaz. Könnyű felfedezni, hogy a konjunkció értéktáblázata annyiban különbözik ettől, hogy ahol itt h van, ott a konjunkcióban i, és forditva. Ez rögtön adja azt az ötletet, hogy f(A, B) így fejezhető ki:

$$f(A, B) = \neg (A \land B).$$

A feladatnak még egy másik megoldását is megmutatjuk. Olyat, amely nem épit arra a speciális esetre, amit az f függvény definíciójában észrevettünk, hanem általános esetben is jól használható.

Tudjuk, hogy a diszjunkció akkor és csak akkor igaz, ha valamelyik tagja igaz. Az f értéktáblázatában három igaz sor van, így próbáljuk meg f-et egy három tagú diszjunkcióval kifejezni. Az egyes tagokat konjunkciókal fogjuk megadni úgy, hogy pontosan akkor legyenek igazak, amikor azt az f-et definiáló értéktáblázat előírja.

$$f(A, B) = (A \wedge \neg B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

Könnyen ellenőrizhetjük, hogy az f-re kapott két kifejezés értéke A és B tetszőleges értéke esetén azonos.

6. A *y* háromváltozós igazságfüggvényt a következő értéktáblázattal definiáljuk:

_

Röviden azt mondhatjuk: g értéke akkor és csak akkor legyen igaz, ha A, B és C közül pontosan az egyik igaz. Fejezzük ki g-t \neg , \land és \lor segítségével!

Megoldás:

Kövessük az előző, 5. feladat második megoldásában alkalmazott eljárást! Ennek megfelelően g-t egy háromtagú diszjunkcióval akarjuk kifejezni, hiszen g értékei között három i van. Az egyes igaz soroktak megfelelő konjunkciós tagokat a következő módon építjük fel: amelyik változó értéke igaz, azt negálatlanul, amelyik hamis, azt negálva vesszük be konjunkciós tagnak. Ekkor a kapott konjunkció csak pontosan a megadott értékekre lesz igaz, g értéke pedig a három diszjunkciós tagnak megfelelően pontosan három esetben lesz igaz.

$$g(A, B, C) = (A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land C).$$

Az előző két gyakorló feladat megoldásakor alkalmazott módszer általános esetben is jól használható. Érdemes észrevenni, hogy ezzel igazolni is tudtuk: tetszőleges igazságfüggvény kifejezhető negáció, konjunkció és diszjunkció segítségével. Azt is hozzátehetjük, hogy az a formula, amivel az értéktáblázattal megadott igazságfüggvényt ki tudjuk fejezni, a következő módon épül fel: olyan konjunkciók diszjunkciója,

amelyekhen minden konjunkciós tag vagy egy változó, vagy egy változó negáltja, és minden diszjunkciós tagban minden változó előfordul vagy negálva, vagy negálatlanul (ugyanaz a változó egy konjunkcióban csak egyszer szerepel, és nincs két olyan diszjunkciós tag, amelyek csak a változók sorrendjében különböznek). Az ilyen tulajdonságú formulákat teljes diszjunktiv normálformáknak nevezzük (rövidítve: t. d. n. f.).

A t. d. n. f.-nak megfelelő (duális) fogalom a teljes konjunktív normálforma (t. k. n. f.). Egy formuláról akkor mondjuk, hogy teljes konjunktív normálforma, ha olyan diszjunkciók konjunkciója, amelyekben minden diszjunkciós tag vagy egy változó, vagy egy változó negáltja, és minden diszjunkciós tagban a formulában szereplő minden változó – negálva vagy negálatlanul – pontosan egyszer fordul elő, és nincs két olyan konjunkciós tag, amelyek csak a változók sorrendjében különböznek.

Gyakorló feladatok

7. Írjunk fel olyan t. k. n. f.-et, amely a következő értéktáblázattal definiált igazságfüggvényt fejezi ki:

A	В	C	h(A, B, C)
i	i	į	- i
i	i '	h	h
į	h	į	h
i	h	h	i
h	i	i	h
h	i	h	i
h	h	i	i
h	h	h	i

Megoldás:

Tudjuk, hogy a konjunkció akkor hamis, ha valamelyik tagja hamis. Így az értéktáblázatban három hamis sorának megfelelően három konjunkciós tagunk lesz. Az egyes konjunkciós tagokat alkotó diszjunkciókat úgy kell felírni, hogy a megfelelő tag hamis legyen, a diszjunkcióról pedig tudjuk, hogy csak akkor hamis, ha minden tagja hamis. Az elmondottak alapján a h függvényt így írhatjuk fel t. k. n. f. segitségével:

$$h(A, B, C) = (A \lor B \lor C) \land (A \lor B \lor C) \land$$
$$\land (A \lor B \lor C).$$

8. Az előző fejezetben bizonyított azonosságok felhasználásával alakítsuk t. d. n. f.-vá a következő formulákat:

$$a \in A \rightarrow (B \rightarrow C)$$
;

$$b$$
) $A \rightarrow (B \rightarrow A)$.

Meuoldás:

Az a) formula átalakításakor először használjuk fel azt, hogy az implikáció kifejezhető negáció és diszjunkció segitségével (4. a) gyakorló feladat):

$$A \rightarrow (B \rightarrow C) = \neg A \lor (\neg B \lor C).$$

Még azt kell elérnűnk, hogy minden diszjunkciós tagban mindhárom változó szerepeljen vagy negálva, vagy negálatlanul. Ehhez a 3. d) azonosságot használjuk fel, valamint azt a tényt, hogy az i logikai értéket konjunkciós tagként hozzávéve a formulához, nem változik meg az értéke:

A kapott formula átalakítására a disztributivitási szabályokat és egyéb, már bizonyított azonosságokat használjuk fel (például $A \lor A = A$).

Végül a következő t. d. n. f.-hez jutunk:

A h) formulában először az implikáció műveleteket írjuk át konjunkció, diszjunkció és negáció felhasználásával a 4. a) azonosság ismételt alkalmazásával:

$$A \rightarrow (B \rightarrow A) = \neg A \lor \neg B \lor A.$$

Az a) feladat megoldásában alkalmazott módszerrel most kiegészítjük az egyes diszjunkciós tagokat úgy, hogy minden tagban minden változó szerepeljen vagy negálva, vagy negálatlanul:

Ezután a disztributivitási szabály és az $A \vee A = A$ röviditési szabály alkalmazásával a következő t. d. n. f.-t kapjuk:

$$(\neg A \land B) \lor (\neg A \land \neg B) \lor (A \land B) \lor (A \land \neg B).$$

A kapott t. d. n. f.-nak négy tagja van, az összes lehetséges tag szerepel benne. Ez azt jelenti, hogy a formula értéktáblázatának minden sorában i érték áll, azaz a formula azonosan igaz.

Az előző két gyakorló feladatban alkalmazott módszer általánosan is használható. Tetszőleges olyan formulát, amely változókból, a ¬, ^, ~, →, ↔ műveletekkel épül fel, t. d. n. f.-vá alakíthatunk az előző fejezetben bizonyított azonosságok felhasználásával. Abban az esetben kapunk üres t. d. n. f.-et (olyat, amelynek egy tagja sincs), amikor a kérdéses formula a benne szereplő változók minden értékére hamis, röviden, azonosan hamis. Ha a formula azonosan igaz, akkor a t. d. n. f.-ban az összes lehetséges tag előfordul, azaz, ha a formula n-változós és azonosan igaz, akkor a t. d. n. f.-jában 2ⁿ tag van, hiszen a formula értéktáblázatának 2ⁿ sora van.

Hasonlóan látható, hogy bármely formula t. k. n. f.-ra hozható. Az azonosan igaz formula t. k. n. f.-ja üres, az azonosan hamis, n-változós formula t. k. n. f.-jában pedig az összes lehetséges 2ⁿ tag szerepel. (Formulák azonosan igaz, vagy azonosan hamis voltának eldöntésére más eljárásokat is használnak; például az analitikus táblázatok módszerét.)

Gyakorló feladat

9. Hozzuk t. k. n. f.-ra a következő formulákat:

$$a$$
) $\neg ((A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A));$

$$b \in (A \vee B) \rightarrow (A \vee B \vee C).$$

Megoldás:

a) A 8. gyakorló feladatban alkalmazott módszert követve, alakitsuk át először a formulát úgy, hogy csak □, ∧ és ∨ legyen benne:

Ezután alkalmazzuk a De Morgan-azonosságot, és a disztributivítási szabályt:

$$\neg (\neg (\neg A \lor B) \lor (B \lor \neg A)) =$$

$$= \neg ((A \land \neg B) \lor B \lor \neg A) =$$

$$= (\neg A \lor B) \land \neg B \land A.$$

Már csak azt kell elérni, hogy minden konjunkciós tagban minden változó szerepeljen (negálva vagy negálatlanul). Ennek eléréséhez használjuk fel, hogy $|A \wedge \neg A| = h$ és a hamis diszjunkciós tagot bármely formulához hozzákapcsolhatjuk, a formula értéke nem változik.

$$(\neg A \lor B) \land ((A \land \neg A) \lor \neg B) \land (A \lor (B \land \neg B)) =$$

$$= (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B) \land (A \lor B).$$

Az összes lehetséges tag szerepel, tehát a formula azonosan hamis.

A h) feladat megoldásához hasonló módszerrel juthatunk el. Fejezzük ki az implikációt negáció és diszjunkció segítségével:

$$(A \lor B) \to (A \lor B \lor C) =$$
$$= \Box (A \lor B) \lor A \lor B \lor C.$$

A kapott formulára alkalmazzuk a De Morgan-azonosságot

$$\neg (A \lor B) \lor A \lor B \lor C = (\neg A \land \neg B) \lor A \lor B \lor C.$$

A disztributivitási szabály alkalmazásával a következő formulához jutunk;

$$((A \lor A) \lor B \lor C) \land (A \lor (B \lor B) \lor C).$$

Mivel $| \exists A \lor A | = i$ és egy olyan diszjunkció, amelynek egyik tagja igaz, igaz lesz, a kapott t. k. n. f. üres, egyetlen tagot sem fog tartalmazni.

Még néhány kétváltozós igázságfüggvényt vizsgálunk meg, olyan függvényeket, amelyeknek érdekes gyakorlati alkalmazásai vannak.

A hétköznapi használatban elég ritkán szerepel az a logikai művelet, amit a "sem..., sem..." logikai kapcsolószavakkal fejezünk ki. Ennek matematikai modellje a sem-sem művelet (jele: 1).

Ezt a műveletet a következő értéktáblázattal definiálhatjuk szabatosan:

A	В	$A \downarrow B$
i	i	h
i	h	h
h	i	h
h	h	i

A mindennapi használatban van a "vagy" kapcsolószónak egy olyan értelme is, amikor azt fejezzük ki vele, hogy két állítás egyszerre nem lehet igaz, minden más eset előfordulhat. Ezt modellezi az úgynevezett Sheffer-féle művelet (jele: j), amelyet így definiálunk:

A	В	A B
i	i	h
i	h	i
h	i	i
h	h	i

Végül azt a logikai műveletet fogjuk modellezni, amelyet a hétköznapi nyelv szintén a "vagy" szóval fejez ki, ahol a "vagy"-ot most választó értelemben értjük. Ez a művelet az antivalencia vagy más néven a modulo 2 vett összeadás. A művelet (jele: \oplus) definíciója:

A	B	$A \oplus B$
i	i	ĥ
i	h	i
h	i	i
h	h	h

A következő gyakorló feladatokban a most bevezetett három művelet tulajdonságait fogjuk megvizsgálni.

Gyakorló feladatok

10. Fejezzük ki a], | és \oplus műveleteket a \lnot , \land , \lor műveletek felhasználásával.

Megoldás:

A | műveletet definiáló értéktáblázatról könnyen leolvasható, hogy érvényes a következő azonosság:

$$A \mid B = \neg (A \vee B).$$

A | művelet értéktáblázatát vizsgálva, hamar észrevehető, hogy az a konjunkció negációja, tehát:

$$A \mid B = \neg (A \wedge B).$$

A ⊕ művelet – az egyik elnevezés is erre utalt – az ↔ tagadása:

$$A \oplus B = \neg (A \leftrightarrow B).$$

A ⊕ műveletet ennek alapján már könnyen kifejezhetjük ¬, ∧ és ∨ segítségével:

$$A \oplus B = \neg((A \to B) \land (B \to A)) =$$

$$= \neg((\neg A \lor B) \land (\neg B \lor A)) =$$

$$= (A \land \neg B) \lor (B \land \neg A).$$

11. Igaz-e, hogy a], | és ⊕ művelet kommutativ és asszociatív?

Megoldás:

Vizsgáljuk meg először a kommutativitást! A műveleteket definiáló értéktáblázatokról közvetlenül leolvasható, hogy az A és B változók szerepe szimmetrikus, tehát mindhárom művelet kommutatív, azaz érvényesek a következő azonosságok:

$$A \mid B = B \mid A$$
:

$$A \mid B = B \mid A$$
;

$$A \oplus B = B \oplus A$$
.

Az asszociativítás már nem minden műveletre lesz igaz:

$$(A \mid B) \mid C \neq A \mid (B \mid C),$$

mert ha |A| = |B| = i és |C| = h, akkor a bal oldal igaz, a jobb oldal hamis értéket vesz fel. Hasonlóan látható, hogy

$$(A \mid B) \mid C \neq A \mid (B \mid C),$$

például, ha |A| = |B| = h és |C| = i, akkor

$$||(A | B)||C|| = h$$
 és $||A||(B | C)|| = i$.

 $A \oplus m$ űvelet asszociativitását igazoljuk úgy, hogy értéktáblázatot készítűnk:

A	В	C	.4⊕B	(A⊕B)⊕C	$B \oplus C$	$A \oplus (B \oplus C)$
i	i	i	h	i	h	i
i,	i	h	h	h	i	h
i	h	i	i	h	i	h
i	h_{\perp}	h	i	i	h	i
h	i	i	i	h	h	h
h	i	h	i	i	i	i
h	h	i	h	i	i	i
h	h	h	h	h	h	h

A kapott értéktáblázat ötödik és hetedik oszlopa megegyezik, tehát érvényes az

$$(A \oplus B) \oplus C = A \oplus (B \oplus C)$$

azonosság.

- 12. lgazoljuk a következő azonosságokat:
 - $a) \quad A \downarrow B = \neg (\neg A \mid \neg B);$
 - b) $A \mid B = \neg (\neg A \mid \neg B)$;
 - $c) A \wedge (B \oplus C) = (A \wedge B) \oplus (A \wedge C);$
 - d) $A \lor B = A \oplus B \oplus (A \land B)$.

Megoldás:

Az *a*) azonosság igazolásához használjuk fel a **10.** gyakorló feladatban bizonyított azonosságokat, és a De Morgan-azonosságot. A bal oldal így alakítható át:

$$A \mid B = \Box (A \vee B)$$

A jobb oldalból a következőt kapjuk:

A két oldal azonos átalakításával kapott formulák megegyeznek, tehát az azonosság érvényes.

A b) azonosság igazolása pontosan ezen az úton történhet. A bal oldalt alakítsuk át először:

$$A \mid B = \neg (A \wedge B).$$

A jobb oldal átalakításával ugyanezt a formulát kapjuk:

$$\neg(\neg A \mid \neg B) = \neg(\neg(\neg A \vee \neg B)) = \neg(A \wedge B).$$

A c) azonosság igazolásához vizsgáljuk meg, mikor igaz a jobb, ill. a bal oldal. A bal oldal akkor és csak akkor igaz, ha |A|=i és $|B \oplus C|=i$, azaz |B|=i és |C|=h, vagy |B|=h és |C|=i.

A jobb oldal a \oplus művelet definíciója szerint csak akkor igaz, ha $|A \wedge B| = i$ és $|A \wedge C| = h$, vagy $|A \wedge B| = h$ és $|A \wedge C| = i$, ami akkor és csak akkor teljesülhet, ha |A| = i és B, valamint C közül egyik igaz, másik hamis.

Az azonosság két oldalán álló formula a változóknak ugyanazokra az értékeire lesz igaz, tehát az azonosság érvényes.

Feladatok

7. Fejezzük ki konjunkció, diszjunkció és negáció segítségével a következő igazságfüggvényeket:

a) f(A, B, C) = i akkor és csak akkor, ha A, B és C közül pontosan két változó értéke igaz:

b) a(A, B, C) = i akkor és csak akkor, ha A, B és C közül páratlan számú logikai változó értéke igaz:

c) h(A, B, C, D) = h akkor és csak akkor, ha pontosan egy logikai változó értéke hamis, egyébként igaz.

8. Írjuk fel az összes lehetséges kétváltozós igazságfjiggvény értéktáblázatát, keressük meg az eddig definiált műveleteket és fejezzük ki az összes függyényt ¬. ∧ és ∨ segítségével!

9. Az 5. feladatban definiáltuk egy α (csak \Box , \wedge és \vee műveleti jelet tartalmazó) formula α* duálisát. Keressünk összefüggést α és α* t. d. n. f.-ja és t. k. n. f.-ja között!

10. Igazoljuk, hogy minden igazságfüggvény kifejezhető olyan formulával, amelyben csak

$$a) \quad \exists \text{ \'es } \land;$$

b)
$$\neg$$
 és \lor ;

$$\begin{pmatrix} c \end{pmatrix} \downarrow;$$

műveleti jel szerepel!

11. Igazoljuk a következő azonosságokat:

a)
$$(A \mid B) \mid (A \mid C) = \neg A \mid (B \mid C);$$

$$b) \quad (A \downarrow B) \downarrow (A \downarrow C) = \ \Box A \mid (B \mid C).$$

3. Az igazságfüggvények néhány fontos osztálya

Az előző pontban már bevezettük az igazságfüggvények fogalmát, megvizsgáltuk néhány egyszerű tulaidonságukat. A következőkben ezeknek a függvényeknek további fontos tulajdonságait fogjuk megvizsgálni, és foglalkozunk az n-változós igazságfüggvények néhány alapvető osztályával. Ezeknek az osztályoknak az igazságfüggvények alkalmazásaiban is fontos szerepük lesz.

Ebben a fejezetben, mivel a fő szempont a függvények tulajdonságainak vizsgálata, a változókra az x_1, x_2, \dots, x_n jelölést használiuk.

Azt mondjuk, hogy az f n-változós igazságfüggvény lénvegesen függ az x_i $(1 \le i \le n)$ változótól, ha

$$f(x_1, ..., x_{i-1}, h, x_{i+1}, ..., x_n) \neq$$

$$\neq f(x_1, ..., x_{i-1}, i, x_{i+1}, ..., x_n).$$

Ha ez nem teljesül, akkor azt mondjuk, hogy az x, fiktív változója f-nek.

Gyakorló feladatok

- 13. Adjuk meg az összes
- a) nullaváltozós,
- h) egyváltozós.
- c) n-változós

igazságfüggvények számát!

Megoldás:

a) Két nullaváltozós igazságfüggvény van:

$$f_1 \equiv h$$
 és $f_2 \equiv j$.

h) Négy egyváltozós logikai függvény van, mert azt kell összeszámolnunk, hogy az

$$x \mid f(x)$$
 i
 h

táblázatban a két üres helyre hányféleképpen írhatjuk be az i és h értékeket. Nyilván mindkét helyre két lehetőségünk van. ez összesen 2-2 = 4 különböző függvényt ad. Ezek közül kettő a már a)-ban felirt konstans i és konstans h lesz (ezek nyilván nem függenek lényegesen x-től, hiszen ezekre f(i) = f(h)). Ha az első sorba i-t, a második sorba h-t irunk, akkor az $f_3(x) = x$ identitásfüggvényt kapjuk. Végül, ha az első sorba h-t, a 2. sorba i-t irunk, akkor megkapjuk a már ismert $f_4(x) = \neg x$ függvényt.

c) Az n-változós igazságfüggvény értelmezési tartománya – az összes n hosszúságú i, h sorozatok halmaza – 2" elemből áll, azaz a függvény értéktáblázatának 2" sora van. A függvényértéket minden sor végén kétféleképpen lehet megválasztani, tehát az n-változós igazságfüggvények száma 2^{2"}.

Érdemes eszrevenni, hogy ez már viszonylag kis n értékek esetén is nagyon nagy szám, pl.

	n	2"	22"
4	2	4	16
Ċ	3	8	256
	4	16	65 536
	5	32	4 294 967 296
	6	64	≈ 1,84·10 ¹⁹

14. Határozzuk meg azoknak a

a) kétváltozós igazságfüggvényeknek a számát, amelyek mindkét változójuktól lényegesen függnek;

b) háromváltozós igazságfüggvényeknek a számát, amelyek mindhárom változójuktól lényegesen függnek!

Megoldás:

a) Az összes kétváltozós függvények száma 16. Ezek között van a két konstans függvény, azután (ha a változókat x_1 és x_2 jelöli) x_1 , $\neg x_1$, x_2 , $\neg x_2$, ez a 6 függvény nem függ lényegesen mindkét változójától. Azoknak a kétváltozós függvényeknek a száma tehát, amelyek mindkét változójuktól lényegesen függnek, legfeljebb 16-6=10. Könnyen ellenőrizhető, hogy valóban mind a 10 függvény mindkét változójától lényegesen függ.

b) A háromváltozós esetben már más módszerhez célszerű folyamodni. Itt az összes háromváltozós igazságfüggvények számából kell levonni azoknak a számát, amelyek csak kettő, egy vagy pedig nulla számú változótól függnek lényegesen. Jelölje F, azoknak az n-változós függvényeknek a számát, amelyek mind az n változójuktól lényegesen függnek. Ekkor F, értékét az előző gondolat alapján így számíthatjuk ki:

$$F_3 = 2^{2^3} - {3 \choose 2} F_2 - {3 \choose 1} F_1 - F_{00}$$

ahol általában $\binom{n}{k}$ jelöli az n elemű halmaz k elemű részhalmazainak számát (l. l. fejezet 1. szakasz 3. gyakorló feladata). Az F_2 értékét azért kell a $\binom{3}{2}$ számmal megszorozni, mert a három változó közül ennyiféleképpen tudjuk kiválasztani azt a kettőt, amelytől lényegesen függ a függvény. Ugyanilyen ok miatt kell F_1 értékét a $\binom{3}{1}$ számmal megszorozni.

Ennek alapján F, értékét már könnyű meghatározni:

 $F_0 = F_1 = 2$, az a) eredménye alapján $F_2 = 10$. Az l. fejezet 3. gyakorlatából tudjuk, hogy

$$\binom{3}{2} = \binom{3}{1} = 3.$$

tehát

$$F_3 = 256 - 30 - 6 - 2 = 218.$$

A már ismert kétváltozós függvények jelölésére bevezetjük a következő jeleket:

A 2. pontban megmutattuk, hogy az f_4 , f_5 és f_6 függvények segítségével a táblázattal megadott minden igazságfüggvény – az azonosan hamis függvény, azaz az f_1 függvény kivételével – kifejezhető t. d. n. f. alakban. Ugyanezekkel a

függvényekkel az összes igazságfüggvény az f_2 függvény kivételével t. k. n. f. alakjában is kifejezhető. Megvizsgáljuk, hogy ezek az eredmények hogyan általánosíthatók, és egyik fő célunk lesz olyan függvényrendszerek felkutatása, amelyek segítségével az összes igazságfüggvény kifejezhető. Ezeknek a vizsgálatoknak az előkészítésére fogjuk tanulmányozni az n-változós igazságfüggvények néhány speciális osztályát.

Azt mondjuk, hogy az f n-változós igazságfüggvény megőrzi a h logikai értéket, ha igaz a következő egyenlőség:

$$f(h, h, ..., h) = h.$$

Jelölje K, az ilyen tulajdonságú függvények osztályát!

Gyakorló feladatok

15. Állapítsuk meg, hogy az $f_1, f_2, ..., f_{14}$ függvények közül melyek elemei a \mathbf{K}_k osztálynak!

Megoldás:

A függvények értéktáblázatát kell csak megvizsgálnunk. Ennek alapján azonnal adódik az eredmény:

$$f_2, f_3, f_5, f_6, f_{11}$$

tartoznak bele a K, osztályba.

16. Határozzuk meg azoknak az n-változós függvényeknek a számát, amelyek elemei a **K**_h osztálynak!

Megoldás:

Egy n-változós függvény értéktáblázatának 2^n sora van (l. 13. gyakorló feladatot). A sorok közül egy sor a csupa h-t tartalmazó sor értékét írjuk elő akkor, amikor kikötjük, hogy itt a függvény érték h legyen, a többi nem \mathbf{K}_h -ba tartozó n-változós függvény itt i értéket vesz fel. Az összes n-változós függvények fele tartozik tehát a \mathbf{K}_h osztályba, azaz összesen $2^{2^{n+1}}$ függvény.

Azt mondjuk, hogy az f n-változós függvény megőrzi az i konstanst, ha teljesül a következő egyenlőség:

$$f(i, i, ..., i) = i.$$

Jelölje K, az ilyen tulajdonságú függvények osztályát!

Gyakorló feladatok

17. Állapítsuk meg, hogy az $f_1, f_2, ..., f_{11}$ függvények közül melyek elemei a \mathbf{K}_t osztálynak!

Megoldás:

A 15. gyakorló feladat megoldásához hasonlóan, elég a függvények értéktáblázatát megnézni. Azt kapjuk, hogy az

függvények elemei a K, osztálynak.

18. Határozzuk meg a \mathbf{K}_i osztályba tartozó n-változós függvények számát!

Megoldás:

A 16. gyakorló feladat gondolatmenete alapján itt is azt kapjuk, hogy az összes n-változós függvények fele, tehát

függvény tartozik a K, osztályba.

A dualitás fogalmát n-változós igazságfüggvényekre is általánosíthatjuk. Azt mondjuk, hogy az n-változós f függvény duálisa az n-változós f* függvény, ha bármely, az i, h logikai értékekből álló (x_1, \ldots, x_n) n-esre

$$f^*(x_1, x_2, ..., x_n) = \neg f(\neg x_1, ..., \neg x_n).$$

Egy n-változós igazságfüggvényről akkor mondjuk, hogy önduális, ha önmaga duálisa, azaz minden $(x_1, ..., x_n)$ -esre

$$(4) \quad f(x_1,...,x_n) = \neg f(\neg x_1,...,\neg x_n).$$

Jelölje U az önduális függvények osztályát!

Gyakorló feladatok

19. Állapítsuk meg, hogy az f_1, f_2, \dots, f_{11} függvények közül melyek elemei az U osztálynak!

Megoldás:

A definició alapján ellenőrizni kell mind a 11 függvényről, hogy önduális-e vagy sem. Az f_1 és f_2 függvények nyilván nem önduálisak. Mivel

$$x = \neg(\neg x) \quad \text{és}$$
$$\neg x = \neg(\neg(\neg x))$$

az f_3 és f_4 függvények önduálisak. Az f_5 és f_6 (\vee és \wedge) függvényekről tudjuk, hogy egymás duálisai, tehát biztosan nem önduálisak. Az f_7 , f_8 , f_9 , f_{11} függvényekre felirva a megfelelő azonosságokat, azt találjuk, hogy egyik sem érvényes, tehát ezek között sincs önduális. Érdemes még észrevenni, hogy f_7 és f_{11} egymás duálisai, azaz érvényes a következő azonosság:

$$x_1 {\leftrightarrow} x_2 = \neg (\neg x_1 \oplus \neg x_2).$$

20. Határozzuk meg az n-változós önduális igazságfüggvények számát!

Megoldás:

Megint abból induljunk ki, hogy az n-változós függvény értéktáblázatának 2^n sorát hányféleképpen tudjuk kitölteni arra ügyelve, hogy a (4) összefüggés igaz legyen. A (4) alapján világos, hogy a tablázat sorainak felét tudjuk szabadon megadni, hiszen ha egy (x_1, \ldots, x_n) helyen előirtuk a függvény értékét, akkor a (4) egyenlőség alapján a $(\neg x_1, \ldots, \neg x_n)$ helyen felvett értéke már egyértelműen adott. Így tehát 2^{n-1} sort találhatunk ki szabadon. azaz az n-változós önduális függvények száma:

Az n-változós f igazságfüggvényt lineáris függvénynek nevezzük, ha előállítható az

(5)
$$f(x_1, ..., x_n) = c_0 \oplus c_1 x_1 \oplus ... \oplus c_n x_n$$

alakban, ahol $c_i x_i$ a $(c_i \wedge x_i)$ formula rövidítése (i = 1, 2, ..., n) és $c_0, c_1, ..., c_n$ az i és h értékek valamelyikét jelöli. Az elnevezés onnan ered, hogy a \wedge sok tekintetben hasonlít a számok körében értelmezett szorzásra, \oplus pedig az összeadásra. (Ez a hasonlóság még nyilvánvalóbb, ha az i értékét 1-gyel, a h értékét 0-val jelöljük. Hasznos gyakorlatként javasoljuk a függvény megfogalmazását 0 és 1 értékekkel is!)

Jelölje L a lineáris igazságfüggvények osztályát!

Gyakorló feladatok

21. Állapítsuk meg, hogy az $f_1, f_2, ..., f_{11}$ függvények közül melyek elemei az L osztálynak!

Megoldás:

Vizsgáljuk végig az egyes függvényeket, hogy előállíthatók-e a kívánt alakban! Az f_1 , f_2 függvények a $v_0 = i$, ill. a $v_0 = h$ választással megfelelnek, tehát ezek lineáris függvények.

$$f_3(x)=x=h\oplus ix,$$

$$f_4(x) = \neg x = i \oplus ix$$

állítások megfelelnek az (5)-nek.

Az f_5, \ldots, f_{11} kétváltozós függvényekről tudjuk, hogy mindkét változójuktól lényegesen függnek. Ezért a kétváltozós lineáris függvények (5) alakú előállításában, a

$$c_0 \oplus c_1 x_1 \oplus c_2 x_2$$

formulában $c_1 = c_2 = i$ lehet csak, hiszen hx = h. Másrészt tudjuk, hogy ix = x, tehát azt kell megvizsgálnunk, hogy a

(6)
$$c_0 \oplus x_1 \oplus x_2$$

alakú formula milyen függvényeket állít elő. Ebből már az értéktáblázatok alapján könnyen eldönthető, hogy ez $c_0 = t$ esetén az $x_1 \leftrightarrow x_2$ formulával, $c_0 = h$ esetén pedig az $x_1 \oplus x_2$ formulával azonos. Azt kapjuk tehát, hogy a felsorolt függvények közül f_1, f_2, f_3, f_4, f_7 és f_4 , eleme L-nek.

22. Határozzuk meg az n-változós lineáris igazságfüggvények számát!

Megoldás:

Azt kell csak összeszámolnunk, hogy az (5) formulával hanyféle különböző függvény állitható elő. Az (5) formulában a c_0, c_1, \ldots, c_n értékeket szabadon választhatjuk az i és h logikai értékek közül. Ez összesen 2^{n+1} lehetőség, tehát az n-változós lineáris függvények száma 2^{n+1} .

Már említettük, hogy szokás az i logikai értéket 1-gyel, a h logikai értéket 0-val jelölni. Ebben az esetben természetesnek hat az, hogy a 0-t kisebbnek tekintjük, mint az 1-et. Ennek alapján abban is megállapodhatunk, hogy h < i. Más szavakkal ezt úgy is mondhatjuk, hogy az $\{i, h\}$ logikai értékekből álló halmazon bevezettünk egy rendezést. Ennek a rendezésnek az alapján értelmezhetünk egy részbenrendezést az

(7)
$$\{(x_1, x_2, ..., x_n): x_j \in \{i, h_j^*, j = 1, 2, ..., n\}$$

halmazon is. Megállapodunk abban, hogy

$$(8) \quad (x_1, x_2, \dots, x_n) \leq (x'_1, x'_2, \dots, x'_n),$$

ha minden $1 \le j \le n$ számra $x_i \le x'_i$ Például

$$(h, i, i, h) \leq (i, i, i, h),$$

mert a két négyesben az egyik első komponense kisebb, mint a másiké, a többi komponensek pedig egyenlők. A (8) alatti definíció csak részbenrendezése a (7) halmaznak, mert nem tudjuk a (7) halmaz akármelyik két elemét összehasonlítani. Például n=4 esetén a (h, i, h, i) és (i, h, i, h) négyesek nem hasonlíthatók össze a (8) definíció alapján.

Azt mondjuk, hogy az f n-változós igazságfüggvény mo-noton, ha bármely két, $(x_1, ..., x_n)$ és $(x_1', ..., x_n')$ n-esre, amelyre

$$(x_1,...,x_n) \leq (x'_1,...,x'_n)$$

teljesül,

$$f(x_1,...,x_n) \le f(x'_1,...,x'_n)$$

is fennáll.

Jelölje M a monoton függvények osztályát!

Gyakorló feladat

23. Állapítsuk meg, hogy az $f_1, f_2, ..., f_{11}$ függvények közül melyek elemei M-nek!

Megoldás:

A definició alapján nyilvánvaló, hogy

$$f_1, f_2, f_3 \in M$$

és $f_4 \notin M$. Vizsgáljuk a kétváltozós függvényeket! Az értelmezési tartomány elemeit a (8) definíció a következőképpen rendezi:

A nyíl itt a nagyobb felé mutat. Az (i,h) és (h,i) párok nem hasonlithatók össze. A definiáló értéktáblázatokból közvetlenül leolvasható, hogy csak az f_5 és f_6 függvények tesznek eleget a monotonitás definíciójának, tehát

$$f_5, f_6 \in \mathbf{M}$$
.

Az n-változós monoton igazságfüggvények számára alsó és felső becslést ismernek. Jelőlje \mathbf{M}_n az n-változós monoton függvények számát, Igazolták, hogy

$$\frac{\binom{n}{2}}{2^{c_h^{k/2}}} \leq |\mathbf{M}_{\cdot}| \leq 2^{k \cdot c_h^{\left[\frac{n}{2}\right]}}$$

ahol k konstans, c_n egy n-től függő szám és $\left[\frac{n}{2}\right]$ jelőli azt a legnagyobb egész számot, amely nem nagyobb $\frac{n}{2}$ -nél.

Azt mondjuk, hogy az n-változós f igazságfüggvény szimmetrikus, ha tetszőleges, az i és h logikai értékekből álló $(x_1, x_2, ..., x_n)$ rendezett n-esre igaz, hogy

$$f(x_1, x_2, ..., x_n) = f(x'_1, x'_2, ..., x'_n),$$

ha $(x'_1, x'_2, ..., x'_n)$ ugyanannyi *i*, ill. *h* jelet tartalmaz, mint $(x_1, x_2, ..., x_n)$, csak esetleg más sorrendben.

Jelölje S a szimmetrikus függvények osztályát!

Gyakorló feladatok

24. Állapítsuk meg, hogy az $f_1, f_2, ..., f_{11}$ függvények közül melyek elemei S-nek!

Megoldás:

A definició alapján könnyen ellenőrizhetjük, hogy melyik függvény tesz eleget a definiciónak. Az f_1, f_2, f_3, f_4 függvények nyilván kielégítik a definiciót. A kétváltozós függvények közül azok szimmetrikusak, amelyeknek értéke az (i, h) és (h, i) helyeken megegyezik, tehát

$$f_5, f_6, f_7, f_9, f_{10}, f_{11} \in \mathbf{S}.$$

Megoldás:

A definíció alapján világos, hogy az n-változós szimmetrikus függvény értéktáblázatának elkészítésekor az azonos számű i. ill. h jelet tartalmazó sorok közül csak az egyikbe írhatjuk be szabadon a függvény értékét, a többi helyre ugyanezt kell írnunk. Ennek megfelelően a 0, 1, 2, ..., n számű i értéket tartalmazó sorok kitöltésekor 2 lehetőségünk van (vagy i, vagy h értéket vesz fel a függvény), ez összesen 2^{n+1} lehetőség, tehát az n-változós szimmetrikus függvények száma 2^{n+1} .

Feladatok

12. Igazoljuk, hogy a konstans hamis igazságfüggvény kivételével minden *n*-változós igazságfüggvény előállítható úgynevezett polinomiális alakban, azaz

$$\alpha_1 \oplus \alpha_2 \oplus \ldots \oplus \alpha_k$$

alakban. Ebben α_i $(1 \le i \le k)$ olyan *n*-tagú konjunkció, amelynek minden tagja vagy egy változó, vagy egy változó negáltja, ugyanaz a változó nem szerepel kétszer, és ha $i \ne j$, akkor α_i és α_i nem csak a tagok sorrendjében különböznek.

13. Ígazoljuk, hogy a konstans igaz kivételével minden nváltozós igazságfüggvény előállítható a következő alakban:

$$\beta_1 \leftrightarrow \beta_2 \leftrightarrow \ldots \leftrightarrow \beta_i$$

ahol β_i ($1 \le i \le l$) olyan *n*-tagú diszjunkció, amelynek minden tagja vagy egy változó, vagy egy változó negáltja, ugyanaz a változó nem szerepel kétszer, és ha $i \ne j$, akkor β_i és β_j nem csak a tagok sorrendjében különböznek!

4. Teljes függvényrendszerek

Az előző fejezetekben kidolgozott eszközök felhasználásával most már egy lényeges kérdést tudunk majd megvizsgálni. Már az eddigiekben is találkoztunk olyan függvényrendszerekkel, amelyek segítségével az összes igazságfüggvény kifejezhető.

Azt mondjuk, hogy az $f_1, f_2, ..., f_k$ igazságfüggvények teljes függvényrendszert alkotnak, ha összetételükkel bármely igazságfüggvény kifejezhető. Az $f_1, f_2, ..., f_k$ függvényeket együtt, szokás bázisnak is nevezni. Azt mondjuk, hogy egy bázis minimális, ha belőle bármelyik függvényt elhagyva már nem kapunk teljes függvényrendszert.

Gyakorló feladatok

26. lgazoljuk, hogy a következő függvényrendszerek bázist alkotnak:

- a) f4. f5:
- b) f_a, f_b ;
- c) f_4, f_6, f_{11} ;
- $(d) f_2, f_6, f_{11};$
- e) for
- $f(f) = f_{10}$.

Megoldás:

Az a) megoldása egyszerűen abból következik, hogy minden igazságfüggvény teljes diszjunktiv normálformára hozható és a konjunkció kifejezhető diszjunkció és negáció segítségével;

$$f_6(x_1, x_2) = f_4(f_5(f_4(x_1), f_4(x_2))).$$

Ez az azonosság csak egyszerű átírása a jól ismert De Morgan-azonosságnak. Az azonosan hamis függvényt – f_1 -et – pl. igy fejezhetjük ki f_4 és f_5 segitségével:

$$f_1(x) \equiv f_4(f_5(f_4(x), x)).$$

Hasonlóan adódik a b) feladat megoldása is. Minden igazságfüggvény teljes konjunktiv normálformára hozható – az azonosan igaz függvény kivételével – ez pedig

$$f_0(x) \equiv f_4(f_6(f_4(x), x))$$

alakban irható fel. A diszjunkciót, azaz az f_5 függvényt negációval és konjunkcióval a De Morgan-azonosság alapján fejezhetjük ki:

$$f_5(x_1, x_2) = f_4(f_6(f_4(x_1), f_4(x_2))).$$

c) A megoldás egyszerűen adódik a 12. feladat eredményéből.

d) A c) alapján elég azt megmutatni, hogy f_4 a negáció – kifejezhető f_2 és f_{11} segitségével. Ezt a következő azonosság mutatja:

$$f_4(x) \equiv f_{1,1}(x, f_2(x)),$$

amit f_{11} , azaz a \oplus művelet értéktáblázata alapján azonnal ellenőrizhetünk

Az e) és f) a 10. feladat e) és d) részéből következik.

Érdemes még megjegyezni, hogy az a), b), e) és f) függvényrendszerek minimális bázist is alkotnak.

27. Igazoljuk, hogy ha egy f kétváltozós függvénnyel az összes igazságfüggvény kifejezhető – azaz f teljes függvényrendszert alkot – akkor f csak a [vagy [művelet lehet[

Megoldás:

Gondoljuk végig – abból a feltételből, hogy f segítségével az összes igazságfüggvény kifejezhető, hogyan állitható össze f értéktáblázata:

$$\begin{array}{c|cccc} x_1 & x_2 & f(x_1, x_2) \\ \hline i & i & h \\ i & h & i \\ h & i & h \\ \end{array}$$

Az első sorban (f(i, i) értéke) csak h lehet, mert ellenkező esetben f segítségével csak olyan függvényeket fejezhetnénk ki, amelyek az (i, i) helyen i értéket vesznek fel (például a | nem lenne kifejezhető). Hasonló okokból a táblázat utolsó sorában csak i érték állhat. A megmaradó két helyet még négyféleképpen tölthetjük ki. Ha a második helyre i-t, a harmadik helyre h-t írunk, akkor

$$f(x_1, x_2) \equiv \Box x_2,$$

tehát a kapott függvény f_4 -gyel azonos, ezzel pedig nem fejezhető ki az öszszes igazságfüggvény. Ha az első helyre h-t, a második helyre i-t irunk, akkor

$$f(x_1, x_2) \equiv \neg x_1,$$

tehát megint olyan függvényt kaptunk, amellyel nem fejezhető ki az összes igazságfüggvény. Végül, ha mindkét helyre h-t irunk, akkor a \downarrow , ha i-t, akkor a \downarrow függvényt kapjuk. Ezekkel valóban kifejezhető az összes igazságfüggvény.

28. A **26.** feladatban szereplő *e)* bázis segítségével fejezzük ki a következő háromváltozós igazságfüggyényeket:

a)
$$f(x_1, x_2, x_3) = \begin{cases} i, & \text{ha} \quad x_1 = x_2 = x_3, \\ h, & \text{egyébként.} \end{cases}$$

$$b = g(x_1, x_2, x_3) = \begin{cases} i, & \text{ha} \quad x_1, x_2, x_3 \text{ k\"oz\"ul} \\ & \text{pontosan egy \'igaz,} \\ h, & \text{egy\'ebk\'ent.} \end{cases}$$

Megoldás:

a) A definíció alapján az f függvényt teljes diszjunktiv normálformában igy irhatjuk fel:

$$f(x_1, x_2, x_3) = (x_1 \land x_2 \land x_3) \lor (\exists x_1 \land \exists x_2 \land \exists x_3).$$

Alkalmazzuk ezután a következő, már igazolt azonosságokat:

$$\exists x_1 = x_1 | x_1; x_1 \land x_2 = (x_1 | x_2) | (x_1 | x_2); x_1 \lor x_2 = (x_1 | x_1) | (x_2 | x_2).$$

Ezek felhasználásával f-et a következő alakban állíthatjuk elő;

$$\begin{split} f(x_1, x_2, x_3) &= (((x_1 \land x_2) \land x_3)) | ((x_1 \land x_2) \land x_3)) | \\ | (((\neg x_1 \land \neg x_2) \land \neg x_3)) | ((\neg x_1 \land \neg x_2) \land \neg x_3)) &= \\ &= (((x_1 | x_2)) | (x_1 | x_2)) | x_3) | ((x_1 | x_2) | (x_1 | x_2) | x_3) | \\ | (((x_1 | x_2)) | (x_1 | x_2)) | ((x_1 | x_2) | (x_1 | x_2) | (x_3 | x_3)) | \\ | ((((x_1 | x_1)) | (x_2 | x_2)) | (((x_1 | x_1) | (x_2 | x_2)) | ((x_3 | x_3)) | \\ \end{split}$$

$$\left| \left(\left(\left(x_1 \mid x_1 \right) \mid \left(x_2 \mid x_2 \right) \right) \mid \left(\left(x_1 \mid x_1 \right) \mid \left(x_2 \mid x_2 \right) \right) \mid \left(x_3 \mid x_3 \right) \right) \right|$$

$$\left| \left(\left(\left(x_1 \mid x_1 \right) \mid \left(x_2 \mid x_2 \right) \right) \mid \left(\left(x_1 \mid x_1 \right) \mid \left(x_2 \mid x_2 \right) \right) \right) \mid \left(x_3 \mid x_3 \right) \right) \right|$$

$$\left| \left(\left(x_1 \mid x_1 \right) \mid \left(x_2 \mid x_2 \right) \right) \mid \left(\left(x_1 \mid x_1 \right) \mid \left(x_2 \mid x_2 \right) \right) \mid \left(x_3 \mid x_3 \right) \right) \right|$$

b) Itt is az a) megoldásában követett úton juthatunk célhoz. Írjuk fel először a g függvényt t, d. n. f. alakban:

$$g(x_1, x_2, x_3) = (\neg x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land \neg x_3).$$

A kapott alakból az előzőkben felsorolt három azonosság felhasználásával kaphatjuk meg g-nek a művelettel kifejezett alakját. A részletes kiirást itt elhagyjuk.

Fontos probléma általában annak a kérdésnek az eldöntése, hogy egy adott igazságfüggvény-rendszer teljes-e vagy nem. Erre a kérdésre ad választ a következő, *Post–Jablonsz-kii-tétel*:

Az $f_1, f_2, ..., f_k$ igazságfüggvények ből álló rendszer akkor és csak akkor teljes, ha a függvények között van olyan, amely

- a) nem eleme a K, osztálynak,
- b) nem eleme a K, osztálynak,
- c) nem eleme az U osztálynak,
- d) nem eleme az L osztálynak,
- e) nem eleme az M osztálynak.

A tétel igazolását majd egy feladatsorozatban végezzük el.

Nyilvánvaló következménye a tételnek, hogy egy teljes függvényrendszerből ki lehet választani egy legfeljebb öt függvényből álló teljes részrendszert is. Az eddigi példáinkban találkoztunk már három, kettő, sőt egy függvényből álló teljes függvényrendszerrel is.

A kettőnél több változós függvények körében is érdekesek azok az igazságfüggvények, amelyek a Sheffer-függvényhez hasonlóan, önmagukban alkotnak teljes függvényrendszert. Általában egy n-változós f függvényről azt mondjuk, hogy többváltozós Sheffer-függvény, ha nem őrzi meg a konstansokat, nem önduális, nem lineáris, és nem monoton.

Gyakorló feladatok

29. lgazoljuk, hogy az $f_4(\neg)$ és $f_8(\rightarrow)$ függvények teljes függvényrendszert alkotnak!

Megoldás:

A Post-Jablonszkij-tétel felhasználásával azonnal adódik a megoldás, hiszen $f_4 \notin \mathbf{K}_0$, \mathbf{K}_1 , \mathbf{M} és $f_8 \notin \mathbf{L}$, \mathbf{U} .

Más módon is könnyen célhoz érhetünk. Elég például megmutatni, hogy a konjunkció, f_6 , kifejezhető f_4 és f_4 segítségével, hiszen azt már tudjuk, hogy f_4 és f_6 teljes függvényrendsært alkot. A kifejezhetőséget a következő azonosság mutatja:

$$f_6(x_1, x_2) = f_4(f_8(x_1, f_4(x_2))).$$

Ennek igazolása közvetlenül az értéktáblázatokból leolvasható.

30. Igazoljuk, hogy az $f_4(\neg 1)$ és $f_7(\longleftrightarrow)$ függvények nem alkotnak teljes függvényrendszert!

Megoldás:

A Post-Jablonszkij-tétel alkalmazásával elég megmutatni, hogy a függvényrendszer nem elégiti ki az összes feltételt. Valóban, f_4 , $f_7 \in \mathbf{L}$ (l. a 21. gyakorló feladatot), tehát a d) feltétel nem teljesül.

31. Igazoljuk, hogy ha egy f függvényre teljesül, hogy $f \notin \mathbf{K}_h$, akkor vagy $f \notin \mathbf{U}$, vagy $f \notin \mathbf{K}_h$ is teljesül!

Megoldás:

Ha f nem őrzi meg a hamis konstanst, akkor f(h, h, ..., h) = i. Ha f(i, i, ..., i) = i, akkor f nem önduális, ha pedig f(i, i, ..., i) = h, akkor f nem őrzi meg az i konstanst.

32. Igazoljuk, hogy minden teljes függvényrendszerből ki lehet választani egy legfeljebb négy függvényből álló teljes rendszert!

A Post Jablonszkij-tétel szerint egy teljes függvényrendszerből mindig kiválasztható egy legfeljebb öt függvényből álló teljes részrendszer. Ezek között van olyan, amelyik nem őrzi meg a hamis konstanst, de akkor a 31. gyakorló feladat szerint ez nem önduális, vagy nem őrzi meg az igaz konstanst, tehát egy további feltételt is kielégit. Így a még szükséges 3 feltételhez legfeljebb három további függvényt kell választanunk, és így kapunk egy legfeljebb négy függvényből álló teljes részrendszert.

Az eddigiek során is gyakran használtuk azt a kifejezést, hogy adott függvények segítségével új függvények előállíthatók. Ezen pontosabban a következőt értettük. Az adott függvényekből újabb függvényeket képezhetünk a következő lépések egymás utáni alkalmazásával:

- egy függvényben két változót azonosítunk (például: az $x \mid y$ kifejezésből az $x \mid x = \neg x$ kifejezést kapjuk) vagy egy változót átjelölünk (például $x \lor y$ helyett az $x \lor z$ kifejezést írjuk);

– egy függvény változói helyére függvényeket helyettesítünk (például az $x \lor y$ kétváltozós és $\exists x$ egyváltozós függvényből igy kapjuk a $\exists x \lor y = x \rightarrow y$ kétváltozós függvényt).

Ezek a lépések az igazságfüggvények körében értelmezett műveletek. A kétféle műveletet közös néven szuperpoziciónak is szokás nevezni. Az igazságfüggvények különböző osztályainak vizsgálatakor fontos szerepe van ennek a műveletnek.

Azt mondjuk, hogy az igazságfüggvények egy F osztálya zárt a szuperpozícióra, ha az F-be tartozó függvények szuperpozíciója is eleme F-nek. Ha például F az összes igazságfüggvényekből álló osztály, akkor F nyilván zárt a szuperpozicióra.

Gyakorló feladatok

33. Állapítsuk meg, hogy a következő függvényosztályok közül melyek zártak a szuperpozícióra, és melyek nem zártak:

- a) a kétváltozós függvények osztálya:
- h) L;
- c) U;
- d) M;
- e) a monoton fogyó függvények osztálya;
- $f(\mathbf{K}_i;$
- g) \mathbf{K}_{b}

Megoldás:

- a) A kétváltozós függvények osztálya nem zárt a szuperpozícióra, hiszen egy kétváltozós függvényből a változók átjelölésével háromváltozós függvényt kapunk (például az $x \wedge y$ és $x \vee y$ függvényekből átjelöléssel az $x \wedge \{y \vee z\}$ háromváltozós függvényt kapjuk).
- h) A lineáris függvények L osztálya zárt a szuperpozicióra, mert a változók átjelölése nem változtat a linearitáson, és mivel a ⊕ művelet asszociatív, egy lineáris függvény változója helyére lineáris függvényt helyettesítve, ismét lineáris függvényt kapunk.
- c) Az önduális függvények U osztálya szintén zárt a szuperpozicióra, hiszen változók azonosítása vagy átjelölése nyilván nem változtat az

$$f(x_1, ..., x_n) = \Box f(\Box x_1, ..., \Box x_n)$$

definiáló tulajdonság teljesülésén. Ha az f függvény x_i változója helyére egy $g \in U$ függvényt helyettesítünk, akkor a kapott

$$h(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n, y_1, ..., y_k) =$$

$$= f(x_1, ..., x_{i-1}, g(y_1, ..., y_k), x_{i+1}, ..., x_k)$$

függvény szintén eleme U-nak, hiszen

Közben felhasználtuk, hogy

$$\exists g(y_1, ..., y_k) = g(\exists y_3, ..., \exists y_k),$$

ami $g \in U$ miatt nyilván igaz.

d) A monoton függvények M osztálya is zárt a szuperpozícióra, hiszen változók azonosítása vagy átjelölése nyilván nem változtat a monotonitáson. Azt kell még megmutatni, hogy monoton függvény változója helyére monoton függvényt helyettesítve, szintén monoton függvényt kapunk.

Feltételezve az $f(x_1, ..., x_i, ..., x_n)$ és $g(y_1, ..., y_n)$ függvények monotonitását, igazoljuk, hogy ekkor a

$$h(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n, y_1, ..., y_k) =$$

$$= f(x_1, ..., x_{i-1}, g(y_1, ..., y_k), x_{i+1}, ..., x_n)$$

függvény is monoton.

Legyenek $\gamma = (\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n, \beta_1, \dots, \beta_k)$ és $\gamma' = (\alpha'_1, \dots, \alpha'_{i-1}, \alpha'_{i+1}, \dots, \alpha'_n, \beta'_1, \dots, \beta'_k)$ i és h értékekből álló összehasonlítható rendszerek és tegyük fel, hogy $\gamma < \gamma'$. Ekkor azt kell megmutatnunk, hogy $h(\gamma) \le h(\gamma')$. A $\gamma < \gamma'$ feltételhől következik, hogy $\beta = (\beta_1, \dots, \beta_k) \le \beta' = (\beta'_1, \dots, \beta'_k)$, de akkor g monotonitása miatt $g(\beta) \le g(\beta')$ és igy

$$(\alpha_1, \ldots, \alpha_{i-1}, g(\beta), \alpha_{i+1}, \ldots, \alpha_n) \leq (\alpha'_1, \ldots, \alpha'_{i-1}, g(\beta'), \alpha'_{i+1}, \ldots, \alpha'_n)$$

tehát f monotonitásából következik, hogy

$$h(\gamma) \leq h(\gamma')$$
.

- e) A monoton fogyó függvények osztálya nem zárt a szuperpozicióra, mert például a \neg egyváltozós függvény monoton fogyó, de ha önmagába helyettesítjük, akkor a kapott $\neg(\neg x) = x$ függvény szigorúan növő, tehát nem lehet monoton fogyó.
- f) és g) Az i és h konstanst megőrző függvények nyilván zártak a szuperpozícióra, hiszen ezen a tulajdonságon változók átjelölése, azonosítása, és ilyen tulajdonságúak egymásba helyettesítése nem változtat. Ezt már lényegében kihasználtuk a 27. gyakorló feladat megoldásakor.

Feladatok

- **14.** Igazoljuk, hogy a következő függvényrendszerek teljes függvényrendszert alkotnak:
 - a) $f_2, f_5, f_{11};$
 - b) $f_4, f_8;$
 - c) f_1, f_8 .
- 15. Bizonyítsuk be, hogy ha egy $g_1, g_2, ..., g_k$ függvényrendszer teljes, akkor az egyes függvények duálisaiból képezett $g_1^*, g_2^*, ..., g_k^*$ függvényrendszer is teljes!

16. Jellemezzük a következő igazságfüggvényosztályokat:

- a) $L \cap M$;
- b) $L\cap U$;
- c) $L\cap K_h$;
- d) $L \cap K_i$.

17. Igazoljuk, hogy ha egy f függvényre teljesül: $f \notin \mathbf{K}_h$, $f \notin \mathbf{K}_i$ és $f \notin \mathbf{U}$, akkor $f \notin \mathbf{M}$ és $f \notin \mathbf{L}$ is igaz.

18. Határozzuk meg az *n*-változós Sheffer-függvények számát!

19. Igazoljuk, hogy a g_1, \ldots, g_k függvényekből álló függvényrendszer akkor és csak akkor teljes, ha minden olyan \mathbf{F} függvényosztályhoz, amely nem tartalmazza az összes igazságfüggvényt és zárt a szuperpozícióra, van olyan g_i ($1 \le \le i \le k$), hogy $g_i \notin \mathbf{F}$.

20. Igazoljuk, hogy ha az f függvény nem őrzi meg a h(i) konstanst, akkor f-ből a változók azonosításával megkaphatjuk az ilyen tulajdonságú egyváltozós függvényeket, azaz az f_2 és f_4 (f_3 és f_4) függvényeket!

21. lgazoljuk a Post-Jablonszkij-tételt!

22. Egy, a szuperpozícióra zárt \mathbf{F} függvényosztály nem triviális, ha nem üres és nem tartalmazza az összes igazságfüggvényt. Igazoljuk, hogy minden nemtriviális, a szuperpozícióra zárt függvényosztály a \mathbf{K}_i , \mathbf{K}_h , \mathbf{U} , \mathbf{L} , \mathbf{M} osztályok közül egyiknek része!

23. Egy nemtriviális, zárt F függvényosztály majdnem teljes, ha az F-et tartalmazó bármely zárt F' függvényosztály vagy F-fel azonos, vagy az összes igazságfüggvényt tartalmazza. Igazoljuk, hogy a K_i, K_h, U, L, M függvényosztályok majdnem teljesek és más, majdnem teljes függvényosztály nincs!

24. Igazoljuk a Post-Jablonszkij-tétel alapján, hogy a következő függvényosztályok nem teljesek:

- a) $f_1, f_6, \text{ és } g(x, y, z) = x \oplus y \oplus z;$
- b) f_2 , f_6 és $g(x, y, z) = x \oplus y \oplus z$;

- c) $h(x, y, z) = (\neg x \land \neg y) \lor (\neg x \land \neg z) \lor (\neg y \land \neg z);$
- d) $f_1, f_2, f_{11};$
- e) f_1, f_2, f_6

A II. fejezetben kitűzött feladatok megoldásai

1. a) A formulában két változó van, igy értéktáblázata négy sorból áll. A táblázatot a műveletek definíciójának alapján a következőképpen készíthetjük el:

A	В	$\neg A$	$ \neg A \lor B $	$ \neg (\neg A \lor B) $	$ \neg A \wedge \neg (\neg A \vee B) $
i	i	h	i	h	h
i	h	h	h	i	h
h	i	i	i	h	h
h	h	i	i	h	h

A formula értéke tehát mindig hamis.

b) Itt is két változó van, a táblázatot két lépésben érdemes elkészíteni:

A	В	$B \rightarrow A$	$A \to (B \to A)$
i	i	i	i
Î	h	i	i
h	i	h	i
h	h	i	i

Ennek a formulának az értéke mindig igaz, a konstans igaz függvényt fejezi ki.

c) A háromváltozós formula értéktáblázata nyolc sort tartalmaz. A táblázat elkészítését most már rövidebben végezzük, két-két lépést összevonunk. Jelöljük az egész formulát α-val:

A	В	С	$A \rightarrow (B \rightarrow C)$	$(A \to B) \to (A \to C)$	α
i	i	i	i	i	i
i	į	h	h	h	i
i	h	i	i	i	i
i	h	h	i	i	i
h	i	i	i	i	i
h	i	h	i	i	i
h	h	i	i	i	i
h	h	h	i	i	i

2. a) Készítsük el az egyenlőségjel két oldalán álló formula értéktáblázatát. Itt is két lépést összevonunk:

A	В	C	$(A \leftrightarrow B) \leftrightarrow C$	$A \leftrightarrow (B \leftrightarrow C)$
i	i	i	i	i
i	i	h	h	h
i	h	i	h	h
i	h	h	i	i
h	i	i	h	h
h	i	h	i	i
h	h	i	i	i
h	h	h	h	h h

Mivel a két oldalon álló formula értéktáblázata megegyezik, az azonosság igaz.

b) Az azonosság igazolásához leggyorsabban úgy juthatunk el, ha felhasználjuk a **4.** gyakorló feladat a) és b) azonosságát. Először alkalmazzuk a b) azonosságot, majd az a) felhasználásával az eredményhez jutunk!

c) A bizonyítandó azonosság bal oldalát a 4. a) gyakorló feladatban igazolt azonosság felhasználásával $\neg A \lor B$ alakban írhatjuk. A bal oldalra alkalmazva ugyanezt az azonosságot, a következő alakhoz jutunk: $\neg \neg B \lor \neg A$. Felhasz-

nálva a diszjunkció kommutativitását és azt, hogy $\neg \neg B = B$, a kívánt eredményt kapjuk.

3. a) Válasszuk itt azt a módszert, hogy elkészítjük a formula értéktáblázatát az 1. feladat megoldásaiban megismert eljárással:

A	В	$A \rightarrow B$	$A \wedge (A \rightarrow B)$	$(A \wedge (A \rightarrow B)) \rightarrow B$
i	i	Ì	i	i
i.	h	h	h	į .
h	i	i	h	i
h	h	i	h	i

b) Az állítás igazolásához most egy másik módszert választunk. Azt kell megmutatnunk, hogy az implikáció értéke a benne szereplő változók bármely értékére igaz. Ehhez elég megmutatni, hogy ha az implikáció utótagja hamis, akkor az előtag is hamis. Az utótag, $A \rightarrow C$ akkor és csak akkor hamis, ha |A| = i és |C| = h. Ebben az esetben ha |B| = i, akkor $B \rightarrow C$ értéke h, tehát az előtagot alkotó konjunkció egyik tagja hamis, így az előtag is hamis. A |B| = h esetben az $A \rightarrow B$ konjunkciós tag értéke lesz hamis, tehát a konjunkció is hamis.

c) Az állítás bizonyításához itt úgy juthatunk el leghamarabb, ha alkalmazzuk a már igazolt azonosságainkat:

$$((A \lor B \lor C) \land \neg B \land \neg C) \rightarrow A =$$

$$= \neg ((A \lor B \lor C) \land \neg B \land \neg C) \lor A =$$

$$= \neg (A \lor B \lor C) \lor B \lor C \lor A =$$

$$= \neg (A \lor B \lor C) \lor (A \lor B \lor C).$$

Az átalakítások során a 4. a) gyakorlatban megismert azonosságot, a De Morgan-azonosságot és a diszjunkció asszociativitását használtuk fel. Az utolsó lépésben kapott formulát

$$\exists \alpha \vee \alpha$$

alakban írhatjuk le, ha bevezetjük az $A \lor B \lor C = \alpha$ rövidítést. A 3. d) gyakorlat szerint viszont ennek a formulának az értéke tetszőleges α -ra igaz, ezzel az állítást igazoltuk.

4. Az $\alpha = \beta$ azonosság teljesülése azt jelenti, hogy az α és β formulák értéke a bennük szereplő változók tetszőleges értéke esetén megegyezik. Ez az utóbbi állítás azzal egyenértékű, hogy az $\alpha \leftrightarrow \beta$ formula a benne szereplő változók minden értékére igaz.

5. Először a *b*) állitást igazoljuk, ennek felhasználásával az *a*) állitás bizonyítása már könnyen adódik a **4.** feladat eredményére támaszkodva.

A *b*) bizonyítását egy konkrét példán mutatjuk meg. Könnyen látható, hogy a bizonyítás általános esetben is ugyanígy végezhető el.

Válasszuk ki a példaként felsorolt formulák közül az α -t, és először alakítsuk át könnyebben áttekinthető alakba! Al-kalmazzuk először a De Morgan-szabályokat (ha szükséges, pl. α esetében nem kell, de ha β -ból indulnánk el, már szükség volna rá). Ezután alkalmazzuk a disztributivitási szabályt (esetleg többször, ha kell):

$$(A \vee B) \wedge \neg C = (A \wedge \neg C) \vee (B \wedge \neg C).$$

A kapott diszjunkció minden tagja egy-egy konjunkció, a konjunkciós tagok vagy változók, vagy változók negáltjai. Még azt érjük el, hogy minden diszjunkciós tagban minden változó vagy negálva, vagy negálatlanul szerepeljen. Ehhez használjuk fel az

$$A \vee \neg A \equiv i$$

azonosságot és azt, hogy az igaz konjunkciós tag nem változtat egy formula értékén. Természetesen a disztributivitási szabályt is újra alkalmazzuk, ha kell, rövidítésként az $A \lor A = A$ azonosságot is használjuk fel:

$$(A \wedge (B \vee \neg B) \wedge \neg C) \vee ((A \vee \neg A) \wedge B \wedge \neg C) =$$

$$= (A \wedge B \wedge \neg C) \vee (A \wedge \neg B \wedge \neg C) \vee$$

$$\vee (\neg A \wedge B \wedge \neg C).$$

A most kapott alak jól alkalmazható, látszik róla, hogy a formula a változók milyen értékére igaz. A diszjunkció pontosan akkor igaz, ha legalább az egyik tagja igaz, az egyes diszjunkciós tagok pedig akkor igazak, ha minden tagjuk igaz.

Az α-ra alkalmazott átalakítási lépések "duálisának" alkalmazásával α*-t a következő alakra hozhatjuk:

$$(A \lor B \lor \neg C) \land (A \lor \neg B \lor \neg C) \land (\neg A \lor B \lor \neg C).$$

Erről az alakról könnyű leolvasni azt, hogy ez mikor hamis: a konjunkció pontosan akkor hamis, ha valamelyik tagja hamis, az egyes konjunkciós tagok pedig akkor hamisak, ha minden tagjuk hamis.

A kapott eredményeket összefoglalva azt mondhatjuk, hogy α a változóknak pontosan annyi különböző értékére igaz, ahányra α^* hamis. Ezért ha α azonosan igaz, akkor α^* azonosan hamis, tehát $\neg \alpha^*$ azonosan igaz. Ezzel a b) állítást igazoltuk.

Az a) állítás bizonyításához használjuk fel a 4. feladat eredményét. Eszerint $\alpha = \beta$ akkor és csak akkor teljesül, ha $\alpha \leftrightarrow \beta$ azonosan igaz. Tegyük fel tehát, hogy $\alpha = \beta$, ekkor $\alpha \leftrightarrow \beta$ azonosan igaz. Írjuk át az ekvivalenciát a 2. b) feladat szerint, így azt kapjuk, hogy a

$$(\neg \alpha \lor \beta) \land (\alpha \lor \neg \beta)$$

formula azonosan igaz. Az előzőkben igazolt 5, b) feladat eredménye szerint a formula duálisának negációja, azaz a

$$\neg ((\neg \alpha^* \land \beta^*) \lor (\alpha^* \land \neg \beta^*))$$

formula is azonosan igaz. Az utoljára kapott formulát a De Morgan-szabályok és a kommutatívitás alkalmazásával

$$(\neg \alpha^* \lor \beta^*) \land (\alpha^* \lor \neg \beta^*) = \alpha^* \leftrightarrow \beta^*$$

alakra hozhatjuk, tehát ez is azonosan igaz. Ez a 4. feladat eredménye szerint azt jelenti, hogy

$$\alpha^* = \beta^*$$

is fennáll, és ezt kellett igazolni.

6. A bizonyításhoz a következő tulajdonságokat használjuk fel (zárójelben a gyakorlat, ill. a feladat sorszámát tüntettük fel):

$$(A \leftrightarrow B) \leftrightarrow C = A \leftrightarrow (A \leftrightarrow C) \tag{2. a) f.},$$

azaz az ekvivalencia asszociatív,

$$A \leftrightarrow A = i$$
 (4. e) gy.),

és azt a nyilvánvaló tényt, hogy az ekviválencia kommutatív művelet.

Tegyük fel, hogy az α formulában csak a \leftrightarrow műveleti jel szerepel, és minden változó páros sokszor fordul elő benne. Ekkor az asszociatívitás és kommutativitás miatt az esetleg meglevő zárójelek felbonthatók, és a változók párosával csoportosíthatók. Minden így kapott $A \leftrightarrow A$ alakú részformula igaz, és így az egész formula értéke is igaz az ekvivalencia definíciója alapján.

Megfordítva, ha α -ban valamelyik, mondjuk egy A-val jelölt változó páratlan számszor fordul elő, akkor ezzel az eljárással, mivel $i \leftrightarrow A = A$, azt kapjuk, hogy a formula nem azonosan igaz.

Példaként megmutatjuk az

$$(A \leftrightarrow B) \leftrightarrow (B \leftrightarrow (C \leftrightarrow (C \leftrightarrow A)))$$

formuláról, hogy azonosan igaz. A kommutativitás és asszociativitás felhasználásával a formulát

$$(A \leftrightarrow A) \leftrightarrow (B \leftrightarrow B) \leftrightarrow (C \leftrightarrow C)$$

alakra hozhatjuk és itt a zárójelbe tett tagokat az i logikai értékkel helyettesítve azt kapjuk, hogy a formula értéke mindig igaz.

Az $A \leftrightarrow (B \leftrightarrow (A \leftrightarrow B)) \leftrightarrow C$ formulát a megfelelő átalakítás alkalmazásával

$$(A \leftrightarrow A) \leftrightarrow (B \leftrightarrow B) \leftrightarrow C$$

alakra hozhatjuk és igy végül C-t kapunk belőle, tehát a formula nem azonosan igaz.

7. a) Írjuk fel először az f függvény értéktáblázatát! Mivel f háromváltozós, a táblázatnak nyolc sora lesz:

A	В	C	f(A, B, C)
i	į	i	h
Ĺ	i	h	i
i	h	i	i
i	h	h	h
h	i	i	i
h	i	h	l h
h	h	i	h
h	h	h.	h

Ezután a 7. gyakorló feladat megoldásakor alkalmazott módszer szerint járjunk el. Az f függvény értéktáblázatában szereplő minden igaz sornak megfeleltetünk egy konjunkciót. Ennek tagjai az igaz értékű változók, ill. a hamis értékű változók negáltjai – és f-et az igy kapott konjunkciók diszjunkciójaként állíthatjuk elő:

$$f(A, B, C) = (A \land B \land \neg C) \lor (A \land \neg B \land C) \lor \lor (\neg A \land B \land C).$$

b) Az a) feladat megoldásában követett módszert alkalmazzuk itt is. Rövidithetjük úgy a megoldást, hogy nincs szükség az értéktáblázat leírására, a függvény definíciója alapján közvetlenül felírhatjuk a kívánt formulát:

$$g(A, B, C) = (A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land B \land C) \lor (A \land B \land C).$$

c) Itt is a bevált módszert követjük, de itt a teljes diszjunktív normálforma helyett a konjunktív normálformát célszerű használni:

8. Tudjuk, hogy összesen 16 kétváltozós művelet van, írjuk fel sorra ezek értéktáblázatát:

A	В	g_1	g_2	g_3	g_4	g_5	g_6	g_7
i	i	i	i	i	i	h	i	i
i	h	i	i	i	h	i	i	h
h	i	i	i	h	i	i	h	i
h	h	i	h	i	i	i	h	h

g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}	g_{16}
h	i	h i h i	h	i	h	h	h	h
Ì	h	i	h	h	i	h	h	h
È	h	h	i	h	h	i	h	h
h	i	i	i	h	h	h	i	h

Az egyes függvényeket most már könnyű azonosítani a már ismert műveletekkel, ill. kifejezni a ¬, ∧ és ∨ műveletével:

$$g_{1}(A, B) = A \vee \neg A;$$

$$g_{2}(A, B) = A \vee B;$$

$$g_{3}(A, B) = B \rightarrow A = \neg B \vee A;$$

$$g_{4}(A, B) = A \rightarrow B = \neg A \vee B;$$

$$g_{5}(A, B) = A \mid B = \neg (A \wedge B);$$

$$g_{6}(A, B) = A;$$

$$g_{7}(A, B) = B;$$

$$g_{8}(A, B) = A \oplus B = \neg (A \leftrightarrow B) = -(A \land B) \Rightarrow -(A \land B)$$

9. Az 5. b) feladat megoldásakor úgy jártunk el, hogy egy α formulát t. d. n. f.-ra, a megfelelő α^* formulát t. k. n. f.-ra hoztunk, ebből olvastuk ki a megoldást. Láttuk, hogy α t. d. n. f.-ja és α^* t. k. n. f.-ja ugyanannyi tagot tartalmaz. Az összefüggést még pontosabban így is megfogalmazhatjuk; egy tag akkor és csak akkor van benne α t. d. n. f.-jában, ha α^* t. k. n. f.-jában előfordul az a megfelelő tag, amelyhez úgy

jutunk, hogy minden változót a negáltjával pótolunk (természetesen a kettős negációt kiküszöböljük) és a A jeleket V jelekre cseréljük fel.

10. Láttuk, hogy minden igazságfüggvény kifejezhető t. k. n. f.-val, ill. t. d. n. f.-val, azaz a ¬, ∧ és ∨ műveletek segítségével. Ennek felhasználásával elég igazolni az a) rész bizonyításához, hogy a ∨ művelet kifejezhető ¬ és ∧ segítségével. Ezt a már ismert

$$A \vee B = \neg (\neg A \wedge \neg B)$$

azonosság mutatja.

A b) feladat igazolásához az előbbihez hasonlóan elég megmutatni, hogy a \land művelet kifejezhető \neg és \lor segítségével. Ezt pedig a jól ismert

$$A \wedge B = \neg (\neg A \vee \neg B)$$

azonosság alapján tudjuk elvégezni.

A c) feladat megoldásához elég megmutatni például, hogy a \neg és \lor kifejezhető a \mid művelettel.

A | művelet definíciója alapján a ¬-t a következőképpen írhatjuk fel:

$$\neg A = A \mid A$$
.

A 10. gyakorló feladat felhasználásával a v művelet most már könnyen felírható a | művelettel:

$$A \vee B = (A \mid B) \mid (A \mid B).$$

A d) feladat megoldásakor is elég belátni, hogy a \neg és \land művelete kifejezhető a művelettel. A negációt itt is a következőképpen fejezhetjük ki:

$$\neg A = A \mid A$$

a | definíciója szerint pedig

$$A \wedge B = (A \mid B) \mid (A \mid B).$$

11. a) Az azonosság bizonyításához most válasszuk azt a módszert, hogy – már ismert azonosságok felhasználásával – alakítsuk át a bal oldalt úgy, hogy eljussunk a jobb oldalon álló formulához:

$$(A \mid B) \mid (A \mid C) = \neg (A \land B) \mid \neg (A \land C) =$$

$$= \neg (\neg (A \land B) \land \neg (A \land C)) =$$

$$= (A \land B) \lor (A \land C) = A \land (B \lor C) =$$

$$= \neg (\neg A \lor \neg (B \lor C)) = \neg (\neg A \lor (B \downarrow C)) =$$

$$= \neg A \downarrow (B \downarrow C).$$

b) Hasonló átalakítások alkalmazásával juthatunk el ennek az azonosságnak a bizonyításához is:

$$(A \downarrow B) \downarrow (A \downarrow C) = \neg (A \lor B) \downarrow \neg (A \lor C) =$$

$$= \neg (\neg (A \lor B) \lor \neg (A \lor C)) =$$

$$= (A \lor B) \land (A \lor C) = A \lor (B \land C) =$$

$$= \neg (\neg A \land \neg (B \land C)) = \neg (\neg A \land (B \mid C)) =$$

$$= \neg A \mid (B \mid C).$$

12. A keresett előállítás a t. d. n. f.-hoz hasonló, először egy példán fogjuk bemutatni. Állítsuk elő a kívánt alakban azt az f háromváltozós igazságfüggvényt, amelynek értéke akkor és csak akkor igaz, ha pontosan két változó értéke igaz. A függvény értékét ennek megfelelően így adhatjuk meg röviden:

$$f(x_1, x_2, x_3) = \begin{cases} i, & \text{ha} \quad x_1 \wedge x_2 \wedge \neg x_3 \\ \text{vagy} \quad x_1 \wedge \neg x_2 \wedge x_3 \\ \text{vagy} \quad \neg x_1 \wedge x_2 \wedge x_3 & \text{igaz} \\ h & \text{egyébként.} \end{cases}$$

Az $f(x_1, x_2, x_3)$ értéket tehát olyan formulával állíthatjuk elő, amely pontosan a feltüntetett három esetben igaz, egyébként hamis. A \oplus művelet definiciója biztosítja, hogy ha a felírt három konjunkciót a \oplus művelettel összekapcsoljuk, akkor a kívánt alakú formulához jutunk:

$$f(x_1, x_2, x_3) = (x_1 \land x_2 \land \exists x_3) \oplus$$

$$\oplus (x_1 \land \exists x_2 \land x_3) \oplus (\exists x_1 \land x_2 \land x_3).$$

A ⊕ műveletnek a ∨ művelethez hasonlóan az a tulajdonsága, hogy asszociativ, és értéke igaz, ha valamelyik tagja igaz. Az az eset, hogy egyszerre több tagja is igaz legyen a műveletnek – éppen a tagok speciális szerkezete miatt – nem fordulhat elő.

A speciális példán bemutatott gondolatmenet általános esetben is járható utat jelent, a konstans hamis igazságfüggvény kivételével minden igazságfüggvény előállítható a kívánt alakban.

13. A 12. feladat megoldásában követett módszerhez hasonló úton juthatunk célhoz. Itt is egy konkrét példán mutatjuk meg az általános esetben is használható eljárást. Legyen g olyan háromváltozós függvény, amely pontosan akkor hamis, ha pontosan egy változója igaz. A g függvényt így is definiálhatjuk:

$$g(x_1, x_2, x_3) = \begin{cases} h, & \text{ha} \quad x_1 \lor x_2 \lor \neg x_3 \\ & \text{vagy} \quad x_1 \lor \neg x_2 \lor x_3 \\ & \text{vagy} \quad \neg x_1 \lor x_2 \lor x_3 \quad \text{hamis,} \\ i & \text{egy\'ebk\'ent.} \end{cases}$$

A $g(x_1, x_2, x_3)$ értéket tehát olyan formulával állíthatjuk itt elő, amely pontosan a megadott három esetben hamis, egyébként igaz. Az \leftrightarrow művelet definíciója biztosítja, hogy a felirt három konjunkciót a \leftrightarrow művelettel összekapcsolva a kivánt előállításhoz jutunk:

$$g(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \neg x_3) \hookrightarrow$$

$$\longleftrightarrow (x_1 \lor \neg x_2 \lor x_3) \hookrightarrow (\neg x_1 \lor x_2 \lor x_3).$$

A → műveletnek – az ∧ művelethez hasonlóan – tulajdonsága, hogy asszociativ és értéke hamis, ha valamelyik komponense hamis. A tagok speciális szerkezete miatt itt sem fordulhat elő az az eset, hogy egyszerre több tag is hamis.

A példán bemutatott módszerrel tetszőleges – a konstans igaztól különböző – igazságfüggvényhez megkonstruálhatjuk a kívánt alakú előállítást.

14. a) Tudjuk, hogy f_4 és f_5 teljes függvényrendszert alkot, ezért például elég megmutatni, hogy a felsorolt függvényekkel f_4 kifejezhető. Valóban, f_2 és f_{14} szuperpozíciójaként f_4 így fejezhető ki:

$$f_{\Delta}(x) = f_{11}(f_2(x), x).$$

b) Elég itt is megmutatni, hogy pl. f_5 kifejezhető f_4 és f_8 felhasználásával. Az ismert azonosságok alkalmazásával ez igy végezhető el:

$$f_8(f_4(x_1), x_2) = f_5(x_1, x_2).$$

c) A b) feladat eredménye alapján elég csak azt megmutatni, hogy f_4 kifejezhető f_1 és f_8 szuperpoziciójaként. Az f_8 definiciója alapján ezt így tehetjük meg:

$$f_4(x) = f_8(x, f_1(x)).$$

15. Jelöljük az eredeti teljes függvényrendszert G-vel, a duálisokból álló rendszert G^* -gal. A bizonyításhoz a dualitás definícióját használjuk fel. Azt kell megmutatnunk, hogy tetszőleges f igazságfüggvény előállítható G^* -beli függvények szuperpozíciójaként. Az f helyett vegyük először az f^* -ot, f duálisát. Mivel G teljes függvényrendszer, ezért f^* előállítható G-beli függvények szuperpozíciójaként. Ha most

ebben az előállításban minden függvény helyett a duálisát használjuk, akkor eredményként f^* duálisát kapjuk meg, G^* -beli függvények szuperpozíciójaként.

16. a) Az L∩M függvényosztály jellemzéséhez vizsgáljuk meg, melyek azok a lineáris függvények, amelyek monotonak is! A

$$c_0 \oplus c_1 x_1 \oplus \ldots \oplus c_n x_n$$

alakú lineáris függvények közül először vizsgáljuk azokat, amelyekre $c_0 = i$. Azt fogjuk megmutatni, hogy az ilyen alakú lineáris függvények közül csak azok lehetnek monotonak, amelyekre $c_1 = \dots = c_n = h$, azaz csak az f_2 monoton függvénye. (Közben többször felhasználjuk, hogy $h \cdot x = h$ és $h \oplus x = x$.) Tegyük fel, hogy az n-változós f függvényben a c_i -k $(1 \le i \le n)$ között van olyan, amelyik h-tól különböző, azaz i. Azt is feltehetjük, hogy ez éppen a c_1 . Megmutatjuk, hogy a függvény ekkor nem monoton.

A (h, h, ..., h) < (i, h, ..., h) összefüggés igaz. Számitsuk ki a két helyen a függvény értékét; azt találjuk, hogy

$$f(h,...,h) = i > f(i,h,...,h) = h,$$

tehát az f függvény nem monoton.

A $c_0 = h$ esetben megmutatjuk, hogy csak az f_1 és f_3 függvény lehet monoton, és ezekről már tudjuk is, hogy monotonak. Legyen g olyan lineáris függvény, amelynek előállításában legalább két c_i ($1 \le i \le n$) h-tól különböző! Feltehetjük, hogy ez a c_1 és c_2 . Számítsuk ki g értékét az

helyeken!

$$g(i, i, h, ..., h) = h < g(i, h, h, ..., h) = i,$$

tehát g nem monoton.

Összefoglalva tehát azt találtuk, hogy

$$L \cap M = \{f_1, f_2, f_3\}.$$

b) Először vizsgáljuk azt az esetet, amikor az adott lineáris függvény szokásos előállításában páratlan számú c_0 -tól különböző együttható értéke i. Az általánosság megszorítása nélkül feltehetjük, hogy ekkor a függvény a következő alakban állítható elő:

$$f(x_1,\ldots,x_n)=c_0\oplus x_1\oplus\ldots\oplus x_{2k+1},$$

ahol $2k+1 \le n$. Megmutatjuk, hogy ekkor $f \in U$, azaz f önduális. Ehhez felhasználjuk a következő azonosságokat:

$$\neg A \oplus \neg B = A \oplus B,$$

$$\neg A \leftrightarrow B = \neg (A \leftrightarrow B) = A \oplus B.$$

Ezek az azonosságok a műveletek definíciója alapján könynyen igazolhatók. Igazoljuk tehát f-ről, hogy önduális!

$$\exists f(\exists x_1, ..., \exists x_n) = \exists (c_0 \oplus \exists x_1 \oplus \exists x_2 \oplus \exists x_3 \oplus ... \oplus \exists x_{2k} \oplus \exists x_{2k+1}) =
 = \exists (c_0 \oplus \exists x_1 \oplus (\exists x_2 \oplus \exists x_3) \oplus ... \oplus \exists \exists x_{2k+1})) =
 = \exists (c_0 \oplus \exists x_1 \oplus (x_2 \oplus x_3) \oplus ... \oplus (x_{2k} \oplus x_{2k+1})) =
 = \exists (c_0 \oplus \exists x_1 \oplus (c_0 \oplus x_2 \oplus x_3 \oplus ... \oplus x_{2k+1})) =
 = \exists x_1 \leftrightarrow (c_0 \oplus x_2 \oplus x_3 \oplus ... \oplus x_{2k+1}) =
 = \exists x_1 \leftrightarrow (c_0 \oplus x_2 \oplus x_3 \oplus ... \oplus x_{2k+1}) =
 = x_1 \oplus (c_0 \oplus x_2 \oplus ... \oplus x_{2k+1}) =
 = c_0 \oplus x_1 \oplus x_2 \oplus ... \oplus x_{2k+1} = f(x_1, ..., x_n).$$

Ha most az f függvény előállításában páros sok c_0 -tól különböző együttható értéke i, azaz

$$f(x_1, ..., x_n) = c_0 \oplus x_1 \oplus ... \oplus x_{2k},$$

ahol $2k \le n$, akkor könnyen láthatóan f nem önduális. Az előzőkben alkalmazott átalakítással ekkor a következőkhöz jutunk:

c) Vizsgáljuk meg, melyek azok a lineáris függvények, amelyek megőrzik a h konstanst! Ha $f \in L$, azaz

$$f(x_1, ..., x_n) = c_0 \oplus c_1 x_1 \oplus ... \oplus c_n x_n$$

alakú, akkor

$$f(h,\ldots,h)=c_0,$$

tehát $f \in \mathbf{K}_h$ akkor és csak akkor igaz, ha $c_0 = h$.

d) Hasonló módon egy $f \in L$ függvény értéke az (i, ..., i) helyen:

$$f(i,\ldots,i)=c_0\oplus\ldots\oplus c_n$$

Ez akkor és csak akkor i, azaz $f \in \mathbf{K}_i$ akkor és csak akkor teljesül, ha a c_0, \ldots, c_n együtthatók között páratlan sok i érték van.

17. Tegyük fel, hogy az n-változós f függvényre teljesülnek az $f \notin \mathbf{K}_h$, $f \notin \mathbf{K}_i$ feltételek! Ekkor

$$(i,\ldots,i)>(h,\ldots,h)$$

és a feltétel szerint

$$f(i,...,i) = h < f(h,...,h) = i,$$

tehát f nem monoton, azaz $f \notin M$. Tegyük fel, hogy $f \notin U$ is teljesül, és $f \in L$ mégis igaz. Ekkor a 16. h) feladat eredménye szerint f csak a következő alakú lehet:

$$f(x_1,...,x_n)=c_0\oplus x_1\oplus...\oplus x_{2k},$$

ahol $2k \le n$. Másrészt a **16.** c) és d) feladat eredménye szerint $c_0 = i$ ($f \notin \mathbf{K}_h$), tehát f előállításában páratlan sok i együttható szerepel, azaz $f \in \mathbf{K}_i$, ami ellentmond a feltételnek. Az $f \in \mathbf{L}$ feltétel tehát nem lehet igaz.

18. Egy n-változós f függvényt akkor neveztünk Shefferfüggvénynek, ha teljesül rá az a feltétel, hogy $f \notin \mathbf{K}_h$, $f \notin \mathbf{K}_h$, $f \notin \mathbf{U}$, $f \notin \mathbf{M}$ és $f \notin \mathbf{L}$. A 17. feladat eredménye szerint, ha egy függvényre teljesül az első három feltétel, akkor ebből már következik az utolsó kettő teljesülése is. Elég tehát összeszámolnunk azoknak az n-változós függvényeknek a számát, amelyek nem őrzik meg a konstansokat és nem önduálisak.

Azoknak az n-változós függvényeknek a száma, amelyek nem őrzik meg a konstansokat: $2^{2^{n-2}}$, mert ezek értéktáblázatában 2^n-2 helyet tölthetünk ki szabadon. Számoljuk még össze azt, hogy ezek között hány önduális függvény van! Ahhoz, hogy egy függvény önduális legyen (és ne őrizze meg a konstansokat) $2^{n-1}-1$ helyen tölthetjük ki az értéktáblázatot szabadon, tehát az ilyen függvények száma: $2^{2^{n-1}-1}$.

A keresett függvények, azaz az n-változós Sheffer-függvények száma tehát:

$$2^{2^{n-2}} - 2^{2^{n-1}-1} = 2^{2^{n-1}-1}(2^{2^{n-1}-1}-1).$$

19. Ha az állítás nem lenne igaz, az azt jelentené, hogy van olyan, a szuperpozícióra zárt F függvényosztály, amely nem tartalmazza az összes igazságfüggvényt, de $g_i \in F$ (i = 1, ..., k). Ekkor a $g_1, ..., g_k$ függvények szuperpozícióval előállítható minden f-re $f \in F$ is teljesül. Tehát $g_1, ..., g_k$ nem teljes függvényrendszer.

20. Legyen $f \notin \mathbf{K}_h$, n-változós függvény. Ez azt jelenti, hogy

$$f(h, h, \ldots, h) = i.$$

Az f-ből – változók azonosításával képezhető –

$$g(x) = f(x, ..., x)$$

egyváltozós függvényről tehát azt tudjuk, hogy

$$g(h) = i$$
.

Ekkor g csak f_2 vagy f_4 lehet.

Hasonlóan adódik, hogy ha $f \in \mathbf{K}_i$ n-változós függvény, akkor a

$$g(x) = f(x, x, ..., x)$$

egyváltozós függvény g(i)=h miatt csak f_1 vagy f_4 lehet. 21. Először igazoljuk, hogy a tétel feltételei elégségesek! Azt kell megmutatnunk, hogy ha egy véges sok függvényből álló Φ függvényrendszer elemei között vannak olyanok, amelyekre a tételben megadott öt feltétel teljesül, akkor Φ teljes függvényrendszer. Elég azt megmutatni, hogy Φ elemeiből szuperpozícióval előállítható egy ismert teljes függvényrendszer.

Mutassuk meg először, hogy Φ elemeinek szuperpozíciójával f_1 , f_2 és f_4 (mindkét konstans és a \Box) előállitható! Az előző feladat alapján tudjuk, hogy Φ elemeiből f_1 vagy f_4 , ill. f_2 vagy f_4 előállitható. Ha az egyik konstanst és f_4 -et kapjuk meg, akkor ezekkel nyilván előállitható a másik konstans is.

Tegyük fel, hogy az f_1 és f_2 függvényeket, azaz a két konstanst kaptuk meg. Megmutatjuk, hogy az f_4 is előállítható Φ -ből szuperpozicióval. Válasszunk olyan $f \in \Phi$ függvényt, amely nem monoton! Ez azt jelenti, hogy van az i és h elemekből álló két olyan n-es, amelyekre

$$(\alpha_1,\ldots,\alpha_n)<(\beta_1,\ldots,\beta_n)$$

és

$$f(\alpha_1,...,\alpha_n) > f(\beta_1,...,\beta_n)$$

teljesül. Válasszuk ki azokat az i-ket, amelyekre $\alpha_i = h$, $\beta_i = i$. Az ilyen indexű x_i változókat azonosítsuk; jelölje ezeket x. Ezután válasszuk ki azokat az i-ket, amelyekre $\alpha_i = h$, $\beta_i = h$, az ezeknek megfelelő változókat azonosítva, jelöljük őket y-nal. Végül az olyan x_i -ket, amelyekre $\alpha_i = i$, $\beta_i = i$, jelöljük z-vel. Az f-ből így kapott g(x, y, z) függvényre

tehát g(h, h, i) = i és g(i, h, i) = h. Ha most g-ben y helyére f_1 -et, z helyére f_2 -t helyettesítjük, akkor a kapott függvény f_4 -gyel azonos, hiszen nem konstans (mert nem monoton).

Végül még azt kell megmutatnunk, hogy ha mindkét esetben f_4 -et kaptuk, akkor is elő tudjuk állítani mindkét konstanst. Ezt egyszerűen úgy tehetjük meg, hogy veszünk egy $f \in \Phi$ nem önduális függvényt. Mivel f nem önduális, van olyan i, h értékekből álló rendezett n-es, hogy

$$f(\alpha_1,\ldots,\alpha_n)=f(\neg\alpha_1,\ldots,\neg\alpha_n).$$

Válasszuk ki most itt azokat az x_i -ket, amelyekre $\alpha_i = i$, és ezeket azonosítsuk! Jelölje ezeket x, és a többit (amelyekre $\alpha_i = h$) jelölje y. A kapott g kétváltozós függvényre

$$g(i,h) = g(h,i),$$

tehát g nem önduális. Most g és f_4 segítségével képezzük a

$$k(x) = g(x, f_4(x))$$

függvényt. Mivel f₄ a negáció, ezért

$$k(i) = k(h),$$

tehát k konstans. k-ból és f_4 -ből a másik konstans már előállítható.

Használjuk most fel azt, hogy Φ -ben van nemlineáris függvény is. Az előzőkben alkalmazott gondolatmenetekhez hasonlóan megmutatható, hogy a változók azonosításával és az egyik konstans helyettesítésével egy tetszőleges f nemlineáris függvényből eljuthatunk egy g kétváltozós, nemlineáris függvényhez. Ennek általános alakja:

$$g(x, y) = xy \oplus \alpha x \oplus \beta y \oplus \gamma,$$

ahol α , β és γ az i és h értékek valamelyike. Megmutatjuk még, hogy g-ből a konstansok és a \neg felhasználásával $x \land y$

vagy $x \lor y$ előállítható, és ezzel már rendelkezésünkre fog állni egy teljes függvényrendszer. Tegyük fel, hogy $\alpha = i$. Ekkor y helyére a $\exists y = y \oplus i$ antivalenciát helyettesítve:

$$g(x, \neg y) = x(y \oplus i) \oplus \alpha x \oplus \beta(y \oplus i) \oplus \gamma =$$

$$= xy \oplus (\alpha \oplus i) x \oplus \beta y \oplus (\beta \oplus \gamma) =$$

$$= xy \oplus \beta y \oplus (\beta \oplus \gamma),$$

mivel $\alpha \oplus i = h$ és $h \cdot x = h$.

Hasonló módszerrel a βy tag is "eltüntethető" és közben legfeljebb csak a konstans változik. Végül így egy

$$xy \oplus \delta$$

alakú függvényhez jutunk. Ha $\delta = h$, akkor ez $xy = x \wedge y$, ha $\delta = i$, akkor x és y helyére a $\exists x$ és $\exists y$ formulákat helyettesítve, a következőt kapjuk:

$$(\neg x \land \neg y) \oplus \delta = \neg \delta \oplus \neg (\neg x \land \neg y) =$$
$$= \neg (\neg x \land \neg y) = x \lor y.$$

Azt kell még megmutatnunk, hogy a tétel feltételei szükségesek is, azaz ha az öt közül valamelyik feltétel nem teljesül, akkor az adott függvényrendszer nem lehet teljes. Ez viszont közvetlenül adódik a 19. feladat eredményéből.

22. Tegyük fel, hogy nem igaz az állítás, azaz F nemtriviális, a szuperpozícióra zárt függvényosztály és nem része a K, K, U, L, M osztályok egyikének sem. Ez azt jelenti, hogy F-ben mind az öt osztályhoz található olyan függvény, ami nem eleme ennek az osztálynak. Ekkor viszont ezek a függvények teljes függvényrendszert alkotnak F-ben, tehát szuperpozíciójukkal minden igazságfüggvény előállítható. Eb-ből következik, hogy F triviális, ellentétben a feltétellel.

23. A 22. feladat alapján már tudjuk, hogy ha F egy nemtriviális, zárt függvényosztály, akkor K, K, U, L, M valamelyikének része. Ebből következik, hogy ezek az osztályok

majdnem teljes függvényosztályok, hiszen nyilván nem azonosak az összes igazságfüggvényből álló osztállyal; zártak, és bármely, ezeknél bővebb zárt osztály már triviális.

Igazoljuk még, hogy más, majdnem teljes osztály nincs. Tegyük fel, hogy volna egy másik, ezektől különböző G majdnem teljes függvényosztály. Ez nem lehet valódi része egyiknek sem, mert ez ellentmondana a majdnem teljesség definíciójának. Ekkor azonban a $G-K_h$, $G-K_h$, G-U, G-L, G-M halmazok egyike sem üres. Ez azt jelenti, hogy G-ből kiválasztható egy teljes függvényrendszer, tehát G azonos a triviális, összes függvényből álló osztállyal.

24. A Post-Jablonszkij-tětel alkalmazásához készitsük el először azt a táblázatot, amely a szereplő f_1 , f_2 , f_6 , f_{11} , g és h függvényekről megmutatja, hogy a \mathbf{K}_h , \mathbf{K}_i , \mathbf{U} , \mathbf{L} , \mathbf{M} osztályok közül melyiknek elemei, melyiknek nem (amelynek eleme a függvény, oda + jelet írunk, amelynek nem eleme, oda – jelet):

	K,	\mathbf{K}_{i}	U	Ĺ	M	
f_1	+			+	+	
f_2	_	+	_	+	+	
f_6 f_{11}	+	+	_	_	+	
f_{11}	+	_		+	_	
g	+	+	+	+	_	
h	! –	_	+	_	_	

A táblázat kitöltéséhez az f_1 , f_2 , f_6 , f_{11} függvények esetében a **16–23.** gyakorló feladatok eredményeit használtuk fel, a g és h függvényekre közvetlenül a definíció alapján, ill. a **16.** feladat eredményének felhasználásával kaptuk meg az eredményeket. A feladatot ezek után már könnyű megoldani:

a) az f_1 , f_6 és g függvények között nem találunk olyat, amelyik a K_h osztálynak nem eleme, tehát ezek nem alkotnak teljes rendszert.

- b) Az f_2 , f_6 , g függvények mindegyike a \mathbf{K}_i osztálynak eleme, a többi feltételt ezek is kielégítik, tehát ezek sem alkotnak teljes rendszert.
 - c) A $h \in U$ miatt a h egyedül nem alkot teljes rendszert.
- d) Az $f_1, f_2, f_{11} \in \mathbf{L}$ feltétel miatt ezek sem alkotnak teljes rendszert.
 - e) $f_1, f_2, f_6 \in M$, tehat ez sem teljes rendszer.

III. A KIJELENTÉSLOGIKA ALKALMAZÁSAI

1. Logikai áramkörök, automaták

Gyakori feladat az, hogy adott elemekből olyan áramkört kell összeállítani, amely bizonyos jól meghatározott gyakorlati célt elégít ki. A legegyszerűbb esetekben kapcsolókból (esetleg több, egyszerre működtethető kapcsolóból) és áramforrásból, fogyasztókból kell összeállítani egy megadott feladatot ellátó áramkört. Az áramkör megtervezéséhez jól hasznosíthatjuk az ítéletkalkulus eszközeit. A 20. ábrán vázlatosan szemléltetett áramkör két, sorba kapcsolt kapcsolóból, egy áramforrásból és egy fogyasztóból – lámpából – áll.

Annak a feltétele, hogy az áramkörben áram folyjék az, hogy mindkét kapcsoló – az x_1 és az x_2 jelű is – bekapcsolt állapotban legyen. Legyen x_i értéke i akkor, ha az x_i (i=1,2) kapcsoló bekapcsolt állapotban van, h egyébként. Ekkor annak a feltétele, hogy a lámpa égjen, a következő módon írható fel egyszerű formában:

$$x_1 \wedge x_2$$
.

Ha a 21. ábrán vázolt áramkör működését akarjuk leírni röviden, akkor az előző jelölési megállapodásokat alkalmazva ezt kapjuk:

$$x_1 \vee x_2$$
.

Gyakorló feladatok

1. Írjuk fel annak feltételét, hogy a következő ábrákon látható áramkörökben áram folyjon! (A $\Box x_i$ jelű kapcsoló az x_i jelűvel éppen ellentétes működésű: két azonos jelű kapcsoló egyszerre van nyitva, ill. zárva).

a) Használjuk fel az előző részben elmondottakat, amit röviden igy lehet összefoglalni: a soros kapcsolás a konjunkciónak, a párhuzamos kapcsolás a diszjunkciónak felel meg. Ennek alapján a működési feltételt a következő formula írja le:

$$(x_1 \wedge (x_2 \vee x_3) \wedge x_4) \vee (\neg x_2 \wedge x_1).$$

 b) Az a) feladat megoldásához hasonlóan járhatunk el: eredményül a következő formulát kapjuk:

$$((x_1 \vee x_2) \wedge x_3) \vee (\neg x_1 \wedge x_2 \wedge (x_3 \vee \neg x_2)).$$

2. Tervezzünk olyan áramkört, amelyek a következő formuláknak felelnek meg:

a)
$$(x_1 \wedge (x_2 \vee x_3) \wedge \neg x_3) \vee (\neg x_1 \wedge x_2 \wedge x_3);$$

b) $((x_1 \vee x_2 \vee x_3) \wedge \neg x_5) \vee ((\neg x_1 \vee \neg x_2 \vee \neg x_3) \wedge x_4) \vee$
 $\vee (((x_2 \vee \neg x_3 \vee \neg x_5) \wedge \neg x_1) \vee$
 $\vee ((\neg x_1 \vee \neg x_5) \wedge \neg x_5) \vee (\neg x_3 \wedge x_5))) \wedge x_4.$

Megoldás:

a) Azt az elvet követve, hogy a konjunkciónak a soros kapcsolás, diszjunkciónak a párhuzamos kapcsolás felel meg, megkonstruálhatjuk a kívánt áramkört (24. ábra).

(Az egyszerűsítés kedvéért itt már nem rajzoltuk be az áramforrást és a fogyasztót).

b) Hasonló módon járhatunk el, bár itt összetettebb lesz a kapott áramkör (25. ábra).

25. ábra

3. Egy hálókocsiban három fekvőhely van, mindhárom fekvőhelyhez egy-egy kapcsoló tartozik. A fülkében egy kis és egy nagy lámpa van. A nagy lámpa akkor ég, ha a többség akarja, a kis lámpa pedig akkor, ha csak egy utas kapcsol. Tervezzük meg az áramkört!

Megoldás:

Jelölje x_1, x_2 és x_3 a három kapcsolót, és írjuk fel annak a feltételét, hogy a kis lámpa égjen! A jelölésre itt is alkalmazzuk eddigi megállapodásainkat: ennek alapján a kis lámpa akkor és csak akkor ég, ha

$$(x_1 \wedge \exists x_2 \wedge \exists x_3) \vee (\exists x_1 \wedge x_2 \wedge \exists x_3) \vee (\exists x_1 \wedge \exists x_2 \wedge x_3).$$

A kapott formulának megfelelő áramkört már könnyen lerajzolhatjuk (26. ábra).

26. ábra

Hasonló módon felirhatjuk annak a feltételét, hogy a nagy lámpa égjen. Ez a feltétel még egyszerűbb is lesz, hiszen nem szükséges például vizsgálnunk, hogy ha x, és x, bekapcsolt állapotban van, akkor milyen helyzetben van az x_3 jelű kapcsoló (27. ábra).

A kibernetikában a különféle információátalakító eszközöket automatáknak nevezik. Egy ilyen automatának véges sok bemenete (inputja) van, ezek kívülről kapják az információt, és véges sok kimenete (outputja) van, ezek továbbítják az átalakított információt. A matematikai vizsgálat szempontjából feltételezzük, hogy egyszerre, egyidejűleg történik az információ vétele és kibocsátása (a működési időt nem vesszük figyelembe). Azt is feltesszük, hogy a kimeneteken megjelenő információt a bemeneteken belépő információ egyértelműen meghatározza. Az ilyen automatát determinisztikus automatának szokták nevezni-

Mi most a determinisztikus automatáknak azzal a speciális típusával foglalkozunk, amelynél egy adott időpontban kilépő információ csak az ugyanekkor belépő információtól függ. Egy ilyen automata sematikus vázlatát a 28. ábrán láthatjuk.

28. ábra

Azt is feltesszük, hogy a bemeneteken is és a kimeneteken is az információ binárisan kódolva jelenik meg, azaz két jól megkülönböztethető állapot – jelöljük az egyiket 0-val, a másikat 1-gyel – hordozza az információt. A 0-t a hamis, az 1-et az igaz jelének is tekinthetjük. A bináris kódolás fizikai megvalósítása a legkézenfekvőbb.

Az elmondottak alapján az automata működését úgy jellemezhetjük, hogy megadjuk a kimeneteken megjelenő információt a bemeneteken megjelenő információt függvényében, azaz megadjuk a kimeneti információt leíró n-változós f_1, f_2, \ldots, f_k függvényeket. Ezek a függvények nyilván igazságfüggvények lesznek, hiszen a változók csak a 0,1 értékeket vehetik fel, és a függvények értéke is csak 0 vagy 1 lehet. Az automata működését tehát k darab n-változós igazságfüggvénnyel írhatjuk le.

Nagyon egyszerű tipusú véges automatáknak tekinthetők azok az elektronikus áramköri egységek, amelyek egyes logikai műveleteknek felelnek meg. Ezek közül a leggyakoribbak a következők: a konjunkciónak megfelelő "ÉS kapu (29. ábra), ennek két (esetleg több) bemenete és egy kimenete van, és a kimeneten akkor és csak akkor van impulzus – ezt jelöljük 1-gyel – ha mindegyik bemeneten van impulzus; a diszjunkciónak megfelelő VAGY kapu (30. ábra), ennek két (vagy több) bemenete és egy kimenete van, a kimeneten akkor és csak akkor van impulzus, ha legalább egy bemeneten van impulzus.

A negációnak megfelelő "inverter" (31. ábra), ennek egy bemenete és egy kimenete van. A kimeneten akkor és csak akkor van impulzus, ha a bemeneten nincs impulzus.

A felsorolt elemeket néha összevontan is alkalmazhatjuk. Például a 32. ábrán látható egység működését igy irhatjuk le:

$$\exists x_1 \land x_2 \land x_3.$$

Gyakorló feladatok

4. Írjuk le formulával a következő elektronikus áramkörök működését:

34. ábra

Megoldás:

 a) A kör két ÉS kaput és egy VAGY kaput tartalmaz, az összekapcsolás módja alapján f-re a következő formulát kapjuk;

$$f(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3).$$

h) A g függvényt így írhatjuk fel:

$$g(x_1, x_2) = (x_1 \wedge \neg x_2) \vee (\neg x_1 \wedge x_2).$$

5. Vázoljuk fel a következő formuláknak megfelelő elektronikus áramköröket:

- a) $x_1 \oplus x_2$;
- b) $(x_1 \wedge x_2) \vee (x_1 \wedge \neg x_3) \vee (\neg x_2 \wedge x_3)$.

Megoldás:

a) Írjuk át először a
 műveletet konjunkció, diszjunkció és negáció segítségével;

$$x_1 \oplus x_2 = \neg(x_1 \leftrightarrow x_2) = \neg((\neg x_1 \lor x_2) \land (\neg x_2 \lor x_1)) =$$

$$= (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) =$$

$$= (x_1 \land x_2) \lor \neg(x_1 \lor x_2).$$

Az utoljára kapott formulának megfelelő áramkört már könnyen összeállíthatjuk (35. ábra).

35. ábra

h) A megoldás a 36. ábrán látható.

36. ábra

Az előző gyakorló feladatban tulajdonképpen olyan öszszetettebb automatát kellett konstruálni a megadott egyszerű automatákból, amelynek egy kimenete van, és a kimeneten megjelenő információ a megadott függvénnyel irható le.

Elég általános feladattípus fogalmazható így: tervezzünk olyan automatát, amely egy adott követelménynek eleget tesz, és az előzőekben ismertetett háromféle elektronikus egységből épül fel.

Gyakorló feladat

6. Tervezzünk olyan véges automatát, amely ÉS, VAGY kapukból, továbbá inverterekből épül fel, két bemenete, két kimenete van, és a kettes számrendszerben összead a következő módon: a két bemeneten megjelenő 0 vagy 1 jelek kettes számrendszerbeli összegét adja ki az egyik kimeneten, és a maradékot a másik kimeneten.

Megoldás:

A tervezendő véges automata a hináris félősszeadó – sematikus rajzát a 37. ábrán vázoltuk fel.

37. ábra

Írjuk fel annak feltételét, hogy az e, ill. az m kimeneten 1 jelenjen meg (legyen impulzus)! Ezt táblázattal így adhatjuk meg:

<i>x</i> ₁	X2	ť	m
í	i	h	i
i	h	i	h
h	i	i	h
h	h	h	h

Ennek alapján felírhatjuk a kimeneteket mint x_1 és x_2 függvényét:

$$e(x_1, x_2) = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) = (x_1 \lor x_2) \land \neg (x_1 \land x_2),$$

$$m(x_1, x_2) = x_1 \land x_2.$$

A félősszeadót most már egyszerűen ábrázolhatjuk (38. ábra).

38. ábra

Feladatok

1. Írjuk le a következő áramkörök működését: a)

39. ábra

b)

40. ábra

c)

2. Tervezzünk kapcsolókból álló áramkört, amely a következő formuláknak felel meg:

- a) $(x_1 \rightarrow x_2) \land (x_2 \rightarrow x_3)$;
- b) $((x_1 \to x_2) \land (x_2 \to x_3)) \to (x_1 \to x_3);$
- $c) \quad x_1 \vee (\exists x_1 \land x_3) \vee (\exists x_2 \land x_4) \vee \exists (x_3 \land x_4).$
- 3. Tervezzünk olyan ÉS és VAGY kapukból továbbá inverterekből összeállított áramköröket, amelyek a 2. a), b), c) formuláknak felelnek meg!
- **4.** Írjuk le formulával a következő elektronikus egységekből felépített áramkört:

42. а́bга

b)

- 5. Tervezzünk
- a) kapcsolókból,
- b) elektronikus áramköri egységekből olyan áramkört, amelyen akkor és csak akkor folyik áram, ha három kapcsoló (ill. bemenet) közül pontosan kettő működik!

6. Tervezzünk olyan áramkört, amelynek segítségével egy előszobában levő lámpát három különböző kapcsolóval lehet bekapcsolni, méghozzá úgy, hogy bármely kapcsoló elfordításakor a lámpa kígyullad, ha nem égett, és elalszik, ha égett (alternativ kapcsoló)!

2. Minimalizálási módszerek

Az előző fejezetben a logika eszközeit használtuk fel áramkörök tervezésére, leírására. Az eddigi példáinkban nem vizsgáltuk azt a kérdést, hogy az adott célra konstruált áramkör mennyire egyszerű. Lehet-e – és ha igen, milyen módszerekkel – egy adott célra konstruált áramkörrel ekvivalens, egyszerűbb áramkört szerkeszteni? Ez a kérdés pedig – érthető módon – az alkalmazások szempontjából is nagyon lényeges. A következőkben, csak példák bemutatásával ismertetünk néhány olyan eljárást, amelyek ilyen egyszerűsítési feladatok megoldására szolgálnak. Ezeket az eljárásokat minimalizálási módszereknek nevezik.

Gyakorló feladatok

7. Tervezzünk az 1. feladatban megadott a), b), c) áramkörökkel ekvivalens, egyszerűbb áramkört!

Megoldás:

a) Írjuk fel először az áramkör működését jellemző formulát:

$$\exists x_1 \lor ((x_1 \lor \exists x_2) \land (x_2 \lor \exists x_3)) \lor \exists x_2 \lor x_3.$$

A kapott formulát most az ismert azonosságok felhasználásával alakitsuk át úgy, hogy egyszerűbb, de az eredetivel ekvivalens formulát kapjunk! Az "egyszerűbb" itt nyilván azt fogja jelenteni, hogy kevesebb "betűt" tartalmazó formulához akarunk eljutni, hiszen a kapcsolókból összeállított áramkörben minden betűnek megfeleltetűnk egy külön kapcsolót.

Alkalmazzuk a disztributivitást:

$$(\neg x_1 \lor x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_2 \lor x_3 \lor \neg x_3) = i.$$

Azt kaptuk tehát, hogy a formula azonosan igaz, vagyis az áramkör két pólusa között a kapcsolók helyzetétől függetlenül folyik áram. Ezt úgy is fogalmazhatjuk, hogy az áramkör egyetlen kapcsoló, megszakító nélküli vezetőből álló "áramkörrel" is helyettesíthető.

A b) áramkörhöz tartozó formulát is írjuk fel:

$$(x_1 \wedge ((x_2 \wedge (x_1 \vee \neg x_2) \wedge \neg x_1) \vee (x_2 \wedge x_3))) \vee \\ \vee (\neg x_2 \wedge ((x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_3))) \vee \\ \vee (x_2 \wedge x_3 \wedge ((x_1 \wedge \neg x_3) \vee \neg x_1)).$$

A disztributivitási szabály többszöri alkalmazásával a következő eredményre jutunk:

$$(x_1 \wedge x_2 \wedge x_3) \vee (\exists x_1 \wedge \exists x_2 \wedge \exists x_3) \vee (\exists x_1 \wedge x_2 \wedge x_3).$$

A kapott formulában az első és harmadik tagból kiemelhető $x_2 \wedge x_3$, igy a formulát a következő módon egyszerűsíthetjük:

$$(x_1 \land x_3) \lor (\exists x_1 \land \exists x_2 \land \exists x_3).$$

Ezután vázoljuk a kapott formulának megfelelő áramkört, amely öt kapcsolót tartalmaz (44. ábra). A c) áramkörnek megfelelő formulát könnyen felírhatiuk:

$$(x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_4) \land (x_1 \lor x_3) =$$

= $x_1 \lor x_2 \lor x_3 \lor x_4$.

Az azonosság helyessége könnyen ellenőrizhető. A megfelelő négy kapcsolóból álló áramkört is könnyen megszerkeszthetjük (45. ábra).

45. ábra

8. Egyszerűsítsük a következő formulát, azaz irjunk fel egy ezzel ekvivalens, minél kevesebb változójelet tartalmazó formulát:

$$(\exists x_1 \land \exists x_2 \land \exists x_3) \lor (\exists x_1 \land \exists x_2 \land x_3) \lor \lor (x_1 \land \exists x_2 \land x_3) \lor (x_1 \land x_2 \land x_3).$$

Megoldás:

A formula t. d. n. f. Vegyük szemügyre az egyes tagokat. Az első két tagból kiemelhető $\neg x_1 \land \neg x_2$, a megmaradt rész: $\neg x_3 \lor x_3 = i$, tehát ez elhagyható. Hasonló ötlettel egyszerűsíthetjük a másik két tagot is. Így a következő egyszerűbb formulához jutunk:

$$(\exists x_1 \land \exists x_2) \lor (x_1 \land x_3).$$

Az előző példákban a formulák egyszerűsítéséhez, minimalizálásához más-más ötletet kellett felhasználnunk. A minimalizálás gyakorlati fontossága miatt célszerű algoritmusokat, lehetőleg gazdaságos algoritmusokat keresni a minimalizálási probléma megoldására. A problémának először egy speciális, a gyakorlat szempontjából fontos esetét tárgyaljuk.

Az igazságfüggvények előállításához kézenfekvő, jól használható alak volt a t. d. n. f., ill. a t. k. n. f. A függvények előállítása szempontjából azonban ez az alak nem gazdaságos, túl sok betűt tartalmaz. Először olyan, gyakorlatilag is jól használható módszereket fogunk vizsgálni, amelyek t. d. n. f., ill. t. k. n. f. alakból kiindulva, de továbbra is csak a \neg , \wedge és \vee műveletével felépülő formulák körében maradva csökkentik a függvény előállításához használt betűk számát.

Elemi konjunkciónak nevezzük az olyan konjunkciót, amelynek tagjai különböző változók, ill. e változók negáltjai. Elemi konjunkciók például a következők:

$$x_1 \wedge \exists x_2 \wedge x_3$$
; $\exists x_1 \wedge \exists x_3 \wedge x_5 \wedge \exists x_6$; x_2

Az elemi konjunkció rangjának nevezzük a konjunkcióban előforduló betűk számát.

Diszjunktív normálformának, rövidítve d. n. f.-nek nevezzük az olyan diszjunkciót, amelynek tagjai elemi konjunkciók. Diszjunktiv normálformák például a következő formulák:

$$x_1 \lor (\exists x_1 \land x_2) \lor (x_1 \land x_3);$$

 $(\exists x_1 \land x_2 \land x_3) \lor (x_1 \land \exists x_2 \land \exists x_3).$

A felirt két d. n. f. közül a második t. d. n. f. is; nyilvánvaló, hogy a t. d. n. f. speciális esete a d. n. f.-nak.

A következőkben elsősorban olyan eljárásokat ismertetünk, amelyek a diszjunktív normálformák körében keresik meg a lehetőleg kevés betűt tartalmazó formulát.

Egy d. n. f. hosszának nevezzük a formulát alkotó konjunkciók számát. Fontos lesz számunkra egy adott d. n. f.-hoz tartozó, azzal ekvivalens legrövidebb d. n. f. (l. d. n. f.) és a legkevesebb számú betűt tartalmazó, azaz minimális d. n. f. (m. d. n. f.).

A bevezetett fogalmak mintájára lehetne definiálni a konjunktív normálformát (k. n. f.), és az ehhez kapcsolódó fogalmakat. A következőkben azonban csak d. n. f.-kal foglalkozunk. A tárgyall módszerekhez hasonlóan tárgyalhatók a k. n. f.-hoz kapcsolódó eljárások is.

Sok szempontból hasznos és érdekes az igazságfüggvények értelmezési tartományának geometriai szemléltetése. Itt is hasznos lesz, megkönnyíti a szemléltetést, ha az i logikai értéket 1-gyel, a h logikai értéket 0-val azonosítjuk. Ekkor például a kétváltozós igazságfüggvények {(0, 0), (0, 1), (1, 0), (1, 1)} értelmezési tartományának szemléltetésére kinálkozik az egységnégyzet négy csúcspontja (46. ábra). Érdemes azt is megfigyelni, hogy a csúcspontokhoz és az élekhez elemi konjunkciókat rendelhetünk úgy, hogy ezek éppen a megfelelő csúcspontokban, ill. a megfelelő élek végpontjaiban igazak (47. ábra). A rövidség kedvéért a konjunkciót itt is szorzásként jelöljük, és megállapodunk abban, hogy ebben a fejezetben továbbra is ezt a jelölést használjuk.

A háromváltozós igazságfüggvény értelmezési tartományát a (háromdimenziós) kocka csúcspontjaival szemléltethetjük. A legfeljebb harmadrangú elemi konjunkciókat – az előző esethez hasonlóan – a kocka lapjainak, éleinek, csúcsainak lehet megfeleltetni (48. ábra).

Nem minden lehetőséget írtunk oda, hogy az ábra ne legyen zsúfolt.

Hasonló szemléltetést lehet használni n-változós függvény esetében is. Az n-változós függvény értelmezési tartományát

az n-dimenziós kocka csúcsainak, éleinek, lapjainak, ..., rőviden k-dimenziós intervallumainak megfeleltethetők a legfeljebb n-edrangú elemi konjunkciók.

A szemléltetést jól fel tudjuk használni a függvények d. n. f. alakjában való előállítására. Ha megadunk egy n-változós függvényt, akkor ezzel egyszersmind kijelöltük az n-dimenziós kocka csúcsainak egy részhalmazát is. Azok a csúcsok tartoznak a részhalmazba, amelyekre a függvény értéke i, azaz 1. Jelöljük ezt a halmazt T_i -gyel. Az f függvény t. d. n. f. előállítását kapjuk meg, ha a T_i-be tartozó csúcsokhoz rendelt elemi konjunkciók diszjunkcióját írjuk fel. A T_i^f halmaz más intervallumokkal is lefedhető; ezek diszjunkciójaként az f egy d. n. f. előállítását kapjuk.

Gyakorló feladat

9. Szemléltessük a 8. gyakorló feladatban t. d. n. f.-val megadott függvényhez tartozó T_1^f halmazt, és ennek segitségével állítsuk elő, lehetőleg rövid d. n. f. alakban a függvényt!

Megoldás:

A T_i^T halmazt a 49. ábrán szemléltettük. Az ábrán vastagon kihúzott élek végpontjai lefedik a T_i^f halmazt, igy az ezeknek megfelelő elemi konjunkciók diszjunkciója d. n. f. alakban adja meg a függvényt;

$$\exists x_1 \exists x_2 \lor x_1 x_3.$$

Most állítsuk elő a függvényt a lehető legkevesebb betűből álló d. n. f.-val – azaz m. d. n. f.-val! A d. n. f. betűinek számát a d. n. f.-et alkotó elemi konjunkciók rangjának összege adja. Világos, hogy a T₁ halmaznak olyan lefedését kell megkeresnünk, amelyre ez a rangösszeg a minimális. A cél nyilván az, hogy minél nagyobb dimenziószámú intervallumokkal fedjük le T_i^f -et, hiszen a nagyobb dimenziószámú intervallumokhoz kisebb rangú konjunkciók tartoznak. Látható, hogy a dimenzió és a rang összege rögzített, éppen n.

49. ábra

Azt mondjuk, hogy egy I intervallum maximális, ha nincs olyan nagyobb dimenziós intervallum, ami I-t tartalmazza és még része T_i^f -nek.

Gyakorló feladatok

10. Az f háromváltozós függvényt a következő t. d. n. f.-val adjuk meg:

$$f(x_1, x_2, x_3) = x_1 x_2 x_3 \vee x_1 \, \exists x_2 x_3 \vee \exists x_1 x_2 \, \exists x_3 \vee x_1 x_2 \, \exists x_3.$$

Szemléltessük a függvényhez tartozó T_i^f -et, válasszunk ki T_i^f -et lefedő maximális intervallumokat és írjuk fel az ennek megfelelő d. n. f.-t, majd próbáljuk meg ezt is rövidíteni!

Megoldás:

A T_i^f -et az 50. ábrán szemléltettük, vastagon jelöltük meg a T_i^f -et lefedő maximális intervallumokat. A függvény így kapott d. n. f. előállítása:

$$f(x_1, x_2, x_3) = x_1 x_3 \lor x_1 x_2 \lor x_2 \exists x_3.$$

50. ábra

Az ábráról leolvasható, hogy az x_1x_2 konjunkcióhoz tartozó él kihagyható, mert a másik két él is lefedi T_1^{f} -et. Így a függvény a változók négy előfordulását tartalmazó d. n. f.-val állítható elő:

$$f(x_1, x_2, x_3) = x_1 x_3 \lor x_2 \exists x_3.$$

11. Ábrázoljuk a következő függvényekhez tartozó T_i^f halmazokat! Keressünk lefedő intervallumokat és írjuk fel a megfelelő d. n. f.-et, továbbá keressünk ha lehet még rővidebb d. n. f.-et:

a)
$$f(x_1, x_2, x_3) = x_1 x_2 x_3 \lor x_1 \sqcap x_2 x_3 \lor x_1 x_2 \sqcap x_3 \lor \lor x_1 \sqcap x_2 \sqcap x_3 \lor \sqcap x_1 x_2 x_3;$$

b) $g(x_1, x_2, x_3) = x_1 x_2 \sqcap x_3 \lor x_1 \sqcap x_2 x_3 \lor \lor x_1 \sqcap x_2 \sqcap x_3 \lor \sqcap x_1 x_2 x_3 \lor \lor \sqcap x_1 x_2 \sqcap x_3 \lor \sqcap x_1 \sqcap x_2 x_3.$

Megoldás:

Az u) feladat esetében az 51. ábrán szemléltettük a T_i^f -et, megjelöltünk egy lefedő intervallumrendszert is. A függvény megfelelő d. n. f. előállítása a következő:

$$f(x_1, x_2, x_3) = x_1 \vee \Box x_1 x_2 x_3.$$

51. ábra

Megfigyelhető, hogy még rövidebb d. n. f.-hez jutunk, ha az 52. ábrán szemléltetett lefedő intervallumokat választjuk. Érdemes megjegyezni, hogy a kapott

$$f(x_1, x_2, x_3) = x_1 \vee x_2 x_3$$

alak minimális d. n. f. Ez az előző d. n. f.-ből bizonyos diszjunkciós tagok elhagyásával nem kapható meg!

52. ábra

A b) feladathoz tartozó T_i^j halmazt az 53. ábrán szemléltettük.

53. ábra

Észrevehető, hogy ebben az esetben két különböző, maximális intervallumokból álló lefedő rendszert is kiválaszthatunk (54. és 55. ábra). Ezeknek megfelelően, két különböző m. d. n. f.-hoz jutunk:

$$g(x_1, x_2, x_3) = x_1 \sqcap x_2 \vee \sqcap x_1 x_3 \vee x_2 \sqcap x_3,$$

$$g(x_1, x_2, x_3) = x_1 \sqcap x_2 \vee \sqcap x_1 x_2 \vee \sqcap x_2 x_3.$$

Az eddigi tapasztalatokat a következőkben foglalhatjuk össze. Gyakorlati problémák megoldásakor előforduló igazságfüggvényeket a leggyakrabban t. d. n. f.-ban könnyű megadni. A következő lépés a gazdaságosabb előállításhoz a t. d. n. f. rövidítése, minimalizálása. A m. d. n. f. általában nem egyértelmű, egy adott függvénynek több m. d. n. f.-ja is lehet. A következőkben olyan, gyakorlatilag is használható eljárásokat ismertetünk, amelyek t. d. n. f. alakban adott függvényhez megadják a m. d. n. f.-t.

Az egyik ilyen módszer az ún. határozatlan együtthatók módszere. Ebben az esetben az n-változós függvényt olyan d. n. f. alakban állítjuk elő, amelyben minden, legfeljebb n-edrangú elemi konjunkció előfordul az indexes A határozatlan együtthatóval. A határozatlan együtthatókat ezután úgy adjuk meg, hogy a m. d. n. f.-hoz jussunk. Egy háromváltozós függvényt például a következő alakban adunk meg:

$$f(x_{1}, x_{2}, x_{3}) = A_{1}^{0} \exists x_{1} \lor A_{2}^{0} \exists x_{2} \lor A_{3}^{0} \exists x_{3} \lor$$

$$\lor A_{1}^{1}x_{1} \lor A_{2}^{1}x_{2} \lor A_{3}^{1}x_{3} \lor A_{12}^{00} \exists x_{1} \exists x_{2} \lor$$

$$\lor A_{13}^{00} \exists x_{1} \exists x_{3} \lor A_{23}^{00} \exists x_{2} \exists x_{3} \lor A_{12}^{01} \exists x_{1}x_{2} \lor$$

$$\lor A_{13}^{01} \exists x_{1}x_{3} \lor A_{23}^{01} \exists x_{2}x_{3} \lor A_{12}^{10}x_{1} \exists x_{2} \lor$$

$$\lor A_{13}^{10}x_{1} \exists x_{3} \lor A_{23}^{10}x_{2} \exists x_{3} \lor A_{12}^{10}x_{1} \exists x_{2} \lor$$

$$\lor A_{13}^{10}x_{1} \exists x_{3} \lor A_{23}^{10}x_{2} \exists x_{3} \lor A_{123}^{10}x_{1} \exists x_{2} \exists x_{3} \lor$$

$$\lor A_{123}^{001} \exists x_{1} \exists x_{2}x_{3} \lor A_{123}^{010} \exists x_{1}x_{2} \exists x_{3} \lor$$

$$\lor A_{123}^{001} \exists x_{1} \exists x_{2}x_{3} \lor A_{123}^{010} \exists x_{1}x_{2} \exists x_{3} \lor$$

$$\lor A_{123}^{100}x_{1} \exists x_{2} \exists x_{3} \lor A_{123}^{101}x_{1} \exists x_{2}x_{3} \lor$$

$$\lor A_{123}^{100}x_{1} \exists x_{2} \exists x_{3} \lor A_{123}^{101}x_{1} \exists x_{2}x_{3} \lor$$

$$\lor A_{123}^{100}x_{1} \exists x_{2} \exists x_{3} \lor A_{123}^{101}x_{1} \exists x_{2}x_{3} \lor$$

$$\lor A_{123}^{100}x_{1} \exists x_{2} \exists x_{3} \lor A_{123}^{101}x_{1} \exists x_{2}x_{3} \lor$$

$$\lor A_{123}^{100}x_{1}x_{2} \exists x_{3} \lor A_{123}^{101}x_{1} \exists x_{2}x_{3} \lor$$

$$\lor A_{123}^{100}x_{1} \exists x_{2} \exists x_{3} \lor A_{123}^{101}x_{1} \exists x_{2}x_{3} \lor$$

A függvény definícióját és az adott előállítást felhasználva, az együtthatókra egy egyenletrendszert írhatunk fel. Ha pél-

dául az $x_1 = x_2 = x_3 = h$ értéket adjuk a változóknak, akkor az

$$A_1^0 \lor A_2^0 \lor A_3^0 \lor A_{12}^{00} \lor A_{13}^{00} \lor A_{123}^{00} \lor A_{123}^{100} = f(h, h, h)$$

egyenlethez jutunk. Hasonló módszerrel írhatjuk fel a többi egyenletet is:

$$A_{1}^{0} \vee A_{2}^{0} \vee A_{3}^{1} \vee A_{12}^{00} \vee A_{13}^{01} \vee A_{23}^{01} \vee A_{123}^{001} = f(h, h, i),$$

$$A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{0} \vee A_{12}^{012} \vee A_{13}^{00} \vee A_{23}^{013} \vee A_{123}^{001} = f(h, i, h),$$

$$A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{01} \vee A_{13}^{00} \vee A_{23}^{10} \vee A_{123}^{011} = f(h, i, i),$$

$$A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{0} \vee A_{12}^{10} \vee A_{13}^{10} \vee A_{23}^{01} \vee A_{123}^{100} = f(i, h, h),$$

$$A_{1}^{1} \vee A_{2}^{0} \vee A_{3}^{1} \vee A_{12}^{10} \vee A_{13}^{10} \vee A_{23}^{01} \vee A_{123}^{101} = f(i, h, i),$$

$$A_{1}^{1} \vee A_{2}^{0} \vee A_{3}^{1} \vee A_{12}^{11} \vee A_{13}^{11} \vee A_{23}^{01} \vee A_{123}^{101} = f(i, h, i),$$

$$A_{1}^{1} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{11} \vee A_{13}^{11} \vee A_{23}^{11} \vee A_{123}^{110} = f(i, i, h),$$

$$A_{1}^{1} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{11} \vee A_{13}^{11} \vee A_{23}^{11} \vee A_{123}^{111} = f(i, i, i).$$

Az egyenletrendszer megoldásakor arra törekszünk, hogy lehetőleg a kis indexű együtthatók értéke legyen i, azaz 1, a nagy indexűeké pedig h, azaz 0.

Gyakorló feladat

12. A határozatlan együtthatók módszerével keressük meg a következő, háromváltozós igazságfüggvény m. d. n. f.-ját!

$$f(x_1, x_2, x_3) = \begin{cases} i, & \text{ha} \quad x_1 = x_2 = x_3 = i, \ x_1 = x_2 = i, \ x_3 = h, \\ & \text{és } x_1 = x_2 = h, \ x_3 = i, \\ h & \text{egyébként.} \end{cases}$$

Megoldás:

A függvény definiciója alapján a következő egyenletrendszert irhatjuk fel:

$$\begin{split} &A_{1}^{0} \vee A_{2}^{0} \vee A_{3}^{0} \vee A_{12}^{00} \vee A_{13}^{00} \vee A_{23}^{00} \vee A_{123}^{000} = h, \\ &A_{1}^{0} \vee A_{2}^{0} \vee A_{3}^{1} \vee A_{12}^{00} \vee A_{13}^{01} \vee A_{23}^{001} \vee A_{123}^{001} = i, \\ &A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{001} \vee A_{13}^{001} \vee A_{23}^{10} \vee A_{123}^{010} = i, \\ &A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{011} \vee A_{13}^{001} \vee A_{23}^{10} \vee A_{123}^{010} = h, \\ &A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{011} \vee A_{13}^{10} \vee A_{23}^{101} \vee A_{123}^{100} = h, \\ &A_{1}^{1} \vee A_{2}^{0} \vee A_{3}^{0} \vee A_{12}^{10} \vee A_{13}^{10} \vee A_{23}^{10} \vee A_{123}^{100} = h, \\ &A_{1}^{1} \vee A_{2}^{0} \vee A_{3}^{1} \vee A_{12}^{10} \vee A_{13}^{11} \vee A_{23}^{01} \vee A_{123}^{101} = h, \\ &A_{1}^{1} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{11} \vee A_{13}^{11} \vee A_{23}^{10} \vee A_{123}^{110} = i, \\ &A_{1}^{1} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{1} \vee A_{13}^{11} \vee A_{23}^{111} \vee A_{123}^{1110} = i. \end{split}$$

A hamis diszjunkció minden tagja hamis, ebből rögtön adódnak a következő értékek:

$$A_{1}^{0} = A_{2}^{0} = A_{3}^{0} = A_{12}^{00} = A_{13}^{00} = A_{123}^{00} = A_{123}^{000} =$$

$$= A_{2}^{1} = A_{12}^{01} = A_{23}^{10} = A_{123}^{010} = A_{3}^{01} = A_{13}^{01} = A_{23}^{11} = A_{123}^{011} =$$

$$= A_{1}^{1} = A_{12}^{10} = A_{13}^{10} = A_{13}^{100} = A_{13}^{11} = A_{23}^{01} = A_{121}^{101} = h.$$

Ezek felhasználásával a megmaradó egyenleteket a következő alakra hozhatjuk (felhasználva, hogy a hamis diszjunkciós tag elhagyható):

$$A_{123}^{001} = i,$$

$$A_{12}^{11} \vee A_{123}^{110} = i,$$

$$A_{12}^{11} \vee A_{123}^{111} = i.$$

A nagyobb rangů konjunkciók együtthatóit célszerű h-nak választani, így az

$$A_{123}^{110} = A_{123}^{111} = h$$

választássai

$$A_{1,23}^{001} = A_{1,2}^{11} = i$$

adódik, és ennek megfelelően a m. d. n. f.:

$$f(x_1, x_2, x_3) = x_1 x_2 \vee \neg x_1 \neg x_2 x_3$$

A bemutatott módszer gépies, könnyen célhoz vezet, de elég számolásigényes. Egy n-változós függvény esetében 2^n egyenletet kell megoldani.

A probléma megoldására egy másik módszert, amelyet W. Quine javasolt, a következő gyakorló feladatban mutatunk be.

Gyakorló feladat

13. Állítsuk elő m. d. n. f. alakban a t. d. n. f.-val adott

$$f(x_1, x_2, x_3, x_4) = \neg x_1 \neg x_2 x_3 x_4 \lor \neg x_1 x_2 \neg x_3 \neg x_4 \lor \lor \neg x_1 x_2 \neg x_3 x_4 \lor \neg x_1 x_2 x_3 x_4 \lor x_1 \neg x_2 \neg x_3 x_4 \lor \lor x_1 \neg x_2 x_3 x_4 \lor x_1 x_2 \neg x_3 \neg x_4 \lor x_1 x_2 x_3 \neg x_4$$

függvényt!

Megoldás:

Az első lépésben a következő típusú "elnyelésí" szabályt alkalmazzuk, ameddig csak lehet:

$$\alpha x_i \vee \alpha \exists x_i = \alpha$$
.

Az áttekinthetőség kedvéért sorra vesszűk a t. d. n. f. tagjait, mindegyiket összehasonlítjuk az összes többivel, keresünk hozzá megfelelő párt, ha lehet. Ezután leírjuk az egyszerűsítéssel kapott tagot, és megjelöljük a már felhasznált tagot.

$$\frac{\exists x_1 \exists x_2 x_3 x_4, \ \exists x_1 x_2 \exists x_3}{\exists x_1 x_2 x_3 x_4, \ x_1 \exists x_2 \exists x_3 x_4, \ x_1 \exists x_2 x_3 x_4, \ x_1 \exists x_2 x_3 x_4, \ x_1 x_2 x_3 \exists x_4, \ x_1 x_2 x_3 \exists x_4, \ x_1 x_2 x_3 \exists x_4.}$$

A kapott háromtagú elemi konjunkciók:

$$\exists x_1 x_3 x_4, \ \exists x_1 x_2 \exists x_3, \ x_1 \exists x_2 x_4, \ x_1 x_2 \exists x_4, \ \exists x_1 x_2 x_4, \ \exists x_2 x_3 x_4, \ x_3 \exists x_4.$$

Ezekre ha lehet – újra alkalmazzuk az elnyelési szabályt. Jelen esetben ezekre már nem alkalmazható a szabály. Ekkor elkészítünk egy olyan táblázatot, amelyben az oszlopokban a t. d. n. f. tagjai állnak, soraiban pedig a megmaradt d. n. f. tagok (amiket nem jelöltünk meg):

							7	ı. iaoiazai
	بكبكيد/كال	$\exists x_i x_1 \exists x_i x_t$	$\neg x_{i}x_{j} \neg x_{i}x_{i}$	<i>'x[£]x[‡]x'x</i> ∟	$x_1 - x_2 - x_3 = x_3$	⁶ x'x ⁷ x_\'x	ארנאאא ארנאראי אינאראי אינאלארן אינארנארן אינאלאר אינאלאר אינארנאיר אינארנאאר אינארארר ארנאלאר אינאלארן אר	<i>x</i> ' <i>x</i> ' <i>x</i> ' <i>x</i> ' <i>x</i>
<i>*x′x¹</i> x′L	+			+				
,x _r x,x _r		+	+					
x^ix L ix					+	+		
$x_{\rho}x_{1}^{-1}x_{\sigma}$							+	+
"x'x'x'L			+	+				
<i>"x'x'x</i> "	+					+		
<i>'</i> xĽxĽx		+					+	

A táblázatnak nyolc oszlopa és hét sora van. Az egyes sorokban végigmegyünk és jelet teszünk oda, ahol az oszlop fejlécében levő t. d. n. f. tag igaz, amikor a sor elején álló konjunkció igaz.

Ezután kíkeressük azokat az oszlopokat, amelyekben csak egy jel van. Az ezeknek megfelelő konjunkcióknak feltétlenül szerepelni kell a m. d. n. f.-ban. A mi példánkban két ilyen oszlop van, az 5. és a 8. Ezután kihagyjuk ezeket az oszlopokat, továbbá még azokat is, amelyeket az itt szereplő tagok "lefednek", tehát a példában a 6. és 7. oszlopot. Ugyancsak elhagyjuk a már bevett tagoknak megfelelő sorokat is.

2. táblázat

	$ \exists x_1 \exists x_2 x_3 x_4 $	$\exists x_1 x_2 \exists x_3 \exists x_4$	$\neg x_1 x_2 \neg x_3 x_4$	$\neg x_1 x_2 x_3 x_4$
$\neg x_1 x_3 x_4$	+			+
$\exists x_1 x_2 \exists x_3$		+	+	
$\exists x_1 x_2 x_4$			+	<u>†</u>
$\exists x_2 x_3 x_4$	+		·	
$x_2 \neg x_3 \neg x_4$		+		

A kapott táblázatból (2. táblázat) azután úgy célszerű kiválasztani a sorokban szereplő tagok közül néhányat, hogy ezek rangösszege minimális legyen, és együtt lefedjék az összes megmaradt t. d. n. f. tagot. Példánkban ezt az első és második sorban álló tagok választásával tehetjük meg. Így végül a következő m. d. n. f.-hoz jutunk:

$$f(x_1, x_2, x_3, x_4) = x_1 \, \exists x_2 x_4 \lor x_1 x_2 \, \exists x_4 \lor \\ \lor \, \exists x_1 x_3 x_4 \lor \, \exists x_1 x_2 \, \exists x_3.$$

Általában ez a lépés nem egyértelmű, több lehetőség közül is választhatunk.

A most megismert Quine-módszernek az a hátránya, hogy az első lépésben túl sok összehasonlítást kell végezni. Minden tagot minden más taggal összehasonlítunk, ez a legroszszabb esetben – n-változós függvény esetén – $2^{n-1}(2^n-1)$ összehasonlítást jelent. Ezen javitott E. Mc Cluskey módosítása. A módosított módszerrel (a Quine-Mc Cluskey-mód-

szerrel) majd a feladatok során ismerkedünk meg. A feladatok között foglalkozunk majd olyan módszerrel is, amely tetszőleges d. n. f.-ből kiindulva vezet el a m. d. n. f.-hoz.

A {\pi, \lambda, \lordow} teljes függvényrendszerben az adott függvényt minimális számú betűvel előállító formula megkeresésére nem ismerünk jól használható, gazdaságos algoritmust. A m. d. n. f.-t rendszerint még kiemelésekkel tovább rövidíthetjük, így már nem d. n. f.-t kapunk. Általában nem igaz az, hogy a m. d. n. f.-ból kiemelésekkel a minimális előállításhoz jutunk. Az elmondottak miatt a gyakorlat szempontjából nagyon fontosak és jól hasznosíthatók a m. d. n. f.-t előállító módszerek.

Egy további általánosabb, elméleti és gyakorlati szempontból is fontos problémakör a következő. Tetszőleges F teljes függvényrendszerhez adjunk meg olyan algoritmust, amelynek alapján bármely igazságfüggvény előállítható F elemeiből szuperpozícióval, majd olyan algoritmust, amely a kapott előállítást minimalizálja. Ebben a problémakörben sok még a nyitott kérdés. Néhány speciális esettel a feladatokban foglalkozunk.

Végül érdemes megfigyelni, hogy ha elektronikus áramköröket tervezünk megadott egységekből, akkor egy további minimalizálási problémát kell megvizsgálnunk: az adott függvényt hogyan lehet előállítani minimális számú művelet alkalmazásával? Itt ugyanis az áramköri egységek műveleti jeleknek felelnek meg.

Feladatok

7. A határozatlan együtthatók módszerével keressük meg az

$$f(x_1, x_2, x_3) = x_1 x_2 x_3 \lor x_1 x_2 \neg x_3 \lor x_1 \neg x_2 x_3 \lor \lor x_1 \neg x_2 \neg x_3 \lor \neg x_1 \neg x_2 \neg x_3$$

függvény m. d. n. f.-ját!

8. A Quine-Mc Cluskey-módszerben az adott t. d. n. f. tagjait i és h betűkből álló sorozattal jellemezzük. Például az $x_1 \neg x_2 x_3$ tagot az ihi sorozat jellemzi, erre igaz a konjunkció. A tagokat aszerint csoportosítjuk, hogy a hozzárendelt sorozat hány i betűt tartalmaz (0, 1, 2, ..., n számú i betűt tartalmazó tagok). Az összehasonlítást csak szomszédos csoportok között kell elvégezni.

A Quine-Mc Cluskey-módszerrel keressük meg a következő, t. d. n. s.-val adott függvény m. d. n. s.-ját:

$$f(x_{1}, x_{2}, x_{3}, x_{4}) = \exists x_{1} \exists x_{2} \exists x_{3} \exists x_{4} \lor \\ \lor \exists x_{1} \exists x_{2} \exists x_{3} x_{4} \lor \exists x_{1} \exists x_{2} x_{3} \exists x_{4} \lor \\ \lor \exists x_{1} x_{2} \exists x_{3} \exists x_{4} \lor x_{1} \exists x_{2} \exists x_{3} \exists x_{4} \lor \\ \lor \exists x_{1} \exists x_{2} x_{3} x_{4} \lor \exists x_{1} x_{2} x_{3} \exists x_{4} \lor x_{1} \exists x_{2} \exists x_{3} x_{4} \lor \\ \lor \exists x_{1} x_{2} x_{3} x_{4} \lor x_{1} \exists x_{2} x_{3} x_{4} \lor x_{1} x_{2} x_{3} x_{4}.$$

9. Tegyük fel, hogy az n-változós f függvénynek egy δ d. n. f. előállításában szerepel egy αx_i és egy $\beta \Box x_i$ alakú tag. Igazoljuk, hogy

$$\delta = \delta \vee \alpha \beta$$
.

10. Az előző feladat eredményének felhasználásával az

$$f(x_1, x_2, x_3) = \exists x_1 \exists x_2 \lor \exists x_2 x_3 \lor x_1 x_2 \exists x_3 \lor \lor \exists x_1 x_2 \exists x_3$$

d. n. f. alakban adott függvényhez készítsük el a rövidített d. n. f.-et, majd ezt egyszerűsítsük a Ouine-módszerrel!

11. Az n-változós s_n (Sheffer) és w_n (Webb) függvényeket a következőképpen definiáljuk:

$$s_n(x_1, ..., x_n) = x_1 | x_2 | ... | x_n =$$

$$= \neg (x_1 \land x_2 \land ... \land x_n),$$

$$w_n(x_1, ..., x_n) = x_1 \downarrow x_2 \downarrow ... \downarrow x_n =$$

= $\neg (x_1 \lor x_2 \lor ... \lor x_n).$

Igazoljuk a következő azonosságokat:

a)
$$s_n(x,...,x) = \neg x;$$

 $w_n(x,...,x) = \neg x;$

b)
$$s_n(x,...,x, \neg x) = i;$$

 $w_n(x,...,x, \neg x) = h;$

c)
$$s_n(x_1,...,x_l,i,...,i) = s_l(x_1,...,x_l);$$

 $w_n(x_1,...,x_l,h,...,h) = w_l(x_1,...,x_l)$
 $(1 \le l < n).$

12. A t. d. n. f. felhasználásával adjunk meg olyan eljárást, amelynek alapján tetszőleges igazságfüggvény előállítható a w, függvény szuperpozíciójaként!

13. Az előző feladatban talált módszer szerint állítsuk elő a következő háromváltozós függvényt, w₃ segítségével:

$$f(x_1, x_2, x_3) = \exists x_1 \exists x_2 \exists x_3 \lor \exists x_1 \exists x_2 x_3 \lor \lor \exists x_1 x_2 x_3 \lor x_1 \exists x_2 \exists x_3 \lor x_1 x_2 \exists x_3.$$

14. A határozatlan együtthatók módszerének megfelelő módosításával minimalizáljuk a 13. feladatban kapott előállítást!

3. Relés áramkörök szerkezete és bonyolultsága

A 2. szakaszban már néhány példa kapcsán találkoztunk olyan áramkörökkel, amelyekben relék, jelfogók működtetik a kapcsolókat. Láttuk, hogy ilyenek tervezéséhez, működésének leírásához jól használhatók a logika eszközei.

Ebben a fejezetben ilyen típusú áramkörök szerkezetét vizsgáljuk, és néhány olyan feladatot oldunk meg, amelyek az áramkörök bonyolultságának becslésével foglalkoznak.

Először megállapodunk abban, hogy az áramkörök szemléltetését egyszerűsítjük. A kapcsolókat vonalakkal jelöljük, a vonal két végét pólusoknak nevezzük. Maga a vonal egy kétpólus. A pólusokat egyesíthetjük is. Ennek megfelelően az áramkört gráf szemlélteti. A gráf éleihez logikai változókat vagy változók negáltjait írjuk, ezek jelölik a kapcsolókat. A csúcsok felelnek meg a kétpólusok egyesítéseinek. A gráfban kijelölünk két csúcspontot, az egyik a bemenet, a másik a kimenet. Az így kapott sémák természetesen idealizált leirásai a fizikai áramköröknek. Így például természetesen azt is feltesszük, hogy ha a bemenetre áram érkezik, akkor ez az egész sémán egyszerre átfolyik, azonnal megjelenik a kimeneten is (ha a kapcsolók helyzete ezt engedi).

Az 56. ábrán néhány ilyen gráfot rajzoltunk meg. A bemenetet és a kimenetet nyíllal jelöltük.

Minden gráfhoz hozzárendelünk egy igazságfüggvényt. Ez annyi változós, ahány különböző logikai változó van a gráf élén és akkor és csak akkor igaz, ha a bemenet és kimenet között folyik áram.

Gyakorló feladat

14. Írjuk le az 56. ábrán vázolt gráfoknak megfeleltetett igazságfüggvényeket!

Megoldás:

Az 56a ábrán látható gráfban négy változó van, igy négyváltozós függvényt kapunk:

$$f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 \vee x_1 x_4 x_2 \vee \vee x_2 x_3 x_4 \vee x_2 x_4 \vee x_1 x_3 x_2 \exists x_4 \vee \exists x_3 \exists x_1 x_4 \vee \vee \exists x_3 \exists x_1 x_2 \exists x_4.$$

Az 56b ábrának megfelelő g függvény egyszerűbb:

$$g(x_1, x_2, x_3, x_4) = x_1 \lor x_2 \lor x_3 \lor x_4.$$

Az 56c ábrán egy hidkapcsolás vázlata látható. A hozzá tartozó h függvény így írható fel:

$$h(x_1, x_2, x_3, x_4, x_5) = x_1 x_4 \vee x_1 x_3 x_5 \vee x_2 x_3 x_5 \vee x_2 x_3 x_4.$$

Már az előző gyakorló feladat megoldásában is használtuk, hogy a séma működését leíró függvényt úgy kaphatjuk meg, hogy sorra vesszük a bemenetet a kimenettel összekötő egyszerű utakat (amelyek nem haladnak át kétszer egy csúcson), és az ezeknek megfelelő konjunkciókat diszjunkcióval kapcsoljuk össze. Így a függvényt d. n. f. alakjában kapjuk meg.

A fordított feladat az, amivel néhány speciális esetben már foglalkoztunk. Ebben az esetben adott függvényhez keresünk olyan áramkört, ami a függvényt megvalósítja, azaz a bemenet és kimenet között akkor és csak akkor folyik áram, ha a függvény értéke igaz. Az áramkört jellemző gráf konstrukcióját például a következő módon írhatjuk le. A függvényt előállítjuk d. n. f. alakban. A d. n. f.-t minimalizáljuk az előző fejezetben megismert módszerekkel. Ezután a

m. d. n. f. minden elemi konjunkciójának megfeleltetünk egy bemenettől kimenetig vezető "sorba kapcsolt" utat, az egyes élekre a konkjunkciós tagokat írjuk rá. Végül az elemi konjunkcióknak megfelelő utakat "párhuzamosan" kötjük be a bemenet és kimenet közé

Gyakorló feladat

15. Tervezzük meg a következő függvényeket realizáló áramkörök gráfját:

$$a$$
) $(x_1 \lor x_2) \rightarrow (x_3 \land \neg x_1);$

b)
$$x_1 \oplus x_2 \oplus x_3$$
.

Megoldás:

Az a) formulát először normálformává alakítjak:

$$\exists (x_1 \lor x_2) \lor (x_3 \land \exists x_1) = \exists x_1 \exists x_2 \lor x_3 \exists x_1.$$

Itt is használtuk azt a rövidítést, hogy a konjunkció jelét nem irtuk ki. Észrevehető, hogy a kapott formulából $\exists x_1$ -et még kiemelhetjük:

$$\exists x_1(\exists x_2 \lor x_3).$$

A megfelelő áramkör gráfját az 57. ábra mutatja.

A b) formulát is először alakítsuk át d, n, f.-va. Kövessük most azt a módszert, hogy közvetlenül a művelet definicjóját felhasználva irjuk fel a t. d. n. f.-t! Tudjuk, hogy az $x_1 \oplus x_2 \oplus x_3$ formula értéke akkor és csak akkor igaz, ha vagy mindhárom változó értéke igaz, vagy pontosan egy változó értéke igaz. Ennek alapján:

$$x_1 \oplus x_2 \oplus x_3 = x_1 x_2 x_3 \vee \neg x_1 x_2 x_3 \vee \vee x_1 \neg x_2 x_3 \vee x_1 x_2 \neg x_3.$$

A kapott formulát egyszerűsítsük:

$$x_1 x_2 x_3 \vee \neg x_1 x_2 x_3 \vee x_1 \neg x_2 x_3 \vee x_1 x_2 \neg x_3 =$$

$$= x_2 x_3 \vee x_1 x_3 \vee x_1 x_2 = x_1 (x_2 \vee x_3) \vee x_2 x_3.$$

Az áramkör gráfját az 58. ábrán vázoltuk.

Az eddigi feladatokban egy függvényt a □, ∧, ∨ műveletekkel fejeztünk ki, és úgy vázoltuk fel a függvényt megvalósító áramkör gráfját, hogy a kapcsolókat párhuzamosan vagy sorosan kapcsoltuk. A párhuzamos-soros sémák, röviden π -sémák fogalmát a következőképpen definiálhatjuk. Egy élből, azaz kapcsolóból álló elemi séma π -séma. π -sémát kapunk, ha véges sok π -sémát párhuzamosan vagy sorosan kapcsolunk. Könnyen végiggondolható, hogy az 56c ábrán látható hidkapcsolás nem π-séma.

A formulák minimalizálása mellett gyakorlati szempontból is jelentős kérdés az, hogy egy adott igazságfüggvényt hány kapcsolóból, érintkezőből álló áramkörrel lehet megvalósitani. Egy adott igazságfüggvényhez tartozó sémáról akkor mondjuk, hogy minimális, ha ez a séma az ugyanezt az igazságfüggvényt előállító sémák közül a legkevesebb élből áll.

Gyakorló feladatok

16. Igazoljuk, hogy az 56c ábrán látható hidáramkör minimális séma!

Megoldás:

A 14. gyakorló feladatban láttuk, hogy az áramkör működését az

$$f(x_1, x_2, x_3, x_4, x_5) = x_1 x_4 \vee x_1 x_3 x_5 \vee x_2 x_5 \vee x_2 x_3 x_4$$

függvény írja le. Megmutatjuk, hogy ez a függvény mindegyik változójától lényegesen függ. Az ábra segítségével a következők könnyen láthatók:

$$f(i, h, h, i, h) = i \neq f(h, h, h, i, h) = h;$$

$$f(h, i, h, h, i) = i \neq f(h, h, h, h, i) = h;$$

$$f(i, h, i, h, i) = i \neq f(i, h, h, h, i) = h;$$

$$f(i, h, h, i, h) = i \neq f(i, h, h, h, h) = h;$$

$$f(h, i, h, h, i) = i \neq f(h, i, h, h, h) = h.$$

A kapott eredmény azt mutatja, hogy bármelyik változót elhagyva, a függvény megváltozik. Mivel az áramkörben mindegyik változó pontosan egyszer szerepel, egyik sem hagyható el. tehát a séma minimális.

17. Az

$$f(x_1, x_2, x_3) = x_1 x_2 x_3 \vee \exists x_1 \exists x_2 \exists x_3$$

függvényhez készitsünk el egy minimális sémát, ami a függvényt megvalósítia!

Megoldás:

A függvényt előállító d. n. f.-ről közvetlenül leolvasható az 59. ábran látható séma. Megmutatjuk, hogy ez a séma minimális! Tegyük fel, hogy egy háromváltozós függvényt realizáló sémában x_1 csak negálatlanul fordul elő. Ekkor nyilván

$$f(i, x_2, x_3) \ge f(h, x_2, x_3)$$

teljesül (hiszen x_1 zárásával nem szakadhat meg az áramkör). Hasonlóan, ha $\Box x_1$ szerepel csak a sémában, akkor

$$f(i, x_2, x_3) \le f(h, x_2, x_3)$$

kell, högy igaz legyen. Az általunk vizsgált esetben

tehát kell, hogy az f-et realizáló sémában $\exists x_1$ álljon. Ugyanakkor

$$f(i,i,i) > f(h,i,i),$$

tehát x_1 is kell, hogy szerepeljen. A változókban a függvény szimmetrikus, tehát mindhárom változó és a negáltja is benne kell, hogy legyen egy f-et realizáló sémában. Az 59. ábrán látható sémában mindegyik változó és a negáltja pontosan egyszer fordul elő, tehát a séma minimális.

Azt a kérdést fogjuk vizsgálni, hogy adott n-változós f igazságfüggvényhez mennyire bonyolult séma tartozik, ami ezt megvalósítja. Jelölje L(f) az f-et megvalósító minimális séma éleinek számát. Hasonlóan $L_{\pi}(f)$ jelölje az f-et megvalósító minimális π -séma éleinek számát. Mivel a π -sémák az összes sémának egy részhalmazát képezik, nyilván igaz, hogy

$$L(f) \leq L_{\pi}(f)$$
.

C. Shannon vezette be a következő fogalmat: jelöljük F-fel az n-változós igazságfüggvények halmazát:

$$L(n) = \max_{f \in F} L(f);$$

$$L_{\pi}(n) = \max_{f \in F} L_{\pi}(f).$$

A következő néhány feladatban az L(n) függvényt vizsgáljuk. L(n) a definició szerint azt a minimális számot jelenti, amelyre igaz, hogy minden n-változós igazságfüggvény legfeljebb L(n) számú élt tartalmazó sémával realizálható.

Gyakorló feladatok

18. A függvények t. d. n. f. és t. k. n. f. előállításának felhasználásával adjunk felső becslést L(n) értékére!

Megoldás:

Az n-változós függvény f t. d. n. f. alakjában legfeljebb 2^n diszjunkciós tag van, ezek mindegyike n számú betűt tartalmaz. Tehát ez az alak a szokásos módon legfeljebb $n \cdot 2^n$ élből álló sémával megvalósítható. A függvény t. k. n. f.-ja legfeljebb 2^n konjunkciós tagot tartalmaz, egy tagban n darab betű van. tehát ez az alak is legfeljebb $n \cdot 2^n$ élből álló sémával megvalósítható. A két normálformáról azonban tudjuk, hogy duálisai egymásnak.

Ez azt jelenti, hogy a két normálforma tagjainak együttes száma éppen 2ⁿ, így a rövidebbik legfeljebb 2ⁿ⁻¹ tagot tartalmaz, tehát ha ezt választjuk a függvény megvalósításához, akkor azt kapjuk, hogy

$$L(n) \leq n \cdot 2^{n-1}.$$

19. Adjunk az előző feladat eredményénél jobb becslést L(n)-re a következő gondolat felhasználásával. Egy n-változós f függvényt előállíthatunk az

$$f(x_1, ..., x_n) = g_1(x_1, ..., x_{n-1})x_n \vee g_2(x_1, ..., x_{n-1}) \sqcap x_n$$

alakban, ahol g_1 és g_2 alkalmas, (n-1)-változós függvények.

Megoldás:

Az előállítást a következő módon használhatjuk fel egy f-et megvalósító séma készítésére. Tegyük fel, hogy g_1 -et és g_2 -t már realizálni tudjuk egy S_1 és S_2 sémával. Ekkor f-re a 60. ábrán látható előállítást kapjuk.

60. ábra

A séma éleinek számát felülről becsüljük. Tegyük fel, hogy S_1 és S_2 éleinek száma egy c_{n-1} konstansnál nem nagyobb; ekkor

$$c_n \leq 2c_{n-1} + 2$$
.

Mivel $c_1 = 1$ nyilván igaz, ebből L(n)-re a becslés ismételt alkalmazásával a következőt kapjuk:

$$L(n) \le 2^{n-1} + 2^{n-1} + 2^{n-2} + \dots + 2^2 + 2 =$$

$$= 2^{n-1} + 2 \cdot 2^{n-1} - 2 = 3 \cdot 2^{n-1} - 2.$$

Az L(n) függvény még jobb, felső becslésének előállítására néhány további segédeszközre van szükségünk. Először már régről ismert eszközünket, a t. d. n. f.-t fogalmazzuk meg egy más alakban. Vezessük be a következő jelölést: $x^i = x$ és $x^h = \neg x$. Egy n-változós f függvényt a következő alakban is előállíthatunk:

$$f(x_1,\ldots,x_n)=\bigvee_{(\sigma_1,\ldots,\sigma_n)}f(\sigma_1,\ldots,\sigma_n)x_1^{\sigma_1}\ldots x_n^{\sigma_n},$$

ahol a diszjunkciót az összes $(\sigma_1, ..., \sigma_n)$ i, h értékekből képezett rendezett n-esekre kell elvégezni. Világos, hogy csak azok a diszjunkciós tagok maradnak meg, amelyekre $f(\sigma_1, ..., \sigma_n) = i$, és így az f függvény t. d. n. f. alakjához jutunk.

Gyakorló feladat

20. Igazoljuk, hogy egy tetszőleges, n-változós függvény előállítható az első k ($k \le n$) változója szerinti d. n. f. alakjában:

$$f(x_1, ..., x_k, x_{k+1}, ..., x_n) =$$

$$= \bigvee_{(\sigma_1, ..., \sigma_k)} f(\sigma_1, ..., \sigma_k, x_{k+1}, ..., x_n) x_1^{\sigma_1} ... x_k^{\sigma_k}.$$

ahol a diszjunkciót az összes i, h értékekből képezett $(\sigma_1, ..., \sigma_k)$ rendezett k-asra kell elvégezni!

Megoldás:

Elég megmutatni, hogy a két oldal értéke tetszőleges $(\sigma_1, \dots, \sigma_n)$ i, h, értékekből képzett rendezett n-esre egyenlő. Rögzítsük először a $\sigma_{k+1}, \dots, \sigma_n$ értékeket. Ekkor a két oldal egyenlősége egyszerűen következik a t. d. n. f. előzőleg felírt alakjából.

A most kapott előállítást olyan séma konstrukciójához használjuk fel, amellyel az eddigieknél jobb becslést kapunk L(n)-re. Az eddig vizsgált sémák helyett általánosabb tipusút is használunk majd segédeszközként. Egy olyan sémához, amelynek egy bemenete és k számú kimenete van, k darab igazságfüggvényt rendelhetünk hozzá, amit a séma realizál. Minden egyes függvény akkor és csak akkor igaz, ha a bemenet és a megfelelő kimenet között áram folyik. Szükségünk lesz olyan sémára, amely az összes, 2^n különböző n-változós elemi konjunkciót megvalósítja. Egy ilyen sémát univerzális $(1, 2^n)$ -pólusnak fogunk nevezni.

Gyakorló feladat

21. Konstruáljunk – lehetőleg gazdaságosan univerzális (1, 2")-pólust. és számoljuk össze az így kapott séma éleinek számát!

Megoldás:

Az ötletet a konstrukcióhoz a következő induktív gondolat adja. n=1-re a 61a ábra sémája megfelelő.

Az n=2 esetre ezt a sémát úgy egészítjük ki, hogy mindkét kimenetéhez még egy-egy ugyanilyen típusú sémát kapcsolunk az x_2 változó számára (61b ábra.). Világos, hogy az így kapott (1. 4)-pólus univerzális, hiszen leolvasható, hogy éppen az x_1x_2 , $x_1 \neg x_2$, $\neg x_1x_2$, $\neg x_1 \neg x_2$ elemi konjunkció-

kat realizálja. Az eljárást igy folytatva, n-lópés után a 62. ábrán vázolt (1, 2º)-pólust kapjuk, amely nyilván univerzális.

Számoljuk össze még az éleket:

$$2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} + 2.$$

Most a 20. feladatban megadott előállitás és az univerzális $(1, 2^k)$ -pólus felhasználásával gazdaságos sémát konstruálunk egy n-változós igazságfüggvény megvalósitásához. Rögzítsünk – egyelőre tetszőlegesen – egy $1 \le k \le n$ értéket (ezt a későbbiekben majd úgy választjuk meg, hogy jó becslést kapjunk L(n)-re). Állítsuk elő a realizální kívánt n-változós f függvényt az utolsó n-k változója szerinti d. n. f. alakjában:

$$f(x_1, ..., x_k, x_{k+1}, ..., x_n) =$$

$$= \bigvee_{(\sigma_{k+1}, ..., \sigma_n)} f(x_1, ..., x_k, \sigma_{k+1}, ..., \sigma_n) x_{k+1}^{\sigma_{k+1}} ... x_n^{\sigma_n},$$

ahol $(\sigma_{k+1}, ..., \sigma_n)$ az összes lehetséges i, h értékekből alkotott (n-k)-as értéket felveszi. Az $f(x_1, ..., x_k, \sigma_{k+1}, ..., \sigma_n)$

függvényekről csak annyit tudunk, hogy ezek k-változós igazságfüggvények. Az összes 2^{2^k} darab k-változós függvény közül bármelyik előfordulhat ezek között, hiszen f-ről semmit sem kötöttünk ki.

Az $x_{k+1}^{\sigma_{k+1}}...x_n^{\sigma_n}$ elemi konjunkciók között pedig az összes 2^{n-k} darab n-k-változós elemi konjunkció szerepel. Az f függvényt megvalósító S_f sémát a 63. ábrán vázolt alakban készítjük el.

Az S_1 univerzális $(1, 2^{n-k})$ -pólus, az S_2 pedig olyan $(2^{2^k}, 1)$ -pólus, amelynek 2^{2^k} bemenete, 1 kímenete van, és alkalmas arra, hogy megfelelő bemenet és a kímenet között bármelyik k-változós igazságfüggvényt realizálja. Az S_1 séma minden egyes kímenetét azonosítjuk az S_2 megfelelő bemenetével. Az S_1 -nek azt a kímenetét, amely az $x_{k+1}^{\sigma_{k+1}} \dots x_n^{\sigma_n}$ elemi konjunkciót realizálja, az S_2 -nek azzal a bemenetével azonosítjuk, amely a megfelelő $f(x_1, \dots, x_k, \sigma_{k+1}, \dots, \sigma_n)$ k-változós függvényt valósítja meg (előfordul, hogy több kímenetet is ugyanazzal a bemenettel azonosítunk, és bizonyos bemenetek kímaradnak).

Gyakorló feladatok

22. Igazoljuk, hogy az előző konstrukcióval kapott S_f séma az f függvényt realizálja!

Megoldás:

Az univerzális (1, 2" k)-pólus két kimenete között konstrukciójánál fogya soha nem folyhat áram, hiszen bármely, a két kimenetet összekötő út mentén van olyan változó, amelynek a negáltja is szerepel ugyanezen az úton.

Az S_2 sémát úgy építjük fel, hogy a 19. gyakorló feladatban megismert módszerrel mindegyik k-változós függvényhez elkészítjük a megfelelő sémát, majd az így kapott sémák kimeneteit azonosítjuk. Ekkor a leírt konstrukció biztosítja, hogy az S séma bemenete és kimenete között akkor és csak akkor folyik áram, ha f értéke igaz.

23. Az S séma éleinek összeszámolásával adjunk felső becslést L(n)-re!

Megoldás:

Becsüljük felülről külön S_1 és külön S_2 éleinek számát! A 21. gyakorló feladat alapján az S_1 univerzális $(1, 2^{n-k})$ pólus éleinek száma

$$2^{n-k+1}-2<2\cdot 2^{n-k}.$$

A 19. gyakorló feladat eredménye és az S_2 konstrukciója szerint S_2 -ben az élek számát felülről így becsülhetjük:

$$2^{2^k}(3 \cdot 2^{k-1} - 2) < 2^{2^k} \cdot 4 \cdot 2^{k-1} = 2 \cdot 2^k \cdot 2^{2^k}.$$

A két becslés alapján L(n)-re a következő felső becslést adhatjuk:

$$L(n) \leq 2 \cdot 2^{n-k} + 2 \cdot 2^k \cdot 2^{2k}$$

ahol $1 \le k \le n$.

Látható, hogy az L(n) becslésének értéke k-tól függ. Azt kell elérni, hogy k értékét "jól" válasszuk meg, nagy n-ekre minél jobb legyen a becslés. A feladatok során fogjuk igazolni, hogy tetszőleges $\varepsilon > 0$ számhoz van olyan N, ε -tól függő szám, hogy ha n > N, akkor

$$L(n) \leq (4+\varepsilon)\frac{2^n}{n}.$$

Másrészt igazolható, hogy minden n>1 egész számra

$$\frac{2^n}{n} < L(n).$$

Ezeket az eredményeket először C. Shannon igazolta. O. B. Lupanov megmutatta, hogy az L(n) számsorozat ugyanúgy viselkedik, mint a $\frac{2^n}{n}$ sorozat, azaz pontosabban

$$\lim_{n\to\infty}\frac{L(n)}{2^n}=1.$$

Hasonló módszerekkel igazolható, hogy

$$\lim_{n\to\infty}\frac{L_n(n)}{\frac{2^n}{\ln n}}=1.$$

Feladatok

15. Tervezzünk az

$$f(x_1, x_2, x_3) = x_1 x_2 \leftrightarrow \Box x_2 x_3$$

függvényhez olyan áramkört, amely megvalósítja a függvényt!

16. Tervezzünk az

$$f(x_1, x_2, ..., x_n) = x_1 x_2 ... x_n \vee \neg x_1 \neg x_2 ... \neg x_n$$

függvényhez kétféleképpen is minimális sémát!

17. Igazoljuk, hogy az 56c ábrán látható hídáramkörrel realizálható függvényhez nincs olyan π -séma, amely ugyanezt a függvényt realizálja, és öt, vagy annál kevesebb éle van!

18. A 23. gyakorló feladat eredményének felhasználásával bizonyítsuk be az *L*(*n*)-re adott felső becslés helyességét! 19. Igazoljuk, hogy az egyszerű

$$L(n) \ge 2n$$

becslés fennáll!

20. Vezessük be a következő jelölést:

$$P_n(x_1, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n,$$

$$Q_n(x_1, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n \oplus i.$$

Konstruáljunk minimális sémát

- a) $P_2, Q_2;$
- b) P_3, Q_3

megvalósitására!

21. Induktív módszerrel készítsünk olyan sémákat, amelyek a P_n és Q_n függvényeket realizálják!

22. Az előző feladat eredményének felhasználásával adjunk felső becslést $L(P_n)$ és $L(Q_n)$ értékére. Keressünk alsó becsléseket is!

23. A feladat megfogalmazása előtt néhány fogalmat vezetünk be. Két n-jegyű, kettes számrendszerben felírt szám öszszege legfeljebb n+1 jegyű. Ennek megfelelően n-jegyű szummátornak nevezzük az olyan (1, n+1)-pólust, amelyben az éleket az $x_1, \ldots, x_n, y_1, \ldots, y_n$ változók vagy negáltjaik jelölik, és az n+1 kimeneten sorra az $x_nx_{n-1}...x_{1}$ és $y_ny_{n-1}...y_{1}$ kettes számrendszerbeli számok összegének egyes jegyei valósulnak meg. A helyiértékek mindig jobbról balra nőnek. A sémát induktív úton, az összeadás szabályainak megfelelően lehet felépíteni. Jelölje s_i az eredmény i-edik jegyét, p_i pedig az i-edik maradékot. Az $s_i(x_i, y_i, p_i)$ és $p_{i+1}(x_i, y_i, p_i)$ nyílván igazságfüggvényekként kezelhetők (x_i, y_i, p_i, s_i) értéke csak 0 vagy 1 lehet).

Határozzuk meg az s_i és p_{i+1} függvényeket!

- 24. Készitsünk sémát n jegyű szummátorra!
- 25. Adjunk becslést a megkonstruált séma elemei számára!

A III. fejezetben kitűzött feladatok megoldásai

1. a) Az áramkör működését leíró formulát az ábra alapján könnyű felírni:

$$\exists x_1 \lor ((x_1 \lor \exists x_2) \land (x_2 \lor \exists x_3)) \lor \exists x_2 \lor x_3.$$

b) Ebben az esetben is az ábráról tudjuk leolvasni a megfelelő formulát:

$$(x_1 \wedge ((x_2 \wedge (x_1 \vee \neg x_2) \wedge \neg x_1) \vee (x_2 \wedge x_3))) \vee \\ \vee [\neg x_2 \wedge ((x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_3))] \vee \\ \vee [x_2 \wedge x_3 \wedge ((x_1 \wedge \neg x_3) \vee \neg x_1)].$$

c) Itt is könnyű az ábráról leolvasni a megfelelő formulát:

$$(x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_4) \land (x_1 \lor x_3).$$

2. a) Fejezzük ki először az adott formulát normálformulában:

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3).$$

A kapott formulának megfelelő áramkört már könnyű felrajzolni (64. ábra).

b) A formulát először az ismert azonosságok felhasználásával átalakítjuk:

A formula azonosan igaz, tehát az "áramkör" egyetlen, megszakító nélküli vezetőből áll.

c) A formulát itt is át kell alakítanunk úgy, hogy a \neg jel csak változó előtt szerepeljen:

$$x_1 \vee (\neg x_1 \wedge x_3) \vee (\neg x_2 \wedge x_4) \vee \neg x_3 \vee \neg x_4.$$

A kapott formulának megfelelő áramkört már könnyű felvázolni (65. ábra).

65. ábra

- 3. a) A 2. a) feladat megoldásában a formulát átalakítottuk. Ez az átalakítás mutatja, hogy a keresett áramkörnek három bemenete lesz (háromváltozós formula), és mivel öt műveleti jel van a formulában, öt áramköri egységből épül fel az áramkör (66. ábra).
- b) A 2.b) megoldásakor láttuk, hogy a formula azonosan igaz, tehát az "áramkör" itt is egy vezetőből állhat.
- c) Ebben az esetben is az a célunk, hogy a lehető legkevesebb egységből álló áramkört konstruáljuk meg. Az egysé-

gek számát itt a formulában szereplő műveleti jelek száma mutatja. Ebből a szempontból a **2.** c) feladat megoldása során alkalmazott átalakítással kapott formula nem a "legjobb". A formula eredeti alakja most előnyösebb, különösen akkor, ha 4 bemenetű VAGY-kapu alkalmazását is megengedjük. A megfelelő áramkört ezek alapján 7 egységből építhetjük fel (67. ábra).

4. a) Annak feltételét, hogy az f kimeneten megjelenjen feszültség, egy négyváltozós függvény adja meg. A függvényt az ábra elemzése alapján könnyű felírni:

$$f(x_1, x_2, x_3, x_4) = (\neg x_1 \land x_3) \lor (\neg x_2 \land x_4) \lor \lor \neg (x_3 \land x_4).$$

b) Ebben az esetben egy ötváltozós függvénnyel jellemezhetjük az áramkört:

$$g(x_1, x_2, x_3, x_4, x_5) = x_1 \wedge ((x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge x_5)) \wedge ((\neg x_2 \wedge x_3) \vee \neg (x_4 \wedge x_5)).$$

5. A szavakban megadott feltételt írjuk fel először logikai formula alakjában:

$$(x_1 \wedge x_2 \wedge \neg x_3) \vee (x_1 \wedge \neg x_2 \wedge x_3) \vee (\neg x_1 \wedge x_2 \wedge x_3)$$

A kapott formulának megfelelő áramkört már könnyű megszerkeszteni (68. és 69. ábra).

6. Jelöljük 0-val a kapcsoló alaphelyzetét, és 1-gyel az ellenkező helyzetet. Ezzel összhangban 0 jelölje azt, hogy a lámpa világít, és 1, hogy nem. Ha x_1, x_2, x_3 jelöli rendre a kapcsolókat, akkor azt az $f(x_1, x_2, x_3)$ függvényt, amely a kívánt feltételeket fogalmazza meg, értéktáblázattal adhatjuk meg legkönnyebben:

<i>x</i> ₁	<i>x</i> ₂	X3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	1
1	0	0	1
0	1	1	0
1	0	1	0
1	1	0	0
1 .	1	1	1

A táblázatról leolvasható, hogy az f függvény valóban eleget tesz a kívánt feltételnek. A megfelelő logikai formulát $\succeq 0$ -t h-nak, 1-et i-nek választva – az értéktáblázatból igy írhatjuk fel:

$$(x_1 \wedge x_2 \wedge x_3) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3) \vee \vee (\neg x_1 \wedge x_2 \wedge \neg x_3) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3).$$

A formula alapján az áramkört például a következőképpen tervezhetjük meg: (70. ábra)

70. ábra

7. A 12. gyakorló feladatban megismert módszerrel oldjuk meg a feladatot. Az f háromváltozós függvény t. d. n. f.-ját ismerjük, ennek alapján a következő egyenletrendszert ír-hatjuk fel:

$$A_{1}^{0} \vee A_{2}^{0} \vee A_{3}^{0} \vee A_{12}^{00} \vee A_{13}^{00} \vee A_{23}^{00} \vee A_{123}^{000} = i,$$

$$A_{1}^{0} \vee A_{2}^{0} \vee A_{3}^{1} \vee A_{12}^{00} \vee A_{13}^{00} \vee A_{23}^{00} \vee A_{123}^{000} = h,$$

$$A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{0} \vee A_{12}^{01} \vee A_{13}^{00} \vee A_{23}^{10} \vee A_{123}^{010} = h,$$

$$A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{01} \vee A_{13}^{01} \vee A_{23}^{10} \vee A_{123}^{010} = h,$$

$$A_{1}^{0} \vee A_{2}^{1} \vee A_{3}^{1} \vee A_{12}^{01} \vee A_{13}^{01} \vee A_{23}^{11} \vee A_{123}^{011} = h,$$

$$A_{1}^{1} \vee A_{2}^{0} \vee A_{3}^{0} \vee A_{12}^{10} \vee A_{13}^{10} \vee A_{23}^{01} \vee A_{123}^{100} = i,$$

$$A_{1}^{1} \vee A_{2}^{0} \vee A_{3}^{1} \vee A_{12}^{10} \vee A_{13}^{11} \vee A_{23}^{01} \vee A_{123}^{101} = i,$$

$$A_{1}^{1} \vee A_{3}^{1} \vee A_{3}^{0} \vee A_{12}^{11} \vee A_{13}^{11} \vee A_{23}^{11} \vee A_{123}^{110} = i,$$

$$A_{1}^{1} \vee A_{3}^{1} \vee A_{3}^{1} \vee A_{12}^{11} \vee A_{13}^{11} \vee A_{23}^{11} \vee A_{123}^{111} = i.$$

A második, harmadik és negyedik egyenletből a diszjunkció tulajdonságát felhasználva (hamis diszjunkció minden tagja hamis) a következőt kapjuk:

$$A_{1}^{0} = A_{2}^{0} = A_{3}^{1} = A_{12}^{00} = A_{13}^{01} = A_{23}^{01} = A_{123}^{001} = A_{2}^{1} = A_{23}^{00} = A_{123}^{10} = A_{3}^{1} = A_{123}^{10} = A_{3}^{1} = A_{123}^{11} = A_{123}^{011} = A_{123}^{11} = A_{123}^{011} =$$

A kapott értékeket az egyenletrendszerbe helyettesítjük és felhasználjuk, hogy a hamis diszjunkciós tag elhagyható:

$$A_{23}^{00} \vee A_{123}^{000} = i,$$

$$A_{1}^{1} \vee A_{12}^{10} \vee A_{13}^{10} \vee A_{23}^{00} \vee A_{123}^{100} = i,$$

$$A_{1}^{1} \vee A_{12}^{10} \vee A_{13}^{11} \vee A_{123}^{101} = i,$$

$$A_{1}^{1} \vee A_{12}^{11} \vee A_{13}^{10} \vee A_{123}^{101} = i,$$

$$A_{1}^{1} \vee A_{12}^{11} \vee A_{13}^{10} \vee A_{123}^{110} = i,$$

$$A_{1}^{1} \vee A_{12}^{11} \vee A_{13}^{11} \vee A_{123}^{111} = i.$$

A kapott egyenletrendszert most úgy célszerű megoldani, hogy a lehető legkevesebb számú és legkisebb rangú elemi konjunkció együtthatója legyen i. Az első két egyenletből:

$$A_{23}^{00} = A_1^1 = i$$
,

a többi diszjunkció is igaz, tehát a további együtthatókat h-nak választhatjuk. Ezzel az f függvény következő, minimális d. n. f.-jához jutottunk:

$$f(x_1, x_2, x_3) = x_1 \vee \exists x_2 \exists x_3.$$

8. Az adott f függvény négyváltozós, és a t. d. n. f.-ját ismerjük. Ennek alapján könnyű felírni az egyes csoportokat: hhhh,

h<u>h</u>hi, h<u>hi</u>h, h<u>ih</u>h, i<u>hh</u>h, h<u>hi</u>i, h<u>ii</u>h, i<u>hh</u>i, h<u>iii,</u> i<u>hii,</u> iiii.

A szomszédos csoportokbeli elemek összehasonlítása és a megfelelő kiemelések elvégzése után a következő, harmadrangú csoportokat kapjuk:

A kapott csoportokban ismét csak a szomszédosokat öszszehasonlítva, másodrangú konjunkciókhoz jutunk:

Ez után már a Quine-módszer alkalmazásakor megismert táblázatot egyszerű összeállítani. A táblázatnak 6 sora és 11 oszlopa lesz (3. táblázat).

3. táblázat

	hhhh	hhhi	hhih	hihh	ihhh	hhii	hiih	ihhi	hiii	ihii	iiii
hb	+	+	+			+					
·hh	+	+			+			+_			
h∙ h	+		+	+			+			_	
-h-1		+				+		+_		+	
h-i-			+			+	+		+		
іі						+			+	+	+

A táblázat 4., 5. és 11. oszlopában csak egy jel van, ez azt jelenti, hogy a megfelelő sorokban álló diszjunkciós tagoknak feltétlenül szerepelniük kell a m. d. n. f.-ban. Azt is végig kell nézni, hogy ezek a tagok melyik oszlopot "fedik le". Ekkor azt tapasztaljuk, hogy ezek az elemi konjunkciók együtt az összes oszlopot lefedik. A m. d. n. f. tehát a következő alakú:

$$f(x_1, x_2, x_3, x_4) = \exists x_1 \exists x_4 \lor \exists x_2 \exists x_3 \lor x_3 x_4.$$

9. A feltétel szerint az f függvényt a δ formula állítja elő: $f(x_1, ..., x_n) = \delta$.

Azt kell igazolnunk, hogy tetszőleges i, h értékekből képezett n-esre

$$f(x_1,...,x_n)=\delta\vee\alpha\beta.$$

Válasszuk először az i, h értékek $(\alpha_1, ..., \alpha_n)$ rendszerét úgy, hogy $f(\alpha_1, ..., \alpha_n) = i$ teljesüljön. Ekkor

$$i = i \vee \alpha \beta$$

nyilván teljesül, tehát ebben az esetben az állítás igaz. Válasszunk most úgy egy $(\beta_1, ..., \beta_n)$ n-est, hogy

$$f(\beta_1,\ldots,\beta_n)=h$$

álljon fenn. Ekkor azt kell igazolni, hogy $\alpha\beta = h$ is teljesül. A feltételből tudjuk, hogy a δ t. d. n. f. igy irható fel:

$$\delta = \gamma \vee \alpha x_i \vee \beta \, \neg x_i.$$

Mivel $\delta = h$, így az $\alpha \beta_i = h$ és $\beta \cap \beta_i = h$ egyenlőségek is igazak. Ez csak akkor állhat fenn egyszerre, ha $\alpha = h$ és $\beta = h$ közül valamelyik igaz, tehát

$$\alpha\beta = h$$
.

10. A függvény adott d. n. f.-ját az előző feladatnak megfelelően alakítsuk át! Először keressük ki a megfelelő αx_i , $\beta \Box x_i$ párokat. Ezek a következők:

$$\exists x_1 \exists x_2, \ x_1 x_2 \exists x_3; \ \exists x_1 \exists x_2, \ \exists x_1 x_2 \exists x_3; \ \exists x_2 x_3, \ x_1 x_2 \exists x_3; \ \exists x_2 x_3, \ \exists x_1 x_2 \exists x_3; \ x_1 x_2 \exists x_3.$$

Az előző tétel alkalmazásával kapott d. n. f.-t a megfelelő egyszerűsítések alkalmazása után így írhatjuk fel:

$$f(x_1, x_2, x_3) = \exists x_1 \exists x_2 \lor \exists x_1 \exists x_3 \lor \exists x_2 x_3 \lor \lor x_2 \exists x_3.$$

Az m. d. n. f.-t ebből a Quine-módszerrel kaphatjuk:

$$f(x_1, x_2, x_3) = \exists x_1 \exists x_2 \lor \exists x_2 x_3 \lor x_2 \exists x_3.$$

11. Az azonosságok igazolásához a definíciókat használjuk fel:

a)
$$s_n(x, ..., x) = \neg(x \land ... \land x) = \neg x$$
 és $w_n(x, ..., x) = \neg(x \lor ... \lor x) = \neg x$.

b)
$$s_n(x, ..., x, \neg x) = \neg(x \land \neg x) = \neg h = i,$$

 $w_n(x, ..., x, \neg x) = \neg(x \lor \neg x) = \neg i = h.$

Érdemes észrevenni, hogy ha az s_n vagy w_n függvény n (>1) változója közül néhány, de legalább egy helyett x-et, a többi, de szintén legalább egy helyett $\neg x$ -et irunk, akkor ugyancsak i, ill. h értéket kapunk.

c) Az s_n -re vonatkozó azonosság a definíció alapján igazolható. Csak azt kell felhasználni, hogy az igaz konjunkciós tag elhagyható:

$$s_n(x_1, ..., x_l, i, ..., i) = \neg(x_1 \wedge ... \wedge x_l \wedge i \wedge ... \wedge i) =$$

= $\neg(x_1 \wedge ... \wedge x_l) = s_l(x_1, ..., x_l).$

Hasonló módon igazolható a w_n-re vonatkozó azonosság is:

$$w_n(x_1, ..., x_l, h, ..., h) =$$

$$= \neg(x_1 \lor ... \lor x_l \lor h \lor ... \lor h) =$$

$$= \neg(x_1 \lor ... \lor x_l) = w_l(x_1, ..., x_l).$$

12. Induljunk ki a $\neg f$ függvény t. d. n. f. alakban történő előállításából:

$$\neg f(x_1, ..., x_n) =
= F_{i_1} \lor F_{i_2} \lor ... \lor F_{i_k},$$

Itt az F_{ii} $(1 \le l \le k)$ diszjunkciós tagok elemi konjunkciók.

A De Morgan-azonosság alapján

$$f(x_1, \ldots, x_n) = \neg (F_{i_1} \vee F_{i_2} \vee \ldots \vee F_{i_k}) =$$

= $F_{i_1} \downarrow F_{i_2} \downarrow \ldots \downarrow F_{i_k}$

(a w_k függvény definícióját használtuk itt fel). Még az F_{ii} elemi konjunkciókat kell a \downarrow függvénnyel kifejezni. Egy elemi konjunkció a következő alakú:

$$F_{ij} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n},$$

ahol ha $\alpha_i = 0$, akkor $\neg x_i$, $\alpha_i = 1$ esetén pedig x_i áll. Ismét a De Morgan-szabály felhasználásával F_{ii} -et a következő alakban írhatjuk fel:

$$F_{ii} = \Box(\Box x_1^{\alpha_1} \lor \Box x_2^{\alpha_2} \lor \dots \lor \Box x_n^{\alpha_n}) =$$
$$= \Box x_1^{\alpha_1} \Box \Box x_2^{\alpha_2} \Box \Box \Box x_n^{\alpha_n}.$$

A 11. feladat eredményeit felhasználva, most már f-et a w_n függvény (az n-változós \downarrow függvény) segítségével könnyen kifejezhetjük.

Érdemes észrevenni, hogy hasonló módszerrel – a t. k. n. f. felhasználásával – tetszőleges n-változós függvényt egyedül az s_n segítségével is ki lehet fejezni!

13. Alkalmazzuk a 12. feladatban leirt módszert. Adjuk meg először ¬f-et értéktáblázattal:

x_1	<i>x</i> ₂	<i>X</i> ₃	f	$\Box f$
i	i	i	h	i
i	i	h	i	h
i	h	i	h	i
i	h	h	į	h
h	i	i	i	h
h	i	h	h	i
h	h	i	i	h
h	h	h	i	h

Az értéktáblázatból kiolvashatjuk $\neg f$ t. d. n. f.-ját:

Az f függvény tehát elemi konjunkciókból a háromváltozós művelettel így, írható fel:

$$f(x_1, x_2, x_3) = x_1 x_2 x_3 | x_1 \neg x_2 x_3 | \neg x_1 x_2 \neg x_3.$$

Az elemi konjunkciókat a w_3 -mal kifejezve a következő alakhoz jutunk:

$$f(x_1, x_2, x_3) = (\exists x_1 \downarrow \exists x_2 \downarrow \exists x_3) \downarrow (\exists x_1 \downarrow x_2 \downarrow \exists x_3) \downarrow$$
$$\downarrow (x_1 \downarrow \exists x_2 \downarrow x_3).$$

Még a \neg műveleteket kell a 11. a) feladat alkalmazásával kifejezni:

$$f(x_1, x_2, x_3) = ((x_1 \downarrow x_1 \downarrow x_1) \downarrow (x_2 \downarrow x_2 \downarrow x_2) \downarrow$$
$$\downarrow (x_3 \downarrow x_3 \downarrow x_3)) \downarrow ((x_1 \downarrow x_1 \downarrow x_1) \downarrow x_2 \downarrow (x_3 \downarrow x_3 \downarrow x_3)) \downarrow$$
$$\downarrow (x_1 \downarrow (x_2 \downarrow x_2 \downarrow x_2) \downarrow x_3).$$

14. A ↓ művelettel felépülő formula minimalizálásakor megállapodunk abban, hogy egyrészt az a célunk, hogy minél kevesebb művelet, másrészt minél kevesebb változós műveletek forduljanak elő. A ¬ egyváltozós ↓ műveletnek tekinthető, tehát ennek alkalmazását is megengedjük.

A háromváltozós függvényt most az összes, legfeljebb háromtagú 1 művelettel felépülő kifejezést felhasználva a 1 művelettel, határozatlan együtthatókkal állítjuk elő. Ebből az előállításból, f definíciója alapján 8 egyenlethez jutunk. Az egyenletek megoldásakor arra törekszünk, hogy minél kevesebb tagot tartalmazó kifejezések együtthatóit válasszuk inek. Az eljárás közben azt kell szem előtt tartani, hogy egy 1 művelettel felépülő kifejezés értéke akkor és csak akkor i, ha minden tagja h.

Az előző feladatban adott függvényre írjuk fel a 8 egyenletet:

$$A_{1}^{1} \downarrow A_{2}^{1} \downarrow A_{3}^{1} \downarrow A_{12}^{00} \downarrow A_{13}^{00} \downarrow A_{23}^{00} \downarrow A_{123}^{000} = h,$$

$$A_{1}^{1} \downarrow A_{2}^{1} \downarrow A_{3}^{0} \downarrow A_{12}^{00} \downarrow A_{13}^{01} \downarrow A_{23}^{01} \downarrow A_{123}^{000} = i,$$

$$A_{1}^{1} \downarrow A_{2}^{0} \downarrow A_{3}^{0} \downarrow A_{12}^{01} \downarrow A_{13}^{01} \downarrow A_{23}^{01} \downarrow A_{123}^{001} = i,$$

$$A_{1}^{1} \downarrow A_{2}^{0} \downarrow A_{3}^{1} \downarrow A_{12}^{01} \downarrow A_{13}^{01} \downarrow A_{13}^{10} \downarrow A_{123}^{010} = h,$$

$$A_{1}^{1} \downarrow A_{2}^{0} \downarrow A_{3}^{0} \downarrow A_{12}^{01} \downarrow A_{13}^{01} \downarrow A_{23}^{11} \downarrow A_{123}^{011} = i,$$

$$A_{1}^{0} \downarrow A_{2}^{1} \downarrow A_{3}^{1} \downarrow A_{12}^{10} \downarrow A_{13}^{10} \downarrow A_{23}^{00} \downarrow A_{123}^{100} = i,$$

$$A_{1}^{0} \downarrow A_{2}^{1} \downarrow A_{3}^{0} \downarrow A_{12}^{10} \downarrow A_{13}^{11} \downarrow A_{23}^{01} \downarrow A_{123}^{101} = h,$$

$$A_{1}^{0} \downarrow A_{2}^{0} \downarrow A_{3}^{1} \downarrow A_{12}^{11} \downarrow A_{13}^{10} \downarrow A_{23}^{10} \downarrow A_{123}^{110} = i,$$

$$A_{1}^{0} \downarrow A_{2}^{0} \downarrow A_{3}^{0} \downarrow A_{12}^{11} \downarrow A_{13}^{11} \downarrow A_{23}^{11} \downarrow A_{123}^{110} = i,$$

$$A_{1}^{0} \downarrow A_{2}^{0} \downarrow A_{3}^{0} \downarrow A_{12}^{11} \downarrow A_{13}^{11} \downarrow A_{23}^{11} \downarrow A_{123}^{111} = i.$$

Az i értékű egyenlőségek minden tagja csak h lehet. Ebből a következőket kapjuk:

$$A_{1}^{1} = A_{2}^{1} = A_{3}^{0} = A_{12}^{00} = A_{13}^{01} = A_{23}^{01} = A_{123}^{001} =$$

$$= A_{2}^{0} = A_{12}^{01} = A_{23}^{11} = A_{123}^{011} = A_{1}^{0} = A_{1}^{1} = A_{12}^{10} =$$

$$= A_{13}^{10} = A_{23}^{00} = A_{123}^{100} = A_{12}^{11} = A_{23}^{10} =$$

$$= A_{123}^{110} = A_{13}^{11} = A_{123}^{111} = h.$$

A megmaradó három egyenletet így egyszerűsíthetjük (a hamis tag elhagyható):

Ezeket az egyenleteket kielégítő, legjobb megoldás:

$$A_{123}^{101} = i$$
, $A_{13}^{00} = i$, $A_{123}^{000} = A_{123}^{010} = h$.

Az f függvény keresett előállítása tehát a következő:

$$f(x_1, x_2, x_3) = (x_1 \mid \neg x_2 \mid x_3) \mid (\neg x_1 \mid \neg x_3).$$

15. Alakítsuk át a formulát úgy, hogy csak ∧, ∨ és ¬ szerepeljen, ¬ jel is csak változójel előtt:

$$x_1x_2 \leftrightarrow \neg x_2x_3 = (x_1x_2 \to \neg x_2x_3)(\neg x_2x_3 \to x_1x_2) =$$

$$= (\neg x_1 \lor \neg x_2 \lor \neg x_2x_3)(x_2 \lor \neg x_3 \lor x_1x_2) =$$

$$= \neg x_1x_2 \lor \neg x_1 \neg x_3 \lor \neg x_2 \neg x_3 =$$

$$= \neg x_1(x_2 \lor \neg x_3) \lor \neg x_2 \neg x_3.$$

A megfelelő áramkör vázlatát a 71. ábrán rajzoltuk meg.

16. Az adott függvénynek megfelelő áramkör sémáját az előállítás alapján rajzolhatjuk fel (72. ábra). Igazolni kell még, hogy a megadott séma minimális. Ehhez elég megmutatni, hogy minden olyan sémában, amely az f függvényt realizálja, x_1 és $\exists x_i$ jelű élnek is kell szerepelnie $(1 \le i \le n)$.

Tegyük fel, hogy egy f-et realizáló sémában csak x_i fordul elő. Ekkor nyilván

$$f(x_1, ..., x_{i-1}, h, x_{i+1}, ..., x_n) \le$$

$$\le f(x_1, ..., x_{i-1}, i, x_{i+1}, ..., x_n)$$

teljesül minden $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$ (n-1)-esre. A mi esetünkben viszont a csupa h-ból álló (n-1)-esre éppen a fordított egyenlőség igaz:

$$f(h, h, ..., h, ..., h) = i > f(h, ..., h, i, h, ..., h) = h.$$

Ebből adódik, hogy egy f-et realizáló sémában $\exists x_i$ jelű élnek is kell lennie. Hasonlóan látható, hogy x_i jelű él is van minden, f-et realizáló sémában. Mivel a 72. ábrán megrajzolt sémában minden x_i és $\exists x_i$ pontosan egyszer szerepel, a séma minimális.

Az f-et definiáló formulát átalakíthatjuk a következő módon:

$$f(x_1, ..., x_n) = (x_1 \vee \neg x_2)(x_2 \vee \neg x_3)...$$

... $(x_{n-1} \vee \neg x_n)(x_n \vee \neg x_1).$

Ebből az alakból a 73. ábrán látható sémát kapjuk. A sémáról az előző módszer szerint igazolható, hogy szintén minimális. Ez a példa azt mutatja, hogy egy adott függvényhez tartozó minimális séma nem egyértelmű.

17. A 14. gyakorló feladatban láttuk, hogy az áramkör a

$$h(x_1, x_2, x_3, x_4, x_5) = x_1 x_4 \vee x_1 x_3 x_5 \vee x_2 x_5 \vee x_2 x_3 x_4$$

függvényt valósítja meg. A függvény mind az öt változójától lényegesen függ, igy nyilván csak legalább öt érintkezőt tartalmazó π -sémával lehet megvalósítani. Azt akarjuk igazol-

ni, hogy nincs olyan öt érintkezőt tartalmazó π -séma, amely a függvényt megvalósítja.

Indirekt úton bizonyítjuk az állítást. Tegyük fel, hogy van olyan, öt érintkezőt tartalmazó π -séma, amely a h függvényt megvalósítja. Megmutatjuk, hogy ez a feltevés ellentmondásra vezet.

Az előző feladat megoldásában alkalmazott gondolatmenettel látható, hogy a feltételezett séma minden változót a negációjel nélkül tartalmazza. A π -sémának megfelelő formulát tehát a változókból csak konjunkció és diszjunkció művelettel irhatjuk fel. Tegyük fel, hogy az utolsó lépésben a diszjunkció műveletét alkalmaztuk, tehát h a következő alakban állítható elő:

$$h(x_1, x_2, x_3, x_4, x_5) = h_1 \vee h_2.$$

Itt a h_1 és h_2 formulákban nincs közös változó. Tegyük fel, hogy h_1 -ben szerepel x_3 . Legyen x_2 és x_4 értéke h; ekkor az ismert előállításból

$$h(x_1, h, x_3, h, x_5) = x_1 x_3 x_5,$$

tehát

$$x_1 x_3 x_5 = h_1 \vee h_2.$$

Ez csak úgy lehetséges, hogy $h_2 = h$, mert ellenkező esetben h_2 -nek is függnie kellene x_3 -tól. Azt kaptuk tehát, hogy h_1 függ az x_1 , x_3 , x_5 változóktól. Hasonló okoskodással az $x_1 = x_5 = h$ helyettesítéssel azt kapnánk, hogy h_1 az h_2 és h_3 változóktól is függ, tehát h_4 -ben mind az öt változó szerepel, ami lehetetlen.

Hasonló ellentmondásra jutnánk, ha h-ról azt tennénk fel, hogy

$$h = h_1 h_2$$

alakban állítható elő.

18. A 23. gyakorló feladatban azt az eredményt kaptuk, hogy tetszőleges $n \ge 1$ -re és $1 \le k \le n$ mellett

$$L(n) \leq 2 \cdot 2^{n-k} + 2 \cdot 2^k \cdot 2^{2^k}.$$

Azt akarjuk megmutatni, hogy tetszőleges ε>0 számhoz van olyan N, hogy ha n>N, akkor

$$L(n) \leq (4+\varepsilon)\frac{2^n}{n}.$$

Ehhez az eredményhez eljuthatunk, ha megmutatjuk, hogy a k értékének alkalmas megválasztásával az állítás igaz.

Válasszuk k értékét úgy, hogy kielégítse a következő egyenlőtlenséget:

$$\log_2 n - \alpha - 1 < k \le \log_2 n - \alpha,$$

ahol $\alpha > 0$, rögzített szám. Ebből 2^k -ra a következő becslést kapjuk:

$$\frac{n}{2^{\alpha+1}} < 2^k \le \frac{n}{2^{\alpha}}.$$

Az L(n) felső becsléseként kapott kifejezésben szereplő első tagot ennek alapján igy becsülhetjük:

$$2 \cdot 2^{n-k} = 2 \cdot \frac{2^n}{2^k} < 4 \cdot 2^{\alpha} \frac{2^n}{n}.$$

A becslés második tagját a következő módon tudjuk felülről becsülni még $(2^{-\alpha} = \beta \text{ jelöléssel})$:

$$2\cdot 2^k\cdot 2^{2^k}<2\beta n(2^\beta)^n.$$

Ezek alapján

160

$$\frac{L(n)}{\frac{2^n}{n}} \le 4 \cdot 2^{\alpha} + 2\beta \frac{n^2}{(2^{1-\beta})^n}.$$

Mivel
$$1 - \beta > 0$$
, $\lim_{n \to \infty} \frac{n^2}{(2^{1-\beta})^n} = 0$, tehát $n > N$ -re

$$\frac{L(n)}{\frac{2^n}{n}} \leqq 4 + \varepsilon.$$

19. A 40. feladatban láttuk, hogy van olyan n-változós függvény, amelyhez tartozó minimális séma 2n élt tartalmaz. Ebből következik, hogy

$$L(n) \ge 2n$$
.

20. a) A P_2 és Q_2 definícióját felhasználva irjuk fel mindkét függvényt alkalmas alakban, úgy, hogy közvetlenül leolvasható legyen a megfelelő séma konstrukciója:

$$P_2(x_1, x_2) = x_1 \neg x_2 \lor \neg x_1 x_2;$$

 $Q_2(x_1, x_2) = x_1 x_2 \lor \neg x_1 \neg x_2.$

A megfelelő sémák a 74. és a 75. ábrán láthatók. A Q2 sémájáról már a 16. feladatban láttuk, hogy minimális. P_2 -éről hasonló módszerrel igazolható ugyanez a tulajdonság.

b) A séma konstrukciójához a P₃ és Q₃ definíciója alapján szintén írjuk fel célszerű alakban a formulákat:

$$P_{3}(x_{1}, x_{2}, x_{3}) = x_{1}x_{2}x_{3} \lor x_{1} \sqcap x_{2} \sqcap x_{3} \lor \sqcap x_{1}x_{2} \sqcap x_{3} \lor \lor \sqcap x_{1} \sqcap x_{2}x_{3},$$

$$Q_3(x_1, x_2, x_3) = x_1 x_2 \, \exists x_3 \lor x_1 \, \exists x_2 x_3 \lor \exists x_1 x_2 x_3 \lor \\ \lor \, \exists x_1 \, \exists x_2 \, \exists x_3.$$

A formulák alapján közvetlenül egy-egy 12–12 élből felépülő sémát konstruálhatnánk a függvények megvalósítására. Ezek π -sémák volnának. Előnyösebb azonban az élek számát vizsgálva a következő, nem π -sémák konstrukciója (76. ábra és 77. ábra).

Mindkettő 8 élből áll. Átgondolható, hogy ezek minimális sémák is.

77. ábra

21. Először azt érdemes észrevenni, hogy P_n értéke akkor és csak akkor i, ha páratlan számú x_i értéke i, Q_n értéke pedig akkor és csak akkor i, ha páros számú x_i értéke i.

Az előző feladatban P_3 és Q_3 számára megkonstruált sémákból kiindulva szerkeszthetünk P_4 és Q_4 számára megfelelő sémát. A sémákat a 78. és a 79. ábrákon rajzoltuk meg.

Amennyiben P_{n-1} , ill. Q_{n-1} megvalósítására alkalmas séma már rendelkezésünkre áll, ezekből P_n -nek megfelelő séma (80. ábra), ill. Q_n -nek megfelelő séma (81. ábra) már könynyen szerkeszthető.

78. ábra

79. ábra

80. ábra

81. ábra

22. A 21. feladatban konstruált sémák éleit összeszámolva, a következő felső becsléseket kapjuk:

$$L(P_n) \le 4(n-1),$$

$$L(O_n) \le 4(n-1).$$

Alsó becsléseket arra a gondolatra alapozva kaphatunk, hogy P_n és Q_n közül egyik sem monoton egyik változójában sem, tehát mindkettő sémájában minden változónak és a negáltjának megfelelő él is kell, hogy szerepeljen. Ebből következik, hogy

$$2n \le L(P_n),$$

$$2n \le L(O_n).$$

23. A kettes számrendszerbeli összeadás szabályai alapján írhatjuk fel a definiciókat:

$$s_i(x_i, y_i, p_i) = x_i \oplus y_i \oplus p_i, \quad (i \le n)$$

$$s_{n+1} = p_{n+1},$$

$$p_1 = h,$$

$$p_{i+1}(x_i, y_i, p_i) = x_i y_i \lor x_i p_i \lor y_i p_i, \quad (i \le n).$$

24. Az *n* jegyű szummátor sémáját induktív módszerrel tudjuk könnyen megszerkeszteni. Az előző feladatban kapott összefüggéseket használjuk fel ehhez.

Minden $1 \le i \le n$ értékre megadunk egy $\Sigma_i(1, i+2)$ pólust, amelynek bemenete, ill. kimenetei sorra az $s_1, ..., s_{i-1}, s_i, p_{i+1}, \neg p_{i+1}$ függvényeknek felelnek meg (82. ábra).

A $\Sigma_1(1, 3)$ pólust a következő egyenlőségek alapján tervezhetjük meg (83. ábra):

$$p_2 = x_1 y_1, \qquad \neg p_2 = \neg x_1 \lor \neg y_1,$$

$$s_1 = x_1 \oplus y_1.$$

Tegyük fel, hogy rendelkezésünkre áll már a $\Sigma_{i-1}(\mathfrak{t}, i+1)$ -pólus, amelynek kimenetei az $s_1, s_2, ..., s_{i-1}, p_i, \neg p_i$ függvényeket valósítják meg. Ehhez a 84. ábrán látható módon le-

het "hozzáépíteni" szükséges éleket, hogy a Σ_i pólushoz jussunk. (Ennek kimenetei az $s_1, \ldots, s_{i-1}, s_i, p_{i+1}, \neg p_{i+1}$ függvényeket használják.)

25. A **24.** feladatban konstruált séma éleinek számát kell összeszámolni. Σ_1 -ben 6 él van, minden lépés 14-gyel növeli az élek számát. Az utolsó lépésben azonban $\neg p_{n+1}$ jelű kimenetre nincs szükség, így ekkor csak 10 új él lép be. Így öszszesen 14(n-2)+6+10=14n-12 éle van az így konstruált n jegyű szummátornak.

IV. KÖVETKEZTETÉSI SZABÁLYOK, AXIOMATIZÁLÁS

1. A következményfogalom

A logikának, így a matematikai logikának is egyik lényeges célja a helyes következtetések feltárása. Az l. fejezetben már találkoztunk olyan eszközökkel, amelyekkel bizonyos típusú következtetésekről könnyen el tudtuk dönteni, hogy helyesek. Most a logikai műveletek, igazságfüggvények eszközeinek felhasználásával további helyes következtetési tipusokat kutatunk fel.

Elemezzük példaként az alábbi két következtetést:

Első következtetés:

Ha egy szám 2-vel és 3-mal osztható, akkor osztható 6-tal. Ez a szám 2-vel osztható, de nem osztható 6-tal.

Tehát ez a szám nem osztható 3-mal.

Második következtetés:

Ha egy négyszög átlói egyenlők és felezik egymást, akkor a négyszög paralelogramma.

Ennek a négyszögnek az átlói egyenlőek, de nem paralelogramma.

Tehát ennek a négyszögnek az átlói nem felezik egymást. Mindkét következtetést helyesnek tartjuk, bár a két következtetésben szereplő kijelentések, állítások tartalma egészen más. Ennek ellenére úgy érezzük, hogy azonos szerkezetű következtetésekről van szó. Keressük meg a következtetések közös szerkezetét!

Ha a következtetésekben a közös szerkezetre utaló kötőszavakat, logikai kapcsolószavakat megtartjuk, és a különböző tartalmú kijelentéseket egy-egy betűvel jelöljük, akkor a következő szerkezethez jutunk:

Ha A és B, akkor C.

A és nem C

Tehát nem B.

A közös szerkezetet most már könnyen megfogalmazhatjuk a logika eszközeivel. Írjuk fel a két *premisszát* (a feltételeket), és a *konklúziót* (a következményt) formulák alakjában!

$$\frac{(A \land B) \to C, \qquad A \land \neg C}{\neg B}$$

amit az I. fejezetnek megfelelően a továbbiakban így írunk:

$$(A \wedge B) \rightarrow C$$
, $A \wedge \neg C \models B$.

A kapott sémát következtetési szahálynak is nevezhetjük. A következtetési szabályt helyesnek tekintjük, mert amennyiben a premisszák igazak, a konklúzió is igaz. Ezt

amennyiben a premisszák igazak, a konklúzió is igaz. Ezt könnyen igazolhatjuk is. Ha $|A \land \neg C| = i$, akkor |A| = i, |C| = h. Ha a másik premissza is igaz, azaz

$$|(A \wedge B) \to C| = i,$$

akkor csak |B| = h teljesülhet, tehát a konklúzió, $| \neg B| = i$. Egy következtetési szabály helyességét általában a következőképpen fogalmazhatjuk meg. Jelöljenek $\varphi_1, \varphi_2, ..., \varphi_n$ és φ tetszőleges olyan formulákat, amelyek az $A_1, A_2, ..., A_k$ változókból a \neg , $\land \lor$, \rightarrow és \leftrightarrow logikai műveletekkel épülnek fel. A

$$\varphi_1, \varphi_2, ..., \varphi_n \vDash \varphi$$

következtetési szabályról (sémáról) akkor mondjuk, hogy helyes, ha az A_1, \ldots, A_k változók minden olyan értékére, amelyre $\varphi_1, \ldots, \varphi_n$ premisszák értéke i, a φ konklúzió értéke is i.

Gyakorló feladatok

1. Írjuk fel az alábbi következtetés szerkezetét, és igazoljuk, hogy a kapott következtetési szabály helves!

Ha egy egyenesnek nincs közös pontja egy sikkal, akkor az egyenes parhuzamos a sikkal.

Ha egy egyenesnek két különböző közös pontja van egy sikkal, akkor az egyenes illeszkedik a síkra.

Ez az egyenes nem párhuzamos a sikkal, és nem is illeszkedik rá.

Tehát:

ennek az egyenesnek van közös pontja a sikkal, de nincs két különböző közös pontja vele.

Megoldás:

Vezessűk be a következő jelöléseket:

A az egyenesnek nincs közös pontja a síkkal:

B az egyenes párhuzamos a sikkal:

C az egyenesnek két különböző közös pontja van a sikkal;

D az egyenes illeszkedik a sikra.

A bevezetett jelölések felhasználásával a következő módon irhatjuk le a következtetés szerkezetét:

$$A \rightarrow B$$
, $C \rightarrow D$, $\neg B \land \neg D \models \neg A \land \neg C$.

Igazoljuk, hogy a kapott következtetési szabály helyes. Válasszuk meg az A, B, C, D változók értékét úgy, hogy a premisszák igazak legyenek. Ekkor

$$| \neg B \land \neg D | = i \text{ miatt } |B| = h \text{ és } |D| = h.$$

Az első két premissza is i, ezért |A| = |C| = h lehet csak. Ekkor azonban a konklúzió, $| \neg A \land \neg C| = i$. A változók minden olyan értékére, amelyre a premisszák logikai értéke igaz, a konklúzió logikai értéke is igaz, tehát a következtetési szabály helyes.

2. "Ha Jones nem találkozott akkor éjjel Smithszel, akkor vagy Smith volt a gyilkos, vagy Jones hazudik. Ha nem Smith volt a gyilkos, akkor Jones nem találkozott akkor éjjel Smithszel és a gyilkosság éjfél után történt. Ha a gyilkosság éjfél után történt, akkor vagy Smith volt a gyilkos, vagy Jones hazudik. Következésképpen Smith volt a gyilkos."

Írjuk fel a következtetés szerkezetét kifejező formulákat, és döntsük el ennek felhasználásával, hogy helyes-e ez a következtetés!

Megoldás:

Vezessük be a következő jelöléseket:

P Jones találkozott akkor éjjel Smithszel;

Q Smith volt a gyilkos:

R Jones hazudik:

S a gyilkosság éjfél után történt.

A jelölések felhasználásával a következőképpen írhatjuk fel a szerkezetet:

$$\exists P \to (Q \lor R), \qquad \exists Q \to (\exists P \land S), \qquad S \to (Q \lor R) \models Q.$$

A kapott következtetési szabály akkor volna helyes, ha a P, Q, R, S változók minden olyan értékére, amelyre a három premissza igaz, a Q konklúzió is igaz. Megmutatjuk, hogy ez a következtetési szabály nem helyes. Ehhez elég megmutatni, hogy lehet úgy értéket adni a P, Q, R, S változóknak, hogy a premisszák igazak, a konklúzió hamis legyen.

Válasszuk a |Q| = h, |P| = h, |S| = i, |R| = i értékeket. Ekkor a műveletek definicióit felhasználva könnyen kiszámíthatjuk a premisszák értéket. Azt találjuk, hogy mindegyik premissza igaz, de a konklúzió hamis. Így a következtetés helytelen, a következtetés feltételeihől nem következik a konklúzió.

Érdemes összegyűjteni a gyakran használt következtetési szabályokat.

- a) $A, A \rightarrow B \models B$ (modus ponens, leválasztási szabály);
 - b) $\neg A \rightarrow \neg B$, $B \models A$ (indirekt bizonyitás);
 - c) $A \rightarrow B \models \neg B \rightarrow \neg A$ (kontrapozíció);
- d) $A \rightarrow B$, $B \rightarrow C = A \rightarrow C$ (hipotetikus szillogizmus);
- e) $\neg A \rightarrow B$, $\neg A \rightarrow \neg B \models A$ (reductió ad absurdum).

E következtetési szabályok helyességét is bizonyítjuk.

- a) A premisszák az implikáció definíciója alapján akkor igazak, ha |A| = |B| = i. Ekkor pedig nyilván a konklúzió is igaz.
- b) Ebben az esetben is csak az implikáció és a negáció definicióját kell alkalmaznunk. |B| = i és |A| = i esetben igaz csak mindkét premissza, de ekkor a konklúzió is igaz, tehát a következtetési szabály helyes.

c) A következtetési szabály helyességének bizonyításához igazoljuk a következőt: amennyiben a konklúzió hamis, akkor a premissza is hamis. Ebből nyilván következik, hogy ha a premissza igaz, akkor a konklúzió is csak igaz lehet. A konklúzió csak akkor hamis, ha |B| = h és |A| = i, ebben az esetben viszont a premissza is hamis.

Érdemes megjegyezni, hogy ez a következtetési szabály megfordítható: a

$$\exists B \rightarrow \exists A \vDash A \rightarrow B$$

következtetési szabály is helyes.

- d) Ennek a szabálynak az igazolásához is azt az utat érdemes választani, amit a c) esetben követtűnk. A konklúzió csak akkor hamis, ha |A|=i és |C|=h. Azt kell megmutatnunk, hogy ebben az esetben legalább az egyik premissza hamis. Ha |B|=i, akkor a $B\to C$ premissza értéke h, ha pedig |B|=h, akkor az $A\to B$ premissza értéke hamis. Ezzel igazoltuk, hogy a következtetési szabály helyes.
- e) Ismét tegyük fel, hogy a konklúzió értéke hamis, azaz |A| = h és mutassuk meg, hogy ebben az esetben legalább az egyik premissza is hamis. Ha |B| = i, akkor a $\neg A \rightarrow \neg B$ premissza értéke h, ha pedig |B| = h, akkor a $\neg A \rightarrow B$ premissza hamis. A következtetési szabály tehát belyes.

Látható, hogy egy következtetési szabály helyességének ellenőrzése néha pillanatnyi ötletekkel könnyen megy, de csupán a definíció felhasználásával gyakran elég hosszadalmas, sok eset vizsgálatát jelenti.

Már a logikai műveletek tulajdonságainak vizsgálatakor láttuk, hogy az azonosan igaz formulák osztályának fontos szerepe van az azonosságok vizsgálatakor. Most megmutatjuk, hogy egy következtetési szabály helyességének vizsgálata is visszavezethető arra a kérdésre, hogy egy formula azonosan igaz-e vagy nem.

Α

$$\varphi_1, \varphi_2, ..., \varphi_n \vDash \varphi$$

következtetési szabály akkor és csak akkor helyes, ha a

$$(\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n) \to \varphi$$

formula azonosan igaz (tautológia).

Tegyük fel, hogy a következtetés helyes és mutassuk meg, hogy a felírt formula a benne szereplő változók minden értékére igaz, röviden tautológia.

A formula implikáció, tehát csak akkor lehetne hamis az értéke, ha az előtag igaz, az utótag pedig hamis. Az implikáció előtagja, a $\varphi_1 \wedge \ldots \wedge \varphi_n$ konjunkció csak akkor igaz, ha minden tagja igaz, azaz a következtetési szabály minden premisszája igaz. Ekkor viszont mivel a feltétel szerint a következtetési szabály helyes - a konklúzió, φ is igaz, tehát az implikáció nem lehet hamis.

A megfordítás igazolásához tegyük fel, hogy a formula azonosan igaz, azaz az implikáció a változók minden értékére igaz. Ez azt jelenti, hogy ha a változóknak olyan értéket adunk, hogy a $\varphi_1, \varphi_2, \ldots, \varphi_n$ formulák mindegyike igaz, azaz az implikáció előtagja igaz, akkor az utótag, φ is igaz. A definició alapján tehát a következtetési szabály helyes.

A most igazolt tétel alapján is látható, hogy a matematikai logika kijelentésekkel foglalkozó fejezetének a kijelentéslogikának (más néven itéletkalkulusnak) egyik központi kérdése annak eldöntése, hogy egy formula azonosan igaz-e – más szóval tautológia-e – vagy nem. Több olyan, jól gépesíthető, algoritmizálható eljárás is van, amelynek alapján tetszőleges formuláról eldönthetjük, hogy tautológia-e, vagy sem. Így elkészítjük a formula értéktáblázatát, t. d. n. f.-ra hozzuk a formulát. Mindkét esetben egy n változót tartalmazó formulára alkalmazva az eljárást, kb. 2" "műveletet" kell elvégeznünk (logikai értéket meghatároznunk, diszjunkciós tagot felirnunk). Nem ismert, hogy van-e ennek a problémának "gazdaságosabb" megoldása, például olyan eljárás, amely körülbelül n^k (k rögzített egész szám) lépésben ad választ a kérdésre tetszőleges formula esetében.

A helyes következtetési szabályok nagyon sokfélék lehetnek. Éppen ezért érdekes az a tény, hogy bizonyos értelemben egyetlen következtetési szabályra redukálhatjuk, visszavezethetjük az összes következtetési szabályt. Ez az alapvető következtetési szabály a már ismert *leválasztási szabály*. Ezt fogjuk megmutatni a következő gyakorlatokban.

Gyakorló feladatok

3. lgazoljuk a II. fejezet 4. c.) gyakorlatában bizonyított azonosság általánosítását, az ún. exportációs azonosságot;

$$(A_1 \wedge A_2 \wedge \ldots \wedge A_n) \rightarrow B = A_1 \rightarrow (A_2 \rightarrow \ldots (A_n \rightarrow B) \ldots).$$

Megoldás:

A legrövidebben úgy érhetűnk célhoz, hogy a II. fejezet **4.** c) azonosságot alkalmazzuk *n*-szer egymás után:

$$(A_1 \wedge A_2 \wedge \dots \wedge A_{n-1} \wedge A_n) \rightarrow B =$$

$$= (A_1 \wedge A_2 \wedge \dots \wedge A_{n-1}) \rightarrow (A_n \rightarrow B) =$$

$$= (A_1 \wedge A_2 \wedge \dots) \rightarrow (A_{n-1} \rightarrow (A_n \rightarrow B)) = \dots =$$

$$= A_1 \rightarrow (A_2 \rightarrow \dots (A_{n-1} \rightarrow (A_n \rightarrow B))\dots).$$

4. lgazoljuk, hogy ha a

$$\varphi_1, \varphi_2, ..., \varphi_n \vDash \varphi$$

következtetési szabály helyes és megengedjük további, azonosan igaz premissza felvételét, akkor a következtetési szabály pótolható a leválasztási szabály n-szeres alkalmazásával.

Megoldás:

Mível a következtetési szabály helyes, ezért a

$$(\varphi_1 \land \varphi_2 \land \dots \land \varphi_n) \rightarrow \varphi$$

formula azonosan igaz (tautológia). Ezt a formulát az előző gyakorlat szerint így alakithatjuk át:

$$\varphi_1 \to (\varphi_2 \to \dots (\varphi_n \to \varphi) \dots)$$

Ez a formula tehát azonosan igaz. Vegyük hozzá ezt a premisszákhoz, és alkalmazzuk *n*-szer egymás után a leválasztási szabályt (az egyszerűség kedvéért most a \models jel helyott aláhúzást használunk):

$$\frac{\varphi_{1}, \varphi_{2}, \dots, \varphi_{n}, \varphi_{1} \to (\varphi_{2} \to \dots (\varphi_{n} \to \varphi) \dots)}{\varphi_{2}, \dots, \varphi_{n}, \varphi_{2} \to (\dots (\varphi_{n} \to \varphi) \dots)}$$

$$\vdots$$

$$\frac{\varphi_{n}, \varphi_{n} \to \varphi}{\varphi}$$

Feladatok

1. Állapítsuk meg a felsorolt következtetések szerkezetét és igazoljuk, hogy helyes következtetési szabályokat kaptunk:

a) Ha a=0 vagy b=0, akkor $a \cdot b = 0$; $a \cdot b \neq 0$, tehát $a \neq 0$ és $b \neq 0$.

b) Ha $a \neq 0$ és $b \neq 0$, akkor $a \cdot b \neq 0$; $a \cdot b = 0$, tehát a = 0 vagy b = 0.

c) Az a és b egyenesek vagy párhuzamosak, vagy metszik egymást, vagy kítérőek; az a és b egyenesek egy sikban vannak és nem párhuzamosak; ha az a és b egyenesek egy sikban vannak, akkor nem kitérőek; tehát az a és b egyenesek metszik egymást.

2. Döntsük el, hogy a felsorolt következtetési szabályok helyesek-e:

- a) $A \vee B$, $B \vDash \neg A$;
- b) $P \lor Q \lor R$, $\neg P \land \neg Q \vDash R$;
- c) $P \rightarrow Q$, $R \rightarrow S$, $\neg Q \land S \models P \land R$;
- $d) \quad (A \wedge B) \to C \vDash (A \wedge \neg C) \to \neg B.$
- 3. Igazoljuk, hogy ha a

$$\varphi_1, \varphi_2, ..., \varphi_n \vDash \varphi$$

következtetés helyes és a $\varphi_1, \varphi_2, ..., \varphi_m, \varphi$ formulák az A_1 ,

 $A_2, ..., A_k$ változókat tartalmazzák, akkor helyes következtetési szabályhoz jutunk, ha az $A_1, A_2, ..., A_k$ változók helyére tetszőleges $\alpha_1, \alpha_2, ..., \alpha_k$ formulákat helyettesítünk!

4. Elemezzük a következő bizonyítások "szerkezetét" úgy, hogy kikeressük azokat a következtetéseket, amelyeket eddigi eszközeinkkel vizsgálni tudunk. Írjuk fel a megfelelő következtetési szabályokat és igazoljuk is, hogy azok helyes következtetési szabályok!

a) Végtelen sok prímszám van. Tegyük fel, hogy nem igaz az állítás, azaz csak véges sok primszám van, legyenek ezek: p_0, p_1, \ldots, p_n Képezzük az

$$N = p_0 p_1 \dots p_n + 1$$

számot. Az N számnak is van prímszám osztója, vagy már maga primszám. Az N nem osztható a $p_0, p_1, ..., p_n$ prímszámok egyikével sem, mert mindegyikkel osztva 1 maradékot ad. Így tehát van olyan prímszám, ami nem azonos a $p_0, p_1, ..., p_n$ prímszámok egyikével sem. Ezzel ellentmondásra jutottunk, a feltétel nem lehet igaz, tehát végtelen sok primszám van.

b) Igazoljuk, hogy ha a síkban egy egyenes két párhuzamos egyenes közül metszi az egyiket, akkor metszi a másikat is.

Tegyük fel, hogy nem igaz az állítás, azaz van olyan egyenes, ámely két párhuzamos közül az egyiket metszi, de a másikat nem. Ekkor azonban volna olyan pont a síkban, amelyen át egy adott egyenessel két párhuzamost is húzhatunk, de ez nem lehet, mert ellentmond a párhuzamossági axiómának.

c) Bizonyítsuk be, hogy ha q olyan természetes szám, amelynek a 2 és az 5 nem osztója, akkor van olyan csupa 9-es számjegyet tartalmazó tízes számrendszerbeli szám, amely osztható q-val.

Vegyük 9-től kezdve az összes olyan természetes számot, amely csak 9-es számjegyet tartalmaz egészen a q darab 9-es-

sel felírható számig; ez összesen q darab szám. Azt állítjuk, hogy ezek között van q-val osztható. Tegyük fel az állítással ellentétben, hogy nincs q-val osztható köztük. Ekkor biztosan van köztük 2 olyan, amelyik q-val osztva azonos maradékot ad (hiszen csak az 1, 2, ..., q-1 számok jöhetnek szóba maradékként). E kettő különbsége osztható q-val, és felirható egy csupa 9-es számjegyet tartalmazó szám és 10 egy hatványának szorzataként. Mivel q-nak és 10-nek nincs közös osztója, ez csak úgy lehet, ha q osztója annak a tényezőnek, ami csupa 9-es számjegyet tartalmaz (ennek legfeljebb q-1 jegye van, tehát eredetileg szerepelt a felírt számok között). Ezzel az állítást igazoltuk.

2. A kijelentéslogika axiomatizálása

Láttuk, hogy az azonosan igaz formulák, más szóval tautológiák a kijelentéskalkulus fontos problémáinak megoldásában játszanak lényeges szerepet. Érdekes és fontos tény, hogy véges sok "típusú" formulát "axiómaként" választva, ezekből meghatározott "levezetési szabály" segítségével az összes tautológiát elő tudjuk állítani. Ezt fogjuk végiggondolni a most következő gyakorlatokban és feladatokban.

Az előbb vázolt program végrehajtásához mindenekelőtt a formula fogalmát kell egészen pontosan megmondanunk. Ezt úgy tehetjük meg, hogy megadunk egy jelhalmazt, ennek a halmaznak az elemeiből alkotott véges jelsorozatok között lesznek a formulák. A jelhalmazt a formulaképzési szabályokkal és a levezetésre vonatkozó formális szabályokkal együtt nyelvnek szokták nevezni. Ezt a szemléletmódot, amikor pusztán formai eszközökkel – mint egy formális rendszert – építjük fel a logikát, szokás szintaktikai módszernek is nevezni. Természetesen formális, szintaktikai eszközökkel csak olyan rendszert érdemes vizsgálni, amelynek tartalmi

176

szempontból is értelme van, és a vizsgálat célja is az, hogy a rendszer tartalmi, szemantikai jelentését jobban feltárjuk.

A céljainknak megfelelő nyelv jelei a következők: változójelek: $x_0, x_1, ..., x_m$...; logikai műveleti jelek: \neg , \rightarrow ; segédjelek: (,).

A formulákat a következő szabályok szerint képezzük:

(I) minden változójel formula; (II) ha φ és ψ formulák, akkor ($\neg \varphi$) és ($\varphi \rightarrow \psi$) is formulák;

(II) ha φ es ψ formulak, akkor ($\neg \varphi$) es ($\varphi \rightarrow \psi$) is formulak; (III) más formula nincs.

Ennek alapján például a következő jelsorozatok formulák: x_1 , $(\neg x_2)$, $(x_1 \rightarrow x_2)$, $(\neg (x_1 \rightarrow (x_2 \rightarrow (x_3 \rightarrow x_1))))$, $(\neg (\neg (x_1 \rightarrow x_2)))$.

Azonnal felmerül a kérdés, hogy ha rendszerűnkben az összes tautológiát elő akarjuk állítani, akkor elég-e csak a \neg és \rightarrow műveleti jelek felvétele? Erre a válasz az, hogy igen, mert $\{\neg, \rightarrow\}$ teljes függvényrendszer. Célszerű azonban definiálni az \land, \lor és \hookleftarrow műveleteket is a következő módon:

ha φ és ψ formulák, akkor

 $(\varphi \vee \psi)$ legyen a $((\neg \varphi) \rightarrow \psi)$ formula rövidítése;

 $(\varphi \wedge \psi)$ legyen a $((\neg \varphi) \vee (\neg \psi))$ formula rövidítése;

 $(\varphi \leftrightarrow \psi)$ legyen a $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$ formula rövidítése.

A zárójelek pontos kitevésére eddig mindig ügyeltünk. Észszerű azonban megállapodni abban, hogy néhány kézenfekvő esetben elhagyjuk a zárójeleket. Így elhagyjuk a legkülső zárójelet a formulákból és a ¬ jel alkalmazása után sem teszünk zárójelet.

Most megadjuk azokat a formulatípusokat, amelyeket axiómáknak tekintünk. Ha φ , ψ és χ tetszőleges formulák, akkor a következő formulák axiómák;

(A1.)
$$\varphi \rightarrow (\psi \rightarrow \varphi)$$
;

(A2.)
$$(\varphi \rightarrow (\psi \rightarrow \gamma)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \gamma));$$

(A3.)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow ((\neg \psi \rightarrow \varphi) \rightarrow \psi)$$
.

Egyetlen levezetési szabályt használunk, a leválasztási szabályt (modus ponens, röviden MP.). Ez azt mondja ki, hogy ha φ és ψ tetszőleges formulák, akkor a

$$\varphi$$
 és $\varphi \rightarrow \psi$ formulákból levezethető a ψ formula.

Levezetésnek nevezünk minden olvan

$$\varphi_1, \varphi_2, ..., \varphi_k$$

formulasorozatot, amelynek minden eleme vagy axióma, vagy a sorozatban előzőleg már szerepelt két formulából a leválasztási szabály szerint levezethető. A levezetés a sorozat utolsó elemének a levezetése.

Azt mondjuk, hogy a φ formula *levezethető*, ha van levezetése. Azt a tényt, hogy φ levezethető formula, röviden így jelöljük: $\vdash \varphi$.

Gyakorló feladatok

5. Igazoljuk, hogy tetszőleges α formulára igaz a $\mapsto \alpha \to \alpha$ állítás.

Megoldás:

A bizonyítást úgy végezzük, hogy megadjuk az $\alpha \to \alpha$ formula egy levezetését. A levezetés egyes formuláit egymás alá irjuk és a formula után zárójelben feltüntetjük, hogy melyik axiómát használtuk, ill. melyik, előzőleg már szerepelt formulákból következik a leválasztási szabály (MP.) alkalmazásával.

1.
$$\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)$$
 (A1.);
2. $(\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)) \rightarrow ((\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha))$ (A2.);
3. $(\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha)$ (MP., 1., 2.);
4. $\alpha \rightarrow (\alpha \rightarrow \alpha)$ (A1.);
5. $\alpha \rightarrow \alpha$ (MP., 3., 4.).

6. Igazoljuk, hogy az (A1.), és az (A2.), (A3.) axiómák tautológiák, azaz a formulák a bennük szereplő változók minden logikai értékére igazak.

Megoldás:

Az (A1.) axiómáról egyszerűen értéktáblázat készítésével igazolható, hogy tautológia. Nyilván elég a következő formuláról igazolni, hogy tautológia:

$$x_0 \rightarrow (x_1 \rightarrow x_0).$$

Ha x_0 értéke i, akkor az $x_1 \rightarrow x_0$ implikáció értéke x_1 -től függetlenül i, de akkor az egész formula értéke i. Ha x_0 értéke h, akkor – mivel hamis előtagú implikáció mindig igaz – az egész formula ertéke is i.

Az (A2.) axiómáról is akár hasonló módszerrel, akár például teljes diszjunktív normálformára hozással igazolható, hogy tautológia, de közvetlenül a megfelelő

$$(x_0 \to (x_1 \to x_2)) \to ((x_0 \to x_1) \to (x_0 \to x_2))$$

formula értéktáblázatának elkészítésével is igazolható az állítás (l. 11. fejezet, 1. c.) feladat).

Az (A3.) axiómáról is az előbb említett módszerek bármelyikével igazolható az allítás (l. 111. fejezet reductio ad absurdum és az 5. gyakorló feladat).

7. Mutassuk meg, hogy ha a φ és $\varphi \to \psi$ formulák tautológiák, akkor a ψ formula is tautológia.

Megoldás:

Ha a φ és a $\varphi \to \psi$ formulák a bennük szereplő változók minden értékére igazak, akkor az implikáció definíciója szerint a ψ formula értéke is a benne szereplő változók minden értékére igaz.

8. lgazoljuk, hogy minden levezethető formula tautológia!

Megoldás:

Tegyük fel, hogy α levezethető formula. Ekkor van olyan

$$\alpha_1, \alpha_2, \ldots, \alpha_k$$

levezetés, amelynek utolsó eleme: $\alpha_k = \alpha$. Megmutatjuk, hogy a sorozat minden eleme tautológia. Teljes indukciót alkalmazunk. Az α_1 formula csak axióma lehet, ezért a 6. gyakorlat szerint tautológia. Tegyük fel, hogy ha $i < l \ (l > 1)$, akkor már tudjuk, hogy α_i tautológia, azt kell megmutatnunk, hogy ebből következik α_i tautológia volta is. Ha α_1 axióma, akkor

kész vagyunk. Ha α_i nála kisebb indexű α_i -kből leválasztással következik. akkor az indukciós feltevés és a 7. gyakorlat szerint tautológia.

Igazoltuk tehát, hogy a sorozat minden eleme tautológia, tehát $\alpha_k = \alpha$ is tautológia.

Megmutattuk tehát, hogy axiómarendszerünkben minden levezethető formula tautológia. Azt kell még megmutatni, hogy ennek az állításnak a megfordítása is igaz: minden tautológia levezethető az axiómarendszerben. Ennek igazolásához további segédeszközökre van szükségünk.

Legyen Γ formuláknak egy tetszőleges (véges vagy végtelen) halmaza. Azt mondjuk, hogy az α formula levezethető Γ -ból, röviden: $\Gamma \vdash \alpha$, ha van olyan

$$\alpha_1, \alpha_2, \ldots, \alpha_k$$

formulasorozat, amelynek minden eleme vagy axióma, vagy a formulahalmaz eleme, vagy a sorozatban előzőleg már szerepelt formulákból a leválasztási szabállyal keletkezik és $\alpha_k = \alpha$. A sorozat α egy levezetése Γ -ból.

Gyakran fogunk használni ilyen jelölést: Γ , $\alpha \vdash \beta$, ahelyett, hogy $\Gamma \cup \{\alpha\} \vdash \beta$; vagy $\alpha_1, \alpha_2, ..., \alpha_k \vdash \beta$, ahelyett, hogy $\{\alpha_1, \alpha_2, ..., \alpha_k\} \vdash \beta$. Ha $\Gamma \vdash \alpha$ és $\Gamma = \emptyset$, akkor nyilván $\vdash \alpha$. Másrészt, ha $\vdash \alpha$, akkor nyilván tetszőleges Γ -ra $\Gamma \vdash \alpha$.

A most bevezetett fogalomnak fontos tulajdonságát fejezi ki a következő, ún. *dedukciótétel*:

ha
$$\Gamma$$
, $\alpha \vdash \beta$, akkor $\Gamma \vdash \alpha \rightarrow \beta$.

Tegyük fel, hogy Γ , $\alpha \vdash \beta$ ès

$$\beta_1, \beta_2, \ldots, \beta_k$$

egy levezetése β -nak Γ , α -ból. Ekkor természetesen $\beta_k = \beta$. Teljes indukcióval megmutatjuk, hogy az

$$\alpha \rightarrow \beta_1, \alpha \rightarrow \beta_2, ..., \alpha \rightarrow \beta_k$$

sorozat kiegészíthető úgy, hogy a kapott új sorozat bármely $\alpha \mapsto \beta_i$ alakú formulával végződő szelete egy levezetés legyen Γ -ból.

Ha i=1, akkor azt kell megmutatnunk, hogy az $\alpha \to \beta_1$ formula elé alkalmas formulákat beiktatva olyan sorozatot kapunk, amely levezetés Γ -ból.

A következő esetek lehetségesek:

(1) β, axióma; ekkor a következő formulákat kell elé iktatni:

$$\beta_1$$
 (axiôma),

$$\beta_1 \to (x \to \beta_1)$$
 (axióma),

ebből a kettőből leválasztással éppen $\alpha \to \beta_1$ adódik.

(II) β_1 a Γ eleme, ekkor az előző esethez hasonlóan:

$$\beta_1$$
 (Γ eleme),

$$\beta_1 \rightarrow (\alpha \rightarrow \beta_1)$$
 (axióma).

$$\alpha \rightarrow \beta_1$$
 (az előző kettőből leválasztással adódik).

egy levezetés Γ-ból.

(III) β_1 azonos α -val, ekkor az $\alpha \rightarrow \alpha$ formuláról már tudjuk, hogy levezethető, így F-ból is levezethető.

Tegyük fel, hogy l > 1 és minden i < l-re már tudjuk, hogy a kiegészített sorozat $\alpha \rightarrow \beta_i$ -vel végződő szelete levezetés Γ -ból. Igazolni kell, hogy az $\alpha \rightarrow \beta_i$ végű szelet is kiegészíthető úgy, hogy levezetés legyen Γ -ból.

A következő esetek lehetségesek:

- (I) β_1 axióma,
- (II) β_I eleme Γ -nak,
- (III) $\beta_t = \alpha$.

Ezeket az eseteket már megvizsgáltuk. Láttuk, hogy a sorozat kiegészíthető a kivánt módon.

(1V) β_i valamilyen i,j < I esetén β_i -ből és β_j -ből leválasztással keletkezik. Ekkor például $\beta_I = \beta_i \rightarrow \beta_I$. Az indukciós feltevés szerint a kiegészített sorozatnak az $\alpha \rightarrow \beta_i = \alpha \rightarrow (\beta_j \rightarrow \beta_i)$, ill. az $\alpha \rightarrow \beta_j$ formulákkal végződő szeletei levezetések I-ból. Iktassuk most még be a sorozatba (például az $\alpha \rightarrow \beta_i$ formula elé) az

$$(\alpha \rightarrow (\beta_i \rightarrow \beta_l)) \rightarrow ((\alpha \rightarrow \beta_i) \rightarrow (\alpha \rightarrow \beta_l))$$

formulát, ami axióma. Ekkor az előző két formulából és a most beiktatott axiómából kétszeres leválasztással éppen $\alpha \rightarrow \beta_I$ adódik, tehát ez is levezethető I-ból. Ezzel az állítást igazoltuk.

Gyakorló feladatok

9. A dedukciótétel alkalmazásával igazoljuk, hogy tetszőleges α , β , γ formulákra

$$\alpha \rightarrow \beta$$
, $\beta \rightarrow \gamma \vdash \alpha \rightarrow \gamma$.

Megoldás:

Legyen a Γ formulahalmaz azonos az $\{\alpha \rightarrow \beta, \beta \rightarrow \gamma\}$ kételemű halmazzal. Ekkor a leválasztási szabály kétszeres alkalmazásával világos, hogy

$$\alpha \rightarrow \beta$$
, $\beta \rightarrow \gamma$, α , β , γ

egy levezetés Γ , α -ból és így Γ , $\alpha \vdash \gamma$, de akkor a dedukciótétel szerint $\Gamma \vdash \alpha \rightarrow \gamma$, és éppen ezt állítottuk.

10. Igazoljuk, hogy $\alpha \rightarrow (\beta \rightarrow \gamma)$, $\beta \vdash \alpha \rightarrow \gamma$.

Megoldás:

ltt megint vegyük a következő formulahalmazt:

$$\{\alpha \rightarrow (\beta \rightarrow \gamma), \beta, \alpha\}.$$

Ha az

$$\alpha \rightarrow (\beta \rightarrow \gamma), \alpha, \beta \rightarrow \gamma, \beta, \gamma$$

sorozatot tekintjük, akkor világos, hogy ez egy levezetés az előző formulahalmazból (itt is kétszer alkalmaztuk a leválasztási szabályt), tehát a dedukciótétel szerint

$$\alpha \rightarrow (\beta \rightarrow \gamma), \beta \vdash \alpha \rightarrow \gamma.$$

11. Igazoljuk, hogy a következő formulák levezethetők tetszőleges α, β, γ formulák esetén:

- $a) \quad \exists \ \exists \alpha \rightarrow \alpha;$
- b) $\alpha \rightarrow \neg \neg \alpha$;
- c) $\{ \exists \beta \rightarrow \exists \alpha \} \rightarrow (\alpha \rightarrow \beta);$
- d) $(\alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha);$
- $e : (\alpha \rightarrow \beta) \rightarrow ((\neg \alpha \rightarrow \beta) \rightarrow \beta).$

Megoldás:

Az a) és b) rész együtt lényegében azt mutatja, hogy elfogadott axiómáinkból következik, hogy α és $\neg \neg \alpha$ ekvivalens.

- a) L $(\neg \alpha \rightarrow \neg \neg \alpha) \rightarrow ((\neg \alpha \rightarrow \neg \alpha) \rightarrow \alpha)$ (A3.1);
 - II. $\neg \alpha \rightarrow \neg \alpha$ (az 5. gyakorló feladat);
 - III. (¬x→¬¬x)→x (I. és II. következménye a 10. gyakorló feladat szerint);
 - IV. $\neg \exists \alpha \rightarrow (\exists \alpha \rightarrow \exists \exists \alpha) (A1.);$
 - V. ¬ ¬α→α (III. és IV. kővetkezménye a 9. gyakorló feladat szerint).
- $b = \{(\neg \neg \neg \alpha \rightarrow \neg \alpha) \rightarrow ((\neg \neg \neg \alpha \rightarrow \alpha) \rightarrow \neg \neg \alpha) (A3.)\}$
 - II. $\neg \neg \neg \alpha \rightarrow \neg \alpha$ (a II. a) gyakorlat szerint);
 - III. $(\neg \neg \neg \neg \alpha \rightarrow \alpha) \rightarrow \neg \neg \alpha$ (I. és II., MP.):
 - IV. $\alpha \rightarrow (\Box \Box \Box \alpha \rightarrow \alpha)$ (A1.);
 - V. $\alpha \rightarrow \neg \neg \alpha$ (III. és IV. következménye a 9. gyakorlat szerint).

A c j és d j rész együtt lényegében azt mutatja, hogy a kontrapozíció szabálva $(x \rightarrow B)$ és $\neg B \rightarrow \neg x$ ekvivalens) axiómáinkból következik.

c) Válasszuk Γ halmaznak a $\{ \neg \beta \rightarrow \neg \alpha, \alpha \}$ formulahalmazt. Megmutatjuk, hogy ebből levezethető β . Ebből a dedukciótétel kétszeres alkalmazásával kapjuk az állítást.

- I. $\neg \beta \rightarrow \neg \alpha$ (feltétel):
- H. $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$ (A3.);
- III. $(\neg \beta \rightarrow \alpha) \rightarrow \beta$ (I. és II., MP.);
- IV. $\alpha \rightarrow (\neg \beta \rightarrow \alpha)$ (A1.):
- V, $\alpha \rightarrow \beta$ (III. és IV. alapján a 9. gyakorlat szerint);
- VI. α (feltétel):
- VII. β (V. és VI., MP.).
- d) [tt azt fogjuk igazolni, hogy

$$\alpha \rightarrow \beta \vdash \neg \beta \rightarrow \neg \alpha$$
.

Ebből a dedukciótétel szerint következik az állítás.

- 1. $\alpha \rightarrow \beta$ (feltètel):
- II. $\neg \neg x \rightarrow x$ (11. a) gyakorlat);
- III. $\neg \neg \alpha \rightarrow \beta$ (I. és II. szerint, 9. gyakorlat alapján);
- IV. $\beta \rightarrow \neg \neg \beta$ (11. b) gyakorlat):
- V. $\neg \neg \alpha \rightarrow \neg \neg \beta$ (III, és IV. szerint a 9. gyakorlat alapján);
- VI. $(\neg \neg x \rightarrow \neg \neg \beta) \rightarrow (\neg \beta \rightarrow \neg x)$ (11. c) gyakorlat):
- VII. $\neg \beta \rightarrow \neg \alpha$ (V. és VI., MP.).

Az e) rész egyfajta indirekt bizonyítás jogosságát mutatja axiómarendszerünkben. Itt a következőt igazoljuk:

$$\alpha \rightarrow \beta$$
, $\neg \alpha \rightarrow \beta \vdash \beta$.

Ebből a dedukciótétel kétszeri alkalmazásával adódik az állítás.

1. $\alpha \rightarrow \beta$ (feltètel):

II. $(\alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha)$ (II. d) gyakorlat);

III. $\neg \beta \rightarrow \neg \alpha$ (i. és II., M.P.);

IV. $\neg \alpha \rightarrow \beta$ (feltétel);

V. $(\exists \alpha \rightarrow \beta) \rightarrow (\exists \beta \rightarrow \exists \exists \alpha)$ (11. d) gyakorlat):

VI. $\neg \beta \rightarrow \neg 1 \neg \alpha$ (IV. és V., MP.);

VII. $(\neg \beta \rightarrow \neg \neg \alpha) \rightarrow ((\neg \beta \rightarrow \neg \alpha) \rightarrow \beta) (A3.)$:

VIII. $(\neg \beta \rightarrow \neg \alpha) \rightarrow \beta$ (VI. és VII., MP.);

IX. β (III. és VIII., MP.).

Térjünk vissza ahhoz a problémához, hogy axiómarendszerünk teljes-e abban az értelemben, hogy benne minden tautológia levezethető. A 12. gyakorló feladatban megmutatjuk, hogy a válasz igenlő. A teljesség bizonyítása a következő segédtételen alapul.

Legyen α tetszőleges formula és jelölje A_1, A_2, \ldots, A_k az α formulában előforduló változókat. Adjuk meg az A_1, A_2, \ldots, A_k változók egy értékelését, és vezessük be a következő jelölést: A'_i legyen A_i , ha A_i értéke igaz, és legyen $\Box A_i$, ha A_i értéke hamis. A változók adott értékére az α formula is egy igazságértéket vesz fel. Jelölje α' magát az α -t, ha ez az érték igaz, és $\Box \alpha$ -t, ha ez az érték hamis. Igaz a következő állítás:

$$A'_1, A'_2, ..., A'_k, \vdash \alpha'$$

Ennek bizonyítását majd a feladatokban végezzük el, de felhasználjuk a teljesség igazolásához.

Gyakorló feladat

12. Az előző állítás, valamint az eddig levezetett formulák felhasználásával igazoljuk, hogy ha α tautológia, akkor $-\infty$! (A megoldásban használt módszer Kalmár Lászlótól származik.)

Megoldás:

Legyenek $A_1, A_2, ..., A_k$ az adott α formulában előforduló változók. Az előző segédtétel szerint az $A_1, A_2, ..., A_k$ változók tetszőleges értékére

$$A'_1, A'_2, \ldots, A'_k \vdash \alpha$$

hiszen a tautológia, így mindig igaz.

Legyen először Ak értéke i, ekkor

(1)
$$A'_1, A'_2, ..., A'_{k-1}, A_k \vdash \alpha$$

Most válasszuk A_1, \dots, A_{k-1} értékét ugyanúgy, mint az előző esetben, csak A_k értéke legyen h. Ekkor

$$(2) \qquad A'_1, \ldots, A'_{k-1}, \ \Box A_k \vdash \mathbf{x}$$

adódik. (1)-ből a dedukciótétel szerint

$$(3) \qquad A'_1, \ldots, A'_{k-1} = A_k \rightarrow \alpha,$$

(2)-ből hasonlóan

$$(4) \qquad A'_1, \ldots, A'_{k-1} \vdash \Box A_k \rightarrow \alpha.$$

A 11. e) gyakorló feladat alapján tudjuk, hogy

$$\mapsto (A_k \to \alpha) \to ((\neg A_k \to \alpha) \to \alpha),$$

igy (3) és (4) alapján a leválasztási szabály kétszeres alkalmazásával azt kapjuk, hogy

$$A'_1, \ldots, A'_{k-1} \vdash \mathfrak{A}$$

Az előző gondolatmenetet ezután újra alkalmazhatjuk A_{k-1} -re, A_{k-2} -re, és igy tovább, végül A_1 -re és k lépés után azt kapjuk, hogy

Ezzel igazoltuk, hogy axiómarendszerünk teljes.

Feladatok

5. Igazoljuk, hogy tetszőleges α , β formulára teljesülnek $a \mapsto (\alpha \rightarrow \beta)$ ("ex falso quodlibet" – hamisból bármi következik);

$$b \ni \vdash \alpha \rightarrow (\neg \beta \rightarrow \neg (\alpha \rightarrow \beta)).$$

- 6. Igazoljuk a 12. gyakorló feladat előtt kimondott segédtételt az α formulában szereplő \rightarrow és \neg jelek együttes számára vonatkozó teljes indukcióval (ez a szám jelzi a formula "bonyolultságát")!
- 7. Mutassuk meg, hogy az axiómarendszer ellentmondástalan a következő értelemben: nincs olyan α formula, amelyre $\vdash \alpha$ és $\vdash \neg \alpha$ is igaz!
- 8. Tegyük fel, hogy az axiómarendszer megfogalmazásához használt változójelek most nem két, hanem három értéket vehetnek fel, jelölje ezeket 0, 1, 2. A műveleteket a következő értéktáblázattal definiáljuk:

A	$\Box A$. A	В	$A \rightarrow B$
0	1	0	0	0
1	1	1	0	
2	0	2	0	0
		0	l l	2 0 2 2 0 2
		.1	1	2
		0	1	0
		0	2	. 2
		t	2 2 2	0
		-2	2	0

Igazoljuk ennek felhasználásával, hogy az (A1.) axióma független, azaz nem vezethető le az (A2.), (A3.) axiómákból a leválasztási szabály felhasználásával!

3. Boole-algebrák

Az első részben megismertük egy halmaz részhalmazainak azt a struktúráját, amelyet ezek a részhalmazok az \cup , \cap és komplementerképzés műveletére nézve alkotnak. Ezt a struktúrát halmazalgebrának nevezzük.

A kijelentések, ill. logikai értékek és a rajtuk értelmezett konjunkció, diszjunkció és negáció műveletek által alkotott struktúra ugyanolyan szerkezetűnek bizonyult, mint a halmazalgebra.

Az algebrában igen jellemző fogalomalkotás, hogy ilyen "konkrét" struktúrák közös tulajdonságát, szerkezetét fogalmazzuk meg "absztrakt" struktúraként. Ezt az "absztrakt" struktúrát természetesen axiómákkal adhatjuk meg, így járunk el most is.

Feltesszük, hogy a szóban forgó "absztrakt" struktúrában, amit *Boole-algebrának* nevezünk, értelmezve van egy egyváltozós művelet, amit igy jelölünk: \neg és komplementerképzésnek nevezünk, továbbá két kétváltozós művelet, ezek jele \cup (unió) és \cap (metszet). (Kézenfekvő az analógia a halmazalgebrai műveletekkel.) Ezekről feltesszük, hogy kielégítik a következő axiómákat (itt p, q, r az A alaphalmaz tetszőleges elemeit jelölik):

(B1.)
$$p \cup q = q \cup p$$
;

(B2.)
$$p \cap q = q \cap p$$
;

(B3.)
$$p \cup (q \cup r) = (p \cup q) \cup r$$
;

(B4.)
$$p \cap (q \cap r) = (p \cap q) \cap r$$
;

(B5.)
$$p \cap (q \cup r) = (p \cap q) \cup (p \cap r)$$
;

(B6.)
$$p \cup (q \cap r) = (p \cup q) \cap (p \cup r)$$
;

(B7.)
$$(p \cap q) \cup q = q$$
;

(B8.)
$$(p \cup q) \cap q = q$$
;

(B9.)
$$(p \cap \neg p) \cup q = q$$
;

(B10.)
$$(p \cup \neg p) \cap g = g$$
.

Hangsúlyozzuk, hogy itt az adott A halmaz elemeiről nem tesszük fel, hogy azok is halmazok és az \cup , \cap , \neg műveletek-

ről is csak annyit használhatunk fel, amennyit a (B1.)–(B10.) axiómák kimondanak. Az axiómarendszer előnye, hogy elég sok axiómából áll, ezért kényelmes, elég egyszerűen adódnak belőle a megfelelő eredmények. Ezzel szemben viszont nem "gazdaságos". Vannak benne olyan axiómák is, amelyek a többiből levezethetők. Még egy fontos előnye van ennek az axiómarendszernek. Bármelyik axiómában felcserélve az \cup jelet a \cap jellel és fordítva, az így kapott egyenlőség szintén szerepel az axiómák között. Két ilyen egyenlőséget egymás duálisának nevezünk. Az axiómarendszer tehát olyan, hogy minden egyenlőséggel együtt a duálisa is axióma. Ebből következik, hogy minden, az axiómákból levezethető egyenlőséggel együtt annak duálisa is levezethető.

Igazoljuk először, hogy tetszőleges $p \in A$ elemre

- (1) $p \cup p = p$ és
- $(2) \quad p \cap p = p.$

(A továbbiakban, ha mást nem mondunk, akkor a p, q, r stb. betűk az A halmaz tetszőleges elemeit jelölhetik.)

Az első összefüggés így adódik (zárójelbe írtuk, hogy melyik axiómát használtuk fel);

$$p = \rho \cup (p \cap q) = (B1.) \text{ és } (B7.)$$

$$= (p \cup p) \cap (p \cup q) = (B6.)$$

$$= (p \cap (p \cup q)) \cup (p \cap (p \cup q)) = (B5.) \text{ és } (B2.)$$

$$= p \cup p. \quad (B1.) \text{ és } (B8.)$$

Természetesen a duális egyenlőségek felírásával levezethető a másik, $p \cap p = p$ egyenlőség is. A két levezetett azonosságot az *idempotencia* törvényeinek nevezik.

Gyakorló feladat

13. Igazoljuk, hogy a

$$p \cap q = p$$

és a

$$p \cup q = q$$

azonosságok egyszerre teljesülnek.

Megoldás:

Tegyük fel, hogy $p \cap q = p$; ekkor a (B7.) axiómából következik, hogy

$$p \cup q = q$$
.

Megfordítva, most azt tegyük fel, hogy $p \cup q = q$. Ekkor a (B8.) axiómában p és q szerepét felcserélve és (B2.)-t is felhasználva azt kapjuk, hogy

$$p \cap q = p$$
.

Értelmezzük az A halmaz két tetszőleges p, q eleme között a $p \subset q$ (p része q-nak) relációt a következőképpen:

$$p \subset q$$
 akkor és csak akkor, ha $p \cap q = p$.

A 13. gyakorló feladat szerint a definíció ekvivalens a következővel:

$$p \subset q$$
 akkor és csak akkor, ha $p \cup q = q$.

Gyakorló feladatok

14. Igazoljuk a

reláció következő tulajdonságait:

- a) $p \subset p$;
- h) ha $p \subset q$ és $q \subset p$, akkor p = q:
- c) ha $p \subset q$ és $q \subset r$, akkor $p \subset r$.

Megoldás:

- a) A bizonyított (2) azonosság (idempotencia) szerint $p \subset p$.
- b) Tegyük fel, hogy $p \subset q$ és $q \subset p$. Ekkor

$$p = q \cup p = p \cup q =$$
 (a definició szerint)

$$=(p \cap q) \cup q =$$
 (a definició szerint)

$$= q$$
. ((B7.) szerint).

c) Tegyük fel, hogy $p \subseteq q$ és $q \subseteq r$, ekkor

$$p = p \cap q =$$
 (a definició szerint)

$$= p \cap (q \cap r) = (a \text{ definició szerint})$$

$$= (p \cap q) \cap r = ((B4.) \text{ szerint})$$

$$= p \cap r$$
. (a definició szerint)

Eredményünk azt jelenti, hogy $p \subset r$.

15. Igazoljuk, hogy tetszőleges $p, q \in A$ esetén

$$p \cap \neg p = q \cap \neg q$$
 és

$$p \cup \neg p = q \cup \neg q$$
.

Megoldás:

A (B7.) és (B8.) axiómákból következik, hogy

$$p \cap \neg p \subset q$$
 és $q \subset p \cup \neg p$.

Mivel q tetszőleges, ezért helyette $q \cap \neg q$, ill. $q \cup \neg q$ is irható:

$$p \cap \neg p \subset q \cap \neg q$$
 és $q \cup \neg q \subset p \cup \neg p$.

Nyilván p és q szerepe mindkét összefüggésben felcserélhető:

$$q \cap \neg q \subset p \cap \neg p$$
 és $p \cup \neg p \subset q \cup \neg q$.

A 14. b) gyakorlat alapján azt kapjuk, hogy

$$p \cap \neg p = q \cap \neg q$$
 és

$$p \cup \neg p = q \cup \neg q.$$

Mivel a 15. gyakorlat eredménye azt mutatja, hogy $p \cap \neg p$, ill. $p \cup \neg p$ független p választásától, ezért ezek az A halmaz egy-egy speciális elemét jelentik. Vezessük be ezekre a következő jelölést és elnevezést:

- (3) $p \cap \neg p = 0$, az A zéruseleme,
- (4) $p \cup \neg p = I$, az A egységeleme.

Érdemes észrevenni, hogy eredményünk felhasználásával a (B9.) és (B10.) axiómák így írhatók:

(B9'.)
$$0 \cup q = q$$
 és

(B10'.)
$$I \cap q = q$$
.

 $A \subset definiciója$ szerint ez azt jelenti, hogy tetszőleges $q \in A$ ra

$$0 \subset q$$
 és

$$q \subset I$$
.

Gyakorló feladatok

- 16. lgazoljuk, hogy tetszőleges $p \in A$ esetén
- $(5) 0 \cap p = 0 \text{ès}$
- (6) $I \cup p = I$.

Megoldás:

Az állítás közvetlenül adódik az előbb felirt két összefüggésből, valamint a 13. gyakorló feladat eredményéből, ill. a \subset definíciójából.

17. Igazoljuk, hogy ha

$$(7) p \cap q = 0 \text{és}$$

$$(8) \qquad \rho \cup q = I,$$

akkor
$$q = \neg p$$
.

191

Megoldás:

$$= (p \cap \neg p) \cup q = \tag{3}$$

$$= (p \cup q) \cap (\neg p \cup q) = \tag{B4.}$$

$$=I\cap(\neg p\cup q)=\tag{8}$$

$$= \neg p \cup q \tag{B10'.}$$

A kapott egyenlőségből következik, hogy

(9) $\neg p \subset q$.

Hasonlóan:

$$q = I \cap q = \tag{B10'.}$$

$$=(p\cup \neg p)\cap q=\tag{4}$$

$$= (p \cap q) \cup (\neg p \cap q) = \tag{B5.}$$

$$=0\cup(\neg p\cap q)=\tag{7}$$

$$= \neg p \cap q. \tag{B9.}$$

Ebből következik, hogy

(10)
$$q \subset \neg p$$
.

A (9) és (10) összefüggés szerint $q = \neg p$.

18. Az előző gyakorlat eredménye alapján igazoljuk, hogy

(11)
$$\exists \neg p = p.$$

Megoldás:

A (3) és (4) összefüggéseket alkalmazzuk p helyett □p-re:

$$\Box p \cap \Box \Box p = 0 \quad \text{ ès }$$

$$\neg p \cup \neg \neg p = I$$
.

Az előző gyakorlat eredménye alapján (felhasználva a kommutativitást is) adódik, hogy

$$\neg \neg p = p$$
.

19. Igazoljuk a következő azonosságokat:

(12)
$$\Box (p \cup q) = \Box p \cap \Box q$$
,

(13)
$$\exists (p \cap q) = \exists p \cup \exists q.$$

Megoldás:

Elég igazolni a (12) azonosságot, mert (13) ennek duálisa. Megmutatjuk, hogy $\neg p \land \neg q$ éppen $p \lor q$ komplementere, mert kielégíti a 17. gyakorló feladatban megfogalmazott követelményeket:

$$(p \cup q) \cap (\neg p \cap \neg q) = (p \cap \neg p \cap \neg q) \cup (q \cap \neg p \cap \neg q) =$$
(B5.)

$$= (0 \cap \neg q) \cup (0 \cap \neg p) = \tag{3}$$

$$= 0 \cup 0 = 0. \tag{5}$$

$$(p \cup q) \cup (\neg p \cap \neg q) = (p \cup q \cup \neg p) \cap (p \cup q \cup \neg q) = \tag{B4.}$$

$$= (I \cup a) \cap (I \cup p) = \tag{4}$$

$$= I \cap I = I. \tag{6}$$

20. Igazoljuk, hogy

(14)
$$\exists I = 0$$
 ės

$$(15) \qquad \Box 0 = L$$

Megoldás:

Az I definíciója és (11), valamint (12) alapján:

$$\exists I = \exists (p \cup \exists p) = \exists p \cap p = 0.$$

A másik állitás az előző duálisa.

21. Igazoljuk, hogy ha 0 = I, akkor tetszőleges p-re

$$0 = p$$
.

Megoldás:

Ha 0 = I, akkor tetszőleges p-re

$$p = p \cap I = p \cap 0 = 0.$$

Az eddigiekben láttuk, hogy a Boole-algebra (B1.)–(B10.) axiómáiból sok olyan azonosság vezethető le, ami ismerős a halmazalgebrából, ill. a kijelentéslogikából. Természetes kérdés, hogy mennyire "teljes" ez az axiómarendszer a következő értelemben. Minden olyan probléma, amely megfogalmazható benne, eldönthető-e az axiómák alapján. Igazolni fogjuk, hogy az axiómarendszer ebben az értelemben teljes.

Vizsgáljuk meg közelebbről az axiómarendszert. Valójában itt szigorúan véve a Boole-algebra szintuktikai jellemzéséről van szó. Pontosabban, de kissé hosszadalmasabban úgy fogalmazhattunk volna, hogy megadunk egy nyelvet, amely változójeleket, a ¬, o, o műveleti jeleket, és segédjeleket tartalmaz. Ezekből kifejezéseket építhetünk fel a következő módon. Bármely változó kifejezés, egy, ill. két kifejezésből a ¬, ill. az o és o műveletek alkalmazásával építhetünk további kifejezéseket. Az axiómák két-két megadott kifejezés egyenlőségét állítják. Ezekből újabb azonosságokat vezethetünk le a következőképpen: változók helyére tetszőleges kifejezéseket helyettesíthetünk, és egy már levezetett egyenlőség egyik oldalát egy kifejezésben a másik oldallal pótolhatjuk. Igy jutunk el a Boole-algebra törvényeihez.

A szemantikai oldalról nézve, ha adott egy olyan struktúra, amely egy nem üres A alaphalmazból, az ezen a halmazon értelmezett (az egyszerűség kedvéért itt is ugyanúgy jelölt) \neg egyváltozós, \cup és \cap kétváltozós műveletekből áll, és ezek a műveletek kielégítik a (B1.)-(B10.) axiómákat, akkor ezt a struktúrát Boole-algebrának nevezzük. Azon, hogy a műveletek kielégítik az axiómákat, azt értjük, hogy ebben a konkrét esetben a változójelek az A halmaz tetszőleges elemét jelölhetik.

Tegyük fel, hogy adott két kifejezés (az előzőleg mondott értelemben), k_1 és k_2 , és kiderül, hogy egy konkrét Boole-algebrában a két kifejezés a bennük szereplő változók minden értékére azonos értéket vesz fel. Igazolni fogjuk, hogy ekkor a

$$k_1 = k_2$$

egyenlőség a (B1.)-(B10.) axiómákból levezethető. Axiómarendszerünk tehát ebben az értelemben teljes.

Tegyük fel, hogy a k kifejezés felépítésében csak az egyetlen p változó szerepel. Igazoljuk (a kifejezés induktív felépítésének megfelelően), hogy

$$(*) \quad k = (k(I) \cap p) \cup (k(0) \cap \exists p).$$

ahol k(I), ill. k(0) jelöli azt a kifejezést, amelyet úgy kapunk, hogy k-ban p helyére I-t, ill. 0-t helyettesítünk.

Megoldás:

a) Ha k azonos p-vel, akkor

$$(k(I) \cap p) \cup (k(0) \cap \neg p) = (I \cap p) \cup (0 \cap \neg p) =$$

$$= p \cup 0 =$$

$$= p,$$
((B10'.) és (5))
$$= p,$$
(B9'.)

tehát az állitás igaz.

b) Tegyük fel, hogy $k = \exists f$, és f-re már igaz az állítás. Ekkor

$$k = \neg f = \neg ((f(I) \cap p) \cup (f(0) \cap \neg p)) =$$
 (a feltètel szerint)
= $(\neg f(I) \cup \neg p) \cap (\neg f(0) \cup p) =$ ((11), (12) és (13))

$$\Rightarrow (\neg f(I) \land \neg f(0)) \cup (\neg f(I) \land p) \cup (\neg f(0) \land \neg p) =$$

(B5.), (B6.), (3), (B9'.)

$$= (\neg f(I) \cap \neg f(0) \cap (p \cup \neg p)) \cup (\neg f(I) \cap p) \cup \neg (f(0) \cap \neg p) =$$

((4) és (B10.))

$$= (\neg f(I) \cap \neg f(0) \cap p) \cup (\neg f(I) \cap p) \cup (\neg f(I) \cap \neg f(0) \cap \neg p) \cup (\neg f(0) \cap \neg p) =$$

$$(B5.) \text{ és } (B3.)$$

$$= (\neg f(I) \cap p) \cup (\neg f(0) \cap \neg p) = \tag{B7.}$$

$$= (k(I) \cap p) \cup (k(0) \cap \neg p).$$

c) Tegyük fel, hogy $k = f \cup g$ és f-re, g-re már igaz az állítás. Ekkor $k = f \cup g = (f(I) \cap p) \cup (f(0) \cap \neg p) \cup \\ \cup (g(I) \cap p) \cup (g(0) \cap \neg p) = \\ = ((f(I) \cup g(I)) \cap p) \cup ((f(0) \cup g(0)) \cap \neg p) =$ (B5.)

A $k = f \cap g$ eset az előző duálisa, tehát ez is igaz.

Az előző eredmény felhasználásával igazoljuk, hogy ha egy k kifejezés felépítésében két változójel, mondjuk p és q szerepel, akkor igaz, hogy

 $= (k(I) \cap p) \cup (k(0) \cap \neg p).$

$$k = k(I, I)pq \cup k(I, 0)p \neg q \cup k(0, I) \neg pq \cup k(0, 0) \neg p \neg q.$$

ahol $k(\alpha, \beta)$ jelenti azt a kifejezést, amelyet k-ból úgy kapunk, hogy p, ill. q helyére α -t, ill. β -t helyettesítűnk és a \cap műveletet csak egymás mellé irással jelöltűk.

Megoldás:

Alkalmazzuk először az előző eredményt p-re, ekkor

$$k = k(I, q)p \cup k(0, q) \neg p.$$

Ezután a $k(l,q)=k(q\cup \neg q,q)$ egyváltozós kifejezésre, ill. a $k(0,q)=k(q\cap \neg q,q)$ egyváltozós kifejezésre újra alkalmazzuk az előző eredményt, és felhasználva, hogy

$$k(I \cup \neg I, q) = k(I, q),$$

$$k(0 \cup \neg 0, q) = k(I, q),$$

$$k(I \cap \neg I, q) = k(0, q),$$

$$k(0 \cap \neg 0, q) = k(0, q)$$

tetszőleges q-ra, majd felhasználva a disztributivitást, éppen a bizonyítandó állítást kapjuk.

Az előző két bizonyított összefüggés tetszőleges számú változóból felépülő kifejezésekre is igazolható a változók számára vonatkozó teljes indukcióval. Érdemes észrevenni, hogy a kifejezésekre kapott előállítások a kijelentéslogikából ismert teljes diszjunktív normálformának a megfelelői.

Térjünk most vissza a teljesség kérdéséhez. Először vizsgáljuk azt az egyszerűbb esetet, amikor adott két kifejezés, k_1 és k_2 , és mindegyik egyetlen p változóból épül fel. Ha egy konkrét Boole-algebrában – amelynek legalább két különböző eleme van k_1 és k_2 a p változó minden értéke esetén azonos értéket vesz fel, akkor a $k_1 = k_2$ egyenlőség levezethető a (B1.) (B10.) axiómákból.

Elég megmutatni, hogy a

$$k_1(0) = k_2(0)$$
 és $k_1(I) = k_2(I)$

egyenlőségek levezethetők az axiómákból, hiszen ezekből következik a $k_1 = k_2$ egyenlőség, és a (*) eredményét az axiómákból bizonyítottuk.

A $k_1(0)$ és $k_2(0)$, ill. $k_1(I)$ és $k_2(I)$ értéke vagy 0, vagy I, és a megfelelő egyenlőség levezethető az axiómákból, hiszen a 0-val és I-vel kapcsolatos műveletek eredményeit az axiómákból vezettük le. Ezek az összefüggések:

A feltétel szerint a 21. gyakorlat alapján $0 \pm I$ (mert a konkrét Boole-algebrának legalább két eleme van). Mivel a konkrét Boole-algebrában igaz, hogy

$$k_1(0) = k_2(0)$$
 és $k_1(I) = k_2(I)$.

czért az előzők alapján ezek levezethetők axiómáinkból, de akkor a

$$k_1 = k_2$$

egyenlőség is levezethető az axiómákból.

Az egy változóra igazolt összefüggések általánosítása alapján akárhány változóból felépülő kifejezésekre is igazolható a megfelelő eredmény. Azt kaptuk tehát, hogy Boole-algebránk axiómarendszere a mondott értelemben teljes.

Feladatok

9. Igazoljuk, hogy egy halmaz összes részhalmazai Boolealgebrát alkotnak a szokásos ∪, ∩ és komplementer műveletekre nézve!

10. Tegyük fel, hogy egy Boole-algebra A alaphalmaza véges sok elemet tartalmaz, legyen |A|=n, ahol n>1. Azt mondjuk, hogy egy $x \in A$ atom, ha $x \neq 0$ és tetszőleges $y \in A$ ra $y \subset x$ -ből y=0 vagy y=x következik. Igazoljuk, hogy ha $y \in A$ és $y \neq 0$, akkor van olyan $x \in A$ atom, amelyre $x \subset y$!

11. Igazoljuk, hogy a 9. feladatban szereplő Boole-algebrában tetszőleges $x \in A$ atom és $y \in A$ esetén vagy $x \subset y$, vagy $x \cap y = 0$!

12. Vizsgáljuk a 9. feladatban szereplő Boole-algebrát és tetszőleges $y \in A$ -ra jelölje f(y) azoknak az $x \in A$ atomoknak a halmazát, amelyre $x \subset y$ teljesül.

Igazoljuk, hogy tetszőleges $y, z \in A$ -ra

- a) $f(y \cup z) = f(y) \cup g(z)$;
- b) $f(y \cap z) = f(y) \cap f(z);$
- c) $f(\neg y) = f(I) f(y)$;
- $d) \quad f(y) = f(z)$

akkor és csak akkor, ha y=z. (Itt az egyenlőségek jobb oldalán álló \cup , \cap és — jelek a megfelelő halmazalgebrai műveleteket jelölik.)

13. Jelölje B a 9. feladatban szereplő Boole-algebrát, amelynek alaphalmaza A. Legyen A' az A összes atomjából álló részhalmaza. B' jelölje azt a Boole-algebrát, amelyet az A' alaphalmaz összes részhalmaza alkot az \cup , \cap és komplementer műveletekre. Igazoljuk, hogy a 12. feladatban definiált f leképezés

a) egy-egyértelmű A és az A' összes részhalmazaiból álló halmaz között;

b) az f leképezés művelettartó.

Az a) és b) tulajdonságú f leképezés létezése esetén azt mondjuk, hogy a B és B' Boole-algebrák izomorfak.

14. Igazoljuk, hogy ha egy véges Boole-algebra alaphalmazában n elem van, akkor $n=2^k$ lehet csak, valamilyen ktermészetes számra!

15. Válasszuk A alaphalmaznak a 210 összes pozitív osztóiból álló halmazt, és az A halmaz elemei között definiáljuk a következő műveleteket: tetszőleges $a, b \in A$ esetén

 $a \cup b = [a; b]$ (az a és b legkisebb közös többszöröse), $a \cap b = (a; b)$ (az a és b legnagyobb közös osztója),

$$\neg a = \frac{210}{a}.$$

Igazoljuk, hogy A és az így definiált műveletek Boole-algebrát alkotnak!

A IV. fejezetben kitűzött feladatok megoldásai

1. a) Az egyszerű kijelentések jelölésére vezessük be a következő betűket:

$$A ... a = 0$$
";

$$B \quad b = 0$$
;

$$C \quad ..a \cdot b = 0$$
".

Ekkor a következtetés szerkezetét így irhatjuk fel:

$$(A \lor B) \to C$$
, $\neg C \vDash \neg A \land \neg B$.

A kapott következtetési szabály helyes. Tegyük fel ugyanis, hogy a változók megadott értékeire a premisszák igazak, azaz

$$| \neg C | = i$$
 és $| (A \lor B) \to C | = i$.

Ekkor |C| = h ės igy $|A \vee B| = h$, tehát |A| = |B| = h. A konklúzió értéke tehát igaz, $| \neg A \wedge \neg B| = i$.

b) Itt is az a) részben bevezetett jelöléseket használjuk. Ezekkel a következtetés szerkezetét kifejező szabály így írható fel:

$$(\neg A \land \neg B) \rightarrow \neg C, \quad C \models A \lor B.$$

Tegyük fel, hogy |C|=i és $|(\neg A \land \neg B) \rightarrow \neg C|=i$. Ekkor az implikáció utótagja hamis, tehát az előtag is az, és így a negációja, $|\neg(\neg A \land \neg B)| = |A \lor B|=i$. Tehát a konklúzió igaz, a következtetési szabály helyes.

c) A következtetésben előforduló egyszerű kijelentések:

A "az a és h egyenesek párhuzamosak";

B "az a és b egyenesek metszik egymást";

C "az a és b egyenesek kitérőek":

D "az a és h egyenesek egy síkban vannak".

A következtetés szerkezete:

$$A \lor B \lor C$$
 $D \land \neg B$ $D \rightarrow \neg C \models A$.

Ha a változóknak olyan értékeket adunk, hogy a premisszák igazak legyenek, akkor |B|=h, |D|=i, tehát az implikáció definíciója szerint |C|=h, de akkor az első premissza igaz volta miatt |A|=i, tehát a konklúzió is igaz.

- **2.** a) Ha |B| = i és $|A \vee B| = i$, akkor A értéke lehet igaz is és lehet hamis is, tehát $\neg A$ értéke sem egyértelmű. Ezért a következtetési szabály nem helyes. Érdemes észrevenni, hogy akkor kapnánk helyes következtetési szabályt, ha az első premisszában \vee helyett \oplus állna.
- h) Ha a két premissza értéke igaz, akkor a konjunkció definíciója miatt |P| = |Q| = h, tehát az implikáció szerint |R| = i, azaz a következtetési szabály helyes.
- c) Adjunk a változóknak olyan értéket, hogy a premiszszák igazak legyenek. Ekkor a konjunkció definíciója alapján |Q|=h, de akkor $|P\rightarrow Q|=i$ miatt |P|=h. A konklúzió

ekkor R értékétől függetlenül hamis, tehát a következtetési szabály nem helyes.

d) A premisszát átalakítjuk a megismert azonosságok segítségével:

$$(A \land B) \rightarrow C = \neg (A \land B) \lor C =$$

$$= \neg A \lor \neg B \lor C =$$

$$= (\neg A \lor C) \lor \neg B =$$

$$= \neg (A \land \neg C) \lor \neg B =$$

$$= (A \land \neg C) \rightarrow \neg B.$$

Azt kaptuk tehát, hogy a premisszából azonosságok alkalmazásával eljuthatunk a konklúzióhoz. Ez nyilván azt jelenti, hogy a premissza akkor és csak akkor igaz, ha a konklúzió igaz. A következtetési szabály tehát helyes, és helyes a szabály megfordítása is, azaz az

$$(A \land \neg C) \rightarrow \neg B \vDash (A \land B) \rightarrow C$$

következtetési szabály.

3. A feltevés szerint a

$$\varphi_1, \varphi_2, ..., \varphi_n \vDash \varphi$$

következtetési szabály helyes, tehát a

$$(\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n) \to \varphi$$

formula tautológia. Ebből tautológiát kapunk akkor is, ha a benne szereplő változók helyére tetszőleges formulákat helyettesítünk. Ez viszont azt jelenti, hogy az állítás igaz, a helyettesítések elvégzése után kapott következtetési szabály is helyes.

4. A példákban szereplő bizonyítások "igaziak", valóban ezeket – vagy ezekhez hasonlókat szoktunk elmondani egy-egy matematikakönyvben. Látni fogjuk azonban, hogy ezek elemzése eddigi eszközeinkkel eléggé nehézkes. A bizo-

nyitásoknak csak egy-egy részletét tudjuk majd megvizsgálni. Ezek a példák is azt mutatják, hogy matematikai bizonyítások pontosabb elemzéséhez eszközeinket finomítani kell majd.

a) A bizonyításból a következő részletet érdemes kiemelni:

A "Végtelen sok prímszám van";

B "Csak a $p_0, p_1, ..., p_n$, véges sok primszám letezik". A bizonyítás lénvege a következő következtetés:

$$\neg A \leftrightarrow B$$
, $\neg B \vDash A$.

A kapott következtetési szabály nyilván helyes, hiszen ha a premisszák igazak, akkor |B|=h és az ekvivalencia definiciója alapján $|\neg A|=h$, tehát |A|=i.

b) Vezessük be a következő jelöléseket:

A "Ha a síkban egy egyenes két párhuzamos egyenes közül az egyiket metszi, akkor metszi a másikat is."

B "A síkban egy egyenessel egy rajta kívül fekvő ponton át legfeljebb egy párhuzamos egyenes húzható" (párhuzamossági axióma).

A bizonyítás során felhasználjuk a következő indirekt következtetés helyességét:

$$\neg A \rightarrow \neg B$$
, $B \models A$.

Erről már beláttuk, hogy helyes következtetési szabály.

c) Ebből a bizonyításból egy érdekes alakú indirekt következtetésre láthatunk példát. Vezessük be a következő jelölést:

A "A 9, 99, 999, …, 999…9 (q db 9-es) számok között van q-val osztható, ha q és 10 relatív prímek."

Ekkor az indirekt bizonyítás lényegét adó következtetést így írhatjuk fel:

$$agraphi A \rightarrow A \vDash A$$
.

Ez a következtetési szabály valóban helyes, mert tegyük fel, hogy a konklúzió, A = h. Ekkor az implikáció definíciója szerint $\neg A \rightarrow A = h$, ami éppen azt jelenti, hogy ha a premissza igaz, akkor a konklúzió is biztosan igaz.

5. a) Azt fogjuk megmutatni, hogy a $\neg \alpha$ és α formulákból levezethető β . Ekkor a dedukciótétel kétszeres alkalmazásával éppen az állítást kapjuk.

I.
$$\neg \alpha$$
 (feltétel)
II. α (feltétel)
III. $\alpha \rightarrow (\neg \beta \rightarrow \alpha)$ (A1.)
IV. $\neg \alpha \rightarrow (\neg \beta \rightarrow \neg \alpha)$ (A1.)
V. $\neg \beta \rightarrow \alpha$ (II. és III., MP.)
VI. $\neg \beta \rightarrow \neg \alpha$ (I. és IV., MP.)
VII. $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$ (A3.)
VIII. $(\neg \beta \rightarrow \alpha) \rightarrow \beta$ (VI. és VII., MP.)
IX. β (V. és VIII., MP.)

b) A dedukciótétel kétszeres alkalmazásával kapjuk a következőt:

$$\alpha$$
, $\alpha \rightarrow \beta \vdash \beta$, ezért $\vdash \alpha \rightarrow ((\alpha \rightarrow \beta) \rightarrow \beta)$.

A 11. d) gyakorló feladat eredménye szerint:

$$\vdash ((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg (\alpha \rightarrow \beta)).$$

Erre a két levezethető formulára alkalmazzuk a 10. gyakorló feladatban igazolt összefüggést:

$$\vdash\vdash \alpha \rightarrow (\neg \beta \rightarrow \neg (\alpha \rightarrow \beta)).$$

6. Jelölje n az adott formulában szereplő \rightarrow és \neg jelek együttes számát.

Az n=0 esetben a formula egy változóból áll, jelölje ezt A. Ekkor az állítás szerint

$$A \vdash\vdash A$$
 és $\neg A \vdash\vdash \neg A$.

Nyilván mindkettő igaz.

Tegyük fel, hogy n>0 és minden k < n esetén, azaz k darab műveleti jelet tartalmazó formulára igaz az állítás. Mutassuk meg, hogy ekkor az n műveleti jelet tartalmazó formulákra is fennál!

Tegyük fel, hogy az n műveleti jelet tartalmazó formulában az A_1, A_2, \ldots, A_k változók állnak.

(I) Vizsgáljuk először azt az esetet, amikor az α formula $\neg \beta$ alakú. A β formulában már n-nél kevesebb műveleti jel van, a feltétel szerint erre tehát igaz az állítás. Tegyük fel először, hogy az A_1, A_2, \ldots, A_k változóknak olyan értékeket adunk, amelyre α értéke hamis. Ekkor $\alpha' = \neg \alpha$ és $\beta' = \beta$. Az indukciós feltétel szerint

$$A'_1, A'_2, ..., A'_k \vdash \beta$$
.

A 11. b) gyakorló feladat eredménye szerint $\vdash \beta \rightarrow \neg \neg \beta$, igy tehát

$$A'_1, A'_2, ..., A'_k \vdash \neg \neg \beta (= \neg \alpha = \alpha').$$

Ha az $A_1, A_2, ..., A_k$ változók adott értékére α értéke igaz, akkor $\alpha' = \alpha = \neg \beta = \beta'$ és az indukciós feltevés szerint

$$A'_1, A'_2, \ldots, A'_k \vdash \beta' (= \alpha').$$

(II) Ha az α formula $\beta \rightarrow \gamma$ alakú, akkor a β és γ formulák mindegyike n-nél kevesebb műveleti jelet tartalmaz, és a feltétel szerint

$$A'_1, A'_2, ..., A'_k \vdash \beta'$$
 és $A'_1, A'_2, ..., A'_k \vdash \gamma'$

(az $A'_1, A'_2, ..., A'_k$ között nyilván szerepel a β -ban vagy γ -ban előforduló összes változó, esetleg mások is).

Ha β értéke h, akkor az implikáció definíciója szerint α értéke i, tehát $\beta' = \neg \beta$ és $\alpha' = \alpha$. Mivel az **5.** a) feladat eredménye szerint

$$\vdash \neg \beta \rightarrow (\beta \rightarrow \gamma),$$

és az indukciós feltétel szerint

$$A'_1, A'_2, ..., A'_k \vdash \neg \beta,$$

ezért

$$A'_1, A'_2, ..., A'_k \vdash \beta \rightarrow \gamma (=\alpha).$$

Ha γ értéke i, akkor ismét csak az implikáció definíciója szerint α értéke i. Ezért $\gamma' = \gamma$, $\alpha' = \alpha$ és az (A1.) axióma szerint $\vdash \gamma \rightarrow (\beta \rightarrow \gamma)$, az indukciós feltétel alapján:

$$A'_1, A'_2, \ldots, A'_k \vdash \gamma$$
,

ebből adódik, hogy

$$A'_1, A'_2, \ldots, A'_k \vdash \beta \rightarrow \gamma (=\alpha).$$

Még azt az esetet kell megvizsgálnunk, amikor $\beta = i$ és $\gamma = h$; ekkor α értéke h. Ekkor $\beta' = \beta$, $\gamma' = \neg \gamma$ és $\alpha' = \neg \alpha = \neg (\beta \to \gamma)$. Az **5.**b) feladat eredménye szerint $\mapsto \beta \to (\neg \gamma \to \neg (\beta \to \gamma))$, így az

$$A'_1, A'_2, ..., A'_k \vdash \beta$$
 és

$$A'_1, A'_2, ..., A'_k \vdash \exists \gamma$$

indukciós feltételek alapján azt kapjuk, hogy

$$A'_1, A'_2, \ldots, A'_k \vdash \neg (\beta \rightarrow \gamma) (= \alpha').$$

Ezzel a bizonyítást befejeztük.

7. Tudjuk, hogy ha \vdash \vdash α , akkor α tautológia, tehát a benne szereplő változók minden értékére igaz értéket vesz fel. Mi-

vel α és $\neg \alpha$ értéke egyszerre nem lehet igaz, így nincs olyan α formula, amelyre egyszerre $\vdash \alpha$ és $\vdash \neg \alpha$ is igaz lenne.

8. Készítsük el először az (A3.) axióma egy speciális esetének értéktáblázatát:

x_1	х,	Пла	7.€2	$\exists x_2 \rightarrow \{x_1\}$	$\Im x_2 \to x_1$	$(\exists (x_2 \rightarrow x_1) \rightarrow x_2$	$(\exists x_2 \to \exists x_1) \to ((\exists x_2 \to x_1) \to x_2)$
$\overline{0}$	0	1	1	2	. 2	0	0
1	0	1	1	2	2	0	0
2	0	0	1	2	0	0	0
0	1	1	1	2	2	0	0
1	1	1	1	2	2	0	0
2	1	0	1	2	0	2	0
0	2	1	0	2	0	2	0
1	2	1	0	2	2	0	0
2	2	0	0	0	2	0	0

Azt tapasztaljuk, hogy az axióma értéke mindig 0 lesz. Hasonlóan elkészítve az (A2.) axióma értéktáblázatát, itt is azt tapasztaljuk, hogy az értéke mindig 0 lesz. Nevezzük ezt a két axiómát konstans 0 értékűnek.

Az implikáció definíciójából leolvasható, hogy minden olyan esetben, amikor az előtag értéke 0 és az implikáció értéke is 0, az utótag értéke is 0 lesz.

Ebből következik, hogy a leválasztási szabály alkalmazásával konstans 0 értékű formulákból újra konstans 0 értékű formulákat kapunk. Azok a formulák tehát, amelyek az (A2.) és (A3.) axiómákból a leválasztási szabály alkalmazásával levezethetők, konstans 0 értékűek.

Készítsük el most az (A1.) axióma egy speciális esetének értéktáblázatát:

x_{t}	x_2	$x_2 \rightarrow x_1$	$x_1 \to (x_2 \to x_1)$
0	0	0	0
1	0	2	0
2 0	0	2	0
0	1	2	2
- 1	1	2	0
2	1	0	0
0	2	0	0
i	2 2	0	2
2	2	0	0

Azt találtuk, hogy az (A1.) axióma értéktáblázatában a 2 is előfordul (méghozzá kétszer), tehát ez nem konstans 0 értékű formula. Ebből következik, hogy az (A1.) axióma nem vezethető le a másik két axiómából a leválasztási szabály alkalmazásával, tehát független a másik két axiómától.

9. A halmazalgebrával az I. fejezetben foglalkoztunk. Részletesen vizsgáltuk az \cup , a \cap és a komplementerképzés műveletének (ott felülhúzással jelöltük) azonosságait. Az I. fejezet 4. gyakorlatában igazoltuk, hogy teljesülnek a (B1.)–(B4.) és (B5.), (B6.) axiómák. Az I. fejezet 5. gyakorlatában a (B7.) és (B8.) axiómákról mutattuk meg, hogy érvényesek a halmazalgebrában. Még a (B9.) és (B10.) axiómák érvényességét kell igazolni.

Jelölje U az alaphalmazt. Az I. fejezet $\mathbf{6}$. d) gyakorlata szerint tetszőleges $A \subset U$ -ra $A \cap \bar{A} = \emptyset$, az \cup műveletre viszont a definíció alapján tetszőleges $B \subset U$ -ra

$$\emptyset \cup B = B$$
.

Ez azt jelenti, hogy (B9.) is teljesül.

Az I. 6. c) gyakorlat szerint tetszőleges $A \subset U$ -ra

$$A \cup \bar{A} = U$$

a \cap művelet definíciója szerint pedig tetszőleges $B \subset U$ -ra

$$U \cap B = B$$
.

A (B10.) axióma is teljesül tehát.

Mivel egy halmaz részhalmazainak halmazalgebrájában a (B1.)-(B10.) axiómák igazak, ez a struktúra egy Boole-algebra.

10. Tegyük fel, hogy $y \in A$, $y \neq 0$. Ha y atom, akkor az állítás igaz, hiszen nyilván $y \subset y$. Ha y nem atom, akkor van olyan $y_1 \in A$, hogy $y_1 \neq 0$, $y_1 \subset y$ és $y_1 \neq y$. Ha y_1 atom, akkor készen vagyunk, ha nem, akkor van olyan $y_2 \in A$, hogy $y_2 \neq 0$, $y_2 \subset y_1$ és $y_2 \neq y_1$, de akkor a 14. c) gyakorló feladat szerint $y_2 \subset y$ is igaz. Ha y_2 atom, akkor az állítás igaz. Ha y_2 nem atom, akkor egy újabb, y_3 elemmel folytatódik az okoskodás. Így k lépés után (ha előbb nem kapunk atomot) eljutunk a következő alakú lánchoz:

$$y_k \subset y_{k-1} \subset \ldots \subset y_3 \subset y_2 \subset y_1 \subset y$$
,

ahol az y_i elemek páronként (és y-tól is) különböző elemei A-nak. Mivel A-nak n eleme van, igy legfeljebb a k=n-1 érté-kig juthatunk igy el. Ha y_k a lánc utolsó eleme, akkor y_k már atom és $y_k \subset y$, ahogy állítottuk.

11. Tegyük fel, hogy $x \in A$ atom és $y \in A$ tetszőleges. Könnyen igazolható, hogy $(x \cap y) \subset x$, ezért vagy $x \cap y = x$, azaz $x \subset y$, vagy $x \cap y = 0$.

Azt is megmutatjuk, $(x \cap y) \subset x$ valóban igaz. Azt elég igazolni, hogy $(x \cap y) \cup x = x$, ez viszont éppen a (B7.) axióma szerint igaz.

12. a) Azt fogjuk igazolni, hogy $x \in f(y \cup z)$ akkor és csak akkor igaz, ha $x \in f(y) \cup f(z)$. Tegyük fel, hogy $x \in f(y \cup z)$, ekkor $x \subseteq y \cup z$. A 11. feladat szerint mivel x atom, ezért

$$x \subset y$$
 vagy $x \cap y = 0$ és
 $x \subset z$ vagy $x \cap z = 0$.

Ha mindkét esetben a második lehetőség áll fenn, akkor

$$(x \cap y) \cup (x \cap z) = x \cap (y \cup z) = 0$$

lenne, ellentétben a feltevéssel. Így vagy $x \subset y$, azaz $x \in f(y)$, vagy $x \subset z$, azaz $x \in f(z)$ teljesül, de akkor

$$x \in f(y) \cup f(z)$$

igaz a halmazalgebrai U definíciója szerint.

Tegyük fel, hogy $x \in f(y) \cup f(z)$. Ekkor vagy

$$x \in f(y)$$
, azaz $x \subset y$, vagy $x \in f(z)$, azaz $x \subset z$ igaz.

Mivel $y \subset y \cup z$ és $z \subset y \cup z$ is igaz, így a \subset tranzitivitása miatt $x \subset y \cup z$, azaz $x \in f(y \cup z)$.

b) Tegyük fel, hogy $x \in f(y \cap z)$, azaz $x \subseteq y \cap z$ és x atom. Mivel $y \cap z \subseteq y$ és $y \cap z \subseteq z$ (l. a 11. feladat megoldását), ezért $x \subseteq y$, azaz $x \in f(y)$ és $x \subseteq z$, azaz $x \in f(z)$ is igaz, tehát

$$x \in f(y) \cap f(z)$$
.

Tegyük fel, hogy $x \in f(y) \cap f(z)$. Ekkor $x \in f(y)$, azaz $x \subset y$, és $x \in f(z)$, azaz $x \subset z$ is teljesül. Ebből azonban $x \subset y \cap z$, azaz $x \in f(y \cap z)$ következik.

c) Tudjuk, hogy tetszőleges $y \in A$ -ra $y \subset I$ (B9'.), ebből következik, hogy f(I) az összes A-beli atomot tartalmazó halmaz.

Tegyük fel, hogy $x \in f(\neg y)$ és ugyanakkor $x \in f(y)$ is igaz. A 12. b) feladat eredménye szerint ekkor

$$x \in f(\neg y) \cap f(y) = f(\neg y \cap y) = f(0),$$

tehát x = 0, de akkor x = 0, ami nem lehet. Így ha az x A-beli atomra $x \in f(\neg y)$ teljesül, akkor csak $x \in f(I) - f(y)$ állhat fenn.

Megfordítva, tegyük fel, hogy $x \in f(I) - f(y)$. Ekkor $x \notin f(y)$ tehát $x \cap y = 0$, mivel x atom. Tegyük fel azt is, az állítással ellentétben, hogy $x \notin f(\exists y)$, ekkor $x \cap \exists y = 0$. Ezekből következik, hogy

$$0 = (x \cap y) \cup (x \cap \neg y) = x \cap (y \cup \neg y) = x \cap I = x,$$

ami ellentmondás, tehát $x \in f(\neg y)$ fennáll.

d) Tegyük fel először, hogy y=z, ekkor az f definíciója szerint nyilván f(y)=f(z) is teljesül. Megforditva, tegyük fel, hogy f(y)=f(z) és $y\neq z$. Ebből a feltevésből ellentmondásra kell jutnunk. Mivel $y\neq z$, az $y\subset z$ és $z\subset y$ közül valamelyik hamis, tegyük fel például, hogy $y\subset z$ nem igaz, tehát $y\cap z\neq y$. Ebből következik, hogy $y\cap \exists z\neq 0$ (mert ha $y\cap z=0$ lenne, akkor

$$y \cap z = (y \cap z) \cup (y \cap \neg z) = y \cap (z \cup \neg z) = y \cap I = y$$

lenne, ellentétben a feltevéssel). A 10. feladat eredménye szerint ekkor van olyan x atom, hogy $x \subset y \cap \neg z$, tehát

$$x \in f(y \cap \exists z) = f(y) \cap f(\exists z),$$

azaz $x \in f(y)$ és $x \in f(\neg z) = f(I) - f(z)$, vagyis $x \notin f(z)$. Ezzel ellentmondásra jutottunk, tehát csak az y = z eset állhat fenn.

13. A feladat megoldása közvetlenül adódik az előző feladat eredményéből. Az A és az A' összes részhalmaza között a leképezést értelmezzük így:

 $x \in A$ -hoz rendeljük hozzá $f(x) \subset A'$ -t, ahol f a 12. feladatban definiált leképezés. A 12. d) szerint ez egy-egy-értelmű és a), b), c) szerint művelettartó.

Eredményünk azt jelenti, hogy minden véges Boole-algebra izomórf egy halmaz összes részhalmazainak algebrájával. Végtelen Boole-algebrák esetén egy kissé gyengébb állítás igazolható. Ehhez azonban további, mélyebb halmazelméleti eszközökre lenne szükség, igy ezt itt nem tárgyaljuk. 14. Az előző feladat eredménye szerint minden véges Boole-algebra izomorf egy halmaz összes részhalmazának algebrájával, tehát a Boole-algebra alaphalmazának annyi eleme van, mint a megfelelő halmaz részhalmazainak száma. Az I. fejezetben igazoltuk, hogy egy véges, k elemű halmaznak 2^k részhalmaza van, ezért a Boole-algebra alaphalmazának is ennyi eleme van.

15. Ebben az esetben az alaphalmaz elemeit is könnyen felsorolhatjuk:

$$A = \{1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210\}.$$

Először is világos, hogy az így definiált műveletek nem vezetnek ki az alaphalmazból, bármely két A-beli elem legkisebb közös többszöröse, legnagyobb közös osztója, bármelyik A-beli elem komplementer osztója is A-beli. Ellenőriznünk kell, hogy az így definiált műveletek kielégítik a (B1.)–(B10.) axiómákat.

A legnagyobb közös osztó és legkisebb közös többszörös tulajdonságaiból következik, hogy a műveletek kielégítik a (B1.)–(B4.) axiómákat.

A (B5.) axióma teljesülését a következőképpen igazolhatjuk. Használjuk fel, hogy két (vagy több) szám legnagyobb közös osztóját, ill. legkisebb közös többszörösét úgy számíthatjuk ki, hogy a számokat felírjuk prímszámhatványok szorzataként, és a legnagyobb közös osztó prímtényezős előállításába minden prímszámot a kitevők minimumával, a legkisebb közös többszörösbe pedig a kitevők maximumával mint kitevővel veszünk be. Azt kell igazolnunk, hogy tetszőleges $a,b,c\in A$ esetén

$$(a; [b; c]) = [(a; b); (a; c)].$$

Legyen $a = 2^{x_1} \cdot 3^{x_2} \cdot 5^{x_3} \cdot 7^{x_4}$, $b = 2^{y_1} \cdot 3^{y_2} \cdot 5^{y_3} \cdot 7^{y_4}$ és $c = 2^{x_1} \cdot 3^{x_2} \cdot 5^{x_3} \cdot 7^{x_4}$, ahol x_i, y_i és z_i értéke is 0 vagy 1 lehet.

Ekkor az előző megjegyzés szerint a bizonyítandó egyenlőség bal oldalán álló természetes szám prímtényezőinek kitevője:

$$\min(x_i, \max(y_i, z_i))$$
 $(i = 1, 2, 3, 4),$

míg a jobb oldalán álló természetes számban az egyes primek kitevői:

$$\max (\min (x_i, y_i), \min (x_i, z_i))$$
 $(i = 1, 2, 3, 4).$

A minimum és a maximum tulajdonságaiból nyilvánvaló, hogy a megfelelő kitevők megegyeznek, tehát a két oldal valóban egyenlő. Teljesen hasonló módon igazolható a (B6.) axióma teljesülése is.

A (B7.) axiómát is fogalmazzuk át: tetszőleges $a, b \in A$ -ra

$$\lceil (a;b);b\rceil = b.$$

Ez nyilván igaz, hiszen (a; b) osztója b-nek, így legkisebb közös többszörösük nyilván b. Teljesen hasonlóan látható be (B8.)-ról, hogy teljesül.

Érdemes megjegyezni, hogy eddig nem használtuk ki lényegesen A-nak azt a tulajdonságát, hogy elemei éppen 210-nek, egy olyan számnak az osztói, amelynek a prímtényezős előállításában a prímszámok legfeljebb első hatványon szerepelnek. Az ilyen tulajdonságú természetes számot négyzetmentes számnak nevezik. Az A alaphalmaznak erre a tulajdonságára a (B9.) és (B10.) teljesülésének igazolásakor lesz szükség.

Vizsgáljuk (B9.)-et és (B10.)-et. Mivel 210 négyzetmentes szám, nyilvánvaló, hogy tetszőleges $a \in A$ -ra

$$\left(a; \frac{210}{a}\right) = 1 \quad \text{es}$$

$$\left[a; \frac{210}{a}\right] = 210.$$

Ebből már nyilván következik (B9.) és (B10.) fennállása. Érdemes észrevenni, hogy a feladat állítása 210 helyett tetszőleges négyzetmentes számra is igaz.

V. ELSŐRENDŰ LOGIKÁK ÉS ALKALMAZÁSAIK

1. Relációk és kvantorok

Vizsgáljuk meg és elemezzük a matematikakönyvekből kiválasztott következő bizonyításokat:

(I) "Tétel. Ha két egyenes olyan, hogy minden sík, amelyik az egyiket metszi, metszi a másikat is, akkor a két egyenes párhuzamos.

Bizonyítás. Azt kell belátnunk, hogy ha a és b ilyen tulajdonságú egyenesek, akkor sem metszők, sem kitérők nem lehetnek.

- a) Ha a és b metszik egymást egy P pontban, akkor egy S_1 síkot határoznak meg. Legyen a Q pont az S_1 síkon kívül. Q és a egy S síkot határoz meg. Ez az S sík illeszkedik a-hoz, viszont metszi b-t, mert egyrészt P közös pontjuk, másrészt S nem illeszkedik b-hez, hiszen akkor az a, b egyenesek mindegyikét tartalmazná, és ezért S_1 -gyel azonos volna, ami lehetetlen, mert Q nincs S_1 -ben.
- b) Ha a és b kitérők, akkor b-nek egy B pontja a-val együtt egy S síkot határoz meg. S illeszkedik a-hoz, viszont metszi b-t, mert egyrészt B közös pontjuk, másrészt S nem illeszkedik b-hez, hiszen akkor a kitérő a és b egyenesek egy síkban volnának.

Mindkét esetben találtunk olyan S sikot, amelyik azt mutatja, hogy a és b nem rendelkezik a tételben kimondott tulajdonsággal."

(II) "Ha a többszöröse b-nek, akkor a és b közös osztóinak összessége egybeesik b osztóinak összességével; speciálisan (a;b) = b.

Valóban, a és b minden közös osztója magának b-nek is. Fordítva, ha a többszöröse b-nek, akkor b minden osztója osztója a-nak is, vagyis közös osztója a-nak és b-nek. Így a és

b közös osztóinak összessége egybeesik b osztóinak összességével. Minthogy b legnagyobb osztója maga b, tehát (a; b) = b."

Mindkét bizonyítás olyan, hogy eddigi eszközeinkkel nem tudjuk pontosan elemezni a szerkezetét. Az (I) bizonyítás tartalmát átgondolva kiderül, hogy egy jól meghatározott halmaz, a tér pontjai, egyenesei és síkjai által alkotott halmaz elemei közti kapcsolatokról, relációkról szól. Ilyen relációkról van szó benne, mint például: "az x egyenes metszi az Y síkot", "az x egyenes párhuzamos az y egyenessel", "az x és v egyenesek metszők", "az x és v egyenesek kitérők", "az x egyenes illeszkedik az Y síkra" stb. Ezek az idézőjelbe irt mondatsémák vagy más néven nyitott mondatok önmagukban sem nem igazak, sem nem hamisak. Igaz vagy hamis mondatot úgy kapunk belőlük, ha a bennük szereplő változók (jobb szóval "helypótlók") helyére konkrét egyenesek, ill. síkok nevét helyettesítjük. Így ezek a nyitott mondatok vagy másképpen predikátumok olyan függvényeknek tekinthetők, amelyek egy halmaz elemein, ill. elempárjain vannak értelmezve, és ezekhez az igaz vagy hamis logikai értékeket rendelik.

Hasonló a helyzet a (II) bizonyítás esetében is. Itt alaphalmazként kínálkozik a természetes számok halmaza ($N = \{0, 1, 2, ..., n, ...\}$). A predikátumok vagy nyitott mondatok például a következők: "x osztója y-nak", "x és y közös osztója z", "x többszöröse y-nak", "x legnagyobb osztója y" stb.

A bizonyítás elemzésekor még egy összetevőt vehetünk észre. Fontos szerepük van az ilyen jellegű mondatrészeknek: "minden egyenes...", "van olyan S sík...", "minden közös osztó...", "a minden osztója..." stb. Ezek a nyelvi kifejezések olyan műveleteket jelölnek, amelyeket predikátumokon hajtunk végre, a művelet eredménye pedig igaz, hamis vagy nyitott mondat lesz. Ezeknek a pontos definíciójára hamarosan visszatérünk.

A matematikai bizonyítások, következtetések "finomszer-kezetének" elemzése szempontjából is fontos logikai eszközök vizsgálatát kétféle szempont szerint közelítjük meg. Egyrészt szemantikai, tartalmi szempontból vizsgáljuk most a predikátumokat, relációkat, a rajtuk végzett műveleteket, és a későbbiek során majd még visszatérünk a szemantikai vizsgálattal párhuzamos, szintaktikai, formális vizsgálatra is. Ezt a vizsgálatot ahhoz lehetne hasonlítani, amikor egy matematikai állitást pontosan akarunk megfogalmazni, pl. az algebra vagy a geometria nyelvén.

A relációk definíciója előtt szükségünk lesz néhány halmazelméleti fogalomra.

Ha adott egy A és egy B halmaz, akkor $A \times B$ -vel jelöljük és a két halmaz direkt vagy Descartes-szorzatának nevezzük a két halmaz elemeiből képezett rendezett párok halmazát:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Abban a speciális esetben, amikor A = B, az $A \times A$ helyett rövidebben az A^2 jelölést is használjuk.

Általánosan, ha adott k számú halmaz: $A_1, A_2, ..., A_k$, akkor $A_1 \times A_2 \times ... \times A_k$ -val jelöljük és az $A_1, A_2, ..., A_k$ halmazok direkt vagy Descartes-féle szorzatának nevezzük az öszszes olyan rendezett k-asok halmazát, amelyeknek komponensei sorra az $A_1, A_2, ..., A_k$ halmazából valók:

$$A_1 \times A_2 \times ... \times A_k =$$

= $\{(a_1, a_2, ..., a_k) | a_i \in A_b, i = 1, 2, ..., k\}.$

Abban a speciális esetben, amikor $A_1 = A_2 = ... = A_k = A$, az $A \times A \times ... \times A$ halmazt röviden így jelöljük: A^k .

Gyakorló feladatok

1. Tegyük fel, hogy |A| = n és |B| = k. Állapítsuk meg $A \times B$ elemeinek számát!

Megoldás:

Ha |A| = n, akkor a párok első komponensét n-féleképpen választhatjuk. Mivel |B| = k, minden első komponenshez még k darab különböző második komponens választható. Ez tehát azt jelenti, hogy összesen $n \cdot k$ különböző rendezett párt tudunk képezni az A és B halmaz elemeiből, tehát

$$1A \times B1 = n \cdot k$$
.

Abban a speciális esetben tehát, amikor A = B és |A| = n,

$$|A^2| = n^2.$$

2. Legyen $|A_1| = n_1$, $|A_2| = n_2$, ..., $|A_k| = n_k$. Állapítsuk meg $A_1 \times A_2 \times ... \times A_k$ elemeinek számát!

Meaoldás:

Az előző feladat szerint k=2 esetén a szorzathalmaz elemeinek száma a tényezők elemei számának szorzata. k-ra vonatkozó teljes indukcióval igazoljuk, hogy ez az állítás k>2 esetén is igaz. Mivel tudjuk, hogy az állítás k=2-re fennáll, elég megmutatni, hogy k>2 esetén (k-1)-ről öröklődik k-ra is. Tegyük fel, hogy (k-1)-re igaz az állítás. Megmutatjuk, hogy ebből köyetkezik az állítás k-ra is.

Nyilvánvaló, hogy az $A_1 \times A_2 \times \ldots \times A_{k-1} \times A_k$ halmaznak ugyanannyi eleme van, mint az $(A_1 \times A_2 \times \ldots \times A_{k-1}) \times A_k$ halmaznak, hiszen a két halmaz elemei között kölcsönösen egyértelmű megfeleltetés létesíthető a következő módon: az

$$(a_1, a_2, ..., a_{k-1}, a_k) \in A_1 \times A_2 \times ... \times A_{k-1} \times A_k$$

elemnek megfeleltetjük az

$$((a_1, a_2, ..., a_{k-1}), a_k) \in (A_1 \times A_2 \times ... \times A_{k-1}) \times A_k$$

elemet. Azt már tudjuk, hogy

$$|(A_1 \times A_2 \times \ldots \times A_{k-1}) \times A_k| = |A_1 \times A_2 \times \ldots \times A_{k-1}| |A_k|.$$

Az indukciós feltevés szerint

$$|A_1 \times A_2 \times ... \times A_{k-1}| = |A_1| |A_2| ... |A_{k-1}|,$$

Így tehát

$$|A_1 \times A_2 \times ... \times A_k| = |A_1| |A_2| ... |A_k| = n_1 n_2 ... n_k$$

Térjünk vissza még röviden a példaként választott (II) bizonyításban szereplő predikátumokra. Az alaphalmaz az N, a természetes számok halmaza. Láttuk, hogy például az "x osztója y" nyitott mondat két változója helyére N elemeit helyettesítve igaz vagy hamis állításokat kapunk. Úgy tekinthetjük tehát a predikátumot, hogy az N×N halmazt leképezi az igaz, hamis logikai értékek halmazába, az {i, h} halmazba. A predikátumot egyértelműen jellemezhetjük az N×N halmaznak azzal a részhalmazával, amelynek elemeihez az igaz logikai értéket rendeli. Megállapodunk abban, hogy az N×N halmaznak ezt a részhalmazát az "x osztója y" relációnak nevezzük.

Hasonló módon, az "x és y közös osztója z"-t nyitott mondatként tekintve, az x, y és z helyére N elemeit helyettesítjük. Így igaz vagy hámis állításokat kapunk. A predikátumot ebben az esetben is egyértelműen jellemezhetjük az $N \times N \times N = N^3$ halmaznak azzal a részhalmazával, amelynek elemeihez az igaz logikai értéket rendeli hozzá. Az N^3 halmaznak ezt a részhalmazát az "x és y közös osztója z" relációnak nevezzük.

Harmadik példaként az (1) bízonyításból válasszunk ki egy nyitott mondatot: "az x egyenes illeszkedik az Y sikra". Ha E jelöli a tér egyeneseinek, S a síkoknak a halmazát, akkor itt is nyilvánvaló, hogy az x helyére E, Y helyére S elemeit helyettesítve igaz vagy hamis állításokat kapunk. A megfelelő predikátumot ismét egyértelműen jellemezhetjük az $E \times S$ halmaznak azzal a részhalmazával, amelynek elemeihez az igaz logikai értéket rendeli, ezt a részhalmazt az "x egyenes illeszkedik az Y sikra" relációnak nevezzük.

Végül még egy példaként alaphalmaznak válasszuk az N halmazt és predikátumnak az "x prímszám" nyitott mondathoz tartozót. Világos, hogy itt x helyére N elemeit helyettesítve igaz, ill. hamis állításokat kapunk és az "x prímszám" relációt azonosíthatjuk a prímszámok halmazával, azaz

N-nek azzal a részhalmazával, amelynek elemeire a nyitott mondat igaz lesz.

Definícióként általában megállapodunk abban, hogy ha $A_1,\ A_2,\ldots,A_k$ tetszőleges nem üres halmazok, akkor az $A_1\times A_2\times\ldots\times A_k$ halmaz tetszőleges ϱ részhalmazát az $A_1,\ A_2,\ldots,A_k$ halmazok elemei között értelmezett k-változós relációnak nevezzük. A megállapodás szerint tehát a matematikában tetszőleges $\varrho\subset A_1\times A_2\times\ldots\times A_k$ egy k-változós reláció. Azt mondjuk, hogy az $a_1\in A_1,\ a_2\in A_2,\ldots,a_k\in A_k$ elemek között fennáll a ϱ reláció, ha

$$(a_1, a_2, \ldots, a_k) \in \varrho$$

és nem áll fenn a q reláció, ha

$$(a_1, a_2, \ldots, a_k) \notin \varrho$$

Az alkalmazásokban igen gyakori eset, hogy $A_1 = A_2 = \dots = A_k = A$. Ekkor a $\varrho \subset A^k$ halmazról azt mondjuk, hogy az A halmazon értelmezett k-változós reláció.

Megjegyzések. 1. Szokás a reláció fogalmát a következő rendezett párral is definiálni: $(\varrho, A_1 \times A_2 \times ... \times A_k)$, ahol $\varrho \subset A_1 \times A_2 \times ... \times A_k$ és $A_1, ..., A_k$ egyike sem üres. Ebben az esetben ϱ -t a reláció gráfjának nevezik.

2. Egy másik, szintén szokásos definíció a relációra a következő:

az $A_1, A_2, ..., A_k$ nem üres halmazok elemei között értelmezett ϱ reláció olyan függvény, amely az $A_1 \times A_2 \times ... \times A_k$ halmazt az $\{i, h\}$ logikai értékekből álló halmazba képezi le. Rövid jelöléssel:

$$g: A_1 \times A_2 \times ... \times A_k \rightarrow \{i, h\}.$$

Ezt a definíciót olyankor használják, amikor a függvényt alapfogalomnak tekintik, vagy legalábbis nem a reláció fogalmára vezetik víssza.

Az így definiált relációt néha logikai függvénynek is nevezik (ti. olyan függvény, amelynek értékei logikai értékek). Ezt a definíciót több ízben nekünk is kényelmes lesz használni.

Mindkét most említett definicióról nyilvánvaló, hogy ekvivalens az elsőként megadott definicióval.

Gyakorló feladatok

- 3. Határozzuk meg az A véges halmazon értelmezett
- a) kétváltozós,
- h) k-változós relációk számát, ha |A| = n.

Megoldás:

a) Tudjuk, hogy ha |A| = n, akkor $|A^2| = n^2$. Az *A* halmazon annyi kétváltozós reláció adható meg, ahány részhalmaza van A^2 -nek. Az l. fejezet 1. feladata szerint A^2 -nek 2^{n^2} részhalmaza van, tehát az *A* halmazon összesen 2^{n^2} kétváltozós reláció van.

b) Mivel $(A^k) = n^k$, igy az a) részben követett gondolatmenet szerint az A halmazon 2^{n^k} számú k-változós reláció van.

4. Tegyük fel, hogy $|A_1| = n_1$, $|A_2| = n_2$, ..., $|A_k| = n_k$. Hány különböző reláció van az A_1 , A_2 , ..., A_k halmazok elemei között?

Megoldás:

Mivel a 2. gyakorló feladat eredménye szerint

$$|A_1 \times A_2 \times \ldots \times A_k| = n_1 n_2 \ldots n_k,$$

és annyi különböző reláció adható meg az A_1, A_2, \ldots, A_k halmazok elemei között, ahány részhalmaza van az $A_1 \times A_2 \times \ldots \times A_k$ halmaznak, ezért a relációk száma:

$$2^{n_1 \cdots n_2 \cdots n_k}$$

A bevezető példákban láttuk, hogy a "minden..." és a "van olyan..." kifejezéseknek is fontos szerepük van a matematikai állítások szerkezetében. A "minden..." rövid jelölésére bevezetjük a következő szimbólumot: \forall , a "van olyan..." jelölésére pedig a \exists jelet. Ezeket igy olvassuk: \forall ; "minden", \exists : "van olyan".

A logikában a V-t univerzális (általános) kvantorjelnek, a 3-t egzisztenciális (létezési) kvantorjelnek hívjuk. A kvantor szó arra utal, hogy a jelek az utánuk álló kifejezések mennyiségére vonatkoznak. Egyelőre rövidítésként használjuk ezeket a jeleket és pontos logikai értelmükre hamarosan visszatérünk.

Az eddigi eszközeinkkel megfogalmazhatunk egy olyan nyelvet, amelyen már ki lehet fejezni a matematikai bizonyítások, állítások "fimomszerkezetét". Előkészítésként nézzünk két példát.

Írjuk le a következő számelméleti állítások pontos szerkezetét:

- a) "Minden prímszámnál van nagyobb" (azaz a prímszámok száma végtelen);
- b) "Minden a és b pozitív egész számhoz van olyan q és r természetes szám, hogy r < b és $a = b \cdot q + r$."

Az a) állítás vizsgálatakor látható, hogy célszerű bevezetni egy jelölést a "prímszám" egyváltozós relációra vagy tulajdonságra. Legyen ez P és a szokásos módon használjuk a természetes számok körében értelmezett < reláció jelét. Ezekkel és logikai jelekkel igy írhatjuk le az a) állítás szerkezetét:

$$\forall x (P(x) \to \exists y (x < y \land P(y)).$$

A kapott jelsorozatot így olvassuk: minden x-re igaz, hogy ha P(x) (azaz x prím), akkor van olyan y, hogy x kisebb y-nál és P(y) (azaz y is prím). Látható, hogy éppen az a) állitást kaptuk, kicsit körülményesebben, de pontos, világos logikai szerkezettel megfogalmazva.

A b) állítás szerkezetét a következő jelsorozattal írhatjuk le:

$$\forall a \forall b ((a > 0 \land b > 0) \rightarrow \exists q \exists r (r < b \land a = b \cdot q + r)).$$

Ebben és az előző állításban is az x, y, a, b, q, r szimbólumok változójelek. Példáinkban ezek a természetes számok N alaphalmazára vonatkoznak.

Látható tehát, hogy matematikai állitások logikai szerkezetének leírásához a következő tipusú jelekre van szükségünk: változójelek, konstansok jelei (pl. 0), függvényjelek (pl.

+,·), relációjelek (pl. P, <, =), logikai jelek (pl. ¬, ∧, →, ∀) és zárójelek (ezeket segédjeleknek hivjuk). Világos, hogy a matematika más területein (pl. a geometriában, az analízisben) az állítások szerkezetének leírásához más függvényjeleket, ill. relációjeleket is be kell venni a nyelvbe, ill. ugyanazok a jelek más relációkat, ill. függvényeket jelölhetnek. Fontos megkülönböztetni egymástól a következőkben a relációkat és relációjeleket, ill. a függvényeket és függvényjeleket, általában a jeleket és a jelölt objektumokat. Először foglalkozzunk most a jelekkel magukkal, azaz a logikai nyelv szintaktikájával (alaktanával), így tehát a nyelv formai szerkezetét kell tisztázni. A jelek, jelsorozatok jelentésével, értelmével később foglalkozunk.

Elsőrendű nyelvnek fogjuk nevezni a következő típusú jelekből álló jelhalmazt:

változójelek $(x, y, z, x_1, y_1, z_1 \text{ stb.});$

konstansjelek;

függvényjelek (f, g, h, ...), mindegyik függvényjelhez előírva gondoljuk, hogy hány változós függvényt jelölhet;

relációjelek (P, Q, R, ...), mindegyik relációjelhez itt is előírva gondoljuk, hogy hány változós relációt jelölhet;

logikai jelek $(\neg, \land, \lor, \rightarrow, \leftrightarrow, \exists, \forall)$;

segédjelek (("kezdőzárójel",) "végzárójel" és , "vessző"). Egyelőre nem rögzítjük le pontosan a változójeleket, konstansjeleket, függvényjeleket, relációjeleket. Ezek nyelvről nyelvre változhatnak és a nyelv konkrét célra való alkalmazásakor mindig rögzítjük ezeket. Úgy tekinthetjük, hogy most egyszerre egy "nyelvcsaládot", sok konkrét nyelvet vizsgálunk. Minden nyelvhez hozzátartoznak majd a változójelek, a logikai jelek és a segédjelek.

A nyelv jeleiből "értelmes" jelsorozatokat akarunk késziteni, ezekkel akarjuk a matematikai állítások szerkezetét leírni. Két, különböző jellegű értelmes jelsorozatra lesz szükségünk. A kifejezésekre (ilyenek pl.: f(x, y, z), 0, x + y) és a formulákra (ilyenek pl.: P(x), $\forall x \exists y x < y$, x = y).

Kifejezések a következők lehetnek: bármely változójel, bármely konstansjel, végül bármely olyan jelsorozat, amely függvényjellel kezdődik és azután zárójelben, vesszőkkel elválasztva annyi kifejezés következik, ahány változós függvényjelről van szó (kétváltozós függvényjelek esetében gyakran $f(k_1, k_2)$ helyett ezt írjuk: $k_1 f k_2$).

A formulák "építőkövei" a primformulák. Ezek egy relációjellel kezdődnek és ezután zárójelben annyi kifejezés következik – vesszőkkel elválasztva – ahány változós relációjelről van szó (kétváltozós relációk esetén $R(k_1, k_2)$ helyett gyakran ezt írjuk: k_1Rk_2).

Ha α és β formulák, akkor ($\neg \alpha$), ($\alpha \land \beta$), ($\alpha \lor \beta$), ($\alpha \to \beta$) és ($\alpha \leftrightarrow \beta$) is formulák.

Végül, ha α formula és x egy változójel, akkor $\forall x\alpha$ és $\exists x\alpha$ is formulák.

A legkülső zárójelet rendszerint elhagyjuk a formulából és az egymás után alkalmazott \neg jeleket is elég egy zárójellel jelölni (pl.: $\exists x P(x) \land \exists x Q(x)$ vagy $\neg \neg (P(x, y) \to R(x, z))$).

Foglalkozzunk most a formulák és kifejezések értelmével, jelentésével! Világos, hogy egy nyelvet azért hozunk létre, hogy valamiről beszéljünk ezen a nyelven. Az elsőrendű nyelv jeleinek értelmét, interpretációját a következőképpen adhatjuk meg. Először is meg kell mondanunk azt az A alaphalmazt, amelynek elemeiről szólnak az állitások (pl. a természetes számok N halmaza). Erről mindig kikötjük, hogy nem üres. A változójelek az A elemeiből vehetik fel értéküket. A konstansokról rögzíteni kell, hogy az A alaphalmaz melyik elemét jelölik. A nyelv függvényjeleihez is ki kell jelölni sorra egy-egy A halmazon értelmezett, A-beli értékeket felvevő konkrét függvényt, amit az adott összefüggésben ez a jel jelöl. Természetesen mindig ügyelni kell arra, hogy annyi változós függvényt jelöljünk ki, ahány változós függvényjelről van szó (pl. a + jelölje az N-en értelmezett összeadást).

Hasonlóképpen, a nyelv relációjeleihez hozzárendelünk az A halmazon értelmezett, megfelelő változós relációkat. Ezzel megadtuk a nyelv jeleinek értelmét.

A kifejezések jelentését most már könnyen megadhatjuk. Bármelyik konkrét kifejezés értéke – ha ideiglenesen a változók értékét is rögzítjük – nyilván egy A-beli elem lesz.

A formulák értékének kiszámításakor a következőképpen járunk el. A prímformulákról – bármely rögzitett változóértékek mellett – el tudjuk dönteni, hogy igaz vagy hamis értéket vesznek-e fel. A \neg , \wedge , \vee , \rightarrow , \leftrightarrow műveleti definícióinak felhasználásával az ezekkel a műveletekkel felépülő formulák logikai értékét is meg tudjuk határozni, ha ismerjük a komponensek logikai értékét. Egy $\forall x\alpha$ alakú formula értékének megállapításakor a következő módon járunk el. Megvizsgáljuk az α formula értékét az x változó minden szóba jöhető értékére, és ha ez mindig igaz, akkor $\forall x\alpha$ értéke legyen igaz, egyébként pedig hamis. Egy $\exists x\alpha$ alakú formula értékét így állapítjuk meg: az α formula értékét megvizsgáljuk az α változó minden szóba jövő értékére. Ha ez mindig hamis, akkor $\exists x\alpha$ értéke legyen hamis, egyébként pedig igaz.

Gyakorló feladatok

5. Válasszuk példaként azt a nyelvet, amelyben a segédjeleken és logikai jeleken kívül egyetlen kétváltozós relációjel van: <. A nyelv következő formuláit vizsgáljuk:

- a) $\forall x \exists y (x < y);$
- b) $\exists x \forall y (x \leq y)$;
- c) $\exists y \forall x (x \leq y);$
- $d) \quad \forall y \exists x (x < y);$
- e) $\forall x \forall y \exists z (x < y \rightarrow (x < z \land z < y)).$

Állapítsuk meg a formulák értékét a következő interpretációk esetén: (1) Alaphalmaz N és < jelenti a természetes számok szokásos rendezését.

(II) Alaphalmaz Q (a racionális számok halmaza) és < jelenti a racionális számok szokásos rendezését.

Meaoldás:

Először az (1) interpretáció esetében állapítsuk meg a formulák értékét!

- a) Az állítás igaz, azt fejezi ki, hogy minden természetes számnál van nagyobb (a természetes számok halmaza végtelen).
- h) Az állítás igaz, azt fejezi ki, hogy van olyan természetes szám, amelynél minden más természetes szám nagyobb, ilyen nyilván a 0.
- c) Az állitás hamis, mert nincs olyan természetes szám, amelyik minden másnál nagyobb.
- d) Az állítás hamis, mert a 0-ra nem igaz, hogy van nála kisebb természetes szám.
- e) Az állítás hamis, mert vannak szomszédos természetes számok, amelyek között nincs másik.
 - A (11) interpretáció esetén:
- a) Az állítás igaz, mert minden racionális számnál van nagyobb racionális szám.
- b) Az állítás hamis, mert minden racionális számnál van kisebb, nincs legkisebb racionális szám.
 - c) Az állítás hamis, mert nincs legnagyobb racionális szám.
 - d) Az állítás igaz, mert minden racionális számnál van kisebb.
- e) Az állítás igaz, mert bármely két különböző racionális szám között van racionális szám (például a kettő számtani közepe).

Érdemes összefoglalni a két interpretációban kapott logikai értékeket:

6. Egy elsőrendű nyelv jelei legyenek a következők: egy konstans jel: ϵ , egy kétváltozós függvényjel: f. egy egyváltozós relációjel: P és egy kétváltozós relációjel: =, továbbá a logikai jelek és a segédjelek. A nyelv következő kifejezéseit és formuláit vizsgáljuk:

- a) = f(x, c);
- b) $\forall x \exists v P(f(x, v));$

- c) f(x, y) = f(y, x);
- df $\forall z\exists y (f(x, y) = z).$

A következő két interpretációban adjuk meg a felsorolt kifejezések és formulák értékét:

(1) Az alaphalmaz: D_1 : $\{0,1,2\}$, c_1 : $\{0,2\}$, = jelentse az azonosságrelációt D-n, azaz = ${}_1$: $\{(0,0),(1,1),(2,2)\}$ végül f_1 -et a következő táblázattal definiáljuk:

f_1	0	1	2
0	0	1	2
1	-1	2	Į.
2	2		2

(II) Az alaphalmaz: D_{11} ugyanaz, mint D_1 , v_{11} : 2, P_{11} : $\{1\}$, = itt is jelentse az azonosságrelációt és f_{11} -et a következő táblázattal értelmezzük:

f_{11}	0	ı	2
0	0	0	0
1	0	l t	2
2	0	2	2

Megoldás:

Válasszuk most azt az utat, hogy párhuzamosan értékeljük ki az egyes kifejezéseket, ill. formulákat az {[] és (]] interpretációban:

<i>a)</i>	X	$f_1(\mathbf{x}, c_1)$	$\int_{11}(x,c_{11})$
	0	0	0
		1	2
	2	2	2

b) Először írjuk fel a P(f(x, y)) formulához tartozó kétváltozós relációkat az (I), ill. (II) interpretációban, azaz soroljuk fel egy-egy halmaz elemeiként azokat a $D \times D$ elemeket, amelyre a formula értéke igaz lesz:

$$P_1(f_1(x, y)) = \{(0, 0), (0, 2), (1, 1), (2, 0), (2, 2)\},$$

$$P_{11}(f_{11}(x, y)) = \{(1, 1)\}.$$

- c) A formula adott x és y érték mellett akkor és csak akkor igaz, ha az (x,y) és (y,x) helyen a függvény értéke egyenlő. A két párnak megfelelő függvényértékek a "főátlóra" szimmetrikusan helyezkednek el. Így a formula értéke minden olyan helyen igaz, amelyre fennáll, hogy a "főátlóra" szimmetrikus helyeken ugyanazok az elemek állnak. Mivel f_1 és f_{11} definíciója is olyan, hogy a táblázat a "főátlóra" szimmetrikus, ezért a formula mindkét interpretációban, minden x és y mellett igaz értékű lesz.
- d) Itt ismét x-től függ a formula értéke, amelyet az f_1 és f_{11} definiciójából állapíthatunk meg:

X.	(1)	(11)
0	i	h
1	h	i
2	h	h
		i

A gyakorló feladatokban kapott eredmények alapján világos, hogy egy rögzített nyelv kifejezéseinek és formuláinak értéke lényegesen függ az interpretációtól, méghozzá nem csak az alaphalmaztól, hanem a konstansok, a függvényjelek és a relációjelek jelentésétől. Ha egy adott interpretációt is rögzítünk, akkor a kifejezések értéke már csak a változók értékétől függ, így egy kifejezés egy rögzített interpretációban annyi változós függvényt ad meg, ahány változó szerepel a felépítésében. Azoknak a formuláknak az értéke, amelyekben vannak olyan változók, amelyekre nem vonatkozik kvantor, szintén függ a változók értékétől (pl. a 6. gyakorló feladatban c) és d)). Az olyan formulák értéke, amelyekben minden változójelre valamilyen kvantor vonatkozik, már rögzített, nem függ a változók értékétől, vagy igaz, vagy hamis. Az ilyen formulák fejezik ki az állításokat (pl. az 5. gyakorló feladat formulái, vagy a 6. b)). Ennek megfelelően vezetjük be a következő elnevezéseket:

Egy kifejezésben vagy formulában egy változó olyan előfordulását, amelyre nem vonatkozik kvantor, szabadnak nevezzük, az olyan előfordulását, amelyre kvantor vonatkozik (másképpen, kvantor hatáskörében szerepel) kötöttnek nevezzük.

Például a $\forall x P(x) \rightarrow Q(x, y)$ formulában az x első és második előfordulása kötött, mig a harmadik előfordulása szabad (hiszen erre nem vonatkozik az univerzális kvantor); az y változó előfordulása szabad. A $\forall x (P(x) \rightarrow Q(x))$ formulában az x minden előfordulása kötött.

Az olyan formulát, amelyben minden változó minden előfordulása kötött, zárt formulának nevezzük, míg az olyan formulát, amelyben van szabadon előforduló változó, nyitott formulának.

Zárt formulák például: $\forall x \exists y R(x, y), \forall x \exists y \forall z (f(x, y) = z)$; nyitott formulák például: $\forall x P(x) \land Q(x), f(x, y) = z, \exists y R(x, y), Q_1(x, y, z)$.

Megjegyezzük még, hogy az "elsőrendű nyelv" és az "elsőrendű logika" elnevezésekben az "elsőrendű" jelző arra utal, hogy ebben a nyelvben csak olyan kvantorokat használunk, amelyek változójelekre vonatkoznak (pontosabban, csak olyan változójelekre, amely változók az interpretációban az alaphalmaz elemeiből vehetik értéküket). Kidolgoztak olyan logikai nyelveket, amelyekben relációjelekre vonatkozó kvantorok is vannak. Ezekben természetesen olyan változójelek is előfordulnak, amelyek tetszőleges relációkat jelenthetnek. Ezekkel ebben a könyvben nem foglalkozunk.

Feladatok

- 1. Igazoljuk, hogy tetszőleges A, B és C halmazokra fennállnak a következő azonosságok:
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$;
 - b) $(A \cap B) \times C = (A \times C) \cap (B \times C);$
 - c) $(A-B)\times C = (A\times C)-(B\times C)$.

- 2. Egy elsőrendű nyelvben a logikai és segédjeleken kivül legyen egy kétváltozós függvényjel: f, és két kétváltozós relációjel: | és = . A nyelv egy interpretációjában legyen az alaphalmaz N* (a pozitív egész számok halmaza), f jelölje a két szám legnagyobb közös osztóját, | az oszthatóság relációt és = jelentése legyen az azonosság. Állapítsuk meg ebben az interpretációban a nyelv következő formuláinak logikai értékét:
 - a) $\forall x \exists y (x \mid y);$
 - b) $\forall x \forall y (x \mid y)$;
 - c) $\exists x \forall y (x \mid y)$;
 - d) $\exists x \exists y (x \mid y);$
 - e) $\forall x \forall y \forall z (f(x, y) = z);$
 - $f) \quad \forall x \exists y \forall z (f(x, y) = z);$
 - g) $\forall x \forall z \exists y (f(x, y) = z);$
 - h) $\forall z \exists x \exists y (f(x, y) = z).$
- 3. A következő matematikai állítások logikai fordításának elkészítéséhez adjunk meg alkalmas elsőrendű nyelvet és írjuk fel az állítások logikai szerkezetét kifejező formulákat:
- a) Minden, 1-nél nagyobb egész számnak van prímosztója;
- b) Ha egy egyenes merőleges egy S síkra illeszkedő két nem párhuzamos egyenesre, akkor merőleges minden olyan egyenesre, amely illeszkedik az S síkra;
- c) Minden valós együtthatós harmadfokú polinomnak van gyöke a valós számok körében.
- 4. Adjunk meg olyan elsőrendű nyelvet, amely alkalmas a rokonsági relációk egy részének formulákkal való leírására. Vegyünk fel a "nő", "házastársak", "gyermeke" relációknak

megfelelő relációjeleket és fejezzük ki a kapott nyelv formuláival a következő rokonsági relációkat:

- a) "anyja";
- b) "testvére";
- c) "nagyapja";
- d) "unokatestvére";
- e) "apósa".

2. Modellek, azonosságok, azonosan igaz formulák, következtetési szabályok

A logika és igy a matematikai logika feladata is általános gondolkodási törvények, következtetési sémák elemzése. A következőkben a célunk megfogalmazni, hogy az elsőrendű logikában mikor tekintünk két formulát logikailag ekvivalensnek vagy azonosnak, ill. mikor tekintünk egy formulát azonosan igaznak. Ezeknek az eszközöknek a birtokában azután már könnyű lesz megfogalmazni a helyes következtetési szabályok fogalmát.

A következőkben (ebben a részben) rögzítettnek gondolunk egy L elsőrendű nyelvet és az L nyelv jeleiből felépülő kifejezések, ill. formulák körében vizsgálódunk. Érdemes észrevenni, hogyha az L nyelv kifejezéseit és formuláit interpretáljuk, akkor a nemüres A alaphalmaz kijelölése mellett mindig annyi konstanst kell kijelölnünk A-ban, ahány konstans jel van L-ben. Az L-beli függvényjelek és relációjelek szintén egyértelműen megadják, hogy hány darab és hány változós relációt és függvényt kell megadnunk az A halmazon. Megállapodunk abban, hogy az A alaphalmazt a kijelölt konstansokkal, függvényekkel és relációkkal együtt struktúrának nevezzük. Az így kapott struktúra jelölésére vezessük be az A jelet. Látható tehát, hogy L rögzítése az L formulái és kifejezései interpretálására alkalmas struktúrából egyértelműen meghatározza a konstansok, a függvé-

nyek, a relációk számát és azt, hogy az egyes függvények és a relációk hány változósak. Ezt az előírást röviden az A struktúra típusának nevezzük. Azt mondhatjuk tehát, hogy L meghatározza az interpretálásra alkalmas A struktúra típusát. Fontos azt is látni, hogy L rögzítése mellett szabadon választható meg az A struktúra A alaphalmaza (azzal a kikötéssel, hogy $A \neq \emptyset$), és maguk a konstansok, a relációk és a függvények is (természetesen a struktúra típusának figyelembevételével). A változójelek – amik minden nyelvhez hozzátartoznak – csak az A struktúra A alaphalmazából vehetik értéküket. Csupán ennyi kikötés vonatkozik rájuk (tehát ezek rögzítése nem tartozik a struktúrához, csupán a formulák és kifejezések értékének meghatározásakor kell a megadott módon eljárni).

Azt mondjuk, hogy az L nyelv egy φ formulája igaz az A struktúrán, vagy másképpen A modellje φ -nek, ha a φ -ben szabadon előforduló változók értékét bárhogyan rögzítve A-ban, φ értéke minden esetben igaz lesz. Azt, hogy A modellje φ -nek, röviden így jelöljük:

$$\models_{\mathbf{A}} \varphi$$
.

Gyakorló feladat

7. Az L nyelv – a szokásos jeleken kívül álljon egy kétváltozós függvényjelből: +, és két kétváltozós relációjelből: = és <. Az L-nek megfelelő A struktúra alaphalmaza legyen a racionális számok Q halmaza, a +-nak feleljen meg az összeadás, az = és < relációjelek jelentése legyen a szokásos azonosságreláció, ill. a rendezés Q-n. Igazoljuk, hogy a következő formuláknak A modellje:

- a) x+y=y+x;
- b) $x < y \rightarrow x + z < y + z$;
- c) $\forall x \forall y \exists z (x + z = y)$.

a) Tudjuk, hogy az összcadás a racjonális számok körében kommutativ. Ez azt jelenti, hogy akárhogyan is választjuk meg Q-ból x és y értékét, az = jel jobb és bal oldalán ugyanazt a racjonális számot kapjuk, tehát a formula értéke igaz. Ez azt jelenti, hogy

$$\vDash \mathbf{A}x + v = v + x.$$

b) A formula az A struktúrán azt fejezi ki, hogy a racionális számok körében értelmezett összeadás szigorúan monoton, azaz, ha nagyobb számhoz adjuk hozzá ugyanazt a számot, akkor nagyobb számot kapunk. Tudjuk, hogy ez az állítás igaz, ezért bárhogyan is rögzitjük x, y és z értékét Q-ból, valahányszor az implikáció előtagja igaz, az utótag is igaz lesz, tehát:

$$\models_A x < y \rightarrow x + z < y + z$$

c) A formulát az A struktúrán értelmezve azt fejezi ki, hogy az összeadásnak van inverz művelete, azaz bárhogyan rögzítjük x és y értékét Q-ban, mindig van olyan racionális szám, amit x értékéhez adva, y értékét kapjuk. Ez a kvantorok használatára vonatkozó megállapodásunk alapján azt jelenti, hogy a formula A-n igaz, tehát

$$\models \sqrt{\forall x \forall y \exists z (x + z = y)}$$

Az előző 6. gyakorló feladat a) és b) részében azt tapasztaltuk, hogy az ott szereplő formulák bár szabad változókat tartalmaztak – az adott struktúrán igazak voltak. Ez az univerzális kvantor értékelésére vonatkozó megállapodásunk alapján azt jelenti, hogy ezek a formulák is igazak az A struktúrán, amit az előzőkből úgy kapunk, hogy a szabad változókat univerzális kvantorral kötjük le. Az előző megállapítás általában is igaz, tehát ha φ egy olyan formula, amelyben az x_1, x_2, \ldots, x_n változók fordulnak elő szabadon, és

$$\models {}_{\scriptscriptstyle{\Lambda}}\varphi,$$

akkor az is igaz, hogy

$$\models_{\Lambda} \forall x_1 \forall x_2 \dots \forall x_n \varphi.$$

Az L elsőrendű nyelv egy φ formuláját azonosan igaznak (logikai igazságnak) nevezzük, ha hármely (az L-nek megfele-lő) struktúrán igaz. Azt, hogy φ azonosan igaz, igy jelöljük:

$$\models \varphi$$
.

A φ_1 és φ_2 formulákról akkor mondjuk, hogy *ekvivalensek*, ha mindkettő ugyanazokon a struktúrákon igaz, tehát ha minden olyan struktúrán, amin φ_1 igaz, φ_2 is igaz, és fordítva. Ha φ_1 és φ_2 ekvivalens, azt igy fogjuk jelölni:

$$\varphi_1 \equiv \varphi_2$$
.

A definíciókból világos, hogy $\varphi_1 \equiv \varphi_2$ akkor és csak akkor igaz, ha $\models \varphi_1 \mapsto \varphi_2$.

Az egyszerűség kedvéért a következő gyakorlatokban tegyük fel, hogy az L nyelvben szerepelnek a P, Q egyváltozós és R kétváltozós relációjelek.

Gyakorló feladatok

8. lgazoljuk a következő azonosságokat:

- a) $\neg \forall x P(x) \equiv \exists x \neg P(x);$
- $b) \quad \exists x P(x) \equiv \forall x \, \exists P(x);$
- $_{C}$) $\neg \exists x \neg P(x) \equiv \forall x P(x)$:
- $d \,) \quad \exists \forall x \, \exists P(x) \equiv \exists x P(x).$

Megoldás:

a) Tegyük fel, hogy egy megfelelő típusú A struktúrán igaz $\neg \forall x P(x)$. Ekkor a negáció definiciója alapján $\forall x P(x)$ hamis, ez azt jelenti, hogy P(x) az A alaphalmaznak nem minden elemére igaz, tehát van A-nak olyan eleme, amelyre $\neg P(x)$ igaz. Így az egzisztenciális kvantor definíciója szerint $\exists x \neg P(x)$ igaz. Az okoskodás megfordítható, igy az azonosság fennáll.

b) Tegyük fel, hogy az A struktúrán $\neg \exists x P(x)$ igaz. Ekkor $\exists x P(x)$ hamis, tehát P(x) az A minden elemére hamis, de ez azt jelenti, hogy $\neg P(x)$

minden elemre igaz, tehát $\forall x \ \exists P(x)$ igaz. Az okoskodás megfordítható, tehát az azonosság helyes.

c) Alkalmazzuk a b)-ben igazolt azonosságot P helyett $\neg P$ -re és használjuk fel, hogy $\neg \neg P(x) \equiv P(x)$. Így éppen a bizonyítandó állítást kapjuk.

d) Az a) azonosságot használjuk fel P helyett ¬P-re, és ismét a kettős negáció törvényét alkalmazva a bizonyitandó azonosságot kapjuk.

9. lgazoljuk a következő állításokat:

a)
$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$
:

$$b = \exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x);$$

$$c) = (\forall x P(x) \lor \forall x Q(x)) \to \forall x (P(x) \lor Q(x));$$

$$d = \exists x (P(x) \land Q(x)) \rightarrow (\exists x P(x) \land \exists x Q(x)).$$

Megoldás:

a) Tegyük fel, hogy egy A struktúrán igaz az azonosság bal oldalán álló formula. Ez azt jelenti, hogy a $P(x) \wedge Q(x)$ formula az alaphalmaz minden elemére igaz, de a konjunkció definíciója szerint ez csak úgy lehet, ha P(x) és Q(x) is igaz az alaphalmaz minden elemére, de akkor $\forall x P(x)$ és $\forall x Q(x)$ igazak A-n, tehát a konjunkciójuk, vagyis a jobb oldalí formula is igaz.

Megfordítva, ha a jobb oldalon álló konjunkció igaz, akkor $\forall x P(x)$ és $\forall x Q(x)$ is igaz, de akkor P(x) és Q(x) is igaz az alaphalmaz tetszőleges elemére. Ebből következik, hogy a $P(x) \land Q(x)$ formula is igaz az alaphalmaz minden elemére, tehát a $\forall x (P(x) \land Q(x))$ formula igaz.

b) A bal oldalon álló formula akkor és csak akkor hamis, ha $P(x) \vee Q(x)$ az A minden elemére hamis. Ez viszont akkor és csak akkor teljesül, ha P(x) és Q(x) is hamis értéket vesz fel A minden elemére. Az utóbbi állítás ekvivalens azzal, hogy $\exists x P(x)$ és $\exists x Q(x)$ is hamis, ami akkor és csak akkor igaz, ha $\exists x P(x) \vee \exists x Q(x)$ hamis.

c) Azt kell megmutatni, hogy tetszőleges - megfelelő típusú - A struktúrán igaz az implikáció, azaz az implikáció definiciója szerint minden olyan struktúrán, amin az előtag igaz, az utótag is igaz.

Tegyük fel, hogy egy A struktúrán $\forall x P(x) \lor \forall x Q(x)$ igaz. A diszjunkció definíciója szerint ekkor $\forall x P(x)$ és $\forall x Q(x)$ közül legalább az egyik igaz, tehát P(x) és Q(x) közül legalább az egyik az alaphalmaz minden elemére igaz értéket vesz fel. Ekkor azonban $P(x) \lor Q(x)$ ismét csak a diszjunkció definiciója szerint az alaphalmaz minden elemére igaz, tehát a $\forall x (P(x) \lor Q(x))$ formula értéke igaz A-n.

d) Itt is azt kell megmutatni, hogy minden olyan struktúrán, amin az implikáció előtagja igaz, az utótagja is igaz.

Tegyük fel, hogy A-n igaz $\exists x(P(x) \land Q(x))$. Ebből következik, hogy $P(x) \land Q(x)$ az alaphalmaznak nem minden elemére hamis, azaz van olyan eleme A-nak, amire igaz. Erre az A-beli elemre akkor P(x) és Q(x) is igaz, tehát az egzisztenciális kvantor értelme szerint $\exists x P(x)$ is, meg $\exists x Q(x)$ is igaz, azaz a $\exists x P(x) \land \exists x Q(x)$ formula igaz.

10. Igazoljuk, hogy a következő formulák nem azonosan igazak:

$$a : \forall x (P(x) \vee Q(x)) \rightarrow (\forall x P(x) \vee \forall x Q(x));$$

$$b = (\exists x P(x) \land \exists x Q(x)) \rightarrow \exists x (P(x) \land Q(x)).$$

Meaoldás:

Azt, hogy egy formula nem azonosan igaz, nyilván úgy igazolhatjuk, hogy megadunk egy megfelelő típusú struktúrát, amelyen a formula hamis értéket vesz fel.

a) Legyen az A struktúra alaphalmaza N, P jelentése legyen a "páros szám" predikátumhoz tartozó reláció, Q jelentése pedig a "páratlan szám" predikátummal jellemzett reláció.

Ebben az interpretációban az implikáció előtagja, a $\forall x (P(x) \lor Q(x))$ nyilván igaz, hiszen minden természetes szám vagy páros, vagy páratlan.

Az implikáció utótagja, a $\forall x P(x) \lor \forall x Q(x)$ formula hamis, mert a diszjunkció mindkét tagja hamis. Ugyanis P(x) a páratlan számokra, Q(x) a páros számokra hamis, tehát $\forall x P(x)$ is és $\forall x Q(x)$ is hamis. Mivel az implikáció előtagja igaz, utótagja hamis, a formula hamis A-n.

b) Válasszuk A-nak ugyanazt a struktúrát, mint az a) esetben.

Az implikáció előtagja. a $\exists x P(x) \land \exists x Q(x)$ igaz, mert a konjunkció mindkét tagja igaz, hiszen van páros szám is N-ben és van páratlan szám is.

Az implikáció utótagja nyilván hamis, hiszen a $P(x) \wedge Q(x)$ N minden elemére hamis, mivel egyik természetes szám sem lehet egyszerre páros és páratlan. A formula tehát A-n hamis.

11. Igazoljuk a következő állításokat:

$$a : \exists \forall x P(x) \rightarrow P(x);$$

$$b) = P(x) \to \exists x P(x);$$

$$c : \longrightarrow \forall x P(x) \to \exists x P(x).$$

Megoldás:

a) Legyen A olyan struktúra, amin az implikáció előtagja igaz. Ez azt jelenti, hogy az alaphalmazon P(x) minden elemre igaz, tehát az utótag igaz. Azt kaptuk tehát, hogy a formula értéke az x változó minden értékére igaz A-n. Az eredmény azt mutatja, hogy a formula azonosan igaz.

b) Legyen A tetszőleges struktúra. Azt kell megmutatnunk, hogy ezen az implikáció igaz. Ha az előtag az alaphalmaz valamely elemére hamis, akkor az implikáció értéke az utótagtól függetlenül igaz. Ha az előtag valamely elemre igaz, akkor az egzisztenciális kvantor értelmezése szerint az utótag értéke igaz, igy a formula értéke ebben az esetben is igaz. A formula tehát azonosan igaz.

c) A kijelentéslogikából tudjuk, hogy tetszőleges α , β , γ formulára, ha $\alpha \rightarrow \beta$ és $\beta \rightarrow \gamma$ igaz, akkor $\alpha \rightarrow \gamma$ is igaz. Ezt alkalmazhatjuk itt is. Tetszőleges struktúrát is választunk, ezen α) szerint $\forall x P(x) \rightarrow P(x)$ és b) szerint $P(x) \rightarrow \exists x P(x)$ is igaz, de akkor a $\forall x P(x) \rightarrow \exists x P(x)$ is igaz, tehát az állítás fennáll.

12. Mutassuk meg, hogy

$$\vDash \exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y),$$

de a

$$\forall y \exists x R(x, y) \rightarrow \exists x \forall y R(x, y)$$

formula nem azonosan igaz.

Megoldás:

Válasszunk egy tetszőleges megfelelő típusú. A struktúrát és tegyük fel, hogy ezen az implikáció előtagja igaz. Ez azt jelenti, hogy az alaphalmaznak van olyan eleme - jelöljünk egy ilyet a_0 -tal - amelyre $\forall y R(x,y)$ értéke igaz. Ez utóbbi azt jelenti, hogy az R(x,y) formula értéke az x helyére a_0 -at téve az alaphalmaz tetszőleges elemére igaz. Ekkor azonban az egzisztenciális kvantor jelentése szerint a $\exists x R(x,y)$ formula értéke az alaphalmaz tetszőleges elemére igaz, tehát $\forall y \exists x R(x,y)$ igaz A-n. Eredményünk azt jelenti, hogy

$$\vDash \exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y).$$

Válasszuk most a következő struktúrát: Az alaphalmaz legyen \mathbf{Q} , a racionális számok halmaza, R-et pedig interpretáljuk úgy, hogy a szokásos kisebb relációt jelentse \mathbf{Q} -n. Ekkor $\forall y \exists x R(x, y)$ értéke ígaz, mert azt fejezi ki, hogy minden racionális számnál van kisebb. A $\exists x \forall y R(x, y)$ formula ér-

téke viszont hamis, mert azt mondja, hogy van olyan racionális szám, aminél bármelyik racionális szám nagyobb. Ez az eredmény azt mutatja, hogy a választott struktúrán a

$$\forall y \exists x R(x, y) \rightarrow \exists x \forall y R(x, y)$$

formula hamis, tehát nem lehet azonosan igaz.

A helyes következtetési szabály definíciója itt, az elsőrendű logikában, formailag hasonló módon adható meg, mint a kijelentéslogikában. Itt is egy tetszőlegesen rögzített, elsőrendű nyelv formulái körében értelmezzük a következményfogalmat:

akkor mondjuk, hogy a $\varphi_1, \varphi_2, ..., \varphi_k$ formuláknak következménye a φ formula, ha tetszőlegesen megadott – megfelelő típusú A struktúrán és a $\varphi_1, ..., \varphi_k$, φ formulákban szabadon előforduló változók tetszőleges olyan rögzített értéke mellett. amelyre $\varphi_1, \varphi_2, ..., \varphi_k$ értéke igaz, a φ értéke is igaz. Azt, hogy a $\varphi_1, \varphi_2, ..., \varphi_k$ formuláknak következménye a φ formula, így jelöljük:

$$\varphi_1, \varphi_2, ..., \varphi_k \models \varphi$$
.

Gyakorló feladatok

- 13. Igazoljuk a következő állításokat (itt is, mint az előzőkben, felteszszük, hogy a nyelv jelei között szerepelnek a P, Q, R relációjelek):
 - a) $\forall x (P(x) \rightarrow Q(x)), P(x) \models Q(x);$
 - $b) \quad P(x), \, Q(x) \vDash \exists x \{P(x) \land Q(x)\};$
 - c) $\forall x(P(x) \rightarrow Q(x)), \forall x(Q(x) \rightarrow R(x)) \models \forall x(P(x) \rightarrow R(x)).$

Megoldás:

a) Tegyük fel, hogy az **A** struktúrán és a P(x)-ben előforduló x szabad változónak $a \in A$ értékére a $\forall x (P(x) \rightarrow Q(x))$ és P(x) formulák igazak. Ekkor az univerzális kvantor definiciója szerint $P(x) \rightarrow Q(x)$ az A alaphalmaz min-

den elemére, tehát a-ra is igaz. Mivel az implikáció előtagja is igaz a-ra, ezért az utótag, a Q(x) formula is igaz a-ra, tehát a következtetési szabály helves.

b) Tegyük fel, hogy A olyan struktúra, és a az alaphalmaznak olyan eleme, amelyre a két feltételformula igaz, így az egzisztenciális kvantor értelme alapján $\exists x (P(x) \land Q(x))$ is igaz, tehát a következtetés helyes.

c) Vegyük észre, hogy a következtetési sémában csak zárt formulák vannak, így elég megmutatni, hogy minden olyan A struktúrán, amin a premisszák igazak, a következmény is igaz.

Tegyük fel, hogy a két premissza igaz egy megfelelő struktúrán. Ekkor a $P(x) \rightarrow O(x)$ és $O(x) \rightarrow R(x)$ formulák az alaphalmaz tetszőleges elemére igazak, de az implikációnak a kijelentéslogikából ismert tulajdonsága miatt ebből következik, hogy a $P(x) \rightarrow R(x)$ implikáció is igaz az alaphalmaz tetszőleges elemére, tehát a $\forall x(P(x) \rightarrow R(x))$ formula igaz.

14. Igazoljuk, hogy a felsorolt következtetési szabályok helyesek (feltesszük, hogy olyan L nyelvvel foglalkozunk, amelyben van egy R-rel jelölt kétváltozós reláció):

a)
$$\forall x \forall y R(x, y) \vDash \forall x R(x, x)$$
;

b)
$$\forall x \neg R(x, x), \forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z)) \models \\ \vdash \forall x \forall y (R(x, y) \rightarrow \neg R(y, x));$$

c)
$$\forall x \forall y (R(x, y) \rightarrow R(y, x)).$$

 $\forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z)).$
 $\forall x \exists y R(x, y) \models \forall x R(x, x).$

Megoldás:

- a) Válasszunk egy megfelelő tipusú A struktúrát és tegyük fel. hogy azon igaz a premissza, a $\forall x \forall y R(x, y)$ formula. Ez azt jelenti, hogy a $\forall y R(x, y)$ formula az alaphalmaz tetszőleges a elemére igaz. Ismét csak az univerzális kvantor értelme szerint R(x, y) az alaphalmaz tetszőleges (a, b)elempárjára igaz. Ha tehát R(x, x) értékét tetszőleges $a \in A$ -ra nézzük, az is igaz, vagyis $\forall x R(x, x)$, azaz a konklúzió igaz A-n.
- b) Itt a következtetési szabály helyességének igazolását könnyebb követni, ha egy tetszőleges A struktúrán egy R-nek megfelelő g kétváltozós relációt szemléltetűnk: legyenek az alaphalmaz elemei pontok, és ha két elem, a és b között fennáll a g reláció, azt úgy jelöljük, hogy egy a-ból b-be vezető nyilat rajzolunk (az igy kapott szemléletes képet a ϱ relációt szemléltető gráfnak nevezzük).

85. ábra

87. ábra

premisszák igazak, de a konklúzió hamis. Ez a feltétel az R-et az A struktúrán interpretáló ρ reláció szemléltetésében azt jelenti, hogy van olyan a és bpont, amelyek mindkét írányban össze vannak kötve (85. ábra). Azonban a második premissza igaz volta azt jelenti, hogy az alaphalmaz tetszőleges a. b. c elemère fennáll, hogy ha a-ból vezet nyíl b-be és b-ből c-be, akkor a-ból is vezet c-be (86. ábra). Ezt c helyett a-ra alkalmazva azt kapjuk, hogy a az a-val is össze van kötve (87. ábra), ez azonban ellentmond az első premiszsza igaz voltának, hiszen ez szemléletesen azt jelenti, hogy semelyik pont sincs összekötve önmagával. Ellentmondásra jutottunk, a feltevés helytelen volt, vagyis minden olyan struktúrán, amin a premisszák igazak, a konklúzió is igaz. A következtetési szabály helyes.

- c) Itt is kézenfekvő a szemléltetést felhasználni; így könnyebb áttekinteni a formulák jelentését. Tegyük fel, hogy egy A struktúrán a premisszák igazak. Az első premissza szemléletesen azt jelenti, hogy minden a, b elemre igaz, hogy ha *u*-ból vezet nyil *b*-be, akkor *b*-ből is vezet *u*-ba (85. ábra). A második premissza jelentését a b) részben láttuk (86. ábra). A harmadik premissza jelentését úgy lehet rőviden kifejezni, hogy minden alaphalmazbeli elemet szemléltető pontból indul ki nyil. Az utóbbi feltétel biztosítja, hogy tetszőleges a-ból indul ki valamely b-be nyil, az első feltétel szerint b-ből a-ba is vezet nyil, de akkor a középső premissza szerint a önmagával is össze van kötve (87. ábra). Eredményünk szerint a konklúzió is igaz, tehát a következtetési szabály helyes.
- 15. Elemezzük a felsorolt következtetéseket, vagyis adjunk meg megfelelő elsőrendű nyelvet, amin a szerkezetük leirható, és mutassuk meg, hogy a kapott következtetési sémák helyesek:
- a) Minden négyzet paralelogramma. Van olyan húrnégyszög, ami négyzet. Tehát: Van olyan paralelogramma, ami húrnégyszög.

h) Minden középískolának van tehetséges diákja. A tehetséges diákokat felveszik az egyetemre. Tehát: Minden középiskola valamelyik diákját felveszik az egyetemre.

c) Ha $A \subseteq B$ és $B \subseteq C$, akkor $A \subseteq C$. Tudjuk, hogy tetszőleges A halmazra $A \subseteq A$ nem áll fenn. Tehát: Ha $A \subseteq B$, akkor $B \subseteq A$ nem lehet igaz.

Megoldás:

a) Itt világos, hogy a következtetésben három egyváltozós predikátum szerepel: "négyzet", "paralelogramma" és "húrnégyszög". Alkalmas elsőrendű nyelvet kapunk, ha a nyelv szokásos jelein kívül felveszünk még három egyváltozós relációjelet, legyenek ezek: N, P és H. A két premissza és a konklúzió szerkezetét a következő formulák fejezik ki;

$$\forall x (N(x) \rightarrow P(x)), \quad \exists x (N(x) \land H(x)), \quad \exists x (P(x) \land H(x)).$$

Azt kell megmutatnunk, hogy a

$$\forall x (N(x) \rightarrow P(x)), \quad \exists x (N(x) \land H(x)) \models \exists x (P(x) \land H(x))$$

következtetési séma helyes.

Legyen A egy megfelelő típusú struktúra és tegyük fel. hogy ezen a premisszák igazak. Ekkor az $N(x) \rightarrow P(x)$ formula az A alaphalmazának minden elemére igaz, és van olyan a elem az alaphalmazban, amelyre $N(x) \wedge H(x)$ igaz. Erre az a elemre N(x) is és H(x) is igaz, de akkor az implikáció definíciója szerint P(x) is igaz a-ra. Mivel P(x) is és H(x) is igaz, ezért $P(x) \wedge H(x)$ is igaz a-ra, tehát a konklúzió, a $\exists x(P(x) \wedge H(x))$ formula igaz. A következtetési szabály tehát helyes.

b) Elemezzük előszőr, hogy milyen predikátumok fordulnak elő a következtetést alkotó kijelentések felépítésében. Az első premisszából kiolvasható, hogy itt az "x középiskola diákja y" kétváltozós, és a "tehetséges" egyváltozós predikátum szerepel. A továbbiakból még az egyváltozós "x-et felveszik az egyetemre" predikátum elkülönítésére van szükségünk. Ezek alapján már megadhatunk egy alkalmas elsőrendű nyelvet, ebben szerepeljenek - a szokásos jeleken kivül – a D kétváltozós és T. F egyváltozós relációjelek. Ezek alapján a következtetés szerkezetét igy írhatjuk fel:

$$\forall x \exists v (D(x, y) \land T(y)), \quad \forall x (T(x) \rightarrow F(x)) \models \forall x \exists v (D(x, y) \land F(y)).$$

Mutassuk meg, hogy a kapott következtetési szabály helyes!

Válasszunk egy alkalmas struktúrát és tegyük fel. hogy ezen a premisszák igazak! Az első premissza igaz volta azt jelenti, hogy a $\exists y (D(x, y) \land T(y))$ formula az alaphalmaz minden elemére igaz, tehát tetszőleges a-hoz van olyan b eleme az alaphalmaznak, amelyre $D(x, y) \land T(y)$

értéke, azaz D(x, y) és T(y) is igaz, ha x-et az a, y-t a b interpretálja. Mivel $T(x) \rightarrow F(x)$ minden elemre, így b-re is igaz, ezért F(x) is igaz b-re, tehát $D(x, y) \wedge F(y)$ tetszőleges a mellett b-re is igaz, igy a konklúzió igaz a választott struktúrán. A következtetési szabály helyességét ezzel igazoltuk.

c) Itt elég az R kétváltozós relációjelet bevenni a nyelvbe, hiszen csak a valódi részhalmaz relációt kell figyelembe venni. Az egyes kijelentéseket nyilván úgy kell értenünk, hogy tetszőleges halmazokra érvényesek, tehát a következtetés szerkezetét így irhatjuk le:

$$\forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z)),$$

$$\forall x \exists R(x, x) \vDash \forall x \forall y (R(x, y) \rightarrow \exists R(y, x)).$$

Erről a 14. h) gyakorló feladatban igazoltuk, hogy helyes következtetési séma.

16. Igazoljuk, hogy tetszőleges $\varphi_1, \varphi_2, ..., \varphi_k, \varphi$ formulák esetén

$$\varphi_1, \varphi_2, ..., \varphi_k \vDash \varphi$$

akkor és csak akkor, ha

$$\models (\varphi_1 \land \varphi_2 \land \ldots \land \varphi_k) \rightarrow \varphi.$$

Megoldás:

Tegyűk fel, hogy a következtetés helyes, és válasszunk egy tetszőleges, megfelelő típusú A struktúrát. Azt kell megmutatnunk, hogy az implikáció igaz A-n. Ehhez elég igazolni, hogy ha az előtag igaz, akkor az utótag is igaz. Az előtag csak úgy lehet igaz, ha a konjunkció minden tagja igaz, ekkor viszont a feltétel szerint az utótag is igaz.

Megfordítva, ha a formula azonosan igaz, akkor tetszőleges **A** struktúrán, a benne szereplő szabad változók tetszőleges értékelésére igaz, tchát akkor is, amikor az implikáció előtagja igaz, vagyis a $\varphi_1, \ldots, \varphi_k$ formulák igazak. Ebben az esetben azonban a konklúziónak, φ -nek is igaznak kell lenni, tehát a következtetés helyes.

Megjegyzések. 1. A helyes következtetési szabály definicióját kézenfekvő lett volna esetleg a következő formában megadni: a $\varphi_1, \varphi_2, ..., \varphi_k$ formuláknak következménye a φ formula, ha minden olyan struktúrán, amin $\varphi_1, ..., \varphi_k$ igaz. φ is igaz. Ezt így is írhatjuk: ha $\models_A \{\varphi_1, \varphi_2, ..., \varphi_k\}$, akkor $\models_A \varphi$ (itt ha Γ egy formulahalmaz, akkor $\models_A \Gamma$ jelenti, hogy Γ minden elemének modellie A).

Kőnnyű végiggondolni, hogy zárt formulák esetén a két definició ekvivalens. Ha szabad változókat tartalmazó formulák is vannak a

 $\varphi_1, \ldots, \varphi_k, \varphi$ formulák között, akkor más a helyzef. A most említett következményfogalom gyengébb, mint az, amit elfogadtunk. Például a P(x) formulának a most mondott értelemben következménye a $\forall x P(x)$ formula, hiszen az univerzális kvantor értelme alapján minden A struktúrára fennáll, hogy ha $\vDash_A P(x)$, akkor $\vDash_A \forall x P(x)$.

Másreszt

$$P(x) \models \forall x P(x)$$

nyilván nem igaz. Hiszen például azon az A struktúrán, amelynek alaphalmaza: $A = \{0,1\}$ és P-t úgy interpretáljuk, hogy 0-ra fennálljon, 1-re nem, $\forall x P(x)$ nyilván hamis, míg a P(x)-ben szereplő x szabad változó értelme megadható úgy (ti. legyen 0), hogy P(x) értéke igaz. A premissza tehát igaz, a konklúzió viszont hamis.

2. Az ebben a részben vizsgált azonosságokban, azonosan igaz formulákban szereplő P(x), Q(x), R(x, y) stb. formulák helyett általában tetszőleges φ formulát irhatunk. Csak a könnyebb áttekinthetőség kedvéért használtuk itt ezt az alakot.

Feladatok

- 5. Igazoljuk a következő azonosságokat (φ olyan formulát jelöl, amely nem tartalmazza szabadon az x változót):
 - a) $\forall x P(x) \equiv \forall y P(y)$;
 - b) $\exists x P(x) \equiv \exists y P(y);$
 - c) $\exists x P(x) \land \varphi \equiv \exists x (P(x) \land \varphi);$
 - d) $\forall x P(x) \lor \varphi \equiv \forall x (P(x) \lor \varphi);$
 - e) $\forall x P(x) \lor \forall x Q(x) \equiv \forall x \forall y (P(x) \lor Q(y));$
 - $f) \quad \exists x P(x) \land \exists x Q(x) \equiv \exists x \exists y (P(x) \land Q(y));$
 - g) $\forall x P(x) \rightarrow \exists x Q(x) \equiv \exists x (P(x) \rightarrow Q(x)).$
 - 6. Igazoljuk a következő állításokat:
 - a) $\models \forall x \forall y R(x, y) \rightarrow \forall x R(x, x);$
 - b) $\models \exists x R(x, x) \rightarrow \exists x \exists y R(x, y);$

- c) $\models \forall x(\phi \rightarrow P(x)) \rightarrow (\phi \rightarrow \forall x P(x))$, ahol ϕ olyan formula, amelyben nem szerepel az x szabadon.
 - 7. Adott a következő formula:

$$(\neg \forall x P(x) \lor \exists x Q(x)) \land (R(x) \rightarrow \exists x S(x))$$

- (P, Q, R, S egyváltozós relációjelek). Keressünk az adott formulához olyan formulát, amelyben kvantorok csak a formula elején fordulnak elő és a kapott formula ekvivalens az eredetivel!
- 8. Fogalmazzuk meg az I. fejezet 3. szakaszában található (a kategorikus szillogizmusok vizsgálatában szerepelt) A, E, I és O típusú állítások logikai szerkezetét alkalmas elsőrendű nyelven és igazoljuk példaként néhány kategorikus szillogizmusról, hogy helyes következtetési szabály!
- 9. Alkalmas nyelven irjunk fel olyan formulákat, amelyekkel az alábbi következtetések szerkezete leírható és vizsgáljuk meg a kapott sémákról, hogy helyes következtetési szabályok-e:
- a) Minden élőlény ősének őse ennek az élőlénynek is őse. Semelyik élőlény sem őse önmagának. Tehát: Minden élőlénynek van őse.
- b) Ha van olyan 1-nél nagyobb és 113-nál kisebb szám, ami osztója 113-nak, akkor 113-nak van 11-nél kisebb prímszám osztója. A 11-nél kisebb prímszámok között egyik sem osztója 113-nak. Tehát 113-nak nincs 1-nél nagyobb és 113-nál kisebb osztója.
- c) A falu borbélya azokat és csak azokat borotválja, akik maguk nem borotválkoznak. Ebből következik, hogy a faluban nincs borbély.
- 10. Igazoljuk, hogy a kijelentéslogika egy tetszőleges, azonosan igaz formulájában a logikai változók helyére egy elsőrendű nyelv tetszőleges formuláit helyettesítve, a nyelv azonosan igaz formuláját kapjuk!
- 11. Igazoljuk, hogy ha egy, a kijelentéslogikában helyes következtetési szabályban a logikai változók helyett egy el-

sőrendű nyelv tetszőleges formuláit helyettesítjük, akkor szintén helyes következtetési szabályt kapunk!

3. Kielégíthetőség, eldöntésprobléma, bizonyításelmélet

Az előző pontban részletesen foglalkoztunk azzal a fogalommal, hogy egy A struktúra modellje egy φ formulának, azaz $\models_A \varphi$. Szoros kapcsolatban van ezzel a következő fogalom is. Azt mondjuk, hogy egy elsőrendű L nyelv egy φ formulája kielégíthető egy megfelelő típusú A struktúrán, ha a φ -ben szabadon előforduló változók értéke megadható az A alaphalmazában úgy, hogy φ értéke igaz legyen. Nyilvánvaló, hogy ha φ zárt formula (tehát nem tartalmaz szabad változót), akkor " φ kielégíthető A-n" és " φ igaz A-n" ugyanazt jelenti. Szabad változókat is tartalmazó formulákra azonban a kielégíthetőség egy struktúrán lényegesen gyengébb fogalom, mint az igazság ezen a struktúrán.

Az L nyelv $egy \varphi$ formulájáról azt mondjuk, hogy kielégíthető, ha van olyan struktúra, amin φ kielégíthető.

Gyakorló feladat

17. Igazoljuk, hogy egy L elsőrendű nyelv egy φ formulájára $\models \varphi$ akkor és csak akkor igaz, ha $\neg \varphi$ nem kielégíthető!

Megoldás:

A definiciókat és a \neg jelentését kell végiggondolnunk. A $\models \varphi$ állítás akkor és csak akkor igaz, ha a tetszőleges A struktúrán $\models_A \varphi$. Egy A struktúrán φ akkor és csak akkor igaz, ha $\neg \varphi$ nem elégíthető ki ezen a struktúrán. Ebből következik, hogy $\models \varphi$ és $\neg \varphi$ nem kiclégíthető, ekvivalens állítások.

A most igazolt összefüggés alapján annak a kérdésnek a vizsgálata, hogy egy φ formula azonosan igaz-e vagy nem, visszavezethető a következő problémára: a $\neg \varphi$ formula kielégíthető-e vagy sem?

Azt a kérdést, hogy egy formula azonosan igaz-e vagy sem, a kijelentéskalkulusban algoritmikus eszközökkel elég egyszerűen el lehetett dönteni (például teljes diszjunktiv normálformára hozással, értéktáblázat készítésével). Mivel a helyes következtetési szabály problémája (vagy az azonosságok igaz voltának kérdése) visszavezethető arra, hogy egy alkalmas formula azonosan igaz-e vagy sem, az utóbbi algoritmussal való megoldhatóságának nagy jelentősége van. Az algoritmussal való megoldhatóság lényegében azt jelenti, hogy írható olyan számítógépes program, amelynek alapján a gép elvben tetszőleges formuláról véges idő alatt eldönti, azonosan igaz-e vagy nem.

Az elsőrendű logika "azonosan igaz formula" fogalmának definiciója nyilván nem alkalmas ilyen algoritmus megadására, hiszen a definícióban azt követeljük meg, hogy tetszőleges modellen igaz legyen a formula. Ez már az alaphalmaz választása miatt is eleve végtelen sok esetet jelent. Ha pedig egy konkrét alaphalmaz végtelen, akkor ezen a relációk választása is végtelen sok struktúrát jelent (ha legalább egy, legalább egyváltozós relációjel van a nyelvben). Ugyanilyen jellegű problémát okoz egy formula kielégíthetőségének ellenőrzése. Magát a problémát eldöntésproblémának nevezzük. Az eldöntésprobléma vizsgálata hosszú időn keresztül abba az irányba vezetett, hogy megoldó algoritmust próbáltak keresni, de ilyet nem sikerült találni. Végül 1936-ban A. Church amerikai matematikus igazolta, hogy az eldöntésproblémához nem lehet találni megoldó algoritmust. Ez a bizonyítás igényelte először az algoritmus eddig intuitíve világos fogalmának szabatos matematikai definicióját, és kiindulópontja lett a matematikai logika egy ma is rohamosan fejlődő ága, az algoritmuselmélet kialakulásának.

Természetes módon az elsőrendű logika egyik legfontosabb alkalmazási területe a matematika alapjaival kapcsolatos vizsgálatok. A matematika szinte minden ágában alapvető reláció az azonosság vagy identitásreláció. Egy A halmazon definiált identitás- (egyenlőség-) reláció az általunk elfogadott értelmezésben a következőt jelenti:

$$I_A = \{(a; a) \mid a \in A\}.$$

Amikor egy-egy matematikai tudományág alapjainak problémáival foglalkozunk és egy-egy ehhez szükséges elsőrendű nyelvet rögzítünk, akkor ebben mindig szerepel a relációjelek között a szokásos = kétváltozós relációjel. Ezzel kapcsolatban az is szokásos megállapodás, hogy az = jelet tetszőleges struktúrán mindig az alaphalmazhoz tartozó identitásrelációval interpretáljuk. A következőkben minden olyan esetben, amikor a vizsgált elsőrendű nyelv jelei között az = kétváltozós relációjel is szerepel, az összes szóba jövő interpretációban ezt mindig az identitásrelációval interpretáljuk. Ezt a megszorítást értelemszerűen alkalmazzuk az igazság, az azonos igazság, a kielégíthetőség és a logikai következmény definiciójában is.

Gyakorló feladatok

18. Legyen L olyan elsőrendű nyelv, amelyben a szokásos jeleken kivül az = kétváltozós relációjel szerepel. Döntsük el, hogy a megadott formulák hány elemű alaphalmazzal rendelkező struktúrán lehetnek igazak:

- a) $\exists x (\exists x = x);$
- b) $\exists x(x = x \land \forall y(x = y));$
- c) $\exists x \exists y (\exists x = y \land \forall z (z = x \lor z = y));$
- d) $\exists x_1 \exists x_2 \dots \exists x_n (\exists x_1 = x_2 \land \exists x_1 = x_3 \land \dots \land \exists x_1 = x_n \land \exists x_2 = x_3 \land \dots \land \exists x_{n-1} = x_n \land \forall x_{n+1} (x_1 = x_{n+1} \lor x_2 = x_{n+1} \lor \dots \lor x_n = x_{n+1})).$

Megoldás:

Az L nyelv jelei között-szerepel az =, így a formulák interpretációjára alkalmazzuk az előzőkben említett megállapodást.

a) A formula csak akkor lehet igaz egy A struktúrán, ha az x változónak van olyan értéke, amelyre a $\neg x = x$ formula igaz. A megállapodás alapján az = relációt I_A -ként interpretáljuk, és mivel tetszőleges $a \in A$ elemre $(a, a) \in I_A$, ezért a $\neg x = x$ formula az x változó minden értékére hamis, tehát a $\exists x (\neg x = x)$ formula hamis A-n. Mível A tetszőleges megfelelő típusú – struktúra volt, a formula nem elégíthető ki.

A 17. gyakorló feladat eredménye szerint ebből következik, hogy a $\exists x(\exists x = x) \equiv \forall x(x = x)$ formula azonosan igaz, azaz:

$$\models \forall x(x=x).$$

- b) Válasszuk meg az A struktúrát a mondott módon, tehát a nem üres A alaphalmazon kívül még az I_A reláció szerepeljen A-ban, és tegyük fel, hogy a formula igaz A-n. Ez azt jelenti, hogy A-nak van olyan eleme, amelyre az $x = x \land \forall y (x = y)$ formula igaz, legyen ez a. Ekkor x = x is igaz a-ra. Ez utóbbi azt jelenti, hogy x = y-nak tetszőleges $b \in A$ -ra igaznak kell lennie, ha x-et a-ként, y-t pedig b-ként interpretáljuk. Ez nyilván csak úgy lehet igaz, ha A egyetlen eleme a, azaz |A| = 1.
- c) Az előzőhöz hasonló meggondolással adódik, hogy ha egy A struktúrán a formula igaz, akkor A alaphalmaza, A, kételemű, azaz |A|=2.
- d) Az előző b) és c) formula alapján világos, hogy ez a formula csak olyan struktúrán igaz, amelyben az alaphalmaznak n eleme van.

Érdemes még megjegyezni, hogy a h, c) és d) formulák zártak, így ha igazság helyett kielégíthetőséget vizsgálunk, akkor is ugyanerre az eredményre jutunk.

19. Legyen az elsőrendű L nyelvben a szokásos jeleken kívül R az egyetlen kétváltozós relációjel. Igazoljuk, hogy a

$$\forall x \, \exists \, R(x, x) \land \forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z)) \land \forall x \exists y R(x, y)$$

formula nem elégithető ki olyan struktúrán, aminek alaphalmaza véges, de van olyan végtelen alaphalmazú struktúra, amelyen a formula ígaz!

Megoldás:

Használjuk fel az okoskodás megkönnyítésére itt is a 14. gyakorló feladat megoldásában már alkalmazott szemléltetést. Tegyük fel az állítással ellentétben, hogy van olyan A struktúra, aminek A alaphalmaza véges és a formula igaz A-n. Az A elemeit pontokkal szemléltetjük, és ha két elem kö-

zött fennáll a reláció, akkor ezt a két elem képét összekötő nyillal szemléltetiük.

Feltettük, hogy A-n igaz a formula. Ez csak úgy lehet, ha a formulában szereplő mindhárom konjunkciós tag igaz. A harmadik konjunkciós tag igaz volta azt jelenti, hogy minden pontból indul ki nyil. Mivel csak véges sok eleme van A-nak, ezért egy $a \in A$ -t szemléltető pontból kiindulva egyszer visszaérünk nyilak mentén egy olyan pontba, ahol már voltunk. Így egy kört kapunk (88. ábra), amelyet az $a_1, a_2, ..., a_{k-1}$ és $a_k \neq a_1$ elemek alkotnak.

A formula második konjunkciós tagja is igaz. Ez szemléletesen azt jelenti, hogy ha a-ból vezet nyíl b-be és b-ből c-be, akkor a-ból is vezet nyíl c-be. Ez bármely a, b, c elemhármasra igaz. Ezek alapján a kört alkotó elemek között a_1 -ből a_2 -be, a_2 -ből a_3 -ba vezet nyil, de akkor a_1 -ből a_3 -ba is. Mivel a_3 -ból vezet nyíl a_4 -be, akkor a_1 -ből a_4 -be is, és igy tovább, végül azt kapjuk, hogy a_1 -ből a_{k-1} -be is vezet nyil (89. ábra). Alkalmazzuk most ezt a tulajdonságot az $a=c=a_1$ és $b=a_{k-1}$ elemekre, akkor azt kapjuk, hogy a_1 -ből is vezet nyil a_1 -be (90. ábra). Ez viszont ellentmond annak, hogy a formula első konjunkciós tagja is igaz, hiszen ennek igaz volta azt jelenti,

hogy semelyik elemet ábrázoló pontból sem vezet nyíl önmagába. Ellentmondásra jutottunk, tehát a feltevés helytelen, a formula A-n hamis. Mivel A tetszőleges véges álaphalmazú struktúra, ezzel igazoltuk azt az állítást, hogy a formula véges struktúrán nem elégíthető ki.

A következő **B** struktúra alaphalmaza legyen N és R-et interpretáljuk a természetes számok szokásos < rendezésével. Mivel tudjuk, hogy a természetes számok rendezése irreflexív (ezt fejezi ki $\forall x \neg R(x, x)$ konjunkciós tag), tranzítív (ezt fejezi ki a $\forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z))$ második konjunkciós tag) és minden természetes számnál van nagyobb (ezt a harmadik. $\forall x \exists y R(x, y)$ konjunkciós tag fejezi ki), ezért a formula a **B** struktúrán igaz.

Érdemes még megjegyezni, hogy ha a feladatban szereplő formulát φ -vel jelöljük, akkor $\neg \varphi$ olyan formula, amely tetszőleges $n \in \mathbb{N}$ -re n elemet tartalmazó alaphalmazzal rendelkező megfelelő struktúrán igaz, de van olyan végtelen struktúra, amin hamis.

20. Tegyük fel, hogy egy L elsőrendű nyelv jelei között csak a $P_1, P_2, ..., P_k$ egyváltozós relációjelek fordulnak elő. Igazoljuk, hogy a nyelv egy tetszőleges formulájára fennáll a következő állítás: ha a formula kielégíthető, akkor kielégíthető egy olyan struktúrán is, amelynek alaphalmaza véges, és legfeljebb 2^k elemet tartalmaz!

Megoldás:

Tegyük fel, hogy az L nyelv egy φ formulája kielégíthető egy A struktúrán, aminek alaphalmaza A. Ha $|A| \le 2^k$, akkor nincs mit bizonyitani, igy tegyük fel, hogy ha A véges, akkor $|A| > 2^k$, vagy A végtelen. A struktúrához tartozó egyváltozós relációk legyenek $\varrho_1, \varrho_2, ..., \varrho_k$. Konstruálni fogunk egy olyan A struktúrát, amelynek alaphalmaza A = A és $|A| = 2^k$ és a megfelelő $\varrho_1', \varrho_2', ..., \varrho_k'$ egyváltozós relációk a $\varrho_1, \varrho_2, ..., \varrho_k$ relációk A revaló leszűkítései, azaz $\varrho_1' = \varrho_1 \cap A'$, ha i = 1, 2, ..., k. Ezt az A struktúrát úgy építjük fől, hogy φ ezen kielégíthető legyen.

Először az A halmaz elemcit osztályokba soroljuk a következő módon. Jelöljön $i_1i_2...i_k$ egy k hosszúságú, 0-kból és 1-csekből álló sorozatot. Az összes lehetséges ilyen sorozatok száma nyilván 2^k , hiszen minden i_j kétféleképpen választható és ezek a választások egymástól függetlenek. Ezeknek a sorozatoknak megfelelően, az A alaphalmazt felbontjuk páronként közös elem nélküli részhalmazokra, amelyeknek egyesítése kiadja az A halmazt a következő módon: $A_{i_1i_2...i_k} = \{a \in A | i_j = 0 \text{ és } a \notin \varrho_j, \text{ vagy } i_j = 1 \text{ és } a \in \varrho_j, j = 1, 2, ..., k\}$. A kapott részhalmazok között lehetnek üresek is. A definícióból világos, hogy az A halmaz tetszőleges eleme egy és csak egy részhalmazba tartozik. Ezután az igy kapott nem üres részhalmazok mind-

egyikéből kiválasztunk egy elemet, jelölje ezeket $a'_1, a'_2, ..., a'_m \ (m \le 2^k)$. Az A' halmaz elemei éppen ezek a kiválasztott elemek legyenek:

$$A' = \{a'_1, a'_2, \ldots, a'_m\}$$

A megfelelő ϱ'_i -k definícióját már megadtuk. Értelmezzünk még egy f leképezést az A-ból A'-be a következő módon:

 $f\colon A\to A', a\in A$ esetén $f(a)=a_i$, ha a és a_i' ugyanannak a részhalmaznak az elemei. A definíció a részhalmazok konstrukciója miatt egyértelmű. A definícióból világos, hogy $a\in\varrho_i$ akkor és csak akkor igaz, ha $f(a)\in\varrho_i'$ $(i=1,2,\ldots,k)$. Ezt úgy is mondhatjuk, hogy az f leképezés relációtartó. A definícióból világos, hogy ha $\varrho_i=A$, akkor $\varrho_i'=A'$, ha $\varrho_i\ne\emptyset$, akkor $\varrho_i'\ne\emptyset$ és végül, ha $\varrho_i=\emptyset$, akkor $\varrho_i'=\emptyset$ is teljesül $i=1,2,\ldots,k$ esetén.

Jelöljük a φ formulában szabadon előforduló változókat igy: x_1, x_2, \dots, x_n . A feltevés szerint φ kielégithető A-n, tehát vannak olyan $a_1, a_2, \dots, a_n \in A$ alaphalmazbeli elemek, amelyeket rendre az x_1, x_2, \dots, x_n változók értékének véve. φ értéke a struktúrán igaznak adódik. Az előző konstrukcióból következik, hogy ha az x_1, x_2, \dots, x_n változókhoz rendre az $f(a_1), f(a_2), \dots, f(a_n) \in A$ elemet rendeljük hozzá, akkor a φ formula értéke igaz lesz A'-n, tehát φ az A' struktúrán is kielégíthető.

A most bizonyított eredményből következik, hogy a legfeljebb egyváltozós relációjeleket tartalmazó elsőrendű nyelvek formulái körében az eldöntésprobléma megoldható. Erre a kérdésre a feladatokban visszatérünk.

Érdemes még megemlíteni, hogy az eldöntésprobléma visszavezethető olyan elsőrendű nyelvek formuláinak körére, amelyekben legfeljebb kétváltozós relációjelek vannak. Ez mutatja, hogy az egy- és kétváltozós relációk viselkedése között éles határ húzódik.

Az elsőrendű logikában éppen az eldöntésprobléma megoldhatatlansága miatt igen jelentős az a tény, hogy az azonosan igaz formulákat formális, szintaktikus módszerrel, axiomatikusan is lehet jellemezni. Ezt a módszert már a kijelentéskalkulusban megismertük. Az elsőrendű logikának ez a felépítése már a bizonyításelmélet témaköréhez tartozik.

Az eddigiekben alkalmazott vizsgálati módszerünk, ahol halmazokkal, struktúrákkal, modellekkel is foglalkoztunk, a modellelmélet területéhez sorolható.

Az elsőrendű nyelv ismert definícióját annyiban egyszerűbbé tehetjük, hogy a logikai jelek közé csak a ¬, → és ∀ jeleket vesszük fel (tudjuk, hogy ezekkel a többi kifejezhető). Ezekkel a formula fogalmának definíciója is egyszerűbb lesz, a primformulákból csak a ¬, → és ∀ jelek felhasználásával építünk fel formulákat.

Az axiómák megadása előtt még egy segédeszközre van szükségünk, ez a helyettesítés fogalma. A matematikában jól ismerjük ezt a fogalmat. Tudjuk például, hogy a természetes számok körében igaz a következő azonosság:

$$(x+y)^2 = x^2 + 2xy + y^2$$
.

Itt az x változó helyett a 2a, az y változó helyett a 3h kifejezést helyettesítve, a következő azonossághoz jutunk:

$$(2a+3b)^2 = 4a^2 + 12ab + 9b^2$$
.

Általában, ha adott egy k kifejezés, egy x változójel és egy j kifejezés, akkor $k_x[j]$ jelöli azt a kifejezést, amelyet k-ból úgy kapunk, hogy x minden előfordulása helyébe j-t helyettesitink

Formulákban csak szabadon előforduló változók helyére helyettesíthetünk. Ha φ egy formula, x egy változó és k egy kifejezés, akkor $\varphi_x[k]$ jelöli azt a formulát, amit φ -ből úgy kapunk, hogy x minden szabad előfordulása helyébe k-t helyettesítünk. Ha semmi más kikötést nem teszünk, akkor értelmetlen dolgokat is kaphatunk. Például egy megfelelő nyelven a $\exists y(x < y)$ formula igaz állítást fejez ki egy alkalmas struktúrán. Ha ebben az x szabad változó helyére az y kifejezést helyettesítjük, akkor az ugyanezen a struktúrán a hamis $\exists y(y < y)$ állítást kapjuk. A bajt itt láthatóan az okozza, hogy abban a kifejezésben, amit x helyére helyettesítiünk, szerepel az y változójel, amit azon a helyen, ahová helyettesítjük, kvantor köt le. Ha ez az eset nem fordul elő, akkor azt mondjuk, hogy a helyettesítés megengedett.

Áttérünk az axiómarendszer ismertetésére.

Ha φ , ψ és χ tetszőleges formulák, akkor a következő három formulatípust axiómának fogadjuk el és ezeket állítás-axiómáknak hívjuk:

(A1.)
$$\varphi \to (\psi \to \varphi)$$
;

(A2.)
$$(\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi));$$

(A3.)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow ((\neg \psi \rightarrow \varphi) \rightarrow \psi).$$

A következő két axiómát kvantoraxiómának nevezzük. Ezekben φ , ψ tetszőleges formula, k tetszőleges kifejezés, x változójel. Feltesszük, hogy a $\varphi_x[k]$ megengedett helyettesítés, ψ -ben pedig az x változó nem fordul elő szabadon.

(A4.)
$$\forall x \varphi \rightarrow \varphi_x[k]$$
;

(A5.)
$$\forall x(\psi \to \varphi) \to (\psi \to \forall x\varphi)$$
.

Az első három axióma ismerős, ilyen alakúak voltak a III. fejezet 2. szakaszában a kijelentéskalkulus axiómái is. A különbség abban van, hogy itt a φ , ψ és χ egy elsőrendű nyelv tetszőleges formuláit jelenthetik.

Két levezetési szabályt fogadunk el:

- 1. tetszőleges φ , ψ formulákra a φ és $\varphi \rightarrow \psi$ formulákból levezethető a ψ formula (leválasztási szabály, MP.);
- 2. tetszőleges φ formulára és x változójelre a φ formulából levezethető a $\forall x \varphi$ formula [általánosítási szabály, G (generalizálás)].

Egy $\varphi_1, \varphi_2, ..., \varphi_n$ formulasorozatról azt mondjuk, hogy levezetés, ha a sorozat minden eleme vagy axióma, vagy a sorozatban előzőleg már szerepelt formulákból leválasztással vagy általánosítással keletkezik. A levezetés mindig a sorozat utolsó formulájának a levezetése.

Egy φ formuláról akkor mondjuk, hogy levezethető, ha van levezetése. Azt, hogy φ levezethető formula, röviden így jelöljük: $\vdash \varphi$.

A \land , \lor , \leftrightarrow műveleti jelek használatát a kijelentéskalkulusból (III. fejezet, 2. szakasz) ismert módon értelmezhetjük itt is. A \exists jel használatát a következő módon vezetjük be: $\exists x \varphi$ jelölje röviden a következő formulát:

$$\neg \forall x \neg \varphi$$
.

A 8. d) gyakorló feladat alapján tudjuk, hogy ez a rövidítés jó lesz.

A levezethető formula fogalma mellett itt is bevezetjük azt az általánosabb fogalmat, hogy egy formula egy adott formulahalmazból (premisszákból) levezethető. Ha Γ egy tetszőleges (véges vagy végtelen) formulahalmaz, akkor azt mondjuk, hogy a $\varphi_1, \ldots, \varphi_n$ formulasorozat levezetés Γ -ból, ha a sorozat minden eleme vagy axióma, vagy a Γ halmaznak eleme, vagy a sorozatban előzőleg már szerepelt formulákból leválasztással vagy általánosítással keletkezik. A levezetés a sorozat utolsó formulájának a levezetése.

Azt mondjuk, hogy a φ formula levezethető a Γ formulahalmazból, rövid jelöléssel $\Gamma \vdash \varphi$, ha φ -nek van levezetése Γ -ból.

Nyilvánvaló a definiciókból, hogy ha $\Gamma \vdash \varphi$ és $\Gamma = \emptyset$, akkor $\vdash \varphi$, másrészt ha $\vdash \varphi$, akkor tetszőleges Γ -ra $\Gamma \vdash \varphi$ is igaz.

Gyakorló feladatok

21. Igazoljuk példakent, hogy tetszőleges φ formulára és k kifejezésre fennáll, hogy ha a $\varphi_x[k]$ helyettesítés megengedett, akkor

$$\varphi \vdash \varphi_x[k].$$

Megoldás:

A φ feltételből megadjuk a $\varphi_x[k]$ formula egy levezetését. Az egyes formulák után zárotelbe ártuk, hogyan következik az előző formulákból.

1. φ (feltétel).

∀xφ (G.),

3. $\forall x \varphi \rightarrow \varphi_x[k]$ (A4.),

4. $\varphi_x[k]$ (2., 3., MP).

22. Mutassuk meg, hogy tetszőleges olyan formulára, amelyre $\vdash \varphi$, $\models \varphi$ is igaz!

Megoldús:

Azt kell megmutatnunk, hogy az axiómák logikai igazságok és ha a két elfogadott levezetési szabály premisszái logikai igazságok, akkor a következmény formúla is az. Ebből nyílván következik az állítás.

Az (A1.)–(A3.) axiómákról tudjuk, hogy a kijelentéskalkulusban azonosan igaz formulák; nyilván itt is azonosan igaz formulákat jelentenek.

Az (A4.) axiómában szereplő implikáció előtagját alakítsuk át a következő módon:

$$\forall x(\psi \to \varphi) \equiv \forall x(\neg \psi \lor \varphi) \equiv$$
$$\equiv \neg \psi \lor \forall x \varphi \equiv \psi \to \forall x \varphi.$$

Itt a kijelentéskalkulusból ismert azonosságokat használtuk fel, valamint az 5. c) feladat eredményét (ψ -ben nem szerepel az x szabadon).

A leválasztási szabályról már tudjuk, hogy azonosan igaz premisszákból azonosan igaz konklúziót ad. Az általánosításról az univerzális kvantor értelméből nyilvánvaló, hogy ha φ igaz egy A struktúrán, akkor $\forall x \varphi$ is igaz ezen az A-n, tehát ha φ azonosan igaz, akkor $\forall x \varphi$ is azonosan igaz.

Érdemes itt megjegyezni, hogy az általánosítás az általunk elfogadott értelemben nem helyes következtetési szabály, azaz nem igaz a $\varphi \models \forall x \varphi$ reláció (l. a 2. szakasz 1. megjegyzését). Azt viszont igazoltuk, hogy tetszőleges A struktúrára $\models_{A}\varphi$ -ből következik $\models_{A}\forall x \varphi$ is. Éppen azért, mert az általánosítási szabályt is elfogadtuk levezetési szabályként, általában nem igaz, hogy $\Gamma \vdash \varphi$ -ből következik $\Gamma \models \varphi$. Az előző

gyakorlat eredményéből azonban következik, hogy ha $\Gamma \vdash \varphi$, akkor tetszőleges **A** struktúra esetén, ha $\vDash_{A} \Gamma$, akkor $\vdash_{A} \varphi$ is fennáll, azaz ha **A** modellje Γ -nak, akkor **A** modellje φ -nek is.

Igen fontos és jelentős eredmény, hogy az előző állítás megfordítása is igaz, azaz tetszőleges φ formulára fennáll, amennyiben $\models \varphi$, akkor $\vdash \varphi$. Ez azt jelenti, hogy az axiómarendszer teljes: minden azonosan igaz formula levezethető az axiómákból az elfogadott levezetési szabályok alkalmazásával. Ezt a tételt K. Gödel amerikai matematikus igazolta 1930-ban, ezért Gödel-féle teljességi tételnek nevezik. Bizonyítása elég hosszú és mély gondolatmenetet igényel, ezért itt nem tárgyaljuk. A tételhez kapcsolódó érdekesebb eredményekre a feladatokban térünk vissza.

Megjegyzés

Már említettük, hogy a matematikai axiómarendszerek vizsgálatában alapvető logikai szerepet játszik az egyenlőség reláció. Ha olyan elsőrendű nyelveket vizsgálunk, amelynek jelei között az = kétváltozós relációjel is szerepel, és a bizonyításelmélet eszközeivel is biztosítani akarjuk, hogy ez valóban a szokásos egyenlőséget jelentse, akkor további axiómákban kell szabályozni az = reláció tulajdonságait. Ezek az ún. egyenlőségaxiómák. Az

(A6.)
$$\forall x(x=x)$$

axióma értelme világos.

A további axiómák azt biztosítják, hogy ha különböző változójelek azonos dolgokat jelölnek, akkor ezek a változójelek függvények, ill. relációjelek argumentumaiban pótolhatók egymással. Ennek megfelelően ezekből az axiómákból annyi van, ahány függvényjel és relációjel van a nyelvben. Például egy f kétváltozós függvényjelre igy szól a megfelelő axióma:

$$(x_1 = x_3 \land x_2 = x_4) \rightarrow f(x_1, x_2) = f(x_3, x_4).$$

Ha R egy kétváltozós relációjel, akkor a megfelelő axióma így néz ki:

$$(x_1 = x_3 \land x_2 = x_4) \rightarrow (R(x_1, x_2) \leftrightarrow R(x_3, x_4)).$$

A Gödel-féle teljességi tétel megfelelő alakja az így kiegészített axiómarendszerre is igaz.

Az = jelet is tartalmazó elsőrendű logikát szokás az egyenlőségjellel kiegészített elsőrendű logikának nevezni.

Feladatok

- 12. Igazoljuk, hogy ha A véges alaphalmazú struktúra (|A| = n), akkor egy $\forall x P(x)$ alakú formula akkor és csak akkor igaz A-n, ha alkalmas n-tagú konjunkció, egy $\exists x P(x)$ formula pedig n-tagú diszjunkcióval ekvivalens!
- 13. Keressünk olyan eldöntési eljárást, amely választ ad arra a kérdésre, hogy egy φ formula kielégithető-e egy olyan struktúrán, amelynek alaphalmaza $n \in \mathbb{N}$) elemet tartalmaz!
- 14. Legyen L olyan elsőrendű nyelv, amelyben csak az R kétváltozós relációjel szerepel. Igazoljuk, hogy a

$$(\forall x \forall y \forall z (R(x, x) \land ((R(x, y) \land R(y, z)) \rightarrow R(x, z)) \land (R(x, y) \lor R(y, x))) \rightarrow \exists y \forall x R(y, x)$$

formula tetszőleges véges struktúrán igaz, de van olyan végtelen alaphalmazú struktúra, amin a formula nem elégíthető ki!

- 15. Legyen L olyan elsőrendű nyelv, amely csak k darab egyváltozós relációjelet tartalmaz. A 20. gyakorló feladat eredményének felhasználásával igazoljuk, hogy ha a nyelv egy φ formulája minden olyan struktúrán igaz, amelynek alaphalmaza legfeljebb 2^k elemből áll, akkor $\models \varphi$ azaz a φ formula azonosan igaz.
- 16. Mutassuk meg, hogy ha az itéletkalkulus egy tetszőleges azonosan igaz formulájában a változójelek helyére az elsőrendű nyelv tetszőleges formuláit helyettesítjük, akkor olyan formulát kapunk, amely levezethető!
- 17. Bizonyítsuk be, hogy ha az ítéletkalkulusban bármelyik helyes következtetési szabályban a logikai változók he-

lyére egy elsőrendű nyelv tetszőleges formuláit írjuk, és a premisszákból ily módon kapott formulák halmazát Γ -val, a konklúzióból kapott formulát φ -vel jelöljük, akkor $\Gamma \vdash \varphi$.

18. Igazoljuk a kijelentéskalkulusból ismert dedukció tétel megfelelőjét az elsőrendű logikára: legyen Γ tetszőleges formulahalmaz, φ tetszőleges formula, ψ pedig tetszőleges zárt formula:

ha
$$\Gamma, \psi \vdash \varphi$$
, akkor $\Gamma \vdash \psi \rightarrow \varphi$.

A most következő feladatokban néhány önmagában is fontos és érdekes bizonyításelméleti fogalmat vezetünk be, és ezekkel kapcsolatos eredményeket tárgyalunk. Itt és a következőkben az L nyelv Γ formulahalmazára bár nem teszünk semmiféle különleges kikötést – úgy érdemes gondolni, mint egy matematikai axiómarendszer állításainak szerkezetét leíró formulákból álló halmazra. A bevezetésre kerülő fogalmak és a kapott eredmények ennek alapján lesznek jól érthetők.

Azt mondjuk, hogy cgy Γ formulahalmaz ellentmondásos, ha van olyan φ formula, hogy $\Gamma \vdash \varphi$ és $\Gamma \vdash \neg \varphi$ is igaz. A Γ ellentmondástalan, ha nem ellentmondásos.

- 19. Igazoljuk, hogy ha Γ ellentmondásos, akkor tetszőleges ψ formulára fennáll, hogy $\Gamma \vdash \psi$.
- **20.** Igazoljuk, hogy a Γ formulahalmaz akkor és csak akkor ellentmondástalan, ha bármely véges részhalmaza ellentmondástalan!
- **21.** Mutassuk meg, hogy ha φ zárt formula, és Γ -ból nem vezethető le $\neg \varphi$, akkor a $\Gamma \cup \{\varphi\}$ formulahalmaz ellentmondástalan!
- **22.** Igazoljuk, hogy ha a Γ formulahalmaznak van modellje, akkor Γ ellentmondástalan!
- 23. Tegyük fel, hogy igaz az előző feladatban megfogalmazott állítás megfordítása, azaz ha Γ ellentmondástalan formulahalmaz, akkor van modellje! Mutassuk meg, hogy minden φ zárt formulára következik ez az állítás:

ha igaz, hogy Γ minden modellje modellje φ -nek is, akkor $\Gamma \vdash \varphi$ is fennáll!

24. Igazoljuk a Gödel-féle teljességi tétel felhasználásával, hogy ha egy Γ formulahalmaz bármely véges részének van modellje, akkor Γ -nak is van modellje (Gödel-féle kompaktsági tétel)!

Az V. fejezetben kitűzött feladatok megoldásai

- 1. Mindhárom állítás két halmaz egyenlőségét mondja ki. Ezeket úgy könnyű igazolni, hogy megmutatjuk: a két halmaznak ugyanazok az elemei.
- a) $x \in (A \cup B) \times C$ akkor és csak akkor, ha x = (u, v), ahol $u \in A \cup B$ és $v \in C$, azaz ha $u \in A$ és $v \in C$, vagy $u \in B$ és $v \in C$.

 $x \in (A \times C) \cup (B \times C)$ akkor és csak akkor, ha $x \in A \times C$ vagy $x \in B \times C$, azaz x = (u, v), ahol $u \in A$ és $v \in C$, vagy $u \in B$ és $v \in C$.

A két oldalon álló halmaznak tehát ugyanazok az elemei. b) $x \in (A \cap B) \times C$ akkor és csak akkor, ha x = (u, v). $u \in A \cap B$ és $v \in C$, azaz $u \in A$ és $u \in B$ és $v \in C$.

 $x \in (A \times C) \cap (B \times C)$ akkor és csak akkor, ha $x \in A \times C$ és $x \in B \times C$, azaz x = (u, v), ahol $u \in A$ és $u \in B$ és $v \in C$.

c) $x \in (A - B) \times C$ akkor és csak akkor, ha x = (u, v), ahol $u \in A - B$ és $v \in C$, azaz $u \in A$, $u \notin B$ és $v \in C$.

 $x \in (A \times C) - (B \times C)$ akkor és csak akkor, ha $x \in A \times C$, $x \notin B \times C$, azaz x = (u, v), ahol $u \in A$, $u \notin B$ és $v \in C$.

- 2. a) A formula azt fejezi ki, hogy minden számnak van többszöröse, ami nyilván igaz.
 - b) A formula értéke hamis, mert pl. 3 nem osztója 5-nek.
- c) A formula értéke igaz, mert az 1 minden természetes számnak osztója.
- d) A formula értéke nyilván igaz, hiszen van olyan szám, aminek van osztója.
- e) A formula értéke hamis, mert pl. nem igaz, hogy 3 és 5 legnagyobb közös osztója 2.

- f) A formula értéke hamis, mert pl. a 2-höz bármely y-t is választunk, nem igaz, hogy 2 és y legnagyobb közös osztója 3.
- g) A formula értéke hamis, mert pl. a 2-höz és 3-hoz nincs olyan y, amelyre 2 és y legnagyobb közös osztója 3.
- h) A formula azt fejezi ki, hogy minden természetes számhoz van olyan számpár, amelynek ez a legnagyobb közös osztója, igy értéke nyilván igaz.
- 3. a) Az elsőrendű nyelvben lévő változó, logikai és segédjeleken kívül szükség lesz egy nullaváltozós függvényjelre: t, egy egyváltozós relációjelre: P, két kétváltozós relációjelre: < és |. Ezen a nyelven az állítás logikai szerkezetét a következő formulával írhatjuk le:

$$\forall x (1 < x \rightarrow \exists y (y \mid x \land P(y))).$$

Nyilván a nyelv alkalmas interpretációjában ezeket a következőképpen választjuk: N⁺ az alaphałmaz, 1 az "egy" természetes szám jele, P a "prímszámnak tenni" reláció jele, <, ill. 1 a "kisebb" és "osztható" relációt jelenti.

A formula értéke ebben az interpretációban nyilván igaz.

h) A megfelelő elsőrendű nyelv megadásához érdemes végiggondolni, hogy az interpretációban alaphalmaznak célszerű választani a tér pontjaiból, egyeneseiből és síkjaiból álló halmazt. Ennek megfelelően a nyelvben a következő egyváltozós relációjeleket vesszük fel: P, E, S; kétváltozós relációjelek legyenek: ||, \perp. Az interpretációban P, E, S rendre a "pont", "egyenes", "sík" egyváltozós relációkat jelentik, a ||, \perp. \phi pedig a "párhuzamos", "merőleges", "illeszkedik" kétváltozós relációkat. Ezek alapján az állítás szerkezetét így irhatjuk le:

$$\forall x (E(x) \to \forall y \forall u \forall v ((S(y) \land E(u) \land E(v) \land \land u \Leftrightarrow y \land v \Leftrightarrow y \land \exists u \parallel v \land x \bot u \land x \bot v) \to \\ \to \forall z ((E(z) \land z \Leftrightarrow y) \to x \bot z))).$$

A formula egy ismert geometriai tétel logikai szerkezetét fejezi ki, tehát az adott interpretációban a logikai értéke igaz.

c) Az előző példákban többféle alkalmas nyelvet is megadhattunk volna. Itt is többféle lehetőség közül választhatunk. Ha arra törekszünk, hogy lehetőleg kevés jelet tartalmazzon a nyelv, akkor elég a következő fúggvényjeleket felvenni: 0 (nullaváltozós), + és · kétváltozós. Az = kétváltozós relációjelet elég felvenni a nyelvbe. Ezek segítségével az állítás logikai szerkezete a következő:

$$\forall a \forall b \forall c \forall d \exists x (((a \cdot (x \cdot (x \cdot x)) + b \cdot (x \cdot x)) + c \cdot x) + d = 0).$$

Az interpretáció alaphalmazának R-et, a valós számok halmazát választjuk, 0 a nulla valós számot jelöli, + és · az R-en értelmezett összeadást és szorzást. Látható, hogy itt "megspóroltuk" a hatványozás kifejezésére alkalmas függvényjel bevezetését.

- **4.** Az elsőrendű nyelvben egy egyváltozós: N és két kétváltozós relációjelet veszünk fel: H, G. A tervezett interpretációban, amelynek alaphalmaza az emberek, ezek jelentése a következő lesz: "nő", "házastársa", "gyermeke". A feladat az, hogy olyan formulákat írjunk fel, amelyek az interpretációban a megadott relációkat jelentik.
- a) Az "x anyja y-nak" relációt nyelvileg kissé nehézkesebben, de az adott összefüggésben a logikai szerkezetet jól láthatóan igy fejezhetjük ki: "x nő és y gyermeke x-nek". Ennek megfelelően a keresett formula:

$$N(x) \wedge G(v, x)$$
.

b) Az "x testvére y-nak" azt jelenti, hogy x és y ugyanannak a gyermekei, tehát az alkalmas formula:

$$\exists z (G(x, z) \land G(y, z)).$$

c) Az "x nagyapja y-nak" azt jelenti, hogy x férfi – azaz nem nő – és y a gyermeke x gyermekének. A megfelelő formula:

$$\neg N(x) \land \exists z (G(z, x) \land G(y, z)).$$

d) Az "x unokatestvére y-nak" reláció azt jelenti, hogy x és y szülei testvérek. Így az alkalmas formulát a kövétkező módon irhatjuk fel:

$$\exists u \exists v (G(x, u) \land G(v, v) \land \exists z (G(u, z) \land G(v, z))).$$

e) Itt az "x apósa y-nak" reláció logikai szerkezete ilyen alakú: "x férfi és y a házastársa x gyermekének". A megfelelő formula:

$$\neg N(x) \land \exists z (G(z, x) \land H(y, z)).$$

- 5. a) Az azonosság bal oldalán álló formula egy tetszőleges struktúrán akkor és csak akkor igaz, ha a P-nek megfelelő egyváltozós reláció a struktúrában konstans igaz. Nyilván ugyanekkor igaz a jobb oldalon álló formula is.
- b) A bal oldali formula egy rögzített struktúrán akkor és csak akkor igaz, ha a P-nek megfelelő reláció nem konstans hamis. Világos, hogy a jobb oldali formula is pontosan ekkor igaz.

Az a) és b) azonosság azt fejezi ki, hogy egy formulában a kötött változók jelölését meg lehet változtatni úgy, hogy új, a formulában még nem szereplő változót vezetünk be.

Az utóbbi kikötés lényeges, mert pl. a $\forall x R(x, y)$ és $\forall y R(y, y)$ formulák nyilván nem azonosak.

) Tegyük fel, hogy egy A struktúrán a bal oldali formula ig iz. A konjunkció definíciója szerint ez akkor és csak akkor áll fenn, ha φ is és $\exists x P(x)$ is igaz A-n, azaz φ igaz A-n és a P-nek megfelelő A-beli reláció nem konstans hamis. Ez utóbbi akkor és csak akkor teljesül, ha $\exists x (P(x) \land \varphi)$ igaz A-n

(itt felhasználtuk, hogy φ -ben az x változó nem fordul elő szabadon).

- d) A c) feladathoz hasonló, egyszerű meggondolással igazolható ez az azonosság is.
- e) Használjuk fel a)-t és d)-t, és alakítsuk át a bal oldalon álló formulát:

$$\forall x P(x) \lor \forall x Q(x) \equiv \forall x P(x) \lor \forall y Q(y) \equiv$$
$$\equiv \forall x (P(x) \lor \forall y Q(y)) \equiv \forall x \forall y (P(x) \lor Q(y)).$$

f) Az e) azonosság bizonyításához hasonlóan b) és c) felhasználásával így alakíthatjuk át a bal oldalt:

$$\exists x P(x) \land \exists x Q(x) \equiv \exists x P(x) \land \exists y Q(y) \equiv$$
$$\equiv \exists x (P(x) \land \exists y Q(y)) \equiv \exists x \exists y (P(x) \land Q(y)).$$

g) Használjuk fel a már bizonyított azonosságokat (8. a) gyakorlat, 9. gyakorlat):

$$\forall x P(x) \to \exists x Q(x) \equiv \neg \forall x P(x) \lor \exists x Q(x) \equiv$$
$$\equiv \exists x \neg P(x) \lor \exists x Q(x) \equiv \exists x (\neg P(x) \lor Q(x)) \equiv$$
$$\equiv \exists x (P(x) \to Q(x)).$$

6. a) Tegyük fel, hogy egy A struktúrán igaz a formula előtagja és mutassuk meg, hogy az utótag is igaz.

Ha $\models_A \forall x \forall y R(x, y)$, akkor az R-et interpretáló kétváltozós reláció A alaphalmazának minden elempárjára igaz, de akkor nyilván azokra is, amelyeknek első és második komponense egyenlő, tehát $\models_A \forall x R(x, x)$.

- b) Tegyük fel, hogy egy adott A struktúrán $\models_{A} \exists x R(x, x)$. Ez nyilván azt jelenti, hogy az R-et interpretáló kétváltozós reláció nem üres, de akkor $\models_{A} \exists x \exists y R(x, y)$ értéke is igaz.
- c) Mivel φ -ben az x nem szerepel szabadon, ezért egy c)-nél erősebb állítást is könnyű igazolni az $\mathbf{5}$. g) bizonyításában használt módszerrel:

$$\forall x(\varphi \to P(x)) \equiv \forall x(\neg \varphi \lor P(x)) \equiv \neg \varphi \lor \forall x P(x) \equiv \\ \equiv \varphi \to \forall x P(x).$$

7. A formulát a bizonyított azonosságok felhasználásával alakíthatjuk át:

$$(\neg \forall x P(x) \lor \exists x Q(x)) \land (R(x) \to \exists x S(x)) \equiv$$

$$\equiv (\exists x \neg P(x) \lor \exists x Q(x)) \land (\neg R(x) \lor \exists y S(y)) \equiv$$

$$\equiv \exists x (\neg P(x) \lor Q(x)) \land \exists y (\neg R(x) \lor S(y)) \equiv$$

$$\equiv \exists z (\neg P(z) \lor Q(z)) \land \exists y (\neg R(x) \lor S(y)) \equiv$$

$$\equiv \exists z \exists y ((P(z) \to Q(z)) \land (R(x) \to S(y))).$$

8. Az elsőrendű nyelv a szokásos jeleken kivül tartalmazza még a *P*, *Q*, *R* egyváltozós relációjeleket is. Ekkor az egyes típusokba tartozó állítások szerkezetét a következő formulák fejezik ki:

$$A = \forall x (P(x) \rightarrow Q(x)),$$

$$E = \forall x (P(x) \rightarrow \neg Q(x));$$

$$I = \exists x (P(x) \land Q(x));$$

$$O = \exists x (P(x) \land \neg Q(x)).$$

Igazoljuk pl., hogy a következő szillogizmusok helyes következtetések:

a)
$$\forall x(Q(x) \rightarrow \neg R(x)), \ \forall x(P(x) \rightarrow Q(x)) \models \forall x(P(x) \rightarrow \neg R(x));$$

b) $\forall x(Q(x) \rightarrow \neg R(x)), \ \exists x(P(x) \land Q(x)) \models \exists x(P(x) \land \neg R(x))$

b)
$$\forall x(Q(x) \rightarrow \neg R(x)), \exists x(P(x) \land Q(x)) \models \exists x(P(x) \land \neg R(x)).$$

a) Tegyük fel, hogy egy A struktúrán igazak a premisszák. Ekkor A alaphalmazának tetszőleges elemére a $Q(x) \rightarrow \neg R(x)$ és $P(x) \rightarrow Q(x)$ formulák igazak, de akkor az imp-

likáció definíciója szerint a $P(x) \rightarrow \neg R(x)$ formula is tetszőleges alaphalmazbeli elemre igaz, tehát

$$\vDash {}_{\Lambda} \forall x (P(x) \rightarrow \neg R(x)).$$

b) Tegyük fel, hogy egy A struktúrán igazak a premisszák. Ekkor az A alaphalmazának tetszőleges elemére $Q(x) \rightarrow \neg R(x)$ igaz és van olyan a eleme az alaphalmaznak, amire $P(x) \land Q(x)$, azaz P(x) is igaz. De akkor erre az a elemre $\neg R(x)$ is fennáll, igy $P(x) \land \neg R(x)$ igaz. Ez azt jelenti, hogy

$$\models {}_{\Lambda}\exists x (P(x) \land \neg R(x)),$$

tehát a következtetés helyes.

9. a) A következtetés részletes vízsgálata után látható, hogy benne az élőlények A halmazáról és az ezen értelmezett "x-nek őse y" reláció tulajdonságairól van szó. Így a szerkezet leírására alkalmas elsőrendű nyelvet kapunk, ha a szokásos jeleken kívül még egy R kétváltozós relációjelet veszünk fel. Ezen a nyelven a következtetés szerkezete így írható fel:

$$\forall x \forall y \forall z ((R(x, y) \land R(y, z) \rightarrow R(x, z)), \ \forall x \exists R(x, x) \models \forall x \forall y R(x, y).$$

A következtetés nem helyes, mert pl. egy olyan A struktúrán, amelyen R-et egy üres reláció reprezentálja, a két premissza igaz (az első azért, mert az implikáció előtagja hamis), míg a konklúzió nyilván hamis, hiszen az alaphalmaz nem üres.

b) A következtetésben a természetes számok halmazának elemeiről, természetes számok között értelmezett relációkról van szó. Így alkalmas nyelvet úgy tudunk konstruální, hogy először megvizsgáljuk, milyen elemek, ill. relációk vannak a konkrét következtetésben. Látható, hogy az 1, 11 és 113 természetes számok fordulnak elő, továbbá a "kisebb", "prímszám", "osztója" relációk. Ezért a megfelelő elsőrendű nyelv jeleihez a következőket vesszük hozzá: a, b, c nullaváltozós függvényjelek (konstans jelek), P egyváltozós relációjel, Q és

R kétváltozós relációjelek. A következtetés szerkezetét először írjuk le "matematikai gyorsírással", azaz a logikai jelek, a <, | (osztója) jelek alkalmazásával, majd ezután könnyen át tudjuk írni a választott elsőrendű nyelvre:

$$\exists x (1 < x \land x < 113 \land x \mid 113) \rightarrow$$

$$\rightarrow \exists x (x < 11 \land x \text{ prim } \land x \mid 113);$$

$$\forall x ((x < 11 \land x \text{ prim}) \rightarrow \neg x \mid 113);$$

$$\forall x ((1 < x \land x < 113) \rightarrow \neg x \mid 113).$$

A következtetés logikai szerkezete:

$$\exists x (R(a, x) \land R(x, c) \land Q(x, c)) \rightarrow$$

$$\rightarrow \exists x (R(x, b) \land P(x) \land Q(x, c)),$$

$$\forall x ((R(x, b) \land P(x)) \rightarrow \neg Q(x, c)) \models$$

$$\models \forall x ((R(a, x) \land R(x, c)) \rightarrow \neg Q(x, c)).$$

Tegyük fel, hogy egy megfelelő A struktúrán a két premissza igaz. A második premissza igaz voltából következik, hogy

$$(R(x, b) \land P(x)) \rightarrow \neg Q(x, c)$$

az A struktúra A alaphalmazának minden elemére igaz. Az utóbbi formulát a kijelentéskalkulus azonosságai alapján

$$\neg R(x,b) \lor \neg P(x) \lor \neg Q(x,c)$$

alakra hozhatjuk. Mivel ez a formula minden A-beli elemre igaz, ezért a tagadása,

$$R(x, b) \wedge P(x) \wedge Q(x, c)$$

minden A-beli elemre hamis, tehát

$$\exists x (R(x, b) \land P(x) \land Q(x, c))$$

hamis A-n. Mivel az első premisszát alkotó implikáció igaz,

és azt találtuk, hogy az utótagja hamis, ezért az előtagja,

$$\exists x (R(a, x) \land R(x, c) \land Q(x, c))$$

is hamis A-n, de akkor az

$$R(a, x) \wedge R(x, c) \wedge Q(x, c)$$

formula A minden elemére hamis, így a tagadása, a

formula A minden elemére igaz, tehát a

$$\forall x ((R(a, x) \land R(x, c)) \rightarrow \Box Q(x, c))$$

formula, a konklúzió A-n igaz. A következtetés tehát helyes. c) A következtetésben szereplő kijelentésekből a következő két reláció elemezhető ki: "x a falu borbélya" és "x borotválja y-t". Ennek megfelelően, az alkalmas elsőrendű nyelvben a szokásos jeleken kívül egy egyváltozós relációjelet: B és egy kétváltozós relációjelet: b veszünk fel. Ezen a nyelven a következtetés szerkezetét így írhatjuk fel:

$$\forall x (B(x) \rightarrow \forall y (xby \leftrightarrow \neg yby)) \models \neg \exists x B(x).$$

Tegyük fel, hogy egy A struktúrán a premissza igaz. Az ismert azonosságok alapján a premisszát így is irhatjuk:

$$\forall x \forall y (\neg B(x) \lor (xby \leftrightarrow \neg yby)).$$

Ez a formula igaz A-n, igy a

$$\neg B(x) \lor (xby \leftrightarrow \neg yby)$$

formula a struktúra A alaphalmazának bármely elempárjára igaz, de akkor a

$$\neg B(x) \lor (xbx \leftrightarrow \neg xbx)$$

formula is A minden elemére igaz. (Ennek a formulának a je-

lentése 2. feladat szövege alapján ez lenne: "vagy nem igaz, hogy x a falu borbélya, vagy x akkor és csak akkor borotválja önmagát, ha nem borotválja önmagát"). A diszjunkció második tagja minden elemre hamis, így $\neg B(x)$ minden elemre igaz, ezért B(x) minden elemre hamis, azaz $\exists x B(x)$ hamis A-n, így a konklúzió, $\neg \exists x B(x)$ igaz A-n, tehát a következtetés helyes.

10. Jelöljük φ -vel a kijelentéslogika egy tetszőleges, azonosan igaz formuláját és φ^* -gal az ebből helyettesítéssel kapott elsőrendű formulát. Tetszőleges A struktúrát is választunk és ezen bárhogyan is értékeljük a φ^* -beli szabad változókat – ha vannak –, a φ -beli logikai változók helyére helyettesített komponensekre kapott logikai értékek φ -t igazzá teszik, tehát φ^* igaz A-n, de akkor

$$\models \varphi^*$$
.

11. Az állítás egyszerűen következik az előző feladat eredményéből, hiszen a helyes következtetés fogalma visszavezethető az azonosan igaz formula fogalmára. Legyen a kijelentéslogikában helyes következtetés:

$$\varphi_1, \varphi_2, \ldots, \varphi_k \vDash \varphi$$

és az ebből helyettesítéssel kapott következtetés

$$\varphi_1^*, \varphi_2^*, \ldots, \varphi_k^* \models \varphi^*.$$

Mivel a feltétel szerint $(\varphi_1 \wedge \varphi_2 \wedge ... \wedge \varphi_k) \rightarrow \varphi$ azonosan igaz formula, a 10. feladat eredménye szerint

$$(\varphi_1^* \land \varphi_2^* \land \dots \land \varphi_k^*) \to \varphi^* \equiv$$
$$\equiv \varphi_1^* \to (\varphi_2^* \to \dots (\varphi_k^* \to \varphi^*) \dots)$$

is azonosan igaz, de akkor a helyettesítéssel kapott következtetési szabály is helyes.

12. A feltevés szerint A alaphalmaza, A elemeinek száma n. Bővítsük ki a nyelvet (és természetesen a struktúrát is)

úgy, hogy mindegyik elemre egy nevet (ill. egy nullaváltozós függvényjelet) hozzáveszünk. Legyenek ezek: a_1, a_2, \ldots, a_m A konjunkció és az univerzális kvantor definíciója alapján világos, hogy

$$\forall x P(x) = P(a_1) \land P(a_2) \land \dots \land P(a_n).$$

Ugyancsak a diszjunkció és az egzisztenciális kvantor definiciója alapján nyilvánvaló, hogy

$$\exists x P(x) = P(a_1) \lor P(a_2) \lor \dots \lor P(a_n).$$

13. A 7. feladatban alkalmazott módszerrel minden formulát átalakíthatunk úgy, hogy az összes kvantor a formula elején álljon és ezek után olyan formula következik, amely már prímformulákból az ítéletkalkulus műveleteivel épül fel. Az ilyen alakú formulát prenex normálformának nevezik.

Az előző feladat eredményének felhasználásával, a kapott prenex formulához található olyan kvantorokat már nem tartalmazó – formula, ami ekvivalens az eredeti formulával. Ezt a formulát azután még átalakíthatjuk úgy, hogy az esetleges szabad változók helyére vesszük a 12. feladat megoldásában bevezetett konstans jeleket az összes lehetséges módon, és az így kapott – változójelet már nem tartalmazó formulák – diszjunkcióját képezzük.

Az eredeti formula nyilván akkor és csak akkor elégíthető ki az adott struktúrán, ha a kapott formula kielégíthető. Ezt viszont már a kijelentéskalkulusban megismert eldöntési eljárással lehet megvizsgálni.

14. Tekintsünk egy tetszőleges A véges struktúrát, amelynek alaphalmaza n elemet tartalmaz és egy kétváltozós reláció van értelmezve rajta. Ha a formula előtagja hamis A-n, akkor az implikáció igaz, így feltehetjük, hogy az előtag igaz A-n.

Alkalmazzuk a már ismert szemléltetést: pontokkal szemléltetjük az alaphalmaz elemeit és azt, hogy két elem között fennáll a reláció úgy ábrázoljuk, hogy a relációhoz tartozó pár első elemét ábrázoló pontból nyilat rajzolunk a második elemet szemléltető ponthoz. Az előtag igaz, és mivel ez konjunkció, tehát minden tagja igaz: minden pont össze van kötve önmagával, a harmadik konjunkciós tag szerint bármely két pont össze van kötve egyikből a másikba vezető nyillal, a középső tag szerint pedig ha P-ből vezet nyíl Q-ba és Q-ból R-be, akkor P-ből is vezet nyíl R-be. Azt kell megmutatnunk, hogy az utótag is igaz. Ez a szemléltetésben azt jelenti, hogy van olyan pont, amelyből minden ponthoz vezet nyíl.

Válasszuk ki azt a pontot, ahonnan a legtöbb nyíl indul ki, legyen ez P. (Ilyen van, mert csak véges sok pont van.) Azt fogjuk megmutatni, hogy P-ből minden pontba vezet nyíl. P-ből önmagába vezet nyíl. Tegyük fel, hogy van olyan P-től különböző Q pont, ahova P-től nem vezet nyíl; ekkor viszont fordítva, Q-ból vezet P-be nyil. Azonban az előtag második konjunkciós tagja által kifejezett tulajdonság szerint Q-ból minden olyan R pontba is vezet nyil, ahonnan P-be, azaz Q-ból több nyíl vezetne ki, mint P-ből, ellentétben a feltevéssel. A formula utótagja is igaz, tehát a formula igaz A-n.

Adjunk meg egy végtelen struktúrát úgy, hogy alaphalmaza legyen a természetes számok N halmaza és az R reláció jelentése legyen ezen a \geq . Ekkor világos, hogy az implikáció előtagja igaz, mert a \geq reláció reflexív, tranzitív és bármely két természetes szám összehasonlítható vele, de az utótagja hamis, mert nincs legnagyobb természetes szám. Így a formula nem elégíthető ki ezen a struktúrán.

A feladatból adódik az a fontos tanulság, hogy vannak olyan formulák, amelyekről csak végtelen struktúrán derül ki, hogy nem logikai igazságok.

15. Tegyük fel, hogy az állítás nem igaz, azaz a φ formula minden olyan struktúrán igaz, amelynek alaphalmaza legfeljebb 2^k elemből áll, de mégsem azonosan igaz. Ekkor a tagadása, a $\neg \varphi$ kielégithető, de a 20. gyakorló feladat eredménye

szerint akkor kielégíthető egy olyan struktúrán is, amelynek alaphalmaza legfeljebb 2^k elemet tartalmaz. Ez viszont azt jelenti, hogy $\neg \neg \varphi \equiv \varphi$ hamis egy olyan struktúrán, aminek alaphalmaza legfeljebb 2^k elemből áll, ellentétben a feltevéssel. Így az állítás igaz.

A feladat eredménye és a 13. feladat alapján bármely, csak k darab egyváltozós relációjeleket tartalmazó formulát kielégíthetőség szempontjából elég megvizsgálni a 2^k -nál nem több elemet tartalmazó alaphalmazzal rendelkező véges struktúrákon – erre pedig van eldöntési eljárás.

A 14. feladat szerint a kétváltozós relációjeleket is tartalmazó formulák körében hasonló állítás már nem igaz.

- 16. A kijelentéskalkulus axiomatizálásakor elfogadott axiómák, ill. levezetési szabályok az elsőrendű logika axiómái, ill. levezetési szabályai között is szerepelnek. Ebből nyilván következik, hogy az elsőrendű logika axiómáiból az elfogadott levezetési szabályokkal minden olyan formula levezethető, amely a kijelentéskalkulus egy levezethető formulájából úgy keletkezik, hogy benne a logikai változók helyére a nyelv tetszőleges formuláit helyettesítjük. Azt tudjuk már, hogy a kijelentéskalkulus levezethető formuláinak öszszessége azonos az azonosan igaz formulák halmazával. Ezzel az állítást igazoltuk.
- 17. Az elsőrendű logikában a $\Gamma \vdash \varphi$ fogalom definíciója nyilván bővítése a kijelentéskalkulusban megismert megfelelő fogalomnak. Így az állítás nyilván igaz, hiszen bármely olyan kijelentéskalkulusbeli formulasorozatban, amely a Γ -ból egy levezetés, a logikai változók helyére az elsőrendű nyelv formuláit helyettesítve olyan formulasorozatot kapunk, amely levezetés Γ -ból az elsőrendű nyelvben.
- 18. A bizonyitás gondolatmenete a kijelentéskalkulusban megismert bizonyításhoz hasonló. Ebben már felhasználjuk az előző két feladat eredményét is.

Tegyük fel, hogy Γ , $\psi \vdash \varphi$ és φ zárt. Legyen

$$\varphi_1, \varphi_2, ..., \varphi_n (= \varphi)$$

a φ egy levezetése Γ , ψ -ből. Teljes indukcióval igazoljuk, hogy minden $i \le n$ esetén $\Gamma \vdash \psi \to \varphi_i$.

Ha i=1, akkor φ_i vagy axióma, vagy Γ eleme, vagy azonos ψ -vel. Ezeket az eseteket pontosan ugyanúgy lehet elintézni, mint a kijelentéskalkulus esetében (felhasználva a 17. feladat eredményét).

Tegyük fel, hogy $1 \le i < n$ és *i*-re igaz az állítás. Mutassuk meg, hogy $\Gamma \vdash \psi \to \varphi_{i+1}$ is igaz.

Ha φ_{i+1} axióma, Γ -nak eleme, vagy ψ -vel azonos, akkor a már említett módon járhatunk el. Ugyancsak a kijelentés-kalkulusból ismert módon igazolhatjuk az állítást, ha φ_{i+1} a leválasztási szabállyal keletkezik a sorozatban előzőleg szerepelt formúlákból. Azt az esetet kell még megvizsgálnunk, ha φ_{i+1} egy φ_j ($j \le i$) formulából általánosítással keletkezik. Az indukciós feltevés szerint $\Gamma \vdash \psi \to \varphi_j$, ebből általánosítással $\Gamma \vdash \forall x(\psi \to \varphi_j)$ adódik. Mivel ψ zárt, így x nem fordul elő benne szabadon.

 $\forall x(\psi \rightarrow \varphi_j) \rightarrow (\psi \rightarrow \forall x\varphi_j)$ axióma, így a leválasztási szabály alkalmazásával azt kapjuk, hogy

$$\Gamma \vdash \psi \rightarrow \forall x \varphi_i (= \psi \rightarrow \varphi_{i+1})$$

és ezzel a dedukció tételt igazoltuk.

19. Tegyük fel, hogy Γ ellentmondásos, azaz van olyan φ formula, hogy $\Gamma \vdash \varphi$ és $\Gamma \vdash \neg \varphi$. Legyen ψ a nyelv egy tetszőleges formulája. A kijelentéskalkulusból tudjuk, hogy egy $\neg P \rightarrow (P \rightarrow Q)$ alakú formula azonosan igaz, de akkor a 16. feladat szerint

$$\Gamma \vdash \neg \varphi \rightarrow (\varphi \rightarrow \psi).$$

Ebből és a két feltevésből a leválasztási szabály kétszeres alkalmazásával azt kapjuk, hogy

$$\Gamma \vdash \psi$$
.

20. Tegyük fel, hogy a Γ formulahalmaz ellentmondástalan, de van olyan véges Γ' részhalmaza, ami ellentmondásos. Ez azt jelenti, hogy van olyan φ formula, amire $\Gamma' \vdash \varphi$ és $\Gamma' \vdash \neg \varphi$. Mivel Γ' része Γ -nak, ezért $\Gamma \vdash \varphi$ és $\Gamma \vdash \neg \varphi$ is igaz, azaz Γ ellentmondásos, ellentétben a feltevéssel.

Tegyük fel, hogy Γ bármely véges része ellentmondástalan, de Γ mégis ellentmondásos. Ekkor van olyan φ formula, amelyre $\Gamma \vdash \varphi$ és $\Gamma \vdash \neg \varphi$. Mindkét levezetésben Γ -ból csak véges sok formula szerepelhet, így ha ezek összességét Γ' -vel jelöljük, akkor Γ' véges része Γ -nak és ez is ellentmondásos lenne, ellentétben a feltevéssel.

21. Tegyük fel, hogy φ zárt formula és Γ -ból nem vezethető le $\neg \varphi$ és $\Gamma \cup \{\varphi\}$ mégis ellentmondásos.

Tudjuk, hogy $\Gamma \cup \{\varphi\}$ -ből bármilyen formula levezethető (19. feladat), tehát $\neg \varphi$ is, azaz

$$\Gamma, \varphi \vdash \neg \varphi.$$

A dedukciótétel szerint (18. feladat), mivel φ zárt formula, igy $\Gamma \vdash \varphi \to \neg \varphi$. Az ítéletkalkulusban a $(P \to \neg P) \to \neg P$ formula azonosan igaz, igy a 16. feladat szerint $\vdash (\varphi \to \neg \varphi) \to \neg \varphi$. A leválasztási szabály alkalmazásával tehát azt kapjuk, hogy $\Gamma \vdash \neg \varphi$, ez pedig ellentmond a feltevésnek. Így a $\Gamma \cup \{\varphi\}$ formulahalmaz ellentmondástalan.

22. Tegyük fel, hogy a Γ formulahalmaznak egy \mathbf{A} struktüra modellje és Γ mégis ellentmondásos. Ekkor a 19. feladat szerint bármely zárt φ formulára $\Gamma \vdash \varphi$ és $\Gamma \vdash \neg \varphi$. Tudjuk, hogy ekkor Γ minden modellje modellje φ -nek is és $\neg \varphi$ -nek is. De $\models_{\mathbf{A}} \varphi$ és $\models_{\mathbf{A}} \neg \varphi$ egyszerre lehetetlen, mert ha a φ zárt formula igaz \mathbf{A} -n, akkor az értékelés definíciója szerint $\neg \varphi$ hamis. Ellentmondásra jutottunk, tehát a Γ formulahalmaz ellentmondástalan.

23. Tegyük fel, hogy bár igaz:

a) ha Γ ellentmondástalan, akkor van modellje, mégsem teljesül, hogy

b) abból, hogy Γ minden modellje modellje φ -nek is, következik, hogy $\Gamma \vdash \varphi$ (φ zárt formula).

Ez azt jelenti, hogy van olyan φ zárt formula, hogy Γ minden modellje modellje φ -nek is, de Γ -ból nem vezethető le φ . Ekkor Γ ellentmondástalan (mivel nem minden formula vezethető le belőle), de akkor a **21.** feladat szerint $\Gamma \cup \{ \neg \varphi \}$ is az, tehát az a) feltétel szerint van A modellje. Erre $\models_A \neg \varphi$ és $\models_A \Gamma$ miatt $\models_A \varphi$ is teljesül, ami lehetetlen. Ellentmondásra jutottunk, így az állítás igaz.

A feladat eredménye azt mutatja, hogy a Gödel-féle teljességi tételhez elég lenne igazolni, hogy minden ellentmondástalan formulahalmaznak van modellje. Ennek bizonyítása elég hosszadalmas, a bizonyítás lényege az, hogy az ellentmondástalan formulahalmazhoz alkalmas módon konstruálni kell egy olyan struktúrát, ami modellje a formulahalmaznak.

24. A bizonyításhoz felhasználjuk a Gödel-féle teljességi tételt. Tegyük fel, hogy Γ bármely véges részének van modellje. Ekkor a 22. feladat szerint Γ bármely véges része ellentmondástalan, de akkor a 23. feladat szerint Γ is ellentmondástalan, tehát a Gödel-féle teljességi tétel szerint van modellje.

A könyv ábráit rajzolta: Balázs Ivánné A könyv formátuma: Fr5 Ívterjedelme 13,74 (A/5)

Kiadja a Műszaki Könyvkiadó

Felelős kiadó: Bérczi Sándor ügyvezető igazgató Felelős szerkesztő: Oláh Judit matematikus A 4. kiadást gondozta: Halmos Mária Műszaki veztő: Abonyi Ferenc Műszaki szerkesztő: Szigeti Róbertné A boritót tervezte: Trajan Kft.

Ivterjedelme 13,74 (A/5) Ábrák száma: 90 Azonossági szám: 10453 Készült az MSZ 5601:83 és 5602:83 szerint

> Nyomta és kötötte a Sylvester János Nyomda Felelős vezető: Varró Attila ügyvezető igazgató

Következtetési szabályok:

 $A \wedge A = A$

 $A \wedge (A \vee B) = A$ $A \vee (A \wedge B) = A$

$$A \wedge (B \vee C) = \{A \wedge B\} \vee \{A \wedge C\} \qquad A \vee \{B \wedge C\} = \{A \vee B\} \wedge (A \vee C)$$

 $\neg \neg A = A$. $A \rightarrow B = \neg A \lor B$ $A \leftrightarrow B = (\neg A \lor B) \land (A \lor \neg B)$

 $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$ $\neg \forall x P(x) \equiv \exists x \, \neg P(x) \qquad \neg \exists x P(x) \equiv \forall x \, \neg P(x)$ $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x) \qquad \exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x).$

 $A \mid B = \neg (A \land B)$ $A \mid B = \neg (A \lor B)$

 $A, A \rightarrow B \models B$ $\neg A \rightarrow \neg B, B \models A$ $A \rightarrow B = \exists B \rightarrow \exists A$ $\exists A \rightarrow \exists B = B \rightarrow A$ $A \rightarrow B, B \rightarrow C = A \rightarrow C \qquad \exists A \rightarrow B, \exists A \rightarrow \exists B = A$ $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x)) \models \forall x (P(x) \rightarrow R(x))$ $\forall x \neg R(x, x), \forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z)) \models \forall x \forall y (R(x, y) \rightarrow R(x, z)) \models \forall x \forall y (R(x, y) \rightarrow R(x, z)) \models \forall x \forall y \in R(x, y) \rightarrow R(x, z)$

 $\forall x \forall y (R(x, y) \rightarrow R(y, x)), \forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow$

 $\rightarrow R(x, z)$), $\forall x \exists y R(x, y) \models \forall x R(x, x)$.

 $\rightarrow \neg R(y, x)$