$$\frac{dV}{dt} = mg = cV$$

$$\int \frac{dV}{dt} = \frac{dt}{dt} \rightarrow -\ln \frac{mg}{dt} - cV = 0$$

$$V(t) = \frac{mg}{c} \left(1 - e^{-\frac{c}{mt}t}\right)$$

$$\frac{dV}{dt} = mg = cV$$

$$\frac{dV}{dt} = mg = cV$$

$$\frac{dV}{dt} = \frac{\Delta V}{\Delta t}$$

$$\frac{dV}{dt} = \frac{mg}{c} - cV$$

$$\frac{dV}{dt} = \frac{\Delta V}{\Delta t}$$

$$\frac{dV}{dt} = \frac$$

#### **Errores**

Redondeo

$$A = 0,000.453896$$
 $7,53 \times 10^{-4}$ 

Calculo = = 1325 442, 905 Calculo 3 cifia = = 1327021, 248



## Calculo de errores





## **Error Relativo**

$$\frac{9998-10000}{9998} \times 100 = 0,02\%$$

$$8-10\times100 = 25\%$$

## Error de aproximación

#### Error de truncamiento

$$F(9) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x - a)^{n}$$

$$S_{\text{Prip}} d_{\text{Prip}} |_{\text{O}}$$

$$F(9) = \frac{F(9)}{0!} (x - 9)^{9} + \frac{F(9)}{1!} (x - 9)^{1} + \dots + \frac{F(9)}{0!} (x - 9)^{9}$$

$$F(9) = \frac{F(9)}{0!} (x - 9)^{9} + \frac{F(9)}{1!} (x - 9)^{1} + \dots + \frac{F(9)}{0!} (x - 9)^{1}$$

$$F(9) = \frac{F(9)}{0!} (x - 9)^{9} + \frac{F(9)}{1!} (x - 9)^{1} + \dots + \frac{F(9)}{0!} (x - 9)^{1}$$

$$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$$

# Serie de Macclaurin

$$\begin{array}{ll}
Q = 0 & \sum_{i=0}^{\infty} F_{i}(0) \\
F(x) = 18x^{4} + 24x^{3} - 9x^{2} + 4x + 1. \\
F'(x) = 60x^{3} + 72x^{2} - 18x + 4 \\
F^{3}(x) = 180x^{2} + 144x - 18
\end{array}$$

$$\begin{array}{ll}
F^{4}(x) = 360x + 144 \\
F^{5}(x) = 360
\end{array}$$

| n | F(14)   | Er      | E9                       |
|---|---------|---------|--------------------------|
| 0 | -190    | 100%    | ~ ~ ~                    |
| 1 | -86     | 100%    | -86+100<br>-86<br>16,27% |
| 2 | 306     | 99,98%  | 128,1%                   |
| 3 | 7926-   | 100,43% | 10,3,80%                 |
| 4 | 222570  | 37,87%  | 103,56%                  |
| 5 | 836045  | 0%      | 87, 87%                  |
| 6 | 1836045 | 0%      | 6%                       |

$$\begin{array}{c}
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14 \\
-100 & 14$$

Errores del aritmeticos del computador

int



int o integer

$$\frac{32}{0 - 0 \rightarrow 0}$$

Numeros reales

X= 1,0011---

100

$$\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x-a)^{n}$$

$$\sum_{n$$

$$V_{6}: 34$$

$$V_{6}: 34$$

$$V_{6}: 34$$

$$V_{7}: 34$$

$$V_{7}: 34$$

$$V_{7}: 35$$

$$V_{7}: 34$$

$$V_{7}: 35$$

$$V_{7}: 34$$

$$V_{7}: 35$$

$$V_{7}: 35$$

$$V_{7}: 34$$

$$V_{7}: 35$$

$$V_{7$$

 $f(x) = \sum_{a} \frac{1}{b} \frac{1}{(a)} \frac{(x-a)}{(x-a)} = \frac{9!}{b} \frac{1!}{(a)} \frac{1!}{$ 

 $R(n) = \frac{(E) h}{(n+1)!}$   $(h)^{n+1}$ 

Fr< 3% & 6< 0,03

n = S

0.56=0,015665

+ f (0)h 1+1.