RAFAEL SAKURAI

menu

Implementando a estrutura de uma Rede Neural Convolucional utilizando o MapReduce do Spark

A classificação de imagens é uma tarefa na qual dada uma figura é obtido uma saída que representa sua classe (rótulo) ou a probabilidade das classes que descrevem a figura. Neste documento é apresentado um exemplo de problema que pode ser tratado por meio de Redes Neurais Convolucionais sendo implementado utilizando a técnica de MapReduce do Spark.

Rede Neural Convolucional

A Rede Neural Convolucional (do inglês *Convolutional Neural Network* - CNN) vem ganhando destaque na classificação de imagens. A **Figura 1** apresenta um exemplo de arquitetura de CNN.

Figura 1: Exemplo de topologia da Rede Neural Convolucional.

O diferencial das CNNs está nas diversas camadas convolucionais, que aplica uma função matemática de Convolução nos dados de entrada e depois realizando o Agrupamento (*pooling*). A saída da convolução é passada para a próxima camada convolucional até chegar na última camada conhecida como Camada Densa que

normalmente é representada por uma rede *Perceptron* de múltiplas camadas (do inglês *Multilayer Perceptron* - MLP).

Conjunto de dados de treino

A biblioteca *scikit-learn* possui internamente um conjunto de dados composto por 1.797 exemplos de imagens de dígitos 0 à 9.

Neste conjunto de dados estão disponíveis os dígitos e sua classe, como apresentado na **Figura 2**. Cada dígito é formado por uma matriz de dimensão de 8 x 8, como mostrado na **Tabela 1**.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

digits = load_digits()

plt.figure(figsize=(20,4))
for index, (image, label) in enumerate(zip(digits.data[0:5], digits.target[0:5])):
    plt.subplot(1, 5, index + 1)
    plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)
    plt.title('Training: %i\n' % label, fontsize = 20)
plt.show()
```

Figura 2: Exemplo dos dígitos utilizados no treinamento.

Tabela 1: Matriz de dimensão 8 x 8 com os valores que correspondem ao exemplo de um dígito zero.

```
print(np.reshape(digits.data[0], (8, 8)))
```

2/8/22, 5:59 PM	Implementando a estrutura de uma Rede Neural Convolucional utilizando o MapReduce do Spark - Rafael Sakurai						
0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0
0.0	0.0	13.0	15.0	10.0	15.0	5.0	0.0
0.0	3.0	15.0	2.0	0.0	11.0	8.0	0.0
0.0	4.0	12.0	0.0	0.0	8.0	8.0	0.0
0.0	5.0	8.0	0.0	0.0	9.0	8.0	0.0
0.0	4.0	11.0	0.0	1.0	12.0	7.0	0.0
0.0	2.0	14.0	5.0	10.0	12.0	0.0	0.0

10.0

0.0

0.0

0.0

Aplicando Redes Neurais Convolucionais para classificação dos dígitos

13.0

Neste exemplo será apresentado o uso da CNN para a partir dos dados do dígitos tentar classificá-lo.

Realizando a convolução

6.0

0.0

0.0

Com base na entrada, por exemplo o digito zero representado na **Figura 3**, pode ser aplicado um mapeamento para gerar diversar partes com tamanho igual ao do *kernel*, como mostrado na **Figura 4**.

```
plt.figure(figsize=(20,4))
for index, (image, label) in enumerate(zip(digits.data[0:1], digits.target[0:5])):
   plt.subplot(1, 1, index + 1)
   plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)
plt.show()
```

Figura 3: Exemplo do dígito zero.


```
plt.figure(figsize=(20, 4))
for index, image in enumerate(partesDigito[0][1]):
   plt.subplot(1, len(partesDigito[0][1]), index + 1)
   plt.imshow(image, cmap=plt.cm.gray)
plt.show()
```

Figura 4: Exemplo de partes que podem ser geradas a partir do dígito zero.

A convolução é aplicada por meio da **Equação 1**.

Equação 1: Equação do calculo da convolução.

$$H(x,y) = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1} E(x-a, y-b) K(a,b)$$

em que dado uma entrada E e um kernel K de dimensão n x n, é somado o resultado da multiplicação de cada posição do kernel por uma área correspondente a partir da posição x e y da entrada, obtendo como resultado uma resposta de ativação.

```
en = 8 # tamanho da dimensão da entrada
kn = 3 # tamanho da dimensão do kernel
k = 10 # quantidade de kernels
qtdMatrizes = (en - kn) ** 2
kernels = np.random.randn(k, kn, kn)
def partes(x):
    partesDigito = []
    entrada = np.zeros(((en - kn) ** 2, kn, kn))
    X = x.reshape(en, en) # Muda a entrada vetorial para matriz
    for ki in range(0, k): # Para cada kernel separa a entrada em partes
        index = 0;
        for i in range(0, en - kn):
            for j in range(0, en - kn):
                entrada[index] = X[i:i+kn, j:j+kn] # Cada parte é uma submatriz da ent
        partesDigito.append((ki, entrada)) # Para cada kernel gera varias partes da en
    return partesDigito
partesDigito = partes(digits.data[0])
print(partesDigito[0])
4
```

Saída:

```
(0, array([[[ 0., 0., 5.],
       [ 0., 0., 13.],
       [ 0., 3., 15.]],
      [[ 0., 5., 13.],
      [ 0., 13., 15.],
      [ 3., 15., 2.]],
      [[ 5., 13., 9.],
      [ 13., 15., 10.],
      [ 15., 2.,
                  0.]],
      [[ 13., 9.,
                  1.],
       [ 15., 10., 15.],
       [ 2.,
             Θ.,
                  11.]],
```

. . .

Após aplicar o *kernel* em toda área da matriz de entrada, o resultado obtido é um mapa com todas as ativações.

```
import math
def sigmoid(x):
  return 1 / (1 + math.exp(-x))
# t representa a dimensão de um mapa de ativação
t = en - kn + 1
# Aplica a função de ativação no resultado da multiplicação do kernel pela entrada
# Recebe como entrada o kernel e uma matriz com as partes da entrada
def ativacao(k, x):
    mapa = np.zeros((t, t)) #Mapa de ativações de um kernel vazio
    for i in range(0, len(x) - 1): #Para cada parte da matriz da entrada
        mapa[int(i/t)][i%t] = sigmoid((x[i] * k).sum())
    return mapa
print("Mapa de ativações de um kernel")
print(ativacao(kernels[0], partesDigito[0][1]))
Saída:
Mapa de ativações de um kernel
[[ 0.99998564 0.99999983 0.99999518 1.
                                                              0.99999839]
              0.99999999 1.
                                                  0.99999951 0.99999995]
 [ 0.99991458  0.99997446  1.
                                     0.99999991 0.99999982 0.98463398]
 [ 0.99995649  0.99999999  0.99999987  1.
                                                  0.99908467 0.99998074]
 Γ0.
              0.
                          Ο.
                                                  Θ.
                                                              0.
                                      0.
                                                                        1
 Γ0.
              Θ.
                          Θ.
                                      0.
                                                              0.
                                                                        11
                                                  0.
```

A **Figura 5** apresenta um exemplo visual do que poderia ser a representação visual de um mapa de ativações a partir de dez *kernels*.

```
mapas = np.zeros((k, t, t))

for i in range(0, k):
    mapas[i] = ativacao(kernels[partesDigito[i][0]], partesDigito[i][1])

plt.figure(figsize=(20, 4))

for index, image in enumerate(mapas):
    plt.subplot(1, len(mapas), index + 1)
    plt.imshow(image, cmap=plt.cm.gray)

plt.show()
```

Figura 5: Exemplo de mapa de ativações.

Agrupamento com Max Pooling

Após gerado o mapa de ativações é realizado seu agrupamento, normalmente utilizando a função *Max Pooling*, que agrupa regiões do mapa de ativações mantendo apenas o maior valor de cada região, assim gerando um mapa de ativações mais compacto e mantendo sua principais ativações.

```
pn = 2 # tamanho do pooling
ps = 2 # tamanho do passo do pooling
# Max Pooling
def maxPooling(x):
    agrupado = np.zeros((int(t / pn), int(t / pn)))
    for i in range(0, int(t / pn)):
        for j in range(0, int(t / pn)):
            agrupado[i][j] = x[i * pn : i * pn + kn - 1, j * pn : j * pn + kn - 1].max
    return agrupado
pooling = []
for i in range(0, len(mapas)):
    pooling.append(maxPooling(mapas[i]))
print(pooling[0])
Saída:
[[ 1.
 [ 0.9999999 1.
                           0.999999821
 Γ0.
               Θ.
                                      11
```

Camada densa com Multilayer Perceptron

A cada camada convolucional serão gerados mais mapas de ativações, a última camada convolucional passará os mapas para uma MLP que gera como saída a probabilidade de cada dígito entre 0 e 9 dada a entrada inicial da CNN.

```
# weights representa os pesos da camada densa (MLP), aqui ainda falta fazer o backpro\mu weights = np.random.randn(10, 90)
```

```
# função de ativação RELU

def relu(x):
    return max(0, x)

# Multilayer Perceptron

def mlp(x):
    # A saída é um vetor que será passado para a camada de saída.
    saida = []
    for w in weights:
        saida.append(relu((w * x).sum()))
    return saida

print (mlp(np.asarray(pooling).ravel()))

Saída:
```

Camada de saída

A camada de saída aplica a função de ativação softmax para gerar uma distribuição de probabilidades entre 0 e 1 nos valores de saída. A saída é um vetor de 10 valores, cada valor representará a probabilidade de que cada um dos números entre zero e nove, tem de representar o número da figura que será classificada.

```
# weights representa os pesos da camada de saída, aqui ainda falta fazer o backpropaga
weightsOut = np.random.randn(10, 1)

# função de ativação SoftMax

def softmax(x):
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum(axis=0)

def out(x):
    # A saída representa a probabilidade de cada número entre zero e nove.
    saida = []
    for i in range(0, len(weightsOut)):
        saida.append((weightsOut[i] * x).sum())
    return softmax(saida)

x = mlp(np.asarray(pooling).ravel())
print(out(x))
```

Saída:

```
[ 3.66082504e-252 2.46136020e-096 2.84453882e-197 5.55449523e-273 2.17623650e-223 2.67780046e-118 8.59637277e-108 1.000000000e+000 2.25062876e-122 6.18347914e-027]
```

Montando a Rede Neural Convolucional com o MapReduce

A estrutura da CNN é formada por várias camadas que podem ser representadas por meio do mapeamento feito pelo *MapReduce* do Spark.

Uma forma de representar uma CNN usando MapReduce seria:

- 1. Para cada camada convolucional:
 - a) Mapeia a entrada para uma matriz com várias partes de tamanho igual ao *kernel*;
 - b) Mapeia cada parte da entrada com o kernel, aplicando a função de ativação e gerando um mapa de ativações;
 - c) Aplica o agrupamento em cada mapa de ativações gerando como saída um mapa de ativações com dimensão reduzida;
 - d) Junta todos os mapas de ativações, pois serão passados como entrada para a camada seguinte.
- 2. A saída da última camada convolucional é passada para uma MLP, que:
 - a) Mapeia os mapas de ativações para um vetor sequencial;
 - b) O vetor sequencial é passado para a camada densa que aplica a função de ativação RELU;
 - c) Os dados são passados para a camada de saída que gera as probabilidades representando cada um dos dígitos.

Saída:

```
[[0.2303787084411721, 0.2099451726892583, 0.06508030989360919, 0.1055256000866959, 0.9971740047740627, 0.09117066280446567, 0.9999356557510007, 1.3844127613072241e-05, 0.8562682290831856, 0.38278995757093703]]
```

A implementação deste exemplo usando Jupyter Notebook está disponível no GitHub.

Conclusão

A estrutura da Rede Neural Convolucional pode ser aplicada utilizando a técnica de MapReduce, tendo como objetivo paralelizar o processo de convolução e agrupamento. Mas é necessário obter os mapas de ativações gerados por todos os *kernels* de uma camada convolucional, antes de seguir adiante, pois estes mapas serão a entrada da camada convolucional seguinte. Também é necessário aguardar todos as convoluções paralelas finalizarem para obter a entrada da MLP e após isso, com sua saída, aplicar a retropropagação para ajustar os pesos.

SHARE ON

Implementando a estrutura de uma Rede Neural Convolucional utilizando o MapReduce do Spark was published on December 20, 2017.

YOU MIGHT ALSO ENJOY (VIEW ALL POSTS)

- Introdução a classificação de textos
- Regressão Linear Múltipla
- Regressão Linear Simples

© 2021 Rafael Sakurai. Powered by Jekyll using the Minimal Mistakes theme.