AIDS Exp-01

Aim: Introduction to Data science and Data preparation using Pandas steps.

(I have performed this experiment on Python Idle on my Local machine and not on google colab. The output screenshots of my dataset are all run using local python interpreter)

Theory: Data science is an interdisciplinary field that involves the extraction of meaningful insights from structured and unstructured data using scientific methods, processes, algorithms, and systems. One of the primary steps in any data science project is data preparation, which includes cleaning, transforming, and organizing raw data to ensure its quality and usability for analysis.

In this experiment, we explore data preprocessing techniques using the Pandas library in Python. The dataset under consideration contains records of car accidents in NYC in 2020, with key features such as the number of people injured, number of people killed, latitude, longitude, contributing factors, and vehicle types involved. The dataset initially had missing values, inconsistent entries, and redundant columns, necessitating thorough cleaning and preprocessing to enhance its quality.

The following key steps were performed in this experiment:

- 1. Loading the dataset into Pandas.
- 2. Identifying and handling missing values.
- 3. Eliminating redundant columns.
- 4. Encoding categorical variables using ordinal encoding.
- 5. Identifying and handling outliers.
- 6. Standardizing and normalizing numerical features.

Loading data into pandas:

import pandas as pd

df = pd.read_csv(r"C:\Users\Dell\Desktop\car_accidents.csv")

From the above image, we are able to infer that there are 29 columns in the dataset. We have 74881 entries i.e rows. Corresponding to each column, the output to the command df.info() indicates the amount of non-null values throughout the dataset. To help us analyse our dataset more effectively, we are to eliminate the columns that have negligible/lesser amount of non-null (significant) values. In the above image, we see that the columns 'CONTRIBUTING FACTOR VEHICLE 3,4,5' are not having a lot of significant values meaning they do not contribute to our research much. Similar thing can be said about 'VEHICLE TYPE CODE 3,4,5'.

Drop columns that are not useful:

import pandas as pd

df = pd.read_csv(r"C:\Users\Dell\Desktop\car_accidents.csv")

cols = ['CONTRIBUTING FACTOR VEHICLE 3', 'CONTRIBUTING FACTOR VEHICLE 4', 'CONTRIBUTING FACTOR VEHICLE 5','VEHICLE TYPE CODE 3','VEHICLE TYPE CODE 4','VEHICLE TYPE CODE 5']

df = df.drop(cols, axis=1)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 74881 entries, 0 to 74880
Data columns (total 23 columns):
                                    Non-Null Count Dtype
                                    74881 non-null object
    CRASH TIME
                                   74881 non-null object
    BOROUGH
                                    49140 non-null object
                                   49134 non-null float64
    ZIP CODE
    LATITUDE
                                   68935 non-null float64
    LONGITUDE
                                   68935 non-null float64
                                   68935 non-null
    LOCATION
    ON STREET NAME
                                  55444 non-null object
    CROSS STREET NAME
                                    35681 non-null
                                                    object
    OFF STREET NAME
                                    19437 non-null object
10 NUMBER OF PERSONS INJURED
                                    74881 non-null
11 NUMBER OF PERSONS KILLED
                                    74881 non-null int64
    NUMBER OF PEDESTRIANS INJURED 74881 non-null
    NUMBER OF PEDESTRIANS KILLED 74881 non-null int64
    NUMBER OF CYCLIST INJURED
                                    74881 non-null
15 NUMBER OF CYCLIST KILLED
                                    74881 non-null int64
    NUMBER OF MOTORIST INJURED
                                    74881 non-null
    NUMBER OF MOTORIST KILLED 74881 non-null int64 CONTRIBUTING FACTOR VEHICLE 1 74577 non-null objective.
18
 19 CONTRIBUTING FACTOR VEHICLE 2 59285 non-null
                                                    object
20 COLLISION_ID
                                    74881 non-null
                                                   int64
21 VEHICLE TYPE CODE 1
                                    74246 non-null object
                                 53638 non-null object
 22 VEHICLE TYPE CODE 2
dtypes: float64(3), int64(9), object(11)
memory usage: 13.1+ MB
```

After saving, running and viewing our updated dataset, we see that the unnecessary columns have been eliminated.

Dropping rows with missing values:

df = df.dropna()

```
>>> df = df.dropna()
>>> df.info()
    <class 'pandas.core.frame.DataFrame'>
Index: 0 entries
    Data columns (total 23 columns):
                                           Non-Null Count Dtype
        CRASH DATE
                                           0 non-null
                                                            object
         CRASH TIME
                                          0 non-null
                                                            object
        BOROUGH
                                                            object
                                           0 non-null
         ZIP CODE
                                           0 non-null
                                                            float64
        LATITUDE
                                           0 non-null
                                                            float64
                                                            float64
        LONGITUDE
                                          0 non-null
         LOCATION
                                          0 non-null
                                                            object
        ON STREET NAME
                                          0 non-null
                                                            object
        CROSS STREET NAME
                                          0 non-null
                                                            object
        OFF STREET NAME
                                           0 non-null
                                                            object
     10 NUMBER OF PERSONS INJURED
                                           0 non-null
                                                            int64
     11 NUMBER OF PERSONS KILLED
                                           0 non-null
                                                            int64
     12 NUMBER OF PEDESTRIANS INJURED 0 non-null
                                                            int64
     13 NUMBER OF PEDESTRIANS KILLED 0 non-null
                                                            int64
     14 NUMBER OF CYCLIST INJURED
15 NUMBER OF CYCLIST KILLED
                                           0 non-null
                                                            int64
                                           0 non-null
                                                            int.64
     16 NUMBER OF MOTORIST INJURED
17 NUMBER OF MOTORIST KILLED
                                           0 non-null
                                                            int64
                                           0 non-null
                                                            int64
     18 CONTRIBUTING FACTOR VEHICLE 1
                                           0 non-null
     19 CONTRIBUTING FACTOR VEHICLE 2 0 non-null
                                                            object
     20 COLLISION ID
                                           0 non-null
                                                            int64
     21 VEHICLE TYPE CODE 1
22 VEHICLE TYPE CODE 2
                                           0 non-null
                                                            object
                                           0 non-null
                                                            object
    dtypes: float64(3), int64(9), object(11)
    memory usage: 0.0+ bytes
```

What the above command does is... It eliminates the rows that have at least one value that is NaN i.e Not a Number.

Due to which, considering that there might be a possibility of our dataset having every row with at least one NaN, the entire entries in each column of the entire dataset gets dropped.

To avoid this, we have to modify the command a bit smartly and keep a threshold amount beyond which we would eliminate the rows

There is a parameter called thresh which is used to specify the number of non-NaNs required in a row to be intact and prevalent in the dataset.

By keeping **thresh=21**, the problem that we resolved is that we require rows that have at least 21 significant value providing rows

df = df.dropna(thresh=21)

```
==== RESTART: C:\Users\Dell\Desktop\trial.pv ==
>>> df = df.dropna(thresh=21)
>>> df.info()
                        <class 'pandas.core.frame.DataFrame'>
                       Index: 35143 entries, 0 to 74880
                      Data columns (total 23 columns):
                                             Column
                                                                                                                                                                                                                           Non-Null Count Dtype
                                            CRASH DATE
                                                                                                                                                                                                                           35143 non-null object
                                                                                                                                                                                                                          35143 non-null
35143 non-null
                                              CRASH TIME
                                                                                                                                                                                                                                                                                                                   object
                                              BOROUGH
                                                                                                                                                                                                                                                                                                                    object
                                                ZIP CODE
                                                                                                                                                                                                                           35138 non-null
                                                                                                                                                                                                                                                                                                                    float64
                        4 LATITUDE 35143 non-null
5 LONGITUDE 35143 non-null
6 LOCATION 35143 non-null
7 ON STREET NAME 23959 non-null
8 CROSS STREET NAME 23950 non-null
9 OFF STREET NAME 11184 non-null
10 NUMBER OF PERSONS INJURED 35143 non-null
11 NUMBER OF PEDESTRIANS INJURED 35143 non-null
12 NUMBER OF PEDESTRIANS INJURED 35143 non-null
13 NUMBER OF PEDESTRIANS KILLED 35143 non-null
14 NUMBER OF CYCLIST INJURED 35143 non-null
15 NUMBER OF CYCLIST INJURED 35143 non-null
16 NUMBER OF MOTORIST INJURED 35143 non-null
17 NUMBER OF MOTORIST INJURED 35143 non-null
18 CONTRIBUTING FACTOR VEHICLE 1 35143 non-null
19 CONTRIBUTING FACTOR VEHICLE 2 34918 non-null
20 COLLISION_ID 35143 non-null
                                                LATITUDE
                                                                                                                                                                                                                          35143 non-null
                                                                                                                                                                                                                                                                                                                    float64
                                                                                                                                                                                                                                                                                                                    float64
                                                                                                                                                                                                                                                                                                                     object
                                                                                                                                                                                                                                                                                                                     int64
                                                                                                                                                                                                                                                                                                                    int64
                                                                                                                                                                                                                                                                                                                    int.64
                                                                                                                                                                                                                                                                                                                     int64
                                                                                                                                                                                                                                                                                                                    int64
                                                                                                                                                                                                                                                                                                                     int64
                          21 VEHICLE TYPE CODE 1 35143 non-null 22 VEHICLE TYPE CODE 2 32907 non-null 24 VEHICLE TYPE CODE 2 32907 non-null 32 VEHICLE TYPE CODE 2 32907 non-null 35143 non-null 3
                                                                                                                                                                                                                                                                                                                    object
                                                                                                                                                                                                                           32907 non-null
                                                                                                                                                                                                                                                                                                                    object
                     dtypes: float64(3), int64(9), object(11) memory usage: 6.4+ MB
```

Another observation on our dataset is that beyond thresh=22, we dont have any row that has more number of non-NaNs

df = df.dropna(thresh=23)

```
>>> df = df.dropna(thresh=23)
>>> df.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 0 entries
         Data columns (total 23 columns):
                     Column
                                                                                                     Non-Null Count Dtype
          O CRASH DATE 0 non-null object
1 CRASH TIME 0 non-null object
2 BOROUGH 0 non-null object
3 ZIP CODE 0 non-null float64
4 LATITUDE 0 non-null float64
5 LONGITUDE 0 non-null float64
6 LOCATION 0 non-null object
7 ON STREET NAME 0 non-null object
8 CROSS STREET NAME 0 non-null object
9 OFF STREET NAME 0 non-null object
10 NUMBER OF PERSONS INJURED 0 non-null int64
11 NUMBER OF PERSONS KILLED 0 non-null int64
12 NUMBER OF PEDESTRIANS INJURED 0 non-null int64
                     NUMBER OF PEDESTRIANS INJURED 0 non-null
                     NUMBER OF PEDESTRIANS KILLED 0 non-null
NUMBER OF CYCLIST INJURED 0 non-null
                                                                                                                                               int64
           14 NUMBER OF CYCLIST INJURED 0 non-null
15 NUMBER OF CYCLIST KILLED 0 non-null
16 NUMBER OF MOTORIST INJURED 0 non-null
17 NUMBER OF MOTORIST KILLED 0 non-null
18 CONTRIBUTING FACTOR VEHICLE 1 0 non-null
19 CONTRIBUTING FACTOR VEHICLE 2 0 non-null
                                                                                                                                               int64
                                                                                                                                                   int64
                                                                                                                                               int64
                                                                                                                                                   object
           18 CONTRIBUTING FACTOR VEHICLE 1 0 non-null object
19 CONTRIBUTING FACTOR VEHICLE 2 0 non-null object
20 COLLISION_ID 0 non-null int64
21 VEHICLE TYPE CODE 1 0 non-null object
22 VEHICLE TYPE CODE 2 0 non-null object
         dtypes: float64(3), int64(9), object(11) memory usage: 0.0+ bytes
```

Create Dummy Variables:

Identify the cardinality of values within the columns. If the cardinality is high, it means that the values within the columns are unique and do not repeat. To create dummy variables, we need columns with repeating values and would want to eliminate these columns by creating multiple sub-columns with binary values.

To check the cardinality of each column, we need to run 'df.nunique()'.

After getting to know the cardinality of all the columns, i decided to go ahead with columns low unique values within them

The technique to create Dummy variables is called Ordinal encoding, which categorizes the values within the columns, converts them from textual data to numeric values. This helps in standardizing and normalizing the dataset which can further lead to better results.

```
This is the code snippet used to create dummy variables
```

```
# Define the categorical columns you want to encode
categorical columns = [
  'BOROUGH',
  'NUMBER OF PERSONS INJURED',
  'NUMBER OF PERSONS KILLED',
  'NUMBER OF PEDESTRIANS INJURED',
  'NUMBER OF PEDESTRIANS KILLED',
  'NUMBER OF CYCLIST INJURED'.
  'NUMBER OF CYCLIST KILLED',
  'NUMBER OF MOTORIST INJURED',
  'NUMBER OF MOTORIST KILLED'.
  'CONTRIBUTING FACTOR VEHICLE 1',
  'CONTRIBUTING FACTOR VEHICLE 2'
]
# Initialize and apply the encoder
encoder = OrdinalEncoder(handle unknown='use encoded value', unknown value=-1)
df[categorical columns] = encoder.fit transform(df[categorical columns])
# Ensure there are no missing values before converting to int
df[categorical columns] = df[categorical columns].fillna(-1).astype(int)
```

Finding out missing values and interpolating them

Finding Outliers

Outliers are data points that significantly differ from other observations in the dataset. They may arise due to data entry errors, measurement variations, or genuine rare events. Detecting and handling outliers is crucial because they can distort statistical analyses and impact model performance.

Identifying Outliers

A common method to detect outliers is using the Interquartile Range (IQR), which measures the spread of the middle 50% of the data. The IQR is calculated as:

where Q1 and Q3 represent the first and third quartiles, respectively. A data point is considered an outlier if it falls below or above .

Code for detecting outliers:

```
import numpy as np
```

Define a function to detect outliers using IQR def detect_outliers_iqr(data, column):
Q1 = data[column].quantile(0.25)
Q3 = data[column].quantile(0.75)

```
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
return data[(data[column] < lower_bound) | (data[column] > upper_bound)]

# Apply the function to relevant numerical columns
outlier_columns = [
    'NUMBER OF PERSONS INJURED', 'NUMBER OF PERSONS KILLED',
    'NUMBER OF PEDESTRIANS INJURED', 'NUMBER OF PEDESTRIANS KILLED',
    'NUMBER OF CYCLIST INJURED', 'NUMBER OF CYCLIST KILLED',
    'NUMBER OF MOTORIST INJURED', 'NUMBER OF MOTORIST KILLED'
]

for col in outlier_columns:
    outliers = detect_outliers_iqr(df, col)
    print(f"Outliers detected in {col}: {len(outliers)}")
```

Handling Outliers

After detecting outliers, we have several options to handle them:

- 1. **Removal**: If the outliers are due to data entry errors, we can remove them.
- 2. **Transformation**: Applying log or square root transformations can reduce their impact.
- 3. **Capping**: Setting a cap on extreme values based on domain knowledge.
- 4. **Imputation**: Replacing outliers with the median or mean of the data.

In this experiment, capping extreme values using the IQR method was chosen:

```
# Capping outliers to the upper and lower bounds
for col in outlier_columns:

Q1 = df[col].quantile(0.25)

Q3 = df[col].quantile(0.75)

IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

df[col] = np.where(df[col] > upper_bound, np.where(df[col] < lower_bound, lower_bound, df[col]))
```

By capping extreme values, we maintain the integrity of the dataset while ensuring that outliers do not skew analysis or modeling outcomes.

Applying Standardization

Standardization refers to the technique scaling data to have a mean of 0 and a standard deviation of 1. It ensures that each feature contributes equally to the model without being affected by different scales.

We used **StandardScaler()** from **sklearn.preprocessing** to apply standardization:

Its effect on our dataset:

- Transforms numerical values into a standard normal distribution.
- Suitable when data follows a **normal distribution**.
- Useful for models that rely on distance (e.g., KNN, SVM, PCA).

Mentioned below is the code snippet

```
# Continuous columns to be standardized or normalized

continuous_columns = [
    'LATITUDE', 'LONGITUDE',
    'NUMBER OF PERSONS INJURED', 'NUMBER OF PERSONS KILLED',
    'NUMBER OF PEDESTRIANS INJURED', 'NUMBER OF PEDESTRIANS KILLED',
    'NUMBER OF CYCLIST INJURED', 'NUMBER OF CYCLIST KILLED',
    'NUMBER OF MOTORIST INJURED', 'NUMBER OF MOTORIST KILLED'

]

# 1. Standardization (Z-score normalization)

scaler = StandardScaler()

df[continuous columns] = scaler.fit transform(df[continuous columns])
```

Applying Normalization:

Normalization scales the data between **0 and 1** by using the minimum and maximum values of each feature.

We applied MinMaxScaler() from sklearn.preprocessing:

Its effect on our dataset:

- Ensures all values fall within the range [0,1].
- Useful for models that require bounded input (e.g., Neural Networks).
- Prevents large-scale differences between variables from dominating the learning process.

Dataset before cleaning and processing:

	A	В	С	D	E	F	G	H	1	J	К	L	M	N	0	P
	CRASH DATE	CRASH TIME	BOROUGH	ZIP CODE	LATITUDE	LONGITUDE	LOCATION	ON STREET NA	CROSS STREE	OFF STREET N	NUMBER OF PE	NUMBER OF PE	NUMBER OF PI	NUMBER OF PE	NUMBER OF C	NUMBER OF C
2	2020-08-29	15:40:00	BRONX	10466	40.8921	-73.83376	POINT (-73.83	37 PRATT AVENUE:	STRANG AVEN	UE	0	0	0	0	0	(
3	2020-08-29	21:00:00	BROOKLYN	11221	40.6905	-73.919914	POINT (-73.91	19§ BUSHWICK AVE	PALMETTO STE	REET	2	0	0	0	0	C
4	2020-08-29	18:20:00			40.8165	-73.946556	POINT (-73.94	1658 AVENUE			1	0	1	0	0	
5	2020-08-29	0:00:00	BRONX	10459	40.82472	-73.89296	POINT (-73.89	9296 40.82472)		1047 SIMPSON	0	0	0	0	0	(
6	2020-08-29	17:10:00	BROOKLYN	11203	40.64989	-73.93389	POINT (-73.93	3389 40.64989)		4609 SNYDER A	0	0	0	0	0	
7	2020-08-29	3:29:00			40.68231	-73.84495	POINT (-73.84	145 WOODHAVEN BO	DULEVARD		1	0	0	0	0	(
8	2020-08-29	19:30:00	BRONX	10459	40.825226	-73.88778	POINT (-73.88	377 LONGFELLOW /	AST 165 STRE	EET	0	0	0	0	0	(
9	2020-08-29	0:00:00			40.80016	-73.93538	POINT (-73.93	5512 AVENUE			0	0	0	0	0	(
10	2020-08-29	19:50:00	BRONX	10466	40.894314	-73.86027	POINT (-73.86	02 EAST 233 STRE	CARPENTER A	VENUE	0	0	0	0	0	(
11	2020-08-29	9:20:00	QUEENS	11385	40.70678	-73.90888	POINT (-73.90	888 40.70678)		565 WOODWAR	0	0	0	0	0	
12	2020-08-29	0:07:00	QUEENS	11436	40.680237	-73.79774	POINT (-73.79	9774 40.680237)		116-52 144 STR	0	0	0	0	0	
3	2020-08-29	14:00:00	QUEENS	11433	40.704422	-73.792854	POINT (-73.79	28 ARCHER AVENU	MERRICK BOU	LEVARD	0	0	0	0	0	
4	2020-08-29	21:33:00	BRONX	10455	40.812965	-73.9161	POINT (-73.91	61EAST 146 STREE	BROOK AVENU	JE .	1	0	1	0	0	
15	2020-08-29	22:53:00	BROOKLYN	11249	40.70166	-73.961464	POINT (-73.96	14 WILLIAMSBURG	MYTHE AVENU	JE .	0	0	0	0	0	
16	2020-08-29	4:14:00			40.835373	-73.842186	POINT (-73.84	121WATERBURY AV	ENUE		1	0	0	0	0	
17	2020-08-29	6:35:00			40.65965	-73.773834	POINT (-73.77	38 ROCKAWAY BO	NASSAU EXPR	ESSWAY	0	0	0	0	0	
18	2020-08-29	13:00:00	BROOKLYN	11206	40.699707	-73.95718	POINT (-73.95	71BEDFORD AVEN	WALLABOUT S	TREET	0	0	0	0	0	
19	2020-08-29	10:30:00	QUEENS	11385	40.7122	-73.86208	POINT (-73.86	20 METROPOLITAN	COOPER AVEN	IUE	2	0	0	0	0	
20	2020-08-29	12:29:00	BRONX	10453	40.861862	-73.91282	POINT (-73.91	28 WEST FORDHAI	MAJOR DEEGA	N EXPRESSWAY	2	0	0	0	0	
21	2020-08-29	10:35:00	BROOKLYN	11211	40.710957	-73.951126	POINT (-73.95	11 UNION AVENUE	GRAND STREE	T	1	0	0	0	0	
22	2020-08-29	13:55:00	BROOKLYN	11231	40.67473	-74.00029	POINT (-74.00	02 HAMILTON AVE	SARNET STRE	ET	1	0	0	0	0	
23	2020-08-29	0:30:00			40.66584	-73.75551	POINT (-73.75	55 BELT PARKWAY			0	0	0	0	0	
24	2020-08-29	6:30:00			40.65052	-73.73309	POINT (-73.73	3(CRAFT AVENUE			0	0	0	0	0	
25	2020-08-29	19:00:00			40.83968	-73.929276	POINT (-73.92	92 MAJOR DEEGAN	EXPRESSWA	Y	1	0	0	0	0	
26	2020-08-29	1:45:00	MANHATTAN	10029	40.79477	-73.93247	POINT (-73.93	3247 40.79477)		545 EAST 116 S	0	0	0	0	0	
27	2020-08-29	8:45:00	QUEENS	11411	40.701042	-73.74636	POINT (-73.74	1636 40.701042)		114-52 208 STR	0	0	0	0	0	
10	2020 00 20	22:40:00	DDCOKI VKI	44000	40 00000	70 05 477	DOINT / 72.05	AT KICHANZION AVER	TI ATRIJELI AVÆ	KILIF	4	^		0		

Dataset after cleaning and processing:

	A	В	С	D	E	F	G		Н	I I	J	K	L	M	N	0	P	
	CRASH DATE	CRASH TIME	BOROUGH	ZIP CODE	LATITUDE	LONGITUDE	LOCATIO	ON ON S	STREET NA	CROSS STREE	OFF STREET N	NUMBER OF PE	NUMBER OF P	NUMBER OF P	NUMBER OF P	NUMBER OF	NUMBER OF	CYN
2	2020-08-29	15:40:00		0 10466	0.9994919938	0.00560271171	POINT (-	73.8337 PRA	TT AVENUE	STRANG AVENU	JE	0	0	0	0		0	0
3	2020-08-29	21:00:00		1 11221	0.9945644507	0.00444238473	POINT (-	73.919§BUS	HWICK AVE	PALMETTO STR	REET	0.2	0	0	0		0	0
4	2020-08-29	0:00:00		0 10459	0.9978450798	0.00480540273	POINT (-	73.89296 40	82472)		1047 SIMPSON	0	0	0	0		0	0
5	2020-08-29	17:10:00		1 11203	0.9935718538	0.00425415516	POINT (-	73.93389 40	64989)		4609 SNYDER A	0	0	0	0		0	0
3	2020-08-29	19:50:00		0 10466	0.9995461088	0.00524567352	1POINT (-	73.8602 EAS	T 233 STRE	CARPENTER AV	/ENUE	0	0	0	0		0	0
7	2020-08-29	0:07:00		3 11436	0.9943136006	0.00608783112	POINT (-	73.79774 40	680237)		116-52 144 STR	0	0	0	0		0	0
3	2020-08-29	14:00:00		3 11433	0.9949047347	0.00615363605	POINT (-	73.7928 ARC	HER AVEN	MERRICK BOUL	EVARD	0	0	0	0		0	0
9	2020-08-29	13:00:00		1 11206	0.9947894898	0.00394048411	POINT (-	73.9571BED	FORD AVE	WALLABOUT ST	FREET	0	0	0	0		0	0
0	2020-08-29	10:30:00		3 11385	0.9950948459	0.00522129633	POINT (-	73.862(MET	ROPOLITA	COOPER AVEN	UE	0.2	0	0	0		0	0
1	2020-08-29	12:29:00		0 10453	0.9987529112	0.00453792712	EPOINT (-	73.9128 WES	T FORDHA	MAJOR DEEGA	N EXPRESSWAY	0.2	0	0	0		0	0
2	2020-08-29	10:35:00		1 11211	0.9950644643	0.00402201973	4POINT (-	73.9511 UNIC	ON AVENUE	GRAND STREE	T	0.1	0	0	0		0	0
3	2020-08-29	13:55:00		1 11231	0.9941789975	0.00335987618	POINT (-	74.0002 HAM	ILTON AVE	GARNET STREE	ĒΤ	0.1	0	0	0		0	0
4	2020-08-29	23:19:00		1 11226	0.9933208326	0.00397294213	POINT (-	73.9547 NEW	KIRK AVEN	FLATBUSH AVE	NUE	0.1	0	0	0		0	0
5	2020-08-29	0:56:00		0 10461	0.9982935938	0.00540990300	POINT (-	73.848(EAS	T TREMON	SILVER STREET	Г	0.1	0	0	0		0	0
6	2020-08-29	22:11:00		1 11229	0.9925657404	0.00398304317	POINT (-	73.95402 40	608727)		1925 QUENTIN	0.1	0	0	0	0.	5	0
7	2020-08-29	16:30:00		2 10002	0.9952135371	0.003494826111	POINT (-	73.99027 40	717056)		333 GRAND ST	0.1	0	0	0		0	0
8	2020-08-29	5:40:00		0 10458	0.9986631595	0.00492136270	POINT (-	73.8843 EAS	T FORDHA	HUGHES AVENI	UE	0	0	0	0		0	0
9	2020-08-29	19:50:00		0 10457	0.9985058252	0.00485287763	POINT (-	73.889435 4	0.851753)		611 EAST 182 S	0.1	0	0	0		0	0
0	2020-08-29	21:45:00		1 11203	0.9936347191	0.00440284251	4POINT (-	73.9228 KING	S HIGHWA	CHURCH AVEN	UE	0.1	0	0	0		0	0
1	2020-08-29	14:30:00		0 10453	0.9986043761	0.00463543585	POINT (-	73.905£ JER	OME AVEN	WEST 181 STRE	ET	0	0	0	0		0	0
2	2020-08-29	20:53:00		0 10456	0.9980103578	0.00471381995	POINT (-	73.89976 40	831482)		1315 BOSTON F	0	0	0	0		0	0
3	2020-08-29	19:34:00		2 10032	0.9981735338	0.00413173052	POINT (-	73.94298 40	838158)		619 WEST 163	0.1	0	0	0	0.	5	0
4	2020-08-29	15:50:00		1 11226	0.9932635402	0.00392142681	POINT (-	73.958595 4	0.637276)		1030 OCEAN AV	. 0	0	0	0		0	0
5	2020-08-29	9:09:00		1 11236	0.9934090689	0.00463988031	POINT (-	73.90525 40	64323)		9312 GLENWOO	0	0	0	0		0	0
6	2020-08-29	11:10:00		3 11105	0.9965773618	0.00462883651	POINT (-	73.906(STE	NWAY STR	DITMARS BOUL	EVARD	0	0	0	0		0	0
7	2020-08-29	15:41:00		1 11234	0.9927816382	0.00450950952	POINT (-	73.914§ AVE	NUE T	EAST 63 STREE	T	0	0	0	0		0	0
0	2020 00 20	45-00-00		10400	0.0007330734	0.00007000000	F DOINT /	70 00047 40	0040041		2400 CHATHE						0	9

Conclusion: The experiment focused on cleaning and preprocessing a dataset containing records of car accidents in NYC (2020) using Pandas. Initially, the dataset had missing values, redundant columns, and categorical data that required transformation for effective analysis. To address these issues, data cleaning techniques were applied by removing columns with a high percentage of missing values and filtering out incomplete rows using a threshold-based approach. Categorical variables were encoded using ordinal encoding to convert textual data into numerical values, ensuring consistency for further processing. Additionally, numerical features were standardized using StandardScaler to maintain a mean of 0 and a standard deviation of 1, followed by normalization with MinMaxScaler to scale values between 0 and 1. After these transformations, the dataset was structured and refined, eliminating inconsistencies and making it suitable for further analysis. This preprocessing ensures that any subsequent data-driven insights or modeling efforts are more accurate and reliable.