<pre>In [1]: Import warnings # ignore warnings import pandas as pd # data manipulation import numpy as np # linear algebra import matplotlib.pyplot as plt # plots import seaborn as sns # plots In [2]: warnings.filterwarnings("ignore") In [3]: df=pd.read_csv("/content/insurence_clear.csv") df=df.drop(["unnamed: 0"], axis="columns")</pre>
In [6]: dof dataset():
X_train, X_test, Y_train, Y_test=train_test_split(X,
PolynomialFeatures It consists of raising to a certain power. To break the linearity of the data. Since sometimes a linear regression is not enough to solve the problem. In [7]: poly=PolynomialFeatures(degree=1) # degree polynomial rescale=MinMaxScaler() # foly_transform(x): x=pd.get_dummies(x,drop_first=1rue,columns=["sex","smoker","region"]) # dummy variables
In [10]: X_train_poly=poly_transform(X_train) X_test_poly=poly_transform(X_test) Creation of the polynomial model In [11]:
Out [12]: PolynomialFeatures() In [13]: Im=LinearRegression() In [14]: Im.fit(X_train_poly,Y_train) # we give the training data Out [14]: LinearRegression() In [15]: Im.score(X_train_poly,Y_train) # evaluate with training data Out [15]: B.983402945848855
In [16]:
Mean square error Measures the average error between the original and predicted values. In [19]: Troop sklearn.metrics import mean_squared_error Gradient Boosting It is an algorithm that uses such complex algorithms. That is perfected according to the learning rate assigned by the user in such a way that each tree will become better than the predicted value is going to everage the predictions of the weakest algorithms.
It is an algorithm that uses such complex algorithms. That is perfected according to the learning rate assigned by the user. In such a way that each tree will become better than the previous one. And the predicted value is going to average the predictions of the weakest algorithms. In [20]: Tree Sklearn.ensemble
<pre>model=GradientBoostingRegressor(max_depth=max_depth, n_estimators=estimator, learning_rate=lr, random_state==0) model=Ptpeline(["transform", tf_columnns), ("model", model)]) model.fit(X_train,Y_train) pred_train=model.predict(X_train) pred_test=model.predict(X_test) mse_train=mean_squared_error(Y_train, pred_train) mse_test=mean_squared_error(Y_test, pred_test) estimator_list.append(estimator) mse_test_list.append(mse_test) mse_train_list.append(mse_test) mse_train_list.append(mse_train)</pre>
return estimator_list.mse_test_list.mse_train_list In [22]: def dataframe_evaluate_trees(max_depth,lr): n_trees,mse_test,mse_train=evaluate(max_depth=max_depth,lr=lr) df_evaluate=pd.DataFrame({"n_trees": n_trees,"mse_test":mse_train":mse_train}) return df_evaluate
In [23]: first_evaluete=dataframe_evaluate_trees(max_depth=2,lr=1,01) In [24]: second_evalue=dataframe_evaluate_trees(max_depth= ,lr=1,01) Ideal number of estimators In [25]: sns.set_style(style="whitegrid") fig,(ax,ax_1)=plt.subplots(1,2,figsize=(20,0))
ax.set_title("Max depth 2") ax.plot(first_evaluete("n_trees"), first_evaluete("sse_test"), label="Train MSE") ax.plot(first_evaluete("n_trees"), first_evaluete("sse_test"), label="Train MSE") ax.set_xlabel("n_setimators") ax.set_ylabel("sse") ax.l.set_title("Max depth 3") ax_l.plot(second_evalue("n_trees"), second_evalue("sse_train"), label="Train MSE") ax_l.plot(second_evalue("n_trees"), second_evalue("sse_test"), label="Test MSE") ax_l.set_xlabel("n_estimators") ax_l.set_ylabel("sse") ax_l.egend() ax_l.legend() plt.show()
15
Parison Pari
Starting from the estimator number 630 there is no longer an improvement for the test data. In [27]: gbr=GradientBoostingRegressor(max_depth=),
<pre>In [43]: gbr_pipeline.fit(X_train,Y_train) Out[43]: Pipeline(steps=[('preprocess',</pre>
In [44]: gbr_pipeline.score(X_train,Y_train) # evaluate with training data Out[44]: gbr_pipeline.score(X_test,Y_test) # evaluate with test data Out[45]: 3.9817929077116909 XGBOOST It is similar to adaboost. With the difference that xgboost can be used with GPU. Which training will be faster.
Selection number of estimators XGBOOST valuate (max_depth_lr). valuat
In [36] second_evaluete=dataframe_evaluate_trees(max_depth=_,lr=i) in [36] sn.set_style(style="mitceptd") fig_(ax_ax_l=ptt_subplats_it_,figslze=(ib_i)) ax_set_title("Max_depth_2") ax_plot(first_evaluete("trees")_first_evaluete("mon_train")_label="rain_NSM") ax_plot(first_evaluete("trees")_first_evaluete("mon_train")_label="rain_NSM") ax_set_xlabel("n_estimators") ax_i.set_xlabel("n_estimators") ax_i.set_title("Max_death_2") ax_i.plot(second_evalue("n_trees")_second_evalue("mon_train")_label="trees") ax_i.set_xlabel("n_estimators") ax_i.set_xlabel("n_estimators") ax_i.set_xlabel("n_estimators") ax_i.set_xlabel("n_estimators") ax_i.set_xlabel("n_estimators") ax_i.set_xlabel("n_estimators") ax_i.legend() ax_i.legend()
Max depth 2 Tan MSE Ret MSE 125 125 125 126 127 127 128 128 129 129 129 129 129 129
This paper is a small way. With the difference may I can use more recensing without overfining the model. The ideal range is between 600 in 650 recensions. Since from this amount, the error does not decrease discretize discretized in the control of the property of the first data. Cot Extra
<pre>In [46]: xgb_reg=XGBRegressor(max_depth=2,</pre>
ColumnTransformer(transformers=[('mannaxscaler(),
In [49]: xgb_pipeline.score(X_test,Y_test) Out[49]: \$.9818865597018973 In [59]: from sklearn.metrics import r2_score from sklearn.model_selection import cross_val_score In [73]: elast Evaluete(): definit(self,model,X_data,y_true):
<pre>self.x_data=x_data self.y_true=y_true self.model=model self.model.predict(self.x_data) mem_mse(self): return mean_squared_error(self.y_true, self.predict) met r2(self): return r2_score(self.y_true, self.predict) met cv_score(self): return cross_val_score(self.model_self.x_data, self.y_true, cv=0).mean()</pre>
MSE Measures the average error between the original and predicted values. In [65]: mse_poly_train=Evaluete(lm, X_train_poly, Y_train).mse() mse_poly_test=Evaluete(gbr_pipeline, X_train, Y_train).mse() mse_gbr_train=Evaluete(gbr_pipeline, X_train, Y_train).mse() mse_gbr_test=Evaluete(gbr_pipeline, X_test, Y_test).mse() mse_xgb_train=Evaluete(xgb_pipeline, X_train, Y_train).mse()
mse_xgb_train=Evaluete(xgb_pipeline, X_train, Y_train).mse() mse_xgb_test=Evaluete(xgb_pipeline, X_test, Y_test).mse() R2 It measures the degree of fit between the original value and the predictions. The closer it is to 1, the closer the original and predicted values will be. In [77]: r2_poly_train=Evaluete(lm, X_train_poly, Y_train).r2() r2_poly_test=Evaluete(lm, X_test_poly, Y_test).r2() r2_gbr_train=Evaluete(gbr_pipeline, X_train, Y_train).r2() r2_gbr_test=Evaluete(gbr_pipeline, X_test, Y_test).r2()
r2_xgb_train=Evaluete(xgb_pipeline, X_train, Y_train).r2() r2_xgb_test=Evaluete(xgb_pipeline, X_test, Y_test).r2() Cross Validation It measures the degree of generalization of the model. It divides the data into several subsets by the amount said by the user. To subsequently obtain the average value of generalization. In [74]: cv_poly=Evaluete(lm, X_test_poly, Y_test).cv_score() cv_gbr=Evaluete(gbr_pipeline, X_test, Y_test).cv_score() cv_xgb=Evaluete(xgb_pipeline, X_test, Y_test).cv_score() Dataframe evaluation
Dataframe evaluation In [78]: models_names=["Polymonial Regression", "Gradient Boosting", "XGBDOST"] mse_train=[mse_poly_train, mse_gbr_train, mse_xgb_train] mse_tost= mse_poly_train, r2_gbr_train, r2_xgb_train] r2_train=[r2_poly_train, r2_gbr_train, r2_xgb_train] r2_test=[r2_poly_test, r2_gbr_test, r2_xgb_test] cv=[cv_poly, cv_gbr, cv_xgb] evaluate_df=pd_DataFrame(["Model" models_names,
Out [79]: Model MSE train MSE test R2 train R2 test CV O Polynomial Regression 4,936247e+06 6.461016e+06 0.98549 0.98097 1 Gradient Boosting 1,989649e+06 2.539644e+06 0.985249 0.981702 0.978221 2 XGBOOST and gradient Boosting have very similar metrics to gradient boosting. But XGBOOST performs better for test data. XGBOOST and gradient Boosting have very similar metrics to gradient boosting. But XGBOOST performs better for test data.
in [25]: In [25
Politornial Regression Following the politornial Regression of the politornial Regression of the politornial Regression of the politornial Regression is good to predict more users who do not snoke, for smokers it gives not so accurate predictores. Foractions Boosstring it is good for both cases. Yas BOOST This at bother more mean square error than using gradient boosing. In turn, it is laster to todin and presents fever symptoms of excelling.

Open in Colab