

Introducción al Machine Learning

Dr. Francisco Arduh 2023

Definición

"Machine Learning es el campo de estudio que le da a las computadoras la habilidad de aprender sin ser programadas explícitamente" Arthur Samuel, 1959

Definición

"Machine Learning es el campo de estudio que le da a las computadoras la habilidad de aprender sin ser programadas explícitamente" Arthur Samuel, 1959

"Un programa de computadora se dice que aprende de la experiencia E con respecto a alguna tarea T y alguna medida de desempeño P, si su desempeño en T, medido por P, mejora la experiencia E" Tom Mitchell, 1997

¿Qué es Machine Learning?

"Machine Learning es el campo de estudio que le da a las computadoras la habilidad de aprender sin ser programadas explícitamente" Arthur Samuel, 1959

"Un programa de computadora se dice que aprende de la experiencia E con respecto a alguna tarea T y alguna medida de desempeño P, si su desempeño en T, medido por P, mejora la experiencia E" Tom Mitchell, 1997

Nota:

Machine Learning === Aprendizaje automático === Aprendizaje de máquina

¿Inteligencia artificial o Machine Learning?

Inteligencia Artificial

Técnicas que permiten a los ordenadores imitar el comportamiento humano

Machine Learning

Subconjunto de técnicas que utilizan métodos estadísticos para permitir a las máquinas aprender con la experiencia

Neural Networks

Subconjunto de técnicas que se inspiran en el funcionamiento de los sistemas nerviosos

Deep Learning

Subconjunto de técnicas que hacen uso de redes neuronales complejas

Diferencias de paradigmas

Ejemplo: Programación tradicional

Se quiere separar los email spam de los no spam (ham), una aproximación tradicional seria

Ejemplo: Programación tradicional

Se quiere separar los email spam de los no spam (ham), una aproximación tradicional seria:

- Analizar los email y encontrar patrones que nos indican que un email es spam.
- 2. Escribir un algoritmo con los patrones encontrados.
- Evaluar el algoritmo anterior y repetir 1 y 2 hasta obtener un buen algoritmo discriminante.

Ejemplo: Machine Learning

 Aprende qué patrones se repiten más usualmente en spam que en ham para poder distinguirlos.

Ejemplo: Machine Learning automatizado

Es más fácil de mantener (y más preciso).

 Entender qué un indicador de spam en el texto cambio de "4U" a "U" es más rápido con este

enfoque.

Machine Learning en problemas complejos

- Ej: Reconocimiento del habla.
- A partir de la inspección de los modelos de Machine Learning se podría entender qué patrones está reconociendo en los datos y extraer conocimiento (data mining).

Ejemplos de aplicaciones del Machine Learning

- Analizar imágenes de productos en la línea de producción para clasificarlos (CNN).
- Detectar tumores en escaneos cerebrales. (CNN)
- Clasificación automática de articulos. (NLP: RNN or Transformers)
- Etiquetado de comentarios ofensivos (NLP).
- Pronóstico de métricas de una compañía. (Linear or Polynomial regression, Random Forest, SVM or ANN)
- Detecting credit card fraud (detección de anomalía)
- Segmentar clientes en base a su compras para utilizar distintas campañas de marketing en ellos (clustering)
- Representar datos de alta dimensionalidad en un diagrama (reducción de dimensionalidad)
- Construir un bot para jugar un juego (reinforcement learning)

Tipos de sistemas de Machine Learning

Se pueden categorizar a los sistemas de Machine Learning por los siguientes criterios:

- Si necesitan supervisión humana (supervisados, no supervisados, semi supervisados y reinforcement learning).
- Si pueden o no aprender incrementalmente (online y batch learning).
- Si se construyen de comparar instancias previas con instancias nuevas o tratan de generalizar un comportamiento modelando. (basado en instancia o basado en modelos)

Supervisado/no supervisado

Supervisado

El conjunto de datos con los qué se entrenan (training set) estos algoritmos necesitan estar etiquetados.

Supervisado

También puede referirse a valores numéricos

Supervisado

Algoritmos supervisados:

- k-Nearest Neighbors (kNN)
- Regresión Lineal.
- Regresión Logística.
- Support Vector Machines (SVM)
- Decision Trees y Random Forest.
- Redes Neuronales.

No supervisado

En este caso el conjunto de entrenamiento no está etiquetado.

No supervisado

Algunos de los algoritmos no supervisados.

- Agrupamiento:
 - K-Means
 - DBSCAN
 - Agrupamiento jerárquico (HCA)
- Detección de anomalía
 - One-class SVM
 - Isolation Forest

No supervisado

Algunos de los algoritmos no supervisados.

- Visualización y reducción de dimensionalidad:
 - Análisis de componentes principales (PCA)
 - Kernel PCA.
 - Locally Linear Embedding (LLE)
 - t-Distributed Stochastic Neighbor Embedding (t-SNE)
 - Self-organizing map (SOM)
- Aprendizaje reglas de asociación
 - Apriori
 - Eclat

No supervisado: Agrupamiento

Feature 2

No supervisado: algoritmos de visualización

Figura de Richard Socher et al., "Zero-Shot Learning Through Cross-Modal Transfer," Proceedings of the 26th International Conference on Neural Information Processing Systems 1 (2013): 935–943.

No supervisado: Reducción de dimensionalidad

- Reducir la cantidad de información sin perder mucha información relevante.
- El algoritmo de reducción de dimensionalidad va a tratar de combinar varias características (feature) en una. Esto se denomina extracción de características (feature extracción)

Dimension Reduction

No supervisado: Detección de anomalía o de novedad

- Son algoritmos qué se entrenan con instancias normales y detectan si existen anormalidades en las nuevas instancias.
- Ej: fraude en transacciones de tarjeta de crédito, defectos en manufacturación o remover anomalías en un dataset antes de utilizarlo con otro algoritmo.

No supervisado: Reglas de asociación

Como su nombre indica, su objetivo es entrar en grandes cantidades de datos relacionales entre los atributos.

Semi Supervisado

Algunos algoritmos pueden funcionar con datos parcialmente etiquetados. Ej: deep belief networks (DBNs) basadas en restricted Boltzmann machines (RBMs). Se entrenan de una manera no supervisada y después sobre todo el sistema se realiza un fine-tunning.

Feature 2

Reinforcement Learning

Sistema de aprendizaje (agente) en un contexto (ambiente) puede desarrollar acciones y recibir recompensa como retornos.

Aprende por sí mismo cuál es la mejor estrategia a seguir (política) para ganar más recompensa en el tiempo.

Ej: DeepMind's Alpha Go, OpenAl Five

2 Select action using policy

4 Get reward or penalty

- 5 Update policy (learning step)
- 6 Iterate until an optimal policy is found

Batch o online learning

Batch learning

- No aprende de forma incremental: debe ser entrenado con todos los datos disponibles. También se denomina offline.
- Con nuevos datos, todo el sistema debe entrenarse desde cero.
- Los procesos de entrenamiento, evaluación y desarrollo pueden automatizarse.
- No sirve para sistemas qué necesitan adaptarse rápido (algunos sistemas pueden tomar más de un día para entrenarse).
- Pueden ser muy costosos computacionalmente.

- Aprende de forma incremental: Se alimenta de datos secuencialmente, puede ser individuales o en pequeños (mini-batches).
- Cada entrenamiento del algoritmo es "barato".
- Se utilizan para sistemas qué reciben información permanentemente y necesitan adaptarse a los cambios.

 Se utiliza también cuando la cantidad de datos es tan grande qué no cabe en un servidor (out-of-core learning).

- Learning rate: es qué tan rápido mi algoritmo se adapta a los cambios.
- Learning rate alto trata de adaptarse más rápidamente a los nuevos datos. Learning rate bajo se adapta más despacio.
- Nota: Si los nuevos datos son malos tu sistema podría empezar a bajar su performance!.
- Es necesario monitorear el modelo en caso de que pase lo anterior para poder apagarlo y volver a un modelo anterior.

Basado en instancia o Basado en modelos

Aprendizaje basado en instancia

- Aprende "de memoria"
- Utiliza una medida de similaridad para comparar nuevos casos con los casos aprendidos con anterioridad.

Aprendizaje basado en modelo

Construir un modelo para realizar predicciones.

Queremos saber si un mayor PIB hace más felices a las personas

Table 1-1. Does money make people happier?

Country	GDP per capita (USD)	Life satisfaction
Hungary	12,240	4.9
Korea	27,195	5.8
France	37,675	6.5
Australia	50,962	7.3
United States	55,805	7.2

Graficamos:

Construimos un modelo:

life_satisfaction =
$$\theta_0$$
 + θ_1 X GDP_per_capital

0:

¿Cómo podemos saber qué modelo es mejor?

¿Cómo podemos saber qué modelo es mejor?

Se ajusta el modelo a los datos

Ejemplo: Machine Learning

También pueden ser fácilmente automatizados.

Principales retos del Machine Learning

La importancia buenos datos

si los datos son malos, incluso el mejor algoritmo no te ayudará. "basura entra, basura sale" (GIGO).

Cantidad insuficientes de datos

- Algunos algoritmos del ML necesitan mucha cantidad de datos.
- Trade-off entre tiempo y dinero gasta en algoritmos y recolección de datos.

"Scaling to Very Very Large Corpora for Natural Language Disambiguation" Michele Banko and Eric Brill, 2001

Datos no representativos

- Si la muestra no es representativa el modelo no va a generalizar bien.
- La muestra puede ser no representativa porque es muy pequeña y estaríamos modelando ruido.
- Incluso en muestras muy grandes puede haber un sesgo de muestreo.

Baja calidad de datos

Si nuestro training set contiene errores, valores atípicos o ruido; es muy difícil que el modelo tenga un buen desempeño. Alguna acciones a realizar para limpiar los datos pueden ser:

- Si existen valores atípicos, se puede simplemente descartar estos datos (edad de clientes mayor a 120).
- Si algunas características de la muestra no está cargada (el 5% de los clientes no especificaron su edad), se debe decidir si ignorar esas instancias, llenar los valores faltantes o directamente no utilizar esta característica.

Características irrelevantes

- Los sistemas van a ser capaces de entrenarse y desempeñar bien su tarea sólo si se contiene suficientes features relevantes.
- Una parte importante del entrenamiento es entrenar el sistema con una buen conjunto de características, a esto se lo denomina feature engineering. Pasos:
 - Selección de características
 - Extracción de características
 - Creación de nuevas características almacenando más datos.

Sobreajuste (overfitting) de los datos de entrenamiento

- Modelo muy complejo para la cantidad de datos y ruido.
 Posibles soluciones:
 - o Simplificar el modelo.
 - Reunir más datos.
 - Reducir el ruido.

Sobreajuste (overfitting) de los datos de entrenamiento

- Regularización: reducir los grados de libertad del modelo.
- La cantidad de regularización de un modelo se controla con un hiperparámetro. Más grande su valor el modelo empieza a capturar cada vez menos del comportamiento de los datos.

Subajuste (underfitting) de los datos de entrenamiento

- Subajuste (underfitting) de los datos de entrenamiento
- Modelo muy simple para modelar los datos.
- Posibles soluciones:
 - Seleccionar modelos más complejos.
 - Realizar feature engineer.
 - Reducir las restricciones del modelo (reducir la regularización de hiperparámetros)

Evaluación y Validación

Validación y evaluación

• ¿Es buena idea poner a funcionar un modelo en producción y monitorearlo?

Validación y evaluación

- ¿Es buena idea poner a funcionar un modelo en producción y monitorearlo? NO!
- Utilizar training set y test set (generalmente la proporción qué se utiliza es el alrededor de 80% - 20%)
- El error en el test set se denomina error out-of-sample o error de generalización.

¿Cómo puedo comparar entre dos modelos?

- s y
- ¿Cómo puedo comparar entre dos modelos?
- Utilizar el error de generalización en el test set, pero...

- ¿Cómo puedo comparar entre dos modelos?
- Utilizar el error de generalización en el test set, pero podría obtener un error mayor una vez que lleve el modelo a producción.

- Para solucionar lo anterior se usa validación cruzada. Se vuelve a dividir el training set en training set y validation set.
- El punto anterior se puede hacer muchas veces para obtener valores distintos. Esto se lo denomina validación cruzada.

No free lunch theorem

- Publicado en 1996 por David Wolpert.
- Si no se sabe absolutamente nada de los datos no podes elegir un modelo sobre otro a priori.
- En la práctica vamos a tener que realizar suposiciones sobre los datos y evaluar unos pocos modelos.

Algunas preguntas de repaso

- Que es un etiquetado en el conjunto de entrenamiento.
- ¿En qué categoría entraría algoritmo sería la detección el algoritmo de detección de spam? supervisado o no supervisado.
- ¿Cual es la diferencia entre un parámetro del modelo y un hiperparámetro?
- Si el modelo funciona muy bien en el conjunto de entrenamiento, pero mal en el evaluación ¿qué está pasando?
- ¿Para qué utilizo el conjunto de validación?
- ¿Se pueden ajustar los hiperparámetros en el test set?

