Analisis Sentimen Menggunakan Metode Neural Network dan LSTM

Team members:

- 1. Arief Budiman
- 2. Muhidin Jaariya
- 3. Rommy

CONTENTS

01.

02.

03.

Pendahuluan

Metode Penelitian

Kesimpulan

PENDAHULUAN

Latar belakang

Analisis sentimen merupakan proses penting dalam menganalisis opini, perasaan, dan sikap yang terkandung dalam teks. Dalam era digital saat ini, jumlah data teks yang dihasilkan melalui media sosial, ulasan pelanggan, dan sumber lainnya semakin meningkat. Untuk mengatasi kompleksitas dan volume besar data tersebut, pendekatan yang digunakan adalah jaringan saraf tiruan (neural network) dan LSTM telah terbukti berhasil dalam analisis sentimen.

Rumusan masalah

Dalam konteks analisis sentimen dengan menggunakan neural network dan LSTM, terdapat beberapa rumusan masalah yang dapat diajukan, antara lain:

- 1. Bagaimana cara menerapkan analisis sentimen menggunakan Neural Network dan LSTM untuk mengklasifikasikan teks ke dalam tiga kategori sentimen: positif, negatif, dan netral?
- Seberapa akurat dan efektifkah metode analisis sentimen berbasis
 Neural Network dan LSTM dalam mengklasifikasikan sentimen pada teks

Tujuan penelitian

- Menerapkan metode analisis sentimen berbasis Neural Network dan LSTM untuk mengklasifikasikan teks ke dalam tiga kategori sentimen: positif, negatif, dan netral.
- 2. Mengevaluasi akurasi dan efektivitas metode analisis sentimen berbasis Neural Network dan LSTM dalam memprediksi sentimen pada teks,
- Memberikan pemahaman yang lebih baik tentang penggunaan Neural Network dan LSTM dalam analisis sentimen dan potensinya untuk mendukung pengambilan keputusan berbasis data.

Metode Penelitian

1. Neural Network

Data Asli

	Text	Sentimen
0	warung ini dimiliki oleh pengusaha pabrik tahu	positive
1	mohon ulama lurus dan k212 mmbri hujjah partai	neutral
2	lokasi strategis di jalan sumatera bandung . t	positive
3	betapa bahagia nya diri ini saat unboxing pake	positive
4	duh . jadi mahasiswa jangan sombong dong . kas	negative
10995	tidak kecewa	positive
10996	enak rasa masakan nya apalagi kepiting yang me	positive
10997	hormati partai-partai yang telah berkoalisi	neutral
10998	pagi pagi di tol pasteur sudah macet parah , b	negative
10999	meskipun sering belanja ke yogya di riau junct	positive
11000 ro	ws × 2 columns	

Stopwords NLTK

	Text	Sentimen	text_clean	text_filter	
0	warung ini dimiliki oleh pengusaha pabrik tahu	positive	warung ini dimiliki oleh pengusaha pabrik tahu	warung dimiliki pengusaha pabrik puluhan terke	
1	mohon ulama lurus dan k212 mmbri hujjah partai	neutral	mohon ulama lurus dan k212 mmbri hujjah partai	mohon ulama lurus k212 mmbri hujjah partai diw	
2	lokasi strategis di jalan sumatera bandung . t	positive	lokasi strategis di jalan sumatera bandung t	lokasi strategis jalan sumatera bandung nya ny	
3	betapa bahagia nya diri ini saat unboxing pake	positive	betapa bahagia nya diri ini saat unboxing pake	betapa bahagia nya unboxing paket barang nya b	
4	duh . jadi mahasiswa jangan sombong dong . kas	negative	duh jadi mahasiswa jangan sombong dong kas	duh mahasiswa sombong kasih kartu kuning belaj	
10995	tidak kecewa	positive	tidak kecewa	kecewa	
10996	enak rasa masakan nya apalagi kepiting yang me	positive	enak rasa masakan nya apalagi kepiting yang me	enak masakan nya kepiting menyenangkan memilih	
10997	hormati partai-partai yang telah berkoalisi	neutral	hormati partai partai yang telah berkoalisi	hormati partai partai berkoalisi	
10998	pagi pagi di tol pasteur sudah macet parah , b	negative	pagi pagi di tol pasteur sudah macet parah b	pagi pagi tol pasteur macet parah bikin jengkel	
10999	meskipun sering belanja ke yogya di riau junct	positive	meskipun sering belanja ke yogya di riau junct	belanja yogya riau junction kali lihat foodlif	
11000 rows × 4 columns					

Feature Extraction

```
df_vektor = df.text_clean.tolist()
count vect = CountVectorizer()
# melakukan fitting dan transformasi pada dokumen
count vect.fit(df vektor)
# melihat hasil representasi bag of words
X = count_vect.fit_transform(df_vektor)
```

Train - Test

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 40)
```

Model NN

```
GridSearchCV
GridSearchCV(estimator=Pipeline(steps=[('algoritma', MLPClassifier())]),
             param grid={'algoritma activation': ['relu', 'tanh', 'logistic'],
                         'algoritma alpha': [0.1, 0.01, 1],
                         'algoritma early stopping': [True],
                         'algoritma hidden layer sizes': [{1}, {10}],
                         'algoritma learning rate init': [0.01]})
                              estimator: Pipeline
               Pipeline(steps=[('algoritma', MLPClassifier())])
                                ▼ MLPClassifier
                               MLPClassifier()
```

Model Neural Network

```
{'algoritma__activation': 'logistic',
  'algoritma__alpha': 0.01,
  'algoritma__early_stopping': True,
  'algoritma__hidden_layer_sizes': {10},
  'algoritma__learning_rate_init': 0.01}
```

Evaluasi Model (Data Training)

	precision	recall	f1-score	support
negative neutral	0.91 0.95	0.96 0.89	0.94 0.92	2775 915
positive	0.97	0.96	0.97	5110
accuracy macro avg	0.95	0.94	0.95 0.94	8800 8800
weighted avg	0.95	0.95	0.95	8800

Evaluasi Model (Data Testing)

	precision	recall	f1-score	support
negative	0.79	0.85	0.82	661
neutral	0.82	0.70	0.76	233
positive	0.92	0.91	0.91	1306
accuracy			0.87	2200
macro avg	0.84	0.82	0.83	2200
weighted avg	0.87	0.87	0.87	2200

2. Long Short-Term Memory (LSTM)

Import package

```
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.sequence import pad sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.regularizers import 11
from tensorflow.keras.regularizers import 12
from tensorflow.keras.regularizers import L1L2
from tensorflow.keras.models import load model
from sklearn.model selection import train test split
import pickle
import re
```

Import Data

```
data = pd.read_csv('train_preprocess.csv', sep='\t',header = None)
    df = data.rename(columns={0: 'text', 1: 'label'})
    df

    0.1s
```

	text	label
0	warung ini dimiliki oleh pengusaha pabrik tahu	positive
1	mohon ulama lurus dan k212 mmbri hujjah partai	neutral
2	lokasi strategis di jalan sumatera bandung . t	positive
3	betapa bahagia nya diri ini saat unboxing pake	positive
4	duh . jadi mahasiswa jangan sombong dong . kas	negative
10995	tidak kecewa	positive
10996	enak rasa masakan nya apalagi kepiting yang me	positive
10997	hormati partai-partai yang telah berkoalisi	neutral
10998	pagi pagi di tol pasteur sudah macet parah , b	negative
10999	meskipun sering belanja ke yogya di riau junct	positive
11000 ro	ws × 2 columns	

CLEANSING DATA

```
category = pd.get_dummies(df.label)
df_baru = pd.concat([df, category], axis=1)
df_baru = df_baru.drop(columns='label')

df_baru['text'] = df_baru['text'].replace('\n', ' ').str.lower()

def fun(x):
    y = re.sub(r'[^a-zA-Z0-9. ]', '', x)
    return y

df_baru['text_new'] = df_baru['text'].apply(lambda x : fun(x))

df_baru['text_new'] = df_baru['text_new'].replace(' ', '')
df_baru['text_new'] = df_baru['text_new'].replace(' ', '')

df_baru.head()

MagicPython
```

	text	negative	neutral	positive	text_new
0	warung ini dimiliki oleh pengusaha pabrik tahu	0	0	1	warung ini dimiliki oleh pengusaha pabrik tahu
1	mohon ulama lurus dan k212 mmbri hujjah partai	0	1	0	mohon ulama lurus dan k212 mmbri hujjah partai
2	lokasi strategis di jalan sumatera bandung . t	0	0	1	lokasi strategis di jalan sumatera bandung . t
3	betapa bahagia nya diri ini saat unboxing pake	0	0	1	betapa bahagia nya diri ini saat unboxing pake
4	duh . jadi mahasiswa jangan sombong dong . kas	1	0	0	duh . jadi mahasiswa jangan sombong dong . kas

PENAMAAN VARIABEL X, Y DAN PEMBUATAN TOKENIZER

```
x = df baru['text new'].values
  y = df_baru[['negative', 'neutral', 'positive']].values
✓ 0.0s
  tokenizer = Tokenizer(num_words=5000, oov_token='x')
  tokenizer.fit on texts(x)
  sekuens x = tokenizer.texts to sequences(x)
  padded x = pad sequences(sekuens x)
✓ 0.7s
  pickle.dump(tokenizer, open("feature_New_lstm.sav", "wb"))
✓ 0.0s
```

SPLIT TRAIN, VALIDATION AND TEST

```
x_train, x_test, y_train, y_test = train_test_split(padded_x, y, test_size=0.2, random_state = 4)
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state = 4)
```

MODEL LSTM

```
%%time
model = tf.keras.Sequential([
    tf.keras.layers.Embedding(input dim=100000, output dim=128),
    tf.keras.layers.LSTM(32, dropout=0.2),
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(3, activation='softmax')
1)
class myCallback(tf.keras.callbacks.Callback):
   def on epoch end(self, epoch, logs={}):
        if(logs.get('val categorical accuracy') > 0.90 ):
            self.model.stop training = True
callbacks = myCallback()
optimizer = keras.optimizers.Adam(learning rate=0.001)
model.compile(loss='categorical_crossentropy',
              optimizer=optimizer,
              metrics=['categorical accuracy'])
num epochs = 4
fit = model.fit(x train,
               y train,
               batch size = 16,
               epochs=num epochs,
               validation data=(x val, y val),
                callbacks = [callbacks]
```


AKURASI

3. API

Homepage

Platinum Challenge

GO 1	0.1	а	OCS	page	

No	Text	Sentiment	Model
1	Dekat dengan hotel saya menginap, hanya ditempuh jalan kaki, di sini banyak sekali pilihan makanannya, tempat yang luas, dan menyenangkan	positive	LSTM
2	Banyak hal yang dapat kita lakukan untuk mengisi waktu luang.	neutral	LSTM
3	lya itu yang bikin saya kesal. Ini bukan kesalahan sang pelamar tapi jelas 100% kesalahan pihak yang di atas yang entah bagaimana cara mereka berkordinasi. Nyesek saya itu walaupun ini kasus teman saya yang di lampung.	negative	NN
4	Saya baru saja bertemu teman saya yang bekerja di trans tv	neutral	NN

Click the link of "Go to docs page" to redirect swagger page

Kesimpulan

- 1. Model LSTM memiliki performa yang baik dengan akurasi yang tinggi pada data pelatihan, validasi, dan pengujian.
- 2. Model NN juga memberikan hasil yang baik dengan akurasi yang tinggi pada data pengujian dan metrik evaluasi yang seimbang untuk setiap kelas.
- 3. Kedua model menunjukkan kemampuan yang baik dalam mengklasifikasikan data, tetapi LSTM memiliki keunggulan dalam memahami data sequential seperti teks atau time series.
- 4. Pilihan model tergantung pada sifat dan karakteristik data serta tujuan spesifik dari masalah yang ingin diselesaikan.

