(132 x 176-dot Graphics LCD Controller/Driver for 65K Colors)

HITACHI

Rev.1.0 November, 2001

Description

The HD66766, color-graphics LCD controller and driver LSI, displays 132-by-176-dot graphics for 65K STN colors. A 16-bit high-speed bus interface and high-speed RAM write function enable efficient data transfer and high-speed rewriting of data to the graphics RAM.

The HD66766 has various functions for reducing the power consumption of a LCD system, such as low-voltage operation of 2.2 V/min., a step-up circuit to generate a maximum of 12-times the LCD drive voltage from the supplied voltage, and voltage-followers to decrease the direct current flow in the LCD drive bleeder-resistors. Combining these hardware functions with software functions, such as a partial display with low-duty drive and standby and sleep modes, allows precise power control. The HD66766 is suitable for any mid-sized or small portable battery-driven product requiring long-term driving capabilities, such as digital cellular phones supporting a WWW browser, bi-directional pagers, and small PDAs.

Features

- 132RGB x 176-dot graphics display LCD controller/driver for 65K STN colors
- low voltage drive and flickerless PWM grayscale drive
- 16-/8-bit high-speed bus interface and Clock Synchronized Serial Interface (SPI)
- High-speed burst-RAM write function
- Writing to a window-RAM address area by using a window-address function
- Bit-operation functions for graphics processing:
 - Write-data mask function in bit units.
 - Logical operation in pixel unit and conditional write function.

- Various color-display control functions
 - 65K out of 140K possible colors can be displayed at the same time (grayscale palette incorporated)
 - Vertical scroll display function in raster-row units
- Low-power operation supports:
 - Vcc = 2.2 to 3.6 V (low-voltage)
 - Common driving voltage = 8 to 44 V
 - Segment driving voltage = 2 to 4 V
 - VOUT power voltage = 4.5V to 5.5 V
 - Maximum 12-times step-up circuit for liquid crystal drives voltage and voltage inverting circuit
 - 128-step contrast adjuster and voltage followers to decrease direct current flow in the LCD drive bleeder-resistors
 - Power-save functions such as the standby mode and sleep mode
 - Partial LCD drive of two screens in any position
 - Programmable drive duty ratios (1/8–1/176) and bias values (1/2–1/13) displayed on LCD
- Internal RAM capacity: 46,464 bytes
- 396-segment × 176-common liquid crystal display driver
- n-raster-row AC liquid-crystal drive (C-pattern waveform drive)
- Internal oscillation and hardware reset
- Shift change of segment and common drivers
- COM positioned on both sides in one chip for COG

Type Name

Types	External Dimens	sions
HCD667A66BP	Au-bumped chip	straight bump
HCD667B66BP	Au-bumped chip	laced bump

HD66766 PAD Arrangement (Straight Output Arrangement)

- Chip Size :18.65mm x 2.63mm

Chip thickness : 550um (Typ)

HCD667A66BP Pad Coordinate

No. Part Part No. No. Part Part Part Part Part Part Part Part		HCD667A66BP Pad Coordinate																		
2 DIMANY 1885 1796 196	No	pad name	Х	Υ	No.	pad name	X	Υ	No.	pad name	Χ	Υ	No.	pad name	X	Υ	No.	pad name	Χ	Υ
	1	DUMMY1	-9193	-1168	81	OSC1	1284	-1168	161	COM32	9155	-411	241	SEG390	7296	1145	321	SEG310	4256	1145
Color Colo	2	DUMMY2	-8835	-1168	82	GNDDUM8	1440	-1168		COM34	9155	-373		SEG389		1145		SEG309		1145
C. CEM	3	RESET1*	-8678	-1168	83	IM2	1597	-1168	163	COM36		-335	243	SEG388	7220	1145	323	SEG308	4180	1145
Column C									_											
No.									_											
No. Color Free 1981 Free 1981 Color 1981 Color 1467 248 SEGSIS 7000 1165 268 SEGSIS 2690 1145 109 Vol. 7971 1168 186 Color 1467 248 SEGSIS 2692 1146 249 2																				
10 V.C. 17916 14968 169 176572 2337 1198 1109 100 COMAR 915 100 100 240 SEGS82 8992 1145 250 SEGS82 3992 1145 110 V.C. 17716 1496 197 240 14																				
10 V.C. 7916 1916 1916 1916 1917 COMMO 915 489 192 SEGS91 6905 1145 130 SEGS01 9916 1145 115 V.C. V.									_											
T. V. CL 7788 -1168 37 GNODUMO 2800 7168 717 COMAG 9155 3-17 281																				
12 V.CH																				
19									_											
18																				
15 16 16 17 17 17 17 17 17																				
10 C244 7057 1169 90 DUMANY 3-30 1169 176 COMM2 1515 159 255 856375 6767 1145 336 856295 5868 1145 115																				
17 C244									_											
18 C24 687 1168 68 OUANMY 950 1168 178 COM66 6156 236 256 25637 6160 1146 338 \$65203 610 1146 130 C24 647																				
19 C24	18		-6857	-1168	98	DUMMY9		-1168	178		9155	235	258			1145	338		3610	1145
22 C22 - 6857 - 1188					99				179										3572	
22 C.224 6967 Files Tougo Bass.C 4110 -1168 192 COM/F 9155 455 203 586368 6400 1146 342 SEG289 3400 1145 343 SEG289 3400 1145 343 SEG289 3400 1145 345 SEG289 3400 1145 340 SEG287 3400 34	20	C23+	-6657	-1168	100	VREFL	3910	-1168	180	COM70	9155	311	260	SEG371	6574	1145	340	SEG291	3534	1145
22 C22+ 627 1188 1100	21	C23+	-6557	-1168	101	BIASC	4010	-1168	181	COM72	9155	349	261	SEG370	6536	1145	341	SEG290	3496	1145
22 C22+ 6297 Files			-6457	-1168	102		4110				9155			SEG369	6498	1145				1145
22 22 24 6167 1168 1160																				
22									_											
22									_											
22 C21+ . 5866 1168 109																				
20 C21+ 5756 1168 109									_											
30 C211 - 5-076 1188 110 V9H 4911 1168 191 COM80 9155 720 270 SEG361 6194 1145 390 SEG281 3154 1145 310 CZ1 CZ									_											
32 CVI2 - 5-676 - 1188 111									_											
32 VCI2 - 5576 - 1188 112 VSH 5111 - 1168 192 COMM4 9155 767 272 SEG359 6118 1145 392 SEG279 3078 1148 31 VCI2 - 5576 - 1188 113 VOUT 5391 - 1168 194 COMM8 9155 805 273 SEG359 6042 1145 344 SEG277 3002 1145 358 VCI2 - 5576 - 1188 114 VOUT 5391 - 1168 194 COMM8 9155 803 274 SEG357 6042 1145 344 SEG277 3002 1145 350 SEG278 3002 1145 3002 SEG278 3002 1145 3002 SEG278 3002 1145 3002 SEG278 3002 1145 3002 SEG351 3002																				
33 CVC2 - 5.776 - 1188 113																				
35 VCI2 5-176 1168 114 VOUT 5391 -1168 194 COM8 9155 5493 727 SEG357 6042 1145 354 555 SEG277 3002 1145 360 SEG277 3002									_											
Section 16 16 16 17 17 18 19 17 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 18																				
36 GNDOUM1 4886 - 1168 116 VOUT 5592 -1168 197 COUT 5592 -1168 197 COUT 5592 -1168 197 COUT 5159 1165									_											
37 GNDDUM2	_																			
38 SRDDUMS 4696 1168 118 C12+ 5972 1168 198 C0M106 195 599 278 SEGS352 SEGS211 145 398 SEGS77 2880 1145 416 416 4166 1196 119 C12+ 5972 1168 1180 200 C0M108 8892 1145 280 SEGS352 SSEZ 1145 398 SEGS77 2872 1145 416 1186 1186 118																				
Mathematics		GNDDUM3			118			-1168	198								358			
Math	39	GNDDUM4	-4596	-1168	119	C12+	5972	-1168	199	DUMMY12	9193	1183	279	SEG352	5852	1145	359	SEG272	2812	1145
A2 DB13				-1168			6072	-1168							5814					1145
Math																				
44 DB11 -3789 -1168 122 C11+ 6572 -1168 206 COM116 8740 1145 284 SEG347 5662 1145 365 SEG566 2584 1145 367 SEG566 2584 1145 367 SEG566 2584 1145 368 SEG363 361 36																				
BB10																				
46 DB9 3476 1168 147 148 26 C11+ 6672 1168 27 C0M120 8864 1145 286 SEG345 5586 1145 366 SEG265 2546 1145 48 49 DB7 3006 1168 128 C11+ 6872 1168 209 C0M124 8588 1145 288 SEG343 5510 1145 367 SEG264 2598 1145 368 SEG262 2432 1145 367 SEG264 2598 1145 368 SEG262 2432 1145 368 SEG263 2470 1145 368 SEG263 2470 1145 368 SEG263 2470 1145 368 SEG263 2470 1145 369 SEG341 349																				
## B GNDUMS 3163 1168 127 C11+ 6772 1168 207 COM122 8626 1145 288 5634 145 367 562684 2508 1145 49 DB7 3006 1168 129 C11+ 6872 1168 209 COM126 8580 1145 288 56342 5510 1145 368 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 369 562632 2472 1145 370 562									_											
Ref Rondown Ref																				
B97																				
50 D86 2850 -1168 130 C11- 7073 -1168 210 COM128 8512 1145 290 SEG341 5343 1145 370 SEG261 2394 1145 52 D84 -2537 -1168 132 C11- 7173 -1168 211 COM130 8474 1145 291 SEG340 5396 1145 371 SEG260 2356 1145 372 SEG256 1145 373 SEG256 1145 374 SEG256 1145 375 SEG256 1145 3																				
61 DB5 -26931 -1168 131 C11- 7173 -1168 211 COM130 8474 1145 291 SEG340 5396 1145 372 SEG259 2386 1145 52 DBA -2537 -1168 133 CCI1- 7273 -1168 212 COM132 8436 1145 292 SEG339 5356 1145 372 SEG259 2318 1145 54 DB2 -2223 1168 134 VCIOUT 7553 -1168 215 COM148 8360 1145 294 SEG337 5282 1145 373 SEG256 2240 1145 56 DBOSDI -1910 -1168 136 VCIOUT 7533 -1168 216 COM144 8204 1145 296 SEG335 5206 1145 376 SEG256 2240 1145 57 GNDUMG -1754 -1168 370 VCI 7933 -1168																				
S2 DB4 -2537 -1168 53 DB3 -2538 -1168 133 VCIOUT 7453 -1168 214 COM136 8368 1145 293 SEG338 5320 1145 373 SEG258 2280 1145 55 DB1/SDO -2067 -1168 135 VCIOUT 7553 -1168 214 COM136 8368 1145 293 SEG338 5320 1145 374 SEG257 2242 1145 55 DB1/SDO -2067 -1168 135 VCIOUT 7553 -1168 214 COM136 8368 1145 294 SEG337 5282 1145 374 SEG257 2242 1145 56 DB1/SDO -2067 -1168 135 VCIOUT 7553 -1168 216 COM140 8284 1145 295 SEG336 5244 1145 375 SEG256 2204 1145 376 SEG257 2242 1145 377 SEG254 2128 1145 378 SEG257 2242 1145 378 SE																				
Same									_											
DB2									_											
55 DBI/SDO -2067 -1168 135 VCIOUT 763 -1168 215 COM138 8322 1145 295 SEG336 5244 1145 376 SEG255 2166 1145 56 DBD/SDI -1764 1168 VCIOUT 7753 -1168 216 COM140 8284 1145 296 SEG336 5244 1145 376 SEG255 2166 1145 58 RW/RD* -1597 -1168 137 VCI 8933 -1168 117 COM144 8208 1145 298 SEG332 5109 1145 377 SEG252 2052 1145 59 EWRY-SCL -1440 -1168 139 VCI 8133 -1168 219 COM146 8170 1145 298 SEG332 5092 1145 379 SEG252 2052 1145 61 RS -1127 -1168 140 VCI -911 1168 142																				
66 DB0/SDI 1910 -1168 336 VCIOUT 7753 -1168 216 COM140 8284 1145 296 SEG335 5206 1145 376 SEG255 2166 1145 57 GNDDUM6 -1754 -1168 137 VCI1 8033 -1168 218 COM142 8248 1145 297 SEG333 5168 1145 377 SEG252 2202 1145 59 EMR*/SCL 1440 -1168 139 VCI1 8133 -1168 218 COM146 8170 1145 299 SEG332 5092 1145 379 SEG252 2052 1145 61 RS -1127 -1168 144 VCCDUM3 8413 -1168 221 COM148 8132 1145 300 SEG331 5050 1145 381 SEG252 2052 1145 61 C.S.* -971 -1168 144 VCCDUM3 8413 -1168 <td></td>																				
For GNDDUMG -1754 -1168						VCIOUT	7753			COM140	8284	1145		SEG335	5206	1145	376	SEG255	2166	1145
59 E/WR*/SCL -1440 -1168 139 VCI 8133 -1168 219 COM146 8170 1145 299 SEG332 5092 1145 379 SEG252 2052 1145 60 GNDDUM7 -1284 -1168 140 VCI 8234 -1168 220 COM148 8132 1145 300 SEG331 5054 1145 380 SEG251 2014 1145 62 CS* -971 -1168 142 VCCDUM4 8513 -1168 222 COM152 8056 1145 301 SEG329 4978 1145 382 SEG249 1938 1145 63 VCC -791 -1168 143 RESET3* 8693 -1168 222 COM156 7800 1145 302 SEG329 4978 1145 382 SEG249 1938 1145 64 VCC -590 -1168 145 DUMMY11 9193 -1168	57	GNDDUM6	-1754	-1168	137	VCI1				COM142	8246	1145	297		5168	1145				
60 GNDDUM7 -1284 -1168 140 VCI 8233 -1168 220 COM148 8132 1145 300 SEG331 5054 1145 380 SEG251 2014 1145 61 RS -1127 -1168 141 VCCDUM4 8513 -1168 142 VCCDUM4 8513 -1168 142 VCCDUM4 8513 -1168 222 COM152 8056 1145 301 SEG330 5016 1145 381 SEG250 1976 1145 63 VCC -971 -1168 143 RESET3* 8693 -1168 222 COM154 8018 1145 302 SEG329 4978 1145 382 SEG249 1938 1145 64 VCC -690 -1168 144 DUMMY10 8850 -1168 224 COM156 7980 1145 304 SEG329 4978 1145 385 SEG248 1900 1145			-1597	-1168																
61 RS -1127 -1168 141 VCCDUM3 8413 -1168 221 COM150 8094 1145 301 SEG330 5016 1145 382 SEG229 1978 1145 62 CS* -971 -1168 142 VCCDUM4 8513 -1168 222 COM152 8056 1145 302 SEG329 4978 1145 382 SEG249 1938 1145 64 VCC -690 -1168 144 DUMW110 8850 -1168 224 COM156 789 1145 303 SEG327 4902 1145 384 SEG248 1900 1145 66 VCC -490 -1168 145 DUMW111 9195 -981 226 COM160 7904 1145 305 SEG326 4864 1145 386 SEG246 1824 1145 66 VCC -390 -1168 147 COM4 9155 -981																				
62 CS* -971 -1168 142 VCCDUM4 8513 -1168 222 COM152 8056 1145 302 SEG329 4978 1145 382 SEG249 1938 1145 63 VCC -791 -1168 144 DUMMY10 8850 -1168 223 COM156 7980 1145 303 SEG328 4940 1145 383 SEG248 1900 1145 65 VCC -590 -1168 144 DUMMY11 9193 -1168 224 COM156 7980 1145 304 SEG327 4902 1145 384 SEG248 1862 1145 66 VCC -490 -1168 145 DUMMY11 9195 -981 226 COM160 7904 1145 305 SEG326 4864 1145 385 SEG2244 1786 1145 68 VCC -190 -1168 149 COM4 9155 -895 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
63 VCC -791 -1168 143 RESET3* 8693 -1168 223 COM154 8018 1145 303 SEG328 4940 1145 384 SEG247 1862 1145 64 VCC -690 -1168 144 DUMMY10 8850 -1168 224 COM156 7980 1145 304 SEG327 4902 1145 384 SEG247 1862 1145 66 VCC -590 -1168 146 COM2 9155 -981 226 COM160 7904 1145 305 SEG326 4864 1145 385 SEG246 1824 1145 66 VCC -390 -1168 146 COM2 9155 -981 226 COM160 7904 1145 306 SEG325 4826 1145 386 SEG244 1748 1145 68 VCC -290 -1168 148 COM6 9155 -867 229 <td></td>																				
64 VCC -690 -1168 144 DUMMY10 8850 -1168 224 COM156 7980 1145 304 SEG327 4902 1145 384 SEG247 1862 1145 65 VCC -590 -1168 145 DUMMY11 9193 -1168 225 COM158 7942 1145 305 SEG326 4864 1145 385 SEG246 1824 1145 66 VCC -490 -1168 146 COM2 9155 -981 226 COM160 7904 1145 306 SEG325 4826 1145 386 SEG245 1786 1145 68 VCC -290 -1168 148 COM6 9155 -995 228 COM164 7828 1145 308 SEG323 4780 1145 387 SEG244 1788 1145 69 VCC -190 -1168 150 COM10 9155 -867 229 </td <td></td>																				
65 VCC -590 -1168 145 DUMMY11 9193 -1168 225 COM158 7942 1145 305 SEG326 4864 1145 386 SEG246 1824 1145 66 VCC -490 -1168 146 COM2 9155 -981 226 COM160 7904 1145 306 SEG325 4826 1145 386 SEG245 1786 1145 67 VCC -390 -1168 147 COM4 9155 -943 227 COM162 7866 1145 307 SEG323 4788 1145 387 SEG244 1748 1145 69 VCC -190 -1168 149 COM8 9155 -967 228 COM166 7790 1145 308 SEG323 4750 1145 388 SEG244 1748 1145 70 VCC -90 -1168 150 COM10 9155 -867 229									_											
66 VCC -490 -1168 146 COM2 9155 -981 226 COM160 7904 1145 306 SEG325 4826 1145 386 SEG245 1786 1145 67 VCC -390 -1168 147 COM4 9155 -943 227 COM162 7866 1145 307 SEG324 4788 1145 387 SEG244 1748 1145 68 VCC -190 -1168 148 COM6 9155 -967 228 COM164 7828 1145 308 SEG322 4788 1145 388 SEG243 1710 1145 70 VCC -90 -1168 149 COM8 9155 -829 229 COM166 7790 1145 309 SEG322 4712 1145 388 SEG243 1710 1145 71 AGND 90 -1168 150 COM10 9155 -791 231																				
67 VCC -390 -1168																				
68 VCC -290 -1168 148 COM6 9155 -905 228 COM164 7828 1145 308 SEG323 4750 1145 388 SEG243 1710 1145 69 VCC -190 -1168 149 COM8 9155 -867 229 COM166 7790 1145 309 SEG322 4712 1145 389 SEG242 1672 1145 70 VCC -90 -1168 150 COM10 9155 -829 230 COM168 7752 1145 310 SEG322 4712 1145 390 SEG241 1672 1145 71 AGND 90 -1168 151 COM12 9155 -791 231 COM170 7714 1145 311 SEG320 4674 1145 390 SEG241 163 1145 73 GND 290 -1168 152 COM14 9155 -715 233																				
69 VCC -190 -1168 149 COM8 9155 -867 229 COM166 7790 1145 309 SEG322 4712 1145 389 SEG242 1672 1145 70 VCC -90 -1168 150 COM10 9155 -829 230 COM168 7752 1145 310 SEG321 4674 1145 390 SEG241 1634 1145 72 AGND 190 -1168 152 COM14 9155 -753 232 COM170 7714 1145 311 SEG322 4674 1145 390 SEG224 1672 1145 72 AGND 190 -1168 152 COM14 9155 -753 232 COM170 7714 1145 311 SEG319 4598 1145 392 SEG239 1558 1145 74 GND 390 -1168 154 COM18 9155 -677 234																				
70 VCC -90 -1168 150 COM10 9155 -829 230 COM168 7752 1145 310 SEG321 4674 1145 390 SEG241 1634 1145 71 AGND 90 -1168 151 COM12 9155 -791 231 COM170 7714 1145 311 SEG320 4636 1145 391 SEG240 1596 1145 72 AGND 190 -1168 152 COM14 9155 -753 232 COM172 7676 1145 312 SEG319 4598 1145 392 SEG220 1596 1145 73 GND 290 -1168 153 COM16 9155 -715 232 COM176 7638 1145 313 SEG318 4560 1145 393 SEG239 1528 1145 75 GND 490 -1168 155 COM20 9155 -639 235																				
71 AGND 90 -1168																				
72 AGND 190 -1168 152 COM14 9155 -753 232 COM172 766 1145 312 SEG319 4598 1145 392 SEG239 1558 1145 73 GND 290 -1168 153 COM16 9155 -715 233 COM174 7638 1145 313 SEG318 4560 1145 393 SEG238 1520 1145 75 GND 490 -1168 155 COM20 9155 -639 235 SEG396 7524 1145 314 SEG316 4484 1145 394 SEG237 1482 1145 76 GND 590 -1168 156 COM22 9155 -601 236 SEG395 7486 1145 315 SEG316 4446 1145 396 SEG235 1406 1145 77 AGND 690 -1168 157 COM24 9155 -563 237																				
73 GND 290 -1168 153 COM16 9155 -715 233 COM174 7638 1145 313 SEG318 4560 1145 393 SEG238 1520 1145 74 GND 390 -1168 154 COM18 9155 -677 234 COM176 7600 1145 314 SEG317 4522 1145 394 SEG237 1482 1145 75 GND 490 -1168 155 COM20 9155 -639 235 SEG396 7524 1145 315 SEG316 4484 1145 395 SEG236 1444 1145 76 GND 590 -1168 156 COM22 9155 -601 236 SEG395 7486 1145 316 SEG315 4446 1145 396 SEG235 1406 1145 78 AGND 791 -1168 156 COM24 9155 -525 238																				
74 GND 390 -1168 154 COM18 9155 -677 234 COM176 7600 1145 314 SEG317 4522 1145 394 SEG237 1482 1145 75 GND 490 -1168 155 COM20 9155 -639 235 SEG396 7524 1145 315 SEG316 4484 1145 395 SEG236 1444 1145 77 AGND 690 -1168 157 COM24 9155 -563 237 SEG399 7448 1145 316 SEG315 4446 1145 396 SEG235 1406 1145 78 AGND 791 -1168 158 COM24 9155 -525 238 SEG393 7410 1145 318 SEG313 4370 1145 398 SEG232 1308 1145 79 RESET2* 971 -1168 159 COM28 9155 -487 239																				
75 GND 490 -1168 155 COM20 9155 -639 235 SEG396 7524 1145 315 SEG316 4484 1145 395 SEG236 1444 1145 156 GND 590 -1168 156 COM22 9155 -661 236 SEG395 7486 1145 316 SEG315 4446 1145 396 SEG235 1406 1145 157 COM24 9155 -563 237 SEG394 7448 1145 317 SEG314 4408 1145 397 SEG324 1368 1145 145 145 145 145 145 145 145 145 14																				
76 GND 590 -1168 156 COM22 9155 -601 236 SEG395 7486 1145 316 SEG315 4446 1145 396 SEG235 1406 1145 77 AGND 690 -1168 157 COM24 9155 -563 237 SEG394 7448 1145 317 SEG314 4408 1145 397 SEG234 1368 1145 78 AGND 791 -1168 158 COM26 9155 -525 238 SEG393 7410 1145 318 SEG313 4370 1145 398 SEG233 1330 1145 79 RESET2* 971 -1168 159 COM28 9155 -487 239 SEG392 7372 1145 319 SEG312 4332 1145 399 SEG232 1292 1145																				
77 AGND 690 -1168 157 COM24 9155 -563 237 SEG394 7448 1145 317 SEG314 4408 1145 397 SEG234 1368 1145 78 AGND 791 -1168 158 COM26 9155 -525 238 SEG393 7410 1145 318 SEG313 4370 1145 398 SEG233 1330 1145 79 RESET2* 971 -1168 159 COM28 9155 -487 239 SEG392 7372 1145 319 SEG312 4332 1145 399 SEG232 1292 1145									_											
78 AGND 791 -1168 158 COM26 9155 -525 238 SEG393 7410 1145 318 SEG313 4370 1145 398 SEG233 1330 1145 79 RESET2* 971 -1168 159 COM28 9155 -487 239 SEG392 7372 1145 319 SEG312 4332 1145 399 SEG232 1292 1145	77	AGND	690	-1168					_			1145	317		4408	1145			1368	1145
80 OSC2 1127 -1168 160 COM30 9155 -449 240 SEG391 7334 1145 320 SEG311 4294 1145 400 SEG231 1254 1145			971						_					SEG312			399			
	80	OSC2	1127	-1168	160	COM30	9155	-449	240	SEG391	7334	1145	320	SEG311	4294	1145	400	SEG231	1254	1145

Rev. 1.0 / 30 November 2001

No.	pad name	Χ	Υ	No.	pad name	Χ	Υ	No.	pad name	Х	Υ	No.	pad name	Χ	Υ
401	SEG230	1216	1145	481	SEG150	-1862	1145	561	SEG70	-4902	1145	641	COM155	-7980	1145
402	SEG229	1178	1145	482	SEG149	-1900	1145	562	SEG69	-4940	1145	642	COM153	-8018	1145
403	SEG228 SEG227	1140 1102	1145 1145	483 484	SEG148 SEG147	-1938 -1976	1145 1145	563 564	SEG68 SEG67	-4978 -5016	1145 1145	643	COM151 COM149	-8056 -8094	1145 1145
404	SEG226	1064	1145	485	SEG147	-2014	1145	565	SEG66	-5054	1145	645	COM143	-8132	1145
406	SEG225	1026	1145	486	SEG145	-2052	1145	566	SEG65	-5092	1145	646	COM145	-8170	1145
407	SEG224	988	1145	487	SEG144	-2090	1145	567	SEG64	-5130	1145	647	COM143	-8208	1145
408	SEG223	950	1145	488	SEG143	-2128	1145	568	SEG63	-5168	1145	648	COM141	-8246	1145
409	SEG222	912	1145	489	SEG142	-2166	1145	569	SEG62	-5206	1145	649	COM139	-8284	1145
410	SEG221	874	1145	490	SEG141	-2204	1145	570	SEG61	-5244	1145	650	COM137	-8322	1145
411	SEG220	836	1145	491	SEG140	-2242	1145	571	SEG60	-5282	1145	651	COM135	-8360	1145
412	SEG219 SEG218	798 760	1145 1145	492 493	SEG139 SEG138	-2280 -2318	1145 1145	572 573	SEG59 SEG58	-5320 -5358	1145 1145	652 653	COM133 COM131	-8398 -8436	1145 1145
414	SEG217	722	1145	494	SEG137	-2356	1145	574	SEG57	-5396	1145	654	COM131	-8474	1145
415	SEG216	684	1145	495	SEG136	-2394	1145	575	SEG56	-5434	1145	655	COM127	-8512	1145
416	SEG215	646	1145	496	SEG135	-2432	1145	576	SEG55	-5472	1145	656	COM125	-8550	1145
417	SEG214	608	1145	497	SEG134	-2470	1145	577	SEG54	-5510	1145	657	COM123	-8588	1145
418	SEG213	570	1145	498	SEG133	-2508	1145	578	SEG53	-5548	1145	658	COM121	-8626	1145
419 420	SEG212 SEG211	532 494	1145 1145	499 500	SEG132 SEG131	-2546 -2584	1145 1145	579 580	SEG52	-5586 -5624	1145 1145	659	COM119 COM117	-8664 -8702	1145 1145
421	SEG210	456	1145	501	SEG130	-2622	1145	581	SEG51 SEG50	-5662	1145	660	COM117 COM115	-8740	1145
422	SEG209	418	1145	502	SEG129	-2660	1145	582	SEG49	-5700	1145	662	COM113	-8778	1145
423	SEG208	380	1145	503	SEG128	-2698	1145	583	SEG48	-5738	1145	663	COM111	-8816	1145
424	SEG207	342	1145	504	SEG127	-2736	1145	584	SEG47	-5776	1145	664	COM109	-8854	1145
425	SEG206	304	1145	505	SEG126	-2774	1145	585	SEG46	-5814	1145	665	COM107	-8892	1145
426 427	SEG205 SEG204	266 228	1145	506 507	SEG125	-2812 -2850	1145 1145	586 587	SEG45 SEG44	-5852	1145	666	DUMMY13	-9193 -9155	1183 995
427	SEG204 SEG203	190	1145 1145	507	SEG124 SEG123	-2850 -2888	1145	587	SEG44 SEG43	-5890 -5928	1145 1145	667 668	COM105 COM103	-9155 -9155	995
429	SEG203	152	1145	509	SEG123	-2926	1145	589	SEG43	-5966	1145	669	COM103	-9155	919
430	SEG201	114	1145	510	SEG121	-2964	1145	590	SEG41	-6004	1145	670	COM99	-9155	881
431	SEG200	76	1145	511	SEG120	-3002	1145	591	SEG40	-6042	1145	671	COM97	-9155	843
432	SEG199	38	1145	512	SEG119	-3040	1145	592	SEG39	-6080	1145	672	COM95	-9155	805
433	SEG198	-38	1145	513	SEG118	-3078	1145	593	SEG38	-6118	1145	673	COM93	-9155	767
434	SEG197 SEG196	-76 -114	1145 1145	514 515	SEG117 SEG116	-3116 -3154	1145 1145	594 595	SEG37 SEG36	-6156 -6194	1145 1145	674 675	COM91 COM89	-9155 -9155	729 691
436	SEG195	-152	1145	516	SEG115	-3192	1145	596	SEG35	-6232	1145	676	COM87	-9155	653
437	SEG194	-190	1145	517	SEG114	-3230	1145	597	SEG34	-6270	1145	677	COM85	-9155	615
438	SEG193	-228	1145	518	SEG113	-3268	1145	598	SEG33	-6308	1145	678	COM83	-9155	577
439	SEG192	-266	1145	519	SEG112	-3306	1145	599	SEG32	-6346	1145	679	COM81	-9155	539
440	SEG191	-304	1145	520	SEG111	-3344	1145	600	SEG31	-6384	1145	680	COM79	-9155	501
441	SEG190 SEG189	-342 -380	1145 1145	521 522	SEG110 SEG109	-3382 -3420	1145 1145	601	SEG30 SEG29	-6422 -6460	1145 1145	681 682	COM77 COM75	-9155 -9155	463 425
443	SEG188	-418	1145	523	SEG108	-3458	1145	603	SEG28	-6498	1145	683	COM73	-9155	387
444	SEG187	-456	1145	524	SEG107	-3496	1145	604	SEG27	-6536	1145	684	COM71	-9155	349
445	SEG186	-494	1145	525	SEG106	-3534	1145	605	SEG26	-6574	1145	685	COM69	-9155	311
446	SEG185	-532	1145	526	SEG105	-3572	1145	606	SEG25	-6612	1145	686	COM67	-9155	273
447	SEG184	-570	1145	527	SEG104	-3610	1145	607	SEG24	-6650	1145	687	COM65	-9155	235
448 449	SEG183 SEG182	-608 -646	1145 1145	528 529	SEG103 SEG102	-3648 -3686	1145 1145	609	SEG23 SEG22	-6688 -6726	1145 1145	688 689	COM63 COM61	-9155 -9155	197 159
450	SEG181	-684	1145	530	SEG101	-3724	1145	610	SEG21	-6764	1145	690	COM59	-9155	121
451	SEG180	-722	1145	531	SEG100	-3762	1145	611	SEG20	-6802	1145	691	COM57	-9155	83
452	SEG179	-760	1145	532	SEG99	-3800	1145	612	SEG19	-6840	1145	692	COM55	-9155	45
453	SEG178	-798	1145	533	SEG98	-3838	1145	613	SEG18	-6878	1145	693	COM53	-9155	7
454	SEG177	-836	1145	534	SEG97	-3876	1145	614	SEG17	-6916	1145	694	COM51	-9155	-31
455 456	SEG176 SEG175	-874 -912	1145 1145	535 536	SEG96 SEG95	-3914 -3952	1145 1145	615 616	SEG16 SEG15	-6954 -6992	1145 1145	695 696	COM49 COM47	-9155 -9155	-69 -107
457	SEG173	-912	1145	537	SEG95	-3932	1145	617	SEG14	-7030	1145	697	COM45	-9155	-145
458	SEG173	-988	1145	538	SEG93	-4028	1145	618	SEG13	-7068	1145	698	COM43	-9155	-183
459	SEG172	-1026	1145	539	SEG92	-4066	1145	619	SEG12	-7106	1145	699	COM41	-9155	-221
460	SEG171	-1064	1145	540	SEG91	-4104	1145	620	SEG11	-7144	1145	700	COM39	-9155	-259
461	SEG170	-1102	1145	541	SEG90	-4142	1145	621	SEG10	-7182	1145	701	COM37	-9155	-297
462 463	SEG169 SEG168	-1140 -1178	1145 1145	542 543	SEG89 SEG88	-4180 -4218	1145 1145	622 623	SEG9 SEG8	-7220 -7258	1145 1145	702 703	COM35 COM33	-9155 -9155	-335 -373
464	SEG167	-1216	1145	544	SEG87	-4256	1145	624	SEG7	-7296	1145	703	COM31	-9155	-411
465	SEG166	-1254	1145	545	SEG86	-4294	1145	625	SEG6	-7334	1145	705	COM29	-9155	-449
466	SEG165	-1292	1145	546	SEG85	-4332	1145	626	SEG5	-7372	1145	706	COM27	-9155	-487
467	SEG164	-1330	1145	547	SEG84	-4370	1145	627	SEG4	-7410	1145	707	COM25	-9155	-525
468	SEG163	-1368	1145	548	SEG83	-4408	1145	628	SEG3	-7448	1145	708	COM23	-9155	-563
469 470	SEG162 SEG161	-1406 -1444	1145 1145	549 550	SEG82 SEG81	-4446 -4484	1145 1145	629 630	SEG2 SEG1	-7486 -7524	1145 1145	709 710	COM21 COM19	-9155 -9155	-601 -639
470	SEG160	-1444	1145	551	SEG80	-4484	1145	631	COM175	-7524	1145	710	COM19 COM17	-9155	-639
472	SEG159	-1520	1145	552	SEG79	-4560	1145	632	COM173	-7638	1145	712	COM15	-9155	-715
473	SEG158	-1558	1145	553	SEG78	-4598	1145	633	COM171	-7676	1145	713	COM13	-9155	-753
474	SEG157	-1596	1145	554	SEG77	-4636	1145	634	COM169	-7714	1145	714	COM11	-9155	-791
475	SEG156	-1634	1145	555	SEG76	-4674	1145	635	COM167	-7752	1145	715	COM9	-9155	-829
476 477	SEG155	-1672 -1710	1145 1145	556 557	SEG75	-4712 -4750	1145 1145	636	COM165	-7790 -7828	1145 1145	716 717	COM7 COM5	-9155 -9155	-867 -905
477	SEG154 SEG153	-1710	1145	558	SEG74 SEG73	-4750	1145	638	COM163 COM161	-7828 -7866	1145	717	COM3	-9155 -9155	-905 -943
479	SEG152	-1786	1145	559	SEG72	-4826	1145	639	COM159	-7904	1145	719	COM1	-9155	-981
480	SEG151	-1824	1145	560	SEG71	-4864	1145	640	COM157	-7942	1145				

alignment mark type	X	Υ
Cross Tipe	-9000	-1121
Closs lipe	9000	-1121
Circle (Positive)	-9094	1145
Circle (Negative)	9094	1145
"L" type (Positive)	-9004	1145
"L"type (Negative)	9004	1145

HD66766 PAD Arrangement (Laced Output Arrangement)

						HD	66766	PAD c	oordinate	(Lace	ed outp	ut pir	ı)						
No.	pad name	X	Υ	No.	pad name	Х	Υ	No.	pad name	Х	Υ	No.	pad name	X	Υ	No.	pad name	Χ	Υ
1	DUMMY1	-9193	-1168	81	OSC1	1284	-1168	161	COM32	9108	-411	241	SEG390	7296	1098	321	SEG310	4256	1098
2	DUMMY2	-8835	-1168	82	GNDDUM8	1440	-1168	162	COM34	9201	-373	242	SEG389	7258	1191	322	SEG309	4218	1191
3	RESET1*	-8678	-1168	83	IM2	1597	-1168	163	COM36	9108	-335	243		7220	1098	323	SEG308	4180	1098
4	CEP	-8498	-1168	84	VCCDUM1	1754	-1168	164	COM38	9201	-297	244	SEG387	7182	1191	324	SEG307	4142	1191
5	CEP	-8398	-1168	85	IM1	1910	-1168	165	COM40	9108	-259	245		7144	1098	325	SEG306	4104	1098
6	CEM	-8298	-1168	86	GNDDUM9 IM0/ID	2067	-1168	166	COM42	9201	-221	246		7106	1191	326	SEG305	4066	1191
7	VCL	-8198 -8018	-1168 -1168	87 88	VCCDUM2	2223 2380	-1168 -1168	167 168	COM44 COM46	9108 9201	-183 -145	247	SEG384 SEG383	7068 7030	1098 1191	327 328	SEG304 SEG303	4028 3990	1098 1191
9	VCL	-7918	-1168	89	TEST2	2537	-1168	169	COM48	9108	-143	249	SEG382	6992	1098	329	SEG303	3952	1098
10	VCL	-7818	-1168	90	TEST1	2693	-1168	170	COM50	9201	-69	250		6954	1191	330	SEG301	3914	1191
11	VCL	-7718	-1168	91	GNDDUM10	2850	-1168	171	COM52	9108	-31	251		6916	1098	331	SEG300	3876	1098
12	VCH	-7538	-1168	92	DUMMY3	3030	-1168	172	COM54	9201	7	252	SEG379	6878	1191	332	SEG299	3838	1191
13	VCH	-7438	-1168	93	DUMMY4	3130	-1168	173	COM56	9108	45	253	SEG378	6840	1098	333	SEG298	3800	1098
14	VCH	-7338	-1168	94	DUMMY5	3230	-1168	174	COM58	9201	83	254	SEG377	6802	1191	334	SEG297	3762	1191
15	VCH	-7237	-1168	95	DUMMY6	3330	-1168	175	COM60	9108	121	255	SEG376	6764	1098	335	SEG296	3724	1098
16	C24+	-7057	-1168	96	DUMMY7	3430	-1168	176	COM62	9201	159	256	SEG375	6726	1191	336	SEG295	3686	1191
17	C24+	-6957	-1168	97	DUMMY8	3530	-1168	177	COM64	9108	197	257	SEG374	6688	1098	337	SEG294	3648	1098
18 19	C24-	-6857 -6757	-1168 -1168	98	DUMMY9 VREFL	3630 3810	-1168 -1168	178	COM66 COM68	9201 9108	235 273	258 259	SEG373 SEG372	6650 6612	1191 1098	338	SEG293 SEG292	3610 3572	1191 1098
20	C23+	-6657	-1168	100	VREFL	3910	-1168	180	COM70	9201	311	260	SEG371	6574	1191	340	SEG292 SEG291	3534	1191
21	C23+	-6557	-1168	101	BIASC	4010	-1168	181	COM72	9108	349	261	SEG370	6536	1098	341	SEG290	3496	1098
22	C23-	-6457	-1168	102	BIASC	4110	-1168	182	COM74	9201	387	262	SEG369	6498	1191	342	SEG289	3458	1191
23	C23-	-6357	-1168	103	VREFM	4211	-1168	183	COM76	9108	425	263		6460	1098	343	SEG288	3420	1098
24	C22+	-6257	-1168	104	VREFM	4311	-1168	184	COM78	9201	463	264	SEG367	6422	1191	344	SEG287	3382	1191
25	C22+	-6157	-1168	105	VM	4411	-1168	185	COM80	9108	501	265	SEG366	6384	1098	345	SEG286	3344	1098
26	C22-	-6057	-1168	106	VM	4511	-1168	186	COM82	9201	539	266	SEG365	6346	1191	346	SEG285	3306	1191
27	C22-	-5957	-1168	107	VM	4611	-1168	187	COM84	9108	577	267	SEG364	6308	1098	347	SEG284	3268	1098
28 29	C21+ C21+	-5856 -5756	-1168 -1168	108	VM VSH	4711 4811	-1168 -1168	188	COM86 COM88	9201 9108	615	268 269	SEG363 SEG362	6270 6232	1191 1098	348	SEG283 SEG282	3230 3192	1191 1098
30	C21+	-5576	-1168	110	VSH	4911	-1168	190	COM90	9201	653 691	270	SEG362 SEG361	6194	1191	350	SEG282 SEG281	3154	1191
31	C21-	-5476	-1168	111	VSH	5011	-1168	191	COM92	9108	729	271	SEG360	6156	1098	351	SEG280	3116	1098
32	VCI2	-5376	-1168	112	VSH	5111	-1168	192	COM94	9201	767	272	SEG359	6118	1191	352	SEG279	3078	1191
33	VCI2	-5276	-1168	113	VOUT	5291	-1168	193	COM96	9108	805	273	SEG358	6080	1098	353	SEG278	3040	1098
34	VCI2	-5176	-1168	114	VOUT	5391	-1168	194	COM98	9201	843	274	SEG357	6042	1191	354	SEG277	3002	1191
35	VCI2	-5076	-1168	115	VOUT	5491	-1168	195	COM100	9108	881	275	SEG356	6004	1098	355	SEG276	2964	1098
36	GNDDUM1	-4896	-1168	116	VOUT	5592	-1168	196	COM102	9201	919	276		5966	1191	356	SEG275	2926	1191
37	GNDDUM2	-4796	-1168	117	C12+	5772	-1168	197	COM104	9108	957	277	SEG354	5928	1098	357	SEG274	2888	1098
38	GNDDUM3	-4696	-1168	118	C12+	5872	-1168	198	COM106	9201	995	278	SEG353	5890	1191	358	SEG273	2850	1191
39 40	GNDDUM4 DB15	-4596 -4416	-1168 -1168	119 120	C12+ C12+	5972 6072	-1168 -1168	199	DUMMY12 COM108	9193 8892	1183 1191	279	SEG352 SEG351	5852 5814	1098 1191	359 360	SEG272 SEG271	2812 2774	1098 1191
41	DB13 DB14	-4259	-1168	121	C12+	6172	-1168	201	COM108	8854	1098	281	SEG350	5776	1098	361	SEG271	2736	1098
42	DB13	-4103	-1168	122	C12-	6272	-1168	202	COM112	8816	1191	282	SEG349	5738	1191	362	SEG269	2698	1191
43	DB12	-3946	-1168	123	C12-	6372	-1168	203	COM114	8778	1098	283	SEG348	5700	1098	363	SEG268	2660	1098
44	DB11	-3789	-1168	124	C12-	6472	-1168	204	COM116	8740	1191	284	SEG347	5662	1191	364	SEG267	2622	1191
45	DB10	-3633	-1168	125	C11+	6572	-1168	205	COM118	8702	1098	285	SEG346	5624	1098	365	SEG266	2584	1098
46	DB9	-3476	-1168	126	C11+	6672	-1168	206	COM120	8664	1191	286	SEG345	5586	1191	366	SEG265	2546	1191
47	DB8	-3320	-1168	127	C11+	6772	-1168	207	COM122	8626	1098	287	SEG344	5548	1098	367	SEG264	2508	1098
48	GNDDUM5 DB7	-3163	-1168	128	C11+	6872 6972	-1168	208	COM124 COM126	8588 8550	1191	288	SEG343	5510 5472	1191	368	SEG263	2470	1191 1098
49 50	DB7	-3006 -2850	-1168 -1168	129 130	C11- C11-	7073	-1168 -1168	209	COM128	8512	1098 1191	289	SEG342 SEG341	5434	1098 1191	369 370	SEG262 SEG261	2432 2394	1191
51	DB5	-2693	-1168	131	C11-	7173	-1168	211	COM128	8474	1098	290	SEG340	5396	1098	371	SEG260	2356	1098
52	DB4	-2537	-1168	132	C11-	7273	-1168	212	COM132	8436	1191	292	SEG339	5358	1191	372	SEG259	2318	1191
53	DB3	-2380	-1168	133	VCIOUT	7453	-1168	213	COM134	8398	1098	293	SEG338	5320	1098	373	SEG258	2280	1098
54	DB2	-2223	-1168	134	VCIOUT	7553	-1168	214	COM136	8360	1191	294		5282	1191	374	SEG257	2242	1191
55	DB1/SDO	-2067	-1168	135	VCIOUT	7653	-1168	215	COM138	8322	1098	295			1098	375	SEG256	2204	1098
56	DB0/SDI	-1910	-1168	136	VCIOUT	7753	-1168	216	COM140	8284	1191	296		5206	1191	376	SEG255	2166	1191
57	GNDDUM6	-1754	-1168	137	VCI1	7933	-1168	217	COM142	8246	1098	297	SEG334	5168	1098	377	SEG254	2128	1098
58 59	RW/RD* E/WR*/SCL	-1597 -1440	-1168 -1168	138	VCI1 VCI1	8033 8133	-1168 -1168	218	COM144 COM146	8208 8170	1191 1098	298 299		5130 5092	1191 1098	378 379	SEG253 SEG252	2090	1191 1098
60	GNDDUM7	-1284	-1168	140	VCI1	8233	-1168	220	COM148	8132	1191	300		5054	1191	380	SEG252 SEG251	2014	1191
61	RS	-1127	-1168	141	VCCDUM3	8413	-1168	221	COM150	8094	1098	301	SEG330	5016	1098	381	SEG250	1976	1098
62	CS*	-971	-1168	142	VCCDUM4	8513	-1168	222	COM152	8056	1191	302		4978	1191	382	SEG249	1938	1191
63	VCC	-791	-1168	143	RESET3*	8693	-1168	223	COM154	8018	1098	303		4940	1098	383	SEG248	1900	1098
64	VCC	-690	-1168	144	DUMMY10	8850	-1168	224	COM156	7980	1191	304		4902	1191	384	SEG247	1862	1191
65	VCC	-590	-1168	145	DUMMY11	9193	-1168	225	COM158	7942	1098	305		4864	1098	385	SEG246	1824	1098
66	VCC	-490	-1168	146	COM2	9201	-981	226	COM160	7904	1191	306		4826	1191	386	SEG245	1786	1191
67 68	VCC	-390 -290	-1168	147	COM4 COM6	9108	-943 -905	227	COM162 COM164	7866	1098 1191	307		4788	1098	387	SEG244	1748	1098
69	VCC	-190	-1168 -1168	148	COM8	9201 9108	-905 -867	228	COM164 COM166	7828 7790	1098	308		4750 4712	1191 1098	388	SEG243 SEG242	1710 1672	1191 1098
70	VCC	-90	-1168	150	COM10	9201	-829	230	COM168	7752	1191	310		4674	1191	390	SEG242 SEG241	1634	1191
71	AGND	90	-1168	151	COM12	9108	-791	231	COM170	7714	1098	311			1098	391	SEG240	1596	1098
72	AGND	190	-1168	152	COM14	9201	-753	232	COM172	7676	1191	312		4598	1191	392	SEG239	1558	1191
73	GND	290	-1168	153	COM16	9108	-715	233	COM174	7638	1098	313			1098	393	SEG238	1520	1098
74	GND	390	-1168	154	COM18	9201	-677	234	COM176	7600	1191	314		4522	1191	394	SEG237	1482	1191
75	GND	490	-1168	155	COM20	9108	-639	235	SEG396	7524	1098	315		4484	1098	395	SEG236	1444	1098
76	GND	590	-1168	156	COM22	9201	-601	236	SEG395	7486	1191	316		4446	1191	396	SEG235	1406	1191
77	AGND	690	-1168	157	COM24	9108	-563	237	SEG394	7448	1098	317			1098	397	SEG234	1368	1098
78 79	AGND RESET2*	791 971	-1168 -1168	158 159	COM26 COM28	9201	-525 -487	238	SEG393 SEG392	7410 7372	1191	318 319		4370 4332	1191	398	SEG233	1330 1292	1191 1098
80	OSC2	1127	-1168	160	COM28 COM30	9108 9201	-487 -449	240	SEG392 SEG391	7372	1098 1191	319			1098 1191	399 400	SEG232 SEG231	1292	1191

Rev. 1.0 / 30 November 2001

No.	pad name	Х	Υ	No.	pad name	Х	Υ	No.	pad name	Х	Υ	No	. pad name	Х	Υ
401	SEG230	1216	1098	481	SEG150	-1862	1098	561	SEG70	-4902	1098	641	COM155	-7980	1191
402	SEG229	1178	1191	482	SEG149	-1900	1191	562	SEG69	-4940	1191	642	COM153	-8018	1098
403	SEG228	1140	1098	483	SEG148	-1938	1098	563	SEG68	-4978	1098	643	COM151	-8056	1191
404	SEG227	1102	1191	484	SEG147	-1976	1191	564	SEG67	-5016	1191	644	COM149	-8094	1098
405	SEG226	1064	1098	485	SEG146	-2014	1098	565	SEG66	-5054	1098	645	COM147	-8132	1191
406	SEG225	1026	1191	486	SEG145	-2052	1191	566	SEG65	-5092	1191	646		-8170	1098
-				_				_	SEG64						
407	SEG224	988	1098	487	SEG144	-2090	1098	567		-5130	1098	647		-8208	1191
408	SEG223	950	1191	488	SEG143	-2128	1191	568	SEG63	-5168	1191	648		-8246	1098
409	SEG222	912	1098	489	SEG142	-2166	1098	569	SEG62	-5206	1098	649	_	-8284	1191
410	SEG221	874	1191	490	SEG141	-2204	1191	570	SEG61	-5244	1191	650		-8322	1098
411	SEG220	836	1098	491	SEG140	-2242	1098	571	SEG60	-5282	1098	651		-8360	1191
412	SEG219	798	1191	492	SEG139	-2280	1191	572	SEG59	-5320	1191	652		-8398	1098
413	SEG218	760	1098	493	SEG138	-2318	1098	573	SEG58	-5358	1098	653	COM131	-8436	1191
414	SEG217	722	1191	494	SEG137	-2356	1191	574	SEG57	-5396	1191	654	COM129	-8474	1098
415	SEG216	684	1098	495	SEG136	-2394	1098	575	SEG56	-5434	1098	655	COM127	-8512	1191
416	SEG215	646	1191	496	SEG135	-2432	1191	576	SEG55	-5472	1191	656	COM125	-8550	1098
417	SEG214	608	1098	497	SEG134	-2470	1098	577	SEG54	-5510	1098	657	COM123	-8588	1191
418	SEG213	570	1191	498	SEG133	-2508	1191	578	SEG53	-5548	1191	658	3 COM121	-8626	1098
419	SEG212	532	1098	499	SEG132	-2546	1098	579	SEG52	-5586	1098	659	COM119	-8664	1191
420	SEG211	494	1191	500	SEG131	-2584	1191	580	SEG51	-5624	1191	660		-8702	1098
421	SEG210	456	1098	501	SEG130	-2622	1098	581	SEG50	-5662	1098	661	_	-8740	1191
422	SEG209	418	1191	502	SEG129	-2660	1191	582	SEG49	-5700	1191	662	_	-8778	1098
423	SEG208	380	1098	503	SEG128	-2698	1098	583	SEG48	-5738	1098	663		-8816	1191
423	SEG208 SEG207	342	1191	503	SEG128 SEG127	-2098	1191	584	SEG48 SEG47	-5776	1191	664		-8854	1098
424	SEG207 SEG206	304		505	SEG127 SEG126	-2774	1098	585	SEG47 SEG46	-5814		665		-8892	1191
425		266	1098	505		-2774			SEG46 SEG45		1098 1191	666	_		
426	SEG205				SEG125		1191	586		-5852				-9193	1183
_	SEG204	228	1098	507	SEG124	-2850	1098	587	SEG44	-5890	1098	667		-9201	995
428	SEG203	190	1191	508	SEG123	-2888	1191	588	SEG43	-5928	1191	668		-9108	957
429	SEG202	152	1098	509	SEG122	-2926	1098	589	SEG42	-5966	1098	669		-9201	919
430	SEG201	114	1191	510	SEG121	-2964	1191	590	SEG41	-6004	1191	670		-9108	881
431	SEG200	76	1098	511	SEG120	-3002	1098	591	SEG40	-6042	1098	671	_	-9201	843
432	SEG199	38	1191	512	SEG119	-3040	1191	592	SEG39	-6080	1191	672	_	-9108	805
433	SEG198	-38	1098	513	SEG118	-3078	1098	593	SEG38	-6118	1098	673	_	-9201	767
434	SEG197	-76	1191	514	SEG117	-3116	1191	594	SEG37	-6156	1191	674	COM91	-9108	729
435	SEG196	-114	1098	515	SEG116	-3154	1098	595	SEG36	-6194	1098	675	COM89	-9201	691
436	SEG195	-152	1191	516	SEG115	-3192	1191	596	SEG35	-6232	1191	676		-9108	653
437	SEG194	-190	1098	517	SEG114	-3230	1098	597	SEG34	-6270	1098	677	COM85	-9201	615
438	SEG193	-228	1191	518	SEG113	-3268	1191	598	SEG33	-6308	1191	678	COM83	-9108	577
439	SEG192	-266	1098	519	SEG112	-3306	1098	599	SEG32	-6346	1098	679	COM81	-9201	539
440	SEG191	-304	1191	520	SEG111	-3344	1191	600	SEG31	-6384	1191	680	COM79	-9108	501
441	SEG190	-342	1098	521	SEG110	-3382	1098	601	SEG30	-6422	1098	681	COM77	-9201	463
442	SEG189	-380	1191	522	SEG109	-3420	1191	602	SEG29	-6460	1191	682	COM75	-9108	425
443	SEG188	-418	1098	523	SEG108	-3458	1098	603	SEG28	-6498	1098	683	COM73	-9201	387
444	SEG187	-456	1191	524	SEG107	-3496	1191	604	SEG27	-6536	1191	684	COM71	-9108	349
445	SEG186	-494	1098	525	SEG106	-3534	1098	605	SEG26	-6574	1098	685	_	-9201	311
446	SEG185	-532	1191	526	SEG105	-3572	1191	606	SEG25	-6612	1191	686	_	-9108	273
447	SEG184	-570	1098	527	SEG104	-3610	1098	607	SEG24	-6650	1098	687		-9201	235
448	SEG183	-608	1191	528	SEG103	-3648	1191	608	SEG23	-6688	1191	688		-9108	197
449	SEG182	-646	1098	529	SEG102	-3686	1098	609	SEG22	-6726	1098	689		-9201	159
450	SEG181	-684	1191	530	SEG101	-3724	1191	610	SEG21	-6764	1191	690		-9108	121
451	SEG180	-722	1098	531	SEG100	-3762	1098	611	SEG20	-6802	1098	691		-9201	83
452	SEG179	-760	1191	532	SEG99	-3800	1191	612	SEG19	-6840	1191	692		-9108	45
453	SEG178	-798	1098	533	SEG98	-3838	1098	613	SEG18	-6878	1098	693		-9201	7
454	SEG178	-836	1191	534	SEG96	-3876	1191	614	SEG17	-6916	1191	694		-9108	-31
455	SEG176	-874	1098	535	SEG97	-3914	1098	615	SEG17	-6954	1098	695		-9201	-69
456	SEG176	-912	1191	536	SEG95	-3914	1191	616	SEG15	-6992	1191	696		-9201	-107
457	SEG175	-912	1098	537	SEG95 SEG94	-3952	1098	617	SEG15	-7030	1098	697		-9108	-145
457	SEG174 SEG173	-988	1191	538	SEG94 SEG93	-4028	1191	618	SEG14 SEG13	-7030	1191	698		-9201	-145
					SEG93 SEG92										
459	SEG172	-1026 -1064	1098	539		-4066 -4104	1098	619	SEG12	-7106	1098	699		-9201	-221
460	SEG171		1191	540	SEG91		1191	620	SEG11	-7144	1191	700	_	-9108	-259
461	SEG170	-1102	1098	541	SEG90	-4142	1098	621	SEG10	-7182	1098	701		-9201	-297
462	SEG169	-1140	1191	542	SEG89	-4180	1191	622	SEG9	-7220	1191	702		-9108	-335
463	SEG168	-1178	1098	543	SEG88	-4218	1098	623	SEG8	-7258	1098	703		-9201	-373
464	SEG167	-1216	1191	544	SEG87	-4256	1191	624	SEG7	-7296	1191	704	_	-9108	-411
465	SEG166	-1254	1098	545	SEG86	-4294	1098	625	SEG6	-7334	1098	705	_	-9201	-449
466	SEG165	-1292	1191	546	SEG85	-4332	1191	626	SEG5	-7372	1191	706		-9108	-487
467	SEG164	-1330	1098	547	SEG84	-4370	1098	627	SEG4	-7410	1098	707		-9201	-525
468	SEG163	-1368	1191	548	SEG83	-4408	1191	628	SEG3	-7448	1191	708	_	-9108	-563
469	SEG162	-1406	1098	549	SEG82	-4446	1098	629	SEG2	-7486	1098	709	_	-9201	-601
470	SEG161	-1444	1191	550	SEG81	-4484	1191	630	SEG1	-7524	1191	710	COM19	-9108	-639
471	SEG160	-1482	1098	551	SEG80	-4522	1098	631	COM175	-7600	1191	711	COM17	-9201	-677
472	SEG159	-1520	1191	552	SEG79	-4560	1191	632	COM173	-7638	1098	712	COM15	-9108	-715
473	SEG158	-1558	1098	553	SEG78	-4598	1098	633	COM171	-7676	1191	713	_	-9201	-753
474	SEG157	-1596	1191	554	SEG77	-4636	1191	634	COM169	-7714	1098	714		-9108	-791
475	SEG156	-1634	1098	555	SEG76	-4674	1098	635	COM167	-7752	1191	715		-9201	-829
476	SEG155	-1672	1191	556	SEG75	-4712	1191	636	COM165	-7790	1098	716		-9108	-867
477	SEG154	-1710	1098	557	SEG74	-4750	1098	637	COM163	-7828	1191	717		-9201	-905
478	SEG153	-1748	1191	558	SEG73	-4788	1191	638	COM161	-7866	1098	718		-9108	-943
479	SEG152	-1786	1098	559	SEG72	-4826	1098	639	COM159	-7904	1191	719		-9201	-981
480	SEG151	-1824	1191	560	SEG71	-4864	1191	640	COM157	-7942	1098	- 15	J J.VIII	, ,_,,	, 551
+00	0_0101	-1024	1131	500	OLG/ I	-+004	1131	040	OOW107	-1342	1030				

alignment mark type	Х	Υ
Cross Type	-9000	-1121
Closs Type	9000	-1121
Circle (Positive	-9094	1145
Circle (Negative)	9094	1145
"L" type (Positive)	-9004	1145
"I "type (Negative)	9004	1145

HD66766 Block Diagram Description

Figure 1: HD66766 Block Diagram Description

Pin Functions

Table 1 **Pin Functional Description**

Signals	Number of Pins	I/O	Connected to	Functions
IM2-1,	3	I	GND or V _{CC}	Selects the MPU interface mode:
IM0/ID				IM2 IM1 IM0/ID0 MPU Interface mode
				GND GND GND 68 system 16-bit bus interface
				GND GND Vcc 68 system 8-bit bus interface
				GND Vcc GND 80 system 16-bit bus interface
				GND Vcc Vcc 80 system 8-bit bus interface
				Vcc GND ID Clock synchronized serial interface
				When a serial interface is selected, the IM0 pin is used as the ID setting for a device code.
CS*	1	I	MPU	Selects the HD66766: Low: HD66766 is selected and can be accessed High: HD66766 is not selected and cannot be accessed Must be fixed at GND level when not in use.
RS	1	I	MPU	Selects the register. Low: Index/status High: Control
				For a register or a synchronous clock interface, fixed to the Vcc or GND level.
E/WR*/SCL	1	I	MPU	For a 68-system bus interface, serves as an enable signal to activate data read/write operation. For an 80-system bus interface, serves as a write strobe signal and writes data at the low level.
				For a synchronous clock interface, serves as the synchronous clock signal.
RW/RD*	1	I	MPU	For a 68-system bus interface, serves as a signal to select data read/write operation. Low: Write High: Read For an 80-system bus interface, serves as a read strobe signal and reads data at the low level.
				For a synchronous clock interface, fixed to the Vcc or GND level.
DB0/SDI	1	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.
				For a clock-synchronous serial interface, serves as the serial data input pin (SDI). The input level is read on the rising edge of the SCL signal.
DB1/SDO	1	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.
				For a clock-synchronous serial interface, serves as a serial data output pin (SDO). Successive bit values are output on the falling edge of the SCL signal.

HD6676	66			Rev. 1.0 / 30 November 2001
DB2-DB15	14	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.
				For a synchronous clock interface or unused pins, fixed to the Vcc or GND level.
SEG1– SEG396	396	O	LCD	Output signals for segment drive. In the display-off period (D1–0 = 00, 01) or standby mode (STB = 1), all pins output GND level. The SGS bit can change the shift direction of the segment signal. For example, if SGS = 0, RAM address 0000 is output from SEG1. If SGS = 1, it is output from SEG396. SEG1, SEG4, SEG7, display red (R), SEG2, SEG5, SEG8, display green (G), and SEG3, SEG6, SEG9, display blue (B) (SGS = 0).
COM1– COM176	176	O	LCD	Output signals for common drive. In the display-off period $(D1-0=00,01)$ sleep mode $(SLP=1)$ or standby mode $(STB=1)$, all pins output GND level. The CMS bit can change the shift direction of the common signal. For example, if CMS = 0, driver outputs from COM1 to COM176. If CMS = 1, driver outputs COM176 to COM1. Note that start position of the common driver output is changed by screen diving position function.
VCH, VCL	2		Capacitor for stabilization, shot key barrier diode or external power supply	Selection level for the common signal. When internal power supply is used, connect the capacitors for stabilization to VCH AND VCL, and shot key barrier diode to VCL. When internal power supply is not used, supply external voltage.
VM	1	_	Capacitor for stabilization or external power supply	Non-selection level for the common signal. When internal operational amplifier is used, it is output of the internal operational amplifier and connect the capacitors for stabilization. When internal operational amplifier is not used, supply external voltage.
VSH	1	_	Capacitor for stabilization or external power supply	Selection level for the segment signal. When internal operational amplifier is used, it is output of the internal operational amplifier and connect the capacitors for stabilization. When internal operational amplifier is not used, supply external voltage.
VciOUT	1	_	Vci1 and capacitor for stabilization or open	Outputs a regulated voltage derived from Vcc. Connect a capacitor for stabilization. When this pin is not used, leave it open.
Vci1	1	_	VciOUT or powe supply	r Voltage-input pin for step-up circuit 1. When the Vci adjuster is used, input the power supply from VciOUT. When not used, input the external power supply.
Vci2	1	_	Capacitor for stabilization or open	Connect capacitor for stabilization. When the internal power supply circuit is not used, leave this pin open.
VOUT	1	_	Step-up capacitance	A voltage that doubles or triples the voltage between Vci1 and GND is output here. The step-up factor can be set in an internal register.
C11+, C11-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.

HD6676	56			Rev. 1.0 / 30 November 2001
C12+, C12-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C21+, C21-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C22+, C22-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C23+, C23-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C24+, C24-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
CEP, CEM	2		Step-up capacitance or open	Connect a step-up capacitor to generate VCL level by VCH and VM. When step-up circuit is not used, leave this pin open.
VREFL	1	_	VCC or external power supply	Inputs reference voltage for LCD drives power supply. Input lower level than Vcc. Since input current does not run, level input, which is divided by resistors, is also possible.
VREFM	1	_	Capacitor for stabilization or external power supply	Connect capacitor for stabilization for internal power supply. When internal operational amplifier is not used, supply external voltage.
BIASC	1	_	Capacitor for stabilization or open	Connect capacitor for stabilization for internal power supply.
VCC, GND	2	_	Power supply	VCC: + 1.7 V to + 3.6 V; GND (logic): 0 V
AGND	1	_	_	GND for power supply circuit.
OSC1, OSC2	2	I/O	Oscillation-resistor	Connect an external resistor for R-C oscillation. When providing clocks from outside, input clock to OCS1 and leave OSC2 open.
RESET*	1	I	MPU or external R-C circuit Open unused pins	Reset pin. Initializes the LSI when low. Must be reset after power-on. Since HCD66766BP has three RESET pins, use one pin and open unused two pins.
VccDUM	1	0	Input pins	Outputs the internal VCC level; shorting this pin sets the adjacent input pin to the VCC level.
GNDDUM	1	0	Input pins	Outputs the internal GND level; shorting this pin sets the adjacent input pin to the GND level.
Dummy	1	_	_	Dummy pad. Must be left disconnected.
TEST1, TEST 2	2	I	GND	Test pin. Must be fixed at GND level.

Block Function Description

System Interface

The HD66766 has five high-speed system interfaces: an 80-system 16-bit/8-bit bus, a 68-system 16-bit/8-bit bus, and a Clock synchronized serial interface. The IM2-0 pins select the interface mode. The HD66766 has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data register (RDR). The IR stores index information from the control registers and the GRAM. The WDR temporarily stores data to be written into control registers and the GRAM, and the RDR temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written into the WDR and then is automatically written into the GRAM by internal operation. Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and the following data are normal.

Execution time for instruction excluding oscillation start is 0-clock cycle and instructions can be written in succession.

Table 2 Register Selection (8/16 Parallel Interface)

80-serie	es Bus	68-serie Bus	S	
WR	RD	R/W	RS	Operations
0	1	0	0	Writes indexes into IR
1	0	1	0	Reads internal status
0	1	0	1	Writes into control registers and GRAM through WDR
1	0	1	1	Reads from GRAM through RDR

 Table 3
 Register Selection (Clock synchronized Serial Interface)

Start bytes

RS Bit	Operations
0	Writes indexes into IR
0	Reads internal status
1	Writes into control registers and GRAM through WDR
1	Reads from GRAM through RDR
	0 0 1

Bit Operation

The HD66766 supports the following functions. A write data mask function that selects data into the GRAM in bit units, and a logic operation function that performs logic operations or conditional determination on the display data set in the GRAM and writes into the GRAM. With the 16-bit bus interface, these functions can greatly reduce the processing lord of the MPU graphics software the display data in the GRAM at high speed. For details, see the Graphics Operation Function section.

Address Counter (AC)

The address counter (AC) assigns address to the GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC. After writing into the GRAM, the AC is automatically incremented by 1 (or decrement by 1). After reading from the GRAM, the AC is not updated.

Graphics RAM (GRAM)

The graphics RAM (GRAM) has twelve bits/pixel and stores the bit-pattern data of 132 x 176 bytes.

PWM Grayscale Palette Circuit

The grayscale palette generates a PWM signal, which corresponds to specified grayscale level. Any 65K out of the 140K possible colors can be displayed at the same time.

Grayscale Control Circuit

The grayscale control circuit performs 16-grayscale control with the pulse width modulation (PWM) method for grayscale display for each color.

Timing Generator

The timing generator generates timing signals for the operation of internal circuits such as the GRAM. The RAM read timing for display and internal operation timing by MPU access is generated separately to avoid interference with one another.

Oscillation Circuit (OSC)

The HD66766 can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 176 common signal drivers (COM1 to COM176) and 396 segment signal drivers (SEG1 to SEG396).

Display pattern data from GRAM is latched to the 396-bit latch circuit. The latched data then enables the segment signal drivers to generate drive waveform outputs. The common driver outputs one of the VCH, VM or VCL voltage level. The SGS bit can change the shift direction of 396-bit data for the segment. The CMS bit can also change the shift direction for the common by selecting an appropriate direction for the device-mounting configuration.

When display is off, or during the standby or sleep mode, all the above common and segment signal drivers output the GND level, halting the display.

LCD drive power supply circuit

LCD drive power supply circuit generates VCH, VSH, VM and VCL voltage level to drive LCD panel.

GRAM ADDRESS DIAGRAM (HD66766)

Table 4 Relationship between GRAM address and display position (SGS = 0)

250/0/					_						0	_	2			35	36	37	<u>ω</u> ς	3 5	2	2	32	33	74	32	စ္က
SEG/C0	JM pins	S1	S2	S3	S4	S	98	S7	S8	S	S10	S11	S12			2385	9888	S387	\$388	6000	ကို ဂ	S391	S392	S333	S394	S395	8396
CMS=0	CMS=1	DB.		DB 0	DB .		DB 0	DB,		DB 0	DB 15		DB 0			DB 15		. DB	DB		DB 0	DB .		DB 0	DB 15		DB 0
COM1	COM176	"0	000)"H	"0	001	"H		002	"H		0003	"H				080	<u>"</u> H	"008	31"H	4		082	"H)83"I	H
COM2	COM175	"0	100)"H	"0	101	"H	"0	102	"H		103					180		"018		\neg		182		"01	83"I	н
СОМЗ	COM174	"0	200)"H	"0	201	"H	"0:	202	"Н	"(0203	3"H				280		"028	31"F	╗		282		"02	283"I	н
COM4	COM173	"0	300)"H	"(30	1"H	"0:	302	"H	"C	303	"H			"03	380	"H	"038		\neg	"03	382	"H	"03	383"I	н
COM5	COM172	"0	400)"H	"0	401	"H	"O _ʻ	402	"H	"C)403	"H			"O ⁴	480	"H	"048	31"H	4	"04	182	"H	"0 ²	183"I	Н
COM6	COM171	"0	500)"H	"0	501	"H	"0:	502	"H	"0	503	Ή			"0	580	"H	"058	31"H	4	"05	582	"H	"05	583"I	Н
COM7	COM170	"0	600)"H	"0	601	"H	"0	602	"H	"0	603	"H		••	"O6	680	"H	"068	31"H	4	"06	682	"H	"06	83"l	Н
COM8	COM169	"0	700)"Н	"0	701	"H	"0	702	"H	"C	703	"H		• •	"0	780	"H	"078	31"H	4	"07	782	Τ"	"07	783"I	Н
СОМ9	COM168	"0	800)"Н	"0	801	"H	"0	302	"H	"C	803	"H	••••		"08	380	"H	"088	31"H	4	"08	382	T,	"08	383"I	Н
COM10	COM167	"0	900)"H	"0	901	"H	"0	902	"H	"C	903	"H		•	"09	980	"H	"098	31"H	4	"09	982	T,	"09	983"I	Н
COM11	COM166	"0	A00)"H	"0	A01	"H	"0.	402	"H	"0	A03	"H			"0/	480	"H	"0A	31"H	н	"0/	482	:"H	"O <i>i</i>	\83"	Н
COM12	COM165	"0	B00)"H	"0	B01	"H	"0	B02	"H	"0	B03	"H			"OI	380	"H	"0B	31"H	Н	"OI	382	:"H	"OE	383"	Н
COM13	COM164	"0	C00)"H	"0	C01	"H	"0	C02	!"H	"0	C03	"H			"00	C80	"Н	"0C	81"I	н	"00	C82	2"H	"00	283"	Ή
COM14	COM163	"0	D00	D"H	"0	D01	"H	"0	D02	!"H	"0	D03	"H			"OI	D80	"Н	"0D	81"I	н	10"	D82	!"H	10"	083"	Ή
COM15	COM162	"0	E00)"H	"0	E01	l"H	"0	E02	2"H	"C)E03	"Н			"OI	E80	"H	"0E	31"H	Н	"OI	E 82	!"H	"OE	83"	Н
COM16	COM161	"0	F00)"H	"0	F01	"H	"0	F02	!"H	"0)F03	"H	••••		"OI	- 80	"H	"0F8	31"H	4	"OI	-82	"H	"OF	F83"l	Н
COM17	COM160	"1	000)"H	"1	001	"H	"1	002	"H	"1	003	"H			"10	080	"H	"108	31"H	4	"10)82	"H	"10)83"I	Н
COM18	COM159	"1	100	"H	"11	01'	'H	"1	102	"H	"1	103	"H	• • • • •		"1	180'	'H	"118	31"H	1	"11	82	"H	"11	83"H	Н
COM19	COM158	"1	200)"H	"12	201	"H_	"1	202	"H	"1	203	"H			"12	280	"H	"128	31"H	1	"12	282	"H	"12	283"I	Н
COM20	COM157	"1	300)"H	"13	301	"H	"1	302	"H	"1	303	"H			"13	380	"H	"138	31"H	4	"13	382	"H	"13	383"I	Н
1111	=		=						Ξ			=					=			=			Ξ			=	
COM169	COM8	"А	800)"H	"А	801	"H	"А	802	2"H	"А	803	Ή			"A	.880)"H	"A8	81"	н	"A	882	2"H	"A8	383"I	Н
COM170	COM7	"A	.900)"H	"A	901	"H	"A	902	2"H	"A	903	'H			"A	.980)"H	"A9	81"	Н	"A	982	2"H	"AS	983"I	Н
COM171	COM6	"А	A00	O"H	"А	A01	l"H	"А	A02	2"H	"A	A03	Ή		••	"A	A80)"H	"AA	81"	н	"A	A82	2"H	"AA	\83"I	н
COM172	COM5	"А	B00	D"H	"А	B01	l"H	"А	B02	2"H	"A	B03	Ή			"A	B80)"H	"AB	81"	Н	"A	B82	2"H	"AE	383"I	Н
COM173	COM4	"А	C00	0"H	"А	C01	1"H	"A	C02	2"H	"A	C03	"H			"A	C80)"H	"AC	81"	Н	"A	C82	2"H	"AC	283"	Н
COM174	COM3	"А	D00	0"H	"A	D01	1"H	"A	D02	2"H	"A	D03	"H			"A	D80)"H	"AD	81"	Н	"A	D82	2"H	"A[083"	Н
COM175	COM2	"A	E00)"H	"A	E01	l"H	"A	E02	2"H	"A	E03	"H			"Δ	E8	D"H	"AE	81"	Н	"A	E82	2"H	"Al	83"	Н
COM176	COM1	"A	F00)"H	"A	F01	"Н	"A	F02	2"H	"A	F03	"H		••	"A	F80)"H	"AF	81"	Н	"A	F82	2"H	"Al	83"	Н

Table 5 Relationship between GRAM data and output pin

Table 5 Re	iauon	արւ	<i>j</i> ct w co	II GI	TAIVI (iata a	mu ot	ուբաւ	Pm							
GRAM DATA	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB
OTO TWO DATES	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Selected palette		PK palette				PK palette + FRC							Pl	K pale	tte	
Output pin		SE	G (3n	+1)			S	SEG (3n+2)			SE	G (3n	+3)	

Note: n = Lower 8 bits address (0 to 131)

Table 6 Relationship between GRAM address and display position (SGS = 1)

SEG/C	OM pins	S1 S2 S3	S5 S6	S7 S8 S9	S10 S11 S12	 S385 S386 S387	S388 S389 S390	S391 S392 S393	S394 S395 S396
CMS=0	CMS=1	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15
COM1	COM176	"0083"H	"0082"H	"0081"H	"0080"H	 "0003"H	"0002"H	"0001"H	"0000"H
COM2	COM175	"0183"H	"0182"H	"0181"H	"0180"H	 "0103"H	"0102"H	"0101"H	"0100"H
СОМЗ	COM174	"0283"H	"0282"H	"0281"H	"0280"H	 "0203"H	"0202"H	"0201"H	"0200"H
COM4	COM173	"0383"H	"0382"H	"0381"H	"0380"H	 "0303"H	"0302"H	"0301"H	"0300"H
COM5	COM172	"0483"H	"0482"H	"0481"H	"0480"H	 "0403"H	"0402"H	"0401"H	"0400"H
COM6	COM171	"0583"H	"0582"H	"0581"H	"0580"H	 "0503"H	"0502"H	"0501"H	"0500"H
COM7	COM170	"0683"H	"0682"H	"0681"H	"0680"H	 "0603"H	"0602"H	"0601"H	"0600"H
COM8	COM169	"0783"H	"0782"H	"0781"H	"0780"H	 "0703"H	"0702"H	"0701"H	"0700"H
СОМ9	COM168	"0883"H	"0882"H	"0881"H	"0880"H	 "08030"H	"0802"H	"0801"H	"0800"H
COM10	COM167	"0983"H	"0982"H	"0981"H	"0980"H	 "0903"H	"0902"H	"0901"H	"0900"H
COM11	COM166	"0A83"H	"0A82"H	"0A81"H	"0A80"H	 "0A03"H	"0A02"H	"0A01"H	"0A00"H
COM12	COM165	"0B83"H	"0B82"H	"0B81"H	"0B80"H	 "0B03"H	"0B02"H	"0B01"H	"0B00"H
COM13	COM164	"0C83"H	"0C82"H	"0C81"H	"0C80"H	 "0C03"H	"0C02"H	"0C01"H	"0C00"H
COM14	COM163	"0D83"H	"0D82"H	"0D81"H	"0D80"H	 "0D03"H	"0D02"H	"0D01"H	"0D00"H
COM15	COM162	"0E83"H	"0E82"H	"0E81"H	"0E80"H	 "0E03"H	"0E02"H	"0E01"H	"0E00"H
COM16	COM161	"0F83"H	"0F82"H	"0F81"H	"0F80"H	 "0F03"H	"0F02"H	"0F01"H	"0F00"H
COM17	COM160	"1083"H	"1082"H	"1081"H	"1080"H	 "1003"H	"1002"H	"1001"H	"1000"H
COM18	COM159	"1183"H	"1182"H	"1181"H	"1180"H	 "1103"H	"1102"H	"1101"H	"1100"H
COM19	COM158	"1283"H	"1282"H	"1281"H	"1280"H	 "1203"H	"1202"H	"1201"H	"1200"H
COM20	COM157	"1383"H	"1382"H	"1381"H	"1380"H	 "1303"H	"1302"H	"1301"H	"1300"H
=		1111	1111	1111	1111	=	1111	11111	1111
COM169	COM8	"A883"H	"A882"H	"A881"H	"A880"H	 "A803"H	"A802"H	"A801"H	"A800"H
COM170	COM7	"A983"H	"A982"H	"A981"H	"A980"H	 "A903"H	"A902"H	"A901"H	"A900"H
COM171	COM6	"AA83"H	"AA82"H	"AA81"H	"AA80"H	 "AA03"H	"AA02"H	"AA01"H	"AA00"H
COM172	COM5	"AB83"H	"AB82"H	"AB81"H	"AB80"H	 "AB03"H	"AB02"H	"AB01"H	"AB00"H
COM173	COM4	"AC83"H	"AC82"H	"AC81"H	"AC80"H	 "AC03"H	"AC02"H	"AC01"H	"AC00"H
COM174	СОМЗ	"AD83"H	"AD82"H	"AD81"H	"AD80"H	 "AD03"H	"AD02"H	"AD01"H	"AD00"H
COM175	COM2	"AE83"H	"AE82"H	"AE81"H	"AE80"H	 "AE03"H	"AE02"H	"AE01"H	"AE00"H
COM176	COM1	"AF83"H	"AF82"H	"AF81"H	"AF80"H	 "AF03"H	"AF02"H	"AF01"H	"AF00"H

Table 7 Relationship between GRAM data and output pin

GRAM DATA	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 9	DB 8	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0
Selected palette		PK palette					PK palette + FRC						Pk	(pale	tte	
Output pin		SEG (396-3n)					S	EG (3	395-3	n)			SEG	394	-3n)	

Note: n = Lower 8 bits address (0 to 131)

Instructions

Outline

The HD66766 uses the 16-bit bus architecture. Before the internal operation of the HD66766 starts, control information is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66766 is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66766 instructions.

- There are eight categories of instructions that:
- Specify the index
- Read the status
- Control the display
- Control power management
- Process the graphics data
- Set internal GRAM addresses
- Transfer data to and from the internal GRAM
- Set grayscale level for the internal grayscale palette table

Normally, instructions that write data are used the most. However, an auto-update of internal GRAM addresses after each data write can lighten the microcomputer program load. Because instructions are executed in 0 cycles, they can be written in succession.

Instruction Descriptions

Index: IR

The index instruction specifies the RAM control indexes (R00h to R3Fh). It sets the register number in the range of 000000 to 111001 in binary form. However, R40 to R44 are disabled since they are test registers.

Figure 2 Index Instruction

Status Read: SR

The status read instruction reads the internal status of the HD66766.

L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.

C6–0: Read the contrast setting values (CT6-0)

Figure 3 Status Read Instruction

Start Oscillation (R00h)

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly, "0766"H is read.

Figure 4 Start Oscillation Instruction

Driver Output Control (R01h)

Figure 5 Driver Output Control Instruction

CMS: Selects the output shift direction of a common driver. When CMS = 0, COM1 shifts to COM176. When CMS = 1, COM176 shifts to COM1.

SGS: Selects the output shift direction of the segment driver. When SGS = 0, data are output SEG1 to SEG396. When SGS = 1, data are output SEG396 to SEG1. When SGS = 0, SEG1 pin assigns the color display to <R><G>. When SGS = 1, SEG396 pin assigns <R><G>. Re-write to the RAM when intending to change the SGS bit.

NL4-0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows. GRAM address mapping does not depend on the setting value of the drive duty ratio.

Table 8: NL Bits and Drive Duty

						LCD drive	Common d	river used
NL4	NL3	NL2	NL1	NL0	Display Size	duty cycle	CMS="0"	CMS="1"
0	0	0	0	0	396 x 8 dots	1/8 Duty	Com1 - Com8	Com176 - Com169
0	0	0	0	1	396 x 16 dots	1/16 Duty	Com1 - Com16	Com176 - Com161
0	0	0	1	0	396 x 24 dots	1/24 Duty	Com1 - Com24	Com176 - Com153
0	0	0	1	1	396 x 32 dots	1/32 Duty	Com1 - Com32	Com176 - Com145
0	0	1	0	0	396 x 40 dots	1/40 Duty	Com1 - Com40	Com176 - Com137
0	0	1	0	1	396 x 48 dots	1/48 Duty	Com1 - Com48	Com176 - Com129
0	0	1	1	0	396 x 56 dots	1/56 Duty	Com1 - Com56	Com176 - Com121
0	0	1	1	1	396 x 64 dots	1/64 Duty	Com1 - Com64	Com176 - Com113
0	1	0	0	0	396 x 72 dots	1/72 Duty	Com1 - Com72	Com176 - Com105
0	1	0	0	1	396 x 80 dots	1/80 Duty	Com1 - Com80	Com176 - Com97
0	1	0	1	0	396 x 88 dots	1/88 Duty	Com1 - Com88	Com176 - Com89
0	1	0	1	1	396 x 96 dots	1/96 Duty	Com1 - Com96	Com176 - Com81
0	1	1	0	0	396 x 104 dots	1/104 Duty	Com1 - Com104	Com176 - Com73
0	1	1	0	1	396 x 112 dots	1/112 Duty	Com1 - Com112	Com176 - Com65
0	1	1	1	0	396 x 120 dots	1/120 Duty	Com1 - Com120	Com176 - Com57
0	1	1	1	1	396 x 128 dots	1/128 Duty	Com1 - Com128	Com176 - Com49
1	0	0	0	0	396 x 136 dots	1/136 Duty	Com1 - Com136	Com176 - Com41
1	0	0	0	1	396 x 144 dots	1/144 Duty	Com1 - Com144	Com176 - Com33
1	0	0	1	0	396 x 152 dots	1/152 Duty	Com1 - Com152	Com176 - Com25
1	0	0	1	1	396 x 160 dots	1/160 Duty	Com1 - Com160	Com176 - Com17
1	0	1	0	0	396 x 168 dots	1/168 Duty	Com1 - Com168	Com176 - Com9
1	0	1	0	1	396 x 176 dots	1/176 Duty	Com1 - Com176	Com176 - Com1

LCD-Driving-Waveform Control (R02h)

_R/W_R	RS [DB15_	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
W	1	0	0	0	0	0	RST	в/С	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NW0

Figure 6 LCD-Driving-Waveform Control Instruction

B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR and NW4–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed AC Drive section.

EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the number of the LCD drive duty ratio and the n raster-row. For details, see the n-raster-row Reversed AC Drive section.

RST: When RST = 1, software reset function is started. This function is the same as hardware RESET pin. It takes 10 clock cycle period. This bit is automatically cleared after reset function is completed. Therefore, before 10-clock cycle other instruction can not be issued. Do not set the RST bit during stand-by mode.

NW5–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW5–NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be selected.

Power Control 1 (R03h)

Power Control 2 (R0Ch)

Figure 7 Power Control Instruction

BS3-0: The LCD drive bias value is set. The LCD drive bias value can be selected according to its drive duty ratio and voltage.

BT2–0: The output factor of step-up circuit is switched. The LCD drive voltage level can be selected according to its drive duty ratio and bias. Lower amplification of the step-up circuit consumes less current.

BT3: Operation/halt of voltage inverting circuit is set. BT3="0": voltage-inverting circuit is halted. BT3="1": voltage-inverting circuit is operated. See the Power-on/off Sequence section to be activated.

Rev. 1.0 / 30 November 2001

HD66766

DC2-0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit becomes high, but the current consumption is increased. Adjust the frequency considering the step-up ability and the current consumption.

AP1–0: The amount of fixed current from the fixed current source in the operational amplifier for the LCD is adjusted. When the amount of fixed current is large, the LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During no display, when AP1-0 = "00", the current consumption can be reduced by ending the operational amplifier and step-up circuit operation.

VC2-0: Set an adjustment factor for the Vci1 voltage (VC2-0).

SLP: When SLP = 1, the HD66766 enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. Only the following instructions can be executed during the sleep mode.

Power control (BS2-0, BT3-0, DC2-0, AP1-0, SLP, STB)

During the sleep mode, the other GRAM data and instructions cannot be updated although they are retained.

STB: When STB = 1, the HD66766 enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section. Only the following instructions can be executed during the standby mode.

a. Standby mode cancel (STB = "0")

b. Start oscillation

During the standby mode, the GRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled.

The VSH voltage should be controlled to be less than supply voltage or device proof voltage level since VCH voltage level is generated by bias amplifier ratio corresponding to LCD driving bias value and boosting ratio of the step-up circuit 2.

Table 9 Display bias setting table

Determine the LCD drive bias according to its display duty, and select combination of boosting ratio of the step-up circuit 2 and bias amplifier ratio so as not to exceed voltage control of Vci2 and VCH. See the LCD Voltage Generation Circuit regarding how to determine the LCD drive bias, VCH voltage and contrast adjustment for the following settings.

LCD	Booster ratio of					Bias	\/oi2	Recommended
driving	the step-up	BS3	BS2	BS1	BS0	ratio	Vci2 (Vci2≤5.5V)	value of the
bias	circuit 2 (ND2)	DOS	D32	БОТ	550	(NB)	(VCIZ≦5.5V)	VCH≤20V
	x 2	0	0	0	0	0.75	1.50 x VM	Vci2 x 2
1/2	x 3	-	-	-	-	N/A	-	-
	x 4	-	-	-	-	N/A	-	-
	x 2	0	1	0	0	1.25	2.50 x VM	Vci2 x 2
1/4	x 3	0	0	0	1	0.825	1.75 x VM	Vci2 x 3
	x 4	-	-	-	-	N/A	-	-
	x 2	1	0	1	1	1.75	3.50 x VM	Vci2 x 2
1/6	x 3	0	0	1	1	1.165	2.33 x VM	Vci2 x 3
	x 4	-	-	-	-	N/A	-	-
	x 2	-	-	-	-	N/A	-	-
1/8	x 3	1	0	0	0	1.50	3.00 x VM	Vci2 x 3
	x 4	0	0	1	0	1.125	2.25 x VM	Vci2 x 4
	x 2	-	-	-	-	N/A	-	-
1/9	x 3	1	0	1	0	1.675	3.35 x VM	Vci2 x 3
	x 4	0	1	0	0	1.25	2.50 x VM	Vci2 x 4
	x 2	-	-	-	-	N/A	-	-
1/10	x 3	1	1	0	0	1.825	3.65 x VM	Vci2 x 3
	x 4	0	1	1	0	1.375	2.75 x VM	Vci2 x 4
	x 2	-	-	-	-	N/A	-	-
1/11	x 3	1	1	0	1	2.00	4.00 x VM	Vci2 x 3
	x 4	1	0	0	0	1.50	3.00 x VM	Vci2 x 4
	x 3	-	-	-	-	N/A	-	-
1/12	x 4	1	0	0	1	1.625	3.25 x VM	Vci2 x 4
	x 5	0	1	0	1	1.3	2.60 x VM	Vci2 x 5
	x 3	-	-	-	-	N/A	-	-
1/13	x 4	1	0	1	1	1.75	3.45 x VM	Vci2 x 4
	x 5	0	1	1	1	1.4	2.80 x VM	Vci2 x 5

Table 10 Display bias setting table

VC2	VC1	VC0	Vci1 control range
0	0	0	0.92 x Vcc
0	0	1	0.87 x Vcc
0	1	0	0.83 x Vcc
0	1	1	0.8 x Vcc
1	0	0	0.76 x Vcc
1	0	1	0.73 x Vcc
1	1	0	0.68 x Vcc
1	1	1	Vci1 control amplifier suspends.
			(Vci1 can be supplied externally.)

Table 11 AP bits and amount of fixed current

AP1	AP0	Amount of fixed current in the operational amplifier
0	0	Operational amplifier and booster do not operate.
0	1	Small
1	0	Middle
1	1	Large

Table 12 Output voltage ratio of the booster 1 and 2

ВТ2	BT1	вто	VOUT output of the booster 1 (Use VOUT within the range of 4.5 to 6.0V.)	VCH output of the booster 2 (Set VCH lower than 20.0V.)
0	0	0	2 x Vci1	2 x Vci2
0	0	1	3 x Vci1	2 x Vci2
0	1	0	2 x Vci1	3 x Vci2
0	1	1	3 x Vci1	3 x Vci2
1	0	0	2 x Vci1	4 x Vci2
1	0	1	3 x Vci1	4 x Vci2
1	1	0	2 x Vci1	5 x Vci2
1	1	1	3 x Vci1	5 x Vci2

Set the factor of the booster 2 according to voltage of Vci2 and VCH.

When the factor is set low, current consumption can be lowered.

Table 13 Operating clock frequency of the Booster 1 and 2

DC2	DC1	DC0	Operating clock frequency in the booster 1	Operating clock frequency in the voltage inverting circuit and the booster 2
0	0	0	32-divided clock	32-divided clock
0	0	1	64-divided clock	32-divided clock
0	1	0	32-divided clock	64-divided clock
0	1	1	64-divided clock	64-divided clock
1	0	0	32-divided clock	96-divided clock
1	0	1	64-divided clock	96-divided clock
1	1	0	32-divided clock	128-divided clock
1	1	1	64-divided clock	128-divided clock

Operation of voltage inverting circuit

BT3	VCL output of the voltage inverting circuit
	(Set VCL no lower than -20.0 V.)
0	Halt boosting
1	Output voltage between VCH and VM by inverting

Set activation of voltage inverting circuit with output of the booster 2 stable. *See the Power-on/off Sequence section.

DB 15 Contrast Control (R04h)

Figure 8 Contrast Control Instruction

CT6-0: These bits control the LCD drive voltage to adjust 128-step contrast.

Table 14 Contrast control

СТ6	CT5	CT4	CT3	CT2	CT1	СТО	Contrast
0	0	0	0	0	0	0	1.016R (Minimum)
0	0	0	0	0	0	1	1.008R
0	0	0	0	0	1	0	1.000R
0	0	0	0	0	1	1	0.992R
0	0	0	0	1	0	0	0.984R
:	:	:	:	:	:	:	:
:		:	:	:	:	:	:
1	1	1	1	1	1	0	0.008R
1	1	1	1	1	1	1	0.000R (Maximum)

VR2–0: These bits amplifies 1.1 to 3.4 times the VREFL as output voltage VREFM of LCD drive reference voltage generation circuit. The VREFM should be smaller than VOUT level.

Table 15 Contrast control

VR2	VR1	VR0	VREFM voltage
0	0	0	VREFL x 1.1
0	0	1	VREFL x 1.3
0	1	0	VREFL x 1.4
0	1	1	VREFL x 1.5
1	0	0	VREFL x 1.7
1	0	1	VREFL x 1.8
1	1	0	VREFL x 3.4

Entry Mode (R05h)

Compare resister (R06h)

The write data sent from the microcomputer is modified in the HD66766 and written to the GRAM. The display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For detail, see the Graphics Operation Function section.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	SPR	0	0	0	0	0	HWM	0	0	0	I/D1	I/D0	АМ	LG2	LG1	LG0
W	1	CP15	CP14	CP13	CP12	CP11	CP10	CP9	CP8	СР7	CP6	CP5	CP4	CP3	CP2	CP1	CP0

Figure 9 Compare Resister Instruction

HWM: When HWM=1, data can be written to the GRAM at high speed. In high-speed write mode, four words of data are written to the GRAM in a single operation after the writing to RAM four times. Write to RAM four times, otherwise the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0 when setting the RAM address. For details, see the High-Speed RAM Write Mode section.

I/D1-0: When I/D1-0 = "1", the address counter (AC) is automatically incremented by 1 after the data is written to the GRAM. When I/D1-0 = "0", the AC is automatically decremented by 1 after the data is written to the GRAM. The increment/decrement setting of the address counter by I/D1-0 is done independently for the upper (AD15-8) and lower (AD7-0) addresses. The AM bit sets the direction of moving through the addresses when the GRAM is written to.

AM set the automatic update method of the AC after the data is written to the GRAM. When AM= "0", the data is continuously written in parallel. When AM = "1", the data is continuously written vertically. When window address range is specified, the GRAM in the window address range can be written to according to the I/D1-0 and AM settings.

SPR: When SPR=1, 4096colors are displayed. 12 bit (DB11-DB0) are used for this display. Refer to "4096 color display function" in page 57 for details.

Note: When a window address range has been set the GRAM can only be written to within that range.

Figure 10 Address Direction Settings

LG2-0: Compare the data read from the GRAM by the microcomputer with the compare resisters (CP15-0) by a compare/logical operation and writes the results to GRAM. For details, see the Logical/Compare Operation Function.

CP15-0: Set the compare resister for the compare operation with the data read from the GRAM or written by the microcomputer.

Note: The write data mask (WM15-0) is set by the resister in the (20) RAM Write Data Mask section.

Figure 11 Logical/Compare Operation for the GRAM

Display Control (R07h)

Figure 12 Display Control

VLE2–1: When VLE1 = 1, a vertical scroll is performed in the 1^{st} screen. When VLE2 = "1", a vertical scroll is performed in the 2^{nd} screen. Vertical scrolling on the two screens can be independently controlled.

SPT: When SPT = 1, the 2-division LCD drive is performed. For details, see the Screen-division Driving Function section.

B/W: When B/W = "1", displayed data can be "all" or "all off" regardless GRAM contents. (B/W = "1", REV = "0": all pixel on, B/W = "1", REV = "1": all pixel off) When B/W = "1", grayscale palette has to be default value.

REV: Displays all character and graphics display sections with reversal when REV = 1. For details, see the Reversed Display Function section. Since the grayscale level can be reversed, display of the same data is enabled on normally-white and normally-black panels.

D1–0: Display is on when D1 = "1" and off when D1 = 0. When off, the display data remains in the GRAM, and can be displayed instantly by setting D1 = "1". When D1 is "0", the display is off with all of the SEG/COM pin outputs set to the GND level. Because of this, the HD66766 can control the charging current for the LCD with AC driving.

When D1-0 = "01", the internal display of the HD66766 is performed although the display is off. When D1-0 = "00", the internal display operation halts and the display is off.

Table 16 D Bits and Operation

D1	D0	SEG/COM Output	HD66766 Internal Display Operation
0	0	GND	Halt
0	1	GND	Operate
1	0	Unlit display	Operate
1	1	Display	Operate

Notes: 1. Writing from the microcomputer to the GRAM is independent from the state of D1–0.

2. In the sleep and standby modes, D1-0=00. However, the register contents of D1-0 are not modified.

Frame Cycle Control (R0Bh)

_ R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0

Figure 12

RTN3-0: Set the line retrace period (RTN3-0) to be added to raster-row cycles. The raster-row cycle becomes long according to the number of clocks set at RTN3-0.

DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven by clocks which are frequency divided according to the DIV1-0 setting. Frame frequency can be adjusted along with the line retrace period (RTN3-0). When changing the drive-duty, adjust the frame frequency. For details, see the Frame Frequency Adjustment Function section.

Table 17 RTN Bits and Clock Cycles

RTN3	RTN2	RTN1	RTN1	Line retrace period (Clock Cycles)	Clock Cycles per one raster-row
0	0	0	0	0 clock	26 clock
0	0	0	1	1 clock	27 clock
0	0	1	0	2 clock	28 clock
0	0	1	1	3 clock	29 clock
:	:	:	:	:	:
1	1	1	0	14 clock	40 clock
1	1	1	1	15 clock	41 clock

Table 18 DIV Bits and Clock Frequency

DIV1	DIV0	Division ratio	Internal Operation
			Clock Frequency
0	0	1	fosc / 1
0	1	2	fosc / 2
1	0	4	fosc / 4
1	1	8	fosc / 8

^{*} fosc=R-C oscillation frequency

Formula for the frame frequency

Vertical Scroll Control (R11h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
W	1	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10	

Figure 14 Vertical Scroll Control Instruction

VL17-10: Specify the display-start raster-row at the 1st screen display for vertical smooth scrolling. Any raster-row from the first to 176th can be selected. After the 176th raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL17-10) is valid only when VLE1 = "1". The raster-row display is fixed when VLE1 = "0". (VLE1 is the 1st-screen vertical-scroll enable bit.)

VL27-20: Specify the display-start raster-row at the 2^{nd} screen display. The display-start raster-row (VL27-20) is valid only when VLE2 = "1". The raster-row display is fixed when VLE2 = "0". (VLE2 is the 1^{st} -screen vertical-scroll enable bit.)

	_	_	VL24 VL14	_			_	Display start line
0	0	0	0	0	0	0	0	1'st raster - row
0	0	0	0	0	0	0	1	2'nd raster - row
0	0	0	0	0	0	1	0	3'rd raster - row
:	:	:	:	:	:	:	:	:
1	0	1	0	1	1	1	0	175'th raster -
1	0	1	0	1	1	1	1	176'th raster -

Note: Do not set over the 176th ("AF"H) raster - row

1st Screen Driving Position (R14h)

2nd Screen Driving Position (R15h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
W	1	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
W	1	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20

Figure 15

SS17–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the 'set value + 1' common driver.

SE17–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SS17–10 = "07"H and SE17–10 = "10"H are set, the LCD driving is performed from COM8 to COM17, and non-selection driving is performed from COM1 to COM7, COM18 and others. Ensure that SS17–10 \leq SE17–10 \leq "AF"H. For details, see the Screen-division Driving Function section.

SS27–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the 'set value + 1' common driver. The second screen is driven when SPT = "1".

SE27–0: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SPT = "1", SS27–20 = "20"H, and SE27–20 = "4F"H are set, the LCD driving is performed from COM33 to COM80. Ensure that SS17– $10 \le SE17-10 \le SE27-20 \le SE27-20 \le "AF"H$. For details, see the Screen-division Driving Function section.

Horizontal RAM Address Position (R16h)

Vertical RAM Address Position (R17h)

R/W	RS	DB15	DB14	1 DB	13 D	B12 [DB11	DB10	DB9	DB8	DB7	DB6 [DB5 D	B4 DE	33 DB	2 DB1	DB0
w	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
W	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

Figure 16 Horizontal/Vertical RAM Address Position Instruction

HSA5-0/HEA5-0: Specify the horizontal start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by HEA7-0 from the address specified by HSA5-0. Note that an address must be set before RAM is written to. Ensure $00h \le HSA7-0 \le HEA7-0 \le 83h$

VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note that an address must be set before RAM is written to. Ensure "00" h \leq VSA7-0 \leq VEA7-0 \leq "AF" h.

Figure 17 Window Address Setting Range

Note:

- 1. Ensure that the window address area is within the GRAM address space.
- 2. In high-speed write mode, data are written to GRAM in four-words. Thus, dummy write operations should be inserted depending on the window address area. For details, see the High-Speed Burst RAM Write Function section.

RAM Write Data Mask (R20h)

Figure 18 RAM Write Data Mask Instruction

WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. When WM15 = "1", this bit masks the write data of DB11 and does not write to the GRAM. Similarly, the WM10 to 0 bits mask the write data of DB15 to 0 in a bit unit. When HDZ = "1", mask processing is performed for 12-bit data after dither processing. For details, see the Write Data Mask Function section.

RAM Address Set (R21h)

Figure 19 RAM Address Set Instruction

AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the GRAM data is read, the AC is not automatically updated.

GRAM address setting is not allowed in the standby mode. Ensure that the address is set within the specified window address.

Table 19 GRAM Address Range

AD15 to AD0	GRAM Setting
"0000"H to "0083"H	Bitmap data for COM1
"0100"H to "0183"H	Bitmap data for COM2
"0200"H to "0283"H	Bitmap data for COM3
"0300"H to "0383"H	Bitmap data for COM4
:	•
•	:
"AC00"H to "AC83"H	Bitmap data for COM173
"AC00"H to "AC83"H "AD00"H to "AD83"H	Bitmap data for COM173 Bitmap data for COM174

Write Data to GRAM (R22h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBC
w	1	WD 15	WD 14	WD 13	WD 12	WD 11	WD 10	WD 9	WD 8	WD 7	WD 6	WD 5	WD 4	WD 3	WD 2	WD 1	WE 0

Figure 20 Write Data to GRAM Instrction

WD15–0: Write 16-bit data to the GRAM; This data calls each grayscale palette. After a write, the address is automatically updated according to the AM and I/D bit settings. During the stand by mode, the GRAM cannot be accessed.

GRAM write data during normal mode

Figure 21

GRAM data setting													
R4	R3	R2	R1	R0									
G5	G4	G3	G2	G1	G0								
B4	В3	B2	B1	B0				Graysca	le palette				
0	0	0	0	0	0	PK05	PK04	PK03	PK02	PK01	PK00		
0	0	0	0	1	0	PK15	PK14	PK13	PK12	PK11	PK10		
0	0	0	1	0	0	PK25	PK24	PK23	PK22	PK21	PK20		
0	0	0	1	1	0	PK35	PK34	PK33	PK32	PK31	PK30		
0	0	1	0	0	0	PK45	PK44	PK43	PK42	PK41	PK40		
0	0	1	0	1	0	PK55	PK54	PK53	PK52	PK51	PK50		
0	0	1	1	0	0	PK65	PK64	PK63	PK62	PK61	PK60		
0	0	1	1	1	0	PK75	PK74	PK73	PK72	PK71	PK70		
0	1	0	0	0	0	PK85	PK84	PK83	PK82	PK81	PK80		
0	1	0	0	1	0	PK95	PK94	PK93	PK92	PK91	PK90		
0	1	0	1	0	0	PK105	PK104	PK103	PK102	PK101	PK100		
0	1	0	1	1	0	PK115	PK114	PK113	PK112	PK111	PK110		
0	1	1	0	0	0	PK125	PK124	PK123	PK122	PK121	PK120		
0	1	1	0	1	0	PK135	PK134	PK133	PK132	PK131	PK130		
0	1	1	1	0	0	PK145	PK144	PK143	PK142	PK141	PK140		
0	1	1	1	1	0	PK155	PK154	PK153	PK152	PK151	PK150		
1	0	0	0	0	0	PK165	PK164	PK163	PK162	PK161	PK160		
1	0	0	0	1	0	PK175	PK174	PK173	PK172	PK171	PK170		
1	0	0	1	0	0	PK185	PK184	PK183	PK182	PK181	PK180		
1	0	0	1	1	0	PK195	PK194	PK193	PK192	PK191	PK190		
1	0	1	0	0	0	PK205	PK204	PK203	PK202	PK201	PK200		
1	0	1	0	1	0	PK215	PK214	PK213	PK212	PK211	PK210		
1	0	1	1	0	0	PK225	PK224	PK223	PK222	PK221	PK220		
1	0	1	1	1	0	PK235	PK234	PK233	PK232	PK231	PK230		
1	1	0	0	0	0	PK245	PK244	PK243	PK242	PK241	PK240		
1	1	0	0	1	0	PK255	PK254	PK253	PK252	PK251	PK250		
1	1	0	1	0	0	PK265	PK264	PK263	PK262	PK261	PK260		
1	1	0	1	1	0	PK275	PK274	PK273	PK272	PK271	PK270		
1	1	1	0	0	0	PK285	PK284	PK283	PK282	PK281	PK280		
1	1	1	0	1	0	PK295	PK294	PK293	PK292	PK291	PK290		
1	1	1	1	0	0	PK305	PK304	PK303	PK302	PK301	PK300		
1	1	1	1	1	0	PK315	PK314	PK313	PK312	PK311	PK310		

Note: When G0 = 1, selective grayscale for G pixel is the middle grayscale between the upper grayscale and the selective grayscale.

Read Data from GRAM (R22h)

Figure 22 Read Data from GRAM Instruction

RD15–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word read immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal.

Figure 23 GRAM Read Sequence

Gray Scale Palette Control (R30h to R3Fh)

Table 20 Grayscale Palette Control Instruction

	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R30	w	1	0	0	PK 15	PK 14	PK 13	PK 12	PK 11	PK 10	0	0	PK 05	PK 04	PK 03	PK 02	PK 01	PK 00
R31	w	1	0	0	PK 35	PK 34	PK 33	PK 32	PK 31	PK 30	0	0	PK 25	PK 24	PK 23	PK 22	PK 21	PK 20
R32	w	1	0	0	PK 55	PK 54	PK 53	PK 52	PK 51	PK 50	0	0	PK 45	PK 44	PK 43	PK 42	PK 41	PK 40
R33	w	1	0	0	PK 75	PK 74	PK 73	PK 72	PK 71	PK 70	0	0	PK 65	PK 64	PK 63	PK 62	PK 61	PK 60
R34	w	1	0	0	PK 95	PK 94	PK 93	PK 92	PK 91	PK 90	0	0	PK 85	PK 84	PK 83	PK 82	PK 81	PK 80
R35	w	1	0	0	PK 115	PK 114	PK 113	PK 112	PK 111	PK 110	0	0	PK 105	PK 104	PK 103	PK 102	PK 101	PK 100
R36	w	1	0	0	PK 135	PK 134	PK 133	PK 132	PK 131	PK 130	0	0	PK 125	PK 124	PK 123	PK 122	PK 121	PK 120
R37	w	1	0	0	PK 155	PK 154	PK 153	PK 152	PK 151	PK 150	0	0	PK 145	PK 144	PK 143	PK 142	PK 141	PK 140
R38	w	1	0	0	PK 175	PK 174	PK 173	PK 172	PK 171	PK 170	0	0	PK 165	PK 164	PK 163	PK 162	PK 161	PK 160
R39	w	1	0	0	PK 195	PK 194	PK 193	PK 192	PK 191	PK 190	0	0	PK 185	PK 184	PK 183	PK 182	PK 181	PK 180
R3A	w	1	0	0	PK 215	PK 214	PK 213	PK 212	PK 211	PK 210	0	0	PK 205	PK 204	PK 203	PK 202	PK 201	PK 200
R3B	w	1	0	0	PK 235	PK 234	PK 233	PK 232	PK 231	PK 230	0	0	PK 225	PK 224	PK 223	PK 222	PK 221	PK 220
R3C	w	1	0	0	PK 255	PK 254	PK 253	PK 252	PK 251	PK 250	0	0	PK 245	PK 244	PK 243	PK 242	PK 241	PK 240
R3D	w	1	0	0	PK 275	PK 274	PK 273	PK 272	PK 271	PK 270	0	0	PK 265	PK 264	PK 263	PK 262	PK 261	PK 260
R3E	w	1	0	0	PK 295	PK 294	PK 293	PK 292	PK 291	PK 290	0	0	PK 285	PK 284	PK 283	PK 282	PK 281	PK 280
R3F	w	1	0	0	PK 315	PK 314	PK 313	PK 312	PK 311	PK 310	0	0	PK 305	PK 304	PK 303	PK 302	PK 301	PK 300

PK31–0: Specify the grayscale level for thirty-two palettes from the 52-grayscale level. For details, see the Grayscale Palette and the Grayscale Palette Table sections.

Instruction List (HD66766)

			Upp	er Co	de						Low	er Co	de									
Reg. No.	Register Name	R/ W	RS	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 9	DB 8	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Description	Exe cu- tion Cyc le	1
IR	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0	Sets the index register value.	0	Note
SR	Status read	1	0	L7	L6	L5	L4	L3	L2	Ll	L0	0	C6	C5	C4	C3	C2	C1	C0	Reads the driving raster-row position (L7–0) and contrast setting (C6–0).	0	=
R00h	Start oscillation	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	Starts the oscillation mode.	10 ms	Notel
	Device code read	1	1	0	0	0	0	0	1	1	1	0	1	1	0	0	1	1	0	Reads 0766H.	0	
R01h	Driver output control	0	1	0	0	0	0	0	0	CM S	SGS	0	0	0	NL4	NL3	NL2	NLI	NL0	Sets the common driver shift direction (CMS), segment driver shift direction (SGS) and driving duty ratio (NL4–0).	0	=
R02h	LCD- driving- waveform control	0	1	0	0	0	0	0	RST	B/C	EOR	0	0	NW 5	NW 4	NW 3	NW 2	NW 1	NW 0	Sets LCD drive AC waveform (B/C), and EOR output (EOR) or the number of n-raster-rows (NW5-0) at C-pattern AC drive.	0	=
R03h	Power control 1	0	1	BS3	BS2	BS1	BS0	BT3	BT2	BTI	вто	0	DC2	DC1	DC0	API	AP0	SLP	STB	Sets the sleep mode (SLP), standby mode (STB), LCD power on (API– 0), boosting cycle (DC2–0), boosting output multiplying factor (BT2–0), operation of voltage inverting circuit (BT3) and LCD drive bias value (BS3–0).	0	=
R04h	Contrast control	0	1	0	0	0	0	0	VR2	VR1	VR0	0	CT6	CT5	CT4	СТ3	CT2	CT1	CT0	Sets the regulator adjustment (VR2–0) and contrast adjustment (CT6–0).	0	_
R05h	Entry mode	0	1	SPR	0	0	0	0	0	HWM	0	0	0	I/D1	I/D0	AM	LG2	LG1	LG0	Specifies AC counter mode (AM), increment/decrement mode (I/D1–0), high-speed write mode (HWM).	0	Note2
R06h	Compare Resister	0	1	CPI 5	CP1 4	CP1	CP1 2	CP1	CP1 0	CP9	CP8	CP7	CP6	CP5	CP4	CP3	CP2	CPI	CP0	Specifies the compare resister (CP15-0),	0	=
R07h	Display control	0	1	0	0	0	0	0	VLE2	VLEI	SPT	0	0	0	0	B/W	REV	DI	D0	Specifies display on (D1-0), black- and-white reversed display (REV), pixel on/off mode (ALB), screen division driving (SPT) and vertical scroll .(VLE2-1)	0	_
R0Bh	Frame frequency control	0	1	0	0	0	0	0	0	DIV 1	DIV 0	0	0	0	0	RTN 3	RTN 2	RTN 1	RTN 0	Specifies the line retrace period (RTN3-0) and operating clock frequency division ratio (DIV1-0).	0	=
R0Ch	Power control 2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0	Sets the adjustment factor for the Vci voltage (VC2-0).	0	=
Rllh	Vertical scroll control	0	1	VL2 7	VL2 6	VL2 5	VL2 4	VL2 3	VL2 2	VL2 1	VL2 0	VLI 7	VL1 6	VL1 5	VL1 4	VL1 3	VL1 2	VL1	VL1 0	Sets the 1 st screen display start raster-row (VL17-10) and 2 nd screen display start raster-row (VL27-20).	0	=
R14h	1 st screen driving position	0	1	SE 17	SE 16	SE 15	SE 14	SE 13	SE 12	SE 11	SE 10	SS 17	SS 16	SS 15	SS 14	SS 13	SS 12	SS 11	SS 10	Sets the 1 st screen driving start position (SS17–10) and 1 st screen driving end position (SE17–10).	0	=
R15h	2 nd screen driving position	0	1	SE 27	SE 26	SE 25	SE 24	SE 23	SE 22	SE 21	SE 20	SS 27	SS 26	SS 25	SS 24	SS 23	SS 22	SS 21	SS 20	Sets 2 nd screen driving start position (SS27–20) and 2 nd screen driving end position (SE27–20).	0	_
R16h	Horizontal RAM address position	0	1	HE A7	HEA 6	HEA 5	HEA 4	HEA 3	HEA 2	HEA 1	HEA 0	HSA 7	HSA 6	HSA 5	HSA 4	HSA 3	HSA 2	HSA 1	HSA 0	Sets start (HSA7–0) and end (HEA7–0) of the horizontal RAM address range.	0	
R17h	Vertical RAM address position	0	1	VEA 7	VEA 6	VEA 5	VEA 4	VEA 3	VEA 2	VEA 1	VEA 0	VSA 7	VSA 6	VSA 5	VSA 4	VSA 3	VSA 2	VSA 1	VSA 0	A Sets start (VSA7-0) and end (VEA7-0) of the vertical RAM address range.		=
R20h	RAM write data mask	0	1	WM 15	WM 14	WM 13	WM 12	WM 11	WM 10	WM 9	WM 8	WM	WM 6	WM 5	WM 4	WM 3	WM 2	WM 1	WM 0	Specifies write data mask (WM15–0) at RAM write.	0	_

Rev. 1.0 / 30 November 2001

Instruction List (cont.)

			Uppe	er Code							Lower Code										
Reg. No.	Register Name	R/ W	RS	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 9	DB 8	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Description	Execu- tion Cycle
R21h	RAM address set	0	1				AD15⊸	8 (upper	r)					ADo	5–0 (lov	ver)				Initially set the RAM address to the address counter (AC).	0
R22	RAM data write	0	1			7	Vrite da	ta (uppe	er)					١	Vrite da	ta (lowe	er)			Writes data to the RAM.	0
	RAM data read	1	1			I	Read dat	ta (uppe	er)					1	Read dat	ta (lowe	er)			Reads data from the RAM.	0
R30h	Grayscale palette control (1)	0	1	0	0	PK15	PK14	PK13	PK12	PK11	PK10	0	0	PK05	PK04	PK03	PK02	PK01	PK00	Specifies the grayscale palette.	0
R31h	Grayscale palette control (2)	0	1	0	0	PK35	PK34	PK33	PK32	PK31	PK30	0	0	PK25	PK24	PK23	PK22	PK21	PK20	Specifies the grayscale palette.	0
R32h	Grayscale palette control (3)	0	1	0	0	PK55	PK54	PK53	PK52	PK51	PK50	0	0	PK45	PK44	PK43	PK42	PK41	PK40	Specifies the grayscale palette.	0
R33h	Grayscale palette control (4)	0	1	0	0	PK75	PK74	PK73	PK72	PK71	PK70	0	0	PK65	PK64	PK63	PK62	PK61	PK60	Specifies the grayscale palette.	0
R34h	Grayscale palette control (5)	0	1	0	0	PK95	PK94	PK93	PK92	PK91	PK90	0	0	PK85	PK84	PK83	PK82	PK81	PK80	Specifies the grayscale palette.	0
R35h	Grayscale palette control (6)	0	1	0	0	PK 115	PK 114	PK 113	PK 112	PK 111	PK 110	0	0	PK 105	PK 104	PK 103	PK 102	PK 101	PK 100	Specifies the grayscale palette.	0
R36h	Grayscale palette control (7)	0	1	0	0	PK 135	PK 134	PK 133	PK 132	PK 131	PK 130	0	0	PK 125	PK 124	PK 123	PK 122	PK 121	PK 120	Specifies the grayscale palette.	0
R37h	Grayscale palette control (8)	0	1	0	0	PK 155	PK 154	PK 153	PK 152	PK 151	PK 150	0	0	PK 145	PK 144	PK 143	PK 142	PK 141	PK 140	Specifies the grayscale palette.	0
R38h	Grayscale palette control (9)	0	1	0	0	PK 175	PK 174	PK 173	PK 172	PK 171	PK 170	0	0	PK 165	PK 164	PK 163	PK 162	PK 161	PK 160	Specifies the grayscale palette.	0
R39h	Grayscale palette control (10)	0	1	0	0	PK 195	PK 194	PK 193	PK 192	PK 191	PK 190	0	0	PK 185	PK 184	PK 183	PK 182	PK 181	PK 180	Specifies the grayscale palette.	0
R3Ah	Grayscale palette control (11)	0	1	0	0	PK 215	PK 214	PK 213	PK 212	PK 211	PK 210	0	0	PK 205	PK 204	PK 203	PK 202	PK 201	PK 200	Specifies the grayscale palette.	0
R3Bh	Grayscale palette control (12)	0	1	0	0	PK 235	PK 234	PK 233	PK 232	PK 231	PK 230	0	0	PK 225	PK 224	PK 223	PK 222	PK 221	PK 220	Specifies the grayscale palette.	0
R3Ch	Grayscale palette control (13)	0	1	0	0	PK 255	PK 254	PK 253	PK 252	PK 251	PK 250	0	0	PK 255	PK 244	PK 243	PK 242	PK 241	PK 240	Specifies the grayscale palette.	0
R3Dh	Grayscale palette control (14)	0	1	0	0	PK 275	PK 274	PK 273	PK 272	PK 271	PK 270	0	0	PK 265	PK 264	PK 263	PK 262	PK 261	PK 260	Specifies the grayscale palette.	0
R3Eh	Grayscale palette control (15)	0	1	0	0	PK 295	PK 294	PK 293	PK 292	PK 291	PK 290	0	0	PK 285	PK 284	PK 283	PK 282	PK 281	PK 280	Specifies the grayscale palette.	0
R3Fh	Grayscale palette	0	1	0	0	PK	PK	PK	PK	PK	PK	0	0	PK	PK	PK	PK	PK	PK	Specifies the grayscale palette.	0

Note: 1. "*" means doesn't matter.

2. High-speed write mode is available only for the RAM writing.

315 314 313 312 311 310

Reset Function

The HD66766 is internally initialized by RESET input. Reset the gate driver/Power supply IC as its settings are not automatically reinitialized when the HD66766 is reset. The reset input must be held for at least 200 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms).

Instruction Set Initialization:

- 1. Start oscillation executed
- 2. Driver output control (NL4–0 = "10101", SGS = "0", CMS = "0")
- 3. B-pattern waveform AC drive (B/C = "0", EOR = "0", NW5-0 = "000000")
- 4. Power control 1 (DC2–0 = "000", AP1–0 = "00": LCD power off, STB = "0": Standby mode off, SLP = "0", BS2-0 = "000", BT2-0 = "000")
- 5. Contrast control (Weak contrast VR3-0 = "0000", CT6-0 = "0000000")
- 6. Entry mode set (SPR= "0", HWM = "0", I/D1-0 = "11": Increment by 1, AM = "0": Horizontal move, LG2-0="000":Replace mode)
- 7. Compare resister : (CP15-0 = "000000000000000"
- 8. Display control (VLE2–1 = "00": No vertical scroll, SPT = "0", REV = "0", D1–0 = "00": Display off)
- 9. Frame cycle control (DIV1-0 = "00": 1-divided clock, RTN3-0: No line retrace period)
- 10. Power control 2 (VC2-0 = "000")
- 11. Vertical scroll (VL27–20 = "00000000", VL17–10 = "00000000")
- 12. 1st screen division (SE17-10 = "11111111", SS17-10 = "00000000")
- 13. 2nd screen division (SE27-20 = "111111111", SS27-20 = "00000000")
- 14. Horizontal RAM address position (HEA7-0 = "10000011", HSA7-0 = "00000000")
- 15. Vertical RAM address position (VEA7-0 = "10101111", VSA7-0 = "00000000")
- 16. RAM write data mask (WM11–0 = "000"H: No mask)
- 17. RAM address set (AD15–0 = "0000"H)
- 18. Grayscale Palette

```
(PK0 = "000000", RK1= "000011", PK2= "000110", PK3= "001000",

PK4= "001010", PK5= "001100", PK6= "001110", PK7= "001111",

PK8= "010000", PK9= "010001", PK10= "010010", PK11= "010011",

PK12= "010100", PK13= "010101", PK14= "010110", PK15= "010111",

PK16 = "011000", PK17= "011001", PK18= "011010", PK19= "011011",

PK20= "011100", PK21= "011101", PK22= "011110", PK23= "100000",

PK24= "100010", PK25= "100100", PK26= "100110", PK27= "101000",

PK28 = "101011", PK29= "101110", PK30= "110001", PK31= "110100",)
```

GRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off (D1-0 = "00").

Output Pin Initialization:

- 1. LCD driver output pins (SEG/COM): Output GND level
- 2. Oscillator output pin (OSC2): Output oscillation signal

Parallel Data Transfer

16-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the "GND"/"GND" level allows 68-system E-clock-synchronized 16-bit parallel data transfer. Setting the IM2/1/0 to the "GND"/"Vcc"/"GND" level allows 80-system 16-bit parallel data transfer. When the number of buses or the mounting area is limited, use an 8-bit bus interface.

Figure 24 Interface to 16-bit Microcomputer

8-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the "GND"/"GND" /"Vcc" level allows 68-system E-clock-synchronized 8-bit parallel data transfer using DB15–DB8 pins. Setting the IM2/1/0 to the "GND"/"Vcc" level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7–DB0 to the "Vcc" or "GND" level. Note that the upper bytes must also be written when the index register is written to.

Figure 25 Interface to 8-bit Microcomputer

Note: Transfer synchronization function for an 8-bit bus interface

The HD66766 supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a "00". Instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system

Figure 26 8-bit Transfer Synchronization

Serial Data Transfer

Setting the IM2 pin to the "Vcc" level and the IM1 pin to the "GND" level allows standard clock-synchronized serial data transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial input data line (SDI), and serial output data line (SDO). For a serial interface, the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB15-2 pins which are not used must be fixed at "Vcc" or "GND".

The HD66766 initiates serial data transfer by transferring the start byte at the falling edge of CS* input. It ends serial data transfer at the rising edge of CS* input.

The HD66766 is selected when the 6-bit chip address in the start byte transferred from the transmitting device matches the 6-bit device identification code assigned to the HD66766. The HD66766, when selected, receives the subsequent data string. The least significant bit of the identification code can be determined by the ID pin. The five upper bits must be "01110". Two different chip addresses must be assigned to a single HD66766 because the seventh bit of the start byte is used as a register select bit (RS): that is, when RS = "0", data can be written to the index register or status can be read, and when RS = "1", an instruction can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is "0", and is transmitted when the R/W bit is "1".

After receiving the start byte, the HD66766 receives or transmits the subsequent data byte-by-byte. The data is transferred with the MSB first. All HD66766 instructions are 16 bits. Two bytes are received with the MSB first (DB15 to 0), then the instructions are internally executed. After the start byte has been received, the first byte is fetched internally as the upper eight bits of the instruction and the second byte is fetched internally as the lower eight bits of the instruction.

Five bytes of RAM read data after the start byte are invalid. The HD66766 starts to read correct RAM data from the sixth byte.

Table 21 Start Byte Format

Transfer Bit	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start			Device	ID code	;		RS	R/W
Start byte format	Transfer start	0	1	1	1	0	ID	KS	IV/ VV

Note: The IM0/ID pin selects ID bit.

Table 22 RS and R/W Bit Function

RS	R/W	Function
0	0	Sets index register
0	1	Reads status
1	0	Writes instruction or RAM data
1	1	Reads RAM data

a) Timing of basic data-transfer through clock synchronized serial interface

Figure 27 Procedure for transfer through the clock synchronized serial inrface (a)

b) Timing of consecutive data transfer through clock synchronized serial interface

Figure 28 Procedure for transfer through the clock synchronized serial interface (b)

C) Transfer data read from GRAM

Figure 29 Procedure for transfer through the clock synchronized serial interface (c)

d) Status Read / Instruction Read

One byte invalid dummy data are read after start byte. 2nd data is valid from GRAM.

Figure 30 Procedure for transfer through the clock synchronized serial interface (d)

High-Speed Burst RAM Write Function

The HD66766 has a high-speed burst RAM-write function that can be used to write data to RAM in one-fourth the access time required for an equivalent standard RAM-write operation. This function is especially suitable for applications which require the high-speed rewriting of the display data, for example, display of color animations, etc.

When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the HD66766 internal register. When data is selected four times per word, all data is written to the on-chip RAM. While this is taking place, the next data can be written to an internal register so that high-speed and consecutive RAM writing can be executed for animated displays, etc.

Figure 31 Flow of Operation in High-Speed Consecutive Writing to RAM

^{*} The lower two bits of the address must be set in the following way in high-speed write mode. When D0 becomes 0, the lower two bits of the address must be set to "11". Wen D1 becomes 1, the lower two bits of the address must be set to "00".

Note: When a high-speed RAM write is canceled, the next instruction must only be executed after the RAM write execution time has elapsed.

Figure 32 Example of the Operation of High-Speed Consecutive Writing to RAM

Note the following when using high-speed RAM write mode.

- Notes: 1. The logical and compare operation cannot be used.
 - 2. Data is written to RAM each four words. When an address is set, the lower two bits in the address must be set to the following values.
 - *When I/D0=0, the lower two bits in the address must be set to "11" and be written to RAM.
 - *When I/D0=1, the lower two bits in the address must be set to "00" and be written to RAM.
 - 3. Data is written to RAM each four words. If less than four words of data is written to RAM, the last data will not be written to RAM.
 - 4. When the index register and RAM data write ("22"H) have been selected, the data is always written first. RAM cannot be written to and read from at the same time. HWM must be set to "0" while RAM is being read.
 - 5. High-speed and normal RAM write operations cannot be executed at the same time. The mode must be switched and the address must then be set.
 - 6. When high-speed RAM write is used with a window address-range specified, dummy write operation may be required to suit the window address range-specification. Refer to the High-Speed RAM Write in the Window Address section.

Table 23 Comparison between Normal and High-Speed RAM Write Operations

	Normal RAM Write (HWM=0)	High-Speed RAM Write (HWM=1)			
Logical operation function	Can be used	Cannot be used			
Compare operation function	Can be used	Cannot be used			
Write mask function	Can be used	Can be used			
RAM address set	Can be specified by word	ID0 bit=0: Set the lower two bits to 11			
KAW address set	can be specified by word	ID0 bit=1: Set the lower two bits to 00			
RAM read	Can be read by word	Cannot be used			
RAM write	Can be written by word	Dummy write operations may have to be inserted according to a window address-range specification			
Window address	Can be set by word	Can be set by four words			

High-Speed RAM Write in the Window Address

When a window address range is specified, RAM data which is in an optional window area can be rewritten consecutively and quickly by inserting dummy write operations so that RAM access counts become 4N as shown in the tables below.

Dummy write operations may have to be inserted as the first or last operations for a row of data, depending on the horizontal window-address range specification bits (HSA1 to 0, HEA1 to 0). The number of dummy write operations of a row must be 4N.

Table 24 Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits)

HSA1	HSA0	Number of Dummy Write Operations to be Inserted at the Start of a Row
0	0	0
0	1	1
1	0	2
1	1	3

Table 25 Number of Dummy Write Operations in High-Speed RAM Write (HEA Bits)

HEA1	HEA0	Number of Dummy Write Operations to be Inserted at the End of a Row
0	0	3
0	1	2
1	0	1
1	1	0

Each row of access must consist of 4 x N operations, including the dummy writes.

Horizontal access count = first dummy write count + write data count + last dummy write count = 4 x N

An example of high-speed RAM write with a window address-range specified is shown below. The window address-range can be rewritten to consecutively and quickly by inserting two dummy writes at the start of a row and three dummy writes at the end of a row, as determined by using the window address-range specification bits (HSA1 to 0= "10", HEA1 to 0= "00").

Note1) The address set for the high-speed RAM write must be 00 or 11 according to the value of I/D0 bit. Only RAM in the speicfied window address-range will be overwritten.

Figure 33 Example of the High-Speed RAM write with a window address-range specification

Window Address Function

When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal address register (start: HSA7-0, end: HEA7-0) or the vertical address register (start: VSA7-0, end: VEA7-0) can be written to consecutively.

Data is written to addresses in the direction specified by the AM bit (increment/decrement). When image data, etc. is being written, data can be written consecutively without thinking a data wrap by doing this. The window must be specified to be within the GRAM address area described below. Addresses must be set within the window address.

[Restriction on window address-range settings]

(horizontal direction) "00"H \leq HSA7- $0 \leq$ HEA7- $0 \leq$ "83"H

(vertical direction) "00" $H \le VSA7-0 \le VEA7-0 \le "AF" H$

[Restriction on address settings during the window address]

(RAM address) $HSA7-0 \le AD7-0 \le HEA7-0$

 $VSA7-0 \le AD15-8 \le VEA7-0$

Note: In high-speed RAM-write mode, the lower two bits of the address must be set as shown below according to the value of the ID0 bit.

ID0=0: The lower two bits of the address must be set to "11".

ID0=1: The lower two bits of the address must be set to "00"

Window address-range specification area

HSA5-0=10H, HSE5-0=2FH VSA7-0=20H, VEA7-0=5FH I/D0=1 (increment)
AM=0 (horizontal writing)

Figure 34 Example of Address Operation in the Window Address Specification

Graphic Operation Function

The HD66766 can greatly reduce the load of the microcomputer graphics software processing through the 16-bit bus architecture and internal graphics-bit operation function. This function supports the following:

- 1. A write data mask function that selectively rewrites some of the bits in the 16-bit write data.
- 2. A conditional write function that compares the write data and compare-bit data and writes the data sent from the microcomputer only when the conditions match. Even if the display size is large, the display data in the graphics RAM (GRAM) can be quickly rewritten. The graphics bit operation can be controlled by combining the entry mode resister. The bit set value of the RAM-write –data mask resister, and the write from the microcomputer.

	Bit	Setting		
Operation Mode	I/D	AM	LG2-0	Operation and Usage
Write mode 1	0 /1	0	000	Horizontal data replacement, horizontal - border drawing
Write mode 2	0 /1	1	000	Vertical data replacement, vertical - border drawing
Write mode 3	0 /1	0	110,111	Conditional horizontal data replacement, horisontal - border drawing
Write mode 4	0 /1	1	110,111	Conditional vertical data replacement, vertical - border drawing

Table 26 Graphics operation

Figure 35 Graphics Operation flow

Write-data Mask Function

The HD66766 has a bit-wise write-data mask function that controls writing the 16-bit data from the microcomputer to the GRAM. Bits that are "0" in the write-data mask register (WM15–0) cause the corresponding DB bit to be written to the GRAM. Bits that are "1" prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only one-pixel data is rewritten or the particular display color is selectively rewritten.

Figure 36 Write-data Mask Function Operation

Graphics Operation Processing

1. Write mode 1: AM = 0, LG2-0 = "000"

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (GRAM) or to draw borders. The write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D=1) or decrements by 1 (I/D=0) , and automatically jumps to the counter edge one-raster below after it has reached the left or right edge of the GRAM.

Figure 37 Writing Operation of Write Mode 1

2. Write mode 2: AM = 1, LG2-0 = "000"

This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM, develop the font pattern in the vertical direction, or draw borders. The write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left egde (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

Figure 38 Operation of Write Mode 2

3. Write mode 3: AM = 0, LG2-0 = 110/111

This mode is used when the data is holizontally written by comparing the write data and the set value of the compare resister (CP7-0). When the result of the comparison in a byte unit satisfies the condition write-data mask function (WM15-0) are also enabled. After writing , the address counter (AC) automatically increments by 1 (I/D=1) or decrements by 1 (I/D=0), and automatically jumps to the counter edge one-raster-raw below after it has reached the left or right edge of the GRAM.

Figure 39 Operation of Write Mode 3

4. Write mode 4: AM = 1, LG2-0 = 110/111

This mode is used when a vertical comparison is performed between the write data and the set value of the compare resister (CP15-0) to write the data . When the result by the comparison in a byte unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, write data mask function (WM15-0) are also enabled. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D=1) or upper-left edge (I/D=0) following the I/D bit after it has reached the lower edge of the GRAM.

2. After writing to address "AF00"H the AC jumps to "0001"H.

Figure 40 Writing Operation of Write Mode 4

4096 colors Display Function

HD66766 is equipped with 4096 colors display function. When setting SPR bit = 1, it operates 4096 color display function, and uses 16 bits instead of 12 bits. Upper 4 bits are invalid when operating 4096 colors display function. While operating 4096 colors display function, write mode 3 and 4 in graphic operation are not usable.

Figure 41 4096 color display data write and read format

4096 color R, G, B data and selective grayscale palette

R,B,G data	selective grayscale palette	R,B,G data	selective grayscale pale	ette
0000	PK0	1000	PK17	
0001	PK2	1001	PK19	
0010	PK4	1010	PK21	
0011	PK6	1011	PK23	
0100	PK8	1100	PK25	
0101	PK10	1101	PK27	
0110	PK12	1110	PK29	
0111	PK14	1111	PK31	

Grayscale Palette

The HD66766 incorporates a grayscale palette to simultaneously display 65K of the 140,608 possible colors. The grayscales consist of 32 6-bit palettes. The 52-stage grayscale levels can be selected from the 6-bit palette data.

For the display data, the four-bit data in the GRAM written from the microcomputer is used. In this palette, a pulse-width control system (PWM) is used to eliminate flicker in the LCD display. The time over which the LCDs are switched on is adjusted according to the level and grayscales are displayed so that flicker is reduced and grayscales are clearly displayed.

Figure 42 Grayscale Palette Control

Grayscale Palette Table

The grayscale register that is set for each palette register (PK) can be set to any level. 52-grayscale lighting levels can be set according to palette values ("000000" to "110100").

Table 27 Grayscale Control Level

	Palette Register Value (PK)												
0	0	0	0	0	0	Unlit level*1							
0	0	0	0	0	1	1/52level							
0	0	0	0	1	0	2/52level							
0	0	0	0	1	1	3/52level							
0	0	0	1	0	0	4/52level							
0	0	0	1	0	1	5/52level							
0	0	0	1	1	0	6/52level							
0	0	0	1	1	1	7/52level							
0	0	1	0	0	0	8/52level							
0	0	1	0	0	1	9/52level							
0	0	1	0	1	0	10/52level							
0	0	1	0	1	1	11/52level							
0	0	1	1	0	0	12/52level							
0	0	1	1	0	1	13/52level							
0	0	1	1	1	0	14/52level							
0	0	1	1	1	1	15/52level							
0	1	0	0	0	0	16/52level							
0	1	0	0	0	1	17/52level							
0	1	0	0	1	0	18/52level							
0	1	0	0	1	1	19/52level							
0	1	0	1	0	0	20/52level							
0	1	0	1	0	1	21/52level							
0	1	0	1	1	0	22/52level							
0	1	0	1	1	1	23/52level							
0	1	1	0	0	0	24/52level							
0	1	1	0	0	1	25/52level							
0	1	1	0	1	0	26/52level							
0	1	1	0	1	1	27/52level							
0	1	1	1	0	0	28/52level							
0	1	1	1	0	1	29/52level							
0	1	1	1	1	0	30/52level							
0	1	1	1	1	1	31/52level							
1	0	0	0	0	0	32/52level							

→ Next Page continued

Rev. 1.0 / 30 November 2001

1	0	0	0	0	1	33/52level
1	0	0	0	1	0	34/52level
1	0	0	0	1	1	35/52level
1	0	0	1	0	0	36/52level
1	0	0	1	0	1	37/52level
1	0	0	1	1	0	38/52level
1	0	0	1	1	1	39/52level
1	0	1	0	0	0	40/52level
1	0	1	0	0	1	41/52level
1	0	1	0	1	0	42/52level
1	0	1	0	1	1	43/52level
1	0	1	1	0	0	44/52level
1	0	1	1	0	1	45/52level
1	0	1	1	1	0	46/52level
1	0	1	1	1	1	47/52level
1	1	0	0	0	0	48/52level
1	1	0	0	0	1	49/52level
1	1	0	0	1	0	50/52level
1	1	0	0	1	1	51/52level
1	1	0	1	0	0	All lit level*2

Notes: 1. The unlit level corresponds to a black display when a normally-black color-LCD panel is used, and a white display when a normally-white color-LCD panel is used.

2. The all-lit level corresponds to a white display when a normally-black color-LCD panel is used, and a black display when a normally-white color-LCD panel is used

RGB pixel data and Grayscale level

G pixel data and output level

G pixel data	Output level	G pixel data	Output level	
000000	PK0	100000	PK16	
000001	(PK0+PK1)/2	100001	(PK16+PK17)/2	
000010	PK1	100010	PK17	
000011	(PK1+PK2)/2	100011	(PK17+PK18)/2	
000100	PK2	100100	PK18	
000101	(PK2+PK3)/2	100101	(PK18+PK19)/2	
000110	PK3	10110	PK19	
0000111	(PK3+PK4)/2	100111	(PK19+PK20)/2	
001000	PK4	101000	PK20	
001001	(PK4+PK5)/2	101001	(PK20+PK21)/2	
001010	PK5	101010	PK21	
001011	(PK5+PK6)/2	101011	(PK21+PK22)/2	
001100	PK6	101100	PK22	
001101	(PK6+PK7)/2	101101	(PK22+PK23)/2	
001110	PK7	101110	PK23	
001111	(PK7+PK8)/2	101111	(PK23+PK24)/2	
010000	PK8	110000	PK24	
0100001	(PK8+PK9)/2	110001	(PK24+PK25)/2	
010010	PK9	110010	PK25	
010011	(PK9+PK10)/2	110011	(PK25+PK26)/2	
010100	PK10	110100	PK26	
010101	(PK10+PK11)/2	110101	(PK26+PK27)/2	
010110	PK11	110110	PK27	
010111	(PK11+PK12)/2	110111	(PK27+PK28)/2	
011000	PK12	111000	PK28	
011001	(PK12+PK13)/2	111001	(PK28+PK29)/2	
011010	PK13	111010	PK29	
011011	(PK13+PK14)/2	111011	(PK29+PK30)/2	
011100	PK14	111100	PK30	
011101	(PK14+PK15)/2	111101	(PK30+PK31)/2	
011110	PK15	111110	PK31	
011111	(PK15+PK16)/2	111111	PK31	

$\ensuremath{\mathsf{R}}$, $\ensuremath{\mathsf{B}}$ pixel data and output level

R, B pixel data	Output level	R, B pixel data	Output level	
00000	PK0	10000	PK16	
00001	PK1	10001	PK17	
00010	PK2 10010		PK18	
00011	PK3	10011	PK19	
00100	PK4	10100	PK20	
00101	PK5	10101	PK21	
00110	PK6	10110	PK22	
00111	PK7	10111	PK23	
01000	PK8 11000		PK24	
01001	PK9	11001	PK25	
01010	PK10	11010	PK26	
01011	PK11	11011	PK27	
01100	PK12	11100	PK28	
01101	PK13	11101	PK29	
01110	PK14	11110	PK30	
01111	PK15	11111 PK31		

Setting flow for low power consumption instruction Sleep Mode

Setting the sleep mode bit (SLP) to "1" puts the HD66766 in the sleep mode, where the device stops all internal display operations, thus reducing current consumption. Specifically, LCD operation is completely halted. Here, all the SEG (SEG1 to SEG396) and COM (COM1 to COM176) pins output the "GND" level, resulting in no display. If the AP1-0 bits in the power control register are set to "00" in the sleep mode, the LCD drive power supply can be turned off, reducing the total current consumption of the LCD module.

Table 28 Comparison of Sleep Mode and Standby Mode

Function	Sleep Mode (SLP = "1")	Standby Mode (STB = "1")
LCD control	Turned off	Turned off
R-C oscillation circuit	Operates normally	Operation stopped
Master/slave signal	Operation stopped	Operation stopped

Standby Mode

Setting the standby mode bit (STB) to "1" puts the HD66766 in the standby mode, where the device stops completely, halting all internal operations including the R-C oscillation circuit, thus further reducing current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG396) and COM (COM1 to COM176) pins for the time-sharing drive output the GND level, resulting in no display. If the AP1-0 bits are set to "00" in the standby mode, the LCD drive power supply can bet turned off. During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting the STB bit to "0". When multi-chips are operated, be sure to be set to the standby mode from the slave level.

Figure 43 Procedure for Setting and Canceling Standby Mode

Setting flow for power supply and display instruction

Power-on / off Sequence

To prevent pulse lighting of LCD screens at power-on/off, the power-on/off sequence is activated as shown below. However, since the sequence depends on LCD materials to be used, confirm the conditions by using your own system.

Figure 44 Power-on Sequence

Power-off sequence

Normal case

Note: When hardware reset is input during the power-off period, the D1-0 bits are cleared to "00" and SEG/COM output is forcibly lowered to the GND levels.

Oscillation Circuit

The HD66766 can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decreased, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section.

1) External clock mode

Figure 45 Oscillation Circuits

The relationship between the SEG and COM output levels is as shown in the following figure. While the display is off, SEG and COM outputs go to GND level.

Figure 46 Relationship with SEG/COM Output Level

Frame-Frequency Adjustment Function

The HD66766 has an on-chip frame-frequency adjustment function. The frame frequency can be adjusted by the instruction setting (DIV, RTN) during the LCD drive as the oscillation frequency is always the same. When the display duty is changed, the frame frequency can be adjusted to be the same.

If the oscillation frequency is set to high, an animation or a static image can be displayed in suitable ways by changing the frame frequency. When a static image is displayed, the frame frequency can be set low and the low-power consumption mode can be entered. When high-speed screen switching, for an animated display, etc. is required, the frame frequency can be set high.

Relationship between LCD Drive Duty and Frame Frequency

The relationship between the LCD drive duty and the frame frequency is calculated by the following expression. The frame frequency can be adjusted in the retrace-line period bit (RTN) and in the operation clock division bit (DIV) by the instruction.

```
(Formula for the frame frequency)

fosc

Frame frequency = 

Clock cycles per raster-row × division ratio × 1/duty cycle

fosc: R-C oscillation frequency
Duty: drive duty (NL bit)
Clock cycles per raster-row: (RTN + 26) clock cycles
Division ratio: DIV bit
```

Example Calculation 1 Setting the maximum frame frequency to 60 Hz

Display duty: 1/176

Retrace-line period: 0 clock (RTN3-0 = "0000") Operation clock division ratio: 1 division

 $fosc = 60 \text{ Hz} \times (0 + 26) \text{ clock} \times 1 \text{ division} \times 176 \text{ lines} = 275 \text{ (kHz)}$

In this case, the R-C oscillation frequency becomes 275 kHz. The external resistance value of the R-C oscillator must be adjusted to be 275 kHz. The display duty can be changed by the partial display, etc. and the frame frequency can be the same by setting the RNT bit and DIV bit to achieve the following.

(Partial display): Display duty: 1/40

Retrace-line period: 1 clock (RTN3-0 = "0002") Operation clock division ratio: 3 division

Frame frequency = $275 \text{ kHz/} ((3 + 26) \text{ clock} \times 4 \text{ division} \times 40 \text{ lines}) = 59.2 (Hz)$

Example Calculation 2 Switching the frame frequency to suit animation/static image display

(Animation display): Frame frequency: 90 Hz

Display duty: 1/176

Retrace-line period: 0 clock (RTN3-0 = "0000") Operation clock division ratio: 1 division

 $fosc = 90 \text{ Hz} \times (0 + 26) \text{ clock} \times 1 \text{ division} \times 176 \text{ lines} = 412 \text{ (kHz)}$

(Static image display): Frame frequency: 90 Hz

Display duty: 1/176

Retrace-line period: 1 clock (RTN3-0 = "1101") Operation clock division ratio: 1 division

Frame frequency: 412 kHz/ ((13 + 26) clock \times 1 division \times 176 lines) = 60.0 (Hz)

n-raster-row Reversed AC Drive

The HD66766 supports not only the LCD reversed AC drive in a one-frame unit (B-pattern waveform) but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 64 raster-rows (C-pattern waveform). When a problem affecting display quality occurs, such as cross-talk at high-duty driving of more than 1/64 duty, the n-raster-row reversed AC drive (C-pattern waveform) can improve the quality.

Determine the number of raster-rows n (NW bit set value + 1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC raster-rows is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.

Notice: Specify the number of AC drive raster-rows and the necessity of EOR so that the DC bias is not generated to the LCD.

Figure 47 Example of an AC Signal under n-raster-row Reversed AC Drive

Screen-division Driving Function

The HD66766 can select and drive two screens at any position with the screen-driving position registers (R14h and R15h). Any two screens required for display are selectively driven and a duty ratio is lowered by LCD-driving duty setting (NL4-0), thus reducing LCD-driving voltage and power consumption. For the 1st division screen, start line (SS17-10) and end line (SE17-10) are specified by the 1st screen-driving position register (R14h). For the 2nd division screen, start line (SS27-20) and end line (SE27-20) are specified by the 2nd screen-driving position register (R15h). The 2nd screen control is effective when the SPT bit is "1". The total count of selection-driving lines for the 1st and 2nd screens must correspond to the LCD-driving duty set value.

1/24 duty driving on 2 screen

- -Driving duty: NL4-0 = "00010" (1/24 duty)
- -1st screen setting: SS17-10 = "00"H, SE17-10 = "06" H
- -2nd screen setting: SS27-20 = "19"H, SE27-20 = "29" H, SPT = "1"

Figure 48 Display example in 2-screen division driving

Restrictions on the 1st/2nd Screen Driving Position Register Settings

The following restrictions must be satisfied when setting the start line (SS17-10) and end line (SE17-10) of the 1st screen driving position register (R14h) and the start line (SS27-20) and end line (SE27-20) of the 2nd screen driving position register (R15h) for the HD66766. Note that incorrect display may occur if the restrictions are not satisfied.

Table 28 Restrictions on the 1st/2nd Screen Driving Position Register Settings

	1st Screen Driving (SPT = 0)	2nd Screen Driving (SPT = 1)
Register setting	SS17-10 ≤SE17-0 ≤ "AF"H	SS17-10 ≤ SE17-10 < SS27-20 ≤SE27-20 ≤ "AF"H
Display operation	 Time-sharing driving for COM pins (SS1+1) to (SE1+1) Non-selection level driving for others 	 Time-sharing driving for COM pins (SS1+1) to (SE1+1) and (SS2+1) to (SE2+1) Non-selection level driving for others

- Notes: 1. When the total line count in screen division driving settings is less than the duty setting, non-selection level driving is performed without the screen division driving setting range.
 - 2. When the total line count in screen division driving settings is larger than the duty setting, the start line, the duty-setting line and the lines between them are displayed and non-selection level driving is performed for other lines.
 - 3. For the 1st screen driving, the SS27-20 and SE27-20 settings are ignored.

CD Voltage Generation Circuit

Figure shows a configuration of the HD66766 LCD drive voltage generation circuit. It consists of step-up circuit 1 that doubles or triples the voltage that is applied to Vci1, step-up circuit 2 that multiplies the voltage from step-up circuit 1 by two to five times, and polarity circuit that generates a VCL level by inverting the VCH level centered around the VM level. These circuits generate VCH and VCL that are power supply for COM outputs. The LCD driving level for SEG outputs (VSH and VM) are generated by dividing resistance at the VREF level.

Figure 49 Configuration of internal power circuit

- Note: 1) Use condenser with character B.
 - 2) Condensers with asterisk (*) need resist pressure more than 25V.
 - 3) Insert shot-key barrier diode. (VF = 0.6V / 20mA, VR>=30V)

Notes: 1. Generate an output voltage (VOUT) from step-up circuit 1 within the range from 4.5 to 5.5V.

- 2. Do not allow the output voltage (VCH) from step-up circuit 2 to exceed 22 V.
- 3. Do not allow the output from Vci2 to exceed VOUT voltage .
- 4. When capacitor with polarity is used, be sure that an inverted voltage is not applied to it in any state of the system.
- 5. Vci1 is used as both the reference voltage input and power supply in the step-up circuit. Keep sufficient LCD drive current.
- 6. Rated voltage of capacitors possible to be used are as described below. Required voltage depends on used panels. When actual voltage is less than 16V, capacitors with 16V rated voltage can be used.

6.3V: VREFM, VciOUT, C11, C12, VOUT, BIASC, Vci2, C21, C22, C23, VSH, VM 25V(16V): VCH, CE, VCL

LCD Drive Voltage

The required voltage can be calculated by applying the following expressions. Drive voltages are standard; generate a voltage to suit the panel to be used.

VSH-VM, VM-VSL
$$\frac{1}{2}\sqrt{\frac{2\sqrt{N}}{\sqrt{N}-1}}$$
 x Vth Vth: Threshold N: Display do VCH-VM, VM-VCL $\frac{1}{2}\sqrt{\frac{2N\sqrt{N}}{\sqrt{N}-1}}$ x Vth

Vth: Threshold voltage of the LCD panel to be used. N: Display duty cycle.

LCD Drive Bias

An optimal bias can be calculated by applying the following expression. The value that has been calculated is theoretically optimal. If a lower bias value than the optimal value is used to drive the LCD, contrast may be reduced depending on lighting conditions. However, the power consumption can be reduced by lowering the drive voltage. Adjust the value according to the system to be used.

Bias value =
$$\frac{1}{\sqrt{N}}$$

How to determine the VCH voltage

 $VCH = N_B \times N_{D2} \times VSH$

N_B: Bias ratio

 $N_{\rm D2}$: Step-up factor of the step-up circuit 2

Contrast adjustment

 R_B : Contrast resistance (0.004R to 0.512R) VSH = VREFM x 2R / (Rb + 2R)

	CT setting value						
СТ6	СТ5	CT4	СТЗ	CT2	CT1	СТО	Rb resist value
0	0	0	0	0	0	0	1.016R
0	0	0	0	0	0	1	1.008R
0	0	0	0	0	1	0	1.000R
0	0	0	0	0	1	1	0.992R
0	0	0	0	1	0	0	0.984R
1	1	1	1	1	1	0	0.008R
1	1	1	1	1	1	1	0.000R

How to determine the power setting value

1. Determine LCD drive bias

Determine LCD drive bias first. LCD drive bias is theoretically (1/SQRT (display duty)) optimal; however, the total drive voltage can be reduced by lowering bias ratio. Consider the display quality, the drive voltage and the current consumption.

2. Determine VOUT voltage

Determine factor of Vc1 regulator and step-up factor so as to set output voltage, VOUT of step-up circuit 1 4.5 to 5.5V, setting input voltage Vci2 of step-up circuit 2 more than +0.5V. Since the entire electric power for driving LCD is supplied from step-up circuit, subsequent voltage fall need to be considered.

3. Segment drive voltage calculation

Segment output drive voltage is calculated by the following expression.

$$Vseg = \sqrt{\frac{2 \times B}{(B-1)}} \times VTH$$

B : LCD drive bias ratio

Vth: LCD threshold voltage

4. Common drive voltage calculation

Common output drive voltage is calculated by the following expression.

$$Vcom = \frac{Vseg}{2} x (B+1)$$

B : LCD drive bias ratio

5. Determine input voltage of step-up circuit 2

Determine input voltage of step-up circuit 2. This voltage is determined by dividing Vcom voltage by step-up factor; lower factors are used for low current consumption. Vci2 voltage need to be less than VOUT voltage (4.5 to 5.5 V).

Example of register setting on power supply

Examples of register setting values on power supply are described below.

Example 1 : 1/176 duty ratio, Vcc = VREFL = 3.0V, 1/13 bias

BS3-0 = H'8: bias adjustment 1.4 times

BT2-0 = H'4 : step-up circuit 1 2 times step-up circuit 2 5 times

BT3 = H'1 : operate voltage inverting circuit

DC2-0 = H'6 step-up circuit 1 frequency 32 clocks step-up circuit 2 frequency 128 clocks

TBD

AP1-0 = H'1 : low fixed current in the amplifier

VC2-0 = H'0 : Vci1 = 0.92 x Vcc = 2.75 V

VR2-0 = H'0 : $VREFM = 1.1 \times VREFL$

CT6-0 : appropriate contrast setting values

Rev. 1.0 / 30 November 2001

Example 2 : 1/176 duty ratio, Vcc = VREFL = 2.4V, Vci = 2.8V, 1/13 bias

BS2-0 = H'8: bias adjustment 1.4 times

BT2-0 = H'4 : step-up circuit 1 2 times step-up circuit 2 5 times

BT3 = H'1 : operate voltage inverting circuit

DC2-0 = H'6 : step-up circuit 1 frequency 32 clocks step-up circuit 2 frequency 128 clocks

TBD

AP1-0 = H'1 : low fixed current in the amplifier

VC2-0 = H'4 : internal Vci1 regulator off 2.8V directly supplied to Vci1

VR3-0 = H'2 : $VREFM = 1.4 \times VREFL$

CT6-0 : appropriate contrast setting values

Example 3: Partial display, 1/24 duty ratio, Vcc = 2.4V, Vci = 2.8V, 1/4 bias

BS2-0 = H'0: bias adjustment 1.25 times

BT2-0 = H'0 : step-up circuit 1 2 times step-up circuit 2 2 times

BT3 = H'1 : operate voltage inverting circuit

DC2-0 = H'6 : step-up circuit 1 frequency 64 clocks step-up circuit 2 frequency 128 clocks

TBD

AP1-0 = H'1: low fixed current in the amplifier

VC2-0 = H'4 : internal Vci1 regulator off

VR3-0 = H'2 : $VREG 1 = 1.4 \times VREFL$

CT6-0 : appropriate contrast setting values

Figure 50 HD66766 Power supply level correlatio

Connection of condenser related to the magnification of step up circuit 1

(2) 3 times step-up circuit (3 x Vci1)

Connection of condenser related to the magnification of step up circuit 2

(1) 2 times step-up circuit (2 x Vci2)

(2) 3 times step-up circuit (3 x Vci2)

(3) 4times step-up circuit (4 x Vci2)

(4) 5times step-up circuit (5 x Vci2)

Absolute Maximum Ratings

Item	Symbol	Unit	Value	Notes*
Power supply voltage (1)	Vcc	V	-0.3 to + 4.6	1, 2
Power supply voltage (2)	Vcil	V	-0.3 to + 4.6	1, 3
Power supply voltage (3)	V_{CH} – VCL	V	-0.3 to + 46	1, 4
Input voltage	Vt	V	-0.3 to Vcc + 0.3	1
Operating temperature	Topr	°C	-40 to +85	1, 5
Storage temperature	Tstg	°C	-55 to + 110	1, 6

- Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.
 - 2. Vcc ≥ GND must be maintained
 - $3.\text{Vcil} \ge \text{GND}$ must be maintained.
 - 4.VCH ≥ GND must be maintained
 - GND ≥ VCL must be maintained
 - 5. For die and wafer products, specified up to 85 °C.

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
Input high voltage	V _{IH}	V	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	0.7 V _{CC}	_	V _{CC}	2, 3
Input low voltage	V _{IL}	V	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	-0.3	_	0.15V _{CC}	2, 3
Output high voltage (1) (DB0-15 pins)	V_{OH1}	V	$I_{OH} = -0.1 \text{ mA}$	0.75V _{CC}		_	2
Output low voltage (1) (DB0-15 pins)	V _{OL1}	v	$V_{CC} = 2.2 \text{ to } 2.4 \text{ V},$ $I_{OL} = 0.1 \text{ mA}$	_	_	0.2 V _{CC}	2
			$VCC = 2.4 \text{ to } 3.6 \text{ V},$ $I_{OL} = 0.1 \text{ mA}$	_	_	0.15V _{CC}	2
Driver ON resistance (SEG pins)	R_{SEG}	kΩ	$\pm Id = 0.05 \text{ mA},$ $V_{LCD} = 3 \text{ V}$	_	0.35	3	4
Driver ON resistance (COM pins)	R_{COM}	kΩ	$\pm Id = 0.05 \text{ mA},$ $V_{CH} - V_{CL} = 44 \text{ V}$	_	0.90	3	4
I/O leakage current	I_{Li}	μΑ	$Vin = 0$ to V_{CC}	-1	_	1	5
Current consumption during normal operation (V _{CC} – GND)	I_{OP}	μΑ	R-C oscillation $V_{CC} = 3.0 \text{ V}$, VCH = 20V, VM = 1.6V, VCL = -16.8V, Ta = 25°C $f_{OSC} = 276 \text{ Khz } (1/176 \text{ duty})$, 1/12 Bias CT minimum AP minimum, display all 0 Step-up 1 = two times Step-up 2 = five times VCI1 = 0.92 x VCC	_	480.	600	6
Current consumption during standby mode (V _{CC} – GND)	I_{ST}	μA	$V_{CC} = 3 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$ $V_{CC} = 3\text{V}, \text{ Ta} = 85^{\circ}\text{C}$		0.1	5 50	

AC Characteristics ($V_{\rm CC}$ = 2.2 to 3.6 V, Ta = -40 to +85°C*¹)

Clock Characteristics ($V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$)

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
External clock frequency	fcp	kHz	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	151	275	640	7
External clock duty ratio	Duty	%	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	45	50	55	7
External clock rise time	trcp	μs	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	_	_	0.2	7
External clock fall time	tfcp	μs	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$		_	0.2	7
R-C oscillation clock	f_{OSC}	kHz	$Rf = 200k\Omega$,	220	275	330	8
			$V_{CC} = 3 \text{ V}$				

68-system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0)

(Vcc = 2.2 to 2.4 V)

Item		Symbol Unit		Test Cond	ition	Min	Typ	Max
Enable avale time	Write	t _{CYCE}	ns	Figure 1	600	_	_	
Enable cycle time	Read	t_{CYCE}	ns	Figure 1	800	_	_	
Eachla high land males width	Write	PW_{EH}	ns	Figure 1	90	_	_	
Enable high-level pulse width	Read	PW_{EH}	ns	Figure 1	350	_		
Eachla land land and a sideh	Write	PW_{EL}	ns	Figure 1	300	_	_	
Enable low-level pulse width	Read	PW_{EL}	ns	Figure 1	400	_	_	
Enable rise/fall time		t_{Er}, t_{Ef}	ns	Figure 1		_	25	
Set up time (RS, R/W to E, CS*)		t _{ASE}	ns	Figure 1	10	_	_	
Address hold time		t _{AHE}	ns	Figure 1	5	_	_	
Write data set up time		t _{DSWE}	ns	Figure 1	60	_	_	
Write data hold time		$t_{\rm HE}$	ns	Figure 1	15		_	
Read data delay time		t_{DDRE}	ns	Figure 1	_	_	200	
Read data hold time		t_{DHRE}	ns	Figure 1	5	_	_	
-		DHKE						_

High-Speed Write Mode (HWM=1)

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Typ	Max
Enghla avala tima	Write	t _{CYCE}	ns	Figure 1	200	_	
Enable cycle time	Read	t_{CYCE}	ns	Figure 1	800	_	_
Eachla high level color wilds	Write	PW_{EH}	ns	Figure 1	90	_	_
Enable high-level pulse width	Read	PW_{EH}	ns	Figure 1	350	_	
Eachla land land miles width	Write	PW_{EL}	ns	Figure 1	90	_	
Enable low-level pulse width	Read	PW_{EL}	ns	Figure 1	400		
Enable rise/fall time		t_{Er}, t_{Ef}	ns	Figure 1	_	_	25
Set up time (RS, R/W to E, CS*)		t_{ASE}	ns	Figure 1	10	_	_
Address hold time		t_{AHE}	ns	Figure 1	5	_	
Write data set up time		t _{DSWE}	ns	Figure 1	60	_	
Write data hold time		t_{HE}	ns	Figure 1	15	_	
Read data delay time		t_{DDRE}	ns	Figure 1	_	_	200
Read data hold time		t_{DHRE}	ns	Figure 1	5	_	

Normal Write Mode (HWM=0)

(Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Enable cycle time	Write	t _{CYCE}	ns	Figure 1	200	_	_	_
	Read	t_{CYCE}	ns	Figure 1	300	_	_	_
Enable high-level pulse width	Write	PW_{EH}	ns	Figure 1	40	_	_	_
	Read	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	150	_	_	_
Enable low-level pulse width	Write	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	100	_	_	_
	Read	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	100	_	_	_
Enable rise/fall time		$t_{\rm Er},t_{\rm Ef}$	ns	Figure 1	_	_	25	_
Set up time (RS, R/W to E, CS*)		f	ns	Figure 1 -	10	_	_	Using status read
Set up time (KS, K/W to E, CS-)		t_{ASE}	115	rigule i	0	_	_	Not using status read
Address hold time		t_{AHE}	ns	Figure 1	2	_	_	_
Write data set up time		t_{DSWE}	ns	Figure 1	60	_	_	_
Write data hold time		$t_{\rm HE}$	ns	Figure 1	2	_	_	_
Read data delay time		t_{DDRE}	ns	Figure 1	_	_	100	_
Read data hold time		t_{DHRE}	ns	Figure 1	5			_

High-Speed Write Mode (HWM=1)

(Vcc = 2.4 V to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Enable cycle time	Write	t _{CYCE}	ns	Figure 1	100	_	_	_
	Read	t _{CYCE}	ns	Figure 1	300	_	_	_
Enable high-level pulse width	Write	PW_{EH}	ns	Figure 1	40	_	_	_
	Read	PW_{EH}	ns	Figure 1	150	_	_	_
Enable low-level pulse width	Write	PW_{EL}	ns	Figure 1	40	_	_	_
	Read	PW_{EL}	ns	Figure 1	100	_	_	_
Enable rise/fall time		t_{Er}, t_{Ef}	ns	Figure 1	_	_	25	_
Cat up time (DC D/W to E CC*)		4	ns	ns Figure 1	10	_	_	Using status read
Set up time (RS, R/W to E, CS*)		t_{ASE}			0	_	_	Not using status read
Address hold time		t_{AHE}	ns	Figure 1	2	_	_	_
Write data set up time		t_{DSWE}	ns	Figure 1	60	_	_	_
Write data hold time		t_{HE}	ns	Figure 1	2	_	_	_
Read data delay time		t_{DDRE}	ns	Figure 1	_	_	100	_

80-system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0)

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	600	_	_
	Read	t _{CYCR}	ns	Figure 2	800	_	_
Write low-level pulse width		PW_{LW}	ns	Figure 2	90	_	_
Read low-level pulse width		PW_{LR}	ns	Figure 2	350	_	_
Write high-level pulse width		PW_{HW}	ns	Figure 2	300	_	_
Read high-level pulse width		PW_{HR}	ns	Figure 2	400	_	_
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_	_	25
Setup time		t _{AS}	ns	Figure 2	10	_	_
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 2	5	_	_
Write data set up time		$t_{ m DSW}$	ns	Figure 2	60	_	_
Write data hold time		t _H	ns	Figure 2	15	_	_
Read data delay time		t_{DDR}	ns	Figure 2	_	_	200
Read data hold time		t_{DHR}	ns	Figure 2	5	_	_

High-Speed Write Mode (HWM=1)

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t_{CYCW}	ns	Figure 2	200	_	
	Read	t _{CYCR}	ns	Figure 2	800	_	
Write low-level pulse width		PW_{LW}	ns	Figure 2	90	_	
Read low-level pulse width		PW_{LR}	ns	Figure 2	350	_	
Write high-level pulse width		PW_{HW}	ns	Figure 2	90	_	
Read high-level pulse width		PW_{HR}	ns	Figure 2	400	_	_
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_	_	25
Set up time		t _{AS}	ns	Figure 2	10	_	
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 2	5	_	
Write data set up time		t_{DSW}	ns	Figure 2	60	_	
Write data hold time		$t_{\rm H}$	ns	Figure 2	15	_	_
Read data delay time		$t_{\rm DDR}$	ns	Figure 2	_	_	200
Read data hold time		$t_{\rm DHR}$	ns	Figure 2	5	_	_

Rev. 1.0 / 30 November 2001

(Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	200	_	_	
	Read	t_{CYCR}	ns	Figure 2	300	_	_	
Write low-level pulse width		PW_{LW}	ns	Figure 2	40	_	_	
Read low-level pulse width		PW_{LR}	ns	Figure 2	150	_	_	
Write high-level pulse width		PW_{HW}	ns	Figure 2	100	_	_	
Read high-level pulse width		PW_{HR}	ns	Figure 2	100	_	_	
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_	_	25	
Set up time		4		Eigung 2	10	_	_	Using status read
(RS to CS*, WR*, RD*)		t_{AS}	ns	Figure 2 -	0	_	_	Not using status read
Address hold time		t _{AH}	ns	Figure 2	2	_	_	
Write data setup time		t_{DSW}	ns	Figure 2	60	_	_	
Write data hold time		t _H	ns	Figure 2	2	_	_	
Read data delay time		t_{DDR}	ns	Figure 2	_	_	100	
Read data hold time		t_{DHR}	ns	Figure 2	5	_	_	

High-Speed Write Mode (HWM=1)

(Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	100	_	_	
	Read	t _{CYCR}	ns	Figure 2	300	_	_	
Write low-level pulse width		PW_{Lw}	ns	Figure 2	40	_	_	
Read low-level pulse width		PW_{LR}	ns	Figure 2	150	_	_	
Write high -level pulse width		PW_{HW}	ns	Figure 2	40	_	_	
Read high -level pulse width		PW_{HR}	ns	Figure 2	100	_	_	
Write/Read rise/fall time		t _{WRr} , _{WRf}	ns	Figure 2	_	_	25	
Set up time				E: 2	10	_	_	Using status read
(RS to CS*, WR*, RD*)		t_{AS}	ns	Figure 2	0	_	_	Not using status read
Address hold time		t _{AH}	ns	Figure 2	2	_	_	
Write data set up time		$t_{ m DSW}$	ns	Figure 2	60	_	_	
Write data hold time		t _H	ns	Figure 2	2	_	_	
Read data delay time		t_{DDR}	ns	Figure 2	_	_	100	
Read data hold time		t_{DHR}	ns	Figure 2	5	_	_	

Clock Synchronized Serial Interface Timing Characteristics

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Typ	Max
	Write (received)	t_{SCYC}	us	Figure 3	0.1	_	20
Serial clock cycle time	Read (transmitted)	t_{SCYC}	us	Figure 3	0.25	_	20
Carial alada biak landanda ariidda	Write (received)	t_{SCH}	ns	Figure 3	40	_	_
Serial clock high-level pulse width	Read (transmitted)	t_{SCH}	ns	Figure 3	120	_	_
Carial alash landanda arikh	Write (received)	t_{SCL}	ns	Figure 3	40	_	
Serial clock low-level pulse width	Read (transmitted)	t_{SCL}	ns	Figure 3	120	_	_
Serial clock rise/fall tim	ne	$t_{\rm scr, scf}$	ns	Figure 3	_	_	20
Chip select set up time	;	t_{CSU}	ns	Figure 3	20	_	
Chip select hold time		t_{CH}	ns	Figure 3	60	_	
Serial input data set up ti	me	t_{SISU}	ns	Figure 3	30	_	
Serial input data hold tir	ne	t_{SIH}	ns	Figure 3	30	_	
Serial input data delay ti	me	t_{SOD}	ns	Figure 3	_	_	130
Serial input data hold tir	ne	t_{SOH}	ns	Figure 3	5	_	_

(Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Typ	Max
	Write (received)	t _{SCYC}	us	Figure 3	0.076	_	20
Serial clock cycle time	Read (transmitted)	t_{SCYC}	us	Figure 3	0.15	_	20
	Write (received)	t_{SCH}	ns	Figure 3	40	_	_
Serial clock high-level pulse width	Read (transmitted)	t _{SCH}	ns	Figure 3	70	_	_
	Write (received)	t _{SCL}	ns	Figure 3	35	—	_
Serial clock low-level pulse width	Read (transmitted)	t_{SCL}	ns	Figure 3	70	_	
Serial clock rise/fall time		$t_{\rm scr, scf}$	ns	Figure 3	_	_	20
Chip select set up time		t_{CSU}	ns	Figure 3	20	_	
Chip select hold time	t_{CH}	ns	Figure 3	60	_	_	
Serial input data set up time		t_{SISU}	ns	Figure 3	30	_	_
Serial input data hold time	$t_{\rm SIH}$	ns	Figure 3	30	_	_	
Serial output data delay time	t_{SOD}	ns	Figure 3	_		130	
Serial output data hold time		t_{SOH}	ns	Figure 3	5		

Reset Timing Cha	racteristics (${ m V}_{ m CC}$	= 2.2 to 3.6 V
------------------	---------------------------------	-------------------

Item	Symbol	Unit	Test Condition	Min	Тур	Max
Reset low-level width	t_{RES}	ms	Figure 4	1	_	_
Reset rise time	t_{rRES}	ms	Figure 4	_	_	100

Electrical Characteristics Notes

- 1. For bare die and wafer products, specified up to 85°C.
- 2. The following three circuits are I pin, I/O pin, O pin configurations.

Pins: RESET*, CS*, E/WR, RW/RD, RS, OSC1, IM2-1, IM0/ID, TEST1, TEST2

Pins: OSC2

Pins: DB15 -DB2, DB1/SD0, DB0/SD1

Figure 51 I/O Pin Configuration

- 3. The TEST1, TEST2 pins must be grounded and the IM2/1 and IM0/ID pins must be grounded or connected to Vcc.
- 4. Applies to the resistor value (RSEG) between VSH, GND pins and segment signal pins.
- 5. This excludes the current flowing through output drive MOSs.

- 6. This excludes the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change.
- 7. Applies to the external clock input (figure).

Figure 52 External Clock Supply

8. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table).

Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.

Figure 53 Internal Oscillation

External Resistance	R-C Oscillation Frequency: fosc					
(Rf)	Vcc = 1.8V	Vcc = 2.2 V	Vcc = 2.4 V	Vcc = 3.0 V	Vcc = 3.6 V	
75 kΩ	364	495	559	631	687	
130 kΩ	263	345	381	421	453	
180 kΩ	210	270	295	323	344	
200 kΩ	193	245	266	290	307	
240 kΩ	174	218	236	256	270	
280 kΩ	156	194	210	226	238	
360 kΩ	129	158	170	182	191	
470 kΩ	102	122	129	137	142	

Table 29 External Resistance Value and R-C Oscillation Frequency (Referential Data)

Load Circuits

AC Characteristics Test Load Circuits

Figure 55 Load Circuit

Timing Characteristics

68-system Bus Operation

Figure 55 68-system Bus Timing

Notes: 1) PWEH is specified in the overlapped period when CS* is low and E is high.

2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND.

80-system Bus Operation

Figure 56 80-system Bus Timing

Clock Synchronized Serial Interface Operation

Figure 57 Clock Synchronized Serial Interface Timing

Reset Operation

Figure 58 Reset Timin

Additional Issue

HD66766 Contrast fluctuation on RAM access

Hitachi one-chip driver; HD66766 has contrast fluctuation while accessing the internal RAM. This phenomenon occurs according to the structure of external circuit and the usage of HD66766. Please have a clear understanding of the phenomenon and measures described below before using HD66766.

1. Contrast fluctuation

When HD66766 is mounted on glass, the grand terminal gets contact with resistance of ITO wiring. HD66766 has 8 GNDs, 4 AGNDs for power supply circuit, and another 4 GNDs for RAM and Logic. When all the GNDs are connected on glass with ITO, transferring display data to the internal RAM at high-speed causes high current consumption. And resistance of ITO wiring connected with GND terminal raises the voltage. The raised voltage is amplified with a step-up circuit, and it results in a decrease of VCH/VCL voltage causing contrast fluctuation on display. Figure 1 shows the mechanism of the phenomenon. Figure 2 shows decrease of VCH voltage according to RAM access frequency and resistance of ITO wiring. (The value shown in Figure 2 is the actual data of a typical sample of HD66766 measured by Hitachi's jig.)

2. Measures

ITO patterns on glass must be separated as shown in Figure 3. (Even if GND bumps are separated on LSI, if ITO patterns on glass are connected, GND level rises up in RAM circuit and Logic circuit.) Also, GND resistor should be designed to be less than $10~\Omega$, considering the decrease of VCH voltage caused by the raise of GND voltage.

Figure 1 Influence of ITO wiring resistance

Figure 2 VCH voltage decrease depending on RAM access frequency and Resistance of ITO wiring

Figure 3 ITO Connection Pattern (Recommended)

Maintenance history report: (ex. P53 = page53 / L3 = line 3 / - = blank)

Rev. 0.1	1 11 50 00						
2001.06.25	First edition						
Rev. 0.2	P16 4096 color controle bit (SPR) added on the R05 register						
2001.07.25	P19 Correction of miswriting in the formula for frame-frequency						
		(Change from RTN+25 to RTN					
	P25 Co	prrection of miswriting in gray scale	*				
		(Change from R30-R37 to R30	_				
		Revision of the name of pallate					
	P26 Ad	dition of register SPR in R05 of In	_				
	P27Ado	dition of register SPR in Entry mo	de register				
		Revision of the name of gray s					
		(Change from PK05-00 to PK0)					
	P41 Re	vision of the name of pallate regis	ter, and gray scale palla	te controle			
	P43 Ad	dition of the list of RGB pixel d	ata and gray scale level				
		Explanation of LCD Volage Ger		d to just before			
		the Absolute Maximum Rating	SS.				
		eletion of Note8 and Note 9					
	Correct	ion of miswriting		T			
	page	part	Rev 0.1	Rev 0.2			
	P2	Middle	46,464	34,848			
	P4	IM2-1,IM0/ID	80 system 16-bit bus	80 system 8 bit bus			
			interface	interfae			
	P6	Middle	CE+, CE-	CEP, CEM			
	P6	OSC1,OSC2	When providing clocks from outside,	When providing clocks from outside,			
			open OSC2. input colck to C				
			open ob cz.	and leave OSC2 open.			
	P12	Figure 4 (RW register)	W	R			
	P17	Table 9	3.45 x VM	3.25 x VM			
		1/12 x 4 part					
	P18	Table 12	22.0V	20.0V			
		VCH output of the booster					
	P21	I/D1-0	AD5-0	AD7-0			
		Middle					
	P22	Figure 11	LG2-1	LG2-0			
		Middle					
	P23	Table17	32,33,34,35,46,47	26,27,28,29,40,41			
		Clock Cycles					
	P25	HSA5-0/HEA5-0 L 2	HSA7-0	HSA5-0			
	P30	First line, top	RD15-0	RD11-0			
	P30	The bottom of Logical operation processing	-	Second words			

Rev. 0.2	page	Part	Before	After
2001.07.25	P31	The last two items of the left line in table 20	R3F, R3E	R3E, R3F
			PK315-00	PK31-0
	P32	R05h/DB15	0	SPR
	P32	R05h/DB15	HDZ	0
	P32	R20h/Execution cycle	WM11-0	WM15-0
	P34	L4, left side	Least 1 ms	Least 200 us
	P34	L18, middle	RTN2-0	RTN3-0
	P38	Figure 27, SDI	output	input
	P41	Notes: 1	The compare operations cannot be used.	The compare operations and swap function cannot be used.
	P50	Figure 37, Note :2	"0001"H	"AF00"H
	P52	L3	(CP7-0)	(CP15-0)
	P52 Figure 39, Notes:2		"0001"H	"AF00"H
	P53	L3	Sixteen	32
	P53	L3	5-bit	6-bit
	P53	L3	24-stage	52-stage
	P53	L4	Five-bit	6-bit
	P54	L2, right	24-gray scale	52-gray scale
	P55	The right bottom of the table	Unlit level	All-lit
	P62	Example calculation-1 Frame frequency	59.3(Hz)	59.2(hz)
	P62	Example calculation-2 (static image display) frame frequency	60Hz	90Hz
	P62	Example cal-2 (static imagedisplay) Retrace-line period	13 clock	1 clock
	P66	Power supply voltage (3) / Symbol	V _{CH} -GND	V _{CH} -VCL
	P66	Power supply voltage(3) / Unit	-	V
	P66	Operating temperature/Notes	1,4	1,5
	P66	Storage temperature/Notes	1,5	1,6
	P67	Current consumption during normal operation/Test condition	Fosc=264 Khz	Fosc=332 Khz

Rev. 1.0 / 30 November 2001

Rev. 0.2	page	part	Before	After
2001.07.25	P67	LCD drive power supply /Test condition	Fosc=264 Khz	Fosc= 332 Khz
	P68	Clock Characteristics, External clock frequency/Type	275	268
	P73	Serial clock cycle time/Unit	ns	us
	P73	Serial clock high-level pulse width/Unit	ns	us
	P74	Serial clock cycle tie/Unit	ns	us
	P74	Serial clock high-level pulse width/Unit	ns	us
	P74	Serial input data setup time/Symbol	T_{ISU}	T_{SISU}
	P85	Example 3 BT2-0	5 times	2 times
Rev. 0.2-1	3	HD66766 Block Diagram	12	16
2001.9.12		Description (bit width)	48	64
	4	IM2-1, IM0/ID	Serial peripheral interface (SPI)	Clock synchronized serial interface
	9,10	Table 5	RGB allotment	Selected pallete
			PK palette	PK palette + FRC
	12	Index : IR /L 1	R00h to R39h	R00h to R3Fh
	21	Compare resister (06h)	-	Add the explanation for compare resister
		after AM	-	Add the explanation for SPR
	27	WM11-0	WM11	WM15
	28	WD15-0 (Deleted the explanation for dither)	When hard dither processing is not used, 12-bit data is written to the GRAM form WD11-0. When used, 12-bit data is written to the GRAM after dither processing is performed for 16-bit data from WD15-0.	Write 16-bit data to the GRAM;

Rev. 0.2-1	page	part	Before	After
2001.9.12	31	RD15-0 (Deleted the explanation for dither)	When hard dither processing mode is used and data is written to the GRAM. Dither processing has already been performed for read data (16 bit).	Deleted
	32	Note for Table 20	PK31-0	PK31-00
	33	R05h (Deleted the explanation for dither)	And hard dither (HDZ)	Deleted
	42	Note 1	The compare operation and swap function cannot be used.	The logical and compare operation cannot be used.
	43 Function name		Compare operation function	Logical operation function
	48 Graphic Operation Function		Swap function	Compare operation function
			Explanation 1.2.3.4.	Explanation 1.2.
	69	Figure 56	1.0 uF	0.1uF
		Figure 56 Note 2)	VF = 0.3V / 1mA	VF = 0.4V / 20mA
	77	DC characteristics	Vcc=1.7 to 3.6V, Ta=-40 to +85 °C	Vcc=1.7 to 3.6V, VCH-VCL=8V to 44V, Ta=-40to +85 °C
			-	Add Driver On resistance (COM pins)
			LCD drive power supply current (Vcc-GND)	LCD drive power supply current (VCH-VCL)
			LCD drive voltage (V _{SH-} GND)	Deleted
	86	Figure 48	LCD driver voltage : V	LCD driver voltage : V _{LCD}
Rev.0.3 2001.11.12	2	line 16: Internal RAM capacity	34,848	46,464
		Type Name	HCD667A66BP	HCD667A66BP/Au- bumped chip straight bump / HCD667B66BP/ Au- bumped chip laced bump

Rev.0.3	page	part	Before	After
2001.11.12	3	Insert PAD Arrangement		
		(Straight output Arrangement)		
	4,5	Insert Pad coordinate		
	6	Insert Pad Arrangement		
		(Laced output Arrangement)		
	7,8	Insert Pad coordinate		
	35	Correction of RAM data and grayscale palette		
	57	Insert explanation page "4096 colors display function"		
	63	Add title for the page	none	Setting flow for low power consumption instruction
	64	Add title for the page	none	Setting low for power supply and display instruction
	71	Figure 49; Note)-3)	VF = 0.3V/1mA	VF = 0.6V/20mA
		Figure 49 Quantity of capacitor between CEP and CEM	lum	0.47um
		Figure 49 Delete capacitor		
		between VSH and VM		
		Figure 49 Delete capacitor between VREFM and BIASC		
	75	Figure 50 Delete TBD		
	76	Insert the page (Example of connection of condenser related to the magnification of step up circuit)		
	78	Delete the line of LCD drive power supply current (VCH- VCL)		
		Current consumption during normal operation	R-C oscillation Vcc = 3.0V, Ta = 25C, fosc = 332khz (1/176duty), display all 0	R-C oscillation Vcc = 3.0V, VCH = 20V, v = 1.6V, VCL = -16.8V, Ta = 25C, fosc = 276khz (1/176duty), 1/12 Bias
				CT minimum, display all 0
			typ: T.B.D	typ: 480
			Max: T.B.D	Max: 600

Rev.0.3	page	part		Before	After
2001.11.12	79	Clock Char	acteristics	Min: T.B.D	Min: 151
		(External clock frequency)		Typ: 268	Typ: 275
				Max: T.B.D	Max: 640
		(R-C oscilla	ation clock)	Test Condition Rf	Test Condition Rf =
				150 Ω	200Ω
				Min: -	Min: 220
				Typ: T.B.D	Typ: 275
				Max: -	Max: 330
	84	Reset Timin (Reset rise	ng Characteristics time)	Max: 10	Max: 100
	90-91	Add "Addit	tional Issue" page		
Rev. 1.0 2001.11.30	1	L-5		voltage operation of 1.7V/min	voltage operation of 2.2V/min
2001.11.30	2	Low-power	operation	Vcc = 1.7 to 3.6V	Vcc = 2.2 to 3.6V
	2	supports:	operation	VCC = 1.7 to 3.0 V	vcc = 2.2 to 3.0 v
	25	Table 13	operating clock	15-divided clock	32-divided clock
	23	14010 13	frequency in the	30-divided clock	64-divided clock
			booster 1		0 . 01 / 100 0 100 11
			operating clock	30-divided clock	32-divided clock
			frequency in the	45-divided clock	64-divided clock
			voltage inverting	60-divided clock	96-divided clock
			circuit and the	90-divided clock	128-divided clock
			booster 2		
	71	L-3		from step-up circuit 1	from step-up circuit1 by
				by two to four times,	two to five
		Figure 49		-	Add resistor $(1M\Omega)$ to
					VSH terminal
	72	Figure		$VCI1 = VM \times A$	$VCI2 = VM \times N_B$
				$VCH = VM \times A \times B$	$VCH = VM \times N_B \times N_{D2}$
	73	Example	Example 1 DC2-	15-divided clock	32-divided clock
		of resister		900divided clock	128-divided clock
	74	setting on	Example 2 DC2-	15-divided clock	32-divided clock
		power	0 = H6	900divided clock	128-divided clock
		supply	Example 3 DC2-	30-divided clock	64-divided clock
			0 = H6	90-divided clock	128-divided clock
	75	Figure 50		VREFL(<=VOUT)	VREFL(<=VCC)
	77	Absolute	Power supply	-0.3V to +48	-0.3V to + 46
		Maximum	voltage (3)		-
		Ratings			
			Note	6	Delete
					<u> </u>

Rev. 1.0 / 30 November 2001

Rev.1.0	page	part		Before	After
2001.11.30	78	Title DC characteristic/ Current consumption during normal operation Current consumption during standby mode		Vcc = 1.7 to 3.6 V	Vcc = 2.2 to 3.6
				-	Add/ AP minimum Step-up 1= two times Step-up 2 = five times VCI1 = 0.92 x VCC
				-	Add the spec below. Vcc = 3.0V Ta=85°C max = 50uA
	79	AC Characteri	stics (title, etc)	Vcc = 1.7V to 3.6V	Vcc = 2.2V to 3.6V
		AC Characteristics (Note)		9 10	7 8
		68-system Bus Interface Timing Characteristi cs (2) Normal Write Mode	Enable cycle time (write)	250	200
			Enable cycle time (read)	500	300
			Enable high- level pulse width (read)	250	150
			Enable low level pulse width (read)	200	100
			Set up time	-	Add/ tASE=0 (ns) Not using status read
			Address hold time	5	2
			Read data delay time	200	100

Rev.1.0 2001.11.30	page	part			Before	After
	79	68-system Bus Interface Timing Characteristi cs (2) High-Speed Write Mode Write Mode	Enable cycle time (read)		500	300
			Enable level (read)	High pulse	250	150
			Enable level (read)	Low pulse	200	100
			Set up tin	ne	-	Add/ tASE = 0 (ns) Not using status read
			Address time	hold	5	2
			Read delay tim	data e	200	100
	80	AC Characteristics (title, etc)			Vcc = 1.7V to $2.4V$	Vcc = 2.2V to 2.4V
	81	AC Characteristics (title, etc)			Vcc = 1.7v to 2.4V	Vcc = 2.2V to 2.4V
	82	80-system Bus Interface Timing Characteristic s (2) Normal Write Mode	Bus time (wr	cycle rite)	250	200
			Bus time (rea	cycle ad)	500	300
			Read level width	low- pulse	250	150
			Read level width	high- pulse	200	100
			Set up time		-	Add/ tASE = 0 (ns) Not using status read
			Address time	hold	5	2
			Write hold tim	data ie	15	2
			Read delay tin	data ne	200	100

Rev.1.0	page	part		Before	After
2001.11.30	82	80-system Bus Interface	Bus cycle time (read)	500	300
		Timing Characteristic s (2) High-Speed Write Mode	Read low- level pulse width	250	150
			Read high- level pulse width	200	100
			Set up time	-	Add/ tASE = 0 (ns) Not using status read
			Address hold time	5	2
			Write data hold time	15	2
			Read data delay time	200	100
	83	Clock Synchronized Serial Interface Timing Characteristics		Vcc = 1.7 to 2.4V	Vcc = 2.2 to 2.4V
		Clock Synchronized Serial Interface Timing Characteristic s (Vcc = 2.4 to 3.6V)	Serial clock cycle time (Write (received))	0.1	0.076
			Serial clock low-level pulse width (Write (received))	40	35
	84	Electrical Characteristic s Notes	2 Pins (for the right- up side figure) 2 Pins (for the left up side figure) 3	RESET*, CS*, E/WR, RW/RD,RS, OSC1, OPOFF, IM2- 1, IMO/ID, TEST OSC2, CL1, FLM, M, DISPTMG, CCL, CDA, CCS The TEST pin must	RESET*, CS*, E/WR, RW/RD, RS, OSC1, IM2-1, IMO/ID, TEST1,TEST2 OSC2 The TEST1, TEST2
	90			be grounded,,, 2.Cause	pins must be grounded,,, 2. Measure
	91	Additional Issu	e	3-1, With LSI Figure2-(a) Figure2-(b)	Delete
			-	-	Add/ Figure 3
	92			4.Corresponding schedule	Delete