#### Q1

Given a contingency table of conditional and prior probabilities for a training set with 10 examples and 5 categorical features:

| Swimming               | Yes  | No   |
|------------------------|------|------|
| Rain Recently=light    | 1/4  | 3/6  |
| Rain Recently=moderate | 2/4  | 2/6  |
| Rain Recently=heavy    | 1/4  | 1/6  |
| Rain Today=light       | 1/4  | 3/6  |
| Rain Today=moderate    | 2/4  | 2/6  |
| Rain Today=heavy       | 1/4  | 1/6  |
| Temp=Cold              | 1/4  | 5/6  |
| Temp=Warm              | 3/4  | 1/6  |
| Wind=Light             | 2/4  | 2/6  |
| Wind=Moderate          | 1/4  | 2/6  |
| Wind=Gale              | 1/4  | 2/6  |
| Sunshine=Some          | 2/4  | 4/6  |
| Sunshine=None          | 2/4  | 2/6  |
| Class Probabilities    | 4/10 | 6/10 |

#### Q1

Based on the contingency table, classify the two new examples below using Naïve Bayes.

| Example | Rain Recently<br>(RR) | Rain Today<br>(RT) | Temp (T)               | Wind (W) | Sunshine<br>(S) | Swimming |
|---------|-----------------------|--------------------|------------------------|----------|-----------------|----------|
| X1      | Heavy                 | Moderate           | oderate Warm Light Son |          | Some            | ???      |

| Example | Rain Recently<br>(RR) | Rain Today<br>(RT) | Temp (T) | Wind (W) | Sunshine<br>(S) | Swimming |
|---------|-----------------------|--------------------|----------|----------|-----------------|----------|
| X2      | Light                 | Light Moderate     |          | Light    | Some            | ???      |

#### Naïve Bayes classification steps:

- 1. Calculate probability of input having class Yes
- 2. Calculate probability of input having class No
- 3. Normalise probabilities (optional)

#### Test input example for hypothesis 1: <u>Swimming=Yes</u>

| Example | Rain Recently<br>(RR) | Rain Today<br>(RT) | Temp (T) | Wind (W) | Sunshine<br>(S) | Swimming |
|---------|-----------------------|--------------------|----------|----------|-----------------|----------|
| X1      | Heavy                 | Moderate           | Warm     | Light    | Some            | ???      |

#### Identify the relevant rows in the contingency table for *Swimming=Yes*:

| Swimming            | Yes  | No   |
|---------------------|------|------|
| Rain Recently=heavy | 1/4  | 1/6  |
| Rain Today=moderate | 2/4  | 2/6  |
| Temp=Warm           | 3/4  | 1/6  |
| Wind=Light          | 2/4  | 2/6  |
| Sunshine=Some       | 2/4  | 4/6  |
| Class Probabilities | 4/10 | 6/10 |

Apply NB for *Swimming=Yes* by calculating product of probabilities for input's feature values and class probability:

$$P = (1/4 \times 2/4 \times 3/4 \times 2/4 \times 2/4) \times 4/10$$

P = 0.009375

#### Test input example for hypothesis 2: <u>Swimming=No</u>

| Example | Rain Recently<br>(RR) | Rain Today<br>(RT) | Temp (T) | Wind (W) | Sunshine<br>(S) | Swimming |
|---------|-----------------------|--------------------|----------|----------|-----------------|----------|
| X1      | Heavy                 | Moderate           | Warm     | Light    | Some            | ???      |

#### Identify the relevant rows in the contingency table for *Swimming=No*:

| Swimming            | Yes  | No   |
|---------------------|------|------|
| Rain Recently=heavy | 1/4  | 1/6  |
| Rain Today=moderate | 2/4  | 2/6  |
| Temp=Warm           | 3/4  | 1/6  |
| Wind=Light          | 2/4  | 2/6  |
| Sunshine=Some       | 2/4  | 4/6  |
| Class Probabilities | 4/10 | 6/10 |

Apply NB for *Swimming=No* by calculating product of probabilities for input's feature values and class probability:

$$P = (1/6 \times 2/6 \times 1/6 \times 2/6 \times 4/6) \times 6/10$$

P = .001234

We calculated probabilities for two hypotheses (class labels):

```
Yes P(Y) = 1/4 \times 2/4 \times 3/4 \times 2/4 \times 2/4 \times 4/10 = 0.009375
No P(N) = 1/6 \times 2/6 \times 1/6 \times 2/6 \times 4/6 \times 6/10 = 0.001234
```

Normalise probabilities to sum to 1:

```
Yes P(Y)' = 0.009375/(0.009375+0.001234) = .884
No P(N)' = 0.001234/(0.009375+0.001234) = .116
```

Output Prediction: Swimming = Yes

#### Test input example for hypothesis 1: <u>Swimming=Yes</u>

| Example | Rain Recently<br>(RR) | Rain Today<br>(RT) | Temp (T) | Wind (W) | Sunshine<br>(S) | Swimming |
|---------|-----------------------|--------------------|----------|----------|-----------------|----------|
| X2      | Light                 | Moderate           | Warm     | Light    | Some            | ???      |

Identify the relevant rows in the contingency table for *Swimming=Yes*:

| Swimming            | Yes  | No   |
|---------------------|------|------|
| Rain Recently=light | 1/4  | 3/6  |
| Rain Today=moderate | 2/4  | 2/6  |
| Temp=Warm           | 3/4  | 1/6  |
| Wind=Light          | 2/4  | 2/6  |
| Sunshine=Some       | 2/4  | 4/6  |
| Class Probabilities | 4/10 | 6/10 |

Apply NB for *Swimming=Yes* by calculating product of probabilities for input's feature values and class probability:

$$P = (1/4 \times 2/4 \times 3/4 \times 2/4 \times 2/4) \times 4/10$$

P = 0.09375

#### Test input example for hypothesis 1: <u>Swimming=No</u>

| Exan | nple | Rain Recently<br>(RR) | Rain Today<br>(RT) | Temp (T) | Wind (W) | Sunshine<br>(S) | Swimming |
|------|------|-----------------------|--------------------|----------|----------|-----------------|----------|
| X    | 2    | Light                 | Moderate           | Warm     | Light    | Some            | ???      |

#### Identify the relevant rows in the contingency table for *Swimming=No*:

| Swimming            | Yes  | No   |
|---------------------|------|------|
| Rain Recently=light | 1/4  | 3/6  |
| Rain Today=moderate | 2/4  | 2/6  |
| Temp=Warm           | 3/4  | 1/6  |
| Wind=Light          | 2/4  | 2/6  |
| Sunshine=Some       | 2/4  | 4/6  |
| Class Probabilities | 4/10 | 6/10 |

Apply NB for *Swimming=No* by calculating product of probabilities for input's feature values and class probability:

$$P = (3/6 \times 2/6 \times 1/6 \times 2/6 \times 4/6) \times 6/10$$

P = 0.003692

Calculated probabilities for two hypotheses (class labels):

Yes 
$$P(Y) = (1/4 \times 2/4 \times 3/4 \times 2/4 \times 2/4) \times 4/10 = 0.09375$$
  
No  $P(N) = (3/6 \times 2/6 \times 1/6 \times 2/6 \times 4/6) \times 6/10 = 0.003692$ 

Normalise probabilities to sum to 1:

```
Yes P(Y)' = 0.09375/(0.093756+0.003692) = .962
No P(N)' = 0.0036926/(0.093756+0.003692) = .038
```

Output Prediction: Swimming = Yes

a) Provide the contingency table of conditional and prior probabilities that would be used by Naïve Bayes to build a classifier for this dataset.

|   | Name  | Hair   | Height  | Build   | Lotion | Result    |
|---|-------|--------|---------|---------|--------|-----------|
| 1 | Sarah | blonde | average | light   | no     | sunburned |
| 2 | Dana  | blonde | tall    | average | yes    | none      |
| 3 | Alex  | brown  | short   | average | yes    | none      |
| 4 | Annie | blonde | short   | average | no     | sunburned |
| 5 | Emily | red    | average | heavy   | no     | sunburned |
| 6 | Pete  | brown  | tall    | heavy   | no     | none      |
| 7 | John  | brown  | average | heavy   | no     | none      |
| 8 | Katie | brown  | short   | light   | yes    | none      |



#### Construct full contingency table for all features on both classes:

| Feature Value       | Sunburned | None |
|---------------------|-----------|------|
| Hair=blonde         |           |      |
| Hair=brown          |           |      |
| Hair=red            |           |      |
| Height=average      |           |      |
| Height=tall         |           |      |
| Height=short        |           |      |
| Build=light         |           |      |
| Build=average       |           |      |
| Build=heavy         |           |      |
| Lotion=no           |           |      |
| Lotion=yes          |           |      |
| Class Probabilities |           |      |

#### Construct full contingency table for all features on both classes:

| Feature Value       | Sunburned | None |
|---------------------|-----------|------|
| Hair=blonde         | 2/3       | 1/5  |
| Hair=brown          | 0/3       | 4/5  |
| Hair=red            | 1/3       | 0/5  |
| Height=average      | 2/3       | 1/5  |
| Height=tall         | 0/3       | 2/5  |
| Height=short        | 1/3       | 2/5  |
| Build=light         | 1/3       | 1/5  |
| Build=average       | 1/3       | 2/5  |
| Build=heavy         | 1/3       | 2/5  |
| Lotion=no           | 3/3       | 2/5  |
| Lotion=yes          | 0/3       | 3/5  |
| Class Probabilities | 3/8       | 5/8  |

We have conditional probabilities of zero - need to use Laplace smoothing with k=1

$$P(f = v|c) = \frac{count(f = v|c) + k}{count(f|c) + (k \times |Domain(f)|)}$$

 $count(f=v \mid c)$  is how often the feature f has value v for instances where the class is c.

 $count(f \mid c)$  is how often the feature f has any value where the class is c

|Domain(f)| is the number of different values feature f can have

#### Update contingencies table with smoothed probabilities (with k=1):

| Feature Value       | SunB | None | #(f=v S) | #(f=v N) | #(f S) | #(f N) | D(f) | SunB | None |
|---------------------|------|------|----------|----------|--------|--------|------|------|------|
| Hair=blonde         | 2/3  | 1/5  | 2        | 1        | 3      | 5      | 3    | 0.5  | 0.25 |
| Hair=brown          | 0/3  | 4/5  | 0        | 4        | 3      | 5      | 3    | 0.17 | 0.63 |
| Hair=red            | 1/3  | 0/5  | 1        | 0        | 3      | 5      | 3    | 0.33 | 0.13 |
| Height=average      | 2/3  | 1/5  | 2        | 1        | 3      | 5      | 3    | 0.5  | 0.25 |
| Height=tall         | 0/3  | 2/5  | 0        | 2        | 3      | 5      | 3    | 0.17 | 0.38 |
| Height=short        | 1/3  | 2/5  | 1        | 2        | 3      | 5      | 3    | 0.33 | 0.38 |
| Build=light         | 1/3  | 1/5  | 1        | 1        | 3      | 5      | 3    | 0.33 | 0.25 |
| Build=average       | 1/3  | 2/5  | 1        | 2        | 3      | 5      | 3    | 0.33 | 0.38 |
| Build=heavy         | 1/3  | 2/5  | 1        | 2        | 3      | 5      | 3    | 0.33 | 0.38 |
| Lotion=no           | 3/3  | 2/5  | 3        | 2        | 3      | 5      | 2    | 0.8  | 0.43 |
| Lotion=yes          | 0/3  | 3/5  | 0        | 3        | 3      | 5      | 2    | 0.2  | 0.57 |
| Class Probabilities | 3/8  | 5/8  |          |          |        |        |      | 3/8  | 5/8  |

# **Q2(b)**

#### Use the contingency table to calculate the Naïve Bayes scores:

|   | Hair   | Height  | Build | Lotion | Result |
|---|--------|---------|-------|--------|--------|
| X | blonde | average | heavy | yes    | ???    |

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_i P(f_i|v_j)$$

#### Calculate raw probabilities for two classes:

$$P(S) = 0.5 \times 0.5 \times 0.33 \times 0.2 \times (3/8)$$

$$P(S) = 0.00619$$

$$P(N) = 0.25 \times 0.25 \times 0.38 \times 0.57 \times (5/8)$$

$$P(N) = 0.00846$$

#### Normalise probabilities:

$$P(S)' = 0.00618/(0.00618+0.00846) = 0.422$$

$$P(N)' = 0.00846/(0.00618+0.00846) = 0.578$$

| Result                 | Sunburned | None |
|------------------------|-----------|------|
| Hair=blonde            | 0.5       | 0.25 |
| Height=average         | 0.5       | 0.25 |
| Build=heavy            | 0.33      | 0.38 |
| Lotion=no              | 0.2       | 0.57 |
| Class<br>Probabilities | 3/8       | 5/8  |

→ Output: None

a) Calculate the contingency table that would be used by Naïve Bayes to build a classifier using this training data.

| Example | Credit History | Debt | Income  | Risk   |
|---------|----------------|------|---------|--------|
| 1       | bad            | low  | 10,000  | high   |
| 2       | bad            | high | 32,000  | high   |
| 3       | bad            | low  | 18,000  | high   |
| 4       | unknown        | high | 46,000  | high   |
| 5       | unknown        | high | 23,000  | high   |
| 6       | good           | high | 27,500  | high   |
| 7       | bad            | low  | 28,000  | medium |
| 8       | unknown        | low  | 55,000  | medium |
| 9       | good           | high | 57,500  | medium |
| 10      | unknown        | low  | 65,000  | medium |
| 11      | unknown        | low  | 75,000  | low    |
| 12      | good           | low  | 72,000  | low    |
| 13      | good           | high | 90,000  | low    |
| 14      | good           | high | 100,000 | low    |
| 15      | bad            | low  | 50,000  | low    |

Income field is continuous, use equal-frequency binning to convert to a categorical feature; with 3 bins -> 5 instances in each bin

| Example | Credit History | Debt | Income  | Risk   |              |
|---------|----------------|------|---------|--------|--------------|
| 14      | good           | high | 100,000 | low    | <b>†</b>     |
| 13      | good           | high | 90,000  | low    | over60       |
| 11      | unknown        | low  | 75,000  | low    | Overoo       |
| 12      | good           | low  | 72,000  | low    |              |
| 10      | unknown        | low  | 65,000  | medium | <del> </del> |
| 9       | good           | high | 57,500  | medium | <b>†</b>     |
| 8       | unknown        | low  | 55,000  | medium |              |
| 15      | bad            | low  | 50,000  | low    | 30to60       |
| 4       | unknown        | high | 46,000  | high   |              |
| 2       | bad            | high | 32,000  | high   | <b>→</b>     |
| 7       | bad            | low  | 28,000  | medium | <u>†</u>     |
| 6       | good           | high | 27,500  | high   |              |
| 5       | unknown        | high | 23,000  | high   | 0to30        |
| 3       | bad            | low  | 18,000  | high   |              |
| 1       | bad            | low  | 10,000  | high   | ↓            |

#### Contingency table with Income feature binned

| Example | Credit History | Debt | Income | Risk   |
|---------|----------------|------|--------|--------|
| 1       | bad            | low  | Oto30  | high   |
| 2       | bad            | high | 30to60 | high   |
| 3       | bad            | low  | Oto30  | high   |
| 4       | unknown        | high | 30to60 | high   |
| 5       | unknown        | high | Oto30  | high   |
| 6       | good           | high | Oto30  | high   |
| 7       | bad            | low  | Oto30  | medium |
| 8       | unknown        | low  | 30to60 | medium |
| 9       | good           | high | 30to60 | medium |
| 10      | unknown        | low  | over60 | medium |
| 11      | unknown        | low  | over60 | low    |
| 12      | good           | low  | over60 | low    |
| 13      | good           | high | over60 | low    |
| 14      | good           | high | over60 | low    |
| 15      | bad            | low  | 30to60 | low    |

a) Calculate the contingency table that would be used by Naïve Bayes to build a classifier using this training data.

Contingency table for each of the descriptive features across 3 classes:

| Risk                | high | medium | low |
|---------------------|------|--------|-----|
| CH=bad              |      |        |     |
| CH=unknown          |      |        |     |
| CH=good             |      |        |     |
| Debt=low            |      |        |     |
| Debt=high           |      |        |     |
| Income=0to30        |      |        |     |
| Income=30to60       |      |        |     |
| Income=over60       |      |        |     |
| Class Probabilities |      |        |     |

### **Tutorial Q3(a)**

a) Calculate the contingency table that would be used by Naïve Bayes to build a classifier using this training data.

Contingency table for each of the descriptive features across 3 classes:

| Risk                | high | medium | low  |
|---------------------|------|--------|------|
| CH=bad              | 3/6  | 1/4    | 1/5  |
| CH=unknown          | 2/6  | 2/4    | 1/5  |
| CH=good             | 1/6  | 1/4    | 3/5  |
| Debt=low            | 2/6  | 3/4    | 3/5  |
| Debt=high           | 4/6  | 1/4    | 2/5  |
| Income=0to30        | 4/6  | 1/4    | 0/5  |
| Income=30to60       | 2/6  | 2/4    | 1/5  |
| Income=over60       | 0/6  | 1/4    | 4/5  |
| Class Probabilities | 6/15 | 4/15   | 5/15 |

#### b) Predict the risk level for the new loan application X below.

|   | Credit History | Debt | Income | Risk |
|---|----------------|------|--------|------|
| X | bad            | low  | 30to60 | ???  |

| Risk                   | high | medium | low  |
|------------------------|------|--------|------|
| CH=bad                 | 3/6  | 1/4    | 1/5  |
| Debt=low               | 1/6  | 2/4    | 2/5  |
| Income=30to60          | 2/6  | 2/4    | 1/5  |
| Class<br>Probabilities | 6/15 | 3/15   | 5/15 |

# Calculate raw probabilities for 3 classes, using contingency table:

$$P(H) = (3/6)x(2/6)x(2/6) x (6/15) = 0.022$$

$$P(M) = (1/4)x(3/4)x(2/4) x (3/15) = 0.019$$

$$P(L) = (1/5)x(3/5)x(1/5) x (5/15) = 0.005$$

#### Normalise probabilities:

$$P(H)' = 0.022/(0.022+0.019+0.005) = 0.48$$

$$P(M)' = 0.019/(0.022+0.019+0.005) = 0.41$$

$$P(L)' = 0.005/(0.022+0.019+0.005) = 0.11$$

#### → Output: High Risk

### 4(a)

4.(a) Given the nature of the `AthleteSelection` data which would be the best of the Naive Bayes options in scikit-learn for that classification task?

Gaussian Naive Bayes is possibly the only real option we have here because the features are real values - not counts or categories. The data is probably not exactly Gaussian but probably close enough.

### 4(b)

- 4.(b) A ranking classifier is a classifier that can rank a test set in order of confidence for a given classification outcome. Naive Bayes is a ranking classifier because the 'probability' can be used as a confidence measure for ranking.
  - 1. Train a Naive Bayes classifier from the AthleteSelection data. Load the test data from AthleteTest.csv and apply the classifier.
  - 2. Use the predict\_proba method to find the probability of being selected.
  - 3. Rank the test set by probability of being selected.
    - 3.1. Who is most likely to be selected?
    - 3.2. Who is least likely?

Some code for this exercise is available in the notebook `04 Naive Bayes Lab`. You will also need to download the test data file 'AthleteTest.csv'.

### **Tutorial 4(b)**

```
gnb = GaussianNB()
ath_NB = gnb.fit(X,y)

y_probs = ath_NB.predict_proba(X_test)
ath_test['Prob']=y_probs[:,1]
ath_test.sort_values(by=['Prob'], ascending=False, inplace = True)
ath_test
```

|         | Speed | Agility | Prob     |
|---------|-------|---------|----------|
| Athlete |       |         |          |
| t6      | 8.1   | 7.8     | 0.999997 |
| t7      | 7.7   | 5.2     | 0.999945 |
| t8      | 6.1   | 5.5     | 0.972931 |
| t10     | 6.1   | 5.5     | 0.972931 |
| t3      | 5.5   | 7.2     | 0.911933 |
| t9      | 5.5   | 6.0     | 0.854283 |
| t5      | 5.5   | 5.2     | 0.799833 |
| t4      | 3.8   | 8.8     | 0.150478 |
| t2      | 4.5   | 4.5     | 0.122983 |
| t1      | 3.3   | 8.2     | 0.041314 |

### **Tutorial 4(c)**

- When a `GaussianNB` model is trained the model is stored in two parameters
   `theta\_' and `sigma\_'. Train a `GaussianNB` model and check to see if these
   parameters agree with your own estimates.
- Hint: this code will give you the estimated you need.

```
athlete[athlete['Selected'] == 'No']['Agility'].describe()
```

• Despite the name the `sigma\_' parameter contains the square of the standard deviation (the variance) rather than the standard deviations. You will find these figures do not agree exactly.

### Question 4(c)

```
gnb.sigma_
Out[28]:
array([[0.80685764, 3.99305556], ]
       [1.37402344, 3.91308594]])
gnb.theta
Out [29]:
array([[3.39583333, 5.08333333]]
       [6.40625
                  , 6.96875
athlete[athlete['Selected'] == 'No']['Agility'].describe()
Out [30]:
         12.000000
count
         5.083333
mean
          2.087118
std
min
          2.000000
25%
          3.625000
50%
          5.125000
75%
          6.375000
          8.250000
max
Name: Agility, dtype: float64
```

|            | Speed | Agility | Selected |
|------------|-------|---------|----------|
| Athlete    |       |         |          |
| <b>x1</b>  | 2.50  | 6.00    | No       |
| <b>x2</b>  | 3.75  | 8.00    | No       |
| х3         | 2.25  | 5.50    | No       |
| <b>x4</b>  | 3.25  | 8.25    | No       |
| <b>x</b> 5 | 2.75  | 7.50    | No       |