Métodos Computacionais

Departamento de Estatística e Matemática Aplicada

Ronald Targino, Rafael Braz, Juvêncio Nobre e Manoel Santos-Neto 2026-03-08

Índice

Prefácio		3
1	Introdução	4
2	Motivação 2.1 Atividade: Problema do Aniversário (22 jogadores) 2.2 Solução Analítica 2.3 Solução Aproximada 2.4 Comparação entre as soluções exata e aproximada 2.5 Possíveis dúvidas	5 5 6 6 6
3	Números Uniformes3.1Geração de sequências $U(0,1)$ 3.2Geradores Congruenciais Lineares3.2.1Exemplo3.2.2Implementação em R3.3Geradores Congruenciais Lineares Mistos3.3.1Questão de estouro e aritmética modular3.3.2Implementação em R (com segurança de overflow)3.4Geradores Congruenciais Lineares Multiplicativos3.4.1Características e restrições3.4.2Definição de raiz primitiva3.4.3Exemplo de implementação em R	7 7 8 8 8 8 9 9 10 10 10 10 11
4	Otimização Numérica	12
5	Métodos de Reamostragem	13
6	Métodos de Monte Carlo	14
7	Algoritmo EM	15
8	Métodos Adicionais	16
R	ferences	17

Prefácio

Este livro resulta de anos de experiência em sala de aula dos professores Ronald Targino, Rafael Braz, Juvêncio Nobre e Manoel Santos-Neto. Destina-se a apoiar os alunos da graduação em Estatística e do Programa de Pós-Graduação em Modelagem e Métodos Quantitativos (PPGMMQ) do Departamento de Estatística e Matemática Aplicada (DEMA) da Universidade Federal do Ceará (UFC).

Ao longo dos capítulos, abordamos a geração de números aleatórios (discretos e contínuos); métodos de suavização; simulação estocástica por inversão, rejeição e composição, bem como métodos de reamostragem; métodos de aproximação e integração; quadratura Gaussiana, integração de Monte Carlo e quadratura adaptativa; métodos de Monte Carlo em sentido amplo; amostradores MCMC, com ênfase em Gibbs e Metropolis—Hastings; otimização numérica via Newton—Raphson, Fisher scoring e quase-Newton, além do algoritmo EM; Bootstrap e Jackknife; diagnóstico de convergência; e aspectos computacionais em problemas práticos, com foco em implementação eficiente, estabilidade numérica e reprodutibilidade dos resultados.

Esperamos que este material sirva não apenas como texto-base para as disciplinas Estatística Computacional (graduação em Estatística) e Métodos Computacionais em Estatística (Mestrado-PPGMMQ), mas também como suporte para aqueles que desejam programar com qualidade na área de Estatística.

1 Introdução

A simulação tem um papel preponderante na estatística moderna, e suas vantagens no ensino de Estatística são conhecidas há muito tempo. Em um de seus primeiros números, o periódico Teaching Statistics publicou artigos que aludem precisamente a isso. Thomas e Moore (1980) afirmaram que "a introdução do computador na sala de aula escolar trouxe uma nova técnica para o ensino, a técnica da simulação". Zieffler e Garfield (2007) e Tintle et al. (2015) discutem o papel e a importância da aprendizagem baseada em simulação no currículo de graduação em Estatística. No entanto, outros autores (por exemplo, Hodgson e Burke 2000) discutem alguns problemas que podem surgir ao ensinar uma disciplina por meio de simulação, a saber, o desenvolvimento de certos equívocos na mente dos estudantes (Martins 2018).

2 Motivação

Nesta motivação consideramos um exemplo discutido em Martins (2018) que é o conhecido e amplamente divulgado problema do aniversário (ver, por exemplo, Falk 2014). Martins (2018) segue o exemplo de Matthews e Stones (1998), considerando duas equipes de futebol e, portanto, coincidências de aniversário entre 22 jogadores. Martins (2018) afirma que um resultado positivo importante dessa atividade é a discussão que surgirá naturalmente entre os estudantes, com o professor atuando como mediador. Além disso, os estudantes adoram jogos e a descoberta prática, e a simulação facilita o engajamento nessas atividades, ao mesmo tempo que ilustra resultados que podem ser não intuitivos, bem como teoria geral, como a Lei dos Grandes Números.

Para iniciar a discussão, propõe-se o seguinte problema:

O problema: Em uma partida de futebol, qual é a probabilidade de que pelo menos dois dos 22 jogadores façam aniversário no mesmo dia?

Em um pais chamado de país do futebol, o contexto é proposital: o futebol é popular e as probabilidades resultantes são contraintuitivas. Antes de qualquer cálculo, considere as hipóteses: (i) todos os 365 dias do ano são igualmente prováveis para qualquer aniversário; (ii) as datas de aniversário dos jogadores são independentes entre si.

2.1 Atividade: Problema do Aniversário (22 jogadores)

Objetivos

- Estimar, via simulação, a probabilidade de coincidência de aniversários.
- Relacionar frequência relativa, Lei dos Grandes Números e variação amostral.

Hipóteses

- 365 dias equiprováveis, datas independentes, ignorar bissexto/gêmeos.

Materiais

- R (ou Posit Cloud), roteiro com comandos sample(), table(), mean().

- 2.2 Solução Analítica
- 2.3 Solução Aproximada
- 2.4 Comparação entre as soluções exata e aproximada
- 2.5 Possíveis dúvidas

Algumas dúvidas podem surgir, entre elas:

•

3 Números Uniformes

As simulações, de modo geral, requerem uma base inicial formada por números aleatórios. Diz-se que uma sequência R_1, R_2, \dots é composta por números aleatórios quando cada termo segue a distribuição uniforme U(0,1) e R_i é independente de R_j para todo $i \neq j$. Embora alguns autores utilizem o termo "números aleatórios" para se referir a variáveis amostradas de qualquer distribuição, aqui ele será usado exclusivamente para variáveis com distribuição U(0,1).

3.1 Geração de sequências U(0,1)

Uma abordagem é utilizar dispositivos físicos aleatorizadores, como máquinas que sorteiam números de loteria, roletas ou circuitos eletrônicos que produzem "ruído aleatório". Contudo, tais dispositivos apresentam desvantagens:

- 1. Baixa velocidade e dificuldade de integração direta com computadores.
- 2. Necessidade de reprodutibilidade da sequência. Por exemplo, para verificação de código ou comparação de políticas em um modelo de simulação, usando a mesma sequência para reduzir a variância da diferença entre resultados.

Uma forma simples de obter reprodutibilidade é armazenar a sequência em um dispositivo de memória (HD, CD-ROM, livro). De fato, a RAND Corporation publicou A Million Random Digits with 100 000 Random Normal Deviates (1955). Entretanto, acessar armazenamento externo milhares ou milhões de vezes torna a simulação lenta.

Assim, a abordagem preferida é **gerar números pseudoaleatórios em tempo de execução**, via recorrências determinísticas sobre inteiros. Isso permite:

- Geração rápida;
- Eliminação do problema de armazenamento;
- Reprodutibilidade controlada.

Entretanto, a escolha inadequada da recorrência pode gerar sequências com baixa qualidade estatística.

3.2 Geradores Congruenciais Lineares

Um Gerador Congruencial Linear (LGC) produz uma sequência de inteiros não negativos X_i , i = 1, 2, ..., por meio da relação de recorrência:

$$X_i=(aX_{i-1}+c) \bmod m, \quad i=1,2,\dots,$$

em que a>0 é o multiplicador, $X_0\geq 0$ é a semente (seed), $c\geq 0$ é o incremento e m>0 é o módulo.

Os valores a,c,X_0 estão no intervalo [0,m-1]. O número pseudoaleatório R_i é obtido por:

$$R_i = \frac{X_i}{m}, \quad R_i \in (0,1).$$

Se m for suficientemente grande, os valores discretos $0/m, 1/m, \dots, (m-1)/m$ são tão próximos que R_i pode ser tratado como variável contínua.

3.2.1 Exemplo

Seja o gerador:

$$X_i = (9X_{i-1} + 3) \mod 24, \quad i \ge 1.$$

Escolhendo $X_0 = 3$:

$$X_1 = (9 \times 3 + 3) \mod 24 = 14$$

$$X_2 = (9 \times 14 + 3) \mod 24 = 1$$

e assim por diante.

A sequência $R_i = X_i/16$ gerada terá período $\ell = 16.$

3.2.2 Implementação em R

```
# Função LCG genérica
lcg <- function(a, c, m, seed, n) {
    x <- numeric(n)
    x[1] <- seed
    for (i in 2:n) {
        x[i] <- (a * x[i-1] + c) %% m
    }
    r <- x / m
    return(list(X = x, R = r))
}

# Exemplo com a = 9, c = 3, m = 24, seed = 3
resultado <- lcg(a = 9, c = 3, m = 24, seed = 3, n = 20)
resultado$X
resultado$R</pre>
```

3.3 Geradores Congruenciais Lineares Mistos

Nos LCGs **mistos** temos c > 0. Uma escolha prática é $m = 2^b$, onde b é o número de bits utilizável para inteiros positivos na arquitetura/linguagem. Em muitos ambientes, inteiros usam 32 bits (um para o sinal), implicando b = 31 e intervalo $[-2^{31}, 2^{31} - 1]$.

Quando $m=2^b$, obtemos **período completo** $(\ell=m)$ se:

- 1) $c \in \text{impar } (\text{garante } \gcd(c, m) = 1);$
- 2) a-1 é múltiplo de todos os fatores primos de m e também de 4 (como m é potência de 2).

Essa é a razão de geradores simples com $m=2^b$, c impar e $a\equiv 1\pmod 4$ atingirem $\ell=m$.

3.3.1 Questão de estouro e aritmética modular

Em linguagens com inteiros limitados, calcular $aX_{i-1}+c$ pode **transbordar**. Soluções comuns:

- usar precisão estendida (64 bits) ou bibliotecas de inteiros grandes;
- empregar **truques de aritmética modular** (como o método de Schrage) para evitar overflow;
- trabalhar com módulo $m=2^b$ e aproveitar o "wrap" de bits.

A seguir, implementamos LCG misto com $m=2^{31},\,a=906185749,\,c=1.$ Parâmetros com boas propriedades estatísticas relatadas na literatura.

3.3.2 Implementação em R (com segurança de overflow)

Para garantir a correção do módulo com inteiros grandes, usaremos bit64 (inteiros de 64 bits) e normalizaremos para (0,1).

3.4 Geradores Congruenciais Lineares Multiplicativos

No caso **multiplicativo**, temos c = 0, e a recorrência fica:

$$X_i = (aX_{i-1}) \bmod m$$

3.4.1 Características e restrições

- Se $X_i=0$ em algum passo, toda a sequência futura será zero portanto $X_0\neq 0.$
- Se a=1, a sequência é constante também deve ser evitado.
- O **período máximo** possível é m-1, e ele só é atingido quando:
 - 1. m é primo;
 - 2. a é uma raiz primitiva módulo m.

3.4.2 Definição de raiz primitiva

Um número a é raiz primitiva módulo m se seus poderes geram todos os inteiros não nulos módulo m.

Matematicamente, a satisfaz:

$$m \nmid a^{(m-1)/q} - 1$$
, $\forall q$ primo que divide $m-1$

Esse tipo de gerador é chamado Gerador de Módulo Primo e Período Máximo.

3.4.3 Exemplo de implementação em R

A seguir, implementamos um gerador multiplicativo com módulo primo $m=2^{31}-1$ (primo de Mersenne) e multiplicador a=630360016, conhecido por apresentar boas propriedades estatísticas.

```
#if (!requireNamespace("gmp", quietly = TRUE)) {
# install.packages("gmp")
#}
library(gmp)
lcg_mult_primo <- function(n, seed, a = 630360016, m = 2147483647) {</pre>
  A <- as.bigz(a); M <- as.bigz(m)
  x <- as.bigz(seed)</pre>
  X <- integer(n); R <- numeric(n)</pre>
  for (i in seq_len(n)) {
    X[i] <- as.integer(x)</pre>
    R[i] <- as.numeric(x) / m</pre>
   x < - (A * x) \% M
  list(X = X, R = R)
# Exemplo: gerar 10 valores
g2 \leftarrow lcg_mult_primo(n = 10, seed = 12345L)
g2$X
g2$R
```

4 Otimização Numérica

5 Métodos de Reamostragem

6 Métodos de Monte Carlo

7 Algoritmo EM

8 Métodos Adicionais

References

- Falk, Ruma. 2014. "A Closer Look at the Notorious Birthday Coincidences". *Teaching Statistics* 36 (2): 41–46. https://doi.org/10.1111/test.12014.
- Hodgson, Ted, e Maurice Burke. 2000. "On Simulation and the Teaching of Statistics". Teaching Statistics 22 (3): 91–96. https://doi.org/10.1111/1467-9639.00033.
- Martins, Rui Manuel Da Costa. 2018. "Learning the Principles of Simulation Using the Birthday Problem". *Teaching Statistics* 40 (3): 108–11. https://doi.org/10.1111/test. 12164.
- Matthews, Robert, e Fiona Stones. 1998. "Coincidences: the truth is out there". Teaching Statistics 20 (1): 17–19. https://doi.org/https://doi.org/10.1111/j.1467-9639.1998.tb00752.x.
- Thomas, F. H., e J. L. Moore. 1980. "CUSUM: Computer Simulation for Statistics Teaching". Teaching Statistics 2 (1): 23–28. https://doi.org/10.1111/j.1467-9639.1980.tb00374.x.
- Tintle, Nathan, Beth Chance, George Cobb, Soma Roy, Todd Swanson, e Jill VanderStoep. 2015. "Combating Anti-Statistical Thinking Using Simulation-Based Methods Throughout the Undergraduate Curriculum". *The American Statistician* 69 (4): 362–70. https://doi.org/10.1080/00031305.2015.1081619.
- Zieffler, Andrew, e Joan B. Garfield. 2007. "Studying the Role of Simulation in Developing Students' Statistical Reasoning". Em *Proceedings of the 56th Session of the International Statistical Institute (ISI)*. International Statistical Institute.