Musclular Tissue

Objectives

- Describe the general features of muscle tissue
- State the arrangement of connective tissue around muscular tissue
- Describe the terms muscle fibre, myofibrils and myofilaments
- Describe the histological features of different types of muscular tissue
- State the ultra-structural features of the contractile unit of the skeletal muscle
- Relate functional adaptations of different types of muscle tissues

Tissue

 Collections of specialized cells and cell products that perform a specific function.

Four Primary Tissue

Epithelial tissue

Connective tissue

Nervous tissue

Muscular tissue

Four Primary Tissue

• Epithelial

covers exposed surfaces, lines passageways, forms glands.

• Connective

fills internal space, structural support, storage of energy.

• Muscle

contracts for specific movements.

Neural

carries information from one part of the body to another.

Muscular tissue – embryological origin

Primitive mesenchyme *irregular cells* + *slender processes*

Terminology

muscle fiber = muscle cell (elongated and thread like)

sarcoplasm = cytoplasm of the muscle fiber

sarcolemma = muscle fiber plasma membrane

sarcoplasmic reticulum = smooth endoplasmic
 reticulum of the muscle fiber

General features of muscle tissue

- Derived from the primitive mesenchyme
- Consists of highly differentiated cells; muscle fibers
- Organized as muscle fiber bundles, sheeths
- Arrangement of connective tissue is important
- Characteristic ultra-structural arrangement helping the contraction
- Chief structural proteins are actin and myosin

General features of muscular tissue

- Chief action is contraction active process
- Able to contract because of the presence of fibrillar protiens arranged in an organized manner linked by inter -molecular bonds
- Contraction is due to rearrangement of bonds
- Contractile force, power and range differ
- Muscle fibers able to change shape during contraction
- Convert chemical energy to mechanical energy

Muscular Tissue Types

Skeletal muscle

Smooth muscle

Cardiac muscle

Classification of muscular tissue

- striated & voluntary = skeletal muscle
- striated & involuntary = cardiac muscle
- smooth & involuntary = smooth/visceral muscle

Skeletal muscle

- Single cell- muscle fibre
- Bundle of fibres single muscle fascicle
- Many fascicles single muscle
 eg: Biceps, triceps

Skeletal muscle

Muscle fibre

- Long and cylindrical shape
 - Cross section polygonal
- Length: 10–100µm
- Unbranced fibre
- Multinucleated
- Peripheraly located oval euchromatic nuclei
- Nuclei located under sarcolemma
- Each fiber surrounded by external basal lamina
- Fibers can increase in size but not in number

Muscle fibre

Contractile proteins arranges in cylindrical myofibrils

each fiber contains dozens of myofibrils

each myofibril is about 1–2 μm in diameter
 contains myofilament bundles

Myofibril structure

- Cylindrical
- Diameter 1 µm
- Densely stained transverse lines - Z lines
- Area between two consecutive Z lines- Sarcomere
 (Contractile unit)

Sarcomere

- Functional unit of a muscle fibre
- The segment between two successive densely stained Z lines
- Includes one A band and half of two

Important muscle proteins

- Myosin-most abundant, forms the thick filaments
- Actin forms *thin filament*

- Tropomyosin & troponin

 Contractility regulating proteins
- Dystropin stabilizes muscle fiber and transmit force to the extracellular matrix
 - Defective synthesis result in Duchenne muscular dystrophy

Connective tissues of muscle

- Provides structural covering and support
- Maintains the shape of the muscle
- Act as attachments with the bone
- Transmit contractile force to the action site (eg joint movement)

-mysiums

(connective tissue coats of a skeletal muscle)

Endomysium

- Thin, delicate reticular fiber network
- Surrounds each fiber & external lamina
- Forms immediate external environment of the muscle fiber
- Site of metabolic exchange between muscle and blood
- Continuous with the perimysium

Perimysium

- Ensheaths groups of muscle fibers
- Inward extensions of the epimysium
- Therefore forms a muscle fasciculi
- Carries larger blood vessels and neuromuscular spindles

Epimysium

- Forms the entire outer covering of the muscle bulk
- Numerous collagen fibers arranged regularly

Skeletal muscle

Myofibeils

Skeletal muscle - H&E stain

Skeletal muscle - H&E stain

Skeletal muscle - H&E stain

Muscle Triad

- Uniform contraction is maintained by system of T tubules
- T tubules are deep invaginations of the sarcolemma encircle every myofibril at A-I junction
- On either side of T tubule are expanded terminal cisternae of smooth endoplasmic reticulum

Muscular Tissue Types

Skeletal muscle

Smooth muscle

Cardiac muscle

Cardiac Muscle

- Found only in the myocardium of heart & roots of large vessels
- Consists of branching network of individual cells
- Cylindrical fibers intermediate size
- Anastomoses with adjacent fibers
- Therefore functions as a unit
- usually one nucleus
- Nucleus located centrally

- myofilaments organized into myofibrils
- Similar to skeletal muscle
- Cross striations present but faint

Cardiac Muscle - cell structure

- fibers are arranged as interwoven bundles
- contractions in all dimensions
- highly vascular
- many mitochondria
- fibers capable of hypertrophy
- but not hyperplasia

Cardiac Muscle - cell structure

Intercalated discs

- unique to cardiac muscle fibers
- interdigitating fold of sarcolemn adjacent fibers
- linking them structurally and functionally by gap junctions and desmosomes unique to cardiac
- functional syncytium

Cardiac Muscle – cell structure

Intercalated discs

B: macula adherens desmosomesbinds cells

C: gap junctions — ionically couple cells

Contractile apparatus is as same as skeletal muscle fibers

- T-tubule system similar:
 - T-tubules at the level of the Z-line

 - ionic coupling regulates contraction through gap junctions

Cardiac Muscle - cell structure

Banding pattern:

- myofilaments banding pattern
- LM light I bands and dark A bands easily visible

Cardiac Muscle - cell structure

Cardiac Muscle

Muscular Tissue Types

Skeletal muscle

Smooth muscle

Cardiac muscle

- Involuntary action
- Spindle shape cells
- smallest fiber type
- Tapering towards the end
- non-branching
- Single, centrally placed nucleus often twisted due to contraction

- Muscle cells arrange themselves longitudinally as sheaths
- Gap junctions in adjacent myocytes

- No sarcomeres
- Myofilaments: actin and myosin filaments
- No proper organization
- Myofilaments: criss-cross obliquely through the sarcoplasm
- Attached to dense bodies (actinin) dense bodies
- Myofilaments are inserted to dense bodies to transmit force of contraction

- Typically found in walls of tubular structures
 - Blood vessels (20 μm), bronchial tree (regulating the flow of blood and air)
 - Ureteric wall (500 μm), hepatic duct, intestine muscularis propria (propels liquids and solids)
 - Urinary bladder, uterine myometrium (expels contents)
 - Secretory ducts

Arrangement of cells depends on the site and function of the organ

SUMMERY

SUMMERY

REFFERENCES

Burkit, H.G, young, B. (1993). Wheaters functional histology. 4 th ed., london:Churchill livingstone

Junqueira, L.C., Carneiro (1998). Basic histology. 9 th ed., stamford: Appleton & lange

