

NI mmWave Instrument documentation

for Barkhausen Institut

written by NOFFZ Technologies, Vuk Obradovic, Peter Vago, 2020

Account: 121923470910501

Swift Code: CMBCCNBS

1 Contents 1 Introduction

I	Introd	luction	5
	1.1	Installation	5
	1.1.1	Hardware	5
	1.1.2	Software	5
2	Hardy	vare	7
	2.1	Characteristics	8
	2.2	System A	9
	2.2.1	PXI system	9
	2.2.2	TX mmWave RF front end	. 11
	2.2.3	RX mmWave RF front end	. 11
	2.3	System B	. 12
	2.3.1	PXI system	. 12
	2.3.2	RX mmWave RF front end	. 14
	2.4	System interconnection	. 15
	2.4.1	Trigger and Clock sharing	. 15
	2.4.2	IF LO sharing	. 16
3	Instru	ment Operation	. 18
	3.1	Modes of operation	. 18
	3.2	Instrument states	. 18
	3.2.1	State transitions	. 20
	3.3	Commands	. 21
	3.4	Calibration	. 23
	3.4.1	Equalization filter calculation	. 27
	3.4.2	Equalization results	. 29
	3.4.3	Multi-system equalization	. 31

	3.5	TX signal generation	32
	3.5.1	Using low level commands	32
	3.5.2	TX FPGA: DRAM memory bit-packing and signal length	33
	3.6	RX signal acquisition	34
	3.6.1	Using low level commands	34
	3.6.2	RX FPGA: DRAM memory bit-packing	35
4	Softw	are	36
	4.1	Instrument control app	37
	4.1.1	Classes	
	4.1.2	Hardware Control Module	44
	4.1.3	Communication module	45
	4.1.4	Data Management module	45
	4.1.5	Log module	46
	4.1.6	GUI Module	47
	4.1.7	Configuration files	49
	4.1.8	Simulation mode supported features	52
	4.2	Command Service Application	53
A	ppendix	A: Development software tools	55
	A 1 Lab	VIEW tools	55
A	ppendix	B: Common error codes	56

Revisions

Date	Revision	Note	Author
14.5.2020.	1.0.0	First complete version	Vuk Obradović

Related documents

Document	Note
NI_mmWave_Getting_Started_Guide.pdf	Installation and connection guide
71_76_GHz_Millimeter_Wave_Transceiver_System.pdf	Datasheet
mmWave Transceiver System specifications.pdf	Detailed system specifications
NI-mmWave 18.1 Readme	NI mmWave driver readme

Page 4 of 56

Introduction

mmWave instrument setup consists of two system used for research in field of mmWave RF communication and radar.

Systems are based on NI PXI mmWave modular hardware and LabVIEW software.

Purpose of setup is to allow arbitrary waveforms in mmWave range to be generated and measured through simple API.

Systems offer following main features:

- 3 modes of operation: mmWave RF, IF and baseband for both reception and transmission
- Arbitrary IQ waveform generation
- Configuration of RF parameters
- Configurable sampling frequency with independent settings for generation and acquisition
- Single burst and continuous generation modes
- Waveform playlist generation mode
- Arbitrary acquisition length
- Instrument control through local UI or remote Python API
- Independent and synchronized modes of operation
- Phase/Sync synchronization between systems
- Simulation mode for testing and experimenting with API without hardware

1.1 Installation

1.1.1 Hardware

System A should be assembled as described in following sections of "NI_mmWave_Getting_Started_Guide.pdf":

- Baseband and IF: System Setup -> Bidirectional system setup -> Interconnecting the Bidirectional SISO (Baseband and IF) Modules (page 29)
- Radio heads: System Setup -> Connecting mmWave Radio Heads to the System -> Connecting mmWave Radio Heads to a Bidirectional System -> Connecting mmRH-3647/3657 Radio Heads to a Bidirectional System (page

System B should be assembled as described in following sections of "NI_mmWave_Getting_Started_Guide.pdf":

- Baseband and IF: System Setup -> Unidirectional system setup -> Interconnecting the Unidirectional SISO (Baseband and IF) Modules (page 15)
- Radio heads: System Setup -> Connecting mmWave Radio Heads to the System -> Connecting mmWave Radio Heads to a Unidirectional System -> Connecting mmRH-3647/3657 Radio Heads to a Unidirectional System (page 42)

System A and system B can be interconnected to allow trigger and LO sharing. More details are provided in chapter "2.4 System interconnection"

1.1.2 Software

Both systems come with preinstalled applications for operations. Application software automatically starts on system power up.

System requirements:

- RAM—8 GB RAM
- A screen resolution of 1,024 x 768
- Windows 10/8.1/7 64-bit with all available critical updates and service packs

For installing software on other PC to use in simulated mode complete following steps:

- Download latest **NI Package manager** (https://www.ni.com/en-us/support/downloads/software-products/download.package-manager.html)
- Install package: barkhausen-mmwave-radar_version_windows_x64.nipkg

Detailed information regarding software can be found in chapter "4 Software". Development software list is given in chapter APENDIX 1

Page 6 of 56

2 Hardware

System is based on 2GHz bandwidth NI PXI mmWave setup.

Picture 2-1 NI mmWave system

System is made of several blocks which allows flexibility in using different RF front ends or using IF only or baseband signals.

71 GHz to 76 GHz mmWave Transceiver System Block Diagram

Picture 2-2 NI mmWave block diagram

System A is transceiver which supports coherent transmission and reception of RF signal with custom IQ samples. System B is receiver which supports reception of RF signals. Both systems have identical receiver hardware.

System can work on their own or they can apply following synchronization options::

- Synchronized timing: Systems have shared start trigger for transmission and both recievers.
- Synchronized LO (coherent operation): Local oscillator for receiver chain are shared between systems.

Picture 2-3 mmWave setup System setup

2.1 **Characteristics**

System characteristics:

Parameter	Value	
Operational frequency	71-76GHz	
Real-time bandwidth	2GHz	
Interface	WR-12	
Analog gain range	55dB	
1dB Gain Compression	-12dBm	
Noise Figure	6dB	
IQ sampling rate	100K-3.072GS/s	
IQ resolution	12 bits	
IQ burst length	208n-100ms	

Table 2-1 Receiver characteristics

Parameter	Value
Operational frequency	71-76GHz
Saturated power	24dBm
Interface	WR-12
Analog gain range	55dB
Output IP3	+30dbm
Real-time bandwidth	2GHz
IQ sampling rate	100K-3.072GS/s

IQ resolution	12 bits	
IQ burst length	208n-100ms	
Supported generation modes	Burst	
	Continuous	

Table 2-2 Transmitter characteristics

Parameter	Value
Trigger standard deviation (once system is initialized)	<1ns
Trigger standard deviation (between system resets)	<10ns
LO1 sharing max distance	
LO2 sharing max distance	

Table 2-3 Synchronization characteristics

2.2 System A

System A is Transceiver which consists of:

- PXI chassis with its modules
- TX mmWave RF front end
- RX mmWave RF front end

2.2.1 PXI system

Picture 2-4 System A configuration

System modules:

Module	Slot	Name	Description	
NI PXIe-1085 24GBps		PXIChassis1	PXI chassis which holds modules and provides trigger and clock synchronization between them	
NI PXIe-8880	1	mmW-TXRX	PXI controller with Windows OS.	
NI PXIe-7902R	4	Tx_FPGA	FPGA module with High speed serial interface. Transmitter digital baseband module which generates digital high speed IQ signals.	
NI PXIe-3610 I/Q Generator	5	Tx_DAC	DAC converter for Tx baseband signal. Converts high speed serial digital IQ samples	

Page 9 of 56

			into differential baseband I/Q samples with 3.072GS/s
NI PXIe-3620	7	IF_mod_demod	IF upconverter and downconverter. Modulates TX baseband signal to IF and demodulates RX IF signal to baseband. Provides LO for TX and RX RF radio heads.
NI PXIe-3630 I/Q Digitizer	Ie-3630 I/Q Digitizer 8 Rx_ADC		ADC converter for baseband RX signal. Converts differential I/Q samples into high speed serial digital IQ data with 3.072GS/s
NI PXIe-7902R	9	Rx_FPGA	FPGA module with High speed serial interface. Reciever digital baseband module which receives digital IQ samples.
NI PXIe-6674T	10	TM	Timing module. Provides more precise 100MHz reference clocks to PXI chassis. Allows exporting and importing of trigger lines from PXI backplane.
NI PXIe-6592R	12	PXI1Slot12	*Unused* Additional FPGA module with serial interface for data processing

Figure 23. Bidirectional SISO (Baseband and IF) Chassis

Picture 2-5 System A PXI (1)

Page 10 of 56

2.2.2 TX mmWave RF front end

mmRH-3647 Front Panel

Picture 2-7 mmWave Radio head mmRH 3647 TX upconverter

2.2.3 RX mmWave RF front end

mmRH-3657 Front Panel

Picture 2-8 mmWave Radio head mmRH 3657 RX downconverter

2.3 System B

System B is Receiver which consists of

- PXI chassis with its modules
- RX mmWave RF front end

2.3.1 PXI system

System modules:

Module	Slot	Name	Description	
NI PXIe-1085 24GBps		PXIChassis1	PXI chassis which holds modules and provides trigger and clock synchronization between them	
NI PXIe-8880	1	mmW-TXRX	PXI controller with Windows OS.	
NI PXIe-3620		IF_mod_demod	IF upconverter and downconverter. Demodulates RX IF signal to baseband. Provides LO for TX and RX RF radio heads.	
NI PXIe-3630 I/Q Digitizer	8	Rx_ADC	ADC converter for baseband RX signal. Converts differential I/Q samples into high speed serial digital IQ data with 3.072GS/s	
NI PXIe-7902R	9	Rx_FPGA	FPGA module with High speed serial interface. Reciever digital baseband module which receives digital IQ samples.	
NI PXIe-6674T	10	TM	Timing module. Provides more precise 100MHz reference clocks to PXI chassis. Allows exporting and importing of trigger lines from PXI backplane.	
NI PXIe-6592R	12	PXI1Slot12	*Unused* Additional FPGA module with serial interface for data processing	

Page 12 of 56

Figure 9. Unidirectional SISO (Baseband and IF) RX Chassis

Picture 2-10 System B PXI (1)

Picture 2-11 System B PXI (2)

2.3.2 RX mmWave RF front end

mmRH-3657 Front Panel

Picture 2-12 mmWave Radio head mmRH 3657 RX downconverter

2.4 System interconnection

Picture 2-13 System interconnection diagram

Systems have following signals interconnected:

- 10MHz REF: PXI Chassis reference clock, sharing of this clock provides in phase operation of all digital subsystems
- **Trigger lines:** PXI Trig line. Shared through timing module. Triger line sharing enables synchronous start of operation when generating and acquiring bursts.
- Local oscillators: IF module LOs. LO sharing enables coherent acquisition (with constant phase shift) on both systems

2.4.1 Trigger and Clock sharing

To use trigger and clock sharing make following connections:

- Connect 10MHz REF OUT of System A chassis to 10MHZ REF IN of System B
- Connect PFI2 port of Timing module on System A to PFI2 port of Timing module on System B

Down AF of E

2.4.2 IF LO sharing

Picture 2-14 PXIe-3620 IF module

IF module has 3 Locals oscillators:

- LO1 TX oscillator used by TX radio head. From this LO radio head creates carrier for RF upconversion.
- LO1 RX oscillator used by RX radio head. From this LO radio head creates carrier for RF downconversion.
- LO2 oscillator used for IF up and downconversion

On System A LO1 TX is connected to LO1 RX to ensure coherent transmission and reception.

System A LO1 RX and LO2 are connected to System B LO1 RX and LO 2 to allow coherent operation of System A and System B receivers.

Picture 2-15 LO sharing details

LO1 and LO2 values are calculated based on desired IF/RF frequency.

If System is working as mmWave RF transceiver LO1 and LO2 frequencies depend on which RF heads are used:

Devices	LO Injection	RF Frequency	Formulas
mmRH-3602/3642/3652 mmWave Radio Heads	High-side	RF Frequency = LO Frequency - IF Frequency	RH LO Frequency = LO1 Frequency × 4 IF Frequency = LO2 Frequency × 3
mmRH-3603/3643/3653 mmWave Radio Heads	Low-side	RF Frequency = LO Frequency + IF Frequency	$RH\ LO\ Frequency = LO1$ $Frequency \times 3$ $IF\ Frequency = LO2$ $Frequency \times 3$
mmRH-3647/3657 mmWave Radio Heads	Low-side	RF Frequency = LO Frequency + IF Frequency	$RH\ LO\ Frequency = LO1$ $Frequency \times 8$ $IF\ Frequency = LO2$ $Frequency \times 3$

Table 2-4 Radio head LO and IF frequency calculation

In following table several examples for different RH are given:

mmWave Radio Heads	Mode	RF Frequency	IF Frequency	LO1 Frequency	LO2 Frequency
Any/none	IF only	_	11 GHz	_	3.667 GHz
mmRH-3602/3642/3652	mmWave	28.5 GHz	10.56 GHz	9.765 GHz	3.52 GHz (default)
mmRH-3603/3643/3653	mmWave	40 GHz	10.56 GHz	9.813 GHz	3.52 GHz (default)
mmRH-3647/3657	mmWave	73 GHz	12 GHz	7.625 GHz	4 GHz (default)

Table 2-5 LO1 and LO2 frequency examples

Page 17 of 56

3 Instrument Operation

Instrument is controlled via "instrument app" on its Windows controller.

Instrument can have several different modes of operation and during operation it can go through several states.

3.1 Modes of operation

Software for mmW instrument was created to support following modes:

- **RF** (**default mode**): Complete chain is used.
 - o TX: baseband signal is generated with DAC module, modulated to IF using IF module and further modulated to RF mmW band using RF head. TX signal is generated at RF head antenna.
 - RX: incoming RF mmW band signal is downconverted to IF using RF head, demodulated from IF to baseband using IF module and digitalized with ADC module. RX signal is measured at RF head antenna
 - O User can set RF frequency and gains for TX and RX path
 - User can provide custom IQ signal for generation and setup custom acquisition parameters
- **IF:** NI mmW RF heads not used.
 - TX: baseband signal is generated with DAC module, modulated to IF using IF module. TX signal is generated at IF out port of "IF_mod_demod" module.
 - RX: incoming IF signal is demodulated from IF to baseband using IF module and digitalized with ADC module. RX signal is measured at IF IN port of "IF_mod_demod" module.
 - User can set IF frequency and gains for TX and RX path
 - User can provide custom IQ signal for generation and setup custom acquisition parameters
- **BB** (**Baseband**): Only baseband modules are used.
 - O TX: baseband signal is generated with DAC module. TX signal is generated as two differential signals (I and Q) at ports I+/I-/Q+/Q- of "Tx_DAC" module.
 - o RX: incoming baseband signal is digitalized with ADC module. RX signal is measured as two differential signals at ports I+/I-/Q+/Q- of "Rx ADC" module.
 - o RF configurations are ignored.
 - User can provide custom IQ signal for generation and setup custom acquisition parameters.

3.2 Instrument states

mmW instrument operates through several states. State transitions can be automatic or forced via API commands.

Instrument flows through following states:

- Off
- Initialization
- Configuration
- Calibration
- Running

Off

Default state at instrument app start. No instrument sessions are running, no FPGA bitfile is deployed.

Initialization

During this state instrument sessions are started and FPGA bitfiles are being deployed. At end of this state internal timing calibrations are executed (NI T-clock) to align timing on all modules on same chassis. Which instrument sessions are initialized depends on instrument setup (System A or System B) and operation mode (RF/IF/BB).

Following sessions are initialized:

- FPGA session for "Tx FPGA". Bitfile deployed: "TX_FPGA_driver_DRAM_v_1_2_1.lvbitx" (System A only)
- Session for controlling "Tx_DAC" module (System A only)
- Session for controlling "IF_mod_demod" module (IF and RF modes)

- FPGA session for "Rx FPGA". Bitfile deployed: "RX FPGA driver DRAM v 1 2.lvbitx"
- Session for controlling "Rx ADC" module
- Session for controlling "TM" timing module

Configuration

In this state instrument accepts command for changing various parameters and applies them. Parameters can be changed through remote control API or through instrument app local GUI.

Following configuration commands are available:

- Configure RF: Configures RF/IF frequency and gain for specified port ("tx" or "rx")
- Configure Fs: Configures baseband sampling frequency for IQ samples for specified port ("tx" or "rx"). TX Fs specifies sampling frequency for provided TX burst samples. RX Fs specifies with which sampling frequency will be RX IQ samples be measured.
- Equalization enable: Enables or disabled equalization FIR filter for RX signal
- **Trigger sharing enable:** Enables or disabled trigger sharing between two Systems timing synchronization.
- LO sharing enable: Enables or disables LO1 and LO2 sharing between two systems phase/sync synchronization.

Calibration

Calibration state is used to obtain automatic equalization coefficients. In this state calibration signal is generated at TX port and acquired on RX port(s). Details regarding equalization will be provided in chapter "3.4 Calibration"

Running

In running state system is prepared to accept start triggers. On start trigger system starts generating preloaded TX IQ samples and starts acquisition of RX IO samples.

When systems are running independently (trigger sharing is disabled) each system accepts its own software trigger (command given through API or UI).

When systems are running with timing synchronization (trigger sharing is enabled) One system (System A) accepts its own software trigger (via command) and then distributes start trigger to other system (System B).

When system is in **Running** state several triggers can be sent without reloading TX IQ samples. Each time same IQ samples will be generated.

Details regarding TX samples generation and RX samples acquisition will be provided in chapters "3.5TX signal generation" and "3.6 RX signal acquisition"

3.2.1 State transitions

Following chart illustrates state transitions

Picture 3-1 Instrument state transitions

- Instrument goes from Off to Initialization state automatically when application is started
- Every time when **Initialization** is complete system goes into **Configuration** state
- Issuing command which changes operation mode (example: system is in RF mode and command was given to change to IF) will trigger Initialization state again to change mode
- Calibration is entered with command to start equalization and exited with command to stop equalization
- Start command will put system in Running state
- Any configuration command (RF, Fs) will put system back in Configuration state
- Sending new start command with different arguments will apply those arguments and return system in Running
- Whenever any error occurs in **Running** or **Calibration** state system returns to **Configuration** state.
- Transcieve command puts system in Running state and once completed returns system in Configuration state.

Commands 3.3

Instrument accepts following commands. Commands can be given through API or local GUI

Command	Input	Output	Valid state	Description
Initialize	mode: RF/IF/BB		Configuration	Initializes system in given operation
			Off	mode
Configure RF	• port: "tx"/" rx"		Configuration	Configuration command.
	• gain		Running	Configures RF port properties: gain
	• frequency			and frequency. Depending on mode
	1			either IF or RF frequency is
				configured.
Configure Fs	• port: "tx"/" rx"		Configuration	Configuration command.
	• fs		Running	Configure port sampling frequency.
				Tx and rx sampling frequencies can be
				independently configured.
Trigger	• Enable: True/False		Configuration	Configuration command.
synchronization			Running	Enables or disables start trigger
enable				sharing between systems.
LO synchronization	• Enable: True/False		Configuration	Configuration command.
enable			Running	Enables or disables local oscillators
				(LO1 and LO2) sharing between
Equalization enable	Enable: True/False		Configuration	systems. Configuration command.
Equanzation chaoic	Enable: True/False		Running	Enables or disables rx signal
			Kuming	equalization filter.
Write TX	Burst name		Any	Low-level command
.,	TX samples			Send TX IQ samples to instrument.
	- 171 sumples			Bursts are held in memory under given
				name until start command is received.
Start	Burst playlist		Configuration	Low-level command
	Acquisition duration		Running	Puts system in Running state. Burst
	•			playlist is list of bursts to be generated
				one after another. Bursts must be
				previously loaded using Write TX
				command. Acquisition duration
				specifies duration of RX IQ signal
				acquisition. Once system is in
				Running state it is ready to accept trigger. If start command is send while
				system was in Running state it will
				reload new playlist and reset Running
				state.
Send trigger	Burst mode:		Running	Low-level command
00	burst/continuous		8	Send software trigger to instrument.
				This trigger will initiate tx signal
				generation and rx signal acquisition.
				Generation can be in burst or
				continuous mode
Fetch		RX samples	Running	Low-level command
				Retrieves RX IQ samples from
Cton			Dunning	previously triggered acquisition.
Stop			Running	Low-level command
				Switches instrument from Running to Configuration state
Transceive	A Duret made	A DV as1	Configuration	High-level command.
Tanscore	Burst mode	RX samples	Running	Integrates write tx, start, send trigger.
	Acquisition duration TY		Kummig	Fetch and stop commands into single
	TX samples			1 cton and stop commands into shigh

		command. It supports only single burst generation in given mode.
Equalization start	Configuration	Calibration command. Starts Calibration state. Starts generation of calibration signal, calculates channel response and equalization filer coefficients. System will keep generating calibration signal while in Calibration state.
Equalization stop	Calibration	Calibration command. Stops calibration state. Stops calibration signal generation
Shutdown		Stop instrument application and switches system in Off state

Calibration 3.4

Calibration process is used to estimate channel response as freuquency response between generated IQ signal at DAC and measured IQ signal at ADC. It estimates therefore complete path (DAC + TX IF + TX RF + signal propagation through waveguide/antenna/air + RX RF + RX IF + ADC)

Estimated channel is therefore dependent on currently used RF settings (Frequency, tx and rx gains).

When Transceiver (System A) start equalization, it starts generating calibration waveform $Cal_{TX}(t)$ on its DAC.

Calibration signal is train of high frequency pulses with following properties:

- Sampling frequency: max (3.072GS/s)
- Pulse duration: 1 sample (325.5ps)
- Pulse repetition frequency: 160 samples (52.083ns)
- Pulse amplitude: 0.5 (half of maximum DAC range)

Pictures given here were obtained when calibration was performed with following parameters:

Frequency: 74GHz Tx gain: -5db

Immediately after generation is started Transceiver also acquires RX IQ records $Cal_{RX}(t)$.

32 records are measured, each with duration of 28000 samples (9,114µs).

Rx gain: 31db

Picture 3-2 Single Cal_{RX}(t) record amplitude

Page 23 of 56

Picture 3-3 Single record Cal_{RX}(t) amplitude - zoomed

Channel frequency response H(f) is estimated by comparing FFT of received signal and FFT of transmitted signal in those frequency points where signal is present (since signal is periodic it has FFT only on frequencies determined by pulse repetition period)

$$H(f) = \frac{FFT\{Cal_{RX}(t)\}}{FFT\{Cal_{TX}(t)\}}$$

Channel response is calculated for each of 32 records:

Picture 3-4 32 Channel response magnitudes for 32 records (in db)

Picture 3-5 Channel response phase for 32 records (unwrapped)

Data from 32 records is averaged to obtain final channel response.

Picture 3-6 Estimated channel response magnitude

Picture 3-7 Estimate channel response phase (unwrapped in deg)

Estimated channel response will be stored in CSV file on following path: C:/Program Data/Noffz/mmW_instr/eq_channel.csv

	Α	В	С	D
1	Frequency[Hz]	Channel Amp	Channel.Phase[rad]	
2	-1536000000	0.000209271	-2.758617275	
3	-1518545454.54545	1.8259E-05	-2.895057008	
4	-1501090909.09091	1.9255E-05	-1.748339561	
5	-1483636363.63636	1.9708E-05	-1.363604184	
6	-1466181818.18182	2.1244E-05	-1.325422429	
7	-1448727272.72727	2.6256E-05	-1.368981936	
8	-1431272727.27273	3.5758E-05	-1.427599362	
9	-1413818181.81818	5.0442E-05	-1.469732415	
10	-1396363636.36364	7.041E-05	-1.521550787	
11	-1378909090.90909	9.7291E-05	-1.612568424	
12	-1361454545.45455	0.000141193	-1.746356599	

Picture 3-8 eq_channel.csv example

3.4.1 Equalization filter calculation

Purpose of equalization filter is to flatten frequency response of system by compensating for non-flat channel response.

Picture 3-9 Signal spectrum correction using equalization filter

Desired response of equalization filter EQ(f) is calculated from normalized channel response $\overline{H}(f)$

$$\overline{H}(f) = \frac{H(f)}{\max(|H(f)|)}$$

$$EQ(f) = \frac{1}{\overline{H}(f)}$$

Since our channel response has both positive and negative frequencies (because of estimation on complex IQ signal) equalization filter also needs to be complex filter with real and imaginary path.

Picture 3-10 Complex equalizer structure

Equalizer will be implemented as 4 independent FIR filters. Two filters with real part of equalizer coefficients and two filters with imaginary part of filter coefficients.

Complex equalizer coefficients are obtained from desired frequency response by filter design method which uses Inverse FFT + windowing.

On following picture LabVIEW code is given which calculates FIR coefficients for equalization filter with 32 taps.

Picture 3-11 LabVIEW Equalization filter design suing IFFT + windowing design method

Calculated FIR coefficients are stored in CSV file:

C:/Program Data/Noffz/mmW_instr/eq_coeff.csv

1	А	В	С
1	Coeff.Re	Coeff.Im	
2	-0.0053492	0.0019107	
	0.004038	0.0028501	
4	-0.0120104	-0.0104547	
5	0.0205725	0.0194636	
	-0.0240515	-0.0329091	
7	0.0367163	0.0595148	
8	-0.0725879	-0.0697575	
9	0.1044466	0.0231418	
10	-0.091027	0.0868362	
11	0.0286203	-0.2360826	
12	0.0896325	0.4242072	
13	-0.2718276	-0.5710258	
14	0.4255666	0.4888135	
15	-0.2358336	-0.1134965	

Picture 3-12eq_coeff.csv example

Equalization filter coefficients are downloaded to RX FPGA and they are applied in real-time to incoming signal during acquisition.

Coefficients are automatically reloaded from eq_coeff.csv during initialization at application start. User can change this file with custom coefficients.

Page 28 of 56

3.4.2 Equalization results

For equalization demonstration Chirp signal with 2GHz bandwidth (from -1GHz to 1GHZ) with 100 μs duration was used.

RF parameters:

Frequency: 74GHzTx gain: -5dbRx gain: 31db

Picture 3-13 Measured RX signal of 2GHz chirp without equalization

Picture 3-14 Spectrum of measured RX signal of 2GHz chirp without equalization

Picture 3-15 Measured RX signal of 2GHz chirp with equalization

Picture 3-16 Spectrum of measured RX signal of 2GHz chirp with equalization

Multi-system equalization 3.4.3

Equalization process for both systems is given on following chart:

Picture 3-17 Equalization flow

System A should enter Calibration state before System B.

While System A is in Calibration state it will continue generating Calibration signal even after it completes calculation of its own equalization coefficients.

System B will use calibration signal from system A to estimate channel response between System A DAC and System B ADC.

3.5 TX signal generation

TX IQ signal is generated using Tx FPGA and Tx DAC modules.

System can generate arbitrary IQ samples with configurable sample frequency and arbitrary duration.

Samples are provided in complex form via Write tx command through API or in .dat file (when using local GUI). Samples are provided in form of "bursts", each burst has name and array of complex samples.

Following generation features are supported:

- Generate single burst
- Generate burst continuously (repeats burst generation until new burst is generated or stop command is issued)
- Generate burst "playlist": Several bursts are generated one after another. Bursts can repeat inside playlist without using additional memory. (only when using low level command)
- Generate burst "playlist" continuously.

Once bursts generation is started (System is in Running) state burst or playlist can be retriggered arbitrarily without providing new samples.

Using low level commands 3.5.1

- With Write TX command IQ data is provided as array and memorized on Controller under given name
- If Write TX command is given with burst name of existing burst, its content will be overwritten in memory.

Picture 3-18 Write TX command execution

- **Start** command provides burst "playlist": order of bursts to be generated.
- When Start command is received bursts are retrieved from Controller RAM memory, resampled from tx fs to maximum sampling frequency and downloaded into FPGA through DMA. On FPGA samples are bit-packed into DRAM memory. Bursts playlist is then downloaded to FPGA so bursts generation can be sequenced in given order.

Page 32 of 56

Picture 3-19 Start command execution - (TX side)

- When Send trigger command is received generation and acquisition start synchronously (on one or both systems depending on trigger sharing).Tx_FPGA starts reading burst samples from its DRAM memory in order given by playlist one after another. If generation mode is set to continuous once all bursts from playlist are generated generation restarts from first burst.
- If generation mode is continuous burst sequence will be continuously generated until stop command is sent

TX FPGA: DRAM memory bit-packing and signal length

Tx_FPGA is PXIe-7902 module with large FPGA chip and DRAM memory which is external to it.

External DRAM has 2GB available organized in 33554432 addresses which hold 512 bits.

For DRAM to operate at its max speed (10.5 GB/s) following must be met:

- all bits from one address must be used
- addresses should be written/read in succession.
- DRAM should only be used for write OR read operations at a time.

DAC module output data with 14bit precision at end but interface is 16bit.

To generate long burst properly we need to provide DAC module through its digital interface (MGT interface) new samples at 3.072GS/s rate. On FPGA side this is handled as sending 16 by 16 IQ samples (real + imaginary) at each clock tick of 192MHz clock. Data required is 16-bit precision for I and Q (4Bytes for whole complex sample).

This data throughput is 192M x 16 x 4B = 12.288 GB/s which is higher than maximum DRAM throughput.

Therefore, data is stored in DRAM with 12-bit precision in following way:

4 "blocks" of 16 12-bit IQ samples are stored in 3 DRAM addresses $(4 \times 16 \times (12b + 12b) = 4 \times 384b = 1536b = 3 \times 512b)$

Page 33 of 56

Picture 3-20 DRAM bit-packing. Storing 64 12-bit precision IQ samples into 3 DRAM addresses

This reduces data throughput requested from DRAM to 9.216GB/s which is withing its capability. Data is converted from 12 to 16-bit precision prior to sending to DAC.

Note: Because data is bit-packet burst length resolution for both TX and RX is 4*16 = 64Samples. When burst is specified with length different from multiple of 64 it will be zero padded until correct length. This needs to be considered when generating in continuous mode.

3.6 RX signal acquisition

RX IQ samples are acquired using Rx_ADC and Rx_FPGA modules.

System can acquire IQ samples with arbitrary number of samples.

Samples can be retrieved from system using **Fetch** command. Samples can be retrieved via API or via local GUI. Samples are provided in form of "records", each "record" has name and array of complex samples.

Once system is in **Running** state record will be acquired on each trigger.

3.6.1 Using low level commands

- **Start** command provides acquisition record length in seconds. This duration will be converted in number of samples at max fs (3.072GS/s).
- When **Start** command is received system goes into **Running** state and is prepared for receiving triggers.

Picture 3-21 Start command execution (RX side)

Page 34 of 56

- When Send trigger command is received generation and acquisition start synchronously (on one or both systems depending on trigger sharing). Rx_FPGA starts reading IQ samples from ADC, bit-packs them and writes them into DRAM until number all samples of record are stored. Once record storing is done FPGA will start reading data from DRAM and forwarding them through DMA to Controller.
- Fetch command retrieves complete record from FPGA DMA channel. Data is then resampled from maximum Fs (3.072GS/s) to configurable rx fs. If command was issued through API samples are sent back to API caller through communication. For local UI and debugging purposes last several records are kept in Controller RAM memory (up to 500MB of record data) for visualization and processing in GUI.

Picture 3-22 Fetch command

3.6.2 RX FPGA: DRAM memory bit-packing

IQ samples for RX are bit-packed into onboard DRAM memory on Rx_FPGA in same way as TX bursts. DRAM is used as one big buffer for RX data.

Maximum number of samples which can be buffered is 33554432 x (4/3) x 16 = 715,827,882 samples which is equivalent to 233ms of data.

4 Software

Software consists of 3 modules:

- mmWave instrument control app
- Command service app
- Python API

Instrument control and service app are implemented in LabVIEW 2019 (64bit) while Python API was implemented using Python 3.7 (64bit).

Modules and apps are communicating with each other using ZeroMQ (ZMQ) TCP library:

- ZMQ is lightweight protocol based on TCP which provides API for multiple different targets and programming languages
- It provides connection management
- ZMQ has several communication patterns, in this application we are using Request Response
- ZMQ manages connection and communication in background asynchronous IO thread.

LabVIEW FPGA module was used to extend reference FPGA code for digital baseband for both TX and RX.

Legend:

Request (client -> server)

Response (server -> client)

NOFFZ Confidential

Picture 4-1 Software architecture

4.1 **Instrument control app**

Instrument control application is developed using LabVIEW 2019 and LabVIEW 2019 FPGA.

Application is installed on following path:

C:\Program Files\Noffz\Barkhausen mmWave radar

Configuration files for application are located on following path:

C:\ProgramData\Noffz\mmW_instr

Purpose of application is to provide link between user commands and hardware.

Complete application with FPGA codes is organized in single LabVIEW project with following structure

- My Computer Windows app
 - o **Documentation** initial LV project doc
 - o **Research** various LV Vis used for POC and experiments
 - o **SubVIs** –VIs, libraries and classes used in code
 - o **Library Dependencies** external libraries (from other modules)
 - Example targets starting project template targets
 - o **Modules** libraries for all instr app modules
 - o **conf** configuration files (default values)
 - data ZMQ and other dll dependencies
 - mmWave Instrument Control Main.vi main VI
- **Transmit FPGA (3.072 GSps)** Tx_FPGA code
- Receive FPGA (3.072 GSps) Rx_FPGA code
- **Build specifications** distributaion generation

Picture 4-2 Instrument app LabVIEW project

Application (mmWave Instrument Control Main.vi) consists of several concurrent processes:

- Hardware Control module: Accepts commands and controls hardware via Hardware Abstraction Layers.
- Communication module(s): One module receives commands remotely using Network Streaming (Debug/development) and other one ZMQ (API). Commands are passed to Hardware Control module
- GUI: Local user interface which sends commands to Hardware Control Module and plots TX and RX IQ waveforms

Page 38 of 56

- Data management module: Keeps and manages preloaded TX waveforms and retrieved RX waveforms in memory
- Log module: Logs all received commands with their parameters and errors which occurred in code.

Picture 4-3 Instrument control app block diagram

Inter-module communication is implemented using LabVIEW user events.

User events provide many-to-many communication mechanism. Event can be generated on several different places modules and registered (handled) wherever needed.

Each event provides message (string), data (variant/anything) and notifier for response.

Following events are present in application:

- Command: New command was issued to instrument. Generated by communication module (accepting API command) or GUI
- NewData: New IQ samples available. TX bursts: generated by GUI and Communication module when new IQ samples are present. RX records: generated by HW Control module when data is fetched
- **CloseApp:** Event generated when application is closing.
- Error: Generated by any module when LabVIEW error occurs

Following module have "internal" user events used for self-signaling and wrapped inside API functions for those modules:

- Log event: Send custom log message to Log module
- **DM event:** Event which provides interface to and from Data management module

Following chart illustrates example event flow:

Communication module accepts incoming API commands, processes them and triggers Command event or NewData event. **HW Control** is registered to **Command** event to which it provides **Responses** upon completing hardware actions. It uses DataManagment API to retrieve bursts and NewData to signal new RX records are present in system. **DataManagment** module register when new data is available. It also provides data back when requested through its API.

Picture 4-4 Example evnt flow during TX/RX operations

Modules generally are implemented as Event consumers with following template:

Picture 4-5 Instrument application module template

4.1.1 Classes

Project contains several classes for various purposes.

All classes were created using AddQ G# framework (http://sine.ni.com/nips/cds/view/p/lang/en/nid/209103). G# extends basic LabVIEW OOP to memory optimal reference-based OOP and provides various extensions to IDE which speed up class development.

Picture 4-6 mmW project classes

There are 3 groups of classes:

- mmWave HW: Hardware abstraction layer classes for mmWave instrumentation
- Timing HW: Hardware abstraction layer classes
- Data: Classes for reference memory optimal burst/record IQ data management

Hardware abstraction layer provides interface between hardware usage and driver calls. They provide methods with clear and simple API and in their implementation API inputs are adapted to driver calls. HALs are created in a way that there is always top-level abstract class which provides API interface. From this top-level parent class child classes are derived for specific instruments. All other modules which use hardware use it through parent-class methods.

This implementation allows dependency-injection (changing instrument used by just changing which child class is used without need to modify module code). For example, HW Control module without any additional changes can handle SysA hardware, SysB hardware and simulated hardware.

4.1.1.1 mmWave HAL

Parent abstract class: mmWave instrument.lvclass

Provides attributes shared by all child classes. Provides methods to be overwritten

Picture 4-7 Abstract top level class for mmW instrument control


```
Base class (cluster of 12 elements)
  mode (typedef 'mmWave instrument.lvclass:Instrument mode.ctl'[non-strict])
    mode (unsigned word [16-bit integer (0 to 65535)] enum (RF, IF, BB))
  instr state (typedef 'mmWave instrument.lvclass:Instrument state.ctl'[non-strict])
    instr state (unsigned word [16-bit integer (0 to 65535)] enum (Off, Initialization, Configuration, Running, Calibration))
  Max Fs (double [64-bit real (~15 digit precision)])
  Equalization coeff (1D array of)
    (double complex [~15 digit precision])
  TE LO sync en (boolean (TRUE or FALSE))
  TFI Trig sync en (boolean (TRUE or FALSE))
  LO sources (typedef 'mmWave HW Control.lvlib:LO sources.ctl'[non-strict])
    LO sources (cluster of 3 elements)
      BE RX/LO1 src (string)
      TX/LO1 src (string)
      LO2 src (string)
  LO Export (typedef 'mmWave HW Control.lvlib:LO export.ctl'[non-strict])
    LO Export (cluster of 6 elements)
      TF TX LO1 export (boolean (TRUE or FALSE))
      IX LO1 export level (double [64-bit real (~15 digit precision)])
      TF RX LO1 export (boolean (TRUE or FALSE))
      RX LO1 export level (double [64-bit real (~15 digit precision)])
      TE LO2 export (boolean (TRUE or FALSE))
      LO2 export level (double [64-bit real (~15 digit precision)])
  Fc.range (cluster of 2 elements)
    min (double [64-bit real (~15 digit precision)])
    max (double [64-bit real (~15 digit precision)])
  Sync mode (typedef 'mmWave instrument.lvclass:Sync mode.ctl'[non-strict])
    Sync mode (unsigned word [16-bit integer (0 to 65535)] enum (Slave, Master))
  TF equalization en (boolean (TRUE or FALSE))
  sequence (1D array of)
    String (string)
```

Picture 4-8 Base class attributes

From this class 3 child classes are derived:

- **niMmWave_Transciever.lvclass:** HAL for controlling System A hardware. Supports TX generation and RX acquisition. Provides interface to all mmW hardware (FPGAs, ADC, DAC, IF)
- **niMmWave_reciever.lvclass:** HAL for controlling System B hardware. Supports RX acquisition. Provides interface to RX mmW hardware (FPGA, ADC, IF)
- **sim_MmW.lvclass:** Simulated HAL. Can be used on PC without hardware. Supports TX generation and TX acquisition. Provides simulated signal response based on "generated" TX burst.

4.1.1.2 Timing HW HAL

Parent abstract class: Timing.lvclass

Class provides two main methods and no shared attributes:

- LoadFromINI.vi loads object data from ini file
- Initialize.vi Makes all trigger connections (exporting/importing)

Picture 4-9 Abstract top level class for timing module control

4.1.1.3 mmWave data

mmWave data classes provide wrappers around IQ data. Since G# objects are reference based this enables data sharing between modules without additional data copies. Sending bursts and records between methods is implemented as sending G# objects which are lightweight (they contain only pointer to object attributes where data is held).

There is abstact class: mmWave data.lvclass from which single child class is derived IQBurst_memo.lvclass

mmWave data.lvclass provides methods for writing and reading data in various formats, saving, loading and retrieving data size in Bytes.

IQBurst_memo.lvclass keeps data in RAM memory as array on int16 data, I and Q samples interleaved.

Picture 4-10 mmWave data class

4.1.2 Hardware Control Module

Configures and operates mmWave and Timing module instruments. Takes tx data and produces rx data.

Hardware is controlled via HAL Classes for mmW and Timing module.

At start: module creates all HAL objects based on ini file and initializes them in default mode (specified by ini)

Module is registered for following events:

- Command
- CloseApp
- HW module internal event

Module processes received commands by calling HAL methods and returns response. In case error occurs module handles it by forcing HAL in safe state: Configuration

Dec. 44 4555

Picture 4-11Start command handling in HW Control module

4.1.3 Communication module

Provides entry point for commands received through ZMQ.

Module is registered for following event:

CloseApp

Note: Instrument Application includes the "mmW Library" and uses its VIs to construct and extract messages to send and receive. For detailed description of the defined message formats please refer to the the "mmw Library" documentation, chapter "Communication channel and Data Types"

Here is a short summary of the massage formats:

Open ZMQ:REP socket and waits for messages.

When message is received following data is extracted:

- Message: string
- Parameters (optional): JSON formatted string, extracted as LabVIEW cluster. Each command has its own cluster
- Data (optional): IQ data, byte stream of interleaved IQ int16 samples.

For each received message response is sent once command is executed:

- Message: string, returns message
- Status: string, ok/error/timeout
- Response (optional): JSON formatted string, contains response parameters and data type of data field
- Data (optional): byte stream, can be interleaved IQ int16 data or json string.

This module generates events:

When messages are received, they are parsed and forwarded to corresponding module (either **Command** event or **NewData** event are generated).

For Command events module waits for response from HW Module before packing it into response message.

Communication module packs received IQ data into **mmWave data objects** and extracts IQ data from **mmWave data** objects before sending them as response data.

4.1.4 Data Management module

Data Management module handles mmWave objects.

Module manages several groups of objects independently (TX and RX group).

Module is registered for following events:

NewData

- CloseApp
- DM module internal event

Objects are kept in "map" under their name.

TX bursts object names are given when Write TX command is executed.

RX record object names are generated based on fetch time and burst sequence which was generated.

Module tracks object creation history and deletes oldest objects in group if total memory occupied by group exceeds threshold.

TX memory threshold: 2GB RX memory threshold: 500MB

Module provides following actions through its API (internal event):

- Get burst list returns names of all objects in group
- Get burst return object from group specified by name
- Clear deletes all objects from memory

4.1.5 Log module

Log module catches events occurring in application and logs them in .log file following log4j format.

Module is registered for following events:

- Command
- CloseApp
- Error
- Log module internal event

Each log entry has timestamp.

When Command is registered log module writes command message, parameters and it also tracks response on its notifier and logs response status.

Log files are kept under: C:/ProgramData/Noffz/mmW_instr/log

Example log file content:

	A	R	ſ	D	-
	Timestamp	Tag	Source	Message	-
-	20200513T105445.11				
-	20200513T105445.12				
				HW STATE:Initialization:	
				HW STATE:Initialization:	
-				MSG REQueet config PARAM:	
-				MSG REP.get config STATUS: CK RESP: ["system info": ["mmw instr": "niMmWave Transciever", "max fs": 3.07200000000000E+9, "RX/LO1 src": "External", "TX/LO1 src": "internal", "LO2 src": "internal", "RX/LO1 export" irrue,	77
8				Hardware initialization done	_
-				HW STATE: Configuration:	
1				MSG REQuequalization start PARAM:	
1				MSG REP:equalization start STATUS: OK RESP:	
1				HW STATE:Calibration:	
1				MSG REQ:equalization stop PARAM:	
1				MSG REP:equalization stop STATUS: OK RESP:	
1				HW STATE: Configuration:	
1				MSG REQ:start PARAM: { "Bursts": { "Chirp 2GBW 100us" }, "Acquisition duration":0.00011000000000000 }	
1				MSG REP:start STATUS: OK RESP:	
1	8 20200513T105608.80				
1				MSG REQ:send trigger PARAM: { "Burst name":"", "Burst mode":0}	
2				MSG REP:send trigger STATUS: OK RESP:	
2				MSG REQ.:fetch PARAM:	
2				MSG REP:fetch STATUS: OK RESP:	
2				MSG REQ:equalization enable PARAM: ("Enable":true)	
2	4 20200513T105614.01	TRACE	Log.lvlib:Main.vi	MSG REP: equalization enable STATUS: OK RESP:	
2	5 20200513T105614.77	TRACE	Log.lvlib:Main.vi	MSG REQ:start PARAM: { "Bursts": ["Chirp_2GBW_100us"], "Acquisition duration":0.0001100000000000}	
2				MSG REP:start STATUS: OK RESP:	
2				MSG REQ:send_trigger PARAM: { "Burst name":"", "Burst mode":0}	
2				MSG REP:send trigger STATUS: OK RESP:	
2	9 20200513T105616.05	TRACE	Log.lylib:Main.vi	MSG REO: fetch PARAM:	

Picture 4-12 Example log file content

4.1.6 **GUI** Module

GUI module provides local interface to control and debug application.

Module is registered for following events:

- CloseApp
- Error

Picture 4-13 Application GUI

GUI has following main sections:

- Status bar: contains information regarding current state of system: HW state, mode, System ID, HAL class,
- Config/Control Controls for issuing commands to system. Has page for configuration commands and for operation commands
- Data objects view Shows all TX and RX data objects currently in application

4.1.6.1 **Operating instrument from GUI**

When system is in configuration state from Config panel parameters can be set.

Picture 4-14 Configuration GUI

Transceiver operation:

- Select burst from Available TX bursts list, it will be previewed on TX waveform graph
- Enter desired rx record duration in Acquisition duration control and press Start button to execute start command and send system into Running state
- Selected desired burst mode from dropdown menu below Send trigger button (burst/continuous) and press Send trigger button to trigger generation and acquisition
- Press Fetch button to execute fetch command. As soon as data is retrieved new record will be added to Available RX bursts list
- By selecting record from Available RX bursts list and pressing Plot button selected IQ data will be plotted.

Receiver operation:

- Enter desired rx record duration in Acquisition duration control and press Start button to execute start command and send system into Running state
- If system is operating independently (no trigger sharing): Press Send trigger button to trigger acquisition
- If systems are time synced there is no need to press **Send trigger**. Acquisition will be triggered from other system,
- Press Fetch button to execute fetch command. As soon as data is retrieved new record will be added to Available **RX bursts** list
- By selecting record from Available RX bursts list and pressing Plot button selected IQ data will be plotted.

4.1.6.2 .dat files

When operating instrument from GUI custom IQ waveforms can be loaded into application from .dat files.

.dat files are pure binary files where I and Q samples are written in double precision format interleaved (complex double).

Page 48 of 56

.dat file can be generated from complex numpy arrays or from LabVIEW (Write to binary function)

Python .dat generation example:

Create complex chirp signal and save it to .dat file

```
    import numpy as np

2.
3. #Parameters
4. fs = 3.072e9
                         #sampling frequency
   T = 100e-6
                         #signal duration
6. N=T*fs
                         #number of samples
7. f0=-1000e6
                         #staring chirp frequency
8. f1=1000e6
                         #end chirp frequency
9. alfa=(f1-f0)/(2*T)
                         #slope
10.
11. #Create chirp signal
12. t = np.linspace(0, T, N, endpoint=False) #time vector
13. f = f0+alfa*t
                                              #frequency vector
14.
15. #Save to signal to .dat
16. w=np.exp(1j*2*np.pi*f*t)
                                                   #complex chirp
17. w.astype('complex128').tofile("C:/chirp.dat") #save to dat
```

When Load TX .dat button is pressed popup will appear. User should navigate to folder where files are stored, and program will automatically load all .dat file from that folder.

Pressing Save button will save selected RX record object samples into .dat file.

4.1.7 Configuration files

Configuration files on C:\ProgramData\Noffz\mmW_instr are ordered into several ini files.

mmWave.ini - top level ini, specifies system ID, which hardware ini file is used, PID file path and folder where to store log files

```
System ID = "SysA"
INI path = "C:\ProgramData\Noffz\mmW instr\Simulated.ini"
PID path = "C:\ProgramData\Noffz\mmW instr\BH PID.json"
Log root = "C:\ProgramData\Noffz\mmW_instr\logs"
```

Picture 4-15 Top level ini file content

```
SysA.ini – ini file for System A configuration
SysB.ini – ini file for System B configuration
Simulated.ini – ini file for Simulated operation configuration
```

INI files for hardware configuration have several sections and parameters. In following table details are given for complete file content

Key	Sys A value	Sys B value	Simulated value	Description
HW				

instr_class	niMmWave_Transciever_class	niMmWave_Reciever_class	Simulated	mmW HAL to be
				used
instr_mode	RF	RF	RF	Default operation mode
timing_class	NISync	NISync	Simulated	Timing module HAL to be used
auto_init	True	True	True	Automatically initialize app in default mode
Instruments				
TX_DAC	Tx_DAC	/	/	PXIe-3610 DAC module
TX_FPGA	Tx_FPGA	/	/	PXIe-7902R High speed serial module used for TX
IF	IF_mod_demod	IF_mod_demod	/	PXIe-3610 I/Q Generator module
RX_ADC	Rx_ADC	Rx_ADC	/	PXIe-3630 I/Q Digitizer module
RX_FPGA	Rx_FPGA	Rx_FPGA	/	PXIe-7902R High speed serial module used for RX
Timing_module	TM	TM	/	PXIe-6674T timing module
Timing module				
mode	Export trig	Import trig	/	PXI to PFI direction
Module terminal	PFI2	PFI2	/	PFI front panel terminal for trigger exporting/importing
PXI line	PXI_Trig1	PXI_Trig1	/	PXI Trigger to export/import
mmWave adapte	rs			
TX_adapter	mmWave1/0		/	mmWave radio head adapter for TX (attached to IF module)
RX_adapter	mmWave0/0	mmWave0/0	/	mmWave radio head adapter for RX (attached to IF module)
RF Configuration				
TX_fc	7300000000	/	73000000000	Default TX fc
TX_gain	-10	/	-10	Default TX gain
RX_fc	73000000000	73000000000	7300000000	Default RX fc
RX_gain Trigger Configur	25	25	25	Default RX gain
		/	1 /	Dolov botwoon
TX_delay	0		7	Delay between receiving start trigger and tx generation start
TX_trig_src	Use Tclk	/	/	Trigger source: Use TClk – internal PXI_Trig – use PXI line
TX_PXI_src	0	/	/	If PXI_Trig is source specifiec which PXI trig line to use

Page 50 of 56

TX_export	None	/	/	Is start trigger
TA_export	None	<i>'</i>	,	exported
TX_PXI_dest	0	/	/	To which PXI line
				should TX trigger be
				exported
RX_delay	817.7087e-9	708.333e-9	/	Delay between
-				receiving start trigger
				and rx acquisition
				start
RX_trig_src	Use Tclk	PXI_Trig	/	Trigger source:
				Use TClk – internal
				PXI_Trig – use PXI line
RX_PXI_src	0	1	/	If RX_trig_src is
KA_I AI_SIC	U	1	/	"PXI_Trig" which
				PXI trig line to use
RX_export	Synced trig	None	/	Which trigger
– 1				exported:
				None – do not export
				Synced – export after
				Telk sync
				Delayed – export
RX_PXI_dest	1	0	/	after delay To which PXI line
KA_FAI_uest	1	O	/	should TX trigger be
				exported
Synchronization				1
Sync mode	Master	Slave	/	In 2-system sync
				specifies which
				system is master (for
				exporting trig/LO)
				exporting trig/LO) and which one is
				exporting trig/LO) and which one is slave (for importing
Trig sync en	True	True		exporting trig/LO) and which one is slave (for importing trig/LO)
Trig sync en	True	True	/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for
Trig sync en	True	True	/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger
Trig sync en	True	True	/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for
Trig sync en	True	True	/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO
			/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization
LO sync en			/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO
LO sync en	True	True		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable
LO sync en LO sources RX/LO1 src	True External	True External	/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source
LO sync en LO sources RX/LO1 src TX/LO1 src	True External Internal	True External Internal	/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src	True External	True External	/	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export	True External Internal Internal	External Internal External		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src	True External Internal	True External Internal	/ / / / / / / / / / / / / / / / / / / /	exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export	True External Internal Internal True	External Internal External		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source Export TX LO1 enable Export TX LO1
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export TX LO1 export TX LO1 export	External Internal Internal True 15	External Internal External False		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source Export TX LO1 enable Export TX LO1 power in dBm
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export TX LO1 export	True External Internal Internal True	External Internal External False		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source Export TX LO1 enable Export TX LO1 power in dBm Export RX
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export TX LO1 export TX LO1 export evel RX LO1 export	External Internal Internal True 15 True	External Internal External False 0 False		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source Export TX LO1 enable Export TX LO1 power in dBm Export RX LO1enable
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export TX LO1 export TX LO1 export level RX LO1 export RX LO1 export	External Internal Internal True 15 True	External Internal External False		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source Export TX LO1 enable Export TX LO1 power in dBm Export RX LO1enable Export RX LO1enable Export RX LO1enable Export RX LO1enable
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export TX LO1 export TX LO1 export level RX LO1 export RX LO1 export	External Internal Internal True 15 True 15	External Internal External False 0 False 0		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source Export TX LO1 enable Export TX LO1 power in dBm Export RX LO1enable Export RX LO1 power in dBm
LO sync en LO sources RX/LO1 src TX/LO1 src LO2 src LO export TX LO1 export TX LO1 export level RX LO1 export RX LO1 export	External Internal Internal True 15 True	External Internal External False 0 False		exporting trig/LO) and which one is slave (for importing trig/LO) Default value for trigger synchronization enable Default value for LO synchronization enable RX LO1 source TX LO1 source LO2 source Export TX LO1 enable Export TX LO1 power in dBm Export RX LO1enable Export RX LO1enable Export RX LO1enable Export RX LO1enable

Page 51 of 56

4.1.8 Simulation mode supported features

Simulated HAL will accept all commands but some of them wont have any effect on operation (not supported) Feature list for Simulated HAL:

Feature	Supported
Set RF	Yes
Set Fs	Yes
Write TX	Yes
Start command	Yes
Burst playlists	Yes
Arbitrary rx record duration	Yes
Send trigger	Yes
Fetch	Yes
Trigger synchronization	No
LO synchronization	No

RX record samples are generated with following logic:

- TX burst sequence to be generated is resampled from tx fs to 3.072GS/s
- Signal is then filled up with 0 samples up to rx record duration
- Signal is multiplied with complex number to apply attenuation and phase shift
- Applied attenuation is dependent on configured RF gains
- Noise signal is applied
- Signals is resampled from 3.072GS/s to rx fs.

4.2 **Command Service Application**

Instrument control application is developed using LabVIEW 2019.

Purpose of this Service Application is to receive commands from User PC and either forward them to Instrument Application (instrument commands) or execute them (environment-control commands).

This service also provides logging: users can track and debug command in log files saved on the PXI-A system.

4.2.1 Executables, Configuration files

This service listens on the TCP 5558 port.

```
;C:\ProgramData\Noffz\mmW Service.ini
 path = "C:\ProgramData\Noffz\mmW Service\log"
 Listener_ID = "mmW_service"
 level = 7
 verbosity = 4
[Zmq listener]
 endpoint = "tcp://0.0.0.0:5558"
```

Figure 1: Top level Config file

Accepted messages formats are described in the mmW Library documentation (Documentation - mmW Library.docx).

File locations:

- mmW Service exe:
 - Final version (started by Windows):
 - C:\ProgramData\Noffz\mmW_Service\bin\mmW_Service.exe
 - Latest build:
 - <repo>\ C:\mmW_Project\mmW_Service\
- mmW Service LabView source:
- mmW Service shared libraries (programs used by both service and instrument):
 - mmW_commands: <national $instr.>\vi.lib\Noffz\mmW_command\mmW_commands.lvlib$
- Dynamic data (data that is genenrated dynamically and/or system specific/unique):
 - Logs: C:\ProgramData\Noffz\mmW_Service\log*.log
 - INI file(s): C:\ProgramData\Noffz\mmW_Service\mmW_Service.INI
 - Waveforms: C:\ProgramData\Noffz\waveforms

Appendix A: Development software tools

A 1 LabVIEW tools

Following tools are needed to open and modify LabVIEW source code

Software	Туре	Source
LabVIEW 2019 SP1 64- bit	Development environment	NI package manager or:
	_	https://www.ni.com/en-
		us/support/downloads/software-
		products/download.labview.html#329059
LabVIEW 2019 FPGA Module	LabVIEW module	NI package manager or:
		https://www.ni.com/en-
		<u>us/support/downloads/software-</u>
		products/download.labview-fpga-module.html#305474
FPGA Compliation Tools for	FPGA Compilation tools	NI package manager or:
LabVIEW (optional)		http://www.ni.com/download/labview-fpga-module-
		<u>2019/8172/en/</u>
LabVIEW modulation toolkit	LabVIEW toolkit	NI package manager or:
		https://www.ni.com/en-
		<u>us/support/downloads/software-</u>
		products/download.labview-modulation-
		toolkit.html#305522
NI mmWave drivers	Instrument drivers and	NI package manager or:
	development tools for	https://www.ni.com/en-
	LabVIEW	us/support/downloads/drivers/download.ni-
		mmwave.html#312718
NI Sync	Instrument drivers and	NI package manager or:
	development tools for	https://www.ni.com/cs-
	LabVIEW	cz/support/downloads/drivers/download.ni-sync.html
DMC GUI Suite	VI package	VI Package manager
G# Framework	VI package	VI Package manager
JKI JSON	VI package	VI Package manager
logger	VI package	VI Package manager
OpenG Toolkit	VI package	VI Package manager
ZeroMQ Socket library	VI package	VI Package manager.
		Package found on: http://labview-zmq.sourceforge.net/

Dave FF 4FF

Appendix B: Common error codes