

IMAGE PROCESSING PART I

Professor: Rubén Alvarez

CONTENT

- Digital filters
- Filter analysis
- Filter design
- Filters comparison
- Model colors

REMEMBER

Convolution theorem

$$\mathcal{F}(f * g) = F(\omega)G(\omega)$$

2D CONVOLUTION

$$y_{k,l} = \sum_{m=-1}^{1} \sum_{n=1}^{1} x_{k-m,l-n} g_{m,n}$$

DIGITAL FILTER

WHAT IS A DIGITAL FILTER AND WHAT IS IT FOR IMAGES?

DIGITAL FILTER

- Objectives:
 - Image smoothing
 - Noise removal
 - Improve the image
 - Edge detection?

WHAT IS NOISE?

- In images is the unwanted information that contaminates the image.
- Defined as

$$g(x,y) = f(x,y) + r(x,y)$$

TYPES OF NOISE

- Gaussian Noise
- Uniform noise ... (Bias?)
- Impulsive noise (Salt and pepper)
- Etc.

GAUSSIAN NOISE

SALT AND PEPPER NOISE

KERNEL?

KERNEL OR CONVOLUTION MASK?

AVERAGE FILTER

$$f'(x,y) = \frac{1}{MN} \sum_{i=-\frac{M}{2}}^{\frac{M}{2}} \sum_{j=-\frac{N}{2}}^{\frac{N}{2}} f(x+i,y+j)$$

Where M and N sun the size of the kernel or filter convolution mask.

AVERAGE FILTER

■ Then for a neighborhood of 3...

$$\frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

F[x,y]

G[x,y]

F[x,y]

G[x,y]

G[x,y]

F[x,y]

G[x,y]

F[x,y]

G[x,y]

F[x,y]

G[x,y]

BINOMIAL FILTER

In statistics, binomial distribution is a discrete probability distribution that counts the number of successes in a sequence of Bernoulli independent n trials independent of each other, with a fixed probability p of success occurrence between trials.

BINOMIAL FILTER

BINOMIAL FILTER

How do I build a binomial filter for images?

PASCAL TRIANGLE

$$h_{2D}^n = h_x^n * h_y^n$$

$$h_{2D}^n = h_x^n * h_y^n$$

$$h_{2D}^{n} = h_{x}^{n} * h_{y}^{n}$$

$$h_{x}^{2} * h_{y}^{2} = \frac{1}{4} (1 \quad 2 \quad 1) * \frac{1}{4} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$h_{2D}^{n} = h_{x}^{n} * h_{y}^{n}$$

$$h_{x}^{2} * h_{y}^{2} = \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} * \frac{1}{4} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$= \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

BUT HOW CAN WE KNOW THE BEHAVIOR OF THE FILTER BEFORE APPLYING IT TO THE IMAGE?

BUT HOW CAN WE KNOW THE BEHAVIOR OF THE FILTER BEFORE APPLYING IT TO THE IMAGE?

OR IS THE FILTER DESIGN EMPIRICAL?

WITH FOURIER'S TRANSFORM IN FREQUENCY!

$$G_{k,l} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g(m,n)e^{-j\frac{2\pi k}{K}m} e^{-j\frac{2\pi l}{L}n}$$

• With k = 0,1,2,...,K-1 & l = 0,1,2,...,L-1 for 2 dimensions.

EXERCISE

We have:

$$\{g_n\} = \frac{1}{4}\{-1, 0, 2, 0, -1\}$$

$$0, -1$$

VIEWING IN FREQUENCY EXAMPLE

GAUSSIAN FILTER

QUALITY VS COMPLEXITY?

QUALITY VS COMPLEXITY?

IS THERE A BETTER FILTER FOR SALT AND PEPPER NOISE?

GAUSSIAN FILTER

By definition

$$h_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

HOW IS THE GAUSSIAN FILTER BUILT?

An approximation is used to determine the size of the kernel in 2D

$$w \geq 3c$$

- We look for radial symmetry
- Where

$$c = 2\sqrt{2\sigma^2}$$

EXAMPLE

If we want a Gaussian filter with variance of 1/4

$$c = 2\sqrt{\frac{2}{4}} \ then \ w \approx 3$$

Then...

If we want a Gaussian filter with variance of 1/4

$$c = 2\sqrt{\frac{2}{4}} \ then \ w \approx 3$$

Then...

 \bullet h_{σ^2}

$$= \frac{\pi}{2} \begin{pmatrix} e^{-4} & e^{-2} & e^{-4} \\ e^{-2} & 1 & e^{-2} \\ e^{-4} & e^{-2} & e^{-4} \end{pmatrix}$$

GAUSSIAN FILTER IN TIME

GAUSSIAN FILTER IN FREQUENCY

MEDIAN FILTER

MEDIAN FILTER

Noisy image

Median $r\!=\!5$

Median $r\!=\!1$

Median $r\!=\!20$

MEDIAN FILTER, COMPLEXITY?

Noisy image

Median $r\!=\!5$

Median $r\!=\!1$

Median r = 20

REMEMBERING GAUSSIAN FILTER

QUALITY VS COMPLEXITY?

COLOUR MODELS

- RGB
- YCbCr
- HSV
- HSL

RGB

YCBCR

HSV

HSL

HISTOGRAM

In statistics, a histogram is a graphical representation of a variable in the form of bars, where the surface of each bar is proportional to the frequency of the represented values. They serve to obtain a general "first view", or panorama, of the distribution of the population, or of the sample, with respect to a characteristic, quantitative and continuous (such as length or weight).

HISTOGRAM

HISTOGRAM

BINARIZATION BY THRESHOLD

PRACTICE 1.3

- Deliver the results of the following to a .pdf file:
 - Calculate the convolution mask for a Gaussian Variance Filter "I".
 - Display the Gaussian filter convolution mask in the frequency spectrum.
 - Make a script that receives images, video, or streaming from a camera and do the following:
 - Have an option to display the histogram (grayscale and/or "n" layers in a color model).
 - Get the binary representation of the input data.
 - The binarization can be grayscale or some color model.
 - You can perform binarization by threshold.
 - Otsu model.
 - etc.

Questions?