Anti Inference Hub

A dynamic query processing engine that defends against the Inference Problem in multilevel secure databases

A Work By: Sari Haj Hussein

in fulfillment of Frontiers of Programming Language Course Secure and Dependable Computer Systems Master's Programme Chalmers University of Technology 7/5/2010

Table of Contents

- 1) Definition of the Inference Problem
- 2) Example Inference Problems
- 3) Techniques for Dealing with Inference Channels
- 4) Staddon's Novel Approach
- 5) Chen-Wei Refinement
- 6) Testing Anti Inference Hub
- 7) Difficulties Encountered
- 8) Future Work
- 9) Anti Inference Hub on Sourceforge
- 10) Anti Inference Hub on Freshmeat

What is the Inference Problem?

- An Inference Channel is a construction by which an attacker can deduce sensitive data from nonsensitive data.
- The Inference Problem is the problem of identifying and then removing any inference channel in a database.

Why is the Inference Problem Difficult?

- A database is open to queries.
- When queries' results are put together, we learn about new data.
- Thus, it is difficult to determine the exact amount of data that can be learnt.

Remainder: MLS and SDB

- MLS = Multilevel Secure Databases
 - The security of one element may be different than the security of other elements in the same row or column.
 - We need several levels of security in a database; only sensitive and nonsensitive are not enough.
- SDB = Statistical Databases
 - They are Online Analytical Processing (OLAP) systems.
 - They enable users to retrieve only aggregate statistics (count, sum, average or standard deviation).
 - They are used as data warehouses or data mines for the purpose of business intelligence.
- Anti Inference Hub is centric around MLS.

Example Inference Problems

- We will cover the following examples:
 - Inference from Queries Based on Sensitive Data
 - Inference in Statistical Databases
 - Inference from Key Integrity
 - Inference from Functional and Multivalued Dependencies
 - Inference from Value Constraints

Inference from Queries Based on Sensitive Data

Classification: Nonsensitive Data

Classification: Sensitive Data

SELECT commanders.name

FROM commanders, missions

WHERE commanders.mission = missions.code;

 $\pi_{commanders.name}\sigma_{commanders.mission = missions.code}(commanders x missions)$

- We have an inference channel! Why?
- Cause: sensitive data are used to create the Cartesian product.
- Remedy: modify the query or abort its execution.

Inference in Statistical Databases

- A hospital database that stores patients' medical records of the form {Age, Sex, Employer, Social Security Number, Diagnosis Type}.
- Physicians can access everything.
- Researchers can only perform aggregations e.g.
 COUNT [(Sex = Male) & (Employer = Volvo)].
- An evil researcher wants to illegally determine the diagnosis type of a patient Lisbeth whose age is 34 and works for Ericsson. Is it possible you think?

Inference in Statistical Databases

- Yes it is!
- Query 1: COUNT [(Age = 34) & (Sex = Female) & (Employer = Ericsson)]
- Think of the consequences if Query 1 returns 0 or 1!
- Query 2: COUNT [(Age = 34) & (Sex = Female) & (Employer = Ericsson) & (Diagnosis Type = Insomnia)]
- Think of the consequences if Query 2 returns 0 or 1!

Inference from Key Integrity

classification	code	name	description
sensitive data	0XX	Skyscraper	Move the artillery to Ohio

classification	code	name	description
nonsensitive data	0XX	Dogscratcher	Move the artillery to Missouri

- We want to preserve key integrity!
- What are the options we have?

Inference from Key Integrity

Solution: Polyinstantiation!

classification	code	name	description
sensitive data	0XX	Skyscraper	Move the artillery to Ohio
nonsensitive data	0XX	Dogscratcher	Move the artillery to Missouri

Inference from Functional and Multivalued Dependencies

Classification: Nonsensitive Data

Classification: Nonsensitive Data

Classification: Sensitive Data

salaries		
PK	empname	
	emprank empsalary	

- Same rank means same salary.
- We have an inference channel! Why?
- Cause: emprank → empsalary.
- Remedy: raise the classification level of emprank to sensitive data.

Inference from Value Constraints

Classification: Nonsensitive Data
Classification: Nonsensitive Data
Classification: Nonsensitive Data
Classification: Sensitive Data

items		
PK	<u>code</u>	
	name cost price	

- We have the value constraint price cost ≤ 1500.
- We have an inference channel! Why?
- Cause: value constraint is defined over several sensitivity levels.
- Remedy: partition the value constraint.

Techniques for Dealing with Inference Channels

- Semantic data modeling techniques: search an entire database for illegal information flow, then give advice on how to redesign the database to avoid the flow.
 - High false positive rate identifying an inference channel when it is not inference channel.
 - High false negative rate missing an inference channel when it is an inference channel.
- Query analysis techniques: analyze queries dynamically and block queries that lead to inference.

Semantic Data Modeling or Query Analysis?

- Query analysis techniques are favored over semantic data modeling techniques for two main reasons:
 - Evaluating a query dynamically is less expensive than searching an entire database for possible information flow.
 - Data is constantly added to (or updated in) a database. This
 may open up new inference channels that cannot be identified
 other than dynamically.
- Still some suffer of slow query processing time.
- Anti Inference Hub is based on a query analysis technique.

Staddon's Novel Approach 2003

- The first dynamic query analysis technique that does not largely slow down query processing time.
- Staddon's technique assumes that inference channels have already been identified at pre-query processing time.
- C-collusion resistance meaning that a coalition of c users cannot together query all objects in an inference channel (we call c the degree of collusion resistance).
- Crowd control meaning that even if a coalition of users have queried all but one object in an inference channel, none of them will be able to query the remaining object.

Staddon's Steps

- 1) Key allocation: allocate a key set for each user.
- 2) Database initialization: allocate a token set for each object in an inference channel (how and why?).
- 3) Dynamic query processing: if a token t in T_i is used to gain access to object O_i , then for every $s \neq i$, any token in T_s that was generated using the same key is deleted.

Staddon's Steps Illustrated

Inference Channel of Length 3: $\{O_1, O_2, O_3\}$

4 Users:

$$U_1$$
's Tokens = \blacksquare

$$U_1$$
's Tokens = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

$$U_2$$
's Tokens = \bigcirc

$$U_4$$
's Tokens = \bigcirc

Dynamic Inference Control:

Initial State: U, used token to query O_I and token \bigoplus to query After U_1 queries O_1 and O_2 : 00 00 00 O_2 After U_3 queries U_s used token () Empty to query O_1 and O_1 and O_2 : token (a) to query

Chen-Wei Refinement 2005

- The most efficient dynamic query analysis presented so far.
- Chen-Wei's technique also assumes that inference channels have already been identified at pre-query processing time.
- Two kinds of key schemes:
 - The key set is only used by the database system so that users do not need to keep any keys.
 - Each user has one secret key.

Chen-Wei Steps

- Key initialization: associations between keys and objects are established; runs one time.
- 2) Query processing: details the algorithm of a query; runs whenever a user wants to access an object.

Chen-Wei Single Key Set Schemes

- Chen-Wei presented three single key set schemes:
 - Single Inference Channel
 - Multiple Inference Channels Without "Repeated Objects".
 - Multiple Inference Channels With "Repeated Objects".

Single Inference Channel

Key initialization: $K(O_i) = K, i = 1, \dots, m.$ Query processing: Input: i; if $K(O_i) = \emptyset$ then output "access denied";

else

Select randomly a $k_j \in K(O_i)$;

$$K(O_i) = \{k_j\};$$

$$K(O_s) = K(O_s) \setminus \{k_j\}$$
 for all $s \neq i$;

Deliver O_i to the user.

Single Inference Channel

Multiple Inference Channels With and Without "Repeated Objects"

- Similar approach; however, we allocate one key set for each inference channel.
- We should pay attention to synchronization across inference channels!
- Once a repeated object is indicated as a reserved object, we should make it the reserved object of all other channels in which it appears.

Drawback of Chen-Wei Single Key Set Schemes

- Block-an-Object Attack: a form of DoS attack in which a malicious user visits all the m – 1 other objects in an inference channel so that the last object is blocked (reserved object).
- Remedy: the database administrator defines Super Clients who are allowed to access reserved objects and make inference.

Chen-Wei Surpasses Staddon

	Staddon's Scheme	Our Scheme
Cost	1. A list of acceptable key	1. System tables
	for each object	
	2. Each user has $(m-1)/c$ keys	
	3. Mechanism to prevent against	
	key leaks	
Parameters	1. Processing time: depending	1. Processing time: depending
	on m and q	on m
	2. Access flexibility: $[1, (m-1)/c]$	2. Access flexibility: $m-1$
	3. Key space: $q(m-1)/c$	3. Key space: $m-1$
	4. Key size: large	4. Key size: small
	5. Collusion resistance: $\leq c$	5. Collusion resistance: Any size

Testing Anti Inference Hub

- Anti Inference Hub is an implementation of Chen-Wei refinement.
- Let's thwart an inference attempt using the Hub!

The Sample Database

The Inference Attempt to Address

- Suppose that a low user is able to know the following by executing queries against the database:
 - For which COMPANY a PERSON_MANAGER works.
 - PERSON_MANAGER attending a MEETING.
 - MEETING on a PROJECT.
- If that was true, then the low user can immediately infer the COMPANY supporting the PROJECT.
- Anti Inference Hub can be used to thwart this inference attempt.

Difficulties Encountered

- Implementing Chen-Wei Multiple Inference Channels With "Repeated Objects" scheme was a highly complicated task.
- We had to find an efficient method to generate unique keys for Chen-Wei. Lastly we used the Universally Unique IDentifier (java.util.UUID) first shipped with Java 5.0.
- Some networking issues were really problematic.
- Staddon, Chen and Wei did not respond to any of our enquiries!

Future Work

- Anti Inference Hub will automatically (and as accurately as possible) locate inference channels in a database.
- Anti Inference Hub will secure statistical databases as well.
- Anti Inference Hub will be pluggable into web servers e.g. Apache.
- More workforce is needed.

Anti Inference Hub on Sourceforge (http://sourceforge.net/projects/aih/)

Anti Inference Hub on Sourceforge (http://sourceforge.net/projects/aih/)

Anti Inference Hub on Freshmeat (http://unix.freshmeat.net/projects/anti-inference-hub)

Anti Inference Hub on Freshmeat (http://unix.freshmeat.net/projects/anti-inference-hub)

References

- Sushil Jajodia, and Catherine Meadows, "Inference Problems in Multilevel Secure Database Management Systems," in "Information Security: An Integrated Collection of Essays,"IEEE Computer Society Press, Los Alamitos, CA USA, 1995.
- 2) Charles P. Pfleeger, and Shari Lawrence Pfleeger, "Security in Computing, Fourth Edition," Prentice Hall, 2006.
- 3) Adam, Nabil R., and John C. Wortmann, "Security-Control Methods for Statistical Databases: A Comparative Study," ACM Computing Surveys, Vol. 21, No. 4, Dec. 1989, pp. 515-556.
- 4) Staddon, Jessica, "Dynamic Inference Control," Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, 2003.
- 5) X. Chen, and R. Wei, "Dynamic Method for Handling the Inference Problem in Multilevel Secure Databases," Proceedings of the International Conference on Information Technology: Coding and Computing, 2005.

Questions please!