

Course of Numerical Methods for Engineering Lab 3

Luca Bonaventura, Tommaso Benacchio

MOX - Politecnico di Milano

PHYS-ENG, A.Y. 2020-21 28-29/09/2020

Topics of this session:

- ► Methods for nonlinear equations
- ► Minimization methods

Numerical solution of nonlinear equations

We want to find a numerical approximation of the solutions $\xi \in \mathbb{R}$ of a nonlinear equation $f(\xi) = 0$, with $f : I = (a, b) \in \mathbb{R} \to \mathbb{R}$.

The MATLAB/Octave command x=fsolve(fun,x0,options)

- ▶ Requires the optimization toolbox, if not installed can be installed in MATLAB via installer or Home→Add-ons→Get Add-ons)
- ► Can be used to find the zeros of fun using various algorithms and an initial guess x0 (see help and doc pages for fsolve and optimoptions)

Iterative methods and residual

We consider iterative methods, i.e. we want to generate a sequence of values $x^{(k)}$ such that:

$$\lim_{k\to\infty} x^{(k)} = \xi$$

Let $f \in \mathcal{C}^0[a,b]$, and let $x^{(k)} \in [a,b]$ an approximation of the solution of f(x) = 0 computed by an iterative method. The quantity $|f(x^{(k)})|$ is called the residual of the iterative method at iteration k.

Newton's method

Let $f \in C^1[a, b]$ and let $x^{(0)} \in [a, b]$. Newton's method for the solution of f(x) = 0 is defined by the recursive sequence

$$x^{(k+1)} = x^{(k)} + \delta x^{(k)}, \quad \delta x^{(k)} = -\frac{f(x^{(k)})}{f'(x^{(k)})} \quad k \ge 1$$

Stopping criterion based on:

- ▶ Error: $\delta x^{(k)} < \varepsilon_{tol}$, $\frac{\delta x^{(k)}}{v^{(k)}} < \varepsilon_{tol}$
- ▶ Residual: $|f(x^{(k)})| < \varepsilon_{tol}$

Chord, secant, and modified Newton methods

Let $f \in C^1[a, b]$ and let $x^{(0)} \in [a, b]$, $\epsilon, k > 0$.

The chord method has:

$$\delta x^{(k)} = -(b-a) \frac{f(x^{(k)})}{f(x^{(k)}) - f(x^{(k-1)})}$$

The secant method has $(k \ge 2, x^{(1)})$ given):

$$\delta x^{(k)} = -(x^{(k)} - x^{(k-1)}) \frac{f(x^{(k)})}{f(x^{(k)}) - f(x^{(k-1)})}$$

The Modified Newton method has:

$$\delta x^{(k)} = -\epsilon \frac{f(x^{(k)})}{f(x^{(k)} + \epsilon) - f(x^{(k)})}$$

Consider the nonlinear equation $f(x) = x^2 - x + 1 - e^{-x} = 0$ for $x \in [-2, 1]$.

- a) Plot the function f(x) on the given interval and graphically identify possible initial guesses for the solutions of the equation;
- b) Use these guesses to compute approximations of all the solutions, using the MATLAB function fsolve with an absolute error tolerance 10^{-10} and tolerance on the residual 10^{-12} ;
- c) Write a MATLAB function implementing the Newton method (compute the derivative analytically and define it as a function handle) and compute again the approximations of all the solutions with absolute error tolerance 10^{-10} .

Consider the nonlinear equations

$$f(x) = x^4 - x^3 - 7x^2 + x + 6 = 0$$
 $g(x) = x^4 - 3x^3 - 3x^2 + 11x - 6 = 0$

for $x \in [-3, 4]$.

- a) Plot the function f(x) on the given interval and graphically identify initial guesses for the solutions of the equation;
- b) Use these guesses to compute approximations of all the solutions, using the Newton method with absolute error tolerance 10^{-10} ;
- c) Compare the convergence behaviour observed for all the solutions of the two equations;
- d) Compare the results with those obtained using the MATLAB function fsolve with the same initial guesses and absolute error tolerance.

Minimization problems

If ξ is such that $f(\xi)=0$, then ξ is a minimum point of $\phi(x)=|f(x)|^2\Longrightarrow$ methods used to find minima of ϕ can be used to find solutions of f(x)=0.

Let $x^{(0)}$ an initial approximation for the minimum of ϕ . The steepest descent method is defined by

$$x^{(k+1)} = x^{(k)} - \gamma_k \phi'(x^{(k)})$$
 $\gamma_k, k \ge 0$

In the modified steepest descent method, $\gamma_k = \gamma/2^m$, with $\gamma \in \mathbb{R}$, and $m \in \mathbb{Z}$ the smallest integer such that

$$\phi\left(x^{(k)} - \frac{\gamma}{2^m}\phi'(x^{(k)})\right) - \phi(x^{(k)}) \le -\frac{1}{2}\frac{\gamma}{2^m}|\phi'(x^{(k)})|^2$$

Reformulate Exercises 1 and 2 as the minimization of $\phi(x) = f(x)^2$ and compute the solutions using:

- 1. The steepest descent method with a fixed step length $\gamma_k = \gamma$ (experiment with several γ values);
- 2. The modified steepest descent method.

Use the same initial guesses of Exercises 1 an 2, relative error tolerance 10^{-8} (use absolute error tolerance for zero roots). Check that the method converges monotonically to the local minima of $\phi(x)$.

Write MATLAB functions implementing the chord, secant, and modified Newton (experiment with several ϵ values) methods and apply them to solve the problems in Exercises 1 and 2.

Consider the function $\phi(x) = [1 - \exp(-x^2)] \sin(3x)$ on the interval $x \in [-3, 3]$.

- a) Plot the function $\phi(x)$ on the given interval and graphically identify initial guesses for computation of its local minima.
- b) Compute the local minima using the modified gradient method using an absolute error tolerance 10^{-9} .

