UNIVERSITY OF MORATUWA

Faculty of Engineering

Registered Module No: CS 4362

Hardware Description Language

Pipelined MIPS Processor

Semester project

Date of Submission:

24/10/2021

170387F - M. W. G. V. Melaka

170524B - R. M. T. S. Ratnayake

Department of Computer Science and Engineering

Table of Content

Architecture of the pipelinea processor	•
32 - bit adder 1 - bit adder Timing diagram of 32-bit adder	4 4 5
32-bit Arithmetic and Logic Unit (ALU) 1-bit Arithmetic and logic unit Timing Diagram of 32-bit ALU	5 6 7
ALU control unit Timing diagram of ALU control unit	7 8
JR (Jump Register) control unit Timing diagram of JR control unit	9
Discard Instruction Unit Timing diagram for Instruction discard unit	10
Register 32 bit Flip flop	11
Register File 5 to 32 Decoder Timing diagram of 5 to 32 decoder 32x32 to 32 Multiplexer Timing diagram of 32x32 to 32 Multiplexer Timing diagram of register file	12 12 13 13 14 15
Data Memory Timing diagram of data memory	16 17
Control Unit Timing diagram of control unit	18
Instruction Memory Timing diagram of Instruction memory	19 20
Forwarding Unit Timing diagram of Forwarding unit	21
Write Back Forwarding Unit Timing diagram of write back forwarding unit	2 1
Stall control unit Timing Diagram of Stall control unit	23
Flush control unit and Discard Instruction unit Timing diagram of Flush control unit	24
Pipelined MIPS processor	25

Github Link -

https://github.com/tharaka27/MIPS 32bit Processor https://github.com/vihan125/Mips-Processor

Video Link

https://youtu.be/GdhMlt1 C6Q

Or

 $\underline{https://drive.google.com/drive/folders/1y1DM5LUwLrQi048qd_ftFo-1Mnc4WK4g?usp=sharin} \ \ \, a$

Architecture of the pipelined processor

32 - bit adder

This module is responsible for adding two 32 bit numbers. This module is made up of 32, 1-bit full adders as shown in the following figure and acts as a ripple carry adder.

Let's have a closer look at the 1-bit adders which the 32-bit adder is made up of.

1 - bit adder

a 1-bit adder is responsible for adding two individual bits and output the result as the sum and the "carry" of the summation using the following equations.

Following diagram shows a rough sketch of the 1-bit adder component,

Timing diagram of 32-bit adder

32-bit Arithmetic and Logic Unit (ALU)

As in the 32-bit adder, the 32-bit Arithmetic and logic unit (ALU) is made up of a collection of 32, 1-bit ALU sub components. Following diagram gives a rough overview of the inputs and outputs of the 32-bit ALU component.

ALU performs a single operation out of possible 4 operations that is defined as the "ALU control" input of the module. The operations related to the corresponding bit combinations of the "ALU control bus" is as follows,

ALU control bus	Operation
00	Add / Add-R (values from registers)
10	Sub / Sub-R (values from registers)
11	SLT (set on less than)
01	XOR / XORi (xor with immediate value)

Let's have a closer look at the 1-bit ALU component and the logic that drives inside it.

1-bit Arithmetic and logic unit

Inside the 32-bit ALU unit, the operation that needs to be carried out performs in individual bits inside a 1 bit ALU component. The 1-bit ALU component consists of three 2X1 multiplexers to choose the correct output that is relevant to the operation given by the ALU control bus.

- Multiplexer to choose between "Addition" and "Subtraction" operations.
- Multiplexer to choose between "XOR" and "Less than" operations.
- Multiplexer to choose between results of the first two multiplexers.

Logic inside the 1-bit ALU on how three multiplexers work is explained in a more elaborated manner from the following diagram,

As shown in the above figure, the bit at position '1' in the ALU control bus decides two operations from the available four operations of the ALU and the final operation is decided by the bit at position '0' in the ALU control bus from the previously selected two operations.

For example if the bit combination at ALU control bus is "01", according to the above diagram first two multiplexers choose operation at position '0' which is "ADD" and "XOR" and then from the third multiplexer "XOR" operation is selected which is in the '1' position of the third multiplexer.

Timing Diagram of 32-bit ALU

In the above timing diagram, the first clock cycle shows an additional operation which is given as the operation in ALU control bus as "00" (refer table in the above section). And the result of the operation is shown in the result bus as expected (1+2=3).

Then a subtraction operation is carried out which is indicated by the ALU control bus as "10" (refer table in the above section). In this case the answer of the subtraction is a negative value (3-5 = -2) and it is indicated in the result bus in two's complement format.

In the final clock cycle "XOR" operation is carried out between 6 and 5 as indicated by the ALU control bus as "01" (refer table in the above section). And the answer 3 is indicated in the results as expected. ("00..00101 XOR "00..00110" = "00..00011" == 3).

ALU control unit

ALU control unit is responsible for deciding what the value of the ALU control bus should be depending on the decoded instruction values. Following diagram gives an abstract overview of the inputs and outputs of the ALU control unit component.

After receiving two inputs from decoded instruction data from two buses, one with a length of 2 bits (ALU op) and the other one with a length of 6 bits (Function) ALU control unit decides what the ALU control bus value should be according to the following table.

ALU op	Function	ALU control	ALU operation	Instruction
11	xxxxx	01	XOR	XORi (XOR with immediate value)
00	xxxxx	00	ADD	LW/SW (Load or Store word)
01	xxxxx	10	SUB	BNE (Branch if not equal)
10	100000	00	ADD	ADD-R (Add register values)
10	100010	10	SUB	SUB-R (Sub register values)
10	101010	11	SLT	SLT-R (Set on less than)

In every other combination of bits which is not indicated in the table ALU operation bus is set to "00" value.

Timing diagram of ALU control unit

In the shown timing diagram we can see that to the corresponding combinations of "ALU op" bus and "Function" bus ALU control module has given the expected results as indicated in the table of above section.

JR (Jump Register) control unit

The Jr control unit is responsible for emitting a jump register signal which will be caused by a jump register instruction in the program. Following diagram shows an overview of the inputs and outputs of the JR control unit.

Same as in the ALU control unit, the JR control unit also receives decoded instruction data from "ALUop" bus and the "Function" bus. The combination bits of "ALUop" and "Function" buses that indicates a "JUMP \$reg" instruction and triggers the jump signal is,

- ALUop = "10"
- Function = "001000"

Which is a combination which is not handled in the ALU control unit. In every other combination of ALUop and Function bus bits the jump register signal is '0'.

Timing diagram of JR control unit

It is shown in the above timing diagram that only in the combination of ALUop bus = "10" and Function bus = "001000", the jump register signal is made high which is the expected behaviour of the JR control unit.

Discard Instruction Unit

This unit is responsible for handling control hazards that occur by "Jump", "BNE" or "Jr" instructions. The Discard Instruction unit keeps track of "Jump", "Branch if not equal" and "Jump register" signals and flush instructions in instruction fetch or instruction decode phase. Following diagram gives an overview of the inputs and outputs of the discard instruction unit.

Logic that runs Inside the Instruction discard unit is as follows,

- IF Flush = Jump or BNE or JR
- ID Flush = BNE or JR

Instructions in the Instruction fetch stage are flushed whenever any of the three signals occur and Instructions in the instruction decode stage are flushed only when any of the "BNE" or "JR" signal is present.

Timing diagram for Instruction discard unit

As shown in the timing diagram instructions unit follows the logic that is stated in the above section.

Register 32 bit

Flip flop

A D (or Delay) Flip Flop is a digital electronic circuit used to delay the change of state of its output signal (Q) until the next rising edge of a clock timing input signal occurs.

```
Din: in std_logic

Clock: in std_logic

Clock: in std_logic

Reset: in std_logic

Q: in std_logic

if(rising_edge(clk)) then

if(reset = '1') then

Q <= '0';

else

Q <= Din;

end if;

end if;

-Q <= temp;
end process;
```

The truth table for the D Flip Flop

D	Clk	Q
0	Rising edge	0
1	Rising edge	1

When the clock input is set to 1, the "set" and "reset" inputs of the flip-flop are both set to 1. So it will not change the state and store the data present on its output before the clock transition occurs. In simple words, the output is "latched" at either 0 or 1.

Using flip flops we have created the register 32 bit module which is capable of storing a data word at a time

Register File

The register file keeps track of the registers in the MIPS processor. The register file is created using three different components.

- 1. 5 to 32 Decoder
- 2. RAM array
- 3. 32x32 to 32 Multiplexer

5 to 32 Decoder

Decoder is a combinational circuit that has 'n' input lines and maximum of 2n output lines. One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled. That means the decoder detects a particular code. The outputs of the decoder are nothing but the minterms of 'n' input variables lines, when it is enabled.

Timing diagram of 5 to 32 decoder

As shown in the above timing diagram the decoder has 5 input pins which are mapped to 32 bit output. For input 00000 the system outputs 0x00000001.

32x32 to 32 Multiplexer

Multiplexer is a combinational circuit that has a maximum of 2n data inputs, 'n' selection lines and single output line. One of these data inputs will be connected to the output based on the values of selection lines.

Since there are 'n' selection lines, there will be 2n possible combinations of zeros and ones. So, each combination will select only one data input. In our project we have created a 32x32 to 32 multiplexer using 2 to 1 multiplexers.

Timing diagram of 32x32 to 32 Multiplexer

The above timing diagram shows the input and output values of the 32x32 to 32 multiplexer.

Using above mentioned modules we have created the register file for our project. The decoder is being used to select the write Element from the RAM array. The multiplexer is used to read the values of a vector given the address.

The above diagram shows the inside of the register file having 5 to 32 decoder. The RAM consists of 32, 32 bit std_logic_vectors. For writing a value we will input it through the writeData bus and make the writeEnable bit corresponding to the std_logic_vector high using the decoder. Then the value will be written to the respective registers.

For reading we have used the 32x32 to 32 multiplexer which can output a 32bit vector given a readRegister address.

Timing diagram of register file


```
writeRegister <= "00100";</pre>
writeData
           regWrite
           <= '1';
           <= '0';
reset
wait for 10ns;
readRegister1 <= "00100";</pre>
regWrite
           <= '0';
wait for 10ns;
writeRegister <= "00001";</pre>
writeData
           <= '1';
regWrite
wait for 10ns;
readRegister1 <= "00001";</pre>
wait for 10ns;
```

Data Memory

The data memory module holds the data of the executing instructions inside the processor. The data memory module consists of an array(0 to 1023) of std_logic_vector(7 downto 0) array.

To use the constraint block ram in Basys three boards successfully we split a 32 bit single std_logic_vector data element to 4 different 8 bit elements. So when writeData and address is given we first split the data into 4 block and write them in the memory starting from the address mentioned in the Address std_logic_vector.

The above diagram shows the typical reading data. When the address is given the data memory will concatenate four near addresses and create the full data value. The concatenated values are then returned from the module.

Timing diagram of data memory

Control Unit

The control unit is responsible for the control of the processor. It issues respective flags to the modules based on the opcode.

The control unit implemented in the project is capable of handling

- 1. R type operations
- 2. Load word operation lw
- 3. Store word operation sw
- 4. Branch if not equal bne
- 5. XOR immediate XORI
- 6. Jump operation j

Output	R	lw	sw	bne	XORI	j	default
regDst	1	0	-	0	0	0	0
ALUSrc	0	1	1	0	1	0	0
memToReg	0	1	-	0	0	0	0
regWrite	1	1	0	0	1	0	0
memRead	0	1	0	0	0	0	0
memWrite	0	0	1	0	0	0	0
branch	0	0	0	1	0	0	0
jump	0	0	0	0	0	0	0
signZero	0	0	0	0	1	1	0
ALUOp	10	00	00	01	11	00	10

Timing diagram of control unit

The above timing diagram shows the output for respective opcode values.

Instruction Memory

The instruction memory is a Read Only Memory(ROM) which stores the instructions to be executed.

The instruction memory has been created using an array(0 to 14) of std_logic_vector(31 downto 0) array.

```
Address: in  std\_logic\_vector(31\ down\ to\ 0))   std\_logic\_vector(31\ down\ to\ 0))
```

```
signal instructionROM : rom_type := (
       "00111000000100000000000000000011", -- 940572675
       "0011100000010001000000000000000000", -- 940638212
       "0000100000000000000000000000000101", -- 134217733
       "001110000001000100000000000000001", -- 940638209
       "00000010001100001001000000100010", -- 36737058
       "0001011000010001111111111111111100", -- 370278396
       "00000010000100011001100000100000", -- 34707488
       "101011100101001100000000000000000", -- 2924675088
       "100011100101010000000000000000000", -- 2387869712
       "00000010000101001010100000101010", -- 34908202
       "10001110010100110000000000000000", -- 2387804176
       "0011101001010011000000000000000001", -- 978518017
       "001110101011010100000000000000001", -- 984940545
       "0000001010100000000000000000000000000" -- 44040200
  );
```

The timing diagram for the instruction memory is as follows. For each input address it return the corresponding instruction from the memory.

Timing diagram of Instruction memory

Forwarding Unit

The Forwarding Unit is designed to solve the data hazards in pipelined MIPS Processors. The correct data at the output of the ALU is forwarded to the input of the ALU when data hazards are detected. Data hazards are detected when the source register (EX_rs or EX_rt) of the current instruction is the same as the destination register (MEM_WriteRegister or EX_WriteRegister) of the previous instruction.

Timing diagram of Forwarding unit

Write Back Forwarding Unit

Another hazard could happen at the Write Back Stage when writing and reading at the same address. The readout data may not be the correct writing data. To resolve this problem, a WB_Forward unit is designed to forward directly the correct writing data to the output data.

Timing diagram of write back forwarding unit

Stall control unit

Stall Control Unit is important when there are data hazards in the pipeline, in such cases the pipeline should be delayed by one clock cycle. Data hazards occur when the destination register of the current reading memory instruction is the same as the source register of the next instruction in the ID stage except for ID_rt of XORI and LW instructions (where Rt is the destination register not source register with XORI and LW). In the stall control unit two addresses are compared using "XOR" gates (if two addresses are the same results in '0') and the output was set accordingly. Following image shows an overview of inputs and outputs of the component.

Here Ex_rt is the destination address of the current instruction which is in the execution stage and Id_rs and Id_rt are the source and destination register address in the decode stage.

Timing Diagram of Stall control unit

As shown in the timing diagram whenever the destination register of the current instruction is equal to source or destination of the instructions in the decode stage, Flush bit is set to '1'.

Flush control unit and Discard Instruction unit

In pipelined instruction execution, when a branch , jump sort of instructions are executed according to the result of the instruction some instructions that are already in the pipeline might have to be flush out of the pipeline, these are known as control hazards of a pipelined architecture. A Flush control unit and Discard instruction unit is there to handle these control hazards in the pipeline. Following diagram shows an overview of the inputs and outputs of the component.

Timing diagram of Flush control unit

As shown in the timing diagram whenever the flush bit is high all the data that was available in the input buses is cleared.

Pipelined MIPS processor

The MIPS(Microprocessor without Interlocked Pipeline Stages) processor is a RISC (Reduced Instruction Set Computer) processor. One significance of the RISC processors is that as the name suggests it contains much more simple instructions when compared with their CISC (Complex Instruction Set Computer).

Pipeline processing refers to overlapping operations by moving data or instructions into a conceptual pipe with all stages of the pipe performing simultaneously. Pipeline is mainly used to improve throughput of the processor rather than the latency. Therefore pipelines do not make a certain operation faster instead it allows to perform multiple tasks which are having less dependency between them simultaneously. For example, while one instruction is being executed, the computer is decoding the next and while decoding other instructions can write to the registers.

But in pipelined processors due to small dependencies that exist between them pipeline hazards can occur. Namely there are three main types of hazards as,

- Data hazards
- Structural hazards
- Control hazards

Therefore handling these hazards in a pipelined processor is important to get efficient and correct results. In this project we are implementing a pipelined MIPS with pipelined architecture.

The instruction set that we are going to perform in the processor is as follows. It has chosen to cover all the XORI, SW, LW, SLT, J, JR, SUB, ADD operations implemented in the processor.

Start: xori \$s0, \$zero, 0x0003

xori \$s1, \$zero, 0x0004

j next1

next 2: xori \$s0, \$zero, 0x0001

xori \$s0, \$zero, 0x0003

next 3: sub \$s2, \$s1, \$s0

bne \$s0, \$s1, next2

add \$s3, \$s0, \$s1

sw \$s3, 16(\$s2)

lw \$s3, 16(\$s2)

slt \$s5, \$s0, \$s4

lw \$s3, 16(\$s2)

xori \$s3, \$s2, 0x0001

xori \$s5, \$s5, 0x0001

jr \$s5

So let's first hand solve the above problem.

xori \$s0, \$zero, 0x0003	
	\$0 = 3
xori \$s1, \$zero, 0x0004	
	\$0 = 3 and \$1 = 4
j next1	
	Jump to next1
sub \$s2, \$s1, \$s0	
	\$0 = 3 and \$1 = 4 \$2 = 1
bne \$s0, \$s1, next2	
	success go to next2
xori \$s0, \$zero, 0x0001	
	\$0 = 1 and \$1 = 4 \$2 = 1
xori \$s1, \$zero, 0x0001	
	\$0 = 1 and \$1 = 1 \$2 = 1
sub \$s2, \$s1, \$s0	
	\$0 = 1 and \$1 = 1 \$2 = 0
bne \$s0, \$s1, next2	
	branch not taken
add \$s3, \$s0, \$s1	
	\$0 = 1 and \$1 = 1 \$2 = 0 \$3 = 2
sw \$s3, 16(\$s2)	
	16 <- 2
lw \$s3, 16(\$s2)	
	\$0 = 1 and \$1 = 1 \$2 = 0 \$3 = 2 \$4 = 2
slt \$s5, \$s0 , \$s4	
	\$0 = 1 and \$1 = 1 \$2 = 0 \$3 = 2 \$4 = 2 \$5 = 1
lw \$s3, 16(\$s2)	

	\$0 = 1 and \$1 = 1 \$2 = 0 \$3 = 2 \$4 = 2 \$5 = 1
xori \$s3, \$s2, 0x0001	
	\$0 = 1 and \$1 = 1 \$2 = 0 \$3 = 1 \$4 = 2 \$5 = 1
xori \$s5, \$s5, 0x0001	
	\$0 = 1 and \$1 = 1 \$2 = 0 \$3 = 1 \$4 = 2 \$5 = 0
jr \$s5	
	jump to 0

Name	Value		100 ns		110 ns		120 ns		130 ns		140 ns		150 ns		160 ns		170 ns		180 ns		190 ns	
¹ dk	0		100 113		117 117		120 117		1200 112		110 117		100 117		100 113		117 117					
14 reset	1																					
PC_output[31:0]	UUUUUUU	0000	0010 X	0000	00014	V 000	00018	V 000	0001c	V 0000	00020	V 0000	00024	V 0000	00028		0000	002c		0000	0030	X 00
opCode_output[5:0]	UU		0e		7011	\	00	V 300	05	V 300	00	\	2h	\	23	=	0		=	2	3	χο.
Bus_A_ALUput[31:0]	UUUUUUU	0000			0000	00000	Ĩ	\sim	Ŧ	0000	00001			Ŷ 	0000	0000			0000	2001		X 00
Bus B ALU output[31:0]		0000	^		-			000	00001					ŷ 			0010	$\overline{}$		טטטט	шши	X 00
instruction_output[31:0]		3811		0230	9022	161	lfffc		19820	V 905	30010	V 8e5	40010	V 021	1a82a		8e53	0010	==	3a53		/ 3a
M functionPoiutput[5:0]	UU	3311	01			\ 	22	^_ <u></u>	3c	\	20	^ <u></u>		10		=	2		=		0	X
rs_output[4:0]	UU		00			Ŷ 	111	\sim	Ŧ,	10	Ĩ	\sim		12	=	=	1		=		12	
rt_output[4:0]	UU	ļ —		,	1	\sim	10	\sim		11		\sim	13	v	\vdash	-	4	_	==	=	13	
output[4:0]	111	ــــــــــــــــــــــــــــــــــــــ	00			Ŷ 	12	$\widehat{}$	16	ν	13	$\widehat{}$,	00	$\vdash \neg$		1	5	=	=	00	
readData1 output[31:0]	UUUUUUU		000000			000	00004	000	00003		0000	00001			00000		0000		=	0	0000000	0
readData2_output[31:0]		0000	0003 X		00004		00003	χ		00004	0000	X			0000	0000	0000		=		0000000	
readData 10put[31:0]	UUUUUUU		000000			-	00004	\sim		00001			0000	00000			0000	0001	=		0000000	
readData20put[31:0]		0000	0003 X		00004		00003	V 000	00004		00001		0000		0000	0000	0000		=	$\overline{}$	0000000	
regDst_output	0	5550		3000		- 000	1			0000		\leftarrow			5550							
ALUSrc output	0																					
MemToReg_output	0																					
RegWrite_output	0																					
memRead_output	0																					
memWrite_output	0																					
branch_output	0				_		+				_											
		<																				
	< >	· <																				
lame			80 ns		.90 ns		200 ns		210 ns		220 ns		230 ns		240 ns		250 ns		260 ns		270 ns	s
	< >		30 ns		90 ns		200 ns		210 ns		220 ns		230 ns		240 ns		250 ns		260 ns		270 ns	5
¼ dk	Value		80 ns	1	.90 ns		200 ns		210 ns		220 ns		230 ns		240 ns		250 ns		260 ns		270 n	5
la dk la reset	Value			00000		0000		0000		0000			230 ns		240 ns							
le dk le reset d PC_output[31:0]	Value	18	002c X					0000				0000										
dk lareset lareset	Value 0 1	00000	002c X	000000			0034	0000				0000	0040	0000					0000		00000	
dk reset PC_output[31:0] opCode_output[5:0] Bus_A_ALUput[31:0]	Value 0 1 uuuuuuu	00000	002e X	000000	030 X		0034	0000		0000		0000	0040	0000					0000	0000	00000	
Mark dk Mareset Mar	Value 0 1 uuuuuu uu uuuuuu	00000	002e X 0 X 000000	000000 23	030 X	0000	0034) 0 0000	0000	0038	0000	003c	0000	0040	0000	00000				000U 0e	000000	00000	
dk reset PC_output[31:0] dopCode_output[5:0] dbus_A_ALUput[31:0] dbus_B_ALU_output[31:0] dbus_B_ALU_output[31:0] dbus_B_ALU_output[31:0]	Value 0 1 uuuuuu uu uuuuuu	00000	002e X 0 000000	000000 23 001	030 X	0000	0034) 0 0000	0000	0038	0000	003c	0000	0040	0000	00000			X 0000	000U 0e	000000	00000	
M dk M reset M PC_output[31:0] M opCode_output[5:0] M bus_B_ALUput[31:0] M bus_B_ALU_output[31:0] M instruction_output[31:0] M functionPolutput[5:0]	Value 0 1 1 00 1 00 1 00 100000000000000000	000000 00000 000000	0002c X	000000 23 001 000000 3a530	030 X	0000 0000 3ab5	0034) 0 0000 0010)	0000	0038	0000	003c	00000	0040	0000	00000			X 0000	000U 0e	000000	00000	
dk Preset PC_output[31:0] opCode_output[5:0] Bus_B_ALUput[31:0] Bus_B_ALU_output[31:0] instruction_output[31:0] if functionPotutput[5:0] if s_output[4:0]	Value 0 1 1 0000000000000000000000000000000	000000 000000 000000 8e530	0002e X 0000000 00010 X 00010 X	000000 23 001 000000 3a530	030 X 000 X 0001 X	0000 0000 3ab5	0034) 0 0000 0010)	0000	0038	0000	003c)	00000	0040	0000	00000			X 0000	000 U 0e	000000	00000	
Ack reset PC_output[31:0] OpCode_output[5:0] Bus_A_ALUput[31:0] Bus_B_ALU_output[31:0] Instruction_output[31:0] Instruction_output[5:0] Inction[9:utput[5:0] Inc_output[4:0]	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e530	0002e X	000000 23 001 000000 3a530	030 X UUU X 001 X	0000 0000 3ab5	0034) 0 0000 0010)	0000	0038	0000	003c)	00000	0040	0000	00000			X 0000	000U 0e 3 03	000000	00000	
A ck reset PC_output[31:0] opCode_output[5:0] Bus_A_ALUput[31:0] Bus_B_ALU_output[31:0] instruction_output[31:0] functionPoiutput[5:0] rs_output[4:0] rd_output[4:0]	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 000000 8e530	0002e \ 0000000 \ 00010 \ a \ 000000 \ i \ 5	000000 23 001 000000 3a530	030 X UUU X 001 X	0000 0000 3ab5	0034 0 00000 00010 0	0000	0038	0000	003c)	00000	0040	0000	00000			X 0000	000U 0e 3 03	000000	00000	
Le dk Le reset Le PC_output[31:0] Le pC_output[31:0] Le pC_output[31:0] Le pC_output[31:0] Le pC_output[31:0] Le pC_output[31:0] Le pC_output[4:0] Le pC_out	Value 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0	000000 000000 000000 8e530 2a	0002c 000000000000000000000000000000000	000000 23 001 000000 3a530	030 X UUU X 001 X	0000 0000 3ab5	0034 0 00000 00010 0	0000	0038	0000	003c)	00000	0040 0 0000 8 8	0000	00000			X 0000	000U 0e 3 03 00	000000	00000	
dk Preset PC_output[31:0] opCode_output[5:0] Bus_B_ALUput[31:0] Bus_B_ALU_output[31:0] finstruction_output[31:0] finctionPoiutput[5:0] if rt_output[4:0] rd_output[4:0] readData1_output[31:0] readData2_output[31:0]	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 00000 8e533 2e 10	0002c 000000 000000 00010 00000 0010 0000 0010 0000	000000 23 001 000000 3a530	030 X	0000 0000 3ab5 0000	0034 0 00000 00010 0	0000	0038	0000	003c) 0008 1	00000	0040 0 0000 8 8	0000	00000			X 0000	0000U 0e 3 03 00 10	000000	00000	
le ck le reset le PC_output[31:0] le opCode_output[5:0] le Bus_B_ALUput[31:0] le Bus_B_ALUput[31:0] le function_output[31:0] le function_output[5:0] le fs_output[4:0] le re_output[4:0] le readData1_output[31:0] le readData1_output[31:0] le readData1_output[31:0] le readData1_output[31:0] le readData1.output[31:0] le readData1.output[31:0]	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e530 24 10	0002c 000000 000000 00010 00000 00010 0000 0001 00000	000000 23 001 000000 3a530	030 V 000 V 001 V 12 13	0000 0000 3ab5 0000	0034 0 00000 00010 0	00000	0038	0000	003c) 0008 1	0000 0 5 0000 0000	0040 0 0000 8 8	0000	00000			X 0000	0000U 0e 3 03 00 10 00000000 00000000	000000	00000	X •
dk reset PC_output[31:0] opCode_output[5:0] Bus_B_ALUput[31:0] Bus_B_ALUput[31:0] function_output[31:0] functionPoutput[5:0] rs_output[4:0] readData_output[31:0] readData_output[31:0] readData[0put[31:0] readData[0put[31:0] readData[0put[31:0]	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e\$33 24 10	0002c 000000 000000 00010 00000 00010 0000 0001 00000	000000 23 001 000000 3a530	030 V 0001 V 12 13 00000 00000	0000 0000 3ab5 0000	0034 0 00000 00010 0	0000	0038	0000	003c) 0008 1	0000 0 5 0000 0000	0040 0 0000 8 0 0	0000	00000			3810000	0000U 0e 3 03 00 10 00000000 00000000	000000	00000	X •
# ck reset Pc_output[31:0] opCode_output[5:0] Bus_A_ALUput[31:0] Bus_B_ALU_output[31:0] finctionPoiutput[5:0] re_output[4:0] readDatal_output[31:0] readDatal_output[31:0] readDatal_Oput[31:0] readDatal_Oput[31:0] readDatal_Oput[31:0] readDatal_Oput[31:0]	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e\$33 24 10	0002c 000000 000000 00010 00000 00010 0000 0001 00000	000000 23 001 000000 3a530	030 V 0001 V 12 13 00000 00000	0000 0000 3ab5 0000	0034 0 00000 00010 0	00000	0038	0000	003c) 0008 1	0000 0 5 0000 0000	0040 0 0000 8 0 0	0000	00000			3810000	0000U 0e 3 03 00 10 00000000 00000000	000000	00000	X •
# ck # reset # PC_output[31:0] # opcode_output[5:0] # Bus_A_ALUput[31:0] # Bus_B_ALU_output[31:0] # instruction_output[31:0] # finctionPoiutput[5:0] # ra_output[4:0] # rd_output[4:0] # readData1_output[31:0] # readData2_output[31:0] # readData2_output[31:0] # readData2_output[31:0] # readData2_output[31:0] # readData2_output[31:0] # regDst_output	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e\$33 24 10	0002c 000000 000000 00010 00000 00010 0000 0001 00000	000000 23 001 000000 3a530	030 V 0001 V 12 13 00000 00000	0000 0000 3ab5 0000	0034 0 00000 00010 0	00000	0038	0000	003c) 0008 1	0000 0 5 0000 0000	0040 0 0000 8 0 0	0000	00000			3810000	0000U 0e 3 03 00 10 00000000 00000000	000000	00000	X •
In ck In reset PC_output[31:0] spcode_output[5:0] Bus_A_ALUput[31:0] Bus_B_ALUput[31:0] finction_output[31:0] finction_output[31:0] finctionpoiutput[5:0] fir_output[4:0] fir_output[4:0] fir_eadData1_output[31:0] fireadData2_output[31:0] fireadData2_output[31:0] fireadData2_output[31:0] fireadData2_output[31:0] fireadData2put[31:0] fireadData2put[31:0]	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e\$33 24 10	0002c 000000 000000 00010 00000 00010 0000 0001 00000	000000 23 001 000000 3a530	030 V 0001 V 12 13 00000 00000	0000 0000 3ab5 0000	0034 0 00000 00010 0	00000	0038	0000	003c) 0008 1	0000 0 5 0000 0000	0040 0 0000 8 0 0	0000	00000			3810000	0000U 0e 3 03 00 10 00000000 00000000	000000	00000	X •
reset PC_output[31:0] Popcode_output[31:0] Bus B ALU_output[31:0] Bus B ALU_output[31:0] Instruction_output[31:0] Instruction_output[31:0] Instruction_output[4:0] Instruction_output[4:0] Instruction_output[4:0] Instruction_output[4:0] Instruction_output[4:0] Instruction_output[4:0] Instruction_output[4:0] Instruction_output[31:0] Instruction_output[31:0] Instruction_output[31:0] Instruction_output[31:0] Instruction_output I	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e\$33 24 10	0002c 000000 000000 00010 00000 00010 0000 0001 00000	000000 23 001 000000 3a530	030 V 0001 V 12 13 00000 00000	0000 0000 3ab5 0000	0034 0 00000 00010 0	00000	0038	0000	003c) 0008 1	0000 0 5 0000 0000	0040 0 0000 8 0 0	0000	00000			3810000	0000U 0e 3 03 00 10 00000000 00000000	000000	00000	
I dk I reset PC_output[31:0] Opcode_output[5:0] Sus_A_ALUput[31:0] Sus_A_ALUput[31:0] Sus_A_output[31:0] Sus_A_output Sus_A_	Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000 000000 8e\$33 24 10	0002c 000000 000000 00010 00000 00010 0000 0001 00000	000000 23 001 000000 3a530	030 V 0001 V 12 13 00000 00000	0000 0000 3ab5 0000	0034 0 00000 00010 0	00000	0038	0000	003c) 0008 1	0000 0 5 0000 0000	0040 0 0000 8 0 0	0000	00000			3810000	0000U 0e 3 03 00 10 00000000 00000000	000000	00000	X 00