+.XNAE+ I HEYOEO	المملكة المفريية
+0E0U00+ 80XEE 010E80	
A ©O⊙NEA °EXTI°O° V HIIIISH	والتعليم الأولس والرياضة

Académie régionale de l'éducation

Direction provinciale :

Établissement :

EXAMEN LOCAL POUR 3APIC SESSION : Janvier 2023

DURÉE : 2H | **Mathématiques** | Coefficient : 1

Nom :....prénom :....

N-Examen :.....Classe :3/

Prof Math Kamal

EXERCICE 1 (6 pts)	EXERCICE 2 (5 pts)
1) Calculer et simplifier :	1) Comparer $2\sqrt{7}$ et $3\sqrt{3}$ 1pt
$\sqrt{5} \times \sqrt{20} = \dots 0,5pt$ $\frac{\sqrt{27}}{\sqrt{3}} = \dots 0,5pt$	
$\sqrt{3} = 0.55pt$ $\sqrt{5\sqrt{16} + 4^2} = 0.5pt$	
$\sqrt{3-\sqrt{5}}\times\sqrt{3+\sqrt{5}}=0,75pts$	2) Puis déduire la comparaison de : 0,5p $5+2\sqrt{7}$ et $5+3\sqrt{3}$
$8\sqrt{2} + \sqrt{50} - 3\sqrt{32} = \dots 0,75$ pts	
	3)a; b et c sont des nombres réels, tels que
$\left(\frac{\sqrt{2}}{3}\right)^{-2} + 2^{-1} = \dots 0,75 pts$	$1 \le a \le 4$; $-3 \le b \le -1$ et $1 \le \frac{c+1}{2} \le 2$ i- Montrer que $1 \le c \le 3$ 0,75pt
2) Rendre rationnel le dénominateur des	
nombres suivants :	
$\frac{3}{\sqrt{2}} = \dots 0,5pt$	
$\frac{1}{\sqrt{5}-\sqrt{2}} = \dots 0,75pts$	ii- Encadrer les nombres suivants : 2,75pt $a+b$; $a-3$; $-b$; $-b\sqrt{a}$; $a^2-b\sqrt{a}$
3) Développer et simplifier $\left(1+\sqrt{5}\right)^2$ puis en	
déduire la simplification de $\sqrt{6+2\sqrt{5}}$	
$(1+\sqrt{5})^2 =$	
$\sqrt{6+2\sqrt{5}} = 0.5pt$	

	4) Soit α la mesure d'un angle aigu tel que :
	2
	$\cos \alpha = \frac{2}{3}$
	$\sqrt{5}$
	* Montrer que $\sin \alpha = \frac{\sqrt{5}}{3}$: 0,5pt
EXERCICE 3 (4 pts)	
В	
\wedge	
/	
5	
, 3	
, c	
$D - \frac{1}{2} - \frac{1}{A}$	
Soit ABC un triangle tel que:	
AB=3 ; $AC=4$; $BC=51) Montrer que le triangle ABC est rectangle · 1pt$	
1) Monorer que le changle ADC est rectangle 1pt	
	* calcul de $tanlpha$: 0,5pt
2) Calculer les rapports trigonométriques	
de l'angle $A\widehat{B}C$:	
	EXERCICE 4 (3 pts)
$sin A \hat{B}C =O,5pt$	Considérons la figure suivante tel que
	$EC = 8 \; ; \; ED = 6$
$\cos A \hat{B} C = \dots O,5pt$	$EA = 1.5$; $DC = 4 \ et (AB)//(DC)$
	_
$tan A \hat{B}C = \dots O,5pt$	<u>*</u>
3) Soit D un point comme l'indique la figure	$A \nearrow B$ M
ci-dessus tel que : $AD = 2$	
Montrer que $BD = \sqrt{13}$ 0,5pt	
$monumer que bD = \sqrt{13} \qquad 0.3pc$	
	<u> </u>

1) Montrer que $BE=2$ et $AB=1$ 7,5 pt	EXERCICE 5 (2 pts)
	Dans la figure suivante un cercle (C) de
	centre O tel que $A\hat{\mathcal{C}}B=50^\circ$ et M un point du
	cercle (C) comme dans la figure :
	A
	(c)
	B 50°
	1) Calculer la mesure de l'angle AMB : 1pt
	T) Calculer la mesure de l'angle AMB . Tet
2) Soit M un point de (AB) tel que: $BM = 3$	
a) Calculer les deux rapports : $\frac{BM}{BA}$ et $\frac{BC}{BE}$	
BM 0.05	
$\frac{BM}{BA} = \dots O,25pt$	2) Calculer la mesure de l'angle $B\widehat{O}A$: 1pt
$\frac{BC}{BE} = \dots O,25pt$	
BE	
Donc $\frac{BM}{BA}$ $\frac{BC}{BE}$ 0,25pt	
DA DE	
b) En déduire que (CM)//(AE) 0,75pt	