

MEDIDAS DE DESEMPENHO

MEDIDAS DE DESEMPENHO

UM ALGORITMO É BOM SE PRODUZ

HIPÓTESES QUE FAZEM UM BOM

TRABALHO DE PREVISÃO DE

CLASSIFICAÇÃO DE EXEMPLOS NÃO-

VISTOS

MEDIDAS DE DESEMPENHO

MACHINE LEARNING UMA FERRAMENTA

PODEROSA PARA AQUISIÇÃO

AUTOMÁTICA DE CONHECIMENTO,

ENTRETANTO, NÃO EXISTE UM ÚNICO

ALGORITMO QUE APRESENTE MELHOR

DESEMPENHO PARA TODOS PROBLEMAS.

COMO TESTAR UMALGORITMO

PASSOS PARA TESTE DESEMPENHO Soco

- 1 COLETAR UM GRANDE CONJUNTO DE EXEMPLOS;
- 2 DIVIDI-LO EM DOIS CONJUNTOS (TREINO/TESTE)
- 3 TREINAR O ALGORITMO COM O CONJUNTO DE TREINO;
- 4 TESTAR A HIPÓTESE COM O CONJUNTO DE TESTE;
- 5 MEDIR OS ACERTOS DA HIPÓTESE.

ERRO

ERRO

EQUAÇÃO

$$err(h) = \frac{1}{n} \sum_{i=1}^{n} \left\| y_i \neq h(x_i) \right\|$$

EXEMPLO:

Em um conjunto com 100 objetos de teste 95 foram classificados corretamente e 5 não.

Então o erro será de

5/50 = 0.05 ou 5%

ENTRETANTO EM MACHINE LEARNING
NÃO ENFATIZAMOS OS ERROS DO
ALGORITMOS E SIM A TAXA DE ACERTOS
COMO A ACURÁCIA.

DEFINIÇÃO:

PROXIMIDADE ENTRE O VALOR OBTIDO

EXPERIMENTALMENTE E O VALOR VERDADEIRO

NA MEDIÇÃO DE UMA GRANDEZA FÍSICA.

EQUAÇÃO

$$acc(h) = 1 - err(h)$$

EXEMPLO:

Em um conjunto com 100 objetos de teste 95 foram classificados corretamente e 5 não.

Então o erro será de 5/50=0.05 e a acurácia de 1-0.05=0.95 ou 95%

SCIKIT LEARN

IMPORTAR TRAIN_TEST_SPLIT PARA DIVIDIR O CONJUNTO DE DADOS EM TREINO E TESTE

from sklearn.model_selection import train_test_split

SCIKIT LEARN

EXECUTAR A DIVISÃO DOS CONJUNTOS

```
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.4)
```

```
X_train = Conjunto de treino das Features
```

X_test = Conjunto de teste das Features

y_train = Conjunto de treino das targets

Y_test = Conjunto de teste das targets

SCIKIT LEARN

EXECUTAR A DIVISÃO DOS CONJUNTOS

```
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.4)
```

X = Conjunto original das Features

Y = Conjunto original das targets

test_size = porcentagem do conjunto de teste

SCIKIT LEARN

Executando KNN

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)
knn.score(X_test, y_test)
```


SCIKIT LEARN

Executando com árvores de decisão

```
from sklearn import tree

tree = tree.DecisionTreeClassifier()

tree.fit(X_train, y_train)

tree.score(X_test,y_test)
```

