Week 4, October 14th: Inequalities, Caracterisation of laws

Instructor: Yoan Tardy (yoan.tardy@polytechnique.edu) Tutorial Assistants:

- Nicoleta Cazacu (nicoleta.cazacu@polytechnique.edu)
- Mateo Deangeli Bravo (matdeabra@polytechnique.edu)
- Maxime Marivain (maxime.marivain@universite-paris-saclay.fr)
- Samy Mekkaoui (samy.mekkaoui@polytechnique.edu)

1 Important exercises

Exercise 1. Let *X* be a random variable taking values in $[0, +\infty)$ and $f : [0, +\infty) \to (0, +\infty)$ an increasing function. Show that for all $\varepsilon > 0$

 $\mathbb{P}[X \ge \varepsilon] \le \frac{\mathbb{E}[f(X)]}{f(\varepsilon)}.$

Exercise 2. Let $X_1, ..., X_n$ be real valued independent random variables, and let M_{X_i} be the respective moment generating functions. Show that for any t such that $M_{X_i}(t) < +\infty$ for all i = 1, ..., n we have

$$M_{X_1+...+X_n}(t) = \prod_{i=1}^N M_{X_i}(t).$$

Use this formula to compute the moment generating function of a binomial random variable Bin(N, p).

Exercise 3. Let X_1, X_2 be two independent random variables such that $\mu_{X_1} = \text{Geo}(p_1)$, $\mu_{X_2} = \text{Geo}(p_2)$. What is the law of $Y = \min\{X_1, X_2\}$?

Exercise 4. Let X be a Poisson random variable of parameter λ

- (i) Compute the moment generating function $M_X(t)$
- (ii) Use the former calculation to derive the Chernoff bounds

$$\forall t > 0$$
, $\mathbb{P}[X \ge i] \le e^{\lambda(e^t - 1)}e^{-it}$.

(iii) Assuming that $i > \lambda$ show that

$$\mathbb{P}[X \ge i] \le e^{\lambda(i/\lambda - 1)} \left(\frac{\lambda}{i}\right)^i$$

(iv) Compute $\mathbb{E}[X^2]$ using the moment generating function M_X .

Exercise 5. In this exercise you should make use of the inequalities seen during the course

- (i) Let $X : \Omega \to \mathbb{N}$ be a discrete random variable such that $\mathbb{E}[X] = \mu$ for some $\mu > 0$, and let $n \in \mathbb{N}$ be fixed. What can be said about $\mathbb{P}[X \ge n]$? What can be said about $\mathbb{E}[X^4]$?
- (ii) Let X be a discrete random variable such that $\mathbb{E}[X] < 0$. Suppose that for some $\theta \neq 0$, we have $\mathbb{E}[\exp(\theta X)] = 1$. Prove that it must be that $\theta \geq 0$.

(iii) Let (Ω, \mathbb{P}) be a discrete probability space and $X : \Omega \to \mathbb{N}$ a random variable. Under the assumption that the discrete density $p_X(n)$ is a decreasing function of n show that

$$\forall n \ge 1, \quad p_X(n) \le \frac{2}{n(n+1)} \mathbb{E}[X]$$

In the proof, you may use the fact that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for all $n \ge 1$.

Exercise 6. Let *X* be a discrete random variable taking values in $\mathbb{N} \setminus \{0\}$ whose discrete density is given by $p_X(n) = \frac{c_\alpha}{n^{1+\alpha}}$ for all $n \in \mathbb{N}$, where

$$\frac{1}{c_{\alpha}} = \sum_{n \in \mathbb{N}^*} \frac{1}{n^{1+\alpha}}$$

What are the values of $p \in (0, +\infty)$ for which $X \in L^p$?

2 Optional exercises

Exercise 7. We consider a family of urns $(U_k)_{k\geq 0}$. The urn U_k contains k blue balls and a red ball. Martine picks a random number X whose law is $Poi(\lambda)$. Next, she picks a ball at random from the urn U_X . We define the event

- (i) Compute $\mathbb{P}[A|X=k]$ for all $k \in \mathbb{N}$. Deduce from it that $\mathbb{P}[A] = \frac{1-e^{-\lambda}}{\lambda}$
- (ii) Compute $q(k) := \mathbb{P}[X = k|A]$ for all $k \in \mathbb{N}$.
- (iii) Recalling that the application $B \mapsto \mathbb{P}[B|A]$ is a probability, the expectation of X with respect to it is a well defined quantity, which we denote $\mathbb{E}[X|A]$. Moreover, we have the formula

$$\mathbb{E}[X|A] = \sum_{k \in \mathbb{N}} k \, \mathbb{P}[X = k|A]$$

Using this formula, compute $\mathbb{E}[X|A]$.

Exercise 8. An investor is faced with the following choices: Either she can invest all of her money in a risky asset that would lead to a random return X that has mean m, or she can put her money into a risk-free venture that will lead to a return of m with probability 1. Suppose that the decision will be made on the basis of maximizing the expected value of u(R), where R is her return and u is her utility function, which is assumed to be concave. What choice should the investor make?

Exercise 9. In this exercise, we prove the celebrated *Paley-Zygmund inequality.* Let $X : \Omega \to \mathbb{R}$ be a discrete random variable taking values in \mathbb{R} and such that $\mathbb{E}[X] \ge 0$.

(i) Show that

$$\forall \mathsf{o} < \lambda < \mathsf{1}, \omega \in \Omega, \quad X(\omega) \leq \lambda \mathbb{E}[X] + X(\omega) \mathbf{1}_{\{X(\omega) > \lambda \mathbb{E}[X]\}}.$$

(ii) Using point (i) prove that for all $0 < \lambda < 1$

$$\mathbb{P}[X > \lambda \mathbb{E}[X]] \ge (1 - \lambda)^2 \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]}.$$