

Dr. Mark C. Paulk
SE 4367 – Software Testing, Verification, Validation, and Quality Assurance

Topics: Software Testing

Part II: Test Generation

- 3. Domain Partitioning
- 4. Predicate Analysis
 - Domain Testing
 - Cause-Effect Graphing
 - Tests Using Predicate Syntax
 - Tests Using Basis Paths
 - Scenarios and Tests
- 5. Test Generation from Finite State Models
- 6. Test Generation from Combinatorial Designs

Singular

A Boolean expression is <u>singular</u> if each variable in the expression occurs only once.

 $E = e_1 \text{ bop } e_2 \text{ bop } \dots \text{ bop } e_k$

e_i and e_j are <u>mutually singular</u> if they do not share any variable

e_i is a <u>singular component</u> of E iff e_i is singular and is mutually singular with every other component of E

e_i is nonsingular iff it is nonsingular by itself and mutually singular with the remaining components of E

DNF and CNF

A Boolean expression is in <u>disjunctive normal</u> <u>form</u> if it is represented as a sum of product terms

A Boolean expression is in <u>conjunctive normal</u> <u>form</u> if it is represented as a product of sums

$$(p + \sim r)(p + s)(q + \sim r)(q + s)$$

Any Boolean expression in CNF can be converted to an equivalent DNF and vice versa

Predicate Testing

Targets three classes of faults

- Boolean operator fault
- relational operator fault
- arithmetic expression fault

Fault Causes

A Boolean operator fault is caused when

- an incorrect Boolean operator is used
- a negation is missing or placed incorrectly
- parentheses are incorrect
- an incorrect Boolean variable is used

A relational operator fault is caused when

an incorrect relational operator is used

An arithmetic expression fault is caused when

 the value of an arithmetic expression is off by an amount equal to ε

Boolean Operator Faults

Correct predicate: (a<b) ∨ (c>d) ∧ e

(a<b) ∧ (c>d) ∧ e Incorrect Boolean operator

(a<b) ∨ !(c>d) ∧ e Incorrect negation operator

(a<b) ∧ (c>d) ∨ e Incorrect Boolean operators

(a<b) ∨ (e>d) ∧ c Incorrect Boolean variable

Relational Operator Faults

Correct predicate: $(a < b) \lor (c > d) \land e$

(a=b) \lor (c>d) \land e Incorrect relational operator

(a=b) ∨ (c<d) ∧ e Two relational operator faults

(a=b) ∨ (c>d) ∨ e Incorrect relational and Boolean operators

Arithmetic Expression Faults

Correct predicate: Ec: e_1 relop1 e_2 Incorrect predicate: Ei: e_3 relop2 e_4

 E_i has an off-by-ε fault if $|e_3 - e_4| = ε$ for any test case for which $e_1 = e_2$

 E_i has an off-by- ε * fault if $|e_3 - e_4| ≤ ε$ for any test case for which $e_1 = e_2$

 E_i has an off-by- ε ⁺ fault if $|e_3 - e_4| > ε$ for any test case for which $e_1 = e_2$

Arithmetic Expression Fault Example

Correct predicate: $E_c = a < b + c$, a and b integer $\epsilon = 1$

Three incorrect versions of E_i

- a < b given c = 1, off-by-1 fault in E_i , |a - b| = 1 for a test case for which a = b + c, e.g., (2,1,1)
- a < b + 1 given c = 2, off-by-1* fault in E_i , $|a - (b+1)| \ge 1$ for any test case for which a = b + c, e.g., (4,2,2)
- a < b 1 given c > 0, off-by-1⁺ fault in E_i , |a (b-1)| > 1 for any test case for which a = b + c, e.g., (3,2,1)

Goal of Predicate Testing

Given a correct predicate p_c, generate a test set T such that

- there is at least one test case t ∈ T for which
- p_c and
- its faulty version p_i
- evaluate to different truth values

Predicate Testing Example

Suppose that p_c : a < b + c and p_i : a > b + c

Consider test set $T = \{t_1, t_2\}$ where

- t_1 : <a=0, b=0, c=0>
- t_2 : <a=0, b=1, c=1>

The fault in p_i is not revealed by t_1 as both p_c and p_i evaluate to false when evaluated against t_1

The fault is revealed by t₂ since

- p_c evaluates to true
- p_i evaluates to false
 when evaluated against t₂

Predicate Constraints

Let BR denote $\{t, f, <, =, >, +\epsilon, -\epsilon\}$

BR stands for Boolean and relational

Any element of the BR set is a BR-symbol

- specifies a constraint on a Boolean variable or relational expression
- + ϵ is a constraint on E': $e_1 < e_2$
 - $0 < e_2 e_1 \le \varepsilon$
- -ε is a constraint on E': $e_1 < e_2$
 - $\bullet -\varepsilon \leq e_1 e_2 < 0$

Constraints

BR symbols t and f specify constraints on Boolean variables and expressions

Constraints on relational expressions use <, =, and >

t and f can also be use to specify constraints on a simple relational expression

• p_r : a < b

Mathur, Example 4.8

E: a < c + d

Constraint C: (=) on E

Satisfying C requires at least one test case such that a = c + d

$$1 = 0 + 1$$

$$E: a < c + d$$

Constraint C: (+ε) on E

Let $\varepsilon = 1$

Satisfying C requires at least one test case such that $0 < a - (c + d) \le 1$

$$0 < 4 - (2 + 1) \le 1$$

E: b

E is a Boolean expression

Constraint C: (t) on E

Given a Boolean expression E:b, the constraint "t" is satisfied by a test case that sets variable b to true.

Predicate Constraints

Let p_r denote a predicate with $n > 0 \lor and \land operators.$

A <u>predicate constraint</u> C for predicate p_r is a sequence of (n+1) BR symbols

 one for each Boolean variable or relational expression in p_r

Note that n (\vee and \wedge) operators implies n+1 components in the predicate.

Mathur, Example 4.9

Given predicate p_r : $b \land r < s \lor u \ge v$

$$p_r$$
: b \land (r < s) \lor (u \ge v)

One possible BR-constraint for p_r is C: (t, =, >)

A test case that satisfies C for p_r is
 <b=true, r=1, s=1, u=1, v=0)

A test case that does not satisfy C for p_r is
 <b=true, r=1, s=1, u=1, v=2)

Test Cases for Constraints

Test case t satisfies constraint C for predicate p_r if each component of p_r satisfies the corresponding constraint in C when evaluated against t.

Constraint C for predicate p_r guides the development of a test for p_r

 offers hints on what the values of the variables should be for p_r to satisfy C

Infeasible Constraints

A constraint C is considered <u>infeasible</u> for predicate p_r if there exists no input values for the variables in p_r that satisfy c.

For example, the constraint (>, >) is infeasible for the predicate $a > b \land b > d$ if it is known that d > a

True and False Constraints

 $p_r(C)$ denotes the value of predicate p_r evaluated using a test case that satisfies C

C is referred to as

- a true constraint when p_r(C) is true
- a false constraint otherwise

A set of constraints S is partitioned into subsets S^t and S^f, respectively, such that

- for each C in S^t, $p_r(C)$ = true
- for any C in Sf, pr(C) = false
- $S = S^t \cup S^f$

Mathur, Example 4.10

$$p_r$$
: (a < b) \land (c > d)

$$C_1$$
: (=, >)

- if a = b, then a < b is false
- any test case that satisfies C₁ on pr makes pr false → C₁ is a false constraint

$$C_2$$
: (<, + ϵ) for ϵ =1

- $0 < c d \le 1$ implies c > d
- any test case that satisfies C₂ on pr makes pr true → C₂ is a true constraint

$$S = \{C_1, C_2\}$$
 $S^t = \{C_2\}$ $S^f = \{C_1\}$

Predicate Testing Criteria

Given a predicate p_r, we want to generate a test set T such that

- T is minimal
- T guarantees the detection of any fault in the implementation of p_r
 - faults correspond to the fault model discussed earlier

BOR = Boolean operator

BRO = Boolean and relational operator

BRE = Boolean and relational expression

BOR Testing Criterion

A test set T that satisfies the BOR-testing criterion for a compound predicate p_r guarantees the detection of single or multiple Boolean operator faults in the implementation of p_r .

T is referred to as a BOR-adequate test set

• T_{BOR}

BRO Testing Criterion

A test set T that satisfies the BRO-testing criterion for a compound predicate p_r guarantees the detection of single or multiple

- Boolean operator
- relational operator faults in the implementation of p_r.

T is referred to as a BRO-adequate test set

• T_{BRO}

BRE Testing Criterion

A test set T that satisfies the BRE-testing criterion for a compound predicate p_r guarantees the detection of single or multiple

- Boolean operator
- relational expression
- arithmetic expression faults in the implementation of p_r .

T is referred to as a BRE-adequate test set

• T_{BRE}

Guaranteeing Fault Detection

Let T_x , $x \in \{BOR, BRO, BRE\}$, be a test set derived from predicate p_r .

Let p_f be another predicate obtained from p_r by injecting single or multiple faults of one of three kinds:

- Boolean operator fault
- relational operator fault
- arithmetic expression fault

 T_x is said to guarantee the detection of faults in p_f if for some $t \in T_x$, $p(t) \neq p_f(t)$.

Mathur, Example 4.11

$$p_r = (a < b) \land (c > d)$$

Constraint set $S = \{(t,t), (t,f), (f,t)\}$

 $T_{BOR} = \{t_1, t_2, t_3\}$ is a BOR-adequate test set that satisfies S

$$t_1$$
:

- satisfies (t,t), i.e. a<b is true and c>d is also true

$$t_2$$
:

- satisfies (t,f) since 1>2 is false

$$t_3$$
:

- satisfies (f,t) since 1<0 is false

T is BOR-adequate

Predicate	t ₁	t_2	t_3
$a < b \land c > d$	true	false	false

Single Boolean operator fault

$a < b \lor c > d$	true	true	true
$a < b \land c < d$	false	true	false
a > b ∧ c > d	false	false	true

Multiple Boolean operator faults

$a < b \lor c < d$	true	true	false
$a > b \lor c > d$	true	false	true
a > b ∧ c < d	false	false	false
$a > b \lor c < d$	false	true	true

Cross Product

The (cross) product of two sets A and B is defined as

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

Mathur, Example 4.12

Let
$$A = \{t, =, >\}$$
 and $B = \{f, <\}$

$$A \times B = \{(t, f), (t, <), (=, f), (=, <), (>, f), (>, <)\}$$

Onto Product

The onto product of two sets A and B is defined as

$$A \otimes B = \{(u, v) \mid u \in A, v \in B\}$$

- such that each element of A appears at least once as u and each element of B appears at least once as v
- A ⊗ B is a minimal set

$$A \otimes B = \{(t, f), (=,<), (>,<)\}$$

Other possibilities for A \otimes B

- $A \otimes B = \{(t, f), (=,<), (>,f)\}$
- $A \otimes B = \{(t, f), (=,f), (>,<)\}$
- $A \otimes B = \{(t, <), (=,f), (>,<)\}$
- $A \otimes B = \{(t, <), (=,f), (>,f)\}$

"An" Element

 $\{t_1\}$ where $t_1 \in A$ means that t_1 is <u>an</u> element of A

Let
$$A = \{(<), (=), (>)\}$$

$$\{t_1\} = \{(<)\}$$

Other possibilities for {t₁}:

- $\{t_1\} = \{(=)\}$
- $\{t_1\} = \{(>)\}$

Conventions That Ease Grading

There are legitimate alternatives for ONTO product and for $\{t_x\}$ or $\{f_x\}$ in this problem.

- using one of the alternatives is legitimate
- if you went a different (legal) way, that's acceptable

Conventions

- order {(t), (f)}, {(<), (=), (>)}, {(-ε), (=), (+ ε)} in initial sets
- match corresponding ONTO terms until reaching the end of the shorter set; then continue matching with the last item in the shorter set
- pick the first item for a {t_x} or {f_x}

$A\ Minimal\ BOR\text{-}Constraint\ Set$ $BOR\text{-}CSET\ 1$

Input

- an abstract syntax tree for predicate p_r: AST(p_r)
- p_r contains only singular expressions

Output

 BOR-constraint set for p_r attached to the root node of AST(p_r)

Procedure BOR-CSET

Step 1. Label each leaf node N of AST(p_r) with its constraint set S_N . For each $S_N = \{t, f\}$.

BOR-CSET 2

Step 2. Visit each non-leaf node in AST(p_r) in a bottom-up manner.

- Let N₁ and N₂ denote the direct descendants of node N, if N is an AND-node or OR-node.
- If N is a NOT-node, then N₁ is its direct descendant.
- S_{N1} and S_{N2} are the BOR-constraint sets for nodes N_1 and N_2 respectively.
- For each non-leaf node N, compute S_N as follows.

BOR-CSET 2.1

N is an OR-node.

$$S_N^f = S_{N1}^f \otimes S_{N2}^f$$

$$S_N^t = (S_{N1}^t x \{f_2\}) \cup (\{f_1\} x S_{N2}^t)$$

where $f_1 \in S_{N1}^f$ and $f_2 \in S_{N2}^f$

BOR-CSET 2.2

N is an AND-node.

$$S_N^t = S_{N1}^t \otimes S_{N2}^t$$

$$S_{N}^{f} = (S_{N1}^{f} x \{t_{2}\}) \cup (\{t_{1}\} x S_{N2}^{f})$$

where $t_{1} \in S_{N1}^{t}$ and $t_{2} \in S_{N2}^{t}$

BOR-CSET 2.3

N is a NOT-node.

$$S_N^t = S_{N1}^f$$

$$S_N^f = S_{N1}^t$$

BOR-CSET 3

Step 3. The constraint set for the root of AST(p_r) is the desired BOR-constraint set for p_r .

End of procedure BOR-CSET

Mathur, Example 4.13

We want to generate T_{BOR} for: p_r : $a < b \land c > d$ Generate AST(p_r)

 S_N is the constraint set for node N in AST(p_r).

 S_N^t is the true constraint set for node N in AST(p_r).

 S_N^f is the false constraint set for node N in AST(p_r).

$$S_N = S_N^t \cup S_N^f$$

Label each leaf node with the constraint set {(t), (f)}.

Label the nodes as N_1 , N_2 , and so on for convenience.

Note that N_1 and N_2 are direct descendants of N_3 which is an AND-node.

Compute the constraint set for the next higher node in the syntax tree, in this case N₃. For an AND-node:

$$\begin{split} S_{N3}{}^{t} &= S_{N1}{}^{t} \otimes S_{N2}{}^{t} = \{(t)\} \otimes \{(t)\} = \{(t, t)\} \\ S_{N3}{}^{f} &= (S_{N1}{}^{f} \times \{t_{2}\}) \cup (\{t_{1}\} \times S_{N2}{}^{f}) \\ &= (\{(f)\} \times \{(t)\}) \cup (\{(t)\} \times \{(f)\}) \\ &= \{(f, t)\} \cup \{(t, f)\} \\ &= \{(f, t), (t, f)\} \\ S_{N3} &= \{(t, t), (f, t), (t, f)\} \end{split}$$

$$S_{N3} = S_{N3}^{t} \cup S_{N3}^{f} = \{(t,t), (f,t), (t,f)\}$$

S_{N3} contains a sequence of three constraints

a minimal test set consists of three test cases

One possible test set:

$$T_{BOR} = \{t_1, t_2, t_3\}$$

 $t_1 = \langle a=1, b=2, c=6, d=5 \rangle$ (t, t)
 $t_2 = \langle a=1, b=0, c=6, d=5 \rangle$ (f, t)
 $t_3 = \langle a=1, b=2, c=1, d=2 \rangle$ (t, f)

BOR Example #1

Generate a BOR-adequate test set T_{BOR} for p_r : !(a \land b) \lor c

Show all the steps in generating T_{BOR}

$AST for !(a \land b) \lor c$

BOR-CSET Step 1

BOR-CSET Step 2.2 for N3

N3 is an AND-node

$$\begin{split} S_{N3}{}^t &= S_{N1}{}^t \otimes S_{N2}{}^t = \{(t)\} \otimes \{(t)\} = \{(t,t)\} \\ S_{N3}{}^f &= (S_{N1}{}^f \times \{t_2\}) \cup (\{t_1\} \times S_{N2}{}^f) \\ &= (\{(f)\} \times \{(t)\}) \cup (\{(t)\} \times \{(f)\}) \\ &= \{(f,t)\} \cup \{(t,f)\} \\ &= \{(f,t), (t,f)\} \\ S_{N3} &= \{(t,t), (f,t), (t,f)\} \\ \end{pmatrix} \\ N1 \\ a \\ b \\ N2 \\ \{(t), (f)\} \\ \end{split}$$

BOR-CSET Step 2.3 for N4

N4 is a NOT-node.

BOR-CSET Step 2.1 for N6

N6 is an OR-node.

$$\begin{split} S_{N6}{}^f &= S_{N4}{}^f \otimes S_{N5}{}^f \\ &= \{(t,t)\} \otimes \{(f)\} = \{(t,t,f)\} \\ &= \{(t,t)\} \otimes \{(f)\} = \{(t,t,f)\} \\ &= \{(f,t,f), (t,f,f)\} \otimes \{(f,t,f)\} \\ &= \{(f,t), (t,f)\} \otimes \{(f,t)\} \\ &= \{(f,t,f), (t,f,f)\} \otimes \{(t,t,t)\} \\ &= \{(f,t,f), (t,f,f), (t,t,t)\} \\ &= \{(f,t,f), (t,f,f), (t,t,t)\} \\ &= \{(f,t,f), (t,f,f), (t,t,t), (t,t,f)\} \\ &= \{(t,t,f), (t,t,f), (t,t,f), (t,t,f)\} \\ &= \{(t,t,f), (t,t,f), (t,t,f), (t,t,f)\} \\ &= \{(t,t,f), (t,t,f), (t,t,f), (t,t,f), (t,t,f)\} \\ &= \{(t,t,f), (t,t,f), (t,t,f), (t,t,f), (t,t,f)\} \\ &= \{(t,t,f), (t,t,f), (t,t,f), (t,t,f), (t,t,f), (t,t,f), (t,t,f), (t,t,f)\} \\ &= \{(t,t,f), (t,t,f), (t,t,f$$

T_{BOR}

The test cases for the Boolean variables a, b, c are:

```
t<sub>1</sub>: (true,true,false)
t<sub>2</sub>: (false,true,false)
t<sub>3</sub>: (true,false,false)
t<sub>4</sub>: (true,true,true)
```

BOR Example #2

Generate a BOR-adequate test set T_{BOR} for p_r : (a \lor b) \land !c

Show all the steps in generating T_{BOR}

AST for $(a \lor b) \land !c$

BOR-CSET Step 1

$$S_{N1}^{t} = S_{N2}^{t} = S_{N3}^{t} = \{(t)\}$$

$$S_{N1}^{f} = S_{N2}^{f} = S_{N3}^{f} = \{(f)\}$$

$$S_{N1} = S_{N2} = S_{N3} = \{(t), (f)\}$$

$$N1 = S_{N2} = S_{N3} = \{(t), (f)\}$$

$$N1 = S_{N2} = S_{N3} = \{(t), (f)\}$$

$$N1 = S_{N2} = S_{N3} = \{(t), (f)\}$$

$$S_{N1}^{f} = S_{N2}^{f} = S_{N3}^{f} = \{(f)\}$$

$$S_{N2}^{f} = S_{N3}^{f} = \{(f), (f)\}$$

BOR-CSET Step 2.3 for N5

N5 is a NOT-node.

$$S_{N5}^{t} = S_{N3}^{f} = \{(f)\}$$

$$S_{N5}^{f} = S_{N3}^{t} = \{(t)\}$$

$$S_{N5} = \{(f), (t)\}$$

BOR-CSET Step 2.1 for N4

N4 is an OR-node.

$$\begin{split} S_{N4}^{\ f} &= S_{N1}^{\ f} \otimes S_{N2}^{\ f} \\ &= \{(f)\} \otimes \{(f)\} = \{(f,f)\} \end{split}$$

$$S_{N4}^{\ t} &= (S_{N1}^{\ t} \times \{f_{N2}\}) \cup \{(f_{N1}\} \times S_{N2}^{\ t}) \\ &= (\{(t)\} \times \{(f)\}) \\ &\cup \ (\{(f)\} \times \{(t)\}) \\ &= \{(t,f)\} \cup \{(f,t)\} \\ &= \{(t,f),\ (f,t)\} \end{split}$$

$$N1 \\ A \\ N2 \\ B \\ N3 \\ C$$

$$S_{N4} &= \{(t,f),\ (f,t),\ (f,f)\} \\ \begin{cases} (t),\ (f)\} \end{cases}$$

$$\{(t),\ (f)\}$$

BOR-CSET Step 2.2 for N6

N6 is an AND-node

$$\begin{split} S_{N6}{}^{t} &= S_{N4}{}^{t} \otimes S_{N5}{}^{t} = \{(t,f),\,(f,t)\} \otimes \{(f)\} \\ &= \{(t,f,f),\,(f,t,f)\} \end{split} \qquad \{(t,f,f),\,(f,f,f),\,(t,f,t)\} \\ S_{N6}{}^{f} &= (S_{N4}{}^{f} \times \{t_{N5}\}) \cup (\{t_{N4}\} \times S_{N5}{}^{f}) \\ &= (\{(f,f)\} \times \{(f)\}) \cup (\{(t,f)\} \times \{(t)\}) \\ &= \{(f,f,f)\} \cup \{(t,f,t)\} \end{split} \qquad \{(f,f),\,(t,f),\,(f,t)\} \\ &= \{(f,f,f),\,(t,f,t)\} \end{split} \qquad \{(f,f),\,(t,f),\,(f,t)\} \\ S_{N6} &= \{(t,f,f),\,(f,t,f),\,(f,f,f),\,(t,f,t)\} \end{cases} \qquad \{(t),\,(f)\} \end{split}$$

T_{BOR} for the Example

The test cases for the Boolean variables a, b, c are:

```
t<sub>1</sub>: (true,false,false)
```

t₂: (false,true,false)

t₃: (false,false,false)

t₄: (true,false,true)

Alternate Choice BOR-CSET Step 2.2 for N6

N6 is an AND-node

$$\begin{split} S_{N6}{}^{t} &= S_{N4}{}^{t} \otimes S_{N5}{}^{t} = \{(t,f),\,(f,t)\} \otimes \{(f)\} \\ &= \{(t,f,f),\,(f,t,f)\} \end{split} \qquad \{(t,f,f),\,(f,t,f),\,(f,f,f)\} \\ S_{N6}{}^{f} &= (S_{N4}{}^{f} \times \{t_{N5}\}) \cup (\{t_{N4}\} \times S_{N5}{}^{f}) \\ &= (\{(f,f)\} \times \{(f)\}) \cup (\{(f,t)\} \times \{(t)\}) \\ &= \{(f,f,f)\} \cup \{(f,t,t)\} \end{split} \qquad \{(f,f),\,(t,f),\,(f,t)\} \\ &= \{(f,f,f),\,(f,t,f),\,(f,t,f)\} \end{split} \qquad \{(f),\,(t)\}$$

BOR Example #3

Generate a BOR-adequate test set T_{BOR} for p_r : a!b + !cd + ef

Show all the steps in generating T_{BOR}

AST for a!b + !cd + ef

BOR-CSET Step 1 Label AST (a!b + !cd + ef)

BOR-CSET Step 1 Label Leaf Nodes

$$S_{N1}^{t} = S_{N2}^{t} = S_{N3}^{t} = S_{N4}^{t} = S_{N5}^{t} = S_{N6}^{t} = \{(t)\}$$

$$S_{N1}^f = S_{N2}^f = S_{N3}^f = S_{N4}^f = S_{N5}^f = S_{N6}^f = \{(f)\}$$

$$S_{N1} = S_{N2} = S_{N3} = S_{N4} = S_{N5} = S_{N6} = \{(t), (f)\}$$

BOR-CSET Step 1 Label AST (a!b + !cd + ef)

BOR-CSET Step 2.3 for NOT-Nodes

N7, N8 are NOT-nodes.

$$S_{N7}^{t} = S_{N2}^{f} = \{(f)\}$$

$$S_{N7}^{f} = S_{N2}^{t} = \{(t)\}$$

$$S_{N7} = \{(f), (t)\}$$

$$S_{N8}^{t} = S_{N3}^{f} = \{(f)\}$$

$$S_{N8}^{f} = S_{N3}^{t} = \{(t)\}$$

$$S_{N8} = \{(f), (t)\}$$

BOR-CSET Step 2.3 Label NOT-Nodes

BOR-CSET Step 2.2 for N_9

N₉ is an AND-node for f(a,b)

$$S_{N9}^{t} = S_{N1}^{t} \otimes S_{N7}^{t}$$

$$= \{(t)\} \otimes \{(f)\} = \{(t,f)\}$$

$$S_{N9}^{f} = (S_{N1}^{f} \times \{t_{N7}\}) \cup (\{t_{N1}\} \times S_{N7}^{f})$$

$$= (\{(f)\} \times \{(f)\}) \cup (\{(t)\} \times \{(t)\})$$

$$= \{(f,f)\} \cup \{(t,t)\}$$

$$= \{(f,f), (t,t)\}$$

$$S_{N9} = \{(t,f), (f,f), (t,t)\}$$

BOR-CSET Step 2.2 for N_{10}

N_{10} is an AND-node for f(c,d)

$$S_{N10}^{t} = S_{N8}^{t} \otimes S_{N4}^{t}$$

$$= \{(f)\} \otimes \{(t)\} = \{(f,t)\}$$

$$S_{N10}^{f} = (S_{N8}^{f} \times \{t_{N4}\}) \cup (\{t_{N8}\} \times S_{N4}^{f})$$

$$= (\{(t)\} \times \{(t)\}) \cup (\{(f)\} \times \{(f)\})$$

$$= \{(t,t)\} \cup \{(f,f)\}$$

$$= \{(t,t), (f,f)\}$$

$$S_{N10} = \{(f,t), (t,t), (f,f)\}$$

BOR-CSET Step 2.2 for N_{11}

N_{11} is an AND-node for f(e,f)

$$\begin{split} S_{N11}{}^{t} &= S_{N5}{}^{t} \otimes S_{N6}{}^{t} \\ &= \{(t)\} \otimes \{(t)\} = \{(t,t)\} \\ S_{N11}{}^{f} &= (S_{N5}{}^{f} \times \{t_{N6}\}) \cup (\{t_{N5}\} \times S_{N6}{}^{f}) \\ &= (\{(f)\} \times \{(t)\}) \cup (\{(t)\} \times \{(f)\}) \\ &= \{(f,t)\} \cup \{(t,f)\} \\ &= \{(f,t), (t,f)\} \\ S_{N11} &= \{(t,t), (f,t), (t,f)\} \end{split}$$

BOR-CSET Step 2.2 Label AND-Nodes

BOR-CSET Step 2.1 for N_{12}

 N_{12} is an OR-node for f(a,b,c,d).

$$S_{N12}^{t} = (S_{N9}^{t} \times \{f_{N10}\}) \cup (\{f_{N9}\} \times S_{N10}^{t})$$

$$= (\{(t,f)\} \times \{(t,t)\}) \cup (\{(f,f)\} \times \{(f,t)\})$$

$$= \{(t,f,t,t)\} \cup \{(f,f,f,t)\}$$

$$= \{(t,f,t,t), (f,f,f,t)\}$$

$$S_{N12}^{f} = S_{N9}^{f} \otimes S_{N10}^{f}$$

$$= \{(f,f), (t,t)\} \otimes \{(t,t), (f,f)\} = \{(f,f,t,t), (t,t,f,f)\}$$

$$S_{N12}^{n} = \{(t,f,t,t), (f,f,f,t), (f,f,t,t), (t,t,f,f)\}$$

 $\{f_{N10}\}$ could also be $\{(f,f)\}$ $\{f_{N0}\}$ could also be $\{(t,t)\}$ ONTO product could be reversed

BOR-CSET Step 2.1 for N_{13}

 N_{13} is an OR-node for f(a,b,c,d,e,f).

```
S_{N13}^{t} = (S_{N12}^{t} \times \{f_{N11}\}) \cup (\{f_{N12}\} \times S_{N11}^{t})
         = (\{(t,f,t,t), (f,f,f,t)\} \times \{(f,t)\}) \cup (\{(f,f,t,t)\} \times \{(t,t)\})
         = \{(t,f,t,t,f,t), (f,f,f,t,f,t)\} \cup \{(f,f,t,t,t,t)\}
         = \{(t,f,t,t,f,t), (f,f,t,t,f,t), (f,f,t,t,t,t)\}
S_{N13}^f = S_{N12}^f \otimes S_{N13}^f
         = \{(f,f,t,t), (t,t,f,f)\} \otimes \{(f,t), (t,f)\}
         = \{(f,f,t,t,f,t), (t,t,f,f,t,f)\}
S_{N13} = \{(t,f,t,t,f,t), (f,f,t,t,f,t), (f,f,t,t,t,t), (f,f,t,t,f,t), (t,t,f,f,t,f)\}
                                           ONTO product could be reversed
\{f_{N11}\}\ could also be \{(t,f)\}\
\{f_{N12}\}\ could also be \{(t,t,f,f)\}
```

BOR-CSET Step 2.1 Label OR-Nodes

T_{BOR}

The test cases for the Boolean variables a, b, c, d, e, f are:

t₁: <a=true,b=false,c=true,d=true,e=false,f=true>

t₂: <a=false,b=false,c=false,d=true,e=false,f=true>

t₃: <a=false,b=false,c=true,d=true,e=true,f=true>

t₄: <a=false,b=false,c=true,d=true,e=false,f=true>

t₅: <a=true,b=true,c=false,d=false,e=true,f=false>

What If?

What if you were told to use the BOR procedure on the predicate

... which is not singular (c is repeated).

A correct way to solve this assignment would be to rewrite the predicate as

$$c(a!b + d!e)$$

which is singular.

A Minimal BRO-Constraint Set

A test set adequate with respect to a BRO constraint set for predicate p_r , guarantees the detection of all combinations of single or multiple Boolean operator and relational operator faults.

p_r contains only singular expressions

Label each leaf node that is a relational expression $S_N = \{(<), (=), (>)\}.$

Compute S_N for each non-leaf node using the BOR-CSET steps 2.1, 2.2, and 2.3.

S^t and S^f for the BRO Constraint Set

Separating the BRO-constraint S into its true (S^t) and false (S^f) components

relop: >
$$S^t = \{(>)\}$$

$$S^f = \{(<), (=)\}$$

relop:
$$\geq$$
 S^t = {(=), (>)}

$$S^f = \{(<)\}$$

relop: =
$$S^t = \{(=)\}$$

$$S^f = \{(<), (>)\}$$

relop:
$$<$$
 $S^t = {(<)}$

$$S^f = \{(=), (>)\}$$

relop:
$$\leq$$
 S^t = {(<), (=)}

$$S^f = \{(>)\}$$

t_N denotes an element of St_N

f_N denotes an element of Sf_N

Mathur, Example 4.15

 p_r : (a+b < c) \land !p \lor (r > s)

Construct AST(p_r)

Label each leaf node with its constraint set S.

Traverse the tree and compute the constraint set for each internal node.

$$S_{N3}^{t} = S_{N2}^{f} = \{(f)\}$$

$$S_{N3}^{f} = S_{N2}^{t} = \{(t)\}$$

$$S_{N4}^{t} = S_{N1}^{t} \otimes S_{N3}^{t} = \{(<)\} \otimes \{(f)\} = \{(<, f)\}$$

$$S_{N4}^{f} = (S_{N1}^{f} \times \{(t_{N3})\}) \cup (\{(t_{N1})\} \times S_{N3}^{f})$$

$$= (\{(>), (=)\} \times \{(f)\}) \cup \{(<)\} \times \{(t)\})$$

$$= \{(>, f), (=, f)\} \cup \{(<, t)\}$$

$$= \{(>, f), (=, f), (<, t)\}$$

Compute the constraint set for the root node (this is an OR-node).

$$S_{N6}^{f} = S_{N4}^{f} \otimes S_{N5}^{f}$$

$$= \{(>,f), (=,f), (<,t)\} \otimes \{(=), (<)\}$$

$$= \{(>,f,=), (=,f,<), (<,t,=)\}$$

$$S_{N6}^{t} = (S_{N4}^{t} \times \{(f_{N5})\}) \cup (\{(f_{N4})\} \times S_{N5}^{t})$$

$$= (\{(<,f)\} \times \{(=)\}) \cup \{(>,f)\} \times \{(>)\})$$

$$= \{(<,f,=)\} \cup \{(>,f,>)\}$$

$$= \{(<,f,=), (>,f,>)\}$$

Given the constraint set for p_r (a + b < c) \land !p \lor (r > s) construct T_{BRO}

$$\{(>,f,=), (=,f,<), (<,t,=), (<,f,=), (>,f,>)\}$$

	<u>a+b>c</u>	р	r>s	Test case <a,b,c,p,r,s></a,b,c,p,r,s>
$\mathbf{t_1}$	>	f	=	<1,1,1,false,1,1>
t ₂	=	f	<	<1,0,1,false,1,2>
t_3	<	t	=	<1,1,3,true,1,1>
t ₄	<	f	=	<0,2,3,false,0,0>
t ₅	>	f	>	<1,1,0,false,2,0>

The BRE-Constraint Set

A test set adequate with respect to a BRO constraint set for predicate p_r , guarantees the detection of any Boolean operator, relation operator, arithmetic expression, or combination thereof faults.

p_r contains only singular expressions

The BRE-constraint set for a relational expression is $\{(-\epsilon), (=), (+\epsilon)\}, \epsilon > 0$.

e₁ relop e₂ is separated into S^t and S^f based on

$$+\varepsilon$$
 $0 < e_1 - e_2 \le +\varepsilon$

$$-\varepsilon \qquad -\varepsilon \leq e_1 - e_2 < 0$$

S^t and S^f for the BRE Constraint Set

Separating the BRE-constraint S into its true (S^t) and false (S^f) components

relop:
$$S^t = \{(+\epsilon)\}$$

$$S^f = \{(-\epsilon), (=)\}$$

relop:
$$\geq$$
 S^t = {(=), (+ ϵ)}

$$S^f = \{(-\epsilon)\}$$

relop: =
$$S^t = \{(=)\}$$

$$S^{f} = \{(-\epsilon), (+\epsilon)\}$$

relop:
$$\langle S^t = \{(-\epsilon)\} \rangle$$

$$S^f = \{(=), (+\epsilon)\}$$

relop:
$$\leq$$
 S^t = {(- ϵ), (=)}

$$S^f = \{(+\epsilon)\}$$

BRE-CSET

Label each leaf node that is a relational expression $S_N = \{(-\epsilon), (=), (+\epsilon)\}.$

Compute S_N for each non-leaf node using the BOR-CSET steps 2.1, 2.2, and 2.3.

Maximum Size of the Test Sets

If a predicate contains n AND/OR operations, then the maximum size of the BOR-adequate test set is n + 2.

The maximum size of a BRO- or BRE-adequate test set is 2n + 3.

Note that the BOR-CSET procedure generates significantly <u>smaller</u> test sets than the cause-effect graph decision table.

- fault detection effectiveness of BOR-CSET is <u>slightly</u> <u>less</u> than that of the CEGDT procedure

BOR Constraints for Nonsingular Expressions

Test generation procedures described so far are for singular predicates.

 a singular predicate contains only one occurrence of each variable

How to generate BOR constraints for nonsingular predicates?

Look at some nonsingular expressions

- disjunctive normal forms (DNF)
- mutually singular components

Examples of Nonsingular Expressions and DNF

Predicate (p _r)	DNF	Mutually singular components in p _r
ab(b+c)	abb+abc	a b(b+c)
a(bc+ bd)	abc+abd	a (bc+bd)
a(bc+!b+de)	abc+a!b+ade	a bc+!b de

Generating BOR Constraints for Nonsingular Expressions

The modified BOR strategy to generate tests from predicate p_r uses

- the BOR-CSET procedure
- another procedure called the Meaningful Impact (MI) procedure

MI procedure generates tests from any Boolean expression p_r, singular or nonsingular

p_r must be in DNF

A literal occurrence in a Boolean formula is said to have a *meaningful impact* on the value of the formula for a given test case if, everything else being the same, a different truth value assignment to that literal would have resulted in the formula evaluating to a different value.

MI-CSET Procedure MI-CSET 1

Input

• Boolean expression $E = e_1 + e_2 + ... e_n$ in minimal DNF

Output

 a set of constraints S_E that guarantees the detection of missing or extra NOT operator faults in a faulty version of E

Start of procedure MI-CSET

Step 1. For each term e_i, 1≤i≤n, construct T_{ei} as the set of constraints that make e_i true

MI-CSET 2-3

Step 2. Let
$$TS_{ei} = T_{ei} - \bigcup_{j=1, i \neq j} T_{ej}$$

- note that for i≠j, TS_{ei} ∩ TS_{ej} = Ø
- note that TS contains only the unique trues

The unique true points are of interest because they demonstrate the meaningful impact of each literal of a term on the evaluation of the formula to true.

Step 3. Construct S_{E}^{t} by including one constraint from each TS_{ei} , $1 \le i \le n$

- note that for each constraint c in S_E^t, E(c) = true

MI-CSET 4

Step 4. Let e_i denote the term obtained by complementing the jth literal in term e_i, for 1≤l≤n and 1≤j≤ l_i

- count the literals in a term from left to right, leftmost first

Construct F_{eij} as the set of constraints that make e_i^j false

MI-CSET 5-7

Step 5. Let $FS_{eij} = F_{eij} - \bigcup_{k=1}^{n} T_{ek}$ - for any constraint c in FS_{eij} , E(c) = false

Step 6. Construct S_E^f that is minimal and covers each FS_{eij} at least once

Step 7. Construct the desired constraint set for E as $S_E = S_E^{\ t} \cup S_E^{\ f}$

End of procedure MI-CSET

Effectiveness of the MI Procedure

As discussed by Chen and Lau (2001), the basic meaningful impact procedure guarantees finding all occurrences of

- Expression Negation Fault (ENF)
- Literal Negation Fault (LNF)
- Term Omission Fault (TOF)
- Operator Reference Fault (ORF)
- Literal Omission Fault (LOF)

MI is not guaranteed to find

- Literal Insertion Fault (LIF)
 - a literal not appearing in a term is inserted in that term, e.g., ab!c + de → ab!cd + de
- Literal Reference Fault (LRF)
 - a literal is replaced by another literal not appearing in the term, e.g., ab!c + de → abd + de

Operator Fault Categories (Badhera)

Operator Reference Fault (ORF): In this class of fault, a binary logical operator '.' is replaced by '+' or vice versa.

Expression Negation Fault (ENF): A sub-expression in the statement is replaced by its negation (!).

Variable Negation Fault (VNF): An atomic Boolean literal is replaced by its negation (!).

Associative Shift Fault (ASF): This fault occurs when an association among conditions is incorrectly implemented due to misunderstanding about operator evaluation properties.

- Parenthesis omission fault (POF): A pair of parentheses has been incorrectly omitted from the Boolean expression.
- Parenthesis insertion fault (PIF): A pair of parentheses has been incorrectly inserted from the Boolean expression.

Missing Variable Fault (MVF): A condition in the expression is missing with respect to original expression.

Variable Reference Fault (VRF): A condition is replaced by another input which exists in the statement.

Clause Conjunction Fault (CCF): A condition a in expression is replaced by a.b, where b is a variable in the expression.

Clause Disjunction Fault (CDF): A condition a in expression is replaced with a+b, where b is a variable in the expression.

Stuck at 0: A condition a is replaced with 0 in the function.

Stuck at 1: A condition a is replaced with 1 in the function.

Mathur, Example 4.17

Consider the nonsingular predicate: a(bc + !bd)

DNF equivalent is E = abc + a!bd

a, b, c, and d are Boolean variables (literals)

Each literal represents a condition

a could represent r < s

Step 1. For each term e_i, 1≤i≤n, construct T_{ei} as the set of constraints that make e_i true

Express E in DNF notation

- $E = e_1 + e_2$
 - where e_1 = abc and e_2 = a!bd

Step 1: Construct a constraint set T_{e1} for e₁ that makes e₁ true

•
$$T_{e1} = \{(t,t,t,t), (t,t,t,f)\}$$

Construct T_{e2} for e₂ that makes e₂ true

•
$$T_{e2} = \{(t,f,t,t), (t,f,f,t)\}$$

Step 2. Let
$$TS_{ei} = T_{ei} - \bigcup_{j=1,i\neq j}^{n} T_{ei}$$

- note that for $i\neq j$, $TS_{ei} \cap TS_{ei} = \emptyset$

Step 2: From each T_{ei} , remove the constraints that are in any other T_{ei}

There are no common constraints between T_{e1} and T_{e2} in our example

$$TS_{e1} = \{(t,t,t,t), (t,t,t,f)\}$$

$$TS_{e2} = \{(t,f,t,t), (t,f,f,t)\}$$

Step 3. Construct S_E^t by including one constraint from each TS_{ei.} 1≤i≤n

- note that for each constraint c in S_E^t , E(c) = true

Step 3: Construct S_E^t by selecting one element from each TS_{ei}

$$S_{E}^{t} = \{(t,t,t,f), (t,f,f,t)\}$$

There are four possible S_E^t

- Note that Mathur picked the last elements

For each constraint x in S_E^t we get E(x) = true

S_E^t is minimal

Step 4. Let e_i denote the term obtained by complementing the jth literal in term e_i, for 1≤i≤ n and 1≤j≤l_i

- count the literals in a term from left to right, leftmost first

Step 4: For each term in E, obtain terms by complementing each literal, one at a time.

- e_1 = abc and e_2 = a!bd

$$e_1^1 = !abc$$
 $e_1^2 = a!bc$ $e_1^3 = ab!c$

$$e_2^1 = !a!bd$$
 $e_2^2 = abd$ $e_2^3 = a!b!d$

MI-CSET Step 4 (cont). Construct F_{eij} as the set of constraints that make e_i^j true

From each term e above, derive constraints F_e that make e true

Step 5. Let
$$FS_{eij} = F_{eij} - \bigcup_{k=1}^{n} T_{ek}$$

- for any constraint c in FS_{eii} , E(c) = false

Step 5: Construct FS_e by removing from F_e any constraint that appeared in any of the two sets T_e constructed earlier

- constraints common with T_{e1} and T_{e2} are removed
- $T_{e1} = \{(\underline{t,t,t,t}), (t,t,t,f)\}$
- $T_{e2} = \{(t,f,t,t), (t,f,f,t)\}$

$$FSe_{1}^{1} = Fe_{1}^{1} = \{(f,t,t,t), (f,t,t,f)\}$$

$$FSe_{1}^{2} = \{(t,f,t,f)\} \qquad \{(t,f,t,t), (t,f,t,f)\}$$

$$FSe_{1}^{3} = Fe_{1}^{3} = \{(t,t,f,t), (t,t,f,f)\}$$

$$FSe_{2}^{1} = Fe_{2}^{1} = \{(f,f,t,t), (f,f,f,t)\}$$

$$FSe_{2}^{2} = \{(t,t,f,t)\} \qquad \{(t,t,t,t), (t,t,f,t)\}$$

$$FSe_{2}^{3} = Fe_{2}^{3} = \{(t,f,t,f), (t,f,f,f)\}$$

Step 6. Construct S_E^f that is minimal and covers each FS_{eij} at least once

Step 6: Construct S_E^f by selecting one constraint from each FS_e

$$S_{E}^{f} = \{(f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)\}$$

Step 7. Construct the desired constraint set for E as $S_E = S_E^{\ t} \cup S_E^{\ f}$

Step 7: Now construct $S_E = S_E^t \cup S_E^f$

 $S_E = \{(t,t,t,f), (t,f,f,t), (f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)\}$

Each constraint in S_E^t makes E true

Each constraint in S_E makes E false

The BOR-MI-CSET Procedure

Takes a nonsingular expression E as input

Generates a constraint set that guarantees the detection of Boolean operator faults in the implementation of E

$BOR ext{-}MI ext{-}CSET$

Step 1. Partition E into a set of n mutually singular components $E = \{E_1, E_2, ... E_n\}$

Step 2. Generate the BOR-constraint set for each singular component in E using the BOR-CSET procedure

Step 3. Generate the MI-constraint set for each nonsingular component in E using the MI-CSET procedure

Step 4. Combine the constraints generated in steps 2 and 3 using Step 2 from the BOR-CSET procedure to obtain the constraint set for E

Mathur, Example 4.18

Consider a nonsingular Boolean expression E = a(bc + !bd)

Step 1. Partition E into a set of n mutually singular components $E = \{E_1, E_2, ... E_n\}$

Mutually singular components of E

$$e_1 = a$$

$$e_2 = bc + !bd$$

Step 2. Generate the BOR-constraint set for each singular component in E using the BOR-CSET procedure

Use the BOR-CSET procedure to generate the constraint set for the singular component e1 = a

For component $e_1 = a$ we get

$$S_{e1}^{t} = \{t\}$$
 $S_{e1}^{f} = \{f\}$

S_{e1}^t is the true constraint set for e₁ S_{e1}^f is the false constraint set for e₁ Step 3. Generate the MI-constraint set for each nonsingular component in E using the MI-CSET procedure

Use the MI-CSET procedure for the DNF nonsingular component e_2 = bc + !bd

 e_2 can be written as e_2 = u + v where u = bc and v = !bd

Apply the MI-CSET procedure to obtain the BOR constraint set for e₂

$$T_u = \{(t,t,t), (t,t,f)\}$$
 $T_v = \{(f,t,t), (f,f,t)\}$

- note that the tuples are (b,c,d) by position

MI-CSET Step 2. Let
$$TS_{ei} = T_{ei} - \bigcup_{j=1, i \neq j} T_{ei}$$

$$TS_u = T_u = \{(t,t,t), (t,t,f)\}$$
 $TS_v = T_v = \{(f,t,t), (f,f,t)\}$

MI-CSET Step 3. Construct S_E^t by including one constraint from each TS_e

$$S_{e2}^{t} = \{(t,t,f), (f,t,t)\}$$

MI-CSET Step 4. Let e_i^j denote the term obtained by complementing the j^{th} literal in term e_i , for $1 \le i \le n$ and $1 \le j \le l_i$ - u = bc and v = !bd

$$u_1 = !bc$$
 $u_2 = b!c$
 $v_1 = bd$ $v_2 = !b!d$

MI-CSET Step 4 (cont). Construct F_{eij} as the set of constraints that make e_i^j true

-
$$u_1 = !bc$$
 $u_2 = b!c$
- $v_1 = bd$ $v_2 = !b!d$

$$F_{u1} = \{(f,t,t), (f,t,f)\} \qquad F_{u2} = \{(t,f,t), (t,f,f)\}$$

$$F_{v1} = \{(t,t,t), (t,f,t)\} \qquad F_{v2} = \{(f,t,f), (f,f,f)\}$$

MI-CSET Step 5. Let
$$FS_{eij} = F_{eij} - \bigcup_{k=1}^{n} T_{e}$$

- $T_{u} = \{(\underline{t},\underline{t},\underline{t}), (t,t,f)\} T_{v} = \{(\underline{f},\underline{t},\underline{t}), (f,f,t)\}$

$$FS_{u1} = \{(f,t,f)\}\$$
 $FS_{u2} = \{(t,f,t), (t,f,f)\}\$ $FS_{v1} = \{(t,f,t)\}\$ $FS_{v2} = \{(f,t,f), (f,f,f)\}\$

MI-CSET Step 6. Construct S_{E}^{f} that is minimal and covers each FS_{eii} at least once

-
$$FS_{u1} = \{(\underline{f}, \underline{t}, \underline{f})\}$$
 $FS_{u2} = \{(\underline{t}, \underline{f}, \underline{t}), (\underline{t}, \underline{f}, \underline{f})\}$

-
$$FS_{v1} = \{(\underline{t}, \underline{f}, \underline{t})\}$$
 $FS_{v2} = \{(\underline{f}, \underline{t}, \underline{f}), (f, f, f)\}$

$$S_{e2}^{f} = \{(f,t,f), (t,f,t)\}$$

MI-CSET Step 7. Construct the desired constraint set for E as $S_E = S_E^t \cup S_E^f$

-
$$S_{e2}^{t} = \{(t,t,f), (f,t,t)\}$$

$$S_{e2} = \{(t,t,f), (f,t,t), (f,t,f), (t,f,t)\}$$

Recap

From Step 2 of BOR-MI-CSET, for component $e_1 = a$

$$S_{e1}^{t} = \{t\}$$

$$S_{e1}^{f} = \{f\}$$

From Step 3 of BOR-MI-CSET, for component $e_2 = bc + !bd$

$$S_{e2}^{t} = \{(t,t,f), (f,t,t)\}$$

$$S_{e2}^{t} = \{(t,t,f), (f,t,t)\}$$
 $S_{e2}^{f} = \{(f,t,f), (t,f,t)\}$

Step 4. Combine the constraints generated in steps 2 and 3 using Step 2 from the BOR-CSET procedure to obtain the constraint set for E

AND Node

$$\begin{split} S_{N3}^{t} &= S_{N1}^{t} \otimes S_{N2}^{t} \\ &= \{(t)\} \otimes \{(t,t,f),\, (f,t,t)\} \\ &= \{(t,t,t,f),\, (t,f,t,t)\} \end{split}$$

$$S_{N3}^{f} &= (S_{N1}^{f} \times \{t_{2}\}) \\ &\cup (\{t_{1}\} \times S_{N2}^{f}) \\ &= (\{(f)\} \times \{(t,t,f)\},\, (t,f,t)\}) \\ &= \{(f,t,t,f),\, (t,f,t,f)\} \end{split}$$

$$N3 \\ \{(t,t,t,f),\, (t,f,t,f),\, (t,f,t,f),\, (t,f,t,f)\} \\ V_{N2} \\ &= \{(f,t,t,f),\, (t,f,t,f),\, (t,f,t,f)\} \end{split}$$

$$N3 \\ \{(t,t,t,f),\, (t,f,t,f),\, (t,f,t,f)\} \\ V_{N2} \\ &= \{(f,t,t,f),\, (t,f,t,f),\, (t,f,t,f)\} \end{split}$$

Another BOR-MI Example

Use the BOR-MI-CSET procedure to derive the constraint set for the following predicate

 p_r : a + b + cd + !ce

where a,b,c,d,e are Boolean variables.

BOR-MI-CSET 1

Consider the nonsingular Boolean expression E = a + b + cd + !ce

Step 1. Partition E into a set of n mutually singular components $E = \{E_1, E_2, ... E_n\}$

Mutually singular components of E

$$e_1 = a + b$$

$$e_2 = cd + !ce$$

AST for a + b + cd + !ce

BOR-CSET Step 1 Label Leaf Nodes

$$S_{N1}^{t} = S_{N2}^{t} = \{(t)\}$$

$$S_{N1}^{f} = S_{N2}^{f} = \{(f)\}$$

BOR-CSET Step 2.1 for N3

N3 is an OR-node for f(a,b).

BOR-MI-CSET 2

Step 2. Generate the BOR-constraint set for each singular component in E using the BOR-CSET procedure

Use the BOR-CSET procedure to generate the constraint set for the singular component $e_1 = a + b$

For component $e_1 = a + b$ we get

$$S_{e1}^{t} = \{(t,f), (f,t)\}$$
 $S_{e1}^{f} = \{(f,f)\}$

S_{e1}^t is the true constraint set for e₁ S_{e1}^f is the false constraint set for e₁

BOR-MI-CSET 3

Step 3. Generate the MI-constraint set for each nonsingular component in E using the MI-CSET procedure

Use the MI-CSET procedure for the DNF nonsingular component $e_2 = cd + !ce$

 e_2 can be written as e_2 = u + v where u = cd, v = !ce

Apply the MI-CSET procedure to obtain the BOR constraint set for e₂

$$T_u = \{(t,t,t), (t,t,f)\}$$
 $T_v = \{(f,t,t), (f,f,t)\}$ - note that the tuples are (c,d,e) positionally

MI-CSET Step 2. Let
$$TS_{ei} = T_{ei} - \bigcup_{j=1,i\neq j}^{n} T_{ej}$$

- $T_{u} = \{(t,t,t), (t,t,f)\}$
- $T_{v} = \{(f,t,t), (f,f,t)\}$

There are no duplicate Ts.

$$TS_u = T_u = \{(t,t,t), (t,t,f)\}$$

$$TS_v = T_v = \{(f,t,t), (f,f,t)\}$$

MI-CSET Step 3. Construct S_E^t by including one constraint from each TS_e

- $TS_u = \{(t,t,t), (t,t,f)\}$
- $TS_v = \{(f,t,t), (f,f,t)\}$

$$S_{e2}^{t} = \{(t,t,t), (f,t,t)\}$$

MI-CSET Step 4. Let e_i denote the term obtained by complementing the jth literal in term e_i, for 1≤i≤ n and 1≤j≤l_i

$$- u = cd, v = !ce$$

$$u_1 = !cd$$
 $u_2 = c!d$
 $v_1 = ce$ $v_2 = !c!e$

Construct F_{eii} as the set of constraints that make e_i false

$$F_{u1} = \{(f,t,t), (f,t,f)\} \quad F_{u2} = \{(t,f,t), (t,f,f)\}$$

$$F_{v1} = \{(t,t,t), (t,f,t)\} \quad F_{v2} = \{(f,t,f), (f,f,f)\}$$

MI-CSET Step 5. Let
$$FS_{eij} = F_{eij} - \bigcup_{k=1}^{n} T_{e}$$

- $T_{u} = \{(t,t,t), (t,t,f)\}$
- $T_{v} = \{(f,t,t), (f,f,t)\}$

Eliminate candidate Fs that are really true.

$$FS_{u1} = \{ \frac{(f,t,t)}{(f,t,f)} \} \qquad FS_{u2} = \{ (t,f,t), (t,f,f) \}$$

$$FS_{v1} = \{ \frac{(t,t,t)}{(t,f,t)} \} \qquad FS_{v2} = \{ (f,t,f), (f,f,f) \}$$

MI-CSET Step 6. Construct S_{E}^{f} that is minimal and covers each FS_{eii} at least once

-
$$FS_{u1} = \{(f,t,f)\}$$

-
$$FS_{v1} = \{(t,f,t)\}$$

$$FS_{u2} = \{(t,f,t), (t,f,f)\}$$

-
$$FS_{v1} = \{(t,f,t)\}\$$
 $FS_{v2} = \{(f,t,f), (f,f,f)\}$

$$S_{e2}^{f} = \{(f,t,f), (t,f,t)\}$$

MI-CSET Step 7. Construct the desired constraint set for E as $S_E = S_E^{\ t} \cup S_E^{\ f}$

- $S_{e2}^{t} = \{(t,t,t), (f,t,t)\}$
- $S_{e2}^{f} = \{(f,t,f), (t,f,t)\}$

$$S_{e2} = \{(t,t,t), (f,t,t), (f,t,f), (t,f,t)\}$$

BOR-CSET and MI-CSET

Recap

From Step 2 of BOR-MI-CSET, for component $e_1 = a + b$

$$S_{e1}^{t} = S_{N3}^{t} = \{(t,f), (f,t)\}$$
 $S_{e1}^{f} = S_{N3}^{f} = \{(f,f)\}$

From Step 3 of BOR-MI-CSET, for component $e_2 = cd + !ce$

$$S_{e2}^{t} = \{(t,t,t), (f,t,t)\}$$

$$S_{e2}^{f} = \{(f,t,f), (t,f,t)\}$$

BOR-CSET Step 2.1 for N4

N4 is an OR-node for f(a,b,c,d).

$$S_{N4}^{t} = (S_{N3}^{t} \times \{f_{e2}\}) \cup (\{f_{N3}\} \times S_{e2}^{t})$$

$$= (\{(t,f), (f,t)\} \times \{(f,t,f)\}) \cup (\{(f,f)\} \times \{(t,t,t), (f,t,t)\})$$

$$= \{(t,f,f,t,f), (f,t,f,t,f)\} \cup \{(f,f,t,t,t), (f,f,f,t,t)\}$$

$$= \{(t,f,f,t,f), (f,t,f,t,f), (f,f,t,t,t), (f,f,f,t,t)\}$$

$$S_{N4}^{f} = S_{N3}^{f} \otimes S_{e2}^{f}$$

$$= \{(f,f)\} \otimes \{(f,t,f), (t,f,t)\}$$

$$= \{(f,f,f,t,f), (f,f,f,f,f,t)\}$$

$$S_{N4} = \{(t,f,f,t,f), (f,f,f,f,f,t,f,t)\}$$

$$N3$$

$$e_{1}$$

$$(f,f,f,t,t), (f,f,f,t,f), (f,f,t,f,t,t), (f,f,t,t,t,t)$$

$$N1$$

$$a$$

$$N2$$

Test Set for BOR-MI

```
S_{N3} = \{(t,f,f,t,f), (f,t,f,t,f), (f,f,t,t,t), (f,f,f,t,t), (f,f,f,t,f), (f,f,t,f,t)\}
```

```
T<sub>BOR-MI</sub> = {t<sub>1</sub>: <a=true, b=false, c=false, d=true, e=false>, t<sub>2</sub>: <a=false, b=true, c=false, d=true, e=false>, t<sub>3</sub>: <a=false, b=false, c=true, d=true, e=true>, t<sub>4</sub>: <a=false, b=false, c=false, d=true, e=false>, t<sub>5</sub>: <a=false, b=false, c=false, d=true, e=false>, t<sub>6</sub>: <a=false, b=false, c=true, d=false, e=true>}
```

Faulty Test Sets

$MI \ vs \ BOR ext{-}MI$

Note that Example 4.17 and Example 4.18 both have the nonsingular predicate: a(bc + !bd)

Example 4.17 illustrates using the MI-CSET procedure.

- MI procedure requires that p_r be in DNF
- a(bc+!bd) = abc + a!bd
- result: $S_E = \{(t,t,t,t), (t,f,f,f), (f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)\}$

Example 4.18 illustrates using the BOR-MI-CSET procedure.

- mutually singular components of E are e_1 = a and e_2 = bc + !bd
- result: $S_{N3} = \{(t,t,t,f), (t,f,t,t), (f,t,t,f), (t,f,t,f), (t,t,f,t)\}$

MI-CSET generates six test cases BOR-MI-CSET generates five test cases

Combining Test Techniques

Equivalence partitioning and boundary value analysis are the most commonly used methods for test generation while doing functional testing.

Given a function f to be tested in an application, apply these techniques to generate tests for f.

Most requirements contain conditions under which functions are to be executed.

• Predicate testing generates tests to ensure that each condition is tested adequately.

To combine equivalence partitioning, boundary value analysis, and predicate testing procedures to generate tests for a requirement of the following type:

if condition then action 1, action 2, ... action n;

For the condition – apply predicate testing.

For actions – apply equivalence partitioning, boundary value analysis (and predicate testing if there are nested conditions).

Summary – Things to Remember

Singular, mutually singular, DNF

BOR (n+2) and BRO (2n+3) test generation

singular predicates

MI test generation

nonsingular DNF predicates

BOR-MI test generation

smaller test sets, more powerful than MI

Questions and Answers

