Introduction to Communications and IOT

Praanesh Balakrishnan Nair

February 4, 2025

Contents

T	Intr	roduction	1
	1.1	What a Signal is	1
	1.2	Types of Communication	2
		1.2.1 Wired / Wireless	2
		1.2.2 Unidirectional / Bidirectional	2
		1.2.3 Analogue / Digital	2
		1.2.4 Transmission Technique	2
2	Cha	aracteristics of a Signal	3
	2.1	Standard Notation of a Standard Sinusoidal Signal	3
	2.2	Angular Frequency	3
	2.3	Frequency	3
	2.4	Phase	3
3	Tin	ne Domain vs Frequency Domain	3
4	Odo	d Signals vs Even Signals	3
5	Ene	ergy and Power of a Signal	5
	5.1	Prerequisite knowledge	5
	5.2	Energy	5
	5.3	Power	6
6	Cor	mplex Sinusoids	6
7	San	npling	6
•	7.1	What it is	6
	7.2	Sampling Theorem or Nyquist Theorem	7
_	_		
1	In	ntroduction	
1.	1 V	What a Signal is	
	• It	s's a Quantitative Representation of Information	
	• T	The most basic representation of a signal is in the form of a graph (t on X-axis and $f(t)$ on Y-axis	;)
			,

1.2 Types of Communication

1.2.1 Wired / Wireless

- 1. Wired:
 - Via Coaxial cables or Fibre-Optic Cables
- 2. Wireless:
 - Via Electromagnetic waves or rays

1.2.2 Unidirectional / Bidirectional

- 1. Simplex:
 - One-way
 - Eg. Broadcast, FM
- 2. Half-Duplex:
 - Two-way, but only one direction at a time
 - Eg. walkie-talkie
- 3. Duplex:
 - Two-way, and both directions are simultaneously possible

1.2.3 Analogue / Digital

- 1. Analog:
 - Both t and f(t) are continuous
- 2. Digital:
 - Both t and f(t) are discrete
- 3. Continuous-Time:
 - t is continuous, but f(t) is discrete
- 4. Discrete-Time:
 - t is discrete and f(t) is continuous

1.2.4 Transmission Technique

Before knowing this, you must know what bandwidth is:

Bandwidth:

- Range of frequencies a signal operates.
- In other words:

Bandwidth = (Highest Frequency of the Wave/Signal) - (Lowest Frequency of the Wave/Signal)

• Fast, irregular variations in frequency \propto Bandwidth

1. Baseband:

- Digital Signals which are sent via TDM (Time Division Multiplexing)
- One signal uses the entire bandwidth

2. Broadband:

• (I'll add this later)

2 Characteristics of a Signal

2.1 Standard Notation of a Standard Sinusoidal Signal

- For a graph where X-axis = θ and Y-axis = $sin(\theta)$, the measure of input is θ .
- To actually measure a signal against time, X-axis = t (time) and Y-axis = $sin(\theta)$
- Here's what we do for that: $sin(\theta + \phi) = sin(\omega t + \phi)$

2.2 Angular Frequency

- $\omega = \text{Angular Frequency/Velocity}$
- $\bullet = \frac{Angle}{Time}$
- $\bullet = \frac{2\pi}{T}$

2.3 Frequency

- $f = \frac{1}{T}$
- So, $\omega = \frac{2\pi}{T}$ can also be written as $\omega = 2\pi f$

2.4 Phase

- θ or ωt is the X-coordinate.
- Phase ϕ is added to the X-coordinate, so the wave shifts to the left by ϕ
- In a way, it's an offset to a wave. (Check https://www.geogebra.org/m/rzzqtx6q for some Visualization)
- For example, if a sine wave is offset by $\frac{1}{6}th$ of a cycle, then the phase would be $\frac{1}{6}*360^0 \Rightarrow \text{Phase} = 60^0$

3 Time Domain vs Frequency Domain

In both cases, Y-Axis = Amplitude. Only X-Axis changes

4 Odd Signals vs Even Signals

- Odd Signals/Functions: y(-x) = y(x)
- Even Signals/Functions: y(-x) = -y(x)

Figure 1: Time Domain

Figure 2: Frequency Domain

5 Energy and Power of a Signal

5.1 Prerequisite knowledge

- Let's assume we have a sinusoidal voltage and current
- $P = \frac{V^2}{R} = I^2 R$
- This means that the power of a signal is some **constant** times **voltage squared** or **current squared**
- Let us have a general signal x(t) which can either be sinusoidal voltage or sinusoidal current

$$x(t) = V$$
 or $x(t) = I$

• So Instantaneous Power = $P = (x(t))^2$

Figure 3: Green Curve showing V or I and the Red Curve showing P

5.2 Energy

- Energy = Power * time
- But the above formula is only applicable for discrete values.
- So the energy of a signal would be the area of the Power-Time Graph

Figure 4: Area under the Red Curve

Energy =
$$\int Pdt = \int_{\frac{-T}{2}}^{\frac{T}{2}} (x(t))^2 dt$$

• The limits are actually from 0 to T, but having them from $\frac{-T}{2}$ to $\frac{T}{2}$ simplifies calculations.

5.3 Power

- Power is just $\frac{\text{Energy}}{\text{Time}}$.
- Power = $\frac{\int_{-T}^{\frac{T}{2}} (x(t))^2 dt}{T}$

6 Complex Sinusoids

- In phase: Two signals are said to be in phase if they have phase difference 0
- Quadrature: Two signals are said to be in quadrature if they have a phase difference 0
- A complex sinusoid is given as $cos(\theta) + jsin(\theta)$
- $cos(\theta)$ is the real component plotted on
- Now $cos(\theta)$ is taken to be on the Inphase-Time plane, and $sin(\theta)$ is taken to be on the Quadrature-Time plane
- This results in a helical structure.
- Number of rotations about the time axis, per unit time, is the frequency of the complex sinusoid.
- Anti-Clockwise rotation means Positive frequency, so clockwise rotation means negative frequency

7 Sampling

7.1 What it is

- Converting a continuous time signal into a discrete time signal by taking samples of the signals at discrete time intervals
- Say we have a continuous sinusoidal signal:

$$s(t) = A\cos(2\pi Ft + \phi)$$

• In its discrete form, instead of a parameter t, you'd have parameters n and T_s :

$$s[n] = A\cos(2\pi F n T_s + \phi)$$

or

$$s[n] = Acos(2\pi F \frac{n}{F_s} + \phi)$$

Here, $T_s = \text{Sampling Time Period and } F_s = \text{Sampling Frequency}$

7.2 Sampling Theorem or Nyquist Theorem

- F_s is the number of samples taken per second i.e. the **sampling rate**. Likewise, T_s is the time taken to record one sample
- If F_s is too less, you won't be able to capture the wave correctly. You'll end up over-simplifying the wave.
- This is called **aliasing**, and it's where high-frequency components appear as low-frequency components because of insufficient sampling rate.
- Nyquist Theorem states that:

$$F_s \geq B$$

where B is the highest bandwidth present in the signal