Ex3

a) Estimates of the coefficients

10/10

 $\beta 0 = 9.186768$ $\beta 1 = 0.099302$ $\beta 2 = 0.072583$

 $\beta 3 = -0.008890$

 $\sigma = 0.9350057$

b) Plot of the residuals

p-value of shapiro test on residuals: 0.6654

Homoscedasticity and normality of the residuals verified (normality needed in order to do inference on the model)

c) The test is H0: $(\beta 1, \beta 2) == (0, 0)$ vs H1: $(\beta 1, \beta 2) != (0, 0)$ p-value is essentially zero, we reject the null hypothesis: loudness and energy can NOT be BOTH discarded from the model

d) We perform the test H0: $\beta 2 == 0$ vs H1: $\beta 2 != 0$ p-value is 0.0731, we accept the null hypothesis: we erase from our model the dependency on energy

```
New estimate for the coefficients
```

```
\beta 0 = 9.182772
\beta 1 = 0.170266
```

 β 2 = 0 (since we removed it from the new model)

 $\beta 3 = -0.008962$ $\sigma = 0.9376268$

e) MODEL: danceability_ij = β 0 + β 1*loudness_ij + β 2*energy_ij + β 3*tempo_ij + b_i + eps_ij eps_ij ~ N(0, sigma2_eps) b_i ~ N(0, sigma2_b)

After fitting the model, and estimate the two variances sigma2_eps and sigma2_b, we compute PVRE=0.1046363

f) Dotplot:

genre

Since the fixed effects are the same for each group, the genre associated to the highest danceability is R&B because it has an higher value of random effect on the intercept