Raciocínio Probabilistico

Métodos de Computação Inteligente 2006.1

Motivação

Agentes precisam lidar com incertezas

- Ambientes
 - Não determinísticos
 - Parcialmente observáveis

Exemplo: Wumpus

Breeze(2,1) ∧ Breeze(1,2) ⇒
((Pit(3,1) ∧ Pit(2,2) ∧ Pit(1,3))
∨ (Pit(3,1) ∧ Pit(2,2))
∨ (Pit(2,2) ∧ Pit(1,3))
∨ (Pit(3,1) ∧ Pit(1,3))
∨ (Pit(2,2))

Limitações da lógica para representar conhecimento incerto

- Engajamento epistemológico: crença sobre fato do mundo representado como fórmula lógica
 - certamente verdadeira
 - certamente falsa
 - totalmente desconhecida
 - Incertezas representáveis apenas através da disjunção
 - É muito custoso modelar todos os casos possíveis.
 - Crenças iguais sobre todas as alternativas de uma disjunção.

Representando conhecimento incerto com Teoria da Probabilidade

- Variável Aleatória (Random Variable)
 - Um aspecto do mundo cujo "status" é desconhecido.
 - Variável assume valores dentro de um domínio.
 - Ex.:

 - domínio de Pit: <true, false>domínio de Weather: <sunny, rainy, cloudy>
- Evento atômico
 - Especificação do valor de todas as variáveis

Representando conhecimento incerto com Teoria da Probabilidade

Probabilidades

- Expressam o grau de confiança do agente sobre aspectos do mundo.
 - ◆ 1 representa a certeza absoluta da verdade
 - 0 a certeza absoluta da falsidade
 - ◆ Valores entre 0 e 1 representam a confiança do agente
- Ex.:
 - ◆ P(Weather = sunny) = 0.7
- P(Pit = true) ≠ 0.1
 P(Pit = false) ≠ 0.9
 Igualmente:
- - ◆ P(sunny) = 0.7
 - ♦ P(pit) = 0.1
 - ♦ $P(\neg pit) = 0.9$

Distribuições de probabilidades

- Associam uma probabilidade a cada possível valoração de uma variável
 - Ex.:
 - domínio de Pit: <true, false>
 - P(Pit) = < 0.1, 0.9 >
 - domínio de Weather: <sunny, rainy, cloudy>
 - **P**(Weather) = (0.7)0.1, 0.2>

Distribuição Conjunta de Probabilidades

- Define as probabilidades de todos os eventos atômicos possíveis.
 - Ex.: Domínio do dentista.

	dor de dente toothache		¬toothache	
	Boticão catch	¬catch	catch	¬catch
cárie cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

Aprendizado de máquina - observações do ambiente

Probabilidades a priori e a posteriori

- A priori (incondicional)
 - Antes de se obter evidências.
- A posteriori (condicional)
 - Expressa o grau de confiança após alguma evidência ter sido obtida.
- **◆**Ex.:
 - P(pit) = 0.1
 - $P(pit | \neg breeze) = 0.05$

Probabilidade condicional e regra do produto

- Podemos definir uma probabilidade condicional em termos de probabilidades incondicionais.
 - $P(a \mid b) = P(a \land b) / P(b)$
- Regra do produto:
 - $P(a \land b) = P(a \mid b) P(b)$
 - $P(a \land b) = P(b \mid a) P(a)$
 - Ou, genericamente:
 - P(X, Y) = P(X | Y) P(Y)
 Onde P(X=x_i | Y=y_i), ∀i,j

Regra de Bayes

- $P(a \land b) = P(a \mid b) P(b)$
- $P(a \land b) = P(b \mid a) P(a)$

Finalmente, a regra de Bayes

• P(b) | a) = P(a | b) P(b) / P(a)

Que generaliza para

- P(Y | X) = P(X | Y) P(Y) / P(X)
- Ou ainda, quando há evidência
- P(Y | X, e) = P(X | Y, e) P(Y | e) / P(X | e)

Marginalização

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

$$P(Y) = \Sigma_z P(Y, z)$$

P(carieIdorDeDente) = (0.108 + 0.012)/(0.108 + 0.012 + 0.016 + 0.064)

- Como calcular a probabilidade de uma proposição dada alguma evidência? Ex: P(Cavity|toothache)
 - Pela regra do produto:
 - ◆ P(cavity | toothache) = P(cavity ∧ toothache) / P(toothache)
 - ◆ P(¬cavity \underbrace toothache)=P(¬cavity \underbrace toothache) / P(toothache)
 - 1/P(toothache) é apenas uma constante de normalização (α), logo basta calcular P(Cavity, toothache) utilizando marginalização

Problemas da inferência por marginalização

Complexidade exponencial

- No espaço
 - ◆ Para n variáveis (booleanas), a distribuição de probabilidade conjunta possui 2ⁿ entradas
- No tempo
 - ◆ No pior caso, a marginalização precisa somar todos os elementos da tabela de distribuição conjunta

Independência entre variáveis

Independência absoluta

- Ocorre quando uma variável não influencia outra de modo algum.
- Ex.: P(Pit | Weather = rainy v Weather = cloudy) = P(Pit)

Independência condicional

- Ocorre quando uma variável influencia outra, mas não há relação causal entre elas.
- Dada a evidência sobre a real causa, não é mais necessário modelar tais influências indiretas.
- Exemplo a seguir.

Independência condicional

- **P**(Breeze(1,2) | Breeze(2,1))
- **P**(Breeze(1,2) | Breeze(2,1) ∧ Pit(2,2))
- **P**(Breeze(1,2) | Breeze(2,1) ∧ Pit(2,2)) = **P**(Breeze(1,2) | Pit(2,2))

Redução da complexidade da distribuição conjunta

Distribuição conjunta:

- P(Toothache, Catch, Cavity) = (regra do produto)
- P(Toothache, Catch | Cavity) P(Cavity) = (independência condicional)
- P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)
 - ◆ De 2³-1 valores necessários para 2+2+1
 - ◆ Reduz de O(2ⁿ) para O(n)
- De uma maneira geral (assumindo independência entre os efeitos, dada a causa)
 - ◆ P(Causa, Efeito₁, Efeito₂,...)=P(Causa) \prod_i P(Efeito_i|Causa)

Exemplo: Wumpus...

- P_{ij} variável booleana que indica se a posição (i,j) possui buraco
- B_{ij} variável booleana que indica se a posição (i,j) possui brisa (usaremos só B_{11} , B_{12} e B_{21})

Wumpus: Especificação da distribuição conjunta e inferência do melhor caminho

A DPC é dada por P(P₁₁, P₁₂, ..., P₄₄, B₁₁, B₁₂, B₂₁)

- Como $P(P_{ij}) = \langle 0.2, 0.8 \rangle$, e as probabilidades de $P(P_{ij})$ são independetes
 - $P(P_{11}, P_{12}, ..., P_{44}) = 0.2^{\text{nPits}} \times 0.8^{16-\text{nPits}}$
 - Sabe-se um algoritmo para calcular $P(B_{11}, B_{12}, B_{21} | P_{11}, P_{12}, ..., P_{44})$
 - Para toda variável P_{ij}, se P_{ij} = true
 - Para toda variável B, se B é adjacente a P_{ij} e B = false, retorne 0
 - Retorne 1
 - Com a DPC, a máquina de inferência pode responder a Ask(P(P₁₃ | KB)) por marginalização
 - $P(P_{13} \mid KB) = P(P_{31} \mid KB) = 31\%$
 - $P(P_{22} | KB) = 86\%$
 - O agente deve seguir por (1,3) ou (3,1)

Redes Bayesianas para representação de conhecimento incerto

- Variáveis são representadas por nós
- O grafo formado não possui ciclos
- Se há uma seta de A para B, então A (pai) possui uma influência direta sobre B

Redes bayesianas e tabela de probabilidades condicionais

Semântica das Redes bayesianas

- Representa a distribuição conjunta
 - $P(x_1, ..., x_n) = \Pi_{i=1|n} P(x_i|parents(X_i))$
 - Ex.
 - ◆P(j ∧ m ∧ a ∧ ¬b ∧ ¬e) =
 P(j|a) P(m|a) P(a|¬b ∧ ¬e) P(¬b) P(¬e) =
 0.00062
 - Complexidade O(n2k) contra O(2n) da tabela de distribuição conjunta, onde k é o número máximo de pais por nó
 - No exemplo do alarme, representa 10 valores contra 2⁵-1
 (31) da representação pela tabela de DPC

 $P(j|b) = P(j|a) P(a|b ^ \sim e) P(b)$

Propriedades das redes bayesianas

▶Um nó é condicionalmente independente de todos os outros nós da rede, dado seus pais, filhos e pais dos filhos (markov blanket)

Propriedades das redes bayesianas

Um nó é condicionalmente independente dos não-descendentes, dado seus pais

Ex. P(MaryCalls |
 JohnCalls, Alarm,
 Earthquake, Burglary) =
 P(MaryCalls | Alarm)

Redes Bayesianas para variáveis contínuas

Discretizar os valores das variáveis aleatórias

Especificar as funções de distribuição de probabilidade, com número pequeno de parâmetros (função linear gaussiana é a mais utilizada)

Inferência exata em redes bayesianas

- Como uma rede bayesiana representa a distribuição conjunta, o mesmo processo pode ser utilizado
- $P(B|j,m) = \alpha P(B,j,m) = \alpha \Sigma_t \Sigma_a P(B,e,a,j,m)$
 - Para B = true:
 - $P(b|j,m) = \alpha \Sigma_t \Sigma_a P(b)P(e)P(a|b,e)P(j|a)P(m|a)$
 - Porém, mais eficiente:
 - $P(b|j,m) = \alpha P(b)\Sigma_t P(e)\Sigma_a P(a|b,e)P(j|a)P(m|a)$

Árvore de expressões

$$P(b|j,m) = \alpha P(b)\Sigma_t P(e)\Sigma_a P(a|b,e)P(j|a)P(m|a)$$

Eliminação de variáveis

- Algoritmo para inferência exata
 - Processa a árvore de expressões bottom-up, armazenando os valores calculados
 - Observação:
 - ◆ Todas as variáveis que não são ancestrais da variável de consulta ou das evidências podem ser removidas da inferência
 - $\bullet P(J|I) = \alpha P(I) \Sigma_t P(t) \Sigma_a P(a|I,t) P(J|a) \Sigma_m P(m|a)$
 - Mas $\Sigma_m P(m|a)$ é 1 por definição, logo pode ser eliminado

Complexidade do algoritmo de eliminação de variáveis

- Se a rede é uma polytree (no máximo um caminho entre dois nós)
 - linear no número de nós da rede
- Em geral, tempo e espaço exponencial (#P-Hard)

Inferência aproximada em redes bayesianas

- Inferência exata é intratável para redes grandes e muito conectadas
- Inferência aproximada permite obter uma solução mais eficiente, porém aproximada
 - A complexidade em tempo é dada pela qualidade da solução
- Escapa da NP-Completude, mas qualidade da solução diminui
- Baseada nos algoritmos de Monte Carlo

Amostragem direta

Evento atômico: [true, false, true, true]

Amostra de P(WetGrass|Sprinkler = false, Rain = true) = true

Amostragem direta

- $\lim_{N\to\infty} [N_{\text{amostras}}(x_1,...,x_n)/N] = P(x_1,...,x_n)$
- Quanto mais amostras, mais consistente a aproximação da DPC
- Exemplo:
 - Se em 1000 amostras, 511 delas tem Rain = true,
 P(rain) = 0.511

Resumo dos métodos de inferência dos agentes probabilistas

Redução da complexidade da inferência (e da precisão) **RB Amostragem Direta** RB com Inferência Exata DPC e Marginalização RB com DPC **CPT**

Redução da complexidade na aquisição das probabilidades

Raciocínio Probabilistico Temporal

Redes Bayesianas Dinâmicas

Raciocínio Probabilistico Temporal Motivação

Agentes em ambientes incertos têm que manter-se atualizados sobre o estado do ambiente;

- Percepções parciais e/ou ruidosas;
- Incerteza sobre como o ambiente muda ao longo do tempo.

Raciocínio Probabilistico Temporal

Estados e Observações

O processo de mudança do ambiente pode ser visto como uma série de "fatias de tempo";

Cada instante contém um conjunto de variáveis randômicas, algumas observáveis, outras não;

Raciocínio Probabilistico Temporal Notação

- ♦ X_t → Variável de estado S no tempo t
 - Ex.: Chuva₁, Energia₅
- ◆E_t → Variável de evidência (observação) E no tempo t
 - Ex.: GramaMolhada₁, LâmpadaAcesa₉
- ◆ X_{a:b} → Conjunto de variáveis de estado ou evidência de X_a até X_b
 - Ex.: Chuva_{1:4} = Chuva₁, Chuva₂, Chuva₃, Chuva₄

Raciocínio Probabilistico Temporal

Algumas Definições Importantes

 Processo de mudança governado por leis que não mudam ao longo do tempo

Restrição sobre Observações

• $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$

Raciocínio Probabilistico Temporal

Algumas Definições Importantes

- Premissa de Markov (Markov Assumption)
 - Estado atual depende de um histórico finito de estados anteriores:
 - ♦ $\forall t$, $P(X_t|X_{0:t-1}) = P(X_t|X_{t-n:t-1})$, sendo $n \ge 1$
 - Processos de Markov ou Cadeias de Markov
 - Processo de Markov de 1ª ordem (n = 1)
 - $◆ ∀t, P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Raciocínio Probabilistico Temporal

Representação com Redes Bayesianas

Complete Joint Distribution (Processo de Markov de 1ª ordem)

$$P(X_0, X_1, ..., X_t, E_1, ..., E_t) = P(X_0) \prod P(X_i | X_{i-1}) P(E_i | X_i)$$
, para i de 1 a t

Serviços de Raciocínio Probabilístico Temporal

- Filtering / Monitoring
 - $P(X_t|e_{1:t})$
- Prediction
 - $P(X_{t+k}|e_{1:t})$, para algum k > 0
- Smoothing / Hindsight
 - $P(X_k|e_{1:t})$, para $0 \le k < t$
- Explicação Mais Provável
 - argmax_{X1:t}P(X_{1:t}|e_{1:t})

Filtering :: Métodos para Inferência Temporal

Estimativa por Recursão

$$P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t})) = f(e_{t+1}, f(e_t, P(X_{t-1}|e_{1:t-1})))...$$

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})$$

$$= \alpha P(e_{t+1}|X_{t+1}, e_{1:t})P(X_{t+1}|e_{1:t})$$
 [by Bayes Rule]

=
$$\alpha P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$
 [by previous assumtions]

=
$$\alpha P(e_{t+1}|X_{t+1})\sum_{xt}P(X_{t+1}|x_t, e_{1:t})P(x_t|e_{1:t})$$

$$= \alpha P(e_{t+1} | X_{t+1}) \Sigma_{xt} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$

Filtering :: Métodos para Inferência Temporal

$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{xt} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$
Sensor Model Transition Model

P(X_t|e_{1:t}) pode ser visto como uma "mensagem" f_{1:t} que é propagada atravez da seqüência, modificada a cada transição e atualizada a cada nova observação

$$P(X_t|e_{1:t}) = f_{1:t+1} = \alpha FORWARD(f_{1:t}, e_{t+1})$$

Quando as variáveis de estado são discretas, o tempo e memória gastos em cada atualização são constantes!!!

Prediction :: Métodos para Inferência Temporal

Predição pode ser encarado como Filtering sem a adição de uma nova observação:

$$P(X_{t+k+1}|e_{1:t}) = \sum_{x_{t+k}} P(X_{t+k+1}|X_{t+k}) P(X_{t+k}|e_{1:t})$$

- O que acontece se tentarmos prever cada vez mais longe?
 - A predição converge para um ponto fixo

Smoothing :: Métodos para Inferência Temporal

$$P(X_{k}|e_{1:t}) = P(X_{k}|e_{1:k}, e_{k+1:t})$$

$$= \alpha P(X_{k}|e_{1:k})P(e_{k+1:t}|X_{k}, e_{1:k})$$

$$= \alpha P(X_{k}|e_{1:k})P(e_{k+1:t}|X_{k})$$

$$= \alpha f_{1:k}b_{k+1:t}$$

A função BACKWARD é definida também analogamente:

$$b_{k+1:t} = BACKWARD(b_{k+2:t}, e_{k+1:t})$$

Tempo e Complexidade

- Tanto o FORWARD quanto o BACKWARD tem custo constante para um realizar um passo;
- Sendo assim, a complexidade de realizar Smoothing para uma fatia de tempo k com respeito à observação e_{1:t} é O(t);
- Logo, para toda a seqüência, temos 0(t²);
 - Para conseguir O(t) usa-se programação dinânica, evitando o cálculo repetido da mensagem propagada;
 - O algoritmo é chamado de FORWARD-BACKWARD

Sequência Mais Provável

- Tarefa consiste em achar a sequência de estados mais provável para uma combinação qualquer de variáveis de estado;
 - Ex.: Qual a sequência de estados Energia, dado que a sequência de observações LâmpadaAcesa é [true, true, false, true, true]?
- Uso do algoritmo de Smoothing para descobrir a distribuição posterior da variável Energia, a cada fatia de tempo;
- Em seguida, constrói-se a seqüência usando a cada passo o valor de Energia mais provável de acordo com a distribuição encontrada;

Sequência Mais Provável

- Cada sequência pode ser vista como um caminho em um grafo cujos nós são os estados possíveis a cada passo;
- \bigcirc Há uma relação recursiva entre os caminhos mais prováveis para cada estado x_{t+1} e os caminhos mais prováveis para cada estado x_t ;

Dynamic Bayesian Networks :: DBNs Definição

DBN é uma rede bayesiana que representa um modelo de probabilidades temporal.

Dynamic Bayesian Networks :: DBNs

Premissas Adotadas

- Ligações entre variáveis são replicadas em cada camada;
- A DBN representa um processo de Markov de 1^a ordem;

Exemplo :: O Caso do Robô

<u>Apêndice B – Falhas nas DBNs</u>

- Para um conjunto de observações, pode-se construir uma representação completa da DBN usando uma BN
 - Desdobramento da DBN até que a rede fique grande o suficiente para acomodar as observações
- Uma vez desdobrada, pode-se usar qualquer algoritmo de inferência em redes bayesianas
- Entretanto...

A aplicação de tais algoritmos não é eficiente!!!

- Filtering ou smoothing em uma seqüência longa de observações e_{1:t}
 - Espaco: O(t) crescendo sem limites à medida em que mais observações fossem adicionadas;
 - Tempo de inferência por atualização: crescente em O(t)

- Voltando um pouco...
 - Usando recursão conseguimos tempo e espaço constantes na atualização do filtering
- Usando o algoritmo VARIABLE-ELIMINATION com as variáveis na ordem temporal é o mesmo que o filtering recursivo
- OK! Agora as más notícias...

Descobriu-se que o tempo e espaço
"constantes" por atualização, na maioria dos
casos, é exponencial de acordo com o número
de variáveis de estado;

Apesar dos custos serem menores que as atualizações dos HMM, eles ainda são inviáveis para grandes quantidades de variáveis;

- Podemos usar DBNs para representar processos temporais muito complexos com várias variáveis esparçamente conectadas, mas <u>não podemos</u> <u>raciocinar de maneira eficiente e exata</u> sobre tais processos;
- Atualmente não há solução para este problema, embora muitas áreas da ciência e engenharia seriam beneficiadas enormemente por isso;
- Então...

Adaptação de Algoritmos de Inferência em BNs

- Algoritmo de aproximação que melhor se adapta ao contexto das DBNs:
 - Likelihood Weightening
- Entretanto, várias melhorias são necessárias;
- Voltando um pouco...

Likelihood Weightening Puro :: Problemas

- Gera samples dos nós de estado da rede em ordem topológica, dando pesos a cada sample de acordo com a probabilidade de ocorrência, dadas as variáveis de evidência observadas
- Aplicar Likelihood Weightening diretamente na DBN desdobrada apresentaria os mesmos problemas de tempo e espaço.

Likelihood Weightening:: Adaptação

Principal problema:

- Cada sample é rodado por toda a rede, em turnos;
- Samples são rodados em série;

Proposta:

- O conjunto inteiro de samples roda, uma camada por vez, por toda a rede;
- Samples são rodados em paralelo;

Likelihood Weightening Puro :: Adaptação

- O algoritmo modificado pode ser visto como um algoritmo de Filtering:
 - conjunto de N samples corresponde à mensagem propagada (forward message)
- Inovações-chave do algoritmo:
 - 1. Usa os próprios samples como uma representação aproximada da distribuição atual
 - 2. Foca o conjunto de samples nas regiões de altaprobabilidade do espaço de estados

Particle Filtering :: Funcionamento

```
function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time
    step
    inputs: e, the new incoming evidence
            N, the number of samples to be maintained
            dbn, a DBN with prior P(X_0), transition model P(X_1|X_0), and sensor model
          P(E_1|X_1)
    static: S, a vector of samples of size N, initially generated from P(X_0)
    local variables: W, a vector of weights of size N
    for each time step t do
          for i = 1 to N do
                     S[i] \leftarrow \text{ sample from } P(X_1|X_0 = S[i])
                     W[i] \leftarrow P(e|X_1 = S[i])
           S \leftarrow Weighted-Sample-With-Replacement(N, S, W)
    return S
```


Particle Filtering:: Funcionamento

Diagrama de Classes UML/OCL

Diagrama de Atividades UML

Particle Filtering :: Exemplo de um ciclo de atualização

$$N = 10$$

 $e_{t+1} = \neg L \hat{a} mpada A cesa$

O conjunto de samples vem de um ciclo prévio de atualização, ou, no caso de t=0, é gerado de acordo com a Prior Distribution.

$$S \leftarrow VS[ijKTEDS] MARTHER MATHER MATH$$

Inferência Aproximada nas DBNs Particle Filtering

- Pode-se mostrar que o algoritmo é consistente:
 - Fornece as probabilidades corretas à medida em que N tende a infinito;
- Entretanto, embora o algoritmo pareça manter uma boa aproximação da realidade com um número constante de samples, não há garantias teóricas disso.

Particle Filtering :: Futuro e Aplicações

- Particle Filtering é atualmente uma área de estudos intensivos;
- Por ser um algoritmo de sampling, pode ser usado facilmente com DBNs hibridas e contínuas;
- Tal característica, permite sua aplicação em áreas como:
 - Padrões de movimentação complexos em video (Motion Tracking);
 - Previsão do mercado financeiro;
 - Reconhecimento de Voz

Raciocínio Probabilistico

Métodos de Computação Inteligente 2006.1

Ricardo Scholz e Vitor Dantas <reps, vcd>@cin.ufpe.br

Apêncice A

Modelos de Markov Escondidos e Kalman Filters

Modelos de Markov Escondidos

Hidden Markov Models :: HMM

- É um modelo probabilistico temporal onde o estado do processo é descrito por uma única variável randômica discreta;
- Os valores possíveis da variável são os estados possíveis do mundo;
- Variáveis de estado podem ser adicionadas ao modelo temporal mantendo-se o framework da HMM:
 - Todas as variáveis de estado devem ser combinadas em uma "megavariável" cujos valores são todas as possíveis tuplas de valores das variáveis de estado individuais;

Modelos de Markov Escondidos

Desvantagens

- Algoritmos são baseados em matrizes
 - Estrutura restrita permite uma implementação muito simples e elegante de todos os algoritmos básicos;
- Maior restrição dos algoritmos:
 - Requerem que a matriz de transição seja inversível;
 - Que modelo de sensores n\u00e3o tenham zeros:
 - ou seja, toda observação é possível em todos os estados;

Kalman Filters

- Motivação:
 - Estimar o estado de um sistema físico a partir de observações ruidosas ao longo do tempo;
- Problema pode ser formulado como inferência num modelo de probabilidade temporal:
 - o modelo de transição descreve a física do problema;
 - o modelo de sensores descreve o processo de medição;
- Representação algoritmos de inferência especiais para resolver estes problemas

Exemplo

- Tracking do vôo de um pássaro:
 - Variáveis de estado: S_t e V_t (posição e velocidade)
- Usando um modelo de transição gaussiano linear (para introduzir ruido), temos:
 - $P(S_{t+\Delta} = S_{t+\Delta} | S_t = S_t, V_t = V_t) = N(S_t + V_t \Delta, \sigma)(S_{t+\Delta})$

Aplicações e Análise

- Tracking de mísseis e aeronaves;
- Correntes oceânicas a partir de medições por satélite;
- Qualquer sistema caracterizado por variáveis de estado contínuas e medições ruidosas;
- Premissas são muito fortes
 - Modelos de transição e sensores gaussianos lineares;

Aplicações e Análise

- Há versões extendidas que permitem lidar melhor com não-linearidades
 - Extended Kalman Filters
 - Funciona bem para sistemas bem comportados
 - Permite atualizar a distribuição de estado gaussiana com uma aproximação razoável da verdadeira probabilidade posterior;
 - Switching Kalman Filters
 - Multiplos filtros de Kalman são executados simultaneamente, cada um utilizando um modelo diferente do sistema;

Apêncice B
Falhas Temporárias e Permanentes nas DBNs

Falhas nas DBNs

"Sensores de verdade falham..."

"...e eles não avisam que falharam!!!"

Falhas nas DBNs

- Fato: ruidos/falhas sempre acontecem nas medições;
- Tipos de falha:
 - Falha Temporária (Transient Failure)
 - Falha Persistente (Persistent Failure)
- Para um sistema lidar adequadamente com falhas de sensores, o modelo de sensores precisa incluir a possibilidade de falha!!!

Falhas Temporárias nas DBNs

Modelo de Erro Gaussiano

- Uso de <u>distribuição gaussiana</u> com variância pequena;
- Entretanto, a distribuição gaussiana é problemática:
 - Atribui probabilidades não nulas a valores negativos;
 - Para variáveis com limites restritos, a <u>distribuição</u> beta é mais apropriada.

Falhas Temporárias nas DBNs

Transient Failure Model

Solução: atribuição de probabilidades às falhas

$$P(BMeter_t = 0|Battery_t = 5) = 0.03$$

[Maior que a probabilidade dada pelo modelo de Erro Gaussiano]

Gaussian Error Model

Transient Failure Model

TFMs lidam com falhas sem causar danos catastróficos nas crenças.

Falhas Persistentes nas DBNs

Persistent Failure Model

- Descreve como o sensor se comporta sob condições normais e após falha;
- Para isso, precisamos:
 - Inserir uma variável adicional (BMBroken) que descreve o status do sensor;
 - Representar falha persistente por um arco entre BMBroken_t e BMBroken_{t+1};
 - Atribuir uma pequena probabilidade de falha em cada fatia de tempo (ex.: 0.001);
 - Especificar que o sensor, uma vez quebrado, permanece neste estado para sempre, independente do estado real da bateria.

Falhas Persistentes nas DBNs

Persistent Failure Model

Persistent Failure Model

Raciocínio Probabilistico

Métodos de Computação Inteligente 2006.1

Ricardo Scholz e Vitor Dantas
 <reps, vcd>@cin.ufpe.br

