Matemática Discreta – Turma B – 2019

Grafos Planares

1) Podemos oferecer os 3 serviços para as 3 residências sem que haja cruzamento das linhas? Justifique sua resposta.

- 2) Mostre que o K_5 não é planar.
- 3) Suponha que você precisa decidir se um grafo G conexo é planar ou não. Ao observar o grafo G, você nota que ele não contém como subgrafo nem K₅ nem K_{3,3}. Você então conclui que G é planar. Esse raciocínio está correto? Explique, justificando sua resposta com base no Teorema de Kuratowski
- 4) Mostre que o grafo de Petersen não é planar.

- 5) Prove que qualquer subgrafo de um grafo planar é planar.
- 6) Seja G = (V, E) um grafo plano conexo com |V| = n, |E| = m e f faces ou regiões. Prove a fórmula de Euler, ou seja, que n m + f = 2.
- 7) Prove que o grafo $K_{3,3}$ não é planar.
- 8) Prove que se G = (V, E) é planar com |V| = n e |E| = m, então $m \le 3(n-2)$.
- 9) Prove que todo grafo simples planar G possui um vértice de grau no máximo 5.
- 10) Para que valores de n > 1 o grafo completo K_n é planar? Explique.
- 11) Para que valores de m,n \geq 1 o grafo bipartido completo é planar?

- 12) Seja G = (V,E) um grafo plano 4-regular com 10 faces. Determine quantos vértices e arestas G possui.
- 13) Seja G = (V,E) um grafo com |V| = 6 com lista de graus $L_G = (2, 2, 3, 4, 4, 5)$. É possível G ser planar? Nesse caso quantas faces G tem?
- 14) Seja G um grafo básico simples planar com menos de 12 vértices. Prove que G tem ao menos um vértice v com grau menor ou igual a 4.
- 15) Dado um grafo G planar, o grafo G*, chamado de dual de G, é construído da seguinte forma:
- Para cada face f de G, G* tem um vértice v (incluindo a face externa)
- Una dois vértices w e v de G* da seguinte forma:
 - Se 2 regiões f_i e f_j são adjacentes (possuem alguma aresta em comum) coloque uma aresta entre v_i e v_i cruzando a aresta em comum
 - Se existir mais de uma aresta em comum entre f_i e f_j coloque uma aresta entre v_i e v_j para cada aresta em comum
 - Se uma aresta está inteiramente em uma região f_k coloque um loop no vértice v_k

Responda:

- a) Qual é o dual de um grafo C_n (grafo ciclo de tamanho n)?
- b) Qual é o dual de um grafo W_n (grafo roda de n vértices)?

- c) Quem é o dual do dual, ou seja, (G*)*? d) Obtenha os duais dos seguintes grafos

16) Mostre que os grafos a seguir não são planares através do Teorema de Kuratowski.

17) Para cada um dos grafos abaixo, determine se ele é planar ou não. Se o grafo for planar, encontre uma representaç ão gráfica de modo a evidenciar que as arestas não se cruzam (a não ser nos vértices). Se o grafo não for planar, use o teorema de Kuratowski para mostrar tal fato, encontrando um subgrafo homeomorfo a K_5 ou $K_{3,3}$.

- 18) Seja G = (V,E) um grafo Euleriano planar. Prove que o dual de G, dado por G* é um grafo bipartido.
- 19) Prove que se G = (V, E) é um grafo bipartido planar com |E|=m>2, e |V|=n, então $m \le 2(n-2)$.