PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2001-274201

(43)Date of publication of application: 05.10.2001

(51)Int.Cl.

H01L 21/60

(21)Application number: 2000-087676

(22)Date of filing:

27 03 2000

(71)Applicant: TOSHIBA CORP

(72)Inventor: TANE YASUO SHIMIZU YOSHIYUKI

HIRUTA YOICHI

(54) ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electronic device that has an electrode which is jointable at a low temperature, and can increase the junction strength of the electrode.

SOLUTION: In a semiconductor device (an electronic device) 1, a liquid phase diffusion junction layer 56 is interposed on an electrode 110, having liquid phase diffusion metal at least on a surface layer to joint a metal bump electrode 40. Copper or the like is used as the liquid phase diffusion metal. The liquid phase diffusion junction layer 56 is made of a first metal layer 52 for junction, that is combined (liquid phase diffusion) with the liquid phase diffusion metal, and a second metal for junction that decreases liquid phase diffusion temperature. Tin or the like is used as the first metal layer 52 for jointing, and bismuth or the like is used as a second metal layer 53 for jointing.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-274201 (P2001-274201A)

(43)公開日 平成13年10月5日(2001,10.5)

(51)IntCl.' 機別配号 F.I デージー・データ等) H01L 21/60 311 H01L 21/60 311W 5F044 311S

審査請求 未請求 請求項の数8 OL (全 21 頁)

603A

21/92

		会正面水	木崩水 侧水块0数6 OL (主 21 頁)		
(21)出職番号	特職2000-87676(P2000-87676)	(71)出職人	000003078 株式会社東芝		
(22)出願日	平成12年3月27日(2000.3.27)		東京都港区芝浦一丁目 1番 1号		
		(72) 発明者	問者 程 泰雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝マイクロエレクトロニクスセン ター内		
		(72) 発明者	(72)発明者 清水 領之 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝マイクロエレクトロニクスセン ター内		
		(74)代理人	100083806 弁理士 三好 秀和 (外7名) 最終頁に続く		

(54) 【発明の名称】 電子デパイス及びその製造方法

(57)【要約】

【課題】 低温度において接合可能な電極を有し、この 電極の接強度を向上することができる電子デバイスを提 供する。

【解決手段】 半導体装置(電子デバイス)1において、少なくとも表面層に液相拡散金属と有する電艦11 した液相拡散接合層56を介在させて金パンプ電極4 0が接合されている。液相拡散金属には例えば新が使用 される。液相拡散接合層56は、液相拡散金属と化合 (液相拡散) させる第10接合用金属層52と、液相拡 散温度を下げる第2の接合用金属とにより生成されている。第10接合用金属層52には例えば器が使用され、 第20接合用金属層53には例えばピスマスが使用され、 第20接合用金属層53には例えばピスマスが使用され。 第20接合用金属層53には例えばピスマスが使用され。

【特許請求の範囲】

【請求項1】 少なくとも表面層に液相拡散金属を有す る電極と、

前記電極上に配設され、前記液相拡散金属と化合させる 第1の接合用金属層と、

前記第1の接合用金属層上に配設され、前記液相拡散金 属と第1の接合用金属層との化合温度を下げる第2の接 合用金属層とを備えたことを特徴とする電子デバイス。 【請求項2】 前記液相拡散金属は、鋼、金、アルミニ ウム、ニッケル、セラミックスのいずれかであることを 10 特徴とする請求項1に記載の電子デバイス。

【請求項3】 前記第1の接合用金属層は、爨、鉛若し くはインジウム、又はそれらいずれかを主成分とする二 元以上の合金であることを特徴とする請求項2に記載の 君子デバイス。

【請求項4】 前記第2の接合用金属層は、少なくとも ビスマス、銀若しくはインジウム、又はそれらいずれか を主成分とする二元以上の合金であることを特徴とする 請求項2に記載の電子デバイス。

【請求項5】 前記液相拡散金属は、圧延薄膜であるこ 20 とを特徴とする請求項1に記載の電子デバイス。

【請求項6】 少なくとも表面層に液相拡散金属を有す る第1の電極と、

前記液相拡散金属、この液相拡散金属に化合させる第1 の接合用金属、及び前記液相拡散金属と第1の接合用金 属との化合温度を下げる第2の接合用金属を少なくとも 含む、前記第1の電極上の液相拡散接合層と、

前記液相拡散接合層上の第2の電極とを備えたことを特 徴とする電子デバイス。

【請求項7】 少なくとも下記工程を備えたことを特徴 30 とする電子デバイスの製造方法。

- (1) 少なくとも表面層に液相拡散金属を有する第1の 雷極を形成する工程
- (2) 前記液相拡散金属上にそれと化合させる第1の接 合用金属を形成する工程
- (3) 前記第1の接合用金属上に、前記液相拡散金属と 第1の接合用金属との化合温度を下げる第2の接合用金 屋を形成する工程
- (4) 前記第2の接合用金属上に第2の電極を形成する 工程
- (5) 前記第2の接合用金属により前記渡相拡散金属と 第1の接合用金属とを化合させて液相拡散接合層を形成 し、前記第1の雪板と第2の電板との間を接合する工程 【請求項8】 少なくとも下記工程を備えたことを特徴 とする電子デバイスの製造方法。
- (1) 少なくとも表面層に第1の液相拡散金属を有する 第1の電極を形成する工程
- (2) 前記第1の液相拡散金属上にそれと化合させる第 1の接合用金属を形成する工程

- 金属と第1の接合用金属との化合温度を下げる第2の接 合用金属を形成する工程
- (4) 少なくとも表面層に第2の液相拡散金属を有する 第2の電極を形成する工程
- (5) 前記第2の適相拡散金属上にそれと化合させる第 3の接合用金属を形成する工程
- (6) 前記第3の接合用金属上に、前記第2の液相拡散 金属と第3の接合用金属との化合温度を下げる第4の接 合用金属を形成する工程
- (7) 前記第2の接合用金属及び第4の接合用金属によ り、第1の液相拡散金属と第1の接合用金属とを化合さ せ、かつ第2の液相拡散金属と第3の接合用金属とを化 合させ、前記第1の電極と第2の電極との間を接合する 工程

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子デバイス及び その製造方法に関し、電極間の低温度接合に好適な電子 デバイス及びその製造方法に関する。

[0002]

【従来の技術】薄型で比較的低コストで製作することが できる半導体装置として、テープオートメイテッドボン ディング(以下、単にTABという。) 構造を採用する 半導体装置、フリップチップ(以下、単にFCとい う。) 構造を採用する半導体装置がある。

【0003】TAB構造を採用する半導体装置は半進体 素子(半導体チップ)とフレキシブルなテープ基板とを 備えて構成されている。半導体素子のボンディングパッ ド(電極)とテープ基板のリードとの間は、例えば会バ ンプ電極を介在させ、熱圧着ボンディングにより、電気 的かつ機械的に接続されている。

【0004】一方、FC構造を採用する半導体装置は、 TAB構造を採用する半導体装置と類似しており、半導 体素子とテープ基板とを備えて構成されている。半導体 素子はその素子形成面をテープ基板の表面に向かい合う ようにマウントされ、半導体素子のボンディングパット とテープ基板上のリード配線との間は、例えば金パンプ 電極を介在させ、熱圧着ボンディングにより、電気的か つ機械的に接続されている。

[0005]

【発明が解決しようとする課題】上記TAB構造を採用 する半導体装置、FC構造を採用する半導体装置のそれ ぞれにおいては、以下の点について配慮がなされていな かった。

【0006】半導体素子のボンディングパッドとテープ 基板のリード又はリード配線との熱圧着ボンディングに は約500℃前後の高温度が使用されている。このた め、樹脂を主成分とするテープ基板には耐熱性が要求さ れ、耐熱性を有するテープ基板は高価である。従って、

(3) 前記第1の接合用金属上に、前記第1の液相拡散 50 最終製品としての半導体装置は高価になってしまうとい

う問題点があった。

【0007】 本発明は上記課題を解決するためになされ たものである。従って、本発明の目的は、低温度におい て接合可能な電極を有する電子デバイスを提供すること である。

3

【0008】さらに、本発明の目的は、耐熱性を必要と しない部品、材料等の使用により、製品コストを減少す ることができる電子デバイスを提供することである。

【0009】さらに、本発明の目的は、電極の接合強度 を向上することができ、電極の接合部の電気的かつ機械 10 的信頼性を向上することができる電子デバイスを提供す ることである。

【0010】さらに、本発明の目的は、電極間の接合を 低温度にすることができる電子デバイスの製造方法を提 供することである。

【0011】さらに、本発明の目的は、製造コストを減少することができる電子デバイスの製造方法を提供することである。

[0012]

【課題を解決するための手段】上記課題を解決するため 20 に、本発明の第1の特徴は、少なくとも表面層に指数 飲金属を有する電優と、この電極上に配設され、液相拡 散金属と化合させる第1の接合用金属層と、第1の接合用金属層上に配設され、液相拡散金属と第1の接合用金属層との化合温度を下げる第2の接合用金属とを備えた電子デバイスとしたことである。

【0013】ここで、「電子デバイス」とは、電子素子 若しくは電子部品、又はそれらを組み合わせて構築した 実装装置を含む意味で使用される。例えば、電子素子に は、半導体素子、抵抗素子、容量素子等が含まれる。電 30 子部品には、基板、リード、パッケージ等が含まれる。 実装装置には、パッケージや基板に複数の半導体素子を 実装した装置、例えば半導体モジュール、実装ボード等 が含まれる。「少なくとも表面層に液相拡散金属を有す る電極」とは、全体が液相拡散金属で形成された電極、 表面層の一部に液相拡散金属を有する電極が少なくとも 含まれる意味で使用される。「電極」とは、電流や電圧 を入力、出力又は入出力するための電気的接続端子とい う意味で使用され、この「電極」には単一の電極、配線 の電極、リードの電極等が少なくとも含まれる。さら に、「電極」には、電子デバイスの内部の他の電極に接 続される電極、電子デバイスの外部(例えば、他の電子 デバイスや装置) の他の電極に接続される電極が少なく とも含まれる意味で使用される。

[0014] 本発明の第1の特徴に係る電子デバイスに おいて、「液相拡散金属」とは、この液相拡散金属より も触点の低い「第1の接合用金属」を溶験すると、接合 するべき金属との間に相互拡散を生じ、等温薬固し、液 相拡散接合層を生成する金属という意味で使用される。 この「海相取換金属」には、朝(Cu)、会(Au)、 アルミニウム (A1) 、ニッケル (Ni) 、セラミック ス (A1z O3) 等が少なくとも含まれる。

【0015】「第1の接合用金属層」には、鋼(Sn)、鉛(Pb)若しくはインジウム(In)、又はそれらいずれかを主成分とする二元以上の合金か少なくとも含まれる。「第1の接合用金属層の二元以上の合金」には、例えばIn—Ag、In—Sn、Bi—Sn、Bi—Pb、Bi—In等の二元合金、In—Pb—ASn等の匹元合金が含まれる。勿論、「第1の接合用

金属層」には五元以上の合金が含まれる。

【0016】第2の接合用金属層の「液相拡散金属と第 1の接合用金属層との化合温度を下げる」とは、液相拡 散金属の液相拡散温度、すなわち液相拡散金属と第1の 接合用金属層との溶融温度を下げるという意味で使用さ れる。「第2の接合用金属層」には、少なくともピスマ ス (Bi)、銀 (Ag) 若しくはIn、又はそれらいず れかを主成分とする二元以上の合金が含まれる。この 「二元以上の合金」とは、「第1の接合用金属層の二元 以上の合金」と同様の意味で使用され、三元合金、四元 合金及び五元以上の合金が含まれる意味で使用される。 【0017】このように構成される本発明の第1の特徴 に係る電子デバイスにおいては、電極とそれに接続され る他の電極との間の液相拡散による接合温度を第2の接 合用金属により下げ、なおかつ双方の間の接合強度を第 2の接合用金属により高めることができるので、この電 マデバイスを構築する部品、材料等の耐熱温度を下げる ことができる。従って、これらの部品、材料等のコスト を低減することができるので、電子デバイスの製品コス トを削減することができる。さらに、電子デバイスの製 浩プロセスにおいて低温度プロセスを採用することがで きるので、より一層電子デバイスの製品コストを削減す

【0018】本発明の第2の特徴は、本発明の第1の特徴 機に係る電子デバイスにおいて、液相拡放金属を圧延薄 膜としたことである。ここで、「圧延薄膜」とは、少な くとも液相拡散金属に圧延処理を施した薄膜をいう意味 で使用される。この「圧延薄膜」は、例えば、液相拡散 金属にCLが使用される場合、100℃の300℃の 温度において1μm~20μmの粒径の範囲で再結晶化 される性質を有し、「電解環膜」の再結晶化の粒径に比 べて対格サイズが大きくなる環間である。

ることができる。

【0019】このように構成される本発明の第2の特徴 に係る電子デバイスにおいては、液相拡散金属を圧延薄 腰としたことにより、液相拡散金属の粒径サイズを大き くし、接合面積を増加することができるので、電極の接 合強度を向上することができる。

【0020】本発明の第3の特徴は、少なくとも表面層 に液相拡散金属を有する第1の電極と、液相拡散金属、 この液相拡散金属に化合させる第1の接合用金属、及び 液相拡散金属と第1の接合用金属との化合温度を下げる 第2の接合用金属を少なくとも含む、第1の電極上の液 相拡散接合層と、液相拡散接合層上の第2の電極とを備 えた電子デバイスとしたことである。

【0021】ここで、「張相抵散接合層」とは、第2の 接合用金属により化合温度を下げた状態において、少な くとも第1の電極の液相拡充金属と第1の発合用金属と を化合させた結果、生成された接合層という意味で使用 される。従って、「液相拡散を合層」の主張分は液相拡 散金属及び第1の接合用金属であり、「液相拡散接合 層」に主張分として第2の接合用金属が含まれていて も、含まれていなくてもよい。

【0023】本発明の第40特徴は、少なくとも表面層に液相拡散金属を有する第1の電極を形成する工程と、液相拡散金属とでれた化合させる第1の接合用金属と形成する工程と、第10接合用金属上に、液相拡散金属 20第0接合用金属との化合温度を下げる第20接合用金属を形成する工程と、第20接合用金属により液相拡散金属等10接合用金属と作合させて液相放散金属と第10結合用金属と作合させて液相放散合質を形成し、第1の電極と第2の電極との間を接合する工程とを多なとも備えた電子デバイスの製造方法としたことである。

【0024】このような本発明の第4の特徴に係る電子 デバイスの製造方法においては、液相拡散金属と第1の 接合用金属との化合温度を第2の接合用金属により下げ 40 ることができるので、電橋間の接合温度を下げて低温度 プロセスを実現することができる。

【0025】本発明の第5の特徴は、少なくとも表面層 に第10減相拡散金属を有する第1の電極を形成する工 程と、第10減相拡散金属上にそれと化合させる第1の 接合用金属を形成する工程と、第10複合用金属上に、 第1の液相拡散金属と第10複合用金属との化合温度を 下げる第20複合用金属を形成する工程と、少なくとも 表面層に第20減相拡散金属を育する第2の電極を形成 表面層に第20減相拡散金属と第1にそれと化合させる 900 第3の接合用金属を形成する工程と、第3の接合用金属 上に、第2の液相拡散金属と第3の接合用金属との化合 類なのでは多34の接合用金属を形成する工程と、第2 の接合用金属及び第4の接合用金属により、第1の液相 拡散金属と第1の接合用金属とを化合させ、かつ第2の 液相拡散金属と第3の接合用金属とを化合させ、第1の 電極と第2の電極との個を接合する工程とを少なくとも 備えた電子デバイスの製造方法としたことである。

【0026】このような本発明の第5の特徴に係る電子 デバイスの製造方法においては、本発明の第 4の特徴に 係る電子デバイスの製造方法に同様に、第10減相拡散 金属に第10接合用金属との化合温度を第20接合用金 属により下げることができ、第20減相拡散金属と第3 の接合用金属との化合温度を第40接合用金属により下 げることができるので、第10電機と第2の電極との間 の接合温度を下げて低温度プロセスを実現することができる。

[0027]

ものである。

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照して詳細に説明する。なお、本発明の実施の形態 に係る「半導体素子(半導体チップ)」、「基板」、

「半導体装置」、「半導体モジュール」等は本発明に係る「電子デバイス」を具現化したものであり、本発明の実施の形態に係るこれらの半導体素子等の説明を行うとともに、併せて本発明に係る「電子デバイス」の説明を行う。

【0028】(第1の実施の形態) 本発明の第1の実施 の形態は、ボールボンディングアレイ構造を採用し、か つフリップチップーインナーリードボンディング(以 下、単にFC-ILBという。) 方式を採用する半導体 装置 (電子デバイス)に本幹明を強用した例を説明する

【0029】【半導体接置の構造】図2に示すように、 未発明の第1の実施の形態に係るFC-ILB方式を採 用する半導体接置1は、基板10と、基板10上のFC 構造でマウントされた半導体素子(半導体チップ)20 と、半導体素子20を保護する保護動節30と、半導体 素子20及び基板10上のリード配線11を保障するス ティフナー31とを備えて構築されている。さらに、半 導体整置1は、基板10の裏面に配配された外部端子1 2上に半田ボール電板11を構えている。

【0030】 基板10には低い電熱性を有するTAB-一ブ基板が使用されている。本発明の第10実施の形態 に係る半導体装置10基板10としては、例えば150 で~300℃の範囲の耐熱性を有するポリイミド系樹脂 テーブ基板を実用的に使用することができる。このポリ イミド系樹脂テーブ基板は適度なフレキシブル性を備え ている。

【0031】基板10の表面上(図中上側表面)にはリ 50 一ド配線11が配設されている。図1(A)に示すよう に、リード配線11は接着層16を介在させて基板10 の表面に接着されている。この接着層16には例えば樹 脂系接着剤を実用的に使用することができる。基板10 の中央部分(半導体素子20のマウント領域)におい て、リード配線11の一端側は電極110として使用さ れている。この電極110は、本発明に係る「電極」、 「第1の電極」又は「第2の電極」の一具体例に対応す るものである。基板10の周辺部分においてリード配線 11の他端側は接続孔配線13を通して基板10の裏面 の外部端子12に電気的に接続されている。リード配線 10 11は電気伝導性に優れ、かつ適相拡散金属である例え ばCu箔膜を実用的に使用することができ、このCu箔 膜は例えば20μmの膜厚で形成されている。リード配 線11の少なくとも電極110の表面には研磨処理、C uめっき処理等を行い、電極110の表面組さRmax は0.2 µm以下に設定されることが好ましい(本発明 の第8の実施の形態を参照。)。外部端子12には、リ ード配線11と同様に、例えばCu箔膜を実用的に使用 することができる。接続孔配線13には、例えばCuめ っき脚を実用的に使用することができる。

7

【0032】基板10において、表面側はリード配線1 1の電極110の領域を除きソルダーレジスト膜14に より被覆され、裏面側は外部端子12の領域を除きソル ダーレジスト膜15により被覆されている。

【0033】半導体素子20は本発卵の第1の実態の形態において2)コン半結晶子ツで構成され、半導体素子20の主面には記憶回路若しくは論理回路、又はそれらを組み合わせた集積回路が指載されている。本発卵の第1の実施の形態に係る半準を譲冒においてはFC-1BL方式が採用されているので、半導体素子20はその主面を基板10の表面に向かい合わせたフェイスダウン方式でマウントされている。半導体素子20主面には上記記憶回路等に接続された複数のボンディングパッド「電艦)21が配設されている。ボンディングパッド「電艦)21が配設されている。ボンディングパッド「電艦)21が配設されている。ボンディングパッド(電像)21が配設されている。ボンディングパッド(電像)21が配設されている。ボンディングパッド金(A1-11、A1-Cu-A1-Cu-S1等)腰により形成されている。

【0034】そして、図1 (4) 及び図2に示すよう
に、本発明の第1の実施の形態に係る半導体装置1においては、少なくとも表面層に液相拡散金属、その液相拡散金属、この液相拡散金属に合させる第1の接合用金属、及び液相拡散金属と第1の接合用金属との代合温度を下げる第2の接合用金属を少なくとも含む、電価110上の液相拡散接合層を鍛え、液相拡散接合層50及び全パンで電極40とを含え、液相拡散接合層50及び全パンで電極40とを介在させて電極110と半導体素子20のポンディングバッド21との間が電気的かつ機械制的に接続されてい、の。すなわち、半導体素子20のボンディングバッド21との間が電気的かつ機械制のに接続されてい、の。すなわち、半導体素子20は基板10上にマウント 20

されている。なお、金バンプ電極40は本発明に係る 「第2の電極」の一具体例に対応するものである。 【0035】ここで、電極110はその全体が液相拡散 金属である C u 箔膜により形成されている。 第1の接合 用金属には、例えばSnを実用的に使用することがで き、第2の接合用金属には、例えばBiを実用的に使用 することができる。従って、本発明の第1の実施の形態 に係る液相拡散接合層56は、第2の接合用金属である Biにより化合温度を下げた状態において、少なくとも 電極110でありかつ液相拡散金属であるCuと第2の 接合用金属であるSnとを化合させた結果、生成された 接合層である。実際には、図1 (A) に示すように、電 極110上のCu3 Snからなる第1の接合層56A と、この第1の接合層56A上のCue Snsからなる 第2の接合層56Bとにより、液相拡散接合層56が構 成されている。

[0036]リード配線11の電極110と減料拡散後合層56を介在させた金パンプ電極40との間の接合 には、図16別に示すように、電極110上に配設され液相拡散金属と化合させる第1の接合用金属層52と、第1の接合用金属層52に配設され液相拡散金 を第1の接合用金属層52とに配設され液相拡散金 を第1の接合用金属層52との代合通度を下する第2の接合用金属層53から液相拡散 を開発を12をではませれており、この第1の接合 用金属層52及び第2の接合用金属層53から液相拡散 能において、第1の接合用金属層53なら液相拡散 能において、第1の接合用金属層53には例えば腰厚が 10μmのSnめっき層を実用的に使用することができ、第2の接合用金属には例えば腰厚が10μmのBi めっき層を実用的に使用することができる。

【0037】関4(A)に示すように電極110上に第 の接合用金属層(Snめっき層)52の単一層を形成 し、この第10操合用金属層52に150℃の温度のア ニール処理を行うと、図4(B)に示すようにSnの絶 歳が232℃のために第1の接合用金属層52は図体状 懸のまま、図4(C)に示すように液相拡散が生じ、電 極110と第10接合用金属層52との間には液相拡散 接合層57が形成される。この液相拡散接合層57は、 Cu3Snからなる第1の接合層57と、この第1の 接合層57本にのでは、Snsからなる第2の接合層5 Bとにより形成されている。図5に示すように、液合層 57路においては、いずれもアニール処理後の放置時間 の増加とともに液相拡散が進行し、生成量(膜厚)は増加の傾向を示している。

【0038】 これに対して、図3(A)に示すように電 紙110上に第10接合用金属層(Snめっき層)52 と、第20接合用金属層(Blめっき層)53の複合層 を形成し、この第1の接合用金属層52及び第2の接合 用金属層53に同様の150での温度のアニール処理を 行うと、図3(B)に示すようにSn及びB)の輸点が 139℃に下がるのでSn及びBlの液層560の状態において、図3(C)に示すように液相拡散が生じ、電機110上に液相拡散接合層56が形成される。この液相拡散接合層56に上記のように第10接合層56Aと、この第10接合層56Aとにより形成されている。図5に示すように、液相拡散接合層56の第10接合層56Aとで第2の接合層56Bにおいては、液相拡散接合層57の第1の接合層57の第1の接合層57及び第2の接合層57Bに対すれて、液相拡散接合層57の第1の接合層57Bと同様にいずれもアニール処理後の放置時間の増加とともに液相拡散が進行し、生成量 10年間が増加く相応不正しているが、生成量は第10年間の増加を表しましまでは、13~2・2倍 個度大量くの接合層57Bに比べて1.3~2・2倍 個度大量くの接合層57Bに比べて1.3~2・2倍 個度大量くであった。すなわち、図3(C)に示す液相拡散接合層6の合計順等が厚く(後相放散量が大きく)なり、接合強度が高くなることを意味している。

【0039】図1 (A)に示すように、半導体集子20 のポンディングパッド21 と金パンプ電極40 との間は パリヤメタル番55を介在させて電気的かつ機械的に接合されている。このパリヤメタル番55には、例えばチタン(Ti)層とタングステン(W)層との接合膜を実 20 円)隔とタングステン(W)層との状合膜を実 20 に代えて、銀パンプ電極等を使用することができる。なお、金パンプ電極40 に代えて、銀パンプ電極等を使用することができる。

【0040】 図2に示すように、半導体素子20の少な くとも主面 (素子形成面) は保護樹脂30により被覆さ れている。この保護機脂30には例えばポリイミド系樹脂を実用的に使用することができる。

【0041】 このように構成される本発明の第1の特徴 係名半導体装置1においては、電極110とそれに接 続される他の金パンプ電極40との側の液件拡散による 接合温度を第2の接合用金翼(倒泉ば第1)により下 パ、なおかつ双方の間の液を加速を第20秒倍用金翼に より高めることができるので、部品、材料等の耐熱温 度、特に基板10の耐熱温度を下げることができる。で って、基板10は耐熱温度が低い、例えば300で以 下の耐熱温度を有しかつ安価な、網箔/接着網/ポリイ ミド系樹脂のテープ基材を使用することができるので、 半導体装置 200島出ストと手制減することができる。 【0042] 半導体装置の製造方法1次に、図6乃至 図13を使用し、上記半導体装置1の製造方法を説明す る。

【0043】(1)まず最初に、図6に示すように、基板10が準備される。この基板10の表面上にはリード配線11が形成され、裏面上にはリード配線11に接続1元が形成されている。図2参照、)。さらに、基板10の表面にないて、リード配線11の一端側は電極110として露出されておち、リード配線11の周辺部分はソルダーレジスト膜14により被覆されている。基板10の裏面上は外部端子12の領域を除きソルダーレジスト膜15により被覆されている。基板10の裏面上に45階端子12の領域を除きソルダーレジスト膜15により被覆されている。基板10の裏面上5により被覆されている。

【0044】 (2) 図7に示すように、リード配線11 の電橋110の表面上に第1の接合用金属層52を形成 する。上記のように、第1の接合用金属層52にはSn めっき層を実用的に使用することができる。

【0045】(3)引き続き、図8に示すように、第1 の接合用金属層52上に第2の接合用金属層53を形成 する。上記のように、第2の接合用金属層53にはBi めっき層を実用的に使用することができる。

【0046】(4)熱圧着ポンディング技體(図9等 窓。)60において、加熱ステージ61上にフェイスア ップで半導体業子20を被置保持する。半環体業子20 においては、ポンディングパッド21上にパリヤメタル 層55を介在させて金パンプ電橋40が配設された状態 にある。図9に示すように、加熱ステージ61に被置保 持された半導体素子20と、加熱ステージ61上に対向 配設された加熱加圧ツール62との間に電極110を下 側に向けて基板10を位置状み配置する。

【0047】(5)図10に示すように、加熱加圧ツー ル62により基板10の裏面(図10中上側表面)を加 熟するとともに加圧し、半導体素子20のポンディング パッド21と基板10の電板110との開を金パンプ電 極40を介在させて熱圧着ポンディングする。このと き、前述のように第2の接合用金属層53により化合温 度が下げられた状態において電極110のCuと第1の 接合用金属層52のSnとが化合する液相拡散により、 電極110と会パンプ電極40との間に液相拡散接合層 56が生成され、この液相拡散接合層56により電極1 10と金パンプ電極40との間が電気的かつ機械的に接 合される。加熱ステージ61、加熱加圧ツール62のそ れぞれの加熱設定温度は、30℃~50℃の若干の低下 分を考慮して、70℃~200℃の範囲内に設定され る。このような低い温度節囲において、液相拡散接合層 56は充分な接合強度を得ることができる。

【0048】(6)図11に示すように、半導体業予 0の主面を被費する保護機能30を形成する。保護機能 30は、例えば前下塗布法にもり、基板10の中央部分 の間口10日を通して例えば流動性を有するポリイミド 来機脚を光填し、この充填されたポリイミド系機脚を硬 低させることにより形成することができる。

【0049】(7)図12に示すように、半導体素子2 0を被覆し保護するスティフナー31を取り付けること により、本発明の第10実施の形態に係る半導体装置1 を完成させることができる。

【0050】(8)この後、半導体装置1の基板10の 外部端子12に半田ボール電極41が形成される。

【0051】このような本発明の第1の実施の形態に係る半導体装置1の製造方法においては、電極110の液相拡散金属(Cu)と第1の接合中金属層(Sn)52 との代合温度(液相拡散温度)を第2の接合用金属(B)53により下げることができるので、電極110と 金パンプ電極 4 0 との間の接合温度を下げて低温度プロセスを実現することができる。

【0052】 [変形例]

(1)上記本発明の第1の実施の形態に係る半導体装置 1において、基板10の電極110には、Cu常膜以外 の液相拡散金属として、Au溶膜、Al溶膜、Ni溶膜 等を実用的に使用することができる。 【0053】(2)本発明の第1の実施の形態に係る半

【0054】(3)本発明の第1の実施の形態に係る半導体装置 I において、第2の接合用金属層53の第2の接合用金属には、B1の他に、少なともAg若しくはInのいずれかを主成分とする二元以上の合金が含まれる。

(Ga) を含むことができる。

[0055] (第2の実施の形態) 本発明の第2の実施 30 の形態は、ボールボンディングアレイ構造を採用し、か つビームリードーインナーリードボンディング (以下、 単に B L − I L B という。) 方式を採用する半導体装置 (電子デバイス) に本発明を適用した例を説明するもの である。

【0056】 [半導体接置の構造] 図14 に示すよう に、本税明の第2の実施の形態に係るBL-11L B方式 を採用する半導体装置2は、基板70と、基板70上の ビームリード構造でマウントされた半導体素子(半導体 テップ)20と、半導体素子20を保護する保護機能 2と、半導体素子20を保護する戻元マプナー31とを 備えて概要されている。さらに、半導体被置2は、基板 70の裏面に配設された外部端子72上に半日ポール電 極41を備えている。

【0057】基板70には、本発明の第1の実施の形態 に係る半導体接置1と同様に、低い個熱性を有するTA Bテープ基板が使用され、例えば150℃~300℃の 範囲の耐熱性を有するポリイミド系樹脂テープ基板を実 用的に使用することができる。

【0058】 基板70の裏面上(図中下側表面)にはリ 50 脂32には例えばポリイミド系樹脂を実用的に使用する

ード71が配設されている。このリード71は、図示し ないが、図1 (A) に示すリード配線11と同様に接着 層16を介在させて基板70の表面に接着されている。 基板10の中央部分(半導体表子20のマウント領域) には開口70Hを有しており、この開口70Hにはリー ド711の一端側が電極 (ビームリード) 710として 突出されている。この電極710は、本発明に係る「電 極」、「第1の電極」又は「第2の電極」の一具体例に 対応するものである。基板70の周辺部分においてリー ド71の他端側は外部端子72に電気的に接続されてい る。リード71並びにそれに一体的に構成された電極7 10は電気伝導性に優れ、かつ液相拡散金属である例え ばCu箔膜を実用的に使用することができ、このCu箔 膜は例えば20μmの膜厚で形成されている。リード7 1の少なくとも電極710の表面には研磨処理、Cuめ っき処理等を行い、電極710の表面粗さRmaxは 2μm以下に設定されることが好ましい。外部端子 72には、リード71と同様に、例えばCu箔膜を実用 的に使用することができる。

12

【0059】基板70において、裏面側はリード71の 電極710の領域を除きソルダーレジスト膜74により 被覆されている。

【0060】半導体素子20は、本発明の第1の実施の 形態に係る半導体素子20と同様であり、その主面を基 板70の表面に向かい合わせたフェイスダウン方式でマ ウントされている。半導体素子20の主面には複数のボ ンディングパッド(電極)21が配設されている。 【0061】そして、図14及び図15に示すように、 本発明の第2の実施の形態に係る半導体装置2において は、本発明の第1の実施の形態に係る半導体装置1と同 様に、少なくとも表面層に液相拡散金属(例えばCu) を有するリード71の電極710と、液相拡散金属、こ の液相拡散金属に化合させる第1の接合用金属(例えば S n) 、及び液相拡散金属と第1の接合用金属との化合 温度を下げる第2の接合用金属(例えばBi)を少なく とも含む、電極710上の液相拡散接合層56と、液相 拡散接合層56上の金パンプ電極40とを備え、液相拡 散接合層56及び金パンプ電極40とを介在させて電極 710と半導体素子20のボンディングパッド21との 間が電気的かつ機械的に接続されている。液相拡散接合 履56は、実際は、電極710上のCu3 Snからなる 第1の接合層56Aと、この第1の接合層56A上のC u 6 S n 5 からなる第2の接合層 5 6 B とにより構成さ れている。

【0062】半導体素子20のボンディングパッド21 と金パンプ電権40との間はパリヤメタル層55を介在 して電気的かつ機械的に接合されている。図14に示す ように、半導体素子20の少なくとも主面(素子形成 面) は保護機関32により被覆されている。この保護機 ことができる。

【0063】このように構成される本発明の第2の特徴 に係る半導体装置ととないては、本発明の第1の実施の 形態に係る半導体装置 1と同様に、電極710とそれに 接続される他の金パンプ電極40との間の液相拡散によ る接合温度を第2の接合用金属(例えばBi)により下 げ、なおかつ双方の間の後合用金属により高めることができるので、第44、材料等の耐熱温度 度、特に基板70の耐熱温度を下げるとかできる。従 つて、基板70には耐熱温度を下げるとかできる。従 つて、基板70には耐熱温度を下げるとができる。 下の耐熱温度を有しかつ安価な、網箔/接着層/ポリイ ミド系樹脂のテープ基材を使用するとができるので、 半導体装置の製品コストを削減するととができるので、

第2の実施の形態に保る半導体装置の製造方法]次に、本発明の 第2の実施の形態に保る半導体装置2の製造方法を、図 16及び図17を使用して説明する。

【0065】(1)本発明の第2の実施の形態に係る半 導体装置2の製造方法は、図示しないが、本発明の第1 の実施の形能に係る半導体装置1の製造方法と同様に、 まず最初に基板70が準備され、基板70のリード71 20 電極(ピームリード)710の表面上に第10接合用 金属層(例えば87)52、第2の接合用金属層(例えば81)53のそれぞれを順次形成する。

【0066】 (2) 熱圧等ポンティング装置 (図16参照。) 60 において、加熱ステージ61上にフェイスアップで半導体業子20を破匿保持する。半導体素子20 においては、ポンディングパッド21上にパリヤメタル 層55を介在させて金小ンブ環報40が配設された状態にある。図16に示すように、加熱ステージ61上に戦闘し保持された半導体業子20 加熱ステージ61上に対30配設された財助加圧デール62 との間に基を70を位置決め配置する。この位置決め配置により、半導体素子20 がエンディングパッド21上に金パンブ環体10を介在させて基係70の電循710が位置決めされる。

【0067】(3)図17に示すように、加熱加圧ツー ル62により基板70の電極710の裏面(図17中上 側表面)を加熱するとともに加圧し、半導体素子20の ボンディングパッド21と基板70の電板710との間 を命バンプ電極40を介在させて熱圧着ボンディングす る。このとき、前述のように第2の接合用金属層53に 40 より化合温度が下げられた状態において電極710のC u と第1の接合用金属層52のSnとが化合する液相拡 散により、電極710と金パンプ電極40との間に液相 拡散接合層56が生成され、この液相拡散接合層56に より電極710と金パンプ電極40との間が電気的かつ 機械的に接合される。加熱ステージ61、加熱加圧ツー ル62のそれぞれの加熱設定温度は、70℃~200℃ の範囲内に設定される。このような低い温度範囲におい て、液相拡散接合層56は充分な接合強度を得ることが できる。

【0068】(4) 半導体素子20の主面を複関する候 線樹脂32を形成する(図14参照。)。保護樹脂332 は、例えば薄下陸布法により、基板70の中央部分の開 口70Hを適して例えば流動性を有するポリイミド系樹脂を廃填し、この充填されたポリイミド系樹脂を使化さ せることにより形成することができる。

【0069】(5) 半導体素子20を被覆し保護するスティフナー31を取り付けることにより、本発明の第2の実施の形態に係る半導体装置2を完成させることができる(関14参明、)。

【0070】(6)この後、半導体装置2の基板70の 外部端子72に半田ボール電極41が形成される。

【0071】このような本発明の第2の実施の形態に係る半導体装置2の製造方法においては、電極了10の減 相拡散金属(Cu) と第10秒台用金属層(Sn) 52 との化合温度(液相拡散温度)を第2の接合用金属(B i) 53により下げることができるので、電極710と 金パンプ電係40との間の接合温度を下げて低温度プロ セスを実現することができる。

【0072】(第3の実施の形態)本発明の第3の実施の形態は、レジンモールド構造を採用する半導体装置 (電子デバイス)に本発明を適用した例を説明するものである。

【0073】図18に示すように、本発明の第3の実施の形態に係る半導体装置3は、タブ(タブリード)80 Aと、このタ780Aにフェイスアップ方式でマウントされた半導体素子20E、半導体素子20のボンディングパッド21にボンディングワイヤ81を通してインナーリードが電気的に接続されたリード80Bと、タブ80A、半導体素子20及びリード80Bのインナーリードを気密封止する機能対止部82とを備えて構築され

ている。

【0074】未與明の第3の実施の形態において、タブ 80A及びリード80Bは同一リードフレームに一体的 に形成されていたものを半導み装置3の製造プロセス (組立プロセス)においてリードフレームの枠体から列 断し成型したものである。このダブ80A及びリード8 0Bには、例えば、電気伝導性に優れたCu板、Cu合 金板、鉄ニッケル(FeーNI)合金板等支集用的に使 用することができる。また、タブ80A及びリード80 Bは全体的に例えば鉄ニッケル合金で形成し、少なくと もタブ80Aの表面層にCuクラッド層を形成したもの でもよい。

【0075】半導体素子20は液相拡散接合層56を介在させてタブ80Aに接合されている。液相拡散接合層566よ、上記本発明の第1の実施の形態に係る半導体装置1と同様に、タブ80A上のCu3Snからなる第1の接合層56Aと、この第1の接合層56Aと、ごちに第2の接合層56Bと、さらに第2の接合層56BとにCu3Sn5からなる第20接合層56Bと

とを備えて構成されている。図19に示すように、半導 体素子20のタブ80 A 上へのマウント前、すなわち渡 相拡散処理前においては、タブ80A上に液相拡散金属 層54A、第1の接合用金属層52A、第2の接合用金 属53Aのそれぞれが順次形成されており、半導体素子 20の裏面上に液相拡散金属層54B、第3の接合用金 属層52B、第4の接合用金属層53Bのそれぞれが順 次形成されている。本発明の第3の実施の形態に係る半 導体装置3において、液相拡散金属層54A、54Bの それぞれには、液相拡散金属である例えばCuめっき層 を実用的に使用することができる。第1の接合用金属層 52A、第3の接合用金属層52Bのそれぞれには、本 発明の第1の実施の形態に係る半導体装置1の第1の接 合用金属層52と同様に5nめっき層を実用的に使用す ることができる。さらに、第2の接合用金属層53A、 第4の接合用金属層53Bには、本発明の第1の実施の 形態に係る半導体装置1の第2の接合用金属層53と同 様にBiめっき層を実用的に使用することができる。 【0076】液相拡散処理は、例えば150℃~200 ℃の温度において、10秒間加熱することにより、第2 20 の接合用金属層53Aによって化合温度が下げられた状 機でタブ80 A トの液相拡散金属層54 A と第1の接合 用金属層52Aとを化合させ、第1の接合層56A並び に第2の接合履56Rの一部を生成することができ、第 4の接合用金属層53Bによって化合温度が下げられた 状態で半導体素子20の裏面上の液相拡散金属層54B と第3の接合用金属層52Bとを化合させ、第3の接合 ■56C並びに第2の接合屬56Bの残りの一部を生成 することができ、液相拡散接合層56を形成することが

1の接合用金属層52A、第2の接合用金属層53A、第3の接合用金属層52B、第4の接合用金属層53B のそれぞれの材料の変形例については、本発明の第1の 実施の形態に係る半導体装置1で説明した変形例と同様 である。

【0077】なお、液相拡散金属層54A、54B、第

【0078】本発明の第3の実施の形態に係る半導体接 園3において、半導体素子20とタブ80Aとの間は電 気的に接続されており、例えばタブ80Aとか同様で 20に基板電源を供給する「電極」としても使用され、 半導体素子20の裏面はこの基板電源の供給を受ける 「電板」としても使用されている。

【0079】ボンディングワイヤ81には、例えばAu ワイヤ、Cuワイヤ、Alワイヤ等を実用的に使用する ことができる。

【0080】樹脈封止部32には例えば熱硬化性のエポ キシ系樹脂を実用的に使用することができ、この樹脂封 止部32はトランスファモールド法により形成されてい る。

【0081】このように構成される本発明の第3の特徴 50

に係る半導体装置3においては、本発明の第1の実施の 形能に係る半導体装置 1. 本発明の第2の実施の形能に 係る半導体装置2のそれぞれと同様に、タブ(電極)8 ① Aとそれに接続される他の半導体素子20(シリコン 単結晶基板、電極) との間の液相拡散による接合温度を 第2の接合用金属層(例えばBi)53A及び第4の接 合用金属層53Bにより下げ、なおかつ双方の間の接合 強度を第2の接合用金属層53A及び第4の接合用金属 層53Bにより高めることができる。従って、タブ80 A上に半導体素子20をマウントする場合の熱圧着ボン ディングの温度を例えば300℃以下の低温度に設定す ることができ、極めて短時間においてマウントを行うこ とができる。樹脂接着剤を利用する場合にはマウントに 1時間~3時間を必要としていたが、本発明の第3の実 施の形態に係る半導体装置3においては例えば数十秒の 範囲内でマウントを行うことができる。さらに、半導体 素子20とタブ80Aとの間の液相拡散接合層56は熱 伝導性に優れているので、放熱効果の高い半導体装置3

【0082】 (第4の実施の形態) 本売明の第4の実施 の形態は、ボールボンディングアレイ構造を採用する半 簿体装置 (電子デバイス) に本発明を適用した例を説明 するものである。 【0083】図20に示すように、本発明の第4の実施

を実現することができる。

【0083】図20に示すように、本契明の第4の実施 の形態に係るボールボンディングアレイ構造を採用する 半導体装置 4は、基板90と、基板90上のFC方式で マウントされた半導体素子 (半導体チップ) 20とを傾 えて構度されている。さらに、半導体装置 4は、基板9 0の裏面に配設された外部端子92上に半田ボール電極 41を備えている。

【0084】基板90には、エポキシ系樹脂基板、セラ ミックス基板等を実用的に使用することができる。基板 90の表面上(図中上側表面)にはリード配線91が配 設されている。このリード配線91は、図示しないが、 図1(A)に示すリード配線11と同様に接着層を介在 させて基板90の表面に接着されている。リード配線9 1の半導体素子20との接続部分は電極910として使 用されている。この電極910は、本発明に係る「電 極」、「第1の電極」又は「第2の電極」の一具体例に 対応するものである。リード配線91は基板91を貫通 する接続孔配線93を通して外部端子92に電気的に接 続されている。リード配線91並びにそれに一体的に機 成された電極910は電気伝導性に優れ、かつ液相拡散 金属である例えば C u 箔膜を実用的に使用することがで き、この C u 箔膜は例えば 2 0 u m の膜厚で形成されて いる。リード配線91の少なくとも電極910の表面に は研磨処理、Cuめっき処理等を行い、電極910の表 面粗さ R m a x は 0. 2 μ m以下に設定されることが好 ましい。外部端子92には、リード配線91と同様に、 例えばCu箔膜を実用的に使用することができる。

【00 8 5】半導体素子 2 0 は、本発明の第 1 の実施の 形態並びは本発明の第 2 の実施の形態に係る半導機を 2 0 と同様であり、その主面を基板 9 0 の表面に向かい 合わせたフェイスダウン方式でマウントされている。半 導体素子 2 0 の主面には複数のボンディングバッド(電 版) 2 1 が解りまれている。

【0086】そして、本発明の第4の実施の形態に係る 半導体装置 4 においては、本発明の第1の実施の形態に 係る半導体装置1と同様に、少なくとも表面層に液相拡 散金属(例えばCu)を有するリード配線91の電極9 10 10と、液相拡散金属、この液相拡散金属に化合させる 第1の接合用金属(例えばSn)、及び液相拡散金属と 第1の接合用金属との化合温度を下げる第2の接合用金 属(例えばBi)を少なくとも含む、電極910上の液 相拡散接合層56と、液相拡散接合層56上の鋼パンプ 電極42とを備え、液相拡散接合層56及び銅パンプ電 極42とを介在させて雪板910と半導体素子20のボ ンディングパッド21との間が電気的かつ機械的に接続 されている。液相拡散接合層56は、本発明の第3の実 施の形態に係る半導体装置3と同様に、実際は、電極9 20 10 FのCu3 Snからなる第1の接合層56Aと、こ の第1の接合層56A上のCus Snsからなる第2の 接合層56Bと、さらに第2の接合層56B上のCu3 Snからなる第3の接合層56Cとにより構成されてい る。

【0087】図21に示すように、半導体素子20の基 板90へのマウント前、すなわち液相拡散処理前におい ては、リード配線91の少なくとも電極910トに第1 の接合用金属層52A、第2の接合用金属53Aのそれ ぞれが順次形成されており、銅パンプ電極42トに第3 30 の接合用金属層 5 2 B、第4の接合用金属層 5 3 Bのそ れぞれが順次形成されている。銅パンプ電極42の表面 は予め研磨処理、Cuめっき処理等を行い、電極910 の表面粗さRmaxは0.2μm以下に設定されること が好ましい。本発明の第4の実施の形態に係る半導体装 置4において、第1の接合用金属層52A、第3の接合 用金属層52Bのそれぞれには、本発明の第1の実施の 形態に係る半導体装置1の第1の接合用金属層52と同 様にSnめっき層を実用的に使用することができる。さ らに、第2の接合用金属層53A、第4の接合用金属層 40 53Bには、本発明の第1の実施の形態に係る半導体装 置1の第2の接合用金属層53と同様にBiめっき層を 実用的に使用することができる。

【0088】 液相拡散処理は、例えば150℃~200 での温度において、10秒間加熱することにより、第2 の接合用金属種53Aによって化合温度が下げられた状態で電極910の液相拡散金属(Cu)と第1の接合用 金属層52Aとを化合させ、第1の接合層56A並びに 第2の接合層56Bの一部を生成することができ、第4 の接合用金属層53Bによって化合温度が下げられた状 90

態で銅パンプ電艦42の液相拡散金属と第3の接合用金 属層52Bとを任合させ、第3の接合層56C並びに第 2の接合層56Bの残りの一部を生成することができ、 液相拡散接合層56を形成することができる。

【0089】なお、第1の接合用金属層52A、第2の接合用金属層53A、第3の接合用金属層53B、第4の接合用金属層53Bのそれぞれの材料の変形例については、本発明の第1の実施の発生等体装置1で設明した変形例と同様である。

 【0090】半導体素子20のボンディングパッド21 と銅パンプ電極42との間はパリヤメタル層55を介在 して電気的かつ機械的に接合されている。

【0091】このように構成される本発明の第4の特徴 に係る半導体装置4においては、本発明の第1の実施の 形態に係る半導体装置1と同様に、電極910とそれに 接続される他の銅バンプ電極42との間の液相拡散によ る接合温度を第2の接合用金属及び第4の接合用金属 (例えばBi) により下げ、なおかつ双方の間の接合強 度を第2の接合用金属及び第4の接合用金属により高め ることができるので、部品、材料等の耐熱温度を下げる ことができる。従って、300℃以下の低温度プロセス を採用することができる。特に、本発明の第4の実施の 形能に係る半導体装置 4 においては、基板 9 0 の外部機 子92に半田ボール電極 (例えば融点温度180℃) 4 1を形成した後に、この半田ボール電極41の融点より も低い温度で液相拡散処理を行うことができるので、基 板90に半導体素子20をボンディングすることができ る。

【092】(第5の実施の形態) 太契明の第5の実施 の 形態は、本発明の第4の実施の形態に係る半準体装置 4の応用的であり、ボールボンディングアレイ機能を採 用し、かつ複数の半導体素子を積層化した半導体モジュ ール(電子デバイス)に本発明を適用した例を説明する ものである。

【0093】図22に示すように、本発卵の第5の実施 の形態に係るボールボンディングアレイ構造を採用する 半導体モジュール5は、基板90と、基板90上に三次 元積層された複数の半導体素子(半導体チップ)201 ~204とを備えて構築されている。本発明の第5の実 角の形態に係る半導体モジュール5は、4個の半導体素 子201~204を機能した例を説明しているが、そ の積層情数は4個に限定されず、例えば8個、16個等 の積層が可能である。さらに、半導体モジュール5は、 基板90の裏面に配設された外部端子92上の半田ボー ル電極41を備えている。

【0094】基板90には、本発明の第4の実施の形態 に係る半導体装置4の基板90と同等のものを使用する ことができる。

【0095】半導体素子201~204は基本的には本発明の第1の実施の形態乃至本発明の第4の実施の形態

に係る半導体素子20と同様であるが、半導体素子20 1にはその表面(主面)のボンディングパッド21から 裏面に貫通する貫通網バンプ電極421が配設され、同 様に半導体素子202には貫通網パンプ電極422が、 半導体素子203には貫通網バンプ電板423が、半導 体素子204には貫通鋼パンプ電極424がそれぞれ配 設されている。貫通銅パンプ電極421は、例えば半導 体素子201にレーザ加工により貫通孔を形成し、この 貫通孔に埋設することにより形成することができる。貫 通銅バンプ電極421の半導体素子201の表面側は突 10 出した電極421Aとして使用され、裏面側も突出した 電極421Bとして使用されている。同様に、貫通銅バ ンプ電極422の半導体素子202の表面側は電極42 2Aとして使用され、裏面側は電板422Bとして使用 されている。貫通網バンプ電極423の半導体素子20 3の表面側は電極423Aとして使用され、裏面側は電 極423Bとして使用されている。貫通銅パンプ電極4 24の半導体素子204の表面側は電極424Aとして 使用され、裏面側は電極424Bとして使用されてい る。

【0096】これらの資連制パンプ電極421~424 であるCu柱体を実用的に使用することができる。資調 網がフで電極421の電極421A、421B、質通網 パンプ電極422の電極421A、422B、質通網パンプ電極424の電極424A、423B、質通網パンプ電極424の電極424A、424Bのぞれぞれの銀 可能よ予め研究側後、Cuめっを処理等を行いるの記 Rmaxは0.2μm以下に設定されることが好ましい。半解体素子201においては、表面側に電極421 、裏面側に電極425 アンプ方式、フェイスダウン方式のいずれにおいても基 板90上にボンディンゲすることができる。その他の半 導体素子202~204についても同様である。

【0097】そして、本発明の第5の実施の形態に係る 半導体モジュール5においては、本発明の第4の実施の 形態に係る半導体装置 4 と同様に、少なくとも表面層に 液相拡散金属 (例えばСu) を有するリード配線91の 電極910と、液相拡散金属、この液相拡散金属に化合 させる第1の接合用金属(例えばSn)、及び液相拡散 40 金属と第1の接合用金属との化合温度を下げる第2の接 合用金属(例えばBi)を少なくとも含む、電極910 上の液相拡散接合層56を備え、この液相拡散接合層5 6を介在させて電極910と半導体素子201の電極4 2 1 Bとの間が電気的かつ機械的に接続されている。液 相拡散接合層56は、本発明の第4の実施の形態に係る 半導体装置4と同様に、実際は、電極910上のCu3 Snからなる第1の接合層56Aと、この第1の接合層 56 A上のCu 6 Sn 5 からなる第2の接合層 56 B と、さらに第2の接合層56B上のCu3Snからなる 50 第3の接合層56Cとにより構成されている。

20

【0098】半導体素子201の基板90へのボンディ ング前、すなわち液相拡散処理前においては、リード配 線91の少なくとも電板910上に第1の接合用金属層 52A、第2の接合用金属53Aのそれぞれが順次形成 されており、半導体素子201の電極421B上に第3 の接合用金属層52B、第4の接合用金属層53Bのそ れぞれが順次形成されている(図21参照。)。液相拡 散処理は、例えば150 $^{\circ}$ $^{\circ}$ $^{\circ}$ 200 $^{\circ}$ $^{\circ}$ の温度において、 10秒間加熱することにより、第2の接合用金属層53 Aによって化合温度が下げられた状態で電極910の液 相拡散金属(Cu)と第1の接合用金属層52Aとを化 合させ、第1の接合層56A並びに第2の接合層56B の一部を生成することができ、第4の接合用金属層53 Bによって化合温度が下げられた状態で電極421Bの 液相拡散金属(Cu)と第3の接合用金属層52Bとを 化合させ、第3の接合層56C並びに第2の接合層56 Bの残りの一部を生成することができ、液相拡散接合層

【0099】同様に、半導体素子201の電極421A と半導体素子202の電極422Bとの間、半導体素子 202の電極42名と半導体素子203の電極423 Bとの間、半導体素子203の電極423と半導体素 子204の電極424Bとの関い。ずれも減性就接換合層56を介在させて電気的かつ機械的に接続されてい

56を形成することができる。

る。 【0100】このように構成される本発明の第5の特徴 に係る半導体モジュール5においては、本発明の第4の 実施の形態に係る半導体装置4と同様に、電極910と それに接続される半導体素子201の電極421Bとの 間、半導体素子201の電板421Aと半導体素子20 2の電極422Bとの間、半導体素子202の電板42 2 A と半導体素子203の電極423Bとの間、半導体 素子203の電極423Aと半導体素子204の電極4 24Bとの間の液相拡散による接合温度を、第2の接合 用金属及び第4の接合用金属(例えばBi)により下 げ、なおかつ双方の間の接合強度を第2の接合用金属及 び第4の接合用金属により高めることができる。従っ て、300℃以下の低温度プロセスを採用することがで きる。特に、本発明の第5の実施の形態に係る半導体モ ジュール5においては、基板90の外部端子92に半田 ボール電極41を形成した後に、この半田ボール電極4 1の融点よりも低い温度で液相拡散処理を行うことがで きるので、基板90に半導体素子201~204をポン ディングすることができる。さらに、液相拡散処理が低 い温度で行えるので、半導体素子201~204のそれ ぞれの間の残留応力を減少することができる。

【0101】(第6の実施の形態) 本発明の第6の実施 の形態は、本発明の第4の実施の形態に係る半導体装置 4と本発明の第5の実施の形態に係る半導体モジュール 5 とを組み合わせた半導体モジュール(電子デバイス) を説明するものである。

【0102】図23に示すように、本発明の第6の実施 の形態に係る半導体モジュール6は、基板90と、基板 90上にドじ方式でボンディングされた半導体兼子(半 導体チップ)20とを備えた半導体装置 4を、複数三次 元積層して構築されている。本発明の第6の実施の形態 に係る半線体モジュール6は、2個の半導体接置4を検 層化した例を説明しているが、その積層関数は2個に限 定されず、例2ば4個、8個、16個等の積層が可能で ある。さらに、半導体モジュール6において最下層の半 導体接置40基板90の裏面に配設された外部端子92 には半田ボー収積41を模えている。

【0103】 半導体モジュール6の半導体被重々の基故 90と半導体素子20との間は本発明の第4の実施の形態 態に係る半導体装置 4 と同様に液相拡散接合傷56及び 鋼バン可電極42を介在させて接続されているが、上下 に積蓄された半導体装置4間は中間配線基板900によ り電気的かつ機械的に接続されている。

【0104】中間配線基板900は、例えば半導体装置 24 の基板90と同等の材料で形成された基材の表面に電極9001、裏面に電極902を個元、電極901と902との間止接続孔配線903により電気的止接統されている。電極901、902のイヤぞのの少なくとも表面層には液相拡散金属を備えることが好ましく、本発明の第6の実施の形態において、電極901、902のぞれぞれは21は簡節形成されている。

【0 1 0 5 1 半導体装置 4 の基板 9 0 の電極 9 1 1 と中間配線基板 9 0 の裏面側の電極 9 0 2 との間、中間配 線基板 9 0 の表面側の電極 9 0 1 と半導体装置 4 0基 坂 9 0 の外部端子(電極) 9 2 のそれぞれの間は、液相 拡散接合層 5 6 と同様の液相批散接合層 5 8 により電気 的かつ機棒形に接続されている。

【0106】このように構成される本発明の第6の特徴 に係る半導体モジュール6においては、本発明の第5の 実施の形態に係る半導体モジュール5と同様に、半導体 装置4の基仮90の電極911とそれに接続される中間 配線基仮90の電極90と00間極9で100円間配線基板90 0の電極901と半導体装置4の基板90の外部端子9 2との間の減相拡散による接合温度を、第2の接合用金 個展及5第4の場合用金属の近34261)により下げ、な おかつ双方の間の接合進度を第2の接合用金属及び第4 の接合用金属により高めることができる。従って、30 の世分用金属により高めることができる。従って、30

【0107】(第7の実施の形態) 本発明の第7の実施 の形態は、本発明の第1の実施の形態に係る半導体装置 1において、基板10の電極110と金パンプ電極40 との間の接合強度をより一層向上させることができる例 を説明するものである。

【0108】本発明の第7の実施の形態は、本発明の第 50 の圧延Cu 治膜は例えば電解Cu 治膜の再結晶化の粒径

1の実施の形態に係る半導体装置 1 において、基板 1 0 上のリード配線 1 1の少なくとも電極 1 1 0の表面、なわち液相拡散を合層 5 6の形成表面を液相拡散処理前 に平坦化したものである。図 2 4に示すように、この電 幅 1 1 0の表面の平坦化(平坦化領域を符号Fで示

す。)は例えば熱圧着ポンディング装置60の加熱加圧 ツール62による打痕で行うことができる。加熱加圧ツ ール62の電極接触面は例えば線面仕上げを行っている ことが好ましく、例えば電極110の表面組さRmax は0.2 μ m以下に生成することが好ましい。

【0 10 9】 本界明者が実施した基礎研究によれば、 節の表面観さRmaxが1.6μm、液相拡散処理の接 合温度が400℃、接合時間が10秒、接合加重が50 MPaの条件下において液相拡散接合層は約3μmの厚 さで生成されたのに対して、調節の表面阻さRmaxが 0.2μm、液相拡散処理の接合温度が300℃、接合 時間が10秒、接合加重が50MPaの条件下において 液相起散接合層は約1μmの度で全生成することができ た。すなわち、前者の条件に対して、後者のように瞬間 の表面粗さを小さくすればするほど、低温度において液 相散散接合層を厚く生成することができ

【0110】なお、電極110の平垣化は、直接、液相 拡散金属の表面に行ってもよいし、電極110の表面上 に第10接合用金属層52、第2の接合用金属層53の それぞれを形成した後(め)も後)に行ってもよい。さ らに、例えば電極110上に電極110のパターンニン グレジスト膜や保護レジスト膜が形成されている状態で 平坦化を実施してもよい。

【0 1 1 1】このように本発明の第7の実施の形態に係 る半導体装置 1 にがいては、液相拡散接合層 5 を形成 する電信 1 1 の表面を平坦化することにより、液相拡 散接合層 5 6 の接合原さを厚くすることができ、接合強 度を向上することができるとともに、液相拡散温度を下 げることができ、低温プロセス化を実現することができ、 ス

【0112】(第8の実施の形態)太発明の第8の実施の形態は、本発明の第1の実施の形態に係る半導体接近 1 万至本発明の第4の実施の形態に係る半導体を選 4 本発明の第5の実施の形態に係る半導体モジュール6、 並びに本発明の第6の実施の形態に係る半導体モジュール6、 並びは本発明の第7の実施の形態に係る半導体基置1にあいて、液相抵散接合第56、58のそれぞれの接合強度をより一層向上させた例を説明するものでである。【0113】本発明の第8の実施の形態は、半導体基置1の基板100電板105の高級性抵散金属と圧延速機(圧延筋機)としたことである。圧延薄膜は液相拡散金属に圧延処理を施した視聴であり、例えば圧延ご、116版 110℃~30℃の低温度において1μm~20μmの粒径電機団で再結晶化される性質を有している。こ

に比べて大きな粒径サイズを有している。

[0114] 図25は漆相鉱敷処理の接合温度と添相拡 散接合層の接合適度との関係を示している。図25中、 データ(A)は、圧延Cu溶膜Lに4μmの関厚のSn (第10時会用金属)、1μmの関厚のBi (第2の接 合用金属)のそれぞれを形成し、互いにBi両土を向か い合せ、圧延Cu溶膜同士を配合わせた状態で生成し た液相拡散接合層の特性である。接合時間は10秒、接 合加重は50MPaである。以下、この条件は同一であ る。データ B)は、電解Cu溶膜上に4μmの観厚の Sn、1μmの関厚のBiのそれぞれを形成し、互いに Bi同土を向かい合せ、電解Cu溶膜同土を重ね合わせ た状態で生成し液剤は放射を

(B) 比州ベて、データ(A) すなわち圧延し 1箱線で 生成された液相拡散接合層の方が接合温度も低く、接合 速度も敷倍から数十倍高くなる。特に、電解C u 宿膜で 生成された液相拡散接合層においては約300 ℃以下の 接合強度がゼロになるが、圧延C u 宿膜で生成された液 相拡散接合層においては充分な接合強度を得ることがで きる。

【0115】また、図25には、圧延Cu箔膜上に4μmの限厚の5n、1μmの限厚の5n、1μmの限厚の1のそれぞれを形成し、この8lにAu(金パンプ電極40に相当する)を重ね合わせた状態で生成した液相拡散接合層の特性をデータ(a)として、電解Cu活測上に4μmの観厚の5n、1μmの観摩の6lのそれぞれを形成し、この8lにAuを重ね合わせた状態で生成した液相拡散接合層の特性をデータ(b)として示している。同様にデータ(b)に比べて、データ(a)すなわち圧延Cu箔膜とAuとで生成された液相拡散接合層の方が接合膿が低くい範囲で高い接合強度を得ることができる。特に、260℃以下の接合温度において、液相拡散接合層の液合物環は上壁する機関を示している。

【0116】このように構成される本野門の第8の実施
の形態に係る半導体装置又は半導体モジュール(電子デバイズ)においては、液相抵散金属を圧延薄膜としたことにより、液相拡散金属の数億分イズを大きくし、接合
耐後を増加することができる。こうに、液相拡散接合層は接重度によいて高い接合強度を得ることができる。
「0117」(その他の実施の形態)本発明は上記複数
の実施の形態によって記載したが、この開示の一部をな
す論述及び傾面はこの界明を限定するものであると理解
すべきではない。この関示いる当業者には様々な代替実 遊の形態、実施例及び運用技術が明らかとなろう。

【0118】例えば、本発明は、マザーボード、ドータ ボード等の実装基板上に本発明の第1の実施の形態に係 る半導体接置1等を実装する電子デバイス、上記実装基 板上に本発明の第5の実施の形態に係る半導体モジュー ル5若しくは本発明の第6の実施の形態に係る半導体モ

24 ジュール6を実装する電子デバイス等に適用することが できる。これらの実装には液相拡散接合層が使用され る。

【0119】さらに、本発明は、電極間の接合に液相拡散接合層を使用する場合に限らず、例えば液相拡散金属であるセラミックス(Al2O3)を少なくとも表面層に有する基板上に液相拡散接合層を形成して電子部品等を接合する場合にも適用することができる。

[0120] このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の妥当な特許請求の範囲 に係る発明特定事項によってのみ定められるものである。

[0121]

【発明の効果】本発明は、低温度において接合可能な電極を有する電子デバイスを提供することができる。 【0122】さらに、本発明は、耐熱性を必要としない 部品、材料等の使用により、製品コストを減少すること

ができる電子デバイスを提供することができる。 【0123】さらに、本発明は、電極の接合強度を向上 することができ、電極の接合部の電気的かつ機械的信頼 性を向上することができる電子デバイスを提供すること ができる。

【0124】さらに、本発明は、電極間の接合を低温度 にすることができる電子デバイスの製造方法を提供する ことができる。

【0125】さらに、本発明は、製造コストを減少する ことができる電子デバイスの製造方法を提供することが できる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係るボールグリッドアレイ構造を採用する半導体装置において、(A)は 熱圧着ボンディング後の電極部分の拡大断面図、(B) は熱圧着ボンディング前の電極部分の拡大断面図である。

【図2】本発明の第1の実施の形態に係るポールグリッドアレイ構造を採用する半導体装置の断面構造図であ

【図3】(A)乃至(C)は本発明の第1の実施の形態 に係る液相拡散接合層の生成過程を示す工程断面図であ

【図4】(A) 乃至(C) は本発明の第1の実施の形態 に係る他の液相拡散接合層の生成過程を示す工程断面図 である。

【図5】本発明の第1の実施の形態に係る液相拡散接合 層の生成量とアニール温度との関係を示す図である。 【図6】本発明の第1の実施の形態に係る半導体装置の 工程断面図である。

【図7】図6に続く本発明の第1の実施の形態に係る半 導体装置の工程断面図である。 【図8】図7に続く本発明の第1の実施の形態に係る半 導体装置の工程断面図である。

【図9】図8に続く本発明の第1の実施の形態に係る半 導体装置の工程断面図である。

【図10】図9に続く本発明の第1の実施の形態に係る 半導体装置の工程断面図である。

【図11】図10に続く本発明の第1の実施の形態に係る半導体装置の工程断面図である。

【図12】図11に続く本発明の第1の実施の形態に係る半導体装置の工程断面図である。

【図13】図12に続く本発明の第1の実施の形態に係る半導体装置の工程断面図である。 【図14】本発明の第2の実施の形態に係るボールグリ

【図15】本発明の第2の実施の形態に係るボールグリッドアレイ構造を採用する半導体装置において、熱圧着ボンディング後の電極部分の拡大断面図である。

【図16】本発明の第2の実施の形態に係る半導体装置 の工程断面図である。

【図17】図16に続く本発明の第2の実施の形態に係る半導体装置の工程断面図である。

【図18】本発明の第3の実施の形態に係る半導体装置の断面構造図である。

【図19】本発明の第3の実施の形態に係る半導体装置 の要部の工程断面図である。

【図20】本発明の第4の実施の形態に係る半導体装置の断面構造図である。

【図21】本発明の第4の実施の形態に係る半導体装置 の要部の工程断面図である。

【図22】本発明の第5の実施の形態に係る半導体モジュールの断面構造図である。

【図23】本発明の第6の実施の形態に係る半導体モジュールの断面構造図である。

【図24】本発明の第7の実施の形態に係る半導体装置 の熱圧着ボンディング工程における工程断面図である。 【図25】本発明の第8の実施の形態に係る液相拡散接合層の接合温度と接合強度との関係を示す図である。 【符号の説明】

1~4 半導体装置

5、6 半導体モジュール

10、70、90 基板

110, 710, 910, 421A, 421B, 422 A, 422B, 423A, 423B, 424A, 424

A、422B、423A、423B、424A、424 B、901、902 電極

11、91 リード配線

12、72、92 外部端子

13、93、903 接続孔配線

20、201~204 半導体素子

21 ボンディングパッド

40 金パンプ電極

42 銅パンプ電極

52、52A 第1の接合用金属層 53、53A 第2の接合用金属層

52B 第3の接合用金属層

53B 第4の接合用金属層 54A、54B 液相拡散金属層

55 バリヤメタル層

56 液相拡散接合層 56A 第1の接合層

56B 第2の接合層

56C 第3の接合層 60 熱圧着ボンディング装置

61 加熱ステージ

62 加熱加圧ツール

71、80B リード 80A タブ

81 777

82 樹脂封止部

421、422、423、424 貫通銅パンプ電極

900 中間配線基板

[図5]

	Sn めっき棚の単層		Sat めっき層と Di めっき層と 複合層	
(hour)	CusSn	CaeSas	CusSn	CusSus
0	0	8	0	0
24	1	3	1.5	6
144	3	5	4	11

[図6]

[图23]

[图25]

フロントページの続き

(72)発明者 蛭田 陽一

神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝マイクロエレクトロニクスセン

ター内

F ターム(参考) 5F044 MM25 NN08 QQ03