Fluid Mechanics and Rate Processes: Fluid Kinematics Tutorial: August 18, 2016

P1. (4.26, Fox and McDonald, 6^{th} Ed.) Water enters a two-dimensional channel (90° bend) as shown in the Fig below. The inlet velocity profile is uniform while the outlet profile is assumed to be linear, as indicated in the Fig. evaluate v_{mim} for $v_{max}=2v_{min}$. U=7.5m/s, h=75.5mm

Flow through a 90° bend

Given: Water flow in the two-dimensional square dannel shown.

Find: Unin

Solution: Apply conservation of mass to the C1 shown.

Bosic equation: 000)

Ren

$$SPD \cdot S \overrightarrow{J} + (\overrightarrow{J}_s \cdot \overrightarrow{A} + C) = 0$$

$$SPD \cdot S \overrightarrow{J} + AWU - = 0$$

We relocated distribution across the exit at (a) is linear $\nabla_z = \nabla_{non} - (\nabla_{non} - \nabla_{nin}) \frac{1}{h} = 2\nabla_{nin} - \nabla_{nin} \frac{1}{h} = \nabla_{nin}(z - \frac{1}{h})$ $\nabla_z = \nabla_{non} - (\nabla_{non} - \nabla_{nin}) \frac{1}{h} = 2\nabla_{nin} \nabla_{nin} = \frac{1}{h} \nabla_{nin} \nabla_{nin} = \frac{1}{h} \nabla_{nin} \nabla_{nin} = \frac{1}{h} \nabla_{nin} \nabla_{nin} = \frac{1}{h} \nabla_{nin} \nabla_{nin} \nabla_{nin} = \frac{1}{h} \nabla_{nin} \nabla_{nin} \nabla_{nin} \nabla_{nin} = \frac{1}{h} \nabla_{nin} \nabla_{nin}$