Name: _____

1. Let G be a group with elements $\{e, a, b, c, d, f, g, h\}$. Here is part of the table for G:

(3pts) (a) Find the left regular representation of c as in Cayley's theorem. That is, find the permutation λ_c in S_8 corresponding to c.

Solution:
$$\lambda_c = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 1 & 2 & 8 & 7 & 5 & 6 \end{pmatrix}$$

(3pts) (b) Suppose $\lambda_d = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 2 & 1 & 3 & 4 \end{pmatrix}$ is the left regular representation of d. Write the row for d in the group table.

Solution: The row will read d f g h a e b c

(4pts) (c) If you compute $\lambda_c \lambda_d$ you get another permutation in S_8 . Of which element in G is it the left regular representation? That is, find $x \in G$ such that $\lambda_x = \lambda_c \lambda_d$. Briefly explain how you know you are right.

Solution: $\lambda_c \lambda_d = \lambda_{cd}$ by the way we define regular representations. But because G is isomorphic to the group of regular representations, we know λ_{cd} corresponds to cd which in G equals h. Thus $\lambda_c \lambda_d = \lambda_h$.

(3bn-pts) 2. Bonus: Which of the permutations you found above are even? Briefly explain how you know