1 Schwach konstruierbare Garben auf Simplizialkomplexen

In diesem Abschnitt bezeichne \mathcal{K} einen lokal-endlichen Simplizialkomplex und $|\mathcal{K}|$ seine geometrische Realisierung. Wir erhalten eine stetige Abbildung

$$p: |\mathcal{K}| \to \mathcal{K},$$

genannt Simplexanzeiger oder Indikatorabbildung, der einem Punkt $x \in |\mathcal{K}|$ in der geometrischen Realisierung den eindeutigen Simplex $\sigma \in \mathcal{K}$ mit $x \in |\sigma|$ zuordnet.

Definition 1. Eine Garbe $F \in Ab_{|\mathcal{K}|}$ heißt schwach $|\mathcal{K}|$ -konstruierbar (oder kurz: schwach konstruierbar), falls für alle $\sigma \in \mathcal{K}$, die Einschränkungen $F|_{|\sigma|}$ konstante Garben sind. Wir bezeichnen die volle Unterkategorie der schwach konstruierbaren Garben in $Ab_{|\mathcal{K}|}$ mit s-Kons (\mathcal{K}) .

Eine derivierte Garbe $F \in \text{Der}(Ab_{/|\mathcal{K}|})$ heißt schwach $|\mathcal{K}|$ -konstruierbar, falls für alle $j \in \mathbb{Z}$ die Kohomologiegarben $H^j(F)$ schwach konstruierbar sind. Wir bezeichnen die volle Unterkategorie der schwach konstruierbaren derivierten Garben in $\text{Der}(Ab_{/|\mathcal{K}|})$ mit $\text{Der}_{sk}(|\mathcal{K}|)$.

Proposition 2. Für $F \in \text{Der}(Ab_{/|\mathcal{K}|})$ sind äquivalent:

- 1. F ist schwach $|\mathcal{K}|$ -konstruierbar
- 2. Die Koeinheit der Adjunktion ist auf F ein Isomorphismus $p^*p_*F \xrightarrow{\sim} F$.

Beweis. \Box

Lemma 3. Die Kategorie s-Kons(\mathcal{K}) ist abelsch.

Beweis. Durch den offensichtlichen Isomorphismus zur Kategorie der abelschen Gruppen (durch den Funktor der globalen Schnitte) ist die Kategorie der konstanten abelschen Garben auf einem topologischen Raum X eine abelsche Kategorie. Nun folgt die Aussage aus der Exaktheit des Pullbacks i_{σ}^* entlang den Inklusionen $i_{\sigma}: |\sigma| \hookrightarrow |\mathcal{K}|$.

Proposition 4. Sei $F \in \text{Ket}^+(\text{Ab}_{/|\mathcal{K}|})$ aus S-azyklischen mit schwach konstruierbaren Kohomologiegarben. Dann ist die Koeinheit ein Quasiisomorphismus. (???)