Kund Bandooni CE 2014413

TUTORIAL-5

Sol 1: Using BFS, we can find the minimum no of nodes blue a source node and destination node, while using DFS, we can find if a path exists b/us two nodes. · Applications: BFS - To detect cycles in graph, min distance comparison DFS - To detect & compare multiple paths, detect cycle in a graph Sol 2. DFS: We use stack to implement DFS because order doesn't has much importance" BFS: We use queue Data structure to implement BFS because order matters in this case? Sol 3. Sparse Graph: No. of edges is close to minimal no. of edges Dense Graph : No. of edges is close to maximal no: of edges. Sol4. Cycle Detection in BFS:-1. Compute in-degree (no of incoming edges) for each of the Westex present in graph & count no. of adjos nodes = 0 2. Pick all the vertices with in degree as O & add them to queue 3. Remove a vertex from the queue, than - increment count by 1. - Decrease in glegree by I for all neighbours - If in-degree of a neighbouring node is = 0, add to queue. 4. Repeat 3 until queue is empty. 5. If no of reisited nodes is not equal to no of nodes, then graph has a cycle.

	Nodes Processed		Stack	
			G	
	\$ 6	2 2 4 4 4	DFH	
	D	3000 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CFH	
	C		EFH	
	E	AFH		
	A	BFH		
	В	(FH)		
			Already processed	
	Source	Destruction	le Path	
	G	A	$G \rightarrow D \rightarrow C \rightarrow E \rightarrow A$	
E Part	G	В	G-D-C-E-A-B	
	G	C	G-D-C	
	G	D	$G \rightarrow D$	
	G	6	G-D-C-E	
	G	F	G-)F	
	G	И	$G \rightarrow H$	
	8			
Sol7.	1 a-B	No (V)	= 4	
	6	No. (cc)=1 (Colors	
		Na.(v) = 3		
		No.(cc) =1		
	9			
	(3) (2)	No.(v)=3		
	3 1	No. (cc)=2		
	(4)			
dol 8	· Topological Sorting.	Adjacency List		
	Topological Sorting.	0 → °		
		1-)		
_	ø 2 3 - 0 8 1 8 1	2→3 3→ 1		
	8(81	$4 \rightarrow 0.1$ $5 \rightarrow 2.0$		
10			5 — 2 10	

