Topologie et Calcul différentiel : Fonctions convexes – TD 3 $_{24~\mathrm{mars}~2023}$

Exercice 1 : Fonctions convexes?

Parmi les fonctions suivantes, lesquelles sont convexes? Justifier. (On pourra utiliser Python).

$$f_1(x) = |x| \quad \text{sur } \mathbb{R}$$

$$f_2(x) = \max(1, x^2) \quad \text{sur } \mathbb{R}$$

$$f_3(x) = \ln(1 + x^2) \quad \text{sur } \mathbb{R}$$

$$f_4(x) = \arctan(\ln(1 + x^2)) \quad \text{sur } \mathbb{R}$$

$$f_5(x) = \begin{cases} f_3(x) - f_3(1) & \text{si } x \in [-1, 1] \\ f_2(x) - f_2(1) & \text{si } x \in \mathbb{R} \setminus [-1, 1] \end{cases}$$

Réponse

Commençons par tracer les courbes pour se faire une idée. Voir la session Python 1.1, de la présente page

Session Python 1.1 – Tracer de courbes

Utilisation de matplotlib et de numpy.

In[1]

```
import matplotlib.pyplot as plt import numpy as np
```

In[2]

```
x = np.linspace(-5, 5, 200)
```

In[3]

```
def f1(x):
        return(np.abs(x))
2
   def f2(x):
5
        return(max(1, x**2))
6
7
   def f3(x):
9
        return(np.log(1+x**2))
10
11
12
   def f4(x):
13
```

```
return(np.arctan(np.log(1+x**2)))

def f5(x):
    if (np.abs(x) <= 1):
        return(f3(x)-f3(1))
    else:
        return(f2(x)-f2(1))</pre>
```

In[4]

```
plt.plot(x, f1(x), label="f1")
plt.plot(x, [f2(t) for t in x], label="f2")
plt.plot(x, f3(x), label="f3")
plt.plot(x, f4(x), label="f4")
plt.plot(x, [f5(t) for t in x], label="f5")
plt.legend();
```

Voir la figure 1.1, de la présente page

Figure 1.1 – Courbes

On observe donc que f_1 , f_2 et f_5 sont convexes, alors que f_3 et f_4 ne le sont pas. Montrons-le.

1. f_1 est convexe. C'est une simple inégalité triangulaire. Soit $(x,y) \in \mathbb{R}^2$, $\lambda \in [0,1]$, alors

$$\left| (1 - \lambda) x + \lambda y \right| \le (1 - \lambda) |x| + \lambda |y|$$

ce qui exprime la convexité de f_1 . On pourrait aussi dire qu'elle est continue et elle est en tout point dérivable à droite et sa dérivée à droite est croissante.

- 2. f_2 est convexe. Elle est continue et elle est en tout point dérivable à droite et sa dérivée à droite est croissante.
- 3. f_3 n'est pas convexe. On peut calculer sa dérivée seconde qui est positive sur [-1,1] et négative en dehors. Voir la session Python 1.2, de la présente page.

Session Python 1.2 – Dérivée seconde de f_3

On redémarre le noyau pour ne pas mélanger les objets numériques et symboliques...

In[1]

```
import sympy as sp
x = sp.symbols('x', real=True)
```

In[2]

Out[2]

$$\frac{2\left(-\frac{2x^2}{x^2+1}+1\right)}{x^2+1}$$

In[3]

_.factor()

Out[3]

$$-\frac{2(x-1)(x+1)}{(x^2+1)^2}$$

- 4. f_4 n'est pas convexe. La fonction est croissante au voisinage de $+\infty$ et converge vers la limite $\pi/2$. Elle ne peut donc pas être convexe, car elle doit être au-dessus de sa tangente. Cela donne la démonstration suivante (par l'absurde, supposons f_4 convexe).
 - (a) La fonction est croissante (composée de deux fonctions croissantes).
 - (b) Soit $x_0 > 0$ tel que $m = f'_4(x_0) > 0$ (par exemple $x_0 = 1$), alors

$$\forall x \in [x_0, +\infty[, f(x) \ge m(x-x_0) + f(x_0) \xrightarrow[x \to +\infty]{} +\infty$$

5. f_5 est convexe. La fonction est continue sur \mathbb{R} , car en ± 1 , elle se recolle bien (valeur= 0) et elle est continue sur $\mathbb{R}\setminus\{\pm 1\}$. On peut alors utiliser le fait qu'en tout point la fonction est dérivable à droite et f'_d est croissante. En effet

$$\forall x \in \mathbb{R}, \ f_{5d}'(x) = \begin{cases} 2x & \text{si } x < -1 \text{ ou } x \geqslant 1\\ f_2'(x) & \text{si } x \geqslant -1 \text{ et } x < 1 \end{cases}$$

Pour en vérifier la croissance (évidente sur les intervalles $]-\infty,-1[,]-1,1[$ et $]1,+\infty[)$ il suffit de regarder ce qui se passe en ± 1 . Or

$$\lim_{x \to -1^{-}} f_{5d}'(x) = -2 < f_{5d}'(-1) = f_{3}'(-1) = -1$$

 $_{
m et}$

$$\lim_{x \to 1^{-}} f_{5d}'(x) = 1 < f_{5d}'(1) = 2$$

Nous avons utilisé plusieurs fois la propriété suivante : Soit I un intervalle ouvert de \mathbb{R} , soit $f \in \mathscr{C}(I,\mathbb{R})$ ayant en tout point une dérivée à droite telle que f'_d soit croissante, alors f est convexe.

Exercice 2 : Composée de fonctions convexes

Soit f et g deux fonctions convexes sur \mathbb{R} , g croissante. Montrer que $g \circ f$ est convexe sur \mathbb{R} .

Réponse

On revient à la définition. Soit $\lambda \in [0,1]$ et $(a,b) \in \mathbb{R}^2$. On a, comme f est convexe :

$$f(\lambda \times a + (1 - \lambda) \times b) \leq \lambda \times f(a) + (1 - \lambda) \times f(b)$$

donc comme g est croissante :

$$q(f(\lambda \times a + (1 - \lambda) \times b)) \leq q(\lambda \times f(a) + (1 - \lambda) \times f(b))$$

finalement, comme g est convexe:

$$g(f(\lambda \times a + (1 - \lambda) \times b)) \le \lambda \times g(f(a)) + (1 - \lambda) \times g(f(b)).$$

Exercice 3: Fonction convexe bornée

1. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ convexe et bornée. Montrer que f est décroissante.

Réponse

Supposons que f n'est pas décroissante. Alors il existe x < y tels que f(x) < f(y). Par l'inégalité des pentes, on a, pour tout z > y:

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x}.$$

ightharpoonup Posons $a = \frac{f(y) - f(x)}{y - x} > 0$. Ainsi, pour tout z > y, on a

$$f(z) \geqslant a \times (z - x) + f(x) \xrightarrow[z \to +\infty]{} +\infty$$

C'est absurde car f est bornée.

Donc f est décroissante.

2. Soit $f: \mathbb{R} \to \mathbb{R}$ convexe et bornée. Montrer que f est constante.

Réponse

Le raisonnement précédent montre que f est décroissante sur \mathbb{R} . Un raisonnement similaire pour z < x montre que f est croissante sur \mathbb{R} .

Donc f est constante sur \mathbb{R} .

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ convexe. Soit h > 0 fixé.

1. Montrer que pour tout $(x, y) \in \mathbb{R}^2$ vérifiant x < y, on a

$$f(y+h) - f(x+h) \geqslant f(y-h) - f(x-h).$$

 \triangleright Soit $(x,y) \in \mathbb{R}^2$ vérifiant x < y. On applique l'inégalité des pentes aux points x - h, y - h et x + h

$$\frac{f(y-h) - f(x-h)}{y-x} \leqslant \frac{f(x+h) - f(y-h)}{x-y+2h}$$

Elle est vérifiée dans les cas "y - h < x + h" et "y - h > x + h". On traite le cas "y - h = x + h" à la fin de cette démonstration.

 \triangleright On applique l'inégalité des pentes aux points y-h, x+h et y+h

$$\frac{f(x+h) - f(y-h)}{x - y + 2h} \leqslant \frac{f(y+h) - f(x+h)}{x - y}.$$

ightharpoonup Finalement, $\frac{f(y-h)-f(x-h)}{y-x}\leqslant \frac{f(y+h)-f(x+h)}{y-x}$, donc

Donc $f(y+h) - f(x+h) \ge f(y-h) - f(x-h)$.

 \triangleright Traitons le cas "y - h = x + h" : on a y = x + 2h. Alors

$$f(x+h) \leqslant \frac{1}{2}f(x) + \frac{1}{2}f(y)$$

d'où

$$f(x+h) + f(y-h) = 2 \times f(x+h) \leqslant f(x) + f(y)$$

et finalement

$$f(y+h) - f(x+h) \geqslant f(y-h) - f(x-h).$$

2. Montrer que la fonction

$$g: x \mapsto \frac{1}{2h} \times \int_{x-h}^{x+h} f(t) dt$$

est convexe.

Réponse

ightharpoonup Comme f est convexe sur \mathbb{R} , elle est continue sur $\overset{\circ}{\mathbb{R}} = \mathbb{R}$. Ainsi la fonction g est dérivable sur \mathbb{R} et on a

$$\forall x \in \mathbb{R}, \ g'(x) = \frac{1}{2h} \times (f(x+h) - f(x-h)).$$

ightharpoonup Soit $(x,y) \in \mathbb{R}^2$ tel que x < y. Alors d'après la question 1,

$$g'(y) - g'(x) = \frac{1}{2h}(f(y+h) - f(y-h) - f(x+h) + f(x-h)) \ge 0$$

donc g' est croissante.

Donc g est convexe.

Exercice 5 : Inégalité de convexité

Soit x_1, x_2, \ldots, x_n des réels strictement positifs. Comparer :

$$m = \frac{x_1 + x_2 + \dots + x_n}{n}, \quad g = \sqrt[n]{x_1 \times x_2 \times \dots \times x_n}, \quad h = \frac{n}{1/x_1 + 1/x_2 + \dots + 1/x_n}.$$

On utilise la convexité de la fonction exponentielle. Si $f(x) = e^x$, alors pour tous réels $(y_1, y_2, ..., y_n) \in \mathbb{R}^n$:

$$f\left(\frac{1}{n}\sum_{k=1}^{n}y_k\right) \leqslant \frac{1}{n}\sum_{k=1}^{n}f(y_k).$$

Donc en prenant $y_k = \ln(x_k)$: $g \leq m$. De même, en prenant $y_k = -\ln(x_k)$, on a :

$$\frac{1}{g} \leqslant \frac{1}{h}$$

donc par décroissance de l'inverse sur \mathbb{R}_+^* , $h \leq g$. Finalement :

$$h \leqslant g \leqslant m$$

Exercice 6 : Inégalité de convexité discrète

Soit x_1, \ldots, x_n des nombres réels strictement positifs, p, q, r des nombres réels vérifiant 0 . On pose

$$\forall k \in \{1, p, q, r\}, \ m_k = \sqrt[k]{\frac{1}{n} \sum_{j=1}^n x_j^k}$$

1. Comparer les m_k pour $k \in \{1, p, q, r\}$.

Réponse

- (a) On commence par les ordonner à l'aide de Python. Voir la session 6.1, page suivante. On constate que l'application $k \mapsto m_k$ semble croissante. Montrons-le!
- (b) Soit 0 < a < b deux nombres réels, pour passer de m_a à m_b on peut utiliser la fonction

$$x \longmapsto x^{b/a}$$

qui est convexe. L'inégalité de convexité discrète nous donne alors, pour $n \in \mathbb{N}^*$, $(y_1, \dots, y_n) \in]0, +\infty[^n, (\text{comme les } (y_k)_{k \in [\![1,n]\!]})$ ont un rôle symétrique, on considère des isobarycentres)

$$\left(\frac{1}{n}\sum_{j=1}^{n}y_{j}\right)^{b/a} \leqslant \frac{1}{n}\left(\sum_{j=1}^{n}y_{j}^{b/a}\right)$$

Ce qui donne, en posant pour $j \in [1, n]$, $y_j = x_j^a$, et en élevant à la puissance 1/b (la fonction $t \mapsto t^{1/b}$ étant croissante)

$$m_a = \sqrt[a]{\frac{1}{n} \sum_{j=1}^n x_j^a} \leqslant \sqrt[b]{\frac{1}{n} \sum_{j=1}^n x_j^b} = m_b$$

Finalement, on a

$$m_p \leqslant m_1 \leqslant m_q \leqslant m_r$$

Session Python 6.1 – Évaluations des moyennes

Un peu de calcul numérique... On utilise numpy.

In[1]

import numpy as np

In[2]

```
def f(k, 1):
    aux = np.sum([np.abs(i)**k for i in 1])/len(1)
    return(aux**(1/k))
```

In[3]

```
[f(k, [1, 2, 3]) for k in [0.5, 1, 1.5, 2]]
```

Out[3]

[1.9101675806055889, 2.0, 2.083869324916839, 2.160246899469287]

2. Placer g et h par rapport aux m_k , $k \in \{1, p, q, r\}$ lorsque

$$g = \sqrt[n]{\prod_{j=1}^{n} x_j} \text{ et } \frac{n}{h} = \sum_{j=1}^{n} \frac{1}{x_j}$$

Réponse

- (a) On commence de même par évaluer g et h, pour les placer par rapport aux m_k . Voir la session 6.2, page suivante. Sur l'exemple, on obtient $h \leq g \leq m_p$. Essayons de le démontrer.
- (b) $(h \leq g)$ Pour g, on a vu en cours qu'il était plus simple de prendre le logarithme, on va donc comparer $\ln(h)$ et $\ln(g)$. La fonction ln étant concave, on a pour $(y_1, \ldots, y_n) \in]0, +\infty[^n, en$ prenant des isobarycentres

$$\ln\left(\frac{1}{n}\sum_{j=1}^{n}y_{j}\right) \geqslant \frac{1}{n}\left(\sum_{j=1}^{n}\ln(y_{j})\right) \tag{*}$$

en prenant, pour $j \in [1, n]$, $y_j = 1/x_j$, on obtient

$$\ln\left(\frac{1}{h}\right) = \ln\left(\frac{1}{n}\sum_{j=1}^{n}\frac{1}{x_{j}}\right) \geqslant \frac{1}{n}\left(\sum_{j=1}^{n}\ln\left(\frac{1}{x_{j}}\right)\right) = \ln\left(\frac{1}{g}\right)$$

(c) $(g \leq m_p)$ Dans (*), on prend, pour $j \in [1, n]$, $y_j = x_j^p$, on obtient alors

$$p \ln (m_p) = \ln \left(\frac{1}{n} \sum_{j=1}^n x_j^p\right) \geqslant \frac{1}{n} \left(\sum_{j=1}^n \ln \left(x_j^p\right)\right) = p \ln(g)$$

Session Python 6.2 – Placement des moyennes géométriques et harmoniques

On procède comme précédemment.

In[4]

```
def g(l):
    return(np.prod(l)**(1/len(l)))

def h(l):
    aux = np.sum([1/i for i in l])
    return(len(l)/aux)
```

In[5]

```
g([1, 2, 3]), h([1, 2, 3])
```

Out[5]

(1.8171205928321397, 1.636363636363636365)

Exercice 7 : Inégalité de convexité

Soit a, b et c trois nombres réels > 0, montrer en utilisant une inégalité de convexité que

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} \geqslant \frac{a+b+c}{2}$$

Réponse

La présence de a+b+c nous fait penser que, peut-être, les coefficients barycentriques $(\lambda_1, \lambda_2, \lambda_3)$ pourraient être (a, b, c). Dans ce cas, par exemple

$$\frac{a^2}{a+b} = a \frac{a}{a+b} = a \frac{1}{1+b/a}$$

Donc, si on prend

$$f: x \mapsto \frac{1}{1+x}, \ x_1 = \frac{b}{a}, \ x_2 = \frac{c}{b}, \ x_3 = \frac{a}{c}$$

puisque la fonction f est convexe, on obtient

$$f\left(\frac{a\,x_1 + b\,x_2 + c\,x_3}{a + b + c}\right) \leqslant \frac{a\,f(x_1) + b\,f(x_2) + c\,f(x_3)}{a + b + c}$$

ce qui nous donne

$$\frac{1}{2} = f(1) \leqslant \frac{1}{a+b+c} \left(\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} \right)$$

ce que nous voulions.

Remarque : on peut recommencer avec n nombres réels strictement positifs, on trouve alors, avec la convention $x_{n+1} = x_1$

$$\sum_{k=1}^{n} \frac{x_k^2}{x_k + x_{k+1}} \ge \frac{1}{2} \left(\sum_{k=1}^{n} x_k \right)$$

Exercice 8

Dans cet exercice, il suffit d'appliquer l'inégalité de convexité discrète à des fonctions convexes (ou concaves) bien choisies.

Soit $(x_1, x_2, \dots, x_n) \in (\mathbb{R}_+^*)^n$ et $(y_1, y_2, \dots, y_n) \in (\mathbb{R}_+^*)^n$

1. Démontrer que :

$$\frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

Réponse

Soit $f: x>0 \mapsto \frac{1}{x}$. Pour tout x>0, $f''(x)=\frac{2}{x^3}>0$. On en déduit que f est convexe. Donc :

$$f\left(\frac{1}{n}x_1 + \dots + \frac{1}{n}x_n\right) \leqslant \frac{1}{n}f(x_1) + \dots + \frac{1}{n}f(x_n)$$

Ce qui donne:

$$\frac{1}{\frac{1}{n}x_1 + \dots + \frac{1}{n}x_n} \le \frac{1}{n}\frac{1}{x_1} + \dots + \frac{1}{n}\frac{1}{x_n}$$

On passe à l'inverse dans l'inégalité et on obtient finalement :

$$\frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

2. Démontrer que :

$$1 + (x_1 x_2 \dots x_n)^{\frac{1}{n}} \le (1 + x_1)^{\frac{1}{n}} (1 + x_2)^{\frac{1}{n}} \dots (1 + x_n)^{\frac{1}{n}}$$

(On pourra démontrer que la fonction $x \mapsto \ln(1 + e^x)$ est convexe sur \mathbb{R} .)

Réponse

ightharpoonup Soit $f: x \mapsto \ln(1+e^x)$, montrons que f est convexe. On remarque que f est clairement de classe C^2 . On dérive, pour tout $x \in \mathbb{R}$ on a :

$$f'(x) = \frac{e^x}{1 + e^x}$$
 et $f''(x) = \frac{e^x}{(1 + e^x)^2}$

Comme f'' > 0, on en déduit que f est convexe.

 \triangleright On applique l'inégalité de convexité avec la famille $(\ln(x_1), \ldots, \ln(x_n))$:

$$f\left(\frac{1}{n}\ln(x_1) + \dots + \frac{1}{n}\ln(x_n)\right) \leqslant \frac{1}{n}f(\ln(x_1)) + \dots + \frac{1}{n}f(\ln(x_n))$$

$$\ln\left(1 + e^{\frac{1}{n}\ln(x_1) + \dots + \frac{1}{n}\ln(x_n)}\right) \leqslant \frac{1}{n}\ln(1 + x_1) + \dots + \frac{1}{n}\ln(1 + x_n)$$

$$\ln\left(1 + (x_1 \dots x_n)^{\frac{1}{n}}\right) \leqslant \ln\left((1 + x_1)^{\frac{1}{n}} \dots (1 + x_n)^{\frac{1}{n}}\right)$$

Et donc, comme exp est croissante, on obtient l'inégalité voulue :

$$1 + (x_1 x_2 \dots x_n)^{\frac{1}{n}} \le (1 + x_1)^{\frac{1}{n}} (1 + x_2)^{\frac{1}{n}} \dots (1 + x_n)^{\frac{1}{n}}$$

3. Démontrer à l'aide de l'inégalité précédente que :

$$(x_1x_2...x_n)^{\frac{1}{n}} + (y_1y_2...y_n)^{\frac{1}{n}} \leqslant (x_1+y_1)^{\frac{1}{n}} (x_2+y_2)^{\frac{1}{n}} ... (x_n+y_n)^{\frac{1}{n}}$$

On applique l'inégalité précédente à la famille $\left(\frac{y_1}{x_1} \dots \frac{y_n}{x_n}\right)$:

$$1 + \left(\frac{y_1}{x_1} \dots \frac{y_n}{x_n}\right)^{\frac{1}{n}} \leqslant \left(1 + \frac{y_1}{x_1}\right)^{\frac{1}{n}} \dots \left(1 + \frac{y_n}{x_n}\right)^{\frac{1}{n}}$$

Et en multipliant par $(x_1 \dots x_n)^{\frac{1}{n}}$ dans l'inégalité, on obtient le résultat voulu :

$$(x_1x_2...x_n)^{\frac{1}{n}} + (y_1y_2...y_n)^{\frac{1}{n}} \le (x_1 + y_1)^{\frac{1}{n}} (x_2 + y_2)^{\frac{1}{n}} ... (x_n + y_n)^{\frac{1}{n}}$$

Exercice 9 : Inégalité de Hölder

Soit $I \subseteq \mathbb{R}$ un intervalle de \mathbb{R} . Pour tout $1 \leq p \leq +\infty$, on définit l'ensemble $\mathcal{L}(I)$ par

$$\mathcal{L}^p(I) := \left\{ f : I \to \mathbb{R}, \int_I |f(x)|^p dx < +\infty \right\}$$

1. Soient $f, g \in \mathcal{L}^3(\mathbb{R})$. Démontrer que f^2g est intégrable.

Réponse

On va appliquer l'inégalité de Hölder avec les exposants p=3 et q=3/2, qui vérifient bien 1/p+1/q=1

1. On a alors:

$$\int_{\mathbb{R}} |f^2(x)| \times |g(x)| dx \leqslant \left(\int_{\mathbb{R}} |f|^{2 \times \frac{3}{2}}\right)^{2/3} \times \left(\int_{\mathbb{R}} |g|^3\right)^{1/3} < +\infty$$

2. Soit $p, q, r \ge 1$ tels que 1/p + 1/q = 1/r. Soit $f \in \mathcal{L}^p(\mathbb{R})$ et $g \in \mathcal{L}^q(\mathbb{R})$. Démontrer que $fg \in \mathcal{L}^r(\mathbb{R})$.

Réponse

On pose p' = p/r et q' = q/r, on pose $f_1 = f^r$ et $g_1 = g^r$ et on applique la question 1.

3. Soit $(a,b) \in \mathbb{R}^2$ tels que a < b. Si $1 \le p < q \le +\infty$, montrer l'inclusion $\mathcal{L}^q([a,b]) \subseteq \mathcal{L}^p([a,b])$. Si [a,b] = [0,1], montrer que l'inclusion est stricte.

Réponse

On va utiliser l'inégalité de Hölder. Prenons $f \in \mathcal{L}^q([a,b])$. On a :

$$\int_{a}^{b} |f(x)| dx = \int_{a}^{b} |f(x)| \times 1 dx$$

Soit r tel que rp=q, c'est-à-dire $r=q/p\in]1,+\infty]$, et soit r' tel que 1/r+1/r'=1. L'inégalité de Hölder donne

$$\int_{a}^{b} |f(x)|^{p} dx \leq \left(\int_{a}^{b} |f(x)|^{q} dx\right)^{1/r} \left(\int_{a}^{b} 1^{r'} dx\right)^{1/r'} \leq |b-a|^{1/r'} \left(\int_{a}^{b} |f(x)|^{q} dx\right)^{1/r} < +\infty$$

Ainsi, f est dans $\mathcal{L}^p([a,b])$. Cette inclusion est stricte si [a,b]=[0,1]. En effet, la fonction $f(x)=1/x^{\alpha}$ est dans $\mathcal{L}^p([0,1])$ si et seulement si $p\alpha < 1$.

Exercice 10 : Propriétés asymptotiques des fonctions convexes

Soit $f:[0,+\infty[$ $\longrightarrow \mathbb{R}$ convexe. Montrer que l'une des propriétés suivantes est satisfaite

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \in \mathbb{R} \quad \text{et} \quad \lim_{x \to +\infty} \left(f(x) - ax \right) = -\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \in \mathbb{R} \quad \text{et} \quad \lim_{x \to +\infty} \left(f(x) - ax \right) = b \in \mathbb{R}$$

Réponse

La fonction taux d'accroissement en 0 définie sur $]0, +\infty[$ par

$$\forall x \in]0, +\infty[, \ \tau(x) = \frac{f(x) - f(0)}{x - 0}$$

est croissante (puisque f est convexe). Donc, soit elle est majorée, soit elle ne l'est pas. On a donc deux cas

1. Elle n'est pas majorée, en ce cas

$$\frac{f(x)}{x} = \tau(x) + \frac{f(0)}{x} \xrightarrow[x \to +\infty]{} +\infty$$

2. Si elle est majorée, elle admet une limite notée $a \in \mathbb{R}$. Donc

$$\frac{f(x)}{x} = \tau(x) + \frac{f(0)}{x} \xrightarrow[x \to +\infty]{} a$$

Dans ce cas, considérons la fonction g définie sur $[0, +\infty[$ par

$$\forall q \in [0, +\infty[, q(x) = f(x) - ax]$$

La fonction g est décroissante, car si 0 < x < y, on a

$$g(y) - g(x) = f(y) - f(x) - a(y - x) = (y - x) \left(\frac{f(y) - f(x)}{y - x} - a\right)$$

mais, d'après la convexité de f, si z > y

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \xrightarrow[z \to +\infty]{} a^{-}$$

Ce qui montre que g est décroissante. On a à nouveau deux cas : soit elle est minorée, soit elle ne l'est pas.

(a) Si q n'est pas minorée, alors

$$f(x) - ax \xrightarrow[x \to +\infty]{} -\infty$$

(b) Si g est minorée, elle admet une limite $b \in \mathbb{R}$ et

$$f(x) - ax \xrightarrow[x \to +\infty]{} b$$

Exercice 11: Fonctions log-convexes

On dit que $f: \mathbb{R} \longrightarrow]0, +\infty[$ est log-convexe si, et seulement si, $\ln \circ f$ est convexe.

1. Montrer que lorsque f et g sont de classe \mathscr{C}^2 et log-convexes alors f+g est log-convexe.

Puisque les fonctions f et g sont de classe \mathscr{C}^2 , $\ln(f+g)$ est de classe \mathscr{C}^2 . Nous allons montrer que sa dérivée seconde est positive. Comme $(\ln(f+g))'' = ((f''+g'')+(f'+g')^2)/(f+g)^2$, on sait que $f f'' - f'^2 \ge 0$ et de même $g g'' - g'^2 \ge 0$, puisque f et g sont log-convexes. Mais en ce cas

$$(f+g)(f''+g'') - (f'+g')^{2} = \underbrace{ff'' - f'^{2}}_{\geq 0} + \underbrace{gg'' - g'^{2}}_{\geq 0} + fg'' + f''g - 2f'g'$$

Comme f et g sont strictement positives et que $ff'' - (f')^2 \ge 0$ et $gg'' - (g')^2 \ge 0$:

$$fg\left(fg'' + f''g - 2f'g'\right) \ge f^2g'^2 + f'^2g^2 - 2fgf'g' = \left(fg' - f'g\right)^2 \ge 0$$

on déduit que

$$(f+g)(f''+g'') - (f'+g')^2 \ge 0$$

ce qui traduit la log-convexité de f + g.

2. Montrer que c'est encore vrai en général (c'est-à-dire même quand f et g ne sont aps de classe C^2 . (On pourra utiliser la midconvexité).

Réponse

On nous conseille d'utiliser la midconvexité. Allons-y! D'abord, signalons que f et g sont continues, car $\ln \circ f$ et $\ln \circ g$ le sont.

(a) Que sait-on?

$$\forall (x,y) \in \mathbb{R}^2, \ln\left(f\left(\frac{x+y}{2}\right)\right) \leqslant \frac{1}{2}\left(\ln\left(f(x)\right) + \ln\left(g(x)\right)\right)$$

ou encore, de manière équivalente, en passant par l'exponentielle :

$$\forall (x,y) \in \mathbb{R}^2, \ f\left(\frac{x+y}{2}\right) \leqslant \sqrt{f(x) f(y)}$$

et de même pour g.

(b) Soit $(x, y) \in \mathbb{R}^2$, alors

$$(f+g)\left(\frac{x+y}{2}\right) = f\left(\frac{x+y}{2}\right) + g\left(\frac{x+y}{2}\right) \leqslant \sqrt{f(x)\,f(y)} + \sqrt{g(x)\,g(y)}$$

Par ailleurs, d'après l'inégalité $\forall (a,b) \in \mathbb{R}^2, \ a^2 + b^2 \ge 2ab$, on a :

$$\left(\sqrt{f(x)\,f(y)} + \sqrt{g(x)\,g(y)}\right)^2 = f(x)\,f(y) + g(x)\,g(y) + 2\,\sqrt{f(x)\,f(y)\,g(x)\,g(y)}$$

$$\leqslant f(x)\,f(y) + g(x)\,g(y) + \left(f(x)\,g(y) + f(y)\,g(x)\right)$$

d'après la célèbre inégalité

$$\forall (a,b) \in \mathbb{R}^2, \ 2 a b \leqslant a^2 + b^2$$

et donc, finalement

$$(f+g)\left(\frac{x+y}{2}\right) \leqslant \sqrt{(f+g)(x)(f+g)(y)}$$

ce qui montre la midconvexité de $\ln \circ (f+g)$ et donc sa convexité.

Exercice 12: Dérivation d'un équivalent

Soit $f: [a, b] \longrightarrow \mathbb{R}$ convexe, de classe \mathscr{C}^1 et telle que

$$f(x) \underset{x \to b^{-}}{\sim} \frac{1}{(b-x)^{\alpha}}, \ \alpha \in \mathbb{R}_{+}^{*}$$

Montrer que

$$f'(x) \underset{x \to b^{-}}{\sim} \frac{\alpha}{(b-x)^{\alpha+1}}$$

Trouver un contre-exemple lorsque f n'est plus convexe.

Réponse

1. Voici un contre-exemple lorsqu'il n'y a pas de convexité :

$$f(x) = \frac{1}{(b-x)^{\alpha}} + \sin\left(\frac{1}{(b-x)^{\alpha}}\right)$$

En effet, f est de classe C^2 sur [a, b[comme composée et somme de fonctions de classe C^2 sur [a, b[. De plus, d'une part, on a bien

$$f(x) = \frac{1}{(b-x)^{\alpha}} + \sin\left(\frac{1}{(b-x)^{\alpha}}\right) \underset{x \to b^{-}}{\sim} \frac{1}{(b-x)^{\alpha}}$$

car $|\sin(y)| \le 1$ et $\frac{1}{(b-x)^{\alpha}} \to +\infty$ quand $x \to b^-$. D'autre part,

$$f'(x) = \frac{\alpha}{(b-x)^{\alpha+1}} \left(1 + \cos\left(\frac{1}{(b-x)^{\alpha}}\right) \right)$$

Ce terme est égal à 0 quand $x = x_k = b - \frac{1}{\alpha \sqrt{-\frac{\pi}{2} + k\pi}}$ Donc

$$f'(x_k)(b-x_k)^{\alpha+1} \to 0 \neq \alpha$$

Enfin on peut remarquer que

$$f''(x) = \frac{\alpha(\alpha+1)}{(b-x)^{\alpha+2}} \left(1 + \cos\left(\frac{1}{(b-x)^{\alpha}}\right) \right) - \frac{\alpha^2}{(b-x)^{2\alpha+2}} \sin\left(\frac{1}{(b-x)^{\alpha}}\right) < 0 \text{ lorsque } x = x_k$$

donc f n'est pas convexe.

2. On suppose désormais que f convexe, et que $f(x) \sim \frac{1}{(b-x)^{\alpha}}$ c'est-à-dire que

$$f(x)(b-x)^{\alpha} \xrightarrow[x \to b^{-}]{} 1$$

On veut montrer que $f'(x) \underset{x \to b^{-}}{\sim} \frac{\alpha}{(b-x)^{\alpha+1}}$, c'est-à-dire que

$$f'(x)(b-x)^{\alpha+1} \xrightarrow[x \to b^{-}]{} \alpha$$

Le passage à la limite, ainsi que l'hypothèse de convexité, nous suggèrent d'utiliser l'inégalité des pentes en encadrant la dérivée en un point, et de faire un passage à la limite à gauche et à droite de cette dérivée.

Soit donc a < x < y < z < b. D'après l'inégalité des pentes :

$$\frac{f(y) - f(x)}{y - x} \leqslant f'(y) \leqslant \frac{f(z) - f(y)}{z - y}$$

et donc

$$\frac{f(y) - f(x)}{y - x} (b - y)^{\alpha + 1} \leqslant f'(y) (b - y)^{\alpha + 1} \leqslant \frac{f(z) - f(y)}{z - y} (b - y)^{\alpha + 1}$$

$$\underbrace{\frac{f(y)}{y - x} (b - y)^{\alpha + 1}}_{(1)} - \underbrace{\frac{f(x)}{y - x} (b - y)^{\alpha + 1}}_{(2)} \leqslant f'(y) (b - y)^{\alpha + 1} \leqslant \underbrace{\frac{f(z)}{z - y} (b - y)^{\alpha + 1}}_{(3)} - \underbrace{\frac{f(y)}{z - y} (b - y)^{\alpha + 1}}_{(4)}$$

Comme on veut montrer que le terme central tend vers α quand y tend vers b^- , il suffit de montrer que (1) - (2) et (3) - (4) tendent tous les deux vers α quand x, y et z tendent vers b^- , et de conclure avec le théorème des gendarmes. On commence par utiliser notre hypothèse sur l'équivalent de f(x) au voisinage de b^- pour simplifier. On a :

$$(1) = \frac{f(y)}{y - x} (b - y)^{\alpha + 1} \sim \frac{b - y}{y - x}$$

Par ailleurs,

$$(2) = \frac{f(x)}{y - x} (b - y)^{\alpha + 1} = f(x)(b - x)^{\alpha} \left(\frac{b - y}{b - x}\right)^{\alpha + 1} \frac{b - x}{y - x} \underset{x \to b^{-}}{\sim} \left(\frac{b - y}{b - x}\right)^{\alpha + 1} \frac{b - x}{y - x}$$

La différence de ces deux termes doit converger (par rapport à x? y? c'est encore un peu flou) vers α . Cela ne semble possible que si x, y et b sont dépendants les uns des autres! On va donc imposer une dépendance entre eux. Comme x < y < b, on impose à ce qu'il existe $\lambda \in]0,1[$ tel que $y = \lambda \cdot x + (1-\lambda) \cdot b$ Alors, $b-y=\lambda \cdot (b-x)$ et $y-x=(1-\lambda) \cdot (b-x)$ Ainsi,

$$(1) \underset{y \to b^{-}}{\sim} \frac{b - y}{y - x} = \frac{\lambda}{1 - \lambda}$$

$$(2) \underset{x \to b^{-}}{\sim} \left(\frac{b - y}{b - x}\right)^{\alpha + 1} \cdot \frac{b - x}{y - x} = \lambda^{\alpha + 1} \cdot \frac{1}{1 - \lambda}$$

On procède de même avec les termes de droite.

$$(3) = \frac{f(z)}{z - y} (b - y)^{\alpha + 1} = f(z)(b - z)^{\alpha} \cdot \left(\frac{b - y}{b - z}\right)^{\alpha + 1} \cdot \frac{b - z}{z - y} \underset{z \to b^{-}}{\sim} \left(\frac{b - y}{b - z}\right)^{\alpha + 1} \frac{b - z}{z - y}$$

$$(4) = \frac{f(y)}{z - y} (b - y)^{\alpha + 1} \underset{y \to b^{-}}{\sim} \frac{b - y}{z - y}$$

De manière similaire, on impose à ce qu'il existe $\mu \in]0,1[$ tel que $z=\mu \cdot y+(1-\mu) \cdot b.$ Alors, $z-y=(1-\mu)\cdot (b-y)$ et $b-z=\mu \cdot (b-y).$ Ainsi,

(3)
$$\underset{y \to b^{-}}{\sim} \frac{1}{\mu^{\alpha+1}} \cdot \frac{\mu}{1-\mu} = \frac{1}{(1-\mu)\mu^{\alpha}}$$

(4) $\underset{x \to b^{-}}{\sim} \frac{1}{1-\mu}$

Il nous reste maintenant à voir si (1)-(2) et (3)-(4) tendent bien α . Encore faut-il savoir quelle valeur de λ et de μ on souhaite prendre. Comme on souhaite faire apparaître un α , et que le α est partout en puissance, il faut faire apparaître un α grâce à un passage à la limite de λ et de μ . Comme (1)-(2) tend vers 0 quand λ tend vers 0, et que (3)-(4) tend vers $+\infty$ quand μ tend vers 0, bien que ces vérifications nous rassurent car elles ne contredisent pas les calculs jusqu'ici effectués, elles ne nous

sont pas utiles pour introduire notre α tant convoité. Par élimination, on tente donc de faire tendre λ vers 1, et μ vers 1. On pose $\lambda' = 1 - \lambda$ et $\mu' = 1 - \mu$ et on obtient

$$(1) - (2) = \frac{\lambda}{1 - \lambda} (1 - \lambda^{\alpha}) = \frac{1 - \lambda'}{\lambda'} (1 - (1 - \lambda')^{\alpha}) = \frac{1 - \lambda'}{\lambda'} (1 - (1 - \alpha \lambda' + o(\lambda')))$$

$$= \frac{1 - \lambda'}{\lambda'} (\alpha \lambda' + o(\lambda')) = (1 - \lambda') (\alpha + o(1)) \xrightarrow[\lambda' \to 0]{} \alpha$$

$$(3) - (4) = \frac{1}{\mu'} \left(\frac{1}{(1 - \mu')^{\alpha}} - 1 \right) = \frac{1}{\mu'} \left((1 + \mu' + o(\mu'))^{\alpha} - 1 \right) = \alpha + o(1) \xrightarrow[\mu' \to 0]{} \alpha$$

Ainsi, d'après le théorème des gendarmes, on a bien que

$$f'(x)(b-x)^{\alpha+1} \xrightarrow[x\to b^-]{} \alpha$$

Exercice 13: Transformation de Legendre

Soit ϕ une fonction définie sur un intervalle non vide $I \subset \mathbb{R}$, à valeurs dans \mathbb{R} , continue sur I. On définit la transformée de Legendre de ϕ par

$$\forall y \in \mathbb{R}, \ \widetilde{\phi}(y) = \sup_{x \in \mathbb{R}} (x y - \phi(x)) \in] - \infty, +\infty]$$

et on s'intéresse à

$$J = \left\{ y \in \mathbb{R}, \ \widetilde{\phi}(y) \neq +\infty \right\}$$

1. Montrer que si ϕ est paire et que $J \neq \emptyset$, alors $\widetilde{\phi}$ est paire.

Réponse

2. Soit $p \in]1, +\infty[$, $\phi: x \longmapsto |x|^p/p$ définie sur $I = \mathbb{R}$, calculer $\widetilde{\phi}$ et J. Quelle inégalité du cours retrouve-t-on?

Réponse

La fonction ϕ étant paire, la fonction $\widetilde{\phi}$ sera paire. On peut donc se limiter aux cas y > 0 (on peut même se limiter au cas où x > 0). On trouve alors :

$$\forall y \in \mathbb{R}, \ \widetilde{\phi}(y) = \frac{|y|^q}{q}, \ \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

Donc $J = \mathbb{R}$.

Session Python 13.1 – Transformée de Legendre

On se limite ici aux cas où x > 0 et y > 0, les autres cas pourraient se traiter de la même manière, si on ne remarque pas les propriétés de $\widetilde{\phi}$.

In[6]

- import sympy as sp
- sp.init_printing()

In[7]

```
x = sp.symbols('x', positive=True)
y = sp.symbols('y', positive=True)
p = sp.symbols('p', positive=True)
```

In[8]

```
sp.diff(x*y-x**p/p, x)
```

Out[8]

$$y - \frac{x^p}{x}$$

In[9]

sp.solve(_, x)

Out[9]

$$y^{\frac{1}{p-1}}$$

In[10]

(x*y-x**p/p).subs({x: _[0]}).simplify()

Out[10]

$$y^{\frac{p}{p-1}} - \frac{\left(y^{\frac{1}{p-1}}\right)^p}{p}$$

3. En considérant la fonction $\phi: x \longmapsto x \ln(x) - x$ définie sur $I = \mathbb{R}_+^*$, calculer J et montrer que

$$\forall (a,b) \in]0, +\infty[^2, \ a \ b \leqslant a \ \ln(a) - a + e^b$$

Réponse

Bien sûr, on pourrait démontrer l'inégalité directement en étudiant des fonctions.

On peut aussi calculer la transformée de Legendre de ϕ . Voir la session 13.2, de la présente page. On trouve que $J=\mathbb{R}$ et

$$\forall y \in \mathbb{R}, \ \widetilde{\phi}(y) = e^y$$

L'inégalité est alors immédiate, par définition de la transformation de Legendre.

Session Python 13.2

Même technique.

In[11]

(x*y-x*sp.ln(x)+x).diff(x)

Out[11]

 $y - \log(x)$

In[12]

sp.solve(_, x)

Out[12]

 e^y

In[13]

 $(x*y-x*sp.ln(x)+x).subs({x: _[0]}).simplify()$

Out[13]

 e^y

4. Montrer que J est un intervalle de \mathbb{R} et que $\widetilde{\phi}$ est convexe sur J.

Réponse

Soit $(y, z) \in J^2$ et $\lambda \in]0, 1[$. Si on prend un $x \in I$

$$x\left(\left(1-\lambda\right)\,y+\lambda\,z\right)-\phi(x)=\left(1-\lambda\right)\,\left(x\,y-\phi\left(x\right)\right)+\lambda\,\left(x\,z-\phi\left(x\right)\right)$$

en majorant les termes de droite par leurs bornes supérieures, on obtient

$$x \left((1-\lambda) \ y + \lambda \ z \right) - \phi(x) = (1-\lambda) \left(x \ y - \phi(x) \right) + \lambda \left(x \ z - \phi(x) \right) \leqslant (1-\lambda) \ \widetilde{\phi}(y) + \lambda \ \widetilde{\phi}(z) \in \mathbb{R}$$

Ce qui montre que

$$(1 - \lambda) y + \lambda z \in J$$

et donc, que J est un intervalle. De plus, en passant à la borne supérieure dans le terme de gauche, on obtient

$$\widetilde{\phi}((1-\lambda)y + \lambda z) \leq (1-\lambda)\widetilde{\phi}(y) + \lambda \widetilde{\phi}(z)$$

ce qui est la convexité de $\widetilde{\phi}$.

5. On suppose que $\phi \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$ est telle que

$$\forall x \in \mathbb{R}, \ \phi''(x) > 0 \text{ et } \phi'(\mathbb{R}) = \mathbb{R}$$

montrer alors que

$$\overset{\approx}{\widetilde{\phi}} = \phi$$

Comme ϕ est dérivable, il est facile de trouver la valeur de $\widetilde{\phi}(y)$, elle est obtenue quand

$$\frac{\mathrm{d}}{\mathrm{d}x} (xy - \phi(x)) = y - \phi'(x) = 0$$

et, comme $\phi'' > 0$, ϕ' est strictement croissante. La deuxième hypothèse sur ϕ nous assure que $\phi'(\mathbb{R}) = \mathbb{R}$. Finalement, en notant $\psi(y)$ le point d'annulation trouvé ci-dessus, on a

$$\psi(y) = {\phi'}^{-1}(y)$$
 et $\widetilde{\phi}(y) = y \psi(y) - \phi(\psi(y))$

D'après les hypothèses sur ϕ , la fonction $\psi = {\phi'}^{-1}$ est de classe \mathscr{C}^1 et on a pour $y \in \mathbb{R}$

$$\phi'(\psi(y)) = y \text{ donc } \psi'(y) \phi''(\psi(y)) = 1$$

ensuite, on constate que $\widetilde{\phi}$ est aussi de classe \mathscr{C}^1 et

$$\widetilde{\phi}'(y) = \psi(y) + y \psi'(y) - \psi'(y) \phi'(\psi(y)) = \psi(y)$$

On a donc que $\widetilde{\phi}'(\mathbb{R}) = \mathbb{R}$.

On note $\theta(y)$ le point d'annulation de la fonction $x \mapsto \frac{d}{dx}(xy - \tilde{\phi}(x))$. On remarque alors, avec un raisonnement analogue, que

$$\theta = \left(\widetilde{\phi}'\right)^{-1} = \psi^{-1} = \phi'$$

En particulier, $\psi \circ \theta(y) = y$. En remplaçant y par $\theta(y)$ dans l'expression $\widetilde{\phi}(y) = y \psi(y) - \phi(\psi(y))$, il vient :

$$\begin{split} \widetilde{\widetilde{\phi}}(y) &= y \, \theta(y) - \widetilde{\phi} \left(\theta \left(y \right) \right) \\ &= y \, \theta(y) - \left(\theta(y) \, \psi \left(\theta \left(y \right) \right) - \phi \left(\psi \left(\theta \left(y \right) \right) \right) \right) \\ &= y \, \theta(y) - \left(\theta(y) \, y - \phi \left(y \right) \right) \\ &= \phi(y) \end{split}$$