Solving the Boltzmann equation for electron kinetics using Petrov-Galerkin approach

Milinda Fernando, Daniil Bochkov, Todd Oliver, George Biros

- Importance: Distribution function of electrons defines transport and reaction properties
 Need to couple plasma model with electron kinetics (Y3)
- Evolution of f = f(x, v, t) obeys the **Boltzmann equation**

$$\partial_t f + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f - \boldsymbol{E} \cdot \nabla_{\boldsymbol{v}} f = \sum_a C_a(f)$$

where, for example, in case of a =elastic collisions

$$C_a(f) = n_0 \int_{S^2} v \underbrace{\sigma_a(v,\omega)}_{\text{Scall (COSS SEC)}} \left(f(v') - f(v) \right) d\omega$$

- Main challenge: 6+1 dimensions
- Idea: FEM in x, spectral in v
- Currently (Y1): spatially homogeneous case $f=f({m v},t)$

$$\partial_t f = \sum_a C_a(f)$$

to investigate efficient velocity-space discretizations

- Approach: Petrov-Galerkin
 - Nearly isotropic and symmetric f o employ spherical harmonics

$$f(\boldsymbol{v}) = \sum_{k,l,m} h_{k,l,m}(t) \Phi_k(\boldsymbol{v}) \underbrace{Y_{lm}(v_\theta,v_\phi)}_{\text{s.ph. harm.}} \quad \rightarrow \quad \text{ODEs for } h_{k,l,m}(t)$$

Results:

- Investigating choice of Φ_k(v):
 - Tested Laguerre, Maxwell, Chebyshev, Linear polys using Bolsig + data
- Solver implementation:
 - Python
 - Tenzorized 5D integrations:
 - 0.0093s vs 5.2256s loop-based
 - Arbitrary choice of Φ_k(v)
 Reactions implemented:
 - Elastic, Excitation, Ionization
 - Testing and verification are underway

z=0 , t = 1.960000E-08s

Boltzmann equation

- Importance: Distribution function of electrons defines transport and reaction properties \rightarrow Need to couple plasma model with electron kinetics (Y3)
- Evolution of f = f(x, v, t) obeys the **Boltzmann equation**

$$\partial_t f + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f - \boldsymbol{E} \cdot \nabla_{\boldsymbol{v}} f = \sum_a C_a(f)$$

where, for example, in case of a = elastic collisions

$$C_a(f) = n_0 \int_{S^2} v \underbrace{\sigma_a(v,\omega)}_{\text{scat. cross sec.}} (f(v') - f(v)) d\omega$$

- Main challenge: 6+1 dimensions
- Idea: FEM in x, spectral in v
- Currently (Y1): spatially homogeneous case f = f(v, t) to investigate efficient velocity-space discretizations

$$\partial_t f = \sum C_a(f)$$

Petrov-Galerkin approach

- Weak formulation: $\partial_t f = \sum_a C_a(f) \rightarrow \partial_t \int_{\mathbb{R}^n} f\phi(\boldsymbol{v}) \,\mathrm{d}\boldsymbol{v} = \sum_a \int_{\mathbb{R}^n} C_a(f)\phi(\boldsymbol{v}) \,\mathrm{d}\boldsymbol{v}$
- Solution as a perturbed Maxwellian:

$$f(\boldsymbol{v}) = M(v)h(\boldsymbol{v},t), \qquad M(v) = n_e \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}}$$

Expansion in basis functions:

$$h(\boldsymbol{v},t) = \sum_{k,l,m} h_{k,l,m}(t) \Phi_k(v) \underbrace{Y_{lm}(v_\theta,v_\phi)}_{\text{sph. harm.}}, \qquad \phi(\boldsymbol{v}) = \Phi_p(v) \underbrace{Y_{qs}(v_\theta,v_\phi)}_{\text{sph. harm.}}$$

Resulting system of ODEs:

$$\sum_{k,l,m} M_{p,q,s}^{k,l,m} \partial_t h_{k,l,m}(t) = \sum_{k,l,m} L_{p,q,s}^{k,l,m} h_{k,l,m}(t)$$

Choice of basis functions in radial direction

Assoc. Laguerre poly:
$$\Phi_n(v) = L_n(v^2)$$
,
$$\int_0^+ v^2 e^{-v^2} L_n(v^2) L_{n'}(v^2) dv \sim \delta_{nn'}$$
Maxwell (speed) poly: $\Phi_n(v) = P_n(v)$,
$$\int_0^+ v^2 e^{-v^2} P_n(v) P_{n'}(v) dv \sim \delta_{nn'}$$
Chebyshev poly: $\Phi_n(v) = C_n(v)$,
$$\int_{-1}^1 (1 - v^2)^{-\frac{1}{2}} C_n(v) C_{n'}(v) dv \sim \delta_{nn'}$$
Linear interp: $\Phi_n(v) = N_n(v)$,
$$N_n(v) = 1 - \frac{|x - x_n|}{\Delta_x}$$
, $x_{n-1} < x < x_{n+1}$

PECOS

Num. of polys: 3

- Bolsig+ data for Ar
- Included reactions:
 - Elastic:
 - $e + Ar \rightarrow e + Ar$
 - Excitation
 - $e + \mathsf{Ar} \rightarrow e + \mathsf{Ar}^*$
 - Ionization: $e + Ar \rightarrow e + Ar^+ + e$
- Electric field E/N:
 - $-1 \times 10^{-26} \, \text{V} \cdot \text{m}^2$

 - $-1 \times 10^{-23} \, \text{V} \cdot \text{m}^2$
 - $-6 \times 10^{-19} \, \text{V} \cdot \text{m}^2$

Num. of polys: 10

Num. of polys: 6

Num. of polys: 20

- Bolsig+ data for Ar
- Included reactions:
 - Elastic
 - $e + Ar \rightarrow e + Ar$
 - Excitation:
 - $e + Ar \rightarrow e + Ar^*$
 - Ionization:

$$e + Ar \rightarrow e + Ar^+ + e$$

- Electric field E/N:
 - $1 \times 10^{-26} \,\mathrm{V} \cdot \mathrm{m}^2$ $1 \times 10^{-24} \,\mathrm{V} \cdot \mathrm{m}^2$

 - $-7 \times 10^{-24} \, \text{V} \cdot \text{m}^2$
 - $-1 \times 10^{-23} \, \text{V} \cdot \text{m}^2$

 - $-6 \times 10^{-19} \,\mathrm{V} \cdot \mathrm{m}^2$

Error measures

- EDF f itself: L_{∞} , L_2
- EDF f itself. L_{∞} , L_2 - Reaction rate $k_a = \gamma \int \varepsilon \sigma_a f \, \mathrm{d}\varepsilon$ where $a = \mathrm{elastic}$, excitation, collision
- Takeaways:
 - No obvious choice
 - Needs further investigation

Solver implementation

- Python
- 5-dimensional integrations:
 - Tenzorized implementation
 - 0.0093s vs 5.2256s loop-based
- Flexible choice of basis functions in radial directions
- Reactions implemented
 - Elastic: $e+\operatorname{Ar} \rightarrow e+\operatorname{Ar}$
 - Excitation: $e + Ar \rightarrow e + Ar^*$
 - Ionization: $e + Ar \rightarrow e + Ar^+ + e$
- Currently: testing and verification

