ESC201: Lecture 16

Dr. Imon Mondal

ASSISTANT PROFESSOR, ELECTRICAL ENGINEERING, IIT KANPUR

2024-25 SEM-I | ESC201 INTRODUCTION TO ELECTRONICS

Digital Circuits

Combinational Circuits

Output is determined by current values of inputs only.

Sequential Circuits

Output is determined in general by current values of inputs and past values of inputs/outputs as well.

Memory with Set/Reset Knob

Two memory states are possible:

We need at least 2 i/p logic gates

NOR A

➤ NOR gate behave like INV if one i/p is 0

NOR B

➤ NAND behaves like INV if one i/p is 1

But how will one change the state?

Q3

Set-Reset (SR) Latch: Set State

	
O 1. O	$C \rightarrow C \rightarrow$
Q = 1; Q = 0	Set State
	~ · · ~ · · · · · · · ·

$$Q = 0; \overline{Q} = 1$$
 Re set State

<u>1</u>		$\overline{\cap}$	 Λ
1	ı	Y	U

S	R	Q	Q	State
1	0	1	0	SET

Set-Reset (SR) Latch: Reset State

Q = 1; Q = 0	Set State

$$Q = 0; \overline{Q} = 1$$
 Re set State

- ' &	1	+	$\overline{ar{Q}}$	=	0
-------	---	---	--------------------	---	---

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET

SR Latch: 'Hold' (memory)

SR Latch: Invalid Input and Gate Delays

Suppose gate-1 is faster

On the other hand suppose that gate-2 is faster.

Again the output is unpredictable in general

NOR-based vs NAND-based SR Latch

 5	R	Q	Q	State
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	Q	HOLD
0	0	1	1	INVALID

NAND-based SR Latch with Enable

Enable	S R	Q Q	State
0	хх	Q Q	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	QQ	Hold
1	1 1	0 0	Invalid

D latch

Enable	S R	 Q	State
0	хх	<u>a</u>	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	QQ	Hold
			Invalid

If EN = 1 then Q = D otherwise the latch is in Hold state

Synchronous Sequential Circuits

