

I Claim:

1 1. An AM half-tone printing process wherein shades of gray are represented by
2 dot size, comprising
3 representing at least some shades of gray by groups of equally spaced dots in
4 each of which some dots are smaller than at least one other dot in the group.

1 2. An AM half-tone printing process according to claim 1, wherein the average
2 size of the dots in a single group corresponds to a predetermined dot value for the group as a
3 whole.

1 3. An AM half-tone printing process according to claim 2, wherein there is a
2 predetermined minimum size for said at least one other dot.

1 4. An AM half-tone printing process according to claim 2, wherein each group
2 includes n dots, and gray values below a predetermined transition value are represented by
3 reducing the sizes of n-1 of said dots to values which are less than the value of the remaining
4 dot.

1 5. An AM half-tone printing process according to claim 3, wherein each group
2 includes n-1 dots, and gray values below a predetermined transition value are represented by
3 reducing the sizes of n-1 of said dots to values which are less than the value of the remaining
4 dot.

1 6. An AM half-tone printing process according to claim 5, wherein n=4.

1 7. An AM half-tone printing process according the claim 4, wherein said
2 minimum size and transition value are variable.

1 8. An AM half-tone printing process according the claim 7, wherein the printing
2 process is a flexographic printing process.

1 9. An AM half-tone printing process according to claim 5, wherein a desktop
2 publishing computer couples digital information to a raster image processor to form individual
3 half-tone separations, said minimum size and transition value being determined by said
4 desktop publishing computer.