Statistical Analysis of Corpus Data with R

A short introduction to regression and linear models

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento

²Institute of Cognitive Science (IKW) University of Onsabrück

Regression Simple linear regression

Linear regression

- Can random variable Y be predicted from r. v. X? on linear relationship between variables
- Linear predictor:

$$Y \approx \beta_0 + \beta_1 \cdot X$$

- β₀ = intercept of regression line
- β₁ = slope of regression line
- Least-squares regression minimizes prediction error

$$Q = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

for data points $(x_1, y_1), \ldots, (x_n, y_n)$

Outline

Regression

- Simple linear regression
- General linear regression
- Linear statistical models
 - A statistical model of linear regression.
 - Statistical inference
- Generalised linear models

Simple linear regression

Coefficients of least-squares line

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n \overline{x}_n \overline{y}_n}{\sum_{i=1}^n x_i^2 - n \overline{x}_n^2}$$

Regression Simple linear regression

$$\hat{\beta}_0 = \overline{y}_n - \hat{\beta}_1 \overline{x}_n$$

- Mathematical derivation of regression coefficients
 - minimum of Q(β₀, β₁) satisfies ∂Q/∂β₀ = ∂Q/∂β₁ = 0 leads to normal equations (system of 2 linear equations)

$$\begin{split} -2\sum_{i=1}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1}x_{i}\right)\right] &= 0 \quad \Rightarrow \quad \beta_{0}n+\beta_{1}\sum_{i=1}^{n}x_{i} = \sum_{i=1}^{n}y_{i} \\ -2\sum_{i=1}^{n}x_{i}\left[y_{i}-\left(\beta_{0}+\beta_{1}x_{i}\right)\right] &= 0 \quad \Rightarrow \quad \beta_{0}\sum_{i=1}^{n}x_{i}+\beta_{1}\sum_{i=1}^{n}x_{i}^{2} = \sum_{i=1}^{n}x_{i}y_{i} \end{split}$$

regression coefficients = unique solution β̂₀, β̂₁

The Pearson correlation coefficient

- · Measuring the "goodness of fit" of the linear prediction
 - variation among observed values of Y = sum of squares S².
 - closely related to (sample estimate for) variance of Y

$$S_y^2 = \sum_{i=1}^n (y_i - \overline{y}_n)^2$$

- ► residual variation wrt. linear prediction: S²_{motal} = Q
- Pearson correlation = amount of variation "explained" by X

$$R^2 = 1 - \frac{S_{\text{resid}}^2}{S_y^2} = 1 - \frac{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2}{\sum_{i=1}^n (y_i - \overline{y}_n)^2}$$

correlation vs. slope of regression line

$$R^2 = \hat{\beta}_1(y \sim x) \cdot \hat{\beta}_1(x \sim y)$$

on General linear regression

5 / 15

Multiple linear regression: The design matrix

Matrix notation of linear regression problem

$$\mathbf{y} \approx \mathbf{Z} \boldsymbol{\beta}$$

"Design matrix" Z of the regression data

$$\mathbf{Z} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}'$$

$$\beta = \begin{bmatrix} \beta_0, & \beta_1, & \beta_2, & \cdots & \beta_k \end{bmatrix}'$$

A' denotes transpose of a matrix; y, β are column vectors

Multiple linear regression

Linear regression with multiple predictor variables

$$Y \approx \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k$$

minimises

$$Q = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik})]^2$$

for data points $(x_{11}, \dots, x_{1k}, v_1), \dots, (x_{n1}, \dots, x_{nk}, v_n)$

 Multiple linear regression fits n-dimensional hyperplane instead of regression line

6 / 15

General linear regression

Matrix notation of linear regression problem

$$\mathbf{v} \approx \mathbf{Z}\boldsymbol{\beta}$$

General linear regression

Residual error

$$Q = (\mathbf{y} - \mathbf{Z}\beta)'(\mathbf{y} - \mathbf{Z}\beta)$$

System of normal equations satisfying ∇_B Q = 0;

$$Z'Z\beta = Z'y$$

· Leads to regression coefficients

$$\hat{eta} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

General linear regression

- Predictor variables can also be functions of the observed variables → regression only has to be linear in coefficients β
- E.g. polynomial regression with design matrix

$$\mathbf{Z} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^k \\ 1 & x_2 & x_2^2 & \cdots & x_2^k \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^k \end{bmatrix}$$

corresponding to regression model

$$Y \approx \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_k X^k$$

Baroni & Evert (Trento/Osnabrii)

SIGIL: Linear Models

9 / 15

9 / 15

inear statistical models A statistical model of linear regression

Linear statistical models

· Probability density function for simple linear model

$$\Pr(\mathbf{y} \,|\, \mathbf{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \cdot \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \right]$$

- **y** = $(y_1, ..., y_n)$ = observed values of Y (sample size n) **x** = $(x_1, ..., x_n)$ = observed values of X
- Log-likelihood has a familiar form:

log Pr(y | x) =
$$C - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \propto Q$$

ightharpoonup MLE parameter estimates \hat{eta}_0,\hat{eta}_1 from linear regression

Linear statistical models

• Linear statistical model ($\epsilon = \text{random error}$)

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$$
$$\epsilon \sim N(0, \sigma^2)$$

- x_1, \ldots, x_k are not treated as random variables!
- $ho \sim$ = "is distributed as"; $N(\mu,\sigma^2)$ = normal distribution
- Mathematical notation:

$$Y | x_1, ..., x_k \sim N(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k, \sigma^2)$$

- Assumptions
 - error terms ε_i are i.i.d. (independent, same distribution)
 - error terms follow normal (Gaussian) distributions
 - equal (but unknown) variance σ^2 = homoscedasticity

Baroni & Evert (Trento/Osnabrück) SIGIL: Linear Models

10 / 15

Linear statistical mod

Caralatiant informa

Statistical inference for linear models

- Model comparison with ANOVA techniques
 - Is variance reduced significantly by taking a specific explanatory factor into account?
 - intuitive: proportion of variance explained (like R²)
 - ▶ mathematical: F statistic → p-value
- ullet Parameter estimates $\hat{eta}_0,\hat{eta}_1,\ldots$ are random variables
 - t-tests (H₀: β_j = 0) and confidence intervals for β_j
 - confidence intervals for new predictions
- Categorical factors: dummy-coding with binary variables
 - e.g. factor x with levels low, med, high is represented by three binary dummy variables x_{low}, x_{med}, x_{high}
 - ► one parameter for each factor level: β_{low} , β_{med} , β_{high} ► NB: β_{low} is "absorbed" into intercept β_0
 - model parameters are usually $\beta_{\rm med} \beta_{\rm low}$ and $\beta_{\rm high} \beta_{\rm low}$ mathematical basis for standard ANOVA

- loint effects of variables can be modelled by adding interaction terms to the design matrix (+ parameters)
- Interaction of numerical variables (interval scale)
 - interaction term for variables x_i and x_i = product x_i · x_i
 - e.g. in multivariate polynomial regression:
 - $Y = p(x_1, ..., x_k) + \epsilon$ with polynomial p over k variables
- Interaction of categorical factor variables (nominal scale)
 - interaction of x; and x; coded by one dummy variable for each combination of a level of x; with a level of x;
 - alternative codings e.g. to have separate parameters for independent additive effects of x; and x;
- Interaction of categorical factor with numerical variable

Generalised linear model for corpus frequency data

Sampling family (binomial)

$$f_i \sim B(n_i, \pi_i)$$

Link function (success probability π ↔ odds θ)

$$\pi_i = \frac{1}{1 + e^{-\theta_i}}$$

Linear predictor

$$\theta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik}$$

 Estimation and ANOVA based on likelihood ratios iterative methods needed for parameter estimation

Generalised linear models

- Linear models are flexible analysis tool, but they . . .
- only work for a numerical response variable (interval scale).
 - assume independent (i.i.d.) Gaussian error terms
 - assume equal variance of errors (homoscedasticity).
 - cannot limit the range of predicted values
- Linguistic frequency data problematic in all four respects.
 - \mathbf{e} each data point $\mathbf{v}_i = \text{frequency } f_i \text{ in one text sample}$ f: are discrete variables with binomial distribution (or more
 - complex distribution if there are non-randomness effects)
 - Innear model uses relative frequencies $p_i = f_i/n_i$
 - Gaussian approximation not valid for small text size n:
 - sampling variance depends on text size n; and "success probability" π_i (= relative frequency predicted by model)
- model predictions must be restricted to range 0 < p; < 1 Generalised linear models (GLM)

15 / 15