1 Critère d'Eisenstein

Abstract

Le critère d'Eisenstein est un critère d'irréductibilité d'un polynôme. Dans sa forme la plus connue, il s'énonce ainsi : soit $P = \sum_{i=0}^d a_i X^i$ un polynôme à coefficients dans \mathbb{Z} . S'il existe un nombre premier p tel que p divise tous les coefficients sauf le dernier et que p^2 ne divise pas le premier coefficient, alors P est irréductible dans $\mathbb{Q}[X]$.

Nous en donnerons une généralisation dans le cas des polynômes à coefficients dans un anneau intègre.

Définition 1. Soit A un anneau commutatif. Un idéal I est dit premier si pour tous $a, b \in A$, si $ab \in I$, alors $a \in I$ ou $b \in I$.

Remarque 1. De manière équivalente, un idéal I est dit premier si A/I définit par passage au quotient un anneau intègre.

Théorème 1 (Critère d'Eisenstein). Soit \mathcal{A} un anneau intègre. Soit $P = \sum_{i=0}^{d} a_i x^i \in \mathcal{A}[x]$. S'il existe un idéal premier I de \mathcal{A} tel que

- $\forall i \in \{0, ..., d-1\}, a_i \in I$,
- $a_d \notin I$,
- $a_0 \notin I^2$ (c'est-à-dire a_0 n'est pas le carré d'un élément de I),

Alors P est irréductible dans A[x].

Proof. Supposons que P = RQ avec $\deg(R) = m$ et $\deg(Q) = d - m$ avec $\deg(R) \ge 1$. Par réduction modulo I (i.e. considérer $\mathcal{A}/I[x]$), on a

$$P = RQ = a_d x^d \bmod I. \tag{1}$$

Or \mathcal{A}/I est intègre donc $\mathcal{A}/I[x]$ est intègre. On en déduit que les réductions de R et Q sont de la forme $R = bx^m \mod I$ et $Q = cx^{d-m} \mod I$. En particulier, on en déduit que r_0 et g_0 sont dans I. Puisque $a_0 = r_0 g_0$, on en déduit que $a_0 \in I^2$. Cela contredit l'hypothèse du théorème, on en déduit que P est irréductible. \square

Le théorème d'Eisenstein pour les polynômes à coefficients dans \mathbb{Z} est un peu plus fort que le théorème général puisqu'on obtient une irréductibilité dans $\mathbb{Q}[X]$ et non dans $\mathbb{Z}[X]$. C'est l'objet de la proposition suivante, qui montre que les deux théorèmes sont équivalents.

Proposition 1. Un polynôme $P \in \mathbb{Z}[X]$ est irréductible dans Q[X] si et seulement si il est irréductible dans $\mathbb{Z}[X]$.

Proof. Bien sûr, si P est irréductible dans $\mathbb{Q}[X]$, il est aussi dans $\mathbb{Z}[X]$. Supposons désormais qu'il le soit dans $\mathbb{Z}[X]$. Supposons qu'il existe $R,Q\in\mathbb{Q}[X]$ tels que P=RQ.

Il existe $q, r \in \mathbb{Z}$ tel que $qQ \in \mathbb{Z}[X]$ et $rR \in \mathbb{Z}[X]$. On peut ensuite écrire

$$qrP = qRrQ = c(qR)R'c(rQ)Q'$$
(2)

où R', Q' sont des polynômes à coefficients entiers et c(R), c(Q) sont les pgcd des coefficients de R et Q. On en déduit que

$$qrc(P) = c(qR)c(rQ) \tag{3}$$

d'où qrP = qrc(P)R'Q' et finalement que P = c(P)R'Q'. En conclusion, P est irréductible dans $\mathbb{Z}[X]$ puisque R', Q' sont de degrés supérieurs à 1, et c(P) n'est qu'une constante entière.

Corollaire 1 (Critère d'Eisenstein). Soit $P = \sum_{i=0}^{d} a_i X^i$ un polynôme à coefficients dans \mathbb{Z} . S'il existe un nombre premier p tel que p divise tous les coefficients sauf le dernier et que p^2 ne divise pas le premier coefficient, alors P est irréductible dans $\mathbb{Q}[X]$.

Proof. On applique le théorème d'Eisenstein avec $\mathcal{A} = \mathbb{Z}$ et I = (p). Ainsi, P est irréductible dans $\mathbb{Z}[X]$ donc dans $\mathbb{Q}[X]$ par la proposition précédente. \square

Le critère d'Eisenstein est un critère d'irréductibilité puissant, en particulier lorsque l'on considère les fermés de Zariski. L'idée est de considérer $\mathcal{A}[x,y]$ comme $\mathcal{A}[x][y]$ et d'appliquer le critère d'Eisenstein sur $\mathcal{A}[x]$.

Exemple 1. Soit $f = y^2 + yx^2 + x$. On peut considérer I = (x). $f_0 = x \in I$ et $f_0 = x \notin I^2$, $f_1 = x^2 \in I$ et $f_2 = 1 \notin I$. On en déduit que f est irréductible dans $\mathbb{C}[x][y]$.

De manière générale, on a le corollaire suivant :

Corollaire 2. Soit $f \in A[x,y]$ sous la forme $f = \sum_{i=0}^{d} f_i(x)y^i$. Si les f_i sont premiers entre eux et qu'il existe un polynôme irréductible p(x) tel que p(x) divise tous les f_i sauf le dernier et que $p^2(x)$ ne divise pas f_0 , alors f est irréductible dans A[x,y].

Le critère d'Eisenstein s'applique plus souvent sur des polynômes à coefficients entiers. On peut par exemple établir l'irréductibilité du p-ième polynôme cyclotomique.

$$\Phi_p(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + X^{p-2} + \dots + 1.$$
 (4)

Corollaire 3. Le p-ième polynôme cyclotomique est irréductible dans $\mathbb{Q}[X]$.

Proof. On calcule d'abord $\Phi_p(X+1)$

$$\Phi_p(X+1) = \frac{(X+1)^p - 1}{X} = \sum_{i=1}^p \binom{p}{i} X^{i-1}.$$
 (5)

D'après le critère d'Eisenstein avec p, $\Phi_p(X+1)$ est irréductible dans $\mathbb{Q}[X]$. (p divise $\binom{p}{i}$ pour $i \in \{1,...,p-1\}$, p^2 ne divise pas $\binom{p}{1}$ et p ne divise pas $\binom{p}{p}$). Si Φ_p était réductible, alors il existerait $R,Q\in\mathbb{Q}[X]$ tels que $\Phi_p=RQ$. On aurait alors

$$\Phi_p(X+1) = R(X+1)Q(X+1) = R'(X)Q'(X). \tag{6}$$

Ce qui contredirait l'irréductibilité de $\Phi_p(X+1)$.

On conclut par un dernier corollaire intéressant.

Corollaire 4. $\mathbb{Q}[X]$ admet des polynômes irréductibles de degré arbitrairement grand.

Proof. On pose $P_n = X^n - 2$. On a directement par le critère d'Eisenstein que P_n est irréductible dans $\mathbb{Q}[X]$.