Ch05.그래프 그리기

학습목표

- 일변량 범주형 자료의 그래프 작성
- 다변량 범주형 자료의 그래프 작성
- 일변량 수치형 자료의 그래프 작성
- 다변량 수치형 자료의 그래프 작성

1.범주형 자료(일변량)

프로젝트 생성

데이터 가져오기

그래프의 중요성

■ 그래프

- 인간이 지닌 시각적인 인지능력을 활용하여 직관적으로 그 현상을 쉽게 인식하도록 하는 방법
- 통계적인 데이터를 요약하여 시각적으로 그 특징을 나타내는 것
- 그래프의 문제점
 - 그래프는 자료가 가지고 있는 속성뿐만 아니라 강렬한 인상을 주게 되어 확대해석의 오류를 범할 위험이 있음
- 활용
 - 그래프를 통해 데이터의 특징 및 자료의 이상치를 점검하여 이후의 통계분 석에 대비함

자료형태에 따른 그래프 그리기

■ 막대그래프와 히스토그램

■ 범주형: 막대그래프

• 수치형 : 히스토그램

그래프 그리기

- # 범주형 변수가 1개 일 때
- barplot:
 - 막대도표,
 - 수평막대도표
 - 누적막대도표
- pie: 원도표

도수분포표

- 도수분포표와 막대그래프 (Bar chart)
 - 누적비율: 순서형일 경우에 사용하면 편리

학점	빈도	비율(%)	누적비율(%)
А	6	12	12
В	21	42	54
С	15	30	84
D	6	12	96
F	2	4	100
합계	50	100	100

막대그래프(barplot)

```
attach(freq)

##02.일변량 범주형 자료

barplot(grade)

> barplot(grade)

Error in barplot.default(grade):
 'height'는 반드시 벡터 또는 행렬이어야 합니다
```

#그래프 에러(table로 정리한 후에 연결-원자료 사용 못함) #기본 막대그래프 grade <- table(grade) barplot(grade)

막대그래프(barplot)

막대그래프(barplot)

```
# 막대그래프 옵션
barplot(grade,
     main = "학점별 분포",
     xlab = "학점",
     ylab = "명",
                                                    학점별 분포
     ylim = c(0,30),
                                   25
      legend = rownames(grade))
                                   20
                                   5
                                   9
                                   Ю
                                                D
                                                             В
```

수평막대그래프(barplot)

```
#수평 막대그래프 + 컬러
barplot(grade,
      main = "학점별 분포",
      horiz=TRUE,
                                                          학점별 분포
      xlab = "학점",
      ylab = "명",
      col=heat.colors(5))
                                          \mathbf{\omega}
                                       田0
                                          \circ
                                          ш
                                                            10
                                                                   15
                                                                           20
                                                            학점
```

원그래프(pie)

```
#03.원그래프
pie(grade,
  main="학점별 분포",
  init.angle=90,
  col=rainbow(length(grade))
legend(1, 1,
     rownames(grade),
     cex = 1,
     fill = rainbow(length(grade))
```


원그래프(pie)

```
# 3D 원그래프 옵션
# install.packages("plotrix")
library(plotrix)
pie3D(grade,
    main="학점별 분포",
    labels=grade,
    explode=0.1,
    col=rainbow(length(grade))
legend(0.5, 1,
     rownames(grade),
     cex = 0.7,
     fill = rainbow(length(grade))
```


2.범주형 자료(다변량)

사전설계 분할표

- 사전(실험)설계일 때
 - 사전에 그룹의 수를 결정해서 연구할 때
 - 그룹에 따른 차이를 연구할 때
 - 예) 비타민과 감기에 대한 연구를 하기 위해, 비타민을 투여할 실험군과 가짜 약을 투여할 대조군으로 사전에 구분하여 연구
 - 실험군과 대조군에 따른 차이를 검정: 교차분석(동질성검정)
 - 비율기준: 그룹별 자료수

사후

	그룹	감기발병		합계
	그 급	야	무	합계
	실험군 (비타민)	17 (34.0%)	33 (66.0%)	50 (100.0%)
_	대조군 (Placebo)	38 (76.0%)	12 (24.0%)	50 (100.0%)
	합계	55 (55.0%)	45 (45.0%)	100 (100.0%)

<u>사전</u>

누적막대그래프(barplot)

```
## Ch05.그래프그리기
##04.다변량 범주형 자료
# 데이터 가져오기 (Ch03에서 copy)
pre <- read.csv("0302.pre.csv",
           header=TRUE,
           na.strings = ".")
pre$treat <- factor(pre$treat,</pre>
              levels=c(1,2),
              labels=c("비타민","Placebo"))
pre$cold <- factor(pre$cold,
              levels=c(1,2),
              labels=c("Cold","noCold"))
```

누적막대그래프(barplot)

누적막대그래프(barplot)

```
barplot(pre,
      main="비타민섭취에 따른 감기유병률",
     xlab = "집단",
     ylab = "%",
                                                 비타민섭취에 따른 감기유병률
     ylim = c(0,50),
     col=c("darkblue","red"),
      legend = rownames(pre),
      beside=TRUE)
                                   9
                                             Cold
                                                                 noCold
                                                        집단
```

모자이크 그래프

```
#05.모자이크 그래프
mosaicplot(pre, shade=TRUE,
        xlab = "treat", ylab = "감기유무",
        main = "비타민섭취에 따른 감기유병률")
                                          비타민섭취에 따른 감기유병률
                                     비타민
detach(pre)
                                                      Placebo
                         감기유무
                                                                    Standardized
Residuals:
                                                 treat
```

3.수치형 자료(일변량)

히스토그램 그리기

```
## Ch05.그래프그리기
##06.일변량 수치형 자료
# 데이터 가져오기 (Ch04에서 copy)
wgt <- read.csv("0401.wgt.csv",
          header=TRUE,
          na.strings = "."
wgt$sex <- factor(wgt$sex,
            levels=c(1,2),
            labels=c("남자","여자")
str(wgt$sex)
```

히스토그램 그리기

attach(wgt)

몸무게 히스토그램 및 분포 hist(weight) boxplot(weight) stem(weight)

detach(wgt)

분포

수치형 자료의 범주화

- 범주형 자료로 변환 후 정리
- 수치형 자료의 그래프는 <u>히스토그램으로 정리</u>

몸무게	L 빈도
40~45미만 45~50미만 50~55미만 55~60미만 60~65미만 65~70미만 70~75미만	3 8 12 18 10 6 3
 합계	60


```
    # 범주형 자료로 변환
    wgt <- transform(wgt,</li>
    wgt.cut = cut(weight,
    breaks=c(0,45,50,55,60,65,70,100),
    right=FALSE,
    labels=c("~40미만", "45~50미만","50~55미만","55~60미만",
    "60~65미만","65~70미만","70이상~"))))
```

```
    # right=FALSE → a <= x < b</li>
    # right=TRUE → a < x <= b</li>
```

```
> wgt
id weight sex wgt.cut
1 1 40 남자 ~40미만
2 2 50 남자 50~55미만
3 3 56 남자 55~60미만
4 4 51 남자 50~55미만
5 5 55 남자 55~60미만
6 6 61 남자 60~65미만
7 7 70 남자 70이상~
8 8 44 남자 ~40미만
9 9 66 남자 65~70미만
```

```
■ # 범주형 자료로 변환 (ifelse이용)
  wgt<- transform(wgt,
              wgt.if = ifelse(weight < 45, "\sim 45",
                     ifelse(weight >= 45 & weight < 50, "45~50미만",
                       ifelse(weight >= 50 & weight < 55, "50~55미만",
                        ifelse(weight >= 55 & weight < 60, "55~60미만",
                          ifelse(weight >= 60 & weight < 65, "60~65미만",
                           ifelse(weight >= 65 & weight < 70, "65~70미만", "70~"
```

detach(wgt)

데이터프레임을 새롭게 수정했을 경우에는 detach한후에 다시 attach해줘야 함

attach(wgt)
table(wgt.cut)
barplot(table(wgt.cut))

히스토그램 bin 설정 hist(weight, breaks=15, col="red", min(weight), max(weight))

detach(wgt)

4.수치형 변수(다변량)

그룹별 수치자료 비교

- 그룹간 수치자료 비교
 - 범주형 자료 + 수치형 자료
 - 통계값: 표본크기, 평균, 표준편차

sex	N	평균	표준 편차	최소값	최대값
남	30	55.50	7.93	40	72
여	30	57.37	6.99	41	71
총계	60	56.43	7.47	40	72

id	weight	sex
1		남
2 3	50	남 남 여
3	56	
4	51	여
4 5 6 7 8	40 50 56 51 55 61 70 44 66	어 남
6	61	남
7	70	남
8	44	여
9	66	남
10	60	여
11	56	여
12 13	60 56 72	남
13	46 63	남
14	63	여
15	56	· 남 여
16	52	여
17	56 52 48	여

그룹간 비교

```
# 그룹간 연속변수 특성 비교
```

boxplot(weight~sex, data=wgt, main="성별에 따른 몸무게 분포", xlab="성별", ylab="cm")

여러 연속자료 비교

```
# 여러 연속자료 비교
load("game.RData")
str(game)
attach(game)
o1 <- mean(game$o1)
o2 <- mean(game$o2)
fb1 <- mean(game$fb1)
fb2 <- mean(game$fb2)
fb3 <- mean(game$fb3)
game.t <- cbind(o1, o2, fb1, fb2, fb3)
game.t
```

여러 연속자료 비교

```
barplot (game.t,
      col=c("darkblue"),
      main = "연속변수 평균",
      names.arg=c(colnames(game.t)),
      ylim = c(0,4)
                                                 연속변수 평균
```

5.고급 그래프 그리기

고급그래프 그리기(ggplot2)

- #그래프 그리기
 - barplot : table로 정리한 후에 연결
 - ggplot2 : 원데이터 사용

```
##09.고급 그래프 그리기
# install.packages("ggplot2")
```

library(ggplot2)

막대그래프 ggplot(wgt, aes(x=sex)) + geom_bar()

고급그래프 그리기(ggplot2)

```
## 그룹간 상자도표(범주+수치형 자료)
ggplot(wgt, aes(x=sex, y=weight)) +
 geom_boxplot(position="dodge") +
 ggtitle("성별 체중 상자도표")
                            70 -
                            60 -
                            50 -
                                        남자
                                                          여자
                                                 sex
```