Cheat Sheet Reihen

Folgen

Folge Sei $\mathbb N$ die Menge der natürlichen Zahlen und A eine nicht leere Menge. Ein Folge entsteht, indem man jedem Element $n \in \mathbb N$ ein Element a von A zuordnet; man schreibt dann für diese Zuordnung:

$$n \mapsto a_n$$

Die entstande Folge wird selbst mit

 $\{a_n\}_{n\in\mathbb{N}}$ oder einfach mit $\{a_n\}$ bezeichnet

Obere Schranke Gibt es eine reele Zahl K_O so, dass

$$a_n \leq K_O$$
 für alle $n \in \mathbb{N}$

gilt, so ist die Folge $\{a_n\}$ nach oben beschränkt. Man nennt K_O die obere Schranke der Folge.

Untere Schranke Gibt es eine reele Zahl K_U so, dass

$$a_n > K_U$$
 für alle $n \in \mathbb{N}$

gilt, so ist die Folge $\{a_n\}$ nach unten beschränkt. Man nennt K_U die untere Schranke der Folge.

Beschränkt falls eine Folge sowohl nach oben, wie auch nach unten beschränkt ist.

Monotonie

 $\begin{array}{ll} \text{Monoton steigend} & a_n \leq a_{n+1} \text{ für alle } n \in \mathbb{N} \\ \text{Streng monoton steigend} & a_n < a_{n+1} \text{ für alle } n \in \mathbb{N} \\ \text{Monoton fallend} & a_n \geq a_{n+1} \text{ für alle } n \in \mathbb{N} \\ \text{Streng monoton fallend} & a_n > a_{n+1} \text{ für alle } n \in \mathbb{N} \\ \end{array}$

Eine monoton steigende Folge mit der Indexmenge \mathbb{N} ist immer nach unten beschränkt. Die untere Schranke ist a_1 .

Eine monoton fallende Folge mit der Indexmenge $\mathbb N$ ist immer nach oben beschränkt. Die obere Schranke ist a_1

${\bf Konvergenz}$

Es sei $\{a_n\}_{n\in\mathbb{N}}$ eine reelle Folge und a eine reelle Zahl. Man sagt, die Folge konvergiert gegen den Grenzwert a, wenn für jede beliebige reelle Zahl $\epsilon > 0$ ein Index n_0 existiert, so dass gilt:

$$|a_n-a|<\epsilon$$
 für alle $n\geq n_0$

Man schreibt dann

$$a = \lim_{n \to \infty} a_n$$

oder auch

$$a_n \to a \text{ für } n \to \infty$$

Rechenregeln

Es seien $\{a_n\}$ eine konvergierende Folge mit dem Grenzwert a und $\{b_n\}$ eine konvergierende Folge mit dem Grenzwert b. Dann gilt:

Addition Die Folge $\{a_n + b_n\}$ konvergiert gegen a + b Subtraktion Die Folge $\{a_n - b_n\}$ konvergiert gegen a - b Multiplikation Die Folge $\{a_n \cdot b_n\}$ konvergiert gegen $a \cdot b$ Die Folge $\{\frac{a_n}{b_n}\}$ konvergiert gegen $\frac{a}{b}$

Nach oben beschränkte, monoton steigende Folgen konvergieren. Nach unten beschränkte, monoton fallende Folgen konvergieren. Jede konvergente Folge ist beschränkt.

Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt: Jede Folge hat höchstens einen Grenzwert.

Reihen

Informell: Eine Reihe ist eine Folge, die dadurch entsteht, dass man die Glieder einer anderen Folge aufsummiert und die entstanden Partialsummen als neue Folge interpretiert.

Sei $\{a_i\}$ ein Folge von Zahlen und p eine natürliche Zahl. Dann betrachtet man die Summe $\sum_{i=1}^p a_i$ der ersten p Zahlen einer Folge. Gibt es eine Zahl S, so dass

$$\lim_{p \to \infty} \sum_{i=1}^{p} a_i = S$$

ist, konvergiert also die bis ins unendliche fortgesetzte Summation der Folgeglieder a_i gegen einen festen Wert, so sagt man, die Reihe konvergiert gegen S und schreibt in symbolischer Notation

$$\sum_{i=1}^{\infty} a_i = S$$

Die Zahl S bezeichnet den Summenwert der Reihe (oder auch den Reihenwert). Liegt keine konvergenz vor, so sagt man, die Reihe divergiert.

Konvergenzkriterien

Damit eine Reihe $\sum_{i=1}^{\infty} a_i$ konvergieren kann ist es notwendig, dass

$$\lim_{i \to \infty} a_i = 0$$

Quotientenkriterium

Es sei eine Reihe $\sum_{i=1}^{\infty} a_i$ vorgelegt. Existiert ein Grenzwert

$$q = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$$

und ist q<1, so konvergiert die Reihe. Ist q>1, so divergiert die Reihe. Ist q=1 kann keine Aussage gemacht werden.

Wurzelkriterium

Es sei eine Reihe $\sum_{i=1}^{\infty} a_i$

$$q = \lim_{i \to \infty} \sqrt[i]{|a_i|}$$

und ist q < 1, so konvergiert die Reihe. Ist q > 1, so divergiert die Reihe. Ist q = 1 kann keine Aussage gemacht werden.

Leibniz-Kriterium

Sei $\{u_i\}$ eine Folge von Zahlen, die entweder alle positiv oder negativ sind, dann nennt man die Reihe

$$\sum_{i=1}^{\infty} (-1)^i u_i$$

ein alternierende Reihe.

Für alternierende Reihen gilt das Leibniz-Kriterium: Konvergiert die Folge $\{u_i\}$ streng monoton gegen 0, so konvergiert die Reihe $(u_1 > u_2 > \cdots > u_i)$

Wichtige Reihen

$$\sum_{i=1}^{\infty} \frac{1}{i} = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{i} \text{ (harmonische Reihe, divergiert)}$$

$$\sum_{i=1}^{\infty} (-1)^{i-1} \frac{1}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{i} = \ln 2$$

$$\sum_{i=1}^{\infty} aq^{i-1} = a + aq + aq^2 + \dots + aq^i \text{ geometrische Reihe}(q > 1)$$

$$\sum_{i=1}^{\infty} aq^{i-1} = a + aq + aq^2 + \dots + aq^i = \frac{a}{1-q} \text{ für } (|q| < 1)$$

$$\sum_{i=0}^{\infty} \frac{1}{i!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{i!} = e$$

$$\sum_{i=1}^{\infty} (-1)^{i-1} \frac{1}{2i-1} = 1 - \frac{1}{3} + \frac{1}{5} + \dots = \frac{\pi}{4}$$
$$\sum_{i=1}^{\infty} \frac{1}{i^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

$$\sum_{i=1}^{\infty} (-1)^{i-1} \frac{1}{i^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$

$$\sum_{i=1}^{\infty} \frac{1}{i \cdot (i+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots = 1$$

Für die Eulersche Zahl gilt, das 0! = 1

Potenzreihen

Unter einer Potenzreihe versteht man eine unendliche Reihe vom Typ

$$P(x) = \sum_{n=0}^{\infty} a_n \cdot (x - x_0)^n = a_0 + a_1 \cdot (x - x_0)^1 + a_2 \cdot (x - x_0)^2 + \dots + a_n \cdot (x - x_0)^n$$

Die Stelle x_0 heisst Entwicklungspunkt oder auch Entwicklungszentrum. Die reellen Zahlen a_0, a_1, a_2, \ldots heissen Koeffizienten der Potenzreihe.

Konvergenzbereich

Die Menge aller x-Werte, für eine Potenzreihe konvergiert heisst Konvergenzbereich.

Zu jeder Potenzreihe gibt es ene positive Zahl r, Konvergenzradius genannt, mit folgenden Eigenschaften:

- 1. Die Potenzreihe konvergiert überall im Intervall |x| < r
- 2. Die Potenzreihe divergiert dagegen für |x| > r.
- 3. Über das Verhalten in |x|=r lassen sich keine allgemeinen Aussagen machen \Rightarrow explizit betrachten.

Falls für alle Koeffizienten gilt $a_n \neq 0$ und der ein Grenzwert für a_n vorhanden ist, lässt sich der Konvergenzradius r wie folgt berechnen:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

- Für x = 0 konvergiert jede Potenzreihe und besitzt dort den Summenwert $P(0) = a_0$
- Es gibt Potenzreihen, die nur für x=0 konvergieren
- Es gibt Potenzreihen, die für jedes $x \in \mathbb{R}$ konvergieren
- Allgemein konvergiert eine Potenzreihe in einem zum Nullpunkt symmetrischen Intervall r

Potenzreihenentwicklung

Taylorsche Reihe

Die Taylorsche Reihe ist hilfreich um komplexe Funktionen in Polynome zu verwandeln. Je höher der Grad des Polynoms, desto stärker wird die Funktion angenähert.

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!} (x - x_0)^1 + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Wobei x_0 als Entwicklungspunkt bzw. als Entwicklungszentrum betrachtet wird.

Mac Laurinsche Reihe

Die Mac Laurinsche Reihe ist ein Spezialfall der Taylor Reihe im Entwicklungspunkt $x_0=0$:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

Grenzwertregel Bernoulli/de L'Hospital

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- Voraussetzung: f(x) und g(x) sind in der Umgebung von x_0 stetig differenzierbar
- Gilt auch für Grenzübergänge $x \to \pm \infty$
- Manchmal muss die Regel mehrfach angewendet werden
- Es gibt Fälle, in denen die Regel versagt

Umformungen

Typ A: $u(x) \cdot v(x)$ für $0 \cdot \infty$

$$u(x) \cdot v(x) = \frac{u(x)}{\frac{1}{v(x)}} \qquad \qquad u(x) \cdot v(x) = \frac{v(x)}{\frac{1}{u(x)}}$$

Typ B: u(x) - v(x) für $\infty - \infty$

$$u(x) - v(x) = \frac{\frac{1}{v(x)} - \frac{1}{u(x)}}{\frac{1}{u(x) \cdot v(x)}}$$

Typ C:
$$u(x)^{v(x)}$$
 für $0^0, \infty^0, 1^\infty$
 $u(x)^{v(x)} = e^{v(x) \cdot \ln u(x)}$

Komplexe Zahlen \mathbb{C}

Eine komplexen Zahl z ist ein geordnetes Paar (x;y) aus zwei reellen Zahlen x und y: $z=x+\mathrm{j}y$. x ist der Realteil von z, y heisst Imaginärteil von z. Die imaginäre Einheit heisst j. Es gilt:

$$j^2 = -1$$

Darstellungsformen

Normalform z = x + jyTrigonometrische Form $z = r \cdot (\cos \varphi + j \sin \varphi)$ Exponentialform $z = r \cdot e^{j\varphi}$

Umrechnungen

 $Trigonometrisch/Exponential\ Form
ightarrow Normalform$

$$x = r \cdot \cos \varphi$$
$$y = r \cdot \sin \varphi$$

 $Normal form \, \rightarrow \, Trigonometrisch/Exponential form$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\varphi = \arctan\left(\frac{y}{x}\right) + \omega$$

Dabei heissen r der Betrag und φ Argument/Winkel/Phase von z. ω ist abhängig vom Quadranten.

${\bf Anmerkungen}$

- $\mathbb{C} = \{z | z = x + jy \text{ mit } x, y \in \mathbb{R}\}$
- $z_1 = x_1 + jy_1 = z_2 = x_2 + jy_2 \Rightarrow (x_1 = x_2) \land (y_1 = y_2)$
- Die konjugiert komplexe Zahl $z^* = (x + jy)^* = x jy$.
- $e^{j\pi} = -1$

Komplexe Rechnung

- Addition und Subtraktion nur in Normalform möglich.
- Ungleichungen machen für komplexe Zahlen keinen Sinn.

Addition/Subtraktion

$$z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$$

Multiplikation

Normalform

Das Produkt $z_1 \cdot z_2 = (x_1 + \mathrm{j} y_1) \cdot (x_2 + \mathrm{j} y_2)$ wird im Reellen durch Ausmultiplizieren der Klammern unter Beachtung der Beziehung $\mathrm{i}^2 = -1$ berechnet.

Polarform

Zwei komplexe Zahlen werden multipliziert, indem man ihre Beträge multipliziert und die Argumente addiert.

$$z_1 \cdot z_2 = r_1 \cdot e^{j\varphi_1} \cdot r_2 \cdot e^{j\varphi_2} = r_1 \cdot r_2 \cdot e^{j\varphi_1 + \varphi_2}$$

Division

Normalform

Der Quotient $\frac{z_1}{z_2}$ in der Normalform lässt sich wie folgt berechnen:

1. Der Bruch wird mit z_2^* , dem konjugiert komplexen Nenner erweitert:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot z_2^*}{z_2 \cdot z_2^*} = \frac{(x_1 + jy_1) \cdot (x_2 - jy_2)}{(x_2 + jy_2) \cdot (x_2 - jy_2)}$$

- 2. Zähler und Nenner werden unter Berücksichtigung von $j^2 = -1$ ausmultipliziert (\rightarrow der Nenner wird reell)
- Die im Z\u00e4hler stehende komplexe Zahl wird gliedweise durch den Nenner dividiert.

Die Division durch Null bleibt verboten.

Polarform

Zwei komplexe Zahlen werden dividiert, indem man ihre Beträge dividiert und die Argumente subtrahiert.

$$\frac{z_1}{z_2} = \frac{r_1 \cdot e^{j\varphi_1}}{r_2 \cdot e^{j\varphi_2}} = \frac{r_1}{r_2} \cdot e^{j(\varphi_1 - \varphi_2)}$$

Multiplikation und Division können als Drehstreckung bzw. Drehstauchung geometrisch interpretiert werden.

Potenzieren

Geht am einfachsten in der Polarform:

$$z^{n} = \left(r \cdot e^{j\varphi}\right)^{n} = r^{n} \cdot e^{jn \cdot \varphi}$$
$$z^{n} = \left(r \cdot \cos \varphi + j \sin \varphi\right)^{n} = r^{n} \cdot \left(\cos n \cdot \varphi + j \sin n \cdot \varphi\right)$$

Radizieren

Geht am einfachsten in der Polarform:

$$\sqrt[n]{z} = \sqrt[n]{r \cdot e^{j\varphi}} = \sqrt[n]{r} \cdot e^{j\frac{\varphi + k \cdot 2\pi}{n}}$$
$$\sqrt[n]{z} = \sqrt[n]{r \cdot \cos\varphi + j\sin\varphi} = \sqrt[n]{r} \cdot (\cos\frac{\varphi + k \cdot 2\pi}{n} + j\sin\frac{\varphi + k \cdot 2\pi}{n})$$

Mit $k = 0, 1, 2, \dots, n - 1 \rightarrow$ eine nte Wurzel hat n Lösungen.

Eigenschaften der Grundrechenarten

- Addition und Multiplikation sind kommutativ: $z_1 + z_2 = z_2 + z_1$
- Addition und Multiplikation sind assoziativ: $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$
- Addition und Multiplikation sind über das Distributivgesetz verbunden: $z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$

Copyright © 2013 Constantin Lazari Revision: 1.0, Datum: 7. April 2013