Université Pierre et Marie Curie 2007–2008

LM110 — Fonctions

Devoir 2

Exercice 1. On note $Z = \{-2k\pi, k \in \mathbb{N}\}$, et on considère la fonction $f \colon \mathbb{R} \setminus Z \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{\sin(x) - x}{1 - \cos(x)} & \text{si } x \in \mathbf{R}_- \setminus Z\\ \frac{\ln(\cos(x)) - \cos(x) + 1}{\ln(1 + x) - \arctan(x)} & \text{si } x \in \mathbf{R}_+ \end{cases}$$

Montrer qu'on peut prolonger f par continuité en 0, mais pas aux autres points de Z. La fonction ainsi obtenue est-elle dérivable en 0?

Exercice 2. Soit I un intervalle de \mathbb{R} , et f une fonction dérivable de I dans \mathbb{R} .

- 1. On suppose de plus que la dérivée f' de f est continue. Expliquer pourquoi, pour tous a et b de I, si y vérifie $f'(a) \leq y \leq f'(b)$, alors il existe c dans I tel que f'(c) = y.
- 2. On considère la fonction $h: \mathbf{R} \to \mathbf{R}$ définie par $h(x) = x^2 \sin(\frac{1}{x})$ pour $x \neq 0$ et h(0) = 0. Montrer que h est dérivable sur $\mathbf{R} \setminus 0$ et calculer sa dérivée sur cet ensemble. Montrer par ailleurs que h est dérivable en 0 et y calculer sa dérivée. h' est-elle continue en 0?

Remarque. Ainsi, il existe des fonctions dont la dérivée n'est pas continue. L'hypothèse faite à la question 1 n'est donc pas toujours satisfaite. Le but de l'exercice est de montrer que la conclusion de la question 1 reste pourtant vraie en général. Ce résultat est connu sous le nom de théorème de DARBOUX.

Exercice 3. (Théorème de Darboux)

On considère dans tout l'exercice une fonction $f: I \to \mathbf{R}$ dérivable. On fixe deux réels a et b dans I; pour alléger les notations, on suppose que a < b et que $f'(a) \leq f'(b)$.

1. On considère la fonction $\phi: [a,b] \to \mathbf{R}$ définie par

$$\phi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{si } x \neq a \\ f'(a) & \text{si } x = a \end{cases}$$

Montrer que ϕ est continue sur tout l'intervalle [a, b].

2. On considère de même la fonction ψ : $[a,b] \to \mathbf{R}$ définie par $\psi(x) = (f(b) - f(x))/(b-x)$ si $x \neq b$ et $\psi(b) = f'(b)$, dont on admet qu'elle est continue sur [a,b]. Calculer $\psi(a)$, $\psi(b)$, $\phi(a)$ et $\phi(b)$.

- 3. On suppose dans cette question que $f'(a) \leqslant \frac{f(b)-f(a)}{b-a} \leqslant f'(b)$. On considère $y \in [f'(a), f'(b)]$. Monter qu'on a alors $y \in [\phi(a), \phi(b)]$ ou $y \in \psi(a), \psi(b)$.
- 4. On ne suppose désormais plus que $f'(a) \leqslant \frac{f(b)-f(a)}{b-a} \leqslant f'(b)$. Montrer qu'on a toujours $y \in [\phi(a), \phi(b)]$ ou $y \in \psi(a), \psi(b)$.
- 5. Déduire des deux questions précédentes qu'il existe un $d \in [a, b]$ tel que $\phi(d) = y$ ou ou $e \in [a, b]$ tel que $\psi(e) = y$. Pour alléger les notations, on suppose par la suite qu'on est dans le premier cas.
- 6. En appliquant le théorème des accroissements finis, montrer qu'il existe $c \in [a, d]$ tel que y = f'(c). Conclure.

Exercice 4.

- 1. Soient f une fonction continue et a < b deux réels tels que f(a) = f(b). Montrer qu'il existe un réel $c \in [a; \frac{a+b}{2}]$ tel que $f(c + \frac{b-a}{2}) = f(c)$.
- 2. On suppose qu'une voiture parcourt 60 kilomètres en 60 minutes. Déduire de la question précédente qu'il existe un intervalle de temps de 30 minutes où elle parcourt exactement 30 kilomètres.
 - [On pourra poser f(t) = x(t) t, où x(t) désigne la distance parcourue à l'instant t.]
- 3. Peut-on généraliser ce résultat? Autrement dit, pour tout entier n compris entre 0 et 60, existe-t-il un intervalle de n minutes où la voiture parcourt exactement n kilomètres?

Exercice 5. On cherche à résoudre sur $]0,\pi[$ l'équation différentielle d'inconnue y(x) suivante :

$$\sin(x)y'(x) - \cos(x)y(x) = 1$$

Calculer la dérivée de $\cot x(x) = \frac{\cos x}{(x)}\sin(x)$. On cherche dans un premier temps à résoudre l'équation homogène associée

$$\sin(x)y_0'(x) - \cos(x)y_0(x) = 0$$

Montrer que si $y_0(x)$ est solution alors Cste $y_0(x)$ l'est également. En déduire que $y_0(x) = \text{Cste} \cdot \sin(x)$. On cherche maintenant une solution du problème de la forme $y(x) = A(x)y_0(x)$ avec A(x) une fonction à déterminer. Montrer que l'équation se ramène à $A'(x) = \frac{1}{\sin^2(x)}$. En déduire que la solution générale du problème est

$$y(x) = (\text{Cste} - \cot(x))\sin(x)$$

Calculer la solution avec les conditions initiales $y(\frac{\pi}{2}) = 1$ Que se passe t-il en 0 et en π ? Pouvait on le prévoir?