Cálculo I Números naturales, enteros, racionales Raíces y números irracionales Desigualdad de las medias

UNIVERSIDAD DE GRANADA DEPARTAMENTO DE ANÁLISIS MATEMÁTICO

El conjunto de los números naturales, que representaremos por \mathbb{N} , es la intersección de todos los conjuntos inductivos de números reales.

El conjunto de los números naturales, que representaremos por \mathbb{N} , es la intersección de todos los conjuntos inductivos de números reales.

Es claro que $\mathbb N$ es él mismo un conjunto inductivo: es el "más pequeño" conjunto inductivo de números reales. Este hecho, que se deduce directamente de la definición de $\mathbb N$, constituye el llamado "principio de inducción matemática".

El conjunto de los números naturales, que representaremos por \mathbb{N} , es la intersección de todos los conjuntos inductivos de números reales.

Es claro que $\mathbb N$ es él mismo un conjunto inductivo: es el "más pequeño" conjunto inductivo de números reales. Este hecho, que se deduce directamente de la definición de $\mathbb N$, constituye el llamado "principio de inducción matemática".

Principio de inducción matemática. Si A es un conjunto inductivo de números naturales entonces $A = \mathbb{N}$.

 A) Comprobamos que el número 1 satisface la propiedad, esto es, que P(1) es cierta.

- A) Comprobamos que el número 1 satisface la propiedad, esto es, que P(1) es cierta.
- B) Comprobamos que si un número n satisface la propiedad, entonces también el número n+1 la satisface. Es decir comprobamos que si P(n) es cierta, entonces también lo es P(n+1).

- A) Comprobamos que el número 1 satisface la propiedad, esto es, que P(1) es cierta.
- B) Comprobamos que si un número n satisface la propiedad, entonces también el número n+1 la satisface. Es decir comprobamos que si P(n) es cierta, entonces también lo es P(n+1).

- A) Comprobamos que el número 1 satisface la propiedad, esto es, que P(1) es cierta.
- B) Comprobamos que si un número n satisface la propiedad, entonces también el número n+1 la satisface. Es decir comprobamos que si P(n) es cierta, entonces también lo es P(n+1).

Observa que en B) no se dice que se tenga que probar que P(n) es cierta, sino que hay que *demostrar la implicación lógica* $P(n) \Longrightarrow P(n+1)$. Para demostrar dicha implicación lo que hacemos es *suponer* que P(n) es cierta.

Para cada número natural $n \in \mathbb{N}$, se verifica:

i) 1 ≤ *n*.

- i) $1 \leqslant n$.
- ii) n > 1 implica que $(n-1) \in \mathbb{N}$.

- i) $1 \leqslant n$.
- ii) n > 1 implica que $(n-1) \in \mathbb{N}$.
- iii) $x \in \mathbb{R}^+$ y $(x+n) \in \mathbb{N}$ implican que $x \in \mathbb{N}$.

- i) $1 \leqslant n$.
- ii) n > 1 implica que $(n-1) \in \mathbb{N}$.
- iii) $x \in \mathbb{R}^+$ y $(x+n) \in \mathbb{N}$ implican que $x \in \mathbb{N}$.
- iv) $m \in \mathbb{N}$ y m > n implican que $(m-n) \in \mathbb{N}$.

- i) $1 \leqslant n$.
- ii) n > 1 implica que $(n-1) \in \mathbb{N}$.
- iii) $x \in \mathbb{R}^+$ y $(x+n) \in \mathbb{N}$ implican que $x \in \mathbb{N}$.
- iv) $m \in \mathbb{N}$ y m > n implican que $(m-n) \in \mathbb{N}$.
- v) $m \in \mathbb{N}$ y n < m implican que $n+1 \leqslant m$.

- i) $1 \leqslant n$.
- ii) n > 1 implica que $(n-1) \in \mathbb{N}$.
- iii) $x \in \mathbb{R}^+$ y $(x+n) \in \mathbb{N}$ implican que $x \in \mathbb{N}$.
- iv) $m \in \mathbb{N}$ y m > n implican que $(m-n) \in \mathbb{N}$.
- v) $m \in \mathbb{N}$ y n < m implican que $n+1 \leqslant m$.
- vi) $m \in \mathbb{N}$ implica que $(m+n) \in \mathbb{N}$ y $mn \in \mathbb{N}$.

- i) $1 \leqslant n$.
- ii) n > 1 implica que $(n-1) \in \mathbb{N}$.
- iii) $x \in \mathbb{R}^+$ y $(x+n) \in \mathbb{N}$ implican que $x \in \mathbb{N}$.
- iv) $m \in \mathbb{N}$ y m > n implican que $(m-n) \in \mathbb{N}$.
- v) $m \in \mathbb{N}$ y n < m implican que $n+1 \leqslant m$.
- vi) $m \in \mathbb{N}$ implica que $(m+n) \in \mathbb{N}$ y $mn \in \mathbb{N}$.
- vii) N no tiene máximo.

A los números naturales se les llama también *enteros positivos* y a sus opuestos *enteros negativos*.

A los números naturales se les llama también *enteros positivos* y a sus opuestos *enteros negativos*.

i)
$$-p$$
, $p+q$, pq son enteros.

A los números naturales se les llama también *enteros positivos* y a sus opuestos *enteros negativos*.

- i) -p, p+q, pq son enteros.
- ii) p < q implica que $p + 1 \leqslant q$.

A los números naturales se les llama también *enteros positivos* y a sus opuestos *enteros negativos*.

- i) -p, p+q, pq son enteros.
- ii) p < q implica que $p + 1 \leq q$.

A los números naturales se les llama también *enteros positivos* y a sus opuestos *enteros negativos*.

Si p, q son números enteros se tiene que:

- i) -p, p+q, pq son enteros.
- ii) p < q implica que $p + 1 \leqslant q$.

Además, el conjunto de los números enteros no tiene máximo ni mínimo.

Un número real x se dice que es un número racional si x=p/q donde $p\in\mathbb{Z}$ y $q\in\mathbb{N}$. Representaremos con la letra \mathbb{Q} el conjunto de todos los números racionales.

Un número real x se dice que es un número racional si x = p/q donde $p \in \mathbb{Z}$ y $q \in \mathbb{N}$. Representaremos con la letra \mathbb{Q} el conjunto de todos los números racionales.

Las siguientes propiedades de los números racionales son de fácil comprobación.

Un número real x se dice que es un número racional si x = p/q donde $p \in \mathbb{Z}$ y $q \in \mathbb{N}$. Representaremos con la letra \mathbb{Q} el conjunto de todos los números racionales.

Las siguientes propiedades de los números racionales son de fácil comprobación.

Si r, s son números racionales entonces -r, r+s, rs y, si $r \neq 0$, 1/r son también racionales.

Todo conjunto de números enteros no vacío y mayorado tiene máximo.

Todo conjunto de números enteros no vacío y mayorado tiene máximo.

Todo conjunto de números enteros no vacío y minorado tiene mínimo.

Todo conjunto de números enteros no vacío y mayorado tiene máximo.

Todo conjunto de números enteros no vacío y minorado tiene mínimo.

Principio de buena ordenación de N.

Todo conjunto de números enteros no vacío y mayorado tiene máximo.

Todo conjunto de números enteros no vacío y minorado tiene mínimo.

Principio de buena ordenación de N.

Todo conjunto no vacío de números naturales tiene mínimo.

Todo conjunto de números enteros no vacío y mayorado tiene máximo.

Todo conjunto de números enteros no vacío y minorado tiene mínimo.

Principio de buena ordenación de N.

Todo conjunto no vacío de números naturales tiene mínimo.

Propiedad arquimediana.

Todo conjunto de números enteros no vacío y mayorado tiene máximo.

Todo conjunto de números enteros no vacío y minorado tiene mínimo.

Principio de buena ordenación de N.

Todo conjunto no vacío de números naturales tiene mínimo.

Propiedad arquimediana. Dado cualquier número real se verifica que hay números naturales mayores que él.

Todo conjunto de números enteros no vacío y mayorado tiene máximo.

Todo conjunto de números enteros no vacío y minorado tiene mínimo.

Principio de buena ordenación de N.

Todo conjunto no vacío de números naturales tiene mínimo.

Propiedad arquimediana. Dado cualquier número real se verifica que hay números naturales mayores que él.

Dado $x \in \mathbb{R}$ existe un único número entero q que verifica que $q \leqslant x < q+1$. Dicho número entero se llama parte entera de x y se representa por E(x).

Para cada $x \in \mathbb{R}$ se define $x^1 = x$, y $x^{n+1} = x^n x \ \forall n \in \mathbb{N}$.

Para cada $x \in \mathbb{R}$ se define $x^1 = x$, y $x^{n+1} = x^n x \ \forall n \in \mathbb{N}$. Si $x \neq 0$ se define $x^0 = 1$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

i)
$$x^{m}x^{n} = x^{m+n}$$
.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

i)
$$x^m x^n = x^{m+n}$$
.

ii)
$$(xy)^n = x^n y^n$$
. En particular, $\frac{1}{x^n} = \left(\frac{1}{x}\right)^n$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

i)
$$x^m x^n = x^{m+n}$$
.

ii)
$$(xy)^n = x^n y^n$$
. En particular, $\frac{1}{x^n} = \left(\frac{1}{x}\right)^n$.

iii)
$$(x^m)^n = x^{mn}$$
. En consecuencia, $x^{2n} > 0$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

- i) $x^m x^n = x^{m+n}$.
- ii) $(xy)^n = x^n y^n$. En particular, $\frac{1}{x^n} = \left(\frac{1}{x}\right)^n$.
- iii) $(x^m)^n = x^{mn}$. En consecuencia, $x^{2n} > 0$.
- iv) Además, si $n \in \mathbb{N}$, $x, y \in \mathbb{R}^+$ entonces se verifica que x < y si, y sólo si, $x^n < y^n$.

Fórmula del binomio de Newton. Cualesquiera sean los números reales a, b y el número natural n se verifica que:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Fórmula del binomio de Newton. Cualesquiera sean los números reales a,b y el número natural n se verifica que:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Suma de una progresión geométrica. Sea $x \in \mathbb{R}$, $x \neq 1$ y $n \in \mathbb{N}$. Se verifica:

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

Fórmula del binomio de Newton. Cualesquiera sean los números reales a,b y el número natural n se verifica que:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Suma de una progresión geométrica. Sea $x \in \mathbb{R}$, $x \neq 1$ y $n \in \mathbb{N}$. Se verifica:

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

Igualdad para una diferencia de potencias. Sean $a, b \in \mathbb{R}$ y $q \in \mathbb{N}$, $q \ge 2$. Entonces se verifica la igualdad:

$$b^{q} - a^{q} = (b - a) \sum_{k=0}^{q-1} b^{k} a^{q-1-k}$$

Fórmula del binomio de Newton. Cualesquiera sean los números reales a,b y el número natural n se verifica que:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Suma de una progresión geométrica. Sea $x \in \mathbb{R}$, $x \neq 1$ y $n \in \mathbb{N}$. Se verifica:

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

Igualdad para una diferencia de potencias. Sean $a, b \in \mathbb{R}$ y $q \in \mathbb{N}$, $q \ge 2$. Entonces se verifica la igualdad:

$$b^{q} - a^{q} = (b - a) \sum_{k=0}^{q-1} b^{k} a^{q-1-k}$$

Supremo de las potencias k-ésimas. Sea A un conjunto no vacío y mayorado de números reales positivos y $k \in \mathbb{N}$, $k \ge 2$. Sean $\alpha = \inf(A)$ y $\beta = \sup(A)$. Definamos el conjunto

$$B = \left\{ a^k : a \in A \right\}$$

Se verifica que $\inf(B) = \alpha^k$ y $\sup(B) = \beta^k$

Dados un número real a > 0 y un número natural $k \ge 2$, existe un único número real **positivo** b > 0 que verifica que $b^k = a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Dados un número real a > 0 y un número natural $k \ge 2$, existe un único número real **positivo** b > 0 que verifica que $b^k = a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Además, si x > 0 e y > 0, se verifica que:

Dados un número real a > 0 y un número natural $k \ge 2$, existe un único número real **positivo** b > 0 que verifica que $b^k = a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Además, si x > 0 e y > 0, se verifica que:

i)
$$x < y$$
 si, y sólo si, $\sqrt[k]{x} < \sqrt[k]{y}$,

Dados un número real a>0 y un número natural $k\geqslant 2$, existe un único número real **positivo** b>0 que verifica que $b^k=a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Además, si x > 0 e y > 0, se verifica que:

i)
$$x < y$$
 si, y sólo si, $\sqrt[k]{x} < \sqrt[k]{y}$,

ii)
$$\sqrt[k]{xy} = \sqrt[k]{x} \sqrt[k]{y}$$
.

Existencia de números irracionales

Dados $k \in \mathbb{N}$, $k \geqslant 2$ y $n \in \mathbb{N}$, se verifica que $\sqrt[k]{n}$ o bien es un número natural o bien es irracional.

Existencia de números irracionales

Dados $k \in \mathbb{N}, \ k \geqslant 2$ y $n \in \mathbb{N}$, se verifica que $\sqrt[k]{n}$ o bien es un número natural o bien es irracional.

Un conjunto A de números reales se dice que es *denso* en un intervalo I, si entre dos números reales cualesquiera de I siempre hay algún número real que está en A. En particular, A es denso en \mathbb{R} si en todo intervalo abierto no vacío hay puntos de A.

Existencia de números irracionales

Dados $k \in \mathbb{N}$, $k \geqslant 2$ y $n \in \mathbb{N}$, se verifica que $\sqrt[k]{n}$ o bien es un número natural o bien es irracional.

Un conjunto A de números reales se dice que es *denso* en un intervalo I, si entre dos números reales cualesquiera de I siempre hay algún número real que está en A. En particular, A es denso en \mathbb{R} si en todo intervalo abierto no vacío hay puntos de A.

Los conjuntos \mathbb{Q} y $\mathbb{R}\setminus\mathbb{Q}$ son densos en \mathbb{R} .

Si el producto de n números positivos es igual a 1, entonces su suma es mayor o igual que n. Y la suma es igual a n si, y sólo si, todos ellos son iguales a 1.

Si el producto de *n* números positivos es igual a 1, entonces su suma es mayor o igual que *n*. Y la suma es igual a *n* si, y sólo si, todos ellos son iguales a 1.

Desigualdad de las medias. Cualesquiera sean los números positivos a_1, a_2, \dots, a_n se verifica que:

$$\sqrt[n]{a_1a_2\cdots a_n}\leqslant \frac{a_1+a_2+\cdots+a_n}{n}$$

Si el producto de n números positivos es igual a 1, entonces su suma es mayor o igual que n. Y la suma es igual a n si, y sólo si, todos ellos son iguales a 1.

Desigualdad de las medias. Cualesquiera sean los números positivos a_1, a_2, \dots, a_n se verifica que:

$$\sqrt[n]{a_1a_2\cdots a_n}\leqslant \frac{a_1+a_2+\cdots+a_n}{n}$$

Y la igualdad se da si, y sólo si, $a_1 = a_2 = \cdots = a_n$.