ARTUTORIALL-Propositional Logic

EXERCISE ONE: represent the following sentences in propositional logic and draw truth tables.

1. Cats chase mice or birds, but not at the same time.

(M VB) A - (M AB) where M=mice and B= birds

N	В	MVB	TLYAB)	CMVB) 17 (MAB)
I	T	Τ	F	F
1	F	7	T	Ţ
F		7 =	Ţ	1

2. If it rains, the beach will be empty.

R > E where R-rains and E-empty

R	E	RAE
T	Ţ	T
1 7 1	F	F
F	F	T _

3. If Jane bought a piano today, she either sold her old one or took out bank loan.

P-> S VB where P= buy piano, 5-sold old one and B= bank roan

P	5	В	PJSVB
Ţ	1	T	T
1 7	1 =	F 7	7
T	F	F	F
F	Ţ	Ţ	Ţ
F	7 =	F	1
F	F	F	

EXERCISE TWO: Is the Proposition PACP-DQ) satisfiable? If so give an interpretation that satisfies it. Is it valid? Why or why not?

PACP-DQ) = PACPPVQ) = (PA-P) V (PAQ)

* SATISFIABLE: if there is some interpretation which evaluates to TRUE.

P (P->Q) is TRUE when P is TRUE and Q is TRUE.

+ VALID: if all interpretations evaluate to true.

PACP-10) is FALSE when P is FALSE or when Q is FALSE.

EXERCISE THREE: Truth table for NAND

1	P	9	P19
	T	Ť	16
	٢	۴	T
	F	T	T
	l F	F	T

-(PAQ) - 1PU-Q

show that NAND can be used to define I A, V, and ->

connective	Expression using
70	PIP
PNQ	(1a) 1c(1a)
PVQ	(PIP) I (QIQ)
P-)Q	PICAIA)

EXERCISE FOUR: Use Natural Deduction to give a tree representation)

proof of the theorem: (R71) -> (L(-)RVP)-> (Q->5)) -> (Q->5))

Version 1:

$$\frac{[FJV][F] PJI}{P} mp$$

$$\frac{P}{7RVP} disjT^{2} \frac{[7FJV]}{7FVP} disjT_{1}$$

$$\frac{7RVP}{Q+S} drsjE_{V}$$

$$\frac{S}{Q+S} mp$$

$$\frac{S}{Q+S} impI_{3}$$

$$\frac{(K+P)+((1-RVP)+(Q+S))}{(K+P)+((1-RVP)+(Q+S))} impT_{1}$$

Version 2:

Version 3:

$$\frac{(f)_3}{P} \frac{(k+1)_3}{7k \sqrt{p}} \frac{(r+1)_3}{7k \sqrt{p}}$$

EXERUSE FINE: Draw Proof trees for the following.

3. (P > Q AR) -> ((P+Q) A CP > P))

4. (np -) a) -> (ra -> P)

5. P V 7 P