Intelligent Systems Programming

Lecture 5: Boolean Expression Representations & Binary Decision Diagrams (BDDs)

Today's Program

• [10:00-10:40] Classical representations

- Boolean expressions and Boolean functions
- Desirable properties of representations of Boolean functions
- Classical representations of Boolean expressions
 - Truth tables
 - CNF and DNF

• [10:50-11:50] Binary Decision Diagrams

- If-then-else normal form (INF)
- Decision trees
- Ordered Binary Decision Diagrams (OBDDs)
- Reduced Ordered Binary Decision Diagrams (ROBDDs / BDDs)

Boolean Expressions

Boolean Expressions

$$t ::= x \mid 0 \mid 1 \mid \neg t \mid t \land t \mid t \lor t \mid t \Rightarrow t \mid t \Leftrightarrow t$$

Precedence

$$\neg$$
, \wedge , \vee , \Rightarrow , \Leftrightarrow

Set of truth values

$$B = \{0, 1\}$$

Truth assignments

e.g.
$$t [0/x, 1/y]$$

Boolean Functions

• Boolean expression E defines **boolean function** $f: B^n \rightarrow B$, where

$$f(x_1,x_2,...,x_n) = E(x_1,x_2,...,x_n)$$

Above, f is an n-ary function

Example

$$f(x_1,x_2,x_3) = x_1 \Leftrightarrow \neg x_2$$

Properties of Boolean Functions

Equality

$$f = g$$
 iff $\forall x . f(x) = g(x)$

Order of arguments matter

$$f(x,y) = x \Longrightarrow y \qquad \neq \qquad g(y,x) = x \Longrightarrow y$$

Several expressions may represent same function

$$f(x,y) = x \Longrightarrow y = \neg x \lor y = (\neg x \lor y) \land (\neg x \lor x) = \dots$$

Number of Boolean Functions

Number of Boolean functions $f: \mathbf{B}^n \to \mathbf{B}$

X ₁	 X _n	f
0	 0	f(0,,0)
0	 1	f(0,,1)
0	 0	f(0,,0)
0	 1	f(0,,1)
1	 0	f(1,,0)
1	 1	f(1,,1)
1	 0	f(1,,0)
1	 1	f(1,,1)

$$2^{(2^n)}$$

Representation of Boolean functions

Desirable properties:

- 1. Compact
- 2. Equality check easy
- 3. Easy to evaluate the truth-value of an assignment
- 4. Boolean operations efficient
- 5. SAT check efficient
- 6. Tautology check efficient
- 7. Canonicity: exactly one representation of each Boolean function. Solves 2, 5, and 6, why?

Compact representations are rare

- $2^{(2^n)}$ boolean functions in *n* variables...
 - How do we find a single compact representation for them all?
- The fraction of Boolean functions of n variables with a polynomial size in $n \to 0$ for $n \to \infty$

Curse of Boolean function representations:

This problem exists for all representations we know!

Classical Representations of Boolean Functions

Truth tables

- Compact \bigcirc table size 2^n
- Equality check easy canonical
- Easy to evaluate the truth-value of an assignment log m or constant
- Boolean operations efficient inear
- SAT check efficient linear
- Tautology check efficient linear

У	Z	<i>x</i> ∧ <i>y</i> √ <i>z</i>
0	0	0
0	1	1
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

DNF and CNF

- Is there a DNF and CNF of every expression?
- Given a truth table representation of a Boolean formula, can we easily define a DNF and CNF of the formula?

X	У	Z	е
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

DNF from on-tuples

Example DNF of e – use on-tuples

X	У	Z	е	
0	0	0	0	
0	0	1	1	$\neg x \land \neg y \land z \lor$
0	1	0	0	
0	1	1	1	$\neg x \wedge y \wedge z \vee$
1	0	0	0	
1	0	1	1	$X \wedge \neg y \wedge z \vee$
1	1	0	1	$X \wedge Y \wedge \neg Z \vee$
1	1	1	1	$X \wedge Y \wedge Z$

CNF from off-tuples

• Example CNF of *e* - use *off-tuples*

X	У	Z	е	
0	0	0	0	$\neg (\neg x \land \neg y \land \neg z) \land$
0	0	1	1	
0	1	0	0	$\neg (\neg x \land y \land \neg z) \land$
0	1	1	1	
1	0	0	0	$\neg(x \land \neg y \land \neg z) \land$
1	0	1	1	
1	1	0	1	
1	1	1	1	

CNF from off-tuples

• Example CNF of *e* - use *off-tuples*

X	У	Z	е	
0	0	0	0	$(x \vee y \vee z) \wedge$
0	0	1	1	
0	1	0	0	$(x \vee \neg y \vee z) \wedge$
0	1	1	1	
1	0	0	0	$(\neg x \lor y \lor z)$
1	0	1	1	
1	1	0	1	
1	1	1	1	

DNF and CNF

Every Boolean formula has a DNF and CNF representation

- The special version DNF and CNF representations produced from on and off-tuples are canonical and called cDNF and cCNF
- Are cDNF and cCNF minimum size DNF and CNF representations?

Checking DNF and CNF-formulas

Symmetry properties of DNF and CNF

	SAT	Tautology
CNF	NP complete	Polynomial (exercise)
DNF	Polynomial (exercise)	Co-NP complete

- Idea: Solve CNF-SAT by conversion to DNF-SAT
 - Problem: conversion between CNF and DNF may be exponential

Converting CNF to DNF

Example

- CNF
$$\left(x_0^1 \lor x_1^1\right) \land \left(x_0^2 \lor x_1^2\right) \land \cdots \land \left(x_0^n \lor x_1^n\right)$$

Corresponding DNF blows up

$$\begin{pmatrix}
x_0^1 \wedge x_0^2 \wedge \cdots \wedge x_0^{n-1} \wedge x_0^n \end{pmatrix} \vee \\
\begin{pmatrix}
x_0^1 \wedge x_0^2 \wedge \cdots \wedge x_0^{n-1} \wedge x_1^n \end{pmatrix} \vee \\
\vdots \\
\begin{pmatrix}
x_1^1 \wedge x_1^2 \wedge \cdots \wedge x_1^{n-1} \wedge x_0^n \end{pmatrix} \vee \\
\begin{pmatrix}
x_1^1 \wedge x_1^2 \wedge \cdots \wedge x_1^{n-1} \wedge x_1^n \end{pmatrix} \vee
\end{pmatrix}$$

Binary Decision Diagrams

If-then-else operator

The if-then-else Boolean operator is defined by

$$x \rightarrow y_1, y_0 \equiv (x \wedge y_1) \vee (\neg x \wedge y_0)$$

We have

$$(x \rightarrow y_1, y_0) [1/x] \equiv (1 \land y_1) \lor (0 \land y_0) \equiv y_1$$

 $(x \rightarrow y_1, y_0) [0/x] \equiv (0 \land y_1) \lor (1 \land y_0) \equiv y_0$

• What is $x \rightarrow 1$, 0 equivalent to? And $x \rightarrow 0$, 1?

If-then-else operator

- All operators in propositional logic can be expressed using only → operators with:
 - $-\rightarrow$ expressions and 0 and 1 for y_1 and y_0
 - tests on un-negated variables
 - Variables only as tests
- What are if-then-else expressions for
 - -x, $\neg x$
 - $-x \wedge y$
 - $-x\vee y$
 - $-x \Rightarrow y$

If-then-else Normal Form (INF)

An *if-then-else* Normal Form (INF) is a Boolean expression build entirely from the if-then-else operator and the constants 0 and 1 such that all test are performed only on un-negated variables

 Proposition: any Boolean expression t is equivalent to an expression in INF

Proof:

$$t \equiv x \rightarrow t[1/x], t[0/x]$$
 (Shannon expansion of t)

Apply the Shannon expansion recursively on *t*. The recursion must terminate in 0 or 1, since the number of variables is finite

Expression t with 4 variables: $t = x_1, x_2, x_3, x_4$ $t_0 = t[0/x_1]$ $t_1 = t[1/x_1]$

$$t \equiv X_1 \rightarrow t_1, t_0$$

Expression *t* with 4 variables:

 X_1, X_2, X_3, X_4

$$t_0 = t[0/x_1]$$

$$t_0 = t[0/x_1]$$

$$t_1 = t[1/x_1]$$

$$t_{00} = t_0 [0/x_2]$$

$$t_{01} = t_0 [1/x_2]$$

$$t_{10} = t_1 [0/x_2]$$

$$t_{11} = t_1 [1/x_2]$$

$$t \equiv X_1 \rightarrow t_1, t_0$$

 $t_0 \equiv X_2 \rightarrow t_{01}, t_{00}$
 $t_1 \equiv X_2 \rightarrow t_{11}, t_{10}$

Expression *t* with 4 variables: X_1, X_2, X_3, X_4 $t_1 = t[1/x_1]$ $t_0 = t[0/x_1]$ $t_{00} = t_0 [0/x_2]$ $t_{01} = t_0 [1/x_2]$ $t_{10} = t_1 [0/x_2]$ $t_{11} = t_1[1/x_2]$ $t_{000} = t_{00} [0/x_3]$ $t_{010} = t_{01} [0/x_3]$ $t_{100} = t_{10} [0/x_3]$ $t_{110} = t_{11} [0/x_3]$ $t_{001} = t_{00}[1/x_3]$ $t_{011} = t_{01} [1/x_3]$ $t_{101} = t_{10}[1/x_3]$ $t_{111} = t_{11} [1/x_3]$

 $t = X_1 \rightarrow t_1, t_0$ $t_0 = X_2 \rightarrow t_{01}, t_{00}$

 $t_1 = X_2 \rightarrow t_{11}, t_{10}$

 $t_{00} \equiv x_3 \rightarrow t_{001}, t_{000}$

 $t_{01} \equiv X_3 \rightarrow t_{011}, t_{010}$

 $t_{10} \equiv X_3 \rightarrow t_{101}, t_{110}$

Example

• Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$

• Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_1 \rightarrow t_1, t_0$$

Example

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_1 \rightarrow t_1, t_0$$

$$t_0 \equiv y_1 \rightarrow t_{01}, t_{00}$$

$$t_1 \equiv y_1 \rightarrow 1, t_{10}$$

Example

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_{1} \to t_{1}, t_{0}$$

$$t_{0} \equiv y_{1} \to t_{01}, t_{00}$$

$$t_{1} \equiv y_{1} \to 1, t_{10}$$

$$t_{01} \equiv x_{2} \to t_{011}, 0$$

$$t_{00} \equiv x_{2} \to t_{001}, 0$$

$$t_{10} \equiv x_{2} \to t_{101}, 0$$

Decision Tree

• Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$

• Shannon expansion of t in order
$$x_1, y_1, x_2, y_2$$

$$t \equiv x_{1} \to t_{1}, t_{0}$$

$$t_{0} \equiv y_{1} \to t_{01}, t_{00}$$

$$t_{1} \equiv y_{1} \to 1, t_{10}$$

$$t_{01} \equiv x_{2} \to t_{011}, 0$$

$$t_{00} \equiv x_{2} \to t_{001}, 0$$

$$t_{10} \equiv x_{2} \to t_{101}, 0$$

$$t_{011} \equiv y_{2} \to 1, 0$$

$$t_{001} \equiv y_{2} \to 1, 0$$

$$t_{101} \equiv y_{2} \to 1, 0$$

$$t = x_1 \rightarrow (y_1 \rightarrow 1, (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0)),$$

 $(y_1 \rightarrow (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0), (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0))$

Reduction I: substitute identical subtrees

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t = x_1 \rightarrow t_1, t_0$$

$$t_0 = y_1 \rightarrow t_{01}, t_{01}$$

$$t_1 = y_1 \rightarrow 1, t_{01}$$

$$t_{01} = x_2 \rightarrow t_{011}, 0$$

$$t_{011} = y_2 \rightarrow 1, 0$$

Result: an Ordered Binary Decision Diagram (OBDD)

Reduction II: remove redundant tests

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t = x_1 \rightarrow t_1, t_{01}$$
 $t_1 = y_1 \rightarrow 1, t_{01}$
 $t_{01} = x_2 \rightarrow t_{011}, 0$
 $t_{011} = y_2 \rightarrow 1, 0$

Result: a Reduced Ordered Binary Decision Diagram (ROBDD) [often called a BDD]

Reductions

Uniqueness requirement

Non-redundant tests requirement

Canonicity of ROBDDs

• Canonicity Lemma: for any function $f: \mathbf{B}^n \to \mathbf{B}$ there is exactly one ROBDD u with a variable ordering $x_1 < x_2 < ... < x_n$ such that $f_u = f(x_1,...,x_n)$

Proof (by induction on *n*)

Read on your own!

Practice

What are the ROBDDs of

- -x
- -1
- -0
- $-x \wedge y$

order x, y

$$-(x \Longrightarrow y) \land z$$

order x, y, z

Size of ROBDDs

- ROBDDs of many practically important Boolean functions are small
- Do all functions have polynomial ROBDD size?
 NO
 - ROBDDs do not escape the curse of Boolean function representation

Size of ROBDDs

- The size of an ROBDD depends heavily on the variable ordering
- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Build ROBDD of t in order x_1, x_2, y_1, y_2

Size of ROBDDs

The size of an ROBDD depends heavily on the variable ordering

$$(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$$

$$x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n$$

$$x_1 < x_2 < \dots < x_n < y_1 < x_2 < \dots < y_n$$

