Lower Bounds for the Polynomial Calculus via the "Pigeon Dance"

Imogen Hergeth

January 2023

Overview

• Overview of the needed background

Overview

- Overview of the needed background
- Ideas behind the proof and its structure

Overview

- Overview of the needed background
- Ideas behind the proof and its structure
- The proof in more detail

• Similar to sequent calculus, but lines are polynomials

- Similar to sequent calculus, but lines are polynomials
- Addition

$$\frac{f}{af + bg}$$

- Similar to sequent calculus, but lines are polynomials
- Addition

$$\frac{f}{af + bg}$$

Multiplication

$$\frac{f}{f \cdot x}$$

- Similar to sequent calculus, but lines are polynomials
- Addition

$$\frac{f}{af + bg}$$

Multiplication

$$\frac{f}{f \cdot x}$$

• We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$

• g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them

- ullet g is provable from f_1,\ldots,f_n if and only if it is in the ideal generated by them
- A refutation of f_1, \ldots, f_n is a proof of 1 from f_1, \ldots, f_n

- ullet g is provable from f_1,\ldots,f_n if and only if it is in the ideal generated by them
- A refutation of f_1, \ldots, f_n is a proof of 1 from f_1, \ldots, f_n
- A refutation exists if and only if f_1, \ldots, f_n have no common zeroes

- ullet g is provable from f_1,\ldots,f_n if and only if it is in the ideal generated by them
- ullet A *refutation* of f_1,\ldots,f_n is a proof of 1 from f_1,\ldots,f_n
- A refutation exists if and only if f_1, \ldots, f_n have no common zeroes
- We construct polynomials such that their zeroes correspond to satisfying assignments

 \bullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- \bullet Formally: if m>n there is no injection $[m]\hookrightarrow [n]$

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- \bullet Formally: if m>n there is no injection $[m]\hookrightarrow [n]$
- Variables: $x_{i,j}, i \in [m], n \in [n]$

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- \bullet Formally: if m>n there is no injection $[m]\hookrightarrow [n]$
- Variables: $x_{i,j}, i \in [m], n \in [n]$
- Assignment of $x_{3,5}$ corresponds to pigeon 3 being in hole 5

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- \bullet Formally: if m>n there is no injection $[m]\hookrightarrow [n]$
- Variables: $x_{i,j}, i \in [m], n \in [n]$
- Assignment of $x_{3,5}$ corresponds to pigeon 3 being in hole 5

Definition $(\neg \mathcal{PHP}_n^m)$

$$Q_i\coloneqq 1-\sum_{j\in[n]}x_{ij}\qquad\text{ for each }i\in[m]$$

$$Q_{i_1,i_2,j} \coloneqq x_{i_1j}x_{i_2j}$$
 for each $i_1 \neq i_2 \in [m], j \in [n]$

• Terms are potential pigeon assignments

- Terms are potential pigeon assignments
- Multiplication and $Q_{i_1,i_2,j}$ let us remove ones we know are impossible

- Terms are potential pigeon assignments
- Multiplication and $Q_{i_1,i_2,j}$ let us remove ones we know are impossible

• Strategy: pick some pigeon i, and show it can not fit regardless of other assignments

- Terms are potential pigeon assignments
- Multiplication and $Q_{i_1,i_2,j}$ let us remove ones we know are impossible

$$\frac{1 - x_{1,1} x_{2,2} x_{3,3} - x_{1,2} x_{2,2} x_{3,3}}{1 - x_{1,1} x_{2,2} x_{3,3}} \frac{x_{1,2} x_{2,2}}{x_{1,2} x_{2,2} x_{3,3}}$$

- ullet Strategy: pick some pigeon i, and show it can not fit regardless of other assignments
- Start with some Q_i , multiply with all other $x_{i',j}$, and remove all terms

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

• Pigeonhole principle is locally consistent

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

- Pigeonhole principle is locally consistent
- Polynomial calculus preserves local validity

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

- Pigeonhole principle is locally consistent
- Polynomial calculus preserves local validity
- Only large terms are always cancellable

• \prec orders variables and terms degree lexicographic $(x_{3,1} \prec x_{2,5} \prec x_{1,1}x_{1,2})$

- \prec orders variables and terms degree lexicographic $(x_{3,1} \prec x_{2,5} \prec x_{1,1}x_{1,2})$
- ullet We use V to denote those polynomials that are provable

- \prec orders variables and terms degree lexicographic $(x_{3,1} \prec x_{2,5} \prec x_{1,1}x_{1,2})$
- ullet We use V to denote those polynomials that are provable
- \bullet Δ are terms that do not appear as leading terms of polynomials in V

- \prec orders variables and terms degree lexicographic $(x_{3,1} \prec x_{2,5} \prec x_{1,1}x_{1,2})$
- ullet We use V to denote those polynomials that are provable
- \bullet Δ are terms that do not appear as leading terms of polynomials in V
- $S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$

- \prec orders variables and terms degree lexicographic $(x_{3,1} \prec x_{2,5} \prec x_{1,1}x_{1,2})$
- ullet We use V to denote those polynomials that are provable
- $\bullet \ \Delta$ are terms that do not appear as leading terms of polynomials in V
- $S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$
- ullet R is the projection onto Δ

- \prec orders variables and terms degree lexicographic $(x_{3,1} \prec x_{2,5} \prec x_{1,1}x_{1,2})$
- ullet We use V to denote those polynomials that are provable
- \bullet Δ are terms that do not appear as leading terms of polynomials in V
- $S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$
- ullet R is the projection onto Δ
- Index all of these with n, d, I

- \prec orders variables and terms degree lexicographic $(x_{3,1} \prec x_{2,5} \prec x_{1,1}x_{1,2})$
- ullet We use V to denote those polynomials that are provable
- \bullet Δ are terms that do not appear as leading terms of polynomials in V
- $S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$
- ullet R is the projection onto Δ
- Index all of these with n, d, I
- Important: R tells us what can not be proved ($R \neq 0 \Leftrightarrow V$ refutable)

ullet Characterize V_d semantically

- ullet Characterize V_d semantically
- ullet Problem: only works if R_I agree on their intersections

- ullet Characterize V_d semantically
- ullet Problem: only works if R_I agree on their intersections
- Characterize R_I syntactically

- ullet Characterize V_d semantically
- ullet Problem: only works if R_I agree on their intersections
- Characterize R_I syntactically
- Show the different operators are identical

Idea

• What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?

Idea

- What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?
- Pigeons can not share holes

- What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?
- Pigeons can not share holes
- Pigeon assignments are variable assignments

$$\delta(x) = \begin{cases} 1, & \text{if } x \in \{x_{1,2}, x_{2,4}, x_{3,1}\} \\ 0, & \text{otherwise} \end{cases}$$

- What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?
- Pigeons can not share holes
- Pigeon assignments are variable assignments

$$\delta(x) = \begin{cases} 1, & \text{if } x \in \{x_{1,2}, x_{2,4}, x_{3,1}\} \\ 0, & \text{otherwise} \end{cases}$$

ullet Polynomials are evaluated to 0 if they allow the assignment

$$\delta(1 - x_{1,1} - x_{1,2} - x_{1,3} - x_{1,4}) = 0$$
$$\delta(x_{1,1}x_{3,1}) = \delta(x_{1,2}x_{2,2}) = 0$$

ullet $I\subseteq [n]$ is a set of pigeons

- ullet $I\subseteq [n]$ is a set of pigeons
- ullet M_I is all assignments corresponding to injections $I\hookrightarrow [m]$

- $I \subseteq [n]$ is a set of pigeons
- ullet M_I is all assignments corresponding to injections $I\hookrightarrow [m]$
- ullet Polynomials in $eg \mathcal{PHP}_n^m$ are identically zero on M_I

- $I \subseteq [n]$ is a set of pigeons
- ullet M_I is all assignments corresponding to injections $I\hookrightarrow [m]$
- ullet Polynomials in $\neg \mathcal{PHP}_n^m$ are identically zero on M_I
- ullet Polynomials derivable from $eg \mathcal{PHP}_n^m$ are identically zero on M_I

- $I \subseteq [n]$ is a set of pigeons
- ullet M_I is all assignments corresponding to injections $I\hookrightarrow [m]$
- ullet Polynomials in $\neg \mathcal{PHP}_n^m$ are identically zero on M_I
- ullet Polynomials derivable from $eg \mathcal{PHP}_n^m$ are identically zero on M_I
 - $\Rightarrow V_I$ are all polynomials identically zero on M_I

ullet We want a characterization of V_d , not V_I

- ullet We want a characterization of V_d , not V_I
- ullet Set $V_d\coloneqq igcup_{|I|\leq d} V_I$ and R_d accordingly

- ullet We want a characterization of V_d , not V_I
- ullet Set $V_d\coloneqq igcup_{|I|< d} V_I$ and R_d accordingly
- Does this definition actually work?

- ullet We want a characterization of V_d , not V_I
- ullet Set $V_d\coloneqq igcup_{|I|< d} V_I$ and R_d accordingly
- Does this definition actually work?
- ullet Yes it does! But only if $R_I(t)=R_{\mathrm{dom}(t)}(t)$

Overview

ullet Define $R_I(t)$ so that it is independent of pigeons not in t

Overview

- ullet Define $R_I(t)$ so that it is independent of pigeons not in t
- Show that the two definitions are identical

Overview

- ullet Define $R_I(t)$ so that it is independent of pigeons not in t
- Show that the two definitions are identical
- We will only show the broad steps

Example

• The first pigeon flies to an unoccupied hole to its right

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon can not find an empty hole, the dance is aborted

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon can not find an empty hole, the dance is aborted
- ullet Define Δ_I to be the set of terms that let pigeons complete the dance

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon can not find an empty hole, the dance is aborted
- ullet Define Δ_I to be the set of terms that let pigeons complete the dance
- $R_I(t) = R_{\mathrm{dom}(t)}(t)$ since pigeons not in the dance do not affect it

• We need $R_I(t) = f$ with $\mathrm{LT}(f) \prec t$ and $t - f \in V_I$

- We need $R_I(t) = f$ with $\mathrm{LT}(f) \prec t$ and $t f \in V_I$
- $\bullet \ \ \text{If} \ t \in \Delta_I \ \text{then} \ f = t$

- We need $R_I(t) = f$ with $\mathrm{LT}(f) \prec t$ and $t f \in V_I$
- If $t \in \Delta_I$ then f = t
- Otherwise we use $Q_{i_1} = 0$ to derive

$$t = x_{i_2 j_2} \cdots x_{i_d j_d} - \sum_{j' < j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d}$$
$$- \sum_{j' > j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} \mod V_I.$$

- We need $R_I(t) = f$ with $LT(f) \prec t$ and $t f \in V_I$
- If $t \in \Delta_I$ then f = t
- Otherwise we use $Q_{i_1} = 0$ to derive

$$t = x_{i_2 j_2} \cdots x_{i_d j_d} - \sum_{j' < j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d}$$
$$- \sum_{j' > j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} \mod V_I.$$

ullet The first two summands are $\prec t$ and can be ignored

- We need $R_I(t) = f$ with $\mathrm{LT}(f) \prec t$ and $t f \in V_I$
- If $t \in \Delta_I$ then f = t
- Otherwise we use $Q_{i_1} = 0$ to derive

$$t = x_{i_2 j_2} \cdots x_{i_d j_d} - \sum_{j' < j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d}$$
$$- \sum_{j' > j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} \mod V_I.$$

- ullet The first two summands are $\prec t$ and can be ignored
- ullet Any terms with $j' \in \{j_2, \dots, j_d\}$ are 0 and can be ignored

• Repeat the same process with all remaining terms

- Repeat the same process with all remaining terms
- At each step the first $x_{i,j}$ gets replaced with $x_{i,j'}$ with some unused j'>j

- Repeat the same process with all remaining terms
- At each step the first $x_{i,j}$ gets replaced with $x_{i,j'}$ with some unused j'>j
- This is the pigeon dance!

- Repeat the same process with all remaining terms
- At each step the first $x_{i,j}$ gets replaced with $x_{i,j'}$ with some unused j'>j
- This is the pigeon dance!
- Since $t \not\in \Delta_I$ the dance can not be completed

- Repeat the same process with all remaining terms
- At each step the first $x_{i,j}$ gets replaced with $x_{i,j'}$ with some unused j'>j
- This is the pigeon dance!
- Since $t \not\in \Delta_I$ the dance can not be completed
- ullet Process terminates with $f \prec t$ and $t = f \mod V_I$

The Kill operator

• The Kill operator kills the first pigeon and moves its hole to the left

The Kill operator

- The Kill operator kills the first pigeon and moves its hole to the left
- $\operatorname{Kill}(x_{i_1,j_1}\cdots x_{i_d,j_d})=x_{i_2,j'_2}\cdots x_{i_d,j'_d}$ with

$$j_k' \coloneqq \begin{cases} j_k + 1, & \text{if } j_k < j_1 \\ j_k, & \text{if } j_k > j_1. \end{cases}$$

Properties of Kill

Theorem

 $x_{i_1,j_1}\cdots x_{i_d,j_d}\in \Delta_I$ if and only if there is a $j'>j_1$ such that $\mathrm{Kill}(x_{i_1,j'}\cdots x_{i_d,j_d})\in \Delta_I$.

Properties of Kill

Theorem

 Δ_I is closed under Kill.

The lower bound

Theorem

If $|I| \leq (n+1)/2, t \in D_I$ and the minimal element i of I is not in dom(t), then there exists a $j \in [n]$ such that $Kill(x_{ij}t) \in \Delta_I$.

The lower bound

Theorem

If $|I| \le (n+1)/2, t \in D_I$ and the minimal element i of I is not in dom(t), then there exists a $j \in [n]$ such that $Kill(x_{ij}t) \in \Delta_I$.

Proof

At most

$$|\operatorname{dom}(t)| \le |I \setminus \{i\}| \le \frac{n-1}{2}$$

pigeons involved in the dance, each occupying two holes. Thus the total number of holes is n-1 and one hole j remains free. For the purposes of the dance, $\operatorname{Kill}(x_{ij}\cdot t)$ is the same as t since the only difference is j being moved to the left.

• We now show that the two operators are identical

- We now show that the two operators are identical
- \bullet Equivalent to Δ_I being linearly independent as functions $M_I \to \mathbb{K}$

- We now show that the two operators are identical
- \bullet Equivalent to Δ_I being linearly independent as functions $M_I \to \mathbb{K}$
- Induction on |I| gives us assignment $a \in M_{I \setminus \{i\}}$ with $a(f') \neq 0$

- We now show that the two operators are identical
- \bullet Equivalent to Δ_I being linearly independent as functions $M_I \to \mathbb{K}$
- Induction on |I| gives us assignment $a \in M_{I \setminus \{i\}}$ with $a(f') \neq 0$
- Pick a j such that $\mathrm{Kill}(x_{i,j}t) \in \Delta_I$

- We now show that the two operators are identical
- \bullet Equivalent to Δ_I being linearly independent as functions $M_I \to \mathbb{K}$
- Induction on |I| gives us assignment $a \in M_{I \setminus \{i\}}$ with $a(f') \neq 0$
- Pick a j such that $\mathrm{Kill}(x_{i,j}t) \in \Delta_I$
- Extend assignment to I with $a'(f) \neq 0$

 \bullet If $d \leq n/2+1,$ then definition of R_I via the pigeon dance and via M_I are identical

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- \bullet Pigeons not in the dance do not affect its success, so $R_I(t) = R_{\mathrm{dom}(t)}(t)$

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- \bullet Pigeons not in the dance do not affect its success, so $R_I(t) = R_{\mathrm{dom}(t)}(t)$
- ullet V_d is precisely polynomials identically zero on M_I

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- \bullet Pigeons not in the dance do not affect its success, so $R_I(t) = R_{\mathrm{dom}(t)}(t)$
- ullet V_d is precisely polynomials identically zero on M_I
- $R_d \neq 0$

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- \bullet Pigeons not in the dance do not affect its success, so $R_I(t) = R_{\mathrm{dom}(t)}(t)$
- ullet V_d is precisely polynomials identically zero on M_I
- $R_d \neq 0$
- There is no refutation of $\neg \mathcal{PHP}_n^m$ with $d \leq n/2 + 1$