

High Density Single Port SRAM RVT-HVT-RVT Compiler CLN40G 40nm Process 256 Rows Per Bank, 0.299um^2 Bit Cell 512 Words X 64 Bits, Mux 16 Instance

Overview

The Synchronous Single-Port Ram is optimized for speed and density. The memory is designed to take full advantage of the TSMC 40nm CLN40G CMOS process.

The storage array is composed of six-transistor bit cells with fully static circuitry. The SRAM operates at a voltage of 0.9V to 0.9V and a junction temperature range of 25.0°C to 25.0°C.

Instance Settings

Parameter	Setting
Instance Name	sram_sp_512x64
Process	CLN40G
Words	512
Bits	64
Mux	16
Write Mask	off
Extra Margin Adjustment	on
Redundancy	off
Soft Error Repair	none
BIST Muxes	on
Output Drive	6
Power Routing Type	otc
Top Metal	M5-M9
Frequency	100 MHz
Power Gating	off
Retention	on
Back Biasing	off
Weak Bit Test	off
Read Disturb Test	off
Pipeline	off
Write-thru	on

Description

The single-port synchronous RAM is a fully static memory with write enable (WEN), chip enable (CEN), address (A), data in (D) and data out (Q) pins. The RAM is self-timed and consumes the minimum amount of power for read or write operations.

All synchronous inputs are latched on the rising-edge of the clock signal. When CEN is low and WEN is high the memory will read. When CEN and WEN are both low the word on the D will be written to the memory. It will appear at the outputs (write-thru).

When CEN is high the memory is deselected and forced into a low-power standby mode. Stored data is fully retained but memory access is disabled for data read or data write, the existing data outputs continue to drive their previous values.

Description (cont)

The Self timing overrride STOV allows you to adjust the latching of output in posedge or negedge of the clock.

The Extra Margin Adjustment EMA, Sense amp Extra margin adjustment EMAS and Write Extra margin adjustment EMAW allows you to adjust the width of the self timing pulse.

BIST muxes with test inputs, test enable (TEN) and test outputs are connected to each input.

Memory normal mode is enabled (RET1N=1). In this mode the core and periphery power are both connected to the chip level power grid either through power rings or through Artigrid

Refer to the users manual for a more detailed description of memory operation.

Physical Dimensions

Area Type	Width (μm)	Height (μm)	Area (μm²)
Core	891.03	62.98	56117.1

Symbol

Pin Description

Pin	Description
A[8:0]	Address (A[0] = LSB)
D[63:0]	Data Input (D[0] = LSB)
CLK	Clock
CEN	Chip Enable (active low)
WEN	Write Enable (active low)
Q[63:0]	Data Output (Q[0] = LSB)
EMA[2:0]	Extra Margin Adjustment (EMA[0] = LSB)
EMAS	Sense amp Extra Margin Adjustment (EMAS)
EMAW[1:0]	Write Extra Margin Adjustment (EMAW[0] = LSB)
TEN	Test Mode Enable (active low)
TA[8:0]	Address Test Input (TA[0] = LSB)
AY[8:0]	Address Mux Output (AY[0] = LSB)
TD[63:0]	Data Test Input (TD[0] = LSB)
DY[63:0]	Data Mux Output (DY[0] = LSB)
TCEN	Chip Enable Test Input (active low)
CENY	Chip Enable Mux Output
TWEN	Write Enable Test Input (active low)
WENY	Write Enable Mux Output
BEN	Bypass Mode Enable (active low)
TQ[63:0]	Test mux Q Input (TQ[0] = LSB)
RET1N	Retention Input (active low)
STOV	Self timing override

Read Cycle Timing stov=0

Write Cycle Timing stov=0

Read Cycle Timing stov=1

Write Cycle Timing stov=1

Timing (units = ns)

The timing tables shows delay values measured from the input threshold to the output threshold. The timing and power values are measured at input slew of 0.1ns on clock pin, 0.1ns on signal pins and output load 0.05pF.

Pin	Symbol	Typical Process 0.9V, 25°C	
		Min	Max
Read Cycle	t _{cyce0}	0.778	
Write Cycle	t _{cyce0ew0}	0.778	
Read Access ^{1,2}	t _{ae0}		0.661
Write-Thru Access ^{1,2}	ta		0.568
Clock high	t _{ckh}	0.081	
Clock low	t _{ckl}	0.083	
Clock rise slew	t _{ckr}		0.545
CENY load factor ³	K _{cenyload}		0.841
AY load factor ³	K _{ayload}		0.841
DY load factor ³	K _{dyload}		0.814
WENY load factor ³	K _{wenyload}		0.841
Q load factor ³	K _{qload}		0.315
A setup	t _{as}	0.196	
A hold	t _{ah}	0.160	
D setup	t _{ds}	0.028	

Timing continued (units = ns)

Pin	Symbol	Typical Process 0.9V, 25°C	
		Min	Max
D hold	t _{dh}	0.138	
CEN setup	t _{cs}	0.127	
CEN hold	t _{ch}	0.166	
WEN setup	t _{ws}	0.108	
WEN hold	t _{wh}	0.160	
STOV setup	t _{ss}	0.781	
STOV hold	t _{sh}	0.778	
RET1N setup	t _{ret1ns}	1.482	
RET1N hold	t _{ret1nh}	0.778	
RET1N fall to TCEN rise hold	t _{ret1n_tcenh}	0.778	
TCEN fall to RET1N rise hold	t _{tcen_ret1nh}	1.309	
RET1N fall to CEN rise hold	t _{ret1n_cenh}	0.778	
CEN fall to RET1N rise hold	t _{cen_ret1nh}	1.309	

Cycle and Access Timing for Different Values of Extra Margin Adjustment (units = ns)

Pin	Symbol	Typical 0.9V,	Process 25°C
		Min	Max
Read Cycle EMA=0	t _{cyce0}	0.778	
Read Cycle EMA=1	t _{cyce1}	0.836	
Read Cycle EMA=2	t _{cyce2}	0.858	
Read Cycle EMA=3	t _{cyce3}	0.880	
Read Cycle EMA=4	t _{cyce4}	0.915	
Read Cycle EMA=5	t _{cyce5}	0.980	
Read Cycle EMA=6	t _{cyce6}	1.043	
Read Cycle EMA=7	t _{cyce7}	1.108	
Write Cycle EMA=0 EMAW=0	t _{cyce0ew0}	0.778	
Write Cycle EMA=0 EMAW=1	t _{cyce0ew1}	0.795	

Output delays and a load dependency (Kload) which is used to calculate: TotalDelay = FixedDelay + (Kload x Cload).

Access time is defined as the longest possible delay to valid output for the typical and slow corners, and the shortest possible delay for the fast corners.

The output load factor units are ns/pF.

Cycle and Access Timing for Different Values of Extra Margin Adjustment continued (units = ns)

_	_	
Pin	Symbol	Typical Process 0.9V, 25°C Min Max
Write Cycle EMA=0 EMAW=2	t _{cyce0ew2}	0.831
Write Cycle EMA=0 EMAW=3	t _{cyce0ew3}	0.894
Write Cycle EMA=1 EMAW=0	t _{cyce1ew0}	0.836
Write Cycle EMA=1 EMAW=1	t _{cyce1ew1}	0.853
Write Cycle EMA=1 EMAW=2	t _{cyce1ew2}	0.889
Write Cycle EMA=1 EMAW=3	t _{cyce1ew3}	0.952
Write Cycle EMA=2 EMAW=0	t _{cyce2ew0}	0.858
Write Cycle EMA=2 EMAW=1	t _{cyce2ew1}	0.875
Write Cycle EMA=2 EMAW=2	t _{cyce2ew2}	0.911
Write Cycle EMA=2 EMAW=3	t _{cyce2ew3}	0.974
Write Cycle EMA=3 EMAW=0	t _{cyce3ew0}	0.880
Write Cycle EMA=3 EMAW=1	t _{cyce3ew1}	0.897
Write Cycle EMA=3 EMAW=2	t _{cyce3ew2}	0.934
Write Cycle EMA=3 EMAW=3	t _{cyce3ew3}	0.996
Write Cycle EMA=4 EMAW=0	t _{cyce4ew0}	0.915
Write Cycle EMA=4 EMAW=1	t _{cyce4ew1}	0.932
Write Cycle EMA=4 EMAW=2	t _{cyce4ew2}	0.968
Write Cycle EMA=4 EMAW=3	t _{cyce4ew3}	1.031
Write Cycle EMA=5 EMAW=0	t _{cyce5ew0}	0.980
Write Cycle EMA=5 EMAW=1	t _{cyce5ew1}	0.997

Cycle and Access Timing for Different Values of Extra Margin Adjustment continued (units = ns)

Pin	Symbol	Typical 0.9V, Min	Process 25°C Max
Write Cycle EMA=5 EMAW=2	t _{cyce5ew2}	1.034	
Write Cycle EMA=5 EMAW=3	t _{cyce5ew3}	1.096	
Write Cycle EMA=6 EMAW=0	t _{cyce6ew0}	1.043	
Write Cycle EMA=6 EMAW=1	t _{cyce6ew1}	1.060	
Write Cycle EMA=6 EMAW=2	t _{cyce6ew2}	1.096	
Write Cycle EMA=6 EMAW=3	t _{cyce6ew3}	1.159	
Write Cycle EMA=7 EMAW=0	t _{cyce7ew0}	1.108	
Write Cycle EMA=7 EMAW=1	t _{cyce7ew1}	1.125	
Write Cycle EMA=7 EMAW=2	t _{cyce7ew2}	1.162	
Write Cycle EMA=7 EMAW=3	t _{cyce7ew3}	1.225	
Read Access EMA=0	t _{ae0}		0.661
Read Access EMA=1	t _{ae1}		0.718
Read Access EMA=2	t _{ae2}		0.741
Read Access EMA=3	t _{ae3}		0.763
Read Access EMA=4	t _{ae4}		0.797
Read Access EMA=5	t _{ae5}		0.863
Read Access EMA=6	t _{ae6}		0.926
Read Access EMA=7	t _{ae7}		0.991
Write-Thru Access	t _a		0.568
EMA setup	t _{emas}	0.781	
EMA hold	t _{emah}	0.778	
EMAS setup	t _{emass}	0.781	
EMAS hold	t _{emash}	0.778	
EMAW setup	t _{emaws}	0.781	
EMAW hold	t _{emawh}	0.778	

^{**}Illegal setting of EMA for this corner.

BIST Mux Timing (units = ns)

3(1			
Pin	Symbol	Typical 0.9V, Min	Process 25°C Max
CENY load	K _{ceny}		0.841
WENY load	K _{weny}		0.841
AY load	K _{ay}		0.841
DY load	K _{dy}		0.814
TEN rise to CENY delay	t _{tenceny}		0.341
TEN fall to CENY delay	t _{tenceny}		0.392
CEN to CENY delay	t _{cenceny}		0.141
TCEN to CENY delay	t _{tcenceny}		0.179
TEN rise to WENY delay	t _{tenweny}		0.341
TEN fall to WENY delay	t _{tenweny}		0.392
WEN to WENY delay	t _{wenweny}		0.142
TWEN to WENY delay	t _{twenweny}		0.174
TEN rise to AY delay	t _{tenay}		0.342
TEN fall to AY delay	t _{tenay}		0.398
A to AY delay	t _{aay}		0.145
TA to AY delay	t _{taay}		0.180
TEN rise to DY delay	t _{tendy}		0.400
TEN fall to DY delay	t _{tendy}		0.404
D to DY delay	t _{ddy}		0.161
TD to DY delay	t _{tddy}		0.169
BEN rise to Q delay	t _{benq}		0.330
BEN fall to Q delay	t _{benq}		0.353
TQ to Q delay	t _{tqq}		0.181
TEN setup	t _{tens}	0.437	
TEN hold	t _{tenh}	0.000	
TCEN setup	t _{tcens}	0.145	
TCEN hold	t _{tcenh}	0.141	
TWEN setup	t _{twens}	0.136	
TWEN hold	t _{twenh}	0.142	

BIST Mux Timing (units = ns)

Pin	Symbol	Typical 0.9V,	Process 25°C
		Min	Max
TA setup	t _{tas}	0.221	
TA hold	t _{tah}	0.142	
TD setup	t _{tds}	0.036	
TD hold	t _{tdh}	0.131	

Pin Capacitance (units = fF)

Pin	Typical Process 0.9V, 25°C
Α	4.662
D	5.443
CLK	14.212
CEN	4.324
WEN	4.188
EMA	6.611
EMAW	6.400
EMAS	6.022
TEN	7.695
TA	4.139
TD	4.678
TCEN	3.667
TWEN	3.991
BEN	17.214
TQ	5.512
RET1N	34.672
STOV	6.631

Power (current units = mA)

Pin	Typical Process 0.9V, 25°C
core AC Curr (EMA=0) ^{1,4}	0.051178
peri AC Curr (EMA=0) ^{1,4}	3.455545
core AC Curr (EMA=1) ^{1,4}	0.050942
peri AC Curr (EMA=1) ^{1,4}	3.442584
core AC Curr (EMA=2) ^{1,4}	0.050942
peri AC Curr (EMA=2) ^{1,4}	3.533976
core AC Curr (EMA=3) ^{1,4}	0.051734
peri AC Curr (EMA=3) ^{1,4}	3.518885
core AC Curr (EMA=4) ^{1,4}	0.051551

Power continued (current units = mA)

rower continued (current drints = mA)		
Pin	Typical Process 0.9V, 25°C	
peri AC Curr (EMA=4) ^{1,4}	3.61168	
core AC Curr (EMA=5) ^{1,4}	0.052073	
peri AC Curr (EMA=5) ^{1,4}	3.715061	
core AC Curr (EMA=6) ^{1,4}	0.051904	
peri AC Curr (EMA=6) ^{1,4}	3.865033	
core AC Curr (EMA=7) ^{1,4}	0.052541	
peri AC Curr (EMA=7) ^{1,4}	3.936113	
core Read AC Curr (EMA=0) ^{1,4}	0.058721	
peri Read AC Curr (EMA=0) ^{1,4}	3.701611	
core Read AC Curr (EMA=1) ^{1,4}	0.0584	
peri Read AC Curr (EMA=1) ^{1,4}	3.825374	
core Read AC Curr (EMA=2)1,4	0.05827	
peri Read AC Curr (EMA=2) ^{1,4}	3.886265	
core Read AC Curr (EMA=3) ^{1,4}	0.059228	
peri Read AC Curr (EMA=3) ^{1,4}	3.914283	
core Read AC Curr (EMA=4) ^{1,4}	0.058861	
peri Read AC Curr (EMA=4) ^{1,4}	4.005032	
core Read AC Curr (EMA=5)1,4	0.059604	
peri Read AC Curr (EMA=5) ^{1,4}	4.133725	
core Read AC Curr (EMA=6) ^{1,4}	0.059521	
peri Read AC Curr (EMA=6) ^{1,4}	4.310262	
core Read AC Curr (EMA=7) ^{1,4}	0.060396	
peri Read AC Curr (EMA=7) ^{1,4}	4.427514	
core Write AC Curr (EMA=0) ^{1,4}	0.043634	
peri Write AC Curr (EMA=0) ^{1,4}	3.209479	
core Write AC Curr (EMA=1) ^{1,4}	0.043484	
peri Write AC Curr (EMA=1) ^{1,4}	3.059795	
core Write AC Curr (EMA=2) ^{1,4}	0.043614	
peri Write AC Curr (EMA=2) ^{1,4}	3.181686	
core Write AC Curr (EMA=3) ^{1,4}	0.04424	
peri Write AC Curr (EMA=3) ^{1,4}	3.123487	
core Write AC Curr (EMA=4) ^{1,4}	0.044241	
peri Write AC Curr (EMA=4) ^{1,4}	3.218329	
core Write AC Curr (EMA=5) ^{1,4}	0.044542	
peri Write AC Curr (EMA=5) ^{1,4}	3.296397	
core Write AC Curr (EMA=6) ^{1,4}	0.044287	
peri Write AC Curr (EMA=6) ^{1,4}	3.419804	
core Write AC Curr (EMA=7) ^{1,4}	0.044685	
peri Write AC Curr (EMA=7) ^{1,4}	3.444712	
core Peak Curr	4.237288	
peri Peak Curr	188.715393	
core Deselected Curr ^{2,4}	0.000e+00	

Power continued (current units = mA)

Pin	Typical Process 0.9V, 25°C
peri Deselected Curr ^{2,4}	0.446588
core Standby Curr	0.096559
peri Standby Curr	0.210716
core Retention Standby Curr	0.096711
peri Retention Standby Curr	0.017714

^{**} Illegal setting of EMA for this corner.

Clock Noise Limit

Cumbal	Typical Process 0.9V, 25°C	
Symbol	Pulse Width	Voltage
CLK	10.000ns	0.392V

The clock noise limit is the maximum voltage allowed (for the indicated pulse width) that does not cause an unintentional memory cycle or other memory failure.

Supply Noise Limit (units = V)

Pin	Typical Process 0.9V, 25°C	
Power	0.090	
Ground	0.090	

The power and ground noise limit is the maximum supply voltage transition that is allowed without causing a memory failure.

Artisan Components, Artisan, and Process-Perfect are registered trademarks of ARM Physical IP, Inc. Accelerated Retention Test, Advantage, Artigrid, ArtNuvo, Capstone, ElectroArt, Extra Margin Adjustment, Flex-Repair, Integral-I/O, Metro, SAGE, SAGE-HS, SAGE-X, and Velocity are trademarks of ARM Physical IP, Inc. ARM acknowledges the trademarks of other organizations for their respective products or services metioned in this document.

ARM reserves the right to make changes to any products and services described herein, at any time without notice in order to make improvements in design, performance, or presentation and to provide the best possible products and services. Customers should obtain the latest specifications before referencing any information, product, or service described herein, except as expressly agreed in writing by and officer of ARM.

ARM does not assume any responsibility or liability arising out of the application or use of any products or services described herein, except as expressly agreed to in writing by and officer of ARM; nor does the purchase, lease, or use of a product or service from ARM convey license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of ARM or of third parties.

The AC current value assumes 50% read and write operations, where all addresses and 50% of input and output pins switch at the user defined frequency of 100MHz. It is assumed that EMA and BIST pins do not switch.

The deselected current assumes the memory is deselected, all addresses switch, and 50% of input pins switch at the user defined frequency of 100MHz. The logic switching component of deselected power becomes negligibly small if the input pins are held stable by externally controlling these signals with chip select. It is assumed that EMA and BIST pins do not switch.

³The standby current value is independent of frequency and assumes all inputs and outputs are stable.

The leakage current component is not included in this value.