Multiparty Quantum Simultaneous Message Passing Communication Complexity

Harumichi Nishimura (Nagoya U.)

Based on arXiv:2412.08091, joint work with Francois Le Gall (Nagoya U.), Oran Nadler (Tel Aviv U.), Rotem Oshman (Tel Aviv U.)

Shenzhen-Nagoya Workshop on Quantum Science 2025 September 26, 2025

Communication Complexity

- Introduced by Yao in 1979 [Yao79]
- Multiple parties with separate inputs want to compute some function with small amount of communication

Communication Complexity

- Many applications to computational complexity lower bounds
 - VLSI
 - Decision trees & Data structures
 - Boolean circuits
 - Time-space tradeoff
 - Streaming algorithms
 - Proof complexity
 - Distributed computing etc

Simultaneous Message Passing (SMP)

- Weakest model in communication complexity [Yao79]
 - Each of k parties A_{ℓ} has input $x_{\ell} \in \{0,1\}^n$
 - A_{ℓ} sends a message to the referee
 - The referee computes a function value $f(x_1, \dots, x_k)$
 - Complexity (cost):=the total length of the messages

Simultaneous Message Passing (SMP)

- Weakest model in communication complexity [Yao79]
 - Each of k parties A_{ℓ} has input $x_{\ell} \in \{0,1\}^n$
 - A_{ℓ} sends a message to the referee
 - The referee computes a function value $f(x_1, \dots, x_k)$
 - <u>Complexity</u>:=the total length of the messages
- Computation modes
 - Deterministic
 - Randomized
 - Public coin: all parties A_{ℓ} share randomness
 - Private coin: no shared randomness

Simultaneous Message Passing (SMP)

- Weakest model in communication complexity [Yao79]
 - Each of k parties A_{ℓ} has input $x_{\ell} \in \{0,1\}^n$
 - A_{ℓ} sends a message to the referee
 - The referee computes a function value $f(x_1, \dots, x_k)$

Complexity:=the total length of the messages

- Computation modes
 - Deterministic
 - Randomized
 - Quantum [Yao93]
 - Shared randomness or entanglement
 - No shared resources (private)

2-party SMP

- 2-party case is well-studied
 - Equality
 - Whether Alice's input $x \in \{0,1\}^n$ is the same as Bob's input $y \in \{0,1\}^n$
 - Classical
 - Public coin O(1)
 - Use a good code $E(x): \{0,1\}^n \rightarrow \{0,1\}^{cn}$

•
$$\frac{\#\{j \in \{1,2,\cdots,cn\}: E(x)_j \neq E(y)_j\}}{cn} \ge \frac{9}{10} \text{ if } x \neq y$$

- Shared randomness $j \in \{1, 2, \dots, cn\}$
- Alice sends $E_i(x)$ & Bob sends $E_i(y)$ to the referee
- The referee outputs 1 if and only if $E_j(x) = E_j(y)$
- $E_j(x) := \text{the } j\text{th bit of } E(x)$

2-party SMP

- 2-party case is well-studied
 - Equality
 - Whether Alice's input $x \in \{0,1\}^n$ is the same as Bob's input $y \in \{0,1\}^n$
 - Classical
 - Public coin O(1)
 - Private coin $\Omega(\sqrt{n})$ [NS96,BK97]

Quantum SMP

- Exponential quantum advantage for Equality [BCWW01]
 - Quantum $O(\log n)$
 - Classical $\Omega(\sqrt{n})$ [NS96,BK97]
 - Use of "quantum" fingerprints $\{|\psi_x\rangle\}_{x\in\{0,1\}^n}$
 - $|\psi_x\rangle$ is short (consists of $O(\log n)$ qubits) but available for checking whether x=y
 - Convert shared randomness into quantum fingerprints

Quantum SMP

- 2-party case is well-studied
 - Exponential quantum advantage for Equality [BCWW01]
 - Quantum $O(\log n)$
 - Classical $\Omega(\sqrt{n})$ [NS96,BK97]
 - Use of "quantum" fingerprints $\{|\psi_x\rangle\}_{x\in\{0,1\}^n}$
 - $|\psi_x\rangle$ is short (consists of $O(\log n)$ qubits) but available for checking whether x=y
 - Convert shared randomness into quantum fingerprints
 - More results
 - Hamming distance [Yao03]
 - $\operatorname{Ham}_{d}(x, y) = \begin{cases} 1 & (\operatorname{Hamming distance } \Delta(x, y) \text{ is at most } d) \\ 0 & (\text{otherwise}) \end{cases}$
 - *d* is a constant
 - Tomorrow's talk by Hasegawa-san

Quantum Multiparty SMP

- Multiparty case is not explored
 - Negative result [GIW13]
 - Positive results [This talk]

Public-coin SMP vs QSMP

Q: Is QSMP efficient (logarithmic order of input length) when public-coin (classical) SMP is efficient?

- EQ has an efficient public-coin SMP ⇒ QSMP is also efficient [BCWW01]
- 2-party case: **YES**
 - Public-coin SMP complexity is $O(1) \Rightarrow QSMP$ is efficient [Yao03]

Public-coin SMP vs QSMP

Q: Is QSMP efficient when public-coin (classical) SMP is efficient?

- Multiparty case: NO
 - Public-coin SMP complexity is O(1) but QSMP is not efficient [GIW13]
 - Gap-Parity
 - $GP_k(x_1, \dots, x_k) \coloneqq \begin{cases} 1 & \text{(Hamming weight of } x_1 \oplus \dots \oplus x_k \ge 2n/3) \\ 0 & \text{(Hamming weight of } x_1 \oplus \dots \oplus x_k \le n/3) \end{cases}$
 - Public coin (Classical): 0(1)
 - Quantum: $\Omega(kn^{1-\frac{2}{k}})$

Public-coin SMP vs QSMP

Q: Is QSMP efficient when public-coin (classical) SMP is efficient?

- Multiparty case: NO
 - Public-coin SMP complexity is O(1) but QSMP is not efficient [GIW13]

Q: For which problems efficient multiparty QSMPs can be constructed from public-coin SMPs?

Our Results

- Efficient multiparty QSMP protocols for:
 - Equality functions
 - Frequency moments based on equality
 - Neighborhood diversity
 - Reconstruction of
 - P3/P4-induced subgraph free graphs [KMRS15]
 - Distance-hereditary graphs [MPRT20]
 - Enumeration of isolated cliques

Our Results [LNNO24]

Problem	Total complexity	Local complexity	Comments
Group-by-EQ	$k \log k \log n$	$\log k \log n$	total complexity $\Omega(k\sqrt{n})$ in classical case
Neighborhood diversity	$k(\log k)^2$	$(\log k)^2$	NIH Network model
Reconstruction of P3/P4-induced subgraph free graphs	$k(\log k)^2$	$(\log k)^2$	NIH Network model
Reconstruction of distance hereditary graphs	$k(\log k)^2$	$(\log k)^2$	NIH Network model
Enumeration of max-d-isolated cliques	$kd(\log k)^2$	$d(\log k)^2$	NIH Network model

Our Results

- Efficient multiparty QSMP protocols for:
 - Equality functions
 - Frequency moments based on equality
 - Neighborhood diversity
 - Reconstruction of
 - P3/P4-induced subgraph free graphs [KMRS15]
 - Distance-hereditary graphs [MPRT20]
 - Enumeration of isolated cliques
- Our only quantum technique
 - Conversion from efficient decision trees based on "modified equality queries" to efficient multiparty QSMP protocols

Modified Equality Queries

- $MEQ_{k,n}(i,j,y,z)$
 - Input (Query): indices $i, j \in [k]$ & strings $y, z \in \{0,1\}^n$
 - Output (Answer): $x_i \oplus y = x_i \oplus z$?
 - # $x_i \in \{0,1\}^n$ is the input of the jth player
 - # each player must send the state without knowing the query (i, j, y, z)

Modified Equality Queries

- $MEQ_{k,n}(i,j,y,z)$
 - Input (Query): indices $i, j \in [k]$ & strings $y, z \in \{0,1\}^n$
 - Output (Answer): $x_i \oplus y = x_j \oplus z$?
 - # $x_i \in \{0,1\}^n$ is the input of the jth player
 - # each player must send the state without knowing the query (i, j, y, z)

Quantum protocol for MEQ

Lemma 1: There are quantum fingerprints of $O\left(\log n \cdot \log \frac{1}{\varepsilon}\right)$ qubits $\{|\psi(x)\rangle\}_{x\in\{0,1\}^n}$ such that the ℓ th player sends a state $|\psi(x_\ell)\rangle$ to the referee, who can compute $\text{MEQ}_{k,n}(i,j,y,z)$, for any given i,j,y,z, with error probability ε

<u>Proof</u>: Quantum fingerprint based on good linear error-correcting codes can be modified from $|\psi(x_\ell)\rangle$ to $|\psi(x_\ell \oplus y)\rangle$ without knowing the original fingerprint but with knowing y

MEQ decision tree

- Rooted binary tree whose inner node are labeled by MEQ queries and whose leaves are labeled by output values
 - The tree is evaluated starting from the root
 - At each step, the query at the current node is evaluated
 - Go to the left child if the answer is 0
 - Go to the right child if it is 1
 - Output the value of the leaf reached finally

Our Conversion Result

Theorem 2: Any $MEQ_{k,n}$ decision tree of depth D (by the referee) can be implemented by a k-party QSMP with error probability δ that uses

$$O(k\left(\log D + \log\left(\frac{1}{\delta}\right)\right)\log n)$$
 qubits

Proof idea:

- Lemma 1 (quantum fingerprint that can modify according to the modified equality queries)
- Gentle measurement lemma (Gao's quantum union bound [Gao15])
 - If a measurement result is obtained with probability close to 1, the measured quantum state does not change so much
 - We can reuse the quantum fingerprint of Lemma 1

Application 1: Grouping by Equality

- GroupByEQ $_{k,n}$
 - Input: $x_{\ell} \in \{0,1\}^n$ for the ℓ th party in k parties
 - Output: partition S_1, \dots, S_t of [k] satisfying that for every $i, j \in [k]$, there is an index u such that $i, j \in S_u$ if and only if $x_i = x_j$
- Solved by $MEQ_{k,n}$ decision tree of depth $\binom{k}{2}$
 - On each path, compare players' inputs against one another until the correct partition
 - By Thm 2, we have a QSMP protocol of cost $O(k \log k \log n)$.

Ex: $x_1 = 0000, x_2 = 1001, x_3 = 1001$ $\rightarrow \{1\}, \{2,3\}$

Application 1: Grouping by Equality

- GroupByEQ $_{k,n}$
 - Input: $x_{\ell} \in \{0,1\}^n$ for the ℓ th party in k parties
 - Output: partition S_1, \dots, S_t of [k] satisfying that for every $i, j \in [k]$, there is an index u such that $i, j \in S_u$ if and only if $x_i = x_j$
- Solved by $ext{MEQ}_{k,n}$ decision tree of depth $\binom{k}{2}$
 - On each path, compare players' inputs against one another until the correct partition
 - By Thm 2, we have a QSMP protocol of cost $O(k \log k \log n)$.

Corollary:

QSMPs of cost $O(k \log k \log n)$ for:

- Whether all x_{ℓ} are equal
- Whether there is a pair (i,j) such that $x_i = x_j$

Note: Exponential quantum advantage in n

Another corollary: P3-induced subgraph freeness

- NIH (Number-In-Hand) Network
 - A special case of multiparty SMP
 - Input length n = # of parties k
 - Each party u is a node of a k-node graph G, and has a neighborhood vector v_u of G (i.e., $v_u[v] = 1$ iff $v \in N(u)$) as input
 - ullet Goal is that the referee solves a designated problem on G

Another corollary: P3-induced subgraph freeness

- NIH (Number-In-Hand) Network
 - A special case of multiparty SMP
 - Each party u is a node of a k-node graph G, and has a neighborhood vector v_u of G (i.e., $v_u[v] = 1$ iff $v \in N(u)$) as input
 - Goal is that the referee solves a designated problem on ${\it G}$
- P3-induced subgraph free graph
 - A graph that does not contain a 3-node path P_3 as an induced subgraph

Not P3-induced subgraph free

P3-induced subgraph free

Another corollary: P3-induced subgraph freeness

• NIH (Number-In-Hand) Network

- A special case of multiparty SMP
- Each party u is a node of a k-node graph G, and has a neighborhood vector v_u of G (i.e., $v_u[v] = 1$ iff $v \in N(u)$) as input
- Goal is that the referee solves a designated problem on ${\it G}$

• P3-induced subgraph free graph

- A graph that does not contain a 3-node path P_3 as an induced subgraph
- A graph is <u>P3-induced subgraph free if and only if it is a collection of node-disjoint cliques [KMRS15]</u>
- Solved by GroupByEQ $_{k,k}$ to input $\{\mu_u \coloneqq \nu_u \oplus e_u\}_u$
 - We can reconstruct the input graph if it is P3-induced subgraph free
- QSMP of Cost $O(k(\log k)^2)$

Application 2: Neighborhood Diversity

- Two nodes u, v are called **twin** if
 - N(u) = N(v) (false twin)
 - $N(u) \setminus \{v\} = N(v) \setminus \{u\}$ (true twin)
- A graph has **neighborhood diversity** d if its node can be partitioned into d set but no fewer such that all nodes in each set are twins of one another [Lam12]

Neighborhood diversity=5 Partition of the same type {1}, {2,3}, {4,5}, {6}, {7,8,9,10}

Application 2: Neighborhood Diversity

- Two nodes u, v are called twin if
 - N(u) = N(v) (false twin)
 - $N(u) \setminus \{v\} = N(v) \setminus \{u\}$ (true twin)
- A graph has **neighborhood diversity** d if its node can be partitioned into d set but no fewer such that all nodes in each set are twins of one another [Lam12]
- Solved by $ext{MEQ}_{k,k}$ decision tree of depth $2\binom{k}{2}$ by queries
 - $MEQ_{k,k}(\nu_u,\nu_v,0^k,0^k)$ (whether N(u)=N(v))
 - $MEQ_{k,k}(v_u, v_v, e_u, e_w)$ (whether $N(u) \setminus \{v\} = N(v) \setminus \{u\}$)
- By Thm 2, we have a QSMP protocol of cost $O(k(\log k)^2)$ for neighborhood diversity

Application 3: P4-induced subgraph freeness

- √ P3-induced subgraph free graph
- P4-induced subgraph free graph
 - A graph that does not contain a 4-node path P_4 as an induced subgraph
- We can solve (reconstruct the input graph if it is P4-induced subgraph free) by a $MEQ_{k,k}$ decision tree of depth $2(k-1){k \choose 2}$, and thus we have a **QSMP of cost** $O(k(\log k)^2)$.

Application 3: P4-induced subgraph freeness

✓ P4-induced subgraph free graph

- A graph that does not contain a 4-node path P_4 as an induced subgraph
- We can solve (reconstruct the input graph if it is P4-induced subgraph free) by a $MEQ_{k,k}$ decision tree of depth $2(k-1)\binom{k}{2}$, and thus we have a **QSMP of cost** $O(k(\log k)^2)$.

Characterization of P4-induced subgraph free graphs

- Characterized by the existence of a decomposition [KMRS15]: a sequence of nodes (v_1, v_2, \dots, v_k) such that for each $j \in [k-1]$, one of the following holds:
 - v_i has a true twin in $G[\{v_i, \dots, v_k\}]$
 - v_j has a false twin in $G[\{v_j, \dots, v_k\}]$
- Key point: this decomposition can be described by two families of binary vectors $\{a_v\}_v$ and $\{b_v\}_v$ updated sequentially and checking the following type of queries:
 - $\exists w, u[b_w = b_u]$
 - $\exists w, u[b_w \oplus a_w = b_u \oplus a_u]$

Application 4: Enumeration of Isolated Cliques

- Clique:=complete graph
- Clique enumeration
 - Enumerate all the cliques
 - Well-studied in complex network analysis
- Isolated pseudo clique enumeration [IIO05,KHMN09]
 - (max isolated clique [KHMN09]) A subgraph S of G = (V, E) is called a $\underline{\text{max-}d-}$ isolated clique if the subgraph induced by S is a clique, and each node in S has at most d edges to $V \setminus S$

Application 4: Enumeration of Isolated Cliques

(max isolated clique [KHMN09]) A subgraph S of G = (V, E) is called a max-d-isolated clique if the subgraph induced by S is a clique, and each node in S has at most d edges to $V \setminus S$

Theorem: There is QSMP protocol of cost $O(kd (\log k)^2)$ for enumerating all the max-d-isolated cliques

Proof: Use the queries on Hamming distance, MHAM:

- MHAM $_n^d(i,j,y,z) = \begin{cases} \Delta(x_i \oplus y, x_j \oplus z) & (\Delta(x_i \oplus y, x_j \oplus z) \leq d) \\ \bot & (\Delta(x_i \oplus y, x_j \oplus z) > d) \end{cases}$ can be computed by a MEQ $_{k,n}$
 - decision tree of depth $\sum_{c=0}^{d} {n \choose c} = O(n^d)$
- Check the following conditions
- 1. MHAM_k^{2d} $(u, v, e_u, e_v) \neq \perp$ for all $u, v \in S$
- 2. $\text{MHAM}_k^{2d+2}(u, v, 0^k, 0^k) = \text{MHAM}_k^{2d}(u, v, e_u, e_v) + 2 \text{ for all } u, v \in S$
- 3. $\deg(u) \le |S| + d 1$ for all $u \in S$

Summary

Problem	Total complexity	Local complexity	Comments
Group-by-EQ	$k \log k \log n$	$\log k \log n$	total complexity $\Omega(k\sqrt{n})$ in classical case
Neighborhood diversity	$k(\log k)^2$	$(\log k)^2$	NIH Network model
Reconstruction of P3/P4-induced subgraph free graphs	$k(\log k)^2$	$(\log k)^2$	NIH Network model
Reconstruction of distance hereditary graphs	$k(\log k)^2$	$(\log k)^2$	NIH Network model
Enumeration of max-d-isolated cliques	$kd(\log k)^2$	$d(\log k)^2$	NIH Network model

Our only quantum technique: Conversion from efficient decision trees based on "modified EQ (equality) queries" to efficient multiparty QSMP protocols

Our (rough) message: If your problem reduces to "modified EQ queries", you can find an efficient QSMP

Future Work

- More efficient multiparty QSMP protocols
 - Reconstruction of P5-induced subgraph free graphs
 - Enumerations of isolated pseudo cliques by other closeness factor
 - Max-d-isolated clique → average-d-isolated clique [IIO05]
 - Graph connectivity
 - Efficient public-coin classical SMP (graph sketch [AGM12])
- Lower bounds
 - Extension of Gap-Parity in [GIW13]
 - $GP_k(x_1, \dots, x_k) \coloneqq \begin{cases} 1 & \text{(Hamming weight of } x_1 \oplus \dots \oplus x_k \geq 2n/3) \\ 0 & \text{(Hamming weight of } x_1 \oplus \dots \oplus x_k \leq n/3) \end{cases}$ Quantum: $\Omega(kn^{1-\frac{2}{k}})$