Web-based supplementary materials for "The LZIP: A Bayesian latent factor model for correlated zero-inflated counts"

Brian Neelon* and Dongjun Chung

Medical University of South Carolina, Charleston, South Carolina, U.S.A

*email: neelon@musc.edu

Web Appendix A. Derivation of $Cov(Z_{i1}, Z_{i2})$

If we assume independent $Ga(\alpha, \alpha)$ priors for ξ_{il} (l = 1, ..., L), then $V(\xi_i) = \alpha^{-1}$ and $V(\xi_i) = \text{diag}(\alpha^{-1})$, where $\xi_i = (\xi_{i1}, ..., \xi_{iL})'$. Therefore,

$$\operatorname{Cov}(Z_{i1}, Z_{i2}) = \operatorname{Cov}_{\boldsymbol{\xi}_{i}} \left[\operatorname{E}(Z_{i1} | \boldsymbol{\xi}_{i}), \operatorname{E}(Z_{i2} | \boldsymbol{\xi}_{i}) \right] + \underbrace{\operatorname{E}_{\boldsymbol{\xi}_{i}} \left[\operatorname{Cov}(Z_{i1}, Z_{i2} | \boldsymbol{\xi}_{i}) \right]}_{= 0 \text{ by conditional independence}}$$

$$= \operatorname{Cov}_{\boldsymbol{\xi}_{i}} \left[\boldsymbol{\lambda}_{1}' \boldsymbol{\xi}_{i} \exp(\boldsymbol{x}_{ij}' \boldsymbol{\beta}_{1}), \boldsymbol{\lambda}_{2}' \boldsymbol{\xi}_{i} \exp(\boldsymbol{x}_{ij}' \boldsymbol{\beta}_{2}) \right]$$

$$= \left[\boldsymbol{\lambda}_{1}' \operatorname{Var}(\boldsymbol{\xi}_{i}) \boldsymbol{\lambda}_{2} \right] \exp(\boldsymbol{x}_{ij}' \boldsymbol{\beta}_{1}) \exp(\boldsymbol{x}_{ij}' \boldsymbol{\beta}_{2})$$

$$= \left[\boldsymbol{\lambda}_{1}' \operatorname{diag}(\alpha^{-1}) \boldsymbol{\lambda}_{2} \right] \exp(\boldsymbol{x}_{ij}' \boldsymbol{\beta}_{1} + \boldsymbol{x}_{ij}' \boldsymbol{\beta}_{2})$$

$$= \alpha^{-1} \left(\sum_{l=1}^{L} \lambda_{1l} \lambda_{2l} \right) \exp(\boldsymbol{x}_{ij}' \boldsymbol{\beta}_{1} + \boldsymbol{x}_{ij}' \boldsymbol{\beta}_{2}).$$

Setting $\alpha = 1$, we obtain expression (8) in the manuscript.

Web Appendix B: Proof of Proposition 1

Let $\xi_i = (\xi_{i1}, \dots, \xi_{iL})'$, where $\{\xi_{il}\}$ are independent $Ga(\alpha, \alpha)$ random variables. Then,

$$p(z_{i11}, \dots, z_{iJ2}) = \int_{\boldsymbol{\xi}_i} \prod_{j=1}^J \prod_{k=1}^K p(z_{ijk}|\boldsymbol{\xi}_i) f(\boldsymbol{\xi}_i; \alpha) d\boldsymbol{\xi}_i$$

$$= \int_{\boldsymbol{\xi}_i} \prod_{j=1}^J \prod_{k=1}^K \operatorname{Poi}(z_{ijk}|\mu_{ijk}) f(\boldsymbol{\xi}_i; \alpha) d\boldsymbol{\xi}_i, \text{ where } \mu_{ijk} = \boldsymbol{\lambda}'_{jk} \boldsymbol{\xi}_i \exp(\boldsymbol{x}'_{ij} \boldsymbol{\beta}_{jk}).$$

From equation (13), we have $Z_{ijk} = \sum_{l=1}^{L} Z_{ijkl}$, where $Z_{ijkl} | \boldsymbol{\xi}_{il} \stackrel{ind}{\sim} \operatorname{Poi}(\mu_{ijkl}), \mu_{ijkl} = \lambda_{jkl} \boldsymbol{\xi}_{il} \exp(\boldsymbol{x}'_{ij}\boldsymbol{\beta}_{jk}),$ and $\mu_{ijk} = \sum_{l=1}^{L} \mu_{ijkl}$. By moment generating function theory, $\operatorname{p}(z_{ijk} | \boldsymbol{\xi}_i) = \prod_{l=1}^{L} \operatorname{Poi}(z_{ijkl} | \mu_{ijkl}),$

and hence, by independence of $\{\xi_{il}\}$, we have

$$p(z_{i11}, \dots, z_{iJ2}) = \int_{\boldsymbol{\xi}_{i}} \prod_{j=1}^{J} \prod_{k=1}^{K} \prod_{l=1}^{L} \operatorname{Poi}(z_{ijkl} | \mu_{ijkl}) f(\boldsymbol{\xi}_{il}; \alpha) \, d\boldsymbol{\xi}_{il}$$

$$= \prod_{l=1}^{L} \int_{\boldsymbol{\xi}_{il}} \left\{ \prod_{j=1}^{J} \prod_{k=1}^{K} \frac{[\lambda_{jkl} \boldsymbol{\xi}_{il} \exp(\boldsymbol{x}'_{ij} \boldsymbol{\beta}_{jk})]^{z_{ijkl}} \exp[-\lambda_{jkl} \boldsymbol{\xi}_{il} \exp(\boldsymbol{x}'_{ij} \boldsymbol{\beta}_{jk})]}{z_{ijkl}!} \times \frac{\alpha^{\alpha} \boldsymbol{\xi}_{il}^{\alpha-1} \exp(-\alpha \boldsymbol{\xi}_{il})}{\Gamma(\alpha)} \right\} d\boldsymbol{\xi}_{il}$$

$$= \prod_{l=1}^{L} \left\{ \frac{\prod_{j,k} \eta_{ijkl}^{z_{ijkl}} \alpha^{\alpha}}{\Gamma(\alpha) \prod_{j,k} z_{ijkl}!} \int_{\boldsymbol{\xi}_{il}} \boldsymbol{\xi}_{il}^{\sum_{j,k} z_{ijkl} + \alpha - 1} \exp\left[\left(-\sum_{j,k} \eta_{ijkl} + \alpha\right) \boldsymbol{\xi}_{il}\right] d\boldsymbol{\xi}_{il} \right\},$$

where $\eta_{ijkl} = \lambda_{jkl} \exp(\mathbf{x}'_{ij}\boldsymbol{\beta}_{jk})$. The integrand can be recognized as the kernel of a $\operatorname{Ga}(z_{il} + \alpha, \eta_{il} + \alpha)$ distribution, where $z_{il} = \sum_{j,k} z_{ijkl}$ and $\eta_{il} = \sum_{j,k} \eta_{ijkl}$. Thus, we have

$$p(z_{i11}, \dots, z_{iJ2}) = \prod_{l=1}^{L} \frac{\Gamma(z_{il} + \alpha) \prod_{j,k} \eta_{ijkl}^{z_{ijkl}} \alpha^{\alpha}}{\Gamma(\alpha) \prod_{j,k} z_{ijkl}! (\eta_{il} + \alpha)^{\sum_{j,k} z_{ijkl} + \alpha}} \underbrace{\int_{\xi_{il}} \operatorname{Ga} (z_{il} + \alpha, \eta_{il} + \alpha) d\xi_{il}}_{= 1}$$
$$= \prod_{l=1}^{L} \frac{\Gamma(z_{il} + \alpha)}{\Gamma(\alpha) \prod_{j,k} z_{ijkl}!} \left(\frac{\alpha}{\eta_{il} + \alpha}\right)^{\alpha} \prod_{j,k} \left(\frac{\eta_{ijkl}}{\eta_{il} + \alpha}\right)^{z_{ijkl}},$$

which is the probability distribution function for the product of L independent $\operatorname{NegMult}(\alpha, \pi_{i11l}, \dots, \pi_{iJ2l})$ random variables, where $\pi_{ijkl} = \eta_{ijkl}/(\eta_{il} + \alpha)$. A similar approach can be used to show that any subset of $p(z_{i11}, \dots, z_{iJ2})$ is also product negative multinomial. In particular, we can derive equation (11) in the manuscript by noting that $p(z_{i11}, z_{i21}, \dots, z_{iJ1})$ is the product of L independent $\operatorname{NegMult}(\alpha, \pi_{ij1l}, \dots, \pi_{iJ1l})$ random variables, and hence

$$\psi_{i} = 1 - \prod_{l=1}^{L} \Pr(z_{i11l} = 0, \dots, z_{iJ1l} = 0) = 1 - \prod_{l=1}^{L} \left(\frac{\alpha}{\alpha + \sum_{j=1}^{J} \eta_{ij1l}} \right)^{\alpha}$$

$$= 1 - \prod_{l=1}^{L} \left[\frac{\alpha}{\alpha + \sum_{j=1}^{J} \lambda_{j1l} \exp(\mathbf{x}'_{ij} \boldsymbol{\beta}_{j1})} \right]^{\alpha},$$

as in equation (11). Setting α and J to 1 yields equation (6) as a special case. Using the above integration, we can also show that the univariate marginal distribution of Z_{ijkl} is $\operatorname{NegBin}[\alpha, \eta_{ijkl}/(\alpha + \eta_{ijkl})]$ with mean $\operatorname{E}(Z_{ijkl}) = \eta_{ijkl} = \lambda_{jkl} \exp(\mathbf{x}'_{ij}\boldsymbol{\beta}_{jk})$. Thus, $\operatorname{E}(Z_{ij2}) = \sum_{l=1}^{L} \operatorname{E}(Z_{ij2l}) = \sum_{l=1}^{L} \eta_{ij2l} = \left(\sum_{l=1}^{L} \lambda_{j2l}\right) \exp(\mathbf{x}'_{ij}\boldsymbol{\beta}_{j2})$ as in expression (12). Setting J=1 we obtain expression (5).

Web Appendix C: MCMC Algorithm

- 1. Data Augmentation Step 1. For all (i, j), we first introduce the latent Poisson random variables, Z_{ij1} and Z_{ij2} . The update for Z_{ij1} , the latent Poisson for the binary component of the LZIP, depends on the observed response y_{ij} and the current value of Z_{ij2} , the latent Poisson for the count component. In particular, the following sampling rules hold:
 - (a) If $y_{ij} > 0$, then we know subject i is "at-risk" for outcome j and hence $Z_{ij1} > 0$. Therefore, update Z_{ij1} from $\text{TPoi}(\mu_{ij1})$, where $\text{TPoi}(\mu)$ denotes a Poisson distribution with mean μ truncated at 0, and μ_{ij1} is defined in equation (9) of the manuscript.
 - (b) Next, consider the case where $y_{ij} = 0$. Note first that $y_{ij} = 0$ i.f.f. at least one (or both) of Z_{ij1} or Z_{ij2} equals zero. In the case where $y_{ij} = Z_{ij2} = 0$, then any non-negative integer value for Z_{ij1} is consistent with $y_{ij} = 0$. Therefore, update Z_{ij1} from Poi (μ_{ij1}) ;
 - (c) Otherwise, if $y_{ij} = 0$ and $Z_{ij2} > 0$, set $Z_{ij1} = 0$ to ensure $y_{ij} = 0$.
- 2. For all (i, j), the update for Z_{ij2} depends on the current value of Z_{ij1} :
 - (a) Consider the case where $Z_{ij1} = 0$. By the contrapositive of 1(a) above, $Z_{ij1} = 0 \Rightarrow y_{ij} = 0$ (i.e., subject i is not at risk for outcome j and hence a zero must be observed). Because $Z_{ij1} = 0$, any count value for Z_{ij2} is consistent with $y_{ij} = 0$. Therefore, draw Z_{ij2} from a Poi (μ_{ij2}) distribution, where μ_{ij2} is defined in equation (9);
 - (b) If $Z_{ij1} > 0$, then subject i is at risk for outcome j. In this case, set $Z_{ij2} = y_{ij}$.
- 3. Data Augmentation Step 2. Assuming L latent factors, let

$$Z_{ijk} = \sum_{l=1}^{L} Z_{ijkl}$$
, where $Z_{ijkl} \stackrel{ind}{\sim} \operatorname{Poi}(\mu_{ijkl})$

and μ_{ijkl} is defined in equation (13). Next, for all i = 1, ..., n, j = 1, ..., J, and k = 1, 2, the joint full conditional for the L random variables $(Z_{ijk1}, ..., Z_{ijkL})$ given Z_{ijk} is

$$\Pr(Z_{ijk1} = z_{ij1}, \dots, Z_{ijkL} = z_{ijkL} | Z_{ijk} = z_{ijk}, \text{rest}) = \frac{\prod_{l=1}^{L} \left(\mu_{ijkl}^{z_{ijkl}} e^{-\mu_{ijkl}} / z_{ijkl}! \right)}{\mu_{ijk}^{z_{ijk}} e^{-\mu_{ijk}} / z_{ijk}!}$$

$$= \frac{z_{ijk}! \prod_{l=1}^{L} \mu_{ijkl}^{z_{ijkl}}}{\left(\prod_{l=1}^{L} z_{ijkl}! \right) \mu_{ijk}^{z_{ijk}}}$$

$$= \frac{z_{ijk}!}{\prod_{l=1}^{L} z_{ijkl}!} \prod_{l=1}^{L} \left(\frac{\mu_{ijkl}}{\mu_{ijk}} \right)^{z_{ijkl}}$$

$$\sim \text{Multinom}(z_{ijk}, \pi_{ijk1}, \dots, \pi_{ijkL}),$$

where $\pi_{ijkl} = \mu_{ijkl}/\mu_{ijk}$, μ_{ijkl} is defined in equation (13), and $\mu_{ijk} = \sum_{l=1}^{L} \mu_{ijkl}$ is defined in equation (9). In the case of a single latent factor, $Z_{ijk1} = Z_{ijk}$ and this step is omitted.

4. Update ξ_{il} . Conditional on the $2J \times 1$ vector $\mathbf{Z}_{il} = (Z_{i11l}, \dots, Z_{iJ2l})'$, ξ_{il} $(i = 1, \dots, n; l = 1, \dots, L)$ has a gamma full conditional:

$$\xi_{il}|\boldsymbol{Z}_{il} = \boldsymbol{z}_{il}, \text{ rest } \propto \xi_{il}^{\sum_{j,k} z_{ijkl}} \exp\left(-\xi_{il} \sum_{j,k} \lambda_{jkl} e^{\boldsymbol{x}'_{ij}\boldsymbol{\beta}_{jk}}\right) \cdot \xi_{il}^{\alpha-1} \exp(-\alpha \xi_{il})$$

$$\sim \text{ Ga}\left(\alpha + \sum_{j,k} z_{ijkl}, \alpha + \eta_{il}\right),$$

where η_{il} is defined in equation (10), and the prior shape and rate parameter, α , is fixed at 1 to allow for unrestricted factor loadings.

5. Update λ_{jkl} . Assume a Ga(a,b) for λ_{jkl} . Conditional on the $n \times 1$ vector $\mathbf{Z}_{jkl} = (Z_{1jkl}, \dots, Z_{njkl})'$, update λ_{jkl} $(j = 1, \dots, J; k = 1, 2; l = 1, \dots, L)$ from its gamma full conditional:

$$\lambda_{jkl}|\mathbf{Z}_{jkl} = \mathbf{z}_{jkl}, \text{ rest} \quad \propto \quad \lambda_{jkl}^{\sum_{i=1}^{n} z_{ijkl}} \exp\left(-\lambda_{jkl} \sum_{i=1}^{n} \xi_{il} e^{\mathbf{x}'_{ij} \boldsymbol{\beta}_{jk}}\right) \cdot \lambda_{jkl}^{a-1} \exp(-b\lambda_{jkl})$$

$$\sim \quad \operatorname{Ga}\left(a + \sum_{i=1}^{n} z_{ijkl}, \ b + \sum_{i=1}^{n} \xi_{il} \exp(\mathbf{x}'_{ij} \boldsymbol{\beta}_{jk})\right).$$

6. Update β_{jkh} . Without loss of generality, assume identical covariates in the binary and count components of the LZIP; that is $\mathbf{x}_{ij1} = \mathbf{x}_{ij2} = \mathbf{x}_{ij}$. The update for the (jkh)-th regression parameter, β_{jkh} $(j = 1, \ldots, J; k = 1, 2; h = 1, \ldots, p)$, depends on whether the corresponding covariate, x_{ijh} , is discrete or continuous. For categorical predictors, a Ga(c,d) prior on $\exp(\beta_{jkh})$ is conditionally conjugate, allowing for straightforward Gibbs sampling. For example, if x_{ijh} is dichotomous taking values 0 and 1, the full conditional for $\exp(\beta_{jkh})$ is

$$\exp(\beta_{jkh})|\mathbf{Z}_{jk} = \mathbf{z}_{jk}, \text{ rest } \propto \prod_{i:x_{ijh}=1}^{L} \left\{ \prod_{l=1}^{L} \exp(\beta_{jkh})^{z_{ijkl}} \exp\left[-\left(\lambda_{jkl}\xi_{il}e^{\tilde{\mathbf{x}}'_{ij}\tilde{\boldsymbol{\beta}}_{jk}}\right)e^{\beta_{jkh}}\right] \right\} \times \\ \exp(\beta_{jkh})^{c-1} \exp\left(-de^{\beta_{jkh}}\right) \\ \sim \operatorname{Ga}\left(c + \sum_{i:x_{ijh}=1}^{L} \sum_{l=1}^{L} z_{ijkl}, d + \sum_{i:x_{ijh}=1}^{L} \sum_{l=1}^{L} \lambda_{jkl}\xi_{il} \exp(\tilde{\mathbf{x}}'_{ij}\tilde{\boldsymbol{\beta}}_{jk})\right) \\ \sim \operatorname{Ga}\left(c + \sum_{i:x_{ijh}=1}^{L} z_{ijk}, d + \sum_{i:x_{ijh}=1}^{L} \lambda'_{jk}\xi_{i} \exp(\tilde{\mathbf{x}}'_{ij}\tilde{\boldsymbol{\beta}}_{jk})\right),$$

where $\mathbf{Z}_{jk} = (Z_{1jk}, \dots, Z_{njk})'$, $\tilde{\mathbf{x}}_{ij}$ is \mathbf{x}_{ij} with x_{ijh} removed, and $\tilde{\boldsymbol{\beta}}_{jk}$ is $\boldsymbol{\beta}_{jk}$ with β_{jkh} removed. When x_{ijh} has more than two categories, we introduce indicators for each category level; in this case, the update for the category-specific β 's will have the same form as above. When x_{ijh} is ordinal or continuous, we update β_{jkh} using a random-walk Metropolis-Hastings step.

Web Appendix D: Web Tables

Web Table 1: Posterior means and 95% credible intervals (CrIs) for simulation study 3: bivariate LZIP model with a two latent factors. Results are for simulation with 40% zeros and Ga(1,1) priors for both the factor loadings and the exponentiated regression coefficients for the binary predictor, x_{ij1} .

		Model		Simulated	
n	Outcome	Component	Parameter	Value	Posterior Mean (95% CrI)
500	Y_1	Binary	λ_{111}	2.50	1.88 (0.94, 3.31)
			λ_{112}	0.00	0.18(0.01, 0.49)
			$eta_{1,11}^{\dagger}$	1.00	0.64 (0.08, 1.17)
			β_{112}^{\ddagger}	0.50	0.39(0.21, 0.58)
		Count	λ_{121}	0.00	0.11 (0.00, 0.31)
			λ_{122}	2.50	2.49 (1.97, 3.13)
			β_{121}	0.25	0.16(-0.10, 0.42)
			β_{122}	-0.25	-0.18(-0.24, -0.12)
	Y_2	Binary	λ_{211}	2.50	1.12(0.50, 2.11)
			λ_{212}	0.00	0.37 (0.08, 0.77)
			β_{211}	0.75	0.47(0.02, 0.92)
			β_{212}	0.25	0.00(-0.13, 0.14)
		Count	λ_{221}	0.00	0.13(0.01, 0.33)
			λ_{222}	2.50	2.60(2.05, 3.27)
			β_{221}	0.50	0.38 (0.12, 0.63)
			β_{222}	-0.50	-0.45(-0.51, -0.38)
5000	Y_1	Binary	λ_{111}	2.50	2.31 (1.82, 2.88)
			λ_{112}	0.00	0.00 (0.00, 0.06)
			β_{111}	1.00	1.04 (0.82, 1.24)
			β_{112}	0.50	0.54 (0.47, 0.62)
		Count	λ_{121}	0.00	0.00(0.00, 0.11)
			λ_{122}	2.50	2.62(2.40, 2.84)
			β_{121}	0.25	0.17 (0.08, 0.26)
			β_{122}	-0.25	-0.26 (-0.28, -0.24)
	Y_2	Binary	λ_{211}	2.50	2.22 (1.72, 2.59)
			λ_{212}	0.00	0.04 (0.00, 0.10)
			β_{211}	0.75	0.70 (0.50, 0.89)
			β_{212}	0.25	0.25 (0.20, 0.31)
		Count	λ_{221}	0.00	0.04 (0.00, 0.09)
			λ_{222}	2.50	2.51(2.30, 2.73)
			β_{221}	0.50	0.48 (0.39, 0.57)
			β_{222}	-0.50	-0.51 (-0.53, -0.49)

^{*} Estimates rounded to two decimal places.

 $^{^{\}dagger}$ Regression coefficients for binary predictor, $x_{ij1},$ updated using conjugate Gibbs steps.

[‡] Regression coefficients for continuous predictor, x_{ij2} , updated using random-walk Metropolis-Hastings steps.

Web Table 2: Posterior means and 95% credible intervals (CrIs) for simulation study 3: bivariate LZIP model with a two latent factors. Results are for simulation with 70% zeros and Ga(0.001, 0.001) priors for both the factor loadings and the exponentiated regression coefficients for the binary predictor, x_{ij1} .

		Model		Simulated	
n	Outcome	Component	Parameter	Value	Posterior Mean (95% CrI)
500	Y_1	Binary	λ_{111}	1.00	0.68 (0.44, 1.03)
			λ_{112}	0.00	$0.00 (0.00, 0.00)^*$
			eta_{111}^{\dagger}	0.75	1.15(0.49, 1.89)
			eta_{112}^{\ddagger}	-0.25	-0.33(-0.53, -0.12)
		Count	λ_{121}	0.00	0.00(0.00, 0.00)
			λ_{122}	1.50	1.13 (0.90, 1.42)
			β_{121}	-0.50	-0.65(-0.99, -0.32)
			β_{122}	0.75	0.71 (0.61, 0.82)
	Y_2	Binary	λ_{211}	1.50	2.95 (1.60, 5.49)
			λ_{212}	0.00	0.00 (0.00, 0.00)
			β_{211}	-0.25	-0.60(-1.38, 0.16)
			β_{212}	0.75	0.82 (0.59, 1.03)
		Count	λ_{221}	0.00	0.00 (0.00, 0.00)
			λ_{222}	1.00	0.82 (0.62, 1.06)
			β_{221}	0.75	0.71 (0.24, 1.08)
			β_{222}	-0.50	-0.55(-0.65, -0.43)
5000	Y_1	Binary	λ_{111}	1.00	1.21 (1.00, 1.44)
			λ_{112}	0.00	0.00 (0.00, 0.00)
			$eta_{1,11}^{\dagger}$	0.75	0.76 (0.56, 0.96)
			eta_{112}^{\ddagger}	-0.25	-0.32 (-0.49, -0.24)
		Count	λ_{121}	0.00	0.00 (0.00, 0.00)
			λ_{122}	1.50	1.34 (1.22, 1.48)
			β_{121}	-0.50	-0.45(-0.57, -0.35)
			β_{122}	0.75	0.78 (0.75, 0.87)
	Y_2	Binary	λ_{211}	1.50	1.59(1.31, 1.93)
			λ_{212}	0.00	0.00 (0.00, 0.00)
			β_{211}	-0.25	-0.21 (-0.46, -0.01)
			β_{212}	0.75	0.80 (0.73, 0.85)
		Count	λ_{221}	0.00	0.00 (0.00, 0.00)
			λ_{222}	1.00	0.96 (0.87, 1.06)
			β_{221}	0.75	0.77 (0.65, 0.90)
			β_{222}	-0.50	-0.50 (-0.53, -0.46)

^{*} Estimates rounded to two decimal places.

 $^{^{\}dagger}$ Regression coefficients for binary predictor, $x_{ij1},$ updated using conjugate Gibbs steps.

[‡] Regression coefficients for continuous predictor, x_{ij2} , updated using random-walk Metropolis-Hastings steps.

Web Table 3: Posterior means and 95% credible intervals (CrIs) for simulation study 3: bivariate LZIP model with a two latent factors. Results are for simulation with 70% zeros and Ga(1,1) priors for both the factor loadings and the exponentiated regression coefficients for the binary predictor, x_{ij1} .

		Model		Simulated	
n	Outcome	Component	Parameter	Value	Posterior Mean (95% CrI)
500	Y_1	Binary	λ_{111}	1.00	0.49 (0.16, 0.90)
			λ_{112}	0.00	0.15(0.00, 0.49)
			eta_{111}^{\dagger}	0.75	0.77 (0.24, 1.29)
			eta_{112}^{\ddagger}	-0.25	-0.26(-0.47, -0.06)
		Count	λ_{121}	0.00	0.48 (0.07, 1.20)
			λ_{122}	1.50	0.99(0.05, 1.62)
			β_{121}	-0.50	-0.70(-1.05, -0.37)
			β_{122}	0.75	0.70 (0.56, 0.82)
	Y_2	Binary	λ_{211}	1.50	1.42(0.24, 2.81)
			λ_{212}	0.00	0.41 (0.01, 1.61)
			β_{211}	-0.25	-0.41(-1.04, 0.22)
			β_{212}	0.75	0.76 (0.50, 1.00)
		Count	λ_{221}	0.00	0.00 (0.00, 0.00)*
			λ_{222}	1.00	0.82 (0.62, 1.06)
			β_{221}	0.75	0.71 (0.24, 1.08)
			β_{222}	-0.50	-0.55 (-0.65, -0.43)
5000	Y_1	Binary	λ_{111}	1.00	0.89 (0.70, 1.10)
			λ_{112}	0.00	0.04 (0.00, 0.12)
			eta_{111}^{\dagger}	0.75	0.82 (0.62, 1.02)
			β_{112}^{\ddagger}	-0.25	-0.28 (-0.35, -0.21)
		Count	λ_{121}	0.00	0.02 (0.00, 0.06)
			λ_{122}	1.50	1.44 (1.30, 1.59)
			β_{121}	-0.50	-0.57 (-0.68, -0.46)
			β_{122}	0.75	0.77(0.74, 0.80)
	Y_2	Binary	λ_{211}	1.50	1.44 (1.07, 1.91)
			λ_{212}	0.00	0.05 (0.00, 0.18)
			β_{211}	-0.25	-0.36 (-0.58, -0.15)
		~	β_{212}	0.75	0.73 (0.62, 0.85)
		Count	λ_{221}	0.00	0.02 (0.00, 0.08)
			λ_{222}	1.00	0.96 (0.86, 1.07)
			β_{221}	0.75	0.69 (0.56, 0.81)
			β_{222}	-0.50	-0.53(-0.57, -0.49)

^{*} Estimate rounded to two decimal places.

 $^{^{\}dagger}$ Regression coefficients for binary predictor, $x_{ij1},$ updated using conjugate Gibbs steps.

[‡] Regression coefficients for continuous predictor, x_{ij2} , updated using random-walk Metropolis-Hastings steps.

Web Table 4: WAIC results for simulation studies.

		Fitted Mode	1
True Model	No Factors	One Factor	Two Factors
Simulation Study 1 (No-Factor Model)	1598	*	*
Simulation Study 2 (One-Factor Model)	2293	1632	1673
Simulation Study 3 (Two-Factor Model)	5527	3482	3419

^{*} Fitted model did not converge.

Web Table 5: Posterior means and 95% credible intervals (CrIs) for the one-factor model from the breast cancer genomics study.

	Model		Parameter	
Pathway	Component	Parameter	Name	Posterior Mean (95% CrI)
MAPK	Binary	λ_{11}	Factor Loading	6.46 (4.61, 9.13)
		eta_{111}	Stage 1 vs 2^*	-0.37 (-0.99, 0.47)
		eta_{112}	Stage 2 vs 3^{\dagger}	0.22(-0.40, 1.10)
	Count	λ_{12}	Factor Loading	$4.90 \ (4.47, 5.37)$
		β_{121}	Stage $1 \text{ vs } 2$	-0.11 (-0.30, 0.09)
		β_{122}	Stage 2 vs 3	0.10 (-0.08, 0.27)
CCR Interaction	Binary	λ_{21}	Factor Loading	4.50 (3.56, 5.81)
		β_{211}	Stage $1 \text{ vs } 2$	-0.29 (-0.76, 0.21)
		eta_{212}	Stage $2 \text{ vs } 3$	0.05 (-0.39, 0.50)
	Count	λ_{22}	Factor Loading	$6.56 \ (6.00, 7.18)$
		β_{221}	Stage $1 \text{ vs } 2$	-0.14 (-0.33, 0.05)
		β_{222}	Stage 2 vs 3	0.10 (-0.07, 0.28)
Endocytosis	Binary	λ_{31}	Factor Loading	6.92 (4.96, 9.51)
		β_{311}	Stage $1 \text{ vs } 2$	-0.39 (-0.93, 0.16)
		β_{312}	Stage $2 \text{ vs } 3$	0.03 (-0.59, 0.57)
	Count	λ_{32}	Factor Loading	7.27 (6.66, 57.96)
		β_{321}	Stage $1 \text{ vs } 2$	-0.12 (-0.31, 0.07)
		β_{322}	Stage 2 vs 3	0.12 (-0.04, 0.29)

 $^{^{*}}$ Regression coefficient comparing stages 1 and 2, with stage 2 as reference group.

[†] Preferred model in bold.

[†] Regression coefficient comparing stages 2 and 3, with stage 2 as reference group.

Web Appendix E: Web Figures

Web Figure 1: Trace plots for regression parameters for simulation study 1 with n=5000, 70% zeros, and gamma hyperparameters c=d=0.001. True coefficient values: $\beta_{10}=-0.50$, $\beta_{11}=-0.50$, $\beta_{20}=1$, $\beta_{21}=-1$. Horizontal lines denote posterior means. All parameters initialized at 0.

Web Figure 2: Trace plots for LZIP parameters in simulation study 2 with n = 500, 70% zeros, and Ga(0.001, 0.001) hyperparameters. True parameter values: $\lambda_1 = 0.50$, $\lambda_2 = 1.50$, $\beta_1 = -0.50$, and $\beta_2 = 0.75$. Horizontal lines denote posterior means. λ_1 and λ_2 initialized at 1, and β_1 and β_2 initialized at 0.

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_{111} & \lambda_{112} \\ \lambda_{121} & \lambda_{122} \\ \lambda_{211} & \lambda_{212} \\ \lambda_{221} & \lambda_{222} \end{pmatrix} = \begin{pmatrix} \lambda_{111} & 0 \\ 0 & \lambda_{122} \\ \lambda_{211} & 0 \\ 0 & \lambda_{222} \end{pmatrix}$$

Web Figure 3: Factor loading matrix for simulation study 3: two-factor bivariate LZIP. Here, λ_{jkl} denotes the loading for the j-th outcome, k-th model component (binary versus count), and l-th factor. For this simulation, λ_{112} , λ_{121} , λ_{212} , and λ_{221} were set to the limiting value of 0. This represents no association between the binary and count components of the same outcome (i.e., no "within-outcome" association), but allows for dependence between 1) the binary components of the two outcomes and 2) the count components of the two outcomes (i.e., "between-outcome" association).

Web Figure 4: Trace plots for regression coefficients (β 's) in simulation study 3 with n = 500, 40% zeros, and Ga(0.001, 0.001) hyperparameters. True parameter values are $\beta_{111} = 1.00, \beta_{112} = 0.50, \beta_{121} = 0.25, \beta_{212} = -0.25, \beta_{211} = .75, \beta_{212} = 0.25, \beta_{221} = 0.50, \text{ and } \beta_{222} = -0.50.$

Web Figure 5: Trace plots for the factor loadings (λ 's) in simulation study 3 with n = 500, 40% zeros, and Ga(0.001, 0.001) hyperparameters. True parameter values: 2.5 for λ_{111} , λ_{122} , λ_{211} and λ_{222} ; 0 for remaining λ 's.

Web Figure 6: Trace plots for the regression coefficients (β 's) in for the breast cancer genomics data analysis.

Web Figure 7: Trace plots for the factor loadings $(\lambda$'s) for the breast cancer genomics data analysis.

Web Figure 8: Gene activation results for CCR Interaction pathway. Panel (a): Population-average mean number of genes with CNVs, conditional on pathway activation. Panel (b): Population-average mean number of genes with CNVs among *all* patients (with and without pathway activation). Circles denote posterior mean estimates; solid lines are 95% credible intervals; and δ_{12} and δ_{23} are the differences between stages 1 and 2 and stages 2 and 3, respectively.

(a)

Web Figure 9: Gene activation results for Endocytosis pathway. Panel (a): Population-average mean number of genes with CNVs, conditional on pathway activation. Panel (b): Population-average mean number of genes with CNVs among *all* patients (with and without pathway activation). Circles denote posterior mean estimates; solid lines are 95% credible intervals; and δ_{12} and δ_{23} are the differences between stages 1 and 2 and stages 2 and 3, respectively.

Web Figure 10: Posterior predictive checks based on the mean number of genes with CNVs among *all* patients (with and without pathway activation). Circles denote posterior predictive mean estimates; solid lines are 95% posterior predictive intervals; and asterisks denote observed sample values.

Web Figure 11: Posterior predictive checks based on the sample proportion of zeros. Circles denote posterior predictive mean estimates; solid lines are 95% posterior predictive intervals; and asterisks denote observed sample values.

Web Figure 12: Posterior predictive checks based on the sample skewness. Circles denote posterior predictive mean estimates; solid lines are 95% posterior predictive intervals; and asterisks denote observed sample values.