Section 4.1—Exponential Functions

Exponential Functions—any function whose equation contains a variable in the exponent

Exponential Function—defined_by

$$f(x) = b^x$$
 or $y = b^x$

where b is a positive constant other than 1 (b>0 and $b\ne 1)$ and x is any real number.

Examples:

	<u> D'Aumpres</u> .				
	Exponential	Functions	NOT Exponential Functions		
	$f(x) = 2^x$	base of 2	$F(x) = x^2$	variable in base, not in	
		1 640		exponent	
	$g(x) = 10^x$	base of 10	$G(x) = 1^x$	base must be positive	
				constant other than 1	
	$h(x) = 3^{x+1}$	base of 3	$H(x) = \left(-1\right)^x$	base must be positive	
	$j(x) = \left(\frac{1}{2}\right)^{x-1}$	base of $\frac{1}{2}$	$J(x) = x^x$	variable in both base and	
				exponent	

TI-30XIIS TI-36XPro

Example—The exponential function $f(x) = 42.2(1.56)^x$ models the average amount spent, f(x), in dollars, at a shopping mall after x hours. Find the average amount spent to the nearest dollar, after three hours at a shopping mall.

$$f(3) = 42.2 (1.56)^3$$

$$= 160.208$$

$$[8|60]$$

Example—Graph
$$f(x)=3^{x}$$
.
 $x | f(x)=3 | (x,y)$

$$-2 | f(-2)=3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}=.11 | (-2,.11)$$

$$-1 | f(-1)=3^{-1}=\frac{1}{3}=.33 | (-1,.33)$$

$$0 | f(6)=3^{\circ}=1 | (0,11)$$

$$1 | f(1)=3^{1}=3 | (1,3)$$

$$2 | f(2)=3^{2}=9 | (2,9)$$

Characteristics of Exponential Functions of the Form $f(x) = b^x$

- 1. The domain of $f(x) = b^x$ consists of all real numbers: $(-\infty, \infty)$. The range of $f(x) = b^x$ consists of all positive real numbers: $(0, \infty)$.
- 2. The graphs of all exponential functions of the form $f(x) = b^x$ pass through the point (0, 1) because $f(0) = b^0 = 1$, $(b \ne 0)$. The y-intercept is 1. There is no x intercept.
- 3. If b > 1, $f(x) = b^x$ has a graph that goes up to the right and is an increasing function. The greater the value of b, the steeper the increase.
- 4. If 0 < b < 1, $f(x) = b^x$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.
- 5. $f(x) = b^x$ is one-to-one and has an inverse that is a function.
- 6. The graph of $f(x) = b^x$ approaches, but does not touch, the x-axis. The x-axis, or y = 0, is a horizontal asymptote.

An irrational number, symbolized by the letter e, appears as the base in many applied exponential functions.

$$e \approx 2.718281827$$

Example—The exponential function $f(x)=1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes x years after 1978. If trends continue, project the gray wolf's population in the recovery area in 2012. $\times = 34$

$$f(34) = 1066e^{0.042(34)} \rightarrow 1066 * e^{0.042 * 34}$$

$$f(34) = 1066e^{1.428}$$

$$f(34) = 4445.59$$

$$(4446)$$

<u>Compound Interest</u>—interest computed on an original investment as well as on any accumulated interest

Principal—the amount invested

<u>Compounded Semiannually</u>—when compound interest is paid twice a year; the compounding period is 6 months

<u>Compounded Quarterly</u>—when compound interest is paid four times a year; the compounding period is three months

<u>Continuous Compounding</u>—where the number of compounding periods increases infinitely

Formula for Compound Interest—After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas:

- 1. for n compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$
- 2. for continuous compounding: $A = Pe^{rt}$

Example—A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to: P=10,000

r= .08

t = 5

a. quarterly compounding

$$A = P(1 + \frac{r}{n})^{nt}$$

$$A = 10,000(1 + \frac{.68}{4})^{(4(5))}$$

$$A = (0,000 (1+.02)^{20})$$

$$A = (0,000 (1.02)^{20})$$

$$A = (6,000 (1.486))$$

b. continuous compounding

A =
$$Pe^{rt}$$

A = $10,000e^{(1.08)(5)}$

A = $10,000e^{-4}$

A = $10,000e^{-4}$

A = $10,000e^{-4}$