LEO ZHOU

1200 E California Blvd, MC 305-16, Pasadena, CA 91125

≥ leozhou92@gmail.com

https://scholar.harvard.edu/leozhou

CURRENT APPOINTMENT

California Institute of Technology

Pasadena, CA

DuBridge Postdoctoral Scholar Research Associate in Theoretical Physics

2021-Present

EDUCATION

Harvard University

Cambridge, MA

Ph.D. in Physics 2014–21

Thesis: Complexity, Algorithms, and Applications of Programmable Quantum Many-Body Systems

Advisor: Mikhail D. Lukin

Massachusetts Institute of Technology

Cambridge, MA

B.Sc. in Physics and Mathematics; Minor in Economics; GPA: 5.0/5.0

2010-14

Thesis: Error-Suppression by Energy-Gap Protection for Quantum Computation in Open Systems

Advisor: Edward Farhi

RESEARCH EXPERIENCE

California Institute of Technology – Walter Burke Institute for Theoretical Physics

Pasadena, CA

DuBridge Postdoctoral Scholar with Prof. John Preskill

2021-Present

- Lead independent research in quantum algorithms for inference and optimization problems
- Investigated the complexity of finding local minima in quantum systems and the computational power of cooling
- Managed graduate and undergraduate students in multiple research projects

Harvard University – Department of Physics

Cambridge, MA

Graduate Research Fellow with Prof. Mikhail D. Lukin

2014-21

- Analyzed performance and mechanism of QAOA, and invented powerful heuristics for optimizing its parameters
- Designed realistic schemes of quantum information processing applications in cold atoms with error analysis
- Developed specialized software libraries for simulating many-body physics using matrix product state ansatz

Google AI Quantum

Venice, CA

Research Intern with Prof. Edward Farhi

Summer 2019

- Studied noise-resilience and error-mitigation of the Quantum Approximate Optimization Algorithm (QAOA)
- Calculated the typical-case performance of the QAOA applied to spin glass problems in the thermodynamic limit
- Developed software tools in Google's code base for running quantum algorithms on their quantum processors

Hebrew University – Department of Computer Science and Engineering

Jerusalem, Israel

Visiting Researcher with Prof. Dorit Aharonov

Summers 2014 & 2015

- Initiated the study of resource requirements of analog quantum simulation of complex systems by simpler ones
- Proved separation of classical vs. quantum systems on the possibility of reducing the degree of connectivity

Massachusetts Institute of Technology

Cambridge, MA

Undergraduate Researcher

2010-14

- Proved that the energy penalty method can suppress errors in Hamiltonian-based computations with Prof. Farhi
- Investigated hydrodynamic pilot-wave analogues of quantum systems with Prof. John W.M. Bush
- Built graphene and transition-metal dichalcogenide-based nanoelectronics with Prof. Pablo Jarillo-Herrero
- Analyzed high energy heavy ion collisions from RHIC and LHC with Dr. George S.F. Stephans

AWARDS AND HONORS

•	Outstanding Paper Award at the 17th Conference on Theory of Quantum Computation,	2022
	Communication and Cryptography (TQC'22)	
•	Grant Winner (\$5k) for Excellent Contributed Talk at QC40: Physics of Computation Conference	2021
•	Burke Prize Fellowship at the California Institute of Technology	2021
•	Martin & Beate Block Award (for best poster presented by co-author ST. Wang) at the Aspen	2018
	Conference on Advances in Quantum Algorithms and Computation	
•	National Science Foundation (NSF) Graduate Research Fellowship	2014–17
•	Phi Beta Kappa (Academic Honor Society), MIT Xi Chapter	2014
•	MIT Junior Lab Edward C. Pickering Award for Outstanding Original Project, Honorable Mention	2013

PUBLICATIONS

- C.-F. Chen, H.-Y. Huang, J. Preskill, L. Zhou†. Local minima in quantum systems. arXiv:2309.16596.
- J. Basso, D. Gamarnik, S. Mei, **L. Zhou**†. *Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models*. In Proceedings of the 63rd Symposium on Foundations of Computer Science, FOCS'22 (2022). arXiv:2204.10306.
- S. Ebadi, ..., L. Zhou, ..., M.D. Lukin. Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays. Science 376, 1209 (2022). arXiv:2202.09372.
- J. Basso, E. Farhi, K. Marwaha, B. Villalonga, **L. Zhou**†. *The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model.* In Proceedings of the 17th Conference on the Theory of Quantum Computation, Communication and Cryptography, <u>TQC '22 (2022)</u>, Outstanding Paper Award. <u>arXiv:2110.14206</u>.
- L. Zhou, D. Aharonov. Strongly Universal Hamiltonian Simulators. QIP'21 (2021). arXiv:2102.02991.
- M.P. Harrigan, ..., L. Zhou, ..., R. Babbush. *Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor*. Nature Physics 17, 332 (2021). arXiv:2004.04197.
- S.H. Cantu, A.V. Venkatramani, W. Xu, **L. Zhou**, B. Jelenković, M.D. Lukin, V. Vuletić. *Repulsive photons in a quantum nonlinear medium*. Nature Physics 16, 921 (2020). arXiv:1911.02586.
- Z. Eldredge, L. Zhou, A. Bapat, J.R. Garrison, A. Deshpande, F.T. Chong, A.V. Gorshkov. Entanglement bounds on the performance of quantum computing architectures. Phys. Rev. Research 2, 033316 (2020). arXiv:1908.04802.
- E. Farhi, J. Goldstone, S. Gutmann, **L. Zhou**†. *The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size*. Quantum 6, 759 (2022). Also in QIP'21. arXiv:1910.08187.
- L. Zhou*, S.-T. Wang*, S. Choi, H. Pichler, and M.D. Lukin. *Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices*. Phys. Rev. X 10, 021067 (2020). arXiv:1812.01041.
- H. Pichler*, S.-T. Wang*, **L. Zhou**, S. Choi, and M.D. Lukin. *Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays*. Preprint on arXiv:1808.10816, (2018). Submitted to Phys. Rev. Lett.
- H. Pichler*, S.-T. Wang*, **L. Zhou***, S. Choi, and M.D. Lukin. *Computational complexity of the Rydberg blockade in two dimensions*. Preprint on <u>arXiv:1809.04954</u>, (2018). Submitted to Phys. Rev. A.

Leo Zhou Page 2 / 4

- D. Aharonov and **L. Zhou**†. *Hamiltonian Sparsification and Gap-Simulation*.In Proceedings of the 2019 ACM Conference on Innovations in Theoretical Computer Science, ITCS'19 (2019). arXiv:1804.11084.
- **L. Zhou***, S. Choi*, and M.D. Lukin. *Symmetry-protected dissipative preparation of matrix product states*. <u>Phys. Rev. A (2021)</u>. <u>arXiv:1706.01995</u>.
- A.D. Bookatz, E. Farhi, and **L. Zhou**†. *Error suppression in Hamiltonian based quantum computation using energy penalties*. Phys. Rev. A 92, 022317 (2015). arXiv:1407.1485.
- **L. Zhou** and G.S.F. Stephans. *Energy and centrality dependence of particle multiplicity in heavy ion collisions* from $\sqrt{s_{NN}} = 20$ to 2760 GeV. Phys. Rev. C 90, 0149902 (2014). arXiv:1312.3656.

* indicates that authors contributed equally † indicates alphabetical ordering of authors

PRESENTATIONS

RESENTATIONS	
Quantum Advantages in Minimizing Energy of Classical and Quantum Systems	
 Invited talk at the IPAM "Mathematical and Computational Challenges in Quantum 	
Computing" program at the University of California Los Angeles (expected)	11.2
Exploring Quantum Advantages in Optimization Problems	
 Invited talk at the NISQ Algorithms and Hardware (NISQAH 2023) conference [video] 	06.2
Quantum computing with Rydberg atom arrays	
 Tutorial talk at the 2023 APS March Meeting 	03.2
Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin	
glass models	
 Accepted talk, 18th Conference on Theory of Quantum Computation, Communication and 	07.2
Cryptography (TQC) [video]	
 Accepted talk, 63rd Annual Symposium on Foundations of Computer Science (FOCS) 	11.2
Advantages and Limitations of the Quantum Approximate Optimization Algorithm	
 Invited talk at the 2023 Information: Theory and Applications (ITA) workshop 	02.2
 Invited talks at the MIT Center for Theoretical Physics and QuEra Computing, Inc. 	06.2
The QAOA at High Depth for MaxCut on Large-Girth Regular Graphs and the SK Model	
 Outstanding Paper Award talk at the 17th Conference on Theory of Quantum Computation, 	07.2
Communication and Cryptography (TQC) [video]	
Quantum Approximate Optimization: Challenges and Opportunities	
 Invited talk at the 2021 INFORMS Annual Meeting 	10.2
Strongly Universal Hamiltonian Simulators	
 Invited talk at the Simons Institute Quantum Wave in Computing Reunion Workshop 	07.2
 Accepted talk at QC40: Physics of Computation Conference 40th Anniversary 	05.2
 Invited talk at the QCDA (Quantum Code Design and Architecture) seminar 	04.2
 Accepted talk, 24th Annual Conference on Quantum Information Processing (QIP) [video] 	02.2
The QAOA and the Sherrington-Kirkpatrick Model at Infinite Size	
 Accepted talk, 24th Annual Conference on Quantum Information Processing (QIP) [video] 	02.2
Quantum Simulation and Optimization in Near-Term Quantum Computers	
 Invited talk at the Stanford Q-FARM Special Seminar 	12.2
 Invited talk at the MIT Center for Theoretical Physics 	12.2
 Invited talk at the QM seminar, UC Berkeley [video] 	12.2
 Invited talk at the Institute for Quantum Information (IQI) Seminar, Caltech 	12.2

LEO ZHOU PAGE 3 / 4

 Ha 	miltonian Sparsification and Gap-Simulation	
	 Accepted talk, 22nd Annual Conference on Quantum Information Processing (QIP) [video] 	01.2019
	o Accepted talk, 10th Innovations in Theoretical Computer Science conference (ITCS)	01.2019
 Qu 	nantum Approximate Optimization: Performance and Applications with MaxCut and Maximum	
Inc	lependent Set Problems	
	 Talk at the 50th Meeting of APS Division of Atomic, Molecular & Optical Physics 	05.2019
	 Poster at the Quantum Science Gordon Research Conference 	08.2018
	o Poster at the Aspen Conference on Advances in Quantum Algorithms and Computation	03.2018
• Syn	nmetry-protected dissipative preparation of matrix product state	
	 Invited talk at the Mathematical Picture Language Project Seminar, Harvard University 	11.2019
	 Poster at the 48th Meeting of APS Division of Atomic, Molecular & Optical Physics 	06.2017
	o Talk at the Quantum Science: Implementation workshop in Benasque, Spain	07.2016
• <i>Ro</i>	bust quantum information processing with atomic cat states	
	 Poster at the Atomic Physics Gordon Research Conference 	06.2015

ADDITIONAL EXPERIENCES

Teaching

•	Guest lecturer for the "Rydberg Computers" tutorial at the 2023 APS March Meeting	2023
•	Supporting Teaching Fellow for Physics of Quantum Information (Physics 271) at Harvard University	2020
•	Teaching Fellow for Electrodynamics (Physics 153) at Harvard University	2018
•	Teacher & Mentor at MIT China Development Initiative's Service Leadership Program	2013
•	Teacher at Schenk-von-Limpurg-Gymnasium in Gaildorf, Germany through MISTI Global Teaching Lab	2012

Service

•	Program committee member for TQC'23 (18th conference on Theory of Quantum Computation)	2023
•	Referee for Physical Review journals	2022-23
•	Reviewer for leading quantum computer science conferences (including: QIP, TQC, STOC, SODA)	2019–23
•	Referee for Quantum (journal)	2019–22
•	Referee for ACM Transactions on Quantum Computing	2021
•	MIT Society of Physics Students, Executive Council	2011-14

Mentorship

Graduate Students:

• Chi-Fang (Anthony) Chen, Hsin-Yuan (Robert) Huang, William (Robbie) King, Joao Basso, Katherine van Kirk, Beatrice Nash, Madelyn Cain

Undergraduate Students:

• Ishaan Kannan, Amir Shanehsazzadeh, Dylan Li, Abhishek Anand

Software

• MATLAB, Python, Julia, Mathematica, Java, C++, GPGPU computing

LEO ZHOU PAGE 4 / 4