Projeto e Análise de Algoritmos 2024.2

Complexidade de Algoritmos Recursivos

Prof. Marcio Costa Santos DCC/UFMG

Resolução de Recorrências

Podemos resolver equações na forma

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Podemos resolver equações na forma

$$T(n) = aT(n-b) + f(n)$$

Não podemos resolver equações na forma

$$T(n) = T(n-a) + T(n-b)$$

$$F(n) = \left\{ egin{array}{ll} F(rac{n}{2}) + 1 & ext{, se } n > 1 \ 1 & ext{, em caso contrário} \end{array}
ight.$$

Complexidade: $\log_2 n$

$$F(n) = F(\frac{n}{2}) + 1$$

$$= (F(\frac{n}{2^2}) + 1) + 1$$

$$= ((F(\frac{n}{2^3}) + 1) + 1) + 1$$

$$= \dots$$

$$F(n) = F(\frac{n}{2^i}) + \sum_{j=1}^{i} 1$$
 $= F(1) + \sum_{j=1}^{\log_2 n - 1} 1$
 $= 1 + \log_2 n$

$$F(n) = \left\{ egin{array}{ll} 2F(rac{n}{2}) + 1 & ext{, se } n > 1 \ 1 & ext{, em caso contrário} \end{array}
ight.$$

Complexidade: $\Theta(n)$

$$F(n) = 2F(\frac{n}{2}) + 1$$

$$= 2(2F(\frac{n}{2^2}) + 1) + 1$$

$$= 2(2(2F(\frac{n}{2^3}) + 1) + 1) + 1$$

$$= ...$$

$$F(n) = 2^{i}F(\frac{n}{2^{i}}) + \sum_{j=0}^{i-1} 2^{j}$$

$$= 2^{\log_{2} n}F(1) + \sum_{j=0}^{\log_{2} n-1} 2^{j}$$

$$= 2^{\log_{2} n} + 2^{\log_{2} n} - 1 = 2 \cdot 2^{\log_{2} n} - 1 = 2n - 1$$

$$F(n) = \left\{ egin{array}{ll} 2F(rac{n}{3}) + 1 & ext{, se } n > 1 \ 1 & ext{, em caso contrário} \end{array}
ight.$$

Complexidade: $\log_{3} \sqrt[2]{n}$

$$F(n) = 2F(\frac{n}{3}) + 1$$

$$= 2(2F(\frac{n}{3^2}) + 1) + 1$$

$$= 2(2(2F(\frac{n}{3^3}) + 1) + 1) + 1$$

$$= ...$$

- 1

Teorema Mestre

Teorema Mestre

Sejam $a \leq 1$ e b > 1 constantes, f(n) uma função e

$$T(n) = aT(\frac{n}{b}) + f(n),$$

Então, para algum $\epsilon > 0$

Se
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

Se
$$f(n) = \Theta(n^{\log_b a})$$
 $T(n) = \Theta(n^{\log_b a} \log n)$

Se
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 e $af(\frac{n}{b}) \le cf(n)$ então $T(n) = \Theta(f(n))$

- $F(n) = F(\frac{n}{2}) + 1$
- a = 1, $b = 2 e \log_2 1$
- ullet $\Theta(n^{\log_b a)} = heta(1) \ ext{e} \ f(n) = 1$
- Caso 2! Logo complexidade é $\Theta(n^{\log_b a} \log n) = \Theta(\log n)$

- $F(n) = F(\frac{n}{2}) + n$
- a = 1, $b = 2 e \log_2 1$
- $\circ \log_2 1 = 0$ então $n^0 = 1$
- $\Theta(n^{\log_b a)} = \Theta(1) \in f(n) = n$
- Caso 3! Logo complexidade é $\Theta(n)$

- $F(n) = 2F(\frac{n}{2}) + 1$
- a = 2, b = 2 e $\log_2 2$
- $\log_2 2 = 1$ então $n^1 = n$
- Caso 1! Logo complexidade é $\Theta(n^{\log_b a}) = \Theta(n)$

- $F(n) = 2F(\frac{n}{2}) + n \log n$
- a = 2, b = 2 e $\log_2 2$
- $\log_2 2 = 1$ então $n^1 = n$
- $\Theta(n^{\log_b a}) = \Theta(n) \in f(n) = n \log n$
- Caso 3?
- n log n não é POLIMONIALMENTE MAIOR QUE n!

- $F(n) = 2F(\sqrt{n}) + n + 1$?
- Substituição de variável $m = \log n$, $\log 2^m = n$

•
$$F(n) = F(2^m) = 2F(\sqrt{2^m}) + 2^m + 1$$

•
$$F(2^m) = 2F(2^{\frac{m}{2}}) + 2^m + 1$$

- Defina $G(m) = F(2^m)$
- $G(m) = 2G(\frac{m}{2}) + 2^m + 1$

- $G(m) = 2G(\frac{m}{2}) + 2^m + 1$
- a = 2, b = 2 e $\log_2 2$
- $\Theta(m^{\log_b a)} = \Theta(m) \ \mathrm{e} \ f(m) = 2^m + 1$
- Caso 3, logo a complexidade é $\Theta(2^m + 1)$
- $F(n) = G(m) = \Theta(2^m + 1) = \Theta(n + 1) = \Theta(n)$