

What is Science? Scale of the Universe Branches of Science Science studies the natural world on scales ranging from the universe to subatomic particles 1015 A way of **thinking** in the 1012 pursuit of understanding nature 106 1000 A way of **investigating** claims about natural 0.001 10-6 phenomenon 10-9 A body of knowledge resulting from scientific

Scientific Inquiry Often Uses Both Inductive And Deductive Reasoning

- Induction: Making generalizations from specific observations:
 - Example: It has been observed that the farther galaxies are from Earth, the faster they are moving away: The universe is expanding
- Deduction: Making predictions (deductions) from pre-existing generalizations:
 - Example: A meteorologist will look at certain weather patterns and, based on prior experience, predict that it will rain later today

One Goal Of Science Is To Describe And Predict Events In Nature Using A Scientific Method

• Collection of data • Analysis of data

inquiry

Scientific Data

- Scientific data should be:
 - Representative and unbiased
 - Reproducible
 - Accurate and precise
- · Scientific data may be:
 - Observational or experimental
- An observation that has been repeatedly confirmed is considered a "Scientific Fact" or "Law"

One Goal Of Science Is To Describe And Predict Events In Nature Using A Scientific Method

• Collection of data
• Analysis of data

• Development of a Hypothesis(es)

• Testing of Hypothesis

Verification, modification, or rejection of hypothesis

• Development of a Theory

Deducti

1

A Hypothesis Is:

- A generalized statement designed to EXPLAIN a set of scientific observations:
 - Not the only explanation
 - Not necessarily the final explanation
 - ...But an idea that we can test with additional data
- The best hypothesis is one that explains ALL of the existing observations

Testing a Hypothesis

- Hypothesis predicts a certain pattern or order to the data
- Collect additional data that would be predicted (deduced) on the basis of the hypothesis:
 - Perform more experiments and/or observations
 - Does the additional data verify the prediction?
- If the data are inconsistent with the prediction, then the hypothesis MUST be modified or abandoned

Example Of Induction And Deduction

- A hydrologist samples water from several wells in an area:
 - Analyzes the chemistry of the water
 - Water is contaminated in the sampled wells
- Induction (generalization):
 - $\,-\,$ Wells in this area are contaminated
- Deduction (hypothesis):
 - Contamination is from a nearby landfill
- How would we test our hypothesis?
 - Collect more water samples closer to landfill
 - Is contaminant consistent with pollutants from landfill?
 - $\ Perhaps \ contaminant \ from \ nearby \ industrial \ plant$

Hypothesis (Continued)

- If the data are consistent with the prediction, they support the hypothesis.
- Repeated verification of a hypothesis may result in the formation of a THEORY

A Theory Is:

- "A well tested and widely accepted view that scientists agree best explain certain observational facts."
- Like the hypotheses from which it grew, it must also be testable and falsifiable!
- Therefore, <u>all</u> theories are considered provisional:
- Nonetheless, theories are the end points of science!

There is no scientific statement stronger or more widely accepted than a theory!

Earth Cycles

- A cycle is the continuous process by which matter and materials are circulated or recycled throughout the Earth
- Cycles are repetitious and recur, sometimes over specified periods of time
- Matter and materials are transferred from one reservoir to another and are sometimes changed in the process
- Examples of cycles:
 - The four seasons
 - $\boldsymbol{-}$ Daily rise and fall of tides

Earth Systems Powered By Heat Engines

- A Heat Engine converts thermal energy into kinetic energy (motion) e.g. your car
- Earth's External Heat Engine is powered by the Sun that drives the earth's fluid envelopes (the atmosphere and hydrosphere)
- Earth's Internal Heat Engine is powered by geothermal heat that drives cycles within the solid Earth:
 - Rock cycle
 - Tectonic cycle that moves lithospheric plates and recycles earth materials

Earth As a System

- Earth is a dynamic planet with interacting parts or spheres
- Earth System Science:
 - -Aims to study Earth as a system composed of numerous interacting parts or subsystems
 - -Employs an interdisciplinary approach to solve global environmental problems

Earth As a System

- What is a system:
 - -Any size group of interacting parts that form a complex whole
 - -A system comprises any number of subsystems or cycles
 - -Matter and energy are stored and retrieved
 - -Energy can be transformed from one type to another (e.g. potential to kinetic energy)

Earth As a System

- Open system:
 - Energy and matter flow into and out of system
- Closed system:
 - System shut off from surrounding environment
 - Self contained in that energy and/or matter does not enter or leave the system

Time Scales Of Interaction ATMOSPHERE: Seconds to Days OCEANS: Hours to Centuries EARTH: Earthquakes and Volcanoes: Seconds to Days Movement of Continents and Opening of Ocean Basins: Millions of Years

Feedback Mechanisms

- · Negative feedback:
 - Maintains the status quo
 - A change in the system triggers one or more mechanisms that reverses that change

Feedback Mechanisms

- · Positive Feedback:
 - Enhances or drives change
 - A change in the system triggers one or more mechanisms that further enhances or drives that change

System Equilibrium

- Most systems maintain structure and character over time
- Steady-state condition:
 - Energy and material in the system remains balanced over time
 - Conditions are constant or recur

System Equilibrium

- · Systems try to resist abrupt change
- However, a system may reach a threshold, beyond which it can no longer maintain its character
- Examples of exceeded thresholds:
 - Abrupt landslide
 - Sudden collapse of ice shelf
 - Extinction of a species

