武汉大学数学与统计学院

2021--2022 学年第一学期线性代数 B 期末考试试卷(A 卷)

符号说明: $\det(A)$ 指方阵 A 的行列式; A^* 指方阵 A 的伴随矩阵; A^T 指矩阵 A 的转置矩阵; R(A) 指矩阵 A 的秩; E 为单位矩阵.

	鱼顶选择颠	(每小题3分共12	分).
一、	半坝边纬越	【母小赵3万共12	フェン:

(1) 设 $oldsymbol{A}$, $oldsymbol{B}$ 为同阶可逆方阵,则 $___$	<u></u>
(A) $oldsymbol{A}oldsymbol{B} = oldsymbol{B}oldsymbol{A}$.	(B) 存在可逆阵 \mathbf{P} , 使有 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$.
(C) 存在可逆阵 P , 使有 $P^{T}AP = B$.	(D) 存在可逆阵 P 和 Q , 使得 $PAQ = B$.

- (2) 设向量组 α_1 , α_2 , α_3 线性无关,则下列向量组中,线性无关的是_____.
 - (A) $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 \alpha_1$
 - (B) $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_1 + 2\alpha_2 + \alpha_3$
 - (C) $\alpha_1 + 2\alpha_2$, $2\alpha_2 + 3\alpha_3$, $3\alpha_3 + \alpha_1$
 - (D) $\alpha_1+\alpha_2+\alpha_3$, $2\alpha_1-3\alpha_2+22\alpha_3$, $3\alpha_1+5\alpha_2-5\alpha_3$
- (3) 设 \mathbf{A} 是 $m \times n$ 矩阵, $\mathbf{A}\mathbf{x} = \mathbf{0}$ 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的导出组,则下列结论 正确的是
 - (A) 当Ax = 0仅有零解时, Ax = b有唯一解;
 - (B) 当Ax = 0有非零解时,Ax = b有无穷多解;
 - (C) 当Ax = b有无穷多解时,Ax = 0仅有零解;
 - (D) 当Ax = b有无穷多解时,Ax = 0有非零解.
- **(4)** n 阶方阵 \mathbf{A} 具有 n 个不同的特征值是 \mathbf{A} 与对角阵相似的

 - (A) 充分必要条件 (B) 充分而非必要条件

 - (C) 必要而非充分条件 (D) 既非充分也非必要条件
- 二、填空题 (每小题 3 分共 12 分):
- (1) 设A, B为n阶矩阵,|A| = 2, |B| = -3,则 $|2A^*B^{-1}| = ____$
- (2) 设 $\alpha_1, \alpha_2, \alpha_3$ 是 4 元非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 3 个解向量,且 $R(\mathbf{A}) = 3$, $lpha_1=(0,1,2,3)^{\mathrm{T}}$, $lpha_2+lpha_3=(2,3,4,5)^{\mathrm{T}}$,c 表任意常数,则线性方程组 ${m A}{m x}={m b}$ 的通解 为 $x = _{---}$.
- (3) 设 3 维向量 $m{\beta}$ 在基 $m{lpha}_1, m{lpha}_2, m{lpha}_3$ 下的坐标为 $(1,2,1)^{\mathrm{T}}$,则 $m{eta}$ 关于基 $m{lpha}_1+m{lpha}_2$, $m{lpha}_1+m{lpha}_2$, $m{lpha}_1+m{lpha}_2$, $\alpha_1 - \alpha_2$ 下的坐标为_____.
- (4) 设 3 阶矩阵 **A** 的特征值为 1, -1, 2, 求 $|A^{-1} + 3A 2E|$ 的值为_____.
- 三、(10分) 计算行列式

$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & a+1 & 3 & \cdots & n \\ 1 & 2 & a+1 & \cdots & n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 2 & 3 & \cdots & a+1 \end{vmatrix},$$

四、(12 分)设有向量组 (A): $\alpha_1=(a,2,10)^{\mathrm{T}}$, $\alpha_2=(-2,1,5)^{\mathrm{T}}$, $\alpha_3=(-1,1,4)^{\mathrm{T}}$, 及向量 $\beta=(1,b,-1)^{\mathrm{T}}$, 问 a,b 为何值时:

- (1) 向量 β 能由向量组(A)线性表示,且表示式唯一;
- (2) 向量 β 不能由向量组(A)线性表示;
- (3) 向量 β 能由向量组(A)线性表示,且表示式不唯一,并求一般表示式.

五、(12 分) 求向量组
$$\boldsymbol{a}_1 = (1,-1,1,3)^{\mathrm{T}}$$
, $\boldsymbol{a}_2 = (-1,3,5,1)^{\mathrm{T}}$, $\boldsymbol{a}_3 = (3,-2,-1,b)^{\mathrm{T}}$, $\boldsymbol{a}_4 = (-2,6,10,a)^{\mathrm{T}}$, $\boldsymbol{a}_5 = (4,-1,6,10)^{\mathrm{T}}$ 的秩和一个极大无关组.

六、(12 分)设(I)和(II)都是3 元非齐次线性方程组,

- (I) 的通解为: $\xi_1+k_1\alpha_1+k_2\alpha_2$, 其中 $\xi_1=(1,0,1)^{\rm T}$, $\alpha_1=(1,1,0)^{\rm T}$, $\alpha_2=(1,2,1)^{\rm T}$, k_1,k_2 为任意常数;
- (II) 的通解为: $\xi_2 + k\beta$, 其中 $\xi_2 = (0,1,2)^{\rm T}$, $\beta = (1,1,2)^{\rm T}$, k 为任意实数. 求 (I) 和 (II) 的公共解.
- **七、**(12 分)试利用正交变换将二次型 $f(x,y,z) = x^2 + 4y^2 + z^2 4xy 8xz 4yz$ 化 为标准形,判定其正定性,并求 f(x,y,z) 在条件 $x^2 + y^2 + z^2 = 1$ 下的最大值.

八、(9 分)对
$$n$$
 阶方阵 \mathbf{A} , 证明: $R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n-1; \\ 0, & R(\mathbf{A}) \le n-2. \end{cases}$

九、(9分)判断下列命题是否正确,并说明理由:

- (1) 若 $\mathbf{A} \sim \mathbf{B}$,则对任意实数t,有 $t\mathbf{E} \mathbf{A} \sim t\mathbf{E} \mathbf{B}$;
- (2)设 $\mathbf{A} \sim \mathbf{B}$,则它们一定相似于同一对角矩阵;
- (3) 设 \boldsymbol{A} 为 4 阶方阵, $R(\boldsymbol{A})=3$, $\lambda=0$ 是 \boldsymbol{A} 的 3 重特征值,则 \boldsymbol{A} 一定不能相似于对角矩阵.