MATH-UA 349: Homework 4

James Pagan, February 2024

Professor Kleiner

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	2
4	Problem 4	2
5	Problem 5	2
6	Problem 6	2
	6.1 Part (a)	2
	6.2 Part (b)	2
7	Problem 7	3
	7.1 Part (a)	3
	7.2 Part (b)	3

- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6

6.1 Part (a)

Proof. Let M be a simple R-module. Since (M, +) is a simple Abelian group, it must be isomorphic to a finite cyclic group of prime order — say C_p . Hence M is generated by one element x.

Lemma 1. M is isomorphic to a quotient of R.

Proof. Define a mapping $f: R \to M$ by the rule f(a) = ax. This is an R-module homomorphism, since $a, b \in R$ implies

$$f(a+b) = (a+b)x = ax + bx = f(a) + f(b)$$

 $f(ab) = abx = a(bx) = af(b).$

 ϕ is surjective, since $f(1+\cdots+1)=x+\cdots+x$, which generates the entirety of M. Thus if we let $\mathfrak{m}=\operatorname{Ker} f$, the First Isomorphism Theorem yields the desired $R/\mathfrak{m}\cong M$.

Because the ring R/\mathfrak{m} has prime order, it contains no proper nonzero ideals. Thus the quotient is a field, so \mathfrak{m} is maximal. This completes the proof.

6.2 Part (b)

Proof. Suppose $\phi: V \to V'$ is a homomorphism of simple R-modules. Then V and V' must be finite, and the submodules $\operatorname{Ker} \phi \subseteq V$ and $\operatorname{Im} \phi \subseteq V'$ must be either 0 or the module itself.

- 1. If $\operatorname{Ker} \phi = V$: then ϕ is the zero homomorphism.
- 2. If $\operatorname{Ker} \phi = 0$: then $V \cong \operatorname{Im} \phi$ by the First Isomorphism Theorem. Thus $\operatorname{Im} \phi$ is a nonzero submodule of V', so $\operatorname{Im} \phi = V'$. We conclude that $V \cong V'$.

This yields the desired result.

7 Problem 7

- 7.1 Part (a)
- 7.2 Part (b)