PPI Präsentation: Kettennäherung

Johannes Hübers, Cedric Brügmann, PPI11

23. Januar 2020

- Problemstellung
- 2 Theorie
- Implementierung
- Experimente
- 6 Literatur

Problemstellung

Anhand von an einer Kette gemessenen Punkten soll die Gestalt der Kette möglichst gut durch

$$y = ae^{dx} + be^{-dx} + c$$
, $a, b, c, d \in \mathbb{R}$,

beschrieben werden.

QR-Zerlegung

Für eine Matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$ gibt es eine orthogonale Matrix $Q \in \mathbb{R}^{m \times m}$ und eine obere Dreiecksmatrix $\hat{R} \in \mathbb{R}^{n \times n}$, sodass für

$$R := \begin{pmatrix} \hat{R} \\ 0 \end{pmatrix}$$
 gilt, dass $Q \cdot R = A$.

Da A überbestimmt ist, gibt es für Ax = b nicht immer eine Lösung in \mathbb{R}^n .

 \Rightarrow man sucht nach $x \in \mathbb{R}^n$ mit $||Ax - b||_2$ minimal $\Leftrightarrow ||Ax - b||_2^2$ minimal $\Rightarrow x$ heißt Kleinste-Quadrate-Lösung

Finden der Kleinste-Quadrate-Lösung

Für die QR-Zerlegung von A ist nun $||Ax - b||_2$ minimal genau dann, wenn x nach folgendem Algorithmus berechnet wird:

- **②** löse durch Rückwärtseinsetzen das Gleichungssystem $\hat{R}x=z_1$

Dann ist

$$||Ax - b||_2 = ||Q\begin{pmatrix} \hat{R} \\ 0 \end{pmatrix} x - b||_2 = ||Q\begin{pmatrix} z_1 \\ 0 \end{pmatrix} - b||_2$$
$$= ||Q\begin{pmatrix} z_1 \\ 0 \end{pmatrix} - Qz||_2 = ||Q\begin{pmatrix} 0 \\ z_2 \end{pmatrix}||_2 = ||z_2||_2$$

Normalengleichung

Für $x \in \mathbb{R}^n$ ist $\|Ax - b\|_2$ genau dann minimal, wenn x die Normalengleichung

$$A^T A x = A^T b$$
 löst.

Ist A vollen Spaltenrangs, ist A^TA invertierbar, also die Kleinste-Quadrate-Lösung eindeutig.

Besonders für schlecht konditionierte Matrizen ist aber der *QR*-Algorithmus besser, weil

$$cond_2(A) = cond_2(Q^T A) = cond_2(R),$$

 $cond_2(A^T A) = cond_2^2(A).$

Implementierung: Lineares Gleichungssystem für a, b, c

Für Punkte (x_k, y_k) in der Datenreihe $(x_1, y_1), \dots, (x_m, y_m)$ soll

$$ae^{dx_k} + be^{-dx_k} + c = y_k.$$

Dies ist für feste d äquivalent zur Bedingung

$$A(d) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}, \quad \text{für } A(d) := \begin{pmatrix} e^{dx_1} & e^{-dx_1} & 1 \\ & \vdots & \\ e^{dx_m} & e^{-dx_m} & 1 \end{pmatrix} \in \mathbb{R}^{m \times 3}$$

Parameter d kann so nicht berechnet werden.

Implementierung: Lineares Gleichungssystem für a, b, c

- Damit die Kleinste-Quadrate-Lösung von A(d) $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = b$ mit der QR-Zerlegung für alle $b \in \mathbb{R}^m$ gefunden werden kann, braucht A vollen Spaltenrang
- Q ist orthogonal, also invertierbar \Rightarrow reicht Spaltenrang von R zu prüfen: Hat \hat{R} keine Nullen auf der Hauptdiagonalen?
- Verfahren liefert nur gute Lösungen a, b, c, wenn d zuvor passend gewählt wird

Implementierung: d ermitteln

- Verfahren liefert nur gute Lösungen a, b, c, wenn d zuvor passend gewählt wird
- Dazu einfach im Intervall [0.1, 0.5] in gleichen Abständen Werte für d auswählen, a(d), b(d), c(d) berechnen und Normen der Residuen,

$$||A\begin{pmatrix} a\\b\\c\end{pmatrix}-b||_2$$
 vergleichen

• d mit geringster Residuumsnorm wählen

Experimente

- 3 Datensätze: Originaldaten, Datenreihe 2, Datenreihe 3
- Bei Datenreihe 2 wurden x- und y-Werte der Datenpaare je auf die nächste ganze Zahl gerundet.
- Bei Datenreihe 3 wurden x- und y-Werte der Datenpaare jeweils abgerundet.

Fragen:

- Wie wirkt sich d auf die Gestalt der Kettennäherung aus?
- Was beeinflusst die Konditionen von A und A^TA?
- Was beeinflusst die Residuumsnorm?

Datensätze

Kettenapproximationen

Approximationen für verschiedene d

Approximationen für verschiedene d

Approximationen für verschiedene d

Konditionen

Norm des Residuums

Auswertung

- Konditionen hängen nur von Werten x_1, \ldots, x_m ab.
- Konditionen steigen exponentiell mit d.
- Je weniger natürlich die Gestalt des Seils (der Datenreihe), desto höher die Norm des Residuums.

Literatur

Skript Numerische Lineare Algebra, WiSe 2019/20.

Dr. Hella Rabus.

Projektpraktikum I Aufgabenblatt Serie 4, WiSe 2019/20.

