Motivation & introduction

Decision-making problems in (electricity) markets are subject to uncertainties

- ... under risk: probabilities p_j of possible future situations s_j are known! => stochastic decision model
- ... under insecurity: possible future situations s_j are known, but not their probabilities p_j .
 - => often "Laplace assumption" => all situations have same probability p
 - => or instead: "playing" with p_i and its impact on the result => robustness?

Uncertainties in energy markets

prices, demand, intermittent production, plant availability, ...

Uncertainties and key decisions in electricity markets

Planning task, different lead times and uncertainty

Introduction (2)

Uncertain parameters have to be modelled first!

- in general this is done with stochastic processes (first day!)
- in this course: probabilities p_i and future situations s_i are given / known!

Each uncertain parameter is modelled

- by a set of finite outcomes or scenarios
- where each outcome represents a realization of the uncertain parameter(s) with an associated probability.

Usually / often the number of outcomes is very high

- not "manageable" in stochastic models (due to limitations in calculation time or calculation power)
- => Scenario reduction: Reducing amount of outcomes while retaining the statistical properties of the uncertain parameters

Methods considering uncertainty

What is the general objective in decision making, when a decision has to be made under uncertainty?

- Identify a "optimal" decision, which is "robust" under uncertain parameters!
- => Different methods can be applied!

Methods dealing with uncertainty

- Correction Method: mark-up for risk or mark-down for uncertain parameter
 - + Can be used within standard methods (e.g. higher rate of return in DCF)
 - + Easy to apply
 - In general, only one parameter can be considered
 - No information about different developments

Methods considering uncertainty (cont.)

- Scenario analysis: define different possible/expected developments ("worlds/futures")
 - + Easy to apply, especially in combination with deterministic methods
 - Challenge: selection of adequate scenarios (without calculating "thousands" of scenarios", e.g. three uncertain parameters with three developments worst case, reference, best case results in 3³ = 27 scenarios)
 - Robust decisions are not implicitly identified => difficult to identify
- Sensitivity analysis: identify impact of different parameters on "robustness"
 - + Can be used within standard methods
 => can be used as preselection method for more sophisticated method
 - + Easy to apply
 - Difficult to develop conclusions, when several parameters are varied
 - Robust decisions are not implicitly identified => difficult to identify

Methods considering uncertainty (cont.)

- one-stage stochastic programming: nearly analogue to deterministic problem
 - + still quite easy to set-up (but depends on type of model): introduction of risk coefficient (risk aversion) in objective function and/or restriction! if "coefficient" on restriction: probabilistically constrained problems / Chanced-constraint programming (can also get difficult)!
 - + often also feasible for "real world" problems (as similar to deterministic model)
 - but: comparable to correction method, which has several shortfalls
- two-stage / multi-stage stochastic model: implicit consideration of uncertainty
 - + "strongest" method to consider uncertainty in Operations Research
 - + robust decision can implicitly be determined
 - large effort, data availability and calculation time

Random variable

... a finite set of realizations or scenarios

For instance, random variable λ can be represented by $\lambda(\omega)$, $\omega = 1, \ldots, N_{\Omega}$ where ω is the scenario index, N_{Ω} is the number of scenarios considered and Ω is the set of scenarios.

Each realization $\lambda(\omega)$ is associated with a probability $\pi(\omega)$ defined as

$$\pi(\omega) = P(\omega | \lambda = \lambda(\omega)), \text{ where } \sum_{\omega \in \Omega} \pi(\omega) = 1.$$

Example: Random variable: electricity price

- Characterisation of electricity price at 12 o'clock
 - 45 €/MWh with probability 0.2
 - 35 €/MWh with probability 0.6
 - 30 €/MWh with probability 0.2

Stochastic process

- Evolution of a random variable over time
- A stochastic process is constituted by a set of dependent random variables sequentially arranged in time
 - For each time period, the corresponding random variable (e.g. price at 12) depends on the random variables (e.g. prices in other hours of the day).

Example continued:

- Electricity price at 12 o'clock characterised as before
- Pool price at 1 pm represented by the random variable:
 - If 45 €/MWh at noon, probabilities at 1 pm of the price being 50, 40 or 35 €/MWh are 0.8, 0.1 or 0.1.
 - If 35 €/MWh at noon, probabilities at 1pm being 50, 40 or 35 €/MWh are 0.2, 0.7 or 0.1.
 - If 30 €/MWh at noon, probabilities at 1pm being 50, 40 or 35 €/MWh are 0.1, 0.4 or 0.5.
- => Dependent variables *price at noon* and *price at 1pm* constitute a **stochastic process.**
- Time series analysis and modelling of stochastic processes can be (!), but must not, a basis for stochastic programming => in this course, we apply both!

22

Scenarios

- Can be based on a stochastic process, but must not be based on it!
- Definition (now): A scenario is a single realization of a stochastic process!
- To adequately describe a stochastic process, it is crucial to generate a sufficient number of scenarios, so that most plausible realizations of the stochastic process are covered!
- Generally, it is required to calculate a very large amount of scenarios resulting in associated stochastic programs, which are difficult to solve due to the size!
- Number of initially generated scenarios must be reduced, without loosing information!
 - Scenario generation and scenario-reduction procedures are necessary

Example Stochastic process: scenarios

Scenario #	Price at 12 (€/MWh)	Price at 1pm (€/MWh)	Probability (%)
1	45	50	$0.2 \times 0.8 = 0.16$
2	45	40	$0.2 \times 0.1 = 0.02$
3	45	35	$0.2 \times 0.1 = 0.02$
4	35	50	$0.6 \times 0.2 = 0.12$
5	35	40	$0.6 \times 0.7 = 0.42$
6	35	35	$0.6 \times 0.1 = 0.06$
7	30	50	$0.2 \times 0.1 = 0.02$
8	30	40	$0.2 \times 0.4 = 0.08$
9	30	35	$0.2 \times 0.5 = 0.10$

Number of scenarios is small (9), but this is not necessarily the case.

24

Stochastic programming problems

- Decision making under uncertainty: decision maker has to make a optimal decision throughout a decision horizon with incomplete information.
- A stage represents a point in time where decisions are made or where uncertainty partially or totally vanishes.
 - Information available is usually different from stage to stage
 - According to number of stages: two-stage and multi-stage stochastic problems can be distinguished
 - Be aware: each stage requires a decision based on different / new information (else, the problem would be the same)

Two stage problem:

- Decision x is made before knowing the actual value of the stochastic process λ , while y is determined after the realisation of λ .
- Consequently, decision y depends on the decision x previously made and on the realisation $\lambda(\omega)$ of the stochastic process λ . y can be expressed as $y(x, \omega)$.
- Decision-making process:
 - 1. Decision x is made.
 - 2. Stochastic process λ is realized as $\lambda(\omega)$.
 - 3. Decision $y(x, \omega)$ is made.

Two kind of decisions in a two stage problem:

- First-stage or here-and-now decisions:
 - Decisions are made before the realization of the stochastic process.
 - Variables representing here-and-now decisions do not depend on each realization of the stochastic process.
- Second-stage or wait-and-see decisions:
 - Decisions are made after knowing the actual realization of the stochastic process.
 - Consequently, decisions depend on each realization vector of the stochastic process.
 - If the stochastic process is represented by a set of scenarios, a second-stage decision variable is defined for each single scenario.

Visualization of two stage problem with a scenario tree:

Here-and-now decisions (e.g. plant investments)

Wait-and-see decisions (e.g. plant dispatch under given investments)

28