Evolution Strategies: Principles and Practical Issues

Masahiro Nomura (Cyber Agent, Inc.)

08/24(Thu)@ICIAM (Sequential Decision Making for Optimization, Learning and Search)

Outline

- Introduction to <u>Natural Evolution Strategies (NES)</u>
 - Stochastic optimization framework that uses natural gradient
 - NES is similar to CMA-ES

- Practical Issues for <u>Difficult Problems (e.g. Multimodal and Noisy)</u>
 - Hyperparameter tuning is required
 - Learning rate adaptation (Nomura+, GECCO'23 Best Paper Nominated)

Black-Box Optimization on Continuous Domain

Goal of continuous black-box optimization (BBO):

X is continuous space

$$x^* = \operatorname*{argmax}_{x \in \mathcal{X}} f(x)$$

- Objective function is "black-box"
 - Not assume availability of gradient
 - We only use function evaluation value

Stochastic Relaxation for BBO [WSG+14]

- We want to optimize f(x), but the gradient wrt. x is not available
- Instead of directly finding x^* , NES searches distribution parameter θ^* :

$$x^* = \operatorname*{argmax}_{x \in \mathcal{X}} f(x)$$

Stochastic Relaxation

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}_{x \sim p(x;\theta)}[f(x)] =: J(\theta)$$

Gradient for Distribution Parameter [WSG+14]

- Suppose we can find $\nabla_{\theta} \log p(x; \theta)$
- By using the so-called 'log-likelihood trick':

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \int f(x) p(x; \theta) dx$$

$$= \int f(x) \nabla p(x; \theta) dx$$

$$= \int f(x) \nabla \log p(x; \theta) p(x; \theta) dx$$

$$= \mathbb{E}_{x \sim p(x; \theta)} [f(x) \nabla_{\theta} \log p(x; \theta)] \approx \frac{1}{\lambda} \sum_{i=1}^{\lambda} f(x_i) \nabla_{\theta} \log p(x_i; \theta)$$

Update the distribution parameter via gradient ascent

$$\theta \leftarrow \theta + \eta \cdot \nabla_{\theta} J(\theta)$$

Multivariate Gaussian Distribution

- One can use any distribution whose derivative of log-likelihood is obtained
- Most widely used one: multivariate Gaussian distribution (MGD)
- Distribution parameters:
 - \circ Mean vector $: m \in \mathbb{R}^d$
 - \circ Covariance matrix: $\Sigma \in \mathbb{R}^{d \times d}$
- Density of the distribution:

$$p(x;\theta) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \cdot \exp\left(-\frac{1}{2}(x-m)^\top \Sigma^{-1}(x-m)\right)$$

Vanilla gradient for Multivariate Gaussian Distribution

We first calculate the log-likelihood for estimating gradient:

$$\log p(x;\theta) = -\frac{d}{2}\log(2\pi) - \frac{1}{2}\log\det(\Sigma) - \frac{1}{2}(x-m)^{\top}\Sigma^{-1}(x-m)$$

(Vanilla) gradient for the log-likelihood:

$$\nabla_m \log p(x;\theta) = \Sigma^{-1}(x-m)$$

$$\nabla_\Sigma \log p(x;\theta) = \frac{1}{2} \Sigma^{-1}(x-m)(x-m)^\top - \frac{1}{2} \Sigma^{-1}$$

- 1. Generates solutions from the MGD
- 2. Evaluates solutions and estimates gradient
- 3. Updates the parameters
- 4. Repeats until the criterion is met

- 1. Generates solutions from the MGD
- 2. Evaluates solutions and estimates gradient
- 3. Updates the parameters
- 4. Repeats until the criterion is met

- 1. Generates solutions from the MGD
- 2. Evaluates solutions and estimates gradient
- 3. Updates the parameters
- 4. Repeats until the criterion is met

- Generates solutions from the MGD
- 2. Evaluates solutions and estimates gradient
- 3. <u>Updates the parameters</u>
- 4. Repeats until the criterion is met

- 1. Generates solutions from the MGD
- 2. Evaluates solutions and estimates gradient
- 3. Updates the parameters
- 4. Repeats until the criterion is met

Rethinking Vanilla Gradient and Natural Gradient

- The vanilla gradient can be characterized as the steepest ascent within the small Euclidean distance in the parameter space
 - The update depends on the choice of parameterization
 - The vanilla gradient can show unstable and unsatisfying performance
- <u>Natural gradient</u>: steepest ascent direction within the small KL divergence
 - Let F be Fisher information matrix,

$$\tilde{\nabla}_{\theta} J(\theta) = \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$$

Fitness Shaping [GSY+10]

• Fitness shaping: replace function values with <u>weights</u> $(w_1 \ge \cdots \ge w_{\lambda})$

$$F^{-1}\nabla_{\theta}J(\theta) \approx \frac{1}{\lambda}\sum_{i=1}^{\lambda}f(x_i)F^{-1}\nabla_{\theta}\log p(x_i;\theta)$$
 Fitness Shaping
$$\sum_{i=1}^{\lambda} \frac{\mathbf{w}_iF^{-1}\nabla_{\theta}\log p(x_{i:\lambda};\theta)}{\mathbf{w}_iF^{-1}\nabla_{\theta}\log p(x_{i:\lambda};\theta)}$$
 $x_{i:\lambda}$: i-th best solution

NES uses only ranking rather than function value itself

- Invariant under monotonically increasing transformation of f
- NES = Natural Gradient + Fitness Shaping
 - CMA-ES = NES + additional operations (CSA & rank-one update)

Practical Issues of ES for Difficult Problems

- Why does ES fail for Difficult Problems?
 - Noisy case: update does not proceed at certain situations
 - Multimodal problems are similar to noisy problems

- Larger sample size can be helpful for difficult problems
- Comparison of the comparison of th
- Promising approach: <u>Learning rate adaptation</u>
 - Increasing sample size has effect similar to decreasing learning rate
 - Learning rate adaptation is more practically useful

Learning Rate Adaptation: Setup

Notations:

vectorization operator, $\Sigma = \sigma^2 C$

- heta distribution parameters: $heta_m = m, heta_\Sigma = \mathrm{vec}(\Sigma)$
- $\circ \quad \text{original updates} \qquad \qquad : \quad \Delta_m^{(t)} = m^{(t+1)} \overline{m^{(t)}}, \\ \Delta_\Sigma^{(t)} = \text{vec}(\Sigma^{(t+1)} \Sigma^{(t)})$
- \circ learning rate factors : $\eta_m^{(t)}, \eta_\Delta^{(t)}$

Learning Rate Adaptation: Setup

Notations:

vectorization operator,
$$\Sigma = \sigma^2 C$$

 \circ distribution parameters: $\theta_m=m, \theta_\Sigma=\mathrm{vec}(\Sigma)$

 $\circ \quad \text{original updates} \qquad \qquad : \quad \Delta_m^{(t)} = m^{(t+1)} - \overline{m^{(t)}, \Delta_\Sigma^{(t)}} = \text{vec}(\Sigma^{(t+1)} - \Sigma^{(t)})$

 \circ learning rate factors : $\eta_m^{(t)}, \eta_\Delta^{(t)}$

Modified updates :

 $\circ \quad \theta_m^{(t+1)} = \theta_m^{(t)} + \eta_m^{(t)} \Delta_m^{(t)}$

 $\circ \quad \theta_{\Sigma}^{(t+1)} = \theta_{\Sigma}^{(t)} + \eta_{\Sigma}^{(t)} \Delta_{\Sigma}^{(t)}$

original updates can be recovered with $\eta = 1$

Learning Rate Adaptation: Setup

Notations:

vectorization operator, $\Sigma = \sigma^2 C$

- \circ distribution parameters: $\theta_m=m, \theta_\Sigma=\mathrm{vec}(\Sigma)$
- $\circ \quad \text{original updates} \qquad \qquad : \quad \Delta_m^{(t)} = m^{(t+1)} \overline{m^{(t)}}, \\ \Delta_\Sigma^{(t)} = \text{vec}(\Sigma^{(t+1)} \Sigma^{(t)})$
- \circ $\;$ learning rate factors $\;$: $\; \eta_m^{(t)}, \eta_\Delta^{(t)}$

Modified updates :

$$\begin{array}{ll} \circ & \theta_m^{(t+1)} = \theta_m^{(t)} + \eta_m^{(t)} \Delta_m^{(t)} \\ \circ & \theta_{\Sigma}^{(t+1)} = \theta_{\Sigma}^{(t)} + \eta_{\Sigma}^{(t)} \Delta_{\Sigma}^{(t)} \end{array}$$

original updates can be recovered with $\eta = 1$

How to adapt these learning rate?

Learning Rate Adaptation: Main Idea

We adapt the learning rate based on the <u>signal-to-noise ratio (SNR)</u>:

$$SNR := \frac{\|\mathbb{E}[\Delta]\|_F^2}{Tr(F \operatorname{Cov}[\Delta])} = \frac{\|\mathbb{E}[\Delta]\|_F^2}{\mathbb{E}[\|\Delta\|_F^2] - \|\mathbb{E}[\Delta]\|_F^2}$$

F: Fisher information matrix

Learning Rate Adaptation: Main Idea

We adapt the learning rate based on the <u>signal-to-noise ratio (SNR)</u>:

$$SNR := \frac{\|\mathbb{E}[\Delta]\|_F^2}{Tr(F \operatorname{Cov}[\Delta])} = \frac{\|\mathbb{E}[\Delta]\|_F^2}{\mathbb{E}[\|\Delta\|_F^2] - \|\mathbb{E}[\Delta]\|_F^2}$$

F: Fisher information matrix

- Noisy problems: $SNR \rightarrow 0$ when noise becomes dominant
 - To improve function value, <u>maintaining a positive SNR is crucial</u>
 - We apply similar arguments to <u>multimodal problems</u>

SNR-Based Learning Rate Adaptation

- Assume LR is small over n iterations
 ⇔ updates are i.i.d
- n steps update:

$$\theta^{(t+n)} = \theta^{(t)} + \eta \sum_{k=0}^{n-1} \Delta^{(t+k)}$$
$$\approx \theta^{(t)} + \mathcal{D}\left(n\eta \mathbb{E}[\Delta], n\eta^2 \text{Cov}[\Delta]\right)$$

SNR-Based Learning Rate Adaptation

- Assume LR is small over n iterations
 ⇔ updates are i.i.d
- n steps update:

$$\theta^{(t+n)} = \theta^{(t)} + \eta \sum_{k=0}^{n-1} \Delta^{(t+k)}$$

$$\approx \theta^{(t)} + \mathcal{D}\left(n\eta \mathbb{E}[\Delta], n\eta^2 \text{Cov}[\Delta]\right)$$

- $n = 1/\eta \Rightarrow \mathcal{D}(\mathbb{E}[\Delta], \eta \text{Cov}[\Delta])$
 - \circ By taking small η , we can obtain <u>more concentrated update</u>

SNR-Based Learning Rate Adaptation

- Assume LR is small over n iterations
 ⇔ updates are i.i.d
- *n* steps update:

$$\theta^{(t+n)} = \theta^{(t)} + \eta \sum_{k=0}^{n-1} \Delta^{(t+k)}$$
$$\approx \theta^{(t)} + \mathcal{D}\left(n\eta \mathbb{E}[\Delta], n\eta^2 \text{Cov}[\Delta]\right)$$

- $n = 1/\eta \Rightarrow \mathcal{D}(\mathbb{E}[\Delta], \eta \text{Cov}[\Delta])$
 - \circ By taking small η , we can obtain <u>more concentrated update</u>
- SNR over n iterations: $\frac{\|\mathbb{E}[\Delta]\|_F^2}{\eta \operatorname{Tr}(F \operatorname{Cov}[\Delta])} = \frac{1}{\eta} \operatorname{SNR}$
- Our method: keep <u>SNR over n(=1/n) itr.</u> as <u>(positive) constant</u>

$$\circ$$
 SNR = $\alpha \eta$ ($\alpha > 0$)

Success Rate versus (10-40)Dim. (Noiseless Problems)

For multimodal, CMA with high η often <u>failed</u>, but with small η had a high SR <u>Success is highly dependent on the η setting</u>

Success Rate versus (10-40)Dim. (Noiseless Problems)

LRA-CMA had a relatively good success rate without n tuning

SP1 versus (10-40)Dim. (Noiseless Problems)

with high $\eta \Rightarrow \underline{\text{worse}}$ on multimodal, with small $\eta \Rightarrow \underline{\text{slow}}$ on unimodal Clear $\underline{\text{trade-off}}$ in efficiency exists depending on η

SP1 versus (10-40)Dim. (Noiseless Problems)

LRA shows stable and relatively good performance without expensive tuning

Empirical cumulative density function on noisy problems

CMA with fixed η had stopped improving the function value In contrast, <u>LRA continued to improve</u> it even in strong noise

Empirical cumulative density function on noisy problems

CMA with fixed η had stopped improving the function value In contrast, <u>LRA continued to improve</u> it even in strong noise

Use of LRA-CMA with Python

Available from <u>CyberAgentAILab/cmaes</u> (#star=233)

```
optimizer = CMA(mean=np.ones(10) * 3, sigma=2.0, lr_adapt=True)
```

Please create issues if you have any problems!

- Available from <u>optuna</u> (#star=8.4k)
 - o optuna:
 - popular BBO/HPO software (300k downloads/week)

A wider audience can use LRA-CMA!

Summary

- Natural ES (NES) and CMA-ES
 - Popular class of ES that is based on natural gradient
- Practical Issues for Difficult Problems
 - Hyperparameter (e.g. sample size) tuning is required
- Learning Rate Adaptation:
 - LRA-CMA with default sample size works well without tuning
- Ultimate Goal for Future:
 - Developing Completely Hyperparameter-Free ES

Appendix

SNR Estimation with Moving Averages

• We introduce moving averages for each m and Σ

$$\mathcal{E}^{(t+1)} = (1-\beta)\mathcal{E}^{(t)} + \beta \tilde{\Delta}^{(t)},$$

$$\mathcal{V}^{(t+1)} = (1-\beta)\mathcal{V}^{(t)} + \beta \|\tilde{\Delta}^{(t)}\|_{2}^{2}$$

$$\tilde{\Delta}_{m} = \sqrt{\Sigma}^{-1} \Delta_{m}$$

$$\tilde{\Delta}_{\Sigma} = 2^{-\frac{1}{2}} \text{vec}(\sqrt{\Sigma}^{-1} \text{vec}^{-1}(\Delta_{\Sigma})\sqrt{\Sigma}^{-1})$$

SNR Estimation with Moving Averages

• We introduce moving averages for each m and Σ

$$\mathcal{E}^{(t+1)} = (1-\beta)\mathcal{E}^{(t)} + \beta \tilde{\Delta}^{(t)},$$

$$\mathcal{V}^{(t+1)} = (1-\beta)\mathcal{V}^{(t)} + \beta \|\tilde{\Delta}^{(t)}\|_{2}^{2}$$

$$\tilde{\Delta}_{m} = \sqrt{\Sigma}^{-1} \Delta_{m}$$

$$\tilde{\Delta}_{\Sigma} = 2^{-\frac{1}{2}} \operatorname{vec}(\sqrt{\Sigma}^{-1} \operatorname{vec}^{-1}(\Delta_{\Sigma})\sqrt{\Sigma}^{-1})$$

The SNR is estimated as:

$$SNR := \frac{\mathbb{E}[\tilde{\Delta}]^{2}}{Tr(Cov[\tilde{\Delta}])} = \frac{\mathbb{E}[\tilde{\Delta}]^{2}}{\mathbb{E}[\|\tilde{\Delta}\|^{2}] - \|\mathbb{E}[\tilde{\Delta}]\|^{2}},$$

$$\approx \frac{\|\mathcal{E}\|_{2}^{2} - \frac{\beta}{2-\beta}\mathcal{V}}{\mathcal{V} - \|\mathcal{E}\|_{2}^{2}} =: \widehat{SNR}$$

SNR Estimation with Moving Averages

• We introduce moving averages for each m and Σ

$$\mathcal{E}^{(t+1)} = (1-\beta)\mathcal{E}^{(t)} + \beta \tilde{\Delta}^{(t)},$$

$$\mathcal{V}^{(t+1)} = (1-\beta)\mathcal{V}^{(t)} + \beta \|\tilde{\Delta}^{(t)}\|_{2}^{2}$$

$$\tilde{\Delta}_{m} = \sqrt{\Sigma}^{-1} \Delta_{m}$$

$$\tilde{\Delta}_{\Sigma} = 2^{-\frac{1}{2}} \operatorname{vec}(\sqrt{\Sigma}^{-1} \operatorname{vec}^{-1}(\Delta_{\Sigma})\sqrt{\Sigma}^{-1})$$

The SNR is estimated as:

$$SNR := \frac{\mathbb{E}[\tilde{\Delta}]^2}{Tr(Cov[\tilde{\Delta}])} = \frac{\mathbb{E}[\tilde{\Delta}]^2}{\mathbb{E}[\|\tilde{\Delta}\|^2] - \|\mathbb{E}[\tilde{\Delta}]\|^2},$$

(See paper for details)
$$= \frac{\|\mathcal{E}\|_2^2 - \frac{\beta}{2-\beta}\mathcal{V}}{\mathcal{V} - \|\mathcal{E}\|_2^2} =: \widehat{SNR}$$

Adapting learning rate by:

$$\eta \leftarrow \eta \cdot \exp\left(\min(\gamma\eta, \beta)\Pi_{[-1,1]}\left(\frac{\widehat{SNR}}{\alpha\eta} - 1\right)\right)$$

Adapting learning rate by:

bring SNR closer to $\alpha\eta$

$$\eta \leftarrow \eta \cdot \exp\left(\min(\gamma\eta, \beta)\Pi_{[-1,1]}\left(\frac{\widehat{SNR}}{\alpha\eta} - 1\right)\right)$$

Adapting learning rate by:

bring SNR closer to an

prevent η to change more than the factor of $\exp(y)$ or $\exp(-y)$ in $1/\eta$ iterations

Adapting learning rate by: projection onto [-1, 1] bring SNR closer to $\alpha\eta$

prevent η to change more than the factor of $\exp(y)$ or $\exp(-y)$ in $1/\eta$ iterations

Adapting learning rate by: projection onto [-1, 1] bring SNR closer to $\alpha\eta$

$$\eta \leftarrow \eta \cdot \exp\left(\min(\underline{\gamma\eta},\underline{\beta})\Pi_{[-1,1]}\left(\frac{\widehat{\mathrm{SNR}}}{\alpha\eta}-1\right)\right)$$
 wait for the effect of the change

 $\eta \leftarrow \min(\eta, \underline{1})$

upper bound

prevent η to change more than the factor of $\exp(y)$ or $\exp(-y)$ in $1/\eta$ iterations

of previous n