Using proton temperature anisotropy as an in-situ diagnostic for solar wind origin

David Stansby¹, Timothy Horbury¹, Lorenzo Matteini²

¹Imperial College London, ²LESIA Paris

Context

- Robustly identifying solar source of in-situ solar wind measurements is still an open problem
- Clear that splitting by speed (slow/fast) does not match possible solar sources [Stakhiv et al. 2016, D'Amicis et al. 2015, 2016]

Method

- Some 'slow' solar wind has same properties as 'fast' solar wind [Marsch et al. 1981, D'Amicis et al. 2015]
 - Strongly Alfvénic [Bruno et al. 2007]
- $T_{p\perp}/T_{p||} > 1$ in inner heliosphere [Matteini et al. 2007]
- .: instead of splitting wind by speed, we investigate distribution of $T_{p\perp}/T_{p\parallel}$ and Alfvénicity

Global properties at 0.3 AU

- Much larger Alfvénic fraction (80%) compared to 1 AU (50%)
- $T_{p\perp}/T_{p||}$ is bimodal

Acknowledgements

- All anisotropic wind is Alfvénic

Split solar wind into 3 categories

Anisotropic

Isotropic + Alfvénic

Isotropic + non-Alfvénic

David Stansby is supported by STFC studentship ST/N504336/1
Timothy Horbury is supported by STFC grant ST/N000692/1

heavy charge states v_{pr} (km/s) [Pagel et al. 2004, Stakhiv et al. 2016] (Radial speed)

Mapping categories to

 $T_{p\perp}/T_{p\parallel} \rightarrow Entropy \rightarrow Heavy charge states \rightarrow Solar origin$

 $T_{p\perp}/|T_{p\parallel}| > 1 \rightarrow Coronal hole wind$ $T_{p\perp}/|T_{p\parallel}| = 1 \rightarrow non-Coronal hole wind$

 Alfvénic has constant mass flux → steady state

Entropy is correlated with

- Active regions have open flux + significant mass output [Brooks et al. 2015]

Isotropic + Alfvénic → Active region wind

- non-Alfvénic has varying mass flux → non-steady-state release
- Some slow wind is small number density structures
 [Sheeley et al. 1997, Viall et al. 2015]

Isotropic + non-Alfvénic

→ Transient structures

 10^{4}

 $T_p/n_p^{1/2}$ (°K cm^{3/2})

(Entropy)

600

Suggested categorisation

Anisotropic → Coronal holes

Isotropic + Alfvénic → Active regions

Isotropic + non-Alfvénic → Small scale transients

These are testable predictions for Parker Solar Probe & Solar Orbiter with heavy ions & PFSS backmapping