In [5]:

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import os
print(os.listdir("../workspace"))
```

['.ipynb_checkpoints', '.metadata', '.recommenders', 'Basic Sales analysi s.ipynb', 'Basic Sales analysis.py', 'BlackFriday.csv', 'diabetes.csv', 'Untitled.ipynb', 'Untitled1.ipynb', 'Untitled2.ipynb']

In [14]:

```
data = pd.read_csv('../workspace/diabetes.csv')
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [15]:

data.describe()

Out[15]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diak
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

```
In [16]:
```

```
data.columns
```

Out[16]:

In [17]:

```
data.isnull().sum()
```

Out[17]:

0 Pregnancies Glucose 0 BloodPressure 0 SkinThickness 0 Insulin 0 BMI 0 DiabetesPedigreeFunction 0 0 Age Outcome 0

dtype: int64

In [18]:

0 5001 268

Name: Outcome, dtype: int64


```
In [19]:
```


In [20]:

10/11/2020

```
df = pd.DataFrame(data,columns=data_columns)
f, ax = plt.subplots(figsize =(15,11))
corrMatrix = df.corr()
sns.heatmap(corrMatrix, annot=True)
plt.show()
```


In [21]:

```
g = sns.jointplot(
    data=data,
    x="Glucose", y="Insulin",
    kind="kde",
)
plt.show()
```


In [22]:

```
fig1, ax1 = plt.subplots(figsize =(10,10))
plt.scatter(data.index , data.Glucose,label = "Glucose",alpha = 0.5,color = "orangere
d")
plt.scatter(data.index , data.Insulin,label = "Insulin",alpha = 0.5,color = "darkblue"
)
plt.legend(loc ="best")
plt.xlabel("index")
plt.ylabel("Value")
plt.grid()
plt.show()
```


In [23]:

```
g = sns.catplot(
    data=data, kind="bar",
    x="Outcome", y="Glucose",
    ci="sd", palette="dark", alpha=.6, height=6,
)
g.despine(left=True)
g.set_axis_labels("Outcome", "Glucose")
plt.grid()
plt.show()
```


In [24]:

```
g = sns.catplot(
    data=data, kind="bar",
    x="Outcome", y="Insulin",
    ci="sd", palette="dark", alpha=.6, height=6,
)
g.despine(left=True)
g.set_axis_labels("Outcome", "Insluin")
plt.grid()
plt.show()
```


In [25]:

In [26]:

In []: