1. Data type of columns in a table

2. Customers.csv-

Column Name	Data type
Customer_id	TEXT
customer_unique_id	TEXT
customer_zip_code_prefix	TEXT
customer_city	TEXT
customer_state	TEXT

3. Sellers.csv

Column Name	Data type
seller_id	TEXT
seller_zip_code_prefix	TEXT
seller_city	TEXT
seller_state	TEXT

4. Order_items.csv

Column Name	Data type
order_id	TEXT
order_item_id	INT
product_id	TEXT
seller_id	TEXT
shipping_limit_date	TEXT
price	DOUBLE
freight_value	DOUBLE

5. Geolocations.csv

Column Name	Data Type
geolocation_zip_code_prefix	TEXT
geolocation_lat	DOUBLE
geolocation_lng	DOUBLE
geolocation_city	TEXT
geolocation_state	TEXT

6. Payments.csv

Column Name	Data Type
order_id	TEXT
payment_sequential	INT
payment_type	TEXT
payment_installments	INT
payment_value	DOUBLE

7. Orders.csv

Column Name	Data Type
order_id	TEXT
customer_id	TEXT
order_status	TEXT
order_purchase_timestamp	TEXT
order_delivered_carrier_date	TEXT
order_delivered_customer_date	TEXT
order_estimated_delivery_date	TEXT

8. Reviews.csv

Column Name	Data Type
review_id	TEXT
order_id	TEXT
review_score	INT
review_comment_title	TEXT
review_comment_message	TEXT
review_creation_date	TEXT
review_answer_timestamp	TEXT

9. Products.csv

Column Name	Data Type
product_id	TEXT
product_category_name	TEXT
product_name_lenght	INT
product_description_lenght	INT
product_photos_qty	INT
product_weight_g	INT
product_length_cm	INT
product_height_cm	INT
product_width_cm	INT

Fig1. Snip of ER Diagram

1. Time period for which the data is given.

2. Cities and States of customers ordered during the given period.

- -- 1.
- -- 1.1 Data type of columns in a table
- -- Customers

select column_name,data_type from information_schema.columns where
table name = 'Customers';

-- Geolocation

select column_name,data_type from information_schema.columns where table name = 'Geolocation';

-- Order items

select column_name,data_type from information_schema.columns where table name = 'Order items';

-- order_reviews

select column_name,data_type from information_schema.columns where table name = 'order reviews';

-- orders

select column_name,data_type from information_schema.columns where table_name = 'orders';

-- payments

select column_name,data_type from information_schema.columns where table_name = 'payments';

-- products

select column_name,data_type from information_schema.columns where table_name = 'products';

-- sellers

select column_name,data_type from information_schema.columns where table_name = 'sellers';

-- 1.2. Time period for which the data is given.

select min(order_purchase_timestamp) as min_date,
max(order_purchase_timestamp) as max_date from orders;

-- 1.3 Cities and states of customers ordered during the given period

select count(distinct(geolocation_city)) as
city,count(distinct(geolocation state))as state from geolocation;

select distinct(geolocation_city) as city, (geolocation_state)as state from geolocation;

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Brazillians shop more in Evening.

-- 2

-- 2.1 Growing trend in Brazil

SELECT Extract(YEAR from order_purchase_timestamp) as year,

Extract(Month from order_purchase_timestamp) as month, count(1) as SalesCount FROM orders GROUP BY year, month order by year asc, month asc;

-- 2.2 Time when Brazillian cutomers tend to buy

select count(distinct order_id) as order_number,

case

when date_format(order_purchase_timestamp, '%H:%i,%s') between '00:00:00' and '05:59:59' then 'Dawn '

when date_format(order_purchase_timestamp , '%H:%i,%s') between '06:00:00' and '11:59:59' then 'Morning '

when date_format(order_purchase_timestamp , '%H:%i,%s') between '12:00:00' and '18:59:59' then 'Evening '

when date_format(order_purchase_timestamp , '%H:%i,%s') between '19:00:00' and '23:59:59' then 'Night '

end as Phase_of_day from orders group by Phase_of_day order by order number desc;

-- Therefore, Brazillians shop more in Evening.

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

2. Distribution of customers across the states in Brazil

-- 3

-- 3.1 first part you have to join the customer table and orders table and then group by with month.

SELECT geo.geolocation state as States,

Extract(Month from ord.order_purchase_timestamp) as month,

count(*) orderscount FROM orders as ord JOIN customers as c using (customer_id)

JOIN geolocation as geo ON c.customer_zip_code_prefix = geo.geolocation_zip_code_prefix

GROUP BY geo.geolocation_state, month order by geo.geolocation_state,month asc;

-- 3.2 Distribution of customers across the states in Brazil

SELECT customer_state,count(*) customercount

FROM customers

GROUP BY customer_state

order by customercount desc;

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

2. Mean & Sum of price and freight value by customer state

-- 4

-- 4.1 % increase in cost of orders from 2017 to 2018

with S1 as (

SELECT Round(Sum(pay.payment_value),2) as sum2017

FROM orders as ord

JOIN payments as pay using (order_id)

Where Extract(Year from ord.order_purchase_timestamp) = 2017

```
and Extract(Month from ord.order purchase timestamp) BETWEEN 1 and 8
),
S2 as (
SELECT Round(Sum(pay.payment value),2) as sum2018
FROM orders as ord
JOIN payments as pay using (order_id)
Where Extract(Year from ord.order_purchase_timestamp) = 2018
and Extract(Month from ord.order purchase timestamp) BETWEEN 1 and 8
Select sum2018 as Sumof2018, sum2017 as Sumof2017, Round((sum2018-
sum2017)/sum2017*100,2) as increaseValue from S1,S2;
-- 4.2 Mean & Sum of price and freight value by customer state
SELECT cust.customer_state,round(avg(price),2) as priceaverage,
round(avg(freight_value),2) as avgfreightvalue,
round(sum(price),2) as sumprice, round(sum(freight value),2) as
sumfreightvalue
FROM order items as ord
JOIN customers as cust ON sel.seller_zip_code_prefix =
cust.customer_zip_code_prefix
Group BY cust.customer_state;
```

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

```
-- 5
-- 5.1 .Days between purchasing, delivering and estimated delivery

SELECT order_id,order_purchase_timestamp as purchasetime,

DATEDIFF(Extract(Date FROM order_delivered_customer_date),Extract(Date FROM order_purchase_timestamp) ,Day) as Day_between_deliver_purchase,

DATEDIFF(Extract(Date FROM order_estimated_delivery_date),Extract(Date FROM order_purchase_timestamp),Day) as Day_between_exstimate_purchase,

DATEDIFF(Extract(Date FROM order_estimated_delivery_date),Extract(Date FROM order_delivered_customer_date),Day) as Day_between_estimated_delivery,

FROM orders

WHERE order_delivered_customer_date IS NOT NULL;
```

- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamporder delivered customer date
 - diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

```
-- 5.2 days between purchasing, delivering and estimated delivery
SELECT order_id,
   TIMESTAMPDIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS
time_to_delivery,
abs(TIMESTAMPDIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY))
AS diff_estimated_delivery;
```

Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
-- 5.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

SELECT cust.customer_state as tstate,round(avg(ord.freight_value),2) as

avg_freighttop

FROM order_items as ord

JOIN sellers as sel Using(seller_id)

Result Grid Filter Rows:

| Export: | Wrap Cell Content: | Wrap Cell Content: | A
```

- 4. Sort the data to get the following:
 - Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

```
-- 5.4
  -- 5.4 a) Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
  SELECT cust.customer_state,
oround(avg(TIMESTAMPDIFF(order_delivered_customer_date,order_purchase_timestamp,DAY
 )),2) AS time_to_delivery
  FROM orders as ord
  JOIN customers as cust
  ON ord.customer_id = cust.customer_id
  Group BY cust.customer_state
  order by time_to_delivery desc limit 5;

    Top 5 states with highest/lowest average time to delivery
```

```
-- 5.4 b) Top 5 states with highest average time to delivery
SELECT cust.customer_state,
2) AS time_to_delivery
 FROM orders as ord
 JOIN customers as cust
 ON ord.customer_id = cust.customer_id
 Group BY cust.customer_state
 order by time_to_delivery asc limit 5;
```

 Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
-- 5.4 c) Top 5 states with highest average time to delivery
  SELECT cust.customer_state,

─ avg(ABS(TIMESTAMPDIFF(order_delivered_customer_date,order_estimated_delivery_date,DAY)

 ))) AS diff_estimated_delivery
  FROM orders as od
  JOIN order_items as ord using(order_id)
  JOIN sellers as sel Using(seller_id)
  JOIN customers as cust
  ON sel.seller_zip_code_prefix = cust.customer_zip_code_prefix
  Where order_status ="delivered"
  and order_delivered_customer_date is not null
  Group BY cust.customer_state order by diff_estimated_delivery asc limit 5;
-- 5
-- 5.1 .Days between purchasing, delivering and estimated delivery
SELECT order_id,order_purchase_timestamp as purchasetime,
DATEDIFF(Extract(Date FROM order_delivered_customer_date), Extract(Date FROM
order_purchase_timestamp) ,Day) as Day_between_deliver_purchase,
DATEDIFF(Extract(Date FROM order estimated delivery date), Extract(Date FROM
order_purchase_timestamp),Day) as Day_between_exstimate_purchase,
DATEDIFF(Extract(Date FROM order estimated delivery date), Extract(Date FROM
order_delivered_customer_date),Day) as Day_between_estimated_delivery,
```

```
WHERE order delivered customer date IS NOT NULL;
-- 5.2 days between purchasing, delivering and estimated delivery
SELECT order id,
TIMESTAMPDIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS
time_to_delivery,
abs(TIMESTAMPDIFF(order estimated delivery date, order delivered customer date, DA
Y))
AS diff_estimated_delivery;
-- 5.2 time_to_delivery & diff_estimated_delivery
With S1 as(
SELECT order_id,
TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS
time to delivery,
TIMESTAMPDIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY) AS
diff_estimated_delivery,
FROM orders
WHERE order_delivered_customer_date IS NOT NULL
SELECT cust.customer state, round(avg(ord.freight value),2) as
average_freight_value,
round(avg(OD.time_to_delivery),2) as average_time_to_delivery,
round(avg(OD.diff estimated delivery),2) as average diff estimated delivery
FROM order_items as ord
JOIN sellers as sel Using(seller_id)
JOIN customers as cust
ON sel.seller_zip_code_prefix = cust.customer_zip_code_prefix
JOIN S1 as OD
ON ord.order id = OD.order id
Group BY cust.customer_state;
-- 5.3 Group data by state, take mean of freight value, time to delivery,
diff estimated delivery
SELECT cust.customer_state as tstate,round(avg(ord.freight_value),2) as
avg freighttop
FROM order_items as ord
JOIN sellers as sel Using(seller_id)
JOIN customers as cust
ON sel.seller_zip_code_prefix = cust.customer_zip_code_prefix
Group BY cust.customer_state
order by avg freighttop desc;
-- 5.4
-- 5.4 a) Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
```

FROM orders

```
SELECT cust.customer_state,
round(avg(TIMESTAMPDIFF(order delivered customer date, order purchase timestamp,
DAY
)),2) AS time_to_delivery
FROM orders as ord
JOIN customers as cust
ON ord.customer_id = cust.customer_id
Group BY cust.customer_state
order by time to delivery desc limit 5;
-- 5.4 b) Top 5 states with highest average time to delivery
SELECT cust.customer state,
round(avg(TIMESTAMPDIFF(order_delivered_customer_date,order_purchase_timestamp,
DAY)),
2) AS time to delivery
FROM orders as ord
JOIN customers as cust
ON ord.customer id = cust.customer id
Group BY cust.customer_state
order by time_to_delivery asc limit 5;
-- 5.4 c) Top 5 states with highest average time to delivery
SELECT cust.customer state,
avg(ABS(TIMESTAMPDIFF(order delivered customer date, order estimated delivery dat
e,DAY
))) AS diff_estimated_delivery
FROM orders as od
JOIN order_items as ord using(order_id)
JOIN sellers as sel Using(seller_id)
JOIN customers as cust
ON sel.seller_zip_code_prefix = cust.customer_zip_code_prefix
Where order_status ="delivered"
and order delivered customer date is not null
Group BY cust.customer_state order by diff_estimated_delivery asc limit 5;
```

6. Payment type analysis:

1. Month over Month count of orders for different payment types

2. Count of orders based on the no. of payment installments

-- 6.1 Month over Month count of orders for different payment types

SELECT pay.payment_type,Extract(Month FROM order_purchase_timestamp) as month,count(1)

FROM payments as pay JOIN orders as ord using(order_id) group by month,payment_type order by pay.payment_type,month;

-- 6.2 Count of orders based on the no. of payment installments select payment_installments,Count(order_id) as ordercount from payments group by payment_installments;