CS 4230, Parallel Computing Basic Terminology, Scaling Laws

Ganesh Gopalakrishnan

School of Computing, Univ of Utah

Jan 10, 2017

The world of computing has changed

Complexity

- Power dissipation is a first-rate concern
 - Packaging costs, cooling, fan
- Energy bills add up in large-scale installations
 - "Race to finish" (compute fast, idle) reduces energy, time
- Data movement costs energy
- One can compute thousands of CPU operations with the same energy one spends moving data even a short distance
- ► Chip dimensions are approaching 2cm
- ▶ Light travels 30cm in one nano second in vacuum
 - clock period is 0.25 nS, so travels 7.5 cm in one clock period in vacuum
 - far less on chip
 - communication costs time and energy
 - communication delays force locality (computations that finish in one clock period must be localized)

CPU chips are a miracle of engineering

One of the most astounding of human creations

- ▶ Thumb-nail sized
- ▶ Yet, companies with 100K engineers designs these thumbnails
- CPU chips contain several billion transistors
- More per humans on the planet

There is a lot of parallelism inside chips

Parallelism

- ► The success of computing rests on the amount of parallelism we can hide (tuck inside) chips
- Batches of instructions are picked up and executed
- Memory subsystems, networks, etc are all engaged in fervent activity in parallel

Caches are hugely important

Locality!

- Access to registers and TLB: "instantaneous"
- ▶ L1 cache : almost CPU cycles
- Other caches : many cycles
- Main memory : huge latency
- Much of a CPU today is cache

Chip photos from slide deck Lec1

 $See\ Energy Nomenclature.pdf$

Compilers are Crucial to Efficiency

Programs mapped to machine code

- User programs must express intent
- Over-expressing (e.g. for loops with fixed order) "confuse" compilers
- ► Language constructs such as "forall" are
 - good for the user (clearer intent)
 - good for the compiler (more parallel code)

Operating Systems are Crucially Important too

Role of OS

- Provide mechanisms to create processes and threads
- Allocate memory spaces for processes, threads
 - Stack sizes
 - Handle exceptions thrown
 - Allocate, deallocate memory
 - ► Handle scheduling decisions

Processes, Threads, Tasks

Some basics

- Processes : isolated memory
- ► Threads : shared memory
 - Multiple within a process
- ► Tasks : work capability or simply "work"
 - Bind to threads when available
- ▶ One way to ensure load balancing: work stealing
 - Pioneered in Cilk
 - Now standard in all advanced runtimes
 - ► TBB supports it
 - OMP (OpenMP) will soon

Hardware Hierarchy

The hierarchy of hardware

- Motherboard contain sockets (cavities)
- Sockets house CPU multicore chips
- Multicore chips house cores
- ► Each core may support more than one hardware thread (SMT)
- Software threads bind to hardware threads

See Jernej Babic's slides mentioned in Reading1.pdf

Simplifying things a bit

For now, we discuss all the things happening within one process

- ▶ That is, a bunch of shared memory threads
- These threads ideally run on separate HW threads (or cores)
 - Non-ideal to run more than one software thread on one core, although you can time-multiplex and do so

Will adding more "processors" (parallel computing capability) always speed things up?

Two ideas exist in this space:

- Strong scaling: Yes, as we add processors, we get faster
- Weak scaling: No, but if we also grow the problem size proportional to the # processors (the same problem-size per processor) we will solve bigger problems over the same amount of time
- When can we expect such scaling behaviors?
 - Strong: Achieve this only if the serial part is small in overhead (so with serialization bottlenecks (e.g., bad locks), we won't get this)
 - This is known as Amdahl's law
 - Weak: Achieve this only if the communication among the processors grows slowly
 - This is known as Gustafson-Barsis's law

Amdahl's Law

- Two helpful terms:
 - ▶ Speedup: $s = \frac{T_{serial}}{T_{resultable}}$
 - ▶ Parallel efficiency: s/p (= 1 for s = p)
- Let a program have a fraction $0 \le k \le 1$ be non-parallelizable
- ▶ If the program takes runtime T,
 - ightharpoonup it takes $T \cdot k$ for the serial part
 - ▶ and $T \cdot (1 k)$ for the parallel part
- ▶ If we put P processors to "grind away" the parallel part,
 - the total time becomes $T \cdot k + \frac{T \cdot (1-k)}{D}$
 - the speedup is now $\frac{T}{T \cdot (k + \frac{(1-k)}{2})}$

 - which simplifies to $\frac{P}{1+k\cdot(P-1)}$ Now, $\lim_{P\to\infty} \frac{P}{1+k\cdot(P-1)} = \frac{1}{k}$
 - ▶ Thus, with k = 0.1, we get only $10 \times$ speedup

Depiction of Amdahl's Law from Reinders' Book

Depiction of Gustafson-Barsis Law from Reinders' Book

Depiction of Data Parallelism (Reinders)

Depiction of Task Parallelism (Reinders)

Depiction of Pipelining Parallelism (Reinders)

Depiction of Mixed Solutions (Reinders)

Helps eliminate pipelining bottlenecks

Much like the advent of structured parallel programming