## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

## ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу

«Data Science»

Слушатель

Прокофьев Алексей Николаевич

# Содержание

| Введение                                                                   |
|----------------------------------------------------------------------------|
| 1. Аналитическая часть                                                     |
| 1.1. Постановка задачи 6                                                   |
| 1.2. Описание используемых методов                                         |
| 1.2.1 Линейная регрессия                                                   |
| 1.2.2 Лассо (LASSO) и гребневая (Ridge) регрессия                          |
| 1.2.3 Метод опорных векторов для регрессии                                 |
| 1.2.4 Метод k-ближайших соседей                                            |
| 1.2.5 Деревья решений                                                      |
| 1.2.6 Случайный лес                                                        |
| 1.2.7 Градиентный бустинг                                                  |
| 1.2.8 Нейронная сеть                                                       |
| 1.3. Разведочный анализ данных                                             |
| 1.3.1 Выбор признаков                                                      |
| 1.3.2 Ход решения задачи                                                   |
| 1.3.2 Препроцессинг                                                        |
| 1.3.3 Перекрестная проверка                                                |
| 1.3.4 Поиск гиперпараметров по сетке                                       |
| 1.3.5 Метрики качества моделей                                             |
| 2. Практическая часть                                                      |
| 2.1. Разбиение и предобработка данных                                      |
| 2.1.1 Для прогнозирования модуля упругости при растяжении 29               |
| 2.1.2 Для прогнозирования прочности при растяжении                         |
| 2.1.3 Для прогнозирования соотношения матрица-наполнитель 31               |
| 2.2 Разработка и обучение моделей для прогнозирования модуля упругости при |
| растяжении                                                                 |
| 2.3 Для прогнозирования прочности при растяжении                           |

| 2.4 Разработка нейронной сети для прогнозирования соотношения | матрица |
|---------------------------------------------------------------|---------|
| наполнитель                                                   | . 38    |
| 2.4.1 MLPRegressor из библиотеки sklearn                      | . 38    |
| 2.4.2 Нейросеть из библиотеки tensorflow                      | 40      |
| 2.5 Тестирование модели                                       | 45      |
| 2.6. Разработка приложения                                    | . 47    |
| 2.7. Создание удаленного репозитория                          | . 47    |
| Заключение                                                    | . 48    |
| Библиографический список                                      | . 50    |

#### Введение

Тема данной работы - прогнозирование конечных свойств новых материалов (композиционных материалов).

Композиционными называются материалы, в которых имеет место сочетание двух (или более) химически разнородных компонентов (фаз) с четкой границей раздела между ними. Это неоднородные по химическому составу и структуре материалы.

Структура композиционных материалов представляет собой матрицу (основной компонент), содержащую в своем объеме или армирующие элементы, часто называемые наполнителем. Матрица и наполнитель разделены границей (поверхностью) раздела. Наполнитель равномерно распределен в матрице и имеет заданную пространственную ориентацию.

Композиционные материалы характеризуются совокупностью свойств, не присущих каждому в отдельности взятому компоненту. За счет выбора армирующих элементов, варьирования их объемной доли в матричном материале, а также размеров, формы, ориентации и прочности связи по границе «матрицанаполнитель», свойства композиционных материалов можно регулировать в значительных пределах.

Возможно получить композиты с уникальными эксплуатационными свойствами. Этим обусловлено широкое применение композиционных материалов в различных областях техники. Композиционные материалы используются:

- в авиационной, ракетной и космической технике;
- в металлургии;
- в горнорудной промышленности;
- в химической промышленности;
- в автомобильной промышленности;
- в сельскохозяйственном машиностроении;
- в электротехнической промышленности;

- в ядерной технике;
- в машиностроительной отрасли;
- в сварочной технике;
- в судостроительной промышленности;
- в медицинской промышленности;
- в строительстве;
- в бытовой технике.

Учитывая такое широкое распространение и высокую потребность в новых материалах, тема данной работы является очень актуальной.

Стоимость производства композитного материала высока. Зная характеристики компонентов, невозможно рассчитать свойства композита. Значит, для получения заданных свойств, требуется большое количество испытаний различных комбинаций. Сократить время и затраты на создание определенного материала могла бы помочь система поддержки производственных решений, построенная на принципах машинного обучения.

#### 1. Аналитическая часть

#### 1.1. Постановка задачи

В данной работе исследуется композит с матрицей из базальтопластика и нашивками из углепластика. От специалистов в предметной области был получен датасет, содержащий данные о свойствах матрицы и наполнителя, производственных параметрах и свойствах готового композита. От нас, как специалистов в машинном обучении, требуется разработать модели, прогнозирующие значения некоторых свойств в зависимости от остальных. Так же требуется разработать приложение, делающее удобным использование данных моделей специалистом предметной области.

Датасет состоит из двух файлов: X\_bp (составляющая из базальтопластика) и X пир (составляющая из углепластика).

Файл X bp содержит:

– признаков: 10 и индекс;

- строк: 1023.

Файл X\_nup содержит:

– признаков: 3 и индекс;

- строк: 1040.

Известно, что файлы требуют объединения с типом INNER по индексу. После объединения часть строк из файла X\_nup была отброшена. И дальнейшие исследования проводим с объединенным датасетом, содержащим 13 признаков и 1023 строк или объектов.

Описание признаков объединенного датасета приведено в таблице 1. Все признаки имеют тип float64, то есть вещественный. Пропусков в данных нет. Все признаки, кроме «Угол нашивки», являются непрерывными, количественными. «Угол нашивки» принимает только два значения и будет рассматриваться как категориальный признак.

Таблица 1 — Описание признаков датасета

| Название                             | Файл  | Тип<br>данных | Непустых значений | Уникальных<br>значений |
|--------------------------------------|-------|---------------|-------------------|------------------------|
| Соотношение матрица- наполнитель     | X_bp  | float64       | 1023              | 1014                   |
| Плотность, кг/м3                     | X_bp  | float64       | 1023              | 1013                   |
| модуль упругости, ГПа                | X_bp  | float64       | 1023              | 1020                   |
| Количество отвердителя, м.%          | X_bp  | float64       | 1023              | 1005                   |
| Содержание эпоксидных групп,%_2      | X_bp  | float64       | 1023              | 1004                   |
| Температура вспышки, С_2             | X_bp  | float64       | 1023              | 1003                   |
| Поверхностная плотность, г/м2        | X_bp  | float64       | 1023              | 1004                   |
| Модуль упругости при растяжении, ГПа | X_bp  | float64       | 1023              | 1004                   |
| Прочность при растяжении, МПа        | X_bp  | float64       | 1023              | 1004                   |
| Потребление смолы, г/м2              | X_bp  | float64       | 1023              | 1003                   |
| Угол нашивки, град                   | X_nup | float64       | 1023              | 2                      |
| Шаг нашивки                          | X_nup | float64       | 1023              | 989                    |
| Плотность нашивки                    | X_nup | float64       | 1023              | 988                    |

Гистограммы распределения переменных и диаграммы «ящик с усами» приведены на рисунках 1-3. По ним видно, что все признаки, кроме «Угол нашивки», имеют нормальное распределение и принимают неотрицательные значения. «Угол нашивки» принимает значения: 0, 90.



Рисунок 1 - Гистограммы распределения переменных и диаграммы «ящик с усами»



Рисунок 2 - Гистограммы распределения переменных и диаграммы «ящик с усами»



Рисунок 3 - Гистограммы распределения переменных и диаграммы «ящик с усами»

Нам известно, что датасет был предварительно подготовлен, поэтому отсутствие пропусков не удивительно. В сырых данных пропуски и значения некорректных типов, как правило, имеются.

Так же нас интересует описательная статистика датасета. Она представлена в таблице 2. Она в численном виде отражает то, что мы видим на гистограммах.

Попарные графики рассеяния точек приведены на рисунке 4.

По графикам рассеяния мы видим, что некоторые точки отстоят далеко от общего облака. Так визуально выглядят выбросы — аномальные, некорректные значения данных, выходящие за пределы допустимых значений признака.

Таблица 2 — Описательная статистика признаков датасета

|                                      | Среднее   | Стандартное<br>отклонение | Минимум   | Максимум  | Медиана   |
|--------------------------------------|-----------|---------------------------|-----------|-----------|-----------|
| Соотношение матрица-наполнитель      | 2.9304    | 0.9132                    | 0.3894    | 5.5917    | 2.9069    |
| Плотность, кг/м3                     | 1975.7349 | 73.7292                   | 1731.7646 | 2207.7735 | 1977.6217 |
| модуль упругости,<br>ГПа             | 739.9232  | 330.2316                  | 2.4369    | 1911.5365 | 739.6643  |
| Количество<br>отвердителя, м.%       | 110.5708  | 28.2959                   | 17.7403   | 198.9532  | 110.5648  |
| Содержание эпоксидных групп,%_2      | 22.2444   | 2.4063                    | 14.2550   | 33.0000   | 22.2307   |
| Температура вспышки, С_2             | 285.8822  | 40.9433                   | 100.0000  | 413.2734  | 285.8968  |
| Поверхностная плотность, г/м2        | 482.7318  | 281.3147                  | 0.6037    | 1399.5424 | 451.8644  |
| Модуль упругости при растяжении, ГПа | 73.3286   | 3.1190                    | 64.0541   | 82.6821   | 73.2688   |
| Прочность при<br>растяжении, МПа     | 2466.9228 | 485.6280                  | 1036.8566 | 3848.4367 | 2459.5245 |
| Потребление смолы, г/м2              | 218.4231  | 59.7359                   | 33.8030   | 414.5906  | 219.1989  |
| Угол нашивки, град                   | 44.2522   | 45.0158                   | 0.0000    | 90.0000   | 0.0000    |
| Шаг нашивки                          | 6.8992    | 2.5635                    | 0.0000    | 14.4405   | 6.9161    |
| Плотность нашивки                    | 57.1539   | 12.3510                   | 0.0000    | 103.9889  | 57.3419   |



Рисунок 4 — Попарные графики рассеяния точек

Есть следующие методы выявления выбросов для признаков с нормальным распределением:

- метод 3-х сигм;
- метод межквартильных расстояний.

Применив эти методы на нашем датасете было найдено:

- методом 3-х сигм 24 выброса;
- методом межквартильных расстояний 93 выброса.

Пример выбросов на гистограмме распределения и диаграмме «ящик с усами» приведен на рисунке 5.



Рисунок 5 — Пример выбросов

Поскольку известно, что датасет очищен от явного шума, следует применить метод 3-х сигм как более деликатный, чтобы не потерять значимые данные. Значения, определенные как выбросы, удаляем. После этого осталось в датасете осталось 1000 строк и 13 признаков-переменных.

В задании целевыми переменными указаны:

- модуль упругости при растяжении, Гпа;
- прочность при растяжении, МПа;
- соотношение матрица-наполнитель.

#### 1.2. Описание используемых методов

Предсказание значений вещественной, непрерывной переменной — это задача регрессии. Эта зависимая переменная должна иметь связь с одной или несколькими независимыми переменными, называемых также предикторами или регрессорами. Регрессионный анализ помогает понять, как «типичное» значение зависимой переменной изменяется при изменении независимых переменных.

В настоящее время разработано много методов регрессионного анализа. Например, простая и множественная линейная регрессия. Эти модели являются

параметрическими в том смысле, что функция регрессии определяется конечным числом неизвестных параметров, которые оцениваются на основе данных.

#### 1.2.1 Линейная регрессия

Простая линейная регрессия имеет место, если рассматривается зависимость между одной входной и одной выходной переменными. Для этого определяется уравнение регрессии (1) и строится соответствующая прямая, известная как линия регрессии.

$$y = ax + b \tag{1}$$

Коэффициенты а и b, называемые также параметрами модели, определяются таким образом, чтобы сумма квадратов отклонений точек, соответствующих реальным наблюдениям данных, от линии регрессии была бы минимальной. Коэффициенты обычно оцениваются методом наименьших квадратов.

Если ищется зависимость между несколькими входными и одной выходной переменными, то имеет место множественная линейная регрессия. Соответствующее уравнение имеет вид (2).

$$Y = b0 + b1 * x1 + b2 * x2 + \dots + bn * xn,$$
(2)

где n - число входных переменных.

Очевидно, что в данном случае модель будет описываться не прямой, а гиперплоскостью. Коэффициенты уравнения множественной линейной регрессии подбираются так, чтобы минимизировать сумму квадратов отклонения реальных точек данных от этой гиперплоскости.

Линейная регрессия — первый тщательно изученный метод регрессионного анализа. Его главное достоинство — простота. Такую модель можно построить и рассчитать даже без мощных вычислительных средств. Простота является и главным недостатком этого метода. Тем не менее, именно с линейной регрессии целесообразно начать подбор подходящей модели.

Ha языке python линейная регрессия реализована в sklearn.linear\_model.LinearRegression.

## 1.2.2 Лассо (LASSO) и гребневая (Ridge) регрессия

Метод регрессии лассо (LASSO, Least Absolute Shrinkage and Selection Operator) — это вариация линейной регрессии, специально адаптированная для данных, которые имеют сильную корреляцию признаков друг с другом.

LASSO использует сжатие коэффициентов (shrinkage) и этим пытается уменьшить сложность данных, искривляя пространство, на котором они лежат. В этом процессе лассо автоматически помогает устранить или исказить сильно коррелированные и избыточные функции в методе с низкой дисперсией.

Регрессия лассо использует регуляризацию L1, то есть взвешивает ошибки по их абсолютному значению.

Гребневая регрессия или ридж-регрессия — так же вариация линейной регрессии, очень похожая на регрессию LASSO. Она так же применяет сжатие и хорошо работает для данных, которые демонстрируют сильную мультиколлинеарность.

Самое большое различие между ними в том, что гребневая регрессия использует регуляризацию L2, которая взвешивает ошибки по их квадрату, чтобы сильнее наказывать за более значительные ошибки.

Регуляризация позволяет интерпретировать модели. Если коэффициент стал 0 (для Lasso) или близким к 0 (для Ridge), значит данный входной признак не является значимым.

Эти методы реализованы в sklearn.linear\_model.Lasso и sklearn.linear\_model.Ridge.

## 1.2.3 Метод опорных векторов для регрессии

Метод опорных векторов (support vector machine, SVM) — один из наиболее популярных методов машинного обучения. Он создает гиперплоскость или

набор гиперплоскостей в многомерном пространстве, которые могут быть использованы для решения задач классификации и регрессии.

Чаще всего он применяется в постановке бинарной классификации.

Основная идея заключается в построении гиперплоскости, разделяющей объекты выборки оптимальным способом. Интуитивно, хорошее разделение достигается за счет гиперплоскости, которая имеет самое большое расстояние до ближайшей точки обучающей выборке любого класса. Максимально близкие объекты разных классов определяют опорные вектора.

Если в исходном пространстве объекты линейно неразделимы, то выполняется переход в пространство большей размерности.

Решается задача оптимизации.

Для вычислений используется ядерная функция, получающая на вход два вектора и возвращающая меру сходства между ними:

- линейная;
- полиномиальная;
- гауссовская (rbf).

Эффективность метода опорных векторов зависит от выбора ядра, параметров ядра и параметра С для регуляризации.

Преимущество метода — его хорошая изученность.

Недостатки:

- чувствительность к выбросам;
- отсутствие интерпретируемости.

Вариация метода для регрессии называется SVR (Support Vector Regression).

В python реализацию SVR можно найти в sklearn.svm.SVR.

#### 1.2.4 Метод к-ближайших соседей

Еще один метод классификации, который адаптирован для регрессии - метод k-ближайших соседей (k Nearest Neighbors). На интуитивном уровне суть

метода проста: посмотри на соседей вокруг, какие из них преобладают, таковым ты и являешься.

В случае использования метода для регрессии, объекту присваивается среднее значение по k ближайшим к нему объектам, значения которых уже известны.

Для реализации метода необходима метрика расстояния между объектами. Используется, например, эвклидово расстояние для количественных признаков или расстояние Хэмминга для категориальных.

Этот метод — пример непараметрической регрессии.

Он реализован в sklearn.neighbors.KneighborsRegressor.

#### 1.2.5 Деревья решений

Деревья решений (Decision Trees) - еще один непараметрический метод, применяемый и для классификации, и для регрессии. Деревья решений используются в самых разных областях человеческой деятельности и представляют собой иерархические древовидные структуры, состоящие из правил вида «Если ..., то ...».

Решающие правила автоматически генерируются в процессе обучения на обучающем множестве путем обобщения обучающих примеров. Поэтому их называют индуктивными правилами, а сам процесс обучения — индукцией деревьев решений.

Дерево состоит из элементов двух типов: узлов (node) и листьев (leaf).

В узлах находятся решающие правила и производится проверка соответствия примеров этому правилу. В результате проверки множество примеров, попавших в узел, разбивается на два подмножества: удовлетворяющие правилу и не удовлетворяющие ему. Затем к каждому подмножеству вновь применяется правило и процедура рекурсивно повторяется пока не будет достигнуто некоторое условие остановки алгоритма. В последнем узле проверка и разбиение не производится и он объявляется листом.

В листе содержится не правило, а подмножество объектов, удовлетворяющих всем правилам ветви, которая заканчивается данным листом. Для классификации — это класс, ассоциируемый с узлом, а для регрессии — соответствующий листу интервал целевой переменной.

При формировании правила для разбиения в очередном узле дерева необходимо выбрать атрибут, по которому это будет сделано. Общее правило для классификации можно сформулировать так: выбранный атрибут должен разбить множество наблюдений в узле так, чтобы результирующие подмножества содержали примеры с одинаковыми метками класса, а количество объектов из других классов в каждом из этих множеств было как можно меньше. Для этого были выбраны различные критерии, например, теоретико-информационный и статистический.

Для регрессии критерием является дисперсия вокруг среднего. Минимизируя дисперсию вокруг среднего, мы ищем признаки, разбивающие выборку таким образом, что значения целевого признака в каждом листе примерно равны.

Огромное преимущество деревьев решений в том, что они легко интерпретируемы, понятны человеку. Они могут использоваться для извлечения правил на естественном языке. Еще преимущества — высокая точность работы, нетребовательность к подготовке данных.

Недостаток деревьев решений - склонность переобучаться. Переобучение в случае дерева решений — это точное распознавание примеров, участвующих в обучении и полная несостоятельность на новых данных. В худшем случае, дерево будет большой глубины и сложной структуры, а в каждом листе будет только один объект. Для решения этой проблемы используют разные критерии остановки алгоритма.

Деревья решений реализованы в sklearn.tree.DecisionTreeRegressor.

#### 1.2.6 Случайный лес

Случайный лес (RandomForest) — представитель ансамблевых методов.

Если точность дерева решений оказалось недостаточной, мы можем множество моделей собрать в коллектив. Формула итогового решателя (3) — это усреднение предсказаний отдельных деревьев.

$$a(x) = \frac{1}{N} \sum_{i=1}^{N} b_i(x)$$
(3),

гле

N – количество деревьев;

і – счетчик для деревьев;

b – решающее дерево;

х – сгенерированная нами на основе данных выборка.

Для определения входных данных каждому дереву используется метод случайных подпространств. Базовые алгоритмы обучаются на различных подмножествах признаков, которые выделяются случайным образом.

Преимущества случайного леса:

- высокая точность предсказания;
- редко переобучается;
- практически не чувствителен к выбросам в данных;
- одинаково хорошо обрабатывает как непрерывные, так и дискретные признаки, данные с большим числом признаков;
  - высокая параллелизуемость и масштабируемость.

Из недостатков можно отметить, что его построение занимает больше времени. Так же теряется интерпретируемость.

Метод реализован в sklearn.ensemble.RandomForestRegressor.

## 1.2.7 Градиентный бустинг

Градиентный бустинг (GradientBoosting) — еще один представитель ансамблевых методов.

В отличие от случайного леса, где каждый базовый алгоритм строится независимо от остальных, бустинг воплощает идею последовательного построения линейной комбинации алгоритмов. Каждый следующий алгоритм старается уменьшить ошибку предыдущего.

Чтобы построить алгоритм градиентного бустинга, нам необходимо выбрать базовый алгоритм и функцию потерь или ошибки (loss). Loss-функция — это мера, которая показывает насколько хорошо предсказание модели соответствуют данным. Используя градиентный спуск и обновляя предсказания, основанные на скорости обучения (learning rate), ищем значения, на которых loss минимальна.

Бустинг, использующий деревья решений в качестве базовых алгоритмов, называется градиентным бустингом над решающими деревьями. Он отлично работает на выборках с «табличными», неоднородными данными и способен эффективно находить нелинейные зависимости в данных различной природы. На настоящий момент это один из самых эффективных алгоритмов машинного обучения. Благодаря этому он широко применяется во многих конкурсах и промышленных задачах. Он проигрывает только нейросетям на однородных данных (изображения, звук и т. д.).

Из недостатков алгоритма можно отметить только затраты времени на вычисления и необходимость грамотного подбора гиперпараметров.

В этой работе я использую реализацию градиентного бустинга из библиотеки sklearn — sklearn.ensemble.GradientBoostingRegressor. Хотя существуют и другие реализации, некоторые из которых более мощные, например, XDGBoost.

#### 1.2.8 Нейронная сеть

Нейронная сеть — это последовательность нейронов, соединенных между собой связями. Структура нейронной сети пришла в мир программирования из биологии. Вычислительная единица нейронной сети — нейрон или персептрон.

У каждого нейрона есть определённое количество входов, куда поступают сигналы, которые суммируются с учётом значимости (веса) каждого входа.

Смещение — это дополнительный вход для нейрона, который всегда равен 1 и, следовательно, имеет собственный вес соединения.

Так же у нейрона есть функция активации, которая определяет выходное значение нейрона. Она используется для того, чтобы ввести нелинейность в нейронную сеть. Примеры активационных функций: relu, сигмоида.

У полносвязной нейросети выход каждого нейрона подается на вход всем нейронам следующего слоя. У нейросети имеется:

- входной слой его размер соответствует входным параметрам;
- скрытые слои их количество и размерность определяем специалист;
- выходной слой его размер соответствует выходным параметрам.

Прямое распространение — это процесс передачи входных значений в нейронную сеть и получения выходных данных, которые называются прогнозируемым значением.

Прогнозируемое значение сравниваем с фактическим с помощью функции потери. В методе обратного распространения ошибки градиенты (производные значений ошибок) вычисляются по значениям весов в направлении, обратном прямому распространению сигналов. Значение градиента вычитают из значения веса, чтобы уменьшить значение ошибки. Таким образом происходит процесс обучения. Обновляются веса каждого соединения, чтобы функция потерь минимизировалась.

Для обновления весов в модели используются различные оптимизаторы.

Количество эпох показывает, сколько раз выполнялся проход для всех примеров обучения.

Нейронные сети применяются для решения задач регрессии, классификации, распознавания образов и речи, компьютерного зрения и других. На настоящий момент это самый мощный, гибкий и широко применяемый инструмент в машинном обучении.

#### 1.3. Разведочный анализ данных

Цель разведочного анализа данных — выявить закономерности в данных. Для корректной работы большинства моделей желательна сильная зависимость выходных переменных от входных и отсутствие зависимости между входными переменными.

На рисунке 4 мы видели график попарного рассеяния точек. По форме «облаков точек» мы не заметили зависимостей, которые станут основой работы моделей. Помочь выявить связь между признаками может матрица корреляции, приведенная на рисунке 6.



Рисунок 6 — Матрица корреляции

По матрице корреляции мы видим, что все коэффициенты корреляции близки к нулю, что означает отсутствие линейной зависимости между признаками.

#### 1.3.1 Выбор признаков

Статистическими методами мы зависимостей между признаками не обнаружили. Хорошо было бы узнать, какие связи между признаками видит специалист по предметной области.

Можно предположить, что признаки делятся на:

- свойства матрицы;
- свойства наполнителя;

- свойства смеси и производственного процесса;
- свойства готового композита.



Рисунок 7 — Группы признаков с точки зрения предметной области

В этой работе я понял предметную область и распределил признаки по группам, как показано на рисунке 7. Возможно, это некорректное понимание.

Таким образом, случаные целевые признаки имеют зависимости вида (4), (5), (6).

```
модульупр — типрирастяжении (композит) = f(\text{матрица, наполнитель, процесс}) \tag{4} \text{прочность прирастяжении (композит) =} \\ f(\text{матрица, наполнитель, процесс}) \tag{5} \\ \text{соотн — ематрица — наполнитель (процесс)}
```

= f(матрица, наполнитель, композит)

(6)

Для каждого из целевых признаков построю отдельную модель, следовательно, решаем три отдельные задачи.

#### 1.3.2 Ход решения задачи

Ход решения каждой из задач и построения оптимальной модели будет следующим:

- разделить данные на тренировочную и тестовую выборки. В задании указано, что на тестирование оставить 30% данных;
  - выполнить препроцессинг, то есть подготовку исходных данных;
- выбрать базовую модель для определения нижней границы качества предсказания. Использую базовую модель, возвращающую среднее значение целевого признака. Лучшая модель по своим характеристикам должна быть лучше базовой;
- взять несколько моделей с гиперпараметрами по умолчанию, и используя перекрестную проверку, посмотреть их метрики на тренировочной выборке;
- подобрать для этих моделей гиперпараметры с помощью с помощью поиска по сетке с перекрестной проверкой, количество блоков равно 10;
- сравнить метрики моделей после подбора гиперпараметров и выбрать лучшую;
- получить предсказания лучшей и базовой моделей на тестовой выборке,
   сделать выводы;
- сравнить качество работы лучшей модели на тренировочной и тестовой выборке.

### 1.3.2 Препроцессинг

Цель препроцессинга, или предварительной обработки данных — обеспечить корректную работу моделей.

Его необходимо выполнять после разделения на тренировочную и тестовую выборку, как будто мы не знаем параметров тестовой выборки (минимум, максимум, матожидание, стандартное отклонение).

Препроцессинг для категориальных и количественных признаков выполняется по-разному.

Категориальный признак один — «Угол нашивки, град». Он принимает значения 0 и 90. Модели отработают лучше, если мы превратим эти значения в 0 и 1 с помощью LabelEncoder или OrdinalEncoder.

Вещественных количественных признаков у нас большинство. Проблема вещественных признаков в том, что их значения лежат в разных диапазонах, в разных масштабах. Это видно в таблице 2. Необходимо провести одно из двух возможных преобразований:

- нормализацию приведение в диапазон от 0 до 1 с помощью
   MinMaxScaler;
- стандартизацию приведение к матожиданию 0, стандартному отклонению 1 с помощью StandartScaler.

Будем использовать стандартизацию и StandardScaler.

Препроцессинг необходимо повторить в приложении для введенных данных. Поэтому удобно реализовать предварительную обработку с помощью ColumnTransformer, а потом сохранить и загрузить этот объект аналогично объекту модели.

Выходные переменные никак не изменяю.

## 1.3.3 Перекрестная проверка

Для обеспечения статистической устойчивости метрик модели используем перекрестную проверку или кросс-валидацию. Чтобы ее реализовать, выборка разбивается необходимое количество раз на тестовую и валидационную. Модель обучается на тестовой выбоке, затем выполняется расчет метрик качества на валидационной. В качестве результата мы получаем средние метрики качест-

ва для всех валидационных выборок. Перекрестную проверку реализует функция cross validate из sklearn.

## 1.3.4 Поиск гиперпараметров по сетке

Поиск гиперпараметров по сетке peanusyer класс GridSearchCV из sklearn. Он получает модель и набор гиперпараметров, поочередно передает их в модель, выполняет обучение и определяет лучшие комбинации гиперпараметры. Перекрестная проверка уже встроена в этот класс.

#### 1.3.5 Метрики качества моделей

Существует множество различных метрик качества, применимых для регрессии. В этой работе я использую:

- R2 или коэффициент детерминации измеряет долю дисперсии, объясненную моделью, в общей дисперсии целевой переменной. Если он близок к единице, то модель хорошо объясняет данные, если же он близок к нулю, то прогнозы сопоставимы по качеству с константным предсказанием;
- RMSE (Root Mean Squared Error) или корень из средней квадратичной ошибки принимает значения в тех же единицах, что и целевая переменная. Метрика использует возведение в квадрат, поэтому хорошо обнаруживает грубые ошибки, но сильно чувствительна к выбросам;
- MAE (Mean Absolute Error) средняя абсолютная ошибка так же принимает значениях в тех же единицах, что и целевая переменная;
- MAPE (Mean Absolute Percentage Error) или средняя абсолютная процентная ошибка — безразмерный показатель, представляющий собой взвешенную версию MAE;
- max error или максимальная ошибка данной модели в единицах измерения целевой переменной.

RMSE, MAE, MAPE и тах еггог принимают положительные значения. Но отображать мы их будем со знаком «-». Так корректно отработает выделение цветом лучших моделей — эти метрики надо минимизировать.

R2 в норме принимает положительные значения. Эту метрику надо максимизировать. Отрицательные значение коэффициента детерминации означают плохую объясняющую способность модели.

## 2. Практическая часть

## 2.1. Разбиение и предобработка данных

#### 2.1.1 Для прогнозирования модуля упругости при растяжении

Признаки датасета были разделены на входные и выходные, а строки - на тренировочное и тестовое множество. Размерности полученных наборов данных показаны на рисунке 8. Описательная статистика входных признаков до и после предобработки показана на рисунке 9. Описательная статистика выходного признака показана на рисунке 10.

Рисунок 8 - Размерности тренировочного и тестового множеств после разбиения для 1-й задачи

|       | Соотношение<br>матрица-<br>наполнитель              | Плотность,<br>кг/м3              | модуль<br>упругости,<br>ГПа              | Количество<br>отвердителя,<br>м.%              | Содержание<br>эпоксидных<br>групп,%_2 | Температура<br>вспышки, С_2 | Поверхностная<br>плотность, г/<br>м2 | Потребление<br>смолы, г/м2 | Угол<br>нашивки,<br>град | Bar<br>називки       | Плотность<br>нашивко      |
|-------|-----------------------------------------------------|----------------------------------|------------------------------------------|------------------------------------------------|---------------------------------------|-----------------------------|--------------------------------------|----------------------------|--------------------------|----------------------|---------------------------|
| min   | 0.389403                                            | 1784.482245                      | 4.339154                                 | 29.956150                                      | 15.881668                             | 173.484920                  | 1.668002                             | 41.048278                  | 0.000000                 | 0.145034             | 20.571633                 |
| max   | 5.455566                                            | 2192.297637                      | 1628.000000                              | 192.851702                                     | 28.955094                             | 403.652861                  | 1291.340115                          | 383.663401                 | 90.000000                | 14.440522            | 89.876616                 |
| mean  | 2.907441                                            | 1972.568298                      | 743.180523                               | 110.927781                                     | 22.237431                             | 286.158802                  | 482.049370                           | 218.246969                 | 43.457143                | 6.890381             | 57.66460                  |
| atd   | 0.908368                                            | 70.846531                        | 326.626902                               | 27.485979                                      | 2.347655                              | 39.974223                   | 273.399143                           | 59.487795                  | 45.005702                | 2.536808             | 11.88019                  |
|       |                                                     |                                  |                                          |                                                |                                       |                             |                                      |                            |                          |                      |                           |
| Опис  | этельная стати                                      | стика входных                    | данных после                             | предобработки                                  |                                       |                             |                                      |                            |                          |                      |                           |
| Опис  | Состношение<br>матрица-<br>наполнитель              | Плотность,<br>кг/м3              | модуль<br>упругости,<br>гпа              | предобработки  Количество отвердители, м.%     | Содержание<br>эпоксидных<br>групп,%_2 | Температура<br>вспышки, С_2 | Поверхностная<br>плотность, г/<br>м2 | Потребление<br>смолы, г/м2 | Ваг<br>нашивки           | Плотность<br>нашиюки | Уго:<br>нашивки<br>гра;   |
| Onuc. | Соотношение<br>матрица-                             | Плотность,                       | модуль<br>упругости,                     | Количество<br>отвердителя,                     | эпоксидных                            |                             | плотность, г/                        |                            |                          |                      | нашивки                   |
| min   | Соотношение<br>матрица-<br>наполнитель              | Плотность,<br>кг/м3              | модуль<br>упругости,<br>ГПа              | Количество<br>отвердителя,<br>м.%              | эпоксидных<br>групп,%_2               | вспышки, С_2                | плотность, г/<br>м2                  | смолы, г/н2                | нашивки                  | нацияки              | нашиеки<br>гра<br>0.00000 |
|       | Соотношение<br>матрица-<br>наполнитель<br>-2.774030 | Плотность,<br>яг/м3<br>-2.656736 | модуль<br>упругости,<br>гпа<br>-2 263652 | Количество<br>отвердители,<br>м.%<br>-2 948031 | эпоксидных<br>групп, 1_2<br>-2.709217 | -2.820679                   | плотность, г/<br>м2<br>-1.758326     | смолы, г/м2<br>-2.980870   | навивки<br>-2.660891     | нацияни<br>-3.124486 | кашиеки<br>гра            |

Рисунок 9 - Описательная статистика входных признаков до и после предобработки для 1-й задачи

|      | Модуль | упругости | при | растяжении, | гпа  |
|------|--------|-----------|-----|-------------|------|
| min  |        |           |     | 64.05       | 4061 |
| max  |        |           |     | 82.68       | 2051 |
| mean |        |           |     | 73.35       | 4026 |
| std  |        |           |     | 3.06        | 6086 |

Рисунок 10 - Описательная статистика выходного признака для 1-й задачи

#### 2.1.2 Для прогнозирования прочности при растяжении

Признаки датасета были разделены на входные и выходные, а строки - на тренировочное и тестовое множество. Размерности полученных наборов данных показаны на рисунке 11. Описательная статистика входных признаков до и после предобработки показана на рисунке 12. Описательная статистика выходного признака показана на рисунке 13.

x2\_train: (700, 11) y2\_train: (700, 1) x2\_test: (300, 11) y2\_test: (300, 1)

Рисунок 11 - Размерности тренировочного и тестового множеств после разбиения для 2-й задачи

|            | Соотношение<br>матрица-<br>наполнитель | Плотность,<br>кг/м3        | модуль<br>упругости,<br>ГПа    | Количество<br>отвердителя,<br>м.% | Содержание<br>эпоксидных<br>групп,%_2 | Температура<br>вспышки, С_2 | Поверхностная<br>плотность, г/<br>м2 | Потребление<br>смолы, г/м2 | Угол<br>нашивки,<br>град | Ваг<br>навмвки       | Плотность<br>нашивки         |
|------------|----------------------------------------|----------------------------|--------------------------------|-----------------------------------|---------------------------------------|-----------------------------|--------------------------------------|----------------------------|--------------------------|----------------------|------------------------------|
| min        | 0.389403                               | 1784,482245                | 4.339154                       | 29.956150                         | 15.881668                             | 173.484920                  | 1.668002                             | 41.048278                  | 0.000000                 | 0.145034             | 20.571633                    |
| max        | 5.455566                               | 2192.297637                | 1628.000000                    | 192.851702                        | 28.955094                             | 403 652861                  | 1291.340115                          | 383.663401                 | 90.000000                | 14.440522            | 89.876616                    |
| mean       | 2.907441                               | 1972.568298                | 743.180523                     | 110.927781                        | 22.237431                             | 286.158802                  | 482.049370                           | 218.246969                 | 43.457143                | 6.890381             | 57.664603                    |
| std        | 0.908368                               | 70.846531                  | 326.626902                     | 27.485979                         | 2.347655                              | 39.974223                   | 273.399143                           | 59.487795                  | 45.005702                | 2.536808             | 11.880191                    |
| Р. Опис    | ательная стати                         | стика вкодных              | данных после                   | предобработки                     |                                       |                             |                                      |                            |                          |                      |                              |
|            |                                        |                            |                                |                                   |                                       |                             |                                      |                            |                          |                      |                              |
|            | Соотношение<br>матрица-<br>наполнитель | Плотность,<br>кг/м3        | модуль<br>упругости,<br>ГПа    | Количество<br>отвердителя,<br>м.% | Содержание<br>эпоксидных<br>групп,%_2 | Температура<br>вспышки, С_2 | Поверхностная<br>плотность, г/<br>м2 | Потребление<br>смолы, г/м2 | Шаг<br>жаширки           | Плотность<br>нашивки | Угол<br>нашивки,<br>град     |
| min        | матрица-                               |                            | упругости,                     | отвердителя,                      | эпоксидных                            |                             | плотность, г/                        |                            | O TO TOTAL               |                      | нашивки,                     |
| min<br>mex | матрица-<br>наполнитель                | KF/M3                      | упругости,<br>ГПа              | отвердителя,<br>м.∿               | эпоксидных<br>групп,%_2               | вспышки, С_2                | плотность, г/<br>м2                  | снолы, г/м2                | машишки                  | нашивки              | нашивки,<br>град<br>0.000000 |
|            | матрица-<br>наполнитель<br>-2.884928   | кг/м <b>3</b><br>-2.557447 | упругости,<br>ГПа<br>-2.197166 | отвердителя,<br>м.%<br>-2.804896  | эпоксидных<br>групп, №_2<br>-2.573362 | вспышки, С_2<br>-2.743752   | плотность, г/<br>м2<br>-1.645837     | смолы, г/м2<br>-3.073555   | нашивки<br>-2.614982     | нашивки<br>-3.055713 | нашивки,<br>град             |

Рисунок 12 - Описательная статистика входных признаков до и после предобработки для 2-й задачи



Рисунок 13 - Описательная статистика выходного признака для 2-й задачи

## 2.1.3 Для прогнозирования соотношения матрица-наполнитель

Признаки датасета были разделены на входные и выходные, а строки - на тренировочное и тестовое множество. Размерности полученных наборов данных показаны на рисунке 14. Описательная статистика входных признаков до и после предобработки показана на рисунке 15. Описательная статистика выходного признака показана на рисунке 16.

x3\_train: (700, 12) y3\_train: (700, 1) x3 test: (300, 12) y3\_test: (300, 1)

Рисунок 14 - Размерности тренировочного и тестового множеств после разбиения для 3-й задачи



Рисунок 15 - Описательная статистика входных признаков до и после предобработки для 3-й задачи



Рисунок 16 - Описательная статистика выходного признака для 3-й задачи

## 2.2 Разработка и обучение моделей для прогнозирования модуля упругости при растяжении

Для подбора лучшей модели для этой задачи были использованы следующие модели:

- LinearRegression линейная регрессия (раздел 1.2.1);
- Ridge гребневая регрессия (раздел 1.2.2);
- Lasso лассо-регрессия (раздел 1.2.2);
- SVR метод опорных векторов (раздел 1.2.3);
- KneighborsRegressor метод ближайших соседей (раздел 1.2.4);
- DecisionTreeRegressor деревья решений (раздел 1.2.5);
- RandomForestRegressor случайный лес (раздел 1.2.6).

В качестве базовой модели использован DummyRegressor, возвращающий среднее значение целевого признака.

Метрики работы выбранных моделей с гиперпараметрами по умолчанию, полученные с помощью перекрестной проверки на тестовом множестве, приведены на рисунке 17.

Ни одна из выбранных мной моделей не оказалась подходящей для наших данных.

Коэффициент детерминации R2 близок к 0 для линейных моделей и метода опорных векторов. Значит, они не лучше базовой модели. И остальные метрики у них примерно совпадают с базовой моделью. Гораздо хуже линейных моделей с гиперпараметрами по умолчанию отработали метод ближайших соседей и деревья решений.

Случайный лес отработал лучше, чем одно дерево решений, но хуже, чем линейные модели.

|                       | R2        | RMSE      | MAE       | MAPE      | тах_еггог  |
|-----------------------|-----------|-----------|-----------|-----------|------------|
| DummyRegressor        | -0.021502 | -3.059339 | -2.465060 | -0.033641 | -8.053111  |
| LinearRegression      | -0.022620 | -3.059379 | -2.464305 | -0.033641 | -8.139731  |
| Ridge                 | -0.022538 | -3.059264 | -2.464226 | -0.033640 | -8.139352  |
| Lasso                 | -0.021502 | -3.059339 | -2.465060 | -0.033641 | -8.053111  |
| SVR                   | -0.037763 | -3.082058 | -2.472179 | -0.033767 | -8.146369  |
| KNeighborsRegressor   | -0.197298 | -3.312241 | -2.624624 | -0.035795 | -8.876770  |
| DecisionTreeRegressor | -1.229594 | -4.485293 | -3.545377 | -0.048431 | -12.178495 |
| RandomForestRegressor | -0.061516 | -3.117096 | -2.485271 | -0.033934 | -8.457280  |

Рисунок 17 — Результаты моделей с гиперпараметрами по умолчанию

|                                                                                                                       | 82        | RMSE      | MAE       | MAPE      | max_error |
|-----------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Ridge(alpha=480, solver="sqr")                                                                                        | -0.013299 | -3.046623 | -2.455526 | -0.033517 | -8.071899 |
| Lasso(alpha=0.15)                                                                                                     | -0.019048 | -3.055423 | -2.459921 | -0.033574 | -8.102101 |
| SVR(C=0.015, kernel=linear)                                                                                           | -0.016521 | -3.052020 | -2.456808 | -0.033549 | -8.140634 |
| KNeighborsRegressor(n_neighbors=25)                                                                                   | -0.030786 | -3.074728 | -2.461113 | -0.033581 | -8.031419 |
| DecisionTreeRegressor(criterion='absolute_error', max_depth=2, max_features=10, random_state=3128, splitter='random') | -0.009281 | -3.041407 | -2.435050 | -0.033185 | -B.004156 |
| RandomForestRegressor(bootstrap=False, criterion='absolute_error', max_depth=4, max_features=2, random_state=3128)    | -0.015396 | -3.049810 | -2.446070 | -0.033369 | -8.275716 |

Рисунок 18 — Результаты моделей после подбора гиперпараметров

После выполнения подбора гиперпарметров по сетке с перекрестной проверкой, получили метрики, приведенные на рисунке 18.

Можно сделать вывод, что подбирая гиперпараметры, можно значительно улучшить предсказание выбранной модели.

Все модели крайне плохо описывают исходные данные - не удалось добиться положительного значения R2. Самая лучшая модель дает коэффициент детерминации близкий к нулю, что соответствует базовой модели.

Линейные модели совпадают с базовой моделью. Их характеристики улучшились, но не значительно.

Метод опорных векторов в процессе подбора гиперпараметры лучшим ядром выбрал линейное и отработал аналогично линейным моделям.

Метод ближайших соседей увеличением количества соседей радикально улучшил качество работы. Но его лучшие результаты все равно немного, но отстают от линейных моделей.

Деревья решений при кропотливом подборе параметров превзошли результат линейной модели. Но они не являются объясняющей зависимость моделью.

Собирая деревья в ансамбли, можно улучшать характеристики. Но подбор параметров для леса затруднен тем, что это затратный по времени процесс. По этой причине мне не удалось получить комбинацию параметров для леса, которая была бы лучше дерева решений.

Поэтому в качестве лучшей модели выбираю дерево решений. На рисунке 19 приведена визуализация работы лучшей модели на тестовом множестве.

Сложно визуализировать регрессию в многомерном пространстве. Но даже на таком графике мы видим, насколько не соответствует лучшая модель исходным данным и насколько она неудачна.



Рисунок 19 — Визуализация работы модели

|                                | R2        | RMSE      | MAE       | MAPE      | max_error |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|
| Базовая модель                 | -0.001377 | -3.222954 | -2.577796 | -0.035319 | -7.800690 |
| Лучшая модель (дерево решений) | -0.035776 | -3.277844 | -2.610243 | -0.035707 | -8.152045 |

Рисунок 20 - Метрики работы лучшей модели на тестовом множестве

Метрики работы лучшей модели на тестовом множестве и сравнение с базовой отражены на рисунке 20. Они подтверждают: полученная модель хуже базовой. Результат исследования отрицательный. Не удалось получить модели, которая могла бы оказать помощь в принятии решений специалисту предметной области.

#### 2.3 Для прогнозирования прочности при растяжении

Для подбора лучшей модели для этой задачи используем следующие модели:

- LinearRegression линейная регрессия (раздел 1.2.1);
- Ridge гребневая регрессия (раздел 1.2.2);
- Lasso лассо-регрессия (раздел 1.2.2);
- SVR метод опорных векторов (раздел 1.2.3);
- DecisionTreeRegressor деревья решений (раздел 1.2.5);
- GradientBoostingRegressor случайный лес (раздел 1.2.7).

В качестве базовой модели используем DummyRegressor, возвращающий среднее значение целевого признака.

Метрики работы выбранных моделей с гиперпараметрами по умолчанию, полученные с помощью перекрестной проверки на тестовом множестве, приведены на рисунке 21.

|                           | R2        | RMSE        | MAE         | MAPE      | max_error    |
|---------------------------|-----------|-------------|-------------|-----------|--------------|
| DummyRegressor            | -0.012988 | -484.654884 | -385.827028 | -0.169931 | -1228.780064 |
| LinearRegression          | -0.022969 | -487.063246 | -388.303827 | -0.170559 | -1249.517419 |
| Ridge                     | -0.022896 | -487.046319 | -388.290667 | -0.170555 | -1249.460177 |
| Lasso                     | -0.021388 | -486.695829 | -387.988314 | -0.170448 | -1248.210674 |
| SVR                       | -0.011952 | -484.429045 | -385.715018 | -0.169382 | -1232.355369 |
| DecisionTreeRegressor     | -1.187233 | -702.791415 | -555.350332 | -0.238620 | -1927.849316 |
| GradientBoostingRegressor | -0.084580 | -500.230316 | -398.052645 | -0.174164 | -1312.873325 |

Рисунок 21 — Результаты моделей с гиперпараметрами по умолчанию

Ни одна из выбранных мной моделей не соответствует данным.

R2 близок к 0 для линейных моделей и метода опорных векторов. Значит, они не лучше базовой модели. И остальные метрики у них примерно совпадают с базовой моделью.

Гораздо хуже линейных моделей с гиперпараметрами по умолчанию отработали деревья решений.

Градиентный бустинг с параметрами по умолчанию отработал лучше дерева. Он тоже соответствует базовой модели.

После выполнения подбора гиперпарметров по сетке с перекрестной проверкой, получили метрики, приведенные на рисунке 22.

|                                                                                                               | R2        | RMSE        | MAE         | MAPE      | max_error    |
|---------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------|-----------|--------------|
| Ridge(alpha=990, solver='sparse_og')                                                                          | -0.010764 | -484.199853 | 385.891069  | -0.169828 | -1233.196571 |
| Lasso(alpha=50)                                                                                               | -0.012988 | -484.654884 | -385.827028 | -0.169931 | -1228.780064 |
| SVR(C=0.2)                                                                                                    | -0.012246 | -484.489867 | -385.724279 | -0.169413 | -1232.341495 |
| DecisionTreeRegressor(criterion='poisson', max_depth=3, max_features=6, random_state=3128, splitter='random') | -0.009440 | -483.713960 | -384.045197 | -0.169031 | -1244.359901 |
| GradientBoostingRegressor(max_depth=1, max_features=1, n_estimators=50, random_state=3128)                    | -0.005486 | -483.026609 | -385.268908 | -0.169409 | -1231.878292 |

Рисунок 22 — Результаты моделей после подбора гиперпараметров

Подбор гиперпараметров - интересный процесс. Но нам он не помог получить модель, превосходящую базовую. Все модели крайне плохо описывают исходные данные. Не удалось добиться коэффициента детерминации, большего нуля.

Линейные после подбора немного улучшили характеристики.

Метод опорных векторов отработал аналогично линейным моделям.

Деревья решений после подбора параметров улучшили неудачный результат с параметрами по умолчанию.

Но лучший результат дает градиентный бустинг. Значения ошибок примерно такие же, как у дерева решений. Но коэффициент детерминации немного больше, что показывает чуть лучшую объясняющую способность модели.

Поэтому в качестве лучшей модели выбираем градиентный бустинг. На рисунке 23 приведена визуализация работы лучшей модели на тестовом множестве.



Рисунок 23 — Визуализация работы модели

Визуализируя результаты градиентного бустинга с выбранными параметрами, мы видим насколько они плохи и далеки от исходных данных. Но результаты выглядят более «естественно», чем те, что получены деревом решений для модуля упругости при растяжении.

Метрики работы лучшей модели на тестовом множестве и сравнение с базовой отражены на рисунке 24. Несмотря на то, что градиентный бустинг показывает результаты чуть-чуть лучше базовой, результат исследования отрицательный. Не удалось получить модели, которая могла бы оказать помощь в принятии решений специалисту предметной области.

|                                     | R2        | RMSE                       | MAE         | MAPE      | max_error    |
|-------------------------------------|-----------|----------------------------|-------------|-----------|--------------|
| Базовая модель                      | -0.000531 | -479.694 <mark>15</mark> 3 | -375.066608 | -0.165566 | -1431.321957 |
| Лучшая модель (градиентный бустинг) | 0.004028  | <del>-4</del> 78.600202    | -376.647056 | -0.166046 | -1384.841404 |

Рисунок 24 - Метрики работы лучшей модели на тестовом множестве

# 2.4 Разработка нейронной сети для прогнозирования соотношения матрица-наполнитель

По заданию для соотношения матрица-наполнитель необходимо построить нейросеть. Но для сравнения нам также понадобится базовая модель DummyRegressor, возвращающая среднее целевого признака.

# 2.4.1 MLPRegressor из библиотеки sklearn

Строим нейронную сеть с помощью класса MLPRegressor следующей архитектуры:

- слоев: 8;
- нейронов на каждом слое: 24;
- активационная функция: relu;
- оптимизатор: adam;
- пропорция разбиения данных на тестовые и валидационные: 30%;
- ранняя остановка, если метрики на валидационной выборке не улучшаются;
  - количество итераций: 5000.

Нейросеть обучилась за 343мс и 33 итерации. График обучения приведен на рисунке 25.



Рисунок 25 — График обучения MLPRegressor

Визуализация результатов, полученных нейросетью, приведены на рисунке 26. Видно, что нейросеть пыталась подстроится под исходные данные, но хорошо не получилось.



Рисунок 26 — Визуализация работы модели

Метрики работы нейросети MLPRegressor на тестовом множестве и сравнение с базовой моделью отражены на рисунке 27. Несмотря на красивый график с рисунка 26, метрики говорят об отсутствии результата, который можно внедрить. Ошибка нейросети составляет 30,7%, а ее значения ошибок хуже, чем у базовой модели.

|                | R2        | RMSE      | MAE       | MAPE      | max_error |
|----------------|-----------|-----------|-----------|-----------|-----------|
| DummyRegressor | -0.011269 | -0.911261 | -0.737067 | -0.299795 | -2.684301 |
| MLPRegressor   | -0.052842 | -0.929803 | -0.751262 | -0.306957 | -2.790557 |

Рисунок 27 — Метрики работы нейросети MLPRegressor на тестовом множестве

## 2.4.2 Нейросеть из библиотеки tensorflow

Строю нейронную сеть с помощью класса keras. Sequential со следующими параметрами:

- входной слой для 12 признаков;
- выходной слой для 1 признака;
- скрытых слоев: 8;
- нейронов на каждом скрытом слое: 24;
- активационная функция скрытых слоев: relu;
- оптимизатор: Adam;
- loss-функция: MeanAbsolutePercentageError.

Архитектура нейросети приведена на рисунках 28 и 29.

| Layer (type)    | Output | Shape | Param # |
|-----------------|--------|-------|---------|
| dense_1 (Dense) | (None, | 24)   | 312     |
| dense_2 (Dense) | (None, | 24)   | 689     |
| dense_3 (Dense) | (None, | 24)   | 600     |
| dense_4 (Dense) | (None, | 24)   | 600     |
| dense_5 (Dense) | (None, | 24)   | 600     |
| dense_6 (Dense) | (None, | 24)   | 600     |
| dense_7 (Dense) | (None, | 24)   | 600     |
| dense_8 (Dense) | (None, | 24)   | 600     |
| out (Dense)     | (None, | 1)    | 25      |

Рисунок 28 — Архитектура нейросети в виде summary



Рисунок 29 — Архитектура нейросети в виде графа

Запускаем обучение нейросети со следующими параметрами:

- пропорция разбиения данных на тестовые и валидационные: 30%;
- количество эпох: 50.
- раннюю остановку не используем.

График обучения приведен на рисунке 30, ошибка — в таблице 2.



Рисунок 30 — График обучения нейросети

Видно, что примерно до 8 эпохи обучение шло хорошо, а потом сеть начала переобучаться. Значение loss на тестовых выборках продолжило уменьшаться, а на валидационной начало расти.

Одним из способов борьбы с переобучением может быть ранняя остановка обучения, если val\_loss начинает расти. Для этого в tensorflow используются callbacks. Пробуем взять нейросеть с той же архитектурой и запустить обучение с ранней остановкой. График обучения приведен на рисунке 31, а ошибка — в таблице 2. Очевидно, что решение проблемы переобучения повышает точность модели на новых данных.

Еще одним методом борьбы с переобучением является добавление Dropout-слоев. Построим модель аналогичной архитектуры, только после каждого скрытого слоя добавим слой Dropout с параметром 0.05. Такие слои выключат 5% случайных нейронов на каждом слое.

График обучения приведен на рисунке 32, а ошибка — в таблице 2. Видно, что Dropout-слои справились с переобучением.

Использование ранней остановки сокращает время на обучение модели, а использование Dropout увеличивает. Но уменьшается риск, что мы остановились слишком рано.



Рисунок 31 — График обучения нейросети с ранней остановкой



Рисунок 32 — График обучения нейросети с Dropout-слоем

Таблица 2. Борьба с переобучением нейросети

|                               | Draw | Ошибка на          | Время       |
|-------------------------------|------|--------------------|-------------|
|                               | Эпох | тестовых данных, % | обучения, с |
| Нейросеть переобученная       | 50   | 37.37              | 5.85        |
| Нейросеть с ранней остановкой | 12   | 31.28              | 2.25        |
| Нейросеть с dropout-слоями    | 50   | 32.41              | 12.4        |

Визуализация результатов работы нейросетей отображена на рисунке 33, а их метрики — на рисунке 34.



Рисунок 33 - Визуализация результатов работы нейросетей

|                               | R2        | RMSE      | MAE       | MAPE      | max_error |
|-------------------------------|-----------|-----------|-----------|-----------|-----------|
| DummyRegressor                | -0.011269 | -0.911261 | -0.737067 | -0.299795 | -2.684301 |
| Нейросеть переобученная       | -0.624376 | -1.154922 | -0.938195 | -0.373712 | -2.868809 |
| Нейросеть с ранней остановкой | -0.322407 | -1.042058 | -0.852214 | -0.312846 | -2.781806 |
| Нейросеть dropout             | -0.628132 | -1.156256 | -0.960385 | -0.343979 | -2.903841 |

Рисунок 34 - Метрики работы нейросетей на тестовом множестве

Визуализация результатов показывает, что нейросеть из библиотеки tensorflow старалась подстроиться к данным. Выглядят результаты «похоже», но метрики разочаровывают. Лучшая обобщающая способность и меньшие значения ошибок на тестовом множестве оказались у нейросети, обученной с ранней остановкой. Но и она предсказывает гораздо хуже базовой модели.

#### 2.5 Тестирование модели

Согласно заданию, необходимо сравнить ошибку каждой модели на тренировочной и тестирующей части выборки.

Модель для предсказания модуля упругости при растяжении - DecisionTreeRegressor(criterion='absolute\_error', max\_depth=2, max\_features=10, splitter='random'). Сравнение ее ошибок показано на рисунке 35.

|                                 | R2        | RMSE      | MAE       | MAPE      | max_error |
|---------------------------------|-----------|-----------|-----------|-----------|-----------|
| Модуль упругости, тренировочный | 0.017295  | -3.037284 | -2.410294 | -0.032850 | -9.008468 |
| Модуль упругости, тестовый      | -0.035776 | -3.277844 | -2.610243 | -0.035707 | -8.152045 |

Рисунок 35 - Сравнение ошибок модели для модуля упругости при растяжении на тренировочном и тестовом датасете

Дерево решений имеет ошибку на тренировочном датасете меньше, чем на тестовом, потому что чему-то все-таки научилось. Но даже на тренировочном датасете оно не нашло закономерности во входных данных. Задачу решить не удалось.

Если модуль упругости при растяжении лежит в диапазоне [64.05 - 82.68], то наша модель делает предсказание с точностью  $\pm 8.15$ . Она работает не точнее среднего, и бесполезна для применения в реальных условиях.

Модель для предсказания прочности при растяжении - GradientBoostingRegressor(max\_depth=1, max\_features=1, n\_estimators=50). Сравнение ее ошибок показано на рисунке 36.

|                                         | R2       | RMSE        | MAE         | MAPE      | max_error    |
|-----------------------------------------|----------|-------------|-------------|-----------|--------------|
| Прочность при растяжении, тренировочный | 0.057141 | -472.832206 | -374.670333 | -0.164825 | -1383.885510 |
| Прочность при растяжении, тестовый      | 0.004028 | -478.600202 | -376.647056 | -0.166046 | -1384.841404 |

Рисунок 36 - Сравнение ошибок модели для прочности на тренировочном и тестовом датасете

Градиентный бустинг - это прекрасный метод, который показал положительный, хоть и близкий к 0 коэффициент детерминации. Ошибка на тестовом множестве незначительно больше, чем на тренировочном. Значит, модель нашла следы зависимости, а не выучила данные. Но задача не решена.

Если прочность при растяжении лежит в диапазоне [1071.12 - 3848.44], то наша модель дает предсказание с точностью  $\pm 1384.85$ . Она работает не точнее среднего, и бесполезна для применения в реальных условиях.

Модель для предсказания соотношения матрица-наполнитель — нейросеть из tensorflow, обученная с ранней остановкой. Сравнение ее ошибок показано на рисунке 37.

|                                                | R2        | RMSE      | MAE       | MAPE      | max_error |
|------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Соотношение матрица-наполнитель, тренировочный | -0.212722 | -0.999613 | -0.787676 | -0.298627 | -3.084322 |
| Соотношение матрица-наполнитель, тестовый      | -0.322407 | -1.042058 | -0.852214 | -0.312846 | -2.781806 |

Рисунок 37 - Сравнение ошибок модели для соотношения матрица-наполнитель на тренировочном и тестовом датасете.

У нейросети показатели для тестовой выборки сильнее отличаются в худшую сторону от показателей тренировочной. Это говорит о том, что она не нашла закономерностей, а стала учить данные из тестовой выборки. Возможно,

требуется более тщательное и грамотное построение архитектуры нейронной сети, чтобы получить лучший результат. Но сейчас задача далека от решения.

Если соотношение матрица-наполнитель лежит в диапазоне [0.39 - 5.46], то наша модель может предсказать с точностью  $\pm 3.08$ . Она работает не точнее среднего, и бесполезна для применения в реальных условиях.

#### 2.6. Разработка приложения

Несмотря на то, что пригодных к внедрению моделей получить не удалось, можно разработать функционал приложения. Возможно, дальнейшие исследования позволят построить качественную модель и внедрить ее в готовое приложение.

В приложении необходимо реализовать следующие функции:

- выбор целевой переменной для предсказания;
- ввод входных параметров;
- проверка введенных параметров;
- загрузка сохраненной модели, получение и отображение прогноза выходных параметров.

Решено разработать веб-приложение с помощью языка Python, фреймворка Flask и шаблонизатора Jinja.

Эту задачу решить не удалось.

### 2.7. Создание удаленного репозитория

Для данного исследования был создан удаленный репозиторий на GitHub, который находится по адресу: https://github.com/e-tut/course-data-science (e-tut.github.io/course-data-science/).

На него были загружены результаты работы.

#### Заключение

В ходе выполнения данной работы мы прошли практически весь Dataflow pipeline, рассмотрели большую часть операций и задач, которые приходится выполнять специалисту по работе с данными.

Этот поток операций и задач включает:

- изучение теоретических методов анализа данных и машинного обучения;
  - изучение основ предметной области, в которой решается задача;
- извлечение и транформацию данных. Здесь нам был предоставлен готовый набор данных, поэтому через трудности работы с разными источниками и парсингом данных мы еще не соприкоснулись;
  - проведение разведочного анализа данных статистическими методами;
  - DataMining извлечение признаков из датасета и их анализ;
- разделение имеющихся, в нашем случае размеченных, данных на обучающую, валидационную, тестовую выборки;
- выполнение предобработки (препроцессинга) данных для обеспечения корректной работы моделей;
- построение аналитического решения. Это включает выбор алгоритма решения и модели, сравнение различных моделей, подбор гиперпараметров модели;
  - визуализация модели и оценка качества аналитического решения;
  - сохранение моделей;

В этой работе мы имели дело не с учебными наборами данных, которые дают хорошо изученные решения, а с реальной производственной задачей. И к сожалению, не смогли поставленную задачу решить — не получили моделей, которые бы описывали закономерности предметной области. Я проделал максимум исследований, которые в моей компетенции как совсем начинающего специалиста, применил большую часть знаний, полученных в ходе прохождения курса.

Возможные причины неудачи:

- нечеткая постановка задачи, отсутствие дополнительной информации о зависимости признаков с точки зрения физики процесса. Незначимые признаки являются для модели шумом, и мешают найти зависимость целевых от значимых входных признаков;
- исследование предварительно обработанных данных. Возможно, на «сырых», не предобработанных данных можно было бы получить более качественные модели, воспользовавшись другими методами очистки и подготовки;
- мой недостаток знаний и опыта. Нейросети являются самым современным подходом к решению такого рода задач. Они способны находить скрытые и нелинейные зависимости в данных. Но выбор оптимальной архитектуры нейросети является неочевидной задачей.

Дальнейшие возможные пути решения этой задачи могли бы быть:

- углубиться в изучение нейросетей, попробовать различные архитектуры, параметры обучения и т.д.;
- провести отбор признаков разными методами. Испробовать методы уменьшения размерности, например метод главных компонент;
- после уменьшения размерности градиентный бустинг может улучшить свои результаты. Так же есть большой простор для подбора гиперпараметров для этого метода;
- проконсультироваться у экспертов в предметной области. Возможно,
   они могли бы поделиться знаниями, необходимыми для решения задачи.

## Библиографический список

- 1 Композиционные материалы: учебное пособие для вузов / Д. А. Иванов, А. И. Ситников, С. Д. Шляпин; под редакцией А. А. Ильина. Москва: Издательство Юрайт, 2019 253 с. (Высшее образование). Текст: непосредственный.
- 2 Силен Дэви, Мейсман Арно, Али Мохамед. Основы Data Science и Big Data. Python и наука о данных. СПб.: Питер, 2017. 336 с.: ил.
- 3 ГрасД. Data Science. Наука о данных с нуля: Пер. с англ. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2021. 416 с.: ил.
- 4 Документация по языку программирования python: Режим доступа: https://docs.python.org/3.8/index.html.
- 5 Документация по библиотеке numpy: Режим доступа: https://numpy.org/doc/1.22/user/index.html#user.
- 6 Документация по библиотеке pandas: Режим доступа: https://pandas.pydata.org/docs/user\_guide/index.html#user-guide.
- 7 Документация по библиотеке matplotlib: Режим доступа: https://matplotlib.org/stable/users/index.html.
- 8 Документация по библиотеке seaborn: Режим доступа: https://seaborn.pydata.org/tutorial.html.
- 9 Документация по библиотеке sklearn: Режим доступа: https://scikit-learn.org/stable/user\_guide.html.
- 10 Документация по библиотеке keras: Режим доступа: https://keras.io/api/.
- 11 Руководство по быстрому старту в flask: Режим доступа: https://flask-russian-docs.readthedocs.io/ru/latest/quickstart.html.
- 12 Loginom Вики. Алгоритмы: Режим доступа: https://wiki.loginom.ru/algorithms.html.
- 13 Andre Ye. 5 алгоритмов регрессии в машинном обучении, о которых вам следует знать: Режим доступа:https://habr.com/ru/company/vk/blog/513842/.

14 Alex Maszański. Метод k-ближайших соседей (k-nearest neighbour): – Режим доступа: https://proglib.io/p/metod-k-blizhayshih-sosedey-k-nearest-neighbour-2021-07-19.

15 Yury Kashnitsky. Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей: — Режим доступа: https://habr.com/ru/company/ods/blog/322534/.

16 Yury Kashnitsky. Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес: — Режим доступа: https://habr.com/ru/company/ods/blog/324402/.

17 Alex Maszański. Машинное обучение для начинающих: алгоритм случайного леса (Random Forest): — Режим доступа: https://proglib.io/p/mashinnoe-obuchenie-dlya-nachinayushchih-algoritm-sluchaynogo-lesa-random-forest-2021-08-12.

18 Alex Maszański. Решаем задачи машинного обучения с помощью алгоритма градиентного бустинга: — Режим доступа: https://proglib.io/p/reshaemzadachi-mashinnogo-obucheniya-s-pomoshchyu-algoritma-gradientnogo-bustinga-2021-11-25.