北京市西城区三帆中学 2014-2015 学年度第二学期期中考试试卷

划 一										
	班级分层	导班	姓名	学号	成绩					
		注意	t: 时间 100 分钟	中,满分 120 分						
_	、选择题(本题共 30)分,每小题3	(分)			_				
1.	一元二次方程 $4x^2$ +	x-1=0的二次	次项系数、一次	项系数、常数项	分别是(
	A. 4, 0, 1	B. 4, 1,	1 C.	4, 1, -1	D. 4, 1, 0	5				
2.	由下列线段 a , b , c	不能组成直角	三角形的是().	, ()					
	A. $a=1$, $b=2$, $c=\sqrt{a}$	$\sqrt{3}$	B. <i>a</i> =1,	$b=2$, $c=\sqrt{5}$						
	C. <i>a</i> =3, <i>b</i> =4, <i>c</i> =5		D. <i>a</i> =2, <i>b</i> =	$=2\sqrt{3}$, $c=3$						
3.	如图,点 A 是直线 l	外一点,在1	上取两点 B 、 C ,	分别以 A、C为	习圆心,BC、AB	长为半径画弧,				
	两弧交于点 D ,分别	刊连结 AB、AD	、CD ,则四边	形 ABCD 一定是	().					
	A. 平行四边形	B. 矢	巨形		1, / D					
	C. 菱形	D. Ī	E方形		, ; , , , , , , , , , , , , , , , , , ,					
4.	下列各式是完全平方	式的是()	\overrightarrow{B}	Č					
	A. $x^2 + 2x + 4$	B. $x^2 - 6x^2$	x+9 C.	x^2-4x-4	D. $x^2 - 3x + $	- 2				
5.	正方形具有而矩形不	一定具有的性	质是()							
	A. 四个角都是直角	B. ₹	付角线互相平分							
	C. 对角线相等		付角线互相垂直							
6.	如图,数轴上点 M 月	f表示的数为 n	<i>n</i> ,则 <i>m</i> 的值是	().		\downarrow _M				
	A. $\sqrt{5} - 1$ B.	$-\sqrt{5} + 1$	C. $\sqrt{5} + 1$	D. $\sqrt{5}$	-2 -1 0	1 2 3 x				
7.	已知平行四边形 ABG	CD 的两条对角	线 <i>AC、BD</i> 交子	一平面直角坐标系	系的原点,点 A 的	坐标为(-2,3)				
	则点 C 的坐标为().								
	A. (3, -2) B.	(2, -3)	C. (-3, 2)	D. (-2, -3))					
8.	某果园 2012 年水果)	^产 量为 100 吨,	2014 年水果产	量为 144 吨,求记	亥果园水果产量的	的年平均增长率				
	设该果园水果产量的	年平均增长率	为 x ,则由题意	可列方程为().					

C. $144(1+x)^2 = 100$

A. $144(1-x)^2 = 100$

D. $100(1+x)^2 = 144$

B. $100(1-x)^2 = 144$

9. 如图,平行四边形 ABCD 的两条对角线相交于点 O, $E \in AB$ 边的中点,

图中与 $\triangle ADE$ 面积相等的三角形(不包括 $\triangle ADE$)的个数为(

- A. 3
- B. 4
- C. 5
- D. 6

10. 如图, 在长方形 ABCD 中, AC 是对角线, 将长方形 ABCD 绕点 B 顺时针旋转 90° 到长方形 GBEF位置, $H \neq EG$ 的中点, $\stackrel{.}{H} AB=6$, BC=8,

则线段 CH 的长为 () .

- A $2\sqrt{5}$
- B. $\sqrt{41}$ C. $2\sqrt{10}$ D. $\sqrt{21}$

二、填空题(本题共24分,每小题3分)

- 已知x = 2是一元二次方程 $x^2 + 2ax + 8 = 0$ 的一个根,则a的值为
- **12.** 如图, $A \setminus B$ 两点被池塘隔开, 在 AB 外选一点 C, 连接 AC 和 BC, 并分别找出它们的中点 M 和 N. 如果测得 MN=15m,则 A,B 两点间的距离为 m.
- 13. 如图,在 $\square ABCD$ 中, $CE \perp AB$ 于 E,如果 $\angle A=125^{\circ}$,那么 $\angle BCE=$ _____ \circ .
- 若把代数式 x^2-2x-3 化为 $(x-m)^2+k$ 的形式,其中 $m \times k$ 为常数,则 m+k=
- 15. 如图, 在 $\square ABCD$ 中, E为AB中点, $AC \perp BC$, 若CE=3, 则CD=

16. 如图, 矩形纸片 ABCD 中, AB=4, AD=3, 折叠纸片使 AD 边与对角线 BD 重合, 折痕为 DG, 则 AG 的长为

17. 如图,菱形 *ABCD* 的周长为 40, $\angle ABC=60^{\circ}$, *E* 是 *AB* 的中点,点 *P* 是 *BD* 上的一个动点,

则 PA+PE 的最小值为

班级 分层班

姓名_____ 学号_

8. 如图:在平面直角坐标系中,A、B 两点的坐标分别为 (1,5)、(3,3), M、N 分别是 x 轴、y 轴上的点.如果以点 A、B、M、N 为顶点的四边形是平行四边形,则 M 的坐标为_____.

三、解答题(本题共 26 分, 第 19 题每小题 5 分, 第 20、21 题每小题 5 分, 第 22 题每小题 6 分) **19.** 解方程:

(1)
$$(x-3)^2 = 25$$
;

(2)
$$x^2 - 6x + 1 = 0$$
.

解:

~~

20. 如图, 在 □ ABCD 中, 已知 AD=16cm, AB=12cm, DE 平分 ∠ADC 交 BC 边于点 E, 求 BE 的长度.

解:

21. 一个矩形的长比宽多 1cm, 面积是 90cm²,矩形的长和宽各是多少?

解:

- **22.** 已知: 关于 x 的一元二次方程 $x^2 + (2m+1)x + 2m = 0$.
 - (1) 求证: 无论 m 为何值, 此方程总有两个实数根;
 - (2) 若x为此方程的一个根,且满足0 < x < 6,求整数m的值.
- (1)证明:

(2)解:

四、解答题(本题共20分,第23题6分,第24、25题每小题7分)

- **23.** 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.
 - (1) 求证: *BD=EC*;
 - (2) 若∠E=57°, 求∠BAO的大小
- (1)证明:

(2)解:

班级 分层班 姓名 学号

24. 已知: 关于 x 的一元二次方程 $x^2 + (2a+1)x + \frac{5}{4}a^2 + \frac{a}{2} + \frac{1}{2} = 0$ 有实根.

- (1) 求 a 的值;
- (2) 若关于x的方程 $kx^2-3x-k-2a-1=0$ 的所有根均为整数,求整数k的值.

解: (1)

(2)

25. 阅读下列材料:

问题: 如图 1,在 $\square ABCD$ 中,E 是 AD 上一点,AE=AB, $\angle EAB=60$ °,过点 E 作直线 EF,在 EF 上取一点 G,使得 $\angle EGB=\angle EAB$,连接 AG.

求证: EG = AG + BG.

小明同学的思路是: 作 $\angle GAH = \angle EAB$ 交 GE 于点 H,构造全等三角形,经过推理解决问题. **参考小明同学的思路,探究并解决下列问题:**

- (1) 完成上面问题中的证明;
- (2) 如果将原问题中的" $\angle EAB=60$ ""改为" $\angle EAB=90$ ",原问题中的其它条件不变(如图 2),请探究线段 EG、AG、BG 之间的数量关系,并证明你的结论.

(1) 证明:

(2) **解:** 线段 *EG*、*AG*、*BG* 之间的数量关系为

班级_____分层班_____ 姓名_____ 学号_____

- 五、解答题(本题共20分,第26、27题每小题6分,第28题8分)
- **27.** 如图,四边形 *ABCD* 中,*AC=m*,*BD=n*,且 *AC* 上 *BD*,顺次连接四边形 *ABCD* 各边中点,得到四边形 *A*₁*B*₁*C*₁*D*₁,再顺次连接四边形 *A*₁*B*₁*C*₁*D*₁ 各边中点,得到四边形 *A*₂*B*₂*C*₂*D*₂...,如此进行下去,得到四边形 *A*₂*B*₃*C*₃*D*₃.

①四边形 $A_2B_2C_2D_2$ 是 形;

②四边形 *A₃B₃C₃D₃* 是______形;

③四边形 $A_5B_5C_5D_5$ 的周长是 ;

用源。.

- 28. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.
 - (1) 如图 1, 在四边形 *ABCD* 中, *AD* // *BC*, ∠*BAD*=120°, ∠*C*=75°, *BD* 平分∠*ABC*. 求证: *BD* 是四边形 *ABCD* 的和谐线;
- (2)图 2 和图 3 中有三点 A、B、C,且 AB=AC, 请分别在图 2 和图 3 方框内作一个点 D,使得以 A、B、C、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,保留作图痕迹,不写作法);
- (3) 四边形 *ABCD* 中,*AB=AD=BC*,∠*BAD=90*°,*AC* 是四边形 *ABCD* 的和谐线,求∠*BCD* 的度数. (1)证明:

(2)在方框內用尺规作图, 保留作图痕迹,不写作法

(3)解:

北京三帆中学 2014-2015 学年度第二学期期中考试

初二数学 答案及评分参考标准

班级______ 姓名_____ 学号_____ 成绩_____

一、选择题(本题共30分每小题3分,)

题号	1	2	3	4	5	6	7	8	9	10
答案	С	D	A	В	D	A	В	D	С	В

二、填空题(每小题3分,共24分)

16.
$$_{\frac{3}{2}}$$
; 17. $_{\frac{5\sqrt{3}}{3}}$; 18. $_{\frac{(2,0),(-2,0)(4,0)}{3}}$.

三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分)

19. 解方程

$$(1)(x-3)^2 = 25$$

解:
$$x-3=\pm 5$$
 ------3 分

∴
$$x_1 = 8$$
, $x_2 = -2$ -----5 $\%$

(2)
$$x^2 - 6x + 1 = 0$$

解:
$$x^2 - 6x = -1$$
 ------1 分

$$x^2 - 6x + 9 = 8$$
 -----2 $\%$

$$(x-3)^2 = 8 \qquad ----3 \text{ ft}$$

$$x-3=\pm 2\sqrt{2}$$
 -----4 \(\frac{1}{2}\)

$$\therefore x_1 = 3 + 2\sqrt{2}, \quad x_2 = 3 - 2\sqrt{2}$$
 -----5 \(\frac{1}{2}\)

另解:
$$a=1$$
, $b=-6$, $c=1$, ------1 分

$$b^2 - 4ac = (-6)^2 - 4 \times 1 \times 1 = 32$$
 -----2 \implies

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{32}}{2} = 3 \pm 2\sqrt{2}$$
, ------4 \Re

$$\therefore x_1 = 3 + 2\sqrt{2}, \quad x_2 = 3 - 2\sqrt{2}$$
 -----5 \Rightarrow

20. 如图,在 $\square ABCD$ 中,已知 AD=16cm,AB=12cm,DE 平分 $\angle ADC$ 交 BC 边于点 E,求 BE 的长度.

解: ::四边形 ABCD 是平行四边形,

 $\therefore AD//BC$

AB = CD = 12cm,AD = BC = 16cm, ------2 分

- ∵AD // BC
- $\therefore \angle ADE = \angle DEC$
- ∵DE 平分∠ADC,
- $\therefore \angle ADE = \angle EDC$
- $\therefore \angle DEC = \angle EDC$
- ∴ CE = CD = 12cm, -----4 %
- :.BE=BC-CE=4cm. -----5 分

21. 一个矩形的长比宽多 1cm, 面积是 90cm², 矩形的长和宽各是多少?

解: 设矩形长为x cm,则宽为(x-1)cm,-----1分

依题意得 x(x-1) = 90 -----3 分

解得 $x_1 = 10, x_2 = -9$ (不合题意,舍去) ------4 分

答: 矩形的长和宽各是 10cm、9cm. -----5 分

- 22. 已知: 关于 x 的一元二次方程 $x^2 + (2m+1)x + 2m = 0$.
 - (1) 求证:无论 m 为何值,此方程总有两个实数根:
 - (2) 若x为此方程的一个根,且满足0 < x < 6,求整数m的值.

(1) 证明:
$$\Delta = (2m+1)^2 - 4 \times 1 \times 2m$$

= $4m^2 - 4m + 1$
= $(2m-1)^2$.

$$\therefore (2m-1)^2 \geqslant 0$$
,即 $\Delta \geqslant 0$,-----1 分

- :.无论 m 为何值,此方程总有两个实数根. -----2分
- (2) **解:** 因式分解, 得 (x+2m)(x+1)=0.

于是得 x+2m=0或x+1=0.

解得
$$x_1 = -2m$$
, $x_2 = -1$. -----4 分

- : -1 < 0, $\overline{\text{m}}$ 0 < x < 6,
- $\therefore x = -2m$, $\exists 0 < -2m < 6$.
- \therefore -3 < m < 0. 5 分
- **∵** *m* 为整数,
- ∴ m = -1 或 -2 6 分

四、解答题(本题共20分,第23题6分,第24、25题每小题,7分)

23. 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.

- (1)求证:BD=EC;
- (2) 若∠E=50°, 求∠BA0的大小.
- (1) **证明:** ∵菱形 ABCD,

- ∴BE=CD, BE//CD,
- ∴四边形 BECD 是平行四边形, 2 分
- ∴BD=EC.....3 分
- (2) **解:** : 平行四边形 BECD,
 - ∴BD//CE,

又:菱形 ABCD,

- \therefore AC \perp BD,
- ∴∠BAO=90°......5 ⅓
- \therefore \angle BAO + \angle ABO=90 °
- **24.** 已知: 关于 x 的一元二次方程 $x^2 + (2a+1)x + \frac{5}{4}a^2 + \frac{a}{2} + \frac{1}{2} = 0$ 有实根.
 - (1) 求a的值:
 - (2) 若关于x 的方程 $kx^2-3x-k-2a-1=0$ 的所有根均为整数,求整数k 的值.

解: (1) :关于
$$x$$
 的一元二次方程 $x^2 + (2a+1)x + \frac{5}{4}a^2 + \frac{a}{2} + \frac{1}{2} = 0$ 有实数根.

$$∴ b^2 - 4ac = (2a+1)^2 - 4(\frac{5}{4}a^2 + \frac{a}{2} + \frac{1}{2})$$

$$= -a^2 + 2a - 1$$

$$= -(a-1)^2 ≥ 0$$

(2) $\pm a = 1 + kx^2 - 3x - k - 3 = 0$

(x+1)(kx-k-3)=0

:: k、x为整数

综上 $k = 0, \pm 1, \pm 3...$ 7分

25. 阅读下列材料:

问题:如图 1,在 $\Box ABCD$ 中, E 是 AD 上一点, AE=AB, $\angle EAB=60$ °, 过点 E 作直线 EF, 在 EF 上取一点 G, 使得 $\angle EGB=\angle EAB$, 连接 AG.

求证: EG = AG + BG.

小明同学的思路是: 作 $\angle GAH = \angle EAB$ 交 GE 于点 H,构造全等三角形,经过推理使问题得到解决.

参考小明同学的思路,探究并解决下列问题:

- (1) 完成上面问题中的证明;
- (2) 如果将原问题中的" $\angle EAB=60$ °"改为" $\angle EAB=90$ °",原问题中的其它条件不变(如图 2),请探究线段 EG、AG、BG 之间的数量关系,并证明你的结论.

图 2

- (1) 证明: 如图 1, 作∠GAH=∠EAB 交 GE 于点 H,
- 则 ∠ GAB= ∠ HAE.1 分
- ∵∠EAB=∠EGB, ∠AOE=∠B0F,
- ∴∠ABG=∠AEH.
- 在△ABG和△AEH中

$$\begin{cases} \angle GAB = \angle HAE \\ AB = AE \\ \angle ABG = \angle AEH \end{cases}$$

∴△ABG≌△AEH2 分

- ∴BG=EH, AG=AH.
- \therefore \angle GAH= \angle EAB=60 $^{\circ}$,
- ∴△AGH 是等边三角形.
- ∴AG=HG.
- ∴EG=AG+BG:3 分
- (2) 线段 EG、AG、BG 之间的数量关系是 EG+BG = $\sqrt{2}$ AG.4 分证明:

如图 2,作 ZGAH= ZEAB 交 GE 的延长线于点 H,则 ZGAB= ZHAE.

- \therefore \angle EGB= \angle EAB=90 $^{\circ}$,
- \therefore \angle ABG+ \angle AEG= \angle AEG+ \angle AEH=180°.
- ∴∠ABG=∠AEH.5分

在△ABG 和△AEH 中

∠HAE=∠GAB

AB=AE

\∠AEH=∠ABG

- ∴△ABG≌△AEH.6分
- ∴BG=EH, AG=AH.
- \therefore \angle GAH= \angle EAB=90 $^{\circ}$,
- ∴△AGH 是等腰直角三角形.
- $\therefore \sqrt{2}AG=HG$

五、解答题(本题共20分,第26、27题每小题6分,第28题8分)

27. 如图,四边形 ABCD 中,AC=m,BD=n,且 $AC \perp BD$,顺次连接四边形 ABCD 各边中点,得到四边形 $A_1B_1C_1D_1$,再顺次连接四边形 $A_1B_1C_1D_1$ 各边中点,得到四边形 $A_2B_2C_2D_2...$,如此进行下去,得到四边形 $A_nB_nC_nD_n$.

初二数学试卷第 13 页 (共 15 页)

- ①四边形 $A_2B_2C_2D_2$ 是 菱形;1 分
- ②四边形 A₃B₃C₃D₃是 矩形:2分
- ③四边形 $A_5B_5C_5D_5$ 的周长是______;4 分
- _____ 错误!未找到引用源。6 分 ④四边形 $A_nB_nC_nD_n$ 的面积是_
- 28. 若一个四边形的一条对角线把四边形分成两个等腰三角形, 我们把这条对角线叫这个四边形的和 谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.
 - (1) 如图 1, 在四边形 *ABCD* 中, *AD* // *BC*, ∠*BAD*=120°, ∠*C*=75°, *BD* 平分 ∠*ABC* 求证: BD 是四边形 ABCD 的和谐线:
 - (2) 图 2 和图 3 中有三点 $A \times B \times C$,且 AB=AC,请分别在图 2 和图 3 方框内作一个点 D,使得以 $A \times B \times C$,且 AB=AC,请分别在图 2 和图 3 方框内作一个点 $A \times B \times C$,使得以 $A \times B \times C$, B、C、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图, 保留作图痕迹,不写作法);
 - (3) 四边形 ABCD 中,AB=AD=BC,∠BAD=90°,AC 是四边形 ABCD 的和谐线, 求 $\angle BCD$ 的度数.
 - (1) 证:
 - (1) :AD//BC,
- \therefore \angle ABC+ \angle BAD=180 $^{\circ}$, \angle ADB= \angle DBC.
- ∵∠BAD=120°,
- ∴∠ABC=60°.
- ∵BD 平分∠ABC,
- \therefore \angle ABD= \angle DBC=30 $^{\circ}$
- ∴∠ABD=∠ADB,
- ∴△ADB 是等腰三角形. 1 分

在△BCD中,∠C=75°,∠DBC=30°,

- $\therefore \angle BDC = \angle C = 75^{\circ}$

- (2) 由题意作图为:图2,图3

图2 初二数学试卷第 14 页(共 15 页)

图3

∴ △BCD 为等腰三角形,

(在方框内用尺规作图,

保留作图痕迹,

不写作法)

解(3) : AC 是四边形 ABCD 的和谐线,

- **∴** △ **ACD** 是等腰三角形.
- AB=AD=BC

如图 4, 当 AD=AC 时,

- \therefore AB=AC=BC, \angle ACD= \angle ADC
- **∴**△**ABC** 是正三角形,
- ∴ ∠BAC=∠BCA=60°.
- ∵∠BAD=90°,
- \therefore \angle CAD=30 $^{\circ}$
- \therefore \angle ACD= \angle ADC=75 $^{\circ}$,

如图 5, 当 AD=CD 时,

- \therefore AB=AD=BC=CD.
- \therefore \angle BAD=90 $^{\circ}$,
- :.四边形 ABCD 是正方形,
- ∴∠BCD=90°.....6分

如图 6, 当 AC=CD 时

法 (-): 过点 C 作 CE \perp AD 于 E, 过点 B 作 BF \perp CE 于 F,

 \therefore AC=CD. CE \perp AD,

$$\therefore$$
 AE= $\frac{1}{2}$ AD, \angle ACE= \angle DCE.

- \therefore \angle BAD= \angle AEF= \angle BFE=90 $^{\circ}$,
- ∴四边形 ABFE 是矩形.
- \therefore BF=AE.
- ∵AB=AD=BĆ
- \therefore BF= $\frac{1}{2}$ BC
- •∠BCF=30 °
- ∵AB=BC,
- \therefore \angle ACB= \angle BAC.
- \therefore AB // CE, \therefore \angle BAC= \angle ACE,
- $\therefore \angle ACB = \angle ACE = \frac{1}{2} \angle BCF = 15^\circ$,
- ∴∠BCD=15 °×3=45 °.8 分

法 (二):

作 DM L AD, 作 BM L AB, 则四边形 ABMD 是正方形

- \therefore BC=BM
- ∵AC=CD
- \therefore \angle CA D = \angle CDA
- $\therefore \angle BAC = \angle CDM$

在△ABC和△DMC中

 $\begin{cases} AB = DM \\ \angle BAC = \angle CDM & \therefore \triangle ABC \cong \triangle DM C. \\ AC = CD \end{cases}$

- \therefore BC=CM, \angle BCA= \angle MCD
- ∴△BCM 为等边三角形
- \therefore \angle CM D = 1 5 0 $^{\circ}$
- :MC=MD
- $\therefore \angle MCD = \angle MDC = 15^{\circ}$
- \therefore \angle BCD= \angle BCM- \angle MCD=60°-15=45°