EXAMENUL DE BACALAUREAT – 2010 Proba E c) Probă scrisă la MATEMATICĂ Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

BAREM DE EVALUARE ȘI DE NOTARE

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte) $-1 \le \frac{x+1}{3} \le 1 \Rightarrow -3 \le x+1 \le 3$ 2p $-4 \le x \le 2 \Rightarrow x \in [-4, 2]$ 2p $x \in \mathbb{Z} \Rightarrow x \in \{-4, -3, -2, -1, 0, 1, 2\}$ $f: \mathbb{R} \to \mathbb{R}, \ f(x) = ax^2 + bx + c \Rightarrow \begin{cases} f(0) = 0 \\ f(2) = 2 \Rightarrow \\ f(-1) = 2 \end{cases} \begin{cases} c = 0 \\ 4a + 2b + c = 2 \\ a - b + c = 2 \end{cases}$ 1p 3p 2p $\begin{cases} a=1 \Rightarrow f(x)=x^2-x \end{cases}$ $\begin{cases} b = -1 \\ \text{Condiții} \end{cases} \begin{cases} x+3>0 \\ x>0 \end{cases} \Rightarrow x \in (0,+\infty)$ 1p $\log_2 \frac{x+3}{x} = 2$ 2p 2p $x=1\in(0,+\infty)$ $p = \frac{\text{nr cazuri favorabile}}{\text{nr cazuri posibile}}$ 1p Cazuri posibile sunt 4 1p Cazuri favorabile sunt 3 2p 1p $\frac{4}{2\overrightarrow{OA} + \overrightarrow{OB} = 4\overrightarrow{i} + \overrightarrow{i} - \overrightarrow{j} = 5\overrightarrow{i} - \overrightarrow{j}}$ 3p C(5,-1)Din teorema sinusului $\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{AB}{2\sin C}$ 2p 3p 2p

BACALAUREAT 2010 - barem de evaluare și de notare

Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii.

SUB	IECTUL al II-lea	(30 de puncte)
1.a)	$\det(A) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}$	3 p
	$\det(A) = \begin{vmatrix} 0 & 1 & 0 \end{vmatrix}$	
	1 0 1	
	Calculul determinantului: $det(A) = 1$	2 p
b)	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ sau	2p
	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} $	2 p
	Deci $A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$	1p
c)	Prin înmulțire cu A^{-1} la stânga se obține $X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$	2p
2.a)	$f(\hat{\mathbf{l}}) = \hat{\mathbf{l}}^3 + \hat{2} \cdot \hat{\mathbf{l}}^2 =$	2p
	$=\hat{1}+\hat{2}=\hat{0}$	3p
b)	$f = X^2 \left(X + 2 \right)$	2 p
	Rădăcinile lui f sunt $\hat{0}$, $\hat{0}$ și $\hat{1}$	3p
c)	$\mathbb{Z}_3 = \{\hat{0}, \hat{1}, \hat{2}\} \Rightarrow a, b, c, d$ pot lua câte trei valori fiecare	3p
		2p
SHR	Deci G are $3^4 = 81$ elemente	(30 de nuncte)

	Deci G are 3 – 81 elemente	1
SUB	SUBIECTUL al III-lea (30 de pur	
1.a)	$f'(x) = \frac{x \cdot e^x}{(x+1)^2}$	3 p
	$\frac{f'(x)}{f(x)} = \frac{x}{x+1}, \forall x \in [0,1]$	2p
b)	$f'(x) = \frac{x \cdot e^x}{(x+1)^2} \ge 0, \forall x \in [0,1]$	2p
	f este crescătoare pe $[0,1]$	3 p
c)		2p
	$1 \le f(x) \le \frac{e}{2} \Rightarrow \frac{2}{e} \le \frac{1}{f(x)} \le 1, \forall x \in [0,1]$	3 p
2.a)	$l_s(1) = l_d(1) = f(1) = 2 \Rightarrow f$ continuă în 1	3р
	f continuă pe $\mathbb R$, deci f admite primitive pe $\mathbb R$	2p

BACALAUREAT 2010 - barem de evaluare și de notare

Varianta 6

b)	$V = \pi \int_{1}^{2} g^{2}(x) dx =$	1p
	$= \pi \int_{1}^{2} \left(x^{2} + 3 \right) dx = \pi \left(\frac{x^{3}}{3} + 3x \right) \Big _{1}^{2} =$	3р
	$=\frac{16}{3}\pi$	1p
c)	$\int_{1}^{\sqrt{6}} x\sqrt{x^2 + 3} dx =$	1p
	$=\frac{1}{2}\int_{4}^{9}\sqrt{t}dt = \frac{1}{3}t^{\frac{3}{2}}\Big _{4}^{9} = \frac{19}{3}$	4p