Examen de Redes II – *En Busca de la Red Perdida*

Parte II: Práctica con Cisco Packet Tracer

Rodrigo Yepes Rubio

Ejercicio 1:

A continuación, detallo los pasos que he seguido para conseguir conectar exitosamente las dos ciudades a través de dos routers y sus respectivas subredes.

1. Agregar Dispositivos a las ciudades

1.1. Agregar Routers

Se agregaron dos routers Cisco 1941:

- Router_A (Ciudad A)
- Router_B (Ciudad B)

1.2. Agregar Switches

Se agregaron dos switches Cisco 2960:

- Switch_A (Ciudad A)
- Switch_B (Ciudad B)

1.3. Agregar PCs

Se agregaron cuatro PCs, distribuidos de la siguiente manera:

- PC_A1 y PC_A2 (Ciudad A)
- PC_B1 y PC_B2 (Ciudad B)

2. Conectar Dispositivos con Cables

2.1. Conectar PCs a los Switches

Para permitir la comunicación entre los PCs y los switches, se utilizaron cables de cobre recto (Copper Straight-Through):

- PC_A1 → Switch_A (Puerto FastEthernet0/1)
- PC_A2 → Switch_A (Puerto FastEthernet0/2)
- PC_B1 → Switch_B (Puerto FastEthernet0/1)
- PC_B2 → Switch_B (Puerto FastEthernet0/2)

2.2. Conectar Switches a los Routers

Los switches fueron conectados a los routers también utilizando cables de cobre recto:

- Switch_A (Puerto FastEthernet0/3) → Router_A (GigabitEthernet0/0)
- **Switch_B** (Puerto FastEthernet0/3) → **Router_B** (GigabitEthernet0/0)

2.3. Conectar los Routers entre sí

Para interconectar los routers, se utilizó un cable cruzado con conexión en los puertos GigabitEthernet:

• Router_A (GigabitEthernet0/1) → Router_B (GigabitEthernet0/1)

3. Configurar Direcciones IP

3.1. Configurar IP en los PCs

Las direcciones IP para los PCs fueron configuradas de la siguiente manera:

- PC_A1:
 - o IP: 192.168.10.2
 - o Máscara: 255.255.255.0
 - o Gateway: 192.168.10.1
- PC_A2:
 - o IP: 192.168.10.3
 - o Máscara: 255.255.255.0
 - o Gateway: 192.168.10.1
- PC_B1:
 - o IP: 192.168.20.2
 - o Máscara: 255.255.255.0
 - o Gateway: 192.168.20.1
- PC_B2:
 - o IP: 192.168.20.3

o Máscara: 255.255.255.0

o Gateway: 192.168.20.1

3.2. Configurar IP en los Routers

Se configuraron las direcciones IP de los routers, añadiendo las ips en su configuración, desde el cli de la siguiente manera:

En Router_A (Ciudad A):

enable

configure terminal

interface GigabitEthernet0/0

ip address 192.168.10.1 255.255.255.0

no shutdown

exit

interface GigabitEthernet0/1

ip address 192.168.30.1 255.255.255.252

no shutdown

exit

(aquí tuve problemas, leer punto 6)

En Router_B (Ciudad B):

enable

configure terminal

interface GigabitEthernet0/0

ip address 192.168.20.1 255.255.255.0

no shutdown

exit

interface GigabitEthernet0/1

ip address 192.168.30.2 255.255.255.252

no shutdown

exit

4. Configurar Rutas Estáticas

Para que los routers sepan cómo llegar a las otras redes, configuramos las rutas estáticas:

4.1. Configurar Ruta Estática en Router_A

enable

configure terminal

ip route 192.168.20.0 255.255.255.0 192.168.30.2

exit

4.2. Configurar Ruta Estática en Router_B

enable

configure terminal

ip route 192.168.10.0 255.255.255.0 192.168.30.1

exit

5. Pruebas de Conectividad

Para verificar que la configuración de la red funciona correctamente, realicé pruebas de conectividad entre los PCs y los routers.

5.1. Pruebas desde los Routers

Desde **Router_A**, se realizó un ping a la IP de **PC_B1** (192.168.20.2):

ping 192.168.20.2

Desde **Router_B**, se realizó un ping a la IP de **PC_A1** (192.168.10.2):

ping 192.168.10.2

5.2. Pruebas desde los PCs

- Desde **PC_A1** se hizo un ping a **PC_B1** (192.168.20.2).
- Desde PC_A2 se hizo un ping a PC_B2 (192.168.20.3).
- Desde **PC_B1** se hizo un ping a **PC_A1** (192.168.10.2).
- Desde PC_B2 se hizo un ping a PC_A2 (192.168.10.3).

6. Problemas Encontrados y Solución

Uno de los problemas que encontré durante la configuración fue relacionado con la conexión entre los routers. Después de conectar los routers utilizando un cable cruzado y asignar la dirección IP en el puerto **GigabitEthernet0/1** en ambos routers, los pings no funcionaban. Tras revisar cuidadosamente la configuración, me di cuenta de que el puerto **GigabitEthernet0/0** no estaba habilitado correctamente, lo cual estaba impidiendo la comunicación entre los routers y los ping me daban fallidos.

Para solucionarlo, revisé el estado de las interfaces usando el comando:

show ip interface brief

Noté que **GigabitEthernet0/1** no estaba configurado. Procedí a corregir la configuración y reiniciar la interfaz. Después de esta corrección, la conectividad se restableció correctamente y pude realizar los pings entre las dos ciudades.

Conclusión

Después de realizar la configuración de los dispositivos y de las direcciones IP y las rutas estáticas, y tras realizar las pruebas de conectividad, logré establecer una comunicación exitosa entre las dos ciudades. Todo el tráfico entre **Ciudad A** y **Ciudad B** ahora pasa a través de los routers de manera fluida. Aunque hubo algunos inconvenientes durante la configuración, el proceso fue finalmente exitoso.

Ejercicio 2:

1. Agregar dispositivos a la Red

1.1. Agregar Routers

Se agregaron los routers necesarios para la red:

- Router_Principal
- Router_Secundario

1.2. Agregar Switches

Se agregó los switches necesarios para la segmentación de la red:

- Switch A
- Switch B

1.3. Agregar PCs

Se agregaron múltiples PCs distribuidos en diferentes VLANs:

- PC_A1 y PC_A1 en VLAN 10
- PC_B1 y PC_B2 en VLAN 20

2. Configurar VLANs en los Switches

2.1. Crear VLANs

Desde el modo de configuración de los switches, se crearon las VLANs necesarias, a continuación pongo los datos que he introducido en el switch para configurar las VLANs:

enable

configure terminal

vlan 10

name Arquitectos

vlan 20

name Escribas

exit

2.2. Asignar Puertos a las VLANs

Se asignaron los puertos a las VLANs correspondientes:

interface FastEthernet0/1

switchport mode access

switchport access vlan 10

exit

interface FastEthernet0/2

switchport mode access

switchport access vlan 10

exit

interface FastEthernet0/3

switchport mode access

switchport access vlan 20

exit

interface FastEthernet0/4

switchport mode access

switchport access vlan 20

exit

2.3. Configurar Trunk entre Switches

Se configuraron los puertos de enlace troncal para permitir tráfico entre VLANs:

interface GigabitEthernet0/1

switchport mode trunk

switchport trunk allowed vlan 10,20

exit

3. Configurar Direcciones IP

3.1. Configurar IP en los PCs

Las direcciones IP fueron configuradas manualmente en cada PC:

- PC_A1:
 - o IP: 192.168.10.2
 - o Máscara: 255.255.255.0
 - o Gateway: 192.168.10.1
- PC_A2:
 - o IP: 192.168.10.3
 - o Máscara: 255.255.255.0
 - o Gateway: 192.168.10.1
- PC_B1:
 - o IP: 192.168.20.2
 - o Máscara: 255.255.255.0
 - o Gateway: 192.168.20.1
- PC_B2:
 - o IP: 192.168.20.3
 - o Máscara: 255.255.255.0
 - o Gateway: 192.168.20.1

4. Configurar Inter-VLAN Routing

Para permitir la comunicación entre las VLANs, se configuró el router de la siguiente manera:

enable

configure terminal

interface GigabitEthernet0/0.10

encapsulation dot1Q 10

ip address 192.168.10.1 255.255.255.0

exit

interface GigabitEthernet0/0.20

encapsulation dot1Q 20

ip address 192.168.20.1 255.255.255.0

exit

5. Pruebas de Conectividad

5.1. Prueba de Ping entre PCs de la misma VLAN

Se realizaron pruebas de conectividad entre PCs de la misma VLAN utilizando el comando:

ping 192.168.10.3 # Desde PC_A1 hacia PC_A2

ping 192.168.20.3 # Desde PC_B1 hacia PC_B2

Resultados: Conectividad exitosa, por lo que finalmente he realizado bien las conexiones.

5.2. Prueba de Ping entre VLANs

Se realizaron pruebas de conectividad entre PCs de VLANs diferentes:

ping 192.168.20.2 # Desde PC_A1 hacia PC_B1

Resultados: Conectividad exitosa tras configurar el enrutamiento inter-VLAN.

6. Problemas Encontrados y Solución

- Problema con la asignación de VLANs: Al principio, no se habían asignado correctamente los puertos de los switches a sus respectivas VLANs, lo que impedía la comunicación.
 - Solución: Se revisó la configuración con show vlan brief y corregí la asignación ya que haía conectado mal la primera VLAN
- Error con el trunking: El comando switchport trunk encapsulation dot1q no era reconocido en Cisco Packet Tracer, pero vi que no hacía falta y se quedaba igual así que no era necesario.
 - Solución: Se omitió el comando, ya que en algunos switches modernos de Packet Tracer la encapsulación DOT1Q es la predeterminada.
- Fallo en el enrutamiento inter-VLAN: No se había activado la interfaz del router.
 - Solución: Se ejecutó el comando no shutdown en cada subinterfaz.

Conclusión: Después de realizar la configuración de VLANs, asignación de direcciones IP, y enrutamiento inter-VLAN, la conectividad entre los dispositivos fue exitosa. Se encontraron algunos errores menores durante la configuración, pero fueron corregidos con pruebas y diagnóstico adecuado.