Control systems

Xin Wang

I. CONTROL SYSTEM

Notation:

- S_{Θ} : System to be controlled
- C: Controller
- Θ: System parameters
- y: Controlled variable i.e. output
- *u*: Control variable (accessible)
- d: Disturbance factors
- w: Reference variable i.e. point

A. Control system objective

• Act on u to maintain $y \approx w$ in the presence of uncertainty

$$\begin{split} d &= \bar{d} + \Delta d \\ \Theta &= \bar{\Theta} + \Delta \Theta \end{split}$$

- \bar{d} and $\bar{\Theta}$ are known nominal values i.e. expected
- Δd and $\Delta \Theta$ are uncertainties
- \bullet Uncertainty Δd may have a known upper bound

$$|\Delta d| < \bar{D}$$

II. CONTROLLER

- Two kinds of controllers:
 - Analog: Receives analog inputs and outputs analog
 - Digital: Processes digital sampled variables in computing devices
- Conversion between two types requires: ADC and DAC
- ullet Converters are synchronised via clock signal period T_s
- Discrete-time variables can be expressed with time index

$$t_k = kT_s \Rightarrow k$$

A. Digital control systems

• Hybrid systems with analog and digital variables

