Part I

目录

Part II

摘要

Part III

假设

Part IV

人口增长的简单模型

1 引述

就是抄一抄百科

2 模型概述

我们从人口的产生与消亡这两方面来看待人口的变动。人口的增长,一方面被人口的产生所促进,另一方面被人口的消亡所限制,所以是一个动态平衡的过程。一大波新出生的人口,在达到适育年龄的时候,会反过来对人口的增长起到促进作用;而当他们走向衰老乃至死亡的时候,又会加剧人口的减少。因此我们要使用科学的方法来看待这个问题。下面我们分别着手处理这个两个问题。

2.1 人口的衰老

随着时间的流逝,一部分人口会衰老一岁,而剩下不幸的人则会因为各种各样的原因死去。其中死亡率是一个随着年龄而变化的数据,一般情况是婴儿的死亡率较高,然后随着年龄的增长而下降,到 40、50 岁时开始逐步回升。

2.2 人口的出生 Page 2 of 7

Table 1: 人口增长的简单模型					
符号	含义	相关的其他参数	备注		
\overline{a}	年龄				
e	受教育水平 (枚举量)		e ₀ : 小学及以下 e ₁ : 中学 e ₂ : 大学及以上		
r	地区 (枚举量)		r_0 : 城 r_1 : 镇 r_2 : 乡		
t	考察的时间段				
I	出生婴儿数	e, r, t			
N	总人口数	a,e,r,t			
W	女性人数	a, e, r, t			
β	生育率	a,e,r			
δ	平均死亡率	a			
λ	修正系数	a, e, r			
μ_p	男女比例				

2.2 人口的出生

各个年龄层次的适育妇女,都有可能在考察的时间段内生育:对于个人而言,这是一个概率性事件,但是对于群体而言,生育事件的随机性就被大量的人群基数所磨灭,成为一个比率。因此,一段时间内婴儿的出生数目,等于平均生育率乘上适育妇女的人数。

但是,不同地区、学历的妇女在生产意愿上有着不同的态度。为了简化问题,我们认为地区与教育带给人的影响是近似独立的,因此可以直接对平均生育率进行修正。在这种假设下,一段时间内婴儿的出生人数,等于各年龄层的适育妇女乘上修正后的生育率之和。

3 记号表

见 Table1。

Table 2: 来自第六次人口普查的数据

$I(r_k, e_l, 2010)$	e_0	e_1	e_2
r_0			
r_1			
r_2			

- 4 数据引用
- 5 方程的建立

首先,考虑人口的自然衰老:

$$N(a+1, t+1) = N(a, t) \cdot (1 - \delta(a)) \tag{1}$$

这里 $\delta(a)$ 指的是 a 岁人口的平均死亡率。

再考虑所有地区,由受各种教育水平的妇女生育的婴儿数:

$$N(0,t+1) = \sum_{r_k} \sum_{e_l} I(r_k, e_l, t)$$
 (2)

这里 $I(r_k, e_l, t+1)$ 表示在 t 这个考察时间段内,在 r_k 地区,受到 e_l 教育水平的妇女生育的婴儿数目。

考察 $I(r_k, e_l, t)$ 是由各个不同年龄阶段的适龄妇女所生育的:

$$I(r_k, e_l, t) = \sum_{a} \beta(a, r_k, e_l) W(a, r_k, e_l, t)$$
(3)

这里 $\beta(a, r_k, e_l)$ 是 r_k 地区,受到 e_l 教育水平的妇女的生育率, $W(a, r_k, e_l, t)$ 是这段时间这类妇女的总人数。

总人口数与总女性数之间存在着简单的比例关系:

$$N(a, r, e, t) = W(a, r, e, t) \cdot (1 + \mu_p) \tag{4}$$

这里 μ_p 表示的是男性与女性人数的比例。

教育水平与地区对于生育率的修正,即 $\beta(a,r_k,e_l)$,是这样构成的:

$$\beta(a, r_k, e_l) = \overline{\beta(a)} \cdot \lambda_{r_k} \cdot \lambda_{e_l} \tag{5}$$

其中 $\overline{\beta(a)}$ 是平均生育率, λ_{r_k} 与 λ_{e_l} 分别是地区与教育水平分别对于生育率的修正;为了记号上的方便,令 λ_b 为生育修正参数矩阵,其中

$$\lambda_b(k,l) = \lambda_{r_k} \cdot \lambda_{e_l} \tag{6}$$

 Table 3: 人口增长简单模型的修正符号

 符号
 含义

 I_i 作为第 (i+1) 胎出生的婴儿数目

 W_i 生育了 i 个孩子的妇女数目

在进一步完善模型之前,我们给出 $\lambda_b(k,l)$ 的计算公式与结果。事实上,根据等式 3与等式 5,我们可以立即得到:

$$\lambda_b(k,l) = \frac{I(r_k, e_l, t)}{\sum_a \overline{\beta(a)} W(a, r_k, e_l, t)}.$$
 (7)

利用表 2中的数据,代入 t=2010,我们得到了 $\lambda_b(k,l)$ 的矩阵形式:

$$\lambda_b(k,l) = \begin{vmatrix} ???? & ???? & ???\\ ???? & ???? & ???\\ ??? & ???? & ??? \end{vmatrix}.$$
 (8)

6 小结

蛤

Part V

人口增长模型修正与应用

7 假设

明确地列出哪些因素是要考虑的,而哪些还是不考虑

- 8 记号表
- 9 数据引用
- 10 模型的修正
- 10.1 依据生育情况区分妇女

首先,适育妇女数,依照她们已生育孩子的数目,可分为 W_0 、 W_1 、 W_2 这三类,分别表示未生孩子、已生一个孩子与生了两个及以上的妇女数目。在这样的分类下,等式 3将被修正为如下带有下标的形式:

$$I_i(r_k, e_l, t+1) = \sum_{a} \beta_i(a, r_k, e_l) W_i(a, r_k, e_l, t)$$
(9)

这里 I_i 是作为第 (i+1) 胎出生的婴儿数目,而 W_i 是生育过 i 胎的妇女数目。

同时,由于计划生育政策,已生育的妇女将会受到较大的政策阻力,因此她们的生育率将会减小,亦即:

$$\beta_i(a, r_k, e_l) = \overline{\beta(a)} \lambda_i \cdot \lambda_b(k, l) \tag{10}$$

其中 λ_i 是已生i胎妇女受到政策阻力的修正因素。 在第一次修正后,中国人口增长趋势大致如图所示。

考虑到当二胎政策出台后,已生一胎的妇女生育意愿将会增大,因此等式 $5 + \beta_1(a, r_k, e_l)$ 将会比原来大,被修正为:

$$\beta(a, r_k, e_l) = \eta_a \cdot \overline{\beta(a)} \cdot \lambda_b(k, l) \tag{11}$$

其中 η_a 是 a 岁已生育一胎的妇女在政策放开后的相对生育意愿。

11 数据预测

蛤

12 小结

蛤

Part VI

把其他人的论文批判一番

13 你们啊, naive

蛤

- 14 西方的人口模型我哪个没算过 蛤
- **15** 开放二胎不知道比你们高到哪里去了 蛤
- 16 你问我支不支持计划生育,那我当然是支持的 蛤
- 17 我今天算是得罪了你们 蛤
- 18 小结

蛤

Part VII

北京市的人口增长模型

19 讨论

蛤

20 模型的再次修正

蛤

21 模型的预测

蛤

22 小结

蛤

Part VIII

政策对社会造成的影响

蛤

Part IX

养老金模型

蛤

Part X

总结

蛤

参考文献

蛤