

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ЕТ Специальное машиностроение
КАФЕДРА	СМ1«Космические аппараты и ракеты-носители»
	Домашнее задание №2
	по курсу «Проектирование летательных аппаратов
	с жидкостными ракетными двигателями»
	Вариант №13
-	CM1 01
	руппа: СМ1-81
C	тудент: Новиков А.Р (Подпись, дата)
Γ	реподаватель: Коровин В.В.

(Подпись, дата)

Исходные данные

• Характеристическая скорость: $v_{\mathrm{xap}} = 6430~\frac{\mathrm{M}}{\mathrm{c}}$

• Масса полезного груза: $M_{\Pi\Gamma}=2.2$ т

1 Массовый расчет двухступенчатой ракеты

Введем соотношение стартовых масс ступеней:

$$\lambda = \frac{M_{02}}{M_{01}} \tag{1.1}$$

где $M_{01}=M_0$ — стартовая масса ракеты.

Вторая ступень является полезным грузом для первой ступени:

$$M_{\Pi\Gamma 1} = M_{02}$$
 (1.2)

Тогда относительная масса полезного груза первой ступени равна

$$\mu_{\Pi\Gamma 1} = \frac{M_{\Pi\Gamma 1}}{M_{01}} = \frac{M_{02}}{M_{01}} = \lambda \tag{1.3}$$

Тогда для второй ступени:

$$\mu_{\Pi\Gamma 2} = \frac{M_{\Pi\Gamma}}{M_{02}} = \frac{M_{\Pi\Gamma}}{\lambda M_{01}} \tag{1.4}$$

Запишем весовые уравнения для двухступенчатой ракеты:

$$\mu_{\kappa 1} = \frac{1}{1 + a_{\text{TO1}}} \left(\lambda + a_{\text{TO1}} + \frac{\gamma_{\text{ДУ1}}}{\nu_{01}} + \mu_{\text{пр1}} \right)$$

$$\mu_{\kappa 2} = \frac{1}{1 + a_{\text{TO2}}} \left(\frac{M_{\Pi\Gamma}}{\lambda M_{01}} + a_{\text{TO2}} + \frac{\gamma_{\text{ДУ2}}}{\nu_{\Pi 2}} + \mu_{\text{пр2}} \right)$$
(1.5)

Весовые коэффициенты для топливной пары АТ + НДМГ принимают вид:

• для первой ступени:

$$\begin{cases} a_{\text{TO1}} = 0.033 \left(1 + 0.5 \exp\left(-0.014 M_{\text{T1}} \right) \right) \\ \gamma_{\text{ДУ1}} = 0.012 \left(1 + 1.0 \exp\left(-0.0009 P_{\text{n1}} \right) \right) \\ \mu_{\text{пр1}} = 0.013 \left(1 + 0.59 \exp\left(-0.0048 M_{01} \right) \right) \end{cases}$$

$$(1.6)$$

• для второй ступени:

$$\begin{cases} a_{\text{TO2}} = 0.033 \left(1 + 0.5 \exp\left(-0.014 M_{\text{T2}} \right) \right) \\ \gamma_{\text{ДV2}} = 0.012 \left(1 + 1.0 \exp\left(-0.0009 P_{\text{H2}} \right) \right) \\ \mu_{\text{Hp2}} = 0.013 \left(1 + 0.59 \exp\left(-0.0048 M_{02} \right) \right) + \frac{0.25}{M_{02}} \end{cases}$$

$$(1.7)$$

где:

$$M_{\rm Ti} = M_0 (1 - \mu_{\rm ki}) \tag{1.8}$$

$$P_{\rm ni} = \dot{m}_i \cdot J_{\rm ni} \tag{1.9}$$

$$\dot{m}_i = \frac{M_{\text{Ti}}}{t_i} \tag{1.10}$$

$$t_i = \frac{J_{\pi i} \nu_i (1 - \mu_{\kappa i})}{k_{\pi} q_0} \tag{1.11}$$

Запишем формулу Циолковского для двухступенчатой ракеты:

$$v_{\text{xap}} = -J_{\text{n1}} \ln \mu_{\text{k1}} - J_{\text{n2}} \ln \mu_{\text{k2}} \tag{1.12}$$

Примем следующие параметры:

- Пустотный удельный импульс для топливной пары AT + НДМГ: $J_{\Pi 1}=3200~\frac{\rm M}{\rm c},\,J_{\Pi 2}=$ = $J_{\Pi 1}+100~\frac{\rm M}{\rm c}=3300~\frac{\rm M}{\rm c}$
- Стартовая нагрузка на тягу: $\nu_{01}=0.7,\,\nu_{\mathrm{n}2}=0.9$
- Коэффициент тяги в пустоте: $k_{\rm II} = 1.15$
- Ускорение свободного падения $g_0 = 9.81 \ \frac{\text{M}}{\text{c}^2}$

Таким образом все параметры ракеты зависят только от стартовой массы ракеты $M_0=M_{01}$ и распределения масс между ступенями $\lambda=\frac{M_{02}}{M_{01}}$. Искать параметры ракеты будем из расчета минимальной стартовой массы при условии равенства характеристической скорости рассчитанному ранее значению. Расчет будем проводить по следующему алгоритму:

- 1. Задаемся первичными значениями M_0 и λ .
- 2. Варьируем λ при $M_0=const$, находим λ_{opt} , при котором $v_{\rm xap}$ принимает максимальное значение.
- 3. Сравниваем заданную $v_{\text{хар}}$ с текущей и корректируем M_0 .

В результате расчетов получим:

$$M_0 = 28.014 \text{ T}$$
 (1.13)

$$\lambda_{opt} = 0.33 \tag{1.14}$$

Рисунок 1.1 — График распределения масс ступеней при $M_0=28.014~{
m T}$

Найдем весовые коэффициенты рассчитанной ракеты:

• Первая ступень:

$$\begin{cases} a_{\text{TO1}} = 0.046 \\ \gamma_{\text{ДУ1}} = 0.019 \\ \mu_{\text{пр1}} = 0.02 \\ \mu_{\text{K1}} = 0.405 \end{cases}$$
 (1.15)

• Вторая ступень:

$$\begin{cases} a_{\text{TO2}} = 0.048 \\ \gamma_{\text{ДУ2}} = 0.023 \\ \mu_{\text{пр2}} = 0.047 \\ \mu_{\text{K2}} = 0.342 \end{cases}$$
 (1.16)

При этом характеристические скорости ступеней равны

$$v_{\text{xap1}} = -J_{\Pi 1} \ln \mu_{K1} = 2892.9 \frac{M}{c}$$
 (1.17)

$$v_{\text{xap2}} = -J_{\text{II}2} \ln \mu_{\text{K2}} = 3537.1 \, \frac{\text{M}}{\text{c}}$$
 (1.18)

2 Сравнительный анализ результатов

Стартовая масса одноступенчатой ракеты получилась равной

$$M_0 = 49.142 \text{ T}$$
 (2.1)

Для двухступенчатой ракеты она равна

$$M_0 = 28.014 \text{ T}$$
 (2.2)

Стартовые массы отличаются в 1,76 раза. Значительное отличие стартовых масс связано с большой дальностью $L=3900\,$ км, поскольку проектировать одноступенчатые ракеты на такую дальность крайне невыгодно по массе.