Multiple Linear Regression

▼ 0.Data Preprocessing

▼ 0.1 Importing the libraries

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd

1 from google.colab import drive
2 drive.mount('/content/drive')
    Mounted at /content/drive

1 path= '/content/drive/My Drive/50_Startups.csv/'
```

▼ 0.2 Importing the dataset

```
1 dataset = pd.read_csv('/content/drive/My Drive/50_Startups.csv')
2 dataset
```

7:52	PM			N	Multiple_Linea	r_Regres
'IU	101913.00	110594.11	ZZ3 100.33	гюнча	140121.90	
11	100671.96	91790.61	249744.55	California	144259.40	
12	93863.75	127320.38	249839.44	Florida	141585.52	
13	91992.39	135495.07	252664.93	California	134307.35	
14	119943.24	156547.42	256512.92	Florida	132602.65	
15	114523.61	122616.84	261776.23	New York	129917.04	
16	78013.11	121597.55	264346.06	California	126992.93	
17	94657.16	145077.58	282574.31	New York	125370.37	
18	91749.16	114175.79	294919.57	Florida	124266.90	
19	86419.70	153514.11	0.00	New York	122776.86	
20	76253.86	113867.30	298664.47	California	118474.03	
21	78389.47	153773.43	299737.29	New York	111313.02	
22	73994.56	122782.75	303319.26	Florida	110352.25	
23	67532.53	105751.03	304768.73	Florida	108733.99	
24	77044.01	99281.34	140574.81	New York	108552.04	
25	64664.71	139553.16	137962.62	California	107404.34	
26	75328.87	144135.98	134050.07	Florida	105733.54	
27	72107.60	127864.55	353183.81	New York	105008.31	
28	66051.52	182645.56	118148.20	Florida	103282.38	
29	65605.48	153032.06	107138.38	New York	101004.64	
30	61994.48	115641.28	91131.24	Florida	99937.59	
31	61136.38	152701.92	88218.23	New York	97483.56	
32	63408.86	129219.61	46085.25	California	97427.84	
33	55493.95	103057.49	214634.81	Florida	96778.92	
34	46426.07	157693.92	210797.67	California	96712.80	

▼ 0.3 Check if any null value

```
1 dataset.isna().sum()
   R&D Spend
   Administration
                    0
                   0
   Marketing Spend
   State
   Profit
                    0
   dtype: int64
    44 ZJU4U.JJ
                       30 103.00
                                     1 dataset.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 50 entries, 0 to 49
   Data columns (total 5 columns):
                Non-Null Count Dtype
   # Column
       R&D Spend 50 non-null
Administration 50 non-null
    0 R&D Spend
                                     float64
    1
                                      float64
    2 Marketing Spend 50 non-null
                                     float64
    3 State
4 Profit
                50 non-null
                                      object
                       50 non-null
                                      float64
   dtypes: float64(4), object(1)
   memory usage: 2.1+ KB
1 ### 0.4 Split into X & y
1 X = dataset.drop('Profit', axis=1)
2 X
```

ΊU	101813.00	110594.11	ZZ3100.93		········	
11	100671.96	91790.61	249744.55	California		
12	93863.75	127320.38	249839.44	Florida		
13	91992.39	135495.07	252664.93	California		
14	119943.24	156547.42	256512.92	Florida		
15	114523.61	122616.84	261776.23	New York		
16	78013.11	121597.55	264346.06	California		
17	94657.16	145077.58	282574.31	New York		
18	91749.16	114175.79	294919.57	Florida		
19	86419.70	153514.11	0.00	New York		
20	76253.86	113867.30	298664.47	California		
21	78389.47	153773.43	299737.29	New York		
22	73994.56	122782.75	303319.26	Florida		
23	67532.53	105751.03	304768.73	Florida		
24	77044.01	99281.34	140574.81	New York		
25	64664.71	139553.16	137962.62	California		
26	75328.87	144135.98	134050.07	Florida		
27	72107.60	127864.55	353183.81	New York		
28	66051.52	182645.56	118148.20	Florida		
29	65605.48	153032.06	107138.38	New York		
30	61994.48	115641.28	91131.24	Florida		
31	61136.38	152701.92	88218.23	New York		
32	63408.86	129219.61	46085.25	California		
33	55493.95	103057.49	214634.81	Florida		
34	46426.07	157693.92	210797.67	California		
35	46014.02	85047.44	205517.64	New York		
36	28663.76	127056.21	201126.82	Florida		
37	44069.95	51283.14	197029.42	California		
38	20229.59	65947.93	185265.10	New York		
39	38558.51	82982.09	174999.30	California		
40	28754.33	118546.05	172795.67	California		
41	27892.92	84710.77	164470.71	Florida		
42	23640.93	96189.63	148001.11	California		
43	15505.73	127382.30	35534.17	New York		
44	22177.74	154806.14	28334.72	California		
45	1000.23	124153.04	1903.93	New York		
46	1315.46	115816.21	297114.46	Florida		
47	0.00	135426.92	0.00	California		
48	542.05	51743.15	0.00	New York		
49	0.00	116983.80	45173.06	California		

```
1 y = dataset['Profit']
2 y
    0
          192261.83
          191792.06
          191050.39
    2
    3
          182901.99
    4
          166187.94
    5
          156991.12
    6
          156122.51
    7
          155752.60
    8
          152211.77
    9
          149759.96
    10
          146121.95
    11
          144259.40
    12
          141585.52
    13
          134307.35
    14
          132602.65
    15
          129917.04
    16
          126992.93
    17
          125370.37
    18
          124266.90
    19
          122776.86
    20
          118474.03
    21
          111313.02
    22
          110352.25
    23
          108733.99
    24
          108552.04
    25
          107404.34
    26
          105733.54
          105008.31
    27
    28
          103282.38
    29
          101004.64
    30
           99937.59
    31
           97483.56
    32
           97427.84
    33
           96778.92
    34
           96712.80
    35
           96479.51
    36
           90708.19
           89949.14
    37
    38
           81229.06
    39
           81005.76
    40
           78239.91
    41
           77798.83
    42
           71498.49
    43
           69758.98
           65200.33
    44
    45
           64926.08
    46
           49490.75
    47
           42559.73
    48
           35673.41
           14681.40
    49
    Name: Profit, dtype: float64
```

▼ 0.5 Encoding categorical data

```
0 1 2 3 4 5
0 0.0 0.0 1.0 165349.20 136897.80 471784.10
```

0.6 Splitting the dataset into the Training set and Test set

```
3 0.0 0.0 1.0 144372.41 118671.85 383199.62
1 from sklearn.model_selection import train_test_split
2 X_train, X_test, y_train, y_test = train_test_split(transformed_X, y, test_size = 0.25, random_state = 2509)
```

▼ 1. Training the Multiple Linear Regression model on the Training set

```
1 from sklearn.linear_model import LinearRegression
2 regressor = LinearRegression()
3 regressor.fit(X_train, y_train)
    LinearRegression()
```

▼ 1.1 Score

2. Predicting the Test set results

```
1 y_pred = regressor.predict(X_test)
1 d = {'y_pred': y_pred, 'y_test': y_test}
```

2.1 Compare Predicted results

```
1 pd.DataFrame(d)
₽
               y_pred
                         y_test
                                   1
                       97427.84
         98884.371543
    33 100047.235184
                        96778.92
         47766.247901
                        42559.73
        154976.558305 149759.96
         91129.087779
                        89949.14
        151755.926389 152211.77
    23 112436.195860 108733.99
    24 113375.898676 108552.04
    17 130706.106786 125370.37
        189141.730655 191792.06
         85217.422839
                        81005.76
    22 116952.737156 110352.25
         60343.602070
                       49490.75
```