Package 'math3150package'

September 22, 2024

Title Package for MATH 3150 - Applied Statistics at SUU
Version 0.0.0.9000
Description This package contains functions and data files needed for MATH 3150 - Applied Statistics taught at Southern Utah University.
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Depends R (>= 4.4), tidyverse
LazyData true
Author Rick Brown [aut, cre]
Maintainer Rick Brown <richardbrown1@suu.edu></richardbrown1@suu.edu>

Contents

	bf_test	
	births	2
	cars99	3
	ci_capture	3
	class_data_f2019	4
	diseases	5
	epilepsy	5
	idealwt	6
	influence_plots	6
	logistic_plots	
	mlbsalaries	7
	nitrogen	8
	norm_test	8
	test_levene	9
ex		10

2 births

bf_test	Perform the Brown-Forsythe Test for Equality of Variance

Description

When given a model, this will break up into groups of equal size with a default of 2 perform a Brown Forsythe test. By default, the test will be performed with the jackknife residuals.

Usage

```
bf_test(model, num_groups = 2, resid_type = "jackknife", plot_graph = TRUE)
```

Arguments

model A model of type Im or glm.

num_groups The number of groups to be used. The default is 2.

resid_type The type of residuals. The default is "jackknife", but supports "raw", "standard", and "pearson".

plot_graph Whether to return a plot or not. The default is TRUE.

Value

This function returns an ANOVA table and, if requested a plot of the residuals

Examples

```
mod <- lm(mpg ~ disp, data = mtcars)
bf_test(mod)</pre>
```

births Data Set

Description

Data from 1995-1997 for a study hat examined pregnancies that resulted in the birth of twins. Births were classified as preterm with intervention (induced labor or cesarean), preterm without procedures, or term/post-term. Researchers also classified the pregnancies by the level of prenatal medical care the mother received (inadequate, adequate, or intensive). The data set consists of 278 cases (rows) with two columns indicating the level of prenatal care and type of birth for each set of twins.

Usage

births

cars99 3

Format

A tibble with 2 variables:

prenatal A factor indicating the prenatal care the mother received: Adequate, Inadequate, or Intensive.

type A factor indicating the classification of the birth: "Preterm (induced or cesarean)", "Preterm (without procedures)", and "Term or post-term"

cars99

cars99 Data Set

Description

This data set contains information on 109 vechicles from 1999.

Usage

cars99

Format

A tibble with 11 variables:

Model The vechicle model name.

CityMPG The miles per gallon (MPG) for the vehicle in the city.

HwyMPG The miles per gallon (MPG) for the vehicle on the highway

FuelCap The fuel capacity of the vehicle in gallons.

Weight The weight of the vehicle in lbs.

FrontWt The front weight of the vehicle.

Accel0_30 The time it takes, in seconds, for the vehicle to accelerate from 0 to 30 mph.

Accel0_60 The time it takes, in seconds, for the vehicle to accelerate from 0 to 60 mph.

QtrMile The time it takes, in seconds, for the vehicle to travel a quarter of a mile.

ci_capture	Computes many confidence intervals and returns how many capture
	the true mean

Description

This function reads in a given sample size, mean mu, standard deviation sigma, confidence coefficient, confidence interval type ("z" or "t"), and the number of simulated samples desired, and returns a count of how many of the corresponding confidence intervals captured the true mean mu.

Usage

```
ci_capture(n, mu, sigma, conf_level = 95, ci_type, n_ints, plot_graph = TRUE)
```

4 class_data_f2019

Arguments

n Sample size of each sample. mu The true population mean.

conf_level The confidence level. By default, this it 95 for 95% intervals.

ci_type The type of confidence interval to create. "z" for a z-interval and "t" for a t-

interval.

n_ints The number of intervals to create.

plot_graph Whether to return a plot or not. The default is TRUE.

Value

This function returns a graph of all the intervals, if requested, and the number of intervals that contained the true mean.

Examples

```
ci_capture(10, 10, 5, 95, "t", 500)
```

class_data_f2019 class_data_f2019_Data_Set

Description

This data set contains information on 42 students from Fall of 2019.

Usage

class_data_f2019

Format

A tibble with 7 variables:

level A factor indicating the class level the student is: Freshman, Sophomore, Junior, Senior, or Graduate.

major A character indicating the major of the student.

sex A factor indicating the sex of the student: F for female or M for male.

ski A factor indicating downhill preference: Ski, Snowboard, or Neither.

penny A factor indicating preference regarding the penny: Abolish, Retain or No Answer.

speed An integer indicating the fastest speed the student had driven in a vehicle (in mph).

sleep A numeric variable indicating how long the student slept the night before.

diseases 5

diseases

diseases Data Set

Description

This data set contains information for each state and Washington, D.C. about the number of reported cases of AIDS, syphilis, and tuberculosis.

Usage

diseases

Format

A tibble with 4 variables:

State A charcter vector indicating the state.

AIDS The number of reporeted AIDS cases.

Syphilis The number of reporeted syphilis cases.

Tuberculosis The number of reporeted tuberculosis cases.

epilepsy

epilepsy Data Set

Description

This data set contains information on the number of seizures, which treatment, and the age of 59 patients with epilepsy.

Usage

epilepsy

Format

A tibble with 4 variables:

id The patient ID.

numseiz The number of seizures the patient had.

age The age of the patient

6 influence_plots

idealwt

idealwt Data Set

Description

This data set contains weight information on 182 people (119 females and 63 males). Actual weights, ideal weights, and the difference between them are recorded.

Usage

idealwt

Format

A tibble with 4 variables:

sex A factor indicating the sex of the person: Female or Male.

actual The person's actual weight.

ideal The person's ideal weight.

diff The difference between the person's actual weight and their ideal weight. Negative values indicate that the person weighs less than what they consider ideal.

influence_plots

Creates many diagnostic plots

Description

This function creates many diagnostic plots for a given model. These plots include residual plots, a leverage plot, a Cook's distance plot, a DfFits plot, and DfBetas plots for the intercept and all slopes.

Usage

```
influence_plots(model, missing_group = NULL)
```

Arguments

model

The model for which we would like these plots. This can be of class "lm" or

"glm" with a binomial family.

 ${\tt missing_group}$

Used for multinomial regression to indicate which group is not being plotted.

Value

This function returns plots. The user must press "enter" or "return" to view subsequent plots.

Examples

```
mod <- lm(mpg ~ disp, data = mtcars)
influence_plots(mod)</pre>
```

logistic_plots 7

logistic_plots	Creates many diagnostic plots for logistic or multinomial models

Description

This function feeds into the influence_plots() function to create many diagnostic plots for a given logistic or multinomial model. These plots include residual plots, a leverage plot, a Cook's distance plot, a DfFits plot, and DfBetas plots for the intercept and all slopes.

Usage

```
logistic_plots(model)
```

Arguments

model The model for which we would like these plots. This can be of class "glm" with

a binomial family or of class "multinom" from the nnet library.

missing_group Used for multinomial regression to indicate which group is not being plotted.

Value

This function returns plots. The user must press "enter" or "return" to view subsequent plots.

Examples

```
mod <- glm(vs ~ disp, data = mtcars, family = "binomial")
logistic_plots(mod)</pre>
```

mlbsalaries

mlbsalaries Data Set

Description

This data set contains information on 877 MLB players from 2018.

Usage

mlbsalaries

Format

A tibble with 5 variables:

Rank The ranking of the player's salary with 1 being the most money earned.

Name A character vector containing the name of the player.

Team A character vector containing the team the player played for.

Position A factor indicating what position the player played: SP for starting pitcher, 1B for first base, 2B for second base, 3B for third base, SS for shortstop, OF for outfield, RP for relief pitcher, and DH for designated hitter.

Salary A numeric vector containing the salary the player made for the 2018 season.

8 norm_test

nitrogen Data Set

Description

Nitrogen content of trees in an orchard, the growing tips of 150 leaves are clipped from trees throughout the orchard. These leaves are ground to form one composite sample, which the researcher assays for percentage of nitrogen. Composite samples obtained from a random sample of 36 orchards throughout the state gave the nitrogen contents.

Usage

nitrogen

Format

A data frame with 1 variable:

nitrogen The nitrogen content for the trees.

norm_test	Performs either the Shapiro-Francia or the Shapiro-Wilk normality
	test

Description

When given a model, this will perfrom either the Shapiro-Francia or the Shapiro-Wilk normality test depending user request or based on sample size. Both of these tests have a null hypothesis that the residuals are normally distributed and an alternative that the residuals are not normally distributed.

Usage

```
norm_test(model, resid_type = "raw", test = "default", plot_graph = TRUE)
```

Arguments

model	A model of type lm or glm.
resid_type	The type of residuals. The default is "raw", but supports "jackknife", and "standard" as well.
test	The type of test that should be performed. Options are "default", "sf", and "sw". "sf" performs the Shapiro-Francia test, "sw" performs the Shapiro-Wilk, and "defualt" performs the Shapiro-Francia is $n > 30$ or performs the Shapiro-Wilk if $n <= 30$.
plot_graph	Whether to return a plot or not. The default is TRUE.

Value

This function returns a test statistic, and p-value and, if requested a plot of the residuals

test_levene 9

Examples

```
mod <- lm(mpg ~ disp, data = mtcars)
bf_test(mod)</pre>
```

test_levene

Performs Levene's test many times to investigate standard deviations needed to reject that the true SDs are equal

Description

This function performs Leven's test for the equality of variance in the ANOVA setting many times for three randomly generated normal samples when given the sample size and records how often the null is rejected, what the standard deviations for each group is when the null isrejected, the p-values when the null was rejected, and the ratio of largest SD to smallest SD for each time the null was rejected.

Usage

```
test_levene(n, num_sims)
```

Arguments

n Sample size of each group.

num_sims The number of Levene's tests that should be performed.

Value

This function returns a list that contain the standard deviations for each group when we reject the null hypothesis in Levene's test, the p-values for each time we rejected the null hypothesis, the number of samples, the ratio of largest SD to smallest SD for each time we rejected the null, and the number of times we rejected the null.

Examples

```
test_levene(10, 1000)
```

Index

```
* datasets
    births, 2
    cars99, 3
    class_data_f2019, 4
    diseases, 5
    epilepsy, 5
    idealwt, 6
    mlbsalaries, 7
    {\tt nitrogen}, \textcolor{red}{8}
bf_test, 2
{\tt births}, {\color{red} 2}
cars99, 3
ci_capture, 3
class_data_f2019, 4
diseases, 5
epilepsy, 5
idealwt, 6
influence\_plots, 6
logistic\_plots, 7
mlbsalaries, 7
nitrogen, 8
norm_test, 8
test_levene, 9
```