

PDPU: An Open-Source Posit Dot-Product Unit for Deep Learning Applications

Qiong Li, Chao Fang, Zhongfeng Wang(⊠)

ICAIS Lab, School of Electronic Science and Engineering, Nanjing University, China

Outline

- Backgrounds & Motivations
- Overall Architecture
- Configurable PDPU Generator
- Experimental Results
- Conclusion

Outline

- Backgrounds & Motivations
- Overall Architecture
- Configurable PDPU Generator
- Experimental Results
- Conclusion

Background: Posit Format

- Many Fields have Benefited from Posit Format
 - Irregular graphs processing [N. Shah et al., JSSC'22]
 - Posit enabled RISC-V core [S. Tiwari et al., TACO'21]
 - Weather forecasting [M. Klower et al., JAMES'20]
 - Deep Learning
 - Posit arithmetic units [H. Zhang et al., ISCAS'19]
 - Posit-based DNN training or inference evaluation [J. Lu et al., TC'20]
 - Posit-based DNN processor or accelerator [Y. Wang et al., TCAS-I'22]
- Draw Attention from Institutions such as NUS, UCM, IIT, THU, ULisboa, etc.

- Posit is defined by word size (n) and exponent size (es), i.e., P(n, es)
- Four fields: sign, regime, exponent, mantissa

Background: Posit Format (Cont'd)

- Posit: Promising Alternative to IEEE-754 for Deep Learning Applications
 - Better trade-off between dynamic range & accuracy
 - Simplified exceptions handling
 - Symmetrical tapered accuracy

Tapered accuracy of posit fits the DNN data distribution

Background: Dot-Product

- Dot-product Operations, Dominant in Deep Neural Network (DNN)
- Existing Posit-Based Dot-Product Implementation:
 - Combination of multipliers and an adder tree
 - [ICCD'18], [IEEE Access'19], [ISCAS'20], [TCAS-II'20], [ISCAS'21], ...
 - Cascaded fused multiply-add units
 - [ISCAS'19], [SOCC'19], [ICCD'21], [TCAS-II'22], ...

- **Existing discrete dot-product architecture** implemented by
- (a) multipliers and adders or
- (b) FMA units

Background & Motivations

- Challenges of Existing Discrete Implementation
 - Extensive redundant operations → high latency and hardware overhead
 - Frequent hardware rounding → precision loss
 - Inflexible design → limited application scenarios
 - Lack support for mixed-precision arithmetic in
 DNNs → limited computational efficiency

Fused, mixed-precision, and highly configurable posit-based dot-product unit

Outline

- Backgrounds & Motivations
- Overall Architecture
- Configurable PDPU Generator
- Experimental Results
- Conclusion

Overall Architecture

- $out = acc + V_a \times V_b = acc + a_0 \cdot b_0 + a_1 \cdot b_1 + \dots + a_{N-1} \cdot b_{N-1}$
- Fine-Grained 6-stage Pipeline

Architecture: Pipeline S1 – Decode

S1: Decode

 Decoding: extract valid components of inputs

• sign (s)

• rg_exp (e)

mantissa (m)

Sign handling

• $XOR \rightarrow s_{ab}$

Exponent handling

• Addition $\rightarrow e_{ab}$

Architecture of posit decoder

Architecture: Pipeline S2 – Multiply

- S1: Decode
- S2: Multiply
 - Exponent comparison
 - Comparator tree $\rightarrow e_{max}$
 - Mantissa multiplication

MULTIPLY S2 $s_i (i=0,...,N)$ e_i (i=0,...,N) Exponent emax Maximum Modified lma→ Radix-4 carry Booth Multiplier $m_{\mathbf{C}}$

> Recursive design method of comparator tree

Architecture: Pipeline S2 – Multiply (Cont'd)

- S1: Decode
- S2: Multiply
 - Exponent comparison
 - Mantissa multiplication
 - Modified radix-4 booth multiplier → sum & carry

Architecture: Pipeline S3 – Align

• S1: Decode

S2: Multiply

• S3: Align

- Final addition
 - sum + carry
- Mantissa alignment
 - Barrel shifters
- Two's complement

Shift Alignment

$$\begin{array}{c}
1.1110110 \\
2^5 \times +0.010110101 \\
+0.000011011001
\end{array}$$

Architecture: Pipeline S4 – Accumulate

• S1: Decode

S2: Multiply

• S3: Align

S4: Accumulate

- Compression
 - Recursive CSA tree→ sum & carry
- Final addition
 - sum + carry

Recursive design method of Carry-Save-Adder (CSA) tree

Architecture: Pipeline S5 – Normalize

• S1: Decode

S2: Multiply

• S3: Align

S4: Accumulate

S5: Normalize

- Leading zero count
- Mantissa normalization
- Exponent adjustment

Architecture: Pipeline S6 – Encode

• S1: Decode

S2: Multiply

• S3: Align

• S4: Accumulate

• S5: Normalize

• S6: Encode

• **Encoding:** pack result components into posit output

Rounding: RNE method

> Architecture of posit encoder

Architecture: Fused implementation

- Fused Strategy: perform N-terms dot-product operation as a whole
 - **High computational efficiency and area efficiency**, by removing redundant logic (e.g., repeated encoding and decoding process)
 - High computational accuracy, by decreasing rounding operations

ISCAS 2023

EE INDIVIDUAL OF COURT OF PARK

Outline

- Backgrounds & Motivations
- Overall Architecture
- Configurable PDPU Generator
- Experimental Results
- Conclusion

PDPU Generator – 1

- Supporting Custom Posit Formats
 - Support any combination of n and es both for inputs and outputs

The flexible format supports of decoder and encoder enable mixed-precision strategy

PDPU Generator – 2

- Supporting Diverse Dot-Product Sizes
 - Method 1: Instantiate sub-modules in parallel

PDPU Generator – 2 (Cont'd)

- Supporting Diverse Dot-Product Sizes
 - Method 2: **Recursively implement submodules** \rightarrow tree structure

PDPU Generator – 3

Supporting Suitable Alignment Width

• Determine the width of aligned mantissa (i.e., W_m) based on DNN accuracy requirements \rightarrow minimize the hardware cost while meeting precision

* The overflowed bits will be discarded directly

Outline

- Backgrounds & Motivations
- Overall Architecture
- Configurable PDPU Generator
- Experimental Results
- Conclusion

Experimental Settings

- Design in SystemVerilog, Validated using Extended SoftPosit Library
- Synopsys DC, TSMC-28nm with Normal Case
- Comparison with the SOTAs
 - Baselines
 - PACoGen [M. K. Jaiswal et al., IEEE Access'19]
 - FPnew [S. Mach et al., TVLSI'20]
 - Posit FMA [H. Zhang et al., ISCAS'19]
 - **Combinationally implemented** \rightarrow avoid impacts of different pipeline schemes
 - Accuracy: computational accuracy of the first convolution layer of ResNet18
 - Mixed-Precision PDPU: P(13/16,2) means P(13,2) for a,b & P(16,2) for acc,out
- Evaluation of 6-stage Pipeline

Experimental Results – I

- Performance of PDPU under Different Configurations
 - Inappropriate data formats or alignment width may result in 10% higher computational loss of accuracy
 - Improve area and energy efficiency by 5.0x and 2.1x, compared with quire PDPU

Architecture	Formats	N	W _m	Accuracy	Area (um²)	Delay (ns)	Power (mW)	Perf. (GOPS)	Area Eff. (GOPS/mm²)	Energy Eff. (GOPS/W)
	P(16/16,2)	4	14	99.10%	9579.15	1.62	4.49	2.47	257.76	550.37
	P(13/16,2)	4	14	98.69%	7694.82	1.60	3.66	2.50	324.89	682.82
Proposed PDPU	P(13/16,2)	8	14	98.68%	13560.37	1.69	5.80	4.73	349.09	816.16
10% Accuracy Drop	P(10 /16,2)	8	14	89.58%	10006.42	1.70	4.24	4.71	5.0x 470.29	2.1x 1110.95
	P(13/16,2)	8	10	88.90%	12157.11	1.66	5.06	4.82	396.42	953.14
Quire PDPU	P(13,16,2)	4	256	98.79%	29209.45	2.10	5.87	1.90	65.21	324.50

Experimental Results – I (Cont'd)

- Comparison of PDPU with Existing DPU Implementations under N=4
 - P(16, 2) can maintain the precision of FP32
 - Mixed-precision PDPU reduce area, latency and power by 43%, 64%, and 70%, compared with PACoGen DPU

Architecture	Formats	N	W _m	Accuracy	Area (um²)	Delay (ns)	Power (mW)	Perf. (GOPS)	Area Eff. (GOPS/mm²)	Energy Eff. (GOPS/W)
EDnow DDII	FP32	4	\	100%	28563.19	3.45	7.60	1.16	40.59	152.65
FPnew DPU	FP16	4	\	91.21%	13448.99	2.75	4.29	1.45	108.15	338.85
PACoGen DPU	P(16,2)	4	\	98.86%	13433.11	4.45	12.21	0.90	66.91	73.59
Draw and DDDII		9579.15	1.62	4.49	2.47	257.76	550.37			
Proposed PDPU	P(13/16,2)	4	14	98.69%	7694.82	1.60	3.66	2.50	324.89	682.82

ISCAS 2023

Experimental Results – I (Cont'd)

- Comparison of PDPU with Off-the-shelf FMA Implementations
 - PDPU provides 3.1x and 3.5x the area and energy efficiency compared with Posit FMA unit

Architecture	Formats	N	W _m	Accuracy	Area (um²)	Delay (ns)	Power (mW)	Perf. (GOPS)	Area Eff. (GOPS/mm²)	Energy Eff. (GOPS/W)
Droposed DDDII	P(13/16,2)	4	14	98.69%	7694.82	1.60	3.66	2.50	324.89	682.82
Proposed PDPU	P(13/16,2)	8	14	98.68%	13560.37	1.69	5.80	4.73	349.09	816.16
	FP32	1	\	100%	6668.17	1.20	3.97	0.83	3.1x 124.97	3.5x 210.00
FPnew FMA	FP16	1	\	92.93%	3713.72	1.00	2.51	1.00	269.27	398.61
Posit FMA	P(16,2)	1	\	99.23%	7035.34	1.35	3.79	0.74	105.29	195.52

Experimental Results – II

- Evaluation of 6-stage Pipeline
 - A balanced critical path delay of each stage, improving throughput of PDPU by 4.4x and 4.6x, respectively

Outline

- Backgrounds & Motivations
- Overall Architecture
- Configurable PDPU Generator
- Experimental Results
- Conclusion

Conclusion

- A Posit Dot-Product Unit (PDPU) for Deep Learning Applications
 - Fused and mixed-precision properties
 - A balanced 6-stage pipeline scheme
 - Configurable PDPU generator
- PDPU achieves a significant reduction of 43%, 64%, and 70% in terms of area, delay, and power, respectively
- Code is available at https://github.com/qleenju/PDPU for further exploration

Thank You!

If you have any questions, please don't hesitate to drop me an email.

Email: qiongli@smail.nju.edu.cn, fantasysee@smail.nju.edu.cn, zfwang@nju.edu.cn

Appendix A: Posit Format Encoding

Defined by word size (n) and exponent size (es), i.e., P(n, es)

$$\bullet \ p = \begin{cases} \pm 0, & 000 \dots 000, \\ \pm \infty, & 100 \dots 000, \\ (-1)^{s_p} \times \mathbf{2^{k \cdot 2^{es}}} \times 2^{e_p} \times 1. m_p, otherwise, \end{cases}$$

$$\bullet \ \text{where } s_p, e_p, m_p \text{ is the value of sign, exponent and mantissa field,}$$

- where s_p , e_p , m_p is the value of sign, exponent and mantissa field, respectively
- k is the factor represented by regime bits

Sign	Regime	Exponent, if any	Mantissa, if any	0 1 1 1 1 1 0
S	$rrr\bar{r}$	$e_1 e_2 \dots e_{es}$	$m_1 m_2 m_3 \dots$	$+2^{4\cdot 2^2} \times 2^2 \times 2^$
	$+2^{-2\cdot 2^2}\times 2^2\times 2$			

> The regime field is composed of m consecutive identical bits rand an opposite bit \bar{r} , indicating a scale factor of $2^{k \cdot 2^{es}}$

and an opposite bit a scale factor of
$$2^k$$
.

a scale factor of 2^k .

$$k = \begin{cases} -m, & r = 0 \\ m - 1, r = 1 \end{cases}$$

Appendix B: Complete experimental results

Architecture	Formats	N	W _m	Accuracy	Area (um²)	Delay (ns)	Power (mW)	Perf. (GOPS)	Area Eff. (GOPS/mm²)	Energy Eff. (GOPS/W)
FPnew DPU	FP32	4	\	100%	28563.19	3.45	7.60	1.16	40.59	152.65
rriiew DPO	FP16	4	\	91.21%	13448.99	2.75	4.29	1.45	108.15	338.85
PACoGen DPU	P(16,2)	4	\	98.86%	13433.11	4.45	12.21	0.90	66.91	73.59
	P(16/16,2)	4	14	99.10%	9579.15	1.62	4.49	2.47	257.76	550.37
	P(13/16,2)	4	14	98.69%	7694.82	1.60	3.66	2.50	324.89	682.82
Proposed PDPU	P(13/16,2)	8	14	98.68%	13560.37	1.69	5.80	4.73	349.09	816.16
	P(10/16,2)	8	14	89.58%	10006.42	1.70	4.24	4.71	470.29	1110.95
	P(13/16,2)	8	10	88.90%	12157.11	1.66	5.06	4.82	396.42	953.14
Quire PDPU	P(13,16,2)	4	256	98.79%	29209.45	2.10	5.87	1.90	65.21	324.50
	FP32	1	\	100%	6668.17	1.20	3.97	0.83	124.97	210.00
FPnew FMA	FP16	1	\	92.93%	3713.72	1.00	2.51	1.00	269.27	398.61
Posit FMA	P(16,2)	1	\	99.23%	7035.34	1.35	3.79	0.74	105.29	195.52

