Index

Sheet	Topic
1	Probability Distribution
2	Confidence Intervals
3 - 6	Simple Linear Regression
7 - 8	Standard Normal table
9	Student's t distribution
10	Chi-Square Distribution
11	Wilcoxon Signed-Rank Test
12	Wilcoxon Rank-Sum Test

Name	Formula	E(X)	Var(X)
Binomial Distribution	$P(X = x) = {}^{n}C_{x} p^{x} (1 - p)^{(n-x)}$	np	np(1 - p)
Geometric Distribution	$P(X = x) = (1-p)^{x-1} * p$	1/p	$(1-p)/p^2$
Negative binomial Distribution	$P(X = x) = {x-1 \choose r-1} p^r q^{x-r}$ where q = 1 - p	r/p	r(1 – p)/p ²
Poisson Distribution	$P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ
Hypergeometric Distribution	$P(X=k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$	$\frac{nm}{N}$	$\frac{nm}{N} \left(1 - \frac{m}{N}\right) \left(\frac{N-n}{N-1}\right)$
Multinomial Distribution	$P(X_1 = x_1 \text{ and } \dots \text{ and } X_k = x_k)$		
	$= \begin{cases} \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}, & \text{when } \sum_{i=1}^k x_i = n \\ 0 & \text{otherwise,} \end{cases}$		
	(0 otherwise,		
Normal Distribution	$f(X) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$		
Lognormal Distribution	$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right], & x > 0 \end{cases}$ $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2/2} (e^{\sigma^2} - 1)$
Exponential Distribution	$f(x) = \begin{cases} \lambda e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	CDF:		
	$F(x) = \begin{cases} 1 - e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$		
Uniform distribution	$f_{X}(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$	$\frac{a+b}{2}$	$\frac{b-a}{\sqrt{12}}$
Gamma Distribution	Gamma function: $\Gamma(lpha) = \int_0^\infty t^{lpha-1} e^{-t} dt$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$.
	PDF of Gamma Distribution: $f(x) = \begin{cases} \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} & \text{at } x > 0, \\ 0 & \text{at } x \le 0. \end{cases}$		
Weibull Distribution	$f(x) = \left\{ egin{array}{ll} rac{k}{\lambda} \left(rac{x}{\lambda} ight)^{k-1} e^{-(x/\lambda)^k} & x \geq 0 \ 0 & x < 0 \end{array} ight.$	$\lambda \Gamma(1+1/k)$	$\lambda^2 \left[\Gamma \left(1 + \frac{2}{k} \right) - \left(\Gamma \left(1 + \frac{1}{k} \right) \right)^2 \right]$

Define $\tilde{n} = n + 4$, and $\tilde{p} = \frac{X+2}{\tilde{n}}$. Then a level $100(1-\alpha)\%$ confidence interval for p is

$$\tilde{p} \pm z_{\alpha/2} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}}} \tag{5.5}$$

Define $\tilde{n} = n + 4$, and $\tilde{p} = \frac{X+2}{\tilde{n}}$. Then a level $100(1-\alpha)\%$ lower confidence bound for p is

$$\tilde{p} - z_{\alpha} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}}}$$

and level $100(1-\alpha)\%$ upper confidence bound for p is

$$\tilde{p} + z_{\alpha} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}}}$$

If the lower bound is less than 0, replace it with 0. If the upper bound is greater than 1, replace it with 1.

$$\overline{X} - \overline{Y} \pm z_{lpha/2} \sqrt{rac{\sigma_X^2}{n_X} + rac{\sigma_Y^2}{n_Y}}$$

Let X be the number of successes in n_X independent Bernoulli trials with success probability p_X , and let Y be the number of successes in n_Y independent Bernoulli trials with success probability p_Y , so that $X \sim \text{Bin}(n_X, p_X)$ and $Y \sim \text{Bin}(n_Y, p_Y)$. Define $\tilde{n}_X = n_X + 2$, $\tilde{n}_Y = n_Y + 2$, $\tilde{p}_X = (X+1)/\tilde{n}_X$, and $\tilde{p}_Y = (Y+1)/\tilde{n}_Y$.

Then a level $100(1-\alpha)\%$ confidence interval for the difference $p_X - p_Y$ is

$$\tilde{p}_X - \tilde{p}_Y \pm z_{\alpha/2} \sqrt{\frac{\tilde{p}_X(1-\tilde{p}_X)}{\tilde{n}_X} + \frac{\tilde{p}_Y(1-\tilde{p}_Y)}{\tilde{n}_Y}}$$

Compute
$$\widehat{p}_X = \frac{X}{n_X}$$
, $\widehat{p}_Y = \frac{Y}{n_Y}$, and $\widehat{p} = \frac{X+Y}{n_X+n_Y}$.

Compute the z-score:
$$z = \frac{\widehat{p}_X - \widehat{p}_Y}{\sqrt{\widehat{p}(1-\widehat{p})(1/n_X + 1/n_Y)}}$$

The Chi-Square Goodness of fit test

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

The Chi-Square Test for Homogeneity, Independence

$$E_{r,c} = (n_r * n_c) / n$$

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Or

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2$$

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}$$

Let X and Y be random variables with the bivariate normal distribution.

Let ρ denote the population correlation between X and Y.

Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a random sample from the joint distribution of X and Y.

Let r be the sample correlation of the n points.

Then the quantity

$$W = \frac{1}{2} \ln \frac{1+r}{1-r} \tag{7.4}$$

is approximately normally distributed, with mean given by

$$\mu_{W} = \frac{1}{2} \ln \frac{1+\rho}{1-\rho} \tag{7.5}$$

and variance given by

$$\sigma_{\mathbf{W}}^2 = \frac{1}{n-3} \tag{7.6}$$

Find CI for μ_w as:

$$W \pm Z_{\alpha/2} * \sigma$$

 Use upper and lower confidence bounds of μ_w to find CI for ρ using the following inequality:

$$\rho = \frac{e^{2\mu_W} - 1}{e^{2\mu_W} + 1}$$

For testing null hypotheses of the form

- $\rho = 0$,
- $\rho \le 0$, or
- $-\rho \geq 0$,

a simpler procedure is available. When $\rho = 0$, the quantity

$$U = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

has a Student's t distribution with n-2 degrees of freedom.

Equation of least-squares line

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x$$

 \widehat{eta}_0 and \widehat{eta}_1 are called least-squares coefficients, estimates of β 0 and β 1

Fitted value $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Residual associated with the point ($\mathbf{x}_{_{\mathbf{i}}}$, $\mathbf{y}_{_{\mathbf{i}}}$)

$$e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

The least-squares line is the line that minimizes the sum of the squared residuals, i.e.,

$$\sum_{i=1}^{n} e_i^2$$
 is minimized

$$e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Therefore $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are the quantities that minimize the sum

$$S = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$

These quantities are

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

Intepreting slope in terms of r

$$: \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = r \frac{s_y}{s_x} \quad \Longrightarrow \quad \hat{\beta}_1 = r \frac{s_y}{s_x}$$

Another form of least-squares line

Substituting $\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$ in least-squares line

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x$$

we get,

$$\widehat{y} - \overline{y} = \widehat{\beta}_1(x - \overline{x})$$

$$\Rightarrow \quad \widehat{y} - \overline{y} = r \frac{s_y}{s_x} (x - \overline{x})$$

Goodness of fit

 $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ the error sum of squares

 $\sum_{i=1}^{n} (y_i - \overline{y})^2$ the total sum of squares.

 $\sum_{i=1}^{n} (y_i - \overline{y})^2 - \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$ the regression sum of squares.

Total sum of squares = Regression sum of squares + Error sum of squares

$$r^2 = \frac{\text{Regression sum of squares}}{\text{Total sum of squares}}$$

Estimate of error variance

$$s^{2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2} = \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{n-2}$$

or

$$s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{n-2} = \frac{(1-r^{2}) \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n-2}$$

In the linear model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, under assumptions 1 through 4, the observations y_1, \ldots, y_n are independent random variables that follow the normal distribution. The mean and variance of y_i are given by

$$\mu_{y_i} = \beta_0 + \beta_1 x_i$$

$$\sigma_{y_i}^2 = \sigma^2$$

5

The slope β_1 represents the change in the mean of y associated with an increase of one unit in the value of x.

Under assumptions 1 through 4 (page 540),

- The quantities $\hat{\beta}_0$ and $\hat{\beta}_1$ are normally distributed random variables.
- The means of $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are the true values β_0 and β_1 , respectively.
- The standard deviations of $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are estimated with

$$s_{\widehat{\beta}_0} = s \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}$$
 (7.36)
$$\widehat{\beta}_0 \sim N(\beta \, 0, \, s_{\widehat{\beta}_0})$$

and

$$\widehat{\beta}_1 \sim N(\beta 1, S_{\widehat{\beta}_1})$$

$$\widehat{\delta}_{\widehat{\beta}_1} = \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

$$(7.37)$$

where $s = \sqrt{\frac{(1-r^2)\sum_{i=1}^n(y_i-\overline{y})^2}{n-2}}$ is an estimate of the error standard deviation σ .

Level $100(1 - \alpha)\%$ confidence intervals for β_0 and β_1 are given by

$$\widehat{\beta}_0 \pm t_{n-2,\alpha/2} \cdot s_{\widehat{\beta}_0} \qquad \widehat{\beta}_1 \pm t_{n-2,\alpha/2} \cdot s_{\widehat{\beta}_1}$$

where

$$s_{\hat{\beta}_0} = s \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}$$
 $s_{\hat{\beta}_1} = \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}$

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

_ z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

di-1820036

TABLE A.3 Upper percentage points for the Student's t distribution

					α				
ν	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646
35	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.090	3.291

-1820036

book

TABLE A.7 Upper percentage points for the χ^2 distribution

		α													
ν	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005					
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879					
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597					
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838					
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860					
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750					
6 7 8 9	0.676 0.989 1.344 1.735 2.156	0.872 1.239 1.646 2.088 2.558	1.237 1.690 2.180 2.700 3.247	1.635 2.167 2.733 3.325 3.940	2.204 2.833 3.490 4.168 4.865	10.645 12.017 13.362 14.684 15.987	12.592 14.067 15.507 16.919 18.307	14.449 16.013 17.535 19.023 20.483	16.812 18.475 20.090 21.666 23.209	18.548 20.278 21.955 23.589 25.188					
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757					
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300					
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819					
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319					
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801					
16	5.142	5.142 5.812 6.908 5.697 6.408 7.564 5.265 7.015 8.231 5.844 7.633 8.907			9.312	23.542	26.296	28.845	32.000	34.267					
17	5.697				10.085	24.769	27.587	30.191	33.409	35.718					
18	6.265				10.865	25.989	28.869	31.526	34.805	37.156					
19	6.844				11.651	27.204	30.144	32.852	36.191	38.582					
20	7.434				12.443	28.412	31.410	34.170	37.566	39.997					
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401					
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796					
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181					
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559					
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928					
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290					
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645					
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993					
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336					
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672					
31	14.458	15.655	17.539	19.281	21.434	41.422	44.985	48.232	52.191	55.003					
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328					
33	15.815	17.074	19.047	20.867	23.110	43.745	47.400	50.725	54.776	57.648					
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964					
35	17.192	18.509	20.569	22.465	24.797	46.059	49.802	53.203	57.342	60.275					
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581					
37	18.586	19.960	22.106	24.075	26.492	48.363	52.192	55.668	59.893	62.883					
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181					
39	19.996	21.426	23.654	25.695	28.196	50.660	54.572	58.120	62.428	65.476					
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766					

For $\nu > 40$, $\chi^2_{\nu,\alpha} \approx 0.5(z_{\alpha} + \sqrt{2\nu - 1})$.

-1820036

TABLE A.5 Critical points for the Wilcoxon signed-rank test

9:22

n	S _{low}	Sup	α	n	S _{low}	S up	α	n	S _{low}	Sup	α	n	S _{low}	S _{up}	α
4	1	9	0.1250	10	15	40	0.1162		12	79	0.0085		35	118	0.0253
	0	10	0.0625		14	41	0.0967		10	81	0.0052		34	119	0.0224
5	3	12	0.1562		11	44	0.0527		9	82	0.0040		28	125	0.0101
_	2	13	0.0938		10	45	0.0420	14	32	73	0.1083		27	126	0.0087
	1	14	0.0625		9	46	0.0322	- 1	31	74	0.0969		24	129	0.0055
	0	15	0.0312		8	47	0.0244		26	79	0.0520		23	130	0.0047
6	4	17	0.1094		6	49	0.0137		25	80	0.0453	18	56	115	0.1061
U	3	18	0.1094		5	50	0.0098		22	83	0.0290	10	55	116	0.0982
	2	19	0.0761		4	51	0.0068		21	84	0.0247		48	123	0.0542
	1	20	0.0409		3	52	0.0049		16	89	0.0101		47	124	0.0494
	0	21	0.0312	11	18	48	0.1030		15	90	0.0083		41	130	0.0269
_					17	49	0.0874		13	92	0.0054		40	131	0.0241
7	6	22	0.1094		14	52	0.0508		12	93	0.0043		33	138	0.0104
	5	23	0.0781		13	53	0.0415	15	37	83	0.1039		32	139	0.0091
	4	24	0.0547		11	55	0.0269	13	36	84	0.1039		28	143	0.0052
	3	25	0.0391		10	56	0.0210		31	89	0.0535		27	144	0.0045
	2	26	0.0234		8	58	0.0122		30	90	0.0333	19			
	1	27	0.0156		7	59	0.0093		26	94	0.0473	19	63	127 128	0.1051
	0	28	0.0078		6	60	0.0068		25	95	0.0240		62 54	128	0.0978 0.0521
8	9	27	0.1250		5	61	0.0049		20	100	0.0108		53	137	0.0321
	8	28	0.0977	12	22	56	0.1018		19	101	0.0090		33 47	143	0.0478
	6	30	0.0547	12	21	57	0.1018		16	104	0.0051		46	144	0.0273
	5	31	0.0391		18	60	0.0549		15	105	0.0042		38	152	0.0247
	4	32	0.0273		17	61	0.0349	1.6	43	93	0.1057		36 37	153	0.0102
	3	33	0.0195		14	64	0.0461	16	43 42	93 94	0.1057		33	157	0.0054
	2	34	0.0117		13	65	0.0201		36	100	0.0523		32	158	0.0034
	1	35	0.0078		10	68	0.0212		35	100	0.0323				
	0	36	0.0039		9	69	0.0103		30	101	0.0467	20	70	140	0.1012
9	11	34	0.1016		8	70	0.0061		29	100	0.0233		69	141	0.0947
	10	35	0.0820		7	71	0.0046		24	112	0.0222		61	149	0.0527
	9	36	0.0645		,	/ 1	0.00+0		23	112	0.0107		60	150	0.0487
	8	37	0.0488	13	27	64	0.1082		20	116	0.0051		53	157	0.0266
	6	39	0.0273		26	65	0.0955		19	117	0.0033		52	158	0.0242
	5	40	0.0195		22	69	0.0549						44	166	0.0107
	4	41	0.0137		21	70	0.0471	17	49	104	0.1034		43	167	0.0096
	3	42	0.0098		18	73	0.0287		48	105	0.0950		38	172	0.0053
	2	43	0.0059		17	74	0.0239		42	111	0.0544		37	173	0.0047
	1	44	0.0039		13	78	0.0107		41	112	0.0492				

For n>20, compute $z=\frac{S_+-n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}}$ and use the z table (Table A.2).

812 APPENDIX A Tables

avidi-1820036

TABLE A.6 Critical points for the Wilcoxon rank-sum test

m	n	W low	W _{up}	α	m	n	W low	W_{up}	α	m	n	<i>W</i> low	W _{up}	α	m	n	W low	W _{up}	α
2	5	4	12	0.0952			11	29	0.0159		7	22	43	0.0530			30	60	0.0296
		3	13	0.0476			10	30	0.0079			21	44	0.0366			29	61	0.0213
	6	4	14	0.0714		6	14	30	0.0571	571		20	45	0.0240			28	62	0.0147
		3	15	0.0357			13	31	0.0333			19	46	0.0152			27	63	0.0100
	7	4	16	0.0556			12	32	0.0190			18	47	0.0088			26	64	0.0063
		3	17	0.0278			11	33	0.0095			17	48	0.0051			25	65	0.0040
	8	5	17	0.0889			10	34	0.0048			16	49	0.0025	_	_			
		4	18	0.0444		7	15	33	0.0545		8	24	46	0.0637	7	7	40	65	0.0641
		3	19	0.0222			14	34	0.0364			23	47	0.0466			39	66	0.0487
_		_					13	35	0.0212			22	48	0.0326			37	68	0.0265
3	4	7	17	0.0571			12	36	0.0121			21	49	0.0225			36	69	0.0189
	_	6	18	0.0286			11	37	0.0061			20	50	0.0148			35	70	0.0131
	5	8	19	0.0714			10	38	0.0030			19	51	0.0093			34	71	0.0087
		7	20	0.0357		8	16	36	0.0545			18	52	0.0054			33	72	0.0055
		6	21	0.0179			15	37	0.0364			17	53	0.0031			32	73	0.0035
	6	9	21	0.0833			14	38	0.0242							8	42	70	0.0603
		8	22	0.0476			13	39	0.0141	6	6	29	49	0.0660			41	71	0.0469
	7	7	23	0.0238			12	40	0.0081			28	50	0.0465			39	73	0.0270
	7	9	24	0.0583			11	41	0.0040			27	51	0.0325			38	74	0.0200
		8	25	0.0333								26	52	0.0206			36	76	0.0103
		7	26	0.0167	5	5	20	35	0.0754			25	53	0.0130			35	77	0.0070
	0	6	27	0.0083			19	36	0.0476			24	54	0.0076			34	78	0.0047
	8	10 9	26 27	0.0667 0.0424			18	37	0.0278			23	55	0.0043	8	8	52	84	0.0524
		8	28	0.0424			17	38	0.0159		7	30	54	0.0507	_	-	51	85	0.0415
		7	29	0.0242			16	39	0.0079			29	55	0.0367			50	86	0.0325
		6	30	0.0121			15	40	0.0040			28	56	0.0256			49	87	0.0249
		O	30	0.0001		6	21	39	0.0628			27	57	0.0175			46	90	0.0103
4	4	12	24	0.0571			20	40	0.0411			26	58	0.0111			45	91	0.0074
		11	25	0.0286			19	41	0.0260			25	59	0.0070			44	92	0.0052
		10	26	0.0143			18	42	0.0152			24	60	0.0041			43	93	0.0035
	5	13	27	0.0556			17	43	0.0087		8	32	58	0.0539					
		12	28	0.0317			16	44	0.0043			31	59	0.0406					

When m and n are both greater than 8, compute $z = \frac{W - m(m+n+1)/2}{\sqrt{mn(m+n+1)/12}}$ and use the z table (Table A.2).