

Lay-Net: Grafting Netlist Knowledge on Layout-Based **Congestion Prediction**

Su Zheng^{*1}, Lancheng Zou^{*2}, Peng Xu¹, Siting Liu¹, Bei Yu¹, Martin Wong¹

¹The Chinese University of Hong Kong ²Wuhan University

Introduction

- Placement is crucial but time-consuming
- Congestion modeling

• Graph Neural Networks (GNN) [2]

• Accurate congestion prediction → better optimization!

Observations

- Existing methods
- Image-based: local perception without global view
- Graph-based: insufficient modeling of physical info.

- What do we need? Netlist + layout!
- Multi-modality \rightarrow global view + sufficient information

Reference

- [1] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and J. Hu, "RouteNet: Routability prediction for mixed-size designs using convolutional neural network," in Proc. ICCAD, 2018, pp. 80:1-80:8.
- [2] B. Wang, G. Shen, D. Li, J. Hao, W. Liu, Y. Huang, H. Wu, Y. Lin, G. Chen, and P. A. Heng, "LHNN: Lattice hypergraph neural network for VLSI congestion prediction," in Proc. DAC, 2022, pp. 1297-1302.
- [3] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, "Swin transformer: Hierarchical vision transformer using shifted windows," in Proc. CVPR, 2021, pp. 10 012-10 022.
- [4] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, "Unified perceptual parsing for scene understanding," in Proc. ECCV, 2018, pp. 418-434.
- [5] C. Yu and Z. Zhang, "Painting on placement: Forecasting routing congestion using conditional generative adversarial nets," in Proc. DAC, 2019.
- [6] C.-C. Chang, J. Pan, T. Zhang, Z. Xie, J. Hu, W. Qi, C.-W. Lin, R. Liang, J. Mitra, E. Fallon, and Y. Chen, "Automatic routability predictor development using neural architecture search," in Proc. ICCAD, 2021.
- [7] A. Ghose, V. Zhang, Y. Zhang, D. Li, W. Liu, and M. Coates, "Generalizable cross-graph embedding for gnn-based congestion prediction," in Proc. ICCAD, 2021.
- [8] K. Baek, H. Park, S. Kim, K. Choi, and T. Kim, "Pin accessibility and routing congestion aware DRC hotspot prediction using graph neural network and U-Net," in Proc. ICCAD, 2022.
- [9] Z. Yang, D. Li, Y. Zhang, Z. Zhang, G. Song, J. Hao et al., "Versatile multistage graph neural network for circuit representation," Proc. NeurIPS, vol. 35, pp. 20 313-20 324, 2022.

Problem Formulation

- Netlist + layout \rightarrow congestion heatmap
- \mathcal{G}_H : connection information from the netlist
- X, Y: geometric information from the layout

$$L_H(\mathcal{G}_H, \boldsymbol{X}, \boldsymbol{Y}) = \frac{1}{NM} \|\boldsymbol{f}_H(\mathcal{G}_H, \boldsymbol{X}) - \boldsymbol{Y}\|_2^2.$$
 (1)

How to Extract Layout Information?

- Layout Features
- RUDY:

$$\mathbf{RUDY}_{e}(\vec{x}, \vec{y}) = (\frac{1}{x_{e}^{h} - x_{e}^{l}} + \frac{1}{y_{e}^{h} - y_{e}^{l}}), x \in [x_{e}^{l}, x_{e}^{h}], y \in [y_{e}^{l}, y_{e}^{h}].$$

• PinRUDY:

$$\mathbf{PinRUDY}_{p_e}(k, l) = (\frac{1}{x_e^h - x_e^l} + \frac{1}{y_e^h - y_e^l}), (x_{p_e}, y_{p_e}) \in b_{k, l}.$$
(3)

• MacroRegion:

MacroRegion
$$(k, l) = \begin{cases} 1, & \text{if } b_{k,l} \text{ is in a macro cell,} \\ 0, & \text{otherwise.} \end{cases}$$

Macro

Grid Cell

Cosine Similarity

- The novel MacroMargin feature
- MacroMargin has a higher cosine similarity to the results

- Network Design
- Multi-scale feature extraction \rightarrow global view
- Shifted-window self-attention \rightarrow local perception
- Based on Swin Transformer \rightarrow good feature extractor

How to Extract Layout Information?

- Graft netlist knowledge on layout-based features!
- Heterogeneous Message Passing
- Cell-to-cell Connections
- Cell-to-net Connections
- Net-to-net Connections

- Grid Cell as Vertex ← Cell-to-net Edge
- X Net in Netlist → Net-to-net Edge
- Bounding-box of Net Net as Vertex

Graft the Netlist Knowledge on the Layout

Overall Architecture

- The Decoder: UPerNet [4]
- Utilizing the multi-scale features

Comparison Between Ours and Previous Methods

• Comparing the features of different methods

Experimental Results

• Dataset: ISPD 2015, half for training, half for testing

$$SSIM(\overline{\boldsymbol{Y}}, \boldsymbol{Y}) = \frac{(2\mu_{\boldsymbol{Y}}\mu_{\overline{\boldsymbol{Y}}} + C_1)(2\sigma_{\boldsymbol{Y},\overline{\boldsymbol{Y}}} + C_2)}{(\mu_{\boldsymbol{Y}}^2 + \mu_{\overline{\boldsymbol{Y}}}^2 + C_1)(\sigma_{\boldsymbol{Y}}^2 + \sigma_{\overline{\boldsymbol{Y}}}^2 + C_2)}.$$
 (5)

$$NRMS(\overline{\boldsymbol{Y}}, \boldsymbol{Y}) = \frac{\|\overline{\boldsymbol{Y}} - \boldsymbol{Y}\|_{2}}{(Y_{\text{max}} - Y_{\text{min}})\sqrt{N_{Y}}},$$
(6)

$$Score(\overline{\boldsymbol{Y}}, \boldsymbol{Y}) = \frac{SSIM(\overline{\boldsymbol{Y}}, \boldsymbol{Y})}{NRMS(\overline{\boldsymbol{Y}}, \boldsymbol{Y})}.$$
 (7)

Table 2. Comparison Between Lay-Net and Previous Methods on ISPD 2015 Benchmark

Benchmark	#Cells	#Nets	Part	RouteNet			GAN			LHNN			Lay-Net		
				SSIM	NRMS	Score	SSIM	NRMS	Score	SSIM	NRMS	Score	SSIM	NRMS	Score
des_perf_1	113k	113k	В	0.364	0.087	4.183	0.442	0.076	5.815	0.716	0.100	7.159	0.721	0.068	10.60
des_perf_a	109k	110k	A	0.499	0.072	6.930	0.542	0.081	6.691	0.789	0.079	9.987	0.778	0.061	12.75
des_perf_b	113k	113k	Α	0.499	0.069	7.231	0.531	0.085	6.247	0.863	0.064	13.48	0.851	0.053	16.05
$edit_dist_a$	130k	131k	A	0.464	0.091	5.098	0.491	0.109	4.504	0.777	0.089	8.730	0.772	0.068	11.35
fft_1	35k	33k	A	0.432	0.087	4.965	0.482	0.102	4.725	0.753	0.079	9.531	0.755	0.060	12.58
fft_2	35k	33k	A	0.465	0.083	5.602	0.494	0.100	4.939	0.775	0.085	9.117	0.771	0.063	12.23
fft_a	34k	32k	A	0.470	0.105	4.476	0.489	0.114	4.289	0.651	0.113	5.761	0.826	0.094	8.787
fft_b	34k	32k	В	0.337	0.096	3.510	0.494	0.085	5.811	0.814	0.074	11.00	0.801	0.059	13.57
$matrix_mult_1$	160k	159k	В	0.325	0.091	3.571	0.383	0.088	4.352	0.526	0.112	4.696	0.530	0.092	5.760
$matrix_mult_2$	160k	159k	В	0.375	0.083	4.518	0.435	0.077	5.649	0.669	0.105	6.371	0.676	0.070	9.657
$matrix_mult_a$	154k	154k	В	0.391	0.089	4.393	0.451	0.085	5.305	0.599	0.092	6.510	0.603	0.088	6.852
$matrix_mult_b$	151k	152k	В	0.422	0.092	4.586	0.493	0.081	6.086	0.708	0.173	4.092	0.715	0.070	10.21
$matrix_mult_c$	151k	152k	В	0.366	0.090	4.066	0.443	0.081	5.469	0.660	0.112	5.892	0.664	0.079	8.405
pci_bridge32_a	30k	30k	В	0.301	0.102	2.950	0.356	0.095	3.747	0.675	0.115	5.869	0.530	0.092	5.760
pci_bridge32_b	29k	29k	A	0.425	0.093	4.569	0.471	0.102	4.617	0.730	0.101	7.227	0.734	0.077	9.532
superblue11_a	954k	936k	В	0.445	0.074	6.013	0.521	0.070	7.442	0.675	0.115	5.869	0.740	0.066	11.21
superblue12	$1.3 \mathrm{m}$	$1.3 \mathrm{m}$	В	0.323	0.111	2.909	0.392	0.096	4.083	0.638	0.093	6.860	0.641	0.084	7.630
superblue14	634k	620k	A	0.476	0.083	5.734	0.498	0.099	5.030	0.793	0.083	9.554	0.783	0.063	12.42
superblue16_a	698k	697k	A	0.385	0.095	4.052	0.458	0.084	5.452	0.653	0.108	6.046	0.661	0.068	9.720
superblue19	522k	512k	A	0.454	0.116	3.913	0.488	0.105	4.647	0.800	0.078	10.25	0.783	0.064	12.23
Average	-	-	-	0.411	0.090	4.566	0.468	0.091	5.142	0.713	0.099	7.202	0.717	0.072	9.958
Ratio	-	-	-	0.57	1.25	0.46	0.65	1.26	0.52	0.99	1.38	0.72	1.00	1.00	1.00

