Reinforcement Learning

Game demo (Code modified from: https://github.com/LeonMarqs/Flappy-bird-python)

What is the goal/objective?

What is the goal/objective?

Maximise score

What are the actions we can take?

What are the actions we can take?

- Two actions
 - Tap (Space)
 - No tap

Flappy Bird Who is playing?

Flappy Bird Who is playing?

- Agent
 - You
 - Or some algorithm

Flappy Bird Where are we playing?

```
while begin:
   clock.tick(15)
   for event in pygame.event.get():
       if event type == QUIT:
           pygame.quit()
       if event.type == KEYDOWN:
           if event.key == K_SPACE or event.key == K_UP:
               bird.bump()
               pygame.mixer.music.load(wing)
               pygame.mixer.music.play()
               begin = False
   screen.blit(BACKGROUND, (0, 0))
   screen.blit(BEGIN_IMAGE, (120, 150))
   if is_off_screen(ground_group.sprites()[0]):
       ground_group.remove(ground_group.sprites()[0])
       new_ground = Ground(GROUND_WIDHT - 20)
       ground_group.add(new_ground)
   bird.begin()
   ground_group.update()
   bird_group.draw(screen)
```


Where are we playing?

- Environment
 - Code
 - generating the graphics
 - Physics rules
 - What happens when you tap
 - What happens when you hit pipe

```
while begin:
    clock.tick(15)
    for event in pygame.event.get():
       if event.type == QUIT:
           pygame.quit()
       if event.type == KEYDOWN:
            if event.key == K_SPACE or event.key == K_UP:
               bird.bump()
               pygame.mixer.music.load(wing)
               pygame.mixer.music.play()
               begin = False
    screen.blit(BACKGROUND, (0, 0))
    screen.blit(BEGIN_IMAGE, (120, 150))
    if is_off_screen(ground_group.sprites()[0]):
       ground_group.remove(ground_group.sprites()[0])
       new_ground = Ground(GROUND_WIDHT - 20)
       ground_group.add(new_ground)
    bird.begin()
   ground_group.update()
   bird_group.draw(screen)
```


What does the environment provide to an agent?

What does the environment provide to an agent?

What does the environment provide to an agent?

Observations

Pixel level information

How does an agent decide what action to take?

Should the agent tap or not?

How does an agent decide what action to take?

State

Process observation into a "state"

How does an agent decide what action to take?

State

Process observation into a "state"

Flappy Bird Is time important?

Is time important?

Yes

Agent's current state depends on previous state and action

Agent

Environment

OpenAl Gym Environment

- Mountain Car
 - Actions?
 - State?

Goal: Maximise total (discounted) reward

Total Reward (Return)
$$R_t = \sum_{i=t}^{\infty} r_i = r_t + r_{t+1} \dots + r_{t+n} + \dots$$

• Total Reward (Discounted Return)

$$R_{t} = \sum_{i=t}^{\infty} \gamma^{i} r_{i} = \gamma^{t} r_{t} + \gamma^{t+1} r_{t+1} \dots + \gamma^{t+n} r_{t+n} + \dots$$

• γ : discount factor; $0 < \gamma < 1$

Q function

- What we want?
 - Given a state choose an "action" that maximises total discounted reward
- Total Reward (Discounted Return)

$$R_{t} = \sum_{i=t}^{\infty} \gamma^{i} r_{i} = \gamma^{t} r_{t} + \gamma^{t+1} r_{t+1} \dots + \gamma^{t+n} r_{t+n} + \dots$$

•
$$Q(s_t, a_t) = \mathbb{E}[R_t \mid s_t, a_t]$$

 Q-function captures the expected total future reward an agent can achieve by taking an action.

State	Action 1	Action 2	Action 3
S1	10	20	15
S2	20	30	5
SN	-5	10	20

State	Action 1	Action 2	Action 3
S1	10	20	15
S2	20	30	5
SN	-5	10	20

What action will you choose if you are in state S2?

State	Action 1	Action 2	Action 3
S1	10	20	15
S2	20	30	5
SN	-5	10	20

What action will you choose if you are in state S2?

Action 2 (as it gives us highest return)

State <position, Velocity></position, 	Action 1	Action 2	Action 3
<-5, -2>	?	?	?
	?	?	?
•••	?	?	?

How do we define states for problems like Mountain car where these numbers are not discrete?

State <position, Velocity></position, 	Action 1	Action 2	Action 3
<[-5, -4], [-2, -1]>	?	?	?
<[-5, -4], [—1, 0]>	?	?	?
			
• • •	?	?	?

How do we define states for problems like Mountain car where these numbers are not discrete?

Discretisation (notebook)

Q function (revision)

- What we want?
 - Given a state choose an "action" that maximises total discounted reward
- Total Reward (Discounted Return)

$$R_{t} = \sum_{i=t} \gamma^{i} r_{i} = \gamma^{t} r_{t} + \gamma^{t+1} r_{t+1} \dots + \gamma^{t+n} r_{t+n} + \dots$$

- $Q(s_t, a_t) = \mathbb{E}[R_t \mid s_t, a_t]$
- Q-function captures the expected total future reward an agent can achieve by taking an action.

Bellman Equation

The Bellman equation for Q-values is given by:

$$Q(s,a) = R(s,a) + \gamma \cdot \max_{a'} Q(s',a')$$

where:

- Q(s, a) is the Q-value of taking action
- R(s, a) is the immediate reward of taking action a in state s.
- γ is the discount factor that determines the importance of future rewards.
- s' is the next state after taking action a.
- $\max_{a'} Q(s', a')$ is the maximum Q-value over all possible actions in state s'.

Q-learning Update Bellman Equation

$$Q(s,a) = R(s,a) + \gamma \cdot \max_{a'} Q(s',a')$$

Q-learning update rule is derived by using the Bellman equation in an iterative manner:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \cdot \left(R(s,a) + \gamma \cdot \max_{a'} Q(s',a') - Q(s,a) \right)$$

- α is the learning rate that controls the extent to which new information overrides old information.
- $R(s,a) + \gamma \cdot \max_{a'} Q(s',a') Q(s,a)$ is the temporal difference (TD) error, representing the discrepancy between the expected Q-value and the observed reward.