Short Note On The Kprofile Problem.

David Ponarovsky

May 21, 2023

1 The Problem.

Given a permutation $\sigma \in S_n$, one can map each of its subsequences of length k to a permutation in S_k . The histogram obtained by counting how many subsequences are mapped to permutations in S_k is called the k-profile of σ . We study the problem in the setting in which one is allowed to perform preprocessing independent of σ .

1.1 Trivial Example.

Suppose that we do not limit the preprocessing running time, then one can just compute ahead of time the k-profile of any of the permutations in S_n . As the size of S_n equals n!, we have that the depth of the binary tree storing the answer is tightly $\Theta(n \log n)$. We denote it by $\langle n!, n!, n \log n \rangle$ for n! memory and time preprocessing and $n \log n$ for query time cost.

1.2 Quantum.

Assume that we have an oracle \mathcal{O} that computes for any k distinct numbers the matched permutation in S_k .

Preprocessing. In the preprocessing stage, we compute classically the n length binary strings containing a weight of exactly k. We can do and store this at $\Theta(n^k) \cdot n$ time and memory. Denote by M the classical gate which, on $x \in \{0,1\}^{\Theta(\log(n^k))}$, returns the n length bit string of weight k that corresponds to x. In addition, denote by $\sigma_{M(x)}$ the restriction of σ on the non-zero bits of M(x).

Recall that for any classical circuit $C: x \mapsto C(x)$ one can construct a traversal circuit $C: |x\rangle |y\rangle \mapsto |x\rangle |y \oplus C(x)\rangle$. From now on, we refer to $\mathcal O$ and M as quantum circuits.

Query. For the query, we prepare $\Theta(\log(n^k))$ qubits, and apply $H^{\log(n^k)}$ to them to obtain a uniform superposition over all the strings of length $\log(n^k)$. Now we associate each of the strings with a k length subsequence of σ by taking the coordinates σ_i such that the digit i of the string is not 0, namely:

$$\sum_{x \in \{0,1\}^*} |x\rangle \xrightarrow{M} \sum_{x \in \{0,1\}^*} |x\rangle |M(x)\rangle \mapsto \sum_{x \in \{0,1\}^*} |x\rangle |M(x)\rangle |\sigma_{M(x)}\rangle$$

When the fetching of $\sigma_{i_0}, \sigma_{i_1}, \sigma_{i_2}, \cdots, \sigma_{i_k}$ is done by taking the Toffoli gate on $x_i, \sigma_i, (0^*)_i$, note that this is the only operator which is not in the Clifford group. We finish by computing f and measuring.

$$\sum_{x \in \{0,1\}^*} |x\rangle |M(x)\rangle |\sigma_{M(x)}\rangle \xrightarrow{f} \sum_{x \in \{0,1\}^*} |x\rangle |M(x)\rangle |\sigma_{M(x)}\rangle |f\left(\sigma_{M(x)}\right)\rangle$$

$$= \sum_{\tau \in S_k} \left(\sum |junk\rangle\right) |\tau\rangle$$

We show a reduction from the k-profile problem to the estimation of a classical die with $|S_k| = k!$ faces. Thus, if it suffices to estimate up to a precision that depends only on k, we obtain a query time that is linear in n (and exponential in k). [COMMENT] And now I realize that there is no quantum advantage here.