Quiz: Page Replacement

Total points 60/60

Take the quiz solo, but feel free to consult a partner student, the book, the videos or other resources if needed. Re-take quiz if your score is less than 80% or if you just want some more practice.

The respondent's email (parth2@pdx.edu) was recorded on submission of this form.

Page Replacement Simulation

Consider the following page reference string.

A,B,C,D,A,B,B,A,C,D,B,A

Assume that there are 3 available empty page frames in physical memory and that all three page frames are empty.

Simulate these different page replacement algorithms (FIFO, LRU and OPT) and give your results below.

✓ For OPT, how many page faults? *	5/5
O 9	
6	✓
O 10	

✓ For OPT, which pages remain in memory at the end? *	5/5
A,B,D	✓
O A,C,D	
O B,C,D	
O A,B,C	
Cor FIFO how many page faults? *	E /E
✓ For FIFO, how many page faults? *	5/5
O 4	
O 10	
9	✓
O 6	
✓ For FIFO, which pages remain in memory at the end? *	5/5
○ A,B,C	
A,C,D	✓
O B,C,D	
O A,B,D	

✓	For LRU, how many page faults? *	5/5
•	10	✓
0	6	
0	9	
0	4	
~	For LRU, which pages remain in memory at the end? *	5/5
0	B,C,D	
0	A,C,D	
0	A,B,C	
•	A,B,D	✓
~	The linux command can be used to trace the details of of a process's memory references. *	5/5
0	pmap	
0	vmstat	
•	valgrind	✓
0	free	

~	An OS executes its page replacement algorithm while handling page faults. *	5/5
 	True False	✓
/	Why doesn't Linux implement the OPT algorithm? *	5/5
0	because Linus Torvalds is Benevolent Dictator for Life	
•	can't know the future page references of a program	✓
0	OPT causes application programs to be more difficult to design and implement	
0	it opens unacceptable security holes	
✓	What is Temporal Locality? *	5/5
•	that which was accessed recently will be accessed again soon	✓
0	reads occur more frequently than writes	
0	accesses to addresses are usually followed by accesses to nearby addresses	
0	the memory hierarchy of a computer is extremely important for application performance	

Why might the OS maintain a few extra empty physical fr when all of physical memory is used/needed? *	rames, even 5/5
to maximize the number of physical page frames allocated to hi	gh priority processes
to improve locality of reference	
to reduce the average number of disk accesses per page fault	
so that new page references (compulsory or capacity misses) cae immediately with an empty frame.	an be serviced 🗸
✓ By measuring page fault frequency of a process an OS caestimation of how many physical page frames to allocate	·
True	~
○ False	

This form was created inside of Portland State University.

Google Forms