Grammar of graphics (quick intro)

SI 649 W20: Information visualization

Matthew Kay
Assistant Professor
School of Information

University of Michigan

(slack)

Join here: https://tinyurl.com/uhaxkwy

(laptops)

(waitlist)

This lab

Quick intro to grammar of graphics

Altair (python library based on grammar of graphics)

How do we turn data into visualizations?

^	mpg [‡]	cyl [‡]	disp ‡	hp [‡]	drat ‡	wt ÷	qsec ‡	vs	am [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1

data -> ??? -> marks on the screen (or paper)

data -> ??? -> marks on the screen (or paper)

- ??? = some vis API
 - = some way of thinking about vis systematically

```
data -> ??? -> marks on the screen (or paper)
```

```
??? = New function for every chart type:
    scatter_plot(data, ...)
    bar_chart(data, ...)
...
```

```
data -> ??? -> marks on the screen (or paper)
```

```
??? = New function for every chart type:
    scatter_plot(data, ...)
    bar_chart(data, ...)
...
    Every new chart is a new adventure!
    Too many specs! — Too high level!
```

```
data -> ??? -> marks on the screen (or paper)
```

??? = New function for every chart type
= Low-level drawing functions
 draw_point(...)
 draw rectangle(...)

data -> ??? -> marks on the screen (or paper)

```
??? = New function for every chart type
= Low-level drawing functions
    draw_point(...)
    draw_rectangle(...)
```

Too low level!

data -> ??? -> marks on the screen (or paper)

- ??? = New function for every chart type
 - = Low-level drawing functions
 - = Grammar of graphics

Encode data with visual channels Display encodings with marks

Codifies data types, encodings/channels, marks

Maps data -> channels -> marks

Makes visualization specification straightforward

Undergirds ggplot, Tableau, Vega-Lite, Altair (terms may vary)

^	mpg [‡]	cyl [‡]	disp ‡	hp [‡]	drat [‡]	wt ÷	qsec ‡	vs	am [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1

data types, channels, marks

data types, channels, marks

mpg: numeric

wt: numeric

data types, channels, marks

mpg: numeric

wt: numeric

wt -> x position

mpg -> y position

data types, channels, marks

mpg: numeric

wt: numeric

wt -> x position

mpg -> y position

Channels / encodings

("aesthetics" in ggplot)

Channels / encodings -> Marks

("aesthetics" in ggplot)

("geometries" in ggplot)

mpg: numeric

wt: numeric

wt -> x position

mpg -> y position

mpg: numeric

wt: numeric

→manual: nominal

wt -> x position

mpg -> y position

→manual -> color

mpg: numeric

wt: numeric

manual: nominal

wt -> x position

mpg -> y position

manual -> shape ←

- FALSE
- ▲ TRUE

mpg: numeric

wt: numeric

manual: nominal

wt -> x position

mpg -> y position

manual -> color ←

manual -> shape ←

mpg: numeric

wt: numeric

manual: nominal

wt -> x position

mpg -> y position

manual -> color

wt: numeric

manual: nominal

- → bin(wt) -> x position
- → count(wt)-> length ← manual -> color

mark: bar ←

mpg: numeric

wt: numeric

wt -> x position

mpg -> y position


```
Not:
```

```
some_big_function_to_make_scatterplots(
    my_data,
    a_bunch_of_options
)
```


Not:

```
some_function_to_draw_grid()
some_function_to_draw_axes()
for (row in data) {
   draw_point(data[i]["x"], ...)
}
...
```



```
e.g., in ggplot:
(data, channels, marks)
ggplot(mtcars,
  aes(
    x = wt
      = mpg
  geom_point()
```



```
e.g., in Vega-Lite:
```

```
(data, channels, marks)
  "data": {"url": "mtcars.json"},
  "encoding": {
    "x": {"field": "wt"},
    "y": {"field": "mpg"}
  "mark": "point"
```



```
e.g., in Altair:
(data, channels, marks)
alt.Chart(mtcars)\
  .encode(
    x = 'wt',
    y = 'mpg'
  .mark point()
```



```
e.g., in Altair:
(data, channels, marks)
alt.Chart(mtcars)\
  .encode(
    x = 'wt:Q',
    y = 'mpg:Q'
  .mark point()
```


e.g., in Tableau:


```
e.g., in Altair:
(data, channels, marks)
alt.Chart(mtcars)\
  .encode(
    x = 'wt:Q',
    y = 'mpg:Q'
  .mark point()
```


Easier to specify many charts, combinations

Helps you evaluate charts systematically (Monday)