STATISTICS

(SESSION-5)

EMPIRICAL RULE : (68 – 95 – 99.7)

Standard deviation = σ

Population mean = μ

> If data follows the normal distribution :

- There is 68% of data covered between : $u 1\sigma$ to $u + 1\sigma$
- There is 95% of data covered between : $u 2\sigma$ to $u + 3\sigma$
- There is 99.7% of data covered between : $u 3\sigma$ to $u + 3\sigma$
- The Maximum data coverage will happen between $\,$ -3 σ to +3 σ only
 - > Area under the curve :

$$\triangleright \int_{u-1\sigma}^{u+1\sigma} f(x)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e - \left(\frac{x-u}{\sigma}\right)^2 \frac{1}{2}$$

- Assume that in India petrol rates are on of average 100rs, It will be vary state to state by 2rs.

From empirical rule:

$$u = 100$$
 , $\sigma = 2$

•
$$u - 1\sigma$$
 to $u + 1\sigma = 100 - 1(2)$ to $100 + 1(2)$
= $100 - 2$ to $100 + 2$
= 98 to 102

•
$$u - 2\sigma$$
 to $u + 2\sigma = 100 - 2(2)$ to $100 + 2(2)$
= $100 - 4$ to $100 + 4$
= 96 to 104

•
$$u - 3\sigma$$
 to $u + 3\sigma = 100 - 3(2)$ to $100 + 3(2)$
= $100 - 6$ to $100 + 6$
= 94 to 106

Where,

- $u 1\sigma$ to $u + 1\sigma$ is 68%
- $u 2\sigma$ to $u + 12\sigma$ is 95%
- $u 3\sigma$ to $u + 3\sigma$ is 99.7%

- In India 68% of states having petrol rates between 98rs to 102rs.
- In India 95% of states having petrol rates between 96rs to 104rs.
- In India 99.7% of states having petrol rates between 94rs to 106rs.
 - Which means the Minimum petrol rates in India is 94rs
 - The maximum petrol rates in India is 106rs
 - Empirical rule is used only if data follows Normal distribution.
- if data doesnot follow normal distribution, Then we use the chebyshev's rule.

Chebyshev'S Inequality:

- Chebyshev's inequality is used , If data does not follows Normal Distribution.
 - The percentage of data coverage is $\left(1 \frac{1}{k^2}\right)$
- For Example , If data does not follows the Normal Distribution or Normality and you want to find out how much data coverage happens between 2 standard deviation.
- Where K=2

$$\left(1 - \frac{1}{k^2}\right) = \left(1 - \frac{1}{2^2}\right) = \left(1 - \frac{1}{4}\right) = \frac{3}{4} = 75\%$$

Therefore, Data coverage between 2 standard deviations is 75%.

No Normality (Chebyshev's) $\left(1 - \frac{1}{k^2}\right)$
$u - 1\sigma \text{ to } u + 1\sigma = \left(1 - \frac{1}{1^2}\right) = 1 - 1 = 0$
= Not Valid
u -2 σ to u +3 σ = $\left(1 - \frac{1}{2^2}\right)$ = $\left(1 - \frac{1}{4}\right)$ = $\frac{3}{4}$ = 75%
u -3 σ to u +3 σ = $\left(1 - \frac{1}{3^2}\right)$ = $\left(1 - \frac{1}{9}\right) = \frac{8}{9}$ = 90%