# **Unit 2: Rational Functions**

#### 2.1 Rational Functions and Their Essential Characteristics

A **rational function** is a function that can be expressed in the form  $f(x) = \frac{P(x)}{Q(x)}$  where

both P(x) and Q(x) are polynomial functions and the denominator Q(x) is of degree 1 or higher. Although polynomial functions are defined for all real values of x, rational functions are **not defined** for those values of x for which the denominator, Q(x), is 0.

# **Examples of rational functions:**

$$y = \frac{1}{x-2}$$
  $f(x) = \frac{2x}{3-x}$   $g(x) = \frac{x^2 - 4}{x^2 - 2x}$ 

Q1. Explain why each of the following function is not a rational function?

b) 
$$f(x) = \frac{2\sqrt{x} - 1}{x + 3}$$

Investigation: Properties of the simplest rational function  $f(x) = \frac{1}{x}$ 

Graph the rational function  $f(x) = \frac{1}{x}$  manually by completing a partial table of values. Plot the (x,y) points and join them with a smooth curve.

| x | -3 | -2 | -1 | -1/2 | -1/3 | -1/4 | 0 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 |
|---|----|----|----|------|------|------|---|-----|-----|-----|---|---|---|
| У |    |    |    |      |      |      |   |     |     |     |   |   |   |



Note that the function  $f(x) = \frac{1}{x}$  is not defined for x = 0. The tables below show the behavior of f(x) near zero.

$$\frac{1}{\text{small number}} = \text{BIG NUMBER}$$

| X        | f(x) |
|----------|------|
| -0.1     |      |
| -0.01    |      |
| -0.00001 |      |

| X       | f(x) |
|---------|------|
| 0.1     |      |
| 0.01    |      |
| 0.00001 |      |

This behavior can be described in the following analytical way:

The next two tables show how f(x) changes as |x| becomes large.

$$\frac{1}{\text{BIG NUMBER}}$$
 = small number

| X        | f(x) |
|----------|------|
| -10      |      |
| -100     |      |
| -100 000 |      |

| X       | f(x) |
|---------|------|
| 10      |      |
| 100     |      |
| 100 000 |      |

This behavior can be described in the following analytical way:

The most important feature that distinguishes the graphs of rational functions is the presence of **asymptotes.** 



Page 3 of 49

#### **Definitions:**

#### i) Vertical asymptote

The line x=a is a vertical asymptote of the graph of function  $\mathbf{f}(\mathbf{x})$ , if y approaches  $\pm \infty$  as x approaches a from the left or right.

The following graphs illustrate each of the limit statements.



#### ii) Horizontal Asymptotes

The line  $y = \mathbf{b}$  is a horizontal asymptote for the graph of a function  $\mathbf{f}(\mathbf{x})$  if y approaches  $\mathbf{b}$  (from above or below) as x approaches  $\pm \infty$ .

The following graphs illustrate some typical ways that a curve may approach a horizontal asymptote:



Page 4 of 49

**Note:** A function can cross a horizontal asymptote for values of x that are "close" to the origin, it's called the **cross over**, but it can never cross a vertical asymptote.



# General Rules on Finding the Horizontal and Vertical Asymptotes

Let *f* be the rational function

$$f(x) = \frac{a_n x^n + ... + a_1 x + a_0}{b_m x^m + ... + b_1 x + b_0}$$

- $\triangleright$  The vertical asymptotes of f(x) are the lines x=a, where a is the zero of denominator only.
- $\triangleright$  If n<m, then f has horizontal asymptote y = 0
- ➤ If n=m , then f has horizontal asymptote  $y = \frac{a_n}{b_m}$
- $\triangleright$  If n>m, then f has no horizontal asymptote.

**Example:** Find the horizontal and vertical asymptotes for the following functions.

a. 
$$f(x) = \frac{2x(x+1)(x-1)}{(x+2)(x-3)}$$

b. 
$$y = \frac{x^2 - 4x + 5}{x^3 - 8}$$

c. 
$$f(x) = \frac{3x+1}{2-5x}$$

d. 
$$f(x) = \frac{(x-1)(x+1)(x+3)}{(x-4)(x-1)(2x+5)}$$

# **Reciprocal of Linear Functions**

1. Use a graphing calculator to compare each of the following functions. Include a sketch of each.



2.Determine the equation of the following graph:



3. Determine the following information and sketch graph.



| Equation     | $y = \frac{1}{-2(x-2)}$ |  |
|--------------|-------------------------|--|
| Domain       |                         |  |
| Range        |                         |  |
| x-int        | y-int                   |  |
| H. Asymptote | V. Asymptote            |  |

| As $x \rightarrow$ | $f(x) \rightarrow$ |
|--------------------|--------------------|
| 2+                 |                    |
| 2-                 |                    |
| +∞                 |                    |
| ∞                  |                    |

4. Given the graph of the reciprocal function  $y = \frac{1}{f(x)}$ , sketch the graph the

function y=f(x). Determine an equation for each function.

a)



b)



#### 2.1-Practice:

1. Find the horizontal and vertical asymptotes for the following functions.

a. 
$$f(x) = \frac{2x^2(x^2-1)}{(x+2)^2(x^2-4)}$$

b. 
$$f(x) = \frac{2(x-3)(x+2)(x+5)}{(x-1)(x+3)(x+5)}$$

2. Determine the equation of the following graph:



- 3. Graph f(x) = -(4-x) and  $g(x) = \frac{-1}{4-x}$  on the grid provided and for the g(x) identify:
  - a) the domain
  - b) the range
  - c) the equation of the V.A. \_\_\_\_
  - d) the equation of the H.A.



4. Determine the following information and sketch graph.



| Equation     | $y = \frac{1}{2x - 5}$ |  |
|--------------|------------------------|--|
| Domain       |                        |  |
| Range        |                        |  |
| x-int        | y-int                  |  |
| H. Asymptote | V. Asymptote           |  |

| As $x \rightarrow$ | $f(x) \rightarrow$ |
|--------------------|--------------------|
| 5+                 |                    |
| $\frac{1}{2}$      |                    |
| 5-                 |                    |
| $\frac{1}{2}$      |                    |
| +∞                 |                    |
|                    |                    |

# Warm Up

- 1. Which of the following are vertical asymptotes of  $f(x) = \frac{(ax b)^2}{(ax + b)(ax b)}$ ,  $a, b \ne 0$  and  $a, b \in \square$ ?

  - A)  $x = \frac{b}{a}$  B)  $x = \frac{-b}{a}$
- C)  $x = \pm \frac{b}{a}$  D) y = 1
- 2. Which of the following is true regarding the function  $f(x) = \frac{x+3}{x^2-5}$ .
  - A) f(x) has no vertical asymptotes
  - B) f(x) has an x intercept at x = 3
  - C) As  $x \to \infty$ ,  $f(x) \to 0$  from above
  - D) f(x) has a horizontal asymptote at y = 1
- 3. Which of the following functions has vertical asymptotes at x=1 and x=-3 and horizontal asymptote at v = 0?
  - A)  $y = \frac{x^2 6x + 9}{x^2 2x 3}$  B)  $y = \frac{x^2}{x^2 + 2x 3}$  C)  $y = \frac{x 1}{x + 3}$  D)  $y = \frac{x 9}{x^2 + 2x 3}$

- 4. Which of the following is true about the function  $f(x) = \frac{-2}{x-6}$  as  $x \to 6^+$ ?
  - A)  $f(x) \rightarrow 0$  (from above)

B)  $f(x) \rightarrow -\infty$ 

C)  $f(x) \rightarrow \infty$ 

- D)  $f(x) \rightarrow 0$  (from below)
- 5. Write the equation of a rational function, in the form  $f(x) = \frac{g(x)}{h(x)}$ , with vertical asymptotes at  $x = -\frac{3}{4}$  and x = -5, x-intercepts at  $\pm 2$ , a horizontal asymptote at y = -4.