FDL 2020 EARTH SCIENCE

EARTH INTELLIGENCE ENGINE

MIT Portugal

(intel) IIII

ONLINE Planet.

See flood impacts before they happen

Enabling experts to advocate for climate resilience

Today's flood visualizations are either informative or intuitive -- but not both

NOAA's SLOSH model visualizes flood extent, but outputs are not high resolution

Unconditioned GAN adds flooding to an image, but w/o physical inputs, it adds water randomly

Pix2PixHD: Wang, et al. 2018

We used a set of pre- and post-disaster images as the basis for training

Pre-flood

Post-flood

Pix2PixHD is a GAN that performs

image-to-image translation

We generated and evaluated the first physically-constrained, photorealistic visualization of future flooding events

LOCKHEED MARTIN

SETI

We generated baseline images for comparison with our GAN-generated images

balances physical consistency with photorealism $IoU+\epsilon$ 1-LPIPS+ ϵ

Flood Visualization Plausibility Score (FVPS)

FVPS sets two sub-objectives to evaluate performance on the challenge.

Harmonic mean of:

- IoU: Intersection over union of the flooded areas (physical accuracy)
- LPIPS: Learned Perceptual Image Patch Similarity (photorealism) LPIPS: Zhang et al, 2018

Our flood imagery scores higher in FVPS than the baseline

trillium.tech/eie

