Inferencia Estadística

Marisol García Peña

Departamento de Matemáticas Pontificia Universidad Javeriana

Bogotá, 2022

Marisol García Peña

1 / 574

Estimación por intervalos

Estimación por intervalos

- Estimación puntual \Longrightarrow Un solo valor.
- No hay información sobre la precisión y confiabilidad de la estimación.
- Estimador \Longrightarrow f.d.p. \Longrightarrow prob. que el estimador "igual" al parámetro es cero. (v.a. cotinuas).
- Estimación puntual debe ir acompañada de alguna medida del posible error de la estimación.
- De estimación puntual de θ a estimación de que θ esté contenido en algún intervalo.

- Alternativa \Longrightarrow Intervalo aleatorio que contenga a θ , con cierta probabilidad.
- Nivel de confianza $(1 \alpha) \Longrightarrow$ Probabilidad de que un intervalo de confianza contenga al verdadero valor del parámetro.
- Nivel de confianza $(1-\alpha) \Longrightarrow \text{El } 100(1-\alpha)\,\%$ de las muestras darían lugar a un intervalo que incluye θ y solo $100\alpha\,\%$ de las muestras producirían un intervalo erróneo.
- Cuanto mayor sea el nivel de confianza

 Mayor probabilidad de que el valor del parámetro esté dentro del intervalo.

Intervalo de confianza

Sea X_1,\ldots,X_n una muestra aleatoria con función de densidad o de probabilidad $f(\bullet;\theta)$. Sean $T_1=t_1(X_1,\ldots,X_2)$ y $T_2=t_2(X_1,\ldots,X_2)$ dos estadísticas tales que $T_1< T_2$ y $P[T_1<\tau(\theta)< T_2]=\gamma=1-\alpha$, el intervalo (T_1,T_2) se conoce como intervalo de cofianza para $\tau(\theta)$ del 100γ por ciento, $\gamma=1-\alpha,0<\alpha<1$ es el coeficiente/nivel de confianza y T_1 y T_2 son los límites inferior y superior para $\tau(\theta)$. α se conoce como el nivel de significancia.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

- Un valor (t_1, t_2) del intervalo aleatorio (T_1, T_2) también es llamado un IC para $\tau(\theta)$ del $100(1-\alpha)$ por ciento.
- $P[h_1(T_1) \le \tau(\theta) \le h_2(T_2)] = 1 \alpha$, h_1 y h_2 funciones de un estadístico T, relacionado con el parámetro a estimar.
- Apmlitud del intervalo de confianza, $A(X_1, \ldots, X_n) = T_2(X_1, \ldots, X_n) T_1(X_1, \ldots, X_n)$.
- Amplitud esperada, $E[A(X_1, ..., X_n)]$.
- Intervalos unilaterales.

- Cuantifica el riesgo. Por ejemplo, 95 %.
- Si son tomadas 100 muestras del mismo tamaño \Longrightarrow en el 95 % de los casos los intervalos deberían contener el parámetro θ o $\tau(\theta)$.
- Coeficiente de confianza mayor ⇒ IC más amplio.
- Mayor confianza ⇒ pérdida de precisión.

Intervalo de confianza unilateral

Sea X_1,\ldots,X_n una muestra aleatoria con con función de densidad o de probabilidad $f(\bullet;\theta)$. Sea $T_1=t_1(X_1,\ldots,X_n)$ una estadística tal que $P[T_1<\tau(\theta)]=\gamma=1-\alpha$, T_1 se conoce como el límite inferior de confianza unilateral. Similarmente, $T_2=t_2(X_1,\ldots,X_n)$ es una estadística tal que $P[\tau(\theta)< T_2]=\gamma=1-\alpha$, T_2 se conoce como el límite superior de confianza unilateral.

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 夕 Q (*)

Ejemplo

Sea X_1,\ldots,X_n una muestra aleatoria con $f(x,\theta)=\phi_{\theta,9}(x)$. Sea $T_1=t_1(X_1,\ldots,X_n)=\overline{X}-\frac{6}{\sqrt{n}}$ y $T_2=t_2(X_1,\ldots,X_n)=\overline{X}+\frac{6}{\sqrt{n}}$.

 (T_1,T_2) constituye un IC para au(heta)= heta con nivel de confianza 1-lpha

$$1 - \alpha = P\left[\overline{X} - \frac{6}{\sqrt{n}} < \theta < \overline{X} - \frac{6}{\sqrt{n}}\right]$$

$$= P\left[-2 < (\overline{X} - \theta)/((3)/\sqrt{n}) < 2\right]$$

$$= \Phi(2) - \Phi(-2) = 0.9772 - 0.0228$$

$$= 0.9544$$

255 / 574

Cantidad pivotal

Sea X_1,\ldots,X_n una muestra aleatoria con función de densidad o de probabilidad $f(\bullet,\theta)$. Sea $Q=q(X_1,\ldots,X_n,\theta)$, una función de las medidas muestrales y de θ , donde el único elemento desconocido es θ y si la distribución de Q no depende de θ , entonces Q es definida como *cantidad pivotal*.

Distribución de prob. cantidades pivotales \Longrightarrow normal estándar, t, χ^2 o F.

Algunas cantidades pivotales si X_1, \ldots, X_n es $N(\mu, \sigma^2)$.

- Con μ desconocido y σ conocido, sea \overline{X} la media muestral. La cantidad pivotal es $\frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim \mathit{N}(0,1)$.
- Con μ desconocido y σ desconocido. El pivote es $\frac{\ddot{X}-\mu}{S/\sqrt{n}}\sim t_{(n-1)}$. Si n es "grande" usando el TCL la distribución del pivote es N(0,1).
- Si σ^2 es desconocida, la cantidad pivotal es $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$.

Método pivotal

Si $Q=q(X_1,\ldots,X_n,\theta)$ es una cantidad pivotal y tiene una f.d.p, entonces para un valor fijo $0<\gamma<1,\gamma=1-\alpha$ existen q_1 y q_2 que dependen de γ tal que $P[q_1< Q< q_2]=\gamma$. Si para cada posible valor muestral $(x_1,\ldots,x_n),\ q_1< q(x_1,\ldots,x_n,\theta)< q_2$ si y sólo si $t_1(x_1,\ldots,x_n)<\tau(\theta)< t_2(x_1,\ldots,x_n)$ para funciones t_1 y t_2 (que no dependen de θ), entonces (T_1,T_2) es un IC para $\tau(\theta)$ del 100γ por ciento, donde $T_i=t_i(X_1,\ldots,X_n),\ i=1,2$.

 $P[q_1 < Y < q_2]$ no es afectada por un cambio de escala o una traslación de la v.a. Y.

4□ > 4□ > 4 = > 4 = > = 90

- q_1 y q_2 son independientes de θ pues la distribución de Q lo es.
- Para un valor fijo de $\gamma=1-\alpha$ existen muchos pares de valores para q_1 y q_2 que se pueden seleccionar tal que $P[q_1 < Q < q_2] = \gamma$.
- Diferentes valores de q_1 y q_2 producirán distintos valores de t_1 y t_2 .
- La idea es seleccionar a q_1 y q_2 de tal que t_1 y t_2 estén "cerca".
- Por ejemplo, reduciendo la amplitud del intervalo.

Uso del método del método pivotal.

- Encuentre un estimador de θ o $\tau(\theta)$. Generalmente, el EMV.
- Encuentre una función de θ y el estimador (cantidad pivotal, $Q(\mathbf{X}, \theta)$).
- Encuentre q_1 y q_2 tales que $P[q_1 \le Q \le q_2] = 1 \alpha$. Escoja q_1 y q_2 tal que $P[Q \le q_1] = \alpha/2$ y $P[Q \ge q_2] = \alpha/2$.
- Transforme el IC pivotal al IC para el parámetro θ tal que $P[T_1 \leq \theta \leq T_2] = 1 \alpha$.

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria de una $N(\mu, 1)$. Construya un intervalo del 95 % para μ .