Family Name
Given Name
Student No.
Signature

UNSW SYDNEY

School of Electrical Engineering & Telecommunications

FINAL EXAMINATION

Semester 1, 2017

ELEC1111 Electrical and Telecommunications Engineering

TIME ALLOWED: 2 hours
TOTAL MARKS: 100
TOTAL NUMBER OF QUESTIONS: 5

THIS EXAM CONTRIBUTES 50% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 10 minutes.

This paper contains 6 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a separate answer booklet.

Marks for each question are indicated beside the question.

This paper **MAY NOT** be retained by the candidate.

Students must achieve a minimum of 40 marks to pass the course.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

QUESTION 1 [20 marks]

- (i) [10 marks] In the circuit of Figure 1,
- a. [5 marks] Calculate the voltage V_x .
- b. [3 marks] Calculate the power dissipated in the 4 Ω resistor.
- c. [2 marks] Does the dependent voltage source in this circuit supply or absorb power? Explain your answer.

- (ii) [10 marks] For the circuit of Figure 2
- a. [4 marks] Calculate the Thevenin voltage for terminals a-b
- b. [4 marks] Find the Thevenin resistance R_{th} for terminals a-b and draw the equivalent Thevenin circuit.
- c. [2marks] What is the maximum power that can be delivered to a load from this circuit?

QUESTION 2 [20 marks]

- (i) [8 marks] Operational Amplifiers
 - a. **[5 marks]** Demonstrate, deriving the required equations, that the gain of a *non-inverting amplifier* circuit is given by

$$\frac{V_{out}}{V_{in}} = 1 + \frac{R_f}{R_{in}}$$

where R_f and R_{in} are the feedback and input resistances, respectively.

b. [1 mark] From the following set of resistors select R_f and R_{in} to achieve a gain of 12.

1 Ω	5 Ω	8 Ω	10 Ω	20 Ω	50 Ω
60 Ω	80Ω	100Ω	110 Ω	120 Ω	150 Ω
100 Ω	220 Ω	240 Ω	330 Ω	470Ω	600 Ω

- c. [2 marks] What resistors from the ones above should be used if you would like to construct an *inverting amplifier* where $\frac{V_{out}}{V_{in}} = -12$.
- (ii) [12 marks] Find the output voltage v_{out} of the following Operational Amplifier circuit. Plot the voltages v_{in} and v_{out} in the same phasor diagram.

Figure 3

QUESTION 3 [20 marks]

(i) [10 marks] Find the voltage $v_x(t)$ in the circuit of Figure 4.

- (ii) [10 marks] In the following circuit of Figure 5,
 - a. [2 marks] Find the energy stored in the inductor under steady-state when the switch is in the open position.
 - b. [4 marks] If the switch has been in the open position for a long time and closes at t=0, derive an analytical expression for the current i_L through the inductor for t>0.
 - c. [2 marks] Plot the current through the inductor as a function of time.
 - d. [2 marks] Derive an analytical expression for the voltages across resistors R_1 and R_2 (v_{R_1} and v_{R_2}) as a function of time for t>0.

QUESTION 4 [20 marks]

- (i) [8 marks] Calculate the equivalent impedance of the circuit of Figure 6 as seen by:
 - **a.** (2 marks) a dc voltage source
 - **b.** (6 marks) an ac voltage source with a frequency of $\omega = 2$ rad/sec. (Provide your answer in rectangular or polar form)

- (ii) [10 marks] For the circuit shown in Figure 7
 - a. [7 marks] Calculate and draw the Thevenin equivalent of the circuit for terminals a-b
 - **b.** [3 marks] Calculate and draw the Norton equivalent of the circuit for terminals a-b

Figure 7

(iii) [2marks] Consider the Thevenin equivalent of a circuit that consists of a voltage source and an impedance Z_{Th} . What is the value of the load impedance Z_L that should be connected to its terminals for maximum power transfer?

QUESTION 5 [20 marks]

(i) [8 marks] Two loads are connected in parallel and are supplied by a 230 V_{rms} , 50 Hz voltage source.

Load 1 consumes 20 kVA of power at a power factor of 0.8 leading (capacitive) **Load 2** consumes 6 kW at a power factor of 0.6 lagging (inductive)

Calculate:

- a. [2 marks] The total complex power of the two loads.
- b. [2 marks] The total apparent power.
- c. [2 marks] The combined power factor of the two loads, and
- d. [2 marks] The rms value of the current supplied by the source.
- (ii) [6 marks] A ideal 500V:100V transformer is rated at 20 kVA and is supplied by a 500 V_{rms} , 50 Hz voltage source in its primary windings. A load of 10+j10 Ω is connected in its secondary windings. Draw the circuit and calculate:
 - a. [2 marks] The currents through the primary and secondary windings
 - b. [2 marks] The power consumed by the load
 - c. **[2 marks]** The loading of the transformer (Transformer loading is the ratio of power through the transformer over the rated power of the transformer.)
- (iii) [6 marks] Consider the following logical diagram
 - a. [3 marks] Derive and simplify the logical expression for Z.
 - b. [3 marks] Write the truth table of the circuit.

END OF PAPER