UNITS AND CONVERSION FACTORS

E.J. ROSCHKE
PROPULSION DIVISION
JET PROPULSION LABORATORY

NOTE:

Many years ago I was given a copy of this document, prepared in handwriting, some time in the early 1960's. I did not know the author, E.J. Roschke. I have found it to be such a useful reference that I decided to have an electronic version prepared. Recently, I spoke with Dr. Roschke, now retired from the Jet Propulsion Laboratory to learn of the document's origin. In the early 1960's a group of research engineers, largely having backgrounds in mechanical engineering, were engaged in the new field of electric propulsion. They experienced practical annoyances with the mingling of units from mechanical engineering, electrical engineering and physics. That situation motivated Dr. Roschke to assemble this material.

Although I have carefully checked the values given here, it is quite possible that some typographical errors remain. I will appreciate learning any corrections that should be made.

F.E.C. Culick Mechanical Engineering California Institute of Technology October 2001

UNITS AND CONVERSION FACTORS Table of Contents

	Section	Page
	References	3
I.	Decimal Multiples and Submultiples	4
II.	Description of Units	
	Mechanical, Electric, Magnetic	4
III.	Equivalent Units mksq System	5
IV.	Dimensions of esu and emu Electric	
	and Magnetic Quantities	5
V.	Dimensions and Units for Physical Quantities — mksq System	6,7
	A. Mechanical	6
	B. Thermal	7
	C. Electric and Magnetic	7
VI.	Conversion of mksq Units to Gaussian Units	8
VII.	Conversion Factors	8-23
	A. Plane Angle	8
	B. Solid Angle	8
	C. Length	9
	D. Area	9
	E. Volume	9
	F. Mass	10
	G. Density	10
	H. Time	11
	I. Speed	11
	J. Force	11
	K. Pressure	12
	L. Energy, Work, Heat	13
	M. Specific Energy	14
	N. Specific Energy Per Unit Temp.	15
	O. Power	16
	P. Heat Flux	17
	Q. Heat Transfer Coefficient	17
	R. Thermal Conductivity	18
	S. Absolute Viscosity	19
	T. Kinematic Viscosity	19
	AA. Electric Charge	20
	BB. Electric Current	20
	CC. Electric Potential	20
	DD. Electric Resistance	21
	EE. Electric Resistivity	21
	FF. Capacitance	21
	GG. Inductance	22

Table of Contents – continued

	Section	Page
	HH. Magnetix Flux	22
	I I. Magnetomotive Force	22
	J J. Magnetic Field Strength, B	23
	KK. Magnetic Vector, H	23
VIII.	Electromagnetic Constants of Free Space	24
IX.	Electromagnetic Constants of Materials	24
X.	Some Important Dimensional Constants	25
XI.	Some Important Dimensionless Groups	26
XII.	The Perfect Gas Law	27,28
	A. Nomenclature, Definitions and Equations	27
	B. Values of Universal Gas Constant, Boltzmann's Constant	
	and Avogadro's Number in Different Units	28

References used in compiling these charts and tables are listed below in the order of "most usage".

- 1. Halliday, D. & Resnick, R., <u>Physics For Students of Science and Engineering</u>, John Wiley, New York, 1960.
- 2. Forsythe, W.E., <u>Smithsonian Physical Tables</u>, 9th Revised Edition, Publ. 4169, Smithsonian Institution, Washington, D.C., 1954.
- 3. Scott, R.B., Cryogenic Engineering, D. Van Nostrand Inc., Princeton, New Jersey, 1959.
- 4. Hall, N.A., <u>Thermodynamics of Fluid Flow</u>, Second Printing with revisions, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1956.
- 5. Gray, D.E. (coordinating editor), <u>American Institute of Physics Handbook</u>, McGraw Hill Inc., New York, 1957.

Additional Note on Use of Conversion Tables, Part VII.

Multiply units appearing in left-hand column by appropriate numerical factor to obtain units appearing in upper row.

I. DECIMAL MULTIPLES AND SUB-MULTIPLES

Name	Symbol	Equivalent	Name	Symbol	Equivalent
tera giga mega kilo hecto deca	T G M k h	$ \begin{array}{c} 10^{12} \\ 10^9 \\ 10^6 \\ 10^3 \\ 10^2 \\ 10 \end{array} $	deci centi milli micro nano pico	d c m µ n	10^{-1} 10^{-2} 10^{-3} 10^{-6} 10^{-9} 10^{-12}

II. DESCRIPTION OF UNITS

MECHANICAL UNITS

Length centimeter Mass gram	Quantity	cgs	mks
Force dyne Work, Energy erg Power - Dynamic Viscosity poise Kinematic Viscosity stoke	Mass Time Force Work, Energy Power Dynamic Viscosity	gram second dyne erg – poise	meter kilogram second newton joule watt -

ELECTRIC AND MAGNETIC UNITS

The esu and emu unit systems are cgs systems. esu denotes "electrostatic unit", sometimes given prefix "stat", e.g. statcoulomb emu denotes "electromagnetic unit", sometimes given prefix "ab", e.g. abcoulomb Some emu units have special names:

Quantity	emu	mksq
Magnetic Flux, φ Magnetic Field Strength, B Magnetomotive Force, F Magnetic Vector, H	fline maxwell gauss gilbert oersted	weber/m ² amp-turn amp-turn/m.

mksq DIMENSIONS

Length	L
Mass	M
Time	T
Current	Q/T
Charge	Q

III. EQUIVALENT UNITS mksq SYSTEM

1 kilogram-meter/(second)² 1 newton 1 volt 1 newton-meter/coulomb 1 coulomb/second 1 amp 1 joule 1 newton-meter 1 coulomb-volt 1 volt-second 1 weber 1 farad 1 coulomb/volt 1 henry 1 weber/amp 1 volt/amp 1 ohm 1 joule/sec 1 watt

IV. DIMENSIONS OF esu AND emu ELECTRIC AND MAGNETIC QUANTITIES The fundamental dimensions in both systems are M, L, T. cgs units used.

Quantity	Symbol	esu M ^x L ^y T ^z			emu M ^x L ^y T ^z			emu*
	•	X	у	\overline{z}	X	у	$\overline{\mathbf{z}}$	esu
Charge Field Intensity Elec. Displacement Charge Density Current Density Elec. Potential Total Current Mag. Field Strength Mag. Vector Permittivity Permeability Conductivity Capacitance Inductance	q E D ρ j V I B H ε μ σ C L	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	3/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1	-1 -1 -1 -2 -1 -2 0 -2 0 2 -1 0 2	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	1/2 - 3/2 1/2 - 5/2 - 5/2 - 3/2 3/2 1/2 - 1/2 - 1/2 - 2 0 - 2 - 1 1	0 0 -2 0 -1 -2 -1 -1 -1 2 0 1 2	c 1/c c c c 1/c c c 1/c c 1/c c 1/c c 1/c c 1/c c 1/c c 1/c² c² 1/c²
Resistance	R	0	-1	1	0	1	-1	$1/c^2$

^{*}c = velocity of light (free space) in cm/sec $\approx 3 \times 10^{10}$

Thus: 1 emu of charge = 2.998×10^{10} esu of charge or 1 abcoulomb = 2.998×10^{10} stateoulomb

V. DIMENSIONS AND UNITS FOR PHYSICAL QUANTITIES mksq SYSTEM

A. MECHANICAL QUANTITIES

Quantity	Dimensions	Derived Units		
Acceleration	LT ⁻²	meter/sec ²		
Angle	0	radian		
Angular Accleration	0 T ⁻²	radian/sec ²		
Angular Momentum	ML^2T^{-1}	kgm-meter ² /sec		
Angular Velocity	T^{-1}	radian/sec		
Area	L^2	meter ²		
Energy	ML^2T^{-2}	joule		
Force	MLT ⁻²	newton		
Frequency	T^{-1}	cycle/sec		
Gravitational Field Strength	LT ⁻²	newton/kgm		
Length	L	meter		
Mass	M	kilogram		
Mass Density	ML ⁻³	kgm/meter ²		
Momentum	MLT ⁻¹	kgm-meter/sec		
Power	ML^2T^{-3}	watt		
Pressure	$ML^{-1}T^{-2}$	newton/meter ²		
Time	T	second		
Torque	ML^2T^{-2}	newton/meter		
Velocity	LT ⁻¹	meter/sec		
Viscosity (Dynamic)	$ML^{-1}T^{-1}$	kgm/meter-sec		
Viscosity (Kinematic)	L^2T^{-1}	meter ² /sec		
Volume	L^3	meter ³		
Wave Length	L	meter		
Work	ML^2T^{-2}	joule		

B. THERMAL QUANTITIES*

Quantity	Dimensions	Derived Units
Enthalpy Entropy Gas Constant Internal Energy Specific Heat Temperature Thermal Conductivity Thermal Diffusivity Heat Transfer Coefficient	$\begin{array}{c} ML^2T^{-2} \\ ML^2T^{-2}\theta^{-1} \\ L^2T^{-2}\theta^{-1} \\ ML^2T^{-2} \\ L^2T^{-2}\theta^{-1} \\ \theta \\ MLT^{-3}\theta^{-1} \\ L^2T^{-1} \\ MT^{-3}\theta^{-1} \end{array}$	joule joule/K° joule/kgm- K° joule joule/kgm-K° K° watt/meter- K° meter²/sec watt/meter²- K°

^{*}The dimension of temperature is $\theta;$ the unit is K°

C. ELECTRIC AND MAGNETIC QUANTITIES

Quantity	Symbol	Dimensions	Derived Units
Charge	q	Q	coulomb
Field Intensity	E	$MLT^{-2}Q^{-1}$	volt/meter
Elec. Displacement	D	$L^{-2}Q$	coulomb/meter ²
Charge Density	ρ	$L^{-3}Q$	coulomb/meter ²
Current Density	j	$L^{-2}T^{-1}Q$	amp/meter ²
Elec. Potential	V	$ML^2T^{-2}Q^{-1}$	volt
Total Current	I	$T^{-1}Q$	coulomb/sec
Mag. Field Strength	В	$MT^{-1}Q^{-1}$	weber/meter ²
Mag. Vector	Н	$L^{-1}T^{-1}Q$	amp(turn)/meter
Permittivity	3	$M^{-1}L^{-3}T^2Q^2$	farad/meter
Permeability	μ	MLQ ⁻²	henry/meter
Conductivity	σ	$M^{-1}L^{-3}TQ^2$	1/ohm-meter
Capacitance	C	$M^{-1}L^{-2}T^2Q^2$	farad
Inductance	L	ML^2Q^{-2}	henry
Resistance	R	$ML^2T^{-1}Q^{-2}$	ohm

VI. CONVERSION OF mksq UNITS TO GAUSSIAN UNITS

Quantity	mksq Unit		Conversion Factor × Gaussian Unit*			
q E D ρ j V I B H μ	mksq Unit coulomb volt/meter coulomb/meter ² coulomb/meter ³ amp/meter ² volt coulomb/sec : = amp weber/meter ² amp-turn/meter farad/meter henry/meter 1/ohm-meter		$10^{-1} c$ $10^{6}/c$ $4\pi \times 10^{-5} c$ $10^{-7} c$ 10^{-5} $10^{8}/c$ 10^{-1} 10^{4} $4\pi \times 10^{-3}$ $4\pi \times 10^{-11}c^{2}$ $10^{7}/4\pi$	statcoulomb statvolt/cm lines/cm² statcoulomb/cm³ abamp/cm² statvolt abamp gauss oersted —	(esu) (esu) (esu) (esu) (emu) (esu) (emu) (emu) (emu) (emu) (esu)	
σ C	farad	=	10^{-11} $10^{-9}c^2$	1/abohm-cm	(esu)	
В	weber/meter ²	=	10^{4}	gauss	(emu)	
σ C L R			10^{-11} $10^{-9}c^2$ 10^9 10^9	1/abohm-cm statfarad abhenry abohm	` /	

^{*}c = vel. of light (free space) in cm/sec $\approx 3 \times 10^{10}$

Use of table:

1 coulomb = 10^{-1} (3 × 10^{10}) stateoulomb = 3 × 10^{9} stateoulomb

VII. **CONVERSION FACTORS**

NOTE: mksq UNITS ARE CAPITALIZED

USE OF TABLES: EXAMPLE

1 degree = 2.778×10^{-3} revolutions 16.7° = $16.7 \times 2.778 \times 10^{-3}$ revolutions so,

A. PLANE ANGLE

	0	,	"	RADIAN	rev
1 degree = 1 minute = 1 second = 1 RADIAN = 1 revolution =	$ \begin{array}{c c} 1\\ 1.667 \times 10^{-2}\\ 2.778 \times 10^{-4}\\ 57.30\\ 360 \end{array} $	$ \begin{array}{c} 60 \\ 1 \\ 1.667 \times 10^{-2} \\ 3438 \\ 2.16 \times 10^{4} \end{array} $	$ \begin{array}{c} 3600 \\ 60 \\ 1 \\ 2.063 \times 10^5 \\ 1.296 \times 10^5 \end{array} $	1.745×10^{-2} 2.909×10^{-4} 4.848×10^{-4} 1 6.283	2.778×10^{-3} 4.630×10^{-5} 7.716×10^{-7} 0.1592 1

1 revolution = $2 \pi \text{ RADIANS} = 360^{\circ}$, $1^{\circ} = 60' = 3600''$

B. SOLID ANGLE

1 sphere = 4π steradians = 12.57 steradians

C. LENGTH

	cm	METER	km	in	ft	mile
1 centimeter = 1 METER = 1 kilometer = 1 inch = 1 foot = 1 statute mile =	$ \begin{array}{c} 1 \\ 100 \\ 10^5 \\ 2.540 \\ 30.48 \\ 1.609 \times 10^5 \end{array} $	$ \begin{array}{r} 10^{-2} \\ 1 \\ 1000 \\ 2.540 \times 10^{-2} \\ 0.3048 \\ 1609 \end{array} $	$ \begin{array}{c} 10^{-5} \\ 10^{-3} \\ 1 \\ 2.540 \times 10^{-3} \\ 3.048 \times 10^{-4} \\ 1.609 \end{array} $	$39.37 \\ 3.937 \times 10^{-4}$	3.281×10^{-2} 3.281 3281 8.333×10^{-2} 1 5280	6.214×10^{-6} 6.214×10^{-4} 0.6214 1.578×10^{-5} 1.894×10^{-4}

1 foot = 1200/3937 meter 1 meter = 3937/1200 ft 1 nagstrom (Å) = 10^{-10} meter 1 fathom = 6 ft 1 X-unit = 10^{-13} meter 1 micron = 10^{-6} meter 1 millimicron (mu) = 10^{-9} meter 1 light-year = 9.460×10^{12} km 1 par-sec = 3.084×10^{13} km 1 fathom = 6 ft 1 yard = 3 ft 1 rod = 16.5 ft 1 mill = 10^{-3} in

> 1 nautical mile = 1852 meters = 1.1508 statute miles 1 nautical mile = 6076.10 ft

D. AREA

	METER ²	cm ²	ft ²	in^2	circ mil
1 square inch =	$ \begin{array}{c} 1\\ 10^{-4}\\ 9.290 \times 10^{-2}\\ 6.452 \times 10^{-4}\\ 5.067 \times 10^{-10} \end{array} $	929.0 6.452	$ \begin{array}{c} 10.76 \\ 1.076 \times 10^{-3} \\ 1 \\ 6.944 \times 10^{-3} \\ 5.454 \times 10^{-3} \end{array} $	144	1.974×10^{9} 1.974×10^{5} 1.833×10^{8} 1.273×10^{6}

1 square mile = 27,878,400 ft² = 640 acres 1 acre = 43,560 ft² 1 barn = 10^{-28} meter² 1 hectare = 2.417 acres

E. VOLUME

	METER ³	cm ³	liter	ft ³	in ³
1 CUBIC METER 1 cubic cm 1 liter 1 cubic foot 1 cubic inch		2.832×10^4	1 28.32	35.31 3.531×10^{-8} 3.531×10^{-2} 1 5.787×10^{-4}	6.102×10^{4} 6.102×10^{-2} 61.02 1728 1

1 U.S. fluid gallon = 4 U.S. fluid quarts = 8 U.S. fluid pints =128 U.S. fluid ounces = 231 in³

1 British imperial gallon = 277.42 in^3 (volume of 10 lb H₂O at 62° F)

1 liter = 1000.028 cm^3 (volume of 1 kgm H₂O at its maximum density)

F. MASS

	gm	KGM	slug	amu	OZ	lb	ton
1 gram =	1	0.001	6.852 × 10 ⁻⁵	6.024×10^{23}	3.527 × 10 ⁻²	2.205 × 10 ⁻³	1.102 × 10 ⁻⁶
1 KILOGRAM =	1000	1	6.852 × 10 ⁻²	6.024×10^{26}	35.27	2.205	1.102 × 10 ⁻³
1 slug =	1.459 × 10 ⁻⁴	14.59	1	8.789 × 10 ²⁷	514.8	32.17	1.609 × 10 ⁻²
1 amu =	1.660 × 10 ⁻²⁴	1.660 × 10 ⁻²⁷	1.137 × 10 ⁻²⁸	1	5.855 × 10 ⁻²⁶	3.660 × 10 ⁻²⁷	1.829 × 10 ⁻³⁰
1 ounce (avoirdupois) =	28.35	2.835 × 10 ⁻²	1.943 × 10 ⁻³	1.708×10^{25}	1	6.250 × 10 ⁻²	3.125 × 10 ⁻⁵
1 pound (avoirdupois)=	453.6	0.4536	3.108 × 10 ⁻²	2.732×10^{26}	16	1	0.0005
1 ton =	9.072 × 10 ⁻⁵	907.2	62.16	5.465 × 10 ²⁹	3.200 × 10 ⁴	2000	1

NOTE FOR TABLE F: Portion of table enclosed in heavy lines must be used with caution because those units are not properly mass units but weight equivalents which depend on standard terrestrial acceleration due to gravity, i.e. g.

G. DENSITY

		slug/ft ³	KGM/M ³	gm/cm ³	lb/ft ³	lb/in ³
1 slug per ft ³	=	1	515.4	0.5154	32.17	1.862×10^{-2}
1 KILOGRAM per METER ³	=	1.940 × 10 ⁻³	1	0.001	6.243 × 10 ⁻²	3.613 × 10 ⁻⁵
1 gm per cm ³	=	1.940	1000	1	62.43	3.613×10^{-2}
1 pound per ft ³ =		3.108×10^{-2}	16.02	1.602×10^{-2}	1	5.787×10^{-4}
1 pound per in ³	=	53.71	2.768×10^4	27.68	1728	1

NOTE FOR TABLE G: Portion of table enclosed in heavy lines must be used with caution because those units are not mass-density units but weight-density units which depend on g.

H. TIME

		yr	day	hr	min	SECOND
1 year	=	1	365.2	8.766×10^3	5.259×10^3	3.156×10^{7}
1 day	=	2.738×10^{-3}	1	24	1440	8.640×10^4
1 hour	=	1.141×10^{-4}	4.167×10^{-2}	1	60	3600
1 minute	=	1.901×10^{-6}	6.944×10^{-4}	1.667×10^{-2}	1	60
1 SECOND	=	3.169×10^{-8}	1.157×10^{-5}	2.778×10^{-4}	1.667×10^{-2}	1

1 year = 365.24219879 days

I. SPEED

		ft/sec	km/hr	METER/SEC	miles/hr	cm/sec	knot
1 foot per second	=	1	1.097	0.3408	0.6818	30.48	0.5925
1 kilometer per hour	=	0.9113	1	0.2778	0.6214	27.78	0.5400
1 METER per SECOND	=	3.281	3.600	1	2.237	100	1.944
1 mile per hour	=	1.467	1.609	0.4770	1	44.70	0.8689
1 centimeter per sec	=	3.281×10^{-2}	3.600×10^{-2}	0.0100	2.237×10^{-2}	1	1.944×10^{-2}
1 knot	=	1.688	1.852	0.5144	1.151	51.44	1

1 knot = 1 nautical mile/hr

1 mile/min = 88 ft/sec

= 60 miles/hr

J. FORCE

		dyne	NT	lb	pdl	gf	kgf
1 dyne	=	1	10 ⁻⁵	2.248 × 10 ⁻⁶	7.233 × 10 ⁻⁵	1.020 × 10 ⁻³	1.020 × 10 ⁻⁶
1 NEWTON	=	10 ⁵	1	0.2248	7.233	102.0	0.1020
1 pound	=	4.480 × 10 ⁵	4.448	1	32.17	453.6	0.4536
1 poundal	=	1.383 × 10 ⁴	0.1383	3.108 × 10 ⁻²	1	14.10	1.410 × 10 ⁻²
1 gram-force	=	980.7	9.807 × 10 ⁻³	2.205×10^{-3}	7.093×10^{-2}	1	0.001
1 kilogram-force	=	9.807×10^{5}	9.807	2.205	70.93	1000	1

NOTE FOR TABLE J: Portion of table enclosed in heavy lines must be used with caution because those units are not force units but weight equivalents of mass which depend on g.

1 kgf = 9.80665 newton 1 lb = 32.17398 poundal

K. PRESSURE

		atm	dyne/cm ²	inch of water	cm Hg	NT/METER ²	lb/in ²	lb/ft ²
1 atmosphere	=	1	1.013 × 10 ⁶	406.8	76	1.013 × 10 ⁵	14.70	2116
1 dyne per cm ²	=	9.869 × 10 ⁻⁷	1	4.015 × 10 ⁻⁴	7.501 × 10 ⁻⁵	0.100	1.450 × 10 ⁻⁵	2.089 × 10 ⁻³
1 inch of water at 4°C ^a		2.458×10^{-3}	2.491	1	0.1868	249.1	3.613 × 10 ⁻²	5.202
1 centimeter of mercury at 0°C ^a		1.316 × 10 ⁻²	1.333 × 10 ⁴	5.353	1	1333	0.1934	27.85
1 NEWTON per METER ²		9.869 × 10 ⁻⁶	10	4.015×10^{-3}	7.501 × 10 ⁻⁴	1	1.450 × 10 ⁻⁴	2.089 × 10 ⁻²
1 pound per in ²		6.805×10^{-2}	6.895×10^4	27.68	5.171	6.895×10^{3}	1	144
1 pound per ft ²	=	4.725 × 10 ⁻⁴	478.8	0.1922	3.591 × 10 ⁻²	47.88	6.944 × 10 ⁻³	1

^a Where the acceleration of gravity has the standard value $9.80665 \text{ meter/sec}^2$ 1 bar = 10^6 dyne/cm^2 1 millibar = 10^3 dyne/cm^2 1 torr (mm Hg at 0° C) = $1.93367 \times 10^{-2} \text{ lb/ft}^2$

L. ENERGY, WORK, HEAT

		Btu	erg	ft-lb	hp-hr	JOULES	cal	kw-hr	ev	Mev	kgm	amu
1 British thermal unit	=	1	1.055 × 10 ¹⁰	777.9	3.929 × 10 ⁻⁴	1055	252.0	2.930 × 10 ⁻⁴	6.585×10^{21}	6.585×10^{15}	1.174 × 10 ⁻¹⁴	7.074×10^{12}
1 erg	=	9.481 × 10 ⁻¹¹	1	7.376 × 10 ⁻⁸	3.725 × 10 ⁻¹⁴	10 ⁻⁷	2.389 × 10 ⁻⁸	2.778 × 10 ⁻¹⁴	6.242 × 10 ¹¹	6.242×10^{5}	1.113 × 10 ⁻²⁴	670.5
1 foot-pound	=	1.285 × 10 ⁻³	1.356×10^{7}	1	5.051 × 10 ⁻⁷	1.356	0.3239	3.766 × 10 ⁻⁷	8.464 × 10 ¹⁸	8.464 × 10 ¹²	1.509 × 10 ⁻¹⁷	9.092 × 10 ⁹
1 horsepower- hour	=	2545	2.685 × 10 ⁻¹³	1.980×10^{6}	1	2.685×10^{6}	6.414 × 10 ⁵	0.7457	1.676×10^{25}	1.676 × 10 ¹⁹	2.988 × 10 ⁻¹¹	1.800 × 10 ¹⁶
1 JOULE	=	9.481 × 10 ⁻⁴	10 ⁷	0.7376	3.725 × 10 ⁻⁷	1	0.2389	2.778 × 10 ⁻⁷	6.242×10^{18}	6.242×10^{12}	1.113 × 10 ⁻¹⁷	6.705×10^9
1 calorie	=	3.968 × 10 ⁻³	4.186 × 10 ⁷	3.087	1.559 × 10 ⁻⁶	4.186	1	1.163 × 10 ⁻⁶	2.613 × 10 ¹⁹	2.613 × 10 ¹³	4.659 × 10 ⁻¹⁷	2.807 × 10 ¹⁰
1 kilowatt-hour	=	3413	3.6×10^{13}	2.655×10^{6}	1.341	3.6×10^{6}	8.601 × 10 ⁵	1	2.247×10^{25}	2.247 × 10 ¹⁹	4.007 × 10 ⁻¹¹	2.414 × 10 ¹⁶
1 electron volt	=	1.519 × 10 ⁻²²	1.602 × 10 ⁻¹²	1.182 × 10 ⁻¹⁹	5.967 × 10 ⁻²⁶	1.602 × 10 ⁻¹⁹	3.827×10^{-20}	4.450×10^{-26}	1	10 ⁻⁶	1.783 × 10 ⁻³⁶	1.074 × 10 ⁻⁹
1 million electron volts	=	1.519 × 10 ⁻¹⁶	1.602 × 10 ⁻⁶	1.182 × 10 ⁻¹³	5.967 × 10 ⁻²⁰	1.602 × 10 ⁻¹³	3.827 × 10 ⁻¹⁴	4.450×10^{-20}	10 ⁶	1	1.783 × 10 ⁻³⁰	1.074 × 10 ⁻³
1 kilogram	=	8.521 × 10 ⁻¹³	8.987×10^{23}	6.629 × 10 ¹⁶	3.348×10^{10}	8.987 × 10 ¹⁶	2.147×10^{16}	2.497×10^{10}	5.610 × 10 ³⁵	5.610×10^{29}	1	6.025×10^{26}
1 atomic mass unit	=	1.415 × 10 ⁻¹³	1.492 × 10 ⁻³	1.100 × 10 ⁻¹⁰	5.558 × 10 ⁻¹⁷	1.492 × 10 ⁻¹⁰	3.564 × 10 ⁻¹¹	4.145 × 10 ⁻¹⁷	9.310 × 10 ⁸	931.0	1.660 × 10 ⁻²⁷	1

(See notes, next page)

1 meter - kgf = 9.807 joule, 1 watt-sec = 1 joule = 1 nt-meter, 1 cm-dyne = 1 erg Some conversions used in spectroscopy:

1 eV = 8065.7 cm⁻¹ 1 cm⁻¹ = 0.000124 eV
1 eV
$$\approx 6000^{\circ}$$
K At 300°K, $\frac{3}{2}$ kT ≈ 0.05 eV

NOTES FOR TABLE L: The electron volt is the kinetic energy an electron gains from being accelerated through the potential difference of one volt in an electric field. The units enclosed by heavy lines are not properly energy units; they arise from the relativistic mass-energy equivalent formula $E = mc^2$.

M. SPECIFIC ENERGY

	<u>cal</u> gm	erg gm	JOULE KGM	$\frac{\mathrm{Btu}}{\mathrm{lb_{m}}}$	$\frac{\text{ft - lb}_{f}}{\text{lb}_{m}}$	hp - hr lb _m
1 calorie per gram =	1	4.186 × 10 ⁷	4.186×10^{3}	1.800	1.400 × 10 ³	7.072 × 10 ⁻⁴
1 erg per gram=	2.389 × 10 ⁻⁸	1	10 ⁻⁴	4.299 × 10 ⁻⁸	3.346 × 10 ⁻⁵	1.690 × 10 ⁻¹¹
1 JOULE per KILOGRAM =	2.389 × 10 ⁻⁴	10^4	1	4.299 × 10 ⁻⁴	0.3346	1.690 × 10 ⁻⁷
1 Btu per pound (mass)=	0.5557	2.326×10^{7}	2.326×10^{3}	1	777.9	3.929 × 10 ⁻⁴
1 foot-pound per pound (mass)=	7.142 × 10 ⁻⁴	2.990×10^{4}	2.990	1.285 × 10 ⁻³	1	5.051 × 10 ⁻⁷
1 horsepower-hour per pound (mass)=	1.414×10^3	5.920×10^{10}	5.920 × 10 ⁶	2.545	1.980×10^{6}	1

(SEE NOTE FOR TABLE N)

N. SPECIFIC ENERGY PER UNIT TEMPERATURE

	cal gm°C	erg gm°C	JOULE KGM °K	Btu lb _m °F	$\frac{\mathrm{ft} - \mathrm{lb}_{\mathrm{f}}}{\mathrm{lb}_{\mathrm{m}} ^{\circ} \mathrm{F}}$	hp - hr lb _m °F
1 calorie per gram per degree C =	1	4.186 × 10 ⁷	4.186×10^{3}	1.000	777.9	3.929 × 10 ⁻⁴
1 erg per gram per degree C =	2.389 × 10 ⁻⁸	1	10 ⁻⁴	2.388 × 10 ⁻⁸	1.859 × 10 ⁻⁵	9.376 × 10 ⁻¹²
1 JOULE per KGM per DEGREE K =	2.389 × 10 ⁻⁴	10^4	1	2.388 × 10 ⁻⁴	0.1859	9.376 × 10 ⁻⁸
1 Btu per lb (mass) per degree F =	1.000	4.187×10^{7}	4.187×10^{3}	1	777.9	3.929 × 10 ⁻⁴
1 foot-lb per lb (mass) per degree F =	1.286 × 10 ⁻³	$5.382 \\ \times 10^4$	5.382	1.285 × 10 ⁻³	1	5.051 × 10 ⁻⁷
1 horsepower-hour per lb (mass) per degree F=	2.546×10^{3}	1.066×10^{11}	1.066 × 10 ⁷	2.545	1.980 × 10 ⁶	1

NOTE FOR TABLES M & N: The engineering units enclosed within the heavy lines have been properly related to the pound mass rather than the pound force because these specific thermal quantities depend on unit mass and have nothing to do with weight. However, in engineering practice it is customary to relate energy and energy per degree to weight. Thus we speak of Btu/lb, ft-lb/lb and hp-hr/lb of weight. The conversion factors given in Tables M & N are equally valid for this purpose if the local acceleration of gravity if the earth standard value of g = 32.174 ft/sec² = 9.80665 meter/sec². This is true because the pound-force and the pound-mass are numerically equal at standard gravity. It should be realized that relating specific quantities to weight, rather than mass, involves a change of concept because weight and mass are not dimensional equivalents. The relation between units of mass and weight is not a relation between the concepts of mass and weight. The units are related by

$$lb_f = 32.174 lb_m ft/sec^2$$

O. POWER

		Btu hr	Btu sec	$\frac{\text{ft - lb}}{\text{min}}$	$\frac{\text{ft - lb}}{\text{sec}}$	hp	cal sec	kw	WATT
1 British thermal unit per hour	=	1	2.778 × 10 ⁻⁴	12.97	0.2161	3.929 × 10 ⁻⁴	7.000 × 10 ⁻²	2.930 × 10 ⁻⁴	0.2930
1 British thermal unit per second		3600	1	4.669 × 10 ⁴	777.9	1.414	252.0	1.055	$\begin{array}{c} 1.055 \\ \times 10^3 \end{array}$
1 foot-pound per minute	=	7.713 × 10 ⁻²	2.142 × 10 ⁻⁵	1	1.667 × 10 ⁻²	3.030 × 10 ⁻⁵	5.399 × 10 ⁻³	2.260 × 10 ⁻⁵	2.260 × 10 ⁻²
1 foot-pound per second		4.628	1.286 × 10 ⁻³	60	1	1.818 × 10 ⁻³	0.3239	1.356 × 10 ⁻³	1.356
1 horsepower	=	2545	0.7069	3.3 $\times 10^4$	550	1	178.2	0.7457	745.7
1 calorie per second	=	14.29	0.3950	1.852×10^2	3.087	5.613 × 10 ⁻³	1	4.186 × 10 ⁻³	4.186
1 kilowatt		3413	0.9481	4.425×10^4	737.6	1.341	238.9	1	1000
1 WATT	=	3.413	9.481 × 10 ⁻⁴	44.25	0.7376	1.341 × 10 ⁻³	0.2389	0.001	1

P. HEAT FLUX*

	cal	kilocal	WATT	watt	Btu	Btu	hp
	sec - cm ²	hr-m ²	M ²	in ²	hr-ft ²	sec-in ²	ft ²
1 calorie per sec per centimeter ² =	1	3.600×10^{4}	4.185×10^4	27.00	1.327×10^4	2.560 × 10 ⁻²	5.212
1 kilocalorie per hour per meter ² =	2.778 × 10 ⁻⁵	1	1.163	7.500 × 10 ⁻⁴	0.3687	7.112 × 10 ⁻⁷	1.448 × 10 ⁻⁴
1 WATT per METER ² =	2.390 × 10 ⁻⁵	0.8602	1	6.452 × 10 ⁻⁴	0.3171	6.117 × 10 ⁻⁷	1.246 × 10 ⁻⁴
1 watt per inch ² =	3.704 × 10 ⁻²	1.333	1550	1	491.5	9.481 × 10 ⁻⁴	0.1931
1 British thermal unit per hour per foot ² =	7.535 × 10 ⁻⁵	2.713	3.153	2.035 × 10 ⁻³	1	1.929 × 10 ⁻⁶	3.928 × 10 ⁻⁴
1 British thermal unit per sec per inch ² =	39.06	1.406 × 10 ⁶	$1.635 \\ \times 10^6$	$\begin{array}{c} 1.055 \\ \times 10^3 \end{array}$	5.184 × 10 ⁵	1	203.6
1 horsepower per foot ² =	0.1918	6.905×10^{2}	8027	5.179	2.546×10^{3}	4.911 × 10 ⁻³	1

^{*}Also power per unit area

Q. HEAT TRANSFER COEFFICIENT, h

	cal sec−cm ² °C	$\frac{\text{WATT}}{\text{M}^2 \circ \text{K}}$	watt in ² °C	Btu hr - ft ² °F	Btu sec - in 2 °F	hp ft ² °F
1 calorie per sec per centimeter ² - °C =	1	4.185 × 10 ⁴	27.00	7.372×10^{3}	1.422 × 10 ⁻²	2.895
1 WATT per METER ² per DEG KELVIN =	2.390 × 10 ⁻⁵	1	6.452 × 10 ⁻⁴	0.1762	3.398 × 10 ⁻⁷	6.922 × 10 ⁻⁵
1 watt per inch ² per deg Centigrade =	3.704 × 10 ⁻²	1550	1	273.1	5.267 × 10 ⁻⁴	0.1073
1 Btu per hour per per foot ² - °F =	1.356 × 10 ⁻⁴	5.675	3.663 × 10 ⁻³	1	1.929 × 10 ⁻⁶	3.928 × 10 ⁻⁴
1 Btu per sec per inch ² - °F =	70.31	2.943×10^{6}	$1.899 \\ \times 10^3$	5.184 × 10 ⁵	1	203.6
1 horsepower per foot ² - °F =	0.3452	1.445×10^4	9.322	2.546×10^3	4.911 × 10 ⁻³	1

R. R. THERMAL CONDUCTIVITY, k

	cal	WATTS	watts	Btu	Btu	hp
	sec-cm°C	METER °K	in°C	hr - ft°F	sec - in°F	ft°F
1 calorie per sec per centimeter-deg C =	1	418.5	10.63	241.9	5.600 × 10 ⁻³	9.503 × 10 ⁻²
1 WATT per METER per DEG KELVIN =	2.390 × 10 ⁻³	1	2.540×10^{-2}	0.5781	1.338 × 10 ⁻⁵	2.271 × 10 ⁻⁴
1 watt per inch per deg Centigrade =	9.407 × 10 ⁻²	39.37	1	22.76	5.269 × 10 ⁻⁴	8.939 × 10 ⁻³
1 Btu per hour per foot-deg F =	4.134 × 10 ⁻³	1.730	4.394 × 10 ⁻²	1	2.315 × 10 ⁻³	3.929 × 10 ⁻⁴
1 Btu per sec per inch-deg F =	$1.786 \\ \times 10^2$	7.474 × 10 ⁴	1.898 × 10 ³	4.320 × 10 ⁴	1	16.97
1 horsepower per foot-deg F =	10.52	4403	111.8	2546	5.894 × 10 ⁻²	1

S. ABSOLUTE OR DYNAMIC VISCOSITY, µ

		centipoise	poise	$\frac{\text{kgm}_f - \text{sec}}{\text{meter}^2}$	$\frac{lb - sec}{ft^2}$	KGM M-SEC	$\frac{lb_m}{ft - sec}$
1 centipoise	=	1	10 ⁻²	1.020 × 10 ⁻⁴	2.089 × 10 ⁻⁵	10 ⁻³	6.720×10^{-4}
1 poise	=	100	1	1.020 × 10 ⁻²	2.089 × 10 ⁻³	0.100	6.720 × 10 ⁻²
1 kg (force) – sec per meter ²	=	9.807×10^{3}	98.07	1	0.2048	9.807	6.590
1 lb (force) – sec per foot ²	=	4.788 × 10 ⁴	4.788×10^{2}	4.882	1	47.88	32.174
1 KILOGRAM per METER-SEC	=	10 ³	10	0.1020	2.089 × 10 ⁻²	1	0.6720
1 lb (mass) per foot – sec	=	1.488×10^{3}	14.88	0.1518	3.108 × 10 ⁻²	1.488	1

NOTE FOR TABLE S: The absolute viscosity μ is properly expressed in force units according to its definition. In heat transfer and fluid mechanics it is usually expressed in massequivalent units to avoid the use of a conversion factor in Reynolds Number. Mass units have been used in the portion of the table enclosed in heavy lines. The proper force units for μ in the mksq system are **NEWTON-SEC** per **METER**²; they are seldom used. The poise is the cgs force unit and is defined by

1 poise = 1
$$\frac{\text{dyne - second}}{\text{centimeter}^2}$$

T. KINEMATIC VISCOSITY, $v = \mu/\rho$

		centistoke	stoke	METER ² /SEC	ft ² /sec
1 centistoke	=	1	10 ⁻²	10 ⁻⁶	1.076×10^{-5}
1 stoke	=	100	1	10 ⁻⁴	1.076×10^{-3}
1 METER ² /SEC	=	10^{6}	10 ⁴	1	10.76
1 ft ² /sec	=	9.290×10^4	929.0	9.290×10^{-2}	1

 $1 \text{ stoke} = 1 \text{ centimeter}^2/\text{sec}$

AA. ELECTRIC CHARGE

		abcoul	amp-hr	COUL	faraday	statcoul
1 abcoulomb (1 emu)		1	2.778 × 10 ⁻³	10	1.036 × 10 ⁻⁴	2.998×10^{10}
1 ampere-hour	=	360	1	3600	3.730 × 10 ⁻²	1.079 × 10 ¹³
1 COULOMB		0.100	2.778 × 10 ⁻⁴	1	1.036 × 10 ⁻⁵	2.998×10^{9}
1 faraday	Ш	9.652×10^3	26.81	9.652 × 10 ⁴	1	2.893×10^{14}
1 statcoulomb (1 esu)	=	3.336 × 10 ⁻¹¹	9.266 × 10 ⁻¹⁴	3.336 × 10 ⁻¹⁰	3.456 × 10 ⁻¹⁵	1

1 electronic charge =
$$1.602 \times 10^{-19}$$
 coulombs
= $(1.602 \times 10^{-19})(2.998 \times 10^{9})$ stateoulomb
= 4.8×10^{-10} esu

BB. ELECTRIC CURRENT

		abamp	AMP	statamp
1 abampere (1 emu)	=	1	10	2.998×10^{10}
1 AMPERE	=	0.100	1	2.998×10^9
1 statampere (1 esu)	=	3.336×10^{-11}	3.336×10^{-10}	1

CC. ELECTRIC POTENTIAL, ELECTROMOTIVE FORCE

		abv	VOLT	statv
1 abvolt (1 emu)	=	1	10 ⁻⁸	3.336×10^{-11}
1 VOLT	=	108	1	3.336×10^{-3}
1 statvolt (1 esu)	=	2.998×10^{10}	299.8	1

DD. ELECTRIC RESISTANCE

		abohm	ОНМ	statohm
1 abohm (1 emu)	=	1	10 ⁻⁹	1.113×10^{-21}
1 OHM	=	10 ⁹	1	1.113 × 10 ⁻¹²
1 statohm (1 esu)	=	8.987×10^{20}	8.987×10^{11}	1

EE. ELECTRIC RESISTIVITY, RECIPROCAL CONDUCTIVITY

	abohm-cm	ohm-cm	ОНМ-М	statohm-cm	ohm-circ mil/ft
1 abohm-centimeter (1 emu) =	1	10 ⁻⁹	10 ⁻¹¹	1.113 × 10 ⁻²¹	6.015×10^{-3}
1 ohm-centimeter =	10 ⁹	1	0.0100	1.113 × 10 ⁻¹²	6.015×10^{6}
1 OHM-METER =	10 ¹¹	100	1	1.113 × 10 ⁻¹⁰	6.015×10^{8}
1 statohm-centimeter (1 esu) =	8.987×10^{20}	8.987×10^{11}	8.987 × 10 ⁹	1	5.406 × 10 ¹⁸
1 ohm-circular mil per foot =	166.2	1.662 × 10 ⁻⁷	1.662 × 10 ⁻⁹	1.850 × 10 ⁻¹⁹	1

FF. CAPACITANCE

		abf	FARAD	μf	statf
1 abfarad (1 emu)	=	1	10 ⁹	10 ¹⁵	8.987 × 10 ²⁰
1 FARAD	=	10 ⁻⁹	1	10^{6}	8.987 × 10 ¹¹
1 microfarad	=	10 ⁻¹⁵	10 ⁻⁶	1	8.987 × 10 ⁵
1 statfarad (1 esu)	=	1.113 × 10 ⁻²¹	1.113 × 10 ⁻¹²	1.113 × 10 ⁻⁶	1

GG. INDUCTANCE

		abhenry	HENRY	μh	stathenry
1 abhenry (1 emu)		1	10 ⁻⁹	0.001	1.113 × 10 ⁻²¹
1 HENRY	=	109	1	10 ⁶	1.113 × 10 ⁻¹²
1 microhenry	=	10 ³	10 ⁻⁶	1	1.113 × 10 ⁻¹⁸
1 stathenry (1 esu)	=	$8.987 \\ \times 10^{20}$	8.987 × 10 ¹¹	8.987×10^{17}	1

HH. MAGNETIC FLUX

		maxwell	kiloline	WEBER
1 maxwell (1 line or 1 emu)	=	1	0.001	10 ⁻⁸
1 kiloline	=	1000	1	10 ⁻⁵
1 WEBER	=	108	10 ⁵	1

1 esu = 2.998 webers

II. MAGNETOMOTIVE FORCE

		abamp-turn	AMP-TURN	gilbert
1 abamp-turn	=	1	10	12.57
1 AMP-TURN	=	0.100	1	1.257
1 gilbert	=	7.958 × 10 ⁻²	0.7958	1

1 pragilbert = 4π amp-turn 1 esu = 2.655×10^{-11} amp-turn

JJ. MAGNETIC FIELD STRENGTH, B

		gauss	kiloline in ²	WEBER METER ²	milligauss	gamma
1 gauss (line per cm ²)	=	1	6.452 × 10 ⁻²	10 ⁻⁴	1000	10 ⁵
1 kiloline per in ²	=	155.0	1	1.550 × 10 ⁻²	1.550 × 10 ⁵	1.550 × 10 ⁷
1 WEBER PER METER ²	=	10 ⁴	64.52	1	10 ⁷	10 ⁹
1 milligauss	=	10 ⁻³	6.452 × 10 ⁻⁶	10 ⁻⁷	1	100
1 gamma	=	10 ⁻⁵	6.452 × 10 ⁻⁸	10 ⁻⁹	10 ⁻²	1

 $1 esu = 2.998 \times 10^6 \text{ weber/meter}^2$ $10^4 \text{ gauss} = 1 \text{ tesla}$

KK. MAGNETIC VECTOR, H

		abamp – turn	amp – turn cm	AMP – TURN METER	amp – turn in	oersted
1 abampere-turn per centimeter =	=	1	10	1000	25.40	12.57
1 ampere-turn per centimeter =	=	0.100	1	100	2.54	1.257
1 AMPERE-TURN PER METER =	=	10 ⁻³	10 ⁻²	1	2.540 × 10 ⁻²	1.257 × 10 ⁻²
1 ampere-turn per inch =	=	3.937 × 10 ⁻²	0.3937	39.37	1	0.4947
1 oersted =	=	7.958 × 10 ⁻²	0.7958	79.58	2.021	1

1 oersted = 1 gilbert/cm 1 esu = 2.655×10^{-9} amp-turn/meter

1 praoersted = 4π amp-turn/meter

VIII. ELECTROMAGNETIC CONSTANTS OF FREE SPACE

Maxwell was able to show analytically that the constant appearing in a wave equation derived for free space (perfect vacuum), for the case $\rho_e = \sigma_c = 0$, was the square of the velocity of propagation of electromagnetic waves in free space. The experiments of Hertz verified that this velocity was the velocity of light in free space and that

$$c^2 = \frac{1}{\mu_0 \varepsilon_0}$$

where μ_0 is the permeability of free space and ϵ_0 is the permittivity of free space. This equation is true for any system of units; in the mksq system

$$c = 2.997925 \times 10^{8} \text{ meter/sec}$$

 $\mu_{0} = 1.256637 \times 10^{-6} \text{ henry/meter}$
 $\epsilon_{0} = 8.85416 \times 10^{-12} \text{ farad/meter}$

IX. ELECTROMAGNETIC CONSTANTS OF MATERIALS

The permeability and permittivity of materials are usually given relative to the values of free space.

Relative permeability Magnetic Susceptibility $\kappa_{\scriptscriptstyle m} = \frac{\mu}{\mu_{\scriptscriptstyle 0}} \qquad \qquad \kappa_{\scriptscriptstyle m} = 1 + \chi_{\scriptscriptstyle m}$

Relative permittivity Electric Susceptibility $\kappa_e = \frac{\varepsilon}{\varepsilon} \qquad \qquad \kappa_e = 1 + \chi_e$

(Dielectric constant)

When looking up values of electromagnetic constants of materials care must be taken to be sure what values are specified, i.e. μ , κ_m or χ_m and ϵ , κ_e or χ_e . The usual values given are κ_e and χ_m .

 κ_m is a number near unity and may be greater or less than unity; χ_m may be positive or negative but is small compared to unity. κ_e is always greater than unity and may be significantly larger than unity; χ_e is always positive and may be large compared to unity:

 $\kappa_m \leq 1, \ \kappa_m \sim 1$ $\kappa_c \geq 1$ $\chi_m \leq 0, \ \chi_m << 1$ $\chi_e \geq 0$ κ_m is temperature dependent possible $\chi_e >> 1$

X. SOME IMPORTANT DIMENSIONAL CONSTANTS (mksq units)

Name	Symbol	Computational Value	Best Experimental Value
Speed of light	c	3.00×10^8 meter/sec	$(2.997930 \pm 0.000003) \times 10^{8}$
Universal Gravitational Const.	G	$6.67 \times 10^{-11} \text{nt-m}^2 / \text{kgm}^2$	$(6.673 \pm 0.003) \times 10^{-11}$
Avogadro's Number	N_0	6.02×10^{23} /mole	$(6.02486 \pm 0.00016) \times 10^{23}$
Universal Gas Constant	R	8.32 joule/mole °K	8.31696 ± 0.00034
Standard Volume of Ideal Gas		$2.24 \times 10^{-2} \text{ meter}^3$	$(2.24207 \pm 0.00006) \times 10^{-2}$
Planck's Constant	h	6.63×10^{-34} joule/sec	$(6.62517 \pm 0.00023) \times 10^{-34}$
Boltzmann's Constant	k	1.38×10^{-23} joule/°K	$(1.38044 \pm 0.00007) \times 10^{-23}$
Mechanical Equiv. of Heat	J	4.19 joule/cal	4.1855 ± 0.0004
Triple Point of Water		273.16 °K	273.16 °K exactly
Ice Point of Water	Σ_0	273.16 °K	$273.16 ^{\circ}\text{K} \pm 0.0002$
Maximum Density of Water		1 gm/cm ³	0.999973
(at 3.98°C, 1 atm)			
Permeability of Free Space	μ_0	1.26×10^{-6} henry/meter	$4\pi \times 10^{-7}$ exactly
Permittivity of Free Space	ϵ_0	8.85×10^{-12} farad/meter	$(8.85415 \pm 0.00002) \times 10^{-12}$
Electronic Charge	e	1.60×10^{-19} coulomb	$(1.60206 \pm 0.00003) \times 10^{-19}$
Electronic Rest Mass	m_e	$9.11 \times 10^{-31} \mathrm{kgm}$	$(9.1083 \pm 0.0003) \times 10^{-31}$
Proton Rest Mass	m_p	$1.67 \times 10^{-27} \mathrm{kgm}$	$(1.67239 \pm 0.00004) \times 10^{-27}$
Neutron Rest Mass	m_n	$1.67 \times 10^{-27} \mathrm{kgm}$	$(1.67470 \pm 0.00004) \times 10^{-27}$
Mass-Energy Relation	$c^2 = E/m$	$8.99 \times 10^{16} \text{ meter}^2/\text{sec}^2$	$(8.98758 \pm 0.00003) \times 10^{16}$
Magnetic Moment of Electron		9.28×10^{-32} joule-m ² /weber	$(9.2837 \pm 0.0002) \times 10^{-32}$
Compton Wavelength of Electron	$\lambda_{ m c}$	2.43×10^{-12} meter	$(2.42626 \pm 0.00002) \times 10^{-12}$
First Bohr Orbit Radius in	a_0	5.29×10^{-11} meter	$(5.29172 \pm 0.00002) \times 10^{-11}$
Hydrogen Atom			
Stefan-Boltzmann Const.	σ	5.67×10^{-8} joule/sec(°K) ⁴ meter ²	$(5.6687 \pm 0.0019) \times 10^{-8}$

XI. SOME IMPORTANT DIMENSIONLESS GROUPS

Name	Group	Field of Use
Biot Euler	$(Bi) = hL/k$ $(Eu) = p/\rho V^2$	Conduction heat transfer Fluid mechanics
Fourier	$(Fo) = \alpha \tau / L^2$	Conduction heat transfer
Froude	$(Fr) = V\sqrt{Lg}$	Fluid mechanics
Graetz	$(Grz) = \dot{w} c_p / kL$	Heat transfer, free convection
Grashof	$(Grf) = L^3 \rho^2 g \beta \Delta t / \mu^2$	Heat transfer, free convection
Hartmann	(Ha) = $(\sigma_c B_0^2 L^2 / \mu)^{1/2}$	MHD
Knudsen	$(Kn) = \lambda/L$	Fluid mech., rarified gas flow
Lewis	$(Le) = (Sc)/(Pr) = \alpha/D$	Conv. heat & mass transfer
Mach	$(\mathbf{M}) = V/a$	High speed flow
Nusselt	(Nu) = hL/k	Convection heat transfer
Péclet	(Pe) = (Re)(Pr)	Convection heat transfer
Prandtl	$(Pr) = \mu c_p/k$	Convection heat transfer
Reynolds	$(Re) = VL\rho/\mu$	Fluid mech., heat transfer
Magnetic Reynolds	$(Re)_m = \mu \sigma_c VL$	MHD
Schmidt	$(Sc) = \mu/\rho D$	Conv. heat & mass transfer
Stanton	$(St) = h/c_p V \rho$	Convection heat transfer
Weber	$(We) = \rho V^2 L / \sigma$	Fluid mechanics, free surface
	$(N) = (Ha)^2/(Re)$	MHD
	$(S) = (Ha)^2/(Re)(Re)_m$	MHD

Symbols:

B_0 – Applied mag. field	λ - Mean free path (molecular)
D – Diffusion coefficient	Δt – Temperature difference
L – Characteristic length	\dot{w} - Mass rate of flow
<i>V</i> – Fluid velocity	c_p – Specific heat (const. pressure)
<i>a</i> – Acoustic velocity	α - Thermal diffusivity
g – Gravity	β - Thermal expansion coefficient
h – Heat transfer coefficient	σ - Surface tension
<i>k</i> – Thermal conductivity	σ_c – Electric conductivity
p – Static pressure	μ - Viscosity or magnetic permeability
ρ – Density	τ - Time interval

XII. THE PERFECT GAS LAW

A. NOMENCLATURE, DEFINITIONS, AND EQUATIONS

In the following discussion the elementary particle under consideration is the molecule. Care must be taken to use consistent units, especially to make the proper distinction between mass and weight units. The units of the gas constant must be consistent with those used for density or specific volume.

NOMENCLATURE:

Symbol	Definition in cgs Units
ρ	Density in grams per cm ³
k	Boltzmann's Constant in ergs/molecule K°
m	Mass of molecule in grams
n	Particle Number Density in molecules/cm ³
p	Pressure in dynes/ cm ²
υ	Specific Volume in cm ³ per gram
\mathbf{v}_N	Specific Molar Volume in cm ³ /gm-mole
M	Molecular Weight in gm/gm-mole
N	Number of moles
N_0	Avogadro's Number, no. of molecules per gm-mole
R	Gas Constant in ergs/gm K°
R_0	Universal Gas Constant in ergs/gm-mole K°
T	Absolute Temperature, degrees Kelvin
V	Total Volume in cubic centimeters
W	"Weight" of Gas in grams

Avogadro's Law: All ideal gases at the same temperature and pressure have the same specific molar volume. At STP (0°C, 1 atm), $v_N = 22.4$ liters/gm-mole = 22400 cm³/gm-mole = 359 ft³/lb-mole. At the same temperature and pressure all ideal gases contain the same number of molecules per unit volume.

Definition of the mole: The gm-mole is the amount of an ideal gas which will occupy the same volume as 32 gm of oxygen at STP; the pound-mole is similarly related to 32 lb of oxygen. The weight of a mole of gas is numerically equal to the molecular weight of the gas.

Forms of the Perfect Gas Law:

pv = RT	$p = \rho RT = n k T$
$pv_N = R_0T$	$pV = WRT = NR_0T$

Useful Relations:

$\rho = nm$	$N_0 = n v_N$
$m = M/N_0$	$v_N = V/N$
$R = R_0/M$	N = W/M
D 11 0	

 $R_0 = N_0 \, k$

B. VALUES OF UNIVERSAL GAS CONSTANT, BOLTZMANN'S CONSTANT AND AVOGADRO'S NUMBER IN DIFFERENT UNITS

Units	R_0	Units	R_0
ft-lb/lb-mole R°	1544	cal/gm-mole K°	1.987
ft-lb/lb-mole K°	2779	cm ³ atm/gm-mole K°	82.06
ft-lb/lb-mole R°	3.407	liter atm/gm-mole K°	0.08206
Btu/lb-mole R°	1.987	ergs/gm-mole K°	8.313×10^{7}
ft ³ atm/lb-mole R°	0.729	JOULES/KGM-MOLE K°	8313
ft ³ atm/lb-mole K°	1.315	psia ft³/lb-mole R°	10.71
Units ergs/molecule K° JOULES/MOLECULE K° ft-lb/molecule R° Btu/molecule R°	k 1.38×10^{-16} 1.38×10^{-23} 5.655×10^{-24} 7.267×10^{-27}	Units molecules/gm-mole MOLECULES/KGM-MOLE molecules/lb-mole	N_0 6.023×10^{23} 6.023×10^{26} 2.73×10^{26}
1 atm = 1.013×10^6 of 1 erg = 1 dyne-cm	dynes/cm ²	1 erg = 10^{-7} joule 1 ft-lb = $1.356 \cdot 10^{7}$ ergs	