MySQL Storage Engines Which Do You Use?

April, 25, 2017 Sveta Smirnova

Sveta Smirnova

MySQL Support engineer Author of

- MySQL Troubleshooting
- JSON UDF functions
- FILTER clause for MySQL
- Speaker
 - Percona Live, OOW, Fosdem, DevConf, HighLoad...

MySQL < 3.23 had only engine: ISAM

- MySQL < 3.23 had only engine: ISAM
- Version 3.23 introduced table types

```
mysql> CREATE TABLE plmce(
    -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    -> name VARCHAR(100)
    -> ) TYPE = MyISAM;
Query OK, 0 rows affected, 1 warning (0.10 sec)
```


- MySQL < 3.23 had only engine: ISAM
- Version 3.23 introduced table types
- In year 2003 term "Type" was deprecated

- MySQL < 3.23 had only engine: ISAM
- Version 3.23 introduced table types
- In year 2003 term "Type" was deprecated
- Engines were built-in into server

- MySQL < 3.23 had only engine: ISAM
- Version 3.23 introduced table types
- In year 2003 term "Type" was deprecated
- Engines were built-in into server
- Nobody could deliver engine independently

- MySQL < 3.23 had only engine: ISAM
- Version 3.23 introduced table types
- In year 2003 term "Type" was deprecated
- Engines were built-in into server
- Nobody could deliver engine independently
- Version 5.1 changed everything
 - Pluggable storage engine API was introduced

- Part of MySQL since version 3.23.24
 - Released at March, 10, 2001

- Part of MySQL since version 3.23.24
- Created by Innobase OY
 - Acquired by Oracle in 2005

- Part of MySQL since version 3.23.24
- Created by Innobase OY
- Major changes in 5.1
 - New tablespace format
 - Dynamic loading
 - Online index creation
 - ...
 - Released as a plugin

- Part of MySQL since version 3.23.24
- Created by Innobase OY
- Major changes in 5.1
 - Two versions in 5.1.38 5.1.73
 - Built-in
 - Pluggable

Many others started own storage engines

- Many others started own storage engines
- Most notable
 - Tokutek

Primebase

- Many others started own storage engines
- Most notable
 - Tokutek
 - TokuDB
 - Write-scale
 - Acquired by Percona in 2015
 - Primebase

- Many others started own storage engines
- Most notable
 - Tokutek
 - TokuDB
 - Write-scale
 - Acquired by Percona in 2015
 - Primebase
 - PBXT
 - Better BLOB handling technology
 - Engine not supported now

In the Official Distribution

- Built-in engines were converted into plugins
- Some old engines were removed
 - BerkeleyDB
 - ISAM

Community

- Number of engine grows
- They can
 - Shard: Spider
 - Use any source of data: CONNECT
 - Connect to foreign sources: FederatedX
 - Perform full text search: SphinxSE
 - More
- MariaDB includes most of the engines

Simple and Complex Engines

- All engines
 - Store data
 - Retrieve data

Simple and Complex Engines

- All engines
- Simple engines
 - Use built-ins for all other job
 - Locking
 - Transactions support
 - Diagnostic

Simple and Complex Engines

- All engines
- Simple engines
- Complex engines
 - Implement
 - Own locking model
 - Transactions
 - Diagnostic
 - Log files
 - More

- All three
 - Transactional
 - Row-level locking
 - MVCC
 - ACID
 - XA
 - Automatic crash recovery

- All three
- InnoDB
 - Universal
 - Default since 5.5.5

- All three
- InnoDB
- TokuDB
 - Write optimized
 - Fine compression support
 - Best for big data

- All three
- InnoDB
- TokuDB
- MyRocks
 - Write and space optimized
 - Great compression support
 - Best for SSD

- B-Tree

 - Extremely fast read accessNeeds to be re-balanced on write

- B-Tree
- Reach features set
 - Foreign keys
 - Locks at the engine level
 - Row
 - Gap
 - Auto-increment
 - Table
 - Compression
 - Extended crash recovery

• Initial Data

```
12
 24
23 25
```



```
12
 24
23 25
```



```
12
 24
23 25
```



```
12
 24
23 25
```



```
12
 24
23 25
```



```
12
 24
23 25
```



```
12
23 25
```



```
12
23 25
```



```
24
23 25
```


B-Tree

• INSERT 5

```
10 11
   12
   23 25
```


B-Tree

• INSERT 5

```
11 24
  23 25
```


- Fractal Tree
 - Write optimized
 - All writes stored in buffers
 - Background thread flushes them
 - By default reads are slow

- Fractal Tree
- Optimizations for reads
 - Secondary Clustered Indexes
 - Read-free replication
 - No index fragmentation

- Fractal Tree
- Optimizations for reads
- Optimizations for writes
 - Fast inserts
 - Bulk loader
 - Compression

- Fractal Tree
- Optimizations for reads
- Optimizations for writes
- Other features and limitations
 - Reach set of locking diagnostic
 - No foreign key support
 - Crash recovery is limited if compare to InnoDB

- LSM Tree
 - Write and space optimized
 - All writes go to MemTable and WAL first
 - Data files are immutable
 - Compaction
 - Designed for small transactions

- LSM Tree
- Optimizations for reads
 - Bloom filter
 - ICP
 - No "index dives"
 - Reverse column families
 - Read-free replication

- LSM Tree
- Optimizations for reads
- Optimizations for writes
 - Options for bulk operations
 - Compression

- LSM Tree
- Optimizations for reads
- Optimizations for writes
- Limitations
 - Two transaction isolation levels
 - READ COMMITTED
 - REPEATABLE READ

- LSM Tree
- Optimizations for reads
- Optimizations for writes
- Limitations
 - Two transaction isolation levels
 - No gap locking
 - No support for
 - Foreigh Keys
 - Full Text Keys
 - Spatial Keys

- LSM Tree
- Optimizations for reads
- Optimizations for writes
- Limitations
 - Two transaction isolation levels
 - No gap locking
 - No support for
 - Index only access for limited types
 - BINARY
 - Collation latin1_bin
 - Collation utf8_bin

- LSM Tree
- Optimizations for reads
- Optimizations for writes
- Limitations
 - Two transaction isolation levels
 - No gap locking
 - No support for
 - Index only access for limited types
 - Crash recovery is limited

Three Majors: comparison

	InnoDB	TokuDB	MyRocks
Reads	Fast	Slow	Slow
Writes	Comparatively Slow	Fast	Fast
Transaction Isolation Levels	4	4	2 (RR, RC)
Foreign Keys	Yes	Not	Not
Space Used	Plenty	Workload-depend	Small
Compression	Yes	Yes	Yes
Crash Recovery	Automatic, Tunable	Automatic	Automatic

Summary

- MySQL has many storage engines
- They provide a lot of flexibility
- Many extend server functionality
- Simple and complex engines exist
- InnoDB is feasible for most workloads
- TokuDB and MyRocks are best for write intensive applications

- April, 25, 5:15pm, Balroom B
 - MyRocks Engineering: deploying a new MySQL storage engine to production
 - Hérman Lee

- April, 25, 5:15pm, Balroom B
- April, 26, 11:10am, Room 203
 - EVCache: Lowering Costs for a Low-Latency Cache with RocksDB
 - Scott Mansfield

- April, 25, 5:15pm, Balroom B
- April, 26, 11:10am, Room 203
- April, 26, 2:00pm, Balroom C
 - MyRocks: best practice at Alibabadengcheng he, jiayi wang

- April, 25, 5:15pm, Balroom B
- April, 26, 11:10am, Room 203
- April, 26, 2:00pm, Balroom C
- April, 26, 2:00pm, Room 203
 - Six New Important RocksDB Features And Planned Works
 - Siying Dong

- April, 25, 5:15pm, Balroom B
- April, 26, 11:10am, Room 203
- April, 26, 2:00pm, Balroom C
- April, 26, 2:00pm, Room 203
- April, 26, 4:30pm, Ballroom E
 - Using SPIDER for sharding in production
 - Kayoko GOTO, Kentoku SHIBA

- April, 25, 5:15pm, Balroom B
- April, 26, 11:10am, Room 203
- April, 26, 2:00pm, Balroom C
- April, 26, 2:00pm, Room 203
- April, 26, 4:30pm, Ballroom E
- April, 27, 11:00am, Ballroom E
 - MariaRocks: MyRocks in MariaDBSergei Petrunia

- April, 25, 5:15pm, Balroom B
- April, 26, 11:10am, Room 203
- April, 26, 2:00pm, Balroom C
- April, 26, 2:00pm, Room 203
- April, 26, 4:30pm, Ballroom E
- April, 27, 11:00am, Ballroom E
- April, 27, 1:50pm, Ballroom A
 - TokuDB vs RocksDB
 - George Lorch, Vladislav Lesin

PERCONA

More information

- InnoDB Documentation
- TokuDB Documentation
- MyRocks Wiki
- MySQL User manual on storage engines
- Experts MySQL
- MySQL 5.1 Plugin Development

Time For Questions

???

Thank you!

http://www.slideshare.net/SvetaSmirnova https://twitter.com/svetsmirnova

