UNIVERSIDAD NACIONAL DE COLOMBIA

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

ASIGNATURA: SEÑALES & SISTEMAS II (2016507)

MODALIDAD: TEÓRICA

INTENSIDAD: 4 HORAS/SEMANA

PROFESOR: John Alexander Cortés Romero

Oficina: 411-203

Correo Electrónico: jacortesr@unal.edu.co

I. OBJETIVOS GENERALES

Analizar propiedades estructurales básicas de los sistemas.

Profundizar sobre relaciones de sistemas continuos y discretos.

Introducir al estudiante en temas de control realimentado e identificación de sistemas.

Proveer técnicas de análisis básicas de sistemas no lineales.

II. CONTENIDO

1. Ecuaciones de estado, modelos internos

Concepto de estado. Variables de estado. Ecuaciones de estado de sistemas continuos y discretos. Análisis de las ecuaciones de estado de sistemas continuos. Análisis de las ecuaciones de estado de sistemas discretos. Estabilidad.

2. Realizaciones de modelos de Entrada/Salida

Controlabilidad y observabilidad. Diagramas de bloques. Realizaciones y realizaciones mínimas.

3. Realimentación y control en sistemas dinámicos

Sistemas compuestos. Realimentación: Propiedades y efectos. Lugar de las raíces. Sistemas de control: lazo cerrado vs lazo abierto. Características y especificaciones de los sistemas de control:

Sensibilidad y sensibilidad complementaria, errores estacionarios, rechazo de perturbaciones, velocidad de respuesta y ancho de banda.

4. Diseño de filtros análogos y digitales

Moldeado de la respuesta de frecuencia. Características de los filtros. Filtros ideales. Tipos de filtros. Filtros reales. Criterios de desempeño de filtros. Filtros análogos: Butterworth, Chebyshev, elípticos, Bessel. Filtros digitales: FIR e IIR. Ruido en los filtros digitales: cuantización en señal y en coeficientes, restricciones dinámicas.

5. Sistemas no lineales y linealización

Sistemas no lineales: características. Equilibrios, órbitas periódicas, conjuntos invariantes. Linealización. Estabilidad del equilibrio.

6. Introducción a la identificación de sistemas

Clasificación de las técnicas de identificación. Identificación fuera de línea. Técnicas de ecuación de error.

III. Metodología

Sesiones teóricas:

El curso se desarrollará con base en la lectura previa por parte de los estudiantes de los temas del programa y en la clase se presentarán y analizarán los conceptos básicos, se desarrollarán muchos ejemplos. Esto se complementará con la simulación en computador y muestra de simulaciones.

Consideraciones importantes:

Enfoque pedagógico: Este curso se impartirá por medio de conferencias y discusiones en clase. Se exhorta a la participación activa y constructiva en la clase. Se recomienda realizar las actividades propuestas para preparar cada clase y realizar las preguntas y comentarios en el entorno del aula, durante las sesiones de discusión.

IV. EVALUACIÓN

Actividad	Valor
1° Examen parcial	20%
2° Examen parcial	25%
3° Examen parcial	25%
1° Taller	10%

2° Taller	10%
3° Taller	10%
TOTAL	100%

IV. BIBLIOGRAFÍA

- Chi-Tsong Chen.; ANALOG AND DIGITAL CONTROL SYSTEMS DESIGN, Saunders College Publishing.
- Oppenheim A., Willsky A., Nawab S.; Señales y Sistemas, Segunda Edición. Pearson Education 1998.
- Proakis J., Manolakis, D.; Digital Signal Processing: principles, algorithms and applications. Prentice Hall 1996.
- Kamen E., Heck B.; Fundamentals of Signals and Systems Using Matlab. Prentice Hall, 1997.
- Haykin, S., Van Veen, B.; Signals and Systems. John Wiley & Sons, Inc. 1999.
- Slotine J., Li W.; Applied nonlinear control. Prentice Hall International 1991.
- Paraskevopoulos P. N.; Modern Control Engineering. Marcel Dekker 2002.