Нейросетевой синтез текстур с трендами

Будакян Я.С. Научный руководитель к.т.н., доц. Грачев Е. А.

2017 г.

Введение

Задача состоит в синтезе изображений среды, которые будут содержать в себе тренд, т.е. изменение некоторой статистической характеристики. Такими трендами могут быть, например, изменение интенсивности появления частиц среды вдоль изображения, или изменение пористости среды.

Рис.: Пример текстуры с трендом интенсивности частиц

Математическая постановка

С математической точки зрения, задача сводится к синтезу случайного изображения X' (и построению соотвествующей процедуры синтеза), имеющего распределение, близкое к желаемому:

$$P_{X'} \approx P_X$$
,

где P_X - распределение изображений с трендами, удовлетворяющих следующим ограничениям (для упрощения задачи):

- Это монохромные изображения 256 х 256 пикселей
- ullet Изменяющимся свойством является интенсивность появления частиц λ
- ullet Тренд является линейным и направлен вдоль оси х: $\lambda=\lambda_0+kx$

Подходы к решению задачи

Существует несколько подходов к решению задач подобного рода:

- 'Классический' статистический подход
- Первый нейросетевой подход
- Генеративные состязательные сети (GAN)

'Классический' статистический подход

- ullet Вводится параметризированное семество распределений вероятности $P_{ heta}(x)$
- ullet Параметры heta находятся из обучающей выборки:

$$\mathcal{L}_{\theta}(D) = \prod_{x \in D} P_{\theta}(x)$$

$$heta^* = rg \max_{ heta} \mathcal{L}_{ heta}(D)$$

ullet Сгенерировать семпл из P_{θ^*}

Этот подход сталкивается с проблемами:

- ullet Пространство параметров heta может быть огромной размерности
- Или же известной параметрической модели распределения может вообще не существовать

Простой пример - генерирование человеческих лиц, похожих на реальные: параметрической модели для такой задачи не существует.

Первый нейросетевой подход

- ullet Вводится параметризированное семество распределений вероятности $P_{ heta}(x)$
 - Вводятся скрытые переменные V и функция(нейросеть) для получения x из V (фактически, классификация, развернутая в другую сторону)
- Определяются параметры распределения (т.е. обучение нейросети)
- ullet Генерируются семплы из $P_{ heta^*}$

Этот подход возможен, однако на практике трудноосуществим.

GAN

Изначальная задача: найти процеруду генерирования X' так, чтобы $P_{X'}pprox P_X.$ Переформулируем:

$$\rho(P_{X'},P_X) \longrightarrow \min_{P_{X'}}$$

 Введем некоторые скрытые переменные с фиксированным распределением, например

$$V \sim U^n[-1,1]$$

• и параметризированную процедуру генерации:

$$X' = g_{\theta}(V)$$

Переформулируем:

$$\rho(P_{X'}, P_X) \longrightarrow \min_{P_{X'}}$$

$$\rho(g_{\theta}(V), P_X) \longrightarrow \min_{g_{\theta}(V)}$$

$$\rho(g_{\theta}(V), P_X) \longrightarrow \min_{a}$$

GAN

Остается вопрос: что использовать в качестве метрики похожести двух распределений ρ , где одно из распределений задано обучающей выборкой.

• В качестве метрики статистической похожести можно использовать обученный классификатор:

$$\rho(P_{X'}, P_X) \longrightarrow \min \Leftrightarrow \mathcal{L} \longrightarrow \max,$$

где \mathcal{L} - функция потерь обученного классификатора.

GAN

• Введем две нейросети:

Критерий качества

Результаты, графики

Графики-2

Выводы