Quantenberechnungen - Einführung

Gunnar Bergmann

16.6.2017

Quantenberechnungen - Einführung

- Grundlagen und mathematisches Modell
- Einschränkungen
- Simulation klassischer Computer
- Deutschs Algorithmus
- Komplexität

Quantencomputer

- nutzen quantenmechanische Eigenschaften
- können klassische Rechner effizient simulieren
- für bestimmte Aufgaben effizienter
- Quantensysteme haben unintuitives Verhalten
- bisher nur wenige Algorithmen

Quantenalgorithmen

- Simulation von Quantensystemen
- Shors Algorithmus für Primzahlzerlegung in Polynomialzeit
- Grovers Algorithmus für Suche in $\Theta(\sqrt{N})$
- Deutschs Algorithmus
 - einfaches Beispiel
 - demonstriert Vorteile von Quantenalgorithmen
 - später mehr dazu
- Simons Problem zeigt Vorteile bei randomisierten Algorithmen

Quantenbits (Qubits)

- Generalisierung von klassischen Bits
- ullet Basiszustände $|0\rangle$ und $|1\rangle$
- Superposition:
 - Anteile von beiden Zuständen gleichzeitig
 - kann nicht genau bestimmt werden

Quantenbits (Qubits)

Notation

Qubits

$$\begin{aligned} |\psi\rangle &= \alpha \, |0\rangle + \beta \, |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ \alpha, \beta &\in \mathbb{C} \\ |\alpha|^2 + |\beta|^2 &= 1 \end{aligned}$$

Für einfache Fälle reicht oft auch $\alpha, \beta \in \mathbb{R}$.

Quantenbits (Qubits)

- exakter Zustand nicht ermittelbar
- Messung ergibt $|0\rangle$ mit Wahrscheinlichkeit $|\alpha|^2$ und $|1\rangle$ mit $|\beta|^2$
- Messung verändert den Zustand zu $|0\rangle$ oder $|1\rangle$

Quantenregister

- mehrere Qubits
- stellt Gesamtzustand aller Qubits dar
- Operationen werden auf ganzen Registern statt einzelnen Bits definiert.

Quantenregister

Beispiel

$$|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle = \begin{pmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix}$$

Quantenregister

Beispiel

$$|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle = \begin{pmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix}$$

$$|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1$$

Quantenschaltkreise

- klassische Gatter können als Wahrheitstabellen dargestellt werden
- Quantengatter müssen alle Zustände behandeln
- viele weitere Einschränkungen
- nur azyklische Schaltkreise betrachtet
- Beispiel: NOT-Gatter

• NOT(
$$|0\rangle$$
) = $|1\rangle$
NOT($|1\rangle$) = $|0\rangle$

- NOT($|0\rangle$) = $|1\rangle$ NOT($|1\rangle$) = $|0\rangle$
- Generalisierung: $NOT(\alpha |0\rangle + \beta |1\rangle) = \beta |0\rangle + \alpha |1\rangle$

- NOT($|0\rangle$) = $|1\rangle$ NOT($|1\rangle$) = $|0\rangle$
- Generalisierung: NOT($\alpha |0\rangle + \beta |1\rangle$) = $\beta |0\rangle + \alpha |1\rangle$
- Ausgabe muss wieder Qubit sein
- Länge bleibt erhalten: $|\alpha|^2 + |\beta|^2 = 1$

- NOT($|0\rangle$) = $|1\rangle$ NOT($|1\rangle$) = $|0\rangle$
- Generalisierung: NOT($\alpha |0\rangle + \beta |1\rangle$) = $\beta |0\rangle + \alpha |1\rangle$
- Ausgabe muss wieder Qubit sein
- Länge bleibt erhalten: $|\alpha|^2 + |\beta|^2 = 1$
- Darstellung als Matrix-Vektor-Multiplikation:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

Quantenschaltkreise - weitere Eigenschaften

- alle Quantengatter sind als Matrizen darstellbar
- Matrizen sind unitär: $U^{\dagger}U = UU^{\dagger} = I$ (U^{\dagger} ist konjugiert transponierte Matrix)
 - Matrizen sind quadratisch: Gatter haben gleiche Eingabe- und Ausgabegröße
 - Alle Berechnungen sind linear
 - Alle Schaltkreise sind invertierbar:
 Viele Funktionen (Bits kopieren, AND, OR, XOR) nicht direkt umsetzbar

Beispiel: CNOT

Umsetzung durch Kontrollbits

Beispiel

- CNOT ist verallgemeinertes XOR
- $|\psi,\varphi\rangle \rightarrow |\psi,\varphi \oplus \psi\rangle$

Beispiel: CNOT

Umsetzung durch Kontrollbits

Beispiel

- CNOT ist verallgemeinertes XOR
- $\bullet \ |\psi,\varphi\rangle \to \!\! |\psi,\varphi\oplus\psi\rangle$

Beispiel: CNOT

Umsetzung durch Kontrollbits

Beispiel

- CNOT ist verallgemeinertes XOR
- $\bullet \ |\psi,\varphi\rangle \to \!\! |\psi,\varphi\oplus\psi\rangle$

• Als Matrix:
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CNOT ist unitär, da CNOT[†] = CNOT

Axiom

Quantenbits können im Allgemeinen nicht geklont werden.

Axiom

Quantenbits können im Allgemeinen nicht geklont werden.

- kein Gatter $|\psi, \varphi\rangle \to |\psi, \psi\rangle$
- nicht durch unitäre Matrix ausdrückbar

Axion

Quantenbits können im Allgemeinen nicht geklont werden.

- kein Gatter $|\psi, \varphi\rangle \rightarrow |\psi, \psi\rangle$
- nicht durch unitäre Matrix ausdrückbar
- scheinbarer Widerspruch: CNOT mit $\varphi = |0\rangle$ ergibt $|\psi, 0\rangle \rightarrow |\psi, \psi\rangle$

- Sei $\psi = \alpha |0\rangle + \beta |1\rangle$
- Dann gilt: $|\psi,0\rangle = \alpha |00\rangle + \beta |01\rangle$
- CNOT($|\psi,0\rangle$) = $\alpha |00\rangle + \beta |11\rangle$

- Sei $\psi = \alpha |0\rangle + \beta |1\rangle$
- Dann gilt: $|\psi,0\rangle = \alpha |00\rangle + \beta |01\rangle$
- CNOT($|\psi,0\rangle$) = $\alpha |00\rangle + \beta |11\rangle$
- Aber:

$$\begin{split} |\psi,\psi\rangle &= \left[\alpha\left|0\right\rangle + \beta\left|1\right\rangle\right] \left[\alpha\left|0\right\rangle + \beta\left|1\right\rangle\right] \\ &= \alpha^2\left|00\right\rangle + \alpha\beta\left|01\right\rangle + \alpha\beta\left|10\right\rangle + \beta^2\left|11\right\rangle \end{split}$$

- Sei $\psi = \alpha |0\rangle + \beta |1\rangle$
- Dann gilt: $|\psi,0\rangle = \alpha |00\rangle + \beta |01\rangle$
- $\mathsf{CNOT}(|\psi,0\rangle) = \alpha |00\rangle + \beta |11\rangle$
- Aber:

$$|\psi, \psi\rangle = [\alpha |0\rangle + \beta |1\rangle] [\alpha |0\rangle + \beta |1\rangle]$$

= $\alpha^2 |00\rangle + \alpha\beta |01\rangle + \alpha\beta |10\rangle + \beta^2 |11\rangle$

• Gleichheit gilt nur bei $\alpha = 0$ oder $\beta = 0$

Simulation klassischer Computer

Satz

Jeder klassische Schaltkreis kann auf einem Quantencomputer effizient simuliert werden.

Zentrale Rolle dabei spielt das Toffoli-Gatter

Toffoli-Gatter

Toffoli-Gatter

$$|a,b,c\rangle \rightarrow |a,b,c \oplus (a \wedge b)\rangle$$

• invertierbar: zweimal Anwenden ergibt

$$|a,b,c \oplus (a \wedge b) \oplus (a \wedge b)\rangle = |a,b,c\rangle$$

• Kopieren von Bits:

Für
$$a = |1\rangle$$
, $c = |0\rangle$: $|1, b, 0\rangle \rightarrow |1, b, b\rangle$

NAND:

Für
$$c = |1\rangle$$
: $|a, b, 1\rangle \rightarrow |a, b, \neg(a \land b)\rangle$

• Alle anderen Gatter können über NANDs realisiert werden.

Simulation klassischer Computer

- Mehrere Kabel können an Ausgang angebracht werden
- Über verschaltete NANDs ist jede klassische Schaltung realisierbar
- Simulation ist effizient: Jedes Gatter wird durch konstant viele Toffoli-Gatter ersetzt

- einfacher Algorithmus
- zeigt Quantenparallelismus
- Aber: keine reale Anwendung

Vorbereitung: Hadamard-Gatter

$$|+\rangle = H \cdot |0\rangle = H \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
$$|-\rangle = H \cdot |1\rangle = H \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

- gegeben: Funktion $f(x): \{0,1\} \rightarrow \{0,1\}$
- entscheide, ob f(0) = f(1)
- alternativ: Berechne $f(0) \oplus f(1)$
- klassischer Algorithmus: Berechne jeweils f(0) und f(1).
- Deutschs Algorithmus löst das Problem mit einer Auswertung von f.

- gegeben: Funktion $f(x): \{0,1\} \rightarrow \{0,1\}$
- Sei U_f Quantengatter und setze $|x,y\rangle \to |x,y\oplus f(x)\rangle$ um.
- Für $y = |0\rangle$ kann f(x) berechnet werden.
- Stattdessen: $x = |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$.
- Dann U_f anwenden:

$$|x, f(x)\rangle = \frac{|0, f(0)\rangle + |1, f(1)\rangle}{\sqrt{2}}$$

• Problem: Es werden zwar f(0) und f(1) berechnet, aber man erhält beim Messen nur jeweils eines.

Deutschs Algorithmus: Vorüberlegungen

- Quanteninterferenz
- Sei nun wieder x beliebig.

Setze
$$y = |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$
 und wende U_f an.

•

$$U_f \cdot \left(|x\rangle \left\lceil \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right
brace = (-1)^{f(x)} |x\rangle \left\lceil \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right
brace$$

Anwendung von U_f ergibt

$$|\psi_2
angle = egin{cases} \pm \left[rac{|0
angle + |1
angle}{\sqrt{2}}
ight] \left[rac{|0
angle - |1
angle}{\sqrt{2}}
ight] & ext{für } f(0) = f(1) \ \pm \left[rac{|0
angle - |1
angle}{\sqrt{2}}
ight] \left[rac{|0
angle - |1
angle}{\sqrt{2}}
ight] & ext{für } f(0)
eq f(1) \end{cases}$$

$$|0\rangle$$
 H x x H U_f y $y \oplus f(x)$

$$|\psi_3
angle = \left\{ egin{array}{ll} \pm |0
angle \left[rac{|0
angle - |1
angle}{\sqrt{2}}
ight] & ext{für } f(0) = f(1) \ \pm |1
angle \left[rac{|0
angle - |1
angle}{\sqrt{2}}
ight] & ext{für } f(0)
eq f(1) \end{array}
ight\}$$

$$f(0) \oplus f(1)
angle \left[rac{\ket{0} - \ket{1}}{\sqrt{2}}
ight]$$

Deutsch-Jozsa Algorithmus

- Generalisierung von Deutschs Algorithmus auf *n* bits.
- gegeben: Funktion $f(x): \{0,1\}^n \rightarrow \{0,1\}$
- entscheide, ob *f* konstant oder balanciert (Hälfte 0, Hälfte 1) andere Werte treten nicht auf
- auf klassischem Rechner: $\Theta(2^n)$
- auf Quantenrechner in Linearzeit mit $\Theta(n)$ Qubits

Komplexität

- Simulation von klassischen Schaltkreisen ohne Zeitverlust
- Deutsch-Jozsa-Algorithmus exponentiell schneller
- Polynomialzeit auf Quantenalgorithmen BQP: bounded error quantum polynomial time
- $P \subseteq BPP \subseteq BQP \subseteq PSPACE$
- NP? BQP

Zusammenfassung

- Quantenrechner sind (vermutlich) m\u00e4chtiger als klassische
- Bei Komplexität ist noch vieles unbekannt
- noch keine nutzbaren Quantenrechner
- experimentelle Systeme mit wenigen Qubits konnten Quantenalgorithmen nutzen
- Möglichkeit zur technischen Realisierung
- bisher nur wenige Algorithmen