Universidad Complutense de Madrid

IAAC - PRACTICA 0

Yaco Alejandro Santiago Pérez

 $A signatura: \ {\tt INTELIGENCIA} \ {\tt ARTIFICIAL} \ {\tt APLICADA} \ {\tt A} \ {\tt INTERNET} \ {\tt DE} \ {\tt LAS}$ ${\tt COSAS}$

Master IOT

9 de febrero de 2020

Índice general

1.	Introducción	1
2.	Objetivos	2
3.	Explicación del código	3
	3.1. Funciones	3
	3.2. Método principal: integra_mc_mode()	4
4.	Ejecución	5
	4.1. Resultados	6
		6
	4.1.2. Gráficas	
5.	Conclusiones	8
	5.1. La eficiencia de las operaciones vectoriales	
	5.2. Más puntos equivale a mayor precisión	
6.	Ejecución adicional	9
	6.1. Resultados	9
	6.1.1. Logs	
	6.1.2. Gráficas	

Introducción

Esta práctica consiste en la utilización del M'etodo de Monte Carlo para la obtención del area bajo la curva de una función, con la ayuda de la biblioteca $numpy^1$

Este método consiste en generar aleatoriamente puntos (en rojo en la figura) dentro de ese rectángulo y aproximar el valor de la integral por el porcentaje de puntos que caen por debajo de la función en cuestión.

Integración por el método de Monte Carlo

$$I = \int_{a}^{b} f(x)dx = F(b) - F(a) \qquad I \approx \frac{N_{debajo}}{N_{total}}(b - a)M$$

Ndebajo es el número de puntos (x; y) generados aleatoriamente cuya coordenada y es menor que el valor de la función f(x) para ese valor de x y Ntotal es el número total de puntos generados aleatoriamente dentro del rectángulo.

¹https://numpy.org/

Objetivos

A lo largo de esta práctica, se pretende alcanzar los siguientes objetivos:

- Implementación de la función integra_mc(fun, a, b, num_puntos=10000)
- Calcular el área mediante el método de *Monte Carlo*.
- Realizarlo mediante operaciones. vectoriales, y mediante la utilización de bucles
- Realizar una comparación del tiempo que consumen cada uno de estos métodos.

Explicación del código

3.1. Funciones

Las funciones empleadas, en orden de llamada, son las siguientes:

- funcion(x): Es la función que recibe la coordenada X y devuelve la coordenada Y tras la transformación pertinente.
 En mi caso, en ella he definido una parábola.
- main(): Se definen las variables necesarias para el calculo: punto a, punto b, y número de puntos, tras ello hace la llamada a la siguiente función.
- compara_tiempos(num_puntos,a,b): El objetivo de esta función es realizar 20 ejecuciones del método desarrollado para el calculo del área.
 Este método generará 20 números aleatorios entre 100 y el numero de puntos definido.
 A continuación se procederá a realizar las llamadas al método desarrollado integra_mc().

Con los datos obtenidos en las llamadas, generará una *gráfica* comparando el tiempo de ejecución en función de si se utilizan **operaciones vectoriales** o **bucles**. Esta gráfica se almacena en *times.png*.

- integra_mc(fun, a, b, num_puntos=10000): Este método únicamente se ocupará de realizar dos llamadas a integra_mc_mode() y devolver sus respuestas en un array de dos elementos.
- integra_mc_mode(fun, a, b, mode, num_puntos=10000): Este es el método más importante, donde se realizan la operaciones con el fin de calcular la integral.
 Su explicación paso a paso se detalla en la sección 3.2.

En esta función se diferencia la manera de realizar operaciones sobre los *arrays* de coordenadas. En función del valor de la variable **mode** se va a realizar una ejecución con operaciones **vectoriales** (mode = 0), o mediante **bucles** (mode = 1).

Finalmente, se llama al método pintaFun() que generará una gráfica.

■ pintaFun(puntosX, puntosY, x, y, encima, debajo, mode, num_puntos): Este método plasmará con la ayuda de la biblioteca matplotlib.pyplot ¹ los datos sobre una gráfica.

Almacenará en un archivo .png dentro del directorio /result/ los 40 archivos generados.

3.2. Método principal: integra_mc_mode()

En este método se generan los puntos X de las coordenadas de la función (puntosX), a continuación, se obtienen las coordenadas Y (puntosY) de los puntos en base a la función (definida en fun(x)).

Con estos puntos ya tenemos la representación sobre el plano de la función definida.

Ahora, entre el 0 y el punto máximo de la función en el intervalo [a;b], se van a generar coordenadas x e y aleatorias.

Por ultimo, se comprueba cuales son los puntos generados aleatoriamente que están por debajo de la función, es decir, qué puntos tienen sus coordenadas Y por debajo de fun(X).

Contando el número de puntos que cumple la condición, y sabiendo el número total de puntos generados (por defecto 10.000) se calcula el *área* y el % de *área* que se encuentra por debajo de la función.

 $^{^{1}} https://matplotlib.org/api/pyplot_api.html$

Ejecución

En este capitulo voy a presentar una ejecución del código.

Los valores definidos son los siguientes:

```
num_puntos=10000
a=100
b=1000
```

La función definida en funcion(x) es:

```
a = 1
b = 0
c = 0
return ((a * x) ** 2) + (b * x) + c
```

La cual tiene el siguiente aspecto:

Figure 4.1: Función del test

4.1. Resultados

Tras realizar la ejecución, podemos observar los resultados tanto en los *logs* como en las gráficas generadas.

4.1.1. Logs

Figure 4.2: Primera ejecución de la batería de pruebas. Puntos generados: 100

Figure 4.3: Última ejecución de la batería de pruebas. Puntos generados: 10000

Esta ejecución generó ${\bf 40}$ gráficas de puntos, ${\bf 20}$ hechas por bucles y ${\bf 20}$ hechas por operaciones vectoriales.

Figure 4.4: Gráficas de las ejecuciones

4.1.2. Gráficas

Figure 4.5: Primera ejecución de la batería de pruebas. Puntos generados: 100

Figure 4.6: Última ejecución de la batería de pruebas. Puntos generados: 10000

Los tiempos de ejecución son los siguientes:

Figure 4.7: Gráfica de tiempos de las ejecución

Conclusiones

Como conclusiones de este desarrollo, puedo afirmar lo siguiente:

5.1. La eficiencia de las operaciones vectoriales

Aplicando operaciones directamente sobre *arrays* y obteniendo *arrays*. Es mucho **más eficiente** que la iteración de dichos *arrays* y la operación elemento a elemento, como salta a la vista en la **figura 6.3**.

5.2. Más puntos equivale a mayor precisión

Mientras mayor sea el número de puntos generados para el calculo de la integral con el método de **Monte Carlo**, mayor será la precisión del resultado.

```
El resultado obtenido con 'scipy.integrate.quad' es: (333000000.0, 3.6970426720017713e-06)
```

Figure 5.1: Valor de la integral obtenido con scipy.integrate.quad

Haciendo referencia a la primera y la última ejecución, podemos observar como es **más** acertada la última ejecución con 10000 puntos generados.

```
[SOLUCION] Area por debajo: 269994600.3272486 unidades

Figure 5.2: Valor de la integral obtenido 100 puntos

[SOLUCION] Area por debajo: 329123417.14332161 unidades
```

Figure 5.3: Valor de la integral obtenido 10000 puntos

Ejecución adicional

Con el fin de aportar más datos que confirmasen mis conclusiones, realicé otra ejecución, de la cual voy a presentar los resultados.

En este caso la ejecución se realizó con 100.000 puntos.

6.1. Resultados

6.1.1. Logs

Como se puede observar en los ovalos verde, se realiza con 100.000 puntos.

En los rectangulos amarillos se puede observar que la solución en comparación a la de scipy.integrate.quad es mucho más acertada.

Figure 6.1: Logs obtenidos con 100000 puntos

6.1.2. Gráficas

Esa mayor aproximación se plasma en la siguiente gráfica donde prácticamente toda la superficie del rectángulo está poblada de puntos.

Figure 6.2: Última ejecución de la batería de pruebas. Puntos generados: 100000

Y por ultimo, respecto a la eficiencia, los **tiempos de ejecución** en el caso de las operaciones en bucle se disparan mientras que las vectoriales apenas han aumentado.

Figure 6.3: Gráfica de tiempos de las ejecución