부울대수

부울 함수 간소화

02 불 대수

❖ XOR와 XNOR의 카르노 맵

- 입력 변수에 나타나는1 의 개수에 따라 XOR와 XNOR를 구분할 수 있다.
- 카르노 맵에서 그룹으로 묶은 후 제거되는 변수를 제외한 다른 입력 변수의 1의 개수가 홀수이면 XOR, 짝수이면 XNOR이다.

그림 3-31 XOR와 XNOR 카르노 맵 표현

보충자료 : 합의 곱 형식으로 부울 함수의 간소화

[예제] 다음 부울 함수를 (a)논리곱의 논리합 형식으로 간소화하고 (b)논리합의 논리곱 형식으로 간소화하시오.

$$F(A,B,C,D) = \sum (0,1,2,5,8,9,10)$$

풀이)

(a) 논리곱의 논리합 형식으로 간소화하기 위해 카르노 맵의 1인 항을 묶는다.

묶은 항의 곱항을 구하고 이를 논리합으로 정리한다.

$$F(A,B,C,D) = B'D' + B'C' + A'C'D$$
 (논리곱의 논리합)

보충자료: 합의 곱 형식으로 부울 함수의 간소화

(b) 논리합의 논리곱 형식으로 간소화하기 위해 카르노 맵의 O인 항을 묶는다. 이는 F 대신에 F'을 구한 것이다.

$$F'(A,B,C,D) = AB + CD + BD'$$

$$\begin{split} F(A,B,C,D) &= (AB + CD + BD')' \\ &= (AB)' \, \bullet \, (CD)' \, \bullet \, (BD')' \\ &= (A' + B')(C' + D')(B' + D) \end{split}$$

논리합의 논리곱을 얻기위해 O인 항을 논리곱의 논리합으로 묶은 식은 F'을 구한 것이므로 F를 구하기 위해 양변에 보수를 취한 결과 위 식을 얻는다.

보충자료: 곱의 합 형식과 합의 곱 형식 표현의 구현

- 곱의 합 형식 구현 : 1단 AND, 2단 OR로 구현
 - AND-OR로 구현된 논리회로는 NAND Gate 만으로 구현 가능
- 합의 곱 형식 구현 : 1단 OR, 2단 AND로 구현
 - OR-AND로 구현된 논리회로는 NOR Gate 만으로 구현 가능

invert-OR(NAND), invert-AND(NOR)

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

A - NAND

A - Y Invert-OR

• $Y = \overline{A + B} = \overline{A} \bullet \overline{B}$

A - Y Invert-AND

보충자료 : 곱의 합 논리를 NAND Gate만으로 구현

보충자료 : 합의 곱 논리를 NOR Gate만으로 구현

조합논리회로 (Combinational Circuit)

1 데이터 형태에 따른 분류

□ 조합 논리 회로의 개요

• 조합 논리 회로(combinational logic circuit)는 현재 입력 값으로 출력이 결정되는 회로

그림 3-32 조합 논리 회로의 개념도

그림 3-33 조합 논리 회로의 설계 과정

2 조합 논리 회로의 종류

이러 중건

그림 3-34 반가산기

□ 반가산기

• 반가산기(Half-Adder, HA)는 1자리 2진수 2개를 입력하여 합(S)과 캐리(Carry, C)를 출력하는 조합 논리 회로

	입	력	줄	덕				
	A	B	S	C				
	0	0	0	0				1
	0	1	1	0	1			
	1	0	1	0	$B \longrightarrow S$	A		—— S
	1	1	0	1			НА	
S : C			$A\overline{B} =$:A\(\phi\)	C	В		——С
(8	a) 건	<u> </u> 입표	와논	믜식	(b) 논리 회로		(c) 논리 기호	

□ 전가산기

• 전가산기(Full-Adder, FA)는 2진수 입력 A, B와 아랫자리에서 올라온 캐리 C_i 를 포함하여 1자리 2진수 3개를 더하는 조합 논리 회로

	입력	출	출력		
A	В	C_i	S	C_o	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

$$S = \overline{ABC_i} + \overline{ABC_i} + A\overline{BC_i} + ABC_i$$

$$= \overline{A(BC_i + BC_i)} + A(\overline{BC_i} + BC_i)$$

$$= \overline{A(B \oplus C_i)} + A(\overline{B \oplus C_i})$$

$$= A \oplus (B \oplus C_i) = (A \oplus B) \oplus C_i$$

$$C_o = \overline{ABC_i} + A\overline{BC_i} + AB\overline{C_i} + AB\overline{C_i}$$
$$= C_i(\overline{AB} + A\overline{B}) + AB(\overline{C_i} + C_i)$$
$$= C_i(A \oplus B) + AB$$

(a) 진리표

(b) 논리식의 간소화

그림 3-35 전가산기

□ 반감산기

• 반감산기(Half-Subtractor, HS)는 1비트 2진수 A에서 B를 빼 차(D)와 빌림 수(K)를 계산하는 뺄셈회로

_	입력 A B		력 <i>K</i>	설명($D=A-B$) 뺄 수 없으면 윗자리에서 빌려 와 계산한다.			
0	0	0	0	0-0=0	빌림 수 없음 (<i>K</i> =0)	∴ <i>D</i> =0	
0	1	1	1	0-1=-1	빌림 수 2 (<i>K</i> =1)	∴ <i>D</i> =2-1=1	
1	0	1	0	1-0=1	빌림 수 없음 $(K=0)$	∴ <i>D</i> =1	
1	1	0	0	1-1=0	빌림 수 없음 (<i>K</i> =0)	∴ D=0	

(a) 진리표와 원리

전감산기

• 전감산기(Full-Subtractor, FS)는 2진수 입력 A, B와 아랫자리로 빌려주는 수 K_i 를 포함하여 A-B- K_i 를 계산하는 조합 논리 회로

A	입력 A B K _i		출력 D K _o		설명($D=A-B-K_i$) 뺄 수 없으면 윗자리에서 빌려 와 계산한다.			
0	0	0	0	0	0-0-0=0,	빌림 수 없음(<i>K</i> 。=0)	∴ <i>D</i> =0	
0	0	1	1	1	0-0-1=-1,	빌림 수 2(K _o =1)	D = 2 - 1 = 1	
0	1	0	1	1	0-1-0=-1,	빌림 수 2(K _o =1)	D = 2 - 1 = 1	
0	1	1	0	1	0-1-1=-2,	빌림 수 2(K _o =1)	∴ <i>D</i> =2–2=0	
1	0	0	1	0	1-0-0=1,	빌림 수 없음(K_{o} =0)	∴ <i>D</i> =1	
1	0	1	0	0	1-0-1=0,	빌림 수 없음(K_{o} =0)	∴ <i>D</i> =0	
1	1	0	0	0	1-1-0=0,	빌림 수 없음(K_{\circ} =0)	∴ <i>D</i> =0	
1	1	1	1	1	1-1-1=-1,	빌림 수 2(K _o =1)	D = 2 - 1 = 1	

(a) 진리표와 원리

(c) 논리식의 간소화

□ 전감산기(계속)

그림 3-37 전감산기

□ 병렬 가감산기

• 병렬 가산기(parallel-adder): 전가산기 여러 개를 병렬로 연결하여 만든 2비트 이상의 가산기

그림 3-38 전기산기를 이용한 병렬 기산기

캐리 예측 가산기(carry lookahead adder)

병렬 가산기는 속도가 매우 느리다. 그 원인은 아랫 단에서 윗단으로 전달되는 캐리 때문이다. 비트가 늘어날수록 지연이 더욱 심해진다. 이를 해결하기 위해 캐리 예측 가산기를 사용한다.

• 병렬 가<mark>감산기</mark>(parallel-adder/subtracter) : 병렬 가산기의 B입력을 부호 S(sign)와 XOR하여 전가산기의 입력으로 사용함으로써 덧셈과 뺄셈이 모두 가능한 회로

그림 3-39 병렬 가감산기

XOR Gate

Α	В	F
0	0 —	O
0	1 -	→ 1
1	0 —	→ 1
1	1 —	→ 0

$$S_{sign}=0$$
일 때 $S_0=A_0+B_0$, $S=A+B$
$$S_{sign}=1$$
일 때 $S_0=A_0+\overline{B_0}$, $S=A+\overline{B}+1$

A=O일 때 출력 F는 B와 같다. A=1일 때 출력 F는 \overline{B} 와 같다.

□ 비교기

• 2진 비교기(comparator)는 두 2진수 값의 크기를 비교하는 회로다.

입	력	출력						
A	В	$A=B$ F_1	$A \neq B$ F_2	$A>B$ F_3	$A < B$ F_4			
0	0	1	0	0	0			
0	1	0	1	0	1			
1	0	0	1	1	0			
1	1	1	0	0	0			

그림 3-40 1비트 비교기

수고하셨습니다!