

The Message Passing Interface (MPI)

TMA4280—Introduction to Supercomputing

NTNU, IMF February 9. 2018

1

An MPI execution is started on a set of processes P with:

mpirun -n
$$N_P$$
 ./exe

with $N_P = card(P)$ the number of processes.

A program is executed in parallel on each process:

where each process in $\mathcal{P} = \{P0, P1, P2\}$ has a access to data in its memory space: remote data exchanged through interconnect.

An ordered set of processes defines a **Group** (MPI_Group): the inital group (WORLD) consists of **all** processes.

An MPI execution is enclosed between calls of function to initialize and finalize the subsystem:

```
{\tt MPI\_Init}, \dots \{ \ \mathsf{Program} \ \mathsf{body} \ \} \dots, \, {\tt MPI\_Finalize}.
```

Processes in a **Group** can communicate through a **Communicator** (MPI_Comm) with attributes:

```
— rank: MPI_Comm_rank(MPI_COMM_WORLD, &rank);
```

```
— size: MPI_Comm_size(MPI_COMM_WORLD, &size);
```

The default communicator for **all** processes is MPI_COMM_WORLD.

New **Groups** can be created on subsets of \mathcal{P} to restrict the communication between selected processes.

Example: Monte-Carlo simulation, structure implementation of adjacent exchange.

Process communicate using the **Message Passing** paradigm:

- 1. Envelope: how to process the message,
- 2. Body: data to exchange.

Point-to-Point	one-to-one
	one-to-all
Collective	all-to-one
	all-to-all

where all is defined by the Communicator used.

Point-to-Point operations are the base of **Message Passing**: MPI_Send, MPI_Recv to exchange data.

Collective operations are implemented in terms of Point-to-Point operations but may be optimized.

Message buffers

buffer	memory location defining the begining of the buffer	
count	count max length in bytes of the send buffer (bigger than actua	
dest	receiving process rank	
tag	arbitrary identifier	
comm	communicator	

MPI_Recv(buffer, count, datatype, source, tag, comm, & status);

buffer	memory location defining the begining of the buffer
count	maxlength in bytes of received data
datatype	MPI data type
source	sending process rank
tag	arbitrary identifier
comm	communicator
status	metadata: actual length

Two types of MPI commmunication: block and non-blocking.

- blocking: the function returns once the buffer is processed (what "processed" (*)
- 2. non-blocking: the function returns immediately

MPI implementations use an internal buffer:

- data may be buffered internally on both sides,
- sending process can modify the send buffer once it is copied to the internal buffe regardless of receiver status,

(*) What "processed" means depends on the communication mode:

MPI may provide several versions of a routine for different communication modes

- Synchronous: send blocks until handshake is done and matching receive has started.
- Ready: send blocks until matching receive has started (no handshake).
- Buffered: send returns as soon as data is buffered internally.
- Standard: Synchronous or Buffered depending on message size and resources.

Important: do not assume anything about the implementation, different handling of buffers can hide bugs!

Parallelism

Pairwise send-receive:

A safe choice for Point-to-Point communication and optimized by vendors for their hardware.

Collective operations

In general,

- MUST involves all of the processes in a group, and
- are more efficient and less tedious to use compared to point-to-point communication.
- 1. Barrier synchronization
- 2. Broadcast (one-to-all)
- 3. Scatter (one-to-all)
- 4. Gather (all-to-one)
- 5. Global reduction operations: min, max, sum (all-to-all)
- 6. All-to-all data exchange
- 7. Scan across all processes

An example (synchronization between processes):

```
MPI_Barrier(comm);
```

Collective operations

Global reduction

Processes with initial data

$$\begin{array}{c|c} 2 & 4 \\ \hline p = 0 \end{array}$$

Global reduction

```
MPI_Reduce(sbuf, rbuf, count, datatype, op, root, comm);

data envelope

MPI_Allreduce(sbuf, rbuf, count, datatype, op, comm);

data envelope
```

Examples of predefined operations (C):

- MPI_SUM
- MPI_PROD
- MPI_MIN
- MPI_MAX

Numerical integration

$$A_i = \left(\frac{4}{1 + x_i^2}\right) \cdot h, \quad \text{with} \quad x_i = \left(i + \frac{1}{2}\right) \cdot h$$

where i = 0, ..., n - 1, and h = 1/n.

Numerical integration

$$\pi = \int_0^1 \frac{4}{1+x^2} dx \approx h \sum_{i=0}^{n-1} \frac{4}{1+x_i^2} = \pi_n$$

Calculating pi with MPI in C

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <mpi.h>
int main(int argc, char **argv)
   if (argc < 2) {
        printf("Requires argument: number of intervals.");
        return 1;
    int nprocs, rank;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    int nintervals = atoi(argv[1]);
    double time start:
    if (rank == 0) {
        time_start = MPI_Wtime();
    }
```

Calculating pi with MPI in C (cntd.)

```
double h = 1.0 / (double) nintervals:
double sum = 0.0:
int i:
for (i = rank; i < nintervals; i += nprocs) {
    double x = h * ((double)i + 0.5);
    sum += 4.0 / (1.0 + x * x);
double mv pi = h * sum;
double pi;
MPI_Reduce(&my_pi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (rank == 0) {
    double duration = MPI_Wtime() - time_start;
    double error = fabs(pi - 4.0 * atan(1.0));
    printf("pi=%e, error=%e, duration=%e\n", pi, error, duration);
}
MPI Finalize():
return 0;
```

Things to consider

- 1. Is the program correct, e.g., is the convergence rate as expected?
- 2. Is the program load-balanced?
- 3. Do we get the same value of π_n for different values of P?
- 4. Is the program scalable?

Convergence test

n	error = $ \pi - \pi_n $
10	$8.33 \cdot 10^{-4}$
10 ²	$8.33 \cdot 10^{-6}$
10 ³	$8.33 \cdot 10^{-8}$
10 ⁴	$8.33 \cdot 10^{-10}$
10 ⁵	$8.37 \cdot 10^{-12}$

Hence, $|\pi - \pi_n| \sim \mathcal{O}(h^2)$ where h = 1/n.

Scalability: timing results on Vilje

Inner product

$$\sigma = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y} = \boldsymbol{x} \cdot \boldsymbol{y} = \sum_{m=0}^{N-1} x_m y_m$$

Distribution of work

$$\omega_0 = \sum_{m=0}^2 x_m y_m$$

$$\omega_1 = \sum_{m=3}^5 x_m y_m$$

$$\omega_2 = \sum_{m=6}^7 x_m y_m$$

$$\omega_3 = \sum_{m=8}^9 x_m y_m$$

Program on processor p

x, y: vectors of dimension N

$$\omega_p = \sum_{m \in \mathcal{N}_p} x_m y_m$$

Send ω_p to processor $q \neq p$ Receive ω_q from processor q

$$\sigma = \sum_{q=0}^{P-1} \omega_q.$$

Global indices: $\mathcal{N} = \{0, 1, 2, \dots, N-1\}$. Cardinality $|\mathcal{N}| = N$. Subdivision:

$$\mathcal{N} = \bigcup_{p=0}^{P-1} \mathcal{N}_p, \qquad \mathcal{N}_p \cap \mathcal{N}_q = \emptyset, \qquad p \neq q.$$

- \mathcal{N}_p : a subset of global indices
- $N_p = |\mathcal{N}_p|$: the number of global indices assigned to process p.
- $I_p = \{0, 1, ..., N_p 1\}$: a *local* index set

Note
$$|\mathcal{I}_p| = |\mathcal{N}_p| = N_p$$
.

- The local-to-global numbering is a one-to-one relationship.
- Local indices are found in the interval $\mathcal{I}_p = \{0, 1, \dots, N_p 1\}$.
- Global indices are not necessarily alway contiguous: this is the case when the global number of entities is not known.

The entities are usually renumbered globally such that global indices are packed contiguously.

Each process p is then assigned a **range** $[i_0^p, i_{N_p}^p]$ with

- 1. i_0^p is the process range *offset*,
- 2. $i_{N_0}^p$ is the *local size*.

How to compute the offset with MPI?

1. MPI 1: MPI_Scan

2. MPI 2: MPI_Exscan

Distribution of work and data

$$\begin{array}{c|c} \hat{x}_0 & \hat{x}_1 & \hat{x}_2 \\ \hline \hat{y}_0 & \hat{y}_1 & \hat{y}_2 \end{array} \qquad \omega_1 = \sum_{i=0}^2 \hat{x}_i \hat{y}_i$$

$$\omega_2 = \sum_{i=0}^{1} \hat{x}_i \hat{y}_i$$

$$\omega_3 = \sum_{i=0}^{1} \hat{x}_i \hat{y}_i$$

Program on processor p

 $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}$: vectors of dimension I_p

$$\omega_p = \sum_{i=0}^{l_p-1} \hat{x}_i \hat{y}_i = \sum_{i=0}^{l_p-1} x_{\mu^{-1}(p,i)} y_{\mu^{-1}(p,i)} = \sum_{m \in \mathcal{N}_p} x_m y_m.$$

Send ω_p to processor $q \neq p$

Receive ω_q from processor q

$$\sigma = \sum_{q=0}^{P-1} \omega_q.$$

Global reduction

Reduction algorithm for the global sum

$$\sigma = \sum_{q=0}^{P-1} \omega_q.$$

MPI_Reduce(ω , σ , 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD) (the answer will be known to process zero), or

MPI_Allreduce(ω , σ , 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) (the answer will be known to every process)

Global sum P = 4, MPI_Reduce

$$p=0$$
: ω_0 $\omega_0+\omega_1$ $\omega_0+\omega_1+\omega_2+\omega_3=\sigma$
 $p=1$: ω_1 $\omega_2+\omega_3$ $\omega_2+\omega_3$ $\omega_2+\omega_3$ ω_3

Can be completed in $log_2 P$ steps.

Global sum P = 4, MPI_Allreduce

Can be completed in $log_2 P$ steps.

Program on processor p

 $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}$: vectors of dimension I_p

$$\sigma = \sum_{i=0}^{l_p-1} \hat{x}_i \hat{y}_i = \sum_{i=0}^{l_p-1} x_{\mu^{-1}(p,i)} y_{\mu^{-1}(p,i)} = \sum_{m \in \mathcal{N}_p} x_m y_m.$$
 for $d = 0, \dots, \log_2 P - 1$
Send σ to processor $q = p \ \overline{\vee} \ 2^d$
Receive σ_q from processor $q = p \ \overline{\vee} \ 2^d$
 $\sigma = \sigma + \sigma_q$ end

Here, $\overline{\lor}$ is exclusive or. p and p $\overline{\lor}$ 2^d differ only in bit d.