Machine Learning

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	For	mal Setup	1
	1.1	Definitions	1
	1.2	Empirical Risk Minimization (ERM)	1
2	Per	ceptron	3
	2.1	The Perceptron Algorithm	3
3	Log	istic Regression	5
	3.1	Logit Transform	5
	3.2	Hypothesis Representation	5
	3.3	Decision Boundary	6
	3.4	Maximum Likelihood	6
	3.5	Cost Function	7
	3.6	Optimization	8
	3.7	Multiclass Classification	8
	3.8	Introducing Non-linearity	8
	3.9	Beyond Logistic Regression	9
4	Din	nensionality Reduction 13	1
	4.1	Motivations	1
	4.2	Principal Component Analysis	1

ii *CONTENTS*

Formal Setup

1.1 Definitions

Definition (Error). Let \mathcal{X} denote the domain. Let \mathcal{D} be a probability distribution on X. Let f be the true labeling function on X. Let f be a classifier. We define the **error** of f, with respect to \mathcal{D} and f, denoted by $L_{\mathcal{D},f}$, to be a probability given by

$$L_{\mathcal{D},f}(h) := \mathcal{D}(\{x \in \mathcal{X} : h(x) \neq f(x)\}).$$

We are never sure about the true error. We only approximate the true error.

1.2 Empirical Risk Minimization (ERM)

Definition (Empirical Error). Let S be a training data. Let h be a classifier. We define the **empirical error**, with respect to S, denoted by L_S , to be a proportion given by

$$L_{\mathcal{S}}(h) := \frac{|\{i : h(x_i) \neq y_i\}|}{|S|}.$$

Perceptron

2.1 The Perceptron Algorithm

```
Algorithm 1: The Perceptron Algorithm (Rosenblatt 1958)

Input: Dataset \mathcal{D} = \{(\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \{\pm 1\} : i = 1..n\}, initialization \boldsymbol{w} \in \mathbb{R}^d and b \in \mathbb{R}, threshold \delta \geq 0.

Output: Approximate solutions \boldsymbol{w} and b so that \forall i \in \{1..n\}, y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) > 0.

while true do

receive training example index i \in \{1..n\};

if y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \leq \delta then

\boldsymbol{w} \leftarrow \boldsymbol{w} + y_i \boldsymbol{x}_i;

\boldsymbol{b} \leftarrow b + y_i;
```

Remark. We only perform updates when we make a mistake, and this is a necessary rule.

Theorem 1. Assume there exists some z such that $A^{\top}z > 0$, then the perceptron algorithm converges to some z^* . If each column of A is selected indefinitely often, then $A^{\top}z^* > \delta$.

Corollary. Let $\delta = 0$ and $z_0 = 0$. Then the perceptron algorithm converges after at most $(R/\gamma)^2$ steps, where R and γ are dataset properties given by

$$R:=\|A\|_{2,\infty}=\max_i\|\boldsymbol{a}_i\|_2 \quad \text{ and } \quad \gamma:=\max_{\|\boldsymbol{z}\|_2\leq 1}\min_i\langle\boldsymbol{z},\boldsymbol{a}_i\rangle.$$

Note that the parameters R and γ are independent of the dataset size n.

Theorem 2. The iterate z = (w; b) of the perceptron algorithm is always bounded. In particular, if there is no separating hyperplane, then perceptron cycles.

Logistic Regression

3.1 Logit Transform

Definition (Logit Transform).

$$\log \frac{p(\boldsymbol{x}; \boldsymbol{w})}{1 - p(\boldsymbol{x}; \boldsymbol{w})} = \boldsymbol{w}^{\top} \boldsymbol{x}.$$

Or equivalently,

$$p(\boldsymbol{x}; \boldsymbol{w}) = \frac{1}{1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x})}.$$

This p(x; w) is the confidence in the prediction.

3.2 Hypothesis Representation

Logistic Regression Model

Want $0 \le h_{\theta}(x) \le 1$.

$$h_{\theta}(x) = g(\theta^{\top} x)$$

where

$$g(z) = \frac{1}{1 + e^{-z}}.$$

So

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\top} x}}.$$

Sigmoid function (logistic function)

$$g(z) = \frac{1}{1 + e^{-z}}.$$

Properties:

- g(0) = 0.5.
- $\lim_{z\to+\infty} g(z) = 1$.
- $\lim_{z\to-\infty} g(z) = 0$.

Interpretation of the Hypothesis Output

 $h_{\theta}(x)$ is the probability that y = 1 on input x. i.e. $h_{\theta}(x) = P(y = 1 \mid x; \theta)$, the probability that y = 1, given x, parameterized by θ .

Since y is either 0 or 1,

$$P(y = 0 \mid x; \theta) + P(y = 1 \mid x; \theta) = 1$$
, or $P(y = 0 \mid x; \theta) = 1 - P(y = 1 \mid x; \theta)$.

3.3 Decision Boundary

Proposition 3.3.1. The decision boundary \mathcal{D} of logistic regression with parameter $\mathbf{w} \in \mathbb{R}^n$ is

$$\mathcal{D} = \{ x \in \mathbb{R}^n : \boldsymbol{w}^\top \boldsymbol{x} = 0 \}.$$

Proof. Predict y=1 if $h_{\boldsymbol{w}}(x)\geq 0.5$ and predict y=0 if $h_{\boldsymbol{w}}(x)<0.5$. Notice

$$h_{\boldsymbol{w}}(x) = 0.5 \iff \boldsymbol{w}^{\top} x = 0.$$

So the model predicts $\hat{y} = \text{sign}(\boldsymbol{w}^{\top}\boldsymbol{x})$ but with confidence $p(\boldsymbol{x}; \boldsymbol{w})$.

Example 3.3.1. Consider $\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$. Predict "y = 1" if $\theta^{\top} x = -3 + x_1 + x_2 \ge 0$. That

is, $x_2 \geq 3 - x_1$. This gives a "half space" in \mathbb{R}^2 . The line $x_1 + x_2 = 3$ separates \mathbb{R}^2 into a region where the model predicts "y = 0" and a region where the model predicts "y = 1".

3.4 Maximum Likelihood

Proposition 3.4.1. The maximum likelihood function is

$$\mathcal{L} = \prod_{i=1}^{n} p(\boldsymbol{x}_i; \boldsymbol{w})^{y_i} (1 - p(\boldsymbol{x}_i; \boldsymbol{w}))^{1 - y_i}.$$

3.5 Cost Function

Training set:
$$\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$$
. $x_0 = 1$. $x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}$. $y \in \{0, 1\}$.

If

$$cost(h_{\theta}(x^{(i)}, y^{(i)})) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

as in linear regression, then the cost function is non-convex.

Logistic Regression Cost Function

$$cost(h_{\theta}(x), y) := \begin{cases} -\log(h_{\theta}(x)), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)), & \text{if } y = 0. \end{cases}$$

Property:

- If y = 1 and $h_{\theta}(x) \uparrow 1$, then $cost(h_{\theta}(x), y) \approx 0$.
- If y = 1 and $h_{\theta}(x) \downarrow 0$, then $cost(h_{\theta}(x), y) \to +\infty$.
- Similar for y = 0.

Captures intuition that if $h_{\theta}(x) = 0$ (the model predicts $P(y = 1 \mid x; \theta) = 0$), but y = 1, we'll penalize the learning algorithm by a very large cost.

Cost Function for the Training Set

$$J(\theta) := \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}, y^{(i)}))$$

where cost is the function given above.

Rewrite the cost function:

$$cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x)).$$

So

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right].$$

To fit parameter θ : $\min_{\theta} J(\theta)$.

8

3.6 Optimization

Gradient Descent

$$\frac{\partial}{\partial \theta_j} J(\theta) = \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}.$$

This looks identical to linear regression.

Other Optimization Algorithms

- Conjugate Gradient
- BFGS
- L-BFGS

Advantages:

- No need to pick learning rate α .
- Often faster than gradient descent.

3.7 Multiclass Classification

One-vs-rest

$$h_{\theta}^{(i)}(x) = P(y = i \mid x; \theta) \quad i = 1, 2, 3.$$

Train a logistic regression classifier for each i to predict the probability that y = i. On a new input x, pick class $i = \underset{i}{\operatorname{argmax}} h_{\theta}^{(i)}(x)$.

Softmax

$$\mathbb{P}(Y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{\exp(\boldsymbol{w}_k^{\top} \boldsymbol{x})}{\sum_{l=1}^{C} \exp(\boldsymbol{w}_l^{\top} \boldsymbol{x})}.$$

3.8 Introducing Non-linearity

Consider

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

and
$$\theta=\begin{bmatrix}-1\\0\\0\\1\\1\end{bmatrix}$$
 . Then the model predicts " $y=1$ " if $-1+x_1^2+x_2^2\geq 0$. That is, if $x_1^2+x_2^2\geq 1$.

9

3.9 Beyond Logistic Regression

The logit transform is just one choice among the others. What we need is a function Q from [0,1] onto \mathbb{R} . The inverse of any cumulative distribution function can be used as the Q function. e.g. the probit regression which uses the inverse of the CDF of a standard normal distribution.

Definition (Logistic Distribution). We define the **logistic distribution** to be a probability distribution with CDF given by

$$F(x;\mu;s):=\frac{1}{1+\exp(-\frac{x-\mu}{s})}.$$

Proposition 3.9.1 (Mean of Logistic Distribution). Let $X \sim F(x; \mu; s)$. Then

$$\mathbb{E}[X] = \mu.$$

Proposition 3.9.2. Let $X \sim F(x; \mu; s)$. Then

$$var[X] = \frac{s^2 \pi^2}{3}.$$

Dimensionality Reduction

4.1 Motivations

- Data compression.
- Data visualization.

4.2 Principal Component Analysis

PCA is trying to find a lower dimensional surface onto which to project the data so as to minimize squared projection error.

Principal component analysis vs. linear regression:

- Linear regression tries to minimize residuals. PCA tries to minimize projection error.
- In linear regression, we try to predict one feature with other features. In PCA, all features are equivalent.

Algorithm: (from n dimensions to k dimensions)

- Preprocessing: mean normalization and feature scaling (standardization).
- Compute covariance matrix

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T}.$$

• Compute the eigenvalues of Σ .

$$\Sigma = USV.$$

Let U_{reduce} denote the first k columns of U. Then $z = U_{reduce}^T x$.

Choosing k:

• Average squared projection error:

$$\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2.$$

• Total variation in the data:

$$\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2.$$

ullet Typically, we choose k to be the smallest value so that

$$\frac{\text{average squared projection error}}{\text{total variation}} < 0.01,$$

i.e. 99% of variance is retained.

• The above ratio can be computed in an easier way. Say

$$S = \begin{bmatrix} s_{11} & O \\ & \ddots & \\ O & s_{nn} \end{bmatrix}.$$

Then

$$\frac{\text{average squared projection error}}{\text{total variation}} = 1 - \frac{\sum_{i=1}^{k} s_{ii}}{\sum_{i=1}^{n} s_{ii}}.$$

So we can start with k = 1 and increase k and check whether

$$\frac{\sum_{i=1}^{k} s_{ii}}{\sum_{i=1}^{n} s_{ii}} > 0.99.$$