Projeto de Circuitos Fotônicos Integrados

Circuitos fotônicos básicos

Atividade – Análise de dados de fabricação do circuito WDM via openEBL

Lucivaldo Barbosa de Aguiar Junior

WIRTUSCC

Centro de Competência Embrapii em Hardware Inteligente para a Indústria

CURSOS, CAPACITAÇÃO E TREINAMENTOS

Sumário

- Introdução;
- Layout;
- Limitação do meio de fabrição e alterações do layout;
- Resultado das simulações;
- Compensação das grades;
- Comparação entre simulação e medições.

Introdução

O SiEPIC OpenEBL oferece um serviço gratuito de fabricação de circuitos fotônicos de área pequena com o intuito de permitir que aqueles que estudam o tema tenham a oportunidade de passar por essa etapa tão importante.

Layout do circuito enviado (completo)

Alterações necessárias

• Fator limitante do programa openEBL: só é possível ter, no máximo, 4 grades de acoplamento por circuito. Com isso, foi necessário dividir o circuito em 3, mas apenas alterando as saídas a serem testadas.

O circuito abaixo será referido como "out 123" ao longo da apresentação

O circuito abaixo será referido como "out 456" ao longo da apresentação

Alterações necessárias

Simulação – circuito importado via Klayout

Resultado da simulação sem a compensação das grades de acoplamento

Simulação – circuito importado via Klayout (compensação das grades)

Simulação – circuito importado via Klayout (compensação das grades)

Resultado das medições sem nenhum tratamento

Perdas associadas as grades de acoplamento fabricadas

• O gráfico à esquerda foi obtido a partir de um circuito que consiste basicamente em duas grades de acoplamento ligadas através de um guia de onda simples.

Comparações individuais parte 1 - "out123"

Todos os sinais tiveram compensação das grades de acoplamento.

Comparações individuais parte 2 - "out456"

Todos os sinais tiveram compensação das grades de acoplamento.

Comparações individuais parte 2 - "out781"

Todos os sinais tiveram compensação das grades de acoplamento.

Análise qualitativa dos dados

Ao comparar as saídas do circuito "out123" podemos notar uma alta correlação entre os sinais vermelhos, mas não tão altas entre os sinais marrons e pretos. Quanto ao circuito "out456" nota-se alta correlação entre todos os sinais. Comparando os sinais de saída do circuito "out781" nota-se uma boa correlação entre os sinais vermelhos, da mesma forma acontece com os sinais verde, no entanto, os sinais azuis são praticamente díspares.

É possível observar um sinal de formato aceitável e muito semelhante ao que foi simulado como no caso do sinal laranja do circuito "out456" ao mesmo tempo, existe um sinal de baixa qualidade e que não se assemelha ao que foi simulado como no caso do sinal azul do circuito "out781".

A maior parte das componentes ficam em torno de -2dB e -3dB, o que é muito bom se considerarmos que entre a saída e o ponto de leitura existem guias da ordem de 100 micrômetros.

Conforme foi visto durante uma das etapas de capacitação, o posicionamento do circuito no wafer afeta o seu comportamento, por isso, a compensação das grades da maneira que foi feita, pode incluir não idealidades.

No geral, o circuito comportou-se de maneira razoável, em alguns casos muito bem mostrando um comportamento adequado para utilização, em um dos casos o circuito mostrou baixa previsibilidade.

Conforme mostrado em [3] é possível corrigir os erros de fase com *heaters* melhorando muito a performance do circuito.

Considerações finais

A etapa de fabricação é fundamental no desenvolvimento de circuitos fotônicos por diversos fatores:

- Permite a validação teórica do que foi estudado;
- Completa o ciclo de aprendizagem (desde as equações de Maxwell até o teste do circuito);
- Permite a identificação dos erros que não se apresentam em simulações;
- Evidencia limitações reais e favorecem o amadurecimento da teoria ao tornar necessário prever problemas que não foram previamente cogitados.

Referências

SIEPIC. *OpenEBL – SiEPIC Educational Building Block Library*. Disponível em: https://siepic.ca/openebl/. Acesso em: 04 jul. 2025.

SIEPIC. *openEBL-2025-05*. GitHub, 2025. Disponível em: https://github.com/SiEPIC/openEBL-2025-05. Acesso em: 04 jul. 2025.

YI, Qiyuan; ZHENG, Shuang; YAN, Zhiwei; CHENG, Guanglian; XU, Fanglu; LI, Qiyuan; SHEN, Li. Silicon photonic flat-top WDM (de)multiplexer based on cascaded Mach-Zehnder interferometers for the 2 μm wavelength band. *Optics Express*, v. 30, n. 15, p. 28232–28241, 2022. DOI: https://doi.org/10.1364/OE.467473.

Projeto de Circuitos Fotônicos Integrados

Centro de Competência Embrapii em Hardware Inteligente para a Indústria

virtus.ufcg.edu.br/cc

Circuitos fotônicos básicos

Atividade – Análise de dados de fabricação do circuito WDM via openEBL

Lucivaldo Barbosa de Aguiar Junior