Kako i zašto funkcioniše blockchain?

Seminarski rad u okviru kursa Tehničko i naučno pisanje Matematički fakultet

Lazić, Jovana
kontakt email adresa autora
Nikić, Ognjen
kontakt email adresa autora
Nešković, Ognjen
mi22009@alas.matf.bg.ac.rs
Sekešan, Pavle
kontakt email adresa autora

7. novembar 2022.

Sažetak

U radu su sažeto iznete osnove kriptografije potrebne za razumevanje i implementaciju blokčejna. Ukratko je predstavljena istorija blokčejna, kao i glavne ideje potrebne za realizaciju blokčejna koji se nalazi iza jedne od najpoznatijih kriptovaluta - Bitcoin. Dopuniti kasnije...

Sadržaj

1	Uvod		2
2	2.1	ptografske osnove Kriptografske heš funkcije	
3	3.1	kčejn Blokovi	
4	4.1	mene Kriptovalute	
5	5 Zaključak		3
Li	Literatura		

1 Uvod

Napisati uvod - ukratko nešto o istoriji blokčejna, čemu služi, zašto je koristan, pomenuti osnovne ideje koje se koriste (heširanje, merkle stabla, asimetrična kriptografija (digitalni potpisi) itd.)

2 Kriptografske osnove

2.1 Kriptografske heš funkcije

Napisati ovaj subsection

2.2 Asimetrična kriptografija

Napisati ovaj subsection

3 Blokčejn

Blokčejn je decentralizovan, distribuiran i najčešće javan skup podataka (najčešće transakcija ili drugih zapisa) [2] sačinjen od manjih jedinica podataka - "blokova". Blokovi su takvi da se dati blok ne može izmeniti bez promene svih blokova koji dolaze nakon njega. Ovim blokovi uspostavljaju "istoriju", odnosno sekvencu izmena na javnom skupu podataka.

Slika 1: Bitcoin blokčejn

Na primer u slučaju Bitcoin blokčejna (slika 1) blokovi sadrže, pored ostalog, heš prethodnog bloka i transakcije (preciznije merkle stablo izgrađeno nad transakcijama). Time što jedan blok sadrži heš bloka koji je kreiran pre njega je uspostavljen redosled blokova, pa i time redosled transakcija. Neke izmene nad skupom podataka moraju biti odobrene od strane pojedinca kome podaci pripadaju (na primer u slučaju transakcija) što se postiže metodama asimetrične kriptografije. Svi učesnici u distribuiranoj mreži mogu lako verifikovati da li su izmene u blokčejnu validne i složiti se sa izmenama ili glasati protiv njih. Kako bi se došlo do konsenzusa oko toga koja sekvenca izmena na blokčejnu je validna uvode se metode poput dokaza o izvršenom radu (proof of work), dokaza o posedovanju valute (proof of stake) itd. Metode za postizanje konsenzusa se biraju tako da se postigne veliki stepen otpornosti prema ne-kooperativnim agentima u distribuiranoj mreži. Zajedno sa javno dostupnim blokčejnom ovaj

sistem rešava jedan od značajnih problema digitalnih dobara poznat kao "double spending". [1]

3.1 Blokovi

Napisati ovaj subsection - apstraktnije opisati pojam bloka u blokčejnu generalno (ne samo kod bitkojna), način za postizanje konsenzusa (proof of work, proof of stake,...), forkovi

3.2 Decentralizacija

Napisati ovaj subsection - opisati kako blokčejn koristi peer to peer mrežu, sa konkretnim primerom (na primer kako bitkojn radi broadcast ili šta već), prednosti i mane decentralizacije generalno - double spending ako neko ima preko 51%, itd.

4 Primene

4.1 Kriptovalute

Napisati ovaj subsection

4.2 Pametni ugovori

Napisati ovaj subsection - pomenuti eth pošto btc nije turing complete

5 Zaključak

Napisati ovaj subsection

Literatura

- [1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, page 21260, 2008.
- [2] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014):1–2, 2014.