Surface Representations

- Polygon meshes
 - Representations
 - Polygon list each polygon is represented by a list of vertex coordinates
 - + simplest representation
 - shared edges are drawn twice (wasted storage)
 - common processing operations are expensive and unreliable
 - Vertex list define polygons using pointers to vertices.
 - + compact and moving vertices is easy
 - difficult to find polygons that share an edge
 - shared edges are drawn twice (wasted storage)
 - Edge list all edges, and vertices are stored and each polygon is defined in terms of edges and vertices
 - + shared edges are not drawn twice
 - + adjacent polygons are readily apparent from the edge records
 - takes up a lot of storage
 - Polygon normals

$$Ax + By + Cz + D = 0$$

$$A = \frac{1}{2} \sum_{i=1}^{n} (z_i + z_{i \oplus 1})(y_i - y_{i \oplus 1}) \qquad B = \frac{1}{2} \sum_{i=1}^{n} (x_i + x_{i \oplus 1})(z_i - z_{i \oplus 1}) \qquad C = \frac{1}{2} \sum_{i=1}^{n} (y_i + y_{i \oplus 1})(x_i - x_{i \oplus 1})$$

Parametric Curves

Cubic curve representation

$$\begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix} = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{bmatrix}$$

$$\mathbf{Q}(t) = \mathbf{T} \qquad \mathbf{C}$$

$$Q'(t)$$
 = $\begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}$ C

- Continuity
 - lacktriangle geometric continuity, G^n : the direction of the nth derivative of the curve is continuous.
 - parametric continuity, C^n : the magnitude of the nth derivative of the curve is continuous.
- Forms of parametric cubic curves

$$Q(t) = TMG = BG$$

 $m{M} \in \mathbb{R}^{4 \times 4}$: basis matrix, $m{G} \in \mathbb{R}^{4 \times 3}$: geometry matrix (4 constraints)

 \boldsymbol{B} : blending function (curve is a weighted sum of geometry matrix)

Hermite

o constraints: positions and tangent vectors of start and end points

$$m{C} = egin{bmatrix} 2 & -2 & 1 & 1 \ -3 & 3 & -2 & -1 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix} egin{bmatrix} m{P_1} \ m{P_4} \ m{R_1} \ m{R_4} \end{bmatrix} = m{M_h} m{G_h}$$

Bezier

 \circ constraints: specified start and end positions, tangent vector specified by endpoints

$$R_1 = 3(P_2 - P_1), \qquad R_4 = 3(P_4 - P_3)$$

$$C = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix} = M_b G_b$$

- <u>Convex hull property:</u> a point lies within the convex hull of a set of points if it can be written as a linear sum of the points, with the weights all lying in the range 0 and 1 and summing to 1
- Can easily be subdivided to produce control points that are good poly-line approximations to the curve.

B-splines

o constraints: four control points shared between adjacent segments for approximation

$$m{C}_i = rac{1}{6} egin{bmatrix} -1 & 3 & -3 & 1 \ 3 & -6 & 3 & 0 \ -3 & 0 & 3 & 0 \ 1 & 4 & 1 & 0 \end{bmatrix} egin{bmatrix} m{P}_{i-1} \ m{P}_i \ m{P}_{i+1} \ m{P}_{i+2} \end{bmatrix}$$

- does not pass through the control points
- can be transformed in an affine manner by applying the transformation to control points

Catmull-Rom

- o constraints: four control points shared between adjacent segments for interpolation
 - specified start 2nd and end 3rd points, tangent vectors specified by 1st and 4th points.

$$m{C}_i = rac{1}{2} egin{bmatrix} -1 & 3 & -3 & 1 \ 2 & -5 & 4 & -1 \ -1 & 0 & 1 & 0 \ 0 & 2 & 0 & 0 \end{bmatrix} egin{bmatrix} m{P}_{i-1} \ m{P}_i \ m{P}_{i+1} \ m{P}_{i+2} \end{bmatrix}$$

passes through the control points

	Hermite	Bezier	B-spline	Catmull-Rom
Convex hull property	N/A	Yes	Yes	No
Interpolates some control points	Yes	Yes	No	Yes
Interpolates all control points	Yes	No	No	Yes
Ease of subdivision	Good	Best	Avg	Avg
Inherent continuity	G^0	C^0 G^0	G^2	G^1
Easily achieved continuity	C^1 G^1	C^1 G^1	G^2	$C^1 \\ G^1$