

Examen de structure de la matière

Durée: 1 heure

(Note : Il est strictement interdit d'utiliser le téléphone portable, la tablette ou tous documents)

L'étudiant doit traiter 2 exercices parmi les 3 :

- L'exercice 1 est obligatoire.
- A choisir entre l'exercice 2 et l'exercice 3.

Exercice 1 (12 points)

- I- On étudie la série de Paschen du spectre d'émission de l'atome d'Hydrogène. Cette série correspond aux radiations émises lorsque l'électron passe d'un état excité n₂ à l'état excité n₁.
 - 1- A quel domaine du spectre électromagnétique correspond cette série ?
 - **2-** Représenter les trois premières raies et la raie limite de la série de Paschen dans un diagramme d'énergie.
 - 3- Calculer la plus grande longueur d'onde de raie dans cette série.
- **II-** Un ion hydrogénoïde $\mathbf{z}\mathbf{X}^{n+}$ absorbe un rayonnement électronique de longueur d'onde $\lambda = 107,7$ Å et passe de l'état fondamental au 3^{ème} état excité.
 - 1- Quelle est la transition électronique correspondant ?
 - **2-** Identifier l'ion hydrogénoïde zX^{n+} (donnez Z et n).
 - 3- Calculer, en eV, l'énergie d'ionisation de cet ion à partir de son 3ème état excité.
 - **4-** Calculer le rayon de l'orbite ainsi que la vitesse de l'électron quand il se trouve dans son état stable.

Données : $R_H = 1,097 \cdot 10^7 \text{ m}^{-1}$; $h = 6,62 \cdot 10^{-34} \text{ j} \cdot \text{s}$; $c = 3 \cdot 10^8 \text{ m/s}$.

Exercice 2 (8 points)

- 1- Préciser la composition du noyau de l'isotope du radium ²²⁶₈₈Ra et celui de l'uranium ²³⁵₉₂U
- 2- Calculer le défaut de masse dans l'uranium en unité de masse atomique puis en kilogramme.
- 3- Déterminer l'énergie de liaison par nucléon, en joule/nucléon et en MeV/nucléon, de l'isotope²³⁵U.
- **4-** Comparer la stabilité du noyau d'uranium à celle du noyau du radium dont l'énergie de liaison par nucléon est de 7,66 MeV/nucléon.
- 5- Calculer, en kJ, l'énergie libérée lors de la formation d'un gramme d'uranium.

Données : $m_p = 1,0076 \text{ u}$; $m_n = 1,0089 \text{ u}$; $m(^{235}\text{U}) = 234,9933 \text{ u}$; $c = 3 \cdot 10^8 \text{ m/s}$; $N_A = 6,023 \cdot 10^{23}$

Exercice 3 (8 points)

Soient les éléments chimiques suivants pris dans leur état fondamental : 11Na, 17Cl, 20Ca, 22Ti, 26Fe.

- 1- Donner la configuration électronique à l'état fondamental de ces éléments.
- **2-** Représenter les électrons de valence dans des cases quantiques et préciser le caractère magnétique de chaque élément.
- **3-** Placer ces éléments dans le tableau périodique en indiquant : la période, le bloc, le groupe et sous-groupe.
- 4- Lesquels de ces éléments sont des métaux de transition. Justifier votre réponse.
- 5- Donner les quatre nombres quantiques caractérisant les électrons célibataires de l'élément 22Ti.

Bon Courage & Bonne Chance

Corrigé de l'examen de structure de la matière

Exercice 1 (12 points)

Partie I

1

0,5

1

- **1-** La série de Paschen correspond au domaine de l'Infrarouge du spectre électromagnétique.
 - 2- Représentation des différentes transitions électroniques de la série de Paschen dans un diagramme d'énergie.

3- Calcul de la plus grande longueur d'onde (λ_{max}) de raie dans cette série.

$$\Delta E = \frac{hc}{\lambda}$$

 ΔE est λ sont inversement proportionnelles. La plus grande longueur d'onde (λ_{max}) correspond à l'énergie minimale (ΔE_{min}) donc à la transition $n_2 = 4 \rightarrow n_1 = 3 \Rightarrow$ c'est la première raie de la série de Paschen de longueur d'onde λ_1

Formule de Balmer-Rydberg:

$$\frac{1}{\lambda} = R_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)$$

$$\frac{1}{\lambda_1} = 1,097 \cdot 10^7 \left[\frac{1}{3^2} - \frac{1}{4^2} \right] = 5,33263 \cdot 10^5 \text{ m}^{-1}$$

$$\lambda_1 = \frac{1}{5,33263 \cdot 10^6} = 1,875247 \cdot 10^{-6} \text{m} = 1875,247 \cdot 10^{-9} \text{ m} = 1875,247 \text{ nm}$$

Partie II

1

1

1- Etat fondamental : n = 1, $3^{\text{ème}}$ état excité n = 4

La transition électronique correspondant est $n = 1 \rightarrow n = 4$

2- Identification de l'ion hydrogénoïde zX^{n+}

$$\mathbf{0.75} \qquad \frac{1}{\lambda} = R_{H} \cdot Z^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$$

$$\frac{1}{\lambda} = R_H \cdot Z^2 \left[\frac{1}{1^2} - \frac{1}{4^2} \right] = \ R_H \cdot Z^2 \left(\frac{15}{16} \right)$$

$$Z = \sqrt{\frac{16}{15 \cdot \lambda \cdot R_{H}}} = \sqrt{\frac{16}{15 \cdot 107,7 \cdot 10^{-10} \cdot 1,097 \cdot 10^{7}}} = 3$$

- **0,5** y = Z 1 = 2
- **0,5** L'hydrogénoïde serait donc ${}_{3}X^{2+}({}_{3}Li^{2+})$
 - 3- Calcul de l'énergie d'ionisation à partir de son 3^{ème} état excité

$$E_{ion} = E_{\infty} - E_{n} = -E_{n}$$
; $E_{n} = -13.6 \frac{Z^{2}}{n^{2}}$ avec $n = 4$

0,5
$$E_{\text{ion}} = -E_4 = -\left(-13.6\frac{3^2}{4^2}\right) = +7.65 \text{ eV}$$

4- Calcul du rayon de l'orbite et de la vitesse de l'électron dans son état stable.

Etat stable \Rightarrow n = 1

$$r_n = a_0 \frac{n^2}{Z}$$

1
$$r_1 = 0.53 \cdot \frac{1^2}{3} = 0.177 \text{ Å}$$

$$V_n = V_0 \cdot \frac{Z}{n}$$

1
$$V_1 = 2.18 \cdot 10^6 \cdot \frac{3}{1} = 6.54 \cdot 10^6 \text{ m/s}$$

Exercice 2 (8 points)

1- La composition des noyaux de radium et d'uranium.

	Isotope	nombre de protons (Z)	nombre de neutrons $(N = A - Z)$
0,5	²²⁶ ₈₈ Ra	88	138
0,5	²³⁵ U	92	143

2- Le défaut de masse du noyau d'uranium en unité de masse atomique et en kilogramme.

$$\begin{array}{ll} \textbf{0,25} & \Delta m = \left(Zm_p + Nm_n\right) - m_{noyau} \\ \textbf{0,75} & \Delta m = \left(92 \cdot 1,0076 + 143 \cdot 1,0089\right) - 234,9933 \ = 1,9786 \ u \\ \textbf{0,5} & \Delta m = 1,9786 \ x \ 1,66 \cdot 10^{-27} = \ 3,3 \cdot 10^{-27} kg \\ \end{array}$$

3- L'énergie de liaison par nucléon, en joule/nucléon et en MeV/nucléon de ²³⁵₉₂U.

$$\begin{array}{ll} \textbf{0,25} & \frac{E_{\ell}}{A}(^{235}_{92}\text{U}) = \frac{\Delta m \cdot c^2}{235} \\ \textbf{0,75} & \frac{E_{\ell}}{A}(^{235}_{92}\text{U}) = \frac{3,3 \cdot 10^{-27} \cdot (3 \cdot 10^8)^2}{235} = 1,26 \cdot 10^{-12} \, \text{J/nucl\'eon} \\ \textbf{0,5} & \frac{E_{\ell}}{A}(^{235}_{92}\text{U}) = \frac{1,9786 \cdot 931,5}{235} = 7,84 \, \text{MeV/nucl\'eon} \\ \end{array}$$

4- Comparaison de la stabilité des noyaux d'uranium et du radium.

$$\frac{E_{\ell}}{A}\binom{226}{88}Ra = 7,66 \text{ MeV/nucl\'eon}$$

$$\frac{E_{\ell}}{A}\binom{235}{92}U > \frac{E_{\ell}}{A}\binom{226}{88}Ra \text{ donc l'uranium est plus stable que le radium}$$

5- L'énergie libérée lors de la formation d'1g d'uranium.

0,25 Energie libéré par un noyau d'uranium :
$$\Delta E = \Delta m \cdot c^2$$
0,75 $\Delta E = 3,3 \cdot 10^{-27} \cdot (3 \cdot 10^8)^2 = 2,97 \cdot 10^{-10}$ J
Energie libéré par 1 g d'uranium : 1g d'uranium contient N noyaux
0,25 $N = \frac{m}{M} \cdot N_A$
0,75 $N = \frac{1}{235} \cdot 6,023 \cdot 10^{23} = 2,563 \cdot 10^{21}$ noyaux
$$\Delta E = 2,97 \cdot 10^{-10} \cdot 2,563 \cdot 10^{21} = 7,612 \cdot 10^8$$
 kJ

Exercice 3 (8 points)

- 1- La configuration électronique à l'état fondamental.
- 2- Les électrons de valence dans des cases quantiques et le caractère magnétique.

Elément	Configuration électronique	Couche de valence	Caractère magnétique
11 Na $1s^22s^22p^63s^1$		\uparrow	Paramagnétique
17Cl	$1s^22s^22p^6$ 3s²3p⁵		Paramagnétique
₂₀ Ca	$1s^22s^22p^63s^23p^64s^2$	$\uparrow\downarrow$	Diamagnétique
22 Ti	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ <u>4s²3d²</u>	$\uparrow \downarrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow$	Paramagnétique
₂₆ Cu	$1s^22s^22p^63s^23p^6$ 3d ¹⁰ 4s ¹	$\boxed{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}\boxed{\uparrow}$	Paramagnétique

0,25 x 15

3- La position des éléments dans le tableau périodique.

Elément	Période et bloc		Groupe et Sous-groupe	
11Na	3	S	I_A	
17Cl	3	p	VII _A	
₂₀ Ca	4	S	II_A	
₂₂ Ti	4	d	IV_B	
29 C u	4	d	I_{B}	
	0,25	0,25 x 5		

0.5 4- Les éléments de transition sont Ti et Cu.

0,25

Les éléments (ou métaux) de transition ont une configuration de la couche externe : $ns^2(n-l)d^{1-10}$ (ou éléments appartenant au bloc d ou encore les éléments appartenant au sous-groupe B).

5- Les quatre nombres quantiques caractérisant les électrons célibataires de 22Ti

	n	ℓ	m	S
Electron 1	3	2	-2	+1/2
Electron 2	3	2	-1	+1/2

0,5 x 2