

FUNDAMENTALS OF DEEP LEARNING

Part 6: Advanced Architectures

AGENDA

Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

AGENDA – PART 6

- Moving Forward
- Natural Language Processing
- Recurrent Neural Networks
- Other Architectures
- Closing Thoughts

FIELDS OF AI

Computer Vision

Optometry

Natural Language Processing

Linguistics

Reinforcement Learning

- Game Theory
- Psychology

Anomaly Detection

- Security
- Medicine

FIELDS OF AI

Computer Vision

Optometry

Natural Language Processing

Linguistics

Reinforcement Learning

- Game Theory
- Psychology

Anomaly Detection

- Security
- Medicine

FIELDS OF AI

Computer Vision

Optometry

Natural Language Processing

Linguistics

Reinforcement Learning

- Game Theory
- Psychology

Anomaly Detection

- Security
- Medicine

"A dog barked at a cat."

[1, 10, 7, 4, 1, 8]

ATE

AUTOENCODERS

AUTOENCODERS

AUTOENCODERS

GENERATIVE ADVERSARIAL NETWORKS (GANS)

REINFORCEMENT LEARNING

ENABLING PORTABILITY WITH NGC CONTAINERS

Extensive

- Diverse range of workloads and industry specific use cases

Optimized

- DL containers updated monthly
- Packed with latest features and superior performance

Secure & Reliable

- Scanned for vulnerabilities and crypto
- Tested on workstations, servers, & cloud instances

Scalable

- Supports multi-GPU & multi-node systems

Designed for Enterprise & HPC

- Supports Docker, Singularity & other runtimes

Run Anywhere

- Bare metal, VMs, Kubernetes
- x86, ARM, POWER
- Multi-cloud, on-prem, hybrid, edge

NGC Deep Learning Containers

NEXT STEPS FOR THIS CLASS

Step 1 Setup Docker https://www.docker.com/

Step 2 Visit NGC Catalog

https://ngc.nvidia.com/catalog/co ntainers/nvidia:dli-dl-fundament als

Step 3 Pull and Run Container

Visit <u>localhost:8888</u> to check out a JupyterLab environment with a Next Steps Project

COPYING ROCKET SCIENCE

