Advanced Techniques for Combinatorial Algorithms: Randomized Algorithms

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

April 28, 2020

Karp-Rabin

Find all occurrences of Pattern in a Text

- hash function $H: \Sigma^{|P|} \mapsto \mathbb{N}$
- hash conflicts = false positives
- speedup: simple hash function
- $H(S) = \sum_{i=1}^{|S|} 2^{|S|-i} H(S[i]) mod p$, with p a large random prime
- |P|-long sliding window on T
- $H(T[i+1:i+|P|]) = ((H(T[i:i+|P|-1]) T[i])/2 + 2^{|P|}T[i+|P|])$

Karp-Rabin: false positives

Kinds of error

- False positive (FP): reported false occurrence
- False negative (FN): occurrence not found
- No False negative in Karp-Rabin

Decreasing error probability

Choosing k random primes (independently, without repetitions).

Las Vegas vs. Monte Carlo

Classifying randomized algorithms

- Las Vegas:
 - Always correct
 - Sometimes not fast
 - Example: Quicksort with random pivot
- Monte Carlo:
 - Always fast
 - Sometimes not correct
 - Karp-Rabin

Min Cut

Instance

Undirected graph $G = \langle V, E \rangle$.

Question

Find a smallest subset $C \subset E$ of edges such that its removal from G results in a disconnected graph.

Min Cut: Karger's algorithm

Min Cut problem

If the probability that an object exists is > 0

The probabilistic method

Shows that an object exists

If the probability that an object exists is > 0

Proposition

Let K_n be the complete graph with n vertices. If $\binom{n}{k} 2^{1-\binom{n}{2}} < 1$ then we can color the edges of K_n so that we have no monochromatic K_k subgraph.

Gianluca Della Vedova Advanced Algorithms April 28, 2020

The probabilistic method

Proposition

Let K_n be the complete graph with n vertices. If $\binom{n}{k} 2^{1-\binom{n}{2}} < 1$ then we can color the edges of K_n so that we have no monochromatic K_k subgraph.

Proof

- There are $2^{\binom{n}{2}}$ colorings of K_n .
- Color each edge at random
- \bigcirc There are $\binom{n}{k}$ k-cliques
- Let A_i be the event that k-clique i is monochromatic
- $P[A_i] = 2^{1-\binom{k}{2}}$
- $P[\bigcup A_i] \leq \sum P[A_i] = \binom{n}{k} 2^{1 \binom{k}{2}} < 1$

The expectation method

Shows that an object exists

Let E[X] be the expected value of event X. Then there exists an event with value $\leq E[X]$ and an event with value $\geq E[X]$

Max Cut

- Let G = (V, E) be an undirected graph, with |V| = n, |E| = m.
- \circ The cut associated with the bipartition $(\mathit{V}_1,\mathit{V}_2)$ of V is $\mathit{E} \cap \mathit{V}_1 imes \mathit{V}_2$
- There exists a cut with at least m/2 edges.

The expectation method

Random cut

• For each vertex v, assign v to a side with p = 1/2

Proof

- $X_i = 1$ if edge i in the cut C, else 0
- Probability of each edge in the random cut C: 1/2. $E[X_i] = 1/2$
- $E[\sum X_i] = \sum E[X_i] = m/2$

Question

The algorithm?

The expectation method

Random cut

$$q = P[|C| \ge m/2]$$
, for random cut C . Then $q \ge \frac{1}{m/2+1}$

Proof

$$\frac{m}{2} = E[C] = \sum_{i \le m/2 - 1} i \cdot P[|C| = i] + \sum_{i \ge m/2} i \cdot P[|C| = i] \le$$
$$\le (m/2 - 1)(1 - q) + qm \Rightarrow q \ge \frac{1}{m/2 + 1}$$

Question

How many random cuts are needed?

The sample and modify method

Independent set

G: undirected graph. Average degree d = 2m/n

Algorithm 1: Random Independent Set

- 1 $S \leftarrow$ a random sample of V, each vertex is picked with p = 1/d;
- $2 I \leftarrow S$
- 3 while there exists an edge e in G|I do
- 4 Remove an endpoint of *e* from *l*

The sample and modify method

Bounding |1|

- $E(G) = \frac{nd}{2}$
- $E[|S|] = \frac{n}{d}$
- $E[E(G|S)] = \frac{nd}{2} \frac{1}{d} \frac{1}{d} = \frac{n}{2d}$
- At most E(G|S) are removed in the second step, hence $E[|I|] = E[|S|] E[E(G|S)] = \frac{n}{2d}$