(19) SU (11) 1330114 A 1

(SI) 4 C 04 B 35/04

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4057357/29-33

(22) 20.03.86

.(46) 15.08.87. Бюл. № 30

(71) Восточный научно-исследовательский и проектный институт огнеупорной промышленности (72) Р.А.Панфилов, Т.И.Ремезова,

В.А.Перепелицын, Р.Н.Хайруллин, Н.Ф.Селиверстов и Г.Г.Галимов (53) 666.97 (088.8)

(56) Авторское свидетельство СССР № 320465, кл. С 04 В 35/24, 1970.

Производство периклазовых изделий на шпинельной связке.

Технологическая инструкция ТИ-200-0-45-82. МЧМ, комбинат Магнезит. 1982, c.137.

(54) МАГНЕЗИАЛЬНО-ШПИНЕЛИДНЫЙ ОГНЕУ-ПОР

(57) Изобретение относится к магнезиально-шпинелидным огнеупорам, применяемым для футеровки печей по получению металлического кобальта, а также электросталеплавильных, цементных и ферросплавных печей. Цель изобретения - повышение термической стойкости и устойчивости к высокотемпературным восстановительным средам - достигается введением в состав огнеупора, содержащего, мас. 7: периклаз - основа, магнезиально глиноземистую шпинель 4-10, форстерит 3,4-4,0, монтичеллит 0,6-0,7, ортотитаната магния в количестве 0,3-4,0 мас. %. Достигнута термостойкость (1300°С - вода) 4-6 теплосмен, открытая пористость 8,2-11,3%, степень разрушения огнеупоров в восстановительной среде при 1600°С 1,2-1,5%, при 1700 С 1,6-2,4%. 2 табл.

Изобретение относится к огнеупорной промышленности и может быть использовано при производстве периклазовых изделий на шпинельной связке, применяемых для футеровки печей по получению металлического кобальта, а также электросталеплавильных, цементных и ферросплавных печей.

Цель изобретения - повышение термической стойкости и устойчивости к высокотемпературным восстановительным средам.

Наличие в составе огнеупора дополнительно тугоплавкого соединения - 15 ортотитаната магния (т.пл. 1732°C), легирующего периклаз и шпинель, оказывает положительное модифицирующее влияние на фазовый состав, структуру и свойства предлагаемого огнеупора. При этом образование фрагментарных микротрещин вокруг выделений ортотитаната магния, обусловленное различием коэффициента термического расширения контактирующих минералов. обеспечивает увеличение термической стойкости огнеупора. Армирование матрицы изделия ортотитанатом магния в сочетании со шпинелью и ортосиликатами магния и кальция приводит к снижению размера пор, газопроницаемости и скорости восстановительных реакций. Повышение устойчивости к воздействию высокотемпературных восстановительных сред достигается также наличием на поверхности периклаза и ортосиликатов пленочных выделений термодинамически более прочного соединения - ортотитаната магния, имеющего более высокое химическое сродство к кислороду и более высокую температуру начала восстановления в сравнении с оксидом магния и ортосиликатами магния и кальция (форстеритом и монтичеллитом).

В качестве сырьевых материалов использовали полифракционный периклазовый порошок (фракции 3-1 мм и 1-0 мм) и дисперсную смесь титаногинюземистого катализатора, получаемого в производстве сложных жирных спиртов, и спеченного периклаза. Катализатор содержит в своем составе 93,6-95,2% Al₂O₃ и 2,6-3,4% TiO₂.

Для изготовления изделий зернистый периклазовый порошок увлажняют раствором лигносульфонатов плотностью 1,21-1,22 г/см³, добавляют тонкомо-

лотую смесь титаноглиноземистого катализатора и спеченного периклаза и массу перемешивают 3-4 мин, после чего из нее прессуют изделия при давлении 130 МПа, обжигают при 1600^{9} С с выдержкой в течение 4 ч.

Минеральный состав огнеупоров, соответствующий заявляемым пределам, 10 а также запредельным значениям, приведен в табл.1.

У обожженных огнеупоров определяли термическую стойкость и устойчивость к восстановительной среде.
Определение устойчивости к восстановительной среде проводили обжигом
образцов при 1600 и 1700°С в течение 5 ч в коксовой засыпке с послецующим сравнением потерь в весе у
изделий из предлагаемого и известного составов.

Результаты проведенных испытаний приведены в табл.2.

Как видно из данных табл.2, предлагаемые огнеупоры имеют значительно лучшие показатели по термостойкости (в 2-3 раза) и устойчивости к восстановительным средам
 особенно при 1700°С до 2 раз по сравнению с известными огнеупорами.

Применение этих огнеупоров позволяет увеличить стойкость футеровок и продолжительность кампаний тепловых агрегатов, интенсифицировать технологические процессы в печах цветной и черной металлургии, сократить расход огнеупорных изделий и затраты на ремонты.

40 Изготовление предлагаемых огнеупоров может быть осуществлено в условиях действующего производства.

Формула изобретения

Магнезиально-шпинелидный огнеупор, содержащий периклаз, магнезиально-глиноземистую шпинель, форстерит и монтичеллит, о т л и ч а ю50 щ и й с я тем, что, с целью повышения термической стойкости и устойчивости к высокотемпературным восстановительным средам, он дополнительно содержит ортотитанат магния
55 при следующем соотношении компонентов, мас.%:

Шпинель магнезиальноглиноземистая 4,0-

4,0-10,0

3,4-4,0 0,6-0,7

Ортотитанат магния Периклаз

0,3-4,0 Остальное

Минеральные составляющие	Содержание, мас. %, в составах					
. 4.02	Пр	Предлагаемый				
	1	2	3	4		
Периклаз	82,0	87,0	91	87,0		
Шпинель магнезиально- глиноземистая	10,0	7,0	4,0	7,0		
Ортотитанат магния	4,0	2,0	. 0,3	_		
Форстернт	3,4	3,4	4,0	5,0		
Монтичеллит	0,6	0,6	0,7	1,0		

	ı	· 		Таб	лица 2
Физико-химические свойства изделия	Состав				
		Пред	Известный		
		1	2	3	4
Термическая стойкость (1300°C вода), тепло-				,	
смена .		6	5	4	2
Открытая пористость,%		8,2	10,5	11,3	14,8
Газопроницаемость, мкм		0,35	0,42	0,48	0,61
Степень разрушения огнеу- поров в восстановительной с среде при температуре					
°C, % 1600		1,2	1,3	1,5	2,3
1700		1,6	2,1	2,4	4,2

Редактор М.Недолуженко	Составитель Л.Булгакова Техред В.Калар	Корректор С.Шекмар
по делам из	Тираж 587 арственного комитета СССР обретений и открытий Ж-35, Раушская наб., д. 4/5	Подписное

Производственно-полиграфическое предприятие, г. Ужгород, ул. Проектная, 4

DERWENT-ACC-NO: 1988-089958

DERWENT-WEEK: 198813

COPYRIGHT 2008 DERWENT INFORMATION LTD

TITLE: Magnesia spinel refractory contains magnesia aluminous

spinel, forsterite, monticellite, periclase, and additional

magnesium ortho-titanate

INVENTOR: PANFILOV R A; PEREPELITS V A ; REMEZOVA T I

PATENT-ASSIGNEE: WEST REFRACTORIES[REFS]

PRIORITY-DATA: 1986SU-4057357 (March 20, 1986)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

SU 1330114 A August 15, 1987 RU

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO APPL-DATE

SU 1330114A N/A 1986SU-4057357 March 20,

1986

INT-CL-CURRENT:

TYPE IPC DATE

CIPS C04B35/04 20060101

ABSTRACTED-PUB-NO: SU 1330114 A

BASIC-ABSTRACT:

Addn. of Mg o-titanate (I) to the magnesial spinel refractory improves its properties. The mixt. contains (in wt. %): magnesial aluminous spinel 4-10, forsterite 3.4-4, monticellite 0.6-0.7, (I) 0.3-4 and periclase the rest, and the material is used for lining the Co, Fe and steel melting furnaces and cement kilns.

ADVANTAGE - Increased high temp. stability, better high temp. resistance in reducing atmos. Bul.30/15.8.87.

TITLE-TERMS: MAGNESIA SPINEL REFRACTORY CONTAIN
ALUMINOUS FORSTERITE MONTICELLITE
PERICLASE ADD MAGNESIUM ORTHO TITANATE

DERWENT-CLASS: L02 M24

CPI-CODES: L02-E04; M24-A05A; M25-J;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 1988-040690