1. 1 / 1 point

延續課程中採用的六軸機械手臂,以上三圖為手臂將桌上的杯子倒著放的軌跡截圖。從機械手臂的Frame {0}座標系來看,杯子的中心(Frame {C}原點)在不同時間點的位置及姿態分別在下表列出。

($\phi_{x/y/z}$ 是杯子對應 $Frame {0} \, x/y/z$ 軸之旋轉角度)

	時間	X	Υ	Z	Фх	фу	ф
起點(P ₀)	0	630	364	20	0	0	0
中途點(P ₁)	3	630	304	220	60	0	0
終點(P ₂)	7	630	220	24	180	0	0

其他資訊包括以下機械手臂尺寸、六軸定義及DH Parameters

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0°	0	0	θ_1
2	-90°	$a_1 = -30$	0	θ_2
3	0°	$a_2 = 340$	0	θ_3
4	-90°	$a_3 = -40$	$d_4 = 338$	θ_4
5	90°	0	0	θ_5
6	-90°	0	0	θ_6

338 338
\hat{z}_5
\hat{Z}_4 \hat{X}_5 \hat{X}_6
\hat{Z}_{6} \hat{X}_{6} \hat{Z}_{c} \hat{Y}_{c}
Z _c X _c

 $\hat{Z}_{0,1}$ $\hat{Z}_{2,7}$ 340 \hat{Z}_{3}

機械手臂第六軸與夾爪關係: ${}^6T = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 206 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

請以上列所有資訊,回答本測驗所有問題。

問題:

機械手臂在起點(Initial Point P_0) 時,Frame {6} 對於 Frame {0} 的Transformation Matrix

$$\begin{bmatrix} 0 & 0 & A & C \\ 0 & B & 0 & D \\ 1 & 0 & 0 & E \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{0}T_{P_{0}} = \begin{bmatrix} 0 & 0 & A & C \\ 0 & B & 0 & D \\ 1 & 0 & 0 & E \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

請以//作區隔,依序填寫A-E的答案,答案需四捨五入至整數。

1//-1//424//364//20

Correct

於 Frame {0} 的Transformation Matrix

$$\begin{bmatrix} 0 & 0 & 1 & C \\ A & -0.5 & 0 & D \\ B & -0.866 & 0 & 220 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{0}T_{P_{1}} = \begin{bmatrix} 0 & 0 & 1 & C \\ A & -0.5 & 0 & D \\ B & -0.866 & 0 & 220 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

請以//作區隔,依序填寫A-D的答案,答案需四捨五入至三個有效數字。

-0.866//0.5//424//304

⊘ Correct

3. 機械手臂在終點(Final Point P_2) 的時候,Frame {6} 對於 1/1 point Frame {0} 的Transformation Matrix

$$\begin{bmatrix} 0 & 0 & 1 & C \\ 0 & A & 0 & D \\ B & 0 & 0 & 24 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{0}T_{P_{2}} = \begin{bmatrix} 0 & 0 & 1 & C \\ 0 & A & 0 & D \\ B & 0 & 0 & 24 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

請以//作區隔,依序填寫A-D的答案,答案需四捨五入至三個有效數字。

⊘ Correct

4. 你將需要找出機械手臂分別在三個點時,六個軸的角度,並在 **1/1 point** 第4題至第9題作答。

機械手臂六軸的限制如下:

$$\theta_1 = [-90, 90], \theta_2 = [-90, 0], \theta_3 = [-90, 0]$$

 $\theta_4 = [-180, 180], \theta_5 = [0, 90], \theta_6 = [-180, 180]$

當機械手臂在起始點 P_0 時,解出第一軸至第三軸的角度,並以//作區隔,從第一軸開始依序寫下。注意每軸的角度需符合以上提供的限制。

答案需四捨五入至整數,以角度為單位。

41//-32//-37

⊘ Correct

5. 當機械手臂在起點 P_0 時,解出第四軸至第六軸的角度,並以// 0/1 point 作區隔,從第四軸開始依序寫下。注意每軸的角度需符合第4 題 提供的限制。

答案需四捨五入至整數,以角度為單位。

67//-45//-59

(X) Incorrect

6. 當機械手臂在中途點 P_1 時,解出第一軸至第三軸的角度,並 **1/1 point** 以//作區隔,從第一軸開始依序寫下。注意每軸的角度需符合第 **4**題提供的限制。

答案需四捨五入至整數,以角度為單位。

36//-51//-38

⊘ Correct

7. 當機械手臂在中途點 P_1 時,解出第四軸至第六軸的角度,並 **0/1 point** 以//作區隔,從第四軸開始依序寫下。注意每軸的角度需符合第 4題提供的限制。

答案需四捨五入至整數,以角度為單位。

89//-36//-29

⊗ Incorrect

8. 當機械手臂在終點 P_2 時,解出第一軸至第三軸的角度,並以// 0/1 point 作區隔,從第一軸開始依序寫下。注意每軸的角度需符合第4題 提供的限制。

答案需四捨五入至整數,以角度為單位。

(X) Incorrect

9. 當機械手臂在終點 P_2 時,解出第四軸至第六軸的角度,並以// 0 / 1 point 作區隔,從第四軸開始依序寫下。注意每軸的角度需符合第4題 提供的限制。

答案需四捨五入至整數,以角度為單位。

44/-41//144

(X) Incorrect

10.最後,你需要為機械手臂設計一個在Cartesian Space下,以 Linear function with parabolic blends的方法規劃圓滑的軌跡, 讓杯子能在指定的時間下通過三點,並作答第10題至第15題

1 / 1 point

註1: 圓滑軌跡指除初始點及終點外,整段的速度及加速度必須 為連續

註2: 軌跡的初始及終點速度為0

註3:每段parabolic的軌跡設定為0.5秒

問題:

當t = [0.5, 2.75] (Linear Region), 依序寫下杯子的中心(Frame $\{C\}$) 在X, Y, Z的速度, 並以//作區隔。

答案需四捨五入至小數點後第二位。

0//-21.82//72.73	

⊘ Correct

11.當t = [3.25, 6.5] (Linear Region),依序寫下杯子的中心(Frame **1/1 point** {C}) 在X, Y, Z的速度,並以//作區隔。

答案需四捨五入至小數點後第二位。

0//-22.4//-52.27

⊘ Correct

12.當t = [0, 0.5] (Parabolic Region),依序寫下杯子的中心(Frame **1/1 point** {C}) 在X, Y, Z的加速度,並以//作區隔。

答案需四捨五入至小數點後第二位。

0//-43.64//145.45

⊘ Correct

13.當t = [2.75, 3.25] (Parabolic Region),依序寫下杯子的中心 **1/1 point** (Frame {C}) 在X, Y, Z的加速度,並以//作區隔。

答案需四捨五入至小數點後第二位。

0//-1.16//-249.99

⊘ Correct

14.當t = [6.5, 7] (Parabolic Region),依序寫下杯子的中心(Frame **1/1 point** {C}) 在X, Y, Z的加速度,並以//作區隔。

答案需四捨五入至小數點後第二位。

0//44.8//104.53

⊘ Correct

15.當 t = 3時,機械手臂的末端(杯子的中心)相對於世界座標會 **0** / **1** point 是?請依序寫下杯子的中心(也就是Frame {C} 的原點座標)

相對於世界的座標
$${}^0P_{c\ org,\ t=3}=\begin{bmatrix} X\\Y\\Z \end{bmatrix}$$
,並以//作區隔

答案需四捨五入至小數點後第二位。

427.55//307.55//223.55

⊗ Incorrect