COMPSCI 130B Discussion

01/07/2021

Kha-Dinh (Jacob) Luong

Office hours: F 9-11 AM

Objectives

Time complexity analysis.

Proof by induction.

Evaluate the running time of a procedure/algorithm.

Expressed in term of a function of the input size.

• Asymptotic notations Big O, Big Ω , Big Θ .

Time Complexity Analysis – Big O

Read: Asymptotic Upper Bound.

•
$$f(n) = O(g(n)) \Leftrightarrow \forall n > n_0, \exists c > 0, f(n) \le c * g(n).$$

f(n) grows no faster than g(n).

Time Complexity Analysis – Big Ω

Read: Asymptotic Lower Bound.

•
$$f(n) = \Omega(g(n)) \Leftrightarrow \forall n > n_0, \exists c > 0, c * g(n) \le f(n).$$

f(n) grows no slower than g(n)

Time Complexity Analysis – Big ⊕

Read: Composite bound.

•
$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$.

• f(n) grows at the same rate as g(n).

• Small o and small ω : very similar to Big O and Big Ω .

•
$$f(n) = o(g(n)) \Leftrightarrow \forall n > n_0, \exists c > 0, f(n) < c * g(n).$$

•
$$f(n) = \omega(g(n)) \Leftrightarrow \forall n > n_0, \exists c > 0, c * g(n) < f(n).$$

$$f = O(g)$$
 and $f = \Omega(g) \Leftrightarrow f = \Theta(g)$
 $f = O(g) \Leftrightarrow g = \Omega(f)$
 $f = o(g) \Leftrightarrow g = \omega(f)$

$$f = o(g) \Rightarrow f = O(g)$$

 $f = \omega(g) \Rightarrow f = \Omega(g)$
 $f \sim g \Rightarrow f = \Theta(g)$

$$\lim_{n \to \infty} f(n)/g(n) \neq 0, \infty \Rightarrow f = \Theta(g)$$

$$\lim_{n \to \infty} f(n)/g(n) \neq \infty \Rightarrow f = O(g)$$

$$\lim_{n \to \infty} f(n)/g(n) \neq 0 \Rightarrow f = O(g)$$

$$\lim_{n\to\infty} f(n)/g(n) = 1 \quad \Rightarrow \quad f \sim g$$

$$\lim_{n\to\infty} f(n)/g(n) = 0 \quad \Rightarrow \quad f = o(g)$$

$$\lim_{n\to\infty} f(n)/g(n) = \infty \quad \Rightarrow \quad f = \omega(g)$$

- Generally, time complexity is determined by the most dominant term in the function.
 - 0(5) = 0(1)
 - $O(2n^2) = O(n^2)$
 - $O(4n^3 + 2n^2 + 1) = O(n^3)$
 - $O(2n + 5\log(n)) = O(n)$
 - O(nlog(n) + n) = O(nlog(n))
- In terms of dominance:

$$a^n > n^a > log_a n > a$$

Time Complexity Analysis - Example

• Prove that $n^2 + 17n + 2$ is $O(n^2)$.

$$n^2 + 17n + 2 \le n^2 + 17n^2 + 2 \text{ (when } n \ge 2\text{)}$$

 $\le n^2 + 17n^2 + n^2 \text{ (when } n \ge 2\text{)}$
 $= 19n^2$

So when $n \ge 2$, with c = 19, $n^2 + 17n + 2 \le cn^2$. Therefore, $n^2 + 17n + 2 = O(n^2)$.

• Is $(n^2+17n+2) O(n^3)$? O(n)?

Time Complexity Analysis - Example

• Prove that $log_{10}(x)$ is $O(log_2(x))$.

$$\lim_{n \to \inf} \frac{\log_{10}(x)}{\log_2(x)} = \lim_{n \to \inf} \frac{\log_2(x)}{\log_2(10)\log_2(x)} = \lim_{n \to \inf} \frac{1}{\log_2(10)} = \frac{1}{\log_2(10)}$$

Therefore, $\log_{10}(x) = \Theta(\log_2(x))$, which implies $\log_{10}(x) = O(\log_2(x))$.

Proof by Induction

- Prove an assertion P(n) is true for all $n \ge 0$.
- Base cases:
 - Check that P(n) holds for $0 \le n \le k$.
- Induction step:
 - Prove that $P(n) \Rightarrow P(n+1)$ for n > k.
- Conclusion: P(n) is true for all $n \ge 0$.

Proof by Induction - Example

- P(n): $7^n 1 : 6$
- Base case: $n = 1, 7^1 1 = 6 : 6$
- Induction step:
 - Assume P(k) holds.
 - $7^{k+1} 1 = 7(7^k 1) + 6 : 6$.
 - Therefore, P(k + 1) also holds.
- Conclusion: P(n) holds for all $n \ge 1$.

Proof by Induction - Example

• P(n): A binary tree with n nodes has n-1 edges.

Proof by Induction - Example

- Base case: Binary tree with 1 node has 0 edge.
- Induction step:
 - Assume P(k) is true.
 - Consider a tree with k + 1 nodes.
 - Hint: Removing a random leaf node.
 - ...
- Conclusion.