GroupRepresentation 3

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2023 年 10 月 27 日

1 homework

ROBEM I Let ϕ is representation of $GL_n(K)$ over K^n . And $\phi(A)\alpha := A\alpha$. Prove: ϕ is faithful and irreducible and n-dimensional.

SPETION. It is obvious that ϕ is n-dimentional. $\forall A, B \in GL_n(K), A \neq B, \exists \alpha \in K, A\alpha \neq B\alpha$, so $\phi(A)\alpha = A\alpha \neq B\alpha = \phi(B)\alpha$. So ϕ is injective, so it is faithful. $\forall \alpha, \beta \in K^n \setminus \{0\}, \exists A \in GL_n(K)$ s.t. $A(\alpha) = \beta$, so there is no invariant subspace of K^n .

ROBEM II For $A \in GL_n(K)$, let $\psi(A)X = AX, \forall X \in M_n(K)$. Then:

- 1. ψ is n^2 -dimentional representation of $\mathrm{GL}_n(K)$ over K.
- 2. For $j: 1 \leq j \leq n$, let $M_n^{(j)}(K) := \{(a_{ik})_{n \times n} : a_{ik} \neq 0 \to k = j\}$. Prove $M_n^{(j)}$ is invariant subspace of $GL_n(K)$. Let ψ is subrepresentation of ψ in $M_n^{(j)}$, prove ψ_j is irreducible and $\psi = \bigoplus_{j=1}^n \psi_j$.
- 3. Prove $\psi_j \cong \phi$, where $\phi = (\mathbb{R}^{OBEM} I).\phi$
- SOLTON. 1. Since $M_n(K)$ is n^2 -dimentional on K and $\forall A, B \in GL_n(K), \forall X \in M_n(K), \psi(AB)X = ABX = \psi(A)BX = \psi(A)(B)X$, so ψ is a homomorphism. So ψ is a n^2 -dimentional representation.
- 2. $\forall A \in GL_n(K), \forall X \in M_n^{(j)}(K)$, let $X = (x_{ik})_{n \times n}$, $A = (a_{ik})_{n \times n}$, $\phi(A)X = AX =: (b_{ik})_{n \times n}$, $b_{ik} = \sum_{l=1}^n a_{il} x_{lk} \neq 0$, then k = j, so $AX \in M_n^{(j)}(K)$, so $M_n^{(j)}(K)$ is invariant subspace. Since $M_n(K) = \bigoplus_{j=1}^n M_n^{(j)}(K)$, so $\psi = \bigoplus_{j=1}^n \psi_j$. Consider $\tau : M_n^{(j)}(K) \to K^n$, $(\tau(X))_k = x_{kj}$, so τ is a isomorphism. Obviously, ψ is a isomorphism between ψ_j and ϕ , $\forall j = 1, \dots, n$. While ϕ is irreducible, so ψ_j is irreducible.
- 3. As Item 2 has prooved.

ROBEM III Let $K = \mathbb{C}$ and n = 2 in (Group representation second homework).(Problem 3), prove the subrepresentation of ϕ over $M_2^0(\mathbb{C})$ is irreducible.

SOUTHON. Since $\forall X \in M_2(\mathbb{C})$, X can be diagonalized on \mathbb{C} . $\forall X \in M_n^0(\mathbb{C})$, $\exists A \in M_n(\mathbb{C})$, s.t. $\phi(A)(X) = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. So $\forall X \in E$, where E is the invariant subspace of $M_2^0(\mathbb{C})$. so $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in V$. So $M_2^0(\mathbb{C}) \subset E$, so $E = M_2^0(\mathbb{C})$.

ROBEM IV Assume $n \geq 3$ and $n \nmid \text{char } K$, proof: then n- dimentional permutate representation of S_n can be decomposed as the direct sum of a main representation and a n-1- dimentional irreducible subrepresentation

SOUTION. As we have prooved in the second homework in ROBEM I. ϕ_{V_1} is the main representation, and V_2 is n-1 dimentional, so we only need to proof V_2 is irreducible. $\forall \{0\} \neq V \subset V_2$ is a invariant subspace, $\forall x \in V \setminus \{0\}$, $x = \sum_{i=1}^n a_i x_i, \sum_{i=1}^n a_i = 0$, if $a_i = k, i = 1, \cdots, n$, so $\sum_{i=1}^n a_n = nk = 0$, while $n \nmid \text{char } K$, k = 0, so x = 0. W.L.O.G. Let $a_1 \neq a_2$, so $\phi((12))x = a_2 x_1 + a_1 x_2 + \sum_{k=3}^n a_k x_k \in V$, then $x - \phi((12))x = (a_1 - a_2)(x_1 - x_2) \in V$, then $x_1 - x_2 \in V$, so $\phi((2j))(x_1 - x_2) = x_1 - x_j \in V$. While $\{x_1 - x_2, \cdots, x_1 - x_n\} \subset V$ and they are linear independent. Then $\dim(V) \geq n - 1$, so $V = V_2$. Thus, $\phi|_{V_2}$ is irreducible.

 \mathbb{R}^{OBEM} V Caculate the 1- dimentional \mathbb{C} representation:

- 1. (2,4)—type of 8— order elementary Abel group.
- 2. the addition group of \mathbb{Z}_p^n

SOLTION. 1. $G = \mathbb{Z}_2 \times \mathbb{Z}_4$, $\phi(x,y) = e^{\frac{(2x+y)\pi i}{2}}$.

2. $\phi(a_1, \dots, a_n) = e^{\frac{2\sum_{k=1}^n a_k \pi i}{p}}$

2 The second homework

ROBEM I Group G has an action on set $\Omega = \{x_1, x_2, \dots, x_n\}$, let (ϕ, V) be the n- dimensional K permutation representation of G, where K is the field of vector space V, and

$$V = \left\{ \sum_{i=1}^{n} a_i x_i \mid a_i \in K, i = 1, 2, \dots, n \right\}.$$

Let $V_1 = \langle \sum_{i=1}^n x_i \rangle$, $V_2 = \{ \sum_{i=1}^n a_i x_i \mid \sum_{i=1}^n a_i = 0, a_i \in K \}$. Proof: (1) V_1 and V_2 are invariant subspaces of G; (2) If char $K \nmid n$, then $\varphi = \varphi_{V_1} \oplus \varphi_{V_2}$.

 \mathbb{R}^{O} BEM III $\mathcal{O}(n) := \{A \in M_n(\mathbb{R}) : AA^T = I_n\}$ is the set of all *n*-dimensional orthogonal matrix over \mathbb{R} . Let:

$$\varphi: \mathcal{O}(n) \to \operatorname{GL}(M_n(\mathbb{R}))$$

$$A \mapsto \varphi(A), \tag{1}$$

$$\varphi(A)X := AXA^{-1} : \quad \forall X \in M_n(\mathbb{R})$$
 (2)

 $M_n^+(\mathbb{R}) := \{A \in M_n^0(\mathbb{R}) : A = A^T\}, M_n^-(\mathbb{R}) := \{A \in M_n^0(\mathbb{R}) : A^T = -A\}.$ (1) Proof: $M_n^+(\mathbb{R})$ and $M_n^-(\mathbb{R})$ are invariant spaces of φ ; (2) Let the subrepresentation of φ on $\langle I \rangle, M_n^+(\mathbb{R}), M_n^-(\mathbb{R})$ be $\varphi_0, \varphi_1, \varphi_2$. Proof: $\varphi = \varphi_0 + \varphi_1 + \varphi_2$. (3) calculate a $\frac{1}{2}n(n-1)$ dimensional \mathbb{R} representation of $\mathcal{O}(n)$.