Komprese dat

Jan Outrata

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

přednášky

Statistické metody

Tunstallův kód

- = zdrojová slova proměnné délky kódována na kódová slova pevné délky $k \geq \lceil \log_m n \rceil$ kódových symbolů = blokový kód, \sim variable-to-fixed code (n je velikost zdrojové abecedy, m je velikost kódové abecedy)
- chyby v kódových slovech se při dekódování nešíří robustnost
- požadavky:
 - každou (neprázdnou) posloupnost zdrojových symbolů musí být možné vyjádřit jako (případně prefix) zřetězení právě jedné posloupnosti zdrojových slov kódovaných na kódové slovo jednoznačná kódovatelnost
 - průměrná délka zdrojových slov kódovaných na kódové slovo je maximální = optimální kód → delší zdrojová slova mají větší pravděpodobnost výskytu
 - ${f 3}$ je použito maximum kódových slov, ideálně všech m^k optimalita
- prefixový pro zdrojová slova kódovaná na kódové slovo, jednoznačná kódovatelnost
- \blacksquare průměrná délka kódu: $\frac{k}{\sum_{i=1}^t P(w_i)l(w_i)}$, t počet zdrojových slov w_i délky $l(w_i)$ s pravděpodobností výskytu $P(w_i)$
- pouze statický a semi-adaptivní model

Tunstallův kód

B. P. Tunstall

 $\mathbf{Input} \quad : \check{\mathsf{c}} \mathsf{islo} \ k$

Uses : zdrojová abeceda A, n = |A|, pravděpodobnosti $P(A^+)$ výskytu slova z A,

velikost m kódové abecedy

Output: C(U)

$$T \leftarrow A;$$

$$i \leftarrow 0$$
;

while
$$n + (i+1)(n-1) \le m^k$$
 do $x \leftarrow w \in T, P(w) \ge P(w'), w' \in T;$

$$T \leftarrow (T \setminus \{x\}) \cup \{xy \mid y \in A\};$$

$$i \leftarrow i + 1;$$

 $C(T) \leftarrow \{\text{k\'odov\'a slova d\'elky } k\} \text{ libovoln\'e};$

PRIKLAD:
$$k=4$$
, $A=\{a,b,r,u,o\}$, $p(a)=\frac{7}{20}$, $p(b)=\frac{5}{20}$, $p(r)=\frac{5}{20}$, $p(u)=\frac{2}{20}$, $p(o)=\frac{1}{20}$, $m=2$, vstup $barbaraabarboraubaru$, redundance

Shannon-Fanovo kódování

- C. E. Shannon, R. M. Fano
- první pokus o optimální binární prefixový kód využití distribuční funkce/kumulované pravděpodobnosti (cumulative distribution function) zdroje

PRIKLAD: $A=\{a,b,r,u,o\}$, $p(a)=\frac{7}{20}$, $p(b)=\frac{5}{20}$, $p(r)=\frac{5}{20}$, $p(u)=\frac{2}{20}$, $p(o)=\frac{1}{20}$, vstup barbaraabarboraubaru, redundance

optimální při $|\sum_k p_k = \sum_{i=a}^j p_i - \sum_{i=j+1}^b p_i = \sum_l p_l|, \ k,l \in \{a,\ldots,b\}, \{k\} \cap \{l\} = \emptyset,$ minimální

- David A. Huffman: A method for the construction of minimum-redundancy codes. *Proceedings of the I.R.E.*, pp. 1098–1102, 1952.
- optimální prefixové, vyplývá z vlastností optimálního prefixového kódu (viz Věta dříve)
 a následujícího Lemma

- David A. Huffman: A method for the construction of minimum-redundancy codes. *Proceedings of the I.R.E.*, pp. 1098–1102, 1952.
- optimální prefixové, vyplývá z vlastností optimálního prefixového kódu (viz Věta dříve)
 a následujícího Lemma

Lemma

Nechť $C':A'\mapsto B^+$, kde $A'=\{a'_1,\ldots,a'_{n'}\}, n'\geq m\geq 2, a'_i=a_i\in A, i< n',$ pravděpodobnosti výskytu symbolů a'_i jsou $p'_i=p_i, i< n', p'_{n'}=\sum_{j=n-m'+1}^n p_j,$ $A=\{a_1,\ldots,a_n\},\ n=n'+m'-1,$ s pravděpodobnostmi výskytu p_i symbolů a_i , kde $p_{n-m'+1},\ldots,p_n$ jsou nejmenší, $m'\in\{2,3,\ldots,m\}, m'\equiv n\pmod{(m-1)},$ $B=\{b_1,\ldots,b_m\}$, je optimální prefixový kód ze zdrojové abecedy A' do kódové abecedy B.

Pak kód $C: A \mapsto B^+$, $C(a_i) = C'(a_i'), i < n', C(a_{n-m'+j}) = C'(a_{n'}')b_j, j \le m'$, ze zdrojové abecedy A do kódové abecedy B je také optimální.

Statický a semi-adaptivní model

```
Input
                                               : abeceda A' = \{a'_1, \dots, a'_{n'}\}, pravděpodobnosti \{p'_1, \dots, p'_{n'}\} výskytu a'_i
                                                : zdrojová abeceda A = \{a_1, \dots, a_n\}, pravděpodobnosti \{p_1, \dots, p_n\} výskytu a_i, kódová
                                                        abeceda B = \{b_1, \ldots, b_m\}
Output : kód C(A')
setřiď a'_i a p'_i tak, že p'_i \ge p'_i pro i < j;
if n' \leq m then
                   C(a_i') \leftarrow b_i \text{ pro } i = 1, \dots, n':
else
                  if n' = n then
                                     m' \leftarrow (n-2) \mod (m-1) + 2:
                   else
                                      m'=m
                  C(A') \leftarrow \text{zavolej} se rekurzivně s A' \setminus \{a'_{n'-m'+2}, \dots, a_{n'}\}, \{p'_1, \dots, p'_{n'-m'}, \sum_{i=n'-m'+1}^{n'} p'_i\}:
                  C(a'_{n'-m'+i}) \leftarrow C(a'_{n'-m'+1})b_i \text{ pro } i = 1, \dots, m';
Run with: A = \{a_1, \dots, a_n\}, \{p_1, \dots, p_n\}
PRIKLAD: A = \{a, b, r, u, o\}, p(a) = \frac{7}{20}, p(b) = \frac{5}{20}, p(r) = \frac{5}{20}, p(u) = \frac{2}{20}, p(o) = \frac{1}{20}, p(o) = \frac
```

m=2, vstup barbaraabarboraubaru, m=3, vstup ??, redundance

 $Proč\ m'$ a ne m? Protože při tomto počtu nejdelších kódových slov bude u všech kratších kódových slov a prefixů využito všech m symbolů kódové abecedy a kód má být optimální prefixový.

Huffmanův strom $T_H(A)=\langle V_H(A),E_H(V_H(A))\rangle=$ reprezentace Huffmanova kódu C(A) formou m-árního stromu:

- listové uzly $v_l(a_i) \in V_H(A)$ pro symboly $a_i \in A, i = 1, \dots, n$
- vnitřní uzly $v(a'_{n'}) \in V_H(A)$ pro všechny $a'_{n'}$ (ve všech rekurzivních voláních) + kořenový uzel $v_r \in V_H(A)$
- hrany $\langle v(a'_{n'}), v(a'_{n'-m'+i}) \rangle_{b_i} \in E_H(V_H(A))$ a $\langle v_r, v(a'_i) \rangle_{b_i} \in E_H(V_H(A))$ označené $b_i \in B$ z uzlu pro $a'_{n'}$ následujícího rekurzivního volání do uzlů pro $a'_{n'-m'+i}, i=1,\ldots,m'$ při n'>m a z kořenového uzlu do uzlů pro $a'_i, i=1,\ldots,n'$ při $n'\leq m$
- $lackbox{ } C(a) = \mathsf{z\check{r}et\check{e}zen\acute{i}}\ b \in B\ \mathsf{ozna\check{c}uj\acute{e}c\acute{c}ch}\ \mathsf{hrany}\ \mathsf{na}\ \mathsf{cest\check{e}}\ \mathsf{stromem}\ \mathsf{z}\ v_r\ \mathsf{do}\ v_l(a)$

PRIKLAD

- minimální rozdíly v délkách kódových slov (pro jejich minimální bufferování při pevné rychlosti přenosu/ukládání): třídění a_i' a p_i' tak, že původní $a_{n'}'$ bude po zatřídění a_i' , i < j pro všechna j, pro která $p_j' = p_i'$
- m=2 a $p_i>\sum_{j=i+2}^n p_j$, $p_i\geq p_j$ pro i< j (speciálně $p_i=2^{-i}, i=1,\ldots,n-1$ a $p_n=2^{-(n-1)}$) \to unární číselný kód i-1 pro $a_i, i=1,\ldots,n-1$ a I pro a_n
- m=2 a $p_1 < p_{n-1} + p_n$, $p_i \ge p_j$ pro i < j (speciálně $p_i = \frac{1}{n}$) \to blokový kód délky $k = \lfloor \log_2 n \rfloor$ pro a_1, \ldots, a_{2^k} a délky k+1 pro a_{2^k+1}, \ldots, a_n

PRIKLADY

Adaptivní model – binární kód

- triviálně: znovuvytváření kódu pro každý další symbol na vstupu výpočetně náročné
- Faller, Gallager, Knuth, Vitter
- vlastnost Huffmanova stromu (tzv. sibling property): $p'_{n'} \leq \ldots \leq p'_{n'-m'+1} \leq p'_{n'} \leq \ldots \leq p'_{n'-m'+1}$ následujícího rekurzivního volání musí stále platit \to v následujících algoritmech zajištěno pomocí (aktuálního) počtu n(x) výskytů symbolu x a čísla $i(v(x)), v(x) \in V_H(A)$
- $lue{}$ speciální (escape) symbol e značící neexistující/první výskyt symbolu

```
T_H(A) \leftarrow \langle \{v_l(e)\}, \emptyset \rangle, \ C(e) \leftarrow \text{prázdný řetězec}; \\ n(e) \leftarrow 0; \\ i(v_l(e)) \leftarrow 1; \\ \text{while načti ze vstupu symbol } a \in A \text{ do} \\ \text{if } v_l(a) \not\in V_H(A) \text{ then} \\ \text{zapiš na výstup } C(e) \text{ a kód } a; \\ \text{else} \\ \text{zapiš na výstup } C(a); \\ \text{zavolej následující algoritmus}; \\
```


Adaptivní model – binární kód

```
if v_l(a) \notin V_H(A) then
      V_H(A) \leftarrow V_H(A) \cup \{v_l(a), v(x)\};
      n(a) \leftarrow n(x) \leftarrow 1:
      i(v(x)) \leftarrow i(v_1(e)): i(v_1(a)) \leftarrow i(v(x)) + 1: i(v_1(e)) \leftarrow i(v_1(a)) + 1:
      E_H(V_H(A)) \leftarrow (E_H(V_H(A)) \setminus \{\langle u, v_l(e) \rangle_b\}) \cup \{\langle v(x), v_l(e) \rangle_{\mathbf{I}}, \langle v(x), v_l(a) \rangle_{\mathbf{0}}, \langle u, v(x) \rangle_b\};
else
      v(x) \leftarrow v_l(a);
while v(x) \neq v_r do
      if \langle v(x), v_l(e) \rangle \notin E_H(V_H(A)) then
            najdi v(y) takové, že i(v(y)) < i(v(z)), \forall v(z) \in V_H(A), n(y) = n(z);
            if v(y) \neq v(x) \land \langle v(y), v(x) \rangle \notin E_H(V_H(A)) then
                  v \leftarrow v(x); v(x) \leftarrow v(y); v(y) \leftarrow v;
                  i \leftarrow i(v(x)); i(v(x)) \leftarrow i(v(y)); i(v(y)) \leftarrow i;
            n(x) \leftarrow n(x) + 1:
      v(x) \leftarrow u, \langle u, v(x) \rangle \in E_H(V_H(A));
n(x) \leftarrow n(x) + 1:
```


Adaptivní model – binární kód

```
T_H(A) \leftarrow \langle \{v_l(e)\}, \emptyset \rangle;
n(e) \leftarrow 0:
i(v_l(e)) \leftarrow 1;
while není konec vstupu do
    v \leftarrow v_r:
    while v \neq v_l(a) do
         načti ze vstupu symbol b \in B;
         v \leftarrow u, \langle v, u \rangle_b \in E_H(V_H(A));
    if a = e then
         načti ze vstupu kód symbolu a \in A;
         dekóduj kód a a zapiš na výstup a:
    else
         zapiš na výstup symbol a \in A;
    zavolej předchozí algoritmus;
PRIKI AD
```


Aplikace

■ často v návaznosti na jiné metody, např. na diferenční kódování (obraz, zvuk)

- průměrná délka optimálního prefixového kódu, např. Huffmanova, je minimálně rovna entropii zdroje a nejvýše o 1 větší než entropie (Shannon noisless coding theorem, viz Věta dříve) platí těsnější, nejvýše o nejvyšší pravděpodobnost $p_{max} \geq 0.5$ zdrojových symbolů nebo o $p_{max} + 0.086, p_{max} < 0.5$
- změna zdrojové abecedy na k-tice (nezávislých) symbolů z původní abecedy A pro přiblížení se entropii ale zvyšuje velikost abecedy, a tím i Huffmanova stromu, na $|A|^k$, např. pro $p_1=0.95, p_2=0.03, p_3=0.02$ je entropie přibližně 0.335 b/symbol, průměrná délka Huffmanova kódu 1.05 b/symbol, kódu pro 9 dvojic symbolů přibližně 0.611 b/symbol a kódu pro ? ?tic symbolů přibližně ? b/symbol!
- ⇒ výhodnější kódovat zdrojová slova než samostatné symboly ale nevytvářet kód pro všechna slova dané délky, např. Huffmanův!
- → kód pouze pro zdrojová slova na vstupu
- vhodné pro malé zdrojové abecedy, např. binární, s velkými rozdíly v pravděpodobnostech symbolů
- = kódování zdrojových slov do čísel z podintervalů [0,1) kódovaných do binárního kódu

- Pasco, Rissanen, 1976, Rissanen, Langdon, 1979
- využití distribuční funkce/kumulované pravděpodobnosti (cumulative distribution function) $F_X(i) = \sum_{k=1}^i P(X=k), P(X=k) = P(a_k) = p_k$ zdroje (nezávisle se stejným pravděpodobnostním rozložením se vyskytujících) symbolů z abecedy $A = \{a_1, a_2, \dots, a_n\}$ jako náhodných proměnných $X(a_i) = i, F_X(0) = 0$

$$\begin{array}{l} l_p \leftarrow 0; \ u_p \leftarrow 1; \\ \textbf{while} \ \mbox{načti ze vstupu symbol} \ a_i \in A \ \mbox{do} \\ l \leftarrow l_p + (u_p - l_p) F_X(i-1); \end{array}$$

$$u \leftarrow l_p + (u_p - l_p) F_X(i);$$

 $u \leftarrow l_p + (u_p - l_p) F_X(i);$
 $l_p \leftarrow l; u_p \leftarrow u;$
// přeškálování $[l, u)$

zapiš na výstup $C={\rm bin\acute{a}rn\acute{i}}$ reprezentace jakéhokoliv čísla z [l,u) s minimem bitů;

PRIKLAD

- $C(A^+)$ je prefixový binární kód ze zdrojových slov nad abecedou A, průměrná délka pro slova délky k je $H(A^k) \leq \bar{l}(C(A^k)) < H(A^k) + 1 \Rightarrow$ průměrná délka na symbol z A je $H(A) \leq \bar{l} < H(A) + \frac{1}{k}$
- lacktriangle pro dekódování je nutné znát délku L kódovaného zdrojového slova o uložit spolu s komprimovanými daty nebo speciální zdrojový symbol značící konec vstupu

```
\begin{split} &l_p \leftarrow 0; \ u_p \leftarrow 1; \\ &j \leftarrow 0; \\ &\text{načti ze vstupu binární reprezentaci čísla} \ x \in [0,1); \\ &\textbf{while} \ j < L \ \textbf{do} \\ &\text{najdi} \ i \in \{1,\dots,n\} \ \text{takové, že} \ F_X(i-1) \leq \frac{x-l_p}{u_p-l_p} < F_X(i); \\ &\text{zapiš na výstup symbol} \ a_i \in A; \\ &j \leftarrow j+1; \\ &\textbf{if} \ j < L \ \textbf{then} \\ &l \leftarrow l_p + (u_p-l_p)F_X(i-1); \\ &u \leftarrow l_p + (u_p-l_p)F_X(i); \\ &l_p \leftarrow l; \ u_p \leftarrow u; \\ &l_p \leftarrow l; \ u_p \leftarrow u; \\ &l_p \text{přeškálování} \ [l,u) \end{split}
```

PRIKI AD

- u kódování i dekódování žádoucí průběžný výstup během čtení vstupu, ne až po načtení celého vstupu \rightarrow kód čísla z [l,u) průběžně
- [l,u) se s délkou zdrojového slova zmenšuje, ale uložení necelých čísel je v praxi s omezenou přesností \to omezení délky slova nebo přeškálování [l,u):
 - 1 u < 0.5: $x \leftarrow 2x, x \in \{l, u\}$
 - 2 $l \ge 0.5$: $x \leftarrow 2(x 0.5), x \in \{l, u\}$
 - 3 $l \ge 0.25 \land u < 0.75$: $x \leftarrow 2(x 0.25), x \in \{l, u\}$

případy
$$3...31 = 12...2$$
 a $3...32 = 21...1$


```
c \leftarrow 0;
// while ...
while u < 0.5 \lor l \ge 0.5 \lor (l \ge 0.25 \land u < 0.75) do
      if l \geq 0.25 \wedge u < 0.75 then
            // případ 3
            c \leftarrow c + 1:
            d \leftarrow 0.25:
      else
            if u < 0.5 then
                  // případ 1
                  b \leftarrow \mathbf{0}:
                  d \leftarrow 0:
            else
                  // případ 2
                  b \leftarrow \mathbf{I}:
                  d \leftarrow 0.5:
            zapiš na výstup b;
            while c>0 do
                  zapiš na výstup inverzi b;
                  c \leftarrow c - 1:
     l \leftarrow 2(l-d):
      u \leftarrow 2(u-d);
zapiš na výstup C = \mathbf{I};
```



```
načti ze vstupu \lceil -\log_2 p_{min} \rceil bitů binární reprezentace čísla x \in [0,1), p_{min} nejnižší
pravděpodobnost zdrojových symbolů;
// while ...
while u < 0.5 \lor l > 0.5 \lor (l > 0.25 \land u < 0.75) do
    if l > 0.25 \land u < 0.75 then
         d \leftarrow 0.25:
    else
         if u < 0.5 then
             d \leftarrow 0:
         else
             d \leftarrow 0.5:
    l \leftarrow 2(l-d):
    u \leftarrow 2(u-d);
    načti ze vstupu další bit b anebo b \leftarrow \mathbf{0};
    x \leftarrow 2(x-d) + b \frac{1}{2^{\lceil -\log_2 p_{\min} \rceil}};
```

PRIKLAD

Celočíselná implementace

- zobrazení [0,1) na [0,M-1) $(0.25 \mapsto \frac{M}{4}, 0.5 \mapsto \frac{M}{2}, 0.75 \mapsto \frac{3M}{4})$, $M \ge 4\frac{1}{p_{min}}$, M typicky 2^8 , 2^{16} , 2^{32} nebo 2^{64} podle datového typu pro čísla z [0,M-1)
- odhad $F_X(i)$ s frekvencemi/četnostmi $f(a_k) = \frac{n(a_k)}{\sum_{j=1}^{|A|} n(a_j)}$ výskytu symbolu $a_k \in A$ místo pravděpodobností $P(a_k)$
- $l \leftarrow l_p + \lfloor (u_p l_p + 1)F_X(i 1) \rfloor$, $u \leftarrow l_p + \lfloor (u_p l_p + 1)F_X(i) \rfloor 1$, $\frac{x l_p + 1}{u_p l_p + 1}$, $u \leftarrow 2(u d) + 1$, $x \leftarrow 2(x d) + b$ kvůli celočíselné aritmetice
- \blacksquare načti ze vstupu $\lceil \log_2 M \rceil$ bitů binární reprezentace čísla $x \in [0, M-1)$
- při $M=2^k$ pro nějaké $k\geq 2$:
 - $lacksquare u < rac{M}{2}
 ightarrow$ nejvýznamnější bit l i u je $oldsymbol{0}$
 - $lacksquare l \geq rac{ar{M}}{2}
 ightarrow$ nejvýznamnější bit l i u je ${f I}$
 - $l \geq \frac{M}{4} \wedge u < \frac{3M}{4} o ext{druh\'y nejv\'yznamn\'ejš\'i bit } l$ je ${f I}$ a u je ${f 0}$
 - 2x a $2(x-\frac{M}{2})$ → bitový posun x doleva o 1 bit, $2(x-\frac{M}{4})$ → navíc inverze (nového) nejvýznamnějšího bitu

PRIKLAD

Adaptivní model

- průběžný odhad $F_X(i)$ s frekvencemi/četnostmi $f(a_k) = \frac{n(a_k)}{\sum_{j=1}^{|A|} n(a_j)}$ výskytu symbolu $a_k \in A$ místo pravděpodobností $P(a_k)$
 - lacktriangle inicializace na známý odhad nebo počet n(a)=1 výskytu každého symbolu $a\in A$
 - lacktriangle inkrementace n(a) po (de)kódování symbolu a
- uložení p_{min} spolu s komprimovanými daty, u celočíselné implementace nesmí p_{min} klesnout pod $4\frac{1}{M} \to \text{v}$ praxi $n(a_j) \leftarrow \frac{n(a_j)}{2}$ pro $n(a_j) > 1$ při $\sum_{j=1}^{|A|} n(a_j) = \frac{M}{4}$

Aplikace

ve standardech komprese multimediálních dat (obraz, video, zvuk)

Aritmetické kódování - QM kódování

- = modifikované adaptivní binární aritmetické kódování (Q kódování, skew kódování), tj. pro binární zdrojovou abecedu s adaptivním modelem
- místo 2 symbolů A, $a_1=\mathbf{0}$ a $a_2=\mathbf{I}$, $a_1=$ více (MPS) a $a_2=$ méně (LPS) pravděpodobný symbol s průběžně odhadovanými frekvencemi/četnostmi 1-q a q výskytu
 - $l \leftarrow l_p$ a $A \leftarrow A_p(1-q)$ pro MPS
 - $l \leftarrow l_p + A_p(1-q)$ a $A \leftarrow A_pq$ pro LPS
 - $rac{x-l_p}{A_p} < 1-q$ pro MPS a $\geq 1-q$ pro LPS
- potlačení násobení (i pro nebinární zdrojové abecedy) udržování hodnoty A v [0.75, 1.5) a zanedbání násobení A_p
 - $l \leftarrow l_p \text{ a } A \leftarrow A_p q \text{ pro MPS}$
 - $l \leftarrow l_p + A_p q \text{ a } A \leftarrow q \text{ pro LPS}$
 - $x l_p < 1 q$ pro MPS a $\geq 1 q$ pro LPS
 - přeškálování l,A: A<0.75: $A\leftarrow2A$, $l\leftarrow2l$ pro l<0.5 a $l\leftarrow2(l-0.5)$ pro $l\geq0.5$

Aritmetické kódování – QM kódování


```
while A < 0.75 do
      if l < 0.5 then
            b \leftarrow \mathbf{0}:
            d \leftarrow 0:
      else
            b \leftarrow \mathbf{I}:
            d \leftarrow 0.5;
      zapiš na výstup b;
     l \leftarrow 2(l-d);
      A \leftarrow 2A:
zapiš na výstup C = \mathbf{I};
načti ze vstupu [-\log_2 q] bitů binární reprezentace čísla x \in [0, 1);
// while ...
while A < 0.75 do
      if l < 0.5 then
            d \leftarrow 0:
      else
            d \leftarrow 0.5:
      l \leftarrow 2(l-d):
      A \leftarrow 2A:
      načti ze vstupu další bit b anebo b \leftarrow \mathbf{0};
     x \leftarrow 2(x-d) + b \frac{1}{2[-\log_2 q]};
```

Aritmetické kódování – QM kódování

- \blacksquare inicializace q=0.5 a aktualizace q podle tabulky hodnot při přeškálování, ne po (de)kódování každého symbolu
- lacktriangle při častějším výskytu LPS než MPS, q>A-q, prohození symbolů včetně aktuálních hodnot l a A, při přeškálování
- e celočíselná implementace: zobrazení [0,1.5) na [0,M-1) $(0.25\mapsto \frac{M}{6},\,0.5\mapsto \frac{M}{3},\,0.75\mapsto \frac{M}{2},1\mapsto \frac{2M}{3})$, $M\geq \frac{4}{3}\frac{1}{q}$, i pro hodnoty q
- použití ve standardu JPEG (JBIG) komprese obrazu