Econometrics by Prof. Ju

• 前半学期都在讲高级概率论的知识;然后再讲微观计量,不讲时间序列与financial econometrics

经济学是科学吗?

经济学的研究过程: 先看到observation/data, 回去找economic theory去解释现实。

Chapter 1: Introduction to Probability

Probability Space

 $(\Omega, \mathcal{F}, \mathbf{P})$ is the triple.

 Ω : sample space; $\Omega = \{\omega | \omega \text{ is a potential outcome of a random experiment}\}.$

Event E is a collection of possible outcomes of an experiment Ω .

Occurrence: An event E occurs \Leftrightarrow The realized outcome ω belongs to E.

$\sigma-field$

- 1. $\Omega \in \mathcal{F}$
- 2. $E \in \mathcal{F}$ implies $E^C \in \mathcal{F}$. That is, \mathcal{F} is closed under complement.
- 3. $E_1, E_2, ... \in \mathcal{F}$ implies $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}$.

$\sigma-field$ generation

If $\pi \subset 2^{\Omega}, \sigma(\pi)$ is the smallest $\sigma - field$ that contains π .

$$B(R) = \sigma(\{open\ sets\})$$
: Borel

 $\{(-\infty,x]|x\in R\}$ is not closed under countable union, but we can generate a $\sigma-field$ based on it \Rightarrow $\sigma(\{(-\infty,x]|x\in R\})$

Theorem 1.1

 $B(R)=\sigma(\{(-\infty,x]|x\in R\})$... to be proved as homework.

Hint:

- If π_1 and π_2 are $\sigma-field$, then $\pi_1\cap\pi_2$ is also a $\sigma-field$;
- If $\pi_1 \subset \pi_2$, then $\sigma(\pi_1) \subset \sigma(\pi_2)$.

Probability Measure

A set function ${\bf P}$ on the $\sigma-field~{\cal F}$ (domain) is a *probability* or *probability measure* if it satisfies the following conditions:

- 1. $\mathbf{P}(E) \geq 0$ for all $E \in \mathcal{F}$;
- 2. $P(\Omega) = 1$;
- 3. if $E_1, E_2, ... \in \mathcal{F}$ are disjoint, then $\mathbf{P}(\cup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mathbf{P}(E_n)$.

Conditional Probability

For an event F such that P(F)>0, we define the conditional probability of E given F by

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Limit concepts in probability space

Theorem: When $\{E_n\}$ is monotone, $P(\lim_{n\to\infty} E_n) = \lim_{n\to\infty} P(E_n)$.

从数列的上/下极限引入集合的上/下极限:

$$\lim_{n o\infty}\inf a_n=\inf_{n\geq 1}\sup_{k\geq n}a_k,\quad \lim_{n o\infty}\sup a_n=\sup_{n\geq 1}\inf_{k\geq n}a_k.$$

If $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\sup a_n$, we say $\lim_{n\to\infty}a_n$ exists.

Likely in probability space,

$$\lim_{n o\infty}\sup E_n=\cap_{n\geq 1}^\infty\cup_{k\geq n}^\infty E_k,\quad \lim_{n o\infty}\inf E_n=\cup_{n\geq 1}^\infty\cap_{k\geq n}^\infty E_k.$$

Explanation:

$$\omega \in \lim_{n o \infty} \sup E_n \quad \Leftrightarrow \quad orall n, \omega \in B_n (= \cup_{k=n}^\infty E_k) \quad \Leftrightarrow \quad orall n, \exists k \geq n, s.t. \omega \in E_k, \ \lim_{n o \infty} \sup E_n = \{\omega | \omega \in E_n, \quad i.o.\}$$

$$egin{aligned} \omega \in \lim_{n o \infty} \inf E_n & \Leftrightarrow & \exists n, \omega \in A_n (= \cap_{k=n}^\infty E_k) & \Leftrightarrow & \exists n, orall k \geq n, s.t. \omega \in E_k, \ \lim_{n o \infty} \inf E_n = \{\omega | \omega \in E_n, & ev. \} \end{aligned}$$

Obviously, $\lim_{n\to\infty}\inf E_n\subset \lim_{n\to\infty}\sup E_n$.

If $\lim_{n \to \infty} \inf E_n = \lim_{n \to \infty} \sup E_n$, we say $\lim_{n \to \infty} E_n$ exists.

E.g. $\{E_n\}:A,B,A,B,...$ The limit of $\{E_n\}$ does not exist.

$$\limsup E_n = A \cup B$$
, $\liminf E_n = A \cap B$.

Borel-Cantelli lemma

$$\sum_{n=1}^{\infty} \mathbf{P}(E_n) < \infty \quad \Rightarrow \quad \mathbf{P}(\limsup E_n) = 0$$

Analogy: $\forall n, a_n \geq 0, \sum_{n=1}^{\infty} a_n < \infty \quad \Rightarrow \quad \lim a_n = 0.$

$\pi-$ and $\lambda-$ systems

 π -system: $E, F \in \mathcal{P}$ implies $E \cap F \in \mathcal{P}$.

 λ – system:

- $\Omega \in \mathcal{L}$;
- If $E, F \in \mathcal{L}$ and $E \subset F$, then $F E \in \mathcal{L}$;
- If $E_1, E_2, ... \in \mathcal{L}$ and $E_n \uparrow E$, then $E \in \mathcal{L}$.

Theorem: A class ${\mathcal F}$ of subsets of Ω is a $\sigma-field\Leftrightarrow {\mathcal F}$ is both a $\pi-$ and $\lambda-$ system.

Definition 1.1

 $\sigma(S)$: the smallest $\sigma - field$ that contains S;

 $\pi(S)$: the smallest $\pi-$ system that contains S;

 $\lambda(S)$: the smallest $\lambda-$ system that contains S.

Dynkin's Lemma: Let ${\mathcal P}$ be a $\pi-$ system. Then $\lambda({\mathcal P})=\sigma({\mathcal P})$

Chapter 2: Random Variables, Distributions and Densities

$$(\Omega, \mathcal{F}, \mathcal{P}) \quad o \quad (R, \mathcal{B}(R), P_X) \quad or \quad (R^n, \mathcal{B}(R^n), P_X)$$

Definition 2.1: A random variable X is a measurable function from Ω to \mathbf{R} , i.e., it assigns a number to each outcome: $X = X(\omega)$.

Transformation of a random variable: ($Y=f(X(\omega))$)

$$(\Omega, \mathcal{F}, \mathcal{P}) \quad
ightarrow^X \quad (R, \mathcal{B}(R), P_X) \quad
ightarrow^f \ (R, \mathcal{B}(R), P_Y)$$

Define the distribution of Y to be

$$orall A \in \mathcal{B}(R), \quad P_Y(A) \equiv P_X[f^{-1}(A)] = P[X^{-1}(f^{-1}(A))]$$

Chapter 3: Expectations

$$E(X) = \int X dP = \int X(\omega) dP$$

where X here is called "integrand", and P is called "integrator". ---- Lebesque Integral

Lebesque Integral

直观理解:按照纵轴来积分,

$$\int f d\mu = \lim \sum_{i=1}^n \xi_i \cdot \mu \{x: y_{i-1} \leq f(x) \leq y_i\}$$

where μ is the measure (length), $\xi \in [y_{i-1}, y_i]$.

Lebesque Integral is a generalization of Riemann Integral, in the sense that Lebesque Integral == Riemann Integral whenever the latter exists.

E.g. (Dirichlet $f(\cdot)$)

$$\int_0^1 f(x)dx = 1 \cdot \mu(\{x|f(x) = 1\}) + 0 \cdot \mu(\{x|f(x) = 0\})$$

= $1 \cdot 0 + 0 \cdot 1 = 0$

• Note: 有理数是可列的, 测度为零。

计算方法:

When $f(\cdot) \geq 0$ is continuous, we construct a sequence $\{f_n\} \uparrow f$, so that

$$\int f dP \equiv \lim_{n o\infty} \int f_n dP,$$

where $\{f_n\}$ is a simple function.

More generally, when $f(\cdot)$ is continuous (not necessarily nonnegative), construct

$$f = f^+ - f^- = \max(f(x), 0) - \max(-f(x), 0)$$

to divide $f(\cdot)$ into positive & negative parts, so that f^+ & f^- are both nonnegative.

$$\Rightarrow \int f dP = \int f^+ dP - \int f^- dP$$

但一般情况下,当对应的黎曼积分存在时,仍然用黎曼积分方法计算更为简单,否则按照上述方法也可计算。

Transformation of a random variable

$$Y=f(X(\omega))$$
 $E(Y)=E[g(X)]=\int g(X(\omega))dP=\int g(X)dP_X$

所以没必要用 $\int g(X(\omega))dP$ 去计算,完全可以用 $\int g(X)dP_X$ 计算,即进入到X的概率空间算,不需要回到 ω 的概率空间。

$$dP_X = p(x) \cdot d\mu = p(x) \cdot \mu(dx) = p(x) \cdot dx = dF(x)$$
 $\Rightarrow \frac{dP_X}{d\mu} = p(x) : local \ ratio$

$$E[Y] = E[g(X)] = \int g(X(\omega))dP = \int g(x)dP_X = \int g(x)p(x)d\mu = \int g(x)dF(x)$$

Theorem 3.1: (Random-Nikodym Theorem)

Let μ and ν be two nonnegative measures on a measure space (M, \mathcal{M}) . If ν is absolutely continuous with respect to (w.r.t.) μ . That is, $\forall A \in \mathcal{M}, \nu(A) = 0$, whenever $\mu(A) = 0$.

Then, ν can be represented as

$$u(A) = \int_A f d\mu$$

Some properties

$$Cov(X,Y) = E[(X - EX)(Y - EY)^T] = E[XY^T] - E[X](E[Y])^T$$
 $Var(X) = Cov(X,X) = E[XX^T] - E[X](E[X])^T$
 $\Rightarrow Cov(AX,BY) = ACov(X,Y)B^T$
 $Var(AX) = AVar(X)A^T$
 $\rho_{X,Y} \equiv corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}}$

Properties of Expectation

- 1. Linearity
- 2. Monotonicity: $g_1(X) \geq g_2(X) \quad \Rightarrow \quad E(g_1(X)) \geq E(g_2(X))$
- 3. Chebyshev Inequalities: $P\{|X| \geq arepsilon\} \leq rac{E|X|^k}{arepsilon^k}, orall arepsilon > 0$
 - The Inequality gives the upper bound of the probability measure of the tails;

$$egin{align} egin{align} arphi & & Proof: & \mathbf{1}\{|X| \geq arepsilon\} \leq \left|rac{X}{arepsilon}
ight|^k \ & & \Rightarrow & \mathbf{E}[1\{|X| \geq arepsilon\}] = P(\{|X| \geq arepsilon\}) \leq rac{E|X|^k}{arepsilon^k} \ \end{aligned}$$

- 4. Cauchy-Schwartz Inequality
- 5. Jensen's Inequality
- 6. Define k-th moment of X to be $\mu_k \equiv E[X^k]$, k-th central moment $\mu_k^* \equiv E[(X-E[X])^k]$.

$$\circ$$
 If 0

$$\circ \ \mu_k < \infty \Leftrightarrow \mu_k^* < \infty$$

Independence

Definition 3.1: Independence between 2 $\sigma-fields$

Suppose F and G are 2 $\sigma - fields$. We say F and G are independent iff $\forall A \in F$ and $\forall B \in G$, A and B are independent.

Definition 3.2: X and Y are independent if $\sigma(X)$ and $\sigma(Y)$ are independent

Intuitively, $P(\{X \in A\} | \{Y \in B\}) = P(\{X \in A\})$. The information that Y provides no new information for inferring X, and vice versa.

Theorem 3.2: X and Y are independent $\Leftrightarrow p(x,y) = p(x) \cdot p(y)$

Proof:

$$X \ and \ Y \ are \ independent \ \Leftrightarrow \sigma(X) \ and \ \sigma(Y) \ are \ independent \ \Leftrightarrow orall A \in \mathcal{B}(R), orall B \in \mathcal{B}(R), P(X^{-1}(A) \cap P(Y^{-1}(B)) = P(X^{-1}(A)) \cdot P(Y^{-1}(B))$$

Let Z = (X, Y)'

$$egin{aligned} LHS &= P(\{\omega | \omega \in X^{-1}(A) \ and \ \omega \in Y^{-1}(B)\}) \ &= P(\{\omega | X(\omega) \in A \ and \ Y(\omega) \in B\}) \ &= P(\{\omega | Z(\omega) \in A \times B\}) \ &= P(Z^{-1}(A \times B)) = P_Z(A \times B) \ RHS &= P_X(A) \cdot P_Y(B) \end{aligned}$$
 $\Leftrightarrow \forall A, B \in \mathcal{B}(R), P_Z(A \times B) = P_X(A) \cdot P_Y(B)$

Using the Random-Nikodym Theorem, we have

$$P_Z(A imes B) = \int \int_{A imes B} p(x,y) \mu(dxdy), \ P_X(A) = \int_A p(x) \mu(dx), P_Y(B) = \int_B p(y) \mu(dy),$$

so

$$egin{aligned} orall A, B &\in \mathcal{B}(R), \int \int_{A imes B} p(x,y) \mu(dxdy) = \int_A p(x) \mu(dx) \cdot \int_B p(y) \mu(dy) \ &= \int \int_{A imes B} p(x) p(y) \mu(dxdy) \ &\Rightarrow \quad p(x,y) = p(x) \cdot p(y). \end{aligned}$$

• Note: Fubini's Theorem: a double Integral can be computed using iterated integral

Conditional Expectation

$$E(Y|X) = E(Y|\sigma(X))$$

E.g. y=g(X)+u. g and u are unknown, while y and X are observable. We can estimate it using the identification condition E(u|X)=0. Then, we have

$$E(y|X) = E(g(X)|X) + E(u|X) = E(g(X)|\sigma(X)) + 0 = g(X).$$

Chapter 6: Asymptotic Theory

Convergence of a R.V. sequence

- From frequency to probability...
- R.V.本身也是 ω 的函数,考虑R.V.的收敛很复杂。

数学概念:连续与一致连续

Convergence Modes

Definition 6.1 (uniformly continuous)

$$orall arepsilon > 0, \exists \delta \quad s.t. \quad orall x, x_0, |x-x_0| < \delta \quad \Rightarrow \quad |f(x)-f(x_0)| < arepsilon$$

• Remark: δ is uniform for any choice of x_0

Definition 6.2 (point-wise convergence)

Let $\{x_n\}$ be defined on a common probability space $(\Omega, \mathcal{F}, \mathcal{P})$. We say that $\{x_n\}$ converges point wise $(\mathbb{Z} \ | \mathbb{Z})$ to x $(x_n \to_{p.w.} x)$ if

$$orall \omega \in \Omega, x_n(\omega) o x(\omega).$$

Definition 6.3 (almost sure convergence, strong convergence)

Let $\{x_n\}$ be defined on a common probability space $(\Omega, \mathcal{F}, \mathcal{P})$. We say that $\{x_n\}$ converges almost surely to x if

$$P(\{\omega|x_n(\omega) o x(\omega)\}) = 1,$$

which is equivalent to

$$\forall \varepsilon > 0, P[\cap_{N=1}^{\infty} \cup_{n \geq N} \{\omega : |x_n(\omega) - x(\omega)| > \varepsilon\}] = 0.$$

Obviously,

$$\rightarrow_{p.w.} \Rightarrow \rightarrow_{a.s.}$$

Definition 6.4 (convergence in probability, weak convergence)

Let $\{x_n\}$ be defined on a common probability space $(\Omega, \mathcal{F}, \mathcal{P})$. We say that $\{x_n\}$ converges in probability to x $(x_n \to_p x)$ if

$$orall arepsilon > 0, P\{\omega: |x_n(\omega) - x(\omega)| > arepsilon\} o 0.$$

Compare that

- $P\{\omega:...\} o 0$ is the probability of a number ω ;
- $P(\{\omega|...\})=1$ is the probability of an event $\{\omega|...\}$.

Definition 6.5 (convergence in L^p)

Let $\{x_n\}$ be defined on a common probability space $(\Omega, \mathcal{F}, \mathcal{P})$. We say that $\{x_n\}$ converges in L^p to x ($x_n \to_{L^p} x$) if

$$E|x_n-x|^p o 0.$$

Note:

 L^p space is a space of functions for which the p-th power of the absolute value is Lebesque Integrable. That is,

$$||f||_p \equiv \left[\int |f|^P d\mu
ight]^{1/p} < \infty. \qquad 1 \leq p < \infty$$

Relation among modes of convergence

- $\rightarrow_{a.s.}$ does not imply \rightarrow_{L^p} , and vice versa;
- $\bullet \ \to_{a.s.} \ \Rightarrow \ \to_P$, while the reverse is false;
- ullet \to_{L^p} \Rightarrow \to_P (easily proved through Chebyshev Inequality), while the reverse is false;
- why consider $\to_{L^p} \implies \to_P$? Sometimes, in order to prove \to_P , we need to first prove \to_{L^p} , which is often easier.
 - \circ E.g. if $T_n \to_{L^2} \theta_0$, i.e.
 - $egin{aligned} & E[T_n- heta_0]^2=(E[T_n]- heta_0)^2+Var[T_n], or\ MSE=bias^2+variance. \end{aligned}$ if $bias^2 o 0\ \&\ variance o 0$, then MSE o 0.

Definition 6.6 (convergence in distribution)

Let $\{x_n\}$ be defined on a common probability space $(\Omega, \mathcal{F}, \mathcal{P})$. We say that $\{x_n\}$ converges in distribution to x $(x_n \to_d x)$ if

$$E[f(x_n)] \to E[f(x)]$$

for all f that is bounded and continuous almost surely in P_X

Remark:

- \rightarrow_d is a weak convergence mode, so that it does not imply $\rightarrow_{a.s.\ or\ p}$;
- $ullet \ P_{X_1} = P_{X_2} \quad \Leftrightarrow \quad \int f dP_{X_1} = \int f dP_{X_2}, orall f \quad \Leftrightarrow \quad E[f(X_1)] = E[f(X_2)], orall f$

Lemma 6.1

Let F_{X_n} and F_X denote the distribution functions for X_n and X. Let $\varphi_n(t)=E[e^{itX_n}]$ and $\varphi(t)=E[e^{itX}]$ denote the characteristic functions of X_n and X respectively. Then, the following are equivalent:

- $X_n \to_d X$;
- $E[f(X_n)] o E[f(X_n)]$ for all f that is bounded and *uniformly continuous*;
- ullet $F_{X_n}(t)
 ightarrow F_X(t)$ for every continuity point of F_X ;
- $\varphi_{X_n}(t) \to \varphi_X(t) \ \forall t. \ (f_X = \varphi_X(t)) = \int e^{itx} \cdot f_X(x) dx$ 是傅里叶变换与反变换的关系,因此等价)

Theorem 6.1

$$X_n \to_P X \quad \Leftrightarrow \quad X_n \to_d X$$

Theorem 6.2

If $X_n \to_P X$, then there exists $\{X_{n_k}\}$ s.t. $X_{n_k} \to_{a.s} X$.

Theorem 6.3

Let $\{X_n\}$ be defined on a common probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and c be a **constant**. If $X_n \to_d c$, then $X_n \to_P c$.

Theorem 6.4

Let f be a continuous function. We have

- $X_n \rightarrow_{a.s} X \Rightarrow f(X_n) \rightarrow_{a.s} f(X)$
- $X_n \to_P X \Rightarrow f(X_n) \to_P f(X)$
- $X_n \to_d X \Rightarrow f(X_n) \to_d f(X)$

Convergence rate

收敛速度慢的叫leading term, 快的叫smaller term。 E.g. When calculating $\frac{1}{\sqrt{n}} + \frac{1}{n^2}(n \to \infty)$, $\frac{1}{\sqrt{n}}$ is the leading term while $\frac{1}{n^2}$ is the smaller term.

Definition 6.7

$$egin{aligned} x_n &= o(a_n) &\Leftrightarrow& rac{x_n}{a_n}
ightarrow 0, \ y_n &= O(b_n) &\Leftrightarrow& \left|rac{y_n}{b_n}
ight| < M. \end{aligned}$$

- Pronounce the above as: x_n is small o, y_n is big O.
- Big O means "bounded by".

Remark 6.1

- $\begin{array}{ll} \bullet & x_n = o(1): \frac{x_n}{1} \to 0, i.e.x_n \to 0 \\ \bullet & y_n = O(1): \left|\frac{y_n}{1}\right| < M, i.e.|y_n| < M, \text{or } y_n \text{ is bounded.} \end{array}$
- $o(a_n)=a_n o(1)$, where the = here represents "equal", not "is"
- Similarly, $O(b_n) = b_n O(1)$
- $o(1) \subset O(1)$, or o(1) is O(1); the reverse is not true

Lemma 6.2

- $o(1) \cdot O(1) = o(1)$
- O(o(1)) = o(1)
- o(O(1)) = o(1)

Definition 6.8

- If $rac{x_n}{a_n} o_P 0$, we write $x_n = o_p(a_n)$ (smaller term)
- If $\forall \varepsilon>0, \exists M>0,$ s.t. $P\left\{\left|\frac{y_n}{b_n}\right|>M\right\}<arepsilon$ eventually $(\exists N, \forall n\geq N),$ we write $y_n=$ $O_pig(b_nig)$ (bounded in probability by b_n up to constant M)

Theorem 6.5

Let $X_n \to_d X$. Then

- $X_n = O_n(1)$
- $X_n + o_n(1) \rightarrow_d X$ (i.e. Noise不影响收敛性)

Corollary 6.1

If $X_n \to_d X$ and $Y_n \to_p c$, then $X_n Y_n \to_d c X$.

 $\Delta-method$

Chapter 7: Law of Large Numbers (LLN) and Central Limit Theorem (CLT)

Law of Large Numbers

- Strong law of large numbers (SLLN): convergence almost surely
- Weak law of large numbers (WLLN): convergence in probability

Remark 7.1

• Regularity condition requires some degree of independence of the random variables.

Kolmogorov LLN

If $\{\xi_i\}$ is i.i.d., and $E\xi_i < \infty$, then

$$rac{1}{n}\sum_{i=1}^n \xi_i
ightarrow_{a.s.} E\xi_i.$$

• 即,只需要一阶矩有限,不需要二阶四阶矩的有限性。主要原因在于i.i.d.的条件已经非常强了。

Central Limit Theorem

A sufficient condition (Lindeberg condition)

$$\sum_{i=1}^n E \xi_{ni}^2 1\{|\xi_{ni}|>arepsilon\} o 0, orall arepsilon>0.$$

• The tails of all the small random variables disappear; each random variable (or shock) is not dominant.

A much stronger condition (Liapounov condition)

$$\sum_{i=1}^n E |\xi_{ni}|^{2+\delta} o 0, \delta > 0.$$

Note that

$$\sum_{i=1}^n E \xi_{ni}^2 1\{|\xi_{ni}|>arepsilon\} \leq \sum_{i=1}^n E \xi_{ni}^2 1\{|\xi_{ni}|>arepsilon\} \cdot \left|rac{\xi_{ni}}{arepsilon}
ight|^\delta \leq rac{\sum_{i=1}^n E |\xi_{ni}|^{2+\delta}}{arepsilon^\delta} o 0.$$

Corollary 7.1

Let $\{X_i\}$ be i.i.d random variables with $EX_i=0, Var(X_i)=\sigma^2$. Then

$$rac{1}{\sqrt{n}}\sum_{i=1}^n X_i = \sqrt{n}ar{X}
ightarrow_d N(0,\sigma^2).$$

Dominated convergence theorem (DCT)

If $f_n
ightharpoonup_{a.s./p} f$ and $|f_n(x)| \leq g(x)$ almost surely orall n, then

$$\lim_{n o\infty} Ef_x = E\lim_{n o\infty} f_n = Ef.$$

Chapter 8: Asymptotics for MLE

DGP

 $y = g(z, \theta_0) + u$. θ_0 is unknown; g is known. $X_1, ..., X_n$ is i.i.d. random variables, with density $\mathcal{P} = \{p(\cdot, \theta) | \theta \in \Theta\}$.

Likelihood

p(X, heta) is interpreted is a function of heta

$$p(X, heta) = \prod_{i=1}^n p(X_i, heta)$$

Definition 8.1: (MLE)

$$\hat{ heta}_n \equiv rgmax_{ heta \in \Theta} p(X, heta) = rgmax_{ heta \in \Theta} \prod_{i=1}^n p(X_i, heta)$$

• How to know such an estimator is a good one? Consistency, ...

$$\begin{split} L(X,\theta) &= ln(p(X,\theta)) \Rightarrow \\ \hat{\theta}_n &\equiv \argmax_{\theta \in \Theta} L(X,\theta)/n = \argmax_{\theta \in \Theta} \sum_{i=1}^n L(X_i,\theta)/n \end{split}$$

• Why calculate log?

Lemma 8.1

$$\forall \theta \in \Theta, \quad E_0 l(X_i, \theta_0) \geq E_0 l(X_i, \theta).$$

Theorem 8.1

Under suitable regularit conditions, we have $\hat{\theta}_n \rightarrow_{a.s.\ or\ p} \theta_0$.

Score Function

$$egin{aligned} s(X, heta) &\equiv rac{\partial}{\partial heta} l(X, heta) = (l_1,...,l_m)' \ s(X_i, heta) &\equiv l(X_i, heta) \ \Rightarrow s(X, heta) &= \sum_{i=1}^n s(X_i, heta) \end{aligned}$$

Then, we have

$$s(X,\hat{ heta}_n)=0.$$

Proposition 8.1

$$E_{\theta}s(X,\theta)=0.$$

Fisher Information

$$I(heta) \equiv E_{ heta}[s(X, heta)\cdot s(X, heta)'] = Var_{ heta}s(X, heta) \
onumber \ \iota_i(heta) \equiv E_{ heta}[s(X_i, heta)\cdot s(X_i, heta)'] \
arrow I(heta) = E_{ heta}[(\sum_{i=1}^n s(X_i, heta))\cdot (\sum_{i=1}^n s(X_i, heta)')] = \sum_{i=1}^n \iota_i(heta) =^{i.i.d.} n\iota(heta)$$

• 直观上理解, ι 越大, 说明s 越大, 即loglikelihood 的曲度越大。

Hessian Matrix

$$h(X, \theta) = rac{\partial^2}{\partial \partial'} L(X, \theta) = egin{pmatrix} l_{11} & \cdots & l_{1m} \ dots & \ddots & dots \ l_{m1} & \cdots & l_{mm} \end{pmatrix}$$

$$h(X_i, heta) = rac{\partial^2}{\partial \partial'} L(X_i, heta) = egin{pmatrix} l_{11} & \cdots & l_{1m} \ dots & \ddots & dots \ l_{m1} & \cdots & l_{mm} \end{pmatrix}$$

$$h(X, heta) = \sum_{i=1}^n h(X_i, heta)$$

Expected Hessian

$$H(\theta) \equiv E_{\theta} h(X, \theta)$$

 $H_i(\theta)$ 类似定义。

Proposition 8.2

$$I(\theta) = -H(\theta)$$

• 上式将Variance 与 Curvature 联系起来!

Asymptotic Normality of MLE

Theorem 8.2

Under suitable regularity conditions,

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightarrow_d X(0, \iota(\theta_0)^{-1})$$

Regularity conditions are:

1.
$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} s(X_i, \theta_0) = \sqrt{n} \bar{s}(X, \theta_0) = \to_d N(0, \iota(\theta_0))$$
 ----from CLT 2. $\bar{h}(X, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} h(X_i, \theta_0) \to_P H(\theta_0) = -I(\theta_0)$ -----from LLN

2.
$$h(X, heta_0)=rac{1}{n}\sum_{i=1}^n h(X_i, heta_0)
ightarrow_P H(heta_0)=-I(heta_0)$$
 ----from LLN

- 3. $\bar{s}(X,\theta)$ is differentiable at θ_0 for all X
- 这里 $\iota(\cdot) \equiv I(\cdot)$, 记号通用。

Asymptotic Test of MLE (LR, LM, Wald)

$$H_0: heta = heta_0$$

$$H_1: heta
eq heta_0$$

Definition 8.1

$$LR = 2\left[\sum_{i=1}^{n} l(X_i, \hat{ heta}_0) - \sum_{i=1}^{n} l(X_i, heta_0)\right]$$
 $W = \sqrt{n}(\hat{ heta}_n - heta_0)'\iota(\hat{ heta}_n)\sqrt{n}(\hat{ heta}_n - heta_0)$
 $LM = \left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n} s(X_i, heta_0)\right)'\iota(heta_0)^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n} s(X_i, heta_0)\right)$

Theorem 8.3

Under suitable conditions,

$$LR, W, LM \rightarrow_d \chi_m^2$$
.

Chapter 4: Matrix Algebra and Normal Distribution

4.1 Matrix Algebra

Transpose and inverse

Idempotent matrix: 幂等矩阵

$$A^2 = A \cdot A = A \Rightarrow A^k = A$$

(orthogonal) projection matrix

column space(列空间): $b=(b_1,b_2,...,b_k)\in R^k$

正交投影要求满足的特性

$$(Y_{n imes 1}-Xb)\perp X_i,\; i=1,...,k \;\;\Rightarrow\;\; X'(Y-Xb)=0 \;\;\;\Rightarrow\;\; b=(X'X)^{-1}X'Y \;\;\Rightarrow\;\; projection\; is\; Xb$$

Let $P_X = X(X'X)^{-1}X'$. Then projection residual is

$$Y - Xb = Y - P_XY = (I - P_X)Y.$$

Two idempotent matrices P_X and $I - P_X$:

- 1. P_XY : projection of Y onto the space spanned by columns of X. So obviously, $P_X(P_XY)$ means projected twice, which is not needed; and $P_X(P_XY) = P_XY$.
- 2. $(I P_X)Y$: projection of Y onto the orthogonal of space spanned by columns of X.

Trace

$$Tr(AD) = Tr(DA)$$

E.g.

$$Tr(P_X) = Tr(X(X'X)^{-1}X') = Tr((X'X)^{-1}X'X) = Tr(I_k) = k$$

$$Tr(I_n - P_X) = Tr(I_n) - Tr(P_X) = n - k$$

Positve/Negative (semi) definite

Rank

Definition: dimension of the space generated by row/column vectors

$$r(A) = r(A'A)$$

How to prove it? Two ways:

- rank-nullity theorem: Consider a mapping $T:V\to W$. Then the dimension of domain = dim of Image + dim of NULL(T). For the 2 mapping $T_1:V\to AV$ and $T_2:V\to A'AV$, the dim of domain and NULL(T) are the same. So the dim of Image are also the same, which means r(A)=r(A'A).
- Lemma: $NULL(A)=[R(A')]^{\perp}$ where $R(A')=\{y|y=A'X:X\in R^m\}$. So, $NULL(A)^{\perp}=R(A')$ and $NULL(A'A)^{\perp}=R(A'A)$ \Rightarrow R(A')=R(A'A)

Partitioned matrices

Characteristic vectors (eigen vectors) and characteristic roots (eigen values)

$$AC = \lambda C$$

Theorem 4.1

For a symmetric matrix $A_{n\times n}$, it has n distinct eigen vectors $c_1,c_2,...,c_n$ s.t. $C'C=I,\ C=(c_1,c_2,...,c_n)$.

• This means $c_i' \cdot c_j = 0, \forall i \neq j$. 每一个特征向量都是标准正交向量。

Eigen decomposition

$$Ac_i = \lambda_i c_i, i = 1,...,n$$

$$A(c_1,...,c_n)=(c_1,...,c_n) egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix} \Rightarrow AC=C\Lambda.$$

We have (eigen decomposition)

$$A=C\Lambda C'=(c_1,...,c_n)egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}egin{pmatrix} c_1 \ c_2 \ dots \ c_n \end{pmatrix} = \sum_{i=1}^n \lambda_i c_i c_i'$$

 $r(A)=r(C\Lambda C')=r(\Lambda).$ Using this way to calculate the rank of A is much easier.

What if A is not symmetric? Note that $r(A) = r(A^\prime A)$ and do as the above.

Theorem 4.2

$$A^2 = A \implies \lambda = 0 \text{ or } 1.$$

It is easy to find that

$$A^k = C\Lambda^k C'$$

and we can define that

$$A^{1/2} = C\Lambda^{1/2}C'$$

Decomposition of orthogonal projection

Theorem 4.3

An orthogonal projection $P_{n\times n}$ of m-dimension $(r(P_{n\times n})=m)$ can be written as $P_{n\times n}=H_{n\times m}$ · $H'_{n\times m}$, where $H'_{n\times m}\cdot H_{n\times m}=I_{m\times m}$.

4.2 Multivariate Normal Distribution

Definition 4.1

Multivariate normal distribution $X \sim N(\mu, \sum)$ if

$$p(x) = rac{1}{(2\pi)^{n/2}} (det \Sigma)^{-1/2} \exp\left(-rac{1}{2} (x-\mu)' \Sigma^{-1} (x-\mu)
ight).$$

Lemma 4.1

Let $Z \sim N_n(0,I)$ and $X = \mu + \Sigma^{1/2} Z$. Then $X \sim N(\mu,\Sigma)$.

Corollary 4.1

$$X \sim N(\mu, \Sigma), Y = AX + b \quad \Rightarrow \quad Y \sim N(A\mu + b, A\Sigma A').$$

4.3 Quadratic Forms

Theorem 4.4

Let $X \sim N_n(0,\Sigma)$. Then

$$X'\Sigma^{-1}X \sim \chi_n^2$$
.

Theorem 4.5

Let $Z \sim N_n(0,I)$ and P be an m-dimensional orthogonal projection in R^n . Then we have

$$Z'PZ\sim\chi_m^2.$$

Theorem 4.6

Let $Z \sim N(0,I)$ and let A and B be non-random matrices. Then A'Z and B'Z are independent iff A'B=0.

Corollary 4.2

Let $Z\sim N(0,I)$, and let P and Q are orthogonal projections s.t. PQ=0. Then Z'PZ and Z'QZ are independent.

Corollary 4.3

Let $Z \sim N(0,I)$, and let P and Q are orthogonal projections of dimension p and q , s.t. PQ=0 . Then

$$rac{(Z'PZ)/p}{(Z'QZ)/q} \sim F_{p,q}$$

Chapter 9: Regression Models

9.1 The Model

Matrix form:

$$y = X\beta + \epsilon$$

It is impossible to identify the model without assumptions, because the number of equations (n) is smaller than that of unknowns (n+m)

Identification conditions:

- 1. X has a full column rank: rank(x) = m. 列满秩(x不完全共线),不是行满秩!
- 2. $E(X_iu_i)=0$ (m restrictions) and $E(u_i)=0$. Actually, we can specify a stronger assumption: $E(u_i|X_i)=0 \Rightarrow E(X_iu_i)=E[X_iE(u_i|X_i)]=0$.

According to LLN, we can use sample mean to estimate population mean.

9.2 Sample Analogue Estimator (SAE)

$$eta = [E(X'X)]^{-1}E(X'Y) \ \Rightarrow \hat{eta}_{SAE} = (X'X)^{-1}X'Y = eta + (X'X)^{-1}X'u_i
ightarrow_p eta$$

where (according to LLN)

$$(X'X)^{-1}X'u_i = (E(X'X) + o_p(1))o_p(1) = o_p(1).$$

• Consistency is satisfied.

$$\sqrt{n}(\hat{\beta} - \beta) \rightarrow_d N[0, (EX'X)^{-1}E(u^2X'X)(EX'X)^{-1}]$$

$$\Rightarrow \hat{\beta} = \beta + O_p(\frac{1}{\sqrt{n}})$$

$$\hat{u} = y - X\hat{\beta}, u = y - X\beta$$

$$\Rightarrow \hat{u} = u - X(\hat{\beta} - \beta) = (I - P_X)u$$

$$= u - O_p(1) \cdot O_p(\frac{1}{\sqrt{n}}) = u + O_p(\frac{1}{\sqrt{n}})$$

That is, convergence speed of $\hat{\beta}$ and \hat{u} are the same, $O_p(\frac{1}{\sqrt{n}})$.

Let

$$V = (EX'X)^{-1}E(u^2X'X)(EX'X)^{-1}$$

• Case 1: Homoskedasticity $E(u_i^2|x_i)=\sigma^2$. Then $E(u^2X'X)=\sigma^2E(X'X)$, so that $V=\sigma^2(EX'X)^{-1}$

Now the question is: how to estimate σ^2

$$\hat{\sigma}^2 = rac{1}{n-m}\sum_{i=1}^n \hat{u}_i^2,$$

We can show that $\hat{\sigma}^2 o_p \sigma^2$ and $E\hat{\sigma}^2 = \sigma^2$. Proof for the latter:

$$E\hat{\sigma}^{2} = \frac{1}{n-m} E[\hat{u}'\hat{u}] = \frac{1}{n-m} E[u'(I-P_{X})u]$$

$$= \frac{1}{n-m} E[Tr(u'(I-P_{X})u)] = \frac{1}{n-m} E[Tr((I-P_{X})uu')]$$

$$= \frac{1}{n-m} Tr(E[(I-P_{X})uu']) = \frac{1}{n-m} Tr(E[(I-P_{X})E(uu'|X)])$$

$$= \frac{1}{n-m} Tr(E[(I-P_{X})\sigma^{2}I]) = \frac{\sigma^{2}}{n-m} Tr(E(I-P_{X}))$$

$$= \frac{\sigma^{2}}{n-m} E(Tr(I-P_{X}))$$

$$= \frac{\sigma^{2}}{n-m} E(n-m) = \sigma^{2}$$

ullet Case 2: Heteroskedasticity i.e. $E(u_i^2|X_i)=\sigma^2(X_i)$

$$V = (E(X'X))^{-1}E(\sigma^2(X)X'X)(E(X'X))^{-1}$$

We want to show that

$$rac{1}{n}\hat{u}^2X'X
ightarrow_p E(u^2X'X)=E(\sigma^2(X)X'X)$$

is a good estimator, which is true.

9.3 Least Square Estimator (LSE)

$$y_i = g(X_i, heta_0) + u_i, i = 1, 2, ..., n, \quad E(u_i|X_i) = 0$$

where $g(\cdot)$ is known. $E(u_i|X_i)=0$ is the **identification condition**.

We need to optimize

$$\hat{ heta}_{LSE} = rg\min_{ heta} rac{1}{n} \sum_{i=1}^n [y_i - g(X_i, heta)]^2$$

The above is a parametric model. We can even estimate an unparametric one as the following:

$$y_i = g(X_i) + u_i, i = 1, 2, ..., n, \quad E(u_i|X_i) = 0$$

where $g(\cdot)$ is unknown. $E(u_i|X_i)=0$ is the identification condition.

Calculate the conditional mean

$$E(y_i|X_i = x) = E[g(X_i)|X_i = x] + E(u_i|X_i = x) = g(x) + 0$$

 $\Rightarrow g(x) = E(y_i|X_i = x)$

With sample mean, we can create a **mapping relation** to estimate the function of $g(\cdot)$.

Go back to linear model

$$y_i = X_i' eta + u_i, i = 1, 2, ..., n,$$

we have

$$egin{align} \hat{eta}_{SAE} &= (X'X)^{-1}X'Y, \ \hat{eta}_{LSE} &= rg\min_{eta} rac{1}{n} \sum_{i=1}^n (y_i - X_i'eta)^2 = (X'X)^{-1}X'Y \ \end{pmatrix}$$

Nonlinear Least Squares (NLS)

$$y_i=m(X_i,eta)+u_i, i=1,2,...,n, \quad E(u_i|X_i)=0$$
 $\hat{ heta}_{NLS}=rg\min_{eta}rac{1}{n}\sum_{i=1}^n[y_i-m(X_i,eta)]^2$

Asymptotic Normality of NLS estimator

$$\sqrt{n}(\hat{eta}-eta)
ightarrow_d [E(
abla_eta m
abla_eta m')]^{-1}N[0,E(u_i^2
abla_eta m
abla_eta m')]$$

Supplement for derivative calculation

$$rac{\partial}{\partialeta}lpha'eta=lpha, \quad rac{\partial}{\partialeta}eta'lpha=lpha \ rac{\partial}{\partialeta}eta'Aeta=(A+A')eta$$

9.4 MLE of Linear Model

$$egin{aligned} y_i &= m(X_i,eta) + u_i, i = 1,2,...,n, \quad u_i | X_i \sim N(0,\sigma^2) \ &\Rightarrow y | X \sim N(Xeta,\sigma^2I) \ &\Rightarrow l(eta,\sigma^2) = -rac{n}{2}ln(2\pi) - rac{n}{2}ln(\sigma^2) - rac{(y-Xeta')(y-Xeta)}{2\sigma^2} \ &\Rightarrow \hat{eta}_{MLE} = (X'X)^{-1}X'Y, \hat{\sigma}^2 = rac{1}{n}(y-X\hat{eta})'(y-X\hat{eta}) = rac{1}{n}\hat{u}'\hat{u} \end{aligned}$$

MLE要求知道的信息比之前的都要多(要求知道扰动项的分布,而不只是零条件均值),所以肯定能识别出来。

9.5 Optimality

$$\hat{eta}_{SAE}=\hat{eta}_{OLS}=\hat{eta}_{MLE}=(X'X)^{-1}X'y$$
 $s^2=rac{1}{n-k}\hat{u}'\hat{u}, E(s^2)=\sigma^2$

Under MLE,

$$\hat{\sigma}^2 = rac{1}{n}\hat{u}'\hat{u},$$

which is biased (finite sample).

Desirable properties for a good estimator:

- 1. Consistency;
- 2. Unbiasedness;

Definition 9.1: Mean Square Error $\,T= au(X)\,$

$$E_{ heta}(T- heta)^2 = E_{ heta}[(T-E_{ heta}T)^2] + (E_{ heta}T- heta)^2 \ = Var_{ heta}T + (bias_{ heta}T)^2$$

If mean square error converges to 0, then (according to convergence in L^p) we get convergence in probability, so that consistency is satisfied.

We need to balance between variance and bias.

Definition 9.2: Uniformly Minimum Variance Unbiased (UMVU) Estimator $\,T_*= au^*(X)\,$

- $E_{\theta}T^* = \theta$;
- $E_{\theta}(T_* \theta)^2 \leq E_{\theta}(T \theta)^2$ for any **unbiased** estimator T and θ .
- UMVU finds the one with minimum variance among unbiased estimators.

Definition 9.3

$$E_{ heta}T_1=E_{ heta}T_2= heta$$
 , we say T_1 is more **efficient** than T_2 if $Var_{ heta}T_1\leq Var_{ heta}T_2$.

9.6 Finite sample properties of OLS

Theorem 9.1

$$E\hat{eta}=eta, \quad Var(\hat{eta})=\sigma^2(X'X)^{-1} \ Es^2=\sigma^2$$

Under normality assumption, $u_i|X_i\sim N(0,\sigma^2)$, $\hat{eta}=eta+(X'X)^{-1}X'u$

- $\hat{\beta} \sim N[\beta, \sigma^2(X'X)^{-1}]$
- $\frac{(n-k)s^2}{\sigma^2} \sim \chi^2(n-k)$ $\hat{\beta}$ and s^2 are statistically independent.

Theorem 9.2: Gauss-Markov

The OLS estimator \hat{eta} of the model $y_i=X_i'eta+u_i$ ($E(u_i|X_i)=0$ and $E(u_i^2|X_i)=\sigma^2$) is the best linear unbiased estimator (BLUE).

Theorem 9.3

Let T= au(X) be unbiased estimator of heta , then

$$Var_{\theta}\tau(X) \geq [I(\theta)]^{-1},$$

which means $[I(heta)]^{-1}$ is the lower bound, as is called **Cramer-Rao Bound**.

Lemma 9.1

 $\tau(X)$ is unbiased. We have

$$E_{ heta}[au(X)\cdot s(X, heta)']=I.$$

Proof:

$$LHS = \int \tau(x) \frac{\frac{\partial}{\partial \theta'} p(x, \theta)}{p(x, \theta)} p(x, \theta) dx$$

 $= \frac{\partial}{\partial \theta'} \int \tau(x) p(x, \theta) dx$
 $= \frac{\partial}{\partial \theta'} E_{\theta} \tau(x) = \frac{\partial}{\partial \theta'} \theta = I$

Corollary 9.1

$$Cov(\tau(X), s(X, \theta)) = E_{\theta}(\tau(X)s(X, \theta)') - E_{\theta}\tau(X)[E_{\theta}s(X, \theta)']$$

= $I - E_{\theta}\tau(X) \cdot 0 = I$

Conclusion: s^2 estimated from OLS is **unbiased**, but $\hat{\sigma}^2$ estimated from MLE has the least variance (even lower than Cramer-Rao Bound $\frac{2\sigma^4}{n}$ since it is a **biased** estimator).

$$egin{split} Var(s^2) &= Var(rac{(n-k)s^2}{\sigma^2} \cdot rac{\sigma^2}{n-k}) = 2(n-k)rac{\sigma^4}{(n-k)^2} \ &= rac{2\sigma^4}{n-k} > rac{2\sigma^4}{n} \end{split}$$

$$egin{split} Var(\sigma_{MLE}^2) &= Var(rac{n-k}{n}s^2) = rac{(n-k)^2}{n^2}rac{2\sigma^4}{n-k} \ &= rac{n-k}{n}rac{2\sigma^4}{n} < rac{2\sigma^4}{n} \end{split}$$

9.7 F-test

$$H_0: R\beta = r, \quad H_1: R\beta \neq r$$

Definition 9.4: Constrained Least Squares (CLS)

$$y = X\beta_u, \quad R\beta = r$$

We wanna minimize

$$ilde{eta} = rg\min_{eta} (y - Xeta)'(y - Xeta), \quad s.t.Reta = r.$$

Note that

$$\hat{eta} = rg\min_{eta} (y - Xeta)'(y - Xeta) = (X'X)^{-1}X'y$$

Theorem 9.4

•
$$\tilde{\beta} = \hat{\beta} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)$$

•
$$\tilde{u}'\tilde{u} - \hat{u}'\hat{u} = (R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)$$

$$\min \alpha'(X'X)\alpha$$
 s.t. $R\alpha = R\hat{\beta} - r, \alpha \equiv \hat{\beta} - \beta$

Definition 9.5

$$ilde{\sigma}^2 = rac{1}{n} ilde{u}' ilde{u}, \quad ilde{u} = y - X ilde{eta}$$

Note: The **CLS** estimators $\tilde{\beta}$ and $\tilde{\sigma}^2$ are also the constrained **ML** estimator under normality.

Hypothesis Testing under Normality

$$H_0: R\beta = r, \quad H_1: R\beta
eq r$$

Theorem 9.5

Assume normality. The LR test rejects the null hypothesis $H_0:Reta=r$ v.s. $H_1:Reta=r$ for large values of

$$F = \frac{(\tilde{u}'\tilde{u} - \hat{u}'\hat{u})/q}{s^2} = \frac{\frac{1}{q}(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)}{s^2}.$$

Asymptotic Test

Robust Variance-Covariance Matrix

$$\sqrt{n}(\hat{eta}-eta) \sim N(0, [E(X_iX_i')]^{-1}E(u_i^2X_iX_i')[E(X_iX_i')]^{-1})$$

Wald, LR, LM tests

$$W = rac{R\hat{eta} - r \sim_a N(0, 0, \sigma^2 R(X'X)^{-1}R')}{\hat{\sigma}^2}
ightarrow_d \chi_q^2$$

If $W\gg 0$, then we can reject $H_0:R\beta=r$.

$$LR = ... = W + O_p(rac{1}{n})
ightarrow_d \chi_q^2$$

For LM test, define

$$\mathcal{L} = \mathcal{L}(eta, \sigma^2) + \lambda'(Reta - r) \ = -rac{n}{2}ln(2\pi) - rac{n}{2}ln(\sigma^2) - rac{1}{2\sigma^2}(y - Xeta)'(y - Xeta) + \lambda'(Reta - r) \ F.O.C \Rightarrow ilde{\lambda} = rac{1}{ ilde{\sigma}^2}[R(X'X)^{-1}R']^{-1}(R\hat{eta} - r)$$

Notice that $\tilde{\lambda}$ is a linear transformation of random variable $\hat{\beta}$, so that we can construct quadratic form

$$egin{aligned} & ilde{\lambda}'\Box^{-1} ilde{\lambda}\sim\chi^2 \ LM = ilde{\lambda}'(ilde{\sigma}^2R(X'X)^{-1}R') ilde{\lambda} = rac{(R\hat{eta}-r)'(R(X'X)^{-1}R')^{-1}(R\hat{eta}-r)}{ ilde{\sigma}^2} \ &= rac{(ilde{u}' ilde{u}-\hat{u}'\hat{u})}{ ilde{\sigma}^2} = rac{W}{1+W/n} = W + o_p(1)
ightarrow_d \chi_q^2 \end{aligned}$$

9.8 GLS

$$y=Xeta+u,\quad E(u|X)=0, E(u^2|X)=\Omega$$

If we know the structure of Ω , we can rewrite

$$egin{aligned} \Omega^{-1/2}y &= \Omega^{-1/2}Xeta + \Omega^{-1/2}u \ &\Rightarrow y^* = X^*eta + u^* \end{aligned} \ &= \min(y^* - x^*eta)'(y^* - x^*eta) \ &= (\Omega^{-1/2}y - \Omega^{-1/2}Xeta)'(\Omega^{-1/2}y - \Omega^{-1/2}Xeta) \ &= (y - Xeta)'\Omega^{-1}(y - Xeta) \end{aligned}$$

F.O.C

$$\hat{\beta}_{GLS} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y$$

But in reality, we need to first estimate the structure of Ω , $\hat{\Omega}$.

Feasible GLS: $\hat{\Omega} \rightarrow \Omega$

$$\hat{\beta}_{FGLS} = (X'\hat{\Omega}^{-1}X)^{-1}X'\hat{\Omega}^{-1}y.$$

The problem is: the num needed to estimate is $\frac{n(n+1)}{2}$, too big! So we need to first assume some properties/structure (E.g. within-group homogeneity, between-group irrelavence)

Theorem 9.6 Gauss-Markov of GLS

The GLS estimator \hat{eta}_{GLS} of y=Xeta+u ($E(u|X=0),Var(u|X)=\Omega$ is known) is **BLUE**.

Proof:

Define an unbiased estimator $\bar{\beta} = T'y$.

$$egin{aligned} Ear{eta} &= eta \Rightarrow & T'X = I \ \Rightarrow Var(ar{eta}|X) &= T'\Omega T. \end{aligned}$$

$$\hat{\beta}_{GLS} = \beta + (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}u \Rightarrow
Var(\hat{\beta}_{GLS}|X) = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\Omega\Omega^{-1}X(X'\Omega^{-1}X)^{-1}
= (X'\Omega^{-1}X)^{-1}$$

We now need to prove that $Var(\bar{\beta}|X) - Var(\hat{\beta}_{GLS}|X) \geq 0$.

$$egin{aligned} Var(ar{eta}|X) - Var(\hat{eta}_{GLS}|X) &= T'\Omega T - (X'\Omega^{-1}X)^{-1} \ &= T'\Omega^{1/2}\Omega^{1/2}T - (X'\Omega^{-1/2}\Omega^{-1/2}X)^{-1} \ &= T'\Omega^{1/2}\Omega^{1/2}T - T'\Omega^{1/2}P_{\Omega^{-1/2}X}\Omega^{1/2}T \ &= T'\Omega^{1/2}(I - P_{\Omega^{-1/2}X})\Omega^{1/2}T \end{aligned}$$

is p.s.d..

where

$$P_{\Omega^{-1/2}X} = \Omega^{-1/2}X(X'\Omega^{-1/2}\Omega^{-1/2}X)^{-1}X'\Omega^{-1/2}$$

is the projection matrix of $\Omega^{-1/2}X$.

• Intuition: 通过 $\Omega^{-1/2}$ 的映射,我们把扰动项u还原为球形扰动项,将已有数据中的GLS结构信息用上了。信息越多,variance越小。

9.9 R-Squared

- $\hat{u}'\hat{u}$: RSS, residual sum of squares
- y'y: TSS, total sum of squares
- $\hat{y}'\hat{y}$: ESS, explained sum of squares

Define

$$R^2 = rac{\hat{y}'\hat{y}}{y'y} = rac{ESS}{TSS} = 1 - rac{RSS}{TSS} \in [0,1] \ ar{R}^2 = 1 - rac{rac{1}{n-k}y'(I-P_X)y}{rac{1}{n-1}y'(I-P_\iota)y}, \quad \iota = (1,1,...,1)'_{n imes 1}$$

9.10 Endogeneity

What if $E(u_i|X_i) \neq 0$? The estimation will be **inconsistent** and **biased**.

$$\hat{eta}_{SAE} = [rac{1}{n} \sum_{i=1}^n X_i X_i']^{-1} (rac{1}{n} \sum_{i=1}^n X_i u_i) + eta
eq eta$$

Source of endogeneity:

- omitted variable
- measurement error: especially survey data
- simultaneity problem
- selection

Two-step regression

Idea:

• Step 1: 剔除X₁的影响

• Step 2: $y^* = X_2^* eta_2 + arepsilon$

One-step regression:

$$y = X_1 \hat{eta}_1 + X_2 \hat{eta}_2 + \hat{arepsilon}$$

Proposition 9.1

One-step estimator equals two-step estimator.

$$\hat{eta}_2 = [X_2'(I - P_{X_1})X_2]^{-1}X_2' \cdot (I - P_{X_1})y \ \hat{eta}_1 = (X_1'X_1)^{-1}X_1'(y - X_2\hat{eta}_2)$$

• Question: is $\hat{\beta}_1$ consistent???

Proof:

$$y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{\varepsilon}$$

Premultiply $I-P_{X_1}$

$$(I - P_{X_1})y = (I - P_{X_1})X_2\hat{eta}_2 + (I - P_{X_1})\hat{eta}_2 = (I - P_{X_1})X_2\hat{eta}_2 + \hat{eta}$$

• Intuitively, $\hat{\varepsilon}$ 已经是 P_X 投影后的残差项了,再对 P_{X_1} 投影残差不改变。从数学上看,

$$P_{X_1}P_X = X_1(X_1'X_1)^{-1}X_1'P_X = X_1(X_1'X_1)^{-1}(P_XX_1)'$$

$$= X_1(X_1'X_1)^{-1}(X_1)' = P_{X_1}, \Rightarrow$$

$$(I - P_{X_1})\hat{\varepsilon} = (I - P_{X_1})(I - P_X)\hat{\varepsilon} = (I - P_X)\hat{\varepsilon} = \hat{\varepsilon}.$$

Premultiply X_2^\prime

$$X_2'(I - P_{X_1})y = X_2'(I - P_{X_1})X_2\hat{eta}_2 + X_2'\hat{arepsilon} = X_2'(I - P_{X_1})X_2\hat{eta}_2 \ \Rightarrow \hat{eta}_2 = [X_2'(I - P_{X_1})X_2]^{-1}X_2' \cdot (I - P_{X_1})y$$