Aula 7 Código de Huffman

Código de Huffman

- Codificação de caracteres que permite compactar arquivos de texto
- algoritmo de Huffman é um bom exemplo de algoritmo guloso

Código de Huffman

- Usar caracteres (símbolos) com número variável de bits
 - Caracteres mais comuns na mensagem são codificados com menos bits e caracteres menos comuns com mais

• Árvore de Huffman é um **heap**

Código de Huffman

- Algoritmo
 - Tabular frequências dos símbolos
 - Ordenar caracteres por frequências
 - Repetir
 - Localizar os dois tries com menor frequência F_i e F_i
 - Unir num trie único com frequência F_i + F_i
 - Rearranjar o heap

Exemplo

Tabular caracteres e frequências

Characters	Frequencies
a	10
е	15
i	12
0	3
u	4
S	13
t	1

Análise de Complexidade

- Algoritmo
 - Tabular frequências dos símbolos → O(m)
 - Ordenar caracteres por frequências → O(nlogn)
 - Repetir
 - Localizar os dois tries com menor frequência F_i e F_i → O(1)
 - Unir num trie único com frequência F_i + F_i → O(1)
 - Rearranjar o heap → O(logn)

Codificação

Codificação

Comprimento médio:

$${(10 \times 3)+(15 \times 2)+(12 \times 2)+(3 \times 5)+(4 \times 4)+(13 \times 2)+(1 \times 5)} / {(10+15+12+3+4+13+1)} = 2.52$$

- Tamanho Inicial:

(10+15+12+3+4+13+1)x8 = 464 bits

Assumindo caracteres ASCII = 8bits

- Tamanho Final:

$$(10+15+12+3+4+13+1)$$
x2.52 = 147 bits

Compressão:

Exercício

- Aplique a codificação de Huffman para o seguinte texto: yabba dabba doo
 - Monte a árvore de huffman
 - Defina a codificação de cada caracter
 - Calcule o comprimento médio
 - Calcule a compressão final do texto