Strings

Suffix Array - Definição e Construção

Prof. Edson Alves - UnB/FGA 2019

Sumário

- 1. Definição
- 2. Construção do vetor de sufixos em $O(N\log N)$

Definição

Suffix Array

- $\bullet\,$ Seja S uma string de tamanho N
- O i-ésimo sufixo de S é a substring que inicia no índice i e termina no índice N, isto é, S[i..N]
- Um vetor de sufixos (suffix array) $s_A(S)$ de S é um vetor de inteiros que representam os índices iniciais i dos prefixos de S, após a ordenação lexicográfica dos mesmos
- Os vetores de sufixos s\u00e3o usados em problemas que envolvem buscas em strings
- Estes vetores foram propostos por Udi Manber e Gene Myers

Exemplo de *suffix array*

i	S[iN]
1	"abacaxi"
2	"bacaxi"
3	"acaxi"
4	"caxi"
5	"axi"
6	"xi"
7	"i"

j	$s_A[j]$	$S[s_A[j]N]$
1	1	"abacaxi"
2	3	"acaxi"
3	5	"axi"
4	2	"bacaxi"
5	4	"caxi"
6	7	"i"
7	6	"xi"

Construção de $s_A(S)$ **com complexidade** $O(N^2 \log N)$

- A construção de $s_A(S)$ diretamente de sua definição tem complexidade $O(N^2 \log N)$, onde N é o tamanho da string S
- Primeiramente é preciso construir um vetor ps de pares (S[i..N], i)
- Em seguida, este vetor deve ser ordenado
- O algoritmo de ordenação tem complexidade $O(N\log N)$, e como as comparações entre as substrings tem complexidade O(N), a complexidade da solução é $O(N^2\log N)$
- Observe que, após ordenado o vetor ps, o vetor de sufixos $s_A(S)$ é composto apenas pelos índices (segundo elemento de cada par), não sendo necessário armazenar os prefixos explicitamente
- ullet Assim a complexidade de memória é O(N)

Construção naive de $s_A(S)$

```
5 vector<int> suffix_array(const string& s)
6 {
      using si = pair<string, int>;
7
8
     vector<si> ss(s.size());
9
10
      for (size_t i = 0; i < s.size(); ++i)</pre>
          ss[i] = si(s.substr(i), i);
      sort(ss.begin(), ss.end());
14
15
     vector<int> sa(s.size());
16
      for (size_t i = 0; i < s.size(); ++i)</pre>
18
          sa[i] = ss[i].second;
20
      return sa;
22 }
```

Observações sobre a construção naive de $s_A(S)$

- Embora a construção apresentada seja de fácil entendimento e implementação, ela não é aplicável em strings grandes ($N \geq 10^4$)
- É possível construir $s_A(S)$ com complexidade $O(N \log N)$, porém tanto a implementação é mais sofisticada
- Além disso, a terminologia e os conceitos utilizados para esta redução na complexidade não são triviais
- Estes conceitos e esta construção serão apresentados a seguir

Construção do vetor de sufixos em $O(N \log N)$

Substrings cíclicas

- \bullet A notação de substrings de uma strings S pode ser estendida para contemplar substrings cíclicas
- A notação padrão S[i..j] pressupõe que $i \leq j$
- Para representar substrings cíclicas, basta fazer

$$S[i..j] = S[i..N] + S[1..j]$$

quando i > j

- Por exemplo, para S= "casado", temos S[6..2]= "oca" e S[5..3]= "docas"
- $\bullet\,$ Uma rotação cíclica de uma string S é uma substring cíclica de tamanho |S|
- Por exemplo, as rotações cíclicas de S= "abcd" são "abcd", "bcda", "cdab" e "dabc"

Ideia central do algoritmo de construção $O(N \log N)$

- A ideia central do algoritmo de construção do vetor de sufixos em $O(N\log N)$ é que é possível ordenar, de forma eficiente, as rotações cíclicas de S
- ullet Para que a ordenação destas rotações cíclicas seja equivalente à ordenação dos sufixos de S, basta concatenar um caractere sentinela ao final de S
- Este sentinela deve ter um valor ASCII inferior a qualquer caractere do alfabeto
- Em geral, este caractere é o caractere '\$', sendo o caractere '#'
 uma segunda opção viável, caso a string S seja alfanumérica
- \bullet Assim, após a ordenação, exceto a primeira rotação, as demais equivalem à ordenação dos prefixos de S

Equivalências entre as rotações cíclicas e os sufixos de S

i	Rotação cíclica	j	S[jN]
0	"\$banana"	-	-
1	"a\$banan"	6	"a"
2	"ana\$ban"	4	"ana"
3	"anana\$b"	2	"anana"
4	"banana\$"	1	"banana"
5	"na\$bana"	5	"na"
6	"nana\$ba"	3	"nana"

Permutações e classes de equivalência

- A cada iteração do algoritmo serão ordenadas todas as substrings de S[i..j] de tamanho 2^k , para $k=0,1,\ldots,\lceil\log N\rceil$
- Para tal fim, serão mantidos dois vetores auxiliares
- O primeiro deles é o vetor de permutações ps, onde ps[i] é o índice da i-ésima substring de tamanho k após a ordenação
- \bullet O segundo é o vetor cs das classes de equivalência das substrings de tamanho k
- Duas substrings iguais devem estar na mesma classe de equivalência
- Se S[i..j] < S[r..s], então cs[i] < cs[r]
- Estas classes de equivalência permitem realizar comparações de forma eficiente

Exemplos de permutações e classes de equivalência

k	Substrings cíclicas de tamanho 2^k	ps	cs
0	{ "c", "a", "s", "a" }	$\{1, 3, 0, 2\}$	$\{1,0,2,0\}$
1	{ "ca", "as", "sa", "ac" }	$\{3, 1, 0, 2\}$	$\{2, 1, 3, 0\}$
2	{ "casa", "asac", "saca", "acas" }	$\{3,1,0,2\}$	$\{2,1,3,0\}$

k	Substrings cíclicas de tamanho 2^k	ps	cs
0	{ "a", "b", "b", "a" }	$\{0, 3, 1, 2\}$	$\{0, 1, 1, 0\}$
1	{ "ab", "bb", "ba", "aa" }	${3,0,2,1}$	$\{1, 3, 2, 0\}$
2	{ "abba", "bbaa", "baab", "aabb" }	$\{3,0,2,1\}$	$\{1, 3, 2, 0\}$

Casos base: k = 0

- ullet O algoritmo inicia com o caso base, onde k=0, ou seja, ordenado as substrings cíclicas de tamanho 1
- Isto pode ser feito em $\mathcal{O}(N)$ usando o counting sort
- Após a ordenação e geração do vetor de permutações ps, é necessário atribuir as classes de equivalência a cada substring, gerando o vetor cs
- Vale lembrar que substrings iguais devem pertencer à mesma classe de equivalência
- $\bullet\,$ O vetor ps permite a construção de cs também em O(N), por meio da comparação de caracteres adjacentes

Implementação do counting sort

```
5 vector<int> counting_sort(const string& s)
6 {
     static const int A { 256 }; // Tamanho do alfabeto
7
8
     // Gera o histograma dos caracteres
9
     vector<int> hs(A, 0);
10
     for (auto c : s)
12
         ++hs[c];
14
     // Faz a soma prefixada para estabelecer a ordem
15
     for (int i = 1: i < A: ++i)
16
         hs[i] += hs[i - 1]:
18
     // Preenche a permutação referente à ordenação
19
     vector<int> ps(s.size());
20
     for (size_t i = 0; i < s.size(); ++i)</pre>
          ps[--hs[s[i]]] = i;
24
     return ps;
25
26 }
```

Preenchimento das classes de equivalência

```
28 vector<int> equivalence_classes(const string& s, const vector<int>& ps)
29 {
      int c = 0;
30
      vector<int> cs(ps.size());
31
      cs[ps[0]] = c;
34
      // Processa os elementos de s na ordem indicada pela permutação
35
      for (size_t i = 1; i < ps.size(); ++i)</pre>
36
      {
          // Elementos distintos pertencem a classes distintas
38
          if (s[ps[i]] != s[ps[i - 1]])
39
              ++c;
40
41
          cs[ps[i]] = c;
42
43
44
      return cs;
45
46 }
```

Complexidade da construção do suffix array

- A transição consiste em computar os valores ps e cs para substrings de tamanho 2^k , se conhecidos estes vetores para strings de tamanho 2^{k-1}
- Se esta transição for feita em O(N), a complexidade do algoritmo terá complexidade $O(N\log N)$, pois esta atualização deverá ser feita $O(\log N)$ vezes
- Esta transição pode ser feita em $O(N\log N)$, o que aumenta a complexidade assintótica do algoritmo para $O(N\log^2 N)$
- Esta piora na complexidade é compensada por uma codificação mais curta em termos de linhas de código

Transições

• Observe que a substring de tamanho 2^k que inicia na posição i é formada pela concatenação das strings de tamanho 2^{k-1} que começam nas posições i e $i+2^{k-1}$ (mod N), respectivamente

Referências

- 1. CP Algorithms. Suffix Array, acesso em 06/09/2019.
- 2. **CROCHEMORE**, Maxime; **RYTTER**, Wojciech. *Jewels of Stringology: Text Algorithms*, WSPC, 2002.
- 3. **HALIM**, Steve; **HALIM**, Felix. *Competitive Programming 3*, Lulu, 2013.