Uvod u znanost o podacima

Uvod u nadzirano strojno učenje

Prof. dr. sc. Bojana Dalbelo Bašić

7. predavanje, 16. studenog 2021.

ak. god. 2021./2022.

Zašto je SU dio znanosti o podacima?

 SU može doprinijeti većini koraka u ciklusu analize podataka

Sadržaj

- Uvod i primjeri
- Uvod u algoritam k najbližih susjeda (k-NN) i dilema pristranost-varijanca
- Stabla odluke, slučajne šume i boosted trees
- Linearna i logistička regresija
- O prenaučenosti

Strojno učenje

- Nadzirano: Dani su parovi ulaz/izlaz (X, y) (tj. uzorak) pomoću kojih tražimo funkciju y = f(X). Naučenu funkciju f evaluiramo na novim podacima. Vrste:
 - Klasifikacija: output y je diskretan (oznake klasa)
 - Regresija: output y je kontinuiran (linearna regresija)

Strojno učenje

- Nadzirano: Dani su parovi ulaz/izlaz (X, y) (tj. uzorak) pomoću kojih tražimo funkciju y = f(X). Naučenu funkciju f evaluiramo na novim podacima. Vrste:
 - Klasifikacija: output y je diskretan (oznake klasa)
 - Regresija: output y je kontinuiran (linearna regresija)

- Nenadzirano: Dani samo podaci X, oblikujemo funkciju f tako da je y = f(X) jednostavnija reprezentacija podataka.
 - Diskretan y: grupiranje
 - Kontinuirani y: redukcija dimenzionalnosti

Strojno učenje: primjeri

- Nadzirano učenje (*predavanje 7, i.e., danas*):
 - Da li je na ovoj slici mačka ili pas ili kuća ..?
 - Kako bi ovaj korisnik rangirao ovaj restoran?
 - Da li je ovaj mail spam?
 - Da li je ova mrlja na slici supernova?

Nenadzirano (predavanje 9):

- Grupiraj rukom pisane znakove u 10 klasa.
- Koje su top 20 tema na Twitteru baš sada?
- Nađi najbolju 2D vizualizaciju 1000-dimenzijskih podataka.

Strojno učenje: primjeri

- Nadzirano učenje (predavanje 7, i.e., danas):
 - Da li je na ovoj slici mačka ili pas ili kuća ..?
 - Kako bi ovaj korisnik rangirao ovaj restoran?
 - Da li je ovaj mail spam?
 - Da li je ova mrlja na slici supernova?

PRIMJER

Cilj: pokazati učinak kombiniranja različitih metoda strojnog učenja, dubokog učenja i eksplorativnih tehnika

Predicting News Values from Headline Text and Emotions

Maria Pia di Buono¹ Jan Šnajder¹ Bojana Dalbelo Bašić¹ Goran Glavaš² Martin Tutek¹ Natasa Milic-Frayling³

¹ TakeLab, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

> ² Data and Web Science Group, University of Mannheim, Germany

³ School of Computer Science, University of Nottingham, UK

SVM i CNN

SVM - powerful discriminative model (OVR)

- assume additive compositionality of word embeddings 300 dimensional vector
- RBF kernel nested 5 x 5 cross-validation model for C and γ optimisation

CNN – feed forward NN with one or more convolutionary layers

- we had one single convolutionary and one pooling layer. 64 filters, top k pooling with k=2
- CNN detect indicative word sequences

Comments on the results

	SVM		CNN		
News value	Т	T+E	Т	T+E	
Bad news	0.652	0.763*	0.778†	0.848*†	
Celebrity	0.553	0.534	0.496	0.526	
Conflict	0.526	0.487	0.654†	0.659†	
Orama	0.636	0.637	0.668	0.681	
Intertainment	0.783	0.832*	0.803	0.841*	
Good news	0.414	0.513	0.509	0.578	
/lagnitude	0.299	0.515*	0.438	0.507	
Power elite	0.596	0.570	0.695†	0.700†	
Shareability	0.309	0.318	0.427†	0.425†	

Bad news and Entertainment easiest to predict – highest values in all models (can we explain why?)

Exploratory Data Analysis

Answer to the first research question:

What is the relation between news values conveyed by headlines and emotions?

Factor analysis on 21 variable:

13 newsvalues + 6 emotions

FA is an explorative technique that reveals hidden patterns of data and summarises data in a smaller number of dimensions (factors)

One way of looking at these results is FA ...

Factor Structure (Correlations)											
	Factorl	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7				
Bad_news	0.75091	0.12346	0.01188	-0.05998	-0.00307	0.01029	-0.04510				
sadness	0.85518	0.34884	0.12756	-0.16657	0.27210	0.03152	0.12622				
fear	0.73940	0.46652	0.34112	0.00029	0.20410	-0.15266	0.34437				
joy	-0.58946	-0.49260	-0.17384	0.43343	-0.24294	-0.01359	-0.20438				
disgust	0.23344	0.83367	0.11795	-0.10880	0.17566	0.06618	0.04554				
anger	0.42320	0.86706	0.32393	-0.11523	0.14058	-0.13394	0.06740				
The_power_elite	-0.08702	0.06352	0.81043	-0.07032	-0.09346	-0.08074	-0.06733				
Entertainment	-0.57603	-0.40295	-0.73671	-0.18412	-0.35589	0.05834	-0.31996				
Good_news	-0.16483	-0.20731	-0.02053	0.71088	-0.03108	0.01609	-0.04611				
Shareability	-0.22505	-0.18057	-0.36418	0.54080	-0.14910	-0.01100	0.01135				
Celebrity	-0.20888	-0.22304	-0.38024	-0.52540	-0.10984	-0.19901	-0.17286				
Follow_up	0.05979	0.05991	0.11119	0.04793	0.61571	-0.12195	-0.05023				
Drama	0.38699	0.37760	0.08075	-0.15243	0.77361	0.14579	0.15772				
Conflict	0.41409	0.46163	0.27530	0.06578	-0.44660	-0.33068	-0.09061				
Surprisel	0.11974	0.02589	0.08369	-0.10091	0.08982	0.77937	0.01578				
surprise	-0.22957	-0.11412	-0.23768	0.27018	-0.06000	0.66039	-0.06521				
Magnitude	0.19280	-0.18114	0.07828	0.18438	0.08043	-0.07454	0.73312				
Relevance	-0.07368	0.12570	-0.02862	-0.09079	-0.03507	0.03186	0.66362				

Bad news and Entertainment highly correlated with emotions (high +/- values on Factor 1)

Cluster analysis

In simplified, seven dimensional factorial space, we further summarised original variables (more than 60% variability) by clustering on factor loadings.

Tehnike strojnog učenja

- Nadzirano strojno učenje:
 - k-NN (k najbližih susjeda)
 - Naïve Bayes
 - Linearna + logistička regresija
 - Stroj potpornih vektora
 - Slučajne šume
 - Nadzirane neuronske mreže
 - Itd.
- Nenazirano strojno učenje:
 - Grupiranje
 - Redukcija dimenzionanosti: modeliranje tema, matrična daktorizacija (PCA, SVD, FA,CA)
 - Skriveni Markovljevi modeli (HMM)
 - itd.

KRITERIJI

Prediktivne peformanse (točnost, AUC/ROC, preciznost, odziv, F1-score, etc.)

Brzina i skalabilnost:

- Vrijeme za izgradnju modela
- Vrijeme uporabe modela
- Zauzeće memorije vs. obrada na disku
- Cijena na

Robustnost

- Otpornost na šum, stršeće vrijednosti (outliers), nedostajuće vrijednosti

Interpretabilnost

Razumijevanje modela i (black box vs. white box)

Kompaktnost modela

Mobilni/ugrađeni uređaji

Uvod u algoritam k najbližih susjeda (k-NN) i dilema pristranost-varijanca

k najbližih susjeda (k-NN)

Dan je upit: Nađi k najbližih primjera

na označenom skupu

k nearest neighbors (k-NN)

k = 3 algoritam glasa za mačku

Podaci jesu model

- Nema treniranja (nema optimizacije niti funkcije gubitka).
- Točnost se načelno poboljšava s više podataka.
- Matching is simple and fairly fast if data fits in memory.
- Obično treba podatke u memoriji.

Podaci jesu model

- Nema treniranja (nema optimizacije niti funkcije gubitka).
- Točnost se načelno poboljšava s više podataka.
- Matching is simple and fairly fast if data fits in memory.
- Obično treba podatke u memoriji.

Minimalna konfiguracija

- Samo hiperparametar k (broj susjeda)
- Dva druga izbora su važna:
 - Težine susjeda (na primjer inverz udaljenosti)
 - Mjere sličnosti

Klasifikacija:

- Model je y = f(X), y je diskretna vrijednost (labele).
- Dan X, izračunaj y = većina glasova k najbližih susjeda.
- Možemo koristiti težinske faktore*.

Klasifikacija:

- Model je y = f(X), y je diskretna vrijednost (labele).
- Dan X, izračunaj y = većina glasova k najbližih susjeda.
- Možemo koristiti težinske faktore*.

Regresija:

- Model je y = f(X), y je realan broj.
- Ako je dan X, izračunaj y = sred.vrij. k najbližih susjeda.
- Također se može koristiti težinska funkcija* susjeda.

^{*} Težinska funkcija inverz udaljenosti, jezgrene funkcije (Gauss).

k-NN mjere udaljenosti

• Euclidean Distance: Simplest, fast to compute d(x, y) = ||x - y||

• Cosine Distance: Good for documents, images, etc.

$$d(x,y) = 1 - \frac{x \cdot y}{\|x\| \|y\|}$$

Jaccard Distance: For set data:

$$d(X,Y) = 1 - \frac{|X \cap Y|}{|X \cup Y|}$$

• Hamming Distance: For string data:

$$d(x,y) = \sum_{i=1}^{n} (x_i \neq y_i)$$

k-NN mjere udaljenosti

Manhattan Distance: Coordinate-wise distance

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

• Edit Distance: for strings, especially genetic data.

 Mahalanobis Distance: Normalized by the sample covariance matrix – unaffected by coordinate transformations.

$$d(ec{x},ec{y}) = \sqrt{(ec{x}-ec{y})^\mathsf{T}\mathbf{S}^{-1}(ec{x}-ec{y})}. \qquad \qquad d(ec{x},ec{y}) = \sqrt{\sum_{i=1}^N rac{(x_i-y_i)^2}{s_i^2}}.$$

K=1, Veronoi dijagrami

Predviđanje na temelju uzorka

- Većina uzoraka su iz beskonačnih populacija.
- Najviše smo zainteresirani za modele populacije, ali imam samo uzorak.

Za skupove koji se sastoje od (X, y)

značajke X, oznaka y

Za stvarni model f:

• y = f(X)

Mi učimo na uzorku za učenje Di označavamo model s f_D(X)

Pristranost i varijanca

Our data-generated model $f_D(X)$ is a **statistical estimate** of the true function f(X).

Because of this, its subject to bias and variance:

Bias: if we train models $f_D(X)$ on many training sets D, bias is the expected difference between their predictions and the true y's.

i.e.
$$Bias = \mathbb{E}[f_D(X) - y]$$

E[] is taken over points X and datasets D

Variance: if we train models $f_D(X)$ on many training sets D, variance is the variance of the estimates:

$$Variance = E \left[\left(f_D(X) - \bar{f}(X) \right)^2 \right]$$

Where $\bar{f}(X) = E[f_D(X)]$ is the average prediction on X.

"Prava" pristranost/varijanca dilema: uprosječite ovu sliku kroz sve X

Pristranost /varijanca dilema

Bias/variance tradeoff

Dilema pristranost/varijanca povezana je s kompleksnošću modela.

Kompleksni modeli (puno parametara) obično imaju višu varijancu i nižu pristranost.

Jednostavni modeli (malo parametara) imaju nižu varijancu.

ali veću pristranost.

Pristranost/varijanca dilema

Linearni modeli oblikuju pravac (2D), polinom visokog stupnja oblikuje kompleksnu krivulju. Polinom može pristati uz individualni element, prije nego što može oblikovati populaciju. Njegov oblik jako ovisi o uzorku i zato ima visoku varijancu.

Bias/variance tradeoff

The total expected error is

$$Bias^2 + Variance$$

Because of the bias-variance trade-off, we want to **balance** these two contributions.

If *Variance* strongly dominates, it means there is too much variation between models. This is called **over-fitting**.

If *Bias* strongly dominates, then the models are not fitting the data well enough. This is called **under-fitting**.

Pristranost/varijanca dilema

Izbor k za k-nn

Pristranost-varijanca dilema:

- Mali $k \rightarrow ?$
- Veliki $k \rightarrow ?$

Izbor k

- Mali k → mala pristranost, visoka varijanca
- Veliki k → visoka pristranost, mala varijanca

- Pretpostavimo da pravi podaci slijede plavu krivulju sa nekim N(0,1) dodanim šumom. Crvene točke su uzorak.

Izbor k

- Mali k → mala pristranost, visoka varijanca
- Veliki k → visoka pristranost, mala varijanca

Izbor k

Low Variance High Variance

Mali k → mala pristranost, visoka varijanca

Veliki k → visoka pristranost, mala varijanca

Izbor k

- Mali k → mala pristranost, visoka varijanca
- Veliki k → visoka pristranost, mala varijanca

Izbor k

- Malil k → mala pristranost, visoka varijanca
- Veliki k → visoka pristranost, mala varijanca

Izbor k u praksi

Koristi leave-one-out (LOO) unakrsnu provjeru:

- Podjela: Rastavi podatke na učenje i testiranje u slučajnom omjeru, na primjer 80-20 %.
- Predviđanje: Za svaku točku u skupu za učenje predviđaj koristeći k –nn iz skupa svih drugih točaka u skupu za učenje. Izmjeri LOO pogrešku klasifikacije ili SSE za regresiju
- Ugađanje modela: Pokušaj različite vrijednosti k i koristi onu koja daje najmanju LOO pogrešku.
- Evaluacija: Testiraj na zasebnom skupu za testiranje.

Klasifikacija i kletva dimenzionalnosti

Klasifikacija i kletva dimenzionalnosti

k-NN i kletva dimenzionalnosti

Kletva dimenzionalnosti odnosi se na fenomen koji se dešava u visokim dimenzijama (100 do milijuni), ne u nižim, napr. u 3-dimenzijskom prostoru.

K-nn se oslanja na bliskost točaka u prostoru.

Podaci u višim dimenzijama su rijetki, manje gusti nego u manjim dimenzijama.

Za k-nn to znači da ima manje točaka koje su vrlo blizu u prostoru značajki (vrlo slične) točki X, čiji y želimo predvidjeti.

k-NN i kletva dimenzionalnosti

- Najbliža udaljenost se pribilžava prosječnoj daljenosti knn ima neznatno bolju prediktivnu
- Nema dovoljno primjera za veliki broj dimenzija rješenje je povećanje podataka – nedostatak – veća moć računala

k-NN i kletva dimenzionalosti

Iz te perspektive iznenađujuće je da k-nn radi dobro u visokim dimenzijama

Srećom, stvarni podaci nisu kao slučajeve točke u visoko dimenzijskom prostoru, oni žive u **gustim klasterima** blizu **puno manje dimenzijskih površina.**

Također, točke mogu biti vrlo "slične" čak i kada je njihova euklidska udaljenost velika. Na primjer, dokumenti koji imaju nekoliko dominantnih zajedničkih riječi – vjerojatno su unutar iste teme. (Druga metrika)

Stabla odluke, slučajne šume i *boosted trees*

Stabla odluke: primjer

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Model: dijagram stablaste strukture

- Čvorovi su testovi pojedinog atributa
- Grane su vrijednosti atributa
- Listovi su oznake klasa

Uspješnost: točnost klasifikacije

Optimizacija:

- NP-težak problem
- Heuristika: pohlepan top-down aloritam, konstrukcija + orezivanje

Stabla odluke (top-down divide-and-conquer strategy)

- Na početku, svi primjeri za učenje pripadaju korijenu
- Primjeri se dijele rekurzivno na temelju atributa koji najviše diskriminira
- Diskriminativna snaga se temelji na informacijskoj dobiti (ID3/C4.5) ili
 Gini impurity (CART)

Particioniranje prestaje kada:

- Svi uzorci pripadaju istoj klasi → pridijeli tu klasu listu
- Nema atributa za dijeljenje → većina glasa za labelu klase tog lista

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Decision tree induction

46.5	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
	8688		\$54	
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
			6.463,668	
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
	554-55556		646969	
	69.09		546	9-5
>40	medium	no	excellent	no

Decision tree induction

46.5	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
	998			
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
38/88///	3.54	100	6.4.63666	
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
48/46/	3548056	3,6	650,6365W	
	6666		466	
>40	medium	no	excellent	no

Kod danog skupa S, P su pozitivni, N negativni primjeri.

Iznos entropije za skup S

$$H(P, N) = -\frac{P}{P+N} \log_2 \frac{P}{P+N} - \frac{N}{P+N} \log_2 \frac{N}{P+N}$$

Uoči:

- If P=0 (ili N=0), H(P, N) = $0 \rightarrow$ nema neizvjesnosti
- If P=N, $H(P, N) = 1 \rightarrow maksimalna neizvjesnost$

$$H_S = H(9, 5) = 0.94$$

Age	[<=30]	H(2, 3) = 0.97
-----	--------	----------------

Age [31...40] H(4, 0) = 0

Age [>40] H(3, 2) = 0.97

Student [yes] H(6, 1) = 0.59

Student [no] H(3, 4) = 0.98

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Income [high]
$$H(2, 2) = 1$$

Income [med] H(4, 2) = 0.92

Income [low] H(3, 1) = 0.81

Rating [fair] H(6, 2) = 0.81

Rating [exc] H(3, 3) = 1

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$H_s = H(9, 5) = 0.94$$

$$H_{Age} = p([<=30]) \cdot H(2, 3) + p([31...40]) \cdot H(4, 0) + p([>40]) \cdot H(3, 2) =$$

= 5/14 \cdot 0.97 + 4/14 \cdot 0 + 5/14 \cdot 0.97 = 0.69

$$H_{Income}$$
 = p([high]) · H(2, 2) + p([med]) · H(4, 2) + p([low]) · H(3, 1) =
= 4/14 · 1 + 6/14 · 0.92 + 4/14 · 0.81 = 0.91

$$H_{Student} = p([yes]) \cdot H(6, 1) + p([no]) \cdot H(3, 4) = 7/14 \cdot 0.59 + 7/14 \cdot 0.98 = 0.78$$

$$H_{Rating} = p([fair]) \cdot H(6, 2) + p([exc]) \cdot H(3, 3) = 8/14 \cdot 0.81 + 6/14 \cdot 1 = 0.89$$

Attribute A partitions S into S_1 , S_2 , ... S_n

Entropija atributa A is

$$H(A) = \sum_{i=1}^{r} \frac{P_{i} + N_{i}}{P + N} H(P_{i}, N_{i})$$

 $H(A) = \sum_{i=1}^{v} \frac{P_i + N_i}{P + N} H(P_i, N_i)$ Informacijska dobit podjelom S koristeći A

$$Gain(A) = H(P, N) - H(A)$$

Gain(Age) =
$$0.94 - 0.69 = 0.25$$
 \leftarrow split on age

Gain(Income) = 0.94 - 0.91 = 0.03

$$Gain(Student) = 0.94 - 0.78 = 0.16$$

Gain(Rating) =
$$0.94 - 0.89 = 0.05$$

Orezivanje

U postupku generiranja stabla ne filtrira se šum→ **prenaučenost**

Mnoge moguće tehnike orezivanja:

Orezivanje

U postupku generiranja stabla ne filtrira se šum→ **prenaučenost**

Mnoge moguće tehnike orezivanja:

- Zaustavljanje dijeljenja čvora kada broj dodijeljenih primjera ide ispod određene zadane granice.
- Bottom-up unakrsna provjera: Izgradi puno stablo i zamijeni čvorove je za listove s oznakom klase koja je brojnija ako se klasifikacijska točnost na skupu za provjeru (validaciju) se ne pogoršava .

Komentari na stabla odluke

Stabla odluke su samo primjer klasifikacijskog algoritma

 Puno drugih (k-NN, naive Bayes, SVM, neuronske mreže, logistička regresija, random forest ...)

Komentari na stabla odluke

Stabla odluke su samo primjer klasifikacijskog algoritma

 Puno drugih (k-NN, naive Bayes, SVM, neuronske mreže, logistička regresija, random forest ...)

Ne spadaju među najbolje ...

- Osjetljiva su na male perturbacije u podacima (visoka varijanca)
- Skloni su prenaučenosti
- Nisu inkrementalni: Potrebno je cijeli postupak napraviti ispočetka ako se pojavi novi podatak

 Kako se mijenjaju pristranost i varijanca povećanjem dubine stabla?

 Povećanjem dubine stabla, pristranost se smanjuje, varijanca se povećava. Zašto?

Zajednice metoda

su metaforički kao *crowdsourced machine learning algorithms*:

- Uzmi skup jednostavnih ili slabih algoritama (learners)
- Kombiniraj ih da bi dobio jedan, bolji.

Zajednice metoda

su metaforički kao *crowdsourced machine learning algorithms*:

- Uzmi skup jednostavnih ili slabih algoritama (learners)
- Kombiniraj ih da bi dobio jedan, bolji.

Vrste:

- Bagging: treniraj learners paralelno na različitim uzorcima podataka, a zatim kombiniraj izlaze glasanjem (diskretni izlaz) ili uprosječnjavanjem (kontinuirani izlaz).
- **Stacking:** kombiniraj izlaze iz različitih modela korištenjem *learnera* na drugoj razini.
- Boosting: ponovi učenje, ali nakon filtriranja/otežavanja primjera temeljeno na prethodnom outputu

Izgradi K stabala na skupu uzorkovanom iz originalnog skupa (size N) sa vraćanjem (bootstrap samples), p = broj značajki.

- Izvuci K bootstrap uzoraka veličine N
- Izgradi svako stablo odluke slučajnim izborom m od p značajki u svakom čvoru i izborom najbolje značajke za podjelu.
- Agregiraj predviđanja stabala (najpopularniji glas ili prosjek) da bi dobio konačan odgovor za labelu klase ili vrijednost (primjer bagginga).

Tipično *m* može biti sqrt(p), ali i manji.

PRINCIP: zanima nas glasanje između različitih modela (learners), pa ne želimo da su modeli previše slični. Slijedeći kriteriji osiguravaju raznolikost u pojedinim stablima:

Izvuci K bootstrap uzoraka veličine N:

 Izgradi svako stablo odluke slučajnim izborom m od p značajki u svakom čvoru i izborom najbolje značajke za podjelu.

PRINCIP: zanima nas glasanje između različitih modela (learners), pa ne želimo da su modeli previše slični. Slijedeći kriteriji osiguravaju raznolikost u pojedinim stablima:

- Izvuci K bootstrap uzoraka veličine N:
 - Svako stablo je trenirano na različitom skupu.
- Izgradi svako stablo odluke slučajnim izborom m od p značajki u svakom čvoru i izborom najbolje značajke za podjelu.
 - Odgovarajući čvorovi u različitim stablima (obično) ne koriste iste atribute za podjelu.

- Vrlo popularne u praksi, vjerojatno najpopularniji klasifikator za guste podatke (do više tisuća značajki)
- Jednostavne za implementaciju (jednostavno treniranje puno običnih stabala odluke)
- Laka paralelizacija

 Potrebno je puno prolazaka kroz podatke – barem/najmanje maksimalne dubine stabla (<< boosted trees)

Boosted trees (BDT)

- Novija alternativa slučajnim šumama (RF) [dobar intro <u>ovdje</u> i <u>ovdje</u>]
- Za razliku od RF, čija su stabla trenirana nezavisno,
 BDT stabla su trenirana sekvencijalno koristeći boosting: Svako stablo je
 trenirano da predviđa korektno, ali korigira se pogreška (rezidual) iz
 prethodnog stabla (redukcija pristranosti)
- Oba modela RF i BDT mogu proizvesti vrlo kvalitetne modele. Superiornost jedne metode nad drugom zavisi o skupu podataka.
- Vrlo su različiti modeli i zahtjevi za resursima netrivijalno uspoređivati metode.

Slučajne šume vs. boosted trees

"Geometrija" metoda je vrlo različita:

Slučajne šume koriste desetke dubokih širokh stabala:

Redukcija varijance kroz združivanje u ansambl

Slučajne šume vs. boosted trees

"Geometrija" metoda je vrlo različita:

BDT koriste na tisuće plitkih, malih stabala:

Redukcija pristranosti kroz boosting – varijanca je već mala

Slučajne šume vs. boosted trees

Sign variance (1991 variance)

RF uče paralelno, mogu biti vrlo brze

Brža evaluacija (runtime) također bolje kod RF

Transparentnost modela

Duboke neuronske mreže smatraju se teškim *crnim kutijama*.

Da li je lakše interpretirati model s 1000 stabala?!

http://www.r2d3.us/visual-introto-machine-learning-part-1/

Linear and logistic regression

Linearna regresija

- U 5. predavanju
- Cilj: naći najbolju linearnu funkciju y=f(X) koja objašnjava podatke

Linear regression

The predicted value of y is given by:

$$\hat{y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j$$

The vector of coefficients $\hat{\beta}$ is the regression model.

Linear regression

The regression formula

$$\hat{y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j$$

if $X_0 = 1$, can be written as a matrix product with X a row vector:

$$\hat{y} = X \hat{\beta}$$

We get this by writing all of the input samples in a single matrix X:

i.e. rows of
$$\mathbf{X} = \begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{m1} & \cdots & X_{mn} \end{pmatrix}$$

are distinct observations, columns of X are input features.

Podsjetnik:

20 10 10 20 30 40 50 60

The most common measure of fit between the line and the data is the least-squares fit.

There is a good reason for this: If the points are generated by an ideal line with additive Gaussian noise, the least squares solution is the *maximum likelihood solution*.

Probability of a point y_j is $\Pr(y_j) = \exp\left(\frac{-(y_j - X_j \beta)^2}{2\sigma^2}\right)$ and the probability for all points is the product over j of $\Pr(y_j)$.

We can **easily maximize the log** of this expression $\frac{-(y_j-X_j\beta)^2}{2\sigma^2}$ for one point, or the sum of this expression at all points.

Linearna regresija

Kako modelirati binarne izlaze?

- Primjer: X značajke studenta; y: je li student položio MAT?
- Željeni izlaz: f(X) = vjerojatnost prolaska MAT, ako je dan X
- Problem s linearnom regresijom:
 f(X) može biti ispod 0 ili iznad 1

Logistička regresija

- Trick: Ne raditi s vjerojatnostima koje idu od 0 do 1 nego s log odds, koji su u rasponu -inf do +inf
- Vjerojatnost y \Leftrightarrow odds y/(1-y) \Leftrightarrow log odds log[y/(1-y)]
- Model log odds kao linearna funkcija X, log odds LOGARITAM OMJERA ŠANSI

Logistička regresija

- Model log odds kao linearna funkcija X
- $\beta^T X = \log[y/(1-y)]$
- Rješenje za y: $y = 1/(1 + \exp(-\beta^T X))$

- Naći najbolji model i β s maksimalnom vjerodostojnošću:
 - Ne koristi kvadratni gubitak kao u linearnog regresiji
 - Koristi cross-entropy funkciju gubitka

Prenaučenost

Low Variance High Variance

- Što više značajki to bolje?
 - NE!
 - Više značajki znači manje pristranosti, ali veću varijancu
 - -> vodi u prenaučenost

Prenaučenost

Low Variance High Variance

- Što više značajki to bolje?
 - NE!
 - Više značajki znači manje pristranosti, ali veću varijancu
 - Vodi u prenaučenost
- Pažljiv odabir značajki može poboljšati točnost modela
 - Treba zadržati značajke koje koreliraju s izlazom y
 - Unaprijed/unatrag selekcija
 - Regularizacija (kažnjavanje norme težine vektora)
- Više o takvim praktičnim stvarima u sljedećoj lekciji primijenjeno SU

Današnje teme

- Primjeri primjene
- Uvod u algoritam k najbližih susjeda (k-NN) i dilema pristranost-varijanca
- Stabla odluke, slučajne šume i boosted trees
- Linearna i logistička regresija
- O prenaučenosti

Ovo predavanje temelji su na nastavnim materijalima predmeta *Applied Data Analysis* (ADA) EPFL-a, autora Roberta Westa.