AUTHOR INDEX

Volumes 18-19, 1972

- Andrews, G. E. and D. Bradley: Determination of Burning Velocities: A Critical Review, 18, 133
- Alkemade, C. Th. J.: See Kalff, P. J. and Alkemade, C. Th. J.
- Allison, C. B. and Faeth, G. M.: Decomposition and Hybrid Combustion of Hydrazine, MMH and UDMH as Droplets in a Combustion Gas Environment, 19, 213
- Andrews, G. E. and Bradley, D.: The Burning Velocity of Methane-Air Mixtures, 19, 275
- Antonik, S.: See Lucquin, M. and Antonik, S. Ayling, A. B. and Smith, I. W.: Measured
- Ayling, A. B. and Smith, I. W.: Measured Temperatures of Burning Pulverized-Fuel Particles, and the Nature of the Primary Reaction Product, 18, 173
- Baker, James A. and Skinner, Gordon B.: Shock-Tube Studies on the Ignition of Ethylene-Oxygen-Argon Mixtures, 19, 347
- Bandyopadhyay, Supriya and Bhaduri, Debdas: Prediction of Ignition Temperature of a Single Coal Particle, 18, 411
- Basu, P. and Bhaduri, D.: Structure of Premixed Turbulent Flame, 18, 303
- Becker, Philip M.: See Jones, Fred L., Becker, Philip M., and Heinsohn, Robert J.
- Beer, J. M.: See Thompson, D., Brown, T. D., and Beer, J. M.
- Bekesy, A.: See Lee, J. H., Kynstautas, R., Guirao, C., Bekesy, A. and Sabbagh, S.
- Bhaduri, D.: See Basu, P. and Bhaduri, D.
- Bhaduri, Debdas: See Bandyopadhyay, Supriya and Bhaduri, Debdas
- Bockhorn, H., Fetting, F., and Mende, J. C.: The Laminar Flame Velocities of Propane Ammonia Mixtures, 18, 471
- Boggs, T. L., Petersen, E. E. and Watt, D. N., Jr.: Comment on "The Deflagration of Single Crystals of Ammonium Perchlorate," 19, 131
- Bowes, P. C.: Thermal Ignition in Two-Component Systems. Part II-Experimental Study, 19, 55
- Bowser, R. J. and Weinberg, F. J.: The Effect of Direct Electric Fields on Normal Burning Velocity, 18, 296
- Bowser, R. J.: See Jaggers, H. C., Bowser, R. J., and Weinberg, F. J.
- Bradley, D., Jesch, L. F., and Sheppard, C. G. W.: Electron Energy Exchanges in Hydrocarbon Flames, 19, 237

- Bradley, D.: See Andrews, G. E. and Bradley, D., 18, 133; 19, 275
- Bradley, J. N. and Durden, D. A.: The Role of Pyrolysis Reactions in Hydrocarbon Oxidation, 19, 452
- Breisacher, P., Takimoto, H. H., Denault, G. C., and Hicks, W. A.: Vacuum Thermal Decompositions of the Nitrate Salts of Hydrazine, 19, 144
- Brochet, C.: See Soloukhin, R. I. and Brochet, C. Brown, T. D.: See Thompson, D., Brown, T. D. and Beér, J. M.
- Burcat, A., Crossley, R. W., Scheller, K., and Skinner, G. B.: Shock-Tube Investigations of Ignition in Ethane-Oxygen-Argon Mixtures, 18, 115
- Burcat, Alexander: See Crossley, Robert W., Dorko, Ernest A., Scheller, Karl, and Burcat, Alexander
- Burgess, A. R. and Laughlin, R. G. W.: The Cool-Flame Oxidation of *n*-Heptane. Part I. The Kinetic Features of the Reaction, 19, 315
- Cavenor, M. S., Munday, G. and Ubbelohde, A. R.: Chemi-Ionization in Detonation Chemistry, 18, 99.
- Chaudri, M. M.: Shock Initiation of Fast Decomposition in Crystalline Solids, 19, 419
- Chen, Joseph L. P. and Churchill, Stuart W.: Stabilization of Flames in Refractory Tubes, 18,
- Chen, Joseph L. P. and Churchill, Stuart W.: A Theoretical Model for Stable Combustion inside a Refractory Tube, 18, 27
- Churchill, Stuart W.: See Chen, Joseph L. P. and Churchill, Stuart W., 18, 27 & 37
- Chetty, V. Janardhana and Voinov, A. N.: An Analysis of the Chemico-Kinetic Nature of Ignition of Liquid Fuels and the Effect of Physical Factors, 18, 417
- Chomiak, Jerzy: Application of Chemiluminescence Measurement to the Study of Turbulent Flame Structure, 18, 429
- Comeford, J. J.: The Spectral Distribution of Radiant Energy of a Gas-Fired Radiant Panel and Some Diffusion Flames, 18, 125
- Crossley, Robert W., Dorko, Ernest A., Scheller, Karl, and Burcat, Alexander: The Effect of Higher Alkanes on the Ignition of Methane-Oxygen-Argon Mixtures in Shock Waves, 19, 373

Crossley, R. W.: See Burcat, A., Crossley, R. W., Scheller, K., and Skinner, G. B.

Cullis, C. F. and Mulcahy, M. F. R.: The Kinetics of Combustion of Gaseous Sulphur Compounds—A Review, 18, 225

Datta, Parimal and Reed, Stuart B.: A Flame Structure Study of the Stabilizing Region of a Fuel-Rich Flame and the Effects of Vitiation, 19,89

Dayal, S. K. and Pandya, T. P.: Optical Study of Counterflow Diffusion Flames in Transverse Electric Fields, 19, 113

Denault, G. C.: See Breisacher, P., Takimoto, H. H., Denault, G. C., and Hicks, W. A.

de Ris, J. and Orloff, L.: A Dimensionless Correlation of Pool Burning Data, 18, 381

de Ris, J.: See Orloff, L. and de Ris, J.

Dewey, J. M.: See Patterson, A. M., Kingery, C. M., Rowe, R. D., Petes, J., and Dewey, J. M. Donaldson, A. B.: See Hardee, H. C., Donaldson, A. B., and Lee, D. O.

Donaldson, A. B.: See Hardee, H. C., Lee, D. O., and Donaldson, A. B.

Dorko, Ernest A.: See Crossley, Robert W., Dorko, Ernest A., Scheller, Karl, and Burcat, Alexander Dougherty, Thomas J.: See Silla, Harry and Dougherty, Thomas J.

Durden, D. A.: See Bradley, J. N. and Durden,

Durst, F., Melling, A., and Whitelaw, J. H.: The Application of Optical Anemometry to Measurement in Combustion Systems, 18, 197

Edmondson, Harry: See Pritchard, Robert, Edmondson, Harry, and Heap, Michael Peter Ewins, R. A.: Flame Stabilization at Multiple Cylindrical Ports, 18, 476

Faeth, G. M.: High-Pressure Liquid-Monopropellant Strand Combustion, 18, 103

Faeth, G. M.: See Allison, C. B. and Faeth, G. M.Fenimore, C. P.: Formation of Nitric Oxide from Fuel Nitrogen in Ethylene Flames, 19, 289

Fenimore, Charles P.: Oxidation of Sulfur Dioxide in Stainless Steel or Inconel Sampling Probes, 18, 469

Fetting, F.: See Bockhorn, H., Fetting, F., and Mende, J. C.

Fetting, F.: See Peschel, H. and Fetting, F.

Feugier, A.: Soot Oxidation in Laminar Hydrocarbon Flames, 19, 249

Field, J. E.: See Heavens, S. N. and Field, J. E.

Fissan, Heinrich J.: Discussion of the Thermal State of an Open-Air Premixed Methane-Oxygen Flame, 19, 11

Frandsen, William H. and Rothermel, Richard C.: Measuring the Energy-Release Rate of a Spreading Fire, 19, 17 Friswell, N. J. and Jenkins, D. R.: Identification of Lead Compounds in Flames and Determination of the PbO Bond Energy, 19, 197

Garcia, Cesar F.: See Ragland, Kenneth W. and Garcia, Cesar F.

Gesser, H. D.: See Jones, P. W. and Gesser, H. D.
Giammar, Robert D. and Putnam, Abbott A.:
Combustion Roar of Premixed Burners, Singly and in Pairs, 18, 435

Goodman, H., Gray, P., and Jones, D. T.: Self-Heating during the Spontaneous Ignition of Methyl Nitrate Vapor, 19, 157

Gray, B. F., Gray, P., and Kirwan, N. A.: Applications of Combustion Theory to Biological Systems, 18, 439

Gray, B. F. and Sherrington, M. E.: Explosive Systems with Reactant Consumption. I. Critical Conditions, 19, 435

Gray, B. F. and Sherrington, M. E.: Explosive Systems with Reactant Consumption. II. Stability, 19, 445

Gray, P. and Ip, J. K. K.: Spontaneous Ignition Supported by Chlorine Dioxide. I. Chlorine Dioxide Alone and with Diluents, 18, 361

Gray, P.: See Goodman, H., Gray, P., and Jones, D. T.

Gray, P.: See Gray, B. F., Gray, P., and Kirwan, N. A.

Gray, P.: See Ip, J. K. K. and Gray, P.

Groves, T. K.: Use of Sunlight-Shadowgraphs in Aerial Photogrammetry of Blast Waves, 18, 155

Guirao, C.: See Lee, J. H., Kynstautas, R., Guirao, C., Bekesy, A., and Sabbagh, S.

Günther, R. and Janisch, G.: Measurements of Burning Velocity in a Flat Flame Front, 19, 49 Gupta, M. C.: See Sriramulu, V., Gupta, M. C., and Heitland, H.

Hardee, H. C., Donaldson, A. B., and Lee, D. O.: Predicting the Critical Boundary Temperature of Multidimensional Explosives, 19, 331

Hardee, H. C., Lee, D. O., and Donaldson, A. B.: A New Method of Predicting the Critical Temperature of Explosives for Various Geometries, 18, 403

Hayhurst, A. N. and Kittelson, D. B.: The Ionization Potentials of CaOH and SrOH, 19, 306

Heap, Michael Peter: See Pritchard, Robert, Edmondson, Harry, and Heap, Michael Peter Heavens, S. N. and Field, J. E.: Flow, Melting and

Heavens, S. N. and Field, J. E.: Flow, Melting and Ignition of Solid Explosives under Impact, 18, 473

Heinsohn, Robert J.: See Jones, Fred L., Becker, Philip M., and Heinsohn, Robert J.

Heitland, H.: See Sriramulu, V., Gupta, M. C., and Heitland, H.

Heywood, John B.: See Pompei, Francesco and Heywood, John B.

- Hicks, W. A.: See Breisacher, P., Takimoto, H. H., Denault, G. C., and Hicks, W. A.
- Hill, Robert F. and Penner, S. S.: Carbonyl Formation from Isooctane Combustion in an Internal Combustion Engine, 19, 455
- Homann, K. H. and Poss, R.: The Effect of Pressure on the Inhibition of Ethylene Flames, 18, 300
- Ibiricu, M. M. and Krier, Herman: Acoustic Amplification during Solid Propellant Combustion, 19, 379
- Ip, J. K. K. and Gray, P.: Spontaneous Ignition Supported by Chlorine Dioxide. II. Self Heating in Chlorine Dioxide Plus Hydrocarbons, 19, 117
 Ip, J. K. K.: See Gray, P. and Ip, J. K. K.
- Jacobs, P. W. M. and Stevenson, J.: The Gas-Phase Reaction of Perchloric Acid with Hydrogen, 19, 343
- Jagoda, I. J. and Weinberg, F. J.: Initiation of Electrically Augmented Flames, 19, 305
- Jaggers, H. C., Bowser, R. J., and Weinberg, F. J.: The Effect of Electric Fields on Burning Velocity, 19, 135
- Janisch, G.: See Günther, R. and Janisch, G.
- Jenkins, D. R.: See Friswell, N. J. and Jenkins, D. R.
- Jensen, D. E.: Competitive Reaction Kinetics in Seeded Flames and Rocket Exhausts, 18, 217
- Jesch, L. F.: See Bradley, D., Jesch, L. F., and Sheppard, C. G. W.
- Johnston, P. D.: The Rate of Decomposition of Silica Particles in an Augmented Flame, 18, 373Jones, D. T.: See Goodman, H., Gray, P., and
- Jones, D. T.
 Jones, Fred L., Becker, Philip M., and Heinsohn,
 Robert J.: A Mathematical Model of the
 Opposed-Jet Diffusion Flame: Effect of an
 Electric Field on Concentration and Temperature Profiles, 19, 351
- Jones, J. M. and Rosenfeld, J. L. J.: A Model for Sooting in Diffusion Flames, 19, 427
- Jones, P. W. and Gesser, H. D.: Formation of Hydrogen from Amine Oxidation and Pyrolysis, 19, 134
- Kallend, A. S.: Kinetics of the Sulphur Dioxide Catalyzed Recombination of Radicals in Hydrogen Flames, 19, 227
- Kalff, P. J. and Alkemade, C. Th. J.: Characteristics of Premixed, Laminar CO/N₂O Flames, 19, 257
- Kanury, A. Murty: Thermal Decomposition Kinetics of Wood Pyrolysis, 18, 75
- Kawada, Haruo and Miyauchi, Toshio: The Effect of Small Amounts of Benzene on Oxy-Acetylene Detonations, 19, 449

- Kingery, C. M.: See Patterson, A. M., Kingery, C. M., Rowe, R. D., Petes, J., and Dewey, J. M. Kirwan, N. A.: See Gray, B. F., Gray, P., and Kirwan, N. A.
- Kynstautas, R.: See Lee, J. H., Kynstautas, R., Guirao, C., Bekesy, A., and Sabbagh, S.
- Krier, H. and Wronkiewicz, J. A.: Combustion of Single Drops of Fuel, 18, 159
- Krier, Herman: See Ibiricu, M. M. and Krier, Herman
- Kittelson, D. B.: See Hayhurst, A. N. and Kittelson, D. B.
- Kung, Hsiang-Cheng: A Mathematical Model of Wood Pyrolysis, 18, 185
- Laughlin, R. G. W.: See Burgess, A. R. and Laughlin, R. G. W.
- Law, C. K. and Williams, F. A.: Kinetics and Convection in the Combustion of Alkane Droplets, 19, 393
- Leckner, B.: Spectral and Total Emissivity of Water Vapor and Carbon Dioxide, 19, 33
- Lee, D. O.: See Hardee, H. C., Donaldson, A. B., and Lee, D. O.
- Lee, D. O.: See Hardee, H. C., Lee, D. O., and Donaldson, A. B.
- Lee, J. H., Knystautas, R., Guirao, C., Bekesy, A., and Sabbagh, S.: On the Instability of H₂-Cl₂ Gaseous Detonations, 18, 321
- Linan, A. and Williams, F. A.: Radiant Ignition of a Reactive Solid with In-Depth Absorption, 18,
- Loth, J. L.: See Ouseph, C. V. and Loth, J. L. Lucquin, M. and Antonik, S.: Multistage Ignition in Hydrocarbon Combustion, 19, 311
- Maloney, Kenneth M. and Pillay, T. C. M.: The Active Combustion Mechanism of Single Al and Zr Strands in Oxygen as Determined by High Speed Photography, 18, 337
- McCormack, P. D., Scheller, K., Mueller, G., and Tisher, R.: Flame Propagation in a Vortex Core, 19, 297
- Melling, A.: See Durst, F., Melling, A., and Whitelaw, J. H.
- Mende, J. C.: See Bockhorn, H., Fetting, F., and Mende, J. C.
- Meyer, J. W.: See Vermeer, D. J., Meyer, J. W., and Oppenheim, A. K.
- McLean, W. J.: See Schefer, R. W., McLean, W. J., and Sawyer, R. F.
- Mimura, Yoichi: See Yanagi, Tetsui and Mimura, Yoichi
- Miyauchi, Toshio: See Kawada, Haruo, and Mayauchi, Toshio
- Mizutani, Yukio: Amplification of Turbulence Level by a Flame and Turbulent Flame Velocity, 19, 203

Moore, F. (Miss) and Tipper, C. F. H.: The Effect of Additives on Low-Temperature Hydrocarbon Ignition in a Flow System, 19, 81

Morrison, M. E. and Scheller, K.: The Effect of Burning Velocity Inhibitors on the Ignition of Hydrocarbon-Oxygen-Nitrogen Mixtures, 18, 3 Mueller, G.: See McCormack, P. D., Scheller, K.,

Mueller, G., and Tisher, R.

Mulcahy, M. F. R.: See Cullis, C. F. and Mulcahy,

Munday, G.: See Cavenor, M. S., Munday, G., and Ubbelohde, A. R.

Muzio, L. J., Smith, D. S., and Starkman, E. S.: Emission-Absorption Temperature Measurements in the Cylinder of a Spark Ignition Engine, 18, 315

Niioka, Takashi: See Otsuka, Toshiro and Niioka, Takashi

Oppenheim, A. K.: See Vermeer, D. J., Meyer, J. W., and Oppenheim, A. K.

Orloff, L.: See de Ris, J. and Orloff, L.

Orloff, L. and de Ris, J.: Cellular and Turbulent Ceiling Fires, 18, 389

Otsuka, Yoshiro and Niioka, Takashi: On the Deviation of the Flame from the Stagnation Point in Opposed-Jet Diffusion Flames, 19, 171 Ouseph, C. V. and Loth, J. L.: Minimum Ignition

Energy Studies with Unflanged Electrodes, 19,

309

Panduranga, Venkatasubbaiah: Correct Turbulence-A Way to Reduce the Concentration of Unburnt Hydrocarbons from Automotive Engines, 18, 461

Pandya, T. P.: See Dayal, S. K. and Pandya, T. P. Patterson, A. M., Kingery, C. M., Rowe, R. D., Petes, J., and Dewey, J. M.: Fireball and Shock Wave Anomalies Observed in Chemical Explosions, 19, 25

Penner, S. S.: See Hill, Robert F. and Penner, S. S. Peschel, J. and Fetting, F.: The Laminar Flame Speed of Methane-Oxygen Mixtures and Some Remarks on Flame Pressure, 19, 136

Petersen, E. E.: See Boggs, T. L., Petersen, E. E., and Watt, D. N., Jr.

Petes, J.: See Patterson, A. M. Kingery, C. M., Rowe, R. D., Petes, J., and Dewey, J. M.

Phillips, H.: Ignition in a Transient Turbulent Jet of Hot Inert Gas, 19, 187

Phillips, H.: A Nondimensional Parameter Characterizing Mixing Processes in a Model of Thermal Gas Ignition, 19, 181

Pillay, T. C. M.: See Maloney, Kenneth M. and Pillay, T. C. M.

Plant, John: Reaction of Hydrocarbon-Air Mixtures in Incident Shock Waves of Pressure Greater than 25 Atmospheres: Correlation with Shock-Tube Results, 18, 305

Pompei, Francesco and Heywood, John B.: The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide, 19, 407

Poss, R.: See Homann, K. H. and Poss, R.

Prasad, C. R.: See Rao, V. Kuppu and Prasad, C. R.

Pritchard, Robert, Edmondson, Harry, and Heap, Michael Peter: Diameter Effects in Cooled-Flat-Flame Burners, 18, 13

Putnam, Abbott, A.: See Giammar, Robert D. and Putnam, Abbott A.

Ragland, Kenneth W. and Garcia, Cesar F.: Ignition Delay Measurements in Two-Phase Detonations, 18, 53

Rao, V. Kuppu and Prasad, C. R.: Knock Suppression in Petrol Engines, 18, 167

Reed, Stuart B.: See Datta, Parimal and Reed, Stuart B

Rosenfeld, J. L. J.: See Jones, J. M. and Rosenfeld, J. L. J.

Rothermel, Richard C.: See Frandsen, William H. and Rothermel, Richard C.

Rowe, R. D.: See Patterson, A. M., Kingery, C. M., Rowe, R. D., Petes, J., and Dewey, J. M.

Sabbagh, S.: See Lee, J. H., Kynstautas, R., Guirao, C., Bekesy, A., and Sabbagh, S.

Sawyer, R. F.: See Schefer, R. W., McLean, W. J., and Sawyer, R. F.

Schefer, R. W., McLean, W. J., and Sawyer, R. F.: Dispersion in Combustion Gas Sampling Probes, 19, 267

Scheller, K.: See Burcat, A., Crossley, R. W., Scheller, K., and Skinner, G. B.

Scheller, K.: See McCormack, P. D., Scheller, K., Mueller, G., and Tisher, R.

Scheller, K.: See Morrison, M. E. and Scheller, K. Scheller, Karl: See Crossley, Robert W., Dorko, Ernest A., Scheller, Karl, and Burcat, Alexander

Scott, James N.: See Strauss, W. A. and Scott, James N.

Silla, Harry and Dougherty, Thomas J.: Comparison of Single- and Double-Probe Measurements of Electron Temperatures in Flames, 18, 65

Sheppard, C. G. W.: See Bradley, D., Jesch, L. F., and Sheppard, C. G. W.

Sherrington, M. E.: See Gray, B. F. and Sherrington, M. E., 19, 435, 445

Simmons, R. F. and Wright, N.: The Burning Velocities of Near Limit Mixtures of Propane, Air, and Hydrogen Bromide, 18, 203

Skinner, Gordon B.: See Baker, James A. and Skinner, Gordon B.

Skinner, G. B.: See Burcat, A., Crossley, R. W., Scheller, K., and Skinner, G. B.

- Smith, D. S.: See Muzio, L. J., Smith, D. S., and Starkman, E. S.
- Smith, I. W.: See Ayling, A. B. and Smith, I. W.
- Smith, M. Y.: The Effect of Nitric Oxide on the Recombination of H Atoms in Fuel-Rich Propane-Oxygen-Nitrogen Flames, 18, 293
- Soloukhin, R. I. and Brochet, C.: The Development of Instabilities in a Shocked Exothermic Gas Flow, 18, 59
- Starkman, E. S.: See Muzio, L. J., Smith, D. S., and Starkman, E. S.
- Stevenson, J.: See Jacobs, P. W. M. and Stevenson,
- Strauss, W. A. and Scott, James N.: Experimental Investigation of the Detonation Properties of Hydrogen-Oxygen and Hydrogen-Nitric Oxide Mixtures at Initial Pressures up to 40 Atmospheres, 19, 141
- Takimoto, H. H.: See Breisacher, P., Takimoto, H. H., Denault, G. C., and Hicks, W. A.
- Tewarson, A.: Some Observations on Experimental Fires in Enclosures. Part I: Cellulosic Materials, 19, 101
- Tewarson, A.: Some Observations on Experimental Fires in Enclosures. Part II: Ethyl Alcohol and Paraffin Oil, 19, 363
- Thompson, D., Brown, T. D., and Beér, J. M.: NO_X Formation in Combustion, 19, 69
- Tipper, C. F. H.: See Moore, F. (Miss) and Tipper, C. F. H.
- Tisher, R.: See McCormack, P. D., Scheller, K., Mueller, G., and Tisher, R.
- Tolson, Peter: The Ignition of Flammable Atmospheres by Small Amounts of Metal Vapor and Particles, 18, 19
- Toong, Tau-Yi: Chemical Effects on Sound Propagation, 18, 207

- Tse, R. S.: The Oxidation of 2-Butenes During the Induction Period, 18, 357
- Ubbelohde, A. R.: See Cavenor, M. S., Munday, G., and Ubbelohde, A. R.
- Vermeer, D. J., Meyer, J. W., and Oppenheim, A. K.: Auto-Ignition of Hydrocarbons behind Reflected Shock Waves. 18, 327
- Voinov, A. N.: See Chetty, V. Janardhana, and Voinov, A. N.
- Watt, D. N., Jr.: See Boggs, T. L., Petersen, E. E., and Watt, D. N., Jr.
- Weinberg, F. J.: See Bowser, R. G. and Weinberg,
- Weinberg, F. J.: See Jagoda, I. J. and Weinberg, F. J.
- Weinberg, F. J.: See Jaggers, H. C., Bowser, R. J., and Weinberg, F. J.
- Whitelaw, J. H.: See Durst, F., Melling, A., and Whitelaw, J. H.
- Wilde, Kenneth A.: Boundary-Value Solutions of the One-Dimensional Laminar Flame Propagation Equations, 18, 43
- Williams, F. A.: See Law, C. K. and Williams, F. A. Williams, F. A.: See Linan, A. and Williams, F. A. Wright, N.: See Simmons, R. F. and Wright, N.
- Wronkiewicz, J. A.: See Krier, H. and Wronkiewicz, J. A.
- Yanagi, Tetsui: Effect of Concentration Gradient on Composition of Sampled Gas. II. Experimental Verification, 19, 1
- Yanagi, Tetsui and Mimura, Yoichi: Effect of Concentration Gradient on Composition of Sampled Gas. I. Theoretical Analysis, 18, 347

SUBJECT INDEX

Volumes 18-19, 1972

1. ATMOSPHERIC POLLUTION FROM COMBUSTION

Correct Turbulence—A Way to Reduce the Concentration of Unburnt Hydrocarbons from Automotive Engines, 18, 461

Oxidation of Sulfur Dioxide in Stainless Steel or Inconel Sampling Probes, 18, 469

NO_x Formation in Combustion, 19, 69

Kinetics of the Sulphur Dioxide Catalyzed Recombination of Radicals, in Hydrogen Flames, 19, 227

Formation of Nitric Oxide from Fuel Nitrogen in Ethylene Flames, 19, 289

The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide, 19, 407

2. BURNING OF LIQUIDS

Ignition Delay Measurements in Two-Phase Detonations, 18, 53

High-Pressure Liquid-Monopropellant Strand Combustion, 18, 103

Combustion of Single Drops of Fuel, 18, 159
A Dimensionless Correlation of Pool Burning Data,

18, 381

Cellular and Turbulent Ceiling Fires, 18, 389
An Analysis of the Chemico-Kinetic Nature of Ignition of Liquid Fuels and the Effect of Physical Factors, 18, 417

Decomposition and Hybrid Combustion of Hydrazine, MMH, UDMH as Droplets in a Combustion Gas Environment, 19, 213

Some Observations on Experimental Fires in Enclosures, Part II: Ethyl Alcohol and Paraffin Oil, 19, 363

Kinetics and Convection in the Combustion of Alkane Droplets, 19, 393

The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide, 19, 407

3. BURNING OF SOLIDS

Thermal Decomposition Kinetics of Wood Pyrolysis, 18, 75

Radiant Ignition of a Reactive Solid with In-Depth Absorption, 18, 85

Measured Temperatures of Burning Pulverized-Fuel Particles, and the Nature of the Primary Reaction Product, 18, 173 A Mathematical Model of Wood Pyrolysis, 18, 185 The Active Combustion Mechanism of Single Al and Zr Strands in Oxygen as Determined by High Speed Photography, 18, 337

Cellular and Turbulent Ceiling Fires, 18, 389
Prediction of Ignition Temperature of a Single
Coal Particle, 18, 411

Some Observations on Experimental Fires in Enclosures. Part I: Cellulosic Materials, 19, 101
Soot Oxidation in Laminar Hydrocarbon Flames,

19, 249

4. COMBUSTION IN PRACTICAL SYSTEMS

Knock Suppression in Petrol Engines, 18, 167

Emission-Absorption Temperature Measurements in the Cylinder of a Spark Ignition Engine, 18, 315

An Analysis of the Chemico-Kinetic Nature of Ignition of Liquid Fuels and the Effect of Physical Factors, 18, 417

Combustion Roar of Premixed Burners, Singly and in Pairs, 18, 435

Correct Turbulence—A Way to Reduce the Concentration of Unburnt Hydrocarbons from Automotive Engines, 18, 461

Minimum Ignition Energy Studies with Unflanged Electrodes, 19, 309

Carbonyl Formation from Isooctane Combustion in an Internal Combustion Engine, 19, 455

5. CRITICAL REVIEWS

Determination of Burning Velocities: A Critical Review, 18, 133

The Kinetics of Combustion of Gaseous Sulphur Compounds—A Review, 18, 225

Applications of Combustion Theory to Biological Systems, 18, 439

6. DEFLAGRATION WAVES

Determination of Burning Velocities: A Critical Review, 18, 133

The Laminar Flame Velocities of Propane/ Ammonia Mixtures, 18, 471

Comment on "The Deflagration of Single Crystals of Ammonium Perchlorate," 19, 131

7. DETONATION WAVES

Chemi-Ionization in Detonation Chemistry, 18, 99 Experimental Investigation of the Detonation Properties of Hydrogen-Oxygen and Hydrogen-Nitric Oxide Mixtures at Initial Pressures up to 40 Atmospheres, 19, 141

Ignition Delay Measurements in Two-Phase Detonations, 18, 53

The Development of Instabilities in a Shocked Exothermic Gas Flow, 18, 59

On the Instability of H₂-Cl₂ Gaseous Detonations, 18, 321

The Effect of Small Amounts of Benzene on Oxy-Acetylene, 19, 449

8. DIFFUSION FLAMES

Optical Study of Counterflow Diffusion Flames in Transverse Electric Fields, 19, 113

On the Deviation of the Flame from the Stagnation Point in Opposed-Jet Diffusion Flames, 19, 171

A Mathematical Model of the Opposed-Jet Diffusion Flame: Effect of an Electric Field on Concentration and Temperature Profiles, 19, 351

9. ELECTRICAL ASPECTS OF FLAMES

Comparison of Single- and Double-Probe Measurements of Electron Temperatures in Flames, 18, 65

Chemi-Ionization in Detonation Chemistry, 18, 99 Competitive Reaction Kinetics in Seeded Flames and Rocket Exhausts, 18, 217.

The Effect of Direct Electric Fields on Normal Burning Velocity, 18, 296

Optical Study of Counterflow Diffusion Flames in Transverse Electric Fields, 19, 113

The Effect of Electric Fields on Burning Velocity, 19, 135

Electron Energy Exchanges in Hydrocarbon Flames, 19, 237

Characteristics of Premixed, Laminar CO/N₂O Flames, 19, 257

Initiation of Electrically Augmented Flames, 19, 305

The Ionization Potentials of CaOH and SrOH, 19, 306

A Mathematical Model of the Opposed-Jet Diffusion Flame: Effect of an Electric Field on Concentration and Temperature Profiles, 19, 351

10. EXPERIMENTAL TECHNIQUES

Diameter Effects in Cooled-Flat-Flame Burners, 18, 13

The Ignition of Flammable Atmospheres by Small Amounts of Metal Vapor and Particles, 18, 19 Comparison of Single- and Double-Probe Measurements of Electron Temperatures in Flames, 18, 65

Determination of Burning Velocities: A Critical Review, 18, 133

Use of Sunlight-Shadowgraphs in Aerial Photogrammetry of Blast Waves, 18, 155

Measured Temperatures of Burning Pulverized-Fuel Particles, and the Nature of the Primary Reaction Product, 18, 173

The Application of Optical Anemometry to Measurement in Combustion Systems, 18, 197

Emission-Absorption Temperature Measurements in the Cylinder of a Spark Ignition Engine, 18, 315

Effect of Concentration Gradient on Composition of Sampled Gas. I. Theoretical Analysis, 18, 347 Application of Chemiluminescence Measurement to the Study of Turbulent Flame Structure, 18, 429

Oxidation of Sulfur Dioxide in Stainless Steel or Inconel Sampling Probes, 18, 469

Effect of Concentration Gradient on Composition of Sampled Gas. II. Experimental Verification, 19.1

Measurements of Burning Velocity in a Flat Flame Front, 19, 49

The Effect of Electric Fields on Burning Velocity, 19, 135

Dispersion in Combustion Gas Sampling Probes, 19, 267

The Burning Velocity of Methane-Air Mixtures, 19, 275

Initiation of Electrically Augmented Flames, 19, 305

Carbonyl Formation from Isooctane Combustion in an Internal Combustion Engine, 19, 455

11. EXPLOSIVES

A New Method of Predicting the Critical Temperature of Explosives for Various Geometries, 18, 403

Flow, Melting and Ignition of Solid Explosives under Impact, 18, 473

Fireball and Shock Wave Anomalies Observed in Chemical Explosions, 19, 25

Predicting the Critical Boundary Temperature of Multidimensional Explosives, 19, 331

Shock Initiation of Fast Decomposition in Crystalline Solids, 19, 419

12. FIRE PHENOMENA

Thermal Decomposition Kinetics of Wood Pyrolysis, 18, 75

The Spectral Distribution of Radiant Energy of a Gas-Fired Radiant Panel and Some Diffusion Flames, 18, 125

- A Dimensionless Correlation of Pool Burning Data,
- Cellular and Turbulent Ceiling Fires, 18, 389
- Measuring the Energy-Release Rate of a Spreading Fire, 19, 17
- Thermal Ignition in Two-Component Systems. Part II—Experimental Study, 19, 55
- Some Observations on Experimental Fires in Enclosures, Part I-Cellulosic Materials, 19, 101
- Some Observations on Experimental Fires in Enclosures. Part II-Ethyl Alcohol and Paraffin Oil, 19, 363

13. FLAME IGNITION

- The Effect of Burning Velocity Inhibitors on the Ignition of Hydrocarbon-Oxygen-Nitrogen Mixtures, 18, 3
- The Ignition of Flammable Atmospheres by Small Amounts of Metal Vapor and Particles, 18, 19
- Ignition Delay Measurements in Two-Phase Detonations, 18, 53
- Shock Tube Investigations of Ignition in Ethane-Oxygen-Argon Mixtures, 18, 115
- Reaction of Hydrocarbon-Air Mixtures in Incident Shock Waves of Pressure Greater than 25 Atmospheres: Correlation with Shock-Tube Results, 18, 305
- Auto-Ignition of Hydrocarbons behind Reflected Shock Waves, 18, 327
- Prediction of Ignition Temperature of a Single Coal Particle, 18, 411
- An Analysis of the Chemico-Kinetic Nature of Ignition of Liquid Fuels and the Effect of Physical Factors, 18, 417
- Flow, Melting and Ignition of Solid Explosives under Impact, 18, 473
- Thermal Ignition in Two-Component Systems. Part II-Experimental Study, 19, 55
- The Effect of Additives on Low-Temperature Hydrocarbon Ignition in a Flow System, 19, 81
- Experimental Investigation of the Detonation Properties of Hydrogen-Oxygen and Hydrogen-Nitric Oxide Mixtures at Initial Pressures up to 40 Atmospheres, 19, 141
- A Nondimensional Parameter Characterizing Mixing Processes in a Model of Thermal Gas Ignition, 19, 181
- Ignition in a Transient Turbulent Jet of Hot Inert Gas. 19, 187
- Minimum Ignition Energy Studies with Unflanged Electrodes, 19, 309
- Multistage Ignition in Hydrocarbon Combustion, 19, 311
- The Cool-Flame Oxidation of n-Heptane. Part 1. The Kinetic Features of the Reaction, 19, 315
- The Effect of Higher Alkanes on the Ignition of Methane-Oxygen-Argon Mixtures in Shock Waves, 19, 373

14. FLAME INHIBITION

- The Effect of Burning Velocity Inhibitors on the Ignition of Hydrocarbon-Oxygen-Nitrogen Mixtures, 18, 3
- Knock Suppression in Petrol Engines, 18, 167
- The Effect of Pressure on the Inhibition of Ethylene Flames, 18, 300
- The Effect of Additives on Low-Temperature Hydrocarbon Ignition in a Flow System, 19, 81

15. FLAME PROPAGATION

- The Effect of Burning Velocity Inhibitors on the Ignition of Hydrocarbon-Oxygen-Nitrogen Mixtures, 18, 3
- Diameter Effects in Cooled-Flat-Flame Burners, 18, 13
- Solutions of the One-Dimensional Laminar Flame Propagation Equations, 18, 43
- Determination of Burning Velocities: A Critical Review, 18, 133
- The Effect of Direct Electric Fields on Normal Burning Velocity, 18, 296
- The Burning Velocities of Near Limit Mixtures of Propane, Air, and Hydrogen Bromide, 18, 203
- The Effect of Pressure on the Inhibition of Ethylene Flames, 18, 300
- The Laminar Flame Velocities of Propane/ Ammonia Mixtures, 18, 471
- Measurements of Burning Velocity in a Flat Flame Front, 19, 49
- The Laminar Flame Speed of Methane-Oxygen Mixtures and Some Remarks on Flame Pressure, 19, 136
- Experimental Investigation of the Detonation Properties of Hydrogen-Oxygen and Hydrogen-Nitric Oxide Mixtures at Initial Pressures up to 40 Atmospheres, 19, 141
- Amplification of Turbulence Level by a Flame and Turbulent Flame Velocity, 19, 203
- Decomposition and Hybrid Combustion of Hydrazine, MMH and UDMH as Droplets in a Combustion Gas Environment, 19, 213
- Characteristics of Premixed, Laminar CO/N₂O Flames, 19, 257
- The Burning Velocity of Methane-Air Mixtures, 19. 275
- Flame Propagation in a Vortex Core, 19, 297

16. FLAME SPECTRA AND EXCITED SPECIES

- The Spectral Distribution of Radiant Energy of a Gas-Fired Radiant Panel and Some Diffusion Flames, 18, 125
- Discussion of the Thermal State of an Open Air Premixed Methane-Oxygen Flame, 19, 11
- Spectral and Total Emissivity of Water Vapor and Carbon Dioxide, 19, 33
- Electron Energy Exchanges in Hydrocarbon Flames, 19, 237

Characteristics of Premixed, Laminar CO/N₂O Flames, 19, 257

17. FLAME STABILITY

A Theoretical Model for Stable Combustion inside a Refractory Tube, 18, 27

Stabilization of Flames in Refractory Tubes, 18, 37

The Burning Velocities of Near Limit Mixtures of Propane, Air, and Hydrogen Bromide, 18, 203

On the Instability of H_2 - Cl_2 Gaseous Detonations, 18, 321

A Flame Structure Study of the Stabilizing Region of a Fuel-Rich Flame and the Effects of Vitiation, 19, 89

Flame Stabilization at Multiple Cylindrical Ports, 18, 476

18. FLAME STRUCTURE

Structure of Premixed Turbulent Flame, 18, 303 Application of Chemiluminescence Measurement to the Study of Turbulent Flame Structure, 18, 429

A Flame Structure Study of the Stabilizing Region of a Fuel-Rich Flame and the Effects of Vitiation, 19, 89

On the Deviation of the Flame from the Stagnation Point in Opposed-Jet Diffusion Flames, 19, 171

A Mathematical Model of the Opposed-Jet Diffusion Flame: Effect of an Electric Field on Concentration and Temperature Profiles, 19, 351

19. FLUID DYNAMICS AND COMBUSTION

Ignition Delay Measurements in Two-Phase Detonations, 18, 53

The Development of Instabilities in a Shocked Exothermic Gas Flow, 18, 59

The Burning Velocities of Near Limit Mixtures of Propane, Air, and Hydrogen Bromide, 18, 203

Chemical Effects on Sound Propagation, 18, 207 Auto-Ignition of Hydrocarbons behind Reflected Shock Waves, 18, 327

Fireball and Shock Wave Anomalies Observed in Chemical Explosions, 19, 25

Amplification of Turbulence Level by a Flame and Turbulent Flame Velocity, 19, 203

Flame Propagation in a Vortex Core, 19, 297

Kinetics and Convection in the Combustion of Alkane Droplets, 19, 393

The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide, 19, 407

20. FLAME RADIATION

The Spectral Distribution of Radiant Energy of a Gas-Fired Radiant Panel and Some Diffusion Flames, 18, 125 Application of Chemiluminescence Measurement to the Study of Turbulent Flame Structure, 18, 429

Spectral and Total Emissivity of Water Vapor and Carbon Dioxide, 19, 33

21. HETEROGENEOUS COMBUSTION

Knock Suppression in Petrol Engines, 18, 167

Measured Temperatures of Burning Pulverized-Fuel Particles, and the Nature of the Primary Reaction Product, 18, 173

The Active Combustion Mechanism of Single Al and Zr Strands in Oxygen as Determined by High Speed Photography, 18, 337

A Dimensionless Correlation of Pool Burning Data, 18, 381

Cellular and Turbulent Ceiling Fires, 18, 389

Prediction of Ignition Temperature of a Single Coal Particle, 18, 411

An Analysis of the Chemico-Kinetic Nature of Ignition of Liquid Fuels and the Effect of Physical Factors, 18, 417

Thermal Ignition in Two-Component Systems. Part II-Experimental Study, 19, 55

Soot Oxidation in Laminar Hydrocarbon Flames, 19, 249

22. KINETICS AND MECHANISMS OF COMBUSTION REACTIONS

The Effect of Burning Velocity Inhibitors on the Ignition of Hydrocarbon-Oxygen-Nitrogen Mixtures, 18, 3

Boundary-Value Solutions of the One-Dimensional Laminar Flame Propagation Equations, 18, 43

Shock Tube Investigations of Ignition in Ethane-Oxygen-Argon Mixtures, 18, 115

Chemical Effects on Sound Propagation, 18, 207 Competitive Reaction Kinetics in Seeded Flames and Rocket Exhausts, 18, 217

The Kinetics of Combustion of Gaseous Sulphur Compounds-A Review, 18, 225

The Effect of Nitric Oxide on the Recombination of H Atoms in Fuel-Rich Propane-Oxygen-Nitrogen Flames, 18, 293

The Oxidation of 2-Butenes During the Induction Period, 18, 357

Spontaneous Ignition Supported by Chlorine Dioxide, I. Chlorine Dioxide Alone and with Diluents, 18, 361

NO_x Formation in Combustion, 19, 69

The Effect of Additives on Low-Temperature Hydrocarbon Ignition in a Flow System, 19, 81 Spontaneous Ignition Supported by Chlorine Dioxide. II. Self Heating in Chlorine Dioxide Plus Hydrocarbons, 19, 117

Formation of Hydrogen from Amine Oxidation and Pyrolysis, 19, 134

d

- Kinetics of the Sulphur Dioxide Catalyzed Recombination of Radicals in Hydrogen Flames, 19, 227
- Formation of Nitric Oxide from Fuel Nitrogen in Ethylene Flames, 19, 289
- The Gas-Phase Reaction of Perchloric Acid with Hydrogen, 19, 343
- Shock-Tube Studies on the Ignition of Ethylene-Oxygen-Argon Mixtures, 19, 347
- The Effect of Higher Alkanes on the Ignition of Methane-Oxygen-Argon Mixtures in Shock Waves, 19, 373
- The Role of Pyrolysis Reactions in Hydrocarbon Oxidation, 19, 452
- Carbonyl Formation from Isooctane Combustion in an Internal Combustion Engine, 19, 455

23. LIMITS OF FLAMMABILITY

The Burning Velocities of Near Limit Mixtures of Propane, Air, and Hydrogen Bromide, 18, 203

24. LIMITS OF SPONTANEOUS IGNITION

- Spontaneous Ignition Supported by Chlorine Dioxide. I. Chlorine Dioxide Alone and with Diluents, 18, 361
- A New Method of Predicting the Critical Temperature of Explosives for Various Geometries, 18, 403
- The Effect of Additives on Low-Temperature Hydrocarbon Ignition in a Flow System, 19, 81
- Spontaneous Ignition Supported by Chlorine Dioxide, II. Self Heating in Chlorine Dioxide Plus Hydrocarbons, 19, 117
- Self-Heating during the Spontaneous Ignition of Methyl Nitrate Vapor, 19, 157
- Multistage Ignition in Hydrocarbon Combustion, 19, 311
- The Cool-Flame Oxidation of n-Heptane. Part I.
 The Kinetic Features of the Reaction, 19, 315
- Predicting the Critical Boundary Temperature of Multidimensional Explosives, 19, 331
- Explosive Systems with Reactant Consumption. I. Critical Conditions, 19, 435
- Explosive Systems with Reactant Consumption. II. Stability, 19, 445

25. MODELING AND SCALING IN COMBUSTION PROCESSES

- A Theoretical Model for Stable Combustion Inside a Refractory Tube, 18, 27
- Boundary-Value Solutions of the One-Dimensional Laminar Flame Propagation Equations, 18, 43
- Thermal Decomposition Kinetics of Wood Pyrolysis, 18, 75
- Radiant Ignition of a Reactive Solid with In-Depth Absorption, 18, 85
- High-Pressure Liquid-Monopropellant Strand Combustion, 18, 103

- Combustion of Single Drops of Fuel, 18, 159
- A Mathematical Model of Wood Pyrolysis, 18, 185 Effect of Concentration Gradient on Composition
- of Sampled Gas. I. Theoretical Analysis, 18, 347 The Rate of Decomposition of Silica Particles in an Augmented Flame, 18, 373
- A Dimensionless Correlation of Pool Burning Data, 18, 381
- A New Method of Predicting the Critical Temperature of Explosives for Various Geometries, 18, 403
- An Analysis of the Chemico-Kinetic Nature of Ignition of Liquid Fuels and the Effect of Physical Factors, 18, 417
- Combustion Roar of Premixed Burners, Singly and in Pairs, 18, 435
- Applications of Combustion Theory to Biological Systems, 18, 439
- Measuring the Energy-Release Rate of a Spreading Fire, 19, 17
- Some Observations on Experimental Fires in Enclosures. Part 1: Cellulosic Materials, 19, 101
- On the Deviation of the Flame from the Stagnation Point in Opposed-Jet Diffusion Flames, 19, 171
- A Nondimensional Parameter Characterizing Mixing Processes in a Model of Thermal Gas Ignition, 19, 181
- Ignition in a Transient Turbulent Jet of Hot Inert Gas, 19, 187
- Amplification of Turbulence Level by a Flame and Turbulent Flame Velocity, 19, 203
- Dispersion in Combustion Gas Sampling Probes, 19, 267
- Predicting the Critical Boundary Temperature of Multidimensional Explosives, 19, 331
- A Mathematical Model of the Opposed-Jet Diffusion Flame: Effect of an Electric Field on Concentration and Temperature Profiles, 19,
- Some Observations on Experimental Fires in Enclosures. Part II: Ethyl Alcohol and Paraffin Oil, 19, 363
- Acoustic Amplification during Solid Propellant Combustion, 19, 379
- Kinetics and Convection in the Combustion of Alkane Droplets, 19, 393
- The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide, 19, 407
- Explosive Systems with Reactant Consumption. I. Critical Conditions, 19, 435
- Explosive Systems with Reactant Consumption. II. Stability, 19, 445

26. NEW APPLICATIONS OF COMBUSTION

Applications of Combustion Theory to Biological Systems, 18, 439

27. PROPELLANTS

- High-Pressure Liquid-Monopropellant Strand Combustion, 18, 103
- Comment on "The Deflagration of Single Crystals of Ammonium Perchlorate," 19, 131
- Vacuum Thermal Decompositions of the Nitrate Salts of Hydrazine, 19, 144
- Acoustic Amplification during Solid Propellant Combustion, 19, 379

28. SOOTING

- Soot Oxidation in Laminar Hydrocarbon Flames, 19, 249
- A Model for Sooting in Diffusion Flames, 19, 427

29. SUPERSONIC REACTING FLOW

- The Development of Instabilities in a Shocked Exothermic Gas Flow, 18, 59
- Reaction of Hydrocarbon-Air Mixtures in Incident Shock Waves of Pressure Greater than 25 Atmospheres: Correlation with Shock-Tube Results, 18, 305

30. THERMAL DECOMPOSITION PROCESSES

- Thermal Decomposition Kinetics of Wood Pyrolysis, 18, 75
- Spontaneous Ignition Supported by Chlorine Dioxide. I. Chlorine Dioxide Alone and with Diluents, 18, 361
- The Rate of Decomposition of Silica Particles in an Augmented Flame, 18, 373
- Vacuum Thermal Decompositions of the Nitrate Salts of Hydrazine, 19, 144
- Self-Heating during the Spontaneous Ignition of Methyl Nitrate Vapor, 19, 157
- Decomposition and Hybrid Combustion of Hydrazine, MMH and UDMH as Droplets in a Combustion Gas Environment, 19, 213
- A Model for Sooting in Diffusion Flames, 19, 427

31. THERMOCHEMISTRY AND THERMODYNAMICS

Identification of Lead Compounds in Flames and Determination of the PbO Bond Energy, 19, 197 The Ionization Potentials of CaOH and SrOH, 19,

32. TRANSIENT SPECIES

- The Effect of Nitric Oxide on the Recombination of H Atoms in Fuel-Rich Propane-Oxygen-Nitrogen Flames, 18, 293
- NO_X Formation in Combustion, 19, 69
- Identification of Lead Compounds in Flames and Determination of the PbO Bond Energy, 19, 197
- Kinetics of the Sulphur Dioxide Catalyzed Recombination of Radicals in Hydrogen Flames, 19, 227
- Characteristics of Premixed, Laminar CO/N2O Flames, 19, 257
- Dispersion in Combustion Gas Sampling Probes, 19, 267
- The Ionization Potentials of CaOH and SrOH, 19, 306

33. TURBULENCE IN FLAMES

- The Application of Optical Anemometry to Measurement in Combustion Systems, 18, 197
- Structure of Premixed Turbulent Flame, 18, 303 Application of Chemiluminescence Measurement to the Study of Turbulent Flame Structure, 18, 429
- Combustion Roar of Premixed Burners, Singly and in Pairs, 18, 435
- Correct Turbulence—A Way to Reduce the Concentration of Unburnt Hydrocarbons from Automotive Engines, 18, 461
- Amplification of Turbulence Level by a Flame and Turbulent Flame Velocity, 19, 203
- The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide, 19, 407

Combustion and Flame

THE JOURNAL OF THE COMBUSTION INSTITUTE

Volume 18 February — June 1972

PUBLISHED BIMONTHLY

American Elsevier Publishing Company, Inc.
NEW YORK

Combustion and Flame is published bi-monthly by American Elsevier Publishing Company, Inc., 52 Vanderbilt Avenue, New York, N. Y. 10017. Copyright © 1972 by the Combustion Institute. Subscription Price. 1972 (Vols. 18 and 19, 6 issues): \$52.00. Vols. 14-17 (1970-71): \$26.00 per volume. Subscription orders and notification about changes of address should be sent to the office of the publisher, attention, Subscription Department. Claims for missing issues will be honored only six months from the date of issue. Inquiries about Vols. 1-13 (1957-1969) should be addressed to Butterworths, 88 Kingsway, London W.C. 2, England. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the Publisher.

Abstracted in — british technology index; chemical abstracts; chemisches zentralblatt; engineering abstracts; gwf-das gas-und wasserfach; nuclear science abstracts; physi-kalische berichte; raketentechnik und raumfahrtforschung; referativnyi zhurnal, serii kimia, mekanika, teknologia mashinostroenia; science abstracts

Application to mail at second-class postage rates is pending at New York, N. Y., and at additional mailing offices.

COMBUSTION AND FLAME

THE JOURNAL OF THE COMBUSTION INSTITUTE

VOLUME 18, FEBRUARY-JUNE 1972

VOLUME 18

on on, ie. 2, or se,

TT; SI-RII

es.

NUMBER 1

FEBRUARY 1972

Editorial	1
Announcement	2
M. E. MORRISON and K. SCHELLER (Wright-Patterson Air Force Base, Ohio, U.S.A.)	
The Effect of Burning Velocity Inhibitors on the Ignition of Hydrocarbon-Oxygen-Nitrogen Mixtures ROBERT PRITCHARD, HARRY EDMONDSON, and MICHAEL PETER HEAP (Salford, Lancashire, England)	3
Diameter Effects in Cooled-Flat-Flame Burners	13
PETER TOLSON (Sheffield, England) The Ignition of Flammable Atmospheres by Small Amounts of Metal Vapor and Particles	19
JOSEPH LP. CHEN and STUART W. CHURCHILL (Philadelphia, Pennsylvania, U.S.A.)	
A Theoretical Model for Stable Combustion inside a Refractory Tube	27
JOSEPH LP. CHEN and STUART W. CHURCHILL (Philadelphia, Pennsylvania, U.S.A.)	
Stabilization of Flames in Refractory Tubes	37
KENNETH A. WILDE (Huntsville, Alabama, U.S.A.)	40
Boundary-Value Solutions of the One-Dimensional Laminar Flame Propagation Equations	43
Ignition Delay Measurements in Two-Phase Detonations	53
R. I. SOLOUKHIN and C. BROCHET (Novosibirsk, U.S.S.R.)	00
The Development of Instabilities in a Shocked Exothermic Gas Flow	59
HARRY SILLA and THOMAS J. DOUGHERTY (Hoboken, New Jersey, U.S.A.)	-
Comparison of Single- and Double-Probe Measurements of Electron Temperatures in Flames	65
A. MURTY KANURY (Norwood, Massachusetts, U.S.A.)	-
Thermal Decomposition Kinetics of Wood Pyrolysis	75
A. LINAN and F. A. WILLIAMS	
Radiant Ignition of a Reactive Solid with In-Depth Absorption	85
M. C. CAVENOR, G. MUNDAY, and A. R. UBBELOHDE (London, England)	
Chemi-Ionization in Detonation Chemistry	99
G. M. FAETH (University Park, Pennsylvania, U.S.A.)	
High-Pressure Liquid-Monopropellant Strand Combustion	103
A. BURCAT, R. W. CROSSLEY, K. SCHELLER, and G. B. SKINNER	
Shock Tube Investigations of Ignition in Ethane-Oxygen-Argon Mixtures	115
J. J. COMEFORD	
The Spectral Distribution of Radiant Energy of a Gas-Fired Radiant Panel and Some Diffusion Flames	125
G. E. ANDREWS and D. BRADLEY (Leeds, England)	-
Determination of Burning Velocities: A Critical Review	133
Letter to the Editor	
T. K. GROVES (Calgary, Alberta, Canada)	
Use of Sunlight-Shadowgraphs in Aerial Photogrammetry of Blast Waves	155
Meeting Report	157

H. KRIER and J. A. WRONKIEWICZ (Urbana-Champaign, Illinois, USA)	
Combustion of Single Drops of Fuel	159
V. KUPPU RAO and C. R. PRASAD (Bangalore, India)	
Knock Suppression in Petrol Engines	167
A. B. AYLING and I. W. SMITH (Sydney, New South Wales, Australia)	10,
Measured Temperatures of Burning Pulverized-Fuel Particles, and the Nature of the	
Primary Reaction Product	173
HSIANG-CHENG KUNG (Norwood, Massachusetts, USA)	1/5
A Mathematical Model of Wood Pyrolysis	195
	100
F. DURST, A. MELLING and J. H. WHITELAW (London, England)	107
The Application of Optical Anemometry to Measurement in Combustion Systems	19/
R. F. SIMMONS and N. WRIGHT (Manchester, England)	201
The Burning Velocities of Near Limit Mixtures of Propane, Air, and Hydrogen Bromide	203
TAU-YI TOONG (Cambridge, Massachusetts, USA) Chemical Effects on Sound Propagation	201
	207
D. E. JENSEN (Aylesbury, England)	011
Competitive Reaction Kinetics in Seeded Flames and Rocket Exhausts	21
C. F. CULLIS (London, England) and M. F. R. MULCAHY (Chatswood, NSW, Australia)	
The Kinetics of Combustion of Gaseous Sulphur Compounds—A Review	225
The familiary of Companion of Caseous Suspins Composition 17 Terror	
Letters to the Editor	
M. Y. SMITH (North Ryde, NSW, Australia)	
The Effect of Nitric Oxide on the Recombination of H Atoms in Fuel-Rich	
Propane-Oxygen-Nitrogen Flames	293
R. J. BOWSER and F. J. WEINBERG (London, England)	
The Effect of Direct Electric Fields on Normal Burning Velocity	296
K. H. HOMANN (Darmstadt, Germany) and R. POSS (Göttingen, Germany)	
The Effect of Pressure on the Inhibition of Ethylene Flames	300
P. BASU and D. BHADURI (Durgapur, India)	
Structure of Premixed Turbulent Flame	303
JOHN PLANT (Buxton, England)	
Reaction of Hydrocarbon-Air Mixtures in Incident Shock Waves of Pressure Greater than	
25 Atmospheres: Correlation with Shock-Tube Results	305
Book Reviews	300
BOOK ROTIONS	305
Announcement	313

Contents

L. J. MUZIO (New York, New York, USA), D. S. SMITH (Chico, California, USA), and	
E. S. STARKMAN (Berkeley, California, USA) Emission-Absorption Temperature Measurements in the Cylinder of a Spark Ignition Engine	315
J. H. LEE, R. KNYSTAUTAS, C. GUIRAO, A. BEKESY, and S. SABBAGH (Montreal, Canada)	221
On the Instability of H ₂ -Cl ₂ Gaseous Detonations	321
Auto-Ignition of Hydrocarbons Behind Reflected Shock Waves	327
KENNETH M. MALONEY and T. C. M. PILLAY (Cleveland, Ohio, USA)	
The Active Combustion Mechanism of Single Al and Zr Strands in Oxygen as Determined by High Speed Photography	337
TETSUI YANAGI and YOICHI MIMURA (Yokosuka, Japan)	331
Effect of Concentration Gradient on Composition of Sampled Gas, I. Theoretical Analysis	347
R. S. TSE (Hong Kong)	
The Oxidation of 2-Butenes During the Induction Period	357
P. GRAY and J. K. K. IP (Leeds, England) Spontaneous Ignition Supported by Chlorine Dioxide. I. Chlorine Dioxide Alone and with Diluents	361
P. D. JOHNSTON (Chester, England)	301
The Rate of Decomposition of Silica Particles in an Augmented Flame	373
J. DE RIS and L. ORLOFF (Norwood, Mass., USA)	
A Dimensionless Correlation of Pool Burning Data	381
L. ORLOFF and J. DE RIS (Norwood, Mass., USA)	
Cellular and Turbulent Ceiling Fires	389
H. C. HARDEE, D. O. LEE, and A. B. DONALDSON (Albuquerque, New Mexico) A New Method of Predicting the Critical Temperature of Explosives for Various Geometries	403
SUPRIYA BANDYOPADHYAY and DEBDAS BHADURI (Durgapur, India)	403
Prediction of Ignition Temperature of a Single Coal Particle	411
V. JANARDHANA CHETTY (Durgapur, India) and A. N. VOINOV (Moscow, USSR)	
An Analysis of the Chemico-Kinetic Nature of Ignition of Liquid Fuels and the Effect of Physical	
Factors	417
JERZY CHOMIAK (Warsaw, Poland)	429
Application of Chemiluminescence Measurement to the Study of Turbulent Flame Structure	429
Combustion Roar of Premix Burners, Singly and in Pairs	435
B. F. GRAY, P. GRAY and N. A. KIRWAN (Leeds, England)	
Applications of Combustion Theory to Biological Systems	439
VENKATASUBBAIAH PANDURANGA (Durgapur, India)	
Correct Turbulence-A Way to Reduce the Concentration of Unburnt Hydrocarbons from Automotive	461
Engines	461
Letters to the Editor	
CHARLES P. FENIMORE (Schenectady, New York, USA)	
Oxidation of Sulfur Dioxide in Stainless Steel or Inconel Sampling Probes	469
H. BOCKHORN, F. FETTING and J. C. MENDE (Darmstadt, Germany)	
The Laminar Flame Velocities of Propane/Ammonia Mixtures	471
S. N. HEAVENS and J. E. FIELD (Cambridge, England) Flow, Melting and Ignition of Solid Explosives Under Impact	473
R. A. EWINS (London, England)	4/3
Flame Stabilization at Multiple Cylindrical Ports	476
Book Reviews	
Announcement	480

The subject and author indexes to Volumes 18 and 19 can be found at the end of Volume 19.

Combustion and Flame

THE JOURNAL OF THE COMBUSTION INSTITUTE

Volume 19 August — December 1972

PUBLISHED BIMONTHLY

American Elsevier Publishing Company, Inc.
NEW YORK

Some papers to appear in forthcoming issues

L. BLEDJIAN

Computation of Time Dependent Laminar Flame Structure

H. YAMAMURA and K. SAITO

Microwave Reflection from Detonation Waves in Equimolar C2 H2-O2 at Low Pressures

R. LIAUGMINAS, H. O. BARTHEL, and R. A. STREHLOW

Mach Stem Structure in Exothermic Systems

M. FARBER and R. D. SRIVASTAVA

A Mass Spectrometric Investigation of Reactions Involving Tungsten and Molybdenum with Potassium Seeded H_2/O_2 Flames

M. FARBER and R. D. SRIVASTAVA

A Mass Spectrometric Investigation of Reactions Involving Vanadium with Potassium Seeded H2/O2 Flames

B. A. FEAY and J. R. BOWEN

A Model of the Ignition of Cylindrically Confined Explosive Gas Mixtures

P. W. M. JACOBS and (the late) J. STEVENSON

The Gas-Phase Reaction of Perchloric Acid with Ethylene

R. N. NEWMAN and F. M. PAGE

Dispersion of Spray Droplets in Flames

H. PHILLIPS

The Use of a Thermal Model of Ignition to Explain Aspects of Flameproof Enclosure

J. B. HOMER and M. M. SUTTON

Nitric Oxide Formation and Radical Overshoot in Premixed Hydrogen Flames

G. E. ANDREWS and D. BRADLEY

Determination of Burning Velocity by Double Ignition in a Closed Vessel

J. CHOMIAK

Flame Turbulence Interaction

S. HELLEM and A. WILLIAMS

The Rate of Combustion of Single Droplets of Sulphur (Brief Communication)

A. NAKAKUKI

Flame Velocity on the Surface of Volatile Liquids (Brief Communication)

Combustion and Flame is published bi-monthly by American Elsevier Publishing Company, Inc., 52 Vanderbilt Avenue, New York, N. Y. 10017. Copyright © 1972 by the Combustion Institute. Subscription Price. 1972 (Vols. 18 and 19, 6 issues): \$52.00. Vols. 14-17 (1970-71): \$26.00 per volume. Subscription orders and notification about changes of address should be sent to the office of the publisher, attention, Subscription Department. Claims for missing issues will be honored only six months from the date of issue. Inquiries about Vols. 1-13 (1957-1969) should be addressed to Butterworths, 88 Kingsway, London W.C. 2, England. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the Publisher.

Abstracted in — british technology index; chemical abstracts: chemisches zentralblatt; engineering abstracts; gwf-das gas-und wasserfach; nuclear science abstracts; physi-kalische berichte; raketentechnik und raumfahrtforschung; referativnyi zhurnal, serii kimia, mekanika, teknologia mashinostroenia; science abstracts

Application to mail at second-class postage rates is pending at New York, N. Y., and at additional mailing offices.

Combustion and Flame

THE JOURNAL OF THE COMBUSTION INSTITUTE

EDITORS

P. G. Ashmore
Department of Chemistry
The University of Manchester
Institute of Science and Technology
P.O. Box No. 88, Sackville Street
Manchester M60 1QD, England

H. B. Palmer
Fuel Science Section
Material Sciences Department
Pennsylvania State University
320 M.I. Building
University Park, Pennsylvania 16802

DEPUTY EDITORS

R. F. Simmons
Department of Chemistry
The University of Manchester
Institute of Science and Technology
P.O. Box 88, Sackville Street
Manchester M60 1QD, England

A. K. Oppenheim
Department of Mechanical Engineering
Division of Aeronautical Sciences
University of California
Berkeley, California 94720

EDITORIAL BOARD

C. Th. J. Alkemade
H. F. Calcote
P. Gray
T. Hikita
P. Laffitte
W. G. Berl
R. I. Soloukhin
H. Gg. Wagner

The journal exists for the publication of experimental and theoretical investigations of combustion phenomena and closely allied matters. Among the subjects emphasized are: atmospheric pollution from combustion; combustion in practical systems; deflagration and detonation waves; electrical aspects of flames; experimental techniques; fire phenomena; flame ignition, inhibition, propagation, stability and structure; fluid dynamics and combustion; heat transfer and radiation; heterogeneous combustion; kinetics and mechanisms of combustion reactions; limits of flammability and of spontaneous ignition; modeling and scaling in combustion processes; new applications of combustion; propellants; sooting; spectra; supersonic reacting flow; thermal decomposition processes; thermochemistry and thermodynamics; transient species; transport properties and turbulence in flames. Critical reviews of current work will be invited. Relevant books will be reviewed. Announcements, Notices, and Reports of Combustion Institute meetings will be published whenever possible.

EDITORIAL ADVISORY BOARD

G. K. Adams	G. H. Markstein
R. R. Baldwin	B. R. Morton
M. Barrère	R. G. W. Norrish
S. H. Bauer	W. G. Parker
J. M. Beér	S. S. Penner
H. Behrens S. W. Benson	J. C. Polanyi A. A. Putnam
A. L. Berlad	D. E. Rosner
M. Boudart	N. W. Ryan
J. N. Bradley	G. L. Schott
S. L. Bragg	C. W. Shipman
K. N. C. Bray	D. B. Spalding
H. P. Broida	E. S. Starkman
C. F. Cullis	R. A. Strehlow
R. Delbourgo	T. M. Sugden
G. Dixon-Lewis	Z. G. Szabó
H. W. Emmons	P. H. Thomas
C. P. Fenimore	M. W. Thring
J. B. Fenn	B. A. Thrush
A. Fish	D. T. A. Townend
R. Friedman	H. Tsuji
R. M. Fristrom	A. R. Ubbelohde
A. G. Gaydon	A. D. Walsh
H. C. Hottel	D. R. Warren
F. Kaufman	P. P. Wegener
T. Kinbara	F. J. Weinberg
J. H. Knox	A. A. Westenberg
A. H. Lefebvre	D. R. White
P. A. Libby	F. A. Williams
J. W. Linnett	G. C. Williams
N. Manson	H. Wise

MANUFACTURED IN THE UNITED STATES

COMBUSTION AND FLAME

THE JOURNAL OF THE COMBUSTION INSTITUTE

VOLUME 19, AUGUST-DECEMBER 1972

VOLUME 19

NUMBER 1 AUGUST 1972

TETSUI YANAGI (Hashirimizu, Yokosuka, Japan)	
Effect of Concentration Gradient on Composition of Sampled Gas, II. Experimental Verification	1
HEINRICH J. FISSAN (Aachen, Germany)	
Discussion of the Thermal State of an Open Air Premixed Methane-Oxygen Flame	11
WILLIAM H. FRANDSEN and RICHARD C. ROTHERMEL (Ogden, Utah, USA)	
Measuring the Energy-Release Rate of a Spreading Fire	17
A. M. PATTERSON (Ralston, Alberta, Canada), C. N. KINGERY (Aberdeen, Maryland, USA), R. D. ROWE	
(Foulness, Essex, England), J. PETES (Silver Spring, Maryland, USA), and J. M. DEWEY (Victoria,	
B.C., Canada)	
Fireball and Shock Wave Anomalies Observed in Chemical Explosions	25
B. LECKNER (Göteberg, Sweden)	22
Spectral and Total Emissivity of Water Vapor and Carbon Dioxide	33
R. GÜNTHER and G. JANISCH (Karlsruhe, Germany)	40
Measurements of Burning Velocity in a Flat Flame Front	49
P. C. BOWES (Boreham Wood, Herts, England)	
Thermal Ignition in Two-Component Systems Part II-Experimental Study	55
D. THOMPSON, T. D. BROWN and J. M. BEER (Sheffield, England)	69
NO _x Formation in Combustion	09
(MISS) F. MOORE and C. F. H. TIPPER (Liverpool, England) The Effect of Additives on Low-Temperature Hydrocarbon Ignition in a Flow System	81
	01
PARIMAL DATTA and STUART B. REED (London, England) A Flame Structure Study of the Stabilizing Region of a Fuel-Rich Flame and the Effects of Vitiation	89
A TEWARSON (Norwood, Mass., USA)	07
Some Observations on Experimental Fires in Enclosures. Part I: Cellulosic Materials	101
S. K. DAYAL and T. P. PANDYA (Lucknow, India)	101
Optical Study of Counterflow Diffusion Flames in Transverse Electric Fields	113
J. K. K. IP and P. GRAY (Leeds, England)	410
Spontaneous Ignition Supported by Chlorine Dioxide. II. Self Heating in Chlorine Dioxide Plus	
Hydrocarbons	117
Letters to the Editor	
T. L. BOGGS (China Lake, California, USA), E. E. PETERSEN, and D. M. WATT, JR. (Berkeley, California, USA)	
Comment on "The Deflagration of Single Crystals of Ammonium Perchlorate"	131
P. W. JONES and H. D. GESSER (Winnipeg, Canada)	
Formation of Hydrogen from Amine Oxidation and Pyrolysis	134
H. C. JAGGERS, R. J. BOWSER, and F. J. WEINBERG (London, England)	
The Effect of Electric Fields on Burning Velocity	135
H. PESCHEL and F. FETTING (Darmstadt, Germany)	
The Laminar Flame Speed of Methane-Oxygen Mixtures and Some Remarks on Flame Pressure	136
W. A. STRAUSS and JAMES N. SCOTT (Columbus, Ohio, USA)	
Experimental Investigation of the Detonation Properties of Hydrogen-Oxygen and Hydrogen-Nitric	
Oxide Mixtures at Initial Pressures up to 40 Atmospheres	141
P. BREISACHER, H. H. TAKIMOTO, G. C. DENAULT, and W. A. HICKS (El Segundo, California, USA)	144
Vacuum Thermal Decompositions of the Nitrate Salts of Hydrazine	144
Meeting Reports	147
Book Review	153
Announcements	154
Obituary: Louis Deffet	155

H. GOODMAN, P. GRAY and D. T. JONES (Leeds, England) Self-Heating During the Spontaneous Ignition of Methyl Nitrate Vapor	157
YOSHIRO OTSUKA and TAKASHI NIIOKA (Sendai, Japan)	
On the Deviation of the Flame from the Stagnation Point in Opposed-Jet Diffusion Flames	171
A Nondimensional Parameter Characterizing Mixing Processes in a Model of Thermal Gas Ignition	181
H. PHILLIPS (Buxton, Derbyshire, England)	
Ignition in a Transient Turbulent Jet of Hot Inert Gas	187
N. J. FRISWELL and D. R. JENKINS (Chester, England)	405
Identification of Lead Compounds in Flames and Determination of the PbO Bond Energy	197
YUKIO MIZUTANI (Osaka, Japan) Amplification of Turbulence Level by a Flame and Turbulent Flame Velocity	203
C. B. ALLISON and G. M. FAETH (University Park, Pennsylvania, USA)	203
Decomposition and Hybrid Combustion of Hydrazine, MMH and UDMH as Droplets in a Combustion	
Gas Environment	213
A. S. KALLEND (Leatherhead, Surrey, England)	
Kinetics of the Sulphur Dioxide Catalyzed Recombination of Radicals in Hydrogen Flames	227
D. BRADLEY (Leeds, England), L. F. JESCH (Birmingham University, England) and C. G. W. SHEPPARD	
(Loughborough, England)	
Electron Energy Exchanges in Hydrocarbon Flames	237
A. FEUGIER (Rueil-Malmaison, France) Soot Oxidation in Laminar Hydrocarbon Flames	249
P. J. KALFF and C. Th. J. ALKEMADE (Rijksuniversiteit Utrecht, The Netherlands)	249
Characteristics of Premixed, Laminar CO/N ₂ O Flames	257
D W COULDED W I M-I FAN and D F CANVED (Derkeley Colifornia IICA)	
Dispersion in Combustion Gas Sampling Probes	267
G. E. ANDREWS and D. BRADLEY (Leeds, England)	
The Burning Velocity of Methane-Air Mixtures	275
C. P. FENIMORE (Schenectady, New York, USA)	
Formation of Nitric Oxide from Fuel Nitrogen in Ethylene Flames	289
P. D. McCORMACK (Cork, Ireland), and K. SCHELLER, G. MUELLER, and R. TISHER (Dayton, Ohio)	
Flame Propagation in a Vortex Core	297
Letters to the Editor	
L.J. JAGODA and F. J. WEINBERG (London, England)	
Initiation of Electrically Augmented Flames	305
A. N. HAYHURST and D. B. KITTELSON (Cambridge, England)	
The Ionization Potentials of CaOH and SrOH	306
C. V. OUSEPH and J. L. LOTH (West Virginia University, West Virginia, USA) Minimum Ignition Energy Studies with Unflanged Electrodes	200
Minimum Ignition Energy Studies with Unflanged Electrodes	309
M. LUCQUIN and S. ANTONIK (D'Ascq, France) Multistage Ignition in Hydrocarbon Combustion	311
Announcement	314
Erratum.	314
	017

A. R. BURGESS and R. G. W. LAUGHLIN (London, England)	
The Cool-Flame Oxidation of <i>n</i> -Heptane. Part I. The Kinetic Features of the Reaction	15
H. C. HARDEE, A. B. DONALDSON, and D. O. LEE (Albuquerque, New Mexico, USA)	
Predicting the Critical Boundary Temperature of Multidimensional Explosives	31
P. W. M. JACOBS and J. STEVENSON (London, Ontario, Canada)	-
The Gas-Phase Reaction of Perchloric Acid with Hydrogen	43
JAMES A. BAKER and GORDON B. SKINNER (Dayton, Ohio, USA)	10
Shock-Tube Studies on the Ignition of Ethylene-Oxygen-Argon Mixtures 34	17
FRED L. JONES, PHILIP M. BECKER, and ROBERT J. HEINSOHN (University Park, Pennsylvania, USA)	
A Mathematical Model of the Opposed-Jet Diffusion Flame: Effect of an Electric Field	
on Concentration and Temperature Profiles	51
A. TEWARSON (Norwood, Massachusetts, USA)	
Some Observations on Experimental Fires in Enclosures. Part II-Ethyl Alcohol and Paraffin Oil 36	53
ROBERT W. CROSSLEY, ERNEST A. DORKO, KARL SCHELLER (Wright-Patterson AFB, Ohio, USA),	
and ALEXANDER BURCAT (Haifa, Israel)	
The Effect of Higher Alkanes on the Ignition of Methane-Oxygen-Argon Mixtures in Shock Waves 37	73
M. M. IBIRICU (Aberdeen Proving Ground, Maryland, USA), and HERMAN KRIER	
(Champaign-Urbana, Illinois, USA)	
Acoustic Amplification During Solid Propellant Combustion	79
C. K. LAW and F. A. WILLIAMS (La Jolla, California, USA)	
Kinetics and Convection in the Combustion of Alkane Droplets)3
FRANCESCO POMPEI and JOHN B. HEYWOOD (Cambridge, Massachusetts, USA)	
The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide)7
M. M. CHAUDRI (Cambridge, England)	
Shock Initiation of Fast Decomposition in Crystalline Solids	19
J. M. JONES and J. L. J. ROSENFELD (Chester, England)	
A Model for Sooting in Diffusion Flames	27
B. F. GRAY and M. E. SHERRINGTON (Leeds, England)	
Explosive Systems with Reactant Consumption. I. Critical Conditions	35
B. F. GRAY and M. E. SHERRINGTON (Leeds, England)	
Explosive Systems with Reactant Consumption. II. Stability	15
Explosive Systems with reaction community and an arrangement of the community and th	
Brief Communications	
HARUO KAWADA and TOSHIO MIYAUCHI (Tokyo, Japan)	
The Effect of Small Amounts of Benzene on Oxy-Acetylene Detonations	10
J. N. BRADLEY and D. A. DURDEN (Colchester, Essex, England)	17
The Role of Pyrolysis Reactions in Hydrocarbon Oxidation	52
ROBERT F. HILL and S. S. PENNER (Warren, Michigan, USA)	, 4
Carbonyl Formation from Isooctane Combustion in an Internal Combustion Engine	55
Carbonyr Polination from isoccase Combustion in an internal Combustion Engine	,,
Meeting Report	57
needing Report	,,
Announcement	58
Author and Subject Indexes to Volumes 18 and 19 (1972)	59

CONTRIBUTE LAST.

U