```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import preprocessing
label encoder = preprocessing.LabelEncoder()
# Encode labels in column 'species'.
# Importing the dataset
df = pd.read csv('Desktop/pollution.csv')
df['Air Quality']= label encoder.fit transform(df['Air Quality'])
X=df.iloc[:,:-1]
y=df.iloc[:,-1]
```

```
D
      X.head(3)
                location month year SO2 µg/l NO2µg/l PM10 µg/l \
100
   O CLOCK TOWER-DEHRADUN
                           1 2012
                                      27.33
                                            30.33
                                                      193.28
   1 CLOCK TOWER-DEHRADUN 2 2012
                                      25.68 25.80
                                                      173.77
   2 CLOCK TOWER-DEHRADUN
                           3 2012
                                      29.64 27.50
                                                      211.35
      PM2.5 μ g/1 CO μg/1 O3 μ g/1 8 HR NH3 μ g/1
                                                 AOI
   8
            60.0
                                 100
                                           400 162.19
           60.0
                                 100
                      2
                                           400 149.18
            50.0
```

100

400 174.23

```
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
# transforming the column after fitting
enc = enc.fit transform(X[['location']]).toarray()
# converting annays to a dateframe
encoded colm = pd.DataFrame(enc)
# concating dataframes
X = pd.concat([X, encoded_colm], axis = 1)
# removing the encoded column.
X = X.drop(['location'], axis = 1)
```

2

2

X.head(5)

	month	year	502 μg/	1 NO2	lμg/1	РМ10 µg	/1	PM2.5	μ g/l	CO	μg/1	Ň	
8	1	2012	27.3	3 3	0.33	193.28		60.0		2			
1	2	2012	25.6	8 2	25.80	173.	77		60.0		2		
2	3	2012	29.6	4 2	27.50	211.	35		60.0		2		
2	4	2012	28.6	4 2	6.81	230.	76		60.0		2		
4	5 2012 31.09		9 2	29.30		310.73		60.0	2				
	03 µ g	/1 8 H	R NH3	μ g/l	AQ	I 0	<u> </u>	. 2	3	4	5	6	7
a		10	0	498	162.1	9 1.0	0.0	8.8	8.0	8.8	0.0	9.0	0.0
1		10	В	488	149.1	8 1.0	6.8	0.0	8.8	0.0	0.0	8.6	0.0
2		10	9	400	174.2	3 1.0	8.6	9.0	9.9	0.0	0.0	0.0	9.0
3		10	0	480	187.1	7 1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4		10	0	498	260.7	3 1.0	0.0	0.0	9.0	8.0	0.0	0.0	0.0

```
##Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
```

```
###Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
# Fitting Decision Tree Classification to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
```

```
#printing the accuracy of Decision tree
   accuracy_score(y_test, y_pred)
0.9895833333333334
   # Fitting SVM to the Training set
   from sklearn.svm import SVC
   classifier = SVC(kernel = "linear", random_state = 0)
   classifier.fit(X train, y train)
   # Predicting the Test set results
   y pred = classifier.predict(X test)
   #Accuracy of SVM
   accuracy_score(y_test, y_pred)
0.97395833333333334
```

0.973958333333333334

```
#fitting knn model
from sklearn.neighbors import KNeighborsClassifier
classifier=KNeighborsClassifier(n_neighbors=5,metric='minkowski',p=2)
classifier.fit(X_train,y_train)

# Predicting the Test settresults
y_pred = classifier.predict(X_test)
```

```
# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```

```
#Accuracy of knn
accuracy_score(y_test, y_pred)
```