## **Empirical Distribution Function**

**Exercise 1.** We first consider univariate quantitative data where  $x_1, \ldots, x_n$  are n real observed values. We consider in the following examples variables obtained from the dataset 'diamonds' from the package 'ggplot2' in R.

**Example 1.** The first following dataset gives the width of the twelve first diamonds. Width (mm): 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 4.28 3.90

**Example 2.** The following dataset gives the quality of the cut of the twelve first diamonds with the following correspondence: 1 meaning ideal, 2 premium, 3 very good, 4 good and 5 fair.

Quality of the cut: 1 2 4 2 4 3 3 3 5 3 4 1

- 1. Compute the empirical mean and the median of the data set of Example 1.
- 2. Draw the empirical cumulative distribution function of the datasets of Examples 1 and 2.

Exercise 2. Empirical cumulative distribution function Let  $X_i$  be i.i.d. observations with c.d.f. F and  $X_{1:n} = (X_1, \dots, X_n)$ .

1. Show that for all  $\alpha \in (0,1)$ 

$$X_{\alpha}(n) = \inf\{t \in \mathbb{R}, \ \widehat{F}_{X_{1:n}}(t) \geqslant \alpha\} =: \widehat{F}_{X_{1:n}}^{-1}(\alpha),$$

where  $\widehat{F}_{X_{1:n}}^{-1}$  is the generalized inverse of the empirical cumulative distribution function.

2. Fix  $t \in \mathbb{R}$ , what is the distribution of  $n\widehat{F}_{X_{1:n}}(t)$ ? Can you complete the following limits:

$$\widehat{F}_{X_{1:n}}(t) \xrightarrow[n \to \infty]{F-\text{proba}}??$$
 and  $\sqrt{n} \left(\widehat{F}_{X_{1:n}}(t)-??\right) \xrightarrow[n \to \infty]{F-\text{dist.}} \mathcal{N}(0,??)?$ 

## Exercise 3. Description of data and eddf

- 1. Figure 1a represents the eddf of some sample of size 100. Deduce the characteristics of the distribution of the sample and propose a distribution that is likely to have generated the data.
- 2. Each sub-figure 1(b-d) represents the ecdfs of two samples. For each sub-figure, compare the characteristics of the distributions of each sample.



Figure 1 – ECDFs for some samples