Development Part 2

Using Association Rules:

Association Rules are widely used to analyse retail basket or transaction data, and are intended to identify strong rules discovered in transaction data using measures of interestingness, based on the concept of strong rules. The outcome of this type of technique is, in simple terms, a set of **rules** that can be understood as "**if this, then that**".

An example of Association Rules

- Assume there are 100 customers
- 10 of them bought milk, 8 bought butter and 6 bought both of them.
- bought milk => bought butter
- support = P(Milk & Butter) = 6/100 = 0.06
- confidence = support/P(Butter) = 0.06/0.08 = 0.75
- lift = confidence/P(Milk) = 0.75/0.10 = 7.5
- Note: This example is extremely small. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

Association rules

The Apriori algorithm generates association rules for a given data set. An association rule implies that if an item A occurs, then item B also occurs with a certain probability. Let's see an example,

Transaction	Items
t1	{T-shirt, Trousers, Belt}
t2	{T-shirt, Jacket}
t3	{Jacket, Gloves}
t4	{T-shirt, Trousers, Jacket}
t5	{T-shirt, Trousers, Sneakers, Jacket, Belt}
t6	{Trousers, Sneakers, Belt}
t7	{Trousers, Belt, Sneakers}

In the table above we can see seven transactions from a clothing store. Each transaction shows items bought in that transaction. We can represent our items as an **item set** as follows:

$$I = \{i_1, i_2, \dots, i_k\}$$

In our case it corresponds to:

$$I = \{T\text{-}shirt, Trousers, Belt, Jacket, Gloves, Sneakers\}$$

A **transaction** is represented by the following expression:

$$T = \{t_1, t_2, \dots, t_n\}$$

For example,

$$t_1 = \{T\text{-}shirt, Trousers, Belt\}$$

Then, an **association rule** is defined as an implication of the form:

$$X\Rightarrow Y$$
 , where $X\subset I,Y\subset I$ and $X\cap Y=0$

For example,

$$\{T\text{-}shirt, Trousers\} \Rightarrow \{Belt\}$$

In the following sections we are going to define four metrics to measure the precision of a rule.

Support

Support is an indication of how frequently the item set appears in the data set.

$$supp(X\Rightarrow Y)=rac{|X\cup Y|}{n}$$

In other words, it's the number of transactions with both X and Y divided by the total number of transactions. The rules are not useful for low support values. Let's see different examples using the clothing store transactions from the previous table.

•
$$supp(T\text{-}shirt \Rightarrow Trousers) = \frac{3}{7} = 43\%$$

•
$$supp(Trousers \Rightarrow Belt) = \frac{4}{7} = 57\%$$

•
$$supp(T\text{-}shirt \Rightarrow Belt) = \frac{2}{7} = 28\%$$

•
$$supp(\{T\text{-}shirt, Trousers\} \Rightarrow \{Belt\}) = \frac{2}{7} = 28\%$$

Confidence

For a rule $X \Rightarrow Y$, confidence shows the percentage in which Y is bought with X. It's an indication of how often the rule has been found to be true.

$$conf(X\Rightarrow Y) = \frac{supp(X\cup Y)}{supp(X)}$$

For example, the rule T-shirt $\Rightarrow Trousers$ has a confidence of 3/4, which means that for 75% of the transactions containing a t-shirt the rule is correct (75% of the times a customer buys a t-shirt, trousers are bought as well). Three more examples:

- $conf(Trousers \Rightarrow Belt) = \frac{4/7}{5/7} = 80\%$
- $conf(T\text{-}shirt \Rightarrow Belt) = \frac{2/7}{4/7} = 50\%$
- $conf(\{T\text{-}shirt, Trousers\} \Rightarrow \{Belt\}) = \frac{2/7}{3/7} = 66\%$

Lift

The lift of a rule is the ratio of the observed support to that expected if X and Y were independent, and is defined as

$$lift(X\Rightarrow Y)=rac{supp(X\cup Y)}{supp(X)supp(Y)}$$

Greater lift values indicate stronger associations. Let's see some examples:

•
$$lift(T\text{-}shirt \Rightarrow Trousers) = \frac{3/7}{(4/7)(5/7)} = 1.05$$

•
$$lift(Trousers \Rightarrow Belt) = \frac{4/7}{(5/7)(4/7)} = 1.4$$

•
$$lift(T\text{-}shirt \Rightarrow Belt) = \frac{2/7}{(4/7)(4/7)} = 0.875$$

•
$$lift({T-shirt, Trousers}) \Rightarrow {Belt}) = \frac{2/7}{(3/7)(4/7)} = 1.17$$

Conviction

The conviction of a rule is defined as

$$conv(X \Rightarrow Y) = \frac{1 - supp(Y)}{1 - conf(X \Rightarrow Y)}$$

It can be interpreted as the ratio of the expected frequency that X occurs without Y if X and Y were independent divided by the observed frequency of incorrect predictions. A high value means that the consequent depends strongly on the antecedent. Let's see some examples:

•
$$conv(T\text{-}shirt \Rightarrow Trousers) = \frac{1-5/7}{1-3/4} = 1.14$$

•
$$conv(Trousers \Rightarrow Belt) = \frac{1 - 4/7}{1 - 4/5} = 2.14$$

•
$$conv(T\text{-}shirt \Rightarrow Belt) = \frac{1-4/7}{1-1/2} = 0.86$$

•
$$conv(\{T\text{-}shirt, Trousers\} \Rightarrow \{Belt\}) = \frac{1-4/7}{1-2/3} = 1.28$$

LET'S CODE

Importing Dependencies

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

Loading CSV file

df=pd.read_csv(r'groceries.csv',header=None)

df.head()

	0	1	2	3	4	5	6	7	8	9	 22	23	24	25	26	27	28	29	30	31
0	citrus fruit	semi-finished bread	margarine	ready soups	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN								
1	tropical fruit	yogurt	coffee	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN								
2	whole milk	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN								
3	pip fruit	yogurt	cream cheese	meat spreads	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN								
4	other vegetables	whole milk	condensed milk	long life bakery product	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN								

Data Preparation

True if transaction occur and false if not

```
records = []
for i in range (0, 9835):
records.append([str(df.values[i,j]) for j in range(0, 20)])
```

TE = TransactionEncoder()
array = TE.fit(records).transform(records)
#building the data frame rows are logical and columns are the items have been purchased
df1 = pd.DataFrame(array, columns = TE.columns_)

df1 = pd.DataFrame(array, columns = 1E.columns_)

	Instar foo product	l UHII-		artif. sweetener	baby cosmetics	baby food	bags	baking powder	bathroom cleaner	beef	 turkey	vinegar	waffles	whipped/sour cream	whisky	white bread	W
	0 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
	1 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
	2 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
	3 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
	4 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
	 .										 						
983	30 Fals	e False	False	False	False	False	False	False	False	True	 False	False	False	True	False	False	F
983	31 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
983	32 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
983	33 Fals	e False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False	F
983	34 Fals	e False	False	False	False	False	False	False	False	False	 False	True	False	False	False	False	F

Now Visualize Top 20 Selling Items

```
count = df_clean.loc[:,:].sum()
df2 = count.sort_values(0, ascending = False).head(20)
df2 = df2.to frame()
df2 = df2.reset_index()
df2 = df2.rename(columns = {"index": "items",o: "count"})
plt.style.use('dark_background')
ax = df2.plot.bar(x = 'items', y = 'count')
```


Now find the item percentage and cummulative percentage

```
tot_item = sum(df_clean.sum())
df2['Item_percent'] = df2['count']/tot_item
df2['Tot_percent'] = df2.Item_percent.cumsum()
```

df2.head(20)

	items	count	Item_percent	Tot_percent
0	whole milk	2513	0.058083	0.058083
1	other vegetables	1903	0.043984	0.102066
2	rolls/buns	1808	0.041788	0.143854
3	soda	1713	0.039592	0.183447
4	yogurt	1372	0.031711	0.215157
5	bottled water	1086	0.025101	0.240258
6	root vegetables	1072	0.024777	0.265035
7	tropical fruit	1032	0.023852	0.288887
8	shopping bags	968	0.022373	0.311261
9	sausage	924	0.021356	0.332617
10	pastry	875	0.020224	0.352841
11	citrus fruit	814	0.018814	0.371654
12	bottled beer	789	0.018236	0.389890
13	newspapers	783	0.018097	0.407988
14	canned beer	764	0.017658	0.425646
15	pip fruit	744	0.017196	0.442842
16	fruit/vegetable juice	706	0.016318	0.459160
17	whipped/sour cream	705	0.016295	0.475454
18	brown bread	638	0.014746	0.490200
19	domestic eggs	623	0.014399	0.504599

as we can see 50% of sold items are top 20 items. so now we will remove less frequently sold items

```
def prune_dataset(olddf, len_transaction, tot_sales_percent):
# Delete the last column tot_items if present
if 'tot_items' in olddf.columns:
del(olddf['tot_items'])
#Finding the item_count for each item and total number of items.
#This is the same code as in step 3
```

```
Item_count = olddf.sum().sort_values(ascending =
False).reset_index()
tot items = sum(olddf.sum().sort values(ascending = False))
Item_count.rename(columns={Item_count.columns[o]:'Item_nam
e',Item_count.columns[1]:'Item_count'}, inplace=True)
# Code from Step 3 to find Item Percentage and Total Percentage.
Item_count['Item_percent'] = Item_count['Item_count']/tot_items
Item_count['Tot_percent'] = Item_count.Item_percent.cumsum()
# Taking items that fit the condition/ minimum threshold for total
sales percentage.
selected_items = list(Item_count[Item_count.Tot_percent <</pre>
tot sales percent].Item name)
olddf['tot_items'] = olddf[selected_items].sum(axis = 1)
# Taking items that fit the condition/ minimum threshold for length
of transaction or number of items in a row.
olddf = olddf[olddf.tot items >= len transaction]
del(olddf['tot_items'])
#Return pruned dataframe.
return olddf[selected_items], Item_count[Item_count.Tot_percent
< tot_sales_percent]
output_df, item_counts = prune_dataset(df_clean,
2,0.4)
print(output def shape)
```

print(list(output def columns)) output def

(4585, 13)
['whole milk', 'other vegetables', 'rolls/buns', 'soda', 'yogurt', 'bottled water', 'root vegetables', 'tropical fruit', 'shopp ing bags', 'sausage', 'pastry', 'citrus fruit', 'bottled beer']

		whole milk	other vegetables	rolls/buns	soda	yogurt	bottled water	root vegetables	tropical fruit	shopping bags	sausage	pastry	citrus fruit	bottled beer
	1	False	False	False	False	True	False	False	True	False	False	False	False	False
	4	True	True	False	False	False	False	False	False	False	False	False	False	False
	5	True	False	False	False	True	False	False	False	False	False	False	False	False
	7	False	True	True	False	False	False	False	False	False	False	False	False	True
	10	False	True	False	False	False	True	False	True	False	False	False	False	False
98	329	False	True	False	True	False	False	False	True	False	False	False	False	False
98	30	True	False	False	False	False	False	True	False	False	True	False	True	False
98	332	False	True	True	False	True	False	False	False	False	False	False	True	False
98	333	False	False	False	True	False	True	False	False	False	False	False	False	True
98	334	False	True	False	False	False	False	False	True	True	False	False	False	False

Now we use a priori algorithm

Frequent item sets = a priori(output def, min support=0.01, use col names=True)

frequent item sets['length'] = frequent item sets['item
sets'].apply(lambda x:len(x))

frequent item sets=frequent item sets[(frequent item sets['length'] >= 2)]

frequent item sets

length	itemsets	support	
2	(whole milk, other vegetables)	0.160523	13
2	(rolls/buns, whole milk)	0.121265	14
2	(whole milk, soda)	0.085714	15
2	(whole milk, yogurt)	0.120174	16
2	(whole milk, bottled water)	0.073501	17
4	(citrus fruit, whole milk, root vegetables, ot	0.012432	218
4	(citrus fruit, whole milk, tropical fruit, oth	0.010687	219
4	(rolls/buns, whole milk, tropical fruit, yogurt)	0.010251	220
4	(tropical fruit, whole milk, root vegetables, \dots	0.012214	221
4	$(tropical\ fruit,\ root\ vegetables,\ yogurt,\ othe$	0.010687	222

210 rows x 3 columns

Association Rules

rules_mlxtend["antecedent_len"] =

we want antecedent length more then 2, confidence more then or equal to 0.3, lift greater or equal 1 and support greater or equal to 0.04.

```
rules_mlxtend["antecedents"].apply(lambda x: len(x))
rules_mlxtend[ (rules_mlxtend['antecedent_len'] >= 2) &
  (rules_mlxtend['confidence'] >= 0.3) &
  (rules_mlxtend['lift'] >= 1) &
  (rules_mlxtend['support']>=0.04)]
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_len
(wh	ole milk, yogurt)	(other vegetables)	0.120174	0.352454	0.047764	0.397459	1.127692	0.005409	1.074693	2
(yogurt, o	ther vegetables)	(whole milk)	0.093130	0.442748	0.047764	0.512881	1.158403	0.006531	1.143974	2
(whole milk,	root vegetables)	(other vegetables)	0.104907	0.352454	0.049727	0.474012	1.344893	0.012752	1.231106	2
(whole milk, o	ther vegetables)	(root vegetables)	0.160523	0.207852	0.049727	0.309783	1.490402	0.016362	1.147679	2
(root v	egetables, other vegetables)	(whole milk)	0.101636	0.442748	0.049727	0.489270	1.105076	0.004728	1.091090	2

Conclusion

- The most popular item in this data set is whole milk followed by vegetables and rolls/buns.
- By applying the Apriori algorithm and association rules we can have a better insight on what items are more likely to be bought together.