## **Circle your Instructor:**

Faudree, Williams, Zirbes

\_\_\_\_ / 25

## Math 251 Fall 2017

Quiz #10, November 22nd

Name: Solunia

There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. **Please show all of your work!** If you have any questions, please raise your hand.

*Exercise* 1. (9 pts.) Estimate the area under  $f(x) = \frac{4}{x+1}$  from x = 0 to x = 6 using three approximating rectangles and

(a.) left endpoints. Sketch the rectangles on the (b.) midpoints as sample points. Sketch the graph below. Sketch the rectangles on the graph below.



$$2(4 + 4/3 + 4/5)$$

$$= 2(60 + 20 + 12)$$

$$= 2(5)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$

$$= 2(7)$$



$$2\left(\frac{4}{5} + \frac{4}{4} + \frac{4}{6}\right)$$

$$= 2 + 2\left(\frac{24 + 20}{30}\right) = 2 + \frac{48}{30}$$

$$= 3 + \frac{18}{30}$$

*Exercise* 2. (3 pts.) The speed of a skier increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find a lower estimate for the distance she traveled during the first three seconds. Include units with your answer.

| time (in seconds)      | 0 | 0.5 | 1  | 1.5 | 2  | 2.5 | 3  |
|------------------------|---|-----|----|-----|----|-----|----|
| velocity (in feet/sec) | 0 | 4   | 10 | 16  | 20 | 22  | 24 |

$$\frac{1}{2} \left( 0 + 4 + 10 + 16 + 20 + 22 \right) = \frac{72}{2} = 36 \text{ fr}$$

*Exercise* 3. (4 pts.) Use the graph of g(x) to evaluate the integral  $\int_0^5 g(x) dx$ .



$$\int_{0}^{5} g(x) dx = 2 \cdot 1 + \frac{1}{2} \cdot 1 \cdot 1 - \frac{1}{2} \cdot 1 \cdot 2$$

$$= 2 + \frac{1}{2} - 1 = \frac{3}{2}$$

Exercise 4. (4 pts.) Evaluate the integral  $\int_{-3}^{3} (\sqrt{9-x^2}+4) dx$  by interpreting it in terms of areas.



Exercise 5. (5 pts.) Assume that  $\int_1^5 f(x) dx = 7$ . Use this fact and the properties of integrals to evaluate the integrals below.

(a.) 
$$\int_5^1 f(x) dx = 7$$

(b.) 
$$\int_{1}^{5} (3 - 2\pi f(x)) dx$$
  
= 12 - 147