

Smita Vijayakumar

Evangelia Kalyvianaki

Distributed Global Scheduling in Datacenters

Anil Madhavapeddy

Systems Research Group (SRG)
Department of Computer Science
University of Cambridge

First Year Ph.D. Student sv440@cst.cam.ac.uk

Ph.D. Supervisor ek264@cst.cam.ac.uk

Ph.D. Supervisor avsm2@cst.cam.ac.uk

Hybrid

Underutilised Datacenter Resources

- ♦ 60% VMs have <= 20% CPU usage!</p>
- Average server CPU 50%

Azure¹

Alibaba²

- Memory <= 60%</p>

Underutilisation is expensive!3

¹[Resource Central, SOSP,'17]

²[https://github.com/alibaba/clusterdata]

³[Scalable system scheduling for HPC and big data, JPDC,17]

State of the Art Scheduling

Examples - Mesos [NSDI'11], Yarn, Apollo [OSDI'14]

- ☑ Global resource view
- **X** Scheduler can be a bottleneck
- **➤** Delayed, high volumes of resource updates

Decentralised

Example - Sparrow [NSDI'14]

- **☑** Fast and simple
- **X** Unsuitable for long running jobs
- Not globally optimal

Centralized Scheduler/ Constraint Placement Engine Queue Queue Queue

Example - Hydra [NSDI'19], Medea [EuroSys'18], Borg [EuroSys'15]

- **∠** Less node information traffic
- **X** Centralised or decentralised components

Proposed Direction

Challenges

- 3 Good for long and short jobs
- **?** Volume and frequency of updates
- Time from local to global view

Up-to-Date Global View at each Node

Inspired by routing protocols

☑ BGP, OSPF, ...

☑ Resource data propagation

Intra-DC Load Balanced Scheduling

Scheduling Using "Up-to-Date" Global View

Challenges

- Collision avoidance
- Minimise inter-DC traffic
- Minimise scheduling time

2. Local and remote DCs' information Node Node

Inter-DC Load Balanced Scheduling