Order

Definitions

1. Big - O

For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer n_0 such that for all $n \ge n_0$,

$$g(n) \le c \times f(n)$$

2. Ω (Omega)

For a given complexity function f(n), $\Omega(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer n_0 such that for all $n \ge n_0$,

$$g(n) \geq c \times f(n)$$

3. Θ (Theta)

For a given complexity function f(n),

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

This means that $\Theta(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constants c_1 and c_2 and some nonnegative integer n_0 such that for all $n \ge n_0$,

$$c_1 \times f(n) \le g(n) \le c_2 \times f(n)$$

4. Little - o

For a given complexity function f(n), o(f(n)) is the set of complexity functions g(n) satisfying the following: For every positive real constant c, there exists a nonnegative integer n_0 such that for all $n \ge n_0$,

$$g(n) \le c \times f(n)$$

5. $Little - \omega$

For a given complexity function f(n), $\omega(f(n))$ is the set of complexity functions g(n) satisfying the following: For every positive real constant c, there exists a nonnegative integer n_0 such that for all $n \ge n_0$,

$$g(n) \ge c \times f(n)$$

Properties of Order

- 1. Transitivity
 - If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
 - If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$ then $f(n) \in \Omega(h(n))$.
 - If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$ then $f(n) \in \Theta(h(n))$.
 - If $f(n) \in o(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$.
 - If $f(n) \in \omega(g(n))$ and $g(n) \in \omega(h(n))$ then $f(n) \in \omega(h(n))$.
- 2. Reflexitivity
 - $f(n) \in O(f(n))$.
 - $f(n) \in \Omega(f(n))$.
 - $f(n) \in \Theta(f(n))$.
- 3. Symmetry
 - $f(n) \in \Theta(g(n))$ iff $g(n) \in \Theta(f(n))$.
 - $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$.
 - $f(n) \in o(g(n))$ iff $g(n) \in \omega(f(n))$.
- 4. If b > 1 and a > 1, then

$$\log_a n \in \Theta(\log_b n)$$

This implies that all logarithmic complexity functions are in the same complexity category. We will represent this category by $\Theta(\lg n)$.

5. If b > a > 0, then

$$a^n \in o(b^n)$$

This implies that all exponential complexity functions are not in the same complexity category.

6. For all a > 0

$$a^n \in o(n!)$$

This implies that n! is worse than any exponential complexity function.

7. Consider the following ordering of complexity categories:

$$\Theta(1)$$
 $\Theta(\log^* n)$ $\Theta(\lg n)$ $\Theta(n)$ $\Theta(n\lg n)$ $\Theta(n^2)$ $\Theta(n^j)$ $\Theta(n^k)$ $\Theta(a^n)$ $\Theta(b^n)$ $\Theta(n!)$ $\Theta(n^n)$

where k > j > 2 and b > a > 1. If a complexity function g(n) is in a category that is to the left of the category containing f(n), then

$$g(n) \in o(f(n))$$

8. If $c \ge 0$, $d \ge 0$, $f_1(n) \in O(g(n))$, and $f_2(n) \in \Theta(g(n))$, then

$$c \cdot f_1(n) + d \cdot f_2(n) \in \Theta(g(n))$$

9. If $f_1(n) \in O(g(n))$ and $f_2(n) \in O(h(n))$, then

$$f_1(n) + f_2(n) \in O(g(n) + h(n))$$

Less formally, this means $f_1(n) + f_2(n) \in \max[O(g(n)), O(h(n))].$

10. If $f_1(n) \in O(g(n))$ and $f_2(n) \in O(h(n))$, then

$$f_1(n) * f_2(n) \in O(g(n) * h(n))$$

11. If f(n) is a polynomial of degree k, then

$$f(n) \in \Theta(n^k)$$

12. For any constant k

$$\lg^k n \in O(n)$$

13. Limits can also be used to determine order.

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \left\{ \begin{array}{ll} c & \text{implies } g(n) \in \Theta(f(n)) \text{ if } c > 0 \\ 0 & \text{implies } g(n) \in o(f(n)) \\ \infty & \text{implies } f(n) \in o(g(n)) \end{array} \right.$$