

WORST CASE VS
AVERAGE CASE

MAX

Key idea: We can exploit the knowledge that uncertain outcomes are controlled by chance instead of an adversary

0.5

0.5

0.5

0.5

MAX

7

EXPECTIMAX SEARCH

- Previously: Values reflect worst case outcomes (minimax)
- Now: Values reflect average case outcomes (expectimax)
- Expectimax search:
 - Max nodes just like in minimax search
 - Chance nodes instead of min nodes in minimax search
 - Outcomes are uncertain
 - Calculate their expected utilities (i.e., utilities weighted by their likelihood)

8

EXPECTIMAX SEARCH

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is MIN: return exp-value(state)

def max-value(state):

initialize $v = -\infty$ for each successor of state: v = max(v, exp-value(successor))return v def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * max-value(successor)
 return v

EXPECTIMAX SEARCH

	Minimax	alpha-beta	Expectimax
Correct the solution it finds is optimal	Yes	Yes	Yes
Complete it terminates	Yes	Yes	Yes
Space Complexity max nodes in memory	O(bm)	O(bm)	O(bm)
Time Complexity max nodes generated	$O(b^m)$	$O(b^m)$	$O(b^m)$

branching factor *b* depth of the goal *d* depth of tree *m*

10

9

OTHER GAMETYPES

- Expectiminimax search:
 - MAX, CHANCE, MIN, CHANCE, MAX, ...
 - Used to model games like backgammon
- Modeling multi-agent problems
 - e.g., two Pacmans solving eat-all-dots problem
 - Utilities are now vectors, with each element representing the utility of one agent

OTHER GAMETYPES

• Expectiminimax search:

• MAX, CHANCE, MIN, CHANCE, MAX, ...

MAX a I

How do you model problems where you can take multiple actions in one turn, and the number of actions depend on some rule?

• e.g., two Pacmans solving eat-all-dots problem

 Utilities are now vectors, with each element representing the utility of one agent 1.2 2.0 1.1 2.10

11