2021年普通高等学校招生全国统一考试数学试题(乙卷•文科)

—,	选择题: 本题共 12	2 小题,每小题 5 分,共	60分。在每小题给出的	四个选项中,只有一项是符合题目要求的。				
1.	已知全集 $U=\{1, 2,$	3, 4, 5}, 集合 <i>M</i> ={1	,2}, <i>N</i> ={3,4},则 _{□0}	$g(M \cup N) = ($				
	A. {5}	B. {1, 2}	C. {3, 4}	D. {1, 2, 3, 4}				
2.	设 $iz=4+3i$,则 $z=$							
	A. $-3-4i$	B. $-3+4i$	C. $3 - 4i$	D. $3+4i$				
3.	已知命题 $p: \exists x \in \mathbf{R}$,	, $\sin x < 1$; 命题 q : ∀ x	∈ R , <i>e</i> ^x ≥1,则下列命是	题中为真命题的是()				
	A. $p \wedge q$	B. $\neg p \land q$	C. $p \land \neg q$	D. $\neg(p \lor q)$				
4.	函数 $f(x) = \sin\frac{x}{3} + \cos\frac{x}{3}$	$s\frac{x}{3}$ 的最小正周期和最大值	直分别是()					
	A. 3π 和 $\sqrt{2}$	B. 3π和 2	C. 6π 和 $\sqrt{2}$	D. 6π和 2				
5.	若x,y满足约束条件	# $\begin{cases} x+y\geqslant 4, \\ x-y\leqslant 2, & \emptyset \\ y\leqslant 3, \end{cases}$	的最小值为()					
	A. 18	B. 10	C. 6	D. 4				
	$\cos^2\frac{\pi}{12} - \cos^2\frac{5\pi}{12} = ($							
	A. $\frac{1}{2}$	B. $\frac{\sqrt{3}}{3}$	$C. \frac{\sqrt{2}}{2}$ $F_{\frac{1}{2}}$ 的概率为(D. $\frac{\sqrt{3}}{2}$				
7.	在区间 $(0, \frac{1}{2})$ 随机取	1个数,则取到的数小	$F_{\frac{1}{2}}^{\frac{1}{2}}$ 的概率为()					
	A. $\frac{3}{4}$	B. $\frac{2}{3}$	C. $\frac{1}{3}$	D. $\frac{1}{6}$				
8.	下列函数中最小值为	为4的是()						
	A. $y = x^2 + 2x + 4$	B. $y = \sin x + \frac{4}{ \sin x }$	C. $\frac{1}{3}$ C. $y=2^x+2^{2x}$	D. $y=\ln x+\frac{4}{\ln x}$				
9.	设函数 $f(x) = \frac{1-x}{1+x}$,	则下列函数中为奇函数的	的是()					
	A. $f(x-1) - 1$	B. $f(x-1)+1$	C. $f(x+1) - 1$	D. $f(x+1)+1$				
10.	在正方体 $ABCD-A_1B_1C_1D_1$ 中, P 为 B_1D_1 的中点,则直线 PB 与 AD_1 所成的角为()							
	A. $\frac{\pi}{2}$	B. $\frac{\pi}{3}$	C. $\frac{\pi}{4}$	D. $\frac{\pi}{6}$				
11.	设 B 是尼圆 C : $\frac{x^2}{5}$ +2	$y^2=1$ 的上顶点,点 P 在 G	Σ 上,则 $ PB $ 的最大值为(
	A. $\frac{5}{2}$	B. $\sqrt{6}$	C. $\sqrt{5}$	D. 2				
12.	设 $a \neq 0$,若 $x = a$ 为	另函数 $f(x) = a(x-a)^2(x$	- b)的极大值点,则()					
	A. $a < b$	B. $a > b$	C. $ab < a^2$	D. $ab > a^2$				

二、填空题:本题共4小题,每小题5分,共20分。

- 13. 已知向量 \vec{a} =(2, 5), \vec{b} =(λ , 4), 若 \vec{a} // \vec{b} , 则 λ =
- 14. 曲线 $\frac{x^2}{4} \frac{y^2}{5} = 1$ 的右焦点到直线x + 2y 8 = 0的距离为_____.
- 15. 记 \triangle *ABC*的内角*A*,*B*,*C*的对边分别为a,b,c,面积为 $\sqrt{3}$,B=60°, a^2 + c^2 =3ac,则b=____.
- 16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合求的一组答案即可).

三、解答题

17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了 10 件产品,得到各件产品该项指标数据如下:

旧设备	9.8	10.3	10.0	10.2		9.8	10.0	10.1	10.2	9.7
新设备	10.1	10.4	10.1	10.0	10.1	10.3	10.6	10.5	10.4	10.5

旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为s²和s².

- (1)求 \bar{x} , \bar{y} , s_1^2 , s_2^2 ;
- (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 $\bar{y} \bar{x} \geqslant 2\sqrt{\frac{s_1^2 + s_2^2}{10}}$,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).

- 18. 如图,四棱锥P-ABCD的底面是矩形, $PD \perp$ 底面ABCD,M为BC的中点,且 $PB \perp AM$.
 - (1)证明: 平面*PAM* _ 平面*PBD*;
 - (2)若PD=DC=1, 求四棱锥P-ABCD的体积.

- 19. 设 $\{a_n\}$ 是首项为 1 的等比数列,数列 $\{b_n\}$ 满足 $b_n = \frac{na_n}{3}$. 已知 a_1 , $3a_2$, $9a_3$ 成等差数列.
 - (1)求 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
 - (2)记 S_n 和 T_n 分别为 $\{a_n\}$ 和 $\{b_n\}$ 的前n项和. 证明: $T_n < \frac{S_n}{2}$.
- 20. 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点F到准线的距离为 2.
 - (1)求 C的方程;
 - (2)已知 O 为坐标原点,点 P 在 C 上,点 Q 满足 $\overrightarrow{PQ} = 9\overrightarrow{QF}$,求直线 OQ 斜率的最大值.
- 21. 已知函数 $f(x) = x^3 x^2 + ax + 1$.
 - (1)讨论f(x)的单调性;
 - (2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.
- (二)选考题: 共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
- 22. [选修 4-4: 坐标系与参数方程]在直角坐标系 xO_y 中, \bigcirc C的圆心为C(2, 1),半径为1.
 - (1)写出 ⊙ C的一个参数方程;
- (2)过点 F(4, 1)作 $\odot C$ 的两条切线. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
- 23. [选修 4-5: 不等式选讲]已知函数f(x) = |x-a| + |x+3|.
 - (1)当a=1时,求不等式f(x)≥6的解集;
 - (2)若f(x) > -a,求a的取值范围.