AS.110.420 Homework 2

LJ Gonzales, Jed's section

February 2023

Problem 1 Given X styles the shop owner has $\binom{X}{3}$ ways to have 3 distinct styles on display. We want this number to at least be equal to 52 so that each week can be assigned such a combination, where having undisplayed combinations at the end of the year is fine. We have $\frac{X!}{(X-3)!3!} \geq 52$, which was solved graphically to reveal $X \geq 7.8$. The shop owner must have at least 8 different dress styles to accomplish his goal.

Problem 2 In the 8-long sequence $O_1O_2O_3...O_8$ there are 8 places to choose where to place the 3 indistinguishable heads. The rest will be tails. Hence $\binom{8}{3}$ or 56 sequences.

- **Problem 3** 1. There are 3 people out of 12 to choose for Task 1, 3 more from the remaining for Task 2, etc.. hence $\binom{12}{3}\binom{9}{3}\ldots\binom{3}{3}=\frac{12!}{3!3!3!3!}=369600$ ways.
 - 2. Similarly the first choice only has $\binom{4}{3}\binom{9}{3}\ldots\binom{3}{3}=\frac{4!}{3!}\times\frac{9!}{3!3!3!}=6720$ distinct assignments.
 - 3. There are 4! ways to arrange people a-d, and a further $\frac{9!}{3!3!3!}$ to arrange the rest, for a total of 40320 assignments.
 - 4. We can follow a similar assignment to part a but this time the name of the team is irrelevant, effectively overcounting by 4!. We then have $\frac{12!}{3!3!3!3!4!}$.
 - 5. Each of a,b,c,d will be on different teams, so everyone else will effectively be on one of "Team A", "Team B", etc;.. Hence $\frac{9!}{3!3!3!} = 1680$ teams.
- **Problem 4** 1. This is equivalent to a 30-letter anagram of word containing 10 of each $\{1,2,3\}$, or $\frac{30!}{10!10!10!}$, or about 5.55×10^{12} .
 - 2. There are 3 ways to choose the digit that is repeated 12 times rather than 9. There are then $\binom{30}{12}$ ways to put that number in the placeholders of the 30-digit number. There are $\binom{18}{9}$ places to put the next number, regardless of what it is. Hence $3 \times \frac{30!}{12!9!9!}$, or about 1.26×10^{13} .

Problem 5 We consider that pizzas are uniquely defined by their topping choices and quantity (for instance, a 3-mushroom 2-pepperoni 1-tomato pizza is the same whether the tomato slice is across or next to the pepperoni). We can

then think of this as choosing to put 6 "stars" representing our choices in 21 categories that may hold more than 1 star, giving $\binom{6+21-1}{6}=230230$ possible pizzas.

Problem 6 1. Stars and bars with 3 stars and 5 bars: $\binom{3+5}{3} = 56$.

- 2. Same as a) with stars representing die and 6 boxes representing their outcomes. 56 outcomes.
- 3. Same as a) with stars representing 1's, and 6 containers for each variable. If a variable contains more than one 1 its integer value would change with its sum. 56 choices.
- **Problem 7** 1. Here our stars represent the 55 electrons to be allocated, and 6 "container" energy levels to place them in. We have $\binom{55+6-!}{5} = 3478761$ possible arrangements.
 - 2. The amount of electrons to be allocated in each energy level sums to 55, so there will be no empty spots. There are $\binom{55}{2}$ ways to have electrons in the first energy level, $\binom{53}{8}$ ways to arrange the rest in the second, etc, for a total of $\frac{55!}{2!8!18!18!8!1!} \approx 3.84 \times 10^{36}$