# Autómatas con pila



Senén Barro Ameneiro, CiTIUS

@SenenBarro

# Bibliografía

- J.E. Hopcroft, R. Motwani y J.D. Ullman,
   "Teoría de Autómatas, Lenguajes y
   Computación", Addison Wesley, 2008.
  - Capítulos 6 y 7

- P. Linz, "An Introduction to Formal Languages and Automata", Jones and Bartlett Publishers, Inc., 2001.
  - Capítulo 6-8

- Un autómata con pila (AP) es un AFN con transiciones ε y con una pila en la que se puede almacenar una cadena de "símbolos de pila"
- El AP puede recordar una cantidad infinita de información
  - LIFO
- Los AP reconocen todos los LIC y sólo estos
  - Existen lenguajes que no son LIC. Ejemplo: {0<sup>n</sup>1<sup>n</sup>2<sup>n</sup> | n≥1}



#### Funcionamiento:

- Se consume de la entrada un símbolo o bien ε
- Se pasa a un nuevo estado
- Se reemplaza el símbolo en lo alto de la pila por una cadena (podría ser ε)



Ejemplo: diseñar el AP para  $L_{WWR} = \{ww^R \mid w \text{ está en } (0+1)^*\}$ 

- se comienza en el estado  $q_0$ 
  - suponemos que la cadena w aún no ha finalizado
  - se van almacenando los símbolos de entrada leídos en la pila
- en cualquier momento se puede suponer que w ha finalizado y se ha comenzado a leer  $w^R$ 
  - el final de w estará en la cima de la pila
  - se transita al estado q<sub>1</sub>
  - AP no determinista:
    - o podemos suponer que hemos llegado al final de w
    - $\circ$  también podemos continuar en  $q_0$  y seguir almacenando las entradas en la pila



Ejemplo: diseñar el AP para el lenguaje  $L_{WWR} = \{ww^R \mid w \text{ está en } (0+1)^*\}$ 

#### Sigue de antes:

- $\bullet$  en el estado  $q_1$  se compara el símbolo de entrada con el símbolo en la cima de la pila
  - son iguales: se elimina el símbolo de la pila
  - son distintos: no habíamos llegado al final de w. Esa rama muere
- si se vacía la pila, hemos leído ww<sup>R</sup> y se acepta la entrada



## Definición formal del AP

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q: conjunto finito de estados
- Σ: conjunto finito de símbolos de entrada
- Γ: alfabeto de pila finito
- $\delta$ : función de transición,  $\delta(q, a, X) = (p, \gamma)$
- $q_0$ : estado inicial
- $Z_0$ : símbolo inicial de la pila
- F: conjunto de estados de aceptación



#### Definición formal del AP

Ejemplo: diseñar un AP que acepte el lenguaje  $L_{WWR}$ :

•  $P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}), \text{ donde } \delta \text{ se define:}$ 

| Q     | S | G     | Movimiento            |
|-------|---|-------|-----------------------|
| $q_0$ | 0 | $Z_0$ | $(q_0, 0Z_0)$         |
| $q_0$ | 1 | $Z_0$ | $(q_0, 1Z_0)$         |
| $q_0$ | 0 | 0     | $(q_0, 00)$           |
| $q_0$ | 0 | 1     | (q <sub>0</sub> , 01) |
| $q_0$ | 1 | 0     | (q <sub>0</sub> , 10) |
| $q_0$ | 1 | 1     | (q <sub>0</sub> , 11) |
| $q_0$ | е | $Z_0$ | $(q_1, Z_0)$          |
| $q_0$ | е | 0     | (q <sub>1</sub> , 0)  |
| $q_0$ | е | 1     | (q <sub>1</sub> , 1)  |
| $q_1$ | 0 | 0     | (q <sub>1</sub> , e)  |
| $q_1$ | 1 | 1     | (q <sub>1</sub> , e)  |
| $q_1$ | е | $Z_0$ | $(q_2, Z_0)$          |



# Descripción instantánea de un AP

#### Descripción instantánea: $(q, w, \gamma)$

- q es el estado
- w es la entrada que falta por leer
- $\gamma$  es el contenido de la pila (la cima de la pila se muestra a la izquierda de  $\gamma$ , y el fondo a la derecha)

#### Ejemplo para la entrada 1111





# Ejemplo para la entrada 1001



Dado el AP  $P = (\{q, p\}, \{0, 1\}, \{Z_0, X\}, \delta, q, Z_0, \{p\}),$  donde  $\delta$  se define en la siguiente tabla, mostrar las configuraciones alcanzables a partir de la inicial  $(q, w, Z_0)$ , para w igual a 01 y 010

| Q | Σ | Γ     | Movimiento  |
|---|---|-------|-------------|
| q | 0 | $Z_0$ | $(q, XZ_0)$ |
| q | 0 | X     | (q, XX)     |
| q | 1 | X     | (q, X)      |
| q | 3 | X     | (ρ, ε)      |
| р | ε | X     | (ρ, ε)      |
| р | 1 | X     | (p, XX)     |
| p | 1 | $Z_0$ | (ρ, ε)      |

## Solución



× 12

Dado el AP  $P = (\{q, p\}, \{0, 1\}, \{Z_0, X\}, \delta, q, Z_0, \{p\}),$  donde  $\delta$  se define en la siguiente tabla, mostrar las configuraciones alcanzables a partir de la inicial  $(q, w, Z_0)$ , para w igual a 01 y 010

| Q | Σ | Γ     | Movimiento  |
|---|---|-------|-------------|
| q | 0 | $Z_0$ | $(q, XZ_0)$ |
| q | 0 | X     | (q, XX)     |
| q | 1 | X     | (q, X)      |
| q | 3 | X     | (ρ, ε)      |
| р | 3 | X     | (ρ, ε)      |
| р | 1 | X     | (p, XX)     |
| p | 1 | $Z_0$ | (ρ, ε)      |

#### Soluciones:

• (q, 01, 
$$Z_0$$
) |-\* (p,  $\varepsilon$ ,  $Z_0$ )  
|-\* (p,  $\varepsilon$ ,  $\varepsilon$ )  
|-\*(q,  $\varepsilon$ ,  $XZ_0$ )

•(q, 010, 
$$Z_0$$
) | \* (p,  $\epsilon$ ,  $Z_0$ ) | \* (q,  $\epsilon$ , XX $Z_0$ )

× 13

## Autómata de Pila



Correspondiente al AP de la página anterior

# Lenguajes aceptados por un AP

- Dos tipos de aceptación
  - por estado final
  - por vaciado de pila
- Ambos métodos son equivalentes
- Aceptación por estado final
  - sea  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  un AP
  - $L(P) = \{ w \mid (q_0, w, Z_0) \mid -* (q, \varepsilon, \alpha) \}$

para algún estado q de F y cualquier cadena de pila  $\alpha$ 

# Lenguajes aceptados por un AP

Ejemplo: el AP de la figura acepta cadenas x por estado final si y sólo si x tiene la forma ww<sup>R</sup>



# Lenguajes aceptados por un AP

#### Aceptación por pila vacía

- Para todo AP  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$  se define el lenguaje que acepta como:
  - $N(P) = \{ w \mid (q_0, w, Z_0) \mid * (q, \varepsilon, \varepsilon) \}$  para cualquier estado q
- Ejemplo: modificar el AP de la figura para que reconozca por vaciado de pila
  - se cambia  $\delta(q_1, \, \varepsilon, \, Z_0) = \{(q_2, \, Z_0)\}$  por  $\delta(q_1, \, \varepsilon, \, Z_0) = \{(q_2, \, \varepsilon)\}$
  - se transforma  $q_2$  en no final



#### Conversión vaciado de pila a estado final

<u>Teorema</u>: si  $L = N(P_N)$  para algún AP  $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$ , existe un AP  $P_F$  tal que  $L = L(P_F)$ 

Prueba:  $P_F = (Q \cup \{p_0, p_F\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_F\}),$  donde  $\delta_F$  se define:

- 1.  $\delta_{\mathsf{F}}(p_0, \, \varepsilon, \, X_0) = \{(q_0, \, Z_0 X_0)\}$
- 2. para todo estado q de Q, entrada a de  $\Sigma$  o  $a = \varepsilon$ , y símbolos de pila  $\gamma$  de  $\Gamma$ ,  $\delta_F(q, a, \gamma)$  contiene todos los pares de  $\delta_N(q, a, \gamma)$
- 3. además,  $\delta_F(q, \varepsilon, X_0)$  contiene  $(p_F, \varepsilon)$  para todo estado q de Q



#### Conversión vaciado de pila a estado final

Ejemplo: diseñar un AP que procese secuencias "if else", detectando cuándo se introducen igual número de else que if

•  $P_N = (\{q, s\}, \{i, e\}, \{Z, A\}, \delta_N, q, A)$ 



•  $P_F = (\{p, q, r, s\}, \{i, e\}, \{Z, A, X_0\}, \delta_F, p, X_0, \{r\})$ 



#### Conversión estado final a vaciado de pila

<u>Teorema</u>: sea L el lenguaje  $L(P_F)$  de algún autómata de pila  $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$ . Entonces existe un AP  $P_N$  tal que  $L = N(P_N)$  <u>Prueba</u>:  $P_N = (Q \cup \{p_0, p\}, \Sigma, \Lambda = \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$ , donde  $\delta_N$  se define:

- 1.  $\delta_{N}(p_0, \varepsilon, X_0) = \{(q_0, Z_0X_0)\}$
- 2. para todo estado q de Q, entrada a de  $\Sigma$  o  $a = \varepsilon$ , y símbolos de pila Y en  $\Gamma$ ,  $\delta_N(q, a, Y)$  contiene todos los pares de  $\delta_F(q, a, Y)$
- 3. para todo estado de aceptación q en F y símbolos de pila Y en  $\Lambda$ ,  $\delta_N(q, \epsilon, Y)$  contiene  $(p, \epsilon)$
- 4. para todos los símbolos de la pila Y en  $\Lambda$ ,  $\delta_N(p, \epsilon, Y) = \{(p, \epsilon)\}$



Necesidad del nuevo símbolo inicial de pila: si el APF vacía su pila en un estado no final no debería reconocer la secuencia. Si no se añadiese el nuevo símbolo inicial de pila, el APN pasaría a reconocer en esas situaciones.

# Equivalencia entre AP y GIC

El objetivo es demostrar que los tres siguientes lenguajes son todos de la misma clase:

- 1. lenguajes independientes del contexto
- 2. lenguajes aceptados por estado final por algún AP
- 3. lenguajes aceptados por vaciado de pila por algún AP

- La equivalencia de (2) y (3) ya se ha demostrado
- Demostraremos que de (1) se sigue (3), aunque no que de (3) se sigue (1)

# Conversión de gramáticas a AP

- Sea la GIC G = (V, T, Q, S). El AP que acepta L(G)
  por pila vacía será:
  - $P = (\{q\}, T, V \cup T, \delta, q, S)$
  - $\delta$  se define por:
    - 1. para cada variable A,  $\delta(q, \varepsilon, A) = \{(q, \beta) \mid A \Rightarrow \beta \text{ es una producción de } P\}$
    - 2. para cada símbolo terminal a,  $\delta(q, a, a) = (q, \epsilon)$
- Ejemplo: obtener el AP que reconozca por vaciado de pila la siguiente gramática:

$$I \rightarrow a | b | Ia | Ib | I0 | I1, E \rightarrow I | E*E | E+E | (E)$$

# Autómatas con pila deterministas

Los APD aceptan un conjunto de lenguajes a medio camino entre los lenguajes regulares y las GIC

- los analizadores sintácticos se comportan generalmente como APD Un AP  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  es determinista si:
- δ(q, a, X) tiene como máximo un elemento para cualquier q en Q, a en Σ o a= ε, y X en Γ
- si  $\delta(q, a, X)$  no está vacío para algún a en  $\Sigma$ ,  $\delta(q, \epsilon, X)$  debe estar vacío

#### Ejemplo:

 $L_{wcwr} = \{wcw^R \mid w \text{ está en } (0 + 1)^*\}$ 



1. Determinar si el siguiente AP es o no determinista:  $P = (\{q, p\}, \{0, 1\}, \{Z_0, X\}, \delta, q, Z_0, \{p\}),$  donde  $\delta$  se define en la siguiente tabla

| Q | Σ | Γ     | Movimiento  |
|---|---|-------|-------------|
| q | 0 | $Z_0$ | $(q, XZ_0)$ |
| q | 0 | X     | (q, XX)     |
| q | 1 | X     | (q, X)      |

| Q | Σ | Γ     | Movimiento      |
|---|---|-------|-----------------|
| q | 3 | X     | ( <b>p</b> , ε) |
| р | 3 | X     | (ρ, ε)          |
| р | 1 | Χ     | (p, XX)         |
| р | 1 | $Z_0$ | (p, ε)          |

- 2. Diseñar un **APF** que acepte el lenguaje  $\{0^n1^n \mid n > 0\}$ 
  - Restricción: el alfabeto de la pila será igual al alfabeto de entrada más el símbolo inicial de pila.
- 3. Igual que el anterior, pero con  $n \ge 0$ .

#### 2. Diseñar un APF que acepte el lenguaje $\{0^n1^n \mid n > 0\}$

 Restricción: el alfabeto de la pila será igual al alfabeto de entrada más el símbolo inicial de pila.



3. Igual que el anterior, pero con  $n \ge 0$ .



- Diseñar un APN que acepte el lenguaje formado por aquellas cadenas que cumplen alguno de los siguientes criterios:
  - contienen igual número de símbolos a y b,
     entrando estos en cualquier orden, y finalizan
     con un número k de símbolos c, k≥ 0.
  - $a^i b^j c^k / k > i$

Restricción: el alfabeto de la pila será igual al alfabeto de entrada más el símbolo inicial de pila.

#### Solución:



- 1. Igual que el anterior, pero las cadenas deben tener ahora al menos un símbolo de cada tipo.
- 2. Diseñar el **APF** sobre el alfabeto  $\{a, b\}$  que acepte el lenguaje  $\{a^ib^j \mid 2i = j; i, j > 0\}$ .

Restricción: el alfabeto de la pila será igual al alfabeto de entrada más el símbolo inicial de pila.

3. Igual que el anterior, pero para la condición i = 2j.

1. Igual que el anterior, pero las cadenas deben tener ahora al menos un símbolo de cada tipo.



Diseñar el **APF** sobre el alfabeto {a, b} que acepte el lenguaje { $a^ib^j \mid 2i = j; i, j > 0$ }.

Restricción: el alfabeto de la pila será igual al alfabeto de entrada más el símbolo inicial de pila.





Diseñar el **APF** sobre el alfabeto {a, b} que acepte el lenguaje { $a^ib^j | i = 2j; i, j > 0$ }.

Restricción: el alfabeto de la pila será igual al alfabeto de entrada más el símbolo inicial de pila.



# Lema de bombeo para LIC

- Para un LIC, el cumplimiento del lema de bombeo (LB) es una condición necesaria, pero no suficiente
- <u>Teorema:</u> sea L un LIC. Entonces existe una constante n tal que si z es cualquier cadena de L de longitud |z| >= n, podemos escribir z=uvwxy, con las siguientes condiciones:
  - $1. |vwx| \ll n$
  - 2. *νx*≠ε
  - 3. Para todo  $k \ge 0$ ,  $uv^k wx^k y$  está en L

# Aplicación del lema de bombeo

- 1. Elegimos L del que queremos demostrar que no es LIC
- 2. El valor de *n* es desconocido, por lo que debemos considerar cualquier posible valor
- 3. Elegimos z (podemos usar n como parámetro)
- 4. Repetir para todas las descomposiciones:
  - 1. Escoger una descomposición de z en uvwxy, sujeta a las restricciones:
    - 1.  $VX \neq \varepsilon$
    - 2.  $|vwx| \le n$
  - 2. Si  $uv^kwx^ky$  pertenece a L para todo valor de k
    - 1. Se verifica el LB
    - 2. No se puede afirmar que el lenguaje sea independiente del contexto
    - 3. No es necesario probar con otras descomposiciones (finaliza el algoritmo)
- 5. Si 4.2 no se ha cumplido para ninguna descomposición, no se verifica el LB y, por tanto, el lenguaje no es un LIC

# Aplicación del lema de bombeo

Verificar si se cumple el lema del bombeo para:  $L=\{a^nb^nc^n \mid n >= 1\}$ 

- 1. Si L es un LIC, entonces existe una constante n tal que si z es cualquier cadena de L de longitud |z| >= n, podemos escribir z=uvwxy, cumpliendo las condiciones antes vistas.
- 2. Elegimos  $z = a^n b^n c^n$
- Al tener que cumplirse: |vwx| ≤ n, vwx no pueden contener al mismo tiempo los tres símbolos del alfabeto. Entonces tampoco vx, que al menos, eso sí, contendrá un símbolo.
- 4. Por tanto, si consideramos k=0, resulta  $uv^0wx^0y = uwy$ , y esta cadena no podrá pertenecer a L ya que le faltarán los elementos de vx para estar equilibrada en número de "aes", "bes" y "ces".

# Ejemplos de Lenguajes no IC

- $L=\{0^{p}1^{p}2^{p} \mid p >= 1\}$ 
  - un LIC no puede emparejar tres grupos de símbolos de acuerdo con su igualdad o desigualdad
- $L=\{0^{i}1^{j}2^{i}3^{j} \mid i >= 1 \text{ y } j >= 1\}$ 
  - un LIC no puede emparejar dos pares de números iguales de símbolos que se entrelacen
- $L=\{ss \mid s \in (0+1)^*\}$ 
  - un LIC no puede emparejar dos cadenas de longitud arbitraria si las cadenas se eligen de un alfabeto de más de un símbolo



Dados los siguientes lenguajes:

 Razonar si son LIC, es decir, si es posible reconocerlos con un autómata con pila.

1. 
$$L=\{0^{p}1^{p} \mid p >= 1\}$$

2. 
$$L=\{0^{p}1^{p}2^{p} \mid p >= 1\}$$