Tasca M5 T02

Exercici 1

Parteix el conjunt de dades adjunt en train i test i fes tot el procés d'entrenament i prova. Estudia els dos conjunts per separat, a nivell descriptiu.

```
In [461...
        # Tratamiento de datos
        import pandas as pd
        import numpy as np
        # Gráficos
        # ------
        import matplotlib.pyplot as plt
        from matplotlib import style
        import matplotlib.ticker as ticker
        import seaborn as sns
        # Preprocesado y análisis
        # ------
        #import statsmodels.api as sm
        #import pingouin as pg
        from scipy import stats
        import random as rd
        from imblearn.over_sampling import SMOTE
        # Preprocesado y modelado
        from sklearn.datasets import load_boston
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.metrics import mean_absolute_error
        from sklearn.metrics import mean_squared_error
        from sklearn.metrics import accuracy score
        from sklearn.model_selection import cross_val_score
        from sklearn.model selection import train test split
        from sklearn.model selection import RepeatedKFold
        from sklearn.model selection import GridSearchCV
        from sklearn.model selection import ParameterGrid
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.tree import plot_tree
        from sklearn.tree import export text
        from sklearn.inspection import permutation importance
        import multiprocessing
        from sklearn import neighbors, datasets, preprocessing
        from sklearn.preprocessing import Normalizer
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.preprocessing import PolynomialFeatures
        # Test Estadísticos
        from scipy.stats import pearsonr
        from statistics import mode
        from scipy.stats import shapiro
        from scipy.stats import normaltest
        from scipy.stats import anderson
        from scipy.stats import pearsonr
        from scipy.stats import spearmanr
```

```
from scipy.stats import kendalltau
from scipy.stats import chi2_contingency
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import kpss
from scipy.stats import ttest ind
from scipy.stats import ttest_rel
from scipy.stats import f_oneway
from scipy.stats import mannwhitneyu
from scipy.stats import wilcoxon
from scipy.stats import kruskal
from scipy.stats import friedmanchisquare
# Ajuste de distribuciones
from scipy import stats
import inspect
from statsmodels.distributions.empirical_distribution import ECDF
# Configuración matplotlib
# ------
plt.style.use('ggplot')
from statsmodels.graphics.gofplots import qqplot
from matplotlib import pyplot
# Configuración warnings
import warnings
warnings.filterwarnings('ignore')
```

A) Data Frame

```
In [462...
    data= pd.read_csv(r"C:\Users\hecto\OneDrive\Documentos\IT Data Science\Sprint5_DS\da
    data_original =data
    data_original.head(5)
```

ut[462		0	1	2	3	4	5	6	7	8	9	10	11	12	13
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

Relevant Information: Concerns housing values in suburbs of Boston.

Number of Instances: 506

Number of Attributes: 13 continuous attributes (including "class" attribute "MEDV"), 1 binary-valued attribute.

Attribute Information:

- 1. CRIM: per capita crime rate by town
- 2. ZN: proportion of residential land zoned for lots over "25,000 sq.ft".
- 3. INDUS: proportion of non-retail business acres per town

4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

5. NOX: nitric oxides concentration (parts per 10 million)

6. RM: average number of rooms per dwelling

7. AGE: proportion of owner-occupied units built prior to 1940

8. DIS: weighted distances to five Boston employment centres

9. RAD . index of accessibility to radial highways

10. TAX : full-value property-tax rate per "\$10,000"

11. PTRATIO: pupil-teacher ratio by town

12. B: "1000(Bk - 0.63)^2" where Bk is the proportion of blacks by town

13. LSTAT: % lower status of the population

14. MEDV: Median value of owner-occupied homes in "\$1000's"

```
In [463...
           data.columns =["CRIM","ZN","INDUS","CHAS","NOX","RM ","AGE","DIS","RAD","TAX","PTRAT
In [464...
           data.head(5)
Out[464...
               CRIM
                           INDUS CHAS
                                           NOX
                                                       AGE
                                                                DIS RAD
                                                                            TAX PTRATIO
                                                                                                B LSTAT I
                       ΖN
                                                   RM
          0 0.00632
                      18.0
                              2.31
                                        0 0.538
                                                 6.575
                                                        65.2 4.0900
                                                                           296.0
                                                                                      15.3 396.90
                                                                                                     4.98
             0.02731
                       0.0
                              7.07
                                          0.469
                                                 6.421
                                                        78.9 4.9671
                                                                           242.0
                                                                                      17.8 396.90
                                                                                                     9.14
          2 0.02729
                              7.07
                                                        61.1 4.9671
                                                                           242.0
                                                                                      17.8 392.83
                       0.0
                                        0 0.469 7.185
                                                                                                     4.03
             0.03237
                       0.0
                              2.18
                                          0.458
                                                 6.998
                                                        45.8 6.0622
                                                                           222.0
                                                                                      18.7 394.63
                                                                                                     2.94
             0.06905
                              2.18
                                          0.458 7.147
                                                        54.2 6.0622
                                                                           222.0
                                                                                      18.7 396.90
                                                                                                     5.33
                       0.0
                                                                        3
```

B) Data Describe

Out[465..

•••		count	mean	std	min	25%	50%	75%	max
•	CRIM	506.0	3.613524	8.601545	0.00632	0.082045	0.25651	3.677083	88.9762
	ZN	506.0	11.363636	23.322453	0.00000	0.000000	0.00000	12.500000	100.0000
IN	IDUS	506.0	11.136779	6.860353	0.46000	5.190000	9.69000	18.100000	27.7400
c	HAS	506.0	0.069170	0.253994	0.00000	0.000000	0.00000	0.000000	1.0000
	NOX	506.0	0.554695	0.115878	0.38500	0.449000	0.53800	0.624000	0.8710
	RM	506.0	6.284634	0.702617	3.56100	5.885500	6.20850	6.623500	8.7800
	AGE	506.0	68.574901	28.148861	2.90000	45.025000	77.50000	94.075000	100.0000
	DIS	506.0	3.795043	2.105710	1.12960	2.100175	3.20745	5.188425	12.1265
	RAD	506.0	9.549407	8.707259	1.00000	4.000000	5.00000	24.000000	24.0000

	count	mean	std	min	25%	50%	75%	max
TAX	506.0	408.237154	168.537116	187.00000	279.000000	330.00000	666.000000	711.0000
PTRATIO	506.0	18.455534	2.164946	12.60000	17.400000	19.05000	20.200000	22.0000
В	506.0	356.674032	91.294864	0.32000	375.377500	391.44000	396.225000	396.9000
LSTAT	506.0	12.653063	7.141062	1.73000	6.950000	11.36000	16.955000	37.9700
MEDV	506.0	22.532806	9.197104	5.00000	17.025000	21.20000	25.000000	50.0000

C) Media y Desviación Estándar de cada una de las variables

Para comparar la separación en muestras de train y test vamos a crear una data frame con las medias y desviaciones estándar de cada una de las variables con el objeto de compararlas posteriormente con las dos muestras.

```
In [466... data_medias=df[["mean","std"]] data_medias
```

Out[466		mean	std
	CRIM	3.613524	8.601545
	ZN	11.363636	23.322453
	INDUS	11.136779	6.860353
	CHAS	0.069170	0.253994
	NOX	0.554695	0.115878
	RM	6.284634	0.702617
	AGE	68.574901	28.148861
	DIS	3.795043	2.105710
	RAD	9.549407	8.707259
	TAX	408.237154	168.537116
	PTRATIO	18.455534	2.164946
	В	356.674032	91.294864
	LSTAT	12.653063	7.141062
	MEDV	22.532806	9.197104

La media de MEDV - que corrsponde a la media del valor de las casas ocupadas y que es nuestra variable objetivo es 22.532 dólares mientras que la desviación estándar es 9.197 dólares.

D) Correlación entre las variables del Data Frame

```
In [467...
    plt.figure(figsize=(14,10))
    upp_mat = np.triu(data.corr())
    sns.heatmap(data.corr(),cmap="YlGnBu", square = True,annot=True, mask = upp_mat)

Out[467...

Out[467...
```


Entre la variable objetivo MEDV y el resto de variables, la correlación (inversa) más elevada se da con la variable LSTAT que es el porcentaje de población con menos ingresos.En los Los barrios con más trabajadores de clase baja (mayor valor de 'LSTAT') los inmuebles valdrán menos.

La siguiente variable con mayor correlación es RM que es el promedio de habitaciones por vivienda. Las casas con más habitaciones (valor más alto de 'RM') valdrán más. Por lo general, las casas con más habitaciones son más grandes y pueden acomodar a más personas, por lo que es razonable que cuesten más dinero. Son variables directamente proporcionales.

Los vecindarios con más proporción de estudiantes por maestro (mayor valor de 'PTRATIO') el valor de las casas está inversamente correlacionado, Si el porcentaje de estudiantes por maestro es mayor, es probable que en el vecindario haya menos escuelas, o mayor densidad de población, por lo que influye negativamente en el valor de los inmuebles.

E) División de los datos en X_train - X_test, y_train -y_test

CRIM 339 non-null float64 0 1 ΖN 339 non-null float64 2 INDUS 339 non-null float64 3 int64 CHAS 339 non-null 4 NOX 339 non-null float64 5 339 non-null float64 RM 6 339 non-null float64 AGE 7 DIS 339 non-null float64 8 int64 RAD 339 non-null 9 TAX 339 non-null float64 10 PTRATIO 339 non-null float64 float64 11 B 339 non-null 12 LSTAT 339 non-null float64

dtypes: float64(11), int64(2)

memory usage: 37.1 KB

In [470...

X_train.describe().transpose()

Out[470...

	count	mean	std	min	25%	50%	75%	max
CRIM	339.0	3.793986	8.669966	0.00632	0.08577	0.25387	3.81234	73.5341
ZN	339.0	10.963127	23.058729	0.00000	0.00000	0.00000	12.50000	100.0000
INDUS	339.0	11.377493	6.874160	0.46000	5.64000	9.90000	18.10000	27.7400
CHAS	339.0	0.079646	0.271145	0.00000	0.00000	0.00000	0.00000	1.0000
NOX	339.0	0.556238	0.117996	0.39200	0.44800	0.53800	0.62750	0.8710
RM	339.0	6.247490	0.669953	3.86300	5.87300	6.16700	6.58250	8.3980
AGE	339.0	69.173451	28.246657	6.00000	45.75000	79.70000	94.30000	100.0000
DIS	339.0	3.799550	2.114897	1.12960	2.09445	3.26280	5.03375	12.1265
RAD	339.0	9.622419	8.768838	1.00000	4.00000	5.00000	24.00000	24.0000
TAX	339.0	408.890855	169.654094	187.00000	279.00000	330.00000	666.00000	711.0000
PTRATIO	339.0	18.418584	2.176714	12.60000	17.00000	19.00000	20.20000	22.0000
В	339.0	356.552537	92.095470	0.32000	375.99000	391.45000	396.06000	396.9000
LSTAT	339.0	13.087522	7.340139	1.73000	7.41500	12.03000	17.13500	37.9700

In [471...

X_test.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 167 entries, 307 to 347
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	167 non-null	float64
1	ZN	167 non-null	float64
2	INDUS	167 non-null	float64
3	CHAS	167 non-null	int64
4	NOX	167 non-null	float64
5	RM	167 non-null	float64
6	AGE	167 non-null	float64
7	DIS	167 non-null	float64
8	RAD	167 non-null	int64
9	TAX	167 non-null	float64
10	PTRATIO	167 non-null	float64

11 B 167 non-null float64 12 LSTAT 167 non-null float64

dtypes: float64(11), int64(2)

memory usage: 18.3 KB

In [472...

X_test.describe().transpose()

Out[472...

	count	mean	std	min	25%	50%	75%	max
CRIM	167.0	3.247195	8.474939	0.01096	0.076945	0.26169	3.122525	88.9762
ZN	167.0	12.176647	23.898258	0.00000	0.000000	0.00000	20.000000	95.0000
INDUS	167.0	10.648144	6.826662	1.25000	4.675000	8.56000	18.100000	27.7400
CHAS	167.0	0.047904	0.214206	0.00000	0.000000	0.00000	0.000000	1.0000
NOX	167.0	0.551563	0.111736	0.38500	0.458000	0.53200	0.624000	0.8710
RM	167.0	6.360036	0.761180	3.56100	5.979500	6.31000	6.630500	8.7800
AGE	167.0	67.359880	27.994376	2.90000	41.700000	73.30000	93.150000	100.0000
DIS	167.0	3.785894	2.093240	1.17810	2.101800	3.09230	5.307650	10.7103
RAD	167.0	9.401198	8.605168	1.00000	4.000000	5.00000	16.000000	24.0000
TAX	167.0	406.910180	166.745525	188.00000	281.000000	337.00000	666.000000	711.0000
PTRATIO	167.0	18.530539	2.145399	13.00000	17.400000	19.10000	20.200000	22.0000
В	167.0	356.920659	89.921726	3.65000	373.715000	390.68000	396.660000	396.9000
LSTAT	167.0	11.771138	6.653123	1.92000	6.605000	10.24000	15.695000	30.8100

- f) Sumario de datos comparados de medias y desviaciones estándar entre: datos originales train test.
- f.1) Diferencias entre medias: data X_train

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes1 = {'data_mean':data_medias["mean"],'train_mean':X_train.mean()}

# Transformación del diccionario en un data frame
outcomes1 = pd.DataFrame(outcomes1, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes1['%_error1'] = (abs(outcomes1['data_mean'] - outcomes1['train_mean']))/outc

# Salida de información en función del menor valor del error %.
# outcomes1.sort_values(by='%_error1')
outcomes1
```

Out[473...

	data_mean	train_mean	%_error1
CRIM	3.613524	3.793986	4.994092
ZN	11.363636	10.963127	3.524484
INDUS	11.136779	11.377493	2.161433
CHAS	0.069170	0.079646	15.145386
NOX	0.554695	0.556238	0.278117

	data_mean	train_mean	%_error1
RM	6.284634	6.247490	0.591040
AGE	68.574901	69.173451	0.872841
DIS	3.795043	3.799550	0.118757
RAD	9.549407	9.622419	0.764569
TAX	408.237154	408.890855	0.160128
PTRATIO	18.455534	18.418584	0.200208
В	356.674032	356.552537	0.034063
LSTAT	12.653063	13.087522	3.433626

f.2) Diferencias entre Desviación Estándar: data - X_train

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes2 = {'data_std':data_medias["std"],'train_std':X_train.std()}

# Transformación del diccionario en un data frame
outcomes2 = pd.DataFrame(outcomes2, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes2['%_error2'] = round((abs(outcomes2['data_std'] - outcomes2['train_std']))/

# Salida de información en función del menor valor del error %.
#outcomes2.sort_values(by='%_error2')
outcomes2
```

\bigcirc	ГЛЭЛ
Uul	4/4.

	data_std	train_std	%_error2
CRIM	8.601545	8.669966	0.7954
ZN	23.322453	23.058729	1.1308
INDUS	6.860353	6.874160	0.2013
CHAS	0.253994	0.271145	6.7524
NOX	0.115878	0.117996	1.8285
RM	0.702617	0.669953	4.6489
AGE	28.148861	28.246657	0.3474
DIS	2.105710	2.114897	0.4363
RAD	8.707259	8.768838	0.7072
TAX	168.537116	169.654094	0.6627
PTRATIO	2.164946	2.176714	0.5436
В	91.294864	92.095470	0.8769
LSTAT	7.141062	7.340139	2.7878

f.3) Diferencias entre Medias: Data - X_test

```
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes3 = {'data_mean':data_medias["mean"],'test_mean':X_test.mean()}

# Transformación del diccionario en un data frame
outcomes3 = pd.DataFrame(outcomes3, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes3['%_error3'] = round((abs(outcomes3['data_mean'] - outcomes3['test_mean']))

# Salida de información en función del menor valor del error %.
#outcomes3.sort_values(by='%_error3')
outcomes3
```

Out[475...

	data_mean	test_mean	%_error3
CRIM	3.613524	3.247195	10.1377
ZN	11.363636	12.176647	7.1545
INDUS	11.136779	10.648144	4.3876
CHAS	0.069170	0.047904	30.7442
NOX	0.554695	0.551563	0.5646
RM	6.284634	6.360036	1.1998
AGE	68.574901	67.359880	1.7718
DIS	3.795043	3.785894	0.2411
RAD	9.549407	9.401198	1.5520
TAX	408.237154	406.910180	0.3250
PTRATIO	18.455534	18.530539	0.4064
В	356.674032	356.920659	0.0691
LSTAT	12.653063	11.771138	6.9701

f.4) Diferencias entre Desviación Estándar: Data - X_test

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes4 = {'data_std':data_medias["std"],'test_std':X_test.std()}

# Transformación del diccionario en un data frame
outcomes4 = pd.DataFrame(outcomes4, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes4['%_error4'] = round((abs(outcomes4['data_std'] - outcomes4['test_std']))/o

# Salida de información en función del menor valor del error %.
#outcomes4.sort_values(by='%_error4')
outcomes4
```

Out[476...

	data_std	test_std	%_error4
CRIM	8.601545	8.474939	1.4719
ZN	23.322453	23.898258	2.4689
INDUS	6.860353	6.826662	0.4911

	data_std	test_std	%_error4
CHAS	0.253994	0.214206	15.6650
NOX	0.115878	0.111736	3.5746
RM	0.702617	0.761180	8.3350
AGE	28.148861	27.994376	0.5488
DIS	2.105710	2.093240	0.5922
RAD	8.707259	8.605168	1.1725
TAX	168.537116	166.745525	1.0630
PTRATIO	2.164946	2.145399	0.9029
В	91.294864	89.921726	1.5041
LSTAT	7.141062	6.653123	6.8329

f.5) Diferecias entre Medias: X_train - X_test

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes5 = {'train_mean':X_train.mean(),'test_mean':X_test.mean()}

# Transformación del diccionario en un data frame
outcomes5 = pd.DataFrame(outcomes5, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes5['%_error5'] =round( (abs(outcomes5['train_mean'] - outcomes5['test_mean'])

# Salida de información en función del menor valor del error %.
#outcomes5.sort_values(by='%_error5')
outcomes5
```

Out[477...

	train_mean	test_mean	%_error5
CRIM	3.793986	3.247195	14.4120
ZN	10.963127	12.176647	11.0691
INDUS	11.377493	10.648144	6.4105
CHAS	0.079646	0.047904	39.8536
NOX	0.556238	0.551563	0.8403
RM	6.247490	6.360036	1.8015
AGE	69.173451	67.359880	2.6218
DIS	3.799550	3.785894	0.3594
RAD	9.622419	9.401198	2.2990
TAX	408.890855	406.910180	0.4844
PTRATIO	18.418584	18.530539	0.6078
В	356.552537	356.920659	0.1032
LSTAT	13.087522	11.771138	10.0583

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes6 = {'train_std':X_train.std(),'test_std':X_test.std()}

# Transformación del diccionario en un data frame
outcomes6 = pd.DataFrame(outcomes6, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes6['%_error6'] =round( (abs(outcomes6['train_std'] - outcomes6['test_std']))/

# Salida de información en función del menor valor del error %.
#outcomes6.sort_values(by='%_error6')
outcomes6
```

Out[478...

	train_std	test_std	%_error6
CRIM	8.669966	8.474939	2.2495
ZN	23.058729	23.898258	3.6408
INDUS	6.874160	6.826662	0.6910
CHAS	0.271145	0.214206	20.9994
NOX	0.117996	0.111736	5.3060
RM	0.669953	0.761180	13.6169
AGE	28.246657	27.994376	0.8931
DIS	2.114897	2.093240	1.0240
RAD	8.768838	8.605168	1.8665
TAX	169.654094	166.745525	1.7144
PTRATIO	2.176714	2.145399	1.4387
В	92.095470	89.921726	2.3603
LSTAT	7.340139	6.653123	9.3597

g) Gráfico de diferencias de errores en la media y desviación estándar entre: Data - X_train - X_test

```
In [479...
    dif_medias=pd.concat([outcomes1['%_error1'], outcomes3['%_error3'], outcomes5['%_err
    dif_medias=dif_medias.rename({'%_error1': 'Data - X_train', '%_error3': 'Data - X_te

In [480...
    dif_dEst=pd.concat([outcomes2['%_error2'], outcomes4['%_error4'], outcomes6['%_error
    dif_dEst=dif_dEst.rename({'%_error2': 'Data - X_train', '%_error4': 'Data - X_test',

In [481...
    fig, axes = plt.subplots(ncols=2, nrows=1, figsize=(20, 9))
    axes = axes.flat
    axes[0].set_title("Diferencias en % entre Medias\n Data / X_train / X_test", fontsiz
    sns.lineplot(data=dif_medias,ax=axes[0])
    axes[1].set_title("Diferencias en % entre Desviación Estándar:\n Data / X_train / X_sns.lineplot(data=dif_dEst,ax=axes[1])
    plt.savefig("Gafico1_Diferencias_medias_std.png")
```


Las mayores diferencias en % se producen entre la comparaciço de las medias y desviaciones estándar de X_train con X_test (línea gris)

La variable CHAS -Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)- es la que genera mayores difrerencias de media y desviación estándar entre los tres grupos de datos, y es debido a que los datos informados son binarios 0 y 1, lo que puede producir mayores sesgos en las muestras.

h) Diferencias de medias y desviación estándar entre: Data - y_train - y_test

```
In [482...
          medias_y= [data.MEDV.mean(), y_train.mean(), y_test.mean()]
          print("\nMedia de MEDV del Data Frame:", round(medias_y[0],2),"\nMedia de MEDV y_tra
          dEst_y = [data.MEDV.std(),y_train.std(),y_test.std()]
          print("\nDesviación Estándar de MEDV del Data Frame:", round(dEst_y[0],2), "\nstd de
         Media de MEDV del Data Frame: 22.53
         Media de MEDV y_train: 22.29
         Media de MEDV y_test: 23.03
         Desviación Estándar de MEDV del Data Frame: 9.2
         std de MEDV y_train: 9.09
         std de MEDV y test: 9.41
In [483...
          err_data_Xtrain= abs((medias_y[0]-medias_y[1])*100/medias_y[0])
          err data Xtest=abs((medias y[0]-medias y[2])*100/medias y[0])
          err_Xtrain_Xtest=abs((medias_y[1]-medias_y[2])*100/medias_y[1])
          print("% error de las medias de MEDV", "\nData - X_train: ", round(err_data_Xtrain, 2
         % error de las medias de MEDV
         Data - X_train: 1.08
         Data - X_test 2.19
         X train - X test 3.3
```

La mayor diferencia % de las medias de MEDV se produce entre la comparación de los valores de y_train e y_test

```
Data - X_test: 2.34
X_train - X_test: 3.5
```

De la misma forma, la mayor diferencia en % en las desviaciones estándar se produce entre la muestra y_train e y_test

i) Ajuste del modelo 1:

La clase DecisionTreeRegressor del módulo sklearn.tree permite entrenar árboles de decisión para problemas de regresión. Se ha ajustado un árbol de regresión empleando como variable respuesta MEDV y como predictores el resto de variables disponibles.

```
In [485... # Creación del modelo
# -----
modelo = DecisionTreeRegressor(max_depth= 3,random_state = 1)

# Entrenamiento del modelo
# ------
modelo.fit(X_train, y_train)

Out[485... ▼ DecisionTreeRegressor
DecisionTreeRegressor(max_depth=3, random_state=1)
```

In [486... # Estructura del árbol creado fig, ax = plt.subplots(figsize=(20, 7)) print(f"Profundidad del árbol: {modelo.get_depth()}") print(f"Número de nodos terminales: {modelo.get_n_leaves()}") plot = plot_tree(decision_tree = modelo, feature_names = data.drop(columns = "MEDV").columns, class_names = 'MEDV', filled = True, impurity = False, fontsize = 10, = 2, precision

= ax

Profundidad del árbol: 3 Número de nodos terminales: 8

ax

)

```
| Samples = 339 | Samples = 339 | Samples = 310 | Samples = 110 | Samples = 117 | Samples = 117 | Samples = 110 | Samples = 117 | Samples = 118 | Samples = 160 | Samples = 160 | Samples = 17 | Samples = 180 | Samples = 180
```

```
feature_names = list(data.drop(columns = "MEDV").columns)
)
print(texto_modelo)
```

```
|--- LSTAT <= 9.54
   |--- RM <= 7.43
       |--- DIS <= 1.56
           |--- value: [50.00]
       |--- DIS > 1.56
          |--- value: [26.98]
    |--- RM > 7.43
        |--- PTRATIO <= 17.90
           |--- value: [47.09]
        --- PTRATIO > 17.90
           |--- value: [38.90]
--- LSTAT > 9.54
   |--- LSTAT <= 19.26
       |--- LSTAT <= 14.80
          |--- value: [20.85]
       |--- LSTAT > 14.80
          |--- value: [17.31]
    --- LSTAT > 19.26
       |--- NOX <= 0.60
          |--- value: [17.18]
        |--- NOX > 0.60
          |--- value: [10.83]
```

```
In [488... # Error de test del modelo
#-----
y_predicciones = modelo.predict(X = X_test)

rmse = mean_squared_error(y_true = y_test, y_pred = y_predicciones, squared = Fals
print(f"El error (rmse) de test es: {rmse}")
```

El error (rmse) de test es: 4.344171773527096

El modelo predice un valor promedio de MEDV de 50.000 dólares para viviendas que están en una zona con un LSTAT <=9.54, un RM<= 7.43 y un DIS <= 1.56.

El rmse de test implica que las predicciones del modelo se alejan en promedio 4.344 dólares del valor real

j) Ajuste Modelo 2:

Se ajusta un modelo empleando como variable respuesta MEDV y como predictores todas las otras variables disponibles. La clase RandomForestRegressor del módulo sklearn.ensemble permite entrenar modelos random forest para problemas de regresión

```
mae = mean_absolute_error(y_test, y_predicciones)
print(f'El error MAE es: %.3f' % mae)
rmse = mean_squared_error(y_true= y_test, y_pred= y_predicciones,squared = False)
print(f'El error (rmse) de test es: %.3f'% rmse)
```

```
El error MAE es: 2.171
El error (rmse) de test es: 3.051
```

El "rmse" de test del segundo modelo, implica que las predicciones del modelo se alejan en promedio 3.051 dólares del valor real.

Al ser un valor inferior que el del primer modelo, utilizaremos éste para contrastar los resultados con los datos normalizados y aplicando dummy en las variables categóricas para evaluar si las prediciones mejoran con dichos ajustes.

Exercici 2

Aplica algun procés de transformació (estandarditzar les dades numèriques, crear columnes dummies, polinomis...).

a) Data Frame

```
In [490... data.select_dtypes(include=['float64', 'int']).describe().round(3)
```

Out [490...

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTR
count	506.000	506.000	506.000	506.000	506.000	506.000	506.000	506.000	506.000	506.000	50
mean	3.614	11.364	11.137	0.069	0.555	6.285	68.575	3.795	9.549	408.237	1
std	8.602	23.322	6.860	0.254	0.116	0.703	28.149	2.106	8.707	168.537	
min	0.006	0.000	0.460	0.000	0.385	3.561	2.900	1.130	1.000	187.000	1
25%	0.082	0.000	5.190	0.000	0.449	5.885	45.025	2.100	4.000	279.000	1
50%	0.257	0.000	9.690	0.000	0.538	6.208	77.500	3.207	5.000	330.000	1
75%	3.677	12.500	18.100	0.000	0.624	6.624	94.075	5.188	24.000	666.000	2
max	88.976	100.000	27.740	1.000	0.871	8.780	100.000	12.126	24.000	711.000	2
4											•

b) Distribución gráfica de cada variable numérica

Distribución de las Variables Numéricas

RM sigue claramente una distribución normal así como MEDV la variable objetivo.

Las variables INDUS, RAS Y TAX siguen una distribución que se aproximan más a una distribución polinómica.

LSTAT, AGE, DIS, PTRATIO y NOX se aproximan más a una distribución Gaussiana con sesgo

El resto de variables CRIM, ZN, CHAS podrían ajustarse a exponenciales decrecientes o crecientes en el caso de B.

c) Gráficos de correlación entre las variables numéricas y la variable objetivo

```
columnas_numeric = data.select_dtypes(include=['float64', 'int']).columns
i=0
for i, colum in enumerate(columnas_numeric):
    sns.regplot( x = data[colum],y = data['MEDV'], color = "blue", marker= '.', scat
    axes[i].set_title(f"MEDV vs {colum}", fontsize = 14, fontweight = "bold")
    axes[i].yaxis.set_major_formatter(ticker.EngFormatter())
    axes[i].xaxis.set_major_formatter(ticker.EngFormatter())
    axes[i].tick_params(labelsize = 14)
    axes[i].set_xlabel("")
    axes[i].set_ylabel("")

fig.tight_layout()
plt.subplots_adjust(top=0.9)
fig.suptitle('Correlación con MEDV', fontsize = 24, fontweight = "bold")
plt.savefig("Grafico3_Distribucion_Corr_MEDV.png")
```

Correlación con MEDV

LSTAT y RM son las variables que tiene una correlación más evidente con la variable objetivo MEDV.

Vamos a ajustar todos las variables a la distribución normal ya que LSTAT y RM son las que tienen una correlación mas clara con MEDV y como se indicaba en el apartado anterior la distribución de probabilidad de ambas se ajustan a la normal.

Las variables chas y rad se distribuyen de forma vertical, esto se debe a que son datos categóricos.

CHAS indica si las casas están cerca del río Charles; 1 si el tramo limita con el río, 0 en caso contrario.

RAD contiene los índices de accesibilidad a las carreteras radiales. Un índice más grande denota una mejor accesibilidad.

d) Creación de Columnas Dummies

Dado que la variable CHAS solo tiene dos valores, 1,0, no tiene sentido separar en Dummies esa información, ya que la propia columna la contiene. Sin embargo, si vamo a crear columnas Dummies de RAD, para ver si esta separación de la información, añade más precisión al modelo.

```
# creamos dummy RAD
df=data
df=pd.get_dummies(df, columns=["RAD"],drop_first = False)
df.head()
```

Out[493		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	TAX	PTRATIO	•••	MEDV	RAD_1	RA
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	296.0	15.3		24.0	1	
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	242.0	17.8		21.6	0	
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	242.0	17.8		34.7	0	
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	222.0	18.7		33.4	0	
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	222.0	18.7		36.2	0	

5 rows × 22 columns

←

e) Mapa de correlaciones con las columnas dummies

```
In [494...
    plt.figure(figsize=(18,15))
    upp_mat = np.triu(df.corr())
    sns.heatmap(df.corr(),cmap="YlGnBu", square = True,annot=True, mask = upp_mat)

Out[494...

Out[494...
```


Una vez aplicados los dummies sobre la variable RAD, los rangos de correlación de cada una de las variables RAD_* generadas vs MEDV, oscilan entre [-0,4 y 0.19] mientras que la correlación inical era de -0.38.

f) División de los datos en train y test

	count	mean	std	min	25%	50%	75%	max	
CRIM	339.0	3.793986	8.669966	0.00632	0.08577	0.25387	3.81234	73.5341	
ZN	339.0	10.963127	23.058729	0.00000	0.00000	0.00000	12.50000	100.0000	
INDUS	339.0	11.377493	6.874160	0.46000	5.64000	9.90000	18.10000	27.7400	
CHAS	339.0	0.079646	0.271145	0.00000	0.00000	0.00000	0.00000	1.0000	
NOX	339.0	0.556238	0.117996	0.39200	0.44800	0.53800	0.62750	0.8710	
RM	339.0	6.247490	0.669953	3.86300	5.87300	6.16700	6.58250	8.3980	

	count	mean	std	min	25%	50%	75%	max
AGE	339.0	69.173451	28.246657	6.00000	45.75000	79.70000	94.30000	100.0000
DIS	339.0	3.799550	2.114897	1.12960	2.09445	3.26280	5.03375	12.1265
TAX	339.0	408.890855	169.654094	187.00000	279.00000	330.00000	666.00000	711.0000
PTRATIO	339.0	18.418584	2.176714	12.60000	17.00000	19.00000	20.20000	22.0000
В	339.0	356.552537	92.095470	0.32000	375.99000	391.45000	396.06000	396.9000
LSTAT	339.0	13.087522	7.340139	1.73000	7.41500	12.03000	17.13500	37.9700
RAD_1	339.0	0.038348	0.192319	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_2	339.0	0.056047	0.230353	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_3	339.0	0.070796	0.256864	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_4	339.0	0.209440	0.407510	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_5	339.0	0.230088	0.421511	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_6	339.0	0.053097	0.224559	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_7	339.0	0.032448	0.177450	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_8	339.0	0.044248	0.205949	0.00000	0.00000	0.00000	0.00000	1.0000
RAD_24	339.0	0.265487	0.442245	0.00000	0.00000	0.00000	1.00000	1.0000

In [497... X_test.describe().transpose()

Out[497		count	mean	std	min	25%	50%	75%	max
	CRIM	167.0	3.247195	8.474939	0.01096	0.076945	0.26169	3.122525	88.9762
	ZN	167.0	12.176647	23.898258	0.00000	0.000000	0.00000	20.000000	95.0000
	INDUS	167.0	10.648144	6.826662	1.25000	4.675000	8.56000	18.100000	27.7400
	CHAS	167.0	0.047904	0.214206	0.00000	0.000000	0.00000	0.000000	1.0000
	NOX	167.0	0.551563	0.111736	0.38500	0.458000	0.53200	0.624000	0.8710
	RM	167.0	6.360036	0.761180	3.56100	5.979500	6.31000	6.630500	8.7800
	AGE	167.0	67.359880	27.994376	2.90000	41.700000	73.30000	93.150000	100.0000
	DIS	167.0	3.785894	2.093240	1.17810	2.101800	3.09230	5.307650	10.7103
	TAX	167.0	406.910180	166.745525	188.00000	281.000000	337.00000	666.000000	711.0000
	PTRATIO	167.0	18.530539	2.145399	13.00000	17.400000	19.10000	20.200000	22.0000
	В	167.0	356.920659	89.921726	3.65000	373.715000	390.68000	396.660000	396.9000
	LSTAT	167.0	11.771138	6.653123	1.92000	6.605000	10.24000	15.695000	30.8100
	RAD_1	167.0	0.041916	0.201000	0.00000	0.000000	0.00000	0.000000	1.0000
	RAD_2	167.0	0.029940	0.170935	0.00000	0.000000	0.00000	0.000000	1.0000
	RAD_3	167.0	0.083832	0.277970	0.00000	0.000000	0.00000	0.000000	1.0000
	RAD_4	167.0	0.233533	0.424351	0.00000	0.000000	0.00000	0.000000	1.0000
	RAD_5	167.0	0.221557	0.416543	0.00000	0.000000	0.00000	0.000000	1.0000

	count	mean	std	min	25%	50%	75%	max
RAD_6	167.0	0.047904	0.214206	0.00000	0.000000	0.00000	0.000000	1.0000
RAD_7	167.0	0.035928	0.186671	0.00000	0.000000	0.00000	0.000000	1.0000
RAD_8	167.0	0.053892	0.226484	0.00000	0.000000	0.00000	0.000000	1.0000
RAD_24	167.0	0.251497	0.435178	0.00000	0.000000	0.00000	0.500000	1.0000

f.1) Diferecias entre Medias: X_train - X_test

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes5 = {'train_mean':X_train.mean(),'test_mean':X_test.mean()}

# Transformación del diccionario en un data frame
outcomes5 = pd.DataFrame(outcomes5, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes5['%_error5'] =round( (abs(outcomes5['train_mean'] - outcomes5['test_mean'])

# Salida de información en función del menor valor del error %.
#outcomes5.sort_values(by='%_error5')
outcomes5
```

_	1 1	T 4	0	
\cup \cup		-	ン	O.

	train_mean	test_mean	%_error5
CRIM	3.793986	3.247195	14.4120
ZN	10.963127	12.176647	11.0691
INDUS	11.377493	10.648144	6.4105
CHAS	0.079646	0.047904	39.8536
NOX	0.556238	0.551563	0.8403
RM	6.247490	6.360036	1.8015
AGE	69.173451	67.359880	2.6218
DIS	3.799550	3.785894	0.3594
TAX	408.890855	406.910180	0.4844
PTRATIO	18.418584	18.530539	0.6078
В	356.552537	356.920659	0.1032
LSTAT	13.087522	11.771138	10.0583
RAD_1	0.038348	0.041916	9.3045
RAD_2	0.056047	0.029940	46.5805
RAD_3	0.070796	0.083832	18.4132
RAD_4	0.209440	0.233533	11.5038
RAD_5	0.230088	0.221557	3.7080
RAD_6	0.053097	0.047904	9.7804
RAD_7	0.032448	0.035928	10.7240
RAD_8	0.044248	0.053892	21.7964

	train_mean	test_mean	%_error5	
RAD 24	0.265487	0.251497	5.2695	

f.2) Diferecias entre Desviaciones Estándar: X_train - X_test

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes6 = {'train_std':X_train.std(),'test_std':X_test.std()}

# Transformación del diccionario en un data frame
outcomes6 = pd.DataFrame(outcomes6, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes6['%_error6'] = round( (abs(outcomes6['train_std'] - outcomes6['test_std']))/

# Salida de información en función del menor valor del error %.
#outcomes6.sort_values(by='%_error6')
outcomes6
```

Out		4	9	9	
	_				

	train_std	test_std	%_error6
CRIM	8.669966	8.474939	2.2495
ZN	23.058729	23.898258	3.6408
INDUS	6.874160	6.826662	0.6910
CHAS	0.271145	0.214206	20.9994
NOX	0.117996	0.111736	5.3060
RM	0.669953	0.761180	13.6169
AGE	28.246657	27.994376	0.8931
DIS	2.114897	2.093240	1.0240
TAX	169.654094	166.745525	1.7144
PTRATIO	2.176714	2.145399	1.4387
В	92.095470	89.921726	2.3603
LSTAT	7.340139	6.653123	9.3597
RAD_1	0.192319	0.201000	4.5140
RAD_2	0.230353	0.170935	25.7944
RAD_3	0.256864	0.277970	8.2168
RAD_4	0.407510	0.424351	4.1326
RAD_5	0.421511	0.416543	1.1786
RAD_6	0.224559	0.214206	4.6105
RAD_7	0.177450	0.186671	5.1965
RAD_8	0.205949	0.226484	9.9709
RAD_24	0.442245	0.435178	1.5978

g) Ajuste del modelo con Dummies

In [500...

```
El error MAE es: 2.179
El error (rmse) de test es: 3.087
```

No aporta una mayor precisión al modelo separar en columnas dummies la variable RAD

h) Normalización

Cuando los predictores son numéricos, la escala en la que se miden, así como la magnitud de su varianza pueden influir en gran medida en el modelo. Muchos algoritmos de machine learning (SVM, redes neuronales, lasso...) son sensibles a esto, de forma que, si no se igualan de alguna forma los predictores, aquellos que se midan en una escala mayor o que tengan más varianza dominarán el modelo aunque no sean los que más relación tienen con la variable respuesta. Existen principalmente 2 estrategias para evitarlo:

- Centrado: consiste en restarle a cada valor la media del predictor al que pertenece. Si los
 datos están almacenados en un dataframe, el centrado se consigue restándole a cada valor
 la media de la columna en la que se encuentra. Como resultado de esta transformación,
 todos los predictores pasan a tener una media de cero, es decir, los valores se centran en
 torno al origen. StandardScaler(with_std=False)
- Normalización (estandarización): consiste en transformar los datos de forma que todos los predictores estén aproximadamente en la misma escala. Hay dos formas de lograrlo:
 - a) Normalización Z-score (StandardScaler): dividir cada predictor entre su desviación típica después de haber sido centrado, de esta forma, los datos pasan a tener una distribución normal.

```
z=(x-\mu)/\sigma
```

b) Estandarización max-min (MinMaxScaler): transformar los datos de forma que estén dentro del rango [0, 1].

```
Xnorm=(X-Xmin)/(Xmax-Xmin)
```

Nunca se deben estandarizar las variables después de ser binarizadas.

h.1) Separación de las variables y Estandarización de las variables numéricas

```
In [501... df_dummies=df
```

Out[502...

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	222.0	18.7	396.90	5.33
•••												
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	273.0	21.0	391.99	9.67
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	273.0	21.0	396.90	9.08
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	273.0	21.0	396.90	5.64
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	273.0	21.0	393.45	6.48
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	273.0	21.0	396.90	7.88

506 rows × 12 columns

```
In [503...
#Estandarización max-min
#from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler().fit(df)
X_normal= scaler.transform(df)
```

In [504... X_normal.shape

Out[504... (506, 12)

In [505...
X_normal= pd.DataFrame(X_normal)
X_normal.columns =["CRIM","ZN","INDUS","CHAS","NOX","RM ","AGE","DIS","TAX","PTRATIO

Out[506... **CRIM** ΖN **INDUS CHAS** NOX **RM AGE** DIS TAX PTRATIO 0.000000 0.18 0.067815 0.0 0.314815 0.577505 0.641607 0.269203 0.208015 0.287234 0.000236 0.00 0.242302 0.172840 0.547998 0.782698 0.348962 0.104962 0.553191 0.000236 0.00 0.242302 0.0 0.172840 0.694386 0.599382 0.348962 0.104962 0.553191 0.000293 0.00 0.063050 0.150206 0.658555 0.441813 0.448545 0.066794 0.648936 0.000705 0.00 0.063050 0.0 0.150206 0.687105 0.528321 0.448545 0.066794 0.648936

5 rows × 22 columns

```
In [507..
       # División de los datos en train y test
       # ------
       #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_st
       X_train_Norm, X_test_Norm, y_train_Norm, y_test_Norm = train_test_split(df_E.drop(co
       print(X_train_Norm.shape, X_test_Norm.shape, y_train_Norm.shape, y_test_Norm.shape)
      (339, 21) (167, 21) (339,) (167,)
In [508...
       # Creación del modelo
       # ______
       modelo = RandomForestRegressor(random_state=1)
       # Entrenamiento del modelo
       # ------
       modelo.fit(X_train_Norm, y_train_Norm)
       # Predicciones
       # ______
       y_pred_norm = modelo.predict(X_test_Norm)
       # Evaluación de las predicciones
       # -----
       mae = mean_absolute_error(y_test_Norm, y_predicciones)
       print(f'El error MAE es: %.3f' % mae)
       rmse = mean_squared_error(y_true= y_test_Norm, y_pred= y_pred_norm,squared = False)
       print(f'El error (rmse) de test es: %.3f'% rmse)
```

El error MAE es: 2.179 El error (rmse) de test es: 3.087

Los datos son similares al modelo inicial, por tanto no mejora las predicciones en relación al modelo 2 inicial.

h) Generacion de Caracteristicas Polinomiales

```
In [509...
            df_dummies.head()
Out[509...
                CRIM
                        ZN INDUS CHAS
                                             NOX
                                                     RM
                                                          AGE
                                                                   DIS
                                                                         TAX PTRATIO ...
                                                                                            MEDV
                                                                                                     RAD_1
           0.00632
                       18.0
                                2.31
                                            0.538
                                                   6.575
                                                          65.2
                                                                4.0900
                                                                        296.0
                                                                                   15.3
                                                                                               24.0
                                                                                                          1
              0.02731
                        0.0
                                7.07
                                           0.469
                                                   6.421
                                                          78.9 4.9671
                                                                        242.0
                                                                                   17.8 ...
                                                                                               21.6
                                                                                                          0
             0.02729
                        0.0
                                7.07
                                           0.469
                                                   7.185
                                                          61.1 4.9671
                                                                        242.0
                                                                                   17.8 ...
                                                                                               34.7
              0.03237
                        0.0
                                2.18
                                         0 0.458
                                                   6.998
                                                          45.8
                                                                6.0622
                                                                        222.0
                                                                                   18.7 ...
                                                                                               33.4
             0.06905
                        0.0
                                2.18
                                         0 0.458 7.147
                                                          54.2 6.0622 222.0
                                                                                   18.7 ...
                                                                                               36.2
                                                                                                          0
```

5 rows × 22 columns

(339, 21) (167, 21) (339,) (167,)

```
In [511...
        #from sklearn.preprocessing import PolynomialFeatures
        #Se define el grado del polinomio
        poli reg = PolynomialFeatures(degree = 3)
        #Se transforma las características existentes en características de mayor grado
        X_train_poli = poli_reg.fit_transform(X_train)
        X_test_poli = poli_reg.fit_transform(X_test)
In [512...
        X_train_pol.shape
        (339, 2024)
Out[512...
In [513...
        X_test_pol.shape
        (167, 2024)
Out[513...
In [514...
        # Creación del modelo
        modelo = RandomForestRegressor(random_state=1)
        # Entrenamiento del modelo
        modelo.fit(X_train_poli, y_train)
        # Predicciones
        # ______
        y_pred_pol = modelo.predict(X_test_poli)
        # Evaluación de las predicciones
        # -----
        mae = mean_absolute_error(y_test, y_predicciones)
        print(f'El error MAE es: %.3f' % mae)
        rmse = mean_squared_error(y_true= y_test, y_pred= y_pred_pol,squared = False)
        print(f'El error (rmse) de test es: %.3f'% rmse)
        El error MAE es: 2.179
        El error (rmse) de test es: 3.506
```

Los datos son superiores al modelo inicial, por tanto no mejora las predicciones en relación al modelo 2 inicial.

Exercici 3

Resumeix les noves columnes generades de manera estadística i gràfica

- 1. Descripción estadística y gráfica de X_train_Norm
- 1.a) Data frame X_train_Norm

```
In [515...
X_train_Norm = pd.DataFrame(X_train_Norm)
X_train_Norm.columns =["CRIM","ZN","INDUS","CHAS","NOX","RM ","AGE","DIS","TAX","PTR

In [516...
X_train_Norm.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 339 entries, 378 to 37
```

> Data columns (total 21 columns): Column Non-Null Count Dtype # --------0 CRIM 339 non-null float64 ΖN float64 1 339 non-null 2 **INDUS** 339 non-null float64 3 CHAS 339 non-null float64 4 NOX 339 non-null float64 5 float64 RM 339 non-null 6 AGE 339 non-null float64 7 DIS 339 non-null float64 8 TAX 339 non-null float64 9 PTRATIO 339 non-null float64 10 B 339 non-null float64 11 LSTAT 339 non-null float64 12 RAD_1 339 non-null uint8 uint8 13 RAD 2 339 non-null 14 RAD_3 339 non-null uint8 15 RAD_4 339 non-null uint8 16 RAD_5 339 non-null uint8 17 RAD_6 339 non-null uint8 18 RAD_7 339 non-null uint8 19 RAD 8 339 non-null uint8 20 RAD_24 339 non-null uint8

dtypes: float64(12), uint8(9)

memory usage: 37.4 KB

1.b) X_train_Norm.Describe

In [517... | X_train_Norm.describe().transpose()

Out[517...

	count	mean	std	min	25%	50%	75%	max
CRIM	339.0	0.042572	0.097448	0.000000	0.000893	0.002782	0.042779	0.826435
ZN	339.0	0.109631	0.230587	0.000000	0.000000	0.000000	0.125000	1.000000
INDUS	339.0	0.400201	0.251985	0.000000	0.189883	0.346041	0.646628	1.000000
CHAS	339.0	0.079646	0.271145	0.000000	0.000000	0.000000	0.000000	1.000000
NOX	339.0	0.352341	0.242791	0.014403	0.129630	0.314815	0.498971	1.000000
RM	339.0	0.514752	0.128368	0.057865	0.442997	0.499329	0.578942	0.926806
AGE	339.0	0.682528	0.290903	0.031926	0.441298	0.790937	0.941298	1.000000
DIS	339.0	0.242791	0.192318	0.000000	0.087738	0.193982	0.355023	1.000000
TAX	339.0	0.423456	0.323767	0.000000	0.175573	0.272901	0.914122	1.000000
PTRATIO	339.0	0.618998	0.231565	0.000000	0.468085	0.680851	0.808511	1.000000
В	339.0	0.898261	0.232224	0.000000	0.947274	0.986258	0.997882	1.000000
LSTAT	339.0	0.313397	0.202542	0.000000	0.156871	0.284216	0.425083	1.000000
RAD_1	339.0	0.038348	0.192319	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_2	339.0	0.056047	0.230353	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_3	339.0	0.070796	0.256864	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_4	339.0	0.209440	0.407510	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_5	339.0	0.230088	0.421511	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_6	339.0	0.053097	0.224559	0.000000	0.000000	0.000000	0.000000	1.000000

	count	mean	std	min	25%	50%	75%	max
RAD_7	339.0	0.032448	0.177450	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_8	339.0	0.044248	0.205949	0.000000	0.000000	0.000000	0.000000	1.000000
RAD 24	339.0	0.265487	0.442245	0.000000	0.000000	0.000000	1.000000	1.000000

1.c) Distribución gráfica de cada variable numérica estandarizada: X_train_Norm

Distribución de las Variables Numéricas X_train_Norm

La distribución de la muestra X_train_Norm facilita que las variables se distribuyan en el eje de las x en un rango de [0,1], por lo que se redimensionan las funciones de distribución de las variables de forma que resultan comparables en cuanto a su distribución de probabilidad.

Vemos que las funcicones de distribución mantienen la misma forma que las de los datos originales, pero se equilibra el peso de las desviaciones estándar en un rango inferior al original.

2. Descripción estadística y gráfica de X_test_Norm

2.a) Data frame X_test_Norm

```
In [519...
X_test_Norm = pd.DataFrame(X_test_Norm)
X_test_Norm.columns =["CRIM","ZN","INDUS","CHAS","NOX","RM ","AGE","DIS","TAX","PTRA
In [520...
```

```
X_test_Norm.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 167 entries, 307 to 347
Data columns (total 21 columns):
    Column Non-Null Count Dtype
            -----
0
    CRIM
            167 non-null
                          float64
1
    ΖN
            167 non-null float64
2
    INDUS
            167 non-null float64
3
    CHAS
            167 non-null float64
4
    NOX
            167 non-null float64
5
    RM
            167 non-null
                         float64
6
            167 non-null float64
    AGE
7
    DIS
            167 non-null
                        float64
8
    TAX
            167 non-null float64
9
    PTRATIO 167 non-null float64
           167 non-null
                         float64
11 LSTAT
            167 non-null
                         float64
12 RAD 1
           167 non-null
                         uint8
13 RAD 2
          167 non-null uint8
14 RAD 3
          167 non-null uint8
15 RAD_4 167 non-null uint8
16 RAD 5 167 non-null
                         uint8
17
    RAD_6
            167 non-null
                         uint8
18 RAD_7
            167 non-null
                          uint8
19 RAD_8
            167 non-null
                          uint8
            167 non-null
20 RAD_24
                          uint8
dtypes: float64(12), uint8(9)
```

memory usage: 18.4 KB

2.b) X_test_Norm.Describe

In [521...

X_test_Norm.describe().transpose()

Out[521		count	mean	std	min	25%	50%	75%	max
	CRIM	167.0	0.036427	0.095256	0.000052	0.000794	0.002870	0.035025	1.000000
	ZN	167.0	0.121766	0.238983	0.000000	0.000000	0.000000	0.200000	0.950000
	INDUS	167.0	0.373466	0.250244	0.028959	0.154509	0.296921	0.646628	1.000000
	CHAS	167.0	0.047904	0.214206	0.000000	0.000000	0.000000	0.000000	1.000000
	NOX	167.0	0.342723	0.229909	0.000000	0.150206	0.302469	0.491770	1.000000
	RM	167.0	0.536317	0.145848	0.000000	0.463403	0.526729	0.588139	1.000000
	AGE	167.0	0.663850	0.288305	0.000000	0.399588	0.725026	0.929454	1.000000
	DIS	167.0	0.241549	0.190348	0.004410	0.088407	0.178478	0.379930	0.871218
	TAX	167.0	0.419676	0.318217	0.001908	0.179389	0.286260	0.914122	1.000000
	PTRATIO	167.0	0.630908	0.228234	0.042553	0.510638	0.691489	0.808511	1.000000
	В	167.0	0.899190	0.226743	0.008397	0.941538	0.984316	0.999395	1.000000
	LSTAT	167.0	0.277073	0.183585	0.005243	0.134520	0.234823	0.385348	0.802428
	RAD_1	167.0	0.041916	0.201000	0.000000	0.000000	0.000000	0.000000	1.000000
	RAD_2	167.0	0.029940	0.170935	0.000000	0.000000	0.000000	0.000000	1.000000
	RAD_3	167.0	0.083832	0.277970	0.000000	0.000000	0.000000	0.000000	1.000000

	count	mean	std	min	25%	50%	75%	max
RAD_4	167.0	0.233533	0.424351	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_5	167.0	0.221557	0.416543	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_6	167.0	0.047904	0.214206	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_7	167.0	0.035928	0.186671	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_8	167.0	0.053892	0.226484	0.000000	0.000000	0.000000	0.000000	1.000000
RAD_24	167.0	0.251497	0.435178	0.000000	0.000000	0.000000	0.500000	1.000000

2.c) Distribución gráfica de cada variable numérica estandarizada: X_test_Norm

Distribución de las Variables Numéricas X_test_Norm

La distribución de la muestra X_test_Norm facilita también, que las variables se distribuyan en el eje de las x en un rango de [0,1], por lo que se redimensionan las funciones de distribución de las variables de forma que resultan comparables en cuanto a su distribución de probabilidad.

También vemos que las funcicones de distribución mantienen la misma forma que las de los datos originales, pero se equilibra el peso de las desviaciones estándar en un rango inferior al original.

3. Resumen de las diferencias en medias y desviación estándar entre X_train_Norm y X_test_Norm

3.a) Diferencias % en las medias

```
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes7 = {'train mean':X train Norm.mean(), 'test mean':X test Norm.mean()}
```

```
# Transformación del diccionario en un data frame
outcomes7 = pd.DataFrame(outcomes7, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes7['%_error7'] =round( (abs(outcomes7['train_mean'] - outcomes7['test_mean']))

# Salida de información en función del menor valor del error %.
#outcomes7.sort_values(by='%_error7')
outcomes7
```

Out[523...

	train_mean	test_mean	%_error7
CRIM	0.042572	0.036427	14.4361
ZN	0.109631	0.121766	11.0691
INDUS	0.400201	0.373466	6.6806
CHAS	0.079646	0.047904	39.8536
NOX	0.352341	0.342723	2.7297
RM	0.514752	0.536317	4.1893
AGE	0.682528	0.663850	2.7365
DIS	0.242791	0.241549	0.5115
RAD	NaN	NaN	NaN
TAX	0.423456	0.419676	0.8926
PTRATIO	0.618998	0.630908	1.9241
В	0.898261	0.899190	0.1033
LSTAT	0.313397	0.277073	11.5904
RAD_1	0.038348	0.041916	9.3045
RAD_2	0.056047	0.029940	46.5805
RAD_3	0.070796	0.083832	18.4132
RAD_4	0.209440	0.233533	11.5038
RAD_6	0.053097	0.047904	9.7804
RAD_7	0.032448	0.035928	10.7240
RAD_8	0.044248	0.053892	21.7964
RAD_24	0.265487	0.251497	5.2695

3.b) Diferencias % en las desviaciones estándar

```
In [524...
# Data Summary
# Creacción de un diccionario con los resultados de las medias de los datos y train
outcomes8 = {'train_dEst':X_train_Norm.std(),'test_dEst':X_test_Norm.std()}

# Transformación del diccionario en un data frame
outcomes8 = pd.DataFrame(outcomes8, index=["CRIM","ZN","INDUS","CHAS","NOX","RM ","A

# Se añade el valor correspondiente al error %
outcomes8['%_error8'] =round( (abs(outcomes8['train_dEst'] - outcomes8['test_dEst'])
```

Salida de información en función del menor valor del error %.
#outcomes8.sort_values(by='%_error8')
outcomes8

Out[524...

	train_dEst	test_dEst	%_error8
CRIM	0.097448	0.095256	2.2495
ZN	0.230587	0.238983	3.6408
INDUS	0.251985	0.250244	0.6910
CHAS	0.271145	0.214206	20.9994
NOX	0.242791	0.229909	5.3060
RM	0.128368	0.145848	13.6169
AGE	0.290903	0.288305	0.8931
DIS	0.192318	0.190348	1.0240
TAX	0.323767	0.318217	1.7144
PTRATIO	0.231565	0.228234	1.4387
В	0.232224	0.226743	2.3603
LSTAT	0.202542	0.183585	9.3597
RAD_1	0.192319	0.201000	4.5140
RAD_2	0.230353	0.170935	25.7944
RAD_3	0.256864	0.277970	8.2168
RAD_4	0.407510	0.424351	4.1326
RAD_5	0.421511	0.416543	1.1786
RAD_6	0.224559	0.214206	4.6105
RAD_7	0.177450	0.186671	5.1965
RAD_8	0.205949	0.226484	9.9709
RAD_24	0.442245	0.435178	1.5978

3.c) Gráfico de diferencias de errores en la media y desviación estándar entre: X_train - X_test Normalizadas

```
fig, axes = plt.subplots(ncols=2, nrows=1, figsize=(20, 9))
   axes = axes.flat
   axes[0].set_title("Diferencias en % entre Medias\n X_train / X_test Normalizadas", f
   sns.lineplot(data=outcomes7["%_error7"],color="blue", ax=axes[0])
   axes[1].set_title("Diferencias en % entre Desviación Estándar:\n X_train / X_test N
   sns.lineplot(data=outcomes8["%_error8"],ax=axes[1])
   plt.savefig("Gafico5_Diferencias_medias_std.png")
```


El rango de las diferencias entre medias y desviaciones estándar es similar a las que se producian al separar los datos originales entre train y test, por tanto en este caso, no mejora la selección de las muestrar aplicar un proceso de estándarización de las variables numéricas.