1. Multivariate Gaussian Distribution

1.1 Affine Transformation of Gaussian Random Variables

Two random variables y_1 and y_2 are generated from independent normal distributed random variables $x_1 \sim \mathcal{N}(0, 1)$ and $x_2 \sim \mathcal{N}(0, 1)$ by

$$y_1 = x_1 - 2x_2$$

$$y_2 = x_1 + x_2.$$

- a) Determine the probability density function (PDF) of the random variable $y = [y_1, y_2]^T$.
- b) The random variable z is generated from x by z = BDx, where

$$\boldsymbol{B} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}, \quad \boldsymbol{D} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix},$$

and $\alpha \in [0, 2\pi[$ is a fixed and given angle. Determine the PDF of the random variable z and compare it to the PDF of y.

In the following, let $x_1 \sim \mathcal{N}(3, 1)$ and $x_2 \sim \mathcal{N}(1, 2)$ with x_1 and x_2 being independent.

- c) Draw contour lines of the PDFs of x and y = Bx.
- d) Determine the conditional PDF of y_1 given $y_2 = a$.