oint.

$$f(x) = 4x^3$$

 $f(2) = 32$

(xo, yo) slope m...

$$L(x) = f(a) + f(a)(x-a)$$
becomes
$$L(x) = y_o + m(x-x_o)$$
paint - slope famula.

$$L(x) = 16 + 32(x-2)$$

$$= [6 - .032$$

(1000, 10)

$$f(x) = \frac{1}{3} \times \frac{3}{3}$$

$$f(1000) = \frac{1}{3} \frac{1}{100} = \frac{1}{300}$$

$$f(1001) = \frac{1}{300} + \frac{1}{300} = \frac{1}{300}$$

$$f(1001) =$$

$$=\frac{1}{2}+\frac{\sqrt{3}}{260}$$

$$=\frac{1}{2}-\frac{\sqrt{5\pi}}{260}$$

$$=\frac{1}{2}-\frac{\sqrt{5\pi}}{26$$

 $dy = Sec^2 x dx$

$$\frac{dy}{dy} = \sec^{2}(\frac{\pi}{4})(-0.1)$$

$$\frac{dy}{dy} = \left(\frac{1}{12\sqrt{2}}\right)^{2}(-0.1)$$

$$\frac{dy}{dy} = \left(\frac{1}{12\sqrt{2}}\right)^{2}(-0.1)$$

$$\frac{dy}{dy} = \left(\frac{1}{12\sqrt{2}}\right)^{2}(-0.1)$$

$$\frac{dy}{dy} = \left(\frac{1}{12\sqrt{2}}\right)^{2}(-0.1)$$

$$\frac{dy}{dy} = \frac{(-0.1)}{2} = -0.2$$

$$\frac{dy}{dy} = \frac{(-0.1)}{2}$$

$$\frac{dy}{dy} = \frac{(-0.1)}{2}$$

$$\frac{dy}{dy} = \frac{(-0.1)}{2}$$

$$\frac{dy}{dx} = \frac{(-0.1)}{2}$$

$$\frac{(-0.1)(-(-0.1))(-(-0.1)(-0.1)}{2}$$

$$\frac{dy}{dx} = \frac{(-0.1)}{2}$$

$$\frac{dy}{dx} = \frac{(-0.$$

2.1.	-2.5 All derivatives have basis in the definition
	Def gives us the rules.
2.2	A function is diffable at a point c if f(c) exists.
At a	Diffable \Rightarrow Continuous \Rightarrow Defined
Point	# # #
	y = x
	y = x
	Non diffable # discont # Undef
7	6 dy for an implicit curve:
	Derive all with respect to x, solve for dy.
	Delive all with respect to x, some son de
2.2	Get a fact relating all important quantities in the problem
	Derive all with respect to t (time) Every variable can be a function of time!
	Plug in known values and solve.
2.9	know how to find a linear equation using a point and slope.
Pg 1	92
	$f(x) = \frac{2}{\sqrt{x^2-5}} = 2(x^2-5)^2$ easier
	$+(x) = \sqrt{x^2-5}$
	Prob due tonight: a, b, and h
	Let h be the distance between the ships. Find the

lim +(x+h)-f(x)
h +0