

Current Status and Future Directions in the Use of High-Resolution Atmospheric Models for Support of T&E

James Bowers and Elford Astling U.S. Army Dugway Proving Ground Dugway, Utah 84022-5000

Thomas Warner, Scott Swerdlin, and Terri Betancourt National Center for Atmospheric Research Boulder, Colorado 80301

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments is arters Services, Directorate for Information of law, no person services.	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 2005	2. REPORT TYPE			3. DATES COVERED 00-00-2005 to 00-00-2005		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Current Status and Future Directions in the Use of High-Resolution Atmospheric Models for Support of T&E				5b. GRANT NUMBER		
Authospheric Models for Support of 1 &E				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Dugway Proving Ground, Dugway, UT,84022-5000				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES Modeling and Simulation Conference, 2005 Dec 12-15, Las Cruces, NM						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 28	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Weather Forecasting as a High Performance Computing problem

 The world's first electronic computer (ENIAC*) was developed by "Army Ordnance" (Aberdeen Proving Ground) to compute World War II ballistic firing tables.

Figure 3: The ENIAC computer in 1948. The operators are changing the plug-in wiring. (PLATZMAN, 1979).

 In addition to ballistics, the ENIAC's fields of application included weather prediction...

*Electronic Numerical Integrator And Computer

More recent indicators of weather's dominant role as a user of high-performance computing

- 1952 Princeton's Institute for Advanced Study developed first general-purpose computer; the primary intended use was weather prediction and research
- 1977 The National Center for Atmospheric Research was Cray Research's first official customer with the Cray 1A
- 2000 Europe's three fastest super computers were dedicated to weather forecasting
- 2005 10-20 of the top-100 super computers in the world are utilized primarily for operational weather forecasting or weather research

Why Numerical Weather Prediction is Computationally Intensive

- Nonlinear, nonhomogeneous, partial differential equations that describe fluid dynamics and thermodynamics of the atmosphere must be solved with high-order numerical techniques
- Physics of atmospheric turbulence, radiation, chemistry and cloud/precipitation processes are complex
- Soil, vegetation, ocean processes are part of model
- Because of the numerics, a doubling of the resolution in horizontal and vertical requires a 16fold increase in the computing power required for the same area

History of ATEC Four-Dimensional Weather (4DWX) Program

- Situation in 1995 Unmet needs of Army test range forecasters
 - range-scale model products,
 - a modern data archival system, and
 - better graphical displays of data and model products
- 1996-present ATEC and the National Center for Atmospheric Research have partnered on the development of one of the highest-resolution operational weather-prediction systems in the world

Paradigms of the ATEC 4DWX Program

- Partnership and close collaboration between ATEC meteorologists and system developers
- Rapid prototyping and deployment of new capabilities – concept to operations in 3-6 months
- Frequent upgrades/releases system is NOT static

An example – Standard versus 4DWX model forecasts

Standard model forecast from National Weather Service

Surface (10m) Wind Speed (knots) / MSLP (mb)

For example - model forecasts

Standard model forecast from National Weather Service

Surface (10m) Wind Speed (knots) / MSLP (mb)

Current 4DWX model computational area for White Sands Missile Range

For example - model forecasts

Why haven't standard products been able to serve ATEC's weather needs?

- Test ranges have specialized weather needs – e.g., boundary layer winds
- Models need to be especially high resolution because of nearby complex topographic and coastal forcing
- Weather models need to be closely coupled to special-applications models

 transport and diffusion, parachute drift, sound propagation

New High-Performance Computing Requirements for ATEC 4DWX System -- EXISTING EFFORTS --

- Ensemble prediction multiple parallel model runs provide probabilistic forecasts to T&E customers
- 4DWX On The MOVE graphical interface to weather model allows support of world-wide operational and virtual testing by non-experts
- Global Climatological Analysis Tool constructs high-resolution analyses of regional climate for long-range test planning, at ranges or worldwide
- FCS/VPG Support 4DWX model provides very-high-resolution atmospheric environment for virtual testing

ATEC Ensemble Prediction

ATEC 4DWX On The Move

- Graphical interface is used to deploy operational weather modeling system
- Used to support special missions that are not covered by stationary range weather-modeling systems
- Example WSMR support of missile launches in Hawaii

The Graphical Interface:

for quickly configuring and running the 4DWX forecast system

The situation in the early morning of 2 Feb 2005

- Mission: Rocket launch scheduled for 0800-1100 HST.
- Weather conditions at 0200 HST:
 - Persistent moist unstable flow over Kauai causing widespread thunderstorms.
 - Most of Kauai under a <u>Flash Flood Warning</u>.
- Situation looked highly unfavorable for a launch, but model was predicting a break in the rain between 0900 and 1100 HST.

The ATEC-model forecast from the previous evening: Heavy rain until about 0830 HST, followed by rapid clearing

Later that Morning (02 Feb 2005)

- 0600 HST: Little improvement in observed weather conditions.
- 0830 HST: National Weather Service radar indicated a break in the thunderstorm activity.
- 0900 HST: Rain ends and skies clear, as forecast by the model.
- Rocket successfully launched.

ATEC 4DWX On The Move – A National Asset

Supporting the Department of Homeland Security's forecast of the impact of Hurricane Rita on the National infrastructure

Colors – storm total precipitation

Global Climatological Analysis Tool

- Model is run for decades-long historical period to "downscale" available global climatological analyses
- The resulting high-resolution climatology of winds, temperature, etc. can be used for long range test planning
- The system can be used for range T&E or operational testing worldwide
- National Ground Intelligence Center now uses this system operationally; it will soon be deployed to ATEC ranges.

Example Of Application of Global Climatological Analysis Tool

What is the typical pattern of atmospheric transport of hazardous material over the Korean Peninsula in March?

Probability of Exceeding a Dosage Threshold

Based on an ensemble from large number of case days in March

A New Extremely Computationally Intensive Direction for T&E Modeling

- Building-aware computational fluid dynamics models
- Application Actual and virtual testing in urban settings
- Computationally intensive because grid increments must be about 2 meters to resolve building and street-canyon effects

Example – Modeled wind flow around the Pentagon

Summary of New Computationally Intensive Atmospheric Modeling in Support of T&E

- Ensemble prediction is providing probabilistic information to customers
- High-resolution atmospheric forecast systems can be deployed worldwide for operational testing
- Model-based very-high-resolution climatologies can be generated worldwide for long-range test planning
- FCS/VPG is beneficiary of high-resolution modeling and climatological-analysis capability
- ATEC 4DWX model is being coupled to buildingaware urban models