Álgebra I. Hoja de ejercicios 13: Homomorfismos de grupos Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ejercicio 1. Sean $\phi: G \to H$ un homomorfismo y $K \subset H$ un subgrupo. Demuestre que $\phi^{-1}(K)$ es un subgrupo de G.

Ejercicio 2. Demuestre que si $\sigma \in S_n$ afecta m elementos (en el sentido de que $\sigma(i) \neq i$ para m números i) y tiene una descomposición en s ciclos disjuntos, entonces

$$\operatorname{sgn} \sigma = (-1)^{m-s}$$
.

Por ejemplo, $\sigma = (1\ 2)\ (3\ 6\ 4)\ (5\ 11\ 8)$ afecta 1,2,3,4,5,6,8,11, entonces m = 8, y en la expresión hay s = 3 ciclos disjuntos. Luego, ${\rm sgn}\,\sigma = (-1)^{8-3} = -1$.

Ejercicio 3. Para n = 1, 2, 3, ... consideremos el espacio vectorial \mathbb{Q}^n con la base canónica $e_1, ..., e_n$. Para una permutación $\sigma \in S_n$ definamos la aplicación lineal

$$\phi_{\sigma}: \mathbb{Q}^n \to \mathbb{Q}^n, \quad e_i \mapsto e_{\sigma(i)}.$$

- a) Demuestre que la matriz que corresponde a ϕ_{σ} en cada fila y cada columna tiene todas las entradas nulas, salvo una que es igual a 1. Tales matrices se llaman las **matrices de permutación**.
- b) Escriba las matrices de permutación para n = 3.
- c) Demuestre que las matrices de permutación forman un subgrupo de $GL_n(\mathbb{Z}) \subset GL_n(\mathbb{Q})$ que es isomorfo a S_n .
- d) Demuestre que $\det \phi_{\sigma} = \operatorname{sgn} \sigma$.

Ejercicio 4. En el ejercicio 9 de la hoja 11 hemos definido el grupo de matrices ortogonales

$$O_n(k) = \{a \in GL_n(k) \mid a^t a = a a^t = 1\}.$$

- a) Demuestre que el determinante de una matriz ortogonal es igual a ± 1 .
- b) Demuestre que las matrices ortogonales de determinante +1 forman un subgrupo

$$SO_n(k) := \{a \in GL_n(k) \mid a^t \ a = a \ a^t = 1, \ \det a = +1\} \subset O_n(k).$$

Este se llama el **grupo ortogonal especial**.

c) En particular, demuestre que el grupo $SO_2(\mathbb{R})$ es isomorfo al grupo del círculo \mathbb{S}^1 .

Ejercicio 5. Demuestre que el conjunto de matrices

$$G := \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \mid x, y \in \mathbb{R}, \ x^2 + y^2 > 0 \right\}.$$

es un subgrupo de $GL_2(\mathbb{R})$ que es isomorfo a \mathbb{C}^{\times} .

Ejercicio 6. Demuestre que los grupos \mathbb{R}^{\times} y \mathbb{C}^{\times} no son isomorfos.

Ejercicio 7. Encuentre isomorfismos de grupos $D_3 \cong S_3 \cong GL_2(\mathbb{F}_2)$. ¿Puede haber isomorfismos $D_n \cong S_n$ para $n \neq 3$? ¿ $S_n \cong GL_m(\mathbb{F}_p)$?

Ejercicio 8. Consideremos las **matrices triangulares superiores invertibles** (es decir, las matrices invertibles que tienen ceros debajo de la diagonal) y las matrices diagonales invertibles. Note que en ambos casos se tiene un subgrupo de $GL_n(A)$. Demuestre que la aplicación

$$\begin{pmatrix} x_{11} & * & * & \cdots & * & * \\ 0 & x_{22} & * & \cdots & * & * \\ 0 & 0 & x_{33} & \cdots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x_{n-1,n-1} & * \\ 0 & 0 & 0 & \cdots & 0 & x_{nn} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & 0 & \cdots & 0 & 0 \\ 0 & x_{22} & 0 & \cdots & 0 & 0 \\ 0 & 0 & x_{33} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x_{n-1,n-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & x_{nn} \end{pmatrix}$$

que deja las entradas diagonales intactas y aplica el resto de las entradas a 0 es un homomorfismo de grupos.