Домашняя работа 2 вариант 82

Выполнил: Васильев Артём, Р3119

V/V	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂
e ₁	0		5			2	2	1			2	1
e ₂		0		1		2	1					1
e ₃	5		0	5	2		1	4	1	4	4	1
e ₄		1	5	0		2	2		3			2
e ₅			2		0			3	1			1
e ₆	2	2		2		0	1					
e ₇	2	1	1	2		1	0	2			5	3
e ₈	1		4		3		2	0		3		5
e ₉			1	3	1				0	2		
e ₁₀			4					3	2	0		
e ₁₁	2		4				5				0	
e ₁₂	1	1	1	2	1		3	5				0

Найти кратчайшие пути от начальной вершины е1 ко всем остальным вершинам:

1. Положить $I(e_1) = 0+$ и считать эту пометку постоянной. Положить $I(e_i) = ∞$, для всех i ≠ 1 и считать эту пометку временной. Положить $p = e_1$. Результаты итерации запишем в таблицу:

	1
e ₁	0*
e ₂	8
e ₃	8
e ₄	8
e ₅	8
e ₆	8
e ₇	8
e ₈	8
e 9	∞
e ₁₀	8
e ₁₁	8
e ₁₂	8

2. $\Gamma_P = \{e_4, e_5, e_8, e_9, e_{11}\}$ – все пометки временные, уточним их:

$$I(e_3) = min[\infty, 0^* + 5] = 5$$

$$I(e_6) = min[\infty, 0^* + 2] = 2$$

$$I(e_7) = min[\infty, 0^* + 2] = 2$$

$$I(e_8) = min[\infty, 0^* + 1] = 1$$

$$I(e_{11}) = min[\infty, 0^* + 2] = 2$$

$$I(e_{12}) = min[\infty, 0^* + 1] = 1$$

3. Среди всех вершин с временными пометками найдём такую, что $I(e_i^*) = min[I(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_8) = 1^*$$

	1	2
e ₁	0*	
e ₂	8	8
e ₃	8	5
e ₄	8	8
e ₅	8	8
e ₆	∞	2
e ₇	∞	2
e ₈	∞	1*
e 9	∞	8

e ₁₀	∞	8
e ₁₁	8	2
e ₁₂	∞	1

- 4. Положим $p = e_8$
- 5. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_1, e_3, e_5, e_7, e_{10}, e_{12}\}$. Все вершины с временными отметками: e_3 , e_5 , e_7 , e_{10} , e_{12} уточним их:

$$I(e_3) = min[5, 1^* + 4] = 5$$

$$I(e_5) = min[\infty, 1^* + 3] = 4$$

$$I(e_7) = min[2, 1^* + 2] = 2$$

$$I(e_{10}) = min[\infty, 1^* + 3] = 4$$

$$I(e_{12}) = min[1, 1*+ 5] = 1$$

6. Среди всех вершин с временными пометками найдём такую, что $l(e_i^*) = min[l(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_{12}) = 1^*$$

	1	2	3
e ₁	0*		
e ₂	∞	∞	8
e ₃	∞	5	5
e ₄	∞	∞	8
e ₅	∞	∞	4
e ₆	∞	2	2
e ₇	∞	2	2
e ₈	8	1*	
e 9	∞	∞	8
e ₁₀	∞	∞	4
e ₁₁	∞	2	2
e ₁₂	∞	1	1*

- 7. Положим $p = e_{12}$
- 8. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_1, e_2, e_3, e_4, e_5, e_7, e_8\}$. Все вершины с временными отметками: e_2 , e_3 , e_4 , e_5 , e_7 уточним их:

$$I(e_2) = min[\infty, 1^* + 1] = 2$$

$$I(e_3) = min[5, 1^* + 1] = 2$$

$$I(e_4) = min[\infty, 1^* + 2] = 3$$

$$I(e_5) = min[4, 1^* + 1] = 2$$

$$I(e_7) = min[2, 1^* + 3] = 2$$

9. Среди всех вершин с временными пометками найдём такую, что $l(e_i^*) = min[l(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_2) = 2^*$$

	1	2	3	4
e ₁	0*			
e ₂	8	8	8	2*
e ₃	8	5	5	2
e ₄	∞	∞	∞	3
e ₅	∞	∞	4	2
e ₆	∞	2	2	2
e ₇	∞	2	2	2
e ₈	∞	1*		
e ₉	∞	∞	∞	∞
e ₁₀	∞	∞	4	4
e ₁₁	∞	2	2	2
e ₁₂	∞	1	1*	

- 10. Положим $p = e_2$
- 11. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_4, e_6, e_7, e_{12}\}$. Все вершины с временными отметками: e_4 , e_6 , e_7 уточним их:

$$I(e_4) = min[3, 2^* + 1] = 3$$

$$I(e_6) = min[2, 2^* + 2] = 2$$

$$I(e_7) = min[2, 2^* + 1] = 2$$

12. Среди всех вершин с временными пометками найдём такую, что $l(e_i^*) = min[l(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_3) = 2^*$$

	1	2	3	4	5
e ₁	0*				
e ₂	∞	∞	∞	2*	
e ₃	∞	5	5	2	2*
e ₄	∞	∞	~	3	3
e ₅	∞	∞	4	2	2
e ₆	∞	2	2	2	2
e ₇	∞	2	2	2	2
e ₈	∞	1*			
e 9	∞	∞	∞	∞	8
e ₁₀	∞	∞	4	4	4
e ₁₁	∞	2	2	2	2
e ₁₂	∞	1	1*		

- 13. Положим $p = e_3$
- 14. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_1, e_4, e_5, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}\}$. Все вершины с временными отметками: e_4 , e_5 , e_7 , e_9 , e_{10} , e_{11} уточним их:

$$I(e_4) = min[3, 2^* + 5] = 3$$

$$I(e_5) = min[2, 2^* + 2] = 2$$

$$I(e_7) = min[2, 2^* + 1] = 2$$

$$I(e_9) = min[\infty, 2^* + 1] = 3$$

$$I(e_{10}) = min[4, 2^* + 4] = 4$$

$$I(e_{11}) = min[2, 2^* + 4] = 2$$

15. Среди всех вершин с временными пометками найдём такую, что $I(e_i^*) = min[I(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_5) = 2^*$$

= 2						
	1	2	3	4	5	6
e ₁	0*					
e ₂	∞	8	∞	2*		
e ₃	∞	5	5	2	2*	
e ₄	∞	∞	∞	3	3	3
e ₅	∞	∞	4	2	2	2*
e ₆	∞	2	2	2	2	2
e ₇	∞	2	2	2	2	2
e ₈	∞	1*				
e ₉	∞	∞	∞	∞	8	3
e ₁₀	∞	∞	4	4	4	4
e ₁₁	∞	2	2	2	2	2
e ₁₂	∞	1	1*			

- 16. Положим $p = e_5$
- 17. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_3, e_8, e_9, e_{12}\}$. Все вершины с временными отметками: e_9 уточним их:

$$I(e_9) = min[\infty, 2^* + 1] = 3$$

18. Среди всех вершин с временными пометками найдём такую, что $l(e_i^*) = min[l(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_6) = 2^*$$

b) - 2							
	1	2	3	4	5	6	7
e ₁	0*						
e ₂	∞	∞	∞	2*			
e ₃	∞	5	5	2	2*		
e ₄	∞	∞	∞	3	3	3	3
e ₅	∞	∞	4	2	2	2*	
e ₆	∞	2	2	2	2	2	2*
e ₇	∞	2	2	2	2	2	2
e ₈	~	1*					
e 9	∞	∞	∞	∞	∞	3	3

e ₁₀	∞	∞	4	4	4	4	4
e ₁₁	∞	2	2	2	2	2	2
e 12	∞	1	1*				

- 19. Положим $p = e_6$
- 20. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_1, e_2, e_4, e_7\}$. Все вершины с временными отметками: e_4 , e_7 уточним их:

$$I(e_4) = min[3, 2^* + 2] = 3$$

$$I(e_7) = min[2, 2^* + 1] = 2$$

Среди всех вершин с временными пометками найдём такую, что $I(e_i^*) = min[I(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_7) = 2^*$$

(- / /								
	1	2	3	4	5	6	7	8
e ₁	0*							
e ₂	8	∞	∞	2*				
e ₃	8	5	5	2	2*			
e ₄	8	∞	∞	3	3	3	3	3
e ₅	8	∞	4	2	2	2*		
e ₆	8	2	2	2	2	2	2*	
e ₇	8	2	2	2	2	2	2	2*
e ₈	8	1*						
e 9	8	∞	∞	∞	∞	8	3	3
e ₁₀	8	∞	4	4	4	4	4	4
e ₁₁	8	2	2	2	2	2	2	2
e ₁₂	∞	1	1*					

- 21. Положим $p = e_7$
- 22. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_1, e_2, e_3, e_4, e_6, e_8, e_{11}, e_{12}\}$. Все вершины с временными отметками: e_4 , e_{11} уточним их:

$$I(e_4) = min[3, 2^* + 2] = 3$$

$$I(e_{11}) = min[2, 2^* + 5] = 2$$

Среди всех вершин с временными пометками найдём такую, что $I(e_i^*) = min[I(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_{11}) = 2^*$$

$= I(e_{11}) = Z$									
	1	2	3	4	5	6	7	8	
e ₁	0*								
e ₂	∞	∞	∞	2*					
e ₃	∞	5	5	2	2*				
e ₄	∞	∞	∞	3	3	3	3	3	3
e ₅	∞	∞	4	2	2	2*			
e ₆	∞	2	2	2	2	2	2*		
e ₇	∞	2	2	2	2	2	2	2*	
e ₈	∞	1*							
e 9	8	∞	∞	8	8	8	3	3	3
e ₁₀	8	∞	4	4	4	4	4	4	4
e ₁₁	∞	2	2	2	2	2	2	2	2*
e ₁₂	∞	1	1*						
	∞			_	_	_	_	_	_

- 23. Положим $p = e_9$
- 24. Не все вершины имеют постоянную длину, $\Gamma_P = \{e_3, e_4, e_5, e_{10}\}$. Все вершины с временными отметками: e_4 , e_{11} уточним их:

$$I(e_4) = min[4, 2^* + 2] = 3$$

$$I(e_{10}) = min[2, 2^* + 5] = 2$$

Среди всех вершин с временными пометками найдём такую, что $I(e_i^*) = min[I(e_i)]$:

$$I(e_i^*) = min[I(e_i)] = I(e_{11}) = 2^*$$

<u> </u>	1) - 2								
	1	2	3	4	5	6	7	8	9
e ₁	0*								
e ₂	∞	∞	∞	2*					
e ₃	∞	5	5	2	2*				
e ₄	∞	∞	∞	3	3	3	3	3	3

e ₅	∞	∞	4	2	2	2*			
e ₆	8	2	2	2	2	2	2*		
e ₇	8	2	2	2	2	2	2	2*	
e ₈	8	1*							
e ₉	8	8	8	∞	∞	∞	3	3	3
e ₁₀	8	8	4	4	4	4	4	4	4
e ₁₁	8	2	2	2	2	2	2	2	2*
e ₁₂	8	1	1*						

25. Положим p = e₄, $I(e_4) = 3^*$

(64) – 3										
	1	2	3	4	5	6	7	8	9	10
e ₁	0*									
e ₂	8	8	∞	2*						
e ₃	8	5	5	2	2*					
e ₄	8	8	8	3	3	3	3	3	3	3*
e ₅	8	8	4	2	2	2*				
e ₆	8	2	2	2	2	2	2*			
e ₇	8	2	2	2	2	2	2	2*		
e ₈	8	1*								
e ₉	8	8	8	∞	∞	8	3	3	3	3
e ₁₀	8	8	4	4	4	4	4	4	4	4
e ₁₁	8	2	2	2	2	2	2	2	2*	
e ₁₂	8	1	1*							

26. Положим $p = e_9$, $I(e_9) = 3^*$

C9, (C9,	, .										
	1	2	3	4	5	6	7	8	9	10	11
e ₁	0*										
e ₂	∞	∞	∞	2*							
e ₃	∞	5	5	2	2*						
e ₄	∞	∞	∞	3	3	3	3	3	3	3*	
e ₅	∞	∞	4	2	2	2*					
e ₆	∞	2	2	2	2	2	2*				
e ₇	∞	2	2	2	2	2	2	2*			
e ₈	∞	1*									
e ₉	∞	∞	∞	∞	∞	∞	3	3	3	3	3*
e ₁₀	∞	∞	4	4	4	4	4	4	4	4	4
e ₁₁	∞	2	2	2	2	2	2	2	2*		
e ₁₂	∞	1	1*								

27. Положим $p = e_{10}$, $I(e_{10}) = 4^*$

- C10,	(010)											
	1	2	3	4	5	6	7	8	9	10	11	
e ₁	0*											
e ₂	∞	∞	8	2*								
e ₃	∞	5	5	2	2*							
e ₄	∞	∞	8	3	3	3	3	3	3	3*		
e ₅	8	∞	4	2	2	2*						
e ₆	8	2	2	2	2	2	2*					
e ₇	∞	2	2	2	2	2	2	2*				
e ₈	∞	1*										
e ₉	∞	∞	8	8	∞	∞	3	3	3	3	3*	
e ₁₀	∞	∞	4	4	4	4	4	4	4	4	4	4*
e ₁₁	∞	2	2	2	2	2	2	2	2*			
e ₁₂	∞	1	1*									