परमाणु संरचना Atom Structure

PHYSICS-X CHAPTER-3

A does not cut is called Atom.

19 वीं शताब्दी में जब बिजली का आविष्कार हुआ तो प्रमाणित हो गया कि परमाणु को और छोटे-छोटे कणों में विभाजित किया जा सकता है। अब तक 31 सुक्ष्मतम कणों की खोज की जा चूकी है।

- **1.** पदार्थ के मौलिक कण कौन कौन से है? उत्तर पदार्थ के मौलिक कण निम्नलिखित है:
 - **a.** इलेक्ट्रॉन
 - **b.** प्रोटॉन
 - **c.** न्यूट्रान
- 2. कैथोड (Cathode) किरणों के आविष्कार के बारे में लिखों?

उत्तर – जे॰ जे॰ थॉमसन ने काँच की एक विसर्ग नली में अति निम्न दाब (0.00/mm) और अति उच्च विभव (10,000 Volt) पर जब दो इलेक्ट्रोड के बीच विद्युत धारा प्रवाहित की तो पाया कि कैथोड से एक अदृश्य किरण पुंज निकलती है जो उच्च वेग से सीधी रेखा में एनोड की ओर गमन करती है और विसर्जन नली की दीवार से टक्कराकर विसर्जन नली को प्रकाशित कर देती है। इन किरणों को कैथोड किरण कहते हैं।

- 3. कैथोड किरणों के गुणों को लिखें? उत्तर कैथोड किरण के गुण निम्नलिखित हैं
 - ा. यह प्रकाश किरणों की भॉति सीधी रेखा में गमन करती हैं तथा अवरोधों की परछाई बनाती है।

- 2. ये किरणें ऋण आवेशित कणों की बनी होती है।
- 3. इनमें गतिज ऊर्जा होती है।
- 4. ये किरणें फोटोग्राफिक प्लेट को प्रभावित कर देती हैं।
- ये किरणें प्रतिदीप्ति उत्पन्न करती हैं।

4. इलेक्ट्रॉन के आविष्कार के बारे में लिखों?

उत्तर – इलेक्ट्रॉन का आविष्कार 1897 ई० में जे० जे० थॉम्सन ने विसर्जन नली प्रयोग के दौरान कैथोड किरणों के अध्ययन के फलस्वरूप किया।

उन्होंने आवेश एवं द्रव्यमान का मान ज्ञात किया। इन किरणों पर विद्युत चुम्बक क्षेत्र के प्रभाव का अध्ययन करके वे इस निष्कर्ष पर पहुँचे कि किरणें ऋण आवेशित कणों की बनी होती है। इन ऋण आवेशित कणों का नाम इलेक्ट्रॉन रखा।

5. इलेक्ट्रॉन के गुणों को लिखें?

उत्तर – इलेक्ट्रॉन के गुण निम्नलिखित है -

- इलेक्ट्रॉन का द्रव्यमान एक हाइड्रोजन परमाणु के द्रव्यमान का लगभग
 1/1840 गुना होता है।
- 2. इनके द्रव्यमान का निरपेक्ष मान लगभग शून्य 9.1 x 10⁻³¹ k.g. या 9.1 x 10⁻³¹ k.g. होता है।
- 3. इलेक्ट्रान पर 9.1x10⁻¹⁹C का ऋण आवेश पाया जाता है। यह ईकाई ऋण आवेश को निरूपित करता है।
- 4. परमाणु के नाभिक के चारों तरपफ इलेक्ट्रॉन चककर लगाया करता है।

प्रोटॉन के आविष्कार का वर्णन करें?

उत्तर – गोल्डस्टीन ने बतलाया कि यदि विसर्ग नली के कैथोड में वारिक छिद्र कर दी जाए तो एक विशेष प्रकार की किरणें निकलती है। यह किरण एनोड से कैथोड की ओर जाती हैं। अतः यह एनोड किरण कहलाती है। विद्युतीय एवं चुम्बकीय क्षेत्र में इन किरणों के आचरण से पता चलता है कि इन पर धन आवेश रहता है। इन किरणों को धन किरण कहा जाता है। धन एक हीं प्रकार के धन आवेशित कणों की बनी होती है। अतः इन्हें प्रोटॉन कहते हैं।

7. प्रोटॉन के गुणों को लिखें?

उत्तर-प्रोटॉन के गुण निम्नलिखित हैं-

1. एक प्रोटॉन का द्रव्यमान एक इलेक्ट्रॉन के 1840 गुण होता है।

- 2. एक प्रोटॉन पर 1.6 x10⁻¹⁹ c का धन आवेश पाया जाता है।
- 3. परमाणु के नाभिक में प्रोटॉन उपस्थित रहता है।
- 4. यह फोटोग्राफी प्लेट को प्रभावित कर देता है।

8. थॉमसन के परमाणु मॉडल के गुणों को लिखें?

उत्तर – इलेक्ट्रॉन तथा प्रोटान के आविष्कार के बाद थॉमसन ने परमाणु के संबंध में अपनी अवधारणा को प्रस्तुत किया। जिसे थॉमसन का परमाणु मॉडल कहते हैं।

- ा. परमाणु के सम्पूर्ण भाग में धन आवेशित कण समान रूप से वितरित रहते हैं।
- 2. परमाणु एक भारी धनाविष्ट गोला है।
- 3. इस सतत धन आवेश के अंदर इलेक्ट्रॉन घुमते रहते हैं।
- 4. थॉमसन ने बतलाया कि इलेक्ट्रॉन परमाणु के अंदर निर्दिष्ट स्थायी जगहों पर रहते हैं।

9. रदरफोर्ड के नाभिकीय सिद्धान्त का वर्णन करें?

उत्तर – रदरफोर्ड ने 1911 ई० में सोने की बहुत पतली पतर पर अल्फा कणों का आघात कराया। जिसके आवेश +2 तथा द्रव्यमान 4 ईकाई होता है। प्रयोग करने पर पाया गया कि अधिकांश किरणें पतर को पार कर सीधे निकल जाते हैं। कुछ अल्फा कण अपने मार्ग से विचलित हो जाते हैं। बहुत कम अल्फा कण पतर से टक्कराकर वापस आ जाते हैं। इस प्रयोग से रदरफोर्ड इस निष्कर्ष पर पहुँच कि

- परमाणु का द्रव्यमान एवं उनके धन आवेश केन्द्र पर केन्द्रित रहता है जिनको नाभिक कहते हैं।
- 2. परमाणु के अधिकांश भाग खाली होता है।
- 3. परमाणु गोलीय <mark>होता है।</mark>
- 4. परमाणु के नाभिक में प्रोटॉन एवं न्यूट्रान रहते हैं।
- 5. नाभिक के चारों तरफ इलेक्ट्रॉन बंद वृताकार कक्षाओं में चक्कर लगाया करते हैं।
- 6. परमाणु की त्रिज्या 10⁻⁸ cm से 10⁻³ cm के बीच होता है। जबकि सम्पूर्ण परमाणु की त्रिज्या 10⁻⁸ cm तक होती है।

zns का पर्दा

10. रदरफोर्ड के परमाणु मॉडल के दोषों को लिखें?

उत्तर - रदरफोर्ड मॉडल के दोष निम्नलिखित हैं-

- 1. 1913 ई0 में डेनिश भौतिक वैज्ञानिक नील्स बोर ने बताया कि रदरफोर्ड का विचार जिनके अनुसार इलेक्ट्रॉन नाभिक के चारों तरफ चक्कर लगाते रहते हैं, युक्ति संगत नहीं है। क्योंकि इस प्रकर का परमाणु स्थायी नहीं हो सकता। अत: यह परमाणु के स्थायीत्व की व्याख्या नहीं करता।
- 2. रदरफोर्ड मॉडल में कक्षाओं में उपस्थित इलेक्ट्रॉन की संख्या निश्चित नहीं की गई थी।
- 3. यह वर्णपट की व्याख्या नहीं करता।

11. नाभिक क्या है? इसकी संरचना पर प्रकाश डालें?

उत्तर-प्रोटान एवं न्यूट्रान गोलाकार परमाणु के बीच भाग में अवस्थित होता है। जिन्हें नाभिक कहते हैं। प्रोटान धन आवेशित तथा न्यूट्रान उदासीन होता है। अतः प्रोट्रॉन के कारण नाभिक धन आवेशित हो जाता है। परमाणु में उपस्थित प्रोटान एवं न्यूट्रान परमाणु पिण्ड को सूचित करते हैं।

12. बोर के परमाणु मॉडल के बारे में लिखों?

- उत्तर रदरफोर्ड के परमाणु प्रतिमानों के दोषों को दूर करने के लिए नील्स बोर ने 1913 ई० में परमाणु का प्रतिमान दिया। जिसे बोर का परमाणु मॉडल कहते हैं। बोर के परमाणु मॉडल के मुख्य बिंदु निम्नलिखित हैं
 - नाभिक में चारों तरफ चककर लगाने वाले इलेक्ट्रॉन अनिश्चित कक्षाओं में चारों तरफ चक्कर नहीं लगाते। बल्कि चुनी हुई पिरमेय कक्षाओं में चक्कर लगाते हैं।
 - 2. इन कक्षाओं को K, L, M, N, O, P, Q के द्वारा सूचित किया जाता है।
 - 3. इन कक्षाओं में पिरभ्रमण करने वाले इलेक्ट्रानों की संख्या निश्चित होती है। जिन्हें पूर्णाक संख्या 1, 2, 3, 4, 5, 6, 7, द्वारा निरूपित किया जाता है। इन्हें स्थायी कक्षा कहते हैं।
 - 4. एक सेल में इलेक्ट्रानों की अधिकतम संख्या 2n² होती है।

कक्षा की संख्या	शेल	इलेक्ट्रॉन की संख्या
1	K	2
2	L	8
3	M	18
4	N	18
5	0	32
6	Р	18
7	Q	8

इसी प्रकार 6 एवं 7 वे सेल में 72 एवं 98 इलेक्ट्रान न रहकर 18 एवं 8 इलेक्ट्रान रहते हैं।

13. ऑर्बिट तथा ऑर्बिटल से आप क्या समझते हैं?

उत्तर – ऑर्बिट (Orbit) (कक्षा) – जिस पथ से होकर इलेक्ट्रॉन नाभिक के चारों तरफ चक्कर लगाते हैं। उसे ऑर्बिट कहते हैं।

ऑर्बिटल (Orbital) उपकक्षा – नाभिक के चारों तरफ का वह क्षेत्र जहाँ इलेक्ट्रॉन के पाये जाने की संभावना अधिक होती है। उसे ऑर्बिटल कहते हैं।

14. इलेक्ट्रॉनिक विन्यास से आप क्या समझते हैं?

उत्तर – कक्षा तथा उपकक्षा में इलेक्ट्रानों के वितरण को परमाणु का इलेक्ट्रॉनिक विन्यास कहते हैं। जैसे –

Mg-12-2,8,2--1s² 2s² p⁶ 3s²

215-25-p-35-	
157	s=2
25 2p	P=6
35 3p 3d",	d=10
45 4p 4d 417	f=14
58 50 5d 5t	
8s 8p 6d	
∕/s //d	
<i>8</i> 's	

15. संयोजी तथा कोर इलेक्ट्रॉन से आप क्या समझते हैं?

उत्तर – संयोजी इलेक्ट्रॉन (Valence Electron) किसी भी परमाणु के बाह्रयतम कक्षा के इलेक्ट्रॉन संयोजी इलेक्ट्रॉन कहलाता है। (Core Electron) – किसी परमाणु के भीतरी कक्षा के इलेक्ट्रॉन कोर इलेक्ट्रॉन कहते हैं। जैसे –

कोर

Na-11-2, 8, 1-संयोजी

सोडियम परमाणु का इलेक्ट्रॉनिक विन्यास 2, 8, 1 है। इसमें संयोजी इलेक्ट्रॉनों की संख्या 1 होती है। तथा कोर इलेक्ट्रॉनों की संख्या 10 होती है।

16. संयोजी इलेक्ट्रानों का क्या महत्व हैं? उत्तर – संयोजी इलेक्ट्रानों का निम्नलिखित महत्व है –

- रसायनिक अभिक्रिया में परमाण् के संयोजी इलेक्ट्रॉन भाग लेते हैं।
- 2. किसी परमाणु के संयोजी इलेक्ट्रॉन द्वारा तत्व की संयोजकता निर्धारित होती है।
- 3. किसी तत्व की रसायनिक प्रकृति संयोजी इलेक्ट्रॉन की संख्या पर निर्भर करती है।
- 4. किसी तत्व के परमाणु में उपस्थित संयोजी इलेक्ट्रॉन की संख्या आवर्त सारणी में उस तत्व की वर्ग संख्या के बराबर होती है।

17. समस्थानिक (Osotopes) किसे कहते हैं?

उत्तर – समस्थानिक ऐसे तत्व हैं जिनकी परमाणु संख्या समान तथा परमाणु भार भिन्न – भिन्न होते हैं।

क्लोरीन के दो समस्थानिक होते हैं-

CI -₁₇Cl³⁵ एवं ₁₇Cl³⁷

C - C12 एवं C14

18. समभारिक (Isotopes) किसे कहते हैं?

उत्तर-समभारिक ऐसे तत्व हैं जिनकी परमाणु संख्या अलग-अलग होते हैं किन्तु

परमाणु भार समान होते हैं उसे समभारिक कहते हैं। आर्गन, पोटैशियम, कैल्शियम, समभारिक प्रदर्शित करते हैं। ${}_{18}\text{Ar}^{35}, {}_{19}\text{K}^{40}, {}_{20}\text{Ca}^{40}$

19. $_{6}$ C¹² एवं $_{6}$ C¹⁴ के रसायिनक आचरण समान क्यों होते हैं? उत्तर – ये कार्बन के समस्थानिक है। जिनके परमाणु संख्या समान अर्थात 6 है। किंतु परमाणु भार भिन्न – भिन्न 12 एवं 14 है। ये रसायिनक अभिक्रिया में समान गुण प्रदर्शित करते हैं।

अतः इनके रसायनिक आचरण समान होते हैं।

20. परमाणु संख्या (Atomic Number) से आप क्या समझते हैं? उत्तर-नाभिक में उपस्थित ईकाई धन आवेशों की कुल संख्या परमाणु संख्या कहलाती है। नाभिक में उपस्थित प्रोटानों की कुल संख्या को परमाणु संख्या कहते हैं।

<u>अथवा</u>

कक्षाओं में इलेक्ट्रॉनों की कूल संख्या को परमाणु संख्या कहते हैं। परमाणु संख्या = नाभिक में ईकाई धन आवेशों की संख्या = प्रोटानों की कुल संख्या

= कक्षाओं में कुल इलेक्ट्रॉनों की संख्या।

21. द्रव्यमान संख्या (Mass Number) से आप क्या समझते हैं? उत्तर-द्रव्यमान संख्या (Mass Number)-किसी नाभिक में उपस्थि प्रोटॉनो तथा न्यूट्रॉनों की कुल संख्या को द्रव्यमान संख्या कहते हैं।

द्रव्यमान संख्या = प्रोटानों की संख्या + न्यूट्रानों की संख्या

A = P + n

22. परमाणु विद्युतीय उदासीन क्यों होता है?

उत्तर – हम जानते हैं कि परमाणु के नाभिक में प्रोटॉनों तथा न्यूट्रॉन रहते हैं। इलेक्ट्रॉन बंद वृताकार कक्षाओं में चक्कर लगाया करते हैं। प्रोटान पर ईकाई धन आवेश तथा इलेक्ट्रॉन पर ईकाई ऋण आवेश पाया जाता है। प्रोटॉन पर पाया जाने वाला धन आवेश तथा इलेक्ट्रॉन पर पाया जाने वाला ऋण आवेश परिमाण में बराबर किंतु विपरीत चिह्न वाले होते हैं। यही कारण है कि परमाणु विद्युतीय उदासीन होता है।

23. समस्थानिकों के गुणों को लिखे?

उत्तर – समस्थानिक के गुण निम्नलिखित हैं -

- एक ही तत्व के सभी समस्थानिकों के भौतिक गुण भिन्न-भिन्न होते हैं। जिससे परमाणु द्रव्यमान, गलनांक, क्वथनांक इत्यादि भिन्न-भिन्न होते हैं।
- 2. एक ही तत्व के सभी समस्थानिकों के रसायनिक गुण समान होते हैं।
- एक ही तत्व के सभी समस्थानिक आवर्त-सारणी में एक ही स्थान रहते हैं। क्योंकि बाह्यतम कक्षा में समान इलेक्ट्रॉन होते हैं।
- 4. समस्थानिकों की परमाणु संख्या सम<mark>ान हो</mark>ती <mark>है।</mark>

24. समस्थानिकों के उपयोग बतावें?

उत्तर – कुछ समस्थानिकों के विशेष गुण होते हैं। जिसके कारण हम उसका उपयोग विभिन्न क्षेत्रों में करते हैं। समस्थानिकों के उपयोग निम्नलिखित हैं-

- 1. यूरेनियम के एक समस्थानिक $_{92}U^{235}$ का उपयोग परमाणु भट्ठी में ईधन के रूप में होता है।
- 2. कैंसर के उपचार में कोबाल्ट के समस्थानिक $_{27}\text{Co}^{60}$ का उपयोग होता है।
- 3. घेघा रोग के इलाज में आयोडीन के समस्थानिक ₅₃I¹³¹ का उपयोग करते हैं।
- 4. मृत जानवरों, पेड़-पौधों पत्थर के पुराने नमुनों तथा पृथ्वी की आयु ज्ञात करने में कार्बन के समस्थानिक $_6$ \mathbf{c}^{14} का उपयोग करते हैं।
- 5. जमीन के अंदर विछाई गयी जल पाइप, तेल, पाइप, गैस पाइप आदि के रिसाव का पता लगाने में समस्थानिक का उपयोग होता है।

25. समस्थानिक एवं समभारिक में अंतर स्पष्ट करें?

उत्तर-समस्थानिक तथा समभारिक में निम्नलिखित अंतर है-

	समस्थानिक	समभारिक
1.	इसमें परमाणु संख्या समान होती है।	इसमें परमाणु संख्या भिन्न-भिन्न होती है।
2.	इसमें द्रव्यमान संख्या भिन्न-भिन्न होती है।	इसमें द्रव्यमान संख्या समान होती है।
3.	इसमें एक ही तत्व के दो परमाणु होते हैं अर्थात् तत्व अलग-अलग नहीं होते हैं।	इसमें दोनों तत्व अलग अलग होते हैं।

26. परमाणु की कक्षाओं को उर्जा कक्षा क्यों कहते हैं?

उत्तर – कक्षा में इलेक्ट्रॉन बिना ऊर्जा का त्याग किये तेजी से घूमता रहता है। प्रत्येक कक्षा में एक निश्चित संख्या में ही गतिशील इलेक्ट्रान रह सकते हैं। इसलिए कक्षा की ऊर्जा निश्चित रहती है। कक्षाओं को ऊर्जा स्तर कहते हैं। इलेक्ट्रान ऊर्जा के कुछ अंश के साथ कक्षा में धूमते हैं।

27. समन्यूट्रॉनिक क्या है?

उत्तर – वैसे तत्व जिनमें न्यूट्रॉनों की संख्या समान किंतु परमाणु संख्या तथा द्रव्यमान संख्या भिन्न – भिन्न होती है। समन्यूट्रॉनिक कहलाते हैं।

$$_{6}C^{14}$$
, $_{7}N^{15}$, $_{8}O^{16}$

28. अष्टक नियम क्या है? परमाणु में अष्टक को प्राप्त करने की प्रवृति क्यों होती है??

उत्तर – किसी परमाणु के बाह्यतम कक्षा में 8 इलेक्ट्रॉनों को होना अष्टक नियम कहलाता है।

प्रत्येक तत्व अष्टक प्राप्त कर स्थायित्व प्राप्त करने की क्षमता रखते हैं। अतः स्थायित्व प्राप्त करने के लिए अष्टक प्राप्त करते हैं।

29. न्यूट्रॉन के आविष्कार के बारे में लिखों?

उत्तर – चैडविक महोदय ने सन् 1932 ई० में बेरीलियम धातु के पतर पर अल्फा कणों

का आधात से एक विशेष प्रकार के कणों का पता लगाया जिन पर कोई आवेश नहीं था। इन कणों की विद्युत उदासीनता के कारण इसका नाम न्यूट्रान रखा।

$$_{6}\text{Be}^{9} + _{2}\text{He}^{4} \longrightarrow _{6}\text{c}^{12} + \text{n (Neutron)}$$

यह पदार्थ का भारी कण है। हाइड्रोजन परमाणु में न्यूट्रॉन नहीं होता। अन्य तत्व के परमाणुओं में न्यूट्रॉन होते हैं।

30. न्यूट्रान के गुणों को लिखें? उत्तर – न्यूट्रॉन के गुण निम्नलिखित हैं –

- 1. यह उदासीन कण है। इस पर कोई आवेश नहीं होता है।
- 2. इसका द्रव्यमान प्रोट्रान के द्रव्यमान के लगभग बराबर होता है।
- 3. यह परमाणु के नाभिक में प्रोट्रॉन के साथ उपस्थित रहता है।
- 4. एक न्यूट्रॉन का सापेक्ष द्रव्यमान 1.00879 होता है।

31. इलेक्ट्रॉन, प्रोटान तथा नयूट्रान की तुलना करें?

उत्तर - इलेक्ट्रॉन, प्रोटान तथा न्यूट्रान की की तुलना निम्नलिखित है-

<u>प्रकृति</u>	इलेक्ट्रॉन	प्रोटान	न्यूट्रान
ा. आविष ् कार	जे० जे० थॉमसन	गोल्डस्टीन	चैडविक
	(1897 ई0)	(1886 ई०)	(1932 ई०)
2. संकेत	е	Р	n
3. प्रकृति	ऋणाविष्ट	धनाविष्ट	आवेशहीन
4. सूत्र	e ⁻	P ⁺	
5. ईकाई आवेश	9 -1	+1	0
6. आवेश कूलॉम में	1.6x10 ⁻¹⁹	1.6x10 ⁻¹⁹	शून्य

32. जे० जे० थॉमसन, रदरफोर्ड का परमाणु मॉडल तथा बोर के परमाणु मॉडल की तुलना करें?

उत्तर - जे॰ जे॰ थॉमसन तथा रदरफोर्ड का परमाणु मॉडल तथा बोर के परमाणु मॉडल निम्नलिखित है-

जे० जे० थॉमसन	रूदरफोर्ड का	बोर का परमाणु	
	परमाणु मॉडल	मॉडल	
।. धन आवेश परमाणु के	धन आवेश परमाणु के	धन आवेश परमाणु के	
सम्पूर्ण भाग में फैले	केवल नाभिक में स्थित	केवल नाभिक में स्थित होते	
रहते हैं।	होते हैं।	हैं।	
2. इसमें नाभिक जैसा कोई	इसमें केन्द्रीय भाग नाभिक	इसमें परमाणु के केन्द्र को	
भाग नहीं होता है।	कहलाता है।	नाभिक कहते हैं।	
3. इसमें इलेक्ट्रॉन परमाणु	इसमें इलेक्ट्रॉन नाभिक के	इसमें इलेक्ट्रान नाभिक के	
में समान दूरी पर फैले	चारो ओर वृताकार पथों	चारो ओर निश्चित कक्षा में	
रहते हैं।	में चक्कर लगाते हैं।	घुमते रहते हैं।	
4. इसमे [ं] परमाणु एक	इसमें धन आवेश नाभिक	इसमें धन आवेश नाभिक में	
धनावेशित गोला है।	में और इलेक्ट्रॉन नाभिक	और इलेक्ट्रॉन नाभिक के	
जिसमें इलेक्ट्रॉन तरबूज	के चारों ओर विभिन्न	चारों तरफ विभिन्न कक्षाओं	
के बीज की भॉति धँसे	कक्षाओं में चक्कर लगाते	में चक्कर लगाते हैं।	
रहते हैं।	हैं।		
