

Concepts: 💍

- \checkmark It is a statistical method that is used for predictive analysis.
- \checkmark It shows a linear relationship between a dependent(y) and independent(x) variables.
- \checkmark It finds how the value of the dependent variable is changing with respect to the change of independent variables.
- \checkmark The slope represents the relationship between the variables

Numerical and Symbolism: 💍

$$y = bo + ax + e$$

🛕 y: dependent variable

x: independent variable a: slope

e: random error bo: constant

TYPES OF LINEAR REGRESSION 😕

- 1. Simple linear regression
- 2. Multiple linear regression

SIMPLE LINEAR REGRESSION

- There is a single independent variable which will predict the dependent variables value.
- The dependent variable should be continuous.

$$y = b_0 + ax + e$$

MULTIPLE LINEAR REGRESSION

O There is more than one independent variable that will predict the value of the dependent variables.

$$y = b_0 + a_1 x_1 + a_2 x_2 + ... + a_n x_n + e$$

🗥 MAIN GOAL 😕

To find the best fit line that means the error between the predicted values and actual values should be minimized and optimized.

EXAMPLE OF SIMPLE LINEAR REGRESSION

χ	Υ	X-X _{mean}	Y-Y _{mean}	$(X-X_{mean})^2$	(X-X _{mean})(Y-Y _{mean})	$(Y-Y_{mean})^2$
o	2	-2	-2	4	4	4
1	3	-1	-1	1	1	1
2	5	О	1	0	0	1
3	4	1	0	1	0	O
4	6	2	2	4	4	4
				= 10	= 9	= 10

 Λ X_{mean}: mean of X

$$X_{\text{mean}} = (0+1+2+3+4)/5$$

$$Y_{mean} = (2+3+5+4+6)/5$$

Slope: 😕

$$m = \sum ((X - X_{mean})(Y - Y_{mean})) / \sum ((X - X_{mean})^2)$$

$$m = 9/10$$

$$m = 0.9$$

we need to find the constant value.

$$y = mx + b$$

 \triangle The line must pass through mean value of x, and y

This means: y = 4, x = 2, m(slope) = 0.9

$$y = mx + b$$

$$4 = 2*0.9 + b$$

$$b = 4 - 1.8$$

$$b = 2.2$$

y = 0.9x + 2.2

χ	Y(Yactu	Yexpect	Yexpecte	(Yexpecte	Yexpected-	(Yexpected-
	al)	ed	d-	d-	Yexpected	Yexpected _{me}
			Yactual	Yactual) ²	mean	an) ²
o	2	2.2	0.2	0.04	-1.8	3.24
1	3	3.1	0.1	0.01	-0.9	0.81
2	5	4	-1	1	О	o
3	4	4.9	0.9	0.81	0.9	0.81
4	6	5.8	-0.2	0.04	1.8	3.24
				=1.90		=8.1

Yexpected will be generated by using new equation we have derived earlier. y = 0.9x + 2.2

FINDING THE STANDARD ERROR USING LEAST SQUARE METHOD

Error = $\sqrt{(\sum (Yexpected-Yactual)^2)/(n-2)}$

$$=\sqrt{(1.90/3)}$$

NB: smaller values are better because it indicates that the observations are closer to the fitted line.

FINDING THE STANDARD ERROR USING R² METHOD

$$R^2 = \sum (Yexpected-Yexpected_{mean})^2 / \sum (Y-Y_{mean})^2$$

Yexpected_{mean} =
$$(2.2+3.1+4+4.9+5.8)/5$$

= $(20)/5$

= 4

This shows that the mean of expected value and mean of actual value will be always the same.

$$R^{2} = \sum (Yexpected-Yexpected_{mean})^{2} / \sum (Y-Y_{mean})^{2}$$

$$= 8.1/10$$

$$= 0.81$$

ightharpoonup NB: If the value of $R^2 = 1$ then the expected value is the same as the actual value. If the value of R^2 approaches to o(zero), then there are huge gabs between the actual value and expected value.

Break time: 🐇 🐇

Most common terminologies:

- 1. **Predictor** |-> independent variable | explanatory
- 2. Target |->outcome | dependent variable | response
- 3. Outlier |-> Either very low or high value compared to other observed value.

Problem with ALGORITHM

- a. Underfitting |-> The algorithm which doesn't work well with training dataset and testing dataset as well
- b. Overfitting |-> The algorithm which works well with the training dataset

APPLICATION OF LINEAR REGRESSION

- 1. Analysing trends and sales estimates
- 2. Salary forecasting
- 3. Real estate prediction & etc.
- * * Boom * *