HARUN ALBAYRAK - 171044014 - CSE 222/505 - Homework 2 PART 1,

 $T_{w}(W_{orst}) = \Theta(n^2)$ Steps freq. total 1) somefunction (rows cols) ? = 0 (rows.cols) 1 rowsel rows+ 1 11010) for (1=1; i <= raus ; i++) { Tb (Best) = B(n2) rows (cols +1 rascus+ rais 118 infor (j=1) 1 <= cols j j+1) (+) = O (rous.cols) & Olliprint(*) 1 rouscols rous-cols 11611) print (newline) rows 1 rows Tou(Auroge) = B(n2) = B(rousecals) 2 rous cols + T(n)=0(n2)

* The worst case and the best case must be the same. Because it has to go to the end of the loops.

* O(cois) is come from inner loop. O(rous) is also come from outer loop.

2) somefunction (a,b) {	1	steps	freq	total	$T_{W} = \Theta(N^{2})$
//8(1)if(b==0)		1		-	= A(6*a)
11 Pich return 1	->	-	1	1	
11 B(1) arower = a		1	1	1	Tb = 0(1)
110(1) increment = a	-	-	1.1	6+1	GEO COLOR OF THE PARTY OF THE P
1191n) for (i=1; icb;	1++) { -> }		6+1	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Own	Tav = 9(n2)
//An/forly=1:5<1		1	b(a+1)	60+6	
			ba	260	= 0 (p*a)
1/Alijanswer +	= indonent ->		1	h	
Not S.	wr ->	1	0	0	$T(n) = O(n^2)$
3 Melain crement = and	ter	1		1 1	2000
11011) return onever	->			369 +36+6	=V(7)
3					

If it goes to the end of the loops, this is the worst case. $\Theta(\alpha)$ is core from inner loop and $\Theta(b)$ is also come from outer loop.

* If It enter the first "if statement, this is the best case. Because it has got "Inform" statement.

3) somefunction (arr [], arr_len) ? total Tw = 0(n) Steps freg //01) val =0 = 0 (arr-les 12) ar -121 +1 arrien +1 1/6/10 for (i=0; ixar-len(2; i++) # מד-ופוץב orr-len/1 1/13 | val = val + ar [i] Tb = 0 (n) ove-lon-1 arrier 1 Manfor(; = arr_len/2; i < arr_len; i++)= = A(arr-len/2) arr- len be //Wival = val - orrEij ast-1en/2 1 /Mifl val 7=0) $Tav = \Theta(n)$ Moreturn 1 = 0 (arr-lon/2) 1/180 else T(n) = 0(n) 2arr-len+7

* It has two 'for' loop but these loops don't nested loop. And this function has to go to the end of the loops. Hence, the best case and the worst case is the same. And both of them are 0/11.

4) samefurtion (n) {	Stops	freq	total	Tw = 0(13)
//(() c = 0	7 1	n ² +1	n ² +1	
lidnifor(J=1 to n)	-> 1 1	n2(n+1)	$n^{2}+n$ $2n^{3}+n^{3}$	$T_b = \Theta(n^3)$
Memfor(k=1 to 2*)	2	2035	4037	$Tav = \Theta(n^3)$
return c) 1	1	617 + 213+12	$T(n) = \Theta(n^3)$

* This function includes three nested 'for' loops. Also, it has to go to the end of the loops. Hence, the best case and the worst case is the same. This function's complexity is $\Theta(n3)$, because it has three nested 'for' loops.

```
5) other function (xp, yp) {

(contiemp = xp

(contiemp = yp

(contiemp = yp
```

Tw =
$$\Theta(n^2)$$

= $\Theta(arr-len * arr-len - i - 1)$
Tb = $\Theta(n^2)$
= $\Theta(arr-len * arr-len - i - 1)$
Tav = $\Theta(n^2)$
= $\Theta(arr-len * arr-len - i - 1)$
T(n) = $\Theta(n^2)$

* The complexity of 'other-fraction' is O(1).

* The complexity of 'sometinetian' is $O(n^2)$, Because it has two nested loops And complexity of each of them is O(n).

```
6) other function (a,b) &
 1/AM) if (6 == 0)
     MALLINGHM 1
1/8/10 answer =0
 10 (1) increment = a
                                       Tw = 0/02)
11 Flor (1=1 60 b) {
                                       Tb = 13(1)
       /A)n) for (5=1 to a) {
             //pli) answer += increment
      (1011) increment = onswer
MANDETHEN ONSUST
some furction ( arr, ar-len) &
// Oln) for (i = 0 to arr_len)
   1/Och) for (j= i to arr-ten)
               ? if((otherfunction) orr [i], 2) == orr [j])
                  Manipront (arr [i], arr [j])
                  the if Hotherfuction (air (37 12) == air (3)
                        Prol (arts), artis)
```

3

Tw =
$$\Theta(n^4)$$

= $\Theta(arr-len * arr-len-i * b* a)$
To = $\Theta(n^2)$
= $\Theta(arr-len * arr-len-i)$
Tav = $\Theta(n^4)$
= $\Theta(arr-len * arr-len-i-1 * b* a)$
T(n) = $O(n^4)$
= $\pi c(n^2)$
* The best case for the 'other first

* The best case for the 'otherfination' is O(1) because it has 'if' and 'return' statement at the beginning of the function. The worst case is O(1) because it has two nosted loops.

* The best case for the 'somefaction' is $\theta(n^2)$ and the worst case is $\theta(n^4)$.

```
7) Otherfunction (Xii) {

(All s=0

(All s=0) for (j=0; j <=1; j=j*2)

(All s=0 for (j=0; j <=1; j=j*2)

(All return s

Somefunction (arr [], arr-len) {

(All return All return A

(All return A
```

$$Tw = \Theta(n.lgn)$$

 $= \Theta(larr.len-1)*i)$
 $T_b = \Theta(n.lgn)$
 $= O(nr.len-1)*i)$
 $T_{av} = \Theta(n.lgn)$
 $= O(orr.len-1)*i)$
 $T_{av} = \Theta(n.lgn)$
 $= O(orr.len-1)*i)$

* The completely of the 'atherfaction' is Ollign). Because I is miltiplied by 2 each tre

* The complexity of the 'somefaction' is Blabsal. It has one 'for loop and this for loop includes the 'otherfaction'. Since the complexity of 'otherfaction' is Ollogal), the function's complexity is Olason)

3

$$T_{w} = \Theta(1)$$

$$T_{b} = \Theta(1)$$

$$T_{av} = \Theta(1)$$

$$T(n) = \Theta(1)$$

* Even if it has two nested loops, since these loops time one constant time, their complexity are B(1). Also the best case and the worst case is the same.

```
PART 2
                                                               Tw = O(n)
1) distance (x1141, x2142) {
100 return sqrt ( pau(x1-x2,2) + pau(y1-y2,2))
                                                                b=0(1)
  question - 1 arr [][], arr-length, x1141) }
                                                                Tav = O(n)
  1611 if (arr-length == 0)
        1611 throw Exception
                                                                T(n) = O(n)
         num = distance (x1, y1, ar COJE03, arr COJE1)
                                                                        = 2(1)
 //B/m/for(i=0 to an-length)
         /15(1) if distance (x1191, arr Ei] [0] (arr Ei] [1] < num)
                116() num = distorce (x1141, ar E:3[0], ar [:3[1])
  1/8/1) return nun
 * The question ! function's complety is O(n) because of it's worst and best aus.
2) olquestion -2-1 (ar [], arr-length) {
                                                                a) Tw = 0(n)
   1011) if (orr-length <= 2)
                                                                    To = 9(1)
        //All throw Exception
  //DIN/for (i=1 to arr-length-1)
                                                                     Tov = O(n)
      110(1) If (one i) <= or (i+1) && arti] <= or (i-1))
                                                                     Th) = 0(1)
                  1/011) rehim artij
                                                               b) Tw = Aln)
        return -1
                                                                    Tb = 0(1)
blqueston-2-2 ( orr (3 , orr- length) {
                                                                     Tau = O(n)
                                                                     T(n) = O(n)
   11 A(1) if (arr-length == 2)
       1/811) throw Exception
                                                               * First function's complexity
   1/8/1) date []
   /Aln) for (in) to arr-length -1)
                                                               is O(n) and second function's
        //8(1) K = 0
        MAIN if carei3 = arri+1] 20 arri3 = arri-1])
                                                               osplexy is ph).
                 //All garr [W = arrEi]
                 //011) K++
   //All) return garr
```

```
3) question - 3( arr [], arr-length b) {
                                                   T_{w} = \theta(\vec{n})
 (Old for (i=0 to arr_length) (
        6011 if ( b > or [i]) {
                                                   Tb = 0(1)
             //All) int m = arc [i]
                                                   Tav = 0 ( n = )
             Mala) for (5=0 == to arr-length)
                     //e/) if (m + arr [] == b)
                                                   T(n) = O(n2)
                                                         = n(1)
                          //BI) return true
 MEM return false
# The worst case is O(n2) because it has two nested loops.
* In case of entering to "if "statements in the first entry. The best cose
hoppers. It's complexity is O(1)
# The complexity of finetions is O(n2)
```

```
4) bubble Sort ( arr [], len) {
                                                               Tw = \Theta(n^2)
   //Aln) for (1=0 to len-1)?
                                                               To = A (n)
                                                Tw = A(n2)
        //All swopped = folse
       //Bla) for ( 7=0 to len-1-1)?
                                                                Tav = 0 (n2)
                                                To = Ala)
              (1011) 4 (orr 603) orr (3+13) (
                   /All) swap (arr []], arr []+1]
                                                                T(n) = O(n2)
                   3 /All) swapped store
                                                                       = 12 (1)
        MON) if (surpod == falx)
        3 /All beak
                                                               * The question4's complexity
                                                               is O(n2) because it's best
   question-4 [ arr [], ar-length){
                                                                case is \Theta(n) and it's
   //O(1) Al ar-length (=1)
                                                                worst case is A(A2).
          /All) throw Exception
    //Bln2) bubble Sort (arr, arr-length)
    // Ela) for i = 1 to ar-length) [
          1/011)94 arr [3
          1/8/Nfor (J=0 to i)
                 1181) 94 orr []] = orr []]
          1101 milit (question-3 (quar, aret quar. bosth, are Ei)) == false)
                  Manreturn false
    Manreturn the
```