19 RF Exposure

RF Exposure MPE Calculation

KDB 447498

Prediction of MPE limit at a given distance

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2} \text{ re-arranged } R = \sqrt{\frac{EIRP}{S4\pi}}$$

where:

S = power density R = distance to the centre of radiation of the antenna EIRP = EUT Maximum power

Note

The EIRP was calculated by addition of the maximum conducted carrier power plus the antenna gain.

OR

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Result

Prediction Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (mW)	Minimum Distance (cm)	Power density at distance (mW/cm²)	Power density limit (S) (mW/cm²)
902.2	27.19	8	3303.695	21.0	0.596	0.601
914.8	27.56	8	3597.493	21.8	0.602	0.609
927.7	27.62	8	3647.539	21.7	0.616	0.618

RF916 6.0 Page 65 of 67