### CS 4342: Class 15

Jacob Whitehill

# Feature transformations

## Linearly inseparable data

- SVMs use a hyperplane to separate data in two classes.
- But what if the data are linearly inseparable, e.g.:

No matter what w, b
we choose, the SVM
will never do a good
job of classifying the
data.



## Linearly inseparable data

- SVMs use a hyperplane to separate data in two classes.
- But what if the data are linearly inseparable, e.g.:

No matter what w, b
we choose, the SVM
will never do a good
job of classifying the
data.



## Linearly inseparable data

- SVMs use a hyperplane to separate data in two classes.
- But what if the data are linearly inseparable, e.g.:

No matter what w, b
we choose, the SVM
will never do a good
job of classifying the
data.



 We can use a non-linear transformation to make these data linearly separable, e.g.:

$$\phi(x,y) = \left[ \begin{array}{c} x \\ xy \end{array} \right]$$



 We can use a non-linear transformation to make these data linearly separable, e.g.:

$$\phi(x,y) = \left[ \begin{array}{c} x \\ xy \end{array} \right]$$



There are many other transformations we could use.
 While not visualizable in 2-D, we could use:

$$\phi\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} 1 \\ \sqrt{2}x \\ \sqrt{2}y \\ \sqrt{2}xy \\ x^2 \\ y^2 \end{array}\right]$$

(6-dimensional plot goes here)

 It turns out that, through a process known as kernelization (more next week), these transformations φ can be computed implicitly.

$$\phi\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} 1 \\ \sqrt{2}x \\ \sqrt{2}y \\ \sqrt{2}xy \\ x^2 \\ y^2 \end{array}\right]$$

(6-dimensional plot goes here)

Equivalent to a polynomial kernel of degree 2.

#### Kernelization

- SVMs always try to separate the positive from the negative examples using a hyperplane — a linear decision boundary.
- But the hyperplane might exist in a very different (transformed) space than the raw input data.
- In the original input space, the decision boundary can be non-linear.

#### Non-linear decision boundaries

Dataset B,  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = 1 + \mathbf{x} \cdot \mathbf{v}$ .



Dataset B,  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^5$ .



Dataset B,  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^{10}$ .



#### Non-linear decision boundaries

Dataset C (dataset B with noise),  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = 1 + \mathbf{x} \cdot \mathbf{v}$ .



Dataset C,  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^5$ .



Dataset C,  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^{10}$ .



#### Non-linear decision boundaries

Dataset C (dataset B with noise),  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = \exp(-2||\mathbf{x} - \mathbf{v}||^2)$ .



Dataset C,  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = \exp(-20||\mathbf{x} - \mathbf{v}||^2)$ .



Dataset C,  $c = 10^5$ ,  $k(\mathbf{x}, \mathbf{v}) = \exp(-200||\mathbf{x} - \mathbf{v}||^2)$ .

