CLAIMS

What is claimed is:

1	1. A microrelay comprising:
2	a micromachined deflectable actuator having first and
3	second actuator surfaces and first and second conductive
4	regions electrically isolated from each other;
5	a first cap having a first cap surface adjacent the
6	first actuator surface, the first cap having third, fourth
7	and fifth conductive regions electrically isolated from each
8	other, the third conductive region being adjacent the first
9	conductive region, the fourth and fifth conductive regions
10	being adjacent the second conductive region;
11	a second cap having a second cap surface adjacent the
12	second surface of the actuator, the second cap having a sixth
13	conductive region adjacent the first conductive region;
14	the actuator being deflectable in a first direction to
15	allow the second conductive region to contact the fourth and
16	fifth conductive region, and the first and third conductive
17	regions to not electrically contact each other;
18	the actuator being deflectable in a second direction
19	opposite the first direction so that the first and sixth
20	regions move closer without electrically contacting each
21	other;

55123P230

- 22 the actuator being hermetically sealed within the
- 23 microrelay, the first, third, fourth, fifth and sixth
- 24 conductive regions being electrically accessible externally
- 25 to the microrelay.
 - 1 2. The microrelay of claim 1 further comprised of at
- 2 least one electrically insulative region between the first
- 3 and third conductive regions.
- 1 3. The microrelay of claim 2 wherein the electrically
- 2 insulative region between the first and third conductive
- 3 regions is smaller in area than the first and third
- 4 conductive regions.
- 1 4. The microrelay of claim 1 further comprised of at
- 2 least one electrically insulative region between the first
- 3 and sixth regions.
- 1 5. The microrelay of claim 4 wherein the electrically
- 2 insulative region between the first and sixth conductive
- 3 regions is smaller in area than the first and sixth
- 4 conductive regions.
- 1 6. The microrelay of claim 1 wherein the actuator and
- 2 second cap are fabricated as an integral micromachined part.

55123P230

- 1 7. The microrelay of claim 6 wherein the actuator and
- 2 second cap are fabricated starting with a silicon
- 3 semiconductor substrate.
- 1 8. The microrelay of claim 7 wherein the first cap is
- 2 a glass cap.
- 1 9. The microrelay of claim 8 wherein the first, third,
- 2 fourth, fifth and sixth conductive regions are electrically
- 3 accessible externally to the microrelay through contacts on a
- 4 second cap surface of the first cap.
- 1 10. The microrelay of claim 1 wherein the actuator, the
- 2 first cap and the second cap are fabricated as separate
- 3 micromachined parts.
- 1 11. The microrelay of claim 10 wherein the actuator is
- 2 fabricated starting with a silicon semiconductor substrate.
- 1 12. The microrelay of claim 11 wherein the first and
- 2 second caps are glass caps.
- 1 13. The microrelay of claim 8 wherein the first, third,
- 2 fourth, fifth and sixth conductive regions are electrically
- 3 accessible externally to the microrelay through contacts on a
- 4 second cap surface of the first cap.

1	14. A method of providing a microrelay switch function
2	comprising:
3	providing a microrelay having:
4	an actuator having first and second actuator surfaces
5	and first and second conductive regions electrically isolated
6	from each other;
7	a first cap having a first cap surface adjacent the
8	first actuator surface, the first cap having third, fourth
9	and fifth conductive regions electrically isolated from each
10	other, the third conductive region being adjacent the first
11	conductive region, the fourth and fifth conductive regions
12	being adjacent the second conductive region;
13	a second cap having a second cap surface adjacent
14	the second surface of the actuator, the second cap
15	having a sixth conductive region adjacent the first
16	conductive region;
17	the actuator being deflectable in a first direction
18	to allow the second conductive region to contact the
19	fourth and fifth conductive region, and the first and
20	third conductive regions to not electrically contact
21	each other;
22	the actuator being deflectable in a second
23	direction opposite the first direction so that the first

55123P230

- 24 and sixth regions move closer without electrically
- contacting each other;
- 26 a) when a relay switch is to be closed, providing
- 27 voltages on the first, third and sixth regions so that the
- 28 actuator is attracted toward the first cap and not the second
- 29 cap to put the second region in electrical contact with the
- 30 fourth and fifth regions; and,
- 31 b) when the relay switch is to be opened, providing
- 32 voltages on the first, third and sixth regions so that the
- 33 actuator is attracted toward the second cap and not the first
- 34 cap to prevent the second region from making electrical
- 35 contact with the fourth and fifth regions.
- 1 15. The method of claim 14 wherein the voltages are
- 2 square wave voltages of the same frequency, the voltages on
- 3 the first and sixth regions in a) being of the same phase and
- 4 the voltages on the first and third regions being of opposite
- 5 phase, and in b), the voltages on the first and third regions
- 6 in a) being of the same phase and the voltages on the first
- 7 and sixth regions being of opposite phase.
- 1 16. The method of claim 14 wherein the square wave
- 2 voltages are square wave voltages of zero average value.