Contents

1	Pro	robability Theory 1		
	1.1	Elema	untary Probability	
		1.1.1	Basic principles of Counting	
		1.1.2	Sample Points, Sample Space and σ -Field	
		1.1.3	Probability Measures and Spaces	
	1.2	Condi	tional Probability	
		1.2.1	Independence of Events	
		1.2.2	Bayes' Theorem	
	1.3	Discre	ete Random Variables	
		1.3.1	PDF and CDF	
		1.3.2	Bernoulli Random Variable	
		1.3.3	Independent and Identical Trials 5	
		1.3.4	Counting Successes in a Saquance of Trials 5	
		1.3.5	Binomal Random Variable	
		1.3.6	Cumulative Distribution Function 5	
		1.3.7	The Geometric Distribution	

1 Probability Theory

1.1 Elemantary Probability

Definition 1.1.1 (Cardano's Principle). A be a random outcome of an experiment that may proceed in various ways. Assume each of these ways is **equally** likely, then, probability P[A] of outcome A is

$$P[A] = \frac{number\ of\ ways\ leading\ to\ outcome\ A}{number\ of\ ways\ the\ experiment\ can\ be\ proceeded} \tag{1}$$

1.1.1 Basic principles of Counting

• Permutation:

$$A_n^k = \frac{n!}{(n-k)!} \tag{2}$$

• Combination:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} \tag{3}$$

• Permutation of k **Indisguishable** Objects:

$$\frac{n!}{n_1! n_2! n_3! \cdots n_k!} = \binom{n}{n_1} \cdot \binom{n-n_1}{n_2} \cdots \binom{n-(n_1+n_2+\cdots+n_{k-1})}{n_k}$$
(4)

Remark:

In permutation of k indistinguishable objects, the elements has noorder within a group but are different from each other; the groups either has

order or are different from each other.

Example:

Consider 10 balls, 5 red, 3 green and 2 blue. How many ways can they be arranged on a line?

$$\frac{10!}{5! \cdot 3! \cdot 2!} = 2520 \tag{5}$$

1.1.2 Sample Points, Sample Space and σ -Field

Definition 1.1.2 (Sample Points). Mathematical objects are called sample points.

Definition 1.1.3 (Sample Space). The sample space S is large enough to accommodate all the sample points.

Definition 1.1.4 (Event). An outcome in the sense of Cardano's principle is interpreted as a subset A of a sample space S abd called an event.

Definition 1.1.5 (Mutually exclusive). Two events A_1 , A_2 are called mutual exclusive if $A_1 \cap A_2 = \emptyset$

Definition 1.1.6 (σ -Field). Suppose that a non-empty set S is given. A σ -field \mathcal{F} on S is a family of subsets of S such that:

- $\emptyset \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $S \setminus A \in \mathcal{F}$
- If $A_1, A_2, \dots \in \mathcal{F}$ is a finit sequence of subsets, then the union $\cup_k A_k \in \mathcal{F}$

1.1.3 Probability Measures and Spaces

Definition 1.1.7 (Probability Measure). Let S be the sample space and \mathcal{F} be a σ -field. Then a function

$$P: \mathcal{F} \to [0, 1], A \to P[A], \tag{6}$$

is called probability measure / probability function on S if

- P[S] = 1
- For any set of events $A_k \subset mathcal F$ such that $A_j \cap A_k = \emptyset$ for $j \neq k$,

$$P[\cup_k A_k] = \sum_k a_n P[A_k] \tag{7}$$

Theorem 1.1.1 (Basic Properties). $P[A_1 \cup A_2] = p[A_1] + P[A_2] - P[A_1 \cap A_2]$

1.2 Conditional Probability

Definition 1.2.1 (Conditional Probability). B occurs given that A has occured

$$P[B \mid A] := \frac{P[A \cap B]}{P[A]} \tag{8}$$

1.2.1 Independence of Events

Definition 1.2.2 (independent). Two events are *independent* if

$$P[A \cap B] = P[A]P[B] \tag{9}$$

equivalent to

$$P[A \mid B] = P[A], P[B] \neq 0$$
 (10)

Definition 1.2.3 (Total Probability).

$$P[B] = P[B \mid A_1] * P[A_1] + \dots + P[B \mid A_n]P[A_n] = \sum_{k=1}^{n} P[B \mid A_k] \cdot P[A_k]$$
 (11)

is called total propability formula for P[B]

1.2.2 Bayes' Theorem

Theorem 1.2.1 (Bayes's Theoremm). Let $A_1, \dots, A_n \subset S$ be a set of pairwise mutually exclusive events whose union is S and who each have non zero probability of occurring. Let $B \subset S$ be any events such that $P[B] \neq 0$. Then for any $A_k, k = 1, \dots, n$

$$P[A_k \mid B] = \frac{P[B \cap A_k]}{P[B]} = \frac{P[B \mid A_k] \cdot P[A_k]}{\sum_{j=1}^n P[B \mid A_j] \cdot P[A_j]}$$
(12)

1.3 Discrete Random Variables

Definition 1.3.1 (Random Variable). Such function X

$$X: S \to \mathbb{R} \tag{13}$$

is a random variable. X has numerical values that are derived from the outcome of a random experiment.

Two types:

 \bullet Discrete $Random\ Variables:$ countable range in $\mathbb R$

Definition 1.3.2 (Discrete Random Variable). Let S be sample space, Ω a countable subset of \mathbb{R} . A discrete random variable is a map

$$X: S \to \Omega$$
 (14)

$$f_X: \Omega \to \mathbb{R}$$
 (15)

A random variable is often given by the pair (X, f_X)

• Continuous Random Variables: having a range equal to \mathbb{R}

Example:

Flip a coin three times, sample space can be given by :

$$S = (t, t, t), (t, t, h), (t, h, t), \cdots, (h, h, h)$$
(16)

Then we can define X as follows:

$$X(t,t,t) = 0, X(t,t,h) = 1, \dots, X(h,h,h) = 3$$
 (17)

X denotes the number of heads

$$P[X = 1] = P[(t, t, h), (t, h, t), (h, t, t)]$$
(18)

We can write

$$P[X = x] = P[A] \tag{19}$$

where $x \in R$ and $A \subset S$ is the event containing all sample points p such that X(p) = x.

1.3.1 PDF and CDF

Random variable comes with a probability density function or probability distribution f_X that allows the calculation of probability directly. Follows:

- $f_X(x) > 0$ for all x
- $\sum_{X \in \Omega} f_X(x) = 1$

Definition 1.3.3 (Cumulative distribution function). Cumulative distribution function of a random variable is defined as

$$F_X : \mathbb{R} \to \mathbb{R}, F_X(x) := P[X \le x]$$
 (20)

For discrete random variable, $F_X(x) = \sum_{y \le x} f_X(y)$

1.3.2 Bernoulli Random Variable

Definition 1.3.4 (Bernoulli Trial). Consider an experiment can only results in two possible outcomes, such as success or failure. and probability of success 0

Definition 1.3.5 (Bernoulli Random Variable). Let S be a sample space and $X: S \to 0, 1 \in \mathbb{R}$, Let 0 < P < 1, then define the density function

$$f_X: 0, 1 \to R \quad f_X(x) = \begin{cases} 1-p & for \ x = 0 \\ p & for \ x = 1 \end{cases}$$
 (21)

Then X is said to be a *Bernoulli random variable* or follow a *Bernoulli distribution* with parameter p. We indicate this by writing

$$X \sim Bernoulli(p)$$
 (22)

1.3.3 Independent and Identical Trials

- independent means the outcome of a trial will not influence the following trial
- identical means each trial has same probability of success

1.3.4 Counting Successes in a Saquance of Trials

$$P[x \ successes \ in \ n \ trials] = \binom{n}{x} p^x (1-p)^{n-x}$$
 (23)

1.3.5 Binomal Random Variable

Definition 1.3.6 (Binomal Random Variable). S: sample space, $n \in mathbb{N} \setminus 0$ and

$$X: S \to \Omega = \{0, \cdots, n\} \in \mathbb{R}$$
 (24)

Let 0 and define the density function

$$f_X: \Omega \to \mathbb{R}, \quad f_X(x) = \binom{n}{x} p_x (1-p)^{n-x}$$
 (25)

Then X is said to be a binomial random variable with parameters n and p. Indicate this by writing

$$X \sim B(n, p) \tag{26}$$

Also:

$$B(1,p) = Bernoulli(p) \tag{27}$$

1.3.6 Cumulative Distribution Function

Definition 1.3.7 (Cumulative Distribution Function).

$$F_X : \mathbb{R} \to \mathbb{R}, \qquad F_X(x) := P[X \le x]$$
 (28)

For a discrete random variable

$$F_X(x) = \sum_{y \le x} f_X(y) \tag{29}$$

In case of binomial distribution,

$$F_X(x) = \sum_{y=0}^{[x]} {n \choose y} p^y (1-p)^{n-y}$$
(30)

[x] denote the largest integer not greater than x.

MMA command:

CDF[BinomalDistribution[n,p],x]

1.3.7 The Geometric Distribution

Another example: suppose er perform a sequence of Bernoulli trials which continues until a success is obtained. We then define the $geometric\ random\ variable\ X$ to denote the number of trials needed to obtain the first success.