- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

ALFABETOS

- <u>Definición</u>: conjunto finito y no vacío de símbolos.
- Ejemplos: binario, vocales, letras, ajedrez, otros.
- Pertenencia de símbolos; cardinalidad de alfabetos.
- Relaciones: igualdad, inclusión e inclusión estricta.
- Operaciones: unión, intersección, complementos.
- Propiedades de las operaciones (son conjuntos !!!).
- Concatenación o yuxtaposición de alfabetos y de símbolos de un alfabeto.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

- PALABRAS, cadenas, tiras o strings
 - Definición: concatenación de símbolos de un alfabeto.
 - Longitud de una palabra.
 - Palabra vacía. Largo cero !!!
 - Concatenación de palabras sobre un alfabeto. Potenciación.
 - Propiedades: no conmutativa, asociativa, elemento neutro.
 - Subpalabra ($\omega = \alpha \beta \gamma$), sufijo y prefijo ($\omega = \alpha \beta$) propios e impropios.
 - Palabra inversa o refleja. Palíndromos.
 - Nuevas operaciones con alfabetos:
 - Concatenación: $\sum_1 \cdot \sum_2 = \{\alpha = xy / x \in \sum_1 \land y \in \sum_2 \}$
 - Potenciación: $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty}$
 - Clausura positiva: $\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^i$
 - Clausura o Cierre: $\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i = \Sigma^+ \cup \{\lambda\}$
 - Estas operaciones generan conjuntos de "palabras".
 - Universo de Discurso de un alfabeto: W(Σ) = Σ^*

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\delta\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

LENGUAJES

- Lenguaje sobre un alfabeto Σ : L $\subseteq \Sigma^*$
- Lenguaje vacío y lenguaje con cadena vacía. Cardinalidad.
- Igualdad, inclusión e inclusión estricta.
- Operaciones con lenguajes:
 - Unión / Intersección / Complementos / Concatenación
 - Potenciación, clausura positiva, clausura o cierre.
 - Inversión o reflexión.
- Nueva operación con cadenas:
 - Regla de reescritura o producción: $\alpha := \beta$
 - Derivación directa por aplicación de producción: $\alpha \rightarrow \beta$
 - Derivación (en cero o más pasos): $\alpha \rightarrow^* \beta$
 - Derivación por derecha, por izquierda y mixta.
 - Reducción (en cero o más pasos): $\alpha * \leftarrow \beta$

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

LENGUAJES

- Dado un alfabeto Σ , un lenguaje es un conjunto de palabras definidas sobre él: $\mathbf{L} \subseteq \Sigma^*$
- Descripción de lenguajes (son conjuntos !!!):
 - Por enumeración o extensión
 - Por comprensión
 - Conjunto con una propiedad (propiedad)
 - Conjunto con fórmula-patrón (algebraicamente)
 - **GRAMÁTICA FORMAL** (estableciendo cómo se derivan sus elementos desde un símbolo inicial)
- Recordar: LENGUAJES NATURALES vs LENGUAJES FORMALES

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

GRAMÁTICA FORMAL

- Definición de la gramática G: $(\Sigma_T, \Sigma_N, S, P)$; $\Sigma_T \cap \Sigma_N = \emptyset$; $S \in \Sigma_N$
- Lenguaje generado por G: L(G) = { $\alpha \in \Sigma_T^* / S \rightarrow^* \alpha$ }
- Noam Chomsky, Backus, Naur y BNF (ver formato).
- Forma sentencial: $S \to^* \alpha ; \alpha \in (\Sigma_T \cup \Sigma_N)^*$
- Sentencia: $S \rightarrow^* \alpha$; $\alpha \in \Sigma_T^*$
- Equivalencia: $G1 \equiv G2 \leftrightarrow L(G1) = L(G2)$
- Regla no compresora: $\alpha := \beta$; $|\alpha| \le |\beta|$
- Regla compresora: $\alpha := \beta ; |\alpha| > |\beta|$
- Regla lambda: $S := \lambda$; S = axioma
- Regla innecesaria:
 A := A ; A = un símbolo no terminal
- Regla no generativa: $A := \lambda$; $A \neq axioma$
- Regla de redenominación: A := B ; A y B símbolos no terminales

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

- Tipos de Lenguajes: Jerarquía de Chomsky (1956)
 - **Tipo 0**: Estructurados por frases, sin restricciones o recursivamente enumerables.

αAβ :=
$$\gamma$$
 α, β , $\gamma \in (\Sigma_T \cup \Sigma_N)^* \land A \in \Sigma_N$

• **Tipo 1**: Dependiente del contexto o sensibles al contexto. (admiten reglas contextuales)

αΑβ :=
$$\alpha \gamma \beta$$
 α , $\beta \in (\Sigma_T \cup \Sigma_N)^* \land \gamma \in (\Sigma_T \cup \Sigma_N)^+ \land A \in \Sigma_N$
S := λ (sin reglas compresoras salvo para el axioma)

• **Tipo 2**: Independiente del contexto o de contexto libre.

• **Tipo 3**: Regulares o Lineales.

$$\mathbf{S} \to \boldsymbol{\lambda}$$
 A, B, $S \in \Sigma_N \land a \in \Sigma_T \land S = axioma$

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

TIPOS DE LENGUAJES: Jerarquía de Chomsky (1956)

Estructurados por Frases

Dependientes del Contexto

Independientes del Contexto

Regulares o Lineales

 $L3 \subset L2 \subset L1 \subset L0$

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

LENGUAJES REGULARES

- Todo lenguaje finito es regular.
- Si L1 y L2 son lenguajes regulares, también lo son su unión, concatenación y clausura transitiva y reflexiva.
- Solo son regulares los lenguajes construidos con lo anterior.

EXPRESIONES REGULARES (ER)

- \varnothing es una ER que denota al lenguaje $L(\varnothing) = \{\}$
- λ es una ER que denota al lenguaje $L(\lambda) = {\lambda}$
- $\forall a \in \Sigma$, a es una ER que denota al lenguaje $L(a) = \{a\}$

Si **E1** y **E2** son expresiones regulares que denotan a **L1** y **L2**, entonces:

- E1+E2 es una ER que denota al lenguaje L(E1+E2) = L1 \cup L2
- E1.E2 es una ER que denota al lenguaje L(E1.E2) = L1.L2
- E1* es una ER que denota al lenguaje L(E1*) = L*(E1) = L1*
- (E1) es una ER que denota al lenguaje L((E1)) = L(E1) = L1
- Sólo son ER las construidas con las reglas anteriores.

- Alfabetos
- **Palabras**
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\alpha} \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

LENGUAJES INDEPENDIENTES DEL CONTEXTO

Gramática Limpia: una gramática independiente del contexto SIN:

Reglas innecesarias:

 $\mathbf{A} \coloneqq \mathbf{A}$, $\mathbf{A} \in \Sigma_{\mathsf{N}}$

Símbolos inaccesibles:

 $\not\exists S \rightarrow^* \alpha X \beta , X \in (\Sigma_T \cup \Sigma_N)$

Símbolos superfluos:

 $\not\exists A \rightarrow^* \alpha con \alpha \in \Sigma_T^*$

Gramática Bien Formada: una gramática limpia SIN:

• Reglas no generativas: $A := \lambda$, $A \neq axioma$

• Reglas de redenominación: A := B , $A,B \in \Sigma_N$

En cada caso, hay que ver cómo encontrar en la gramática y cómo quitar de ella la característica no deseada, obteniendo una gramática equivalente

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

ANÁLISIS SINTÁCTICO

- $\alpha \in L(G)$?, siendo $\alpha \in \Sigma_T^*$. Los procesos que usamos para responder esta pregunta se denominan Análisis Sintáctico de la cadena α dada una gramática $G = (\Sigma_T, \Sigma_N, S, P)$.
- Hasta ahora, respondemos:
 - SI, si podemos encontrar $S \rightarrow *\alpha$ usando las reglas de P, y
 - NO, si demostramos que no existe $S \rightarrow *\alpha$
- Árbol de Derivación o de Análisis Sintáctico: representación pictórica de la derivación $S \rightarrow *\alpha$ de una cadena $\alpha \in \Sigma_{\mathsf{T}}^*$.
 - El axioma S de la gramática se sitúa en la raíz del árbol.
 - Si para $A \in \Sigma_N$ existe en **P** la producción $A := a_1 a_2 ... a_n$ y ésta es usada en la derivación, entonces se crean como hijos del nodo **A** del árbol, nodos para cada uno de los a_i en el orden anterior.
 - Así, los nodos internos son símbolos de Σ_N y las hojas de Σ_T .

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

- ANÁLISIS SINTÁCTICO (continuación)
 - Ahora, también podemos responder a $\alpha \in L(G)$?:
 - SI, si podemos construir el árbol de análisis sintáctico de α , y
 - NO, si demostramos que tal árbol no existe.
 - Ambigüedad.
 - Decimos que una cadena $\alpha \in \Sigma_T^*$ es ambigua si y solo si existe más de un árbol de análisis sintáctico ella en **G**.
 - Decimos que la gramática **G es ambigua**, si genera al menos una cadena ambigua.
 - Un lenguaje **L(G)** se dice que es **inherentemente ambiguo**, si las únicas gramáticas que lo generan son ambiguas.
 - La ambigüedad es una característica indecidible de las GIC.
 - La ambigüedad genera problemas de significado.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

- ANÁLISIS SINTÁCTICO (continuación)
 - Recursividad.
 - Decimos que una producción es recursiva, si el mismo no terminal aparece en el lado derecho e izquierdo: $\mathbf{A} := \alpha \mathbf{A} \boldsymbol{\beta}$.
 - Si la gramática **G** posee una producción recursiva, se dice que tiene **recursividad en un paso**.
 - Si no tiene producciones recursivas, pero puede efectuarse la derivación $A \rightarrow *\alpha A\beta$, se dice que **G** posee recursión en más de un paso.
 - Importancia de la recursión para generar lenguajes infinitos.
 - Recursión por izquierda: $A := A\beta$ $A \rightarrow *A\beta$
 - Recursión por derecha: $A := \alpha A$ $A \rightarrow *\alpha A$
 - Algunos algoritmos de análisis sintácticos para poder funcionar requieren que **no existe recursión por izquierda** en la gramática.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\delta\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

- ANÁLISIS SINTÁCTICO (continuación)
 - Recursividad (continuación)
 - Eliminación de recursión por izquierda en un paso: Dada una gramática independiente del contexto $\mathbf{G} = (\Sigma_\mathsf{T}, \Sigma_\mathsf{N}, \mathsf{S}, \mathsf{P})$ con producciones recursivas por izquierda para el no terminal \mathbf{A}

$$A := A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_n \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_m$$

con α_i , $\beta_j \in (\Sigma_T \cup \Sigma_N)^+$, entonces puede construirse una gramática equivalente a la dada sin recursión por izquierda en A, reemplazando esas producciones por:

$$A := \beta_1 X \mid \beta_2 X \mid ... \mid \beta_m X \mid \beta_1 \mid \beta_2 \mid ... \mid \beta_m$$

$$X := \alpha_1 X \mid \alpha_2 X \mid \dots \mid \alpha_n X \mid \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$

donde X es un nuevo símbolo no terminal.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

- ANÁLISIS SINTÁCTICO (continuación)
 - Recursividad (continuación)
 - Eliminación de recursión por izquierda en más de un paso: Se sigue un algoritmo iterativo donde se aplica la eliminación en un paso reiteradamente (ver bibliografía).
 - Factorización por izquierda
 - Si en una **GIC** para un mismo no terminal **A**, hay producciones que inician con los mismos símbolos en el lado derecho:

$$A := \alpha \beta_1 \mid \alpha \beta_2$$

entonces, se obtiene una gramática equivalente al reemplazar esas producciones por:

A :=
$$\alpha X$$
 ; $X := \beta_1 \mid \beta_2$

donde X es un nuevo símbolo no terminal.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

- ANÁLISIS SINTÁCTICO (continuación)
 - Formas Normales

Las **GIC** siempre pueden ser convertidas en gramáticas equivalentes, en las cuales los lados derechos de sus producciones tengan un formato uniforme. Estas gramáticas equivalentes reciben el nombre de **Formas Normales**.

- Estas normalizaciones son a veces convenientes para desarrollar ciertos algoritmos de análisis sintáctico.
- Recordemos que las **GIC** pueden tener como única producción compresora, la regla lambda: $S := \lambda$. Todas las otras reglas tendrán la forma $A := \alpha$ donde $\alpha \in (\Sigma_T \cup \Sigma_N)^+$, es una cadena de terminales y no terminales.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

- ANÁLISIS SINTÁCTICO (continuación)
 - Primera Forma Normal (no en libro)
 Dada una GIC = (Σ_T, Σ_N, S, P) limpia y bien formada, todas las producciones en P tendrán la forma A := α donde α∈(Σ_T ∪ Σ_N)⁺, salvo la regla lambda S := λ. Para cada una de ellas:
 - Si α es un solo terminal, se deja la producción sin cambiar.
 - En caso contrario, sea $\alpha = X_1 X_2 ... X_n$, donde los $X_i \in (\Sigma_T \cup \Sigma_N)$ son terminales o no terminales; sin alterar el lenguaje generado por la gramática, podemos realizar la siguiente conversión:
 - 1) Si X_i es un símbolo no terminal, lo dejamos como está en α .
 - 2) Si **X**_i es un símbolo terminal, entonces:
 - a) Lo reemplazamos por Y_i en α .
 - b) Agregamos Y_i al alfabeto de símbolos no terminales.
 - c) Agregamos la producción Y_i := X_i al conjunto **P**.
 - Al finalizar todas las producciones tendrán en su lado derecho o un solo símbolo terminal, o una cadena de sólo no terminales.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

- ANÁLISIS SINTÁCTICO (continuación)
 - Forma Normal de Chomsky (FNC)

Dada una GIC = $(\Sigma_T, \Sigma_N, S, P)$, se dice que la misma está en forma normal de Chomsky si todas sus producciones tienen la forma:

 $S := \lambda$ o A := BC o A := a con $S,A,B,C \in \Sigma_N \land a \in \Sigma_T$

Toda **GIC** puede ser convertida en **FNC** haciendo:

- 1) Obtener una gramática equivalente limpia y bien formada.
- 2) Convertir la anterior a la Primera Forma Normal. Ahora todas las producciones son de la forma no terminal produce un terminal o una cadena de sólo no terminales.
- 3) Para las producciones $A := B\eta$ donde $\eta \in \Sigma_N^+$, generar un nuevo símbolo no terminal X y reemplazar la producción por A := BX y $X := \eta$ hasta que todos los lados derechos queden de largo 2.
- Al finalizar todas las producciones estarán en FNC.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

- ANÁLISIS SINTÁCTICO (continuación)
 - Forma Normal de Chomsky (FNC) (continuación)
 - Notar que en el libro no se utiliza la Primera Forma Normal, sino que se realiza una conversión directa desde la GIC a una gramática equivalente en FNC.
 - Si una **GIC** está en Forma Normal de Chomsky, entonces sus árboles de derivación serán siempre árboles binarios; tenemos excelentes algoritmos para el manejo de éstos árboles.
 - Algoritmos como los de CYK (Cooke, Young, Kasami) necesitan que la gramática esté en FNC.

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES

- ANÁLISIS SINTÁCTICO (continuación)
 - Forma Normal de Greibach (FNG)

Dada una GIC = $(\Sigma_T, \Sigma_N, S, P)$, se dice que la misma está en forma normal de Greibach si todas sus producciones tienen la forma:

 $S \rightarrow \lambda$ o $A := a\eta$ donde $A \in \Sigma_N \land a \in \Sigma_T \land \eta \in \Sigma_N^*$

Toda GIC puede ser convertida en FNG haciendo:

- 1) Obtener una gramática equivalente limpia y bien formada.
- 2) Quitar la recursividad por izquierda en uno o más pasos.
- 3) Asignar un orden cualquiera a los símbolos no terminales, digamos A_1 , A_2 , ..., A_n (sólo para poder iterar ordenadamente)
- 4) Separar las producciones en tres grupos:

Grupo 1: $S \rightarrow \lambda$ o A := $a\alpha$; donde $A \in \Sigma_N \land a \in \Sigma_T \land \alpha \in (\Sigma_T \cup \Sigma_N)^*$

Grupo 2: $A_i := A_i \alpha$; donde A_i , $A_i \in \Sigma_N \land \alpha \in (\Sigma_T \cup \Sigma_N)^+ \land i < j$ ant

Grupo 3: $A_i := A_i \alpha$; donde A_i , $A_i \in \Sigma_N \land \alpha \in (\Sigma_T \cup \Sigma_N)^+ \land i > j$ pos

- Alfabetos
- Palabras
- Lenguajes
- Gramática formal
- Tipos de lenguajes
- L. Regulares
 - Definición
 - Expresiones regulares
- L. Independientes del Contexto
 - Limpia
 - Bien Formada
- Análisis Sintáctico
 - $\dot{\epsilon}\alpha \in L(\Sigma)$?
 - Árbol
 - Ambigüedad
 - Recursión
 - Factorización
 - Forma Normal

- ANÁLISIS SINTÁCTICO (continuación)
 - Forma Normal de Greibach (FNG) (continuación)
 - 5) Para cada producción $A_i := A_j \alpha$ del **Grupo 3**, iniciando con las de índice **i** menor, reemplazarlas (eliminar y agregar) por las producciones $A_i := \delta_1 \alpha \mid \delta_2 \alpha \mid ... \delta_k \alpha$ donde los δ_i son los lados derechos de todas las producciones de A_j . Al terminar este proceso todas las producciones serán de los **Grupos 1 o 2**.
 - 6) Proceder igual que en (5) con las producciones del **Grupo 2**. Al terminar este proceso todas las producciones serán del **Grupo 1**.
 - 7) Para todas las reglas del **Grupo 1** de la forma $A := a\alpha$ donde $A \in \Sigma_N \land a \in \Sigma_T \land \alpha \in (\Sigma_T \cup \Sigma_N)^+$, reemplazar los terminales x en α por nuevos no terminales Y_x y agregar las producciones $Y_x := x$. Al terminar este proceso, todas las producciones estarán en **FNG**.