# Support Vector Machines: The Flexible One

by Dane Brown

**ML that Just Works** 

#### Support Vector Machine (SVM)

- Particularly powerful and flexible supervised learning algorithm
- Both classification and regression
- The theory also involves some complex maths/stats that you can read up if you interested

#### How SVMs Work

 Discriminative classification: instead of focussing on the detail of the data and modeling each class, it finds lines or curves that divide all the classes from each other.



#### How SVMs Work

 the dividing line that separates classes is known as the hyperplane



#### How SVMs Work

the line that exists in the centre of the maximum margin is known as the optimal **hyperplane** 



#### Support Vectors

- Only the position of the support vectors matter
- Other points do not affect model fitting



#### Why SVMs are Flexible?

The **kernel trick** transforms data into higher-dimensional space that suits non-linear patterns of data up to the n<sup>th</sup> dimension!



#### Transcend that which is Non-Linear (soon)

Even without scatter this problem is still non-linear



#### Find the Maximum Margin in 2D???

Surely this can be solved by adding a dimension?



#### Find the Maximum Margin in 3D Space

• Easy to see that r = 0.7 gives optimal margin



#### Fitting the Kernel in N Dimensions

- Compute a basis function centred at every point in feature space
- But projecting N points into N dimensions becomes extremely computationally intensive as N grows large.

#### SVM uses the **Kernel Trick**

- Adding dimensions can thus become computationally expensive
- Kernel methods can operate in a high-dimensional space without explicitly computing the coordinates of the data in that space. SVM Kernel Trick:
  - rather compute the inner products between the images of all pairs of data in the feature space
  - Substantially cheaper than the explicit computation of the coordinates
  - transforms data into another dimension so that it has a clear class-dividing line

## Kernel: Find the Maximum Margin

 Result: Finds a maximum margin in 2D space, lowering computing requirements in higher space



#### What is the Best Kernel?

- The RBF kernel normally works best for your average problem, but..
- For sharp features such as letters or edge features such as fingerprints, the linear kernel works well
- Other and custom kernels are quite particular
- Mechanical Solution???
- Parameter estimation using grid search with cross-validation

But what about overlapping data?



• The hardness of the margin is controlled by a tuning parameter, most often known as  $\mathcal{C}$ .



Large C: hard margin, and points can't lie in it.



 These conflicting support vectors are avoided to reduce borderline cases but might introduce false predictions on unseen data



• Smaller *C*: the margin is softer, and can grow to encompass some support vectors



#### Softening Margins Example



#### Softening Margins Example

Here large C works best



#### Softening Margins Example

Now small C works best



# Tuning the SVM: Check it out -> CV\_ML Grid Search + Cross Validation

- Even with the kernel trick high-dimensionality problems sometimes require preprocessing
- PCA again

#### Disadvantages of SVM

- SVMs rely on a suitable choice for the softening parameter C using grid search + cross-validation
- On large datasets, this becomes time consuming
- Newer CNNs and DNNs classifiers generally outperform it in accuracy (but are ultra expensive)

#### Advantages of SVM

- Support vectors are very compact models
  - take up very little memory
- Work well with high-dimensional data
  - even data with more dimensions than samples
  - the above is challenging for most other algorithms
- Once the model is trained (often slow), the prediction phase is fairly fast
- Their integration with kernel methods makes them very versatile

### **Using your Own Datasets**

by Dane Brown

Let's do what we came here for