Lecture 3 – Hardware-software Interface

CSE 456: Embedded Systems

High-Level Physical View

What you will learn ...

Hardware-Software Interfaces in Embedded Systems

Storage
☐ SRAM / DRAM / Flash
☐ Memory Map
Input and Output
☐ UART Protocol
☐ Memory Mapped Device Access
☐ SPI Protocol
Interrupts
Clocks and Timers
☐ Clocks
Watchdog Timer
☐ System Tick
☐ Timer and PWM

Remember ... ?

MSP432P401R

Storage SRAM / DRAM / Flash

Static Random Access Memory (SRAM)

- ☐ Single bit is stored in a bi-stable circuit
- Static Random Access Memory is used for
 - caches
 - register file within the processor
 - core small but fast memories

☐ Read:

- Pre-charge all bit-lines to average voltage
- 2. decode address (n+m bits)
- 3. select row of cells using n single-bit word lines (WL)
- 4. selected bit-cells drive all bit-lines BL (2^m pairs)
- 5. sense difference between bit-line pairs and read out

■ Write:

select row and overwrite bit-lines using strong signals

Dynamic Random Access (DRAM)

Single bit is stored as a charge in a capacitor

- Bit cell loses charge when read, bit cell drains over time
- Slower access than SRAM due to small storage capacity in comparison to capacity of bit-line.
- Higher density than SRAM (1 vs. 6 transistors per bit)

DRAMs require *periodic refresh* of charge

- Performed by the memory controller
- ☐ Refresh interval is tens of ms
- ☐ DRAM is unavailable during refresh

(RAS/CAS = row/column address select)

DRAM – Typical Access Process

1. Bus Transmission

2. Precharge and Row Access

DRAM – Typical Access Process

3. Column Access

4. Data Transfer and Bus Transmission

Flash Memory

Electrically modifiable, non-volatile storage Principle of operation:

- ☐ Transistor with a second "floating" gate
- ☐ Floating gate can trap electrons
- This results in a detectable change in threshold voltage

Transistor

- ☐ We can view MOS transistors as electrically controlled switches
- □ Voltage at gate controls path from source to drain

Transistor

- ☐ We can view MOS transistors as electrically controlled switches
- ☐ Voltage at gate controls path from source to drain

Transistor

- ☐ We can view MOS transistors as electrically controlled switches
- ☐ Voltage at gate controls path from source to drain

Gate Array

Please use the following transistors to build a 2-input AND gate. (A, B are input signals, Z is output signal, VDD, GND)

Gate Array

Please use the following transistors to build a 2-input AND gate. (A, B are input signals, Z is output signal, VDD, GND)

