Empresa de Telecom

Por Mauricio Amaral, UFU Serazil

Timelimit: 1

Cesário é um analista da Algar Telecom, e está trabalhando em um projeto de análise da rede de telefonia móvel. Ele terá que desenvolver um sistema que analise o alcance de cada uma das antenas dessa rede, e que defina os custos operacionais para o envio de dados de de dispositivo para outro, baseando-se na distancia entre as antenas. O objetivo minimizar esses custos, encontrando a melhor rota disponível. Os cálculos também visam descobrir se é possível estabelecer um caminho entre dois dispositivos, de forma a detectar graves problemas na rede.

Mesmo com todos os dados disponíveis para processamento, Cesário tem enfrentado problemas na implementação devido a alta complexidade desse algoritmo, por isso você foi contratado para ajudá-lo. O seu objetivo é analisar todas as antenas da rede da Algar Telecom, observando as suas coordenadas e raios de alcance; verificar quais as antenas possíveis de serem acessadas (dentro do raio de alcance); e calcular o menor caminho entre duas antenas determinadas.

Entrada

A entrada é composta de vários casos de testes. Sendo que, a primeira linha contém um inteiro não negativo, \mathbf{N} (2 \leq \mathbf{N} \leq 100), que indica o número de antenas disponíveis para interconexão na rede. Seguem-se \mathbf{N} linhas, cada uma contendo três números inteiros \mathbf{X} (0 \leq \mathbf{X} \leq 1000), \mathbf{Y} (0 \leq \mathbf{Y} \leq 1000) e \mathbf{R} (1 \leq \mathbf{R} \leq 1000), que descrevem a posição da antena, coordenadas \mathbf{X} e \mathbf{Y} , e o seu raio de alcance \mathbf{R} (separados por espaço em branco). A linha seguinte contém outro inteiro não negativo, \mathbf{C} (1 \leq \mathbf{C} \leq 100), que descreve a quantidade de cálculos à serem realizados nessa rede. As \mathbf{C} linhas seguintes contém 2 inteiros cada, $\mathbf{A}\mathbf{1}$ (1 \leq $\mathbf{A}\mathbf{1}$ \leq \mathbf{N}) e $\mathbf{A}\mathbf{2}$ (1 \leq $\mathbf{A}\mathbf{2}$ \leq \mathbf{N}), que descrevem o índice das antenas a serem utilizadas e também separadas por espaço em branco.

O fim das entradas é sinalizado por um número 0.

Saída

Para cada caso de teste, deve-se imprimir **C** linhas, sendo que cada uma representa a distância do menor caminho entre as duas antenas. Os valores devem ser **INTEIROS**, ou seja, a parte real deve ser truncada (não arredondada), e sempre com uma quebra de linha. Caso não seja identificada uma rota entre as antenas, deve ser impresso o valor **-1**.

Exemplo de Entrada	Exemplo de Saída
2	2
0 3 3	-1
2 1 1	1
2	-1
1 2	1
2 1	0
3	
1 1 2	
0 0 1	
1 2 2	
4	

2 3	
2 1	
2 1	
3 3	
0	

Maratona Algar Telecom XIII