Introduction

Heejin Park

Hanyang University

Professor

Heejin Park

2220-1986

hjpark@hanyang.ac.kr

Information & Communication Building 810

Textbook

Introduction to Algorithms, 3rd Ed. MIT Press

T. Cormen, C. Leiserson, R. Rivest, and C. Stein

Evaluation

Exam 70%
Assignment 30%

Entrance rule

4:30pm – 4:40pm: Review time

4:40pm – 5:00pm: Teaching starts; no entrance.

5:00pm: Late students can come in.

5:00pm - 6:00pm: No entrance.

Entrance rule

If you want to go out during class, you need permission from the T/A.

When you go out, close the door silently.

What is an algorithm?

- What is a problem?
 - A well-specified input and output.

- What is an algorithm?
 - A well-defined procedure to solve a problem.

A problem example

- Cooking instant noodles
 - Input
 - chinese noodles,
 - pouder soup,
 - o an egg,
 - green onions,...
 - Output
 - Cooked instant noodles

An algorithm example

- Algorithm
 - Boil 500cc of water.
 - Put chinese noodles and powder soup.
 - Boil for 5 minutes.
 - Put an egg and green onions.
 - Boil for 1 minute.

A computer algorithm

- A computer algorithm
 - A well-defined *computational* procedure to solve a computational problem
- A computational problem example
 - Computing the sum of integers from 1 to *n*

•
$$S = 1 + 2 \dots + n$$

Computer algorithm examples

Elementary school algorithm

• Compute each addition one by one from the left.

•
$$S = (...(((1+2)+3)+4)...)+n$$

High school algorithm

•
$$S = n(n+1)/2$$

• Are the algorithms above correct?

Correctness of algorithms

Elementary school algorithm

Obvious

High school algorithm

- S = n(n+1)/2
 - 2S = 2(1 + 2 + ... + n)
 - $2S = (1 + 2 + \dots n-1 + n) + (n + n-1 + \dots 2 + 1)$
 - 2S = n(n+1)
 - S = n(n+1)/2

Comparison of algorithms

• Which one is better?

- Elementary school algorithm
- High school algorithm

Performance of algorithms

Performance of algorithms

- Running time
- Space consumption

Performance of algorithms

Performance of algorithms

- Running time
 - Elementary school algorithm?
 - High school algorithm?
- Space consumption
- - Elementary school algorithm?
 - High school algorithm?

```
n+1 addition
```

```
| addition + | Multiple + | division
```

Problem instance

Problem

• Computing the sum of integers from 1 to *n*

•
$$S = 1 + 2 \dots + n$$

A problem instance

1=100

• Computing the sum of integers from 1 to 100

Class outline

Problem

- Why the problem?
- Problem definition.

Algorithm

- Description
- Correctness
- Performance