DEEP LEARNING – WS 2019/20

LECTURE SCHEDULE

Date	Topics		Homework
25.11.	Math & ML Basics	Review of math basics Inear algebra Probability information theory	
28.11.		Review of machine learning basics Supervised, unsupervised, reinforcement learning Empirical risk minimization Overfitting (05_ml:2-7) No free lunch theorem	Intro to Jupyter + tech stack Simple linear/logistic regression example in numpy (Batch) gradient descent manually, not AutoDiff Separation of training, validation & test sets Overfitting (L2) regularization Due date: 16.12.
16.12.	Perceptron and multi- layer perceptron	 Definition of perceptron and MLP Why deep? (01_intro:2-4, 06_mlp:17-20) Training deep neural networks Optimization -> gradient descent (4.3, 04_numerical) Backpropagation (06_mlp) Stochastic gradient descent (5.9, 8.4+8.5) Vanilla SGD Momentum 	
19.12.		 RMSProp Adam Regularization Early stopping L1/L2 Dropout Hyperparameter optimization: grid vs. random search 	 MLP on relatively small nonlinear dataset Using PyTorch Explore different regularizers via random search Early stopping L2 Dropout Due date: 6.1.

9.1.	Convolutional neural networks (CNN)	 Motivation and definition (9) weight sharing sparse connectivity growing receptive fields pooling for invariance striding, dilation, deconvolution padding Architectures of classic and modern image processing CNNs: LeNet, AlexNet, VGG, ResNet, Inception, DenseNet, NAS More on optimization Initialization Vanishing and exploding gradient problem Batch normalization as a simple fix for CNNs Timeseries (1D) and video (3D) 	 CNN on (fashion) MNIST, CIFAR-10 or similar Explore architecture choices like number of features, kernel sizes, pooling, striding, padding Batch normalization Due date: 13.1.
13.1.	Transfer Learning & perceptual loss functions	 Pre-training on ImageNet DeCaf paper Object detection, segmentation Saliency Deep features as perceptual loss functions Texture synthesis Style transfer 	Fine-tune or train classification layer of pre-trained ResNet on an image classification task with relatively little data available Due date: 20.1.
16.1.	Deep Image Synthesis	 Deep generative image models Autoencoders (Convolutional) Autoencoder VAE + beta VAE + spatial broadcast VAE Autoregressive models Mixture models Spatial LSTM PixelCNN Generative adversarial networks (GAN) 	
20.1.		 Image-to-image models Domain translation networks Style transfer Superresolution 	 VAE on MNIST Visualize classes in latent space Visualize latent traversals Due date: 27.1.

23.1.	Recurrent neural networks (RNN) and text processing	rks (RNN) and O Unfolding computational graph (10.1)	
27.1.			 Text processing problem (topic classification, sentiment analysis) Implement solutions based on LSTM using transfer learning using from BERT/GPT-2 Due date: 3.2.
30.1.	Deep Reinforcement	Review Reinforcement Learning	
3.2.	Learning	 (Deep) RL approaches Vanilla Policy Gradient Trust Region Policy Optimization Proximal Policy Optimization Deep Deterministic Policy Gradient (DDPG) Twin Delayed DDPG Soft Actor-Critic Practical example: AlphaGo/AlphaZero 	
6.2.	Backup/review	Tractical example: / liphadd/ Alphazero	