CS265 Computer Networking: Homework 3

Due: November 19, 2019 at 11:59PM.

Instructions: Complete each of the following problems. There are 100 total points. Each problem has its own point value. If a problem has multiple parts, they are equi-valued. Written solutions may be submitted via blackboard, in class, or slipped under Prof. Skalka's office door.

Problem 1 (20 points). To complete the following problems, you will need to be sitting at an Internet-connected computer. You should use online resources and standard networking tools available on your computing platform. Google can provide a plethora of information on this sort of thing with obvious search criteria, but a one starting point is to consider ipconfig or ifconfig for Windows or Unix-based (including OSX and Linux) platforms, respectively.

- a. What is the IP address of the machine you're currently on?
- b. Is the IP address of the machine you're currently on a "real" IP address, or a NAT address?
- c. What is the MTU assumed for your TCP/IP connection?

Problem 2 (20 points). Assume that in some TCP communication, the sending window is at 500. Specify resulting values of the congestion window and the slow-start threshold in each of the following scenarios:

- a. A triple-duplicate ACK is detected using TCP Reno.
- b. A triple-duplicate ACK is detected using TCP Tahoe.
- c. A timeout is detected using TCP Reno.
- d. A timeout is detected using TCP Tahoe.

Problem 3 (20 points). In the textbook, beginning on page 295, complete problems P31 and P40 a-g only.

Problem 4 (20 points). Answer each of the following questions about CIDR addressing.

- a. Write the netmask 255.255.0.0 in equivalent "slash" notation.
- b. What addresses are in the block 198.228.12.20/24?
- c. Suppose a corporation was allocated an IP address block 198.226.12.20/12, and they wanted to maintain /24 subnets. How many subnets could they define, given this address block?
- d. Given the same assumptions as in the previous problem, how many host IP addresses are available for each subnet?

Problem 5 (20 points). Suppose your Internet host is running on a system using NAT addressing, and is assigned IP address 10.0.0.1. An Internet application you're running on port 100 sends a TCP message to a server listening at IP address 192.168.1.3, port 80. Assuming that your LAN's NAT router maps IP 10.0.0.1, port 100 to IP 192.168.7.1, port 333:

a. What destination port number will be in the segment header of the server's original response, and what destination IP address will be in the datagram header? That is, *before* it reaches your LAN's NAT router.

b.	What destination port number will be in the segment header of the server's response to your application, and what destination IP address will be in the datagram header, <i>after</i> it reaches your LAN's NAT router?