Notions fondamentales

Motivations

- étude rigoureuse de l'infini (Cantor, $\simeq 1870$) nombreux paradoxes : hôtel de Hilbert; $|\mathbb{N}| < |\mathbb{R}|$; etc.
- fonder les mathématiques sur des concepts simples

Concepts initiaux

- ▶ les ensembles sont des collections d'objets notés en majuscules : A, B, . . . , X, Y, . . .
- les composants d'un ensemble sont appelés membres/éléments notés en minuscules : a, b, \dots, x, y, \dots
- ▶ les ensembles sont eux-mêmes des objets on peut construire des ensembles d'ensembles (d'ensembles, etc.)

Notions fondamentales

Notations	Sens	Intuition
e ∈ <i>E</i>	e appartient à <i>E</i> e est membre de <i>E</i> e est un élément de <i>E</i>	E
e∉E	e n'appartient pas à <i>E</i> e n'est pas membre de <i>E</i> e n'est pas un élément de <i>E</i>	E

Version naïve

Postulats initiaux

- \triangleright (existence d'au moins un ensemble, p. ex. ensemble vide \emptyset)
- schéma de compréhension : existence de tout ensemble d'éléments x qui vérifient une propriété P quelconque

$$\{x \mid P(x)\}\$$
existe

Exemples

- ▶ ensemble vide : $\emptyset := \{x \mid x \neq x\}$
- codage des entiers :

$$0:\emptyset$$
 $2:\{x\mid x=0 \text{ ou } x=1\}$
 $1:\{x\mid x=0\}$ $3:\{x\mid x=0 \text{ ou } x=1 \text{ ou } x=2\}$

- codage des couples, des rationnels, des réels, etc.
- ightharpoonup ensemble plein : $\{x \mid x = x\}$

Version naïve

Postulats initiaux

- \triangleright (existence d'au moins un ensemble, p. ex. ensemble vide \emptyset)
- schéma de compréhension : existence de tout ensemble d'éléments x qui vérifient une propriété P quelconque

$$\{x \mid P(x)\}\$$
existe

Défaut : antinomie de Russel

Soit $A := \{x \mid x \not\in x\}$ l'ensemble des ensembles ne s'appartenant pas eux-mêmes. On a deux cas :

 $A \in A$: par déf. $A \in \{x \mid x \notin x\}$ d'où $A \notin A$

 $A \notin A$: alors $A \in \{x \mid x \notin x\}$ i.e. par déf. $A \in A$

Dans tous les cas on obtient une contradiction : problème!

Version naïve

Résoudre l'antinomie c'est empêcher la définition $A := \{x \mid x \notin x\}$.

Différentes approches possibles :

- 1. interdire l'auto-référence
- 2. introduire la notion de types
- 3. restreindre le schéma de compréhension

$$\{x \in S \mid P(x)\}$$
 existe si S existe

- + ajout d'ensembles infinis
- + liste de constructions autorisées

En pratique

- ightharpoonup existence des ensembles usuels admise : \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R}
- relativisation (implicite) à un ensemble *univers U* :
 - « soit A un ensemble » signifie
 « soit A un ensemble d'éléments de U »
 - « pour tout ensemble A » signifie
 « pour tout ensemble A d'éléments de U »
 - « l'ensemble des éléments tels que... » s'écrit

$$\{x \in U \mid \ldots\}$$

 utilisation des constructions autorisées de nouveaux ensembles (voir suite)

En pratique

Résolution de l'antinomie Soit U ensemble univers. Soit $A:=\{x\in U\mid x\not\in x\}$. On a deux cas : $A\in A:$ d'où par déf. $A\in \{x\in U\mid x\not\in x\}$ i.e. $A\in U$ et $A\not\in A$, contradiction!

En pratique

Résolution de l'antinomie Soit U ensemble univers. Soit $A := \{x \in U \mid x \not\in x\}$. On a deux cas : $A \in A$: d'où par déf. $A \in \{x \in U \mid x \not\in x\}$ i.e. $A \in U$ et $A \notin A$, **contradiction**! $A \notin A$: i.e. non $A \in A$ i.e. non $(A \in U)$ et $A \notin A$ i.e. $A \notin U$ ou $A \in A$, on a donc deux sous-cas :

En pratique

Résolution de l'antinomie

Soit *U* ensemble univers.

Soit $A := \{x \in U \mid x \notin x\}$. On a deux cas :

 $A \in A$: d'où par déf. $A \in \{x \in U \mid x \notin x\}$ i.e. $A \in U$ et $A \notin A$, contradiction!

 $A \not\in A$: i.e. non $A \in A$

i.e. non $(A \in U \text{ et } A \not\in A)$

i.e. $A \notin U$ ou $A \in A$, on a donc deux sous-cas :

 $A \in A$: contradiction car $A \notin A$ $A \notin U$: aucune contradiction!

Un cas est donc possible : $A \notin A$ et $A \notin U$

Note:

U ne peut donc pas être l'ensemble de tous les ensembles (ne contient pas A)

Définitions et notations

Définition d'un ensemble

- ightharpoonup en extension : $E := \{x, y, \ldots\}$
 - $V := \{a, e, i, o, u\}$ l'ensemble des voyelles
 - $\mathbb{N} := \{0, 1, 2, \ldots\}$
 - $\mathbb{N}^* := \{1, 2, \ldots\}$
 - $ightharpoonup \mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
 - $P := \{0, 2, 4, \ldots\}$ ensemble des entiers pairs
 - $ightharpoonup \emptyset := \{\}$ l'ensemble vide
- ▶ en intension/compréhension : $E := \{x \in U \mid P(x)\}$
 - ▶ $J := \{n \in \mathbb{N} \mid 24 < n < 124\}$ un intervalle d'entiers
 - $lackbox{}\mathbb{Q}:=\{rac{p}{q}\in\mathbb{R}\mid p\in\mathbb{Z}, q\in\mathbb{N}^*\}$ (écriture tolérée)
 - ▶ $I := \{n \in \mathbb{N} \mid 2 \text{ ne divise pas } n\}$ ensemble des entiers impairs

Définitions et notations

Inclusion d'ensembles

$P \subseteq Q :\Leftrightarrow \forall x \in P, x \in Q$		
	$\Leftrightarrow \ \forall x, x \in P \Rightarrow$	
Notations	Sens	Intuition
$P\subseteq Q$	P sous-ensemble de Q P inclus dans Q P partie de Q	Q P
$P\subset Q$	P sous-ensemble strict de Q P inclus strictement dans Q P partie strict de Q $P\subseteq Q$ et $P\neq Q$	Q P @

Définitions et notations

Inclusion d'ensembles

$$P \subseteq Q$$
 : $\Leftrightarrow \forall x \in P, x \in Q$
 $\Leftrightarrow \forall x, x \in P \Rightarrow x \in Q$

Exemples

- ▶ ${3} \subseteq {1,3,5}$
- ► $\{a, e, i, o, u\} \subseteq \{a, b, c, ..., x, y, z\}$
- ► $\{a, e, i, o, u\} \subset \{a, b, c, ..., x, y, z\}$
- ► $\{a, e, i, o, u\} \subseteq \{a, e, i, o, u\}$
- $\blacktriangleright \{a, e, i, o, u\} \not\subset \{a, e, i, o, u\}$

Définitions et notations

Non-inclusion d'ensembles

$$P \not\subseteq Q \quad \Leftrightarrow \quad \neg(P \subseteq Q)$$
$$\Leftrightarrow \quad \neg(\forall x, x \in P \Rightarrow x \in Q)$$
$$\Leftrightarrow \quad \exists x, x \in P \text{ et } x \notin Q$$

Possibilités

Définitions et notations

Non-inclusion d'ensembles

$$P \not\subseteq Q \quad \Leftrightarrow \quad \neg(P \subseteq Q)$$
$$\Leftrightarrow \quad \neg(\forall x, x \in P \Rightarrow x \in Q)$$
$$\Leftrightarrow \quad \exists x, x \in P \text{ et } x \not\in Q$$

Exemples

- ▶ $\{1,3,5\} \not\subseteq \{1,2,5\}$ et $\{1,2,5\} \not\subseteq \{1,3,5\}$
- ▶ $\{1,3,5\} \not\subseteq \{7,9,10\}$ et $\{7,9,10\} \not\subseteq \{1,3,5\}$
- ▶ $\{1,3,5\} \not\subseteq \{1,5\}$ mais $\{1,5\} \subseteq \{1,3,5\}$

Attention

 $3 \in \{1,3,5\} \text{ mais } 3 \not\subseteq \{1,3,5\}$

Définitions et notations

Égalité d'ensembles

$$P = Q$$
 : \Leftrightarrow $\forall x, x \in P \Leftrightarrow x \in Q$

P et Q ont les mêmes éléments

Propriété

$$P = Q \Leftrightarrow P \subseteq Q \text{ et } Q \subseteq P$$

Exemples

- $ightharpoonup \{a, e, i, o, u\} = \{i, a, o, u, e\}$
- $\{a, e, i, o, u\} = \{o, e, i, u, o, e, a, a\}$
- $\{a, e, i, o, u\} \neq \{o, e, o, u, o, e, a, a, u\}$
- ▶ $\{n \in \mathbb{N} \mid 8 \le n \text{ et } \exists p, q \in \mathbb{N}, n = 3p + 5q\} = \{n \in \mathbb{N} \mid 8 \le n\}$

Définitions et notations

Union/intersection d'ensembles

$$X \cup Y := \{x \in U \mid x \in X \text{ ou } x \in Y\}$$

$$X \cap Y := \{x \in U \mid x \in X \text{ et } x \in Y\}$$

Soit ${\mathcal F}$ famille d'ensembles (i.e. ensemble d'ensembles) :

$$\bigcup \mathcal{F} := \{ x \in U \mid \exists Y \in \mathcal{F}, x \in Y \}$$

$$\bigcap \mathcal{F} := \{ x \in U \mid \forall Y \in \mathcal{F}, x \in Y \}$$

Illustration

Définitions et notations

Différence/différence symétrique d'ensembles

$$X \setminus Y := \{x \in X \mid x \notin Y\}$$
$$X \triangle Y := (X \setminus Y) \cup (Y \setminus X)$$

Illustration

Définitions et notations

Exemple de démonstration

$$(A \cup B) \setminus (A \cap B) \stackrel{?}{=} A \triangle B$$

Illustration

Définitions et notations

Exemple de démonstration

$$(A \cup B) \setminus (A \cap B) \stackrel{?}{=} A \triangle B$$

Démonstration

Soient A et B des ensembles.

Soit $x \in (A \cup B) \setminus (A \cap B)$. Par définition $x \in A \cup B$ et $x \notin A \cap B$. Comme $x \in A \cup B$, on a deux cas :

 $x \in A$ Nécessairement $x \notin B$ (sinon $x \in A \cap B$), d'où $x \in A \setminus B$ et par suite $x \in A \triangle B$.

 $x \in B$ De même $x \notin A$ puis $x \in B \setminus A$ d'où $x \in A \triangle B$.

Dans tous les cas on a bien $x \in A \triangle B$.

Définitions et notations

Exemple de démonstration

$$(A \cup B) \setminus (A \cap B) \stackrel{?}{=} A \triangle B$$

Démonstration

Soient A et B des ensembles.

Solent $A \in B$ des ensembles. Solent $X \in A \triangle B$. D'après la définition on a deux cas :

 $x \in A \setminus B$ i.e. $x \in A$ et $x \notin B$. Comme $x \in A$ alors $x \in A \cup B$, et comme $x \notin B$ alors $x \notin A \cap B$. D'où $x \in (A \cup B) \setminus (A \cap B)$.

 $x \in B \setminus A$ On procède de façon similaire.

Dans tous les cas on a bien $x \in (A \cup B) \setminus (A \cap B)$.

Définitions et notations

Complémentaire d'un ensemble

Si
$$A \subseteq U$$
 $C_U A := \{x \in U \mid x \notin A\} = U \setminus A$

On note aussi A^c ou \overline{A} quand U se déduit du contexte

Illustration

Exemples

- $\triangleright \ \mathbb{C}_U \emptyset = U \qquad \mathbb{C}_U U = \emptyset$
- $P := \{ n \in \mathbb{N} \mid n \text{ est pair} \} \quad I := \{ n \in \mathbb{N} \mid n \text{ est impair} \}$ $C_{\mathbb{N}}I = P \qquad C_{\mathbb{N}}P = I \qquad C_{I}P = I$

Définitions et notations

Ensemble des parties

$$\mathcal{P}(E) := \{ S \mid S \subseteq E \}$$

Exemple

Si
$$E=\{1,2,3\}$$
 alors $\mathcal{P}(E)=\{\emptyset, \{1\},\{2\},\{3\}, \{1,2\},\{1,3\},\{2,3\}, \{1,2,3\} \}$

Attention

- $ightharpoonup X \in \mathcal{P}(E) \Leftrightarrow X \subseteq E$
- ▶ $X \subseteq \mathcal{P}(E)$ \Leftrightarrow X famille d'ensembles de E

Définitions et notations

Partition

Soit $P \subseteq \mathcal{P}(E)$. P partition de E ssi :

1. $\forall A \in P, A \neq \emptyset$

- P formé d'ensembles non vides,
- 2. $\forall A, B \in P$, $A \neq B \Rightarrow A \cap B = \emptyset$

deux à deux disjoints,

3. $E = \bigcup P$

dont la réunion est E.

Exemples

Soit $E := \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

- $ightharpoonup P_1 := \{ \{1, 3, 5, 7, 9\}, \{0, 2, 4, 6, 8\} \} \text{ est une partition de } E$
- ▶ mais pas $P_2 := \{\emptyset, \{1,3,5,7,9\}, \{0,2,4,6,8\}\}$
- ▶ ni $P_3 := \{\{1,3,5,7,8,9\},\{0,2,4,6,8\}\}$
- ▶ ni $P_4 := \{\{3,5,7,9\}, \{0,2,4,6,8\}\}$

Définitions et notations

Produit cartésien

$$A_1 imes\ldots imes A_n:=\{ig(a_1,\ldots,a_nig)\mid orall i\in \llbracket 1,n
rbracket, a_i\in A_i\}$$

$$(a_1,\ldots,a_n) ext{ est appelé n-uplet}$$

Exemple

$$\{1,2,3,4\} \times \{a,b\} = \{ (1,a),(2,a),(3,a),(4,a), (1,b),(2,b),(3,b),(4,b) \}$$

Égalité

$$(a_1,\ldots,a_n)=(b_1,\ldots,b_m)$$
 : \Leftrightarrow $m=n$ et $\forall i\in \llbracket 1,n
rbracket, a_i=b_i$

Notation

$$A^n = \overbrace{A \times \ldots \times A}^{n \text{ fols}}$$

Propriétés algébriques

Tout est relativisé à un univers U, i.e. A, B, $C \subseteq U$.

Commutativité
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$
Associativité $A \cup (B \cup C) = (A \cup B) \cup C$
 $A \cap (B \cap C) = (A \cap B) \cap C$
Distributivité $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Idempotence $A \cup A = A$
 $A \cap A = A$
Neutre $A \cup \emptyset = A$
 $A \cap U = A$ (avec U l'univers)
 $A \cap \emptyset = \emptyset$

Propriétés algébriques

Tout est relativisé à un univers U, i.e. A, B, $C \subseteq U$.

De Morgan
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$
Complémentaire $\overline{\overline{A}} = A$
 $\overline{U} = \emptyset$ $\overline{\emptyset} = U$
 $A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$
Inclusion $A \subseteq A$ (réflexivité)
 $A \subseteq B$ et $B \subseteq C$ \Rightarrow $A \subseteq C$ (transitivité)
 $A \subseteq B$ et $B \subseteq A$ \Rightarrow $A = B$ (antisymétrie)
 $\emptyset \subseteq A$ et $A \subseteq U$