In the Claims:

1. (Previously Amended) A compound of the formula (I)

in which

A is an aromatic heteromonocyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, where not more than one of the heteroatoms is an oxygen or sulfur atom,

and A may be substituted by radicals R¹¹, R¹² and/or R¹³,

where

 R^{11} , R^{12} and R^{13} at each occurrence are selected independently of one another from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^3 and R^4 are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

 R^3 and R^4 are connected to give -CH=CH-CH=CH-, -(CH₂)₄- or -(CH₂)₃-,

R^5 is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of NR^{54} , NR^{54} -(C_1 - C_4 -alkylen) and a bond, X is selected from the group consisting of CO, CO-O, SO₂, NR^{54} , NR^{54} -CO, NR^{54} -SO₂, CO- NR^{58} and a bond,

Y is C₁-C₆-alkylen, C₂-C₆-alkenylen, C₂-C₆-alkynylen, or a bond, Z is selected from the group consisting of hydrogen, E, O-R⁵², NR⁵¹R⁵², S-R⁵², where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, said ring may comprise up to two oxo groups, and may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷, and/or up to three radicals R⁵³,

 R^{51} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{53} ,

 R^{52} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, E and C_1 - C_4 -alkylen-E,

 R^{53} at each occurrence is independently selected from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

 R^{55} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl, C_1 - C_4 -alkylen-phenyl, where the ring may be substituted by up to two radicals R^{60} , and OH, O- C_1 - C_4 -alkyl, O-phenyl, O- C_1 - C_4 -alkylen-phenyl, NH₂, NH(C_1 - C_4 -alkyl) and N(C_1 - C_4 -alkyl)₂,

R⁵⁶ is a group Q¹-Q²-Q³, where

- Q^2 is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkenylen, C_2 - C_4 -alkynylen, and a bond,
- Q³ is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R⁶³, R⁶⁴ and/or R⁶⁵,
- R^{57} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, phenyl, C_1 - C_4 -alkylen-phenyl, COOH, CO-O- C_1 - C_4 -alkyl, CONH₂, CO-NH- C_1 - C_4 -alkyl, CO-N(C_1 - C_4 -alkyl)₂, CO- C_1 - C_4 -alkyl, CH₂-NH₂, CH₂-NH- C_1 - C_4 -alkyl and CH₂-N(C_1 - C_4 -alkyl)₂,
- R^{58} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{62} ,
- R^{59} , R^{60} and R^{62} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,
- R^{63} , R^{64} and R^{65} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl atoms, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

provided that if W is a bond, then X is NR⁵⁴, NR⁵⁴-CO or NR⁵⁴-SO₂, or if W is a bond, then X and Y are a bond and Z is NR⁵¹R⁵² or E, where E is an unsaturated, saturated or

partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 1 to 5 nitrogen atoms, and 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which ring may comprise up to two oxo groups and may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷ and/or up to three radicals R⁵³, and which ring is bound via a nitrogen_ring atom to the remainder of the molecule,

 R^6 and R^7 are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl atoms, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

and their tautomeric forms, enantiomeric and diastereomeric forms thereof.

- 2. (Previously Presented) The compound of claim 1, wherein A is an aromatic heteromonocyclic systems comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- 3. (Previously Presented) The compound of claim 1, wherein A is selected from the group consisting of pyrimidine, pyridine, pyridazine, pyrazine, thiazole, imidazole, thiophene and furan.
- 4.-5. (Cancelled).
- 6. (Previously Amended) A compound of the formula (III),

in which

D is an aromatic heteromonocyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S,

and D may be substituted by radicals R²¹, R²² and/or R²³,

G is an aromatic heteromonocyclic, aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups and

G may be substituted by radicals R⁷¹, R⁷² and/or R⁷³,

 R^{21} , R^{22} , R^{23} , R^{71} , R^{72} and R^{73} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF_3 , OCF_3 , NO_2 , OH, $O-C_1-C_4$ -alkyl, O-phenyl, $O-C_1-C_4$ -alkylen-phenyl, phenyl, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, NH_2 , $NH(C_1-C_4$ -alkyl) and $N(C_1-C_4$ -alkyl)₂, morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, 4-piperazin-1-yl, 4- $(C_1-C_4$ -alkyl)-piperazin-1-yl,

 R^3 and R^4 at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

 \mbox{R}^{3} and \mbox{R}^{4} are connected to give -CH=CH-CH=CH-, -(CH2)4- or -(CH2)3-,

R⁵ is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of NR⁵⁴, NR⁵⁴-(C₁-C₄-alkylen) and a bond, X is selected from the group consisting of CO, CO-O, SO₂, NR⁵⁴, NR⁵⁴-CO, NR⁵⁴-SO₂, CO-NR⁵⁸ and a bond,

Y is C₁-C₆-alkylen, C₂-C₆-alkenylen, C₂-C₆-alkynylen, or a bond, Z is selected from the group consisting of hydrogen, E, O-R⁵², NR⁵¹R⁵², S-R⁵², where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups, and E may be

substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷ and/or up to three radicals R⁵³,

 R^{51} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{53} ,

 R^{52} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, E and C_1 - C_4 -alkylen-E,

 R^{53} at each occurrence is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

 R^{55} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl, C_1 - C_4 -alkylen-phenyl, where the ring may be substituted by up to two radicals R^{60} , and OH, O- C_1 - C_4 -alkyl, O-phenyl, O- C_1 - C_4 -alkylen-phenyl, NH $_2$, NH $(C_1$ - C_4 -alkyl) and N(C_1 - C_4 -alkyl),

R⁵⁶ is a group Q¹-Q²-Q³, where

 Q^1 is selected from the group consisting of a bond, $C_1\text{-}C_4\text{-}alkylen,\,C_2\text{-}C_4\text{-}alkenylen,\,}$ $C_2\text{-}C_4\text{-}alkynylen,\,C_1\text{-}C_4\text{-}alkylen-N(C_1\text{-}C_4\text{-}alkyl),\,}$ $N(C_1\text{-}C_4\text{-}alkyl),\,C_1\text{-}C_4\text{-}alkylen-NH,\,}$ NH, N(C_1-C_4-alkyl)-C_1-C_4-alkylen,\,} NH-C_1-C_4-alkylen, O, C_1-C_4-alkylen-O, O-C_1-C_4-alkylen,\,} CO-NH, CO-N(C_1-C_4-alkyl),\,} NH-CO,\, N(C_1-C_4-alkyl)-CO, CO, SO_2, SO, S, O, SO_2-NH, SO_2-N(C_1-C_4-alkyl),\,} NH-SO_2,\, N(C_1-C_4-alkyl)-SO_2, O-CO-NH, O-CO-N(C_1-C_4-alkyl),\,} NH-CO-O,\, N(C_1-C_4-alkyl)-CO-O, N(C_1-C_4-alkyl)-CO-N(C_1-C_4-alkyl),\,} NH-CO-N(C_1-C_4-alkyl),\, NH-CO-N(C_1-C_4-alkyl)-CO-NH, and NH-CO-NH,

 Q^2 is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkenylen, C_2 - C_4 -alkynylen, and a bond,

Q³ is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or

tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R⁶³, R⁶⁴ and/or R⁶⁵,

 R^{57} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, phenyl, C_1 - C_4 -alkylen-phenyl, COOH, CO-O- C_1 - C_4 -alkyl, CONH₂, CO-NH- C_1 - C_4 -alkyl, CO-N(C_1 - C_4 -alkyl)₂, CO- C_1 - C_4 -alkyl, CH₂-NH₂, CH₂-NH- C_1 - C_4 -alkyl and CH₂-N(C_1 - C_4 -alkyl)₂,

 R^{58} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{62} ,

 R^{59} , R^{60} and R^{62} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{63} , R^{64} and R^{65} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

provided that if W is a bond, then X is NR⁵⁴, NR⁵⁴-CO or NR⁵⁴-SO₂, or if W is a bond, then X and Y are a bond and Z is NR⁵¹R⁵² or E, where E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 1 to 5 nitrogen atoms, and 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which ring may comprise up to two oxo groups and may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷ and/or up to three radicals R⁵³, and which ring is bound via a nitrogen ring atom to the remainder of the molecule,

and their tautomeric forms, enantiomeric and diastereomeric forms thereof.

7. (Previously Presented) The compound of claim 6, wherein D is an aromatic heteromonocyclic system comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.

- 8. (Previously Presented) The compound of claim 6, wherein D is selected from the group consisting of pyrimidine, pyridine, pyridazine, pyrazine, thiazole, imidazole, thiophene and furan.
- 9. (Previously Presented) The compound of claim 6 wherein G is selected from the group consisting of thiophene, furan, pyrrole, pyrazole, isoxazole, pyridine, pyrimidine, quinoline, isoquinoline, tetrahydroisoquinoline, benzothiophene, benzofuran, indole, imidazole, thiazole, imidazothiazole, benzooxazine and quinoxaline.
- 10. (Previously Presented) A pharmaceutical composition comprising a compound as claimed in claim 1 and a pharmaceutically acceptable carrier.

11.-17. (Cancelled)

- 18. (Previously Presented) A pharmaceutical composition comprising a compound as claimed in claim 6 and a pharmaceutically acceptable carrier.
- 19.-31 (Cancelled).
- 32. (Previously Presented). The compound of claim 1, wherein Z is E, wherein E is a saturated monocyclic ring having a maximum of 8 carbons.
- 32. (Previously Presented). The compound of claim 1, wherein Z is E, wherein E is a saturated monocyclic ring having a maximum of 8 carbons.
- 33. (New). A compound of the formula (I)

in which

A is an aromatic heteromonocyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, where not more than one of the heteroatoms is an oxygen or sulfur atom,

and A may be substituted by radicals R¹¹, R¹² and/or R¹³,

where

 R^{11} , R^{12} and R^{13} at each occurrence are selected independently of one another from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^3 and R^4 are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

 R^3 and R^4 are connected to give -CH=CH-CH=CH-, -(CH₂)₄- or -(CH₂)₃-,

R⁵ is

W is selected from the group consisting of NR⁵⁴, NR⁵⁴-(C₁-C₄-alkylen) and a bond,

 R^{54} is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

 R^{59} is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{63} is independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂.

 R^6 and R^7 are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl atoms, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

and their tautomeric forms, enantiomeric and diastereomeric forms thereof.