Lista de exercícios

Parte dos exercícios que operam sobre dados informados pelo usuário definem a forma como esses dados são recebidos: na execução indica que os dados serão solicitados ao usuário durante a execução do programa; na chamada indica que os dados serão passados como argumentos na chamada do programa pelo terminal. Outros exercícios que usam dados do usuário não especificam a forma de entrada dos dados; neste caso, qualquer das opções pode ser usada para este fim.

1 Variáveis e operações básicas

Exercício 1.1 (soma_expressao)

Escreva um programa que exiba o resultado de $2a \times 3b$, onde a vale 3 e b vale 5.

Exercício 1.2 (soma_variaveis)

Escreva um programa que define três variáveis inteiras e apresenta a soma delas.

Exercício 1.3 (area_triangulo)

Escreva um programa que calcule a área A de um triângulo, cuja base b=6 e altura h=5.

$$A = \frac{b \cdot h}{2}$$

Exercício 1.4 (aumento_salario)

Escreva um programa que calcule um aumento de de 23% em um salário de \$3600,00. Apresente o valor de aumento e o novo salário.

Exercício 1.5 (media_altura)

Escreva um programa que receba (na execução) a altura de quatro pessoas e exiba em tela a média de altura do grupo.

Exercício 1.6 (metros_mili)

Escreva um programa que leia um valor em metros (na execução) e o exiba convertido em milímetros.

Exercício 1.7 (converte_tempo)

Escreva um programa que leia a quantidade de dias, horas, minutos e segundos do usuário (na chamada). Calcule o total em segundos.

Exercício 1.8 (desconto)

Escreva um programa que leia o preço de uma mercadoria e o percentual de desconto (na chamada). Exiba o valor do desconto e o preço a pagar.

Exercício 1.9 (tempo_viagem)

Escreva um programa que calcule o tempo de uma viagem de carro. Pergunte a distância a percorrer e a velocidade média esperada para a viagem.

Exercício 1.10 (converte_temperatura)

Escreva um programa que converta uma temperatura dada em °C para °F, conforme fórmula abaixo.

$$F = \frac{9 \times C}{5} + 32$$

Exercício 1.11 (aluguel_carro)

Escreva um programa que leia (na execução) a quantidade de km percorridos por um carro alugado pelo usuário, assim como a quantidade de dias pelos quais o carro foi alugado. Calcule o preço a pagar, sabendo que o carro custa \$60,00 por dia e \$0,15 por km rodado.

Exercício 1.12 (quilowatt)

Sabe-se que o quilowatt de energia custa um quinto do salário mínimo. Escreva um programa que receba o valor do salário mínimo e a quantidade de quilowatts consumida por uma residência. Calcule e mostre:

- a) o valor de cada quilowatt;
- b) o valor da conta de energia elétrica dessa residência;
- c) o valor a ser pago com desconto de 15%.

Exercício 1.13 (opera_real)

Escreva um programa que receba um número real (na chamada), encontre e mostre:

- a) a parte inteira desse número;
- b) a parte fracionária desse número;
- c) o arredondamento desse número para uma casa decimal;
- d) o arredondamento desse número para um número inteiro.

2 Estruturas condicionais

Exercício 2.1 (analisa_numeros)

Escreva um programa que leia dois números (na execução) e informe qual o maior. No caso de serem iguais, o programa deve informar a igualdade.

Exercício 2.2 (multa)

Escreva um programa que pergunte a velocidade do carro de um usuário. Caso ultrapasse $80 \,\mathrm{km/h}$, exiba uma mensagem dizendo que o usuário foi multado. Nesse caso, exiba o valor da multa, cobrando \$30,00 por km acima de $80 \,\mathrm{km/h}$.

Exercício 2.3 (maior_menor)

Escreva um programa que leia três números (na execução) e imprima o maior e o menor.

Exercício 2.4 (aumento_salario_faixa)

Escreva um programa que pergunte o salário do funcionário e calcule o valor do aumento. Para salários

superiores a 1.250,00, calcule um aumento de 10%. Para os inferiores ou iguais, calcule um aumento de 15%.

Exercício 2.5 (preco_viagem)

Escreva um programa que pergunte a distância que um passageiro deseja percorrer em km. Calcule o preço da passagem, cobrando \$0,50 por km para viagens de até $200\,\mathrm{km}$; e \$0,45 por km para viagens mais longas.

Exercício 2.6 (operacao)

Escreva um programa que leia dois números (na execução) e pergunte qual operação o usuário deseja realizar. Deve ser possível calcular a soma (+), subtração (-), multiplicação (*) e divisão (/). Exiba o resultado da operação solicitada.

• Atenção: o programa deve exibir a mensagem "valor inválido" caso o usuário tente uma divisão por zero.

Exercício 2.7 (emprestimo)

Escreva um programa para aprovar o empréstimo bancário para compra de uma casa. O programa deve perguntar o valor da casa a comprar, o salário e a quantidade de anos a pagar. O valor da prestação mensal não pode ser superior a 30% do salário. Calcule o valor da prestação como sendo o valor da casa a comprar dividido pelo número de meses a pagar.

Exercício 2.8 (energia_eletrica)

Escreva um programa que calcule o preço a pagar pelo fornecimento de energia elétrica. Pergunte a quantidade de kWh consumida e o tipo de instalação: "R" para residências; "I" para indústrias; e "C" para comércios. Calcule o preço a pagar de acordo com a tabela a seguir (o preço é dado por kWh).

Tipo	Faixa (kWh)	Preço
Residencial	Até 500 Acima de 500	\$ 0,40 \$ 0,65
Comercial	Até 1000 Acima de 1000	\$ 0,55 \$ 0,60
Industrial	Até 5000 Acima de 5000	\$ 0,57 \$ 0,68

Exercício 2.9 (triangulo_lados)

Escreva um programa que receba (na chamada) o comprimento de três retas e determine se essas retas podem formar um triângulo. Lembre-se de que qualquer lado do triângulo tem que ser menor que a soma dos dois outros lados.

Exercício 2.10 (triangulo_angulos)

Escreva um programa que receba (na chamada) os valores dos ângulos internos de um triângulo. O programa deve informar caso os valores informados não podem ser associados aos ângulos internos de um triângulo. Caso contrário, o programa deve informar se o triângulo é isósceles, se ele é um triângulo retângulo, ou nenhum deles.

Exercício 2.11 (nota_ponderada)

A nota final de um estudante é calculada a partir de três avaliações: um trabalho de laboratório, uma

prova semestral e um exame final. Os pesos dessas notas são 2, 3 e 5, respectivamente. Escreva um programa que receba as três notas (na execução), calcule e mostre a média ponderada e o conceito final do aluno. conforme a tabela abaixo.

Média ponderada	Conceito
[8,0,10,0]	A
[7,0,8,0)	В
[6,0,7,0)	\mathbf{C}
[5,0,6,0)	D
[0,0,5,0)	\mathbf{E}

Exercício 2.12 (ordem_crescente)

Escreva um programa que receba três números (na chamada) e mostre-os em ordem crescente. Suponha que os três números sejam diferentes.

Exercício 2.13 (insere_numero)

Escreva um programa que receba três números obrigatoriamente em ordem crescente e um quarto número que não siga essa regra (na chamada). Mostre, em seguida, os quatro números em ordem decrescente. Suponha que os quatro números sejam diferentes.

Exercício 2.14 (par_impar)

Escreva um programa que receba um número (na execução) e verifique se é par ou ímpar.

Exercício 2.15 (apresenta_numeros)

Escreva um programa que receba quatro valores: I, A, B, C. Desses valores, I é inteiro e positivo, A, B e C são reais. Escreva os números A, B e C obedecendo à tabela a seguir. Suponha que o valor digitado para I seja sempre um valor válido, ou seja, 1, 2 ou 3, e que os números digitados sejam diferentes um do outro.

Valor de I	Forma a escrever
1	A, B e C em ordem crescente
2	A, B e C em ordem decrescente
3	O maior fica entre os dois números

Exercício 2.16 (recursos_humanos)

Escreva um programa que apresente o menu a seguir, permite ao usuário escolher a opção desejada, receba os dados necessários para executar a operação e mostre o resultado. Verifique a possibilidade de opção inválida e não se preocupe com restrições, como salário negativo.

Menu de opções:

- 1. Imposto
- 2. Novo salário
- 3. Classificação

Na opção 1: receber o salário do funcionário, calcular e mostrar o valor do imposto usando as regras a seguir.

Salário	Imposto
Menor que \$500,00	5%
De \$500,00 (inclusive) a \$850,00 (inclusive)	10%
Acima de \$850,00	15%

Na opção 2: receber o salário do funcionário, calcular e mostrar o valor do novo salário, usando as regras a seguir.

Salário	Aumento
Maior que \$1.500,00	\$25,00
De \$750,00 (inclusive) a \$1.500,00 (inclusive)	\$50,00
De \$450,00 (inclusive) a \$750,00	\$75,00
Menor que \$450,00	\$ 100,00

Na opção 3: receber o salário do funcionário e mostrar sua classificação usando a tabela a seguir.

Salário	Classificação
Até \$ 700,00 (inclusive) Maior que \$ 700,00	Mal remunerado Bem remunerado

3 Estruturas de repetição

Exercício 3.1 (multiplos)

Escreva um programa para escrever os primeiros 100 múltiplos de um número informado pelo usuário (na chamada).

Exercício 3.2 (multiplicacao)

Escreva um programa que leia dois números (na chamada) e imprima seu produto, sem uso do operador de multiplicação (*).

Exercício 3.3 (divisao_resto)

Escreva um programa que leia dois números (na chamada) e imprima a divisão inteira do primeiro número pelo segundo, e o resto da divisão. Não use os operadores de divisão e resto (/, // e %).

Exercício 3.4 (juros)

Escreva um programa que receba (na chamada) o valor de um depósito inicial e a taxa de juros de uma aplicação. O programa deve informar o montante em cada mês dos primeiros dois anos de rendimento.

Exercício 3.5 (juros_deposito)

Escreva um programa que receba (na chamada) o valor de um depósito inicial e a taxa de juros de uma

aplicação. A cada mês, o programa deve ler o valor do depósito daquele mês (na execução), e informar o montante em cada mês do primeiro ano de rendimento.

Exercício 3.6 (leitura_numeros)

Escreva um programa que leia valores inteiros digitados pelo usuário (na execução). O programa deve ler números até que o usuário digite 0 (zero), e ao final apresentar a quantidade de números digitados, bem como a soma e a média aritmética.

Exercício 3.7 (registradora)

Escreva um programa para controlar uma pequena máquina registradora. Você deve solicitar ao usuário que digite o código do produto e a quantidade comprada. Use a tabela de códigos abaixo para obter o preço de cada produto.

Código	Preço
1	0,50
2	1,00
3	4,00
5	7,00
9	8,00

Seu programa deve exibir o total das compras depois que o usuário digitar 0. Qualquer outro código deve gerar a mensagem de erro "Código inválido".

Exercício 3.8 (n_primos)

Escreva um programa que leia (na chamada) um número n e imprima os n primeiros números primos.

Exercício 3.9 (calcula_e)

Escreva um programa que leia (na chamada) um número n e calcule o valor de E, conforme a equação abaixo.

$$E = \sum_{i=0}^{n} \frac{1}{i!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

Exercício 3.10 (estatisticas_transito)

Foram coletados dados sobre acidentes de trânsito em cinco capitais brasileiras. Foram obtidas as seguintes informações: (a) código da cidade; (b) número de veículos de passeio; (c) número de acidentes de trânsito com vítimas.

Escreva um programa que leia os dados coletados (na execução) e informe:

- 1. o maior e menor índices de acidentes de trânsito e a quais cidades pertencem;
- 2. a média de veículos nas cinco cidades juntas;
- $3.\,$ a média de acidentes de trânsito nas cidades com menos de 2.000 veículos de passeio.

Exercício 3.11 (fibonacci)

escreva um programa que leia um inteiro n (na chamada) e escreva os n primeiros termos da sequência de Fibonacci.

Exercício 3.12 (futebol)

Em um campeonato de futebol existem cinco times e cada um possui onze jogadores. Escreva um programa que receba a idade, o peso e a altura de cada jogador (na execução), calcule e mostre:

- a quantidade de jogadores com idade inferior a 18 anos;
- a média das idades dos jogadores de cada time;
- a média das alturas de todos os jogadores do campeonato;
- o percentual de jogadores com mais de 80 kg entre todos os jogadores do campeonato.

Exercício 3.13 (soma_pares)

Escreva um programa que leia um número não determinado de pares de valores (m, n), todos inteiros positivos, um par de cada vez, e que calcule e mostre a soma de todos os números inteiros entre m e n (inclusive). A digitação de pares terminará quando m for maior ou igual a n.

Exercício 3.14 (salario_professores)

Escreva um programa que leia a classe (A ou B) e o número de horas/aula dadas mensalmente pelos professores de uma universidade, sabendo-se que cada hora/aula vale \$146,00. Emite uma listagem contendo o salário bruto e o salário líquido (levando em consideração os descontos detalhados abaixo) de todos os professores. Mostre também a média dos salários líquidos de professores das classes A e B (separadamente). Considere que:

- o desconto para professores das classes A e B é 10% e 5%, respectivamente;
- as informações terminarão quando for lida uma classe diferente de A e B.

4 Listas

Exercício 4.1 (soma_posicoes)

Escreva um programa que leia uma lista com 10 elementos e dois valores x e y, correspondentes a duas posições da lista. O programa deve escrever a soma dos valores encontrados nas posições x e y da lista.

Exercício 4.2 (lista_impares_primos)

Escreva um programa que crie uma lista contendo os 20 primeiros números ímpares. Ao final, exiba a lista em tela. Repita o processo para os 20 primeiros números primos.

Exercício 4.3 (troca_elementos)

Escreva um programa que leia uma lista de 16 posições. Troque os 8 primeiros elementos pelos 8 últimos e vice-versa. Faça essa operação sem usar listas auxiliares.

Exercício 4.4 (busca)

Escreva um programa que leia uma lista com valores digitados pelo usuário, em seguida, um valor x qualquer. O programa deve fazer uma busca pelo valor x na lista, informando a (primeira) posição em que foi encontrado ou se não foi encontrado.

Exercício 4.5 (menor_maior)

Escreva um programa que, dada uma lista com 15 números inteiros, identifique e exiba em tela seu menor valor e seu maior valor.

Exercício 4.6 (negativo_zero)

Escreva um programa que, dada uma lista com 12 números inteiros, atribua 0 para todas as posições que contenham valores negativos.

Exercício 4.7 (transferencia)

Escreva um programa que leia duas listas A e B com o mesmo tamanho, e transfira seus elementos para uma terceira lista C. Essa lista conterá, nas posições pares os valores das posições correspondentes da lista A, e nas posições ímpares os valores das posições correspondentes da lista B.

Exercício 4.8 (acumula)

Escreva um programa que leia uma lista com n posições e acumule em cada posição $i \in [0, n-1]$ a soma dos valores armazenados em todas as posições $j \le i$. Ao final, exiba a lista obtida em tela.

Exercício 4.9 (letras)

Escreva um programa que leia duas listas com 5 letras cada. Verifique e escreva se ambos possuem o mesmo conteúdo. Considere que uma lista tem o mesmo conteúdo que a outra se contiverem as mesmas letras, não importando a ordem em que aparecem em ambas as listas.

Exercício 4.10 (repeticao)

Escreva um programa que leia uma lista com números inteiros e verifique se existem valores repetidos. Para cada valor repetido, escreva o valor e quantas vezes ele se repete no vetor.

Exercício 4.11 (compactar)

Escreva um programa que leia uma lista com 15 inteiros não negativos e a compacte. A compactação consiste em deixar todos os valores iguais a 0 nas últimas posições da lista.