Efficient Local Intrinsic Dimensionality Estimation in Evolving Deep Representations

Problem

Poor-locality in mini-batch LID estimation for efficiency

LID estimation using respect to a sample set:

LID estimation using k-NN distances with espect to a sample set:
$$\widehat{\text{LID}} = -\left(\frac{1}{k}\sum_{j=1}^{k}\ln\frac{r_{j}}{r_{k}}\right)^{-1}$$

training set (n=300, k=8)

k/n (high locality) << k/b (poor locality)

Main Idea

Enhancing locality of LID estimation by reusing historical distances in deep network training

Sliding window of mini-batch distances (in latent space) for point i:

LID estimation using	Spatial locality
O_i^t	$\frac{k}{b-1}$
$*W_i^t = \bigcup_{j=t-\tau+1}^t O_i^j$	$\frac{k}{\tau\cdot(b-1)}$

*With additional strategies to handle distributional drift over time and reduce memory requirements.

