```
#- 祝日・曜日効果の活用
#add_country_holidays()を使って祝日をモデルに組み込むと精度が上がります。
#- 外部要因の追加
#気温、湿度、感染症の流行指数などを add_regressor() で追加すると、季節性以上の変動も捉えられるようになります。
#- 異常値の処理
#MSEがやや高めなのは、突発的な需要急増(例:パンデミック初期)による外れ値の影響かも。cap や floor を設定して予測範囲を制限するのも有効です。
import pandas as pd
import seaborn as sns
#Optunaをインストール
!pip install optuna
    非表示の出力を表示
import optuna
# 3. データの準備
df = pd. read_excel('/content/p-data.xlsx')
\overline{\Sigma}
                 日付
                       A B
                               \blacksquare
           2011-01-01
       0
                       4 4
                               th
           2011-01-02
                       3
                          4
       1
       2
           2011-01-03
                       5
       3
           2011-01-04 10 6
       4
           2011-01-05
                      7 2
      5321 2025-07-27
                      0 1
      5322 2025-07-28 11
     5323 2025-07-29
                      8 6
     5324 2025-07-30
                      7 3
     5325 2025-07-31 7 3
     5326 rows × 3 columns
 次のステップ: (df を使用してコードを生成) ( 推奨プロットの表示)
                                                               New interactive sheet
# データの整形
df_A = df[['日付', 'A']].rename(columns={'日付': 'ds', 'A': 'y'})
df_B = df[['日付', 'B']].rename(columns={'日付': 'ds', 'B': 'y'})
# 折れ線グラフで可視化
time = pd.to_datetime(df['日付'])
sns.lineplot(x=time, y=df['A'])
sns.lineplot(x=time, y=df['B'])
    非表示の出力を表示
₹
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 5326 entries, 0 to 5325
    Data columns (total 3 columns):
# Column Non-Null Count Dtype
         日付
     0
                  5326 non-null datetime64[ns]
                5326 non-null int64
         Α
         В
                5326 non-null
                              int64
     dtypes: datetime64[ns](1), int64(2)
     memory usage: 125.0 KB
```

4. 予測モデルの学習

```
# 引数(seasonality_mode='multiplicative') →周期性変動が徐々に拡大する予測モデル
from prophet import Prophet
## model = Prophet(seasonality mode='multiplicative')
from prophet.diagnostics import cross_validation, performance_metrics
#[]はリスト
cutoffs = pd. to_datetime(['2019-3-31', '2022-3-31'])
def objective_A(trial):
   # 試行ごとに変化させたいパラメータをsuggestする
   changepoint_prior_scale = trial.suggest_float('changepoint_prior_scale', 0.001, 0.5, log=True) seasonality_prior_scale = trial.suggest_float('seasonality_prior_scale', 0.01, 10, log=True)
   # seasonality_modeは固定でもOKですが、試してみたい場合は以下のようにもできます
   seasonality_mode = trial.suggest_categorical('seasonality_mode', ['additive', 'multiplicative'])
   # Prophetモデルをパラメータ付きで定義
   model_A = Prophet( ##ダブり
       changepoint_prior_scale=changepoint_prior_scale,
       seasonality_prior_scale=seasonality_prior_scale,
       seasonality_mode=seasonality_mode
   model_A.fit(df_A) ##ダブり
   # cross-validationでテスト性能を評価
   df_cv_A = cross_validation(model_A, horizon='1096 days', cutoffs=cutoffs, parallel="processes") ##ダブり
   df_p_A = performance_metrics(df_cv_A) ##ダブり
   # MAE (平均絶対誤差)を使って評価
   return df_p_A['mae'].mean()
# Optunaで最適化
study_A = optuna.create_study(direction='minimize')
study_A.optimize(objective_A, n_trials=30) # n_trialsは試行回数
```

_

```
INFO:cmdstanpy:Chain [1] start processing
     INFO: cmdstanpy - INFO - Chain [1] done processing INFO: cmdstanpy: Chain [1] done processing 10:23:25 - cmdstanpy - INFO - Chain [1] done processing
     INFO:cmdstanpy:Chain [1] done processing
     INFO:prophet:Skipping MAPE because y close to 0
[I 2025-08-29 10:23:26,016] Trial 29 finished with value: 2.5416864611244327 and parameters: {'changepoint_prior_scale': 0.22192073465779377, '
def objective_B(trial):
    # 試行ごとに変化させたいパラメータをsuggestする
   changepoint_prior_scale = trial.suggest_float('changepoint_prior_scale', 0.001, 0.5, log=True)
    seasonality_prior_scale = trial.suggest_float('seasonality_prior_scale', 0.01, 10, log=True)
    # seasonality_modeは固定でもOKですが、試してみたい場合は以下のようにもできます
    seasonality_mode = trial.suggest_categorical('seasonality_mode', ['additive', 'multiplicative'])
   # Prophetモデルをパラメータ付きで定義
   model_B = Prophet( ##ダブり
       changepoint_prior_scale=changepoint_prior_scale,
       seasonality_prior_scale=seasonality_prior_scale,
       seasonality_mode=seasonality_mode
   model_B.fit(df_B) ##ダブり
   # cross-validationでテスト性能を評価
    df_cv_B = cross_validation(model_B, horizon='1096 days', cutoffs=cutoffs, parallel="processes") ##ダブリ
   df p B = performance metrics(df cv B) ##ダブり
   # MAE (平均絶対誤差)を使って評価
   return df_p_B['mae'].mean()
# Optunaで最適化
study B = optuna.create study(direction='minimize')
study_B.optimize(objective_B, n_trials=30) # n_trialsは試行回数
非表示の出力を表示
# 最適なパラメータを取得
best_params_A = study_A.best_params
best_params_B = study_B.best_params
# Prophetモデルを再構築
model_A = Prophet(
    changepoint_prior_scale=best_params_A['changepoint_prior_scale'],
    #changepoint prior scale=0.5, #値が小さい程、トレンドは滑らかになり、過去の傾向を重視(推奨:0.001~0.5)
    seasonality_prior_scale=best_params_A['seasonality_prior_scale'],
    seasonality_mode=best_params_A['seasonality_mode'],
   #changepoint_range=0.95 #値が大きいほど、最近のデータに重点を置いて変化点を探す(推奨:0.8~0.95)
model_A.fit(df_A)
model_B = Prophet(
   changepoint_prior_scale=best_params_B['changepoint_prior_scale'],
    #changepoint_prior_scale=0.5, #値が小さい程、トレンドは滑らかになり、過去の傾向を重視(推奨:0.001~0.5)
    seasonality_prior_scale=best_params_B['seasonality_prior_scale'],
    seasonality_mode=best_params_B['seasonality_mode'],
    #changepoint_range=0.95 #値が大きいほど、最近のデータに重点を置いて変化点を探す(推奨:0.8~0.95)
model_B.fit(df_B)
# クロスバリデーションと性能評価
df_cv_A = cross_validation(model_A, horizon='1096 days', cutoffs=cutoffs, parallel="processes")
df_p_A = performance_metrics(df_cv_A)
df_cv_B = cross_validation(model_B, horizon='1096 days', cutoffs=cutoffs, parallel="processes")
df_p_B = performance_metrics(df_cv_B)
→ 非表示の出力を表示
print('ベストパラメータ:', study_A.best_params)
print('ベストパラメータ:', study_B.best_params)
    ベストパラメータ: {'changepoint_prior_scale': 0.032464922125928906, 'seasonality_prior_scale': 0.09762553891196415, 'seasonality_mode': 'multipl
ベストパラメータ: {'changepoint_prior_scale': 0.0018006619424041472, 'seasonality_prior_scale': 0.024086048045012447, 'seasonality_mode': 'addit
# プロット
sns.lineplot(x='horizon', y='mse', data=df_p_A)
sns.lineplot(x='horizon', y='mse', data=df_p_B)
```

<Axes: xlabel='horizon', ylabel='mse'>

プロット sns.lineplot(x='horizon', y='mae', data=df_p_A) sns.lineplot(x='horizon', y='mae', data=df_p_B)

<Axes: xlabel='horizon', ylabel='mae'>

5. 予測

```
# 予測の事前準備
# 予測したい未来日時を含むDataFrameを作成する必要
#
 予測期間を指定してmake_future_dataframeメソッドを実行→未来日時を含むDataFrameの枠組みを作成
#
  make\_future\_dataframe(パラメータ)
    ・periods 予測期間として追加する行数
            D'
#
               1日
    freq
#
            'M' 1か月(追加される日時データは、月の最終日となる)
#
               1か月(追加される日時データは、月の初日となる)
            'MS'
            'H'
               1時間
future_A = model_A.make_future_dataframe(periods=61, freq='D')
future_B = model_B.make_future_dataframe(periods=61, freq='D')
forecast_A = model_A.predict(future_A)
forecast_B = model_B.predict(future_B)
# model.predict 機械学習データが新しいデータに対して予測を行う
forecast_A.tail(61) #最後の61件だけ表示
forecast_B. tail(61)
# yhat予測値(モデルが予測した値)
          モデルが推定した長期的な傾向
# trend
# what lower 圣训储の下限(信頼区間の下限)
```

- # yhat_upper 予測値の上限 (信頼区間の上限)
- # trend_lower トレンドの下限(不確実性含む)
- # trend_upper トレンドの上限 (不確実性含む)
- # trend_lowerとtrend_upperが同じ値→トレンドの不確実性を無視する設定になっている
- # 不確実性を含めたい場合は、model = Prophet(uncertainty_samples=1000)に戻してモデルを再構築する

→		ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_terms	additive_terms_lower	additive_terms_upper	weekly
	5326	2025- 08-01	3.640225	2.596413	8.040388	3.640225	3.640225	1.631041	1.631041	1.631041	1.458880
	5327	2025- 08-02	3.640081	-0.281683	5.038844	3.640081	3.640081	-1.220471	-1.220471	-1.220471	-1.365711
	5328	2025- 08-03	3.639937	-0.607888	5.100431	3.639937	3.639937	-1.560650	-1.560650	-1.560650	-1.677277
	5329	2025- 08-04	3.639793	2.068719	7.757811	3.639793	3.639793	1.265213	1.265213	1.265213	1.178289
	5330	2025- 08-05	3.639649	1.124359	6.430407	3.639649	3.639649	0.196818	0.196818	0.196818	0.140058
	5382	2025- 09-26	3.632154	2.294336	7.873758	3.632154	3.632154	1.513219	1.513219	1.513219	1.458880
	5383	2025- 09-27	3.632010	-0.597507	4.995802	3.632010	3.632010	-1.341420	-1.341420	-1.341420	-1.365711
	5384	2025- 09-28	3.631866	-0.650079	4.766825	3.631866	3.631866	-1.682189	-1.682189	-1.682189	-1.677277
	5385	2025- 09-29	3.631722	2.027153	7.589594	3.631722	3.631722	1.145150	1.145150	1.145150	1.178289
	5386	2025- 09-30	3.631578	0.864031	6.466615	3.631578	3.631578	0.079773	0.079773	0.079773	0.140058

61 rows × 19 columns

#A_8m9m = forecast_A.tail(61)

#A_8m9m.to_excel('A_8m9m.xlsx', index=False)

#B_8m9m = forecast_B.tail(61)

#B_8m9m.to_excel('B_8m9m.xlsx', index=False)

forecast_A[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]

ds 日付

yhat 予測値

yhat_lower 予測値の不確実性区間の下限 # yhat_upper 予測値の不確実性区間の上限

	ds	yhat	yhat_lower	yhat_upper		
0	2011-01-01	4.771003	1.315743	8.888828		
1	2011-01-02	4.497786	0.872777	8.611860		
2	2011-01-03	8.700204	4.916322	12.476041		
3	2011-01-04	7.557236	3.892674	11.232921		
4	2011-01-05	8.034336	4.265965	11.666459		
•••						
5382	2025-09-26	10.562541	7.048573	14.036087		
5383	2025-09-27	5.578538	1.922508	9.299215		
5384	2025-09-28	5.253314	1.306290	8.779826		
5385	2025-09-29	9.762460	6.307267	13.526469		
5386	2025-09-30	8.509428	4.792993	12.292454		
5387 rows × 4 columns						

forecast_B[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]

_							
 +		ds	yhat	yhat_lower	yhat_upper		
	0	2011-01-01	2.503162	-0.148110	5.192209		
	1	2011-01-02	2.126831	-0.719430	5.099950		
	2	2011-01-03	4.922801	2.011105	7.704716		
	3	2011-01-04	3.831209	1.128872	6.504953		
	4	2011-01-05	4.022043	1.228910	6.778066		
				•••	•••		
	5382	2025-09-26	5.145373	2.294336	7.873758		
	5383	2025-09-27	2.290591	-0.597507	4.995802		
	5384	2025-09-28	1.949677	-0.650079	4.766825		
	5385	2025-09-29	4.776872	2.027153	7.589594		
	5386	2025-09-30	3.711351	0.864031	6.466615		
	5387 rows × 4 columns						

fig_forecast_A = model_A. plot(forecast_A) #黒点が実際の値、青ラインが予測モデルによる予測値、水色のエリアが予測値の不確実性区間

fig_forecast_B = model_B.plot(forecast_B) ##黒点が実際の値、青ラインが予測モデルによる予測値、水色のエリアが予測値の不確実性区間

6. 予測の評価

cutoffs いつまでのデータを学習データとするかという期限の日付 # horizon cutoffs翌日以降のテスト期間

#[]はリスト cutoffs = pd.to_datetime(['2019-3-31', '2022-3-31'])

cross_validation関数:交差検証(データを複数回分割して繰り返し評価) from prophet.diagnostics import cross_validation

テスト期間は3年(365×3+1(閏年)) df_cv_A = cross_validation(model_A, horizon = '1096 days', cutoffs=cutoffs) df_cv_B = cross_validation(model_B, horizon = '1096 days', cutoffs=cutoffs)

```
時系列分析-P(パラメータ最適化).ipynb - Colab
 → 100%
                                                                                                                     2/2 [00:01<00:00, 1.67it/s]
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/hj7a8gjw.json
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/s8ynjypo.json
           DEBUG:cmdstanpv:idx 0
           DEBUG:cmdstanpy:running CmdStan, num_threads: None DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.12/dist-packages/prophet/stan_model/prophet_model.bin', 'random', 'seed=12940', 'data', 'tandom', 'seed=12940', 'data', 'dat
            10:25:18 - cmdstanpy - INFO - Chain [1] start processing
           INFO:cmdstanpy:Chain [1] start processing
           10:25:18 - cmdstanpy - INFO - Chain [1] done processing
           INFO:cmdstanpy:Chain [1] done processing
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/hrlpcn51.json
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/wi7rshse.json
           DEBUG:cmdstanpy:idx 0
           DEBUG:cmdstanpy:running CmdStan, num_threads: None
           DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.12/dist-packages/prophet/stan_model/prophet_model.bin', 'random', 'seed=55713', 'data', 'tanana', 'ta
           10:25:18 - cmdstanpy - INFO - Chain [1] start processing
           INFO:cmdstanpy:Chain [1] start processing
           10:25:19 - cmdstanpy - INFO - Chain [1] done processing
           INFO:cmdstanpy:Chain [1] done processing
            100%
                                                                                                                     2/2 [00:01<00:00, 1.85it/s]
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/aykgw6ln.json
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/n_n15h7f.json
           DEBUG:cmdstanpy:idx 0
           DEBUG:cmdstanpy:running CmdStan, num_threads: None
           DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.12/dist-packages/prophet/stan_model/prophet_model.bin', 'random', 'seed=55229', 'data', '10:25:19 - cmdstanpy - INFO - Chain [1] start processing
            INFO:cmdstanpy:Chain [1] start processing
            10:25:19 - cmdstanpy - INFO - Chain [1] done processing
           INFO:cmdstanpy:Chain [1] done processing
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/hdpqfwbt.json
           DEBUG:cmdstanpy:input tempfile: /tmp/tmp6076q_lq/0vkc_vly.json
           DEBUG:cmdstanpy:idx 0
           DEBUG:cmdstanpy:running CmdStan, num_threads: None
           DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.12/dist-packages/prophet/stan_model/prophet_model.bin', 'random', 'seed=3280', 'data', 'f
           10:25:20 - cmdstanpy - INFO - Chain [1] start processing
           INFO:cmdstanpy:Chain [1] start processing
           10:25:20 - cmdstanpy - INFO - Chain [1] done processing
           INFO:cmdstanpy:Chain [1] done processing
df_cv_A
 \overline{2}
                                                                                                                                                                     ds
                                                               yhat yhat_lower yhat_upper
                                                                                                                                у
                                                                                                                                                cutoff
                           2019-04-01 8.175548
                                                                               4.588249
                                                                                                     11.924366
                                                                                                                                8 2019-03-31
                 0
                 1
                            2019-04-02 7.093238
                                                                               3.505297
                                                                                                      10.892336
                                                                                                                                6
                                                                                                                                      2019-03-31
                 2
                           2019-04-03 7.520421
                                                                              3.675735
                                                                                                     11.015482
                                                                                                                               7 2019-03-31
                 3
                           2019-04-04 6.537911
                                                                               2.755924
                                                                                                      10.208628 10
                                                                                                                                      2019-03-31
                 4
                            2019-04-05 8.734026
                                                                               5.058281
                                                                                                     12.449783
                                                                                                                               5 2019-03-31
              2187
                          2025-03-27 5.717665
                                                                               1.901322
                                                                                                        9.453998
                                                                                                                                4 2022-03-31
              2188
                          2025-03-28 7.841230
                                                                               4.107350
                                                                                                      11.732462
                                                                                                                                8 2022-03-31
              2189
                          2025-03-29 3.741645
                                                                              -0.040484
                                                                                                        7.179852
                                                                                                                                2 2022-03-31
              2190 2025-03-30 3.563479
                                                                              -0.340347
                                                                                                        7.138551
                                                                                                                                3 2022-03-31
              2191 2025-03-31 7.313059
                                                                              3.595277 10.869718
                                                                                                                               8 2022-03-31
           2192 rows \times 6 columns
   次のステップ: (df_cv_A を使用してコードを生成)
                                                                                                        ( ● 推奨プロットの表示
                                                                                                                                                                  New interactive sheet
# 評価指標を算出
from prophet.diagnostics import performance_metrics
df p A = performance metrics(df cv A)
df_p_B = performance_metrics(df_cv_B)
df p A. head()
# mse
                       平均二乗誤差(誤差が大きいほど、指標の値も大きい。値が小さいほど良いモデル)
                        二乗平均平方根誤差( // )
# rmse
# mae
                       平均絶対誤差(〃)
                       平均絶対パーセント誤差( // )
# mape
                        メディアン絶対パーセント誤差(#)
# mdape
                       対称平均絶対パーセント誤差(〃)
# smane
```

coverage 不確実性区間に予測値が含まれている割合

INFO:prophet:Skipping MAPE because y close to 0 INFO:prophet:Skipping MAPE because y close to 0

The optophic on the first product of the contract of the contr									
	horizon	mse	rmse	mae	mdape	smape	coverage		
0	110 days	7.957308	2.820870	2.252620	0.275526	0.366910	0.808219	th	
1	111 days	7.991932	2.827001	2.261051	0.275526	0.367067	0.808219		
2	112 days	8.021933	2.832302	2.266910	0.279740	0.366150	0.808219		
3	113 days	8.052872	2.837758	2.270193	0.275526	0.365910	0.803653		
4	114 days	8.014705	2.831025	2.260828	0.275526	0.366480	0.805936		

実際の値と予測値の平均二乗誤差であるmseの推移を可視化(horizon:テストデータ区間) sns.lineplot(x='horizon', y='mse', data=df_p_A) sns.lineplot(x='horizon', y='mse', data=df_p_B)

不確実性区間に予測値が含まれている割合であるcoverageを推移を可視化(テストデータ区間) sns.lineplot(x='horizon', y='coverage', data=df_p_A) sns.lineplot(x='horizon', y='coverage', data=df_p_B)

horizon

補足:予測モデルの構成要素の確認

print(df_A['ds'].min(), df_A['ds'].max())

⋽ 2011-01-01 00:00:00 2025-07-31 00:00:00

1e16

長期トレンド (上側の図) と年間の周期変動 (下側の図) fig_components_A = model_A.plot_components(forecast_A) fig_components_B = model_B.plot_components(forecast_B)