RELATÓRIO FINAL

INFÂNCIA EM TEMPOS DE PANDEMIA: EXPERIÊNCIAS DE CRIANÇAS 8 A 12 ANOS DURANTE O ISOLAMENTO SOCIAL EM DIFERENTES CONTEXTOS

Trabalho de consultoria realizado no contexto da ação de extensão da Universidade Federal da Bahia com título *Consultoria Estatística*.

ELABORADO POR

GILBERTO PEREIRA SASSI

UFBA
Universidade
Federal da Bahia

2021

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

Sumário

1	Intr	odução	2
2	Mat	terias e Métodos	2
	2.1	Teste qui-quadrado	2
		2.1.1 Exemplo de associação entre duas variáveis qualitativas	3
		2.1.2 Exemplo de não associação entre duas variáveis qualitativas	4
		2.1.3 Teste qui-quadrado	5
	2.2	Teste Kruskal-Wallis	6
	2.3	Teste de comparação múltipla de Nemeyi	6
	2.4	Arquivos suplementares	7
3	Resi	ultados	8
	3.1	Q12	9
		3.1.1 Análise descritiva para Q12	9
		3.1.2 Análise bidimensional para Q12	10
		3.1.3 Análise descritiva para Q13	
		3.1.4 Análise bidimensional para Q13	
Re	eferên	ıcias	41

1 Introdução

Este relatório apresenta os resultados da análise estatística do conjunto de dados referente à seguinte consultoria:

- Consulentes: Profa. Dra. Juliana Prates Santana IPS/UFBA, e Profa. Dra. Adriana Ferriz IPS/UFBA;
- **Título do projeto:** Infância em tempos de Pandemia: Experiências de crianças 8 a 12 anos durante o isolamento social em diferentes contextos.

O projeto tem o objetivo de analisar a percepção de crianças durante a pandemia de COVID-19 na região metropolitana de Salvador. As Consulentes solicitaram apoio para realizar comparações de médias de algumas escalas Likert. Mais especificamente, as consulentes desejam avaliar a influência das seguintes variáveis categóricas:

- i. Idade
- ii. Tipo de escola
- iii. Gênero
- iv. Raça
- v. Cidades

nas seguintes variáveis que forem mensuradas como uma escala Likert:

- i. Questão 12)
- ii. Questão 13)
- iii. Questão 14)
- iv. Questão 15)
- v. Questão 16)
- vi. Questão 17)
- vii. Questão 18)
- viii. Questão 23)
- ix. Questão 29)

2 Materias e Métodos

Começamos com uma análise descritiva de cada uma das variáveis de interesse, para depois passar para uma análise bidimensional. Na análise descritiva usamos medidas de posição e dispersão para variáveis mensuradas como uma escala Likert e tabela de distribuição de frequências para variáveis categóricas. Além disso, usamos o teste de associação qui-quadrado, o teste Kruskal-Wallis para comparar medianas e o teste de comparações múltiplas de Nemeyi. Neste projeto usamos a linguagem R (R Core Team 2021). Para detalhes de estística descritiva, recomendamos a leitura de Bussab and Morettin (2002). A seguir vamos apresentar detalhes metodológicos sobre o teste de associação qui-quadrado, o teste de Kruskal-Wallis para comparar medianas e o teste de comparações múltiplas de Nemeyi.

2.1 Teste qui-quadrado

Vamos começar definindo o que entendemos por associação entre duas variáveis. Considere duas variáveis qualitativas X e Y com

- valores possíveis de $X: A_1, A_2, \ldots, A_r$,
- valores possíveis de $Y: B_1, B_2, \ldots, B_s$.

Suponha que f_i % da população de todos docentes tem valor de X igual A_i . Então,

- 1. dizemos que X e Y estão associados se, ao descobrirmos ou conhecermos que o valor de Y é B_j , **alteramos** o valor de $f_i\%$;
- 2. dizemos que X e Y não estão associados se, ao descobrirmos ou conhecermos que o valor de Y é B_j , não alteramos o valor de $f_i\%$;

Para verificar se duas variáveis qualitativas estão associadas usando uma amostra, começamos construindo a tabela de contingência que mostra a frequência da variáveis X ao longo da variávei Y, conforme ilustrado na Tabela 1.

Tabela 1: Tabela de contingência para as variáveis X e Y.

		Valores possíveis de X					
		B_1	B_2	B_3		B_s	Total
	A_1	n_{11}	n_{12}	n_{13}		n_{1s}	n_1 .
	A_2	n_{21}	n_{22}	n_{23}	• • •	n_{2s}	n_2 .
Valores possíveis de Y	A_3	n_{31}	n_{32}	n_{33}	• • •	n_{3s}	n_3 .
	÷	:	÷	÷	٠	÷	:
	A_r	n_{r1}	n_{r2}	n_{r3}	• • •	n_{rs}	n_r .
	Total	$n_{\cdot 1}$	$n_{\cdot 2}$	$n_{\cdot 3}$		$n_{\cdot s}$	n

em que n_{ij} é o número de docentes que tem valor de X igual a $A_i, i=1,\ldots,r$ e tem valor de Y igual a $B_j, j=1,\ldots,s$; n_i é o número de docentes que tem valor de X igual a $A_i, i=1,\ldots,r$; $n_{ij}, j=1,\ldots,s$ é o número de docentes que tem valor de Y igual a $B_j, j=1,\ldots,s$; e n_i é o tamanho da amostra. Para verificar se duas variáveis estão associadas, podemos calcular a frequência relativa por colunas (ou por linhas), conforme ilustrado na Tabela 2.

Tabela 2: Frequência relativa por coluna da tabela de contingência para as variáveis X e Y.

STELLER CENTRAL CENTRAL							
		B_1	B_2	B_3		B_s	Total
June June	A_1	$\frac{n_{11}}{n \cdot 1}$	$\frac{n_{12}}{n_{\cdot 2}}$	$\frac{n_{13}}{n_{\cdot 3}}$		$\frac{n_{1s}}{n_{\cdot s}}$	$\frac{n_1}{n_{\cdot \cdot}}$
	A_2	$\frac{n_{21}}{n_{.1}}$	$\frac{n_{22}}{n_{\cdot 2}}$	$\frac{n_{23}}{n_{\cdot 3}}$	• • •	$\frac{n_{2s}}{n_{\cdot s}}$	$\frac{n_2.}{n_{\cdot \cdot \cdot}}$
Valores possíveis de Y	A_3	$\frac{n_{31}}{n_{.1}}$	$\frac{n_{32}}{n_{.2}}$	$\frac{n_{33}}{n_{\cdot 3}}$		$\frac{n_{3s}}{n_{\cdot s}}$	$\frac{n_3}{n_{\cdot \cdot}}$
	:	:	:	:	٠.	:	:
	:	:	:	:	•	:	:
	A_r	$\frac{n_{r1}}{n_{\cdot 1}}$	$\frac{n_{r2}}{n_{\cdot 2}}$	$\frac{n_{r3}}{n_{\cdot 3}}$	• • •	$\frac{n_{rs}}{n_{\cdot s}}$	$\frac{n_r}{n_{\cdot\cdot\cdot}}$
	Total	$\frac{n_{\cdot 1}}{n_{\cdot 1}} = 1$	$\frac{n_{\cdot 2}}{n_{\cdot 2}} = 1$	$\frac{n_{\cdot 3}}{n_{\cdot 3}} = 1$		$\frac{n_{\cdot s}}{n_{\cdot s}} = 1$	$\frac{n_{\cdot\cdot}}{n_{\cdot\cdot}}=1$

Se X e Y não estão associadas, então, para cada linha $i, i = 1, \dots, r$ da Tabela 2, temos que

$$\frac{n_{ij}}{n_{\cdot j}} = \frac{n_{i\cdot}}{n_{\cdot \cdot}}, i = 1, \dots, r,$$
 (1)

e podemos analisar essas igualdades usando um gráfico de barras e usando o teste qui-quadrado, como explicaremos a seguir.

Para ilustrar a associação e a não associção entre duas variáveis qualitativas, vamos considerar dois exemplos didáticos que podem ser encontrados no livro de Barbetta (2008).

2.1.1 Exemplo de associação entre duas variáveis qualitativas

Para ilustração vamos estudar um exempo de não associação hipotético do livro Barbetta (2008). Imagine que um pesquisador está interessado em estudar a associação entre câncer e o tabagismo em uma amostra com 300 indivíduos e obteve a tabela de contingência mostrada na Tabela 3. A variável câncer tem duas categorias: sim (a pessoa teve ou tem câncer); não (a pessoa não teve nem tem câncer). A variável tabagismo tem duas categorias: fumante (a pessoa tem o hábito de fumar); não-fumante (a pessoa não tem hábito de fumar).

Tabela 3: Tabela de distribuição de frequência entre Câncer e Tabagismo.

	Câncer		
Tabagismo	Não	Sim	Total
Não-Fumante	200	0	200
Fumante	0	100	100
Total	200	100	300

Calculando a frequência relativa por linha na Tabela 3, obtemos as frequências relativas da Tabela 4.

Tabela 4: Tabela de distribuição de frequência relativa ao total das linhas.

	Cânce		
Tabagismo (X)	Não	Sim	Total
Não-Fumante	$\frac{200}{200} \cdot 100 = 100\%$	$\frac{0}{200} \cdot 100 = 0\%$	$\frac{200}{200} \cdot 100 = 100\%$
Fumante	$\frac{0}{100} \cdot 100 = 0\%$	$\frac{100}{100} \cdot 100 = 100\%$	$\begin{array}{ c c }\hline \frac{100}{100} \cdot 100 = 100\%\\ \hline \frac{100}{100} \cdot 100 = 100\%\\ \hline \end{array}$
Total	$\frac{200}{300} \cdot 100 = 66,67\%$	$\frac{100}{300} \cdot 100 = 33,33\%$	$\frac{300}{300} \cdot 100 = 100\%$

Na Tabela 4, notamos que os valores destacados em vermelho, azul e marrom são diferentes. Se não sabemos o valor da variável tabagismo de um indivíduo, dizemos que ele tem aproximadamente 33% de probabilidade de ter câncer (conforme destacado em vermelhado). Contudo, ao descobrir / revelar / conhecer o valor da variável tabagismo, essa probabilidade muda. Mais precisamente, se descobrirmos que a pessoa fuma (tabagismo = fumante) então a probabilidade da pessoa ter cancer é aproximadamente 100%, e se descobrirmos que a pessoa não fuma (tabagismo = não-fumante) então a probabildade da pessoa ter câncer é aproximadamente 0%. Ou seja, conhecer o valor tabagismo para uma pessoa muda, ou altera, as probabilidades dos valores de câncer, e então dizemos as duas variáveis qualitativas estão associadas. Geralmente, é conveniente representar a Tabela 4 usando gráfico de barras conforme ilustrado na Figura 1. Note que na Figura 1, as duas barras são diferentes. De uma forma geral, se as barras iguais indicam uma não associação entre as variáveis qualitativas e barras diferentes indicam uma associação entre as variáveis qualitativas.

2.1.2 Exemplo de não associação entre duas variáveis qualitativas

Para ilustração vamos estudar um exempo de não associação hipotético do livro Barbetta (2008). Imagine que um pesquisador está interessado em estudar a associação entre as variáveis qualitativas gênero e tabagismo em uma amostra de 300 pessoas e obteve a tabela de contingência da Tabela 5. A variável gênero tem duas categorias: masculino (a pessoa se identifica com o gênero masculino) e feminino (a pessoa se identifica com o gênero feminino). A variável tabagismo tem duas categorias: fumante (a pessoa tem o hábito de fumar) e não-fumante (a pessoa não tem o hábito de fumar).

Tabela 5: Tabela de contingência para as Gênero e Tabagismo.

	Gen		
Tabagismo	Masculino	Feminino	Total
Não-Fumante	80	40	120
Fumante	120	60	180
Total	200	100	300

Calculando a frequência relativa por linha na Tabela 5, obtemos as frequências relativas da Tabela 6.

Na Tabela 6, notamos que os valores destacados em vermelho, azul e marrom são iguais. Se não sabemos o valor da variável gênero de um indivíduo, dizemos que uma pessoa tem aproximadamente 40% de probabilidade de ser fumante

TT 1 1 (TD 1 1 1	1 1' ' '1 ' ~	1 (· ·	1	1	1 1
Tabela b.	Tabela d	le distribuicão	i de trec	mencia.	relativa	ao total	das collinas
rabera o.	rabera c	ie aistituaiçue	de me	Jucifera	reiutiva	uo totui	aus corunas.

	Gêr		
Tabagismo	Homem	Mulher	Total
Não-Fumante	$\frac{80}{200} \cdot 100 = 40\%$	$\frac{40}{100} \cdot 100 = 40\%$	$\frac{120}{300} \cdot 100 = 40\%$
Fumante	$\frac{120}{200} \cdot 100 = 60\%$	$\frac{60}{100} \cdot 100 = 40\%$	$\frac{180}{300} \cdot 100 = 60\%$
Total	$\frac{200}{200} \cdot 100 = 100\%$	$\frac{100}{100} \cdot 100 = 100\%$	$\frac{300}{300} \cdot 100 = 100\%$

(conforme destacado em vermelhado). Contudo, ao descobrir / revelar / conhecer o valor da variável gênero, essa probabilidade permanece idêntica. Mais precisamente, se descobrirmos que a pessoa se identifica com o gênero feminino (gênero = feminino) então a probabilidade da pessoa fumar é aproximadamente 40% (cor azul), e se descobrirmos que a pessoa se identifica com o gênero masculino (gênero = masculino) então a probabilidade da pessoa fumar também é aproximadamente 40% (cor marrom). Ou seja, conhecer o valor gênero para uma pessoa não muda nem se altera as probabilidades dos valores de tabagismo, e então dizemos as duas variáveis qualitativas não estão associadas. Isto é, conhecer o valor da variável gênero não nos ajuda a descobrir ou determinar o valor (ou a probabilidade dos valores) da variável tabagismo. Geralmente, é conveniente representar a Tabela 6 usando gráfico de barras conforme ilustrado na Figura 2. Note que na Figura 2, as duas barras são idênticas. De uma forma geral, se as barras iguais indicam uma não associação entre as variáveis qualitativas e barras diferentes indicam uma associação entre as variáveis qualitativas.

Figura 2: Não associação entre Gênero e Tabagismo.

2.1.3 Teste qui-quadrado

O teste qui-quadrado é geralmente usado para checar a associação entre duas variáveis qualitativas. Considere as variáveis X e Y duas variáveis qualitativas da Tabela 1, então, como já comentamos, se X e Y não são associadas temos que

$$n_{ij} = \frac{n_i \cdot n_{\cdot j}}{n_{\cdot \cdot}} = \frac{\text{total da linha } i \cdot \text{total da colunha } j}{\text{tamanho da amostra}}, \tag{2}$$

em que n_i . é o total da linha que corresponde ao valor A_i na Tabela 1, $n_{\cdot j}$ é o total da colunha que corresponde ao valor B_j na Tabela 1, e $n_{\cdot i}$ é o tamanho da amostra.

Quando coletamos uma amostra não sabemos se duas variáveis estão associadas. Então, calculamos a expressão do lado direito da equação (2)

$$e_{ij} = \frac{\text{total da linha } i \cdot \text{total da colunha } j}{\text{tamanho da amostra}}$$

e comparamos com o valor n_{ij} que obtemos da amostra. Chamamos e_{ij} de valor frequência esperada e n_{ij} de valor de frequência observada. Se as frequências esperadas e as frequência observadas forem iguais (ou estiverem próximas), podemos concluir que X e Y não estão associadas. Ou seja, se as distâncias padronizadas $\frac{(e_{ij}-n_{ij})^2}{e_{ij}}$ entre e_{ij} e n_{ij} forem pequenas, então X e Y não estão associadas. Estas distâncias padronizadas são não-negativas, então X e Y não estão

associadas se, e somente se, a soma de todas estas distâncias $\frac{(e_{ij}-n_{ij})^2}{e_{ij}}$ são pequenas. Consequentemente, se

$$\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(e_{ij} - n_{ij})^2}{e_{ij}},$$

for pequeno, então X e Y não estão associadas.

Para saber se χ^2_0 é pequeno ou grande, comparamos χ^2_0 o valor de quantil da distribuição qui-quadrado com (r-1)(s-1) graus de liberdade (vide Montgomery and Runger 2010 para detalhes). Mais precisamente, queremos decidir entre as duas hipóteses científicas

 H_0 = as duas variáveis qualitativas não estão associadas,

 H_1 = as duas variáveis qualitativas estão associadas,

e para isso fixamos o nível de significância α , calculamos o valor-p p e rejeitamos H_0 se $p < \alpha$ (vide Spiegel et al. 2001 para detalhes sobre valor-p). Neste relatório, vamos usar o nível de significânica $\alpha = 0,05$.

2.2 Teste Kruskal-Wallis

Usamos o Teste Kruskal-Wallis para comparar populações através da mediana e adequado para populações onde não é adequado assumir a distribuição normal, como é caso escalas Likert. Neste teste, supomos que temos $j, \quad j=1,\ldots,k$ populações e para cada população j temos coletamos uma amostra de tamanho n_j , ou seja, a amostra completa tem $N=n_1+\cdots+n_k$ crianças. Seja X_{ij} é a resposta da criança i da população j, então

$$X_{ij} = \theta + \tau_j + \epsilon_{ij}, \qquad j = 1, \dots, k, \qquad i = 1, \dots, n_j,$$

onde θ é a mediana da amostra completa, τ_j é o efeito do j-ésimo tratamento da população e ϵ_{ij} são erros aleatórios com mediana igual a zero, e queremos decidir entre duas hipóteses

$$H_0: \tau_1 = \tau_2 = \cdots = \tau_i,$$

 $H_1: au_1, au_2,\ldots, au_j$ não são todos iguais.

e para isso fixamos o nível de significância α , calculamos o valor-p p e rejeitamos H_0 se $p < \alpha$ (vide Spiegel et al. 2001 para detalhes sobre valor-p). Neste relatório, vamos usar o nível de significânica $\alpha = 0,05$.

Para detalhes sobre o teste Kruskal-Wallis, recomendo a leitura de Hollander, Wolfe, and Chicken (2013).

2.3 Teste de comparação múltipla de Nemeyi

O teste de Nemeyi (Nemenyi 1963) é teste *posthoc* de comparação múltipla que pode ser usada para identificar quais grupos tem medianas diferentes populações se o teste de Kruskal-Wallis indica que as populações tem medianas diferentes. O teste consiste em realizar comparações em pares para identificar quais populações tem medianas diferentes.

O número de comparações de medianas realizadas é $\frac{k(k-1)}{2}$, e o teste foi construído em soma de postos e na aplicação do método *family-wise-error* para controlar a inflação do erro tipo I se várias comparações forem feitas. E para cada par de populações queremos decidir entre as hipóteses:

$$H_0: m_l = m_j$$

$$H_1: m_l \neq m_i$$

onde m_l é a mediana da população l e m_j é a mediana da população j. Para decidirmos entre estas hipóteses, fixamos o nível de significância α , calculamos o valor-p p e rejeitamos H_0 se $p < \alpha$ (vide Spiegel et al. 2001 para detalhes sobre valor-p). Neste relatório, vamos usar o nível de significância $\alpha = 0,05$.

Para detalhes sobre o teste de comparação múltipla de Nemeyi, recomendo a leitura da vinheta do pacote da liguagem Pohlert (2014).

2.4 Arquivos suplementares

Para facilitar a redação de relatórios e artigos pelas consulentes, coloco em anexo os seguintes arquivos:

- output.zip: este arquivo contém o sequintes diretórios
 - kruskal_wallis_test: diretório com arquivos .csv e .xlsx com os testes Kruskal-Wallis
 - medidas_resumos_bidimensional: diretório com arquivos .csv e .xlsx com medidas de resumo calculas de cada grupo de uma variável categórica
 - medidas_resumos_unidimensional: diretório com arquivos .csv e .xlsx com medidas de resumo para cada uma das variáveis neste relatório
 - nemenyi_tests: diretório com arquivos .csv e .xlsx com os valores-p do teste de comparação múltipla de Nemeyi
 - tabela_contingencia: diretório com arquivos .csv e .xlsx com as tabelas de contingências
 - tabela_distribuicao: diretório com arquivos .csv e .xlsx com as tabelas de distribuições de frequências para as variáveis categóricas
 - teste_qui_quadrado: diretório com arquivos .csv e .xlsx com os testes qui-quadrado
- figuras.zip: este arquivo contém os seguintes diretórios:
 - boxplot_bidimensional: diretório com figuras nos formatos .png e .pdf com o diagrama de caixa
 (boxplot) de cada grupo da variável categórica
 - grafico_barra_bidimensional: diretório com figuras nos formatos .png e .pdf com gráfico de barras para duas variáveis categóricas
 - grafico_barra_unidimensional: diretório com figuras nos formatos .png e .pdf com gráfico de barras para cada variável categórica

Universidade Federal da Bahia

3 Resultados

Dividimos esta seção em duas partes. Começamos com a análise descritiva para as seguintes variávies categóricas:

- i. Idade
- ii. Tipo de escola
- iii. Gênero
- iv. Raça
- v. Cidades

Nesta parte, apresentamos as tabelas de distribuição de frequências e o gráfico de barras sem comentários adicionais. Em seguida, comparamos as escalas de Likert por cada grupo especificado pelas variáveis categóricas elencadas acima. Nesta última parte, também seremos lacônicos, pois este relator acredita que as consulentes são qualificadas para dar uma interpretação adequada aos resultados dos métodos estatísticos.

3.1 Q12

A variável Q12 corresponde a questão 13 com enunciado **No início da pandemia de coronavírus, o quanto você se preocupou com as questões abaixo:** no quesito:

• Que demorasse muito para eu voltar à escola?

3.1.1 Análise descritiva para Q12

3.1.1.1 Gráfico de barras: Q12

3.1.1.2 Tabela de distribuição: Q12

Tabela 7: Você está preocupado que demorasse muito para eu voltar à escola?

08 Q12	Frequência	Frequência relativa	Porcentagem
Pouca preocupação	430	0,41	40,95
Muita preocupação	389	0,37	37,05
Sem preocupação	204	0,19	19,43
Sem resposta	27	0,03	2,57

3.1.1.3 Medidas de resumo: Q12

Tabela 8: Resumos para variável Q12.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,23	0,79	1	1	2

3.1.2 Análise bidimensional para Q12

3.1.2.1 Tabela de contingência: Cidade e Q12

Tabela 9: Tabela de contingência: Cidade e Q12.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	87	82	22	6
Candeias	16	13	8	1
Lauro de Freitas	16	26	19	
Outros	33	35	15	
Pojuca	25	33	6	
Salvador	204	225	125	19
Simões Filho	8	16	9	1

3.1.2.2 Gráfico de barras: Cidade e Q12

Aparentemente as duas variáveis Cidade e Q12 estão associadas.

3.1.2.3 Teste qui-quadrado

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 10: Teste qui-quadrado entre Cidade e Q12.

Estatística	Graus de liberdade	Valor-p
34,11	18	0,01

3.1.2.4 Medidas de Resumo Q12 por Cidade

Tabela 11: Medidas de resumo de Q12 por Cidade.

Q12	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,39	0,72	1	1,00	2,00
Candeias	1,26	0,83	1	1,00	2,00
Lauro de Freitas	0,95	0,76	1	0,00	2,00
Outros	1,22	0,73	1	1,00	2,00
Pojuca	1,30	0,63	1	1,00	2,00
Salvador	1,20	0,82	1	1,00	2,00
Simões Filho	1,03	0,80	1	0,25	1,75

3.1.2.5 Boxplot de Q12 por Cidade

3.1.2.6 Teste de Kruskal-Wallis de Q12 por Cidade

Como o valor-p é menor que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre as crianças de diversas cidades são diferentes.

Tabela 12: Valores-p para comparação múltipla de medianas: Q12 e Cidade.

Estatística	Parâmetro	valor p
19,08	6	0

3.1.2.7 Teste de Nemeyi de Q12 por Cidade

As medianas de Lauro de Freitas de Q12 e Cidade são diferentes, pois o valor-p p=0,01 para este par é menor que $\alpha=0,05$.

Tabela 13: Teste de Nemeyi de Q12 por Cidade.

	Camaçari	Candeias	Lauro de Freitas	Outros	Pojuca	Salvador
Candeias	0,99					
Lauro de Freitas	0,01	0,54				
Outros	0,76	1,00	0,48			
Pojuca	0,99	1,00	0,27	1,00		
Salvador	0,10	1,00	0,31	1,00	0,98	
Simões Filho	0,21	0,86	1,00	0,89	0,72	0,88

Universidade Federal da Bahia

3.1.2.8 Tabela de contingência: Gênero e Q12

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 14: Tabela de contingência: Gênero e Q12.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	213	214	100	14
Menino	173	214	103	13

3.1.2.9 Gráfico de barras: Gênero e Q12

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q12 não estão associadas.

3.1.2.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 15: Teste qui-quadrado entre Gênero e Q12.

Estatística	Graus de liberdade	Valor-p
2,85	3	0,42

3.1.2.11 Medidas de Resumo Q12 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 16: Medidas de resumo de Q12 por Gênero.

Q12	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,26	0,78	1	1	2
Menino	1,19	0,79	1	1	2

3.1.2.12 Boxplot de Q12 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.1.2.13 Teste de Kruskal-Wallis de Q12 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre os meninos e as meninas são iguais.

Tabela 17: Valores-p para comparação múltipla de medianas: Q12 e Gênero.

Estatística	Parâmetro	valor p
2,31	1	0,13

3.1.2.14 Teste de Nemeyi de Q12 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre os meninos e as meninas são iguais.

Tabela 18: Teste de Nemeyi de Q12 por Gênero.

	Menina
Menino	0,15

3.1.2.15 Tabela de contingência: Idade e Q12

Tabela 19: Tabela de contingência: Idade e Q12.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	69	78	41	7
9	72	82	31	1
10	101	98	41	10
11	79	106	50	5
12	68	66	41	4

3.1.2.16 Gráfico de barras: Idade e Q12

Aparentemente as duas variáveis Idade e Q12 não estão associadas.

3.1.2.17 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 20: Teste qui-quadrado entre Idade e Q12.

Estatística	Graus de liberdade	Valor-p
13,79	12	0,31

3.1.2.18 Medidas de Resumo Q12 por Idade

Tabela 21: Medidas de resumo de Q12 por Idade.

Q12	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,22	0,82	1	1	2
9	1,23	0,72	1	1	2
10	1,32	0,79	1	1	2
11	1,16	0,77	1	1	2
12	1,20	0,81	1	1	2

3.1.2.19 Boxplot de Q12 por Idade

3.1.2.20 Teste de Kruskal-Wallis de Q12 por Idade

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q12 de cada idade são iguais.

Tabela 22: Valores-p para comparação múltipla de medianas: Q12 e Idade.

Estatística	Parâmetro	valor p
4,11	4	0,39

3.1.2.21 Teste de Nemeyi de Q12 por Idade

Os valores-p são todos maiores que $\alpha=0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 23: Teste de Nemeyi de Q12 por Idade.

	8	9	10	11
9	1,00			
10	0,69	0,86		

	8	9	10	11
11	0,97	0,89	0,24	
12	1,00	1,00	0,63	0,99

URBA Universidade Federal da Bahia

3.1.2.22 Tabela de contingência: Raça e Q12

Tabela 24: Tabela de contingência: Raça e Q12.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	8	7	3	1
Branca	77	86	47	3
Indígena	8	10	2	1
Negra	277	311	140	21
Outros	8	6	2	
Sem resposta	11	10	10	1

3.1.2.23 Gráfico de barras: Raça e Q12

Aparentemente as duas variáveis Raça e Q12 não estão associadas.

3.1.2.24 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 25: Teste qui-quadrado entre raca e Q12.

Estatística	Graus de liberdade	Valor-p
9,65	15	0,84

3.1.2.25 Medidas de Resumo Q12 por Raça

Tabela 26: Medidas de resumo de Q12 por raca.

Q12	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,37	0,83	1,0	1	2
Branca	1,17	0,78	1,0	1	2
Indígena	1,38	0,74	1,0	1	2
Negra	1,24	0,78	1,0	1	2
Outros	1,38	0,72	1,5	1	2
Sem resposta	1,09	0,89	1,0	0	2

3.1.2.26 Boxplot de Q12 por Raça

3.1.2.27 Teste de Kruskal-Wallis de Q12 por Raça

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre as crianças de diversas raças são iguais.

Tabela 27: Valores-p para comparação múltipla de medianas: Q12 e Raça.

Estatística	Parâmetro	valor p
3,8	5	0,58

3.1.2.28 Teste de Nemeyi de Q12 por Raça

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre as crianças de diversas raças são iguais.

Tabela 28: Teste de Nemeyi de Q12 por Raça.

	Amarela	Branca	Indígena	Negra	Outros
Branca	0,94				
Indígena	1,00	0,92			
Negra	0,99	0,93	0,98		
Outros	1,00	0,92	1,00	0,98	
Sem resposta	0,89	1,00	0,88	0,95	0,87

Universidade Federal da Bahia

3.1.2.29 Tabela de contingência: Tipo de escola e Q12

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 29: Tabela de contingência: Tipo de escola e Q12.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	199	240	139	12
Pública	190	187	61	15

3.1.2.30 Gráfico de barras: Tipo de escola e Q12

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q12 não estão associadas.

3.1.2.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 30: Teste qui-quadrado entre Escola e Q12.

Estatística	Graus de liberdade	Valor-p
19,89	3	0

3.1.2.32 Medidas de Resumo Q12 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 31: Medidas de resumo de Q12 por Escola.

Q12	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	1,14	0,80	1	1	2
Pública	1,35	0,75	1	1	2

3.1.2.33 Boxplot de Q12 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.1.2.34 Teste de Kruskal-Wallis de Q12 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q12 entre as escolas particulares e públicas são diferentes.

Tabela 32: Valores-p para comparação múltipla de medianas: Q12 e Tipo de escola.

Estatística	Parâmetro	valor p
11,54	1	0

3.1.2.35 Teste de Nemeyi de Q12 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, rejeitamos H_0 e as medianas de Q12 entre as escolas particulares e públicas são diferentes.

Tabela 33: Teste de Nemeyi de Q12 por Escola.

	Particula
Pública	0

3.1.3 Análise descritiva para Q13

3.1.3.1 Gráfico de barras: Q13

3.1.3.2 Tabela de distribuição: Q12

Tabela 34: Que demorasse muito para eu encontrar meus amigos?

Q13	Frequência	Frequência relativa	Porcentagem
Muita preocupação	441	0,42	42,00
Pouca preocupação	418	0,40	39,81
Sem preocupação	161	0,15	15,33
Sem resposta	30	0,03	2,86

3.1.3.3 Medidas de resumo: Q12

Tabela 35: Resumos para variável Q13.

Média	Desvio Padrão	Mediana	1Qua	3Qua
1,32	0,76	1	1	2

3.1.4 Análise bidimensional para Q13

3.1.4.1 Tabela de contingência: Cidade e Q13

Tabela 36: Tabela de contingência: Cidade e Q13.

Cidade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Camaçari	81	79	27	10
Candeias	19	14	5	
Lauro de Freitas	21	28	12	
Outros	35	32	16	
Pojuca	23	31	8	2
Salvador	249	223	84	17
Simões Filho	13	11	9	1

3.1.4.2 Gráfico de barras: Cidade e Q13

Aparentemente as duas variáveis Cidade e Q13 não estão associadas.

3.1.4.3 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 37: Teste qui-quadrado entre Cidade e Q13.

Estatística	Graus de liberdade	Valor-p
18,83	18	0,4

3.1.4.4 Medidas de Resumo Q13 por Cidade

Tabela 38: Medidas de resumo de Q13 por Cidade.

Q13	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Camaçari	1,38	0,78	1,0	1,00	2
Candeias	1,37	0,71	1,5	1,00	2
Lauro de Freitas	1,15	0,73	1,0	1,00	2
Outros	1,23	0,75	1,0	1,00	2
Pojuca	1,30	0,73	1,0	1,00	2
Salvador	1,35	0,76	1,0	1,00	2
Simões Filho	1,18	0,87	1,0	0,25	2

3.1.4.5 Boxplot de Q13 por Cidade

3.1.4.6 Teste de Kruskal-Wallis de Q13 por Cidade

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q13 entre as crianças de diversas cidades são iguais.

Tabela 39: Valores-p para comparação múltipla de medianas: Q13 e Cidade.

Estatística	Parâmetro	valor p
6,71	6	0,35

3.1.4.7 Teste de Nemeyi de Q13 por Cidade

Como os valores-p são maiores que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre as crianças de diversas cidades são iguais.

Tabela 40: Teste de Nemeyi de Q13 por Cidade.

Amarela	Branca	Indígena	Negra	Outros
1,00				
1,00	1,00			
1,00	1,00	1,00		
0,98	0,89	0,96	0,93	
0,98	0,95	0,99	0,88	0,69
	1,00 1,00 1,00 0,98	1,00 1,00 1,00 1,00 1,00 0,98 0,89	1,00 1,00 1,00 1,00 1,00 1,00 0,98 0,89 0,96	1,00 1,00 1,00 1,00 1,00 0,98 0,89 0,96 0,93

Universidade Federal da Bahia

3.1.4.8 Tabela de contingência: Gênero e Q13

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 41: Tabela de contingência: Gênero e Q13.

Gênero	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Menina	226	210	87	18
Menino	212	208	72	11

3.1.4.9 Gráfico de barras: Gênero e Q13

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Aparentemente as duas variáveis Gênero e Q13 não estão associadas.

3.1.4.10 Teste qui-quadrado

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 42: Teste qui-quadrado entre Gênero e Q13.

Estatística	Graus de liberdade	Valor-p
2,18	3	0,54

3.1.4.11 Medidas de Resumo Q13 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Tabela 43: Medidas de resumo de Q13 por Gênero.

Q13	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Menina	1,32	0,78	1	1	2
Menino	1,32	0,74	1	1	2

3.1.4.12 Boxplot de Q13 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

3.1.4.13 Teste de Kruskal-Wallis de Q13 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre os meninos e as meninas são iguais.

Tabela 44: Valores-p para comparação múltipla de medianas: Q13 e Gênero.

Estatística	Parâmetro	valor p
0,41	1	0,52

3.1.4.14 Teste de Nemeyi de Q13 por Gênero

Apenas seis crianças se identificaram com o gênero outros e foram removidas na análise estatística.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q12 entre os meninos e as meninas são iguais.

Tabela 45: Teste de Nemeyi de Q13 por Gênero.

	Menina
Menino	0,96

3.1.4.15 Tabela de contingência: Idade e Q13

Tabela 46: Tabela de contingência: Idade e Q13.

Idade	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
8	77	81	27	10
9	89	65	29	3
10	107	96	36	11
11	91	110	34	5
12	77	66	35	1

3.1.4.16 Gráfico de barras: Idade e Q13

Aparentemente as duas variáveis Idade e Q13 não estão associadas.

3.1.4.17 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 47: Teste qui-quadrado entre Idade e Q13.

Estatística	Graus de liberdade	Valor-p
19,94	12	0,07

3.1.4.18 Medidas de Resumo Q13 por Idade

Tabela 48: Medidas de resumo de Q13 por Idade.

Q13	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
8	1,36	0,78	1	1	2
9	1,35	0,76	1	1	2
10	1,37	0,78	1	1	2
11	1,28	0,73	1	1	2
12	1,25	0,77	1	1	2

3.1.4.19 Boxplot de Q13 por Idade

3.1.4.20 Teste de Kruskal-Wallis de Q13 por Idade

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q13 de cada idade são iguais.

Tabela 49: Valores-p para comparação múltipla de medianas: Q13 e Idade.

Estatística	Parâmetro	valor p
2,96	4	0,57

3.1.4.21 Teste de Nemeyi de Q13 por Idade

Os valores-p são todos maiores que $\alpha=0,05$, e não rejeitamos H_0 para todos os pares de idade, ou seja, as medianas são iguais para cada par de idade.

Tabela 50: Teste de Nemeyi de Q13 por Idade.

	8	9	10	11
9	1,00			
10	1,00	1,00		

	8	9	10	11
11	0,88	0,75	0,69	
12	0,85	0,73	0,67	1

Universidade Federal da Bahia

3.1.4.22 Tabela de contingência: Raça e Q13

Tabela 51: Tabela de contingência: Raça e Q13.

Raça	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Amarela	6	8	3	2
Branca	90	88	32	3
Indígena	7	11	2	1
Negra	314	299	112	24
Outros	10	4	2	
Sem resposta	14	8	10	

3.1.4.23 Gráfico de barras: Raça e Q13

Aparentemente as duas variáveis Raça e Q13 não estão associadas.

3.1.4.24 Teste qui-quadrado

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 52: Teste qui-quadrado entre raca e Q13.

Estatística	Graus de liberdade	Valor-p
19,47	15	0,19

3.1.4.25 Medidas de Resumo Q13 por Raça

Tabela 53: Medidas de resumo de Q13 por raca.

Q13	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Amarela	1,37	0,90	1	1	2
Branca	1,30	0,74	1	1	2
Indígena	1,33	0,73	1	1	2
Negra	1,33	0,77	1	1	2
Outros	1,50	0,73	2	1	2
Sem resposta	1,12	0,87	1	0	2

3.1.4.26 Boxplot de Q13 por Raça

3.1.4.27 Teste de Kruskal-Wallis de Q13 por Raça

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q13 entre as crianças de diversas raças são iguais.

Tabela 54: Valores-p para comparação múltipla de medianas: Q13 e Raça.

Estatística	Parâmetro	valor p
2,82	5	0,73

3.1.4.28 Teste de Nemeyi de Q13 por Raça

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q13 entre as crianças de diversas raças são iguais.

Tabela 55: Teste de Nemeyi de Q13 por Raça.

Amarela	Branca	Indígena	Negra	Outros
1,00				
1,00	1,00			
1,00	1,00	1,00		
0,98	0,89	0,96	0,93	
0,98	0,95	0,99	0,88	0,69
	1,00 1,00 1,00 0,98	1,00 1,00 1,00 1,00 1,00 0,98 0,89	1,00 1,00 1,00 1,00 1,00 1,00 0,98 0,89 0,96	1,00 1,00 1,00 1,00 1,00 0,98 0,89 0,96 0,93

Universidade Federal da Bahia

3.1.4.29 Tabela de contingência: Tipo de escola e Q13

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 56: Tabela de contingência: Tipo de escola e Q13.

Tipo de Escola	Muita preocupação	Pouca preocupação	Sem preocupação	Sem resposta
Particular	254	237	89	10
Pública	186	179	68	20

3.1.4.30 Gráfico de barras: Tipo de escola e Q13

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Aparentemente as duas variáveis Tipo de Escola e Q13 não estão associadas.

3.1.4.31 Teste qui-quadrado

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é menor que $\alpha=0,05$, não rejeitamos H_0 e não temos evidência evidência estatística que as duas variáveis estão associadas.

Tabela 57: Teste qui-quadrado entre Escola e Q13.

Estatística	Graus de liberdade	Valor-p
6,86	3	0,08

3.1.4.32 Medidas de Resumo Q13 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Tabela 58: Medidas de resumo de Q13 por Escola.

Q13	Média	Desvio Padrão	Mediana	1 Quartil	3 Quartil
Particular	1,31	0,74	1	1	2
Pública	1,35	0,79	1	1	2

3.1.4.33 Boxplot de Q13 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

3.1.4.34 Teste de Kruskal-Wallis de Q13 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é maior que $\alpha = 0,05$, não rejeitamos H_0 e as medianas de Q13 entre as escolas particulares e públicas são iguais.

Tabela 59: Valores-p para comparação múltipla de medianas: Q13 e Tipo de escola.

Estatística	Parâmetro	valor p
1,14	1	0,28

3.1.4.35 Teste de Nemeyi de Q13 por Tipo de escola

Apenas sete crianças não estavam matriculadas na escola, e foram retiradas da análise para facilitar a análise de *tipo de escola*.

Como o valor-p é maior que $\alpha=0,05$, não rejeitamos H_0 e as medianas de Q13 entre as escolas particulares e públicas são iguais.

Tabela 60: Teste de Nemeyi de Q13 por Escola.

	Particular
Pública	0,61

Referências

Barbetta, Pedro Alberto. 2008. Estatística Aplicada às Ciências Sociais. Editora UFSC.

Bussab, Wilton de Oliveira, and Pedro Alberto Morettin. 2002. Estatística Básica. 5a Edição. Editora Saraiva.

Hollander, Myles, Douglas A Wolfe, and Eric Chicken. 2013. *Nonparametric Statistical Methods*. Vol. 751. John Wiley & Sons.

Montgomery, Douglas C, and George C Runger. 2010. *Applied Statistics and Probability for Engineers*. John Wiley & Sons.

Nemenyi, Peter Bjorn. 1963. Distribution-Free Multiple Comparisons. Princeton University.

Pohlert, Thorsten. 2014. *The Pairwise Multiple Comparison of Mean Ranks Package (Pmcmr)*. https://CRAN.R-project.org/package=PMCMR.

R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Spiegel, Murray R, John J Schiller, R Alu Srinivasan, and Mike LeVan. 2001. *Probability and Statistics*. Vol. 2. Mcgraw-hill.

