Name: Mayuri Birari

Assignment 02

Initial Setup:

- 1. Python 3.x installed on your system
- 2. PySpark Python package installed using pip install pyspark

Question 1 Part 1:

Importing libraries and reading data

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import *

spark=SparkSession.builder.appName('Parking_ticket_analysis').getOrCreate()

data=spark.read.csv('C:/Users/mayur/OneDrive/Desktop/CoursesSem2/ECC/A02/Parking_Violations_Issued_-_Fiscal_Year_2023 (1).csv',header=True,inferSchema=True)
```

	data.show(10)														
+ Su	mmons Number	Plate ID	Registration State	Plate Type	Issue Date	 Violation Code	 Vehicle Body Type	Vehicle Make	Issuing Agency	Street Code1	Street Code2	Street Code3	 Vehicle Expiration		
1	1484697303				06/10/2022		SDI			34330			202;		
l i	1484697315	KEV4487	NY	PAS	06/13/2022	51	SUBI	JEEP	j K	34310	16400	11010	202:		
i i	1484697625	H73NYD	NJ	PAS	06/19/2022	63	SDF	I JEEP	l N	30640	13015	28540	İ		
i i	1484697674	GJC9296	NY	PAS	06/19/2022	63	SUBI	I LEXUS	l N	30640	13015	28540	202:		
i i	1484697686	M51PUV	NJ	PAS	06/19/2022	63	SDI	I HYUND	N	30640	13015	28540	İ		
1	1484697698	H73NYD	NJ	PAS	06/23/2022	63	nul]] JEEP	к	30640	13015	28540			
1	1484697728	M51PUV	NJ	PAS	06/23/2022	63	nul]	. HYUND	к	30640	13015	28540			
1	1484698204	KJJ8637	NY	PAS	06/20/2022	67	SUBI	i TOYOT	l N	11585	26390	15010	202:		
	1484698381	JEC8631	NY	PAS	06/19/2022	98	SUBI	NISSA	N	l e		0	202:		
T	1484698721	K21PNH	NJ	PAS	06/25/2022	10	SUBI	I JEEP	l k	33190	25190	31990			
+				++		+			+			+	+		

1: When are tickets most likely to be issued?

First I grouped by issue_date and count the number of tickets issued on each day Then, I ordered the result in descending order of ticket count to get the most ticketed days

```
#When-are-tickets most likely to be issued?
most_ticketed_days = data.groupBy('Issue Date').count().orderBy(desc('count')).take(10)
most_ticketed_days

[Row(Issue Date='08/04/2022', count=66726),
Row(Issue Date='08/05/2022', count=63393),
Row(Issue Date='08/02/2022', count=64876),
Row(Issue Date='08/03/2022', count=64846),
Row(Issue Date='08/30/2022', count=64815),
Row(Issue Date='07/19/2022', count=64811),
Row(Issue Date='08/11/2022', count=64192),
Row(Issue Date='08/11/2022', count=63795),
Row(Issue Date='08/11/2022', count=63780),
Row(Issue Date='07/15/2022', count=63646)]
```

Ans: Tickets are most likely to be issued on 08/04/2022

2: What are the most common years and types of cars to be ticketed?

I grouped by vehicle_year and count the number of tickets issued for each year. I then grouped by vehicle_make to get the count of tickets for each car make. Then, I ordered the result in descending order of ticket count to get the most ticketed years and car makes

```
# What are the most common years and types of cars to be ticketed?

most_ticketed_years = data.groupBy('Vehicle Year').count().orderBy(desc('count')).take(10)
most_ticketed_car_makes = data.groupBy('Vehicle Make').count().orderBy(desc('count')).take(10)

most_ticketed_car_makes

[Row(Vehicle Make='HONDA', count=1394250),
Row(Vehicle Make='TOYOT', count=1333368),
Row(Vehicle Make='FORD', count=1945269),
Row(Vehicle Make='FORD', count=954362),
Row(Vehicle Make='NEYBE', count=954363),
Row(Vehicle Make='MEYBE', count=594653),
Row(Vehicle Make='MEYBE', count=594653),
Row(Vehicle Make='BEP', count=5943310),
Row(Vehicle Make='JEEP', count=393310),
Row(Vehicle Make='HYUND', count=392388),
Row(Vehicle Make='LEXUS', count=293765)]
```

Ans: The types of cars to be ticketed is Honda and the common years of cars to be ticketed is 2021

3: Where are tickets most commonly issued?

I grouped by violation_precinct and count the number of tickets issued for each precinct. Then, I ordered the result in descending order of ticket count to get the most ticketed precincts

```
# Where are tickets most commonly issued?

most_ticketed_precincts = data.groupBy('Violation Precinct').count().orderBy(desc('count')).take(10)
most_ticketed_precincts

[Row(Violation Precinct=0, count=5349526),
Row(Violation Precinct=19, count=282466),
Row(Violation Precinct=13, count=282467),
Row(Violation Precinct=6, count=224686),
Row(Violation Precinct=114, count=221523),
Row(Violation Precinct=14, count=190012),
Row(Violation Precinct=18, count=176733),
Row(Violation Precinct=9, count=162228),
Row(Violation Precinct=1, count=152429),
Row(Violation Precinct=109, count=137833)]

Ans: Precinct where tickets are most commonly issued is Precinct 0 ?
```

Ans: Precinct where tickets are most commonly issued is Precinct 0

4: Which color of the vehicle is most likely to get a ticket?

I grouped by vehicle_color and count the number of tickets issued for each color. Then, ordered the result in descending order of ticket count to get the most ticketed colors.

```
# Which color of the vehicle is most likely to get a ticket?

most_ticketed_colors = data.groupBy('Vehicle Color').count().orderBy(desc('count')).take(10)
most_ticketed_colors

[Row(Vehicle Color='GY', count=2275457),
Row(Vehicle Color='WH', count=2055818),
Row(Vehicle Color='BK', count=1992788),
Row(Vehicle Color='BK', count=1032007),
Row(Vehicle Color='BL', count=760235),
Row(Vehicle Color='WHITE', count=671757),
Row(Vehicle Color='WHITE', count=435989),
Row(Vehicle Color='BLACK', count=424056),
Row(Vehicle Color='GREY', count=308993),
Row(Vehicle Color='SILVE', count=151063)]
```

Ans: The color of the vehicle is most likely to get a ticket is Gray

Question 1 Part 2:

Importing libraries and reading data

```
from pyspark.sql.functions import col
from pyspark.sql.functions import of
from pyspark.sql.functions import *
from pyspark.sql.functions import *
from pyspark.sql.functions import Means
from pyspark.ml.feature import VectorAssembler
import pyspark.sql.functions as F

Pytho

spark=SparkSession.builder.appName('Parking_ticket_analysis').getOrCreate()

#-toad-the-dataset
parking_df = spark.read.format("csv").option("header", "true").load("C:/Users/mayur/OneDrive/Desktop/CoursesSem2/ECC/A82/Parking_Violations_Issued_-Fiscal_Year_2823-(1).csv")

Pytho

Pytho

#-toad-the-dataset
parking_df = spark.read.format("csv").option("header", "true").load("C:/Users/mayur/OneDrive/Desktop/CoursesSem2/ECC/A82/Parking_Violations_Issued_-Fiscal_Year_2823-(1).csv")
```

											Р
	nl-t- roloi-t-		+ Type Issue Date Viol					t			
			+						eet Couez		enitcie exbit.
1484697303	JER1863	NY	PAS 06/10/2022	67	SDN	тоуот	P]	34330	179	0	
1484697315	KEV4487	NY	PAS 06/13/2022	51	SUBN	JEEP	κİ	34310	16400	11010	
1484697625	H73NYD	ГСИ	PAS 06/19/2022	63	SDN	JEEP	N I	30640	13015	28540	
1484697674	GJC9296	NY	PAS 06/19/2022	63	SUBN	LEXUS	N I	30640	13015	28540	
1484697686	M51PUV	јси	PAS 06/19/2022	63	SDN	HYUND	N	30640	13015	28540	
1484697698	H73NYD	ΙСИ	PAS 06/23/2022	63	null	JEEP	κį	30640	13015	28540	
1484697728	M51PUV	јси	PAS 06/23/2022	63	null	HYUND	κį	30640	13015	28540	
1484698204	КЈЈ8637	NY	PAS 06/20/2022	67	SUBN	TOYOT	N	11585	26390	15010	
1484698381	JEC8631	NY	PAS 06/19/2022	98	SUBN	NISSA	N	0	0	0	
1484698721	K21PNH	ЕСИ	PAS 06/25/2022	10	SUBN	JEEP	к	33190	25190	31990	
1484698769	LVK1404	PA	PAS 06/05/2022	10	SUBN	NISSA	P	33190	25190	31990	
1484699683	KSX6366	FL	PAS 06/25/2022	51	SUBN	SUBAR	κį	30640	24050	0	
1484699750	GCX5397	NY	PAS 06/19/2023	63	SUBN	CHEVR	N	30640	13015	28540	
1484703261	KUH5328	NY	PAS 06/09/2022	45	SDN	NISSA	κ	0	0	0	
1484710629	KUH1765	NY	OMS 06/30/2022	14	SDN	TOYOT	к	33340	0	0	
1484717909	НЈЈ9998	NY	PAS 06/10/2022	20	SUBN	HONDA	κĮ	34440	0	0	
1484720581	GHR524	FL	PAS 07/03/2022	68	VAN	CHRYS	κ	0	0	0	
1484720600	G15PTU	СИ	PAS 07/03/2022	68	SUBN	CHEVR	κĮ	0	0	0	
1484720829	JLJ6406	NY	PAS 06/18/2022	27	SDN	NISSA	κĮ	11210	22695	0	
1484721317	KN74744	NY	PAS 06/29/2022	20	SUBN	ME/BE	κİ	23904	25680	21950	

Filtered for black vehicles parked at the specified street codes

black_vehicle	parking_df.filter((c				BLACK']						Python
				/iolation Code Vehicle Boo							hicle Expiration
		+ NYİ	PAS 06/10/2022	 67	SDNI	 тоуот I		34330l		+ al	202;
1484698381		NY	PAS 06/19/2022	98	SUBN	NISSAI	NI.	91	0	91	202
1484703261		NY	PAS 06/09/2022	45	SDN	NISSA	κI	9 l	- i 0 i	øl	2024
1484710629		NY	OMS 06/30/2022	14	SDN	TOYOT	κİ	33340	øl	øl	202;
1484720829	JLJ6406	NY	PAS 06/18/2022	27	SDN	NISSA		11210	22695	øj	2022
1484721809	GDM5641	NY	PAS 07/04/2022	20	SDN	LEXUS		øj	øj	øj	202
1484725955	KSG1672	NY	PAS 06/15/2022	27	SDN	VOLKS		øi	13820	øİ	202:
1484726364	JHJ2036	NY	PAS 06/17/2022	14	SUBN	ROVER		øj	øj	øj	202
1484726844	HSZ5866	NY	PAS 06/04/2022	68	SUBN	BMW	κį	13820	0	0	2022
1484741780	KEX2744	NY	PAS 06/30/2022	20	SUBN	HONDA	N	29520	12335	0	2022
1484751632	LYD2422	PA	PAS 06/18/2022	20	nul1	SUBAR	κį	9020	0	0	
1484751759	KDT8949	NY	PAS 06/11/2022	14	SDN	BMW	κį	22320	22425	0	2026
1484752272	KSZ7897	NY	PAS 06/06/2022	14	SDN	LEXUS	κ	36420	58870	0	202
1484752752	KKD1739	NY	PAS 06/10/2022	20	SUBN	TOYOT	κ	22620	22425	0	202:
1484763269	GZ36596	NY	PAS 06/11/2022	20	SUBN	FORD	κ	29090	24940	0	202
1484767329	KNIGHT	CA	PAS 06/22/2022	51	мото	null	ΡĮ	53950	49630	0	
1484768127	KKE4605	NY	PAS 07/03/2022	14	SUBN	HONDA	ΡĮ	28430	25370	23830	202
1484768668	GD2556	NY	PAS 06/23/2022		SUBN	NISSA	ΡĮ	86530	86730	28430	2022
1484772192	HRF7476	NY	PAS 06/11/2022	98	SDN	BMW	ΡĮ	72230	77730	51030	202
1484772209	JPB6390	NY	PAS 07/02/2022	14	SUBN	MITSU	P	28430	61010	25370	2024

		elect(filtered	_df['Street Code1'],filtered_df['Street Code2'],filtered_df['Stre	eet Code3'])
ltered_df.sh	how()			
	eet Code2 Str			
34330	179	0		
9	0	ø ø		
øl	0	øl		
33340	0	0		
11210	22695	0		
øj	0	0		
øj	13820	øj		
0	0	0		
13820	0	0		
29520	12335	0		
9020	0	0		
22320	22425	0		
36420	58870	0		
22620	22425	0		
29090	24940	0		
53950	49630	0		
28430	25370	23830		
86530	86730	28430		
72230	77730	51030		
28430	61010	25370		
	 +	+		

Selecting the columns for clustering

```
cluster_df = filtered_df.select(col('Street Code1').cast('int'),col('Street Code2').cast('int'),col('Street Code3').cast('int'))
   cluster_df.show()
|Street Code1|Street Code2|Street Code3|
                        0
                                    11210
                    22695
           0
                    13820
       13820
                    12335
       29520
        9020
                    22425
       36420
                    58870
       22620
                    22425
       53950
                    49630
       28430
                    25370 l
                                 238301
       86530
                    86730
                                 28430
       28430
                    61010
                                 25370
```

Convert the features to a vector

```
#.Convert.the.features.to.a.vector
assembler = VectorAssembler(inputCols=cluster_df.columns, outputCol="features")
df = assembler.transform(cluster_df)
```

```
df.show() 🗑
|Street Code1|Street Code2|Street Code3|
                                     0| [34330.0,179.0,0.0]|
       343301
                      179 l
                                           (3,[],[])|
(3,[],[])|
           0
                        0|
                                     0
           0
                        0|
                                    0|
                                     0 [33340.0,0.0,0.0]
       33340
                        0|
       11210
                    22695
                                    0|[11210.0,22695.0,...|
           0
                        ø١
                                                  (3,[],[])
           0
                    13820
                                    0|
                                          [0.0,13820.0,0.0]
           0|
                        0
                                                  (3,[],[])|
       13820
                        0 l
                                    0| [13820.0,0.0,0.0]|
       29520
                                    0|[29520.0,12335.0,...|
        9020
                                          [9020.0,0.0,0.0]
       22320
                                     0|[22320.0,22425.0,...|
                    22425
                    58870
                                     0|[36420.0,58870.0,...|
       36420
       22620
                    22425
                                     0|[22620.0,22425.0,...|
                                     0|[29090.0,24940.0,...|
       290901
                    24940
       53950
                    49630
                                     0|[53950.0,49630.0,...|
       28430
                    25370
                                 23830|[28430.0,25370.0,...|
                    86730
                                 28430|[86530.0,86730.0,...|
       86530 l
       72230
                    77730
                                 51030|[72230.0,77730.0,...|
                                 25370|[28430.0,61010.0,...|
       28430
                    61010
only showing top 20 rows
```

Calculating the silhouette score for various values of k

```
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator
import matplotlib.pyplot as plt
import numpy as np

# Define a function to calculate silhouette scores
def calculate_silhouette_score(data, num_clusters):
# Train a KMeans model
kmeans = KMeans (k-num_clusters, seed=1, featuresCol='features')
model = kmeans.fit(data)

# Make predictions and evaluate the model
predictions = model.transform(data)
evaluator = clusteringEvaluator()
silhouette_score = evaluator.evaluate(predictions)
return silhouette_score

# Calculate silhouette scores for different number of clusters
silhouette_scores = []
for k in range(2, 11):
score = calculate silhouette score(df, k)
silhouette_scores.append(score)
```

Plotting the silhouette scores and selecting the elbow point as k

Implementing k-means using the silhouette score obtained from above i.e. k=3

```
# Number of clusters is 3
km = KMeans(featuresCol='features', k=3)
model = km.fit(df)
pred = model.transform(df)
# Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(pred)
print("Silhouette with squared euclidean distance = " + str(silhouette))
Silhouette with squared euclidean distance = 0.6489755173296069
```

Converting dense vectors to sparse vectors and applying it as a user-defined function (UDF) on a Spark DataFrame column

Creating a spark dataframe "street_codes" with a single row of data containing three integer values, and printing the schema of the DataFrame.

```
street_codes_list = [(34510,10030,34050)]
street_codes = spark.createDataFrame(data=street_codes_list,schema=cluster_df.columns)
street_codes.printSchema()

root
|-- Street Code1: long (nullable = true)
|-- Street Code2: long (nullable = true)
|-- Street Code3: long (nullable = true)
```

Performing clustering on the data in "street_codes" using a model, and extracting the predicted cluster label for the first row of the data

```
predictions_data_df = model.transform(assembler.transform(street_codes)).toPandas()
```

Performing clustering on the data using a trained model and returning the cluster to which the first row of the transformed data belongs

```
data_df = model.transform(assembler.transform(street_codes)).select(['prediction']).toPandas()
  cluster = data_df.iloc[0,0]
  print("Cluster", cluster)
Cluster 2
```

Creating a temporary view called "NYCParking", quering the total count of rows in the view, and then constructing a query to count the number of rows in the view that have a specific value for the "prediction" column

Calculating the probability of an event by dividing the count of occurrences in a subset by the total count of occurrences.

Question 2 Part 1:

Importing libraries and reading the data

```
from pyspark.sql.functions import *
from pyspark.sql.types import *
from pyspark.sql import sparkSession

spark=SparkSession.builder.appName('Parking_ticket_analysis').getOrCreate()

# Load the NBA shot logs dataset into a PySpark dataframe
nba_df = spark.read.csv("C:/Users/mayur/OneDrive/Desktop/CoursesSem2/ECC/A02/shot_logs.csv",header=True,inferSchema=True)
```

nba_df.show()														
														Pyt
GAME_ID	MATCHUP	LOCATION	W F	INAL_MARGIN S	SHOT_NUMBER PER	IOD	GAME_CLC	CK SHOT_CLOC	-+C DRIBBLES	TOUCH_TIME	SHOT_DIST	PTS_TYPE SH	OT_RESULT	CLOSEST_DEFENDER CLOSE
21400899 MAR 04,	2015 - CH	A	w	24	1	1 2023-6	04-21 01:09	00 10.	3 2	1.9	7.7	2	made	Anderson, Alan
21400899 MAR 04,	2015 - CH	A	W	24		1 2023-6	94-21 00:14:	00 3.4	1 0	0.8	28.2] 3]	missec	Bogdanovic, Bojan
21400899 MAR 04,	2015 - CH	A	W	24	3	1 2023-6	94-21 00:00:	00 nul		2.7	10.1	2	missed	Bogdanovic, Bojan
21400899 MAR 04,	2015 - CH	A	W	24	4	2 2023-6	94-21 11:47	00 10.	3 2	1.9	17.2	2	missed	Brown, Markel
21400899 MAR 04,	2015 - CH	A	W	24		2 2023 - 6	94-21 10:34:	00 10.	9 2	2.7			missec	Young, Thaddeus
21400899 MAR 04,	2015 - CH	A	W	24	6	2 2023-6	94-21 08:15:	00 9 . :		4.4	18.4		missec	Williams, Deron
21400899 MAR 04,	2015 - CH	A	W	24		4 2023 - 6	94-21 10:15:	00 14.	5 11	9.0	20.7		missec	l Jack, Jarrett
21400899 MAR 04,	2015 - CH	A	W	24	8	4 2023 - 6	94-21 08:00:	00 3.4	1 3	2.5	3.5	2	made	Plumlee, Mason
21400899 MAR 04,		A	W	24	9	4 2023-6	94-21 05:14:	00 12.4	1 0	0.8	24.6		missed	Morris, Darius
21400890 MAR 03,	2015 - CH	H	W			2 2023-6	94-21 11:32:	00 17.	1 0	1.1	22.4	3	missed	Ellington, Wayne
21400890 MAR 03,	2015 - CH	H	W			2 2023-6	94-21 06:30:	00 16.0	9 8	7.5	24.5		missed	l Lin, Jeremy
21400890 MAR 03,	2015 - CH	H	W			4 2023 - 6	94-21 11:32:	00 12.:	l 14	11.9	14.6		made	Lin, Jeremy
21400890 MAR 03,	2015 - CH	H	W		4	4 2023-6	94-21 08:55:	00 4.	3 2	2.9	5.9	2	made	e Hill, Jordan
21400882 MAR 01,	2015 - CH	A	W			4 2023-6	94-21 09:10:	00 4.4	1 0	0.8	26.4		missed	Green, Willie
21400859 FEB 27,		A	니	-8		1 2023-6	94-21 00:48:	00 6.:	3 0	0.5	22.8		missed	Smart, Marcus
21400859 FEB 27,	2015 - CH	A	니	-8		2 2023-6	94-21 10:38:	00 6.4	1 3	2.7	24.7		made	Young, James
21400859 FEB 27,		A	니	-8			94-21 08:27:						missed	
21400859 FEB 27,			니	-8			94-21 10:55:		7 1				missed	l Crowder, Jae
21400859 FEB 27,	2015 - CH		니	-8		4 2023-6	94-21 10:29:	00	3 0	1.2	24.2		made	Thomas, Isaiah
21400845 FEB 25,	2015 - CH	A	W			1 2023-6	94-21 03:35:	00 17.	5 2	2.2	25.4		missed	Brooks, Aaron

Grouping the NBA dataframe by player name, closest defender, and shot result, and then aggregating the count of occurrences for each group.

```
shot_result_df = (nba_df
                      .groupBy(['player_name', 'CLOSEST_DEFENDER', 'SHOT_RESULT'])
.agg(count('*').alias('count'))
    shot_result_df = nba_df.show()
       ------player_name| CLOSEST_DEFENDER|SHOT_RESULT|count|
      al jefferson| Aldrich, Cole|
al jefferson| Aldrich, Core
| al jefferson| Morris, Marcus|
| gary neal| Hibbert, Roy|
|gerald henderson| James, LeBron|
|gerald henderson| Ross, Terrence|
| kemba walker| Green, Willie|
                                                        made|
                                                           made
                                                        missed|
                                                        missed|
                                                        missed|
|lance stephenson| Barnes, Harrison|
                                                          made|
 marvin williams|Pondexter, Quincy|
                                                           made|
                            Acy, Quincy
    jason maxiell
                                                         missed|
   gordon hayward| Oladipo, Victor|
enes kanter| Bosh, Chris|
                                                         missed|
                                                           made
        enes kanter | Hansbrough, Tyler |
                                                         missed|
```

Grouping NBA player names and closest defenders, pivoting on shot results, and calculating a fear score based on the proportion of shots made versus missed.

```
player_name| CLOSEST_DEFENDER|made|missed|
                                                                                                                    fear score
    nene hliario,
brian roberts| Gasol, Pau-
kyle korver| Meeks, Jodie|
mike scott| Griffin, Blake|
mike scott| Griffin, Thomas|
       nene hilario|Westbrook, Russell| 1|
                                                                                                                                   1.0
                                                                                                                                   0.0
      kyle korver Meeks, Jodge
mike scott Griffin, Blake
john wall Robinson, Thomas
tyreke evans McDaniels, KJ
arrison barnes Harris, Devin
                                                                                                                                   0.0
                                                                                                                                  0.5
         nick young|
gary neal|
                                        Love, Kevin
Smart, Marcus
                                                                                                                                0.25
0.0
     gary neal | Smart, Marcus |
trevor booker | Frye, Channing |
paul pierce | Tucker, P]
ryan anderson | Butler, Jimmy |
paul pierce | Afflalo, Arron |
john wall | Prigioni, Pablo |
                                                                                                                                  0.5
0.0
    rasual butler|Speights, Marreese|draymond green|Westbrook, Russell|
                                                                                                                                  1.0
        luke babbitt| Jones, Perry|
jeremy lin| Gobert, Rudy|
                                                                                                                                  0.0
 | kobe bryant|Valanciunas, Jonas|
| garrett temple| Mbah a Moute, Luc
                                                                                                                                  0.01
only showing top 20 rows
```

Grouping the NBA DataFrame by player name, closest defender, and shot result, and calculating the count of occurrences for each group.

Grouping the "fear_playerwise_count" dataframe by player name, calculating the minimum fear score and selecting the closest defender with that minimum fear score for each player.

Q: For each pair of the players (A, B), we define the fear sore of A when facing B is the hit rate, such that B is closet defender when A is shooting. Based on the fear sore, for each player, please find out who is his "most unwanted defender".

Final output

```
player_name|min_fear_score|most_unwanted_defender|
     aaron brooks
                          0.0
                                        Smith, Jason
     aaron gordon|
                         0.0|
0.0|
0.0|
                                       Rivers, Austin
  al farouq aminu|
                                       Lee, Courtney
      al horford|
                                      Nowitzki, Dirk
     al jefferson|
                           0.0
                                           Len, Alex
    alan anderson
                                         Zeller, Cody
                           0.0
                                     Sefolosha, Thabo
     alan crabbe
                           0.0
        alex len|
                           0.0
                                     Knight, Brandon
    alexis ajinca
                           0.01
                                     Hawes, Spencer
                           0.0
      alonzo gee|
                                       Dragic, Goran
                                      Garnett, Kevin
 |amare stoudemire|
                           0.0
                                       Hibbert, Roy
    amir johnson
                           0.0
   andre drummond
                           0.0
                                       Millsap, Paul
   andre iguodala|
                           0.0
                                       Hummel, Robbie
     andre miller|
                                     Middleton, Khris
   andre roberson
                           0.0
                                          Ingles, Joe
                                       O'Quinn, Kyle|
    andrew bogut|
                            0.0
   andrew wiggins|
                           0.0
                                       Afflalo, Arron
  anthony bennett
                                       Ajinca, Alexis
                           0.0
   anthony davis
                           0.0
                                      Wallace, Gerald
only showing top 20 rows
The most unwanted defender corresponding to every player
```

Question 2 Part 2:

Importing libraries and reading data

```
import matplotlib.pyplot as plt
import pandas as pd

from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StringType, IntegerType
import pyspark.sql.functions as from pyspark.ml.clustering import StandardScaler,VectorAssembler
from pyspark.ml.clustering import XHeans
from pyspark.ml.evaluation import ClusteringEvaluator

from datetime import date, datetime, timedelta
import time
from pyspark.sql.functions import col, dayofweek, dayofmonth, month, to_date, year
from pyspark.sql.types import *

spark = SparkSession.builder.appName("Comfortable_Zone").getOrCreate() *

nba_df = spark.read.csv("C:/Users/mayur/Onebrive/Desktop/CoursesSem2/ECC/A02/shot_logs.csv",header=True,inferschema=True)
```

nt	ba_df.show(20	9)																				Pythor
>]																						Pythor
+																						+
GAM	NE_ID		MATCHUP	LOCATION	W F	INAL_MARGIN S	HOT_NUMBER PE	ERIOD			SAME_CLOCK	SHOT_	CLOCK	DRIBBLES	TOUCH_T	IME SHO	T_DIST PTS	_TYPE SH01	r_result	CLOSEST_D	EFENDER	CLOSEST_
+												+										+
	90899 MAR 04,					24					01:09:00		10.8	2		1.9	7.7		made			
	00899 MAR 04,					24					00:14:00		3.4	0		8.8	28.2			Bogdanovic		
	90899 MAR 04,				W	24		1	2023-04	l-21	00:00:00	I	null			2.7	10.1		missed	Bogdanovic	, Bojan	l
	90899 MAR 04,				W	24	4	2	2023-04	l-21	11:47:00	l .	10.3			1.9	17.2		missed	Brown,	Markel	I
2140	90899 MAR 04,	2015	- CH	A	W	24		2	2023-04	l-21	10:34:00	l	10.9			2.7	3.7	2	missed	Young, T	haddeus	
2140	90899 MAR 04,	2015	- CH	l Al	W	24	6	2	2023-04	l-21	08:15:00	l	9.1			1.4	18.4	2	missed	Williams	, Deron	I
2140	90899 MAR 04,	2015	- CH	l Al	W	24		4	2023-04	l-21	10:15:00	l	14.5	11		9.0	20.7		missed	Jack,	Jarrett	1
2140	90899 MAR 04,	2015	- CH	l Al	w	24	8	4	2023-04	l-21	08:00:00	I	3.4	3		2.5	3.5		made	Plumlee	, Mason	l
2140	90899 MAR 04,	2015	- CH	l Al	W	24	9	4	2023-04	l-21	05:14:00	l l	12.4	0		9.8	24.6	3	missed	Morris,	Darius	I
2140	90890 MAR 03,	2015	- CH	н	W	1	1	2	2023-04	l-21	11:32:00	ı	17.4	0		1.1	22.4	3	missed	Ellington	, Wayne	1
2140	90890 MAR 03,	2015	- CH	н	W		2	2	2023-04	l-21	06:30:00	i	16.0	8		7.5	24.5	3	missed	Lin,	Jeremy	İ
2140	00890 MAR 03,	2015	- CH		w			4	2023-04	l-21	11:32:00	i	12.1	14		1.9	14.6		made	Lin,	Jeremy	İ
2140	00890 MAR 03,	2015	- CH	i нi	W		4	4	2023-04	l-21	08:55:00	i	4.3			2.9	5.9		made	Hill,	Jordan	į
2140	90882 MAR 01,	2015	- CH	i ai	wj	15		4	2023-04	l-21	09:10:00	i	4.4	øj		a.8	26.4	3	missed	Green,	Willie	i
2140	90859 FEB 27,	2015	- CH	i Aİ	-i	-8	1	1	2023-04	l-21	00:48:00	ī	6.8	0		a.5	22.8	3	missed	Smart,	Marcus	i

Grouping the "fear_playerwise_count" dataframe by player name, calculating the minimum fear score and selecting the closest defender with that minimum fear score for each player.

```
new_df = (nba_df.dropna().toPandas())

C:\Users\mayur\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pyspark\sql\pandseries = series.astype(t, copy=False)

df = nba_df.select('SHOT_DIST', 'CLOSE_DEF_DIST', 'SHOT_CLOCK').dropna()
```

Spark's VectorAssembler to combine all columns in the DataFrame "df" into a single column of feature vectors called "features"

Calculating silhouette scores for various values for k

```
vdef calculate_silhouette_score(data, num_clusters):
    # Train a MYeans model
kmeans = MYeans(funm clusters, featurescol='features')
model = kmeans.fit(data)

    # Make predictions a model.transform(data)
evaluator = ClusteringEvaluator()
silhouette_score = vaculator.evaluate(predictions)
return silhouette_score

# Calculate silhouette_score evaluator.evaluate(predictions)
return silhouette_score = []
for k in range(2, 11):
    score = calculate_silhouette_score(assembled_data, k)
    print(score, k)
    silhouette_scores.append(score)

0.7005693569346803 2
0.6274971328256687 3
0.5586339306822153 4
0.4876963198051104 7
0.48779563951104 7
0.48779563951104 7
0.487806810182234506 8
487850613100050 0
```

Plotting the silhouette scores

```
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(range(2, 11), silhouette_scores, marker='o')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('silhouette score')
ax.set_vlabel('s
```

Implementing k-means on k=5

```
# Number of clusters is 3
km = KMeans(featuresCol='features', k=5)
model = km.fit(assembler_data)
pred = model.transform(assembler_data)
# Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(pred)
print("Silhouette with squared euclidean distance = " + str(silhouette))
Silhouette with squared euclidean distance = 0.496023939066375
```

Collecting predictions from a Spark DataFrame and creating a new Pandas DataFrame with selected columns.

```
# Collect the predictions
predictions_collected = pred.collect()

# Select columns of interest and convert to Pandas dataframe
pred_df = pred.select(['prediction','SHOT_DIST','CLOSE_DEF_DIST','SHOT_CLOCK']).toPandas()

# Create a new Pandas dataframe with selected columns
pred_data = pred_df[['prediction','SHOT_DIST','CLOSE_DEF_DIST','SHOT_CLOCK']]
```

Concatenating two dataframes (new_df and pred_data) horizontally and keeping only the common columns (intersection) in the resulting dataframe "all_data".

Merging two data frames based on the columns 'SHOT_DIST', 'CLOSE_DEF_DIST', and 'SHOT_CLOCK'.

all_data =		ge(pred_da	ta,	on=['SHOT_DIST',	'CLOSE_DEF_DIST	','sнот_с	rock,])					-	<i>ии</i>
													Python
GAME_ID	MATCHUP	LOCATION	w	FINAL_MARGIN	SHOT_NUMBER	PERIOD	GAME_CLOCK	SHOT_CLOCK	DRIBBLES	PTS_TYPE	SHOT_RESULT	CLOSEST_DEFENDER	CLOSEST_DEFENDER_P
21400899	Mar 04, 2015 - Cha @ BKN		w	24			2023-04-21 01:09:00	10.8			made	Anderson, Alan	
21400899	Mar 04, 2015 - Cha @ Bkn						2023-04-21 00:14:00	3.4			missed	Bogdanovic, Bojan	
21400899	Mar 04, 2015 - Cha @ BKN						2023-04-21 11:47:00				missed	Brown, Markel	
21400899	Mar 04, 2015 - Cha @ BKN						2023-04-21 10:34:00	10.9			missed	Young, Thaddeus	
21400899	Mar 04, 2015 - Cha @ BKN		w				2023-04-21 08:15:00				missed	Williams, Deron	

Creating a new Spark DataFrame from the data in 'all_data' and displays the first 10 rows, but it doesn't do anything with the 'players_list' variable.

```
new_df=spark.createDataFrame(all_data)
players_list = ['james harden', 'chris paul', 'stephen curry', 'lebron james']

new_df.head(10)

| Row(GAME_ID=21400899, MATCHIP='MAR 04, 2015 - CHA @ BEN', LOCATION='A', N='W', FINAL_MARGIN=24, SHOT_MEMBER=1, PERIOD=1, GAME_CLOCK=datetime.datetime(2023, 4, 21, 1, 9), SHOT_CLOCK=10.
| Row(GAME_ID=21400899, MATCHIP='MAR 04, 2015 - CHA @ BEN', LOCATION='A', N='W', FINAL_MARGIN=24, SHOT_MEMBER=2, PERIOD=2, GAME_CLOCK=datetime.datetime(2023, 4, 21, 1, 47), SHOT_CLOCK=3.
| Row(GAME_ID=21400899, MATCHIP='MAR 04, 2015 - CHA @ BEN', LOCATION='A', N='W', FINAL_MARGIN=24, SHOT_MEMBER=3, PERIOD=2, GAME_CLOCK=datetime.datetime(2023, 4, 21, 10, 34), SHOT_CLOCK=3.
| Row(GAME_ID=21400899, MATCHIP='MAR 04, 2015 - CHA @ BEN', LOCATION='A', N='W', FINAL_MARGIN=24, SHOT_MEMBER=3, PERIOD=2, GAME_CLOCK=datetime.datetime(2023, 4, 21, 10, 34), SHOT_CLOCK=3.
| Row(GAME_ID=21400899, MATCHIP='MAR 04, 2015 - CHA @ BEN', LOCATION='A', N='W', FINAL_MARGIN=24, SHOT_MEMBER=3, PERIOD=4, GAME_CLOCK=datetime.datetime(2023, 4, 21, 10, 15), SHOT_CLOCK=3.
| Row(GAME_ID=21400899, MATCHIP='MAR 04, 2015 - CHA @ BEN', LOCATION='A', N='W', FINAL_MARGIN=24, SHOT_MEMBER=3, PERIOD=4, GAME_CLOCK=datetime.datetime(2023, 4, 21, 10, 15), SHOT_CLOCK=3.
| Row(GAME_ID=214000953, MATCHIP='MAR 04, 2014 - ORL @ GIT', LOCATION='A', N='W', FINAL_MARGIN=8, SHOT_MEMBER=3, PERIOD=1, GAME_CLOCK=datetime.datetime(2023, 4, 21, 4, 6), SHOT_CLOCK=14.
| Row(GAME_ID=214000953, MATCHIP='MAR 04, 2014 - ORL @ GIT', LOCATION='A', N='W', FINAL_MARGIN=8, SHOT_MEMBER=3, PERIOD=1, GAME_CLOCK=datetime.datetime(2023, 4, 21, 4, 6), SHOT_CLOCK=14.
| Row(GAME_ID=214000959, MATCHIP='MAR 04, 2014 - ORL @ GIT', LOCATION='A', N='W', FINAL_MARGIN=8, SHOT_MEMBER=3, PERIOD=1, GAME_CLOCK=datetime.datetime(2023, 4, 21, 4, 6), SHOT_CLOCK=14.
| Row(GAME_ID=214000959, MATCHIP='NOV 04, 2014 - ORL @ GIT', LOCATION='A', N='W', FINAL_MARGIN=24, SHOT_MEMBER=3, PERIOD=1, GAME_CLOCK=datetime.datetime(2023, 4, 21, 4, 6), SHOT_CLOCK=14.
| Row(GAME_ID=214000959, MATCHIP='N
```

Code creates an empty Spark DataFrame with a defined schema for player data.

Creating a new DataFrame by filtering a given list of player names from an existing DataFrame, creates an empty DataFrame with a given schema using Spark, and creating a temporary view named "NBAData" from the filtered DataFrame.

```
filtered_data = new_df.filter(new_df.player_name.isin(players_list))
data_rdd = spark.createDataFrame(data=empty_rdd,schema=player_schema)
filtered_data.createOrReplaceTempView("NBAData")
```

Grouping and aggregating the data by player name and prediction to count the number of successful shots made by each player, and displaying the results in a table.

Grouping and aggregating data based on player name and prediction, and then selects and displays the player name, prediction, and total number of shots for each player.

```
result_df = filtered_data \
                           sin_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_in_an_
               result_df.show()
                                        player|cluster_group|total_shots|
          james harden|
       lebron james
                                                                                                                                                                                                           186 l
     stephen curry
                                                                                                                                                                                                           478
         lebron james
                                                                                                                                                                                                           189
               chris paul
                                                                                                                                                                                                            352 |
         james harden|
                                                                                                                                                                                                         217
                                                                                                                                                  øl
  stephen curry
                                                                                                                                                                                                         162
                                                                                                                                                   ø|
       lebron james
                                                                                                                                                                                                            301
                                                                                                                                                                                                           186
                  chris paul
         lebron james
                                                                                                                                                   3|
0|
                                                                                                                                                                                                         180
         james harden
                                                                                                                                                   2|
1|
                 chris paul|
                                                                                                                                                                                                              70
                                                                                                                                                                                                         126
       lebron james
                                                                                                                                                   2|
2|
4|
  stephen curry
                                                                                                                                                                                                         165
stephen curry
                  chris paul|
                  chris paul|
                                                                                                                                                                                                            157
         james harden
                                                                                                                                                                                                              881
```

Joining two queries on player name and cluster, and then adding a new column "Hit_rate" to the resulting DataFrame, which is calculated as hits divided by total shots.

```
join_data = query1.join(query2,(query1.player_name==query2.player) & (query1.cluster==query2.cluster_group))
join_data

DataFrame[player_name: string, cluster: bigint, hits: bigint, player: string, cluster_group: bigint, total_shots: bigint]

join_data = join_data.withColumn("Hit_rate",(F.col("hits")/F.col("total_shots")))
```

```
join_data.show()
  player name|cluster|hits|
                                player|cluster_group|total_shots|
                                                                            Hit_rate|
                                                             299 | 0.3177257525083612
 james harden
                   3 | 95 | james harden |
                                                            186 0.5053763440860215
 lebron james|
                   4| 94| lebron james|
stephen curry
                   3| 205|stephen curry|
                                                            478 | 0.42887029288702927
 lebron james|
                   1| 136| lebron james|
                                                            189 | 0.7195767195767195
  chris paul
                   3 173
                            chris paul
                                                   3
                                                             352 0.4914772727272727
                   1 | 124 | james harden
 james harden|
                                                   1|
                                                            217 | 0.5714285714285714
stephen curry
                   0| 65|stephen curry|
                                                   0|
                                                             162 | 0.4012345679012346
                   0| 110| lebron james|
                                                             301 | 0.3654485049833887
 lebron iames!
                                                   0|
 james harden|
                                                             186 0.532258064516129
                                                   4|
                      99| james harden|
  chris paul|
                   0| 117|
                            chris paul|
                                                   0|
                                                             267 | 0.43820224719101125
                   3| 72| lebron james|
 lebron james|
                                                            180
                                                            297|0.43434343434343436
                                                   0|
 james harden|
                   0| 129| james harden|
                                                             70 0.5285714285714286
  chris paul
                   2 37 chris paul
|stephen curry|
                   1| 84|stephen curry|
                                                             126 | 0.666666666666666666
 lebron james|
                   2| 82| lebron james|
                                                            147 | 0.5578231292517006
|stephen curry|
                   2| 33|stephen curry|
                                                   2
                                                             57 0.5789473684210527
                                                   4|
                                                            165 0.593939393939394
stephen curry
                   4| 98|stephen curry|
   chris paul|
                   1| 28| chris paul|
                                                   1|
                                                             45 | 0.622222222222222
                             chris paul|
                                                             157 | 0.4840764331210191
   chris paul|
 james harden|
                   2 40 james harden
                                                              88 | 0.45454545454545453 |
```

SQL query on a Spark DataFrame named "HitRate" to select the player_name, cluster, and Hit_rate where the Hit_rate is the maximum value for each player_name.

Q: For each player, we define the comfortable zone of shooting is a matrix of,{SHOT DIST, CLOSE DEF DIST, SHOT CLOCK}. Please develop a Spark-based algorithm to classify each player's records into 4 comfortable zones. Considering the hit rate, which zone is the best for James Harden, Chris Paul,Stephen Curry, and Lebron James.

Ans:

chris paul Comfort zone 1

lebron james Comfort zone 1

stephen curry Comfort zone 1

james harden Comfort zone 1