report_executed

July 22, 2021

1 Statistics

Describe the module blabla

1.1 T-Test

Explain the test labla

1.2 Volcano Plot

blabla

2 Dimension-Reduction

Dimension-reduction methods are used to condense high dimensional data down to dimensions which provide the most information. We have implemented the principal component analysis (PCA). It performs a change of basis and the new basis is chosen, such that the i-th principal component is orthogonal to the first i-1 principal components and the direction maximizes the variance of the projected data. We use the Python library sklearn.

2.1 Principal Component Analysis

The principal component analysis (PCA) is one of the methods for dimension-reduction. It performs a change of basis and the new basis is chosen, such that the i-th principal component is orthogonal to the first i-1 principal components and the direction maximizes the variance of the projected data. Instead of considering all the dimensions, we pick the necessary number of principal components.

PCA Projections
Projections of data into latent space.
Data is colored by response

2.2 Linear Discriminant Analysis

bla

LDA Projections
Projections of data into latent space.
Data is colored by response

3 Clustering

3.1 K-Means Clustering

	Cluster 1	Cluster 2	Cluster 3
0	NSCLC_A549_1	NSCLC_H522_1	NSCLC_H1437_1
1	NSCLC_H1703_2	SCLC_86M1_2	NSCLC_H2228_1
2	NSCLC_H1703_1	SCLC_86M1_1	NSCLC_H2228_2
3	NSCLC_A549_2	SCLC_16HV_1	NSCLC_H1437_2
4	NSCLC_H322_1	SCLC_16HV_2	NSCLC_H3122_1
5	NSCLC_H358_2	SCLC_DMS79_1	NSCLC_H322_2
6	NSCLC_H522_2	SCLC_DMS79_2	NSCLC_H3122_2
7	NSCLC_H358_1	SCLC_H187_2	NSCLC_HCC4006_1
8	NSCLC_PC9_1	SCLC_H187_1	NaN
9	NSCLC_PC9_2	SCLC_H209_1	NaN
10	NSCLC_HCC4006_2	SCLC_H524_1	NaN
11	NaN	SCLC_H209_2	NaN
12	NaN	SCLC_H524_2	NaN
13	NaN	SCLC_H69_1	NaN
14	NaN	SCLC_H82_1	NaN
15	NaN	SCLC_H82_2	NaN
16	NaN	SCLC_H69_2	NaN
17	NaN	SCLC_N417_2	NaN
18	NaN	SCLC_N417_1	NaN
19	NaN	SCLC_SW210-5_1	NaN
20	NaN	SCLC_SW210_5_2	NaN

3.2 Hierarchical Clustering

	Cluster 1	Cluster 2	Cluster 3
0	SCLC_86M1_2	NSCLC_A549_1	NSCLC_H358_2
1	SCLC_86M1_1	NSCLC_H1703_2	NSCLC_H522_1
2	SCLC_16HV_1	NSCLC_H1703_1	NSCLC_H522_2
3	SCLC_16HV_2	NSCLC_A549_2	NSCLC_H358_1
4	SCLC_DMS79_1	NSCLC_H1437_1	NSCLC_PC9_1
5	SCLC_DMS79_2	NSCLC_H2228_1	NSCLC_PC9_2
6	SCLC_H187_2	NSCLC_H2228_2	NaN
7	SCLC_H187_1	NSCLC_H1437_2	NaN
8	SCLC_H209_1	NSCLC_H3122_1	NaN
9	SCLC_H524_1	NSCLC_H322_2	NaN
10	SCLC_H209_2	NSCLC_H322_1	NaN
11	SCLC_H524_2	NSCLC_H3122_2	NaN
12	SCLC_H69_1	NSCLC_HCC4006_1	NaN
13	SCLC_H82_1	NSCLC_HCC4006_2	NaN
14	SCLC_H82_2	NaN	NaN
15	SCLC_H69_2	NaN	NaN
16	SCLC_N417_2	NaN	NaN
17	SCLC_N417_1	NaN	NaN
18	SCLC_SW210-5_1	NaN	NaN
19	SCLC_SW210_5_2	NaN	NaN

4 Classification

4.1 Partial Least Squares-Discriminant Analysis

4.2 Support Vector Machines

SVM Validated Parameters: {'kernel': 'linear', 'shrinking': True} SVM: $R^2=1.0 \ Q^2=1.0$

4.3 Random Forest

Random Forest Validated Parameters: {'criterion': 'gini', 'n_estimators': 10} RF: R^2=1.0 Q^2=1.0

4.4 Logistic Regression

Accuracy: 1.0

<modules.adapml_classification.Classification object at 0x7fe7618d3250>

Confusion matrix

5 Regression

5.1 Linear Regression

