Théorie des groupes

Table des matières

Ī	Sér	ies numériques	2
1	Que	lques rappels et compléments sur les suites	2
II	Sé	ries numériques	3
2	Séri	Séries à termes positifs	
	2.1	Comparaison entre séries et intégrales généralisées	4
	2.2	Critères de comparaison	5
	2.3	Comparaison avec une suite géométrique	6

Première partie

Séries numériques

On considère une suite (réelle ou complexe) $(u_n)_{n\in\mathbb{N}}$ et on étudie la somme infinie $\sum_{n=0}^{+\infty} u_n$.

Remarque 1. Question:

Est-ce que cette somme est bien définie, c'est-à-dire appartient à \mathbb{R} *ou* \mathbb{C} *.*

Exemple. —
$$u_n = 1$$
, $\sum_{n=0}^{\infty} u_n = +\infty$
— $u_n = n$, $\sum_{n=0}^{\infty} u_n = +\infty$
— $u_n = \frac{1}{n}$, $\sum_{n=0}^{\infty} u_n = +\infty$
— $u_n = \frac{1}{n^2}$, $\sum_{n=0}^{\infty} u_n = \frac{\pi^2}{6}$

Quelques rappels et compléments sur les suites

Une suite $(u_n)_{n\in\mathbb{N}}$ converge s'il existe $l\in\mathbb{R}$ tel que $\forall \varepsilon > 0$, $\exists N\in\mathbb{N}$, $\forall n\geq N$, $|u_n-u|$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy si $\forall \epsilon > 0$, $\exists N \in \mathbb{N}, \forall n \geq N, \forall m \geq N$ N, $|u_n - u_m| < \epsilon$.

Proposition 1. Toute suite convergente est de Cauchy.

Proposition 2. Dans \mathbb{R} ou dans \mathbb{C} , toute suite de Cauchy est convergente.

On dit que \mathbb{R} (ou \mathbb{C}) est un espace métrique complet.

Équivalents:

Si $u_n = n^2$ et $v_n = n^3$, on a $\lim_{n \to \infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = +\infty$. Cependant, $(v_n)_{n \in \mathbb{N}}$ est plus rapide que $(u_n)_{n \in \mathbb{N}}$. Les équivalents servent à comparer des vitesses de convergence.

2

Définition 1. Deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont équivalentes si $\lim_{n\to\infty} \frac{u_n}{v_n} = 1$. On note $u_n \sim v_n$

Dans ce cas, les deux suites ont la même vitesse de convergence. Cela n'a aucun intérêt que si (u_n) tend vers 0, $+\infty$ ou $-\infty$

Exemple. $Si \lim_{n \to \infty} a_n = 0$, alors,

$$- e^{a_n} - 1 \sim a_n$$

$$- e^{a_n} - 1 \sim a_n$$

Deuxième partie

Séries numériques

On prend une suite réelle (ou complexe) $(u_n)_{n \in \mathbb{N}}$. La somme infinie $\sum_{n\geq 0} u_n$ est la série de terme général u_n .

On lui associe la suite des sommes partielles $(S_n)_{n \in \mathbb{N}}$, définie par $S_n = \sum_{k=0}^n u_k$. On dit que la série $\sum_{n\geq 0} u_n$ converge si la suite $(S_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} (elle a une limite et cette limite est réelle). Sinon, la série diverge.

Si la série converge, son reste est la suite $(R_n)_{n\in\mathbb{N}}$ définie par $R_n = \sum_{k=n+1}^{+\infty} u_k$ et $\sum_{k=0}^{+\infty} u_k$

est la somme de la série.
On a
$$S_n+R_n=\sum\limits_{k=0}^{+\infty}u_k.$$

Notons que $\lim\limits_{n\to+\infty}R_n=0.$

Exercice. (Á savoir), la série géométrique $u_n = a^n$ avec $a \in \mathbb{R}$,

$$S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n a^k = \frac{1 - a^{n+1}}{1 - a}$$

- Si a = 1, on a $u_n = 1$ pour tout entier naturel n, donc $\sum_{n \ge 0} u_n$ converge.
- Si a = -1, $S_n = \frac{1 (-1)^{n+1}}{2}$ n'a pas de limite et donc $\sum_{n \ge 0} u_n$ diverge.
- Si-1 < a < 1 (ou |a| < 1), $S_n = \frac{1-a^{n+1}}{1-a}$

En résumé, $\sum_{n\geq 0}a^n$ converge si et seulement si |a|<1 et si |a|<1, alors $\sum_{n=0}^{+\infty}a^n=1$

Proposition 3. *Critère de Cauchy :*

 $\sum_{n\geq 0} u_n \ converge \ si \ et \ seulement \ si \ la \ suite \ (S_n)_{n\in \mathbb{N}} \ converge. \ c'est-\grave{a}-dire \ \forall \varepsilon>0, \ \exists N\in \mathbb{N}, \ \forall n\geq N, \ \forall m\geq N, \ |S_n-S_m|<\varepsilon \ ou \ encore$

Application : La série harmonique $\sum\limits_{n\geq 1}\frac{1}{n}.$ On montre que cette série est divergente.

On note
$$S_n = \sum_{k=1}^n \frac{1}{k}$$

Pour tout entier $n \ge 1$, on a:

$$S_{2n} - S_n = \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{1}{2n}$$
..

2 Séries à termes positifs

On suppose que $u_k \ge 0$ pour tout $n \in \mathbb{N}$ (ou du moins à partir d'un certain rang). Dans ce cas, la suite des sommes partiels $(S_n)_{n \in \mathbb{N}}$ est positive et croissante. Par conséquent, $(S_n)_{n \in \mathbb{N}}$ converge si et seulement si elle est majorée. Dans le cas contraire, on a $\lim_{n \to \infty} S_n = +\infty$.

Théorème 1. $\sum_{k>0} u_n$ converge si et seulement si $(S_n)_{n\in\mathbb{N}}$ est majoré.

2.1 Comparaison entre séries et intégrales généralisées

Théorème 2. Soit $f : \mathbb{R} \to \mathbb{R}$, une fonction décroissante et positive. Alors, la suite $(U_n)_{n \in \mathbb{N}}$ définie par $U_n = \sum_{k=0}^n f(k) - \int_0^n f(t) dt$ converge.

Par conséquent, la série $\sum_{n\geq 0}^{\kappa-1} f(n)$ et l'intégrale $\int_0^{+\infty} f(t)dt$ ont la même nature.

Démonstration. Pour tout $k \in \mathbb{N}$, on a :

$$f(k+1) \cdot 1 \le \int_{k}^{k+1} f(t) dt \le f(k) \cdot 1$$

On montre alors que $(U_n)_{n\in\mathbb{N}}$ est minorée par 0.

On a:

$$U_n = f(n) + \sum_{k=0}^{n-1} f(k) - \sum_{k=0}^{n-1} \int_k^{k+1} f(t) dt$$
$$= f(n) + \sum_{k=0}^{n-1} (f(k) - \int_k^{k+1} f(t) dt)$$

avec $f(n) \ge 0$ et $f(k) - \int_k^{k+1} f(t) dt \ge 0$.

Donc, $U_n \ge 0$ pour tout $n \in \mathbb{N}$.

On montre maintenant que $(U_n)_{n\in\mathbb{N}}$ est décroissante.

$$U_{n+1} - U_n = \sum_{k=0}^{n+1} f(k) - \int_0^{n+1} f(t) dt - \sum_{k=0}^n f(k)$$
$$= f(n+1) - \int_n^{n+1} f(t) dt$$
$$\leq 0$$

Donc $U_{n+1} \leq U_n$.

En résumé, on a :

$$\int_0^n f(t)dt + U_n = \sum_{k=0}^n f(k)$$

avec $\lim_{n\to\infty} U_n = l \in \mathbb{R}$

Si $\int_0^{+\infty} f(t)dt$ converge, alors, $\lim_{n\to\infty} \int_0^n f(t)dt \in \mathbb{R}$ et donc $\lim_{n\to\infty} \sum_{k=0}^n f(k) \in \mathbb{R}$ Si $\int_0^{+\infty} f(t)dt$

diverge, alors, $\lim_{n\to\infty} \int_0^n f(t) dt = +\infty$ et donc $\lim_{n\to\infty} \sum_{k=0}^n f(k) = +\infty$

Réciproquement, si la somme converge, alors l'intégrale converge et si la somme diverge, alors l'intégrale diverge.

Application:

Pour les séries de Riemann, si $\alpha \in \mathbb{R}$, $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Critères de comparaison

On considère deux suites positives $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

Théorème 3. On suppose que $0 \le u_n \le v_n$ pour tout $n \in \mathbb{N}$,

- $Si \sum_{n \leq 0} v_n$ converge alors $\sum_{n \leq 0} u_n$ converge $Si \sum_{n \leq 0} v_n$ diverge alors $\sum_{n \leq 0} u_n$ diverge

Démonstration.

$$S_n = \sum_{k=0}^n u_k$$

$$S_n' = \sum_{k=0}^n \nu_k$$

On a $0 \le S_n \le S'_n$

 \sum

Corrolaire 1. S'il existe a et b strictements positifs tels que $a \le \frac{u_n}{v_n} \le b$ pour tout $n \in \mathbb{N}$, alors $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ ont la même nature.

Démonstration.

$$av_n \le u_n \le bv_n$$

Corrolaire 2. Si on a $u_n \sim v_n$, alors $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ ont la même nature. De plus, si $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ convergent, alors les restes sont équivalents.

$$R_n = \sum_{k=n+1}^{\infty} u_k \sim R'_n = \sum_{k=n+1}^{n \ge 0} v_k$$

Dans le cas où elles divergent, les sommes partielles sont équivalentes :

$$S_n = \sum_{k=0}^n u_k \sim S'_n = \sum_{k=0}^n v_k$$

 $\begin{array}{l} \textit{D\'{e}monstration.} \ \ \text{Si} \ u_n \sim v_n, \ \text{alors,} \ \lim_{n \to \infty} \frac{u_n}{v_n} = 1 \\ \text{Donc,} \ \exists N \in \mathbb{N}, \ \forall \, n \leq N, \ 0,5 \leq \frac{u_n}{v_n} \leq 1,5 \\ \text{D'où } 0,5 v_n \leq u_n \leq 1,5 v_n \end{array}$

Exemple.

2.3 Comparaison avec une suite géométrique

Rappel 1. Si $a \in \mathbb{R}$ (ou \mathbb{C}), alors $\sum_{n\geq 0} a^n$ converge si et seulement si |a| < 1.

Et dans ce cas, on a;

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$$

On suppose que $u_n \ge 0$ pour tout $n \in \mathbb{N}$.

Théorème 4. Règle de Cauchy On suppose que $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l \ge 0$.

- Si l < 1, alors $\sum_{n \ge 0} u_n$ converge Si l > 1, alors $\sum_{n \ge 0} u_n$ diverge grossièrement

Remarque 2. Si l = 1, tout peut arriver.

 $u_n = \frac{1}{n^{\alpha}}$

$$(u_n)^{\frac{1}{4}} = (\frac{1}{n^{\alpha}})^{\frac{1}{4}}$$

$$= \frac{1}{n^{\frac{\alpha}{n}}}$$

$$= \frac{1}{e^{\frac{\alpha}{n}} \ln n}$$

$$= e^{-\frac{\alpha}{n} \ln n}$$

 $\begin{array}{l} \textit{Comme} \lim_{n \to +\infty} \frac{\ln n}{n} = 0 \\ \textit{On } a \lim_{n \to +\infty} e^{-\frac{\alpha}{n} \ln n} = e^0 = 1. \textit{ On } a \lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = 1 \textit{ pour tout } \alpha. \\ \textit{mais si } \alpha > 1, \sum u_n \textit{ converge} \end{array}$

et si $\alpha \leq 1$, $\sum u_n$ diverge

Démonstration. On a $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l$, donc,

— Si l > 1,

On prend $\varepsilon > 0$, tel que $1 < l - \varepsilon$.

Il existe $N \in \mathbb{N}$ tel que $\forall n \ge N$, $1 < l - \varepsilon < (u_n)^{\frac{1}{n}}$ Donc $u_n > (l - \varepsilon)^n$ pour tout $n \ge N$.

Comme $l - \varepsilon > 1$, on a $\lim_{n \to \infty} (l - \varepsilon)^n = +\infty$ et donc $\lim_{n \to \infty} u_n = +\infty$

Théorème 5. Règle de d'Alembert On suppose que $u_n > 0$ à partir d'un certain rang. On suppose de plus que $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$

Alors .

- Si l < 1, alors $\sum u_n$ converge
- Si l > 1, alors $\sum u_n$ diverge grossièrement

Remarque 3. Si l = 1, on ne peut rien dire : $u_n = \frac{1}{n^{\alpha}}$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}$$

Démonstration. $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ l - \varepsilon < \frac{u_{n+1}}{u_n} < l + \varepsilon$$

— Si l<1, on prend $\varepsilon>0$ tel que $l+\varepsilon<1$. Il existe $N\in\mathbb{N}$ tel que $\forall n\geq N,\ 0\leq \frac{u_{n+1}}{u_n}\leq l+\varepsilon$. Si n>N, on a :

$$\prod_{k=N}^{n-1} \frac{u_{k+1}}{u_k} = \frac{u_n}{u_N} < (l+\varepsilon)^{n-N}$$

On obtient alors

$$0 \le u_n \le u_N$$
$$(l + \varepsilon)^{n-N}$$

— Idem