VLMixer

Unpaired Vision-Language Pre-training via CMC

Mose Park

Department of Statistical Data Science University of Seoul

Selective. Lab

May 23, 2024

Index

1 Problem

2 Approach

3 Details

4 Experiment

Main concepts

Vision-Language Data Augmentation Modality Gap Loss function

Problem

Problem

Paired

train traveling down a track in front of road* text

* image

unpaired

* image

- A train traveling down tracks next to lights.
- A blue train is next to a sidewalk on the rails.
- A passenger train pulls into a train station.

* text

ightharpoonup Obtaining paired image-text data is a costly and precise task. ightharpoonup Need data augmentation!

Paired VLP Learning Obj single stream dual stream

Fig. 1 Illustration of two types of model architectures for VLP.

Unpaired VLP

► How does this paper address the modality gap?

* VLP: A Survey on Vision-Language Pre-training

Approach

Approach: Cross-modal CutMix

* Text dataset

- a Maria holding a is sitting on a with a
 - * Cross-modal view \$

- ▶ Preserve syntactic and semantic information
- ▶ Introduce visual tokens as the cross-modality noise

Approach: VALP

- ► Masked language model exploits multi-modal fusion.
- ► Contrastive learning is to learn cross-modal alignments.

Contd.

$$\{(T_1, S_1), \cdots, (T_M, S_M)\}$$
 Selecting anchor instance T_m Otherwise: Negative instance

Contrastive Learning! (By Eqn (4) Loss)
$$\mathcal{L}_{\text{cl}} = -\sum_{m=1}^{M} \log \frac{\exp \left(f\left(\mathbf{T}_{m}^{\text{mask}}, \mathbf{S}_{m}^{\text{mask}}\right)/\tau\right)}{\sum_{l=1}^{M} \exp \left(f\left(\mathbf{T}_{m}^{\text{mask}}, \mathbf{S}_{l}^{\text{mask}}\right)/\tau\right)}$$

- ► Masked language model exploits multi-modal fusion.
- ► Contrastive learning is to learn cross-modal alignments.

Approach: TAVP

masking tag

Transformer

▶ Effectively combining image and text information using tags from image I

 $\mathbf{Q}^{mask} = (\mathbf{I}, Det(\mathbf{I}))$

* Masked \mathbf{Q}^{mask}

3

Details

Details: Cross-modal CutMix

- ► Faster R-CNN: Bottom up attention mechanism
- w is concept label and c is confidence score.

$$p_i = \begin{cases} c_i^{\text{con}} + \frac{r_{\text{ctx}}}{|G_i|} \sum_{w_{ij}^{\text{ctx}} \in G_i} c_{ij}^{\text{ctx}}, & \text{if } w_i^{\text{con}} = w_n \\ 0, & \text{otherwise} \end{cases}$$
 The # of set of contextual concepts related to the word

▶ The text is replaced with patches considering the contextual situation.

Details: VALP - Byte pair encoding

```
a girl holding a tennis racket is sitting on a chair with a dog.

* Sentence T

([CLS], w_1, ..., w_N, [SEP])

* Sequence of subwords

* Masked sentence T^{mask}

([CLS], lower, high, [SEP]) \longrightarrow \{[CLS], low, er, hi, gh, [SEP]\}
```

- ► BPE: word to subword (original → small)
- ▶ I think that since patches are smaller than original image, also words will be sliced.

Details: VALP - Constrative Learning

▶ I show that not masked example for explanation.

Experiment

Datasets

Dataset	Images	Texts	Text Domain			
COCO (train)	112K	560K	Image Caption			
Conceptual Captions (train)	3M	3M	Image Caption			
SBU Caption (all)	840K	840K	Image Caption			
Flickr30k (train)	29K	145K	Image Caption			
VQA (train)	83K	445K	Question			
GQA (train)	79K	1.0M	Question			
VG-QA (train)	87K	931K	Question			
MSVD (train)	-	48K	Video Caption			
MSRVTT (train)	-	130K	Video Caption			
VATEX (train)	-	260K	Video Caption			
ActivityNet Captions (train)	-	36K	Video Caption			
Shutterstock (all)	-	1M	Caption			
BookCorpus	-	14M	General Text			
OpenImages (od train)	1.67M	-	-			

Setting

- Backbone Model
- Base Transformer
 - 12 layers of transformer blocks
 - Hidden size :768

- Position Embedding
- Language/Tag tokens
 - Learning position embedding
- Patch/Image Tokens
 - Linear projection of spatials positions

- * Restriction of token length
 - TAVP: 100
 - VALP:80

- Fine tuning
 - VLMixer: BERT Base
 - image and text 300k pre-trained
 - Ir: 5e-5, mini batch size: 1024
 - optim:adam
- ***** ETC.
 - patch detector: Resnet-152 C4
 - 15-shot CMC
 - $r_{cmc}: 0.5$
 - r_{ctx} : 0.5
 - CMCL: temperature ratio: 0.1

VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix

Method	Pre-training Data		VQA NLVR ²		Text Retrieval		Image Retrieval			GQA		
	Image	Text	Test-Dev	Dev	Test	R@1	R@5	R@10	R@1	R@5	R@10	Test-Dev
Paired VLP												
UnicoderVL _{base} (Li et al., 2019a)			-	-	-	62.3	87.1	92.8	46.7	76.0	85.3	-
UNITER _{base} (Chen et al., 2019)			72.27	77.14	77.87	63.3	87.0	93.1	48.4	76.7	85.9	-
OSCAR _{base} (Li et al., 2020b)			73.16	78.07	78.36	70.0	91.1	95.5	54.0	80.8	88.5	61.58
VILT _{base} (Kim et al., 2021)			71.26	75.70	76.13	61.5	86.3	92.7	42.7	72.9	83.1	-
VinVL _{base} (Zhang et al., 2021)			75.95	82.05	83.08	74.6	92.6	96.3	58.1	83.2	90.1	65.05
ALBEF (Li et al., 2021a)			75.84	82.55	83.14	77.6	94.3	97.2	60.7	84.3	90.5	-
Unpaired VLP												
BERT _{base} (Devlin et al., 2019)	None	None	64.85	51.30	51.34	57.44	84.00	91.58	44.03	74.12	84.06	50.20
VinVL _{unpaired} (Zhang et al., 2021)	COCO	COCO	71.78	71.14	72.01	61.92	86.90	93.08	46.90	76.18	85.53	62.24
U-VisualBERT (Li et al., 2021b)*	COCO	COCO	72.41	-	-	-	-	-	-	-	-	-
VLMixer	COCO	COCO	72.60	72.71	73.08	62.69	87.35	93.64	47.95	77.06	86.22	63.13
U-VisualBERT (Li et al., 2021b)	CC3M	CC3M+BC	70.74	71.74	71.02	-	-	-	-	-	-	-
VinVL _{unpaired} (Zhang et al., 2021)	CC3M	CC3M	72.20	68.96	68.94	62.08	86.04	93.00	47.29	76.15	85.53	63.12
VLMixer	CC3M	CC3M	72.66	74.31	73.86	62.20	86.32	92.80	47.44	76.22	85.41	62.65
VLMixer	Full	Full	72.89	76.61	77.01	64.76	88.56	94.22	50.06	78.36	86.91	63.25