

AOD407

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD407 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and low gate resistance. With the excellent thermal resistance of the DPAK package, this device is well suited for high current load applications.

-RoHS Compliant -Halogen Free*

Features

 $V_{DS}(V) = -60V$

 $I_D = -12A (V_{GS} = -10V)$

 $R_{DS(ON)}$ < 115m Ω (V_{GS} = -10V)

 $R_{DS(ON)} < 150 m\Omega (V_{GS} = -4.5V)$

100% UIS tested 100% RG tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage	;	V_{DS}	-60	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _C =25°C		-12					
Current ^G	T _C =100°C	I_D	-10	Α				
Pulsed Drain Current	Pulsed Drain Current ^C		-30					
Avalanche Current C		I_{AR}	-12	А				
Repetitive avalanche	energy L=0.1mH ^C	E _{AR}	23	mJ				
	T _C =25°C	P_{D}	50	W				
Power Dissipation ^B	T _C =100°C	' D	25	VV				
	T _A =25°C	P	2.5	W				
Power Dissipation A	T _A =70°C	P _{DSM}	1.6	VV				
Junction and Storage	Temperature Range	T_J , T_{STG}	-55 to 175	°C				

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	16.7	25	°C/W			
Maximum Junction-to-Ambient A	Steady-State	Γ _θ JA	40	50	°C/W			
Maximum Junction-to-Case B	Steady-State	$R_{\theta JC}$	2.5	3	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =-250 μ A, V_{GS} =0V	-60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-48V, V _{GS} =0V	°C	-0.003	-1 -5	μА
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.5	-2.1	-3	V
I _{D(ON)}	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-30			Α
		V _{GS} =-10V, I _D =-12A		91	115	
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125	°C	150		mΩ
		V _{GS} =-4.5V, I _D =-8A		114	150	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-12A		12.8		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.76	-1	V
Is	Maximum Body-Diode Continuous Curr	ent			-12	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			987	1185	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-30V, f=1MHz		114		pF
C _{rss}	Reverse Transfer Capacitance			46		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		7	10	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge (10V)			15.8	20	nC
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =-10V, V _{DS} =-30V, I _D =-12A		7.4	9	nC
Q_{gs}	Gate Source Charge	V _{GS} 10V, V _{DS} 30V, I _D 12A		3		nC
Q_{gd}	Gate Drain Charge			3.5		nC
$t_{D(on)}$	Turn-On DelayTime			9		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-30V, R_L =2.5Ω	2,	10		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		25		ns
t _f	Turn-Off Fall Time			11		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12A, dI/dt=100A/μs		27.5	35	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-12A, dI/dt=100A/μs		30		nC

A: The value of R $_{0JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{A}$ =25°C. The Power dissipation P $_{DSM}$ is based on R $_{0JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C: Repetitive rating, pulse width limited by junction temperature T $_{\text{J(MAX)}}$ =175°C.
- D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 $\,\mu s$ pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T $_{J(MAX)}$ =175°C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T _A=25°C. The SOA curve provides a single pulse rating.
- *This device is guaranteed green after data code 8X11 (Sep 1 ST 2008).

Rev 7: May 2010

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 5: On-Resistance vs. Gate-Source Voltage

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability

Figure 13: Power De-rating (Note B)

Figure 14: Current De-rating (Note B)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-00718
Version	C
Title	AOD407 Marking Description

DPAK PACKAGE MARKING DESCRIPTION

Green product

NOTE:

LOGO - AOS Logo

D407 - Part number code

F - Fab code

A - Assembly location code

Y - Year code W - Week code L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE
AOD407	Green product	D407
AOD407L	Green product	D407

Document No.	PO-00009
Version	S

TO252(DPAK) PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

UNIT: mm

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH SHOULD BE LESS THAN 6 MH S
- 2. DIMENSION L IS MEASURED IN GAUGE PLANE
- 3. TOLERANCE 0.10 mm UNLESS OTHERWISE SPECIFIED
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 5. REFER TO JEDEC TO-252 (AA)

S Y M B	DIMENS	ION IN MILLII	METERS	DIMEI	DIMENSIONS IN INCHES			
O L	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	2.184	2.286	2.388	0.086	0.090	0.094		
A1	0.000		0.127	0.000		0.005		
A2	0.889	1.041	1.143	0.035	0.041	0.045		
b	0.635	0.762	0.889	0.025	0.030	0.035		
b1	0.762	0.840	1.143	0.030	0.033	0.045		
b2	4.953	5.340	5.461	0.195	0.210	0.215		
С	0.450	0.508	0.610	0.018	0.020	0.024		
c1	0.450	0.508	0.610	0.018	0.020	0.024		
D	5.969	6.096	6.223	0.235	0.240	0.245		
D1	5.210	5.249	5.380	0.205	0.207	0.212		
D2	0.662	0.762	0.862	0.026	0.030	0.034		
Е	6.350	6.604	6.731	0.250	0.260	0.265		
E1	4.318	4.826	4.901	0.170	0.190	0.193		
E2	1.678	1.778	1.878	0.066	0.070	0.074		
е		2.286 BS	C		0.090 BS	C		
e1		4.572 BS	SC .		0.180 BS	С		
Н	9.398	10.033	10.414	0.370	0.395	0.410		
L	1.270	1.520	2.032	0.050	0.060	0.080		
L1	2.921 REF.			0.115REF.				
L2	0.408	0.508	0.608	0.016	0.020	0.024		
L3	0.889	1.016	1.270	0.035	0.040	0.050		
L4	0.635		1.016	0.025		0.040		

DPAK Tape and Reel Data

DPAK Carrier Tape

UNIT: MM

PACKAGE	Α0	В0	K0	DO	D1	E	E1	E2	P0	P1	P2	Т
DPAK (16 mm)	6.90 ±0.10	10.50 ±0.10	2.50 ±0.10	1.50 +0.1 -0	1.50 +0.1 -0	16.00 ±0.30	1.75 ±0.10	7.50 ±0.10	8.00 ±0.10	4.00 ±0.10	2.00 ±0.10	0.30 ±0.05

DPAK Reel

UNIT: MM

TAPE SIZE	REEL SIZE	М	N	W	Н	К	S
16 mm	ø330	Ø330.00 +0.25 -4.00	Ø100.00 ±0.2	16.4 +2.0 -0.0	Ø13.00 +0.50 -0.20	10.5 ±0.25	2.2 ±0.25

DPAK Tape

Leader / Trailer & Orientation

Unit Per Reel: 2500pcs

AOS Semiconductor Product Reliability Report

AOD407 rev C

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742 <u>www.aosmd.com</u>

This AOS product reliability report summarizes the qualification result for AOD407. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOD407 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AOD407 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and low gate resistance. With the excellent thermal resistance of the DPAK package, this device is well suited for high current load applications.

- -RoHS Compliant
- -Halogen Free

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	-60	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain	T _C =25°C		-12		
Current ^G	T _C =100°C	ID	-10	A	
Pulsed Drain Current	Pulsed Drain Current d		-30		
Avalanche Current ^C		I _{AR}	-12	A	
Repetitive avalanche	energy L=0.1mH C	E _{AR}	23	mJ	
	T _C =25°C	P _D	50	w	
Power Dissipation B	T _C =100°C		25		
30.	T _A =25°C	P	2.5	w	
Power Dissipation A	T _A =70°C	P _{DSM}	1.6	7 "	
Junction and Storage	Temperature Range	T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s		16.7	25	°C/W			
Maximum Junction-to-Ambient A	Steady-State	R _{eJA}	40	50	°C/W			
Maximum Junction-to-Case B	Steady-State	Rejc	2.5	3	°C/W			

II. Die / Package Information:

Process

Package Type
Lead Frame
Die Attach
Bond wire
Mold Material
Flammability Rating
Backside Metallization
Moisture Level

AOD407

Standard sub-micron
Low voltage P channel process
3 leads TO252
Bare Cu
Soft solder
G: Au 1.3mils; S: Al 12mils
Epoxy resin with silica filler
UL-94 V-0

UL-94 V-0 Ti / Ni / Ag Up to Level 1 *

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AOD407

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	168hr 85°c /85%RH +3 cycle reflow@260°c	-	9 lots	1210pcs	0
HTGB	Temp = 150°c , Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	6 lots (Note A*)	492pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c , Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	6 lots (Note A*)	492pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	9 lots (Note B**)	495pcs 50+5 pcs / lot	0
Pressure Pot	121°c , 29.7psi, 100%RH	96 hrs	5 lots (Note B**)	275pcs 50+5 pcs / lot	0
Temperature Cycle	-65°c to 150°c , air to air,	250 / 500 cycles	8 lots (Note B**)	440pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AOD407 Continues

DPA	Internal Vision Cross-section X-ray	NA	5 5 5	5 5 5	0
CSAM		NA	5	5	0
Bond Integrity	Room Temp 150°c bake 150°c bake	0hr 250hr 500hr	40 40 40	40 wires 40 wires 40 wires	0
Solderability	245°c	5 sec	15	15 leads	0
Solder dunk	260°c	10secs 3 cycles	1	30 units	0

Note A: The HTGB and HTRB reliability data presents total of available AOD407 burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AOD407 comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 9 MTTF = 12331 years