Build your first RecSys

Evgeniya Korneva January 19, 2024 Barcelona

On the menu today

Overview of recommendation systems

Collaborative filtering in depth (simple approach)

Practice time!

Recommendations are everywhere

Hardly any part of our life isn't affected by personalized recommendations. While RecSys help users find compelling content in a large corpora, some consider personalization a serious concern

Recommendations are everywhere

Hardly any part of our life isn't affected by personalized recommendations. While RecSys help users find compelling content in a large corpora, some consider personalization a serious concern

Netflix Prize boosted interest in recommenders

The competition ran for 2 years, and the winning team won a \$1M prize. However, Netflix never used the winning solution as it was too difficult to implement in production

There are different types of recommendations

We need recommendations in different context

Different systems can be used to provide good recommendations in different situations. Not all of them are necessarily personalized or need a complex ML-based solution

Non-personalised

- Substitutions for out-of-stock items
- Cross-sales: items frequently bought together

Personalised

- "You might also like ..."
- "Others also liked ..."

Look for substitution when an item is unavailable

Substitution means finding the most similar item to the one out of stock. Given some vector representations of items, this is a straightforward task, but bad representations can result in unexpected suggestions...

Full story: https://www.boredpanda.com/hilarious-amazon-out-of-stock-substitution-options/

Cross-selling helps maximize basket size

We can suggest items that are frequently bought together with those that the user already added to the basket. Association rule mining techniques help identify such patterns from raw transactional data

Content filtering brings more similar content

We can suggest items that are similar to those the user has already liked. The only information we need for that is some vector representation of the items

Collaborative filtering looks at the others, too

We can assume that users who liked similar items in the past will continue to have similar tastes in the future. Thus, when generating recommendations for a given user, we can use similar users as inspiration

Collaborative filtering looks at the others, too

We can assume that users who liked similar items in the past will continue to have similar tastes in the future. Thus, when generating recommendations for a given user, we can use similar users as inspiration

Both approaches have their (dis)advantages

In practice, hybrid approaches are often used to combine the two worlds. Often, candidates are generated by different recommendation engines and ar ethen re-ranked according to additional criteria

Content-based filtering

Collaborative filtering

Both approaches have their (dis)advantages

In practice, hybrid approaches are often used to combine the two worlds. Often, candidates are generated by different recommendation engines and ar ethen re-ranked according to additional criteria

Content-based filtering

- Captures specific interests, can recommend niche items only few people are interested in.
- Recommendations are user-specific, no info about the other users needed.
- X Only as good as the features representing the items
- X Can't handle new users
- X Puts the user in their own bubble

Collaborative filtering

- No item- or user features needed, only user-item interactions
- ✓ Can help users discover new interests
- X Can't handle neither fresh items nor new users
- X Hard to include additional information about the users and/or items

Diving deeper into collaborative filtering

A very basic implementation

Users with similar taste will agree in the future

So, when predicting how much a given user will like a particular movie, we need to look at how much other users liked it, and how similar taste they have to the user in question

	ORANGE	STRANGER THINGS	NARCOS	of CARDS	DAREDEUL
JOHN	1		1	2	2
LUCY	1	2	5	5	5
DIANE	4	5	3	3	
YOU	2	3	?	5	4

We need to measure similarity between users

This can be done by comparing how the two users rated a subset of movies they both saw. The more similar those vectors are, the more similar are the users' preferences

	ORANGE	STRANGER THINGS	NARCOS	of CARDS	DAMEDELL
JOHN	1		1	2	2
LUCY	1	2	5	5	5
DIANE	4	5	3	3	
YOU	2	3	?	5	4

Correlation is one possible similarity measure

Correlation between the ratings, computed a subset of items rated by both users, shows how aligned the users are in their tastes. It ranges from +1 (very similar) to -1 (opposite) tastes.

	ORANGE	STRANGER THINGS	NARCOS	HOUSE of CARDS	DAREDEUL
JOHN	1		1	2	2
YOU	2	3	?	5	4

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_{i}) (R_{jk} - \overline{R}_{j})}{[\sum_{k} (R_{ik} - \overline{R}_{i})^{2} \sum_{k} (R_{jk} - \overline{R}_{j})^{2}]^{0.5}}$$

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_{i}) (R_{jk} - \overline{R}_{j})}{[\sum_{k} (R_{ik} - \overline{R}_{i})^{2} \sum_{k} (R_{jk} - \overline{R}_{i})^{2}]^{0.5}}$$

Correlation is one possible similarity measure

Correlation between the ratings, computed a subset of items rated by both users, shows how aligned the users are in their tastes. It ranges from +1 (very similar) to -1 (opposite) tastes.

Avg.: 1.5	ORANGE	STRANGER THINGS	NARCOS	HOUSE TO CARDS	DAREOGUL
JOHN	1		1	2	2
YOU Avg.: 3.5	2	3	?	5	4

$$w_{John, You} = \frac{(1-1.5)*(2-3.5)+(2-1.5)*(5-3.5)+(2-1.5)*(4-3.5)}{\sqrt{[(1-1.5)^2+(2-1.5)^2+(2-1.5)^2]\cdot[(2-3.5)^2+(5-3.5)^2+(4-3.5)^2]}} \approx 0.95$$

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_{i}) (R_{jk} - \overline{R}_{j})}{[\sum_{k} (R_{ik} - \overline{R}_{i})^{2} \sum_{k} (R_{jk} - \overline{R}_{i})^{2}]^{0.5}}$$

Correlation is one possible similarity measure

Correlation between the ratings, computed a subset of items rated by both users, shows how aligned the users are in their tastes. It ranges from +1 (very similar) to -1 (opposite) tastes.

	ORANGE	STRANGER THINGS	NARCOS	of CARDS	DAREDEIN
JOHN	1		1	2	2
LUCY	1	2	5	5	5
DIANE	4	5	3	3	
YOU	2	3	?	5	4
	$W_{John, You} \approx 0$. 95, w _{Lucy, 1}	$\gamma_{ou} \approx 0.94$,	w _{Diane, You} ≈-	- 0.65

Predicted rating is a "weighted average"

Given user's rating for a specific movie can be predicted as a weighted average of the ratings given by all the other users who watch it, with weights being the similarity between those users and the one in question

	ORANGE	STRANGER THINGS	NARCOS	of CARDS	DAREDEUL
JOHN	1		1	2	2
LUCY	1	2	5	5	5
DIANE	4	5	3	3	
YOU	2	3	?	5	4

$$\hat{R}_{ik} = \overline{R}_i + \sum_{X_j \in \mathbf{N}_i} W_{ij} (R_{jk} - \overline{R}_j)$$

Predicted rating is a weighted average

Given user's rating for a specific movie can be predicted as a weighted average of the ratings given by all the other users who watch it, with weights being the similarity between those users and the one in question

	ORANGE Indicate In	STRANGER THINGS	NARCOS	of CARDS	DAREDEUR
JOHN	1		1	2	2
LUCY	1	2	5	5	5
DIANE	4	5	3	3	
YOU	2	3	?	5	4

$$\hat{R}_{ik}=\overline{R}_i+\sum_{X_j\in\mathbf{N}_i}W_{ij}(R_{jk}-\overline{R}_j)$$
 Need to account for different personal scales

$$\hat{R}_{ik} = \overline{R}_i + \sum_{X_j \in \mathbf{N}_i} W_{ij} (R_{jk} - \overline{R}_j) \quad \boxed{w_{John, You} \approx 0.95, \quad w_{Lucy, You} \approx 0.94, \quad w_{Diane, You}}$$

$$w_{John, You} \approx 0.95$$
, $w_{Lucy, You} \approx 0.94$, $w_{Diane, You} \approx -0.65$

Predicted rating is a weighted average

Given user's rating for a specific movie can be predicted as a weighted average of the ratings given by all the other users who watch it, with weights being the similarity between those users and the one in question

	ORANGE	STRANGER THINGS	NARCOS	of CARDS	DAREUSIN
JOHN	1		1	2	2
LUCY	1	2	5	5	5
DIANE	4	5	3	3	
YOU	2	3	?	5	4

$$\hat{R}_{Vol.Narcos} = 3.5 + 0.95 \cdot (1 - 1.5) + 0.94 \cdot (5 - 3.6) - 0.65 \cdot (3 - 3.75) \approx 4.8$$

Try to implement this!

COLAB NOTEBOOK

https://shorturl.at/dkwA5

GITHUB

https://shorturl.at/JLOX8

Thank you!

Today's materials will be here

https://github.com/evgeniyako-edu/build-your-first-recsys-workshop

Let's stay connected!

Evgeniya Korneva

Senior Data Scientist, Monster

evgeniakorneva@gmail.com

https://www.linkedin.com/in/evgeniyako

