PROBLEM SOLVING

Using nodal analysis, find current i_o in the circuit of Fig. 3.66.

Figure 3.66

SOLUTION

At node 1,
$$\frac{60 - v_1}{4} = \frac{v_1}{8} + \frac{v_1 - v_2}{2}$$
 120 = 7 v_1 - 4 v_2 (1)
At node 2, $3i_0 + \frac{60 - v_2}{10} + \frac{v_1 - v_2}{2} = 0$

But
$$i_0 = \frac{60 - v_1}{4}$$
.

Hence

$$\frac{3(60 - v_1)}{4} + \frac{60 - v_2}{10} + \frac{v_1 - v_2}{2} = 0 \longrightarrow 1020 = 5v_1 + 12v_2$$
 (2)

Solving (1) and (2) gives
$$v_1 = 53.08 \text{ V}$$
. Hence $i_0 = \frac{60 - v_1}{4} = \underline{1.73 \text{ A}}$

PROBLEM SOLVING

Determine the node voltages in the circuit in Fig. 3.67 using nodal analysis.

Figure 3.67

SOLUTION

At node 2, in Fig. (a),
$$5 = \frac{v_2 - v_1}{2} + \frac{v_2 - v_3}{2}$$
 \longrightarrow $10 = -v_1 + 2v_2 - v_3$ (1)

At the supernode,
$$\frac{V_2 - V_1}{2} + \frac{V_2 - V_3}{2} = \frac{V_1}{4} + \frac{V_3}{8} \longrightarrow 40 = 2V_1 + V_3$$
 (2)

From Fig. (b),
$$-v_1 - 10 + v_3 = 0 \longrightarrow v_3 = v_1 + 10$$
 (3)

Solving (1) to (3), we obtain $v_1 = \underline{10 \text{ V}}$, $v_2 = \underline{20 \text{ V}} = v_3$