2.882 System Design and Analysis

February 28

What we'll do today

- Information content for multi-FR
 - Basic statistics/probability
- Allowable tolerance (linear tolerancing) vs. statistical tolerancing

Information content

$$P(FR) = \int_{dr^{l}}^{dr^{u}} f(FR)dFR$$

$$I = -\log_{2} P = -\log_{2} P(FR) = -\log_{2} \int_{dr^{l}}^{dr^{u}} f(FR)dFR$$

Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

Then,
$$Z = (X-\mu)/\sigma \sim N(0, 1)$$

Z	phi(z)	1-phi(z)	prob between +z, -z	ppm	ppb
1	0.84134474	0.15865526	0.68268948	317310.5	
2	0.977249938	0.022750062	0.954499876	45500.12	
3	0.998650033	0.001349967	0.997300066	2699.934	
4	0.999968314	3.1686E-05	0.999936628	63.37207	
5	0.999999713	2.87105E-07	0.999999426	0.57421	574.21
6	0.999999999	9.90122E-10	0.99999998	0.00198	1.980244

HW1, #5

- System range, FR1 ~ N(μ,σ²)
- Design range dr_I =< FR1 =< dr_U Q: Information Content ?
- $\lambda = (dr_u + dr_l)/2 \mu$

 dr^{l} - $(dr^{l}+dr^{u})/2 + \lambda$ $dr^{u} - (dr^{l}+dr^{u})/2 + \lambda$

In terms of σ multiple: $\frac{dr^l - (dr^l + dr^u)}{2 + \lambda}/\sigma$ $\frac{dr^u - (dr^l + dr^u)}{2 + \lambda}/\sigma$

Multiple FR system range

Example

of pdf(DP1) and pdf(DP2)

Design range

FR1: [-0.5 , 0.5] FR2: [-2.0 , 2.0]

Assuming statistical independence between DP1 and DP2, the joint pdf of (DP1,DP2) is a product

Taesik Lee © 2005

Detecting change in system range

"Monitoring marginal probability of each FR is not only inaccurate but potentially misleading"

Example

Design range

FR1: [-0.5,0.5]

FR2: [-2,2]

Design parameter variation

Initial

DP1: U[-1,1]

DP2: U[0,1.5]

After change

DP1: U[-1,1]

DP2: U[-1,1.6]

		Correct		
	p _{FR1}	p _{FR2}	$p_{FR1} \times p_{FR2}$	p _{FR1,FR2}
Before	0.5	0.9583	0.4792	0.5
After	0.5	0.9654	0.4827	0.499

Allowable tolerance

- Defined for DP
- Tolerances that DPs can take while FRs still remaining completely inside design ranges
- Unconditional tolerance
- Conservative tolerancing

Linear tolerancing vs. Statistical tolerancing

Linear tolerancing

Allowable tolerance

DP1: [-0.6,0.6]

DP2: [-1.56,1.56]

Design range

FR1: [-0.6,0.6]

FR2: [-1.8,1.8]

Statistical tolerancing

$$3\sigma_{FR1} = 0.6 \rightarrow \sigma_{FR1} = 0.2$$

Therefore, $\sigma_{DP1} = 0.2$

$$Var(FR2) = 0.4^{2}Var(DP1) + 1^{2}Var(DP2)$$

Thus, $\sigma_{DP2} = 0.5946$

$$3 \sigma_{DP1} = 0.6$$

$$3 \sigma_{DP2} = 1.784$$