ИССЛЕДОВАНИЕ ОПЕРАЦИИ. ЛЕКЦИЯ 5.

Крамаренко К.Е. Кафедра ВС

Динамическое программирование

ДП - определяет оптимальное решение **n**-мерной задачи путем ее декомпозиции на **n** этапов, каждый из которых представляет подзадачу относительно одной переменной.

Динамическое программирование

Основные элементы модели ДП:

- 1. Определение этапов.
- 2. Определение на каждом этапе вариантов решения (альтернатив).
- 3. Определение состояний на каждом этапе.

Рекуррентная природа вычислений ДП

Вычисления в **ДП** выполняются рекуррентно в том смысле, что оптимальное решение одной подзадачи используется в качестве исходных данных для следующей.

Рекуррентная природа вычислений ДП

Вычисления в **ДП** выполняются рекуррентно в том смысле, что оптимальное решение одной подзадачи используется в качестве исходных данных для следующей.

Этап 1:

Кратчайший путь к узлу 2 равен 7 (из узла 1)

Кратчайший путь к узлу 2 равен 7 (из узла 1)

Кратчайший путь к узлу 2 равен 7 (из узла 1)

Этап 2:

Этап 3:

$$\binom{\text{Кратчайший}}{\text{путь к узлу 7}} = \min_{i=5,6} \left\{ \binom{\text{Кратчайший}}{\text{путь к узлу } i} + \binom{\text{Расстояние от}}{\text{узла } i \text{ к узлу 7}} \right\} =$$

$$= \min_{i=5,6} \left\{ \begin{aligned} 12 + 9 &= 21 \\ 17 + 6 &= 23 \end{aligned} \right\} = 21 (из узла 5)$$

Алгоритмы прямой и обратной прогонки

Прямая прогонка:

$$f_i(x_i) = \min_{\substack{\text{все допустимые} \\ \text{маршруты}}} \{d(x_{i-1}, x_i) + f_{i-1}(x_{i-1})\},$$
где $i=1,2,3,$

при i=1 полагаем $f_0(x_0) = 0$.

Обратная прогонка:

$$f_i(x_i) = \min_{\substack{\text{все допустимые} \\ \text{маршруты}}} \{d(x_i, x_{i+1}) + f_{i+1}(x_{i+1})\},$$
где $i=1,2,3,$

где
$$f_4(x_4) = 0$$
 для $x_4 = 7$.

Обратной прогонки

$\mathbf{d}(\mathbf{x}_3,\mathbf{x}_4)$		Оптимальное решение		
\mathbf{x}_3	x ₄ =7	$f_3(x_3)$	$\mathbf{x_4}^*$	
5	9	9	7	
6	6	6	7	

$\mathbf{d}(\mathbf{x}_2,\mathbf{x}_3)+\mathbf{f}_3(\mathbf{x}_3)$			Оптимальное решение		
\mathbf{x}_2	x ₃ =5	x ₃ =6	$f_2(x_2)$	$\mathbf{x_3}^*$	
2	12+9=21	-	21	5	
3	8+9=17	9+6=15	15	6	
4	7+9=16	13+6=19	16	5	

$\mathbf{d}(\mathbf{x}_2,\mathbf{x}_3)+\mathbf{f}_3(\mathbf{x}_3)$				Оптимальн	ое решение
\mathbf{x}_1	x ₂ =2	x ₂ =3	x ₂ =4	$f_1(x_1)$	$\mathbf{x}_2{}^*$
1	7+21=28	8+15=23	5+16=21	21	4

Это задача о рациональной загрузке рюкзака (судна, самолета, склада), который имеет ограничения по объему или грузоподъемности.

- **W** грузоподъемность рюкзака(судна, самолета, склада).
- **п** количество наименований предметов.
- m_i количество предметов і-го наименования, подлежащих загрузки.
- r_i прибыль, которую приносит один загруженный предмет і-го наименования.
- w_i вес одного предмета і-го наименования.

3ЛП:

```
Максимизировать z=r_1m_1+r_2m_2+\cdots+r_nm_n при условии, что w_1m_1+w_2m_2+\cdots+w_nm_n\leq W, m_1,m_2,\ldots,m_n\geq 0 и целые
```

- 1. Этап і соответствует і-му наименованию.
- 2. Вариант решения описывается \mathbf{m}_{i} (в пределах от 0 до $[\mathbf{W}/\mathbf{w}_{i}]$).
- 3. Состояние \mathbf{x}_i на этапе \mathbf{i} выражает суммарный вес предметов, решения о погрузки которых приняты на этапах $\mathbf{i}, \mathbf{i+1}, \dots, \mathbf{n}$.

Пусть $\mathbf{f}_{i}(\mathbf{x}_{i})$ – максимальная суммарная прибыль от этапов $\mathbf{i}, \mathbf{i} + \mathbf{l}, ... \mathbf{n}$ при заданном состоянии \mathbf{x}_{i} .

$$f_i(x_i) = \max_{\substack{m_i=0,1,...,\left[rac{W}{w_i}
ight]}} \{r_i m_i + f_{i+1}(x_{i+1})\}$$
, где $i=1,2,\ldots,n$, $x_i=0,1,...,W$

где $\mathbf{f}_{n+1}(\mathbf{x}_{n+1}) = \mathbf{0}$.

$$x_i - x_{i+1} = w_i m_i$$

$$x_{i+1} = x_i - w_i m_i$$

$$f_i(x_i) = \max_{\substack{m_i=0,1,...,W\\ x_i=0,1,...,W}} \{r_i m_i + f_{i+1}(x_i - w_i m_i)\}$$
, где $i=1,2,\ldots,n$,

W = 4

Предмет і	$\mathbf{w_i}$	$\mathbf{r_i}$
1	2	31
2	3	47
3	1	14

$$f_3\left(x_3
ight) = \max_{m_3}\{14m_3\}, \; \max\{m_3\} = \left[rac{4}{1}
ight] = 4. \; m_3$$
 является допустимым, если $w_3m_3 \leq x_3$

14m ₃					Оптимальное решение		
\mathbf{x}_3	$m_3 = 0$	$m_3=1$	m ₃ =2	$m_3 = 3$	m ₃ =4	$f_3(x_3)$	${\sf m_3}^*$
0	0	-	-	-	-	0	0
1	0	14	_	-	_	14	1
2	0	14	28	-	_	28	2
3	0	14	28	42	-	42	3
4	0	14	28	42	56	56	4

$$f_2(x_2) = \max_{m_2} \{47m_2 + f_3(x_2 - 3m_2)\}, \max\{m_2\} = \left[\frac{4}{3}\right] = 1.$$

$47m_2+f_3(x_2-3m_2)$			Оптимальное решение		
x_2	m ₂ =0	$m_2=1$	$f_2(x_2)$	m_2^*	
0	0 + 0 = 0	-	0	0	
1	0 + 14 = 14	-	14	0	
2	0 + 28 = 28	-	28	0	
3	0 + 42 = 42	47 + 0 = 47	47	1	
4	0 + 56 = 56	47 + 14 = 61	61	1	

$$f_1(x_1) = \max_{m_1} \{31m_1 + f_2(x_1 - 2m_1)\}, \max\{m_1\} = \left[\frac{4}{2}\right] = 2.$$

$31m_1+f_2(x_1-2m_1)$				Оптимальное решение	
x_1	m ₁ =0	$m_1=1$	m ₁ =2	$f_1(x_1)$	${\sf m_1}^*$
0	0 + 0 = 0	-	-	0	0
1	0 + 14 = 14	-	_	14	0
2	0 + 28 = 28	31 + 0 = 31	_	31	1
3	0 + 47 = 47	31 + 14 = 45	-	47	0
4	0 + 61 = 61	31 + 28 = 59	62 + 0 = 0	62	2

$$m_1^* = 2$$
, $x_2 = x_1 - 2m_1^* = 4 - 2 * 2 = 0$
 $x_2 = 0 -> m_2^* = 0$, $x_3 = x_2 - 3m_2^* = 0 - 3 * 0 = 0$
 $x_3 = 0 -> m_3^* = 0$

