ANÁLISE DOS MODELOS DE MACHINE LEARNING

Andre Barbosa

Data & Applied Scientist

LinkedIn: @barbosaandre

E-Mail: abarbosa0494@gmail.com

AGENDA

- "Análise dos modelos" (entendendo alguns modelos existentes)
- "O que é e como explicar uma Caixa Preta"
- "Permutation Importance"
- "Modelo Caixa de Vidro Vs. Modelo
 Caixa Preta" (entendendo os modelos de Caixa Preta e Caixa de Vidro)

Análise dos Modelos

Entendendo alguns modelos existentes

Analisando o código

```
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_validate, train_test_split
from sklearn.metrics import r2_score

X_train, X_test, y_train, y_test = train_test_split(
    dataset[numerical_features], dataset[label], random_state=42, train_size=0.7)
```

Analisando o código

```
imp_median = SimpleImputer(missing_values=np.nan, strategy="median")
        linear_model = Ridge(alpha=0.3)
     ✓ 0.1s
[9]
                                                                                                                   Python
        X_train_transformed = imp_median.fit_transform(X_train)
        X_test_transformed = imp_median.transform(X_test)
        linear_model.fit(X_train_transformed, y_train)
     ✓ 0.7s
[21]
                                                                                                                   Python
    Ridge(alpha=0.3)
                                                                                                 r2_score(y_test, linear_model.predict(X_test_transformed))
     ✓ 0.1s
                                                                                                                   Python
    0.7315371315089919
```


Repetimos o processo via cross-validation

Podemos ver que os resultados foram relativamente próximos :)

	Coefficients
MSSubClass	-144.366273
LotFrontage	200.280294
LotArea	1.067949
OverallQual	34459.211810
OverallCond	158.477464
YearBuilt	141.069522
YearRemodAdd	444.328544
MasVnrArea	56.610557

E calculamos os coeficientes!

Pare alguns minutos e reflita sobre o que esses valores querem dizer

O que esses coeficientes querem dizer?

Novamente, pare alguns minutos e reflita!

OverallQual: Rates the overall material and finish of the house

- 10 Very Excellent
- 9 Excellent
- 8 Very Good
- 7 Good
- 6 Above Average
- 5 Average
- 4 Below Average
- 3 Fair
- 2 Poor
- 1 Very Poor

Relembrando o Dataset

Logo, temos uma variável categórica ordinal! Um aumento no valor da categoria tem relação numérica com o valor esperado

MSSubClass: Identifies the type of dwelling (habitação/moradia) involved in the sale.

- 20 1-STORY 1946 & NEWER ALL STYLES
- 30 1-STORY 1945 & OLDER
- 40 1-STORY W/FINISHED ATTIC ALL AGES
- 45 1-1/2 STORY UNFINISHED ALL AGES
- 50 1-1/2 STORY FINISHED ALL AGES
- 60 2-STORY 1946 & NEWER
- 70 2-STORY 1945 & OLDER
- 75 2-1/2 STORY ALL AGES
- 80 SPLIT OR MULTI-LEVEL
- 85 SPLIT FOYER
- 90 DUPLEX ALL STYLES AND AGES
- 120 1-STORY PUD (Planned Unit Development) 1946 & NEWER
- 150 1-1/2 STORY PUD ALL AGES
- 160 2-STORY PUD 1946 & NEWER
- 180 PUD MULTILEVEL INCL SPLIT LEV/FOYER
- 190 2 FAMILY CONVERSION ALL STYLES AND AGES

Relembrando o Dataset

Logo, temos uma variável categórica **nominal**! Um aumento no valor da categoria **não** tem relação numérica com o valor de saída. Talvez um processo de Feature Engineering bacana seria fazer o OHE dessas categorias

Analisando o código

```
from sklearn.tree import DecisionTreeRegressor, plot_tree

dt = DecisionTreeRegressor(random_state=42)

dt.fit(X_train_transformed, y_train)
```

Analisando o código

```
r2_score(y_test, dt.predict(X_test_transformed))
                                                                                                                Python
[18]
    0.6560666533906545
                                                                                               results = cross_validate(
           dt,
           X=X_train_transformed,
           y=y_train,
           cv=10,
           scoring=["r2", "neg_root_mean_squared_error"],
       results['test_r2'].mean()
[21]
                                                                                                                Python
    0.5460397023052359
```

Interpretando a árvore

```
_ = plot_tree(dt, feature_names=numerical_features)
[22]
...
```

WAIT, WHAT?

Mas como interpretar essa imagem?

Árvores de decisão não são tão fáceis de visualizar em todos os casos

Interpretabilidade em Decision Trees

Árvores de Decisão são "viáveis" de interpretáveis quando sua altura é baixa. Veja que elas continuam sendo um modelo caixa de vidro!

O que é e como explicar os modelos caixa preta

Analisando o código

```
from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(random_state=42)

rf.fit(X_train_transformed, y_train)
```

Analisando o código

```
\triangleright \vee
         r2_score(y_test, rf.predict(X_test_transformed))
[25]
                                                                                                                                 Python
     0.8153213136306386
         results = cross_validate(
             rf,
             X=X_train_transformed,
             y=y_train,
             cv=10,
             scoring=["r2", "neg_root_mean_squared_error"],
         results['test_r2'].mean()
[26]
                                                                                                                                 Python
     0.7252432198063722
```

Melhor que a regressão!

```
r2_score(y_test, rf.predict(X_test_transformed))
0.8153213136306386
   results = cross_validate(
       rf,
       X=X_train_transformed,
       y=y_train,
       cv=10,
       scoring=["r2", "neg_root_mean_squared_error"],
   results['test_r2'].mean()
0.7252432198063722
```

```
r2_score(y_test, linear_model.predict(X_test_transformed))
✓ 0.1s
0.7315371315089919
   results = cross_validate(
       linear model,
       X=X_train_transformed,
       y=y_train,
       cv=10,
       scoring=["r2", "neg_root_mean_squared_error"],
   results['test_r2'].mean()
✓ 0.1s
0.6841001092978575
```


E podemos gerar noção de importância!

Mas o que isso quer dizer no caso de um algoritmo de Bagging? E no caso de um Boosting?

T

Permutation Importance

Permutation Importance

"A ideia é a seguinte: a importância do recurso pode ser medida olhando para o quanto os scores (precisão, F1, R^2, etc. - qualquer score em que estejamos interessadas) diminuem quando um recurso está indisponível."

"Para fazer isso, é possível remover o recurso do dataset, retreinar o estimator e checar os scores. Mas isso requer um retreinamento do estimator para cada recurso, o que pode ser computacionalmente intenso. Isso também mostra o que pode ser importante dentro de um dataset, e não o que é importante dentro de um modelo treinado concreto."

LEIA MAIS AQUI

Permutation Importance

"Para evitar retreinamento do estimator, podemos remover uma variável somente da parte de teste do dataset, e computar o score sem usar essa variável. Não funciona como é, porque *estimators* esperam que a variável esteja presente. Então, ao invés de remover uma variável, podemos substituí-lo por ruído aleatório - a coluna de valores continua ali, mas não contém mais informações úteis. Esse método funciona se o *ruído* é retirado da mesma distribuição dos valores do recurso original (de outro modo, o estimator não vai funcionar). A maneira mais simples de conseguir esse ruído é combinar os dados em um recurso, ou seja, use outros exemplos de valores de recurso - é assim que permutation importance é computada"

LEIA MAIS AQUI

Os valores são diferentes!

```
import eli5
   from eli5.sklearn import PermutationImportance
   transform_data = X_test_transformed
   perm = PermutationImportance(rf).fit(
       transform_data, y_test
   eli5.show_weights(perm, feature_names=numerical_features)
           Weight
                    Feature
    1.1178 ± 0.1555
                    OverallQual
    0.0922 \pm 0.0277
                    LotArea
    0.0249 \pm 0.0080
                    MasVnrArea
    0.0182 \pm 0.0084
                    YearBuilt
    0.0140 \pm 0.0038
                    LotFrontage
    0.0124 \pm 0.0072
                    YearRemodAdd
    0.0099 \pm 0.0017
                    MSSubClass
    0.0058 \pm 0.0049
                    OverallCond
```


Modelo Caixa de Vidro VS Modelo Caixa Preta

Modelos Interpretáveis

Modelos interpretáveis são aqueles que **naturalmente** têm alguma interpretabilidade.

Exemplos:

- o peso das variáveis dado através dos coeficientes de uma regressão linear
- O "fluxo" de uma árvore de decisão

Modelos Explicáveis

- São modelos em que um **humano não consegue** entender diretamente.
- Podemos pensar em modelos de ML, em geral, como funções. Essas funções são complexas demais e, para explicá-las, nos aproximamos por uma outra função, que conseguimos entender!
- Vamos entender mais sobre isso na aula de hoje.

"Is my listing priced too high?"

Caixa de Vidro ou Caixa Preta?

Como é possível ver pelas imagens, as classes de modelos de Machine Learning dividem-se em duas:

- modelos de caixa de vidro, em que as interpretações/predições são claras e direta;
- modelos **caixa preta**, em que os resultados não são facilmente interpretáveis por um humano.

Importando as bibliotecas

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import warnings

pd.options.display.max_rows = 60
pd.options.display.max_columns = 100
warnings.simplefilter("ignore")
```

Montando o Dataset

```
dataset = pd.read_csv("dataset/house_dataset.csv", index_col=0)
```

Descrição do Dataset:

```
MSSubClass: Identifies the type of dwelling involved in the sale.
             1-STORY 1946 & NEWER ALL STYLES
             1-STORY 1945 & OLDER
             1-STORY W/FINISHED ATTIC ALL AGES
             1-1/2 STORY - UNFINISHED ALL AGES
             1-1/2 STORY FINISHED ALL AGES
             2-STORY 1946 & NEWER
             2-STORY 1945 & OLDER
             2-1/2 STORY ALL AGES
             SPLIT OR MULTI-LEVEL
             SPLIT FOYER
        85
             DUPLEX - ALL STYLES AND AGES
       90
              1-STORY PUD (Planned Unit Development) - 1946 & NEWER
              1-1/2 STORY PUD - ALL AGES
       150
       160
              2-STORY PUD - 1946 & NEWER
              PUD - MULTILEVEL - INCL SPLIT LEV/FOYER
       180
              2 FAMILY CONVERSION - ALL STYLES AND AGES
       190
```

MSZoning: Identifies the general zoning classification of the sale.

A Agriculture

C Commercial

FV Floating Village Residential

I Industrial

RH Residential High Density

RL Residential Low Density

RP Residential Low Density Park

RM Residential Medium Density

LotFrontage: Linear feet of street connected to property

LotArea: Lot size in square feet

Street: Type of road access to property

Grvl Gravel

Pave Paved

Montando o Dataset

dataset = pd.read_csv("dataset/house_dataset.csv", index_col=0)

	dataset.head()										
											Python
	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlo
ld											
1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	Inside	
2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	FR2	
3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	Inside	
4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	Corner	
5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	FR2	

```
numerical_features = [
    "MSSubClass",
    "LotFrontage",
    "LotArea",
    "OverallQual",
    "OverallCond",
    "YearBuilt",
    "YearRemodAdd",
    "MasVnrArea",
label = "SalePrice"
dataset[numerical_features].isna().sum()
```

```
MSSubClass 0
LotFrontage 259
LotArea 0
OverallQual 0
OverallCond 0
YearBuilt 0
YearRemodAdd 0
MasVnrArea 8
dtype: int64
```

Por questões de simplificação, iremos trabalhar _apenas_ com as variáveis numéricas :)

Calculando algumas estatísticas simples

```
df_corr = dataset[numerical_features + [label]].dropna().corr()
plt.figure(figsize=(8, 6))
sns.heatmap(
    df_corr,
    annot=True,
    fmt=".1f",
    linewidths=0.5,
    cmap="Blues",
    center=0,
    vmax=1.0,
    vmin=-1.0,
)
```

