

EXTENDING BAYES TO MAKE OPTIMAL DECISIONS

Jonas Kristoffer Lindeløv

Email: jonas@hum.aau.dk
Twitter: @jonaslindeloev

Blog: <u>lindeloev.net</u>

EXAMPLE: EVADING TAXES

```
# Infer how parameter(s) predict 'previous_earnings'
fit = stan_glm(previous_earnings ~ gut_feeling, ...)

# Prediction distribution for a particular predictor value
predictions = posterior_predict(fit, data.frame(gut_feeling=1000))
```

```
# Utility function; abrupt change at x > 1500
utility = function(x) ifelse(x < 1500, x, x*0.9 - 18500*0.1)
```

Plot the utility distribution, the Expected Utility (EU), and predictions
plot(density(utility(predictions)))

abline(v = mean(utility(predictions)))

previous_earnings

UTILITY THEORY

- Three by Kolmogorov (or five)
- Four by Von Neumann–Morgenstern
- Utility theory is about outcomes (x_i), not inferred predictors.
- However, we can use predictors to predict hypothetical outcomes.
- Insight: science is value-neutral. All outcomes are valued equally (i.e., squared loss).

$$u(x_i) = x_i$$

(From the vignette to the 'pt' package.)

EXAMPLE: PREDICTING OPTIMAL THERAPY LENGTH

id	success	symptoms	method	sessions
1	1	2	vr	14
2	0	4	face	6
3	1	5	face	9
4	1	3	face	10
5	1	4	vr	11
			***	•••

- In general: if you can get a posterior distribution, you can calculate utility.
 - GLMM (brms)
 - SEM (blavaan)
- Use priors on predictors to reflect other sources of "data".
 - Previous literature.
 - Subjective hunches.

```
# Infer predictors
library('brms')
formula=success ~ sessions + sessions:method + mo(symptoms)
priors = c(
   set_prior('normal(1, 1)', coef='sessions'),
   set_prior('normal(1, 1)', coef='sessions:methodvr')
fit = brm(formula, data=df, prior=priors, family=bernoulli)
                     b Intercept
                                                  b Intercept
       0.100
       0.075
       0.050
       0.025
       0.000
            -10
                        10
                               20
                     b sessions
        0.6
       0.4
        0.2
                  b sessions:methodyr
                                               b sessions:methodvr
       1.5
1.0
                                       -1.0
                -1.0
                        -0.5
                   bsp_mosymptoms
                                                bsp_mosymptoms
       0.100
       0.075
       0.050
       0.025
```

2. DEFINE UTILITIES

• Make a loss function to reflect the positive or negative utility given predictors.

```
# Utility in terms of money
price_session = list(vr=600, face=900) # Negative
outcome = c(success=15000, loss=-4000)
                                        # Positive
cost = function(sessions, method, symptoms) {
  # Make the prediction
  new = data.frame(sessions, method, symptoms)
  prob_success = predict(fit, newdata=new)[1]
  # Add loss (cost of treatment)
  therapy_price = price_session[[method]] * sessions
  therapy_gain = prob_success * outcome['success'] +
                 (1-prob_success)* outcome['loss']
  # Gain should outweigh loss per treatment success:
  therapy_price * (1 / prob_success) - therapy_gain
```

sessions	method	symptoms	price
1	vr	3	39.525
2	vr	3	66.062
3	vr	3	67.102
4	vr	3	65.240
5	vr	3	49.954
1	vr	3	39.525

3. MAKE A DECISION

- Maximum gain or minimum loss:
 - Eye-ball maxima and minima in plots.
 - optim or similar functions (but beware local extremums)

Method 1: Eye-ball plots

Method 2: Optimization functions

> optim(9, function(x) -cost(x, method='face', symptoms=5))
[1] 12.75

\$value
[1] -2381.112

SUMMARY

