

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

PROYECTOPRIMER PARCIAL

ESTUDIANTE: FRANCISCO CARRIÓN

FECHA:

30/05/2025

DOCENTE:

ESCOBAR MENDEZ ALEXANDRA ELIZABETH

NRC:

22129

Introducción

Mediante la aplicación de diversas técnicas estadísticas como las medidas de tendencia central y dispersión, distribuciones de probabilidad (tanto discretas como continuas) y métodos de conteo se busca extraer insights valiosos que orienten la toma de decisiones estratégicas en el Uso de aplicaciones para aprender Inglés . Estos análisis permiten identificar patrones de uso, niveles de satisfacción del usuario, preferencias de contenido y otras métricas clave para optimizar los servicios ofrecidos.

Pregunta:

5. ¿En qué porcentaje considera usted que los estudiantes de la Universidad de las Fuerzas Armadas - ESPE tienen su igual preferencia por la aplicación para aprender idiomas? (valor decimal, Ej: 81.2)

Datos no agrupados

15	90,5	50,4	10	0	85	85,7	79,9	60	70	83,4	15,6	1	50	80,1
80,5	80	80,7	80,4	90	50	70	70	30	90	50	65	50	83,5	20
50	70	60	50	50,3	40	100	80	60	60,58	71,1	60	50,5	92,5	18
50	90	9,5	70,3	50	27,2	85	10	30,5	90	56,1	75	80,5	80,8	15
70	55	80,2	76,3	80	50	55	70	86	90,1	20	70	75	80	60
70,3	90	85,5	90	5	50	60	60	80,5	80	50	75,7	78,5	89	65
80	85,4	70,2	40,5	72,9	100	75	75,5	15	6,41	50	50,9	80	65,5	50
25	50	81,3	50	0	70,8	79,8	45,6	30	50,9	83,4	70,5	81,5	80	50
92	75	70,8	40	90	40,1	83,2	41,2	60	50	83,4	64,7	80	70	76,4
51,3	70,2	50	50	51	60,6	79,9	50	90	80	40,5	80,5	43,7	68	50,8

Se aplicaron las siguientes fórmulas para realizar los cálculos de los datos no agrupados .

Media

	Media	$\mathbf{x} = \frac{\sum x}{n}$	9246,09 150	61,6406	
--	-------	---------------------------------	----------------	---------	--

Mediana

Mediana	ME =	$\frac{xn}{2} + \frac{xm}{2} + 1$	70

Moda

Amplitud

Amplitud	R=	xmax- xmin=	92,5-0=	92,5	

Varianza

Varianza	σ^2 =	$\sum (x-x^2)$	376402,6679	
		n-1		

Desviación estándar

Desviación estándar	σ^2 =	$\left(\frac{\sum (x-x^2)}{n-1}\right)^{1/2} =$	613,5166

Coeficiente de variación

CV=	<u></u> <u> </u>	0,38
	X	
	CV=	CV= $\frac{\sigma}{X}$ =

Cuartiles

Promedio	61,64	
Cuartiles	Qk=	(n+1)k
Cuartiles	QK-	4
Q	1	50
Q	2	70
Q	3	80

Percentiles

Percentiles	Pk	(n+1)k
		4
P	90%	89,1
P	10%	24,5

Curtosis

|--|

Cálculos realizados en excel

Со	lumna1
Media	61,6406
Error típico	1,928991336
Mediana	70
Moda	50
Desviación estándar	23,62522245
Varianza de la muestra	558,1511359
Curtosis	0,06911786
Coeficiente de asimetría	-0,843789087
Rango	100
Mínimo	0
Máximo	100
Suma	9246,09
Cuenta	150
Nivel de confianza(95,0%)	3,811712299
Cuatiles	50
	70
	80
Persentiles	
	86,3
	26,76
Curtosis	
	0,07

Cálculos realizados en jamovi

escriptivas			
	В		
N	150		
Perdidos	0		
Media	112		
Mediana	70.0		
Moda	50.0		
Suma	16740	150 -	
Desviación estándar	614		
/arianza	376403		
Mínimo	0.00		
Máximo	7570	ته - 100	
Asimetría	12.2	ung	
rror est. asimetría	0.198	Pregunta 5	
Curtosis	150	50 -	
error est. curtosis	0.394	5.5	
25percentil	50.0		
0percentil	70.0		

Datos agrupados

En esta imagen se encuentran los datos no agrupados coloreados de acuerdo a la frecuencia absoluta simple.

0,0	0,0	1,0	5,0	6,4	9,5	10,0	10,0	15,0	15,0	15,0	15,6	18,0	20,0	20,0
25,0	27,2	30,0	30,0	30,5	40,0	40,0	40,1	40,5	40,5	41,2	43,7	45,6	50,0	50,0
50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0
50,0	50,0	50,0	50,3	50,4	50,5	50,8	50,9	50,9	51,0	51,3	55,0	55,0	56,1	60,0
60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,6	60,6	64,7	65,0	65,0	65,5	68,0	70,0
70,0	70,0	70,0	70,0	70,0	70,0	70,0	70,2	70,2	70,3	70,3	70,5	70,8	70,8	71,1
72,9	75,0	75,0	75,0	75,0	75,5	75,7	76,3	76,4	78,5	79,8	79,9	79,9	80,0	80,0
80,0	80,0	80,0	80,0	80,0	80,0	80,0	80,0	80,1	80,2	80,4	80,5	80,5	80,5	80,5
80,7	80,8	81,3	81,5	83,2	83,4	83,4	83,4	83,5	85,0	85,0	85,4	85,5	85,7	86,0
89,0	90,0	90,0	90,0	90,0	90,0	90,0	90,0	90,0	90,1	90,5	92,0	92,5	100,0	100,0

A continuación se calculó el ancho del intervalo **Ai=**150/7**=** 14

Y el límite inferior que es de 0.1

Con estos datos se realizó la tabla y se realizaron los distintos cálculos especificados en la misma

inter	intervalos		fr.abs.Acum ulada	marca de clase	fx	Media	X-XPROM	X-XPROM	f X-XPROM	(X-XPROM)^:	fx^2	(X-XPROM)^2	f(X-XPROM)^2
0	14	8	8	7	56	63,2	-56,2	56,2	449,6	25267,52	392	3158,44	25267,52
15	29	9	17	22	198	63,2	-41,2	41,2	370,8	15276,96	4356	1697,44	15276,96
30	44	10	27	37	370	63,2	-26,2	26,2	262	6864,4	13690	686,44	6864,4
45	59	32	59	52	1664	63,2	-11,2	11,2	358,4	4014,08	86528	125,44	4014,08
60	74	32	91	67	2144	63,2	3,8	3,8	121,6	462,08	143648	14,44	462,08
75	89	45	136	82	3690	63,2	18,8	18,8	846	15904,8	302580	353,44	15904,8
90	104	14	150	97	1358	63,2	33,8	33,8	473,2	15994,16	131726	1142,44	15994,16
		150			9480				2881,6	83784			
				media	63,2				19,210667	562,30872			

Media

$$\bar{x} = \frac{\sum fx}{n}$$
= 63,2

Mediana

$$Me = Li + \left[\frac{\frac{n}{2} - FA}{f}(Ai)\right] = 67.0$$

Moda

$$Mo = Li + \left[\frac{d1}{d1 + d2}(Ai)\right]$$

Amplitud

$$A = Ls. u. i - Li. p. i$$

Desviación

$$\sigma^2 = \frac{\sum f(x - \bar{x})^2}{n - 1} = 562.30$$

Desviación Estándar

$$\sigma = \sqrt{\frac{\sum f(x - \bar{x})^2}{n - 1}} = 23,71$$

Probabilidades

Regla de adición

Para este problema se usó la siguiente tabla:

	Duolingo	HelloTalk	Busuu	Memrise	Babbel	Ninguno	Total
Ing. en Mecatrónica	30	2	4	1	3	0	40
Ing. en Software	29	2	2	0	2	0	35
Ing. en Tecnologías de la Información	55	7	0	2	2	9	75
Total	114	11	6	3	7	9	150

Con los siguientes datos se responderá las preguntas:

¿Cuál es la probabilidad de que un estudiante seleccionado al azar esté suscrito a Duolingo o Memrise?

$$P(A \cup B) = P(A) + P(B)$$

Siendo A= Duolingo y B=Memrise

P(Duolingo U Mermriese)=

Técnica de conteo

Un usuario está utilizando una aplicación para aprender idiomas y desea complementar su estudio observando contenido audiovisual en el idioma que está aprendiendo. Elige 5 idiomas y va a ver cual de esas aplicaciones le enseña mejors

Duolingo:6 Memrise: 5 HelloTalk:4

Siendo n= 15 y r = 5 podemos calcular con la siguiente fórmula:

$$nCr = \frac{n!}{r! (n-r)!}$$

Lo cual reemplazando los datos nos da como resultado que hay 3003 formas distintas de seleccionar las 5 series del cátalo de las distintas plataformas.

Permutación

Se desea organizar a 10 estudiantes de 120 para que puedan utilizar una aplicación para aprender inglés

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

Con la fórmula mostrada y reemplazando n=120 y r =10 obtenemos como resultado que existen 4.21*10^20 formas de organizar a los estudiantes seleccionados.

Distribución de probabilidad discreta

Distribución binomial

De un total de 20 personas se sabe que 4 prefieren duolingo, determine la probabilidad de que:

Exactamente 2 prefieren HelloTalk.

$$P(x) = nCx * P x * q n - x = 20C2 * 0.2 2 * 0.8 20 - 2 = 0.14$$

La probabilidad de que 2 prefieran Hello Talk es de 14%

Distribución hipergeométrica

De un total de 35 estudiantes se sabe que 6 no consumen aplicaciones para aprender inglés. Se tomó una muestra de 10 estudiantes. Determine la probabilidad de que: *Exactamente 2 no consuman aplicaciones para aprender inglés

N = 35

S=6

n=10

x=2

$$P(2) = \frac{6C2 * 29C8}{35C10} = 0.3507$$

LA probabilidad de que exactamente 2 no consuman aplicaciones para aprender inglés es de 35.07%

• Exactamente 5 consuman aplicaciones para aprender inglés

$$P(2) = \frac{6C5 * 29C5}{35C10} = 0.0384$$

La probabilidad de que exactamente 5 consuman aplicaciones para aprender inglés es de 3.84%

Distribución probabilidad continua Distribución uniforme

Se sabe que el tiempo que un estudiante consume Duolingo es de 30 a 40 minutos, este ejercicio experimenta una distribución uniforme. *un estudiante mira Memrise entre 30 y 35 minutos

$$P(30 \le x \le 35) = \frac{35 - 30}{40 - 30} = 0.5$$

20%

40%

La probabilidad de que un estudiante mira Memrise entre 30 y 35 minutos es del 50%

La probabilidad de que un estudiante mire HelloTalk más de 32 minutos es del 80%

80%

100%

60%

Distribución Normal

El promedio que utiliza un estudiante utilice aplicaciones para aprender inglés duoling de 4 horas con una desviación de 1.5 horas. *determine la probabilidad de que se utilice entre 2 y 3 horas.

$$Z1 = \frac{2-4}{1.5} = 0.4082$$

$$Z2 = \frac{3-4}{1.5} = -0.67 = 0.2486$$
0,45
0,4
0,35
0,3
0,25
0,2
0,15
0,1
0,05
0
0
1
2
3
4
5
6
7
8

Distribución Exponencial

Se sabe que algunos estudiantes se dedican a utilizar Duolingo durante una media de 20 minutos. Este ejercicio tiene una distribución exponencial

• Ven menos de 60 minutos

$$\lambda = \frac{1}{20}$$

$$P(x) = 1 - e^{-\frac{1}{20}*60} = 1 - 0.0498 = 0.95$$
0.2
0.15
0.1
0.05

Conclusiones

- Variedad en la elección y el empleo de aplicaciones: Los alumnos de la Universidad ESPE emplean una gama de aplicaciones para el aprendizaje del inglés (Duolingo, Memrise y HelloTalk, entre otras), mostrando diferentes grados de inclinación hacia cada una. Un análisis con datos reunidos exhibe un promedio de empleo del 63.2 %, evidenciando un marcado interés en estas herramientas educativas.
- Hallazgos estadísticos de fiar : El uso de métodos estadísticos, como las mediciones de tendencia central, las probabilidades (binomial, hipergeométrica, normal y exponencial) y el conteo combinatorio , facilitó la obtención de datos exactos sobre los hábitos y las tendencias de consumo. Se desarrolló que la probabilidad de que un alumno use Memrise entre 30 y 35 minutos es del 50%, algo valioso para crear contenidos a medida .
- Disparidad en las costumbres de estudio: Los estudiantes exhiben una conducta diversa en cuanto a la asiduidad y la duración de la utilización de las aplicaciones, con probabilidades calculadas entre distintos márgenes de minutos y selecciones particulares. Esto pone de manifiesto que no hay un prototipo único de usuario, sino varias maneras de relacionarse con estas plataformas.

Recomendaciones

- Ajustar el material al contexto de la aplicación : Lo ideal sería personalizar los contenidos que muestra cada plataforma , calculando en lo que sabemos que le gusta a la gente (como cuánto tiempo pasan usándola) . Esto puede ayudar a que aprendan mejor y recuerden más .
- Impulsar apps con menos tirón : Sería bueno dar más visibilidad a apps menos usadas , como HelloTalk . Algunas estadísticas sugieren que no son la opción favorita de muchos (solo un 14% parece preferir HelloTalk).
- Basar las estrategias en datos sólidos: Seguir usando programas como Excel y Jamovi para estudiar los datos y tomar decisiones inteligentes apoyadas en estadísticas. Esto es especialmente útil al crear nuevos cursos o al planificar campañas online.