Olimpiada Naţională de Matematică Etapa Finală, 4 aprilie 2018

CLASA a XI-a

Soluții și barem orientativ

Problema 1. Pentru orice număr natural nenul n și orice matrice coloană

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{Z}),$$

notăm cu $\delta(\mathbf{X})$ cel mai mare divizor comun al numerelor x_1, x_2, \ldots, x_n . Fie $n \in \mathbb{N}, n \geq 2$, și $\mathbf{A} \in \mathcal{M}_n(\mathbb{Z})$. Arătați că următoarele două afirmații sunt echivalente:

- (a) $|\det \mathbf{A}| = 1$ și
- (b) $\delta(\mathbf{AX}) = \delta(\mathbf{X})$, oricare ar fi $\mathbf{X} \in \mathcal{M}_{n,1}(\mathbb{Z})$.

(Cel mai mare divizor comun al unor numere întregi este număr natural.)

Remarcă. O matrice pătrată cu elemente întregi și determinant ± 1 se numește unimodulară. Evident, produsul a două matrice unimodulare este unimodular și orice matrice unimodulară este inversabilă, iar inversa ei este și ea unimodulară. Prima parte a soluției 1 arată că singura dificultate constă în a deduce unimodularitatea lui \mathbf{A} din condiția $\delta(\mathbf{AX}) = \delta(\mathbf{X})$, oricare ar fi \mathbf{X} din $\mathcal{M}_{n,1}(\mathbb{Z})$.

Conform unei teoreme a lui Frobenius, pentru orice matrice $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{Z})$, există un număr natural $r \leq \min(m,n)$ și două matrice unimodulare \mathbf{P} și \mathbf{Q} , astfel încât $\mathbf{PAQ} = \operatorname{diag}(d_1,\ldots,d_r,0,\ldots,0)$, unde toți d_i sunt numere naturale și fiecare d_i îl divide pe d_{i+1} .

Fie m = n şi fie $\delta(\mathbf{AX}) = \delta(\mathbf{X})$ oricare ar fi \mathbf{X} în $\mathcal{M}_{n,1}(\mathbb{Z})$. Unimodularitatea lui \mathbf{Q} implică $\delta(\mathbf{X}) = \delta(\mathbf{QX})$; prin ipoteză, $\delta(\mathbf{QX}) = \delta(\mathbf{AQX})$, iar unimodularitatea lui

P implică $\delta(\mathbf{AQX}) = \delta(\mathbf{PAQX})$. Deci $\delta(\mathbf{X}) = \delta(\mathbf{PAQX})$, oricare ar fi **X** în $\mathcal{M}_{n,1}(\mathbb{Z})$. Întrucât **PAQ** are forma diagonală de mai sus, rezultă că r = n și toți $d_i = 1$, deci $\mathbf{A} = \mathbf{P}^{-1}\mathbf{Q}^{-1}$ este unimodulară.

Problema 2. Arătați că $2^{-x} + 2^{-1/x} \le 1$, oricare ar fi numărul real x > 0.

Fie $g: [0,1] \to \mathbb{R}$, $g(x) = 2^x - x^2$. Cum g este de două ori derivabilă şi $g''(x) = 2^x(\ln 2)^2 - 2 \le 2((\ln 2)^2 - 1) \le 0$, oricare ar fi x în [0,1], rezultă că g este concavă, deci $g(x) = g((1-x)\cdot 0 + x\cdot 1) \ge (1-x)g(0) + xg(1) = 1$ 2p

Problema 3. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție care are proprietatea lui Darboux. Arătați că, dacă f este injectivă pe mulțimea numerelor iraționale, atunci este f este continuă pe \mathbb{R} .

Presupunem că f nu este injectivă. Fie $a, b \in \mathbb{R}$, a < b, astfel încât f(a) = f(b). Cum în intervalul (a, b) există cel puțin două numere iraționale, iar f este injectivă pe mulțimea numerelor iraționale, există $c \in (a, b)$, astfel încât $f(c) \neq f(a)$. Fără să restrângem generalitatea, putem presupune că f(c) > f(a).

Fie $A = (a, b) \cap \mathbb{Q}$. Cum A este numărabilă, rezultă că f(A) este cel mult numărabilă, și cum (f(a), f(c)) este nenumărabilă, rezultă că $(f(a), f(c)) \setminus f(A)$ este nevidă. ... **4p** Fie $d \in (f(a), f(c)) \setminus f(A)$. Cum f are proprietatea lui Darboux, există $x_1 \in (a, c)$ și $x_2 \in (c, b)$, astfel încât $f(x_1) = d = f(x_2)$. Din alegerea lui d, rezultă că x_1 și x_2 sunt iraționale, ceea ce contrazice injectivitatea lui f pe mulțimea numerelor iraționale. .. **2p**

Problema 4. Fie n un număr întreg, $n \geq 2$, și fie \mathbf{A} o matrice din $\mathcal{M}_n(\mathbb{C})$, astfel încât \mathbf{A} și \mathbf{A}^2 să aibă ranguri diferite. Arătați că există o matrice nenulă \mathbf{B} în $\mathcal{M}_n(\mathbb{C})$, astfel încât $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{B}^2 = \mathbf{O}_n$.

Soluție. Întrucât ${\bf A}$ și ${\bf A}^2$ au ranguri diferite, ${\bf A}$ este o matrice singulară nenulă.

Dacă n=2, atunci $\mathbf{A}^2=(\mathrm{tr}\mathbf{A})\mathbf{A}$, conform teoremei Hamilton-Cayley. Deoarece \mathbf{A} și \mathbf{A}^2 au ranguri diferite, rezultă că $\mathrm{tr}\mathbf{A}=0$, deci $\mathbf{A}^2=\mathbf{O}_2$ și putem lua $\mathbf{B}=\mathbf{A}$ $\mathbf{1p}$ Fie $n\geq 3$. Întrucât \mathbf{A} este singulară, 0 este o valoare proprie a lui \mathbf{A} .

Dacă toate valorile proprii ale lui \mathbf{A} sunt nule, atunci \mathbf{A} este nilpotentă, și putem lua $\mathbf{B} = \mathbf{A}^k$, unde k este cel mai mare număr întreg pentru care A^k este nenulă. $\mathbf{1p}$

Dacă **A** are şi valori proprii nenule, fie $\lambda_1, \ldots, \lambda_m$, unde $1 \leq m \leq n-1$, valorile sale proprii nenule (nu neapărat distincte) şi fie

$$f = X \prod_{i=1}^{m} (X - \lambda_i) = X^{m+1} + a_m X^m + \dots + a_1 X,$$

Remarcă. Întrucât \mathbf{A} şi \mathbf{A}^2 au ranguri diferite, există o celulă Jordan de dimensiune cel puţin 2 corespunzătoare valorii proprii 0. Prin urmare, polinomul minimal g al lui \mathbf{A} are în 0 o rădăcină de multiplicitate cel puţin 2, deci $g = X^{k+1}h$, unde k este un număr natural nenul, iar h este un polinom care nu se anulează în 0. Atunci $\mathbf{B} = \mathbf{A}^k h(\mathbf{A})$ este nenulă şi $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{B}^2 = \mathbf{O}_n$.

Fie $n \geq 3$. Dacă \mathbf{A} și \mathbf{A}^2 au același rang, existența unei matrice nenule \mathbf{B} , astfel încât $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{B}^2 = \mathbf{O}_n$, este condiționată de multiplicitatea valorii proprii 0 în polinomul caracteristic al lui \mathbf{A} .

De exemplu, dacă $\mathbf{A} = \operatorname{diag}(0, a_1, \dots, a_{n-1})$, unde a_1, \dots, a_{n-1} sunt numere complexe nenule, distincte două câte două, atunci \mathbf{A} și \mathbf{A}^2 au rangul n-1. În acest caz, polinomul caracteristic al lui \mathbf{A} are o rădăcină simplă în 0. Întrucât singurele matrice din $\mathcal{M}_n(\mathbb{C})$, care comută cu \mathbf{A} , sunt cele diagonale, rezultă că nu există matrice nenule \mathbf{B} în $\mathcal{M}_n(\mathbb{C})$, astfel încât $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{B}^2 = \mathbf{O}_n$.

Pe de altă parte,

$$\mathbf{A} = \left(egin{array}{cc} \mathbf{O}_2 & \mathbf{O}_{2,n-2} \ \mathbf{O}_{n-2,2} & \mathbf{I}_{n-2} \end{array}
ight)$$

este o matrice idempotentă, $\mathbf{A}^2 = \mathbf{A}$, de rang n-2 și orice matrice $\mathbf{B} = (b_{ij})$ din $\mathcal{M}_n(\mathbb{C})$, al cărei unic element nenul este b_{12} , satisface condiția $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{B}^2 = \mathbf{O}_n$. În acest caz, polinomul caracteristic al lui \mathbf{A} are o rădăcină dublă în 0.