1 nalen

 $x \in y$. $x \in y$.7 $x \subseteq y$. λ $x \subseteq y$.

ח. שניהם. $x \subseteq y$. $x \subseteq y$.1 $x \subseteq y$

2 nalen

א. נתחיל בעזרת ההדרכה לשאלה:

$$(A - B) \cup (B - C) = (A \cap B') \cup (B \cap C')$$

בסצון בעזרת שימוש חוזר בפילוג (דיסטריבוטיביות, סעיף 1.3.4 בספר) של האיחוד מעל החיתוך:

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup B) \cap (B' \cup C')$$

 $B' \cup B$ נימוק רי בצעד דומה בהוכחת סעיף אי למעלה). $B' \cup B$

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup C')$$

שימוש בכלל דה-מורגן בגורם הימני, וכינוס שני האיברים השמאליים בעזרת חוק הפילוג:

$$= (A \cup (B \cap C')) \cap (B \cap C)'$$

ובעזרת ההדרכה לשאלה

$$= (A \cup (B - C)) - (B \cap C)$$

ב. נתחיל בעזרת ההדרכה לשאלה:

$$(A-B) \cap (C-D) = (A \cap B') \cap (C \cap D')$$

בעזרת קיבוץ (אסוציאטיביות) וחילוף (קומוטטיביות, עמי 15 בספר) החיתוך

$$= (A \cap C) \cap (B' \cap D')$$

ולפי כלל דה-מורגן:

$$= (A \cap C) \cap (B \cup D)'$$

ושוב לפי ההדרכה לשאלה:

$$= (A \cap C) - (B \cup D)$$

3 nolen

 $,\oplus$ א. מהגדרת

$$A \oplus B = (A - B) \cup (B - A)$$

כמו בשאלה 2, נבחר U המכילה את A,B ונרשום

$$= (A \cap B') \cup (B \cap A')$$

בעזרת דיסטריבוטיביות החיתוך מעל האיחוד (עמי 17 בספר הלימוד)

$$= (A \cup B) \cap (A \cup A') \cap (B' \cup B) \cap (B' \cup A')$$

 $A \cup A' = B \cup B' = U$ לפי טענה בתחתית עמי 22 בספר,

. מהחיתוך עמי U את לזרוק ניתן בספר, בעמי 16 בעמי 1.11 בעמי

נקבל בהמשך לשוויון המקורי,

$$= (A \cup B) \cap (B' \cup A')$$

בעזרת כלל דה-מורגן (סעיף 1.4.3 בספר)

$$= (A \cup B) \cap (B \cap A)'$$

ולבסוף, שוב לפי ההדרכה לשאלה

$$= (A \cup B) - (B \cap A)$$

 $A:A: \mathcal{A}$ נבצע בשני האגפים הפרש סימטרי עם . $X \oplus A = Y \oplus A$ נניח

$$(X \oplus A) \oplus A = (Y \oplus A) \oplus A$$

לפי שאלה 1.22 (אסוציאטיביות) נקבל

$$X \oplus (A \oplus A) = Y \oplus (A \oplus A)$$

: ולכן קיבלנו , $A \oplus A = \emptyset$, שאלה, שאלה בי באותה מהמשך אולכן

$$X \oplus \emptyset = Y \oplus \emptyset$$

ולפי טענה אחרת באותו סעיף (הפרש סימטרי עם הקבוצה הריקה) קיבלנו

$$X = Y$$

, (שוב 21.22) הערה: הפרש סימטרי הוא פעולה חילופית

X=Y אז $A\oplus X=A\oplus Y$ אם אם גם משמאל, כלומר: אם או או לכן קיבלנו שנוכל לצמצם או משמאל, כלומר:

 $A \oplus A = \emptyset$: מיידי משאלה 1.22 מיידי (A = B ג. כיוון אחד (אם

 $A \oplus A = \emptyset$ (כי כאמור $A \oplus B = A \oplus A$ משמע $A \oplus B = \emptyset$ (כי כאמור $A \oplus B = \emptyset$

A = A : B = A מכאן לפי כלל הצמצום משמאל שהוכחנו למעלה בסעיף אי

ד. כיוון אחד: אם $\varnothing=B$ אז אB=A לפי שאלה 1.22 (הפרש סימטרי עם הקבוצה ד. כיוון אחד: אם מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיף ג (השלימו!)

4 22162

a .b משמע, a היא קבוצת כל הכפולות של , b a b b , b b b b b .

m-בוצת המספרים הטבעיים הגדולים מ- 0, והמתחלקים הן ב- n והן ב- n והן ב- $B_n \cap B_m$

$$B_n \cap B_m = \{nk \mid k \in \mathbf{N}^*\} \cap \{ms \mid s \in \mathbf{N}^*\}$$

c(n,m) מכאן, לפי הטענה שבהדרכה, נובע שכל אבר של $B_n \cap B_m$ מראן, לפי הטענה שבהדרכה, נובע שכל אבר אבר של

$$B_n \cap B_m \subseteq B_{c(n,m)}$$

c(n,m) - משמע x מתחלק ב, $x \in B_{c(n,m)}$ מצד שני, יהי

m-ם והן ב- n הוא מתחלק הן ב- n והן ב- n

m-ם והן ב- n מתחלק הן ב- n והן ב- משתי משתי

לפיכך

$$B_{c(n,m)} \subseteq B_n \cap B_m$$

 $B_n \cap B_m = B_{c(n,m)} :$ משתי ההכלות

על תכונות הכפולה המשותפת המינימלית ראו

http://mathworld.wolfram.com/LeastCommonMultiple.html http://en.wikipedia.org/wiki/Least common multiple

 $m \in \mathbb{N}$ יהי הנייל. יהי אינו שייך לחיתוך הנייל. יהי m , $m \in \mathbb{N}$

. n מובן שווים B_n גדולים או שווים , B_n מהגדרת, מהגדרת

. $m \notin B_{m+1}$ בפרט מובן כי

. אינו שייך לחיתוך כל ה- m אינו שייך לפיכך

יה נכון לכל $m \in \mathbb{N}^*$ אין אף א $m \in \mathbb{N}^*$ השייך לחיתוך הנייל. לפיכך החיתוך הוא ריק!

ג. קבוצה זו היא קבוצת המספרים הראשוניים. נוכיח זאת:

 $D_n = \emptyset$ יהי נוכיח מספר שאינו ראשוני, מספר $n \in \mathbb{N}^*$ יהי יהי : כיוון אחד

:כזה: xייתכן נראה שלא נראה , $x\in D_{_{n}}$ יהי

. n = km - כך ש- , 1 < m, k < n , $m, k \in \mathbf{N}$ * ההנחה ש- , אינו ראשוני פירושה שקיימים

 $.\,x\in B_{_m}$ בפרט . m -ב מתחלק ב- n מכיון ש- כל מספר המתחלק . d בפרט המחלק מכיון ש-

. בסתירה להנחה , $x \not \in D_{_n}$ נקבל כי D_n אז מהגדרת 1 < m < n -ש מכיון ש

. הראינו ש- D_n ריקה עבור כל n שאינו ראשוני

 $n
otin D_n
otin n$ ולכן בפרט וראשוני, נראה כי ולכן בפרט מצד שני, אם וראשוני, נראה כי

 $n \in B_n$ מתקיים $n \in \mathbb{N}^*$

 $.\, n \not \in B_m$ ולכן , m -ב- מתחלק מתחלק , 1 < m < nטבעי המקיים mלכל הי לכל אינו אינו n

. היקה אינה D_n ולכן D_n אינה ריקה מהגדרת לקבל אפוא כי D_n

משני הכיוונים הראינו שקבוצת ערכי nעבור שקבוצת הראינו הראינו משני משני משני משני הראינו שקבוצת אונים משני הראינו

הראשוניים.

איתי הראבן