For return by 20 November; late submission by 4 December 2023

Upload a single PDF file on Moodle

1. (6%) Given the machine 32-bit word

1100 0001 1011 0000 0000 0000 0000 0000

find the decimal number represented by this word assuming that it is

- (a) a two's complement integer;
- (b) a single precision IEEE 754 floating-point number;
- (c) a ones' complement integer.
- 2. (6%) Find computer representations of the following numbers:
 - (a) -107 as a two's complement 32-bit binary number;
 - (b) 17.7 as an IEEE 754 32-bit floating-point number.
- 3. (8%) Using the notation from page 28 in FoC-I, consider the floating point system with $\beta = 10$ and p = 3. Suppose we need to compute the value of $b^2 4ac$ for b = 3.34, a = 1.22, c = 2.28. Show all of the steps of the computation and rounding, find the relative error and compare it with the machine epsilon for the given β and p.
- 4. (9%) Consider the Boolean formulas

$$F_1 = B \wedge C$$
, $F_2 = \neg A \rightarrow \neg C$, and $F_3 = \neg (B \wedge A)$.

- (a) Are these formulas *consistent* in the sense that all of them are true under some assignment of the truth-values to the propositional variables?
- (b) Is $C \wedge \neg A$ a logical consequence of F_1, F_2, F_3 . Explain your answer.
- (c) Is $C \wedge \neg A$ a logical consequence of F_1 , F_2 . Explain your answer.
- 5. (10%) Describe (without constructing) the truth-table for the Boolean function that returns 1 on any 32 input bits $a_{31}a_{30} \dots a_1a_0$ if and only if the value of the input word interpreted as a 32-bit IEEE 754 (normalised or denormalised) number is strictly between 0 and 2. Explain your answer. Show a Boolean formula that computes this Boolean function. (Hint: have a look at pages 18 and 24 in FoC I.)
- 6. **(6%)** Let

$$A = \{1, 2, 3\}, \qquad B = \{\{1\}, 2, \{1, 3\}\}, \qquad C = \{1, 3\}.$$

Describe each of the following sets by listing its elements.

- (a) $(A \cup B) C$.
- (b) $((A \cap B) \times C) \cup (C \times (A \cap B))$.
- (c) $(2^A \cap 2^C) B$.
- 7. (9%) Which of the following relations on $\{a, b, c\}$ are partial orders? Which of them are equivalence relations? Explain your answers.
 - (a) $\{(a,a),(b,b),(c,c)\}$
 - (b) $\{(b,b),(b,c),(c,b),(a,c),(c,a)\}$
 - (c) $\{(a,a),(a,c),(a,b),(c,c),(c,b),(b,b)\}$
- 8. (6%) Which of the following $\mathbb{R} \to \mathbb{R}$ functions are bijections? Explain your answer:
 - (a) f(x) = 2x + 1
 - (b) $f(x) = x^2 + 1$
 - (c) $f(x) = x^3$
- 9. (10%) Determine which pairs of the following graphs G_1 , G_2 and G_3 are isomorphic and which are not, and explain your answer:

- 10. (9%) Let $\Sigma = \{x, y\}$. For each of the following languages over Σ , find a regular expression representing it:
 - (i) All strings that contain either xy or yyxx as a substring.
 - (ii) All strings that contain exactly two x's.
 - (ii) All strings in which the number of y's is odd.
- 11. (9%) (a) Consider the following DFA A: it has four states s, p, q and r, its initial state is s, its accepting state is r, and its transition function is given by the table

2

	0	1
s	p	s
p	q	s
q	q	r
r	r	r

Draw a state transition diagram for the DFA A and describe the language L(A) in English.

- (b) Select all regular expressions below that represent the language of A in part (a).
- (i) $1*(01)*000*1(0 \cup 1)*$
- (ii) $(0 \cup 1)*001(0 \cup 1)*$
- (iii) $(1 \cup 01)*000*1(0 \cup 1)*$
- (iv) $(1 \cup 01)*000*1$

Explain your answer.

12. (12%) Transform, using the subset construction, the following nondeterministic finite automaton into an equivalent deterministic finite automaton. Define the language of this automaton by means of a regular expression.

