



Apr 17, 2020

# RTPCR Amplification of SARS-CoV2 Whole Genome for Illumina NGS

Monica Galiano<sup>1</sup>, Shahjahan Miah<sup>2</sup>, Angie Lackenby<sup>2</sup>, Omolola Akinbami<sup>2</sup>, Joanna Ellis<sup>2</sup>, Maria Zambon<sup>2</sup>

<sup>1</sup>WHO Influenza Collaborating Centre, The Francis Crick Institute, <sup>2</sup>Respiratory Virus Unit, Microbiology Services Colindale, Public Health England



1 Works for me dx.doi.org/10.17504/protocols.io.bew8jfhw

Coronavirus Method Development Community



🔔 Monica Galiano 🕢



#### ABSTRACT

#### SUMMARY

This document describes the procedure for performing RTPCR amplification for next-generation sequencing (NGS) of whole genomes from SARS-CoV2 positive clinical samples. This methodology was employed at the Respiratory Virus Unit, Microbiology Services Colindale, Public Health England (RVU-PHE) to sequence the first SARS-CoV2 positive samples.

Reverse transcription (RT) is performed using random hexamer primers. PCR amplification is done using sequence-specific primers which amplify two sets of 30-31 overlapping amplicons (size 1.0 to 1.8 kb), each set independently covering the entire length of the MERS-CoV genome. Once amplicons are obtained, rough equimolar mixtures, clean-up, DNA quantitation and final dilutions are performed to prepare samples for library preparation for Illumina MiSea next-generation sequencing (NGS)

Primers from set A do not overlap location of primers from set B, except for those binding at the end of the genome (see figure 1). Amplicon mixtures from each set are treated as separate samples throughout the procedure, including assembly. Merging (or comparison) of consensus sequences of both sets is performed at the end.

IMPORTANT: Please note that every amplicon is obtained in a separate PCR reaction and, if using both primer sets, there is a total of ~61 PCR reactions; this protocol is NOT a multiplex approach. We recommend using a 96-well plate per sample.

### ADVANTAGES AND LIMITATIONS

The use of both primer sets allows for redundancy in whole genome (WG) coverage, which increases the chances of obtaining full genome sequences when samples have low viral load. Although we haven't formally determined the sensitivity of this assay (or limit of amplification of WG), we have obtained full coverage with samples with CT values of up to 38 (CT value obtained at RVU-PHE with RdRp gene detection within the SARS-CoV2 detection protocol as described by Corman et al. [1]). Variation in storage or transport conditions of samples may affect the integrity of viral nucleic acids.

Another advantage of this protocol is that, as primers from set A and B match different locations on the genome, direct comparison of the sequences obtained with each set allows for curation of primer-induced contamination of the sequences, although we deal with this with a specific step on the bioinformatic assembly pipeline (not described here).

Alternatively, when samples have a relatively good CT (<30) only set A may be used, simplifying the amplification and library steps. The main limitation of this protocol is its unsuitability for high throughput processing of large batches of samples, although current efforts are being made to adapt the primers to a multiplex approach.

MATERIALS TEXT

**EQUIPMENT** 

PCR thermocycler for 96-well plates

Pipettes with disposable filter tips

Ice bucket

Microcentrifuge and picofuge

Plate centrifuge

Mother E-base

96-well plates with adhesive seals

1.5ml and 0.2ml polypropylene tubes/strip tubes

Benchtop UV transilluminator (UVP)

Qubit Fluorometer (Life Technologies)

Qubit Assay Tubes (Life Technologies)

FrameStar FastPlate 96 (4titude)

mprotocols.io

04/17/2020

Citation: Monica Galiano, Shahjahan Miah, Angie Lackenby, Omolola Akinbami, Joanna Ellis, Maria Zambon (04/17/2020). RTPCR Amplification of SARS-CoV2 Whole Genome for Illumina NGS . <a href="https://dx.doi.org/10.17504/protocols.io.bew8jfhw">https://dx.doi.org/10.17504/protocols.io.bew8jfhw</a>

#### REAGENTS

SuperScript™ VILO™ cDNA Synthesis Kit (ThermoFisher, Invitrogen cat 11754050)

dNTP set 100mM (ThermoFisher, Invitrogen cat 10297018)

Oligonucleotide primers 100pmol/µl stocks (Eurofins) (see Appendix 3)

Platinum Taq DNA polymerase HiFi (ThermoFisher, Invitrogen cat 11304029)

Nuclease-free water (Severn Biotech)

1% or 2% E-gels 48-wells (invitrogen)

10x TBE buffer

DNA 1Kb plus ladder (Invitrogen cat 10787018)

BlueJuice 10X Gel loading buffer (ThermoFisher, Invitrogen cat10816015)

Qubit dsDNA HS Assay Kit (ThermoFisher, Invitrogen Q32854)

QIAquick PCR purification kit (cat 28106)

#### SAFETY WARNINGS

Sample inactivation in lysis buffer should be performed at BSL3

- 1 A total amount of 140 µl of RNA (includes some excess) are needed to set up the necessary volume of RT reactions. RNA should be kept on ice or stored at 8 -80 °C if not immediately used.
- 2 The RT reaction is as follows (Table 1):

| RT mix                     | x 1 (μl) | Bulk mix (x 14) |
|----------------------------|----------|-----------------|
| Water                      | 4.0      | 56              |
| 5X VILO Reaction mix       | 4.0      | 56              |
| 10X Superscript Enzyme mix | 2.0      | 28              |
| RNA                        | 10.0     | 140             |
| Final volume               | 20.0     | 280             |

Table 1

3 To ensure uniform heat distribution, we aliquot this mix into 7 x 0.2 (strip) tubes. Cycling program:

Hold at 8 4 °C

Keep cDNA on ice or store at  $\,$   $\, \upbeta\,$  -80  $^{\circ}\mbox{\textbf{C}}\,$  if not immediately used.

 $4 \quad \text{Combine primers according to Tables 1 and 2 (4.1) and dilute as follows to get a working primer dilution of 5 pmol/$\mu l}$ 



### Preparation of primer mix pairs (working dilution 5 pmol/µl)

Use different colours of strip tubes, e.g. yellow strip tubes for SET A and purple strip tubes for SET B. Add 180  $\mu$ l of water + 10 $\mu$ l of each Forward and Reverse primers at 100 pmol/ $\mu$ l, according to Appendix 2. Vortex to mix. Store at -20°C.

Thaw both sets of primer mixes, briefly vortex them and spin down. Using a multichannel pipette (volume 0.5 or 1 to  $10 \mu$ l) load 4  $\mu$ l of primer mixes to the corresponding wells of a 96-well PCR plate, according to Figure 2. Keep the PCR plate on a cooler.

| Figure 2. | SET A ( | vellow) | and SET | В | (purple) |
|-----------|---------|---------|---------|---|----------|

|   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Α | 1A  | 2A  | 3A  | 4A  | 5A  | 6A  | 7A  | 8A  | 9A  | 10A | 11A | 12A |
| В | 13A | 14A | 15A | 16A | 17A | 18A | 19A | 20A | 21A | 22A | 23A | 24A |
| С | 25A | 26A | 27A | 28A | 29A | 30A | 31A |     |     |     |     |     |
| D |     |     |     |     |     |     |     |     |     |     |     |     |
| Е | 1B  | 2B  | 3B  | 4B  | 5B  | 6B  | 7B  | 8B  | 9B  | 10B | 11B | 12B |
| F | 13B | 14B | 15B | 16B | 17B | 18B | 19B | 20B | 21B | 22B | 23B | 24B |
| G | 25B | 26B | 27B | 28B | 29B | 30B |     |     |     |     |     |     |
| Н |     |     |     |     |     |     |     |     |     |     |     |     |

4.1
The position of primers on the nCOV genome sequence has been based on the sequence of strain hCoV-19/Wuhan/IVDC-HB01/2019 (GISAID accession EPI\_ISL\_402119). We gratefully acknowledge the authors (Wenjie Tan et al), originating and submitting laboratory (National Institute for Viral Disease Control and Prevention, China CDC) of this sequence from GISAID's EpiCOV™ Database on which this protocol is based.

| Primer | Forward primer | Sequence                     | Position of | Reverse primer | Sequence                 | Position of | Amplicon |
|--------|----------------|------------------------------|-------------|----------------|--------------------------|-------------|----------|
| pair   |                |                              | 5'end       |                |                          | 5'end       | size     |
| 1A     | ncov-1F        | ATTAAAGGTTTATACCTTCCCAGGTAAC | 1           | ncov-1032R     | TCAAAAGGTGTCTGCAATTCAT   | 1032        | 1031     |
| 2A     | ncov-15F       | CCTTCCCAGGTAACAAACCA         | 15          | ncov-1032R     | TCAAAAGGTGTCTGCAATTCAT   | 1032        | 1017     |
| 3A     | ncov-693F      | TTGACTTAGGCGACGAGCTT         | 693         | ncov-2030R     | CAGATGTGAACATCATAGCATCAA | 2030        | 1337     |
| 4A     | ncov-1684F     | CGCCATTATTTTGGCATCTT         | 1684        | ncov-3019R     | TGAAGCCAATTTAAACTCACCA   | 3019        | 1335     |
| 5A     | ncov-2665F     | TGCCCTTGCACCTAATATGAT        | 2665        | ncov-4010R     | GGAACTTAGTTTCTTCCAGAGTTG | 4010        | 1345     |
| 6A     | ncov-3686F     | CACGAAGTTCTACTTGCACCA        | 3686        | ncov-5015R     | CAACTTGCGTGTGGAGGTTA     | 5015        | 1329     |
| 7A     | ncov-4667F     | TCTCTCAAAGTGCCAGCTACAG       | 4667        | ncov-6037R     | GCTTGCGTTTGGATATGGTT     | 6037        | 1370     |
| 8A     | ncov-5687F     | TCAGCACCACCTGCTCAGTA         | 5687        | ncov-7021R     | AACACCTAAAGCAGCGGTTG     | 7021        | 1334     |
| 9A     | ncov-6688F     | TGCTAAGCCTTTTCTTAACAAAGTT    | 6688        | ncov-8027R     | CTGCAACTTCCGCACTATCA     | 8027        | 1339     |
| 10A    | ncov-7663F     | TGATGAAGTTGCGAGAGACTTG       | 7663        | ncov-9019R     | TTCAGCAGCCAAAACACAAG     | 9019        | 1356     |
| 11A    | ncov-8700F     | TTGATGGTGGTGTCACTCGT         | 8700        | ncov-10033R    | AGAGGTTTGTGGTGGTTGGT     | 10033       | 1333     |
| 12A    | ncov-9699F     | TCATTTGTATTTCCACAAAGCA       | 9699        | ncov-11071R    | CAAAGACCATTGAGTACTCTGGA  | 11071       | 1372     |
| 13A    | ncov-10696F    | TGGAGACAGGTGGTTTCTCA         | 10696       | ncov-12030R    | TGCATGGAAAGCAAAACAGA     | 12030       | 1334     |
| 14A    | ncov-11668F    | CCGCTACTTTAGACTGACTCTTGG     | 11668       | ncov-13050R    | GCAGGCACTTCTGTTGCAT      | 13050       | 1382     |
| 15A    | ncov-12701F    | CCTGTTGCACTACGACAGATG        | 12701       | ncov-14043R    | AATACCAGCATTTCGCATGG     | 14043       | 1342     |
| 16A    | ncov-13663F    | CACACTTTCTCTAACTACCAACATGAA  | 13663       | ncov-15028R    | ATGCGAAAAGTGCATCTTGA     | 15028       | 1365     |
| 17A    | ncov-14663F    | AAACTGTCAAACCCGGTAATTTT      | 14663       | ncov-16023R    | AGACACGAACCGTTCAATCA     | 16023       | 1360     |
| 18A    | ncov-15686F    | TGCGTAAACATTTCTCAATGATG      | 15686       | ncov-17038R    | TTGCAACATTGCTAGAAAACTCA  | 17038       | 1352     |
| 19A    | ncov-16689F    | TGCTACTGTACGTGAAGTGCTG       | 16689       | ncov-18034R    | AAGTTGCCACATTCCTACGTG    | 18034       | 1345     |
| 20A    | ncov-17694F    | TGCAATTAACAGGCCACAAA         | 17694       | ncov-19031R    | TCGTGAAGAACTGGGAATTTG    | 19031       | 1337     |
| 21A    | ncov-18683F    | CATGCTTTTCCACTGCTTCA         | 18683       | ncov-20043R    | AACACCATTACGGGCATTTC     | 20043       | 1360     |

**⋈** protocols.io 3 04/17/2020

| 22A | ncov-19664F | TTGATGGACAACAGGGTGAA      | 19664 | ncov-21231R | GTCCACCATGCGAAGTGTC    | 21231 | 1567 |
|-----|-------------|---------------------------|-------|-------------|------------------------|-------|------|
| 23A | ncov-20863F | CATTTTGGTGCTGGTTCTGA      | 20863 | ncov-22226R | CGAAAAACCCTGAGGGAGAT   | 22226 | 1363 |
| 24A | ncov-21896F | TTCGAAGACCCAGTCCCTAC      | 21896 | ncov-23214R | CACCTGTGCCTGTTAAACCA   | 23214 | 1318 |
| 25A | ncov-22883F | TCTTGATTCTAAGGTTGGTGGT    | 22883 | ncov-24231R | CACCAAAGGTCCAACCAGAA   | 24231 | 1348 |
| 26A | ncov-23850F | TTAAACCGTGCTTTAACTGGAATA  | 23850 | ncov-25243R | ATGGCAATCAAGCCAGCTAT   | 25243 | 1393 |
| 27A | ncov-24858F | GGCACACACTGGTTTGTAACAC    | 24858 | ncov-26224R | TGCTTACAAAGGCACGCTAGT  | 26224 | 1366 |
| 28A | ncov-25886F | TCTTCAATTGTCATTACTTCAGGTG | 25886 | ncov-27227R | CCTGAAAGTCAACGAGATGAAA | 27227 | 1341 |
| 29A | ncov-26889F | GCCACTCCATGGCACTATTC      | 26889 | ncov-28191R | TTCATAGAACGAACAACGCACT | 28191 | 1302 |
| 30A | ncov-27876F | TTGTCACGCCTAAACGAACA      | 27876 | ncov-29226R | ACATTCCGAAGAACGCTGAA   | 29226 | 1350 |
| 31A | ncov-28871F | AGGCAGCAGTAGGGGAACTT      | 28871 | ncov-29848R | AAAATCACATGGGGATAGCA   | 29848 | 977  |

Table 2. Set A: Primer sequences & combinations

| Primer | Forward primer | Sequence                  | Position of | Reverse primer | Sequence                      | Position of | Amplicon |
|--------|----------------|---------------------------|-------------|----------------|-------------------------------|-------------|----------|
| pair   |                |                           | 5'end       |                |                               | 5'end       | size     |
| 1B     | ncov-193F      | CTTACGGTTTCGTCCGTGTT      | 193         | ncov-1541R     | GTGGAACCCAATAGGCACAC          | 1541        | 1348     |
| 2B     | ncov-1185F     | CGTCACCAAATGAATGCAAC      | 1185        | ncov-2495R     | TTCTGTGGGAAGTGTTTCTCC         | 2495        | 1310     |
| 3B     | ncov-2193F     | GAGACGGTTGGGAAATTGTT      | 2193        | ncov-3523R     | TTCAACTTGCATGGCATTGT          | 3523        | 1330     |
| 4B     | ncov-3172F     | TCAACCTGAAGAAGAGCAAGAA    | 3172        | ncov-4525R     | AGCACCATAATCAACCACACC         | 4525        | 1353     |
| 5B     | ncov-4173F     | CTAAAAAGGCTGGTGGCACT      | 4173        | ncov-5550R     | AGGGTTGTCTGCTGTTGTCC          | 5550        | 1377     |
| 6B     | ncov-5192F     | CTGGGTAGGTACATGTCAGCA     | 5192        | ncov-6548R     | GATCTGTGTGGCCAACCTCT          | 6548        | 1356     |
| 7B     | ncov-6192F     | CACCCTCTTTTAAGAAAGGAGCTA  | 6192        | ncov-7537R     | TGTACATTCGACTCTTGTTGCTC       | 7537        | 1345     |
| 8B     | ncov-7194F     | CCATTTCATCTTTTAAATGGGATT  | 7194        | ncov-8554R     | CCACCCTTAAGTGCTATCTTTG        | 8554        | 1360     |
| 9B     | ncov-8179F     | GCAAGGGTTTGTTGATTCAGA     | 8179        | ncov-9506R     | TAAAGGCAACTACATGACTGTATTCAC   | 9506        | 1327     |
| 10B    | ncov-9169F     | CCTTGAAGGTTCTGTTAGAGTGG   | 9169        | ncov-10456R    | GAAATTGGGCCTCATAGCAC          | 10456       | 1287     |
| 11B    | ncov-10080F    | CATCTGGTAAAGTTGAGGGTTGT   | 10080       | ncov-11533R    | TCTGGCCAAAAACATGACAG          | 11533       | 1453     |
| 12B    | ncov-11189F    | CCTTCTCTTGCCACTGTAGCTT    | 11189       | ncov-12547R    | TGCTGATGCATAAGTAAATGTTG       | 12547       | 1358     |
| 13B    | ncov-12163F    | GGCTGTTGCTAATGGTGATTC     | 12163       | ncov-13547R    | TCAAAAGCCCTGTATACGACA         | 13547       | 1384     |
| 14B    | ncov-13191F    | CAGTTACACCGGAAGCCAAT      | 13191       | ncov-14513R    | TCCTGATTATGTACAACACCTAGCTC    | 14513       | 1322     |
| 15B    | ncov-14183F    | CCAGGGCTTTAACTGCAGAG      | 14183       | ncov-15544R    | CCGTGACAGCTTGACAAATG          | 15544       | 1361     |
| 16B    | ncov-15167F    | TGAAATCAATAGCCGCCACT      | 15167       | ncov-16511R    | AAACCAAAAACTTGTCCATTAGC       | 16511       | 1344     |
| 17B    | ncov-16176F    | TTCAAGGTATTGGGAACCTGA     | 16176       | ncov-17551R    | CGAGGAACATGTCTGGACCTA         | 17551       | 1375     |
| 18B    | ncov-17171F    | CCGCTGTTGATGCACTATGT      | 17171       | ncov-18533R    | TTTATACGCACTACATTCCAAGG       | 18533       | 1362     |
| 19B    | ncov-18165F    | ACCTGGCATACCTAAGGACA      | 18165       | ncov-19542R    | CATCATGTTATAAGCATCGAGATACA    | 19542       | 1377     |
| 20B    | ncov-19191F    | TTGGAATTGCAATGTCGATAG     | 19191       | ncov-20478R    | ACCTGTTTGCGCATCTGTTA          | 20478       | 1287     |
| 21B    | ncov-19966F    | TGTGCACCACTCACTGTCTT      | 19966       | ncov-21730R    | AAGAACAAGTCCTGAGTTGAATG       | 21730       | 1764     |
| 22B    | ncov-21360F    | CAAATCCAATTCAGTTGTCTTCC   | 21360       | ncov-22705R    | CCATAACACTTAAAAGTGGAAAATGA    | 22705       | 1345     |
| 23B    | ncov-22363F    | TGGGTTATCTTCAACCTAGGACTT  | 22363       | ncov-23713R    | TTTGTGGGTATGGCAATAGAGTT       | 23713       | 1350     |
| 24B    | ncov-23384F    | GGTTGCTGTTCTTTATCAGGATG   | 23384       | ncov-24735R    | GAGGTGCTGACTGAGGGAAG          | 24735       | 1351     |
| 25B    | ncov-24369F    | GACTCACTTTCTTCCACAGCAA    | 24369       | ncov-25712R    | AGAGAAAAGGGGCTTCAAGG          | 25712       | 1343     |
| 26B    | ncov-25354F    | TGCTCAAAGGAGTCAAATTACATTA | 25354       | ncov-26734R    | AAACAGCAGCAAGCACAAAA          | 26734       | 1380     |
| 27B    | ncov-26361F    | TGTGTGCGTACTGCTGCAA       | 26361       | ncov-27712R    | TGCCGCAACAATAAGAAAAA          | 27712       | 1351     |
| 28B    | ncov-27361F    | TGAAGAGCAACCAATGGAGA      | 27361       | ncov-28719R    | GGGTGCCAATGTGATCTTTT          | 28719       | 1358     |
| 29B    | ncov-28397F    | GCCCCAAGGTTTACCCAATA      | 28397       | ncov-29734R    | GGTGAAAATGTGGTGGCTCT          | 29734       | 1337     |
| 30B    | ncov-28397F    | GCCCCAAGGTTTACCCAATA      | 28397       | ncov-29871R    | TGATTTTAATAGCTTCTTAGGAGAATGAC | 29871       | 1474     |

Table 3. Set B: Primer sequences & combinations

5 Prepare a PCR mix following *Table 4*. Thaw and briefly vortex all the required reagents except enzymes. Prepare a mix for ~70 samples (enough for both sets A and B).



Preparation of working dilution of dNTPs (100 mM dNTP Set, Invitrogen, cat 10297018)

Mix the four tubes of dNTPs in one bijou tube. Add 1.5 ml of water to reach concentration of 10 mM (Final volume 2.5 ml). Aliquot in 2 ml tubes with screw cap.

| PCR mix                                         | Χ 1 (μΙ) | X 70  |
|-------------------------------------------------|----------|-------|
| Water                                           | 35.8     | 2,506 |
| 10X High Fidelity Buffer (Invitrogen)           | 5.0      | 350   |
| 10 mM dNTPs mix (Invitrogen) See Appendix 1     | 1.0      | 70    |
| 50mM MgSO4 (Invitrogen)                         | 2.0      | 140   |
| Platinum Taq DNA Polymerase 5 U/µl (Invitrogen) | 0.2      | 14    |
| Final volume                                    | 44.0     | 3,080 |

Table 4

- 6 Mix with a gentle vortex. Keep on ice. Dispense 44µl of the PCR mix into every well with primers of rows A, B, C, E, F and G.
- 7 Pull together all 7 cDNA strip tubes into one and load 4 μl of cDNA in each well.
- 8 Cover the 96-well plate with an adhesive lid or strip caps. Spin briefly the plate.
- 9 Transfer the 96-well plate to a thermal cycler. Amplify using the following cycling conditions:

8 95 °C © 00:10:00

followed by 35 cycles of:

8 94 °C © 00:00:30

8 68 °C © 00:05:00

Hold at 8 15 °C

### 10 Working in a post-PCR area

 $Use 1\% \ or \ 2\% \ E-gels \ 48 \ wells \ (Invitrogen) \ for \ visualisation \ of the \ bands, following \ manufacturer's \ instructions. For each sample prepare 1x 96-well microtiter plate to mix Loading buffer$ 

11 Prepare diluted Blue Juice loading buffer. Add 10 μl of diluted Blue Juice to every well of rows A, B, C, E, F and G (mirroring the PCR plate) Use multichannel pipettes.



### Preparation of Blue Juice diluted 1/25 or 1/50

Mix 10 ml of buffer TBE with 400  $\mu l$  (1/25) or 200  $\mu l$  (1/50)  $\mu l$  of undiluted Blue Juice.

- 12 Add  $5\,\mu l$  of sample from the PCR plate to the microtiter plate. Use multichannel pipettes.
- 13 Separately, prepare enough mixture of diluted Blue Juice (14µl diluted Blue Juice + 1µl of 1 Kb Plus Ladder) to add to wells marked with M.

**⊚** protocols.io 5 04/17/2020

- 14 Transfer 15 µl of samples and ladder dilutions into the E-gels. Load 15 µl of diluted Blue Juice in empty wells (no wells should be empty). Run for 20 minutes and view under shortwave U.V.
  - <u>\_</u>

Alternative using multichannel pipette (tips will fit into every other well of 48 wells E-gels): if two samples are run in parallel, load amplicons from sample A in odd wells, and amplicons from sample 2 in even wells. Repeat the procedure with rows B to F. Load 15  $\mu$ l of the mixture of Blue Juice + Ladder into the wells marked with M at the beginning and end of each gel row. In that way, amplicon 1 of sample A will run next to amplicon 1 of sample B and similarly for each amplicon.

14.1 Some examples of gel pictures are shown here:

## Some gel pictures (4 samples)

CT values were obtained with the RdRp gene detection described by Corman et al. (1)



- To prepare equimolar mixes, ideally PCR reactions should be first cleaned up using e.g. silica columns or magnetic beads and then quantified, but the amount or PCR reactions makes this very impractical, unless using automated methods. Instead, rough equimolar mixes are prepared based on brightness of gel bands: 3 µl of a strong band, 5 µl of a normal band, and 10 µl of a weak or non-visible band. Mix the appropriate amount of each amplicon from SET A in an Eppendorf tube (final volume 60 to 300µl). Do not include the negative control. Repeat the procedure for SET B amplicons in a separate tube.
- 16 Perform PCR product purification using QIAquick PCR purification kit columns, following manufacturer's instructions. Perform repeated additions and spins of the sample until all of it has gone through the column. Elute the purified DNA in 50 µl of molecular grade water.
- 17 Run quantitation of DNA using the Qubit dsDNA HS reagent (Life Technologies) and the Qubit fluorometer, according to manufacturer's instructions.
- 18 Dilute the samples to the appropriate concentration for Illumina library preparation using Nextera XT (not described here).

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited