Chapitre 04 - Titrage colorimétrique

Pour chaque question, indiquer la (ou les) bonne(s) réponse(s)

A B C

1 Les dosages par titrage

1. Doser une espèce chimique en solution c'est déterminer :	son volume.	sa concentration.	sa quantité de matière
2. Un dosage par titrage met en jeu :	une réaction chimique.	une gamme d'étalonnage.	un réactif titrant et un réactif titré.
3. La réaction support d'un dosage par titrage doit être :	lente et totale.	rapide et totale.	rapide et non totale.
4. Généralement, lors d'un dosage par titrage :	le réactif titrant est placé dans la burette graduée.	le réactif titrant est placé dans le bécher.	le réactif titré est placé dans le bécher.
5. Le réactif titré est le réactif :	dont on connaît la concentration.	dont on cherche la concentration.	qui sert à doser le réactif titrant.

La détermination de la concentration du réactif titré

6. À l'équivalence d'un titrage :	la quantité du réactif titrant introduit est toujours égale à la quantité initiale du réactif titré.	les réactifs titrant et titré ont été introduits en proportions stæchiométriques.	le volume du réactif titrant est égal au volume du réactif titré.
7. À l'équivalence d'un titrage :	il y a changement de réactif limitant.	les réactifs titrant et titré sont totalement consommés.	seul le réactif titré est totalement consommé.
8. Le peroxyde d'hydrogène H_2O_2 (aq) est titré par les ions permanganate MnO_4^- (aq) en milieu acide. L'équation de la réaction support du titrage s'écrit : $5 \ H_2O_2(aq) + 2 \ MnO_4^-(aq) + 6 \ H^+(aq) \\ \rightarrow 2 \ Mn^{2+}(aq) + 5 \ O_2(g) + 8 \ H_2O(\ell)$ À l'équivalence de ce titrage :	$\frac{n_{\rm E}({\rm H}_2{\rm O}_2)}{5} = \frac{n_0({\rm MnO}_4^-)}{2}$	$\frac{n_0(H_2O_2)}{5} = \frac{n_E(MnO_4^-)}{2}$	$\frac{n_0(H_2O_2)}{2} = \frac{n_E(MnO_4^-)}{5}$
9. Lors d'un titrage colorimétrique, l'équivalence peut être repérée grâce à :	un changement de couleur dans la burette graduée.	un changement de couleur dans le bécher.	l'utilisation d'un indicateur de fin de réaction.
10. Les deux photos ci-dessous ont été prises lors du titrage du diiode I_2 (aq) par les ions thiosulfate S_2 O_3^{2-} (aq). Le diiode donne une couleur jaune à la solution qui le contient.	La photo ① montre le mélange réactionnel avant l'équivalence.	La photo 2 montre le mélange réactionnel après l'équivalence.	L'équivalence est repérée lorsque le mélange réactionnel passe du jaune à l'incolore.

Titrage des ions fer (II)

Extraire et exploiter des informations ; effectuer des calculs.

Pour contrôler la concentration en ions fer (II) Fe^{2+} (aq) de la solution contenue dans une ampoule de complément alimentaire, ces ions sont dosés par les ions permanganate MnO_4^- (aq) d'une solution dont la concentration en ions permanganate est $C_1 = 4.0 \times 10^{-3} \, \text{mol} \cdot \text{L}^{-1}$. Le volume de la solution contenue dans l'ampoule est $V_0 = 2.0 \, \text{mL}$ et le volume versé à l'équivalence du titrage est : $V_E = 12.5 \, \text{mL}$. L'équation de la réaction support du titrage est :

5 Fe²⁺(aq) + MnO₄(aq) + 8 H⁺(aq)
$$\rightarrow$$
 5 Fe³⁺(aq) + Mn²⁺(aq) + 4 H₂O(ℓ)
La quantité initiale d'ions fer (II) Fe²⁺(aq) à doser et la quantité d'ions permanganate

La quantite initiale d'ions fer (11) Fe⁻¹ (aq) a doser et la quantite d'ions permanganate MnO_4^- (aq) versée à l'équivalence sont notées respectivement $n_0(Fe^{2+})$ et $n_E(MnO_4^-)$.

- 1. Établir la relation entre les quantités $n_0(Fe^{2+})$ et $n_E(MnO_4^-)$ à l'équivalence du titrage.
- 2. Déterminer la valeur de la concentration C_0 en ions fer (II) dans la solution de l'ampoule.

3 Exploiter un dispositif de titrage

| Exploiter un schéma

On considère le schéma du dispositif de titrage ci-dessous.

- 1. Nommer la verrerie utilisée pour ce titrage.
- 2. Que représente le volume noté V_E ?

6 Exploiter une relation à l'équivalence

| Mobiliser ses connaissances ; effectuer des calculs.

L'acide citrique noté $AH_3(aq)$ est dosé par les ions hydroxyde $HO^-(aq)$ d'une solution d'hydroxyde de sodium. L'équation de la réaction support du titrage s'écrit :

$$AH_3(aq) + 3 HO^-(aq) \rightarrow A^{3-}(aq) + 3 H_2O(\ell)$$

1. Parmi les relations suivantes, identifier celle qui correspond à l'équivalence du titrage étudié :

a
$$\frac{n_0(AH_3)}{3} = \frac{n_E(HO^-)}{1}$$

b
$$\frac{n_0(AH_3)}{1} = \frac{n_E(OH^-)}{3}$$

2. Le volume de la solution titrée est $V_1 = 10,0$ mL, le volume de solution titrante, de concentration $C_2 = 2,5 \times 10^{-3}$ mol·L⁻¹, versé à l'équivalence est $V_E = 13,8$ mL. Calculer la concentration du réactif titré.

(4) Prévoir un changement de couleur

| Mobiliser ses connaissances.

On dose une solution aqueuse incolore de dioxyde de soufre SO_2 (aq) par une solution aqueuse de diiode I_2 (aq). L'équation de la réaction support du titrage s'écrit :

$$I_2(aq) + SO_2(aq) + 2 H_2O(\ell) \rightarrow$$

$$2 I^{-}(aq) + SO_4^{2-}(aq) + 4 H^{+}(aq)$$

Une solution aqueuse de diiode est jaune orangée.

- 1. Identifier les réactifs titré et titrant.
- 2. Identifier le réactif limitant :
- a. avant l'équivalence;
- après l'équivalence.
- 3. Prévoir le changement de couleur de la solution dans le bécher à l'équivalence du titrage.

7 Établir et exploiter une relation à l'équivalence | Restituer ses connaissances ; effectuer des calculs.

On dose un volume $V_1 = 10.0$ mL d'une solution de vitamine C, ou acide ascorbique $C_6H_8O_6$ (aq), contenue dans une ampoule par une solution de diiode I_2 (aq) de concentration $C_2 = 2.0 \times 10^{-3}$ mol·L⁻¹. Le volume de diiode versé à l'équivalence est $V_E = 15.1$ mL.

L'équation de la réaction support du titrage s'écrit : $I_2(aq) + C_6H_8O_6(aq) \rightarrow$

$$2 I^{-}(aq) + C_6 H_6 O_6 (aq) + 2 H^{+}(aq)$$

- **1.** Établir la relation entre les quantités $n_1(C_6H_8O_6)$ et $n_E(I_2)$ à l'équivalence de ce titrage.
- 2. Exprimer puis calculer la quantité $n_1(C_6H_8O_6)$ de vitamine C contenue dans l'ampoule.
- **3.** En déduire la concentration C_1 en vitamine C de la solution dans l'ampoule.

10 Traîter « un pied d'athlète »

| Exploiter des informations ; faire un schéma adapté.

Le « pied d'athlète » est une infection cutanée. Les sportifs en sont fréquemment atteints en raison de la transpiration des pieds. Une solution aqueuse S de permanganate de potassium de concentration en ions permanganate MnO_4^- (aq) voisine de $3\times 10^{-3}\, mol\cdot L^{-1}$ permet de soigner cette infection. L'équation de la réaction support du titrage des ions permanganate par les ions fer (II) s'écrit :

 $MnO_4^-(aq) + 5 Fe^{2+}(aq) + 8 H^+(aq) \rightarrow$

$$Mn^{2+}(aq) + 5 Fe^{3+}(aq) + 4 H_2O(\ell)$$

- 1. Identifier les réactifs titrant et titré.
- 2. a. Dans quelle verrerie place-t-on généralement la solution titrante ? la solution titrée ?
- b. Lors de ce titrage, pourquoi ne doit-on pas procéder ainsi?
- 3. Schématiser et légender le dispositif de titrage permettant de déterminer la concentration en ions permanganate MnO_4^- (aq) de la solution S.
- **4.a.** Comment repère-t-on visuellement l'équivalence de ce titrage ?
- **b.** Établir la relation entre les quantités $n_0(Fe^{2+})$ et les $n_E(MnO_4^-)$ à l'équivalence.

Données

- Une solution de sulfate de fer (II) est quasiment incolore.
- Une solution de sulfate de fer (III) est jaune clair.
- Une solution de permanganate de potassium est violette.
- Les solutions aqueuses d'ions hydrogène H⁺(aq) et d'ions manganèse Mn²⁺(aq) sont incolores.
- En milieu acide, les ions $MnO_4^-(aq)$ réagissent avec les ions $Mn^{2+}(aq)$ pour former un précipité marron de dioxyde de manganèse $MnO_2(s)$. Cette réaction est lente.

12 Titrage colorimétrique d'une eau oxygénée

Utiliser un modèle ; comparer à une valeur de référence.

On souhaite déterminer la concentration C_0 en quantité de matière de peroxyde d'hydrogène dans une solution commerciale S_0 d'eau oxygénée à « 10 volumes » incolore. La réaction support du titrage est la réaction entre les ions permanganate MnO_4^- (aq) et le peroxyde d'hydrogène H_2O_2 (aq). On dilue 10 fois la solution S_0 ; on

obtient une solution S_1 . On dose un volume $V_1 = 10,0$ mL de la solution S_1 par une solution S_2 de permanganate de potassium de concentration $C_2 = 0,020$ mol·L⁻¹ en ions permanganate. Le volume versé à l'équivalence est $V_F = 17,6$ mL.

- 1. Écrire et ajuster l'équation de la réaction support du titrage.
- 2. a. Schématiser et légender le dispositif de titrage.
- Expliquer comment est repérée visuellement l'équivalence du titrage.
- **3.** Écrire la relation à l'équivalence du titrage et en déduire l'expression de la concentration C_1 en peroxyde d'hydrogène de la solution S_1 .
- **4.** Calculer les valeurs des concentrations C_1 puis C_0 .

- 5. En déduire la quantité $n_0(H_2O_2)$ de peroxyde d'hydrogène présente dans un litre de solution commerciale S_0 .
- **6.** L'eau oxygénée étudiée est dite à « 10 volumes ». Cela signifie qu'un litre de cette solution peut libérer 10 L de dioxygène selon la réaction d'équation :

$$2 H_2O_2(aq) \rightarrow 2 H_2O(\ell) + O_2(g)$$

Calculer la quantité maximale $n_{\text{max}}(O_2)$ de dioxygène libéré par un litre de solution S_0 .

- 7. Dans les conditions de l'expérience, le volume molaire vaut $V_m = 22,4 \, \text{L} \cdot \text{mol}^{-1}$. En déduire le volume maximal de dioxygène $V_{\text{max}}(O_2)$ libéré par un litre de solution S_0 .
- 8. Comparer ce résultat à la valeur indiquée par le fabricant en faisant un calcul d'écart relatif. Conclure.

Données

- Couples redox : $MnO_4(aq) / Mn^{2+}(aq)$ et $O_2(g) / H_2O_2(aq)$.
- Les ions permanganate donnent une couleur violette à la solution qui les contient.
- Le contrôle qualité est considéré comme satisfaisant si l'écart relatif est inférieur à 5 %.

13 Python exercise

Utiliser un langage de programmation.

A chemical species A is determined by a chemical species B according to the equation titration reaction:

$$a A + b B \rightarrow c C + d D$$

a and *b* are the stoichiometric coefficients of the reagents A and B. Note respectively:

- $(C_A; V_A)$ the molar concentration and the volume of analyte A;
- $(C_{\rm B},V_{\rm E})$ the molar concentration and the volume poured a into the equivalence of titrant B.
- **1.** Define the equivalence of the titration. Deduce a relation between the initial quantity $n_0(A)$ of the analyte A and the quantity $n_E(B)$ of the titrant added to reach the equivalence point.
- 2. Consider the following Python program:

Show that this program calculates correctly analyte concentration C_A .

3. Use this program to check the value concentration C_A from **exercise 6**.