What is claimed is:

1	1. A subharmonic carrier-canceling apparatus for filtering
2	out second order harmonics close to a local oscillator frequency from an
3	incoming RF signal, said linearizer comprising:
4	a first splitter having a first splitter input, a first splitter I output
5	and a first splitter Q output, said first splitter input receiving said incoming RI
6	signal, said first splitter separating said incoming RF signal into a first splitte
7	in-phase (I) signal carried by said first splitter I output, and a first splitte
8	quadrature (Q) signal carried by said first splitter Q output, wherein said first
9	splitter Q signal is delayed 180 degrees behind said first splitter I signal;
10	a second splitter having a second splitter input, a second splitter
11	output, and a second splitter Q output, said second splitter input receiving a
12	local oscillator signal, said second splitter separating said local oscillator signa
13	into a second splitter in-phase (I) signal carried by said second splitter I output
14	and a second splitter quadrature (Q) signal carried by said second splitter (
15	output, wherein said second splitter Q signal is delayed 90 degrees behind said
16	second splitter I signal;
17	a first subharmonic mixer coupled to said first splitter I outpu
18	and said second splitter I output and receiving said first splitter I signal and said
19	second splitter I signal, said first harmonic mixer generating a first mixer signal;
20	a second subharmonic mixer coupled to said first splitter C
21	output and said second splitter Q output and receiving said first splitter Q signa
22	and said second splitter Q signal, said second harmonic mixer generating a
23	second mixer signal; and
24	a combiner coupled to said first and second subharmonic mixers
25	and receiving said first and second mixer signals, said combiner combining said
26	mixer signals to generate an output RF signal having reduced second order
27	harmonics close to said local oscillator frequency.

1	2. The subharmonic carrier-canceling apparatus for filtering
2	out second order harmonics close to a local oscillator frequency from an
3	incoming RF signal as recited in claim 1, wherein said first splitter comprises a
4	microwave hybrid transformer.
1	3. The subharmonic carrier-canceling apparatus for filtering
2	out second order harmonics close to a local oscillator frequency from an
3	incoming RF signal as recited in claim 1, wherein said second splitter comprises
4	a microwave hybrid transformer.
_	4. A subharmonic carrier-canceling apparatus for filtering
1	
2	out second order harmonics close to a local oscillator frequency from an
3	incoming RF signal, said linearizer comprising:
4	a first splitter having a first splitter input, a first splitter I output,
5	and a first splitter Q output, said first splitter input receiving a local oscillator
6	signal, said first splitter separating said local oscillator signal into a first splitter
7	in-phase (I) signal carried by said first splitter I output, and a first splitter
8	quadrature (Q) signal carried by said first splitter Q output, wherein said first
9	splitter Q signal is delayed 90 degrees behind said first splitter I signal;
10	a first subharmonic mixer coupled to said first splitter I output
11	and receiving said first splitter I signal and said incoming radio signal, said first
12	harmonic mixer generating a first mixer signal;
13	a second subharmonic mixer coupled to said first splitter Q
14	output and receiving said first splitter Q signal, said second harmonic mixer
15	generating a second mixer signal; and
16	a combiner coupled to said first and second subharmonic mixers
17	and receiving said first and second mixer signals, said combiner combining said

1

2

3

4

- mixer signals to generate an output RF signal having reduced second order 18 19 harmonics close to said local oscillator frequency.
- 5. The subharmonic carrier-canceling apparatus for filtering 1 2 out second order harmonics close to a local oscillator frequency from an incoming RF signal as recited in claim 4, further comprising a second splitter 3 having a second splitter input, a second splitter I output, and a second splitter Q 4 5 output, said second splitter input receiving said incoming RF signal, said second 6 splitter separating said incoming RF signal into a second splitter in-phase (I) 7 signal carried by said second splitter I output, and a second splitter quadrature 8 (Q) signal carried by said second splitter Q output, wherein said second splitter 9 Q signal is delayed 180 degrees behind said second splitter I signal;
- 1 6. The subharmonic carrier-canceling apparatus for filtering 2 out second order harmonics close to a local oscillator frequency from an 3 incoming RF signal as recited in claim 4, wherein said first splitter comprises a microwave hybrid transformer. 4
 - 7. The subharmonic carrier-canceling apparatus for filtering out second order harmonics close to a local oscillator frequency from an incoming RF signal as recited in claim 5, wherein said second splitter comprises a microwave hybrid transformer.
- 1 8. A satellite communications system, comprising: 2

a ground station;

3 a satellite in orbit and in communication with said ground 4 station, said satellite having a subharmonic carrier-canceling apparatus for 5 filtering out second order harmonics close to a local oscillator frequency from 6 an incoming RF signal comprising:

7	a first splitter having a first splitter input, a first splitter I output
8	and a first splitter Q output, said first splitter input receiving said incoming RI
9	signal, said first splitter separating said incoming RF signal into a first splitter
10	in-phase (I) signal carried by said first splitter I output, and a first splitter
11	quadrature (Q) signal carried by said first splitter Q output, wherein said first
12	splitter Q signal is delayed 180 degrees behind said first splitter I signal;
13	a second splitter having a second splitter input, a second splitter
14	output, and a second splitter Q output, said second splitter input receiving a
15	local oscillator signal, said second splitter separating said local oscillator signal
16	into a second splitter in-phase (I) signal carried by said second splitter I output
17	and a second splitter quadrature (Q) signal carried by said second splitter Q
18	output, wherein said second splitter Q signal is delayed 90 degrees behind said
19	second splitter I signal;
20	a first subharmonic mixer coupled to said first splitter I output
21	and said second splitter I output and receiving said first splitter I signal and said
22	second splitter I signal, said first harmonic mixer generating a first mixer signal;
23	a second subharmonic mixer coupled to said first splitter Q
24	output and said second splitter Q output and receiving said first splitter Q signal
25	and said second splitter Q signal, said second harmonic mixer generating a
26	second mixer signal; and
27	a combiner coupled to said first and second subharmonic mixers
28	and receiving said first and second mixer signals, said combiner combining said
29	mixer signals to generate an output RF signal having reduced second order
30	harmonics close to said local oscillator frequency.

1 9. The satellite communications system as recited in claim 2 8, wherein said first splitter comprises a microwave hybrid transformer.

1	10. The saterine communications system as recited in claim
2	8, wherein said second splitter comprises a microwave hybrid transformer.
1	11. A satellite communications system, comprising:
2	a ground station;
3	a satellite in orbit and in communication with said ground
4	station, said satellite having a subharmonic carrier-canceling apparatus for
5	filtering out second order harmonics close to a local oscillator frequency from
6	an incoming RF signal comprising:
7	a first splitter having a first splitter input, a first splitter I output,
8	and a first splitter Q output, said first splitter input receiving a local oscillator
9	signal, said first splitter separating said local oscillator signal into a first splitter
10	in-phase (I) signal carried by said first splitter I output, and a first splitter
11	quadrature (Q) signal carried by said first splitter Q output, wherein said first
12	splitter Q signal is delayed 90 degrees behind said first splitter I signal;
13	a first subharmonic mixer coupled to said first splitter I output
14	and receiving said first splitter I signal and said incoming radio signal, said first
15	harmonic mixer generating a first mixer signal;
16	a second subharmonic mixer coupled to said first splitter Q
17	output and receiving said first splitter Q signal, said second harmonic mixer
18	generating a second mixer signal; and
19	a combiner coupled to said first and second subharmonic mixers
20	and receiving said first and second mixer signals, said combiner combining said
21	mixer signals to generate an output RF signal having reduced second order
22	harmonics close to said local oscillator frequency.

1	12. The satellite communications system as recited in claim
2	11, further comprising a second splitter having a second splitter input, a second
3	splitter I output, and a second splitter Q output, said second splitter input
4	receiving said incoming RF signal, said second splitter separating said incoming
5	RF signal into a second splitter in-phase (I) signal carried by said second splitter
6	I output, and a second splitter quadrature (Q) signal carried by said second
7	splitter Q output, wherein said second splitter Q signal is delayed 180 degrees
8	behind said second splitter I signal;

- 1 13. The satellite communications system as recited in claim 2 11, wherein said first splitter comprises a microwave hybrid transformer.
- 1 14. The satellite communications system as recited in claim 2 12, wherein said second splitter comprises a microwave hybrid transformer.