⑩日本国特許庁(JP)

① 特許出願公開

四公開特許公報(A)

昭62-120553

@Int_Cl_4

識別記号

厅内整理番号

④公開 昭和62年(1987)6月1日

G 06 F 12/08

3 1 0

U - 8219 - 5BZ - 8219 - 5B

審査請求 未請求 発明の数 1 (全5頁)

命令キャツシユメモリ方式

②特 顋 昭60-262013

②出 顋 昭60(1985)11月20日

砂発明者

三 瀬 雅

東京都港区芝5丁目33番1号 日本電気株式会社内 東京都港区芝5丁目33番1号

①出 顋 人 日本電気株式会社

20代理人 弁理士草野 与

明細

1. 発明の名称

命令キャッシュメモリ方式

2. 特許請求の範囲

メインメモリ素子としてペラレル入出力データ ポートとシリアル出力データポートとを有するデ ュアルポートメモリの複数個を用いて構成され、 そのメインメモリのシリアル出力データポート は高速キャッシュメモリの入力側に接続され、

上記メインプロセッサとメインメモリとの間に、 複数の一連の命令により構成される命令プロック の転送を制御するための命令プロックアドレス線・ フロック転送指示線及びデータ転送用のシフトク ロック線より構成される専用の信号線を有すると とを特徴とする命令キャッシェメモリ方式。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は情報処理装置に用いられ、常時はキャッシュメモリの命令を利用し、キャッシュメモリの命令を利用し、キャッシュメモリのない場合はメイジメモリのデータ中の命令

域のプロックをキャッシュメモリに転送して利力 するようにした命令キャッシュメモリ方式に関する。

〔従来の技術〕

とのような点から、比較的小型の情報処理袋

特開昭62-120553 (2)

との発明はこの命令キャッシュに関するもので あり、第4回に従来方式の一例を示す。アドレス パスAB、データパスDB、制御パス CONT よりな るシステムパス上にメインメモリ(MM)が接続 されており、メインプロセッサ(CPU) はローカ ルアドレスパス (LAB) 、ローカルデータパス (LDB) を通じ、更に パスドライ パを介してシス テムパスに接続される。 今、メインプロセッサ CPU が命令フェッチサイクル(MIC)を実行すると、 CPU より MIC 信号がアドレス比較器 (ADC) に出 力され、アドレス比較器 ADC はキャッシュメモリ の各ナロックアドレスを保持しているアドレスタ グレジスタ (ADTAG) とローカルアドレスペス LABとのアドレス情報を高速に比較し、該当する 命令がキャッシュメモリ上に存在するか否かテコ クする。アドレス比較が一致すればアドレスタグ

レジスタ ADTAD はヒット信号(HIT)をアドレス 比較器 ADC に出力すると共に該当プロックのキャッシュアータを読出すため、キャッシュアクセス 信号(CAC)を出力する。アドレス比較 ADC は ヒット状態となるとシステムペスアクセスを禁止 し、キャッシュメモリより読み出した命令をメイ ンプロセッサ CPU に与える。

他方ローカルアドレスパス LAB の情報とプドレスタグレジスタ ADTAG の情報とが不一致の一会(ノン・ヒット)は、プロック転送制御回路(BTRC) に命令プロック転送要求(BTRC) を発行する。プロック転送制御回路 BTRC はシステムパス制御回路 (BUSC) にシステムパス獲得要求(SBRQ) を出力し、システムパスを獲得するとシステムパス制御回路 BUSC はシステムパス取得通知 SBACK を返す。プロック転送制御回路 BTRC はこれ以後メインメモリ M M よりローカルアドレスパス LAB で示されるアドレスの命令プロックをキャッシュメモリにパースト転送すると共にアドレスタグレジスタADTAGの更新を行なり。この間、プロック転送制御回路

BTRC はシステムパスをロックし保持し続け、メインプロセッサ CPU はアドレス比較器 ADC より出力されるウェイト信号(WAIT)により待ち状態となり、プロック 転送後又はプロック 転送途中に目的の命令がメインプロセッサ CPU に与えられるとウェイトが解除される。

[発明が解決しようとする問題点]

テムパス上の高速 DMA (直接メモリアクセス)デバイスの待ちが長くなり、ゲータのオーパラン、アングーランの恐れがあり、これに対する対策が必要となる。

[問題点を解決するための手段]

(実施例)

次にこの発明について図面を参照して説明する。

特開昭62-120553 (3)

第1図はこの発明の一実施例を示し、第2図にこ の発明でメインメモリ素子として使用するデュア ルポート読み も可能なメモリ(RAM)を示し、 この RAM はもともとは CRT(陰極観智)の表示用のピア オ RAM として開発されたものであり、具体的には 日本電気株式会社製の APD 41264Cがある。との RAM は ペラレルポート IO1 ~ IO4、アドレス A。~ A₇、メイミング信号 RAS (行丁ドレス選択)、CAS (別アドレス選択)、WE(書込みイネーブル) をもち、通常のメイナミック RAM と同様の動作を する。との RAM のセル構造は 1024列×256行 で あり、1024列はさらに4分割され、64k×4b 構成となっている。列データ伝送要求信号(DT) が与えられると、アドレスA。~A,で指定される ROW アドレスにより特定行の1024ピットが選択 され、内部のアータレジスタに一括転送される。 さらに、シリアルシフトクロック(SC)を入力 することにより 256×4blt の列アータが順次、シ リアル出力パッファを介してシリアルポート出力 アータ SO: ~ SO, として出力される。さらにポイ

れ、アドレス比較器 ADC からのプロック転送要求 (DTR)、シリアルシフトクロック(SC)、及 びプロックアドレス(LABT)がシステムパスとは 独立にメインメモリ M M に直接供給されているこ とである。

今、メインプロセッサ CPU の命令フェッチサイクルが起動され、命令フェッチサイクル(MIC) 信号が出力され、ローカルアドレスパス LAB に命令アドレスが出力され、アドレス比較器(ADC) にてアドレスタグレジスタ(ADTAG)の情報と比較がなされる。その比較が一致した時、即ちゃっシュとマト時にはシステムパスへのアクセスを中止し、キャッシュメモリより命令を引取る。

前記比較で一致が得られない時(キャッジェノンヒット時)はアドレス比較器 ADC がプロック転送事求(DTR)をメインメモリ M M IC 発行し、メインメモリ M M IC 発行し、メインメモリ M M IC 発行し、メインメモリ M M IC アドレスのプロックアータをシリアルポートに取出し、アドレス比較器 ADC より出力されるシリアルシフトクロック S C IC より命令プロ

ッタコントロール機能により列データ転送要求信号DT入力時のカラムアドレスの指定により 256列の任意のポイントよりシリアル出力データの制出しが可能である。

このデュアルポートメモリの大きな特徴は①D タイミングを除きパラレルポートとシリアルポートとは競合することなく互いに独立動作が可能、 ②シリアルポートの転送が高速であり、40 m m / ピット転送が可能である。この発明では以上の特 数を有効に活用する。

次に第3回にこのデュアルポートメモリにより 構成した5.12kパイト(256kワード×16ピット) のメインメモリの例を示す。実際にはこの512k パイトメモリを複数個組合わせて最大4MBのメ インメモリを構成する。第3回にかいてして、LU UL、UUは128kパイト単位のメモリモジュー ル選択信号である。

第1回に戻って説明する。第4回の従来方式に 比べ回路構成上の特徴はメインメモリMMのシリ アル出力データSDがキャッシュメモリに供給さ

ァクがメインメモリ M M からキャッシュメモリド 高速に転送される。

プロック転送時間をデュアルポート RAM とシングルポート RAM とで比較する。

- (1) デュアルポート RAM (a) データトランスファサイクル 150ns (a) シリアル転送 40 ns/ワー1
- (2) シンケルポート RAM
 - (a) 通常リードモード

RAMリードサイクル 120 ns
-200 ns/ワード RAS-CAS 切替え 40 ns

(b) ページモードリードサイクル

1回目········ 200 ns ((a)と同じ) 2回目以後···RAMリードサイクル120 ns

従って、キャッシュアロックサイズ 1 6 ワー の時

- (1) 7 9 0 ns
- (2) (a) ··· ··· 3,2 0 0 n s
- (2) (b) ··· ··· 2, 0 0 0 n s

プロック伝送時間はページモードサイクルのま

特開昭62-120553 (4)

2.5倍以上高速である。且つ、従来方式に比ペプ ロックサイメを 2 ~ 3 倍に拡張してもプロックを 送によるオーパヘッドは増加しないことは明らか である。

さらに、従来方式の場合はシステムパス獲得後 にプロック転送を行うためシステムパス獲得待ち 時間が性能低下要因となることも自明である。 [発明の効果]

以上説明したようにこの発明はOメインメモリ にアュアルポート RAM を採用し、②アュアルポー トRAMのシリアル出力回路をキャッシュメモリの プロックデータ転送経路とし、③キャッシュプロ ック転送情報を直接メインメモリに入力する回路 構成を採ることにより、キャッシュヒット率が高 くシステムパスオー パヘッドの少い命令キャッシ ■メモリ方式を経済的に実現できる効果がある。 4.図面の簡単な説明

第1回はこの発明による命令キャッシェメモリ 方式の一実施例を示すプロック図、第2回はデュ

高速シングルポート RAM ((2) - (b)) に比較しても アルポート RAM の回路構成図、第 3 図はデュアル ポート RAM により実現した512KBメインメモリ モジュールを示す図、第4図は従来の命令キャッ シュメモリ方式を示すプロック図である。

> 日本電気株式会社 **特許出願人** 代 湿 人

岁 1 ☑

沙 2 図

沖 3 四

31- ∕ €

