LECTURE 11

SPRING 2021
APPLIED MACHINE LEARNING
CIHANG XIE

SLIDE CREDIT:

DHRUV BATRA

ANDREW ZISSERMAN

HW1

Average: 50.54 **Median**: 56.00

STD: 13.28

Q2@HW2

```
def computeRegularizedCost(X, y, theta, lambdah):
   m = y.size
    J = (np.sum((X @ theta - y)**2))/2/m + lambdah * np.sum([i**2 for i in theta])
    return J
def gradientDescentWithRegularization(X, y, theta, alpha, num iters, lambdah):
   m = y.shape[0]
   theta = theta.copy()
    J history = []
    for i in range(num iters):
       theta tmp = []
        for j in range(len(theta)): # partial derivative
            gradient = (alpha/m) * np.sum(((X @ theta) - y) * X[:,j]) + 2 * lambdah * theta[j]
            new theta = theta[j] - gradient
           theta tmp.append(new theta)
       theta = theta tmp
        J history.append(computeCost(X, y, theta))
    return theta, J history
```

WEEK 5 GROUP ACTIVITIES

• Some groups have completed the SVM code

• There is one group has not submitted it

TODAY

- Support Vector Machine
 - -- review
 - -- Lagrangian duality
 - -- kernel trick

SUPPORT VECTOR MACHINE (SVM)

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \, \boldsymbol{\theta}^T \boldsymbol{\theta}$$
 s.t. $y^{(i)} (\boldsymbol{\theta}^T x^{(i)} + \boldsymbol{b}) \geq 1, \forall i$

SOFT MARGIN SVM

$$\min_{\theta,\xi,b} \frac{1}{2} \theta^T \theta + C \sum_{i=1}^N \xi_i$$
s.t.
$$y^{(i)} (\theta^T x^{(i)} + b) + \xi_i \ge 1,$$

$$\xi_i \ge 0, \forall i$$

ξ_i is the "slack" variable

- for $0 < \xi_i \le 1$ point is between margin and correct side of hyperplane. This is a margin violation
- for $\xi_i > 1$ point is misclassified

SOFT MARGIN SVM

$$\min_{\theta,\xi,b} \frac{1}{2} \theta^T \theta + C \sum_{i=1}^N \xi_i$$
s.t.
$$y^{(i)} (\theta^T x^{(i)} + b) + \xi_i \ge 1,$$

$$\xi_i \ge 0, \forall i$$

C is a regularization parameter:

- small C allows constraints to be easily ignored → large margin
- large C makes constraints hard to ignore → narrow margin
- C = ∞ enforces all constraints: hard margin

GRADIENT DESCENT FOR SVM

$$y^{(i)}(\theta^T x^{(i)} + b) + \xi_i \ge 1 \& \xi_i \ge 0$$

$$\xi_i = \max \{0, 1 - y^{(i)}(\theta^T x^{(i)} + b)\}$$

$$\min_{\theta, b} \frac{1}{2} \theta^T \theta + C \sum_{i=1}^{N} \max \{0, 1 - y^{(i)} (\theta^T x^{(i)} + b)\}$$

GRADIENT DESCENT FOR SVM

$$COST(\theta, b) = \frac{1}{2}\theta^{T}\theta + C\sum_{i=1}^{N} \max\{0, 1 - y^{(i)}(\theta^{T}x^{(i)} + b)\}$$
$$= \sum_{i=1}^{N} (\frac{1}{2N}\theta^{T}\theta + C\max\{0, 1 - y^{(i)}(\theta^{T}x^{(i)} + b)\})$$

For each data point $x^{(i)}$

$$\frac{\partial Cost(\theta, b)}{\partial \theta_j} = \begin{cases} \frac{1}{N} \theta_j - C y^{(i)} x_j^{(i)}, & \text{if } 1 - y^{(i)} (\theta^T x^{(i)} + b) > 0\\ \frac{1}{N} \theta_j, & \text{otherwise} \end{cases}$$

$$\frac{\partial Cost(\theta, b)}{\partial b} = \begin{cases} -C \ y^{(i)}, \text{ if } 1 - y^{(i)}(\theta^T x^{(i)} + b) > 0\\ 0, \text{ otherwise} \end{cases}$$

RELATIONSHIP TO LOGISTIC REGRESSION

$$\min_{\boldsymbol{\theta}, \boldsymbol{b}} \lambda \boldsymbol{\theta}^T \boldsymbol{\theta} - \sum_{i} \log P(y^{(i)} | x^{(i)}; \boldsymbol{\theta}, \boldsymbol{b})$$

$$\min_{\theta,b} \left\{ \lambda \theta^T \theta \right\} + \sum_{i} \left\{ \log(1 + e^{-y^{(i)} (\theta^T x^{(i)} + b)}) \right\}$$
Regularization Logistics Loss

$$\min_{\boldsymbol{\theta},\boldsymbol{b}} \left\{ \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta} + C \sum_{i=1}^{N} \max \left\{ 0, 1 - y^{(i)} (\boldsymbol{\theta}^T x^{(i)} + b) \right\} \right\}$$

Regularization Applied Machine Learning Hinge Loss

RELATIONSHIP TO LOGISTIC REGRESSION

Logistic loss is sometime viewed as the **smooth version** of the Hinge loss.

DUAL FORMULATION

Primal

$$\min_{\boldsymbol{\theta}, \boldsymbol{b}} \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta}$$

s.t. $y^{(i)} (\boldsymbol{\theta}^T x^{(i)} + \boldsymbol{b}) \geq 1, \forall i$

The Lagrangian for the primal problem:

$$L = \frac{1}{2} \theta^T \theta + \sum_i \alpha_i [1 - y^{(i)} (\theta^T x^{(i)} + b)]$$
 where $\alpha_i \ge 0$ are Lagrange multipliers.

Now we want to solve: $\min_{\theta,b} \max_{\alpha} L(\theta,b,\alpha)$

$$if \ 1 > y^{(i)}(\theta^T x^{(i)} + b)] \to \min \text{ won 't let it happen}$$

$$if \ 1 = y^{(i)}(\theta^T x^{(i)} + b)] \to \text{ equivalent to } \min_{\theta, b} \frac{1}{2} \theta^T \theta$$

$$if \ 1 < y^{(i)}(\theta^T x^{(i)} + b)] \to \text{ equivalent to } \min_{\theta, b} \frac{1}{2} \theta^T \theta$$

Primal

$$\min_{\boldsymbol{\theta}, \boldsymbol{b}} \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta}$$

s.t. $y^{(i)} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} + \boldsymbol{b}) \geq 1, \forall i$

The Lagrangian for the primal problem:

$$L = \frac{1}{2} \theta^T \theta + \sum_i \alpha_i [1 - y^{(i)} (\theta^T x^{(i)} + b)]$$
 where $\alpha_i \ge 0$ are Lagrange multipliers.

Now we want to solve:

$$\min_{\boldsymbol{\theta},\boldsymbol{b}} \max_{\boldsymbol{\alpha}} L(\boldsymbol{\theta},\boldsymbol{b},\boldsymbol{\alpha})$$

Slater's condition from convex optimization guarantees that these two optimization problems are equivalent!

This is the dual problem

Primal

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta}$$

s.t. $y^{(i)} (\boldsymbol{\theta}^T x^{(i)} + \boldsymbol{b}) \ge 1, \forall i$

$$\max_{\alpha} \min_{\theta,b} \frac{1}{2} \theta^T \theta + \sum_{i} \alpha_i [1 - y^{(i)} (\theta^T x^{(i)} + b)]$$

Dual

$$\frac{\partial L}{\partial \theta} = \theta - \sum_{i} \alpha_{i} y^{(i)} x^{(i)} = 0$$

$$\frac{\partial L}{\partial b} = -\sum_{i} \alpha_{i} y^{(i)} = 0$$

Primal

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta}$$

s.t. $y^{(i)} (\boldsymbol{\theta}^T x^{(i)} + \boldsymbol{b}) \geq 1, \forall i$

$$\max_{\alpha} L(\alpha) = \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)^{T}} x^{(j)} + \sum_{i} \alpha_{i} - \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)^{T}} x^{(j)}$$
$$= \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)^{T}} x^{(j)}$$

Dual

s.t.
$$\alpha_i \geq 0, \forall i$$

$$\sum_i \alpha_i y^{(i)} = 0$$

LAGRANGIAN DUALITY (SOFT MARGIN)

Primal

$$\min_{\substack{\theta,\xi,b}} \frac{1}{2} \theta^T \theta + C \sum_{i=1}^N \xi_i$$
s.t. $y^{(i)} (\theta^T x^{(i)} + b) + \xi_i \ge 1$, $\xi_i \ge 0$, $\forall i$

Dual

$$\max_{\alpha} L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)^{T}} x^{(j)}$$
s.t.
$$C \ge \alpha_{i} \ge 0, \forall i$$

$$\sum_{i} \alpha_{i} y^{(i)} = 0$$

SUPPORT VECTORS

$$x \to \phi(x)$$
 $R^d \to R^D$

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta}$$

s.t. $y^{(i)}(\boldsymbol{\theta}^T \boldsymbol{\phi}(x^{(i)}) + b) \ge 1, \forall i$

If D >> d then there are many more parameters to learn for θ Can this be avoided?

$$x \to \phi(x)$$
 $R^d \to R^D$

$$\max_{\alpha} L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \phi(x^{(i)})^{T} \phi(x^{(j)})$$

s.t.
$$\alpha_i \geq 0, \forall i$$

 $\sum_i \alpha_i y^{(i)} = 0$

- $\phi(x)$ only occurs in pairs $\phi(x)^T \phi(x)$
- Once the scalar products are computed, only the N dimensional vector α needs to be learnt; it is not necessary to learn in the D dimensional space, as it is for the primal

Write $k(x_j, x_i) = \phi(x)^T \phi(x)$. This is known as **kernel**

$$\max_{\alpha} L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} k(x^{(i)}, x^{(j)})$$

s.t.
$$\alpha_i \geq 0, \forall i$$

 $\sum_i \alpha_i y^{(i)} = 0$

$$\Phi: \left(egin{array}{c} x_1 \ x_2 \end{array}
ight)
ightarrow \left(egin{array}{c} x_1^2 \ x_2^2 \ \sqrt{2} x_1 x_2 \end{array}
ight) \quad \mathbb{R}^2
ightarrow \mathbb{R}^3$$

- Classifier can be learnt and applied without explicitly computing $\Phi(x)$
- All that is required is the kernel $k(x,z) = (x^Tz)^2$

EXAMPLE KERNELS

- Linear $k(x,z) = x^T z$
- Polynomial of degree exactly d $k(x,z) = (x^Tz)^d$
- Polynomial of degree up to d $k(x,z) = (x^Tz + 1)^d$
- Guassian $k(x, z) = \exp(-||x-z||^2)$
 - --- Infinite dimensional feature space

PROPERTIES

- Weight vector is a linear combination of data
- Only the points on the margins matter
 - Ignore the rest
- Only inner products between data points matter
 - Can use Kernels!
- Provides the widest possible separation between classes

Quiz 3

Not available until May 4 at 3:00pm | 4 pts | 5 Questions

HW2

Available until May 9 at 11:59pm | Due May 9 at 11:59pm | 60 pts

QUESTIONSP