Ejercicio 5

Podemos definir una aplicación de F/N en S_n dada por:

 $s_{i_1} \dots s_{i_k} \mapsto s_{i_1} \cdots s_{i_{2k}}$ (la última expresión es el producto como elementos de S_n), la aplicación está bien definida puesto que si un elemento está en N claramente visto como un elemento de S_n es la identidad, además es claramente un homomorfismo, la aplicación es sobre puesto que $\{s_1, \ldots s_n\}$ es un conjunto de generadores de S_n , solo necesitamos verificar que el homomorfismo es inyectivo, para esto supongamos que una palabra $s_i, \dots s_{i_k}$ al verla como un elemento del grupo simétrico es la identidad entonces es un elemento de N, por el ejercicio 5 esto es equivalente a probar que al hacer reducciones usando las relaciones se puede llevar la palabra a la palabra vacía. Esto lo vamos a probar por inducción sobre n, si n=1 el enunciado es obvio, supongamoslo cierto para n y veamos que se tiene para n+1, necesitamos un lema

Lemma 0.1. Toda palabra en F/N se puede reducir a una palabra donde s_n aparece a lo más una vez.

Demostración. Por inducción sobre n, si n=1 es obvio. Supongamoslo para n, sea $s_{i_1}\cdots s_{i_k}$ una palabra, entre cada aparición de s_{n+1} en esta palabra encontramos una palabra w en s_1,\ldots,s_n la cual por hipótesis de inducción solo contiene un s_n , es decir esta palabra es de la forma $s_{n+1}\ldots s_n\ldots s_{n+1},$ s_{n+1} conmuta con todas las letras de w excepto con s_n , pero $(s_{n+1}s_n)^3=e$, luego podemos sustituir $s_{n+1}s_n$ por $s_ns_{n+1}s_ns_{n+1}$ es decir tenemos una palabra de la forma $\ldots s_ns_{n+1}s_ns_{n+1}\ldots s_{n+1}$ que claramente es una palabra equivalente a una palabra donde s_{n+1} solo aparece una vez, así se tiene que la palabra $s_{i_1}\cdots s_{i_k}$ es equivalente a una palabra que contiene a lo mas un s_{n+1} .

Toda palabra que sea la identidad vista como elemento de S_{n+1} es equivalente a una palabra donde no aparece s_{n+1} puesto que por el lema anterior contiene a lo mas un s_{n+1} pero si contuviera uno tendríamos que $s_{i_1} \cdots s_{n+1} \cdots s_{i_k} = e$ vistos como elementos de S_{n+1} , es decir que s_{n+1} se puede expresar en términos de los demás generadores lo cual es imposible, entonces toda palabra que al verla como elemento de S_{n+1} es la identidad es equivalente a una palabra donde no aparece s_{n+1} por hipótesis de inducción se sigue que la aplicaión es inyectiva y por lo tanto un isomorfismo.