4 非順序対

[sthmaxiom2]

定理 4.1. a と b を集合とし、x をこれらの中に自由変数として現れない文字とする. このとき関係式 $x=a \lor x=b$ は x について集合を作り得る.

[sthmuopairbasis]

定理 4.2. a, b, c を集合とするとき,

$$(4.17) c \in \{a, b\} \leftrightarrow c = a \lor c = b$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $c \in \{a, b\}$ ならば, $c = a \lor c = b$.
- 2) c=a ならば, $c\in\{a,b\}$. また c=b ならば, $c\in\{a,b\}$.

[sthmuopairfund]

定理 4.3. a と b を集合とするとき,

$$a \in \{a, b\}, b \in \{a, b\}$$

が成り立つ.

[sthmuopairnotin]

定理 4.4. a, b, c を集合とするとき,

$$(4.18) c \notin \{a, b\} \leftrightarrow c \neq a \land c \neq b$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $c \notin \{a,b\}$ ならば, $c \neq a$ と $c \neq b$ が共に成り立つ.
- 2) $c \neq a$ と $c \neq b$ が共に成り立てば, $c \notin \{a, b\}$.

[sthmuopairch]

定理 4.5. a と b を集合とするとき、

$${a,b} = {b,a}$$

が成り立つ.

[sthmuopairsubset]

定理 4.6. *a*, *b*, *c* を集合とするとき,

$$(4.21) {a,b} \subset c \leftrightarrow a \in c \land b \in c$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $\{a,b\} \subset c$ ならば, $a \in c$ と $b \in c$ が共に成り立つ.
- 2) $a \in c$ と $b \in c$ が共に成り立てば, $\{a,b\} \subset c$.

[sthmuopairnotsubset]

定理 4.7. a, b, c を集合とするとき,

$$\{a,b\} \not\subset c \leftrightarrow a \notin c \lor b \notin c$$

が成り立つ. またこのことから, 次の1), 2) が成り立つ.

- 1) $\{a,b\}$ $\not\subset c$ ならば, $a \notin c \lor b \notin c$.
- 2) $a \notin c$ $a \notin b$ $a \notin b$ a

[sthmuopair=]

定理 4.8.

1) a, b, c を集合とするとき,

$$(4.35) a = b \leftrightarrow \{a, c\} = \{b, c\}, \quad a = b \leftrightarrow \{c, a\} = \{c, b\}$$

が成り立つ. またこのことから, 次の (4.36), (4.37) が成り立つ.

$$(4.36) a = b ならば, \{a, c\} = \{b, c\} と \{c, a\} = \{c, b\} が共に成り立つ.$$

2) a, b, c, d を集合とするとき,

$$(4.38) a = c \land b = d \to \{a, b\} = \{c, d\}$$

が成り立つ. またこのことから, 次の (4.39) が成り立つ.

[sthmspinuopair]

定理 4.9. a と b を集合, R を関係式とし, x を a と b の中に自由変数として現れない文字とする. このとき

$$(4.56) \qquad (\exists x \in \{a, b\})(R) \leftrightarrow (a|x)(R) \lor (b|x)(R),$$

$$(4.57) \qquad (\forall x \in \{a, b\})(R) \leftrightarrow (a|x)(R) \land (b|x)(R)$$

が共に成り立つ. またこれらから, 次の 1)—4) が成り立つ.

- 1) $(\exists x \in \{a,b\})(R)$ ならば, $(a|x)(R) \vee (b|x)(R)$.
- 2) (a|x)(R) ならば, $(\exists x \in \{a,b\})(R)$. また (b|x)(R) ならば, $(\exists x \in \{a,b\})(R)$.
- 3) $(\forall x \in \{a,b\})(R)$ ならば, (a|x)(R) と (b|x)(R) が共に成り立つ.
- 4) (a|x)(R) と (b|x)(R) が共に成り立てば、 $(\forall x \in \{a,b\})(R)$.

[sthmsingletonsm]

定理 4.10. a を集合とし, x を a の中に自由変数として現れない文字とする. このとき関係式 x=a は x について集合を作り得る.

[sthmaa=a]

定理 4.11. *a* を集合とするとき,

$$\{a,a\} = \{a\}$$

が成り立つ.

[sthmsingletonbasis]

定理 4.12. a と b を集合とするとき,

$$(4.65) b \in \{a\} \leftrightarrow b = a$$

が成り立つ. またこのことから, 次の (4.66) が成り立つ.

$$(4.66) b \in \{a\} \text{ $\it x$ bit}, b = a. \text{ $\it x$ bit}, b \in \{a\}.$$

[sthmsingletonfund]

定理 4.13. *a* を集合とするとき,

$$a \in \{a\}$$

が成り立つ.

[sthmsingletonsubset]

定理 4.14. a と b を集合とするとき,

$$(4.67) {a} \subset b \leftrightarrow a \in b$$

が成り立つ. またこのことから, 次の (4.68) が成り立つ.

$$\{a\} \subset b \text{ ς bill, $a \in b$. $$\sharp$ ς $a \in b$ ς bill, $\{a\} \subset b$.}$$

[sthmsingletonsubsetuopair]

定理 4.15. a と b を集合とするとき,

$${a} \subset {a,b}, {b} \subset {a,b}$$

が成り立つ.

[sthmsingleton=]

定理 4.16. a と b を集合とするとき,

$$(4.72) a = b \leftrightarrow \{a\} = \{b\}$$

が成り立つ. またこのことから, 次の (4.73) が成り立つ.

$$(4.73) a = b \text{ t b if, $\{a\} = \{b\}$. t t $\{a\} = \{b\}$ t b if, $a = b$.}$$

[sthmsingleton=subset]

定理 4.17. a と b を集合とするとき,

$$(4.79) a = b \leftrightarrow \{a\} \subset \{b\}$$

が成り立つ. またこのことから, 次の (4.80) が成り立つ.

$$(4.80) a = b \text{ t b if, $\{a\} \subset \{b\}$. $$s$ t $\{a\} \subset \{b\}$ $$t$ b if, $a = b$.}$$

[sthmsingletonuopairsubset]

定理 4.18. a, b, c を集合とするとき,

$$\{a\} \subset \{b,c\} \leftrightarrow a = b \lor a = c,$$

$$\{b,c\} \subset \{a\} \leftrightarrow a = b \land a = c$$

が共に成り立つ. またこれらから, 次の 1)—4) が成り立つ.

- 1) $\{a\} \subset \{b,c\}$ ならば, $a=b \lor a=c$.
- 2) a = b ならば, $\{a\} \subset \{b,c\}$. また a = c ならば, $\{a\} \subset \{b,c\}$.
- 3) $\{b,c\} \subset \{a\}$ ならば, a=b と a=c が共に成り立つ.
- 4) a = b と a = c が共に成り立てば、 $\{b, c\} \subset \{a\}$.

[sthmsingleton=uopair]

定理 4.19. a, b, c を集合とするとき、

$$\{a\} = \{b, c\} \leftrightarrow a = b \land a = c$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $\{a\} = \{b, c\}$ ならば, a = b と a = c が共に成り立つ.
- 2) a = b と a = c が共に成り立てば、 $\{a\} = \{b, c\}$.

[sthmsingleton=uopairab]

定理 4.20. a と b を集合とするとき,

$$\{a\} = \{a, b\} \leftrightarrow a = b,$$

$$\{b\} = \{a, b\} \leftrightarrow a = b$$

が共に成り立つ. またこれらから, 次の 1), 2), 3) が成り立つ.

- 1) $\{a\} = \{a, b\}$ ならば, a = b.
- 2) $\{b\} = \{a, b\}$ ならば, a = b.
- 3) a = b ならば, $\{a\} = \{a, b\}$ と $\{b\} = \{a, b\}$ が共に成り立つ.

[sthm singlet on psubsetuo pair]

定理 4.21. a と b を集合とするとき、

$$\{a\} \subsetneq \{a,b\} \leftrightarrow a \neq b,$$

$$(4.109) {b} \subsetneq {a,b} \leftrightarrow a \neq b$$

が共に成り立つ. またこれらから, 次の 1), 2), 3) が成り立つ.

- 1) $\{a\} \subsetneq \{a,b\}$ ならば, $a \neq b$.
- 2) $\{b\} \subseteq \{a,b\}$ ならば, $a \neq b$.
- 3) $a \neq b$ ならば, $\{a\} \subsetneq \{a,b\}$ と $\{b\} \subsetneq \{a,b\}$ が共に成り立つ.

[sthmsubsetsingleton!]

定理 4.22. a と b を集合とし、x を a の中に自由変数として現れない文字とする. このとき

$$(4.114) a \subset \{b\} \to !x(x \in a)$$

が成り立つ. またこのことから, 次の (4.115) が成り立つ.

$$(4.115) a \subset \{b\} \ \text{t is, } !x(x \in a).$$

[sthm=singletonex!]

定理 4.23. a と b を集合とし、x を a の中に自由変数として現れない文字とする. このとき

$$(4.121) a = \{b\} \rightarrow \exists! x (x \in a)$$

が成り立つ. またこのことから, 次の (4.122) が成り立つ.

$$(4.122) a = \{b\} \ \ \ \ \ \ \ \exists ! x(x \in a).$$

[sthmex!singleton]

定理 4.24. a を集合とし, x を a の中に自由変数として現れない文字とする. このとき

$$(4.130) \qquad \exists! x(x \in \{a\})$$

が成り立つ.

[sthmsma!]

定理 4.25. a を集合, R を関係式とし, x を文字とする. このとき

が成り立つ. またこのことから, 次の (4.132) が成り立つ.

(4.132) R が x について集合を作り得るとする. このとき $\{x \mid R\} \subset \{a\}$ ならば, !x(R).

[sthmsmaex!]

定理 4.26. a を集合, R を関係式とし, x を文字とする. このとき

が成り立つ. またこのことから, 次の (4.137) が成り立つ.

$$(4.137)$$
 Rがxについて集合を作り得るとする. このとき $\{x \mid R\} = \{a\}$ ならば、 $\exists! x(R)$.

[sthmex!sm]

定理 4.27. R を関係式とし, x を文字とするとき,

$$(4.140) \exists! x(R) \leftrightarrow \operatorname{Set}_x(R) \land \{x \mid R\} = \{\tau_x(R)\}\$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $\exists ! x(R)$ ならば, R は x について集合を作り得る. 更に $\{x \mid R\} = \{\tau_x(R)\}$ が成り立つ.
- 2) R が x について集合を作り得るとする. このとき $\{x \mid R\} = \{\tau_x(R)\}$ ならば, $\exists ! x(R)$.

[sthmspinsingleton]

定理 4.28. a を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(4.145) \qquad (\exists x \in \{a\})(R) \leftrightarrow (a|x)(R),$$

$$(4.146) \qquad (\forall x \in \{a\})(R) \leftrightarrow (a|x)(R),$$

$$(4.147) (!x \in {a})(R),$$

$$(4.148) \qquad (\exists! x \in \{a\})(R) \leftrightarrow (a|x)(R)$$

がすべて成り立つ. またこれらから, 次の1), 2) が成り立つ.

- 1) $(\exists x \in \{a\})(R)$, $(\forall x \in \{a\})(R)$, $(\exists!x \in \{a\})(R)$ のいずれかが成り立てば、(a|x)(R).
- 2) (a|x)(R) ならば、 $(\exists x \in \{a\})(R)$ 、 $(\forall x \in \{a\})(R)$ 、 $(\exists!x \in \{a\})(R)$ がすべて成り立つ.

[sthmelmbasis]

定理 4.29. a と b を集合とするとき,

$$(4.160) b \in a \to \operatorname{elm}(a) \in a, \quad \operatorname{elm}(a) \notin a \to b \notin a$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $b \in a$ ならば, $elm(a) \in a$.
- 2) $\operatorname{elm}(a) \notin a$ ならば、 $b \notin a$.

[sthmelmnotin]

定理 4.30. a を集合とし, x を a の中に自由変数として現れない文字とする. このとき

$$(4.161) elm(a) \notin a \leftrightarrow \forall x (x \notin a)$$

が成り立つ. またこのことから, 次の1), 2), 3) が成り立つ.

- 1) $\operatorname{elm}(a) \notin a$ ならば, $\forall x (x \notin a)$.
- 2) $\forall x(x \notin a)$ ならば, $\operatorname{elm}(a) \notin a$.
- 3) x が定数でなく, $x \notin a$ が成り立てば, $elm(a) \notin a$.

[sthmelm=]

定理 4.31. a と b を集合とするとき,

$$(4.162) a = b \to elm(a) = elm(b)$$

が成り立つ. またこのことから, 次の (4.163) が成り立つ.

$$(4.163) a = b ならば, elm(a) = elm(b).$$

[sthmisetelm]

定理 4.32. R を関係式とし, x を文字とする. このとき

が成り立つ. またこのことから, 次の (4.165) が成り立つ.

(4.165)
$$R$$
 が x について集合を作り得るならば, $elm(\{x \mid R\}) = \tau_x(R)$.

[sthmuopairelm]

定理 4.33. *a* と *b* を集合とするとき,

(4.166)
$$elm(\{a,b\}) = a \vee elm(\{a,b\}) = b$$

が成り立つ.

[sthmsingletonelm]

定理 4.34. *a* を集合とするとき,

が成り立つ.

[sthm!elm]

定理 4.35. a を集合とし、x を a の中に自由変数として現れない文字とする. このとき

$$(4.168) !x(x \in a) \leftrightarrow a \subset \{\operatorname{elm}(a)\}$$

が成り立つ. またこのことから, 次の(4.169)が成り立つ.

$$(4.169) !x(x \in a) \ \, \text{t} \ \, \text{t}, \ \, a \subset \{\text{elm}(a)\}. \ \, \text{t} \ \, \text{t} \ \, \text{t} \subset \{\text{elm}(a)\} \ \, \text{t} \ \,$$

[sthmex!elm]

定理 4.36. a を集合とし, x を a の中に自由変数として現れない文字とする. このとき

$$(4.173) \exists! x(x \in a) \leftrightarrow a = \{\text{elm}(a)\}\$$

が成り立つ. またこのことから, 次の (4.174) が成り立つ.

$$\exists! x(x \in a) \text{ \sharp if, $a = \{elm(a)\}$. \sharp \hbar $a = \{elm(a)\}$ \sharp if, $\exists! x(x \in a)$.}$$