Contents

USCSP301 – USCS303 : Operating system (OS) Practical – 02	2
Practical – 02 Shortest Job first Scheduling Algorithm	2
Practical Date: 24 July 2021	2
Practical Aim : Implement SJF (with no preemption) scheduling algo in Java	
Algorithm:	
Solved Example	2
Gnatt Chart	5
Implementation	8
Input	14
Output :	14
Sample output 01	15
Sample output 02	15
Sample output 03	16
Sample output 04	16

USCSP301 – USCS303 : Operating system (OS) Practical – 02 Practical – 02 Shortest Job first Scheduling Algorithm

Practical Date: 24 July 2021

Practical Aim: Implement SJF (with no preemption) scheduling algo in Java

Algorithm:

Step 1: Input the number of processes required to be scheduled using SJF, burst time for each process .

Step 2: Using enhanced bubble sort technique, sort the all given processes in ascending order according to burst time in a ready queue.

Step 3: Calculate the Finish Time, Turn Around Time and Waiting Time for each process which in turn help to calculate Average Waiting Time and Average Turn Around Time required by CPU to schedule given set of process using SJF

Step 3.1: for i=0, Finish Time To Arrival Time To + Burst Time To

Step 3.2: for $i \ge 1$, Finish Time Ti = Burst Time Ti + Finish Time Ti-1

Step 3.3: for i=0, Turn Around Time To Finish Time To - Arrival Time To

Step 3.4: for $i \ge 1$, Turn Around Time $T_i = Finish$ Time To - Arrival Time To

Step 3.5: for i=0, Waiting Time To Turn Around Time To-Burst Time T_o

Step 3.6: for $i \ge 1$, Waiting Time T_i - Turn Around Time T_1 - Burst Time T_{i-1}

Step 4: Process with less arrival time comes first and gets scheduled first by the CPU.

Step 5: Calculate the Average Waiting Time and Average Turn Around Time.

Step 6: Stop.

Solved Example

Example 01

Consider the following example containing five processes arrive at same time

Process ID	Burst Time
------------	------------

Batch: B1 Name: Yash Anand Parab

P0	6
P1	3
P2	8
P3	3
P4	4

Step 1: Processes get executed according to their lowest burst time.

Process ID	Burst Time
P1	3
P3	3
P4	4
P0	6
P2	8

Step 2: Following shows the scheduling and execution of processes.

Step 2.1: At start P1 has the shortest execution time which is 0-3 seconds

System Time : 0

Process Scheduled : P1

Finish Time : 0 + 3 = 3

Waiting Time : 3 - 3 = 0

Turn Around Time : 3 - 0 = 3

Step 2.2: Next shortest execution time for process P3 for duration 3-6 seconds.

System Time : 3

Process Scheduled : P1,P3

Finish Time : 3 + 3 = 6

Waiting Time : 6 - 3 = 3

Turn Around Time : 6 - 0 = 0

Step 2.3: Next shortest execution time for process P4 for duration 6-10 seconds.

System Time : 6

Process Scheduled : P1,P3,P4

Finish Time : 6 + 4 = 10

Waiting Time : 10 - 4 = 6

Turn Around Time : 10 - 0 = 10

Step 2.4: Next job with shortest execution time is P0 for duration of 10-16 seconds.

System Time : 10

Process Scheduled : P1,P3,P4,P0

Finish Time : 10 + 6 = 16

Waiting Time : 16 - 6 = 10

Turn Around Time : 16 - 0 = 16

Step 2.5: Similarly, Next job with shortest execution time is P2 for duration of 16-24 seconds.

System Time : 16

Process Scheduled : P1,P3,P4,P0,P2

Finish Time : 16 + 8 = 24

Waiting Time : 24 - 8 = 16

Turn Around Time : 24 - 0 = 24

Step 3: Calculate Average Waiting Time and Average Turn Around Time.

Average Waiting Time =
$$(0 + 3 + 6 + 10 + 16)/5$$

= $35/5$
= 7

= 11.8

Step 4: After scheduling of all provided processes;

Process ID	Burst Time	Arrival Time	Finish Time (Prev.finish	Turn Around Time (Finish time – Arrival	Waiting Time (Turn Around Time –
			time+Burst time)	Time)	Burst Time
P1	3	0	(0+3=)3	(3-0=)3	(3-3=)0
P3	3	0	(3+3=)6	(6-0=)6	(6-3=)3
P4	4	0	(6+4=)10	(10-0=)10	(10-4=)6
P0	6	0	(10+6)16	(16-0=)16	(16-6=)10
P2	8	0	(16+8=)24	(24-0=)24	(24-8=)16
Average				11.8000000	7.0000000

Step 5 : Stop

Gnatt Chart

P1	P3	P4	P0	P2

Example 02

Process ID	Burst Time
P0	2
P1	1
P2	6

Process	Burst	Arrival	Finish Time	Turn Around	Waiting Time
ID	Time	Time	(Prev.finish	Time	(Turn Around
			time+Burst time)	(Finish time –	Time – Burst
				Arrival	Time
				Time)	
P1	1	0	(0+1=)1	(2-0=)1	(2-2=)0
P0	2	0	(1+2=)3	(3-0=)3	(3-1=)1
P2	6	0	(3+6=)9	(9-0=)9	(9-6=)3
Average				4.333333	1.333333

Gnatt Chart

P1	P0	P2

Example 03

|--|

P0	7
P1	3
P2	2
P3	10
P4	8

Process	Burst	Arrival	Finish Time	Turn Around Time	Waiting Time
ID	Time	Time	(Prev.finish	(Finish time – Arrival	(Turn Around Time –
			time+Burst time)	Time)	Burst Time
P2	2	0	(2+0=)2	(2-0=)2	(2-2=)0
P1	3	0	(2+3=)5	(5-0=)5	(5-3=)2
P0	7	0	(5+7=)12	(12-0=)12	(12-7=)5
P4	8	0	(20+8)20	(20-0=)20	(20-8=)12
P3	10	0	(21+10=)30	(20-0=)30	(30-10=)20
Average				13.800000	7.800000

Gnatt Chart

		P2	P1	P0	P4	P3
--	--	-----------	----	-----------	----	----

Example 4

Process ID	Burst Time	
P0	25	
P1	15	
P2	10	

P3	25
P4	10
P5	25

Process	Burst	Arrival	Finish Time	Turn Around Time	Waiting Time
ID	Time	Time	(Prev.finish	(Finish time – Arrival	(Turn Around Time –
			time+Burst time)	Time)	Burst Time
P2	10	0	10	10	0
P4	10	0	20	20	10
P1	15	0	35	35	20
P0	25	0	60	60	35
P3	25	0	85	85	60
P5	25	0	110	110	85
Average				53.333332	35.000000

Gnatt Chart

Implementation Java Program:-//Name: Yash Parab //Batch: B1 //PRN: 2020016400922513 //Date: 24 July 2021 // Prac-02 : SJF Algorithm import java.util.Scanner; public class P2_SJF_YP{ int burstTime[]; int arrivalTime[]={0}; String[] processId; int numberOfProcess; void getProcessData(Scanner input){ System.out.print("Enter the number of Process for scheduling: "); int inputNumberOfProcess = input.nextInt(); numberOfProcess = inputNumberOfProcess; burstTime = new int[numberOfProcess];

Name: Yash Anand Parab

Batch: B1

```
arrivalTime = new int[numberOfProcess];
processId = new String[numberOfProcess];
String st = "P";
               for(int i = 0 ;i<numberOfProcess;i++){</pre>
processId[i] = st.concat(Integer.toString(i));
System.out.print("Enteer the BurstTime for process - " + (i) + " : ");
burstTime[i]=input.nextInt(); } //for loop ends
                        }
void sortAccordingBurstTime(int[] at,int [] bt,String[] pid){
boolean swapped;
int temp;
        String stemp;
for(int i = 0 ;i<numberOfProcess;i++){</pre>
        swapped=false;
        for(int j = 0; j < numberOfProcess-i-1; <math>j + + ){
```

if(bt[j]>bt[j+1]){ //swapping bursttime temp=bt[j]; bt[j] = bt[j+1];bt[j+1]=temp;//swapping arrival time temp=at[j]; at[j]=at[j+1];at[j+1] = temp;//swappingprocessid stemp=pid[j]; pid[j]=pid[j+1]; pid[j+1]=stemp; //enhanched bubble sort swapped=true;

```
}
                      }
                      if(swapped==false){
break;
                             }
              }
       }
void shortestJobFirstNPAlgorithm(){
int finishTime[]=new int [numberOfProcess];
int bt[] = burstTime.clone();
int at[] = arrivalTime.clone();
String pid[]=processId.clone();
int waitingTime[] = new int[numberOfProcess];
int turnAroundTime[] = new int[numberOfProcess];
sortAccordingBurstTime(at,bt,pid);
```

```
finishTime[0] = at[0] + bt[0];
turnAroundTime[0]=finishTime[0] - at[0];
waitingTime[0] = turnAroundTime[0] -bt[0];
for(int i = 1;i<numberOfProcess;i++){</pre>
finishTime[i] = bt[i] + finishTime[i-1];
turnAroundTime[i]=finishTime[i] - at[i];
waitingTime[i] = turnAroundTime[i] -bt[i];
   }
   float sum = 0;
for(int n :waitingTime){
       sum += n;
    }
    float averageWaitingTime = sum/ numberOfProcess;
   sum = 0;
```

```
for(int n :turnAroundTime){  sum += n;
   }
   float averageTurnAroundTime = sum/ numberOfProcess;
System.out.println("SJF (with no preemption) Schedulling Algorithm:");
       System.out.format("%20s%20s%20s%20s%20s%20s\n",
"ProcessId", "BurstTime", "ArrivalTime", "FinishTime", "TurnAroundTime", "WaitingTime");
         for(int i = 0;i < numberOfProcess;<math>i++){
          System.out.format("%20s%20d%20d%20d%20d%20d\n", pid[i], bt[i],
at[i],finishTime[i],turnAroundTime[i], waitingTime[i]);
              }
       System.out.format("%80s%20f%20f\n","Average", averageTurnAroundTime,
averageWaitingTime);
     }
public static void main(String[] args){
  Scanner input= new Scanner(System.in);
P2_SJF_YP obj = new P2_SJF_YP();
obj.getProcessData(input);
```

Name: Yash Anand Parab

Batch: B1

obj.shortestJobFirstNPAlgorithm();
}

Input

```
C:\USCSP301_USCSP303_OS_B1\Prac_02_YashParab_27_07_2021>javac P2_SJF_YP.java

C:\USCSP301_USCSP303_OS_B1\Prac_02_YashParab_27_07_2021>java P2_SJF_YP

Enter the number of Process for scheduling: 5

Enteer the BurstTime for process - 0 : 6

Enteer the BurstTime for process - 1 : 3

Enteer the BurstTime for process - 2 : 8

Enteer the BurstTime for process - 3 : 4

Enteer the BurstTime for process - 4 : 3
```

Output:-

```
        SJF (with no preemption) Schedulling Algorithm :
        ProcessId
        BurstTime
        ArrivalTime
        FinishTime
        TurnAroundTime
        WaitingTime

        P1
        3
        0
        3
        3
        0

        P4
        3
        0
        6
        6
        3

        P3
        4
        0
        10
        10
        6

        P0
        6
        0
        16
        16
        10

        P2
        8
        0
        24
        24
        24
        16

        Average
        11.800000
        7.0000000
```

Sample output 01

Sample output 02

Sample output 03

Sample output 04