B. E. Metallurgical and Material Engineering, 4thYr. 2nd Sem. Examination, 2018 X- Ray and Electron microscopy

Time: Three hours Full Marks: 100

Answer any five questions from the following. (Answer all parts of a question sequentially in a common place)

- 1. a) Define a pole and trace of a pole.
 - b) Draw the standard projection of cubic crystals on (111) plane.

8+12

- 2. a) Explain the generation of Characteristic radiation. State Moseley's Law.
 - b) What is known as Fluroscent Radiation?
 - c) What is non ideal Diffraction? Derive Scherrer's Formula and calculate the particle size.

6+4+10

- 3. a) Suppose that a Ni Filter is required to produce an intensity ratio of CU K_α to Cu K_β of 100/1 in the filtered beam. Calculate the thickness of the filter and the transmission factor for CU K_α line [μ/ρ of Ni for Cu K_β radiation = 286 cm²/gm.].
 - b) Calculate the values of 20 and (hkl) for the first three lines (those of lowest 0 values) of the powder patterns of substances with the following structures, the incident radiation is $Cu K\alpha$.
 - i) simple cubic ($a = 3A^{\circ}$)
 - ii) simple face centred cubic (a=3 A°)
 - iii) simple tetragonal (a= 2A°, c=3A°)

20

- 4. a) What is Reciprocal Lattice. State its properties and prove them.
 - b) Explain Ewald's construction.

20

5. Name the factors which affect the relative intensity of the diffraction line of a powder pattern.	
b) Discuss how Lorentz factor and multiplicity factor affect the relative Intensity?	
or	
b) Discuss how Polarization factor and temperature factor affect the relative Intensity?	
	20
6. Describe the following applications of X-Rays. a) Phase diagram determination for binary alloys. b) Retained austenite estimation	
or	20
a) Derive an extrapolation function for precise lattice parameter determination.	
b) With the help of XRD how do you identify the phases?	20