CS1 Week 4 Annotaated

Time response, Stability

Recap Last week

Which properties do linear systems need to fulfil?

- A. Linearity
- **B.** Superposition
- C. Homogeneity
- **D.** Additivity

Which properties do linear systems need to fulfil?

A. Linearity

B. Superposition

C. Homogeneity

D. Additivity

$$\Sigma(\alpha u_1 + \beta u_2) = \alpha \Sigma u_1 + \beta \Sigma u_2 = \alpha y_1 + \beta y_2$$

$$\Sigma(ku) = k\Sigma u$$

$$\Sigma(\mathbf{u}_1 + \mathbf{u}_2) = \Sigma \mathbf{u}_1 + \Sigma \mathbf{u}_2$$

Classify the following system

$$x_1(t) = \sin(t) - 5$$

$$x_2(t) = \cos(t)$$

$$y(t) = u(t) \left(x_1^2(t) + t \cdot x_2^2(t) \right)$$

A. Linear

C. Time invariant

B. Static

D. Causal

A system is **static (memoryless)** if its output at any time depends only on the input at that same time (current input).

A system is said to be **causal**, iff the future input doesn't affect the present output.

Classify the following system

$$x_1(t) = \sin(t) - 5$$

$$x_2(t) = \cos(t)$$

$$y(t) = u(t) \left(x_1^2(t) + t \cdot x_2^2(t) \right)$$

$$du_{\lambda}(x_{\lambda}^{2}+tx_{1}^{2})+\beta u_{2}(x_{\lambda}^{2}+tx_{1}^{2})$$

$$=dy_{\lambda}+\beta y_{2}$$

time varying

A. Linear

C. Time invariant

B. Static

D. Causal

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3} \ddot{\theta}(t) - \frac{1}{3} \Omega^2 \sin(\theta(t)) \cos(\theta(t)) + \frac{g}{2L} \sin(\theta(t)) = 0. \label{eq:theta_def}$$

Question 4 Choose the correct answer. (1 Point)

Which of the following is the correct state representation of the above system?

$$\begin{split} & \boxed{\mathbf{A}} \ \, \dot{x}(t) = \begin{bmatrix} x_2(t) \\ \frac{1}{3}\Omega^2 \sin x_1(t) \cos x_1(t) + \frac{3g}{2L} \sin x_1(t) \end{bmatrix} \ \, \boxed{\mathbf{C}} \ \, \dot{x}(t) = \begin{bmatrix} x_2(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix} \\ & \boxed{\mathbf{B}} \ \, \dot{x}(t) = \begin{bmatrix} x_2(t) \\ \frac{1}{3}\Omega^2 \sin x_1(t) \cos x_1(t) - \frac{g}{2L} \sin x_1(t) \end{bmatrix} \ \, \boxed{\mathbf{D}} \ \, \dot{x}(t) = \begin{bmatrix} x_1(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix} \end{split}$$

Quiz 3 (Spring 2019 Q4,5,6,7) state-space: x = 4x,u)

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3} \ddot{\theta}(t) - \frac{1}{3} \Omega^2 \sin(\theta(t)) \cos(\theta(t)) + \frac{g}{2L} \sin(\theta(t)) = 0. \label{eq:theta_def}$$

Question 4 Choose the correct answer. (1 Point)

Which of the following is the correct state representation of the above system?

$$\hat{B} = \Omega^2 \sin \theta \cos \theta - \frac{39}{21} \sin \theta \qquad \text{if } \hat{B} = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3} \ddot{\theta}(t) - \frac{1}{3} \Omega^2 \sin(\theta(t)) \cos(\theta(t)) + \frac{g}{2L} \sin(\theta(t)) = 0. \label{eq:theta_def}$$

Question 5 Mark all correct statements. (2 Points) Which of the following points x_e are equilibrium points of the system?

$$egin{aligned} \mathbf{B} \ x_e = egin{bmatrix} c \\ 0 \end{bmatrix}, \quad orall c \in \mathbb{R}. \end{aligned}$$

$$\boxed{\mathbf{C}} \ x_e = \begin{bmatrix} \arccos\left(\frac{2\Omega^2 g}{2L}\right) \\ 1 \end{bmatrix}.$$

$$\boxed{\mathbb{D}} \ x_e = \begin{bmatrix} \arccos\left(\frac{3g}{2\Omega^2L}\right) + 2\pi \\ 0 \end{bmatrix}.$$

$$E x_e = \begin{bmatrix} 0 \\ 3\pi \end{bmatrix}$$

$$\boxed{\mathbf{F}} \ x_e = \begin{bmatrix} 3\pi \\ 0 \end{bmatrix}$$

$$\overline{G} x_e = \begin{bmatrix} 0 \\ \frac{\pi}{2} \end{bmatrix}.$$

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix} \Rightarrow \bigcirc \longrightarrow \times_{\bigcirc} = \bigcirc$$

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3}\ddot{\theta}(t) - \frac{1}{3}\Omega^2\sin(\theta(t))\cos(\theta(t)) + \frac{g}{2L}\sin(\theta(t)) = 0.$$

Mark all correct statements. (2 Points) Which of the following points x_e are equilibrium points of the system?

$$\boxed{\mathbf{A}} \ x_e = \begin{bmatrix} \arccos\left(\frac{3g}{2\Omega^2L}\right) + 3\pi \\ 0 \end{bmatrix}.$$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} x_e = \begin{bmatrix} 2n^2 L \\ 0 \end{bmatrix}$$

$$\boxed{\mathbf{B}} \ x_e = \begin{bmatrix} c \\ 0 \end{bmatrix}, \quad \forall c \in \mathbb{R}.$$

$$\boxed{\mathbf{C}} \ x_e = \begin{bmatrix} \arccos\left(\frac{3\Omega^2 g}{2L}\right) \\ 1 \end{bmatrix}.$$

$$x_e = \begin{bmatrix} \arccos\left(\frac{3g}{2\Omega^2L}\right) + 2\pi \\ 0 \end{bmatrix}$$

$$\boxed{\mathbf{E}} \ x_e = \begin{bmatrix} 0 \\ 3\pi \end{bmatrix}.$$

$$x_e = \begin{bmatrix} 3\pi \\ 0 \end{bmatrix}$$
.

$$\boxed{\mathbf{G}} \ x_e = \begin{bmatrix} 0 \\ \frac{\pi}{2} \end{bmatrix}.$$

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix} \rightarrow X_{\overline{L}} = 0$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{$$

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3}\ddot{\theta}(t) - \frac{1}{3}\Omega^2\sin(\theta(t))\cos(\theta(t)) + \frac{g}{2L}\sin(\theta(t)) = 0.$$

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} \end{bmatrix} \quad \dot{x} = \dot{x}$$

Question 6 Choose the correct answer. (1 Point)

Consider the equilibrium point $x_e = \begin{bmatrix} -5\pi \\ 0 \end{bmatrix}$. Linearize the system. Which matrix A describes the linearized dynamics?

$$\boxed{\mathbf{A}} \ A = \begin{bmatrix} 0 & 1 \\ \Omega^2 + \frac{3g}{2L} & 0 \end{bmatrix}.$$

$$\boxed{\mathbf{B}} \ A = \begin{bmatrix} 0 & 1 \\ -\Omega^2 + \frac{3g}{2L} & 0 \end{bmatrix}.$$

C Since the given equilibrium is not stable,

a matrix A does not exist.

11

$$\boxed{\mathbb{D}} \ A = \begin{bmatrix} 1 & 0 \\ \Omega^2 - \frac{3g}{2L} & 0 \end{bmatrix}.$$

$$\boxed{\mathbf{E}} \ A = \begin{bmatrix} 0 & 1\\ \Omega^2 - \frac{3g}{2L} & 0 \end{bmatrix}$$

$$Kissan Varatharajan - n.ethz.ch/~kvaratharaja$$

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3} \ddot{\theta}(t) - \frac{1}{3} \Omega^2 \sin(\theta(t)) \cos(\theta(t)) + \frac{g}{2L} \sin(\theta(t)) = 0.$$

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix}$$

Question 6 Choose the correct answer. (1 Point)

Consider the equilibrium point $x_e = \begin{bmatrix} -5\pi \\ 0 \end{bmatrix}$. Linearize the system. Which matrix A describes the linearized dynamics?

$$A = \begin{bmatrix} 0 & 1 \\ \Omega^2 + \frac{3g}{2L} & 0 \end{bmatrix}.$$

$$\boxed{\mathbf{B}} \ A = \begin{bmatrix} 0 & 1 \\ -\Omega^2 + \frac{3g}{2L} & 0 \end{bmatrix}.$$

C Since the given equilibrium is not stable,

a matrix A does not exist.

$$\boxed{\mathbb{D}} \ A = \begin{bmatrix} 1 & 0 \\ \Omega^2 - \frac{3g}{2L} & 0 \end{bmatrix}.$$

$$\boxed{\mathbf{E}} \ A = \begin{bmatrix} 0 & 1\\ \Omega^2 - \frac{3g}{2L} & 0 \end{bmatrix}.$$

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3} \ddot{\theta}(t) - \frac{1}{3} \Omega^2 \sin(\theta(t)) \cos(\theta(t)) + \frac{g}{2L} \sin(\theta(t)) = 0.$$

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix}$$

Question 7 Mark all correct statements. (2 Points)

Which of the following statements about the system are true?

A The system is dynamic.

B The system is time-varying.

- C The dimension of the system is 2.
- D The dimension of the system can be 1.

Box 1: Questions 4, 5, 6, 7

You are given the mechanical system depicted below with the following equation of motion:

$$\frac{1}{3} \ddot{\theta}(t) - \frac{1}{3} \Omega^2 \sin(\theta(t)) \cos(\theta(t)) + \frac{g}{2L} \sin(\theta(t)) = 0.$$

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ \Omega^2 \sin x_1(t) \cos x_1(t) - \frac{3g}{2L} \sin x_1(t) \end{bmatrix}$$

Question 7 Mark all correct statements. (2 Points)

Which of the following statements about the system are true?

The system is dynamic.

B The system is time-varying.

- The dimension of the system is 2.
- D The dimension of the system can be 1.

Course Schedule

	Subject	Week
Modeling -	Introduction, Control Architectures, Motivation	1
	Modeling, Model examples	2
	System properties, Linearization	3
Analysis —	Analysis: Time response, Stability	4
	Transfer functions 1: Definition and properties	5
	Transfer functions 2: Poles and Zeros	6
	Proportional feedback control, Root Locus	7
	Time-Domain specifications, PID control, Computer implementation	8
	Frequency response, Bode plots	9
L	The Nyquist condition, Time delays	10
Synthesis -	Frequency-domain Specifications, Dynamic Compensation, Loop Shaping	11
	Time delays, Successive loop closure, Nonlinearities	12
	Describing functions	13
	Intro to Uncertainty and Robustness	14

Today

- 1. <u>Time response</u>
- 2. Stability

1. Time response

Motivation

system modeling

Plant P

Linearization

state-space representation

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

Controller C

Synthesis

- Recall modeling from week 2
- Recall linearization from week 3
- Today: Analysis
- End goal is a robust system

Analysis

Time response

$$u = u_a + u_b$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$y = y_a + y_b$$

- Since we deal with linearized systems, input & output can be split into two parts
- → To know the behavior of a system for all time t, we split input into
- $u = u_{past} + u_{future}$, this is called the *time response* of a system
- Additionally, since we deal with real systems, causality holds (i.e. current output only depends on past and current inputs)
- \rightarrow effects of u_{past} can be summarized by $x(t^*)$ (state at any given time t^*)
- Usually, time invariance holds \rightarrow reference time doesn't matter, we pick $t^* = 0$
- → this leads to Initial Condition response

Initial and Forced Response

 As said, since the system is linear, we take advantage of linearity and consider two separate cases:

Initial-Conditions response:

No external inputs

$$y_{IC} - u_{IC}(t) = 0, t \ge 0, x_{IC}(0) = x_0$$

Forced response:

due to external inputs or disturbances

$$y_F - u_F(t) = u(t), t \ge 0, x_F(0) = 0$$

After solving each case separately, we just add y_{IC} and y_F to get the complete output. This separation allows us to analyze the effects of non-zero initial conditions and non-zero inputs separately.

Initial and Forced Response Solution

1. Initial Condition

$$x_{IC}(0) = x_0, u_{IC}(t) = 0, t \ge 0$$

2. Forced Response

$$u_F(t) = u(t), x_F(0) = 0$$

Solve

$$\dot{x}(t) = Ax$$

Solve

$$\dot{x}(t) = Ax + Bu$$

Solution:

$$x_{IC}(t) = e^{At}x_0$$

Solution:

$$x_F(t) = \int_0^t e^{A(t-\tau)} B u(\tau) d\tau$$

$$y_{IC}(t) = Ce^{At}x_0$$

initial response

$$y_F(t) = C \int_0^t e^{A(t-\tau)} B u(\tau) d\tau + Du(t)$$

todav

$$y = y_{IC} + y_F = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}B u(\tau)d\tau + Du$$

forced response

Time Response of an LTI system

feedthrough

Matrix Exponential

If we take a closer look, we see that some terms contain the matrix exponential e^{At} .

But how do we compute it? Throwback to Linear Algebra II...

The matrix exponential can be defined through a Taylor-series:

$$e^{At} = \sum_{n=0}^{\infty} \frac{1}{n!} (At)^n = I + At + \frac{1}{2} (At)^2 + \dots + \frac{1}{n} (At)^n$$

For some matrices we can avoid infinitely many calculations and simplify calculations:

$$\rightarrow$$
 Diagonal: $\exp\left(\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} t\right) = \begin{bmatrix} \exp(\lambda_1 t) & 0 \\ 0 & \exp(\lambda_2 t) \end{bmatrix}$

$$\rightarrow$$
 Jordan Form: $\exp\left(\begin{bmatrix}\lambda & 1\\ 0 & \lambda\end{bmatrix}t\right) = \begin{bmatrix}\exp(\lambda t) & t\exp(\lambda t)\\ 0 & \exp(\lambda t)\end{bmatrix}$

Where λ_i are the eigenvalues of the respective matrix

Coordinate Transformation (LinAlg Recap)

To facilitate calculations, we can therefore do a coordinate transformation, $x = T\tilde{x}$ such that is e^{At} easier to compute.

$$\begin{bmatrix}
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\end{bmatrix}
\xrightarrow{x = T\tilde{x}}
\begin{bmatrix}
T\dot{\tilde{x}}(t) = AT\tilde{x}(t) + Bu(t) \\
y(t) = CT\tilde{x}(t) + Du(t)
\end{bmatrix}$$

$$\begin{bmatrix}
\dot{x}(t) = (T^{-1}AT)\tilde{x}(t) + (T^{-1}B)u(t) \\
y(t) = CT\tilde{x}(t) + Du(t)
\end{bmatrix}$$

$$\begin{bmatrix}
\dot{x}(t) = \tilde{A}\tilde{x}(t) + \tilde{B}u(t) \\
y(t) = \tilde{C}\tilde{x}(t) + \tilde{D}u(t)
\end{bmatrix}$$

For a matrix $A \in \mathbb{R}^{n \times n}$ with n eigenvalues $\lambda_1, ..., \lambda_n$ and n <u>linearly independent</u> eigenvectors $v_1, ..., v_n$ one can do a coordinate transformation such that $\tilde{A} = T^{-1}AT = diag(\lambda_1, ..., \lambda_n)$ where \tilde{A} is a diagonal matrix with the eigenvalues $\lambda_1, ..., \lambda_n$ on the diagonal and T a transformation matrix containing the eigenvectors as $v_1, ..., v_n$ columns.

Note: the time response remains <u>unchanged</u>. Through the transformation, we simple use a different realization of the system, i.e. a different state vector.

I.C Response: Real Eigenvalues

Let us know take a closer look at systems where A is diagonal. More specific we will look at the initial condition response, i.e. u(t) = 0

$$\rightarrow$$
 For a diagonal, real matrix: $A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, \lambda_i \in R$ $y(t) = Ce^{At}x_0$

where we can write out all terms and simplify for A being diagonal.

$$y(t) = \begin{bmatrix} c_1 c_2 \end{bmatrix} \begin{bmatrix} \exp(\lambda_1 t) & 0 \\ 0 & \exp(\lambda_2 t) \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$$
$$y(t) = c_1 e^{\lambda_1 t} x_1(0) + c_2 e^{\lambda_2 t} x_2(0)$$

So for diagonal, real matrices the initial condition response is the linear combination of two t exponentials.

I.C Response: Complex Eigenvalues

 \rightarrow For a diagonal, complex matrix: $A = \begin{bmatrix} \sigma + j\omega & 0 \\ 0 & \sigma - j\omega \end{bmatrix}$ $y(t) = Ce^{At}x_0$

where we can write out all terms and simplify for A being diagonal.

$$y = c_1 e^{\sigma t} e^{j\omega t} x_1(0) + c_2 e^{\sigma t} e^{-j\omega t} x_2(0)$$

$$= e^{\sigma t} \left(c_1 e^{j\omega t} x_1(0) + c_2 e^{-j\omega t} x_2(0) \right)$$

$$= e^{\sigma t} (\alpha_1 \sin(\omega t) + \alpha_2 \cos(\omega t))$$

$$= \alpha e^{\sigma t} \sin(\omega t + \phi)$$

- \rightarrow if signal decays or not depends on $Re(\lambda)!$
- → complex poles generate new frequencies
- → oscillations in output without any in input

I.C Response: Repeated Eigenvalues

- If repeated eigenvalues appear (where algebraic and geometric multiplicity do not match), we cannot diagonalize the matrix
- We can still bring into Jordan form
- For a 2nd order system, the initial condition response would be:

$$y(t) = Ce^{At}x_0 = C\exp\left(\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}t\right)x_0 = \begin{bmatrix} c_1 & c_2 \end{bmatrix}\begin{bmatrix} \exp(\lambda t) & t\exp(\lambda t) \\ 0 & \exp(\lambda t) \end{bmatrix}x_0 = c_1 e^{\lambda t}x_{0,1} + c_2 te^{\lambda t}x_{0,1}$$

- In general: the initial condition response is a linear combination of terms of the form $\exp(\lambda t)$ and $t^m \exp(\lambda t)$
- Often, repeated eigenvalues occur at $\lambda = 0$:

$$y(t) = c_1 x_{1,0} + c_1 t x_{1,0}$$

Time Response Overview

• Any matrix A can be transformed into a diagonal or Jordan matrix

The response of a system will always be a linear combination of terms in the following form:

• Real eigenvalues: $e^{\lambda_{\mathbf{i}}\mathsf{t}}$

• Complex conjugate eigenvalues: $e^{\sigma t} \sin(\omega t + \phi)$

• Repeated real eigenvalues: $te^{\lambda_i t}$

• The input and its derivatives: u(t), $\dot{u}(t)$, ...

Important takeaway:

The stability of a system can be determined by the real part of the eigenvalues of A

$$\delta(x-a) := \begin{cases} \infty & x = a \\ 0 & x \neq a \end{cases} \quad a \in [0, \infty) \quad \delta \notin \mathcal{H}$$
$$\int_0^\infty \delta(x-a) \, dx = 1 \qquad \int_0^\infty g(x) \delta(x-a) \, dx = g(a)$$

What is the time response of a **first order system** with $u(t) = \delta(t)$, d = 0, $x_0 \neq 0$?

$$y = y_{IC} + y_F = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du$$

$$Y = Ce^{At}x_0 + Cb\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau = Ce^{At}x_0 + Cbe^{At}$$

$$= Ce^{At}(x_0 + b)$$

A.
$$y(t) = Ce^{at}x_0 - \frac{cb}{a}(1 - e^{-at})$$

C. You can't apply impulse as input

B.
$$y(t) = Ce^{at}(x_0 + b)$$

D. quantum state detected

$$\delta(x-a) := \begin{cases} \infty & x = a \\ 0 & x \neq a \end{cases} \quad a \in [0, \infty) \quad \delta \notin \mathcal{H}$$
$$\int_0^\infty \delta(x-a) \, dx = 1 \qquad \int_0^\infty g(x) \delta(x-a) \, dx = g(a)$$

What is the time response of a **first order system** with $u(t) = \delta(t)$, d = 0, $x_0 \neq 0$?

A.
$$y(t) = Ce^{at}x_0 - \frac{cb}{a}(1 - e^{-at})$$

C. You can't apply impulse as input

B.
$$y(t) = Ce^{at}(x_0 + b)$$

D. quantum state detected

2. Stability

Stability

We observed that the time response is linked to *exponential terms*.

$$y(t) = c_1 e^{\lambda_1 t} x_1(0) + c_2 e^{\lambda_2 t} x_2(0)$$
$$y(t) = \alpha e^{\sigma t} \sin(\omega t + \phi)$$

The growth of these terms is dictated by the real part of the eigenvalues of A. We can see that if the eigenvalues λ have a positive real part, the output will grow exponentially over time, i.e. become unstable. $(y \rightarrow \infty)$

But what does stability really mean? There are a few ways to classify stability...

Stability Conditions

A linearized, diagonalized system with A, B, C, D matrices is called

- Lyapunov stable if $Re(\lambda_i) \leq 0 \ \forall i$
- **Asymptotically** stable if $Re(\lambda_i) < 0 \ \forall i$
- Unstable if $\exists Re(\lambda_i) > 0 \ \forall i$

A linearized system with non-diagonizable A matrix is called

• **Lyapunov stable** if $Re(\lambda_i) \le 0 \ \forall i$ and there are no repeated eigenvalues with $Re(\lambda_i) = 0$

For minimal LTI systems:

Asymptotic stability = BIBO stability

Bounded Input Bounded Output (BIBO) Stability: for every bounded input, the output will remain bounded

Old Exam Question (Summer 2018)

Question 7 Choose the correct answer. (1 Point)

Consider the two systems with output signal y(t) and input signal u(t), described below

- 1. $y(t) = \sin(t)u(t)$
- 2. $y(t) = \int_0^t \sin(\tau) u(\tau) d\tau$

Which system is BIBO stable?

A. None

A. System 2

B. Both

D. System 1

Old Exam Question (Summer 2018)

Question 7 Choose the correct answer. (1 Point)

Consider the two systems with output signal y(t) and input signal u(t), described below

1.
$$y(t) = \sin(t)u(t)$$

2.
$$y(t) = \int_0^t \sin(\tau) u(\tau) d\tau$$

Which system is BIBO stable?

A. None

A. System 2

B. Both

D. System 1

Questions?

Feedback?

Too fast? Too slow? Less theory, more exercises?

I would appreciate your feedback. Please let me know.

https://docs.google.com/forms/d/e/1FAIpQLSdHI0kjWo63aNzDkAV0cnmQadCAj5L0 D7v7aSh0BK7BBdEgpA/viewform?usp=header

