بسم الله الرحمن الرحيم جامعة دنقلا كلية علوم الحاسوب والتنمية البشرية

نظم تشغيل

Operating System

Lecture (6)

جدولة وحدة المعالجة المركزية

CPU Scheduling

جدولة وحدة المعالجة المركزية

جدولة وحدة المعالجة المركزية نقصد بها عملية اختيار عملية من العمليات الموجودة في الذاكرة والتي تنتظر التنفيذ . وتتم بواسطة المجدول قصير المدى (Short-term scheduler) أو مجدول وحدة المحالجة المركزية (CPU Scheduler).

المرسل :Dispatcher

هو الذي يقوم بجلب العملية التي تم اختيارها بواسطة مجدول العمليات . في حالة إيقاف عملية موجودة داخل CPU وتشغيل عملية أخري تسمي عملية الجدولة Preemptive (جدولة اجهاضية) . أما في حالة تنفيذ العمليات علي التوالي تسمي عملية الجدولة Nonpreemptive (جدولة غير اجهاضية).

خوارزميات الجدولة:

1- خوارزمية (FCFS) First-Come First-Served (FCFS)

Burst Time	<u>Process</u>	فـي خِوارزميـة (FCFS) (القـادم أوك∖
24	P_1	يخدم أولا) يتم تنفيذ العمليات علي
3	P_2	حسب زمن وصولها فالعمليات التي
3	P_3	تصل أولًا تنفذ أولًا.

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$

Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

$$P_{2}, P_{3}, P_{1}$$

The Gantt chart for the schedule is:

Waiting time for $P_1 = 6$; $P_2 = 0$, $P_3 = 3$

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect short process behind long process

2- خوارزمية (SJF) Short Job First

في خوارزمية (SJF) تنفذ العمليات ذات الـزمن الأقل أولا وهـي من العمليات التي لا تسمح بالمقاطعة Nonpreemptiveويتم تنفيذ أي عملية حتى انتهائها.

Example of Non-Preemptive SJF

<u>Process</u>	<u>Arrival Time</u>	Burst Time
$P_{\mathcal{I}}$	0.0	7
P_2	2.0	4
P_3	4.0	1
P_{4}	5.0	4

SJF (non-preemptive)

Example of Preemptive SJF

Process	Arrival Time	Burst Time	
P_{1}	0.0	7	
P_2	2.0	4	
P_3	4.0	1	
P_{4}	5.0	4	

SJF (preemptive)

3-خوارزمية راوند روبن Round Robin

كل عملية يخصص لها زمن محدد في CPU إذا لم تنتهي فيه يتم تحويلها إلى الصف الجاهز وإعطاء فرصة لعملية أخري.

Example of RR with Time Quantum = 20

Burst Time	
53	
17	
68	
24	

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Priority خوارزمية

كل عملية لها درجة أولوية بحيث يتم تنفيذ العمليات ذات الأولوية الأعلى أولا. ولمنع استمرار عملية واحدة لفترة طويلة يقوم المجدول بتقليل أهميتها مع كل مقاطعة من الزمن .

بتقليل أهميتها مع كل مقاطعة من الزمن . تعاني هذه الخوارزمية من مشكلة Starvation أي التهميش للعمليات التى لها درجة أولوية اقل .

END