범주형자료분석팀

2팀 박지성 박지민 서희나 윤경선 이지윤

INDEX

- 1. 혼동행렬
- 2. ROC 곡선
 - 3. 샘플링
 - 4. 인코딩

1 혼동행렬

혼동행렬(Confusion Matrix)이란?

분류 모델의 성능을 평가하는 지표

모델에서 훈련을 통해 <mark>예측한 값(Ŷ)이 실제값(Y)</mark>을 얼마나 정확히 예측하였는지 보여주는 행렬

		관측값 (Y)		
		Y = 1	Y = 0	
예측값 (Ŷ)	Ŷ = 1	TP	FP	
	$\widehat{Y} = 0$	FN	TN ;	

T(True)/ F(False): 실제 값과 예측 값의 일치 여부

P(Positive)/ N(Negative): 모델의 긍정 혹은 부정 예측 여부

1 혼동행렬

② 정밀도 (Precision/ PVV/ Positive Predictive Value)

$$Precision = \frac{TP}{TP + FP}$$

긍정으로 예측한 것 중 실제로도 긍정인 것의 비율

1에 가까울수록 성능이 좋다고 판단

FP가 치명적인 경우에 사용

Ex. 오염된 식수(부정)를 위생적이다고 판단(긍정)한다는 것이 위생적인 식수를 오염으로 판단하는 것보다 더 위험

		관측값(Y)		
		Y = 1	Y = 0	
예측값(Ŷ)	Ŷ = 1	TP	FP	
	$\widehat{Y} = 0$	FN	TN	

1 혼동행렬

⑥ F1-Score | 조화평균

큰 값(b)에 <mark>패널티를 주어</mark> 작은 값(a)에 가까운 평균을 산출

→ 조화평균을 이용하는 F1-Score를 불균형 데이터에 적용한다면

관측값이 많은 클래스에 패널티를 부여

즉, 관측값이 많은 클래스에 대한 의존성 감소

보다 정확하게 모델의 성능 파악 가능

혼동행렬

6 F1-Score

정밀도와 민감도는 상충관계(Trade-off)!

정밀도(Precision)와 민감도(Sensitivity) 중 하나만

1에 가깝다고 좋은 성능을 지닌다고 판단 불가

Precision과 Sensitivity를 모두 반영한

F1-score를 사용하여 모델의 성능을 파악해야 함

임계값 감소 > P로 예측하는 값 증가 > FN 감소 FP증가 F1-Score도 1에 가까울수록 해당 모델의 성능이 우수하다고 판단 민감도 증가, 정밀도 감소

1 혼동행렬

Example | F1-Score와 MCC

F1-Score가 MCC보다

안 좋은 평가지표라는 의미가 아니다!

	관측값(Y)		1		관측값 (Y)		
	Y = 1	Y = 0				Y = 1	Y = 0
예측값 Ŷ = 1		4	mi = 1	예측값	Ŷ = 1	1	3
/F. 분석의 목적이 <mark>클래</mark>	스에 내안 3	균영식인	병가 	(^)	-Ŷ=-O	4	92-

혼동행렬의 모든 요소를 반영하는 MCC를 사용

F1 - Score: 왼쪽 0.96 / 오른쪽 0.22 로 상이한 결과

IF. 희귀질환처럼 연구 대상이지만 관측치가 정다면 이하 결과!

해당 대상이 존재하는 경우를 Positive로 두고 F1-Score를 사용

ROC 곡선 (Receiver Operating Characteristic Curve)이란?

모든 cut-off point에 대하여 재현율(x)를 1-특이도(y)의 함수로 나타낸 곡선

모든 cut-off point에 대하여 confusion matrix를 구하고 이를 통해 구현한 '재현율'과 '1-특이도' 값을 2차원 상의 점으로 찍어 연결한 상태

2 ROC 곡선

ROC 곡선 그리기

X축은 FPR Y축은 TPR 값으로 ROC 곡선 그리기

AUC (Area Under the Curve)

완벽하게 예측

(과적합 의심)

✓ AUC = 0.75

80%이상

성능 좋음

✓ AUC =0.5

50% 예측

무작위 예측

✓ AUC =0

100% 반대로 예측

언더 샘플링의 종류

2 Tomek Links Method

앞서 선택한 두 점간 거리가 주위에 있는 다른 클래스의 데이터들과 연결한 거리보다 짧다면, 두 점 간 Tomek Link가 있다고 말함 (초록색 동그라미로 강조)

3 샘플링

오버 샘플링의 종류

② SMOTE (Synethetic Minority Over-sampling Method)

① 에서 선택한 하나의 데이터에서 ② 에서 선택한 K개의 데이터 사이에 직선을 그리고, 그 직선 상 가상의 소수 클래스 데이터를 생성

4 인코딩

Ordinal Encoding

- ✓ 순서형 자료가 주어졌을 때 사용
- ✓ 순서가 있는 각 수준에 대응하는 점수를 할당하는 방식
 - ✓ 각 수준에 할당된 점수들 간 순서와 연관성이 존재

점수	
1	
2	
3	
4	1
5	<u>-</u>
	1 2 3 4

1부터 시작하여 순서가 있도록 수치를 할당

4 인코딩

Target Encoding

One-Hot

Encoding

Label

Encoding

Ordinal

Encoding

각 수준을 구분할 뿐, 값 자체에 특별한 의미 X

Target Encoding

- ✓ 각 수준을 구분
- ✓ 설명변수 X와 반응변수 Y 간 수치적 관계 반영하여 인코딩

4 인코딩

Ordered Target Encoding (CatBoost Encoding)

현재 행 이전의 값들 중 같은 수준에 속한 행들의 평균을 구해 이를 점수로 할당

Mean Encoding과 비교해	보았을 때	Mean Encoding	Ordered Target Encoding
168 경영		172	169.5
각 수준에 더 다양한 점	子才 _{長계}	166	169.5
할당되었음을 알 수 9	있음 경제	171.66	169.5
156		166	174
		172	168
163		166	165
과적합의 정도나		171.66	165
170		171.66	172.5
가능성이 낮아짐		172	174
		166	164.33