cholesky factorization theorem

first, block multiplication.

$$AB = \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix} \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 4 & 1 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & 1 \begin{bmatrix} 4 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 2 \end{bmatrix} 2 + \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 4 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 13 & 7 & 9 \\ 10 & 3 & 7 \\ 18 & 12 & 12 \end{bmatrix}.$$

theorem 14. if A_{nxn} is symmetric positive definite, then there exists an upper triangular R_{nxn} such that $A = R^T R$.

$$A = \begin{bmatrix} a & b^{T} \\ b & C \end{bmatrix} \implies \begin{cases} \text{for } k = 1, 2, ..., n \\ \text{if } A_{kk} < 0, \text{stop, end} \\ R_{kk} = \sqrt{A_{kk}} \\ u^{T} = \frac{1}{R_{kk}} A_{k, k+1:n} \\ R_{k, k+1:n} = u^{T} \\ A_{k+1:n, k+1:n} = A_{k+1:n, k+1:n} - uu^{T} \end{cases}$$
end

then two back-substitutions: $R^{T}c = b$, Rx = c.