## Оглавление

| 1                                    | Вещественные числа       3         1.1 Супремумы и инфимумы                                                                                                                                                                                                                                                                                                                                                   | <b>;</b> |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Лекция 2: Сечения <sub>21.09.3</sub> |                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|                                      | <b>Теорема 1.</b> Пусть $\alpha, \beta$ — сечения. Тогда $\exists ! \ \gamma$ — сечение : $\alpha + \gamma = \beta$                                                                                                                                                                                                                                                                                           |          |
|                                      | <b>Доказательство.</b> Пусть имеем $\gamma_1 \neq \gamma_2$ , удовлетворяющие условию. Тогда: $\alpha + \gamma_1 = \beta = \alpha + \gamma_2 \Rightarrow \gamma_1 = \gamma_2$ — противоречие. Положим $\gamma = \beta + (-\alpha)$ . Тогда в силу свойств сечений имеем: $\alpha + \gamma = \alpha + (\beta + (-\alpha)) = \alpha + ((-\alpha) + \beta) = (\alpha + (-\alpha)) + \beta = 0^* + \beta = \beta$ |          |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |          |

**Определение 1.** Сечение  $\gamma$ , построенное в предыдущей теореме обозначается через  $\beta-\alpha$ 

Определение 2. (Абсолютная величина) 
$$|a|=egin{cases} lpha,\ {
m если}\ lpha\geq 0^* \\ -lpha,\ {
m если}\ lpha<0^* \end{cases}$$

**Определение 3.** (Произведение) Пусть  $\alpha, \beta$  — сечения, причем  $\alpha \ge$ Тогда  $\alpha\beta=\{r\in\mathbb{Q}:r<0\lor r=pq,$  где  $p\in\alpha,q\in\beta\}$ 

Пример.  $\sqrt{2} \cdot \sqrt{2} = 2^*$ 

Теорема 2. (Любые 3 из них необоходимо доказать самостоятельно) Для любых сечений  $\alpha, \beta, \gamma$  имеем:

- 1.  $\alpha\beta = \beta\alpha$
- 2.  $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ 3.  $\alpha(\beta+\gamma) = \alpha\beta + \alpha\gamma$
- 4.  $\alpha 0^* = 0^*$

5. 
$$\alpha 1^* = \alpha$$

6. если 
$$\alpha < \beta$$
 и  $\gamma > 0^*$ , то  $\alpha \gamma < \beta \gamma$ 

7. если 
$$\alpha \neq 0^*$$
, то  $\exists \beta : \alpha \cdot \beta = 1^*, \beta = \frac{1^*}{\alpha}$ 

8. если 
$$\alpha \neq 0^*$$
, то  $\exists \beta, \gamma : \alpha \cdot \gamma = \beta, \gamma = \frac{\beta}{\alpha}$ 

#### Теорема 3. (Свойства рациональных сечений)

1. 
$$p^* + q^* = (p+q)^*$$

2. 
$$p^*q^* = (pq)^*$$

3. 
$$p^* < q^* \Leftrightarrow p < q$$

**Доказательство.** 1. Возьмем  $r \in (p+q)^* \Rightarrow r < p+q$ 

Положим h = p + q - r:

$$\begin{cases} p_1 = p - \frac{h}{2} \\ q_1 = q - \frac{h}{2} \end{cases} \Rightarrow \begin{cases} p_1$$

Теперь возьмем  $r \in p^* + q^* \Rightarrow r = p_1 + q_1$ :

$$\begin{cases} p_1 \in p^* \\ q_1 \in q^* \end{cases} \Rightarrow \begin{cases} p_1$$

$$\begin{cases} p^* + q^* \subset (p+q)^* \\ (p+q)^* \subset p^* + q^* \end{cases} \Rightarrow p^* + q^* = (p^* + q^*)$$

- 2. Для умножения доказательство аналогично.
- 3. Если p < q, то  $p \in q^*, p \notin p^* \Rightarrow p^* < q^*$  Если  $p^* < q^*$ , то  $\exists r \in \mathbb{Q}: r \in q^*, r \notin p^* \Rightarrow p \leq r < q \Rightarrow p < q$  Значит  $p^* < q^* \Leftrightarrow p < q$

**Теорема 4.** Пусть  $\alpha, \beta$  — сечения,  $\alpha < \beta$ . Тогда  $\exists \ r^*$  — рациональное сечение :  $\alpha < r^* < \beta$ 

Доказательство.  $\alpha < \beta \Rightarrow \exists \ p : p \in \beta, p \notin \alpha$ 

Выберем такое r>p, так, что  $r\in\beta.$  Поскольку  $r\in\beta, r\notin r^*,$  то  $r^*<\beta$ 

Поскольку  $p \in r^*, p \notin \alpha$ , то  $\alpha < r^*$ 

Оглавление 2

## Глава 1

# Вещественные числа

**Определение 4.** В дальнейшем сечения будут называться вещественными числами. Рациональные сечения будут отождествляться с рациональными числами. Все другие сечения будут называться иррациональными числами.

Таким образом, множество всех рациональных чисел оказывается подмножеством системы вещественных чисел.

**Теорема 5.** (Дедекинда) Пусть A и B — такие множества вещественных чисел, что:

- 1.  $A \cup B = \mathbb{R}$
- $A \cap B = \emptyset$
- 3.  $A, B \neq \emptyset, A \neq B$
- $4. \ \forall \alpha \in A, \beta \in B: a < b$

Тогда  $\exists ! \ \gamma \in \mathbb{R} : \alpha \leq \gamma \leq \beta \ \forall \alpha \in A, \forall \beta \in B$ 

Доказательство. 1. Докажем единственность.

Пусть  $\gamma_1,\gamma_2$  — два числа, причем  $\gamma_1<\gamma_2$ . Тогда  $\exists~\gamma_3:\gamma_1<\gamma_3<\gamma_2\Rightarrow\gamma_3\in A,\gamma_3\in B$  — противоречие. Значит  $\gamma_1=\gamma_2$ .

2. Проверим, является ли  $\gamma$  сечением.

$$\gamma = \{p \in \mathbb{Q} : \exists \alpha \in A : p \in \alpha\}$$

- I.  $\gamma \neq \varnothing$ , t.k.  $A \neq \varnothing$   $\gamma \neq \mathbb{Q}, \text{t.k. } \exists q \in \mathbb{Q}: q \notin B \Rightarrow q \notin \gamma$
- II. Пусть  $p_1 < p, p \in \gamma$ . Тогда  $\exists \alpha \in A : p_1 \in \alpha \Rightarrow p_1 \in \gamma$
- III. Пусть  $p\in\gamma$ . Тогда  $\exists\alpha\in A:p\in\alpha$ . Поскольку  $\alpha$  сечение, то  $\exists q\in\mathbb{Q}:q\in\alpha,q>p\Rightarrow q\in\gamma$

Ясно, что  $\alpha \leq \gamma \forall \alpha \in A$ .

Предположим, что  $\exists \beta \in B : \beta < \gamma$ . Тогда  $\exists q \in \mathbb{Q} : q \in \gamma, q \notin \beta \Rightarrow \exists \alpha \in A : q \in \alpha \Rightarrow \alpha > \beta$  — противоречие. Значит  $\gamma \leq \beta \ \forall \ \beta \in B$ .

### 1.1 Супремумы и инфимумы

Определение 5.  $E\subseteq\mathbb{R}, E\neq\varnothing$ Е - ограничено сверху, если  $\exists y\in\mathbb{R}: \forall x\in E: x\leq y$ 

Определение 6.  $G\subseteq\mathbb{R}, G\neq\varnothing$  G - ограничено снизу, если  $\exists y\in\mathbb{R}: \forall x\in E: x\geq y$ 

**Замечание.** Если множество ограничено сверху и снизу, оно называется ограниченным.

**Определение 7.** Пусть E ограничено сверху. Тогда y называется точной верхней границей (верхней гранью) E, если:

- 1. у верхняя граница множества Е.
- 2. если x < y, то x не является верхней границей множества E.

**Определение 8.** Пусть Е ограничено снизу. Тогда y называется точной нижней границей (нижней гранью) Е, если:

- 1. у нижняя граница множества Е.
- 2. если x > y, то х не является нижней границей множества E.

**Определение 9.** Точная верхняя граница —  $y \sup E$  Точная нижняя граница —  $y \inf E$ 

**Пример.** Е состоит из всех чисел  $\frac{1}{n}, n=1,2,3,\ldots$  Тогда множество ограничено, верхняя грань равна 1 и принадлежит множеству, а нижняя равна 0 и множеству не принадлежит.

**Теорема 6.** Пусть E ограничено сверху. Тогда  $\sup E$  существует.

Доказательство. Пусть есть множества:

$$\begin{split} A &= \{\alpha \in \mathbb{R} : \exists x \in E : x > \alpha\} \\ B &= \mathbb{R} \setminus A \\ \text{Тогда } A \cap B = \varnothing, A \cup B = \mathbb{R}, A \neq \varnothing, B \neq \varnothing \\ \begin{cases} \beta \in B \\ \alpha \in A \end{cases} \Rightarrow \begin{cases} \forall x \in E : x \leq \beta \\ \exists x_0 \in E : x_0 > \alpha \end{cases} \Rightarrow \alpha < \beta \end{split}$$

Ясно, что никакой элемент множества A не является верхней гра-

ницей множества E, а любой элемент множества B является верхней границей множества E. Поэтому достаточно доказать, что B содержит наименьшее число.

По теореме Дедекинда: 
$$\exists \gamma: \begin{cases} \alpha \leq \gamma \ \forall \alpha \in A \\ \beta \leq \gamma \ \forall \beta \in B \end{cases}$$

Предположим, что  $\gamma \in A$ . Тогда  $\exists x \in E : x > \gamma$ .

Возьмем  $\gamma_1: \gamma < \gamma_1 < x \Rightarrow \gamma_1 \in A$  — противоречие.

Значит 
$$\gamma \in B$$
.

#### **Теорема 7.** Пусть E ограничено снизу. Тогда $\inf E$ существует.

**Доказательство.** Доказательство тривиально и предоставляется читателю в качестве упражнения  $\bigcirc \smile \bigcirc$ .

**Теорема 8.** (Существование корня из вещественного числа)  $\forall x \in \mathbb{R}: x > 0, \forall n \in \mathbb{N}: n > 0 \exists ! \ y \in \mathbb{R}, y > 0: y^n = x, y = \sqrt[n]{x}$ 

Доказательство. 1. Единственность.

Пусть 
$$y_2>y_1:y_2^n=x=y_1^n\Rightarrow y_2^n-y_1^n=0$$
  $>0 >0 (y_2-y_1)\cdot (y_2^{n-1}+y_2^{n-2}\cdot y_1+\ldots+y_1^{n-1})=0$  — противоречие.

2. Существование.

Пусть 
$$E = \{t \in \mathbb{R} : t \ge 0, t^n < x\}$$
  
 $0 \in E \Rightarrow E \ne \emptyset$ 

Положим 
$$t_0 = 1 + x, t_0^n = (1 + x)^n$$

$$\sum_{k=1}^n C_n^k x^k = 1 + nx + \ldots > x \Rightarrow E$$
 — ограничено сверху.

Пусть  $y=\sup E$  (она существует по теореме о Существовании супремума).

• Допустим, что  $y^n < x$ . Возьмем h: 0 < h < 1 и  $h < \frac{x-y^n}{(1+y)^n-y^n}$  Тогла

$$(y+h)^n=\sum_{k=0}^nC_n^ky^{n-k}h^k=$$
 
$$=y^n+\sum_{k=1}^nC_n^ky^{n-k}h^k=$$
 
$$=y^n+h\sum_{k=1}^nC_n^ky^{n-k}h^{k-1}< y^n+h\sum_{k=1}^nC_n^ky^{n-k}=$$
 
$$=y^n+h\cdot((1+y)^n-y^n)<(y+1)^n-y^n< y^n+x-y^n=x$$
 — у не вехрняя граница.

• Допустим, что  $y^n>x$ . Возьмем  $k:0< k<1,\ k<\frac{y^n-x}{(1+y)^n-y^n}$  и k< y. Тогда аналогично с  $y^n< x$  получаем, что y-k- верхняя граница E, что противоречит тому, что  $y=\sup E.$ 

Значит  $y^n = x$ .