Probability Theory

Ikhan Choi

May 1, 2022

Contents

Ι	Pro	bability distributions	3	
1	Ran	dom variables	4	
	1.1	Sample spaces and distributions	4	
	1.2	Discrete probability distributions	4	
	1.3	Continuous probability distributions	4	
	1.4	Independence	4	
2	Con	ditional probablity	5	
3			6	
II	Liı	nit theorems	7	
4	Convergence of probability measures			
	4.1	Weak convergence in $\mathbb R$	8	
	4.2	Weak convergence in metric spaces	8	
	4.3	The space of probability measures	9	
	4.4	Characteristic functions	11	
	4.5	Moments	12	
5	Laws of large numbers			
	5.1	Weak and strong laws of large numbers	13	
	5.2	Random series	15	
	5.3	Renewal theory	15	
6	Cen	tral limit theorems	16	
	6.1	Central limit theorems	16	
	6.2	Berry-Esseen ineaulity	17	

	6.3	Stable laws	17
III	S 1	tochastic processes	18
7	Mar	tingales	19
	7.1	Submartingales	19
	7.2	Martingale convergence theorem	19
	7.3	Convergence in L^p and uniform integrability	19
	7.4	Optional stopping theorem	19
8	Mar	kov chains	20
9	Brov	wnian motion	21
	9.1	Kolomogorov extension	21
ΙV	Sı	cochastic calculus	23

Part I Probability distributions

Random variables

1.1 Sample spaces and distributions

sample space of an "experiment" random variables distributions expectation, moments, inequalities

equally likely outcomes coin toss dice roll ball drawing number permutation life time of a light bulb

joint distribution transformation of distributions distribution computations

1.2 Discrete probability distributions

1.3 Continuous probability distributions

1.4 Independence

- **1.1** (Dynkin's π - λ lemma). Let \mathcal{P} be a π -system and \mathcal{L} a λ -system respectively. Denote by $\ell(\mathcal{P})$ the smallest λ -system containing \mathcal{P} .
- (a) If $A \in \ell(\mathcal{P})$, then $\mathcal{G}_A := \{B : A \cap B \in \ell(\mathcal{P})\}$ is a λ -system.
- (b) $\ell(\mathcal{P})$ is a π -system.
- (c) If a λ -system is a π -system, then it is a σ -algebra.
- (d) If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
- **1.2** (Monotone class lemma).

Conditional probablity

2.1 (Monty Hall problem). Suppose you're on a game show, and you're given the choice of three doors *A*, *B*, and *C*. Behind one door is a car; behind the others, goats. You pick a door, say *A*, and the host, who knows what's behind the doors, opens another door, say *B*, which has a goat. He then says to you, "Do you want to pick door *C*?" Is it to your advantage to switch your choice?

Proof. Let A, B, and C be the events that a car is behind the doors A, B, and C, respectively. Let X be the event that the challenger picked A, and Y the event that the game host opened B. Note $\{A, B, C\}$ is a partition of the sample space Ω , and X is independent to A, B, and C. Then, P(A) = P(B) = P(C) = P(X) = 1/3, and

$$P(Y|X,A) = \frac{1}{2}, \quad P(Y|X,B) = 0, \quad P(Y|X,C) = 1.$$

Therefore,

$$P(C|X,Y) = \frac{P(X \cap Y \cap C)}{P(X \cap Y)}$$

$$= \frac{P(Y|X,C)P(X \cap C)}{P(Y|X,A)P(X \cap A) + P(Y|X,B)P(X \cap B) + P(Y|X,C)P(X \cap C)}$$

$$= \frac{1 \cdot \frac{1}{9}}{\frac{1}{2} \cdot \frac{1}{9} + 0 \cdot \frac{1}{9} + 1 \cdot \frac{1}{9}} = \frac{2}{3}.$$

Similarly, $P(A|X, Y) = \frac{1}{3}$ and P(B|X, Y) = 0.

Part II Limit theorems

Convergence of probability measures

4.1 Weak convergence in \mathbb{R}

- **4.1** (Portemanteau theorem). Let F_n and F be distribution functions $\mathbb{R} \to [0,1]$. We will define the *weak convergence* as follows: F_n converges weakly to F if $F_n(x) \to F(x)$ for every continuity point x of F(x).
- (a) $F_n(x) \to F(x)$ for all continuity points x of F.
- **4.2** (Skorokhod representation theorem).
- **4.3** (Continuous mapping theorem).
- 4.4 (Slutsky's theorem).
- **4.5** (Helly's selection theorem). (a) Monotonically increasing functions $F_n : \mathbb{R} \to [0,1]$ has a pointwise convergent subsequence.
- (b) If $(F_n)_n$ is tight, then

4.2 Weak convergence in metric spaces

- **4.6.** On metric spaces.
- (a) Every single measure is regular if *X* is perfectly normal.
- (b) Every single measure is tight if *X* is Polish.

4.7 (Portemanteau theorem). Let μ_n and μ be probability measures on a metric space S. We will define the *weak convergence* as follows: μ_n converges weakly to μ if

$$\int f \, \mathrm{d}\mu_n \to \int f \, \mathrm{d}\mu$$

for every $f \in C_b(S)$.

- (a) $\limsup_{n\to\infty} \mu_n(F) \le \mu(F)$ for all closed sets F.
- (b) $\liminf_{n\to\infty} \mu_n(G) \ge \mu(G)$ for all open sets G.
- 4.8 (Skorokhod representation theorem).
- 4.9 (Continuous mapping theorem).
- 4.10 (Slutsky's theorem).

4.3 The space of probability measures

4.11 (Local limit theorems). Suppose f_n and f are density functions.

- (a) If $f_n \to f$ a.s., then $f_n \to f$ in L^1 . (Scheffé's theorem)
- (b) $f_n \to f$ in L^1 if and only if in total variation.
- (c) If $f_n \to f$ in total variation, then $f_n \to f$ weakly.
- **4.12** (Vauge convergence). Let *S* be a locally compact Hausdorff space.
- (a) $\mu_n \to \mu$ vaguely if and only if $\int f d\mu_n \to \int f d\mu$ for all $f \in C_c(S)$.
- (b) $\mu_n \to \mu$ weakly if and only if vaguely.
- (c) $\delta_n \rightarrow 0$ vaguely but not weakly. (escaping to infinity)

 \square

4.13 (Lévy-Prokhorov metric). Let *S* be a metric space, and Prob(*S*) be the set of probability Borel measures on *S*. Define $\pi : \text{Prob}(S) \times \text{Prob}(S) \to [0, \infty)$ such that

$$\pi(\mu, \nu) := \inf\{\alpha > 0 : \mu(A) \le \nu(A^{\alpha}) + \alpha, \ \nu(A) \le \mu(A^{\alpha}) + \alpha, \ \forall A \in \mathcal{B}(S)\},\$$

where A^{α} is the α -neighborhood of a.

(a) π is a metric.

- (b) $\mu_n \to \mu$ in π implies $\mu_n \Rightarrow \mu$.
- (c) $\mu_{\alpha} \Rightarrow \mu$ implies $\mu_{\alpha} \rightarrow \mu$ in π , if *S* is separable.
- (d) (S,d) is separable if and only if $(Prob(S), \pi)$ is separable.
- (e) (S,d) is complete if and only if $(Prob(S), \pi)$ is complete.

Proof. (c) Let *E* be Borel and fix $\varepsilon > 0$. If $\{x_i\}_{i=1}^{\infty}$ is dense in *S*, then

$$S = \bigcup_{i=1}^{\infty} B(x_i, \varepsilon_i)$$

for some $\varepsilon_i \in (\varepsilon/4, \varepsilon/2)$ such that $\mu(\partial B(x_i, \varepsilon_i)) = 0$. Take n such that $\mu(B) < \varepsilon/3$, where

$$B:=(\bigcup_{i\leq n}B(x_i,\varepsilon_i))^c.$$

Define *A* to be the union of all $B(x_i, \varepsilon_i)$ such that $i \le n$ and $B(x_i, \varepsilon_i) \cap E \ne \emptyset$, and Then, $E \subset A \cup B$ and $A \subset E^{\varepsilon}$.

Since $\mu(\partial B(x_i, \varepsilon_i)) = 0$ for all i, we have $\mu(\partial A) = 0$ and $\mu(\partial B) = \mu(\partial(B^c)) = 0$, we can take α_0 by the Portmanteau theorem such that $\alpha \succ \alpha_0$ implies

$$\max\{|\mu_{\alpha}(A) - \mu(A)|, |\mu_{\alpha}(B) - \mu(B)|\} < \frac{\varepsilon}{3}.$$

Then,

$$\mu(E) \le \mu(A) + \frac{1}{3}\varepsilon \le \mu_{\alpha}(A) + \frac{2}{3}\varepsilon < \mu(E^{\varepsilon}) + \varepsilon$$

and

$$\mu_{\alpha}(E) \le \mu_{\alpha}(A) + \frac{2}{3}\varepsilon \le \mu(A) + \varepsilon \le \mu(E^{\varepsilon}) + \varepsilon$$

for all $\alpha \succ \alpha_0$.

- **4.14** (Prokhorov's theorem). Let S be a metrizable space. Let Prob(S) be the space of probability measures on S endowed with the topology of weak convergence. Let $\mathcal{F} \subset Prob(S)$.
- (a)
- (b) If $\mathcal F$ is tight, then $\mathcal F$ is relatively compact. (direct half)

4.4 Characteristic functions

4.15 (Characteristic functions). Let μ be a probability measure on \mathbb{R} . Then, the *characteristic function* of μ is defined by

$$\varphi(t) := Ee^{itX} = \int e^{itx} d\mu(x).$$

Note that $\varphi(t) = \hat{\mu}(-t)$ where $\hat{\mu}$ is the Fourier transform of $\mu \in \mathcal{S}'(\mathbb{R})$.

- (a) $\varphi \in C_b(\mathbb{R})$.
- **4.16** (Inversion formula). Let μ be a probability measure on $\mathbb R$ and φ its characteristic function.
- (a) For a < b, we have

$$\mu((a,b)) + \frac{1}{2}\mu(\{a,b\}) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt.$$

(b) For $a \in \mathbb{R}$, we have

$$\mu(\{a\}) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt$$

(c) If $\varphi \in L^1(\mathbb{R})$, then μ has density

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \varphi(t) dt$$

in
$$C_0(\mathbb{R}) \cap L^1(\mathbb{R})$$
.

- **4.17** (Lévy's continuity theorem). The continuity theorem provides with a tool to verify the weak convergence in terms of characteristic functions. Let μ_n and μ be probability distributions on $\mathbb R$ with characteristic functions φ_n and φ .
- (a) If $\mu_n \to \mu$ weakly, then $\varphi_n \to \varphi$ pointwise.
- (b) If $\varphi_n \to \varphi$ pointwise and φ is continuous at zero, then $(\mu_n)_n$ is tight and $\mu_n \to \mu$ weakly.

Proof. (a) For each t,

$$\varphi_n(t) = \int e^{itx} d\mu_n(x) \to \int e^{itx} d\mu(x) = \varphi(t)$$

because $e^{itx} \in C_b(\mathbb{R})$.

4.18 (Criteria for characteristic functions). Bochner's theorem and Polya's criterion

There are two ways to represent a measure: A measure μ is absolutely continuous iff its distribution F is absolutely continuous iff its density f is integrable. So, the fourier transform of an absolutely continuous measure is just the fourier transform of L^1 functions.

4.5 Moments

moment problem

moment generating function defined on $|t| < \delta$

Exercises

4.19. Let φ_n be characteristic functions of probability measures μ_n on \mathbb{R} . If there is a continuous function φ such that $\varphi_n = \varphi$ on $n^{-1}\mathbb{Z}$, then μ_n converges weakly.

12

Laws of large numbers

5.1 Weak and strong laws of large numbers

Our purpose is to find appropriate a_n and slowly growing b_n such that $(S_n - a_n)/b_n \rightarrow 0$ in probability or almost surely.

5.1 (Truncation method). Let $X_{n,i}:\Omega\to\mathbb{R}$ be uncorrelated random variables (with respect to i for each n) and $S_n:=X_{n,1}+\cdots+X_{n,n}$. For a positive sequence $(c_n)_{n=1}^\infty$, let $Y_{n,i}:=X_{n,i}\mathbf{1}_{|X_{n,i}|\leq c_n}$ be truncated random variables and $T_n:=Y_{n,1}+\cdots+Y_{n,n}$. Suppose that the truncation level c_n satisfies the approximation condition

$$\lim_{n \to \infty} \sum_{i=1}^{n} P(|X_{n,i}| > c_n) = 0.$$

- (a) If $(T_n ET_n)/b_n \to 0$ in probability, then $(S_n ET_n)/b_n \to 0$ in probability.
- (b) If $(T_n ET_n)/b_n \to Z$ in distribution, then $(S_n ET_n)/b_n \to Z$ in distribution.

Proof. (a) Write

$$P\left(\left|\frac{S_n - ET_n}{b_n}\right| > \varepsilon\right) \le P(S_n \ne T_n) + P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) \to 0$$

since

$$P(S_n \neq T_n) \le \sum_{i=1}^n P(X_{n,i} \neq Y_{n,i}) = \sum_{i=1}^n P(|X_{n,i}| > c_n) \to 0$$

as $n \to \infty$.

(b) By the Slutsky theorem.

- **5.2** (Weak laws of large numbers). Let $X_{n,i}:\Omega\to\mathbb{R}$ be uncorrelated random variables and $S_n:=X_{n,1}+\cdots+X_{n,n}$. For a positive sequence $(c_n)_{n=1}^{\infty}$, let $Y_{n,i}:=X_{n,i}\mathbf{1}_{|X_{n,i}|\leq c_n}$ be truncated random variables and $T_n:=Y_{n,1}+\cdots+Y_{n,n}$.
- (a) If

$$b_n^2 \gg \sum_{i=1}^n E|Y_{n,i} - EY_{n,i}|^2$$

then $(T_n - ET_n)/b_n \to 0$ in probability.

(b) Take slow c_n as possible such that

$$1 \gg \sum_{i=1}^{n} P(|X_{n,i}| > c_n).$$

Take slow b_n as possible such that

$$b_n^2 \gg \sum_{i=1}^n E|Y_{n,i}|^2.$$

then $(S_n - ET_n)/b_n \rightarrow 0$.

(c) If

$$\lim_{x\to\infty}\sup_{i}xP(|X_i|>x)=0,$$

then $(S_n - ET_n)/n \to 0$ in probability. This is called the *Kolmogorov-Feller* condition.

Proof. (a) Since X_n are uncorrelated, we have for any $\varepsilon > 0$ that

$$P\left(\left|\frac{S_n - ES_n}{c_n}\right| > \varepsilon\right) \le \frac{1}{\varepsilon^2 c_n^2} VS_n \to 0$$

as $n \to \infty$.

(c) Write $g(x) := \sup_i x P(|X_i| > x)$. Then, the truncation condition for $b_n = n$ is satisfied as

$$\sum_{i=1}^{n} P(|X_i| > n) \le \sum_{i=1}^{n} \frac{1}{n} g(n) = g(n) \to 0$$

as $n \to \infty$.

On the other hand,

$$\frac{1}{n^2} \sum_{i=1}^n E|Y_i|^2 = \frac{1}{n^2} \sum_{i=1}^n \int_0^\infty 2x P(|Y_i| > x) \, dx = \frac{1}{n^2} \sum_{i=1}^n \int_0^n 2x P(|X_i| > x) \, dx$$
$$\leq \frac{2}{n} \int_0^n g(x) \, dx = 2 \int_0^1 g(nx) \, dx.$$

Since $g(x) \le x$ and $g(x) \to 0$ as $x \to \infty$, g is bounded so that the bounded convergence theorem implies $\int_0^1 g(nx) dx \to 0$ as $n \to \infty$.

Therefore, $(T_n - ET_n)/n \to 0$ in probability. By the truncation

- 5.3 (Borel-Cantelli lemmas).
- **5.4** (Strong laws of large numbers). Proof by Etemadi

5.2 Random series

5.3 Renewal theory

Exercises

5.5 (Bernstein polynomial). Let $X_n \sim \text{Bern}(x)$ be i.i.d. random variables. Since $S_n \sim \text{Binom}(n,x)$, $E(S_n/n) = x$, $V(S_n/n) = x(1-x)/n$. The L^2 law of large numbers implies $E(|S_n/n-x|^2) \to 0$. Define $f_n(x) := E(f(S_n/n))$. Then, by the uniform continuity $|x-y| < \delta$ implies $|f(x)-f(y)| < \varepsilon$,

$$|f_n(x) - f(x)| \le E(|f(S_n/n) - f(x)|) \le \varepsilon + 2||f||P(|S_n/n - x| \ge \delta) \to \varepsilon.$$

- **5.6** (High-dimensional cube is almost a sphere). Let $X_n \sim \text{Unif}(-1, 1)$ be i.i.d. random variables and $Y_n := X_n^2$. Then, $E(Y_n) = \frac{1}{3}$ and $V(Y_n) \leq 1$.
- **5.7** (Coupon collector's problem). $T_n := \inf\{t : |\{X_i\}_i| = n\}$ Since $X_{n,k} \sim \text{Geo}(1 \frac{k-1}{n})$, $E(X_{n,k}) = (1 \frac{k-1}{n})^{-1}$, $V(X_{n,k}) \le (1 \frac{k-1}{n})^{-2}$. $E(T_n) \sim n \log n$
- 5.8 (An occupancy problem).
- **5.9** (The St. Petersburg paradox).
- **5.10.** Find the probability that arbitrarily chosen positive integers are coprime.

Central limit theorems

6.1 Central limit theorems

6.1 (Lyapunov central limit theorem). Let $X_n : \Omega \to \mathbb{R}$ be independent random variables with $EX_i = \mu_i$ and $VX_i = \sigma_i^2$. If there is $\delta > 0$ such that the *Lyapunov condition*

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n E|X_i - \mu_i|^{2+\delta} = 0$$

is satisfied, then

$$\frac{S_n - ES_n}{s_n} \to N(0, 1)$$

weakly, where $S_n := \sum_{i=1}^n X_i$ and $S_n^2 := VS_n$.

- **6.2** (Lindeberg-Feller central limit theorem). Let $X_{i,n}: \Omega \to \mathbb{R}$ be independent random variables and $S_n := X_1 + \cdots + X_n$.
- (a) If

$$s_n^2 \sim \sum_{i=1}^n E|X_i - EX_i|^2,$$

and if for every $\varepsilon > 0$ we have

$$s_n^2 \gg \sum_{i=1}^n E|X_i - EX_i|^2 \mathbf{1}_{|X_i - EX_i| > \varepsilon s_n},$$

then $(S_n - ES_n)/s_n \to N(0,1)$ in distribution. This is called the *Lindeberg condition*.

(b)

6.2 Berry-Esseen ineaulity

6.3 Stable laws

Exercises

Poisson convergence, law of rare events, or weak law of small numbers (a single sample makes a significant attibution)

Part III Stochastic processes

Martingales

- 7.1 Submartingales
- 7.2 Martingale convergence theorem
- **7.1** (Doob's upcrossing inequality). (a)
- **7.2** (Martingale convergence theorems). (a)
- **7.3.** (a)
- 7.3 Convergence in L^p and uniform integrability
- 7.4 Optional stopping theorem

Markov chains

Brownian motion

9.1 Kolomogorov extension

9.1 (Kolmogorov extension theorem). A *rectangle* is a finite product $\prod_{i=1}^n A_i \subset \mathbb{R}^n$ of measurable $A_i \subset \mathbb{R}$, and *cylinder* is a product $A^* \times \mathbb{R}^\mathbb{N}$ where A^* is a rectangle. Let \mathcal{A} be the semi-algebra containing \emptyset and all cylinders in $\mathbb{R}^\mathbb{N}$. Let $(\mu_n)_n$ be a sequence of probability measures on \mathbb{R}^n that satisfies *consistency condition*

$$\mu_{n+1}(A^* \times \mathbb{R}) = \mu_n(A^*)$$

for any rectangles $A^* \subset \mathbb{R}^n$, and define a set function $\mu_0 : \mathcal{A} \to [0, \infty]$ by $\mu_0(A) = \mu_n(A^*)$ and $\mu_0(\emptyset) = 0$.

- (a) μ_0 is well-defined.
- (b) μ_0 is finitely additive.
- (c) μ_0 is countably additive if $\mu_0(B_n) \to 0$ for cylinders $B_n \downarrow \emptyset$ as $n \to \infty$.
- (d) If $\mu_0(B_n) \geq \delta$, then we can find decreasing $D_n \subset B_n$ such that $\mu_0(D_n) \geq \frac{\delta}{2}$ and $D_n = D_n^* \times \mathbb{R}^{\mathbb{N}}$ for a compact rectangle D_n^* .
- (e) If $\mu_0(B_n) \ge \delta$, then $\bigcap_{i=1}^{\infty} B_i$ is non-empty.

Proof. (d) Let $B_n = B_n^* \times \mathbb{R}^{\mathbb{N}}$ for a rectangle $B_n^* \subset \mathbb{R}^{r(n)}$. By the inner regularity of $\mu_{r(n)}$, there is a compact rectangle $C_n^* \subset B_n^*$ such that

$$\mu_0(B_n \setminus C_n) = \mu_{r(n)}(B_n^* \setminus C_n^*) < \frac{\delta}{2^{n+1}}.$$

Let $C_n:=C_n^*\times\mathbb{R}^\mathbb{N}$ and define $D_n:=\bigcap_{i=1}^nC_i=D_n^*\times\mathbb{R}^\mathbb{N}$. Then,

$$\mu_0(B_n \setminus D_n) \leq \mu_0(\bigcup_{i=1}^n B_n \setminus C_i) \leq \mu_0(\bigcup_{i=1}^n B_i \setminus C_i) < \frac{\delta}{2},$$

which implies $\mu_0(D_n) \ge \frac{\delta}{2}$.

(e) Take any sequence $(\omega_n)_n$ in $\mathbb{R}^{\mathbb{N}}$ such that $\omega_n \in D_n$. Since each $D_n^* \subset \mathbb{R}^{r(n)}$ is compact and non-empty, by diagonal argument, we have a subsequence $(\omega_k)_k$ such that ω_k is pointwise convergent, and its limit is contained in $\bigcap_{i=1}^{\infty} D_i \subset \bigcap_{i=1}^{\infty} B_n = \emptyset$, which is a contradiction that leads $\mu_0(B_n) \to 0$.

Part IV Stochastic calculus