INF1608 - Análise Numérica

Lab 5: Método dos Mínimos Quadrados

Prof. Waldemar Celes Departamento de Informática, PUC-Rio

Para este exercício, considere a representação de matrizes por vetor de ponteiros do Lab 0 e o método de solução de sistemas lineares do Lab 4. Siga **exatamente** as interfaces "matriz.h" e "sistlinear.h". Não envie suas implementações desses códigos para a correção; envie apenas o código pedido deste laboratório.

1. Podemos resolver um sistema inconsistente na forma $A_{m \times n} x_n = b_m$, com m > n, através do Método dos Mínimos Quadrados (MMQ). Na sua forma mais direta, a solução do MMQ é feita resolvendo o sistema linear $n \times n$ definido pela equação normal:

$$A^T A \ \bar{x} = A^T b$$

onde A^T representa a matriz transposta de A e \bar{x} a solução aproximada do problema. O erro do método pode ser avaliado pelo vetor residual $r=b-A\bar{x}$. Como métrica de erro, podemos usar a norma-2 do resíduo:

$$erro = ||r||_2$$

(a) Implemente uma função que resolva o sistema $A_{m \times n} x_n = b_m$ pelo método dos mínimos quadrados. A função deve preencher o vetor x, já alocado, que representa a solução aproximada, e retornar o erro avaliado pela norma-2 do resíduo:

```
double MMQ (int m, int n, double** A, double* b, double* x);
```

(b) Usando o Método dos Mínimos Quadrados, ajuste um modelo periódico, na forma:

$$v = c_0 + c_1 t + c_2 \sin 2\pi t + c_3 \cos 2\pi t + c_4 \cos 4\pi t$$

Sua função deve receber um conjunto de n pontos (t_i, v_i) e preencher o vetor c dos coeficientes, já alocado, retornando o erro do ajuste.

```
double periodico (int n, double* t, double* v, double* c)
```

(c) Considerando o modelo periódico do item anterior, implemente uma função que receba o vetor c dos coeficientes e retorne a previsão do modelo para o tempo t fornecido.

- 2. Para testar seu código, escreva um programa com as seguintes implementações:
 - (a) Resolva os sistemas inconsistentes abaixo usando o MMQ. Exiba na tela o vetor que representa a solução aproximada e o respectivo erro associado de cada sistema.

a)
$$\begin{bmatrix} 3 & -1 & 2 \\ 4 & 1 & 0 \\ -3 & 2 & 1 \\ 1 & 1 & 5 \\ -2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ -5 \\ 15 \\ 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 4 & 2 & 3 & 0 \\ -2 & 3 & -1 & 1 \\ 1 & 3 & -4 & 2 \\ 1 & 0 & 1 & -1 \\ 3 & 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 2 \\ 0 \\ 5 \end{bmatrix}$$

(b) Usando o modelo periódico implementado, use-o para estimar a extensão de gelo no Polo Norte em tempos futuros. Considere as medições da área de gelo (em 10^6km^2) observados nos anos 2105 e 2106:

Mês	2015	2016
Jan	13.75	13.64
Fev	14.51	14.32
Mar	14.49	14.53
Abr	13.98	13.83
Mai	12.69	12.08
Jun	11.05	10.60
Jul	8.83	8.13
Ago	5.66	5.6
Set	4.68	4.72
Out	7.79	6.45
Nov	10.11	9.08
Dez	12.33	12.09

No seu modelo, a área de gelo representa v_i e o tempo, em anos, representa t_i . Com base no seu modelo ajustado, qual a extensão da área de gelo de hoje (setembro/2019)?

Agrupe os protótipos das funções pedidas em um módulo "mmq.h" e as implementações em um módulo "mmq.c". Escreva um outro módulo "main.c" para o código de teste da sua implementação.

Entrega: O código fonte deste trabalho (isto é, os arquivos "mmq.h", "mmq.c" e "main.c", apenas) devem ser enviados via página da disciplina no EAD. O prazo final para envio é sextafeira, dia 20 de setembro.