Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 636 - Algebraic Topology III Term: Spring 2025 Due Date: 6^{th} June, 2025

Homework 8

ID: 952091294

Instructor: Dr.Daniel Dugger

Problem 1

Suppose that M is a compact 3-manifold with $\pi_1(M) \cong \mathbb{Z}/5$.

- (a) Prove that M is orientable, and then calculate all of the homology and cohomology groups of M.
- (b) Prove that every map $M \to \mathbb{R}P^3$ has even degree.

Solution:

Problem 2

- (a) Explain why the Euler characteristic of an odd-dimensional compact manifold must be zero.
- (b) Suppose that M is a (2d+1)-dimensional compact manifold, and let $W=\partial M$. Let X be the manifold obtained by gluing two copies of M together along their boundary. Using Mayer-Vietoris (or otherwise) prove that $\chi(W) \equiv \chi(X) \mod 2$, and so deduce that $\chi(W)$ must be even.

Solution:

Problem 3

Suppose that there is a fiber bundle $p: X \to S^8$ with fiber S^3 .

- (a) Prove that X is an orientable manifold.
- (b) Prove that $H_*(X)$ is isomorphic to $H_*(S^3 \times S^8)$.

Solution:

Problem 4

Compute the cohomology ring of $\mathbb{R}P^4 \vee S^5$ with $\mathbb{Z}/2$ -coefficients. Then use this to prove that $\mathbb{R}P^4 \vee S^5$ is not homotopy equivalent to a compact manifold.

Solution:

Problem 5

Suppose that X is a compact, orientable n-manifold and that $S^n \to X$ is a map of positive degree. Prove that $H_*(X;\mathbb{Q}) \cong H_*(S^n;\mathbb{Q})$.

Solution:

Problem 6

Find the mistake in the following "proof" that 0 = 1:

Let $A:S^2\to S^2$ be the antipodal map, and $p:S^2\to \mathbb{R}P^2$ the projection. Consider the diagram

$$\pi_2(S^2) \xrightarrow{A_*} \pi_2(S^2)$$

$$\downarrow h_2 \downarrow \qquad \qquad h_2 \downarrow$$

$$H_2(S^2) \xrightarrow{A_*} H_2(S^2)$$

where h_2 is the Hurewicz map. We know that h_2 is an isomorphism, and we know that the lower map A_* is multiplication by $(-1)^3$. So it follows that the upper A_* is also multiplication by (-1).

Next consider the diagram

$$\pi_2(S^2) \xrightarrow{p_*} \pi_2(S^2)$$

$$\pi_2(\mathbb{R}P^2)$$

This commutes because of functoriality, since $p \circ A = p$. We know from the long exact sequence for the fibration $p: S^2 \to \mathbb{R}P^2$ that p_* is an isomorphism. Let $g \in \pi_2(S^2)$ be a generator. Then we have

$$p_*(g) = p_*(A_*(g)) = p_*(-g) = -p_*(g).$$

But $\pi_2(\mathbb{R}P^2) \cong \pi_2(S^2) \cong \mathbb{Z}$, and so the above equation implies $p_*(g) = 0$. Therefore p_* is the zero map. But we have already said that p_* is an isomorphism, therefore $\pi_2(\mathbb{R}P^2) = 0$. Since we have also said that $\pi_2(\mathbb{R}P^2) \cong \mathbb{Z}$, it must be that $\mathbb{Z} \cong 0$. So \mathbb{Z} has only one element and, in particular, 0 = 1.

Solution: