Problem 1

Consider a homogeneous sphere of density ρ and total mass $M_{\rm tot}$.

- 1. Find the total binding energy of the sphere. (10)
- 2. Find the potential $\phi(r)$ at position r. (10)
- 3. What is the escape speed $v_{\rm esc}(r)$ for a test particle from this potential? (10)
- 4. What are the integrals of motion for this potential? Will orbits be confined to a plane in a potential like this? If so, why? (20)
- 5. Starting from a Lagrangian for the system, solve the equations of motion for a test particle in this potential. (40)
- 6. Write an expression for the turning points of an orbit in this potential. (10)
- 7. Show that all orbits in this potential are closed. (Hint: Find radial and azimuthal periods and infer whether orbits are always closed.) (10)
- 8. Draw orbits in this potential for an initial position-

(a)
$$r < R$$
,

(b)
$$r > R$$
,

where, R is the size of the sphere.

9. What is the crossing time for a test particle in this potential? (10)

Problem 2

Consider an axisymmetric potential $\phi(r) = \frac{1}{2}v_0^2 \ln\left(R^2 + \frac{z^2}{q^2}\right)$, where (R, θ, z) constitute regular cylindrical coordinates, and q, and v_0 and constants.

- 1. What is the physical meaning of the constant v_0 ? (20)
- 2. What are the integrals of motion? (10)
- 3. Write down the expression for the turning points (also known as zero-velocity curve). You may need to define a quantity L_z = the angular momentum along the z axis. (50)
- 4. Numerically solve the equations of motion and plot the orbit of a test particle in the R-z plane using-

(a)
$$q = 0.99$$
, $L_z = 0.2$, total energy $E = -0.8$, and $v_0 = 1$ (35)

(b)
$$q = 0.1, L_z = 0.2$$
, total energy $E = -0.8$, and $v_0 = 1$ (35)

Problem 3

Assume that the fraction of stars with velocities between \vec{v} and $\vec{v} + \Delta \vec{v}$ in a spherically symmetric system is given by-

 $f(\mathcal{E}) \propto \exp\left(\frac{\mathcal{E}}{k_b T}\right),$

where $\mathcal{E} = m\phi(x) + \frac{mv^2}{2}$ is the total energy, k_B is the Boltzmann's constant.

- 1. Show that the velocity dispersion $\sigma^2 = \frac{3k_BT}{m}$, where m is the mass of the star. (20)
- 2. What fraction of stars escape the cluster? (30)
- 3. If the $t_{\rm evap}$ is the time it takes to completely evaporate the cluster due to random stellar motions, then show that $t_{\rm evap} \sim 136 t_{\rm relax}$, where $t_{\rm relax}$ is the relaxation time. (50)
- 4. Calculate the evaporation times (order of magnitude is OK) for systems with average densities $\overline{\rho}$ in the range $10-10^7 \,\mathrm{M_{\odot}pc^{-3}}$ and number of stars N in the range $10-10^9$. Make a log-log plot showing the region in the N vs $\overline{\rho}$ plane that would completely evaporate within a Hubble time.
- 5. Go to the Harris catalog of Milky Way globular clusters (GCs) at http://physwww.mcmaster.ca/~harris/mwgc.dat.

 Extract the average central density and the number of stars for the Milky Way GCs. Plot them on the same figure created as part of the above problem. [Hint: Be careful of units. You may need to convert a total V-band absolute magnitude to a bolometric luminosity ($\mathcal{L}=2$), then from \mathcal{L} to total mass ($M_{\rm tot}$) assuming $M_{rmtot}/\mathcal{L}=2$, then you may need to assume an average stellar mass $< m > /M_{\odot} = 0.5$ to find N from $M_{\rm tot}$.]