

Radboud University Nijmegen

Behavioural Science Institute

"Turbulence is the most important unsolved problem of classical physics" - Richard Feynman (1918 - 1988)

Laminar

Turbulent

"I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment:

One is quantum electrodynamics,

and the other is the turbulent motion of fluids.

And about the former I am rather optimistic."

- Horace Lamb (1849 - 1934)

CHAOS, TURBULENCE and other unsolved mysteries

CHAOS, TURBULENCE and other unsolved mysteries

"Turbulence is the most important unsolved problem of classical physics"

- Richard Feynman (1918 - 1988)

"I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment:

One is quantum electrodynamics, and the other is the turbulent motion of fluids.

And about the former I am rather optimistic."

- Horace Lamb (1849 - 1934)

Turbulent

Laminar

Deterministic Chaos

The Art of Modeling Dynamic Systems A Classification Scheme for Dynamic Systems

Table 12-1. Summary of the Hierarchy of Dynamic Systems.

Туре	Constraints	Description
Zero	Absolute	Constant state '
1	Analytic integrals	Solvable dynamic system
П	Approximate analytic integrals	Amenable to perturbation theory
Ш	Quasi-deterministic; smooth but erratic trajectory	Chaotic dynamic system
IV	Rigorously defined only by averages over time or state space	Turbulent/stochastic

Table 12-2. A few examples of the types of dynamic systems.

Type	Examples	
Zero	Images, gravity models, structures	
I	Gear trains, 2-body problem, physical pendulum	
H	Satellite orbits, lunar and planetary theories	
III	Climatology, Lorenz equations, discrete logistic equation	
IV	Quantum mechanics, turbulent flow, statistical mechanics	

Figure 12-1. Schematic representation of the Hierarchy of Dynamic Systems.