北京工业大学 2021-2022 学年第一学期 《普通化学》试卷(A) (注意: 本卷满分 100 分)

姓名	i: 班级: 学号: 成绩:									
一. 判断正误(下列叙述正确的在括号内填"√",错的填"×")										
(每小题 1 分, 共 20 分)										
(, ,									
(NH ₃ 。) 2. 在定温定压条件下,下列两个生成液态水的化学反应方程式所表达的 反应放出的热量是一相等的值。									
	$2H_2(g) + O_2(g) = 2H_2O(l); H_2(g) + \frac{1}{2}O_2(g) = H_2O(l)$									
()3. 催化剂能改变反应历程,降低反应的活化能,但不能改变反应的 $\Delta_r G_m^{\Theta}$ 。									
() 4. 若 $H_2O(l) = H^+(aq) + OH^-(aq)$, $K_1^{\Theta} = 1.0 \times 10^{-14}$									
	CH ₃ OOH(aq) = CHCOO ⁻ (aq) + H +(aq), $K_2^{\Theta} = 1.8 \times 10^{-5}$, \mathbb{M} :									
	CHCOO ⁻ (aq) + H ₂ O(l) = CH ₃ COOH(aq) + OH ⁻ (aq), K ₃ Θ = 5.6 ×10 ⁻¹⁰									
() 5. 两种分子酸 HX 溶液和 HY 溶液有同样的 pH,则这两种酸的浓度相同。									
()6. PbI ₂ 和 CaCO ₃ 的溶度积均近似为 10 ⁻⁹ ,从而可知在它们的饱和溶液中,									
	前者的 Pb ²⁺ 浓度与后者的 Ca ²⁺ 浓度近似相等。									
() 7. 难溶电解质溶液中的离子浓度乘积就是该物质的标准溶度积。									
()8. 当主量子数 $n=2$ 时,其角量子数 l 的只能取一个数 1 。									
() 9. 由不同元素形成的双原子分子一定是极性分子。									
()10. 碳原子只有两个未成对电子,故只能形成两个共价键。									
()11. 半导体和绝缘体有十分相似的能带结构,只是半导体的禁带宽度要窄。									
()12. 电镀工艺是将欲镀零件作为电解池的阳极。免费分享									

() 13. 己知 φ^{\ominus} (Sn ²⁺ /Sn) = -0.1375 V, φ^{\ominus} (Pb ²⁺ /Pb) = -0.1262 V,则反应								
$Sn + Pb^{2+}(1 \text{ mol·dm}^{-1}) = Sn^{2+}(1 \text{ mol·dm}^{-1}) + Pb 正向进行。$								
()14. 碱土金属碳酸盐的热稳定性随碱土金属的离子半径的增大而降低。								
()15. 非金属原子之间是以共价键结合而形成分子,所以它们的晶体都属于								
分子晶体。								
() 16. 有一由 HAc 和 NaAc 组成的缓冲溶液,若溶液的 c(HAc) > c(Ac-),则								
该缓冲溶液抵抗外来酸的能力大于抵抗外来碱的能力。								
() 17. 实验测得 CS_2 是直线性结构的分子,则分子中共有 $4 \land \sigma$ 键。								
() 18. 每一周期的元素数目等于相应能级组所能容纳的最多电子数。								
()19. 若原子中某一电子处于 $n=3, l=1, m=0$ 的状态,则该电子是 3s 电子。								
()20. 任何状态函数都具有加和性。								
二.填空题(每空2分,共30分)								
1. 已知乙醇在 101.325 kPa 大气压下正常沸点温度(351K)时的蒸发热为 39.2								
$kJ \cdot mol^{-1}$,则 $1mol$ 液态乙醇在该蒸发过程中的体积功 $w = $ k $J \cdot mol^{-1}$,								
$\Delta U = \underline{\qquad kJ \cdot mol^{-1}}$								
2. 在 25°C的标准条件时, 2H ₂ (g) + O ₂ (g) = 2H ₂ O(l)的Δ _r H _m Θ = -571.70 kJ·mol ⁻¹ ,								
则 $\Delta_f H_m$ Θ (H ₂ O,1) =。								
3. 若 $2H_2(g) + O_2(g) = 2 H_2O(g)$, $\Delta_r H_m$, $_1 = -483.64 \text{ kJ} \cdot \text{mol}^{-1}$,								
$2 \text{ Ni(s)} + O_2(g) = 2 \text{ NiO(s)}, \ \Delta_r H_m, \ _2 = -479.4 \text{ kJ} \cdot \text{mol}^{-1},$								
则: $NiO(s) + H_2(g) = Ni(s) + H_2O(g)$ 的 $\Delta_r H_{m, 3} = $ kJ·mol ⁻¹ 。								
4. 已知反应 C(石墨) + CO ₂ (g) = 2CO(g) 在某温度下达平衡后 CO ₂ 与 CO 的分								
压分别为 $p^{eq}_{(CO_2)}$ 和 $p^{eq}_{(CO)}$,则标准平衡常数表达式:								
$\mathbf{K}^{\Theta} = \underline{\hspace{1cm}}_{\text{次则由公介只了于中陆】}}$ 。								

5. 反应 $2Cl_2(g) + 2H_2O(g) = 4HCl(g) + O_2(g)$ 为吸热反应,达到平衡后,若分别
采取下列措施, 试将结果(左、右、增大、减小或不变)填入空格中。
(1) 降低温度,平衡向移动;
(2)减小容器体积, K [⊖] 。
6. 反应 $2NO(g) + Cl_2(g) = 2NOCl(g)$ 为元反应,则该反应的速率方程为
v=, 该反应的总级数为。
7. 室温下, 氯化银的溶度积为 1.77 × 10 -10, 则氯化银的溶解度为:
mol·dm ⁻¹ 。
8. 配合物 K ₃ [Co(NO ₂) ₃ Cl ₃]的中心离子为, 配位体为, 中心
离子的配位数为。
9. σ键与π键的特点可形象化地比喻成原子轨道沿两核间联线的方向,分别以
和的方式重叠。
三、单选题: (在括号内填入正确答案)(每题 2 分, 共 20 分)
1. 往 0.1 mol·dm ⁻¹ 的HAc溶液中加入一些NaAc固体并使其完全溶解,则:()
A. HAc 的解离度增加; B. HAc 的解离度减小;
C. 溶液的 pH 值减小; D. HAc 的解离常数增大。
2. 配制 pH = 5.0 的缓冲溶液应选用 ······()
A. 1 $\text{mol} \cdot \text{dm}^{-1}\text{HAc}$ (pKa = 4.74) + 1 $\text{mol} \cdot \text{dm}^{-1}\text{NaAc}$
B. 1 $\text{mol} \cdot \text{dm}^{-1}\text{HCOOH}$ (pKa = 3.75) + 1 $\text{mol} \cdot \text{dm}^{-1}\text{HCOONa}$
C. 1 $\text{mol} \cdot \text{dm}^{-1} \text{NaHCO}_3(\text{pKa} = 10.25) + 1 \text{ mol} \cdot \text{dm}^{-1} \text{Na}_2 \text{CO}_3$
D. $0.5 \text{ mol·dm}^{-1}\text{HCOOH}$ (pKa = 3.75) + $0.5 \text{ mol·dm}^{-1}\text{HCOONa}$
3. 氧化还原电对 Fe ²⁺ /Fe、Cr ³⁺ /Cr ²⁺ 和 Cd ²⁺ /Cd 的标准电极电势分别为-0.44、
- 0.41 和 - 0.40 V。标准状态时最强氧化剂与最强还原剂为 ······ ()

- A. Fe²⁺和 Cd; B. Cr³⁺和 Cd; C. Cd²⁺和 Cr²⁺; D. Cd²⁺和 Fe 4. 多电子原子中,以下列量子数表征的电子,其能量最高的是……… () A. n = 3, l = 2, m = -1, $m_s = +\frac{1}{2}$; B. n = 2, l = 0, m = 0, $m_s = -\frac{1}{2}$; C. $n = 3, l = 1, m = 1, m_s = +\frac{1}{2}$; D. $n = 3, l = 0, m = +1, m_s = +\frac{1}{2}$ 5. OF₂分子中,中心原子的杂化轨道类型和分子的空间构型分别为……(A. sp 杂化,直线型; B. sp³杂化,三角锥型; C. sp²杂化, 平面三角型; D. sp³杂化, V型 6. 在 H2、CC14、干冰和苯四种物质中,共同存在的分子间作用力是……(A. 色散力; B. 诱导力; C 取向力; D. 氢键. 7. 下列物质中熔点最高的是 ……(A. AlCl₃: B. SiCl₄: C. SiO₂: D. H₂O 8. 下列分子中, 含有极性键的非极性分子是………………(A. P4; B. BF3; C. ICl; D. PCl₃ 9. 制 SnCl₂溶液时,为了防止产生 Sn(OH)Cl 白色沉淀,应采取的措施是(A. 加碱; B. 加酸; C. 多加水; D. 加热 10. 下列物质中酸性最弱的是 ………………………(A. H₃AsO₃; B. H₃AsO₄; C. H₃PO₄; D. HBrO₄ 四. 综合题(30分) 1. (8 分) 将 Pb(NO₃)₂ 溶液与 NaCl 溶液混合,设混合液中 Pb(NO₃)₂ 的浓度为 0.2
- $mol \cdot dm^{-1}$,已知 $K_s(PbCl_2) = 1.17 \times 10^{-5}$,问:

 (1) 当混合液中 Cl^- 的浓度为 $5.0 \times 10^{-4} \, mol \cdot dm^{-1}$,是否有沉淀生成?
- (2) 当混合液中 Cl^- 的浓度为 6.0×10^{-2} mol·dm⁻¹,求残留于溶液中 Pb^{2+} 的浓度?

2. (8分)通过计算判断反应: $C_2H_6(g,p^{\Theta}) = C_2H_4(g,p^{\Theta}) + H_2(g,p^{\Theta})$ 在标准状态下向何方进行,并求反应的 K^{Θ}

$$(\Delta_f G_m^{\Theta}(C_2H_6,g) = -32.82 \text{ kJ} \cdot \text{mol}^{-1}, \Delta_f G_m^{\Theta}(C_2H_4,g) = -68.15 \text{ kJ} \cdot \text{mol}^{-1})$$

3. (7分)填充下表:

元素 名称	元素 符号	原子 序数	原子的外层 电子分布式	周期	X	族	原子的未成 对电子数
		38					
			$3d^54s^2$				
				五		IVA	

4. (7分) 将下列反应组成原电池 (温度为 298.15K, φ^{Θ} (Ag⁺/Ag) = 0.80 V,

$$\varphi^{\ominus}$$
 (Fe³⁺/Fe²⁺) = 0.77 V); 2I (aq) + 2Fe³⁺(aq) = I₂(s) + 2Fe²⁺(aq)

- (1) 写出原电池的图示;
- (2) 计算原电池标准电动势 E^Θ
- (3) 当 $c(\Gamma) = 1.0 \times 10^{-2} \text{mol·dm}^{-1}$, $c(Fe^{2+}) = 10c(Fe^{3+})$ 时,计算原电池的电动势 E。