工科数学分析笔记

NOTES ON MATHEMATICAL ANALYSIS

王晨阳

目录

一テ	元函数微分学笔记	
	1.函数和数列极限	1
	2.连续和一致连续	1
	3.导数和微分	2
	4.Taylor 定理和微分中值定理	2
	5.微分中值定理	2
	6.Jensen 不等式	3
一ラ	元函数积分学笔记	
	1.定积分概念	4
	2.积分计算	4
	3.反常积分	4
一テ	元函数微分方程笔记	
	1.一阶微分方程	7
	2.二阶微分方程	7
	3.微分方程组	8
向量	量代数和空间解析几何笔记	
	1.向量运算	9
	2.平面方程	9
	3.直线方程	9
	4.距离	10
多え	元函数微分学笔记	
	1.极限	11
	2.连续和可导	11
	3.可微	11
	4.求导	12
	5.方向导数和梯度	12
	6.极值和最值	12
	7.几何应用	13
多え	元函数积分学笔记	
	1.数量函数积分	14
	2.向量函数积分	17
	3.Green 公式	19
	4.Gauss 公式	19
	5.Stokes 公式	20
	6.几种特殊向量场	20
无统	岁级数笔记	
	1.常数项级数	22
	2.函数项级数	24
	3.幂级数	25
	4 Fourier 级数	27

一元函数微分学笔记

1.函数和数列极限

- (1)数列极限
 - **当** $\forall \varepsilon > 0, \exists N \in N_+,$ 使得 $\forall n > N,$ 恒有 $|a_m a| < \varepsilon$ n项和的极限: 夹逼定理/积分定义
 - ¥ 单调有界:

单调增(减)有上(下)界的数列必定定收敛。

 $\lim_{n\to\infty}a_n=a$ 的充分必要条件是对于 $\{a_n\}$ 的每个子列 $\{a_{n_k}\}$,均有 $\lim_{k\to\infty}a_{n_k}=a$

山 闭区间套:

存在唯一的 $\xi \in \mathbb{R}$,使得 $\bigcap_{i \to \infty} \{ [a_i, b_i] \} = \xi$

Weierstrass:

有界实数列必有收敛子列

Y Cauchy 数列:

 $\forall \varepsilon > 0, \exists N \in N_+,$ 使得 $\forall m, n > N$, 恒有 $|a_m - a_n| < \varepsilon$ 数列 $\{a_n\}$ 收敛的充要条件是它是 Cauchy 数列

₩ 极限不存在:

 $\{a_n\}$ 发散 $\Leftrightarrow \exists \varepsilon > 0, \forall N \in N_+,$ 使得 $\exists m, n > N,$ 使得 $|a_m - a_n| \ge \varepsilon$ $\lim_{n \to \infty} a_n \ne a \Leftrightarrow \exists \varepsilon > 0, \forall N \in N_+,$ 使得 $\exists n > N,$ 使得 $|a_m - a| \ge \varepsilon$

(2)函数极限

¥ $\forall \varepsilon > 0$, $\exists M > 0$, 使得 $\forall x > M$, 恒有 $|f(x) - a| < \varepsilon$

 $\arctan x \sim x$ $e^x - 1 \sim x$ $\ln(1+x) \sim x$ $\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$

¥ Heine:

设 $f: \overset{\circ}{\mathrm{U}}(x_0) \to R$ 为一函数,则 $\lim_{x \to x_0} f(x) = a$ 的充要条件为对于 $\overset{\circ}{\mathrm{U}}(x_0)$ 中的任何数列 $\{x_n\}$,只要 $x_n \to x_0 (n \to \infty)$,相应的函数值数列 $\{f(x_n)\}$ 都收敛于a

2.连续和一致连续

- ¥ $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 $\forall x \in U(x_0, \delta) \cap U(x_0)$, 恒有 $|f(x) f(x_0)| < \varepsilon$
- 第一类间断点: $f(x_0 + 0)$ 和 $f(x_0 0)$ 都存在 $f(x_0 + 0) \neq f(x_0 0)$ 跳跃间断点 $f(x_0 + 0) = f(x_0 0)$ 可去间断点
- **当** 第二类间断点: $f(x_0 + 0)$ 和 $f(x_0 0)$ 至少有一个不存在
- ▶ 介值定理:

设 $f \in C[a,b]$, $f(a) \neq f(b)$, 并且 μ 为介于f(a) 与 f(b) 之间的任一值,则至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = \mu$

■ 一致连续:

设 $f:I\to R$ 为任一函数,若 $\forall \varepsilon>0$,司 $\delta>0$,使得 $\forall x_1,x_2\in I$,当 $|x_1-x_2|<\delta$ 时,恒有 $|f(x_1)-f(x_2)|<\varepsilon$

3.导数和微分

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

水导公式:

$$(\tan x)' = \sec^2 x$$
, $(\cot x)' = -\csc^2 x$, $(\sec x)' = \sec x \cdot \tan x$, $(\csc x)' = -\csc x \cdot \cot x$
 $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$, $(\arctan x)' = \frac{1}{1 + x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1 + x^2}$

Leibniz:

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}$$

- ¥ 可微与可导等价
- ¥ L'Hospital 法则

4.Taylor 定理和微分中值定理

(1)Peano

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

(2)Lagrange

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

(3)Maclaurin

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

常用 Taylor 公式:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n+1}}{(n+1)!} e^{\theta x}$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots + (-1)^{m} \frac{\cos(\theta x)}{(2m+1)!} x^{2m+1}$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots + (-1)^{m+1} \frac{\cos(\theta x)}{(2m+2)!} x^{2m+2}$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots + (-1)^{n} \frac{x^{n+1}}{(n+1)(1+\theta x)^{n+1}}$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n)x^{n+1}}{(n+1)!(1+\theta x)^{n+1-\alpha}}$$

5.微分中值定理

(1)Fermat

若函数 $f:(a,b) \to R$ 在 $x_0 \in (a,b)$ 处取得极值,且f在 x_0 处可导,则 $f'(x_0) = 0$

(2)Rolle

若函数
$$f$$
在 $[a,b]$ 上连续,在 (a,b) 内可导, $f(a) = f(b)$,则至少存在一点 $\xi \in (a,b)$,使 $f'(\xi) = 0$

(3)Lagrange

若函数f在[a,b]上连续,在(a,b)内可导,

则至少存在一点
$$\xi \in (a,b)$$
,使 $\frac{f(b)-f(a)}{b-a} = f'(\xi)$

(4)Cauchy

设f, g在[a,b]上连续,在(a,b)内可导,并且 $\forall x \in (a,b)$, $g'(x) \neq 0$,

则至少存在一点
$$\xi \in (a,b)$$
,使 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f^{'}(\xi)}{g^{'}(\xi)}$

6.Jensen 不等式

 $f: I \to R$ 是I上的凸函数的充要条件为对于任何 $x_i \in I$ 及 $\lambda_i \in [0,1] (i=1,2,...,n)$,并且 $\sum_{i=1}^n \lambda_i = 1$,有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

山 证明等式方法:

- ▶ 无导数:零点存在定理/介值定理
- ➤ 有导数: 1 个点: Fermat/Rolle

2 个点: 2 次 Lagrange/1 次 Lagrange+1 次 Cauchy 导数为二阶以上,又含其他点的函数值: Taylor(Lagrange 余项)

¥ 证明不等式方法:

- 1.区间内成立:单调性(特别左右都是初等函数)
- 2.用最大/最小值
- 3.Taylor: 含f''及以上且已知最高阶导数符号
- 4.比较常数大小: 用单调性
- 5.Lagrange: f(b) f(a)

¥ Stolz:

设数列 b_n 单调增加且 $\lim_{n\to\infty}b_n=+\infty$,如果 $\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}$ 存在或者为 $\pm\infty$,则

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}$$

■ 常用极限:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \qquad \lim_{x \to \infty} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0^+} x^x = 1 \qquad \lim_{x \to \infty} \sqrt[n]{n} = 1$$

¥ 常用高阶导数:

$$(a^{x})^{(n)} = a^{x} \ln^{n} a \qquad (\log_{a} x)^{(n)} = (-1)^{n-1} \frac{(n-1)!}{x^{n} \ln a}$$

$$(\cos x)^{(n)} = \cos\left(x + n \cdot \frac{\pi}{2}\right) \qquad (\sin x)^{(n)} = \sin\left(x + n \cdot \frac{\pi}{2}\right)$$

$$\left(\frac{1}{x+a}\right)^{(n)} = (-1)^n \frac{n!}{(x+a)^{n+1}} \qquad \left(\frac{1}{a-x}\right)^{(n)} = \frac{n!}{(a-x)^{n+1}}$$

一元函数积分学笔记

1.定积分概念

(1)定积分

¥ 可积的充要条件:

 $\forall \varepsilon > 0, \exists \delta > 0, \stackrel{\cdot}{=} d < \delta \bowtie, \sum_{k=1}^{n} \omega_k \Delta x_k < \varepsilon$

- ¥ 可积的充分条件:
 - ▶ 函数 $f \in C[a,b]$,则f在[a,b]上可积
 - \triangleright 若函数f在[a,b]上只有有限个第一类间断点,则f在[a,b]上可积
 - ightharpoonup 若函数f在[a,b]上单调,则f在[a,b]上可积
 - ➤ 若*f*在[*a*,*b*]上可积,则改变*f*在有限多个点处的值后所得到的函数在[*a*,*b*] 上仍可积,且积分值不变

(2)积分中值

设f(x) ∈ C[a,b], g(x) ∈ $\Re[a,b]$, 且g在[a,b]上不变号,则至少存在一点 ξ ∈ [a,b],

使
$$\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx$$

设 $f(x) \in C[a,b]$,则至少存在一点 $\xi \in [a,b]$,使 $\int_a^b f(x) dx = f(\xi)(b-a)$

2.积分计算

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x)|_{a}^{b}$$

$$\left(\int_{a}^{x} f(t)dt\right)' = f(x) \qquad \left(\int_{x}^{b} f(t)dt\right)' = -f(x)$$

$$\left(\int_{\psi(x)}^{\varphi(x)} f(t) \mathrm{d}t\right)' = f(\varphi(x)) \cdot \varphi'(x) - f(\psi(x)) \cdot \psi'(x)$$

(1)换元积分法

$$\int f(x)\mathrm{d}x = \left(\int f[\varphi(t)] \ \varphi'(t)\mathrm{d}t\right)_{t=\varphi^{-1}(x)} = F(t) + C = F\big(\varphi^{-1}(x)\big) + C$$

其中F(t)是 $f[\varphi(t)]\varphi'(t)$ 的一个原函数, φ^{-1} 是 φ 的反函数

(2)分部积分法

$$\int u dv = uv - \int v du$$

3.反常积分

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x) dx$$

(1)p积分

$$\int_{a}^{+\infty} \frac{1}{x^{p}} \mathrm{d}x \, (a>0)$$
在 $p>1$ 时收敛, $p\leq 1$ 时发散

(2)函数收敛与发散关系

设f, g在 $(a, +\infty)$ 连续,并且 $0 \le f(x) \le g(x)$, $\forall x \in (a, +\infty)$,则

$$ho$$
 当 $\int_a^{+\infty} g(x) dx$ 收敛时, $\int_a^{+\infty} f(x) dx$ 收敛

$$ightharpoonup$$
 当 $\int_a^{+\infty} f(x) \mathrm{d}x$ 发散时, $\int_a^{+\infty} g(x) \mathrm{d}x$ 发散

如果f,g在 $(a,+\infty)$ 非负连续,且g(x)>0,设 $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=\lambda$ 有限或 $+\infty$,那么

$$ightharpoonup$$
 当 $\lambda > 0$ 时, $\int_a^{+\infty} f(x) dx$ 与 $\int_a^{+\infty} g(x) dx$ 同敛散

$$\rightarrow$$
 当 $\lambda = 0$ 时,若 $\int_{a}^{+\infty} g(x) dx$ 收敛,则 $\int_{a}^{+\infty} f(x) dx$ 也收敛

$$\Rightarrow$$
 当 $\lambda = +\infty$ 时,若 $\int_{a}^{+\infty} g(x) dx$ 发散,则 $\int_{a}^{+\infty} f(x) dx$ 也发散

常取p积分作为比较对象

▶ 积不出来:

$$\int e^{\pm x^2} dx \qquad \int \frac{\sin x}{x} dx \qquad \int \sin x^2 dx \qquad \int \frac{dx}{\ln x}$$

$$\int \frac{dx}{\sqrt{1 + x^4}} \qquad \int \sqrt{1 + x^3} dx \qquad \int \sqrt{1 - k^2 \sin^2 x} dx$$

¥ 常用积分表

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right) + C$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} \left(x \sqrt{x^2 \pm a^2} \pm a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right) + C$$

$$\int \tan x dx = -\ln|\cos x| + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C$$

$$\int \csc x dx = \ln|\csc x - \cot x| + C$$

¥ 常用公式:

$$\int e^{ax} \sin(bx+k) dx = \frac{\left| \frac{(e^{ax})'}{e^{ax}} \frac{(\sin(bx+k))'}{\sin(bx+k)} \right|}{a^2 + b^2} + C$$

$$\int_0^{\pi} xf(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx = \pi \int_0^{\frac{\pi}{2}} f(\sin x) dx$$

¥ 常用方法:

▶ 万能代换

$$t = \tan \frac{x}{2}$$

$$\sin x = \frac{2t}{1+t^2}$$
 $\cos x = \frac{1-t^2}{1+t^2}$ $dx = \frac{2}{1+t^2}dt$

➤ 三角函数化有理函数

▶ 积化和差

> 隐函数积分: 化为参数方程

一元函数微分方程笔记

1.一阶微分方程

$$(1)\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{y}{x}\right)$$

令
$$u = \frac{y}{x}$$
, 则 $y = ux$, $\frac{dy}{dx} = u + x \frac{du}{dx}$, 得 $x \frac{du}{dx} = f(u) - u$

这是可分离变量的方程,用分离变量法求出通解后,再把 $u=\frac{y}{r}$ 代回即可

$$(2)\frac{dy}{dx} + P(x)y = 0$$

$$\frac{dy}{dx} = -P(x)y, \quad \frac{dy}{y} = -P(x)dx$$

$$y = Ce^{-\int P(x)dx}$$

(4)Bernoulli

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n \ (n \neq 0,1, n \in R)$$

$$\Downarrow \ u = y^{1-n}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} + (1-n)P(x)u = (1-n)Q(x)$$

$$(4)y'' = f(x, y') \ \underline{\mathcal{P}}$$

(5)
$$y'' = f(y, y')$$
 型
令 $y' = p$,目标: 化为 p 为未知函数, y 为自变量的方程
$$y'' = \frac{dy'}{dx} = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = p \frac{dp}{dy}$$
$$p \frac{dp}{dy} = f(y, p)$$

2.二阶微分方程

$$(1)a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x)$$

$$y = C_1y_1(x) + C_2y_2(x) + y^*(x)$$
 其中, $y_1(x)$, $y_2(x)$ 为 $a_0(x)y'' + a_1(x)y' + a_2(x)y = 0$ 两个线性无关的解, $y^*(x)$ 为待求方程的一个特解

(2)
$$ay'' + by' + cy = 0$$

求特征方程 $ar^2 + br + c = 0$
 $r_1 \neq r_2$: $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
 $r_1 = r_2$: $y = (C_1 + C_2 x)e^{r_1 x}$

$$r_{1,2} = \alpha \pm \beta i$$
: $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$
(3) $ay'' + by' + cy = f(x)$
1 $f(x) = P_m(x)$
 $c \neq 0$ 时,可设 $y^* = Q_m(x)$
 $c = 0, b \neq 0$ 时,可设 $y^* = xQ_m(x)$
 $c = b = 0$ 时,可设 $y^* = x^2Q_m(x)$
1 $f(x) = P_m(x)e^{\alpha x}$
 $y = ze^{\alpha x}$
 $a\alpha^2 + b\alpha + c \neq 0$ 时 $y^* = Q_m(x)e^{\alpha x}$
 $2a\alpha + b \neq 0, a\alpha^2 + b\alpha + c = 0$ 时 $y^* = xQ_m(x)e^{\alpha x}$
 $2a\alpha + b = a\alpha^2 + b\alpha + c = 0$ 时 $y^* = x^2Q_m(x)e^{\alpha x}$
1 $f(x) = e^{\alpha x}[P_l(x)\cos\beta x + P_n(x)\sin\beta x]$
 $y^* = x^k e^{\alpha x}[R_m^{(1)}(x)\cos\beta x + R_m^{(2)}(x)\sin\beta x]$
其中 $m = \max(l, n)$

 $k = \begin{cases} 0 & \alpha + \beta i \text{ π-$} \text{$\xi$-$} \text{ξ-$} \text{$\xi$-$} \\ 1 & \alpha + \beta i \text{ ξ-$} \text{$\xi$-$} \text{ξ-$} \text{$\xi$-$} \text{ξ-$} \end{cases}$

(4)常数异变法

(5)Euler 方程

$$a_0 x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \dots + a_{n-1} x y' + a_n y = f(x)$$

令 $t = \ln x$
记 $D = \frac{d}{dt}, D^2 = \frac{d^2}{dt^2}, \dots, D^n = \frac{d^n}{dt^n}$ (微分算子)
 $x^k y^{(k)} = D(D-1) \dots (D-k+1) y$

3.微分方程组

(1)消元法

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = a_1 y_1 + a_2 y_2 + g_1(x) \\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = b_1 y_1 + b_2 y_2 + g_2(x) \end{cases}$$

$$\pm \frac{\mathrm{d}y_1}{\mathrm{d}x} = a_1 y_1 + a_2 y_2 + g_1(x)$$

$$y_2 = \frac{1}{a_2} y_1' - \frac{a_1}{a_2} y_1 - \frac{1}{a_2} g_1(x)$$

$$y_2' = \frac{1}{a_2} y_1'' - \frac{a_1}{a_2} y_1' - \frac{1}{a_2} g_1'(x)$$

$$+ \frac{\mathrm{d}y_2}{\mathrm{d}x} = b_1 y_1 + b_2 y_2 + g_2(x)$$

$$+ \frac{\mathrm{d}y_2}{\mathrm{d}x} = b_1 y_1 + b_2 y_1' + (a_1 b_2 - a_2 b_1) y_1 = g_1'(x) - b_2 g_1(x) + a_2 g_2(x)$$

$$+ \frac{\mathrm{d}y_2}{\mathrm{d}x} = b_1 y_1, \quad + \frac{\mathrm{d}y_2}{\mathrm{d}x} = \frac{1}{a_2} y_1' - \frac{a_1}{a_2} y_1 - \frac{1}{a_2} g_1(x)$$

$$+ \frac{\mathrm{d}y_2}{\mathrm{d}x} = b_1 y_1, \quad + \frac{\mathrm{d}y_2}{\mathrm{d}x} = \frac{1}{a_2} y_1' - \frac{a_1}{a_2} y_1 - \frac{1}{a_2} g_1(x)$$

$$+ \frac{\mathrm{d}y_2}{\mathrm{d}x} = \frac{1}{a_2} y_1, \quad + \frac{1}{a_2} y_1' - \frac{1}{a_2} y_1 - \frac{1}{a_2} y_1 - \frac{1}{a_2} y_1 + \frac{1}{a_2} y_1 - \frac{1}{a_$$

(2)矩阵法

向量代数和空间解析几何笔记

1.向量运算

(1)向量积(面积)

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

(2)混合积(体积)

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

2.平面方程

(1)点法式

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

三点式

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

(2)点到平面距离

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

3.直线方程

(1)点向式

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

参数式

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases}$$

两点式

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

(2)直线夹角

$$\begin{split} \cos(L_1,L_2) &= \frac{|l_1 l_2 + m_1 m_2 + n_1 n_2|}{\sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}} \\ L_1 \perp L_2 &\Longleftrightarrow l_1 l_2 + m_1 m_2 + n_1 n_2 = 0 \\ L_1 \parallel L_2 &\Longleftrightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2} \end{split}$$

(3)直线和平面夹角

$$\sin \varphi = \frac{|Al + Bm + Cn|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{l^2 + m^2 + n^2}}$$

$$L \perp \Pi \iff \frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$

$$L \parallel \Pi \iff Al + Bm + Cn = 0$$

4.距离

(1)点到直线

$$d = \frac{\left| \overrightarrow{M_0M} \times \vec{s} \right|}{\left| \vec{s} \right|}$$

(2)异面直线

在两条直线上分别取一点 P_1, P_2

$$d = \frac{\left| \left[\overrightarrow{P_1} \overrightarrow{P_2} \overrightarrow{s_1} \overrightarrow{s_2} \right] \right|}{\left| \overrightarrow{s_1} \times \overrightarrow{s_2} \right|}$$

¥ 求异面直线公垂线:

设两直线方向向量分别为式,式

$$\overrightarrow{s_0} = \overrightarrow{s_1} \times \overrightarrow{s_2}$$

 $\overrightarrow{T_1} = \overrightarrow{s_1} \times \overrightarrow{s_0}$ 可求出 $\overrightarrow{s_1}$, $\overrightarrow{s_0}$ 决定的平面 Π_1 , $\overrightarrow{T_2} = \overrightarrow{s_2} \times \overrightarrow{s_0}$ 可求出 $\overrightarrow{s_2}$, $\overrightarrow{s_0}$ 决定的平面 Π_2 求两平面交线

¥ 切平面法向量:

$$\vec{n} = (F_x, F_y, F_z)$$

多元函数微分学笔记

1.极限

(1)夹逼法 $2ab \le a^2 + b^2 \le 2(a+b)^2$

(2)有界函数×无穷
$$\left|\frac{xy}{x^2+y^2}\right| \le \frac{1}{2}$$

(3)等价无穷小

2.连续和可导

(1)可导性

$$\left. \frac{\partial z}{\partial x} \right|_{M_0} = f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

(2)连续性

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

M(x,y)以任何方式趋于 $M_0(x_0,y_0)$ 时,函数f(x,y)都无限接近于 $f(x_0,y_0)$

不连续

若M(x,y)以两种不同方式趋于 $M_0(x_0,y_0)$ 时,f(x,y)趋于两个不同的值,则可断定极限不存在,也不连续。

一致连续

f是A上连续函数,则必是一致连续, $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$,使得 $\forall x_1, x_2 \in A$,当 $\|x_1 - x_2\| < \delta, \ |f(x_1) - f(x_2)| < \varepsilon$

3.可微

(1)求法

先求两个偏导

再验证
$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta z - f_x(x_0, y_0) \cdot \Delta x - f_y(x_0, y_0) \cdot \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

or

若z = f(x,y)的偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 在点M(x,y)处连续,则函数f在该点可微

(2)全微分

$$\mathrm{d}z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y$$

4.求导

(1)复合函数

按线相乘, 分线相加

(2)隐函数

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

(3)方程组确定的隐函数

$$\begin{cases}
F(x, y, u, v) = 0 \\
G(x, y, u, v) = 0
\end{cases}$$

$$\begin{cases} F_x + F_u \frac{\partial u}{\partial x} + F_v \frac{\partial v}{\partial x} = 0 \\ G_x + G_u \frac{\partial u}{\partial x} + G_v \frac{\partial v}{\partial x} = 0 \end{cases}$$
由此解得 $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$

5.方向导数和梯度

求方向导数和梯度z = f(x,y)在点 $M_0(x_0,y_0)$ 处沿方向 $\vec{l} = (a,b)$ 的方向导数:

- (1) 求梯度: grad $f(x_0, y_0) = \nabla f = (f_x(x_0, y_0), f_y(x_0, y_0))$
- (2) 单位化方向: $\frac{\vec{l}}{|\vec{l}|} = \{\cos\alpha, \cos\beta\}$
- (3) 求方向导数: $\frac{\partial z}{\partial l}\Big|_{M_0} = f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\cos\beta$

6.极值和最值

必要条件: 设z = f(x,y)在点 $M_0(x_0,y_0)$ 处有极值,则有 $f_x(x_0,y_0) = f_y(x_0,y_0) = 0$ 充分条件: 设 $M_0(x_0,y_0)$ 为z = f(x,y)的驻点,z = f(x,y)在 M_0 的某邻域内有二阶连续偏导数,记: $A = f_{xx}(x_0,y_0)$, $B = f_{xy}(x_0,y_0)$, $C = f_{yy}(x_0,y_0)$ 。 $\Delta = AC - B^2$ 。则:

- $\Delta > 0$ 时, M_0 是极值点,且当A > 0时, $f(x_0, y_0)$ 是极小值;当A < 0时, $f(x_0, y_0)$ 是极大值
- Arr $\Delta < 0$ 时, M_0 不是极值点
- $\Delta = 0$ 时,不能判定 M_0 是否为极值点

条件极值:

要求函数u = f(x, y, z)在条件 $\varphi(x, y, z) = 0$ 下的条件极值,

可首先作出拉格朗日函数:

 $F(x,y,z) = f(x,y,z) + \lambda \varphi(x,y,z)$, λ 一拉格朗日乘数

再由

$$\begin{cases} F_x = f_x + \lambda \varphi_x = 0 \\ F_y = f_y + \lambda \varphi_y = 0 \\ F_z = f_z + \lambda \varphi_z = 0 \\ F_\lambda = \varphi(x, y, z) = 0 \end{cases}$$

解出x,y,z及 λ , 其中(x,y,z)即为可能的极值点

7.几何应用

(1)切线和法平面

切线方程为

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}$$

法平面方程为

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0$$

(2)切平面和法线

切平面方程为:

$$F_x(M_0)(x-x_0) + F_y(M_0)(y-y_0) + F_z(M_0)(z-z_0) = 0$$

法线方程为:

$$\frac{x - x_0}{F_x(M_0)} = \frac{y - y_0}{F_y(M_0)} = \frac{z - z_0}{F_z(M_0)}$$

(3)弧长

直角坐标

$$S = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$

参数方程

$$S = \int_{\alpha}^{\beta} \sqrt{[\phi'(t)]^2 + [f'(t)]^2} dt$$

$$S = \int_{\alpha}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

极坐标

$$S = \int_{\alpha}^{\beta} \sqrt{[r(\theta)]^2 + [r'(\theta)]^2} d\theta$$

(4)曲率

$$K = \left| \frac{\mathrm{d}\alpha}{\mathrm{d}s} \right| = \left| \frac{y''}{(1+y'^2)^{\frac{3}{2}}} \right|$$

多元函数积分学笔记

1.数量函数积分

(1)定义

二重积分 (平面区域D的面积):

$$\iint_D f(x, y) d\sigma = \lim_{d \to 0} \sum_{k=1}^n f(\xi_k, \eta_k) \Delta \sigma_k$$

三重积分 (空间立体Ω的体积):

$$\iiint_{\Omega} f(x, y, z) \, dV = \lim_{d \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta V_k$$

第一型线积分(曲线L的长度):

$$\int_{L} f(x, y) ds = \lim_{d \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta s_{k}$$

$$\int_{L} f(x, y, z) ds = \lim_{d \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}, \zeta_{k}) \Delta s_{k}$$

第一型面积分(曲面 Σ 的面积):

$$\iint_{\Sigma} f(x, y, z) dA = \lim_{d \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta A_k$$

第二型曲线积分:

$$\int_{L} \vec{F}(x, y, z) \cdot \vec{T}(x, y, z) ds = \lim_{d \to 0} \sum_{i=1}^{n} \vec{F}(\xi_{i}, \eta_{i}, \zeta_{i}) \cdot \vec{T}(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta s_{i}$$

第二型曲面积分:

$$\iint_{\Sigma} \vec{F}(x, y, z) \cdot \vec{n} dS = \lim_{d \to 0} \sum_{i=1}^{n} \vec{F}(\xi_{i}, \eta_{i}, \zeta_{i}) \cdot \overrightarrow{\eta_{i}} \Delta S_{i}$$

(2)二重积分

▶ 计算

对于
$$D = \{(x,y) | a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)\}$$
 X-型区域:

$$\iint_D f(x,y) \, \mathrm{d}x \mathrm{d}y = \int_a^b \mathrm{d}x \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \, \mathrm{d}y$$
Y-型区域:

$$\iint_D f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_c^d \mathrm{d}y \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) \, \mathrm{d}x$$

对于
$$\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$$
, 若 $J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} \neq 0, (u,v) \in D'$

$$\iint_D f(x,y) \, dxdy = \iint_{D'} f(x(u,v),y(u,v)) |J(u,v)| \, dudv$$

当 重要结论:
$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

¥ 极坐标系变换

对于
$$D: \begin{cases} \varphi_1(\theta) \le r \le \varphi_2(\theta) \\ \alpha \le \theta \le \beta \end{cases}$$

$$\iint_{D} f(x, y) dxdy = \iint_{D} f(r \cos \theta, r \sin \theta) r drd\theta$$
$$= \int_{\alpha}^{\beta} d\theta \int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr$$

▶ 步骤: 直角坐标描述 → 画图 → 极坐标描述 → 积分

¥ 广义极坐标:

对于椭球
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$
,可令 $\begin{cases} x = a\rho\cos\varphi \\ y = b\rho\sin\varphi \end{cases}$

(3)三重积分

¥ 计算

细棒法:

$$\iiint_{\Omega} f(x, y, z) \, dxdydz = \iint_{D_{xy}} dxdy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \, dz$$
$$= \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} dy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz$$

切片法:

$$\iiint_{\Omega} f(x, y, z) \, dx dy dz = \int_{C_1}^{C_2} dz \iint_{D_z} f(x, y, z) \, dx dy$$

₩ 积分换元

$$J = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix} \neq 0$$

$$\iiint_{\Omega} f(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint_{\Omega} f\big(x(u,v,w),y(u,v,w),z(u,v,w)\big) |J| \, \mathrm{d}u \mathrm{d}v \mathrm{d}w$$

¥ 柱面坐标系变换

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \\ z = z \end{cases}$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d\rho d\varphi dz$$

步骤: 直角坐标描述 → 柱面坐标描述 → 简化 → 积分

¥ 球面坐标系变换

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}$$

$$\iiint_{\Omega} f \, dx dy dz = \iiint_{\Omega} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) r^2 \sin \theta \, dr d\theta d\varphi$$

(4)第一型线积分

$$y = y(x) \ (a \le x \le b)$$

$$\int_{L} f(x, y) ds = \int_{a}^{b} f(x, y(x)) \sqrt{1 + {y'}^{2}(t)} dx$$

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} (\alpha \le t \le \beta)$$

$$\int_{a}^{b} f(x, y) ds = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{x'^{2}(t) + y'^{2}(t)} dt$$

$$\rho = \rho(\varphi) \ (\alpha \le \varphi \le \beta)$$

$$\int_{L} f(x, y) ds = \int_{\alpha}^{\beta} f(\rho(\varphi) \cos\varphi, \rho(\varphi) \sin\varphi) \sqrt{\rho^{2}(\varphi) + {\rho'}^{2}(\varphi)} d\varphi$$

- 当 $f(x,y) \ge 0$ 时, $\int_L f(x,y) \, ds$ 表示以L为准线,母线平行于z轴,高为z = f(x,y)的柱面面积
- ▶ 化简方法:将曲线方程代入被积函数若L关于x轴对称,则

$$\int_{L} f(x,y) \, dS = \begin{cases} 0 & f 关于y 为奇函数 \\ 2 \int_{L_{\perp + iii}} f(x,y) \, dS & f 关于y 为偶函数 \end{cases}$$

若L关于xOy面对称,则

$$\int_{L} f(x, y, z) dS = \begin{cases} 0 & f 关于z为奇函数 \\ 2 \int_{L_{\pm 4 \pi 0}} f(x, y, z) dS & f 关于z为偶函数 \end{cases}$$

若有 $x \leftrightarrow y$ 轮换对称,则

$$\int_{L} f(x, y) \, dS = \int_{L} f(y, x) \, dS = \frac{1}{2} \int_{L} [f(x, y) + f(y, x)] \, dS$$

(5)第一型面积分

$$A = \iint_{D_{xy}} \frac{\sqrt{F_x^2 + F_y^2 + F_z^2}}{|F_z|} \, dx dy = \iint_{D_{xy}} \sqrt{1 + z_x^2 + z_y^2} \, dx dy$$

$$\iint_{\Sigma} f(x, y, z) dA = \iint_{D_{XY}} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} dx dy$$

化简方法:

将曲面方程代入被积函数 若 Σ 关于xOy面对称,则

$$\int_{\Sigma} f(x,y,z) \, \mathrm{d}\Sigma = \begin{cases} 0 & f 关于z 为奇函数 \\ 2 \int_{\Sigma_1} f(x,y,z) \, \mathrm{d}\Sigma & f 关于z 为偶函数 \end{cases}$$

若有 $x \leftrightarrow y$ 轮换对称,则

$$\int_{\Sigma} f(x, y, z) d\Sigma = \int_{\Sigma} f(y, x, z) d\Sigma = \frac{1}{2} \int_{\Sigma} [f(x, y, z) + f(y, x, z)] d\Sigma$$

(6)数量函数积分应用

设 Ω 是一个可以度量的物质几何形体, $\mu = \mu(M) \in C_{\Omega}$ 为密度函数,则有

μ Ω的质量:

$$m = \int_{\Omega} \mu(M) \mathrm{d}\Omega$$

Δ Ω的质心坐标:

$$\overline{x} = \frac{\int_{\Omega} x\mu(M) \, d\Omega}{m},$$

$$\overline{y} = \frac{\int_{\Omega} y\mu(M) \, d\Omega}{m},$$

$$\overline{z} = \frac{\int_{\Omega} z\mu(M) \, d\Omega}{m}$$

如果质量是均匀分布, 即μ为常数

$$\overline{x} = \frac{\int_{\Omega} x \, d\Omega}{\int_{\Omega} d\Omega}$$

$$\overline{y} = \frac{\int_{\Omega} y \, d\Omega}{\int_{\Omega} d\Omega}$$

$$\overline{z} = \frac{\int_{\Omega} z \, d\Omega}{\int_{\Omega} d\Omega}$$

2 Ω 关于x轴,y轴,z轴的转动惯量:

$$I_x = \int_{\Omega} (y^2 + z^2) \mu(M) d\Omega$$
$$I_y = \int_{\Omega} (x^2 + z^2) \mu(M) d\Omega$$
$$I_z = \int_{\Omega} (x^2 + y^2) \mu(M) d\Omega$$

2 Ω 对位于 $M_0(x_0,y_0,z_0)$ 的单位知点的引力F的三个分量:

$$F_{x} = \int_{\Omega} \frac{k(x - x_{0})\mu(M)}{r^{3}} d\Omega$$

$$F_{y} = \int_{\Omega} \frac{k(y - y_{0})\mu(M)}{r^{3}} d\Omega$$

$$F_{z} = \int_{\Omega} \frac{k(z - z_{0})\mu(M)}{r^{3}} d\Omega$$

$$r = \sqrt{(x - x_{0})^{2} + (y - y_{0})^{2} + (z - z_{0})^{2}}$$

2.向量函数积分

(1)第二型线积分

设
$$\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$$

$$\int_{L} \vec{F}(x,y,z) \cdot \vec{T}(x,y,z) ds \left[\text{坐标形式} \right] = \int_{L} \vec{F} \cdot d\vec{s} \left[\text{向量形式} \right]$$
$$= \int_{L} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz$$

4 性质

▶ 线性性:

$$\int_{L} \left[k_{1} \overrightarrow{F_{1}} + k_{2} \overrightarrow{F_{2}} \right] \cdot \overrightarrow{ds} = k_{1} \int_{L} \overrightarrow{F_{1}} \cdot \overrightarrow{ds} + k_{2} \int_{L} \overrightarrow{F_{2}} \cdot \overrightarrow{ds}$$

▶ 积分弧段可加性:

$$\int_{L} \vec{F} \cdot \overrightarrow{ds} = \int_{L_{1}} \vec{F} \cdot \overrightarrow{ds} + \int_{L_{2}} \vec{F} \cdot \overrightarrow{ds}$$

▶ 方向性:

$$\int_{L^{-}} \vec{F} \cdot \overrightarrow{ds} = -\int_{L} \vec{F} \cdot \overrightarrow{ds}$$

当 计算

$$\int_{L} \vec{F}(x, y, z) \cdot \overrightarrow{ds} = \int_{L} P dx + Q dy + R dz$$

$$= \int_{\alpha}^{\beta} \{P[x(t), y(t), z(t)]x'(t) + Qy'(t) + Rz'(t)\} dt$$

若平面曲线L的直角坐标方程为y = y(x)

$$\int_{L} \vec{F}(x,y) \cdot \overrightarrow{ds} = \int_{a}^{b} \{P[x,y(x)] + Q[x,y(x)]y'(x)\} dx$$

(2)第二型面积分

2 定义

$$\iint_{\Sigma} \vec{F}(x, y, z) \cdot \vec{n} dS = \iint_{\Sigma} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy$$

 $dy \wedge dz$ 是dS在yOz面上的投影, $dz \wedge dx$ 是dS在zOx面上的投影, $dx \wedge dy$ 是dS 在xOy面上的投影

¥ 正负

设函数R(x,y,z)在有向光滑曲面 $\Sigma: z=z(x,y), (x,y)\in D_{xy}$ 上连续,则有

$$\iint_{\Sigma} R(x, y, z) dx \wedge dy = \pm \iint_{D_{xy}} R(x, y, z(x, y)) dxdy$$

上侧取正,下侧取负

若曲面为Σ: x = x(y,z),则有

$$\iint_{\Sigma} P(x, y, z) dy \wedge dz = \pm \iint_{D_{\text{tot}}} P(x(y, z), y, z) dy dz$$

前侧取正,后侧取负

若曲面为 Σ : y = y(x,z),则有

$$\iint_{\Sigma} Q(x, y, z) dx \wedge dz = \pm \iint_{D_{XZ}} Q(x, y(x, z), z) dxdz$$

右侧取正,左侧取负

→ 步骤: 代入 → 投影 → 定号 → 换域

(3)两类积分联系

设
$$\vec{F} = \{P, Q, R\}, \vec{T} = \{\cos \alpha, \cos \beta, \cos \gamma\}$$

$$\int_{L} P dx + Q dy + R dz = \int_{L} (P\cos \alpha + Q\cos \beta + R\cos \gamma) ds$$

$$\iint_{\Sigma} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \iint_{\Sigma} [P\cos \alpha + Q\cos \beta + R\cos \gamma] dS$$

3.Green 公式

- (1)单连通区域和复联通区域
 - 当 若平面区域D内任一封闭曲线围成的部分都属于D,则D称为单连通区域,否则
 称为复连通区域
- 划 规定C的正向为,当观察者沿C的此方向行走时,D靠近它的部分总在它的左侧 (2)定义

$$\oint_C P dx + Q dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

条件: 封闭、正向、偏导数连续

(3)面积计算

$$A = \frac{1}{2} \oint_C x \mathrm{d}y - y \mathrm{d}x$$

- (4)等价命题
 - ▶ $\forall (x,y) \in D$, $\dot{q} \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$
 - ▶ 沿闭曲线C,有 $\oint_C P dx + Q dy = 0$
 - ho $\int_{C_{(AB)}} P dx + Q dy$ 与积分路径无关
 - ightharpoonup $\exists u(x,y),$ 使得du = Pdx + Qdy
- (5)全微分方程

$$du = Pdx + Qdy$$

$$P = \frac{\partial u}{\partial x}, Q = \frac{\partial u}{\partial y}$$

当 验证全微分:

$$\frac{\partial P}{\partial y} \equiv \frac{\partial Q}{\partial x}$$

4.Gauss 公式

(1)定义

设 Ω 是以分片光滑曲面 Σ 为边界曲面的空间有界闭域, Σ 取外侧

$$\iint_{\Sigma} \vec{F}(M) \cdot \overrightarrow{dA} = \iint_{\Sigma} P \, \mathrm{d}y \wedge \, \mathrm{d}z + Q \, \mathrm{d}z \wedge \, \mathrm{d}x + R \, \mathrm{d}x \wedge \, \mathrm{d}y$$

$$= \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

(2)散度

$$\operatorname{div}\vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

5.Stokes 公式

(1)定义

设曲面 Σ 的边界曲线为 Γ , Γ 的方向与曲面 Σ 所取侧的法向量构成右手系

$$\oint_{\Gamma} P dx + Q dy + R dz$$

$$= \iint_{\Sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy$$

$$= \iint_{\Sigma} \left| \frac{\partial y}{\partial x} \wedge dz \right|_{P} \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial z} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy$$

(2)旋度

$$\operatorname{rot}\vec{F}(M) = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

6.几种特殊向量场

(1)微分算子

山 一阶微分算子:
$$D = \frac{d}{dx}$$

当 向量微分算子 :
$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$
 (Hamilton 算子) 性质:

$$\nabla u = \operatorname{grad} u = \left\{ \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \right\},$$

$$\nabla^2 u = \nabla \cdot \nabla u = \nabla \cdot \operatorname{grad} u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & O & R \end{vmatrix} = \text{rot}\vec{F}$$

(2)场

当
$$\vec{F}$$
为保守场:空间曲线积分 $\int_L \vec{F} \cdot \vec{ds}$ 与路径无关 \vec{F} 为无旋场: $\nabla \times \vec{F} = \operatorname{rot} \vec{F} = 0$

$$\vec{F}$$
为有势场: 存在函数 u ,使 $\vec{F}=\nabla u=\operatorname{grad} u$,其中 $-u$ 称为势函数,即 $\mathrm{d} u=P\mathrm{d} x+Q\mathrm{d} y+R\mathrm{d} z$

$$\vec{F}$$
为无源场: $\nabla \cdot \vec{F} = \operatorname{div} \vec{F} = 0$

$$\vec{F}$$
为调和场: $\nabla \cdot \vec{F} = \text{div} \vec{F} = 0$ 且 $\nabla \times \vec{F} = \text{rot} \vec{F} = 0$

≌ 调和场=无旋场+无源场

则存在势函数-u,使 $\vec{F} = \nabla u = \operatorname{grad} u$

$$\nabla \cdot \vec{F} = \nabla \cdot \nabla u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

即u为调和函数

$$\frac{\partial u}{\partial \vec{n}} = \frac{\partial u}{\partial x} \cos(\vec{n}, \vec{x}) + \frac{\partial u}{\partial y} \cos(\vec{n}, \vec{y})$$

无穷级数笔记

1.常数项级数

(1)定义

- 》 称级数 $\sum_{n=1}^{\infty} c_n$ 的前n项之和 $S_n = \sum_{k=1}^{n} c_k = c_1 + c_2 + \cdots + c_n$ 为该级数的前n项部分和,简称为部分和
- ightharpoonup 若 $\lim_{n\to\infty} s_n = s$,则称复级数 $\sum_{n=1}^{\infty} c_n$ 收敛,并称s为该级数的和,记为 $\sum_{n=1}^{\infty} c_n = s$
- ightharpoonup 若 $\lim_{n\to\infty} s_n$ 不存在,则称复级数 $\sum_{n=1}^{\infty} c_n$ 发散

(2)定理

> 级数收敛的必要条件

若
$$\sum_{n=1}^{\infty} u_n$$
收敛,则 $\lim_{n\to\infty} u_n = 0$

▶ 柯西收敛准则

 $\sum_{n=1}^{\infty} u_n$ 收敛的充要条件是 $\forall \varepsilon > 0$, $\exists N \in N_+$,使当n > N时,对 $\forall p \in N_+$,总有

$$\left| \sum_{k=n+1}^{n+p} u_k \right| = \left| u_{n+1} + u_{n+2} + \dots u_{n+p} \right| < \varepsilon$$

(3)性质

- Arr 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,其和为S,则对任意常数k,级数 $\sum_{n=1}^{\infty} ku_n$ 也收敛,其和为kS
- ightharpoonup 若级数 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 都收敛,其和分别为S = T,则级数 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 也收敛,其和为 $S \pm T$
- ▶ 在级数中去掉或加上有限多项,不改变级数的敛散性
- \succ 若级数 $\sum_{n=1}^{\infty}u_n$ 收敛,则不改变它的各项次序任意添加括号后构成的新级数 $\sum_{m=1}^{\infty}v_m$ 仍然收敛且其和不变。如果加括号后的级数发散,则原级数也发散

(4)正项级数

正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛⇔它的部分和数列 $\{S_n\}$ 有界

■ 比较判别法的不等式形式

设有正项级数 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$,且 $u_n \leq v_n (n = 1, 2, \cdots)$

- ightharpoonup 若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛

$$p$$
级数 $\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \exists p > 1 \text{ 时, 收敛} \\ \exists p \leq 1 \text{ 时, 发散} \end{cases}$

用比较审敛法判定正项级数是否收敛时,常用等比级数和p级数作为比较级数

≥ 比较判别法的极限形式

设 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 均为正项级数,且 $\lim_{n\to\infty} \frac{u_n}{v_n} = L$,则

- ightharpoonup 当 $0 < L < +\infty$ 时, $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 具有相同的敛散性
- ightharpoonup 当L=0,且 $\sum_{n=1}^{\infty}v_n$ 收敛时, $\sum_{n=1}^{\infty}u_n$ 也收敛

ightharpoonup 当 $L = +\infty$,且 $\sum_{n=1}^{\infty} v_n$ 发散时, $\sum_{n=1}^{\infty} u_n$ 也发散

为了便于使用比较判别法,需了解下列无穷大之间的关系,它们按照阶由低往

高排列为: $\ln^{\alpha} n$, n^{β} , $a^{n}(a > 1)$, n!, n^{n} , 其中 $(\alpha > 0, \beta > 0)$

■ D'Alembert 判别法

设 $\sum_{n=1}^{\infty} u_n$ 为正项级数,若 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则

- ho 当 ho < 1时, $\sum_{n=1}^{\infty} u_n$ 收敛
- ho 当 ho > 1时, $\sum_{n=1}^{\infty} u_n$ 发散
- ho 当 ho = 1时, $\sum_{n=1}^{\infty} u_n$ 可能收敛也可能发散

凡是用比值审敛法判定的发散级数,都必有 $\lim_{n\to\infty}u_n\neq 0$

Y Cauchy 判别法

设 $\sum_{n=1}^{\infty} u_n$ 为正项级数,且 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$,则

- ho 当 ρ < 1 时, $\sum_{n=1}^{\infty} u_n$ 收敛
- ho 当ho > 1时(或 $\lim_{n \to \infty} \sqrt[n]{u_n} = +\infty$)时, $\sum_{n=1}^{\infty} u_n$ 发散
- Arr 当 $\rho = 1$ 时,不能判别

¥ 积分判别法

设 $f \in C[1,+\infty)$, $f \ge 0$ 且单调递减, $u_n = f(n)(n = 1,2,\cdots)$,

则反常积分 $\int_1^{+\infty} f(x) \mathrm{d}x$ 收敛或发散时,正项级数 $\sum_{n=1}^{\infty} u_n$ 也随之收敛或发散

(5)交错级数

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - u_4 + \dots + (-1)^{n-1} u_n + \dots$$

¥ Leibniz 判别法

若 交 错 级 数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n (u_n > 0)$ 满 足 $u_n \ge u_{n+1} (n = 1, 2, \cdots)$ 且 $\lim_{n\to\infty} u_n = 0$,则该交错级数收敛,且其和 $S \le u_1$,余项 r_n 满足 $|r_n| \le u_{n+1}$

(6)绝对收敛与条件收敛

若级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则称原级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛 若级数 $\sum_{n=1}^{\infty} |u_n|$ 发散,但级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则称级数 $\sum_{n=1}^{\infty} u_n$ 为条件收敛

(7)Γ函数

函数
$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$$
, $x \in (0, +\infty)$ 称为 Gamma 函数
$$\Gamma(x+1) = x\Gamma(x)(x>0)$$

$$\Gamma(n+1) = n!$$

$$\Gamma(x) = \begin{cases} \int_0^{+\infty} e^{-t} t^{x-1} dt, & x>0 \\ \frac{\Gamma(x+1)}{x}, & x<0 \text{ } \exists x \neq -1, -2, -3, \cdots \end{cases}$$

$$\Gamma(x) = 2 \int_0^{+\infty} e^{-u^2} u^{2x-1} du$$

2.函数项级数

(1)定义

- ν $u_n(z)$ 为定义在区域D上的复变函数列,则称 $u_1(z) + u_2(z) + \cdots + u_n(z) + \cdots = \sum_{n=1}^{\infty} u_n(z)$ 为定义在区域D上的复函数项级数
- ightharpoonup 若z为实数x,则称 $\sum_{n=1}^{\infty} u_n(x)$ 为实函数项级数
- ightharpoonup 若 $\sum_{n=1}^{\infty} u_n(z_0)$ 收敛,则称 z_0 为函数项级数 $\sum_{n=1}^{\infty} u_n(z)$ 的收敛点,收敛点的全体称为收敛域
- ightarrow 对于任一 $z \in$ 收敛域D, $\sum_{n=1}^{\infty} u_n(z)$ 收敛,因而有一个确定的和S(z),称为和函数。和函数的定义域就是级数的收敛域D
- (2)一致收敛性

 $\forall z \in D, \forall \varepsilon > 0, \exists N(z, \varepsilon) \in N_+, \exists n > N(z, \varepsilon)$ 时,恒有 $|S_n(z) - S(z)| < \varepsilon$ 对同一个 ε ,当z不同,N也不同

(3)Cauchy 一致收敛准则

函数项级数 $\sum_{n=1}^{\infty} u_n(z)$ 在D上一致收敛的充要条件是 $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in N_+$, $\exists n > N(\varepsilon)$ 时,对 $\forall p \in N_+$, $\forall z \in D$, 恒有

$$\left|S_{n+p}(z) - S_n(z)\right| = \left|\sum_{k=n+1}^{n+p} u_k(z)\right| < \varepsilon$$

- ightharpoonup 推论:设函数项级数 $\sum_{n=1}^{\infty}u_n(z)$ 在区域D上一致收敛,则函数列 $\{u_n(z)\}$ 在D上一致收敛于0
- (4)Weierstrass 或 M 判别法

设函数项级数 $\sum_{n=1}^{\infty} u_n(z)$ ($z \in D$)与正项级数 $\sum_{n=1}^{\infty} M_n$ 满足条件

A.
$$|u_n(z)| \leq M_n, \forall z \in D, \forall n \in N_+$$

B. $\sum_{n=1}^{\infty} M_n$ 收敛

则 $\sum_{n=1}^{\infty} u_n(z)$ 在D上一致收敛

(5)定理

$$\int_{x_0}^x S(t) dt = \int_{x_0}^x \left(\sum_{n=1}^\infty u_n(t) \right) dt = \sum_{n=1}^\infty \left(\int_{x_0}^x u_n(t) dt \right)$$

$$S'(x) = \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x)$$

3.幂级数

(1)定义

 $(z-z_0)$ 的幂级数: $\sum_{n=0}^{\infty} c_n (z-z_0)^n = c_0 + c_1 (z-z_0) + \cdots + c_n (z-z_0)^n + \cdots$ z的幂级数: $\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 z + \cdots + c_n z^n + \cdots$ 当 c_n , z为实数时,得实的幂级数 $\sum_{n=0}^{\infty} a_n x^n$

(2)定理

- ¥ Abel 定理
 - > 若 $\sum_{n=0}^{\infty} c_n z^n$ 在点 z_0 ($z_0 \neq 0$)收敛则对满足 $|z| < |z_0|$ 的一切z, $\sum_{n=0}^{\infty} c_n z^n$ 绝对收敛
 - ightharpoonup 若 $\sum_{n=0}^{\infty} c_n z^n$ 在点 z_0 发散,则对满足 $|z| > |z_0|$ 的一切z, $\sum_{n=0}^{\infty} c_n z^n$ 发散
- **当** 设 $\sum_{n=0}^{\infty} c_n z^n$ 不是仅在z=0处收敛,也不是在整个复平面上收敛,则必存在一个常数R > 0,使:当|z| < R时,级数绝对收敛,当|z| > R时,级数发散,当|z| = R时,不一定
 - R为收敛半径

若 $\sum_{n=0}^{\infty} c_n z^n$ 仅在z=0处收敛,规定R=0若 $\sum_{n=0}^{\infty} c_n z^n$ 在整个复平面上收敛,规定 $R=+\infty$

求幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域时,应先求幂级数的收敛区间(-R,R),再判断 $x = \pm R$ 处是否收敛,决定收敛域是开区间还是闭区间或半开半闭区间.

y 设 $\lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| = \rho$ (或 $\lim_{n\to\infty} \sqrt[n]{|C_n|} = \rho$),则 $\sum_{n=0}^{\infty} C_n z^n$ 的收敛半径

$$R = \begin{cases} \frac{1}{\rho} & 0 < \rho < +\infty \\ +\infty & \rho = 0 \\ 0 & \rho = +\infty \end{cases}$$

对于缺项的幂级数不能直接用公式求R,要用比值法或根值法

(3)性质

¥ 代数运算

- $ag{R} \qquad \ddot{\otimes} f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad (|z| < R_1), \quad g(z) = \sum_{n=0}^{\infty} b_n z^n, \quad (|z| < R_2), \quad R = \min\{R_1, R_2\}, \quad \mathbb{M} f(z) \pm g(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n$
- $f(z) \cdot g(z) = a_0 b_0 + (a_0 b_1 + a_1 b_0) z + \dots + (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0) z^n + \dots, |z| < R$
- ▶ 分析性质

设 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为R > 0,和函数为S(z),则

- ► S(z)在收敛圆(即|z| < R)内解析</p>
- $S'(z) = (\sum_{n=0}^{\infty} c_n z^n)' = \sum_{n=0}^{\infty} (c_n z^n)' = \sum_{n=1}^{\infty} n c_n z^{n-1}$
- $\int_L S(z) dz = \int_L (\sum_{n=0}^{\infty} c_n z^n) dz = \sum_{n=0}^{\infty} c_n \int_L z^n dz$ (L为圆域|z| < R内的简单曲线)且不改变收敛半径,但在收敛圆周上的敛散性可能改变

(4)函数展开为幂级数

2 定义

设复函数f(z)在区域D内解析, $z_0 \in D$,则当 $|z-z_0| < R$ 时,R为 z_0 到D的边界上各点的最短距离,f(z)可以展开成为 $z-z_0$ 的幂级数 $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ 且展开式唯一

 \triangleright 注意复函数f(z)与实函数f(x)可以展开成为幂级数的条件的不同。复函

数:f(z)解析。实函数: f(x)有任意阶导数,且余项趋于零

 \Rightarrow 称 $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ 为f(z)在 $z=z_0$ 处的 Taylor 级数。f(z)在 $z=z_0$ 处的 Taylor 级数的收敛半径R等于从 z_0 到f(z)的距 z_0 最近一个奇点的距离。

称 $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$ 为f(z)在z=0处的 Maclaurin 级数

▶ 根据解析函数的高阶导数公式, Taylor 系数可表示为:

$$C_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

f(z)在D内解析的充要条件是f(z)在D内任一点 z_0 的邻域内可以展开为 $z-z_0$ 的幂级数

▶ 求解

- ▶ 直接法
 - ✓ 求出 f(z)的 Taylor 级数

$$f(z_0) + f'(z_0)(z - z_0) + \cdots + \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n + \cdots$$

 \checkmark 求出幂级数 $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ 的收敛半径R若函数为实函数,还需考 察 $\lim_{n\to\infty} R_n(x) = \lim_{n\to\infty} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$, ξ 在 x 与 x_0 之 间 若 $\lim_{n\to\infty} R_n(x) = 0$ 则 $x \in (-R,R)$ 时, $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ 若极限不为0,

则幂级数
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
不收敛于 $f(x)$

▶ 间接法

以展式唯一性为依据,利用幂级数的性质(如四则运算、变量代换,逐项求导、逐项积分等)及一些已知的展式,将f(z)展开为幂级数

▶ 常用展开

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n, \quad |z| < +\infty$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad -1 < x < 1$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad -1 < x < 1$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad |z| < +\infty$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad |z| < +\infty$$

$$\ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}, \quad -1 < z \le 1$$

$$(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2!} z^2 + \dots + \frac{\alpha(\alpha-1) \cdots (\alpha-n+1)}{n!} z^n + \dots, |z| < 1$$

4.Fourier 级数

(1)Euler-Fourier 公式

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx \, (n = 0, 1, 2, \dots) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx \, (n = 1, 2, \dots) \end{cases}$$

(2)Fourier 级数

当 设f(x)在 $[-\pi,\pi]$ 上可积, a_n,b_n 为 Fourier 级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

¥ Dirichlet 收敛定理

设f(x)以 2π 为周期,在 $[-\pi,\pi]$ 上满足连续或只有有限个第一类间断点,且只有有限个极值点,则 f(x)的 Fourier 级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 在 $[-\pi,\pi]$ 上收敛,且其和函数为

$$S(x) = egin{cases} f(x) & x > f(x)$$
的连续点 $\frac{f(x+0)+f(x-0)}{2} & x > f(x)$ 的第一类间断点 $\frac{f(-\pi+0)+f(\pi-0)}{2} & x = \pm \pi \end{cases}$

- **Ψ** f(x)在 $[-\pi,\pi]$ 上展开为 Fourier 级数的步骤
 - ▶ 用狄氏条件判断f(x)能否展开为 Fourier 级数
 - ▶ 求出 Fourier 系数
 - \triangleright 写出 Fourier 级数并注明在何处收敛于f(x)
 - ightharpoonup 画出f(x)和S(x)的图形(至少画出三个周期),并写出S(x)的表达式
- ▶ 周期延拓

若 f(x)只在 $[-\pi,\pi]$ 上有定义,且满足收敛定理的条件,则将 f(x)延拓为以 2π 为周期的函数 F(x),即定义一个函数 F(x),使它在 $(-\infty,+\infty)$ 上以 2π 为周期,在 $(-\pi,\pi]$ 上 F(x) = f(x),然后将 F(x)展开为 Fourie 级数,再把 x限制在 $(-\pi,\pi)$ 上,便得 f(x)的 Fourier 级数展开式。根据收敛定理,这级数在 $x = \pm \pi$ 处收敛 $x = f(-\pi+0) + f(\pi-0)$

于
$$\frac{f(-\pi+0)+f(\pi-0)}{2}$$
。 $F(x)$ 称为 $f(x)$ 的周期延拓

(3)正弦级数和余弦级数

ソ 定义

ightharpoonup 当 f(x)为奇函数时,它的 Fourier 系数为

$$a_n = 0 (n = 0,1,2,\cdots)$$

 $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx \, (n = 1,2,3,\cdots)$

 $f(x) \sim \sum_{n=1}^{\infty} b_n \sin nx$ 是正弦级数

Arr 当 f(x)为偶函数时,它的 Fourier 系数为

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx \, (n = 0,1,2,3,\cdots)$$

$$b_n = 0 (n = 1, 2, \cdots)$$

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$
是余弦级数

₩ 展开

将f(x)在[0,π]上展开成正弦级数:

则F(x)是 $(-\pi,\pi)$ 上的奇函数, 称为f(x)的奇式延拓

将F(x)在 $(-\pi,\pi]$ 上展开成 Fourier 级数,再将x限制在 $(0,\pi]$ 上,此时F(x) \equiv f(x),便得f(x)的正弦级数展开式,其中

$$a_n = 0 (n = 0,1,2,\cdots)$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} F(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx \, (n = 1, 2, 3, \dots)$$

将f(x)在[0,π]上展开成余弦级数:

则F(x)是 $[-\pi,\pi]$ 上的偶函数,称为f(x)的偶式延拓

将F(x)在 $[-\pi,\pi]$ 上展开成 Fourier 级数,再将x限制在 $[0,\pi]$ 上,便得f(x)的余弦级数展开式,其中

$$a_n = \frac{2}{\pi} \int_0^{\pi} F(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx \, (n = 0, 1, 2, 3, \dots)$$

$$b_n = 0 (n = 1, 2, 3, \dots)$$

(4)周期为2l的函数的 Fourier 级数

义 设周期为2l的函数f(x)在[-l, l]上满足狄氏条件,则

$$\begin{split} &\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right) \\ &= \begin{cases} f(x), & x \ni f(x) \text{ in } \text{ in } \frac{n\pi x}{l} \\ \frac{f(x+0) + f(x-0)}{2}, & x \ni f(x) \text{ in } \text{ in } \text{ in } \frac{n\pi x}{l} \end{cases} \\ &\frac{f(-l+0) + f(l-0)}{2}, & x = \pm l \end{cases} \\ &a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, \mathrm{d} x \, (n = 0, 1, 2, \cdots) \\ &b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} \, \mathrm{d} x \, (n = 1, 2, \cdots) \end{split}$$

▶ 奇偶函数

ightharpoonup 若f(x)为[-l, l]上的奇函数,则

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$$

$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx (n = 1, 2, 3, \dots)$$

ightharpoonup 若f(x)为[-l, l]上的偶函数,则

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$$
$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx (n = 0, 1, 2, \dots)$$

¥ 级数证明:

- 1. 已知级数通项性质证收敛: 比较判别法不等式形式
- 2. 己知一个级数收敛,证另一个收敛:比较判别法不等式形式
- 3. 己知级数通项为两项和/差,求敛散性:部分和