

Laboratorio di Sicurezza Informatica

Crittografia moderna

Marco Prandini

Dipartimento di Informatica – Scienza e Ingegneria

Cifrari a blocchi

Partendo dai cifrari classici:

- Osservazioni di base sull'input
 - È utile ridurre a priori la riconoscibilità statistica dei simboli dell'alfabeto
 - Aumentandone il numero (frequenza media = 1/N)

 → facile se prendo come "lettera" un blocco di 8 bit,
 ma anche 16, 32, 64...
 - Rendendoli equiprobabili (compressione)
- Osservazioni di base sull'algoritmo
 - Ogni operazione di sostituzione e trasposizione aumenta la confusione e la diffusione

I cifrari composti

- Un round sostituisce e traspone
- Tanti round incrementano l'effetto

Cifrari a blocchi

- La parte difficile è implementare E e D "modularmente" per poter lavorare liberamente sul numero di round
- Cifrari di Feistel
- Standard storico: DES (National Bureau of Standards degli U.S.A in collaborazione con IBM, pubblicato nel 1977, blocchi di 64 bit, chiave di 56 bit)

Figure 3.3 Feistel Encryption and Decryption (16 rounds)

AES

 Standard attuale: FIPS 197 "Advanced Encryption Standard" (Rijndael)

https://csrc.nist.gov/publications/detail/fips/197/final

Interessante il processo di selezione

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development

- Non usa la struttura di Feistel ma l'aritmetica dei campi finiti
- Blocchi di 128 bit
- Può utilizzare chiavi di lunghezza diversa
 - 128 bit
 - 192 bit
 - 256 bit

I modi di operazione

- Cifrare blocco per blocco è male
 - Stesso plaintext = stesso ciphertext → analisi facilitata
 - Modifica a un blocco = altri blocchi inalterati → integrità non protetta

Electronic Codebook (ECB) mode encryption

I modi di operazione

Soluzione:

- Cifrare un blocco modificandolo col contributo del blocco cifrato precedente
 - Cipher Block Chaining (CBC)
 - Cipher Feedback (CFB)
 - Output Feedback (OFB)

Cipher Block Chaining (CBC) mode encryption

Realizzare l'equivalente a blocchi di un cifrario a flusso

Counter (CTR)

Counter (CTR) mode encryption

Cifrari a flusso

- One-Time Pad con alfabeto insignificante: solo 0 e 1 → Analisi statistica delle frequenze inapplicabile
- Flusso di chiave = generazione sequenza casuale
 - Seme = chiave condivisa

Funzioni hash

- Gli stessi principi dei cifrari a blocchi possono essere usati senza chiave per ottenere "impronte digitali" compatte di documenti di dimensione arbitraria
- Fingerprint:
 - dimensione fissa (f. non biunivoca)
 - f. pubblica, senza chiave
- Funzioni hash crittografiche robuste se:
 - Non si può trovare un documento che abbia un fingerprint prefissato
 (proprietà di unidirezionalità, o one-way)
 - Non si può trovare una coppia di documenti con lo stesso fingerprint (proprietà di assenza di collisioni, o collision-free)

Utilità delle funzioni hash

- Integrità (checksum)
 - Ok contro alterazioni accidentali

data'

- → Man-in-the-middle attack!
- Protezione necessaria
 - Canale sicuro
 - Altro?
- Autenticazione?
 - Manca elemento univoco dell'autore

Attacchi a one-way property

- Ricerca di difetti nell'algoritmo
 - Improbabile
- Forza bruta
 - Generare documenti a caso e vedere se hanno la fingerprint cercata
 - Tempo crescente esponenzialmente con la lunghezza dell'impronta
- P Famiglie più diffuse
 - MD5 (128 bit), MD6 (fino a 512 bit)
 - RIPEMD (128, 160,320 bit)
 - SHA (160, 224,256,384,512) / SHA-3 (arbitraria)

Attacchi a collision-free

- Ricerca di difetti nell'algoritmo
 - Trovati! SHA-1 (2005), MD5 (2008)
- Birthday attack (paradosso del compleanno)
 - Dimensione di un gruppo per avere probabilità >50% che ci sia un compleanno in una data specifica?
 - $P_{\text{non_compleanno}} = \frac{364}{365}$; in gruppo di N, $P_{\text{nessun_compleanno}} = (\frac{364}{365})^N$
 - $P<0.5 \rightarrow N>253$
 - Dimensione di un gruppo per avere probabilità >50% che due membri compiano gli anni lo stesso giorno?
 - Per singola coppia di persone, stesso calcolo
 - Ma vale per N coppie! Con M persone compongo $\frac{M*(M-1)}{N}$ coppie
 - Bastano circa $M = \sqrt{2}N$ persone = 23
 - Per un hash di *m* bit, la dimensione del set è 2^m
 - Per trovare una coppia di documenti con lo stesso hash bastano 2m/2 tentativi

Una lettera in 2³⁷ varianti

Dear Anthony, Barton, the { new | chief | jewellery buyer for { our | the } Northern {European | area | . He | will take | over {the | ... | will take | over {the | ... | will take | over | ... | will take | over | ... | the | will take | over | ... | will take | ... | will take | over | ... | will take | over | ... | will take | over | ... | will take | ... responsibility for { all the whole of } our interests in { watches and jewellery jewellery and watches in the { area region }. Please { afford give } him { every all the } help he { may need needs } to $\begin{cases} \text{seek out} \\ \text{find} \end{cases}$ the most $\begin{cases} \text{modern} \\ \text{up to date} \end{cases}$ lines for the $\begin{cases} \text{top} \\ \text{high} \end{cases}$ end of the market. He is { empowered } to receive on our behalf { samples } of the of ten thousand dollars. He will {carry hold} a signed copy of this {document as proof of identity. An order with his signature, which is {appended} attached authorizes above allows you to charge the cost to this company at the head office address. We ${\text{fully} \atop --}$ expect that our ${\text{level} \atop \text{volume}}$ of orders will increase in the ${following \atop next}$ year and ${trust \atop hope}$ that the new appointment will ${be \atop prove}$ (advantageous to both our companies.

W. Stallings – Cryptography and Network Security

Altri attacchi

Lenght extension

- Noto H(m₁) e la lunghezza di m₁
- Senza conoscere m₁
- Scelto un m₂ dall'attaccante
- È possibile calcolare H(m₁ || m₂)

Principali vulnerabili:

- MD5, SHA-1, RIPEMD-160, SHA-256, SHA-512
- Principali resistenti:
 - SHA-3, varianti troncate di SHA-2

Problemi difficili e trabocchetti

- Funzioni pseudo-unidirezionali
 - Operazioni facili in un verso e (speriamo) computazionalmente infattibili nell'altro
 - A meno di conoscere un segreto
- Fattorizzazione di grandi numeri
- Molte operazioni in aritmetica modulare
 - Numeri interi
 - Come risultato di un'operazione si prende il resto della divisione per un *modulo* fisso

Intuitivamente

y=x^13

Su R, se non conosco l'inversa di una funzione "regolare", mi avvicino per approssimazioni successive (es. bisezione)

Per una funzione monotona, si parte dagli estremi del dominio, e si valuta la funzione nel punto medio del dominio.

In questo esempio, valutiamo la funzione per $\{0,76\} \rightarrow \{38,76\} \rightarrow \{57,76\} \rightarrow \{66,5,76\} \rightarrow \{66,5,71,25\}$

Per x=68.875 otteniamo il risultato

Intuitivamente

y=x^13 mod 77

Su Z_{77} , (il campo di Galois con 77 numeri, in cui le operazioni si effettuano modulo 77) l'effetto di riduzione modulare rende estremamente irregolare la funzione \rightarrow non è possibile una ricerca efficiente

Crittografia asimmetrica: RSA (1977)

- Generazione delle chiavi:
 - 1. si scelgono due numeri primi p e q
 - 2. il modulo viene calcolato come $n = p \cdot q$
 - 3. si sceglie a caso un numero d e si calcola un numero e tale che e·d mod (p-1)(q-1) = 1
 - Facile solo conoscendo p e q, che vengono poi dimenticati
- La chiave pubblica è (e, n), la chiave privata (d, n)
- Cifratura: c = me mod n
- Decifrazione m = c^d mod n

c=me mod n visivamente

e=13 P=97 Q=109

Robustezza

- Non ci sono modi efficienti noti di invertire l'esponenziale modulare
 - Complessità assimilabile a forza bruta
- Ci sono algoritmi "quasi efficienti" per fattorizzare il modulo
 - General Number Field Sieve, sub-esponenziale
 - Contromisura: moduli grandi (oltre 2048 bit)
- Trappole
 - Non è dimostrabile che non esistano algoritmi classici efficienti (ma nessuno ha idea di come trovarli)
 - Quantum computing
 - Implementazioni troppo efficienti
 - Spesso si sceglie e con pochi "1" (es. 3, 17, 65537)
 - Se troppo piccolo, me non "trabocca" da n!

Vantaggi della c. asimmetrica

- Per la riservatezza
 - È un cifrario a blocchi, di sostituzione, con dimensioni enormi
 - No forza bruta
 - No analisi statistica dell'"alfabeto" (salvo casi particolari)
 - Le chiavi usate per cifrare e decifrare sono diverse e dalla chiave pubblica non è derivabile la chiave privata
 - La chiave pubblica può essere distribuita
 - Chiunque può usarla per cifrare
 - La chiave privata corrispondente è l'unica che può decifrare
 - La chiave privata è specifica di un solo utente quindi utile anche per *autenticare*

C. asimmetrica per la riservatezza

C. asimmetrica per l'integrità e l'autenticità

- Soluzione del problema dell'uomo nel mezzo visto per gli hash: cifrare il fingerprint con la chiave privata
 - Verifica corretta solo se tutto inalterato → integrità
 - Verifica corretta con PUB_A solo se la firma era stata prodotta con PRIV_A → autenticità (se posso fidarmi che PUB_A sia davvero di A!)

C. asimmetrica - pregi e difetti

- Grandi vantaggi:
 - distribuzione delle chiavi
 - utilità per tutte le proprietà di sicurezza
- Punti deboli:
 - Prestazioni (5-10 volte più lento di AES)
 - Sistemi ibridi
 - alcuni attacchi specifici (known plaintext)

Aggiungere prestazioni e flessibilità

Più destinatari = un solo messaggio cifrato & più copie di K cifrate con la chiave pubblica di ognuno

Un flash su Quantum Computing

- Crittografia simmetrica e hash: nessun vero problema
 - Algoritmo di Grover: complessità ≈ sqrt(dimensione spazio di ricerca)
 - Compensato raddoppiando la lunghezza delle chiavi o delle fingerprint
- Crittografia asimmetrica basata su logaritmi discreti: spacciata
 - Algoritmo di Shor fattorizza in tempo polinomiale
 - Servono molti più qubit e gate di quanto ora realizzabile
 - Rischio sul lungo periodo
 - Ma quando accadrà, crollo istantaneo!
- Post-quantum cryptography
 - Algoritmi già talmente avanzati da essere standardizzati
 - https://en.wikipedia.org/wiki/Post-quantum_cryptography