Linear Algebra Solving Linear Equations

충남대학교 컴퓨터공학과 이만호

Review 1

- Vector
- Vector operations: addition, scalar multiplication
- Matrix form
- Length, dot product
- Cosine formula (angle formula)

$$\frac{u \cdot v}{\|u\| \|v\|} = \cos \theta$$

Schwarz inequality

$$|u \cdot v| \le ||u|| ||v||$$

Triangle inequality

$$||u+v|| \le ||u|| + ||v||$$

Review 2

- Let v = (1,1,0) and w = (0,1,1)The linear combinations of v and w fill a plane.
 - Describe that plane.
 - Find a vector that is not a combination of v and w
 - The linear combination cv + dw fill a plane in ???
- The vectors in that plane allow any c and d where $c,d \in \mathbb{R}$

$$c\mathbf{v} + d\mathbf{w} = c \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} c \\ c + d \\ d \end{bmatrix}$$

- Questions
 - Vector (1,2,3) is not in the plane. Why?
 - Find a vector u in the plane with $u \perp v$ and $u \perp w$.
 - Find a vector \boldsymbol{u} not in the plane with $\boldsymbol{u} \perp \boldsymbol{v}$ and $\boldsymbol{u} \perp \boldsymbol{w}$.

Vectors and Linear Equation

System of Linear Equations

• How to solve a system of linear equations?

Example:
$$\begin{cases} x - 2y = 1\\ 3x + 2y = 11 \end{cases}$$

2 unknowns, 2 equations

- Solving methods
 - Row picture
 - Column picture
 - Matrix equation

Row Picture

A system of linear equations

$$x - 2y = 1$$
$$3x + 2y = 11$$

• Draw the graph of each row: two lines meet at a single point.

Row picture

Column Picture

A system of linear equations

$$x - 2y = 1 3x + 2y = 11$$
 \Rightarrow $x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$

- Recognize the linear system as a **vector equation**.
 - Find the linear combination of vectors (1,3) and (-2,2) that equals to the vector (1,11).

Do you prefer which method, row picture or column picture?

Matrix Form of the Equations

A system of linear equations

$$\begin{cases} x - 2y = 1 \\ 3x + 2y = 11 \end{cases} \Rightarrow \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$$

• Matrix form: Ax = b

$$A = \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}$$
: Coefficient matrix, $\boldsymbol{b} = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$
 $\boldsymbol{x} = A^{-1}\boldsymbol{b}$

$$A = \begin{bmatrix} 1 & -2 \\ -3 & 2 \end{bmatrix}$$
 Used for row picture Dot product with rows

Used for column picture

Combination of columns

3 Equations in 3 Unknowns

• System of linear equations

$$x + 2y + 3z = 6$$

 $2x + 5y + 2z = 4$
 $6x - 3y + z = 2$

- Solving methods
 - Row picture
 - Column picture
 - Matrix equation

Row Picture of 3 Equations

System of linear equations

$$x + 2y + 3z = 6$$

 $2x + 5y + 2z = 4$
 $6x - 3y + z = 2$

The row picture shows three planes meet at a single point (0,0,2)

- Each equation produces a plane in 3-dim. space.
- The result of two equations in three unknowns is a line.

Column Picture of 3 Equations

System of linear equations

The **column picture** combines three columns to produce the vector [6]

Matrix Form of the Equations

System of linear equations

$$\begin{aligned}
x + 2y + 3z &= 6 \\
2x + 5y + 2z &= 4 \\
6x - 3y + z &= 2
\end{aligned}
\Rightarrow
\begin{bmatrix}
1 & 2 & 3 \\
2 & 5 & 2 \\
6 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix} 6 \\
4 \\
2 \end{bmatrix}$$

$$A \quad \mathbf{x} = \mathbf{b}$$

• Multiplication **by row**: dot product

$$Ax = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 6 & -3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (row1) \cdot x \\ (row2) \cdot x \\ (row3) \cdot x \end{bmatrix}$$

• Multiplication **by columns**: linear combination of column vectors

$$Ax = x(column1) + y(column2) + z(column3)$$

Matrix Form of the Equations – Example

• Example:

$$Ax = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}, \quad Ix = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

- Row person : by dot product
- Column person : by linear combination

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
: Identity matrix
$$Ix = x$$

$$Ix = x$$

Matrix Notation

• Let A be mxn matrix

$$a_{ij}$$
: an entry in i^{th} row and j^{th} column
$$1 \le i \le m, \ 1 \le j \le n$$

$$A(i,j) = a_{ii}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• Identity Matrix *I* (*n*x*n* matrix)

$$I(i,j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

- Remark : Ix = x

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Rules for Matrix Operations

Matrix Addition and Scalar Multiplication

Let
$$A = (a_{ij}) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
, $B = (b_{ij}) = \begin{bmatrix} 2 & 1 \\ 4 & 5 \\ 3 & 7 \end{bmatrix}$

Addition:
$$A + B = (a_{ij} + b_{ij}) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 4 & 5 \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 7 & 9 \\ 8 & 13 \end{bmatrix}$$

Scalar multiplication:
$$kA = k(a_{ij}) = (ka_{ij}) = k\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} k & 2k \\ 3k & 4k \\ 5k & 6k \end{bmatrix}$$

Matrix Multiplication

- Matrix multiplication : AB
 - To multiply A and B, # of columns of A = # of rows of B
 - -A: mxn matrix, B: nxp matrix $\rightarrow AB: mxp$ matrix

Let
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{n \times p}$

 $AB = (c_{ij}): (i^{th} \text{ row of } A) \cdot (j^{th} \text{ column of } B), \quad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Example

$$\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

$$AB = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix}$$

$$= \begin{bmatrix} c_{ij} \\ \end{bmatrix} = C$$

Laws for Matrix Operations

• Commutative law:

$$A+B=B+A$$
 but $AB \neq BA$

• Distributive law:

$$c(A+B) = cA+cB$$

$$C(A+B) = CA+CB$$

$$(A+B)C = AC+BC$$

Associative law:

$$(A+B)+C = A+(B+C)$$
$$A(BC) = (AB)C$$

• $A^p = AA ... A$ (p factors), $A^p A^q = A^{p+q}$, $(A^p)^q = A^{pq}$ $A^0 = I$: identity matrix (square matrix) A^{-1} : inverse matrix of A(square matrix)

Basic Matrix Operations - Identity

Let a matrix and a vector are given:
$$A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$

Identity:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$IA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = A$$

$$\mathbf{Ib} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \mathbf{b}$$

Interchange rows

Let a matrix and a vector are given :
$$A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$

Interchange row1 and row2

$$P_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad P_{12}A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 4 & 9 & -3 \\ 2 & 4 & -2 \\ -2 & -3 & 7 \end{bmatrix}$$
$$P_{12}b = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ 10 \end{bmatrix}$$

Interchange row1 and row3

$$P_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad P_{13}A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} -2 & -3 & 7 \\ 4 & 9 & -3 \\ 2 & 4 & -2 \end{bmatrix}$$

$$P_{13}b = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 2 \end{bmatrix}$$

Interchange row2 and row3

$$P_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad P_{23}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ -2 & -3 & 7 \\ 4 & 9 & -3 \end{bmatrix}$$

$$P_{23}\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \\ 8 \end{bmatrix}$$

Multiplying Row by a Scalar value

Let a matrix and a vector are given :
$$A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$

Multiply row1 by 1/2

$$\boldsymbol{M}_1 = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_{1} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad M_{1}A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix}$$

$$M_1 \mathbf{b} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 10 \end{bmatrix}$$

Multiply row2 by 2

$$\boldsymbol{M}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad M_2 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 8 & 18 & -6 \\ -2 & -3 & 7 \end{bmatrix}$$

$$\boldsymbol{M}_{2}\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 16 \\ 10 \end{bmatrix}$$

Multiply row 3 by -1

$$\boldsymbol{M}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$M_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad M_{3}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ 2 & 3 & -7 \end{bmatrix}$$

$$M_3 \boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ -10 \end{bmatrix}$$

Adding a Row to Other Row

Let a matrix and a vector are given :
$$A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$

Add row1 to row2

$$R_{12} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{12} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad R_{12}A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 6 & 13 & -5 \\ -2 & -3 & 7 \end{bmatrix}$$

$$R_{12}\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \\ 10 \end{bmatrix}$$

Add row1 to row3

$$R_{13} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$R_{13} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad R_{13}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ 0 & 1 & 5 \end{bmatrix}$$

$$R_{13}\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 12 \end{bmatrix}$$

Add row3 to row2

$$R_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad R_{32}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 2 & 6 & 4 \\ -2 & -3 & 7 \end{bmatrix}$$

$$R_{32}\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 18 \\ 10 \end{bmatrix}$$

Sequence of Basic Matrix Operations

Let a matrix and a vector are given:
$$A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$

Multiply row1 by 2, and subtract it from row2

- row1 and row3 are not changed.

- row1 and row3 are not changed.
- row2 = row2 - 2 * row1:
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{21}A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ -2 & -3 & 7 \end{bmatrix}$$

Multiply row 1 by -1, and subtract it from row 3

- row1 and row2 are not changed.

- row3 = row3 - (-1)* row1:
$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$E_{31}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ \hline 0 & 1 & 5 \end{bmatrix}$$

Elimination matrix

Block matrices & Block multiplication

- Matrices can be cut into blocks which are smaller matrices.
- When matrices split into blocks, it is often simpler to see how they act.
- Example: 4x6 matrix is broken into six 2x2 blocks.

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} I & I & I \\ I & I & I \end{bmatrix}$$

- If A and B are same size and the block sizes match, then A+B can be got by block by block addition.
- Example : Augmented matrix [A b] has two blocks of different sizes.
 - After elimination, [EA Eb]

Block Multiplication

- Block multiplication:
 - If the <u>cuts between columns of A</u> match the <u>cuts between rows</u>
 <u>of B</u>, then block multiplication of AB is allowed:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & \cdots \\ B_{21} & \cdots \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & \cdots \\ A_{21}B_{11} + A_{22}B_{21} & \cdots \end{bmatrix}$$

• Example : columns times rows

$$\begin{bmatrix} 1 & 4 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 8 & 2 \end{bmatrix}$$

Block Multiplication – Example

• Example : Elimination by blocks

$$\circ \ E = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & any_{12} & any_{13} \\ 3 & any_{22} & any_{23} \\ 4 & any_{32} & any_{33} \end{bmatrix}$$

$$\circ E = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & any_{12} & any_{13} \\ 3 & any_{22} & any_{23} \\ 4 & any_{32} & any_{33} \end{bmatrix} \qquad EA = \begin{bmatrix} 1 & any_{12} & any_{13} \\ 0 & any'_{22} & any'_{23} \\ 0 & any'_{32} & any'_{33} \end{bmatrix}$$

$$\circ E = \begin{bmatrix} 1 & 0 & 0 \\ -3/2 & 1 & 0 \\ -4/2 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & any_{12} & any_{13} \\ 3 & any_{22} & any_{23} \\ 4 & any_{32} & any_{33} \end{bmatrix}$$

$$\circ E = \begin{bmatrix} 1 & 0 & 0 \\ -3/2 & 1 & 0 \\ -4/2 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & any_{12} & any_{13} \\ 3 & any_{22} & any_{23} \\ 4 & any_{32} & any_{33} \end{bmatrix} \qquad EA = \begin{bmatrix} 2 & any_{12} & any_{13} \\ 0 & any'_{22} & any'_{23} \\ 0 & any'_{32} & any'_{33} \end{bmatrix}$$

Block Elimination

$$\begin{bmatrix} I & 0 \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}$$

 $S = D - CA^{-1}B$: Schur complement

The idea of Elimination

Solving 2 Equations in 2 Unknowns

System of linear equations

$$\begin{cases} x - 2y = 1 \\ 3x + 2y = 11 \end{cases} \Rightarrow \begin{cases} x - 2y = 1 \\ 8y = 8 \end{cases} : \text{upper triangular matrix}$$

- The order of 2 equations is not important.
- Solving methods
 - 1. Eliminate variables
 - 1) Eliminate one variable from 2 equations producing 1 equations.
 - 2. Substitute variables
 - 1) Get a solution of one variable from the equation got in the step 1-1).
 - 2) Substitute the solutions of 1 variables into the one of 2 original equations.

Solving 3 Equations in 3 Unknowns

System of linear equations

$$\begin{cases} x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \Rightarrow \begin{cases} -17x + 11y = 0 \\ -10x + 11y = 0 \end{cases} \Rightarrow \begin{cases} -17x + 11y = 0 \\ 7x = 0 \\ 6x - 3y + z = 2 \end{cases}$$

- The order of equations and variables is not important.

$$\begin{cases} 6x - 3y + z = 2 \\ x + 2y + 3z = 6 \end{cases} \Rightarrow \begin{cases} 6x - 3y + z = 2 \\ -17x + 11y = 0 \end{cases} \Rightarrow \begin{cases} 6x - 3y + z = 2 \\ -17x + 11y = 0 \end{cases} \Rightarrow \begin{cases} 2x + 5y + 2z = 4 \end{cases} \begin{cases} 2x + 5y + 6x = 2 \\ 3z + 2y + x = 6 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \\ 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x - 3y + 6x = 2 \end{cases} \Rightarrow \begin{cases} 2x$$

The idea of Elimination

• Elimination :

$$\begin{cases} x - 2y = 1 & (1) \\ 3x + 2y = 11 & (2) \\ \Rightarrow y = 1, x = 3 \end{cases} \rightarrow (2) - (1) \cdot 3 \rightarrow \begin{cases} x - 2y = 1 & (1') \\ 8y = 8 & (2') \end{cases}$$

Matrix format

$$\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 11 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$$

- Upper triangular system/matrix
- Back substitution

Pivot and Multiplier

• Definition :

- Pivot = first nonzero in the row that does the elimination
- Multiplier = (entry to eliminate) / (Pivot) : divide
- Solving linear system of *n* equations
 - Need n pivots
 - After eliminations, we get the upper triangular matrix.
 - The pivots are on the diagonal of the triangular matrix.

$$\begin{cases} z - 3y + 6x = 2 \\ 3z + 2y + x = 6 \Rightarrow \\ 2z + 5y + 2x = 4 \end{cases} \begin{cases} z - 3y + 6x = 2 \\ 11y - 17x = 0 \Rightarrow \\ 11y - 10x = 0 \end{cases} \begin{cases} z - 3y + 6x = 2 \\ 11y - 17x = 0 \end{cases}$$

Pivot and Multiplier – Example (2 vars)

- Pivot? Multiplier?

$$\begin{cases} x - 2y = 1 \\ 3x + 2y = 11 \end{cases} \Rightarrow \begin{cases} x - 2y = 1 \\ 8y = 8 \end{cases}$$

$$\begin{cases} 5x - 10y = 5 \\ 3x + 2y = 11 \end{cases} \Rightarrow \begin{cases} 5x - 10y = 5 \\ 8y = 8 \end{cases}$$

1st pivot is 1, multiplier is 3/1, 2nd pivot is 8

1st pivot is 5, multiplier is 3/5, 2nd pivot is 8

• After elimination, pivots are on the diagonal of the triangular system

Pivot and Multiplier – Example (3 vars)

$$\begin{cases} 6x - 3y + z = 2 \\ x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \end{cases} \Rightarrow \begin{cases} 6x - 3y + z = 2 \\ \frac{5}{2}y + \frac{17}{6}z = \frac{17}{3} \\ 6y + \frac{5}{3}z = \frac{10}{3} \end{cases} \text{ multiplier} = \frac{1}{6} \\ 6x - 3y + z = 2 \\ \Rightarrow \begin{cases} 6x - 3y + z = 2 \\ \frac{5}{2}y + \frac{17}{6}z = \frac{17}{3} \\ \frac{5}{2}y + \frac{17}{6}z = \frac{17}{3} \end{cases} \quad 2^{\text{nd}} \text{ pivot} = \frac{5}{2} \\ \frac{77}{15}z = -\frac{154}{15} \quad \text{multiplier} = \frac{6}{5/2} = \frac{12}{5} \end{cases}$$

Breakdown of Elimination

- Success of eliminations :
 - Produces the *full set of Pivots* and get the solution.
- Failure with no solution
 - − *A* is singular.

$$\begin{cases} x - 2y = 1 \\ 3x - 6y = 11 \end{cases} \Rightarrow \begin{cases} x - 2y = 1 \\ 0y = 8 \end{cases}$$

- Failure with infinitely many solutions
 - − *A* is singular.

$$\begin{cases} x - 2y = 1 \\ 3x - 6y = 3 \end{cases} \Rightarrow \begin{cases} x - 2y = 1 \\ 0y = 0 \end{cases}$$

- Temporary failure (zero in pivot)
 - − *A* is not singular.
 - A row exchange produces full set of pivots.

$$\begin{cases} 0x + 2y = 4 \\ 3x - 2y = 5 \end{cases} \Rightarrow \begin{cases} 3x - 2y = 5 \\ 2y = 4 \end{cases}$$

Graph of a Linear System with No Solution

$$\begin{cases} x - 2y = 1 \\ 3x - 6y = 11 \end{cases} \Rightarrow \begin{cases} x - 2y = 1 \\ 0y = 8 \end{cases}$$

- One pivot
- 0y = 8: no solution

Column picture

Graph of a Linear System with Infinitely Many Solutions

$$\begin{cases} x - 2y = 1 \\ 3x - 6y = 3 \end{cases} \Rightarrow \begin{cases} x - 2y = 1 \\ 0y = 0 \end{cases}$$

- One pivot
- y : free variable

Row picture

Column picture

Elimination of 3 Equations in 3 unknowns

Example:
$$\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b: \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

Forward elimination

Back substitution

From ③",
$$z = 2$$

From ②' and $z = 2$, $y = 2$
From ① and $z = 2$, $y = 2$, $x = -1$

Forward Elimination

Forward Elimination

Step-1: in the 1st column, make the coefficients below the diagonal zero.

Step-2: in the 2nd column, make the coefficients below the diagonal zero.

.

Step-(n-1): in the (n-1)th column, make <u>the coefficients below the diagonal</u> zero.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1,n-1}x_{n-1} + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \cdots + a_{2,n-1}x_{n-1} + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \cdots + a_{3,n-1}x_{n-1} + a_{3n}x_n = b_3 \\ \cdots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + a_{n-1,3}x_3 + \cdots + a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_n \end{cases}$$

$$\Rightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1,n-1}x_{n-1} + a_{1n}x_n = b_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2,n-1}x_{n-1} + a'_{3n}x_n = b'_3 \\ \cdots \\ a'_{n-1,2}x_2 + a'_{n-1,3}x_3 + \cdots + a'_{n-1,n-1}x_{n-1} + a'_{nn}x_n = b_n \end{cases}$$

$$\Rightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1,n}x_n = b'_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1n}x_n = b'_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2,n-1}x_{n-1} + a'_{2n}x_n = b'_2 \\ \cdots \\ a''_{n-1,3}x_3 + \cdots + a''_{n-1,n-1}x_{n-1} + a''_{nn}x_n = b''_n \end{cases}$$

$$\Rightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1n}x_n = b_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1n}x_n = b'_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2,n-1}x_{n-1} + a'_{2n}x_n = b'_2 \\ \cdots \\ a''_{n-1,3}x_3 + \cdots + a''_{n-1,n-1}x_{n-1} + a''_{nn}x_n = b''_n \end{cases}$$

$$\Rightarrow \cdots \Rightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1n}x_n = b_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1n}x_n = b'_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2,n-1}x_{n-1} + a'_{2n}x_n = b''_2 \\ \cdots \\ a''_{33}x_3 + \cdots + a''_{3,n-1}x_{n-1} + a''_{nn}x_n = b''_n \end{cases}$$

$$\Rightarrow \cdots \Rightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1n}x_n = b_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2,n-1}x_{n-1} + a'_{2n}x_n = b''_2 \\ a''_{33}x_3 + \cdots + a''_{3,n-1}x_{n-1} + a''_{3n}x_n = b''_n \end{cases}$$

$$\Rightarrow \cdots \Rightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a'_{1,n-1}x_{n-1} + a'_{1n}x_n = b'_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2,n-1}x_{n-1} + a'_{2n}x_n = b''_1 \\ a''_{22}x_2 + a'_{23}x_3 + \cdots + a''_{2,n-1}x_{n-1} + a''_{2n}x_n = b''_1 \\ a''_{33}x_3 + \cdots + a''_{3,n-1}x_{n-1} + a''_{3n}x_n = b''_1 \\ a''_{33}x_3 + \cdots + a''_{3n}x_n = b''_1 \\ a''_{33}x_3 + \cdots + a''_{3n}x_n = b''_1$$

Elimination Using Matrices

Matrix Form of Linear System

Consider a linear system and its Matrix form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = \sum_{j=1}^n a_{1j}x_j = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = \sum_{j=1}^n a_{2j}x_j = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = \sum_{j=1}^n a_{nj}x_j = b_n \end{cases} \Rightarrow \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} : A\mathbf{x} = \mathbf{b}$$

- Multiplication **by row**: dot product

$$A\mathbf{x} = \begin{bmatrix} (a_{11}, a_{12}, \dots, a_{1n}) \cdot (x_1, x_2, \dots, x_n) \\ (a_{21}, a_{22}, \dots, a_{2n}) \cdot (x_1, x_2, \dots, x_n) \\ \vdots \\ (a_{n1}, a_{n2}, \dots, a_{nn}) \cdot (x_1, x_2, \dots, x_n) \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \mathbf{b}$$

- Multiplication **by columns**: combination of column vectors

$$A\mathbf{x} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \mathbf{b}$$

Elimination Matrix – 1

Consider:
$$\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b: \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

Forward elimination

orward elimination
$$\begin{cases}
2x + 4y - 2z = 2 & \text{if pivot: } p_1 = 2 \\
4x + 9y - 3z = 8 & \text{if multiplier: } l_{21} = a_{21} / p_1 = 4/2, \text{if } (4/2) \\
-2x - 3y + 7z = 10 & \text{if multiplier: } l_{31} = a_{31} / p_1 = -2/2, \text{if } (-2/2)
\end{cases}$$
Elimination matrix:
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -4/2 & 1 & 0 \\ 2/2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$E_1A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = A_1$$

$$E_1b = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} = b_1$$

$$\Rightarrow \begin{cases} 2x + 4y - 2z = 2 & \text{if } \\ y + z = 4 & \text{if } (2)' \\ y + 5z = 12 & \text{if } (3)' \end{cases}$$

Elimination Matrix - 2

Forward elimination (cont.)

$$\begin{cases} 2x + 4y - 2z = 2 & \text{if } \\ y + z = 4 & \text{if } 2' & \text{pivot} : p_2 = 1 \\ y + 5z = 12 & \text{if } 3' & \text{multiplier} : l_{32} = a_{32} / p_2 = 1/1, \text{if } 3' - \text{if } 2' = 1 \end{cases}$$

$$\text{Elimination matrix} : E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$E_2 A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = A_2 : \text{upper triangular matrix}$$

$$E_2 \mathbf{b}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \mathbf{b}_2$$

$$\Rightarrow \begin{cases} 2x + 4y - 2z = 2 & \text{if } 2z \\ 4z = 8 & \text{if } 3z \end{cases}$$

Elimination Matrix – 3

Consider:
$$\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b: \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

Forward elimination

where
$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
, $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ $EAx = Eb$

For matrices $A, B, C, AB \neq BA$

$$E = E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}$$
: **lower** triangular matrix

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
: **upper** triangular matrix

$$E\mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

$$\begin{cases} 2x + 4y - 2z \\ y + z \\ 4z \end{cases}$$

$$\begin{cases} 2x + 4y - 2z = 2 & (1) \\ y + z = 4 & (2)' \\ 4z = 8 & (3)'' \end{cases}$$

Elimination Matrix - 4

Consider:
$$\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b: \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

Forward elimination

$$Ax = b \implies EAx = Eb, \text{ where } E = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} \qquad \begin{cases} 2x + 4y - 2z = 2 & 1 \\ y + z = 4 & 2' \\ 4z = 8 & 3'' \end{cases}$$

This matrix and vector can be used to get the solution.

Back substitution

** Multiply elimination matrix with A and b.
**
$$y = 4 - z = 4 - 2 = 2$$

 $x = (2 - 4y + 2z)/2 = (2 - 4 \cdot 2 + 2 \cdot 2)/2 = -1$

Augmented Matrix

Consider:
$$\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b : \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

$$Ax = b \Rightarrow EAx = Eb$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$
Augmented matrix of $Ax = b$:
$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 & 2 \\ 4 & 9 & -3 & 8 \\ -2 & -3 & 7 & 10 \end{bmatrix}$$
: rectangular matrix
$$E[A \quad b] = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 & 2 \\ 4 & 9 & -3 & 8 \\ -2 & -3 & 7 & 10 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 4 & 8 \end{bmatrix}$$

Back substitution

$$z = 8/4 = 2$$

$$y = 4 - z = 4 - 2 = 2$$

$$x = (2 - 4y + 2z)/2 = (2 - 4 \cdot 2 + 2 \cdot 2)/2 = -1$$

Inverse Matrices

Inverse Matrix

- The matrix A is invertible if there exists a matrix A^{-1} such that $A^{-1}A = I$ and $AA^{-1} = I$
- Notes:
 - Not all matrices have inverses.
 - The inverse exists iff elimination produce n pivots (row exchanges are allowed)
 - Elimination solves Ax = b without explicitly using matrix A^{-1}
 - Inverse matrix is unique
 - Suppose *B* and *C* are inverses of *A*. $BA = I \text{ and } AC = I \Rightarrow B(AC) = (BA)C \Rightarrow BI = IC \Rightarrow B = C$

Notes on Inverse Matrix

- If A is invertible, the one and only one solution to Ax = b is $x = A^{-1}b$
- Suppose there exists a vector $\mathbf{x} \neq \mathbf{0}$ such that $A\mathbf{x} = \mathbf{0}$, then A cannot have an inverse.

If A is invertible,

then $Ax = \mathbf{0}$ can only have the zero solution $x = A^{-1}\mathbf{0} = \mathbf{0}$

$$-A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ is invertible iff } ad - bc \neq 0$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \qquad \det(A) = ad - bc$$

A is invertible iff $det(A) \neq 0$

- Diagonal matrix with $d_i(\neq 0)$ has an inverse $(A^{-1})_{ii} = 1/d_i$.

Inverse of Matrix Multiplication

• Let A, B be nxn matrices and invertible

 \mathbf{Q} : AB invertible?

AB is invertible iff A and B are invertible

 $\mathbf{Q}: A+B$ invertible?

Not invertible. Why?

• Remark:

-
$$(AB)^{-1} = B^{-1}A^{-1}$$

 $(AB)(B^{-1}A^{-1}) = A(BB^{-1}) A^{-1} = AIA^{-1} = AA^{-1} = I$
- $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

- How to find A^{-1} ?
 - Consider elimination matrix

Inverse of Elimination Matrix

- E subtracts 5 times row 1 from row 2 E^{-1} : adds 5 times row 1 to row 2 $E = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $EE^{-1} = I$
- F subtracts 4 times row 2 from row 3 $F = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{vmatrix} \quad F^{-1} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{vmatrix} \quad FF^{-1} = I$ F^{-1} : adds 4 times row 2 to row 3
- *FE* : sequence of eliminations $(FE)^{-1} = E^{-1}F^{-1}$

$$FE = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 20 & -4 & 1 \end{bmatrix}$$

$$E^{-1}F^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

row I feels no effect from other rows row2 feels an effect from row1----row2' row3 feels an effect from row2----row3' row3 feels an effect from row1

 $E^{-1}F^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$ row2' feels an effect from row1---- back to row3' feels an effect from row2'---- back to row3' feels an effect from row1'---- back to row3' feels no effect from row1'---row3' feels no effect from row1

Inverse of Elimination Matrix – Example

$$F(EA): EA = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 55 & 22 & 23 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 55 - 5(11) & 22 - 5(12) & 23 - 5(13) \\ 55 - 5(11) & 22 - 5(12) & 23 - 5(13) \end{bmatrix} = A'$$

$$FA' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 55 - 5(11) & 22 - 5(12) & 23 - 5(13) \\ 0 & -152 & 33 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 12 & 13 \\ 55 - 5(11) & 22 - 5(12) & 23 - 5(13) \\ 0 - 4(55 - 5(11)) & -152 - 4(22 - 5(12)) & 33 - 4(23 - 5(13)) \end{bmatrix}$$

$$(FE)A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 55 & 22 & 23 \\ 0 & -152 & 33 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 55 & 22 & 23 \\ 20 - 4 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 55 - 5(11) & 22 - 5(12) & 23 - 5(13) \\ 0 - 4(55) + 20(11) & -152 - 4(22) + 20(12) & 33 - 4(23) + 20(13) \end{bmatrix} = A''$$

$$E^{-1}F^{-1}A'' = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 0 & 22 - 5(12) & 23 - 5(13) \\ 0 & -152 - 4(22) + 20(12) & 33 - 4(23) + 20(13) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 0 & 22 - 5(12) & 23 - 5(13) \\ 0 & -152 - 4(22) + 20(12) & 33 - 4(23) + 20(13) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 0 & 22 - 5(12) & 23 - 5(13) \\ 0 & -152 - 4(22) + 20(12) & 33 - 4(23) + 20(13) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 0 & 22 - 5(12) & 23 - 5(13) \\ 0 & -152 - 4(22) + 20(12) & 33 - 4(23) + 20(13) + 4(23 - 5(13)) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} \begin{bmatrix} 11 & 12 & 13 \\ 0 & 22 - 5(12) & 23 - 5(13) \\ 0 & -152 - 4(22) + 20(12) & 33 - 4(23) + 20(13) + 4(23 - 5(13)) \end{bmatrix}$$

Calculating A^{-1}

- Idea
 - Equation Ax = b can be solved by $x = A^{-1}b$.
 - But, it is not necessary to compute A^{-1} .
 - Elimination goes directly to x.
 - It's Gauss-Jordan Elimination Method
- Let A be 3x3 matrix

To solve $AA^{-1} = I$, find each column of $A^{-1} = [x_1 \ x_2 \ x_3]$. $AA^{-1} = A[x_1 \ x_2 \ x_3] = [Ax_1 \ Ax_2 \ Ax_3] = [e_1 \ e_2 \ e_3] = I$

We have to solve three equations

$$Ax_1 = e_1 = (1,0,0)$$
 $Ax_2 = e_2 = (0,1,0)$ $Ax_3 = e_3 = (0,0,1)$

G-J Elimination : $[A \ I] \rightarrow [I \ A^{-1}]$

Gauss-Jordan Elimination - 1

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, $X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$

If $AX = I$, then $X = A^{-1}$.

Solving $AX = I$, we get A^{-1} .

$$AX = A[x_1 \quad x_2 \quad x_3] = \begin{bmatrix} Ax_1 \quad Ax_2 \quad Ax_3 \end{bmatrix} = I = \begin{bmatrix} e_1 \quad e_2 \quad e_3 \end{bmatrix}$$

$$\Rightarrow Ax_1 = e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, Ax_2 = e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, Ax_3 = e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a_{11} \quad a_{12} \quad a_{13} & 1 \\ a_{21} \quad a_{22} \quad a_{23} & 0 \\ a_{31} \quad a_{32} \quad a_{33} & 0 \end{bmatrix} \rightarrow x_1, \begin{bmatrix} a_{11} \quad a_{12} \quad a_{13} & 0 \\ a_{21} \quad a_{22} \quad a_{23} & 1 \\ a_{31} \quad a_{32} \quad a_{33} & 0 \end{bmatrix} \rightarrow x_3$$

$$\Rightarrow \begin{bmatrix} a_{11} \quad a_{12} \quad a_{13} & 1 & 0 & 0 \\ a_{21} \quad a_{22} \quad a_{23} & 0 & 1 & 0 \\ a_{21} \quad a_{22} \quad a_{23} & 0 & 1 & 0 \\ a_{31} \quad a_{32} \quad a_{33} & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A \quad I \end{bmatrix} \rightarrow \begin{bmatrix} x_1 \quad x_2 \quad x_3 \end{bmatrix}$$
: Gauss - Jordan Elimination

Gauss-Jordan Elimination – 2

G-J Elimination – Example

Remark on the Previous Example

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Elimination process:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, \quad \text{pivot}: 2$$

$$\Rightarrow E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{21}A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 3/2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = R_1 \quad \text{pivot}: 3/2$$

$$\Rightarrow E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2/3 & 1 \end{bmatrix}, \quad E_{32}R_1 = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 3/2 & -1 \\ 0 & 0 & 4/3 \end{bmatrix} = R_2 \quad \text{pivot}: 4/3$$

Product of pivot values = $2 * \frac{3}{2} * \frac{4}{3} = 4 = \det(A)$

$$A^{-1} = \begin{vmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{vmatrix} = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} - A^{-1} \text{ involves division by the determinant.}$$
- Invertible matrix cannot have zero determinant.

Inverse and Determinant

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$$
Applying G - J Elimination
$$[A \quad I] = \begin{bmatrix} 2 & 3 & 1 & 0 \\ 4 & 7 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} \quad \det(A) = 2 \cdot 1 = 2$$

$$\Rightarrow \begin{bmatrix} 2 & 0 & 7 & -3 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 7/2 & -3/2 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 7/2 & -3/2 \\ -2 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 7 & -3 \\ -4 & 2 \end{bmatrix}$$

A Property of Triangular Matrix

- A triangular matrix is invertible iff no diagonal entries are zero.
- Example

$$L = \begin{vmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 4 & 5 & 1 \end{vmatrix}$$

Applying G - J Elimination

$$[L \quad I] = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 3 & 1 & 0 & 0 & 1 & 0 \\ 4 & 5 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -3 & 1 & 0 \\ 0 & 5 & 1 & -4 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -3 & 1 & 0 \\ 0 & 0 & 1 & 11 & -5 & 1 \end{bmatrix} = \begin{bmatrix} I \quad L^{-1} \end{bmatrix}$$

$$E_{32}E_{31}E_{21}L = I \Rightarrow E_{32}E_{31}E_{21} = L^{-1} \Rightarrow E_{21}^{-1}E_{31}^{-1}E_{32}^{-1} = L$$

Elimination = Factorization : A = LU

Factorization of Matrix

• A matrix A can be factorized into L(lower triangular matrix) and U(upper triangular matrix).

$$A = LU$$

- Factorization can be got from the Gaussian elimination.
- Gaussian Elimination
 - *E*: elimination matrix
 - EA = U: upper triangular matrix with pivots on the diagonal $\Rightarrow E^{-1}U = E^{-1}EA = A \Rightarrow A = E^{-1}U \Rightarrow L = E^{-1}$
 - The entries of L are exactly the multipliers l_{ij}

$$EA = U \implies A = E^{-1}U = LU \implies L = E^{-1}$$

$$L = E^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix}$$

Gaussian Elimination and A = LU

- Gaussian Elimination
 - E: elimination matrix of A
 - EA = U: upper triangular matrix with pivots on the diagonal $\Rightarrow E^{-1}U = E^{-1}EA = A \Rightarrow A = E^{-1}U \Rightarrow L = E^{-1}$
 - Pivots are on the diagonal of U.
- For $n \times n$ matrix A,

$$E = (E_{n(n-1)}) \cdots (E_{n2} \cdots E_{32}) (E_{n1} \cdots E_{21})$$

$$L = E^{-1} = (E_{21}^{-1} \cdots E_{n1}^{-1}) (E_{32}^{-1} \cdots E_{n2}^{-1}) \cdots (E_{n(n-1)}^{-1})$$

- Note on L
 - E_{ij} : lower triangular
 - The main diagonals of E_{ij} and E_{ij}^{-1} contain 1's.
 - The entries of L are exactly the multipliers l_{ij} .

$$EA = U \implies A = E^{-1}U = LU \implies L = E^{-1}$$

$$L = E^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix}$$

Gaussian Elimination and $A = LU_{-Example}$

Gaussian elimination process

$$A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \quad \begin{array}{l} \text{pivot}: p_1 = \mathbf{2} \\ \text{multiplier}: \mathbf{l}_{2I} = a_{21} / p_1 = 4 / 2 = \mathbf{2} \\ \text{multiplier}: \mathbf{l}_{3I} = a_{31} / p_1 = -2 / 2 = -\mathbf{I} \\ E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{21}A = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ -2 & -3 & 7 \end{bmatrix} = A_1$$

$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad E_{31}A_1 = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = A_2 \quad \text{pivot}: p_2 = \mathbf{I} \\ \text{multiplier}: \mathbf{l}_{32} = a_{32} / p_2 = 1 / 1 = \mathbf{I} \\ E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, \quad E_{32}A_2 = \begin{bmatrix} 2 & 4 & -2 \\ 0 & \mathbf{I} & 1 \\ 0 & 0 & \mathbf{4} \end{bmatrix} = U \quad \begin{array}{l} \bullet \text{ Pivots are on the diagonal of } U. \\ \text{pivot}: p_3 = \mathbf{4} \end{array}$$

Factorization

$$E_{32}E_{31}E_{21}A = U \implies A = (E_{32}E_{31}E_{21})^{-1}U = E_{21}^{-1}E_{31}^{-1}E_{32}U = LU \implies L = E_{21}^{-1}E_{31}^{-1}E_{32}U = LU$$

$$L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$
• E_{ij} : lower triangular
• The main diagonals of E_{ij} and E_{ij}^{-1} contain 1's.

- The entries of L are exactly the multipliers l_{ij} .

Detail of Gaussian Elimination

- Pivot rows never change again.
 - 1st row never change. (pivot = a_{11})
 - $2^{\text{nd}} \sim n^{\text{th}}$ rows changes.
 - $-2^{\rm nd}$ row never change again. (pivot = a'_{22})
 - $3^{rd} \sim n^{th}$ rows changes.
 - $-3^{\rm rd}$ row never change again. (pivot = $a_{33}^{\prime\prime}$)
 - $4^{th} \sim n^{th}$ rows changes.
 - **—**
- When computing the 3rd row,

```
(Row3 of U) = (Row3 of A) – l_{31}(Row1 of U) – l_{32}(Row2 of U)

\Rightarrow (Row3 of A) = l_{31}(Row1 of U) + l_{32}(Row1 of U) + (Row3 of U)
```

 -3^{rd} row of $L = [l_{31} \ l_{32} \ 1 \ 0 \ ... \ 0]$

A = LU of Matrix with Special Pattern

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = LU$$

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_{21}A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} = A_1$$

$$E_{32} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_{32}A_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} = A_2$$

$$E_{43} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}, E_{43}A_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = U$$

$$L = E_{21}^{-1}E_{32}^{-1}E_{43}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$U = V$$

$$V = V$$

What pattern is special? All pivots and multipliers are 1.

Notes

- When row of A starts with 0, so does that row of L.
- When column of A starts with 0, so does that column of U.

Splitting *U* into *DU'*

- A = LU
 - Diagonal of L = 1
 - Diagonal of U: pivots
- Split *U* into *DU'*

$$U = \begin{bmatrix} u_1 & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_2 & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_3 & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} u_1 & 0 & 0 & \cdots & 0 \\ 0 & u_2 & 0 & \cdots & 0 \\ 0 & 0 & u_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_n \end{bmatrix} \begin{bmatrix} 1 & u_{12} / & u_{13} / & \cdots & u_{1n} / \\ u_1 & / u_1 & / u_1 & & u_{1n} / \\ 0 & 1 & u_{23} / & \cdots & u_{2n} / \\ 0 & 0 & 1 & \cdots & u_{2n} / \\ 0 & 0 & 1 & \cdots & u_{3n} / \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} = DU'$$

$$\Rightarrow A = LDU'$$

Factorization A = LDU – Example

$$A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = LU$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = LDU$$

Solving Ax = b with A = LU

$$Ax = b \implies LUx = b$$

where
$$L = E^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix}, \quad U = \begin{bmatrix} u_1 & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_2 & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_3 & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_n \end{bmatrix}$$

Let
$$Ux = s$$

$$Ax = b \implies LUx = b \implies Ls = b, Ux = s$$

$$Ls = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} = \mathbf{b}$$
 Forward substitution to get \mathbf{s} .

$$Ux = \begin{bmatrix} u_1 & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_2 & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_3 & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s \end{bmatrix} = s$$
Backward substitution to get x .

Solving Ax = b with A = LU - Example

Consider:
$$\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b : \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

$$A = LU \quad \text{where } L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\text{Let } Ux = s$$

 $Ax = b \implies LUx = b \implies Ls = b, Ux = s$

$$Ls = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = b$$

$$s_1 = 2$$

$$s_2 = 8 - 2s_1 = 8 - 2(2) = 4$$

$$s_3 = 10 + s_1 - s_2 = 10 + (2) - (4) = 8$$

$$Ux = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

$$x_1 = (2 - 4x_2 + 2x_3)/2 = (2 - 4(2) + 2(2))/2 = -1$$

$$x_2 = 4 - x_3 = 4 - (2) = 2$$

$$x_3 = 8/4 = 2$$

Solving Ax = b with A = LDU

$$Ax = b \implies LDUx = b$$

where
$$L = E^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix}, D = \begin{bmatrix} u_1 & 0 & 0 & \cdots & 0 \\ 0 & u_2 & 0 & \cdots & 0 \\ 0 & 0 & u_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_n \end{bmatrix}, U = \begin{bmatrix} 1 & u_{12} / & u_{13} / & \cdots & u_{1n} / \\ 0 & 1 & u_{23} / & \cdots & u_{2n} / \\ 0 & 0 & 1 & \cdots & u_{3n} / \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Let
$$DUx = s$$
, $Ux = t$
 $Ax = b \implies LDUx = b \implies Ls = b$, $Dt = s$, $Ux = t$

$$Ls = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} = b,$$

$$Dt = \begin{bmatrix} u_1 & 0 & 0 & \cdots & 0 \\ 0 & u_2 & 0 & \cdots & 0 \\ 0 & 0 & u_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_n \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ t_n \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_n \end{bmatrix} = s,$$

$$Ux = \begin{bmatrix} 1 & u_{12} / & u_{13} / & \cdots & u_{1n} / \\ 0 & 1 & u_{23} / & \cdots & u_{2n} / \\ 0 & 0 & 1 & \cdots & u_{3n} / \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ t_n \end{bmatrix} = t$$

Solving Ax = b with A = LDU – Example

Consider: $\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b: \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$

$$A = LDU \quad \text{where } L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\text{Let } DUx = s, \quad Ux = t$$

$$Ax = b \quad \Rightarrow \quad LDUx = b \quad \Rightarrow \quad Ls = b, \quad Dt = s, \quad Ux = t$$

$$Ls = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = b \quad \begin{aligned} s_1 &= 2 \\ s_2 &= 8 - 2s_1 &= 8 - 2(2) = 4 \\ s_3 &= 10 + s_1 - s_2 &= 10 + (2) - (4) = 8 \end{aligned}$$

$$Dt = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = s \quad t_1 = 2/2 = 1 \\ t_2 = 4 \\ t_3 = 8/4 = 2 \end{aligned}$$

$$Ux = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} \quad \begin{aligned} x_1 &= 1 - 2x_2 + x_3 &= 1 - 2(2) + (2) = -1 \\ x_2 &= 4 - x_3 &= 4 - (2) = 2 \end{aligned}$$

How Useful Factorization Is?

• We have solved the following linear system by factorization A = LU.

Consider:
$$\begin{cases} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x - 3y + 7z = 10 \end{cases} \Rightarrow Ax = b : \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

$$A = LU \quad \text{where } L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}, \ U = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\text{Let } Ux = s$$

$$Ax = b \Rightarrow LUx = b \Rightarrow Ls = b, \ Ux = s$$

• How to solve the following linear system that is same as the above except *b*? Discuss!!!

$$\begin{cases} 2x + 4y - 2z = 4 \\ 4x + 9y - 3z = 6 \\ -2x - 3y + 7z = 8 \end{cases}$$

Transposes and Permutations

Transpose of Matrix

- Transpose of *A* (*m*x*n* matrix)
 - $-A^{T}$ (nxm matrix)
 - The columns of A^{T} are the rows of A
 - $(A^{\mathrm{T}})_{ij} = A_{ji}$
 - $(A^{\mathrm{T}})^{\mathrm{T}} = A^{\mathrm{T}}$
- Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad A^{\mathrm{T}} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

- Rules of transpose
 - $(A + B)^{T} = A^{T} + B^{T}$
 - $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} \qquad (ABC)^{\mathrm{T}} = C^{\mathrm{T}}B^{\mathrm{T}}A^{\mathrm{T}}$
 - $(A^{-1})^T = (A^T)^{-1}$

$$AA^{-1} = I \implies (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} \implies (A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = I \implies (A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1}$$

Why $(AB)^T = B^T A^T$?

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{bmatrix}$$

$$(Ax)^T = \begin{pmatrix} x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{bmatrix}^T \quad x_1 [a_{11} & a_{21} & \cdots & a_{n1}] \\ = +x_2 [a_{12} & a_{22} & \cdots & a_{n2}] \\ \cdots \\ + x_n [a_{1n} & a_{2n} & \cdots & a_{nn}] \end{bmatrix}$$

$$x^T A^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} = \begin{pmatrix} x_1 [a_{11} & a_{21} & \cdots & a_{n1}] \\ + x_2 [a_{12} & a_{22} & \cdots & a_{n2}] \\ \cdots \\ + x_n [a_{1n} & a_{2n} & \cdots & a_{nn}] \end{bmatrix}$$

$$\Rightarrow (Ax)^T = x^T A^T$$

$$Let B = \begin{bmatrix} x_1 & x_2 & \cdots \end{bmatrix}$$

$$AB = A[x_1 & x_2 & \cdots] = \begin{bmatrix} Ax_1 & Ax_2 & \cdots \end{bmatrix} \Rightarrow (AB)^T = \begin{bmatrix} x_1^T A^T \\ x_2^T A^T \\ \vdots \end{bmatrix} = B^T A^T$$

Meaning of Inner Products

Let x, y: vector of n elements $x^{\mathrm{T}}y$: dot product or inner product ($^{\mathrm{T}}$ is inside) (1xn)(nx1) = (1x1) xy^{T} : rank one product or outer product ($^{\mathrm{T}}$ is outside) (nx1)(1xn) = (nxn) $(Ax)^{T}y$: inner product of Ax with y $(Ax)^{\mathrm{T}}y = x^{\mathrm{T}}A^{\mathrm{T}}y = x^{\mathrm{T}}(A^{\mathrm{T}}y)$: inner product of x with $A^{\mathrm{T}}y$ Example: $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ $(A\mathbf{x})^{\mathrm{T}}\mathbf{y} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \mathbf{y} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = (x_2 - x_1)y_1 + (x_3 - x_2)y_2$

$$\mathbf{x}^{\mathrm{T}}(A^{\mathrm{T}}\mathbf{y}) = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{\mathrm{T}} \begin{pmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} -y_1 \\ y_1 - y_2 \\ y_2 \end{bmatrix} = -x_1y_1 + x_2(y_1 - y_2) + x_3y_2$$

$$\Rightarrow (A\mathbf{x})^{\mathrm{T}}\mathbf{y} = \mathbf{x}^{\mathrm{T}}(A^{\mathrm{T}}\mathbf{y})$$

Symmetric Matrices

• A is symmetric matrix iff

$$A^{T} = A$$
 (i.e. $a_{ij} = a_{ji}$)

Example

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = A^{T}, \quad A^{-1} = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$$
$$D = \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix} = D^{T}, \quad D^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 0.1 \end{bmatrix}$$

• Note

- *A* : symmetric → $(A^{-1})^T = (A^T)^{-1} = A^{-1} \rightarrow A^{-1}$: symmetric

 $-R: m \times n \text{ matrix } \rightarrow R^{T}: n \times m \text{ matrix}$

 $\rightarrow R^{T}R : nxn \text{ matrix}$

$R^{\mathrm{T}}R$, RR^{T}

- R: any matrix, probably rectangular $m \times n$ matrix
 - $-R^{T}R$: symmetric, positive diagonal, mxm matrix
 - $-RR^{T}$: symmetric, positive diagonal, nxn matrix
 - $-R^{T}R \neq RR^{T}$

Symmetric $A = LDU = LDL^{T}$

• Let A: symmetric, and A = LDU

$$A = LDU \Rightarrow A = A^{T} = (LDU)^{T} = U^{T}DL^{T} = LDU \Rightarrow U = L^{T}$$

 $\Rightarrow A = LDL^{T}$

Example

$$\begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

- Note
 - Elimination is faster.
 - Factorization can save storage in half.

Permutation Matrices

- A permutation matrix *P* has a single "1" in every row and every column.
 - − *P*: square matrix
 - $-P^{T}$ also has a single "1" in every row and every column
 - $-P^{\mathrm{T}}$: permutation matrix
 - There are n! permutation matrices of order n
- Meaning of permutation matrix

Let
$$P = (p_{ij})$$

If $p_{ij} = 1$, then PA moves j^{th} row of A to i^{th} row.

Permutation Matrices - Example

$$I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad P_{21} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad P_{31} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad P_{32} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$P_{32}P_{21} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad P_{21}P_{32} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad P_{31}P_{32} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$Let \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$P_{21}A = \begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{bmatrix}, \quad P_{31}A = \begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}, \quad P_{32}A = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{bmatrix}$$

$$P_{32}P_{21}A = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \end{bmatrix}, \quad P_{21}P_{32}A = \begin{bmatrix} 7 & 8 & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad P_{31}P_{32}A = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \end{bmatrix}$$

Transpose of Permutation Matrices

Let
$$P = (p_{ij}), P^{T} = (p_{ij}^{t})$$

$$p_{ij} = 1 \rightarrow p_{ji}^{t} = 1$$

$$\begin{cases} P^{T}PA : \text{move } j^{\text{th}} \text{ row of } A \text{ to } i^{\text{th}} \text{ row, and then move } i^{\text{th}} \text{ row to } j^{\text{th}} \text{ row.} \\ PP^{T}A : \text{move } i^{\text{th}} \text{ row of } A \text{ to } j^{\text{th}} \text{ row, and then move } j^{\text{th}} \text{ row to } i^{\text{th}} \text{ row.} \\ \Rightarrow P^{T}PA = PP^{T}A = A \\ \Rightarrow P^{T}P = PP^{T} = I \\ \Rightarrow P^{T} = P^{-1} \end{cases}$$

Factorization with/without Row Exchanges

• Factorization without row exchange:

Elimination:

$$(E_{n(n-1)})\cdots(E_{n2}\cdots E_{32})(E_{n1}\cdots E_{21})A = U$$

$$\Rightarrow A = (E_{21}^{-1}\cdots E_{n1}^{-1})(E_{32}^{-1}\cdots E_{n2}^{-1})\cdots(E_{n(n-1)}^{-1})U = LU$$

When row exchanges are needed due to zero pivot

Permutation and Elimination:

$$(E_{n(n-1)})\cdots(E_{n2}\cdots E_{32}P_{k_22})(E_{n1}\cdots E_{21}P_{k_11})A = U$$

$$\Rightarrow A = (P_{k_11}^{-1}E_{21}^{-1}\cdots E_{n1}^{-1})(P_{k_22}^{-1}E_{32}^{-1}\cdots E_{n2}^{-1})\cdots(E_{n(n-1)}^{-1})U = LU$$

Factorization with Row Exchanges PA = LU

- In the elimination process, pivot can be zero.
 - Row exchange is required.
 - Row exchange can be done <u>in advance</u>.

Permutation and Elimination:

$$\begin{split} & (E_{n(n-1)}) \cdots (E_{n2} \cdots E_{32} P_{k_2 2}) (E_{n1} \cdots E_{21} P_{k_1 1}) A = U \\ & \Rightarrow (E'_{n(n-1)}) \cdots (E'_{n2} \cdots E'_{32}) (E'_{n1} \cdots E'_{21}) (\cdots P_{k_2 2} P_{k_2 2}) A = U \\ & \Rightarrow (E'_{n(n-1)}) \cdots (E'_{n2} \cdots E'_{32}) (E'_{n1} \cdots E_{21}) PA = U, \\ & \text{where } P = \cdots P_{k_2 2} P_{k_2 2} \\ & \Rightarrow PA = (E'_{21} \cdots E'_{n1}) (E'_{32} \cdots E'_{n2}) \cdots (E'_{n(n-1)}) U = LU, \\ & \text{where } L = (E'_{21} \cdots E'_{n1}) (E'_{32} \cdots E'_{n1}) (E'_{32} \cdots E'_{n2}) \cdots (E'_{n(n-1)}) \end{split}$$

PA = LU – Example

Elimination process

$$A = \begin{bmatrix} 0 & 3 & 1 \\ 2 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix}$$

$$P_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad P_{31}A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 4 \\ 0 & 3 & 1 \end{bmatrix} = A_{1}$$

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{21}A_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 3 & 1 \end{bmatrix} = A_{1}$$

$$P_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad P_{32}A_{2} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} = U$$

Factorization

$$P_{32}E_{21}P_{31}A = U$$

$$\Rightarrow A = (P_{32}E_{21}P_{31})^{-1}U = (P_{31}^{-1}E_{21}^{-1}P_{32}^{-1})U = LU$$

$$\Rightarrow L = P_{31}^{-1}E_{21}^{-1}P_{32}^{-1}$$

$$L = P_{31}^{-1}E_{21}^{-1}P_{32}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Factorization

$$\begin{bmatrix} 1 & 1 & 1 \\ P_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad P_{31}A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 4 \\ 0 & 3 & 1 \end{bmatrix} = A_{1}$$

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{21}A_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 3 & 1 \end{bmatrix} = A_{2}$$

$$P_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad P_{32}A_{2} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} = U$$

$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad E_{31}A_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 2 & 2 & 4 \end{bmatrix} = A_{1}$$
Elimination
$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \quad E_{31}A_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} = U$$

$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, E_{31}A_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} = U$$

$$\Rightarrow E_{31}PA = U \Rightarrow PA = E_{31}^{-1}U = LU$$

$$\Rightarrow L = E_{31}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Example1: linear equation system linear Algebra with Application, Leon, 한티미디어

다음의 광합성 작용을 하는 화학방정식의 균형을 맞추어 보자.

$$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$$

(x_1)CO₂+(x_2)H₂O \rightarrow (x_3)C₆H₁₂O₆+(x_4)O₂가 균형 잡힌 화학방정식이 되도록 양의 정수 x_1 , x_2 , x_3 , x_4 를 구해야 한다. 먼저 각 원소의 수는 방정식의 양변에서 같아야 하므로

탄소(C):
$$x_1 = 6x_3$$

수소(H):
$$2x_2 = 12x_3$$

산소(O):
$$2x_1+x_2=6x_3+2x_4$$

이것을 선형시스템으로 나타내면 다음과 같다.

$$x_1 - 6x_3 = 0$$

$$2x_2 - 12x_3 = 0$$

$$2x_1 + x_2 - 6x_3 - 2x_4 = 0$$

이것을 풀기 위해 가우스-조단 소거법을 적용하면 다음과 같다.

$$(-2) \times R_1 + R_3 \to R_3$$

$$\frac{1}{2} \times R_2 \to R_2$$

$$\begin{bmatrix} 1 & 0 & -6 & 0 & | & 0 \\ 0 & 1 & -6 & 0 & | & 0 \\ 0 & 1 & 6 & -2 & | & 0 \end{bmatrix}$$
 $(-1) \times R_2 + R_3 \rightarrow R_3$

$$(-1)\times R_2+R_3\rightarrow R_3$$

$$\begin{bmatrix} 1 & 0 & -6 & 0 & 0 \\ 0 & 1 & -6 & 0 & 0 \\ 0 & 0 & 12 & -2 & 0 \end{bmatrix}$$

$$\frac{1}{2} \times R_3 \to R_3$$

$$\frac{1}{2} \times R_3 \rightarrow R_3$$

$$\begin{bmatrix} 1 & 0 & -6 & 0 & | & 0 \\ 0 & 1 & -6 & 0 & | & 0 \\ 0 & 0 & 6 & -1 & | & 0 \end{bmatrix}$$

그 결과 $x_3 = \frac{1}{6}x_4$, $x_2 = x_4$, $x_1 = x_4$ 의 값들을 얻을 수 있다. 여기서는 모든 변수 들이 정수가 되어야 하므로 $x_4 = 6$ 이라면, $x_1 = 6$, $x_2 = 6$, $x_3 = 1$, $x_4 = 6$ 이 된다. 따라서 구하고자 하는 최종 화학방정식은

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$
이다.

Example 2: Traffic

어떤 도시의 중심가에 그림 와 같은 4개의 일방통행 길이 있다고 한다. 각교차점에 한 시간당 유입되는 교통량과 빠져나가는 교통량이 그림과 같이 주어졌을 경우 각 네거리에서의 교통량을 결정해 보자.

4개의 일방통행 길

ⓐ 의 각 교차점에 유입되는 차량의 숫자와 빠져나가는 차량의 숫자가 같으므로, 교차점 A에 유입되는 차량의 수는 $x_1 + 450$ 이고 빠져나가는 차량의 수는 $x_2 + 610$ 이다.

따라서

$$x_1 + 450 = x_2 + 610$$
 (교차점 A)

이와 같은 방법으로.

$$x_2 + 520 = x_3 + 480$$
 (교차점 B)

$$x_3 + 390 = x_4 + 600$$
 (교차점 C)

$$x_4 + 640 = x_1 + 310$$
 (교차점 D)

과 같은 4개의 선형방정식을 만들 수 있다. 이것을 첨가행렬로 만들면 다음과 같다.

$$\begin{bmatrix} 1 & -1 & 0 & 0 & | & 160 \\ 0 & 1 & -1 & 0 & | & -40 \\ 0 & 0 & 1 & -1 & | & 210 \\ -1 & 0 & 0 & 1 & | & -330 \end{bmatrix}$$

이 행렬을 기약 행 사다리꼴로 변환시키면 다음과 같이 된다.

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 330 \\ 0 & 1 & 0 & -1 & 170 \\ 0 & 0 & 1 & -1 & 210 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

이 시스템은 하나의 자유변수를 가지므로 여러 가지 해를 가질 수 있다. 만약 교차로 C와 D 사이의 평균 교통량이 한 시간당 200대라고 가정하면, x_4 = 200일 것이고 x_1, x_2, x_3 을 x_4 에 대해 풀면 다음과 같다.

$$x_1 = x_4 + 330 = 530$$

$$x_2 = x_4 + 170 = 370$$

$$x_3 = x_4 + 210 = 410$$

Example 3. 암호 해독

암호 해독에 있어서 코드화된 메시지를 주고받는 가장 일반적인 방법은 각 알파벳 문자에다 정수 값을 부여하고 그 메시지를 정수의 열(string)로 보내는 것이다 예를 들어, SEND MONEY라는 메시지는 5, 8, 10, 21, 7, 2, 10, 8, 3과 같이 코드화될 수 있다.

여기서 S는 5에 해당하고 Y는 3에 해당한다. 나머지도 순서에 따라 그 값을 가진다. 일반적으로 이런 형식의 문장은 해독하기가 비교적 쉬우므로 행렬의 곱을 이용하여 암호화하는 것이 좋다. 따라서 앞의 메시지를 다음 행렬 A와의 곱으로 변환시키면 해독하기가 매우 어렵게 될 것이다.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 2 & 3 & 2 \end{bmatrix}$$

주어진 원래의 메시지(SEND MONEY)를 차례로 적으면 행렬 B와 같다.

$$B = \begin{bmatrix} 5 & 21 & 10 \\ 8 & 7 & 8 \\ 10 & 2 & 3 \end{bmatrix}$$

암호화를 위해 행렬 A에다 원래의 메시지 행렬인 B를 곱하면

$$AB = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 2 & 3 & 2 \end{bmatrix} \begin{bmatrix} 5 & 21 & 10 \\ 8 & 7 & 8 \\ 10 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 31 & 37 & 29 \\ 80 & 83 & 69 \\ 54 & 67 & 50 \end{bmatrix}$$

그러면 A와 B의 곱은 다음과 같이 코드화된 메시지로 나올 것이다.

그 메시지를 받는 사람은 받은 값의 행렬에다 미리 약속된 원래의 행렬 A의 역행 렬인 A^{-1} 를 곱함으로써 그 문자를 해독할 수 있다.

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 0 & -1 \\ -4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 31 & 37 & 29 \\ 80 & 83 & 69 \\ 54 & 67 & 50 \end{bmatrix} = \begin{bmatrix} 5 & 21 & 10 \\ 8 & 7 & 8 \\ 10 & 2 & 3 \end{bmatrix}$$

이 결과는 원래 보낸 행렬 B의 값과 같으므로 동일한 메시지로 해독하는 셈이다

Question?