Convolutional Neural Networks

A Fully Connected/Dense Layer with a single unit producing a single feature at layer \boldsymbol{l} computes

$$\mathbf{y}_{(l),1} = a_{(l)}(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),1})$$

Fully connected, single feature

 $\mathbf{y}_{(l-1)}$ $\mathbf{y}_{(l)}$

That is:

- It recognizes one new synthetic feature
- ullet In the entirety ("fully" connected) of $\mathbf{y}_{(l-1)}$
- ullet Using pattern $\mathbf{W}_{(l),1}$ (same size as $\mathbf{y}_{(l-1)}$)
- To reduce $\mathbf{y}_{(l-1)}$ to a single feature.

The pattern being matched spans the entirety of the input

- Might it be useful to recognize a smaller feature that spanned only *part* of the input?
- What if this smaller feature could occur *anywhere* in the input rather than at a fixed location?

For example

- A "spike" in a time series
- The eye in a face

A pattern whose length was that of the entire input could recognize the smaller feature only in a *specific* place

This motivates some of the key ideas behind a Convolutional Layer.

- Recognize smaller features within the whole
- Using small patterns
- That are "slid" over the entire input
- Localizing the specific part of the input containing the smaller feature

The spatial dimension

Here is the connectivity diagram of a Convolutional Layer producing a $\pmb{\mathsf{single}}$ feature at layer l

- Using a pattern of length 3
- Eventually we will show how to produce *multiple* features
- Hence the subscript "1" in $\mathbf{y}_{(l),1}$ to denote the first output feature
- The output $\mathbf{y}_{(l),1}$ is called a *feature map* as it attempts to match a feature at each input location

Convolutional layer, single feature

We really need to make the shapes of the vectors more precise.

- The vectors depicted now have 2 (or more) dimensions
- In our case: there are 2 dimensions, one of them a singleton
- The final dimension is the *feature* dimension

In the above diagram, layers (l-1) and l have dimensions are $(d_{(l)} imes 1)$

- a single feature
- ullet at $d_{(l)}=d_{(l-1)}$ spatial locations

This is different than the vector of shape $(1 imes d_{(l)})$

- ullet (Thus far, we seemingly have been equating $d_{(l)}=n_{(l)}$)
- $ullet \ d_{(l)} = d_{(l-1)}$ features
- at a single spatial location

The choice of where the singleton dimension appears is sometimes a matter of interpretation.

Consider the time series of prices of a single ticker over d days.

Two representations

- ullet (d imes 1): 1 feature ("price") over d spatial ("date") locations
- (1 imes d): 1 ticker with d features $(\operatorname{price} 1, \dots, \operatorname{price} d)$

Note that a convolution finds small patterns in the spatial dimension, not the feature dimension

Your choice of where to place the singleton dimension thus has consequences for a Convolutional layer.

Notation

- the feature dimension will be the last index
- ullet $n_{(l)}$ will always denote the *number of features* of a layer l
- ullet $\mathbf{y}_{(l),j',j}$ denotes feature j of layer l at spatial location j'

We say that the above convolutional layer l

- ullet Maps a single feature (defined over $d_{(l)}=d_{(l-1)}$ locations) of layer (l-1)
- ullet To a single feature, defined over an identical number of spatial locations in layer l

The Fully Connected layer we depicted matches a pattern over the full feature dimension

• There is no ordering (or spatial relationship) between features

To see this,

- Consider a vector x of n features (input to the Fully Connected layer)
- Let perm be permutation of the indices of \mathbf{x} : $[1 \dots n]$.

If we permute both ${\bf x}$ and weights Θ , the dot product remains unchanged

$$\Theta^T \cdot \mathbf{x} = \Theta[\mathrm{perm}]^T \cdot \mathbf{x}[\mathrm{perm}]]$$

But for certain types of inputs (e.g. images) it is easy to imagine that spatial locality is important.
By using a small pattern (and restricting connectivity)
 we emphasize the importance of neighboring features over far away features

Mathematically, the One Dimensional Convolutional Layer (Conv1d) we have shown computes $\mathbf{y}_{(l)}$

$$\mathbf{y}_{(l),1} = egin{pmatrix} a_{(l)} \left(\ N(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l),1}, 1) \cdot \mathbf{W}_{(l),1} \ a_{(l)} \left(\ N(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l),1}, 2) \cdot \mathbf{W}_{(l),1} \ dots \ a_{(l)} \left(\ N(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l),1}, d_{(l-1)} \cdot \mathbf{W}_{(l),1} \ \end{pmatrix} \end{pmatrix}$$

where $N(|\mathbf{y}_{(l-1)},\mathbf{W}_{(l),1},j|)$

- ullet selects a subsequence of $\mathbf{y}_{(l-1),\ldots,1}$ centered at $\mathbf{y}_{(l-1),j,1}$
 - Note the extra spatial dimension in the subscripting; ". . . " denotes the full spatial dimension
 - lacktriangledown Centered at the j^{th} element in the spatial dimension of feature 1 of layer (l-1)

Note that

- ullet The same weight matrix ${f W}_{(l),1}$ is used for the first feature at all locations j
- The size of ${f W}_{(l),1}$ is the same as the size of the subsequence $N(\ {f y}_{(l-1)},{f W}_{(l),1},j)$
 - Since dot product is element-wise multiplication
- ullet The spatial dimension $d_{(l)}$ of $\mathbf{y}_{(l),1}$ is equal to $d_{(l-1)}$

So $\mathbf{W}_{(l),1}$

- Is a smaller pattern
- $\bullet \;$ That is applied to each spatial location j in $\mathbf{y}_{(l-1)}$
- $\mathbf{y}_{(l),j,1}$ recognizes the match/non-match of the smaller first feature at the spatial locations centered at $\mathbf{y}_{(l-1),j,1}$

 $\mathbf{W}_{(l),1}$ is called a convolutional filter or kernel

- ullet We will often denote it ${f k}_{(l),1}$
- ullet But it is just a part of the weights f W of the multi-layer NN.
- ullet We use $f_{(l)}$ to denote the size of the smaller pattern called the *filter size*

Note

The default activation $a_{\left(l\right)}$ in Keras is "linear"

- That is: it returns the dot product input unchanged
- Always know what is the default activation for a layer; better yet: always specify!

A Convolution is often depicted as

- A filter/kernel
- That is slid over each location in the input
- Producing a corresponding output for that location

Here's a picture with a kernel of size $f_{\left(l
ight)}=3$

Conv 1D, single feature: sliding the filter

After sliding the Kernel over the whole $\mathbf{y}_{(l-1)}$ we get:

Conv 1D, single feature

Element j of output $\mathbf{y}_{(l),\ldots,1}$ (i.e., $\mathbf{y}_{(l),j,1}$)

- ullet Is colored (e.g., j=1 is colored Red)
- ullet Is computed by applying the same $\mathbf{W}_{(l),1}$ to
 - lacksquare The $f_{(l)}$ elements of $\mathbf{y}_{(l-1),1}$, centered at $\mathbf{y}_{(l-1),j,1}$
 - Which have the same color as the output

Note however that, at the "ends" of $\mathbf{y}_{(l-1)}$ the kernel may extend beyond the input vector.

In that case $\mathbf{y}_{(l-1)}$ may be extended with padding (elements with 0 value typically)

Conv2d in action

Pre-Deep Learning: manually specified filters have a rich history for image recognition.

Here is a list of manually constructed kernels (templates) that have proven useful

list of filter matrices (https://en.wikipedia.org/wiki/Kernel (image_processing))

Let's see some in action to get a better intuition.

0 1 2

5 -6

convolution output

- A bright element in the output indicates a high, positive dot product
- A dark element in the output indicates a low (or highly negative) dot product

In our example

- N=2: Two spatial dimensions
- ullet One input feature: $n_{(l-1)}=1$
- ullet One output feature $n_{(l)}=1$
- $f_{(l)}=3$
 - Kernel is $(3 \times 3 \times 1)$.

The template match will be maximized when

- high values in the input correspond to high values in the matching location of the template
- low values in the input correspond to low values in the matching locations of the template

```
In [5]: print("Done")
```

Done