

ATUAL.PRO

Desenhando Fórmulas de Química de um jeito simples.

https://atual.pro

Marcelo Josué Telles

Seja bem vindo!

Neste Ebook vamos descobrir recursos para simplificar a escrita de fórmulas químicas, em especial a química Orgânica.

Vamos explorar o editor de texto **LaTeX**, este é usado para edição de apresentações, trabalhos científicos e livros.

Conheceremos um recurso online e colaborativo para LaTeX, o **Overleaf**. Overleaf é um site aonde você edita suas próprias fórmulas usando LaTeX. Criaremos as fórmulas com o pacote de figuras químicas chamado **Chemfig**.

Fique tranquilo, vou explicar detalhadamente o que são cada um destes itens.

LaTeX 1

Abreviação das palavras
Lamport e TeX. Serve como
editor de documentos.
Utiliza marcação para definir a
estrutura e formatação dos
documentos.

Ao escrever, o escritor usa o texto puro, ao invés do texto formatado como em editores de texto

convencionais (Microsoft Word, LibreOffice e outros). LaTeX tem uma finalidade um pouco diferente dos demais editores.

Overleaf 2

Overleaf é uma startup que constrói ferramentas colaborativas para tornar a ciência e a pesquisa mais rápida, aberta e transparente. Usada por mais de três milhões de pesquisadores, estudantes e professores em laboratórios e indústrias em todo o mundo. Não há nada complicado ou difícil para instalar. Você pode começar a usar LaTeX agora, mesmo que nunca tenha visto

isso antes.

Existem alguns pacotes do
LaTeX para criar fórmulas
químicas: chemfig, mhchem
ochem, streetex e xymtex.
O mais intuitivo é
provavelmente o pacote
chemfig. Vamos adotá-lo e
explorá-lo ao longo deste
Ebook.

Para visitar as seções do Ebook, clique nos números ou nos títulos ao lado.

Sumário

- 1 O que faremos neste Ebook?
- 2 Lista de fórmulas básicas
- **3** Como aplicar o que aprendeu?
- 4 Tabelas periódicas
- **5** Material extra
- 6 Dúvidas
- 7 Agradecimentos

Para retornar a este sumário, clique no ícone \nearrow , na parte superior à direita de qualquer página.

Conheceremos o editor LaTeX

Usaremos o site Overleaf e exportaremos em PDF

Entenderemos o pacote para figuras de química - Chemfig

Desenharemos fórmulas químicas com alta qualidade de forma simples

Estrutura básica de um documento LaTeX

Estrutura básica de um documento LaTeX

1	\documentclass{article}
2	\usepackage[utf8]{inputenc}
3	\usepackage[portuguese]{babel}
4 -	\begin{document}
5	Meu primeiro texto.
6	\end{document}

6 \end{document} Resultado

Meu primeiro texto.

Explicaçã	o sobre cada linha do documento LaTeX
Linha 1	Define o tipo de documento, além de <i>article</i> , Podemos colocar <i>report</i> , <i>book</i> , <i>letter</i> , <i>beamer</i> entre outros.
Linha 2	habilita o uso de acentos diretamente do teclado.
Linha 3	habilita o uso de palavras em língua portuguesa.
Linha 4	Início do documento
Linha 5	Parte principal do documento, ou seja, o texto ou fórmulas que desejamos desenvolver
Linha 6	Fim do documento

Primeira fórmula de química

```
1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[portuguese]{babel}
4 \usepackage{chemfig}
5 \times \begin{document}
6 Minha primeira fórmula de química
7 \chemfig{O-H}
8 \end{document}
```

Resultado

Minha primeira fórmula de química: O — H

Explicação:

Neste documento temos novidade nas linhas 4 e 7.

Na linha 4 estamos habilitando o uso de comandos para desenhar fórmulas de química como se fossem figuras, isto é, podem ter letras e símbolos ocupando diferentes linhas do documento.

Na linha 7 estamos montando a fórmula O – H. Note que a fórmula deve ficar entre Chaves { } e precedida do comando \chemfig. Entre cada molécula temos o sinal de subtração.


```
1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[portuguese]{babel}
4 \usepackage{chemfig}
5 \times \begin{document}
6 Minha primeira fórmula de química:
7 \chemfig{O(-[5]H)(-[7]H)}
8 \end{document}
```

Resultado

Molécula de água:

Explicação:

Neste documento temos uma fórmula composta por ligações em ângulo. Os ângulos são definidos por 3 métodos (Unidade Padrão, Unidade Absoluta e Ângulo relativo). O uso dos parênteses será explicado nos próximos passos.

Neste caso, estamos usando o método de unidade padrão, que são números de 0 até 7. Abaixo segue um exemplo dos possíveis ângulos com unidade padrão:

Unidade Padrão

No comando

\chemfig{O(-[5]H)(-[7]H)}

os parâmetros dentro dos colchetes definem o ângulo em unidade, cada unidade é igual a 45°.

Desta forma temos:

 $5 \times 45 = 225$

 $7 \times 45 = 315$

Por isso, no exemplo, os ângulos são 225° e 315°.

Unidade Absoluta

Os ângulos podem ser definidos em unidades absolutas, no comando

\chemfig{O(-[:225]H)(-[:315]H)}

o parâmetro(225 e 315) dentro dos colchetes representa o ângulo, em graus, medido a partir da linha de base horizontal direita. Note que antes do parâmetro devemos colocar dois pontos (:). Ângulos negativos são permitidos.

Usando unidades absolutas temos mais precisão na definição dos ângulos.

Os dois comandos \chemfig citados nesta página produzem o mesmo resultado.

Abaixo segue um exemplo dos possíveis ângulos com unidades absolutas:

Definição dos ângulos entre moléculas

Ângulo Relativo

Os ângulos relativos são mais utilizados em ligações com vários elementos em uma sequência. Tomaremos como exemplo uma ligação ilustrativa onde desejamos ligar 3 elementos, A, B e C. Neste exemplo, não ligaremos dois elementos a um mesmo elemento e sim em uma sequencia.

O comando

\chemfig{A-[::50]B-[::0]C}

Produz o resultado apresentado ao lado. Note a presença do sinal dois pontos (::).

Desta forma vimos que o sinal de : controla qual método vamos utilizar para definir o ângulo.

[] Unidade Padrão

[:] Unidade Absoluta

[::] Ângulo relativo

Terceira fórmula de química

```
1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[portuguese]{babel}
4 \usepackage{chemfig}
5 \times \begin{document}
6    Minha terceira fórmula de química:
7    \chemfig{H-C(-[2]H)(-[6]H)-C(=[1]0)-[7]H}
8 \end{document}
```

Resultado

```
Minha terceira fórmula de química: H — C — C H
```

Explicação:

Neste exemplo, estamos usando os parênteses e também o sinal de igualdade, além do sinal de subtração. Note que ao lado do primeiro Carbono, temos dois grupos de sinais entre parênteses.

```
\chemfig{H-C(-[2]H)(-[6]H)-C(=[1]0)-[7]H}
```

Já no último carbono temos apenas um.

A utilização dos parêntese é necessária quando desejamos estabelecer mais de uma ligação no mesmo elemento.

Visitando o Site Overleaf

Agora que conhecemos o básico do LaTeX, vamos visitar o site Overleaf e registrar uma conta.

Clique para visitar o Overleaf

Para criar sua conta, basta entrar no site e clicar em um dos links Registrar

Para efetuar o registro, podes optar por uma das três formas: e-mail e senha, conta Google ou conta ORCID.

Conta ORCID identifica pessoas que participam de pesquisas, bolsas de estudo e inovações de forma única e centralizada. Quem costuma escrever artigos científicos utiliza este tipo de conta.

Registrar

Visitando o Site Overleaf

Após a criação da conta, podemos clicar em **Novo Projeto** ou **New Project** se deixou em Inglês. A partir daqui vou sempre indicar as opções em Português para simplificar nosso passo a passo.

No primeiro projeto, recomendo escolher a opção **Projeto em Branco**. Digite um nome para o projeto. Pronto seu projeto esta preparado para edição. Vai aparecer a tela de edição.

Projeto no Overleaf

Abaixo segue uma tela com as principais partes do Overleaf, para a edição de documentos LaTeX.

Projeto no Overleaf

Estes foram nossos primeiros passos

Vimos o básico sobre LaTeX.

Exploramos alguns comandos, para criar fórmulas com o pacote Chemfig.

Entramos no **Overleaf**, registramos uma conta e tivemos uma visão geral sobre como criar um projeto e transferir o PDF para seu computador.

Agora, vamos explorar uma lista de fórmulas, para conhecer um pouco mais do pacote Chemfig.

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
1. Metano	$\mathrm{CH_4}$	H—————————————————————————————————————
2 . Etano	$\mathrm{C_2H_6}$	H—————————————————————————————————————

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
3. Propano	$\mathrm{C_3H_8}$	H H H H———————————————————————————————
4. Butano	$\mathrm{C_4H_{10}}$	H H H H H H H C C C C C H H H H H H

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
5. Pentano	$\mathrm{C_5H_{12}}$	H H H H H H—C—C—C—C—C—H H H H H H
6 . Hexano	$\mathrm{C_6H_{14}}$	H—————————————————————————————————————

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
7. Heptano	$\mathrm{C_7H_{16}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 . Octano	$\mathrm{C_8H_{18}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Nome do elemento	Fórmula molecular	Fórmula estrutural plana	
9 . Nonano	$\mathrm{C_9H_{20}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10. Decano	$\mathrm{C_{10}H_{22}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-Н

Alcenos

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
11 . Eteno	$\mathrm{C_2H_4}$	$\begin{array}{ccccccccccccccccH\\ H & & H \end{array}$
12 . Propeno	$\mathrm{C_3H_6}$	$\begin{array}{c c} H & H \\ \hline H & C & H \\ \hline H & H \end{array}$

Alcenos

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
13. Buteno	$\mathrm{C_4H_8}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14. Penteno	$\mathrm{C_5H_{10}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Alcenos

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
15 . Hexeno	$\mathrm{C_6H_{12}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Alcinos

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
16 . Etino ou Acetileno	$\mathrm{C_2H_2}$	Н—С≡С—Н
17. Propino	$\mathrm{C_3H_4}$	$\mathbf{H} \longrightarrow \mathbf{C} = \mathbf{C} \longrightarrow \mathbf{C} \longrightarrow \mathbf{H}$
18. Butino	$\mathrm{C_4H_6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Alcinos

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
19. Pentino	$\mathrm{C_5H_8}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
20 . Hexino	$\mathrm{C_6H_{10}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
21. Ciclopropano	$\mathrm{C_3H_6}$	H_2C CH_2 H H H H H H
22 . Ciclobutano	$\mathrm{C_4H_8}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
23 . Ciclopentano	$\mathrm{C_5H_{10}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
24 . Ciclohexano	$\mathrm{C_6H_{12}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Nome do elemento	Fórmula molecular	Fórmula estrutural plana							
25 . Anel Benzeno	$ m C_6H_6$	H C C H ou H							

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
26 . Antraceno	$\mathrm{C_{14}H_{10}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
27 . Naftaleno	$\mathrm{C_{10}H_8}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
28. Fenantreno	$\mathrm{C_{14}H_{10}}$	
29 . Etanal aldeído	$\mathrm{C_2H_4O}$	H—————————————————————————————————————

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
30 . Etenol	$\mathrm{C_2H_3OH}$	H C H
31 . Propanona	$\mathrm{CH_{3}(CO)CH_{3}}$	$_{ m H_3C}^{ m O}$ $_{ m CH_3}^{ m C}$

Nome do elemento	Fórmula molecular	Fórmula estrutural plana
32 . Metanal	$\mathrm{CH_2O}$	O H C H
33 . Butadieno	$\mathrm{C_4H_6}$ (parecido com o Butino)	H H H

Nome da fórmula	Fórmula Linear	Fórmula Estrutural
34 . Glicose	$\mathrm{C_6H_{12}O_6}$	HO OH OH

Nome da fórmula	Fórmula Linear	Fórmula Estrutural
35 . Adrenalina	$\mathrm{C_9H_{13}NO_3}$	HO CH ₃
36 . Guanina	$\mathrm{C_5H_5N_5O}$	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

Como aplicar o que aprendeu?

- Preparar material com fórmulas de química de alta qualidade.
- Personalizar fórmulas de acordo com seu público.
- Desenvolver trabalhos acadêmicos e industriais com agilidade.
- Se você apenas desejar usar as fórmulas apresentadas ao longo deste material, fique a vontade, este material é inteiramente seu.
- Após a compreensão destes itens, será possível montar suas próprias fórmulas de química personalizadas. Seus materiais, sejam eles didáticos, acadêmicos ou profissionais serão de alta qualidade, e o que é mais importante, terão seu toque especial e único.

- Se você chegou até aqui, é porque quer montar e personalizar fórmulas de química de alta qualidade. Parabéns.
- Se desejar, faça uma pausa, depois retorne aqui e encontre mais materiais para otimizar seu dia a dia.
- Aproveite para entrar em contato pelas redes sociais. Estou lhe esperando.

Clique nos ícones de rede social

4 Tabelas periódicas

ATUAL.PRO

1	Tabela Periódica dos Elementos														2		
H 1.008																	He 4.003
3 Li 6.941	4 Be _{9.012}											5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20,180
11 Na 22.990	12 Mg 24.305											13 Al 26.981	14 Si 28.085	15 P 30.974	16 S 32.066	17 Cl 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.88	23 V 50.941	24 Cr 51.996	25 Mn 54.938	26 Fe 55.847	27 Co 58.933	28 Ni 58.69	29 Cu 63.546	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.905	46 Pd 106.42	47 Ag 107.868	48 Cd 112.41	49 In 114.82	50 Sn 118.710	51 Sb 121.757	Te 127.60	53 I 126.905	54 Xe 131.29
55 Cs 132.905	56 Ba 137.33	*La 138.905	72 Hf 178.49	73 Ta 180.948	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	Pb 207.2	83 Bi 208.980	Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.025	89 †Ac 227.028	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 Ds (271)	111 Rg (272)	112 Cn	113 Nh	Fl	115 Mc	116 Lv	117 Ts	118 Og

*Lantánidos	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
†Actínidos	90 Th 232.038	91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	No (259)	103 Lr (260)

	1 IA																	18 VIIIA
	1 1.0079			/ N /	1-17-	\ D'-						- T'L7						2 4.0025
1	H Hydrogen	2 IIA		(iviend	leleev's) Perio	aic Tai	oie of C	nemica	ai Eiem	ents vi	анки	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	He Helium
	3 6.941	4 9.0122											5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li Li	Be											В	c	N	0	F	Ne
	Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Flourine	Neon
	11 22.990	12 24,305											13 26.982	14 28.086	15 30.974	16 32,065	17 35.453	18 39,948
3	Na	Mg											Al	Si	Р	S	CI	Ar
	Sodium	Magnesium	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 I B	12 B	Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54,938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.8
4	K Potassium	Ca Calcium	Sc Scandium	Ti Titanium	V Vanadium	Cr	Mn Manganese	Fe Iron	Co	Ni Nickel	Cu	Zn	Gallium Gallium	Ge	As Arsenic	Se Selenium	Br Bromine	Kr
	37 85,468	38 87.62	39 88,906	40 91.224	41 92,906	42 95.94	43 96	44 101.07	45 102.91	46 106,42	47 107.87	48 112.41	49 114.82	50 118,71	51 121,76	52 127.6	53 126.9	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn 118.71	Sb	Te	33 120.9 	Xe 131.29
-	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
	55 132,91	56 137,33	57-71	72 178.49	73 180.95	74 183,84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204,38	82 207.2	83 208.98	84 209	85 210	86 222
6	Cs	Ba	La-Lu	Hf	Ta		···Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Caesium	Barium	Lanthanide	Halfnium	Tantalum	Tungsten	Rhenium	Osmium	· kridijum	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
	87 223	88 226	89-103	104 26f	195 , , , 262 Db	106 266	107 264	108 277	109 268	110 281	111 280	112 285	113 284	114 289	115 288	116 293	117 292	118 294
7	Fr Francium	Ra Radium	Ac-Lr Actinide	Ruff	Dubnium	Seaborgium	Bohrium	Hs Hassium	Mit	Ds Darmstadtium	Rg	Copernicium	Nihonium	Flerovium	Mc Moscovium,	Livermorium	Ts Tennessine	Og Oganesson
		rodum	- 1		Duomom	Scooolgion	DOMININ	Trassauct	- AMADISION		-	Соренневи	Tallonan	Treiovium	moscowati.		*********	
	Alkali Metal Alkaline Eart	h Metal		57 138.91	58 140.12	59 140.91	- 60 , 144.24	61 145	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	. 67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
	Metal Metalloid			La	Ce	Pr	Nd	····Pm···	Sm	Eu	Gd	Tb	Dу	Ho	Er	Tm	Yb	Lu
	Non-metal Halogen			Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	Noble Gas	Actinide										***********					*********	**********
	Z mass			89 227	90 232.04	91 231.04	92 238.03	93 237	94 244	95 243	96 247	97 247	98 251	99 252	100 257	101 258	102 259	103 262
	Symbol	man- made	· \	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	···M.d	No	Lr
	Name		,	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Clique para visitar o template

Clique para visitar o template

6 Dúvidas

Caso desejar esclarecimentos sobre como montar listas de exercícios, criar folhas timbradas, logo e demais informações personalizadas, ou se tiver dúvida sobre uma fórmula em especial, podes entrar em contato diretamente comigo.

Sua dúvida pode ser incluída em futuras versões deste material.

atual@atual.pro

