Likelihood inference

McElreath Ch 2 Figs 2.2 - 2.4

The likelihood principle

All the evidence in an observation (data) about the parameters (model) is in the likelihood function

The likelihood function

Counts all the ways the data could have happened for a given model or hypothesis

Marbles in a bag

We know: 4 marbles, 2 colors, marbles drawn randomly with replacement Goal: what is in the bag?

FIGURE 2.2. The 64 possible paths generated by assuming the bag contains one blue and three white marbles.

i.e. assuming we have H₂, M₂

FIGURE 2.3. After eliminating paths inconsistent with the observed sequence, only 3 of the 64 paths remain.

Paths for data

The likelihood

Probability of the data given a model

The likelihood

Probability of the data given a model

$$P(y|M_2) = P(y|\theta_2) \qquad y = ["b","w","b"]$$
 could be a vector
$$\theta \text{ indicates parameters}_{\text{(number of blue & white)}}$$

Likelihood of model or H

A model is more likely than another if it is the model for which the data are more probable

Notice that this doesn't mention the *probability* of the model, only the probability of the data.

Inference: likelihood ratio

$$\frac{P(y \mid \theta_2)}{P(y \mid \theta_1)}$$

Strength of evidence for model 2 compared to model 1

M_1 [0000] M_2 [\bigcirc 000] M_3 [\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc M_4 [\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 M_5 [\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Models

$$\frac{P(y \mid \theta_4)}{P(y \mid \theta_2)} = \frac{9}{3} = 3$$

$$\frac{P(y \mid \theta_4)}{P(y \mid \theta_2)} = \frac{9}{3} = 3 \qquad \frac{P(y \mid \theta_4)}{P(y \mid \theta_3)} = \frac{9}{8} = 1.125 \qquad \frac{P(y \mid \theta_3)}{P(y \mid \theta_2)} = \frac{8}{3} = 2.\dot{6}$$

$$\frac{P(y \mid \theta_3)}{P(y \mid \theta_2)} = \frac{8}{3} = 2.\dot{6}$$

Notes

- Not frequentist
- Not the same or even similar to a sampling distribution
 - we have not invoked multiple repeated samples
 - probability of the data, not probability of a sample statistic