1. Curvas en el plano y en el espacio

1.1. Curvas en general

- Una curva plana es una aplicación continua $\alpha : I \subset \mathbb{R}^n$ definida por $\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t))$.
- La **velocidad** es la derivada $\alpha'(t) = (\alpha'_1(t), \dots, \alpha'_n(t))$
- La **rapidez** es la norma de la velocidad $v_{\alpha}(t) = \|\alpha'(t)\|$
 - α es regular $\iff v_{\alpha}(t) > 0, \forall t \in I$
 - La derivada (o velocidad) normalizada es $T_{\alpha}(t) = \frac{\alpha'(t)}{r_{\alpha}(t)}$.
- La longitud es $l_{\alpha} = \int_{I} v_{\alpha}(t) dt$.
- \blacksquare Una parametrización es un difeomorfismo $\varphi:J\subset\mathbb{R}\to I\subset\mathbb{R}$
 - El signo de una parametrización es

$$\varepsilon(\varphi) = \begin{cases} +1 & \text{si } \varphi'(t) > 0, \forall t \in J \\ -1 & \text{si } \varphi'(t) < 0, \forall t \in J \end{cases}$$

- Una curva está parametrizada por longitud de arco o p.p.a $\iff \|\alpha'(t)\| = 1, \ \forall t \in I.$
- Si para dos curvas α, β existe φ difeomorfismo tal que $\alpha = \beta \circ \varphi$ decimos que $\alpha \sim \beta$
 - $\bullet \sim$ es una relación de equivalencia
 - Dos curvas en una misma clase de equivalencia comparten la traza o imagen.
 - Se cumple

$$\alpha'(t) = \beta'(\varphi(t))\varphi'(t)$$
$$\|\alpha'(t)\| =$$

- Una curva es birregular ⇔ para una parametrización α se tiene que α' y α" son linealmente independientes.
 - En particular, $\alpha', \alpha'' \neq 0$ y por tanto α también es regular.

1.2. Curvas planas

■ El diedro de Frenet-Serret formado por los vectores

$$\mathbf{t}_{\alpha}(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|}$$
$$\mathbf{n}_{\alpha}(t) = J\mathbf{t}_{\alpha}(t) \text{ con } J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

■ La curvatura (con signo)

$$k_{\alpha}(t) = \frac{\langle \mathbf{t}'_{\alpha}(t), \mathbf{n}_{\alpha}(t) \rangle}{\|\alpha'(t)\|}$$

$$k_{\alpha}(t) = \frac{\det(\alpha'(t), \alpha''(t))}{\|\alpha'(t)\|^{3}} \quad \text{si } \alpha \text{ regular}$$

$$k_{\alpha}(t) = \|\alpha''(t)\| \quad \text{si } \alpha \text{ está p.p.a.}$$

- El vector curvatura es $\mathbf{k}_{\alpha}(t) = k_{\alpha}(t)\mathbf{n}_{\alpha}(t)$
- El radio de curvatura

$$\rho_{\alpha}(t) = \frac{1}{k_{\alpha}(t)}$$

• El centro de curvatura

$$C_{\alpha}(t) = \alpha(t) + \frac{1}{k_{\alpha}(t)} \mathbf{n}_{\alpha}(t)$$

• El circulo osculador o circunferencia osculatriz

$${p \in \mathbb{R}^2 : ||p - C_{\alpha}(t)|| = \frac{1}{k_{\alpha}(t)}, \text{ para } t \in I \text{ fijado }}$$

■ Las ecuaciones de Frenet-Serret salen de tomar la submatriz 2×2 de las ecuaciones en el espacio.

1.3. Curvas en el espacio

■ El triedro de Frenet-Serret formado por los vectores

$$\begin{aligned} \mathbf{t}_{\alpha}(s) &= \frac{\alpha'(s)}{\|\alpha'(s)\|} \\ \mathbf{n}_{\alpha}(s) &= \frac{\mathbf{t}_{\alpha}'(s)}{\|\mathbf{t}_{\alpha}'(s)\|} \\ \mathbf{b}_{\alpha}(s) &= \mathbf{t}_{\alpha}(s) \times \mathbf{n}_{\alpha}(s) \end{aligned}$$

- Los 3 planos del triedro de Frenet-Serret para un punto $\alpha(s)$ de la curva [afines] son:
 - El **plano osculador** span $\{\mathbf{t}_{\alpha}(s), \mathbf{n}_{\alpha}(s)\} + \alpha(s)$ cuyos puntos P cumplen $\langle P \alpha(s), \mathbf{b}_{\alpha}(s) \rangle = 0$
 - El **plano normal** span{ $\mathbf{n}_{\alpha}(s), \mathbf{b}_{\alpha}(s)$ } + $\alpha(s)$ cuyos puntos P cumplen $\langle P \alpha(s), \mathbf{t}_{\alpha}(s) \rangle = 0$
 - El **plano rectificante** span{ $\mathbf{t}_{\alpha}(s), \mathbf{b}_{\alpha}(s)$ } + $\alpha(s)$ cuyos puntos cumplen $\langle P \alpha(s), \mathbf{n}_{\alpha}(s) \rangle = 0$
- La curvatura (siempre ≥ 0)

$$k_{\alpha}(s) = \frac{\|\mathbf{t}_{\alpha}'(s)\|}{\|\alpha'(s)\|}$$

$$k_{\alpha}(s) = \frac{\|\alpha'(s) \times \alpha''(s)\|}{\|\alpha''(s)\|^{3}} \quad \text{si } \alpha \text{ regular}$$
$$k_{\alpha}(s) = \|\alpha''(s)\| \quad \text{si } \alpha \text{ p.p.a}$$

• El vector curvatura

$$\mathbf{k}_{\alpha}(s) = \frac{\mathbf{t}'_{\alpha}(s)}{\|\alpha'(s)\|}$$
 colineal con $\mathbf{n}_{\alpha}(s)$

■ La torsión

$$\tau_{\alpha}(s) = -\frac{\langle \mathbf{b}_{\alpha}'(s), \mathbf{n}_{\alpha}(s) \rangle}{\|\alpha'(s)\|}$$
$$\tau_{\alpha}(s) = \frac{\det(\alpha'(s), \ \alpha''(s), \ \alpha'''(s))}{\|\alpha'(s) \times \alpha''(s)\|^2} \text{ si } \alpha \text{ regular}$$

■ Las ecuaciones de Frenet-Serret

$$\mathbf{t}'_{\alpha} = v_{\alpha} k_{\alpha} \mathbf{n}_{\alpha}$$

$$\mathbf{n}'_{\alpha} = -v_{\alpha} k_{\alpha} \mathbf{t}_{\alpha} + v_{\alpha} \tau_{\alpha} \mathbf{b}_{\alpha}$$

$$\mathbf{b}'_{\alpha} = -v_{\alpha} \tau_{\alpha} \mathbf{n}_{\alpha}$$

$$\begin{pmatrix} \mathbf{t}'_{\alpha} \\ \mathbf{n}'_{\alpha} \\ \mathbf{b}'_{\alpha} \end{pmatrix} = \|\alpha'(s)\| \begin{pmatrix} 0 & k_{\alpha} & 0 \\ -k_{\alpha} & 0 & \tau_{\alpha} \\ 0 & -\tau_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{t}_{\alpha} \\ \mathbf{n}_{\alpha} \\ \mathbf{b}_{\alpha} \end{pmatrix}$$

2. Superficies

- Un homeomorfismo entre dos espacios topológicos es una aplicación biyectiva continua y con inversa continua.
 - Un difeomorfismo es un homeomorfismo diferenciable con inversa diferenciable.
 - Dos conjuntos son **homeomorfos** si existe un homeomorfismo entre ellos.
- Una superficie regular S es un subconjunto no vacío $S \subset \mathbb{R}^3$ tal que para todo $p \in S$ existe un abierto $U \subset \mathbb{R}^2$, un entorno abierto V de p en \mathbb{R}^3 y una parametrización $\mathbf{x}: U \subset \mathbb{R}^2 \to V \subset S \subset \mathbb{R}^3$ tal que
 - 1. \mathbf{x} es diferenciable como aplicación $x: U \to \mathbb{R}^3$
 - $2. \mathbf{x}$ es un homeomorfismo
 - 3. $\forall (u,v) \in U, (d\mathbf{x})_{(u,v)} : \mathbb{R}^2 \to \mathbb{R}^3 \text{ es inyectiva} \iff \text{los vectores coordenaods son linealmente independientes} \forall (u,v) \in U.$
 - Puede ocurrir (esfera, cono...) que no valga con una única parametrización ∀p ∈ S. Si nos vale con una única parametrización entonces S es homeomorfa a un abierto de R².
- Los vectores coordenados en un punto $\mathbf{x}(u, v) \in S$ son

$$\mathbf{x}_{u}(u,v) = \frac{\partial \mathbf{x}}{\partial u}(u,v) = (d\mathbf{x})_{(u,v)} \cdot e_{1}\mathbf{x}_{v}(u,v) = \frac{\partial \mathbf{x}}{\partial v}(u,v) = (d\mathbf{x})_{(u,v)} \cdot e_{2} \quad \text{en } p).$$

$$\bullet \quad \text{Dada una parametrización } \mathbf{x} \text{ de } S \text{ tal que } \mathbf{x}(u_{0},v_{0}) = 0$$

- Los campos coordenados asociados a la parametrización \mathbf{x} son dos campos \mathbf{x}_u , \mathbf{x}_v diferenciables en el abierto $V \subset S$.
- El plano tangente a S en $p \in S$ es un subvespacio vectorial de \mathbb{R}^3 con dimensión 2 dado por:

$$T_p S = \{ \alpha'(0) \mid \exists \varepsilon > 0, \alpha : (-\varepsilon, \varepsilon) \to S$$

$$\land \alpha(0) = p$$

$$\land \alpha \text{ differenciable } \}$$

- Si q es la preimagen de p por \mathbf{x} (es decir, $\mathbf{x}(q) = p$) entonces $T_p S = (d\mathbf{x})_q(\mathbb{R}^2)$
- El plano tangente (afín) a S en $p = \mathbf{x}(u, v) \in S$

$$T_p S = p + \underbrace{\operatorname{span}\{\mathbf{x}_u(u,v),\mathbf{x}_v(u,v)\}}_{\text{plano tangente vectorial}}$$

- La **recta normal** a S en $p \in S$ es el complemento ortogonal del plano tangente T_pS^{\perp} .
 - Para cada $p \in S$ existen dos vectores normales unitarios (opuestos) en la recta normal.
- Una función definida en la superficie regular S es $f: S \to \mathbb{R}^m$.
 - f es diferenciable si para toda parametrización \mathbf{x} de S, la función $f \circ \mathbf{x} : U \subset \mathbb{R}^2 \to \mathbb{R}^m$ es diferenciable. Se cumplen las propiedades habituales sobre diferenciabilidad: suma producto y cociente (siempre que tenga sentido) de funciones diferenciables es diferenciable.
 - Si f es una función definida entre dos superficies $(f: S_1 \to S_2)$ entonces f es **diferenciable** $\iff \forall p \in S_1$ hay una parametrización $\mathbf{x}_1: U_1 \to S_1$ con $p \in \mathbf{x}_1(U_1)$ y una parametrización $\mathbf{x}_2: U_2 \to S_2$ con $f(p) \in \mathbf{x}_2(U_2)$ tales que $\overline{f}:=\mathbf{x}_2^{-1} \circ f \circ \mathbf{x}_1$ es diferenciable. \overline{f} es la expresión en coordenadas de f.

• La diferencial de una función definida en una superficie regular es

$$(df)_n: T_nS \to \mathbb{R}, \qquad (df)_n(x) := (f \circ \alpha)'(0)$$

donde $\alpha: (-\varepsilon, +\varepsilon) \to S$ es una curva diferenciable en S tal que $\alpha(0) = p \wedge \alpha'(0) = x$. $(df)_p$ está bien definida y es independiente de la elección de α .

• Más comodamente, si \mathbf{x} es una parametrización de S tal que para ciertos u_0, v_0 se tiene que $\mathbf{x}(u_0, v_0) = p$, entonces la matrix asociada a la diferencial en la base $\{\mathbf{x}_u(u_0, v_0), \mathbf{x}_v(u_0, v_0)\}$ es

$$(df)_p = \begin{pmatrix} (f \circ \mathbf{x})_u(u_0, v_0) \\ (f \circ \mathbf{x})_v(u_0, v_0) \end{pmatrix}$$

- o f constante $\implies (df)_p = 0, \ \forall p \in S$. Recíprocamente, $(df)_p = 0 \forall p \in S \land S$ conexa $\implies f$ constante.
- o f tiene un extremo relativo en $p \implies (df)_p = 0$.
- lacktriangle La primera forma fundamental de S en p es

$$I_p: T_pS \times T_pS \to \mathbb{R}, \qquad I_p(x,y) := \langle x, y \rangle$$

- Es bilineal, simétrica y definida positiva (es el producto escalar restringido a cada plano tangente de S en p).
- Dada una parametrización \mathbf{x} de S tal que $\mathbf{x}(u_0, v_0) = p \in S$ la matriz de I_p respecto de la base $\mathcal{B} = \{\mathbf{x}_u(u_0, v_0), \mathbf{x}_v(u_0, v_0)\}$ es

$$(I_p)_{\mathcal{B}} = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \langle x_u, x_u \rangle & \langle x_u, x_v \rangle \\ \langle x_v, x_u \rangle & \langle x_v, x_v \rangle \end{pmatrix}$$

donde cada derivada parcial de \mathbf{x} está evaluada en (u_0, x_0) .

• Al escribir

$$I_p(x,y) = \langle x, y \rangle = (x_1, x_2)(I_p)_{\mathcal{B}} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

estamos obteniendo el producto escalar de dos vectores en T_pS en función de sus coordenadas (x_1, x_2) e (y_1, y_2) respecto de la base $\{\mathbf{x}_u, \mathbf{x}_v\}$.

• La forma diferencial de la primera forma fundamental es

$$I = Edu^2 + 2Fdudv + Fdv^2$$

donde E, F y G son funciones diferenciables que evaluamos para cada $p \in S$.

- o Del criterio de Sylvester para que I_p siempre sea definida positiva se tiene que E, G > 0 y que $EG F^2 > 0$.
- La longitud de un segmento de una curva diferenciable $\alpha: I \to S, \ \alpha(t) = \mathbf{x}(u(t), v(t))$ es

$$L(\alpha|_{[a,b]}) = \int_a^b \sqrt{\mathrm{I}_{\alpha(t)}(\alpha'(t), \alpha'(t))} dt = \int_a^b \sqrt{Eu'(t)^2 + 2Fu}$$

• El área de una región $R \subset S$ contenida en $\mathbf{x}(U)$ (bien parametrizada) es:

$$A(R) = \int_{\mathbf{x}^{-1}(R)} \|\mathbf{x}_u \times x_v\| du dv = \int_{\mathbf{x}^{-1}(R)} \sqrt{EG - F^2} du dv$$

Sea $f:S_1\to S_2$ una aplicación diferenciable entre superficies regulares.

• f es una aplicación conforme si existe una aplicación diferenciable positiva $\lambda: S_1 \to R$ tal que

$$\langle (df)_p(x), (df)_p(y) \rangle = \lambda(p)\langle x, y \rangle, \quad \forall x, y \in T_p S_1, \ \forall p \in S_1$$

• Una parametrización $\mathbf{x}: U \subset \mathbb{R}^2$ se dice conforme si cumple la definición anterior para $S_2 = \mathbb{R}^2$. Es decir, $\forall x, y \in \mathbb{R}^2$ y $\forall p \in U$. Equivalentemente, \mathbf{x} se dice conforme si

$$\mathbf{I}_{p}^{\mathbf{x}} = \left(\begin{array}{cc} E & F \\ F & G \end{array} \right) = \lambda(p) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

es decir, si E = G y F = 0 para todo $p = (u, v) \in U$.

- f es conforme \iff preserva ángulos
- f es **equiárea** \iff preserva $\det \mathbf{I}_p = EG F^2$ entre S_1 y S_2
- f es una isometría local \iff preserva la primera forma fundamenteal, es decir,

$$\langle (df)_p(x), (df)_p(y) \rangle = \langle x, y \rangle$$

- f es una isometría local \iff f es conforme con $\lambda(p)=1$ constantemente
- Toda isometría local de superficies es un difeomorfismo local
- f isometría local $\iff f$ preserva longitudes, ángulos y áreas
 - o Es decir f conforme y f equiárea $\iff f$ isometría local
- Dos superficies son **localmente isométricas** si existe una isometría local f entre ellas y además f es sobre entre S_1 y S_2 . No es suficiente que f sea una isometría local.
- Una isometría global entre superficies es un difeomorfismo global que además es isometría local.
 - Dos superficies son **globalmente isométricas** si existe una isometría global entre ellas.
 - ullet isometría global \Longrightarrow isometría local
- La aplicación de Gauss $N : \mathbf{x}(U) \to \mathbb{S}^2$ definida por

$$N(\mathbf{x}(u,v)) = \frac{\mathbf{x}_u \times \mathbf{x}_v}{\|\mathbf{x}_u \times \mathbf{x}_v\|}$$

asocia a cada punto $p = \mathbf{x}(u, v) \in S$ su vector normal unitario. En ocasiones abusaremos de la notación para denotar N como aplicación de U a \mathbb{S}^2 escibiendo N(u, v).

- N define un **campo normal unitario** localmente para cada entorno $\mathbf{x}(U)$ de p.
- Si N define un campo normal globalmente para todo
 p∈ S se dice que S es orientable. Esto depende de la
 parametrización, por tanto S es orientable si existe alguna parametrización para la que N defina un
 campo normal unitario en toda S. Son orientables el
 plano, la esfera, los conjuntos de nivel y los grafos de
 funciones, entre otros.

• A partir de N definimos un endomorfismo $J: T_pS \to T_pS$ dado por

$$Jx := N(p) \times x$$

que rota el vector $x \in T_pS$ 90° en el sentido que hace que $\{x, Jx, N(p)\}$ sea una base positivamente orientada.

■ La segunda forma fundamental es la aplicación

$$II_n: T_nS \times T_nS \to \mathbb{R}, \qquad II_n(x,y) := \langle x, W_ny \rangle$$

- Π_p es bilineal y simétrica (en cualquier base, no solo en bases ortonormales) pero no tiene por qué ser definida positiva
- La expresión matricial de Π_p respecto de la base de vectores coordenados $\mathcal{B} = \{\mathbf{x}_u, \mathbf{x}_v\}$ se puede calcular a partir de la aplicación de Gauss mediante

$$II_{p} \equiv \begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_{uu}, N \rangle & \langle \mathbf{x}_{uv}, N \rangle \\ \langle \mathbf{x}_{vu}, N \rangle & \langle \mathbf{x}_{vv}, N \rangle \end{pmatrix}$$

- Un punto $p \in S$ es **umbilical** si $II_p = \lambda(p)I_p$
- Una dirección asintótica de S en p es un vector $x \in T_pS$ no nulo tal que $II_p(x,x) = 0$.
 - Una **línea asintótica** de S es una curva diferenciable $\alpha: I \to S$ tal que $\alpha'(t)$ es dirección asintótica $\forall t \in I \iff \mathrm{II}(\alpha', \alpha') = 0$.
- El operador de Weingarten se define para cada $p \in T_pS$ como la aplicación

$$W: T_pS \to T_pS \text{ con } Wp(x) := -(dN)_px$$

- Es una aplicación autoadjunta: $\langle W_p x, y \rangle = \langle x, W_p y \rangle$
- Su expresión matricial respecto de cualquier base ortonormal de T_pS es simétrica y por tanto diagonalizable. Además, las curvaturas que aparecen a continuación definidas en función de los autovalores de W_p están bien definidas y permanecen invariantes por cambios de base.
- La relación matricial respecto de $\mathcal B$ entre $\mathcal I_p, \mathcal I\mathcal I_p$ y Wes

$$(\mathrm{II}_p)_{\mathcal{B}} = (\mathrm{I}_p)_{\mathcal{B}}(W_p)_{\mathcal{B}}$$

- Un punto $p \in S$ es **umbilical** si $W_p = \lambda(p)Id$
- Las curvaturas principales de S en p son los autovalores $\kappa_1(p), \kappa_2(p) \in \mathbb{R}$ de W_p .
 - Las direcciones principales son cualquier autovector de W_p . Si $\kappa_1 \neq \kappa_2$ las direcciones principales son los múltiplos no nulos de e_1 y e_2 . Si $\kappa_1 = \kappa_2$ todo vector no nulo de T_pS es dirección principal.
 - o Una **línea de curvatura** es una curva diferenciable $\alpha: I \to S$ tal que $\alpha'(t)$ es dirección principal de S para todo $t \in I \iff W_{\alpha(t)}\alpha'(t) = \lambda(t)\alpha'(t), \ \forall t \in I$ y cierta función curvatura principal $\lambda: I \to \mathbb{R}$.

Si el polinomio característico es complicado se puede utilizar que

$$Wv = \lambda v \iff I^{-1}IIv\lambda v \iff IIv = \lambda Iv$$

. A partir de aquí, si necesitamos el λ calculamos; si no, definimos $z=\Pi v$ y forzamos que sea linealmente dependiente de v, es decir, que $\det(\Pi v,v)=0$.

- Un **punto umbilical** es un $p \in S$ tal que $\kappa_1(p) = \kappa_2(p)$
- Las funciones de curvatura principal se obtienen de diagonalizar para diagonalizamos para p genérico. Obtendremos funciones continuas $\kappa_1(p)$ y $\kappa_2(p)$. Si $\kappa_1 \neq \kappa_2$ entonces además son funciones diferenciables
- $lacksymbol{\bullet}$ La **curvatura de Gauss** de S en p es el número real

$$K(p) := \det W_p = \kappa_1(p) \cdot \kappa_2(p)$$

o, alternativamente

$$K(p) = \det(\mathbf{I}^{-1}\mathbf{II}) = \frac{\det \mathbf{II}}{\det \mathbf{I}} = \frac{eg - f^2}{EG - F^2}$$

para e, f, g, E, F, G evaluadas en p.

- El **Teorema Egregium de Gauss** dice que la curvatura gausiana es invariante por isometrías locales. Es decir, que si $f: S_1 \to S_2$ es una isometría local, entonces $K_1(p) = K_2(f(p))$.
- Atendiendo a la curvatura gaussiana, los puntos $p \in S$ se clasifican en:
 - 1. puntos elípticos si K(p) > 0
 - 2. puntos hiperbólicos si K(p) < 0
 - 3. **puntos parabólicos** si $K(p) = 0 \land W_p \neq 0$ (e.d. si solo una de las dos curvaturas principales es 0)
 - 4. **puntos planos** si $K(p) = 0 \wedge W_p = 0$ (e.d. si $\kappa_1(p) = \kappa_2(p) = 0$
- lacktriangle La **curvatura media** de S en p es el número real

$$H(p) := \frac{1}{2} \text{tr} W_p = \frac{1}{2} (\kappa_1(p) + \kappa_2(p))$$

o, alternativamente

$$H(p)=\frac{1}{2}\mathrm{tr}(\mathbf{I}^{-1}\mathbf{II})=\frac{1}{2}\frac{eG+gE-2fF}{EG-F^2}$$

para e, f, g, E, F, G evaluadas en p.

• Una superficie minimal es aquella que tiene H(p) = 0, $\forall p \in S$. Son minimales los trozos de esfera y los trozos de plano.

Sea $\alpha \subset S$ una curva regular

■ La curvatura geodésica es

$$k_{\alpha,\alpha}(s) = \langle \mathbf{t}'_{\alpha}(s), (N \circ \alpha) \times \mathbf{t}_{\alpha}(s) \rangle = k_{\alpha} \langle \mathbf{n}_{\alpha}, (N \circ \alpha) \times \mathbf{t}_{\alpha} \rangle$$

■ La curvatura normal es

$$K_{n,\alpha} = \langle \mathbf{t}'_{\alpha}(s), (N \circ \alpha)(s) \rangle = k_{\alpha} \langle \mathbf{n}_{\alpha}, N \circ \alpha \rangle$$

además, en relación con la segunda forma fundamental tenemos

$$k_{n,\alpha} = \mathrm{II}(\mathbf{t}_{\alpha}, \mathbf{t}_{\alpha})$$

• Cualesquiera dos curvas regulares que pasen por un mismo punto $p \in S$ con vectores velocidad colineales tienen la misma curvatura normal por lo que definimos la curvatura normal de S en p en la dirección de un vector unitario x dado por

$$k_n(p,x) := \mathrm{II}_p(x,x)$$

- Si para una dirección $x \in T_pS$ tenemos que $k_n(p, x) = 0$ entonces x es una dirección asintótica.
- Si $\{e_1, e_2\}$ es una base ortonormal de T_pS de dorecciones principales de manera que W_p es diagonal con coeficientes $\kappa_1(p), \kappa_2(p)$ y x_θ es una dirección en T_pS enotnces

$$k_n(p, x_\theta) = \kappa_1(p) \cos^2 \theta + \kappa_2(p) \sin^2 \theta$$

donde $\cos \theta = \langle e_1, x_\theta \rangle$.

• Curvaturas normal, geodésica y la curvatura escalar de α cumplen $k_{\alpha}^2 = k_{q,\alpha}^2 + k_{n,\alpha}^2$