Student: Arfaz Hossain Course: Math 101 A04 Spring 2022

Instructor: Muhammad Awais Book: Thomas' Calculus Early Transcendentals, 14e

Date: 03/24/22 Time: 13

Check whether each of the following functions is a solution of the differential equation $5y' + 11y = 6e^{-x}$.

(a)
$$y = e^{-x}$$

(b)
$$y = e^{-x} + e^{-(11/5)x}$$

(c)
$$y = e^{-x} + Ce^{-(11/5)x}$$

If u is any differentiable function of x, then $\frac{d}{dx}(e^{u}) = e^{u} \frac{du}{dx}$

(a) For $y = e^{-x}$ find y'.

$$y' = \frac{d}{dx}e^{-x}$$
$$= -e^{-x}$$

Find 5y', 11y, and 5y' + 11y for $y = e^{-x}$ given that $y' = -e^{-x}$.

$$5y' = -5e^{-x}$$

 $11y = 11e^{-x}$
 $5y' + 11y = 6e^{-x}$

The function $y = e^{-x}$ is a solution of $5y' + 11y = 6e^{-x}$.

(b) For $y = e^{-x} + e^{-(11/5)x}$, find y'.

$$y' = \frac{d}{dx} (e^{-x} + e^{-(11/5)x})$$
$$= -e^{-x} - \frac{11}{5} e^{-(11/5)x}$$

Find 5y', 11y, and 5y' + 11y for $y = e^{-x} + e^{-(11/5)x}$ given $y' = -e^{-x} - \frac{11}{5}e^{-(11/5)x}$.

$$5y' = -5e^{-x} - 11e^{-(11/5)x}$$

$$11y = 11e^{-x} + 11e^{-(11/5)x}$$

$$5y' + 11y = 6e^{-x}$$

The function $y = e^{-x} + e^{-(11/5)x}$ is a solution of $5y' + 11y = 6e^{-x}$.

(c) For $y = e^{-x} + Ce^{-(11/5)x}$, find y'.

$$y' = \frac{d}{dx} (e^{-x} + Ce^{-(11/5)x})$$
$$= -e^{-x} - \frac{11}{5} Ce^{-(11/5)x}$$

Find 5y', 11y, and 5y' + 11y for $y = e^{-x} + Ce^{-(11/5)x}$ given

$$y' = -e^{-x} - \frac{11}{5}Ce^{-(11/5)x}$$

$$5y' = -5e^{-x} - 11Ce^{-(11/5)x}$$

 $11y = 11e^{-x} + 11Ce^{-(11/5)x}$
 $5y' + 11y = 6e^{-x}$

The function $y = e^{-x} + Ce^{-(11/5)x}$ is a solution of $5y' + 11y = 6e^{-x}$.