

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : PEC-IT601A Advanced Algorithms UPID : 006589

Time Allotted: 3 Hours Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

	Group-A (Very Short Answer Type Question)
l. Answer	any ten of the following: $[1 \times 10 = 10]$
(1)	Which method is practical to perform a single search in an unsorted list of elements? a. Sequential search
	b. Bubble sort
	c. Horspool's method of string matching
	d. Brute force method of string matching
(11)	is the technique by which we make a function perform faster by trading space for time.
	a. Divide and conquer
	b. Greedy
	c. Memoization
	d. Recursion
(10)	The best possible value of the problem objective, written as a function of the state, is called the
	a. Value function
	b. Control variables c. Policy function
	d. Principle of Optimality
	u. Principle of Optimality
(IV)	An algorithm that defines every operation exclusively is called algorithm.
	a. NP-hard
	b. Deterministic
	c. Non-deterministic
	d. NP-complete
(V)	In which method of coding does the code of a symbol not depend on the frequency of occurrence of that
	symbol?
	a. Variable length coding
	b. Fixed length coding
	c. Static Huffman coding d. Adaptive Huffman coding
	d. Adaptive Humman coding
(VI)	Which one of the following helps in calculating the longest amount of time taken for the completion of the
	algorithm?
	a. Theta notation
	b. Big-Oh notation c. Omega notation
	d. Time complexity
	u. Time complexity
(VII)	are node-based data structures used in many system programming applications for managing dynamic
	sets
	a. Stack
	b. Queue c. Binary search trees
	d. List
	u. List

		a. Static Huffman coding	
		b. Variable length coding	
		c. Adaptive Huffman coding	
		d. Fixed length coding	
	(IX)	If we have materials of different values per unit volume and maximum amounts, the Knapsack of finds the most valuable mix of materials that fit in a knapsack of fixed volume. a. Bounded b. Binary c. 0-1 d. Fractional	problem
	(X)	Identify the true and false statements from the following with respect to measuring the running time	ne of an
		algorithm.	
		1. Firstly, recognize the basic operation of an algorithm.	
		2. Identifying the basic operation of an algorithm is difficult.	
		a. 1-T, 2-F	
		b. 1-T, 2-T	
		c. 1-F, 2-T	
		d. 1-F, 2-F	
	(XI)	The smoothness rule assumes that T(n) ∈ Θ(n2) if is a smooth function and is eventually nor decreasing. a. n2, T(n) b. Θ(n2), T(n) c. T(n), n2 d. Θ(n),n	n-
	(XII)	 A is a compact, informal, and environment-independent description of a computer programmir algorithm. a. Stack b. Queue c. Psuedocode d. Non-linear data structure 	ng
		Group-B (Short Answer Type Question)	
		Answer <i>any three</i> of the following: [53	x 3 = 15]
2.	Wha	nat is augmenting path? How it is computed with Edmonds Blossom Algorithm?	[5]
3.		alyze Randomized Quick Sort Algorithm. https://www.makaut.com	[5]
4.		ove that sub-paths of the shortest path are also shortest path.	[5]
5.		plain Nondeterministic Bubble Sort Algorithm.	[5]
6.	Exp	olain Schonhage-Strassen Integer Multiplication algorithm.	[5]
		Group-C (Long Answer Type Question)	
		Answer <i>any three</i> of the following: [153	x 3 = 45]
7.		strate topological sorting with algorithm.	[5+ 10]
		opose we perform a sequence of stack operations on a stack whose size never exceeds k. After every k	
		erations, we make a copy of the entire stack for backup purposes. Show that the cost of n stack	
	-	erations, including copying the stack, is O(n) by assigning suitable amortized costs to the various stack	
_	•	erations.	
8.		cuss the difference between following	[10+5]
		Chromatic numbers in scheduling	
		Directed acyclic graphs in planning activities	
_		ite an algorithm to find out maximum matching in graphs	
9.		we the system of equations $x1 + x2 + x3 = 1$, $3x1 + x2 - 3x3 = 5$ and $x1 - 2x2 - 5x3 = 10$ by LU composition method. Discuss in detail about "Airlines scheduling" algorithm.	[8+7]

2/3

- 10. If x(n) = {1, 2, 3, 4, 5, 6, 7, 8}, Find X(k) using DIT-FFT algorithm. Compare the computational complexity of above algorithm with DFT.
- 11. Write a short note on approximation algorithms. Differentiate between sorting based on different design [5+5+5] techniques. Write a complete LC branch-and-bound algorithm for the job sequencing with deadlines problems. Use the fixed tuple size formulation.

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से