EPITA_ING1_2019_S1 THL — Sans document ni machine

	Non	n et prénom, lisibl	es:		Identifiant (de haut en bas):				
						ų -			
2/2	avoir sélect coche répon	plutôt que cocher. plusieurs réponse ionner la plus res ir nul). Il n'est pas ises justes créditer	r les bords de la feu Renseigner les chames justes. Toutes les au trictive (par exemple s possible de corrige nt; les incorrectes pén ttions et mon sujet est	ps d'iden itres n'er s'il est d r une ern alisent; l	ntité. Les qu n ont qu'une demandé si reur, mais v es blanches	estions man e; si plusieu 0 est <i>nul, n</i> ous pouve et réponses	rquées rs rép on nui z utili s mult	s par « \(\mathcal{J} \) » peuvent sonses sont valides, l, positif, ou négatif, ser un crayon. Les iples valent 0.	
	1 I	ncontournab	les						
	Chact Q.2		suivantes est r tée 0 $\subseteq L$, alors L n' t pas			recte, -5 da	ns tou	s les autres cas.	
0/0] vrai							
	Q.3	Combien existe	-t-il de sous-ensembl	es de {1,	2,,n}?				
0/0] n!		2 ⁿ		$\square \frac{n(n-1)}{2}$		\square n^2	
	Q.4	Si une gramma	ire n'est pas LR(1), al	ors elle e	st ambigüe.				
0/0	Ę] vrai			🛭 faux				
	2 7	2 Théorie des langages rationnels							
	Q.5	Que vaut Fact(L) (l'ensemble des fact	eurs):					
2/2		☐ Suff(Suff(L))		\overline{L}) Pref(P	Suff(Pi \mathbb{E}	ref(L))		$Pref(\overline{Pref(L)})$	
	Q.6	Que vaut Suff({a	ı}{b}*)						
2/2				* [{a}{b}*	$\exists \{\varepsilon\} \cup \{a\}\{a\} \{a\} \{a\} \}$ $\cup \{b\}^*$	a}{a}*		$\{b\}\{a\}^* \cup \{b\}^*$	
	Q.7	Soit Σ un alphal	pet. Pour tout $a \in \Sigma$, L	$L_1, L_2 \subseteq \Sigma$	Z*, on a L ₁ * :	$=L_2^* \implies$	$L_1 = I$	L_2 .	
2/2			∭ fa	aux	□ vrai				

+323/2/59+

Q.8 Ces deux expressions rationnelles :

$$(a^* + b)^* + c((ab)^*(bc))^*(ab)^*$$
 $c(ab + bc)^* + (a + b)^*$

 dénotent des langages différents sont équivalentes

□ ne sont pas équivalentes

sont identiques

Quel est le résultat d'une élimination arrière des transitions spontanées?

Parmi les 3 automates suivants, lesquels sont équivalents?

☐ Aucune de ces réponses n'est correcte.

Q.11 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle?

- ☐ Thompson, déterminimisation, évaluation.
- 🧱 Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation.
- ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation.
- ☐ Thompson, déterminisation, Brzozowski-McCluskey.

Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la *n*-ième lettre avant la fin est un *a* (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):

2/2

2/2

2/2

- □ Il n'existe pas.
- $\frac{n(n+1)(n+2)(n+3)}{4}$
- □ 4ⁿ

2/2

+323/3/58+

2/2

Déterminiser cet automate : Q.14

2/2

a, b

a, b

Q.15 🎝 Qu'un langage vérifie le lemme de pompage

0/2

☐ est suffisant pour qu'il soit rationnel est nécessaire s'il est rationnel ☐ Aucune de ces réponses n'est correcte.

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$

2/2

2/2

 ${\mathcal P}$ ne vérifie pas le lemme de pompage \square Il existe un NFA qui reconnaisse \mathcal{P} \square Il existe un DFA qui reconnaisse $\mathcal P$ \square Il existe un ε -NFA qui reconnaisse $\mathcal P$

Q.17 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

Q.18 Sur $\{a,b\}$, quel est le complémentaire de

+323/4/57+

2/2

3 Grammaires et Machines abstraites

	Q.19 Un transducteur est							
2/2	☐ un automate infini ☐ un élément de transitor ☐ un automate fini avec des transductio spontanées							
	Q.20 Quelle est la classe du langage $\{a^nb^nc^n \mid n \in \mathbb{N}\}$?							
2/2	☐ Fini (Type 4) ☐ Général (Type 0) ☐ Rationnel (Type 3) ☐ Hors contexte (Type 2) ■ Sensible au contexte (Type 1)							
	Q.21 Quelle est la classe du langage $\{a^nb^n \mid n \in \mathbb{N}\}$?							
2/2	☐ Rationnel (Type 3) ☐ Fini (Type 4) ☐ Sensible au contexte (Type 1) ☐ Hors contexte (Type 2) ☐ Général (Type 0)							
	Q.22 Quelle propriété cette grammaire vérifie? $S \rightarrow SpS \mid n$							
2/2	■ Ambigüe □ Linéaire à gauche □ Rationnelle □ Linéaire à droite							
	Q.23 Il existe un formalisme qui permette une description finie de tout langage.							
2/2	Non.							
	4 Analyseurs							
	Q.24 Les "start conditions" de Lex/Flex (%s et %x) permettent							
2/2	☐ la conversion des chaînes de chiffres en la valeur qu'elles représentent ☐ le choix du parseur à utiliser ☐ de supporter différents contextes lexicaux ☐ de déterminer quand l'analyse lexicale doit commencer							
	Q.25 Un parser sert à							
2/2	☐ construire un analyseur syntaxique ☐ s'assurer de la correction du typage ☐ faire de l'analyse syntaxique ☐ éliminer les récursions terminales							

2/2

segmenter un flux de caractères en un flux de tokens

Comment désambigüiser pour Yacc/Bison le morceau d'arithmétique suivant :

exp: exp '+' exp | exp '-' exp | NUM;

2/2

Avec la grammaire suivante, quel état atteint l'automate LR(1) après une transition sur E puis sur '?'?

$$S \rightarrow E \$$$

$$E \rightarrow E?E:E \mid E+E \mid 0$$

2/2

```
S \rightarrow E \bullet \$
                                         [$]
      E \rightarrow E \bullet ? E : E
                                   [$?+:]
      E \rightarrow E \bullet + E
                                   [$?+:]
```

$$E \rightarrow E? \bullet E : E \quad [\$?+]$$

$$E \rightarrow \bullet E? E : E \quad [?+:]$$

$$E \rightarrow \bullet E + E \quad [?+:]$$

$$E \rightarrow \bullet 0 \quad [?+:]$$

$$\begin{array}{c|cccc}
E \rightarrow E? \bullet E : E & [\$?+] \\
\hline
E \rightarrow \bullet E? E : E & [\$?+:] \\
E \rightarrow \bullet E + E & [\$?+:] \\
E \rightarrow \bullet 0 & [\$?+:]
\end{array}$$

$$E \rightarrow E? \bullet E : E \quad [\$?+]$$

$$S \rightarrow \bullet E \$ \quad [\$]$$

$$E \rightarrow \bullet E? E : E \quad [\$?+:]$$

$$E \rightarrow \bullet E + E \quad [\$?+:]$$

$$E \rightarrow \bullet 0 \quad [\$?+:]$$

[\$]

[\$?+]

Logique Propositionnelle

Soit le langage de la logique propositionnelle, composé de deux symboles ⊤ (vrai) et ⊥ (faux), de l'opération unaire \neg (non), des opérations binaires \lor (ou) et \land (et), et des parenthèses notées [,]. Ce langage inclut des mots tels que $\bot \land \bot$, $\top \lor \bot$ et $\neg \neg [\top \land \top] \lor [\bot \land \bot]$.

Q.28 Que dire de la grammaire suivante?

$$S \rightarrow S \land S \mid S \lor S \mid \neg S \mid [S] \mid \top \mid \bot \quad (G_1)$$

2/2

rationnelle

ambigüe

☐ infiniment ambigüe

non ambigüe

Dans la grammaire suivante, quelles sont les priorités/associativités des opérateurs? Q.29

$$S \rightarrow S \vee T \mid T \qquad T \rightarrow T \wedge F \mid F \qquad F \rightarrow \neg F \mid [S] \mid \top \mid \bot \quad (G_2)$$

2/2

- \blacksquare \land et \lor associatives à gauche, priorités croissantes : $\lor < \land < \neg$
- □ ∧ et ∨ associatives à droite, priorités croissantes : ∨ < ∧ < ¬</p> □ ∧ et ∨ associatives à droite, priorités croissantes : ¬ < ∧ < ∨
 </p>
- Que dire de la grammaire (G_2) ? Q.30

2/2

non ambigüe et LL(1)

- ☐ ambigüe et non LL(1)
- non ambigüe et non LL(1)

☐ ambigüe et LL(1)

Q.31 Que dire de la grammaire suivante par rapport à (G_2) ?

2/2

```
bool S()
{
   bool res = false;
   do
   {
      eat('v');
      res |= T();
   }
   while (la == 'v');
   return res;
}
```

```
bool S()
{
  bool res = true;
  do
  {
    eat('v');
    res |= T();
  }
  while (la == 'v');
  return res;
}
```

Q.37 Quelle est la séquence de décalages/réductions pour un parser Yacc/Bison implémentant la grammaire (G_1) avec des directives précisant correctement priorités et associativités?

```
TATVTH
 ⊢
s ⊦ "T"
              \wedge T \vee T \dashv
r + S
             \wedge T \vee T \dashv
s + S "∧"
                TVTH
s + S "∧" "T"
r ⊦ S "∧" S
s + S "A" S "V"
s + S "A" S "V" "T" +
r + S "∧" S "V" S
r + S "∧" S
                       \dashv
r + S
                       4
s + S +
accept
```

```
T V T V T
 H
s ⊦ "T"
              \wedge T \vee T \dashv
              \land \top \lor \top \dashv
r + S
s ⊢ S "∧"
                TVTH
s ⊢ S "∧" "T"
                   V T 4
r ⊢ S "∧" S
                   V T +
r + S
                   V T +
s ⊢ S "V"
                      TΗ
s ⊦ S "V" "T"
r + S "V" S
r \vdash S
s + S +
accept
```

```
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
      →
```

```
TVTVT
s ⊦ "T"
              \Lambda T V T \dashv
r \vdash S
             V \perp V \perp V
s ⊢ S "∧"
s + S "∧" "T"
                   VТч
r + S
s + S "V"
                     T +
s + S "V" "T"
                        Н
r + S
s + S +
accept
```

2/2

+323/8/53+

2/2

```
      H
      T ∧ T ∨ T +

      S + "T"
      ∧ T ∨ T +

      r + S
      ∧ T ∨ T +

      S + S "∧"
      T ∨ T +

      S + S "∧"
      "T"
      ∨ T +

      S + S "∧"
      "T"
      "V"
      "T +

      S + S "∧"
      "T"
      "V"
      "T +

      r + S "∧"
      S
      +
      +

      r + S "∧"
      S
      +
      +

      s + S +
      +
      +
      +

      accept
      accept
      +
      +
```

Fin de l'épreuve.