		向量算子【▽ (nabla) 表示向量微分算子。】		拉普拉斯算符
	梯度(标量化为矢量)	散度 (矢量化为标量)	旋度 (矢量化为矢量)	
数学解释	在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。 同时也可以求出变化不是最快的那个方向上的倒数,梯度点积该方向上的向量即可。	散度是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。 散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是"向外"居多还是"向内"居多。 散度是通量的体密度 物理上,散度的意义是场的有源性。某一点或某个	旋度是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。这个向量提供了向量场在这一点的旋转性质。旋度向量的方向表示向量场在这一点附近旋转度最大的环量的旋转轴,它和向量旋转的方向满足右手定则。 就是 A 的环量面密度(或称为环量强度)。	拉普拉斯算子有许多用途,此外也是椭圆型算子中的一个重要例子。 在物理中,常用于波方程的数学模型、热传导方程以及亥姆霍兹方程。 在静电学中,拉普拉斯方程和泊松方程的应用随处可见。在量子力学中,其代表薛定谔方程式中的动能项。
物理解释	考虑一座高度在 (x,y) 点是 $H(x,y)$ 的山。 H 这一点的梯度是在该点坡度(或者说斜度)最陡的方向。梯度的大小告诉我们坡度到底有多陡。	区域的散度大于零,表示向量场在这一点或这一区域 有新的通量产生,小于零则表示向量场在这一点或区 域有通量湮灭。散度等于零的区域称为无源场或管形 场。	旋度是向量场的一种强度性质,就如同密度、浓度、温度一样,它对应的广延性质是向量场沿一个闭合曲线的环量。如果一个向量场中处处的旋度都是零,则称这个场为无旋场或保守场	在数学中,经拉普拉斯算子运算为零的函数称为调和 函数;拉普拉斯算子是霍奇理论的核心,并且是德拉姆 上同调的结果。
相关概念		$\Phi_{\mathbf{A}}(\Sigma) = \iint_{\Sigma} \mathbf{A} \cdot \mathbf{n} dS$ div $\mathbf{A}(x) = \lim_{\delta V \to \{x\}} \oint_{\Sigma} \frac{\mathbf{A} \cdot \mathbf{n}}{ \delta V } dS$	$\operatorname{Circ}_{\mathbf{A}}(\Gamma) = \oint_{\Gamma} \mathbf{A} \cdot d\mathbf{l}$ $\operatorname{curl} \mathbf{A}(x) \cdot \mathbf{n} = \lim_{\Delta S_{\mathbf{n}} \to 0} \frac{1}{ \Delta S_{\mathbf{n}} } \oint_{\Gamma} \mathbf{A} \cdot d\mathbf{l}$	
记法	$\mathrm{grad} arphi$ = $ abla arphi$	$\operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A}.$ $\mathbf{A}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$	rot $\mathbf{A}(x)$ _{\mathbf{p}} curl $\mathbf{A} = \nabla \times \mathbf{A}$. $\mathbf{A}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$	$\Delta f = \nabla^2 f = \nabla \cdot \nabla f,$
三维直角坐标系	$ abla \phi = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right)$	$\operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$	$\operatorname{curl} \mathbf{A} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$	$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$
柱坐标	$\nabla f(\rho, \theta, z) = \frac{\partial f}{\partial \rho} \mathbf{e}_{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \theta} \mathbf{e}_{\theta} + \frac{\partial f}{\partial z} \mathbf{e}_{z}$	div $\mathbf{A} = \nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_z}{\partial z}$.	$\nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{e}_r & \mathbf{e}_{\theta} & \mathbf{e}_z \\ \frac{\partial}{\partial r} & \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ A_r & A_{\theta} & A_z \end{vmatrix}$	$\Delta f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}.$
球坐标	$\nabla f(r,\theta,\phi) = \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \mathbf{e}_\phi$	div $\mathbf{A} = \nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}.$	$\nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{e}_r & \mathbf{e}_{\theta} & \mathbf{e}_{\varphi} \\ \frac{\partial}{\partial r} & \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \\ A_r & A_{\theta} & A_{\varphi} \end{vmatrix}$	$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}.$
线性法则	$\frac{\partial [c_1 f(\mathbf{A}) + c_2 g(\mathbf{A})]}{\partial \mathbf{A}} = c_1 \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}} + c_2 \frac{\partial g(\mathbf{A})}{\partial \mathbf{A}}$	div $\mathbf{A} = \nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_z}{\partial z}$.	$\operatorname{curl}(a\mathbf{F} + b\mathbf{G}) = a \operatorname{curl}(\mathbf{F}) + b \operatorname{curl}(\mathbf{G})$ $\nabla \times (\varphi \mathbf{F}) = (\nabla \varphi) \times \mathbf{F} + \varphi \nabla \times \mathbf{F}.$	
乘积法则	$\frac{\partial f(\mathbf{A})g(\mathbf{A})}{\partial \mathbf{A}} = g(\mathbf{A})\frac{\partial f(\mathbf{A})}{\partial \mathbf{A}} + f(\mathbf{A})\frac{\partial g(\mathbf{A})}{\partial \mathbf{A}}$	$\operatorname{div}(\varphi \mathbf{F}) = \operatorname{grad}(\varphi) \cdot \mathbf{F} + \varphi \operatorname{div}(\mathbf{F}),$ $\nabla \cdot (\varphi \mathbf{F}) = (\nabla \varphi) \cdot \mathbf{F} + \varphi (\nabla \cdot \mathbf{F}).$	$\nabla \times (\mathbf{F} \times \mathbf{G}) = (\mathbf{G} \cdot \nabla)\mathbf{F} \ - \ (\nabla \cdot \mathbf{F})\mathbf{G} - (\mathbf{F} \cdot \nabla)\mathbf{G} + (\nabla \cdot \mathbf{G})\mathbf{F}$	$\operatorname{div}\operatorname{grad} f = \nabla \cdot \nabla f = \nabla^2 f.$
商法则	$\frac{\partial f(\mathbf{A})/g(\mathbf{A})}{\partial \mathbf{A}} = \frac{1}{g(\mathbf{A})^2} \left[g(\mathbf{A}) \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}} - f(\mathbf{A}) \frac{\partial g(\mathbf{A})}{\partial \mathbf{A}} \right]$	高斯散度定理:对某一个体积内的散度进行积分, 就应该得到这个体积内的总通量。	斯托克斯定理:在欧氏3维空间上的向量场的旋度的曲面积分和向量场在曲面边界上的线积分之间建立了联系。具体就是,向量场 A 在某个曲面的封闭边界线上的闭合路径积分,等于 A	
定理		$\iiint\limits_V ext{div} \mathbf{A} dv = \iint\limits_S \mathbf{A} \cdot \mathbf{n} dS$	的旋度场在这个曲面上的积分 $\int_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{A} \cdot d\mathbf{l}$	By 春晓