A 0-1 LAW AND CUSP EXCURSION FOR GEOMETRICALLY FINITE ACTIONS ON COARSELY HYPERBOLIC METRIC SPACES

HARRISON BRAY

ABSTRACT. Based on joint work with Giulio Tiozzo.

Contents

Introduction
Horoball packings for the hyperbolic plane

1. Introduction

Given a function $\psi \colon \mathbb{N} \to \mathbb{R}^+$, define

$$\Theta(\psi) = \{x \in [0,1]: |x - \frac{p}{q}| < \frac{\psi(q)}{q} \text{ for infinitely many reduced rationals } \frac{p}{q}\}$$

Theorem 1.1 (Khinchin, 1926). Let $\psi \colon \mathbb{N} \to \mathbb{R}^+$ be monotone decreasing. (1) Harry: is this even needed? any other hypotheses? Then

$$\sum_{q\in\mathbb{R}}\psi(q)=\infty \ \ then \ \ \Theta(\psi) \ \ has \ measure \ \ 1$$

and

$$\sum_{q \in \mathbb{R}} \psi(q) = 0 \quad then \quad \Theta(\psi) \ has \ measure \ zero.$$

Thus, Theorem 1.1 is a strong 0-1 law for the interval. As an application, we have the following classical example:

Example 1.2. Let $\psi_{\epsilon}(q) = q^{-(1+\epsilon)}$. Then

$$\Theta(\psi_{\epsilon}) = \{x \in \mathbb{R} : |x - \frac{p}{q}| < \frac{1}{q^{2+\epsilon}} \text{ for infinitely many } \frac{p}{q} \in \mathbb{Q}\}.$$

Let us illustrate the limsup set $\Theta(\psi_0)$.

See that

$$\sum_{q \in \mathbb{N}} \psi_{\epsilon}(q) = \sum_{q \in \mathbb{N}} \frac{1}{q^{1+\epsilon}} \left\{ \begin{array}{ll} = \infty & \text{for } \epsilon = 0 \\ < \infty & \text{for } \epsilon > 0 \end{array} \right.$$

Date: June 5, 2025.

FIGURE 1. An illustration of the first levels of the limsup set $\Theta(\psi_0)$. The intervals around $\frac{1}{2}$ have radius $\frac{1}{4}$, around $\frac{2}{3}$ have radius $\frac{1}{9}$, and so on.

hence Khinchin's theorem implies

$$\Theta(\psi_{\epsilon})$$
 has measure $\left\{ \begin{array}{l} \text{one for } \epsilon = 0 \\ \text{zero for } \epsilon > 0. \end{array} \right.$

Thus in Figure 1, x is in infinitely many balls of radius $\frac{1}{q^2}$ about $\frac{p}{q}$ with probability 1.

We will now discuss an analogy of Khinchin's Theorem (1.1) for the hyperbolic plane, due originally to Sullivan [?].

1.1. Horoball packings for the hyperbolic plane. The results of Sullivan generalize but we present them for surfaces, or really for a particular surface, to communicate the concept. A statement in full generality appears (2) Harry: ref and is the goal of these notes.

Recall a Fuchsian group is a discrete subgroup Γ of $\mathsf{PSL}(2,\mathbb{R})$, which acts on the upper half-plane model of hyperbolic 2-space \mathbb{H}^2 by isometries via Möbius transformations. Let $\Sigma_{g,n}$ denote a surfaces of genus g with n punctures. Consider a representation $\Gamma < \mathsf{PSL}(2,\mathbb{R})$ of $\pi_1(\Sigma_{0,1})$ which acts cofinitely on \mathbb{H}^2 ; that is, the quotient \mathbb{H}^2/Γ has finite area.

|?