Berechnung von $\int \frac{f(x)}{g(x)} dx$ mit Partialbruchzerlegung

Seien f(x) und g(x) zwei Polynome.

- 1) Faktorisiere g(x) über \mathbb{R} soweit wie möglich, das heisst, schreibe $g(x) = g_1(x) \cdots g_n(x)$ mit teilerfremden Polynomen $g_i(x)$, deren jedes eine Potenz eines irreduziblen Polynoms vom Grad 1 oder 2 ist. Dabei entsprechen die irreduziblen Faktoren vom Grad 1 den reellen Nullstellen von g(x), die irreduziblen Faktoren vom Grad 2 den Paaren konjugiert komplexer nicht-reeller Nullstellen.
- 2) Finde die Partialbruchzerlegung von $\frac{f(x)}{g(x)}$, das heisst, finde weitere Polynome $g_i(x)$ sowie h(x) mit deg $f_i(x) < \deg g_i(x)$ und deg $h(x) \le \deg f(x) \deg g(x)$, so dass gilt:

$$\frac{f(x)}{g_1(x)\cdots g_n(x)} = \frac{f_1(x)}{g_1(x)} + \ldots + \frac{f_n(x)}{g_n(x)} + h(x)$$

Die Polynome $g_i(x)$ und h(x) findet man durch Ansatz mit noch zu bestimmenden Koeffizienten, durch Multiplizieren mit $g_1(x) \cdots g_n(x)$, sowie mit Koeffizientenvergleich.

Danach ist das Problem reduziert auf die folgenden Fälle:

- 3) $g(x) = (ax + b)^n$: Die Substitution t = ax + b überführt das Integral in eines der Form $\int \frac{f(t)}{t^n} dt$. Dieses löst man durch Zerlegen von f(t) in Monome und Einsetzen der bekannten Formeln für $\int t^s dt$.
- 4) $g(x) = (ax^2 + bx + c)^n$: Eine Substitution der Form $t = \alpha x + \beta$ für geeignete α , β normiert g(x) auf die Gestalt $(1 + t^2)^n$. Danach schreibt man den Zähler in der Form $f(t) = f_0(1 + t^2) + t \cdot f_1(1 + t^2)$ und zerlegt f_0 und f_1 in Monome. Dies reduziert die Frage auf die Fälle f(t) = 1 und f(t) = t.
- 5) $g(x) = (1+t^2)^n$: Das Integral $\int \frac{t dt}{(1+t^2)^n}$ berechnet man mit Hilfe der Substitution $1+t^2=u$. Andererseits hat man

$$\int \frac{dt}{1+t^2} = \arctan t + \text{const},$$

und für n > 1 beweist man mit partieller Integration die Induktionsformel

$$\int \frac{dt}{(1+t^2)^n} = \frac{2n-3}{2n-2} \cdot \int \frac{dt}{(1+t^2)^{n-1}} + \frac{1}{2n-2} \cdot \frac{t}{(1+t^2)^{n-1}} + \text{const.}$$