Task 5

Insights:

1. Dataset Overview:

- The dataset was successfully loaded and basic exploratory data analysis (EDA) was performed.
- Key statistics (mean, median, missing values) were computed.
- Data types were checked for each column.

2. Missing Values:

- Missing data was identified and visualized.
- Imputation strategies (mean/median filling) were discussed/applied where necessary.

3. Exploratory Data Analysis:

- Several visualizations were created:
 - Histograms to see feature distributions
 - Box plots for outlier detection
 - Correlation heatmaps to find relationships among variables
- Important patterns:
 - Certain features had strong positive or negative correlations.

■ A few outliers were present that might affect modeling later.

4. Feature Engineering:

- New features were created based on the existing ones (e.g., ratios, combined features).
- Categorical variables were encoded.

5. Modeling Preparation:

- Data was split into training and testing sets.
- Feature scaling (StandardScaler/MinMaxScaler) was applied.

6. Initial Modeling:

- Basic models (Linear Regression, Decision Trees, Random Forests) were trained.
- Performance metrics like accuracy, RMSE, and R² were evaluated.
- Random Forest outperformed basic models based on preliminary results.

7. Conclusion:

- o Data cleaning, visualization, and basic modeling were completed.
- Suggestions were made for hyperparameter tuning and advanced models (like XGBoost).

Interview Questions

1. What is EDA and why is it important?

• EDA (Exploratory Data Analysis) is the process of analyzing data sets to summarize their main characteristics, often using visual methods.

• Importance:

- Understand the structure, patterns, and relationships in data.
- Detect outliers, missing values, and anomalies.
- o Guide feature selection, preprocessing, and modeling strategies.

2. Which plots do you use to check correlation?

- **Heatmap** (especially with a correlation matrix, sns.heatmap())
- Pairplot (scatterplots for each pair of features, sns.pairplot())
- **Scatter plots** (for two continuous variables)
- Correlogram (correlation visualization

3. How do you handle skewed data?

- Apply transformations:
 - Log transformation (np.log1p(x))
 - Square root transformation
 - Box-Cox transformation
 - Yeo-Johnson transformation
- Use robust models that are less sensitive to skewed data.
- **Remove outliers** if appropriate.

4. How to detect multicollinearity?

• **Correlation Matrix**: High correlation between features indicates potential multicollinearity.

• Variance Inflation Factor (VIF):

VIF > 5 (or sometimes > 10) indicates high multicollinearity.

5. What are univariate, bivariate, and multivariate analyses?

Univariate Analysis:

• Analyze a single variable. (e.g., histogram, boxplot)

• Bivariate Analysis:

 Analyze the relationship between two variables. (e.g., scatter plot, correlation)

Multivariate Analysis:

 Analyze more than two variables simultaneously. (e.g., multiple regression, PCA)

6. Difference between heatmap and pairplot?

Aspect	Heatmap	Pairplot
Purpose	Show correlation or intensity in matrix form	Show pairwise relationships with plots
Data Type	Numeric correlations (or matrix-like data)	Multiple variable distributions
Output	Color-coded matrix	Grid of scatterplots and histograms
Library	seaborn.heatmap()	seaborn.pairplot()

7. How do you summarize your insights?

- Identify key findings (e.g., important correlations, outliers, feature distributions).
- Highlight issues (missing data, skewness, multicollinearity).
- Link findings to next steps (feature engineering, modeling decisions).
- Present summaries visually (charts, graphs) and textually (bullet points or brief reports).