Yandex

CatBoost: как и зачем обучать градиентный бустинг на GPU?

Vasily Ershov, Software Developer

Содержание

- Для каких данных использовать?
- Возможности библиотеки и как использовать
- Какой профит для пользователя?
 - > GPU vs CPU
 - CatBoost vs Competitors
 - Real-world example

Входные данные

Порядковые признаки

Music album release year

Gradient boosted decision trees

Категориальные признаки

CatBoost: Categorical + Boosting

Бустинг в индустрии

- Больше данных => выше качество больше денег
- Больше деревьев => выше качество больше денег
- Быстрее обучение => больше экспериментов больше денег

CPU vs GPU

Peak GFLOPS

Peak memory bandwidth

— GPU — CPU (Intel E5-2690)

Объемы данных

Classical research and competitions:

- Higgs: 28 features, 11M samples, 7GB, 2014
- > 500MB GPU Memory, 1 GPU
- Modern research and production:
- Yandex: 100GB is small
- > 8 GPU, 24 GB per each for production models
- CERN: as much data as you want

CatBoost

CatBoost: boosting + categorical

- High-performance, CPU and GPU versions (MultiGPU, CUDA)
- Удобная библиотека для python: pip install catboost

CPU

GPU

- Быстрый inference
- Встроенная аналитика ("сила" признаков, графики ошибок, etc)
- Поддержка категориальных признаков

Порядковые (числовые) признаки

- Для деревьев не нужны 32-bit float в качестве признаков:
- "Равномерная" дискретизация на п частей, например, на основе квантилей распределений
- > feature_border_count, feature_border_type
- Специализация вычислительных блоков под <2, <16, <32, <64, <128, <255
 - > 128 по-умолчанию, 32 удачный трейд-офф скорость/качество
 - > При <16 в 2 раза меньший расход GPU RAM</p>
 - > Для бинарного признака достаточно 1 бита на наблюдение

Категориальные признаки

- One-hot encoding
- > Никогда не делайте его вручную!!!
- > one_hot_max_size
- Статистики на основе категориальных факторов
 - > Зависящие от метки: оценки "вероятности успеха"
 - > Не зависящие от метки: "частота категории"
- Жадный подбор комбинаций признаков
 - > gpu_cat_features_storage, max_ctr_complexity
- Специальные техники для борьбы с переобучением

Kaчeство: LogLoss на открытых датасетах

	CatBoost	LightGBM	XGBoost	H2O
Adult	0.269741	0.276018 + 2.33 %	0.275423 + 2.11 %	0.275104 +1.99 %
Amazon	0.137720	0.163600 + 18.79 %	0.163271 + 18.55 %	0.162641 + 18.09 %
Appet	0.071511	0.071795 + 0.40 %	0.071760 + 0.35 %	0.072457 + 1.32%
Click	0.390902	0.396328 + 1.39 %	0.396242 + 1.37 %	0.397595 + 1.71%
Internet	0.208748	0.223154 + 6.90 %	0.225323 +7.94 %	0.222091 + 6.39 %
Kdd98	0.194668	0.195759 + 0.56 %	0.195677 + 0.52%	0.195395 + 0.37 %
Kddchurn	0.231289	0.232049 + 0.33 %	0.233123 + 0.79 %	0.232752 + 0.63 %
Kick	0.284793	0.295660 + 3.82 %	0.294647 + 3.46 %	0.294814 + 3.52%

Подробное описание экспериментов на GitHub

Benchmarks

GPU vs CPU

Hardware

- Dual-Socket Intel Xeon E5-2660v4 as baseline
- Several modern GPU as competitors

Dataset

> ≈800 float features

Price:

- 2xIntel Xeon E5-2660v4:≈3000\$ (amazon.com)
- > Titan V: 3000\$

Относительное ускорение GPU по сравнению с CPU

Сравнение с конкурентами

Параметры

32 bins, 64 leaves, 200 iterations

Датасет:

- > ≈800 вещественных признаков
- > 4М наблюдений

XGBoost + V100?

 XGBoost 0.7 crashed with "Illegal Memory Access"; до 0.7 не умеет Volta, зато работает

Сравнение с конкурентами: learn on toy datasets

Конфигурация

- Defaults, 64 leaves, 400 iterations
- **>** GPU: 1080Ti
- Higgs (classification)
 - > 28 float features, 11M samples
- MSLR (regression)
 - > 136 float features, 3M samples
- Epsilon (classification)
 - > 2000 float features, 400k samples

Сравнение с конкурентами: inference

8к деревьев

> 64 листа

Epsilon

- > 2000 вещественных признаков
- > 100k наблюдений

Использование в Яндексе

- Пока используем MatrixNet, но активно переходим на CatBoost
- Формулы ранжирования:
- **>** CPU: 75 часов, 100 машин, 32 ядра
- **>** GPU: 7-9 часов, сервер с 8Р40
- Больше денег => больше данных
- CatBoost первый распределенный open-source GBDT на GPU

CatBoost - open-source gradient boosting library

20 thousand results found

catboost.yandex ▼

CatBoost is an algorithm for gradient boosting on decision trees. ... New version of **CatBoost** has industry fastest inference implementation.

CatBoost ⋅ GitHub

github.com > CatBoost v

CatBoost is an open-source gradient boosting on decision trees library with categorical features support out of the box for Python, R.

CatBoost — Yandex Technologies

tech.yandex.com > CatBoost v

CatBoost is a state-of-the-art open-source gradient boosting on decision trees library. Developed by Yandex researchers and engineers...

Y CatBoost — Overview of CatBoost — Yandex Technologies

tech.yandex.com > CatBoost > Documentation v

CatBoost is a machine learning algorithm that uses gradient boosting on decision trees. It is available as an open source library.

Newest 'catboost' Questions - Stack Overflow

stackoverflow.com > Catboost >

CatBoost is an open-source gradient boosting on decision trees library with categorical features support out of the box for Python, R.

Я CatBoost — Технологии Яндекса

tech.yandex.ru > CatBoost ▼

CatBoost использует более универсальный алгоритм, поэтому она подходит для решения и других задач. Преимущества **CatBoost**.

Яндекс открывает технологию машинного... / Хабрахабр

habrahabr.ru > Яндекс > Блог компании Яндекс > 333522 ▼

CatBoost – это новый метод машинного обучения, основанный на градиентном

Спасибо за внимание!

Подробнее:

https://catboost.yandex

Vasily Ershov
Software developer

