CS 301: Theory of Automata

Assignment 2

Due: Thursday 31st October, 2019 (In class).

ONLY HANDWRITTEN ASSIGNMENTS WOULD BE ACCEPTED. CHEATING CASES WILL BE ASSIGNED A -10 $\,$

Problem 1

$$\begin{split} \Sigma &= \{0,1\} \\ \mathsf{L} &= \{0^i 1^j | \ \mathsf{i} \! < \! \mathsf{j}\} \end{split}$$

- a. Write a context free grammar for the above language
- b. Make a PDA for the above language

Problem 2

Suppose $\Sigma = \{0,1,@\}$. Consider the language:

 $\mathsf{L} = \{s_1 @ s_2 @ s_3 @ \dots @ s_k \mid \mathsf{k} > 1 \text{ and each } s_i \in \{\mathsf{0},\mathsf{1}\}^* \text{ and there exist an } i,j \ (i \neq j) \text{ for which } s_i = s_i^R \ \}.$

Examples of strings in L are: {01@10, 110@11111@011, ...}

- a. Write a context free grammar for the above language
- b. Make a PDA for the above language

Problem 3

$$\Sigma = \{0,1,2\}$$

 $L = \{s | s \text{ has any number of 1's but the number of zeros are more than the number of twos} \}$ Examples of strings in this language: $\{0210011, 1200, 000, ...\}$

- a. Write a context free grammar for the above language
- b. Make a PDA for the above language