Twido and Lexium Magelis and Advantys

System User Guide

[source code]

Contents

Application Source Code	3
Typical applications	4
System	5
Architecture	5
Installation	7
Hardware	8
Software	
Communication	
Implementation	21
Lexium05 drive control	
I/O platform	25
PLC	28
HMI	41
Appendix	53
Detailed Component List	53
Component Features	54
Contact	58

Introduction

This document is intended to provide a quick introduction to the described System. It is **not** intended to replace any specific product documentation. On the contrary, it offers additional information to the product documentation, for installing, configuring and starting up the system.

A detailed functional description or the specification for a specific user application is **not** part of this document. Nevertheless, the document outlines some typical applications where the system might be implemented.

Abbreviations

Word/Expression	Explanation	
PLC	Programmable Logic Controller	
НМІ	Human Machine Interface	
PC	Personal Computer	
AC	Alternating Current	
DC	Direct Current	
PSU	Power Supply Unit	
1/0	Input/Output	
VSD (VVD)	Variable Speed Drive (Variable Velocity Drive)	
СВ	Circuit Breaker or motor protection	
Twido	Name of a small Schneider Electric PLC	
TwidoSoft	Name of Schneider Electric PLC programming software	
Phaseo	Name of a Schneider Electric range of power supply units	
Magelis	Name of a Schneider Electric range of HMIs	
Lexium/Lexium05	Name of a Schneider Electric range of servo drives	
Advantys	Name of Schneider Electric I/O modules	

Application Source Code

Introduction

Examples of the source code used to attain the system function as described in this document can be downloaded from our "Village" website under $\underline{\textbf{this}}$ link.

Typical applications

Introduction

The following chapter describes some typical applications or partial applications for this system.

Application	Description	Example
Packaging machines	In the packaging industry, for labeling, packaging, filling and palletizing goods	
Special-purpose machines	Used on small special-purpose machines for assembly, processing, cutting operations, etc. (e.g. food preparation, automated assembly, wood machining).	
Material conveyors	Used in connection with transportation tasks that involve "pick and place" operations.	

System

Introduction

This section describes the architecture, components, size and number of the components that are used within this system.

Architecture

Overview

The system consists of a PLC that controls two drive controls, each with a servo drive, and a remote I/O platform. The drives can be operated via a graphic touch panel. The field bus level operates with CANopen and the control level operates with Modbus. A master switch ensures safety.

Layout

Components

Hardware:

- Twido (PLC)
- Phaseo (power supply)
- Lexium05 (drive control)
- Advantys STB (remote I/O)
- Magelis XBTG (HMI)
- Servo motor

Software:

- TwidoSoft 3.2 (PLC)
- Advantys configuration software 1.20 (remote I/O)
- Vijeo-Designer 4.2.0 (HMI)
- PowerSuite 2.0 (Lexium05)

Dimensions

The compact size of the individual components means that it is possible to house them in a control cabinet with the following approximate external dimensions: $700 \times 500 \times 250 \text{ mm}$ (WxHxD). The XBTG can be installed in the front door for operation there.

Installation

Introduction

This section describes the steps required for the hardware setup and software configuration for the following application.

Layout

Note

Configuration of this application has not been developed for any special actual use. It is intended to show how the system components work together as a unit.

The components that are listed are a cross-section of the components needed for control and display in possible applications.

This SMD does not claim to be comprehensive and **does not absolve users** from their duty to check the safety requirements of their equipment and to ensure compliance with the relevant national or international standards and regulations.

Hardware

General

- For assembly purposes, the Twido, power supply and Advantys STB require a tophat rail.
- The other devices can be attached directly to the mounting plate.
- A 230 V AC wiring is used between the main switch, power supply and VSD.
- A 24 V DC wiring is used between the power supply, PLC, HMI and VSD control
 unit.
- There are other cables from the power cables and feedback cables between the motor and the VSD.

Components

Connections	Meaning
PE	Ground connection
L1, L2/N	AC connection for single-phase equipment
L1, L2, L3	AC connection for three-phase equipment
DC+	DC bus
RBI	Internal ballast
RBE	External ballast
DC-	DC bus
U, V, W	Motor connections

Connections/ Switches	Meaning	
CN1	Analog inputs +/-10 V, pins 11 to 14	
	CANopen, pins 21 to 23	
	Digital inputs/outputs, pins 31 to 39	
CN2	Motor encoder (Hiperface sensor)	
CN3	24V power supply	
CN4	PC, remote operating terminal, MODBUS, CANopen; (RJ45)	
CN5	ESIM A/B/I out, PULS/DIR in, encoder A/B/I in	
S1	Switch for CANopen terminating resistor	

Pin	Signal	Motor, Pin	Color 1)	Pair	Meaning	I/O
1	Shield filler wires				Shield filler wires	
12	SIN	8	white	1	Sine signal	Е
6	REFSIN	4	brown	1	Reference for sine signal, 2.5 V	Α
11	COS	9	Green	2	Cosine signal	E
5	REFCOS	5	yellow	2	Reference for cosine signal, 2.5 V	Α
8	Data	6	gray	3	Receive data, send data	I/O
2	Data	7	pink	3	Receive data, send data, inverted	I/O
10	ENC_0V	11	blue	4	Reference voltage encoder (0.5 mm²)	Α
			red	4	Not assigned (0.5 mm ²)	
3	TMOT_0V	1	black	5	Reference potential for T_MOT	-
			violet	5	Not assigned	
9	T_MOT	2	gray/pink	6	PTC temperature sensor	E
4	ENC+10V_OUT	10	red/blue	6	10 V DC supply for encoder, max. 150 mA	Α
7	n.c.				Not assigned	

¹⁾ Colors quoted refer to the supplied cable.

Pin	Signal	Meaning
41	0 VDC	Reference voltage for 24 V supply
42	0 VDC	Reference voltage for 24 V supply
43	+24 VDC	24V supply voltage
44	+24 VDC	24V supply voltage

Pin	Meaning
1	U
2	PE
3	W
4	V
Α	Brake (not assigned)
В	Brake (not assigned)
С	Not assigned
D	Not assigned

Pin	Meaning	
1	PTC/NTC temperature sensor	
2	PTC/NTC temperature sensor	
3	Not assigned	
4	REF SIN	
5	REF COS	
6	RS 485 positive data	
7	RS 485 negative data	
8	+ SIN	
9	+ COS	
10	U _s 7-12 V	
11	GND	
12	Not assigned	

Software

General

The software for the Twido PLC, the Magelis graphic touch panel and the Advantys configuration needs to be installed.

There is an input panel (HMI) with display and keys on the front of the drive control for ease of parameterization. You will need to install the PowerSuite software in order to maximize user-friendliness for parameterization, saving and simulation of the drive control.

The PC needs to have a Microsoft Windows® operating system installed, either Windows® 2000 or Windows® XP.

Communication

General

The methods of communication below are used between devices:

- CANopen
- Modbus

CANopen is used for communication at field bus level between the Twido PLC, the Lexium 05 drive controls and the remote Advantys I/O platform.

Modbus is inserted between the Magelis graphic touch panel (HMI) and the Twido PLC.

Twido PLC

TWD LMDA 40DTK

The TSX PCX 1031 cable is used for the connection between the serial interface of the PC with TwidoSoft and the PLC.

2 RS485 extension TWD NOZ 485D

The XBT Z968 cable is used to connect the HMI and the PLC.

3 CANopen extension TWD NC01M

The standard CANopen plugs and cables are used.

Drive control Lexium05

LXM05AD10M2

CANopen via CN4 (RJ45)

Pin	Signal	Meaning
1	CAN_H	Data line
2	CAN_L	Data line, inverted
7	MOD+10V_OUT	10 V supply (different assignment from CANopen)
8	MOD_0V	Reference potential for MOD+10V_OUT

Magelis XBT-G2330 HMI

XBTZ968 XBTZG999

Communication cables for PLC including adapter.

XBTZG915

Serial communication cable to PC (with Vijeo Designer). The Ethernet interface can be used as an alternative.

Advantys STB

Pin	Signal	Meaning
1	Not used	Reserved
2	CAN_L	CAN bus line, Low
3	CAN_GND	CAN ground
4	Not used	Reserved
5	CAN_SHLD	Optional CAN shield
6	GND	Optional ground
7	CAN_H	CAN bus line, High
8	Not used	Reserved
9	Not used	Reserved

Note: The pin numbers are shown in the figure above.

Advantys STB, continued

Programming cable STB XCA 4002

For connection to the serial interface of a PC with Advantys software.

CANopen

- 1 CANopen Adapter VW3 CAN TAP2
- 2 CANopen ATV31 VW3 CAN CA RR● branching cable available in various lengths
- 3 PLC with CANopen Master TWD NCO1M
- 4 Main cable
- 5 VW3 A8106
 PowerSuite cable
 Connection between
 PC with PowerSuite
 software and a
 Lexium05.

Pin	Signal	Meaning
1	GND	Optional ground
2	CAN_L	CAN bus line, Low
3	SHLD	Optional shielding
4	CAN_H	CAN bus line, High
5	(V+)	Optional supply (1)

CANopen, continued

Plug 103643

(including terminating resistor for connection to TSXCPP110 Tap and Advantys)

Cable

DCA 701 (44170014 by Selectron) or UNITRONIC BUS CAN 2170261 (by LAPP)

Pin	Signal	Meaning
2	CAN_L	CAN bus line, Low
3	CAN_GND	CAN ground
7	CAN_H	CAN bus line, High

Implementation

Introduction

This chapter describes how to initialize, parameterize, program, and start up the system.

Function

Functional description

- 1. After the power is switched on, all devices run through the initialization stage and the PLC starts communication. Pressing the "Power up" button on the Magelis touch panel for two seconds then puts the Lexium05 drive controls into "run" status. It changes automatically to "speed mode" at this point.
- 2. After power up, the controller is in manual mode. This gives the user access to the status machine of the two drive controls, which can both be started and stopped manually. Their speed and direction can also be set.
- 3. The drive controls must be stopped to change to automatic mode. The "Auto" button selects automatic mode and starts speed regulation. The speed increases from 0 to 600 rpm within one minute. This is maintained for 10 seconds and then changes to -600 rpm in two minutes. After another 10 seconds at the same speed, the motor is brought down to 0 rpm within one minute. After a waiting time of 10 seconds the ramp starts again.
- 4. If an error occurs, the error number is displayed on the touch panel. The user can look up the description of the error in the operating manual.

Layout

Order of tasks Proceed as follows to optimize the setup time of the individual products:

- 1. Set the initial parameters of the drive control via the integral operating panel
- 2. Set up the I/O platform using Advantys Config tool
- 3. Set up the user program by means of TwidoSoft
- 4. Set up display (HMI) using Vijeo Designer

Proceeding in the sequence described above will ensure that the relevant information can either be imported directly or entered manually from the previous action.

Lexium05 drive control

Introduction

This section describes the basic settings that have to be made on the Lexium05 drive controls.

In particular, these include the communication parameters such as:

• Field bus type CANopen

• Address 5 or 6 in this instance

• Transfer speed 500 kbaud

Basic settings

After wiring is complete the drive control parameters must be set. 2 Parameters can be edited via the integral operating panel (HMI). (5) (4) (3) LEDs for CANopen 2 **ESC** Exit from a menu or a parameter Return to the last saved value 3 **ENT** Call up a menu or a parameter Save the displayed value Down arrow 4 Change to the next menu or parameter Decrease the displayed value 5 Up arrow Change to the previous menu or parameter Increase the displayed value 6 Red LED lit (DC bus live) 7-segment 4-character display 7

Basic settings continued

When the drive is supplied with 24V for the first time, or if the factory settings have previously been loaded with the PARfactorySet parameter, all the drive functions are still blocked.

You must carry out an initial setup procedure.

This example uses the address (Adr.) 5 or 6 and the transfer speed 500 kbaud.

On completion the drive should report "RDY" (ready) in the status display.

I/O platform

Introduction

This section describes how the Advantys I/O platform is configured. The Advantys configuration software is used for this purpose.

We suggest that you proceed as follows:

- Create a new project (workspace)
- Configure the hardware (network interface, power supply and I/O modules)
- Configure CANopen communication
- Create the EDS file

Create a new project

Configuring the hardware

Configuring the hardware, continued

Configuring CANopen communication

Island Online Options Window He The internal baud rate can be set via the menu bar. The rate Add Rail Add Annotation used is 500 kbps. Set the parameter for the transfer rate between NIM and Add Module PLC with the two rotary switches Module Editor ... on the front of the NIM. Reflex Editor ... 😂 <u>B</u>uild **⊸** Lock Resource Analysis ... 📜 I/O Image Over<u>v</u>iew ... Baud Rate Tuning ... Island Properties ... A Baud Rate Tuning **⊜?**× Baud Rate for the Island Bus Default value: 800 kbps 500 kbps ₹ <u>0</u>K Cancel Export 2 Finally, the EDS file needs to be **⊜** ?× created by selecting "Export" STB 🔽 悔 🗈 💣 💷+ Save in: from the "File" menu. The name and location are freely selectable. This file is required for subsequent processing operations. File name: body Save Cancel Save as type: EDS files (*.eds) •

Assign I/Os

PLC

Introduction

The PLC section describes the various steps for setting up the PLC logic. TwidoSoft is used.

Proceed as follows to integrate the PLC:

- Create a new project
- Configure the hardware (central unit + modules)
- Configure Modbus communication
- Configure CANopen communication
- Set up the user program
- Connect the PLC to the PC
- Transfer the user program to the PLC

Create a new project

Configure the hardware

Configure Modbus communication

Configure CANopen communication

Configure CANopen communication, continued

Configure CANopen communication, continued

The "Mapping" tab holds ork | Mapping Linking | Symbol | information on the contents of Master PDO the individual PDOs. No changes are needed here. To send and receive, the two Advantys PDOs and the PDO 3 for each Lexium must be added to the "Linking" tab. This produces the following image. OK Cancel The same applies to communication in the other direction. 1 1 B The "Symbol" tab contains the address assignment. The configuration editor window also shows this information. LEXIUMOS-DRIV %IVC1.0.4 %IVC1.0.5 Statusword Velocity actual Controlword Target velocity %IWC1.2.0 D1_INPUT_STATUS %IWCD1.2.1 D1_INPUT_SPEED -32768 -2147483648 32767 2147483647

Continued on next page

-32768 32767 -2147493648 2147483647 -32768 32767 -2147483648 2147483647

Statusword Velocity actual valu Controlword Target velocity

D2_INPUT_STATUS

Analog Module Configuration - TWDAHO1HT [Position 3]
+Channel+ -Symbol Type18093.0 | Not Used

Configure CANopen communication, continued

Scan Mode Autostart is one of the features ∄ X that can be activated using the Scan Mode ОΚ menu bar under "Program -> Normal Period (2 - 150 ms): O<u></u> ∰ ms Cancel process Scan Mode". <u>W</u>atchdog (10 - 500 ms): 250 ₹ ms C Periodic <u>H</u>elp Operating Mode Periodic event Automatic start in Bun ✓ Not used 5<u>÷</u> ms 0 🔻

Creating the application program

Creating the application program, continued

The Lexium05 displays the operating states numbered 1 to 9 in rectangles and the transitions numbered 0 to 16 in circles.

When it is switched on the Lexium05 is in state 4 (rdy) and when the drive is running it is in state 6 (run).

Description of operating states:

State	Operating state	Action by the state machine		
1	Start	24 V is switched on		
2	Not ready to switch on	Device electronics are initialized. End stage is not ready to be switched on.		
3	Switch on disabled	Switching on the end state is disabled.		
4	Ready to switch on	End stage is ready to be switched on.		
5	Switched on	End stage is switched on and motor phases, grounding and zero clamp are tested. The brake is opened (after transition 4 -> 5) or closed (after transition 6 -> 5). No operating mode is active.		
6	Operation enable	The device runs in the operating mode that has been set.		
7	Quick Stop active	A quick stop is executed.		
8	Fault Reaction active	When a fault is detected the fault reaction is		
9	Fault	activated if this is possible		

When standardized operating modes are in use, the operating states are monitored via bits 0 to 3, 5 and 6 and the status word.

The status word is read in via the CANopen bus and the operating state is written in %MW200 (%MW201 for the second Lexium05).

Status	Bit 6 Switch On disable	Bit 5 Quick Stop	Bit 3 Fault	Bit 2 Operation ENABLE	Bit 1 Switch On	Bit 0 Ready to Switch On
2: Not ready to switch on	0	Х	0	0	0	0
3: Switch on disabled	1	Х	0	0	0	0
4: Ready to switch on	0	1	0	0	0	1
5: Switched on	0	1	0	0	1	1
6: Operation enable	0	1	0	1	1	1
7: Quick Stop active	0	0	0	- 1	1	1
9: Fault	0	Х	1	1	1	1

Creating the application program, continued

Trans- Operating Condition / Event 1) ition state State transitions are triggered by a command or in reaction to a monitoring signal. A command is T1 2 -> 3 · First commissioning is completed Motor encoder check successful DC-BUS voltage active, SAFE_DISABLE = +24V, field bus command Shutdown 2) given to the Lexium05 via the controlword. Field bus command Switch On T3 4 > 5 State transitions 0, 1 and 14 Input signal ENABLE 0 -> 1 Switch on output stage. Motor phases, earthing, User parameters are checked Brake released Field bus command Enable operation occur automatically in the device and are not command-activated. Field bus command Disable Operation Input signal ENABLE 1 -> 0 The following table shows state Switch off output stage 5 -> 4 Field bus command Shutdown transitions that can be triggered DC-BUS low voltage
SAFE_DISABLE = 0V
Field bus command Disable Voltage 4 -> 3 by commands. Switch off output stage immediately, no "Quick Stop" 6 -> 4 Field bus command Shutdown Switch off output stage immediately, no "Quick Stop" Field bus command Disable Voltage T10 Field bus command Disable Voltage Switch off output stage immediately, no "Quick Stop" 5 -> 3 T11 6 -> 7 Class 1 error
 Field bus command Quick Stop Interrupt task with 'Quick Stop' T12 Switch off output stage immediately, even it "Quick Stop" still active Errors Class 2. 3 or 4 T13 X -> 8 Error response is carried out, see "error reaction Error response completed Errors Class , 3 or 4 Unit changes to Fault state T15 Field bus command Fault Reset Input signal FAULT_RESET 0 -> 1 9 -> 3 Field bus command Fault Reset + Enable Operation T16 7 -> 6 Continue with task from state set in "Quick Stop" Input signal FAULT_RESET 0 -> 1 The operating states are set via State machine the control word. Bits 0 to 3 and bit 7 are relevant to state transitions. state tran-sitions Status change open T2, T6, T8 4: Ready to switch on Shutdown The bit states in the fields Disable Voltage T7, T9, T10, 3: Switch on disabled marked "X" are not relevant to T7, T10T11 3: Switch on disabled7: Quick Stop active Quick Stop the state change concerned. Disable Oper Fault Reset 3: Switch on disabled

Creating the application program, continued

After power restoration the Lexium05s are designed to return automatically to operating state 4 (rdy) "Ready to switch on".

This can also be tracked on the Lexium05 display.

Display	Operating state	
Init	Initialization of device electronics (INITialize)	
nrdy	End stage is not ready to switch on (Not ReaDY)	
diS	Switching on the end state is disabled (switch on DISabled)	
rdy	End stage is ready to switch on (ReaDY)	
Son	End stage is switched on (Switch ON)	
run	The device runs in the operating mode that has been set (RUN)	
StoP	A quick stop is executed (STOP)	
FLt	Fault detected and fault reaction activated (FauLT)	
8888	Displays flashing number alternating with FLt or StOP	

Creating the application program, continued

To change the drive to operating state 6 (run) "Operation D1_CONTY OLWORD > NMW100 > enable", activate the PLC logic by pressing the "Power up" button on the Magelis HMI. D1_S7EP := 8 This causes the state machine D1_CONTR-OLWORD:X0 NAW100:X0 to run in sequence. D1_STEP = 7 MANO XD
MANU 212 D1_STEP
MANU 200 XD
RUNG 56 DRIVET STARTUP - STEP 5 DI_CONTR OLWORD 3 NMW100 3 D1_STEP := 6 D1_STEP:+4 D1_CONTR OLWORD X SMW100 X (5) COUNTERS > 0 D1_CONTR OLWORD X NARW100 X (R) D1_CONTS CLWORD X NATW100 X

Creating the application program, continued

10	In this application the "speed profile" mode is used (see also	RUNG 15	SDO - WRITE MODE TO LEXUM 1		France 1999
	PDO 3).				SD005_1 >= 4
	Since the Lexium05 may be in a				SD005_2_NODE >= 5
	different operating mode, e.g.				SD006_3_RIDEX >= 16#6060
	after power restoration, you must make sure that the speed				SDO05_4_SUB_LENGTH = 15#0001
	profile is activated.				SD005_5_DATA1 := 3
	The end stage must be switched on (operating state 6, "Operation		SDO_06 SDG01_5_DATA1 ↔ 3 1 P		CAN_CM01S0005_1/6
	enabled) in order to change the mode.	%MW430 %MW432 %MW433 %MW434 %MS5 %MW422 %MW422	SOODS 1 SOODS 2 NODE SOODS 2 NODE SOODS 4 SUB LENGTH SOODS 5 DATA1 SOODS 5 SOODS 5 SOODS 5	Orive 1 - Set Mode - Word 1 Orive 1 - Set Mode - Word 2 Orive 1 - Set Mode - Word 3 Orive 1 - Set Mode - Word 3 Orive 1 - Set Mode - Word 4 Orive 1 - Set Mode - Word 5 SOO 5 activ Orive 1 - Read Mode - Word 5	
	If it is, the instruction CAN_CMD can be used to write "03" (= speed profile) to the mode register 6060:0 _{hex} of the Lexium. The CAN_CMD instruction sends an SDO. Please consult the description of the Lexium for other operating				
11	modes. The fault register 603F:0 _{hex} of	RUNG 11	SDO - READ ERROR LEXIUM 1		
	the Lexium05 is read out at regular intervals. The				SD001_1 := 3
	CAN_CMD instruction is also				SD001_2_NODE = 5
	used for this purpose.				SD001_3_INDEX := 16#603F
					SD001_4_SU8_LENGTH = 15#0002
			SDO_01 %M51 (P)		CAN_CM01 SD001_1/6
		%AFW406 %AFW400 %AFW400 %AFW400 %AFW400	SDOOT_1 NODE SDOOT_2 NODE SDOOT_3 NODEX SDOOT_4 SUB_LENGTH SDO_01	Orive 1 - Read Error - Word 1 Orive 1 - Read Error - Word 2 Orive 1 - Read Error - Word 3 Orive 1 - Read Error - Word 4 SDO 1 selv	
12	,	7600797902010	SDO - WRITE ANAGLOUGE VALUE	Aparticipa (2)	
	on the data exchange from analog inputs as per CANopen				SD014_1 := 4
	guideline is deactivated. It has				SD014_2_NODE := 8
	to be enabled via the Advantys				5DO14_3_NDEX 16#8423
	register 6423:0 _{hex.} The CAN CMD instruction is also				SDO14_4_SUB_LENGTH := 16#0001
	used for this purpose.				SDO14_5_DATA1 := 1
			SDO_14 SDO10_5_DATA1 1		CAN_CMD1 SD014_1/5
		%MW404 %MW405 %MW405 %MW487 %MW488 %MG4 %MW464	SD014_1 SD014_2_NODE SD014_3_NODEX SD014_3_SD614 SD014_5_DATA1 SD0_14 SD010_5_DATA1	Advertys - Witte analogue valus Advertys - Witte analogue valus Advertys - Witte analogue valus Advertys - Witte analogue valus SDO 14 actus Advertys - Peter analogue valus	e - Word 3 - Word 3 - Word 4 - Word 5
13	Only one SDO can be active at an %SW81.	38931404.0			

Creating the application program, continued

14 If "AUTO" mode is selected on the Magelis HMI, the SPS runs through the speed ramp and D1_TARGET_VELOCITY := 0 transfers the reference value to the Lexium05. BIT_100MS D1_AUTO COUNTER1 VELOCITY RAMP ACCELERATION U NAME NAME DRIVEZ AL BIT_100MS COUNTER! NAS (P) 100MS 100 NM116 NM5 DRIVE2_AL BIT_100MS COUNTER: Alternatively, it is possible to control the drive in manual State machine mode. Access to the state machine is also provided (see Halt illustration). The PLC sends data entered on Operation enabled the Magelis HMI directly to the Fault Lexium. Quick Stop Switch on disabled Warning

Connect the PLC to the PC and download the program

HMI

Introduction

This section describes how to set up the screens for the Magelis HMI. Vijeo Designer is the software used.

Proceed as follows to integrate the HMI:

- Create a new project
- Specify the hardware
- Attach the new driver
- Specify the communication settings
- Set up new variables
- Set up a new screen
- Example of numeric display
- Properties window
- Animation settings
- Check the project and download it

Vijeo Designer environment

The Vijeo Designer environment consists of:

- 1 Navigator
- 2 Information display
- 3 Inspector
- 4 Data list
- 5 Feedback area
- 6 Toolbox

Create a new project

Configuring the hardware

Attach the new driver

Attach the new driver, continued

Set up the connection between PC and Magelis

Select download setting for the connection between PC and Magelis.
 The Ethernet connection can

The Ethernet connection can also be selected as an alternative to the serial connection.

Configure the driver

Configure the communication device

Configure the communication device, continued

Create new screen

Create new screen, continued

Animation

Animation, continued

Analyze the project and download it

Display pages

Appendix

Detailed Component List

Type/software	Description	Revision/ version
ABL7RE2403	POWER SUPPLY 240 V AC 1PH 24 V DC 3 A	
VCF02GE	EMERGENCY OFF MASTER SWITCH	
TWD LMDA 40DTK	Modular devices, 40 on-board I/Os	
TWD NOZ OD 485D	RS485 serial connection module	
TWD NCO1M	CANopen master module	
TWD AMI 2HT	Analog module with 2 inputs	
TWD AMO 1HT	Analog module with 1 input	
STBPDT3100	POWER SUPPLY 24 V DC PDM STAND	
STBNCO2212	BUS COUPLER CANopen NIM STAND	
STBXCA4002	CONFIGURATION CABLE RS232 SUBD/HE13 2M	
STBXBA3000	BASE I/O TYPE3 27 MM	
STBXBA2200	BASE PDM 18 MM	
STBDRC3210	MODULE 2 OUT RELAY C 24 V DC/2 A	
STBACI1230	MODULE 2 CHAN 12-BIT INSULATED 020 MA	
STBDDI3610	MODULE 6 IN 24 V DC SINK 2-WIRE 0.1 MS FIX. S	
STBXMP1100	BUS TERMINATOR MODULE ISLAND BUS	
STBACO1210	MODULE 2 CHAN. 12-BIT 020 MA	
STBXTS2100	CONNECTOR I/O 6 CONN. CAGE CLAMP TERM. (20)	
STBXBA1000	BASE I/O TYPE1 13.5 MM	
STBXBA2000	BASE I/O TYPE2 18 MM	
STBXTS1100	CONNECTOR I/O 6 CONN. SCREW TERM. (20ST)	
STBXTS1110	CONNECTOR I/O 5 SCREW-TYPE TERM. CONN. (20)	
STBXTS1120	CONNECTOR NIM 2 SCREW-TYPE TERM. CONN. (10)	
STBXTS1130	CONNECTOR PDM 2 SCREW-TYPE TERM. CONN	
XBTG2330	Color TFT LCE 256 colors 5.7 inch	
XBTZG915	Programming cable	
XBTZG999	Cable adapter	
LXM05AD10M2	Lexium05 230V/1F 750W	
SER3683L5S	Servo motor	
GEA2M0AAAA003	Motor cable - 3m	
GEA2EAAAAA003	Encoder cable - 3m	
TWD SPU 1001 V10M	TwidoSoft software incl. cable	V3.2
STBSPU1000	ADVANTYS software incl. RS232 cable	V1.2
VJDSPULFUCDV10M	Vijeo Designer software	V4.2
	PowerSuite	V2.8

Component Features

Twido PLC

TWD LMDA 40DTK

The modular series consists of five power bases having different processing capacities and different numbers and types of inputs and outputs (20 or 40 inputs/outputs with screw-type terminal connections or HE10 connectors, with sink/source transistor or relay outputs). The power bases can be fitted with all I/O modules (18 digital and analog modules). The supply voltage for all Twido Modular models is 24 V.

The Twido Modular controls offer:

- Modular adaptation to application requirements. The power bases can be fitted with up to 4 (or 7) digital or analog I/O modules (depending on the version).
- The large number of different extension options offers the user a degree of flexibility
 that is normally achieved only with larger control platforms. The TWD LMDA Twido
 modular controls can be fitted with the optional storage modules and real-time clock
 modules at the same time and with a display/display module or a serial connection.
 These modules can all house a second RS485 or RS232C communication terminal.
- Twido Modular is also extremely flexible in terms of wiring. There are a number of
 options: for example removable screw-type terminal strips, spring-loaded terminal
 and HE 10 connectors to ensure rapid reliable connection. The TwidoFast rapid
 wiring system enables wiring to be prepared by combining the modules that are
 fitted with HE 10 connectors to be combined with:
 - prefabricated cables with open ends for direct connection to sensors/actuators,

- TwidoFast-Kits (cables and Telefast terminal block).

Local digital I/O: 24I/16O

Local analog I/O: 11, 0-10 V 8 bit (512 points)

1 potentiometer on front panel. Range 0-1023 points

Application memory: 3000 instructions

6000 with memory card

Integrated interface: Modbus RS485
Programming: TwidoSoft

TwidoSoft

TWD SPU 1001 V10M programming software

TwidoSoft is a graphical development environment for creating, configuring and administering applications for the Twido series of controls. TwidoSoft is a 32 bit software package for Microsoft Windows 98SE, Windows 2000 or windows XP. The software is presented in the familiar standard windows environment with windows, toolbars, context menus, informative texts, context-sensitive online help and more.

It offers the application developer a wealth of functions to make programming and configuration much easier:

- The programming languages are Instruction List or Ladder Language. Both these languages are reversible.
- Application navigator able to display a number of windows at once, making it easier to configure the software.
- Editors for the most important programming and configuration tasks.
- Cut, copy and paste functions.
- Symbolic programming.
- Management of cross-references.
- Duplication of applications.

In online mode, TwidoSoft normally covers the following functions:

- Real-time animation of program elements and/or data.
- · Control diagnostics.
- Monitoring of memory assignment by the application.
- Loading and unloading of programs.
- Storage of programs in the optional EEPROM memory modules.

Lexium05

LXM05AD10M2 Drive Control

Power output: From 0.75 kW (Construction size 1)

Voltage types: 230 V ~, single-phase

Fieldbus interface: CANopen

Signal interface: with two analog +/- 10 V inputs and 8 digital inputs/outputs

RS 422 interface: for pulse/direction or A/B signal inputs

or encoder simulation

Operating mode: Current control, speed control,

electronic gears, point-to-point operation, speed profile, referencing, manual running

Servo motor

SER3683L5S

Rated power: 0.6 kW
Rated speed: 12,000 rpm
Rated continuous torque: 0.48 Nm
Continuous static torque: 0.75 Nm
Max. torque: 3.0 Nm
Max. voltage: 230 V ~

Power supply

Phaseo ABL7RE2403

Input voltage: 100 to 240 V ~, single-phase, 50/60 Hz

Output voltage: 24 V = Output current: 3.0 A

Magelis HMI

XBTG2330 Graphic Touch Panel

Display type: LCD TFT 256 colors Display size: 5.7" (320x240)

Protocols: Unitelway , Modbus, Modbus TCP/IP Interfaces: RS232C/RS485 , Ethernet 10BaseT

Voltage: 24 V = external

Vijeo Designer

VJDSPULFUCDV10M

Vijeo Designer configuration software has a number of parameterization windows that enable a project to be developed quickly and simply and are very user-friendly. Vijeo Designer uses Java scripts that allow process data to be further processed on the XBT G touch panel.

These are some of its functions:

- Navigator,
- Library of animated graphic objects,
- Online help,
- Display of error reports,
- Display of object characteristics,
- Display of the list of variables.

Contact

Author	Phone	E-mail
Schneider Electric GmbH Customer & Market System & Architecture Architecture Definition Support	+49 6182 81 2555	cm.systems@de.schneider-electric.com

Schneider Electric GmbH Steinheimer Strasse 117 D -63500 Seligenstadt Germany As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.