Machine Learning CSE427

Mahbub Majumdar Typeset by: Syeda Ramisa Fariha

> BRAC University 66 Mohakhali Dhaka, Bangladesh

May 28, 2018

Superhumungous Thanks

These slides were typeset by Syeda Ramisa Fariha.

Without her tremendous dedication, these slides would not exist.

Table of Contents

The Probability Approximately Correct Learning Model

Agnostic PAC Learnability
Scope of Learning Problems Modeled

Topics Covered In Previous Lectures

• Finite hypothesis classes

Topics Covered In Previous Lectures

- Finite *hypothesis classes*
- Use *ERM* procedure on large enough *S*

Topics Covered In Previous Lectures

- Finite hypothesis classes
- Use ERM procedure on large enough S
- Then output will be Probability Approximately Correct

PAC Learnability

Definition: PAC Learnability: \mathcal{H} is PAC Learnable if

 $lack \exists$ a function $m_{\mathcal H}(\epsilon,\delta):(0,1) imes(0,1)\Longrightarrow \mathbb N$, and a learning algorithm such that

PAC Learnability

Definition: PAC Learnability: \mathcal{H} is PAC Learnable if

- \exists a function $m_{\mathcal{H}}(\epsilon, \delta) : (0, 1) \times (0, 1) \implies \mathbb{N}$, and a learning algorithm such that
- for all $\epsilon, \delta \in (0,1)$ and $\forall D$ over X and $\forall f: X \to \{0,1\}$, if the Realizabilty Assumption holds, wrt \mathcal{H}, D, f ,

PAC Learnability

Definition: PAC Learnability: \mathcal{H} is PAC Learnable if

- \exists a function $m_{\mathcal{H}}(\epsilon, \delta) : (0, 1) \times (0, 1) \implies \mathbb{N}$, and a learning algorithm such that
- for all $\epsilon, \delta \in (0,1)$ and $\forall D$ over X and $\forall f : X \rightarrow \{0,1\}$, if the Realizabilty Assumption holds, wrt \mathcal{H}, D, f ,
- then, when running the Learning Algorithm on $m>m_{\mathcal{H}}(\epsilon,\delta)$ iid examples generated by D, and labeled by f,

PAC Learnability

Definition: PAC Learnability: \mathcal{H} is PAC Learnable if

- \exists a function $m_{\mathcal{H}}(\epsilon, \delta): (0, 1) \times (0, 1) \implies \mathbb{N}$, and a learning algorithm such that
- for all $\epsilon, \delta \in (0,1)$ and $\forall D$ over X and $\forall f: X \to \{0,1\}$, if the Realizabilty Assumption holds, wrt \mathcal{H}, D, f ,
- then, when running the Learning Algorithm on $m>m_{\mathcal{H}}(\epsilon,\delta)$ iid examples generated by D, and labeled by f,
- \Rightarrow the algorithm returns a hypothesis h, such that, with probability of at least $1-\delta$ (over the choice of examples):

PAC Learnability

Definition: PAC Learnability: \mathcal{H} is PAC Learnable if

- \exists a function $m_{\mathcal{H}}(\epsilon, \delta): (0, 1) \times (0, 1) \implies \mathbb{N}$, and a learning algorithm such that
- for all $\epsilon, \delta \in (0,1)$ and $\forall D$ over X and $\forall f: X \to \{0,1\}$, if the Realizabilty Assumption holds, wrt \mathcal{H}, D, f ,
- then, when running the Learning Algorithm on $m>m_{\mathcal{H}}(\epsilon,\delta)$ iid examples generated by D, and labeled by f,
- \Rightarrow the algorithm returns a hypothesis h, such that, with probability of at least $1-\delta$ (over the choice of examples):
- \Rightarrow then

$$L_{D,f}(h) \leq \epsilon$$
.

PAC Learnability

Note:

 ϵ : difference between output classifier and optimal classifier

 δ : how likely h is inaccurate

Might accidentally sample the same point over and over,
 S = {single point}

7/21

PAC Learnability

Note:

 $\boldsymbol{\epsilon}\,$: difference between output classifier and optimal classifier

 δ : how likely h is inaccurate

- Might accidentally sample the same point over and over, $S = \{\text{single point}\}\$
- Nonzero ϵ enables forgiveness. The learner is allowed to make minor errors

Sample Complexity

- if H is PAC learnable
 - \Rightarrow many $m_{\mathcal{H}}$ satisfy requirements of PAC learnability
 - \Rightarrow define sample complexity as the minimal $m_{\mathcal{H}}(\epsilon,\delta)$

Sample Complexity

- if H is PAC learnable
 - \Rightarrow many $m_{\mathcal{H}}$ satisfy requirements of PAC learnability
 - \Rightarrow define sample complexity as the minimal $m_{\mathcal{H}}(\epsilon,\delta)$
- Recall from last lecture: Every finite hypothesis class is PAC learnable with sample complexity $m_{\mathcal{H}} \leq \frac{1}{\epsilon} \log(\frac{|\mathcal{H}|}{\delta})$

Sample Complexity

- if \mathcal{H} is PAC learnable
 - \Rightarrow many $m_{\mathcal{H}}$ satisfy requirements of *PAC learnability*
 - \Rightarrow define sample complexity as the minimal $m_{\mathcal{H}}(\epsilon,\delta)$
- Recall from last lecture: Every finite hypothesis class is PAC learnable with sample complexity $m_{\mathcal{H}} \leq \frac{1}{\epsilon} \log(\frac{|\mathcal{H}|}{\delta})$
- Because we have chosen the the sample complexity to be the minimal $m_{\mathcal{H}}$, it will not be bigger than $\frac{1}{\epsilon}\log(\frac{|\mathcal{H}|}{\delta})$. That's why we have $m_{\mathcal{H}} \leq \frac{1}{\epsilon}\log(\frac{|\mathcal{H}|}{\delta})$

Sample Complexity

- if \mathcal{H} is PAC learnable
 - \Rightarrow many $m_{\mathcal{H}}$ satisfy requirements of *PAC learnability*
 - \Rightarrow define sample complexity as the minimal $m_{\mathcal{H}}(\epsilon,\delta)$
- Recall from last lecture: Every finite hypothesis class is PAC learnable with sample complexity $m_{\mathcal{H}} \leq \frac{1}{\epsilon} \log(\frac{|\mathcal{H}|}{\delta})$
- Because we have chosen the the sample complexity to be the minimal $m_{\mathcal{H}}$, it will not be bigger than $\frac{1}{\epsilon}\log(\frac{|\mathcal{H}|}{\delta})$. That's why we have $m_{\mathcal{H}} \leq \frac{1}{\epsilon}\log(\frac{|\mathcal{H}|}{\delta})$
- There are infinite classes that are learnable also, VC Dimension determines learnability.

Removing Some Assumptions

• If we remove Realizability, this becomes an Agnostic PAC Model

9/21

Removing Some Assumptions

- If we remove Realizability, this becomes an Agnostic PAC Model
- Realizability requires $\exists h^*$ such that,

$$\mathbb{P}_{x \sim D}\Big(h^*(x) = f(x)\Big) = 1$$

Removing Some Assumptions

- If we remove Realizability, this becomes an Agnostic PAC Model
- Realizability requires $\exists h^*$ such that,

$$\mathbb{P}_{x \sim D}\Big(h^*(x) = f(x)\Big) = 1$$

 In real life the output labels will not be fully determined by the features we measure

Removing Some Assumptions

- If we remove Realizability, this becomes an Agnostic PAC Model
- Realizability requires $\exists h^*$ such that,

$$\mathbb{P}_{x \sim D}\Big(h^*(x) = f(x)\Big) = 1$$

- In real life the output labels will not be fully determined by the features we measure
- For example, player quality not determined by only 2 features such as, $x_i = \begin{pmatrix} speed_i \\ stamina_i \end{pmatrix}$

Removing Some Assumptions

• In the absence of realizability, often label the distribution D(x) as D(x, y). (Notation used by UML.)

/21

Removing Some Assumptions

- In the absence of realizability, often label the distribution D(x) as D(x, y). (Notation used by UML.)
- D(x, y) = Joint Probability Distribution over X and Y.

/21

Removing Some Assumptions

- In the absence of realizability, often label the distribution D(x) as D(x, y). (Notation used by UML.)
- D(x, y) = Joint Probability Distribution over X and Y.
- $D_x \equiv D(x) = \sum_{y_i} D(x, y)$ is the marginal distribution over unlabeled points.

/21

Removing Some Assumptions

- In the absence of realizability, often label the distribution D(x) as D(x,y). (Notation used by UML.)
- D(x, y) = Joint Probability Distribution over X and Y.
- $D_x \equiv D(x) = \sum_{y} D(x, y)$ is the marginal distribution over unlabeled points.
- For example, $D_x \equiv$ probability that:

$$a \leq feature_1 \leq b$$

$$c \leq feature_2 \leq d$$

Lecture 4

Removing Some Assumptions

• $D(y \mid x) = \text{Conditional Probability of getting label } y \text{ given } x$

Removing Some Assumptions

- $D(y \mid x) = \text{Conditional Probability of getting label } y \text{ given } x$
- Notation used in "Understanding Machine Learning"

$$D(y \mid x) \equiv D((x, y) \mid x)$$

Removing Some Assumptions

- $D(y \mid x) = \text{Conditional Probability of getting label } y \text{ given } x$
- Notation used in "Understanding Machine Learning"

$$D(y \mid x) \equiv D((x, y) \mid x)$$

• By using a probability distribution for y,

Removing Some Assumptions

- $D(y \mid x) = \text{Conditional Probability of getting label } y \text{ given } x$
- Notation used in "Understanding Machine Learning"

$$D(y \mid x) \equiv D((x, y) \mid x)$$

- By using a probability distribution for y,
- Allows two different mangoes with identical x's to have different y's because the feature set doesn't fully parameterize the set of mangoes.

Empirical And True Error Revised

• We want to measure how likely h will mislabel points.

 $^{11}/_{21}$

Empirical And True Error Revised

- We want to measure how likely h will mislabel points.
- True error of Prediction Rule h

$$L_D(h) \equiv \underset{x \sim D}{\mathbb{P}} \Big(h(x) \neq y \Big) \equiv D(x, y \mid h(x) \neq y)$$

Empirical And True Error Revised

- We want to measure how likely h will mislabel points.
- True error of Prediction Rule h

$$L_D(h) \equiv \underset{x \sim D}{\mathbb{P}} \Big(h(x) \neq y \Big) \equiv D(x, y \mid h(x) \neq y)$$

Note, because we are not assuming realizability, the true error is labeled $L_D(h)$ not $L_{D,f}(h)$.

Empirical And True Error Revised

- We want to measure how likely h will mislabel points.
- True error of Prediction Rule h

$$L_D(h) \equiv \underset{x \sim D}{\mathbb{P}} \Big(h(x) \neq y \Big) \equiv D(x, y \mid h(x) \neq y)$$

- Note, because we are not assuming realizability, the true error is labeled $L_D(h)$ not $L_{D,f}(h)$.
- Empirical Risk

$$L_{S}(h) \equiv \frac{|\{i \in [m] \mid h(x_{i} \neq y_{i})\}|}{m}$$

Empirical And True Error Revised

- We want to measure how likely h will mislabel points.
- True error of Prediction Rule h

$$L_D(h) \equiv \underset{x \sim D}{\mathbb{P}} \Big(h(x) \neq y \Big) \equiv D(x, y \mid h(x) \neq y)$$

- Note, because we are not assuming realizability, the true error is labeled $L_D(h)$ not $L_{D,f}(h)$.
- Empirical Risk

$$L_S(h) \equiv \frac{|\{i \in [m] \mid h(x_i \neq y_i)\}|}{m}$$

• Goal: Want an h minimizing $L_D(h)$ that is PAC

Bayes' Optimal Predictor

ullet For a given D over $X imes \{0,1\}$, the best labeling function $f: X o \{0,1\}$ is

$$f_D(x) = egin{cases} 1 & ext{if } \mathbb{P}(y=1 \mid x) \geq rac{1}{2} \ 0 & ext{otherwise} \end{cases}$$

Bayes' Optimal Predictor

• For a given D over $X \times \{0,1\}$, the best labeling function $f: X \to \{0, 1\}$ is

$$f_D(x) = egin{cases} 1 & ext{if } \mathbb{P}(y=1 \mid x) \geq rac{1}{2} \ 0 & ext{otherwise} \end{cases}$$

Note, $f_D(x)$ is not the *true* labeling function f since we don't know what the true f is

Bayes' Optimal Predictor

• For a given D over $X \times \{0,1\}$, the best labeling function $f: X \to \{0,1\}$ is

$$f_D(x) = egin{cases} 1 & ext{if } \mathbb{P}(y=1 \mid x) \geq rac{1}{2} \ 0 & ext{otherwise} \end{cases}$$

- Note, $f_D(x)$ is not the *true* labeling function f since we don't know what the true f is
- We can show that \forall D, the Bayes' Optimal Predictor f_D , is optimal.

Bayes' Optimal Predictor

• For a given D over $X \times \{0,1\}$, the best labeling function $f: X \to \{0, 1\}$ is

$$f_D(x) = egin{cases} 1 & ext{if } \mathbb{P}(y=1 \mid x) \geq rac{1}{2} \ 0 & ext{otherwise} \end{cases}$$

- Note, $f_D(x)$ is not the *true* labeling function f since we don't know what the true f is
- We can show that $\forall D$, the Bayes' Optimal Predictor f_D , is optimal.
- No other classifier $g:X o\{0,1\}$ has lower error $L_D(f_D)\le L_D(g)$

Bayes' Optimal Predictor

• Don't know D, thus can't utilize f_D

Bayes' Optimal Predictor

- Don't know D, thus can't utilize f_D
- ullet No algorithm can be guaranteed to find a predictor as good as f_D

Bayes' Optimal Predictor

- Don't know D, thus can't utilize f_D
- ullet No algorithm can be guaranteed to find a predictor as good as f_D
- Seek a *predictor* as close to f_D as possible

Bayes' Optimal Predictor

- Don't know D, thus can't utilize f_D
- No algorithm can be guaranteed to find a predictor as good as f_D
- Seek a *predictor* as close to f_D as possible
- Ability to do this depends on the hypothesis class of h

What is Agnostic PAC Learnability?

Definition: Agnostic PAC Learnability

A hypothesis class h is agnostic PAC learnable if

ullet \exists $m_{\mathcal{H}}:(0,1)^2 o\mathbb{N}$ and \exists a learning algorithm such that

What is Agnostic PAC Learnability?

Definition: Agnostic PAC Learnability

A hypothesis class h is agnostic PAC learnable if

- ullet \exists $m_{\mathcal{H}}:(0,1)^2 o\mathbb{N}$ and \exists a learning algorithm such that
- $\forall \ \epsilon, \delta \in (0,1)$. and $\forall \ D$ over $X \times Y$, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ iid samples generated by D

What is Agnostic PAC Learnability?

Definition: Agnostic PAC Learnability

A hypothesis class h is agnostic PAC learnable if

- ullet \exists $m_{\mathcal{H}}:(0,1)^2 o\mathbb{N}$ and \exists a learning algorithm such that
- $\forall \ \epsilon, \delta \in (0,1)$. and $\forall \ D$ over $X \times Y$, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ iid samples generated by D
- the algorithm return a hypothesis *h*,

 $^{14}/_{21}$

What is Agnostic PAC Learnability?

Definition: Agnostic PAC Learnability

A hypothesis class h is agnostic PAC learnable if

- ullet \exists $m_{\mathcal{H}}:(0,1)^2 o\mathbb{N}$ and \exists a learning algorithm such that
- $\forall \ \epsilon, \delta \in (0,1)$. and $\forall \ D$ over $X \times Y$, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ iid samples generated by D
- the algorithm return a hypothesis h,
- ullet such that with probability of at least $1-\delta$ over the training samples

$$L_D(h) \leq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$$

 If realizability holds, agnostic PAC learnability provides the same guarantee as PAC learning

- If realizability holds, agnostic PAC learnability provides the same guarantee as PAC learning
- ⇒ Agnostic PAC Learning generalizes PAC learning

- If realizability holds, agnostic PAC learnability provides the same guarantee as PAC learning
- \Rightarrow Agnostic PAC Learning generalizes PAC learning
 - When realizability doesn't hold,

- If realizability holds, agnostic PAC learnability provides the same guarantee as PAC learning
- ⇒ Agnostic PAC Learning generalizes PAC learning
 - When realizability doesn't hold,
- ⇒ Can't guarantee arbitrarily small error

- If realizability holds, agnostic PAC learnability provides the same guarantee as PAC learning
- ⇒ Agnostic PAC Learning generalizes PAC learning
 - When realizability doesn't hold,
- \Rightarrow Can't guarantee arbitrarily small error
- But using agnostic PAC learning

- If realizability holds, agnostic PAC learnability provides the same guarantee as PAC learning
- ⇒ Agnostic PAC Learning generalizes PAC learning
 - When realizability doesn't hold,
- ⇒ Can't guarantee arbitrarily small error
 - But using agnostic PAC learning
- \Rightarrow Can get smallest error predictor in the class ${\cal H}$

Scope of Learning Problems Modeled

• Multiclass Classification:

> sports

 $h: Documents \rightarrow news$

 \searrow entertainment

error: Probability of misclassifying a document.

Scope of Learning Problems Modeled

Multiclass Classification:

 $h: Documents \rightarrow news$

🔪 entertainment

error: Probability of misclassifying a document.

Regression: Looking for simple patterns

h: ultrasound measurements \rightarrow baby's weight

error = Expected difference between true labels and predicted labels

$$L_D(h) \equiv \mathop{\mathbb{E}}_{(x,y) \sim D} \left[(h(x) - y)^2 \right]$$

Generalized Measure of Success

• Given \mathcal{H} , domain $Z = X \times Y$,

Generalized Measure of Success

- Given \mathcal{H} , domain $Z = X \times Y$,
- Let $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$, where

 $\ell = loss function$

 $\mathbb{R}_+ = \mathsf{set}$ of non negative real numbers

Generalized Measure of Success

- Given \mathcal{H} , domain $Z = X \times Y$,
- Let $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$, where

 $\ell = loss function$

 $\mathbb{R}_+ = \mathsf{set}$ of non negative real numbers

• In unsupervised problems, Z is not $X \times Y$, since there is "no" Y

Generalized Measure of Success

- Given \mathcal{H} , domain $Z = X \times Y$,
- Let $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$, where

 $\ell=\mathsf{loss}$ function

 $\mathbb{R}_+ = \mathsf{set}$ of non negative real numbers

- In unsupervised problems, Z is not $X \times Y$, since there is "no" Y
- **Definition**: *Risk function* of $h \in \mathcal{H}$ wrt *D* over *Z*

$$L_D(h) \equiv \mathop{\mathbb{E}}_{Z \sim D} \left[\ell(h, z) \right]$$

This is the expected loss of h sampled from Z using D.

Definition: Empirical Risk

Given
$$S = \{z_1, z_2, \dots, z_m\} \in Z^m$$

$$L_S(h) \equiv \frac{1}{m} \sum_{i=1}^m \ell(h, z_i)$$

Loss Functions

• 0-1 Loss: $Z \in X \times Y$

$$\ell_{01}\Big(h,(x,y)\Big) \equiv \begin{cases} 0 \text{ if } h(x) = y\\ 1 \text{ if } h(x) \neq y \end{cases}$$

Loss Functions

• 0-1 Loss: $Z \in X \times Y$

$$\ell_{01}\Big(h,(x,y)\Big) \equiv \begin{cases} 0 \text{ if } h(x) = y \\ 1 \text{ if } h(x) \neq y \end{cases}$$

⇒ Binary/multiclass classification problem

 $^{'19}/_{23}$

Loss Functions

• 0-1 Loss: $Z \in X \times Y$

$$\ell_{01}\Big(h,(x,y)\Big) \equiv \begin{cases} 0 \text{ if } h(x) = y\\ 1 \text{ if } h(x) \neq y \end{cases}$$

- ⇒ Binary/multiclass classification problem
- \Rightarrow For random variable $lpha \in \{0,1\}$

$$\mathop{\mathbb{E}}_{\alpha \sim D}[\alpha] = \mathop{\mathbb{P}}_{\alpha \sim D}(\alpha = 1)$$

Loss Functions

 \Rightarrow Then the different definitions of $L_D(h)$ coincide

a)
$$L_D(h) \equiv \mathop{\mathbb{E}}_{Z \sim D}(\ell(h, z))$$

b)
$$L_D(h) \equiv \underset{z \sim D}{\mathbb{P}} \Big(h(x) \neq y \Big)$$

Loss Functions

 \Rightarrow Then the different definitions of $L_D(h)$ coincide

a)
$$L_D(h) \equiv \mathop{\mathbb{E}}_{Z \sim D}(\ell(h,z))$$

b)
$$L_D(h) \equiv \underset{z \sim D}{\mathbb{P}} \Big(h(x) \neq y \Big)$$

• Square Loss: $Z \in X \times Y$

$$\ell_{01}(h(x,y)) \equiv (h(x) - y)^2$$

Agnostic PAC Learnability For General Loss Functions

Definition: Same as before with \mathcal{H}, Z, D, ℓ where $\ell : \mathcal{H} \times Z \to \mathbb{R}_+$ and

$$L_D(h) = \underset{Z \sim D}{\mathbb{E}} [\ell(h, z)]$$

Sidenote: Proper vs Representational Independent Learning

• $\mathcal{H} \in \mathcal{H}'$

 $^{21}/_{21}$

Agnostic PAC Learnability For General Loss Functions

Definition: Same as before with \mathcal{H}, Z, D, ℓ where $\ell : \mathcal{H} \times Z \to \mathbb{R}_+$ and

$$L_D(h) = \underset{Z \sim D}{\mathbb{E}} [\ell(h, z)]$$

Sidenote: Proper vs Representational Independent Learning

- H ∈ H'
- Extend Loss Function to $\mathcal{H}' \times Z \to \mathbb{R}_+$

Agnostic PAC Learnability For General Loss Functions

Definition: Same as before with \mathcal{H}, Z, D, ℓ where $\ell : \mathcal{H} \times Z \to \mathbb{R}_+$ and

$$L_D(h) = \underset{Z \sim D}{\mathbb{E}} [\ell(h, z)]$$

Sidenote: Proper vs Representational Independent Learning

- H ∈ H'
- Extend Loss Function to $\mathcal{H}' \times Z \to \mathbb{R}_+$
- Return algorithm from \mathcal{H}' instead of \mathcal{H} (This is representational independent learning) as long as it satisfies

$$L_D(h' \in \mathcal{H}') \le \min_{h \in \mathcal{H}} L_D(h) + \epsilon$$

Agnostic PAC Learnability For General Loss Functions

Definition: Same as before with \mathcal{H}, Z, D, ℓ where $\ell : \mathcal{H} \times Z \to \mathbb{R}_+$ and

$$L_D(h) = \underset{Z \sim D}{\mathbb{E}} [\ell(h, z)]$$

Sidenote: Proper vs Representational Independent Learning

- H ∈ H'
- Extend Loss Function to $\mathcal{H}' \times Z \to \mathbb{R}_+$
- Return algorithm from \mathcal{H}' instead of \mathcal{H} (This is representational independent learning) as long as it satisfies

$$L_D(h' \in \mathcal{H}') \le \min_{h \in \mathcal{H}} L_D(h) + \epsilon$$

• Proper learning is when the algorithm outputs an h from \mathcal{H} not from \mathcal{H}'