

Instituut Applied Sciences
Biologie en medisch laboratoriumonderzoek Chemie Bio-informatica

| In te vullen door de student:           |                             |                    |                    |                          |               |  |
|-----------------------------------------|-----------------------------|--------------------|--------------------|--------------------------|---------------|--|
| Naam:                                   |                             | Klas:              |                    |                          |               |  |
| Nummer:                                 |                             |                    |                    |                          |               |  |
|                                         |                             |                    |                    | 1                        |               |  |
| In te vullen door de toetsconstructeur: |                             |                    |                    |                          |               |  |
| Soort toets:                            | KENNISTOETS                 |                    | Uitwerking:        | Gelinieerd               | papier        |  |
| Datum:                                  | woensdag 14 maa<br>2018     | art Toetsduur:     |                    | 90 / 115 minuten         |               |  |
| Aanvang toets:                          | 18:15                       |                    |                    |                          |               |  |
| Toetscode:                              | Bi6a-K[herkansing           | Bi6a-K[herkansing] |                    |                          | HULPMIDDELEN: |  |
| Klas(sen):                              | Bi2abc                      |                    |                    | ☐ Gewone rekenmachine    |               |  |
| Toets:                                  | Informatica Datastruct+Alg. |                    |                    | □ PS-kaartje             |               |  |
| Toetsconstructeur                       | Martijn van der Bruggen     |                    |                    | ☐ Tabellenboek           |               |  |
| Aantal vragen:                          | 5                           |                    |                    | ☐ Formule-bladen         |               |  |
| Aantal pagina's:                        | 3                           |                    |                    | ☐ Boeken, artikelen e.d. |               |  |
| Totaal pnt.:                            | 20                          |                    |                    |                          |               |  |
| Cesuur:                                 | 55%                         |                    |                    | Voeg hulmiddel toe       |               |  |
| Opmerkingen van de toetsconstructeur:   |                             |                    |                    |                          |               |  |
|                                         |                             |                    |                    |                          |               |  |
|                                         |                             |                    |                    |                          |               |  |
|                                         |                             |                    |                    |                          |               |  |
| Loka(a)I(en): L                         | kaal?                       |                    | Aantal<br>toetsen: | Aantal toetsen?          |               |  |
| Surveillant(en): V                      | e surveilleert?             |                    |                    |                          |               |  |

#### Vraag 1: Introductie datastructuren (4 pt)

Datastructuren zijn belangrijk voor diverse toepassingen. In de bioinformatica is dit extreem belangrijk.

- a) Wat is het verschil tussen een Graph en een Tree? (1 pt)
- b) Wat is het verschil tussen een HashMap en een TreeMap? (1 pt)
- c) Wanneer gebruik je een LinkedList in plaats van een ArrayList? (1 pt)
- d) Geef een toepassing van een Stack. (1 pt)

#### Vraag 2: Introductie algoritmen (4 pt)

Een HashMap is een bijzonder efficiënte manier voor data retrieval op basis van een sleutel.

- a) Wat is een bucket? (1 pt)
- b) Wat is een collision? (1 pt)
- c) Beschrijf de rol van de hash-functie. (1 pt)
- d) In welke situatie gaat de Big O van een HashMap van 1 richting n? (1 pt)

### Vraag 3: Toepassen Big O (4 pt)

Bepaal de Big O van onderstaande algoritmes.

```
public static void probeer1 (int n) {
        for (int i = 0; i < n; i++) {
            System.out.println(i);
    }
b)
public static void probeer2(int n) {
        int i = 1;
        while (i < 10) {
            System.out.println(i++);
}
c)
public static void probeer3 (int n) {
        int i = 1;
        while (i < n) {
            System.out.println(i);
            i += i;
        }
}
d)
   public static void probeer4 (int n) {
        int j = 0;
        while (j < n) {
            for (int i=0; i<n; i++) {
                    System.out.println(i);
             }
            j++;
        }
     }
```

## Vraag 4: Analyse datastructuur (4 pt)



Figuur 1: datastructuur

- a) Wat is de datastructuur in figuur 1, ben zo specifiek mogelijk? (1 pt)
- b) Beschrijf hoe we brute force de kortste route van A naar F bepalen. (1 pt)
- c) Wat zal de Big O bij benadering zijn als het aantal nodes toeneemt en je bepaalt de kortste route met een brute force methode? (1 pt)
- d) Geef een voorbeeld waarbij in de bioinformatica gebruik wordt gemaakt van dit soort datastructuren. (1 pt)

# Vraag 5: Compressie (4 pt)

- a) Geef een voorbeeld waarbij je lossy compression toepast op het opslaan van genetische data. Bijvoorbeeld het opslaan van genomen van patiënten. (2 pt)
- b) Beschrijf de manier van LZW compressie. Gebruik daarvoor de woorden ASCII-tabel, dictionary (HashMap) en fixed size codering. (2 pt)