

SRI KRISHNA COLLEGE OF TECHNOLOGY

Year:IV Semester:VII Class:B.E- CSE(AIML) Date:15.07.2025

PROJECT TITLE:

SWARAJYA: A Predictive Platform for Sustainable EV Battery Logistics and Retail-Based Charging Infrastructure.

NAME OF THE STUDENTS:

S.No	Name	RegisterNumber
1	SHYLENDRA PRABU R	727822TUAM053
2	YASWANTH KUMAR S	727822TUAM062
3	KRITHIK SS	727822TUAM023

I. REFERENCE PAPERS:

S.No	Technology Used	Title of the Paper	Journal/ Conference	Year
1	Double-level planning model, battery logistics optimization, time-space load forecasting	Sizing and Locating Planning of EV Centralized Battery-Charging- Station Considering Battery Logistics System.	Publisher: IEEE	2022
2	Deep Neural Networks (DNN), time-series forecasting for EV charging load	A Deep Learning Approach for Electric Vehicle Load Forecasting.	Publisher: Elsevier	2021
3	Planning of Electric Vehicle Charging Stations Considering Fuzzy Selection of Second Level Charging Station	Fuzzy Decision- Making System (Fuzzy AHP).	Publisher: IEEE	2022

II. HARDWARE REQUIREMENTS:

Personal Computer/Laptop, Processor (CPU), RAM 32 GB, Storage, GPU, OS.

III. SOFTWAR EREQUIREMENTS:

Programming Language: Python

> ML Libraries: TensorFlow / Keras, Scikit-learn, XGBoost

➤ Backend Framework: FastAPI or Node.js

Frontend Development: React.js (web)

> Database: PostgreSQL / Firebase

APIs: Google Maps API, OpenWeather API, Location Services

➤ Cloud Platform: AWS / Heroku for hosting and deployment

➤ Version Control & CI/CD: GitHub / GitLab.

IV. BUDGET PROPOSAL:

Estimated Cost: Rs.25,000/-

V. COMPARISON TABLE (ifapplicable):

Feature	Existing System	Smart EVLink (Proposed System)	
Charging Infrastructure	Fixed-location charging stations	Dynamic, host-integrated system (MSMEs, hotels, etc)	
Demand Forecasting	Static/manual	Real-time ML-based prediction (LSTM/XGBoost)	
Stakeholder Model	Provider-centric	Inclusive: User ↔ Host ↔ Provider coordination	
Accessibility	Urban-focused	Scalable to semi-urban and Tier 2/3 regions	
Cost & Setup	High infra cost	Low-cost, software-driven with no hardware dependency	
Sustainability Alignment	Limited	Core integration with SDGs & IKS principles	