Dynamical Theory of X-Ray Diffraction

Chapte	r · January 2001	
DOI: 10.11	07/97809553602060000569	
CITATION 476	S	READS 2,887
1 autho	ır:	
	Andre Authier	
24	Sorbonne Université	
	117 PUBLICATIONS 2,337 CITATIONS	
	SEE PROFILE	
Some o	f the authors of this publication are also working on these related projects:	
Project	"The birth of modern crystallography - René-Just Haüy" View project	

Dynamical Theory of X-Ray Diffraction

André Authier

OXFORD SCIENCE PUBLICATIONS

Contents

I	Back	ground and basic results	1
1	Histor	ical developments	3
	1.1	Prologue	3
	1.2	The discovery of X-ray diffraction	4
	1.3	The geometrical theory of diffraction	5
	1.4	Darwin's dynamical theory of diffraction	6
	1.5	Extinction theories	8
	1.6	Ewald's dynamical theory	11
	1.7	Early confirmations of the dynamical theory	13
	1.8	Laue's dynamical theory	14
	1.9	Umweganregung and Aufhellung	14
	1.10	The properties of wavefields	16
		1.10.1 Anomalous absorption (the Borrmann effect)	16
		1.10.2 Wavefield trajectories	20
		i.10.3 Pendellösung	23
	1.11	Diffraction by deformed crystals	25
	1.12	Modern times	26
2	Prope	rties of the electromagnetic field—propagation and	
_	scatte		28
	2.1	Maxwell's equations	28
	2.2	The electrodynamic potentials in vacuum	29
		2.2.1 The vector and scalar potentials	29
		2.2.2 The retarded potentials	30
	2.3	The electrodynamic potentials in polarized media	31
	2,4	Hertz vectors (polarization potentials)	31
	2.5	Propagation of an electromagnetic wave in vacuum	33
	2.6	Scattering of X-rays by an electron	33
	2.7	Polarizability of matter for X-rays	36
		2.7.1 Elementary dispersion theory	36
		2.7.2 Fourier expansion of the polarizability	37
		2.7.3 Index of refraction	41
		2.7.4 Absorption	41
	2.8	Ewald's dispersion theory	43
	2.9	Propagation equation of an electromagnetic wave in	
		materials in Laue's dynamical theory	49
		101 Lavala hacia accumption	40

x CONTENTS

		2.9.2	Propagation equation	49
	2.10	Specula	ar reflection—Fresnel relations	50
3	Geom	etrical th	neory of X-ray diffraction	57
	3.1	Classic	al scattering by an electron—polarization	57
	3.2	Amplit	ude diffracted by a periodic electron distribution	58
	3.3	Intensit	y diffracted by a small crystal	61
	3.4	Reflecti	ivity	63
	3.5	Integrat	ted intensity	65
	3.6	Mosaic	crystals	67
4	Eleme	ntary dy	namical theory	68
	4.1	Limitat	tions of the geometrical theory	68
	4.2	Introdu	ction of the dispersion surface	69
	4.3		y with the band theory of solids	71
	4.4	Propaga	ation equation	73
	4.5	Fundan	nental equations of dynamical theory	74
	4.6	Amplit	ude ratio of the refracted and reflected waves	79
	4.7	Solutio	ns of plane-wave dynamical theory	80
		4.7.1	Boundary conditions	80
		4.7.2	Departure from Bragg's angle of the incident wave	81
		4.7.3	Transmission and reflection geometries	82
		4.7.4	Deviation parameter	85
		4.7.5	Determination of the tiepoints	85
		4.7.6	Effective absorption coefficient	87
	4.8	The dif	fracted waves in the transmission geometry	88
		4.8.1	Double refraction	88
		4.8.2	Boundary conditions for the amplitudes at	
			the entrance surface	88
		4.8.3	Intensities of the reflected and refracted waves	89
		4.8.4	Anomalous absorption	90
		4.8.5	Boundary conditions at the exit surface	92
		4.8.6	Reflectivity	94
		4.8.7	Pendellösung	96
		4.8.8	Integrated intensity	98
	4.9	The dif	fracted waves in the reflection geometry	99
		4.9.1	Tiepoints	979
		4.9.2	Thick crystals—total reflection	99
		4.9.3	Thin crystals	102
	4.10	Influen	ce of the asymmetry on the position and width of the	
			g curve and of the angular distribution of the	
			ed beam	104
	4.11	Compa	rison with geometrical theory	107
	4.12	_	ical diffraction by quasicrystals	110

CONTENTS xi

II	Adva	inced dy	ynamical theory	113			
5	Prope	erties of	wavefields	115			
	5.1						
	5.2	Fundamental equations of the dynamical theory					
	5.3	The dispersion equation in the two-beam case					
	5.4	Poynting vector of the wavefields					
	5.5		nination of the tiepoints—geometrical interpretation				
			deviation parameter	123			
		5.5.1	Boundary condition for the wavevectors	123			
		5.5.2	Deviation from Bragg's angle of the middle of the				
			reflection domain	125			
		5.5,3	Coordinates of the tiepoint	126			
		5.5.4	Deviation parameter, Pendellösung distance and				
			Darwin width in the transmission geometry	128			
		5.5.5	Deviation parameter, extinction distance, penetration				
			depth and Darwin width in the reflection geometry	132			
		5.5.6	Index of refraction for dynamical diffraction	135			
	5.6	The de	viation parameter in absorbing crystals	136			
	5.7	Ampli	tude ratio of the refracted and reflected waves	136			
		5.7.1	Phase of the amplitude ratio in the transmission				
			geometry	137			
		5.7.2	Phase of the amplitude ratio in the reflection				
			geometry	138			
	5.8	Anoma	alous absorption	139			
	·#1	5.8.1	Effective absorption coefficient in the transmission				
			geometry	139			
		5.8.2	Absorption coefficient in the propagation direction	141			
		5.8.3	Discussion of anomalous absorption—properties				
			of the standing wavefield	142			
		5.8.4	Anomalous absorption in the reflection				
			geometry—penetration depth	147			
	5.9	Disper	rsion surface when the Bragg angle is close to $\pi/2$	148			
ı		5.9.1	Deviation from Bragg's angle and Darwin width	148			
		5.9.2	Dispersion surface	15]			
		5.9.3	Penetration depth	153			
		5.9.4	Applications	154			
_	- 1						
6			plane waves in the transmission geometry	155			
	6.1		lary conditions for the amplitudes at the entrance				
		surfac		155			
	6.2	Amnli	tudes of the refracted and reflected waves	157			

xii CONTENTS

	6.3	Bound	ary conditions for the wavevectors at the exit surface	161
		6.3.1	Condition for the existence of two outgoing waves	161
		6.3.2	Wavevectors of the outgoing waves (Laue-Laue	
			geometry)	163
		6.3.3	Laue-Bragg geometry	165
	6.4	Rockin	g curves of the reflected and refracted beams	166
		6.4.1	Boundary conditions for the amplitudes at the	
			exit surface	166
		6.4.2	Reflectivity	167
		6.4.3	Properties of the rocking curves	168
	6.5	Integra	ted intensity	170
7	Inten	sities of	plane waves in the reflection geometry	173
	7.1		absorbing crystals	173
		7.1.1	Reflectivity	173
		7.1.2	Shape of the rocking curves	175
	7.2	Standin	ng waves	181
	7.3	Thin c	-	185
		7.3.1	Boundary conditions for the amplitudes	185
		7.3.2	Reflectivity	186
8	Dvna	mical di	ffraction in highly asymmetric coplanar and	
_	-		geometries	189
	8.1	Introdu	-	189
	8.2		ction at grazing incidence or grazing emergence	189
	8.3		ion from Bragg's incidence of the middle of the	
	0.0		on domain	192
		8.3.1	Grazing incidence and Bragg geometry	192
		8.3.2	Grazing incidence, Laue geometry	195
		8.3.3	Grazing emergence	196
	8,4		on of the Darwin width for a grazing incidence	197
	8.5		on of the width of the diffracted beam for a grazing	17,
	0.5	emerge		200
	8.6	_	on of the dispersion surface	201
	8.7		on with the traditional dynamical theory	206
	8.8		arly and Bragg-reflected intensities	207
	0.0	8.8.1	Boundary conditions for the amplitudes at the	207
		0.0.1	entrance surface	207
		อยา		207
		8.8.2	Specularly and Bragg-reflected intensities for a	
			grazing incidence and the Bragg geometry	210
		001	(semi-infinite crystal)	210
		8.8.3	Specularly and Bragg-reflected intensities for a	213
	8 9	C	grazing incidence and the Laue geometry	213
	ĸУ	L trazin	v incluence altitachon libon-codianat geometivi	Z 1 1

CONTENTS xiii

		8.9.1	Introduction	213
		8.9.2	Three-dimensional representation of the dispersion	
			surface	216
		8.9.3	Tiepoints excited by the incident wave	216
		8.9.4	Equation of the dispersion surface	223
		8.9.5	Amplitudes of the waves	224
9	n-bea	m dynar	nical diffraction	225
	9.1	Introdu	ction	225
	9.2	The ge	neral three-beam case	226
		9.2.1	Renninger-scans	226
		9.2.2	Fundamental equations of the dynamical theory	227
		9.2.3	Solution in the general case	233
		9.2.4	Energy flow	235
	9.3	The the	ree-beam coplanar case	236
	9.4	Determ	nination of phases using <i>n</i> -beam diffraction	236
	9.5	The su	per-Borrmann effect	242
		9.5.1	Experimental evidence	242
		9.5.2	Solution of the 111, 111 case	243
		9.5.3	Anomalous absorption coefficient	246
10	Spher	ical-wav	e dynamical theory: I. Kato's theory	249
	10.1		ion of the dynamical theory to any kind of incident	
		wave		249
	10.2	Fourier	expansion of a spherical wave in plane waves	250
		10.2.1	Principle of Kato's spherical-wave theory	250
		10.2.2	The incident wave is a scalar wave	250
		10.2.3	The incident wave is a vector wave	253
	10.3		integration in the transmission geometry	255
		10.3.1	The geometrical conditions	255
		10.3.2	Stationary phase method	257
		10.3.3	Amplitude distribution on the exit surface—reflected	
			wave	257
		10.3.4	Amplitude distribution on the exit surface—refracted	
			wave	260
	10.4	Intensi	ty distribution on the exit surface	260
	10.5		ntensity (Pendellösung) fringes	263
	10.6	Integra	tion by the stationary phase method	264
	10.7		ted intensity	268
	10.8		ce of polarization	269
	10.9		geometry	269
			dix: Geometrical interpretation of $\eta/\sqrt{S(\gamma_h) + \eta^2}$	
			ransmission geometry	274

xiv CONTENTS

11	Spher	ical-wave dynamical theory: II. Takagi's theory	277		
	$\hat{11.1}$	Introduction	277		
	11.2	Generalized fundamental equations	279		
		11.2.1 Modulated waves	279		
		11.2.2 Takagi's equations	280		
		11.2.3 Boundary conditions for the amplitudes at the			
		entrance surface	283		
	11.3	Reduction of Takagi's equations in the plane-wave case	285		
	11.4	Absorbing crystals	286		
	11.5	Analytical resolution of Takagi's equations for perfect			
		crystals	286		
	11.6	Analytical solution for a point source using the method			
		of integral equations	287		
		11.6.1 Transmission geometry	288		
		11.6.2 Reflection geometry	290		
	11.7	Analytical resolution of Takagi's equations using the			
		Riemann function	291		
		11.7.1 Hyperbolic nature of Takagi's equations	291		
		11.7.2 General expression of the reflected and refracted			
		waves	292		
		11.7.3 Determination of the Riemann function	293		
		11.7.4 General solution of Takagi's equations	295		
	11.8	Analytical solution for an incident spherical wave using the			
		method of Riemann functions	295		
		11.8.1 The incident wave is a point source located on the			
		~entrance surface	295		
		11.8.2 The incident wave is a point source located away			
		from the entrance surface	296		
		11.8.3 Conservation of energy	298		
		Appendix: Hyperbolic partial differential equations	299		
		Characteristics	299		
		Adjoint differential expression	301		
12	Ray ti	racing in perfect crystals	304		
	12.1	Ray tracing	304		
	12.2	•			
	12.3	Wavepackets made of the superposition of separate plane			
		waves	306		
	12.4	Wavepackets made of a continuous distribution of	.		
		wavevectors	308		
	12.5	Group velocity and Poynting vector	310		
	12.6	Angular amplification	311		
	12.7	Intensity distribution along the base of the Borrmann			
		triangle (transmission geometry)	317		

CONTENTS XV

	12.8	Geomet	trical properties of wavefield trajectories within	
		the Bon	rmann triangle	323
		12.8.1	Wavefields propagating along the median, AE,	
			of the Borrmann triangle	323
		12.8.2	Properties of the trajectories of the two wavefields	
			excited by a plane wave	323
	12.9	Experin	nental proof of double refraction	324
	12.10	Experin	nental observation of the separation of the	
		wavefie	ld paths	326
		12.10.1	Experimental setup	326
		12.10.2	Focalization of the various wavelengths	328
		12.10.3	Separation of wavefield paths in the transmission case	329
		12.10.4	Plane-wave Pendellösung	330
		12.10.5	Application to the measurement of the index of	
			refraction	332
	12.11	Fresnel	diffraction near the Bragg incidence	335
	12,12	Ray trac	cing in finite crystals	339
		12.12.1	Introduction	339
		12.12.2	Bragg-Laue geometry-pseudo-plane waves	341
		12.12.3	Bragg-Bragg geometry; multiple reflections of	
			a pseudo-plane wave in thin crystals	343
		12.12.4	Laue-Bragg geometryBorrmann-Lehmann fringes	344
	12.13	Cohere	nce of extended, non-strictly monochromatic sources	349
Ш	Exten	sion of	the dynamical theory to	
			d crystals	353
13	Ray tr	acing in	slightly deformed crystals	355
	13.1	X-ray p	ropagation in deformed materials	355
		13.1.1	The different degrees of deformation	355
		13.1.2	Principle of ray theories for weak deformations	356
	13.2	Effectiv	e misorientation	357
		13.2.1	Local reciprocal lattice vector	357
		13.2.2	Effective misorientation in direct space	359
		13.2.3	Effective misorientation in reciprocal space	360
		13.2.4	Strain gradient	362
	13.3	Polariza	ability of a deformed crystal	363
	13.4	The Eik	tonal approximation	363
		13.4.1	Justification of the concept of local dispersion surface	363
		13.4.2	Fermat's principle	365
	13.5	Ray traj	jectories	368
		13.5.1	Local dispersion surface	368
		13.5.2	Local wavevectors	369
		13.5.3	Differential equation of the wavefield trajectories	369

xvi CONTENTS

	13.6	The cas	se of a constant strain gradient	375			
		13.6.1	Equation of the ray trajectory with respect to the				
			lattice planes	375			
		13.6.2	Ray trajectories in the transmission geometry	377			
		13.6.3	Pure bending	379			
		13.6.4	Temperature gradient	382			
		13,6.5	Ray trajectories in the reflection geometry	382			
	13.7	Diffrac	ted intensities-plane-wave case	386			
		13.7.1	Zero absorption	386			
		13.7.2	Absorbing crystals (transmission geometry)	389			
		13.7.3	Expression of the diffracted intensities for a constant				
			strain gradient	389			
		13,7.4	Discussion of the intensity distribution for a constant				
			strain gradient	391			
	13.8	Diffrac	ted intensities—spherical-wave case	395			
		13.8.1	Pendellösung in slightly deformed crystals	395			
		13.8.2	Phase of the refracted wave in a deformed crystal	397			
		13.8.3	Expression of the phase in terms of the coordinates				
			in direct space	401			
		13.8.4	Shape of the Pendellösung fringes in a deformed				
			crystal	403			
14	Propa	gation o	f X-rays in highly deformed crystals	406			
17	14.1	Introdu		406			
	14.2	Takagi's equations in a deformed crystal					
	14.3	Resolution of Takagi's equations in the deformed crystal case					
	14.5	14.3.1	Small deformations, limit of the validity of the	409			
		17,5.1	Eikonal approximation	409			
		14.3.2	Analytical resolution of Takagi's equations	410			
		14.3.3	Numerical integration	415			
		14.3.4	Applications	420			
	14.4		ncept applied to highly distorted crystals	421			
	14.4	14.4.1	Generalization of the notion of wavefields,	721			
		17.7.1	interbranch scattering	421			
		14.4.2	Example: X-ray propagation in a crystal with a	421			
		14.4,2	concentration gradient (Keitel et al. 1999)	423			
	14.5	Statistic	cal dynamical theories	426			
	14.5	14.5.1	Introduction	426			
		14.5.2	Principle of Kato's statistical dynamical theory	427			
		14.5.3	Experimental tests of the statistical dynamical theory	431			
			dix: Resolution of Takagi's equations in the case of				
			ant strain gradient using Laplace transforms	400			
		(Kataga	awa and Kato 1974)	432			

CONTENTS	xvii

IV	Appli	cations		435
15	X-ray	optics		437
	15.1	X-ray so	ources	437
		15.1.1	X-ray tubes	437
		15.1.2	Synchrotron radiation	439
	15.2	Flat mor	nochromators	445
		15.2.1	Introduction	445
		15.2.2	Monochromator crystals	446
		15.2.3	Multiple-reflection monochromators	449
	15.3	Applica	tions of multiple-crystal arrangements to beam	
		conditio	oning	456
		15.3.1	Suppression of tails	456
		15.3.2	Wavelength scanner	459
		15.3.3	Production of beams with a very narrow angular spread	459
		15.3.4		461
		15.3.5	Production of polarized radiation	467
	15.4	Focusin	g optics	473
		15.4.1	Introduction	473
		15.4.2	Mirrors	474
		15,4.3	Multilayers	476
		15.4.4	Curved crystals	477
		15.4.5	Fresnet zone plates	478
		15.4.6	Bragg-Fresnel lenses	480
		15.4.7	Refractive lenses	481
		15,4.8	X-ray wave-guides	482
	15.5	X-гау іг	nterferometers	483
		15.5.1	Principle	483
		15.5.2	Applications	486
	15.6	Imaging	g with X-rays	489
		15.6.1	Introduction	489
		15.6.2	Phase contrast imaging	489
16	Locat	ion of a	toms at surfaces and interfaces using X-ray	
	standi	ng wave	S	495
	16.1	Princip	le	495
	16.2	Theory	ek: #	498
		16.2.1	Fluorescence yield	498
		16.2.2	Influence of thermal vibrations	502
	16.3	Bulk cr	ystals	502
		16.3.1	Extinction effect	502
		16.3.2	Determination of the polarity of heteropolar crystals	503
	16.4	Solution	n to the surface registration problem	504

xviii CONTENTS

16.5	Thin file	ms and buried interfaces	507
	16.5.1	Simple model	507
	16.5.2	Calculation of the standing pattern in an overlayer with	
		the dynamical theory	509
16.6	Standin	g waves in deformed crystals	510
16.7	Standin	g waves due to specular reflection	511
17 X-ray	diffracti	on topography	513
17.1	Introduc	ction	513
17.2	Single-o	crystal reflection topography (Berg-Barrett	
	techniq	ue)	514
	17.2.1	Principle	514
	17.2.2	Image formation	516
	17.2.3	Penetration depth	518
	17.2.4	Stereographic views	519
	17.2.5	Applications	520
17.3	Single-	crystal transmission topography	520
	17.3.1	Early history	520
	17.3.2	Principle of section topographs	523
	17.3.3	Projection topographs	528
	17.3.4	Dislocation images	538
	17.3.5	Images of planar defects	551
	17.3.6	Applications	560
17.4	Double	- or multiple-crystal topography	564
	17.4.1	Principle of double-crystal topography	564
	17.4.2	Plane-wave topography	56 6
	17.4.3	Synchrotron double-crystal topography	568
	17.4.4	Mapping of distortions and of lattice parameter	
		variations	568
	17.4.5	Equal-strain or equal-lattice parameter contours	569
	17.4.6	Double-crystal setting for high spatial resolution	
		topography	569
Appendic	es		
Appendix 1	Usefu	ıl formulae	5 71
Appendix 2	2 The e	early days of dynamical theory	576
References	,		583
List of sym	bols		637
Index			641