Higher Order Programming: Maps and Filters

Concepts of Programming Languages Lecture 7

Outline

- » Introduce the notion of higher-order functions as a way to write cleaner, more general code
- » Examine two common HOFs: map and filter

Practice Problem

```
\{x: int, y: int\} \vdash x + if x = y then x else y: int
```

Give a derivation of the above typing judgment

Solution

Higher-Order Functions

In OCaml, functions are first-class values

In OCaml, functions are first-class values

They can be:

In OCaml, functions are **first-class values**They can be:

1. returned by another function

In OCaml, functions are **first-class values**They can be:

- 1. returned by another function
- 2. given names with <u>let-definitions</u>

In OCaml, functions are **first-class values**They can be:

- 1. returned by another function
- 2. given names with <u>let-definitions</u>
- 3. passed as arguments to another function

In OCaml, functions are **first-class values**They can be:

- 1. returned by another function
- 2. given names with <u>let-definitions</u>
- 3. passed as arguments to another function
- Note. Types are not first-class values

Aside: Robin Popplestone

"He started a PhD at Manchester University before moving to Leeds University. His project was to develop a program for automated theorem proving, but he got caught up in using the university computer to design a boat. He built the boat and set sail for the University of Edinburgh, where he had been offered a research position. A storm hit while crossing the North Sea, and the boat sank. A widely believed story about Popplestone was that he never completed his PhD in mathematics because he lost his thesis manuscript in the boat, although Popplestone refused to corroborate this."

Functions as Return Values

```
# let f x y = x + y;;
val f : int -> int -> int = <fun>
# f 2;;
- : int -> int = <fun>
```

This isn't that interesting in OCaml...

Functions in OCaml are **Curried**, so multi-argument functions return functions already

Functions as Return Values

```
# let f x y = x + y;;
val f : int -> int -> int) = <fun>
# f 2;;
- : int -> int = <fun>
```

This isn't that interesting in OCaml...

Functions in OCaml are **Curried**, so multi-argument functions return functions already

Functions as Named Values

```
let f x y = x + y
    is shorthand for...
let f = fun x -> fun y -> x + y
```

This also isn't that interesting in OCaml...

When we let-define any function, we're giving a anonymous function value a name

Functions as Named Values

```
let f \times y = x + y

is shorthand for...

let f = fun \times -> fun y -> x + y
```

This also isn't that interesting in OCaml...

When we **let-define** any function, we're giving a anonymous function value a name

Functions as Parameters

```
# let apply f x = f x;;
val apply : ('a -> 'b) -> 'a -> 'b = <fun>
# apply add_five 10;;
- : int = 15
```

This is very interesting in OCaml...

This allows us to create new functions which are parametrized by old ones

Functions as Parameters

```
# let apply f x = f x;;
val apply : ('a -> 'b) -> 'a -> 'b = <fun>
# apply add_five 10;;
- : int = 15
```

This is very interesting in OCaml...

This allows us to create new functions which are parametrized by old ones

Higher-Order Functions Elsewhere

fun
$$f o \frac{f(x)}{dx}$$
 e.g. $x^2 \mapsto 2x$

We might think of the type of an derivative as

$$(\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R}$$

because it takes one function and produces a new function

Aside: What does "Higher-Order" Mean?

"Like things and functions are different, so are functions whose arguments are functions radically different from functions whose arguments must be things. I call the latter functions of first order, the former functions of second order."

Gottlob Frege

First-Order Function Types

```
int -> string
    t -> t
    () -> bool
bool * bool -> bool
```

Second-Order Function Types

Third-Order Functions

And so on...

```
1st: int
2nd: int -> int
3rd: (int -> int) -> int
4th: ((int -> int) -> int) -> int
5th: (((int -> int) -> int) -> int) -> int
6th: ((((int -> int) -> int) -> int) -> int
7th: (((((int -> int) -> int) -> int) -> int) -> int
8th: (((((int -> int) -> int) -> int) -> int) -> int) -> int)
:
```

The **higher-order** part comes from the fact that we can do this ad infinitum

(In practice, we rarely use higher than third-order or fourth-order functions)

The Abstraction Principle

One of the three virtues of a great programmer is *laziness*

One of the three virtues of a great programmer is laziness

The abstraction principle helps use be lazy

One of the three virtues of a great programmer is laziness

The abstraction principle helps use be lazy

When we write general programs, we avoid rewriting programs we've (pretty much) written before

Remember that **polymorphism** allows us to write general functions by being *agnostic* about types

It doesn't matter if we're reversing an int list of string list or an int list list...

```
let rec fact n =
   match n with
   | 0 -> 1
   | n -> n * fact (n - 1)

let rec sum n =
   match n with
   | 0 -> 0
   | n -> n + sum (n - 1)
```

Some functions cannot be polymorphic

But can we still abstract the core functionality?

```
let rec fact n =
   match n with
   | 0 -> 1
   | n -> n * fact (n - 1)

let rec sum n =
   match n with
   | 0 -> 0
   | n -> n + sum (n - 1)
```

Some functions cannot be polymorphic

But can we still abstract the core functionality?

demo

(accumulate)

```
let rec accum f n start =
  let rec go n =
    match n with
    | 0 -> start
    | n -> f n (go (n - 1))
  in go n
```

```
let rec accum f n start =
  let rec go n =
    match n with
    | 0 -> start
    | n -> f n (go (n - 1))
  in go n
```

Simple Example

```
let rec accum f n start =
  let rec go n =
    match n with
    | 0 -> start
    | n -> f n (go (n - 1))
  in go n
```

In order to generalize this function, we need to be able to take the operation as a parameter

Simple Example

```
let rec accum f n start =
  let rec go n =
    match n with
    | 0 -> start
    | n -> f n (go (n - 1))
  in go n
```

In order to generalize this function, we need to be able to take the operation as a parameter

Now we have a single function which we can reuse elsewhere

Another Example

```
let rec insert (x : 'a) (l : 'a list) : 'a list =
  match l with
  | [] -> [x]
  | y :: ys -> if x <= y then x :: y :: ys else y :: insert x ys

let rec sort (l : 'a list) : 'a list =
  match l with
  | [] -> []
  | x :: xs -> insert x (sort xs)
```

Sorting is polymorphic

But what if we want to sort in reverse order, or only on a part of the data?

demo (sorting)

The abstraction principle comes from MacLennan's Functional Programming: Theory and Practice

The abstraction principle comes from MacLennan's Functional Programming: Theory and Practice

» Abstract out core functionality

The abstraction principle comes from MacLennan's Functional Programming: Theory and Practice

- » Abstract out core functionality
- » Use higher-order functions to <u>parametrize</u> by functionality specific to the problem

The abstraction principle comes from MacLennan's Functional Programming: Theory and Practice

- » Abstract out core functionality
- » Use higher-order functions to parametrize by functionality specific to the problem
- » (Try to understand the <u>algebra</u> of programming)

Understanding Check

Implement the function

val negatives : int list -> int list

so that **negatives l** is the list negative numbers appearing in **l.** Also implement the function

val gets : 'a -> ('a * 'b) list -> 'b list

so that **gets key l** is the list of values **v** such that **(key, v)** is a member of **l**

Write a single function that can be used to implement both

Map

Example

```
type user = {
  name : string ;
  id : int ;
}
let capitalize = ...
let fix_usernames (us : user list) =
  List.map (fun u -> { u with name = capitalize u.name }) us
```

map is used to apply a function to every element in a list (or other structure)

» If the list is empty there is nothing to do

- » If the list is empty there is nothing to do
- » If the list is nonempty, we apply f to its
 first element, and recurse

- » If the list is empty there is nothing to do
- » If the list is nonempty, we apply f to its
 first element, and recurse

Tail-Recursive Map

Tail-Recursive Map

```
let rec map_t f l =
  let rec go l acc =
    match l with
    | [] -> List.rev acc
    | x :: xs -> go xs (f x :: acc)
  in go l []
```

For a tail-recursive version we can build the list in reverse in acc and then reverse it at the end

Tail-Recursive Map

```
let rec map_t f l =
  let rec go l acc =
    match l with
    | [] -> List.rev acc
    | x :: xs -> go xs (f x :: acc)
  in go l []
```

For a tail-recursive version we can build the list in reverse in acc and then reverse it at the end

This may seem inefficient, but its just a constant factor slower

The text mentions two additional things about map:

The text mentions two additional things about map:

There is a function rev_map, which is tail recursive and does give the output in reverse order

The text mentions two additional things about map:

- There is a function rev_map, which is tail recursive and does give the output in reverse order
- » map is defined somewhat differently to account for side-effects

The text mentions two additional things about map:

- » There is a function rev_map, which is tail recursive and does give the output in reverse order
- » map is defined somewhat differently to account for side-effects

We won't dwell on these for now, but it may be worth reading about

demo (normalize)

Understanding Check

Implement then function

so that **pointwise_max f g l** is **l** but with **f** or **g** applied to each element, whichever gives the larger value

Filter

Example

```
type user = {
  name : string ;
  id : int ;
  num_likes : int ;
}

let popular (us : user list) (cap : int) =
  List.filter (fun u -> u.num_likes > cap) us
```

filter is used to do grab all elements in a list which *satisfy a given property*

Predicates

Definition: A Boolean predicate on 'a is
a function of type 'a -> bool

A predicate is a function which defines a property

Examples:

```
let even n = n mod 2 = 0
let even_length l = even (List.length l)
```

```
let rec filter p l =
  match l with
  | [] -> []
  | x :: xs ->
     (if p x then [x] else []) @ filter p xs
```

» If the list is empty there is nothing to do

```
let rec filter p l =
  match l with
  | [] -> []
  | x :: xs ->
    (if p x then [x] else []) @ filter p xs
```

- » If the list is empty there is nothing to do
- » If the first element satisfies our predicate we keep
 it and recurse

```
let rec filter p l =
  match l with
  | [] -> []
  | x :: xs ->
     (if p x then [x] else []) @ filter p xs
```

- » If the list is empty there is nothing to do
- » If the first element satisfies our predicate we keep
 it and recurse
- >> Otherwise, we drop it and recurse

- » If the list is empty there is nothing to do
- » If the first element satisfies our predicate we keep
 it and recurse
- >> Otherwise, we drop it and recurse

Tail-Recursive Definition of Filter

```
let filter_tail p =
  let rec go acc l =
    match l with
    | [] -> List.rev acc
    | x :: xs -> go ((if p x then [x] else []) @ acc) xs
  in go []
```

As with map, we have to reverse the output before returning it

demo (primes)

Understanding Check

```
let h p q = List.filter (fun i -> p i && q i)
```

What does the above function do?

Summary

- » Higher-order function allow for better
 abstraction because we can parameterize
 functions by other functions
- » map and filter are very common patterns which can be used to write clean and simple code