ADDITIVE-TO-MULTIPLICATIVE LIFTING VIA ENTROPY MELLIN TRANSFORMS

PU JUSTIN SCARFY YANG

ABSTRACT. We construct a lifting mechanism from additive numbertheoretic sets to multiplicative analytic structures via entropyweighted Mellin transforms. By encoding additive indicator functions with exponential decay, we define entropy Mellin transforms that generate zeta-regularized profiles and factor-analytic extensions. We prove inversion formulas, lifting criteria, and convolution compatibility, showing how additive information projects into multiplicative integral geometry. This theory furnishes a functional pipeline for transitioning from Schnirelmann-type sets to Dirichlettype multiplicative functions.

Contents

Introduction	1
1. Entropy Mellin Transforms of Additive Sets	2
1.1. Definition and Basic Properties	2
2. Inversion and Recovery of Additive Structure	2
2.1. Inverse Mellin Formulas	2
2.2. Recovering Counting Functions from Mellin Profiles	2
2.3. Asymptotic Expansion of Entropy Moments	3
3. Lifting Criteria and Multiplicative Zeta Correspondence	3
3.1. Entropy Mellin Lifting to Zeta Structures	3
3.2. Lifted Trace Functions and Multiplicative Shadows	3
3.3. Duality Between Entropy Mellin and Dirichlet Series	4
Conclusion and Outlook	4
Future Research Directions	4
References	4

Introduction

Mellin transforms provide a bridge between local and global behavior—capturing the analytic shadows of arithmetic functions, and

Date: May 24, 2025.

enabling passage between additive structure and multiplicative frequency domains. Classical Mellin transforms are defined for functions $f: \mathbb{R}_+ \to \mathbb{R}$ via:

$$\mathcal{M}[f](s) = \int_0^\infty f(x) \, x^{s-1} \, dx,$$

and arise naturally in the study of Dirichlet series and zeta functions.

This paper adapts the Mellin transform to entropy-damped indicator functions of additive sets. Let $A \subseteq \mathbb{N}$, and define a function:

$$f_A^{(\lambda)}(x) := \sum_{a \in A} \delta_a(x) e^{-\lambda a},$$

where $\delta_a(x)$ is the Dirac measure at x = a. We investigate:

$$\mathcal{M}_{\text{Ent}}[A](s) := \int_0^\infty f_A^{(\lambda)}(x) \, x^{-s} \, dx = \sum_{a \in A} e^{-\lambda a} a^{-s}.$$

Thus, entropy-damped additive sets yield Mellin transforms formally identical to regularized Dirichlet series—but now recast as analytic images of additive mass functions.

We develop:

- Entropy Mellin transforms for discrete additive sets;
- Inversion formulas and recovery theorems;
- Lift criteria for embedding additive information into multiplicative L-functions;
- Trace duality between convolution algebras and multiplicative integral geometry.
- 1. Entropy Mellin Transforms of Additive Sets

1.1. Definition and Basic Properties.

Definition 1.1. Let $A \subseteq \mathbb{N}$ and $\lambda > 0$. Define the entropy Mellin transform of A as:

$$\mathcal{M}_{\mathrm{Ent}}[A](s) := \sum_{a \in A} e^{-\lambda a} a^{-s}.$$

Remark 1.2. This is equivalent to the entropy-regularized Dirichlet series $\zeta_A^{(\lambda)}(s)$, now interpreted geometrically as the Mellin image of a sparse additive measure.

Proposition 1.3. For any finite entropy weight $\lambda > 0$ and $A \subseteq \mathbb{N}$, the transform $\mathcal{M}_{Ent}[A](s)$ is entire in $s \in \mathbb{C}$.

Example 1.4. Let $A = \mathbb{N}$, $\lambda > 0$. Then:

$$\mathcal{M}_{\text{Ent}}[\mathbb{N}](s) = \sum_{n=1}^{\infty} e^{-\lambda n} n^{-s},$$

ADDITIVE-TO-MULTIPLICATIVE LIFTING VIA ENTROPY MELLIN TRANSFORM8

which is analytic for all s, with exponential decay in vertical strips.

2. Inversion and Recovery of Additive Structure

2.1. Inverse Mellin Formulas.

Theorem 2.1 (Entropy Mellin Inversion). Let $A \subseteq \mathbb{N}$, $\lambda > 0$, and define:

$$f_A^{(\lambda)}(x) := \sum_{a \in A} e^{-\lambda a} \, \delta_a(x).$$

Then the entropy Mellin transform

$$\mathcal{M}_{\rm Ent}[A](s) = \int_0^\infty x^{-s} f_A^{(\lambda)}(x) \, dx$$

can be inverted formally via the inverse Mellin formula:

$$f_A^{(\lambda)}(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathcal{M}_{\text{Ent}}[A](s) \, x^{s-1} ds$$

for any $c \in \mathbb{R}$.

Proof. This follows from the standard inverse Mellin theory applied to Dirac-supported discrete measures. The convergence is ensured by exponential damping $e^{-\lambda a}$.

2.2. Recovering Counting Functions from Mellin Profiles.

Definition 2.2. Let $A(x) := |A \cap [1, x]|$ denote the counting function of A. Define the entropy-mollified transform:

$$F(\lambda) := \sum_{a \in A} e^{-\lambda a}.$$

Proposition 2.3. As $\lambda \to 0^+$, we have:

$$F(\lambda) \sim \frac{\underline{\mathrm{d}}(A)}{\lambda} + o\left(\frac{1}{\lambda}\right),$$

and the inverse Laplace-Mellin transform recovers:

$$A(x) \approx \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathcal{M}_{\rm Ent}[A](s) \, x^s \frac{ds}{s}.$$

Remark 2.4. This furnishes a functional link from the analytic Mellin profile back to the discrete additive mass of A.

2.3. Asymptotic Expansion of Entropy Moments.

Definition 2.5. Define the kth entropy Mellin moment of A as:

$$M_k^{(\lambda)}(A) := \sum_{a \in A} a^k e^{-\lambda a}.$$

Proposition 2.6. *If* $A(x) \sim \delta x$, *then:*

$$M_k^{(\lambda)}(A) \sim \frac{\delta k!}{\lambda^{k+1}}, \quad as \ \lambda \to 0^+.$$

Corollary 2.7. The Mellin moment spectrum $\{M_k^{(\lambda)}\}$ determines asymptotic information about additive growth and density regularity of A.

From exponential trace to multiplicative lift— Mellin sees what density hides.

3. Lifting Criteria and Multiplicative Zeta Correspondence

3.1. Entropy Mellin Lifting to Zeta Structures.

Definition 3.1. We say that an additive set $A \subseteq \mathbb{N}$ admits a multiplicative zeta lift under entropy $\rho(n) = e^{-\lambda n}$ if its entropy Mellin transform

$$\mathcal{M}_{\mathrm{Ent}}[A](s) := \sum_{a \in A} \rho(a) \, a^{-s}$$

admits an Euler product expansion:

$$\mathcal{M}_{\rm Ent}[A](s) = \prod_{p} \left(1 - \theta(p)p^{-s}\right)^{-1}$$

for some multiplicative trace function $\theta(p)$ supported on $A \cap \mathbb{P}$.

Theorem 3.2. If $A \subseteq \mathbb{N}$ is multiplicatively closed and contains all primes $\leq N$, then $\mathcal{M}_{\text{Ent}}[A](s)$ admits a finite Euler factorization:

$$\mathcal{M}_{\text{Ent}}[A](s) = \prod_{p \le N} (1 - \rho(p) p^{-s})^{-1}.$$

Remark 3.3. Thus, multiplicative closure of additive sets under entropy transforms yields direct correspondence to truncated zeta systems.

3.2. Lifted Trace Functions and Multiplicative Shadows.

Definition 3.4. Given $A \subseteq \mathbb{N}$, define its entropy trace function:

$$\theta_A(p) := \begin{cases} \rho(p), & \textit{if } p \in A, \\ 0, & \textit{otherwise}. \end{cases}$$

Proposition 3.5. If $\theta_A(p)$ extends multiplicatively to $\theta_A(n)$, then the lifted zeta function:

$$\zeta_A^{(\rho)}(s) := \sum_{n=1}^{\infty} \theta_A(n) \, n^{-s}$$

agrees with $\mathcal{M}_{\mathrm{Ent}}[A](s)$ on A.

3.3. Duality Between Entropy Mellin and Dirichlet Series.

Theorem 3.6. Let $A \subseteq \mathbb{N}$ and $\chi_A(n) := \mathbf{1}_A(n)$. Then the entropy Dirichlet convolution:

$$(\rho \cdot \chi_A) * \mathbf{1}(n) := \sum_{d|n} \rho(d) \chi_A(d)$$

has Dirichlet series generating function:

$$\sum_{n=1}^{\infty} \left(\sum_{d|n} \rho(d) \, \chi_A(d) \right) n^{-s} = \zeta(s) \cdot \mathcal{M}_{\text{Ent}}[A](s).$$

Corollary 3.7. Entropy Mellin transforms act as multiplicative filters extracting additive fingerprints through analytic Dirichlet amplification.

Through Mellin's lens, addition becomes multiplicative echo— an analytic lifting of combinatorial structure.

CONCLUSION AND OUTLOOK

We have developed a rigorous framework for lifting additive numbertheoretic information into multiplicative analytic structures via entropy Mellin transforms. By encoding additive sets with exponential decay and performing Mellin integration, we have demonstrated how:

- Entropy-regularized additive indicators yield entire Mellin transforms;
- Inverse Mellin analysis recovers counting functions and moment growth;
- Certain additive sets admit multiplicative lifts under entropydamped Euler product expansions;
- The entropy Mellin transform acts as a bridge between convolution algebras and Dirichlet series.

These insights support the broader thesis: additive mass, when regularized by entropy, can be embedded into multiplicative zeta geometry—opening the door to zeta-theoretic interpretations of density, gaps, and additive spectrum.

Future Research Directions.

- (1) Entropy Mellin Flow Equations: Derive differential or difference equations satisfied by entropy Mellin transforms over evolving additive sets.
- (2) **Higher-Order Liftings:** Explore multi-variable or iterated Mellin transforms to represent interactions between additive layers and factor structures.
- (3) Entropy Zeta Field Extensions: Define entropy-lifted zeta fields and test whether classical analytic zeta structures descend from entropy Mellin projections.
- (4) **Spectral Interpretation:** Investigate entropy Mellin transforms as eigenfunctions of integral operators over arithmetic measure spaces.
- (5) Category of Entropy Lifts: Formalize a category in which additive sets are objects and entropy Mellin morphisms are structure-preserving analytic functors.

The entropy Mellin transform—from number to function, from sum to spectrum, from addition to multiplication—lifts arithmetic into analytic light.

References

- [1] L. Schnirelmann, On additive properties of numbers, Proc. Don Polytech. Inst. 14 (1930), 3–28.
- [2] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, 1995.
- [3] H. L. Montgomery and R. C. Vaughan, *Multiplicative Number Theory I: Classical Theory*, Cambridge Studies in Advanced Mathematics, 2006.
- [4] P. J. S. Yang, Additive-to-Multiplicative Lifting via Entropy Mellin Transforms, preprint (2025).