Does It Beat the Minimal Standard?

M.E. O'Neill — 2018-03-24 17:52

Suppose that you've written (or just seen someone else announce) a brand new PRNG. Cool! It's nice to have new things. But here's the question you should ask yourself; "Is it better than a reasonable 'minimal standard'? Does it beat methods devised more than sixty years ago?"

Wisdom from the Past

Back in 1987, more than thirty years ago now, Steve Park and Keith Miller wrote the paper *Random Number Generators: Good Ones Are Hard to Find* (https://dl.acm.org/citation.cfm?id=63042), which lamented the poor quality of many of the PRNGs in use at the time and proposed a bare minimum for a "good enough" PRNG (the paper appeared in CACM early the following year). In that paper, they wrote

In retrospect it is evident that a generally satisfactory algorithm for random number generation was proposed by D. H. Lehmer 36 years ago [26]. This parametric multiplicative linear congruential algorithm has withstood the test of time. It can be implemented efficiently [27, 31, 37, 41], numerous empirical tests of the randomness of its output have been published [8, 15, 27, 28, 37], and its important theoretical properties have been analyzed [9, 14, 18, 30]. The conclusion to be drawn from all this research is now clear. Although Lehmer's algorithm has some statistical defects, if the algorithm parameters are chosen properly and if the software implementation of the algorithm is correct, the resulting generator can produce a virtually infinite sequence of numbers that will satisfy almost any statistical test of randomness. In other words, with properly chosen parameters, Lehmer's algorithm, correctly implemented, represents a good minimal standard generator against which all other random number generators can—and should—be judged.

Thirty years later, some specifics may have changed (i.e., the necessary parameters for what we might consider a reasonable LCG), but the fundamental idea—that any proponent of a new PRNG should be asked to explain how their technique is better than an appropriate "minimal standard" LCG—remains as relevant today is it was then.

If you can't show that your PRNG technique beats an idea from over sixty years ago, you haven't proven its worth.

Today's 32-bit Minimal Standard: A 96-bit Truncated LCG or MCG

The code below represents a reasonable minimal-standard MCG:

```
uint96_t state = 1;  // can be seeded to any odd number

uint32_t next()
{
    state *= 0xdc87976860b11728995deb95;
    return state >> 64;
}
```

And this version is a reasonable minimal-standard LCG:

```
uint96_t state; // can be seeded to any number

uint32_t next()
{
   const uint96_t MULTIPLIER = 0xc580cadd754f7336d2eaa27d;
   state *= MULTIPLIER;
   state += MULTIPLIER;
   // Any odd odd number will do, the multiplier is odd and
   // conveniently to hand
   return state >> 64;
}
```

What we know about these two PRNGs is that

- The code is incredibly simple (although it does presume the existence of a 96-bit (or larger) integer type).
- On 64-bit machines, the necessary multiplication is not difficult to perform. In fact, on modern x86 machines, the entire generation process can take place in less than a nanosecond.
- The generators are known to have long periods and no short cycles. The LCG has period 2⁹⁶, which is maximal, and no bad initializations

- —any initial seed is okay. The MCG provides two separate cycles of size 2⁶² and only requires that the seed be odd.
- The underlying theory ensures that the generators are uniform (each output occurs the same number of times).
- Because the output function is truncation, each output occurs a vast number of times (2⁶² and 2⁶⁴, respectively), meaning that producing one output does not significantly reduce the chance of it recurring.
- The underlying theory is very well understood. The multiplicative constants were chosen to have excellent "spectral test" (https://en.wikipedia.org/wiki/Spectral_test) values (for the MCG, normalized LLL-spectral test (http://dx.doi.org/10.1287/ijoc.9.2.206) values are M₈ = 0.70279, M₁₆ = 0.65345, M₂₄ = 0.58118 and for the LCG, M₈ = 0.73201, M₁₆ = 0.64438, M₂₄ = 0.53151, as computed by software by Karl Entacher (http://random.mat.sbg.ac.at/results/karl/spectraltest/)).
- The output passes stringent statistical tests, such as PractRand up to 32 TB and TestUo1's BigCrush test (http://simul.iro.umontreal.ca/testuo1/tuo1.html).

In fact, not only does this 96-bit PRNG pass statistical tests, it passes them *well*. Testing with PractRand, we can plot the failure point for different sized 32-bit generators as follows:

This graph shows us that we leave clear-fail territory at 78 bits for LCGs and 80 bits for MCGs. Thus a 96-bit LCG or MCG has considerable *headroom* available to allow it to pass larger statistical tests.

Extrapolating the line from this graph shows that we'll get to the clear failure point for a 96-bit MCG at 128 petabytes of data, and for the LCG at the half exabyte point. If it takes PractRand a week of testing to test 32 TB, half an exabyte will require more than three hundred years of testing to detect statistical flaws.

Today's 64-bit Minimal Standard: A 128-bit Truncated LCG or MCG

Similarly, if you want 64-bit output, a 128-bit truncated LCG or MCG represents a reasonable minimal standard. In fact, on 64-bit hardware, these generators are no more costly to compute that the 32-bit output versions given above.

```
uint128_t state; // can be seeded to any number

uint64_t next()
{
    const uint128_t MULTIPLIER = 0x2d99787926d46932a4c1f32680f70c55;
    state *= MULTIPLIER;
        // Spectral test: M8 = 0.70420, M16 = 0.65412, M24 = 0.60209
    state += MULTIPLIER;
        // Any odd odd number will do, the multiplier is odd and
        // conveniently to hand
    return state >> 64;
}
```

Essentially the same observations we made for the 32-bit generators apply here as well. Once again, we can plot the failure point for different sized 64-bit generators as follows:

This graph shows us that we leave clear-fail territory at 109 bits for LCGs and 111 bits for MCGs. Thus a 128-bit LCG or MCG has considerable *headroom* available to allow it to pass larger statistical tests.

As before, we can extrapolate the line from this graph, this time finding that we reach the clear failure point for a 128-bit MCG at 256 petabytes of data, and for the LCG at the 1 exabyte point. If it takes PractRand a week of testing to test 32 TB, an exabyte will require more than six hundred years of testing to detect statistical flaws.

Conclusion

Linear congruential generators are frequently cited as being a poor choice for random-number generation, and at small sizes that remains true, but as we have seen, at larger sizes these generators do very well in statistical tests. Forty years ago, these larger versions might have been unwieldy, but that has not been the case for a long time. Today modern 64-bit architectures have little difficulty performing 128-bit math quickly, and since 2016 (https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/), even a \$35 Raspberry Pi (https://www.raspberrypi.org/blog/raspberry-pi-3-model-bplus-sale-now-35/) has a 64-bit quad-core CPU. And older 32-bit machines can

now-35/) has a 64-bit quad-core CPU. And older 32-bit machines can perform 96-bit math acceptably fast—it's worth realizing that the longstanding drand48 generator present in all Unix systems was designed in the age of 16-bit machines and can be trivially adapted to use 32-bit data, creating drand96.

Any new PRNG with 64-bit output needs to answer the question, "How is it better than the minimal standard, a 128-bit LCG?" and likewise any PRNG with 32-bit output needs to answer the question "How is it better than the minimal standard, a 96-bit LCG?". It is not enough just to be fairly fast, because these minimal standards are fast. It is not enough to pass stringent statistical tests, because these minimal standard generators pass those same tests, and pass them *easily*.

Moreover, the graphs we have seen show that it is possible to take a scientific approach to testing PRNGs. The trend lines we have seen allow us to make good predictions about tests that that might be prohibitively expensive to run, so we see another useful tip for designers of PRNGs. Don't just provide a single data point, provide many and do some science.

Appendix

To allow others to recreate the above graphs, below are multiplicative constants for MCGs and LCGs of different sizes. The constants were found by using a random search to find constants that had good normalized LLL-spectral test results; each constant is intended to be "very good" rather than truly outstanding. Each table shows the M_8 result for the normalized LLL-spectral test.

(http://dx.doi.org/10.1287/ijoc.9.2.206) The $\rm M_{16}$ values are all above 0.625.

MCG Constants

Bits	Multiplicative Constant		Spectral Test
32		2739110765	0.716768631223
33		6416791565	0.741609517211
34		2110734621	0.730357331437
35		9409920061	0.727139444967
36		8124055821	0.726338729537
37		85397059285	0.745062524229
38		268237653253	0.742041038480
39		220322046269	0.729472249491
40		533248573853	0.741393982264
41		1159580999389	0.721303065856
42		4207420190797	0.727290948336
43		1162000279733	0.717554748268
44		14291355528493	0.721569546451
45		32316819487421	0.722852594721

Bits	Multiplicative Constant	Spectral Test
46	27424978670797	0.723975492235
47	112357400097837	0.725660187612
48	203797216008469	0.728474675519
49	14838598453045	0.736512565883
50	406663326808437	0.755377478054
51	942227593642253	0.727499556775
52	276168391955373	0.738214029774
53	7207664573232381	0.747016695380
54	1678565460045845	0.727249278946
55	15485172535814365	0.710832966834
56	65157942103163701	0.729099254104
57	41826564414174485	0.737033978607
58	265278118812494821	0.720996827858
59	435341156619262861	0.713519610623
60	222915332783142117	0.737161497144
61	2042033352170702485	0.730916689500
62	3852213006194032149	0.717693049282
63	2681400331702771381	0.730222321935
64	14647171131086947261	0.738375341778
65	23586512187791901165	0.749719574465
66	4021396209304885645	0.737035361383
67	71338817522127457661	0.749586645884
68	23537159970439144981	0.741383430613
69	574409946355343590093	0.728499816481
70	847531188765324779717	0.735818093856
71	1540150647070481776589	0.736156422148
72	3629512676251493547269	0.733279877031
73	5691505500811439494453	0.731779832097
74	2687589216551525493141	0.717594710954
75	5944024556493776365117	0.731218718355
76	2540004110552927093773	0.741476230780
77	9614823434306722085205	0.716421804008

Bits	Multiplicative Constant	Spectral Test
78	256445958763511920394925	0.733008689483
79	601712692362582751632037	0.744911691987
80	39606201209357049487589	0.725258169835
81	1290131957331746079373301	0.734219557372
82	3977675389778782791388165	0.756010134150
83	7621526099150505215659221	0.725543053961
84	9877239282961482572937501	0.725928715061
85	25236437150407555247393029	0.749180805625
86	8171031101133229061033037	0.740169374705
87	49362540671389698004118317	0.724803286548
88	2577223908231812491115693	0.719764670518
89	249522469266726746228387597	0.749826167287
90	839446671699896991292676421	0.727750604637
91	958856983424445520621212381	0.720868271564
92	936151086994606743394269365	0.717081973076
93	4398551187470736665765410061	0.737375655009
94	16575717516719574569518905037	0.733588588969
95	16924451041812820016938051413	0.738072389915
96	63684207872218969504639112949	0.722889364342
97	123612427885422382889677805949	0.720047707563
98	13564477857739332917956337261	0.723224899486
99	567192134585768783122181505413	0.727178102380
100	605302915592620321688005792373	0.745754947466
101	1940675479040113117551892359605	0.739161068408
102	3658916473478134582167183652629	0.753704464419
103	1571359329199485794141792737933	0.730697664731
104	16904445017912738760767735186589	0.742586816074
105	22485855570768166567205990626413	0.718485657687
106	74313279853458239997575461406493	0.720008226330
107	69789568092498811246130593789565	0.731015334466
108	199185148331384386512624391509277	0.753423145342
109	445995822870053631298584088971085	0.737911420945

Bits	Multiplicative Constant	Spectral Test
110	522038943738820526113376981570765	0.728651914451
111	1790166223466728928894031445659221	0.745853280704
112	2376232594419346738793516431034285	0.739509229331
113	1739365516208071203047989829164373	0.752781474861
114	13159937790046761463548017391558589	0.735305543510
115	26771634451446385007601761491488901	0.724847025658
116	14592594772439033291729959800277197	0.744686357317
117	60966792259065248069366924264146173	0.741555898957
118	68836090842512112509636367404547397	0.746365192374
119	524186352600080584049930567274522237	0.739180239317
120	610775152132035755583590899855195013	0.747582831613
121	900387334203823311229546540549529981	0.745007443886
122	2306725953348125746190075336418508061	0.727909253640
123	1800413948600614978725384679020807301	0.723551474912
124	18484242130631853726820903993747978157	0.718440060620
125	26907765095583321268647989660234740333	0.722561248710
126	25076288795215231685469951584245457885	0.724645916794
127	34218442865726806866117399643452229733	0.719956739979
128	63788880824840432877499191278319602189	0.731606096275

LCG Constants

Bits	Multiplicative Constant		Spectral Test
32		1019135901	0.726561516888
33		6527674237	0.718126733013
34		15029734005	0.723277276010
35		3660796997	0.742645750618
36		29510867981	0.719429027076
37		63514268605	0.732551422652
38		116624537293	0.724558743348
39		194195883829	0.722415400434
40		568512975829	0.730711283118
41		1322742409629	0.738030287624

Bits	Multiplicative Constant		Spectral Test
42		882788757	0.728710926727
43	1391	190336909	0.729854488924
44	9272	727027237	0.722758310108
45	12790	945375773	0.737588630205
46	15105	438078773	0.739295363228
47	50521	1972618661	0.723112105229
48	249419	361368573	0.730241902102
49	404273	3197363917	0.750413967945
50	178519	384041629	0.731476180651
51	435569	983484149	0.734296368387
52	672969	485740877	0.748370625927
53	1997786	961644461	0.721800591403
54	7946058	339844821	0.741940429724
55	34210420	404670109	0.735305419562
56	49682230	424721469	0.751246366335
57	41552818	007412365	0.732767196482
58	208768124	490119261	0.720192561204
59	534186703	036545445	0.732258727961
60	718198937	956463965	0.717132171609
61	1492761048	249620805	0.732951920801
62	285762664	057093061	0.720297424345
63	5562408657	945804781	0.740322612872
64	9199940308	585234877	0.740159647448
65	11160153871	882754749	0.722374537852
66	30609332369	975655877	0.750132565315
67	102504574710	574106733	0.727072404636
68	289008808635	447097333	0.737066005448
69	200965074862	812859469	0.727446643227
70	995216606425		0.742508065267
71	1383446250119		0.735902660153
72			0.745059476563
73	755621007724	1937721413	0.723731561436

Bits	Multiplicative Constant	Spectral Test
74	1403601537669505748437	0.735159325664
75	34430510360273607538717	0.739570300200
76	56021341046004321357677	0.732060732087
77	57428549995224081070613	0.737418286180
78	161279981175413397505341	0.736420906775
79	601009572732792860513077	0.744752347985
80	812978456606438465717861	0.725653623399
81	2230578935970333198265389	0.726202750322
82	3110954275176992599611333	0.722803877503
83	2549771676202439997119837	0.728988412935
84	17241119348271108561932573	0.733198806677
85	26457731553295723861284917	0.751942767791
86	59090791729463201494191589	0.726268118857
87	15271881663998384886817965	0.734997793995
88	70622416032282250170082701	0.730360551193
89	426541151666756081629040421	0.732673387845
90	1033056376707427530835730733	0.730196493664
91	396024176885822028546435213	0.730113412997
92	2388182321528562871077577165	0.737154295148
93	8010225565907072943071535853	0.728882371264
94	13261206629595072908252835605	0.725329755925
95	16902422804113592611251823813	0.750861377225
96	61124247442928732736190063229	0.732014535166
97	27911782745385710563574645949	0.734864728131
98	29938634752950390286186539269	0.723675443983
99	26229225708957686851411456901	0.735866461121
100	819029723418697416441104865757	0.716956721057
101	2322146411595516589823065344981	0.741946609263
102	1784183314298914792221437953997	0.730507073217
103	3235104345222420208314737169685	0.726129037214
104	67188141926644620722638870253	0.747754151762
105	2436249846286644479688629522261	0.723418570653

Bits	Multiplicative Constant	Spectral Test
106	1825670733282477966908844273549	0.760448328874
107	3246539704836717185167544760429	0.732216405411
108	303587630294941123502336685825389	0.719120482824
109	11392648997474423235502837719821	0.751921546570
110	964268383221670159557101452712557	0.734010450204
111	639338642199625092864608394898789	0.735970283015
112	1906368178963804336466096107548453	0.747352401943
113	6749730758631022595149452958693405	0.730041084931
114	16707654375351138070845852572447229	0.723933957671
115	17207620364045872019394706534426421	0.740743821760
116	15623495417764251607984624356818501	0.731135297999
117	131745201739913730912678565034201349	0.737765053219
118	34201110710269651177692545734465877	0.726921739220
119	144754161049240217053622458007212997	0.719557456180
120	1139027868931473050531506703519921533	0.723535881344
121	2612106425891462620739196525511584853	0.734994863425
122	2009517146465439999957517982454009829	0.744269096369
123	8342579080939882558302521411171977885	0.745363344384
124	17774964191369474761588846250681198813	0.726741230435
125	18418224551009769296825399045980769997	0.724759980253
126	56967995961931505441914624497778363077	0.735443492446
127	92155423410782672437200603327585209317	0.742100869722
128	199967246047888932297834045878657099405	0.723283410960

Contents © 2018 M.E. O'Neill (mailto:oneill@pcg-random.org) - Powered by Nikola (https://getnikola.com)