Contents

1	Exploration Techniques		1
	1.1	Undirected Exploration	1
	1.2	Counter-based exploration and OFU	1
	1.3	Value Difference and Recency-based exploration	2
	1.4	Intrinsic Motivation	2
	1.5	Thompson Sampling	2
Bi	bliog	raphy	3

Chapter 1

Exploration Techniques

1.1 Undirected Exploration

Description, citing epsilon-greedy policies, Softmax policies and Boltzmann policies for MABs and RL

Algorithm:

• Soft Q-learning [42]

1.2 Counter-based exploration and OFU

Description.

Algorithms:

- UCB1
- HOO algorithm from X-Armed Bandits [22]
- GPUCB [91]
- PixelCNN algorithm from Count-based exploration with neural density models [75]. This paper builds upon Unifying Count-Based Exploration and Intrinsic Motivation [14].

1.3 Value Difference and Recency-based exploration

Brief description, citing:

- Value-Difference based Exploration: AdaptiveControl between epsilon-Greedy and Softmax [99]
- Efficient Exploration In Reinforcement Learning [98] refers to recency-based exploration.

1.4 Intrinsic Motivation

Description, including: Unifying Count-Based Exploration and Intrinsic Motivation [14], talks about the connection between intrinsic motivation and counterbased exploration

Algorithms:

- Vime: Variational information maximizing exploration [45]
- Diversity-Inducing Policy Gradient [63], similarly to us, uses an exploration bonus based on diversity between distributions

1.5 Thompson Sampling

To conclude with: Why is Posterior Sampling Better than Optimism for Reinforcement Learning? [73]

Bibliography

- [1] Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved algorithms for linear stochastic bandits. In *Advances in Neural Information Processing Systems* (2011), pp. 2312–2320.
- [2] AGRAWAL, R. The continuum-armed bandit problem. SIAM Journal on Control and Optimization 33, 6 (1995), 1926–1951.
- [3] AGRAWAL, R. Sample mean based index policies by o (log n) regret for the multi-armed bandit problem. Advances in Applied Probability 27, 4 (1995), 1054–1078.
- [4] Amari, S.-I. Natural gradient works efficiently in learning. *Neural computation* 10, 2 (1998), 251–276.
- [5] AMARI, S.-I., AND DOUGLAS, S. C. Why natural gradient? In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181) (1998), vol. 2, IEEE, pp. 1213–1216.
- [6] Antos, A., Szepesvári, C., and Munos, R. Fitted q-iteration in continuous action-space mdps. In *Advances in neural information processing systems* (2008), pp. 9–16.
- [7] Atan, O., Tekin, C., and Schaar, M. Global multi-armed bandits with hölder continuity. In *Artificial Intelligence and Statistics* (2015), pp. 28–36.
- [8] Auer, P. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research 3, Nov (2002), 397–422.
- [9] AUER, P., CESA-BIANCHI, N., AND FISCHER, P. Finite-time analysis of the multiarmed bandit problem. *Machine learning* 47, 2-3 (2002), 235–256.

- [10] AUER, P., ORTNER, R., AND SZEPESVÁRI, C. Improved rates for the stochastic continuum-armed bandit problem. In *International Conference on Computational Learning Theory* (2007), Springer, pp. 454–468.
- [11] BACH, F. R., AND BLEI, D. M., Eds. Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (2015), vol. 37 of JMLR Workshop and Conference Proceedings, JMLR.org.
- [12] BAIRD III, L. C. Advantage updating. Tech. rep., WRIGHT LAB WRIGHT-PATTERSON AFB OH, 1993.
- [13] BAXTER, J., AND BARTLETT, P. L. Infinite-horizon policy-gradient estimation. *Journal of Artificial Intelligence Research* 15 (2001), 319–350.
- [14] Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. Unifying count-based exploration and intrinsic motivation. In *Advances in Neural Information Processing Systems* (2016), pp. 1471–1479.
- [15] BENGIO, S., WALLACH, H. M., LAROCHELLE, H., GRAUMAN, K., CESA-BIANCHI, N., AND GARNETT, R., Eds. Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada (2018).
- [16] BOUCHERON, S., LUGOSI, G., AND MASSART, P. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.
- [17] Brafman, R. I., and Tennenholtz, M. R-max-a general polynomial time algorithm for near-optimal reinforcement learning. *Journal of Machine Learning Research* 3, Oct (2002), 213–231.
- [18] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. Openai gym, 2016.
- [19] Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. *Foundations and Trends*® *in Machine Learning* 5, 1 (2012), 1–122.
- [20] Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. Bandits with heavy tail. *IEEE Transactions on Information Theory* 59, 11 (2013), 7711–7717.

- [21] Bubeck, S., and Munos, R. Open loop optimistic planning. In *COLT* 2010 The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010 (2010), pp. 477–489.
- [22] Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. X-armed bandits. *Journal of Machine Learning Research* 12, May (2011), 1655–1695.
- [23] Bubeck, S., Stoltz, G., Szepesvári, C., and Munos, R. Online optimization in x-armed bandits. In *Advances in Neural Information Processing Systems* (2009), pp. 201–208.
- [24] Cesa-Bianchi, N., and Lugosi, G. Combinatorial bandits. *Journal of Computer and System Sciences* 78, 5 (2012), 1404–1422.
- [25] Chapelle, O., and Li, L. An empirical evaluation of thompson sampling. In Advances in neural information processing systems (2011), pp. 2249–2257.
- [26] CHEN, W., WANG, Y., YUAN, Y., AND WANG, Q. Combinatorial multi-armed bandit and its extension to probabilistically triggered arms. The Journal of Machine Learning Research 17, 1 (2016), 1746–1778.
- [27] CHENTANEZ, N., BARTO, A. G., AND SINGH, S. P. Intrinsically motivated reinforcement learning. In *Advances in neural information processing systems* (2005), pp. 1281–1288.
- [28] Choshen, L., Fox, L., and Loewenstein, Y. Dora the explorer: Directed outreaching reinforcement action-selection. arXiv preprint arXiv:1804.04012 (2018).
- [29] Chowdhury, S. R., and Gopalan, A. Online learning in kernelized markov decision processes. *CoRR abs/1805.08052* (2018).
- [30] Cochran, W. G. Sampling techniques. John Wiley & Sons, 2007.
- [31] CORTES, C., MANSOUR, Y., AND MOHRI, M. Learning bounds for importance weighting. In *Advances in Neural Information Processing Systems 23*, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 442–450.
- [32] Dann, C., and Brunskill, E. Sample complexity of episodic fixed-horizon reinforcement learning. In *Advances in Neural Information Processing Systems* (2015), pp. 2818–2826.

- [33] Dann, C., Lattimore, T., and Brunskill, E. Unifying pac and regret: Uniform pac bounds for episodic reinforcement learning. In *Advances in Neural Information Processing Systems* (2017), pp. 5713–5723.
- [34] Degris, T., White, M., and Sutton, R. S. Off-policy actor-critic. arXiv preprint arXiv:1205.4839 (2012).
- [35] Deisenroth, M. P., Neumann, G., Peters, J., et al. A survey on policy search for robotics. *Foundations and Trends® in Robotics 2*, 1–2 (2013), 1–142.
- [36] DORATO, P., ABDALLAH, C. T., CERONE, V., AND JACOBSON, D. H. Linear-quadratic control: an introduction. Prentice Hall Englewood Cliffs, NJ, 1995.
- [37] Dy, J. G., and Krause, A., Eds. Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (2018), vol. 80 of JMLR Workshop and Conference Proceedings, JMLR.org.
- [38] ESPEHOLT, L., SOYER, H., MUNOS, R., SIMONYAN, K., MNIH, V., WARD, T., DORON, Y., FIROIU, V., HARLEY, T., DUNNING, I., LEGG, S., AND KAVUKCUOGLU, K. IMPALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018* (2018), pp. 1406–1415.
- [39] GIL, M., ALAJAJI, F., AND LINDER, T. Rényi divergence measures for commonly used univariate continuous distributions. *Information Sciences* 249 (2013), 124–131.
- [40] GLYNN, P. W. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM 33, 10 (1990), 75–84.
- [41] Grondman, I., Busoniu, L., Lopes, G. A., and Babuska, R. A survey of actor-critic reinforcement learning: Standard and natural policy gradients. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)* 42, 6 (2012), 1291–1307.
- [42] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Reinforcement learning with deep energy-based policies. In *Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017* (2017), pp. 1352–1361.

- [43] HAARNOJA, T., ZHOU, A., ABBEEL, P., AND LEVINE, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018* (2018), pp. 1856–1865.
- [44] Hershey, J. R., and Olsen, P. A. Approximating the kullback leibler divergence between gaussian mixture models. In *Acoustics, Speech and Signal Processing*, 2007. ICASSP 2007. IEEE International Conference on (2007), vol. 4, IEEE, pp. IV–317.
- [45] HOUTHOOFT, R., CHEN, X., DUAN, Y., SCHULMAN, J., DE TURCK, F., AND ABBEEL, P. Vime: Variational information maximizing exploration. In Advances in Neural Information Processing Systems (2016), pp. 1109–1117.
- [46] IONIDES, E. L. Truncated importance sampling. *Journal of Computational and Graphical Statistics* 17, 2 (2008), 295–311.
- [47] Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research* 11, Apr (2010), 1563–1600.
- [48] Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is q-learning provably efficient? In *Advances in Neural Information Processing Systems* (2018), pp. 4868–4878.
- [49] Kalai, A. T., and Mohri, M., Eds. COLT 2010 The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010 (2010), Omnipress.
- [50] Kallus, N. Instrument-armed bandits. In Algorithmic Learning Theory (2018), pp. 529–546.
- [51] Kaufmann, E., Korda, N., and Munos, R. Thompson sampling: An asymptotically optimal finite-time analysis. In *International Conference on Algorithmic Learning Theory* (2012), Springer, pp. 199–213.
- [52] Kearns, M., and Singh, S. Near-optimal reinforcement learning in polynomial time. *Machine learning* 49, 2-3 (2002), 209–232.
- [53] KLEINBERG, R., SLIVKINS, A., AND UPFAL, E. Multi-armed bandits in metric spaces. In *Proceedings of the fortieth annual ACM symposium on Theory of computing* (2008), ACM, pp. 681–690.

- [54] KLEINBERG, R., SLIVKINS, A., AND UPFAL, E. Bandits and experts in metric spaces. arXiv preprint arXiv:1312.1277 (2013).
- [55] KLEINBERG, R. D. Nearly tight bounds for the continuum-armed bandit problem. In *Advances in Neural Information Processing Systems* (2005), pp. 697–704.
- [56] KUPCSIK, A. G., DEISENROTH, M. P., PETERS, J., AND NEUMANN, G. Data-efficient generalization of robot skills with contextual policy search. In Twenty-Seventh AAAI Conference on Artificial Intelligence (2013).
- [57] Lai, T. L., and Robbins, H. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics 6, 1 (1985), 4–22.
- [58] LAKSHMANAN, K., ORTNER, R., AND RYABKO, D. Improved regret bounds for undiscounted continuous reinforcement learning. In *Proceedings* of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (2015), pp. 524-532.
- [59] Lange, S., Gabel, T., and Riedmiller, M. Batch reinforcement learning. In *Reinforcement learning*. Springer, 2012, pp. 45–73.
- [60] Lattimore, T., and Hutter, M. Near-optimal pac bounds for discounted mdps. *Theoretical Computer Science* 558 (2014), 125–143.
- [61] LATTIMORE, T., AND SZEPESVÁRI, C. Bandit Algorithms. Cambridge University Press (preprint), 2019.
- [62] Magureanu, S., Combes, R., and Proutiere, A. Lipschitz bandits: Regret lower bounds and optimal algorithms. arXiv preprint arXiv:1405.4758 (2014).
- [63] MASOOD, M. A., AND DOSHI-VELEZ, F. Diversity-inducing policy gradient: Using mmd to find a set of policies that are diverse in terms of state-visitation.
- [64] MCCLUSKEY, L., WILLIAMS, B. C., SILVA, J. R., AND BONET, B., Eds. Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012 (2012), AAAI.
- [65] Medina, A. M., and Yang, S. No-regret algorithms for heavy-tailed linear bandits. In *Proceedings of The 33rd International Conference on*

- Machine Learning (New York, New York, USA, 20–22 Jun 2016), M. F. Balcan and K. Q. Weinberger, Eds., vol. 48 of Proceedings of Machine Learning Research, PMLR, pp. 1642–1650.
- [66] MERSEREAU, A. J., RUSMEVICHIENTONG, P., AND TSITSIKLIS, J. N. A structured multiarmed bandit problem and the greedy policy. *IEEE Transactions on Automatic Control* 54, 12 (2009), 2787–2802.
- [67] METELLI, A. M., PAPINI, M., FACCIO, F., AND RESTELLI, M. Policy optimization via importance sampling. In *Advances in Neural Information Processing Systems* (2018), pp. 5447–5459.
- [68] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. In *Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016* (2016), pp. 1928–1937.
- [69] MORÉ, J. J., AND THUENTE, D. J. Line search algorithms with guaranteed sufficient decrease. ACM Transactions on Mathematical Software (TOMS) 20, 3 (1994), 286–307.
- [70] OK, J., PROUTIÈRE, A., AND TRANOS, D. Exploration in structured reinforcement learning. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada. (2018), pp. 8888–8896.
- [71] ORTNER, R., AND RYABKO, D. Online regret bounds for undiscounted continuous reinforcement learning. In *Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 2* (2012), Curran Associates Inc., pp. 1763–1771.
- [72] OSBAND, I., RUSSO, D., AND ROY, B. V. (more) efficient reinforcement learning via posterior sampling. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. (2013), pp. 3003–3011.
- [73] OSBAND, I., AND VAN ROY, B. Why is posterior sampling better than optimism for reinforcement learning? In *Proceedings of the 34th*

- International Conference on Machine Learning-Volume 70 (2017), JMLR. org, pp. 2701–2710.
- [74] OSBAND, I., VAN ROY, B., AND WEN, Z. Generalization and exploration via randomized value functions. In *International Conference on Machine Learning* (2016), pp. 2377–2386.
- [75] OSTROVSKI, G., BELLEMARE, M. G., VAN DEN OORD, A., AND MUNOS, R. Count-based exploration with neural density models. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (2017), JMLR. org, pp. 2721–2730.
- [76] OWEN, A., AND ZHOU, Y. Safe and Effective Importance Sampling. Journal of the American Statistical Association (Mar. 2000), 135–143.
- [77] OWEN, A. B. Monte Carlo theory, methods and examples. 2013.
- [78] OWEN, A. B. Monte Carlo theory, methods and examples. 2013.
- [79] Pandey, S., Chakrabarti, D., and Agarwal, D. Multi-armed bandit problems with dependent arms. In *Proceedings of the 24th international conference on Machine learning* (2007), ACM, pp. 721–728.
- [80] Peters, J., and Schaal, S. Reinforcement learning of motor skills with policy gradients. *Neural networks* 21, 4 (2008), 682–697.
- [81] PRECUP, D., AND TEH, Y. W., Eds. Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (2017), vol. 70 of Proceedings of Machine Learning Research, PMLR.
- [82] Puterman, M. L. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
- [83] RÉNYI, A. On measures of entropy and information. Tech. rep., Hungarian Academy of Sciences Budapest Hungary, 1961.
- [84] Robbins, H. Some aspects of the sequential design of experiments. In *Herbert Robbins Selected Papers*. Springer, 1985, pp. 169–177.
- [85] Rummery, G. A., and Niranjan, M. On-line Q-learning using connectionist systems, vol. 37. University of Cambridge, Department of Engineering Cambridge, England, 1994.

- [86] Saritaç, A. Ö., and Tekin, C. Combinatorial multi-armed bandit problem with probabilistically triggered arms: A case with bounded regret. In Signal and Information Processing (GlobalSIP), 2017 IEEE Global Conference on (2017), IEEE, pp. 111–115.
- [87] SCHULMAN, J., LEVINE, S., ABBEEL, P., JORDAN, M., AND MORITZ, P. Trust region policy optimization. In *International Conference on Machine Learning* (2015), pp. 1889–1897.
- [88] Sehnke, F., Osendorfer, C., Rückstiess, T., Graves, A., Peters, J., and Schmidhuber, J. Policy gradients with parameter-based exploration for control. In *International Conference on Artificial Neural Networks* (2008), Springer, pp. 387–396.
- [89] SEHNKE, F., OSENDORFER, C., RÜCKSTIESS, T., GRAVES, A., PETERS, J., AND SCHMIDHUBER, J. Parameter-exploring policy gradients. Neural Networks 23, 4 (2010), 551–559.
- [90] SILVER, D., LEVER, G., HEESS, N., DEGRIS, T., WIERSTRA, D., AND RIEDMILLER, M. Deterministic policy gradient algorithms. In *ICML* (2014).
- [91] Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaussian process optimization in the bandit setting: No regret and experimental design. In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (Haifa, Israel, June 2010), J. Fürnkranz and T. Joachims, Eds., Omnipress, pp. 1015–1022.
- [92] Strehl, A. L., Li, L., and Littman, M. L. Reinforcement learning in finite mdps: Pac analysis. *Journal of Machine Learning Research* 10, Nov (2009), 2413–2444.
- [93] Sutton, R. S. Learning to predict by the methods of temporal differences. *Machine learning* 3, 1 (1988), 9–44.
- [94] Sutton, R. S. Dyna, an integrated architecture for learning, planning, and reacting. *ACM SIGART Bulletin 2*, 4 (1991), 160–163.
- [95] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An introduction. MIT press, 2018.

- [96] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. Policy gradient methods for reinforcement learning with function approximation. In *Advances in neural information processing systems* (2000), pp. 1057–1063.
- [97] THOMPSON, W. R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika 25*, 3/4 (1933), 285–294.
- [98] Thrun, S. B. Efficient exploration in reinforcement learning.
- [99] Tokic, M., and Palm, G. Value-difference based exploration: adaptive control between epsilon-greedy and softmax. In *Annual Conference on Artificial Intelligence* (2011), Springer, pp. 335–346.
- [100] VAKILI, S., LIU, K., AND ZHAO, Q. Deterministic sequencing of exploration and exploitation for multi-armed bandit problems. arXiv preprint arXiv:1106.6104 (2011).
- [101] VEACH, E., AND GUIBAS, L. J. Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH '95 (1995), ACM Press, pp. 419–428.
- [102] Wang, Z., Zhou, R., and Shen, C. Regional multi-armed bandits. In *International Conference on Artificial Intelligence and Statistics* (2018), pp. 510–518.
- [103] Watkins, C. J. C. H. Learning from delayed rewards. PhD thesis, King's College, Cambridge, 1989.
- [104] Weinstein, A., and Littman, M. L. Bandit-based planning and learning in continuous-action markov decision processes. In *Proceedings* of the Twenty-Second International Conference on Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012 (2012).
- [105] WILLIAMS, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning* 8, 3-4 (1992), 229–256.
- [106] Yu, X., Shao, H., Lyu, M. R., and King, I. Pure exploration of multi-armed bandits with heavy-tailed payoffs.

[107] Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. Analysis and improvement of policy gradient estimation. In *Advances in Neural Information Processing Systems* (2011), pp. 262–270.