

SINAIS E SISTEMAS LINEARES

DEPARTAMENTO DE ELETROELETRÔNICA

Prof. Dr. Walterley A. Moura

contato: walterley@gmail.com

Representação de Sinais Periódicos de tempo discreto em **Séries de Fourier de Tempo Discreto**

3.7 Representação de sinais periódicos de tempo discreto em série de Fourier

 A representação em série de Fourier de um sinal periódico em tempo discreto é uma série finita, ao contrário da representação em série infinita exigida para sinais periódicos em tempo contínuo.

 Como consequência, não existe questões matemáticas de convergência.

3.7.1 Combinações lineares de exponenciais harmonicamente relacionadas.

• Um sinal em tempo discreto x[n] é periódico com período N se:

$$x[n] = x[n+N] \tag{1}$$

- O período fundamenta é o menor inteiro positivo N para qual a equação (1) é válida.
- A frequência fundamental é dada por:

$$\omega_0 = \frac{2\pi}{N}$$

- Propriedade que devemos considerar diz respeito a periodicidade do sinal exponencial complexo de tempo discreto.
- Para que sinal $e^{j\omega_0 n}$ seja periódico com período N > 0, devemos ter

$$e^{j\omega_0(n+N)} = e^{j\omega_0 n} \underbrace{e^{j\omega_0 N}}_{=1} = e^{j\omega_0 n}$$

• Para satisfazer a condição: $e^{j\omega_0N}=1=e^{j2\pi}=e^{j2\pi m}$

 $\omega_0 N \longrightarrow$ deve ser múltiplo inteiro de 2π

Assim, temos:
$$\omega_0 N = 2\pi m \longrightarrow \frac{\omega_0}{2\pi} = \frac{m}{N}$$

• O conjunto de todos os sinais exponenciais complexos relacionados harmonicamente de tempo discreto é dado por:

$$\phi_k[n] = e^{jk\omega_0 n}, \quad \omega_0 = \frac{2\pi}{N}, \quad k = 0, \pm 1, \pm 2,...$$
(2)

 Todos esses sinais tem frequências fundamentais que são múltiplas de:

$$\omega_0 = \frac{2\pi}{N}$$

• Existem apenas N sinais distintos no conjunto dado pela equação (2). Especificamente:

$$\phi_0[n] = \phi_N[n], \quad \phi_1[n] = \phi_{N+1}[n],$$

Em geral, temos:

$$\phi_k[n] = \phi_{k+rN}[n] \tag{3}$$

• Isso é uma consequência do fato de que as exponenciais complexas de tempo discreto, que diferem em frequência por um múltiplo de 2π são idênticas.

$$\phi_0[n] = \phi_N[n], \quad \phi_1[n] = \phi_{N+1}[n] \longrightarrow \phi_k[n] = \phi_{k+rN}[n]$$

Prova

$$\phi_{k}[n] = e^{jk\omega_{0}n}$$

$$\phi_{k+rN}[n] = e^{j(k+rN)\omega_{0}n}$$

$$= e^{jk\omega_{0}n}e^{jrN\frac{2\pi}{N}n}$$

$$= e^{jk\omega_{0}n}e^{jr2\pi n}$$

$$= e^{jk\omega_{0}n}\left(e^{j2\pi}\right)^{rn}$$

$$= e^{jk\omega_{0}n}$$

$$= e^{jk\omega_{0}n}$$

$$= e^{jk\omega_{0}n}$$

$$= e^{jk\omega_{0}n}$$

$$= e^{jk\omega_{0}n}$$

Exemplo:

$$\omega_0 = \pi/8 \implies \frac{\omega_0}{2\pi} = \frac{n}{N} \implies N = \frac{2\pi n}{\omega_0} = \frac{2\pi n}{\pi/8} = 16n$$

N = 16 (menor inteiro positivo)

• A representação de sequências periódicas em termos de combinações lineares da equação (2):

$$x[n] = \sum_{k} a_k \phi_k[n] = \sum_{k} a_k e^{jk\omega_0 n} = \sum_{k} a_k e^{jk\frac{2\pi}{N}n}$$

$$\tag{4}$$

Conclusão:

- i) $\phi_k(n)$ são distintas apenas para uma faixa de N valores sucessivos de k;
- ii) o somatório na equação (4) só precisa incluir termos nesser intervalo, começando em qualquer valor de k;
- iii) indicaremos esse fato no somatório da seguinte maneira (K → ⟨N⟩, ou seja:

k poderia assumir os valores:

$$k = 0, 1, ..., N - 1$$
 ou

$$k = 1, 2, 3, ..., N$$
 ou

k = 2, 3, 4, ..., N + 1, e assim por diante

$$x[n] = \sum_{k=\langle N \rangle} a_k \phi_k[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n}$$
 (5)

 $x[n] \rightarrow$ Série de Fourier de tempo discreto $a_k \rightarrow$ coeficientes da série de Fourier $\langle N \rangle = r, r+1, r+2, ..., r+N-1$

3.7.2 Representação de um sinal periódico de tempo discreto em série de Fourier.

• Se calcularmos a equação (5) em N valores sucessivos de n correspondentes x[n], obteremos:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n}$$

$$x[0] = \sum_{k=\langle N \rangle} a_k,$$

$$x[1] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}},$$
...
$$x[N-1] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}(N-1)}$$

- A equação (6) representa um conjunto de equações lineares para os N coeficientes desconhecidos a_k , onde k varia sobre um conjunto de N inteiros sucessivos
- O conjunto de equações (6) é linearmente independente.

i) Considere a função

$$A[k] = \sum_{n=\langle N \rangle} e^{jk\frac{2\pi}{N}n}$$

calcularemos o valor dessa expressão fazendo:

$$k = pN, \quad p = 0, 1, 2, ...$$

$$A[pN] = \sum_{n=0}^{N-1} e^{jpN \frac{2\pi}{N}n}$$

$$= \sum_{n=0}^{N-1} (e^{j2\pi})^{pn}$$

$$= \sum_{n=0}^{N-1} 1 = N, \quad k = 0, \pm N, \pm 2N, ...$$
13

Para os outros valores de k não múltiplo inteiro de N, obtemos:

$$A[k] = \sum_{n=0}^{N-1} e^{jk\frac{2\pi}{N}n} = 1 + e^{jk\frac{2\pi}{N}} + e^{jk\frac{4\pi}{N}} + \dots + e^{jk\frac{2(N-1)\pi}{N}}$$

Soma de uma PG de razão q: $S = a_1 \frac{1 - q^N}{1 - q}$

$$A[k] = 1 \frac{1 - \left(e^{jk\frac{2\pi}{N}}\right)^{N}}{1 - e^{jk\frac{2\pi}{N}}} = \frac{1 - e^{j2\pi k}}{1 - e^{jk\frac{2\pi}{N}}} = \frac{1 - 1}{1 - e^{j\frac{2\pi}{N}}} = 0$$

Assim, podemos resumir em:

$$\sum_{n=\langle N\rangle} e^{jk\frac{2\pi}{N}n} = \begin{cases} N, & k=0, \pm N, \pm 2N, \dots \\ 0, & \text{outros valores de } k \end{cases}$$
 (7)

A equação (7) estabelece que a soma dos valores de uma exponencial complexa periódica é zero sobre um período.

ii) Cálculo dos coeficientes a_k

A equação (5) é dada por

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n}$$

i) Multiplicar ambos os membros da equação (4) por:

$$\sum_{r=\langle N\rangle}e^{-jr\frac{2\pi}{N}n}$$

ii) Obtemos a expressão

$$\sum_{n=\langle N\rangle} x[n] e^{-jr\frac{2\pi}{N}n} = \sum_{n=\langle N\rangle} \sum_{k=\langle N\rangle} a_k e^{jk\frac{2\pi}{N}n} e^{-jr\frac{2\pi}{N}n}$$

iii) Trocar a ordem do somatório do lado esquerdo

$$\sum_{n=\langle N \rangle} x [n] e^{-jr \frac{2\pi}{N}n} = \sum_{k=\langle N \rangle} a_k \underbrace{\left(\sum_{n=\langle N \rangle} e^{j(k-r) \frac{2\pi}{N}n}\right)}_{=A[k]}$$

$$A[k] = \begin{cases} N, & \text{se } k = r \text{ ou multiplo inteiro de } N \Rightarrow a_k = a_r \\ 0, & \text{se } k \neq r \end{cases}$$

16

Assim, obtemos as expressão:

$$\sum_{n=\langle N\rangle} x[n]e^{-jr\frac{2\pi}{N}n} = Na_r$$

Coeficientes da série de Fourier para tempo discreto;

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n} \tag{8}$$

· Série de Fourier em tempo discreto

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n} \tag{9}$$

• Levando em conta a equação (5), observamos que, se tomarmos k na faixa de 0 até N-1, teremos:

$$x[n] = a_0 \phi_0[n] + a_1 \phi_1[n] + \dots + a_{N-1} \phi_{N-1}[n] \qquad (10)$$

• De modo semelhante, se tomarmos k na faixa de 1 até N, teremos:

$$x[n] = a_1 \phi_1[n] + a_2 \phi_2[n] + ... + a_N \phi_N[n]$$
 (11)

- Da equação (3), obtemos que: $\phi_0[n] = \phi_1[n]$
- Comparando equação (10) com a equação (11): $a_0=a_N$
- De modo análogo, temos: $a_k = a_{k+N}$

Exemplo: Considere a onda quadrada periódica em tempo discreto,

$$x[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & \text{outros valores} \end{cases}$$
$$x[n+N] = x[n]$$

Os coeficientes da série de Fourier de tempo discreto é dado por:

$$a_{k} = \frac{1}{N} \sum_{n=-N_{1}}^{N_{1}} x[n] e^{-jk \frac{2\pi}{N}n}$$

Fazendo e m=n+N₁, temos:

$$a_k = \frac{1}{N} \sum_{m=0}^{2N_1} e^{-jk\frac{2\pi}{N}(m-N_1)}$$

$$a_{k} = \frac{1}{N} e^{jk\frac{2\pi}{N}N_{1}} \sum_{m=0}^{2N_{1}} e^{-jk\frac{2\pi}{N}m}$$

Soma de uma PG de razão q: $S = a_1 \frac{1 - q^m}{1 - q}$, m é o número de termos da PG

$$\sum_{m=0}^{2N_1} e^{-jk\frac{2\pi}{N}m} = 1 + e^{-jk\frac{2\pi}{N}} + e^{-jk\frac{2\pi}{N}} + \dots + e^{-jk\frac{4N_1\pi}{N}} = \frac{1 - e^{-jk\frac{2\pi(2N_1+1)}{N}}}{1 - e^{-jk\frac{2\pi}{N}}}$$

Nota:

$$1 - e^{-j\alpha} = e^{-j\frac{\alpha}{2}} \left(e^{j\frac{\alpha}{2}} - e^{-j\frac{\alpha}{2}} \right) = e^{-j\frac{\alpha}{2}} j2 \left(\frac{e^{j\frac{\alpha}{2}} - e^{-j\frac{\alpha}{2}}}{j2} \right) = e^{-j\frac{\alpha}{2}} j2 \operatorname{sen}\left(\frac{\alpha}{2}\right)$$

$$a_{k} = \frac{1}{N} e^{jk\frac{2\pi}{N}N_{1}} \frac{1 - e^{-jk\frac{2\pi(2N_{1}+1)}{N}}}{1 - e^{-jk\frac{2\pi}{N}}} = \frac{1}{N} e^{jk\frac{2\pi}{N}N_{1}} \frac{A}{B}$$

$$A = 1 - e^{-jk\frac{2\pi(2N_1+1)}{N}} = e^{-jk\frac{2\pi(2N_1+1)}{2N}} \left(e^{jk\frac{2\pi(2N_1+1)}{2N}} - e^{-jk\frac{2\pi(2N_1+1)}{2N}} \right)$$

$$= e^{-jk\frac{2\pi(2N_1+1)}{2N}} j2 \operatorname{sen} \left[\frac{2\pi k}{N} \left(N_1 + \frac{1}{2} \right) \right]$$

$$B = 1 - e^{-jk\frac{2\pi}{N}} = e^{-jk\frac{2\pi}{2N}} \left(e^{jk\frac{2\pi}{2N}} - e^{-jk\frac{2\pi}{2N}} \right) = e^{-jk\frac{2\pi}{2N}} j2 \operatorname{sen} \left(\frac{\pi k}{N} \right)$$

$$a_k = \frac{1}{N} e^{jk\frac{2\pi}{N}N_1} \frac{e^{-jk\frac{2\pi(2N_1+1)}{2N}} j2 \operatorname{sen} \left[\frac{2\pi k}{N} \left(N_1 + \frac{1}{2} \right) \right]}{e^{-jk\frac{2\pi}{2N}} j2 \operatorname{sen} \left(\frac{\pi k}{N} \right)}$$

$$a_{k} = \frac{1}{N} \frac{e^{jk\frac{2\pi}{N}N_{1}} e^{-jk\frac{2\pi(2N_{1}+1)}{2N}}}{e^{-jk\frac{2\pi}{2N}}} \frac{j2 \operatorname{sen}\left[\frac{2\pi}{N} \left(N_{1} + \frac{1}{2}\right)\right]}{j2 \operatorname{sen}\left(\frac{\pi k}{N}\right)}$$

$$\frac{e^{jk\frac{2\pi}{N}N_1}e^{-jk\frac{2\pi(2N_1+1)}{2N}}}{e^{-jk\frac{2\pi}{2N}}} = e^{jk\left(\frac{2\pi}{N}N_1 - \frac{2\pi}{N}N_1 - \frac{\pi}{N} + \frac{\pi}{N}\right)} = 1$$

$$a_{k} = \frac{1}{N} \frac{\operatorname{sen}\left[\frac{2\pi k}{N} \left(N_{1} + \frac{1}{2}\right)\right]}{\operatorname{sen}\left(\frac{\pi k}{N}\right)}, \qquad k \neq 0, \pm N, \pm 2N, \dots$$

$$a_k = \frac{2N_1 + 1}{N}, \quad k = 0, \pm N, \pm 2N, \dots$$

- ightharpoonup Para o caso particular: N=9 e $N_1=2$
- > Temos que : $2N_1 + 1 = 5$

que representa o número de pontos que assumem o valor 1 em cada período.

> Consequentemente,

$$N - (2N_1 + 1) = 9 - 5 = 4$$

representa o número de pontos iguais a 0 (zero) em cada período.

O gráfico de x[n] é representado abaixo.

$$a_{k} = \frac{1}{N} \frac{\operatorname{sen}\left[\frac{2\pi k}{N}\left(N_{1} + \frac{1}{2}\right)\right]}{\operatorname{sen}\left(\frac{\pi k}{N}\right)}, \qquad k \neq 0, \pm N, \pm 2N, \dots$$

$$a_{k} = \frac{2N_{1} + 1}{N}, \qquad k = 0, \pm N, \pm 2N, \dots$$

Cálculo dos coeficientes de Fourier, N=9 e N1=2

a ₋₄ = 0,0725	a ₄ = 0,0725	a ₁₂ = -0,1111
$a_{-3} = -0.111$	a5 = 0.0725	$a_{13} = 0.0725$
$a_{-2} = -0.0591$	$a_6 = -0.111111$	a14 = 0,0725
$a_{-1} = 0.3199$	$a_7 = -0.0591$	a ₁₅ =
$a_0 = 0.5555$	$a_8 = 0.3199$	$a_{16} = -0.0591$
$a_1 = 0.3199$	$a_9 = 0.5555$	a ₁₇ =
a ₂ =-0,0591	$a_{10} = 0.3199$	a ₁₈ =
$a_3 = -0.11111$	$a_{11} = -0.0591$	

Observe que a cada N coeficientes eles se repetem. Ou seja a cada 9, os a_k ten os mesmos valores. Assim, temos

$$a_{-4} = a_5 = a_{14} = ...$$

$$a_{-3} = a_6 = a_{15} = ...$$

$$a_{-2} = a_7 = a_{16} = ...$$

E assim por diante.

- \triangleright Com os valores de a_k , podemos escrever a série de Fourier.
- > Ao contrário do caso contínuo, em que teríamos de acrescentar mais e mais termos para obter a aproximação melhor.
- No caso discreto é possível uma aproximação exata com 9 termos consecutivos:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n} = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{9}n}$$

 \triangleright Vamos tomar **3 termos** consecutivos apenas: k = -1, 0, 1, obtemos:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{9}n}$$

$$\tilde{x}_3[n] = \sum_{k=-1}^{1} a_k e^{jk\frac{2\pi}{9}n} = a_{-1}e^{-j\frac{2\pi}{9}n} + a_0 + a_1e^{j\frac{2\pi}{9}n}$$

$$= 0,3199e^{-j\frac{2\pi}{9}n} + 0,5556 + 0,3199e^{j\frac{2\pi}{9}n}$$

$$= 0,5556 + 0,3199 \times 2\left(\frac{e^{j\frac{2\pi}{9}n} + e^{-j\frac{2\pi}{9}n}}{2}\right)$$

$$= 0,5556 + 0,3199 \times 2 \times \cos\left(\frac{2\pi}{9}n\right)$$

Vamos tomar 5 termos consecutivos apenas: k = -2, -1, 0, 1, 2 obtemos:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{9}n}$$

$$\tilde{x}_3[n] = \sum_{k=-2}^{2} a_k e^{jk\frac{2\pi}{9}n} = a_{-2}e^{-j\frac{4\pi}{9}n} + a_{-1}e^{-j\frac{2\pi}{9}n} + a_0 + a_1e^{j\frac{2\pi}{9}n} + a_2e^{j\frac{4\pi}{9}n}$$

$$= -0,0591e^{-j\frac{4\pi}{9}n} + 0,3199e^{-j\frac{2\pi}{9}n} + 0,5556 + 0,3199e^{j\frac{2\pi}{9}n} - 0,0591e^{j\frac{4\pi}{9}n}$$

$$= 0,5556 + 0,3199 \times 2\left(\frac{e^{j\frac{2\pi}{9}n} + e^{-j\frac{2\pi}{9}n}}{2}\right) - 0,0591 \times 2\left(\frac{e^{j\frac{4\pi}{9}n} + e^{-j\frac{4\pi}{9}n}}{2}\right)$$

$$= 0,5556 + 0,3199 \times 2 \times \cos\left(\frac{2\pi}{9}n\right) - 0,0591 \times 2 \times \cos\left(\frac{4\pi}{9}n\right)$$

Finalmente, **9 termos** consecutivos: k = -4, -3, -2, -1, 0, 1, 2, 3, 4 obtemos:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{9}n}$$

$$\tilde{x}_3[n] = \sum_{k=-4}^4 a_k e^{jk\frac{2\pi}{9}n} = a_{-4}e^{-j\frac{8\pi}{9}n} + a_{-3}e^{-j\frac{6\pi}{9}n} + a_{-2}e^{-j\frac{4\pi}{9}n} + a_{-1}e^{-j\frac{2\pi}{9}n} + a_0 + a_1e^{j\frac{2\pi}{9}n} + a_2e^{j\frac{4\pi}{9}n} + a_3e^{j\frac{6\pi}{9}n} + a_4e^{j\frac{8\pi}{9}n}$$

$$= 0,5556 + 0,3199 \times 2 \times \cos\left(\frac{2\pi}{9}n\right) - 0,0591 \times 2 \times \cos\left(\frac{4\pi}{9}n\right) - 0,111 \times 2 \times \cos\left(\frac{6\pi}{9}n\right) + 0,0725 \times 2 \times \cos\left(\frac{8\pi}{9}n\right)$$

31

Propriedade	Sinal periódico	Coeficientes da série de Fourier
	$x[n]$ Periódicas com período N e $y[n]$ frequência fundamental $\omega_0 = 2\pi/N$	$egin{align*} a_k & \text{Periódico com} \\ b_k & \text{período } N & & & & & & & & & & & & & & & & & &$
Linearidade	Ax[n] + By[n]	$Aa_k + Bb_k$
Deslocamento no tempo	$x[n-n_0]$	$a_k e^{-jk(2\pi/N)n_0}$
Deslocamento em frequência	$e^{iM(2\pi/N)n}x[n]$	a_k^-
Conjugação Reflexão no tempo	$x^*[n]$ $x[-n]$	a - k $a - k$ $a - k$
Mudança de escala no tempo	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{se } n \text{ \'e m\'ultiplo de } m \\ 0, & \text{se } n \text{ \~n\'ao \'e m\'ultiplo de } m \end{cases}$ $(peri\'odica\ com\ per\'odo\ mN)$	$\frac{1}{m}a_k$ (vistos como periódico) com perído mN
Convolução periódica	$\sum_{r=(N)} x[r]y[n-r]$	Na_kb_k
Multiplicação	x[n]y[n]	$\sum_{I=\langle N\rangle} a_1 b_{k-I}$
Primeira diferença	x[n] - x[n-1]	
Soma acumulada	$\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{de valor finito e periódico apenas se} \\ a_0 = 0 \end{pmatrix}$	$ \frac{(1 - e^{-jk(2\pi/N)})a_k}{\left(\frac{1}{(1 - e^{-jk(2\pi/N)})}\right)a_k} $
Simetria conjugada para sinais reais	x[n] real	$\begin{cases} a_{k} = a_{-k}^{*} \\ \Re e \left\{ a_{k} \right\} = \Re e \left\{ a_{-k} \right\} \\ \Im m \left\{ a_{k} \right\} = -\Im m \left\{ a_{-k} \right\} \\ a_{k} = a_{-k} \\ \measuredangle a_{k} = - \measuredangle a_{-k} \end{cases}$
Sinais reais e pares Sinais reais e ímpares	x[n] real e par $x[n]$ real e impar	a_k real e par a_k puramente imaginário e ímpar
Decomposição par-ímpar de sinais reais	$x_e[n] = \mathcal{E} \mathcal{V}\{x[n]\}$ [$x[n]$ real] $x_0[n] = \mathcal{O} \mathcal{O}\{x[n]\}$ [$x[n]$ real]	$\Re e\{a_i\}$ $j\Im m\{a_i\}$

Relação de Parseval para sinais periódicos

$$\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{k=\langle N \rangle} |a_k|^2$$

3.8 Relação de Parseval para sinais periódicos de tempo discreto

$$\frac{1}{N} \sum_{n=} \left| x[n] \right|^2 = \sum_{n=} \left| a_k \right|$$

