Lecture 10 - Variational Asymptotic Method

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

4 March, 2021

1

schedule

- Mar 4 Boundary Conditions (HW3 Due)
- Mar 9 Project Descriptions
- Mar 11 SwiftComp
- Mar 16 Work Day

outline

- converting to variational statements
- ritz method
- variational asymptotic method

converting to variational statements

• In general, a differential statement can be expressed as

$$L(u) + f = 0$$
 in Ω
 $B(u) + g = 0$ on Γ

- Where L is a differential operator, B can be either differential or algebraic
- Ω is the domain and Γ is the boundary

4

differential to variational

• The equivalent variational statement is

$$\Pi(u) = \int_{\Omega} \delta u [L(u) + f] d\Omega - \int_{\Gamma} \delta u [B(u) + g] d\Gamma = 0$$

 We can then perform integration by parts on L(u) to form the variational statement with

$$\delta\Pi = 0$$

example

• 2D steady-state heat transfer

6

ritz method

ritz method

- Only a small set of Euler-Lagrange equations have exact solutions
- The Ritz method is one way to find approximate (and exact) solutions
- In the Ritz method we approximate some continuously differentiable function with a linear combination of functions
- We can choose the form of these functions based on our problem, polynomials and trig functions are common

$$y_n = \sum a_k w_k$$

7

ritz method

- The general method for using the Ritz method with variational statements can be summarized as
 - 1. Select a set of trial functions
 - 2. Form a linear combination of trial functions to approximate $y \approx y_n$
 - 3. Substitute y_n into the functional, $I[y] = I[a_1, a_2, ..., a_n]$
 - 4. Obtain a system of equations by carrying out the partial derivatives $\frac{\partial I}{\partial a_n}$
 - 5. Solve this system for the unknown coefficients to find y

ritz method

- We can increase the accuracy by including more terms
- If our set contains the exact solution, the solution will be exact
- The Ritz method is a direct method solving stationary problems of functionals and an indirect method for solving Euler-Lagrange equations

9

kantarovich method

 A slightly different approach to the Ritz method is used by Kantarovich

$$I[y] = \int_{t} \int_{x} F(x, t, y) dx dt$$

- Where boundary conditions are y(x1, t)=y1(t), y(x2, t)=y2(t) and y(x, t1)=y3(x)
- Where boundary conditions are $y(x_1, t) = y_1(t), y(x_2, t) = y_2(t)$ and $y(x, t_1) = y_3(x)$
- The trial function will then have the form

$$y(x,t) = g^{P}(x) + \sum f_{j}(t)g(j)H(x)$$

This gives a functional which can be solved for filt)

10

examples

• Solve the differential equation

$$\frac{d^2u}{dx^2} + u + x = 0$$

for $0 \le x \le 1$ with u(0) = u(1) = 0

11

examples

- A 2D domain defined by $x \in [0,\pi]$ and $y \in [0,1]$ solve the following PDE

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

• Where $u(0, y) = u(\pi, y) = u(0, x) = 0$ and $u(x, 1) = \sin x$

examples

worked solutions here¹

13

variational asymptotic method

 $[\]frac{1}{\text{https://nbviewer.jupyter.org/github/ndaman/multiscale/blob/master/examples/Ritz.ipynb}$

asymptotic analysis

- Asymptotic analysis is a mathematical method to describe limiting behavior
- It is used to numerically approximate solutions
- Also used in probability theory (large-sample behavior of random variables)
- Computer science (algorithm performance)

14

example

- Compute sin 39° without using trig functions on calculator
- We know $\sin 30^\circ = 0$ and $\cos 30^\circ = \sqrt{3}/2$
- Expand $\sin \theta$ about some known θ_0 using Taylor Series

$$\sin\theta = \sin\theta_0 + (\theta - \theta_0)\cos\theta_0 - \frac{1}{2}(\theta - \theta_0)^2\sin\theta_0 + \dots$$

- With only three terms of a Taylor series, we have a very close approximation
- This only works when $\theta \theta_0$ is less than 1 in radians

o notation

- Suppose f(x) and g(x) are continuous functions with defined limits as x → x₀
- f(x) = O(g(x)) as $x \to x_0$ if $|f(x)| \le K|g(x)|$ in the neighborhood of x_0 where K is a constant. We say that f(x) is asymptotically bounded by g(x) or that f(x) is of the order of g(x)
- f(x) = o(g(x)) as x → x₀ if |f(x)| ≤ ε|g(x)| in the neighborhood of x₀ for all positive values of ε. We say that f(x) is asymptotically smaller than g(x)
- f(x) g(x) as x → x₀ if f(x) = g(x) + o(g(x)) in the neighborhood of x₀. We say that f(x) is asymptotically equal to g(x)

16

characteristic length

 If we define the maximum difference of a function between too points as

$$\bar{f} = \max |f(x_1) - f(x_2)|$$

• Then for some / the following will be true

$$\left|\frac{df}{dx}\right| \leq \frac{\bar{f}}{I}$$

 The largest / which satisifes this equation is termed the characteristic length

140 0

• For estimating higher order derivatives we us

17

variational asymptotic method

- Let us consider a functional $I[u,\epsilon]$ which depends on some elements, u, as well as some small parameter, ϵ
- For a beam, we could say that u represents the 3D displacement field, while ε is the aspect ratio of the cross section with respect to the length
- Let us call the stationary value of this functional \bar{u}
- \bar{u} will be a function of ϵ , and will approach its asymptotic limit as $\epsilon \to 0$
- This is often referred to as the zeroth order approximation

18

varational asymptotic method

- We start with a zeroth-order approximation and let $I_0[u] = I[u, 0]$ and find the stationary values
- The following cases could be encountered
 - 1. $I_0[u]$ has isolated stationary points
 - 2. $I_0[u]$ has non-isolated stationary points
 - 3. $I_0[u]$ does not have stationary points
 - 4. $I_0[u]$ is meaningless (undefined)

- If I₀ has isolated stationary points, we can use them as a first approximate for stationary points of I
- We now write $u=\bar{u}+u'$ and we can arrange terms to find $I_1[u',\epsilon]$
- lacksquare The stationary points of I_1 can then be found, this process is repeated to the desired order

20

example

· Approximate the stationary values of

$$f(u, \epsilon) = u^2 + u^3 + 2\epsilon u + \epsilon u^2 + \epsilon^2 u$$

Consider the following

$$f(x, y, \epsilon) = f_0(x) + \epsilon g(x, y)$$

• If we drop the small term, $\epsilon g(x,y)$, we find stationary lines in the *y*-direction

22

example

Approximate the stationary values of

$$f(x, y, \epsilon) = \cos(x - y) + \epsilon \left(\frac{1}{x} + y\right)$$

· Approximate the stationary values of

$$f(x, y, \epsilon) = x^2 - 2x + 4\epsilon(x - 1)y + \epsilon^2 y^2 + 2\epsilon^2 y$$

24

cases three and four

 It is not uncommon to have a problem where I₀ has no stationary points

$$f(u,\epsilon) = u + \epsilon u^2 + \sin \epsilon u$$

- The only way to approach such problems is to make a substitution
- For the above problem, if we let $v = \epsilon u$ and $g = \epsilon f$ we find

$$g(v, \epsilon) = v + v^2 + \epsilon \sin v$$

next class

- Project description
- SwiftComp