EE203 - Electrical Circuits Laboratory

Experiment - 7 Simulation RC and RL Circuits

Objectives

- 1. Understand behavior of storage devices.
- 2. Investigate RC and RL circuit response to switching voltage sources.

Background

Resistors are *dissipative* components that convert electrical energy into heat. Capacitors and inductors are *reactive* components that store energy to give it back later. As a result of this storage function, voltage and current on these components appear as time derivative or time integral of each other. The following section summarizes the physical principles that establish the link between the natural behavior of capacitors and inductors and the mathematical analysis of **RC** and **RL** circuits.

Exponential Function

The irrational number e = 2.718281828459... is not just an answer to a mathematical puzzle. In fact, the number e and the related exponential function e^x are dictated by the mother nature as a mathematical representation for common behavior of the storage devices. In case of electrical circuits, a capacitor stores electric charge that increases proportionally with the voltage across the capacitor:

$$v_{c}(t) = \frac{Q(t)}{C}$$
 Q = stored charge in Coulombs (coul)
C = capacitance in Farads (F)

Accumulated capacitor charge is simply given by the current (Ampere = coul/s) through the capacitor integrated over time.

$$v_{\rm C}(t) = \frac{1}{\rm C} \left({\rm Q}(0) + \int_{t=0}^{t} i_{\rm C}(t') dt' \right) = v_{\rm C}(0) + \frac{1}{\rm C} \int_{t=0}^{t} i_{\rm C}(t') dt' \qquad \qquad \stackrel{i_{\rm C}}{\Rightarrow} \frac{{\rm C}}{+ v_{\rm C} - {\rm C}}$$

Consequently, capacitor current $i_{\mathbf{C}}$ is given by time derivative of $v_{\mathbf{C}}$:

$$i_{\rm C}(t) = {\rm C} \frac{dv_{\rm C}(t)}{dt}$$

The capacitor shown on the right is connected to a constant voltage source V_S when the switch is closed at t = 0. Behavior of the capacitor in this circuit can be described as follows.

- Rate of change of capacitor voltage $dv_{\rm C}/dt$ depends on the current $i_{\rm C}$.
- Difference between V_S and v_C determines $i_R = i_C$. Amount of current decreases as v_C gets closer to V_S .

This behavior results in the following first order differential equation.

$$i_{\rm C}(t) = \frac{{\sf V_S} - v_{\rm C}(t)}{{\sf R}} = {\sf C} \frac{dv_{\rm C}(t)}{dt}$$
, or ${\sf V_S} - v_{\rm C}(t) = {\sf RC} \frac{dv_{\rm C}(t)}{dt}$

There are other physical processes that present the same behavior:

Hydraulics:

A water tank with the capacity C_T is connected to a constant pressure source P_S through a thin pipe and a valve. The valve at the pressure source opens at t = 0.

- Rate of change of tank pressure $dp_{\rm C}/d{\bf t}$ is given by the flow rate $f_{\rm C}$ through the pipe.
- Difference between P_S and p_C determines the flow rate f_C depending on the pipe resistance R_{pipe} .

Thermal conduction:

A container is filled with a material that has the heat capacity $\mathbf{C}_{\mathbf{M}}$. The container is placed in a medium at constant temperature $\mathbf{T}_{\mathbf{S}}$ at $\mathbf{t} = \mathbf{0}$.

- Rate of change of temperature in the container $dT_{\rm C}/dt$ is given by heat tranfer $h_{\rm C}$ through the container walls.
- Difference between T_S and T_C determines the heat tranfer h_C depending on the thermal resistance θ_T of the container.

$$h_{C} = \frac{T_{S} - T_{C}}{\theta_{T}} = C_{M} \frac{dT_{C}}{dt}$$

Radioactive decay:

A radioactive nucleus becomes a stable element releasing a photon with the decay probability of $\mathbf{p_d}$ in unit time. Radiation rate r is the number of photons released per unit time. The number of remaining radioactive nuclei is $N_{\mathbf{R}}$.

• Radiation rate $m{r}$ is proportional to remaining N_{R} at any time.

$$r = p_d N_R = -\frac{dN_R}{dt}$$

All of these physical processes result in the same form of differential equation that relates a function, $v_{\rm C}$, $p_{\rm C}$, $T_{\rm C}$, or $N_{\rm R}$ to the time derivative of the function itself multiplied by a constant. The exponential function ${\bf e}^{-{\bf t}/\tau}$ is the solution for all of these differential equations, because derivative of ${\bf e}^{\bf t}$ is given by ${\bf e}^{\bf t}$ itself:

$$\frac{d\mathbf{e^t}}{dt} = \mathbf{e^t}$$
, and following the chain rule of differentiation, $\frac{d\mathbf{e^{-t/\tau}}}{dt} = \frac{1}{\tau} \mathbf{e^{-t/\tau}}$.

The **time constant** τ determines the decay rate of the exponential functions and it is given by the components involved in the process.

RC Circuits

For a simple **RC** circuit as shown on the right, the time constant is given by $\tau = RC$. A bigger resistance or a bigger capacitance results in a longer time constant, which means it will take a longer time to charge or discharge the capacitor.

Following figure shows $v_{\rm C}(t)$ for two different time constants while $v_{\rm S}$ switches between 0 V and V_H. The capacitor voltage is given by $v_{\rm C}(t) = V_{\rm H}(1-e^{-t/\tau})$ after $v_{\rm S}$ switches from 0 V to V_H, and by $v_{\rm C}(t) = V_{\rm H}e^{-t/\tau}$ after $v_{\rm S}$ switches back to 0 V.

A generalized solution for an RC circuit driven by a switching voltage source is

$$v_{\rm C}(t) = V_{\infty} - (V_{\infty} - V_{\rm O})e^{-t/\tau}$$

where V_0 is the initial voltage on the capacitor at t=0, and V_{∞} is the final voltage expected to be seen on the capacitor at $t=\infty$ or when $t\gg \tau$. V_0 and V_{∞} can be determined easily in a typical application, knowing that the expected circuit response is a single exponential function.

If there are multiple resistors and a single capacitor in an **RC** circuit, then the time constant is given by an equivalent resistor R_{eq} . R_{eq} can be obtained by calculating the resistance seen by the capacitor when the independent sources in the circuit are disabled. In the following example, the time constant is $\tau = (R_S//R_L)C$, where "//" sign means equivalent value of the two resistors connected in parallel.

If you have any doubt about including $\mathbf{R_L}$ in the time constant calculation, then you should consider the equivalent circuit given on the right. Connecting $\mathbf{R_L}$ to ground is not any different then connecting it to a $\mathbf{0}$ \mathbf{V} source. Although $\boldsymbol{v_S}$ is the only active source in the circuit, as a matter of fact the capacitor is driven by the Thevenin equivalent of $\boldsymbol{v_S}$ and $\mathbf{0}$ \mathbf{V} voltage sources.

RL Circuits

Inductors are the other type of energy storage devices that complement function of capacitors in electrical circuits. Time-varying current through an inductor generates a time-varying magnetic field in the inductor, and in turn, this time-varying magnetic field induces a voltage across the inductor. Consequently, voltage on the inductor is proportional to the time derivative of the current:

$$v_{\perp}(t) = \perp \frac{di_{\perp}(t)}{dt}, \qquad i_{\perp}(t) = i_{\perp}(0) + \frac{1}{\perp} \int_{t=0}^{t} v_{\perp}(t') dt'$$

where, **L** is the inductance in henries (**H**). Analysis of simple **RL** circuits is similar to the analysis of **RC** circuits that require solution of first order differential equations.

The **RL** circuit response to a switching voltage source is also given by an exponential function.

For a simple **RL** circuit as shown on the right, the time constant is given by $\tau = L/R$. A smaller resistance or a bigger inductance results in a longer time constant, which means it will take a longer time for i_L to reach its steady state value.

A generalized solution for an **RL** circuit driven by a switching voltage source is

$$i_{\rm L}(t) = I_{\rm \infty} - (I_{\rm \infty} - I_{\rm O})e^{-t/\tau}$$

where I_0 is the initial current through the inductor at t=0, and I_{∞} is the final current value expected at $t=\infty$ or when $t\gg \tau$.

Similar to the **RC** circuits, the time constant is given by an equivalent resistor R_{eq} when there are multiple resistors and a single inductor in an **RL** circuit. R_{eq} can be obtained by calculating the resistance seen by the inductor when the independent sources in the circuit are disabled.

Important characteristics of capacitors and inductors are summarized in the following table.

Capacitor	Inductor
$i_{C}(t) = C \frac{dv_{C}(t)}{dt}$	$v_{L}(t) = L \frac{di_{L}(t)}{dt}$
If $v_{\mathbf{C}}(\mathbf{t})$ is constant then $i_{\mathbf{C}}(\mathbf{t})$ is zero.	If $i_L(t)$ is constant then $v_L(t)$ is zero.
$v_{\rm C}(t)$ had to be continuous, because any jump in $v_{\rm C}(t)$ would require infinite $i_{\rm C}(t)$.	$i_L(t)$ had to be continuous, because any jump in $i_L(t)$ would require infinite $v_L(t)$.
Single RC response for a switching source: $v_{\rm C}(t) = V_{\rm o} - (V_{\rm o} - V_{\rm o})e^{-t/\tau}$ $\tau = {\rm RC}$	Single RL response for a switching source: $i_L(t) = I_{\infty} - (I_{\infty} - I_{O})e^{-t/\tau}$ $\tau = L/R$
Energy stored in a capacitor: $W_{\rm C} = \frac{1}{2} {\rm C} v_{\rm C}^2$	Energy stored in an inductor: $W_{L} = \frac{1}{2} L i_{L}^2$

Preliminary Work

Note: Assume that capacitor voltage and inductor current reach their final steady state values before the next v_{in} transition, since τ is much shorter than period of v_{in} waveform in all questions given below.

1.a) Calculate the time constant $\tau = R_1C_1$ for the circuit given below and write $v_0(t)$ as a function of time after v_{in} switches between 0 V and 5 V.

- **1.b)** Draw $v_{in}(t)$ and $v_{o}(t)$ on the same plot. Calculate the output voltages at $t = \tau$ on the rising and falling v_{o} waveforms and mark these voltage levels on the plot.
- **2.** Calculate the time constant τ and the output function $v_0(t)$ after v_{in} switches between **0 V** and **5 V** in the following circuit. Find the output voltages at $t = \tau$ on the rising and falling v_0 waveforms.

3. Calculate the time constant τ and the output function $\nu_o(t)$ after ν_{in} switches between **0 V** and **5 V** in the following circuit. Find the output voltages at $t = \tau$ on the rising and falling ν_o waveforms.

$$\begin{array}{c|c} \text{OV-5V} & & & & \\ \text{OV-5V} & & & \\ \text{500 Hz} & V_{\text{in}} & & \\ \text{square} & & & \\ \text{wave} & & & \\ \end{array}$$

4.a) Calculate the time constant $\tau = L_1/(R_S + R_1)$ for the circuit given below and write $v_0(t)$ as a function of time after v_{in} switches between **0 V** and **5 V**. Note that output resistance $R_S = 50 \ \Omega$ of the signal generator should be taken into account since it is comparable to R_1 .

4.b) Draw v_{in} , i_L , and v_o on the same plot. Calculate i_L and v_o at $t = \tau$ after v_{in} switches between **5 V** and **0 V**, and mark these signal levels on the plot.

5. Calculate and plot i_L and v_O as v_{in} switches between **0 V** and **5 V** in the following circuit. Mark the i_L and v_O values at $t = \tau$ on the plot. Simulate the circuit in LTspice and verify your calculations.

Procedure

Note: Make sure that current waveforms have correct polarities in LTspice. Verify the current direction looking at the current probe that appears when the cursor moves over a component. If it is necessary to reverse the current direction, then grab the component with tool and move it over to buttons. Click on the buttons to change the component orientation until you obtain the correct polarity.

1. Build the circuit given on the right and set v_{in} source to obtain 500 Hz square wave that switches between 0 V and 5 V.

1.1 Display v_{in} and v_{o} waveforms and plot them.

1.2 Record the high and low voltage levels at v_0 .

1.3 Measure the time constant on rising and falling v_0 waveforms. Zoom into the v_0 waveform to obtain the best possible timing accuracy.

$$au_{\mathsf{rise}} = \underline{\hspace{1cm}} au_{\mathsf{fall}} = \underline{\hspace{1cm}}$$

On rising exponential: $v_o(\tau_{rise}) = V_L + (V_H - V_L)(1 - e^{-1}) = V_L + 0.632 (V_H - V_L)$

If
$$V_L = 0$$
: $v_o(\tau_{rise}) = V_H(1-e^{-1}) = 0.632 V_H$

On falling exponential: $v_o(\tau_{fall}) = V_L + (V_H - V_L)e^{-1} = V_L + 0.368(V_H - V_L)$

If
$$V_L = 0$$
: $v_O(\tau_{fall}) = V_H e^{-1} = 0.368 V_H$

As an alternative you can measure the time $T_{1/2}$ where,

$$v_{\rm O}(T_{1/2}) = V_{\rm L} + (V_{\rm H}-V_{\rm L})/2.$$

Then
$$\tau_{\text{rise}} = T_{1/2} / In(2) = 1.443 T_{1/2}$$
 and $\tau_{\text{fall}} = 1.443 T_{1/2}$.

1.4 Compare the measured values with those calculated in the preliminary work.

1.5 Apply **5 V**p-p sinusoidal waveform as v_{in} and record the peak-to-peak output voltage at the following frequencies.

v_{in} frequency	ν _ο (V p-p)
500 Hz	
5 kHz	
50 kHz	

2. Add $R_2 = 1.8 \text{ k}\Omega$ in parallel to the capacitor on the circuit used in step 1.

2.1 Record the high and low voltage levels at v_0 , and repeat the time constant measurements.

$$v_{H}$$
 = _____ v_{L} = _____ v_{fall} = _____

- **2.2** Compare the measured values with those calculated in the preliminary work.
- 3. Set up the circuit given below.

3.1 Display ν_{in} and ν_{o} waveforms and plot them. Measure initial voltage, final voltage and time constant of the ν_{o} waveform when ν_{in} = 0 V and ν_{in} = 5 V. Indicate the measured values on the plot.

3.2 Compare the measured values with those calculated in the preliminary work.

3.3 Apply **5 V**p-p sinusoidal waveform as v_{in} and record the peak-to-peak output voltage at the following frequencies.

ν _{in} frequency	ν _ο (V p-p)
500 Hz	
5 kHz	
50 kHz	

4. Set up the circuit given below. Adjust the signal source to obtain **5 kHz**, **0-5 V** square wave. The source resistance $R_s = 50\Omega$ is added to obtain a realistic model of the laboratory signal generator.

4.1 Display v_{in} and v_{o} waveforms and plot them. Measure initial voltage, final voltage and time constant of the v_{o} waveform when v_{in} = 0 V and v_{in} = 5 V. Indicate the measured values on the plot.

- **4.2** Compare the measured values with those calculated in the preliminary work.
- **4.3** Set the ν_{in} signal source to obtain **5 V**p-p sinusoidal waveform. Record the peak-to-peak ν_{o} output voltage at the following frequencies.

ν _{in} frequency	ν _ο (V p-p)
5 kHz	
50 kHz	
500 kHz	

5. Set up the circuit given below. Set the v_{in} signal source to obtain **5 kHz**, **0-5 V** square wave.

5.1 Display v_{in} and v_{o} waveforms and plot them. Measure initial voltage, final voltage and time constant of the v_{o} waveform when v_{in} = 0 V and v_{in} = 5 V. Indicate the measured values on the plot.

- **5.2** Compare the measured values with those calculated in the preliminary work.
- **5.3** Apply **5 V**p-p sinusoidal waveform as v_{in} and record the peak-to-peak output voltage at the following frequencies.

v in frequency	ν _o (V p-p)
5 kHz	
50 kHz	
500 kHz	

Questions

- Q1.a) Calculate power on C_1 as a function of time in the circuit used for procedure step 1 when v_{in} = 0 V and v_{in} = 5 V.
- **b)** Simulate the circuit (preliminary work part 1) and plot power on C_1 to verify your calculations.

Right-click on the waveform window and select **Add Traces** option. Enter an expression that multiplies output voltage with C_1 current. Make sure that C_1 current has the correct direction.

- c) What is the meaning of positive power and negative power on a capacitor?
- **Q2.** Simulate the same circuit in step 1 when v_{in} is 5 Vp-p sinusoidal source with 500 Hz, 5 kHz, and 50 kHz frequency. Compare the simulation results with the measurements in procedure step 1.5.
- **Q3.** Negative voltage peaks are observed at the output in procedure steps **3** and **5**. How is it possible to obtain negative output voltages when there is no negative voltage source in a circuit?
- **Q4.** In procedure step **5**, you observed an offset at v_0 when v_{in} = **5 V**. Calculate the final value of v_0 at the end of exponential decay after including the measured DC resistance \mathbf{R}_{LDC} of the inductor as shown on the right. Compare your calculation with the measured DC level in step **5.1**.

Q5. Based on your observations in the experiment, write the expected steady state output voltage in each of the following circuits for two extreme cases:

Case 1: v_s is a constant, DC voltage source

Case 2: v_s is a high-frequency (HF) source such as $\sin(2\pi f t)$, where $f \gg 1/\tau$.

Hint: Answer is either $v_0 = 0$ or $v_0 \approx v_s \frac{R_L}{R_S + R_L}$