Problem Statement: Mr Anil is planning to go on a budget vacation trip. He is confused with multiple choices. Develop an ML algorithm to help find the best budget trip based on the distance (kilometer) using DataScience methodology.

1.3.5

₽		distance(Km)	Budget	7
,	0	100	1800	
	1	75	1350	
	2	50	900	
	3	150	2850	
	4	175	3325	
	5	200	3700	
	6	350	6300	
	7	400	7200	
	8	500	9500	
	9	520	9360	
	10	700	12950	

	<pre>distance(Km)</pre>	77.
0	100	
1	75	
2	50	
3	150	
4	175	
5	200	
6	350	
_		
y = df	['Budget']	
У		
0	1800	
1	1350	
2	900	
3	2850	
4 5	3325	
6	3700 6300	

12950 Name: Budget, dtype: int64

7200

9500 9360

DATA VISUALIZATION

8

10

```
from matplotlib import pyplot as plt
plt.scatter(X,y,s=100,marker='*',color="red")
plt.plot(X,y,color='pink')
```

```
[<matplotlib.lines.Line2D at 0x7f73735a7a50>]
ML MODEL
     10000
from sklearn import linear model
reg=linear_model.LinearRegression()
reg.fit(X,y)
    LinearRegression()
reg.predict([[300]])
    /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not
      "X does not have valid feature names, but"
    array([5518.98000886])
reg.score(X,y)
    0.9986895622712859
m=reg.coef
m
    array([18.42225122])
b=reg.intercept
b
    -7.695356738392547
inputX=300
output Budget=m*inputX+b
output Budget
    array([5518.98000886])
import pickle
with open('BudgetTripmodel','wb') as f:
     pickle.dump(reg,f)
```

```
ytest=reg.predict(X)
ytest
```

```
array([ 1834.52976513, 1373.97348466, 913.4172042 , 2755.64232606, 3216.19860653, 3676.754887 , 6440.0925698 , 7361.20513073, 9203.4302526 , 9571.87527697, 12887.88049633])
```

plt.scatter(X,y,s=100,marker='*',color="black")
plt.plot(X,y,color='blue')

[<matplotlib.lines.Line2D at 0x7f73669a9dd0>]

plt.scatter(X,y,s=100,marker='*',color="black")
plt.plot(X,ytest,color='purple')

with open('/content/BudgetTripmodel','rb') as f:
 reg=pickle.load(f)

reg.predict([[300]])

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not "X does not have valid feature names, but" array([5518.98000886])

df=pd.read_csv('/content/ClientFile.csv')
df

	<pre>distance(Km)</pre>	7
0	500	
1	780	
2	900	
3	1100	
4	1400	
5	1700	
6	2100	
7	3300	
8	4500	
9	4600	

```
predictedprice=reg.predict(df)
predictedprice
```

```
array([ 9203.4302526 , 14361.66059383 , 16572.33074007 , 20256.7809838 , 25783.4563494 , 31310.131715 , 38679.03220247 , 60785.73366488 , 82892.43512728 , 84734.66024915])
```

```
print(type(predictedprice))
```

```
<class 'numpy.ndarray'>
```

77.	Budget	<pre>distance(Km)</pre>	
•	9203.430253	500	0
	14361.660594	780	1
	16572.330740	900	2
	20256.780984	1100	3
	25783 456349	1400	4
le.csv',index=False)	ntOutputFi	_csv('Clie	df.to
	38679.032202	2100	6
	60785.733665	3300	7
	82892.435127	4500	8
	84734.660249	4600	9