1 Begriff der Wahrscheinlichkeit

$$\begin{array}{ll} \operatorname{Rechenregeln} & \mathbb{P}(A)\geqslant 0 \\ \mathbb{P}(\Omega)=1 \\ \mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\cap B) \quad \text{vgl. Inklusion - Exklusion} \\ \mathbb{P}(B\backslash A)=\mathbb{P}(B)-\mathbb{P}(A) \\ \text{Unabhängigkeit} \quad \text{von} & \operatorname{Zwei Ereignisse} A \text{ und } B \text{ sind stochastisch unabhängig gdw.} \\ \operatorname{Ereignissen} & \mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B) \\ \mathbb{P}(A|B)=\mathbb{P}(A)\Leftrightarrow \mathbb{P}(B|A)=\mathbb{P}(B) \end{array}$$

2 Wahrscheinlichkeitsverteilung

kumulative Verteilungsfkt.	diskret	stetig			
		$F(b) = \mathbb{P}(X \leqslant b)$			
	$F(b) = \sum_{x \le b} p(x)$	$F(b) = \int_{-\infty}^{b} f(x)dx$ $f(x) = \text{Dichtefunktion}$			
	p(x) = WSK für Ereignis x	f(x) = Dichtefunktion			
	$F(\infty) = 1; p(x), f(x) \ge 0 \forall x$				
Erwartungswert	$\mu_X := \mathbb{E}(X) := \sum x p(x)$ $\mathbb{E}(Y) = E(g(X)) = \sum g(x)p(x)$	$\mu_X := \mathbb{E}(X) := \int_{-\infty}^{\infty} x f(x) dx$ $\mathbb{E}(Y) = \mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) dx$			
	$\mathbb{E}(Y) = E(g(X)) = \sum g(x)p(x)$	$\mathbb{E}(Y) = \mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$			
	$\mathbb{E}(a+bX) = a + b\mathbb{E}(X)$				
	$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$				
Varianz	$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$				
	$\mathbb{V}(a+bX) = b^2 \mathbb{V}(X)$				
Standardabweichung	$\sigma_X := \sqrt{\mathbb{V}(X)}$				
Quantil	$q_{\alpha} := q(\alpha) := \min\{x \in \mathbb{R} F(x) \geqslant \alpha\}$				
	$F(q_{\alpha}) = \alpha q_{1/2} :=$ "Median"				
diskrete Verteilungen	Verteilung $p(x)$	W_X $\mathbb{E}(X)$ $\mathbb{V}(x)$			
	Bin (n, p) $\binom{n}{x} p^x (1-p)^{n-x}$ Poi (λ) $e^{-\lambda} \frac{\lambda^x}{x!}$	$ \begin{array}{c cccc} W_X & \mathbb{E}(X) & \mathbb{V}(x) \\ \hline \{0,, n\} & np & np(1-p) \\ \hline \{0, 1,\} & \lambda & \lambda \\ \{1, 2,\} & \frac{1}{p} & \frac{1-p}{p^2} \\ \hline [a, b] & \frac{a+b}{2} & \frac{(b-a)^2}{12} \end{array} $			
	$Poi(\lambda)$ $e^{-\lambda} \frac{\lambda^{\alpha}}{r!}$	$\{0,1,\}$ λ λ			
	$Geo(p) p(1-p)^{x-1}$	$\{1, 2, \ldots\}$ $\frac{1}{p}$ $\frac{1-p}{p^2}$			
stetige Verteilungen	$\mathrm{Uni}[a,b] \qquad \frac{1}{b-a}$	[a,b] $\frac{a+b}{2} \frac{(b-a)^2}{12}$			
	$\operatorname{Exp}(\lambda) \qquad \lambda e^{-\lambda x}$	$\mathbb{R}^{\geqslant 0}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda^2}$			
	$N(\mu, \sigma^2) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)\right)$ $F_{N(\mu, \sigma^2)}(x) = \Phi\left(\frac{x - \mu}{\sigma}\right) \Phi \to T$	$\left(\frac{\mu}{\mu}\right)^2$ \mathbb{R} μ σ^2			
Normal verteilungs fkt.	$F_{N(\mu,\sigma^2)}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) \Phi \to \mathbb{T}$	abelle			
Transformation	$Y = g(X) \Rightarrow f_Y(y) = f_X\left(g^{-1}(y)\right)$	$\cdot \frac{1}{g'\Big(g^{-1}(y)\Big)}$			

3 Mehrere Zufallsvariablen und Fkt. davon

Mehrere Zufallsvari- X_i ist die *i*-te Wdh. eines Zufallsexperiments X, A_i ist das *i*-te Ereignis. ablen

i.i.d Annahme

- $A_1, ..., A_n$ sind unabhängig.
- $\mathbb{P}(A_1) = \dots = \mathbb{P}(A_n) = \mathbb{P}(A)$
- $X_1, ..., X_n$ sind unabhängig.
- alle X_i haben dieselbe Verteilung.

Fkt. von Zufallsvariablen
$$S_n = X_1 + \ldots + X_n \quad \overline{X_n} = \frac{S_n}{n}$$

$$\mathbb{E}(S_n) = n\mathbb{E}(X_i) \quad \mathbb{E}(\overline{X_n}) = \mathbb{E}(X_i)$$

$$\mathbb{V}(S_n) = n\mathbb{V}(X_i) \quad \mathbb{V}(\overline{X_n}) = \frac{1}{n}\mathbb{V}(X_i)$$

$$\sigma_{S_n} = \sqrt{n}\sigma_{X_i} \quad \sigma_{\overline{X_n}} = \frac{1}{\sqrt{n}}\sigma_{X_i}$$
 Verteilungen von S_n
$$\frac{\text{Wenn } X_i \dots \text{ verteilt ist,}}{X_i \in \{0, 1\}(\text{d.h.} \sim Ber(p))} \quad S_n \sim Bin(n, p)$$

$$X_i \sim Poi(\lambda) \quad S_n \sim Poi(n\lambda)$$

$$X_i \sim N(\mu, \sigma^2) \quad S_n \sim N(n\mu, n\sigma^2)$$
 Gesetz der grossen
$$\text{Von oben gilt:} \mathbb{E}(\overline{X_n}) = \mathbb{E}(X_i), \lim_{n \to \infty} \mathbb{V}(\overline{X_n}) = 0$$

$$\Rightarrow \lim_{n \to \infty} \overline{X_n} = \mu \quad (X_i \text{ i.i.d})$$
 Zentraler Grenzwertsatz
$$\Rightarrow S_n \approx N(n\mu, n\sigma^2) \quad \overline{X_n} \approx N\left(\mu, \frac{\sigma^2}{n}\right) \quad n \text{ gross}$$
 Chebychev-Ungleichung
$$\mathbb{P}(|\overline{X_n} - \mu| > c) \leqslant \frac{\sigma^2}{nc^2}$$

4 Gemeinsame und bedingte Wahrscheinlichkeiten

Bedingte WSK
$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \iff \mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(A \cap B)$$

$$\mathbb{P}(A|B^c) := \frac{\mathbb{P}(A \cap B^c)}{\mathbb{P}(B^c)} \iff \mathbb{P}(A|B^c)\mathbb{P}(B^c) = \mathbb{P}(A \cap B^c)$$
Satz der totalen WSK
$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B^c) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)$$
(I)
Satz der totalen WSK
$$\mathbb{P}(A) = \sum_{i=1}^k \mathbb{P}(A|B_i)\mathbb{P}(B_i) \qquad \bigcup_{i=1}^k B_i = \Omega$$
(II)
Satz von Bayes
$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\mathbb{P}(A|B_1)\mathbb{P}(B_1) + \ldots + \mathbb{P}(A|B_k)\mathbb{P}(B_k)}$$

4.1 Gemeinsame und bedingte Verteilungen

	Diskret	Stetig
gem. Verteilungs- fkt.	$\mathbb{P}(X=x,Y=y)$	$\mathbb{P}(X \leqslant x, Y \leqslant y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) dx dy$
Randverteilung	$\mathbb{P}(X=x) = \sum_{y \in W_Y} \mathbb{P}(X=x, Y=y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$
	$\mathbb{P}(Y=y) = \sum_{x \in W_X} \mathbb{P}(X=x, Y=y)$	$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx$
Unabhängigkeits kriterium	$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$	$f_{X,Y}(x,y) = f_X(x)f_Y(y)$
Bedingte Verteilung	$\mathbb{P}(X=x) = \sum_{y \in W_Y} \mathbb{P}(X=x Y=y)\mathbb{P}(Y=y)$	$f_{Y X=x}(y) := f_Y(y X=x) := \frac{f_{X,Y}(x,y)}{f_X(x)}$
Erwartungswert	$\mathbb{E}(g(X,Y)) = \sum_{i} \sum_{j} g(x_i, y_j) \mathbb{P}(X = x_i, Y =$	$\mathbb{E}(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
	$y_j)$	200
bedingter Er- wartungswert		$\mathbb{E}(h(Y) X=x) = \int_{-\infty}^{\infty} h(y)f_Y(y X=x)dy$
	1 / 1	(m 11)

2-dim Nor-
$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{\det\Sigma}} \exp\left(-\frac{1}{2}(x-\mu_X,y-\mu_Y)\Sigma^{-1}\begin{pmatrix} x-\mu_X\\ y-\mu_Y \end{pmatrix}\right)$$
malverteilung
$$\Sigma = \begin{pmatrix} \mathbb{V}(X) & \operatorname{Cov}(X,Y)\\ \operatorname{Cov}(X,Y) & \mathbb{V}(Y) \end{pmatrix} \Sigma^{-1} = \frac{1}{\mathbb{V}(X)\mathbb{V}(Y) - \operatorname{Cov}(X,Y)^2} \begin{pmatrix} -V(X) & \operatorname{Cov}(X,Y)\\ \operatorname{Cov}(X,Y) & -\mathbb{V}(Y) \end{pmatrix}$$

4.2 Kovarianz und Korrelation

Kovarianz
$$\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

$$\operatorname{Cov}(X,X) = \mathbb{V}(X)$$

$$\operatorname{Corr}(X,Y) := \rho_{XY} := \frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y} \quad \in [-1,1]$$
 Rechenregeln
$$\operatorname{Cov}(a+bX,c+dY) = bd\operatorname{Cov}(X,Y)$$

$$\operatorname{Corr}(a+bX,c+dY) = \operatorname{sgn}(b)\operatorname{sgn}(d)\operatorname{Corr}(X,Y)$$

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\operatorname{Cov}(X,Y)$$

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y) + \operatorname{Cov}(X,Y)$$

$$X,Y \text{ unabhängig } \Rightarrow \operatorname{Corr}(X,Y) = 0 \Rightarrow \operatorname{Cov}(X,Y) = 0$$

$$\operatorname{Corr}(X,Y) = +1 \Leftrightarrow Y = a+bX, \quad a \in \mathbb{R}, b > 0$$

$$\operatorname{Corr}(X,Y) = -1 \Leftrightarrow Y = a+bX, \quad a \in \mathbb{R}, b < 0$$
 Lineare Prognose
$$\hat{Y} = \mu_Y + \frac{\operatorname{Cov}(X,Y)}{\mathbb{V}(X)}(X-\mu_X)$$
 Prognosefehler
$$\mathbb{E}((Y-\hat{Y})^2) = (1-\rho_{XY}^2)\mathbb{V}(Y)$$

5 Deskriptive Statistik

arithm. Mittel
$$\bar{x} = \frac{1}{n}(x_1 + \dots + x_n)$$
 empirische Varianz
$$s^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2$$
 empirische Kovarianz
$$s_{x_1,x_2}^2 = \frac{1}{n-1}\sum_{i=1}^n (x_{1i} - \bar{x_1})(x_{2i} - \bar{x_2})$$
 empirische Korrela-
$$r_{x_1,x_2} = \frac{s_{x_1,x_2}^2}{s_{x_1}s_{x_2}}$$

6 Schliessende Statistik

Fehlerarten	Entsch	eidung H_0	H_A
	H_0	$1-\alpha$	
	H_A	β Fehler 2.Art	$1 - \beta$ Macht
Test		Fehler 1. Art	Verwerfungsbereich
	$H_0: p = p_0 \mid H_A: p$	$> p_0 \mid \mathbb{P}(X \geqslant c H_0) = \alpha$	$V = [c, \infty[$
	$H_0: p = p_0 \mid H_A: p$	$< p_0 \mid \mathbb{P}(X \leqslant c H_0) = \alpha$	$V =]-\infty, c]$
	$H_0: p = p_0 \mid H_A: p$	$\neq p_0 \mid \mathbb{P}(X \leqslant c_1) = \mathbb{P}(X)$	Verwerfungsbereich $V = [c, \infty[$ $V = [-\infty, \infty]]$ $V = [-\infty, c]$ $V = [-\infty, c]$ $V = [-\infty, c_1] \cup [-\infty, \infty[$
Binomialtest $(X \sim BIN)$	$\mathbb{P}(X \ge c H_0) = \sum_{k=c}^{n} \binom{n}{k} p_0^k (1 - p_0)^{n-k} \le \alpha$		
	$\kappa=0$ `	$\binom{n}{k} p_0^k (1 - p_0)^{n-k} \leqslant \alpha$	
Normal approximation $(X \sim BIN)$	$\mathbb{P}(X \geqslant c H_0) = \mathbb{P}\left(\frac{X - np_0}{\sqrt{np_0(1 - p_0)}} \geqslant \frac{c - np_0}{\sqrt{np_0(1 - p_0)}}\right) = 1 - \Phi\left(\frac{c - np_0}{\sqrt{np_0(1 - p_0)}}\right) \leqslant \alpha$		
	$\mathbb{P}(X \leqslant c H_0) = \mathbb{P}\left(\frac{X - np_0}{\sqrt{np_0(1 - p_0)}} \leqslant \frac{c - np_0}{\sqrt{np_0(1 - p_0)}}\right) = \Phi\left(\frac{c - np_0}{\sqrt{np_0(1 - p_0)}}\right) \leqslant \alpha$		
P-Wert	Das kleinste Signifikanzniveau, wo H_0 verworfen wird.		
	(Bei gegebenen c , berechne α neu)		
	$P\text{-Wert} \begin{cases} <\alpha & \Rightarrow V\epsilon \\ >\alpha & \Rightarrow V\epsilon \end{cases}$	erwerfe H_0 erwerfe H_0 nicht.	
Vertrauensintervall	Falls $p_0 \in VI$, verwe		
	$X \sim BIN(n, p) : \frac{s}{n}$ $X \sim POIS(\lambda) : x$	$\frac{x}{n} \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \sqrt{\frac{x}{n}} \left(1 \right)$ $x \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \sqrt{x}$	$\left(-\frac{x}{n}\right)\frac{1}{n}$

Beispiel

Fehler 2. Art

Sei:
$$V =]-\infty, c_1] \cup [c_2, \infty[; H_A : \mu = \mu_{H_A}, \sigma = \sigma_{H_A}]$$

$$\mathbb{P}(X \notin V | H_A) = \mathbb{P}(c_1 \leqslant X \leqslant c_2 | H_A) = \Phi\left(\frac{c_2 - \mu_{H_A}}{\sigma_{H_A}}\right) - \Phi\left(\frac{c_1 - \mu_{H_A}}{\sigma_{H_A}}\right)$$

 $\mathbb{P}(X \notin V|H_A)$ WSK, dass H_0 nicht verworfen wird, obwohl H_A korrekt ist.

V wird zuerst mittels H_0 und entsprechend μ_{H_0}, σ_{H_0} berechnet.

7 Statistik bei normalverteilten Daten

7.1 Schätzer

Mittelwert
$$\hat{\mu}:=\bar{X}_n:=\frac{1}{n}\sum_{i=1}^n X_i$$
 Varianz
$$\hat{\sigma}^2:=S_n^2:=\frac{1}{n-1}\sum_{i=1}^n (X_i-\hat{u})^2$$

7.2 z-Test (σ bekannt)

Nullhypothese
$$H_0: \mu = \mu_0 \mid H_A: \mu > \mu_0$$

$$H_0: \mu = \mu_0 \mid H_A: \mu < \mu_0$$

$$H_0: \mu = \mu_0 \mid H_A: \mu \neq \mu_0$$
 Teststatistik
$$z:= \sqrt{n} \cdot \frac{\bar{X}_n - \mu_0}{\sigma} \in \mathbb{R}$$

Verwerfe H_0 auf Niveau α , falls

$$z \geqslant \Phi^{-1}(1-\alpha) \qquad VB_{\alpha} = [\Phi^{-1}(1-\alpha), \infty[$$

$$z \leqslant \Phi^{-1}(\alpha) \qquad VB_{\alpha} =]-\infty, \Phi^{-1}(\alpha)] \qquad \text{für } H_{A}: \mu > \mu_{0}$$

$$|z| \geqslant \Phi^{-1}\left(1-\frac{\alpha}{2}\right) \quad VB_{\alpha} =]-\infty, \Phi^{-1}(\frac{\alpha}{2})] \cup [\Phi^{-1}(1-\frac{\alpha}{2}), \infty[$$

$$|z| \Rightarrow \Phi^{-1}\left(1-\frac{\alpha}{2}\right) \quad VB_{\alpha} =]-\infty, \Phi^{-1}(\frac{\alpha}{2})] \cup [\Phi^{-1}(1-\frac{\alpha}{2}), \infty[$$

P-Wert Bei gegebenem z, berechne α neu.

$$\text{P-Wert} \begin{cases} <\alpha & \Rightarrow \text{Verwerfe } H_0 \\ >\alpha & \Rightarrow \text{Verwerfe } H_0 \text{ nicht.} \end{cases}$$

Vertrauensintervall Falls $\mu_0 \in VI$, verwerfe H_0 nicht.

$$\bar{X}_n \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \frac{\sigma_0}{\sqrt{n}}$$

7.3 t-Test (σ unbekannt)

Idee: Ersetze σ durch dessen Schätzer $\hat{\sigma}$ und verwende eine angepasste Tabelle.

Nullhypothese $H_0: \mu = \mu_0 \ | \ H_A: \mu > \mu_0$ $H_0: \mu = \mu_0 \ | \ H_A: \mu < \mu_0$ $H_0: \mu = \mu_0 \ | \ H_A: \mu \neq \mu_0$ Teststatistik $t_{n-1}:= \sqrt{n} \cdot \frac{\bar{X}_n - \mu_0}{\hat{\sigma}} \in \mathbb{R}$

Verwerfe H_0 auf Niveau α , falls

 $t_{n-1} \geqslant \mathbf{T_{n-1}}(1-\alpha) \qquad VB_{\alpha} = [T_{n-1}(1-\alpha), \infty[$ $t_{n-1} \leqslant \mathbf{T_{n-1}}(\alpha) \qquad VB_{\alpha} =]-\infty, T_{n-1}(\alpha)]$ $|t_{n-1}| \geqslant \mathbf{T_{n-1}}\left(1-\frac{\alpha}{2}\right) \qquad VB_{\alpha} =]-\infty, T_{n-1}(\frac{\alpha}{2})] \cup [T_{n-1}(1-\frac{\alpha}{2}), \infty[$ für $H_A: \mu < \mu_0$ für $H_A: \mu < \mu_0$

 T_{n-1} steht für die Student- T_{n-1} Tabelle. Bsp: $T_9(0.975) = 2.262$

P-Wert Bei gegebenem t_{n-1} , berechne α neu.

 $P\text{-Wert} \begin{cases} <\alpha & \Rightarrow \text{Verwerfe } H_0 \\ >\alpha & \Rightarrow \text{Verwerfe } H_0 \text{ nicht.} \end{cases}$

Vertrauensintervall Falls $\mu_0 \in VI$, verwerfe H_0 nicht.

 $\bar{X}_n \pm T_{n-1} \left(1 - \frac{\alpha}{2} \right) \frac{\hat{\sigma}}{\sqrt{n}}$

8 Punktschätzungen

8.1 Momentenmethode

Parametervektor Θ Enthält die für eine Verteilung relevanten Parameter. Bsp: Θ

 (μ,σ^2) bei Normalverteilung, $\Theta=\lambda$ bei Poissonverteilung

Schätzer für Θ $\hat{\Theta}_j := g_j(\hat{\mu}_1, ..., \hat{\mu}_d) \quad j = 1, ..., d$

wobei $\hat{\mu}_j := \frac{1}{n} \sum_{i=1}^n x_i^j = \mathbb{E}(X^k) \quad j = 1, ..., d$

Bsp: Poisson- $\lambda = \mathbb{E}(X)$ $\Rightarrow \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$ verteilung

 $\lambda = \mathbb{V}(x) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \implies$

8.2 Maximum-Likelihood-Schätzer

Max.Likelihood Funk-
$$L(\vec{\Theta}; \vec{x}) = \prod_{i=1}^{n} f_{\Theta}(x_i)$$
 $f_{\Theta} = \text{Dichtefunktion}$ log-Likelihood Fkt. $\ell := \log(L) = \sum_{i=1}^{n} \log f_{\Theta}(x_i)$

Vorgehen

- 1. Stelle Max. Likelihood Fkt. für die gewünschte Verteilung auf. Die Dichtefunktion soll dabei mit den Parametern Θ_j geschrieben werden. Bsp: $f(x) = \lambda e^{-\lambda x} \Leftrightarrow f(\Theta; \vec{x}) = \Theta e^{-\Theta x_i}$. Bei mehreren Parametern entsprechend mit Θ_1, Θ_2 usw.
- 2. Berechne Θ_i für die $L(\vec{\Theta}; \vec{x})$ oder $\ell(\vec{\Theta}; \vec{x})$ maximal wird.

8.2.1 Beispiel

$$X \sim EXP(\Theta)$$
Dichtefunktion
$$f(\Theta; \vec{x}) = \Theta e^{-\Theta x_i}$$

$$L(\Theta; \vec{x})$$

$$L(\Theta; \vec{x}) = \prod_{i=1}^{n} \Theta e^{-\Theta x_i}$$

$$\ell(\Theta; \vec{x}) = \sum_{i=1}^{n} \ln \left(\Theta e^{-\Theta x_i}\right) = \sum_{i=1}^{n} \ln(\Theta) - \Theta x_i$$
Ableiten
$$0 = \frac{\partial \ell}{\partial \Theta} = \sum_{i=1}^{n} \frac{1}{\Theta} - x_i = \frac{n}{\Theta} - \sum_{i=1}^{n} x_i$$
Schätzer
$$\Rightarrow \hat{\Theta} = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{\bar{X}_n}$$

9 Vergleich zweier Stichproben

9.1 Randomisierung (Ungepaarte Vergleiche)

Bsp: X_i : 60 Probanden getestet mit Medikament, Y_i : 40 Probanden getestet mit Placebo. (Verschiedene Testbedingungen)

9.1.1 Zwei-Stichproben t-Test

Annahme
$$X_1, ..., X_N \sim^{iid} N(\mu_X, \sigma^2)$$

$$Y_1, ..., Y_N \sim^{iid} N(\mu_Y, \sigma^2)$$

Nullhypothese
$$H_0: \mu_X = \mu_Y \mid H_A: \mu_X > \mu_Y$$

$$H_0: \mu_X = \mu_Y \mid H_A: \mu_X < \mu_Y$$

$$H_0: \mu_X = \mu_Y \mid H_A: \mu_X \neq \mu_Y$$

Teststatistik
$$t := \frac{\bar{X}_n - \bar{Y}_m}{S_{pool} \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

wobei
$$S_{pool} = \frac{1}{n+m-2} \left(\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + \sum_{i=1}^{m} (Y_i - \bar{Y}_m)^2 \right)$$

Verwerfe H_0 auf Niveau α , falls

$$t_{n-1} \geqslant T_{n+m-2}(1-\alpha) \qquad VB_{\alpha} = [T_{n+m-2}(1-\alpha), \infty[$$

$$t_{n-1} \leqslant T_{n+m-2}(\alpha) \qquad VB_{\alpha} =]-\infty, T_{n+m-2}(\alpha)] \qquad \text{für } H_A: \mu_X > \mu_Y$$

$$VB_{\alpha} =]-\infty, T_{n+m-2}(\alpha)] \qquad \text{für } H_A: \mu_X < \mu_Y$$

$$VB_{\alpha} =]-\infty, T_{n+m-2}(\frac{\alpha}{2})] \cup \qquad \text{für } H_A: \mu_X \neq \mu_Y$$

$$[T_{n-1}(1-\frac{\alpha}{2}), \infty[$$

9.2 Blockbildung (Gepaarte Vergleiche)

Bsp: X_i : Reifentyp 1, getestet unter Bedingung A, Y_i : Reifentype 2, getestet unter gleichen Bedingungen A Neue Zufallsvariable: $\left|U_i = X_i - Y_i\right|$

9.2.1 t-Test

Anwenden, falls U_i normalverteilt.

9.2.2 Vorzeichentest

Ausser i.i.d keine Voraussetzungen.

Teststatistik
$$V = \sum_{i=1}^{n} I_{u_i>0}$$
 Anzahl positive u_i für $i = 1, ..., n$

$$V \sim BIN(n, p), p = \mathbb{P}(U_i > 0)$$

Nullhypothese
$$H_0: p = \frac{1}{2}$$

9.2.3 Wilcoxontest

Teststatistik
$$W = \sum_{i=1}^{n} \operatorname{Rang}(|U_i|) \cdot I_{U_i>0}$$

Rang Die
$$U_i$$
 werden aufsteigend nach Absolutwert geordnet. Das absolut kleinste U_i erhält

Bsp:
$$U = \{-4, 0, 5\}$$
: $|U_2| = 0 < |U_1| = 4 < |U_3| = 5 \Rightarrow W = 2 \cdot 0 + 1 \cdot 1 + 3 \cdot 1 = 4$

Nullhypothese Median
$$(U_i) = 0$$

Test Für gegebenes
$$n, \alpha, H_A$$
 schaue in Wilcoxon-Tabelle. Falls $W \in$ Intervall, verwerfe