Problem Set 5

Daniel Deneau

Problems 5.2, 5.5, 5.7, 5.9, 5.15, 5.25, 5.26, 5.37

Problem 5.2:

- a) proportion
- b) proportion
- c) mean
- d) mean
- e) mean

Probelm 5.5:

- a) Sampling Distribution
- b) Symmetric from the central limit theorem, since np and n(1-p) are both greater than 10.
- c) The variability is: 0.0096
- d) Standard error

[1] 0.01715809

e) The variability will increase as the number of observations per sample is lower.

```
p <- 0.08
n <- 800
print("Variability (c) : ")

## [1] "Variability (c) : "

se <- sqrt((p*(1-p))/n)
se

## [1] 0.009591663

n <- 250
print("Variability (e) : ")

## [1] "Variability (e) : "
se <- sqrt((p*(1-p))/n)
se</pre>
```

Problem 5.7:

95% Confidence Interval: (0.4264, 0.4735)

The population proportion of U.S. adults who live with one or more chronic conditions is within (0.4264, 0.4735) with 95% confidence.

```
SE <- .012

p <- .45

z <- 1.96

p + z * SE
```

[1] 0.47352

```
p - z * SE
```

[1] 0.42648

Problem 5.9:

- a) False, we can only say with 95% confidence that the population proportion is within the interval.
- b) True, the confidence interval in this case is what percentage intervals contain the population proportion.
- c) True, the range of proportions is 0.4446 to 0.4735 for a 95% confidence interval, which is below 0.5
- d) False, standard error applies to the sample proportion in general.

5.15,

- a) The null hypothesis states that student grades would be unchanged from the previous year. The alternative hypothesis states that student grades will be improved or worse from the previous year H_o: new_grades = previous_grades H_a: new_grades /= previous_grades (does not equal)
- b) The null hypothesis states that non-business activity time will be around 15 minutes during March Madness. The alternative hypothesis states that there will be an increase or decrease in non-business activity time over 15 minutes during March Madness. H_o : time = 15 minutes H_a : time /= 15 minutes (does not equal)

5.25,

h_o - what doctor says h_a - what she believes a) The anti-depressants have no effect on her Fibromyal-gia symptoms. b) Rejecting the null hypothesis that anti-depressants would help, when in fact the anti-depressants do help. c) Not rejecting the null hypothesis that anti-depressants help, and thinking they do help, when they actually do not help.

5.26,

- a) I.The standard error decreases as n increases.
- b) II. As there is 10% more room for error.
- c) Equal, since the p-value is a probability for observing data.
- d) I, it will be more likely to fail to reject the null hypothesis at that significance level than at a higher one.

5.37

A study examined the average pay for men and women entering the 26. Men were, on average, paid more in 19 of those 21 positions.

- a) Null Hypothesis: Gender is equally paid. Alternative Hypothesis: Gender is not equally paid. H_o: p = 0.5 H_a: p /= 0.5 (does not equal)
- b) With n = 21 and p = 0.5, np = 10 and n(1-p) = 10. The sample was done randomly, so the success-failure and independence conditions hold. $p_hat = 19/21 = 0.9048 \text{ SE} = 0.1118$

```
z value = 0.0203
```

p value: 0.508

Using a significance level of 0.05, we reject the null hypothesis and accept the alternative hypothesis that gender is not equally paid. (50% of the)

```
n <-20
p <-.5
p_hat <- 19/21
n*p

## [1] 10

n*(1-p)

## [1] 10

SE <- sqrt((p*(1-p))/n)
Z <- (p_hat - p)/n</pre>
```

[1] 0.5080733

pnorm(Z)