Deep Learning Srihari

Computational Graphs

Sargur N. Srihari srihari@buffalo.edu

Deep Learning Srihari

Topics

- Typical computations in deep network learning
- Graph Language
 - Nodes as operations and inputs
 - Edges as values used in operations
- Composite functions as chains
- Derivatives in computational graphs
- Factoring paths
- Forward and Reverse Differentiation

Computing Loss in a typical network

Computational Graph of a CNN: Alexnet

1.2m high-res images in ImageNet with 1000 classes.

Eight layers with weights: first five are convolutional and remaining three fully-connected. Output of last fully-connected layer is fed to a 1000-way softmax which produces a distribution over the 1000 class labels

Example of Backprop Computation

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Srihari

Steps in Backprop

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1 \hspace{0.5cm} rac{\partial f}{\partial z}$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

Srihari

Backprop for a neuron

Graph of a math expression

- Computational graphs are a nice way to:
 - Think about math expressions
- Consider the expression

$$e = (a+b)*(b+1)$$

It has two adds, one multiply

$$c=a+b$$
, $d=b+1$ and $e=c*d$

- To make a computational graph
 - Operations and inputs are nodes
 - Values used in operations are directed edges

useful in CS
especially
functional programs.
Core abstraction
in deep learning
using Theano

Such graphs are

Evaluating the expression

- Set the input variables to values and compute nodes up through the graph
- For a=2 and b=1

Expression evaluates to 6

Computational Graph Language

- To describe backpropagation more precisely computational graph language is helpful
- Each node is either
 - a variable
 - Scalar, vector, matrix, tensor, or other type
 - Or an Operation
 - Simple function of one or more variables
 - Functions more complex than operations are obtained by composing operations
 - If variable y is computed by applying operation to variable x then draw directed edge from x to y

11

Composite Function

- Consider a composite function f(g(h(x)))
 - We have an outer function f, an inner function f and a final inner function h(x)
- Say $f(x) = e^{\sin(x^{**}2)}$ we can decompose it as:

$$f(x)=e^{x}$$
 $g(x)=sin \ x \text{ and}$
 $h(x)=x^{2} \text{ or}$
 $f(q(h(x)))=e^{g(h(x))}$

Its computational graph is

Every connection is an input, every node is a function or operation

Chain Rule for Composites

- Chain rule is the process we can use to analytically compute derivatives of composite functions.
- For example, f(g(h(x))) is a composite function
 - We have an outer function f, an inner function f and a final inner function h(x)
 - Say $f(x) = e^{\sin(x^**2)}$ we can decompose it as: $f(x) = e^x$, $g(x) = \sin x$ and $h(x) = x^2$ or $f(g(h(x))) = e^{g(h(x))}$

Deep Learning Srihari

Derivatives of Composite function

• To get derivatives of $f(g(h(x))) = e^{g(h(x))}$ wrt x

1. We use the chain rule $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dh} \cdot \frac{dh}{dx}$ where $\frac{df}{dg} = e^{g(h(x))}$ since $f(g(h(x))) = e^{g(h(x))}$ & derivative of e^x is $e^{g(h(x))}$ since $g(h(x)) = \sin h(x)$ & derivative $\sin is \cos h(x)$

 $\frac{dh}{dx} = 2x$ because $h(x) = x^2$ & its derivative is 2x • Therefore $\frac{df}{dx} = e^{g(h(x))} \cdot \cos h(x) \cdot 2x = e^{\sin x^{**}2} \cdot \cos x^2 \cdot 2x$

- In each of these cases we pretend that the inner function is a single variable and derive it as such
- 2. Another way to view it $f(x) = e^{\sin(x^{**}2)}$
 - Create temp variables $u=\sin v$, $v=x^2$, then $f(u)=e^u$ with computational graph v=u=g(v) v=h(x) v=h(x)

Derivative using Computational Graph

• All we need to do is get the derivative of each node wrt each of its inputs $with u=\sin v, v=x^2, f(u)=e^u$

 We can get whichever derivative we want by multiplying the 'connection' derivatives

$$\boxed{\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dh} \cdot \frac{dh}{dx}}$$

$$\frac{df}{dx} = e^{g(h(x))} \cdot \cos h(x) \cdot 2x$$
$$= e^{\sin x^{2}} \cdot \cos x^{2} \cdot 2x$$

Since
$$f(x)=e^x$$
, $g(x)=\sin x$ and $h(x)=x^2$

Derivatives for e=(a+b)*(b+1)

- Computational graph
 - for e = (a+b)*(b+1)
- Need derivatives on the edges

- If a directly affects c=a+b, then we want to know how it affects c.
- This is called partial derivative of c wrt a.
 - ullet For partial derivatives of e we need sum & product rules

of calculus

$$\frac{\partial}{\partial a}(a+b) = \frac{\partial a}{\partial a} + \frac{\partial b}{\partial a} = 1$$

$$\frac{\partial}{\partial u}uv = u\frac{\partial v}{\partial u} + v\frac{\partial u}{\partial u} = v$$

Derivative on edge: labeled

Derivative wrt variables indirectly connected

- e = (a+b)*(b+1)
- Effect of indirect connection:
 - How is e affected by a?
 - Since $\frac{\partial c}{\partial a} = \frac{\partial}{\partial a}(a+b) = 1+0=1$

- If we change a at a speed of 1, c changes by speed of 1
- Since $\frac{\partial e}{\partial c} = \frac{\partial}{\partial c}(c * d) = d = b + 1 = 1 + 1 = 2$
 - If we change c by a speed of 1, e changes by speed of 2
- So e changes by a speed of 1*2=2 wrt a
- Equivalent to chain rule: $\frac{\partial e}{\partial a} = \frac{\partial c}{\partial a} \cdot \frac{\partial e}{\partial c}$
- The general rule (with multiple paths) is:
 - Sum over all possible paths from one node to the other while multiplying derivatives on each path
 - E.g., to get derivative of e wrt b $\frac{\partial e}{\partial b} = 1*2 + 1*3 = 5$

Factoring Paths

- Summing over paths leads to combinatorial explosion
- If we want to get derivative $\frac{\partial Z}{\partial X}$ we need to sum over 3*3=9 paths: $\frac{\partial Z}{\partial X} = \alpha\delta + \alpha\varepsilon + \alpha\zeta + \beta\delta + \beta\varepsilon + \beta\zeta + \gamma\delta + \gamma\varepsilon + \gamma\zeta$
 - It will grow exponentially
 - Instead we could factor the paths as:

$$\frac{\partial Z}{\partial X} = (\alpha + \beta + \gamma)(\delta + \varepsilon + \zeta)$$

• This is where *forward-mode* and *reverse-mode* differentiation come in

Forward- and Reverse-Mode Differentiation

Forward mode differentiation tracks how one

input affects every node

– Applies $\left|\frac{\partial}{\partial X}\right|$ to every node

- Reverse mode differentiation tracks how every node affects one output
 - Applies $\frac{\partial Z}{\partial}$ to every node

Reverse Mode Differentiation

Reverse-mode differentiation from e down

• Apply $\left| \frac{\partial e}{\partial} \right|$ to every node

$$\frac{\partial e}{\partial c} = \frac{\partial (c * d)}{\partial c} = d = b + 1 = 1 + 1 = 2$$

$$\frac{\partial e}{\partial a} = \frac{\partial (c * d)}{\partial a} = \frac{\partial ((a + b) * (b + 1))}{\partial a} = b + 1 = 2$$

- Gives derivative of e wrt every node
- We get both $\frac{\partial e}{\partial a}$ and $\frac{\partial e}{\partial b}$

$$a=2$$
 and $b=1$

Combining the two modes

Why reverse mode?

Consider Original example

$$e = (a+b)^* (b+1)$$

 $c = a+b, d=b+1$
 $e = c * d$

Forward differentiation from b up

- Gives derivative of every node wrt | b
- i.e., wrt a single input
- We get $\frac{\partial e}{\partial b}$

e = c*d e = 6 e = 6 $\frac{\partial e}{\partial c} = 2$ $\frac{\partial e}{\partial d} = 3$ $\frac{\partial e}{\partial b} = 1$ $\frac{\partial e}{\partial b} = 1$

Reverse-mode diff from e down

- Gives derivative of e wrt every node
- We get both $\left|\frac{\partial e}{\partial a}\right|$ and $\left|\frac{\partial e}{\partial b}\right|$

References

 colah.github, outlace.com/Computational-Graphs