Oscilloscopio digitale

Simone Aronica, Giovanni Bloise, Gabriele Camisa, Giuseppe Casale

$11\ {\rm dicembre}\ 2022$

Indice

1	Strumenti usati	2
2	Misurazione di valore efficace e frequenza 2.1 Misura del valore efficace	2 2 3 3
3	Misurazione del tempo di salita 3.1 Operazioni preliminari	3 3 3
4	Conclusioni	3

TODO

1 Strumenti usati

- Multimetro HP 34401A
- Rigol DS1054-Z
- Generatore di funzioni
- Cavi coassiali

2 Misurazione di valore efficace e frequenza

La prima parte dell'esperienza consiste nella misurazione del valore efficace e della frequenza di un segnale sinusoidale per mezzo dell'oscilloscopio digitale e nella correlazione dell'incertezza attesa.

Il segnale misurato è stato generato tramite il generatore di funzioni come una sinusoide di ampiezza picco-picco 1 V a frequenza 1 kHz.

2.1 Misura del valore efficace

La misura del valore efficace è stata derivata in maniera indiretta dalla misura dell'ampiezza picco-picco del segnale.

Tale misura è stata effettuata tramite l'oscilloscopio digitale impostando la costante di taratura verticale a $K_{\rm V}=200\,{\rm mV/div}$ e misurando i due valori di picco in negativo e in positivo del segnale (rispettivamente $y_1=-2.5$ div e $y_2=2.5$ div). È stata considerata un'incertezza di lettura pari a $\frac{1}{2}$ della risoluzione dello strumento (ovvero $\frac{1}{10}$ div). che è stata valutata come $V_{\rm pp}=(1.000\pm0.088){\rm V}$. L'incertezza è stata calcolata secondo il modello deterministico:

$$\delta V_{\rm pp} = \left| \frac{\partial V_{\rm pp}}{\partial y_1} \right| \delta y_1 + \left| \frac{\partial V_{\rm pp}}{\partial y_2} \right| \delta y_2 + \left| \frac{\partial V_{\rm pp}}{\partial K_{\rm V}} \right| \delta K_{\rm V} =$$
$$= |K_{\rm V}| \delta y_1 + |K_{\rm V}| \delta y_2 + (y_2 - y_1) \delta K_{\rm V}$$

- 2.2 Misurazione di frequenza
- 2.3 Verifica con multimetro
- 3 Misurazione del tempo di salita
- 3.1 Operazioni preliminari
- 3.2 Tempo di salita in condizione di adattamento di impedenza
- 3.3 Tempo di salita con generatore ad alta impedenza (uso della sonda compensata)
- 4 Conclusioni