PRANVEER SINGH INSTITUTE OF TECHNOLO

Even Semester

Session 2021-22

B. Tech. II Semester

Engineering Mathematics II (KAS203T)	
CO Number	Course Outcome (Please include all COs of your Course here)
CO1	Define (L1-Remember) the basic terms and concepts of differential equations, sequence and series, calculus and functions of complex variables.
CO2	Compute (L2-Understand) various variables involved in differential equations, integral, residues and explain the process of finding convergence of sequence and series including health and society.
CO3	Apply (L3-Apply) the concepts to solve various problems of differential equations, sequence and series, calculus and functions of complex variables related to applications in engineering including environment and sustainability.
CO4	Solve (L4-Aanalysis) the dynamical system involved in various engineering problems to prove and verify (L5-Evaluate) analytical results and to evaluate (L5-Evaluate) the value of variables involved in various problems of differential equations, sequence and series, calculus and functions of complex variables including life-long learning.

Time: 1.5 Hrs.

M. M. 15

Q1. Attempt all questions:

(1X3 = 3 Marks)

a) Find complementary function of
$$(D^2 + D + 1)^2 (D^2 - 4D + 4)^2 y = 0$$
 where $D = \frac{d}{dx}$. CO1

Section A

b) Find the value of
$$\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$$
.

Find particulate integral of
$$(D^2 - D + 1)y = x^2 e^x$$
 where $D = \frac{d}{dx}$.

Section B

Q2. Attempt all questions:

(2X4 = 8 Marks)

a i) Discuss the process to find out the solution of
$$(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$$
 where $CO2$

$$D = \frac{d}{dx}.$$

Or

Discuss the process to find out the solution of
$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 3)y = e^{x^2}$$
 by the method of removal of first derivative.

bi) Discuss the process to find out the solution of
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$$
. CO2

Discuss the process to find out the solution
$$x \frac{d^2 \sqrt[3]{y}}{dx^2} + (4x^2 - 1) \frac{dy}{dx} + 4x^3 y = 2x^3$$
 by the method of changing of independent variable.

The state of the s

Apply the method of Cauchy-Euler equation to find out the solution of the differential equation
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = \cos(\log x) + x \sin(\log x)$$

ii) Apply the method of variation of parameter to find out the solution of the differential equation
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}.$$

d i) Show that the integral
$$\int_{-\infty}^{\infty} \frac{dx}{e^x + e^{-x}}$$
 is convergent and find its value.

Or

CO3

Show that
$$B(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$$
. Section C

Section C

(4X1 = 4 Marks)

Q3
i) Solve
$$\frac{dx}{dt} + 2y + \sin t = 0$$
, $\frac{dy}{dt} - 2x - \cos t = 0$, given that $x = 0$ and $y = 1$ when $t = 0$. CO4

i) Solve
$$\frac{dx}{dt} + 2y + \sin t = 0$$
, $\frac{3}{dt} - 2x - \cos t = 0$, given Or

Prove that
$$\int_{0}^{\infty} x e^{-x^{3}} dx \times \int_{0}^{\infty} x^{2} e^{-x^{4}} dx = \frac{\pi \sqrt{2}}{32}$$