Modulo 8 – Otimização

Prof: Rafael Lima

Questionamentos

O que é otimização?

 Cite exemplos da aplicação de otimização na engenharia?

Introdução

- Em engenharia estamos incessantemente a procura:
 - Da redução de peso, custo, consumo, ...
 - Do aumento do rendimento de sistemas, da sua produtividade, utilidade, ...
- O procedimento utilizado para se chegar a esse objetivo é a otimização
- Nem sempre é possível alcançar a condição ótima, embora o ótimo seja sempre uma meta

Introdução

- Ótimo a melhor solução para um problema ou a condição mais favorável de um parâmetro
- Algumas vezes procuramos um
 - Máximo: velocidade de um processador e produtividade de uma colheita
 - Mínimo: atraso de um processo e custos no transporte de bens

Introdução

- Em geral os problemas em engenharia não são estritamente técnicos: dimensão econômica também é importante
- Ainda que as variáveis sejam técnicas, o fator econômico também é importante
 - Peso: reduzir peso para minimizar o custo de transporte
 - Resistência: menos material é necessário para resistir a uma mesma carga

Otimização no dia a dia

- Otimização não está presente somente na engenharia
- Busca de melhores soluções estão presentes no nosso dia a dia
- Muitas vezes usamos a intuição para encontrar soluções mais adequadas

Otimização no dia a dia

 Qual a melhor disposição de livros em uma estante?

 Como arranjar fisicamente os móveis em uma sala para sobrar o maior espaço livre?

Otimização no dia a dia

 Qual o melhor caminho para chegar em um determinado local?

 Ajustar temperatura da água do chuveiro para tomar um banho?

Métodos de otimização

- Não há um método único e direto para encontrarmos a melhor solução para todos os problemas
- Alguns métodos:
 - Evolução
 - Intuição
 - Tentativa
 - Gráfico
 - Analítico

Métodos de otimização: Evolução

- Sistema já existente é aperfeiçoado ao longo do tempo através de alterações e melhorias na sua concepção, processo de fabricação, etc
- Exemplo da máquina a vapor:
 - Em 1700 Thomas Savery inventou este equipamento
 - Em 1705 Thomas Newcomen juntamente com Savery aperfeiçoou este equipamento
 - Em 1769 James Watt realizou uma série de aperfeiçoamentos e patenteou a invenção

Métodos de otimização: Evolução

- Exemplo do teclado da máquina:
 - Em 1868 Christopher Layhan Sholes dispôs as teclas em ordem alfabética
 - Em 1872 James Densmore criou o teclado QWERTY baseado em estudos sobre as letras mais frequentes no inglês
 - Em 1932 August Dvorak apresentou uma disposição ainda mais eficiente

Métodos de otimização: Evolução

Exemplo dos automóveis:

Métodos de otimização: Intuição

- Muito usado para otimização no dia a dia
- Também é usado muito na engenharia
- Intuição está ligada a arte
- Arte esta relacionada a quantidade de soluções que somos capazes de gerar para um dado problema

Métodos de otimização : Tentativa

- Em geral as primeiras soluções obtidas são pobres e limitadas
- Através de refinos e novas definições chega-se a soluções melhores
- Não devemos confundir o processo iterativo com uma busca a esmo ou aleatória
- As soluções de cada iteração devem ser coerentes

Métodos de otimização: Gráfica

- Utilização de esquemas ou desenhos de um sistema físico real na procura da melhor solução para o problema em análise
- Muito utilizado na disposição de espaços
- Exemplo:

Métodos de otimização : Analítico

- Área mais recente da otimização baseada no desenvolvimento matemático
- Desenvolvida desde 1950 e muito utilizada na engenharia
- Advento dos computadores facilitou seu desenvolvimento
- Exemplos: programação linear e não-linear, programação geométrica, calculo diferencial, etc

- O problema a ser resolvido depende de uma variável independente x e uma variável dependente y
- y = f(x)
- O processo de otimização se resume a encontrar o valor de x que leva ao máximo (ou mínimo) valor de y

 Exemplo: Considere que o conforto térmico para uma dada temperatura possa ser medido através de um índice que varia de 0 a 10 para as temperaturas no intervalo [0, 50] graus centigrados. Se o conforto térmico (y) pode ser modelado de acordo com a expressão y = $(-x^2 + 50x)/62,5$ em que x consiste na temperatura em graus centigrados. Determine o valor ótimo de x.

No Scilab:

```
-->x= 0:1:50;
-->y = (-x^2+50*x)/62.5;
-->plot(x,y)
-->xtitle('Conforto termico em função da temperatura','Temperatura em graus centigrados','Indice de conforto termico')
```


- Muitas vezes nos deparamos com problemas de otimização que dependem de duas ou mais variáveis ou que são multi-objetivos
- Esses objetivos podem ser antagônicos em relação a uma dada variável
- Nestes casos, devemos formular um objetivo total que englobe de alguma forma esses objetivos

 Exemplo: Considere que o grau de similaridade ou correlação entre um modelo e seu sistema físico real pode ser medido por um numero de 0 a 1. Existem dois tipos de custos envolvidos no uso de modelos: aperfeiçoamento e aplicação. O custo de aperfeiçoamento normalizado pode ser dado por y = e^x/e^1 e o de aplicação z = e^{-x+1}/e^1 . Como podemos otimizar esse problema?

No Scilab:

```
-->x= 0:0.01:1;
-->y = exp(x)/exp(1);
-->z = exp(-x+1)/exp(1);
-->plot(x,y,'b')
-->plot(x,z,'g')
-->plot(x,y+z,'r')
-->legend('Custo de aperfeiçoamento','Custo de aplicação','Custo total')
-->xtitle('','Similaridade entre modelo e SFR','Custo normalizado')
```


 Exemplo: Como fazer a melhor escolha na compra de um carro de acordo com diferentes critérios tais como autonomia, capacidade de carga, consumo, custo de aquisição, etc?

		Soluções					
	Peso	Carro A		Carro B		Carro C	
Critérios	Р	N	PxN	N	PxN	N	PxN
Autonomia	1	4	4	4	4	2	2
Capacidade de carga	2	3	6	3	6	2	4
Consumo	3	1	3	3	9	4	12
Custo de aquisição	3	2	6	2	6	3	9
Desempenho	1	3	3	3	3	4	4
Estética	1	3	3	4	4	2	2
Manutenção	2	2	4	1	2	3	6
Totais	_	_	29	_	34	_	39