Introduction to Quantum Computation, UPB Winter 2022, Assignment 2

To be completed by: Thursday, October 27 Eli Kogan-Wang

1 Exercises

1. Use the spectral decompositions of X and Z to prove that $HXH^{\dagger} = Z$. (Do not simply write out the matrices and multiply!) Why does this immediately also yield that $HZH^{\dagger} = X$?

$$X = (|+\rangle\langle +|-|-\rangle\langle -|)$$
$$Z = (|0\rangle\langle 0|-|1\rangle\langle 1|)$$

Since for H we have $H = H^{\dagger} = H^{-1}$, we can write $HXH^{\dagger} = HXH$.

For the Hadamard gate, we have $H|0\rangle = |+\rangle$ and $H|1\rangle = |-\rangle$, so we can write:

$$H = |+\rangle\langle 0| + |-\rangle\langle 1|$$
 (trivial, since Orthonormal-Change-of-Basis)

Additionally, we have $H \mid + \rangle = |0\rangle$ and $H \mid - \rangle = |1\rangle$, so we can write:

$$H = |0\rangle + |+1\rangle - |$$
 (trivial, since Orthonormal-Change-of-Basis)

Now, we can write:

$$\begin{split} HXH^\dagger &= H(|+\rangle\!\langle +|-|-\rangle\!\langle -|)H\\ &= (|0\rangle\!\langle +|+|1\rangle\!\langle -|)(|+\rangle\!\langle +|-|-\rangle\!\langle -|)(|+\rangle\!\langle 0|+|-\rangle\!\langle 1|)\\ \text{We will not write out the } \langle -|+\rangle \text{ and } \langle +|-\rangle \text{ terms, since they are zero.}\\ &= (|0\rangle\,\langle +|+\rangle\,\langle +|+\rangle\,\langle 0|+|1\rangle\,\langle -|\,(-1)\,|-\rangle\,\langle -|-\rangle\,\langle 1|)\\ &= (|0\rangle\!\langle 0|-|1\rangle\!\langle 1|)\\ &= Z \end{split}$$

From this it immediately follows, that $HZH^{\dagger} = X$:

$$\begin{split} HXH^\dagger &= Z & |\cdot H \quad (\text{since } H = H^\dagger = H^{-1}) \\ \Longleftrightarrow HX &= ZH & |H^\dagger \cdot \\ \Longleftrightarrow X &= HZH^\dagger \end{split}$$

2. (a) Write out the 4-dimensional vector for $(\alpha | 0\rangle + \beta | 1\rangle) \otimes (\gamma | 0\rangle + \delta | 1\rangle)$.

$$\begin{bmatrix} \alpha \cdot \begin{bmatrix} \gamma \\ \delta \\ \beta \cdot \begin{bmatrix} \gamma \\ \delta \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \alpha \gamma \\ \alpha \delta \\ \beta \gamma \\ \beta \delta \end{bmatrix} = \alpha \gamma |00\rangle + \alpha \delta |01\rangle + \beta \gamma |10\rangle + \beta \delta |11\rangle$$

(b) Let $\mathcal{B}_1 = \{|\psi_1\rangle, |\psi_2\rangle\}$ and $\mathcal{B}_2 = \{|\phi_1\rangle, |\phi_2\rangle\}$ be two orthonormal bases for \mathbb{C}^2 . Prove that

$$\mathcal{B}_{3} = \{ |\psi_{1}\rangle \otimes |\phi_{1}\rangle, |\psi_{1}\rangle \otimes |\phi_{2}\rangle, |\psi_{2}\rangle \otimes |\phi_{1}\rangle, |\psi_{2}\rangle \otimes |\phi_{2}\rangle \}$$

is an orthonormal basis for \mathbb{C}^4 . In other words, show that for each $|v\rangle \in \mathcal{B}_3$, $||v\rangle||_2 = 1$, and for all pairs of distinct $|v\rangle$, $|w\rangle \in \mathcal{B}_3$, $\langle v|w\rangle = 0$.

Every $|v\rangle \in \mathcal{B}_3$ is of the form $|\psi_i\rangle \otimes |\phi_j\rangle$, where $i, j \in \{1, 2\}$. Let $i, j \in \{1, 2\}$. Now let:

$$|\psi_i\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$|\phi_j\rangle = \begin{bmatrix} \gamma \\ \delta \end{bmatrix}$$

Since $\mathcal{B}_1, \mathcal{B}_2$ are orthonormal bases, we have $\alpha^2 + \beta^2 = 1$ and $\gamma^2 + \delta^2 = 1$. Since:

$$|\psi_i\rangle\otimes|\phi_j\rangle=egin{bmatrix}lpha\gamma\\lpha\delta\\eta\gamma\\eta\delta\end{bmatrix}$$

We need to show that $\alpha^2 \gamma^2 + \alpha^2 \delta^2 + \beta^2 \gamma^2 + \beta^2 \delta^2 = 1$.

$$\alpha^2 \gamma^2 + \alpha^2 \delta^2 + \beta^2 \gamma^2 + \beta^2 \delta^2 = \alpha^2 \cdot (\gamma^2 + \delta^2) + \beta^2 \cdot (\gamma^2 + \delta^2)$$
$$= \alpha^2 \cdot 1 + \beta^2 \cdot 1$$
$$= 1$$

We have shown that, for each $|v\rangle \in \mathcal{B}_3$, $||v\rangle||_2 = 1$.

Now, let $|v\rangle$, $|w\rangle \in \mathcal{B}_3$ be distinct. Then, $|v\rangle$, $|w\rangle$ are of the form $|\psi_i\rangle \otimes |\phi_j\rangle$ and $|\psi_k\rangle \otimes |\phi_l\rangle$, respectively, where $i, j, k, l \in \{1, 2\}$. And $(i, j) \neq (k, l)$ or in other words, $i \neq k$ or $j \neq l$. Now:

$$\langle v|w\rangle = (\langle \psi_i| \otimes \langle \phi_j|)(|\psi_k\rangle \otimes |\phi_l\rangle)$$

$$= \langle \psi_i|\psi_k\rangle \cdot \langle \phi_j|\phi_l\rangle$$
Since $i \neq k$ or $j \neq l$ and the ψ s and ϕ s are orthogonal,
$$= 0$$

We have successfully shown, that \mathcal{B}_3 is an orthonormal basis for \mathbb{C}^4 .

3. (a) Prove that $(Z \otimes Y)^{\dagger} = Z \otimes Y$. Do not write out any matrices explicitly; rather, you must use the properties of the tensor product, dagger, and Y.

$$(Z \otimes Y)^{\dagger} = Z^{\dagger} \otimes Y^{\dagger}$$
 |\dagger distributes over \otimes
= $Z \otimes Y$ | Z,Y are self-adjoint

(b) In class, we saw a quantum circuit which, given starting state $|0\rangle \otimes |0\rangle$, prepared the Bell state $|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. In fact, that circuit is a change of basis matrix, mapping the standard basis $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ to the Bell basis $|\Phi^{+}\rangle, |\Psi^{+}\rangle, |\Phi^{-}\rangle, |\Psi^{-}\rangle$.

In fact, in class we saw:

$$|\psi\rangle = |0\rangle - H$$

$$|\phi\rangle = |0\rangle - H$$

$$|\Phi\rangle = |0\rangle - H$$

Which is equivalent to:

$$CNOT(H \otimes I) |0\rangle |0\rangle = |\Phi^{+}\rangle$$

i. Write down a quantum circuit which maps $|\Phi^+\rangle$ to $|0\rangle\otimes|0\rangle$. (Hint: Write out the circuit from class as a sequence of matrix operations. Then, recalling that the inverse of any unitary operation U is given by U^{\dagger} , take the inverse of this entire sequence by taking the dagger.)

$$(\text{CNOT}(H \otimes I))^{-1} = ((H \otimes I)^{-1} \text{CNOT}^{-1})$$
$$= ((H \otimes I)^{\dagger} \text{CNOT}^{\dagger})$$
$$= ((H^{\dagger} \otimes I^{\dagger}) \text{CNOT})$$
$$= (H \otimes I) \text{CNOT}$$

This corresponds to the diagram:

ii. Your circuit from 3(b)(i) is actually a change of basis which maps the Bell basis back to the standard basis. To verify this, run your circuit from 3(b)(i) on input $|\Psi^-\rangle$ and check that the output is $|1\rangle \otimes |1\rangle$.

$$(H \otimes I) \text{CNOT} | \Psi^{-} \rangle = (H \otimes I) \text{CNOT} \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$

$$= (H \otimes I) \frac{1}{\sqrt{2}} \text{CNOT} (|01\rangle - |10\rangle)$$

$$= (H \otimes I) \frac{1}{\sqrt{2}} (\text{CNOT} |01\rangle - \text{CNOT} |10\rangle)$$

$$= (H \otimes I) \frac{1}{\sqrt{2}} (|01\rangle - |11\rangle)$$

$$= (H \otimes I) \frac{1}{\sqrt{2}} ((|0\rangle - |1\rangle) \otimes |1\rangle)$$

$$= (H \otimes I) ((\frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)) \otimes |1\rangle)$$

$$= (H \otimes I) (|-\rangle \otimes |1\rangle)$$

$$= ((H |-\rangle) \otimes (I |1\rangle))$$

$$= |1\rangle \otimes |1\rangle$$

$$= |11\rangle$$