CLAIMS

1. A semiconductor light emitting device, comprising a substrate, and at least a first semiconductor layer, an active layer and a second semiconductor layer that are sequentially provided on the substrate,

wherein the second semiconductor layer has a polarity different from that of the first semiconductor layer, and the total area of the first semiconductor layer, the active layer and the second semiconductor layer in side faces where the active layer is uncovered is 5% or more of the area of the upper face which is uncovered at the side of the second semiconductor layer.

2. A semiconductor light emitting device, comprising a substrate, and at least a first semiconductor layer, an active layer and a second semiconductor layer that are sequentially provided on the substrate,

wherein the second semiconductor layer has a polarity different from that of the first semiconductor layer, and the shortest distance from all points contained in the active layer to side faces where the active layer is uncovered is 40 μm or less.

3. A semiconductor light emitting device, comprising a substrate, and at least two or more mesa portions in each of which a first semiconductor layer, an active layer and a second semiconductor layer that are sequentially provided on the substrate,

wherein the second semiconductor layers have a polarity

different from that of the first semiconductor layers and further the second semiconductor layers and the active layers are spatially separated between the mesa portions.

4. A semiconductor light emitting device, comprising a substrate, and at least two or more mesa portions in each of which a first semiconductor layer, an active layer and a second semiconductor layer that are sequentially provided on the substrate,

wherein the second semiconductor layers have a polarity different from that of the first semiconductor layers and further except one or more bridge portions for connecting the mesa portions the second semiconductor layers and the active layers are spatially separated between the mesa portions.

5. A semiconductor light emitting device, which sequentially comprises at least a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer,

wherein the second semiconductor layer has a polarity different from that of the first semiconductor layer, and the upper face which is uncovered at the side of the second semiconductor layer has a concave extending from the uncovered upper face at the side of the second semiconductor layer at least to the active layer.

6. The semiconductor light emitting device according to claims 2 to 5.

wherein the total area of the first semiconductor layer, the active layer and the second semiconductor layer in the side faces where the active layer is uncovered is 5% or more of the

area of the uncovered upper face at the side of the second semiconductor layer.

7. The semiconductor light emitting device according to claims 3 to 5,

wherein the shortest distance from all points contained in the active layer to the side faces where the active layer is uncovered is 40 μm or less.

8. The semiconductor light emitting device according to claims 1 to 5,

wherein the shape of the uncovered upper face at the side of the second semiconductor layer has an apex having an angle of less than 45 degrees.

The semiconductor light emitting device according to claims
to 5,

wherein one of interior angles made by the side faces where the active layer is uncovered and the uncovered upper face at the side of the second semiconductor layer is 138 degrees or more.

The semiconductor light emitting device according to claims
to 5,

wherein the face of the substrate opposite to the face of the substrate where the first semiconductor layer is formed has a reflecting layer.

11. The semiconductor light emitting device according to claims1 to 5,

which is a group III Nitride Compound Semiconductor light emitting device represented by $Al_xGa_yIn_{1-x-y}N$ wherein (0 \leq x \leq

1, $0 \le y \le 1$, and $0 \le x + y \le 1$).