

COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH

01 Recap

COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH

COMPUTATION GRAPH

COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH

COMPUTATION GRAPH

COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH

COMPUTATION GRAPH

GCN

mean

GraphSage

max, mean, LSTM

GAT

sum

Learning Aggregation Functions (LAF)

07 Aggregation in PyG

Solution: Weisfeiler-Lehman isomorphism test¹

¹Weisfeiler and Lehman. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 1968.

Step 2

Observed node Neighbours' color

$$c_i^{(k)} = h\left(c_i^{(k-1)}, \{c_j^{(k-1)}: j \in \mathcal{N}(i)\}\right)$$
 Injective function Observed rada Neighbours' color

Observed node

Neighbours' color

$$c_i^{(k)} = h\left(c_i^{(k-1)}, \{c_j^{(k-1)}: j \in \mathcal{N}(i)\}\right)$$
Injective function Observed node Neighbours' color

Observed node

Neighbours' color

- Efficient heuristic
- Isomorphic graphs -> same labels
- Nodes are uniquely coloured
- Distinguish most graphs

But... limited use in practice

Can we construct a GNNs as powerful as the WL isomorphism test?

Can we construct a GNNs as powerful as the WL isomorphism test?

GIN - Graph Isomorphism Network²

²Xu et al., *How powerful are graph neural networks*?, International Conference on Learning Representations, 2019

 G,G^{\prime} two non-isomorphic graphs

 $\mathcal{A}:G
ightarrow\mathbb{R}^d$ a GNN

 G,G^{\prime} two non-isomorphic graphs

 $\mathcal{A}:G
ightarrow\mathbb{R}^d$ a GNN

Construct \mathcal{A} s.t. $\{h_i: i \in V(G)\}$ and $\{h_j: j \in V(G')\}$ differ

 G,G^{\prime} two non-isomorphic graphs

$$\mathcal{A}:G o\mathbb{R}^d$$
 a GNN

Construct \mathcal{A} s.t. $\{h_i: i\in V(G)\}$ and $\{h_j: j\in V(G')\}$ differ

→ WL test decides they are non-isomorphic

$$m{h}_i^{(k)} = \phi \Big(m{h}_i^{(k-1)}, f \big(\{ m{h}_j^{(k-1)} : j \in \mathcal{N}(i) \} \big) \Big)$$
 Injective

 G,G^{\prime} two non-isomorphic graphs

$$\mathcal{A}:G o\mathbb{R}^d$$
 a GNN

Construct \mathcal{A} s.t. $\{h_i: i\in V(G)\}$ and $\{h_j: j\in V(G')\}$ differ

→ WL test decides they are non-isomorphic

$$oldsymbol{h}_i^{(k)} = \phi \Big(oldsymbol{h}_i^{(k-1)}, f \Big(\{ oldsymbol{h}_j^{(k-1)} : j \in \mathcal{N}(i) \} \Big) \Big)$$
 Injective

Sum-decomposition

04 Sum-decomposition³

Any injective function on multisets can be decomposed as

$$g(X) = \phi(\sum_{x \in X} f(x))$$

³Zaheer et al., *Deep sets*, Advances in Neural Information Processing Systems 30, 2017

04 Sum-decomposition³

Any injective function on multisets can be decomposed as

$$g(X) = \phi(\sum_{x \in X} f(x))$$

$$g(\boldsymbol{h}, X) = \phi\Big((1 + \epsilon) \cdot f(\boldsymbol{h}) + \sum_{\boldsymbol{x} \in X} f(\boldsymbol{x})\Big)$$

³Zaheer et al., *Deep sets*, Advances in Neural Information Processing Systems 30, 2017

04 Back to GIN

Use an MLP for representing $\,\phi\circ f\,$

$$\boldsymbol{h}_i^{(k)} = \mathrm{MLP}^{(k)} \Big((1 + \epsilon^{(k)}) \cdot \boldsymbol{h}_i^{(k-1)} + \sum_{j \in \mathcal{N}(i)} \boldsymbol{h}_j^{(k-1)} \Big)$$

04 Back to GIN

Use an MLP for representing $\,\phi\circ f\,$

$$\boldsymbol{h}_{i}^{(k)} = \mathrm{MLP}^{(k)} \Big((1 + \epsilon^{(k)}) \cdot \boldsymbol{h}_{i}^{(k-1)} + \sum_{j \in \mathcal{N}(i)} \boldsymbol{h}_{j}^{(k-1)} \Big)$$

Cons of sum-decomposition:

- Highly discontinuous functions
- ullet For uncountable domains, latent dimension of f should be higher than the number of elements in the set⁴
- No guarantee to find the right function

⁴Wagstaff et al., *On the limitations of representing functions on sets*, Proceedings of the 36th International Conference on Machine Learning, 2019

05 Principal Neighborhood Aggregation⁵

Select the best combination of aggregators and scalers

O5 Principal Neighborhood Aggregation⁵

Select the best combination of aggregators and scalers

Image taken from the arXiv version of the paper.

⁵Corso et al., *Principal Neighbourhood Aggregation for Graph Nets*, Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020

O5 Principal Neighborhood Aggregation⁵

Select the best combination of aggregators and scalers

Image taken from the arXiv version of the paper.

Library of aggregators

⁵Corso et al., *Principal Neighbourhood Aggregation for Graph Nets*, Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020

Principal Neighborhood Aggregation⁵

Select the best combination of aggregators and scalers

Library of aggregators

⁵Corso et al., Principal Neighbourhood Aggregation for Graph Nets, Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020

O5 Principal Neighborhood Aggregation⁵

$$S = \left(\frac{\log(d+1)}{\delta}\right)^{\alpha}$$

$$\delta = \frac{1}{|train|} \sum_{i \in train} \log(d_i + 1)$$

$$S_{amp}, \alpha = 1$$
 $S_{att}, \alpha = -1$ $S_{identity}$

06 Learning Aggregation Functions⁶

Don't choose the aggregation function(s) - learn it!

⁵Pellegrini et al., *Learning Aggregation Functions*, under revision, 2020

Don't choose the aggregation function(s) - learn it!

$$L_{a,b}(X) := \left(\sum_{x_i \in X} x_i^b\right)^a \qquad a, b \ge 0, x_i > 0$$

06 Learning Aggregation Functions⁶

Don't choose the aggregation function(s) - learn it!

$$L_{a,b}(X) := \left(\sum_{x_i \in X} x_i^b\right)^a \qquad a, b \ge 0, x_i > 0$$

$$LAF(\boldsymbol{X}) := \frac{\alpha L_{a,b}(\boldsymbol{X}) + \beta L_{c,d}(\boldsymbol{1} - \boldsymbol{X})}{\gamma L_{e,f}(\boldsymbol{X}) + \delta L_{g,h}(\boldsymbol{1} - \boldsymbol{X})}$$

06 Learning Aggregation Functions⁶

Don't choose the aggregation function(s) - learn it!

$$L_{a,b}(X) := \left(\sum_{x_i \in X} x_i^b\right)^a \quad a, b \ge 0, x_i > 0$$

Learnable parameters

$$LAF(\boldsymbol{X}) := \frac{\alpha L_{a,b}(\boldsymbol{X}) + \beta L_{c,d}(\boldsymbol{1} - \boldsymbol{X})}{\gamma L_{e,f}(\boldsymbol{X}) + \delta L_{q,h}(\boldsymbol{1} - \boldsymbol{X})}$$

MAX, MIN, SUM, MEAN, MOMENTS, MIN/MAX, COUNT ...

Learning Aggregation Functions

07 Aggregation in Pytorch Geometric

PyTorch Geometric provides the MessagePassing base class.

METHODS

Aggregates messages from neighbors (sum, mean, max)

Constructs messages from node j to node i in analogy to $\phi\Theta$

Propagate messages

Updates node embeddings in analogy to $\gamma\Theta$

```
\label{eq:aggregate} \begin{tabular}{ll} \textbf{aggregate (inputs:} torch.Tensor, index: torch.Tensor, ptr: Optional[torch.Tensor] = None, dim_size: Optional[int] = None () $\rightarrow$ torch.Tensor [source] $\end{tabular}
```

```
message (x_j: torch.Tensor) → torch.Tensor [source]

propagate (edge_index: Union[torch.Tensor, torch_sparse.tensor.SparseTensor], size:
Optional[Tuple[int, int]] = None, **kwargs) [source]

update (inputs: torch.Tensor) → torch.Tensor [source]
```

07 Aggregation in Pytorch Geometric

PyTorch Geometric provides the MessagePassing base class.

METHODS

Aggregates messages from neighbors (sum, mean, max)

aggregate (inputs: torch.Tensor, index: torch.Tensor, ptr: Optional[torch.Tensor] = None, dim_size: Optional[int] = None) → torch.Tensor [source]

Constructs messages from node j to node i in analogy to $\phi\Theta$

Propagate messages

Updates node embeddings in analogy to $\phi\Theta$

```
message (x_j: torch.Tensor) → torch.Tensor [source]

propagate (edge_index: Union[torch.Tensor, torch_sparse.tensor.SparseTensor], size:
Optional[Tuple[int, int]] = None, **kwargs) [source]

update (inputs: torch.Tensor) → torch.Tensor [source]
```