5. LÖSUNGEN 93

LÖSUNG 41. Die Menge $M=\{a,b,c,d\}$ soll mit der Operation * eine Gruppe bilden. Ergänzen Sie die Verknüpfungstafel und bestimmen Sie, ob die resultierende Gruppe kommutativ ist:

x * y	y = a	y = b	y = c	y = d
x = a				c
x = b		b		
x = c	b			
x = d			a	

• Da b * b = b ist, muss b das neutrale Element sein.

x * y	y = a	y = b	y = c	y = d
x = a		a		c
x = b	a	b	c	d
x = c	b	c		
x = d		d	a	

- ullet Angenommen d*d=d, das wäre ein Widerspruch zu b neutrales Element.
- Angenommen d*d=a, das wäre ein Widerspruch zu d*c=a, da es dann kein d^{-1} geben könnte, mit $d=d^{-1}*a=c$.
- Angenommen d*d=c, das wäre entsprechend ein Widerspruch zu a*d=c.
- $\bullet \ \ \mathsf{Damit} \ \mathsf{ist} \ d*d = b \ \mathsf{und} \ d*a = c.$

x * y	y = a	y = b	y = c	y = d
x = a		a		c
x = b	a	b	c	d
x = c	b	c		
x = d	c	d	a	b

• Analog füllen sich die restlichen Felder im Ausschlussverfahren:

x * y	y = a	y = b	y = c	y = d
x = a	d	a	b	c
x = b	a	b	c	d
x = c	b	c	d	a
x = d	c	d	a	b

• Die Verknüpfungstafel ist symmetrisch, also ist die Gruppe kommutativ.

LÖSUNG 42. Die Menge $M = \{a, b, c, d\}$ soll mit der Operation * eine Gruppe bilden. Ergänzen Sie die Verknüpfungstafel und bestimmen Sie, ob die resultierende Gruppe kommutativ ist:

94 5. LÖSUNGEN

x * y	y = a	y = b	y = c	y = d
x = a				a
x = b		d		
x = c	b			
x = d				

• Wegen a*d=a ist d das neutrale Element.

x * y	y = a	y = b	y = c	y = d
x = a				a
x = b		d		b
x = c	b			c
x = d	a	b	c	d

• Für b*a kommt als Ergebnis nur c in Frage, da b*b=d, b*d=b, d*a=a.

x * y	y = a	y = b	y = c	y = d
x = a				a
x = b	c	d		b
x = c	b			c
x = d	a	b	c	d

• Im Auschlussprinzip ergibt sich:

• Damit ist die Gruppe kommutativ, da die Verknüpfungstafel symmetrisch ist.

LÖSUNG 43. Bestimmen Sie alle Elemente von $\langle (12)(34), (13)(24) \rangle$. Ist die resultierende Gruppe kommutativ?

- Sei $\sigma=(12)(34)$ und $\tau=(13)(24)$. Da $\sigma^2=\tau^2=id$, ist das ein Element der Gruppe.
- Es ist $\sigma \circ \tau = (14)(23) = \tau \circ \sigma$.
- Es ist $\sigma \circ \tau \circ \sigma = (13)(24) = \tau$ und $\tau \circ \sigma \circ \tau = (12)(34) = \sigma$. Es gibt keine weiteren Elemente.
- $\bullet \ \ \mathsf{Damit} \ \ \mathsf{lautet} \ \ \mathsf{die} \ \ \mathsf{Gruppe} \ \ \langle (12)(34), (13)(24) \rangle = \{id, (12)(34), (13)(24), (14)(23)\}.$
- Da $\tau \circ \sigma = \sigma \circ \tau$, $\tau \circ (\sigma \circ \tau) = \sigma = (\sigma \circ \tau) \circ \tau$ und $(\sigma \circ \tau) \circ \sigma = \tau = \sigma \circ (\sigma \circ \tau)$ ist die Gruppe kommutativ.

5. LÖSUNGEN 95

LÖSUNG 44. Bestimmen Sie alle Elemente von $\langle (13), (1234) \rangle$. Ist die resultierende Gruppe kommutativ?

```
• Sei \sigma = (13) und \tau = (1234). Da \sigma^2 = id, ist das ein Element der Gruppe.
```

- Es ist $\tau^2 = (13)(24)$ und $\tau^3 = (1432) = \tau^{-1}$, $\tau^4 = id$.
- Weiterhin ist $\tau \circ \sigma = (14)(23), \ \tau^2 \circ \sigma = (24), \ \tau^3 \circ \sigma = (12)(34).$
- Umgekehrt liefert $\sigma \circ \tau = (12)(34)$, $\sigma \circ \tau^2 = (24)$, $\sigma \circ \tau^3 = (14)(23)$ nichts Neues.
- Dann ist $\tau \circ \sigma \circ \tau = (13)$ mit $\sigma \circ \tau \circ \sigma = (1432)$ auch nichts weiteres zu erreichen.
- Damit lautet die Gruppe $\langle (13), (1234) \rangle = \{id, (13), (24), (1234), (1432), (12)(34), (13)(24), (14)(23)\}.$
- Da $\tau \circ \sigma = (14)(23)$ aber $\sigma \circ \tau = (12)(34)$ ist die Gruppe nicht kommutativ.

LÖSUNG 45. Bestimmen Sie in $(\mathbb{Z}_8,+)$ die Ordnung aller Elemente.

```
• \langle 0 \rangle = \{0\}, |\langle 0 \rangle| = 1
```

- $\langle 1 \rangle = \{0,1,2,3,4,5,6,7\}$, $|\langle 1 \rangle| = 8$
- $\langle 2 \rangle = \{0, 2, 4, 6\}, |\langle 2 \rangle| = 4$
- $\langle 3 \rangle = \{0, 3, 6, 1, 4, 7, 2, 5\}, |\langle 3 \rangle| = 8$
- $\langle 4 \rangle = \{0,4\}, |\langle 4 \rangle| = 2$
- $\langle 5 \rangle = \{0, 5, 2, 7, 4, 1, 6, 3\}, |\langle 5 \rangle| = 8$
- $\langle 6 \rangle = \{0, 6, 4, 2\}, |\langle 6 \rangle| = 4$
- $\langle 7 \rangle = \{0, 7, 6, 5, 4, 3, 2, 1\}, |\langle 7 \rangle| = 8$

LÖSUNG 46. Bestimmen Sie in $(\mathbb{Z}_{12},+)$ die Ordnung aller Elemente.

```
• \langle 0 \rangle = \{0\}, \ |\langle 0 \rangle| = 1
```

- $\langle 1 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}, |\langle 1 \rangle| = 12$
- $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}, |\langle 2 \rangle| = 6$
- $\langle 3 \rangle = \{0, 3, 6, 9\}, |\langle 3 \rangle| = 4$
- $\langle 4 \rangle = \{0, 4, 8\}, \ |\langle 4 \rangle| = 3$
- $\langle 5 \rangle = \{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7\}, |\langle 5 \rangle| = 12$
- $\langle 6 \rangle = \{0, 6\}, |\langle 6 \rangle| = 2$
- $\langle 7 \rangle = \{0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5\}, |\langle 7 \rangle| = 12$
- $\langle 8 \rangle = \{0, 8, 4\}, |\langle 8 \rangle| = 3$
- $\langle 9 \rangle = \{0, 9, 6, 3\}, |\langle 9 \rangle| = 4$
- $\langle 10 \rangle = \{0, 10, 8, 6, 4, 2\}, |\langle 10 \rangle| = 6$
- $\langle 11 \rangle = \{0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1\}, |\langle 11 \rangle| = 12$

LÖSUNG 47. Erstellen Sie bezüglich $3x^2-6x$ das Hassediagramm zur Teilbarkeit in $\mathbb{Z}[x]$ durch Terme mit positivem Vorzeichen.

Zunächst ist $3x^2 - 6x = 3 \cdot (x^2 - 2x) = 3 \cdot x \cdot (x - 2)$. Daraus ergibt sich folgendes Diagramm:

96 5. LÖSUNGEN

LÖSUNG 48. Erstellen Sie bezüglich $2x^2+6x+4$ das Hassediagramm zur Teilbarkeit in $\mathbb{Z}[x]$ durch Terme mit positivem Vorzeichen.

Zunächst ist $2x^2+6x+4=2\cdot(x^2+3x+2)=2\cdot(x+1)\cdot(x+2)$. Daraus ergibt sich folgendes Diagramm:

LÖSUNG 49. Bestimmen Sie durch den euklidischen Algorithmus den $x=\mathrm{ggT}(81,57)$ und zwei ganze Zahlen u,v mit x=81u+57v.

5. LÖSUNGEN 97

k	a_k	r_k	u_k	v_k
0	81		1	0
1	57	$\left\lfloor \frac{81}{57} \right\rfloor = 1$	0	1
2	$81 - 1 \cdot 57 = 24$	$\left\lfloor \frac{57}{24} \right\rfloor = 2$	$1 - 1 \cdot 0 = 1$	$0 - 1 \cdot 1 = -1$
3	$57 - 2 \cdot 24 = 9$	$\lfloor \frac{24}{9} \rfloor = 2$	$0 - 2 \cdot 1 = -2$	$1 - 2 \cdot (-1) = 3$
4	$24 - 2 \cdot 9 = 6$	$\lfloor \frac{9}{6} \rfloor = 1$	$1 - 2 \cdot (-2) = 5$	$-1 - 2 \cdot 3 = -7$
5	$9 - 1 \cdot 6 = 3$	$\lfloor \frac{6}{3} \rfloor = 2$	$-2 - 1 \cdot 5 = -7$	$3 - 1 \cdot (-7) = 10$

Damit ist $ggT(81, 57) = 3 = -7 \cdot 81 + 10 \cdot 57$.

LÖSUNG 50. Bestimmen Sie durch den euklidischen Algorithmus den x = ggT(98,77) und zwei ganze Zahlen u,v mit x = 98u + 77v.

k	a_k	r_k	u_k	v_k
0	98		1	0
1	77	$\lfloor \frac{98}{77} \rfloor = 1$	0	1
2	$98 - 1 \cdot 77 = 21$	$\lfloor \frac{77}{21} \rfloor = 3$	$1 - 1 \cdot 0 = 1$	$0 - 1 \cdot 1 = -1$
3	$77 - 3 \cdot 21 = 14$	$\lfloor \frac{21}{14} \rfloor = 1$	$0 - 3 \cdot 1 = -3$	$1 - 3 \cdot (-1) = 4$
4	$21 - 1 \cdot 14 = 7$	$\lfloor \frac{14}{7} \rfloor = 2$	$1 - 1 \cdot (-3) = 4$	$-1 - 1 \cdot 4 = -5$

Damit ist $ggT(98,77) = 7 = 4 \cdot 98 - 5 \cdot 77$.

LÖSUNG 51. Bestimmen Sie in \mathbb{Z}_{94} eine positive multiplikative Inverse zu 41.

k	a_k	r_k	u_k	v_k
0	94		1	0
1	41	$\lfloor \frac{94}{41} \rfloor = 2$	0	1
2	$94 - 2 \cdot 41 = 12$	$\left\lfloor \frac{41}{12} \right\rfloor = 3$	$1 - 2 \cdot 0 = 1$	$0 - 2 \cdot 1 = -2$
3	$41 - 3 \cdot 12 = 5$	$\left\lfloor \frac{12}{5} \right\rfloor = 2$	$0 - 3 \cdot 1 = -3$	$1 - 3 \cdot (-2) = 7$
4	$12 - 2 \cdot 5 = 2$	$\lfloor \frac{5}{2} \rfloor = 2$	$1 - 2 \cdot (-3) = 7$	$-2 - 2 \cdot 7 = -16$
5	$5 - 2 \cdot 2 = 1$	$\left\lfloor \frac{2}{1} \right\rfloor = 2$	$-3 - 2 \cdot 7 = -17$	$7 - 2 \cdot (-16) = 39$

Damit ist $ggT(94,41) = 1 = -17 \cdot 94 + 39 \cdot 41$ und $41 \cdot 39 \equiv 1 \mod 94$.

LÖSUNG 52. Bestimmen Sie in \mathbb{Z}_{99} eine positive multiplikative Inverse zu 70.

98 5. LÖSUNGEN

k	a_k	r_k	u_k	v_k
0	99		1	0
1	70	$\lfloor \frac{99}{70} \rfloor = 1$	0	1
2	$99 - 1 \cdot 70 = 29$	$\lfloor \frac{70}{29} \rfloor = 2$	$1 - 1 \cdot 0 = 1$	$0 - 1 \cdot 1 = -1$
3	$70 - 2 \cdot 29 = 12$	$\left\lfloor \frac{29}{12} \right\rfloor = 2$	$0 - 2 \cdot 1 = -2$	$1 - 2 \cdot (-1) = 3$
4	$29 - 2 \cdot 12 = 5$	$\left\lfloor \frac{12}{5} \right\rfloor = 2$	$1 - 2 \cdot (-2) = 5$	$-1 - 2 \cdot 3 = -7$
5	$12 - 2 \cdot 5 = 2$	$\lfloor \frac{5}{2} \rfloor = 2$	$-2 - 2 \cdot 5 = -12$	$3 - 2 \cdot (-7) = 17$
6	$5 - 2 \cdot 2 = 1$	$\lfloor \frac{2}{1} \rfloor = 2$	$5 - 2 \cdot (-12) = 29$	$-7 - 2 \cdot 17 = -41$

Damit ist $ggT(99,70) = 1 = 29 \cdot 99 - 41 \cdot 70 = 29 \cdot 99 - 70 \cdot 99 + 99 \cdot 70 - 41 \cdot 70 = -41 \cdot 99 + 58 \cdot 70$ und $58 \cdot 70 \equiv 1 \mod 99$.