

# **Table of Contents**

- 1. Introduction
- 2. Problem Statement
- 3. Installing & Importing Libraries
  - 3.1 Installing Libraries
  - 3.2 <u>Upgrading Libraries</u>
  - 3.3 Importing Libraries
- 4. Data Acquisition & Description
  - 4.1 <u>Data Description</u>
  - 4.2 <u>Data Information</u>
  - 4.3 Pre Profiling Report
- 5. Data Pre-processing
- 6. Exploratory Data Analysis
- 7. Post Data Processing & Feature Selection
- 8. Model Development & Evaluation
  - 8.1 <u>Baseline Models</u>
  - 8.2 Oversampling Models
  - 8.3 Performance Chart
- 9. Conclusion

# 1. Introduction

- Customer churn (also known as customer attrition) refers to when a customer ceases his
  or her relationship with a company.
- It is an **important key business metric** because the **cost** of **retaining** an **existing customer** is far **less expensive than acquiring a new one**.



- 70% of companies say it's cheaper to retain a customer than acquire one while the cost of acquiring a new customer can be as much as seven times more expensive.
- **Example:** If you start your quarter with 400 customers and end with 380, your churn rate is 5% because you lost 5% of your customers.
- Businesses typically treat a customer as churned once a particular amount of time has elapsed since the customer's last interaction.
- Companies usually make a distinction between voluntary churn and involuntary churn.
  - Voluntary Churn (Controllable): It occurs due to a decision by the customer to switch to another company or service provider.
  - Involuntary Churn (Uncontrollable): It occurs due to circumstances such as a customer's relocation to a long-term care facility, death, or the relocation to a distant location.



#### **Prevention of Customer Churn**

- Lean into your best customers: Identify pool of customers that are most likely to cancel, and refocus your efforts to keep them on board.
- **Be proactive with communication:** Reach out to your customers before they need you and get the most out of your product or service.
- Define a roadmap for your new customers: A new product or service can be overwhelming
  for a customer. To ease the transition, it's helpful to set up a new customer onboarding
  process or roadmap to guide new customers through your product or service's features,
  functionality, and process.
- **Offer incentives:** Give customers a reason to stick around by offering them something special -- a promo, discount, loyalty program, etc.

- **Ask for feedback often:** Getting to the root of the specific issues plaguing your business requires you to take the time to collect feedback early and often.
- Analyze churn when it happens: You should be using data before customers churn in order to build strategies to proactively prevent it. First, start with analysis.
  - When are customers most frequently churning?
  - Is it 30, 60, or 90 days after they first start using your product or service?
  - Does churn happen if customers go a specific number of days without using the product or service?
- Stay competitive: Market conditions are constantly changing. Businesses focused on what's next -- trends, technology, and product advancements -- position themselves in a good spot in terms of avoiding disruption or "the next big thing."

#### Churn Scenario in India

- Absolute Data claims that in India 6% is the average monthly churn rate for Indian telecom customers.
- According to <u>The Indian Express</u>, The telecom subscriber base in the country reached 1,198.89 million in April, 2020.
- But the growth continued its downward trend in line with the slower pace of new customer additions by Reliance Jio.
- Jio was followed by Bharti Airtel which added 2.85 million new mobile subscribers, BSNL with 0.81 million, Vodafone 0.75 million and Idea 0.68 million.
- Tata Teleservices was the biggest loser of mobile subscribers in April. The net subscriber loss of the company was 1.46 million.
- Reliance Communications lost 1.32 million subscribers, Aircel 0.33 million, Sistema Shyam 0.27 million and MTNL 2,137 subscribers.
- State-run BSNL lost 1.86 million customers followed by MTNL which lost 7,888 customers.

# 2. Problem Statement

- Companies have been experiencing a high churn rate more than ever due to the rapid change in the development of the technology.
- Companies are under more pressure to generate revenue from other areas or gain new clients.
- For example, 4G technology has made great impact on the digital life.

K

- Companies have either drowned or shaken hands to survive in such tough competition.
- For example: Vodafone and IDEA have made a pact with each other to provide 4G services.



#### Scenario:

- · Aster Rhino, a USA based company that provides telecommunication services to the customers.
- They have been providing 3G services since 2008 and started providing 4G services after its launch.
- Due to boom in telecomm industry with 4G technology, it has become pain in the neck for the company to retain their customers.



- They are in the middle to set more cell sites of 4G network to improve their 4G services.
- It is plausible for customer to choose 4G services over 3G services due to benifits of cost, speed, latency etc.
- Till now they have been using manual traditional ways which now has become a problem to handle due to work complication.
- They have detailed history of their customers and are looking for an automated solution to identify the likeliness of customer churning from using their services.
- In turn, they decided to find more optimistic way and hired a team of data scientists to solve this problem. Consider you are one of them...

| Target Feature | Potential Values     |  |  |
|----------------|----------------------|--|--|
| churn          | False: Did not churn |  |  |
|                | True: Churned        |  |  |

# 3. Installing and importing libraries

# 3.1 Installing Libraries

```
!pip install -q datascience  # Package that is required by panda
!pip install -q pandas-profiling  # Toolbox for Generating Statistics
!pip install -q yellowbrick  # Toolbox for Measuring Machine Per

→ 1.6/1.6 MB 20.4 MB/s eta 0:00:00
```

## 3.2 Upgrading Libraries

#### Note:

- After upgrading, you need to restart the runtime.
- Make sure not to execute the cell above (3.1) and below (3.2) again after restarting the runtime.

# → 3.3 Importing Libraries

```
# For Panel Data Analysis
import pandas as pd
from pandas profiling import ProfileReport
import pandas.util.testing as tm
pd.set_option('display.max_columns', None)
pd.set option('display.max colwidth', None)
pd.set option('display.max rows', None)
pd.set option('mode.chained assignment', None)
# For Numerical Python
import numpy as np
# For Data Visualization
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from random import randint
# For Feature Selection
import seaborn as sns
from sklearn.feature_selection import SelectFromModel
# For Custom Transformers
from sklearn.base import BaseEstimator, TransformerMixin
# For Imputation
from sklearn.impute import KNNImputer
# For Feature Importances
from yellowbrick.model_selection import FeatureImportances
# For metrics evaluation
from sklearn.metrics import classification_report, plot_confusion_matrix, precis
# For Data Modeling
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
# To handle class imbalance problem
from imblearn.over_sampling import SMOTE
# To Disable Warnings
import warnings
warnings.filterwarnings(action = 'ignore')
→ <ipython-input-4-81ec32564e14>:3: DeprecationWarning: `import pandas_profiling
       from pandas_profiling import ProfileReport
    <ipython-input-4-81ec32564e14>:4: FutureWarning: pandas.util.testing is depre
      import pandas.util.testing as tm
```

# 4. Data Acquisition and Description

• This dataset is based on the details of customers' account accumulated by Aster Rhino and is accessible here.

| Rec | cords | Features    | Datase | t Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|-------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 333 | 33    | 21          | 303 KB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Id  | Feat  | ures        |        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 01  | State | 9           |        | The state of the customer. Contains: [KS, OH, NJ, OK, AL, MA, MO, LA, WV, IN, RI, IA, MT, NY, ID, VT, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |       |             |        | AZ,SC,NE,WY,HI,IL,NH,GA,AK,MD,AR,WI,OR,MI,DE,UT,CA,MN,SD,NC,WA,NM,NV,DC,KY,MD,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC,NC |
| 02  | Acco  | untLength   |        | Number of days since the customer started using services. Range: [1, 243]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 03  | Area  | Code        |        | The area code of the customer. Contains: [415, 408, 510]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 04  | Phor  | neNumber    |        | A unique phone number of the customer. Range: [3271058, 4229964]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 05  | Inter | nationalPla | ın?    | Whether the account has an active international plan or not. Contains: [No, Yes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 06  | Voic  | eMailPlan?  |        | Whether the account has an active voice mail plan or not. Contains: [No, Yes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07  | Num   | EmailMess   | ages   | Total number of voice mail messages consumed. Range: [0, 51]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 80  | Tota  | MorMin      |        | Total minutes consumed in the morning. Range: [0.0, 350.8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09  | Tota  | MorCalls    |        | Total number of calls consumed in the morning. Range: [0, 165]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10  | Tota  | MorCharge   | 9      | Total charges during morning (in cent). Range: [0.0, 59.64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | Tota  | EveMin      |        | Total minutes consumed in the evening. Range: [0.0, 363.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12  | Tota  | EveCalls    |        | Total number of calls consumed in the evening. Range: [0, 170]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13  | Tota  | EveCharge   |        | Total charges during evening (in cent). Range: [0.0, 30.91]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | Tota  | NightMin    |        | Total number of minutes consumed in the night. Range: [23.2, 395.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15  | Tota  | NightCalls  |        | Total number of calls consumed in the night. Range: [33, 175]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16  | Tota  | NightChar   | ge     | Total charges during night (in cent). Range: [1.04, 17.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17  | Tota  | IntMinutes  |        | Total international minutes consumed if subscribed services. Range: [0.0, 20.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18  | Tota  | IntCalls    |        | Total international calls consumed. Range: [0, 20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19  | Tota  | IntCharge   |        | Total international charges (in cent). Range: [0.0, 5.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20  | Cust  | omerServio  | eCalls | Total number of customer service calls consumed by customer. Range: [0, 9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21  | Chur  | n?          |        | Whether the customer has churned or not. Contains: [False, True]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

data = pd.read\_csv('https://storage.googleapis.com/telecom-analytics/TeleChurnDat print('Data Shape:', data.shape) data.head()



→ Data Shape: (3833, 21)

|   | State | AccountLength | AreaCode | PhoneNumber | InternationalPlan? | VoiceMailPl |
|---|-------|---------------|----------|-------------|--------------------|-------------|
| 0 | KS    | 128           | 415      | 3824657     | No                 |             |
| 1 | ОН    | 107           | 415      | 3717191     | No                 |             |
| 2 | NJ    | 137           | 415      | 3581921     | No                 |             |
| 3 | ОН    | 84            | 408      | 3759999     | Yes                |             |
| 4 | OK    | 75            | 415      | 3306626     | Yes                |             |

# ✓ 4.1 Data Description

• In this section we will get information about the data and see some observations.

print('Described Column Length:', len(data.describe().columns))
data.describe()

→ Described Column Length: 17

|       | AccountLength | AreaCode    | PhoneNumber  | NumEmailMessages | TotalMorMin | T |
|-------|---------------|-------------|--------------|------------------|-------------|---|
| count | 3833.000000   | 3833.000000 | 3.833000e+03 | 3833.000000      | 3803.000000 |   |
| mean  | 100.697626    | 437.447691  | 3.746407e+06 | 8.227759         | 180.078517  |   |
| std   | 39.872358     | 42.506606   | 2.758814e+05 | 13.724437        | 54.664611   |   |
| min   | 1.000000      | 408.000000  | 3.271058e+06 | 0.000000         | 0.000000    |   |
| 25%   | 73.000000     | 415.000000  | 3.506473e+06 | 0.000000         | 144.000000  |   |
| 50%   | 100.000000    | 415.000000  | 3.749107e+06 | 0.000000         | 179.900000  |   |
| 75%   | 127.000000    | 510.000000  | 3.988385e+06 | 20.000000        | 216.650000  |   |
| max   | 243.000000    | 510.000000  | 4.229964e+06 | 51.000000        | 350.800000  |   |

- On average customers perform 8 number of email messages.
- 50% of customers don't do any email messages while 75% of customers do 20 number of messages.
- On average customers talk 180 minutes of duration in the morning.

- 25% of customers talk 144 minutes of duration in the morning while 50% and 75% of customers talk 179 minutes and 216 minutes in the morning.
- On average customers like to perform 100 calls.
- 25% of customers like to perform 87 number of calls while 50% and 75% of customers like to perform 101 and 114 number of calls.
- On average it take 30 cents for morning services.
- 25% of customers have been charged with 24 cents while 50% and 75% of customers have been charged with 30 cents and 36 cents in the morning.
- Similarly users can understand the information for rest of the features.

#### 4.2 Data Information

• In this section we will see the **information about the types of features**.

```
data.info(verbose = True, memory_usage = 'deep')
```

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3833 entries, 0 to 3832
Data columns (total 21 columns):

| #    | Column                 | Non-Null Count   | Dtype   |  |  |  |  |  |
|------|------------------------|------------------|---------|--|--|--|--|--|
| 0    | State                  | 3833 non-null    | object  |  |  |  |  |  |
| 1    | AccountLength          | 3833 non-null    | int64   |  |  |  |  |  |
| 2    | AreaCode               | 3833 non-null    | int64   |  |  |  |  |  |
| 3    | PhoneNumber            | 3833 non-null    | int64   |  |  |  |  |  |
| 4    | InternationalPlan?     | 3833 non-null    | object  |  |  |  |  |  |
| 5    | VoiceMailPlan?         | 3833 non-null    | object  |  |  |  |  |  |
| 6    | NumEmailMessages       | 3833 non-null    | int64   |  |  |  |  |  |
| 7    | TotalMorMin            | 3803 non-null    | float64 |  |  |  |  |  |
| 8    | TotalMorCalls          | 3833 non-null    | int64   |  |  |  |  |  |
| 9    | TotalMorCharge         | 3833 non-null    | float64 |  |  |  |  |  |
| 10   | TotalEveMin            | 3822 non-null    | float64 |  |  |  |  |  |
| 11   | TotalEveCalls          | 3833 non-null    | int64   |  |  |  |  |  |
| 12   | TotalEveCharge         | 3833 non-null    | float64 |  |  |  |  |  |
| 13   | TotalNightMin          | 3815 non-null    | float64 |  |  |  |  |  |
| 14   | TotalNightCalls        | 3833 non-null    | int64   |  |  |  |  |  |
| 15   | TotalNightCharge       | 3833 non-null    | float64 |  |  |  |  |  |
| 16   | TotalIntMinutes        | 3833 non-null    | float64 |  |  |  |  |  |
| 17   | TotalIntCalls          | 3833 non-null    | int64   |  |  |  |  |  |
| 18   | TotalIntCharge         | 3833 non-null    | float64 |  |  |  |  |  |
| 19   | CustomerServiceCalls   | 3833 non-null    | int64   |  |  |  |  |  |
| 20   | Churn?                 | 3833 non-null    | bool    |  |  |  |  |  |
| dtyp | es: bool(1), float64(8 | ), int64(9), obj | ect(3)  |  |  |  |  |  |
| memo | memory usage: 1.1 MB   |                  |         |  |  |  |  |  |

#### **Observations:**

• We can **observe missing values** in the data.



- Apart from missing information all the features have correct type.
- Let's explore further.

## 4.3 Pre Profiling Report

- For quick analysis pandas profiling is very handy.
- Generates profile reports from a pandas DataFrame.
- For each column statistics are presented in an interactive HTML report.

```
`#profile = ProfileReport(df = data)
#profile.to_file(output_file = 'Pre Profiling Report.html')
#print('Accomplished!')
     Summarize dataset:
                                                               287/287 [01:08<00:00, 5.21it/s,
                                                               Completed]
     100%
     Generate report structure:
                                                                         1/1 [00:10<00:00,
     100%
                                                                         10.00s/it]
     Render HTML: 100%
                                                                 1/1 [00:10<00:00, 10.55s/it]
#from google.colab import files
                                                          # Use only if you are using Goo
#files.download('Pre Profiling Report.html')
                                                          # Use only if you are using Goo
\rightarrow
```

#### **Observations:**





- Around **59 (0.1%) cells** contains **missing information**.
- Data contains 500 (13%) duplicate rows.
- TotalMorCharge is highly correlated to TotalMorMin.
- TotalEveCharge is highly correlated to TotalEveMin.
- TotalNightCharge is highly correlated to TotalNightMin.
- TotalIntCharge is highly correlated to TotalIntMin.

# 5. Data Pre-Processing

# 5.1 Identification & Handling of Missing Data

 In this section we will analyze and identify missing information such as null data and zero data.

#### **Before Handling Missing Information**

```
missing_frame = pd.DataFrame(index = data.columns.values)
missing_frame['Null Frequency'] = data.isnull().sum().values
nullpercent = data.isnull().sum().values/data.shape[0]
missing_frame['Missing Null %age'] = np.round(nullpercent, decimals = 4) * 100
missing_frame.transpose()
```

| <b>→</b> |                      | State | AccountLength | AreaCode | PhoneNumber | InternationalPlan? | Voi |
|----------|----------------------|-------|---------------|----------|-------------|--------------------|-----|
|          | Null<br>Frequency    | 0.0   | 0.0           | 0.0      | 0.0         | 0.0                |     |
|          | Missing<br>Null %age | 0.0   | 0.0           | 0.0      | 0.0         | 0.0                |     |

#### Observation:

- · Feature:
  - Problem → Solution {Reason}
- TotalMorMin:
  - Null Data → KNN Imputation (Null proportion is small.)
- TotalEveMin:
  - Null Data → KNN Imputation (Null proportion is small.)
- TotalNightMin:
  - Null Data → KNN Imputation (Null proportion is small.)

## **KNN Imputer:**

- This is an **effective approach** where data **imputation** is **done** using **prediction** by a model.
- A **model** is **created** for **each feature** that has **missing values**, taking as input values of all other input features.



• A **new sample** is **imputed** by **finding** the **samples** in the training set "**closest**" to it and **averages** these **nearby points** to **fill in the value**.

Sample Example

**Complete Working** 





#### **Performing Operations**

```
knn_imputer = KNNImputer()
raw_num = knn_imputer.fit_transform(data[['TotalMorMin', 'TotalEveMin', 'TotalNig
raw_frame = pd.DataFrame(data = raw_num, columns = ['TotalMorMin', 'TotalEveMin',

data['TotalMorMin'] = raw_frame['TotalMorMin']
data['TotalEveMin'] = raw_frame['TotalEveMin']
data['TotalNightMin'] = raw_frame['TotalNightMin']
```

# 5.2 Identification & Handling of Redundant Data



- In this section we will identify redundant rows and columns in our data if present.
- For handling duplicate features we have created a custom function.
- This custom function will help us to identify duplicacy in features with different name but similar values:

```
def duplicate_cols(dataframe):
 ls1 = []
 ls2 = []
 columns = dataframe.columns.values
 for i in range(0, len(columns)):
   for j in range(i+1, len(columns)):
     if (np.where(dataframe[columns[i]] == dataframe[columns[j]], True, False).a
       ls1.append(columns[i])
       ls2.append(columns[j])
 if ((len(ls1) == 0) & (len(ls2) == 0)):
   return None
 else:
   duplicate_frame = pd.DataFrame()
   duplicate frame['Feature 1'] = ls1
   duplicate_frame['Feature 2'] = ls2
   return duplicate_frame
print('Contains Redundant Records?:', data.duplicated().any())
print('Duplicate Count:', data.duplicated().sum())
print('-----
print('Contains Redundant Features?:', duplicate_cols(data))
→ Contains Redundant Records?: True
    Duplicate Count: 500
    Contains Redundant Features?: None
```

#### **Performing Operations**

```
before_shape = data.shape
print('Data Shape [Before]:', before_shape)
data.drop_duplicates(inplace = True)
after shape = data.shape
print('Data Shape [After]:', after_shape)
drop_nums = before_shape[0] - after_shape[0]
drop_percent = np.round(drop_nums / before_shape[0], decimals = 3) * 100
print('Drop Ratio:', drop_percent, '%')
    Data Shape [Before]: (3833, 21)
    Data Shape [After]: (3333, 21)
    Drop Ratio: 13.0 %
```

#### **After Handling Duplicate Data**

# 

#### **Observation:**



# 6. Exploratory Data Analysis

# Question 1: What is the frequency and proportion of customer churn?

```
fig = plt.figure(figsize = [15, 8])
plt.subplot(1, 2, 1)
ax = sns.countplot(x = 'Churn?', data = data, palette = ['#9FBA81', '#0272A2'])
for p in ax.patches:
 percentage = '{}'.format(p.get_height())
 x = p_get_x() + p_get_width() / 2.5
 y = p.get_y() + p.get_height() + 2
 ax.annotate(percentage, (x, y))
plt.xlabel(xlabel = 'Churn?', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution', size = 14)
plt.subplot(1, 2, 2)
space = np.ones(2)/10
data['Churn?'].value_counts().plot(kind = 'pie', explode = space, fontsize = 14,
                                       shadow = True, startangle = 160, figsize =
plt.ylabel(ylabel = 'Churn?', size = 14)
plt.title(label = 'Proportion Distribution', size = 14)
plt.tight layout(pad = 3.0)
plt.suptitle(t = 'Frequency & Proportion of Churned Customers', y = 1.02, size =
plt.show()
```

#### $\rightarrow$

Frequency & Proportion of Churned Customers



- The churn percentage is 14.5%.
- Approximately 483 people churned out of 3333 people.
- One thing is clear that the performance evalution metric is not accuracy because we can
  observe class imbalance.

## Question 2: What is the frequency and proportion of InternationalPlan?

```
fig = plt.figure(figsize = [15, 8])
plt.subplot(1, 2, 1)
ax = sns.countplot(x = 'InternationalPlan?', data = data, palette = ['#8AEA8D', '
for p in ax.patches:
 percentage = '{}'.format(p.get_height())
 x = p.get_x() + p.get_width() / 2.5
 y = p.get_y() + p.get_height() + 2
 ax.annotate(percentage, (x, y))
plt.xlabel(xlabel = 'InternationalPlan?', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution', size = 14)
plt.subplot(1, 2, 2)
space = np.ones(2)/10
data['InternationalPlan?'].value_counts().plot(kind = 'pie', explode = space, fon
                                       shadow = True, startangle = 160, figsize =
plt.ylabel(ylabel = 'InternationalPlan?', size = 14)
plt.title(label = 'Proportion Distribution', size = 14)
plt.tight layout(pad = 3.0)
plt.suptitle(t = 'Frequency & Proportion of InternationalPlan?', y = 1.02, size =
plt.show()
```





Frequency & Proportion of InternationalPlan?



• 3010 (around 90%) of customers are not using international plan while only 323 (around 10%) are using international plan.



# Question 3: What is the frequency distribution of InternationalPlan? with respect to Churn?

```
figure = plt.figure(figsize = [15, 8])
ax = sns.countplot(x = 'InternationalPlan?', hue = 'Churn?', data = data, palette

total = data.shape[0]
for p in ax.patches:
    percentage = '{}'.format(p.get_height()) + ' (' +'{:.2f}%'.format(100*p.get_heix = p.get_x() + p.get_width() / 3
        y = p.get_y() + p.get_height() + 2
        ax.annotate(percentage, (x, y))

plt.xlabel(xlabel = 'InternationalPlan?', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution of InternationalPlan? with respect to C
plt.legend(loc = 'upper right')
plt.grid(b = True)
plt.show()
```



- Customers who don't have international plan:
  - Un-churned customers are approx 7.5X than churned customers.
- Customers who have international plan:
  - Un-churned customers are approx 1.4% more than churned customers.

#### Question 4: What is the frequency and proportion of VoiceMailPlan?

```
fig = plt.figure(figsize = [15, 8])
plt.subplot(1, 2, 1)
ax = sns.countplot(x = 'VoiceMailPlan?', data = data, palette = ['#A056DB', '#F46
for p in ax.patches:
 percentage = '{}'.format(p.get_height())
 x = p.get_x() + p.get_width() / 2.5
 y = p.get_y() + p.get_height() + 2
 ax.annotate(percentage, (x, y))
plt.xlabel(xlabel = 'VoiceMailPlan?', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution', size = 14)
plt.subplot(1, 2, 2)
space = np.ones(2)/10
data['VoiceMailPlan?'].value_counts().plot(kind = 'pie', explode = space, fontsiz
                                       shadow = True, startangle = 160, figsize =
plt.ylabel(ylabel = 'VoiceMailPlan?', size = 14)
plt.title(label = 'Proportion Distribution', size = 14)
plt.tight_layout(pad = 3.0)
plt.suptitle(t = 'Frequency & Proportion of VoiceMailPlan?', y = 1.02, size = 16)
plt.show()
```





Frequency & Proportion of VoiceMailPlan?



2411 (around 72%) of customers are not using voice mail plan while only 922 (around 28%) are using voice mail plan.



# Question 5: What is the frequency distribution of VoiceMailPlan? with respect to Churn?

```
figure = plt.figure(figsize = [15, 8])
ax = sns.countplot(x = 'VoiceMailPlan?', hue = 'Churn?', data = data, palette = [

total = data.shape[0]
for p in ax.patches:
    percentage = '{}'.format(p.get_height()) + ' (' +'{:.2f}%'.format(100*p.get_heix = p.get_x() + p.get_width() / 3
        y = p.get_y() + p.get_height() + 2
        ax.annotate(percentage, (x, y))

plt.xlabel(xlabel = 'VoiceMailPlan?', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution of VoiceMailPlan? with respect to Churn plt.legend(loc = 'upper right')
plt.grid(b = True)
plt.show()
```



- Customers who have voicemail plan:
  - Un-churned customers are approx 10.5X than churned customers.
- Customers who don't have voicemail plan:
  - Un-churned customers are approx 5X more than churned customers.

#### Question 6: What is the frequency and proportion of AreaCode?

```
fig = plt.figure(figsize = [15, 8])
plt.subplot(1, 2, 1)
ax = sns.countplot(x = 'AreaCode', data = data, palette = ['#66C2A5', '#FC8D62',
for p in ax.patches:
 percentage = '{}'.format(p.get_height())
 x = p.get_x() + p.get_width() / 2.5
 y = p.get_y() + p.get_height() + 2
 ax.annotate(percentage, (x, y))
plt.xlabel(xlabel = 'AreaCode', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution', size = 14)
plt.subplot(1, 2, 2)
space = np.ones(3)/10
data['AreaCode'].value_counts().plot(kind = 'pie', explode = space, fontsize = 14
                                       shadow = True, startangle = 160, figsize =
plt.ylabel(ylabel = 'AreaCode', size = 14)
plt.title(label = 'Proportion Distribution', size = 14)
plt.tight_layout(pad = 3.0)
plt.suptitle(t = 'Frequency & Proportion of AreaCode', y = 1.02, size = 16)
plt.show()
```



Frequency & Proportion of AreaCode



- 838 (25.1%) of customers belong to area code 408 (San Jose).
- 1655 (49.7%) of customers belongs to area code 415 (San Francisco Bay area).
- 840 (25.2%) of customers belongs to area code 510 (Oakland).
- On observing above three points, we can say that majority of customers belongs to San Francisco Bay area.

# Question 7: What is the frequency distribution of AreaCode with respect to Churn?



```
figure = plt.figure(figsize = [15, 8])
ax = sns.countplot(x = 'AreaCode', hue = 'Churn?', data = data, palette = ['#CAB2

total = data.shape[0]
for p in ax.patches:
    percentage = '{}'.format(p.get_height()) + ' (' +'{:.2f}%'.format(100*p.get_heix = p.get_x() + p.get_width() / 3.5
    y = p.get_y() + p.get_height() + 2
    ax.annotate(percentage, (x, y))

plt.xlabel(xlabel = 'AreaCode', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution of AreaCode with respect to Churn?', si
plt.legend(loc = 'upper right')
plt.grid(b = True)
plt.show()
```



- Customers who belongs to area code 408:
  - Un-churned customers are approx 6X than churned customers.
- Customers who belongs to area code 415:
  - Un-churned customers are approx 6X more than churned customers.
- Customers who belongs to area code 510:

• Un-churned customers are approx 5.5X more than churned customers.

## **Question 8: What is the frequency distribution of State with respect to Churn?**

```
figure = plt.figure(figsize = [20, 8])
ax = sns.countplot(x = 'State', hue = 'Churn?', data = data, palette = ['#1F77B4'

total = data.shape[0]
for p in ax.patches:
    percentage = '{}'.format(p.get_height())
    x = p.get_x() + p.get_width() / 51
    y = p.get_y() + p.get_height() + 2
    ax.annotate(percentage, (x, y))

plt.xlabel(xlabel = 'State', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution of State with respect to Churn?', size
plt.legend(loc = 'upper right')
plt.grid(b = True)
plt.show()
```



Question 9: What is the frequency distribution of CustomerServiceCalls with respect to Churn?

```
figure = plt.figure(figsize = [15, 8])
ax = sns.countplot(x = 'CustomerServiceCalls', hue = 'Churn?', data = data, palet

total = data.shape[0]
for p in ax.patches:
    percentage = '{:.2f}%'.format(100*p.get_height()/total)
    x = p.get_x() + p.get_width() / 10
    y = p.get_y() + p.get_height() + 2
    ax.annotate(percentage, (x, y))

plt.xlabel(xlabel = 'CustomerServiceCalls', size = 14)
plt.ylabel(ylabel = 'Frequency', size = 14)
plt.title(label = 'Frequency Distribution of CustomerServiceCalls with respect to
plt.legend(loc = 'upper right')
plt.grid(b = True)
plt.show()
```



 The number of received calls (customer service) has been descirbed in tabular form as below:

| No. of Calls | Description                                                        |
|--------------|--------------------------------------------------------------------|
| 0            | Un-churned customers are approx 6.5X more than churned customers.  |
| 1            | Un-churned customers are approx 9X more than churned customers.    |
| 2            | Un-churned customers are approx 7.5X more than churned customers.  |
| 3            | Un-churned customers are approx 9X more than churned customers.    |
| 4            | Un-churned customers are approx 0.42% more than churned customers. |
| 5            | Un-churned customers are approx 1.5X less than churned customers.  |
| 6            | Un-churned customers are approx 1.75X less than churned customers. |
| 7            | Un-churned customers are approx 0.03% less than churned customers. |
| 8            | Un-churned customers are equal to the churned customers.           |
| 9            | Un-churned customers are approx 0.06% less than churned customers. |

**Note:** These are few question, from here if you would like to explore further, you are most welcome.

# 7. Post Data Processing & Feature Selection

- In this part we will perform encoding over categorical features and feed it to the Random
   Forest because machines can't understand human language.
- Random Forest will then identify important features for our model using threshold over the information gain over reduction in impurity.
- And finally we will split our data for the model development.



# 7.1 Encoding Categorical Features

- Before encoding the features we must identify the cardinality of the features.
- Then decide which type of encoding we should perform (Target, Dummy etc.).

```
cat_features = []
label_len = []
# Identify Categorical Features
for i in data.columns:
  if (data[i].dtype == object):
    cat_features.append(i)
# Identify Labels Length per Feature
for i in cat features:
  label_len.append(len(data[i].unique()))
print('Total Categorical Features:', len(cat_features))
# Categorical Feature Frame Representation
cat_frame = pd.DataFrame(data = {'Length': label_len}, index = cat_features)
cat_frame.transpose()
→ Total Categorical Features: 3
            State InternationalPlan? VoiceMailPlan?
     Length
                51
                                     2
                                                     2
```

- We can observe that State has high cardinality labels. We will perform K Fold Target Encoding over this feature.
- For rest of the features we will perform dummy encoding.
- For KFold Target Encoding we have created a class as follows:

# **K Fold Target Encoding:**



- Target encoding is one of the most powerful techniques in feature engineering.
- It has been widely applied and developed in different forms.
- The limitation of Target Encoding is the overfitting of the data.
- The **goal** of **K Fold Target Encoding** is to **reduce** the **overfitting** by **adding regularization** to the mean encoding.
- Let's take an example as follows:

**Example** Calculation

| #  | Feature | Target | Encoded Feature |
|----|---------|--------|-----------------|
| 1  | Α       | 1      | 0.6             |
| 2  | В       | 0      | 0.3             |
| 3  | В       | 0      | 0.3             |
| 4  | В       | 1      | 0.3             |
| 5  | В       | 1      | 0.3             |
| 6  | Α       | 1      | 0.6             |
| 7  | В       | 0      | 0.3             |
| 8  | Α       | 0      | 0.6             |
| 9  | Α       | 0      | 0.6             |
| 10 | В       | 0      | 0.3             |
| 11 | Α       | 1      | 0.6             |
| 12 | Α       | 0      | 0.6             |
| 13 | В       | 1      | 0.3             |
| 14 | Α       | 0      | 0.6             |
| 15 | Α       | 1      | 0.6             |
| 16 | В       | 0      | 0.3             |
| 17 | В       | 0      | 0.3             |
| 18 | В       | 0      | 0.3             |
| 19 | Α       | 1      | 0.6             |
| 20 | Α       | 1      | 0.6             |

Here the count of A = 10, B = 10. The Mean(A): 6/10 = 0.6, Mean(B): 3/10 = 0.3

- In the above diagram, we can observer overfitting over label A. To handle this overfitting we will perform 5 fold target encoding.
- Each fold's categories are encoded based on the mean of the rest of the fold's categories.
- For first fold, mean values are estimated based on the rest of the folds i.e. Fold 2, Fold 3, Fold 4 & Fold 5.

Fold 1 View Calculation

| #  | Folds  | Feature | Target | K Fold Encoded Feature |
|----|--------|---------|--------|------------------------|
| 1  |        | Α       | 1      | 0.556                  |
| 2  | Fold 1 | В       | 0      | 0.285                  |
| 3  |        | В       | 0      | 0.285                  |
| 4  |        | В       | 1      | 0.285                  |
| 5  |        | В       | 1      |                        |
| 6  | Fold 2 | А       | 1      |                        |
| 7  |        | В       | 0      |                        |
| 8  |        | А       | 0      |                        |
| 9  | Fold 3 | Α       | 0      |                        |
| 10 |        | В       | 0      |                        |
| 11 | Fold 5 | А       | 1      |                        |
| 12 |        | А       | 0      |                        |
| 13 | Fold 4 | В       | 1      |                        |
| 14 |        | Α       | 0      |                        |
| 15 |        | Α       | 1      |                        |
| 16 |        | В       | 0      |                        |
| 17 |        | В       | 0      |                        |
| 18 | Fold 5 | В       | 0      |                        |
| 19 | Fold 5 | Α       | 1      |                        |
| 20 |        | А       | 1      |                        |

The Mean(A): 5/9 = 0.556, Mean(B): 2/7 = 0.26



• For second fold, mean values are estimated based on the rest of the folds i.e. Fold 1, Fold 3, Fold 4 & Fold 5.

Fold 2 View Calculation

| #  | Folds  | Feature | Target | K Fold Encoded Feature |
|----|--------|---------|--------|------------------------|
| 1  | Fold 1 | Α       | 1      | 0.556                  |
| 2  |        | В       | 0      | 0.285                  |
| 3  |        | В       | 0      | 0.285                  |
| 4  |        | В       | 1      | 0.285                  |
| 5  |        | В       | 1      | 0.25                   |
| 6  | Fold 2 | Α       | 1      | 0.625                  |
| 7  |        | В       | 0      | 0.25                   |
| 8  |        | Α       | 0      | 0.625                  |
| 9  | Fold 3 | Α       | 0      |                        |
| 10 |        | В       | 0      |                        |
| 11 |        | Α       | 1      |                        |
| 12 |        | Α       | 0      |                        |
| 13 |        | В       | 1      |                        |
| 14 | Fold 4 | Α       | 0      |                        |
| 15 | 1014   | Α       | 1      |                        |
| 16 |        | В       | 0      |                        |
| 17 |        | В       | 0      |                        |
| 18 | Fold 5 | В       | 0      |                        |
| 19 | 10103  | Α       | 1      |                        |
| 20 |        | Α       | 1      |                        |

The Mean(A): 5/8 = 0.625, Mean(B): 2/8 = 0.250

• For third fold, mean values are estimated based on the rest of the folds i.e. Fold 1, Fold 2, Fold 4 & Fold 5.

Fold 3 View Calculation

| #  | Folds  | Feature | Target | K Fold Encoded Feature |
|----|--------|---------|--------|------------------------|
| 1  |        | А       | 1      | 0.556                  |
| 2  | Fold 1 | В       | 0      | 0.285                  |
| 3  |        | В       | 0      | 0.285                  |
| 4  |        | В       | 1      | 0.285                  |
| 5  |        | В       | 1      | 0.25                   |
| 6  | Fold 2 | Α       | 1      | 0.625                  |
| 7  |        | В       | 0      | 0.25                   |
| 8  |        | Α       | 0      | 0.625                  |
| 9  | Fold 3 | Α       | 0      | 0.714                  |
| 10 |        | В       | 0      | 0.333                  |
| 11 |        | Α       | 1      | 0.714                  |
| 12 |        | Α       | 0      | 0.714                  |
| 13 |        | В       | 1      |                        |
| 14 | Fold 4 | А       | 0      |                        |
| 15 | F0IU 4 | Α       | 1      |                        |
| 16 |        | В       | 0      |                        |
| 17 |        | В       | 0      |                        |
| 18 | Fold 5 | В       | 0      |                        |
| 19 | rolu 3 | Α       | 1      |                        |
| 20 |        | А       | 1      |                        |

The Mean(A): 5/7 = 0.714, Mean(B): 3/9 = 0.333



• For fourth fold, mean values are estimated based on the rest of the folds i.e. Fold 1, Fold 2, Fold 3 & Fold 5.

Fold 4 View

| #  | Folds  | Feature | Target | K Fold Encoded Feature |
|----|--------|---------|--------|------------------------|
| 1  |        | Α       | 1      | 0.556                  |
| 2  | Fold 1 | В       | 0      | 0.285                  |
| 3  |        | В       | 0      | 0.285                  |
| 4  |        | В       | 1      | 0.285                  |
| 5  |        | В       | 1      | 0.25                   |
| 6  | Fold 2 | Α       | 1      | 0.625                  |
| 7  |        | В       | 0      | 0.25                   |
| 8  |        | А       | 0      | 0.625                  |
| 9  |        | А       | 0      | 0.714                  |
| 10 | Fold 3 | В       | 0      | 0.333                  |
| 11 |        | Α       | 1      | 0.714                  |
| 12 |        | А       | 0      | 0.714                  |
| 13 |        | В       | 1      | 0.25                   |
| 14 | Fold 4 | Α       | 0      | 0.625                  |
| 15 | Fold 4 | Α       | 1      | 0.625                  |
| 16 |        | В       | 0      | 0.25                   |
| 17 |        | В       | 0      |                        |
| 18 | Fold 5 | В       | 0      |                        |
| 19 | Fold 5 | Α       | 1      |                        |
| 20 |        | Α       | 1      |                        |

The Mean(A): 5/8 = 0.625, Mean(B): 2/8 = 0.250

• For fifth fold, mean values are estimated based on the rest of the folds i.e. Fold 1, Fold 2, Fold 3 & Fold 4.

> Fold 5 View Calculation

| #  | Folds  | Feature | Target | K Fold Encoded Feature |
|----|--------|---------|--------|------------------------|
|    | roius  |         | Target |                        |
| 1  |        | Α       | 1      | 0.556                  |
| 2  | Fold 1 | В       | 0      | 0.285                  |
| 3  |        | В       | 0      | 0.285                  |
| 4  |        | В       | 1      | 0.285                  |
| 5  |        | В       | 1      | 0.25                   |
| 6  | Fold 2 | А       | 1      | 0.625                  |
| 7  | Folu 2 | В       | 0      | 0.25                   |
| 8  |        | А       | 0      | 0.625                  |
| 9  |        | Α       | 0      | 0.714                  |
| 10 | Fold 3 | В       | 0      | 0.333                  |
| 11 | FOIG 3 | Α       | 1      | 0.714                  |
| 12 |        | Α       | 0      | 0.714                  |
| 13 |        | В       | 1      | 0.25                   |
| 14 | Fold 4 | Α       | 0      | 0.625                  |
| 15 | F0IU 4 | Α       | 1      | 0.625                  |
| 16 |        | В       | 0      | 0.25                   |
| 17 |        | В       | 0      | 0.375                  |
| 18 | Fold 5 | В       | 0      | 0.375                  |
| 19 | F010 5 | А       | 1      | 0.5                    |
| 20 |        | Α       | 1      | 0.5                    |

The Mean(A): 4/8 = 0.500, Mean(B): 3/8 = 0.375



```
class KFoldTargetEncoder(BaseEstimator, TransformerMixin):
 def __init__(self ,colnames , targetName, n_fold = 5, verbosity = True, discard
    self.colnames = colnames
   self.targetName = targetName
   self.n_fold = n_fold
   self.verbosity = verbosity
   self.discardOriginal col = discardOriginal col
 def fit(self, X, y = None):
    return self
 def transform(self,X):
   assert(type(self.targetName) == str)
   assert(type(self.colnames) == str)
   assert(self.colnames in X.columns)
   assert(self.targetName in X.columns)
   mean_of_target = X[self.targetName].mean()
   kf = KFold(n_splits = self.n_fold, shuffle = False, random_state = 42)
   col_mean_name = self.colnames + '_' + 'Kfold_Target_Enc'
   X[col mean name] = np.nan
   for tr_ind, val_ind in kf.split(X):
     X_tr, X_val = X.iloc[tr_ind], X.iloc[val_ind]
     X.loc[X.index[val_ind], col_mean_name] = X_val[self.colnames].map(X_tr.grou
     X[col_mean_name].fillna(mean_of_target, inplace = True)
   if self.verbosity:
     encoded_feature = X[col_mean_name].values
      print('Correlation between the new feature, {} and, {} is {}.'.format(col_m
    if self.discardOriginal_col:
     X = X.drop(self.colnames, axis=1)
    return X
```

#### **Performing Operations:**

```
# Dummy Encoding -> ServiceProvider, DownloadOrUpload, Technology
data = pd.get_dummies(data = data, columns = ['InternationalPlan?', 'VoiceMailPla
# Performing Target Encoding -> ServiceArea
kfold_te = KFoldTargetEncoder(colnames = 'State', targetName = 'Churn?', discard0
data = kfold_te.fit_transform(X = data)
For Correlation between the new feature, State_Kfold_Target_Enc and, Churn? is 0.0
```

## → 7.2 Feature Selection using Random Forest

```
X = data.drop('Churn?', axis = 1)
y = data['Churn?']
```

```
# Have some patience, may take some time :)
selector = SelectFromModel(RandomForestClassifier(n_estimators = 100, random_stat
selector.fit(X, y)
# Extracting list of important features
selected feat = X.columns[(selector.get support())].tolist()
print('Total Features Selected are', len(selected_feat))
# Estimated by taking mean(default) of feature importance
print('Threshold set by Model:', np.round(selector.threshold_, decimals = 2))
print('Features:', selected_feat)

→ Total Features Selected are 6
    Threshold set by Model: 0.05
    Features: ['TotalMorMin', 'TotalMorCharge', 'TotalEveMin', 'TotalEveCharge',
```

The important features marked by Random Forest are:

TotalMorMin TotalMorCharge TotalEveMin TotalEveCharge TotalIntCalls CustomerServiceCalls

Potential Feature Estimation: Below features are plotted against their relative importance (in %age), of each feature.

```
# Have some patience, may take some time :)
figure = plt.figure(figsize = [15, 8])
# If you don't want relative importance, use relative = False in below method
viz = FeatureImportances(selector.estimator, relative = False)
viz.fit(X, y)
plt.xlabel('Relative Importance', size = 14)
plt.ylabel('Features', size = 14)
plt.title(label = 'Feature Importances', size = 16)
plt.show()
```





# 7.3 Data Preparation

• Now we will **split** our **data** in **training** and **testing** part for further development.

```
X = data[selected_feat]
y = data['Churn?']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_
print('Training Data Shape:', X_train.shape, y_train.shape)
print('Testing Data Shape:', X_test.shape, y_test.shape)

Training Data Shape: (2999, 6) (2999,)
Testing Data Shape: (334, 6) (334,)
```

#### **Observation:**

Now that we have split out our data, we are good to go with model development.

# 8. Model Development & Evaluation

- In this section we will develop different models using only important feature and tune our model if required.
- Then we will compare the results obtained from them and make our observation.
- For evaluation purpose we will focus on recall value for both the classes.
- Remember that we want generalize results i.e. same results or error on testing data as that of training data.
- We will observer whether the SMOTE is required or not because we want to focus on recall
  values of both the classes.

### 8.1 Baseline Models

# ∨ 8.1.1 Logistic Regression

```
log = LogisticRegression(random_state = 42, class_weight = 'balanced')
log.fit(X_train, y_train)

y_train_pred_count = log.predict(X_train)
y_test_pred_count = log.predict(X_test)

fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols = 2, sharex = False, figsize=(15, plot_confusion_matrix(estimator = log, X = X_train, y_true = y_train, values_foplot_confusion_matrix(estimator = log, X = X_test, y_true = y_test, values_formax1.set_title(label = 'Train Data', size = 14)
ax2.set_title(label = 'Test Data', size = 14)
ax1.grid(b = False)
ax2.grid(b = False)
plt.suptitle(t = 'Confusion Matrix', size = 16)
plt.show()
```



#### Confusion Matrix



#### **Observation:**

#### • Train Data:

- Model predicted 1815 instances correctly for negative class while 302 instances were predicted correctly for positive class.
- Model identified 133 instances negative but in actual they were positive.
- Model identified 749 instances positive but in actual they were negative.

#### Test Data:

- Model predicted 193 instances correctly for negative class while 32 instances were predicted correctly for positive class.
- Model identified 16 instance negative but in actual they were positive.
- Model identified 93 instances positive but in actual they were negative.

| <b>→</b> |       | Training Report |        |          |         |  |
|----------|-------|-----------------|--------|----------|---------|--|
| _        |       | precision       | recall | f1-score | support |  |
|          | False | 0.93            | 0.71   | 0.80     | 2564    |  |
|          | True  | 0.29            | 0.69   | 0.41     | 435     |  |

| accuracy     |           |           | 0.71     | 2999    |
|--------------|-----------|-----------|----------|---------|
| macro avg    | 0.61      | 0.70      | 0.61     | 2999    |
| weighted avg | 0.84      | 0.71      | 0.75     | 2999    |
|              |           | ng Report |          |         |
|              | precision | recall    | f1–score | support |
| E-1          | 0.00      | 0.67      | 0.70     | 200     |
| False        | 0.92      | 0.67      | 0.78     | 286     |
| True         | 0.26      | 0.67      | 0.37     | 48      |
|              |           |           |          |         |
| accuracy     |           |           | 0.67     | 334     |
| macro avg    | 0.59      | 0.67      | 0.57     | 334     |
| weighted avg | 0.83      | 0.67      | 0.72     | 334     |
|              |           |           |          |         |

- We can observe that the recall values of both the classes are trying to generalize well.
- But we need better results and in order to that we will try more complex models in upcoming part.

#### 8.1.2 Random Forest Classifier

```
rfc = RandomForestClassifier(n_jobs = −1, class_weight = 'balanced', random_state
rfc.fit(X_train, y_train)
y_train_pred_count = rfc.predict(X_train)
y_test_pred_count = rfc.predict(X_test)
fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols = 2, sharex = False, figsize=(15)
plot_confusion_matrix(estimator = rfc, X = X_train, y_true = y_train, values_fo
plot_confusion_matrix(estimator = rfc, X = X_test, y_true = y_test, values_formate
ax1.set_title(label = 'Train Data', size = 14)
ax2.set_title(label = 'Test Data', size = 14)
ax1.grid(b = False)
ax2.grid(b = False)
plt.suptitle(t = 'Confusion Matrix', size = 16)
plt.tight_layout(pad = 3.0)
plt.show()
```





#### • Train Data:

- Model predicted 2564 instances correctly for negative class while 435 instances were predicted correctly for positive class.
- Model identified 0 instances negative but in actual they were positive.
- Model identified 0 instances positive but in actual they were negative.

#### Test Data:

- Model predicted 276 instances correctly for negative class while 22 instances were predicted correctly for positive class.
- Model identified 26 instance negative but in actual they were positive.
- Model identified 10 instances positive but in actual they were negative.



| 14:06        | CaseStud  | yAnaiysis_Predicti | onoiCustomerCnurr | 11e1ecom-230322-1804 | 33.1pyno - Coiao |
|--------------|-----------|--------------------|-------------------|----------------------|------------------|
| False        | 1.00      | 1.00               | 1.00              | 2564                 |                  |
| True         | 1.00      | 1.00               | 1.00              | 435                  |                  |
| accuracy     |           |                    | 1.00              | 2999                 |                  |
| macro avg    | 1.00      | 1.00               | 1.00              | 2999                 |                  |
| weighted avg | 1.00      | 1.00               | 1.00              | 2999                 |                  |
|              | Testi     | ng Report          |                   |                      |                  |
|              | precision | recall             | f1-score          | support              |                  |
| False        | 0.91      | 0.97               | 0.94              | 286                  |                  |
| True         | 0.69      | 0.46               | 0.55              | 48                   |                  |
| accuracy     |           |                    | 0.89              | 334                  |                  |
| macro avg    | 0.80      | 0.71               | 0.74              | 334                  |                  |
| weighted avg | 0.88      | 0.89               | 0.88              | 334                  |                  |
|              |           |                    |                   |                      |                  |

- Here we can observe some good results over the splitted data sets (Train & Test).
- But recall scores on test set are not good for positive class(True).
- This is due to the class imbalance, but before oversampling our data we will try one more model.

## ∨ 8.1.3 Extreme Gradient Boosting Classifier

```
xgb = XGBClassifier(random_state = 42, n_jobs = -1)
xgb.fit(X_train, y_train)

y_train_pred_count = xgb.predict(X_train)
y_test_pred_count = xgb.predict(X_test)

fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols = 2, sharex = False, figsize=(15, plot_confusion_matrix(estimator = xgb, X = X_train, y_true = y_train, values_form plot_confusion_matrix(estimator = xgb, X = X_test, y_true = y_test, values_format ax1.set_title(label = 'Train Data', size = 14)
ax2.set_title(label = 'Test Data', size = 14)
ax1.grid(b = False)
ax2.grid(b = False)
plt.suptitle(t = 'Confusion Matrix', size = 16)
plt.tight_layout(pad = 3.0)
plt.show()
```





#### • Train Data:

- Model predicted 2532 instances correctly for negative class while 240 instances were predicted correctly for positive class.
- Model identified 195 instances negative but in actual they were positive.
- Model identified 32 instances positive but in actual they were negative.

#### Test Data:

- Model predicted 275 instances correctly for negative class while 23 instances were predicted correctly for positive class.
- Model identified 25 instance negative but in actual they were positive.
- Model identified 11 instances positive but in actual they were negative.

0.89

#### Observation:

weighted avg

• The recall scores for train data has dropped significantly with respect to previous models.

0.88

334

Regarding test data there's only 1% drop in recall for negative class while for positive class
it has increased to 2% only.

# 8.2 Oversampling Models: Using Essential Features

## ✓ SMOTE Technique & its Implementation

• SMOTE refers to Synthetic Minority Oversampling Technique.

0.88

 It aims to balance class distribution by randomly increasing minority class examples by replicating them.



- It synthesises new minority instances between existing minority instances.
- It generates the virtual training records by linear interpolation for the minority class.
- These **synthetic training records are generated by randomly selecting** one or more of the k-nearest neighbors for each **example in the minority class**.
- After the oversampling process, the data is reconstructed and several classification models can be applied for the processed data.

#### **Before Implimenting SMOTE**

```
print('Training Data Shape:', X_train.shape, y_train.shape)
print('Testing Data Shape:', X_test.shape, y_test.shape)
```

```
Training Data Shape: (2999, 6) (2999,)
Testing Data Shape: (334, 6) (334,)
```

#### **Performing SMOTE Operation**

```
# Have some patience, may take some time

sm = SMOTE(random_state = 42, ratio = 1)
X1, y1 = sm.fit_sample(X, y)

X_new = pd.DataFrame(data = X1, columns = X.columns)

X_train, X_test, y_train, y_test = train_test_split(X_new, y1, test_size = 0.2, r

print('Training Data Shape:', X_train.shape, y_train.shape)
print('Testing Data Shape:', X_test.shape, y_test.shape)

Training Data Shape: (4560, 6) (4560,)
Testing Data Shape: (1140, 6) (1140,)
```

## ∨ 8.2.1 Logistic Regression

```
log = LogisticRegression(random_state = 42, class_weight = 'balanced')
log.fit(X_train, y_train)

y_train_pred_count = log.predict(X_train)
y_test_pred_count = log.predict(X_test)

fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols = 2, sharex = False, figsize=(15
plot_confusion_matrix(estimator = log, X = X_train, y_true = y_train, values_fo
plot_confusion_matrix(estimator = log, X = X_test, y_true = y_test, values_form;
ax1.set_title(label = 'Train Data', size = 14)
ax2.set_title(label = 'Test Data', size = 14)
ax1.grid(b = False)
ax2.grid(b = False)
plt.suptitle(t = 'Confusion Matrix', size = 16)
plt.show()
```



#### Confusion Matrix



#### **Observation:**

#### • Train Data:

- Model predicted 1631 instances correctly for negative class while 1654 instances were predicted correctly for positive class.
- Model identified 626 instances negative but in actual they were positive.
- Model identified 649 instances positive but in actual they were negative.

#### · Test Data:



- Model identified 162 instance negative but in actual they were positive.
- Model identified 184 instances positive but in actual they were negative.

| <b>→</b> |               | Training Report |              |              |              |  |
|----------|---------------|-----------------|--------------|--------------|--------------|--|
| _        |               | precision       | recall       | f1-score     | support      |  |
|          | False<br>True | 0.72<br>0.72    | 0.72<br>0.73 | 0.72<br>0.72 | 2280<br>2280 |  |

| accuracy<br>macro avg<br>weighted avg | 0.72<br>0.72 | 0.72<br>0.72 | 0.72<br>0.72<br>0.72 | 4560<br>4560<br>4560 |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
|                                       | Testi        | ng Report    |                      |                      |
|                                       | precision    | recall       | f1-score             | support              |
| False                                 | 0.70         | 0.68         | 0.69                 | 570                  |
| True                                  | 0.69         | 0.72         | 0.70                 | 570                  |
| accuracy                              |              |              | 0.70                 | 1140                 |
| macro avg                             | 0.70         | 0.70         | 0.70                 | 1140                 |
| weighted avg                          | 0.70         | 0.70         | 0.70                 | 1140                 |

- We can observe better results over than the logisitic baseline model.
- Earlier recall scores were low but now they have improved a little bit.
- Let's try more complex models.

