编译原理

项欣光

计算机科学与工程学院

第6章 LR分析法

- LR分析概述
- LR(0)分析
- SLR(1)分析
- LR(1)分析
- LALR(1)分析
- 二义性文法在LR分析中的应用

6.1 LR分析概述

- LR分析法
 - 自底向上分析法,即移进-归约的过程
- 为什么提出LR分析法 比LL(k)和优先分析法
 - 对文法的限制少
 - 速度快
 - 能够准确、及时地指出出错位置
- 缺点: 构造文法分析器的工作量大

THE HE TA EX

回顾:移进-归约过程(对输入串abbcde进行移进-归约分析)

例1:文法G[S]:

- (1) $S \rightarrow aAcBe$
- $(2) A \rightarrow b$
- $(3) A \rightarrow Ab$
- $(4) B \rightarrow d$

步骤	符号栈	输入符号串	动作
1)	#	abbcde#	移进
2)	#a	bbcde#	移进
3)	#ab	bcde#	归约 (A→b)
4)	#aA	bcde#	移进
5)	#aAb	cde#	归约(A→Ab)
6)	#aA	cde#	移进
7)	#aAc	de#	移进
8)	#aAc <mark>d</mark>	e#	归约(B→d)
9) 10)	#aAcBe	e# #	移进 归约 (S→aAcBe)
11)	# S	#	接受

■ 问题:何时移进?何时归约?用 哪个产生式归约?

LR分析的基本思想

根据当前分析栈中的状态,向右顺序查看输入串中k个符号(k>=0),就可以唯一确定分析器的动作是移进还是归约。若是归约,确定用哪个产生式进行归约。

LR分析器

■ LR(0): 无需向右查看输入符号(不适于高级语言)

——改进:SLR(1)

■ LR(1): 向右查看一个输入符号(适于高级语言)

——改进:LALR(1)

LR分析器的组成

- ■总控程序
- 分析表(或分析函数):动作表ACTION 和 状态转换表 GOTO

LR分析器的工作过程(参见书)

TO BY TA EX

LR分析

- (一)分析过程使用的栈和表:
 - 符号栈: 存储已经移入或已经归约的符号串
 - 状态栈: 存储状态
 - 输入符号串: 存储待移入或待归约的符号串
 - ACTION: 指明遇到输入符号应执行的动作: <u>移入</u> (及移入后应转向的下一个状态)或<u>归约</u>(及所应用的产生式)或<u>接受</u>或<u>出错</u>
 - GOTO: 指明遇到当前文法符号(归约)后应转向的下一个状态

LR分析

- (二) <u>状态栈顶</u> 与 <u>当前输入符号</u> 查Action表:
 - 1) 遇到Si:表示"移进",并转向下一个状态。
 - 状态栈: i入栈
 - 符号栈: 当前输入符号入栈
 - 2) 遇到ri:表示使用第i个产生式"归约"。(所用产生式的<u>右部符号的个数</u>为k)
 - 状态栈: 弹出k个状态, <u>栈顶状态</u>与 <u>所用产</u> 生式的左部 查GOTO表并将相应的状态入栈
 - 符号栈: 弹出k个符号,并将所用产生式的 左部入栈
 - 3) 遇到acc: 表示接受该输入串。
 - 4) 遇到空白:表示出错。

LR(0)分析举例

文法G[S]:

- (1) $S \rightarrow aAcBe$
- $(2) A \rightarrow b$
- (3) $A \rightarrow Ab$
- (4) $B \rightarrow d$

对输入串 abbcde# 进行LR分析。

- Control of the Cont	ACTION				GOTO				
	a	C	e	b	d	#	S	A	В
0	S_2						1		
1						acc			
2				S_4				3	
3		S_5		S_6					
4	\mathbf{r}_2	\mathbf{r}_2	\mathbf{r}_2	\mathbf{r}_2	\mathbf{r}_2	\mathbf{r}_2			
5					S ₈				7
6	\mathbf{r}_3	\mathbf{r}_3	\mathbf{r}_3	\mathbf{r}_3	\mathbf{r}_3	r ₃			
7			S ₉						
8	r ₄								
9	\mathbf{r}_1	\mathbf{r}_1	\mathbf{r}_1	\mathbf{r}_1	\mathbf{r}_1	\mathbf{r}_1			

对输入串 abbcde# 的LR分析过程

步骤	符号栈	状态栈	输入符号串	动作	ACTION	GOTO
1)	#	0	abbcde#	移进	S_2	
2)	#a	02	bbcde#	移进	S ₄	
3)	#ab	024	bcde#	归约(A→b)	\mathbf{r}_2	3
4)	#aA	023	bcde#	移进	S_6	
5)	#aAb	0236	cde#	归约(A→Ab)	\mathbf{r}_3	3
6)	#aA	023	cde#	移进	S_5	
7)	#aAc	0235	de#	移进	S_8	
8)	#aAcd	02358	e#	归约(B→d)	r ₄	7
9)	#aAcB	02357	e #	移进	S 9	
10)	#aAcBe	023579	#	归约(S→aAcBe)	$\mathbf{r_1}$	1
11)	#S	01	#	接受	acc	

TO BY TA EX

可见: LR分析表非常重要!!

问题:

- 对于一个文法, 状态集是如何确定的?
- LR分析表是如何得到的?

构造LR分析表之前,要了解一些概念、术语和方法:

- 可归前缀、活前缀
- 得到可归前缀、活前缀的一般方法: <u>构造识别活前</u> <u>缀的DFA</u>
- 利用DFA构造LR分析表的方法

可归前缀与活前缀

文法G[S]:

- (1) $S \rightarrow aAcBe$
- (2) $A \rightarrow b$
- (3) $A \rightarrow Ab$
- (4) $B \rightarrow d$

LR分析过程:

3) #ab 024 bcde# **归约(A→b**) \mathbf{r}_2 3

5) #aAb 0236 cde# **归约**(A→Ab) r₃ 3

8) #aAcd 02358 $归约(\mathbf{B} \rightarrow \mathbf{d})$ \mathbf{r}_4 10) #aAcBe 023579

児约(S→aAcBe) r₁ 1

可归前缀

每次归约之前符号栈中的内容。如:ab、aAb、aAcd、

活前缀

形成可归前缀之前包括可归前缀在内的所有规范句型的前缀。

 \mathbf{u} : ϵ , a, ab

 ε , a, aA, aAb

ε, a, aA, aAc, aAcd

ε, a, aA, aAc, aAcB, aAcBe

• 活前缀 定义:

 $S' \xrightarrow{*} \alpha A \omega \Rightarrow \alpha \beta \omega$ 是文法G中的一个规范推导,若符号串 γ 是 $\alpha \beta$ 的前缀,则称 γ 是G的一个活前缀

0

识别活前缀的有穷自动机

- 把文法的终结符和非终结符都看成有穷自动机的输入符号 ,每次把一个符号进栈看成已识别过了该符号,同时状态 进行转换。当识别到可归前缀时,相当于在栈中形成句柄 ,认为达到了识别句柄的终态。
- 如文法G[S]对应的识别活前缀的DFA

识别活前缀的有穷自动机

例如文法G[S]对应的识别活前缀的DFA如图所示:

- (1) S→aAcBe
- (2) A→b
- (3) A→Ab
- (4) B→d

利用DFA对输入串 abbcde# 的分析过程:

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1	#	abbcde#	移进	0	S2	
2	#a	bbcde#	移进	02	S4	
3	#ab	bcde#	归约(A→b)	024	r2	. 3
4	#aA	bcde#	移进	023	S6	
5	#aAb	cde#	归约 (A→Ab)	0236	r3	3
6	#aA	cde#	移进	023	S5	
7	#aAc	de#	移进	0235	S8	
8	# aAcd	e #	归约(B→d)	02358	r4	7
9	#aAcB	e#	移进	02357	S9	
10	#aAcB	e #	归约(S→aAcBe)	023579	r1	1
11	#S	#	接受	01	acc	

构造识别活前缀的有穷自动机

方法一:形式定义法

- 拓广文法

- $(S' \rightarrow S)$
- 根据形式定义求活前缀的正规表达式和可归前缀
- 根据可归前缀构造NFA
- $NFA \rightarrow DFA$

方法二:项目法

- 拓广文法

- $(S' \rightarrow S)$
- 求出文法的所有项目
- 按照一定规则构造NFA
- NFA → DFA (工作量大, 所以引入方法三)

方法三:项目集规范族法

- 拓广文法

- (**S**'**→S**)
- 通过核的闭包和转换函数,求出LR(0)项目集规范族
- 由转换函数建立状态之间的连接关系,即得到DFA

形式定义一(不包含句柄在内的所有活前缀的集合):

文法G,A \in V_N,LC(A)={ α |S $\stackrel{,*}{\Longrightarrow}$ α A ω , α \in V * , ω \in V_T * }

即:规范推导中,在A左边所有可能出现的符号串的集合

推论: 若文法**G**中有产生式**B** \rightarrow γ**A** δ ,则 **LC(A)** \supseteq

LC(B)-{γ}

形式定义二(包含句柄在内的所有活前缀的集合):

$IR(\cap)C(\Delta \rightarrow R) - IC(\Delta)IRI$

例如: S'→S 求: LC(S') LR(0)C(S'→S)

 $S \rightarrow aAcBe$ LC(S) LR(0)C(S $\rightarrow aAcBe$)

 $A \rightarrow b$ LC(A) LR(0)C(A \rightarrow b)

 $A \rightarrow Ab$ LC(B) LR(0)C(A $\rightarrow Ab$)

 $B\rightarrow d$ LR(0)C(B $\rightarrow d$)

S'→S S→aAcBe A→b A→Ab B→d

- $LC(S') = \{\epsilon\}$
- LC(S) = LC(S') $\{\epsilon\}$ = $\{\epsilon\}$
- LC(A) = LC(S) $\{a\} \cup LC(A) \{\epsilon\} = \{a\}$
- LC(B) = LC(S) {aAc} = {aAc}

这样我们求出了规范归约过程中用句柄归约成该非终结符 之前不包括句柄在内的活前缀。

- $LR(0)C(S' \rightarrow S) = LC(S') \{S\} = S$
- LR(0)C(S→aAcBe) = LC(S) {aAcBe} = aAcBe
- $LR(0)C(A \rightarrow b) = LC(A) \{b\} = ab$
- $LR(0)C(A \rightarrow Ab) = LC(A) \{Ab\} = aAb$
- $LR(0)C(B\rightarrow d) = LC(B) \{d\} = aAcd$
- 这样我们构造出了文法的所有可归前缀。
- 如何根据可归前缀构造识别文法活前缀的有限自动机?

文法G[S]: 根据定义求得的可归前缀如下:

 $S' \rightarrow S$

 $S \rightarrow aAcBe$ ab

 $A \rightarrow b$ aAb

 $A \rightarrow Ab$ aAcd

 $\mathbf{B} \rightarrow \mathbf{d}$ aAcBe

构造识别其活前缀及可归前缀的有限自动机如下:

确定化

形式定义法构造识别活前缀的有限自动机 从理论的角度讲是比较严格的,但实现起 来却很复杂。

是否存在一种比较实用的方法?

构造识别活前缀的有穷自动机(项目法)

1. LR(0)项目(item):在每个产生式的右部适当位置添加一个圆点,构成项目。

例如:产生式 S→aAcBe 对应有6个项目:

[0] $S \rightarrow \bullet$ aAcBe

[1] $S \rightarrow a \cdot AcBe$

[2] $S \rightarrow aA \cdot cBe$

[3] $S \rightarrow aAc \cdot Be$

[4] $S \rightarrow aAcB \cdot e$

[5] $S \rightarrow aAcBe \bullet$

左部 • 右部

己识别部分

待识别部分

特例:空产生式 $A \rightarrow \epsilon$ 只有一个项目 $A \rightarrow \bullet$

NO BY TA 22

2. 根据项目构造识别活前缀的 DFA

- 1) 构造文法的所有产生式的所有项目,每个项目都为NFA 的一个状态
 - 移进项目: A→α•aβ (a∈VT)分析时把a移进符号栈
 - 待约项目: A→α•Bβ (B∈VN)期待着先归约为B再归约为A
 - 归约项目: A→α•表明句柄形成,可以归约
 - · 接受项目:S'→α•表明接受句子,分析成功
- 2) 确定初态、句柄识别态、句子识别态
 - 初态:S'→•S
 - 句柄识别态:所有的归约项目
 - 句子识别态:接受项目

2. 根据项目构造识别活前缀的 DFA

- 3) 确定状态之间的转换关系
 - 若 项目 i 为 X → X₁X₂...X_{i-1} X_i...X_n
 项目 j 为 X → X₁X₂...X_{i-1} X_i X_{i+1}...X_n
 则从状态i到状态j连一条标记为 X_i 的箭弧
 - 若项目i为 $X \rightarrow \gamma \bullet A \delta$, 项目k为 $A \rightarrow \bullet \beta$ 则从状态i画标记为 ϵ 的箭弧到状态k
- 4) NFA→DFA

例如文法G:

$$S' \to E$$

$$E \to T + E$$

$$E \to T$$

$$T \to i * T$$

$$1 \rightarrow 1$$

$$T \rightarrow i$$

$$T \rightarrow (E)$$

文法G:

$$S' \rightarrow E$$

$$E \rightarrow T + E$$

$$E \rightarrow T$$

$$T \rightarrow i * T$$

$$T \rightarrow i$$

$$T \rightarrow (E)$$

- 文法的项目有: 确定初态、句柄/句子识别态
- [1] $S' \rightarrow \bullet E$
- [2] $S' \rightarrow E \bullet$
- [3] $E \rightarrow \bullet T + E$
- [4] $E \rightarrow T \cdot + E$
- [5] $E \rightarrow T + \bullet E$
- [6] $E \rightarrow T + E \bullet$
- [7] $E \rightarrow \bullet T$
- [8] $E \rightarrow T \bullet$
- [9] $T \rightarrow \bullet i * T$
- [10] $T \rightarrow i \cdot T$
- [11] $T \rightarrow i * \bullet T$
- [12] $T \rightarrow i * T \bullet$
- [13] $T \rightarrow \bullet i$
- [14] $T \rightarrow i \bullet$
- [15] $T \rightarrow \bullet(E)$
- [16] $T \rightarrow (\bullet E)$
- [17] $T \rightarrow (E \bullet)$
- [18] $T \rightarrow (E) \bullet$

- - [1](初态)
 - [2] (句子识别态)

- [6](句柄识别态)
- [8] (句柄识别态)

- [12] (句柄识别态)
- [14](句柄识别态)

[18](句柄识别态)

 $S' \rightarrow . E$

多。有主程之大学 3)确定状态之间的转换关系

@ 南京理二大学

确定状态之间的转换关系

THE WAR

備定状态之间的转换关系

项目集

■ LR(0)项目集规范族:识别文法活前缀的DFA 项目集(状态)的全体。

项目法的缺点:NFA确定化为DFA的工作 量较大。

是否能直接构造出 LR(0)项目集规范族, 并直接构造出 识别活前缀的DFA?

构造识别活前缀的有穷自动机(项目集规范族法)

- 1、概念
- 核:圆点不在产生式最左边的项目,称为核。特例: S'→•S也是核。
- 闭包:CLOSURE(J)
 - a) J的项目均在CLOSURE(J)中
 - b) 若 A→α•Bβ 属于CLOSURE(J),则每一形如 B→•γ 的项目也属于 CLOSURE(J)
 - c) 重复b)直到 CLOSURE(J)不再扩大 对核求闭包就构成了新状态的项目集
- 转换函数: GO(I, X)GO(I, X) = CLOSURE(J)其中: I为包含某一项目集的状态。
 - 其中: I为包含某一项目集的状态, X为一文法符号 $J=\{$ 任何形如 $A\rightarrow \alpha X \bullet \beta$ 的项目, $A\rightarrow \alpha \bullet X \beta$ 属于 $I\}$

构造识别活前缀的有穷自动机(项目集规范族法)

- 2、利用闭包和转换函数构造文法的LR(0)项目集规范 族
 - 1) 置项目S'→.S为初态集的核,之后对核求闭包, 得到初态的项目集
 - 2) 对项目集应用转换函数GO(I,X)=CLOSURE(J) 求出新状态J的项目集
 - 3) 重复2) 直至不出现新的项目集为止

例如 文法G:(1) S → aAcBe

- (2) $A \rightarrow b$
- (3) $A \rightarrow Ab$
- (4) $B \rightarrow d$

构造对应的LR(0)项目集规范族。

步骤一:拓广文法

- (0) $S' \rightarrow S$
- (1) $S \rightarrow aAcBe$
- $(2) A \rightarrow b$
- (3) $A \rightarrow Ab$
- (4) $B \rightarrow d$

was sign the light

步骤二:构造项目集规范族

$$I_0$$
 $S' \rightarrow \bullet S$
 $S \rightarrow \bullet aAcBe$

$$I_1[I_0 - S \rightarrow I_1]$$

S' $\rightarrow S$.

$$I_2[I_0 - a \rightarrow I_2]$$

 $S \rightarrow a \cdot AcBe$
 $A \rightarrow \cdot b$
 $A \rightarrow \cdot Ab$

$$I_3[I_2 - A \rightarrow I_3]$$

 $S \rightarrow aA \cdot cBe$
 $A \rightarrow A \cdot b$

$$I_4[I_2 -b \rightarrow I_4]$$

A \rightarrow b.

$$I_5[I_3 - c \rightarrow I_5]$$

S \rightarrow aAc•Be
B \rightarrow •d

$$I_6[I_3 -b \rightarrow I_6]$$

A \rightarrow Ab•

$$I_7[I_5 - B \rightarrow I_7]$$

S \rightarrow aAcB•e

$$I_8[I_5 - d \rightarrow I_8]$$

B \rightarrow d.

$$I_9[I_7 - e \rightarrow I_9]$$

S \rightarrow aAcBe•

@ 南京理二大学

步骤三:判别(无"移进-归约冲突"和"归约-归约冲突")

• LR(0)项目类型:

移进项目: A→α•aβ (a∈VT)

待约项目: A→α•Bβ (B∈VN)期待着先归约为B再归约为A

归约项目: A→α•
 句柄形成,可以归约

• 接受项目: S'→α• 接受句子,分析成功

• LR(0)的项目集中:

- 不能有移进-归约冲突(移进项目与归约项目并存)
- 不能有归约-归约冲突(归约项目与归约项目并存)
- 若存在这些冲突,则不是LR(0)文法,不能采用LR(0)分析
- LR(0)文法:若其LR(0)项目集规范族不存在移进-归约,或 归约-归约冲突,称为LR(0)文法。

步骤四:根据项目集规范族 构造 DFA

- LR(0)分析表相当于识别活前缀的有限自动机DAF的状态转换矩阵。
- LR(0)分析表的重要性:是总控程序的分析动作依据。
- LR(0)分析表的结构:

状态	ACTION (动作表)	GOTO (转换表)		
	(V _T)#	(V _N)		
状态号	(表示当前状态面临某输入符号时,应采取的动作:移进/归约/接受/报错)	(表示当前状态面临 文法符号VN时应转 向的下一个状态)		

LR(0)分析表的构造

- LR(0)分析表的构造算法 C={ I0, I1, ..., In }
 - 1) 若移进项目A→α•aβ属于lk,且转换函数GO(lk,a)=lj则 置ACTION[k,a] = Sj

j为A→α产

- 2) 若GO(lk,A)=lj 则 置GOTO[k,A]为j
- 3) 若归约项目A→α• 属于lk,
 则 对任何 VT和#, 置 ACTION[k,...]=r_j
- 4) 若接受项目S'→S.属于Ik 则 置ACTION[k,#] = acc
- 5) 凡是不能用上述方法填入的,即用空白表示报错

例如:构造如下DFA对应的 LR(0)分析表

	ACTION						GOTO		
状态	а	b	C	d	е	#	S	Α	В
0	S2						1		
1						acc			
2		S4						3	
3		S 6	S5						
4	r2	r2	r2	r2	r2	r2			
5				S8					7
6	r3	r3	r3	r3	r3	r3			
7					S 9				
8	r4	r4	r4	r4	r4	r4			
9	r1	r1	r1	r1	r1	r1			

另例

文法G[E]

- (1) $E \rightarrow T + E$
- (2) $E \rightarrow T$
- (3) $T \rightarrow i * T$
- (4) $T \rightarrow i$
- $(5) T \rightarrow (E)$

步骤一:拓广文法

- (0) $S' \rightarrow E$
- $(1) E \rightarrow T + E$
- (2) $E \rightarrow T$
- (3) $T \rightarrow i * T$
- (4) $T \rightarrow i$
- $(5) T \rightarrow (E)$

步骤二:构造LR(0)项目集规范族

步骤三:判别LR(0)项目集中是否存在冲突

(移进-归约冲突 和 归约-归约冲突)

步骤四:构造DFA

步骤五:构造 LR(0)分析表

步骤六:分析句子

<u>返回</u>

6.3 SLR(1)分析

• LR(0)分析中存在的问题:大多数适用的程序设计语言的文法不能满足LR(0)文法的条件。

即:规范族中存在有冲突的项目集(移进-归约冲突,归约-归约冲突)

• 如果解决这种冲突?

直觉:对于有冲突的状态,向前查看一个符号,以确定采用的动作。

例 文法G:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow rD$
- (2) $D \rightarrow D_i$
- (3) $D \rightarrow i$

I6:

LR(0)分析表

光		ACTI	GOTO			
: 状 态	r	,	i	#	S	D
0	S ₂				1	
1				acc		
2			S ₄			3
3	r ₁	r_1, S_5	r ₁	r ₁		
4	r ₃	r ₃	r_3	r_3		
5			S ₆			
6	r ₂	r ₂	r ₂	r_2		

YANDING UNIVERSITY OF SCIE

 I_3 : $S \rightarrow rD \cdot D \rightarrow D \cdot i$

NG	状态		ACT	GOTO			
	八心	r	,	i	#	5	D
	0	S ₂				1	
	1				acc		
	2			S ₄			3
	3	r ₁	r ₁ , S ₅	r ₁	r ₁		
	4	r ₃	r ₃	r ₃	r ₃		
	5			S ₆			
Ī	6	r ₂	r ₂	r ₂	r ₂		

解决冲突:

向前查看一个符号, 看其是否是S的后跟 符号

(FOLLOW(S))

- 是,则归约
- 否,则移进

状态		ACT	GOTO			
	r	,	i	#	5	D
0	S ₂				1	
1				acc		
2			S ₄			3
3		S ₅		r ₁		
4	r ₃	r ₃	r ₃	r ₃		
5			S ₆			
6	r ₂	r ₂	r ₂	r ₂		

解决 LR(0)项目集中冲突的方法:

一个LR(0)规范族中含有如下的项目集(状态) I

$$I = \{X \rightarrow_{\alpha \bullet} b\beta, A \rightarrow_{\gamma \bullet}, B \rightarrow_{\delta \bullet}\}$$

若有:FOLLOW(A) ∩ FOLLOW(B) = Ø

$$FOLLOW(A) \cap \{b\} = \emptyset$$

$$FOLLOW(B) \cap \{b\} = \emptyset$$

状态I 面临某输入符号 a

- 1) 若a=b,则移进
- 2) 若a∈FOLLOW(A), 则用产生式 $A \rightarrow \gamma$ 进行归约
- 3) 若a∈FOLLOW(B), 则用产生式 $B \rightarrow \delta$ 进行归约
- 4) 此外,空白报错

SLR()文法

若一个文法的LR(0)分析表中所含有的动作冲突都能用上述方法解决,则称这个文法是SLR(1)文法

"改进的" SLR(1)分析

对所有非终结符都求出其FOLLOW集合,只有归约项目 仅对面临输入符号包含在该归约项目左部非终结符的 FOLLOW集合中,才采取用该产生式归约的动作。

分析表的构造步骤

- a) 若项目A→α·aβ属于I_k,且转换函数GO(I_k,a)= I_j, 当a为终结符时,则置ACTION[k,a]为S_j
- b) 若GO(I_k,A)= I_j ,则置GOTO[k,A]=j ,其中A为非终 结符 ,j为某一状态号
- c) 项目A $\rightarrow \alpha$ ·属于I_k,则对a为任何终结符或'#',且满足a \in FOLLOW(A)时,置ACTION[k,a] = r_j,j为产生式在文法中的编号
- d) 若项目S'→S・属于I_k ,则置ACTION[k,#] = acc
- e) 其它填上"报错标志"

例 文法G:

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow rD$$

(2)
$$D \rightarrow D_i$$

(3)
$$D \rightarrow i$$

I6:

D →**D**,i •

Follow(S)={ # }
Follow(D)={ , # }
对于13:

Follow(S)∩{,}=Ø

故能使用SLR(1)分 析

状态		ACT	GOTO					
	r	,	i	#	S	D		
0	S_2				1			
1				acc				
2			S_4			3		
3		S_5		\mathbf{r}_1				
4		\mathbf{r}_3		\mathbf{r}_3				
5			S_6					
6		\mathbf{r}_2		\mathbf{r}_2				

另例 文法G[E]

- (1) $E \rightarrow T + E$
- (2) $E \rightarrow T$
- (3) $T \rightarrow i * T$
- (4) $T \rightarrow i$
- $(5) T \rightarrow (E)$

步骤一:拓厂又法

- (0) $S' \rightarrow E$
- $(1) E \rightarrow T + E$
- (2) $E \rightarrow T$
- (3) $T \rightarrow i * T$
- (4) $T \rightarrow i$
- $(5) T \rightarrow (E)$

步骤二:构造 SLR(1)项目集规范族(下页)

步骤三:求各VN的 FOLLOW集

步骤四:判别是否为 SLR(1)文法

步骤五:构造 DFA

步骤六:构造 LR(0)分析表

步骤七:分析句子

 $E \rightarrow T + . E$

 $\mathsf{E} \to .\mathsf{T}$

$$E \rightarrow .T + E$$

$$T \rightarrow .(E)$$

$$T \rightarrow .i * T$$

$$T \rightarrow .i$$

$$E \rightarrow T + E$$
.

2

 $S' \to E$.

E

 $\mathsf{E} \to \mathsf{T}$.

 $E \rightarrow T. + E$

 $T \rightarrow i. * T$

 $T \rightarrow i$.

 $T \rightarrow i * .T$

 $T \rightarrow .(E)$

 $T \rightarrow .i * T$

 $i. \leftarrow T$

10

 $T \rightarrow i * T$.

8

 $T \rightarrow (E.)$

 $T \rightarrow (E)$.

 $S' \rightarrow . E$

 $\mathsf{E} \to . \mathsf{T}$

 $E \rightarrow .T + E$

 $T \rightarrow .(E)$

 $T \rightarrow .i * T$

 $i. \leftarrow T$

 $T \rightarrow (. E)$

 $\mathsf{E} \to .\mathsf{T}$

 $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$

 $T \rightarrow .(E)$

T * i * T

 $i. \leftarrow T$

仍有许多文法构造的LR(0)项目集规范族存在的冲突不能用SLR(1)方法解决!

引入: LR(1)分析法

6.4 LR(1)分析

主要思想:

- 若项目集 A→α・Bβ 属于I时,则 B→・γ 也属于I
- 把 FIRST(β) 作为用产生式归约的搜索符(称为向前搜索符),作为用产生式 B→γ 归约时查看的符号集合(用以代替SLR(1)分析中的FOLLOW集),并把此搜索符号的集合也放在相应项目的后面,这种处理方法即为LR(1)方法

@ 南玄理三大学

LR(1)项目集规范族的构造

- 1)构造 LR(1)项目集的闭包函数
 - a) I的项目都在CLOSURE(I)中
 - b) 若 <u>A→α•Bβ ,a</u> 属于CLOSURE(I) , 则 <u>B→•γ,b</u> 也属于CLOSURE(I), 其中 b∈FIRST(βa)
 - c) 重复b)直到CLOSURE(I)不再扩大
- 2)转换函数的构造

GOTO(I, X) = CLOSURE(J)

其中: I 为 LR(1)的项目集, X为一文法符号,

 $J=\{任何形如 A\rightarrow \alpha X\bullet \beta, a 的项目,其中 A\rightarrow \alpha\bullet X\beta, a \in I\}$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow aAd$
- (2) $S \rightarrow bAc$
- (3) $S \rightarrow aec$
- (4) $S \rightarrow bed$
- (5) $A \rightarrow e$

 $\mathbf{I_0}$

 $S' \rightarrow \bullet S, \#$

 $S \rightarrow \bullet aAd, #$

 $S \rightarrow \bullet bAc, #$

 $S \rightarrow \bullet aec, #$

 $S \rightarrow \bullet \text{ bed, } #$

 $I_1[I_0 -S \rightarrow I_1]$ $S' \rightarrow S \cdot , #$

 $I_2: [I_0 -a \rightarrow I_2]$

 $S \rightarrow a \cdot Ad, #$

 $S \rightarrow a \cdot ec, \#$

 $A \rightarrow \bullet e, d$

 $I_3 [I_0 -b \rightarrow I_3]$

 $S \rightarrow b \cdot Ac, #$

 $S \rightarrow b \cdot ed, #$

 $A \rightarrow \bullet e, c$

 $I_4[I_2-A \rightarrow I_4]$

 $S \rightarrow aA \cdot d, #$

 $I_5[I_2--e \rightarrow I_5]$

 $S \rightarrow ae \cdot c, #$

 $A \rightarrow e \cdot d$

 $I_6[I_3 - A \rightarrow I_6]$

 $S \rightarrow bA \cdot c, #$

 $I_7[I_3 - e \rightarrow I_7]$

 $S \rightarrow be \cdot d, #$

 $A \rightarrow e \cdot, c$

 $I_8[I_4 - d \rightarrow I_8]$

 $S \rightarrow aAd \bullet, #$

 $I_9[I_5--c \rightarrow I_9]$

 $S \rightarrow aec \cdot, #$

 $I_{10}[I_6--c \rightarrow I_{10}]$ $S \rightarrow bAc \cdot, #$

 $I_{11}[I_7--d\rightarrow I_{11}]$

 $S \rightarrow bed \cdot, #$

LR(1)分析表的构造

- 若项目 A→α·aβ,b 属于I_k,且 GO(I_k,a)= I_j ,当 a为终结符时,则置 ACTION[k,a]为S_j
- 2) 若 $GO(I_k,A)=I_j$,则置 GOTO[k,A]=j, 其中A为非终结符,j为某一状态号
- 3) 若项目 $\underline{A \rightarrow \alpha \cdot , a}$ 属于 I_k ,则对a为任何终结符或 '#',置ACTION[k,a] = r_i ,j为产生式编号
- 4) 若项目 <u>S'→S·,#</u> 属于I_k ,则置ACTION[k,#]=acc
- 5) 其它空白,表示"报错"

状态	ACTION							TO
态	a	b	С	d	е	#	S	Α
0	S2	S3					1	
1						acc		
2					S5			4
3					S7			6
4				S8				
5			S9	r5				
6			S10					
7			r5	S11				
8						r1		
9						r3		
10						r2		
11						r4		

6.5 LALR(1)分析

• LR(1)分析法的本质:

对某些存在冲突的项目集分裂,避免发生冲突

0

• LR(1)分析法存在问题:

LR(1)项目集的构造对某些项目集的分裂可能使 状态数目剧烈的增长。

• 问题的解决:

采用LALR(1)分析法合并同心集。

a

- $(0) S' \rightarrow S$
- $(1) B \rightarrow aB$
- $(2) S \rightarrow BB$
- $(3) B \rightarrow b$

I₀: $S' \rightarrow S, \#$ $S \rightarrow BB, #$ $B \rightarrow \bullet aB, a/b$ ${\bf B}$ $B \rightarrow \bullet b, a/b$ b I_4 : $B \rightarrow b \cdot a/b$ b I₃: $B \rightarrow a \cdot B, a/b$ $B \rightarrow \bullet aB, a/b$ $B \rightarrow \bullet b, a/b$ B I₈: $B \rightarrow a B \cdot , a/b$

LR(1)项目集规范族 和对应的DFA

合并同心集

I₃:

$$B \rightarrow a \cdot B, a/b$$

$$B \rightarrow \bullet aB, a/b$$

$$B \rightarrow \bullet b, a/b$$

I₆:

$$B \rightarrow a \cdot B, \#$$

$$B \rightarrow aB, \#$$

$$B \rightarrow b, \#$$

I_{3,6}:

$$B \rightarrow a \cdot B, a/b/\#$$

mile my

$$B \rightarrow aB, a/b/\#$$

$$B \rightarrow b$$
, $a/b/\#$

 I_{4} :

$$B \rightarrow b \cdot, a/b$$

I₇:

$$B \rightarrow b \bullet, \#$$

合并为

合并为

I_{4,7}:

$$B \rightarrow b \cdot, a/b/\#$$

I₈:

$$B \rightarrow a B \cdot, a/b$$

I₉:

$$B \rightarrow a B \cdot, #$$

合并为

I_{8,9}:

$$B \rightarrow a B \cdot, a/b/\#$$

合并同心集的几点说明

- 同心集合并后心仍相同,只是超前搜索符集合为
 各同心集超前搜索符的和集
- 合并同心集后转换函数自动合并
- LR(1)文法合并同心集后也只可能出现归约-归约 冲突,而没有移进-归约冲突

- $(0) S' \rightarrow S$
- $(1) B \rightarrow aB$
- $(2) S \rightarrow BB$

a

 $(3) B \rightarrow b$

LALR(1)项目集规范族 和对应的DFA

I₅:

 $S \rightarrow B B \cdot , #$

B

状态		ACTION	GOTO		
1八心	a	Ь	#	S	В
0	S ₃	S ₄		1	2
1			acc		
2	S ₆	S ₇			5
3	S ₆ S₃	S ₇ S ₄			8
4	r ₃	r ₃			
5			r ₁		
6	S ₆	S ₇			9
7			r ₃		
8	r ₂	r ₂			
9			r ₂		

合并同心集后

状态		ACTION	GOTO		
1八心	a	Ь	#	S	В
0	S _{3,6}	S _{4,7}		1	2
1			acc		
2	S _{3,6}	S ₇			5
3,6	S _{3,6} S _{3,6}	54			8,9
3,6 4,7	r ₃	r ₃	r ₃		
5			r ₁		
8,9	r ₂	r ₂	r ₂		

6.6 二义性文法在LR分析中的应用

 对于某些二义文法,可以人为地<u>给出优先性和结</u> 合性的规定,从而可以构造出比相应<u>非二义性文</u> 法更优越的LR分析器

总结

- **LR(0)**
- SLR(1): 生成的 LR(0)项目集如有冲突,则根据非终结 符的FOLLOW集决定移进或归约
- LR(1)、LR(k): 项目集由<u>心</u>与<u>向前搜索符</u>组成,搜索符 长度为1或k
- LALR(1): 对LR(1)项目集规范族合并同心集

谢谢各位同学!