ASTR615 HW#4

Group 4: ChongChong He & November 21, 2017

Problem 2

We perform a series of simulations of globular clusters.

Stellar Cluster

We did a few simulations of stellar clusters with made-up initial conditions

Mass distribution

We implement in all of our simulations the Kroupa IMF:

$$\phi(m) \propto \begin{cases} m^{-1.3} & (0.08M_{\odot} < m < 0.5M_{\odot}) \\ 0.5 \, m^{-2.3} & (0.5M_{\odot} < m < 100M_{\odot}) \end{cases}$$
 (1)

after doing transformation we get

$$m = \begin{cases} -\frac{0.566179}{\sqrt[3]{1.7987 - x} (x^3 - 5.39611x^2 + 9.70599x - 5.81939)} & (0 < x < 0.760707) \\ 0.166558 & (0.760707 < x < 1) \end{cases}$$
(2)

where x is a random number between 0 and 1. Figure 1 shows the histogram of the masses of the generated particles as compared to the analytical line.

Figure 1: The mass distribution of the particles in our simulation compared to analytical Kroupa IMF lines.

Figure 2: Energy curve of the systems in our simulations of stellar clusters. All simulations use the same initial conditions but different softening parameters (left) and different methods of force calculation, i.e PP vs BH-tree (right). Epsilon is the softening parameter and theta is the critical angle in BH-tree. In the simulations shown in the right panel, epsilon = 0.005.

Spacial and velocity distribution

The cluster is a specially uniformly distributed sphere with a radius of 1. The initial velocities are from a Gaussian distribution with a dispersion correspondent to a virial ratio of $\alpha \sim 0.4$. A virial ratio $\alpha < 0.5$ implies the system is bounded. The velocity dispersion in one axis is $\sigma_x = 11.4$ and the crossing time is $t \approx 0.08$, so we use a step size of 0.0005, i.e. 160 steps per crossing time.

Softening parameter and step size

However, the binary radius is $\sim 10^{-3}$ and the period is of order 10^{-4} , so our resolution it is far away from resolving binary particles. In order to avoid binaries, we use a large softening parameter $\epsilon = 0.005$. We also do a control run with $\epsilon = 10^{-5}$ to be compared with (Figure 2).

Results: Energy and Time Consumption

The total number of particles in our simulation is 1000. We run this simulation with both our PP-nbody code and BH-nbody code. The energy curve through 400 steps is shown in Figure 2. When the softening parameter is too small, the energy of the system increases dramatically due to close encounters being threw away with large step sizes.

As for PP-nbody vs. BH-nbody, in our simulations of 1000 particles, BH code has nearly no advantage. With a step size 0.0005 and softening parameter 0.005, when running for 400 steps, i.e. 2 - 3 dynamic time, PP code conserves energy better then BH code, even with a small critical angle, and the BH code is not effective faster. It takes 21.0 seconds for the PP code to run the simulation, 15.0 seconds for the BH code with theta = 0.6, and 31.8 seconds for the BH code with theta = 0.3. The videos are shown in simulations/ as cluster_rotating_camera.mp4 and cluster_static_camera.mp4.

RAMSES-RT

We also use initial conditions taken from a snapshot of a simulation from *RAMSES-RT*, an AMR MHD code with radiative transfer. A total of 820 particles are formed from a cold molecular cloud. This work is not shown in the directory due to limited time, but I use the units and time scales in this simulation to investigate into binary problem.

Units and Time Scales

The units in this simulation are as follow: $[T] = 2.5395 \times 10^{15} \,\mathrm{s} \approx 80 \,\mathrm{Myr}, \ [L] = 3.08 \times 10^{18} \,\mathrm{cm} \approx 1 \,\mathrm{pc}, \ [M] = 6.7925 \times 10^{31} \,\mathrm{g} \approx 0.03416 M_{\odot}$. In this setup the gravitational constant is unity.

Imaging a cluster of stars from the outputs of RAMSES simulation which has ~ 1000 stars with Kroupa IMF located in a box of length L=50. If this system is virialized, then $\sigma^2=M_{\rm tot}/R$, from which we obtain $\sigma\approx 27$. Here I use a mean mass of 0.638 $M_{\odot}=20$ (code unit) from Salpeter IMF and R=25. Then, the crossing time of dispersion velocity is $t_{\sigma}=L/\sigma\approx 2$. If we choose a step size $\Delta t=t_{\sigma}/50=0.04$, i.e. 50 steps in a crossing time, then with 5000 steps we are able to simulate 100 crossing time, which is equal to 16 Gyr. This can be done with a PP n-body code on my laptop, and it could be even faster with our BH-tree n-body code.

Binary Problem

I have an attempt on solving the problem of binarity in stellar cluster simulation. The basic idea is to check if two particles 1) are close enough to each other, and 2) K + V < 0 every n steps. If yes, we just replace these two particles with one star representing the motion of the center of mass. Binaries may further merge into trinaries and so on.

Realization of the Binary Problem

If two stars with velocities σ are in virial equilibrium, i.e. $\alpha = K/|W| = 0.5$, the separation between them would be $d_{\text{virial}} = m/2\sigma^2 = 0.016$. However, the typical displacement of a particle in one step is $d_{\text{step}} = \sigma \Delta t \approx 1$, much greater than d_{virial} . Therefore our simulation is not able to identify binary stars. We need a step size ~ 1000 times smaller to achieve the resolution of binary systems.

Searching for close encounters

We consider two stars in the center-of-mass frame. We defined the following two parameters:

• The close-encounter parameter α or γ which defines the criteria of being close enough to each other:

$$|\mathbf{r}_1 - \mathbf{r}_2| < d_{\text{close}} = \alpha \cdot d_{\text{virial}} = \gamma \cdot d_{\text{step}}.$$
 (3)

• The escape parameter β which confines the particles in a small region:

$$\frac{K}{|W|} < 1 - \beta^{-1}. (4)$$

This relation gives the largest separation between the two particles at any time,

$$d_{\text{max}} = \beta d_{\text{close}},\tag{5}$$

ignoring interactions with other particles ¹. When $d_{\text{max}} \ll d_{\text{step}}$ the two particles may be considered as a binary.

¹This relation is obtained by solving equation $(1 - \beta^{-1})|V_0| + V_0 = 0 + V_1$ and $V_0 \propto 1/d_0$, $V_1 \propto 1/d_{\text{max}}$.

Figure 3: The tree code fails to resolve the binary system after a few orbits. Here $\epsilon = 10^{-5}, \Delta t = 10^{-5}, 4000stepsperoutput$.

The solution to binary problem then becomes the balancing between typical particle separation $d_{\text{sepa}} = L/\sqrt[3]{N}$, one-step displacement $d_{\text{step}} = \sigma \Delta t$, the close-encounter parameter α or γ , and the escape parameter β .

Results

To test our code, we artificially create a three-body system and show that a binary system will appear when the step size is small enough. However, it will not be resolved with large step sizes.

With $d_{\rm sepa} \sim 5$, we set $\Delta t = 0.04$, $\alpha = 5$ and $\beta = 2$, which imply $d_{\rm step} = 1$, $d_{\rm close} = 0.08$, and $d_{\rm max} = 0.16$.