Statistics for Applications

Chapter 6: Testing goodness of fit

Goodness of fit tests

Let X be a r.v. Given i.i.d copies of X we want to answer the following types of questions:

- ▶ Does X have distribution $\mathcal{N}(0,1)$? (Cf. Student's T distribution)
- ▶ Does X have distribution $\mathcal{U}([0,1])$? (Cf p-value under H_0)
- ▶ Does X have PMF $p_1 = 0.3, p_2 = 0.5, p_3 = 0.2$

These are all *goodness of fit* tests: we want to know if the hypothesized distribution is a good fit for the data.

Key characteristic of GoF tests: no parametric modeling.

Cdf and empirical cdf (1)

Let X_1, \ldots, X_n be i.i.d. real random variables. Recall the cdf of X_1 is defined as:

$$F(t) = \mathbb{P}[X_1 \le t], \quad \forall t \in \mathbb{R}.$$

It completely characterizes the distribution of X_1 .

Definition

The *empirical cdf* of the sample X_1, \ldots, X_n is defined as:

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \le t\}$$

$$= \frac{\#\{i = 1, \dots, n : X_i \le t\}}{n}, \quad \forall t \in \mathbb{R}.$$

Cdf and empirical cdf (2)

By the LLN, for all $t \in \mathbb{R}$,

$$F_n(t) \xrightarrow[n \to \infty]{a.s.} F(t).$$

Glivenko-Cantelli Theorem (Fundamental theorem of statistics)

$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \xrightarrow[n \to \infty]{a.s.} 0.$$

Cdf and empirical cdf (3)

By the CLT, for all $t \in \mathbb{R}$,

$$\sqrt{n} (F_n(t) - F(t)) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, F(t) (1 - F(t))).$$

Donsker's Theorem

If F is continuous, then

$$\sqrt{n} \sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \xrightarrow[n \to \infty]{(d)} \sup_{0 \le t \le 1} |\mathbb{B}(t)|,$$

where $\mathbb B$ is a Brownian bridge on [0,1].

Kolmogorov-Smirnov test (1)

- Let X_1, \ldots, X_n be i.i.d. real random variables with unknown cdf F and let F^0 be a **continuous** cdf.
- Consider the two hypotheses:

$$H_0: F = F^0$$
 v.s. $H_1: F \neq F^0$.

- Let F_n be the empirical cdf of the sample X_1, \ldots, X_n .
- ▶ If $F = F^0$, then $F_n(t) \approx F^0(t)$, for all $t \in [0,1]$.

Kolmogorov-Smirnov test (2)

- $\blacktriangleright \text{ Let } T_n = \sup_{t \in \mathbb{R}} \sqrt{n} \left| F_n(t) F^0(t) \right|.$
- ▶ By Donsker's theorem, if H_0 is true, then $T_n \xrightarrow[n \to \infty]{(d)} Z$, where Z has a known distribution (supremum of a Brownian bridge).
- ▶ KS test with asymptotic level α :

$$\delta_{\alpha}^{KS} = \mathbb{1}\{T_n > q_{\alpha}\},\$$

where q_{α} is the $(1-\alpha)$ -quantile of Z (obtained in tables).

• p-value of KS test: $\mathbb{P}[Z > T_n | T_n]$.

Kolmogorov-Smirnov test (3)

Remarks:

- ▶ In practice, how to compute T_n ?
- ▶ F^0 is non decreasing, F_n is piecewise constant, with jumps at $t_i = X_i, i = 1, ..., n$.
- ▶ Let $X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}$ be the reordered sample.
- ▶ The expression for T_n reduces to the following practical formula:

$$T_n = \sqrt{n} \max_{i=1,\dots,n} \left\{ \max \left(\frac{i-1}{n} - F^0(X_{(i)}), \frac{i}{n} - F^0(X_{(i)}) \right) \right\}.$$

Kolmogorov-Smirnov test (4)

► T_n is called a pivotal statistic: If H₀ is true, the distribution of T_n does not depend on the distribution of the X_i's and it is easy to reproduce it in simulations.

Indeed, let $U_i = F^0(X_i), i = 1, \dots, n$ and let G_n be the empirical cdf of U_1, \dots, U_n .

If H_0 is true, then $U_1,\ldots,U_n \overset{i.i.d.}{\sim} \mathcal{U}\left([0.1]\right)$ and $T_n = \sup_{0 \le x \le 1} \sqrt{n} \, |G_n(x) - x|.$

Kolmogorov-Smirnov test (5)

- ▶ For some large integer *M*:
 - ▶ Simulate M i.i.d. copies T_n^1, \ldots, T_n^M of T_n ;
 - Estimate the $(1-\alpha)$ -quantile $q_{\alpha}^{(n)}$ of T_n by taking the sample $(1-\alpha)$ -quantile $\hat{q}_{\alpha}^{(n,M)}$ of T_n^1,\dots,T_n^M .
- Test with approximate level α:

$$\delta_{\alpha} = \mathbb{1}\{T_n > \hat{q}_{\alpha}^{(n,M)}\}.$$

Approximate p-value of this test:

$$\text{p-value } \approx \frac{\#\{j=1,\ldots,M: T_n^j > T_n\}}{M}.$$

Kolmogorov-Smirnov test (6)

These quantiles are often precomputed in a table.

Other goodness of fit tests

We want to measure the distance between two functions: $F_n(t)$ and F(t). There are other ways, leading to other tests:

Kolmogorov-Smirnov:

$$d(F_n, F) = \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$$

Cramér-Von Mises:

$$d^{2}(F_{n}, F) = \int_{\mathbb{R}} \left[F_{n}(t) - F(t) \right]^{2} dt$$

Anderson-Darling:

$$d^{2}(F_{n}, F) = \int_{\mathbb{R}} \frac{[F_{n}(t) - F(t)]^{2}}{F(t)(1 - F(t))} dt$$

Composite goodness of fit tests

What if I want to test: "Does X have Gaussian distribution?" but I don't know the parameters? Simple idea: plug-in

$$\sup_{t\in\mathbb{R}} F_n(t) - \Phi_{\hat{\mu},\hat{\sigma}^2}(t)$$

where

$$\hat{\mu} = \bar{X}_n, \qquad \hat{\sigma}^2 = S_n^2$$

and $\Phi_{\hat{\mu},\hat{\sigma}^2}(t)$ is the cdf of $\mathcal{N}(\hat{\mu},\hat{\sigma}^2)$.

In this case Donsker's theorem is *no longer valid*. This is a common and serious mistake!

Kolmogorov-Lilliefors test (1)

Instead, we compute the quantiles for the test statistic:

$$\sup_{t \in \mathbb{R}} F_n(t) - \Phi_{\hat{\mu}, \hat{\sigma}^2}(t)$$

They do not depend on unknown parameters!

This is the Kolmogorov-Lilliefors test.

Kolmogorov-Lilliefors test (2)

These quantiles are often precomputed in a table.

Quantile-Quantile (QQ) plots (1)

- Provide a visual way to perform GoF tests
- Not formal test but quick and easy check to see if a distribution is plausible.
- Main idea: we want to check visually if the plot of F_n is close to that of F or equivalently if the plot of F_n^{-1} is close to that of F^{-1} .
- More convenient to check if the points

$$\left(F^{-1}(\frac{1}{n}), F_n^{-1}(\frac{1}{n})\right), \left(F^{-1}(\frac{2}{n}), F_n^{-1}(\frac{2}{n})\right), \dots, \left(F^{-1}(\frac{n-1}{n}), F_n^{-1}(\frac{n-1}{n})\right)$$
 are near the line $y = x$.

 $ightharpoonup F_n$ is not technically invertible but we define

$$F_n^{-1}(i/n) = X_{(i)},$$

the ith largest observation.

χ^2 goodness-of-fit test, finite case (1)

- Let X_1, \ldots, X_n be i.i.d. random variables on some finite space $E = \{a_1, \ldots, a_K\}$, with some probability measure \mathbb{P} .
- Let $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ be a parametric family of probability distributions on E.
- ▶ Example: On $E = \{1, ..., K\}$, consider the family of binomial distributions $(\mathsf{Bin}(K,p))_{p \in (0,1)}$.
- ▶ For j = 1, ..., K and $\theta \in \Theta$, set

$$p_j(\theta) = \mathbb{P}_{\theta}[Y = a_j], \text{ where } Y \sim \mathbb{P}_{\theta}$$

and

$$p_j = \mathbb{P}[X_1 = a_j].$$

χ^2 goodness-of-fit test, finite case (2)

Consider the two hypotheses:

$$H_0: \mathbb{P} \in (\mathbb{P}_{\theta})_{\theta \in \Theta}$$
 v.s. $H_1: \mathbb{P} \notin (\mathbb{P}_{\theta})_{\theta \in \Theta}$.

- ▶ Testing H_0 means testing whether the statistical model $\left(E, (\mathbb{P}_{\theta})_{\theta \in \Theta}\right)$ fits the data (e.g., whether the data are indeed from a binomial distribution).
- ► *H*₀ is equivalent to:

$$p_j = p_j(\theta), \quad \forall j = 1, \dots, K, \text{ for some } \theta \in \Theta.$$

χ^2 goodness-of-fit test, finite case (3)

▶ Let $\hat{\theta}$ be the MLE of θ when assuming H_0 is true.

Let $\hat{p}_j = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i = a_j\} = \frac{\#\{i : X_i = a_j\}}{n}, \quad j = 1, \dots, K.$

▶ Idea: If H_0 is true, then $p_j = p_j(\theta)$ so both \hat{p}_j and $p_j(\hat{\theta})$ are good estimators or p_j . Hence, $\hat{p}_j \approx p_j(\hat{\theta}), \quad \forall j=1,\ldots,K.$

▶ Define the test statistic:
$$T_n = n \sum_{j=1}^K \frac{\left(\hat{p}_j - p_j(\hat{\theta})\right)^2}{p_j(\hat{\theta})}$$

χ^2 goodness-of-fit test, finite case (4)

▶ Under some technical assumptions, if H_0 is true, then

$$T_n \xrightarrow[n \to \infty]{(d)} \chi^2_{K-d-1},$$

where d is the size of the parameter θ ($\Theta \subseteq \mathbb{R}^d$ and d < K - 1).

▶ Test with asymptotic level $\alpha \in (0,1)$:

$$\delta_{\alpha} = \mathbb{1}\{T_n > q_{\alpha}\},\,$$

where q_{α} is the $(1-\alpha)$ -quantile of χ^2_{K-d-1} .

lacktriangledown p-value: $\mathbb{P}[Z>T_n|T_n]$, where $Z\sim\chi^2_{K-d-1}$ and $Z\perp\!\!\!\perp T_n.$

χ^2 goodness-of-fit test, infinite case (1)

- ▶ If E is infinite (e.g. $E = \mathbb{N}, E = \mathbb{R}, \ldots$):
- ▶ Partition *E* into *K* disjoint bins:

$$E = A_1 \cup \ldots \cup A_K.$$

- ▶ Define, for $\theta \in \Theta$ and j = 1, ..., K:
 - $p_j(\theta) = \mathbb{P}_{\theta}[Y \in A_j], \text{ for } Y \sim \mathbb{P}_{\theta},$
 - $p_j = \mathbb{P}[X_1 \in A_j],$
 - $\hat{p}_j = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \in A_j\} = \frac{\#\{i : X_i \in A_j\}}{n},$
 - $ightharpoonup \hat{ heta}$: same as in the previous case.

χ^2 goodness-of-fit test, infinite case (2)

- As previously, let $T_n = n \sum_{j=1}^K \frac{|\hat{p}_j p_j(\hat{\theta})|^2}{p_j(\hat{\theta})}$.
- ▶ Under some technical assumptions, if H_0 is true, then

$$T_n \xrightarrow[n \to \infty]{(d)} \chi^2_{K-d-1},$$

where d is the size of the parameter θ ($\Theta \subseteq \mathbb{R}^d$ and d < K - 1).

▶ Test with asymptotic level $\alpha \in (0,1)$:

$$\delta_{\alpha} = \mathbb{1}\{T_n > q_{\alpha}\},\,$$

where q_{α} is the $(1-\alpha)$ -quantile of χ^2_{K-d-1} .

χ^2 goodness-of-fit test, infinite case (3)

- Practical issues:
 - ightharpoonup Choice of K?
 - ▶ Choice of the bins A_1, \ldots, A_K ?
 - ▶ Computation of $p_j(\theta)$?
- ▶ Example 1: Let $E = \mathbb{N}$ and $H_0 : \mathbb{P} \in (\mathsf{Poiss}(\lambda))_{\lambda > 0}$.
- If one expects λ to be no larger than some λ_{\max} , one can choose $A_1=\{0\}, A_2=\{1\}, \ldots, A_{K-1}=\{K-2\}, A_K=\{K-1,K,K+1,\ldots\}$, with K large enough such that $p_K(\lambda_{\max})\approx 0$.

MIT OpenCourseWare https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.