# HW5

## Sam Olson

# 1.

In the attached article by Prof. M. Ghosh, read pages 509-512 (including example 1), examples 4-6 of Section 3, and Section 5.2 up to and including Examples 17-18. (This is sort of a technical article, so to read a bit of this material is not easy. Also, Example 17 should look like an example from class regarding Basu's theorem.)

In example 18, show that T is a complete and sufficient statistic, while U is an ancillary statistic.

## Example 18.

Let  $X_1, \ldots, X_n$   $(n \ge 2)$  be iid with common Weibull pdf

$$f_{\theta}(x) = \exp(-x^p/\theta)(p/\theta)x^{p-1}; \quad 0 < x < \infty, \quad 0 < \theta < \infty,$$

p(>0) being known. In this case,  $T=\sum_{i=1}^n X_i^p$  is complete sufficient for  $\theta$ , while  $U=X_1^p/T$  is ancillary. Also, since  $X_1^p,\ldots,X_n^p$  are iid exponential with scale parameter  $\theta$ ,  $U\sim \mathrm{Beta}(1,n-1)$ . Hence, the UMVUE of  $P_{\theta}(X_1\leq x)=P_{\theta}(X_1^p\leq x^p)$  is given by

$$k(T) = \begin{cases} 1 - x^{np}/T^n & \text{if } T > x^p, \\ 1 & \text{if } T \le x^p. \end{cases}$$

## Answer

By definition, a statistic T is sufficient if the joint pdf of  $X_1, \ldots, X_n$  can be factorized into the form:

$$f_{\theta}(x_1,\ldots,x_n) = q(T,\theta)h(x_1,\ldots,x_n)$$

where:

 $g(T,\theta)$  depends on  $\theta$ ,

 $h(x_1,\ldots,x_n)$  does not depend on  $\theta$ .

Given  $X_1,...,X_n$   $(n \ge 2)$  are iid with Common Weibull pdf, the joint pdf of  $X_1,...,X_n$  is:

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^{n} \left[ \exp(-x_i^p/\theta) \cdot \frac{p}{\theta} x_i^{p-1} \right]$$

Where:

$$0 < x_i < \infty$$
 and  $0 < \theta < \infty$   $\forall i$ 

We can simplify this expression somewhat:

$$f_{\theta}(x_1, \dots, x_n) = \left(\frac{p}{\theta}\right)^n \exp\left(-\frac{T}{\theta}\right) \prod_{i=1}^n x_i^{p-1}$$

Of note:

- The function  $g(T,\theta) = \left(\frac{p}{\theta}\right)^n \exp\left(-\frac{T}{\theta}\right)$  depends on T and  $\theta$ .
- The function  $h(x_1, \ldots, x_n) = \prod_{i=1}^n x_i^{p-1}$  does not depend on  $\theta$ .

Thus, by the Factorization Theorem, T is sufficient for  $\theta$ .

We then need to address completeness:

By definition, a statistic T is complete if for any function g(T):

$$E_{\theta}[g(T)] = 0, \quad \forall \theta \quad \Rightarrow \quad P(g(T) = 0) = 1$$

That is, if the expectation of g(T) is zero for all  $\theta$ , then g(T) must be the zero function.

Since  $X_1^p, \ldots, X_n^p$  are iid Exponential( $\theta$ ), following from rescaling the original Weibull-distributed  $X_i$ 's, we have the sum:

$$T = \sum_{i=1}^{n} X_i^p$$

follows a Gamma distribution:

$$T \sim \text{Gamma}(n, \theta)$$

Yes, your statement is appropriate, but it can be slightly refined for clarity and precision. Here's a suggested revision:

We take advantage of the fact that the Gamma family is a complete exponential family in  $\theta$ , which implies that T is a complete statistic for  $\theta$ . This follows from the general result that a one-parameter exponential family is complete in  $\theta$ , and the Gamma distribution is a specific instance of such a family for the scale parameter  $\theta$  (we cannot find anything with expectation zero for all  $\theta$  that is not the zero function itself).

Thus, T is both sufficient and complete for  $\theta$ .

Finally, we address the ancillary statistic. By definition, a statistic U is ancillary if its distribution does not depend on  $\theta$ .

We are given a hint to try:

$$U = \frac{X_1^p}{T}$$

Since  $X_1^p, \ldots, X_n^p$  are iid Exponential( $\theta$ ), again following from the initial  $X_i$ 's being iid Weibull. At any rate, we can again rescale:

$$\left(\frac{X_1^p}{\theta}, \dots, \frac{X_n^p}{\theta}\right) \sim \text{Exp}(1)$$

While still retaining iid.

Taking the sum, we can express this as another sum of Exponential iid random variables, giving us:

$$T/\theta \sim \text{Gamma}(n,1)$$

Since:

$$U = \frac{X_1^p}{T} = \frac{X_1^p/\theta}{T/\theta}$$

By multiplying by a "cheeky one".

We then note that  $\frac{X_1^p}{\theta} \sim Gamma(1,1)$  and  $T/\theta \sim Gamma(n,1)$ , we know that U is a ratio of two Gamma distributions that are independent is by definition a Beta distribution (the numerator and denominator being independent).

Specifically, U is distributed:

$$U \sim \text{Beta}(1, n-1)$$

Since the Beta(1, n-1) distribution does not depend on  $\theta$ , we know the statistic U is ancillary.

## Extra Details

I'm pretty sure the above is "enough" (avoiding using the word sufficient explicitly in a non-maths context), but in the event that some more work would help:

For finding the distribution of U:

$$U = \frac{X_1^p}{T} = \frac{X_1^p/\theta}{T/\theta}$$

$$f_{X_1^p/\theta}(x) = \frac{x^{1-1}e^{-x}}{\Gamma(1)} = e^{-x}$$

$$f_{T/\theta}(t) = \frac{t^{n-1}e^{-t}}{\Gamma(n)}$$

Giving joint pdf:

$$f_{X_1^p/\theta, T/\theta}(x, t) = f_{X_1^p/\theta}(x) f_{T/\theta}(t) = e^{-x} \cdot \frac{t^{n-1}e^{-t}}{\Gamma(n)}$$

For:

$$U = \frac{X_1^p}{T}$$

Gives:

$$X_1^p = UT$$

$$T=T$$

With Jacobian:

$$J = \begin{vmatrix} \frac{\partial X_1^p}{\partial U} & \frac{\partial X_1^p}{\partial T} \\ \frac{\partial T}{\partial U} & \frac{\partial T}{\partial T} \end{vmatrix} = \begin{vmatrix} T & U \\ 0 & 1 \end{vmatrix} = T$$

Transformation of the prior joint pdf gives:

$$f_{U,T}(u,t) = f_{X_1^p,T}(ut,t) \cdot |J| = e^{-ut} \cdot \frac{t^{n-1}e^{-t}}{\Gamma(n)} \cdot T = \frac{t^n e^{-t}}{\Gamma(n)} e^{-ut}$$

Getting the marginal distribution of U, integrating over T, we have:

$$f_U(u) = \int_0^\infty f_{U,T}(u,t)dt = \int_0^\infty \frac{t^n e^{-t}}{\Gamma(n)} e^{-ut}dt = \frac{1}{\Gamma(n)} \int_0^\infty t^n e^{-(1+u)t}dt = \frac{\Gamma(n+1)}{\Gamma(n)} \cdot \frac{1}{(1+u)^{n+1}}$$

As  $\Gamma(n+1) = n\Gamma(n)$ , we can simplify further:

$$f_U(u) = n \frac{1}{(1+u)^{n+1}} = \frac{u^{1-1}(1-u)^{(n-1)-1}}{B(1,n-1)}$$

Where B is the Beta function as is usually defined, and  $u^{1-1} = u^0 = 0$  under the constraint 0<u<1 as a "cheeky one".

This confirms:

$$U \sim \text{Beta}(1, n-1)$$

# 2.

Problem 7.60, Casella and Berger and the following:

## Extra

Let  $X_1, \ldots, X_n$  be iid gamma $(\alpha, \beta)$  with  $\alpha$  known. Find the best unbiased estimator of  $1/\beta$ .

### Answer

Since  $X_i \sim \text{Gamma}(\alpha, \beta)$  are iid, the sum:

$$S_n = \sum_{i=1}^n X_i \sim \text{Gamma}(n\alpha, \beta)$$

Taking expectation of this statistic:

$$E_{\beta}(S_n) = n\alpha\beta$$

To get just the  $\beta$  term, consider:

$$E_{\beta} \left[ \frac{n\alpha}{S_n} \right] = \frac{n\alpha}{E_{\beta}(S_n)} = \frac{n\alpha}{n\alpha\beta} = \frac{1}{\beta}$$

This shows that  $\frac{n\alpha}{S_n}$  is an unbiased estimator of  $\frac{1}{\beta}$ 

Noting the work shown previously in 1., via the Factorization Theorem, we know  $S_n$  is a sufficient statistic for  $\beta$  (scale parameter of the Gamma).

Similarly, we know that the Gamma family is a specific instance of a complete one-parameter exponential family, meaning we know that  $S_n$  is also complete.

Now, we can do something new! Via Lehmann-Scheffé, since  $\delta(S_n) = \frac{n\alpha}{S_n}$  is an unbiased function of the complete sufficient statistic,  $S_n$ , we know that  $\delta(S_n) = \frac{n\alpha}{S_n}$  is the UMVUE of  $1/\beta$ . Yippee!

# **a**)

Let  $S_n = \sum_{i=1}^n X_i$ . Using Basu's theorem, show  $X_1/S_n$  and  $S_n$  are independent.

## Answer

By definition, Basu's theorem: If T is a complete sufficient statistic and U is an ancillary statistic, then T and U are independent.

From the prior question, we know that  $S_n$  is complete and sufficient for  $\beta$ .

We need to then find an ancillary statistic.

To that end, let:

$$U = \frac{X_1}{S_n}$$

Where:

$$X_1 \sim \text{Gamma}(\alpha, \beta)$$

$$S_n \sim \text{Gamma}(n\alpha, \beta)$$

Using given information, we know U is a ratio of two Gamma random variables. However, this is complicated somewhat by  $X_1$  and  $S_n$  not being independent! So we need to do a bit of calculation to identify the underlying structure of their ratios (though it will be Beta-distributed, the parameter values don't follow the typical formula). To that end, using the known pdfs of each statistic:

$$f_{X_1}(x_1) = \frac{x_1^{\alpha - 1} e^{-x_1/\beta}}{\beta^{\alpha} \Gamma(\alpha)}$$

$$f_{S_n}(s) = \frac{s^{n\alpha - 1}e^{-s/\beta}}{\beta^{n\alpha}\Gamma(n\alpha)}$$

By the product rule (noting  $X_1$  and  $S_n$  are not independent):

$$f_{X_1,S_n}(x_1,s) = f_{X_1|S_n}(x_1|s)f_{S_n}(s)$$

Where:

$$f_{X_1|S_n}(x_1|s) = \frac{x_1^{\alpha-1}(s-x_1)^{(n-1)\alpha-1}}{s^{n\alpha-1}B(\alpha,(n-1)\alpha)}$$

Giving joint pdf:

$$f_{X_1,S_n}(x_1,s) = \frac{x_1^{\alpha-1}(s-x_1)^{(n-1)\alpha-1}e^{-s/\beta}s^{n\alpha-1}}{\beta^{n\alpha}\Gamma(\alpha)\Gamma((n-1)\alpha)}$$

For

$$U = \frac{X_1}{S_n}$$

We have:

$$X_1 = US_n$$

$$S = (1 - U)S_n$$

Caluating the Jacobian determinant:

$$J = \begin{vmatrix} \frac{\partial X_1}{\partial U} & \frac{\partial X_1}{\partial S_n} \\ \frac{\partial S}{\partial U} & \frac{\partial S}{\partial S_n} \end{vmatrix} = \begin{vmatrix} S_n & U \\ -S_n & 1 - U \end{vmatrix} = S_n(1 - U) + S_nU = S_n$$

Via transformation, we have:

Getting the the marginal distribution of  $f_U(u)$ :

$$f_U(u) = \int_0^\infty f_{U,S_n}(u,s)ds = \frac{u^{\alpha-1}(1-u)^{(n-1)\alpha-1}\Gamma(n\alpha)}{\Gamma(\alpha)\Gamma((n-1)\alpha)}$$

Thus, we can identify the distribution and parameters from the above! We know that U is Beta-distributed, specifically:

$$U \sim \text{Beta}(\alpha, (n-1)\alpha)$$

Which does not depend on  $\beta$  for any of its parameters! This means we have an ancillary statistic. As such, by Basu's theorem,  $U = X_1/S_n$  and  $S_n$  are independent.

b)

Using the result in a) and  $E_{\theta}(S_n) = n\alpha\beta$ , find  $E_{\theta}(X_1/S_n)$ .

#### Answer

Using the results in a):

$$E_{\theta}\left(\frac{X_1}{S_n}\right) = E_{\theta}\left(U\right)$$

Where:

$$U \sim \text{Beta}(\alpha, (n-1)\alpha)$$

Using the properties of a known distribution, we know that:

$$E_{\theta}\left(\frac{X_1}{S_n}\right) = \frac{\alpha}{\alpha + (n-1)\alpha} = \frac{1}{n}$$

# 3.

Problem 8.13(a)-(c), Casella and Berger (2nd Edition) and, in place of Problem 8.13(d), consider the following test:

Let  $X_1, X_2$  be iid uniform $(\theta, \theta + 1)$ . For testing  $H_0: \theta = 0$  versus  $H_1: \theta > 0$ , we have two competing tests:

$$\phi_1(X_1)$$
: Reject  $H_0$  if  $X_1 > 0.95$ ,

$$\phi_2(X_1, X_2)$$
: Reject  $H_0$  if  $X_1 + X_2 > C$ .

**a**)

Find the value of C so that  $\phi_2$  has the same size as  $\phi_1$ .

#### Answer

The size of  $\phi_1$  is:

$$\alpha_1 = P(X_1 > 0.95 \mid \theta = 0) = 0.05$$

The size of  $\phi_2$  is:

$$\alpha_2 = P(X_1 + X_2 > C \mid \theta = 0)$$

For  $1 \le C \le 2$ , the probability  $P(X_1 + X_2 > C \mid \theta = 0)$  is:

$$\alpha_2 = \int_{1-C}^{1} \int_{C-x_1}^{1} 1 \, dx_2 \, dx_1 = \frac{(2-C)^2}{2}$$

For  $\alpha_2 = \alpha_1 = 0.05$ , we solve for C:

$$\frac{(2-C)^2}{2} = 0.05 \implies (2-C)^2 = 0.1 \implies C = 2 - \sqrt{0.1} \approx 1.68$$

b)

Calculate the power function of each test. Draw a well-labeled graph of each power function.

### Answer

The power function of  $\phi_1$  is:

$$\beta_1(\theta) = P_{\theta}(X_1 > 0.95) = \begin{cases} 0 & \text{if } \theta \le -0.05, \\ \theta + 0.05 & \text{if } -0.05 < \theta \le 0.95, \\ 1 & \text{if } \theta > 0.95 \end{cases}$$

The distribution of  $Y = X_1 + X_2$  is:

$$f_Y(y \mid \theta) = \begin{cases} y - 2\theta & \text{if } 2\theta \le y < 2\theta + 1, \\ 2\theta + 2 - y & \text{if } 2\theta + 1 \le y < 2\theta + 2, \\ 0 & \text{otherwise} \end{cases}$$

The power function of  $\phi_2$  is:

$$\beta_2(\theta) = P_{\theta}(Y > C) = \begin{cases} 0 & \text{if } \theta \le \frac{C}{2} - 1, \\ \frac{(2\theta + 2 - C)^2}{2} & \text{if } \frac{C}{2} - 1 < \theta \le \frac{C - 1}{2}, \\ 1 - \frac{(C - 2\theta)^2}{2} & \text{if } \frac{C - 1}{2} < \theta \le \frac{C}{2}, \\ 1 & \text{if } \theta > \frac{C}{2} \end{cases}$$

For  $C \approx 1.68$ :

$$\beta_2(\theta) = \begin{cases} 0 & \text{if } \theta \le -0.16, \\ \frac{(2\theta + 0.32)^2}{2} & \text{if } -0.16 < \theta \le 0.34, \\ 1 - \frac{(1.68 - 2\theta)^2}{2} & \text{if } 0.34 < \theta \le 0.84, \\ 1 & \text{if } \theta > 0.84 \end{cases}$$

# **Power Functions of Phi1 and Phi2**



**c**)

Prove or disprove:  $\phi_2$  is a more powerful test than  $\phi_1$ .

#### Answer

From the graph above,  $\phi_1$  is more powerful for  $\theta$  near 0, around 0 to 0.2, but  $\phi_2$  is more powerful for larger values of  $\theta$ , particularly around 0.2 to 0.9.

To be a more powerful test, you must be uniformly more powerful than the reference test. We do not meet this condition, meaning  $\phi_2$  is not a more powerful test than  $\phi_1$ .

# Extra

$$\phi_3(X_1, X_2) = \begin{cases} 1 & \text{if } X_{(1)} > 1 - \sqrt{0.05} \text{ or } X_{(2)} > 1 \\ 0 & \text{otherwise} \end{cases}$$

where  $X_{(1)}, X_{(2)}$  are the min, max.

Find the size of this test and the power function for  $\theta > 0$ . Then, graph the power functions of  $\phi_3$  and  $\phi_2$  to determine which test is more powerful. (It's enough to graph over the range  $\theta \in [0, 1.2]$ .)

#### Answer

With the tests as defined,

where  $X_{(1)}$  and  $X_{(2)}$  are the minimum and maximum of  $X_1, X_2$ , respectively.

Under  $H_0: \theta = 0, X_1, X_2 \sim \text{Uniform}(0, 1)$ , and the order statistics  $X_{(1)}$  and  $X_{(2)}$  are random variables with distributions:

 $X_{(1)} \sim \text{Beta}(1,2),$ 

 $X_{(2)} \sim \text{Beta}(2,1).$ 

Under  $H_0: \theta = 0$ , the size of  $\phi_3$  is:

$$\alpha_3 = P(X_{(1)} > 1 - \sqrt{0.05} \mid \theta = 0) = (1 - (1 - \sqrt{0.05}))^2 = 0.05$$

This is because  $X_{(1)} > 1 - \sqrt{0.05}$  requires both  $X_1$  and  $X_2$  to be greater than  $1 - \sqrt{0.05}$ , and the probability of this event is  $(\sqrt{0.05})^2 = 0.05$ .

Under  $H_1: \theta > 0, X_1, X_2 \sim \text{Uniform}(\theta, \theta + 1).$ 

The minimum  $X_{(1)}$  follows the CDF:

$$P(X_{(1)} \le x) = 1 - (1 - (x - \theta))^2$$
 for  $\theta \le x \le \theta + 1$ 

Thus, the power function of  $\phi_3$  is:

$$\beta_3(\theta) = P_{\theta}(X_{(1)} > 1 - \sqrt{0.05}) = (1 - (1 - \sqrt{0.05} - \theta))^2$$

For  $\theta > 1 - \sqrt{0.05}$ ,  $\beta_3(\theta) = 1$  because  $X_{(1)} > 1 - \sqrt{0.05}$  is always true.

The power function of  $\phi_2$ , as determined previously, is:

$$\beta_2(\theta) = \begin{cases} 0 & \text{if } \theta \le -0.16, \\ \frac{(2\theta + 0.32)^2}{2} & \text{if } -0.16 < \theta \le 0.34, \\ 1 - \frac{(1.68 - 2\theta)^2}{2} & \text{if } 0.34 < \theta \le 0.84, \\ 1 & \text{if } \theta > 0.84. \end{cases}$$

From the graph comparing the two tests,  $\phi_2$  is more powerful for small values of  $\theta$ , roughly speaking less than 0.7, and  $\phi_3$  is more powerful for larger values of  $\theta$ , roughly greater than 0.7.

```
# setup
theta <- seq(0, 1.2, by = 0.01)

t_crit <- 1 - sqrt(0.05)

phi3_power <- function(theta) {
    ifelse(theta <= t_crit, (1 - (1 - sqrt(0.05) - theta))^2, 1)
}

beta3 <- sapply(theta, phi3_power)

C <- 2 - sqrt(0.1)
beta2 <- ifelse(theta <= (C - 1)/2, ((2*theta + 2 - C)^2)/2,</pre>
```

```
ifelse(theta <= C/2, 1 - ((C - 2*theta)^2)/2, 1))

plot(theta, beta2, type = "l", col = "black", lwd = 2, ylim = c(-0.1, 1.3),
    ylab = "Power", xlab = expression(theta), main = "Power Functions of Phi2 and Phi3")
lines(theta, beta3, col = "red", lwd = 2)

legend("bottomright", legend = c(expression(phi[2]), expression(phi[3])),
    col = c("black", "red"), lty = c(1, 1), lwd = 2)</pre>
```

# **Power Functions of Phi2 and Phi3**



# 4.

Problem 8.15, Casella and Berger (2nd Edition), though you can just assume the form given is most powerful (no need to show).

Show that for a random sample  $X_1, \ldots, X_n$  from a  $\mathcal{N}(0, \sigma^2)$  population, the most powerful test of  $H_0 : \sigma = \sigma_0$  versus  $H_1 : \sigma = \sigma_1$ , where  $\sigma_0 < \sigma_1$ , is given by

$$\phi\left(\sum X_i^2\right) = \begin{cases} 1 & \text{if } \sum X_i^2 > c, \\ 0 & \text{if } \sum X_i^2 \leq c. \end{cases}$$

For a given value of  $\alpha$ , the size of the Type I Error, show how the value of c is explicitly determined.

#### Answer

From the Neyman-Pearson lemma, the most powerful test rejects  $H_0$  if the likelihood ratio exceeds a threshold k.

The likelihood ratio is given by:

$$\Lambda = \frac{f(x \mid \sigma_1)}{f(x \mid \sigma_0)} = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{\frac{1}{2} \sum_i x_i^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\right\} > k$$

Taking the logarithm (a monotonic function):

$$\log \Lambda = n \log \left(\frac{\sigma_0}{\sigma_1}\right) + \frac{1}{2} \sum_i x_i^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right) > \log(k)$$

We isolate the term  $\sum_{i} x_{i}^{2}$  to one side of the inequality:

$$\frac{1}{2} \sum_{i} x_i^2 \left( \frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right) > \log k - n \log \left( \frac{\sigma_0}{\sigma_1} \right)$$

$$\sum_i x_i^2 \left( \frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right) > 2 \left( \log k - n \log \left( \frac{\sigma_0}{\sigma_1} \right) \right)$$

Solving for  $\sum_i x_i^2$ :

$$\sum_{i} x_i^2 > \frac{2\left(\log k - n\log\left(\frac{\sigma_0}{\sigma_1}\right)\right)}{\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}} = c$$

for some constant, real-valued c.

A couple notes:

The above assumes  $\sigma_1 > \sigma_0$ , so that  $\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} > 0$ , is this switches, then the overall inequality flips as well.

Also, the inequality  $\sum_i x_i^2 > c$  defines the rejection region for the uniformly most powerful (UMP) test.

That being said, now the critical value c is determined such that the Type I error probability is  $\alpha$ :

$$\alpha = P_{\sigma_0} \left( \sum_i X_i^2 > c \right)$$

Under  $H_0$ ,  $\sum_i X_i^2/\sigma_0^2$  follows a chi-squared distribution with n degrees of freedom:

$$\sum_{i} X_i^2 / \sigma_0^2 \sim \chi_n^2$$

Thus, we can rewrite the expression for  $\alpha$  as:

$$\alpha = P_{\sigma_0} \left( \sum_i X_i^2 > c \right) = P_{\sigma_0} \left( \sum_i X_i^2 / \sigma_0^2 > c / \sigma_0^2 \right) = P \left( \chi_n^2 > c / \sigma_0^2 \right)$$

Solving for c:

$$c = \sigma_0^2 \cdot \chi_{n,1-\alpha}^2$$

where  $\chi^2_{n,1-\alpha}$  is the  $(1-\alpha)$ -quantile of the  $\chi^2_n$  distribution.

The UMP test rejects  $H_0$  if:

$$\sum_{i} X_i^2 > c = \sigma_0^2 \cdot \chi_{n,1-\alpha}^2$$

This defines the rejection region for the most powerful test with Type I error probability  $\alpha$ .