Отчет по Лабораторной Работе № 7

Эффективность рекламы - Вариант 51

Нзита Диатезилуа Катенди

Содержание

Цель работы

Целю данной работы является решение упражнения по эффективности реклами на языке программирования Julia

Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.7 + 0.000012n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.00003 + 0.5n(t))t(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.57\sin(t) - 0.38\cos(13t)) * (N - n(t))$$

При этом объем аудитории N = 1420, в начальный момент о товаре знает 12 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Выполнение лабораторной работы

Модель рекламной кампании описывается следующими величинами.

Считаем, что dn/dt - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:

a1(t)(N - n(t)), где N - общее число потенциальных платежеспособных покупателей, a1(t) - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной a2(t)n(t)(N)

- n(t)), эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (a1(t) - a2(t)n(t))(N - n(t))$$

Условие задачи

Параметры модели

const N = 1420

const k = 0.5

const a = 0.00003

Код программы (Julia)

#Функция правой части дифференцииального уравнения

function f(du, u, p, t)

$$du[1] = (a + k * u[1]) * (N - u[1])$$

end

#Налальное условие

u0 = [12.0]

#Решение дифференцииального уравнения

prob = ODEProblem(f, u0, tspan)

sol = solve(prob, Tsit5())

#график распространения рекламы

plot(sol, xlabel = "Время", ylabel = "Чмсло людей, знающих о товаре", title = "Распространение рекламы", label = "<math>n(t)")

#определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

speed = (a .+ k .* sol.u[1]) .* (N .- sol.u[1])

max_speed_index = argmax(speed)

max_speed_time = sol.t[max_speed_index]

println(" Момент времени, когда скорость распространения рекламы будет иметь максимальное: ", max_speed_time)

Временной прамежуток

```
tspan = (0.0, 100.0)
```

Первый случай

Параметры модели

```
сопst N = 1420  
сопst k = 0.000012  
сопst a = 0.7  
#график распространения рекламы  
plot(sol, xlabel = "Время", ylabel = "Чмсло людей, знающих о товаре", title = "Распространение рекламы", label = "n(t)")
```

Второй случай

Параметры модели

```
#Функция правой части дифференцииального уравнения function f(du, u, p, t) du[1] = (a + k * u[1]) * (N - u[1]) end #Налальное условие u0 = [12.0] #Времия tspan = (0.0 , 100.0) #Решение дифференцииального уравнения tspan = 0 prob = ODEProblem(f, u0, tspan) sol = tspan = 0 const tspan = 000003
```

plot(sol, xlabel = "Время", ylabel = "Чмсло людей, знающих о товаре", title = "Распространение рекламы", label = "<math>n(t)")

Третьй случай

Параметры модели

```
const N = 1420
const k = 0.38
const a = 0.57
function f(du, u, p, t)
du[1] = (a * sin(t) + k * cos(13 * t)) * (N - u[1])
end
#Налальное условие
u0 = [12.0]
#Времия
tspan = (0.0, 30.0)
#Решение дифференцииального уравнения
prob = ODEProblem(f, u0, tspan) sol = solve(prob, Tsit5(), reltol = 1e-8, abstol = 1e-8)
plot(sol, xlabel = "Время", ylabel = "Чмсло людей, знающих о товаре", title =
"Распространение рекламы", label = "n(t)")
#определите в какой момент времени скорость распространения рекламы будет иметь
максимальное значение.
times = sol.t n_values = sol[1, :]
#Расчет производной корость распространения рекламы числено
du dt = diff(n values) ./diff(times)
```

Поиск максимальной скорости и соответсвцюшего времени

 $max_speed = maximum(du_dt) \quad max_speed_index = argmax(du_dt) \quad max_speed_time = sol.t[max_speed_index]$

println(" Момент времени, когда скорость распространения рекламы будет иметь максимальное: ", max_speed_time)

Решение

Распространение рекламы 1250 1000 750 250 20 40 80 1000 Время

Первая Случая когда (Julia)

Второя Случая когда (Julia)

третья Случая когда (Julia)

Выводы

Сделан вывод, что с помощью языка програмирования Julia удалось решить задачу, связанную с эффективностю рекламы где мы увидели три ситуации и смогли простроить график распространения информации о товаре, приняв их во внимвние счет. Платная реклама м с учетом сарафанного радио.

Список литературы

1. Эффективность рекламы