ELE32 Introdução a Comunicações Comparação Justa

ITA
2º. Semestre de 2018
manish@ita.br

м

Energia por bit de informação

- Dado um código de bloco que codifica k bits de informação em n bits da palavra código, a taxa é R = k/n
- Se cada bit é transmitido com energia E_b, quanta energia estamos gastando por bit de informação?
- \blacksquare E_i = energia por bit de informação
- \blacksquare $E_i = E_b/R$

M

Comparação justa

- Um sistema não codificado utiliza E_b/N₀ = 10dB
- Um sistema codificado com taxa ½ utiliza o mesmo valor de E_b/N₀
- A comparação não é justa pois no primeiro sistema E_i = E_b e no segundo sistema E_i = 2E_b
- Uma comparação justa seria deve ter o mesmo valor de E_i para ambos os sistemas, isto é, o mesmo E_i/N_o:
- Uma forma de deixar a comparação justa é usar para o sistema não codificado o valor de E_b/N₀ = 13dB, o que deve melhorar o seu desempenho
- Outra forma de deixar a comparação justa é usar $E_i/N_0 = 10dB$ para o sistema codificado, o que implica em usar $E_b/N_0 = 6.9dB$

Comparando canais BSC com valores diferentes de E_b/N₀

Variações do algoritmo de Viterbi

- Opções de métrica de ramos:
 - □ Distância de Hamming (minimizar)
 - Probabilidade de ramo assumindo canal BSC(maximizar)
 - □ Distância Euclidiana (minimizar)

Dista

Distancia de Hamming e probabilidade exata

Utilizar como custo a distância de Hamming é aproximadamente igual a utilizar como custo o logaritmo da probabilidade a posteriori para sequências equiprováveis:

$$P[\mathbf{s} = 001 | \mathbf{r} = 000] \propto (1-p)(1-p)p$$

= $(1-p)^2 p^1$
 $log[P[\mathbf{s} = 001 | \mathbf{r} = 000]] = 2log[1-p] + 1log[p] + K$

Canal AWGN: distância Euclidiana

- Para o canal Gaussiano, o valor de s_i que maximiza P(s_i|r) quando si são equiprováveis é o valor de s_i que minimiza ||s_i-r||²
- Conceito: quanto mais longe da origem, mais confiável é a nossa estimativa do valor transmitido

 Efetivamente posterga a decisão para um momento em que temos mais dados para tomar a decisão

M

Atividades

- Obtenha analiticamente a curva p(E_i/N₀)
- Converta as curvas dos laboratórios anteriores de P_e(p) para P_e (E_i/N₀) utilizando a função obtida no item anterior.
- 3. Implemente as duas variações do algoritmo de Viterbi
- 4. Obtenha as curvas de probabilidade de erro de bit de informação para as duas variações. Para a primeira utilize o canal BSC. Para a segunda será necessário utilizar a modulação BPSK através de um canal Gaussiano com parâmetro E_b/N₀ apropriadamente escolhido para corresponder a mesma faixa de valores de p utilizados no caso BSC.
- 5. Compare todos os sistemas do semestre utilizando como referência o mesmo valor de E_i/N₀

Resultado esperado

