Problem 1

Yufei Yin

Question 1

Add text boxes (numericInput) to specify the x limits of the histogram, as below (5 marks). Also: modify the title and axis labels of the histogram to be correct (1 mark).

ui.R

```
library(shiny)
# Define UI for application that draws a histogram
shinyUI(fluidPage(
  # Application title
  titlePanel("Population Data"),
  # Include radio buttons (Only one of these can be selected)
  # These radioButtons are used in the server as an input variable called
  # 'dataSource'
  radioButtons("dataSource", "",
              c("Data Source 2006" = "DataFile2006",
                 "Data Source 2011" = "DataFile2011")),
  # Sidebar with a slider input for number of bins
  sidebarLayout(
    sidebarPanel(
        # This is a slider for the number of bins
        #The value determined here will be used as an input in server.R
        #The minimum is 1
        #The max is 50
        #It starts at a value of 30
        #by default it will grow by 1 but here I specify that it will step by 2
        # The format is
        \#sliderInput(VariableName, Stuff2WriteInTheWebPage, MinimumValue,MaxValue,Default,StepIncrement)
        sliderInput("bins", #This is the variable name, the value of which is determined by the slider
            "Number of bins:", #Label on the html page
           min = 1, #minimum for the slider
           max = 50, #maximum for the slider
           value = 30,#default value
            step=2),#slider increments
        # Question 1
       numericInput("minx", "x-axis minimum:", value = 1000),
       numericInput("maxx", "x-axie maximum:", value = 1000000),
```

server.R

```
# This is the server logic of a Shiny web application. You can run the
# application by clicking 'Run App' above.
# Find out more about building applications with Shiny here:
#
    http://shiny.rstudio.com/
#
library(shiny)
# Define server logic required to draw a histogram
shinyServer(function(input, output) {
  output$distPlot1 <- renderPlot({</pre>
    #Use those radioButtons to select the data to use
    #Note that the input was called "dataSource" in the ui.R file
   #Here it is an element from a list.
    #I extract it using input$nameOfThing
   if (input$dataSource == "DataFile2006") {
     x = read.csv("pop2006.csv")
     main = "Histogram of Canada population 2006" # Question 1
   } else {
      if(input$dataSource == "DataFile2011"){
        x = read.csv("pop2011.csv")
       main = "Histogram of Canada population 2011" # Question 1
     }else{
        #This means do not use any data. This will break things.
       x=NULL
     }
   }
```

```
#I didn't need to use if{}else{if{}else{}}}
  # but I do so to show how to use multiple if else statements.
  # generate bins based on input$bins from ui.R
       <-x[-1, 3]
  bins <- seq(min(x), max(x), length.out = input$bins + 1)</pre>
  # draw the histogram with the specified number of bins
  hist(x, breaks = bins, col = 'darkgray', border = 'white',
       xlab = "Population", # Question 1
       main = main)
# Question 1
  # Question 2 density
  if (input$density) {
    hist(x, breaks = bins, col = 'darkgray', border = 'white',
         xlab = "Population", # Question 1
         main = main,
                             # Question 1
         probability = TRUE) # Question 2
    dens <- density(x)</pre>
    lines(dens, col = "red")
  }else
    hist(x, breaks = bins, col = 'darkgray', border = 'white',
         xlab = "Population", # Question 1
         main = main)
                             # Question 1
  }
})
# Question 3
output$distPlot2 <- renderPlot({</pre>
  if (input$dataSource == "DataFile2006") {
    x = read.csv("pop2006.csv")
    main = "Histogram of Private Dwellings in 2006"
  } else {
    if(input$dataSource == "DataFile2011"){
      x = read.csv("pop2011.csv")
     main = "Histogram of Private Dwellings in 2011"
    }else{
     x=NULL
  x < x[-1, 4]
  bins <- seq(min(x), max(x), length.out = input$bins + 1)</pre>
  if (input$density) {
```

output screenshots

Figure 1: Population 2016

Figure 2: Population 2011