## **CS545 - Flight Cost Analysis**

Andrey Karnauch Rojae Johnson Cai John Matthew Kramer Matt Anderson

## **Project Overview**

- Determine most cost effective airport near a user to fly out of
  - Using historical prices
  - Incorporating gas costs to drive to each airport
  - Allow user to specify driving radius



#### Motivation

- Many sites already exist for finding cheap, current tickets
  - Have to manually enter separate ORIGIN airports for comparison
  - Do not take into account driving distance and gas costs
- Closest service to our project is Faredetective





## Dataset - Bureau of Transportation Statistics

- Provided data for each flight:
  - One CSV for flight information
  - One CSV for ticket information
  - Joined using common ID
- Missing data:
  - Flight date(s)
  - Live Ticket Data
  - Not all airports



## **Development Platform**

- Google Cloud Compute Engine Instance
  - Familiar with from Practice0
  - Packages and development uniform for everyone
- Google Cloud Storage Bucket
  - One point for all members to view program outputs
  - Stored all cleaned data
- Google Cloud SQL
  - Provided CSVs fit relational DB model
  - Communicate with our GC instance







## Data Retrieval and Cleaning

- Retrieval Scripts
  - Download all flight data from 2015-2018
  - Store data on GC instance
- Cleaning Script
  - Loaded into pandas dataframe and merged on common ID
  - Dropped unnecessary columns
  - Dropped rows that would skew averages
  - Inserted into GC SQL

## Cloud SQL Data Storage

- 400,000 flights from each quarter of each year
  - 2015 2nd quarter of 2018
- ~6 million total entries
- Queries take some time
  - Record count
  - Communication b/w instance and database



## Data Analysis

#### Done in modular way:

- Run simple queries on GC SQL database
- 2. Incorporate python libraries to do basic statistics
  - a. Average cost per ticket, yearly trends, etc.
- 3. Incorporate APIs
  - a. Geopy, matplotlib, Google Maps



#### Results

- Function to perform main goals
  - Show user average ticket prices for all airports in area
  - Option to include gas costs in averages
  - Show ticket price trends over each quarter
- Additional Functionality
  - Option to show price averages based on destination or generalized

## **Graph Generation**

- Created using matplotlib
- Pulls the data from Cloud SQL DB for generation
- Stores resulting graphic on GCloud Bucket

## Example Input

```
Enter your location: Min Kao EECS building
Search for airports within how many miles of your location?: 150
Input destination airport (IATA code - i.e. JFK, LAX, CHA): JFK
Include driving (gas) to airport costs in calculation? [Y/N] Y
```

- Location: Min Kao EECS Building
- Search for airports within: 150 miles
- Destination airport code: JFK
- Include gas prices to average costs in calculation: Y

#### Example Output - General



#### **Example Output - Destination Specific**



#### **Example Output - Destination Specific**



#### **Dataset Shortcomings**



#### **Dataset Shortcomings**



#### **Future Work**

- Live Scraping
- GUI rather than CLI
- Database optimization (indexing, etc.)
- Increase amount of data used

## Thank you!

# Questions?