Advanced Industrial Organization II Problem Set 1

Kyeongbae Kim*

January 9, 2019

Due on January 22nd, at the beginning of the class.

1 Demand in a market with imperfect competition

Consider the following utility function of consumer i = 1, ..., N choosing j = 0, ..., J in market t = 1, ..., T:

$$u_{ijt} = \alpha p_{jt} + x_{jt}\beta + \xi_{jt} + \epsilon_{ijt},$$

where p_{jt} is price of product j in market t, and x_{jt} , ξ_{jt} and ϵ_{ijt} denote product characteristics. While consumers and producers observe x_{jt} and ξ_{jt} , the econometrician does not observe the latter. $\epsilon_{ijt} \stackrel{iid}{\sim} T1EV$, independent of all other variables, is only observed by consumer i in market t. Consumer i in market t chooses one product maximizing his utility:

$$y_{it} \equiv \operatorname{argmax}_{0 \le k \le J} u_{ijt}.$$

Price and product characteristics of the outside good, j=0, are normarized to 0, with the exception of ε_{i0t} . Let $\theta=(\alpha,\beta')'$ be demand-side parameters.

There are f = 1, ..., F firms in a market, where each firm produces $\mathcal{F}_f = \{j_1, ..., j_{J_f}\}$. $\{\mathcal{F}_1, ..., \mathcal{F}_F\}$ constitutes a partition of set $\{1, ..., J\}$. The marginal cost of product j in market t is:

$$mc_{it} = w_{it}\gamma + \omega_{it}$$

where w_{jt} and ω_{jt} are observed and unobserved cost components, respectively, in the econometrician's point of view. Assume there is at least one observed cost component not a part of x_{jt} . The profits of firm

^{*}kbkim@uchicago.edu

f in market t is:

$$\Pi_{ft} = \sum_{j \in \mathcal{F}_f} (p_{jt} - \text{mc}_{jt}) D_{jt}(p, x, \xi; \theta),$$

where $D_{jt}(p, x, \xi; \theta)$ is demand of good j, in the firms' point of view. Firms simultaneously choose prices under static Nash-Bertrand competition.

- 1. Derive the aggregate demand system, $D_{jt}(p, x, \xi; \theta)$. (Hint: What do the firms observe?¹)
- 2. Assume a Nash equilibrium exists. Derive the first order conditions of firm f and express it as an (implicit) function of p_{it} .
- 3. What does the above result imply in the relationship between p_{jt} and ξ_{jt} ?
- 4. Define

$$\hat{s}_{jt} = \frac{1}{N} \sum_{1 \le i \le N} 1\{y_{it} = j\},$$

for j=0,...,J in market t=1,...,T. Compute $\text{plim}_{N\to\infty}\hat{s}_{jt}$ and discuss its relationship with $D_{jt}(p,x,\xi;\theta)$.

- 5. (Berry 1994) Suppose you only have market-level data: $(\hat{s}_{jt}, p_{jt}, x_{jt}, w_{jt})_{jt}$, instead of an individual-level dataset. Derive a linear regression equation of $(\hat{s}_{jt}, p_{jt}, x_{jt})_{jt}$. (Hint: Get rid of the denominator of $D_{jt}(p, x, \xi; \theta)$.)
- 6. Is the OLS estimator consistent for the demand-side parameters, θ ? Why or why not?
- 7. Discuss potential advantages and disadvantages of the following variables as instruments: (1) $w_{jt} \setminus x_{jt}$ (cost components not a part of x_{jt}), (2) $x_{-j,t}$ (characteristics of other products), (3) $p_{j,-t}$ (prices of j in other markets).
- 8. In cereal_ps3.xls, you are given a semi-fabricated dataset of Nevo (2000, 2001). In the dataset, product j is a unique identifier of 'firm' and 'brand,' and market t is that of 'city,' 'year' and 'quarter.' x_{jt} has two components, 'sugar' and 'mushy.' There are 20 instruments to be used for estimation ('z1'-'z20'). Assume that the data generating process follows the model we specified. Estimate θ using an estimator you think it is consistent. Compare estimation results with and without brand and market dummies. Discuss the results.

¹Note that there is another interpretation of ε_{ijt} when deriving the aggregate demand: The suppliers observe ε_{ijt} , but a continuum of consumers of total mass N are distributed with Type 1 Extreme Value Distribution in the population. While its microfoundation is somehow different, two interpretations give the same result. See Anderson, de Palma and Thisse (1992) for a reference.

9. From $D_{jt}(p, x, \xi; \theta)$, derive own and cross-price elasticities. Do you find them restrictive? Why or why not? If you think they are, what could be potential remedies? Discuss briefly.