PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C07K 14/52, A61K 38/19

(11) International Publication Number: WO 98/14476

(43) International Publication Date: 9 April 1998 (09.04.98)

(21) International Application Number: PCT/US97/16196

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FL, GB, GE,

US

12 September 1997 (12.09.97)

4 October 1996 (04.10.96)

(71) Applicant (for all designated States except US): AMGEN INC. [US/US]; Amgen Center, 1840 De Havilland Drive,

Thousand Oaks, CA 91320-1789 (US).

(72) Inventors; and

(30) Priority Data:

(22) International Filing Date:

08/726,123

(75) Inventors/Applicants (for US only): BREMS, David, N. [US/US]; 3778 Calle Clara Vista, Newbury Park, CA 91320 (US). TREUHEIT, Michael, J. [US/US]; 824 Pamela Wood Street, Newbury Park, CA 91320 (US).

(74) Agents: ODRE, Steven, M. et al.; Amgen Inc., Amgen Center, 1840 De Havilland Drive, Thousand Oaks, CA 91320-1789 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PHARMACEUTICAL COMPOSITIONS CONTAINING AN MPL LIGAND

(57) Abstract

The subject invention relates to compositions of mpl ligands, comprising a full-length or truncated mpl ligand having a sequence of amino acids corresponding to amino acids 7-151 through 1-332, inclusive, of native human mpl ligand, optionally covalently linked to at least one water-soluble polymer, a buffering agent selected from glutamate, phosphate, histidine, imidazole, and acetate; an excipient selected from sorbitol, sucrose, mannitol, glycerol, polyethylene glycol, and non-polar amino acids; optionally, a detergent or lipid such as Tween; optionally, an antioxidant or chelating agent selected from glutathione, methionine, citrate and EDTA; and having a pH preferably ranging from 5.0 to 6.0 (inclusive). Such compositions may be liquid (preferably, aqueous), frozen (preferably, aqueous), or lyophilized.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ŢŢ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	肛	Israel	MR	Mauritania	UG	Uganda -
BY	Belarus	IS	· Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NB	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SB	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/US97/16196 **WO 98/14476**

PHARMACEUTICAL COMPOSITIONS CONTAINING AN MPL LIGAND

Field of the Invention

The present invention relates to compositions containing an mpl ligand, which compositions are suitable for pharmaceutical administration.

Background of the Invention

10

15

20

5

The native human mpl ligand is a recently cloned cytokine that appears to be the major regulator of circulating platelet levels. See Bartley, T.D. et al., Cell 77:1117-1124 (1994); Lok, S. et al., Nature 369:565-568 (1994); de Sauvage, F.J. et al., Nature 369:533-538 (1994); Miyazake, H. et al., Exp. Hematol. 22:838 (1994); and Kuter, D.J. et al., PNAS USA, 91:11104-11108 (1994). Native human mpl ligand, also referred to as thrombopoietin (TPO) and megapoietin, is a protein having 332 amino acids in total.

Recombinant mpl ligand produced in both Chinese Hamster Ovary (CHO) and E. coli cells has been demonstrated to have a biological activity of specifically stimulating or increasing megakaryocytes and/or platelets in vivo in mice, rats and monkeys. See e.g., Hunt, P. et al., Blood 84(10):390A (1994). Human mpl ligands that have been 25 truncated from the C-terminus by up to 181 amino acids retain biological activity in vivo. The resulting mpl ligands have sequences that correspond to amino acids 1 - 151 up to 1 -331 of the full-length human sequence. It is also possible to remove up to the first six amino acids at the N-terminus 30 of the human mpl ligand protein and retain biological activity. Therefore, it appears that biological activity is retained within amino acids 7 to 151 (inclusive) of the mature amino acid sequence of human mpl ligand.

Derivatives of mpl ligands have been demonstrated to have advantageous activity to stimulate production of megakaryocytes and/or platelets in *in vivo* tests. See published PCT Application WO 95/26746. In particular, mpl ligands derivatized with water soluble polymers such as polyethylene glycol ("PEG") moieties are of interest in a clinical setting because they are long-lived and active *in vivo*.

Compositions containing mpl ligands and related derivatives have been disclosed in a general sense. See published PCT Applications WO 95/26746, WO 95/21919, WO 95/18858, and WO 95/21920. However, controlled experiments resulting in a determination of which compositions containing mpl ligands are suitably stable for pharmaceutical use, as set forth herein, have not been previously reported. Such compositions are important for practical application of mpl ligands to patients such as humans. Thus, there continues to exist a need for such compositions in the art for use in administering mpl ligands to patients so as to result in an increase in platelets.

Summary of the Invention

Accordingly, it is an object of this invention to provide stable compositions that are pharmaceutically acceptable, which include mpl ligands.

It is another object of this invention to provide compositions that contain mpl ligands for administration to patients.

30

35

10

15

20

25

In one embodiment, the subject invention relates to compositions of mpl ligands, comprising a full-length or truncated mpl ligand having a sequence of amino acids corresponding to amino acids 7-151 through 1-332, inclusive, of native human mpl ligand, optionally covalently linked to

at least one water-soluble polymer; a buffering agent selected from glutamate, phosphate, histidine, imidazole, and acetate; an excipient selected from sorbitol, sucrose, mannitol, glycerol, polyethylene glycol, and non-polar amino acids; optionally, a detergent such as Tween; optionally, an antioxidant or chelating agent selected from glutathione, methionine, citrate and EDTA; and having a pH preferably ranging from 5.0 to 6.0 (inclusive). Such compositions may be liquid (preferably, aqueous), frozen (preferably, aqueous), or lyophilized.

Other aspects of the present invention are set forth in the detailed disclosure provided hereinbelow.

15 Brief Description of the Drawings

10

20

FIG. 1 shows the sequences of the native human cDNA for mpl ligand and the corresponding protein (SEQ ID NOS: 1 and 2). The sequences include a leader sequence (amino acids -21 through -1, inclusive) that is cleaved in vivo from the cDNA encoded protein to yield the mature protein.

Detailed Description of the Invention

The subject invention provides compositions
including mpl ligands along with other agents that result in stable, biologically active compositions suitable for administration to subjects such as human beings.

In a first embodiment, the subject invention relates to compositions of an mpl ligand. By "mpl ligand" in its broadest sense is meant any proteinaceous molecule that has the ability to specifically bind to and activate the mpl receptor to result in the stimulation in vivo of megakaryocyte and/or platelet production. In a preferred embodiment, the mpl ligand has an amino acid sequence identical to one obtainable from a human, such as amino acids

1-332 of the native human sequence (SEQ ID NO: 2). In another preferred embodiment, the mpl ligand has an amino acid sequence identical to at least amino acids 7-151 of SEQ ID NO: 2, preferably 1-171 ± 20 amino acids (i.e., amino acids 1-151 through 1-191) particularly preferably 1-161 ± 10 amino acids corresponding to SEQ ID NO: 2. Some specific preferred species of mpl ligands are the following: amino acids 1-151, 1-152, 1-153, 1-154, 1-163, 1-174, 1-191, 1-232, 1-244 of SEQ ID NO: 2. The most preferred species has amino acids 1-163 of SEQ ID NO: 2.

5

10

15

20

25

30

The mpl ligands may also be derivatized with one or more water soluble polymers, such as one or more polyethylene glycol (PEG) groups. The polymer selected should be water soluble so that the mpl ligand to which it is attached does not precipitate in an aqueous environment, such as a physiological environment. Examples of water soluble polymers are set forth in published PCT Application WO 95/26746, which is hereby incorporated by reference.

The water soluble polymers may be attached using chemical reactions such as those described in published PCT Application WO 95/26746. Preferred attachment chemistries are acylation and alkylation. The mpl ligand derivatives of this invention may be attached to multiple polymeric molecules, for example, they may contain 2-6, preferably 2-5, polymer groups attached. The polymer groups are usually attached to the protein at the alpha or epsilon amino groups of amino acids, but it is also contemplated that the polymer groups could be attached to any amino group attached to the protein which is sufficiently reactive to become attached to a polymer group under suitable reaction conditions.

In a preferred embodiment, a single polymer molecule is attached to the mpl ligand. In such cases, the polymer selected to react with the mpl ligand should be modified to have a single reactive group, such as an active

ester for acylation or an aldehyde for alkylation, so that the degree of polymerization may be controlled.

The polymer may be branched or unbranched. Preferably, for therapeutic use of the end-product 5 preparation, the polymer will be pharmaceutically acceptable. The water soluble polymer may be selected from the group consisting of, for example, polyethylene glycol, monomethoxypolyethylene glycol, dextran, poly-(N-vinyl pyrrolidone) polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, 10 polyoxyethylated polyols (e.g., glycerol) and polyvinyl alcohol. For derivatization of the mpl ligand via an acylation reaction, the polymer(s) selected should have a single reactive ester group. For derivatization of the mpl ligand via a reductive alkylation reaction, the polymer(s) 15 selected should have a single reactive aldehyde group. Generally, the water soluble polymer will not be selected from naturally-occurring glycosyl residues since these are usually made more conveniently by mammalian recombinant expression systems. The polymer may be of any molecular 20 weight as long as it does not substantially interfere with or abolish biological activity of the resulting mpl ligand derivative.

A particularly preferred water-soluble polymer for use herein is polyethylene glycol, abbreviated PEG. As used herein, polyethylene glycol or PEG is meant to encompass any of the forms of PEG that have been used to derivatize other proteins, such as mono-(C1-C10) alkoxy- or aryloxy-polyethylene glycol (see, U.S. Patent 5,252,714).

25

30

Pegylation of an mpl ligand may be carried out by any of the pegylation reactions known in the art. See, for example: Focus on Growth Factors 3 (2): 4-10 (1992); EP 0 154 316; EP 0 401 384; and the other publications cited herein that relate to pegylation. Preferably, the pegylation

is carried out via an acylation reaction or an alkylation reaction with a reactive polyethylene glycol molecule.

Thus, in a preferred aspect, the present invention relates to pegylated mpl ligand, wherein the PEG group(s) is (are) attached via acyl or alkyl groups. As discussed above, such products may be mono-pegylated or poly-pegylated (e.g., containing 2-6, preferably 2-5, PEG groups). The PEG groups are generally attached to the protein at the alpha or epsilon amino groups of amino acids, but it is also contemplated that the PEG groups could be attached to any amino group attached to the protein, which is sufficiently reactive to become attached to a PEG group under suitable reaction conditions.

10

15

20

25

30

Preferably, the PEG group is attached via a reductive alkylation procedure and has a molecular weight of from 5 to 50 kd. In the most preferred embodiment, the PEG-mpl ligand has a PEG group that has an average molecular weight of approximately 20 kd (e.g., $20 \text{ kd} \pm 2 \text{ kd}$).

A particularly preferred mpl ligand derivative is one corresponding to amino acids 1-163 of SEQ ID NO: 2 attached to a single PEG group on the alpha amino group of the first amino acid, wherein the PEG is attached via a reductive alkylation reaction with a PEG aldehyde reactant. This type of mpl ligand is referred to herein by the abbreviation "PEG-rHuMGDF".

In a preferred embodiment, the mpl ligand is the product of the expression of an exogenous DNA sequence that has been transfected into a host cell; that is, in a preferred embodiment the mpl ligand is a "recombinant mpl ligand". Recombinant mpl ligand may be made in any cells known for this purpose, for example, CHO cells. The preferred host is bacterial, particularly preferably E. coli cells. Recombinant mpl ligand is advantageously produced according to the procedures described in the publications cited herein regarding cloning and expression of mpl ligand.

Although previous workers have reported on compositions involving native human mpl ligand (amino acids 1-332 of SEQ ID NO: 2), no one has previously reported extensive stability data as a function of composition ingredients, as set forth herein. Thus, although predictions of stability of mpl ligand compositions have been made before, until the present invention, compositions having desirable stability have not been clearly established, especially for truncated, derivatized mpl ligands.

Based on the data presented hereinbelow, the 10 present inventors have discovered certain stable compositions which contain a full-length or truncated mpl ligand having a sequence of amino acids corresponding to amino acids 7-151 through 1-332, inclusive, of native human mpl ligand, optionally covalently linked to at least one water-soluble 15 polymer; a buffering agent selected from glutamate, phosphate, histidine, imidazole, and acetate; an excipient selected from sorbitol, sucrose, mannitol, glycerol, polyethylene glycol, and non-polar amino acids; optionally, a detergent such as Tween; optionally, an antioxidant or 20 chelating agent selected from glutathione, methionine, citrate and EDTA; and having a pH preferably ranging from 5.0 to 6.0 (inclusive). Such compositions may be liquid (preferably, aqueous), frozen (preferably, aqueous), or lyophilized. 25

The concentration of the protein (mpl ligand) in the final compositions should generally range from about 0.1 mg/ml to 5 mg/ml, preferably 0.2 mg/ml to 3 mg/ml, particularly preferably 0.3 to 1 mg/ml.

Preferably, the buffer will be acetate at a concentration of from 5 to 20 mM, particularly preferably, about 10 ± 2 mM. A summary of specific buffers and concentrations is provided in the following Table 1:

30

TABLE 1

	Buffer	Preferred Conc. Range (mM)	Working Conc. Range (mM)	Exemplary Conc. (mM)
5	Acetate	5-20	8-12	10
	Phosphate	5~20	8-12	10
	<u> Histidine</u>	5-20	8-12	10

10

15

The pH of the compositions will vary depending on the particular buffer and other factors. The preferred pH range for enhanced stability with appropriate acidic buffers (e.g., acetate) is 4.0-6.0. A more preferred range is 4.5-5.5, with about 5.0 being a most preferred embodiment.

The compositions should also contain an excipient. Some exemplary excipients and representative concentrations are listed in Table 2:

20 TABLE 2

	Excipient	Preferred Conc. Range (W/V)	Working Conc. Range (W/V)	Exemplary Conc. (W/V)
25	sorbitol	3 - 10%	4 – 6%	5%
	sucrose	5 - 10%	8 - 10%	9%
	mannitol	3 - 10%	4 - 6%	5%

30

35

The excipients will generally be added in an amount so as to result in an isotonic solution.

The compositions may further contain an amino acid, which in some cases will enhance stability. Amino acids may be polar or non-polar, with non-polar amino acids being

preferred. Exemplary polar amino acids are arginine and lysine, and exemplary non-polar amino acids are glycine, proline, and alanine.

5

10

15

20

25

30

35

An antioxidant or chelating agent may also be included in the compositions of this invention. Preferred antioxidants are: EDTA, ascorbic acid, glutathione, methionine and citrate. Combinations of these agents are also contemplated, for example, citrate plus EDTA. Such agents are included in an amount suitable to reduce or eliminate oxidation of the mpl ligand. Exemplary concentrations are: 0.1 - 10 mM, preferably, 0.5 - 5 mM, typically 1 - 3 mM.

A detergent or lipid may also be included in the compositions of this invention. Some representative detergents are: Tween brand of polysorbate (e.g., Tween 20 and Tween 80); Brij 35; Pluronics (e.g., F-127 and F-68); sodium dodecyl sulfate; Triton (e.g., X-100); dimyristoyl phosphatidyl glycerol (DMPG); PEG castor oil (e.g., PEG-40); oleth-3-phosphate; diethanolamine oleth-10-phosphate; and a mixture (e.g., 1:1) of short, long chain unilamellar vesicles (SLUV) containing, e.g., C8 (caprylic) and C14 (myristic) lipids. These detergents/lipids are generally included in an amount sufficient to prevent loss of mpl ligand due to sticking to surfaces or aggregation. Some exemplary detergent concentrations are 0.004 mg/ml - 50 mg/ml; preferably, 0.004 mg/ml - 10 mg/ml; most preferably, 0.006 -0.060 mg/ml. The need to include these detergents/lipids will be greater when the concentration of mpl ligand is lower, such as especially $\leq 0.2 \text{ mg/ml}$ of mpl ligand.

Such compositions may be liquid (preferably, aqueous), frozen (preferably, aqueous), or lyophilized.

With regards to lyophilized compositions, there is the pessibility of increased protein aggregation as compared

the possibility of increased protein aggregation as compared to liquid compositions. A particularly preferred lyophilized composition contains a combination of glutamate, sucrose and

mannitol at a pH within the range of 4.0-6.0. A list of particularly preferred compositions is provided in the following Table 3:

5 TABLE 3

10

15

20

25

30

35

<u>Material</u>	Range	Example		
Glutamate	5-20 mM	10 mM		
Sucrose	2-10% (w/v)	6% (w/v)		
Mannitol	1-5% (w/v)	2% (w/v)		
На	4.0-6.0	5.0		

The compositions of this invention are "stable", by which is meant that they retain at least about 87 %, preferably about 90 %, most preferably about 93 %, of intact mpl ligand derivative after storage for 12 weeks at a temperature of 37°C as analyzed by SEC chromatography only (see Table 4). This degree of stability is important in a practical sense because less stability would result in unacceptable safety concerns for patients.

A "therapeutically effective amount" as used herein refers to that amount which provides a suitable biological effect in a subject, usually a therapeutic effect for a given condition and administration regimen in a patient.

The present compositions can be systemically administered parenterally, intravenously or subcutaneously. When systemically administered, the therapeutic compositions for use in this invention may be in the form of a pyrogenfree, physiologically acceptable aqueous solution. The specific route chosen will depend upon the condition being treated. The required dosage will be in amounts sufficient to raise the platelet and/or megakaryocyte levels of patients and will vary depending upon the severity of the condition being treated, the method of administration used and the like.

The conditions to be treated by the methods and compositions of the present invention are generally those which involve an existing megakaryocyte/platelet deficiency or an expected megakaryocyte/platelet deficiency in the future (e.g., because of planned surgery). Such conditions will usually be the result of a deficiency (temporary or permanent) of active mpl ligand in vivo. The generic term for platelet deficiency is thrombocytopenia, and hence the methods and compositions of the present invention are generally useful for treating thrombocytopenia.

5

10

25

30

35

numbers.

Thrombocytopenia (platelet deficiencies) may be present for various reasons, including chemotherapy and other therapy with a variety of drugs, radiation therapy, surgery, accidental blood loss, and other specific disease conditions. Exemplary specific disease conditions that involve 15 thrombocytopenia and may be treated in accordance with this invention are: aplastic anemia, idiopathic thrombocytopenia, metastatic tumors which result in thrombocytopenia, systemic lupus erythematosus, splenomegaly, Fanconi's syndrome, vitamin B12 deficiency, folic acid deficiency, May-Hegglin 20 anomaly, Wiskott-Aldrich syndrome, and paroxysmal nocturnal hemoglobinuria. Also, certain treatments for AIDS result in thrombocytopenia (e.g., AZT). Certain wound healing disorders might also benefit from an increase in platelet

With regard to anticipated platelet deficiencies, e.g., due to future surgery, an mpl ligand analog of the present invention could be administered several days to several hours prior to the need for platelets. With regard to acute situations, e.g., accidental and massive blood loss, an mpl ligand analog could be administered along with blood or purified platelets.

Mpl ligand compositions may also be administered to normal human subjects who plan to donate platelets or other related cells in the future. Administration of a composition

of this invention would increase the amount of platelets and/or related cells that the patient could donate at one time.

5

10

The dosage regimen involved in a method for treating the above-described conditions will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the age, condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, the daily regimen should be in the range of 0.01-1000 micrograms of mpl ligand analog per kilogram of body weight.

The compositions of the present invention may also be employed, alone or in combination with other cytokines, soluble Mpl (i.e., mpl ligand) receptor, hematopoietic 15 factors, interleukins, growth factors or antibodies in the treatment of disease states characterized by other symptoms as well as platelet deficiencies. It is anticipated that such compositions will prove useful in treating some forms of thrombocytopenia in combination with general stimulators of 20 hematopoiesis, such as IL-3 or GM-CSF. Other megakaryocytic stimulatory factors, i.e., meg-CSF, stem cell factor (SCF), leukemia inhibitory factor (LIF), oncostatin M (OSM), or other molecules with megakaryocyte stimulating activity may also be employed with mpl ligand. Additional exemplary 25 cytokines or hematopoietic factors for such co-administration include IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), IFN-beta, or IFN-gamma. It may 30 further be useful to administer, either simultaneously or sequentially, an effective amount of a soluble mammalian Mpl receptor, which appears to have an effect of causing megakaryocytes to fragment into platelets once the megakaryocytes have reached mature form. Thus, 35

-13-

administration of PEG-mpl ligand (to enhance the number of mature megakaryocytes) followed by administration of the soluble Mpl receptor (to inactivate the analog and allow the mature megakaryocytes to produce platelets) is expected to be a particularly effective means of stimulating platelet production. The dosage recited above would be adjusted to compensate for such additional components in the therapeutic composition. Progress of the treated patient can be monitored by conventional methods.

10

5

The following examples are offered to more fully illustrate the invention, but are not to be construed as limiting the scope thereof.

15

20

EXAMPLE 1

The following Tables 4 and 5 are a summary of data provided in some of the following examples. In each of these examples, the mpl ligand tested was PEG-rHuMGDF, which contains amino acids 1-163 of SEQ ID NO: 2, mono-pegylated at the alpha amino group of the N-terminal amino acid with a polyethylene glycol group having an average molecular weight of about 20 kDa.

TABLE 4

	
Formulation	Percent Main Peak
	as Measured by
	SEC ¹ after 12
	weeks at 37°C
Histidine, pH 8.0, 5% Sorbitol	70
Tris, pH 8.0, 5% Sorbitol	47
Phosphate, pH 7.0, 5% Sorbitol	71
Histidine, pH 7.0, 5% Sorbitol	84
Phosphate, pH 6.0, 5% Sorbitol	89
Glutamate/Histidine, pH 6.0, 5% Sorbitol	92
Histidine, pH 6.0, 5% Sorbitol	92
Imidazole, pH 6.0, 5% Sorbitol	92
Glutamate, pH 5.5, 5% Sorbitol	91
Glutamate/Histidine, pH 5.5, 5% Sorbitol	93
Acetate, pH 5.0, 5% Sorbitol	92
Glutamate/Histidine, pH 5.0, 5% Sorbitol	93
Glutamate, pH 5.0, 5% Sorbitol	91
Histidine, pH 5.0, 5% Sorbitol	89
Succinate, pH 5.0, 5% Sorbitol	76
Glutamate, pH 4.0, 5% Sorbitol	87
Succinate, pH 4.0, 5% Sorbitol	81
Acetate, pH 4.0, 5% Sorbitol	77
Tartrate, pH 4.0, 5% Sorbitol	18
Succinate, pH 3.5, 5% Sorbitol	74

¹Additional stability indicating assays, specifically, reversed phase and cation exchange chromatography, gave similar results to SEC.

The percent decrease in main peak indicates a preferred pH range of 4.0 - 6.0, preferably 5.0 - 6.0. In addition, buffer effects within the pH range 4.0 - 6.0

indicate that certain buffers within this range are not preferred.

TABLE 5

Formulation	Percent Main Peak as Measured by SEC ¹ after 12 weeks at 37°C
Acetate, pH 5.0, 5% isotonic polyols (Sorbitol)	92
Acetate, pH 5.0, isotonic saline, both mono- and divalent (NaCl)	10
Acetate, pH 5.0, isotonic polar amino acids (Lysine)	10
Acetate, pH 5.0, isotonic nonpolar amino acids (Glycine)	84

5

All polyols tested, which include: sorbitol, sucrose, glycerol, mannitol and polyethylene glycol, showed similar results.

All salts (both monovalent and divalent), which include: NaCl, CaCl2, CuCl2, MgCl2, MnCl2, NiCl2, ZnCl2 and FeCl2, showed similar results.

All polar amino acids tested, which include: arginine, and lysine, showed similar results.

All nonpolar amino acids tested, which include: glycine, proline, and alanine, showed similar results.

All antioxidants tested which include: EDTA, ascorbic acid, glutathione, methionine, methionine + EDTA and citrate, did not show substantial increases in the stability of PEG-rHuMGDF beyond A50S (see Example 2 for definition).

-16-

EXAMPLE 2

pH Evaluation

5 A. Starting Material: PEG-rHuMGDF

B. Formulations:

	10mM Acetate pH 5.0, 5% Sorbitol	(A50S)
	10mM Acetate pH 4.0, 5% Sorbitol	(A40S)
1	10mM Succinate pH 3.5, 5% Sorbitol	(\$35\$)
	10mM Succinate pH 4.0, 5% Sorbitol	(S40S)
	10mM Succinate pH 5.0 5% Sorbitol	(S50S)
	10mM Histidine pH 6.0, 5% Sorbitol	(H60S)
	10mM Imidazole pH 6.0, 5% Sorbitol	(I60S)
1	10mM Tartrate pH 4.0, 5% Sorbitol	(T40S)
	10mM Glutamate pH 4.0, 5% Sorbitol	(E40S)
	10mM Phosphate pH 6.0, 5% Sorbitol	(P60S)
	10mM Phosphate pH 7.0, 5% Sorbitol	(P70S)
	10mM Tris pH 8.0 5% Sorbitol	(T80S)
2	10mM Histidine pH 5.0, 5% Sorbitol	(H50S)
	10mM Histidine pH 6.0, 5% Sorbitol	(H60S)
	10mM Histidine pH 7.0, 5% Sorbitol	(H70S)
	10mM Histidine pH 8.0, 5% Sorbitol	(H80S)

- 25 C. Vials: 1mL in 3cc vials filled at a protein concentration of 0.5 mg/mL
 - D. Temp & Time points: 37°C; time points indicated on Tables
- 30 E. Analyses: HPLC: Size exclusion chromatography (SEC), reverse phase chromatography (RP), ion exchange chromatography (IEX)

F. Data

Tables 6-11 show the percent main peak by size exclusion, reversed phase and cation exchange chromatography after incubation at 37°C for the times indicated.

pH Evaluation - Percent Main Peak by Size Exclusion 10 Chromatography After Incubation at 37°C for the Time Indicated

TABLE 6

	Incubation Time							
Form.*	T=0	T=2	T=4	T=8	T=12	T=17		
		Weeks	weeks	weeks	Weeks	Weeks		
A40S	94.39	90.86	88.20	82.91	77.21	70.19		
S35S	94.90	93.65	90.29	80.95	74.28	62.43		
S40S	94.63	92.59	90.20	86.16	80.51	72.34		
S50S	94.27	87.53	85.29	80.77	76.45	71.12		
H60S	94.99	94.31	93.77	91.74	89.13	85.96		
160S	94.93	94.56	94.20	92.77	91.49	94.83		
T40S	89.71	43.46	34.44	24.48	18.10	_		
E40S	94.90	94.29	93.65	91.30	86.84	77.94		

^{*}Form. = Formulation

TABLE 7

5

	Incubation Time									
Form. *	т=0	Т=3	T=7	T=10	T=2	T=3	Т=6	T=12		
		Days_	Days	Days	Weeks	Weeks	Weeks	Weeks		
T80S	97.70	93.56	91.28	88.12	86.63	80.25	66.18	46.58		
H50S	97.53	94.20	94.22	94.37	94.54	92.94	91.76	89.18		
H60S	97.62	97.02	97.24	97.09	94.50	96.19	95.12	91.68		
H70S	97.62	96.64	96.75	95.86	95.37	94.33	90.95	84.34		
H80S	97.70	-	94.68	93.27	92.03	89.36	81.52	69.65		
P60S	97.65	95.55	96.84	96.35	96.38	95.77	93.76	89.16		
P70S	97.81	96.45	95.84	94.83	94.12	91.77	84.81	71.14		
A50S	97.72	96.28	95.43	95.45	95.63	94.71	93.97	91.65		

10

pH Evaluation - Percent Main Peak by Reversed Phase Chromatography After Incubation at 37C for the Time Indicated

TABLE 8

	Incubation Time								
Form.*	T =0	T=2	T=4	Т=8	T=12	T=17			
		Weeks	weeks	weeks	Weeks	Weeks			
A40S	93.49	91.69	84.34	78.87	70.55	64.23			
S35S	93.78	90.10	80.86	70.36	59.35	50.98			
S40S	93.91	91.61	83.89	77.16	-	59.22			
S50S	93.49	92.59	88.93	85.96	79.35	73.71			
H60S	93.65	90.54	86.69	86.49	80.88	.76.11			
160S	93.68	92.61	87.64	87.34	84.11	79.49			
T40S	93.65	88.04	74.51	66.08	53.87	_			
E40S	93.67	92.39	86.03	80.64	71.50	65.23			

TABLE 9

5

	Incubation Time								
Form. *	Time	T=3	T=7	T=10	T=2	Т=6	T=12		
	Zero	Days	Days	Days_	Weeks	Weeks	Weeks		
T80S	95.96	93.75	92.68	88.57	87.98	68.58	48.84		
H50S	96.14	95.38	95.52	94.70	97.08	92.18	88.45		
H60S	95.88	94.32	94.77	94.65	94.08	90.20	84.80		
H70S	95.78	92.66	93.84	90.72	90.95	-	70.83		
H80S	95.88	94.11	93.23	90.94	89.66	77.82	67.64		
P60S	96.49	94.62	94.82	94.18	93.44	86.25	81.09		
P70S	96.04	94.98	94.14	92.41	94.37	82.67	71.11		
A50S	96.02	95.13	95.57	94.68	96.35	92.78	89.30		

ph Evaluation - Percent Main Peak by Cation Exchange Chromatography After Incubation at 37C for the Time Indicated

TABLE 10

	Incubation Time								
Form. *	T=0	T=2	T=4	T=8	T=12	T=17			
		Weeks	weeks	weeks	Weeks	Weeks			
A40S	81.17	73.84	69.66	53.96	43.09	41.14			
S35S	82.64	72.97	67.10	52.36	45.84	37.70			
S40S	82.16	74.54	70.95	53.81	44.63	34.96			
S50S	82.86	75.30	67.91	58.14	49.48	41.49			
H60S	82.32	79.60	75.57	70.77	65.47	-			
160S	83.72	80.20	77.95	72.15	64.05	66.01			
T40S	79.23	30.25	27.58	19.37	11.92	-			
E40S	82.37	75.53	69.71	59.80	50.91	47.72			

TABLE 11

5

		Incubation Time									
Form.*	Time	Т=3	T=7	T=10	T=2	T=3	Т=6	T=12			
	Zero	Days	Days	Days	Weeks	Weeks	Weeks	Weeks			
T80S	87.44	80.38	78.04	76.41	72.76	71.28	54.49	_			
H50S	84.42	83.70	83.86	83.23	82.16	78.52	76.07	70.85			
H60S	87.86	86.81	85.40	84.56	82.00	78.90	80.64	73.71			
H70S	82.99	83.33	81.35	81.01	79.55	72.70	67.95	56.91			
H80S	84.08	84.72	81.49	82.17	77.28	64.21	68.21	54.79			
P60S	85.68	84.58	83.73	83.22	79.15	75.87	73.38	60.93			
P70S	87.60	78.70	82.50	84.04	78.99	77.85	78.90	69.18			
A50S	83.00	84.54	81.65	83.81	81.54	77.68	79.50	72.22			

EXAMPLE 3

10

Mpl ligand Concentration Evaluation

A. Starting Material: PEG-rHuMGDF

15 B. Formulations:

10mM Acetate pH 5.0, 5% Sorbitol, 2.0 mg/mL (20A5S)
10mM Acetate pH 5.0, 5% Sorbitol, 1.0 mg/mL (10A5S)
10mM Acetate pH 5.0, 5% Sorbitol, 0.5 mg/mL (05A5S)
10mM Acetate pH 5.0, 5% Sorbitol, 0.2 mg/mL (02A5S)

20

- C. Vials: 1mL in 3cc vials filled at the protein concentrations indicated
- D. Temp & Time points: 37°C; time points indicated on Tables

25

E. Analyses: HPLC: SEC, RP, IEX

F. Data

Tables 12-14 show the percent main peak by size exclusion, reversed phase and cation exchange chromatography after incubation at 37°C for the times indicated.

Mpl Ligand Concentration Evaluation ~ Percent 10 Main Peak After Incubation at 370C for the Time Indicated

TABLE 12
Size Exclusion Chromatography

	-						
Form. *	T=0	T=1	T=2	Т=3	T=4	T=8	T=12
		Week	Weeks	Weeks	Weeks	Weeks	Weeks
02A5S	94.44	94.86	93.84	94.53	94.51	93.90	92.74
05A5S	94.11	93.78	92.86	93.25	93.40	91.55	90.11
10A5S	93.96	92.60	91.69	91.74	91.32	89.20	86.89
20A5S	93.81	91.50	90.25	90.20	89.55	86.89	83.59

^{*}Form. = Formulation

20

25

15

Reversed Phase Chromatography

TABLE 13

		Incubation Time								
Form.*	Т=0	T=1	т=2	Т=3	T=4	T=8	T=12			
		Week	Weeks	Weeks	Weeks	Weeks	Weeks			
02A5S	94.53	93.41	93.28	92.16	91.05	88.89	87.90			
05A5S	94.73	94.44	93.30	92.41	91.97	89.18	85.97			
10A5S	94.86	94.56	93.25	92.39	91.98	88.06	87.62			
20A5S	94.67	94.12	93.07	92.47	91.79	88.37	87.07			

TABLE 14 Cation Exchange Chromatography

		Incubation Time								
Form. *	T=0	T=1	T=2	T=4	T=8	T=12				
		Week	Weeks	Weeks	Weeks	Weeks				
02A5S	79.40	65.75	78.56	79.80	74.42	59.74				
05A5S	78.22	67.44	80.26	81.10	76.27	61.39				
10A5S	-	66.18	80.80	82.02	75.81	60.72				
20A5S	79.52	76.71	82.09	81.38	74.26	60.89				

EXAMPLE 4 10

Excipient Evaluation

A. Starting Material: PEG-rHuMGDF

15

B. Formulations:

	10mM Acetate pH 5.0, 5% Sorbitol,	
	5 mM EDTA	(A5SE)
20	10mM Acetate pH 5.0, 2% Alanine	(A5A)
	10mM Acetate pH 5.0, 1.6% Glycine	(A5G)
	10mM Acetate pH 5.0 2.7% Proline	(A5P)
	10mM Acetate pH 5.0, 3.5% Lysine	(A5K)
	10mM Acetate pH 5.0, 4.3% Arginine	(A5R)
25	10mM Glutamate pH 5.0, 9.3% Sucrose	(E5Su)
•	10mM Glutamate pH 5.0, 5% Sorbitol	(E5S)

Vials: 1mL in 3cc vials filled at a protein concentration of 0.5 mg/ml

30

Temp & Time points: 37°C; time points indicated on Tables

E. Analyses:

HPLC: SEC, RP, IEX

F. Data

5

Tables 15-17 show the percent main peak by size exclusion, reversed phase and cation exchange chromatography after incubation at 37°C for the times indicated.

10

Excipient Evaluation - Percent Main Peak After Incubation at 37C for the Time Indicated.

15

TABLE 15 Size Exclusion Chromatography

		Incubation Time						
Formulation	T=0	T=2	T=4	Т=8	T=12			
}		Weeks	Weeks	Weeks	Weeks			
A5R	84.71	21.83	19.01	12.30	-			
E5Su	94.30	91.40	91.95	88.36	86.52			
A5G	94.57	91.22	91.43	92.26	84.50			
A5K	86.75	17.24	15.02	9.76	_			
A5SE	93.08	60.01	54.53	43.22	37.75			
A5P	94.66	91.97	92.16	87.63	85.05			
E5S	94.78	93.07	93.55	90.68	92.28			
A5A	94.55	91.57	92.18	88.13	85.89			

TABLE 16
Cation Exchange Chromatography

		Incubation Time						
Formulation	T=0	T=2	T=4	T=8	T=12			
		Weeks	Weeks	Weeks	Weeks			
A5R	82.26	28.41	21.32	11.71	_			
E5Su	84.93	86.22	88.62	72.16	65.04			
A5G	86.17	81.90	66.81	18.95	26.45			
A5K	80.88	20.18	14.23	8.75	-			
A5SE	84.56	62.75	56.40	36.31	30.38			
A5P	86.73	87.58	86.22	69.34	65.76			
E5S	87.49	90.23	88.83	75.55	70.01			
A5A	86.28	81.31	86.10	70.29	63.69			

10

5

TABLE 17

Reversed Phase Chromatography

	Incubation Time						
Formulation	T=0	T=2	T=4	T=12			
		Weeks	Weeks_	Weeks			
A5R	95.96	92.35	85.68	_			
E5Su	96.10	94.57	91.59	77.92			
A5G	95.71	69.61	39.86	_			
A5K	95.81	88.93	81.30	-			
A5SE	95.98	93.60	90.01	~			
A5P	95.67	92.98	89.96	78.85			
E5S	95.64	93.98	90.61	83.90			
A5A	95.78	90.38	86.52	70.00			

15

EXAMPLE 5

<u>Isotonicity Evaluation</u>

20

A. Starting Material: PEG-rHuMGDF

PCT/US97/16196 WO 98/14476

B. Formulations:

	10mM Acetate pH 5.0, 9.3% Sucrose	(A5 <i>S</i> U)
	10mM Acetate pH 5.0, 5% Mannitol	(A5MA)
5	10mM Acetate pH 5.0, 140 mM NaCl	(A5N)
	10mM Acetate pH 5.0, 2% PEG 8000	(A5P8)
	10mM Acetate pH 5.0, 2.5% Glycerol	(A5G)
	10mM Acetate pH 5.0, 5% Sorbitol,	
	.01% Tween 20	(A5ST)
10	10mM Histidine pH 6.0, 5% Sorbitol	(H6S)
	10mM Histidine pH 6.0, 5% Sorbitol,	
	.001% Ascorbic Acid	(Нбаа)

- C. Vials: 1mL in 3cc vials filled at a protein concentration of 0.5 mg/ml15
 - Temp & Time points: 37°C; time points indicated on Tables
 - Analyses: HPLC: SEC, RP, IEX E.

20

F. Data

Tables 18-20 show the percent main peak by size exclusion, reversed phase and cation exchange chromatography after incubation at 37°C for the times indicated. 25

Isotonicity Evaluation - Percent Main Peak After Incubation at 30 370°C for the Time Indicated.

TABLE 18
Size Exclusion Chromatography

	Incubation Time								
Form.*	T =0	Т=3.5	T=1	T=2	T=3	T=7	T=12		
		Days	Week	Weeks	Weeks	Weeks	Weeks		
H6S	96.70	96.23	96.30	95.95	95.77	93.37	91.03		
Н6Аа	96.75	95.66	96.03	95.72	95.29	93.32	90.61		
A5N	83.54	30.42	28.04	24.64	20.19	17.62	_		
A5Ma	96.55	95.14	95.22	95.02	95.13	93.08	91.42		
A5Su	96.36	95.18	95.37	95.16	95.60	93.49	91.89		
A5G	96.46	95.29	95.49	95.20	95.59	93.23	91.68		
A5P8	94.88	92.89	92.89	92.61	91.62	92.78	82.05		
A5ST_	96.25	94.83	94.50	94.58	94.37	91.16	87.68		

^{*}Form.= Formulation

10

Reversed	Phase	Chromatography

	Incubation Time								
Form.*	T =0	T=3.5	T=1	T=2	T=7	T=12			
		Days	Week	Weeks	Weeks	Weeks			
H6S	95.49	94.39	94.69	85.55	87.60	85.62			
Н6Аа	95.64	92.00	90.67	93.02	74.22	66.22			
A5N	94.94	93.99	92.19	89.52	68.67	_			
A5Ma	95.90	95.05	95.29	94.34	90.13	87.22			
A5Su	95.55	95.39	94.78	93.47	88.19	82.88			
A5G	95.57	94.78	95.51	94.88	90.04	88.64			
A5P8_	94.75	91.31	87.07	76.93	13.41	_			
A5ST	94.57	93.24	93.90	82.75	87.61	85.45			

10

TABLE 20
Cation Exchange Chromatography

		·	Incu	bation '	Time		
Form.*	T=0	T=3.5	T=1	T=2	Т=3	T=7	T=12
		Days	Week	Weeks	Weeks	Weeks	Weeks
H6S	87.13	85.79	84.67	82.66	82.77	79.32	59.35
Н6Аа	85.12	80.75	79.31	75.99	75.23	64.62	45.93
A5N	79.98	39.01	29.14	25.03	20.77	14.67	-
A5Ma	84.73	84.37	84.43	81.92	83.07	78.17	58.52
A5Su	82.98	84.83	83.46	80.76	81.09	76.61	56.85
A5G	82.79	84.69	85.09	81.73	81.61	76.98	59.03
A5P8	85.65	82.26	81.74	77.41	74.77	53.74	4.80
A5ST	85.02	83.83	83.95	80.02	79.79	74.56	55.85

EXAMPLE 6

Anti-oxidant/Chelating Agent Evaluation

5

A. Starting Material: PEG-rHuMGDF

B. Formulations:

10	10 mM Acetate pH 5.0, 5% Sorbitol		
	3 mM glutathione	(A5S	GT)
	10 mM Acetate pH 5.0, 5% Sorbitol		
	5 mM methionine	(A5S	M)
	10 mM Acetate pH 5.0, 5% Sorbitol		
15	5 mM methionine, 1 mM EDTA	(A5S	ME)
	10 mM Acetate pH 5.0, 5% Sorbitol		
	1 mM citrate	(A5S	C)
	10 mM Acetate pH 5.0, 5% Sorbitol		
	0.5 mM citrate	(A5S	05C)
20	10 mM Acetate pH 5.0, 5% Sorbitol		
	1 mM EDTA	(A5S	1E)
	10 mM Acetate pH 5.0, 5% Sorbitol		
	0.5 mM EDTA	(A5S	E)

- 25 C. Vials: 1mL in 3cc vials filled at a protein concentration of 0.5 mg/ml
 - D. Temp & Time points: 37°C; time points indicated on Tables
- 30 E. Analyses: HPLC: SEC, RP, IEX

F. Data

15

20

25

Tables 21-23 show the percent main peak by size exclusion, reversed phase and cation exchange chromatography after incubation at 37°C for the times indicated.

Anti-Oxidant/Chelating Agent Evaluation - Percent Main Peak After

10 Incubation at 370C for the Time Indicated.

TABLE 21
Size Exclusion Chromatography

	Incubation Time					
Formulation	T=0	T=2	T=4	т=9		
		Weeks	Weeks	Weeks		
A5SGT	16.69	12.32	8.03	5.91		
A5SM	94.53	91.03	89.72	89.00		
A5SME	94.88	92.15	90.73	85.74		
A5SC	94.30	90.83	88.14	79.61		
A5S05C	93.96	90.95	88.98	_		
A5S1E	94.88	90.75	89.15	80.63		
A5SE	94.80	91.72	89.89	82.06		

TABLE 22

Reversed Phase Chromatography

		Incubation Time					
Formulation	T=0	T=2	T=4	T=9	T=12		
		Weeks	Weeks	Weeks	Weeks		
A5SGT	5.69	2.37	2.80	2.60	2.50		
A5SM	94.70	91.59	88.67	88.55	86.83		
A5SME	94.54	87.66	91.36	81.97	80.39		
A5SC	93.98	81.13	90.33	68.01	62.91		
A5S05C	94.43	87.01	84.30	79.83	76.35		
A5S1E	94.36	86.84	76.43	89.93	84.56		
A5SE	94.75	90.27	85.64	81.20	78.96		

TABLE 23

Cation Exchange Chromatography

5

		Incubation Time				
Formulation	Т=0	T=2	T=4	T=9		
		Weeks	Weeks	Weeks		
A5SGT	4.66	5.15	0.0	-		
A5SM	84.69	81.18	80.96	72.95		
A5SME	84.93	78.36	78.26	69.48		
A5SC_	85.23	72.11	66.46	54.68		
A5S05C	86.06	78.00	72.53	66.06		
A5S1E	85.38	77.00	76.42	66.21		
A5SE	86.51	80.07	77.93	69.79		

10 EXAMPLE 7

<u>Detergent Evaluation</u>

A. Starting Material: PEG-rHuMGDF

15

B. Formulations:

All forms contain 10mM acetate at pH 5.0, with 5% sorbitol and 0.050 mg/ml PEG-rHuMGDF.

20	004T20	: (0.004	mg/ml	Tween-20
	006Т20	:	0.006	mg/ml	Tween-20
	010T20	:	0.010	mg/ml	Tween-20
	040T20	:	0.040	mg/ml	Tween-20
	060T20	:	0.060	mg/ml	Tween-20
25	004T80	•	0.004	mg/ml	Tween-80
	006т80	:	0.006	mg/ml	Tween-80
	010T80	:	0.010	mg/ml	Tween-80
	040Т80	•	0.040	mg/ml	Tween-80
	060т80	:	0.060	mg/ml	Tween-80

C. Data:

Table 24 shows the results of reverse phase HPLC purity based on the percent main peak:

-31-

5

TABLE 24

	INCUBATION TIME AT 37 DEGREES CELSIUS				
FORMULATION	т=0	Т=2	Т=4	Т=6	Т=12
	WEEKS	WEEKS	WEEKS	WEEKS	WEEKS
A5S	94.66	94.05	90.67	90.90	89.07
004T20	94.68	94.79	91.25	91.02	88.49
006Т20	94.69	93.99	91.48	90.46	88.43
010T20	94.89	94.30	91.33	90.76	88.47
040T20	94.59	92.95	90.63	89.88	87.58
060Т20	94.61	92.62	90.57	89.49	86.72
004T80	94.44	94.35	90.91	90.80	88.48
006T80	94.43	94.05	91.01	90.18	88.08
010T80	94.89	94.22	90.69	90.22	88.04
040T80	94.45	92.64	89.74	89.26	86.56
060Т80	94.19	88.38	88.67	87.64	84.53

D. Results:

rHuMGDF formulations to enhance physical stability and recovery without detrimental effects to chemical stability.

Tween-20 and Tween-80 may be added to PEG-rHuMGDF formulations up to final concentrations of about 0.060 mg/ml without causing excessive methionine oxidation. Tween-20 and Tween-80 are most effective in the concentration range of 0.006 mg/ml to 0.060 mg/ml.

EXAMPLE 8

Lyophilized Compositions

5

25

obtained for lyophilized compositions including an mpl ligand. In each of these examples, the mpl ligand tested was PEG-rHuMGDF, which contains amino acids 1-163 of SEQ ID NO:

2, mono-PEGylated at the alpha amino group of the N-terminal amino acid with a polyethylene glycol group having an average molecular weight of about 20 kDa. For Tables 25-27, the lyophilized PEG-rHuMGDF was reconstituted with about 1 ml of water for injection prior to analysis and the percent main peak represents the recovery of PEG-rHuMGDF as a consequence of lyophilization.

TABLE 25

Formulation	% main peak by SEC
10mM histidine,	88
5% mannitol	
10mM histidine,	93
4% mannitol, 1% sucrose	

20 Note: Mpl ligand concentration was 0.5 mg/ml.

For the lyophilized samples no additional physical stability was achieved in pH's 6, 7 and 8 as measured by size exclusion.

Range of sucrose concentrations studied:

TABLE 26

ı	۴	-
Į		٠
	_	J
1	_	_

Sucrose	% main peak
Conc.	by SEC
2%	91
48	94
5%	97
68	95

Range of buffers (10mM concentration) studied:

TABLE 27

10

Formulation	% main peak by SEC HPLC
histidine, 3.8% mannitol,	87
2% sucrose, pH 5	
citrate, 3.8% mannitol,	87
2% sucrose, pH 5	
acetate, 3.8% mannitol,	79
2% sucrose, pH 5	
succinate, 3.8% mannitol,	88
2% sucrose, pH 5	
MES, 3.8% mannitol, 2% sucrose,	88
pH 5	
phosphate, 3.8% mannitol,	87
2% sucrose, pH 7	
phosphate, 3.8% mannitol,	80
0.5% glycine, pH 7	

All stabilizing agents such as amino acids (e.g. isotonic arginine, lysine, proline and histidine) and

amorphous agents (e.g., trehalose and PEG) did not show improved stability during lyophilization.

Formulation with best main peak recovery and lowest levels of aggregation:

5

10

10mM glutamate, 6% sucrose, 2% mannitol, pH 5.0.

While the invention has been described in what is considered to be its preferred embodiments, it is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalents included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalents.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: AMGEN INC.
 - (ii) TITLE OF INVENTION: PHARMACEUTICAL COMPOSITIONS CONTAINING AN MPL LIGAND
 - (iii) NUMBER OF SEQUENCES: 2
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: AMGEN INC.
 - (B) STREET: 1849 DeHavilland Drive
 - (C) CITY: Thousand Oaks
 - (D) STATE: California
 - (E) COUNTRY: US
 - (F) ZIP: 91320-1789
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US (Not Yet Assigned)
 - (B) FILING DATE: 04-OCT-1996
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: COOK Ph.D., Robert R.
 - (B) REGISTRATION NUMBER: 31,602
 - (C) REFERENCE/DOCKET NUMBER: A-412
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1342 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 36..1097

-36-

(ix) FEATURE:	
(A) NAME/KEY: mat_peptide	
(B) LOCATION: 991097	
(ix) FEATURE:	
(A) NAME/KEY: sig_peptide	
(B) LOCATION: 3698	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
CAGGGAGCCA CGCCAGCCAA GACACCCCGG CCAGA ATG GAG CTG ACT GAA TTG	53
Met Glu Leu Thr Glu Leu	
-21 -20	
CTC CTC GTG GTC ATG CTT CTC CTA ACT GCA AGG CTA ACG CTG TCC AGC	101
Leu Leu Val Val Met Leu Leu Leu Thr Ala Arg Leu Thr Leu Ser Ser	
-15	
CCG GCT CCT GCT TGT GAC CTC CGA GTC CTC AGT AAA CTG CTT CGT	149
Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg	
5 10 15	
GAC TCC CAT GTC CTT CAC AGC AGA CTG AGC CAG TGC CCA GAG GTT CAC	197
Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His	
20 25 30	
CCT TTG CCT ACA CCT GTC CTG CTG CCT GCT GTG GAC TTT AGC TTG GGA	245
Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly	
35 40 45	
GAA TGG AAA ACC CAG ATG GAG GAG ACC AAG GCA CAG GAC ATT CTG GGA	293
Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly	
50 55 60 65	
•	
GCA GTG ACC CTT CTG CTG GAG GGA GTG ATG GCA GCA CGG GGA CAA CTG	341
Ala Val Thr Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu	
70 75 80	
GGA CCC ACT TGC CTC TCA TCC CTC CTG GGG CAG CTT TCT GGA CAG GTC	389
Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val	
85 90 . 95	
CGT CTC CTC GGG GCC CTG CAG AGC CTC CTT GGA ACC CAG CTT CCT	437
Arg Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Leu Pro	
100 105 110	
•	
CCA CAG GGC AGG ACC ACA GCT CAC AAG GAT CCC AAT GCC ATC TTC CTG	485

Pro Gln Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu

125

120

		-			CTC Leu 135											533
- -					TGC Cys											581
-					CTA Leu											629
		=			GAG Glu											677
					AAG Lys											725
		_			ACC Thr 215											773
					GAA Glu											821
															ACA Thr	869
													Tyr		CCT Pro	917
		Thr	_									Phe			CCA Pro	965
	-										Pro				GAC Asp 305	1013
					Pro					Pro					TCC	1061
		_		Gln	AAT Asn				Glu			GGT	TCTC	AGA		1107
CAC	TGCC	GAC	АТСА	GCAT	TG T	CTCG	TGTA	C AG	CTCC	CTTC	CCI	GCAG	GGC	GCCC	CTGGGA	1167

1227

1287

GACA	ACTG	GA C	AAGA	TTTC	C TA	CTTI	CTCC	TGA	AACC	CAA	AGCC	CTGG	STA A	AAGG	GATAC
ACAG	GACI	GA A	AAAGG	GAAT	ra y	TTTT	CACT	GTA	CATI	TATA	AACC	TTC	AGA A	GCTA	TTTT
TTAA	GCTA	TC A	AGCAA	TACT	ra o	CAGA	GCAG	CTA	AGCT(TTT	GGTC	TAT	TT C	TGCA	
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:2:	;							
	((i) S	(B)	LEN TYP	IGTH: PE: a	354 minc SY: 1	ami aci	.no a		5					-
	(i	.i) N	OLEC	ULE	TYPE	: pr	otei	in							
	()	ci) S	SEQUE	NCE	DESC	RIPI	NOI:	SEÇ) ID	NO:2	2:				
Met -21		Leu	Thr	Glu	Leu	Leu -15	Leu	Val	Val	Met	Leu -10	Leu	Leu	Thr	Ala
Arg -5	Leu	Thr	Leu	Ser	Ser 1	Pro	Ala	Pro	Pro 5	Ala	Cys	Asp	Leu	Arg 10	Val
Leu	Ser	Lys	Leu 15	Leu	Arg	Asp	Ser	His 20	Val	Leu	His	Ser	Arg 25	Leu	Ser
Gln	Cys	Pro 30	Glu	Val	His	Pro	Leu 35	Pro	Thr	Pro	Val	Leu 40	Leu	Pro	Ala
Val	Asp 45	Phe	Ser	Leu	Gly	Glu 50	Trp	Lys	Thr	Gln	Met 55	Glu	Glu	Thr	Lys
Ala 60	Gln	Asp	Ile	Leu	Gly 65	Ala	Val	Thr	Leu	Leu 70	Leu	Glu	Gly	Val	Met 75
Ala	Ala	Arg	Gly	Gln 80	Leu	Gly	Pro	Thr	Cys 85	Leu	Ser	Ser	Leu	Leu 90	Gly
Gln	Leu	Ser	Gly 95	Gln	Val	Arg	Leu	Leu 100	Leu	Gly	Ala	Leu	Gln 105	Ser	Leu
Leu	Gly	Thr 110	Gln	Leu	Pro	Pro	Gln 115	Gly	Arg	Thr	Thr	Ala 120	His	Lys	Asp
Pro	Asn 125	Ala	Ile	Phe	Leu	Ser 130	Phe	Gln	His	Leu	Leu 135	Arg	Gly	Lys	Val
Arg 140	Phe	Leu	Met	Leu	Val 145	Gly	Gly	Ser	Thr	Leu 150	Cys	Val	Arg	Arg	Ala 155

PCT/US97/16196 WO 98/14476 -39-

Pro Pro Thr Thr Ala Val Pro Ser Arg Thr Ser Leu Val Leu Thr Leu Asn Glu Leu Pro Asn Arg Thr Ser Gly Leu Leu Glu Thr Asn Phe Thr Ala Ser Ala Arg Thr Thr Gly Ser Gly Leu Leu Lys Trp Gln Gln Gly Phe Arg Ala Lys Ile Pro Gly Leu Leu Asn Gln Thr Ser Arg Ser Leu Asp Gln Ile Pro Gly Tyr Leu Asn Arg Ile His Glu Leu Leu Asn Gly Thr Arg Gly Leu Phe Pro Gly Pro Ser Arg Arg Thr Leu Gly Ala Pro Asp Ile Ser Ser Gly Thr Ser Asp Thr Gly Ser Leu Pro Pro Asn Leu Gln Pro Gly Tyr Ser Pro Ser Pro Thr His Pro Pro Thr Gly Gln Tyr Thr Leu Phe Pro Leu Pro Pro Thr Leu Pro Thr Pro Val Val Gln Leu His Pro Leu Leu Pro Asp Pro Ser Ala Pro Thr Pro Thr Pro Thr Ser Pro Leu Leu Asn Thr Ser Tyr Thr His Ser Gln Asn Leu Ser Gln Glu

PCT/US97/16196 **WO 98/14476** -40-

WHAT IS CLAIMED IS:

A composition comprising an mpl ligand, a buffer selected from the group consisting of glutamate, phosphate, histidine, imidazole, and acetate; an excipient selected form the group consisting of sorbitol, sucrose, mannitol, glycerol, polyethylene glycol, and a non-polar amino acid; and having a pH ranging from 5.0 to 6.0, inclusive.

10

- A composition according to Claim 1, wherein 2. the mpl ligand comprises at least amino acids 7-151 of SEQ ID. NO: 2.
- A composition according to Claim 1, wherein 3. 15 the mpl ligand consists of amino acids 1-171 ± 20 amino acids. of SEQ ID NO: 2.
- A composition according to Claim 1, wherein 4. the mpl ligand consists of amino acids $1-161 \pm 10$ amino acids 20 of SEQ ID NO: 2.
- A composition according to Claim 1, wherein 5. the mpl ligand consists of amino acids 1-151 amino acids of SEQ ID NO: 2. 25
 - 6. A composition according to Claim 1, wherein the mpl ligand consists of amino acids 1-163 of SEQ ID NO: 2.
- A composition according to Claim 1, wherein 7. 30 the mpl ligand is attached to a water soluble polymer selected from the group consisting of polyethylene glycol, monomethoxy-polyethylene glycol, dextran, poly-(N-vinyl pyrrolidone) polyethylene glycol, propylene glycol

WO 98/14476 PCT/US97/16196

homopolymers, a polypropylene oxide/ethylene oxide copolymer, polyoxyethylated polyols.

- 8. A composition according to Claim 7, wherein the water soluble polymer is polyethylene glycol.
 - 9. A composition according to Claim 6, which comprises acetate as the buffer, sorbitol as the excipient, and has a pH of about 5.0, in an aqueous medium.

10. A composition according to Claim 1, wherein the nonpolar amino acid is selected form the group consisting of glycine, proline, and alanine

11. A composition according to Claim 1, further comprising an antioxidant.

10

- 12. A composition according to Claim 11, wherein the antioxidant is selected from the group consisting of 20 EDTA, ascorbic acid, glutathione, methionine, and citrate.
 - 13. A composition according to Claim 1, further comprising a detergent or a lipid.
- 14. A composition according to Claim 13, wherein the detergent is selected from the group consisting of Tween; Brij 35; Pluronics; sodium dodecyl sulfate; Triton; dimyristoyl phosphatidyl glycerol (DMPG); PEG-40 castor oil; oleth-3-phosphate; diethanolamine oleth-10-phosphate; and a mixture of short and long chain unilamellar vesicles (SLUV) containing C8 (caprylic) and C14 (myristic) lipids.
 - 15. A composition according to Claim 1, wherein the composition is in an aqueous medium.

- 16. A composition according to Claim 1, wherein the composition is in a lyophilized form.
- 17. A composition according to Claim 1, which comprises phosphate buffer, 5% sorbitol and has a pH of about 6.0, in an aqueous medium.
- 18. A composition according to Claim 1, which comprises histidine buffer, and about 5% sorbitol in an aqueous medium.
 - 19. A composition according to Claim 1, which comprises imidazole buffer, and about 5% sorbitol in an aqueous medium.

20. A composition according to Claim 1, which comprises glutamate buffer, and about 5% sorbitol, in an aqueous medium.

- 21. A composition according to Claim 1, which comprises glutamate buffer, 5% sorbitol and has a pH of about 5.0, in an aqueous medium.
- 22. A composition according to Claim 1, which comprises glutamate buffer, about 6% sucrose, about 2% mannitol, a pH of about 5.0 in a lyophilized form.

1/3

7 7 7	CAGGGAGCCACCCAAGACACCCCGGCCAGAATGGAGCTGACTGA	59
60	GTGGTCATGCTTCTCTAACTGCAAGGCTAACGCTGTCCAGCCCGGCTCCTCCTGCTTGT ValValMetLeuLeuLeuThrAlaArgLeuThrLeuSerSerProAlaProProAlaCys	119
120	GACCTCCGAGTCTCAGTAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGC	179
180	CAGTGCCCAGAGGTTCACCCTTTGCCTACCTGTCCTGCTGCTGTTGACTTTAGCGInCysProGluValHisProLeuProValLeuLeuProAlaValAspPheSer	23947
240 48	TTGGGAGAATGGAAACCCAGATGGAGGAGCCCAAGGCACAGGACATTCTGGGAGCAGTG LeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaVal	299
300	ACCCTTCTGCTGGGGGGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCA ThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSer	359
360 88	TCCCTCCTGGGCAGCTTCTGGACAGGTCCGTCTCCTTGGGGCCCTGCAGAGCCTC SerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeu	419

PCT/US97/16196

WO 98/14476

2/3

83	AGGATACACGAACTCTTGAATGGAACTCGTGGACTCTTTCCTGGACCCTCACGCAGGACC	780
77 22	ATTCCTGGTCTGAACCAAACCTCCAGGTCCCTGGACCAAATCCCCGGATACCTGAAC IleproglyLeuLeuAsnGlnThrSerArgSerLeuAspGlnIleProGlyTyrLeuAsn	720
71220	GCCTCAGCCAGAACTACTGGCTTCTGAAGTGGCAGCAGGGATTCAGAGCCAAGAIALYS	660 188
1 8 8	GTCCTCACACTGAACTCCCAAACAGGACTTCTGGATTGTTGGAGACAAACTTCACT ValLeuThrLeuAsnGluLeuProAsnArgThrSerGlyLeuLeuGluThrAsnPheThr	600
59	TCCACCCTCTGCGTCAGGGCCCCCACCCACAGCTGTCCCCAGCAGAACCTCTA SerThrLeuCysValArgAlaProProThrThrAlaValProSerArgThrSerLeu	540 148
53	TTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGG	480
12	CTTGGAACCCAGCTCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCC LeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIle	420 108

FIG. 1B

3/3

		1200
1319	ACATTATAAACCTTCAGAAGCTATTTTTTAAGCTATCAGCAATACTCATCAGAGCAGCT	1260
1259	AAACCCAAAGCCCTGGTAAAGGGATACACAGGACTGAAAAGGGAATCATTTTCACTGT	1200
1199	CICCCTICCTGCAGGCCCCCTGGGAGACAACTGGACAAGATTTCCTACTTTCTCTG	1140
335	LeuSerGlnGluGlyEnd	328
1139	CTGTCTCAGGAAGGGTAAGGTTCTCAGACACTGCCGACATCAGCATTGTCTCGTGTACAG	1080
327	AlaProThrProThrSerProLeuLeuAsnThrSerTyrThrHisSerGlnAsn	308
1079	GCTCCAACGCCCTACCAGCCCTCTTCTAAACACATCCTACACCCCCACAGAAT	1020
307	LeuProProThrLeuProThrProValValGlnLeuHisProLeuLeuProAspProSer	∞
101	CTTCCACCCACCTACCCTGTGGTCCAGCTCCACCCCCTGCTTCCTGACCCTTCT	960
287	GlnProGlyTyrSerProSerProThrHisProProThrGlyGlnTyrThrLeuPhePro	
959	CAGCCTGGATATTCTCCTTCCCCATCCTCCTACTGGACAGTATACGCTCTTCCCT	900
267	LeuGlyAlaProAspIleSerSerGlyThrSerAspThrGlySerLeuProProAsnLeu	248
899	CTAGGAGCCCCGGACATTTCCTCAGGAACATCAGACACAGGCTCCCTGCCACCCAACCTC	840

FIG. 10

INTERNATIONAL SEARCH REPORT

Inter. Just Application No PCT/US 97/16196

A CLASSIF IPC 6	CO7K14/52 A61K38/19		•
According to	International Patent Classification (IPC) or to both national classification	n and IPC	
B. FIELDS	SEARCHED		
	currentation searched (classification system followed by classification CO7 K	symbols)	
Documentat	ion searched other than minimum documentation to the extent that suc	h documents are included in the fields sear	ched
Electronic d	ata base consulted during the international search (name of data base	and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant	ent passages	Relevant to claim No.
P,X	WO 97 26907 A (GENENTECH INC ;THO GRIFFITH R (US)) 31 July 1997 whole document, esp. page 9ff, pa experiment 3	·	1
P,X	WO 96 40217 A (ZYMOGENETICS INC) December 1996	19	1,7,15
P,Y	whole document, especially claim examples	25 and	2-6, 8-14, 16-22
		/	
X Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
"A" docum consi "E" earlier filing "L" docum which citati "O" docum other	nent defining the general state of the art which is not idered to be of particular relevance of document but published on or after the international date tent which may throw doubts on priority claim(s) or his cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means	"Y" document of particular relevance; the cannot be considered to invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an inventive and involve an inventive and involve an involve and involve and involve and involve and involve and involve and inventive and involve and involve and inventive and involve and inventive and involve and	the application but fory underlying the samed invention be considered to sument is taken alone samed invention rentive step when the re other such docusts to a person skilled
	e actual completion of the international search	Date of mailing of the international sea	
	8 January 1998	2 3. 01.	98
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Kronester-Frei, A	

INTERNATIONAL SEARCH REPORT

tnterna at Application No PCT/US 97/16196

		PC1/02 97/16196
C.(Continu:	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Parter to Camilleo.
Ρ,Χ	WO 96 41642 A (KIRIN BREWERY ; NOMURA HIDEAKI (JP)) 27 December 1996	1,6
Ρ,Υ	whole document, esp. page 33ff	2-5,7-22
, χ	& CHEMICAL ABSTRACTS, vol. 126, no. 9, 3 March 1997 Columbus, Ohio, US; abstract no. 122491,	1,6
, γ	see abstract	2-5,7-22
X Y	WO 96 29989 A (AMGEN INC) 3 October 1996 whole document, esp. page 18ff, claims 21-24, examples	1-22
Y .	WO 95 26746 A (AMGEN INC; BARTLEY TIMOTHY D (US); BOGENBERGER JAKOB M (US); BOSSE) 12 October 1995 cited in the application whole document, esp. page 53ff, Table 7, claims	1-22
P,Y	KUTER D.J.: "In vivo effects of Mpl ligand administration and emerging clinical applications for the Mpl ligands" CURRENT OPINION IN HEMATOLOGY, vol. 4, no. 3, May 1997, pages 163-170, XP002051381 whole document	1-22
A	WO 96 25498 A (AMGEN INC; ELLIOTT STEVEN G (US)) 22 August 1996 whole document, esp. page 17, line 21ff, page 20, lines 10-17, claim 21	1-22

INTERNATIONAL SEARCH REPORT

Information on patent family members

toterna. .al Application No PCT/US 97/16196

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9726907 A	31-07-97	AU 1533597 A	20-08-97
WO 9640217 A	19-12-96	AU 5802396 A	30-12-96
WO 9641642 A	27-12-96	AU 5911796 A	09-01-97
WO 9629989 A	03-10-96	AU 5434196 A NO 974323 A	16-10-96 28-11-97
WO 9526746 A	12-10-95	AU 2230895 A BG 100625 A CN 1137757 A CZ 9503505 A EP 0675201 A EP 0690127 A EP 0755263 A FI 960136 A HU 74257 A NO 960111 A PL 312577 A SK 166695 A ZA 9502651 A ZA 9502652 A	23-10-95 30-04-97 11-12-96 15-01-97 04-10-95 03-01-96 29-01-97 11-03-96 28-11-96 24-09-96 29-04-96 05-02-97 25-06-96 21-12-95
WO 9625498 A	22-08-96	US 5696250 A AU 4994696 A CA 2209298 A EP 0811064 A	09-12-97 04-09-96 22-08-96 10-12-97