COMP3052.SEC Computer Security

Session 06: Firewalls

Acknowledgements

- Some of the materials we use this semester may come directly from previous teachers of this module, and other sources ...
- Thank you to (amongst others):
 - Michel Valstar, Milena Radenkovic, Mike Pound, Dave Towey, ...

COMP3052.SEC Session 06

This Session

- Firewalls
 - Packet Filters
 - Stateful vs Stateless
- Proxies
- NAT

COMP3052.SEC Session 06

Firewalls

- A hardware and/or software system
- Prevents unauthorised access of packets from one network to another
- All data leaving any subnet must pass through it

Firewall Functions

- Implements 'single point' security measures
- Security event monitoring through packet analysis and logging
- Network-based access control through implementation of a rule set

Location

- Many different possible locations thus many different network architectures
- Network Firewalls
 - Placed between a subnet and the internet
- Host-based Firewalls
 - Placed on individual machines
- All traffic must go through the firewall for it to function correctly

Location

 A standard home router is a good example of a network firewall

DMZ

 A demilitarized zone is a small subnet that separates externally facing services from the internal network

Firewall Basic Function

- Defends a protected network against parties accessing services that should only be available internally
- Can also restrict access from inside to outside services

Firewalls are not enough

- Cannot protect against attacks that bypass the firewall
 - E.g. Tunnelling
- Cannot protect against internal threats or insiders
 - Might help a bit by egress filtering
- Cannot protect against the transfer of virusinfected programs or files

Firewall Types

- Packet Filters
- Stateful Inspection
- Proxies
- Dynamic
- Kernel

- OSI-Based:
 - Application Layer
 - Network Layer

Packet Filters

- Specify which packets are allowed or dropped
- Rules based on:
 - Source / Destination IP
 - TCP / UDP port numbers
- Possible for both inbound and outbound traffic
- Can be implemented in a router by only examining packet headers
 - Operates on OSI layer 3 (IP) or layer 4 (TCP)

Packet Filter Rules

- Rule execution depends on implementation
 - IPTABLES: First rule to match is applied
 - PF: All rules are examined, the last match is applied
- Rules are organised in chains, which are logical subgroups of rules
- Depending on the packet, different chains are activated

IPTABLES

- An application that provides access to the Linux firewall rule tables
 - Not actually a firewall, but configures the firewall
 - The firewall is mostly implemented as netfilter modules

Tables and Chains

- IPTABLES uses tables to store chains
 - Default is the filtering table
- Chains are ordered lists of rules
 - Rules match, or they don't
- Matches result in a jump, else we check the next rule

Tables and Chains

- There can be multiple chains per table
 - E.g. a TCP handling chain
- Jumps can go to ACCEPT, DROP, LOG or another chain
- Complex behaviour can be built up

Defaults

- There are built-in tables in IPTABLES:
 - Filter (default)
 - NAT
 - Mangle Packet alteration
 - Raw Skips connection tracking
 - Security mandatory access control
- The default table is the filtering table, including Input, Output and Forward chains

Rules Examples

 Using the command line, we add rules onto the end of chains

HTTP

Jump target

iptables -A INPUT -i eth0 -p tcp --dport 80 -j ACCEPT iptables -A OUTPUT -o eth0 -p tcp --sport 80 -j ACCEPT

Appending to specific chains

Matches test a given packet against some criteria if all matches pass, we apply the jump

Policies

- Permissive (Black listing) allow everything except dangerous services
 - Easy to make a mistake or forget something
- Restrictive (White listing) block everything except designated useful services
 - More secure by default
 - Fairly easy to DoS yourself!

IPTABLES Policies

 To use a blacklisting policy, we want to accept by default, then have rules that drop:

```
iptables -P INPUT ACCEPT iptables -P FORWARD ACCEPT iptables -P OUTPUT ACCEPT
```

```
iptables -A INPUT -s X.X.X.X -j DROP iptables -A OUTPUT -p tcp --dport ssh -j DROP
```

 For a whitelisting policy, we want to drop by default, then let certain packets through:

```
iptables -P INPUT DROP iptables -P FORWARD DROP iptables -P OUTPUT DROP
```

iptables -A INPUT -p tcp --dport ssh -j ACCEPT iptables -A OUTPUT -s 192.168.0.2 -j ACCEPT

Packet Filter Issues

- Packet filters are simple, low level and have high assurance
- But, they cannot:
 - Prevent attacks that exploit application-specific vulnerabilities
 - Do not support higher-level authentication schemes

Stateful Packet Filters

 A stateful firewall always keeps track of the state of network connections.

 Once a particular kind of traffic has been approved by a stateful firewall, it is added to a state table/connection table.

Understand requests and replies
E.g. 3-way Handshake: SYN, SYN/ACK, ACK

Connection Table Example

Source Address	Source Port	Destination Address	Destination Port	Connection State
192.168.0.2	1030	210.9.88.29	80	established
192.168.0.4	22	216.32.42.123	22	established

- ACK packets are used to keep track of the session
 - the connection is ongoing
- Packets without the ACK are the connection establishment messages

COMP3052.SEC Session 06

IPTABLES Rules

- IPTABLES has modules for stateful packet filtering
- Allow incoming / outgoing SSH connections

iptables -A INPUT -i eth0 -p tcp --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A OUTPUT -o eth0 -p tcp --sport 22 -m state --state ESTABLISHED –j ACCEPT

Allow HTTP(S):

iptables -A INPUT -i eth0 -p tcp --dport 80 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A OUTPUT -o eth0 -p tcp --sport 80 -m state --state ESTABLISHED -j ACCEPT

iptables -A INPUT -i eth0 -p tcp --dport 443 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A OUTPUT -o eth0 -p tcp --sport 443 -m state --state ESTABLISHED -j ACCEPT

Proxy Servers

- Proxy servers initiate a connection on our behalf
- They can block certain access, and scan for malicious files or web pages

Proxy Servers

Issues

- Large overhead per connection
- More expensive than packet filtering
- Configuration is complex
- A separate server is required for each service

Network Address Translation (NAT)

 The shortage of IP addresses mean that most routers now perform NAT automatically

Network Address Translation

- The implicit advantage in NAT is that your machine is almost totally hidden from the internet
- Only established connections are forwarded to your internal machine
 - Or, specific port forwarding rules

COMP3052.SEC Session 06

Summary

- Firewalls
 - Packet Filters
 - Stateful vs Stateless
- Proxies
- NAT

