Applications, matrices, relatios d'ordre - des exercices supplémentaires

1. Exercices fondamentaux

Exercice 1 Décrire l'image directe de \mathbb{R} par la fonction exponentielle. Déterminer l'image réciproque de l'intervalle [-1,4] par la fonction $f:x\mapsto x^2$ définie sur \mathbb{R} .

Exercice 2 Soient E, F, G trois ensembles, $f: E \to F$ et $g_1, g_2: F \to G$. On suppose f surjective et $g_1 \circ f = g_2 \circ f$. Montrer que $g_1 = g_2$.

Exercice 3 Soit $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 3 \\ 0 & 1 & 0 \end{pmatrix}$, trouver trois réels a, b et c tels que $A^3 + aA^2 + bA + cI_3 = 0$. Est-ce que A est inversible? Le cas échéant, donner son inverse.

2. Exercices standards

Exercice 4 Soit E l'ensemble des matrices carrées $(a_{i,j})_{1 \leq i,j \leq n}$ de taille n vérifiant

$$\exists (a,b) \in \mathbb{C}^2, \ (\forall i \in [1,n], \ a_{i,i} = a) \text{ et } (\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow a_{i,j} = b).$$

Montrer que E est stable par la multiplication matricielle.

Indication : on pourra faire intervenir la matrice carrée K, dont tous les coefficients valent 1.

Exercice 5 Soit

$$I = \left\{ x \in \mathbb{R} \mid -2 < x + \frac{1}{2x} \le 2 \right\}.$$

- 1) Montrer que I est la réunion de deux intervalles.
- 2) Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément de I.

3. Exercice plus difficile

Exercice 6 ($\stackrel{\triangleright}{\triangleright}$) — Parties saturées pour la relation d'équivalence associée à f — Soit $f: E \to F$ une application, et $\mathscr{S} = \{ X \subset E \mid f^{\leftarrow}(f(X)) = X \}$.

- 1) Pour $A \subset E$, montrer que $f^{\leftarrow}(f(A)) \in \mathscr{S}$.
- 2) Montrer que ${\mathscr S}$ est stable par intersection et réunion.
- 3) Soient $X \in \mathscr{S}$ et $A \subset E$ tels que $X \cap A = \varnothing$. Montrer que $X \cap f^{\leftarrow}(f(A)) = \varnothing$.
- 4) Soient X et $Y \in \mathscr{S}$. Montrer que \overline{X} et $Y \setminus X$ appartiennent à \mathscr{S} .
- 5) Montrer que l'application $\mathscr{S} \to \mathscr{P}(f(E))$ est une bijection. $A \mapsto f(A)$

Exercice 7 ($\stackrel{\triangleright}{\triangleright}$) Soit a, b et c trois réels vérifiant $a^2 + b^2 + c^2 = 1$, ainsi que la matrice

$$M = \begin{pmatrix} 1 + a^2 & ab & ac \\ ab & 1 + b^2 & bc \\ ac & bc & 1 + c^2 \end{pmatrix}.$$

Calculer M^n pour tout entier naturel n.

Indice: on pourra commencer par étudier $N = M - I_3$.

Exercice 8 ($\stackrel{\triangleright}{\longrightarrow}$) Soit A une partie bornée non vide de \mathbb{R} . Montrer

$$\sup_{(x,y)\in A^2} |x-y| = \sup(A) - \inf(A)$$