Curso: Engenharia de Computação

Sistemas Digitais

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Circuitos sequenciais

Circuitos sequenciais

- São aqueles cuja saída em um determinado instante depende das entradas no instante considerado e das entradas e saídas em instantes anteriores.
- A resposta atual depende da memória, ou seja, dos dados do passado.
- Os sistemas digitais utilizam tanto circuitos combinacionais quanto circuitos de memória.

Flip Flop

- Embora uma porta lógica isolada não tenha capacidade de armazenamento, várias portas conectadas de forma adequada podem proporcionar memória.
- Flip Flop genérico também chamado de latch

ESTADOS DE SAÍDA

$$Q = 1$$
, $\overline{Q} = 0$: Estado SET

$$\mathbf{Q} = \mathbf{0}, \ \overline{Q} = 1$$
: Estado CLEAR ou RESET

Latch com portas NAND

Latch com portas NAND

Estado de repouso

SET = CLEAR = 1

Latch com portas NAND

Setar o latch

$$SET = 1 \rightarrow 0$$

Latch com portas NAND

Setar o latch

$$SET = 1 \rightarrow 0$$

Resetar o latch

RESET = $1 \rightarrow 0$

Latch com portas NAND

- 1. SET = CLEAR = 1. Esta condição é o estado normal de repouso e não tem nenhum efeito sobre o estado de saída. As saídas Q e Q permanecerão com os mesmos valores que estavam antes desta condição de entrada.
- **2. SET** = **0, CLEAR** = **1.** Isto sempre faz a saída ir para o estado no qual Q = 1, onde permanecerá mesmo após SET retornar para ALTO. Isto é denominado *setar* o latch.
- 3. SET = 1, CLEAR = 0. Isto sempre produz o estado Q = 0, onde a saída permanecerá mesmo após CLEAR retornar para ALTO. Isto é denominado limpar ou ressetar o latch.
- 4. SET = CLEAR = 0. Esta condição tenta setar e limpar o latch ao mesmo tempo e pode produzir resultados ambíguos. Não deve ser usada.

Latch com portas NAND

Set	Clear	Coldo
Set	Clear	Saída
1	1	Não muda
0	1	Q = 1
1	0	Q = 0
0	0	Inválido*

^{*} produz $Q = \overline{Q} = 1$

- 1. SET = CLEAR = 1. Esta condição é o estado normal de repouso e não tem nenhum efeito sobre o estado de saída. As saídas Q e Q permanecerão com os mesmos valores que estavam antes desta condição de entrada.
- **2. SET** = **0, CLEAR** = **1.** Isto sempre faz a saída ir para o estado no qual Q = 1, onde permanecerá mesmo após SET retornar para ALTO. Isto é denominado *setar* o latch.
- 3. SET = 1, CLEAR = 0. Isto sempre produz o estado Q = 0, onde a saída permanecerá mesmo após CLEAR retornar para ALTO. Isto é denominado limpar ou ressetar o latch.
- 4. SET = CLEAR = 0. Esta condição tenta setar e limpar o latch ao mesmo tempo e pode produzir resultados ambíguos. Não deve ser usada.

Modos síncrono e assíncrono

- Circuitos assíncronos mudam de estados por um sinal que independe de um relógio de referência.
- Circuitos síncronos: o sinal de *clock*

Flip Flop SC (SET-CLEAR) ou SR (SET-RESET)

Entradas			Saída
S	С	CLK	Q
0	0	1	Q ₀ (não muda)
1	0	↑	1
0	1	1	0
1	1	1	Ambígua

Flip Flop com clock

	Entrada:	S	Saída
S	С	CLK	Q
0	0	1	Q ₀ (não muda)
1	0	1	1
0	1	1	0
1	1	1	Ambígua

Uma aplicação básica

Entradas				Saída
S	С	CLK	I	Q
0	0	1		Q ₀ (não muda)
1	0	1		1
0	1	1		0
1	1	1		Ambígua

Uma aplicação básica: registrador de 4 bits

Outra aplicação básica

Entradas			Saída	
S	С	CLK		Q
0	0	1		Q ₀ (não muda)
1	0	1		1
0	1	1		0
1	1	1		Ambigua

Outra aplicação básica: divisor de frequência

Flip Flop JK

J	K	CLK	Q
0	0	1	Q ₀ (não muda)
1	0	1	1
0	1	1	0
1	1	1	Q (comuta)

Flip Flop JK

J	K	CLK	Q
0	0	1	Q ₀ (não muda)
1	0	1	1
0	1	1	0
1	1	1	Q (comuta)

Flip Flop D

Flip Flop D

Flip Flop com clock

Uma aplicação: Transferência de dados em paralelo

Implementação de FF D com FF SC

Implementação de FF D com FF JK

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

