# Predict Loan Eligibility Data Science - Project 239306V - Banujan Chandrakanthan

#### Introduction

- A finance company in Sri Lanka offers home loans and operates in urban, semi-urban, and rural areas.
- Before approving a home loan application, the company checks the eligibility of the customer or identify applicants who may default on loans.
- The company aims to automate the loan eligibility assessment process by identifying eligible customer segments.
- This identification process will allow the company to specifically target eligible customers for loan amounts.

#### **Dataset Information**

| Variable          | Description                                    | Data Type |
|-------------------|------------------------------------------------|-----------|
| Loan_ID           | Unique Loan ID                                 | object    |
| Gender            | Male/ Female                                   | object    |
| Married           | Applicant married (Y/N)                        | object    |
| Dependents        | Number of dependents                           | object    |
| Education         | Applicant Education (Graduate/ Under Graduate) | object    |
| Self_Employed     | Self employed (Y/N)                            | object    |
| ApplicantIncome   | Applicant income                               | int64     |
| CoapplicantIncome | Coapplicant income                             | float64   |
| LoanAmount        | Loan amount in thousands                       | float64   |
| Loan_Amount_Term  | Term of loan in months                         | float64   |
| Credit_History    | credit history meets guidelines                | float64   |
| Property_Area     | Urban/ Semi Urban/ Rural                       | object    |
| Loan_Status       | Loan approved (Y/N)                            | object    |

- 614 Rows
- 12 Independant Variables
- 1 Target Variable

|       | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term |
|-------|-----------------|-------------------|------------|------------------|
| count | 614.000000      | 614.000000        | 592.000000 | 600.00000        |
| mean  | 5403.459283     | 1621.245798       | 146.412162 | 342.00000        |
| std   | 6109.041673     | 2926.248369       | 85.587325  | 65.12041         |
| min   | 150.000000      | 0.000000          | 9.000000   | 12.00000         |
| 25%   | 2877.500000     | 0.000000          | 100.000000 | 360.00000        |
| 50%   | 3812.500000     | 1188.500000       | 128.000000 | 360.00000        |
| 75%   | 5795.000000     | 2297.250000       | 168.000000 | 360.00000        |
| max   | 81000.000000    | 41667.000000      | 700.000000 | 480.00000        |



Distribution and outliers for each columns











#### **Methodology - Logistic Regression**

|                         | odds      |
|-------------------------|-----------|
| Credit_History          | 20.620598 |
| Property_Area_Semiurban | 2.274152  |
| Married_Yes             | 1.208542  |
| Dependents_2            | 1.167358  |
| Dependents_3+           | 1.120508  |
| total_income            | 0.999990  |
| LoanAmount              | 0.999526  |
| Property_Area_Urban     | 0.993578  |
| Loan_Amount_Term        | 0.936248  |
| Self_Employed_Yes       | 0.906185  |
| Gender_Male             | 0.899425  |
| Dependents_1            | 0.864392  |
| Education_Not Graduate  | 0.611551  |
|                         |           |





Odds calculated from the logistic regression model coefficients

Performance of the model on the training set

#### **Methodology - Logistic Regression**



Precision-Recall curve for Logistic Regression





Performance of the model on the training set

#### **Methodology - K - Nearest Neighbors (KNN)**



Extracting the train and the test error for each k in a list

## Methodology - K - Nearest Neighbors (KNN)

#### Performance of the model on the training and testing data

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.00      | 1.00   | 1.00     | 131     |
| 1            | 1.00      | 1.00   | 1.00     | 298     |
| accuracy     |           |        | 1.00     | 429     |
| macro avg    | 1.00      | 1.00   | 1.00     | 429     |
| weighted avg | 1.00      | 1.00   | 1.00     | 429     |



|          |     | precision | recall | f1-score | support |
|----------|-----|-----------|--------|----------|---------|
|          | 0   | 0.61      | 0.31   | 0.41     | 61      |
|          | 1   | 0.73      | 0.90   | 0.81     | 124     |
| accur    | асу |           |        | 0.71     | 185     |
| macro    | avg | 0.67      | 0.61   | 0.61     | 185     |
| weighted | avg | 0.69      | 0.71   | 0.68     | 185     |



#### Conclusion

- Through the use of multiple models, EDA, and visualization, we identified the main key factor affecting loan application acceptance is credit history.
- We aimed to maximize the recall score in our Logistic regression model as it measures the ability to identify applicants who may default on loans. So that finance company can avoid targeting applicants who cannot repay them, as this could harm the company. As a result, the Logistic regression model provided the highest recall score.