

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 ÁLGEBRA LINEAL PARA INGENIERÍA PAUTA TUTORÍA 10 NOVIEMBRE DE 2013

1. Sea $F: \mathbb{R}_2[x] \to \mathbb{R}^3$ una transformación lineal tal que:

$$F(x^2) = (1,0,1), F(x^2 + x) = (2,1,1), F(x^2 + x + 1) = (2,2,2)$$

Explicite $F(ax^2 + bx + c)$

Respuesta: Es fácil notar que el conjunto $\{x^2, x^2 + x, x^2 + x + 1\}$ es una base de $\mathbb{R}_2[x]$ luego:

 $ax^2 + bx + c = \alpha x^2 + \beta(x^2 + x) + \gamma(x^2 + x + 1)$ Resolviendo el sistema anterior se obtiene:

 $ax^2 + bx + c = (a - b)(x^2) + (b - c)(x^2 + x) + c(x^2 + x + 1)$ Aplicando la transformación F a esta igualdad, obtenemos:

$$F(ax^2 + bx + c) = (a - b)F(x^2) + (b - c)F(x^2 + x) + cF(x^2 + x + 1) \text{ reemplazando},$$

$$\Leftrightarrow F(ax^2 + bx + c) = (a - b)(1, 0, 1) + (b - c)(2, 1, 1) + c(2, 2, 2)$$

$$\Leftrightarrow F(ax^2 + bx + c) = (a + b, b + c, a + c)$$

2. Consideremos S el subespacio de las matrices simétricas de $M_2(\mathbb{R})$ y $T:S\mapsto\mathbb{R}^2$ una trasformación lineal tal que:

$$T\left(\left[\begin{array}{cc} a & b \\ b & c \end{array}\right]\right) = (a+2b,3b+6c)$$

Determine:

a) Una base y dimensión de Ker(T). ¿Es inyectiva la Transformación lineal?.

Respuesta:

$$ker(T) = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \in M_2(\mathbb{R})/T \left(\begin{bmatrix} a & b \\ b & c \end{bmatrix} \right) = (0,0) \right\}$$
$$= \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \in M_2(\mathbb{R})/(a+2b,3b+6c) = (0,0) \right\}$$

Resolviendo el sistema, obtenemos:

$$a = 4c; b = -2c$$

luego.

$$ker(T) = \left\{ \begin{bmatrix} 4c & -2c \\ -2c & c \end{bmatrix} / c \in \mathbb{R} \right\} = \left\langle \begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix} \right\rangle$$

De lo anterior una base de Ker(T) es $\left\{\begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix}\right\}$ y Dim(ker(T) = 1 de donde se concluye, además, que la transformación lineal NO es inyectiva(recuerde que para que la T.L sea inyectiva el kernel debe tener dimensión 0)

b) Imagen de T. ¿Es sobreyectiva o epiyectiva la Transformación lineal? La imagen de la transformación se puede obtener aplicando la transformación a los vectores de una base en el espacio de partida (usando la canónica para simplificar cálculos), a saber:

$$Im(T) = \left\langle T\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]\right), T\left(\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]\right), T\left(\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]\right)\right\rangle = \left\langle (1,0), (2,3), (0,6)\right\rangle$$

Para saber si T es sobreyectiva, se pueden tomar dos caminos (cada uno elige cual):

i) Calcular la dimensión de Im(T).

$$\left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 3 & 6 \end{array}\right) \overrightarrow{OEF} \left(\begin{array}{ccc} 1 & 0 & -4 \\ 0 & 1 & 2 \end{array}\right)$$

De lo anterior el conjunto es L.D y que eliminando el tercer vector obtendremos una base, de donde se concluye que la dimensión de Im(T) = 2. Así $Im(T) = \mathbb{R}^2$, luego T es sobreyectiva.

ii) Usando el teorema de las dimensiones.

$$Dim(S) = nul(T) + Rg(T) \Rightarrow 3 = 1 + Rg(T) \Rightarrow 2 = Rg(T) \Rightarrow Im(T) = \mathbb{R}^2$$

de donde se concluye que T es sobreyectiva.

3. Muestre que la transformación lineal $H : \mathbb{R}_3[x] \mapsto \mathbb{R}_3[x]$ es un isomorfismo y encuentre su inversa, donde:

$$H(ax^3 + bx^2 + cx + d) = (a + 2b + 3d)x^3 + (b - d)x^2 + (a - b - c)x + 2d$$

Para mostrar que la T.L es un isomorfismo basta analizar su matriz asociada. Si ésta es invertible entonces H lo será. La matriz asociada en las bases canónicas es:

$$\begin{pmatrix}1&2&0&3\\0&1&0&-1\\1&-1&-1&0\\0&0&0&2\end{pmatrix}$$
, y su determinate es -2 , por lo que la matriz es invertible, en consecuencia

H también lo es. Luego H es un isomorfismo.

Para encontrar la inversa H notemos que:

$$H(ax^3 + bx^2 + cx + d) = a_1x^3 + b_1x^2 + c_1x + d_1$$

 $ax^3+bx^2+cx+d=H^{-1}(a_1x^3+b_1x^2+c_1x+d_1)$ Debemos encontrar el polinomio ax^3+bx^2+cx+d , para ello determinemos a,b,c,d en términos de a_1,b_1,c_1,d_1 .

De lo anterior:

$$H(ax^{3} + bx^{2} + cx + d) = a_{1}x^{3} + b_{1}x^{2} + c_{1}x + d_{1}$$

$$\Leftrightarrow (a + 2b + 3d)x^{3} + (b - d)x^{2} + (a - b - c)x + 2d = a_{1}x^{3} + b_{1}x^{2} + c_{1}x + d_{1}$$

$$(1 \quad 2 \quad 0 \quad 3)$$

$$\Leftrightarrow \left(\begin{array}{cccc} 1 & 2 & 0 & 3\\ 0 & 1 & 0 & -1\\ 1 & -1 & -1 & 0\\ 0 & 0 & 0 & 2 \end{array}\right) \left(\begin{array}{c} a\\ b\\ c \end{array}\right) = \left(\begin{array}{c} a_1\\ b_1\\ c_1 \end{array}\right)$$

$$\Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a_1 - 2b_1 - \frac{5d_1}{2} \\ b_1 + \frac{d_1}{2} \\ a_1 - 3b_1 - c_1 - 3d_1 \\ \frac{d_1}{2} \end{pmatrix}$$
Así:

$$H^{-1}(a_1x^3 + b_1x^2 + c_1x + d_1) = (a_1 - 2b_1 - \frac{5d_1}{2})x^3 + (b_1 + \frac{d_1}{2})x^2 + (a_1 - 3b_1 - c_1 - 3d_1)x + \frac{d_1}{2}x^2 + (a_1 - 3b_1 - c$$