1 Allgemeines

1.1 Binomische Formeln

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$
$$(a + b) \cdot (a - b) = a^{2} - b^{2}$$

1.2 Potenzgesetze

$a^m \cdot a^n = a^{m+n}$	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$
$a^n \cdot b^n = (ab)^n$	$(a^n)^m = a^{mn}$
$\frac{a^n}{a^m} = a^{n-m}$	$a^{-n} = \frac{1}{a^n}$
	$log_b(1) = 0$

1.3 Logarithmus-Gesetze

$$x = log_a(y) \Leftrightarrow y = a^x$$

$$log(x) + log(y) = log(xy)$$

$$log(x) - log(y) = log(\frac{x}{y})$$

$$log_a(x) = \frac{log_b(x)}{log_b(a)}$$

$$log(u^r) = r \cdot ln(u)$$

$$ln(1) = 0$$
 $ln(e^x) = x$
 $ln(e) = 1$ $e^{ln(x)} = x$

1.4 Komplexe Zahlen

$$(a + bi) \pm (c + di) = (a \pm c) + (c \pm d)i$$

 $(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$

$$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{cb-ad}{c^2+d^2}i$$

1.5 Sin-Cos-Tan Tabelle

2 Integralrechnung

 e^{Foo} u.ä. muss vorher substituiert werden!

Funktion Aufleitung

$$\begin{array}{ccc} c & c \cdot x \\ x^a, a \neq -1 & \frac{x^{a+1}}{a+1} \\ x^{-1}, x \neq 0 & ln(|x|) \\ e^x & e^x \\ a^x & \frac{a^x}{ln(a)} \\ sin(x) & -cos(x) \\ cos(x) & sin(x) \end{array}$$

2.1 Partielle Integration

Wenn u und v zwei differenzierbare Funktionen sind, dann gilt:

$$\int u' * v = (u * v) - \int u * v'$$

2.2 Substitutionsregel

$$\int f(g(x)) * g'(x) dx = \int f(y) dy$$

$$\int \frac{1}{5x - 7} dx = ?$$

$$z = 5x - 7$$

$$\frac{dz}{dx} = 5$$

$$\frac{dz}{5} = dx$$

$$\int \frac{1 * dz}{z * 5} = \frac{1}{5} \int \frac{1}{z} dz$$

$$= \frac{1}{5} ln(z)$$

$$= \frac{1}{5} ln(5x - 7)$$

3 Ableitung

3.1 typische Ableitungen

3.2 Verknüpfungsfunktionen

Summerregel:
$$(f(x) + g(x))' = f(x)' + g(x)'$$

Produktregel: $(f(x)g(x))' = f(x)'g(x) + g(x)'$

g(x)'f(x)

Quotientenregel: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f(x)'g(x) - g(x)'f(x)}{g(x)^2}$ Kettenregel: $\left(f(g(x))\right)' = f(g(x))'g(x)'$

4 Stochastik

 $\Omega = \{...\}$ beschreibt den Ereignisraum und somit die Menge aller möglichen Ausgänge des Zufallsexperiments.

 $A,B,C,...\subseteq \Omega$ beschrieben ein Ereignisse des Zufallsexperimentes.

 $P: \Omega \to \mathbb{R}$ ist eine Abbildung, welche jedem Ereignis eine Wahrscheinlichkeit zuordnet.

Eine Wahrscheinlichkeitsverteilung listet alle möglichen Ausgänge des Zufallsexperiments und ihre Wahrscheinlichkeiten auf.

4.1 Gesetze/Axiome/...

$$P(A) > 0 \text{ für alle } A \subset \Omega$$

$$P(\Omega) = 1$$

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(A_1 \cup A_2) = P(A_1) + P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(\Omega \backslash A) = 1 - P(A)$$

$$P(\emptyset) = 0$$

$$A \subseteq B \iff P(A) \le P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(B) \cdot P(A|B)$$

$$= P(A) \cdot P(B|A)$$

$$P_B(A) = P(A|B)$$

4.2 Dichtefunktion

 $w: \mathbb{R} \to \mathbb{R}$ ist eine integrierbare, nicht negative Funktion.

Es gilt:
$$\int_{-\infty}^{x} w(t)dt = F(x) = P(X \le x)$$

4.3 Verteilungsfunktion

 $F:\mathbb{R}\to [0,1]$ heißt Verteilungsfunktion. Verteilungsfunktion ist Aufleitung der Dichtefunktion.

F ist rechtsseitig stetig und es gilt:

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

$$P(X \ge x) = 1 - P(X \le x)$$

$$= \int_{x}^{\infty} w(t)dt$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

$$= F(b) - F(a)$$

$$= \int_{a}^{b} w(t)dt$$

4.4 Formeln

E = Erwartungswert, V = Varianz

$$E(X) = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

$$E(X) = \int_{-\infty}^{\infty} x \cdot w(x) dx$$

$$V(X) = \sum_{x \in X(\Omega)} (x - E(X))^2 \cdot P(X = x)$$

$$= \left(\sum_{x \in X(\Omega)} x^2 \cdot P(X = x)\right) - E(X)^2$$

$$V(X) = \int_{-\infty}^{\infty} (x - E(X))^2 \cdot w(x) dx$$

$$= \left(\int_{-\infty}^{\infty} x^2 w(x) dx\right) - E(X)^2$$

p-Quantile:

Sortieren, $n \cdot p$, Einsetzen & Index suchen, Formel anwenden:

$$\widetilde{X}_p = \begin{cases} \frac{1}{2}(x_{np} + x_{np+1}) & \text{falls } n \text{ ganzz.} \\ x_{\lceil np \rceil} & \text{falls } n \text{ nicht ganzz.} \end{cases}$$

4.5 Verschiedene Verteilungen

4.5.1 Gleichverteilung

Die Gleichverteilung ist die einfachste Verteilung. Jede Möglichkeit hat die gleiche Wahrscheinlichkeit. Ein Würfel ist gleichverteilt mit $P(x_i) = \frac{1}{6}$.

$$P(X = x_i) = \frac{1}{N}$$

Dabei ist $N = |\Omega|$ und X eine Zufallsvariable, 4.6 welche gleichverteilt ist.

4.5.2 Binominial verteilung

Ein Bernoulli-Experiment ist ein Experiment, welches nur zwei mögliche Ausgänge A und B hat. Eine Binominialverteilung ist eine Aneinanderreihung von Bernoulli-Experimenten. Dabei muss der Ereignisraum unabhängig sein. Ein Experiment kann beliebig oft, n-Mal, wiederholt werden.

$$X = B(n, p)$$

$$\Omega = \{A, B\}^n$$

$$P(A) = p$$

$$P(B) = 1 - p = q$$

Es ist ein **LaPlace**-Experiment, wenn p = q gilt

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$
$$\binom{n}{k} = \frac{n!}{k!(n - k)!}$$

4.5.3 Hypergeometrische Verteilung

N = Grundmenge, n = Stichprobe, k = gewünscht, M = Defekte

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$$

4.5.4 Poisson-Verteilung

Die Poisson-Verteilung eignet sich für seltene Ereignisse in einem fest definierten Zeitraum.

$$X = P(\lambda)$$

$$\Omega = \{x \in \mathbb{R} | x \ge 0\}$$

$$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Die Poisson-Verteilung kann, wenn $n \geq 50$ und $p \leq 0.1$, eine Binominialverteilung annähren.

$$X = B(n, p)$$
$$\lambda = n \cdot p$$

$$P(X = k) \sim \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

4.6 Normalverteilung

 $N(\mu, \sigma^2)$ ist eine Normalverteilung. Für $\mu=1$ und $\sigma=1$ ist es eine Standardnormalverteilung.

$$w(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
$$P(a \le x \le b) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

Für Φ siehe Standardnormalverteilungstabelle.

Wenn gilt, dass $X = N(\mu, \sigma^2)$ und Z = N(0, 1), dann folgt $\frac{X - \mu}{\sigma}$. X_B ist binominal verteilt. Wenn $np(1 - p) \ge 9$, dann $F_B(x) \sim \Phi\left(\frac{x + 0.5 - np}{\sqrt{np(1 - p)}}\right)$. X_P ist possion verteilt. Wenn $\lambda > 9$, dann

$\begin{array}{ccc} \textbf{4.7} & \textbf{Tabelle} & \textbf{Erwartungs-} \\ & \textbf{wert/Varianz} \end{array}$

	E(x)	V(x)
B(n,p)	$n \cdot p$	$n \cdot (1-p)$
H(n, M, N)	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} (1 - \frac{M}{N}) \frac{N-n}{N-1}$
$P(\lambda)$	λ	λ
N(x)	μ	σ^2

5 Numerik

 $F_P(x) \sim \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)$.

5.1 Lagrange'sches Interpolationspolynom

n = Anzahl der Stützstellen

$$p(x) = \sum_{i=0}^{n} y_i \cdot L_i(x)$$
$$L_i(x) = \prod_{i=0, i \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

5.2 Newton'sches Interpolationspolynom

n = Anzahl der Stützstellen $p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_n)$ Auflösen nach a für die einzelnen Faktoren:

$$y_0 = a_0$$

$$y_1 = a_0 + a_1(x_1 - x_0)$$

$$y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

5.3 QR-Zerlegung

Seien $A \in \mathbb{R}^{mxn}$ mit $m \ge n$ und rg(A) = n. Es seien $a_1, a_2, ..., a_n \in \mathbb{R}^m$ die Spaltenvektoren von A.

Die Vektoren $u_1, u_2, ..., u_n \in \mathbb{R}^m$ sind die Gram-Schmidt orthogonalisierten Vektoren.

$$u_1 = \frac{1}{|a_1|} a_1$$

$$u'_i = a_i - \sum_{j=1}^{i-1} \langle u_j, a_i \rangle \cdot u_j$$

$$u_i = \frac{u'_i}{|u'_i|}$$

$$Q = (u_1, u_2, ..., u_n)$$
$$Q^{-1} \cdot A = R$$

5.4 LU-Zerlegung

Sei $A \in \mathbb{R}^{mxn}$. Wir initialisieren drei Matrizen: $P = L = I_m$ und A = U.

Zeilenvertauschungen werden über die P-Matrix realisiert.

Jede Operation, welche im Gauß gemacht wird, wird auf der L-Matrix mit gedrehtem Vorzeichen gemacht.

Am Ende gilt, dass PLU = A.

5.4.1 Lösung von PLUx = b

Wir berechnen zunächst ein y, welches ein Zwischenergebnis ist. Die Schritte sind sehr einfach, da L und U Dreiecksmatrizen sind.

$$Ly = P^T b \text{ mit } P^T = P^{-1}$$
$$Ux = y$$

5.5 Cholesky-Zerlegung

Eine symmetrische Matrix ist die Voraussetzung für eine Cholesky-Zerlegung. Wir wollen eine

Matrix L finden, für die gilt, dass $A=L\cdot L^T$. L
 sollte dabei eine Dreiecksmatrix sein, damit gilt, dass $L^T=L^{-1}$

TODO: Beispiel einfügen

5.6 Matrixnormen

$$\begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \end{vmatrix} = \sqrt{x_1^2 + \dots + x_n^2}$$

$$\begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \end{vmatrix}_1 = \sum_{i=1}^n x_i$$

$$\begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \end{vmatrix}_{\infty} = \max_{1 \le i \le n} x_i$$

$$A \in R^{n \times n}$$

$$|A|_1 = \max_{1 \le j \le n} \sum_{i=1}^n a_{ij} \text{ Spaltens.}$$

$$|A|_1 = \max_{1 \le i \le n} \sum_{i=1}^n a_{ij} \text{ Zeilens.}$$

6 Differentialgleichungen

6.1 DGL 1. Ordnung

5.1.1 Variation der Konstanten

- Alle Ableitungen y' umformen: $y' = \frac{dy}{dx}$
- Umstellen durch Integration und $e^{ln(x)}$ Trick nach y

6.2 Anfangswertproblem

Wir haben unsere aufgelöste DGL: $y=C_1 \cdot ...$ Beim AWP haben wir eine Zusatzbedingung, die ähnlich zu y(0)=2 ist. AWP löst sich, indem wir einsetzen und zur Konstante umformen.

6.3 DGL 2. Ordnung

Eine DGL kann eine Störfunktion enthalten. Störfunktionen sind für den inhomogenen Teil der Lösung verantwortlich. Jeder Teil, welcher nicht abhängig von $y^{(n)}$ ist, ist eine Störfunkti- 6.3.1 Charakteristisches Polynom on. $y(t) = y_h(t) + y_p(t)$

Umformen der Ableitungen: $y^{(n)} = \lambda^n$ Anschließend werden die Lösungen für λ bestimmt.

Einfache Nullstelle:

$$e^{\lambda \cdot x}$$

k-fache Nullstelle:

$$x^{k-1}e^{\lambda x}$$

Komplexe Nullstelle:

$$(a \pm bi) \rightarrow e^{ax} \cdot sin(b), e^{ax} \cdot cos(b)$$

Bsp.:
$$y_h(t) = C_1 \cdot e^{2x} + C_2 \cdot e^{4x}$$

Bei inhomogenen DGL muss ein Ansatz gefunden werden, der zur Lösung führt, wenn man ihn samt Ableitungen in die ursprüngliche DGL einsetzt.

- 1. Aufstellen des Ansatzes für $y = \{Ansatz\}$
- 2. Ableiten und Einsetzen als homogenen Teil der DGL.
- 3. Parameter des Ansatzes ausrechnen und als y_p angeben.