

planetmath.org

Math for the people, by the people.

homomorphism of languages

Canonical name HomomorphismOfLanguages

Date of creation 2013-03-22 18:55:06 Last modified on 2013-03-22 18:55:06

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771) Entry type Definition Classification msc 68Q45

Synonym ϵ -free

Synonym non-erasing

Related topic StringSubstitution

Related topic Substitution
Defines homomorphism
Defines antihomomorphism

Defines λ -free

Let Σ_1 and Σ_2 be two alphabets. A function $h: \Sigma_1^* \to \Sigma_2^*$ is called a homomorphism if it is a semigroup homomorphism from semigroups Σ_1^* to Σ_2^* . This means that

- h preserves the empty word: $h(\lambda) = \lambda$, and
- h preserves concatenation: $h(\alpha\beta) = h(\alpha)h(\beta)$ for any words $\alpha, \beta \in \Sigma_1^*$.

Since the alphabet Σ_1 freely generates Σ_1^* , h is uniquely determined by its restriction to Σ_1 . Conversely, any function from Σ_1 extends to a unique homomorphism from Σ_1^* to Σ_2^* . In other words, it is enough to know what h(a) is for each symbol a in Σ_1 . Since every word w over Σ is just a concatenation of symbols in Σ , h(w) can be computed using the second condition above. The first condition takes care of the case when w is the empty word.

Suppose $h: \Sigma_1^* \to \Sigma_2^*$ is a homomorphism, $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$. Define

$$h(L_1) := \{h(w) \mid w \in L\}$$
 and $h^{-1}(L_2) := \{v \mid h(v) \in L_2\}.$

If L_1, L_2 belong to a certain family of languages, one is often interested to know if $h(L_1)$ or $h^{-1}(L_2)$ belongs to that same family. We have the following result:

- 1. If L_1 and L_2 are regular, so are $h(L_1)$ and $h^{-1}(L_2)$.
- 2. If L_1 and L_2 are context-free, so are $h(L_1)$ and $h^{-1}(L_2)$.
- 3. If L_1 and L_2 are type-0, so are $h(L_1)$ and $h^{-1}(L_2)$.

However, the family \mathscr{F} of context-sensitive languages is not closed under homomorphisms, nor inverse homomorphisms. Nevertheless, it can be shown that \mathscr{F} is closed under a restricted class of homomorphisms, namely, λ -free homomorphisms. A homomorphism is said to be λ -free or non-erasing if $h(a) \neq \lambda$ for any $a \in \Sigma_1$.

Remarks.

- Every homomorphism induces a substitution in a trivial way: if h: $\Sigma_1^* \to \Sigma_2^*$ is a homomorphism, then $h_s : \Sigma_1 \to P(\Sigma_2^*)$ defined by $h_s(a) = \{h(a)\}$ is a substitution.
- One can likewise introduce the notion of antihomomorphism of languages. A map $g: \Sigma_1^* \to \Sigma_2^*$ is an antihomomorphism if $g(\alpha\beta) =$

 $g(\beta)g(\alpha)$, for any words α, β over Σ_1 . It is easy to see that g is an anti-homomorphism iff $g \circ \text{rev}$ is a homomorphism, where rev is the reversal operator. Closure under antihomomorphisms for a family of languages follows the closure under homomorphisms, provided that the family is closed under reversal.

References

- [1] S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York (1966).
- [2] H.R. Lewis, C.H. Papadimitriou *Elements of the Theory of Computation*. Prentice-Hall, Englewood Cliffs, New Jersey (1981).