A Unified View on the Functorial Nerve Theorem and its Variations

Fabian Roll (TUM)

Group meeting - NDAG September 8, 2022

joint work with Ulrich Bauer, Michael Kerber, and Alexander Rolle

The Alexandrov nerve (1928)

Definition. Let X be a topological space, and let $\mathcal{U} = (U_i)_{i \in I}$ be a cover of X. The *nerve* of \mathcal{U} is the simplicial complex

$$\operatorname{Nrv}(\mathfrak{U}) = \{ J \subseteq I \mid |J| < \infty \text{ and } U_J := \bigcap_{i \in J} U_i \neq \emptyset \}$$

The Alexandrov nerve (1928)

Čech complex of a point cloud

Definition. The Čech complex of a subset $X\subseteq\mathbb{R}^d$ is the nerve of the cover by closed balls of radius r centered at points in X

$$\operatorname{\check{C}ech}_r(X) = \operatorname{Nrv}((D_r(X))_{x \in X}))$$

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

open, numerable, and good cover (contractible intersections)

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

- open, numerable, and good cover (contractible intersections)
 - ightarrow many references

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

- open, numerable, and good cover (contractible intersections)
 - \rightarrow many references
- closed, finite, and convex cover

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

- open, numerable, and good cover (contractible intersections)
 - \rightarrow many references
- closed, finite, and convex cover
 - ightarrow few references, mostly using outdated language and tools

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

- open, numerable, and good cover (contractible intersections)
 - \rightarrow many references
- closed, finite, and convex cover
 - ightarrow few references, mostly using outdated language and tools

Prior results?

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

- open, numerable, and good cover (contractible intersections)
 - \rightarrow many references
- closed, finite, and convex cover
 - ightarrow few references, mostly using outdated language and tools

Prior results?

Alexandrov 1928: Every compact metric space is the inverse limit of a sequence of nerves of "arbitrarily fine" closed covers.

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

- ▶ open, numerable, and good cover (contractible intersections)
 → many references
- closed, finite, and convex cover
 - ightarrow few references, mostly using outdated language and tools

Prior results?

- Alexandrov 1928: Every compact metric space is the inverse limit of a sequence of nerves of "arbitrarily fine" closed covers.
- Čech 1932: Extends Alexandrov's ideas → Čech (co)homology

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then $\mathrm{Nrv}(\mathcal{A})$ is homotopy equivalent to X.

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then $\mathrm{Nrv}(\mathcal{A})$ is homotopy equivalent to X.

Our proof strategy:

▶ Construct piecewise linear $\Gamma \colon \operatorname{Sd} \operatorname{Nrv}(\mathcal{A}) \to X$

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then $\mathrm{Nrv}(\mathcal{A})$ is homotopy equivalent to X.

Our proof strategy:

▶ Construct piecewise linear Γ : $\operatorname{Sd}\operatorname{Nrv}(A) \to X$ with $\Gamma(\operatorname{bst} v_i) \subseteq C_i$.

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then $\mathrm{Nrv}(\mathcal{A})$ is homotopy equivalent to X.

Our proof strategy:

▶ Construct piecewise linear Γ : $\operatorname{Sd}\operatorname{Nrv}(\mathcal{A}) \to X$ with $\Gamma(\operatorname{bst} v_i) \subseteq C_i$.

Construct $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ using a partition of unity subordinate to an open thickening of the C_i with $\Phi(C_i) \subseteq \operatorname{bst} v_i$.

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then $\mathrm{Nrv}(\mathcal{A})$ is homotopy equivalent to X.

Our proof strategy:

▶ Construct piecewise linear Γ : $\operatorname{Sd}\operatorname{Nrv}(A) \to X$ with $\Gamma(\operatorname{bst} v_i) \subseteq C_i$.

- Construct $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ using a partition of unity subordinate to an open thickening of the C_i with $\Phi(C_i) \subseteq \operatorname{bst} v_i$.
- ▶ Show that Φ is a homotopy inverse to Γ .

Some proof details

▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.

- ▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.
- ▶ Take a partition of unity $(\psi_i)_{i \in [n]}$ on X subordinate to the cover $(U_i \cap X)_{i \in [n]}$ of X with $\psi_i|_{C_i} \equiv 1$.

- ▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.
- ▶ Take a partition of unity $(\psi_i)_{i \in [n]}$ on X subordinate to the cover $(U_i \cap X)_{i \in [n]}$ of X with $\psi_i|_{C_i} \equiv 1$.
- ▶ Define the map $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ by

$$\Phi \colon x \mapsto \sum_{i=0}^{n} \psi_i(x) \cdot v_i$$

Some proof details

- ▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.
- ▶ Take a partition of unity $(\psi_i)_{i \in [n]}$ on X subordinate to the cover $(U_i \cap X)_{i \in [n]}$ of X with $\psi_i|_{C_i} \equiv 1$.
- ▶ Define the map $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ by

$$\Phi \colon x \mapsto \sum_{i=0}^{n} \psi_i(x) \cdot v_i$$

▶ Then $\Gamma \circ \Phi(C_i) \subseteq C_i$

Some proof details

- ▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.
- ▶ Take a partition of unity $(\psi_i)_{i \in [n]}$ on X subordinate to the cover $(U_i \cap X)_{i \in [n]}$ of X with $\psi_i|_{C_i} \equiv 1$.
- ▶ Define the map $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ by

$$\Phi \colon x \mapsto \sum_{i=0}^{n} \psi_i(x) \cdot v_i$$

▶ Then $\Gamma \circ \Phi(C_i) \subseteq C_i$ and $\Gamma \circ \Phi \simeq \mathrm{id}_X$ by a straight line homotopy.

- ▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.
- ▶ Take a partition of unity $(\psi_i)_{i \in [n]}$ on X subordinate to the cover $(U_i \cap X)_{i \in [n]}$ of X with $\psi_i|_{C_i} \equiv 1$.
- ▶ Define the map $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ by

$$\Phi \colon x \mapsto \sum_{i=0}^{n} \psi_i(x) \cdot v_i$$

- ▶ Then $\Gamma \circ \Phi(C_i) \subseteq C_i$ and $\Gamma \circ \Phi \simeq \mathrm{id}_X$ by a straight line homotopy.
- ▶ Then $\Phi \circ \Gamma(\text{bst } v_i) \subseteq \text{bst } v_i$

- ▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.
- ▶ Take a partition of unity $(\psi_i)_{i \in [n]}$ on X subordinate to the cover $(U_i \cap X)_{i \in [n]}$ of X with $\psi_i|_{C_i} \equiv 1$.
- ▶ Define the map $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ by

$$\Phi \colon x \mapsto \sum_{i=0}^{n} \psi_i(x) \cdot v_i$$

- ▶ Then $\Gamma \circ \Phi(C_i) \subseteq C_i$ and $\Gamma \circ \Phi \simeq \mathrm{id}_X$ by a straight line homotopy.
- ► Then $\Phi \circ \Gamma(\operatorname{bst} v_i) \subseteq \operatorname{bst} v_i$ and $\Phi \circ \Gamma \simeq \operatorname{id}_{\operatorname{Sd}\operatorname{Nrv}(\mathcal{A})}$ by induction over the skeleton of $\operatorname{Sd}\operatorname{Nrv}(\mathcal{A})$;

- ▶ Take a collection of open sets $\mathcal{G} = (U_i \supseteq C_i)_{i \in [n]}$ satisfying $Nrv(\mathcal{A}) = Nrv(\mathcal{G}_{\varepsilon})$.
- ▶ Take a partition of unity $(\psi_i)_{i \in [n]}$ on X subordinate to the cover $(U_i \cap X)_{i \in [n]}$ of X with $\psi_i|_{C_i} \equiv 1$.
- ▶ Define the map $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$ by

$$\Phi \colon x \mapsto \sum_{i=0}^{n} \psi_i(x) \cdot v_i$$

- ▶ Then $\Gamma \circ \Phi(C_i) \subseteq C_i$ and $\Gamma \circ \Phi \simeq \mathrm{id}_X$ by a straight line homotopy.
- ▶ Then $\Phi \circ \Gamma(\operatorname{bst} v_i) \subseteq \operatorname{bst} v_i$ and $\Phi \circ \Gamma \simeq \operatorname{id}_{\operatorname{Sd}\operatorname{Nrv}(\mathcal{A})}$ by induction over the skeleton of $\operatorname{Sd}\operatorname{Nrv}(\mathcal{A})$; use that $(\operatorname{bst} v)_{v \in \operatorname{Vert}\operatorname{Nrv}(\mathcal{A})}$ is a good cover of $\operatorname{Sd}\operatorname{Nrv}(\mathcal{A})$.

Theorem (Björner, Quillen 1979). If $A = (K_i \subseteq K)_{i \in I}$ is a good cover by subcomplexes, then Nrv(A) is homotopy equivalent to K.

Theorem (Björner, Quillen 1979). If $A = (K_i \subseteq K)_{i \in I}$ is a good cover by subcomplexes, then Nrv(A) is homotopy equivalent to K.

Proof strategy:

▶ Use Quillen's Theorem A: If $f: P \to Q$ is a map of posets, and y/f is contractible for all $y \in Q$, then f is a homotopy equivalence.

Theorem (Björner, Quillen 1979). If $A = (K_i \subseteq K)_{i \in I}$ is a good cover by subcomplexes, then Nrv(A) is homotopy equivalent to K.

Proof strategy:

- ▶ Use Quillen's Theorem A: If $f: P \to Q$ is a map of posets, and y/f is contractible for all $y \in Q$, then f is a homotopy equivalence.
- Consider the product poset

$$Z = \{(\sigma, J) \mid \sigma \in K_J\} \subseteq \operatorname{Pos}(K) \times \operatorname{Pos}(\operatorname{Nrv}(\mathcal{A}))$$

and apply Quillen's Theorem A to the projections

$$Pos(K) \longleftarrow Z \longrightarrow Pos(Nrv(A))$$

Theorem (Björner, Quillen 1979). If $A = (K_i \subseteq K)_{i \in I}$ is a good cover by subcomplexes, then Nrv(A) is homotopy equivalent to K.

Proof strategy:

- ▶ Use Quillen's Theorem A: If $f: P \to Q$ is a map of posets, and y/f is contractible for all $y \in Q$, then f is a homotopy equivalence.
- Consider the product poset

$$Z = \{(\sigma, J) \mid \sigma \in K_J\} \subseteq \operatorname{Pos}(K) \times \operatorname{Pos}(\operatorname{Nrv}(\mathcal{A}))$$

and apply Quillen's Theorem A to the projections

$$\operatorname{Pos}(K) \longleftarrow Z \longrightarrow \operatorname{Pos}(\operatorname{Nrv}(\mathcal{A}))^{\operatorname{op}}$$

Let $X \subseteq \mathbb{R}^d$, $\mathcal{U}_r = \{D_r(x)\}_{x \in X}$, and $X_r = \bigcup \mathcal{U}_r$. The nerve theorem guarantees for $r \leq l$ the homotopy equivalences

Let $X\subseteq \mathbb{R}^d$, $\mathcal{U}_r=\{D_r(x)\}_{x\in X}$, and $X_r=\bigcup \mathcal{U}_r$. The nerve theorem guarantees for $r\leq l$ the homotopy equivalences

$$\operatorname{Nrv}(\mathcal{U}_r) \longrightarrow \operatorname{Nrv}(\mathcal{U}_l)
\cong \uparrow \qquad \bigcirc ? \qquad \uparrow \cong
X_r \longrightarrow X_l$$

Let $X \subseteq \mathbb{R}^d$, $\mathcal{U}_r = \{D_r(x)\}_{x \in X}$, and $X_r = \bigcup \mathcal{U}_r$. The nerve theorem guarantees for $r \leq l$ the homotopy equivalences

$$\operatorname{Nrv}(\mathcal{U}_r) \longrightarrow \operatorname{Nrv}(\mathcal{U}_l)$$
 $\simeq \uparrow \qquad \circlearrowright ? \qquad \uparrow \simeq$
 $X_r \longrightarrow X_l$

Theorem (Chazal–Oudot 2008). For open coves, this diagram commutes up to homotopy. Hence, it commutes after applying homology.

Let $X \subseteq \mathbb{R}^d$, $\mathcal{U}_r = \{D_r(x)\}_{x \in X}$, and $X_r = \bigcup \mathcal{U}_r$. The nerve theorem guarantees for $r \leq l$ the homotopy equivalences

$$\operatorname{Nrv}(\mathcal{U}_r) \longrightarrow \operatorname{Nrv}(\mathcal{U}_l)$$
 $\simeq \uparrow \qquad \circlearrowright ? \qquad \uparrow \simeq$
 $X_r \longrightarrow X_l$

Theorem (Chazal–Oudot 2008). For open coves, this diagram commutes up to homotopy. Hence, it commutes after applying homology.

We address two issues:

- 1. Closed covers were not well-treated in the literature
- 2. No "proper" functoriality

Let $X \subseteq \mathbb{R}^d$, $\mathcal{U}_r = \{D_r(x)\}_{x \in X}$, and $X_r = \bigcup \mathcal{U}_r$. The nerve theorem guarantees for $r \leq l$ the homotopy equivalences

$$\begin{array}{ccc}
\operatorname{Nrv}(\mathcal{U}_r) & \longrightarrow & \operatorname{Nrv}(\mathcal{U}_l) \\
& \cong & & & & & & & \cong \\
X_r & \longrightarrow & X_l
\end{array}$$

Theorem (Chazal–Oudot 2008). For open coves, this diagram commutes up to homotopy. Hence, it commutes after applying homology.

We address two issues:

- 1. Closed covers were not well-treated in the literature
- 2. No "proper" functoriality \rightarrow needed in some homotopy-theoretic approaches to TDA (e.g. Blumberg–Lesnick)

Category of covered spaces

Definition. $(U_i)_{i\in I}$ a cover of X, and $(V_\ell)_{\ell\in L}$ a cover of Y. A map of indexed covers $\varphi\colon (U_i)_{i\in I}\to (V_\ell)_{\ell\in L}$ is formally a map $\varphi\colon I\to L$. A continuous map $f\colon X\to Y$ is carried by φ if $f(U_i)\subseteq V_{\varphi(i)}$.

Category of covered spaces

Definition. $(U_i)_{i\in I}$ a cover of X, and $(V_\ell)_{\ell\in L}$ a cover of Y. A map of indexed covers $\varphi\colon (U_i)_{i\in I}\to (V_\ell)_{\ell\in L}$ is formally a map $\varphi\colon I\to L$. A continuous map $f\colon X\to Y$ is carried by φ if $f(U_i)\subseteq V_{\varphi(i)}$.

Definition. The category of covered spaces Cov has

- $lackbox{ Obj: pairs of the form } (X,(U_i)), \text{ with } (U_i) \text{ a cover of } X$
- Mor: $(f,\varphi)\colon (X,(U_i))\to (Y,(V_\ell))$, continuous map $f\colon X\to Y$ carried by $\varphi\colon (U_i)\to (V_\ell)$

Category of covered spaces

Two functors

▶ Forgetting the cover: Spc: Cov \rightarrow Top, $(X, \mathcal{U}) \mapsto X$

▶ The nerve: Nrv: Cov \to Top, $(X, \mathcal{U}) \mapsto Nrv(\mathcal{U})$

Category of covered spaces

Two functors

- ▶ Forgetting the cover: Spc: Cov \rightarrow Top, $(X, \mathcal{U}) \mapsto X$
- ▶ The nerve: Nrv: Cov \rightarrow Top, $(X, \mathcal{U}) \mapsto \operatorname{Nrv}(\mathcal{U})$

Remark. There are no natural transformations $\mathrm{Spc}\Rightarrow\mathrm{Nrv}$

and similarly no natural transformations $Nrv \Rightarrow Spc.$

Pointed covers

Pointed covers

Pointed covers

Pointed covers

Definition. Only consider $X \subseteq \mathbb{R}^d$. The category ClConv $_{ullet}$ has

▶ Obj: $(X, \mathcal{A}_{\bullet})$, \mathcal{A}_{\bullet} a finite closed, convex, and *pointed cover* of X

Pointed covers

Definition. Only consider $X \subseteq \mathbb{R}^d$. The category ClConv $_{ullet}$ has

- ▶ Obj: $(X, \mathcal{A}_{\bullet})$, \mathcal{A}_{\bullet} a finite closed, convex, and *pointed cover* of X
- ▶ Mor: (f, φ) : $(X, \mathcal{A}_{\bullet}) \to (Y, \mathcal{B}_{\bullet})$, $f: X \to Y$ carried by $\varphi: \mathcal{A} \to \mathcal{B}$:
 - f preserves the basepoints
 - ightharpoonup f is affine linear on each cover element

Pointed covers

Definition. Only consider $X\subseteq \mathbb{R}^d$. The category CIConv_ullet has

- ▶ Obj: $(X, \mathcal{A}_{\bullet})$, \mathcal{A}_{\bullet} a finite closed, convex, and *pointed cover* of X
- ▶ Mor: (f, φ) : $(X, \mathcal{A}_{\bullet}) \to (Y, \mathcal{B}_{\bullet})$, $f: X \to Y$ carried by $\varphi: \mathcal{A} \to \mathcal{B}$:
 - f preserves the basepoints
 - f is affine linear on each cover element

The map $\Gamma \colon \operatorname{Sd} \operatorname{Nrv}(\mathcal{A}) \stackrel{\cong}{\to} X$ is natural w.r.t morphisms in $\operatorname{ClConv}_{\bullet}$.

Pointed covers

Definition. Only consider $X \subseteq \mathbb{R}^d$. The category ClConv $_{ullet}$ has

- ▶ Obj: $(X, \mathcal{A}_{\bullet})$, \mathcal{A}_{\bullet} a finite closed, convex, and *pointed cover* of X
- ▶ Mor: (f, φ) : $(X, \mathcal{A}_{\bullet}) \to (Y, \mathcal{B}_{\bullet})$, $f: X \to Y$ carried by $\varphi: \mathcal{A} \to \mathcal{B}$:
 - f preserves the basepoints
 - f is affine linear on each cover element

The map $\Gamma \colon \operatorname{Sd}\operatorname{Nrv}(\mathcal{A}) \stackrel{\simeq}{\to} X$ is natural w.r.t morphisms in $\operatorname{ClConv}_{\bullet}$.

Theorem. On ClConv_• there exists a pointwise homotopy equivalence

$$Sd Nrv \Rightarrow Spc$$

Blowup complex

Definition. For a finite cover $\mathcal{U} = (U_i)_{i \in [n]}$ of X, the blowup complex is

$$\mathrm{Blowup}(\mathfrak{U}) = \bigcup_{J \in \mathrm{Nrv}(\mathfrak{U})} U_J \times \Delta^{|J|-1} \subseteq X \times \Delta^n ,$$

yielding a functor $\operatorname{Blowup} \colon \mathsf{Cov} \to \mathsf{Top}.$

Bar construction

Remark. The blowup complex is (not naturally) homeomorphic to the *bar construction* of the nerve diagram

Bar construction

Remark. The blowup complex is (not naturally) homeomorphic to the *bar construction* of the nerve diagram

ightarrow can exploit its good homotopical properties to prove nerve theorems

Any $(f,\varphi)\colon (X,\mathcal{U}) \to (Y,\mathcal{V})$ induces a commuting diagram

$$\begin{array}{ccc} X & \stackrel{\rho_S}{\longleftarrow} & \operatorname{Blowup}(\mathfrak{U}) & \stackrel{\rho_N}{\longrightarrow} & \operatorname{Nrv}(\mathfrak{U}) \\ f \downarrow & & \downarrow & & \downarrow \varphi_* \\ Y & \longleftarrow_{\rho_S} & \operatorname{Blowup}(\mathcal{V}) & \stackrel{\rho_N}{\longrightarrow} & \operatorname{Nrv}(\mathcal{V}) \end{array}$$

Any $(f,\varphi)\colon (X,\mathcal{U}) \to (Y,\mathcal{V})$ induces a commuting diagram

$$\begin{array}{ccc} X & \stackrel{\rho_S}{\longleftarrow} & \operatorname{Blowup}(\mathcal{U}) & \stackrel{\rho_N}{\longrightarrow} & \operatorname{Nrv}(\mathcal{U}) \\ f \downarrow & & \downarrow & & \downarrow^{\varphi_*} \\ Y & \longleftarrow_{\rho_S} & \operatorname{Blowup}(\mathcal{V}) & \stackrel{\rho_N}{\longrightarrow} & \operatorname{Nrv}(\mathcal{V}) \end{array}$$

Hence, there are natural transformations $\operatorname{Spc} \stackrel{\rho_S}{\Leftarrow} \operatorname{Blowup} \stackrel{\rho_N}{\Rightarrow} \operatorname{Nrv}$.

Any $(f,\varphi)\colon (X,\mathcal{U})\to (Y,\mathcal{V})$ induces a commuting diagram

$$\begin{array}{ccc} X & \stackrel{\rho_S}{\longleftarrow} & \operatorname{Blowup}(\mathfrak{U}) & \stackrel{\rho_N}{\longrightarrow} & \operatorname{Nrv}(\mathfrak{U}) \\ f \downarrow & & \downarrow & \downarrow^{\varphi_*} \\ Y & \stackrel{\rho_S}{\longleftarrow} & \operatorname{Blowup}(\mathcal{V}) & \stackrel{\rho_N}{\longleftarrow} & \operatorname{Nrv}(\mathcal{V}) \end{array}$$

Hence, there are natural transformations $\operatorname{Spc} \stackrel{\rho_S}{\Leftarrow} \operatorname{Blowup} \stackrel{\rho_N}{\Rightarrow} \operatorname{Nrv}$.

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then the natural maps ρ_S and ρ_N are homotopy equivalences.

Any $(f,\varphi)\colon (X,\mathcal{U}) \to (Y,\mathcal{V})$ induces a commuting diagram

$$\begin{array}{ccc} X & \stackrel{\rho_S}{\longleftarrow} & \operatorname{Blowup}(\mathfrak{U}) & \stackrel{\rho_N}{\longrightarrow} & \operatorname{Nrv}(\mathfrak{U}) \\ f \downarrow & & \downarrow & \downarrow^{\varphi_*} \\ Y & \stackrel{\rho_S}{\longleftarrow} & \operatorname{Blowup}(\mathcal{V}) & \stackrel{\rho_N}{\longleftarrow} & \operatorname{Nrv}(\mathcal{V}) \end{array}$$

Hence, there are natural transformations $\operatorname{Spc} \stackrel{\rho_S}{\Leftarrow} \operatorname{Blowup} \stackrel{\rho_N}{\Rightarrow} \operatorname{Nrv}$.

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then the natural maps ρ_S and ρ_N are homotopy equivalences.

Proof. Use the following up to homotopy commutative diagram

Any $(f,\varphi)\colon (X,\mathcal{U}) \to (Y,\mathcal{V})$ induces a commuting diagram

$$\begin{array}{ccc} X \xleftarrow{\rho_S} & \operatorname{Blowup}(\mathcal{U}) \xrightarrow{\rho_N} \operatorname{Nrv}(\mathcal{U}) \\ f \Big\downarrow & & & & \downarrow^{\varphi_*} \\ Y \xleftarrow{\rho_S} & \operatorname{Blowup}(\mathcal{V}) \xrightarrow{\rho_N} \operatorname{Nrv}(\mathcal{V}) \end{array}$$

Hence, there are natural transformations $\operatorname{Spc} \stackrel{\rho_S}{\Leftarrow} \operatorname{Blowup} \stackrel{\rho_N}{\Rightarrow} \operatorname{Nrv}$.

Theorem. If $X \subset \mathbb{R}^d$, and $\mathcal{A} = (C_i)_{i \in [n]}$ is a cover by closed convex subsets, then the natural maps ρ_S and ρ_N are homotopy equivalences.

Proof. Use the following up to homotopy commutative diagram

Simplicial covers

Definition. For a cover $\mathcal{A}=(K_i\subseteq K)_{i\in I}$ by subcomplexes, consider the subposet

$$PoBar(A) = \{(\sigma, J) \mid J \subseteq I \text{ finite, } \sigma \in K_J\}$$

of
$$Pos(K) \times Pos(Nrv(A))^{op}$$

Simplicial covers

Definition. For a cover $\mathcal{A}=(K_i\subseteq K)_{i\in I}$ by subcomplexes, consider the subposet

$$PoBar(\mathcal{A}) = \{(\sigma, J) \mid J \subseteq I \text{ finite, } \sigma \in K_J\}$$

of $\operatorname{Pos}(K) \times \operatorname{Pos}(\operatorname{Nrv}(\mathcal{A}))^{\operatorname{op}} \to \operatorname{Bar}$ construction in the cat. of posets!

Simplicial covers

Definition. For a cover $\mathcal{A}=(K_i\subseteq K)_{i\in I}$ by subcomplexes, consider the subposet

$$PoBar(\mathcal{A}) = \{(\sigma, J) \mid J \subseteq I \text{ finite, } \sigma \in K_J\}$$

of $\operatorname{Pos}(K) \times \operatorname{Pos}(\operatorname{Nrv}(\mathcal{A}))^{\operatorname{op}} \to \operatorname{Bar}$ construction in the cat. of posets!

Remark. There exists a commuting diagram

Simplicial covers

Definition. For a cover $A = (K_i \subseteq K)_{i \in I}$ by subcomplexes, consider the subposet

$$PoBar(\mathcal{A}) = \{(\sigma, J) \mid J \subseteq I \text{ finite, } \sigma \in K_J\}$$

of $\operatorname{Pos}(K) \times \operatorname{Pos}(\operatorname{Nrv}(\mathcal{A}))^{\operatorname{op}} \to \operatorname{Bar}$ construction in the cat. of posets!

Remark. There exists a commuting diagram

Theorem. Let X be a topological space and $A = (A_i)_{i \in I}$ a cover of X.

1. Consider the natural map ρ_S : Blowup $(A) \to X$.

2. Consider the natural map $\rho_N \colon \operatorname{Blowup}(\mathcal{A}) \to \operatorname{Nrv}(\mathcal{A})$.

Theorem. Let X be a topological space and $A = (A_i)_{i \in I}$ a cover of X.

- 1. Consider the natural map $\rho_S \colon \operatorname{Blowup}(\mathcal{A}) \to X$.
 - a) If A is an open cover, then ρ_S is a weak homotopy equivalence. If furthermore X is paracompact, then ρ_S is a homotopy equivalence.

2. Consider the natural map $\rho_N \colon \operatorname{Blowup}(\mathcal{A}) \to \operatorname{Nrv}(\mathcal{A})$.

Theorem. Let X be a topological space and $A = (A_i)_{i \in I}$ a cover of X.

- 1. Consider the natural map $\rho_S \colon \operatorname{Blowup}(\mathcal{A}) \to X$.
 - a) If $\mathcal A$ is an open cover, then ρ_S is a weak homotopy equivalence. If furthermore X is paracompact, then ρ_S is a homotopy equivalence.
 - b) Let X be compactly generated, and $\mathcal A$ a closed cover that is locally finite and locally finite dimensional.

2. Consider the natural map $\rho_N \colon \operatorname{Blowup}(\mathcal{A}) \to \operatorname{Nrv}(\mathcal{A})$.

Theorem. Let X be a topological space and $\mathcal{A} = (A_i)_{i \in I}$ a cover of X.

- 1. Consider the natural map ρ_S : Blowup $(A) \to X$.
 - a) If $\mathcal A$ is an open cover, then ρ_S is a weak homotopy equivalence. If furthermore X is paracompact, then ρ_S is a homotopy equivalence.
 - b) Let X be compactly generated, and $\mathcal A$ a closed cover that is locally finite and locally finite dimensional. If for any $T\in \operatorname{Nrv}(\mathcal A)$ the latching space $L(T):=\bigcup_{T\subsetneq J\subseteq I}A_J\subseteq A_T$ is closed and $(A_T,L(T))$ satisfies the homotopy ext. prop., then ρ_S is a homotopy equivalence.
- 2. Consider the natural map $\rho_N \colon \operatorname{Blowup}(\mathcal{A}) \to \operatorname{Nrv}(\mathcal{A})$.

Theorem. Let X be a topological space and $A = (A_i)_{i \in I}$ a cover of X.

- 1. Consider the natural map ρ_S : Blowup $(A) \to X$.
 - a) If $\mathcal A$ is an open cover, then ρ_S is a weak homotopy equivalence. If furthermore X is paracompact, then ρ_S is a homotopy equivalence.
 - b) Let X be compactly generated, and $\mathcal A$ a closed cover that is locally finite and locally finite dimensional. If for any $T\in\operatorname{Nrv}(\mathcal A)$ the latching space $L(T):=\bigcup_{T\subsetneq J\subseteq I}A_J\subseteq A_T$ is closed and $(A_T,L(T))$ satisfies the homotopy ext. prop., then ρ_S is a homotopy equivalence.
- 2. Consider the natural map $\rho_N \colon \operatorname{Blowup}(\mathcal{A}) \to \operatorname{Nrv}(\mathcal{A})$.
 - a) If A is (weakly) good, then ρ_N is a (weak) homotopy equivalence.

Theorem. Let X be a topological space and $\mathcal{A} = (A_i)_{i \in I}$ a cover of X.

- 1. Consider the natural map ρ_S : Blowup(A) $\to X$.
 - a) If A is an open cover, then ρ_S is a weak homotopy equivalence. If furthermore X is paracompact, then ρ_S is a homotopy equivalence.
 - b) Let X be compactly generated, and $\mathcal A$ a closed cover that is locally finite and locally finite dimensional. If for any $T\in\operatorname{Nrv}(\mathcal A)$ the latching space $L(T):=\bigcup_{T\subsetneq J\subseteq I}A_J\subseteq A_T$ is closed and $(A_T,L(T))$ satisfies the homotopy ext. prop., then ρ_S is a homotopy equivalence.
- 2. Consider the natural map $\rho_N \colon \operatorname{Blowup}(\mathcal{A}) \to \operatorname{Nrv}(\mathcal{A})$.
 - a) If A is (weakly) good, then ρ_N is a (weak) homotopy equivalence.
 - b) If for all $J \in \operatorname{Nrv}(A)$ the space A_J is compactly generated and A is homologically good with respect to a coefficient ring R, then ρ_N is an R-homology isomorphism.

Counterexamples

1. Paracompactness is crucial to guarantee a homotopy equivalence

- 1. Paracompactness is crucial to guarantee a homotopy equivalence
- 2. For closed good covers some "finiteness" is needed

- 1. Paracompactness is crucial to guarantee a homotopy equivalence
- 2. For closed good covers some "finiteness" is needed
- 3. The "latching assumption" is not a proof artefact; even if we only care about the homologies

Counterexamples

1. Paracompactness is crucial to guarantee a homotopy equivalence:

- 1. Paracompactness is crucial to guarantee a homotopy equivalence:
- ightharpoonup Consider the *long ray* L

- 1. Paracompactness is crucial to guarantee a homotopy equivalence:
- ightharpoonup Consider the long ray L
- This is a standard example for a non-paracompact space that is also not contractible

- 1. Paracompactness is crucial to guarantee a homotopy equivalence:
- ightharpoonup Consider the long ray L
- This is a standard example for a non-paracompact space that is also not contractible
- L is weakly contractible and for any point $p \in L$ the open set $L_{< p} = \{t \in L \mid t < p\}$ is homeomorphic to the interval [0,1)

- 1. Paracompactness is crucial to guarantee a homotopy equivalence:
- ightharpoonup Consider the long ray L
- This is a standard example for a non-paracompact space that is also not contractible
- L is weakly contractible and for any point $p \in L$ the open set $L_{< p} = \{t \in L \mid t < p\}$ is homeomorphic to the interval [0,1)
- $m{\mathcal{A}}=(L_{< p})_{p\in\omega_1}$ is a good open cover and it follows from 1.a) and 2.a) that the nerve $\operatorname{Nrv}\mathcal{A}$ is weakly contractible and hence contractible by Whitehead's theorem

- 1. Paracompactness is crucial to guarantee a homotopy equivalence:
- ightharpoonup Consider the long ray L
- This is a standard example for a non-paracompact space that is also not contractible
- L is weakly contractible and for any point $p \in L$ the open set $L_{< p} = \{t \in L \mid t < p\}$ is homeomorphic to the interval [0,1)
- $m{\mathcal{A}}=(L_{< p})_{p\in\omega_1}$ is a good open cover and it follows from 1.a) and 2.a) that the nerve $\operatorname{Nrv}\mathcal{A}$ is weakly contractible and hence contractible by Whitehead's theorem
- lacktriangle Thus, L and $\operatorname{Nrv} \mathcal{A}$ are not homotopy equivalent

Counterexamples

2. For closed good covers some "finiteness" is needed:

- 2. For closed good covers some "finiteness" is needed:
- $\,\blacktriangleright\,$ Consider the cover of S^1 by its points

- 2. For closed good covers some "finiteness" is needed:
- ightharpoonup Consider the cover of S^1 by its points
- As the nerve $\operatorname{Nrv} \mathcal A$ is a disjoint union of points, it is not homotopy equivalent to S^1

- 2. For closed good covers some "finiteness" is needed:
- ightharpoonup Consider the cover of S^1 by its points
- As the nerve $\operatorname{Nrv} \mathcal A$ is a disjoint union of points, it is not homotopy equivalent to S^1
- ► All conditions in 1.b) and 2.a) are satisfied except the locally finiteness assumption

Counterexamples

3. The "latching assumption" is not a proof artefact:

- 3. The "latching assumption" is not a proof artefact:
- lackbox Consider the double comb space C and denote the two combs by A_1 and A_2

Counterexamples

- 3. The "latching assumption" is not a proof artefact:
- $lackbox{ Consider the double comb space C and denote the two combs by A_1 and $A_2$$

▶ The nerve Nrv A is contractible, but C is not

- 3. The "latching assumption" is not a proof artefact:
- $lackbox{ Consider the double comb space C and denote the two combs by A_1 and $A_2$$

- ▶ The nerve Nrv A is contractible, but C is not
- ▶ The pairs $(A_1,A_1\cap A_2)$ and $(A_2,A_1\cap A_2)$ do not satisfy the homotopy extension property

Counterexamples

3. The "latching assumption" is not a proof artefact; even if we only care about the homologies:

- 3. The "latching assumption" is not a proof artefact; even if we only care about the homologies:
- ▶ Consider the Warsaw circle $W \subseteq S^2$ that separates the sphere into two connected components U_1 and U_2

Counterexamples

- 3. The "latching assumption" is not a proof artefact; even if we only care about the homologies:
- ▶ Consider the Warsaw circle $W \subseteq S^2$ that separates the sphere into two connected components U_1 and U_2

▶ The closed sets $A_1 = U_1 \cup W$ and $A_2 = U_2 \cup W$ cover the sphere and are contractible

- 3. The "latching assumption" is not a proof artefact; even if we only care about the homologies:
- ▶ Consider the Warsaw circle $W \subseteq S^2$ that separates the sphere into two connected components U_1 and U_2

- ▶ The closed sets $A_1 = U_1 \cup W$ and $A_2 = U_2 \cup W$ cover the sphere and are contractible
- ▶ $A_1 \cap A_2 = W$ is acyclic and hence $\mathcal{A} = \{A_1, A_2\}$ is a homologically good closed cover of S^2

- 3. The "latching assumption" is not a proof artefact; even if we only care about the homologies:
- ▶ Consider the Warsaw circle $W \subseteq S^2$ that separates the sphere into two connected components U_1 and U_2

- ▶ The closed sets $A_1 = U_1 \cup W$ and $A_2 = U_2 \cup W$ cover the sphere and are contractible
- ▶ $A_1 \cap A_2 = W$ is acyclic and hence $\mathcal{A} = \{A_1, A_2\}$ is a homologically good closed cover of S^2
- $ightharpoonup S^2$ and $\operatorname{Nrv} \mathcal A$ do not have isomorphic homology groups

► Gave proofs of (functorial) nerve theorems that are attractive to students and newcomers to TDA.

- ► Gave proofs of (functorial) nerve theorems that are attractive to students and newcomers to TDA.
- ► Learned that functoriality depends on the framework and holds without any assumptions.

- ► Gave proofs of (functorial) nerve theorems that are attractive to students and newcomers to TDA.
- Learned that functoriality depends on the framework and holds without any assumptions.
- Abstract homotopy theory can help to give a "unified view" on the functorial nerve theorem.

- ► Gave proofs of (functorial) nerve theorems that are attractive to students and newcomers to TDA.
- Learned that functoriality depends on the framework and holds without any assumptions.
- Abstract homotopy theory can help to give a "unified view" on the functorial nerve theorem.

Future work:

- ► Gave proofs of (functorial) nerve theorems that are attractive to students and newcomers to TDA.
- Learned that functoriality depends on the framework and holds without any assumptions.
- Abstract homotopy theory can help to give a "unified view" on the functorial nerve theorem.

Future work:

Discuss approximate nerve theorems.

- ► Gave proofs of (functorial) nerve theorems that are attractive to students and newcomers to TDA.
- Learned that functoriality depends on the framework and holds without any assumptions.
- Abstract homotopy theory can help to give a "unified view" on the functorial nerve theorem.

Future work:

- Discuss approximate nerve theorems.
- Discuss Latschev's result on the reconstruction of Riemannian manifolds and its functoriality by using Vietoris-Rips good covers.