Health Data Exploration

Table of Contents

I. Data Gathering

II. Data Assessment

III. Data Cleaning

V. Exploratory Data Analysis and Data Visualization

V.Model Predictions and Accuracy Evaluation

Pleminary Wrangling

This document explores a data set containing 10000 Patients with 15 variables on each patient's health, such as Blood Type, Medical Condition, Date of Admission and many others. The goal of this project is to gain insight into our data in order to carry out informed decision making. Alongside, various models will be tested, with their accuracies compared in order to be able to predict a patient's test result based on parameters like Age, Gender, Blood Type, Medical Condition, Billing Amount, Admission Type. Such a model will enable quicker decision making in hospitals and allow for time and cost management

Author: Owan Ayuk Daisy A.

Data Gathering

```
In [230]: # import all packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
## %matplotlib inline
```

```
In [231]: # Load in the dataset into a pandas dataframe, print statistics
Health = pd.read_csv('healthcare_dataset.csv')
```

Data Assessment

a) Visual Assessment

In [232]: # high-level overview of data shape and composition
 print(Health.shape)
 print(Health.dtypes)

(10000, 15) object Name Age int64 Gender object Blood Type object Medical Condition object Date of Admission object Doctor object Hospital object Insurance Provider object Billing Amount float64 int64 Room Number object Admission Type Discharge Date object Medication object Test Results object dtype: object

In [233]: Health.head(10)

Out[233]:

Roo Numb	Billing Amount	Insurance Provider	Hospital	Doctor	Date of Admission	Medical Condition	Blood Type	Gender	Age	Name	
14	37490.983364	Medicare	Wallace- Hamilton	Patrick Parker	2022-11-17	Diabetes	0-	Female	81	Tiffany Ramirez	0
4(47304.064845	UnitedHealthcare	Burke, Griffin and Cooper	Diane Jackson	2023-06- 01	Asthma	O+	Male	35	Ruben Burns	1
29	36874.896997	Medicare	Walton LLC	Paul Baker	2019-01- 09	Obesity	B-	Male	61	Chad Byrd	2
48	23303.322092	Medicare	Garcia Ltd	Brian Chandler	2020-05- 02	Asthma	B-	Male	49	Antonio Frederick	3
47	18086.344184	UnitedHealthcare	Jones, Brown and Murray	Dustin Griffin	2021-07- 09	Arthritis	0-	Male	51	Mrs. Brandy Flowers	4
18	22522.363385	Aetna	Boyd PLC	Robin Green	2020-08- 20	Arthritis	AB+	Male	41	Patrick Parker	5
16	39593.435761	Cigna	Wheeler, Bryant and Johns	Patricia Bishop	2021-03- 22	Hypertension	AB+	Male	82	Charles Horton	6
38	13546.817249	Blue Cross	Brown Inc	Brian Kennedy	2019-05- 16	Arthritis	0-	Female	55	Patty Norman	7
2^	24903.037270	Aetna	Smith, Edwards and Obrien	Kristin Dunn	2020-12- 17	Diabetes	A+	Male	33	Ryan Hayes	8
3′	22788.236026	Blue Cross	Brown- Golden	Jessica Bailey	2022-12- 15	Asthma	0-	Female	39	Sharon Perez	9
•											4

Tidiness issues

We begin by addressing tidiness issues. These issues pertain to the structure of data. These structural problems generally prevent easy analysis. Upon visual assessment of our data we could observe it is tidy enough for further analysis and following the norms of tidiness, that is:

- Each variable is a column; each column is a variable.
- Each observation is a row; each row is an observation.
- Each value is a cell; each cell is a single value.

b) Programmatic Assessment

· Crosschecking for incorrect/inconsistent data types/formats

```
In [234]: Health.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 10000 entries, 0 to 9999
            Data columns (total 15 columns):
             #
                Column
                                       Non-Null Count Dtype
            ---
                  -----
                                         -----
             0
                  Name
                                        10000 non-null object
             1
                  Age
                                         10000 non-null int64
             2 Gender 10000 non-null object
3 Blood Type 10000 non-null object
             4 Medical Condition 10000 non-null object
             5 Date of Admission 10000 non-null object
             6 Doctor
                                        10000 non-null object
                                        10000 non-null object
             7
                Hospital
             8 Insurance Provider 10000 non-null object
             9 Billing Amount 10000 non-null float64
10 Room Number 10000 non-null int64
11 Admission Type 10000 non-null object
12 Discharge Date 10000 non-null object
13 Medication 10000 non-null object
                                          10000 non-null object
             14 Test Results
            dtypes: float64(1), int64(2), object(12)
            memory usage: 1.1+ MB
```

Upon marching each variable to its content/datatype stored, we can observe that the Discharge and Admission Date variables have incorrect datatype and will require cleaning

· Crosschecking for duplicate enteries/records

```
In [235]: Health.duplicated()
Out[235]: 0
                  False
          1
                  False
          2
                  False
          3
                  False
                  False
          9995
                  False
          9996
                  False
          9997
                  False
          9998
                  False
          9999
                  False
          Length: 10000, dtype: bool
In [236]: sum(Health.duplicated())
Out[236]: 0
```

No duplicate enteries as well....our data is free of duplicate records for a paticular patient

· crosschecking for null values/enteries

From our result after running Health.info(), we can also observe the absence of null enteries

In [237]: #crosschecking statistical information related to our data for data inconsistency and inaccuracy Health.describe()

Out[237]:

	Age	Billing Amount	Room Number
count	10000.000000	10000.000000	10000.000000
mean	51.452200	25516.806778	300.082000
std	19.588974	14067.292709	115.806027
min	18.000000	1000.180837	101.000000
25%	35.000000	13506.523967	199.000000
50%	52.000000	25258.112566	299.000000
75%	68.000000	37733.913727	400.000000
max	85.000000	49995.902283	500.000000

No abnormalities observed as pertaining to the data

Addressing Quality Issues

In this phase, we proceed to address data quality issues. Essentially, data quality relates to its accuracy, completeness, consistency, and validity. In our analysis, we aim to address issues such as: Duplicate data, Inaccurate data, Inconsistent formats, Incomplete data, Hidden data, Data downtime, Human error, Irrelevant data, Outdated data, Missing values, Unstructured data, Poor data accessibility

Upon carrying out our programmatic analysis, we observed the date fields to not have a correct data type. Saving a date related column with an object data type rather than a datetime datatype will not permit calculations relating to time on that column so we have to address that issue

Data Cleaning

To clean this issue we will use the Define-Code-Test methodology

Define

Incorrect data types for two columns: Date of admission and Discharge Date

Code

```
In [238]: # convert the two 'Date' columns to datetime format
Health['Date of Admission']= pd.to_datetime(Health['Date of Admission'])
Health['Discharge Date']= pd.to_datetime(Health['Discharge Date'])
```

Test

```
In [239]: # Check the format of 'Date' column
Health.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 15 columns):
```

		0_0	
#	Column	Non-Null Count	Dtype
0	Name	10000 non-null	object
1	Age	10000 non-null	int64
2	Gender	10000 non-null	object
3	Blood Type	10000 non-null	object
4	Medical Condition	10000 non-null	object
5	Date of Admission	10000 non-null	<pre>datetime64[ns]</pre>
6	Doctor	10000 non-null	object
7	Hospital	10000 non-null	object
8	Insurance Provider	10000 non-null	object
9	Billing Amount	10000 non-null	float64
10	Room Number	10000 non-null	int64
11	Admission Type	10000 non-null	object
12	Discharge Date	10000 non-null	<pre>datetime64[ns]</pre>
13	Medication	10000 non-null	object
14	Test Results	10000 non-null	object
dtype	es: datetime64[ns](2), float64(1), i	nt64(2), object(10)
memoi	ry usage: 1.1+ MB		

As observed, we can see our datatypes have been readjusted

Exploratory Data Analysis and visualisation

In [240]: #reloading our data for easy access
Health.sample(10)

Out[240]:

	Name	Age	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurance Provider	Billing Amount	R Nur
1719	Marissa Schultz	78	Female	B-	Cancer	2020-04- 07	Laurie Bryan	Moss, Davidson and Ball	Cigna	39106.761780	
9378	Dawn Harrison	66	Female	0+	Cancer	2021-06- 04	Tammy Martinez	Davis LLC	Cigna	15032.487348	
2747	Lisa Beck	54	Female	AB-	Obesity	2022-08- 31	Patrick Davis	Miller- Riggs	Cigna	20841.542773	
2540	Andrea Poole	85	Male	AB+	Hypertension	2019-06- 29	Erik Allen	Allen, Collins and Morris	Medicare	44225.219870	
7568	Eric Miles	82	Female	A+	Cancer	2019-07- 09	Eric Heath	Morgan- Lopez	UnitedHealthcare	20042.115211	
6016	Margaret Brown	59	Male	B-	Obesity	2019-07- 23	Sarah Hodges	Oneal Inc	Medicare	46805.421013	
2789	Zachary Turner	38	Female	AB-	Diabetes	2019-05- 03	Wendy Romero	Shepherd and Sons	Cigna	26019.286316	
5179	Jessica Schultz	80	Female	AB+	Obesity	2022-01- 31	James Henry	Moore Group	UnitedHealthcare	4355.584888	
4440	Anna Glass	29	Male	B-	Arthritis	2018-12- 04	Bryan Ford	Olson, Reed and Wood	Cigna	19142.010715	
3773	Thomas Jacobs	73	Male	A+	Asthma	2019-09- 08	Tanya Jennings	Johnson- Norris	UnitedHealthcare	31484.254283	
4											h

In this phase we proceed to manipulating our data for inference and discovering patterns to answer likewise uncover some relevant questions. Some of the questions our study aim to answer include:

1 Which admission tune is most ancountered

2. Most Visited Hospitals

```
In [242]: #first we begin by retrieving the different number of hospitals
          len(Health['Hospital'].unique())
Out[242]: 8639
          There are 8639 hospitals involved in our study
In [243]: Hospital_con = Health['Hospital'].value_counts() > 10
In [244]: | Top_Hospital = Health[Health['Hospital'].isin(Hospital_con[Hospital_con].index)]
In [245]: print(Top_Hospital.Hospital.value_counts())
          Smith PIC
                             19
          Smith and Sons
                             17
          Smith Inc
          Smith Ltd
                             14
          Johnson PLC
                             13
          Williams LLC
                             12
          Smith Group
                             12
          Williams Inc
                             12
          Thomas Group
                             11
          Johnson Ltd
                             11
          Johnson Group
                             11
          Name: Hospital, dtype: int64
```

Above, we can observe the most visited hospitals, with hospitals being owned by Smiths groups being among the most visited. This could be an indicator of high performance or accessibility as people will mostly prefer visiting hospitals that are easily accessible, affordable or have well qualified practitioners

3. Most Trusted Insurance Provider

```
In [246]: #first we begin by retrieving the different number of hospitals
          print(len(Health['Hospital'].unique()))
          #next we retrieve the top insurance companies
          Insurance_con = Health['Insurance Provider'].value_counts() > 10
          Top_Ins = Health[Health['Insurance Provider'].isin(Insurance_con[Insurance_con].index)]
          print(Top_Ins['Insurance Provider'].value_counts())
          8639
                              2040
          Cigna
          Blue Cross
                              2032
                              2025
          Aetna
          UnitedHealthcare
                              1978
          Medicare
                              1925
          Name: Insurance Provider, dtype: int64
```

We can observe the top 5 insurance companies taken by patients

4. How long is the average recovery period for patients

In [247]: from datetime import datetime

Calculate the number of days between the two dates
Health['num_days'] = (Health['Discharge Date'] - Health['Date of Admission']).dt.days

In [248]: Health.head(10)

Out[248]:

	Name	Age	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurance Provider	Billing Amount	Roon Numbe
0	Tiffany Ramirez	81	Female	О-	Diabetes	2022-11-17	Patrick Parker	Wallace- Hamilton	Medicare	37490.983364	146
1	Ruben Burns	35	Male	O+	Asthma	2023-06- 01	Diane Jackson	Burke, Griffin and Cooper	UnitedHealthcare	47304.064845	404
2	Chad Byrd	61	Male	B-	Obesity	2019-01- 09	Paul Baker	Walton LLC	Medicare	36874.896997	292
3	Antonio Frederick	49	Male	B-	Asthma	2020-05- 02	Brian Chandler	Garcia Ltd	Medicare	23303.322092	48(
4	Mrs. Brandy Flowers	51	Male	0-	Arthritis	2021-07- 09	Dustin Griffin	Jones, Brown and Murray	UnitedHealthcare	18086.344184	477
5	Patrick Parker	41	Male	AB+	Arthritis	2020-08- 20	Robin Green	Boyd PLC	Aetna	22522.363385	18(
6	Charles Horton	82	Male	AB+	Hypertension	2021-03- 22	Patricia Bishop	Wheeler, Bryant and Johns	Cigna	39593.435761	16 ⁻
7	Patty Norman	55	Female	0-	Arthritis	2019-05- 16	Brian Kennedy	Brown Inc	Blue Cross	13546.817249	384
8	Ryan Hayes	33	Male	A+	Diabetes	2020-12- 17	Kristin Dunn	Smith, Edwards and Obrien	Aetna	24903.037270	21{
9	Sharon Perez	39	Female	0-	Asthma	2022-12- 15	Jessica Bailey	Brown- Golden	Blue Cross	22788.236026	31(
4)

In [249]: Health.describe()

Out[249]:

	Age	Billing Amount	Room Number	num_days
count	10000.000000	10000.000000	10000.000000	10000.000000
mean	51.452200	25516.806778	300.082000	15.561800
std	19.588974	14067.292709	115.806027	8.612038
min	18.000000	1000.180837	101.000000	1.000000
25%	35.000000	13506.523967	199.000000	8.000000
50%	52.000000	25258.112566	299.000000	16.000000
75%	68.000000	37733.913727	400.000000	23.000000
max	85.000000	49995.902283	500.000000	30.000000

The average recovery period is 15 days.

```
In [250]: Health.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 10000 entries, 0 to 9999
           Data columns (total 16 columns):
            # Column
                                       Non-Null Count Dtype
            ---
                                       -----
            0
                                       10000 non-null object
                 Name
                                       10000 non-null int64
            1
                 Age
            2
                 Gender
                                       10000 non-null object
                 Blood Type
               Blood Type 10000 non-null object
Medical Condition 10000 non-null object
            3
            4
                Date of Admission 10000 non-null datetime64[ns]
            5
                                      10000 non-null object
            6 Doctor
            7 Hospital
                                      10000 non-null object
            8 Insurance Provider 10000 non-null object
            9
                 Billing Amount 10000 non-null float64
            10 Room Number 10000 non-null int64
11 Admission Type 10000 non-null object
12 Discharge Date 10000 non-null datetime64[ns]
13 Medication 10000 non-null datetime64[ns]
            13 Medication
                                       10000 non-null object
                                       10000 non-null object
10000 non-null int64
            14 Test Results
            15 num_days
           dtypes: datetime64[ns](2), float64(1), int64(3), object(10)
           memory usage: 1.2+ MB
```

5. Among the best hospitals, which hospital has the best recovery period?

```
In [251]: Hospital_con = Health['Hospital'].value_counts() > 10
In [252]: Top_Hospital = Health[Health['Hospital'].isin(Hospital_con[Hospital_con].index)]
In [253]: Top_Hospital
```

Out[253]:

	Name	Age	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurance Provider	Billing Amount	F Nu
47	Jasmine Singleton	37	Male	AB-	Obesity	2019-06- 26	Larry Guzman	Thomas Group	Blue Cross	34132.623000	
266	Jamie Kelley	48	Male	О-	Asthma	2022-07- 10	Samuel Lowe	Williams LLC	Aetna	42621.449647	
298	Cody Gonzales	30	Male	B-	Obesity	2020-03- 06	Rachel Roberts	Smith Group	Blue Cross	16592.012153	
303	Cynthia Patterson	42	Female	B-	Cancer	2020-01- 02	Dr. Sean Russell	Johnson Ltd	Medicare	26419.324813	
318	Daniel Alexander	70	Male	AB-	Hypertension	2020-03- 19	Jill Hughes	Smith Inc	Aetna	36496.775644	
9497	Glen Rowe	55	Male	A-	Cancer	2022-09- 12	Ashley Gross	Smith Group	Blue Cross	12988.802893	
9514	Rhonda Allen	56	Female	B-	Diabetes	2019-05- 14	Diane Houston	Johnson PLC	UnitedHealthcare	15054.431375	
9536	Charles Hernandez	78	Male	0-	Hypertension	2019-12- 04	Cynthia Malone	Thomas Group	Blue Cross	49409.780541	
9659	Alison Cline	55	Female	AB+	Hypertension	2019-04-11	Jacob Griffin	Smith PLC	Medicare	46941.697956	
9763	Jasmine Brooks	27	Male	AB+	Arthritis	2022-04- 20	Michael Morrow	Smith PLC	Cigna	18469.360164	
146 rows x 16 columns											

146 rows × 16 columns

```
In [254]: top_days = Top_Hospital.sort_values('num_days')
top_days[['Hospital','num_days']]
```

Out[254]:

	Hospital	num_days
3896	Johnson Ltd	1
2597	Smith Inc	1
5157	Smith PLC	1
3012	Johnson Ltd	1
1560	Williams LLC	2
1563	Smith PLC	29
6987	Thomas Group	29
7854	Smith PLC	30
4050	Smith and Sons	30
8996	Smith Inc	30

146 rows × 2 columns

6. What is the age distribution in hospitals?

```
In [229]: import seaborn as sb
    sb.displot(Health['Age'], kde='True', bins='auto')
    plt.show()
```


From the histogram, we can see patients aged around 20 and over 80 have highest count.

7. How does the distribution of illnesses look like?

Although medical condition counts are pretty similar, asthma and cancer occupy the highest two places.

8. What was the most prescribed medication?


```
In [ ]:
```

Model Predictions and Accuracy Evaluation

Feature extraction

```
In [255]: #creatin a copy of our cleaned data to work on
             df = Health.copy()
In [256]: #verifyin if copyin was successful
             df.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 10000 entries, 0 to 9999
             Data columns (total 16 columns):
              # Column
                                          Non-Null Count Dtype
              0 Name
                                          10000 non-null object
                                          10000 non-null int64
                   Age
              2 Gender 10000 non-null object
3 Blood Type 10000 non-null object
                 Medical Condition 10000 non-null object
Date of Admission 10000 non-null datetime64[ns]
Doctor 10000 non-null object
Hospital 10000 non-null object
Insurance Provider 10000 non-null object
              4
              5
              6
              7
              8
             9 Billing Amount 10000 non-null float64
10 Room Number 10000 non-null int64
11 Admission Type 10000 non-null object
12 Discharge Date 10000 non-null datetime64[ns]
13 Medication 10000 non-null object
14 Test Results 10000 non-null object
15 num_days 10000 non-null int64
                                            10000 non-null int64
              15 num days
             dtypes: datetime64[ns](2), float64(1), int64(3), object(10)
             memory usage: 1.2+ MB
In [257]: #droppin columns unnecessary for our prediction
             df.drop('Date of Admission', axis=1, inplace=True)
             df.drop('Discharge Date', axis=1, inplace=True)
             df.drop('Doctor', axis=1, inplace=True)
             df.drop('Hospital', axis=1, inplace=True)
             df.drop('Room Number', axis=1, inplace=True)
             df.drop('Name', axis=1, inplace=True)
In [258]: |df.drop('Insurance Provider', axis=1, inplace=True)
In [259]: #verifyin if deletion was successful
             df.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 10000 entries, 0 to 9999
             Data columns (total 9 columns):
                                Non-Null Count Dtype
              # Column
                                          -----
             - - -
                   -----
                                          10000 non-null int64
              0
                  Age
                   Gender 10000 non-null object Blood Type 10000 non-null object
              1
              2
                   Medical Condition 10000 non-null object
              3
                 Billing Amount 10000 non-null float64
Admission Type 10000 non-null object
              5
                   Medication 10000 non-null object Test Results 10000 non-null object
              6
              7
                   num days
                                          10000 non-null int64
             dtypes: float64(1), int64(2), object(6)
             memory usage: 703.2+ KB
```

Label Encoding

```
In [260]: #encoding text fields
          from sklearn.preprocessing import LabelEncoder
          lc=LabelEncoder()
          cols=['Gender', 'Blood Type', 'Medical Condition','Admission Type', 'Medication','Test Results'
          for i in cols:
            df[i]=lc.fit_transform(df[i])
```

In [261]: df

Out[261]:

	Age	Gender	Blood Type	Medical Condition	Billing Amount	Admission Type	Medication	Test Results	num_days
0	81	0	7	3	37490.983364	0	0	1	14
1	35	1	6	1	47304.064845	1	2	2	14
2	61	1	5	5	36874.896997	1	2	2	30
3	49	1	5	1	23303.322092	2	4	0	1
4	51	1	7	0	18086.344184	2	3	2	24
		•••		•••					
9995	83	1	0	5	39606.840083	0	1	0	4
9996	47	0	2	0	5995.717488	1	1	2	23
9997	54	1	5	0	49559.202905	0	1	2	14
9998	84	1	0	0	25236.344761	2	4	2	20
9999	20	1	5	0	37223.965865	1	4	0	24

10000 rows × 9 columns

```
In [262]: #separating data into features(x) and target (y)
          X=df.drop(['Test Results'],axis=1)
          y=df['Test Results']
          #seperating our data into test and train
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import accuracy score
          from sklearn.preprocessing import scale
          #model importation
          from sklearn import neighbors, metrics
          from sklearn import svm
          from sklearn import linear model
          from sklearn.cluster import KMeans
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.model_selection import cross_val_score
          #from xqboost import XGBClassifier
          from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 26)
```

XGB Classifier

model1= XGBClassifier() model1.fit(X_train, y_train)

```
y_pred = model1.predict(X_test) print("-----") print(f"The accuraccy score is: -----> {accuracy_score(y_test,y_pred)}") print("------") print(f"The Confusion Matrix is: -----> \n{confusion_matrix(y_test,y_pred)}") print("-------") print(f"The Classification Report is: ---->> {classification_report(y_test,y_pred)}")

xgb_classifier = xgb.XGBClassifier() xgb_accuracy = cross_val_score(xgb_classifier, X_test, y_test, cv=8).mean()
```

Support Vector Machine

print("cross validation score: ", xgb_accuracy)

```
In [263]: svm_classifier = svm.SVC()
         svm_classifier.fit(X_train, y_train)
         from sklearn.model_selection import cross_val_score
         svm_accuracy = cross_val_score(svm_classifier, X_test, y_test, cv=8).mean()
         print("cross validation score: ", svm_accuracy)
         cross validation score: 0.3485
In [264]: |y_pred = svm_classifier.predict(X_test)
         print(f"The Confusion Matrix is: ---->> \n{confusion_matrix(y_test,y_pred)}")
         #print(f"The Classification Report is: ---->> {classification_report(y_test,y_pred)}")
         ______
         The accuraccy score is: ---->> 0.3435
         The Confusion Matrix is: ---->>
         [[687 0 0]
[682 0 0]
          [682
                   0]
          [631 0 0]]
```

Logistic Regression

Random Forest

```
In [265]: model4 = RandomForestClassifier()
model4.fit(X_train,y_train)
Out[265]: RandomForestClassifier()
```

```
In [266]: y_pred = model4.predict(X_test)
         print("-----")
         print(f"The accuraccy score is: ---->> {accuracy_score(y_test,y_pred)}")
         print("-----")
         print(f"The Confusion Matrix is: ---->> \n{confusion_matrix(y_test,y_pred)}")
         print("-----")
         print(f"The Classification Report is: ---->> {classification_report(y_test,y_pred)}")
         The accuraccy score is: ---->> 0.3275
         The Confusion Matrix is: ---->>
         [[277 200 210]
          [291 187 204]
          [247 193 191]]
                        precision recall f1-score
         The Classification Report is: ---->>
                                                                                        support

    0.34
    0.40
    0.37
    687

    0.32
    0.27
    0.30
    682

    0.32
    0.30
    0.31
    631

                    0
                    1

      accuracy
      0.33
      2000

      macro avg
      0.33
      0.33
      0.32
      2000

      weighted avg
      0.33
      0.33
      0.33
      2000
```

Decision Tree

```
In [267]: model5 = DecisionTreeClassifier()
         model5.fit(X_train,y_train)
Out[267]: DecisionTreeClassifier()
In [268]: y_pred = model5.predict(X_test)
         print("-----")
         print(f"The accuraccy score is: ---->> {accuracy_score(y_test,y_pred)}")
         print("----")
         print(f"The Confusion Matrix is: ---->> \n{confusion_matrix(y_test,y_pred)}")
         print("-----")
         print(f"The Classification Report is: ---->> {classification_report(y_test,y_pred)}")
         ______
         The accuraccy score is: ---->> 0.3245
         The Confusion Matrix is: ---->>
         [[233 225 229]
          [230 213 239]
          [223 205 203]]
         -----
                                                   precision recall f1-score
         The Classification Report is: ---->>
                                                                                 support

    0.34
    0.34
    0.34
    687

    0.33
    0.31
    0.32
    682

    0.30
    0.32
    0.31
    631

                  1

      accuracy
      0.32
      2000

      macro avg
      0.32
      0.32
      0.32

      weighted avg
      0.33
      0.32
      0.32
      2000
```

Summarily, the following models produced the following accuracies:

DecisionTree - 0.3175

Logistic Regression - Classification metrics can't handle a mix of multiclass and continuous targets

Random Forest - 0.326

Support vector Machine - 0.3435/0.3485

VODOL---IE--- ORII I- I- I--I--I

Therefore, for our dataset, the most accurate model with respect to this study is the Support Vector Machine model