# Sentiment Analysis with Neural Network Transformers



Tweet 1: My birthday cake was awful

Tweet 1: My birthday cake was awful

Tweet 2: My birthday cake was great

Sentiment is conveyed by specific words

Sentiment is conveyed by specific words

 Maybe we could use a word frequency approach to measure sentiment

Sentiment is conveyed by specific words

 Maybe we could use a word frequency approach to measure sentiment

Naïve Bayes classifier – uses this approach

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 2: My birthday cake was great, if you want me to get diabetes

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 2: My birthday cake was great, if you want me to get diabetes

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 2: My birthday cake was great, if you want me to get diabetes

Sentiment is conveyed by specific words

Sentiment is conveyed by specific words

We also need to know the context of the words

- Sentiment is conveyed by specific words
- We also need to know the context of the words

 Context = which words pay attention to which words

# No Context Embeddings

 A clustering type of embedding may cluster tweets with similar words, but different sentiment



 Context dependent embedding can cluster by sentiment

My birthday cake was **great**, if you want my honest **opinion** 

My birthday cake was great

My birthday cake was **great**, if you want me to get **diabetes** 

My birthday cake was awful

 We need a model that allows words in a sentence to pay "attention" to other words

 We need a model that allows words in a sentence to pay "attention" to other words

Words can pay attention in different ways

- We need a model that allows words in a sentence to pay "attention" to other words
- Words can pay attention in different ways

 We can choose the type of "attention" that captures sentiment

- We need a model that allows words in a sentence to pay "attention" to other words
- Words can pay attention in different ways
- We can choose the type of "attention" that captures sentiment

Solution: Neural Network Transformers

### **Transformers**

- **Developed in 2017 by Google**
- Revolutionized natural language processing

#### Attention Is All You Need

Ashish Vaswani\* Google Brain

Google Brain avaswani@google.com noam@google.com

Noam Shazeer\* Niki Parmar\* Google Research nikip@google.com

Jakob Uszkoreit\* Google Research usz@google.com

Llion Jones\* Google Research llion@google.com

Aidan N. Gomez\* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\* ‡ illia.polosukhin@gmail.com

#### Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention

### **What Can Transformers Do?**

- Measure sentiment
- Translation
- Web search
- Text summarization
- Question answering
- Generate text

### **Transformer Architecture**

The transformer has many layers



# **Transformer Layers**

Each layer has many self-attention heads



### **Self-Attention Head**

 Each self-attention head contains attention weights from each word to each other word



# Visualizing the Brain of a Transformer



# **Popular Transformers**



# **Popular Transformers**



### **BERT**



- BERT = Bi-directional Encoder Representations From Transformers
- Released in 2018 by Google
- Base BERT has 100 million parameters
  - 12 layers
  - 12 attention heads per layer
  - 768 dimensional word embedding
- Trained on books and Wikipedia (3.3 billion words)

# **Training BERT**



# Masked Language Model Task

- BERT is trained to learn a masked language model
  - Guess [MASK] words in a sentence

| Data                                      | Prediction                             |
|-------------------------------------------|----------------------------------------|
| I went to the [MASK] to buy milk.         | [MASK] = store                         |
| I graduated from [MASK] and got a degree. | [MASK] = college                       |
| I had a [MASK] and it tasted [MASK]!      | [MASK] = hamburger<br>[MASK] = amazing |

# Pre-Trained Transformers: Hugging Face



# **Evaluating Language Models: GLUE**

- GLUE = general language understanding and evaluation
- GLUE is a set of benchmark tasks to evaluate language models like BERT

## **GLUE Tasks**

| Task type                  | Description                                                          |
|----------------------------|----------------------------------------------------------------------|
| Acceptability              | Is the sentence grammatically correct                                |
| Sentiment                  | Can you predict the sentiment of the sentence                        |
| Question answering         | Does the second sentence answer the question in the first sentence   |
| Natural language inference | Does the second sentence entail the hypothesis in the first sentence |
| Pronoun referral           | To what does the pronoun in a sentence refer                         |
| Sentence similarity        | Are the two sentences paraphrases of each other                      |

### **GLUE Leaders - 2021**

- Human GLUE score = 87.1
- GLUE leaderboard: <a href="https://gluebenchmark.com/leaderboard">https://gluebenchmark.com/leaderboard</a>

|   | Rank | Name                                | Model                                        | URL      | Score |
|---|------|-------------------------------------|----------------------------------------------|----------|-------|
|   | 1    | ERNIE Team - Baidu                  | ERNIE                                        | <b>♂</b> | 91.1  |
|   | 2    | AliceMind & DIRL                    | StructBERT + CLEVER                          |          | 91.0  |
|   | 3    | DeBERTa Team - Microsoft            | DeBERTa / TuringNLRv4                        | <b>♂</b> | 90.8  |
|   | 4    | HFL iFLYTEK                         | MacALBERT + DKM                              |          | 90.7  |
| + | 5    | PING-AN Omni-Sinitic                | ALBERT + DAAF + NAS                          |          | 90.6  |
|   | 6    | Liangzhu Ge                         | Deberta + CLEVER                             |          | 90.5  |
|   | 7    | T5 Team - Google                    | T5                                           |          | 90.3  |
|   | 8    | Microsoft D365 AI & MSR AI & GATECH | MT-DNN-SMART                                 | <b>♂</b> | 89.9  |
| + | 9    | Huawei Noah's Ark Lab               | NEZHA-Large                                  |          | 89.8  |
| + | 10   | Zihang Dai                          | Funnel-Transformer (Ensemble B10-10-10H1024) |          | 89.7  |

# **SuperGLUE Leaders 2021**

- Human SuperGLUE score = 89.8
- SuperGLUE leaderboard: <a href="https://super.gluebenchmark.com/leaderboard">https://super.gluebenchmark.com/leaderboard</a>

| F | Rank | Name                         | Model                                 | URL | Score |
|---|------|------------------------------|---------------------------------------|-----|-------|
|   | 1    | ERNIE Team - Baidu           | ERNIE 3.0                             |     | 90.6  |
| + | 2    | Zirui Wang                   | T5 + UDG, Single Model (Google Brain) |     | 90.4  |
| + | 3    | DeBERTa Team - Microsoft     | DeBERTa / TuringNLRv4                 |     | 90.3  |
|   | 4    | SuperGLUE Human Baselines    | SuperGLUE Human Baselines             |     | 89.8  |
| + | 5    | T5 Team - Google             | T5                                    |     | 89.3  |
| + | 6    | Huawei Noah's Ark Lab        | NEZHA-Plus                            |     | 86.7  |
| + | 7    | Alibaba PAI&ICBU             | PAI Albert                            |     | 86.1  |
| + | 8    | Infosys : DAWN : AI Research | RoBERTa-iCETS                         |     | 86.0  |
| + | 9    | Tencent Jarvis Lab           | RoBERTa (ensemble)                    |     | 85.9  |
|   | 10   | Zhuiyi Technology            | RoBERTa-mtl-adv                       |     | 85.7  |

# **SuperGLUE Leaders 2021**

- Human SuperGLUE score = 89.8
- SuperGLUE leaderboard: <a href="https://super.gluebenchmark.com/leaderboard">https://super.gluebenchmark.com/leaderboard</a>

|   | Rank | Name                         | Model                                 | URL | Score |
|---|------|------------------------------|---------------------------------------|-----|-------|
|   | 1    | ERNIE Team - Baidu           | ERNIE 3.0                             |     | 90.6  |
| + | 2    | Zirui Wang                   | T5 + UDG, Single Model (Google Brain) |     | 90.4  |
| + | 3    | DeBERTa Team - Microsoft     | DeBERTa / TuringNLRv4                 |     | 90.3  |
|   | 4    | SuperGLUE Human Baselines    | SuperGLUE Human Baselines             |     | 89.8  |
| + | 5    | T5 Team - Google             | T5                                    |     | 89.3  |
| + | 6    | Huawei Noah's Ark Lab        | NEZHA-Plus                            |     | 86.7  |
| + | 7    | Alibaba PAI&ICBU             | PAI Albert                            |     | 86.1  |
| + | 8    | Infosys : DAWN : AI Research | RoBERTa-iCETS                         |     | 86.0  |
| + | 9    | Tencent Jarvis Lab           | RoBERTa (ensemble)                    |     | 85.9  |
|   | 10   | Zhuiyi Technology            | RoBERTa-mtl-adv                       |     | 85.7  |



# **SuperGLUE Leaders 2021**

- Human SuperGLUE score = 89.8
- SuperGLUE leaderboard: <a href="https://super.gluebenchmark.com/leaderboard">https://super.gluebenchmark.com/leaderboard</a>





|   | Rank | Name                         | Model                                 | URL | Score |
|---|------|------------------------------|---------------------------------------|-----|-------|
|   | 1    | ERNIE Team - Baidu           | ERNIE 3.0                             |     | 90.6  |
| + | 2    | Zirui Wang                   | T5 + UDG, Single Model (Google Brain) |     | 90.4  |
| + | 3    | DeBERTa Team - Microsoft     | DeBERTa / TuringNLRv4                 |     | 90.3  |
|   | 4    | SuperGLUE Human Baselines    | SuperGLUE Human Baselines             |     | 89.8  |
| + | 5    | T5 Team - Google             | T5                                    |     | 89.3  |
| + | 6    | Huawei Noah's Ark Lab        | NEZHA-Plus                            |     | 86.7  |
| + | 7    | Alibaba PAI&ICBU             | PAI Albert                            |     | 86.1  |
| + | 8    | Infosys : DAWN : AI Research | RoBERTa-iCETS                         |     | 86.0  |
| + | 9    | Tencent Jarvis Lab           | RoBERTa (ensemble)                    |     | 85.9  |
|   | 10   | Zhuiyi Technology            | RoBERTa-mtl-adv                       |     | 85.7  |

# **Coding Session**

 Learn how to use any model in the huggingface library

 Use a pre-trained sentiment classifier to measure sentiment of tweets

- Perform analysis of the tweets and their sentiment
- Code located at http://github.com/zlisto/sentiment\_analysis