

Machine Learning

Machine Learning

Lecture: Bayesian Classification

Ted Scully

Naïve Bayes Classifier Example (Weather Dataset)

In order to see the probability estimates in action we will look at a simple dataset called the weather dataset. We will look at the process by which it creates a model and then classifies unseen instances of data such as the following.

Outlook = sunny, Temp = cool, Humidity = high, Windy = true: Play =?

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
М	overcast	hot	normal	false	yes	
N	rainy	mild	high	true	no	

Anyone for Tennis?							
ID	Outlook	Temp	Humidity	Windy	Play?		
Α	sunny	hot	high	false	no		
В	sunny	hot	high	true	no		
С	overcast	hot	high	false	yes		
D	rainy	mild	high	false	yes		
E	rainy	cool	normal	false	yes		
F	rainy	cool	normal	true	no		
G	overcast	cool	normal	true	yes		
Н	sunny	mild	high	false	no		
I	sunny	cool	normal	false	yes		
J	rainy	mild	normal	false	yes		
K	sunny	mild	normal	true	yes		
L	overcast	mild	high	true	yes		
М	overcast	hot	normal	false	yes		
N	rainv	mild	high	true	no		

ML Algorithm

Conditional Probabilities

- 1. P(Outlook = Sunny | Play = Y)
- 2. P(Outlook = Sunny | Play = N)
- 3. P(Outlook = Overcast | Play = Y)
- 4. P(Outlook = Overcast | Play = N)
- 5.

Our Naïve Bayes algorithm takes as input the data set and produces the following **model**.

```
P(Outlook=s | Play=y) = 2/9 P(Outlook=s | Play=n) = 3/5
P(Outlook=o | Play=y) = 4/9 P(Outlook=o | Play=n) = 0/5
P(Outlook=r | Play=y) = 3/9 P(Outlook=r | Play=n) = 2/5
P(Wind=t \mid Play=y) = 3/9 \quad P(Wind=t \mid Play=n) = 3/5
P(Wind=f \mid Play=y) = 6/9 \quad P(Wind=f \mid Play=n) = 2/5
P(Temp=h \mid Play=y) = 2/9 P(Temp=h \mid Play=n) = 2/5
P(Temp=m \mid Play=y) = 4/9 P(Temp=m \mid Play=n) = 2/5
P(Temp=c \mid Play=y) = 3/9 P(Temp=c \mid Play=n) = 1/5
 P(Humidity = high | Play = yes) = 3/9
 P(Humidity =normal | Play = yes) = 6/9
                                     Play=y) = 9/14
                                     Play=n) = 5/14
 P(Humidity = high | Play = no) = 4/5
 P(Humidity = normal | Play = no) = 1/5
```

Classify a New Instance

Outlook = sunny, Temp = cool, Humidity = high, Windy = true: Play =?

Classify a New Instance

Outlook = sunny, Temp = cool, Humidity = high, Windy = true: Play =?

Play is y or n. Evaluate probability of each given data.

```
P(Play = y | Outlook = s, Temp = c, Humidity = h, Wind = t) =
P(Play = y) * P(Outlook = s | Play = y) * P(Temp=c | Play = y) * P(Humidity= h | Play = y) *
P(Wind = t | Play = y)
= 9/14 * 2/9 * 3/9 * 3/9 * 3/9 = 0.005291

P(Play = n | Outlook = s, Temp = c, Humidity = h, Wind = t) =
P(Play = n) * P(Outlook = s | Play = n) * P(Temp=c | Play = n) * P(Humidity= h | Play = n)
* P(Wind = t | Play = n)
= 5/14 * 3/5 * 1/5 * 4/5 * 3/5 = 0.020571
```

$P(c_j) \prod_{x \in X} P(x \mid c)$

Consider the following data instance:

Outlook = overcast, Temp = mild, Humidity = normal, Windy = false: Play = ?

```
P(Outlook=s | Play=y) = 2/9 P(Outlook=s | Play=n) = 3/5 P(Outlook=o | Play=y) = 4/9 P(Outlook=o | Play=n) = 0/5 P(Outlook=r | Play=y) = 3/9 P(Outlook=r | Play=n) = 2/5
```

Problem with Using Frequencies for Probability Calculations

So far we estimated probabilities using the following:

$$P(X = x_1 | C = c_1) = \frac{N_{x_1c_1}}{N_{c_1}}$$

- ▶ N_{x1c1} = counts of cases where $X=x_1$ and $C=c_1$
- ▶ N_{c1} = count of cases where $C=C_1$

▶ To avoid the problem of zero probabilities we can applying basic smoothing techniques to the above formula.

Avoiding Zeros

- ▶ To avoid the problem outlined on the previous slide we typically use +1 or laplace smoothing.
- Often some basic softening of the equation is performed. For example (+1 smoothing), $(N_{x1c1} + 1) / (N_{c1} + 2)$

- **Laplace Smoothing (m-estimate)**: $(N_{x1c1} + 1) / (N_{c1} + |X|)$
 - Nx1c1 = counts of cases where X=x1 and C=c1
 - Nc1 = count of cases where C=c1
 - |X| = count of cases of X (number of features(attributes))

Avoiding Zeros

- Remember we worked out P(Outlook = o | Play = n) = 0/5
- ▶ +1 smoothing $(N_{x1c1} + 1) / (N_{c1} + 2)$
- ▶ If we use +1 smoothing P(Outlook = o | Play = n) would be (0+1)/(5+2) = 1/7

- ▶ Laplace Smoothing (m-estimate): $(N_{x1c1} + 1) / (N_{c1} + |X|)$
- P(Outlook = o | Play = n) would be (0+1)/(5+4) = 1/9
 - Remember |X| is the number of features

Problems with Probabilities for Naïve Bayes

$$P(c_j) \prod_{x \in X} P(x \mid c)$$

Can you see any computational problem that may occur from this formula? Hint: What might happen if you have a large amount of features?

The computation issue is that of underflow: doing too many multiplications of small numbers.

When we go to calculate the product p(w0|ci)p(w1|ci)p(w2|ci)...p(wN|ci) and many of these numbers are very small, we'll get underflow (multiply many small numbers in a programming language and eventually it rounds off to 0.)

Using Log

- The most common solution to the problem on the previous slide is to calculate the logarithm of this product.
- Doing this allows us to avoid the underflow or round-off error problem. Why? Because
 we end up adding the individual probabilities rather than multiplying them
- In other word we now get the log of the Bayes equation

$$\log(P(c)\prod_{x\in X}P(x|c))$$

We now use

$$\log P(c) + \sum_{x \in X} \log P(x \mid c)$$

Contents

- 1. Probability distributions, rules and Bayes theorem
- 2. Classification Example using Naïve Bayes
- 3. <u>Text Classification Using Naïve Bayes</u>

Document Classification

- Naive Bayes is a very successful and effective approach to learning to classify text documents.
- In document classification **each word is treated as an feature**.
- Document Classification
 - Spam Filtration
 - Author Identification
 - Sentiment Analysis (movie review, product reviews, important applications)

Document Classification

- A Bayesian classifier will typically either adopt a **bag** of words or **set** of words approach.
 - (<u>Bernoulli model</u>) Set of words, counts the number of documents where a word occurs
 - (Multinomial Model) Bag of words, counts the total occurrences of a word across all documents.
- When classifying a test document, the Bernoulli model uses binary occurrence information, ignoring the number of occurrences of a word in a document, whereas the multinomial model keeps track of multiple occurrences in a single document.
- The models also differ in how <u>non-occurring terms</u> are used in classification. They do not impact the classification decision in the multinomial model; but in the Bernoulli model the probability of non-occurrence is factored in when computing probabilities

Calculating Prior Probabilities

$$c_{MAP} = argmax_{c \in C} \log P(c) + \sum_{w \in W} \log P(w \mid c)$$

The first thing we need to do is calculate the prior probabilities (that is, the probability of the class). This calculation is the same for both multinomial and binomial.

$$P(c) = \frac{\text{Number of documents of class c}}{Total \ Number \ of \ documents}$$

Naïve Bayes - <u>Multinomial</u> Model

$$c_{MAP} = argmax_{c \in C} \log P(c) + \sum_{w \in W} \log P(w \mid c)$$

Calculation of the probabilities in the multinomial model as are follows (notice we use <u>laplace smoothing</u> here):

$$P(w \mid c) = \frac{count(w,c)+1}{count(c)+|V|}$$

count(w, c) is the number of occurrences of the word w in all documents of class c.

count(c) The total number of words in all documents of class c (including duplicates).

/V/ The number of words in the vocabulary, which is all unique words irrespective of class.

Exercise

- ▶ The table below shows a very simple training set containing 4 documents and the words contained within those documents.
- It also contains the class of each of the document.
- Objective is to classify the new Test as either class Comp or class Politics.
 - We will use laplace for calculating the Multinomial probabilities
 - ▶ We will use simple **+1 smoothing** for calculating the Bernoulli probabilities

	Doc	Words	Class
Training	1	Cloud Java Cloud	Comp
	2	Cloud Cloud Spring	Comp
	3	Cloud Software	Comp
	4	Referendum Software Election	Politics
Test	5	Java Software Java Election	?

	Doc	Words	Class
Training	1	Cloud Java Cloud	Comp
	2	Cloud Cloud Spring	Comp
	3	Cloud Software	Comp
	4	Referendum Software Election	Politics
Test	5	Java Software Java Election	Ş

$$c_{MAP} = argmax_{c \in C} (\log P(c)) + \sum_{w \in W} \log P(w \mid c)$$

$$P(Comp) = \frac{3}{4}$$

$$P(Politics) = \frac{1}{4}$$

	Doc	Words	Class
Training	1	Cloud Java Cloud	Comp
	2	Cloud Cloud Spring	Comp
	3	Cloud Software	Comp
	4	Referendum Software Election	Politics
Test	5	Java Software Java Election	?

$$c_{MAP} = argmax_{c \in C} \log P(c) + \sum_{w \in W} \log P(w \mid c)$$

	Doc	Words	Class
Training	1	Cloud Java Cloud	Comp
	2	Cloud Cloud Spring	Comp
	3	Cloud Software Java	Comp
	4	Referendum Software Election	Politics
Test	5	Java Software Java Election	?

$$P(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

Notice we use Laplace smoothing here

	Doc	Words	Class
Training	1	Cloud Java Cloud	Comp
	2	Cloud Cloud Spring	Comp
	3	Cloud Software Java	Comp
	4	Referendum Software Election	Politics
Test	5	Java Software Java Election	?

$$P(Cloud \mid Comp) = \frac{5+1}{9+6}$$

$$P(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

Notice we use Laplace smoothing here

$$P(Java | Comp) = \frac{2+1}{9+6}$$

$$P(Referendum \mid Comp) = \frac{0+1}{9+6}$$

$$P(Software | Comp) = \frac{1+1}{9+6}$$

$$P(Election \mid Comp) = \frac{0+1}{9+6}$$

$$P(Spring | Comp) = \frac{1+1}{9+6}$$

$$=\frac{1+1}{9+6}$$

	Doc	Words	Class
Training	1	Cloud Java Cloud	Comp
	2	Cloud Cloud Spring	Comp
	3	Cloud Software Java	Comp
	4	Referendum Software Election	Politics
Test	5	Java Software Java Election	?

$$P(Cloud \mid Politics) = \frac{0+1}{3+6}$$

$$P(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}$$

Notice we use Laplace smoothing here

$$P(Java | Politics) = \frac{0+1}{3+6}$$

$$P(Software | Politics) = \frac{1+1}{3+6}$$

$$P(Spring | Politics) = \frac{0+1}{3+6}$$

$$P(Election \mid Politics) = \frac{1+1}{3+6}$$

 $P(Referendum \mid Politics) = \frac{1+1}{3+6}$

	Doc	Words	Class
Test	5	Java Software Java Election	?

$$P(Cloud \mid Comp) = \frac{6}{15}$$

$$P(Java|Comp) = \frac{3}{15}$$

$$P(Software | Comp) = \frac{2}{15}$$

$$P(Spring | Comp) = \frac{2}{15}$$

$$P(Election | Comp) = \frac{1}{15}$$

$$P(Referendum | Comp) = \frac{1}{15}$$

$$P(Cloud \mid Politics) = \frac{1}{9}$$

$$P(Java|Politics) = \frac{1}{9}$$

$$P(Software|Politics) = \frac{2}{9}$$

$$P(Spring|Politics) = \frac{1}{9}$$

$$P(Election|Politics) = \frac{2}{9}$$

$$P(Referendum|Politics) = \frac{2}{9}$$

$$P(Comp) = \frac{3}{4}$$

$$P(Politics) = \frac{1}{4}$$

	Doc	Words	Class
Test	5	Java Software Java Election	?

$$c_{MAP} = argmax_{c \in C} \log P(c) + \sum_{w \in W} \log P(w \mid c)$$

	Doc	Words	Class
Test	5	Java Software Java Election	?

$$P(c \mid W) = \log P(c) + \sum_{w \in W} \log P(w \mid c)$$

$$P(Comp \mid Test) = \log(3/4) + \log(3/15) + \log(2/15) + \log(3/15) + \log(1/15) = -3.57$$

$$P(Politics \mid Test) = \log(1/4) + \log(1/9) + \log(2/9) + \log(1/9) + \log(2/9) = -3.81$$

Classify the document as being of class Comp

Naïve Bayes: Text Classification for Multinomial

Examples are a set of training documents.

V is the set of classes (ex. Spam / NotSpam)

Learn_naive_Bayes_text(Examples, V)

- collect all words that occur in Examples
 Vocabulary ← all distinct words in Examples
- 2. calculate the required $P(v_j)$ and $P(w_k|v_j)$ probability terms For each target value v_i in V do
 - ▶ $docs_j \leftarrow \text{subset of } Examples \text{ for which the target value is } v_j$
 - $P(v_j) \leftarrow \frac{|docs_j|}{|Examples|}$
 - ► Text_j ← a single document created by concatenating all members of docs_j
 - n ← total number of words in Text_j (counting duplicate words multiple times)
 - for each word w_k in *Vocabulary*
 - ▶ $n_k \leftarrow$ number of times word w_k occurs in $Text_i$
 - $P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$

Document Classification

- Classify_naive_Bayes_text(newDoc)
 - We take in an unseen document newDoc, we extract all words from the document and store in allWords (the same word may appear multiple time)
 - Return V_{NB} , where:

$$V_{NB} = \underset{v_j \in V}{\operatorname{argmax}} \quad logP(v_j) + \sum_{x \in allWords} logP(x \mid v_j)$$