Operations Research I: Models & Applications Using Excel to Solve Integer Programs

Michelle Chang

Department of Information Management National Taiwan University

Road map

- Example 1: personnel scheduling.
- Example 2: facility location.

Complete formulation

- According to the previous videos, let x_i be the number of people who start to work on day i for five consecutive days. x_i should be an integer.
- ▶ The formulation of this example is

Let's use the Solver add-in to find an optimal solution!

Solve by the Solver add-in

▶ An optimal solution of this IP is (4, 0, 52, 0, 14, 94, 0). $z^* = 164$.

		Co	onstraints	5					
	X 1	X 2	X 3	X 4	X 5	X 6	X 7		
Mon	1			1	1	1	1	>=	110
Tue	1	1			1	1	1	>=	80
Wed	1	1	1			1	1	>=	150
Thu	1	1	1	1			1	>=	30
Fri	1	1	1	1	1			>=	70
Sat		1	1	1	1	1		>=	160
Sun			1	1	1	1	1	>=	120
Objective values									
min	1	1	1	1	1	1	1		
Integer Programing									
	X 1	X 2	X 3	X 4	Xs	X 6	X 7		
Decision variables	4	0	52	0	14	94	0		
Objective value	164								
Constraint 1	112								
Constraint 2	112								
Constraint 3	150								
Constraint 4	56								
Constraint 5	70								
Constraint 6	160								
Constraint 7	160								

Road map

- Example 1: personnel scheduling.
- ► Example 2: facility location.

Facility location

Complete formulation

▶ According to the previous videos, the parameters are

```
f_j = weekly operating cost of distribution center j,

c_{ij} = shipping cost per book from distribution center j to region i,

K_j = capacity of distribution center j,

D_i = book demand of region i.
```

The decision variables are

$$x_j = \begin{cases} 1 & \text{if a distribution center is built at location } j, \\ 0 & \text{otherwise.} \end{cases}$$

 y_{ij} = number of books shipped from distribution center j to region i.

Complete formulation

▶ The formulation of this example is

$$\min \sum_{j=1}^{5} f_j x_j + \sum_{i=1}^{5} \sum_{j=1}^{5} c_{ij} y_{ij}
\text{s.t.} \sum_{i=1}^{5} y_{ij} \le K_j x_j \qquad \forall j = 1, ..., 5
\sum_{j=1}^{5} y_{ij} \ge D_i \qquad \forall i = 1, ..., 5
x_j \in \{0, 1\} \qquad \forall j = 1, ..., 5
y_{ij} \ge 0 \qquad \forall i = 1, ..., 5, j = 1, ..., 5.$$

Let's use the Solver add-in to find an optimal solution!

Solve by the Solver add-in

▶ An optimal solution of this IP is obtained.

Integer Programing											
Objective value	268950										
Constraint 1	0	20000	0	25000	15000						
Decision variables	X 1	X 2	X 3	X 4	X 5						
	y 11	y 12	y 13	y 14	y 15						
	y 21	y 22	y 23	y 24	y 25						
	y 31	y 32	y 33	y 34	y 35						
	y 41	y 42	y 43	y 44	y 45						
	y 51	y 52	y 53	y 54	y 55						
	0	1		0 1	1	Constraint 2					
	0	8000		0 0	0	8000					
	0	12000		0 0	0	12000					
	0	0		0 8000	1000	9000					
	0	0		0 0	14000	14000					
	0	0		0 17000	0	17000					

An optimal solution

