บทที่ 2

เอกสารและงานวิจัยที่เกี่ยวข้อง

การพัฒนาระบบ มีความจำเป็นอย่างยิ่งที่จะต้องใช้ทฤษฎีหรืองานวิจัยต่างๆที่เกี่ยวข้องมา เพื่อประกอบการพัฒนาระบบ ตั้งแต่เริ่มการศึกษาปัญหา ออกแบบวิเคราะห์ระบบ การออกแบบ โปรแกรม ตลอดจนการเขียนชุดคำสั่งควบคุมการทำงานโปรแกรม และ การประมวลต่างๆ จน โปรแกรมสามารถทำงานได้สมบูรณ์ ตามความต้องการ เอกสารและงานวิจัยที่เกี่ยวข้องในการพัฒนา ระบบการจัดการข้อมูลการฝึกประสบการณ์วิชาชีพ มีดังนี้

- 2.1 ทฤษฎีที่เกี่ยวข้องกับระบบจัดการข้อมูล
 - 2.1.1 ทฤษฎีเกี่ยวกับการจัดการข้อมูล
 - 2.1.2 ทฤษฎีเกี่ยวกับการออกแบบเว็บไซต์
- 2.2 ทฤษฎีที่เกี่ยวข้องกับการพัฒนาซอฟต์แวร์
 - 2.2.1 วงจรการพัฒนาซอฟแวร์ (System Development Life Cycle : SDLC)
 - 2.2.2 แบบจำลองกระบวนการพัฒนาระบบ
 - 2.2.3 การพัฒนาระบบเชิงวัตถุ
- 2.3 ทฤษฎีที่เกี่ยวข้องกับการวิเคราะห์และออกแบบระบบ
 - 2.3.1 การวิเคราะห์และออกแบบระบบเชิงวัตถุด้วย UML
- 2.4 ทฤษฎีที่เกี่ยวข้องกับการออกแบบฐานข้อมูล
 - 2.4.1 การออกแบบฐานข้อมูล (Database Design)
 - 2.4.2 ฐานข้อมูลเชิงสัมพันธ์ (Relational Database)
- 2.5 ทฤษฎีที่เกี่ยวข้องกับเครื่องมือและภาษาที่ใช้ในการพัฒนาระบบ
 - 2.5.1 ทฤษฎีแนวคิดเอ็มวีซี (MVC : Model View and Controller)
 - 2.5.2 พีเอชพี (Hypertext Preprocesser : PHP)
 - 2.5.3 จาวาสคริปต์ (JavaScript)
 - 2.5.4 ภาษาเอสคิวแอล (SQL : Standard Query Language)
- 2.6 เอกสารและงานวิจัยที่เกี่ยวข้อง
 - 2.6.1 ระบบนักศึกษาฝึกงานวิทยาลัยเทคนิคบ้านค่าย
 - 2.6.2 ระบบจัดการการฝึกงาน
- 2.7 สถิติที่ใช้ในการประเมินผล

2.1 ทฤษฎีที่เกี่ยวข้องกับจัดการข้อมูล

2.1.1 ระบบการจัดการข้อมูล

ข้อมูลเป็นส่วนหนึ่งที่มีความสำคัญของระบบสารสนเทศคอมพิวเตอร์ การจัดการข้อมูล (Data Management) เป็นกลยุทธ์หนึ่งในการบริหารองค์การหรือหน่วยงานให้มีประสิทธิภาพ การ จัดการและบริหารองค์กรให้ประสบความสำเร็จ ดังนั้นระบบการจัดการข้อมูลจึงมีความสำคัญต่อ องค์กรหรือหน่วยงานอย่างมาก

การจัดการข้อมูล หมายถึง การจัดเก็บข้อมูล การเรียกใช้ข้อมูล รวมถึงการวิเคราะห์ข้อมูล เพื่อการใช้งานที่รวดเร็วจึงจัดเก็บในลักษณะของฐานข้อมูลเพื่อให้สะดวกต่อการเรียกใช้ข้อมูล

ชนิดของข้อมูลจะประกอบด้วย 2 ส่วนด้วยกัน คือ กลุ่มข้อมูล (Data) และโอเปอเรชัน (Operation)

โครงสร้างข้อมูล เป็นการรวมกันของข้อมูลเชิงเดี่ยวและข้อมูลเชิงประกอบเข้าด้วยกันกำหนด ความสัมพันธ์ให้กับข้อมูลเหล่านั้น นอกจากนี้โครงสร้างข้อมูลก็ยังสามารถมีซ้อนกันได้ คือสามารถ กำหนดโครงสร้างข้อมูลที่ประกอบไปด้วยโครงสร้างข้อมูลอื่นๆ ทับซ้อนกันได้ เช่น โครงสร้างข้อมูล แบบอาร์เรย์ (Array) และ เรคอร์ด (Record)

การศึกษาทฤษฎีที่เกี่ยวข้องกับการจัดการข้อมูลนี้นำมาใช้ในส่วนของออกแบบและจัดเก็บ ข้อมูลระบบสารสนเทศ เพื่อให้ได้ระบบการจัดการข้อมูลที่ดีและมีประสิทธิภาพ สามารถจัดเก็บข้อมูล ที่ถูกต้องและครบถ้วนของข้อมูล

2.1.2 ทฤษฎีเกี่ยวกับการออกแบบเว็บไซต์

การสร้างเว็บไซต์ให้มีคุณภาพนั้นจะต้องเกี่ยวข้องกับข้อมูลมากมาย ซึ่งจะต้องมีการวิเคราะห์ และตัดสินใจก่อนที่จะลงมือทำ ซึ่งมีขั้นตอนในการพัฒนาเว็บไซต์ ดังต่อไปนี้ กำหนดเป้าหมาย การ วางแผน วิเคราะห์จัดโครงสร้างข้อมูล ออกแบบเว็บเพจ เตรียมข้อมูล ลงมือพัฒนาและทดสอบติดตั้ง และส่งเสริมให้เป็นที่รู้จักดูแลและปรับปรุงต่อเนื่องและอีกทั้งการออกแบบเว็บไซต์ซึ่งจะต้องมีการแบ่ง ออบเจ็กต์ต่าง ๆ ซึ่งจะแบ่งออกเป็นฝั่งของไคลเอนต์กับเซิร์ฟเวอร์และกำหนดยูสเซอร์อินเทอร์เฟซ ของเว็บเพจ การแบ่งออบเจ็กต์ในเว็บแอพพลิเคชันเป็นสิ่งที่มีความสำคัญอย่างมากซึ่งจะขึ้นอยู่กับ สถาปัตยกรรมที่ผู้พัฒนาเลือกใช้

1) การออกแบบธีนเว็บไคลแอนท์ (Thin Web Client) จะมีข้อกำหนดส่วนมากอยู่ที่เรื่อง เว็บเพจ ซึ่งจะกำหนดให้ในแต่ละเพจจะต้องมีอีลิเมนต์ที่สนับสนุนเอชทีเอ็มแอล (Hyper Text Markup Language: HTML) การออกแบบ Thin Web Client จะใช้วิธีการนำโมเดลเชิงวิเคราะห์ มาแปลงเป็นโมเดลเชิงออกแบบ จะมองไปที่ actor กับเซิร์ฟเวอร์เพจ โดยที่ actor จะติดต่อเฉพาะ กับเพจของไคลเอนต์ ส่วนเซิร์ฟเวอร์เพจจะติดต่อเฉพาะกับรีซอร์สทางฝั่งเซิร์ฟเวอร์เท่านั้น

2) การออกแบบธีคเว็บไคลแอนท์ (Thick Web Client) เป็นการออกแบบเว็บแอพพลิเคชัน ซึ่งจะมีส่วนที่เป็นไดนามิกเพจ ผู้ใช้ระบบสามารถกำหนดออบเจ็กต์ต่าง ๆ เองได้ ซึ่งในการออกแบบ Thick Web Client จะเริ่มที่การสร้าง ซีเควนซ์ ไดอะแกรม (Sequence Diagrams)

การศึกษาทฤษฎีที่เกี่ยวข้องกับการออกแบบเว็บไซต์นี้นำมาใช้ในส่วนของออกแบบ การ วางแผน ออกแบบหน้าจอของระบบจัดการข้อมูลการฝึกประสบการณ์วิชาชีพ

2.2 ทฤษฎีที่เกี่ยวข้องกับการพัฒนาซอฟต์แวร์

2.2.1 วงจรการพัฒนาซอฟแวร์ (System Development Life Cycle : SDLC)

การพัฒนาระบบ SDLC เป็นกระบวนการทางความคิด หรือการศึกษา วิเคราะห์ ถึงปัญหาที่ เกิดขึ้นในระบบ พร้อมทั้งเสนอแนวทางแก้ไขตามความต้องการของผู้ใช้งานหรือหน่วยงาน ภายใน วงจร SDLD แบ่งกระบวนการพัฒนาออกเป็นระยะได้แก่ การวางแผน การวิเคราะห์ การออกแบบ การพัฒนาและติดตั้ง และการบำรุงรักษา ดังภาพที่ 2-1

ภาพที่ 2-1 แสดงวงจรการพัฒนาระบบ SDLC

(ที่มา: กิตติ ภักดีวัฒนะกุล, 2551)

1) การวางแผน (Planning) เป็นระยะเริ่มแรกที่ผู้พัฒนาจะต้องทำคือการสำรวจความ ต้องการของผู้ใช้งานระบบและนำมาวิเคราะห์เพื่อค้นหาโครงการพัฒนาระบบเพื่อตอบสนองความ ต้องการของผู้ใช้ได้ และกำหนดขอบเขตของระบบใหม่ ศึกษาความเป็นไปได้ของโครงการ จัดตาราง ดำเนินงาน วางแผนการใช้ทรัพยากร

- 2) การวิเคราะห์ (Analysis) เป็นขั้นตอนการศึกษาการดำเนินการของระบบงานเดิมเพื่อ ทำความเข้าใจกับปัญหาที่เกิดขึ้น รวบรวมความต้องการในระบบใหม่จากผู้ใช้งานระบบ จากนั้นนำ ความต้องการเหล่านั้นมาวิเคราะห์เพื่อหาทางแก้ไขปัญหา โดยนำแบบจำลองต่าง ๆ มาช่วยในการ วิเคราะห์เพื่อนำไปออกแบบระบบในขั้นตอนต่อไป
- 3) การออกแบบ (Design) เป็นขั้นตอนการออกแบบระบบสารสนเทศที่จะนำมาใช้แก้ไข ปัญหาหรือตอบสนองความต้องการที่ได้ทำการวิเคราะห์ไว้ ซึ่งจะมีรายละเอียดขององค์ประกอบส่วน ต่าง ๆ ของระบบ
- 4) การพัฒนาและติดตั้ง (Implementation) เป็นขั้นตอนการพัฒนาหรือสร้างระบบ โดย การเขียนโปรแกรมเพื่อตอบสนองความต้องการของผู้ใช้ จากนั้นทำการทอสอบและติดตั้งระบบ จัดทำ คู่มือประกอบการใช้งาน
- 5) การบำรุงรักษา (Maintenance) เป็นขั้นตอนหลังทำการทดสอบและติดตั้งเรียบร้อย แล้วจะต้องคอยดูแลการทำงานของระบบใหม่ให้ราบรื่น และมีประสิทธิภาพอยู่เสมอคอยให้ช่วยเหลือ สนับสนุน แก้ไขปัญหาที่เกิดขึ้นระหว่างการใช้งาน

2.2.2 แบบจำลองกระบวนการพัฒนาระบบ

แบบจำลองกระบวนการพัฒนาระบบซึ่งเป็นแบบจำลองภาพของกระบวนการพัฒนาระบบ เพื่อให้ผู้พัฒนาได้เห็นการจัดโครงสร้างลำดับขั้นของแต่ละกระบวนการ ซึ่งแบบจำลองกระบวนการนี้ เป็นการนำเสนอกระบวนการพัฒนาระบบในแบบนามธรรม ดังนั้นจึงมีรายละเอียดเพียงบางส่วน ดังนี้

- 2.2.2.1 วอเตอร์ฟอลล์ โมเดล (Waterfall Model) แบบจำลองกระบวนการแบบวอเตอร์ฟอล์ โมเดล นี้เหมาะสมสำหรับการพัฒนาโปรแกรมสำเร็จรูปที่เป็นลักษณะที่ผลิตออกมาทีละเยอะๆ ซึ่งจะ มีลักษณะการทำงานที่ไหลจากที่สูงลงสู่ที่ต่ำ โดยไม่สามารถไหลย้อนกลับได้ คือ การทำงานในขั้นตอน ต่อไป จะเริ่มต้องได้ก็ต่อเมื่อขั้นตอนก่อนหน้าเสร็จสิ้น และจะไม่ย้อนกลับไปทำงานขั้นตอนเดิมอีก ขั้นตอนต่างๆ มีรายละเอียดดังแสดงในภาพที่ 2-2
- 1) รวบรวมความต้องการของผู้ใช้ระบบ (Requirement) เป็นขั้นตอนในการเก็บความ ต้องการของผู้ใช้โปรแกรมว่า ผู้ใช้โปรแกรมต้องการโปรแกรมอะไร ทำงานอย่างไร
- 2) ขั้นการวิเคราะห์และออกแบบระบบ (Analysis and Design) เป็นขั้นตอนในการเอา ความต้องการของผู้ใช้ระบบมาวิเคราะห์ถึงความเป็นไปได้และความเหมาะสม เลือกเครื่องมือที่จะทำ การพัฒนาโปรแกรม แล้วทำการออกแบบโปรแกรม
 - 3) การเขียนโปรแกรม (Coding) เป็นขั้นตอนของการเขียนโปรแกรมตามที่เราออกแบบ
- 4) การทดสอบโปรแกรม (Testing) เป็นขั้นตอนการเอาโปรแกรมที่เสร็จเรียบร้อยแล้วมา ทำการทดสอบหาข้อผิดพลาด

5) การบำรุงรักษาระบบ (Maintenance) เป็นขั้นตอนการดูแลผู้ใช้โปรแกรมว่ามีปัญหาใน การใช้งานหรือไม่อย่างไร พร้อมให้คำปรึกษาและรับฟังข้อคิดเห็นเพื่อจะนำมาพัฒนาโปรแกรมในรุ่น ถัดไป

ภาพที่ 2-2 แสดงกระบวนการพัฒนาระบบแบบ Waterfall Model (ที่มา: http://waterwaterfall.blogspot.com/2014/12/waterfall-softwaredevelopment.html)

2.2.2.2 ไอเทอเรทีฟ โมเดล (Iterative model) เนื่องจากวอเตอร์ฟอลล์ โมเดลมีการ วางแผนที่ดีในการวิเคราะห์และออกแบบ เพราะการทำงานแบบ วอเตอร์ฟอลล์ โมเดลนั้นไม่สามารถ ย้อนกลับไปทำขั้นตอนก่อนหน้าได้จึงทำให้มีความเสี่ยงต่อการพัฒนาและทั้งยังขาดการรับฟัง ข้อคิดเห็นจากผู้ใช้โปรแกรมเพื่อที่จะนำมาปรับปรุงโปรแกรมโดยทันทีทำให้โปรแกรมที่ออกมาไม่ตรง กับความต้องการของผู้ใช้โปรแกรม จึงทำให้เกิดโมเดล ในการพัฒนาโปรแกรมแบบใหม่ที่เรียก ไอเทอเรทีฟ โมเดล ซึ่งมีรายละเอียดดังภาพที่ 2-3

ภาพที่ 2-3 แสดงกระบวนการพัฒนาระบบแบบ Iterative model

(ที่มา: http://softwaretesting-pvn.blogspot.com/2010/06/software-developementprocess-models.html)

- 1) การวิเคราะห์ความต้องการของระบบ (Initial Requirement and Analysis) เป็น การเก็บรวบรวมความต้องการของผู้ใช้โปรแกรมจากนั้นนำมาวิเคราะห์ พร้อมทั้งหาเครื่องมือที่จะใช้ ในการพัฒนาโปรแกรม
- 2) ขั้นการออกแบบระบบ (Design) เป็นขั้นตอนในการออกแบบโปรแกรมตามที่ผู้พัฒนา ได้วิเคราะห์ไว้
- 3) การเขียนโปรแกรม (Coding) เป็นขั้นตอนในการพัฒนาโปรแกรมตามที่เราได้วิเคราะห์ และออกแบบไว้
- 4) การทดสอบโปรแกรม (Testing) เป็นขั้นตอนการทำการทดสอบโปรแกรมที่ได้ทำ การพัฒนาขึ้นเพื่อหาข้อผิดพลาดต่างๆ ของโปรแกรม ซึ่งผู้ที่จะทำการตรวจสอบโปรแกรมจะมีทั้งการ ตรวจสอบภายในทีมเขียนโปรแกรมและการตรวจสอบจากผู้ใช้โปรแกรม
- 5) วิเคราะห์ความต้องการของระบบเพิ่มเติม (More Requirement and Analysis) ถ้า ผู้ใช้โปรแกรมตรวจสอบโปรแกรมแล้วยังไม่เป็นที่น่าพอใจหรือยังพบข้อผิดพลาดของโปรแกรม ซึ่ง ผู้พัฒนาจะนำเอาข้อเสนอเหล่านั้นจากผู้ทำการตรวจสอบมาทำการแก้ไขเพิ่มเติม โดยทำการออกแบบ ใหม่อีกรอบหนึ่ง เพื่อได้โปรแกรมที่มีประสิทธิภาพความต้องการของผู้ใช้งาน
- 6) นำมาใช้งานจริง (Complete Product) ถ้าการทดสอบเป็นที่น่าพอใจแล้วจึงเริ่มใช้ ผลิตภัณฑ์กับงานระบบจริง
- 7) การบำรุงรักษาระบบ (Maintenance) ถึงกระนั้นผลิตภัณฑ์ที่ใช้งานจริงย่อมมี ปัญหาเกิดขึ้นเสมอผู้ใช้งานอาจมีความต้องการเพิ่ม จึงนำเอาความต้องการเหล่านั้นเข้าสู่ขั้นตอนการ พัฒนาโปรแกรมอีกครั้งซึ่งจะอยู่ในขั้นตอนของการวิเคราะห์ความต้องการของระบบเพิ่มเติม

ผู้พัฒนาระบบจัดการข้อมูลการฝึกประสบการณ์วิชาชีพ ได้นำทฤษฎีที่เกี่ยวข้องกับการพัฒนา ซอฟต์แวร์มาประยุกต์ใช้กับขั้นตอนการศึกษาถึงปัญหาของระบบงานและความเป็นไปได้ของงาน รวม ของการนำไปวิเคราะห์ ออกแบบระบบ ขั้นตอนการพัฒนาระบบ ขั้นตอนการดำเนินการและวิธีการ บำรุงรักษา เพื่อให้การทำงานเป็นไปตามขั้นตอนและมีประสิทธิภาพมากยิ่งขึ้น

2.2.3 กระบวนการพัฒนาระบบเชิงวัตถุ

การพัฒนาระบบเชิงวัตถุ (Agile Develoment) มีกระบวนการทำงานที่คล้ายกระบวนการ พัฒนาระบบโดยทั่วไป ซึ่งจะมีการวิเคราะห์ความต้องการของระบบ การวิเคราะห์ระบบ การ ออกแบบระบบ การพัฒนา ติดตั้งระบบ และการบำรุงรักษาระบบ กระบวนการพัฒนาระบบเชิงวัตถุ จะมุ่งเน้นที่ลำดับของการดำเนินการและผลลัพธ์ที่เกิดจากระบวนการ เพื่อช่วยให้ประสิทธิภาพในการ ดำเนินการนอกจากนี้ยังมีกระบวนการที่เรียกว่า "Artfact" ได้แก่ เอกสาร โปรแกรม หน้าตาเว็บ โครงสร้างฐานข้อมูล แผนภาพ และโมเดลต่าง ๆ เป็นต้น

การศึกษาทฤษฎีที่เกี่ยวข้องกับการพัฒนาระบบเชิงวัตถุนี้นำมาใช้ในส่วนของวิเคราะห์ระบบ เชิงวัตถุ ในการวางแผน และออกแบบระบบการทำงาน ของระบบจัดการข้อมูลการฝึกประสบการณ์ วิชาชีพ

2.3 ทฤษฎีที่เกี่ยวข้องกับการวิเคราะห์และออกแบบเชิงวัตถุ

2.3.1 การวิเคราะห์และออกแบบเชิงวัตถุด้วย UML

การวิเคราะห์และออกแบบเชิงวัตถุ (Object-Oriented Analysis Design: OOAD) เป็นการ จำลองแบบเชิงวัตถุ ซึ่งจะเป็นตัวแทนของระบบสารสนเทศ เพราะออบเจ็กต์ทำหน้าที่ปฏิบัติงานและ เป็นตัวโต้ตอบกับระบบ การใช้วัตถุ เป็นตัวหลักในการพิจารณาความเป็นจริงต่าง ๆ ที่เกิดขึ้น โดยมอง ทุกสิ่งเป็นวัตถุทั้งหมด และกิจกรรมที่เกิดขึ้นนั้นเกิดจากความสัมพันธ์และปฏิสัมพันธ์ระหว่างวัตถุ

ยูเอ็มเอล (Unified Modeling Language : UML) เป็นภาษาที่ใช้ในการอธิบายแบบจำลอง ต่าง ๆ หรือเป็นแผนภาพสำหรับสร้างตัวแบบเชิงวัตถุ และเป็นภาษามาตรฐานสำหรับสร้างแบบพิมพ์ เขียวให้แก่ระบบงาน ซึ่งสามารถใช้ในการสร้างมุมมอง กำหนดรายละเอียดในการสร้างระบบงาน และจัดทำเอกสารอ้างอิงให้แก่ระบบงานได้ เนื่องจากยูเอ็มแอล เป็นภาษาที่มีการใช้สัญลักษณ์รูปภาพ

แบบจำลอง (Modeling) เป็นวิธีการวิเคราะห์ออกแบบ (Analysis and Design) อย่างหนึ่งที่ เน้นการใช้งานแบบจำลองเป็นหลัก ซึ่งแบบจำลองที่สร้างขึ้นมาจะสามารถช่วยให้เข้าใจในปัญหาได้ ง่ายขึ้น อีกทั้งยังสามารถนำแบบจำลองมาเป็นเครื่องมือในการสื่อสารถ่ายทอดความคิดกับบุคคลอื่น ๆ ที่เกี่ยวข้องในระบบงานได้ ส่วนแบบจำลองภาพ คือการใช้สัญลักษณ์รูปภาพในการสร้างแบบจำลอง ของระบบงาน ที่จะพัฒนาเพื่อทำความเข้าใจกับความต้องการของผู้จัดทำระบบ การออกแบบระบบ ที่เป็นไปได้อย่างชัดเจนขึ้นและการบำรุงรักษาที่ง่ายยิ่งขึ้น แบบจำลองเกิดขึ้นโดยการนำเสนอส่วน

ต่าง ๆ ของระบบซึ่งมีเพียงส่วนที่สำคัญโดยไม่คำนึงถึงรายละเอียดปลีกย่อยต่าง ๆ ในการพัฒนาระบบ ซอฟต์แวร์ที่ซับซ้อน ผู้พัฒนาจึงต้องทำความเข้าใจกับมุมมองด้านต่าง ๆ ของระบบก่อนทำการ พัฒนาจริง โดยการสร้างแบบจำลองอันเปรียบเสมือนพิมพ์เขียวที่แสดงถึงภาพรวมทั้งหมดของระบบ แบบจำลองที่สร้างขึ้นจะต้องมีความสอดคล้องกับความต้องการของผู้ใช้งานระบบเป็นสำคัญ ในส่วน ของรายละเอียดต่าง ๆ จะค่อย ๆ ถูกเพิ่มเติมลงไปในตัวแบบจำลองและในที่สุดแบบจำลองจะถูก นำไปพัฒนาขึ้นเป็นระบบจริง แบบจำลองที่ผู้พัฒนาได้นำมาใช้ในการวิเคราะห์และออกแบบระบบ ได้แก่ ยูสเคส ไดอะแกรม (Use Case Diagram) คลาสไดอะแกรม (Class Diagram) ซีเควนซ์ ไดอะแกรม (Sequence Diagram)

ยูสเคศ ไดอะแกรมเป็นแผนภาพแสดงการใช้งานจากผู้ใช้ระบบ (Actor) หรือ Use Caseและ ความสัมพันธ์ระหว่าง Use Case และผู้ใช้ระบบ ซึ่งสัญลักษณ์ของยูสเคศ ไดอะแกรมมีดังแสดงใน ภาพที่ 2-4

สัญลักษณ์	รายละเอียด
1. use case name	Use case เป็นหน้าที่ ที่ระบบจะต้องทำ
2. actor name	Actor เป็นผู้ที่เกี่ยวข้องกับระบบ ทำหน้าที่ผลักดันให้เกิด กิจกรรมของระบบ หรือ ทำหน้าที่ดูแลกิจกรรมของระบบ
3. System name	System bounbary เป็นเส้นแบ่งขอบเขตระหว่าง ระบบและ actor
4. Connection	Connection เป็นเส้นเชื่อมระหว่าง actor และ use case

ภาพที่ 2-4 แสดงสัญลักษณ์ของ Use Case Diagram

(ที่มา : http://communicationdiagram.blogspot.com/2014_05_01_archive.

แผนภาพคลาส (Class Diagram) เป็นแผนภาพที่ใช้แสดงคลาสและความสัมพันธ์ในแง่ต่าง ๆ ระหว่าง Class เหล่านั้น ซึ่งในแต่ละคลาสจะมีการจัดเก็บข้อมูลและมีวิธีในการจัดการกับข้อมูลที่ จัดเก็บ โดยคลาสจะเป็นรูปสี่เหลี่ยมที่ถูกแบ่งออกเป็นสามส่วน โดยชื่อคลาสจะอยู่ส่วนบนสุด และ แอตทริบิวต์จะอยู่ตรงกลาง และโอเปอเรชั่นจะอยู่ล่างสุด ดังแสดงในภาพที่ 2-5

Button		
-xsize		
-ysize		
-Label_text		
-interested_listeners		
-xposition		
-yposition		
+add()		
+grow()		
+move()		
+isEmpty()		

ภาพที่ 2-5 แสดงสัญลักษณ์ของ Class Diagram (ที่มา: สุนทริน วงค์ศิริกุล, 2550)

- 1) แอตทริบิวต์ (Attribute) คือข้อมูลที่เป็นคุณสมบัติของคลาส คือข้อมูลที่จะจัดเก็บและ นำมาใช้ในระบบ ซึ่งสามารถกำหนดระดับของการเข้าถึงข้อมูลได้ โดยการใส่เครื่องหมายดังต่อไปนี้ไว้ ข้างหน้าของแอตทริบิวต์
- 2) สาธารณะ (Public) หมายถึงการอนุญาตให้คลาสอื่น ๆ สามารถมองเห็นและใช้งาน ข้อมูลที่อยู่ในแอตทริบิวต์นี้ได้ ลักษณ์ที่ใช้แทนคือ (+)
- 3) ป้องกัน (Protected) หมายถึงการอนุญาตให้คลาสอื่น ๆ สามารถมองเห็นแอตทริบิวต์ นี้ได้แต่ไม่อนุญาตให้ใช้งานแอตทริบิวต์นี้ได้ ลักษณ์ที่ใช้แทนคือ (#)
- 4) ซ่อนไว้ (Hidden) หมายถึงคลาสอื่น ๆ ไม่สามารถที่จะมองเห็นและใช้งานแอตทริบิวต์ นี้ได้ ลักษณ์ที่ใช้แทนคือ (-)

โอเปอเรชั่น (Operation) คือหน้าที่การทำงานที่คลาสสามารถกระทำได้ โดยโอเปอเรชั่น จะตามด้วยเครื่องหมาย () ต่อท้ายแต่ละโอเปอเรชั่น ซึ่งหมายถึงการระบุพารามิเตอร์ (Parameter) ที่ จะใช้ส่งผ่านกันระหว่างโอเปอเรชั่นไว้ใน () บางโอเปอเรชั่นอาจจะไม่มีพารามิเตอร์ที่ต้องส่งแต่ก็ต้อง ใส่เครื่องหมายวงเล็บ () ไว้เช่นกัน โดยปล่อยให้ค่าภายใน () นั้นเป็นค่าว่างไว้ ซึ่งโอเปอเรชั่นจะมี สถานะเป็นสาธารณะ (Public) โดยการระบุเครื่องหมายบวก + ไว้ที่ข้างหน้าของแต่ละโอเปอเรชั่น

ความสัมพันธ์ระหว่างคลาส (Class Relationship) เป็นการประสานการทำงานของแต่ละ คลาสเข้าด้วยกัน ซึ่งรูปแบบความสัมพันธ์ระหว่างคลาส (Class relationship) ของคลาสไดอะแกรม สามารถแบ่งออกได้เป็นรูปแบบต่าง ๆ ดังนี้

1. Generalization หรือ Inheritance เป็นความสัมพันธ์ระหว่างคลาสในลักษณะของการ จำแนกชนิด การจำเพาะเจาะจงรายละเอียด หรือการหาลักษณะร่วมกันของคลาสที่ต่างชนิดกัน เพื่อ สร้างคลาสที่เป็นตัวแทนของกลุ่มคลาสเหล่านั้น ดังภาพที่ 2-6

ภาพที่ 2-6 แสดงความสัมพันธ์แบบ Generalization/Specialization

(ที่มา: กิตติ ภักดีวัฒนะกุล, 2551)

2. การเป็นส่วนหนึ่งของ (Aggregation) เป็นความสัมพันธ์แบบต่างระดับในลักษณะของการ เป็นองค์ประกอบโดยคลาสที่เป็นองค์ประกอบเรียกว่า Part Class คลาสที่เกิดจากการรวมกันของ องค์ประกอบต่าง ๆ เรียกว่า Whole Class ข้อสังเกตของความสัมพันธ์ชนิดนี้คือ Part Class มีอิสระ ไม่จำเป็นต้องพึ่งพา Whole Class และเมื่อ Whole Class ถูกทำลายหรือเสียหาย Part Class ก็ยัง คงอยู่แสดงสัญลักษณ์ดังภาพที่ 2-7

ภาพที่ 2-7 แสดงสัญลักษณ์การเป็นส่วนหนึ่งของ (Aggregation)

(ที่มา : http://projectumlobjectdiagram.blogspot.com/p/class-diagram-2-class-relation ship.html)

3. การเป็นองค์ประกอบ (Composition) ความสัมพันธ์นี้จะมีลักษณะคล้าย ๆ กับความ สัมพันธ์แบบเป็นส่วนหนึ่งของ คือคลาสย่อยเป็นส่วนหนึ่งของคลาสหลัก แต่ต่างกันที่ส่วนประกอบ ย่อยนี้จะไม่สามารถนำออกจากส่วนประกอบหลักได้ เมื่อนำส่วนประกอบย่อยออกไปส่วนประกอบ หลักก็จะสูญเสียคุณสมบัติของความเป็นคลาสนั้น ๆ จัดเป็นองค์ประกอบที่ไม่อาจขาดได้ดังภาพที่ 2-8

ภาพที่ 2-8 แสดงสัญลักษณ์การเป็นองค์ประกอบ (Composition)

(ที่มา : http://projectumlobjectdiagram.blogspot.com/p/class-diagram-2-class-relationship.html.)

4. ความเกี่ยวข้องกัน (Association) เป็นความสัมพันธ์ระหว่างคลาสในระดับเดียวกัน คือ ไม่ มีคลาสใดสำคัญมากกว่าคลาสใดจัดการความสัมพันธ์ขั้นต้น ใช้เส้นตรงเชื่อมระหว่างคลาส พร้อมกับ ชื่อความสัมพันธ์หรืออาจจะใช้เส้นตรงมีหัวลูกศรแบบก้างปลา เรียกว่าความสัมพันธ์แบบบอกทิศทาง (Navigation) โดยที่ชื่อความสัมพันธ์จะมีเครื่องหมายแสดงความชัดเจน Visibility ของคลาสด้วยดัง ภาพที่ 2-9

ภาพที่ 2-9 แสดงสัญลักษณ์การเป็นองค์ประกอบ (Association

(ที่มา : http://agilemodeling.com/artifacts/classDiagram.htm#Associations.)

ซีเควน ไดอะแกรม (Sequence Diagram) เป็นแผนภาพแสดงลำดับการโต้ตอบระหว่าง อ็อบเจกต์ เพื่อตอบสนองต่อการสั่งงานจากผู้ใช้งานระบบ โดยมีอ็อบเจ็กต์และเวลาเป็นตัวกำหนด ลำดับของงาน และเน้นไปที่อินแทน (Instant) ของ Object Sequence Diagram เป็นไดอะแกรมซึ่ง แสดงปฏิสัมพันธ์ร่วมกัน ระหว่างอ็อบเจ็กต์ตามลำดับของเหตุการณ์ที่เกิดขึ้น ณ เวลาที่กำหนดเมสเสจ (Message) ที่เกิดขึ้นระหว่าง คลาสจะสามารถนำไปสู่การสร้าง Method ในคลาสที่เกี่ยวข้องได้ Sequence Diagram จะประกอบด้วยสัญลักษณ์ต่างๆ ดังที่แสดงในภาพที่ 2-10

สัญลักษณ์	ชื่อ	ความหมาย
₹	Actor	ผู้ที่เกี่ยวข้องกับระบบ
objectName :ClassName	Object	ออบเจ็กต์ที่ต้องทำหน้าที่ตอบสนอง ต่อ Actor
	Lifeline	เส้นแสดงชีวิตของออบเจ็กต์หรือ คลาส
	Focus of Control / Activation	จุดเริ่มต้นและจุดสิ้นสุดของแต่ละ กิจกรรมในระหว่างที่มีชีวิตอยู่
Message()	Message	คำสั่งหรือฟังก์ชันที่ออบเจ็กต์หนึ่งส่ง ให้อีกออบเจ็กต์หนึ่ง ซึ่งสามารถ ส่งกลับได้
	Callback / Self Delegation	การประมวลผลและคืนค่าที่ได้ภายใน ออบเจ็กต์เดียวกัน

ภาพที่ 2-10 แสดงสัญลักษณ์ของ Sequence Diagram

(ที่มา: http://sequencediagam.circlecamp.com/?page=Mean&language=th)

ผู้พัฒนาระบบจัดการข้อมูลการฝึกประสบการณ์วิชาชีพ ได้นำทฤษฎีที่เกี่ยวข้องกับการ วิเคราะห์และออกแบบเชิงวัตถุด้วย UML มาประยุกต์ใช้ในการวิเคราะห์และออกแบบระบบ ในการ เขียนแผนภาพแบบจำลอง Use Case Diagram , Class Diagram และ Sequence Diagram แสดง ขั้นตอนการทำงานของระบบงาน

2.4 ทฤษฎีที่เกี่ยวข้องกับการออกแบบฐานข้อมูล

2.4.1 การออกแบบฐานข้อมูล

ฐานข้อมูลมีความสำคัญอย่างมากต่อระบบสารสนเทศที่สนับสนุนการทำงานของหน่วยงาน หรือองค์กรต่าง ๆ ในการจัดเก็บข้อมูล ให้ปลอดภัยและมีความน่าเชื่อถือซึ่งสามารถช่วยให้หน่วยหรือ ผู้ใช้สามารถนำข้อไปใช้ในการวางแผนการการตัดสินใจได้สะดวก การออกแบบฐานข้อมูลที่ดี ควรจะมี คุณสมบัติที่เข้าใจง่าย อธิบายได้ชัดเจน และเชื่อถือได้ตลอดจนสามารถรองรับการขยายตัวของข้อมูล ในระบบได้

การออกแบบฐานข้อมูล เป็นการกำหนดโครงร่างของฐานข้อมูล ก่อนที่จะนำโครงร่างที่ได้ไป พัฒนาให้เป็นฐานข้อมูลที่จัดเก็บอยู่จริงบนหน่วยความจำสำรอง โดยการออกแบบฐานข้อมูลมีหลาย แนวทาง

ในที่นี้ผู้พัฒนาขอกล่าวถึง Data-driven Approach ซึ่งเป็นแนวทางที่ให้ความสำคัญกับตัว ข้อมูลมากกว่าโปรแกรม คือ จะออกแบบตัวข้อมูลจนมีความสมบูรณ์ ก่อนที่จะออกแบบโปรแกรมเป็น ลำดับต่อไป ได้แบ่งการออกแบบฐานข้อมูลออกเป็น 3 ระดับ ดังนี้คือ ระดับแนวคิด ระดับตรรกะ และระดับกายภาพ ดังภาพที่ 2-11

ภาพที่ 2-11 แสดงขั้นตอนการออกแบบฐานข้อมูล

(ที่มา : กิตติ ภักดีวัฒนะกุล, 2551)

- 1) การออกแบบฐานข้อมูลระดับแนวคิด (Conceptual Database Design) เป็นขั้นตอน ในการสร้างแบบจำลองข้อมูลในระดับแนวคิด เพื่อแสดงให้เห็นเพียงข้อมูลที่เกิดขึ้นในระบบว่า ประกอบไปด้วย แอททริบิวต์ (Attribute) อะไร และข้อมูลเหล่านี้มีความสัมพันธ์กันอย่างไร
 - 2) การออกแบบฐานข้อมูลระดับตรรกะ (Logical Database Design) เป็นการนำ

โครงร่างที่ได้จากการออกแบบระดับแนวคิด มาแปลงให้เป็นโครงร่างระดับตรรกะ ตามชนิดของ ฐานข้อมูลที่เลือกใช้ ซึ่งผู้พัฒนาได้เลือกใช้ฐานข้อมูลเชิงสัมพันธ์ ดังนั้นโครงร่างระดับตรรกะที่ได้จาก ขั้นตอนนี้จึงเป็น "Relation" แต่ยังไม่สามารถนำไปใช้ในการออกแบบฐานข้อมูลในระดับกายภาพได้ เนื่องจากโครงร่างอาจยังมีความซ้ำซ้อนของข้อมูลอยู่ ดังนั้นจึงต้องมีการปรับปรุงด้วยกระบวนการ "Narmalization" เพื่อให้ได้โครงร่างที่เหมาะสมต่อการจัดเก็บข้อมูล

3) การออกแบบฐานข้อมูลฐานระดับกายภาพ (Physical Database Design) เป็นการนำ ความสัมพันธ์ ที่ถูกแปลงมาจาก อีอาร์ ไดอะแกรม (E-R Diagram) มาแปลงให้อยู่ในรูปของตาราง ของฐานข้อมูล พร้อมทั้งกำหนดโครงสร้างทางกายภาพให้กับฐานข้อมูล ได้แก่ กำหนดชนิดของข้อมูล ขนาดและขอบเขตของ Attribute รวมถึงประเภทของคีย์ (Key) ของข้อมูล ตลอดจนการกำหนด วิธีการความปลอดภัยให้กับฐานข้อมูลด้วย

ผู้พัฒนาได้นำทฤษฎีที่เกี่ยวข้องกับการออกแบบฐานข้อมูลมาประยุกต์ในการออกแบบและ จัดการฐานข้อมูลของระบบงาน เพื่อให้การจัดเก็บฐานข้อมูลเป็นไปอย่างถูกต้องตรงตามความเป็นจริง

2.4.2 ฐานข้อมูลเชิงสัมพันธ์

ดร.ศิริลักษณ์ โรจนกิจอำอวย. (2552 : 13 – 27) ได้กล่าวไว้ว่า ฐานข้อมูลเชิงสัมพันธ์ (Relational Database) เป็นรูปแบบฐานข้อมูลที่เข้าใจง่ายสำหรับผู้ใช้งาน ไม่ซ้ำซ้อนและยังรวมถึง รูปแบบฐานข้อมูลที่มีระบบจัดการฐานข้อมูล (Database Management Systems: DBMS) และยัง ช่วยการรักษาความอิสระของข้อมูล (Data Independence) และความเป็นอิสระของโครงสร้างของ ข้อมูลในแต่ระดับ (Structural Independence) อีกทั้งยังมีคุณลักษณะที่ช่วยลดความซ้ำซ้อน ตลอดจนปัญหาที่เกิดจากการปรับปรุงหรือการเพิ่มลบข้อมูลด้วยการนำแนวคิดการทำให้เป็น บรรทัดฐาน (Normalization) มาใช้ในการออกแบบ

การทำให้เป็นบรรทัดฐาน เป็นกระบวกการที่ใช้ในการทดสอบการออกแบบรีเลชั่นตามเกณฑ์ ของขั้นตอนต่างๆ เป็นการวิเคราะห์การออกแบบในลักษณะ Bottom – Up ซึ่งเป็นการพิจารณาว่า คีย์หลักหรือคีย์คู่แข่งสามารถระบุค่าของแอททริบิวต์อื่นๆ ของทูเพิลหนึ่งในรีเลชั่นได้ ซึ่งจะช่วยลด ความซ้ำซ้อนในฐานข้อมูล

โครงสร้างข้อมูลของฐานข้อมูล จำเป็นที่จะต้องใช้แบบจำลองข้อมูลในการนำเสนอ ซึ่ง เรียกว่า แบบจำลองฐานข้อมูล (Database Model)

แบบจำลองฐานข้อมูลเชิงสัมพันธ์ (Relational Database Model) เป็นแบบจำลองที่ นำเสนอโครงสร้างของข้อมูลที่อยู่ในฐานข้อมูลเชิงสัมพันธ์ โดยนำเสนอในรูปแบบของตางราง หรือ Relation

ตาราง (Relation) เป็นตาราง 2 มิติที่ใช้ในการเก็บข้อมูล โดยแต่ละตารางจะประกอบด้วย ชุดแถวเรียกว่า "Tuple" และคอลัมน์โดยที่ คอลัมน์จะใช้แสดง Attribute ส่วนแถวจะแทนค่าข้อมูล ของ Attribute โดยข้อมูลที่จัดเก็บอยู่ในแต่ละความสัมพันธ์จะเป็นข้อมูลที่แยกเป็นเอกเทศ แต่ สามารถนำมาสร้างความสัมพันธ์ร่วมกันได้ คุณลักษณะของข้อมูลที่จัดเก็บของรีเลชันมีดังนี้ คือ

- 1) ข้อมูลในแต่และแถวจะไม่ซ้ำกัน
- 2) การเรียงลำดับของข้อมูลในแต่ละแถวไม่เป็นสาระสำคัญ
- 3) การเรียงลำดับของแอททริบิวต์จะเรียงลำดับก่อนหลังอย่างไรก็ได้
- 4) ค่าของข้อมูลในแต่ละแอททริบิวต์ของทูเพิลหนึ่ง ๆ จะเก็บข้อมูลได้เพียงค่าเดียว
- 5) ค่าของข้อมูลในแต่ละแอททริบิวต์จะเก็บค่าของข้อมูลประเภทเดียวกัน

ฐานข้อมูลเชิงสัมพันธ์ทุกรีเลชั่นจะต้องมีแอททริบิวต์ที่เป็นคีย์หลัก ซึ่งมีคุณสัมบัติเป็นค่าไม่ซ้ำ และต้องไม่มีค่าว่าง และการเชื่อมโยงระหว่างรีเลชั่นจะใช้แอททริบิวต์เป็นคีย์นอกเชื่อมโยงกับ แอททริบิวต์ที่เป็นคีย์หลักของอีกตารางหนึ่งเพื่อให้สามารถเรียกข้อมูลที่ผู้ใช้ต้องการได้และยังเน้นที่ ความสัมพันธ์ของเอนทิตี้ ซึ่งสัญลักณ์ความสัมพันธ์ของเอนทิตี้มีดังภาพที่ 2-12

ภาพที่ 2-12 แสดงสัญลักษณ์ที่ใช้ในการเชื่อมโยงความสัมพันธ์ระหว่างเอนทิตี้
(ที่มา : สุนทริน วงศ์ศิริกุล, 2550)

รายละเอียดสัญลักษณ์ที่ใช้ในการเชื่อมโยงความสัมพันธ์ระหว่างเอนทิตี้มีดังนี้

- 1. การเชื่อมแบบมีหนึ่งทางเลือก (Optional Connection:Zero–One) คือวัตถุ A เชื่อมโยง ไปสู่วัตถุ B ได้เพียงหนึ่งรายการหรือไม่เชื่อมโยง
- 2. การเชื่อมแบบบังคับเพียงหนึ่ง (Mandatory One Connection) คือวัตถุ A จะต้องทำ การเชื่อมโยงไปสู่วัตถุ B เพียงหนึ่งความสัมพันธ์เท่านั้น
- 3. การเชื่อมแบบมีหลายทางเลือก (Optional Connection:Zero-Many) คือวัตถุ A อาจจะ เชื่อมโยงไปสู่วัตถุ B ได้หลายรายการหรือไม่เชื่อมโยงเลย

4. การเชื่อมแบบบังคับหลายรายการ (Mandatory Many Connection) คือวัตถุ A ต้อง เชื่อมโยงไปสู่วัตถุ B หนึ่งรายการหรือมากกว่าหนึ่งรายการ

ผู้พัฒนาระบบจัดการข้อมูลการฝึกประสบการณ์วิชาชีพได้นำทษฎีที่เกี่ยวข้องฐานข้อมูลเชิง สัมพันธ์มาประยุกต์ในการจัดการฐานข้อมูล เพื่อลดความซ้ำซ้อนของข้อมูลและการจัดการข้อมูลให้มี ความถูกต้อง

2.5 ทฤษฎีที่เกี่ยวข้องกับเครื่องมือที่ใช้ในการพัฒนาระบบ

2.5.1 ทฤษฎีแนวคิด เอ็มวีซี (MVC: Model View and Controller)

เอ็มวีซีได้มีการคิดค้นและพัฒนาร่วมกับภาษาสมอทอก-80 (Smalltalk-80) โดยการแยก ส่วน อ็อบเจ็กต์ที่เก็บข้อมูล ส่วนอ็อบเจ็กต์ที่แสดงผลข้อมูลและส่วนอ็อบเจ็กต์ที่ติดต่อกับผู้ใช้ออกจาก กันอย่างชัดเจน โดยการสื่อสารกันระหว่างออบเจ็กต์แต่ละส่วนจะใช้รูปแบบอ็อบเซิร์ฟเวอร์แพตเทิร์น (Observer Pattern) ซึ่งการแจ้งเหตุการณ์หรือข้อมูลจากคลาสต้นกำเนิดไปยังคลาสที่รับข้อมูลนั้นซึ่ง การแยกอ็อบเจ็กต์ออกจากกัน จะทำให้ง่ายต่อการแก้ไขโปรแกรม สามารถเปลี่ยนแปลงส่วนที่จะ แสดงผลจากเอชทีเอ็มแอลเป็นดับเบิ้ลยูเอ็มแอล (WML: Wireless Markup Langguage) หรือ สามารถเปลี่ยนรูปแบบการแสดงผลแบบอื่นได้โดยไม่ต้องทำการแก้ส่วนที่เก็บข้อมูล เนื่องจากเอ็มวีซี สามารถสนับสนุนหลาย ๆ รูปแบบการแสดงผลพร้อม ๆ กันซึ่งมีผู้ดัดแปลงเอ็มวีซีไปใช้หลายรูปแบบ และเรียกชื่อที่ต่างกันไป แต่หลักการก็ยังคล้าย ๆ เดิม เพียงแตกต่างที่การติดต่อระหว่างส่วนการ ทำงานทั้ง 3 ส่วนว่าส่วนไหนเป็นส่วนที่จะแจ้งหรือตอบรับการเปลี่ยนแปลงเหตุการณ์ (Event notification) เอ็มวีซีจะทำการจัดแบ่งส่วนการทำงานออกเป็นกลุ่ม ๆ ตามลักษณะงานที่ต้อง ทำโดยแบ่งเป็น 3 กลุ่มดังนี้

- 1) แบบจำลอง (Model) คืออ็อบเจ็กต์ที่ทำหน้าเป็นตัวแทนของข้อมูลหรือติดต่อกับ ฐานข้อมูลไม่ว่าข้อมูลจะถูกจัดเก็บในรูปแบบใดในระบบฐานข้อมูลหรือในไฟล์ เมื่อข้อมูลนั้นถูกโหลด เข้ามาในแอพพลิเคชัน สามารถเปลี่ยนมันให้อยู่ในรูปของอ็อบเจ็กต์
- 2) มุมมอง (View) เป็นส่วนการสร้างรูปแบบจากแบบจำลองมาแปลงเป็นข้อมูลให้ผู้ใช้ระบบ สามารถเข้าใจหรือการนำข้อมูลที่ได้จากแบบจำลองมาแสดงผล
- 3) ตัวควบคุม (Controller) เป็นส่วนที่ทำหน้าที่จัดการคำขอและทำการเลือกข้อมูลจาก แบบจำลองและเลือกหน้ามุมมองที่จะใช้แสดงผลให้แก่ผู้ใช้ เมื่อผู้ใช้ตัดสินใจส่งคำขอมายังตัวควบคุม ตัวควบคุมจะทำการเลือกข้อมูลหรือปรับปรุงแบบจำลองตามคำขอและจะทำการเลือกมุมมองเพื่อ ส่งกลับไปให้กับผู้ใช้ ซึ่งตัวควบคุมนี้จะช่วยให้ง่ายต่อการพัฒนาเนื่องจากผู้พัฒนาสามารถเรียกใช้ ฟังชั่นที่ได้มีอยู่หรือที่มีการเขียนไว้ก่อนหน้า

เอ็มวีซีเป็นรูปแบบการออกแบบที่แบ่งส่วนของการประมวลผลระหว่างข้อมูลออกจากการ แสดงผลเพื่อลดความซ้ำซ้อนในการพัฒนาและง่ายต่อการดูแลรักษาและลดความซ้ำซ้อนในส่วนการ อ่านข้อมูล เนื่องจากข้อมูลถูกสร้างแบบจำลอง ซึ่งสามารถส่งไปยังมุมมองต่าง ๆ ได้ลักษณะการ ทำงานของเอ็มวีซีดังภาพที่ 2-13

ภาพที่ 2-13 สถาปัตยกรรมเอ็มวีซี (ที่มา http://www.pisit.in.th/php/mvc)

ผู้พัฒนาระบบจัดการข้อมูลการฝึกประสบการณ์วิชาชีพ ได้นำทฤษฎีแนวคิด เอ็มวีซี (MVC: Model View and Controller) มาประยุกต์ใช้ในการเขียนโปรแกรม เพื่อลดความซ้ำซ้อนในการ พัฒนาและง่ายต่อการดูแลรักษาและลดความซ้ำซ้อนในส่วนการอ่านข้อมูล

2.5.2 พีเอชพี (Hypertext Preprocesser : PHP)

ธันยพัฒน์ วงศ์รัตน์. (2556 : 1-3) ได้กล่าวไว้ว่า ภาษาพีเอชพี เป็นภาษาคอมพิวเตอร์ใน ลักษณะเซิร์ฟเวอร์-ไซด์ สคริปต์ เป็นภาษาที่ใช้ในการพัฒนาเว็บไซต์ ซึ่งสามารถสร้างระบบงานหรือ เว็บแอพพลิเคชันได้มากมาย ภาษาพีเอชพีสามารถทำงานร่วมกับโค้ดภาษาเอชทีเอ็มแอล

2.5.3 จาวาสคริปต์ (JavaScript)

ธันยพัฒน์ วงศ์รัตน์. (2556 : 231-233) ได้กล่าวไว้ว่า จาวาสคริปต์ (javaScript) เป็นภาษา โปรแกรมประเภทหนึ่งซึ่งเรียกว่า "สคริปต์ (Script)" มีลักษณะการทำงานแบบ แปลความและ ดำเนินงานไปที่ละคำสั่ง ซึ่ง จาวาสคริปต์ ได้ถูกพัฒนาขึ้นมาเพื่อช่วยให้เว็บเพจสามารถแสดงเนื้อหาที่ มีการเปลี่ยนแปลง เคลื่อนไหว หรือสามารถโต้ตอบกับผู้ใช้ได้

จาวาสคริปต์ (JavaScript) เป็นภาษายุคใหม่สำหรับการเขียนโปรแกรมบนระบบ อินเทอร์เน็ตที่กำลังได้รับความนิยมอย่างสูง เพื่อใช้ประโยชน์สำหรับงานด้านต่างๆ ทั้งการคำนวณ การแสดงผล การรับ-ส่งข้อมูล และ สามารถโต้ตอบกับผู้ใช้ได้อย่างทันทีทันใด นอกจากนี้ยังมี ความสามารถด้านอื่นๆ อีกหลายประการที่ช่วยสร้างความน่าสนใจให้ กับเว็บเพจของเราได้อย่างมาก ภาษาจาวาสคริปต์ถูกพัฒนาโดยเน็ตสเคปคอมมูนิเคชัน โดยใช้ชื่อว่า ไลฟ์สคริปต์ (Live Script) ออกมาพร้อมกับเน็ตสเคป เนวิเกเตอร์ 2.0 (Netscape Navigator 2.0) เพื่อใช้สร้างเว็บเพจโดย ติดต่อกับเชิร์ฟเวอร์แบบไลฟ์ไวร์ (Live Wire) ต่อมาเน็ตสเคปจึงได้ร่วมมือกับบริษัทซันไมโครซิสเต็มส์ ปรับปรุงระบบของเบราว์เซอร์เพื่อให้สามารถติดต่อใช้งานกับภาษาจาวาได้ และได้ปรับปรุง ไลฟ์สคริปต์ใหม่เมื่อ ปี พ.ศ. 2538 แล้วตั้งชื่อใหม่ว่า จาวาสคริปต์ (JavaScript)

2.5.4 ภาษา SQL (Standard Query Language)

ภาษาเอสคิวแอล เป็นภาษาที่ใช้ในการเขียนโปรแกรม เพื่อจัดการกับฐานข้อมูลโดยเฉพาะ ซึ่งเป็นภาษามาตรฐานบนระบบฐานข้อมูลเชิงสัมพันธ์และเป็นระบบเปิด (open system) ซึ่งสามารถ ใช้คำสั่ง SQL กับฐานข้อมูลชนิดใดก็ได้ และยังใช้คำสั่งเดียวกันเมื่อสั่งงานผ่าน ระบบฐานข้อมูลที่ แตกต่างกัน แต่จะได้ผลลัพธ์เหมือนกัน ซึ่งเราสามารถเลือกใช้ฐานข้อมูล ชนิดใดก็ได้โดยไม่ยึดติดกับ ฐานข้อมูลใดฐานข้อมูลหนึ่ง นอกจากนี้ภาษาเอสคิวแอลยังมีโครงสร้างของภาษาที่เข้าใจง่าย ไม่ ซับซ้อน มีประสิทธิภาพการทำงานสูง จึงเหมาะที่จะใช้กับระบบฐานข้อมูลเชิงสัมพันธ์ ซึ่งแบ่งการ ทำงานได้เป็น 4 ประเภท ดังนี้

- 1) คำสั่งที่ใช้สำหรับดึงข้อมูลที่ต้องการ (Select Query)
- 2) คำสั่งที่ใช้สำหรับแก้ไขข้อมูล (Update Query)
- 3) คำสั่งที่ใช้สำหรับเพิ่มข้อมูล (Insert Query)
- 4) คำสั่งที่ใช้สำหรับลบข้อมูล (Delete Query) ประเภทของคำสั่งภาษา SQL มีดังนี้
- 1) ภาษานิยามข้อมูล (Data Definition Language : DDL) เป็นคำสั่งที่ใช้ในการสร้าง ฐานข้อมูล กำหนดโครงสร้างข้อมูลว่ามี (Attribute) ใดบ้าง ชนิดของข้อมูล รวมทั้งการเปลี่ยนแปลง ตาราง และการสร้างดัชนี คำสั่ง : CREATE , DROP , ALTER
- 2) ภาษาจัดการข้อมูล (Data Manipulation Language :DML) เป็นคำสั่งที่ใช้ในการเรียก ใช้ เพิ่ม ลบ และเปลี่ยนแปลงข้อมูลในตาราง คำสั่ง : SELECT , INSERT , UPDATE , DELETE

3) ภาษาควบคุมข้อมูล (Data Control Language : DCL) เป็นคำสั่งที่ใช้ในการกำหนดสิทธิ การอนุญาติ หรือ ยกเลิก การเข้าถึงฐานข้อมูล เพื่อป้องกันความปลอดภัยของฐานข้อมูล คำสั่ง : GRANT, REVOKE

ผู้พัฒนาระบบจัดการข้อมูลการฝึกประสบการณ์วิชาชีพ ได้นำทฤษฎีทางด้านภาษาหรือ เครื่องมือไม่ว่าจะเป็นพีเอชพี จาวาสคริปต์ และ ภาษา SQL มาประยุกต์ใช้ในการพัฒนาระบบงาน เพื่อให้ได้ระบบงานที่ดีและมีประสิทธิภาพ

2.6 เอกสารและงานวิจัยที่เกี่ยวข้อง

2.6.1 ระบบนักศึกษาฝึกงานวิทยาลัยเทคนิคบ้านค่าย

ระบบนักศึกษาฝึกงานวิทยาลัยเทคนิคบ้านค่าย พัฒนาขึ้นจะอำนวยความสะดวกให้แก่ เจ้าหน้าที่ นักศึกษาอาจารย์ที่ปรึกษา และสถานประกอบการ นักศึกษาสามารถสืบค้นสถาน ประกอบการที่นักศึกษาต้องการเข้าฝึกงานตามสาขาที่ต้องการ โดยการวิจัยนี้ได้มีการออกแบบระบบ โดยใช้ทั้ง (Data Flow Diagram) และ (ER-Diagram) จากนั้นจึงนำความสัมพันธ์ของข้อมูลต่างๆ มา ออกแบบตัวอย่างข้อมูลและทำต้นแบบ หน้าจอโปรแกรม นอกจากนี้ระบบดังกล่าวยังช่วยให้การ ทำงานของเจ้าหน้าที่มีความถูกต้องแม่นยำในด้านการจัดการข้อมูลและช่วยลดขั้นตอนและความ ซ้ำซ้อนในการดำเนินงานที่เกี่ยวข้องกับการฝึกงานในสถานประกอบการทั้งหมด

2.6.2 ระบบการจัดการการฝึกงาน

ระบบการจัดการการฝึกงานพัฒนาขึ้นโดยการนำเทคโนโลยีสารสนเทศมาประยุกต์ใช้งาน ร่วมกับเทคโนโลยีเครือข่าย ภายใต้การทำงานของเว็บแอพพลิเคชั่น ASP.Net ซึ่งทำหน้าที่จัดการทั้ง ระบบ ทั้งนี้ระบบที่พัฒนาขึ้นนี้จะอำนวยความสะดวกให้แก่เจ้าหน้าที่ นักศึกษา อาจารย์ที่ปรึกษา และสถานประกอบการ โดยนักศึกษาสามารถสืบค้นสถานประกอบการที่เคยมีการฝึกงานของ นักศึกษามหาวิทยาลัยเทคโนโลยีมหานครและสถานประกอบการที่ต้องการรับนักศึกษาเข้าฝึกงาน ตามสาขาวิชาที่ต้องการ รวมไปถึงการยื่นเรื่องฝึกงานและติดตามสถานะ การดำเนินงานผ่านทาง เว็บไซต์ของระบบได้ นอกจากนี้ระบบดังกล่าวยังช่วยให้การทางานของเจ้าหน้าที่มีความถูกต้อง แม่นยำในด้านการจัดการข้อมูลและช่วยลดขั้นตอนและความซ้ำซ้อนในการดำเนินงานที่เกี่ยวข้องกับ การฝึกงานทั้งหมด

2.7 สถิติที่ใช้ในการประเมินผล

สถิติที่ใช้กันอยู่ในทางวิจัย แบ่งออกได้เป็น 2 ประเภทใหญ่ๆ คือ สถิติเชิงบรรยายหรือสถิติ เชิงพรรณนา (Descriptive Statistics) และสถิติเชิงอ้างอิงหรือสถิติอนุมาน (Inferential Statistics)

สถิติใช้ในการอธิบายคุณลักษณะ หรือรายละเอียดของกลุ่มที่ศึกษา ได้แก่

- 1) ร้อยละ (Percentage) เป็นค่าสถิติที่นิยมใช้กันมากโดยเป็นการเปรียบเทียบความถี่หรือ จำนวนที่ต้องการกับความถี่หรือจำนวนทั้งหมดที่เทียบเป็น 100
- 2) การวัดแนวโน้มเข้าสู่ส่วนกลาง (Measures of Central Tendency) เป็นสถิติที่ใช้เป็น ตัวแทนของข้อมูล โดยที่นิยมใช้มี 3 ประเภท ได้แก่ ค่าเฉลี่ย มัธยฐาน ฐานนิยม
- 3) การวัดการกระจาย (Measures of Variability) เป็นสถิติที่ช่วยให้ทราบถึงความแตกต่าง หรือการแปรผันของคะแนนในชุดนั้นหรือกลุ่มนั้นถ้าค่าที่ได้มามีค่าสูง หมายถึงคะแนนมีความแตกต่าง กันมาก ถ้าค่าที่ได้มีค่าต่ำหมายถึงคะแนนไม่แตกต่างกันมากนักหรือใกล้เคียงกัน

สถิติที่ใช้วิเคราะห์ข้อมูลในครั้งนี้ ใช้สถิติเชิงอ้างอิงหรือสถิติอนุมาน (Inferential Statistics) ในการวัดค่าร้อยละ และการวัดแนวโน้มเข้าสู่ส่วนกลางจะใช้การวัดค่าเฉลี่ยและฐานนิยม ดังนี้

2.7.1 ร้อยละ (Percentage)

จากสูตร
$$\mathrm{p}=rac{f}{N}x~100$$

เมื่อ p แทน ค่าร้อยละ

f แทน ความถี่ที่ต้องการเปลี่ยนแปลงให้เป็นค่าร้อยละ

N แทน จำนวนความถี่ทั้งหมด

2.7.2 ค่าเฉลี่ยเลขคณิต (Arithmetic Mean)

$$\bar{x} = \frac{\sum x}{N}$$

จากสูตร

เมื่อ \bar{x} แทน ค่าเฉลี่ย

 $\sum x$ แทน ผลรวมทั้งหมดของข้อมูล

N แทน จำนวนข้อมูลทั้งหมด

2.7.3 ค่าเบี่ยงเบนมาตรฐาน (Standard Deviation)

จากสูตร
$$s.d. = \sqrt{\frac{\sum (x - \overline{x})^2}{(N-1)}}$$
 เมื่อ $s.d.$ แทน ค่าเบียงเบนมาตรฐาน

 \overline{x} แทน ค่าเฉลี่ย

 $^{\chi}$ แทน ข้อมูล

N แทน จำนวนข้อมูลทั้งหมด

2.7.4 เกณฑ์การยอมรับประสิทธิ์ภาพของการทำงานของโปรแกรม

พิจารณาจากค่าเฉลี่ยเลขคณิตและค่าเบี่ยงเบนมาตรฐานของผู้ใช้และผู้เชี่ยวชาญที่ได้ทำการ ทดสอบโปรแกรม โดยต้องมีค่าเฉลี่ยเลขคณิตมากกว่า 2.6 ขึ้นไปจึงถือว่าโปรแกรมมีประสิทธิภาพ ในระดับที่ใช้งานได้จริง ซึ่งช่วงคะแนนค่าเฉลี่ยเลขคณิตมีเกณฑ์การประเมินที่สามารถแบ่งออกเป็น 5 ระดับ ดังนี้

ช่วงคะแนน 4.60 ถึง 5.00 จัดว่าอยู่ในระดับดีมาก ช่วงคะแนน 3.60 ถึง 4.59 จัดว่าอยู่ในระดับดี ช่วงคะแนน 2.60 ถึง 3.59 จัดว่าอยู่ในระดับพอใช้ ช่วงคะแนน 1.60 ถึง 2.59 จัดว่าอยู่ในระดับปรับปรุง ช่วงคะแนน 1.00 ถึง 1.59 จัดว่าอยู่ในระดับไม่เหมาะสม