

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
Please do not report the images to the
Image Problem Mailbox.

L7: (2) 6 anc
 L8: (1) 6 anc
 L9: (57) 5 anc
 L10: (74) dram
 L11: (17) 10
 Failed
 Saved

DBs: USPAT, US, PGPUB, EPO, JPO, DERWENT, IBM, TDB

Default operator: OR

Blanks

Highlight all hit terms initially

5 and select \$3

MRS form S&R form Image Text HTML

	U	I	Document ID	Issue Date	Pages	Title	Current OR	Current XRef	R
1	<input type="checkbox"/>	<input type="checkbox"/>	US 20020057446 A1	20020516	206	MULTI- INSTRUCTION STREAM PROCESSOR	358/1.13	358/1.15; 358/1.16;	
2	<input type="checkbox"/>	<input type="checkbox"/>	US 20010021971 A1	20010913	252	SYSTEM FOR EXECUTING INSTRUCTIONS HAVING FLAG FOR	712/215		
3	<input type="checkbox"/>	<input type="checkbox"/>	US 6414687 B1	20020702	201	Register setting-micro programming system	345/503	345/520; 345/559;	
4	<input type="checkbox"/>	<input type="checkbox"/>	US 6393549 B1	20020521	132	Instruction alignment unit for routing variable	712/204	712/215	
5	<input type="checkbox"/>	<input type="checkbox"/>	US 6393545 B1	20020521	201	Method apparatus and system for managing virtual memory	712/34	711/148; 711/153;	
6	<input type="checkbox"/>	<input type="checkbox"/>	US 6349379 B1	20020219	201	System for executing instructions having flag for	712/210	712/225	
7	<input type="checkbox"/>	<input type="checkbox"/>	US 6336180 B1	20020101	209	Method, apparatus and system for managing virtual memory	712/34	711/206; 711/207;	
8	<input type="checkbox"/>	<input type="checkbox"/>	US 6311258 B1	20011030	202	Data buffer apparatus and method for storing graphical	711/200	711/210; 711/211;	
9	<input type="checkbox"/>	<input type="checkbox"/>	US 6289138 B1	20010911	205	General image processor	382/307	382/308	
10	<input type="checkbox"/>	<input type="checkbox"/>	US 6272257 B1	20010807	301	Decoder of variable length codes	382/246		
11	<input type="checkbox"/>	<input type="checkbox"/>	US 6269436 B1	20010731	153	Superscalar microprocessor configured to predict return	712/23	712/228; 712/229;	

Read

NUM

EAST [-1.wsp:1]

File View Edit Tools Window Help

L7: (2) 6 anc
L8: (1) 6 anc
L9: (57) 5 anc
L9: (74) dram
L10: (74) 9 s
L11: (17) 10
Failed
Saved

Search | Help | Browse | Queue | Clear

DBs: USPAT, USPCPUS, EPO, JPO, DERWENT, IBM_TOS

Plures: Highlight all hit terms initially

Default operator: OR

5 and select\$3

ARS form S&R form Image Text HTML

U	I	Document ID	Issue Date	Pages	Title	Current OR	Current XRef	R
12	<input type="checkbox"/>	US 6260073 B1	20010710	76	Network switch including a switch manager for	709/249	370/412; 370/911;	
13	<input type="checkbox"/>	US 6259456 B1	20010710	295	Data normalization techniques	345/619	345/501	
14	<input type="checkbox"/>	US 6246396 B1	20010612	299	Cached color conversion method and apparatus	345/604	345/549; 345/600;	
15	<input type="checkbox"/>	US 6237079 B1	20010522	239	Coprocessor interface having pending instructions queue	712/34	711/153	
16	<input type="checkbox"/>	US 6195674 B1	20010227	311	Fast DCT apparatus	708/402	708/401	
17	<input type="checkbox"/>	US 6189068 B1	20010213	142	Superscalar microprocessor employing a data cache	711/3	711/118; 711/204;	
18	<input type="checkbox"/>	US 6131140 A	20001010	24	Integrated cache memory with system control logic and	711/104	711/100; 711/118;	
19	<input type="checkbox"/>	US 6118724 A	20000912	211	Memory controller architecture	365/230.05	365/189.02; 365/221;	
20	<input type="checkbox"/>	US 6079006 A	20000620	152	Stride-based data address prediction structure	711/213	711/221; 712/237;	
21	<input type="checkbox"/>	US 6061749 A	20000509	324	Transformation of a first dataword received from a	710/65	345/603; 345/643;	
22	<input type="checkbox"/>	US 6014734 A	20000111	150	Superscalar microprocessor configured to predict return	712/23	712/228; 712/229;	

ARS form S&R form Image Text HTML

Ready NUM

EAST - [1.wsp:1]

File View Edit Tools Window Help

L7: (2) 6 and
L8: (1) 6 and
L9: (57) 5 ar
L10: (74) dram
L11: (17) 10
Failed
Saved

Search | Help | Browse | Queue | Clear |
Dbs: USPAT;US;PGPU;EPO;JPO;DERWENT;IBM_TDB | Plurals: | Highlight all hit terms initially:

Default operator: OR
5 and select\$3

OKS term | S8Rterm | Image | Text | HTML

	U	I	Document ID	Issue Date	Pages	Title	Current OR	Current XRef	R
23	<input type="checkbox"/>	<input type="checkbox"/>	US 6006324 A	19991221	136	High performance superscalar alignment unit	712/204	712/215	
24	<input type="checkbox"/>	<input type="checkbox"/>	US 5987561 A	19991116	146	Superscalar microprocessor employing a data cache	711/3	711/128; 711/204;	
25	<input type="checkbox"/>	<input type="checkbox"/>	US 5978907 A	19991102	145	Delayed update register for an array	712/239		
26	<input type="checkbox"/>	<input type="checkbox"/>	US 5968169 A	19991019	129	Superscalar microprocessor stack structure for judging	712/239		
27	<input type="checkbox"/>	<input type="checkbox"/>	US 5935239 A	19990810	144	Parallel mask decoder and method for generating said	712/224	712/213; 712/23;	
28	<input type="checkbox"/>	<input type="checkbox"/>	US 5933618 A	19990803	154	Speculative register storage for storing speculative	712/217	712/212; 712/213;	
29	<input type="checkbox"/>	<input type="checkbox"/>	US 5892936 A	19990406	140	Speculative register file for storing speculative	712/216	712/212; 712/213;	
30	<input type="checkbox"/>	<input type="checkbox"/>	US 5887152 A	19990323	130	Load/store unit with multiple oldest outstanding	712/217	711/136; 711/200;	
31	<input type="checkbox"/>	<input type="checkbox"/>	US 5881278 A	19990309	154	Return address prediction system which adjusts the	712/242	712/238	
32	<input type="checkbox"/>	<input type="checkbox"/>	US 5878255 A	19990302	137	Update unit for providing a delayed update to a branch	712/240		
33	<input type="checkbox"/>	<input type="checkbox"/>	US 5875324 A	19990223	147	Superscalar microprocessor which delays update of	712/238	712/240	

OKS | Details | HTML

Ready NUM

EAST - [~1.wsp:1]

File View Edit Tools Window Help

L7: (2) 6 anc
L8: (1) 6 anc
L9: (57) 5 arc
L10: (74) dram
L11: (17) 10
Failed
Saved

Browse Queue Clear

DBs: USPAT, US, PGPUB, EPO, JPO, DERWENT, IBM_TDB

Plurals
 Highlight all hit terms initially

5 and select\$3

HTML form As Return Image Text HTML

	U	I	Document ID	Issue Date	Pages	Title	Current OR	Current XRef	R...
34	<input type="checkbox"/>	<input type="checkbox"/>	US 5875315 A	19990223	180	Parallel and scalable instruction scanning unit	712/204		
35	<input type="checkbox"/>	<input type="checkbox"/>	US 5867723 A	19990202	62	Advanced massively parallel computer with a secondary	712/11	711/114; 711/119;	
36	<input type="checkbox"/>	<input type="checkbox"/>	US 5864707 A	19990126	149	Superscalar microprocessor configured to predict return	712/23	712/228; 712/243	
37	<input type="checkbox"/>	<input type="checkbox"/>	US 5860104 A	19990112	149	Data cache which speculatively updates a	711/137	711/126; 711/204;	
38	<input type="checkbox"/>	<input type="checkbox"/>	US 5859991 A	19990112	155	Parallel and scalable method for identifying valid	712/204		
39	<input type="checkbox"/>	<input type="checkbox"/>	US 5854921 A	19981229	145	Stride-based data address prediction structure	712/239	712/1; 712/23	
40	<input type="checkbox"/>	<input type="checkbox"/>	US 5848433 A	19981208	133	Way prediction unit and a method for operating the	711/137	711/118; 711/125;	
41	<input type="checkbox"/>	<input type="checkbox"/>	US 5832297 A	19981103	136	Superscalar microprocessor load/store unit employing a	710/5	710/56; 710/6;	
42	<input type="checkbox"/>	<input type="checkbox"/>	US 5832249 A	19981103	134	High performance superscalar alignment unit	712/204	712/215	
43	<input type="checkbox"/>	<input type="checkbox"/>	US 5826071 A	19981020	146	Parallel mask decoder and method for generating said	712/224	712/23	
44	<input type="checkbox"/>	<input type="checkbox"/>	US 5822574 A	19981013	131	Functional unit with a pointer for mispredicted	712/233	712/215; 712/217;	

HTML Details HTML

Ready NUM

Abstract Text - ABTX (1):

An integrated circuit and computer system. According to one embodiment of the present invention an integrated circuit is provided on a single substrate for a microprocessor which includes a processor bus. The processor bus is provided by an integrated circuit which includes an access memory array, logic control unit, which is coupled to an access memory array coupling to the processor bus. In one embodiment, a further multiplexer having an output for coupling to a first portion of a memory is provided, and this multiplexer further has input for coupling to a second portion of the memory bus. The IC according to the present invention is also for use with a second IC which includes control logic for controlling system memory and for controlling the processor bus and memory bus as well as interfacing to other buses such as peripheral bus. The present invention also provides for improved layout of a cache array with a data path logic management unit as well as power management features for the cache array and a tag RAM with comparator on, in one embodiment, the same chip with the cache array or on an associated chip in another embodiment.

Fig. 7

The diagram illustrates a complex integrated circuit architecture. At the top right, a search dialog box is open with the text "second" entered. The main circuit diagram shows a central logic unit labeled "μP Interface 5022" connected to various memory components. These include two SRAM Cache blocks (each 8Mx32), two DRAM blocks (each 16Mx32), and a TAGRAM block (512Kx32). The SRAM Cache blocks are connected to the μP Interface 5022 via a "Cache Bus". The DRAM blocks are connected to the μP Interface 5022 via a "PC Interface 5012". The TAGRAM block is also connected to the μP Interface 5022. The μP Interface 5022 is connected to a "μP 101" block. There are also connections to a "μP Interface 5002" and a "PC Interface 5001". On the far right, a "PCI Bus" is shown with bidirectional arrows. On the far left, a "Processor Bus" is shown with bidirectional arrows. The entire circuit is contained within a rectangular frame with a dashed border.

Ready

NUM

File Edit View Tools Window Help

L11: (17) 10 not 5 | US 6167491 A | Tag: 5 | Doc: 4/17 | Format : K... [X] L11: (17) 10 not 5 | US 6167491 | Tag: 5 | Doc: 4/17 | "Full" 1/32 (Total imag... [X]

Find what: refresh **Find Next**

Area: All **Direction:** Up **Match word:** Whole Left **Look in:** End Grid **CANCEL** Match case

output terminals 32 and 34. The write access interface 26, under control of the control interface 24, provides for buffering, queuing and routing of data for storage in the RAM core 28, the data being communicated to the memory circuit 22 at one or more of the data input terminals 32. The read access interface 30, under control of the control interface 24, provides for routing, queuing and buffering of data stored in the RAM core 28 for communication at one or more of the data output terminals 34.

Detailed Description Text - DETX (12):

The memory circuit 36 shown in FIG. 3 is a specific embodiment of the memory circuit 22 shown generally in FIG. 2. In memory circuit 36, the control interface 24 comprises a master control 40, a load control 42, a RAM access control 44, and an unload control 46. The control interface 24, as shown, also comprises a refresh control 48. The refresh control 48 is employed when the

United States Patent [19]
McAlpine [11] Patent
[45] Date of

[54] **HIGH PERFORMANCE DIGITAL ELECTRONIC SYSTEM ARCHITECTURE AND MEMORY CIRCUIT THEREFOR** [57]
A digital electronic system components system components, communicating data digital electronic system components and to the memory circuit is provided of the ports (i) having terminal that transfer operating independently coupled respectively for data communication array is provided from a row of placing in the queue size of the block and interface preferably a selection circuit providing selectable blocks of positions in selected array is also provided to be written to the array the array a configuration block and its placement preferably comprises circuit preferably is able data received from selectable positions.

[76] Inventor: Gary L. McAlpine, 11555 SW. 155th Tr., Beaverton, Oreg. 97007

[21] Appl. No.: 09/034,640

[22] Filed: Mar. 5, 1998

Related U.S. Application Data

[62] Division of application No. 08/812,376, Mar. 5, 1997, Pat. No. 5,802,580, which is a continuation of application No. 08/301,421, Sep. 1, 1994, abandoned.

[51] Int. CL⁷ G06F 12/02

[52] U.S. Cl. 711/149; 711/143; 711/146

[58] Field of Search 711/151, 149, 711/168, 143, 146

[56] References Cited

U.S. PATENT DOCUMENTS

5,375,089	12/1994	Lo	365/189.04
5,440,523	8/1995	Jaffer	365/230.05

Primary Examiner—Hiep T. Nguyen 20 Cla

Details Text Image HTML KWIC

Taylor [45] Date of Patent: Dec. 1, 1998

[54] DUAL PORT MEMORIES AND SYSTEMS AND METHODS USING THE SAME

[73] Inventor: Ronald T. Taylor, Grapevine, Tex.

[73] Assignee: Cirrus Logic, Inc., Fremont, Calif.

[21] Appl. No.: 666,819

[22] Filed: Jun. 19, 1996

[51] Int. Cl. 5 G11C 8/00

[52] U.S. Cl. 365/230.05; 365/230.03

[56] Field of Search 365/230.05, 230.03, 365/220

[56] References Cited

U.S. PATENT DOCUMENTS

4,893,281	1/1990 Hashimoto	365/230
4,987,552	1/1991 Miyazaki et al.	365/230.04
5,121,382	6/1992 West	365/730.03
5,305,254	4/1994 Iwase	365/238.5
5,310,033	6/1994 Watanabe	365/230.05
5,377,154	12/1994 Takemoto	365/221

[56] Primary Examiner—David Nolte
Assistant Examiner—Hoai V. Ho
Attorney, Agent, or Firm—James J. Murphy, Steven A. Shaw

[57] ABSTRACT

A memory 20 includes a first array 100 and a second array 102 of memory cells. A first data port 118 allows for the exchange of data with the first array 100 and a second data port 120 allows for the exchange of data with the second array 102. Memory system 20 also includes a circuitry 122 for controlling data exchanges in a selected mode with the first array 100 via the first data port 118 and with the second array 102 via the second data port 120, the exchanges with the first and second arrays 100 and 102 being asynchronous.

22 Claims, 4 Drawing Sheets

FIG. 1