TriAnnot: a user friendly web interface for structural and functional automatic annotation of plant genomes.

Leroy P1, Guilhot N1, Sakai H3, Bernard A1, Choulet F1, Pelegrin C1, Reboux S², Flutre T², Amano N³, Seidel M⁴, Ohyanagi H³, Alaux M², Numa H³, Tanaka T³, Mayer K⁴, Itoh T³, Quesneville H², Feuillet C¹

- 1 INRA-LIBP LIMR 1095 234 Avenue du Brézet F-63100 Clermont-Ferrand France
- 2. INRA-URGI, Route de Saint Cyr, F-78000, Versailles, France
- 3. National Institut of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan. 4. MIPS/IBIS Institute of Bioinformatics and System Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany.

Annotation is one of the most difficult tasks in genome sequencing projects, yet it is essential for connecting genome sequence to biology. Structural and Functional annotations consist in determining the position and structure of genes as well as of other features such as transposable elements and non coding RNA, and inferring their putative function in the genome. This requires a complex successive combination (pipeline or workflow) of software, algorithms and methods. Automation of such a pipeline is necessary to manage large amounts of data released by genome sequencing projects. To achieve a systematic and comprehensive annotation of the wheat genome sequence (17 Gb), a pipeline called TriAnnot V2.1 has been developed by INRA Clermont-Ferrand (GDEC) and Versailles (URGI) in partnership with NIAS (Japan), under the umbrella of the IWGSC (International Wheat Genome Sequencing Consortium - http://www.wheatgenome.org). The objective of TriAnnot is to provide the international scientific community with an online user friendly, fast and as complete as possible annotation tool in view of the sequencing of the wheat genome. As it is the case for every workflow, the TriAnnot pipeline should minimize manual expertise which is slow and labor-intensive, and maximize relevant automatic annotation which is a relatively rapid process that allows frequent updates to accommodate new data. TriAnnot V2.1 will be a major tool within the ANR/FranceAgriMer 3BSEQ flagship project which objectives are to obtain, annotate and utilize the whole wheat chromosome 3B (1Gb) sequence.

~ http://www.clermont.inra.fr/triannot/ ~

TriAnnot Workflow

Performance Evaluation

Data set manually expertized Wheat 3B chromosome (1Gb) 12 contigs - 18.2 Mb - 148 genes Choulet et al. (2010)

> Fitness calculated with Eval Keibler & Brent (2003) BMC Bioinformatics 4:50

Pipeline	Predicted Genes	TP (1)	Gene		Exon		Fitness (2)
			Sn	Sp	Sn	Sp	
FPGP	304	69	46.6	22.7	71.3	58.3	45.8
MIPS	215	53	35.1	24.2	61.1	50.8	40.3
RiceGAAS	848	52	35.1	6.1	70.2	18.0	22.9
TriAnnot Full	371	75	50.7	20.2	67.6	45.5	42.1
TriAnnot without FGeneSH	265	65	43.9	24.5	65.1	53.5	44.0
TriAnnot without EuGène and FGeneSH	105	61	41.2	58.1	60.7	85.8	59.4

≨Ù3GL	TriAnnot 2.1							
ZW.	~ Default analysis graphical display ~							
5## <mark>12</mark>	<u></u>		119 129					
4 5 6 7 6 7 18		20k 21k 20k 20k 30k 20k 30k 20k 20k	29. 59. 50. 32. 33. 34.					
☐ El Brinal Tritamot structural and func								
BUB L content L cont	and report details	- D10-1-	B +43					
□ IZ IZ UniProtEEN Swiss Prot								
		_	-					
☐ If Ill Frotoin Dormains								
B II B Onschraedum								
II II Gryss (RGSP)								
DPB760								
		-						
B II B Townet THEPcoes								
,	• '	, , ,						
II II III II ASTA TEEFpeet	_	_						
BRBO Salvo POSP								
■ Plates								
#11. Protein coding pone exceletion	□ Seet artiser □ Seet elevantion							
P Final TriAnnot structural and functional of	atomatic same							
anectations								
■ 12 . Elekspical residences	□ Tout activer □ Tout désactiver							
P. T. anstrom FL xCNA	P. Petain Denaire	E Barriera	□ Model generals COS					
Pomestwone	□ BalDeg Plant proteins	□ Foacear ESTs						
■13 - Phylogenetic profiles	□ Tour action □ Tour disaction	_						
P drackpodum	Anabidipala	C Abadeum						
F Cryss (ROSP)	C Open (MSIs)	C Sechann						
	Single-							
P. Transposable Elements Association	R SLASTA TREPard	C Republisher - TREPoles	E Monadation (1996)					
	C Tod artise C Tod diseases	1. Hopeablaster - THEPplan	1. Moreowieldes (227)					
■ 95 . Other hielogical tergets	P.O. annu IDDE	F2 ree						
F Day May top No.	F O. salve MOU	F 2 depte						

Conclusion

TriAnnot V2.1 tries to combine the best features of well known international pipelines. It provides the best compromise in term of fitness, Sensitivity (Sn) and Specificity (Sp). TriAnnot proposes a color code system to assess the confidence of the structural automatic gene model annotation. It gives a functional annotation with Pfam domain protein & Gene Ontology, as well as alignment of best hits against proteome databanks. Additional functionalities are under development (EuGène, RNAseq, miRNA).

Pipeline	On Web	Repeat Mask	Gene Model	TEs annotation	Customize analysis	Data Download	email	Graphical display	Job monitoring
DNA Subway	x	х	-	x	x	gff (copy/paste)	-	x	-
RiceGAAS	X		X	X	-	-	-	X	X
FPGP	X	-	-			gff	X	-	
MIPS	-	X	X	X	-	-	-	-	-
TriAnnot	X	X	X	X	X	gff/embl	X	X	planned

