

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Novel G Protein Coupled Receptor Protein and Its Use

<130> A99137

5 <150> JP 10-207579

<151> 1998-07-23

<150> JP 10-225060

<151> 1998-08-07

<150> JP 10-284328

10 <151> 1998-10-06

<160> 6

<210> 1

<211> 872

<212> PRT

15 <213> Human

<400> 1

Ala Glu Gln Thr Arg Asn His Leu Asn Ala Gly Asp Ile Thr Tyr Ser

1

5

10

15

Val Arg Ala Met Asp Gln Leu Val Gly Leu Leu Asp Val Gln Leu Arg

20

20

25

30

Asn Leu Thr Pro Gly Gly Lys Asp Ser Ala Ala Arg Ser Leu Asn Lys
35 40 45
Ala Met Val Glu Thr Val Asn Asn Leu Leu Gln Pro Gln Ala Leu Asn
50 55 60
5 Ala Trp Arg Asp Leu Thr Thr Ser Asp Gln Leu Arg Ala Ala Thr Met
65 70 75 80
Leu Leu His Thr Val Glu Glu Ser Ala Phe Val Leu Ala Asp Asn Leu
85 90 95
Leu Lys Thr Asp Ile Val Arg Glu Asn Thr Asp Asn Ile Lys Leu Glu
10 100 105 110
Val Ala Arg Leu Ser Thr Glu Gly Asn Leu Glu Asp Leu Lys Phe Pro
115 120 125
Glu Asn Met Gly His Gly Ser Thr Ile Gln Leu Ser Ala Asn Thr Leu
130 135 140
15 Lys Gln Asn Gly Arg Asn Gly Glu Ile Arg Val Ala Phe Val Leu Tyr
145 150 155 160
Asn Asn Leu Gly Pro Tyr Leu Ser Thr Glu Asn Ala Ser Met Lys Leu
165 170 175
Gly Thr Glu Ala Leu Ser Thr Asn His Ser Val Ile Val Asn Ser Pro
20 180 185 190
Val Ile Thr Ala Ala Ile Asn Lys Glu Phe Ser Asn Lys Val Tyr Leu
195 200 205
Ala Asp Pro Val Val Phe Thr Val Lys His Ile Lys Gln Ser Glu Glu
210 215 220
25 Asn Phe Asn Pro Asn Cys Ser Phe Trp Ser Tyr Ser Lys Arg Thr Met

225 230 235 240
Thr Gly Tyr Trp Ser Thr Gln Gly Cys Arg Leu Leu Thr Thr Asn Lys
245 250 255
Thr His Thr Thr Cys Ser Cys Asn His Leu Thr Asn Phe Ala Val Leu
5 260 265 270
Met Ala His Val Glu Val Lys His Ser Asp Ala Val His Asp Leu Leu
275 280 285
Leu Asp Val Ile Thr Trp Val Gly Ile Leu Leu Ser Leu Val Cys Leu
290 295 300
10 Leu Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp
305 310 315 320
Arg Asn Thr Ile His Lys Asn Leu Cys Ile Ser Leu Phe Val Ala Glu
325 330 335
Leu Leu Phe Leu Ile Gly Ile Asn Arg Thr Asp Gln Pro Ile Ala Cys
15 340 345 350
Ala Val Phe Ala Ala Leu Leu His Phe Phe Phe Leu Ala Ala Phe Thr
355 360 365
Trp Met Phe Leu Glu Gly Val Gln Leu Tyr Ile Met Leu Val Glu Val
370 375 380
20 Phe Glu Ser Glu His Ser Arg Arg Lys Tyr Phe Tyr Leu Val Gly Tyr
385 390 395 400
Gly Met Pro Ala Leu Ile Val Ala Val Ser Ala Ala Val Asp Tyr Arg
405 410 415
Ser Tyr Gly Thr Asp Lys Val Cys Trp Leu Arg Leu Asp Thr Tyr Phe
25 420 425 430

Ile Trp Ser Phe Ile Gly Pro Ala Thr Leu Ile Met Leu Asn Val
435 440 445

Ile Phe Leu Gly Ile Ala Leu Tyr Lys Met Phe His His Thr Ala Ile
450 455 460

5 Leu Lys Pro Glu Ser Gly Cys Leu Asp Asn Ile Lys Ser Trp Val Ile
465 470 475 480

Gly Ala Ile Ala Leu Leu Cys Leu Leu Gly Leu Thr Trp Ala Phe Gly
485 490 495

Leu Met Tyr Ile Asn Glu Ser Thr Val Ile Met Ala Tyr Leu Phe Thr
10 500 505 510

Ile Phe Asn Ser Leu Gln Gly Met Phe Ile Phe Ile Phe His Cys Val
515 520 525

Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys Leu Arg Thr His
530 535 540

15 Cys Cys Ser Gly Lys Ser Thr Glu Ser Ser Ile Gly Ser Gly Lys Thr
545 550 555 560

Ser Gly Ser Arg Thr Pro Gly Arg Tyr Ser Thr Gly Ser Gln Ser Arg
565 570 575

Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Ser Glu Ser Ser
20 580 585 590

Phe Ile Thr Gly Asp Ile Asn Ser Ser Ala Ser Leu Asn Arg Glu Gly
595 600 605

Leu Leu Asn Asn Ala Arg Asp Thr Ser Val Met Asp Thr Leu Pro Leu
610 615 620

25 Asn Gly Asn His Gly Asn Ser Tyr Ser Ile Ala Ser Gly Glu Tyr Leu

D
E
C
E
M
B
R
I
N
G

625 630 635 640
Ser Asn Cys Val Gln Ile Ile Asp Arg Gly Tyr Asn His Asn Glu Thr
645 650 655
Ala Leu Glu Lys Lys Ile Leu Lys Glu Leu Thr Ser Asn Tyr Ile Pro
5 660 665 670
Ser Tyr Leu Asn Asn His Glu Arg Ser Ser Glu Gln Asn Arg Asn Leu
675 680 685
Met Asn Lys Leu Val Asn Asn Leu Gly Ser Gly Arg Glu Asp Asp Ala
690 695 700
10 Ile Val Leu Asp Asp Ala Thr Ser Phe Asn His Glu Glu Ser Leu Gly
705 710 715 720
Leu Glu Leu Ile His Glu Glu Ser Asp Ala Pro Leu Leu Pro Pro Arg
725 730 735
Val Tyr Ser Thr Glu Asn His Gln Pro His His Tyr Thr Arg Arg Arg
15 740 745 750
Ile Pro Gln Asp His Ser Glu Ser Phe Phe Pro Leu Leu Thr Asn Glu
755 760 765
His Thr Glu Asp Leu Gln Ser Pro His Arg Asp Ser Leu Tyr Thr Ser
770 775 780
20 Met Pro Thr Leu Ala Gly Val Ala Ala Thr Glu Ser Val Thr Thr Ser
785 790 795 800
Thr Gln Thr Glu Pro Pro Ala Lys Cys Gly Asp Ala Glu Asp Val
805 810 815
Tyr Tyr Lys Ser Met Pro Asn Leu Gly Ser Arg Asn His Val His Gln
25 820 825 830

Leu His Thr Tyr Tyr Gln Leu Gly Arg Gly Ser Ser Asp Gly Phe Ile
 835 840 845
 Val Pro Pro Asn Lys Asp Gly Thr Pro Pro Glu Gly Ser Ser Lys Gly
 850 855 860
 5 Pro Ala His Leu Val Thr Ser Leu
 865 870
 <210> 2
 <211> 2616
 <212> DNA
 10 <213> Human
 <400> 2
 GCTGAACAGA CAAGAAATCA CTTGAATGCT GGGGACATCA CCTACTCTGT CCGGGCCATG 60
 GACCAGCTGG TAGGCCTCCT AGATGTACAG CTTCGGAAC TGACCCCAGG TGGAAAAGAT 120
 AGTGCTGCCG GGAGTTGAA CAAGGCAATG GTCGAGACAG TTAACAACCT CCTTCAGCCA 180
 15 CAAGCTTGA ATGCATGGAG AGACCTGACT ACGAGTGATC AGCTGCGTGC GGCCACCATG 240
 TTGCTTCATA CTGTGGAGGA AAGTGCTTT GTGCTGGCTG ATAACCTTT GAAGACTGAC 300
 ATTGTCAGGG AGAATACAGA CAATATTAAA TTGGAAGTTG CAAGACTGAG CACAGAAGGA 360
 AACTTAGAAG ACCTAAAATT TCCAGAAAAC ATGGGCCATG GAAGCACTAT CCAGCTGTCT 420
 GCAAATACCT TAAAGCAAAA TGGCCGAAAT GGAGAGATCA GAGTGGCCTT TGTCCGTAT 480
 20 ACAAACTTGG GTCCTTATTT ATCCACGGAG AATGCCAGTA TGAAGTTGGG AACGGAAGCT 540
 TTGTCCACAA ATCATTCTGT TATTGTCAAT TCCCCGTAA TTACGGCAGC AATAAACAAA 600
 GAGTTCAAGTA ACAAGGTTA TTTGGCTGAT CCTGTGGTAT TTACTGTTAA ACATATCAAG 660
 CAGTCAGAGG AAAATTCAGA CCCTAACTGT TCATTTGGA GCTACTCCAA GCGTACAATG 720
 ACAGGTTATT GGTCAACACA AGGCTGTCGG CTCCTGACAA CAAATAAGAC ACATACTACA 780
 25 TGCTCTTGTAA ACCACCTAAC AAATTTGCA GTACTGATGG CACATGTGGA AGTTAACAC 840

AGTGATGCGG TCCATGACCT CCTTCTGGAT GTGATCACGT GGGTTGGAAT TTTGCTGTCC 900
CTTGTGGTC TCCTGATTG CATCTTCACA TTTTGCTTT TCCGCAGGCT CCAGAGTGAC 960
CGTAACACCA TCCACAAGAA CCTCTGCATC AGTCTCTTG TAGCAGAGCT GCTCTTCCTG 1020
ATTGGGATCA ACCGAACTGA CCAACCAATT GCCTGTGCTG TTTCGCTGC CCTGTTTCT 1080
5 TCTTCTTGGC TGCCTTCACC TGGATGTTCC TGGAGGGGGT GCAGCTTAT ATACATCATG 1140
CTGGTGGAGG TTTTGAGAG TGAACATTCA CGTAGGAAAT ACFTTATCT GGTCGGCTAT 1200
GGGATGCCTG CACTCATTGT GGCTGTGTCA GCTGCAGTAG ACTACAGGAG TTATGGAACA 1260
GATAAAGTAT GTTGGCTCCG ACTTGACACC TACTTCATTT GGAGTTTAT AGGACCAGCA 1320
ACTTTGATAA TTATGCTAA TGTAACTTC CTTGGGATTG CTTTATATAA AATGTTTCAT 1380
10 CATACTGCTA TACTGAAACC TGAATCAGGC TGTCTGATA ACATCAAGTC ATGGGTTATA 1440
GGTGCAATAG CTCTTCTCTG CCTATTAGGA TTGACCTGGG CCTTTGGACT CATGTATATT 1500
AATGAAAGCA CAGTCATCAT GCCCTATCTC TTCACCATT TCAATTCTCT ACAGGGAATG 1560
TTTATATTAA TTTCCATTG TGTCTACAG AAGAAGGTAC GAAAAGAGTA TGGGAAATGC 1620
CTGCGAACAC ATTGCTGTAG TGGCAAAAGT ACAGAGAGTT CCATTGGTTC AGGGAAACAA 1680
15 TCTGGTTCTC GAACTCCTGG ACGCTACTCC ACAGGCTCAC AGAGCCGAAT CCGTAGAATG 1740
TCCAATGACA CGGTTGAAA GCAGTCAGAG TCTTCCTTA TTACTGGAGA CATAAACAGT 1800
TCAGCGTCAC TCAACAGAGA GGGGCTTCTG AACAAATGCCA GGGATAACAAG TGTCATGGAT 1860
ACTCTACAC TGAATGGTAA CCATGGCAAT AGTTACAGCA TTGCCAGCGG CGAATACCTG 1920
AGCAACTGTG TGCAAATCAT AGACCGTGGC TATAACCATA ACGAGACCGC CCTAGAGAAA 1980
20 AAGATTCTGA AGGAACTCAC TTCCAACAT ATCCCTTCTT ACCTGAACAA CCATGAGCGC 2040
TCCAGTGAAC AGAACAGGAA TCTGATGAAC AAGCTGGTGA ATAACCTTGG CAGTGGAAAGG 2100
GAAGATGATG CCATTGTCCT GGATGATGCC ACCTCGTTA ACCACGAGGA GAGTTGGC 2160
CTGGAACCTCA TTCATGAGGA ATCTGATGCT CCTTTGCTGC CCCCAAGAGT ATACTCCACC 2220
GAGAACCAAGGAGGAA AGCCACACCA TTATACCAGA AGGCGGATCC CCCAAGACCA CAGTGAGAGC 2280
25 TTTTCCCTT TGCTAACCAA CGAGCACACA GAAGATCTCC AGTCACCCCCA TAGAGACTCT 2340

CTCTATACCA GCATGCCGAC ACTGGCTGGT GTGGCCGCCA CAGAGAGTGT TACCACCAGC 2400
ACCCAGACCG AACCCCCACC GGCAAATGT GGTGATGCCG AAGATGTTA CTACAAAAGC 2460
ATGCCAAACC TAGGCTCCAG AAACCACGTC CATCAGCTGC ATACTTACTA CCAGCTAGGT 2520
CGCGGCAGCA GTGATGGATT TATAGTTCTT CCAAACAAAG ATGGGACCCC TCCCGAGGGA 2580
5 AGTTCAAAAG GACCGGCTCA TTTGGTCACT AGTCTA 2616

<210> 3
<211> 1021
<212> PRT
<213> Human
10 <400> 3
Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro Ala Val Ser Thr Thr Lys
1 5 10 15
Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu Pro Glu Arg Phe Cys Glu
20 25 30
15 Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro Gln Thr Gln Arg Gly Met
35 40 45
Met Val Glu Arg Pro Cys Pro Lys Gly Thr Arg Gly Thr Ala Ser Tyr
50 55 60
Leu Cys Met Ile Ser Thr Gly Thr Trp Asn Pro Lys Gly Pro Asp Leu
20 65 70 75 80
Ser Asn Cys Thr Ser His Trp Val Asn Gln Leu Ala Gln Lys Ile Arg
85 90 95
Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn Glu Leu Ala Lys His Thr
100 105 110
25 Lys Gly Pro Val Phe Ala Gly Asp Val Ser Ser Ser Val Arg Leu Met

115 120 125
Glu Gln Leu Val Asp Ile Leu Asp Ala Gln Leu Gln Glu Leu Lys Pro
130 135 140
Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr Asn Lys Leu Gln Lys Arg
5 145 150 155 160
Glu Lys Thr Cys Arg Ala Tyr Leu Lys Ala Ile Val Asp Thr Val Asp
165 170 175
Asn Leu Leu Arg Pro Glu Ala Leu Glu Ser Trp Lys His Met Asn Ser
180 185 190
10 Ser Glu Gln Ala His Thr Ala Thr Met Leu Leu Asp Thr Leu Glu Glu
195 200 205
Gly Ala Phe Val Leu Ala Asp Asn Leu Leu Glu Pro Thr Arg Val Ser
210 215 220
Met Pro Thr Glu Asn Ile Val Leu Glu Val Ala Val Leu Ser Thr Glu
15 225 230 235 240
Gly Gln Ile Gln Asp Phe Lys Phe Pro Leu Gly Ile Lys Gly Ala Gly
245 250 255
Ser Ser Ile Gln Leu Ser Ala Asn Thr Val Lys Gln Asn Ser Arg Asn
260 265 270
20 Gly Leu Ala Lys Leu Val Phe Ile Ile Tyr Arg Ser Leu Gly Gln Phe
275 280 285
Leu Ser Thr Glu Asn Ala Thr Ile Lys Leu Gly Ala Asp Phe Ile Gly
290 295 300
Arg Asn Ser Thr Ile Ala Val Asn Ser His Val Ile Ser Val Ser Ile
25 305 310 315 320

Asn Lys Glu Ser Ser Arg Val Tyr Leu Thr Asp Pro Val Leu Phe Thr
325 330 335

Leu Pro His Ile Asp Pro Asp Asn Tyr Phe Asn Ala Asn Cys Ser Phe
340 345 350

5 Trp Asn Tyr Ser Glu Arg Thr Met Met Gly Tyr Trp Ser Thr Gln Gly
355 360 365

Cys Lys Leu Val Asp Thr Asn Lys Thr Arg Thr Thr Cys Ala Cys Ser
370 375 380

His Leu Thr Asn Phe Ala Ile Leu Met Ala His Arg Glu Ile Ala Tyr
10 385 390 395 400

Lys Asp Gly Val His Glu Leu Leu Leu Thr Val Ile Thr Trp Val Gly
405 410 415

Ile Val Ile Ser Leu Val Cys Leu Ala Ile Cys Ile Phe Thr Phe Cys
420 425 430

15 Phe Phe Arg Gly Leu Gln Ser Asp Arg Asn Thr Ile His Lys Asn Leu
435 440 445

Cys Ile Asn Leu Phe Ile Ala Glu Phe Ile Phe Leu Ile Gly Ile Asp
450 455 460

Lys Thr Lys Tyr Ala Ile Ala Cys Pro Ile Phe Ala Gly Leu Leu His
20 465 470 475 480

Phe Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Leu Glu Gly Val Gln
485 490 495

Leu Tyr Leu Met Leu Val Glu Val Phe Glu Ser Glu Tyr Ser Arg Lys
500 505 510

25 Lys Tyr Tyr Tyr Val Ala Gly Tyr Leu Phe Pro Ala Thr Val Val Gly

515 520 525
Val Ser Ala Ala Ile Asp Tyr Lys Ser Tyr Gly Thr Glu Lys Ala Cys
530 535 540
Trp Leu His Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile Gly Pro Val
5 545 550 555 560
Thr Phe Ile Ile Leu Leu Asn Ile Ile Phe Leu Val Ile Thr Leu Cys
565 570 575
Lys Met Val Lys His Ser Asn Thr Leu Lys Pro Asp Ser Ser Arg Leu
580 585 590
10 Glu Asn Ile Lys Ser Trp Val Leu Gly Ala Phe Ala Leu Leu Cys Leu
595 600 605
Leu Gly Leu Thr Trp Ser Phe Gly Leu Leu Phe Ile Asn Glu Glu Thr
610 615 620
Ile Val Met Ala Tyr Leu Phe Thr Ile Phe Asn Ala Phe Gln Gly Val
15 625 630 635 640
Phe Ile Phe Ile Phe His Cys Ala Leu Gln Lys Lys Val Arg Lys Glu
645 650 655
Tyr Gly Lys Cys Phe Arg His Ser Tyr Cys Cys Gly Gly Leu Pro Thr
660 665 670
20 Glu Ser Pro His Ser Ser Val Lys Ala Ser Thr Thr Arg Thr Ser Ala
675 680 685
Arg Tyr Ser Ser Gly Thr Gln Ser Arg Ile Arg Arg Met Trp Asn Asp
690 695 700
Thr Val Arg Lys Gln Ser Glu Ser Ser Phe Ile Ser Gly Asp Ile Asn
25 705 710 715 720

D
G
E
R
E
S
S
O
M
I
C
H
A
R
T
O
N

Ser Thr Ser Thr Leu Asn Gln Gly Met Thr Gly Asn Tyr Leu Leu Thr
 725 730 735
 Asn Pro Leu Leu Arg Pro His Gly Thr Asn Asn Pro Tyr Asn Thr Leu
 740 745 750
 5 Leu Ala Glu Thr Val Val Cys Asn Ala Pro Ser Ala Pro Val Phe Asn
 755 760 765
 Ser Pro Gly His Ser Leu Asn Asn Ala Arg Asp Thr Ser Ala Met Asp
 770 775 780
 Thr Leu Pro Leu Asn Gly Asn Phe Asn Asn Ser Tyr Ser Leu His Lys
 10 785 790 795 800
 Gly Asp Tyr Asn Asp Ser Val Gln Val Val Asp Cys Gly Leu Ser Leu
 805 810 815
 Asn Asp Thr Ala Phe Glu Lys Met Ile Ile Ser Glu Leu Val His Asn
 820 825 830
 15 Asn Leu Arg Gly Ser Ser Lys Thr His Asn Leu Glu Leu Thr Leu Pro
 835 840 845
 Val Lys Pro Val Ile Gly Gly Ser Ser Glu Asp Asp Ala Ile Val
 850 855 860
 Ala Asp Ala Ser Ser Leu Met His Ser Asp Asn Pro Gly Leu Glu Leu
 20 865 870 875 880
 His His Lys Glu Leu Glu Ala Pro Leu Ile Pro Gln Arg Thr His Ser
 885 890 895
 Leu Leu Tyr Gln Pro Gln Lys Lys Val Lys Ser Glu Gly Thr Asp Ser
 900 905 910
 25 Tyr Val Ser Gln Leu Thr Ala Glu Ala Glu Asp His Leu Gln Ser Pro

915 920 925
 Asn Arg Asp Ser Leu Tyr Thr Ser Met Pro Asn Leu Arg Asp Ser Pro
 930 935 940
 Tyr Pro Glu Ser Ser Pro Asp Met Glu Glu Asp Leu Ser Pro Ser Arg
 5 945 950 955 960
 Arg Ser Glu Asn Glu Asp Ile Tyr Tyr Lys Ser Met Pro Asn Leu Gly
 965 970 975
 Ala Gly His Gln Leu Gln Met Cys Tyr Gln Ile Ser Arg Gly Asn Ser
 980 985 990
 10 Asp Gly Tyr Ile Ile Pro Ile Asn Lys Glu Gly Cys Ile Pro Glu Gly
 995 1000 1005
 Asp Val Arg Glu Gly Gln Met Gln Leu Val Thr Ser Leu
 1010 1015 1020
 <210> 4
 15 <211> 3063
 <212> DNA
 <213> Human
 <400> 4
 GAAGGAAGCA AAGGGACAAA ACCACCTCCA GCAGTTCTA CAACCAAAT TCCACCTATA 60
 20 ACAAAATATT TCCCCCTGCC AGAGAGATTG TGTGAAGCAT TAGACTCCAA GGGGATAAAG 120
 TGGCCTCAGA CACAAAGGGG AATGATGGTT GAACGACCAT GCCCTAAGGG ACAAAGAGGA 180
 ACTGCCTCAT ATCTCTGCAT GATTTCCACT GGAACATGGA ACCCTAAGGG CCCCCGATCTT 240
 AGCAACTGTA CCTCACACTG GGTGAATCAG CTGGCTCAGA AGATCAGAAG CGGAGAAAAT 300
 GCTGCTAGTC TTGCCAATGA ACTGGCTAAA CATAACCAAG GGCCAGTGTT TGCTGGGGAT 360
 25 GTAAGTTCTT CAGTGAGATT GATGGAGCAG TTGGTGGACA TCCTTGATGC ACAGCTGCAG 420

GAAC TGAA AC CTAG TGAAA AGATT CAGCT GGAC GGGAGTT ATAACA AGCT CCAAA AACGA 480
GAGAAGACAT GCAGGGCTTA CCTTAAGGCA ATT GTTGACA CAGTGGACAA CCTTCTGAGA 540
CCTGAAGCTT TGGAATCATG GAAACATATG AATTCTTCTG AACAGCACA TACTGCAACA 600
ATGTTACTCG ATACATTGGA AGAAGGAGCT TTTGTCTAG CTGACAATCT TTTAGAACCA 660
5 ACAAGGGTCT CAATGCCAC AGAAAATATT GTCCTGGAAG TTGCCGTACT CAGTACAGAA 720
GGACAGATCC AAGACTTAA ATTCCTCTG GGCA TCAAAG GAGCAGGCAG CTCAATCAA 780
CTGTCCGCAA ATACCGTCAA ACAGAACAGC AGGAATGGGC TTGCAAAGTT GGTGTTCATC 840
ATTTACCGGA GCCTGGGACA GTTCCTTAGT ACAGAAAATG CAACCATTAA ACTGGGTGCT 900
GATTTATTG GTCGTAATAG CACCATTGCA GTGAACTCTC ACGTCATTTC AGTTCAATC 960
10 AATAAAGAGT CCAGCCGAGT ATACCTGACT GATCCTGTGC TTTTACCCCT GCCACACATT 1020
GATCCTGACA ATTATTCAA TGC CAAACTGC TCCTTCTGGA ACTACTCAGA GAGAACTATG 1080
ATGGGATATT GGTCTACCCA GGGCTGCAAG CTGGTTGACA CTAATAAAAC TCGAACAAACG 1140
TGTGCATGCA GCCACCTAAC CAATTTGCA ATTCTCATGG CCCACAGGGAA AATTGCATAT 1200
AAAGATGGCG TTCATGAATT ACTTCTTACA GTCATCACCT GGGTGGGAAT TGTCATTCC 1260
15 CTTGTTGCC TGGCTATCTG CATCTTCACC TTCTGCTTT TCCGTGGCCT ACAGAGTGAC 1320
CGAAATACTA TTCACAAGAA CCTTTGTATC AACCTTTCA TTGCTGAATT TATTTCCCTA 1380
ATAGGCATTG ATAAGACAAA ATATGCGATT GCATGCCAA TATTTGCAGG ACTTCTACAC 1440
TTTTCTTT TGGCAGCTT TGCTTGGATG TGCC TAGAAG GTGTGCAGCT CTACCTAATG 1500
TTAGTTGAAG TTTTGAAAG TGAATATTCA AGGAAAAAAT ATTACTATGT TGCTGGTTAC 1560
20 TTGTTCTG CCACAGTG GT TGGAGTTCA GCTGCTATTG ACTATAAGAG CTATGGAACA 1620
GAAAAAGCTT GCTGGCTTCA TGTTGATAAC TACTTATAT GGAGCTTCAT TGGACCTGTT 1680
ACCTTCATTA TTCTGCTAAA TATTATCTTC TTGGTGATCA CATTGTGCAA AATGGTGAAG 1740
CATTCAAACA CTTGAAACC AGATTCTAGC AGGTTGGAAA ACATTAAGTC TTGGGTGCTT 1800
GGCGCTTCG CTCTTCTGTG TCTTCTGGC CTCACCTGGT CCTTGGGTT GCTTTTATT 1860
25 AATGAGGAGA CTATTGTGAT GGCATATCTC TTCACTATAT TTAATGCTTT CCAGGGAGTG 1920

5' TTCATTTCA TCTTCACTG TGCTCTCAA AAGAAAGTAC GAAAAGAATA TGGCAAGTGC 1980
TTCAGACACT CATACTGCTG TGGAGGCCTC CCAACTGAGA GTCCCCACAG TTCAGTGAAG 2040
GCATCAACCA CCAGAACCGAG TGCTCGCTAT TCCTCTGGCA CACAGAGTCG TATAAGAAGA 2100
ATGTGGAATG ATACTGTGAG AAAACAATCA GAATCTCTT TTATCTCAGG TGACATCAAT 2160
5 AGCACTTCAA CACTTAATCA AGGAATGACT GGCAATTACC TACTAACAAA CCCTCTCTT 2220
CGACCCCACG GCACTAACAA CCCCTATAAC ACATTGCTCG CTGAAACAGT TGTATGTAAT 2280
GCCCTTCAG CTCCTGTATT TAACTCACCA GGACATTAC TGAACAATGC CAGGGATAACA 2340
AGTGCCATGG ATACTCTACC GCTAAATGGT AATTTAACCA ACAGCTACTC GCTGCACAAG 2400
GGTGACTATA ATGACAGCGT GCAAGTTGTG GACTGTGGAC TAAGTCTGAA TGATACTGCT 2460
10 TTTGAGAAAA TGATCATTTC AGAATTAGTG CACAACAACT TACGGGGCAG CAGCAAGACT 2520
CACAAACCTCG AGCTCACGCT ACCAGTCAAA CCTGTGATTG GAGGTAGCAG CAGTGAAGAT 2580
GATGCTATTG TGGCAGATGC TTCATCTTA ATGCACAGCG ACAACCCAGG GCTGGAGCTC 2640
CATCACAAAG AACTCGAGGC ACCACTTATT CCTCAGCGGA CTCACTCCCT TCTGTACCAA 2700
CCCCAGAAGA AAGTGAAGTC CGAGGGAACT GACAGCTATG TCTCCAACG GACAGCAGAG 2760
15 GCTGAAGATC ACCTACAGTC CCCAACAGA GACTCTCTT ATACAAGCAT GCCCAATCTT 2820
AGAGACTCTC CCTATCCGGA GAGCAGCCCT GACATGGAAG AAGACCTCTC TCCCTCCAGG 2880
AGGAGTGAGA ATGAGGACAT TTACTATAAA AGCATGCCAA ATCTTGGAGC TGGCCATCAG 2940
CTTCAGATGT GCTACCGAT CAGCAGGGC AATAGTGATG GTTATATAAT CCCCATTAAC 3000
AAAGAAGGGT GTATTCCAGA AGGAGATGTT AGAGAAGGAC AAATGCAGCT GGTTACAAG 3060
20 CTT 3063

<210> 5
<211> 1474
<212> PRT
<213> Human
25 <400> 5

Met Ala Arg Leu Ala Ala Val Leu Trp Asn Leu Cys Val Thr Ala Val
5 10 15
Leu Val Thr Ser Ala Thr Gln Gly Leu Ser Arg Ala Gly Leu Pro Phe
20 25 30
5 Gly Leu Met Arg Arg Glu Leu Ala Cys Glu Gly Tyr Pro Ile Glu Leu
35 40 45
Arg Cys Pro Gly Ser Asp Val Ile Met Val Glu Asn Ala Asn Tyr Gly
50 55 60
Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn
10 65 70 75 80
Val Gln Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Ser Gln Arg Cys
85 90 95
Asn Asn Arg Thr Gln Cys Val Val Val Ala Gly Ser Asp Ala Phe Pro
100 105 110
15 Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Asp Cys
115 120 125
Val Pro Tyr Lys Val Glu Gln Lys Val Phe Val Cys Pro Gly Thr Leu
130 135 140
Gln Lys Val Leu Glu Pro Thr Ser Thr His Glu Ser Glu His Gln Ser
20 145 150 155 160
Gly Ala Trp Cys Lys Asp Pro Leu Gln Ala Gly Asp Arg Ile Tyr Val
165 170 175
Met Pro Trp Ile Pro Tyr Arg Thr Asp Thr Leu Thr Glu Tyr Ala Ser
180 185 190
25 Trp Glu Asp Tyr Val Ala Ala Arg His Thr Thr Thr Tyr Arg Leu Pro

195 200 205

Asn Arg Val Asp Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe

210 215 220

Tyr Asn Lys Glu Arg Thr Arg Asn Ile Val Lys Tyr Asp Leu Arg Thr

5 225 230 235 240

Arg Ile Lys Ser Gly Glu Thr Val Ile Asn Thr Ala Asn Tyr His Asp

245 250 255

Thr Ser Pro Tyr Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val

260 265 270

10 Asp Glu Asn Gly Leu Trp Val Ile Tyr Ala Thr Glu Gly Asn Asn Gly

275 280 285

Arg Leu Val Val Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Gly

290 295 300

Thr Trp Glu Thr Gly Tyr Asp Lys Arg Ser Ala Ser Asn Ala Phe Met

15 305 310 315 320

Val Cys Gly Val Leu Tyr Val Leu Arg Ser Val Tyr Val Asp Asp Asp

325 330 335

Ser Glu Ala Ala Gly Asn Arg Val Asp Tyr Ala Phe Asn Thr Asn Ala

340 345 350

20 Asn Arg Glu Glu Pro Val Ser Leu Thr Phe Pro Asn Pro Tyr Gln Phe

355 360 365

Ile Ser Ser Val Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp

370 375 380

Asn Asn Tyr Phe Val Val Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp

25 385 390 395 400

Pro Ser Ala Gly Pro Ala Thr Ser Pro Pro Leu Ser Thr Thr Thr Thr
405 410 415

Ala Arg Pro Thr Pro Leu Thr Ser Thr Ala Ser Pro Ala Ala Thr Thr
420 425 430

5 Pro Leu Arg Arg Ala Pro Leu Thr Thr His Pro Val Gly Ala Ile Asn
435 440 445

Gln Leu Gly Pro Asp Leu Pro Pro Ala Thr Ala Pro Val Pro Ser Thr
450 455 460

Arg Arg Pro Pro Ala Pro Asn Leu His Val Ser Pro Glu Leu Phe Cys
10 465 470 475 480

Glu Pro Arg Glu Val Arg Arg Val Gln Trp Pro Ala Thr Gln Gln Gly
485 490 495

Met Leu Val Glu Arg Pro Cys Pro Lys Gly Thr Arg Gly Ile Ala Ser
500 505 510

15 Phe Gln Cys Leu Pro Ala Leu Gly Leu Trp Asn Pro Arg Gly Pro Asp
515 520 525

Leu Ser Asn Cys Thr Ser Pro Trp Val Asn Gln Val Ala Gln Lys Ile
530 535 540

Lys Ser Gly Glu Asn Ala Ala Asn Ile Ala Ser Glu Leu Ala Arg His
20 545 550 555 560

Thr Arg Gly Ser Ile Tyr Ala Gly Asp Val Ser Ser Val Lys Leu
565 570 575

Met Glu Gln Leu Leu Asp Ile Leu Asp Ala Gln Leu Gln Ala Leu Arg
580 585 590

25 Pro Ile Glu Arg Glu Ser Ala Gly Lys Asn Tyr Asn Lys Met His Lys

595 600 605

Arg Glu Arg Thr Cys Lys Asp Tyr Ile Lys Ala Val Val Glu Thr Val

610 615 620

Asp Asn Leu Leu Arg Pro Glu Ala Leu Glu Ser Trp Lys Asp Met Asn

5 625 630 635 640

Ala Thr Glu Gln Val His Thr Ala Thr Met Leu Leu Asp Val Leu Glu

645 650 655

Glu Gly Ala Phe Leu Leu Ala Asp Asn Val Arg Glu Pro Ala Arg Phe

660 665 670

10 Leu Ala Ala Lys Glu Asn Val Val Leu Glu Val Thr Val Leu Asn Thr

675 680 685

Glu Gly Gln Val Gln Glu Leu Val Phe Pro Gln Glu Glu Tyr Pro Arg

690 695 700

Lys Asn Ser Ile Gln Leu Ser Ala Lys Thr Ile Lys Gln Asn Ser Arg

15 705 710 715 720

Asn Gly Val Val Lys Val Val Phe Ile Leu Tyr Asn Asn Leu Gly Leu

725 730 735

Phe Leu Ser Thr Glu Asn Ala Thr Val Lys Leu Ala Gly Glu Ala Gly

740 745 750

20 Pro Gly Gly Pro Gly Gly Ala Ser Leu Val Val Asn Ser Gln Val Ile

755 760 765

Ala Ala Ser Ile Asn Lys Glu Ser Ser Arg Val Phe Leu Met Asp Pro

770 775 780

Val Ile Phe Thr Val Ala His Leu Glu Asp Lys Asn His Phe Asn Ala

25 785 790 795 800

Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg Ser Met Leu Gly Tyr Trp
805 810 815
Ser Thr Gln Gly Cys Arg Leu Val Glu Ser Asn Lys Thr His Thr
820 825 830
5 Cys Ala Cys Ser His Leu Thr Asn Phe Ala Val Leu Met Ala His Arg
835 840 845
Glu Ile Tyr Gln Gly Arg Ile Asn Glu Leu Leu Leu Ser Val Ile Thr
850 855 860
Trp Val Gly Ile Val Ile Ser Leu Val Cys Leu Ala Ile Cys Ile Ser
10 865 870 875 880
Thr Phe Cys Phe Leu Arg Gly Leu Gln Thr Asp Arg Asn Thr Ile His
885 890 895
Lys Asn Leu Cys Ile Asn Leu Phe Leu Ala Glu Leu Leu Phe Leu Val
900 905 910
15 Gly Ile Asp Lys Thr Gln Tyr Glu Ile Ala Cys Pro Ile Phe Ala Gly
915 920 925
Leu Leu His Tyr Phe Phe Leu Ala Ala Phe Ser Trp Leu Cys Leu Glu
930 935 940
Gly Val His Leu Tyr Leu Leu Leu Val Glu Val Phe Glu Ser Glu Tyr
20 945 950 955 960
Ser Arg Thr Lys Tyr Tyr Tyr Leu Gly Gly Tyr Cys Phe Pro Ala Leu
965 970 975
Val Val Gly Ile Ala Ala Ala Ile Asp Tyr Arg Ser Tyr Gly Thr Glu
980 985 990
25 Lys Ala Cys Trp Leu Arg Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile

995 1000 1005
Gly Pro Val Ser Phe Val Ile Val Val Asn Leu Val Phe Leu Met Val
1010 1015 1020
Thr Leu His Lys Met Ile Arg Ser Ser Ser Val Leu Lys Pro Asp Ser
5 1025 1030 1035 1040
Ser Arg Leu Asp Asn Ile Lys Ser Trp Ala Leu Gly Ala Ile Ala Leu
1045 1050 1055
Leu Phe Leu Leu Gly Leu Thr Trp Ala Phe Gly Leu Leu Phe Ile Asn
1060 1065 1070
10 Lys Glu Ser Val Val Met Ala Tyr Leu Phe Thr Thr Phe Asn Ala Phe
1075 1080 1085
Gln Gly Val Phe Ile Phe Val Phe His Cys Ala Leu Gln Lys Lys Val
1090 1095 1100
His Lys Glu Tyr Ser Lys Cys Leu Arg His Ser Tyr Cys Cys Ile Arg
15 1105 1110 1115 1120
Ser Pro Pro Gly Gly Thr His Gly Ser Leu Lys Thr Ser Ala Met Arg
1125 1130 1135
Ser Asn Thr Arg Tyr Tyr Thr Gly Thr Gln Ser Arg Ile Arg Arg Met
1140 1145 1150
20 Trp Asn Asp Thr Val Arg Lys Gln Thr Glu Ser Ser Phe Met Ala Gly
1155 1160 1165
Asp Ile Asn Ser Thr Pro Thr Leu Asn Arg Gly Thr Met Gly Asn His
1170 1175 1180
Leu Leu Thr Asn Pro Val Leu Gln Pro Arg Gly Gly Thr Ser Pro Tyr
25 1185 1190 1195 1200

Asn Thr Leu Ile Ala Glu Ser Val Gly Phe Asn Pro Ser Ser Pro Pro
1205 1210 1215
Val Phe Asn Ser Pro Gly Ser Tyr Arg Glu Pro Lys His Pro Leu Gly
1220 1225 1230
5 Gly Arg Glu Ala Cys Gly Met Asp Thr Leu Pro Leu Asn Gly Asn Phe
1235 1240 1245
Asn Asn Ser Tyr Ser Leu Arg Ser Gly Asp Phe Pro Pro Gly Asp Gly
1250 1255 1260
Gly Pro Glu Pro Pro Arg Gly Arg Asn Leu Ala Asp Ala Ala Phe
10 1265 1270 1275 1280
Glu Lys Met Ile Ile Ser Glu Leu Val His Asn Asn Leu Arg Gly Ser
1285 1290 1295
Ser Ser Ala Ala Lys Gly Pro Pro Pro Pro Glu Pro Pro Val Pro Pro
1300 1305 1310
15 Val Pro Gly Gly Gly Glu Glu Glu Ala Gly Gly Pro Gly Gly Ala
1315 1320 1325
Asp Arg Ala Glu Ile Glu Leu Leu Tyr Lys Ala Leu Glu Glu Pro Leu
1330 1335 1340
Leu Leu Pro Arg Ala Gln Ser Val Leu Tyr Gln Ser Asp Leu Asp Glu
20 1345 1350 1355 1360
Ser Glu Ser Cys Thr Ala Glu Asp Gly Ala Thr Ser Arg Pro Leu Ser
1365 1370 1375
Ser Pro Pro Gly Arg Asp Ser Leu Tyr Ala Ser Gly Ala Asn Leu Arg
1380 1385 1390
25 Asp Ser Pro Ser Tyr Pro Asp Ser Ser Pro Glu Gly Pro Ser Glu Ala

1395 1400 1405
Leu Pro Pro Pro Pro Ala Pro Pro Gly Pro Pro Glu Ile Tyr Tyr
1410 1415 1420
Thr Ser Arg Pro Pro Ala Leu Val Ala Arg Asn Pro Leu Gln Gly Tyr
5 1425 1430 1435 1440
Tyr Gln Val Arg Arg Pro Ser His Glu Gly Tyr Leu Ala Ala Pro Gly
1445 1450 1455
Leu Glu Gly Pro Gly Pro Asp Gly Asp Gly Gln Met Gln Leu Val Thr
1460 1465 1470
10 Ser Leu
<210> 6
<211> 4422
<212> DNA
<213> Human
15 <400> 6
ATGGCCGCC TAGCCGCAGT GCTCTGGAAT CTGTGTGTCA CCGCCGTCTT GGTCACCTCG 60
GCCACCCAAG GCCTGAGCCG GGCCGGGCTC CCGTTGGGC TGATGCGCCG GGAGCTGGCG 120
TGTGAAGGCT ACCCATCGA GCTGCGGTGC CCCGGCAGCG ACgtCATCAT GGTGGAGAAT 180
GCCAACTACG GGCGCACGGA CGACAAGATT TGCGATGCTG ACCCTTCCA GATGGAGAAT 240
20 GTGCAGTGCT ACCTGCCGGA CGCCTTCAAG ATCATGTCAC AGAGGTGTA CAACCGCACC 300
CAGTGCCTGG TGGTCGCCGG CTCGGATGCC TTTCTGACC CCTGTCCTGG GACCTACAAG 360
TACCTGGAGG TGCAGTACGA CTGTGTCCCC TACAAAGTGG AGCAGAAAGT CTTCTGTGC 420
CCAGGGACCC TGCAGAAGGT GCTGGAGCCC ACCTCGACAC ACGAGTCAGA GCACCAAGTCT 480
GGCGCATGGT GCAAGGGACCC GCTGCAGGCG GGTGACCGCA TCTACGTGAT GCCCTGGATC 540
25 CCCTACCGCA CGGACACACT GACTGAGTAT GCCTCGTGGG AGGACTACGT GGCCGCCCGC 600

CACACCACCA CCTACCGCCT GCCCAACCGC GTGGATGGCA CAGGCTTGT GGTCTACGAT 660
GGTGCCGTCT TCTACAACAA GGAGCGCAGC CGCAACATCG TCAAGTATGA CCTACGGACG 720
CGCATCAAGA GCGGGGAGAC GGTCACTAAC ACCGCCAACT ACCATGACAC CTCGCCCTAC 780
CGCTGGGGCG GAAAGACCGA CATTGACCTG GCGGTGGACG AGAACGGGCT GTGGGTAC 840
5 TACGCCACTG AGGGCAACAA CGGGCGGCTG GTGGTGAGCC AGCTGAACCC CTACACACTG 900
CGCTTGAGG GCACGTGGGA GACGGGTTAC GACAAGCGCT CGGCATCCAA CGCCTTCATG 960
GTGTGTGGGG TCCTGTACGT CCTGCGCTCC GTGTACGTGG ATGATGACAG CGAGGCGGCT 1020
GGCAACCGCG TGGACTATGC CTTCAACACC AATGCCAACC GCGAGGAGCC TGTCAGCCTC 1080
ACCTTCCCCA ACCCTTACCA GTTCATCTCC TCCGTTGACT ACAACCCCTCG CGACAACCCAG 1140
10 CTGTACGTCT GGAACAACTA TTTCGTGGTG CGCTACAGCC TGGAGTCGG GCCGCCCGAC 1200
CCCAGTGCTG GCCCAGCCAC TTCCCCACCC CTCAGCACGA CCACCACAGC CAGGCCACG 1260
CCCCTCACCA GCACAGCCTC GCCCGCAGCC ACCACCCCGC TCCGCCGGGC ACCCCTCACC 1320
ACGCACCCAG TGGGTGCCAT CAACCAGCTG GGACCTGATC TGCCCTCCAGC CACAGCCCCA 1380
GTCCCCAGCA CCCGGCGGCC CCCAGCCCCG AATCTACACG TGTCCCCCTGA GCTCTTCTGC 1440
15 GAGCCCCGAG AGGTACGGCG GGTCCAGTGG CCGGCCACCC AGCAGGGCAT GCTGGTGGAG 1500
AGGCCCTGCC CCAAGGGGAC TCGAGGAATT GCCTCCTTCC AGTGTCTACC AGCCTTGGGG 1560
CTCTGGAACC CCCGGGGCCC TGACCTCAGC AACTGCACCT CCCCCCTGGGT CAACCAGGTG 1620
GCCAGAGAAGA TCAAGAGTGG GGAGAACCGG GCCAACATCG CCAGCGAGCT GGCCCGACAC 1680
ACCCGGGGCT CCATCTACGC GGGGGACGTC TCCTCCTCTG TGAAGCTGAT GGAGCAGCTG 1740
20 CTGGACATCC TGGATGCCA GCTGCAGGCC CTGCGGCCA TCGAGCGCGA GTCAGCCGGC 1800
AAGAACTACA ACAAGATGCA CAAGCGAGAG AGAACTTGTA AGGATTATAT CAAGGCCGTG 1860
GTGGAGACAG TGGACAATCT GCTCCGGCCA GAAGCTCTGG AGTCCTGGAA GGACATGAAT 1920
GCCACGGAGC AGGTGCACAC GGCCACCATG CTCCCTCGACG TCCTGGAGGA GGGCGCCTTC 1980
CTGCTGGCCG ACAATGTCAG GGAGCCTGCC CGCTTCTGG CTGCCAAGGA GAACGTGGTC 2040
25 CTGGAGGTCA CAGTCCTGAA CACAGAGGGC CAGGTGCAGG AGCTGGTGTGTT CCCCCAGGAG 2100

GAGTACCCGA GAAAGAACTC CATCCAGCTG TCTGCCAAA CCATCAAGCA GAACAGCCGC 2160
AATGGGGTGG TCAAAGTTGT CTCATCCTC TACAACAACC TG GCCCTTT CCTGTCCACG 2220
GAGAATGCCA CAGTGAAGCT GGCGGGCGAA GCAGGCCGG GTGCCCTGG GGGCGCCTCT 2280
CTAGTGGTGA ACTCACAGGT CATCGCAGCA TCCATCAACA AGGAGTCCAG CCCGCTTTC 2340
5 CTCATGGACC CTGTCATCTT CACCGTGGCC CACCTGGAGG ACAAGAACCA CTTCAATGCT 2400
AACTGCTCCT TCTGGAACTA CTCGGAGCGT TCCATGCTGG GCTATTGGTC GACCCAAGGC 2460
TGCCGCCTGG TGGAGTCCAA CAAGACCCAT ACCACGTGTG CCTGCAGCCA CCTCACCAAC 2520
TTCGCTGTGC TCATGGCTCA CCGTGAGATC TACCAGGGCC GCATCAACGA GCTGCTGCTG 2580
TCGGTCATCA CCTGGGTGGG CATTGTGATC TCCCTGGTCT GCTTGGCCAT CTGCATCTCC 2640
10 ACCTTCTGCT TCCTGCGGGG GCTGCAGACC GACCGCAACA CCATCCACAA GAACCTGTGC 2700
ATCAACCTCT TCCTGGCTGA GCTGCTCTTC CTGGTCGGGA TCGACAAGAC TCAGTATGAG 2760
ATTGCCTGCC CCATCTCGC CGGCCTGCTG CACTATTCT TCCTGGCTGC CTTCTCCTGG 2820
CTGTGCCTGG AGGGCGTGCA CCTCTACCTG CTACTAGTGG AGGTGTTGA GAGCGAGTAT 2880
TCCCACCA AGTACTACTA CCTGGGTGGC TACTGCTTCC CGGCCCTGGT GGTGGGCATC 2940
15 GCGGCTGCCA TTGACTACCG CAGCTACGGC ACCGAGAAGG CCTGCTGGCT CCGAGTGGAC 3000
AATTACTTCA TCTGGAGTTT CATCGGGCCA GTCTCCTTCG TTATCGTGGT CAACCTGGTG 3060
TTCCCTCATGG TGACCCGTCA CAAGATGATC CGAAGCTCAT CTGTGCTCAA GCCCGACTCC 3120
AGCCGCCTGG ACAACATTAA ATCCTGGCG CTGGGGCCA TCGCGCTGCT GTTCCCTGCTG 3180
GGCCTCACCT GGGCTTCGG CCTCCTCTTC ATCAACAAGG AGTCGGTGGT CATGGCCTAT 3240
20 CTCTTCACCA CCTTCAACGC CTTCCAGGGG GTCTTCATCT TCGTCTTCA CTGCGCCTTA 3300
CAGAAGAAGG TGCACAAGGA GTACAGCAAG TGCCTGCGT ACTCCTACTG CTGCATCCGC 3360
TCCCCACCCG GGGGCACTCA CGGATCCCTC AAGACCTCAG CCATGCGAAG CAACACCCGC 3420
TACTACACAG GGACCCAGAG CGAATTCTGG AGGATGTGGA ATGACACTGT GAGGAAACAG 3480
ACGGAGTCCT CCTTCATGGC GGGTGACATC AACAGCACCC CCACCCGTAA CCGAGGTACC 3540
25 ATGGGAAACC ACCTGCTGAC CAACCCCGTG CTGCAGCCCC GTGGGGGCAC CAGTCCCTAC 3600

AACACCCCTCA TCGCCGAGTC AGTGGGCTTC AATCCCTCCT CGCCCCCTGT CTTCAACTCC 3660
CCAGGGAGCT ACCGGGAACC CAAGCACCCC TTGGGAGGCC GGGAAGCCTG TGGCATGGAC 3720
ACCCCTGCCCT TGAACGGCAA CTTCAATAAC AGTTACTCCT TGCGAAGTGG GGATTTCCCT 3780
CCCCGGGATG GGGGCCCCCTGA CCCGCCCGA GGCCGGAAACC TAGCCGATGC GGCGGCCCTT 3840
5 GAGAAGATGA TCATCTCAGA GCTGGTGCAC AACAAACCTGC GGGGGAGCAG CAGCGCGGCC 3900
AAGGGCCCTC CACCGCCTGA GCCCCCCTGTG CCACCTGTGC CAGGGGGCGG GGGCGAGGAA 3960
GAGGCGGGCG GGCCCGGGGG TGCTGACCGG GCCGAGATTG AACTTCTCTA TAAGGCCCTG 4020
GAGGAGCCTC TGCTGCTGCC CCGGGCCAG TCGGTGCTGT ACCAGAGCGA TCTGGACGAG 4080
TCGGAGAGCT GCACGGCCGA GGACGGCGCC ACCAGCCGGC CCCTCTCCTC CCCTCCTGGC 4140
10 CGGGACTCCC TCTATGCCAG CGGGGCAAC CTGCGGGACT CACCCCTCTA CCCGGACAGC 4200
AGCCCTGAGG GGCCAGTGA GCCCCTGCC CCACCCCTC CCGCACCCCC CGGCCCCCCC 4260
GAAATCTACT ACACCTCGCG CCCGCCAGCC CTGGTGGCCC GGAATCCCCT GCAGGGCTAC 4320
TACCAAGGTGC GGCCTCTAG CCACGAGGGC TACCTGGCAG CCCCAGGCCT TGAGGGCCA 4380
GGGCCCGATG GGGACGGGCA GATGCAGCTG GTCACCAGTC TC 4425
15

SEQUENCE LISTING

<110> Ohara, Osamu
 <110> Nagase, Takahiro
 <110> Nomura, Nobuo
 <110> Hinuma, Shuji
 <110> Fujii, Ryo
 <110> Kitahara, Osamu
 <110> Mogi, Shinichi
 <120> Novel G Protein Coupled Receptor Protein and Its Use
 <130> 2534US0P
 <140>
 <141>
 <150> PCT/JP99/03909
 <151> 1998-07-22
 <150> JP 10-207579
 <151> 1998-07-23
 <150> JP 10-225060
 <151> 1998-08-07
 <150> JP 10-284328
 <151> 1998-10-06
 <160> 6
 <170>

<210> 1
 <211> 872
 <212> PRT
 <213> Human
 <400> 1

Ala Glu Gln Thr Arg Asn His Leu Asn Ala Gly Asp Ile Thr Tyr Ser
 1 5 10 15
 Val Arg Ala Met Asp Gln Leu Val Gly Leu Leu Asp Val Gln Leu Arg
 20 25 30
 Asn Leu Thr Pro Gly Gly Lys Asp Ser Ala Ala Arg Ser Leu Asn Lys
 35 40 45
 Ala Met Val Glu Thr Val Asn Asn Leu Leu Gln Pro Gln Ala Leu Asn
 50 55 60
 Ala Trp Arg Asp Leu Thr Thr Ser Asp Gln Leu Arg Ala Ala Thr Met
 65 70 75 80
 Leu Leu His Thr Val Glu Glu Ser Ala Phe Val Leu Ala Asp Asn Leu
 85 90 95
 Leu Lys Thr Asp Ile Val Arg Glu Asn Thr Asp Asn Ile Lys Leu Glu
 100 105 110
 Val Ala Arg Leu Ser Thr Glu Gly Asn Leu Glu Asp Leu Lys Phe Pro
 115 120 125
 Glu Asn Met Gly His Gly Ser Thr Ile Gln Leu Ser Ala Asn Thr Leu
 130 135 140
 Lys Gln Asn Gly Arg Asn Gly Glu Ile Arg Val Ala Phe Val Leu Tyr
 145 150 155 160
 Asn Asn Leu Gly Pro Tyr Leu Ser Thr Glu Asn Ala Ser Met Lys Leu
 165 170 175
 Gly Thr Glu Ala Leu Ser Thr Asn His Ser Val Ile Val Asn Ser Pro
 180 185 190
 Val Ile Thr Ala Ala Ile Asn Lys Glu Phe Ser Asn Lys Val Tyr Leu
 195 200 205
 Ala Asp Pro Val Val Phe Thr Val Lys His Ile Lys Gln Ser Glu Glu
 210 215 220
 Asn Phe Asn Pro Asn Cys Ser Phe Trp Ser Tyr Ser Lys Arg Thr Met
 225 230 235 240
 Thr Gly Tyr Trp Ser Thr Gln Gly Cys Arg Leu Leu Thr Thr Asn Lys
 245 250 255
 Thr His Thr Cys Ser Cys Asn His Leu Thr Asn Phe Ala Val Leu
 260 265 270
 Met Ala His Val Glu Val Lys His Ser Asp Ala Val His Asp Leu Leu
 275 280 285
 Leu Asp Val Ile Thr Trp Val Gly Ile Leu Leu Ser Leu Val Cys Leu

290	295	300
Leu Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly		Leu Gln Ser Asp
305	310	315
Arg Asn Thr Ile His Lys Asn Leu Cys Ile Ser Leu Phe Val Ala Glu		320
325	330	335
Leu Leu Phe Leu Ile Gly Ile Asn Arg Thr Asp Gln Pro Ile Ala Cys		
340	345	350
Ala Val Phe Ala Ala Leu Leu His Phe Phe Leu Ala Ala Phe Thr		
355	360	365
Trp Met Phe Leu Glu Gly Val Gln Leu Tyr Ile Met Leu Val Glu Val		
370	375	380
Phe Glu Ser Glu His Ser Arg Arg Lys Tyr Phe Tyr Leu Val Gly Tyr		
385	390	395
Gly Met Pro Ala Leu Ile Val Ala Val Ser Ala Ala Val Asp Tyr Arg		400
405	410	415
Ser Tyr Gly Thr Asp Lys Val Cys Trp Leu Arg Leu Asp Thr Tyr Phe		
420	425	430
Ile Trp Ser Phe Ile Gly Pro Ala Thr Leu Ile Ile Met Leu Asn Val		
435	440	445
Ile Phe Leu Gly Ile Ala Leu Tyr Lys Met Phe His His Thr Ala Ile		
450	455	460
Leu Lys Pro Glu Ser Gly Cys Leu Asp Asn Ile Lys Ser Trp Val Ile		
465	470	475
Gly Ala Ile Ala Leu Leu Cys Leu Leu Gly Leu Thr Trp Ala Phe Gly		480
485	490	495
Leu Met Tyr Ile Asn Glu Ser Thr Val Ile Met Ala Tyr Leu Phe Thr		
500	505	510
Ile Phe Asn Ser Leu Gln Gly Met Phe Ile Phe Ile Phe His Cys Val		
515	520	525
Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys Leu Arg Thr His		
530	535	540
Cys Cys Ser Gly Lys Ser Thr Glu Ser Ser Ile Gly Ser Gly Lys Thr		
545	550	555
Ser Gly Ser Arg Thr Pro Gly Arg Tyr Ser Thr Gly Ser Gln Ser Arg		560
565	570	575
Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Ser Glu Ser Ser		
580	585	590
Phe Ile Thr Gly Asp Ile Asn Ser Ser Ala Ser Leu Asn Arg Glu Gly		
595	600	605
Leu Leu Asn Asn Ala Arg Asp Thr Ser Val Met Asp Thr Leu Pro Leu		
610	615	620
Asn Gly Asn His Gly Asn Ser Tyr Ser Ile Ala Ser Gly Glu Tyr Leu		
625	630	635
Ser Asn Cys Val Gln Ile Ile Asp Arg Gly Tyr Asn His Asn Glu Thr		640
645	650	655
Ala Leu Glu Lys Lys Ile Leu Lys Glu Leu Thr Ser Asn Tyr Ile Pro		
660	665	670
Ser Tyr Leu Asn Asn His Glu Arg Ser Ser Glu Gln Asn Arg Asn Leu		
675	680	685
Met Asn Lys Leu Val Asn Asn Leu Gly Ser Gly Arg Glu Asp Asp Ala		
690	695	700
Ile Val Leu Asp Asp Ala Thr Ser Phe Asn His Glu Glu Ser Leu Gly		
705	710	715
Leu Glu Leu Ile His Glu Glu Ser Asp Ala Pro Leu Leu Pro Pro Arg		720
725	730	735
Val Tyr Ser Thr Glu Asn His Gln Pro His His Tyr Thr Arg Arg Arg		
740	745	750
Ile Pro Gln Asp His Ser Glu Ser Phe Phe Pro Leu Leu Thr Asn Glu		
755	760	765
His Thr Glu Asp Leu Gln Ser Pro His Arg Asp Ser Leu Tyr Thr Ser		
770	775	780
Met Pro Thr Leu Ala Gly Val Ala Ala Thr Glu Ser Val Thr Thr Ser		
785	790	795
Thr Gln Thr Glu Pro Pro Pro Ala Lys Cys Gly Asp Ala Glu Asp Val		800
805	810	815
Tyr Tyr Lys Ser Met Pro Asn Leu Gly Ser Arg Asn His Val His Gln		
820	825	830

Leu His Thr Tyr Tyr Gln Leu Gly Arg Gly Ser Ser Asp Gly Phe Ile
 835 840 845
 Val Pro Pro Asn Lys Asp Gly Thr Pro Pro Glu Gly Ser Ser Lys Gly
 850 855 860
 Pro Ala His Leu Val Thr Ser Leu
 865 870

<210> 2
 <211> 2616
 <212> DNA
 <213> Human
 <400> 2

GCTGAACAGA	CAAGAAATCA	CTTGAATGCT	GGGGACATCA	CCTACTCTGT	CCGGGCCATG	60
GACCAGCTGG	TAGGCCTCCT	AGATGTACAG	CTTCGGAAC	TGACCCCAGG	TGGAAAAGAT	120
AGTGCTGCC	GGAGTTTGAA	CAAGGCAATG	GTCGAGACAG	TTAACAAACCT	CCTTCAGCCA	180
CAAGCTTGA	ATGCATGGAG	AGACCTGACT	ACGAGTGATC	ACCTGCGTGC	GGCCACCATG	240
TTGCTTCATA	CTGTGGAGGA	AAGTGCCTTT	GTGCTGGCTG	ATAACCTTTT	GAAGACTGAC	300
ATTGTCAGGG	AGAATACAGA	CAATATTTAA	TTGGAAGTTG	CAAGACTGAG	CACAGAAAGGA	360
AACTTAGAAG	ACCTAAAATT	TCCAGAAAAT	ATGGGCCATG	GAAGACTAT	CCAGCTGTCT	420
GCAAATACCT	TAAGCAAAA	TGGCCGAAAAT	GGAGAGATCA	GAGTGGCCTT	TGTCCTGTAT	480
AAACAATTGG	GTCCTTATT	ATCCACGGAG	AATGCCAGTA	TGAAGTTGGG	AACGGAAGCT	540
TGTGCCACAA	ATCATTCTGT	TATTGTCAAT	TCCCCGTGTA	TTACGGCAGC	AATAAACAAA	600
GAGTCAGTA	ACAAGGTTA	TTGGCTGAT	CCTGTGGTAT	TTACTGTTAA	ACATATCAAG	660
CAGTCAGAGG	AAAATTCAA	CCCTAAGTGT	TCATTTGGA	GCTACTCCAA	GCGTACAATG	720
ACAGGTTATT	GGTCAACACA	AGGCTGTCGG	CTCCGTACAA	CAAATAAGAC	ACATACTACA	780
TGCTCTTGT	ACCACCTAAC	AAATTTTGCA	GTACTGATGG	CACATGTGGA	AGTTAACAC	840
AGTGATGCGG	TCCATGACCT	CCTCTGGAT	GTGATCACGT	GGGTTGGAAT	TTTGCTGTCC	900
CTTGTGTTGC	TCCTGATTTG	CATCTTCACA	TTTGCTTTT	TCCGGGGCT	CCAGAGTGAC	960
CGTAAACACCA	TCCACAAGAA	CCTCTGCATC	AGTCCTTTG	TAGCAGAGCT	GCTCTTCTG	1020
ATTGGGATCA	ACCGAACTGA	CCACCAATT	GCCTGTGCTG	TTTTCGCTG	CCTGTTTCT	1080
TCTTCTTGGC	TGCCTTCACC	TGGATGTTCC	TGGAGGGGGT	GCAGCTTTAT	ATACATCATG	1140
CTGGTGGAGG	TTTTTGAGAG	TGAACATTCA	CGTAGGAAAT	ACTTTTATCT	GGTCGGCTAT	1200
GGGATGCCTG	CACTCATTGT	GGCTGTGTCA	GCTCCAGTAG	ACTACAGGAG	TTATGGAACA	1260
GATAAAGTAT	GTTGGCTCCG	ACTTGACACC	TACTTCATT	GGAGTTTAT	AGGACCAGCA	1320
ACTTTGATAA	TTATGTTAA	TGTAATCTTC	CTTGGGATTG	CTTTATATAA	AATGTTTCAT	1380
CATACTGCTA	TAATGAAACC	TGAATCAGGC	TGTCCTGATA	ACATCAAGTC	ATGGGTTATA	1440
GGTGAATAG	CTCTTCTCTG	CCTATTAGGA	TTGACCTGGG	CCTTTGGACT	CATGTATATT	1500
AATGAAAGCA	CACTCATCAT	GGCCTATCTC	TTCACCAATT	TCAATTCTCT	ACAGGGAAATG	1560
TTTATTTA	TTTCTCATG	TGTCCTACAG	AAGAAGGTAC	GAAAAGAGTA	TGGGAAATGC	1620
CTCGAACAC	ATTGCTGTAG	TGGCAAAAGT	ACAGAGAGT	CCATTGGTTC	AGGGAAAACA	1680
TCTGGTTCTC	GAACCTCTGG	ACGCTACTCC	ACAGGCTCAC	AGAGCCGAAT	CCGTAGAATG	1740
TGGAATGACA	CGGTTCCAAA	GCAGTCAGAG	TCTTCCTTTA	TTACTGGAGA	CATAAACAGT	1800
TCAGCGTCAC	TCAACAGAGA	GGGGCTTCTG	AAACATGCCA	GGGATACAAG	TGTCATGGAT	1860
ACTCTACCAC	TGAATGGTAA	CCATGGCAAT	AGTTACAGCA	TTGCCAGCGG	CGAATACCTG	1920
AGCAACTGTG	TGCAAATCAT	AGACCGTGGC	TATAACCATA	ACGAGACCGC	CCTAGAGAAA	1980
AAGATTCTGA	AGGAACCTAC	TTCCAACAT	ATCCCTTCTT	ACCTGAACAA	CCATGAGCGC	2040
TCCAGTGAAC	AGAACAGGAA	TCTGATGAAC	AAGCTGGTGA	ATAACCTTGG	CAGTGGAAAGG	2100
GAAGATGATG	CCATTGCTC	GGATGATGCC	ACCTCGTTA	ACACCGAGGA	GAGTTGGGC	2160
CTGGAACACTA	TTCATGAGGA	ATCTGATGCT	CCTTTGCTGC	CCCCAAGAGT	ATACTCCACC	2220
GAGAACCAAC	AGCCCACCCA	TTATACCAGA	AGGCCTATCC	CCCAAGACCA	CAGTGAGAGC	2280
TTTTTCCCTT	TGCTAACCAA	CGAGCACACA	GAAGATCTCC	AGTCACCCCA	TAGAGACTCT	2340
CTCTATACCA	GCATGCCGAC	ACTGGCTGGT	GTGGCCGCA	CAGAGAGTGT	TACCACCAAG	2400
ACCCAGACCG	AAACCCCCACC	GGCCAATGT	GGTGATGCCG	AAGATGTTA	CTACAAAAGC	2460
ATGCCAAACC	TAGGCTCCAG	AAACCACGTC	CATCAGCTGC	ATACTTACTA	CCAGCTAGGT	2520
CGGGCAGCA	GTGATGGATT	TATAGTTCTC	CCAAACAAAG	ATGGGACCCC	TCCCGAGGG	2580
AGTCAAAAG	GACCGGCTCA	TTGGTCACT	AGTCTA	2616		

<210> 3
 <211> 1021
 <212> PRT
 <213> Human
 <400> 3

Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro Ala Val Ser Thr Thr Lys
 1 5 10 15
 Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu Pro Glu Arg Phe Cys Glu

20	25	30
Ala Leu Asp Ser Lys Gly Ile Lys	Trp Pro Gln Thr Gln Arg	Gly Met
35	40	45
Met Val Glu Arg Pro Cys Pro Lys Gly	Thr Arg Gly Thr Ala Ser	Tyr
50	55	60
Leu Cys Met Ile Ser Thr Gly	Thr Trp Asn Pro Lys Gly	Pro Asp Leu
65	70	75
Ser Asn Cys Thr Ser His Trp Val Asn	Gln Leu Ala Gln Lys	Ile Arg
85	90	95
Ser Gly Glu Asn Ala Ala Ser Leu	Ala Asn Glu Leu Ala	Lys His Thr
100	105	110
Lys Gly Pro Val Phe Ala Gly	Asp Val Ser Ser Val	Arg Leu Met
115	120	125
Glu Gln Leu Val Asp Ile Leu Asp	Ala Gln Leu Gln	Glu Leu Lys Pro
130	135	140
Ser Glu Lys Asp Ser Ala Gly	Arg Ser Tyr Asn Lys	Leu Gln Lys Arg
145	150	155
Glu Lys Thr Cys Arg Ala Tyr	Leu Lys Ala Ile Val Asp	Thr Val Asp
165	170	175
Asn Leu Leu Arg Pro Glu Ala	Leu Glu Ser Trp Lys His	Met Asn Ser
180	185	190
Ser Glu Gln Ala His Thr Ala	Thr Met Leu Leu Asp	Thr Leu Glu Glu
195	200	205
Gly Ala Phe Val Leu Ala Asp	Asn Leu Leu Glu	Pro Thr Arg Val Ser
210	215	220
Met Pro Thr Glu Asn Ile Val	Leu Glu Val Ala Val	Leu Ser Thr Glu
225	230	235
Gly Gln Ile Gln Asp Phe Lys	Phe Pro Leu Gly Ile Lys	Gly Ala Gly
245	250	255
Ser Ser Ile Gln Leu Ser Ala	Asn Thr Val Lys	Gln Asn Ser Arg Asn
260	265	270
Gly Leu Ala Lys Leu Val Phe	Ile Ile Tyr Arg Ser	Leu Gly Gln Phe
275	280	285
Leu Ser Thr Glu Asn Ala Thr	Ile Lys Leu Gly	Ala Asp Phe Ile Gly
290	295	300
Arg Asn Ser Thr Ile Ala Val	Asn Ser His Val	Ile Ser Val Ser Ile
305	310	315
Asn Lys Glu Ser Ser Arg Val	Tyr Leu Thr Asp	Pro Val Leu Phe Thr
325	330	335
Leu Pro His Ile Asp Pro Asp	Asn Tyr Phe Asn Ala Asn	Cys Ser Phe
340	345	350
Trp Asn Tyr Ser Glu Arg Thr	Met Met Gly Tyr Trp Ser	Thr Gln Gly
355	360	365
Cys Lys Leu Val Asp Thr	Asn Lys Thr Arg	Thr Thr Cys Ala Cys Ser
370	375	380
His Leu Thr Asn Phe Ala	Ile Leu Met Ala His	Arg Glu Ile Ala Tyr
385	390	395
Lys Asp Gly Val His Glu	Leu Leu Leu	Thr Val Ile Thr Trp Val Gly
405	410	415
Ile Val Ile Ser Leu Val Cys	Leu Ala Ile Cys	Ile Phe Thr Phe Cys
420	425	430
Phe Phe Arg Gly Leu Gln	Ser Asp Arg Asn	Thr Ile His Lys Asn Leu
435	440	445
Cys Ile Asn Leu Phe Ile	Ala Glu Phe Ile	Phe Leu Ile Gly Ile Asp
450	455	460
Lys Thr Lys Tyr Ala Ile	Ala Cys Pro Ile	Phe Ala Gly Leu Leu His
465	470	475
Phe Phe Phe Leu Ala Ala	Phe Ala Trp Met	Cys Leu Glu Gly Val Gln
485	490	495
Leu Tyr Leu Met Leu Val	Glu Val Phe	Glu Ser Glu Tyr Ser Arg Lys
500	505	510
Lys Tyr Tyr Val Ala Gly	Tyr Leu Phe Pro	Ala Thr Val Val Gly
515	520	525
Val Ser Ala Ala Ile Asp	Tyr Lys Ser Tyr	Gly Thr Glu Lys Ala Cys
530	535	540
Trp Leu His Val Asp Asn	Tyr Phe Ile Trp Ser	Phe Ile Gly Pro Val
545	550	560

Thr Phe Ile Ile Leu Leu Asn Ile Ile Phe Leu Val Ile Thr Leu Cys
 565 570 575
 Lys Met Val Lys His Ser Asn Thr Leu Lys Pro Asp Ser Ser Arg Leu
 580 585 590
 Glu Asn Ile Lys Ser Trp Val Leu Gly Ala Phe Ala Leu Leu Cys Leu
 595 600 605
 Leu Gly Leu Thr Trp Ser Phe Gly Leu Leu Phe Ile Asn Glu Glu Thr
 610 615 620
 Ile Val Met Ala Tyr Leu Phe Thr Ile Phe Asn Ala Phe Gln Gly Val
 625 630 635 640
 Phe Ile Phe Ile Phe His Cys Ala Leu Gln Lys Lys Val Arg Lys Glu
 645 650 655
 Tyr Gly Lys Cys Phe Arg His Ser Tyr Cys Cys Gly Gly Leu Pro Thr
 660 665 670
 Glu Ser Pro His Ser Ser Val Lys Ala Ser Thr Thr Arg Thr Ser Ala
 675 680 685
 Arg Tyr Ser Ser Gly Thr Gln Ser Arg Ile Arg Arg Met Trp Asn Asp
 690 695 700
 Thr Val Arg Lys Gln Ser Glu Ser Ser Phe Ile Ser Gly Asp Ile Asn
 705 710 715 720
 Ser Thr Ser Thr Leu Asn Gln Gly Met Thr Gly Asn Tyr Leu Leu Thr
 725 730 735
 Asn Pro Leu Leu Arg Pro His Gly Thr Asn Asn Pro Tyr Asn Thr Leu
 740 745 750
 Leu Ala Glu Thr Val Val Cys Asn Ala Pro Ser Ala Pro Val Phe Asn
 755 760 765
 Ser Pro Gly His Ser Leu Asn Asn Ala Arg Asp Thr Ser Ala Met Asp
 770 775 780
 Thr Leu Pro Leu Asn Gly Asn Phe Asn Asn Ser Tyr Ser Leu His Lys
 785 790 795 800
 Gly Asp Tyr Asn Asp Ser Val Gln Val Val Asp Cys Gly Leu Ser Leu
 805 810 815
 Asn Asp Thr Ala Phe Glu Lys Met Ile Ile Ser Glu Leu Val His Asn
 820 825 830
 Asn Leu Arg Gly Ser Ser Lys Thr His Asn Leu Glu Leu Thr Leu Pro
 835 840 845
 Val Lys Pro Val Ile Gly Gly Ser Ser Ser Glu Asp Asp Ala Ile Val
 850 855 860
 Ala Asp Ala Ser Ser Leu Met His Ser Asp Asn Pro Gly Leu Glu Leu
 865 870 875 880
 His His Lys Glu Leu Glu Ala Pro Leu Ile Pro Gln Arg Thr His Ser
 885 890 895
 Leu Leu Tyr Gln Pro Gln Lys Lys Val Lys Ser Glu Gly Thr Asp Ser
 900 905 910
 Tyr Val Ser Gln Leu Thr Ala Glu Ala Glu Asp His Leu Gln Ser Pro
 915 920 925
 Asn Arg Asp Ser Leu Tyr Thr Ser Met Pro Asn Leu Arg Asp Ser Pro
 930 935 940
 Tyr Pro Glu Ser Ser Pro Asp Met Glu Glu Asp Leu Ser Pro Ser Arg
 945 950 955 960
 Arg Ser Glu Asn Glu Asp Ile Tyr Tyr Lys Ser Met Pro Asn Leu Gly
 965 970 975
 Ala Gly His Gln Leu Gln Met Cys Tyr Gln Ile Ser Arg Gly Asn Ser
 980 985 990
 Asp Gly Tyr Ile Ile Pro Ile Asn Lys Glu Gly Cys Ile Pro Glu Gly
 995 1000 1005
 Asp Val Arg Glu Gly Gln Met Gln Leu Val Thr Ser Leu
 1010 1015 1020

<210> 4
 <211> 3063
 <212> DNA
 <213> Human
 <400> 4

GAAGGAAGCA AAGGGACAAA ACCACCTCCA GCAGTTCTA CAACCAAAT TCCACCTATA 60
 ACAAAATATTG TTCCCCCTGCC AGAGAGATTC TGTGAAGCAT TAGACTCCAA GGGGATAAAG 120

TGGCCTCAGA	CACAAAGGGG	AATGATGGTT	GAACGACCAT	GCCCTAAGGG	AACAAGAGGA	180
ACTGCCTCAT	ATCTCTGCAT	GATTCCACT	GGAACATGGA	ACCCCTAAGGG	CCCCGATCTT	240
AGCAACTGTA	CCTCACACTG	GGTGAATCAG	CTGGCTCAGA	AGATCAGAAG	CGGAGAAAAT	300
GCTGCTAGTC	TTGCCAATGA	ACTGGCTAAA	CATAACCAAAG	GGCCAGTGTT	TGCTGGGAT	360
GTAAGTTCTT	CAGTGAGATT	GATGGAGCAG	TTGGTGGACA	TCCCTGATGC	ACAGCTGCAG	420
GAACGTAAAC	CTAGTGAaaa	AGATTTCAGCT	GGACGGAGTT	ATAACAAGCT	CCAAAAACGA	480
GAGAAGACAT	GCAGGGCTTA	CCTTAAGGCA	ATTGTTGACA	CAGTGGACAA	CCTTCTGAGA	540
CCTGAAGCTT	TGGAATCATG	GAACATATG	AATTCTCTG	AAACAGCAC	TACTGCAACA	600
ATGTTACTCG	ATACATTGGA	AGAAGGAGCT	TTTGTCTTAG	CTGACAATCT	TTTAAACCCA	660
ACAAGGGTCT	CAATGCCAC	AGAAAATATT	GTCCTGGA	TTGCCGTACT	CAGTACAGAA	720
GGACAGATCC	AAGACTTTAA	ATTTCTCTG	GGCATCAAAG	GAGCAGGCAG	CTCAATCCAA	780
CTGTCCGCAA	ATACCGTCAA	ACAGAACAGC	AGGAATGGC	TTGCAAAGTT	GGTGTTCATC	840
ATTTACCGGA	GCCTGGGACA	GTTCCTTAGT	ACAGAAAATG	CAACCAATTAA	ACTGGGTGCT	900
GATTTTATTG	GTCGTAATAG	CACCATTGCA	GTGAACTCTC	ACGTCATTTC	AGTTTCAATC	960
AATAAAGAGT	CCAGCCGAGT	ATACCTGACT	GATCCTGTG	TTTTTACCCCT	GCCACACATT	1020
GATCCTGACA	ATTATTTCAA	TGCAAACACTG	TCCTTCTGGA	ACTACTCAGA	GAGAACTATG	1080
ATGGGATATT	GGTCTACCCA	GGGCTGCAAG	CTGGITGACA	CTAATAAAAC	TCGAACAAACG	1140
TGTGCATGCA	GCCACCTAAC	CAATTGCA	ATTCTCATGG	CCCACAGGGA	AATTGCAATAT	1200
AAAGATGGCG	TTCATGAATT	ACTCTTACA	GTCATCACCT	GGGTGGGAAT	TGTCATTTCC	1260
CTTGTGTTGCG	TGGCTATCTG	CATCTTCA	TTCTGCTTT	TCCGTGGCCT	ACAGAGTGAC	1320
CGAAATACTA	TTCACAAAGAA	CCTTGTATC	AACCTTTCA	TTGCGAATT	TATTTTCTTA	1380
ATAGGCATTG	ATAAGACAAA	ATATGCGATT	GCATGCCAA	TATTTGCA	ACTTCTACAC	1440
TTTTTCTTTT	TGGCAGCITT	TGCTTGGATG	TGCTAGAAG	GTGTGCAGCT	CTACCTAATG	1500
TAGTTGAAG	TTTTTGAAG	TGAATATTCA	AGGAAAAAAAT	ATTACTATGT	TGCTGGTTAC	1560
TTGTTTCTG	CCACAGTGGT	TGGAGTTCA	GCTGCTATTG	ACTATAAGAG	CTATGAAACA	1620
GAAAAAGCTT	GCTGGCTTCA	TGTTGATAAC	TACTTTATAT	GGAGCTTCAT	TGGACCTGTT	1680
ACCTTCATTA	TTCTGCTAAA	TATTATCTTC	TTGGTGATCA	CATTGTC	AATGGTGAAG	1740
CATTCAAACA	CTTTGAAACC	AGATTCTAGC	AGGTTGGAAA	ACATTAAGTC	TTGGGTGCTT	1800
GGCGCTTTCG	CTCTTCTGTG	TCTCTTGGC	CTCACCTGGT	CCTTGGGTT	GCTTTTTATT	1860
AATGAGGAGA	CTATTGTGAT	GGCATATCTC	TTCACTATAT	TTAATGCTTT	CCAGGGAGTG	1920
TTCATTTCA	TCTTTCATG	TGCTCTCAA	AAGAAAGTAC	GAAAAGATA	TGGCAAGTGC	1980
TTCAAGACACT	CATACTGCTG	TGGAGGCCTC	CCAACTGAGA	GTCcccACAG	TTCAGTGAAG	2040
GCATCAACCA	CCAGAACCCAG	TGCTCGCTAT	TCCTCTGGCA	CACAGAGTCG	TATAAGAAGA	2100
ATGTGGAATG	ATACTGTGAG	AAAACAATCA	GAATCTTCTT	TTATCTCAGG	TGACATCAAT	2160
AGCACTTCAA	CACTTAATCA	AGGAATGACT	GGCAATTACC	TACTAACAAA	CCCTCTCTT	2220
CGACCCCCACG	GCACTAACAA	CCCCTATAAC	ACATTGCTCG	CTGAAACAGT	TGTATGTAAT	2280
GCCCCCTTCAG	CTCCTGTATT	TAACTCACCA	GGACATTAC	TGAACAATGC	CAGGGATAACA	2340
AGTGCCATGG	ATACTCTACC	GCTAAATGGT	AATTAAACA	ACAGTACTC	GCTGCACAAG	2400
GGTGAATATA	ATGACAGCGT	GCAAGTTGTG	GACTGTGGAC	TAAGTCTGAA	TGATACTGCT	2460
TTTGAGAAAA	TGATCATTT	AGAATTAGTG	CACAACAACT	TACGGGGCAG	CAGCAAGACT	2520
CACAACCTCG	AGCTCACGCT	ACCACTCAA	CCTGTGATTG	GAGGTAGCAG	CAGTGAAGAT	2580
GATGCTATTG	TGGCAGATGC	TTCATCTTTA	ATGCACAGCG	ACAACCCAGG	GCTGGAGCTC	2640
CATCACAAAG	AACTCGAGGC	ACCACTTATT	CCTCAGCGGA	CTCACTCCCT	TCTGTACCAA	2700
CCCCAGAAGA	AAGTGAAGTC	CGAGGGAACT	GACAGCTATG	TCTCCAACT	GACAGCAGAG	2760
GCTGAAGATC	ACCTACAGTC	CCCCAACAGA	GACTCTCTT	ATACAAGCAT	GCCCAATCTT	2820
AGAGACTCTC	CCTATCCGGA	GAGCAGCCCT	GACATGGAAG	AAGACCTCTC	TCCCTCCAGG	2880
AGGAGTGAGA	ATGAGGACAT	TTACTATAAA	AGCATGCCAA	ATCTTGGAGC	TGGCCATCAG	2940
CTTCAGATGT	GCTACCAGAT	CAGCAGGGC	AATAGTGTG	GTTATATAAT	CCCCATTAAC	3000
AAAGAAGGGT	GTATTCCAGA	AGGAGATGTT	AGAGAAGGAC	AAATGCAAG	GGTTACAAG	3060
CTT						3063

<210> 5
<211> 1474
<212> PRT
<213> Human
<400> 5

Met	Ala	Arg	Leu	Ala	Ala	Val	Leu	Trp	Asn	Leu	Cys	Val	Thr	Ala	Val
						5			10				15		
Leu	Val	Thr	Ser	Ala	Thr	Gln	Gly	Leu	Ser	Arg	Ala	Gly	Leu	Pro	Phe
						20			25				30		
Gly	Leu	Met	Arg	Arg	Glu	Leu	Ala	Cys	Glu	Gly	Tyr	Pro	Ile	Glu	Leu
						35			40			45			
Arg	Cys	Pro	Gly	Ser	Asp	Val	Ile	Met	Val	Glu	Asn	Ala	Asn	Tyr	Gly
						50			55			60			
Arg	Thr	Asp	Asp	Lys	Ile	Cys	Asp	Ala	Asp	Pro	Phe	Gln	Met	Glu	Asn
						65			70			75			80

Val Gln Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Ser Gln Arg Cys
85 90 95
Asn Asn Arg Thr Gln Cys Val Val Val Ala Gly Ser Asp Ala Phe Pro
100 105 110
Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Asp Cys
115 120 125
Val Pro Tyr Lys Val Glu Gln Lys Val Phe Val Cys Pro Gly Thr Leu
130 135 140
Gln Lys Val Leu Glu Pro Thr Ser Thr His Glu Ser Glu His Gln Ser
145 150 155 160
Gly Ala Trp Cys Lys Asp Pro Leu Gln Ala Gly Asp Arg Ile Tyr Val
165 170 175
Met Pro Trp Ile Pro Tyr Arg Thr Asp Thr Leu Thr Glu Tyr Ala Ser
180 185 190
Trp Glu Asp Tyr Val Ala Ala Arg His Thr Thr Thr Tyr Arg Leu Pro
195 200 205
Asn Arg Val Asp Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe
210 215 220
Tyr Asn Lys Glu Arg Thr Arg Asn Ile Val Lys Tyr Asp Leu Arg Thr
225 230 235 240
Arg Ile Lys Ser Gly Glu Thr Val Ile Asn Thr Ala Asn Tyr His Asp
245 250 255
Thr Ser Pro Tyr Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val
260 265 270
Asp Glu Asn Gly Leu Trp Val Ile Tyr Ala Thr Glu Gly Asn Asn Gly
275 280 285
Arg Leu Val Val Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Gly
290 295 300
Thr Trp Glu Thr Gly Tyr Asp Lys Arg Ser Ala Ser Asn Ala Phe Met
305 310 315 320
Val Cys Gly Val Leu Tyr Val Leu Arg Ser Val Tyr Val Asp Asp Asp
325 330 335
Ser Glu Ala Ala Gly Asn Arg Val Asp Tyr Ala Phe Asn Thr Asn Ala
340 345 350
Asn Arg Glu Glu Pro Val Ser Leu Thr Phe Pro Asn Pro Tyr Gln Phe
355 360 365
Ile Ser Ser Val Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp
370 375 380
Asn Asn Tyr Phe Val Val Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp
385 390 395 400
Pro Ser Ala Gly Pro Ala Thr Ser Pro Pro Leu Ser Thr Thr Thr
405 410 415
Ala Arg Pro Thr Pro Leu Thr Ser Thr Ala Ser Pro Ala Ala Thr Thr
420 425 430
Pro Leu Arg Arg Ala Pro Leu Thr Thr His Pro Val Gly Ala Ile Asn
435 440 445
Gln Leu Gly Pro Asp Leu Pro Pro Ala Thr Ala Pro Val Pro Ser Thr
450 455 460
Arg Arg Pro Pro Ala Pro Asn Leu His Val Ser Pro Glu Leu Phe Cys
465 470 475 480
Glu Pro Arg Glu Val Arg Arg Val Gln Trp Pro Ala Thr Gln Gln Gly
485 490 495
Met Leu Val Glu Arg Pro Cys Pro Lys Gly Thr Arg Gly Ile Ala Ser
500 505 510
Phe Gln Cys Leu Pro Ala Leu Gly Leu Trp Asn Pro Arg Gly Pro Asp
515 520 525
Leu Ser Asn Cys Thr Ser Pro Trp Val Asn Gln Val Ala Gln Lys Ile
530 535 540
Lys Ser Gly Glu Asn Ala Ala Asn Ile Ala Ser Glu Leu Ala Arg His
545 550 555 560
Thr Arg Gly Ser Ile Tyr Ala Gly Asp Val Ser Ser Ser Val Lys Leu
565 570 575
Met Glu Gln Leu Leu Asp Ile Leu Asp Ala Gln Leu Gln Ala Leu Arg
580 585 590
Pro Ile Glu Arg Glu Ser Ala Gly Lys Asn Tyr Asn Lys Met His Lys
595 600 605
Arg Glu Arg Thr Cys Lys Asp Tyr Ile Lys Ala Val Val Glu Thr Val

610	615	620
Asp Asn Leu Leu Arg Pro	Glu Ala Leu Glu Ser	Trp Lys Asp Met Asn
625	630	635
Ala Thr Glu Gln Val His Thr Ala Thr Met	Leu Leu Asp Val	Leu Glu
645	650	655
Glu Gly Ala Phe Leu Leu Ala Asp Asn Val Arg	Glu Pro Ala Arg Phe	
660	665	670
Leu Ala Ala Lys Glu Asn Val Val	Leu Glu Val Thr Val	Leu Asn Thr
675	680	685
Glu Gly Gln Val Gln Glu Leu Val Phe Pro	Gln Glu Glu Tyr Pro Arg	
690	695	700
Lys Asn Ser Ile Gln Leu Ser Ala Lys Thr Ile	Lys Gln Asn Ser Arg	
705	710	715
Asn Gly Val Val Lys Val Val Phe Ile Leu	Tyr Asn Asn Leu Gly Leu	
725	730	735
Phe Leu Ser Thr Glu Asn Ala Thr Val Lys	Leu Ala Gly Glu Ala Gly	
740	745	750
Pro Gly Gly Pro Gly Gly Ala Ser	Leu Val Val Asn Ser Gln Val Ile	
755	760	765
Ala Ala Ser Ile Asn Lys Glu Ser Ser Arg	Val Phe Leu Met Asp Pro	
770	775	780
Val Ile Phe Thr Val Ala His Leu Glu Asp	Lys Asn His Phe Asn Ala	
785	790	795
Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg	Ser Met Leu Gly Tyr Trp	
805	810	815
Ser Thr Gln Gly Cys Arg Leu Val Glu Ser Asn	Lys Thr His Thr	
820	825	830
Cys Ala Cys Ser His Leu Thr Asn Phe Ala Val	Leu Met Ala His Arg	
835	840	845
Glu Ile Tyr Gln Gly Arg Ile Asn Glu Leu Leu	Leu Ser Val Ile Thr	
850	855	860
Trp Val Gly Ile Val Ile Ser Leu Val Cys	Leu Ala Ile Cys Ile Ser	
865	870	875
Thr Phe Cys Phe Leu Arg Gly Leu Gln Thr	Asp Arg Asn Thr Ile His	
885	890	895
Lys Asn Leu Cys Ile Asn Leu Phe Leu Ala	Glu Leu Leu Phe Leu Val	
900	905	910
Gly Ile Asp Lys Thr Gln Tyr Glu Ile Ala Cys	Pro Ile Phe Ala Gly	
915	920	925
Leu Leu His Tyr Phe Phe Leu Ala Ala Phe	Ser Trp Leu Cys Leu Glu	
930	935	940
Gly Val His Leu Tyr Leu Leu Val Glu Val	Phe Glu Ser Glu Tyr	
945	950	955
Ser Arg Thr Lys Tyr Tyr Leu Gly Gly	Tyr Cys Phe Pro Ala Leu	
965	970	975
Val Val Gly Ile Ala Ala Ala Ile Asp	Tyr Arg Ser Tyr Gly Thr Glu	
980	985	990
Lys Ala Cys Trp Leu Arg Val Asp Asn Tyr	Phe Ile Trp Ser Phe Ile	
995	1000	1005
Gly Pro Val Ser Phe Val Ile Val Val Asn	Leu Val Phe Leu Met Val	
1010	1015	1020
Thr Leu His Lys Met Ile Arg Ser Ser	Val Ser Val Leu Lys Pro Asp Ser	
1025	1030	1035
Ser Arg Leu Asp Asn Ile Lys Ser Trp Ala	Leu Gly Ala Ile Ala Leu	
1045	1050	1055
Leu Phe Leu Leu Gly Leu Thr Trp Ala Phe	Gly Leu Leu Phe Ile Asn	
1060	1065	1070
Lys Glu Ser Val Val Met Ala	Tyr Leu Phe Thr Phe Asn Ala Phe	
1075	1080	1085
Gln Gly Val Phe Ile Phe Val Phe His Cys	Ala Leu Gln Lys Lys Val	
1090	1095	1100
His Lys Glu Tyr Ser Lys Cys Leu Arg His	Ser Tyr Cys Cys Ile Arg	
1105	1110	1115
Ser Pro Pro Gly Gly Thr His Gly Ser	Leu Lys Thr Ser Ala Met Arg	
1125	1130	1135
Ser Asn Thr Arg Tyr Tyr Thr Gly Thr Gln	Ser Arg Ile Arg Arg Met	
1140	1145	1150

Trp Asn Asp Thr Val Arg Lys Gln Thr Glu Ser Ser Phe Met Ala Gly
 1155 1160 1165
 Asp Ile Asn Ser Thr Pro Thr Leu Asn Arg Gly Thr Met Gly Asn His
 1170 1175 1180
 Leu Leu Thr Asn Pro Val Leu Gln Pro Arg Gly Gly Thr Ser Pro Tyr
 1185 1190 1195 1200
 Asn Thr Leu Ile Ala Glu Ser Val Gly Phe Asn Pro Ser Ser Pro Pro
 1205 1210 1215
 Val Phe Asn Ser Pro Gly Ser Tyr Arg Glu Pro Lys His Pro Leu Gly
 1220 1225 1230
 Gly Arg Glu Ala Cys Gly Met Asp Thr Leu Pro Leu Asn Gly Asn Phe
 1235 1240 1245
 Asn Asn Ser Tyr Ser Leu Arg Ser Gly Asp Phe Pro Pro Gly Asp Gly
 1250 1255 1260
 Gly Pro Glu Pro Pro Arg Gly Arg Asn Leu Ala Asp Ala Ala Phe
 1265 1270 1275 1280
 Glu Lys Met Ile Ile Ser Glu Leu Val His Asn Asn Leu Arg Gly Ser
 1285 1290 1295
 Ser Ser Ala Ala Lys Gly Pro Pro Pro Pro Glu Pro Pro Val Pro Pro
 1300 1305 1310
 Val Pro Gly Gly Gly Glu Glu Ala Gly Gly Pro Gly Gly Ala
 1315 1320 1325
 Asp Arg Ala Glu Ile Glu Leu Leu Tyr Lys Ala Leu Glu Glu Pro Leu
 1330 1335 1340
 Leu Leu Pro Arg Ala Gln Ser Val Leu Tyr Gln Ser Asp Leu Asp Glu
 1345 1350 1355 1360
 Ser Glu Ser Cys Thr Ala Glu Asp Gly Ala Thr Ser Arg Pro Leu Ser
 1365 1370 1375
 Ser Pro Pro Gly Arg Asp Ser Leu Tyr Ala Ser Gly Ala Asn Leu Arg
 1380 1385 1390
 Asp Ser Pro Ser Tyr Pro Asp Ser Ser Pro Glu Gly Pro Ser Glu Ala
 1395 1400 1405
 Leu Pro Pro Pro Pro Ala Pro Pro Gly Pro Pro Glu Ile Tyr Tyr
 1410 1415 1420
 Thr Ser Arg Pro Pro Ala Leu Val Ala Arg Asn Pro Leu Gln Gly Tyr
 1425 1430 1435 1440
 Tyr Gln Val Arg Arg Pro Ser His Glu Gly Tyr Leu Ala Ala Pro Gly
 1445 1450 1455
 Leu Glu Gly Pro Gly Pro Asp Gly Asp Gly Gln Met Gln Leu Val Thr
 1460 1465 1470
 Ser Leu

<210> 6
 <211> 4422
 <212> DNA
 <213> Human
 <400> 6

ATGGCCCGCC TAGCCGCAGT GCTCTGGAAT CTGTGTGTC CCGCCGTCCT GGTCACCTCG 60
 GCCACCCAAG GCCTGAGCCG GGCCGGGCTC CCGTTGGGC TGATGCGCCG GGAGCTGGCG 120
 TGTGAAGGCT ACCCCCATCGA GCTGCGGTGC CCCGGCAGCG ACGTCATCAT GGTGGAGAAAT 180
 GCAACTACG GGCGCACCGA CGACAAGATT TGCATGCTG ACCCTTTCCA GATGGAGAAAT 240
 GTGCAGTGCT ACCTGCCCGA CGCCTTCAG ATCATGTCAC AGAGGTGTA CAACCGCACC 300
 CAGTGCCTGG TGGTCGCCGG CTCGGATGCC TTTCTGACC CCTGCTCTGG GACCTACAAG 360
 TACCTGGAGG TGCAGTACGA CTGTGTCCCC TACAAAGTGG AGCAGAAAGT CTTCGTGTGC 420
 CCAGGGACCC TGCAGAACCGT GCTGGAGCCC ACCTCGACAC ACCAGTCAGA GCACCAGTCT 480
 GGGCATGGT GCAAGGACCC GCTGCAGGCG GGTGACCGCA TCTACGTGAT GCCCTGGATC 540
 CCCTACCGCA CGGACACACT GACTGAGTAT GCCTCGTGGG AGGACTACGT GGCGGCCCGC 600
 CACACCACCA CCTACCGCCT GCCAACCGC GTGGATGGCA CAGGCTTGT GGTCTACGAT 660
 GGTGCCGTCT TCTACAACAA GGAGCGCACG CGAACATCG TCAAGTATGA CCTACGGACG 720
 CGCATCAAGA CGGGGGAGAC GGTCTACAT ACCGCAACT ACCATGACAC CTCGCCCTAC 780
 CGCTGGGGCG GAAAGACCGA CATTGACCTG CGGGTGGACG AGAACGGGCT GTGGGTGATC 840
 TACGCCACTG AGGGCAACAA CGGGCGGCTG GTGGTGAGCC AGCTGAACCC CTACACACTG 900
 CGCTTGAGG GCACGTGGGA GACGGGTTAC GACAAGCGCT CGGCATCCAA CGCCTTCATG 960
 GTGTGTGGGG TCCTGTACGT CCTGCGCTCC GTGTACGTGG ATGATGACAG CGAGGCGGCT 1020
 GGCAACCGCG TGGACTATGC CTTCAACACC AATGCCAACC GCGAGGAGCC TGTCAGCCTC 1080
 ACCTTCCCCA ACCCCTACCA GTTCATCTCC TCCGTTGACT ACAACCCTCG CGACAACCAAG 1140

CTGTACGTCT	GGAACAACTA	TTTCGTGGTG	CGCTACAGCC	TGGAGTTCGG	GCCGCCGAC	1200
CCCAGTGCCTG	GCCCCGCCAC	TTCCCCCACCC	CTCAGCACGA	CCACCCACAGC	CAGGCCACAG	1260
CCCCTCACCA	GCACAGCCTC	GCCCCGAGCC	ACCACCCCGC	TCCGCCGGGC	ACCCCTCACCC	1320
ACGCCACCCAG	TGGGTGCCAT	CAACCAGCTG	GGACCTGATC	TGCCCTCCAGC	CACAGCCCCA	1380
GTCCCCAGCA	CCCGGCGGCC	CCCAGCCCCG	AATCTACACG	TGTCCCCTGA	GCTCTTCTGC	1440
GAGCCCCGAG	AGGTACGGCG	GGTCCAGTGG	CCGGCCACCC	AGCAGGGCAT	GCTGGTGGAG	1500
AGGCCCTGCC	CCAAGGGGAC	TCGAGGAATT	GCCTCCCTCC	AGTGTCTACC	AGCCTTGGGG	1560
CTCTGGAACC	CCCGGGGCC	TGACCTCAGC	AACTGCACCT	CCCCCTGGGT	CAACCAGGTG	1620
GCCCAAGAAGA	TCAAGACTGG	GGAGAACGCG	GCCAACATCG	CCAGCGAGCT	GGCCCGACAC	1680
ACCCGGGGCT	CCATCTACGC	GGGGGACGTC	TCCTCCCTG	TGAAGCTGAT	GGAGCAGCTG	1740
CTGGACATCC	TGGATGCCA	GCTGCAGGCC	CTGCGGCCA	TCGAGCGGA	GTCAGCCGGC	1800
AAGAACTACA	ACAAGATGCA	CAAGCGAGAG	AGAACTTGT	AGGATTATAT	CAAGGCCGTG	1860
GTGGAGACAG	TGGACAATCT	GCTCCGGCCA	GAAGCTCTGG	AGTCCTGGAA	GGACATGAAT	1920
GCCACGGAGC	AGGTGCACAC	GGCCACCATG	CTCCTCGACG	TCCTGGAGGA	GGGCGCCTTC	1980
CTGCTGGCCG	ACAATGTCAG	GGAGCCTGCC	CGCTTCTGG	CTGCCAAGGA	GAACGTGGTC	2040
CTGGAGGTCA	CAGTCCTGAA	CACAGAGGGC	CAGGTGCAGG	AGCTGGTGT	CCCCCAGGAG	2100
GAGTACCCGA	AAAAGAACTC	CATCCAGCTG	TCTGCCAAA	CCATCAAGCA	GAACAGCCGC	2160
AATGGGGTGG	TCAAAGTTGT	CTTCATCCTC	TACAACAACC	TGGGCCCTCTT	CCTGTCCACG	2220
GAGAATGCCA	CAGTGAAGCT	GGCCGGCGAA	GCAGGCCCGG	GTGGCCCTGG	GGGCGCCTCT	2280
CTAGTGGTGA	ACTCACAGGT	CATCGCAGCA	TCCATCAACA	AGGAGTCCAG	CCCGCTCTTC	2340
CTCATGGACCC	CTGTCATCTT	CACCGTGGCC	CACCTGGAGG	ACAAGAACCA	CTTCAATGCT	2400
AACTGCTCCT	TCTGGAACTA	CTCGGAGCGT	TCCATGTC	GCTATTGGTC	GACCCAAGGC	2460
TGCCGCTGG	TGGAGTCCAA	CAAGACCCAT	ACACGTGTG	CCTGCAGCCA	CCTCACCAAC	2520
TTCGCTGTGC	TCATGGCTCA	CCGTGAGATC	TACCAGGGCC	GCATCAACGA	GCTGCTGCTG	2580
TCGGTCATCA	CCTGGGTGGG	CATTGTGATC	TCCCTGGTCT	GCTTGGCCAT	CTGCATCTCC	2640
ACCTTCTGCT	TCCTGGGGG	GCTGCAGACC	GACCGCAACA	CCATCCACAA	GAACCTGTGC	2700
ATCAACCTCT	TCCTGGCTGA	GCTGCTCTTC	CTGGTCGGGA	TCGACAAGAC	TCAGTATGAG	2760
ATTGCCTGCC	CCATCTTCGC	CGGCCCTGCTG	CACTATTCT	TCCCTGGCTGC	CTTCTCCTGG	2820
CTGTGCCCTGG	AGGGCGTGCA	CCTCTACCTG	CTACTAGTGG	AGGTGTTTGA	GAGCGAGTAT	2880
TCCCCGACCA	AGTACTACTA	CCTGGGTGGC	TACTGCTTCC	CGGCCCTGGT	GGTGGGCATC	2940
CGGGCTGCCA	TTGACTACCG	CAGCTACGGC	ACCGAGAAAGG	CCTGCTGGCT	CCGAGTGGAC	3000
AATTACTTC	TCTGGAGTTT	CATCGGGCCA	GTCTCCTTCG	TTATCGTGGT	CAACCTGGTG	3060
TTCTCTATGG	TGACCCCTGCA	CAAGATGATC	CGAAGCTCAT	CTGTGCTCAA	GCCCGACTCC	3120
AGCCGCTGG	ACAACATTA	ATCCTGGGCC	CTGGGGGCCA	TCGCGCTGCT	GTTCCCTGCTG	3180
GGCCTCACCT	GGGCTTCGG	CCTCCTCTTC	ATCAACAAGG	AGTCGGTGGT	CATGGCCTAT	3240
CTCTTCACCA	CCTTCACACG	CTTCCAGGGG	GTCTTCATCT	TCGTCTTCA	CTGCGCCTTA	3300
CAGAAGAAGG	TGCACAAGGA	GTACAGCAAG	TGCCTGCGTC	ACTCCTACTG	CTGCATCCGC	3360
TCCCCACCCG	GGGGCACTCA	CGGATCCCTC	AAGACCTCAG	CCATGCGAAG	CAACACCCGC	3420
TACTACACAG	GGACCCAGAG	CGGAATTCTGG	AGGATGTGGA	ATGACACTGT	GAGGAAACAG	3480
ACGGAGTCCT	CCTTCATGCC	GGGTGACATC	AACAGCACCC	CCACCCCTGAA	CCGAGGTACC	3540
ATGGGGAACC	ACCTGCTGAC	CAACCCCTGTG	CTGCAGCCCC	GTGGGGGCAC	CAGTCCCTAC	3600
AAACACCTCA	TCGCCAGTC	AGTGGGCTTC	AATCCCTCCT	CGCCCCCTGT	CTTCAACTCC	3660
CCAGGGAGCT	ACCGGGAAACC	CAAGCACCCC	TTGGGAGGCC	GGGAAGCCTG	TGGCATGGAC	3720
ACCCCTGCC	TGAACGGCAA	CTTCAATAAC	AGTTACTCCT	TCGGAAGTGG	GGATTTCCCT	3780
CCCCGGGATG	GGGGCCCTGA	GCCGCCCGA	GGCCGGAACC	TAGCCGATGC	GGCGGCCCTTT	3840
GAGAAGATGA	TCATCTCAGA	GCTGGTGCAC	AAACAACCTGC	GGGGGAGCAG	CAGCGCGGCC	3900
AAGGGCCCTC	CACCGCCTGA	GCCCCCTGTG	CCACCTGTGC	CAGGGGGCGG	GGGCGAGGAA	3960
GAGGCGGGCG	GGCCCCGGGG	TGCTGACCGG	GCCGAGATTG	AACTTCTCTA	TAAGGCCCTG	4020
GAGGAGCCTC	TGCTGCTGCC	CCGGGCCCGAG	TCGGTGCTGT	ACCAAGAGCGA	TCTGGACGAG	4080
TCGGAGAGCT	GCACGGCCGA	GGACGGCGCC	ACCAGCCGGC	CCCTCTCCTC	CCCTCCCTGGC	4140
CGGGACTCCC	TCTATGCCAG	GGGGGCAAC	CTGCGGGACT	CACCCCTCTA	CCCGGACAGC	4200
AGCCCTGAGG	GGCCCCAGTGA	GGCCCCCTGCC	CCACCCCTC	CCGCACCCCC	GGGCCCCCCCC	4260
GAAATCTACT	ACACCTCGCG	CCCGCCAGCC	CTGGTGGCCC	GGAATCCCCCT	GCAGGGCTAC	4320
TACCAAGTGC	GGCGTCCCTAG	CCACGAGGGC	TACCTGGCAG	CCCCAGGCCT	TGAGGGGCCA	4380
GGGCCCGATG	GGGACGGGCA	GATGCAGCTG	GTCACCAAGTC	TC		4425