Exploring Variations in Clustering and Predictive Analysis

Ran Wei

Mar 23, 2022

Part 1 Plot the Data

For this analysis, I start by importing the data into R. I also read the agaricus-lepiota.names file to gather some additional information. From that file, I learn that this data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is identified as edible, or poisonous, as shown in the first column. All of the attribute information is listed as Appendix A. According to this information, I assigned names for the features, and a sample of my dataset can be seen in Figure 1. The names file also mentions that missing values are coded as '?', and that there are 2480 of them. Before continuing, these rows containing missing values will be removed from the data.

Figure 1. Raw Dataset

Figure 2. Raw Dataset Plot

The next step in my analysis is to plot the data and see if I can spot any relationships between my features and my class variable, or between two features. The result of this plotting is shown above in Figure 2. It is very difficult to tell if there are any relationships from this plot, so I will need to take a closer look at some smaller sets of relationships. The plots below show my results from plotting 'stalk-surface-below-ring' and 'stalk-surface-above-ring' (Figure 3).

Figure 3. Relationship between 'ssar' and 'ssbr'

It appears there may be a relationship between 'ssar' and 'ssbr'. I also tried to find a relationship between 3 variables, so I investigated the 3 cap related features ('cshape', 'csurface', and 'ccolor') .The result is shown in Figure 4. There seems to be no clear relationship between these three variables.

Figure 4. Relationship between 'cshape', 'csurface', and 'ccolor'

Part 2 Prepare the Data

The first step in preparing my data for clustering is to convert the categorical variables into numeric. Each variable was assigned a value from 10 to 150 (space by 10) for each category. The mapping for each feature of values to integers is shown in Table 1. All the code for this project can be found in the file 'Project 2.R'. Moreover, I also separated the 'class' column since it's the target value that I want to predict.

Table 1.	Character to	Number	M	lapping
----------	--------------	--------	---	---------

cshape	csurface	ccolor	odor	bruises	gattachment	gspacing	gsize	gcolor	sshape	sroot
x=10	s=10	n=10	p=10	t=10	f=10	c=10	n=10	k=10	e=10	e=10
b=20	y=20	y=20	a=20	f=20	a=20	w=20	b=20	n=20	t=20	c=20
s=30	f=30	w=30	1=30					g=30		b=30
f=40	g=40	g=40	n=40					p=40		r=40
k=50		e=50	f=50					w=50		
c=60		p=60	c=60					h=60		
		b=70	y=70					u=70		
		u=80	s=80					e=80		
		c=90	m=90					b=90		
		r=100						r=100		
								y=110		
								o=120		
ssar	ssbr	scar	scbr	vtype	vcolor	rnumber	rtype	spc	population	habitat
s=10	s=10	w=10	w=10	p=10	w=10	o=10	p=10	k=10	s=10	u=10
f=20	f=20	g=20	p=20	u=20	n=20	t=20	e=20	n=20	n=20	g=20
k=30	y=30	p=30	g=30		o=30	n=30	1=30	u=30	a=30	m=30
y=40	k=40	n=40	b=40		y=40		f=40	h=40	v=40	d=40
		b=50	n=50				n=50	w=50	y=50	p=50
		e=60	e=60					r=60	c=60	w=60
		o=70	y=70					o=70		1=70
		c=80	o=80					y=80		
		y=90	c=90					b=90		

• The results from applying some basic statistics are shown in Figure 5 and Figure 6.

> summary(mushro							
cshape	csurface	ccolor	bruises	odor	gattachment	gspacing	gsize
Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00
1st Qu.:10.00	1st Qu.:20.00	1st Qu.:20.00	1st Qu.:10.00	1st Qu.:40.00	1st Qu.:10.00	1st Qu.:10.00	1st Qu.:20.00
Median :10.00	Median :20.00	Median :30.00	Median :10.00	Median :40.00	Median :10.00	Median :10.00	Median :20.00
Mean :23.86	Mean :21.61	Mean :30.92	Mean :14.36	Mean :40.32	Mean :10.03	Mean :11.81	Mean :18.75
3rd Qu.:40.00	3rd Qu.:30.00	3rd Qu.:40.00	3rd Qu.:20.00	3rd Qu.:50.00	3rd Qu.:10.00	3rd Qu.:10.00	3rd Qu.:20.00
Max. :60.00	Max. :40.00	Max. :90.00	Max. :20.00	Max. :90.00	Max. :20.00	Max. :20.00	Max. :20.00
gcolor	sshape	sroot	ssar	ssbr	scar	scbr	vtype
Min. : 10.00	Min. :10.0	Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.0	Min. :10.00	Min. :10
1st Ou.: 30.00	1st Ou.:10.0	1st Qu.:20.00	1st Qu.:10.00	1st Qu.:10.00	1st Qu.:10.0	1st Ou.:10.00	1st Ou.:10
Median : 40.00	Median :20.0	Median :30.00	Median :10.00	Median :10.00	Median :10.0	Median :10.00	Median :10
Mean : 40.52	Mean :15.1	Mean :25.39	Mean :15.83	Mean :16.91	Mean :20.6	Mean :20.23	Mean :10
3rd Ou.: 50.00	3rd Ou.:20.0	3rd Qu.:30.00	3rd Ou.:20.00	3rd Qu.:30.00	3rd Ou.:30.0	3rd Qu.:30.00	3rd Qu. :10
Max. :110.00	Max. :20.0	Max. :40.00	Max. :40.00	Max. :40.00	Max. :90.0		
						Max. :90.00	Max. :10
vcolor	rnumber	rtype	spc	population	habitat		
Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00	Min. :10.00		
1st Qu.:10.00	1st Qu.:10.00	1st Qu.:10.00	1st Qu.:10.00	1st Qu.:30.00	1st Qu.:20.00		
Median :10.00	Median :10.00	Median :10.00	Median :20.00	Median :40.00	Median :40.00		
Mean :10.04	Mean :10.34	Mean :16.31	Mean :23.68	Mean :35.72	Mean :32.28		
3rd Qu.:10.00	3rd Qu.:10.00	3rd Qu.:20.00	3rd Qu.:40.00	3rd Qu.:50.00	3rd Qu.:40.00		
Max. :40.00	Max. :30.00	Max. :50.00	Max. :60.00	Max. :60.00	Max. :70.00		
>							

Figure 5. Summary of Numerical Dataset

> describe(n	nushr	oom.ne	c)									
	vars	n	mean			trimmed				range		kurtosis se
cshape	1	5644	23.86	14.67	10	23.48	0.00	10	60	50	0.20	-1.88 0.20
csurface	2	5644	21.61	7.64	20	22.00	14.83	10	40	30	-0.27	-1.22 0.10
ccolor	3	5644	30.92	15.80	30	30.02	14.83	10	90	80	0.54	0.45 0.21
bruises	4	5644	14.36	4.96	10	14.20	0.00	10	20	10	0.26	-1.93 0.07
odor	5	5644	40.32	11.57	40	41.47	14.83	10	90	80	-0.41	2.45 0.15
gattachment	6	5644	10.03	0.56	10	10.00	0.00	10	20	10	17.62	308.45 0.01
gspacing	7	5644	11.81	3.85	10	11.02	0.00	10	20	10	1.65	0.73 0.05
gsize	8	5644	18.75	3.30	20	19.69	0.00	10	20	10	-2.27	3.16 0.04
gcolor	9	5644	40.52	18.04	40	40.04	14.83	10	110	100	0.30	0.05 0.24
sshape	10	5644	15.10	5.00	20	15.13	0.00	10	20	10	-0.04	-2.00 0.07
sroot	11	5644	25.39	8.45	30	26.31	0.00	10	40	30	-0.94	-0.44 0.11
ssar	12	5644	15.83	8.61	10	14.73	0.00	10	40	30	0.95	-0.86 0.11
ssbr	13	5644	16.91	9.70	10	15.58	0.00	10	40	30	0.94	-0.64 0.13
scar	14	5644	20.60	14.27	10	18.13	0.00	10	90	80	1.32	1.56 0.19
scbr	15	5644	20.23	14.47	10	17.49	0.00	10	90	80	1.57	2.64 0.19
vtype	16	5644	10.00	0.00	10	10.00	0.00	10	10	0	NaN	NaN 0.00
vcolor	17	5644	10.04	1.13	10	10.00	0.00	10	40	30	26.50	700.25 0.02
rnumber	18	5644	10.34	2.14	10	10.00	0.00	10	30	20	6.94	51.67 0.03
rtype	19	5644	16.31	8.77	10	15.23	0.00	10	50	40	1.02	-0.07 0.12
spc	20	5644	23.68	13.30	20	22.70	14.83	10	60	50	0.62	-0.88 0.18
population	21	5644	35.72	14.71	40	37.03	14.83	10	60	50	-0.78	-0.77 0.20
habitat	22	5644	32.28	12.51	40	32.13	14.83	10	70	60	0.02	-0.63 0.17

Figure 6. Describe of Numerical Dataset

It's worth noticing that:

- There are no 'NA' values in the whole dataset, as they have all been removed.
- The veil-type feature only has one category, as all the entries are of value 10 (belonging to category 'p').
- Most of features have positive skew value, which means that their tails are on the right side of the possibility density distribution, except cap-surface, odor, gill-size, stalk-shape, stalk-root, and population.
- Most of fields are distributed platykurtic with negative kurtosis value, however, veil-color (kurtosis=700.25), gill-attachment'(kurtosis=308.45), and ring-number (kurtosis=51.67) have relatively higher kurtosis values than other fields. This means that outliers might exist in these three features.

In order to subset the dataset for prediction, I need to eliminate some attributes. 'vtype' should be dropped first since other features cannot have a relationship with it. Then I plotted the remaining 21 attributes again shown in Figure 7.

- Some attributes seem to present only horizontal or vertical lines for all relationships. These features are 'cshape', 'csurface', 'bruises', 'gattachment', 'gspacing', 'gsize', 'sshape', 'vcolor', and 'rnumber', and I choose to get rid of them.
- But for other features, like 'ccolor', 'odor', 'gcolor', 'sroot', 'ssar', 'ssbr', 'scar', 'scbr', 'rtype', 'spc', 'popilation', and 'habitat', the dots in subplot tend to converge towards the bottom left corner, which means that these attributes may have some relationship with others. After keeping only these attributes, I now have 12 variables remaining.

The next step is to normalize the data and check the correlation. For my analysis, I chose to use Z-score normalization, but my code shows how to execute both.

Figure 7. Plot of Numeric Dataset

Figure 8. Correlation Plot

According to Figure 8, 'ccolor' has a weak relationship with other attributes, so I choose to eliminate it as well. Finally, I got 11 features as a subset.

Then I split the original dataset into 3 training and testing sets of varying sizes (70/30,60/40,50/50).

Part 3 Clustering Data Set

The next step for the analysis is to take the normalized features and apply kmeans clustering. I started with 2 clusters and repeated the analysis for up to 7 clusters. The results of the analysis are shown below. All the cluster plots are shown in Appendix B.

Note: When creating the cluster plots, I applied a function so that only every third point label is displayed (see code). This will help me identify nearby points in a later part of the analysis.

Table 2. Kmeans Clustering Performance

k	2	3	4	5	6	7
	1404	1368	2444	2302	1072	864
	4240	1776	1008	1368	360	40
		2500	824	768	1632	944
cluster size			1368	1014	192	432
ciuster size				192	1020	2444
					1368	288
						632
	6661.72	5870.57	10956.17	8634.28	2224.26	2337.41
	29752.72	8469.03	4057.70	5870.57	1104.26	253.19
within cluster sum of		11764.14	2926.89	1911.02	6399.90	4537.19
			5870.57	4123.10	786.10	718.83
squares				786.10	2560.47	10785.46
					5870.57	311.32
						1496.33
between_SS/total_SS	41.30%	57.90%	61.60%	65.60%	69.50%	67.10%

It's obvious that:

- According to the ratio of between_SS and total_SS, the metrics improve along with the increasing number of clusters, though there is a slight dip when the number of clusters is equal to 7.
- When the number of clusters increased from 5 to 6, the ratio of between_SS and total_SS still improved almost 4%.
- Some clear distinctions appear between 2 and 3 clusters. However, as shown in Appendix B, lots of overlap appears when the number of clusters is larger than 3.

To determine the characteristics which have influence on classification, I chose two points: '5436' and '5142' and go back to their character features. These points are

clustered together when there's 2-6 clusters, but clustered separately when there's 7 clusters. As indicated in Figure 9, the features for these two points are nearly identical, with the only difference being 'ssbr'. From this I can assume 'ssbr' plays a larger role when there are 7 clusters. This explains why the overlapping increases when the number of clusters becomes larger.

```
sroot ssar
                           ssbr
                                 scar
                                      scbr
                                           rtype spc
                                                      population habitat
                   30
                        10
                              10
                                   10
                                        50
                                               20
                                                   50
mushroom.nc.11[5142,]
        gcolor
                           ssbr
                                 scar scbr rtype spc population habitat
   odor
                sroot ssar
                             20
                                  10
                                        50
```

Figure 9. Attributes Record for Two Specific Points

Part 4 Prediction

I start part 4 by performing knn on my testing data and comparing the results to the clustering. To select the number of clusters to use in this test, I look at the within sum of squares plot generated in part 3 (Figure 10). The chart shows that the optimal number of clusters should be around 3-4. Since the question suggests I also perform my analysis for 5,7,and 9 clusters, I perform this analysis 4 times, with 3,5,7, and 9 clusters.

Figure 3. Cluster Sum of Squares

If I compare the results of knn classification of the test set (Figure 11) to the kmeans clustering labels (Figure 12) when k=3, I notice they vary drastically. This could be

because the train and test sets possess different qualities, so their clusters are created using different factor weights.

> mush.test.k3	
[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3	1 3 3 3 3 1 3 3 1 3 3 3 3 3
[67] 3 1 3 1 3 3 1 1 3 3 3 1 3 3 3 3 3 3 3	
[133] 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 3 1 1 3 3 3 3 3	
[199] 3 3 3 3 1 3 3 1 3 3 1 1 3 3 3 3 3 3 3	
[265] 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 1 1 1 3 3 3 3 1 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3 1 1 3	
[331] 3 3 1 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3	
[397] 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
[463] 3 3 3 3 3 3 1 3 3 3 1 3 3 3 1 3 1 3 3 1 3 1 3	
[529] 1 1 1 1 1 1 3 3 1 3 1 1 3 1 3 3 3 3 3	
[595] 3 1 3 3 3 1 1 3 3 3 1 3 1 1 1 1 1 1 1	
[661] 1 3 1 1 3 1 1 3 1 3 1 1 1 1 1 1 1 1 1	
[727] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1	
[793] 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
[859] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
[925] 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 2 1	1111211111221
[991] 1 1 1 1 1 1 1 2 1	
[reached getOption("max.print") omitted 694 entries]	

Figure 11: KNN Labels on Test Set (k=3)

>	mus	h.tes	t.k3.	label	S																						
	3	4	6	8	11	14	15	22	23	24	29	33	38	39	40	43	46	48	50	53	62	64	73	74	80	84	85
	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	1	2	2	2	1	1	1	2	2
	86	88	89	91	93	101	104	105	106	110	111	115	126	128	129	130	135	142	146	155	156	157	158	160	174	175	176
	2	2	1	2	2	2	1	2	2	2	2	2	2	2	2	2	1	2	2	1	2	2	2	2	2	2	2
	177	186	189	190	199	202	205	208	210	221	225	226	228	233	235	236	237	238	245	247	248	253	257	265	273	285	288
	2	2	2	1	2	2	1	2	2	2	2	2	2	1	2	1	2	2	1	1	2	2	2	1	2	2	2
	293	298	301	305	308	310	312	313	320	322	324	330	332	339	348	349	356	360	367	380	385	389	391	397	399	405	410
	2	2	2	2	2	2	2	2	1	1	2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	2	1
	411	412	416	417	423	425	426	430	437	439	440	446	450	452	461	463	465	468	475	477	480	486	488	491	495	499	501
	2	2	2	1	2	2	1	2	1	2	1	2	1	2	2	2	2	2	1	2	2	1	2	1	2	2	2
	508	510	512	515	516	519	520	521	530	533	538	540	545	546	548	554	563	565	566	571	575	576	579	580	589	591	592
	2	2	2	2	2	2	2	2	1	2	2	1	2	2	2	1	1	2	2	2	1	2	1	2	2	2	2
	593	5 95	597	611	619	622	628	630	631	632	635	637	638	644	645	648	650	653	654	657	662	676	679	681	685	687	689
	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	2	1	1	2	2	2	2	1	1	1	2	2
	691	692	695	698	699	700	702	709	717	722	724	725	726	731	734	736	737	738	749	751	762	766	768	769	770	771	773
	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	2	1	2	2	1	1	2	2	2	2	2	2
	775	776	781	784	792	800	801	806	807	808	811	818	823	824	826	833	838	844	848	849	852	853	857	863	865	868	869
	2	2	2	2	1	1	2	2	2	1	2	1	2	2	2	1	2	2	2	2	2	2	1	2	2	1	2
	874	876	888	889	891	892	895	901	902	908	909	911	917	921	922	924	927	935	937	939	940	941	942	944	947	952	957
	1	1	1	1	1	1	2	1	2	2	2	2	2	2	2	1	2	2	2	2	1	2	2	2	2	2	2

Figure 12: KMeans Labels on Test Set(k=3)

I take the kmeans generated labels and move on to linear modeling. For the linear model, I bring the poisonous/edible class back into the data. I convert these categories to 1,0 values respectively and use them as the dependent variable in my regression. The results of my first regression model (Figure 13) show that feature 'rtype' is the least significant and should be eliminated. Applying stepwise regression, I retrain the model with my new features and check the results (Figure 14). The p-values of all features after stepwise regression are less than 0.05, which means that this model passes the significance test. The anova - Analysis of Variance on the model (Figure 15) also shows the gap between the null deviance and the residual deviance is significant.

```
summary(mush.train.glm)
Call:
glm(formula = mush.train$class ~ ., family = "gaussian", data = mush.train)
Deviance Residuals:
               1Q
                      Median
                                              Max
-1.19889 -0.18468 -0.04705 0.08540
                                         1.00253
Coefficients:
             (Intercept) 0.384163
odor 0.009326
gcolor
            -0.004229
                        0.005393
                                  -0.784 0.43299
                        0.010003
sroot
             0.061683
                                   6.167 7.68e-10 ***
            0.173709
-0.031371
                        0.013532
                                  12.837 < 2e-16 ***
ssar
                                   -3.148 0.00165 **
ssbr
                        0.009965
                                   5.512 3.77e-08 ***
                        0.009537
scar
             0.052570
                        0.008208 -3.092 0.00200 **
0.016511 -0.261 0.79414
            -0.025376
scbr
rtype
            -0.004309
                        0.007887 28.325 < 2e-16 ***
             0.223388
                                   -4.464 8.26e-06 ***
population -0.029797
                        0.006675
            -0.105915
                        0.006978 -15.178 < 2e-16 ***
habitat
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.09709393)
Null deviance: 933.23 on 3949 degrees of freedom
Residual deviance: 382.36 on 3938 degrees of freedom
AIC: 2011.9
Number of Fisher Scoring iterations: 2
```

Figure 13. Linear Regression Model for All Variables in Training Set

```
summary(mush.train.glm.step)
Call:
glm(formula = mush.train$class ~ sroot + ssar + ssbr + scar + scbr + spc + population + habitat, family = "gaussian", data = mush.train)
Deviance Residuals:
                     1Q
                               Median
                                                               Max
 -1.19944 -0.18611 -0.04847 0.08334
                                                         1.00058
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.384110 0.004958 77.471 < 2e-16 ***

sroot 0.064621 0.007505 8.610 < 2e-16 ***

0.011491 15.322 < 2e-16 ***
                                               15.322 < 2e-16 ***
-4.101 4.20e-05 ***
                 -0.034401
ssbr
                                  0.008389
                                               5.721 1.14e-08 ***
-3.138 0.00172 **
28.900 < 2e-16 ***
-4.479 7.71e-06 ***
                  0.052657
scar
                                  0.009204
scbr
                 -0.025172
                                  0.008023
spc
                 0.223350
                                  0.007728
 population -0.029843
                                  0.006663
                                 0.006860 -15.490 < 2e-16 ***
 habitat
                 -0.106269
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.09707253)
Null deviance: 933.23 on 3949 degrees of freedom
Residual deviance: 382.56 on 3941 degrees of freedom
 Number of Fisher Scoring iterations: 2
```

Figure 14. Linear Regression Model after Stepwise Regression

```
anova(object = mush.train.glm.step, test='Chisq')
Analysis of Deviance Table
Model: gaussian, link: identity
Response: mush.train$class
Terms added sequentially (first to last)
           Df Deviance Resid. Df Resid. Dev
                                              Pr(>Chi)
NULL
                             3949
                                      933.23
                             3948
                                      902.83 < 2.2e-16 ***
sroot
                 30.40
                                      517.24 < 2.2e-16
                385.59
                             3947
ssar
                             3946
                                      516.91
ssbr
                  0.33
                                              0.066754
                  0.89
                             3945
                                      516.02
                                              0.002412 4
scar
scbr
                  3.38
                             3944
                                      512.64 3.539e-09 ***
                                      409.69 < 2.2e-16 ***
                102.95
                             3943
spc
                  3.83
                             3942
                                      405.86 3.347e-10 ***
population
                                      382.56 < 2.2e-16 ***
habitat
                 23.29
                             3941
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Figure 15. ANOVA Analysis result

Figure 16. Model Plot

Figure 16 shows me the residual plots from the model, and they can be interpreted as follows:

- Residuals vs Fitted: my residuals appear to be independent from the predicted values and relatively normally distributed. The strange shape is due to the nature of my true values (0,1 classes).
- Normal Q-Q: For this plot, the residuals should follow the trend line top confirm normal distribution. In my case this is roughly true, however some points are a bit skewed.
- Scale Location: Again, the strange shape is expected due to the nature of my true values.
- Residuals vs Leverage: In this plot, those points in the upper left and upper right may be highly influential on my model.

To perform the prediction, I used the predict() function on the test set and retrieved values. Then, I clustered these predictions using kmeans, and compared the results to the true values generated earlier in this section. The results for cluster sizes 3,5,7,and 9 are shown below.

	mush.test.	c3.labels		
mush.test.pred.k3\$cluster	1	2	3	Row Total
1	34	20	184	238
	48.846	39.704	276.058	I I
	0.143	0.084	0.773	0.140
	0.045	0.038	0.448	I I
	0.020	0.012	0.109	I I
2	51	26	227	304
	52.533	50.054	318.391	I I
	0.168	0.086	0.747	0.179
	0.068	0.049	0.552	I I
	0.030	0.015	0.134	I I
3	669	483	0	1152
	47.610	42.229	279.499	I I
	0.581	0.419	0.000	0.680
	0.887	0.913	0.000	I I
	0.395	0.285	0.000	I I
Column Total	754	529	411	1694
	0.445	0.312	0.243	1

Figure 17. Comparing Result (k=3)

ı	mush.test.k	5.labels				
ush.test.pred.k5\$cluster	1	2	3	4	5	Row Total
1	0	33	0	0	143	176
i	65.558	17.398	3.532	48.623	242.057	i
ı	0.000	0.188	0.000	0.000	0.812	0.104
ı	0.000	0.212	0.000	0.000	0.353	I
ļ	0.000	0.019	0.000	0.000	0.084	ļ
 2	0	43	0	0	224	267
I	99.455	13.787	5.359	73.764	401.871	I
l l	0.000	0.161	0.000	0.000	0.839	0.158
I I	0.000	0.276	0.000	0.000	0.553	I
!	0.000	0.025	0.000	0.000	0.132	ļ
 3	 0	41	20	0	38	99
i	36.877	111.500	163.294	27.351	8.677	İ
i	0.000	0.414	0.202	0.000	0.384	0.058
i	0.000	0.263	0.588	0.000	0.094	İ
ļ	0.000	0.024	0.012	0.000	0.022	ļ
4	284	20	14	323	0	641
I I	8.569	25.806	0.100	120.223	153.250	I
l l	0.443	0.031	0.022	0.504	0.000	0.378
l l	0.450	0.128	0.412	0.690	0.000	I
 	0.168	0.012	0.008	0.191	0.000	
5	347	19	0	145	0	511
ı	128.933	16.729	10.256	0.104	122.169	I
ı	0.679	0.037	0.000	0.284	0.000	0.302
ı	0.550	0.122	0.000	0.310	0.000	I
 	0.205	0.011	0.000	0.086	0.000	
Column Total	631	156	34	468	405	1694
	0.372	0.092	0.020	0.276	0.239	I

Figure 18. Comparing Result (k=5)

	1	iguic 10.	. Compai	ing itest	$m(\kappa-3)$			
	mush.test.k							
mush.test.pred.k7\$cluster	1	2	3	4	5	6	7	Row Total
1	152	0	135	132	0	17	0	436
	56.448	62.028	38.207	1.107	46.071	0.571	30.113	I I
	0.349	0.000	0.310	0.303	0.000	0.039	0.000	0.257
	0.469	0.000	0.435	0.282	0.000	0.309	0.000	I I
	0.090	0.000	0.080	0.078	0.000	0.010	0.000	!!
2	0	124	0	0	50	0	24	198
	37.870	326.020	36.234	54.701	40.413	6.429	7.795	i i
	0.000	0.626	0.000	0.000	0.253	0.000	0.121	0.117
	0.000	0.515	0.000	0.000	0.279	0.000	0.205	I I
	0.000	0.073	0.000	0.000	0.030	0.000	0.014	!!!
3	0	21	12	0	 0	0	35	 68
	13.006	13.260	0.016	18.786	7.185	2.208	195.525	i i
	0.000	0.309	0.176	0.000	0.000	0.000	0.515	
	0.000	0.087	0.039	0.000	0.000	0.000	0.299	i i
	0.000	0.012	0.007	0.000	0.000	0.000	0.021	!!!
4	0	49	0	0	 46	0	37	 132
	25.247	48.633	24.156	36.468	73.654	4.286	85.278	
	0.000	0.371	0.000	0.000	0.348	0.000	0.280	0.078
	0.000	0.203	0.000	0.000	0.257	0.000	0.316	
i	0.000	0.029	0.000	0.000	0.027	0.000	0.022	i i
5	160	0	151	225	 0	29	0	 565
-	24.961	80.381	21.919	30.420	59.702	6.190	39.023	
	0.283	0.000	0.267	0.398	0.000	0.051	0.000	0.334
	0.494	0.000	0.487	0.481	0.000	0.527	0.000	
i	0.094	0.000	0.089	0.133	0.000	0.017	0.000	i i
6	 12	13	12	111	 0	9	0	 157
· ·	10.824	3.902	9.743	105.437	16.590	2.988	10.844	
	0.076	0.083	0.076	0.707	0.000	0.057	0.000	
	0.037	0.054	0.039	0.237	0.000	0.164	0.000	i : i
	0.007	0.008	0.007	0.066		0.005	0.000	i i
7	 0	 34	 0	0	 83	 0	21	 138
,	26.394	10.514	25.254	38.125	321.012	4.481	13.800	
	0.000	0.246	0.000	0.000	0.601	0.000	0.152	
	0.000	0.141	0.000	0.000	0.464	0.000	0.179	0.001
	0.000	0.020	0.000	0.000	0.049	0.000	0.012	i i
Column Total	324	 241	310	468	 179	 55	117	 1694
COTUMN TOTAL	0.191	0.142	0.183	0.276	0.106	0.032	0.069	1034
	0.131	0.142	0.103	0.276	0.106	0.032	0.009	

Figure 19. Comparing Result (k=7)

	mush.test.k	k9.labels								
mush.test.pred.k9\$cluster	1	2	3	4	5	6	7	8	9	Row Total
1	0	20	0	0	0	0	0	15	0	35
	5.434	530.114	5.537	9.401	2.831	3.306	4.236	65.494	1.136	!!
	0.000	0.571	0.000	0.000	0.000	0.000	0.000	0.429	0.000	0.021
	0.000	0.588 0.012	0.000	0.000	0.000	0.000	0.000 0.000	0.128 0.009	0.000	!!
		0.012 								
2	0	0	72	0	61	0		38	0	171
	26.548	3.432	74.676	45.930	160.894	16.151	20.694	58.075	5.552	! !
	0.000	0.000	0.421	0.000	0.357	0.000	0.000	0.222	0.000	0.101
	0.000	0.000 0.000	0.269 0.043	0.000	0.445 0.036	0.000	0.000 0.000	0.325 0.022	0.000	: :
3	48	i 0 i	0	109	0	37	59	o i	8	261
	1.380	5.238	41.292	21.582	21.108	6.185	23.796	18.027	0.027	
	0.184	0.000	0.000	0.418	0.000	0.142	0.226	0.000	0.031	0.154
	0.183	0.000	0.000	0.240	0.000	0.231	0.288	0.000	0.145	
	0.028	0.000	0.000	0.064	0.000	0.022	0.035	0.000	0.005	
4	58	14	0	17	0	0	37	0	4	130
	70.858	49.728	20.567	9.194	10.514	12.279	28.752	8.979	0.012	
	0.446	0.108	0.000	0.131	0.000	0.000	0.285	0.000	0.031	0.077
	0.221	0.412	0.000	0.037	0.000	0.000	0.180	0.000	0.073	!!
	0.034	0.008	0.000	0.010	0.000	0.000	0.022	0.000	0.002	
5	0	0	84	0	41	0	0	27	0	152
	23.599	3.051	149.470	40.826	67.040	14.357	18.394	25.939	4.935	
	0.000	0.000	0.553	0.000	0.270	0.000	0.000	0.178	0.000	0.090
	0.000	0.000	0.313	0.000	0.299	0.000	0.000	0.231	0.000	!!
	0.000	0.000	0.050	0.000	0.024	0.000	0.000	0.016	0.000	
6	0	0	112	0	35	0	0	37	0	184
	28.567	3.693	236.030	49.421	27.202	17.379	22.267	46.433	5.974	i i
	0.000	0.000	0.609	0.000	0.190	0.000	0.000	0.201	0.000	0.109
	0.000	0.000	0.418	0.000	0.255	0.000	0.000	0.316	0.000	
	0.000	0.000	0.066	0.000	0.021	0.000	0.000	0.022	0.000	
7	12	0	0	104	0	37	0	0	9	162
	6.877	3.251	25.629	84.085	13.102	30.772	19.604	11.189	2.660	
	0.074	0.000	0.000	0.642	0.000	0.228	0.000	0.000	0.056	0.096
	0.046	0.000	0.000	0.229	0.000	0.231	0.000	0.000	0.164	!
	0.007	0.000	0.000	0.061	0.000	0.022	0.000	0.000	0.005	
8	122	0	0	85	0	29	51	0	16	303
	119.441	6.081	47.936	0.161	24.505	0.005	5.602	20.927	3.860	i i
	0.403	0.000	0.000	0.281	0.000	0.096	0.168	0.000	0.053	0.179
	0.464	0.000	0.000	0.187	0.000	0.181	0.249	0.000	0.291	!!
	0.072	0.000	0.000	0.050	0.000	0.017	0.030	0.000	0.009	
9	23	0	0	140	0	57	58	0	18	296
	11.466	5.941	46.829	46.032	23.939	30.170	13.733	20.444	7.324	i i
	0.078	0.000	0.000	0.473	0.000	0.193	0.196	0.000	0.061	0.175
	0.087	0.000	0.000	0.308	0.000	0.356	0.283	0.000	0.327	ı ı
	0.014	0.000	0.000	0.083	0.000	0.034	0.034	0.000	0.011	
Column Total	263	34	268	455	137	160	205	117	55	1694
2071	0.155	0.020	0.158	0.269	0.081	0.094	0.121	0.069	0.032	
	i	ii				i	ii			ii

Figure 20. Comparing Result (k=9)

The cluster counts and calculation of precision are shown in Figures 21 & 22.

- K=5 performs best according to the precision rate which equals to 22.79%;
- The precision rate almost remains the same for k=3 vs. k=9.

	musn.ks.counts	true_tabets
1	238	754
2	304	529
3	1152	411
	gure 21.1 Cluste	
	mush.k5.counts	true_labels
1	176	631
2	267	156
3	99	34
4	641	468
5	511	405
т.	01.0.01.4	. (1 5)

Figure 21.2 Cluster counts(k=5)

	mush.k7.counts	true_labels
1	436	324
2	198	241
3	68	310
4	132	468
5	5 6 5	179
6	157	55
7	138	117

Figure 21.4 Cluster counts(k=9)

K	F1_score
3	0.0354
5	0.2279
7	0.1877
9	0.0449

Figure 21.5 Accuracy Scores

Part 5 Conclusion

After comparing the precision results for different numbers of clusters, I found that the optimal classification number should be 5.

K-Means and KNN are both machine learning algorithms. However, KNN is an algorithm used for classification, while K-Means is an unsupervised algorithm used for clustering. I need to generate labels by K-Means method at first, then apply these labels to data set for KNN analysis.

This project has taught me multiple methods as to how to deal with categorical data. I also learned about different normalization methods. Finally, I developed a strong understanding of K-Means clustering, including experimenting between different k values, investigating closely related cases, and optimizing the number of clusters.

Appendix A

Attribute Information

- -1. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s
- -2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s
- -3. cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w, yellow=y
- -4. bruises?: bruises=t, no=f
- -5. odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
- -6. gill-attachment: attached=a, descending=d, free=f, notched=n
- -7. gill-spacing: close=c, crowded=w, distant=d
- -8. gill-size: broad=b, narrow=n
- -9. gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, purple=u, red=e, white=w, yellow=y
- -10. stalk-shape: enlarging=e, tapering=t
- -11. stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=?
- -12. stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s
- -13. stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s
- -14. stalk-color-above-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y
- -15. stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y
- -16. veil-type: partial=p, universal=u
- -17. veil-color: brown=n, orange=o, white=w, yellow=y
- -18. ring-number: none=n, one=o, two=t
- -19. ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s, zone=z
- -20. spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w, yellow=y
- -21. population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y
- -22. habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d

Appendix B

Kmeans Clustering Plot

Dim1 (48.3%)

