Модели языка

Простейшая модель

• Мешок слов — появление слова в предложении не зависит от других слов

$$W = < w_1 w_2 w_3 ... w_n >$$
 $W = «Мама мыла раму»$

• Каждое слово имеет вероятность появления, равную частоте слова во всех текстах

Модель языка

P(W) – вероятность предложения W

$$P(W) = P(w_1 w_2 w_3 ... w_n) =$$

= $P(w_1) \cdot P(w_2) \cdot P(w_3) \cdot ... \cdot P(w_n)$

 $P(w_i)$ – вероятность встретить слово w_i в предложении

$$P(w_i) = \frac{c(w_i)}{c()}$$

 $c(w_i)$ – количество предложений, в которых есть слово w_i c() – количество предложений в корпусе

Google Books Ngram Viewer

https://books.google.com/ngrams/

собака и кошка

чай и кофе

фиолетовый, лиловый, пурпурный

Биграммная языковая модель

Панграмма

Съешь ещё этих мягких французских булок, да выпей же чаю

Панграмма

Съешь ещё этих мягких французских булок, да выпей же чаю

Съешь чаю, да выпей булок

Выпей мягкого чаю

Съешь драчливых булок

Горячий чай, мягкий чай

Чай, мягкий, горячий

Предсказание следующего слова

- круглый ...
- выпил ...
- яблоко от ...

Биграммы

HKPЯ (<u>ruscorpora.ru</u>):

- Горячего ...
- 67 сочетаний
- 1054 вхождения

No	Вхождения	Документы	Фрагмент
1	118	109	горячего чая
2	85	82	<mark>горячего</mark> чаю
3	66	57	<mark>горячего</mark> воздуха
4	54	53	горячего и
5	50	48	<mark>горячего</mark> кофе
6	50	41	горячего водоснабжения
7	41	36	горячего сердца
8	37	36	горячего молока
9	33	28	горячего пара
10	21	20	горячего желания
11	21	19	горячего ветра
12	20	20	горячего солнца
13	19	18	горячего сочувствия
14	18	18	горячего копчения
15	18	18	горячего супа
16	18	17	горячего до
17	17	16	горячего вина
18	16	10	горячего боя
19	15	15	горячего спора
20	13	13	горячего дыхания

Вероятность предложения

$$P(W) = P(w_1 w_2 w_3 \dots w_N) =$$

$$= P(w_1|\emptyset) \cdot P(w_2|w_1) \cdot P(w_3|w_2) \cdot ... \cdot P(w_N|w_{N-1}) \cdot P(\emptyset|w_N)$$

Биграммная модель

 $P(w_i|w_{i-1})$ – вероятность того, что слово w_i стоит в предложении после слова w_{i-1}

$$P(w_i|w_{i-1}) = \frac{c(w_{i-1}w_i)}{c(w_{i-1})}$$

- $c(w_{i-1}w_i)$ количество предложений, в которых есть последовательность слов $w_{i-1}w_i$
- $c(w_{i-1})$ количество предложений, в которых есть слово w_{i-1}

Сравнение моделей по качеству

• PP – перплексия (коэффициент неопределенности) модели на предложении

$$PP(W) = P(w_1 w_2 w_3 \dots w_N)^{\frac{1}{N}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Пример

Корпус:

Стол стул шкаф.

Диван стул шкаф.

Стул табурет диван.

Табурет диван люстра.

Стул диван люстра.

- 1. Построить языковую модель коллекции
- 2. Найти вероятность предложения:
 - Стол стул диван.
 - Диван стул люстра.
 - Стул шкаф.

Пример

Найти вероятность предложений:

Стол стул диван.

Диван стул люстра.

Стул шкаф.

Задание

Корпус:

- Вася любит мороженое.
- Лена любит малину.
- Вася любит Лену.
- Георгий ест мороженое.
- Лена рисует яблоко.
- Георгий любит Катю.
- Георгий любит смотреть, как Лена ест мороженое.
- 1. Рассчитайте вероятности для предложений:
 - Вася любит Катю.
 - Лена любит мороженое.
 - Лена рисует малину.
- 2. Вычислите перплексию модели на предложении:
 - Георгий любит малину.

Сглаживание

- языковая модель должна обобщать (а не повторять) данные, на которых она обучалась
- всегда будут новые последовательности слов, которые не встречались в корпусе для обучения

Сглаживание

- Лапласа
- Откат
- Интерполяция
- Кнесера-Нея (Kneser-Ney)
- Гуда-Тьюринга (Good-Turing)
- Виттена-Белла (Witten-Bell)
- •

Сглаживание Лапласа

$$P(w_i|w_{i-1}) = \frac{c(w_{i-1}w_i) + 1}{c(w_{i-1}) + V}$$

$$P(w_i|w_{i-1}) = \frac{c(w_{i-1}w_i) + \alpha}{c(w_{i-1}) + \alpha \cdot V}$$

- V размер словаря
- α коэффициент

Интерполяция

$$\hat{P}(w_i|w_{i-2}w_{i-1}) =
= \lambda_1 P(w_i|w_{i-2}w_{i-1}) +
+ \lambda_2 P(w_i|w_{i-1}) +
+ \lambda_3 P(w_i)$$

$$\sum_{i} \lambda_{i} = 1$$

Задание

Пусть есть корпус, содержащий 10000 предложений, размер словаря - 1500 уникальных слов (включая специальные "слова" – маркеры начала <s> и конца </s> предложений). Некоторые частоты униграмм:

ем – 100 дуриан – 1

u – 5000

не – 3000

морщусь – 50

и биграмм:

< s > eM - 20

ем дуриан – 0

дуриан u - 0

и не – 300

не морщусь – 15

морщусь </s> - 5

Примените сглаживание Лапласа для оценки вероятностей биграмм и оцените на их основе вероятность предложения: <s> Ем дуриан и не морщусь </s>

В качестве ответа запишите натуральный логарифм оценки вероятности предложения.

Триграммная скрытая Марковская модель для определения части речи

Триграммная скрытая Марковская модель

 Ψ – множество словоформ {слон, слону,...}

 Ω – множество тегов {N, V, P,...} (части речи)

Предложение – цепочка словоформ:

 $w_1 w_2 w_3 ... w_n$, $w_i \in \Psi$,

которой соответствует цепочка тегов:

 $t_1t_2t_3...t_n$, $t_i \in \Omega$

P(w|t) – вероятность того, что тегу t соответствует слово w

Р(стекло | N)

$$p(w/t) = \frac{c(t \to w)}{c(t)}$$

c(t) – сколько раз встретился тег t в корпусе
 c(t→w) – сколько раз тегу t соответствовала словоформа w

P(t|u, v) — вероятность появления тега t при условии, что перед ним находятся теги u и v P(N|VP)

$$p(t/u,v) = \frac{c(uvt)}{c(uv)}$$

- c(uvt) сколько раз в корпусе встретилась цепочка uvt
- c(uv) сколько раз в корпусе встретилась цепочка uv

Учитываются начало и конец предложения:

$$P(t_1|**)$$
, $P(t_2|*t_1)$, $P(STOP|t_{n-1}t_n)$

Тогда

$$P(w_1 w_2 \dots w_n, t_1 t_2 \dots t_n) = \prod_{i=1}^{n+1} P(t_i | t_{i-2} t_{i-1}) \times \prod_{i=1}^{n} P(w_i | t_i)$$

$$t_0 \equiv t_{-1} \equiv *$$
, $t_{n+1} \equiv STOP$

Дождь стучит в стекло Существительное глагол предлог существительное (NVPN)

$$P(\text{стучит в стекло, VPN STOP}) = P(V|*,*) \times \\ \times P(P|*,V) \times P(N|V,P) \times P(STOP|P,N) \times \\ \times P(\text{стучит}|V) \times P(B|P) \times P(\text{стекло}|N)$$

$$P(N/*,*) = \frac{c(N \ в \ начале \ предложения)}{c(npeдложений)}$$

$$P(N/*,P) = \frac{c(PN \ в \ начале \ предложения)}{c(P \ в \ начале \ предложения)}$$

$$P(STOP/V,P) = \frac{c(VP \ в \ конце \ npedложения)}{c(VP)}$$

Алгоритм Витерби

```
P(стучит в стекло, VPN STOP)
P(стучит в стекло, VPV STOP)
P(стучит в стекло, VPP STOP)
P(стучит в стекло, VNV STOP)
P(стучит в стекло, VNP STOP)
P(стучит в стекло, VNN STOP)
P(стучит в стекло, VVV STOP)
P(стучит в стекло, VVP STOP)
P(стучит в стекло, VVN STOP)
```