Analysis 1 – Tutorium 4 robin.mader@campus.lmu.de 27.11.2020

Aufgabe 1 (Kompaktheit). Erinnerung: Ein topologischer Raum (X, \mathcal{T}) heißt kompakt, falls es für jede Familie $(U_i)_{i \in I} \in \mathcal{T}^I$ von offenen Mengen in X mit $X = \bigcup_{i \in I} U_i$ eine endliche Indexmenge $E \subset I$ gibt, sodass noch $X = \bigcup_{i \in E} U_i$ gilt.

1. Wir bezeichnen mit $\mathcal{T}_{\mathbb{R}}$ die Standardtopologie auf \mathbb{R} . Es seien $M \subseteq \mathbb{R}$ eine Teilmenge und $\mathcal{T}_M = \{V \cap M \mid V \in \mathcal{T}_{\mathbb{R}}\}$ die Relativtopologie. Zeige:

M ist eine kompakte Teilmenge von \mathbb{R} (im Sinne der Definition 2.26)

 \iff

 (M, \mathcal{T}_M) ist ein kompakter topologischer Raum.

2. Es sei $A \subseteq \mathbb{R}$ eine kompakte Menge. Es sei $x \in \mathbb{R} \setminus A$. Zeige: Es gibt offene Mengen $U, V \subseteq \mathbb{R}$ mit $U \cap V = \emptyset$ und $x \in U$, $A \subseteq V$.

Gehe dazu wie folgt vor:

- (a) Gegeben $a \in A$, konstruiere offene Mengen $U_a, V_a \subseteq \mathbb{R}$ mit $U_a \cap V_a = \emptyset$ und $x \in U_a$, $a \in V_a$.
- (b) Verwende die Kompaktheit von A, um U und V aus den Familien $(U_a)_{a\in A}$, $(V_a)_{a\in A}$ zu konstruieren.

Hinweis: Nutze, dass endliche Schnitte und Vereinigungen offener Mengen offen sind.

3. Zeige, dass $\mathbb{R} \cup \{\pm \infty\}$ mit der in Abschnitt 2.2 definierten Topologie kompakt ist.

Lösung. 2. (a) Da $a \in A$ und $x \notin A$, muss $x - a \neq 0$, also $\varepsilon := |x - a| > 0$ gelten. Setze $U_a = U_{\varepsilon/3}(x) =]x - \varepsilon/3, x + \varepsilon/3[$ und $V_a = U_{\varepsilon/3}(a) =]a - \varepsilon/3, a + \varepsilon/3[$. Es ist $U_a \cap V_a = \emptyset$, denn andernfalls finden wir $z \in V_a \cap U_a$, und schließen mit der Dreiecksungleichung

$$\varepsilon = |x - a| = |x - z + z - a| \le |x - z| + |z - a| < \varepsilon/3 + \varepsilon/3,$$

Widerspruch. U_a und V_a sind offene Intervalle, also offen.

- (b) Wir bemerken $A\subseteq\bigcup_{a\in A}V_a$, denn $a\in V_a$ für alle $a\in A$. Mit der Kompaktheit von A gibt es also eine endliche Indexmenge $E\subseteq A$ mit $A\subseteq\bigcup_{a\in E}V_a$. Setze nun $U:=\bigcap_{a\in E}U_a$ und $V:=\bigcup_{a\in A}V_a$. Da endliche Schnitte und Vereinigungen offener Mengen offen sind, sind U und V offen. $x\in U$ und $A\subseteq V$ ist klar. Zu zeigen ist noch $U\cap V=\emptyset$. Das folgt so: Angenommen $z\in U\cap V$. Dann gilt $z\in V_a$ für ein $a\in E$, und $z\in U_b$ für alle $b\in E$. Also auch insbesondere $z\in U_a$. Aber das liefert $z\in U_a\cap V_a=\emptyset$, einen Widerspruch.
- 3. Es sei $\mathbb{R} \cup \{\pm \infty\} = \bigcup_{i \in I} U_i$ für offene Mengen $U_i \subseteq \mathbb{R} \cup \{\pm \infty\}$, mit der in 2.2 definierten Topologie, und eine Indexmenge I. Wir finden $k, l \in I$ mit $+\infty \in U_k$ und $-\infty \in U_l$. Nach Definition der Topologie auf $\mathbb{R} \cup \{\pm \infty\}$ sind ist $(\mathbb{R} \cup \{\pm \infty\}) \setminus U_k$ nach oben beschränkt, und $(\mathbb{R} \cup \{\pm \infty\}) \setminus U_l$ nach unten beschränkt, also ist deren Schnitt $(\mathbb{R} \cup \{\pm \infty\}) \setminus (U_k \cup U_l)$ beschränkt in \mathbb{R} . Da $U_k \cap \mathbb{R}$ und $U_l \cap \mathbb{R}$ offen sind, ist $(\mathbb{R} \cup \{\pm \infty\}) \setminus (U_k \cup U_l)$ folglich abgeschlossen (in \mathbb{R}) und beschränkt, also kompakt in (\mathbb{R}) .

Da $(\mathbb{R} \cup \{\pm \infty\}) \setminus (U_k \cup U_l) \subseteq \bigcup_{i \in I} (U_i \cap \mathbb{R})$, und $U_i \cap \mathbb{R}$ offen ist, gibt es eine endliche Teilmenge $E \subseteq I$ mit $(\mathbb{R} \cup \{\pm \infty\}) \setminus (U_k \cup U_l) \subseteq \bigcup_{i \in E} (U_i \cap \mathbb{R})$. Setze nun $E' := E \cup \{k, l\}$, und erhalte den ganzen Raum als endliche Überdeckung:

$$\mathbb{R} \cup \{\pm \infty\} = \bigcup_{i \in E'} U_i.$$

Aufgabe 2. Es sei $P \subseteq \mathbb{C}$ die Menge der Eckpunkte eines regelmäßigen n-Ecks mit Zentrum $0 \in \mathbb{C}$, wobei $n \in \mathbb{Z}_{\geq 2}$. Wir nehmen an, dass ein Eckpunkt auf der reellen Achse liegt, sagen wir $a \in \mathbb{R} \cap P$.

(a) Schreibe P als Menge in aufzählender Notation. Stelle hierbei die Elemente aus P in Polarkoordinaten dar.

(b) Zeige: $\sum_{z \in P} z = 0$.

Aufgabe 3 (Häufungspunkte). Bestimme (ohne Beweis) die Häufungspunkte der Folge $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ in folgenden Fällen: Für $n\in\mathbb{N}$ sei:

(a)
$$a_n = (-1)^n$$

(b) $a_n = (-1)^n + \frac{1}{n}$
(c) $a_n = \begin{cases} n & \text{falls } n \in 2\mathbb{N}, \\ \frac{1}{n} & \text{falls } n \in 2\mathbb{N}_0 + 1 \end{cases}$
(d) $a_n = (-1)^n \frac{n}{n+1}$

Antworten.

Teilaufgabe	Häufungspunkte von $(a_n)_{n\in\mathbb{N}}$
(a)	-1, 1
(b)	-1, 1
(c)	0
(d)	-1, 1