Categorical: Repeated measures

Table of contents

1	Goals	1
	1.1 Goals	1
2	Review	2
	2.1 Data	2
	2.2 Marginal model	3
	2.3 Conditional model	
	2.4 Comparison	7
3	Estimation	7
	3.1 Approaches	7
4	Model comparisons 4.1 Model comparisons	11 11
5	Predictors	12
_	5.1 Predictors	12
	5.2 Centering	
6	Summary	17
	6.1 Summary	17

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

• Some additional crucial details

- Estimation
- Model comparisons
- Adding and centering predictors

2 Review

2.1 Data

2.1.1 Schizophrenia over time

- Schizophrenia treatment effects over the course of 7 weeks (N=437), measured by the Inpatient Multidimensional Psychiatric Scale (IMPS)
 - id: ID variable
 - imps79: Continuous measure of schizophrenia (1 to 7)
 - imps79b: Binary measure of schizophrenia (3.5+)
 - -imps
790: Ordinal measure of schizophrenia (Cuts: 2.5+, 4.5+, 5.5+)
 - tx: Placebo (0) or treatment (1)
 - week: Week of study (0, 1, 3, 6)

2.1.2 Data

id	imps79	imps79b	imps79o	tx	week
1103	5.5	1	4	1	0
1103	3.0	0	2	1	1
1103	2.5	0	2	1	3
1103	4.0	1	2	1	6
1104	6.0	1	4	1	0
1104	3.0	0	2	1	1
1104	1.5	0	1	1	3
1104	2.5	0	2	1	6
1105	4.0	1	2	1	0
1105	3.0	0	2	1	1
1105	1.0	0	1	1	3
1105	NA	NA	NA	1	6

2.2 Marginal model

2.2.1 Marginal model

```
Call:
geeglm(formula = imps79b ~ 1 + week, family = binomial("logit"),
   data = schizx1, id = schizx1$id, corstr = "unstructured")
Coefficients:
          Estimate Std.err Wald
                                          Pr(>|W|)
(Intercept) 2.59459 0.11876 477.3 <0.0000000000000000 ***
         week
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Correlation structure = unstructured
Estimated Scale Parameters:
          Estimate Std.err
(Intercept) 0.9646 0.1007
 Link = identity
Estimated Correlation Parameters:
        Estimate Std.err
alpha.1:2 0.05390 0.05343
alpha.1:3 -0.02855 0.03265
alpha.1:4 -0.01890 0.03342
alpha.2:3 0.56341 0.10114
alpha.2:4 0.15242 0.06617
alpha.3:4 0.51550 0.07964
Number of clusters: 437 Maximum cluster size: 4
```

2.2.2 $ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = 2.59 - 0.45(week)$

2.2.3 Population-averaged effects

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1(week) = 2.59 - 0.45(week)$$

- Basically treats week as a non-repeated measures predictor
 - Does not link observations from the same person together
- Odds ratio: $e^{-0.45} = 0.64$
 - Each week, the odds of diagnosis (imps79b) is multiplied by 0.64

2.2.4 Population-averaged effects

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1(week) = 2.59 - 0.45(week)$$

- Basically treats week as a non-repeated measures predictor
 - Does not link observations from the same person together
- Predicted probabilities

week	prob		
0	0.93		
1	0.89		
3	0.78		
6	0.47		

2.3 Conditional model

2.3.1 Conditional model

```
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
Family: binomial (logit)
Formula: imps79b \sim 1 + week + (1 + week | id)
  Data: schizx1
     AIC
             BIC
                   logLik deviance df.resid
                  -640.8
  1291.6
          1318.4
                            1281.6
                                      1564
Scaled residuals:
            1Q Median
                                   Max
    Min
                            3Q
-2.8446 0.0898 0.1139 0.2646 1.0822
Random effects:
 Groups Name
                   Variance Std.Dev. Corr
        (Intercept) 4.413
                            2.101
 id
                   0.711
                          0.843
       week
                                    -0.13
Number of obs: 1569, groups: id, 437
Fixed effects:
           Estimate Std. Error z value
                                                 Pr(>|z|)
(Intercept)
            4.386
                         0.539 8.14 0.00000000000000041 ***
                         0.118 -6.71 0.0000000001954283 ***
week
             -0.793
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
     (Intr)
week -0.817
```

2.3.2 $ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = 4.39 - 0.79(week)$

2.3.3 Person-specific effects

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1(week) = 4.39 - 0.79(week)$$

- Models each person's trajectory separately
 - Averages intercepts to get average intercept, slopes to get average slope
- Odds ratio: $e^{-0.79} = 0.45$
 - Each week, the *odds of diagnosis* (imps79b) is multiplied by 0.45

2.3.4 Person-specific effects

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1(week) = 4.39 - 0.79(week)$$

- Models each person's trajectory separately
 - Averages intercepts to get average intercept, slopes to get average slope
- Predicted probabilities

week	prob		
0	0.99		
1	0.97		
3	0.88		
6	0.41		

2.4 Comparison

2.4.1 Comparison

- Marginal model ignores individual variability
 - Only cares about correlations among repeated measures
- Remember the more complex conditional models we looked at last time
 - We couldn't include a random slope in the model with tx and week
 - Implies that people don't really vary in their slopes over time
- The models are quite similar
 - So maybe, in this case, it doesn't matter much to ignore the individual

3 Estimation

3.1 Approaches

3.1.1 Review: Maximum likelihood estimation (MLE)

- Models (linear, logistic regression) have a **likelihood function** that gives the *likelihood* of different parameter estimates
 - Likelihood \approx probability
- "Maximum likelihood estimates" are the **parameter estimates** (e.g., regression coefficients, etc) that are **most likely** given the data
 - Uses calculus (derivatives) to find it
- Traditional MLE requires joint distributions for the model
 - Which we don't always have for categorical outcome models

3.1.2 Figure: Maximum likelihood estimation

- (n+1)-dimensional mountain
 - where n is the # of parameters you're estimating
- Peak of the mountain is the maximum likelihood estimate
- Right: Figure 2 from Enders, C. K. (2005). Maximum likelihood estimation. *Encyclopedia of statistics in behavioral science*.

The maximum of the log likelihood function is found at $\mu = 15.4$

3.1.3 Estimation approaches

- Marginal models
 - Generalized estimating equations (GEE)
- Conditional models
 - Likelihood approximation
 - * Integral approximation, numerical integration, adaptive quadrature
 - Linearization methods
 - * Pseudo-likelihood, quasi-likelihood

3.1.4 Generalized estimating equations (GEE)

- Not likelihood functions
 - Type of quasi-likelihood, so no -2LL, AIC, LR tests, etc
- Only require marginal distributions
 - Not joint as for traditional MLE
- Technically GEE is the estimation method
 - But often used to refer to marginal models in general

3.1.5 Likelihood approximation

- Preferred method for accuracy
 - Estimates the likelihood
- Slow and computationally intensive
 - Doesn't always work
- "Integral approximation"
 - Find area under the curve

Picture came from here

3.1.6 Linearization methods

- Tries to turn the non-linear problem into a linear problem
 - Uses Taylor series expansion
- Pseudo- or quasi-likelihood approach
 - No -2LL, AIC, LR tests, etc
- Only option with SPSS genlinmixed
 - Default with SAS glimmix (but likelihood approximation too)

3.1.7 GLMM estimation in R

• glmer() function in lme4 package

- Default: Laplace approximation
- Option: Adaptive Gauss-Hermite quadrature
- Other R packages that can run GLMMs have other options

4 Model comparisons

4.1 Model comparisons

4.1.1 Model comparisons

- Whether and how you can compare models depends on
 - Which models they are
 - * Conditional vs marginal
 - How they were estimated
 - * Likelihood method or not

4.1.2 Marginal models

- Estimated using generalized estimating equations
 - A quasi-likelihood approach
 - * No LL: No AIC, no LR tests
 - QIC is a "quasi" information criteria
 - * Can be used to compare nested or un-nested models
 - * Similar to AIC

4.1.3 Conditional models

- Estimated with a linearization method (not preferred)
 - A quasi-likelihood approach
 - * No LL: No AIC, no LR tests
 - * Can use QIC (if available) similarly to AIC
- Estimated with likelihood approximation methods (preferred)
 - You get a log-likelihood and everything that comes with it: AIC, LR tests
 - Compare nested and non-nested models as usual

5 Predictors

5.1 Predictors

5.1.1 Predictors

- Marginal models
 - Predictors are predictors
 - Everything is at one level
- Conditional models
 - Predictors can be at level 1 or level 2
 - * Longitudinal: Level 1 =observation, level 2 =person
 - * Cross-sectional: Level 1 = person, level 2 = class, company, etc.
 - Entered into different parts of the model

5.1.2 Predictors in the model

- Two predictors: week (L1: Observation) and tx (L2: Person)
- Level 1: Within-person equation

$$-\eta_{i} = \pi_{0i} + \pi_{1i}(week_{ij}) + e_{ij}$$

• Level 2: Between-person equation

$$-\pi_{0i} = \beta_{00} + \beta_{01}(tx_i) + r_{0i} -\pi_{1i} = \beta_{10} + \beta_{11}(tx_i) + r_{1i}$$

5.1.3 Why do we care?

- Level 1 observations have both level 1 and level 2 information
 - Longitudinal: Occasion and person
 - Cross-sectional: Person and class, company, neighborhood
- If you ask me one day if I'm depressed, that gives you information about
 - How depressed I am **that day** (occasion, L1)
 - How depressed I generally am (person, L2)
- How can we disentangle those two kinds of information?
 - Centering

5.2 Centering

5.2.1 Centering in multi-level models

- Grand mean centering (GMC)
 - Center all observations at the **grand mean** of **all observations**
 - Doesn't change the relationships among variables
- Centering within cluster (CWC)
 - Center each person's observations at the **mean of that person**
 - Does change the relationships among variables

5.2.2 Figure: Uncentered with grand mean

5.2.3 Figure: Grand mean centered

5.2.4 Figure: Uncentered with person (cluster) means

5.2.5 Figure: Centered within cluster

5.2.6 GMC vs CWC

- Centering changes the **context** for the different clusters (L2: People)
 - GMC maintains mean differences between people on L1 predictor
 - * What is a person like compared to other people?
 - CWC eliminates differences between people on L1 predictor
 - * What are people like compared to their own mean?
- Different contexts means different interpretations for both level 1 and level 2 predictors

5.2.7 Fully unconflated model

- Just centering doesn't fully unconflate level 1 and level 2
- When you have predictors at level 1 and you center within cluster
 - Removed the cluster-level means: L1 and L2 are still conflated
- What to do?
 - Add cluster mean of level 1 predictor back as a level 2 predictor
- Less commonly done for longitudinal
 - More common for cross-sectional

5.2.8 Fully unconflated model

- Two predictors: week (L1: Observation) and tx (L2: Person)
 - Add L1 predictor (L1pred), which is centered within cluster (person)
- Level 1: Within-person equation

$$- \ \eta_i = \pi_{0i} + \pi_{1i}(week_{ij}) + \pi_{2i}(L1pred_{ij} - \overline{L1pred}_i) + e_{ij}$$

• Level 2: Between-person equation

$$- \pi_{0i} = \beta_{00} + \beta_{01}(tx_i) + \frac{\beta_{02}(\overline{L1pred}_i) + r_{0i}}{-\pi_{1i}} = \beta_{10} + \beta_{11}(tx_i) - \pi_{2i} = \beta_{20} + \beta_{21}(tx_i)$$

5.2.9 Centering predictors: Some references

- Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. *Annual review of psychology*, 62, 583–619.
- Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: a new look at an old issue. *Psychological methods*, 12(2), 121.
- Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how it relates to centering in multilevel modeling. *Psychological methods*, 25(3), 365.
- Hayes, T. B. (under review). Individual-Level Probabilities and Cluster-Level Proportions: Toward Interpretable Level- 2 Estimates in Unconflated Multilevel Models for Binary and Ordinal Outcomes.
- Hoffman, L. (2019). On the interpretation of parameters in multivariate multilevel models across different combinations of model specification and estimation. Advances in methods and practices in psychological science, 2(3), 288-311.
- Rights, J. D., Preacher, K. J., & Cole, D. A. (2020). The danger of conflating level-specific effects of control variables when primary interest lies in level-2 effects. British Journal of Mathematical and Statistical Psychology, 73, 194-211.
- West, S. G., Ryu, E., Kwok, O. M., & Cham, H. (2011). Multilevel modeling: Current and future applications in personality research. *Journal of personality*, 79(1), 2-50.
- Yaremych, H. E., Preacher, K. J., & Hedeker, D. (2021). Centering categorical predictors in multilevel models: Best practices and interpretation. *Psychological Methods*.

6 Summary

6.1 Summary

6.1.1 Summary of this week

- Reviewed marginal and conditional models
 - Different interpretations, different numbers
- Estimation
- Model comparison
- Predictors and centering

6.1.2 Summary of this section

- Repeated measures models for categorical outcomes
 - Marginal: R matrix, population averaged, GEE, cluster robust
 - Conditional: **G** matrix, cluster-specific, generalized linear mixed models (GLMM)
- Additional complexities: marginal and conditional are not the same, estimation is more difficult, model comparison is more difficult

6.1.3 Next weeks

- Next week: No class, but work on final project
 - Sign up for a meeting with me if you want to chat about anything
 - Email me if you have any questions about anything
 - Last article discussion (4/9) and homework 4 (4/16)
- 2 weeks from now: No class
 - Record presentations (4/23)
 - Watch presentations (4/26)
 - Comment on presentations (4/26)
 - Final paper (4/28)