Catalytic appts. for reducing nitrogen oxide(s) in I.C. engine exhaust - has catalyst bed of different materials active in different temp. ranges of exhaust gas	
Patent Number:	DE4032085
Publication date:	1992-04-16
Inventor(s):	KAINER HARTMUT DR (DE); SCHUETZ WILFRIED DR (DE); GRIMM DANIEL (DE); SCHNELLE WILFRIED DR (DE)
Applicant(s)::	DIDIER WERKE AG (DE)
Requested Patent:	□ <u>DE4032085</u>
Application Number:	DE19904032085 19901010
Priority Number (s):	DE19904032085 19901010
IPC Classification:	B01D53/36; B01J23/22; B01J23/86; B01J27/053; F01N3/10; F01N3/28
	B01D53/94F2C, B01D53/94F2D .
Equivalents:	□ <u>BE1006164</u> , □ <u>CH681429</u> , DK171491, □ <u>ES2036473</u> , □ <u>IT1249451</u>
Abstract	
Catalytic appts. for reducing nitrogen oxides in an I.C. engine exhaust gas produced in a wide temp. range has at least two catalyst beds (7,8) of different materials arranged in the direction of the exhaust gas stream. The different materials have their strongest catalytic action in different regions of the temp. range of the exhaust gas. Specifically, an ammonia inlet is located in front of the first catalyst bed (7) in the direction of the exhaust gas. Catalyst bed (7), whose optimum activity lies in a higher temp. range, is located in the stream direction before bed (8). The catalyst material for the higher exhaust gas region is based on Fe2(SO4)3 and the catalyst material for the lower region on a mixt. of Ti02 and V205 or Fe203 and Cr203. A soot particle filter (3) with a temp. peak buffer (4) is connected to the bed (7). An oxidn. catalyst bed (9) is located after bed (8). ADVANTAGE - The appts. can be made to suit the characteristics of the exhaust gas stream of engines. Data supplied from the esp@cenet database - I2	
Data supplied from the esp@cenet database - 12	

(9) BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift

DEUTSCHES PATENTAMT

Aktenzeichen: Anmeldetag:

P 40 32 085.5 10.10.90 Offenlegungstag: 16. 4.92

(51) Int. Cl.5:

B 01 D 53/36

F01 N 3/10 F 01 N 3/28 B 01 J 27/053 B 01 J 23/22 B 01 J 23/86 // B01J 29/04

(71) Anmelder:

Didier-Werke AG, 6200 Wiesbaden, DE

(72) Erfinder:

Grimm, Daniel, 6208 Bad Schwalbach, DE; Kainer, Hartmut, Dr.; Schnelle, Wilfried, Dr., 6200 Wiesbaden, DE; Schütz, Wilfried, Dr., 6222 Geisenheim, DE

- (54) Katalysatoranordnung zur Reduktion von Stickoxiden
- Bei einer Katalysatoranordnung zur Reduktion von Stickoxiden in einem Abgas fällt dieses in einem weiten Temperaturbereich an. Um in diesem Temperaturbereich eine ausreichende Entstickungsleistung und eine Anpaßbarkeit an den jeweiligen Abgastemperaturbereich zu erreichen, sind in Strömungsrichtung des Abgases hintereinander wenigstens

zwei Katalysatorbetten (7, 8) aus unterschiedlichen Katalysatormaterialien zur Reduktion von Stickoxiden angeordnet. Die unterschiedlichen Katalysatormaterialien weisen ihre stärkste katalytische Wirkung in unterschiedlichen, benachbarten Teilbereichen des Abgastemperaturbereichs auf.

Beschreibung

Die Erfindung betrifft eine Katalysatoranordnung zur Reduktion von Stickoxiden in einem Abgas, das in einem weiten Abgastemperaturbereich anfällt.

Bei Verbrennungsmotoren, die der Stromerzeugung dienen, ist die Drehzahl meist konstant, so daß sich auch der Abgasvolumenstrom kaum ändert. In Abhängigkeit von der Belastung des Motors ändert sich jedoch die Abgastemperatur und dementsprechend der NOx-Ge- 10 halt. Der Abgastemperaturbereich liegt beispielsweise zwischen 290°C und 460°C.

In der Zeitschrift "Staub-Reinhaltung der Luft" 49 (1989), Seiten 37 bis 43, sind verschiedene Katalysatormaterialen beschrieben, die sich bei höheren Abgastem- 15 peraturen bzw. bei niedrigeren Abgastemperaturen einsetzen lassen.

Weitere Katalysatormaterialen sind in der DE 35 05 648 C2 und in der EP 01 68 811 B1 beschrieben.

Beim Stand der Technik ist davon ausgegangen, daß 20 für den Katalysator jeweils ein einziges Katalysatormaterial verwendet wird, das den Abgastemperaturbereich abdeckt. Dies ist in der Praxis schwer zu verwirklichen.

Aufgabe der Erfindung ist es, eine Katalysatoranordnung der eingangs genannten Art vorzuschlagen, die in 25 einem weiten Abgastemperaturbereich eine ausreichende Entstickungsleistung aufweist und die an den jeweiligen Abgastemperaturbereich anpaßbar ist.

Erfindungsgemäß ist obige Aufgabe dadurch gelöst, daß in Strömungsrichtung des Abgases hintereinander 30 wenigstens zwei Katalysatorbetten aus unterschiedlichen Katalysatormaterialien zur Reduktion von Stickoxiden angeordnet sind und daß die unterschiedlichen Katalysatormaterialien ihre stärkste katalytische Wirkung in unterschiedlichen, benachbarten Teilbereichen 35 des Abgastemperaturbereichs aufweisen.

Dadurch, daß wenigstens zwei unterschiedliche Katalysatormaterialien im Abgasstrom liegen, können diese im Hinblick auf eine optimale Wirkung in einem Teilbereich des Abgastemperaturbereichs des Motors ausge- 40 wählt werden. Die Katalysatoranordnung läßt sich damit auf einfache Weise an die Charakteristik des Abgasstromes des jeweiligen Motors anpassen. Wenn bei höheren Temperaturen eine größere Menge von Stickstemperaturen, dann läßt sich das Katalysatorbett, das bei höheren Temperaturen hauptsächlich wirksam ist, entsprechend auslegen.

Insgesamt läßt sich die notwendige Entstickungsleistung im gesamten Abgastemperaturbereich sicherstel- 50 len, ohne daß hierfür ein einziges, speziell auf den jeweiligen Abgastemperaturbereich ausgelegtes Katalysatormaterial vorzusehen ist. Es kann genügen, zwei Katalysatorbetten vorzusehen, deren eines bei niedrigen Temperaturen und deren anderes bei höheren Tempe- 55 4 NO + 4 NH₃ + 0₂ → 4 N₂ + 6 H₂O. raturen des Abgastemperaturbereichs wirksam ist. Es können jedoch auch für mittlere Temperaturbereiche weitere Katalysatorbetten mit entsprechend ausgewählten Katalysatormaterialien vorgesehen sein.

Vorteilhafte Ausgestaltungen der Erfindung ergeben 60 sich aus den Unteransprüchen und der folgenden Beschreibung eines Ausführungsbeispiels. In der Zeichnung zeigen:

Fig. 1 eine Katalysatoranordnung im Schnitt und

Fig. 2 ein Abgas/Temperatur-Diagramm.

Eine Katalysatoranordnung weist einen Einlaß 1 für einen Abgasstrom eines Verbrennungsmotors auf. In einem Gehäuse 2 sind in Strömungsrichtung des Abga-

ses hintereinander ein Bußpartikelfilter 3, ein Temperaturspitzenpuffer 4, eine Eindusvorrichtung 5 für Ammoniak, ein Strömungsmischer 6, ein erstes Denox-Katalysatorbett 7, ein zweites Denox-Katalysatorbett 8 und 5 ein Oxidations-Katalysatorbett 9 angeordnet. Letzterem folgt ein Auslaß 10.

Der Rußpartikelfilter 3 filtert Rußpartikel aus dem Abgas. Beim Abbrennen der angelagerten Rußpartikelfilter treten Temperaturspitzen auf. Diese werden im Temperaturspitzenpuffer 4 ausgeglichen, so daß die nachfolgenden Bauteile nicht geschädigt werden.

In den gefilterten Abgasstrom wird mittels der Eindüsvorrichtung 5 Ammoniak verteilt eingedüst. Der mit Ammoniak geladene Abgasstrom wird im Strömungsmischer 6 ausgerichtet und homogenisiert.

Das erste Katalysatorbett 7 enthält ein Katalysatormaterial, dessen Wirkungsoptimum in einem höheren Temperaturbereich liegt als das Katalysatormaterial des zweiten Katalysatorbettes 8. Das Katalysatormaterial des ersten Katalysatorbettes 7 ist beispielsweise auf der Basis von Eisensulfat Fe2(SO4)3 oder eines Molekularsiebes (Zeolith) aufgebaut. Das Katalysatormaterial des zweiten Katalysatorbettes 8 arbeitet beispielsweise mit einem Gemisch aus Titanoxid (TiO2) und Vanadiumpentoxid (V2O5) oder einem Gemisch aus Eisenoxid (Fe₂O₃) und Chromoxid (Cr₂O₃).

In Fig. 2 ist strichliert für einen Anwendungsfall die NOx-Belastung des Abgases am Einlaß 1 in Abhängigkeit von der Betriebstemperatur dargestellt. Dabei ist davon ausgegangen, daß in diesem Einsatzfall der Abgastemperaturbereich etwa zwischen 290°C und 460°C liegt. Die NO_x-Belastung des Abgasstromes steigt von der Temperatur von 300°C bis zur Temperatur von 450°C praktisch linear von 1000 ppm auf über 2000 ppm.

Die strichpunktierte Linie in Fig. 2 zeigt die temperaturabhängige Wirkung des Katalysatormaterials des ersten Katalysatorbettes 7. Ersichtlich ist die Wirkung dieses Katalysatormaterials in dem niedrigen Temperaturbereich zwischen 300°C und 400°C geringer als im Bereich zwischen 400°C und 460°C. Die punktierte Linie in Fig. 2 zeigt die katalytische Wirkung des Katalysatormaterials des zweiten Katalysatorbettes 8. Ersichtlich nimmt dessen Wirkung ab etwa 400° C ab.

Die durchgezogene Linie in Fig. 2 zeigt den auslaßoxiden reduziert werden muß als bei niedrigeren Abga- 45 seitigen NOx-Gehalt des Abgases im Abgastemperaturbereich. Bis etwa 430°C liegt der NOx-Gehalt am Ausgang unter 100 ppm. Danach steigt bis etwa 460°C der NOx-Gehalt wenig über 100 ppm, ohne jedoch 200 ppm zu erreichen.

Bei vergleichsweise niedrigen Temperaturen bis etwa 400°C wird NOx des Abgases im Katalysatorbett 7 nur wenig umgesetzt. Die überwiegende Umsetzung erfolgt im Katalysatorbett 8 nach der Formel:

Bei vergleichsweise höheren Temperaturen erfolgt die Umsetzung gleichfalls nach der genannten Gleichung, jedoch überwiegend nicht im Katalysatorbett 8, sondern überwiegend im Katalysatorbett 7. Im Katalysatorbett 8 werden lediglich die im Katalysatorbett 7 nicht umgesetzten Mengen an NH3 und NOx weiter zur Reaktion gebracht.

Im Oxidations-Katalysatorbett 9 werden Kohlenwas-65 serstoffe aufoxidiert und CO zu CO2 konvertiert.

3 Patentansprüche

- 1. Katalysatoranordnung zur Reduktion von Stickoxiden in einem Abgas, das in einem weiten Abgastemperaturbereich anfällt, dadurch gekennzeichnet, daß in Strömungsrichtung des Abgases hintereinander wenigstens zwei Katalysatorbetten (7, 8) aus unterschiedlichen Katalysatormaterialien zur Reduktion von Stickoxiden angeordnet sind und daß die unterschiedlichen Katalysatormaterialien 10 ihre stärkste katalytische Wirkung in unterschiedlichen, benachbarten Teilbereichen des Abgastemperaturbereichs aufweisen.
- 2. Katalysatoranordnung nach Anspruch 1, dadurch gekennzeichnet, daß eine Ammoniakzufuhr vor 15 dem in Strömungsrichtung des Abgases vorderen Katalysatorbett (7) angeordnet ist.
- 3. Katalysatoranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Katalysatorbett (7), dessen Wirkungsoptimum in einem höheren 20 Temperaturbereich liegt, in Strömungsrichtung vor dem anderen Katalysatorbett (8) angeordnet ist.
- 4. Katalysatoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Katalysatormaterial für den höheren Teilbereich der Abgastemperatur auf der Basis von Eisensulfat besteht.
- 5. Katalysatoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Katalysatormaterial für den niedrigeren Temperaturbereich aus einer Mischung aus Titanoxid und Vanadiumpentoxid oder Eisenoxid und Chromoxid basiert.
- 6. Katalysatoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß 35 dem in Strömungsrichtung vorderen Katalysatorbett (7) ein Rußpartikelfilter (3) mit Temperaturspitzenpuffer (4) vorgeschaltet ist.
- 7. Katalysatoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß 40 dem in Strömungsrichtung hinteren Katalysatorbett (8) ein Oxidations-Katalysatorbett (9) nachgeordnet ist.

Hierzu 2 Seite(n) Zeichnungen

50

45

55

60

— Leerseite —

F16. 1

900

NOx -Ausgarg Prom

200