Deep Blue

Knowledge Engineering & Machine Learning in Games

Vortrag von Olexandr Savchuk

Übersicht

- Grundlagen der Schachcomputer
- Architektur
 - Allgemeiner Aufbau
 - Schachchips
- Algorithmen
 - Softwaresuche
 - Parallele Suche
- Erweiterte Elemente
- Performanz
- Schluss

Grundlagen der Schachcomputer

- Grunddesign von C. Shannon (1949)
 - Drei Hauptkomponenten
 - Zuggenerator
 - Evaluierungsfunktion
 - Suchkontrolle
 - Minimax-Suche
- Erweiterungen bis in die 1970er
 - Slate and Atkin's Chess 4.5
 - Quiescence search
 - Alpha-beta pruning algorithm
 - Lazy evaluation

Grundlagen der Schachcomputer

- Quiescence search
 - Löst das Horizontproblem
 - Sucht bei "interessanten" Positionen tiefer
- Alpha-beta pruning
 - Betrachte nicht alle möglichen Reaktionen
 - Verwerfe einen schlechten Zug, sobald eine effektive Reaktion gefunden wurde
 - Wichtig: Suchbaum muss "best-first" angeordnet sein
- Lazy evaluation
 - Annäherung an die Evaluierungsfunktion in vielen Fällen ausreichend und wesentlich schneller

Übersicht

- Grundlagen der Schachcomputer
- Architektur
 - Allgemeiner Aufbau
 - Schachchips
- Algorithmen
 - Softwaresuche
 - Parallele Suche
- Erweiterte Elemente
- Performanz
- Schluss

- Basiert auf einem IBM RS/6000 System
- 30 RS/6000 Einheiten, verbunden durch Micro Channel Bus

■ Ein *Master Node*, 29 *Worker Nodes*

16 Schachchips auf jedem Node

16 Schachchips auf jedem Node

- Vier Elemente auf Chip:
 - Zuggenerator
 - Evaluierungsfunktion
 - Suchkontrolle
 - Smart-move stack

Zuggenerator

- 8x8 Array von kombinatorischer Logik
 - ca. 52400 Gatter
- Jede Zelle beinhaltet:
 - Find-victim transmitter
 - Find-attacker transmitter
 - Receiver
 - Distributed arbiter
- Verschiedene Züge durch Beschalten der Elemente

Figure 2. Die photo of the chess chip.

Zuggenerator: Beispiel

- Alle Angreifer aktivieren den Find-victim Transmitter
- Es wird abgestimmt, welches Ziel angegriffen wird
 - Receiver der Ziele versenden "Treffersignale" an den Arbiter
 - Arbiter wählt das höchstwertige Ziel aus
- Das gewählte Ziel aktiviert den *Find-attacker Transmitter*
 - Auf die gleiche Weise wird der niedrigwertigste Angreifer ausgesucht
- Wenn Angreifer und Ziel feststehen, ist ein Zug generiert

Zuggenerator

- Bereits generierte Züge werden maskiert und nicht erneut generiert
- Andere Generationsmodi werden unterstützt
 - Schachgebot
 - Schachabwehr
 - **-** ...
- Erkennt bedrohte Figuren

Evaluierungsfunktion

- ■66000 Gatter (ohne RAMs und ROMs)
- Zwei Hauptelemente:
 - Schnelle Evaluation
 - Langsame Evaluation
- Gewichte der Elemente anpassbar

Figure 2. Die photo of the chess chip.

Schnelle Evaluation

- Wird in einem Zyklus berechnet
- Piece placement table
 - Werte von Figuren auf ihren Feldern
- Game phase control
 - Boni/Mali abhängig von der Spielphase
- King-and-pawn array
 - Erkennung von Freibauern und dazugehörigen Zuständen
- Engdame logic and ROMs
 - Diverse Logik zur Erkennung von Endspielsituationen

Langsame Evaluation

- Wird selten gebraucht
- "This chess evaluation function probably is more complicated than anything ever described in the computer chess literature" ²

Suchkontrolle

- Implementiert einen *minimum-window alpha-beta search*
- Unterschied zum "klassischen" Alpha-Beta:
 - Kein Alpha-Beta Stack
 - Kann nur bestimmen, wie eine Position im Vergleich zu einem Testwert steht
- Ungewöhnlicher Element: low-pass filter
 - Letzter Wert der langsamen Evaluation als Filterwert

Smart-move stack

- Besteht aus dem *Move Stack* und *Repetition Director*
- Repetition Director erkennt wiederholende Züge sowie Züge, die zu Wiederholungen führen

Übersicht

- Grundlagen der Schachcomputer
- Architektur
 - Allgemeiner Aufbau
 - Schachchips
- Algorithmen
 - Softwaresuche
 - Parallele Suche
- Erweiterte Elemente
- Performanz
- Schluss

Suchalgorithmus

- Aufteilung in Software und Hardware
- Beispiel: 12-Schichten Suche
 - Erste 4 Schichten in Software auf dem Master-Node
 - Weitere 4 Schichten in Software auf den Worker-Nodes
 - Letzte 4 Schichten in Hardware auf den Worker-Nodes
- Vorteile solcher Aufteilung:
 - Flexibilität:
 - Software kontrolliert 2/3 der Suchtiefe
 - Viele Sucherweiterungen in den Softwareschichten
 - Geschwindigkeit:
 - Hardware berechnet >99% aller Positionen

Softwaresuche

- Implementierung des Alpha-Beta Algorithmus
- Erweiterung der Suche entlang der forced move Pfade
- Dual Credit Algorithm
 - Suchpfad sammelt credit auf (für beide Seiten)
 - credit wird für Erweiterung der Suchtiefe "eingelöst"
 - credit wird für unterschiedliche Beobachtungen im Suchpfad vergeben, zum Beispiel:
 - Einer oder wenige Züge sind signifikant besser als alle Anderen
 - Bedrohung des Schachs oder Schachmatts
 - Ermöglichung guter neuer Züge
 - **-** ...

Hardwaresuche

- Sehr schnell
- Relativ einfach im Vergleich zur Softwaresuche
- Gesteuert durch die Suchkontrolle auf den Schachchips
- Software kann einige Parameter ansteuern:
 - Suchtiefe
 - Anzahl der Schachmatt-Züge für beide Seiten
 - Anzahl der singulären Schachgebot-Züge
 - Flags, die Sucherweiterungen in bestimmten Situationen erlauben
 - ...

Übersicht

- Grundlagen der Schachcomputer
- Architektur
 - Allgemeiner Aufbau
 - Schachchips
- Algorithmen
 - Softwaresuche
 - Parallele Suche
- Erweiterte Elemente
- Performanz
- Schluss

Eröffnungsbuch

- Erstellt per Hand vom Großmeister Joel Benjamin
- 4000 Positionen
- Alle vom Deep Blue durchgerechnet
- Erweiterungen vor dem Spiel durch ein *Override book* möglich

Erweitertes Buch

- Großes Datenbank der Positionen aus Großmeisterspiele
 - Ca. 700.000 Spiele verarbeitet
- Beeinflusst die Auswertung einzelner Züge
 - Wie oft ein Zug gespielt wurde (absolut und relativ)
 - Wie stark die Großmeister waren, die den Zug verwendet haben
 - Ergebnisse des Zuges
 - Kommentare zu den Züge
- Manchmal sogar Züge aus dem erweiterten Buch direkt spielbar

Endspieldatenbanken

- Alle Positionen mit 5 oder weniger Spielfiguren und auserwählte Positionen mit 6 Figuren
- Stehen der Software zur Verfügung
 - Positionen mit 4 oder weniger sowie einige mit 5 auf den einzelnen Festplatten der Nodes dupliziert
 - Andere Positionen zentral von einem RAID allen Nodes verfügbar
- Simple Werte zu allen Positionen gespeichert (win-lose)

Übersicht

- Grundlagen der Schachcomputer
- Architektur
 - Allgemeiner Aufbau
 - Schachchips
- Algorithmen
 - Softwaresuche
 - Parallele Suche
- Erweiterte Elemente
- Performanz
- Schluss

Performanz als Rechner

- 30 RS-6000 Nodes
 - P2SC Prozessoren (28x 120Mhz, 2x 135MHz), 1GB RAM, 4GB HDD
 - OS: AIX® 4.2
- Sehr spezialisierte Hardware
 - Ein Schachchip berechnet bis 2.5 Millionen Positionen pro Sekunde
 - Auf einem "normalen" Computer: 40.000 Instruktionen pro Position
 - 100.000 MIPS
- Vergleich:
 - 1997, PowerPC 750: 88 MIPS @ 233MHz
 - 2010, Intel Core i7 i980EE: 147.600 MIPS @ 3.3GHz

Performanz als Schachspieler

- Erste Spiele mit einem Chip (Deep Blue Jr., 1997)
 - 7% bis 14% der möglichen Suchgeschwindigkeit
 - Alle 10 Spiele gegen kommerzielle Schachprogramme gewonnen
 - Bei weiteren 30 Spielen: 95% Siege
- Deep Blue Jr. gegen die Großmeister (Elo-Zahl 2500)
 - 3-zu-1 Verhältnis
 - Somit Wertung von 2700 unter den 10 besten Spielern der Welt
- Spiel gegen Kasparow (Elo 2815)
 - Sieg mit 3.5 2.5
 - Elo-Zahl von Deep Blue: ca. 2875.

Schluss

- Deep Blue war der schnellste Schachcomputer, der jemals gegen einen Großmeister gespielt hat
 - 200.000.000 Positionen pro Sekunde
- Heutzutage:
 - Fokus von der Hardware auf die Software versetzt
 - Geringere Suchgeschwindigkeit
 - Deep Fritz vs. Kramnik (2006), "nur" 8.000.000 Positionen/Sekunde
 - Pocket Fritz 4: *HTC Touch HD*, 20.000 Positionen/Sekunde
 - Stärkere pruning-Algorithmen und weitere Verbesserung der Heuristiken

Vielen Dank für die Aufmerksamkeit!

Fragen?

Quellenangabe

- Hauptquellen:
 - 1: **Deep Blue** (M. Campbell, A. J. Hoane Jr, F. -h. Hsu)
 - 2: **IBM's Deep Blue Chess Grandmaster Chips** (Feng -hsiung Hsu), *IEEE Micro* 19(2):70-81
- Zusätzliche Quellen:
 - The Alpha-Beta Heuristic (AIM-030) (Edwards, D.J. and Hart, T.P., Massachusetts Institute of Technology)
 - A Brief History of RISC, the IBM RS/6000 and the IBM eServer pSeries (IBM, http://www-03.ibm.com/ibm/history/documents/pdf/rs6000.pdf)
 - Overclock3D Synthetic Benchmarks (http://www.overclock3d.net/reviews/cpu_mainboard/intel_980x_gulftown/4)

