Exercise 10.2

Introduction

Starting with 10,000 atoms of $^{213}\,Bi$, simuate the decay of the atoms.

Do this with a time step of 1 second.

$$N(t) = N(0)2^{-t/\tau}$$
$$p(t) = 1 - 2^{-t/\tau}$$

```
In [20]:
         from numpy import arange, log
            from pylab import plot,xlabel,ylabel,show,legend
            # Constants
            h = 1.0
                                # Size of time-step in seconds
            # Number of 213 Bi
            pBi = 1 - 2**(-h/TBi213) # Probability of decay in one step
                                 # Number of Tl
            NT1 = 0
            TT1 = 2.2*60
                                #Half life of Tl
            pTl = 1 - 2**(-h/TTl) # Probability of decay in one step
            NPb = 0
                                 # Number of 209Pb atoms
            TPb = 50*60
            pPb = 1 - 2**(-h/TPb) # Probability of decay in one step
            NBi209 = 0
                                 # Number of 209 Bi atoms
            tmax = 20_000
                                   # Total time
            # Lists of plot points
            tpoints = arange(0.0,tmax,h)
            Bi213points = []
            Tlpoints = []
            Pbpoints = []
            Bi209points = []
            # Main Loop
            for t in tpoints:
                Bi213points.append(NBi213)
                Tlpoints.append(NT1)
                Pbpoints.append(NPb)
                Bi209points.append(NBi209)
                # Calculate the number of atoms that decay
                decay = 0
                for i in range(NPb):
                    if random()<pPb:</pre>
                        decay += 1
                NPb -= decay
                NBi209 += decay
                decay = 0
                for i in range(NT1):
                    if random()<pTl:</pre>
                        decay = 1
                NT1 -= decay
                NPb += decay
                Pbdecay = 0
                Tldecay = 0
                for i in range(NBi213):
                    if random()<pBi:</pre>
                        if random()<.9791:</pre>
                            Pbdecay +=1
                        else:
                            Tldecay += 1
                NBi213 -= Pbdecay+Tldecay
                NPb += Pbdecay
                NT1 += Tldecay
```

```
# Make the graph
plot(tpoints,Bi213points,label='Bi 213')
plot(tpoints,Tlpoints,label='Tl')
plot(tpoints,Pbpoints,label = 'Pb')
plot(tpoints,Bi209points,label = 'Bi 209')
xlabel("Time")
ylabel("Number of atoms")
legend()
show()
```


Conclusion

Wow this is cool. It shows that the atoms do not stay as Pb or Tl for long. If you play with half lives, it works.

Exercise 10.5

Introduction

- a) Write a program to evaluate the integral in Eq. (10.22) using the "hit-or-miss" Monte Carlo method of Section 10.2 with 10 000 points. Also evaluate the error on your estimate.
- b) Now estimate the integral again using the mean value method with 10 000 points. Also evaluate the error

$$I = \int_0^2 \sin^2 \frac{1}{x(2-x)} dx$$

```
In [26]:
           ▶ from math import sin, sqrt
              from random import random, randrange
              from numpy import array
              def f(x):
                  return (\sin(1/(x*(2-x))))**2
              #Part A
              N = 10000
              count = 0
              for i in range(N):
                  x = 2*random()
                  y = random()
                  if y<f(x):</pre>
                       count += 1
              I = 2*count/N
              A = 2
              \sigma = \text{sqrt}(I^*(A-I))/\text{sqrt}(N)
              print(f'The integral evaluates to \{I:.4f\} \pm \{\sigma:.5f\} using the hit or miss method')
              # Part B
              a = 0
              b = 2
              N = 10000
              fvals = []
              for i in range(N):
                  fvals.append(random()*b)
              fSum = sum(fvals)
              fvalarray = array(fvals)
              varF = 1/N*sum(fvalarray*fvalarray)-(1/N*fSum)**2
              I = (b-a)/N * fSum
              \sigma = (b-a)*sqrt(varF)/sqrt(N)
              print(f'The integral evaluates to \{I:.4f\} ± \{\sigma:.5f\} using the mean value theorem')
```

The integral evaluates to 1.4472 \pm 0.00894 using the hit or miss method The integral evaluates to 2.0132 \pm 0.01149 using the mean value theorem

Conclusion

Thank you for explaining the concepts behind it in class. I could not understand why these methods exist until you explained.