Vzorové řešení zadání **E**

1)
$$f(x) = \begin{cases} 1 & x \in (1,2) \cup \{0\} \\ -1 & x \in (-1,0) \cup \{-2,2\} \\ 0 & x \in \{-1,1\} \\ x & x \in (0,1) \\ x+2 & x \in (-2,-1) \end{cases}$$

Nakreslete grafy funkcí f(x), $(f \circ f)(x)$, f(|x|) a určete $f(\langle 0,1 \rangle)$ a $f^{-1}(\{\frac{1}{2}\})$.

 $\underline{f\left(\left\langle 0,1\right\rangle \right) = \left\langle 0,1\right\rangle}, \ \underline{f^{-1}\left(\left\{\frac{1}{2}\right\}\right) = \left\{-\frac{3}{2},\frac{1}{2}\right\}}$

- 2) U každého z následujících výroků rozhodněte, zda je pravdivý nebo nepravdivý. Je-li nepravdivý, uveďte protipříklad.
 - a) Funkce f je v bodě a spojitá, právě když má v a vlastní limitu.

pravdivý nepravdivý

neplatí \Leftarrow ; protipříklad: $f(x) = \frac{x^2 - 1}{x - 1}$, a = 1

b) $\exists x \in \mathbb{R} : |\sin x| = 2$ právě když $\exists y \in \mathbb{R} : y^2 = -1$

pravdivý nepravdivý protipříklad:

c) $\sum_{n=1}^{\infty} (x-1)^n$ konverguje pro $x \in \langle 0, 2 \rangle$.

pravdivý nepravdivý protipříklad:

$$2 \in \langle 0, 2 \rangle$$
, $\sum_{n=1}^{\infty} (2-1)^n = \sum_{n=1}^{\infty} 1$ diverguje.

3) Nakreslete graf funkce f , pro kterou platí:

 $D_f = \mathbb{R}$, je spojitá pro $x \neq 0$,

v bodě x = 0 má nespojitost 2. druhu přičemž je zde spojitá zprava, f(0) = f(2) = 0, f(-1) = 2, f(1) = 1,

$$f'(-1) = f'(1) = 0, \quad f'(2) = -2, \quad \lim_{x \to 0^+} f'(x) = \infty,$$

f''(x) > 0 pro $x \in (-\infty, 0)$ a pro $x \in (2, \infty)$,

f''(x) < 0 pro $x \in (0,2)$,

přímka y = -x je její asymptota.

4) Najděte rovnici tečny a normály ke grafu funkce $f(x) = \arctan(2x+1)$ ve všech bodech, ve kterých je tečna rovnoběžná s přímkou x-y+1=0.

Rovnice tečny ke grafu funkce v bodě $[x_0, f(x_0)]$ má tvar $y - f(x_0) = f'(x_0)(x - x_0)$,

rovnice normály ke grafu funkce v tomto bodě má tvar $y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0)$.

 $x-y+1=0 \iff y=x+1 \implies$ hledané tečny mají směrnici k=1 - budeme hledat body x_0 , ve kterých je $f'(x_0)=1$:

$$f'(x) = \frac{2}{1 + (2x+1)^2} = \frac{2}{4x^2 + 4x + 2} = \frac{1}{2x^2 + 2x + 1}$$

$$\frac{1}{2x^2 + 2x + 1} = 1 \iff 2x^2 + 2x + 1 = 1 \implies \underline{x = 0 \lor x = -1}$$

$$x = 0$$
: $f(0) = arctg(1) = \frac{\pi}{4}$

rovnice tečny:
$$y - \frac{\pi}{4} = 1 \cdot (x - 0)$$
 \iff $x - y + \frac{\pi}{4} = 0$

rovnice normály:
$$y - \frac{\pi}{4} = -1 \cdot (x - 0)$$
 \iff $x + y - \frac{\pi}{4} = 0$

$$x = -1$$
: $f(-1) = \arctan(-1) = -\frac{\pi}{4}$

rovnice tečny:
$$y + \frac{\pi}{4} = 1 \cdot (x+1)$$
 \iff $x - y + 1 - \frac{\pi}{4} = 0$

rovnice normály:
$$y + \frac{\pi}{4} = -1 \cdot (x+1)$$
 \iff $x + y + 1 + \frac{\pi}{4} = 0$

5) Vypočítejte obsah části roviny omezené souřadnými osami a grafem funkce $f(x) = (x+1)e^{-x}$ $(x \ge 0)$.

$$(x+1)e^{-x} = 0 \Rightarrow x = -1$$
, pro $x \ge 0$ graf neprotíná osu $x \Rightarrow S = \int_{0}^{\infty} (x+1)e^{-x} dx$;

$$\int (x+1)e^{-x}dx = \begin{vmatrix} u = x+1 & u' = 1 \\ v' = e^{-x} & v = -e^{-x} \end{vmatrix} = -(x+1)e^{-x} + \int e^{-x}dx = -(x+1)e^{-x} - e^{-x} = -(x+2)e^{-x}$$

$$\int_{0}^{\infty} (x+1) e^{-x} dx = \left[-(x+2)e^{-x} \right]_{0}^{\infty} = -\lim_{x \to \infty} \frac{x+2}{e^{x}} + 2 = -\lim_{x \to \infty} \frac{1}{e^{x}} + 2 = \underline{2}$$

6)
$$f(x, y, z) = \ln \frac{x^2}{y} + e^z$$
.

a) Najděte bod A, pro který platí grad f(A) = (1, -1, 1)

b) Vypočítejte
$$f'_{\mathbf{a}_0}(A)$$
, je-li $\mathbf{a}_0 = \frac{\mathbf{a}}{|\mathbf{a}|}$, $\mathbf{a} = (1,1,1)$.

a)
$$f(x, y) = \ln \frac{x^2}{y} + e^z = 2 \ln x - \ln y + e^z$$
, $f'_x = \frac{2}{x}$, $f'_y = -\frac{1}{y}$, $f'_z = e^z$ grad $f(x, y, z) = \left(\frac{2}{x}, -\frac{1}{y}, e^z\right)$.

$$\left(\frac{2}{x}, -\frac{1}{y}, e^z\right) = (1, -1, 1) \Leftrightarrow x = 2, y = 1, z = 0$$

$$A = [x, y, z] = [2, 1, 0]$$

b)
$$f'_{\mathbf{a}_0}(A) = \operatorname{grad} f(A) \cdot \mathbf{a}_0 = (1, -1, 1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$