$$h(x) = log(f(x))$$

 $h'(x) = \frac{h(x+\epsilon) - h(x-\epsilon)}{2\epsilon}$, where the default value for ϵ is 1×10^{-5} .

$$z_j = \frac{h(x_{j+1}) - h(x_j) - x_{j+1}h'(x_{j+1}) + x_jh'(x_j)}{h'(x_j) - h'(x_{j+1})}$$

For $x \in [z_{j-1}, z_j]$, j = 1, ..., k, $u_k(x) = h(x_j) + (x - x_j)h'(x_j)$, where z_0 is the lower bound of D (or $-\infty$ if D is not bounded below) and z_k is the upper bound of D (or $+\infty$ if D is not bounded above).

$$s_k(x) = \exp u_k(x) / \int_D \exp u_k(x') dx'.$$

For
$$x \in [z_{j-1}, z_j]$$
, the CDF $S(x) = \frac{1}{R} \left(\sum_{i=1}^{j-1} \frac{1}{h'(x_i)} [e^{u(z_i)} - e^{u(z_{i-1})}] + \frac{1}{h'(x_j)} [e^{u(x)} - e^{u(z_{j-1})}] \right)$, where $R = \sum_{i=1}^{k} \frac{1}{h'(x_i)} [e^{u(z_i)} - e^{u(z_{i-1})}]$.

For
$$x \in [z_{j-1}, z_j]$$
, the Inverse CDF $U(S) = \frac{\log[(SR - \sum_{i=1}^{j-1} \frac{1}{h'(x_i)} [e^{u(z_i)} - e^{u(z_{i-1})}])h'(x_j) + e^{u(z_{j-1})}] - h(x_j)}{h'(x_j)} + x_j$, where $R = \sum_{i=1}^{k} \frac{1}{h'(x_i)} [e^{u(z_i)} - e^{u(z_{i-1})}]$.

For
$$x \in [x_j, x_{j+1}]$$
, $j = 1, ..., k-1$ $l_k(x) = \frac{(x_{j+1} - x)h(x_j) + (x - x_j)h(x_{j+1})}{x_{j+1} - x_j}$. For $x < x_1$ or $x > x_k$ $l_k(x) = -\infty$.