Model	400X Feature	Technique	Accuracy
DL	Xception	LSTM	0.92
HF + ML	LBP + LPQ	Linear SVM	0.8549
DL		ResNet 152	0.85172
HF + ML	LBP + LPQ + GLCM	Linear SVM	0.8335
DL + ML (TL)	VGG 19 + RESNET 152	SVM	0.8305
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	SVM	0.829
HF + ML	LBP + LPQ	SVM	0.829
IF + ML	LBP + LPQ	Gradient Boosting	0.8152
HF + ML DL + ML	LBP + LPQ + GLCM VGG 19	Gradient Boosting Random Forest	0.8152 0.8122
DL + ML	VGG 19	Extremely Trees	0.8122
DL + ML	VGG 19	SVM	0.8106
HF + ML	LBP + LPQ + GLCM	SVM	0.8106
HF + ML	LBP	SVM	0.8076
HF + ML	LBP	Linear SVM	0.8061
HF + ML	LBP + LPQ	Adaboost	0.7984
HF + ML	LBP + LPQ + GLCM	Adaboost	0.7954
DL + ML (TL)	VGG 19 + RESNET 152	Adaboost	0.7923
DL + ML (TL)	VGG 19 + RESNET 152	Gradient Boosting	0.7877
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Adaboost	0.7801
HF + ML	LPQ	Gradient Boosting	0.777
HF + ML	LBP + LPQ + GLCM	Random Forest	0.777
HF + ML	LPQ	Adaboost	0.7755
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Gradient Boosting	0.774
HF + ML	LPQ	Linear SVM	0.774
DL + ML	VGG 19	SGD	0.7725
DL + ML	VGG 19	Adaboost	0.7725
DL + ML	VGG 19	Gradient Boosting	0.7725
DL + ML (TL)	VGG 19 + RESNET 152	Random Forest	0.7725
OL + ML	VGG 19	Linear SVM	0.7709
DL + ML (TL)	VGG 19 + RESNET 152	Linear SVM	0.7709
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Linear SVM	0.7709
HF + ML	LBP	Random Forest	0.7709
HF + ML	VGG 19 + RESNET 152 + IV3	Extremely Trees Random Forest	0.7664
<mark>DL + ML (TL)</mark> HF + ML	LBP	Gradient Boosting	0.7648 0.7618
DL + ML (FT)	VGG 19 + RESNET 152	SGD	0.7618
DL + ML (FI)	VGG 19 + RESNET 152 VGG 19 + RESNET 152 + IV3	Extremely Trees	0.7587
HF + ML	LBP	Adaboost	0.7587
DL + ML (TL)	VGG 19 + RESNET 152	Extremely Trees	0.7572
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	SGD	0.7572
HF + ML	LBP + LPQ	Random Forest	0.7557
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Linear SVM	0.7541
HF + ML	LBP + LPQ + GLCM	Extremely Trees	0.7496
DL + ML (FT)	VGG 19 + RESNET 152	Linear SVM	0.748
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Random Forest	0.748
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Extremely Trees	0.745
DL + ML (FT)	VGG 19	Random Forest	0.7419
DL + ML (FT)	VGG 19 + RESNET 152	Gradient Boosting	0.7404
DL + ML (FT)	VGG 19 + RESNET 152	Random Forest	0.7404
HF + ML	LPQ	Random Forest	0.7389
DL + ML	VGG 19	KNN	0.7374
DL + ML (TL)	VGG 19 + RESNET 152	KNN	0.7374
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	KNN	0.7374
OL + ML (FT)	VGG 19 + RESNET 152	Extremely Trees	0.7374
HF + ML	LBP + LPQ	KNN	0.7358
HF + ML	Haralick	SVM	0.7328
HF + ML	LPQ	KNN	0.7282
DL + ML (FT)	VGG 19 + RESNET 152	Adaboost	0.7251
HF + ML	Haralick	Linear SVM	0.7251
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Gradient Boosting	0.7236
HF + ML	LBP	Decision Tree	0.7236
HF + ML	LBP + LPQ	Extremely Trees	0.7236
DL + ML (FT) DL + ML (FT)	VGG 19 VGG 19 + RESNET 152	SVM	0.7221 0.7221
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Adaboost	0.7221
DL + ML (FT)	VGG 19 + RESNET 132 + IV3	Extremely Trees	0.7221
DL + ML (FT)	VGG 19	Linear SVM	0.7200
DL + ML (TL)	VGG 19 + RESNET 152	SGD	0.716
DL + ML (FT)	RESNET 152	Linear SVM	0.7129
HF + ML	LBP	KNN	0.7114
HF + ML	LPQ	Extremely Trees	0.7114
HF + ML	LBP + LPQ	Decision Tree	0.7099
HF + ML	LPQ	SVM	0.7083
HF + ML	LBP + LPQ + GLCM	Decision Tree	0.7038
DL + ML (FT)	VGG 19	Gradient Boosting	0.7022
HF + ML	LBP + LPQ	SGD	0.7022
DL + ML (TL)	VGG 19 + RESNET 152	Decision Tree	0.6992
	VCC 10	SGD	0.6977
DL + ML (FT)	VGG 19	300	0.0577

DE	Model	400X Feature	Technique	AUC
HF + ML		- Catal C		
HF + ML	HF + ML	LBP + LPQ		0.92
	DL	Xception	LSTM	0.92
	HF + ML	LBP + LPQ	SVM	0.91
	HF + ML	LBP + LPQ + GLCM	Gradient Boosting	0.9
DL + ML	HF + ML	LBP + LPQ + GLCM	Linear SVM	0.9
DL + ML	HF + ML	LBP + LPQ + GLCM	SVM	0.9
DL + ML (TL)	DL + ML	VGG 19	+	0.89
DL + ML TIJ VGG 19 + RESNET 152 + IV3 SVM 0.89	DL + ML		•	!
				
DL + ML				
HF + ML		·	 	<u> </u>
HF + ML				
HF + ML LBP + LPQ Adaboost 0.88 HF + ML LBP + LPQ + GLCM Adaboost 0.88 DL + ML VGG 19 + RESNET 152 Adaboost 0.85 DL + ML (TL) VGG 19 + RESNET 152 Adaboost 0.85 DL + ML (TL) VGG 19 + RESNET 152 Cardient Boosting 0.85 DL + ML (TL) VGG 19 + RESNET 152 Linear SVM 0.85 DL + ML (TL) VGG 19 + RESNET 152 + IV3 Linear SVM 0.85 HF + ML LBP Extremely Trees 0.85 DL + ML VGG 19 Adaboost 0.84 DL + ML VGG 19 Adaboost 0.84 DL + ML (TL) VGG 19 + RESNET 152 Extremely Trees 0.84 DL + ML (TL) VGG 19 + RESNET 152 + IV3 Adaboost 0.84 HF + ML LBP Gradient Boosting 0.84 HF + ML LBP Gradient Boosting 0.84 HF + ML LPQ Gradient Boosting 0.84 HF + ML LPQ Adaboost 0.82			+	
				1
DL + ML VGG 19		· · · · · · · · · · · · · · · · · · ·		+
DL + ML (TL) VGG 19 + RESNET 152 Adaboost 0.85		·		
DL + ML (TL)				<u> </u>
DL + ML (TL)				<u> </u>
DL + ML (TL)	<u> </u>			1
HF + ML LBP Random Forest 0.85 DL + ML UPO Extremely Trees 0.85 DL + ML VGG 19 Adaboost 0.84 DL + ML VGG 19 Gradient Boosting 0.84 DL + ML (TL) VGG 19 + RESNET 152 Random Forest 0.84 DL + ML (TL) VGG 19 + RESNET 152 + IV3 Adaboost 0.84 DL + ML (TL) VGG 19 + RESNET 152 + IV3 Adaboost 0.84 HF + ML LBP Adaboost 0.84 HF + ML LBP Gradient Boosting 0.84 HF + ML LPQ Gradient Boosting 0.84 HF + ML LPQ Gradient Boosting 0.84 HF + ML LPQ Gradient Boosting 0.84 HF + ML LBP + LPQ Gradient Boosting 0.84 HF + ML LBP + LPQ Random Forest 0.83 DL + ML (TL) VGG 19 + RESNET 152 + IV3 Extremely Trees 0.83 DL + ML (FT) VGG 19 + RESNET 152 Linear SVM 0.82				<u> </u>
HF + ML	HF + ML			
DL + ML	HF + ML			+
DL + MIL VGG 19	DL + ML	VGG 19	<u> </u>	
DL + ML (TL)	DL + ML			<u> </u>
DL + ML (TL)	DL + ML (TL)		+	1
DL + ML (TL)			Extremely Trees	1
HF + ML			-	1
HF + ML	DL + ML (TL)	VGG 19 + RESNET 152 + IV3		0.84
HF + ML	HF + ML	LBP	Adaboost	0.84
	HF + ML	LBP	Gradient Boosting	0.84
DL + ML (TL)	HF + ML	LPQ	Gradient Boosting	0.84
DL + ML (TL)	HF + ML	LPQ	Linear SVM	0.84
HF+ML LBP+LPQ + GLCM Random Forest 0.83 DL+ML (FT) VGG 19 + RESNET 152 Linear SVM 0.82 HF+ML LPQ Adaboost 0.82 HF+ML LPQ SVM 0.82 HF+ML LBP+LPQ Extremely Trees 0.82 HF+ML LBP+LPQ + GLCM Extremely Trees 0.82 DL+ML VGG 19 SGD 0.8 DL+ML VGG 19 SGD 0.8 DL+ML (FT) VGG 19 RSD SGD 0.8 DL+ML (FT) VGG 19 + RESNET 152 Random Forest 0.8 DL+ML (FT) VGG 19 + RESNET 152 + IV3 Random Forest 0.8 DL+ML (FT) VGG 19 + RESNET 152 + IV3 Random Forest 0.8 DL+ML (TL) VGG 19 + RESNET 152 + IV3 SGD 0.79 DL+ML (FT)		VGG 19 + RESNET 152 + IV3	Gradient Boosting	0.83
HF + ML	DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Extremely Trees	
DL + ML (FT) VGG 19 + RESNET 152	HF + ML	·		0.83
HF + ML				
HF+ML LPQ SVM 0.82 HF+ML LBP+LPQ Extremely Trees 0.82 HF+ML LBP+LPQ + GLCM Extremely Trees 0.82 HF+ML LBP+LPQ SGD 0.81 DL+ML VGG 19 SGD 0.8 DL+ML VGG 19 Naive Bayes 0.8 DL+ML (FT) VGG 19 + RESNET 152 Random Forest 0.8 DL+ML (FT) VGG 19 + RESNET 152 Extremely Trees 0.8 DL+ML (FT) VGG 19 + RESNET 152 + IV3 Random Forest 0.8 DL+ML (FT) VGG 19 + RESNET 152 + IV3 Extremely Trees 0.8 DL+ML (FT) VGG 19 + RESNET 152 + IV3 Extremely Trees 0.8 DL+ML (FT) VGG 19 + RESNET 152 + IV3 SGD 0.79 DL+ML (FT) VGG 19 + RESNET 152 + IV3 SGD 0.79 DL+ML (FT) VGG 19 SVM 0.79 DL+ML (FT) VGG 19 Extremely Trees 0.79 DL+ML (FT) VGG 19 + RESNET 152 + IV3 KNN 0.78				
HF + ML		·		_
HF + ML		`		
HF + ML		·	<u> </u>	-
DL + ML		·	<u> </u>	
DL + ML		,		
DL + ML (FT)				
DL + ML (FT) VGG 19 + RESNET 152 Extremely Trees D.8			<u> </u>	+
DL + ML (FT) VGG 19 + RESNET 152 + IV3 Random Forest 0.8	<u></u>			+
DL + ML (FT) VGG 19 + RESNET 152 + IV3 Extremely Trees 0.8	<u></u>		<u> </u>	
HF + ML LPQ SGD 0.8 HF + ML LPQ Random Forest 0.8 DL + ML (TL) VGG 19 + RESNET 152 Naive Bayes 0.79 DL + ML (TL) VGG 19 + RESNET 152 + IV3 SGD 0.79 DL + ML (FT) VGG 19 Linear SVM 0.79 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Linear SVM 0.79 DL + ML (FT) VGG 19 + RESNET 152 + IV3 KNN 0.78 DL + ML VGG 19 KNN 0.78 0.79 DL + ML (TL) VGG 19 + RESNET 152 KNN 0.78 DL + ML (TL) VGG 19 + RESNET 152 + IV3 KNN 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77<				0.8
HF + ML	HF + ML		 	
DL + ML (TL) VGG 19 + RESNET 152 + IV3 SGD 0.79 DL + ML (FT) VGG 19 SVM 0.79 DL + ML (FT) VGG 19 SVM 0.79 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Linear SVM 0.79 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Linear SVM 0.79 DL + ML (TL) VGG 19 + RESNET 152 KNN 0.78 DL + ML (TL) VGG 19 + RESNET 152 KNN 0.78 DL + ML (FT) VGG 19 SGD 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (FT) VGG 19 + RESNET 152 Linear SVM 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Gradient Boosting 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.76 DL + ML (FT) VGG 19 + RESNET 152 VGM 0.	HF + ML	•	Random Forest	
DL + ML (TL) VGG 19 + RESNET 152 + IV3 SGD 0.79 DL + ML (FT) VGG 19 SVM 0.79 DL + ML (FT) VGG 19 SVM 0.79 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Linear SVM 0.79 DL + ML VGG 19 Extremely Trees 0.79 DL + ML VGG 19 KNN 0.78 DL + ML (TL) VGG 19 + RESNET 152 KNN 0.78 DL + ML (FT) VGG 19 + RESNET 152 + IV3 KNN 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (FT) VGG 19 + RESNET 152 Linear SVM 0.77 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) VGG 19 + RESNET 152 NG 0.76 DL + ML (FT) NG 19 + RESNET 152 NG 0.76 DL + ML (FT) NG 19 + RESNET 152 NG 19 DL + ML (FT) NG 19 + RESNET 152 NG 19 DL + ML (FT) NG 19 + RESNET 152 NG 19				1
DL + ML (FT) VGG 19 SVM 0.79 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Linear SVM 0.79 HF + ML LPQ Extremely Trees 0.79 DL + ML VGG 19 KNN 0.78 DL + ML (TL) VGG 19 + RESNET 152 KNN 0.78 DL + ML (FT) VGG 19 SGD 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (FT) VGG 19 + RESNET 152 SGD 0.77 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 <td><u></u></td> <td></td> <td><u> </u></td> <td></td>	<u></u>		<u> </u>	
DL + ML (FT)	<u></u>	VGG 19	Linear SVM	0.79
DL + ML	DL + ML (FT)	VGG 19	SVM	0.79
DL + ML VGG 19 KNN 0.78 DL + ML (TL) VGG 19 + RESNET 152 KNN 0.78 DL + ML (TL) VGG 19 + RESNET 152 + IV3 KNN 0.78 DL + ML (FT) VGG 19 SGD 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3		VGG 19 + RESNET 152 + IV3	Linear SVM	0.79
DL + ML (TL) VGG 19 + RESNET 152 KNN 0.78 DL + ML (TL) VGG 19 + RESNET 152 + IV3 KNN 0.78 DL + ML (FT) VGG 19 SGD 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (TL) RESNET 152 Linear SVM 0.77 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET	HF + ML	,	<u> </u>	1
DL + ML (TL) VGG 19 + RESNET 152 + IV3 KNN 0.78 DL + ML (FT) VGG 19 SGD 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (TL) RESNET 152 Linear SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Gradient Boosting 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL				.
DL + ML (FT) VGG 19 SGD 0.78 DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (TL) RESNET 152 Linear SVM 0.77 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP	DL + ML (TL)			
DL + ML (FT) VGG 19 Random Forest 0.78 DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (TL) RESNET 152 Linear SVM 0.77 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML <td< td=""><td>DL + ML (TL)</td><td></td><td></td><td> </td></td<>	DL + ML (TL)			
DL + ML (FT) VGG 19 + RESNET 152 Gradient Boosting 0.78 DL + ML (TL) RESNET 152 Linear SVM 0.77 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP				
DL + ML (TL) RESNET 152 Linear SVM 0.77 DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76	<u> </u>			
DL + ML (TL) VGG 19 + RESNET 152 SGD 0.77 DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76			 	1
DL + ML (FT) VGG 19 Adaboost 0.77 DL + ML (FT) VGG 19 Gradient Boosting 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76				ł
DL + ML (FT) VGG 19 Gradient Boosting 0.77 DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76	<u></u>			<u> </u>
DL + ML (FT) VGG 19 Extremely Trees 0.77 DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76				
DL + ML (FT) VGG 19 + RESNET 152 SVM 0.77 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76			+	<u> </u>
DL + ML (FT) VGG 19 + RESNET 152 + IV3 Gradient Boosting 0.77 HF + ML LBP + LPQ KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76			 	
HF + ML LBP + LPQ KNN 0.77 HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76			<u> </u>	1
HF + ML LBP + LPQ + GLCM SGD 0.77 DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76			<u> </u>	<u> </u>
DL + ML (TL) RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76		·	1	
DL + ML (FT) VGG 19 + RESNET 152 Adaboost 0.76 DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76		· · · · · · · · · · · · · · · · · · ·		<u> </u>
DL + ML (FT) VGG 19 + RESNET 152 + IV3 Adaboost 0.76 HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76	. ,			
HF + ML Haralick SVM 0.76 HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76				<u> </u>
HF + ML LBP KNN 0.76 HF + ML LBP Naive Bayes 0.76				1
HF + ML LBP Naive Bayes 0.76				1
·				
DL + ML (TL) RESNET 152 Gradient Boosting 0.75			-	0.75

DL + ML (TL)	RESNET 152	Linnan CV/DA	0.6046
DI I MI (TI)	VGG 19 + RESNET 152	Linear SVM	0.6946
DL + ML (TL)		Naive Bayes	0.6946
DL + ML (FT)	VGG 19	Adaboost	0.6946
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Naive Bayes	0.693
DL + ML	VGG 19	Decision Tree	0.6916
DL + ML (TL)	RESNET 152	Adaboost	0.69
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Decision Tree	0.69
DL + ML (FT)	RESNET 152	Extremely Trees	0.69
DL + ML (TL)	RESNET 152	Extremely Trees	0.687
HF + ML	LPQ	Decision Tree	0.687
DL + ML (TL)	RESNET 152	Gradient Boosting	0.6824
		+	
DL + ML (FT)	VGG 19 + RESNET 152	Decision Tree	0.6824
DL + ML	VGG 19	Naive Bayes	0.6809
HF + ML	LBP	SGD	0.6778
DL + ML (FT)	VGG 19 + RESNET 152	Naive Bayes	0.6732
DL + ML (FT)	RESNET 152	Random Forest	0.6702
DL + ML (TL)	RESNET 152	SVM	0.6687
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Naive Bayes	0.6671
DL + ML (FT)	VGG 19	Naive Bayes	0.6656
DL + ML (FT)	RESNET 152	SVM	0.6641
DL + ML (FT)	VGG 19	KNN	0.661
DL + ML (TL)	RESNET 152	KNN	0.6549
HF + ML	LBP + LPQ + GLCM	Naive Bayes	0.6534
DL + ML (TL)	RESNET 152	Decision Tree	0.6488
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Decision Tree	0.6488
DL + ML (FT)	RESNET 152	Adaboost	0.6458
HF + ML	HOG	Extremely Trees	0.6458
HF + ML	Haralick	Gradient Boosting	0.6458
HF + ML	Haralick	Random Forest	0.6427
DL + ML (FT)	RESNET 152	SGD	0.6396
HF + ML	LBP + LPQ	Naive Bayes	0.6396
DL + ML (TL)	IV3	Linear SVM	0.6381
DL + ML (TL)	IV3	SVM	0.6381
DL + ML (FT)	IV3	SVM	0.6381
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	SVM	0.6381
HF + ML	HOG	SVM	0.6381
HF + ML			
	SIFT	Linear SVM	0.6381
HF + ML	SIFT	SVM	0.6381
HF + ML	LPQ	SGD	0.6381
HF + ML	Haralick	Extremely Trees	0.6369
DL + ML (FT)	RESNET 152	Naive Bayes	0.6335
HF + ML	Haralick	Adaboost	0.6335
DL + ML (FT)	VGG 19 + RESNET 152	KNN	0.632
DL + ML (TL)	RESNET 152	Naive Bayes	0.629
DL + ML (FT)	VGG 19	Decision Tree	0.629
HF + ML	HOG	Random Forest	0.629
DL + ML (FT)	RESNET 152	Gradient Boosting	0.6274
HF + ML	LPQ	Naive Bayes	0.6213
DL + ML (TL)	RESNET 152	SGD	0.6106
HF + ML	HOG	SGD	0.6091
HF + ML	LBP + LPQ + GLCM	KNN	0.6091
DL + ML (FT)	RESNET 152	Decision Tree	0.6061
DL + ML (FT)	RESNET 152	KNN	0.6045
HF + ML	SIFT	Gradient Boosting	0.6
HF + ML	HOG	Gradient Boosting	0.5954
		-	
HF + ML	HOG	Adaboost	0.5908
HF + ML	HOG	Linear SVM	0.5893
HF + ML	ноб	Naive Bayes	0.5877
HF + ML	Haralick	KNN	0.5877
	SIFT	KNN	0.5832
HF + ML	<u> </u>		
HF + ML HF + ML	SIFT	Extremely Trees	0.5832
		Extremely Trees Decision Tree	0.5832 0.5786
HF + ML HF + ML	SIFT SIFT	Decision Tree	0.5786
HF + ML HF + ML HF + ML	SIFT SIFT SIFT	Decision Tree Random Forest	0.5786 0.574
HF + ML HF + ML HF + ML	SIFT SIFT LBP	Decision Tree Random Forest Naive Bayes	0.5786 0.574 0.5725
HF + ML HF + ML HF + ML HF + ML	SIFT SIFT SIFT LBP Haralick	Decision Tree Random Forest Naive Bayes Decision Tree	0.5786 0.574 0.5725 0.5694
HF + ML	SIFT SIFT SIFT LBP Haralick HOG	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree	0.5786 0.574 0.5725 0.5694 0.5648
HF + ML	SIFT SIFT SIFT LBP Haralick HOG	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD	0.5786 0.574 0.5725 0.5694 0.5648 0.5648
HF + ML	SIFT SIFT SIFT LBP Haralick HOG SIFT	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost	0.5786 0.574 0.5725 0.5694 0.5648 0.5648
HF + ML	SIFT SIFT SIFT LBP Haralick HOG	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD	0.5786 0.574 0.5725 0.5694 0.5648 0.5648
HF + ML	SIFT SIFT SIFT LBP Haralick HOG SIFT	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost	0.5786 0.574 0.5725 0.5694 0.5648 0.5648
HF + ML DL + ML HT + ML	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5648
HF + ML DL + ML DL + ML (TL) DL + ML (TL)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511
HF + ML DL + ML (TL) DL + ML (TL) DL + ML (TL) HF + ML	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3 IV3 IV3 SIFT	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548
HF + ML DL + ML (TL) DL + ML (TT) DL + ML (TT) HF + ML DL + ML (TT)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3 IV3 IV3 SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5541 0.5541
HF + ML DL + ML (TL) DL + ML (TT)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3 IV3 IV3 IV3 SIFT IV3 IV3 IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328
HF + ML DL + ML (TL)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD Decision Tree	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328 0.5297
HF + ML DL + ML (TL) DL + ML (TL) DL + ML (TT)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD Decision Tree Gradient Boosting	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328 0.5297 0.5282
HF + ML DL + ML (TL)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD Decision Tree	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328 0.5297
HF + ML DL + ML (TL) DL + ML (TL) DL + ML (TT)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD Decision Tree Gradient Boosting	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328 0.5297 0.5282
HF + ML DL + ML (TL) DL + ML (TT)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD Decision Tree Gradient Boosting Extremely Trees	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328 0.5297 0.5282 0.5282 0.5267
HF + ML DL + ML (TL)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD Decision Tree Gradient Boosting Extremely Trees SGD KNN	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328 0.5297 0.5282 0.5282 0.5282 0.5267 0.5251
HF + ML DL + ML (TL) DL + ML (TT)	SIFT SIFT SIFT LBP Haralick HOG SIFT SIFT IV3	Decision Tree Random Forest Naive Bayes Decision Tree Decision Tree SGD Adaboost Extremely Trees Decision Tree Random Forest Naive Bayes Random Forest SGD Decision Tree Gradient Boosting Extremely Trees	0.5786 0.574 0.5725 0.5694 0.5648 0.5648 0.5648 0.5618 0.5541 0.5511 0.548 0.5419 0.5328 0.5297 0.5282 0.5282 0.5267

DL + ML (TL)	RESNET 152	Random Forest	0.75
DL + ML (TL)	RESNET 152	Extremely Trees	0.75
DL + ML (FT)	RESNET 152	Linear SVM	0.75
HF + ML	LPQ	KNN	0.75
DL + ML (TL)	RESNET 152	SGD	0.74
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Naive Bayes	0.74
DL + ML (FT)		-	
	RESNET 152	Random Forest	0.74
HF + ML	Haralick	Linear SVM	0.74
HF + ML	LBP	SGD	0.74
DL + ML (FT)	RESNET 152	Extremely Trees	0.73
DL + ML (TL)	RESNET 152	SVM	0.72
HF + ML	LBP	Decision Tree	0.72
	Haralick	SGD	
HF + ML			0.71
HF + ML	Haralick	Naive Bayes	0.71
DL + ML (TL)	RESNET 152	Naive Bayes	0.7
DL + ML (TL)	VGG 19 + RESNET 152	Decision Tree	0.7
DL + ML (FT)	VGG 19	KNN	0.7
DL + ML (FT)	RESNET 152	Gradient Boosting	0.7
HF + ML	HOG	Naive Bayes	0.7
DL + ML	VGG 19	Decision Tree	0.69
DL + ML (TL)	VGG 19 + RESNET 152 + IV3	Decision Tree	0.69
HF + ML	HOG	Random Forest	0.69
HF + ML	HOG	Extremely Trees	0.69
DL + ML (TL)	RESNET 152	KNN	0.68
DL + ML (FT)	RESNET 152	Adaboost	0.68
DL + ML (FT)	RESNET 152	SVM	0.68
HF + ML	Haralick	Gradient Boosting	0.68
HF + ML	Haralick	Extremely Trees	0.68
HF + ML	LBP + LPQ	Decision Tree	0.67
HF + ML	LBP + LPQ + GLCM	Decision Tree	0.67
DL + ML (FT)	VGG 19 + RESNET 152	Decision Tree	0.66
HF + ML	Haralick	Adaboost	0.66
HF + ML	Haralick	Random Forest	0.66
DL + ML (FT)	VGG 19	Decision Tree	0.65
DL + ML (FT)	VGG 19 + RESNET 152	KNN	0.65
HF + ML	нос	Linear SVM	0.65
HF + ML	HOG	SVM	0.64
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	Decision Tree	0.63
HF + ML	ноб	Gradient Boosting	0.63
HF + ML	LPQ	Decision Tree	0.63
HF + ML	LBP + LPQ + GLCM	KNN	0.63
	EDI I EI Q I GECIVI	KINIA	0.03
DI . NAI /TI\	DECNET 4E3	Danisian Tuan	0.00
	RESNET 152	Decision Tree	0.62
HF + ML	ноG	Adaboost	0.62
HF + ML DL + ML (FT)	HOG RESNET 152	Adaboost KNN	0.62 0.61
HF + ML DL + ML (FT)	ноG	Adaboost	0.62
HF + ML DL + ML (FT) DL + ML (FT)	HOG RESNET 152	Adaboost KNN	0.62 0.61
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT)	HOG RESNET 152 RESNET 152	Adaboost KNN Naive Bayes	0.62 0.61 0.61
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3	Adaboost KNN Naive Bayes Naive Bayes SGD	0.62 0.61 0.61 0.61
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting	0.62 0.61 0.61 0.61 0.61 0.61
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees	0.62 0.61 0.61 0.61 0.61 0.61
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.5
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML HF + ML HF + ML HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.5 0.59 0.59 0.59
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.59
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes	0.62 0.61 0.61 0.61 0.61 0.61 0.66 0.6 0.6 0.59 0.59 0.59 0.58 0.58
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.59 0.58 0.58 0.58
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM	0.62 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.59 0.58 0.58 0.58
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.57 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
DL + ML (TL) HF + ML DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML (FT) DL + ML HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree Random Forest	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
HF + ML DL + ML (FT) DL + ML (FT) DL + ML (FT) HF + ML DL + ML (FT)	HOG RESNET 152 RESNET 152 VGG 19 + RESNET 152 + IV3 HOG SIFT SIFT VGG 19 VGG 19 + RESNET 152 LBP + LPQ + GLCM SIFT Haralick LBP + LPQ HOG SIFT LPQ RESNET 152 IV3 IV3 SIFT SIFT SIFT SIFT SIFT SIFT SIFT SIFT	Adaboost KNN Naive Bayes Naive Bayes SGD Gradient Boosting Extremely Trees Naive Bayes Naive Bayes Naive Bayes Naive Bayes KNN KNN Naive Bayes KNN Random Forest Naive Bayes Decision Tree Linear SVM Random Forest SGD Naive Bayes Adaboost Linear SVM SVM Decision Tree Gradient Boosting Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree Random Forest SGD Extremely Trees SGD Extremely Trees KNN Adaboost Decision Tree Decision Tree	0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.55 0.55

DL + ML (FT)	VGG 19 + RESNET 152 + IV3	KNN	0.5083
DL + ML (FT)	VGG 19 + RESNET 152 + IV3	SGD	0.5007
DL + ML (TL)	RESNET 152	KNN	0.4977
DL + ML (TL)	IV3	Adaboost	0.4839
DL + ML (FT)	IV3	SGD	0.4641
HF + ML	Haralick	SGD	0.4595
HF + ML	Haralick	Naive Bayes	0.4458
DL + ML (TL)	IV3	Naive Bayes	0.4427
HF + ML	HOG	KNN	0.3877
DL + ML (FT)	IV3	Naive Bayes	0.3832

		T	T
DL + ML (TL)	IV3	Gradient Boosting	0.5
DL + ML (TL)	IV3	SVM	0.5
DL + ML (FT)	VGG 19 + RESNET 152	SGD	0.5
DL + ML (FT)	IV3	Naive Bayes	0.49
DL + ML (TL)	IV3	Decision Tree	0.48
DL + ML (FT)	IV3	SVM	0.47
DL + ML (TL)	IV3	KNN	0.46
DL + ML (TL)	IV3	Adaboost	0.45
DL + ML (TL)	IV3	Naive Bayes	0.44
DL + ML (TL)	IV3	SGD	0.41