Subconsultas correlacionadas en bases de datos

Definición y características de las subconsultas correlacionadas

Dependencia de consulta principal

Las subconsultas correlacionadas dependen de valores de la consulta exterior para ejecutarse correctamente.

Ejecución repetida

La subconsulta se ejecuta repetidamente para cada fila procesada por la consulta externa.

Usos comunes en SQL

Se utilizan para comparaciones complejas, búsquedas condicionales y validaciones en bases de datos.

Ventajas y desventajas frente a subconsultas independientes

Flexibilidad de subconsultas correlacionadas

Las subconsultas correlacionadas permiten resolver problemas complejos con mayor precisión y contexto.

Impacto en el rendimiento

Las subconsultas correlacionadas pueden reducir el rendimiento en bases de datos grandes debido a múltiples ejecuciones.

Eficiencia de subconsultas independientes

Las subconsultas independientes son generalmente más eficientes, ideales para consultas menos complejas.

Elección según contexto

La elección entre subconsultas depende de las necesidades específicas y el contexto del problema.

Ejemplos prácticos de subconsultas correlacionadas

Definición de Subconsulta Correlacionada

Las subconsultas correlacionadas dependen de valores de la consulta principal para filtrar datos relacionados entre tablas.

Ejemplo con salarios

Seleccionar empleados con salarios superiores al promedio de su departamento usando subconsultas correlacionadas.

Aplicaciones prácticas

Útiles para análisis avanzados y reportes personalizados que requieren datos relacionados dinámicos.

Subconsultas Correlacionadas

Entendiendo las consultas que se autoreferencian

¿Qué es una Subconsulta Correlacionada?

- En una subconsulta correlacionada, las **consultas principales y subordinadas extraen datos de la misma tabla**.
- La consulta interna realiza una **función de agregado** (ej. una estadística) y alimenta esta información a la consulta externa, que la utiliza como base para una comparación.
- La subconsulta se ejecuta repetidamente, una vez por cada fila seleccionada por la consulta externa.
 - Esto significa que la subconsulta se ejecuta para cada fila de la tabla principal y **utiliza los** valores de la fila actual para filtrar los resultados de la subconsulta.

Ejemplo Práctico 1 - Inventario

- **Escenario:** Listar registros de inventario para artículos con precios superiores al promedio de un depósito.
 - La consulta externa pasa la información del depósito a la consulta interna.
 - La consulta interna envía el promedio de nuevo a la consulta externa.

Consulta SQL:

SELECT i1.parte_nro, i1.precio, i1.codigo_deposito

FROM inventario i1

WHERE i1.precio > (SELECT AVG(i2.precio)

FROM inventario i2

WHERE i2.codigo_deposito = i1.codigo_deposito);

Nota: Las dos consultas usan alias de tabla "I1" y "I2". Aunque se refieren a la misma tabla, el uso del alias permite tratarlas como dos entidades separadas.

Ejemplo Práctico 2 - Proyectos y Presupuesto (Parte 1)

Escenario: Listar los proyectos cuyo 50% de horas trabajadas han superado el presupuesto asignado.

Consideraciones para el costo de la hora:

Si la hora para ejecutar los proyectos se paga **\$350**. Si la hora para ejecutar los proyectos se paga **\$550**. Si la hora para ejecutar los proyectos se paga **\$1000**.

Consulta SQL (Ejemplo con \$350/hora):

```
SELECT T1.nroproyecto, T1.nombrepoyecto, T1.presproyecto
FROM proyectos T1
WHERE (T1.presproyecto) < (SELECT sum(hstrabajadas*350)/2
FROM `proy_equipo_hs` T3
WHERE T3.idproyecto = T1.nroproyecto
)
ORDER BY T1.nroproyecto;
```


Ejemplo Práctico 2 - Proyectos y Presupuesto (Parte 2) Consulta SQL (Ejemplo con \$550/hora y formato aplicado):

```
SELECT T1.nroproyecto, T1.nombrepoyecto, concat('$
',format(T1.presproyecto,2))

FROM proyectos T1

WHERE (T1.presproyecto) < (SELECT sum(hstrabajadas*550)/2

FROM `proy_equipo_hs` T3

WHERE T3.idproyecto = T1.nroproyecto
)
```

ORDER BY T1.nroproyecto;

Consideraciones para el costo de la hora (recordatorio):

- Si la hora para ejecutar los proyectos se paga \$350.
- Si la hora para ejecutar los proyectos se paga \$550.
- Si la hora para ejecutar los proyectos se paga \$1000.

Otro Caso de Uso - Horas Trabajadas por Proyecto

Escenario: Mostrar el Total de horas trabajadas, por nroproyecto y nombreproyecto, de todos los proyectos que tienen equipos de trabajo asignados.

Consulta SQL:

```
SELECT T1.nroproyecto, T1.nombrepoyecto, sum(T2.hstrabajadas)

FROM proyectos T1, `proy_equipo_hs` T2

WHERE T1.nroproyecto = T2.idproyecto
group by T1.nroproyecto, T1.nombrepoyecto
and T2.idequipo IN (SELECT T3.idequipo

FROM `proy_equipo_hs` T3

WHERE T3.idequipo = T2.idequipo
)
order by T1.nroproyecto;
```

Inconvenientes de Funcionamiento

- Rendimiento: Para las subconsultas correlacionadas, SQL evalúa la consulta interna una vez para cada registro en la consulta externa.
- **Escalabilidad:** Cuando los tamaños de las tablas se hacen más grandes, **el proceso toma más tiempo**.
- Alternativas: Si una subconsulta correlacionada toma una cantidad excesiva de tiempo, considera usar una alternativa.
 - Una opción es cargar una tabla temporal con resultados intermedios y luego procesar la tabla temporal directamente contra la tabla principal con una subconsulta simple.
 - Aunque esta alternativa puede ser menos elegante, puede resultar mucho más rápida.

