AMA - Formulas absolute value R (L1)

$$|x| \le a \Leftrightarrow -a \le x \le a$$
; $|x| \ge b \Leftrightarrow (x \ge b \text{ o } x \le -b)$; $|x+y| \le |x| + |y|$

REAL VALUED FUNCTIONS (L2)

Even function: f(-x) = f(x), Odd function: f(-x) = -f(x)Exponential function: $a^x > 0$, $a^0 = 1$, $a^x \cdot a^y = a^{x+y}$, $a^x/a^y = a^{x-y}$, $(a^x)^y = a^{xy}$ Logarithmic function:

 $\log_a(1) = 0, \quad \log(e) = 1, \quad \log_a(x \cdot y) = \log_a(x) + \log_a(y), \quad \log_a(x/y) = \log_a(x) - \log_a(y), \\ \log_a(x^y) = y \log_a(x), \quad \log_a(x) = \frac{\log_b(x)}{\log_b(a)}$

Trigonometric function:

$$\cos^2(x) + \sin^2(x) = 1; \quad |\cos(x)| \le 1; \quad |\sin(x)| \le 1$$

Properties of derivatives:

$$(f \pm g)'(x) = f'(x) \pm g'(x), \quad (\alpha f)'(x) = \alpha f'(x),$$

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x), \quad \left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

Chain rule: $(f \circ g)'(x) = f'(g(x))g'(x)$ Derivatives of elemental functions:

$$(x^{n})' = nx^{n-1} \qquad (u(x)^{n})' = nu(x)^{n-1} (u(x))'$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}} \qquad \left(\sqrt{u(x)}\right)' = \frac{1}{2\sqrt{u(x)}} (u(x))'$$

$$\log_{a}'(x) = \frac{1}{x\log(a)} \qquad \log_{a}'(u(x)) = \frac{1}{u(x)'\log(a)} (u(x))'$$

$$(a^{x})' = a^{x}\log(a) \qquad (a^{u(x)})' = a^{u(x)}\log(a) (u(x))'$$

$$\sin'(x) = \cos(x) \qquad \sin'(u(x)) = \cos(u(x)) (u(x))'$$

$$\cos'(x) = -\sin(x) \qquad \cos'(u(x)) = -\sin(u(x)) (u(x))'$$

$$\arctan'(x) = \frac{1}{1+x^{2}} \qquad \arctan'(u(x)) = \frac{1}{1+u(x)^{2}} (u(x))'$$

$$\arcsin'(x) = \frac{1}{\sqrt{1-u(x)^{2}}} \qquad \arcsin'(u(x)) = \frac{1}{\sqrt{1-u(x)^{2}}} (u(x))'$$

Please note: If a = e then $\log(a) = \log(e) = 1$

Increasing/Decreasing: $f'(x) > / < 0 \Rightarrow f$ strictly increasing/decreasing

Local maximum and minimum: f'(x) = 0 and $f''(x) > / < 0 \Rightarrow f$ has a local minimum or maximum at x

Concavity up/down: $f''(x) > / < 0 \Rightarrow f$ concave up/down

Points of inflection: f has a point of inflection in $x \Rightarrow f''(x) = 0$

RIEMANN's INTEGRATION (L3)

f monotonic in $[a,b] \Rightarrow f$ integrable in [a,b] , f continuous in $[a,b] \Rightarrow f$ integrable in [a,b] f, g integrable in $[a,b] \Rightarrow \alpha f + \beta g$ and $f \cdot g$ integrable in [a,b] but $\int_a^b f \cdot g \neq \left(\int_a^b f\right) \left(\int_a^b g\right)$ f, g integrable in [a,b] and $f \leq g \Rightarrow \int_a^b f \leq \int_a^b g$; $\left|\int_a^b f\right| \leq \int_a^b |f|$ Area (plane) of the figure limited by g = f(x) and OX, between x = a and x = b: $A = \int_a^b |f|$ Barrow's: f integrable in [a,b] and h' = f in $[a,b] \Rightarrow \int_a^b f = h(b) - h(a)$ Integration by parts: $\int_a^b f \cdot g' = [f \cdot g]_a^b - \int_a^b f' \cdot g = (f(b)g(b) - f(a)g(a)) - \int_a^b f' \cdot g$ Integration by changing variable: $\int_{a=g(c)}^{b=g(d)} f = \int_c^d (f \circ g)g'$; x = g(t) change Immediate Integrals:

$$\int k dx = kx + c$$

$$\int x^p dx = \frac{x^{p+1}}{p+1} + c, \ (p \neq -1)$$

$$\int \frac{dx}{x} = \ln |x| + c$$

$$\int e^x dx = e^x + c$$

$$\int e^{u(x)} u'(x) dx = \frac{u^{u+1}(x)}{p+1} + c, \ (p \neq -1)$$

$$\int \frac{dx}{u(x)} dx = \ln |u(x)| + c$$

$$\int e^{u(x)} u'(x) dx = e^{u(x)} + c$$

$$\int a^{u(x)} u'(x) dx = \frac{a^{u(x)}}{\ln(a)} + c, \ (a > 0, a \neq 1)$$

$$\int \cos(x) dx = \sin(x) + c$$

$$\int \sin(x) dx = -\cos(x) + c$$

$$\int \sin(x) dx = -\cos(x) + c$$

$$\int \frac{dx}{\cos^2 x} = \int (1 + \tan^2 x) dx = \tan(x) + c$$

$$\int \frac{dx}{\sin^2 x} = \int (1 + \cot^2 x) dx = -\cot(x) + c$$

$$\int \frac{dx}{\sin^2 u(x)} dx = \arcsin(u(x)) + c$$

$$\int \frac{dx}{1 + u^2} = \arcsin(x) + c$$

$$\int \frac{u'(x)}{\sqrt{1 - u^2(x)}} dx = \arcsin(u(x)) + c$$

$$\int \frac{dx}{1 + u^2} = \arctan(x) + c$$

$$\int \frac{u'(x)}{\sqrt{1 - u^2(x)}} dx = \arctan(u(x)) + c$$

$$\int \frac{dx}{1 + u^2} = \arctan(x) + c$$

$$\int \frac{u'(x)}{\sqrt{1 - u^2(x)}} dx = \arctan(u(x)) + c$$

APPROXIMATED INTEGRATION (L3)

Trapezoidal rule: $T_n f = \frac{h}{2} \left(f(a) + 2 \sum_{k=1}^{n-1} f(a+kh) + f(b) \right)$; $h = \frac{b-a}{n}$

Error:
$$E_n = \left| \int_a^b f - T_n f \right| \le \frac{nh^3}{12} M_2 = \frac{(b-a)^3}{12n^2} M_2 \; ; \; M_2 \ge \max_{[a,b]} |f''|$$

Simpson's formula: $S_n f = \frac{h}{3} \left(f(a) + 4 \sum_{k=0}^{n/2-1} f(a + (2k+1)h) + 2 \sum_{k=1}^{n/2-1} f(a + 2kh) + f(b) \right)$

Error:
$$E_n = \left| \int_a^b f - S_n f \right| \le \frac{nh^5}{180} M_4 = \frac{(b-a)^5}{180n^4} M_4 \; ; \; M_4 \ge \max_{[a,b]} \left| f^{(iv)} \right|$$

SEQUENCES (L4)

$$a > 1 \Rightarrow \lim(a^n) = +\infty$$
 ; $|a| < 1 \Rightarrow \lim(a^n) = 0$

Euler's formula:
$$(a_n) \to 1$$
, $(b_n) \to \pm \infty \Rightarrow \lim a_n^{b_n} = e^{\lim\{b_n(a_n-1)\}}$

Stolz (quotient):
$$(b_n)$$
 increasing, $(b_n) \to +\infty \Rightarrow \lim \frac{a_n}{b_n} = \lim \frac{(a_{n+1}-a_n)}{(b_{n+1}-b_n)}$

Magnitude order $(a_n \text{ and } b_n \text{ positive and divergent to } +\infty)$:

$$\lim \frac{a_n}{b_n} = \begin{cases} l \in \mathbb{R}^+ \Longrightarrow a_n \in \Theta(b_n) a_n \approx b_n \text{ (same order)} \\ 0 \Longrightarrow a_n \in O(b_n) a_n \ll b_n \\ +\infty \Longrightarrow a_n \in \Omega(b_n) a_n \gg b_n \end{cases}$$

Lineal recurrences (2^{o} order and constant coefficients; this method can be applied to first order):

Homogenous case:
$$a_{n+2} + p \cdot a_{n+1} + q \cdot a_n = 0$$
; characteristic eq.: $r^2 + pr + q \stackrel{r_1, r_2}{=} 0$
 $r_1 \neq r_2 \in \mathbb{R} \implies a_n^h = c_1 r_1^n + c_2 r_2^n$; $c_1, c_2 \in \mathbb{R}$

$$r_1 = r_2 = r \in \mathbb{R} \quad \Rightarrow \quad a_n^h = c_1 r^n + c_2 n \cdot r^n \quad ; \quad c_1, c_2 \in \mathbb{R}$$

$$r_1 = \rho_{\alpha}$$
, $r_2 = \rho_{-\alpha} \in \mathbb{C} \implies a_n^h = \rho^n(c_1 \cos(n\alpha) + c_2 \sin(n\alpha))$; $c_1, c_2 \in \mathbb{R}$

No homogenous case: $a_{n+2} + p \cdot a_{n+1} + q \cdot a_n = t_n$; $(t_n = P(n), k^n, P(n)k^n)$

 $a_n^c = a_n^h + u_n$; with u_n particular solution *similar* to t_n (indeterminate coefficients)

CONVERGENCE OF NUMERICAL SERIES (L5)

Remainder criterium: $\sum a_n$ convergent $\Rightarrow (a_n) \to 0$

 $\sum \frac{1}{n^{\alpha}}$ (generalized harmonic) convergent $\Leftrightarrow \alpha > 1$

Leibniz's criterium: $\sum (-1)^{n+1} a_n$, $a_n > 0$; (a_n) decreasing and $(a_n) \to 0 \Rightarrow \sum (-1)^{n+1} a_n$ convergent SUM OF NUMERICAL SERIES (L5)

Exact sums:
$$\begin{cases} \text{Geometric: } \sum_{n=p}^{\infty} r^n = \frac{r^p}{1-r}, \\ \text{Arithmetic-geometric: } \sum_{n=p}^{\infty} n \cdot r^n = \frac{p \cdot r^p}{1-r} + \frac{r^{p+1}}{(1-r)^2}, \text{ if } |r| < 1 \end{cases}$$

Number e: $\sum_{n=0}^{\infty} \frac{1}{n!} = e$

App. sums: $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = s \text{ (is convergent with Leibniz's criterium)} \Rightarrow E_n = |s - s_n| \le a_{n+1}$ $\sum_{n=1}^{\infty} A_n = s \text{ , con } |A_n| \le cK^n \Rightarrow E_n = |s - s_n| \le \frac{cK^{n+1}}{1-K}$

POWER SERIES (L6)

McLaurin's formula:
$$f(x) = \overbrace{f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n}^{P_n f(x)} + \overbrace{\frac{f^{(n+1)}(\alpha x)}{(n+1)!}x^{n+1}}^{R_n f(x)}$$

Power series $\sum_{n\geq 0} a_n x^n$ are convergent at the interval $I=]-\rho, \rho[$, $\rho\in[0,+\infty]$

$$f(x) = \sum_{n \ge 0} a_n x^n \ , \ |x| < \rho \Rightarrow \begin{cases} f(x) = \sum_{n \ge 1} n a_n x^{n-1} \ , \ |x| < \rho \ . \text{ Using derivatives: } a_n = \frac{f^{(n)}(0)}{n!} \\ \int f = \sum_{n \ge 0} \frac{a_n}{n+1} x^{n+1} + C \ , \ |x| < \rho \end{cases}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \; , \; |x| < 1 \quad ; \quad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \; , \; x \in \mathbb{R} \quad ; \quad \sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \; , \; x \in \mathbb{R}$$