Sensor Components

-- working principles and basics

Jin Zhang

Department of Computer Science and Engineering

Southern University of Science and Technology

Computing: Models and Algorithms

Computing: Models and Algorithms

Data

Computing: Models and Algorithms

Data

Sensing techniques

Abstraction: Traditional View

Abstraction: Traditional View

Networking

Natural language processing

Computer vision

Data packets

Voice recording

Image/video

Abstraction: Traditional View

Networking

Natural language processing

Computer vision

Data packets

Voice recording

Image/video

WiFi signal

Acoustic signal

Light

Integration of Sensing and Computing

Integration of Sensing and Computing

Concept of Sensing

Physical environment (light, sound, speed, geomagnetism, radio waves, ...)

Physical environment (light, sound, speed, geomagnetism, radio waves, ...)

1. Sensors

- Definitions
- Generic working principle

2. Signals

- Digital abstraction
- Remove the noise

What is a Sensor?

Is there a common principle?

What is Sensor?

- American National Standards Institute (ANSI) Definition
 - A device which provides a usable output in response to a specified measurand

- A sensor acquires a physical parameter and converts it into a signal suitable for processing (e.g. optical, electrical, mechanical)
- A transducer
 - Microphone, Loud Speaker, Biological Senses (e.g. touch, sight, ..., etc.)

Detectable Phenomenon

Stimulus	Quantity	
Acoustic	Wave (amplitude, phase, polarization), Spectrum, Wave Velocity	
Biological & Chemical	Fluid Concentrations (Gas or Liquid)	
Electric	Charge, Voltage, Current, Electric Field (amplitude, phase, polarization), Conductivity, Permittivity	
Magnetic	Magnetic Field (amplitude, phase, polarization), Flux, Permeability	
Optical	Refractive Index, Reflectivity, Absorption	
Thermal	Temperature, Flux, Specific Heat, Thermal Conductivity	
Mechanical	Position, Velocity, Acceleration, Force, Strain, Stress, Pressure, Torque	

Physical Principles

- Amperes's Law
 - A current carrying conductor in a magnetic field experiences a force (e.g. galvanometer)
- Curie-Weiss Law
 - There is a transition temperature at which ferromagnetic materials exhibit paramagnetic behavior
- Faraday's Law of Induction
 - A coil resist a change in magnetic field by generating an opposing voltage/current (e.g. transformer)
- Photoconductive Effect
 - When light strikes certain semiconductor materials, the resistance of the material decreases (e.g. photoresistor)

Need for Sensors

 Sensors are omnipresent. They embedded in our bodies, automobiles, airplanes, cellular telephones, radios, chemical plants, industrial plants and countless other applications.

- Without the use of sensors, there would be no automation!!
 - Imagine having to manually fill Nongfu Spring bottles

Choosing a Sensor

Environmental Factors	Economic Factors	Sensor Characteristics
Temperature range	Cost	Sensitivity
Humidity effects	Availability	Range
Corrosion	Lifetime	Stability
Size		Repeatability
Overrange protection		Linearity
Susceptibility to EM interferences		Error
Ruggedness		Response time
Power consumption		Frequency response
Self-test capability		

Temperature Sensor

- Temperature sensors appear in building, chemical process plants, engines, appliances, computers, and many other devices that require temperature monitoring
- Many physical phenomena depend on temperature, so we can often measure temperature indirectly by measuring pressure, volume, electrical resistance, and strain

Temperature Sensor

Bimetallic Strip

$$L = L_0[1 + \beta(T - T_0)]$$

- Application
 - Thermostat (makes or breaks electrical connection with deflection)

Temperature Sensor

Resistance temperature device

$$R = R_0[1 + \alpha(T - T_0)]$$

$$R = R_0 e^{\gamma \left[\frac{1}{T} - \frac{1}{T_0}\right]}$$

Accelerometer

- Accelerometers are used to measure along one axis and is insensitive to orthogonal directions
- Applications
 - Vibrations, blasts, impacts, shock waves
 - Air bags, washing machines, heart monitors, car alarms
- Mathematical Description is beyond the scope of this course

Light Sensor

- Light sensors are used in cameras, infrared detectors, and ambient lighting applications
- Sensor is composed of photoconductor such as a photoresistor, photodiode, or phototransistor

Magnetic Field Sensor

 Magnetic Field sensors are used for power steering, security, and current measurements on transmission lines

 Hall voltage is proportional to magnetic field

Ultrasonic Sensor

- Ultrasonic sensors are used for position measurements
- Sound waves emitted are in the range of 2-13 MHz
- Sound Navigation And Ranging (SONAR)
- Radio Dection And Ranging (RADAR) – ELECTROMAGNETIC WAVES !!

CO₂ Gas Sensor

- CO₂ sensor measures gaseous CO₂ levels in an environment
- Measures CO₂ levels in the range of 0-5000 ppm
- Monitors how much infrared radiation is absorbed by CO₂ molecules

Fundamental principle of sensors

From Signals to Packets

Modulation

- Changing a signal to convey information
- From Music:
 - Volume
 - Pitch
 - Timing

Modulation

- Changing a signal to convey information
- Ways to modulate a sinusoidal wave
 - Volume: Amplitude Modulation (AM)
 - Pitch: Frequency Modulation (FM)
 - Timing: Phase Modulation (PM)

• In our case, modulate signal to encode a 0 or a 1. (multi-valued signals sometimes)

Amplitude Modulation

- AM: change the strength of the signal.
- Example: High voltage for a 1, low voltage for a 0

Frequency Modulation

FM: change the frequency

Phase Modulation

PM: Change the phase of the signal

Signal = Sum of Waves

The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - What frequencies are present and what is their strength (energy)

E.g., radio and TV signals.

Time Domain and Frequency Domain

Time Domain and Frequency Domain

Time domain

Frequency domain

FFT = Fast Fourier Transform

IFFT = Inverse Fast Fourier Transform

Removing Noise from Sensor Data

Outline

- Noise in sensor data
- Signal vs Noise
- Causes for noise
 - Accelerometer, ECG, Image, Audio, GPS
- Time-domain noise removal
- Frequency domain noise removal

Information and Noise in Signals

Noise in Sensor Data

Noise in Sensor Data

Signal and Noise

We need to remove noise while retaining the signal

- Electronic noise
 - Electronics: Johnson noise, Shot noise, flicker noise...
 - Generally dealt with in hardware

- Mechanical noise
 - Thermo-mechanical noise
 - Environmental vibration noise (largest source)

- Electronics: Johnson noise, Shot noise, flicker noise...
- Generally dealt with in hardware

- Mechanical noise
 - Thermo-mechanical noise
 - Environmental vibration noise (largest source)

- External vibration noise
 - Case 1: Phone detection
 - Case 2: Screen orientation detection

ECG signal

ECG noise

Images

- Intrinsic factors: Gaussian noise, Salt-and-Pepper noise,
 Shot noise, Quantization noise...
- External factors: Hand movement, Unwanted light, ...

- Intrinsic: Pink noise, popcorn noise, shot noise, avalanche noise, thermal noise, ...
- External: Simultaneous conversations, construction site, nearby traffic, ...

GPS signals

- Tropospheric delays
- Multipath effects due to buildings
- Weather conditions (intermittent signal)

Removing noise by time-domain smoothing

Oversampling and Averaging

noise reduces by a factor of 1/VN

Moving average - example

Input x =
$$x_1$$
, x_2 , x_3 , ... x_n

$$s_1 = (x_1 + x_2 + x_3)/3$$

$$s_2 = (x_2 + x_3 + x_4)/3$$

$$s_3 = (x_3 + x_4 + x_5)/3$$
...
$$s_{n-2} = (x_{n-2} + x_{n-1} + x_n)/3$$

- Steps in a exponential moving average filter
 - Place a window over samples
 - Pickup samples
 - Output exponentially weighted average of elements

$$s_1 = x_0$$

$$s_t = \alpha x_{t-1} + (1 - \alpha)s_{t-1} = s_{t-1} + \alpha(x_{t-1} - s_{t-1}), t > 1$$

$$S_t = \alpha \cdot x_{t-1} + (1 - \alpha) \cdot S_{t-1}$$

$$s_{t} = \alpha x_{t-1} + (1 - \alpha) s_{t-1}$$

$$= \alpha x_{t-1} + \alpha (1 - \alpha) x_{t-2} + (1 - \alpha)^{2} s_{t-2}$$

$$= \alpha \left[x_{t-1} + (1 - \alpha) x_{t-2} + (1 - \alpha)^{2} x_{t-3} + (1 - \alpha)^{3} x_{t-4} + \cdots \right] + (1 - \alpha)^{t-1} x_{0}.$$

Median filter vs Exponential smoothing

Median filter vs Exponential smoothing

Median filter vs Exponential smoothing

Removing noise by frequency-domain filtering

Frequency domain

(a) Raw accelerometer readings

Frequency domain Filters

Example: ECG noise removal

Example: ECG noise removal

- Signal of interest: 0.5 Hz 150 Hz
- Sources of noise:
 - Powerline Interference: 50Hz
 - Baseline Wander: <0.5Hz (slow oscillations)
 - Other: High frequency (> 150 Hz)

Baseline wander

Powerline noise

High frequency noise

Example: ECG noise removal

Example: ECG noise removal

Conclusion

Noise removal is the foundation for any signal analytics

Noise removal can come with some unwanted artifacts