Práctica 4 de álgebra 1

Comunidad algebraica

Última compilación: 05/07/2024 a las 15:16

- d divide a $a \to d \mid a \iff \exists k \in \mathbb{Z} : a = k \cdot d$
- $\mathcal{D}(-a) = \{-|a|, \ldots, -1, 1, \ldots, |a|\}.$
- $d \mid 0$, dado que $0 = 0 \cdot d$. Se desprende que $\mathcal{D}(0) = \{\mathbb{Z} \{0\}\}\$

$$\bullet \left\{ \begin{array}{l} d \mid a \iff -d \mid a \text{ (pues } a = k \cdot d \iff a = (-k) \cdot (-d)) \\ d \mid a \iff d \mid -a \text{ (pues } a = k \cdot d \iff (-a) = (-k) \cdot d) \\ \Rightarrow d \mid a \iff |d| \mid |a| \end{array} \right.$$

$$\bullet \begin{cases} d \mid a \quad \text{y} \quad d \mid b \Rightarrow d \mid a + b \\ d \mid a \quad \text{y} \quad d \mid b \Rightarrow d \mid a - b \\ d \mid a \Rightarrow d \mid c \cdot a, \ \forall c \in \mathbb{Z} \\ d \mid a \Rightarrow d \mid c \cdot a \\ d \mid a \Rightarrow d^2 \mid a^2 \quad \text{y} \quad d^n \mid a^n \ \forall n \in \mathbb{N} \\ d \mid a \cdot b \text{ no implica } d \mid a \vee d \mid b. \text{ Por ejemplo } 6 \mid 3 \cdot 4 \end{cases}$$

•
$$\left\{ \begin{array}{l} a \ es \ congruente \ a \ b \ m\'odulo \ d \ \text{si} \ d \ | \ a-b. \ \text{Se nota} \ a \equiv b \ (d) \\ a \equiv b \ (d) \iff d \ | \ a-b \end{array} \right.$$

$$\bullet \begin{cases}
a_1 \equiv b_1 (d) \\
\vdots \\
a_n \equiv b_n (d)
\end{cases} \Rightarrow a_1 + \dots + a_n \equiv a_b + \dots + b_n (d).$$

$$\bullet \begin{cases}
 a_1 \equiv b_1 (d) \\
 \vdots \\
 a_n \equiv b_n (d)
\end{cases} \Rightarrow a_1 \cdots a_n \equiv a_b \cdots b_n (d) \xrightarrow[\forall i \in \{1, \dots, n\}]{} a^n \equiv b^n (d)$$

Algoritmo de división:

• Dados $a, d \in \mathbb{Z}$ con $d \neq 0$, <u>existen</u> k (cociente), $r(\text{resto}) \in \mathbb{Z}$ tales que:

$$\left\{ \begin{array}{l} a = k \cdot d + r, \\ \cos 0 \le r < |d|. \end{array} \right\}$$

Y además estos k y r son únicos.

- Notación: $r_d(a)$ es el resto de dividir a a entre d
- $0 \le r < |d|$ $\Rightarrow r = r_d(r)$. Un número que cumple condición de resto, es su resto.
- $r_d(a) = 0 \iff d \mid a \iff a \equiv 0 \ (d)$
- $a \equiv r_d(a)$ (d). Tiene mucho sentido.
- $a \equiv r(d)$ con $\underbrace{0 \leq r < |d|}_{\text{cumple condición de resto}} \Rightarrow r = r_d(a)$
- $r_1 \equiv r_2$ (d) con $\underbrace{0 \le r_1, r_2 < |d|}_{\text{cumple condición de resto}} \Rightarrow r_1 = r_2$
- $a \equiv b \ (d) \iff r_d(a) = r_d(b)$. Dos números que son congruentes, tienen igual resto.
- $r_d(a+b) = r_d(r_d(a) + r_d(b))$ ya que si $\left\{ \begin{array}{l} a \equiv r_d(a) \ (d) \\ b \equiv r_d(b) \ (d) \end{array} \right\} \to a+b \equiv r_d(a) + r_d(b) \ (d)$
- $r_d(a \cdot b) = r_d(r_d(a) \cdot r_d(b))$ ya que si $\left\{ \begin{array}{l} a \equiv r_d(a) \ (d) \\ b \equiv r_d(b) \ (d) \end{array} \right\} \rightarrow a \cdot b \equiv r_d(a) \cdot r_d(b) \ (d)$

Sistema de numeración:

• Sea $d \in \mathbb{N}, d \geq 2$. Entonces $\forall a \in \mathbb{N}_0$ se puede escribir en la forma

$$a = r_n d^n + r_{n-1} d^{n-1} + \dots + r_1 d^1 + r_0$$

con $0 \le r_i < d$ para $0 \le i \le n$ con r_n, \ldots, r_0 son únicos en esas condiciones.

• Notación:
$$a = (r_n r_{n-1} \cdots r_1 r_0)_d = \begin{cases} 2020 = (2020)_{10} \\ 2020 = (7E4)_{16} \\ 2020 = (31040)_5 \end{cases}$$

- $d^n = (1 \underbrace{0 \cdots 0}_n)$
- ¿Cuál es el número más grande que puedo escribir usando n cifras en base d?

$$(\underline{d-1} \ \underline{d-1} \ \underline{\cdots} \ \underline{d-1})_d = \sum_{i=0}^{n-1} (d-1)d^i = d^n - 1$$

- ¿Cuántos números hay con $\leq n$ cifras? Hay del 0 hasta el $d^n - 1$, es decir d^n .
- ¿Cuál es la forma más rápida de calcular 2¹⁶

Máximo común divisor:

- Sean $a, b \in \mathbb{Z}$, no ambos nulos. El MCD entre a y b es el mayor de los divisores común entre a y b y se nota (a:b)
- $(a:b) \in \mathbb{N}$ (pues $(a:b) \geq 1$) siempre existe. $\mathcal{D}com_{+}(a,b) = \mathcal{D}_{+}(a) \cap \mathcal{D}_{+}(b) \neq \emptyset$ pues $1 \in \mathcal{D}com_{+}(a,b)$. Se ve también que está acotado por el menor entre a y b, pues si $d \mid a \land d \mid b \Rightarrow d \leq |a| \land d \leq |b|$ y es <u>único</u>.

• Sean $a y b \in \mathbb{Z}$, no ambos nulos.

$$-(a:b) = (\pm a:\pm b)$$

$$-(a:b) = (b:a)$$

$$-(a:1)=1$$

$$-(a:0) = |a|, \forall a \in \mathbb{Z} - \{0\}$$

$$-\operatorname{si} b \mid a \Rightarrow (a : b) = |b| \operatorname{si} b \in \mathbb{Z} - \{0\}$$

$$-(a:b) = (a:b+na) \text{ con } n \in \mathbb{Z}$$

$$-(a:b) = (a:r_a(b)) \text{ con } n \in \mathbb{Z}$$

- Algoritmo de Euclides: Sean $a, b \in \mathbb{Z}$ con $b \neq 0$, entonces, $\forall k \in \mathbb{Z}$, se tiene: (a : b) = (b : a kb). En particular, como $r_b(a) = a - kb$, con k el cociente (para $b \neq 0$), se tiene $(a : b) = (b : r_b(a))$
- Combinacion Entera: Sean $a, b \in \mathbb{Z}$ no ambos nulos, entonces $\exists s, t \in \mathbb{Z}$ tal que $(a : b) = s \cdot a + t \cdot b$.
 - Todos los divisores comunes entre a y b dividen al (a:b). Sean $a,b\in\mathbb{Z}$ no ambos nulos, $d\in\mathbb{Z}-\{0\}$. Entonces:

$$d \mid a \quad y \quad d \mid b \iff d \mid \underbrace{(a:b)}_{s:a+t:b}$$

.

- Sea $c \in \mathbb{Z}$ entonces $\exists s', t' \in \mathbb{Z}$ con $c = s'a + t'b \iff (a:b) \mid c$.
- Todos los números múltiplos del MCD se escriben como combinación entera de a y b.
- Si un número es una combinación entera de a y b entonces es un múltiplo del MCD.
- Sean $a, b \in \mathbb{Z}$ no ambos nulos, y sea $k \in \mathbb{N}$

$$(ka:kb) = k(a:b)$$

- Coprimos:
 - Dados $a, b \in \mathbb{Z}$, no ambos nulos, se dice que son coprimos si (a:b)=1

$$\begin{array}{c} a \perp b \iff (a:b) = 1 \\ a \perp b \iff \exists \, s, \, t \in \mathbb{Z} \, \, \text{tal que} \, \, 1 = s \cdot a + t \cdot b \end{array}$$

- Sean $a, b \in \mathbb{Z}$, no ambos nulos. Entonces $\frac{a}{(a:b)} \perp \frac{b}{(a:b)}$.
- $\text{ Coprimizar es}: \left\{ \begin{array}{l} a = (a:b) \cdot a' \\ b = (a:b) \cdot b' \end{array} \right\} \rightarrow a' \quad \text{y} \quad b' \text{ son coprimos}.$
- Sean $a, c, d \in \mathbb{Z}$ con c, d no nulos. Entonces:

$$c \mid a$$
 y $d \mid a$ y $c \perp d \iff c \cdot d \mid a$

- Sean $a, b, d \in \mathbb{Z}$ con $d \neq 0$. Entonces:

$$d \mid a \cdot b$$
 y $d \perp a \Rightarrow d \mid b$

- Primos y Factorización:
 - Sea p primo y sean $a, b \in \mathbb{Z}$. Entonces:

$$p \mid a \cdot b \Rightarrow p \mid a \vee p \mid b$$

- Si p divide a algún producto de números, tiene que dividir a alguno de los factores \rightarrow Sean $a_1, \ldots, a_n \in \mathbb{Z}$:

$$\begin{cases} p \mid a_1 \cdot a_2 \cdots a_n \Rightarrow p \mid a_i \text{ para algún } i \text{ con } 1 \leq i \leq n. \\ p \mid a^n \Rightarrow p \mid a. \end{cases}$$

– Si $a \in \mathbb{Z}$, p primo:

$$\left\{ \begin{array}{l} (a:p)=1\iff p\not\mid a\\ (a:p)=p\iff p\mid a \end{array} \right.$$

– Sea $n \in \mathbb{Z} - \{0\}$, $n = \underbrace{s}_{\{-1,1\}} \cdot \prod_{i=1}^k p_i^{\alpha_i} = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ su factorización en primos. Entonces todo divisor m positivo de n se escribe como:

$$\begin{cases}
\operatorname{Si} m \mid n \to m = p_1^{\beta_1} \cdots p_k^{\beta_k} \operatorname{con} 0 \leq \beta_i \leq \alpha_i, & \forall i 1 \leq i \leq k \\
& \text{y hay} \\
(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_k + 1) = \prod_{i=1}^k \alpha_i + 1 \\
& \text{divisores positivos de } n.
\end{cases}$$

- Sean $a, b, c \in \mathbb{Z}$ no nulos:
 - $* a \perp b \iff$ no tienen primos en común.
 - $* (a:b) = 1 \land (a:c) = 1 \iff (a:bc) = 1$
 - $* (a:b) = 1 \iff (a^m, b^n) = 1, \ \forall m, n \in \mathbb{Z}$
 - $* (a^n : a^m) = (a : b)^n$
- Si $a \mid m \land b \mid m$, entonces $[a:b] \mid m$
- $-(a:b)\cdot [a:b] = |a\cdot b|$

Ejercicios de la guía:

Divisibilidad

1. Decidir si las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$: Calcular

i)
$$a \cdot b \mid c \Rightarrow a \mid c \text{ y } b \mid c$$

$$\begin{cases} c = k \cdot a \cdot b = \underbrace{b}_{k \cdot b} \cdot a \Rightarrow a \mid c \quad \checkmark \\ c = k \cdot a \cdot b = \underbrace{i}_{k \cdot a} \cdot b \Rightarrow b \mid c \quad \checkmark \end{cases}$$

ii)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

$$a^2 = k \cdot 4 = \underbrace{h}_{k \cdot 2} \cdot 2 \Rightarrow a^2 \mid 2 \xrightarrow{\text{si } a \cdot b \mid c} a \mid 2 \quad \checkmark$$

iii)
$$2 \mid a \cdot b \Rightarrow 2 \mid a$$
 o $2 \mid b$

Si
$$2 \mid a \cdot b \Rightarrow \left\{ \begin{array}{c} a \text{ tiene que ser } par \\ \lor \\ b \text{ tiene que ser } par \end{array} \right\} \xrightarrow{\text{para que}} a \cdot b \text{ sea par. Por lo tanto si } 2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b.$$

iv)
$$9 \mid a \cdot b \Rightarrow 9 \mid a \text{ o } 9 \mid b$$

Si $a = 3 \land b = 3$, se tiene que $9 \mid 9$, sin embargo $9 \not\mid 3$

v)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

$$12 \mid 20 + 4 \Rightarrow 12 \not\mid 20 \text{ y } 12 \not\mid 4$$

ix)
$$a \mid b + a^2 \Rightarrow a \mid b$$

$$\begin{array}{l} a \mid b + a^2 \Rightarrow b + a^2 = k \cdot a \xrightarrow{\text{acomodo}} b = (k - a) \cdot a = h \cdot a \Rightarrow a \mid b \quad \checkmark \\ \xrightarrow{\text{también puedo}} \left\{ \begin{array}{l} a \mid a^2 \\ a \mid b - a^2 \end{array} \right\} \xrightarrow{\text{por propiedad}} a \mid (b - a^2) + (a^2) = b \Rightarrow a \mid b \quad \checkmark \end{array}$$

x)
$$a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$$

Pruebo por inducción. p(n) : $a \mid b \Rightarrow a^n \mid b^n$

Caso base: $n = 1 \Rightarrow a|b \Rightarrow a^1|b^1$

Paso inductivo: $\forall h \in \mathbb{N}, p(h) \ V \Rightarrow p(h+1) \ V$? Si $a \mid b \Rightarrow a^k \mid b^k \Rightarrow a^k \cdot c = b^k \xrightarrow{\text{multiplico por} \\ b \text{ M.A.M}} b \cdot a^k \cdot c = b^{k+1} \xrightarrow{a \mid b \\ a \cdot d = b} a \cdot d \cdot a^k \cdot c = a^{k+1} \cdot (cd) = b^{k+1} \xrightarrow{\text{concluyendo}} a^{k+1} \mid b^{k+1} \text{como quería mostrarse.}$

Como $p(1) \wedge p(k) \wedge p(k+1)$ resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$

Este resultado es importante y se va a ver en muchos ejercicios.

$$a \mid b \Rightarrow a^n \mid b^n \iff b \equiv 0 \ (a) \Rightarrow b^n \equiv \underbrace{0}_{\stackrel{(a^n)}{\equiv} a^n} (a^n) \iff b^n \equiv a^n \ (a^n)$$

Hallar todos los $n \in \mathbb{N}$ tales que:

i)
$$3n-1|n+7$$

Busco eliminar la n del miembro derecho.

$$\begin{cases}
3n - 1 \mid n + 7 \xrightarrow{a\mid c \Rightarrow} 3n - 1 \mid 3 \cdot (n + 7) = 3n + 21 \\
\frac{a\mid b \land a\mid c}{\Rightarrow a\mid b \pm c} 3n - 1 \mid 3n + 21 - (3n - 1) = 22
\end{cases} \rightarrow 3n - 1 \mid 22$$

$$\xrightarrow{\text{busco } n}_{\text{para que}} \xrightarrow{22}_{3n-1} \in \mathcal{D}(22) = \{1 \pm 1, \pm 2, \pm 11, \pm 22\} \xrightarrow{\text{probando}} n \in \{1, 4\} \quad \checkmark$$

iv)
$$n-2 | n^3 - 8$$

$$\xrightarrow{a \mid b} n - 2 \mid \underbrace{(n-2) \cdot (n^2 + 2n + 4)}_{n^3 - 8}$$
 Esto va a dividir para todo $n \neq 2$

- 3. Sean $a, b \in \mathbb{Z}$.
 - i) Probar que $a-b\,|\,a^n-b^n$ para todo $n\in\mathbb{N} \wedge a\neq b\in\mathbb{Z}$
 - ii) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n b^n$.
 - iii) Probar que si n es un número natural impar y $a \neq -b$, entonces $a + b \mid a^n + b^n$.

i) Si
$$a-b \mid a^n-b^n \iff a^n \equiv b^n \ (a-b) \iff \begin{cases} a \equiv b \ (a-b) \\ a^2 \equiv \underbrace{a \cdot b} \ (a-b) \rightarrow a^2 \equiv b^2 \ (a-b) \end{cases}$$

$$\Rightarrow a^n \equiv b^n \ (a-b) \iff a-b \mid a^n-b^n$$

$$\Rightarrow a^n \equiv b^n \ (a-b) \iff \begin{cases} a^2 \equiv \underbrace{a \cdot b} \ (a+b) \xrightarrow{\text{propiedad}} a^2 \equiv (-1)^2 \cdot b^2 \ (a+b) \end{cases}$$
ii) Sé que $a \equiv -b \ (a+b) \iff \begin{cases} a^2 \equiv \underbrace{a \cdot b} \ (a+b) \xrightarrow{\text{propiedad}} a^2 \equiv (-1)^2 \cdot b^2 \ (a+b) \end{cases}$

$$\Rightarrow a^n \equiv b^n \ (a+b) \implies a^n \equiv (-1)^n \cdot b^n \ (a+b) \rightarrow \begin{cases} a^n \equiv b^n \ (a+b) \ \text{con n par} \end{cases} \Rightarrow a^n \equiv (-1)^n \cdot b^n \ (a+b) \Rightarrow a^n \equiv (-1)^n \cdot b^n$$

Como p(1), p(k), p(k+1) son verdaderas por principio de inducción lo es también $p(n) \forall n \in \mathbb{N}$

iii) hecho en el anterior.

4. Sea $a \in \mathbb{Z}$ impar. Probar que $2^{n+2} | a^{2^n} - 1$ para todo $n \in \mathbb{N}$

 $\begin{cases} a^k \equiv (-1)^k \cdot b^k \ (a+b) \\ \xrightarrow{\text{multiplico}} a \cdot a^k \equiv (-1)^k \cdot \underbrace{a}_{(a-b)-b} \cdot b^k \ (a+b) \end{cases}$

Pruebo por inducción: $p(n): 2^{n+2} \mid a^{2^n} - 1$

Pruebo por inducción:
$$p(n): 2^{n+2} \mid a^{2^n} - 1$$

$$\begin{cases}
Caso base: p(1): 2^3 \mid a^2 - 1 = (a-1) \cdot (a+1) \xrightarrow{a \text{ es impar}} (2m-2) \cdot (2m) = \\
4 \cdot \underbrace{m \cdot (m-1)}_{par} = 4 \cdot (2 \cdot h) = 8 * h \xrightarrow{\text{por lo}}_{\text{tanto}} 8 \mid 8 \cdot h \text{ con } h \text{ entero.} \checkmark \\
Paso inductivo: p(k) V \Rightarrow p(k+1) V? \xrightarrow{\text{es}}_{\text{decir}} 2^{k+2} \mid a^{2^k} - 1 \Rightarrow 2^{k+3} \mid a^{2^{k+1}} - 1 \text{ } V? \\
Hipótesis inductiva: \\
\begin{cases}
2^{k+3} \mid a^{2^{k+1}} - 1 \xrightarrow{\text{acomodar}}_{\text{diferencia cuadrados}} 2 \cdot 2^k \mid (a^{2^k})^2 - 1 = \\
(a^{2^k} - 1) \cdot (a^{2^k} + 1) \xrightarrow{\text{par}}_{\text{par}} \xrightarrow{\text{par}}_{\text{disciphid}} 2^{k+1} \Rightarrow a \cdot k_1 = b \\
\frac{a \mid b \Rightarrow a \cdot k_1 = b}{a \cdot c \mid b \cdot d} \Rightarrow a \cdot k_1 = b \Rightarrow a \cdot c \mid b \cdot d \Rightarrow a \cdot$$

Como $p(1) \land p(k) \land p(k+1)$ resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$

Hacer! **5**.

Hacer!

7.

i)
$$99 \mid 10^{2n} + 197$$

ii)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$$

iii)
$$56 \mid 13^{2n} + 28n^2 - 84n - 1$$

iv)
$$256 \mid 7^{2n} + 208n - 1$$

i)
$$99 \mid 10^{2n} + 197 \iff 10^{2n} + 197 \equiv 0 \ (99) \to 10^{2n} + 198 \equiv 1 \ (99) \to 10^{2n} + \underbrace{198}_{\stackrel{(99)}{\equiv} 0} \equiv 1 \ (99) \to 100^n \equiv 1 \ (99) \to$$

$$\begin{cases} \xrightarrow[\text{que}]{\text{s\'e}} 100 \equiv 1 \ (99) \iff 100^2 \equiv \underbrace{100}_{\stackrel{(99)}{\equiv} 1} (99) \rightarrow 100^2 \equiv 1 \ (99) \iff \dots \iff 100^n \equiv 1 \ (99) \end{cases}$$

$$Tengoquedemostrareserenglnporinduccinocon" propiedad de congruencia" funciona?$$
Se concluye que $99 \mid 10^{2n} + 197 \iff 99 \mid \underbrace{100 - 1}_{99}$

ii)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \iff 7 \cdot 5^{2n} + 2^{4n+1} \equiv 0 \ (9) \xrightarrow{\text{sumo } 2 \cdot 5^{2n} \atop \text{M.A.M}} \underbrace{9 \cdot 5^{2n}}_{\stackrel{(9)}{\equiv} 0} + 2 \cdot 2^{4n} \equiv 2 \cdot 5^{2n} \ (9)$$

$$\xrightarrow{\text{simplifico}} 2^{4n} \equiv 5^{2n} \ (9) \rightarrow 16^n \equiv 25^n \ (9) \xrightarrow{\text{simetría}} 25^n \equiv 16^n \ (9) \xrightarrow{25 \stackrel{(9)}{\equiv} 16} 25 \equiv 16 \ (9) = 9 \equiv 0 \ (9)$$
Se concluye que $9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \iff 9 \mid 9 \leftarrow \text{Se concluye esto...?}$

- iii) Hacer!
- iv) Hacer!

Algoritmo de División:

Calcular el cociente y el resto de la división de a por b en los casos:

i)
$$a = 133$$
, $b = -14$.

iv)
$$a = b^2 - 6, b \neq 0.$$

ii)
$$a = 13$$
, $b = 111$.

v)
$$a = n^2 + 5$$
, $b = n + 2 \ (n \in \mathbb{N})$.
vi) $a = n + 3$, $= n^2 + 1 \ (n \in \mathbb{N})$.

iii)
$$a = 3b + 7, b \neq 0.$$

vi)
$$a = n + 3 = n^2 + 1 \ (n \in \mathbb{N})$$

i)
$$133: (-14) \Rightarrow 133 = (-9) \cdot (-14) + 7$$

ii)

iii)
$$a = 3b + 7 \rightarrow$$
 me interesa: $\rightarrow \left\{ \begin{array}{l} |b| \leq |a| \quad \checkmark \\ 0 \leq r < |b| \quad \checkmark \end{array} \right\} \rightarrow$

$$\rightarrow \begin{cases}
Si: |b| > 7 \to (q, r) = (3, 7) \\
Si: |b| \le 7 \to (q, r) = (3, 7) \\
\hline
(a, b) | (-14, -7) | (-11, -6) | (-8, -5) | (-5, -4) | (4, -1) | \dots \\
\hline
(q, r) | (2, 0) | (2, 1) | (2, 2) | (2, 3) | (4, 0) | \dots
\end{cases}$$

iv)
$$a = b^2 - 6$$
, $b \neq 0$.

- 9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de:
 - i) la división de $a^2 3a + 11$ por 18.
 - ii) la división de a por 3.
 - iii) la división de 4a + 1 por 9.
 - iv) la división de $7a^2 + 12$ por 28.

i)
$$r_{18}(a) = r_{18} \underbrace{(r_{18}(a)^2 - r_{18}(3)}_{5^2} \cdot \underbrace{r_{18}(a)}_{5} + \underbrace{r_{18}(11)}_{11}) = r_{18}(21) = 3$$

ii)
$$\begin{cases} a = 3 \cdot q + r_3(a) \\ 6 \cdot a = 18 \cdot q + \underbrace{6 \cdot r_3(a)}_{r_{18}(6a)} \end{cases} \rightarrow r_{18}(6a) = r_{18}(r_{18}(6) \cdot r_{18}(a)) = r_{18}(30) = 12$$
$$\Rightarrow 6 \cdot r_3(a) = r_{18}(6a) \rightarrow r_3(a) = 2$$

iii)
$$r_9(4a+1) = \underbrace{r_9(4 \cdot r_9(a)+1)}_{*1} \rightarrow a = 18 \cdot q + 5 = 9 \cdot \underbrace{(9 \cdot q)}_{q'} + \underbrace{5}_{r_9(a)} \xrightarrow{*_1} r_9(a) = r_9(21) = 3$$

iv)
$$r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) \xrightarrow{i\text{qu\'e es}} r_{28}(a)$$

$$\begin{cases}
a = 18 \cdot q + 5 \xrightarrow{\text{busco algo}} \\
14 \cdot a = \underbrace{252 \cdot q}_{\text{para el 28}} + 70 \xrightarrow{\text{corrijo seg\'un}} \\
\underbrace{28 \cdot 9 \cdot q}_{\text{condici\'on resto}} + 28 \cdot 9 \cdot q + \underbrace{2 \cdot 28 + 14}_{70} = 28 \cdot (9 \cdot q + 2) + 14 \quad \checkmark
\end{cases}$$

$$\begin{cases}
\xrightarrow{\text{por lo}} 14a = 28 \cdot q' + 14 \Rightarrow 14 \cdot a \equiv 14 \quad (28) \iff a \equiv 1 \quad (28)
\end{cases}$$
Ahora que sé que $r_{28}(a) = 1$ sale que $r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) = r_{28}(19) = 19 \quad \checkmark$

10.

- i) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 14, por 2 y por 7.
- ii) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- iii) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^{n} (-1)^{i} \cdot i!$ por 12

i)
$$\begin{cases} a \equiv 22 \ (14) \to a = 14 \cdot q + \underbrace{22}_{14+8} = 14 \cdot (q+1) + 8 \xrightarrow{\text{el resto}} r_{14}(a) = 8 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{2 \cdot (7 \cdot q)} + \underbrace{22}_{2 \cdot 11} = 2 \cdot (7q+11) + 0 \xrightarrow{\text{el resto}} r_{2}(a) = 0 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{7 \cdot (2 \cdot q)} + \underbrace{22}_{1+7 \cdot 3} = 7 \cdot (2q+3) + 1 \xrightarrow{\text{el resto}} r_{7}(a) = 1 \quad \checkmark \end{cases}$$

- ii) Dos números congruentes tienen el mismo resto. $a \equiv 13$ (5) $\iff a \equiv 3$ (5) $r_5(33a^3 + 3a^2 197a + 2) = r_5(3 \cdot r_5(a)^3 + 3 \cdot r_5(a)^2 2 \cdot r_5(a) + 2)$ $\xrightarrow{\text{como } a \equiv 13 \text{ (5)} \atop r_5(a) = 3} r_5(33a^3 + 3a^2 197a + 2) = 4$
- iii) Hacer!

11.

- i) Probar que $a^2 \equiv -1$ (5) $\iff a \equiv 2$ (5) $\lor a \equiv 3$ (5)
- ii) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (7)
- iii) Probar que $a^7 \equiv a$ (7) $\forall a \in \mathbb{Z}$
- iv) Probar que $7 \mid a^2 + b^2 \iff 7 \mid a \land 7 \mid b$.
- v) Probar que $5 \mid a^2 + b^2 + 1 \iff 5 \mid a \lor 5 \mid b$. ¿Vale la recíproca?
- i) Me piden que pruebe una congruencia es válida solo para ciertos $a \in \mathbb{Z}$. Pensado en términos de restos quiero que el resto al poner los a en cuestión cumplan la congruencia.

Más aún:

Para una congruencia módulo 5 habrá solo 5 posibles restos, por lo tanto se pueden ver todos los casos haciendo una table de restos.

a	U	1	2	3	4	
$r_5(a)$	0	1	2	3	4	\rightarrow La tabla muestra que para un dado a
$r_5(a^2)$	0	1	4	4	1	
()		(:	2 <	\Longrightarrow	\overline{a}	$\equiv 2 (5) \iff a^2 \equiv 4 (5) \iff a^2 \equiv -1 (5)$

$$\rightarrow r_5(a) = \left\{ \begin{array}{l} 2 \iff a \equiv 2 \ (5) \iff a^2 \equiv 4 \ (5) \iff a^2 \equiv -1 \ (5) \\ 3 \iff a \equiv 3 \ (5) \iff a^2 \equiv 4 \ (5) \iff a^2 \equiv -1 \ (5) \end{array} \right\}$$

ii) Hacer!

iii) Me piden que exista una dada congruencia para todo $a \in \mathbb{Z}$. Eso equivale a probar a que al dividir el lado izquierdo entre el divisor, el resto sea lo que está en el lado derecho de la congruencia.

$$a^7 - a \equiv 0 \ (7) \iff a \cdot \underbrace{(a^6 - 1)}_{(a^3 - 1) \cdot (a^3 + 1)} \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos constraints}} \frac{1}{\text{sus propiedades lineales}}$$

a	0	1	2	3	4	5	6
$r_7(a)$	0	1	2	3	4	5	6
$r_7(a^3-1)$	6	0	0	5	0	5	5
$r_7(a^3+1)$	1	2	2	0	2	0	0

 \rightarrow Cómo para todos los a, alguno de los factores del resto siempre

se anula, es decir:

$$r_7(a^7 - a) = r_7(r_7(a) \cdot r_7(a^3 - 1) \cdot r_7(a^3 + 1)) = 0 \ \forall a \in \mathbb{Z}$$

- iv)
- v)

12. Hacer!

13. Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$:

$$a_1 = 3, a_2 = -5$$
 y $a_{n+2} = a_{n+1} - 6^{2n} \cdot a_n + 21^n \cdot n^{21}$, para todo $n \in \mathbb{N}$.

Probar que $a_n \equiv 3^n \pmod{7}$ para todo $n \in \mathbb{N}$.

La infumabilidad de esos números me obliga a atacar a esto con el resto e inducción.

La infulnabilidad de esos infulicios me obliga a atacar a esto con el resto e infunccion.

$$\frac{\text{acomodo}}{\text{enunciado feo}} r_7(a_{n+2}) = r_7(r_7(a_{n+1}) - \underbrace{r_7(36)^n}_{\equiv 1} \cdot r_7(a_n) + \underbrace{r_7(21)^n}_{\equiv 0} \cdot r_7(n)^{21}) = \underbrace{r_7(a_{n+2}) = r_7(a_{n+1}) - r_7(a_n)}_{\bigstar^1} \checkmark$$
Puesto de otra forma $a_{n+2} \equiv a_{n+1} - a_n$ (7) $\rightarrow \begin{cases} a_1 \equiv 3^1 \ (7) \iff a_1 \equiv 3 \ (7) \\ a_2 \equiv 3^2 \ (7) \iff a_2 \equiv 2 \ (7) \\ a_3 \equiv 3^3 \ (7) \iff a_3 \equiv 6 \ (7) \end{cases}$
Ouioro prober que $a_1 \equiv 2^n \pmod{7}$ y inducción completo:

Puesto de otra forma
$$a_{n+2} \equiv a_{n+1} - a_n$$
 (7) \rightarrow
$$\begin{cases} a_1 \equiv 3^1 \ (7) \iff a_1 \equiv 3 \ (7) \\ a_2 \equiv 3^2 \ (7) \iff a_2 \equiv 2 \ (7) \\ a_3 \equiv 3^3 \ (7) \iff a_2 \equiv 6 \ (7) \end{cases}$$

Quiero probar que $a_n \equiv 3^n \pmod{7} \rightarrow \text{inducción complet}$

$$p(n) : a_n \equiv 3^n \pmod{7} \ \forall n \in \mathbb{N}$$

Casos base: $\begin{cases} p(n=1) : a_1 \equiv 3^1 \text{ (7) Verdadera} \\ p(n=2) : a_2 \equiv 3^2 \text{ (7)} \stackrel{(7)}{\equiv} 2 \stackrel{(7)}{\equiv} -5 \text{Verdadera} \\ p(k) : a_k \equiv 3^k \text{ (mod 7) Verdadera} \\ \land \\ p(k+1) : a_{k+1} \equiv 3^{k+1} \text{ (mod 7) Verdadera} \\ \Rightarrow p(k+1) : a_{k+2} \equiv 3^{k+2} \text{ (mod 7) Verdadera} \\ a_k \equiv 3^k \text{ (mod 7)} \\ a_{k+1} \equiv 3^{k+1} \text{ (mod 7)} \\ \xrightarrow{\text{sumo}} \xrightarrow{\text{sumo}} \xrightarrow{\text{sumo}} a_{k+1} - a_k \equiv 3^{k+1} - 3^k \text{ (mod 7)} \\ \xrightarrow{\text{pensando en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^{k+2} \rightarrow a_{k+2} \equiv 3^{k+2} \cdot (7) \\ \xrightarrow{\text{paso en}} a_{k+2} \equiv \underbrace{9}_{(7)} \cdot 3^k \cdot (7) \stackrel{(7)}{\equiv} 3^k \cdot (7) \stackrel{(7)}{\equiv$

Concluyendo como $p(1), p(2), p(k), p(k+1) \wedge p(k+2)$ resultaron verdaderas por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

14.

- i) Hallar el desarrollo en base 2 de
 - (a) 1365
 - (b) 2800
 - (c) $3 \cdot 2^{12}$
 - (d) $13 \cdot 2^n + 5 \cdot 2^{n-1}$

Hacer!

15. Hacer!

16. Hacer!

17. Hacer! Máximo común divisor:

En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b:

- i) a = 2532, b = 63.
- ii) a = 131, b = 23.
- iii) $a = n^4 3$, $b = n^2 + 2$ $(n \in \mathbb{N})$.

Hacer!

19. Hacer!

- Sea $a \in \mathbb{Z}$. 20.
 - a) Probar que (5a + 8 : 7a + 3) = 1 o 41. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 23 da 41.
 - b) Probar que $(2a^2 + 3a : 5a + 6) = 1$ o 43. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 16 da 43
 - c) Probar que $(a^2 3a + 2 : 3a^3 5a^2) = 2$ o 4, y exhibir un valor de a para cada caso. (Para este item es **indispensable** mostrar que el máximo común divisor nunca puede ser 1).
 - i) Hacer!
 - ii) Hacer!

iii)
$$(a^{2} - 3a + 2 : 3a^{3} - 5a^{2}) \xrightarrow{\text{Euclides}} (\underbrace{a^{2} - 3a + 2}_{\star^{1}par} : \underbrace{6a - 8}_{\star^{1}par})$$

$$\xrightarrow{\text{busco}} \left\{ \begin{array}{l} d \mid a^{2} - 3a + 2 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\star 6} \left\{ \begin{array}{l} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\star^{1}par} \left\{ \begin{array}{l} d \mid 8 \end{array} \right\} \rightarrow \mathcal{D}_{+}(8) = \{1, 2, 4, 8\} \xrightarrow{\star^{1}} = \{2, 4, 8\}$$

$$\left\{ \begin{array}{l} a = 1 \quad (0: -2) = 2 \\ a = 2 \quad (0: 4) = 4 \end{array} \right\}$$
Proved and heads are along.

Parecido al hecho en clase.

¿Qué onda el 8? Hice mal cuentas? Si no, cómo lo descarto?

21. Sean $a, b \in \mathbb{Z}$ coprimos. Probar que 7a - 3b y 2a - b son coprimos.

$$\left\{ \begin{array}{l} d \mid 7a - 3b \stackrel{\cdot 2}{\rightarrow} d \mid b \rightarrow d \mid b \\ d \mid 2a - b \stackrel{\cdot 7}{\rightarrow} d \mid 2a - b \rightarrow d \mid a \end{array} \right\} \xrightarrow{\text{propiedad}} d \mid (a:b) \xrightarrow{(a:b)} d \mid 1$$
 Por lo tanto $(7a - 3b:2a - b) = 1$ son coprimos como se quería mostrar.

22. Hacer!

23.

- i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
- ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
- iii) Determinar todos los $a,b\in\mathbb{Z}$ tales que $\frac{2a+3}{a+1}+\frac{a+2}{4}\in\mathbb{Z}$.

i)
$$\begin{array}{l} \underbrace{\frac{b+4}{a} + \frac{5}{b} = \frac{b^2 + 4b + 5a}{ab}} \xrightarrow{\text{quiero que}} ab \mid \frac{b^2 + 4b + 5a}{ab} \\ \\ \underbrace{\frac{\text{por}}{\text{coprimitusibilidad}}} \left\{ \begin{array}{l} a \mid b^2 + 4b + 5a \\ b \mid b^2 + 4b + 5a \end{array} \right. \rightarrow \left\{ \begin{array}{l} a \mid b^2 + 4b \\ b \mid 5a \end{array} \right. \xrightarrow{\text{debe dividr a 5}} \left\{ \begin{array}{l} a \mid b \cdot (b+4) \\ b \mid 5 \end{array} \right. \\ \text{Seguro tengo que } b = \left\{ \pm 1, \pm 5 \right\} \rightarrow \text{pruebo valores de } b \text{ y veo que valor de } a \text{ queda:} \\ \left\{ \begin{array}{l} b = 1 \rightarrow (a \mid 5, 1) \rightarrow \{(\pm 1, 1).(\pm 5, 1)\} \\ b = -1 \rightarrow (a \mid -3, 1) \rightarrow \{(\pm 1, -1).(\pm 3, 1)\} \\ b = 5 \rightarrow (a \mid 45, 5) \xrightarrow[(a:b)=1]{\text{atención que}} \{(\pm 1, 5), (\pm 3, 5).(\pm 9, 5)\} \\ b = -5 \rightarrow (a \mid 5, -5) \xrightarrow[(a:b)=1]{\text{atención que}} \{(\pm 1, -5)\} \end{array} \right.$$

- ii) Hacer!
- iii) Hacer!

Primos y factorización:

25.	Sea p primo positivo.
i)	Probar que si $0 < k < p \mid \binom{p}{k}$.
ii)	Probar que si $a, b \in \mathbb{Z}$, entonces $(a+b)^p \equiv a^p + b^p$ (p) .
26.	Hacer!
27.	Hacer!
28.	Hacer!
29.	Hacer!
30.	Hacer!
50.	
31.	Hacer!

32.	Hacer!		
	Hacer!		
34.	Hacer!		
35.	Hacer!		
36.	Hacer!		
37.	Hacer!		
38.	Hacer!		
39.	Hacer!		

40. Hacer!

Ejercicios extras:

4400 ¿Cuántos divisores distintos tiene? ¿Cuánto vale la suma de sus divisores.

$$4400 \xrightarrow{\text{factorizo}} 4400 = 2^4 \cdot 5^2 \cdot 11 \xrightarrow{\text{los divisores } m \mid 4400} m = \pm 2^{\alpha} \cdot 2^{\beta} \cdot 2^{\gamma}, \text{ con } \left\{ \begin{array}{l} 0 \leq \alpha \leq 4 \\ 0 \leq \beta \leq 2 \\ 0 \leq \gamma \leq 1 \end{array} \right\}$$
Hay entonces un total de $5 \cdot 3 \cdot 2 = 30$ divisores positivos y 60 enteros.

Ahora busco la suma de esos divisores:
$$\sum_{i=0}^{4} \sum_{j=0}^{2} \sum_{k=0}^{1} 2^{i} \cdot 5^{j} \cdot 11^{k} = \left(\sum_{i=0}^{4} 2^{i}\right) \cdot \left(\sum_{j=0}^{2} 5^{j}\right) \cdot \left(\sum_{k=0}^{1} 11^{k}\right)$$

$$\xrightarrow{\text{geométricas}} \underbrace{\frac{2^{4+1}-1}{2-1}}_{31} \cdot \underbrace{\frac{5^{2+1}-1}{5-1}}_{31} \cdot \underbrace{\frac{11^{1+1}-1}{11-1}}_{12} = 11532.$$

- Hallar el menor $n \in \mathbb{N}$ tal que:
 - i) (n:2528) = 316
 - ii) n tiene exáctamente 48 divisores positivos
 - iii) 27 ∦ n

$$\begin{cases} \frac{\text{factorizo}}{2528} & 2528 = 2^5 \cdot 79 \quad \checkmark \\ \frac{\text{factorizo}}{316} & 316 = 2^2 \cdot 79 \quad \checkmark \\ \frac{\text{rescribo}}{316} & (n:2^5 \cdot 79) = 2^2 \cdot 79 \\ \frac{\text{quiero}}{\text{encontrar}} & n = 2^{\alpha_2} \cdot 3^{\alpha_3} \cdot 5^{\alpha_5} \cdot 7^{\alpha_7} \cdots 79^{\alpha_79} \cdots \\ \frac{\text{como}}{\text{encontrar}} & (n:2^5 \cdot 79) = 2^2 \cdot 79 \xrightarrow{\text{tengo}} \begin{cases} \alpha_2 = 2, & \text{dado que } 2^2 \cdot 79 \mid n. \text{ Recordar que busco el menor } n!. \\ \frac{\text{como}}{\text{que}} & \alpha_3 < 3 & \text{si no } 3^3 = 27 \mid n \end{cases} \\ \frac{16}{\text{la estrategia sigue con}}{\text{el primo más chico que haya}} \begin{cases} 48 = \underbrace{(\alpha_2 + 1) \cdot (\alpha_3 + 1) \cdots}_{2+1} \\ 48 = 3 \cdot (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \\ 16 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \\ 8 = \underbrace{(\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots}_{=2} \end{cases} \\ \frac{1}{\text{quiero el menor}} \text{El } n \text{ que cumple lo pedido sería } n = 2^2 \cdot 3^1 \cdot 5^1 \cdot 7^1 \cdot 70^1 \end{cases}$$

Sabiendo que (a:b) = 5. Probar que $(3ab:a^2+b^2) = 25$

$$\text{Coprimizar: } \left\{ \begin{array}{l} c = \frac{a}{5} \\ d = \frac{b}{5} \end{array} \right. \rightarrow (a:b) = 5 \cdot \underbrace{(c:d)}_{1} = 5$$

$$\rightarrow \left\{ \begin{array}{l} \frac{\text{según}}{\text{enunciado}} \ 25 = (3ab:a^2 + b^2) \xrightarrow{\text{reemplazo}} 25 = 25 \cdot \underbrace{(3cd:c^2 + d^2)}_{1} \end{array} \right.$$

$$\frac{\text{Voy a probar}}{\text{que}} \left(3cd:c^2 + d \right) = 1.$$

$$\underbrace{\frac{\text{Supongo que}}{\text{no lo fuera}}}_{\text{no lo fuera}} \exists p \rightarrow \left\{ \begin{array}{l} p \mid 3cd \rightarrow \\ \end{array} \right. \begin{cases} p \mid 3 \rightarrow p = 3 \xrightarrow{\text{tabla}}_{r_3(c^2 + d^2)} \\ \end{array} \right. \begin{cases} 0 & \text{si} \quad \underline{c, d \equiv 0 \ (3)}_{\text{noup!}(c:d) = 1} \\ \neq 0 & \text{si} \quad \text{otro caso} \\ p \mid c \rightarrow \\ \end{array} \\ \left\{ \begin{array}{l} c \text{como} \\ p \mid c \rightarrow \\ \end{array} \right. \begin{cases} \underbrace{como}_{p \mid c^2 + d^2} \\ p \mid d \rightarrow noup! idem \\ \end{array} \right.$$
 Si pingún prime a divide a $(3cd : c^2 + d^2) \Rightarrow (3cd : c^2 + d^2) = 1$

4.

- i) Calcular los posibles valores de: $(7^{n-1} + 5^{n+2} : 5 \cdot 7^n 5^{n+1})$.
- ii) Encontrar n tales que el mcd para ese n tome 3 valores distintos.

$$\begin{cases}
d \mid 7^{n-1} + 5^{n+2} \\
d \mid 5 \cdot 7^n - 5^{n+1}
\end{cases}
\to
\begin{cases}
d \mid \underbrace{7^{n-1} + 5^{n+2}}_{\stackrel{(5)}{=} 2^n} \\
d \mid 5 \cdot (7^n - 5^n)
\end{cases}
\xrightarrow{p \nmid d \land d \mid p \cdot k}
\begin{cases}
d \mid 7^{n-1} + 5^{n+2} \\
d \mid 7^n - 5^n
\end{cases}$$

$$\rightarrow \left\{ \begin{array}{ll} d \mid 176 \cdot 5^n & \xrightarrow{p \not\mid d \land d \mid p \cdot k} \\ d \mid 7^n - 5^n & \xrightarrow{\Rightarrow p \mid k} \end{array} \right. \left\{ \begin{array}{ll} d \mid 176 \\ d \mid 7^n - 5^n \end{array} \right. \rightarrow d = (176 : 7^n - 5^n) \quad \checkmark \right.$$

Busco independencia de n en algún lado del (a:v). St u=(1,v) d=(1,v) d=(1,v)

Puedo descartar a los múltiplos de 4 que no sean múltiplos de 8. $\rightarrow \mathcal{D}_{+}(d) = \{2, 8, 16, 22, 88, 176\}$ No lo terminé, no entiendo bien este paso y como descartar algún otro.

Estudiar los valores parar **todos** los $a \in \mathbb{Z}$ de $(a^3 + 1 : a^2 - a + 1)$.

Primero hay que notar que el lado $a^2 - a + 1$ es siempre impar ya que:

$$\begin{cases} (2k-1)^2 - (2k-1) + 1 \stackrel{(2)}{\equiv} (-1)^2 - 1 + 1 \stackrel{(2)}{\equiv} 1 \\ (2k)^2 - (2k) + 1 \stackrel{(2)}{\equiv} (0)^2 - 0 + 1 \stackrel{(2)}{\equiv} 1. \end{cases}$$
 Por lo tanto 2 no puede ser un divisor de ambas expresiones y si $2 \not\mid A \Rightarrow 2 \cdot k \not\mid A$ tampoco.

Se ve fácil contrarecíproco: $\underbrace{2k}_{par} \mid A \Rightarrow 2 \mid A$. Porque existe un k tal que $2 \cdot c \cdot k = A \Rightarrow 2 \cdot (c \cdot k) = A$.

Ahora cuentas para simplificar la expresión y encontrar número del lado derecho.

$$\begin{cases} d \mid a^3 + 1 \\ d \mid a^2 - a + 1 \end{cases} \to d \mid 30 \to \mathcal{D}_+(d) = \{1, 2, 3, 5, 6, 10, 15, 30\} \xrightarrow{\text{por lo de antes}} \mathcal{D}_+(d) = \{1, 3, 5, 15\}$$

Anora cuentas para simplificar la expresion y encontrar numero del lado derecho.
$$\begin{cases} d \mid a^3 + 1 \\ d \mid a^2 - a + 1 \end{cases} \rightarrow d \mid 30 \rightarrow \mathcal{D}_+(d) = \{1, 2, 3, 5, 6, 10, 15, 30\} \xrightarrow{\text{por lo de antes} \\ \text{no hay divisores pares}} \mathcal{D}_+(d) = \{1, 3, 5, 15\}$$

$$\xrightarrow{\text{hacer tabla de restos} \\ \text{empezar por los números chicos}} \begin{cases} r_3(a^3 + 1) = 0 & \text{si} \quad a \equiv 2 \ (3) \\ r_3(a^2 - a + 1) = 0 & \text{si} \quad a \equiv 2 \ (3) \end{cases} \rightarrow \begin{cases} r_5(a^3 + 1) \neq 0 \quad \forall a \in \mathbb{Z} \ \}.$$

$$\text{Luego si } 5 \not\mid (a^3 + 1 : a^2 - a + 1) \Rightarrow \underbrace{15}_{5 \cdot 3} \not\mid (a^3 + 1 : a^2 - a + 1) \xrightarrow{\text{se achica el conjunto de divisores}} \mathcal{D}_+(d) = \{1, 3\}$$

$$d = \int 3 \quad \text{si} \quad a \equiv 2 \ (3)$$

Luego si
$$5 \not\mid (a^3 + 1 : a^2 - a + 1) \Rightarrow \underbrace{15}_{5\cdot 3} \not\mid (a^3 + 1 : a^2 - a + 1) \xrightarrow{\text{se achica el} \atop \text{conjunto de divisores}} \mathcal{D}_+(d) = \{1, 3\}$$

$$d = \begin{cases} 3 & \text{si} \quad a \equiv 2 \ (3) \\ 1 & \text{si} \quad a \equiv 1 \lor 2 \ (3) \end{cases}$$

Sean $a, b \in \mathbb{Z}$ tal que (a : b) = 6. Hallar todos los d = (2a + b : 3a - 2b) y dar un ejemplo en cada caso.

Conviene coprimizar:
$$(a:b) = 6 \iff \begin{cases} a = 6A \\ b = 6B \end{cases}$$
 con $(A:B)^{*} = 1$

$$d = (2 \cdot 6A + 6B : 3 \cdot 6A - 2 \cdot 6B) = (6 \cdot (2 \cdot A + B) : 6 \cdot (3 \cdot A - 2 \cdot B)) = 6 \cdot \underbrace{(2A + B : 3A - 2B)}_{D}$$

$$\Rightarrow d^{*} = 6D \xrightarrow{\text{busco divisores}} \begin{cases} D \mid 2A + B \\ D \mid 3A - 2B \end{cases} \xrightarrow{\text{operaciones}} \begin{cases} D \mid 7B \\ D \mid 7A \end{cases} \Rightarrow D = (7A : 7B) = 7 \cdot (A : B)^{*} = 7$$
Por le tante $D \in \mathcal{D}$ (7) = \{1, 7\} pero ve quiere encentrar elemples de $a \neq b$:

$$\rightarrow d \stackrel{\star^2}{\longleftarrow} 6D \xrightarrow{\text{busco divisores}} \left\{ \begin{array}{c} D \mid 2A + B \\ D \mid 3A - 2B \end{array} \right. \xrightarrow{\text{operaciones}} \left\{ \begin{array}{c} D \mid 7B \\ D \mid 7A \end{array} \right. \Rightarrow D = (7A:7B) = 7 \cdot (A:B) \stackrel{D}{\longleftarrow} 7 \cdot (A:B) = 7 \cdot (A:B) \stackrel{D}{\longleftarrow} 7$$

Por lo tanto $D \in \mathcal{D}_+(7) = \{1, 7\}$, pero yo quiero encontrar ejemplos de a y

Por lo tanto
$$D \in \mathcal{D}_{+}(7) = \{1, 7\}$$
, pero yo quiero encontrar ejemplo
$$\begin{cases} Si: & A = 2 \to a = 12 \\ B = 3 \to b = 18 \end{cases}$$

$$(7:0) \Rightarrow D = 7 \to d = (42:0) = \underbrace{42}_{6 \cdot D}$$

$$\downarrow 0$$

$$d = 6 \cdot 1 = 6 \begin{cases} Si: & A = 0 \to a = 0 \\ B = 1 \to b = 6 \\ (1:-2) \Rightarrow D = 1 \to d = (6:-12) = \underbrace{6}_{6 \cdot D}$$

7. Sea $a \in \mathbb{Z}$ tal que $32a \equiv 17$ (9). Calcular $(a^3 + 4a + 1 : a^2 + 2)$

$$32a \equiv 17 \ (9) \rightarrow 5a \equiv 8 \ (9) \xrightarrow{\text{multiplico}} a \equiv 7 \ (9) \quad \checkmark$$

$$d = (a^3 + 4a + 1 : a^2 + 2) \xrightarrow{\text{Euclides}} \left\{ \begin{array}{c} a^3 + 4a + 1 \mid a^2 + 2 \\ -a^3 - 2a \mid a \end{array} \right\} \rightarrow d = (a^2 + 2 : 2a + 1) \quad \checkmark$$

$$\xrightarrow{\text{buscar}} \left\{ \begin{array}{c} d \mid a^2 + 2 \\ d \mid 2a + 1 \end{array} \right\} \xrightarrow{\text{Givisores}} \left\{ \begin{array}{c} d \mid -a + 4 \\ d \mid 2a + 1 \end{array} \right\} \xrightarrow{\text{Givisores}} \left\{ \begin{array}{c} d \mid -a + 4 \\ d \mid 2a + 1 \end{array} \right\} \xrightarrow{\text{Givisores}} \left\{ \begin{array}{c} d \mid -a + 4 \\ d \mid 9 \end{array} \right\}$$

$$\rightarrow d = (-a + 4 : 9) \xrightarrow{\text{divisores}} \left\{ 1, 3, 9 \right\} \quad \checkmark$$

Hago tabla de restos 9 y 3, para ver si las expresiones $(a^2 + 2 : 2a + 1)$ son divisibles por mis potenciales MCDs.

$r_9(a)$	0	1	2	3	4	5	6	7	8	$a \rightarrow a \equiv 4$ (9), valores de a candidatos para obtener MCD.	
$r_9(-a+4)$	4	3	2	1	0	-1	-2	-3	-4	$\rightarrow u \equiv 4$ (9), valores de <i>u</i> candidatos para obtener MCD.	
$r_3(a)$ 0 1 2 $\rightarrow a \equiv 1$ (3), valores de a candidatos para obtener MCD.											
$r_3(-a+4) \mid 2 \mid 0 \mid 2$ $\rightarrow u \equiv 1 \ (3)$, values de u candidatos para obtener MCD.											

La condición $a \equiv 7$ (9) no es compatible con el resultado de la tabla de r_9 , pero sí con r_3 . Notar que $a = 9k + 7 \stackrel{(3)}{\equiv} 1$.

$$a = 9k + 7 \stackrel{\text{(3)}}{\equiv} 1.$$
El MCD $(a^3 + 4a + 1 : a^2 + 2) = \begin{cases} 3 & \text{si } a \equiv 7 \text{ (9)} \\ 1 & \text{si } a \not\equiv 7 \text{ (9)} \end{cases}$