Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claim 1 (Currently Amended): A (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) of the formula:

wherein

Base is a purine-or-pyrimidine base:

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R³ and R² or R⁷ can also be linked with cyclic phosphate group.

 R^2 and R^2 are independently H, $C_{1:4}$ alkyl, $C_{1:4}$ alkenyl, $C_{1:4}$ alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO_2 , $C(O)O(C_{1:4}$ alkyl), $C(O)O(C_{1:4}$

alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, SO(C1.4 alkv1), SO(C1.4 alkvnvl), SO(C1.4 alkenvl), SO(C1.4 acvl), SO₂(C_{1,4} alkyl), SO₂(C_{1,4} alkynyl), SO₂(C_{1,4} alkenyl), O₃S(C_{1,5} acyl), O₃S(C_{1,4} alkyl), O₃S(C_{1,4} alkenyl), NH₂, NH(C_{1,4} alkyl), NH(C_{1,4} alkenyl), NH(C1-4 alkynyl), NH(C3-4 acyl), N(C1-4 alkyl)2, N(C1-18 acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optimally optionally substituted by Na. CN, one to three halogen (Cl. Br. F. 1), NO₂ C(O)O(C_{1,4} alkyl), C(O)O(C₁ 4 alkyl), C(O)O(C),4 alkynyl), C(O)O(C),4 alkenyl), O(C),4 acyl), O(C),4 alkyl), O(C1.4 alkenyl), S(C1.4 acyl), S(C1.4 alkyl), S(C1.4 alkynyl), S(C1.4 alkenyl), SO(C1-4 acvi), SO(C1-4 alkvi), SO(C1-4 alkvnyl), SO(C1-4 alkenyl), SO₂(C₁₋₄ acyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenvl), O(S(C), acvl), O(S(C), alkvl), O(S(C), alkenvl), NHo, NH(C), a alkyl), NH(C1-4 alkenyl), NH(C1-4 alkynyl), NH(C1-4 acyl), N(C1-4 alkyl)2. N(C₁₋₄ acv1)₂, OR⁷; R² and R² can be linked together to form a vinyl ontionally substituted by one or two of N3, CN, Cl, Br, F. I, NO2, and R6 is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH3, OCHs, OCHsCHs, hydroxy methyl (CHsOH), fluoromethyl (CHsF), azido (Na), CHCN, CH6Na, CH6NH6, CH5NHCHa, CH6N(CH6)s, alkyne (optionally substituted), or fluoro:

or its pharmaceutically acceptable salt or prodrug thereof.

Claim 2 (Currently Amended): The (2/R)-2'-deoxy-2'-fluoro-2'-C'-methyl nucleoside (β-D or β-L) of claim 1 or its pharmaceutically acceptable salt or produig thereof, wherein the Base is represented by the following formula selected from the group consisting of:

wherein

Y is Nor CH.

R³[[,]] and R⁴ and R⁸-are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆, such as CH=CH₂r, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆, such as CH=CH₂r, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆, such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆, such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆, such as CH₂OH-and-CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, lower hydroxyalkyl, CO₂H, CO₂R', CONH₂, CONH

R' is an optionally substituted alkyl of C₁-C_{12c} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl or, in the case of NHR' and COR', R' can be an amino acid residue.

Claim 3 (Currently Amended): The (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) of claim 1 or its pharmaceutically acceptable salt or prodrug thereof,

wherein the Base is represented by the following formula selected from the group consisting of (a) or (b):

Application No 10/828,753 Preliminary Amendment

Response to Restriction Requirement

and wherein R^1 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH_2 or OH___? and R^4 is NH_2 -

Claim 4 (Currently Amended): A (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L₃ of the formula.

wherein

the Base is represented by the following formula selected from the group consisting of

Y is Nor CH:

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-

phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein \mathbb{R}^1 is H or phosphate; \mathbb{R}^2 is H or phosphate, \mathbb{R}^1 and \mathbb{R}^2 or \mathbb{R}^7 can also be linked with cyclic phosphate group;

R2 and R2 are independently H. Cl., alkyl, Cl., alkenyl, Cl., alkynyl, vinyl, Na. CN, Cl, Br, F, L NO₂ C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), $C(O)O(C_{1:4}$ alkenyl), $O(C_{1:4}$ acyl), $O(C_{1:4}$ alkyl), $O(C_{1:4}$ alkenyl), $S(C_{1,4} \text{ acv})$, $S(C_{1,4} \text{ alkv})$, $S(C_{1,4} \text{ alkv})$, $S(C_{1,4} \text{ alkenv})$, $S(C_{1,4} \text{ acv})$, SO(C3.4 alkyl), SO(C3.4 alkynyl), SO(C3.4 alkenyl), SO₂(C3.4 acyl), SO₂(C_{1,4} alkyl), SO₂(C_{1,4} alkynyl), SO₂(C_{1,4} alkenyl), O₃S(C_{1,4} acyl), O3S(C1.4 alkyl), O3S(C1.4 alkenyl), NH2, NH(C1.4 alkyl), NH(C1.4 alkenyl), NH(C1.4 alkynyl), NH(C1.4 acyl), N(C1.4 alkyl), N(C1.18 acyl), wherein alkyl, alkynyl, alkenyl and vinyl are optimally optionally substituted by Na. CN, one to three halogen (Cl, Br, F, I), NO2 C(O)O(C1.4 alkyl), C(O)O(C1. 4 alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkenyl), O(C₁₋₄ acyl), O(C₁₋₄ alkyl), O(C1,4 alkenyl), S(C1,4 acyl), S(C1,4 alkyl), S(C1,4 alkynyl), S(C1,4 alkenyl), SO(C1.4 acvi), SO(C1.4 alkvi), SO(C1.4 alkvnvl), SO(C1.4 alkenyl), SO₂(C₁₋₄ acyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), O₃S(C₁₋₄ acyl), O₃S(C₁₋₄ alkyl), O₃S(C₁₋₄ alkenyl), NH₂, NH(C₁₋₄ alkyl), NH(C1-4 alkenyl), NH(C1-4 alkynyl), NH(C1-4 acyl), N(C1-4 alkyl)2, N(C₁₋₄ acv1)₂, OR⁷, R² and R² can be linked together to form a vinvl optionally substituted by one or two of N3, CN, Cl, Br, F, I, NO5.

6

R³[[,]] and R⁴ and R⁶ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH2, NHR', NR'2, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆, such as CF₃-and CH₂CH₂E₇-lower alkenyl of C₂-C₆, such as CH=CHC₁, chalogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆, such as CH=CHCl, CH=CHBr and CH=CHI₇-lower alkynyl of C₂-C₆, such as C=CH₂-halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH₁-halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, lower hydroxyalkyl, CO₂H, CO₂H', CONH₂, CONHR', CONR'2, CH=CHCO₂H, CH=CHCO₂H', CH=CHCO₂R';

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly-when the alkyl is an amino acid-residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl.or. in the case of NHR' and COR', R' can be an amino acid residue;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof.

Claim 5 (Currently Amended): The (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) of claim 4 or its pharmaceutically acceptable salt or prodrug thereof, wherein

the Base is represented by the following formula

and R³ is H, R² is OH, R² is H, R³ is H, R⁴ is NH₂ or OH, and R⁶ is H.

Claim 6 (Currently Amended): A (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

wherein the Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group.

Claim 7 (Currently Amended): The (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) of claim 6 or its pharmaceutically acceptable salt or prodrug thereof,

wherein the Base is represented by the following formula selected from the group consisting of-

Y is Nor CH:

R³[[,]] and R⁴ and R⁵-are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆, such as CH=CH₂-halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆, such as CH=CH₂-halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆, such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆, such as CH=CH₂-halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, lower hydroxyalkyl, CO₂H, CO₂R', CONH₂, CONH₂, CONH₂, CONH₃, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl-is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl or, in the case of NHR' and COR', R' can be an amino acid residue.

Claim 8 (Currently Amended). The (2'R)-2'-deoxy-2'-fluoro-2'-C'-methyl nucleoside (β-D) of claim 6 or its pharmaceutically acceptable salt or prodrug thereof.

wherein the Base is represented by the following formula selected from the group consisting of (a) or (b):

and wherein R^1 and R^7 are $H,\,R^3$ is $H,\,$ and R^4 is NH_2 or $OH_{\underline{\ \ \, }}$ and R^6 is NH_2 .

Claim 9 (Currently Amended): A (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) of the formula.

wherein the Base is

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), $C(W)_2$, wherein W is F, Cl, Br, or I;

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and

benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein \mathbf{R}^1 is H or phosphate; \mathbf{R}^2 is H or phosphate; \mathbf{R}^3 and \mathbf{R}^2 or \mathbf{R}^7 can also be linked with cyclic phosphate group,

R2 and R2 are independently H, C1.4 alkyl, C1.4 alkenyl, C1.4 alkynyl, vinyl, N3. CN, Cl, Br, F, L NO2 C(O)O(C1.4 alkv1), C(O)O(C1.4 alkv1), C(O)O(C1.4 alkynyl), C(O)O(C1.4 alkenyl), O(C1.4 acvl), O(C1.4 alkyl), O(C1.4 alkenyl), $S(C_{1:4} \text{ acyl})$, $S(C_{1:4} \text{ alkyl})$, $S(C_{1:4} \text{ alkynyl})$, $S(C_{1:4} \text{ alkenyl})$, $SO(C_{1:4} \text{ acyl})$, SO(Cs.a alkyl), SO(Cs.a alkynyl), SO(Cs.a alkenyl), SO(Cs.a acyl), SO₂(C_{1,4} alkyl), SO₂(C_{1,4} alkynyl), SO₂(C_{1,4} alkenyl), O₃S(C_{1,4} acyl), OsS(Cs, alkyl), OsS(Cs, alkenyl), NHs, NH(Cs, alkyl), NH(Cs, alkenyl), NH(C1-4 alkynyl), NH(C1-4 acyl), N(C1-4 alkyl)2, N(C1-18 acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optimally optionally substituted by N3. CN, one to three halogen (CL Br. F. I), NO> C(O)O(C a alkyl), C(O)O(C a a alkyl), C(O)O(C), alkynyl), C(O)O(C), alkenyl), O(C), acyl), O(C), alkyl), O(C1-4 alkenyl), S(C1-4 acyl), S(C1-4 alkyl), S(C1-4 alkynyl), S(C1-4 alkenyl), SO(C1-4 acyl), SO(C1-4 alkyl), SO(C1-4 alkynyl), SO(C1-4 alkenyl), SO₂(C₁₋₄ acyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), O₃S(C₁₋₄ acyl), O₃S(C₁₋₄ alkyl), O₃S(C₁₋₄ alkenyl), NH₂, NH(C₁₋₄ alkyl), NH(Cs., alkenyl), NH(Cs., alkynyl), NH(Cs., acyl), N(Cs., alkyl), N(C_{1,d} acv1)₂, OR⁷; R² and R^T can be linked together to form a vinvl optionally substituted by one or two of N3, CN, Cl, Br, F, I, NO2;

R³ and R⁴ are independently H, halogen including F, CI, Br, I, OH, OR', SH, SR',
NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, CI, Br, I) lower
alkyl of C₁-C₆, such as CF₃-and CH₂CH₂F₇-lower alkenyl of C₂-C₆, such as
CH=CH₂-halogenated (F, CI, Br, I) lower alkenyl of C₂-C₆, such as
CH=CHCI₂-CH=CHB₇-and CH=CHI₂-lower alkynyl of C₂-C₆, such as

11

GmCH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₃H, CH=CHCO₃R'; and

R' is an optionally substituted alkyl of C₁-C_{12a} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl or, in the case of NHR' and COR, R' can be an amino acid residue;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₃, CH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro.

or its pharmaceutically acceptable salt or prodrug thereof.

Claim 10 (Currently Amended): A (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) of the formula

wherein the Base is

R³ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-

phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein \mathbb{R}^1 is H or phosphate; \mathbb{R}^2 is H or phosphate; \mathbb{R}^1 and \mathbb{R}^2 or \mathbb{R}^7 can also be linked with cyclic phosphate group;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as -CH₂-CH₂-H₂-H₂-plower alkenyl of C₂-C₆ such as -CH=-CH₂-halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as -CH=-CHC₁-CH=-CHBr-and-CH=-CHL₂-lower alkynyl of C₂-C₆ such as -CH₂-CH₂-halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as -CH₂OH and -CH₂-CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, lower hydroxyalkyl, CO₂H, CO₂R', CONH₂, CONH₂, CONH₃, CONR'₂, CH=-CHCO₂H, CH=-CHCO₂R';

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid-residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl or, in the case of NHR' and COR', R' can be an amino acid residue;

or its pharmaceutically acceptable salt or prodrug thereof.

Claim 11 (Original): A (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta - D)$ or its pharmaceutically acceptable salt or prodrug thereof of the formula:

Claims 12-15 (Canceled).

Claim 16 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 1 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier, a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl-nucleoside (β-D-or β-L) of the formula:

subsenio

Base is a purine or pyrimidine base:

X is O, S, CH₂, Se, NH, N-alkyl, CHW-(R, S, or racemic), C(W)₂, wherein W is F; Cl. Br, or I;

R* and R* are independently-H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate produg. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid.

including a phospholipid, an Lor-D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group-which when administered in vivo is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R³ and R² or R⁷ can also be linked with cyclic phosphate group;

R3 and R3 are independently H. C., alkyl. C., alkenyl. C., alkynyl. vinyl. Na-CN_CL Br_F_L NOs C(O)O(C__alkvl) C(O)O(C__alkvl) C(O)O(C__ alkynyl), C(O)O(C1,4 alkenyl), O(C3,4 acyl), O(C1,4 alkyl), O(C3,4 alkenyl), S(C__aevi), S(C__alkvi), S(C__alkvnvi), S(C__alkenvi), SO(C__aevi), SO(C1.4 alkvl). SO(C1.4 alkvnvl). SO(C1.4 alkenvl). SO₂(C1.4 acvl). SO/(Ciralkyl) SO/(Ciralkynyl) SO/(Ciralkenyl) O/S(Ciracyl) OaS(Caralkyl), OaS(Caralkenyl), NHz, NH(Caralkyl), NH(Caralkenyl), NH(CL alkynyl), NH(CL acyl), N(CL alkyl), N(CL acyl), wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by Na, CN, one to three balooen (Cl. Br. F. D. NO, C(O)O(C, alkyl), C(O)O(C, alkyl) C(O)O(C, alkynyl), C(O)O(C, alkenyl), O(C, acvl), O(C, alkyl), O(C__alkenvl), S(C__acvl), S(C__alkvl), S(C__alkvnvl), S(C__a alkenvi), SO(CL-acvi), SO(CL-alkvi), SO(CL-alkvnvi), SO(CLalkenyl), SO₂(C_{1.4}-acyl), SO₂(C_{1.4}-alkyl), SO₂(C_{1.4}-alkynyl), SO₂(C_{1.4} alkenyl) O.S(C., acvl) O.S(C., alkvl) O.S(C., alkenyl) NH, NH(C., alkyl) NH(C, ralkonyl) NH(C, ralkynyl) NH(C, racyl) N(C, ralkyl)-N(C, acv1): OR2 R3 and R3 can be linked together to form a vinvl optionally substituted by one or two of Na. CN, Cl. Br. F. L NO2:

R^c is an optionally-substituted alkyl (including lower alkyl), eyano (CN), CH₃; OCH₃, OCH₂CH₄, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₂), CHCN, CH₂N₁, CH₂NH₂, CH₂NHCH₄, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro.

or its pharmaceutically acceptable salt or prodrug thereof, a pharmaceutically acceptable earner.

Claim 17 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 2 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

The composition of claim 16, wherein Base is selected from the group consisting of

wherein

Y is Nor CH.

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NRR', hower alkyl of C₄, C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁, C₆, such as CF₂ and CH₂CH₂F. lower alkenyl of C₂, C₆ such as CH=CHCI, chalogenated (F, Cl, Br, I) lower alkenyl of C₂, C₆, such as CH=CHCI, CH=CHBr and CH=CHI, lower alkynyl of C₂, C₆, such as CHCH, halogenated (F, Cl, Br, I) lower alkynyl of C₂, C₆, lower alkoxy of C₄, C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄, C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂R, CH=CHCO₂R', and,

R² is an optionally-substituted alkyl-of C₁-C₄₂ (particularly-when the alkyl-is an amino acid residue), cycloalkyl, optionally-substituted alkynyl-of C₂-C₆₂ optionally-substituted lower alkenyl of C₂-C₆₂, or optionally-substituted acyl-

Claim 18 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 3 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

The composition of claim 16, wherein

Base is selected from the group consisting of (a) or (b):

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

and wherein R^4 is H, R^2 is OH, R^2 is H, R^A is H, and R^4 is NH2 or OH, and R^8 is NH2:

Claim 19 (Currently Amended). A pharmaceutical composition comprising the nucleoside of claim 4 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier...a(2/R)-2'-deoxy-2'-fluoro-2'-C'-methyl nucleoside (β-D-or β-L) of the formula:

wherein

Base is selected from the group consisting of

Y is N or CH.

R* and R* are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in viru is capable of providing a compound wherein R* is H or phosphate; R* is H or phosphate; R* and R* or R* can also be linked with cyclic phosphate group;

Rand Rand independently H. C. ralkyl, C. ralkenyl, C. ralkynyl, vinyl, No. CN_CL Br_E_LNO_C(O)O(C__alkyl)_C(O)O(C__alkyl)_C(O)O(C_a alkynyl) C(O)O(C, alkenyl) O(C, acyl) O(C, alkyl) O(C, alkenyl) S(C__acvl)_S(C__alkvl)_S(C__alkvnvl)_S(C__alkenvl)_SO(C__acvl)_ SO(C__alkvh, SO(C__alkvnvh, SO(C_aalkenvh, SO₂(C__aevh), SO₂(C₁, alkvl), SO₂(C₁, alkvnvl), SO₂(C₁, alkenvl), O₂S(C₁, acvl), $O_2S(C_{1-4}alkyl)$, $O_2S(C_{1-4}alkenyl)$, $NH_{2r}NH(C_{1-4}alkyl)$, $NH(C_{1-4}alkenyl)$. NH(C_ alkynyl) NH(C_ acyl) N(C_ alkyl) N(C_ acyl) wherein alkyl alkynyl alkenyl and vinyl are optinally substituted by N2 CN one to three halogen (Cl. Br. F. D. NO2 C(O)O(Cs. alkvl). C(O)O(Cs. alkvl). $C(O)O(C_{1,a}alkvnvl)$, $C(O)O(C_{1,a}alkenvl)$, $O(C_{1,a}aevl)$, $O(C_{1,a}alkvl)$. $O(C_{\downarrow\downarrow}$ alkenyl), $S(C_{\downarrow\downarrow}$ acyl), $S(C_{\downarrow\downarrow}$ alkyl), $S(C_{\downarrow\downarrow}$ alkynyl), $S(C_{\downarrow\downarrow}$ alkenyl), SO(C14 acyl), SO(C14 alkyl), SO(C14 alkynyl), SO(C14 alkenyl) SO-(C, acvl) SO-(C, alkyl) SO-(C, alkynyl) SO-(C, a alkenyl), O.S(C., acvl), O.S(C., alkyl), O.S(C., alkenyl), NH., NH(C., alkyl), NH(C_aalkenyl), NH(C_aalkynyl), NH(C_aacyl), N(C_aalkyl);

N(C_{1-r}acyl)₃, OR²; R² and R³, can be linked together to form a vinyl optionally substituted by one or two of N₄, CN, CI, Br. F, I, NO₂;

- R³, R⁴ and R⁵ are independently H, halogen including F, Cl., Br, I, OH, OR', SH, SR', NH₂, NHR', NR-2, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkony of C₁-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkony of C₁-C₆, CO₂H, CO₂H, CO₂H, CONH₂, CONH₂, CONH₃, CONR'₂.
 - R² is an optionally substituted alkyl of C₁-C₄₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆₅, optionally substituted lower alkenyl of C₂-C₆₅, or optionally substituted acyl;
- R⁶ is an optionally substituted alkyl-(including lower alkyl), cyano (CN), CH₃;

 OCH₂, OCH₂CH₄, hydroxy methyl (CH₂OH), fluoremethyl (CH₂F), azido
 (N₂), CHCN, CH₂N₃, CH₂NH₄, CH₃NHCH₄, CH₂N(CH₃)₂, alkyne
 (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or produce thereof in a pharmaceutically acceptable earner.

Claim 20 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 5 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

The composition of claim 19, wherein

Pagais

and R1 is H. R2 is OH. R2 is H. R3 is H. R4 is NH, or OH, and R5 is H.

Claim 21 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 6 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

A pharmaceutical composition comprising a (2/R)-2' deoxy-2'-fluoro-2'-(`-methyl nucleoside (β-D or β-L) or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier, of the structure:

wherein Base is a purine or pyrimidine base;

X is O. S. CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F₄ Cl. Br, or L and,

R³-and R²-are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally-substituted phenyl and lower acyl, alkyl, including lower alkyl; O-substituted carboxyalkylamino or its peptide derivatives; sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide.

a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ or R² is independently H or phosphate; R¹ and R² can also be linked with evelic phosphate group.

Claim 22 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 7 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

The composition of claim 21, wherein

Base is selected from the group consisting of:

Y is N or CH:

R³, R⁴ and R⁵ are independently H, halogen including F, Cl., Br., I, OH, OR.', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₄-C₆, halogenated (F, Cl, Br., I) lower alkyl of C₁-C₆ such as CH=CH₂, halogenated (F, Cl, Br., I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr-and CH=CHI, lower alkynyl of C₂-C₆, such as C=CH, halogenated (F, Cl, Br., I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br., I) lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br., I) lower alkoxy of C₄-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₃H, CH=CHCO₃R', and

R' is an optionally substituted alkyl of C₄-C₄₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆₅

optionally substituted lower-alkenyl of $C_2\text{-}C_{Ac}$ or optionally substituted acvl-

Claim 23 (Currently Amended). A pharmaceutical composition comprising the nucleoside of claim 8 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

The composition of claim 21, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^4 and R^2 are H_c R^3 is H_c and R^4 is NH2 or OH, and R^5 is NH2.

Claim 24 (Currently Amended): <u>A pharmaceutical composition comprising the</u> nucleoside of claim 9 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

A pharmaceutical composition comprising a (2/R)-2'-deoxy-2'-fluoro-2'-C-methylnucleoside (β-D or β-L) of the formula:

wherein

Base is

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F₁ Cl. Be-or-k

R³-and-R²-are independently-H₂-phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phonyl-and-lower-acyl, alkyl, including lower-alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phonyl group is optionally substituted, a lipid, including a phospholipid, an t-or-D-amino acid (or racemic mixture), a earbohydrate, a peptide, a cholesterol, or other-pharmaceutically acceptable leaving group-which when administered in vivo is capable of providing a compound wherein R³ is H or phosphate; R² is H or phosphate, R³ and R³ or R² can also be linked with cyclic phosphate group.

 $R^{2} \text{ and } R^{2} \text{ are independently H. } C_{1,-1} \text{ alkyl., } C_{1,+2} \text{ alkenyl., } C_{1,+2} \text{ alkynyl., } \text{ vinyl., } N_{2,-1} \text{ constitution } N_{2,-1} \text{ constitution$

 $O(C_{1-\epsilon}\text{alkenyl}), S(C_{1-\epsilon}\text{acyl}), S(C_{1-\epsilon}\text{alkyl}), S(C_{1-\epsilon}\text{alkynyl}), S(C_{1-\epsilon}\text{alkynyl}), S(C_{1-\epsilon}\text{alkynyl}), S(C_{1-\epsilon}\text{alkynyl}), SO(C_{1-\epsilon}\text{alkynyl}), SO(C_{1-\epsilon}\text{alkynyl}), SO_2(C_{1-\epsilon}\text{alkynyl}), SO_2(C_{1-\epsilon}\text{alkynyl}),$

- R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR, SH, SR, NH₂, NHR; NR'₂, lower alkyl of C₃, C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁, C₆ such as CH₂CH₃F, lower alkenyl of C₂, C₆ such as CH=CHCl₃, halogenated (F, Cl, Br, I) lower alkenyl of C₂, C₆ such as CH=CHCl₃, CH=CHBr and CH=CHL₁ lower alkynyl of C₂, C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂, C₆, lower alkony of C₄, C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkony of C₄, C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkony of C₄, C₆, CO₂H, CO₂R', CONH₂, CONR'₂, CONR'₂, CH=CHCO₂H, CH=CHCO₃R'.
- R' is an optionally substituted alkyl of C₁-C₂₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆₅ optionally-substituted lower alkenyl of C₂-C₆₅ or optionally substituted acyl; and
- R⁶ is an optionally-substituted alkyl-(including-lower-alkyl-), eyano-(EN), CH₂; OCH₂CH₄, hydroxy-methyl-(GH₂OH), fluoromethyl-(CH₂F), azido (N₂), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH3)₂₀ alkyne (optionally-substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable earrier.

24

Claim 25 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 10 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

A pharmaceutical composition comprising a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (B-D or B-L) of the formula:

wherein

Base is

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower-acyl, alkyl, including lower-alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ or R² is independently H or phosphate; R¹ and R² can also be linked with cyclic phosphate group;

 R^3 and R^4 are independently-H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C_4 - C_6 , halogenated (F, Cl, Br, I) lower

alkyl-of C_3 - C_6 -such as CF_2 and CH_2 CH $_2$ F, lower alkenyl-of C_2 - C_6 such as CH= CH_2 -halogenated (F, Cl, Br, I) lower alkenyl-of C_2 - C_6 such as CH=CHCl, CH=CHBF and CH=CHI, lower alkynyl-of C_2 - C_6 -such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl-of C_2 - C_6 -lower alkoxy-of C_4 - C_6 -such as CH_2OH and CH_2OH , halogenated (F, Cl, Br, I) lower alkoxy-of C_4 - C_6 - C_6 - C_0 - C_6

R2 is an optionally-substituted alkyl-of C₄-C₄₂ (particularly-when the alkyl-is an amino acid-residue), cycloalkyl, optionally-substituted alkynyl-of C₂-C₆₅ optionally-substituted lower alkenyl-of C₂-C₆₅ or optionally-substituted acyl-

or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable

Claim 26 (Currently Amended): A pharmaceutical composition comprising the nucleoside of claim 11 or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable carrier.

A pharmaceutical composition comprising a (2/R)-2'-deoxy-2'-fluoro-2'-C'-methyl nucleoside $(\beta$ -D) or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier of the formula:

Claims 27-30 (Canceled).

Claim 31 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 1 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

a (21/6)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (B-D-or-B-L) of the formula:

wherein

Base is a purine or pyrimidine base:

X is O. S. CH₂. Se, NH, N-alkyl, CHW (R, S. or racemie), C(W)₂, wherein W is F, Cl. Br, or I;

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally-substituted phenyl-and-lower-acyl, alkyl, including lower-alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl-sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R³ is H-or phosphate; R³ is H-or phosphate; R³ is H-or phosphate; R³ and R²-or R²-can also be linked with cyclic-phosphate group;

> R2 and R2 are independently H, C1-ralkyl, C1-ralkenyl, C1-ralkynyl, vinyl, N2-CN. Cl. Br. F. I. NO. C(O)O(C, alkyl), C alkynyl): C(O)O(C__alkenyl): O(C__acvl): O(C__alkyl): O(C__alkenyl): S(CL, acvi), S(CL, aikvi), S(CL, aikvnvl), S(CL, aikenvl), SO(CL, acvi), SO(C_alkyl)-SO(C_alkynyl)-SO(C_alkenyl)-SO(C_alkenyl) SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), O₄S(C₁₋₄ acyl), OaS(Caralkyl) OaS(Caralkenyl) NHz NH(Caralkyl) NH(Caralkenyl) NH(C__alkynyl)_NH(C__acyl)_N(C__alkyl)_N(C__acyl)_ wherein alkyl, alkynyl, alkenyl and vinyl are optimally substituted by N., CN, one to three halogen (Cl. Br. F. I). NO2 C(O)O(C, alkyl), C(O)O(C, alkyl), C(O)O(C3...alkynyl), C(O)O(C4...alkenyl), O(C4.ancyl), O(C3...alkyl), O(C_ alkenyl) S(C_ acyl) S(C_ alkyl) S(C_ alkynyl) S(C_ alkenyl), SO(CL, acvl), SO(CL, alkvl), SO(CL, alkvnyl), SO(CL, alkenyl); SO₂(C_{Ld} acyl); SO₂(C_{Ld} alkyl); SO₂(C_{Ld} alkynyl); SO₂(C_{Ld} alkenvi), OaS(Cadacvi), OaS(Cadalkvi), OaS(Cadalkenvi), NHa, NH(Cad alkel) NHC, alkerel) NHC, alkerel) NHC, acel) NC, alkel)-N(CL, acvi). OR2-R2 and R2 can be linked together to form a vinvi optionally substituted by one or two of Na CN, Cl. Br. F. L. NO2:

> R⁶-is an optionally substituted alkyl-(including-lower alkyl-), cyano (CN), CH₂; OCH₂, OCH₂CH₃, hydroxy-methyl-(CH₂OH), fluoromethyl-(CH₂F), azido (N₈), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₄, CH₂N(CH₄)₃, alkyne (optionally substituted), or fluoro;

or its pharmaceutically-acceptable salt or produig thereof, optionally in a pharmaceutically acceptable carrier.

Claim 32 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 2 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim-31:

wherein Base is selected from the group consisting of

Vis Nor CH.

R³, R⁴ and R⁵ are independently H₁ halogen including F, Cl., Br, L, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆-halogenated (F, Cl, Br, 1) lower alkyl of C₁-C₆-such as CF₂ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CHC₁, chalogenated (F, Cl, Br, 1) lower alkenyl of C₂-C₆ such as CH=CHC₁, CH=CHBr and CH=CHI₁, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, 1) lower alkynyl of C₂-C₆ lower alkoxy of C₃-C₆-such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, 1) lower alkoxy of C₁-C₆, CO₂H, CO₂H, CO₃H', CONH₂, CONH₂, CONH₃, CONH₃

R' is an optionally-substituted alkyl of C₁-C₁₂ (particularly-when the alkyl is an amino acid residue), cycloalkyl, optionally-substituted alkynyl of C₂-C₆₅, optionally-substituted lower-alkenyl of C₂-C₆₅, or optionally-substituted acyl.

29

Claim 33 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 3 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 31, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^4 is H, R^2 is OH, R^3 is H, R^3 is H, and R^3 is NH₂ or OH, and R^4 is NH₂.

Claim 34 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 4 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier_a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl-nucleoside (B-D-or B-L) of the formula:

wherein

Base is selected from the group consisting of

Vis Nor CH

R² and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in two is capable of providing a compound wherein R¹ is H or phosphate, R² is H or phosphate; R³ and R³ or R² can also be linked with cyclic phosphate group.

$$\begin{split} R^2 \text{-and } R^2 \text{-are independently H, } C_{1,4} \text{-alkyl}, C_{1,4} \text{-alkynyl, } \text{-cinyl, } N_{3c} \\ & \in \mathbb{N}, Cl, Br, F, I, NO_2, C(O)O(C_{1,4} \text{-alkyl}), C(O)O(C_{1,4} \text{-alkyl}), C(O)O(C_{1,4} \text{-alkyl}), C(O)O(C_{1,4} \text{-alkyl}), O(C_{1,4} \text{-alkyl}), O(C_{1,4} \text{-alkyl}), O(C_{1,4} \text{-alkyl}), O(C_{1,4} \text{-alkyl}), O(C_{1,4} \text{-alkyl}), SO(C_{1,4} \text{-alkyl}), SO(C_{1,4} \text{-alkyl}), SO(C_{1,4} \text{-alkyl}), SO(C_{1,4} \text{-alkyl}), SO_2(C_{1,4} \text{-alkyl}), S$$

$$\begin{split} &C(O)O(C_{1\leftarrow}alkynyl),\ C(O)O(C_{1\leftarrow}alkenyl),\ O(C_{1\leftarrow}alkyl),\ O(C_{1\leftarrow}alkyl),\ C(C_{1\leftarrow}alkyl),\ S(C_{1\leftarrow}alkyl),\ S(C_{1\leftarrow}alkyl),\ S(C_{1\leftarrow}alkyl),\ S(C_{1\leftarrow}alkynyl),\ S(C_{1\leftarrow}alky$$

- R³, R⁴ and R⁵ are independently Hi, halogen including F, Ci., Br, I, OH, OR., SH, SR., NH₂, NH₂, NH₂, lower alkyl of C₁, C₆, halogenated (F, Cl., Br, I) lower alkyl of C₂-C₆, such as CF₂ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆, such as C=CH, halogenated (F, Cl., Br, I) lower alkynyl of C₂-C₆, such as C=CH, halogenated (F, Cl., Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl., Br, I) lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl., Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂R., CONH₂, CONHR., CONH₂, CONHR., CONH₂, CONHR.
- R^* is an optionally substituted alkyl of $C_1 \cdot C_{12}$ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of $C_2 \cdot C_{67}$ optionally substituted lower alkenyl of $C_2 \cdot C_{67}$ or optionally substituted acyl.
- R⁶-is-an optionally-substituted alkyl-(including-lower-alkyl), cyano (CN), CH_{2c}

 OCH₂, OCH₃CH_{3c}-hydroxy-methyl-(CH₂OH), fluoromethyl-(CH₂F), azido
 (N₂), CHCN, CH₂N₃, CH₂NH₄, CH₃NHCH₃, CH₂N(CH₃)₃, alkyne
 (optionally-substituted), or fluoro:

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

32

Claim 35 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 5 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim-34, wherein

Base is

and R' is H. R' is OH. R" is H. R' is H. R' is NH2 or OH, and R' is H.

Claim 36 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 6 or its pharmaceutically acceptable salt or produig optionally in a pharmaceutically acceptable carrier.

a (2/l)-2'-deoxy-2'-fluoro-2'-C-methyl-nucleoside $(\beta$ -D-or β -L) or its pharmaceutically acceptable salt-or prodrug thereof of the structure:

wherein Base is a purine or pyrimidine base:

X is O. S. CH₂, So. NH. N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl. Br. or L and

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivu is capable of providing a compound wherein R⁴ or R⁵ is independently H or phosphate, R⁵ and R² can also be linked with evelic phosphate group;

optionally, in a pharmaceutically acceptable carrier,

Claim 37 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 7 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 36 wherein

Base is selected from the group consisting of

Yis Nor CH

R³ - R⁴ and R⁵ are independently H, halogen including F, Cl. Br, I, OH, OR, SH, SR, NH₄, NHR, NR'₂, lower alkyl of C₂-C₆, halogenated (F, Cl. Br, I)

lower alkyl-of C₄-C₆-such as CF₃ and CH₂CH₂F. Jower alkenyl-of C₂-C₆-such as CH=CHC₃, halogenated (F, CI, Br, I) lower alkenyl-of C₂-C₆-such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl-of C₂-C₆-such as C=CH₃, halogenated (F, CI, Br, I) lower alkynyl-of C₂-C₆, lower alkoxy of C₄-C₆-such as CH₂OH and CH₂CH₂OH, halogenated (F, CI, Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR-₂, CH=CHCO₂H, CH=CHCO₂R', and,

R² is an optionally-substituted alkyl of C₄. C₄₂ (particularly-when the alkyl is an amino acid-residue), cycloalkyl, optionally-substituted alkynyl of C₂. C₆; optionally-substituted lower-alkenyl of C₂. C₆; or optionally substituted acyl.

Claim 38 (Withdrawn; Currently Amended): <u>A method for the treatment or prophylaxis</u> of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 8 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim-36, wherein

Base is selected from the group consisting of (a) or (b):

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

and wherein \mathbf{R}^4 and \mathbf{R}^7 are H_r \mathbf{R}^4 is H_r and \mathbf{R}^4 is NH, or OH, and \mathbf{R}^5 is NH,.

Claim 39 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 9 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) of the formula:

wherein

Base is

X is O. S. CH₂. Se, NH, N-alkyl, CHW (R, S, or racemic). C(W)₂, wherein W is F, Cl. Be, or I:

R⁴ and R² are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phonyl and lower acyl, alkyl, including lower alkyl. O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an t-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of

providing a compound wherein R^{k} is H or phosphate; R^{k} is H or phosphate; R^{k} and R^{k} or R^{k} can also be linked with cyclic phosphate group.

R3 and R3 are independently H. C., alkyl. C., alkenyl. C., alkynyl. vinyl. No. CN-Cl-Br-F-L-NO2-C(O)O(C1-4 afkvl)-C(O)O(C1-4 afkvl)-C(O)O(C1-4 alkynyl), C(O)O(C1...; alkenyl), O(C1...; acvl), O(C1...; alkyl), O(C1...; alkenyl), S(C__acvl)_S(C__alkvl)_S(C__alkvnvl)_S(C__alkenvl)_S(C__acvl) SO(C__alkvl)_SO(C__alkvnvl)_SO(C__alkenvl)_SO(C__acvl)_ SO₂(C_{1,2} alkvl), SO₂(C_{1,2} alkvnvl), SO₂(C_{1,2} alkenvl), O₁S(C_{1,2} aevl), OsS(Ca., alkyl), OsS(Ca., alkenyl), NH, NH(Ca., alkyl), NH(Ca., alkenyl), NH(C4.4-nlkynyl)-NH(C4.4-nevl)-N(C4.4-nlkyl)2-N(C4.4-nevl)2-wherein alkyl-alkynyl-alkenyl and vinyl are ontinally substituted by N₂ CN one to three halogen (Cl. Br. F. D. NOs C(O)O(Cs. alkyl), C(O)O(Cs. alkyl). C(O)O(C1.4alkvnvl); C(O)O(C1.4alkenvl); O(C1.4acvl); O(C1.4alkvl); O(C1_alkenvl), S(C1_acvl), S(C1_alkvl), S(C1_alkvnvl), S(C1_a alkenyl) SOCC, acyl) SOCC, allevi) SOCC, alleviyl) SOCC, alkenyl), SO₂(C₁, acyl), SO₂(C₁, alkyl), SO₂(C₁, alkynyl), SO₂(C₁, alkenvl). O2S(C2_a acvl). O2S(C1_a alkvl). O2S(C3_a alkenvl). NH2. NH(C1_a alkyl) NH(C__alkenyl) NH(C__alkynyl) NH(C__acyl) N(C_aalkyl) N(CL_acvi)_OR2_R2 and R2 can be linked together to form a vinyl optionally substituted by one or two of N., CN, Cl. Br. F. I. NO.:

R³-and R⁴-are independently H, halogen including F; CI₂ Br₁ I; OH₂ OR², SH₂ SR₂ NH₂, NH₂, NHR², NR², Iower alkyl of C₃-C₆, halogenated (F, CI₂ Br; 1) lower alkyl of C₄-C₆ such as CH=CH₂, halogenated (F, CI, Br, 1) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, CI, Br, 1) lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, CI, Br, 1) lower alkynyl of C₂-C₆ tower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, CI, Br, 1) lower alkoxy of C₄-C₆, CO₂H, CO₂R², CONH₂, CONHR², CONR², CH=CHCO₂H, CH=CHCO₃R².

R^{*} is an optionally substituted alkyl of C₁-C₃₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆₂ optionally substituted lower alkenyl of C₂-C₆₂ or optionally substituted nevl; and:

R° is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃; OCH₃; OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₃F), azido (N₃); CHCN, CH₂N₄; CH₂NHCH₃; CH₂NHCH₃; CH₃N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically-acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier

Claim 40 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 10 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylasis of hepatitis C-infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (8-to or 8-to of the formula:

wherein

Base is

R* and R* are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl-or arylalkyl-sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R* or R* is independently H or phosphate; R* and R* can also be linked with evelic phosphate group.

R³ and R² are independently H, halogen including F, Cl, Br, I, OH, OR, SH, SR, NH₂, NHR, NR², lower alkyl of G₃-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₂ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆; CO₂H, CO₂R, CONH₂, CONHR, CONR²₂; CH=CHCOH, CH=CHCOH, CH=CHCOH, and

R[∞] is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;

39

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable earrier

Claim 41 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 11 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2/R) 2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (B-D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

Claims 42-45 (Canceled).

Claim 46 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 1 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier a (2/R)-2 deoxy-2 fluoro-2 C methyl nucleoside (B-D or B-L) of the formula:

40

wherein

Base is a purine or pyrimidine base:

X is O, S, CH₂, Se, NH₂, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R³ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or-D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other-pharmaceutically acceptable leaving group-which when administered in vivo is capable of providing a compound wherein R⁴ is H or phosphate, R² is H or phosphate, R² and R² or R² can also be linked with cyclic phosphate group;

R² and R² are independently H, C₁₋₁ alkyl, C₁₋₁ alkenyl, C₁₋₁ alkynyl, vinyl, N₃₁

CN, Cl, Br, F, L, NO₂ C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkynyl), C(C₁₋₄ alkyl), O(C₁₋₄ alkynyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkynyl), SO(C₁₋₄ alkyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ alkynyl), N

to three halogen (CL, Br, F, 1), NO₂,C(O)O(C₁₊ alky1), C(O)O(C₁₊ alky1), C(O)O(C₁₊ alkyny1), C(O)O(C₁₊ alkeny1), O(C₁₊ alkyny1), O(C₁₊ alkyny1), S(C₁₊ alkyny1), S(C₁₊ alkyny1), S(C₁₊ alkyny1), S(C₁₊ alkyny1), S(C₁₊ alkyny1), SO(C₁₊ alkyny1), SO(C₁₊ alkyny1), SO(C₁₊ alkyny1), SO(C₁₊ alkyny1), SO₂(C₁₊ alkyny1), SO₂(C₁₊ alkyny1), SO₂(C₁₊ alkyny1), SO₂(C₁₊ alkyny1), SO₂(C₁₊ alkyny1), SO₂(C₁₊ alkyny1), NO₂(C₁₊ alkyny1), NH₂, NH₁C₁₊ alkyny1), NH₂, NH₂, NH₂, alkyny1), A

R⁶ is an optionally substituted alkyl (including-lower-alkyl), cyano (CN), CH₂, OCH₃, OCH₃, CH₄, hydroxy-methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₅NH₄, CH₂NHCH₄, CH₂N(CH₄)₃, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 47 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 2 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 46.

wherein Base is selected from the group consisting of:

Vis Nor CH

R², R⁴, and R⁵ are independently H, halogen including F, CI, Br, I, OH, OR.', SH, SR.', NH₂, NHR', NR-₂, lower alkyl of C₁-C₆, halogenated (F, CI, Br, I) lower alkyl of C₁-C₆ such as CF₂ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CHC₁, halogenated (F, CI, Br, I) lower alkenyl of C₂-C₆ such as CH=CHC₁, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆, such as CaCH, halogenated (F, CI, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₃-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, CI, Br, I) lower alkoxy of C₄-C₆, CO₂H₂-CO₂H₂-CO₃H₂, CONH₂, CONH₂, CONR-₂, CH=CHCO₂H, CH=CHCO₂R', and.

R' is an optionally substituted alkyl-of C₁-C₄₂ (particularly-when the alkyl-is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆₂ optionally-substituted lower-alkenyl-of C₂-C₆₂ or optionally-substituted acyl-

Claim 48 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 3 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier

The method of claim 46, wherein

Base is selected from the group consisting of (a) or (b):

43

and wherein R^4 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH₂ or OH, and R^3 is NH₂:

Claim 49 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a thinovirus infection comprising administering to a host an autivirally effective amount of the nucleoside of claim 4 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-(--methyl nucleoside (B-D or B-L) of the formula-

wherein

Base is selected from the group consisting of

Y is Nor-CH:

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phonyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl-sulfonyl, including methanosulfonyl and

benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L. or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R⁴ is H or phosphate; R³ is H or phosphate; R³ and R² or R⁷ can also be linked with cyclic phosphate group;

R2 and R2 are independently H. C14 alkyl, C14 alkenyl, C14 alkynyl, vinyl, N45 CN-Cl-Br-F-L-NO-C(O)O(Cs_allkvl)-C(O)O(Cs_allkvl)-C(O)O(Cs_all alkynyl), $C(O)O(C_{+,-}alkenyl)$, $O(C_{+,-}aovl)$, $O(C_{+,-}alkyl)$, $O(C_{+,-}alkenyl)$; S(Calabort), S(Calabkyt), S(Calabkyryt), S(Calabkyryt), SO(Calabeyt), SO(Calabeyt), SO(C, alkyl) SO(C, alkynyl) SO(C, alkenyl) SO(C, acyl) SO₂(C_{La} alkvl), SO₂(C_{La} alkvnvl), SO₂(C_{La} alkenvl), O₂S(C_{La} acvl), O2S(C1_alkyl), O3S(C1_alkenyl), NH2_NH(C1_alkyl), NH(C1_alkenyl), NH(C1., alkynyl), NH(C1., acvl), N(C1., alkyl), N(C1., acvl), wherein alkyl alkynyl alkenyl and vinyl are optinally substituted by N. CN one to three halogen (Cl. Br. F. D. NO. C(O)O(C., alkvl). C(O)O(C., alkvl). C(O)O(C, alkynyl), C(O)O(C, alkenyl), O(C, acvl), O(C, alkyl), O(C1 alkenvl) S(C1 acvl) S(C1 alkvl) S(C1 alkvnvl) S(C1) alkenyl), SO(C1,4 acyl), SO(C1,4 alkyl), SO(C1,4 alkynyl), SO(C1,4 alkenyl) SO-(C., acvl) SO-(C., alkvl) SO-(C., alkvnvl) SO-(C., afkenyl), OaS(Caaracyl), OaS(Caaralkyl), OaS(Caaralkenyl), NHar NH(Caar alkyl) NHCs., alkenyl) NHCs., alkynyl) NHCs., acyl) NCs., alkyl); N(C_aovI). OR7-R2 and R2 can be linked together to form a vinyl ontionally substituted by one or two of N. CN CL Br F 1 NO:

R³, R⁴ and R⁵ are independently H, halogen including F, Cl. Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₃·C₆, halogenated (F, Cl, Br, I) lower alkyl of C₄·C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂·C₆ such as CH=CHC₄, halogenated (F, Cl, Br, I) lower alkenyl of C₂·C₆ such as CH=CHC₄, CH=CHBr and CH=CHI, lower alkynyl of C₂·C₆ such as

CsiCH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₃-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R',

R'-is an optionally-substituted alkyl-of C₁-C₁₂ (particularly-when the alkyl-is an amino acid residue), eyeloalkyl, optionally-substituted alkynyl-of C₂-C₆; optionally-substituted lower alkenyl-of C₂-C₆, or optionally-substituted acyl-

R⁶-is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃;

OCH₃; OCH₃; CH₃, hydroxy-methyl (CH₂OH), fluoromethyl (CH₂F), azido
(N₅), CHGN, CH₂N₃, CH₂NH₂, CH₂NHCH₄, CH₂N(CH₃)₂, alkyne
(optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 50 (Withdrawn; Currently Amended). A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 5 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 49, wherein

Base is

and R^3 is H, R^2 is OH, R^3 is H, R^3 is H, R^4 is NH, or OH, and R^6 is H

Claim 51 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 6 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a thinovirus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-('-methy) nucleoside (B-D or B-L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemie), C(W)₂, wherein W is F, Cl. Br, or I, and

 $\boldsymbol{R}^{\boldsymbol{\delta}}$ and $\boldsymbol{R}^{\boldsymbol{\delta}}$ are independently H, phosphate, including monophosphate,

diphosphate, triphosphate, or a stabilized phosphate predrug. Hphosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl-sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ or R² is independently H or phosphate; R¹ and R² can also be linked with cyclic phosphate group and optionally a pharmaceutically acceptable carrier.

Claim 52 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 7 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim-51, wherein

Base is selected from the group consisting of:

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5

Vis Nor CH

R³, R⁴ and R⁵ are independently H₂ halogen including F₂ CL₂ Br₂ L, OH₂ OR², SH₃ SR², NH₂, NHR², NR²₂, lower alkyl of C₄ C₆, halogenated (F, Cl₂ Br₂ L) lower alkenyl of C₂ C₆ such as CH=CH₂, halogenated (F₂ Cl₃ Br₄ L) lower alkenyl of C₂ C₆ such as CH=CHCl₄ CH=CHBr and CH=CHI₁, lower alkynyl of C₂ C₆ such as C=CH, halogenated (F₂ Cl₄ Br₄ L) lower alkynyl of C₂ C₆ lower alkonyl of C₃ C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F₂ Cl₄ Br₄ L) lower alkonyl of C₄ C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F₂ Cl₄ Br₄ L) lower alkonyl of C₄ C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F₂ Cl₄ Br₄ L) lower alkonyl of C₄ Ch₄ Ch₄ Ch₄ Ch₅ Ch₄ CONH₂, CONH₂, CONH₂, CONH₂, CONH₂, CONH₂, CONH₂, CONH₃, CONH₄, CONH₄

R^{*} is an optionally substituted alkyl-of-C₁-C₁₂ (particularly when the alkyl-is an amino acid residue), eyeloalkyl, optionally substituted alkynyl-of-C₂-C₆; optionally-substituted lower alkenyl-of-C₂-C₆; or optionally substituted acyl-

Claim 53 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 8 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 51, wherein

Base is selected from the group consisting of (a) or (b):

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4

and wherein \mathbf{R}^4 and \mathbf{R}^7 are \mathbf{H}_1 \mathbf{R}^3 is \mathbf{H}_2 and \mathbf{R}^4 is NH2 or OH, and \mathbf{R}^8 is NH2.

Claim 54 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 9 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (B-D or B-L) of the formula:

wherein

Base is

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or recemic), C(W)₂, wherein W is F₁ Cl.-Be-or-l-

R³-and-R²-are independently-H₂-phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phonyl-and-lower-acyl, alkyl, including lower-alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phonyl group is optionally substituted, a lipid, including a phospholipid, an t-or-D-amino acid (or racemic mixture), a earbohydrate, a peptide, a cholesterol, or other-pharmaceutically acceptable leaving group-which when administered in vivo is capable of providing a compound wherein R³ is H or phosphate; R² is H or phosphate, R³ and R³ or R² can also be linked with cyclic phosphate group.

R³-and R² are-independently H, C₁₋₁-alkyl, C₁₋₁-alkenyl, C₁₋₁-alkynyl, vinyl, N₃₇

CN, Cl, Br, F, L, NO₂-C(O)O(C₁₋₄alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkynyl), C(C₁₋₁-alkynyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkynyl), S(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), NH₁C₁₋₄ alkynyl), NH₁C₁₋₄ alkynyl), NH₂ NH₁C₁₋₄ alkyl), NH₁C₁₋₄ alkynyl), NH₂ NH₃C₁₋₄ alkyl), NH₄C₁₋₄ alkynyl, NH₄C₁₋₄ alkynyl, NH₄C₁₋₄ alkynyl, NH₄C₁₋₄ alkynyl, NH₄C₁₋₄ alkynyl, NH₄C₁₋₄ alkyl), NC₁₋₄ alkyl), NC₁₋₄ alkyl), NH₂C₁₋₄ alkyl), NH₃C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄

$$\begin{split} &O(C_{1-\epsilon}\text{alkenyl}), S(C_{1-\epsilon}\text{acyl}), S(C_{1-\epsilon}\text{alkyl}), S(C_{1-\epsilon}\text{alkynyl}), S(C_{1-\epsilon}\text{alkynyl}), S(C_{1-\epsilon}\text{alkynyl}), SO(C_{1-\epsilon}\text{alkynyl}), SO(C_{1-\epsilon}\text{alkynyl}), SO_2(C_{1-\epsilon}\text{alkynyl}), SO_2(C_{1-\epsilon}\text{alky$$

R¹ and R¹ are independently H, halogen including F, Cl, Br, I, OH, OR., SH, SR., NH₂, NHR., NR., lower alkyl of C₃. C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁. C₆ such as CH₂ and CH₂CH₃F, lower alkenyl of C₂. C₆ such as CH=CH₃, halogenated (F, Cl, Br, I) lower alkenyl of C₂. C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂. C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂. C₆, lower alkony of C₄. C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkony of C₄. C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkony of C₄. C₆, CO₂H, CO₂R., CONH₂, CONH₂, CONR., CH=CHCO₃R.

R' is an optionally substituted alkyl of C₄-C₅₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆₀ optionally-substituted lower alkenyl of C₂-C₆₀ or optionally-substituted acyl;

R⁶ is an optionally substituted alkyl (including lower alkyl), eyano (CN), CH₃; OCH₃, OCH₂CH₄; hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₂), CHCN, CH₂N₃; CH₂NH₂, CH₂NHCH₃; CH₂N(CH3)₂; alkyne (optionally substituted), or fluoro;

or its pharmaceutically-acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier

Claim 55 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the

nucleoside of claim 10 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C'-methyl nucleoside (B-D or B-L) of the formula:

wherein

Base is

R⁴ and R² are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylatkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ or R² is independently H or phosphate; R¹ and R² can also be linked with cyclic phosphate group;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR¹, SH, SR⁻, NH₂, NHR¹, NR¹, lower alkyl of C₄-C₅, halogenated (F, Cl, Br, I) lower

alkyl-of C_2 - C_6 -such as CF_2 and CH_2 CH₂F, lower alkenyl-of C_2 - C_6 -such as CH= CH_2 -halogenated (F, Cl, Br, I) lower alkenyl-of C_2 - C_6 -such as CH=CHCl, CH=CHBF and CH=CHI, lower alkynyl-of C_2 - C_6 -such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl-of C_2 - C_6 -lower alkoxy-of C_4 - C_6 -such as CH_2OH -and CH_2OH -halogenated (F, Cl, Br, I) lower alkoxy-of C_4 - C_6 - C_6 - C_0 - C_6 -

R2 is an optionally-substituted alkyl-of C₄·C₄₂ (particularly-when the alkyl-io an amino acid-residue), cycloalkyl, optionally-substituted alkynyl-of C₂·C₆₅ optionally-substituted lower alkenyl-of C₂·C₆₅ or optionally-substituted nevl-

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 56 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 11 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-('-methyl nucleoside (8-D) or its pharmaceutically acceptable salt or produte thereof of the formula:

ontionally in a pharmaceutically acceptable carrier.

Claims 57-60 (Canceled).

Claim 61 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 1 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier_a (2'R)-2'-deoxy-2'-fluoro-2'-f--methyl nucleoside (β-b or β-b- of the formula:

wherein

Base is a purine or pyrimidine base:

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemie), C(W)₂, wherein W is F, Cl. Be, or I;

R³ and R⁷ are independently H, phosphate, including monophosphate,

diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally-substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, au L-or-D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ is H or phosphate, R² is H or phosphate, R³ and R³ or R² can also be linked-with cyclic-phosphate group;

> R2 and R2 are independently H, C1-ralkyl, C1-ralkenyl, C1-ralkynyl, vinyl, N2-CN, Cl. Br. F. I, NO2, C(O)O(C1.4 alkyl), C(O)O(C1.4 alkyl), C(O)O(C1.4 alkynyl) C(O)O(C, alkenyl) O(C, acvl) O(C, alkyl) O(C, alkenyl) S(CL, acvi), S(CL, aikvi), S(CL, aikvnvl), S(CL, aikenvl), SO(CL, acvi), SO(C_alkyl)-SO(C_alkynyl)-SO(C_alkenyl)-SO(C_alkenyl) SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), O₄S(C₁₋₄ acyl), OaS(Caralkyl) OaS(Caralkenyl) NHz NH(Caralkyl) NH(Caralkenyl) NH(C1_alkynyl)_NH(C1_acyl)_N(C1_alkyl)_N(C1_bacyl)_wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by Na, CN, one to three halogen (Cl. Br. F. I). NO2 C(O)O(C, alkyl), C(O)O(C, alkyl). C(O)O(C3...alkynyl), C(O)O(C4...alkenyl), O(C4.ancyl), O(C3...alkyl), O(C_ alkenyl) S(C_ acyl) S(C_ alkyl) S(C_ alkynyl) S(C_ alkenyl), SO(CL, acvl), SO(CL, alkvl), SO(CL, alkvnyl), SO(CL, alkenyl), SO₂(C_{Ld} acyl), SO₂(C_{Ld} alkyl), SO₂(C_{Ld} alkynyl), SO₂(C_{Ld} alkenvi), OaS(Caa acvi), OaS(Caa alkvi), OaS(Caa alkenvi), NHa, NH(Caa alkyl), NH(C__alkenyl), NH(C__alkynyl), NH(C__acyl), N(C__alkyl), N(C_{1,2} acvl)₂: OR²: R² and R² can be linked together to form a vinvi optionally substituted by one or two of Na, CN, CL Br. F. L NO2-R6 is an optionally substituted alkyl (including lower alkyl), evano (CN), CN2,

> R* is an optionally substituted alkyl (including lower alkyl), eyano (CN), CH₂;
>
> OCH₂, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido
> (N₂), CHCN, CH₂N₂, CH₂NH₂, CH₂NHCH₄, CH₂N(CH₄)₂, alkyne
> (optionally substituted), or fluoro;

or its pharmaceutically-acceptable saft-or-produig thereof-optionally in a pharmaceutically acceptable carrier:

Claim 62 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 2 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 61,

wherein Base is selected from the group consisting of

Y is N or CH.

R³, R⁴ and R⁸ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₃, lower alkyl of C₄, C₆, halogenated (F, Cl, Br, I) lower alkyl of C₄-C₆ such as CF₂ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂H, CO₃H, CONH₂, CONH₃, CONH₄, CONR'₂, CH=CHCO₂H, CH=CHCO₃R', and,

R' is an optionally-substituted alkyl-of C₄-C₄₂ (particularly-when the alkyl-is an amino acid-residue), cycloalkyl, optionally-substituted alkynyl-of C₂-C₆₂ optionally-substituted-lower alkenyl-of C₂-C₆₂, or optionally-substituted acyl.

Claim 63 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 3 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 61, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^4 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH, or OH, and R^3 is NH.

Claim 64 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 4 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D-or-β-L) of the formula:

wherein

Base is selected from the group consisting of

Y is N or CH:

R² and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in tivo is capable of providing a compound wherein R¹ is H or phosphate, R² is H or phosphate; R³ and R³ or R² can also be linked with cyclic phosphate group.

R² and R³ are independently H, C₁₋₄ alkyl, C₄₋₄ alkenyl, C₁₋₄ alkynyl, vinyl, N₃;

CN, Cl, Br, F, I, NO₂, C(O)O(C₄₋₄ alkyl), C(O)O(C₄₋₄ alkyl), C(O)O(C₄₋₄ alkyl), C(O)O(C₄₋₄ alkyl), O(C₄₋₄ alkyl), O(C₄₋₄ alkyl), O(C₄₋₄ alkyl), O(C₄₋₄ alkyl), O(C₄₋₄ alkyl), S(C₄₋₄ alkyl), S(C₄₋₄ alkyl), S(C₄₋₄ alkyl), SO₄(C₄₋₄ alkyl), SO₄(C₄₋₄ alkyl), SO₄(C₄₋₄ alkyl), SO₄(C₄₋₄ alkyl), SO₄(C₄₋₄ alkyl), SO₄(C₄₋₄ alkyl), NO₄(C₄₋₄ alkyl), NO₄

$$\begin{split} &C(O)O(C_{1-4}\text{alkynyl}),\ C(O)O(C_{1-4}\text{alkenyl}),\ O(C_{1-4}\text{alkynyl}),\ C(C_{1-4}\text{alkyl}),\ C(C_{1-4}\text{alkynyl}),\ S(C_{1-4}\text{alkyl}),\ S(C_{1-4}\text{alkynyl}),\ S(C_{1-4}\text{alkynyl}),\ S(C_{1-4}\text{alkynyl}),\ S(C_{1-4}\text{alkynyl}),\ SO(C_{1-4}\text{alkynyl}),\ SO_2(C_{1-4}\text{alkynyl}),\ SO_2(C_{1-4}\text{a$$

- R³, R⁴ and R⁵ are independently Hi, halogen including F, Cit, Br, I, OH, OR², SH, SR², NH₂, NHR², NR²₃, lower alkyl of C₁, C₆, halogenated (F, Cl, Br, I) lower alkyl of C₂, C₆, such as CF₂ and CH₂CH₂F, lower alkenyl of C₂, C₆ such as CH=CHC₁, talogenated (F, Cl, Br, I) lower alkenyl of C₂, C₆, such as CH=CHC₁, CH=CHBr and CH=CHL, lower alkynyl of C₂, C₆, such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂, C₆, lower alkoxy of C₄, C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄, C₆, CO₂H, CO₂H, CO₃H, CONH₂, CONHR², CONHR², CONHR², CONHR², CH=CHCOJH, CH=CHCOJR².
- R^2 is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_{67} optionally substituted lower alkenyl of C_2 - C_{67} or optionally substituted acyl:
- R⁶-is-an optionally-substituted alkyl-(including-lower-alkyl), cyano (CN), CH_{2c}

 OCH₂, OCH₃CH₃, hydroxy-methyl (CH₂OH), fluoromethyl (CH₂F), azido
 (N₂), CHCN, CH₂N₃, CH₂NH₄, CH₂NHCH₃, CH₂N(CH₃)₃, alkyne
 (optionally-substituted), or fluoro:

or its pharmacoutically acceptable salt or prodrug thereof, optionally in a pharmacoutically acceptable carrier.

59

Claim 65 (Withdrawn, Currently Amended). A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 5 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 64, wherein

Base is

and R4 is H. R2 is OH, R2 is H. R2 is H. R4 is NH2 or OH, and R6 is H.

Claim 66 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 6 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (fi-D or fi-L) or its pharmaceutically acceptable salt or prodrug thereof of the structure.

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemie), C(W)₂, wherein W is F, Cl, Br, or L and.

R⁴ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonates, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R⁴ or R² is independently H-or phosphate; R³ and R² can also be linked with cyclic phosphate group and

optionally in a pharmaceutically acceptable carrier-

Claim 67 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 7 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 66, wherein

Base is selected from the group consisting of

Y is Nor CH

R³, R⁴ and R³ are independently H, halogen including F, Cl. Br, I, OH, OR, SH, SR, NHR, NHR, NR3, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I)

lower alkyl-of C₄-C₆-such as CF₃ and CH₂CH₂F. Jower alkenyl-of C₂-C₆-such as CH=CHC₃-halogenated (F, Cl. Br, I) lower alkenyl-of C₂-C₆-such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl-of C₂-C₆-such as C=CH, halogenated (F, Cl. Br, I) lower alkynyl-of C₂-C₆, Jower alkoxy of C₄-C₆-such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl. Br, I) lower alkoxy of C₄-C₆-CO₂H, CO₂R', CONH₂-CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R', and;

R2 is an optionally-substituted alkyl-of C₄. C₄₂ (particularly-when the alkyl-is an amino acid-residue), cycloalkyl, optionally-substituted alkynyl-of C₂. C₆₅ optionally-substituted-lower-alkenyl-of C₂. C₆₅ or optionally substituted acyl-

Claim 68 (Withdrawn; Currently Amended): <u>A method for the treatment or prophylaxis</u> of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 8 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim-66, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^4 and R^7 are $H_r\,R^4$ is H_r and R^4 is NH $_2$ or OH, and R^5 is NH $_2$

Claim 69 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 9 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-(-'methyl nucleoside (β-D or β-L) of the formula:

wherein

Base is

X is O. S. CH₂, Se, NH. N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl. Br, or t:

R² and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl. O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl-sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an t-or-D-amino acid (or-racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of

providing a compound wherein R^{1} is H or phosphate; R^{2} is H or phosphate; R^{1} and R^{2} or R^{2} can also be linked with cyclic phosphate group.

R3 and R3 are independently H. C., alkyl. C., alkenyl. C., alkynyl. vinyl. No. CN-Cl-Br-F-L-NO2-C(O)O(C1-4 afkvl)-C(O)O(C1-4 afkvl)-C(O)O(C1-4 alkynyl), C(O)O(C1...; alkenyl), O(C1...; acvl), O(C1...; alkyl), O(C1...; alkenyl), S(C__acvl)_S(C__alkvl)_S(C__alkvnvl)_S(C__alkenvl)_S(C__acvl)_ SO(C__alkvl)_SO(C__alkvnvl)_SO(C__alkenvl)_SO(C__acvl)_ SO₂(C_{1,2} alkv1), SO₂(C_{1,2} alkvnv1), SO₂(C_{1,2} alkenv1), O₂S(C_{1,2} aev1), OsS(Ca., alkyl), OsS(Ca., alkenyl), NH, NH(Ca., alkyl), NH(Ca., alkenyl), NH(Ca.anikynyl)-NH(Ca.anovl)-N(Ca.anikyl)z-N(Ca.anicyl)z-wherein alkyl-alkynyl-alkenyl and vinyl are optinally substituted by N₂ CN one to three halogen (Cl. Br. F. D. NO. C(O)O(Ca. alkyl), C(O)O(Ca. alkyl), C(O)O(C2.4alkvnvl); C(O)O(C2.4alkenvl); O(C2.4acvl); O(C3.4alkvl); O(C1_alkenvl), S(C1_acvl), S(C1_alkvl), S(C1_alkvnvl), S(C1_a alkenyl) SOCC, acyl) SOCC, allevi) SOCC, alleviyl) SOCC, alkenyl), SO₂(C₁, acyl), SO₂(C₁, alkyl), SO₂(C₁, alkynyl), SO₂(C₁, alkenvl). O2S(C2_a acvl). O2S(C1_a alkvl). O2S(C3_a alkenvl). NH2. NH(C1_a alkyl) NH(C__alkenyl) NH(C__alkynyl) NH(C__acyl) N(C_aalkyl) N(C), acv1). OR7-R3 and R2 can be linked together to form a vinvi optionally substituted by one or two of N., CN, Cl. Br. F. I. NO.:

R³ and R⁴ are independently H, halogen including F; Cl₇ Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of G₃-C₆, halogenated (F, Cl₇ Br, I) lower alkyl of C₄-C₆ such as CH=CH₂, halogenated (F, Cl₇ Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl₃, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆ such as CH=CHCl₄, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆, such as C=CH₂ halogenated (F, Cl₇ Br, I) lower alkynyl of C₂-C₆, tower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl₇ Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'.

R^{*} (s an optionally substituted alkyl of C₁, C₂, (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂, C₆; optionally substituted lower alkenyl of C₂, C₆; or optionally substituted nevl.

R° is an optionally substituted alkyl (including lower alkyl), eyano (CN), CH_a; OCH_a; OCH_a; H_a, hydroxy methyl (CH_aOH), fluoromethyl (CH_aF), azido (N₃); CHCN, CH_aN_a; CH_aNH₄; CH_aNHCH_a; CH_aN(CH_a)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically-acceptable salt or produg-thereof, optionally-in a pharmaceutically acceptable carrier.

Claim 70 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 10 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) of the formula:

wherein Base is

R* and R* are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl-or acylalkyl-sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R* or R* is independently H or phosphate; R* and R* can also be linked with evelic phosphate group.

R³ and R² are independently H, halogen including F, Cl, Br, L, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₃-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CH₂-CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆; CO₂H, CO₂R', CONH₂, CONHR', CONR'₂; CH=CHCO₂H, CH=CHCO₂R'.

R^{*} is an optionally-substituted alkyl of C₁-C₁₂ (particularly-when the alkyl is an amino acid residue), cycloalkyl, optionally-substituted alkynyl of C₂-C₆; optionally-substituted lower alkenyl of C₂-C₆; or optionally-substituted acyl;

66

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 71 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 11 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an autivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C'-methyl nucleoside (B-D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

Claims 72-75 (Canceled).

Claim 76 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 1 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

67

a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (8-D or 8-L) of the formula:

wherein

Base is a purine or pyrimidine base:

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl. Br, or I;

R⁴ and R² are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid; including a phospholipid, an L-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in trivo is capable of providing a compound wherein R⁴ is H or phosphate; R² is H or phosphate, R⁴ and R² or R² can also be linked with cyclic phosphate group;

$$\begin{split} R^2 \text{ and } R^3 \text{-are independently H, } C_{3-1}\text{-alkeyl}, C_{3-1}\text{-alkenyl}, C_{4-1}\text{-alkynyl}, vinyl}, N_{32} \\ & CN_1 Cl_1 Br. F_1 I_1 NO_2 C(O)O(C_{3-4}\text{-alkyl}), C(O)O(C_{4-4}\text{-alkyl}), C(O)O(C_{4-4}\text{-alkyl}), C(C_{4-4}\text{-alkyl}), C(C_{4-4}\text{-alkyl}), C(C_{4-4}\text{-alkyl}), C(C_{4-4}\text{-alkyl}), C(C_{4-4}\text{-alkyl}), C(C_{4-4}\text{-alkyl}), C(C_{4-4}\text{-alkyl}), SO(C_{4-4}\text{-alkyl}), SO(C_{4-4}\text{-alkynyl}), SO(C_{4-4}\text{-alkynyl}), SO_2(C_{4-4}\text{-alkyl}), SO_2(C_{4-4}\text{-alkynyl}), SO_2(C_{4-4}\text{-alkynyl}), SO_2(C_{4-4}\text{-alkynyl}), SO_2(C_{4-4}\text{-alkynyl}), NII(C_{4-4}\text{-alkynyl}), NII(C_{4-4}\text{-alkynyl}),$$

alkyn, alkenyl, alkenyl and vinyl are optinally substituted by N_a , CN_c , one to three halogen (CL, Br, F, I), NO_a , $C(O)O(C_{L+}$ alkyl), $C(O)O(C_{L+}$

R⁶ is an optionally substituted alkyl (including lower alkyl), eyano (CN), CH₂,
OCH₂-OCH₂-CH₄, bydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido
(N₂), CHCN, CH₂N₂, CH₂NH₂, CH₂NHCH₄, CH₂N(CH₄)₃, alkyne
(optionally substituted), or fluoro;

or its pharmaceutically-acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 77 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 2 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 76:

wherein Base is selected from the group consisting of

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5

Y is Nor CH.

R³, R⁴ and R⁵ are independently H, halogen including F, Cl. Br, I, OH, OR.; SH, SR.; NH₃, NHR.; NR₂, lower alkyl of C₄-C₆; halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂R², CONH₂, CONHR², CONR²₃; CH=CHCO₂H, CH=CHCO₂R², and.

R' is an optionally-substituted alkyl-of-C₁-C₄₂ (particularly-when the alkyl-is an amino acid residue), cycloalkyl, optionally-substituted alkynyl-of-C₂-C₆₅, optionally-substituted-lower-alkenyl-of-C₂-C₆₅, or optionally-substituted acyl.

Claim 78 (Withdrawn; Currently Amended): <u>A method for the treatment or prophylasis</u> of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 3 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 76, wherein

Base is selected from the group consisting of (a) or (b):

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5

and wherein R^4 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH₂ or OH, and R^3 is NH₂:

Claim 79 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 4 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2'R) 2' deoxy-2'-fluoro-2' C' methyl nucleoside (B-D) of the formula:

wherein

Base is selected from the group consisting of

Y is Nor CH;

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl-sulfonyl, including methanesulfonyl and

benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an t. or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R⁴ is H or phosphate; R³ is H or phosphate; R³ and R² or R⁷ can also be linked with cyclic phosphate group;

R³ and R²² are independently H. C., alkyl. C., alkenyl. C., alkynyl. vinyl. No. CN. Cl. Br. F. L. NO. C(O)O(Ca., alkvl). C(O)O(Ca., alkvl). C(O)O(Ca., alkynyl), $C(O)O(C_{+,-}alkenyl)$, $O(C_{+,-}aovl)$, $O(C_{+,-}alkyl)$, $O(C_{+,-}alkenyl)$, S(Calabort), S(Calabkyt), S(Calabkyryt), S(Calabkyryt), SO(Calabeyt), SO(Calabeyt), SO(C, alkyl) SO(C, alkynyl) SO(C, alkenyl) SO(C, acyl) SO₂(C_{La} alkvl), SO₂(C_{La} alkvnvl), SO₂(C_{La} alkenvl), O₂S(C_{La} acvl), O2S(C1_alkyl), O2S(C1_alkenyl), NH2_NH(C1_alkyl), NH(C1_alkenyl), NH(C1., alkynyl), NH(C1., acvl), N(C1., alkyl), N(C1., acvl), wherein alkyl alkynyl alkenyl and vinyl are optinally substituted by N. CN one to three halogen (Cl. Br. F. D. NO. C(O)O(C., alkvl). C(O)O(C., alkvl). C(O)O(C_aalkynyl), C(O)O(C_aalkenyl), O(C_aaevl), O(C_aalkyl), O(C1 alkenvl) S(C1 acvl) S(C1 alkvl) S(C1 alkvnvl) S(C1) alkenyl), SO(C1.4-acyl), SO(C1.4-alkyl), SO(C1.4-alkynyl), SO(C1.4 alkenyl) SO-(C., acvl) SO-(C., alkvl) SO-(C., alkvnvl) SO-(C., afkenyl), OaS(Caaracyl), OaS(Caaralkyl), OaS(Caaralkenyl), NHar NH(Caar alkyl) NHCs., alkenyl) NHCs., alkynyl) NHCs., acyl) NCs., alkyl); N(C_aovI) OR7-R2 and R2 can be linked together to form a vinyl ontionally substituted by one or two of N. CN-Cl-Bc-F-1-NO:

R³, R⁴ and R⁵ are independently H, halogen including F, Cl. Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₂·C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁·C₆ such as CF₂ and CH₂CH₂F, lower alkenyl of C₂·C₆ such as CH=CHC₁, halogenated (F, Cl, Br, I) lower alkenyl of C₂·C₆ such as CH=CHC₁, CH=CHBr and CH=CHI, lower alkynyl of C₂·C₆ such as

C:::CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂;

CH-CHCO₂H, CH-CHCO₂R':

R'-is an optionally-substituted alkyl-of C₁-C₁₂ (particularly-when the alkyl-is an amino acid residue), eyeloalkyl, optionally-substituted alkynyl-of C₂-C₆; optionally-substituted-lower alkenyl-of C₂-C₆, or optionally-substituted acyl-

R⁶-is an optionally substituted alkyl-(including-lower-alkyl), cyano (CN), CH₃;

OCH₃, OCH₃CH₃, hydroxy-methyl-(CH₂OH), fluoromethyl-(CH₂F), azido
(N₃), CHGN, CH₂N₃, CH₂NH₂, CH₂NHCH₄, CH₂N(CH₃)₂, alkyne
(optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 80 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 5 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 79, wherein

Base is

and R' is H, R2 is OH, R2 is H, R3 is H, R4 is NH, or OH, and R6 is H

Claim 81 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 6 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-('-methy) nucleoside (B-D or B-L) or its pharmaceutically acceptable salt or produce thereof of the structure:

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemie), C(W)₂, wherein W is F; Cl. Br, or I; and

R⁴ and R² are independently H, phosphate, including monophosphate;

diphosphate, triphosphate, or a stabilized phosphate prodrug. Hphosphonate, including stabilized H-phosphonates, acyl, including
optionally substituted phenyl and lower acyl, alkyl, including lower alkyl,
O-substituted carboxyalkylamino or its peptide derivatives, sulfonate
ester, including alkyl or arylalkyl-sulfonyl, including methanesulfonyl and
benzyl, wherein the phenyl group is optionally substituted, a lipid,
including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide,
a cholesterol, or other pharmaceutically acceptable leaving group which
when administered in vivo is capable of providing a compound wherein R³
or R² is independently H or phosphate; R³ and R² can also be linked with
cyclic phosphate group, and optionally a pharmaceutically acceptable
carrier.

Claim 82 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 7 or its pharmaceutically acceptable salt or produig optionally in a pharmaceutically acceptable carrier.

The method of claim-81, wherein

Base is selected from the group consisting of:

Y is N or GH:

R³-R⁴ and R³ are independently H₂ halogen including F₂-Cl₂-Br₂-L, OH₂-OR²-SH₃-SR²-NHR²-NHR²-NR²-1 ower alkyl of C₁-C₆-halogenated (F, Cl₂-Br₂-1) lower alkenyl of C₂-C₆-Such as CH=CH₂-halogenated (F, Cl₂-Br₂-1) lower alkenyl of C₂-C₆-Such as CH=CHCl₂-CH=CHBr and CH=CHI₁-lower alkynyl of C₂-C₆-Such as C=CH₂-halogenated (F, Cl₂-Br₂-1) lower alkynyl of C₂-C₆-lower alkonyl of C₃-C₆-such as CH₂OH and CH₂CH₂OH-halogenated (F, Cl₂-Br₂-1) lower alkonyl of C₃-C₆-such as CH₂OH and CH₂CH₂OH-halogenated (F, Cl₂-Br₂-1) lower alkonyl of C₃-C₆-such as CH₂OH and CH₂CH₂OH-halogenated (F, Cl₂-Br₂-1) lower alkonyl of C₃-C₆-CO₂H₂-CO₃H₂-CO₃H₃-CO₃CO₃H₃-CO₃H

R² is an optionally substituted alkyl-of-C₁-C₁₂ (particularly when the alkyl-is an amino acid residue), eyeloalkyl, optionally substituted alkynyl-of-C₂-C₆; optionally-substituted lower alkenyl-of-C₂-C₆; or optionally substituted acyl-

Claim 83 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 8 or its pharmaceutically acceptable salt or produig optionally in a pharmaceutically acceptable carrier.

The method of claim 81, wherein

Base is selected from the group consisting of (a) or (b):

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4

and wherein R^4 and R^7 are H, R^3 is H, and R^4 is NH2 or OH, and R^8 is NH2.

Claim 84 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 9 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a West-Nile virus infection comprising administering to a host an antivirally effective amount of a (2¹R)-2²-deoxy-2²-fluoro-2²-C-methyl nucleoside (B-D or B-L) of the formula:

wherein Base is

X is O. S. CH₂. Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F₁ Cl. Be, or I;

R³ and R² are independently-H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl-and-lower-acyl, alkyl, including lower-alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an t-or D-amino acid (or racemic minture), a earbohydrate, a peptide, a cholesterol, or other-pharmaceutically acceptable leaving group-which when administered in vivo is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate, R³ and R² or R² can also be linked with cyclic phosphate group:

R²-and R²-are independently H, C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, vinyl, N₂;

CN, Cl, Br, F, I, NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkenyl), O(C₁₋₄ alkynyl), O(C₁₋₄ alkyl), O(C₁₋₄ alkynyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkynyl), S(C₁₋₄ alkynyl), SO(C₁₋₄ alkynyl), SO(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkynyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ alkynyl), NH(C₁₋₄ alkyn

77

$$\begin{split} & C(O)O(C_{1-\epsilon}\text{alkynyl}), \ C(O)O(C_{1-\epsilon}\text{alkenyl}), \ O(C_{1-\epsilon}\text{alkynyl}), \ C(C_{1-\epsilon}\text{alkynyl}), \ C(C_{1-\epsilon}\text{alkyn$$

- R*-and R*-are independently H, halogen including F, Cl, Br, L, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₃, C₆, halogenated (F, Cl, Br, I) lower alkyl of C₄-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHL, lower alkenyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂R', CONH₂, CONH₃, CONR'₃, CH=CHCO₃H, CH=CHCO₃R', and
- R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆₇ optionally substituted lower alkenyl of C₂-C₆₇ or optionally substituted acyl-
- R⁶-is an optionally-substituted alkyl-(including lower alkyl), cyano (CN), CH₃,
 OCH₂, OCH₂CH₃, hydroxy-methyl (CH₂OH), fluoromethyl (CH₂P), azido
 (N₄), CHCN, CH₂N₄, CH₂NH₂, CH₂NHCH₅, CH₂N(CH₃)₂, alkyne
 (optionally-substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 85 (Withdrawn; Currently Amended): <u>A method for the treatment or prophylaxis</u> of a West Nile virus infection comprising administering to a host an antivirally effective amount

of the nucleoside of claim 10 or its pharmaceutically acceptable salt or produig optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C'-methyl nucleoside (B-D or B-L) of the formula:

wherein

Base is

R⁴ and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylatkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a-peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ or R² is independently H or phosphate; R¹ and R²-can also be linked with cyclic phosphate group;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR; NH₂, NHR¹, NR¹₂, lower alkyl of C₄-C₅, halogenated (F, Cl, Br, I) lower

alkyl-of C_3 - C_6 -such as CF_2 and CH_2 CH₂F, lower alkenyl-of C_2 - C_6 such as CH= CH_3 -halogenated (F, Cl, Br, I) lower alkenyl-of C_2 - C_6 such as CH=CHCl, CH=CHBF and CH=CHI, lower alkynyl-of C_2 - C_6 -such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl-of C_3 - C_6 -lower alkoxy of C_4 - C_6 -such as CH_2OH and CH_2OH , halogenated (F, Cl, Br, I) lower alkoxy of C_4 - C_6 - C_6 - C_0 - C_6 -

R2 is an optionally-substituted alkyl-of C₄·C₄₂ (particularly-when the alkyl-io an amino acid-residue), cycloalkyl, optionally-substituted alkynyl-of C₂·C₆₅ optionally-substituted lower alkenyl-of C₂·C₆₅ or optionally-substituted acyl-

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 86 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 11 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a West-Nile virus infection-comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-('-methyl nucleoside (B-D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

Claims 87-90 (Canceled).

Claim 91 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 1 or its pharmaceutically acceptable salt or produce optionally in a pharmaceutically acceptable carrier.

a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is a purine or pyrimidine base:

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemie), C(W)₂, wherein W is F, Cl. Br. or I:

R⁴ and R² are independently H₁ phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H₁ phosphonate, including stabilized H₂ phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an t- or D-amino acid (or racemic-mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R³ is H or phosphate; R² is H or

phosphate; R^4 and R^2 or R^2 can also be linked with cyclic phosphate group:

R3 and R3 are independently H. C., alkyl. C., alkenyl. C., alkynyl. vinyl. No. CN-Cl-Br-F-L-NO2-C(O)O(C1.48lkvl), C(O)O(C1.48lkvl), C(O)O(C1.48lk alkynyl), C(O)O(C_a alkenyl), O(C_a acyl), O(C_a alkyl), O(C_a alkenyl), S(C1., acv1), S(C1., alkv1), S(C1., alkvnv1), S(C3., alkenv1), SO(C1., acv1), SO(C__alkyl)_SO(C__alkynyl)_SO(C__alkenyl)_SO(C__acyl)_ SO(CL alkyl) SO(CL alkynyl) SO(CL alkenyl) O(S(CL acyl) OaS(Calladkyl), OaS(Calladkenyl), NHc, NH(Calladkyl), NH(Calladkenyl), NH(CL_alkynyl), NH(Cl_aacyl), N(Cl_aalkyl), N(Cl_aacyl), wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by Nx. CN, one to three halogen (Cl. Br. F. D. NO. C(O)O(C, , alkyl). C(O)O(C, , alkyl). C(O)O(CLaelkynyl), C(O)O(CLaelkenyl), O(CLaelkyl), O(CLaelkyl), O(C__alkenvl), S(C__aevl), S(C__alkvl), S(C__alkvnvl), S(C_a alkenyl) SO(C, acyl) SO(C, alkyl) SO(C, alkynyl) SO(C, alkenyl) SO/C, acyl) SO/C, alkyl) SO/C, alkynyl) SO/C, alkenyl), OzS(Ca., acvl), OzS(Ca., alkvl), OzS(Ca., alkenyl), NHo, NH(Ca., alkyl) NH(C_ alkenyl) NH(C_ alkynyl) NH(C_ acyl) N(C_ alkyl)-N(C1_acvl), OR2 R2 and R2 can be linked together to form a vinvl optionally substituted by one or two of N. CN. Cl. Br. F. I. NO.:

R⁶ is an optionally substituted alkyl-(including lower alkyl), cyano (CN), CH₃;

OCH₄, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido
(N₂), CHCN, CH₃N₄, CH₂NH₃, CH₂NHCH₂, CH₂N(CH₂)₃, alkyne
(optionally substituted), or fluoro;

or its pharmaceutically-acceptable salt or prodrug thereof, optionally-in a pharmaceutically acceptable carrier.

Claim 92 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of

the nucleoside of claim 2 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 91,

wherein Base is selected from the group consisting of:

Y is Nor CH.

R^a, R⁴ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH_a, NHR', NR'_a, lower alkyl of C₄-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₄-C₆, such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₄-C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂R', CONH₂, CONH₂, CONH₂, CONR'₂; CH=CHCO₂H, CH=CHCO₂R', and

R² is an optionally-substituted alkyl-of C₁-C₄₂ (particularly-when the alkyl-is an amino acid residue), cycloalkyl, optionally-substituted alkynyl-of C₂-C₆₂ optionally-substituted lower alkenyl of C₂-C₆₂, or optionally-substituted acyl-

Claim 93 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of

the nucleoside of claim 3 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 91, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^{λ} is H, R^{λ} is OH, R^{μ} is H, R^{λ} is H, and R^{λ} is NH2 or OH, and R^{λ} is NH2.

Claim 94 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 4 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2/k)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (B-D) of the formula.

wherein

Base is selected from the group consisting of

Y is N or CH:

R² and R² are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid; including a phospholipid, an L-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in two is capable of providing a compound wherein R¹ is H or phosphate, R² is H or phosphate; R³ and R³ or R² can also be linked with cyclic phosphate group.

R² and R² are independently H, C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, vinyl, N₃;

CN, Cl, Br, F, I, NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkynyl), O(C₁₋₄ alkyl), O(C₁₋₄ alkyl), O(C₁₋₄ alkyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkyl), SO(C₁₋₄ alkynyl), SO(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkyl), O₂S(C₁₋₄ alkyl), O₃S(C₁₋₄ alkynyl), NH₂, NH₄(C₁₋₄ alkyl), NH

$$\begin{split} & C(O)O(C_{1-\epsilon} \text{alkynyl}), \ C(O)O(C_{1-\epsilon} \text{alkenyl}), \ O(C_{1-\epsilon} \text{alkyl}), \ O(C_{1-\epsilon} \text{alkyl}), \ S(C_{1-\epsilon} \text{alkyl}), \ S(C_{1-\epsilon} \text{alkyl}), \ S(C_{1-\epsilon} \text{alkyl}), \ S(C_{1-\epsilon} \text{alkynyl}), \ S(C_{1-\epsilon} \text{alkyn$$

- R³, R⁴ and R⁵ are independently Hi, halogen including F, Cit, Br, I, OH, OR², SH, SR², NH₂, NHR², NR²₃, lower alkyl of C₁, C₆, halogenated (F, Cl, Br, I) lower alkyl of C₂, C₆, such as CF₂ and CH₂CH₂F, lower alkenyl of C₂, C₆ such as CH=CHC₁, talogenated (F, Cl, Br, I) lower alkenyl of C₂, C₆, such as CH=CHC₁, CH=CHBr and CH=CHL, lower alkynyl of C₂, C₆, such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂, C₆, lower alkoxy of C₄, C₆, such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄, C₆, CO₂H, CO₂H, CO₃H, CONH₂, CONHR², CONHR², CONHR², CH=CHCO1F, CH=CH
- R2 is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_{67} optionally substituted lower alkenyl of C_2 - C_{67} or optionally substituted acyl:
- R⁶-is an optionally substituted alkyl-(including-lower alkyl-), cyano (CN), CH₂;

 OCH₂; OCH₃CH₃, hydroxy-methyl (CH₂OH), fluoromethyl (CH₂F), azido
 (N₂), CHCN, CH₂N₃, CH₂NH₄, CH₂NHCH₃, CH₂N(CH₃)₃, alkyne
 (optionally substituted), or fluoro:

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier:

86

Claim 95 (Withdrawn, Currently Amended). A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 5 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 94, wherein

Base is

and R4 is H. R2 is OH, R2 is H. R2 is H. R4 is NH2 or OH, and R6 is H.

Claim 96 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 6 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) or its pharmaceutically acceptable salt or prodrug thereof of the structure

wherein Base is a purine or pyrimidine base:

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemie), C(W)₂, wherein W is F, Cl, Br, or L and.

R⁴ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R⁴ or R² is independently H or phosphate; R⁴ and R⁷ can also be linked with cyclic phosphate group, and optionally a pharmaceutically acceptable earnier.

Claim 97 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 7 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim 96, wherein

Base is selected from the group consisting of

$$R^4$$
 R^5
 R^5

R³, R⁴ and R⁵ are independently H, halogen including F, Cl. Br, I, OH, OR, SH, SR, NH, NHR, NR, lower alkyl of C₂, C₆, halogenated (F, Cl. Br, I)

lower alkyl-of C₄-C₆-such as CF₃ and CH₂CH₂F. Jower alkenyl-of C₂-C₆ such as CH=CHC₃, halogenated (F, Cl, Br, I) lower alkenyl-of C₂-C₆-such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl-of C₂-C₆-such as C=CH₃, halogenated (F, Cl, Br, I) lower alkynyl-of C₂-C₆, lower alkoxy of C₄-C₆-such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆, CO₂H, CO₂R'₁-CONH₂, CONHR'₂-CONR-₂, CH=CHCO₂H, CH=CHCO₂R'₂-and,

R2 is an optionally-substituted alkyl-of C₄. C₄₂ (particularly-when the alkyl-is an amino acid-residue), cycloalkyl, optionally-substituted alkynyl-of C₂. C₆₅ optionally-substituted-lower-alkenyl-of C₂. C₆₅ or optionally substituted acyl-

Claim 98 (Withdrawn; Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 8 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

The method of claim-96, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^4 and R^7 are $H_r\,R^4$ is H_r and R^4 is NH $_2$ or OH, and R^5 is NH $_2$

Claim 99 (Withdrawn, Currently Amended): A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 9 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2^tR) -2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) of the formula:

wherein

Base is

X is O. S. CH₂, Se, NH. N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl. Br, or t:

R⁴ and R² are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl. O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an t-or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of

providing a compound wherein R^{λ} is H or phosphate; R^{λ} is H or phosphate, R^{λ} and R^{λ} or R^{λ} can also be linked with cyclic phosphate group.

R3 and R3 are independently H, C14 alkyl, C14 alkenyl, C14 alkynyl, vinyl, Na CN. Cl. Br. F. L. NO2 C(O)O(C2.4 alkvl). C(O)O(C4.4 alkvl). C(O)O(C4.4 alkynyl), C(O)O(C1.4 alkenyl), O(C1.4 acyl), O(C1.4 alkyl), O(C4.4 alkenyl), S(C_aevl) S(C_aikvl) S(C_aekvevl) S(C_aekeevl) SO(C_aevl) SO(C, alkyl) SO(C, alkynyl) SO(C, alkenyl) SO(C, acyl) SO₂(C₁, alkvl), SO₂(C₁, alkvnvl), SO₂(C₁, alkenvl), O₂S(C₁, acvl), O₃S(C_{1,4} alkyl), O₃S(C_{1,4} alkenyl), NH₂, NH(C_{1,4} alkyl), NH(C_{1,4} alkenyl); NH(Ci., alkynyl), NH(Ci., acyl), N(Ci., alkyl), N(Ci., acyl), wherein alkyl-alkynyl, alkenyl and vinyl are ontinally substituted by N., CN, one to three halogen (Cl. Br. F. D. NO. C(O)O(C., alkyl). C(O)O(C., alkyl). C(O)O(CLa alkynyl), C(O)O(CLa alkenyl), O(CLa acyl), O(CLa alkyl), O(C1.alkenyl), S(C1.acvl), S(C1.alkyl), S(C1.alkynyl), S(C1.a alkenyl), SO(C1.4 acvl), SO(C1.4 alkvl), SO(C1.4 alkvnyl), SO(C1.4 alkenyl) SO2(C14 acyl) SO2(C14 alkyl) SO2(C14 alkynyl) SO2(C14 alkenvl). O:S(Ca., acvl). O:S(Ca., alkvl). O:S(Ca., alkenvl). NHa. NH(Ca., alkyl), NH(Ca., alkenyl), NH(Ca., alkynyl), NH(Ca., acyl), N(Ca., alkyl); N(C___acvl)_ OR2-R2 and R2 can be linked together to form a vinvl optionally substituted by one or two of N., CN, Cl. Br. F. I. NO.:

R³-and R⁴-are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₂-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₂-C₆-such as CH₂-CH₂F, lower alkenyl of C₂-C₆-such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆-such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆-such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆-lower alkoxy of C₄-C₆-such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆-such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆-C₆-CO₂H, CO₂R', CONH₂-CONHR', CONR'₂: CH=CHCO₂H, CH=CHCO₂R', and

> R^{*} (s an optionally substituted alkyl of C₁, C₂, (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂, C₆; optionally substituted lower alkenyl of C₂, C₆; or optionally substituted nevl.

R° is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃; OCH₃; OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₃F), azido (N₃); CHCN, CH₂N₄; CH₂NH₄; CH₂NHCH₃; CH₃N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically-acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 100 (Withdrawn; Currently Amended): <u>A method for the treatment or prophylaxis</u> of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 10 or its pharmaceutically acceptable salt or prodrug optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) of the formula:

wherein Base is

R* and R* are independently H, phosphate, including monophosphate; diphosphate, triphosphate, or a stabilized phosphate prodrug. H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl-or acylalkyl-sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L-or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R* or R* is independently H or phosphate; R* and R* can also be linked with evelic phosphate group.

R³ and R² are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of G₃-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CH₂-CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHL, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆ lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₄-C₆; CO₂H, CO₂R', CONH₂, CONHR', CONR'₂; CH=CHCO₂H, CH=CHCO₂R'.

R^{*} is an optionally-substituted alkyl of C₁-C₁₂ (particularly-when the alkyl is an amino acid residue), cycloalkyl, optionally-substituted alkynyl of C₂-C₆; optionally-substituted lower alkenyl of C₂-C₆; or optionally-substituted acyl-

93

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

Claim 101 (Withdrawn; Currently Amended): <u>A method for the treatment or prophylaxis</u> of a Dengue virus infection comprising administering to a host an antivirally effective amount of the nucleoside of claim 11 or its pharmaceutically acceptable salt or produce optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2/R) 2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (B-D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

Claims 102-105 (Canceled).

Claim 106 (Withdrawn; Currently Amended): The method of 31, wherein the antivirally effective amount of (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3

inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide, a thiazofidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine, a bile acid; N-(phosphonoacetyl)-L-aspartic acid, a benzenedicarboxamide, polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate

Claim 107 (Withdrawn; Currently Amended): The method of 41, wherein the antivirally effective amount of (2/R)-2'-deoxy-2'-fluoro-2'-C'-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor, a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor, and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid, a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin, a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor, silybin-phosphatidylcholine phytosonie, and mycophenolate.

Claims 108-109 (Canceled).

Claim 110 (Withdrawn; Currently Amended): The method of 46, wherein the antivirally effective amount of (2/t/)-2'-deoxy-2'-fluoro-2'-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin, levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor, a helicase inhibitor, a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor, and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene, amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid, a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine, an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

Claim 111 (Withdrawn; Currently Amended): The method of 56, wherein the antivirally effective amount of (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12, ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid, a benzanedicarboxanide; polyadenylic acid, a benzanidazoles, thymosin; a beta tubulin inhibitor.

a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome, and mycophenolate.

Claims 112-113 (Canceled).

Claim 114 (Withdrawn, Currently Amended): The method of 61, wherein the antivirally effective amount of (2*R)-2*-deoxy-2*-fluoro-2*-C*-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin, levovirin, a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine, a bile acid; N-(phosphonoacetyl)-L-aspartic acid, a benzenedicarboxamide, polyadenylic acid; a benzimidazoles, thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome, and mycophenolate.

Claim 115 (Withdrawn; Currently Amended): The method of 71, wherein the antivirally effective amount of (2/R)-2-deoxy-2-fluoro-2-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin, levovirin; a protease inhibitor including an NS3

inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide, a thiazofidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine, a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide, polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine, an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate

Claims 116-117 (Cancled)

Claim 118 (Withdrawn; Currently Amended): The method of 76, wherein the antivirally effective amount of (2th)-2th-deoxy-2th-fluore-2th-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor, a helicase inhibitor, a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin, an IRES inhibitor, and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E. squalene, amantadine; a bile acid, N-(phosphonoacetyl)-L-aspartic acid, a benzenedicarboxamide, polyadenylic acid, a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor, silybin-phosphatidylcholine phytosome; and mycophenolate.

Claim 119 (Withdrawn; Currently Amended): The method of 86, wherein the antivirally effective amount of (27/)-2'-deoxy-2'-fluoro-2'-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor, a helicase inhibitor, a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme, another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E, squalene, amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid, a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine, an immune modulator, an IMPDH inhibitor, silybin-phosphatidylcholine phytosome; and mycophenolate.

Claims 120-121 (Canceled).

Claim 122 (Withdrawn, Currently Amended): The method of 91, wherein the antivirally effective amount of (2/R)-2-deoxy-2-fluoro-2-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin, levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor, a helicase inhibitor, a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor, gliotoxin, an IRES inhibitor, and annisense oligonucleotide, a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant

including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide, polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

Claim 123 (Withdrawn; Currently Amended): The method of 101, wherein the antivirally effective amount of (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl the nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide, a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative, a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide, polyadenylic acid; a benzimidazoles; thymosin, a beta tubulin inhibitor; a prophylactic vaccine, an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

Claims 124-125 (Canceled).

Claim 126 (Withdrawn, Currently Amended). A method of synthesizing the nucleoside of claim 11, which comprises a (2²R)-2²-deoxy-2²-fluoro-2²-(-methyl-nucleoside (β-I) or β-L) comprising elycosylation of a nucleobase with an intermediate

glycosylating the pyrimidine with a compound having the following structure:

wherein R is lower alkyl, acyl, benzoyl, or mesyl; and Pg is any acceptable protecting group consisting of but not limited to C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkeyl, CH₂Ph, CH₂-aryl, CH₂O-aryl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, or both Pg's may come together to for a 1,3-{ 1,1,3,3- tetraisopropyldisiloxanylidene).

Claim 127 (Withdrawn, Currently Amended): A method of synthesizing the nucleoside of claim 1, which comprises a (2/R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D or β-L) comprising selective deprotection of either Pg in an intermediate of the

selectively deprotecting the 3'-OPg or the 5'-OPg of a compound having the following structure:

wherein, X is O. S. CH₂, Se, NH, N-alkyl, CHW (R, S; or racemie), C(W)₂, wherein W is F, Cl, Br, or I; and Pg is independently any pharmaceutically acceptable protecting group selected from the group consisting of C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkenyl, CH₂Ph, CH₂-aryl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, or both Pg's may come together to for a 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene).

101

Claim 128 (Withdrawn): An intermediate in the synthesis of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (6-D or B-L), wherein the intermediate is of the structure:

wherein R is lower alkyl, acyl, benzoyl, or mesyl; and Pg is any acceptable protecting group consisting of but not limited to C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkenyl, CH₂Ph, CH₂-aryl, CH₂O-alkyl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, or both Pg's may come together to for a 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene).

Claim 129 (Withdrawn). An intermediate in the synthesis of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (B-D or β-L), wherein the intermediate is of the structure:

wherein, X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and Pg is independently any pharmaceutically acceptable protecting group selected from the group consisting of C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkenyl, CH₂Ph, CH₂-aryl, CH₂O-alkyl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, terr-butyldimethylsilyl, terr-butyldiphenylsilyl, or both Pg's may come together to for a 1.3-(-1.1,3,3-tetraisopropyldisiloxanylidene).

102