

Robótica Industrial Engenharia de Controle e Automação — 9º Período

PROF. LUCAS VAGO SANTANA

lucas@ifes.edu.br

Aula 07 – Cinemática Inversa e de Velocidade em 3D

- Movimento em 3D
- Cinemática Inversa e o Posicionamento em 3D
 - Obtendo o Jacobiano em 3D
 - Exemplo: Manipulador 2R em 3D
- Cinemática Inversa e a Orientação em 3D
 - O punho esférico
 - Arranjo 3R com punho esférico
 - Erros de orientação: como tratar?

Referências Bibliográficas

- CORKE, Peter. QUT Robot Academy: The open online robotics education resource. Disponível em: https://robotacademy.net.au/. Acesso em 27 fev. 2020.
- SCIAVICCO, Lorenzo; SICILIANO, Bruno. Modelling and Control of Robot Manipulators. 2. ed. Springer-Verlag Berlin Heidelberg, 2000.
- SPONG, Mark W.; HUTCHINSON, Seth; VIDYASAGAR, M. Robots Modeling and Control. 1. ed. John Wiley & Sons, 2005.
- CORKE, Peter. Robotics, Vision and Control: Fundamentals Algorithms in MATLAB. 2. ed. Springer-Verlag Berlin Heidelberg, 2017.
- NIKU, Saeed B. Introduction to Robotics: Analysis, Control, Applications. 2. ed. Springer-Verlag Berlin Heidelberg, 2011.
- LYNCH, Kevin M.; PARK, Frank C. **Modern Robotics: Mechanics, Planning and Control**. 1. ed. Cambridge University Press, 2017.
- SICILIANO, Bruno; KHATIB, Oussama. Springer Handbook of Robotics. 2. ed. Springer-Verlag Berlin Heidelberg, 2016.

Movimento em 3D

Movimento em 3D

- Movendo-se em 3D, o efetuador final sofre variações simultâneas nas velocidades linear a angular;
- Em 3D, tal variação se mapeia como:

https://wiki.freecadweb.org/Robot_tutorial

Cinemática Inversa e o Posicionamento 3D – Método Analítico

 Dado o arranjo do Manipulador 2R em 3D, determine sua cinemática inversa.

• Vista superior $(q_n \neq 0^\circ)$:

• Vista lateral $(q_n \neq 0^\circ)$:

Olhando o robô dessa perspectiva.

Análise do espaço de trabalho (desconsidera colisão):

 Dado o arranjo do Manipulador 2R em 3D, determine sua cinemática inversa.

• Vista superior $(q_n \neq 0^\circ)$:

$$q_0 = \operatorname{atan}\left(\frac{y_d}{x_d}\right)$$

• Vista lateral $(q_n \neq 0^\circ)$:

Olhando robô dessa perspectiva

Observe que:

$$r_1 = \sqrt{x_d^2 + y_d^2}$$
 $r_2 = z_d - a_0$ $r_3 = \sqrt{r_1^2 + r_2^2}$

$$r_2 = z_d - a_0$$

$$r_3 = \sqrt{r_1^2 + r_2^2}$$

$$q_1 + \beta + \gamma = 90^{\circ}$$

$$\gamma = \tan^{-1} \left(\frac{r_2}{r_1} \right)$$

Lei dos cossenos:

$$a_2^2 = r_3^2 + a_1^2 - 2 r_3 a_1 \cos(\beta)$$

$$\beta = a\cos\left(\frac{r_3^2 + a_1^2 - a_2^2}{2 \, r_3 \, a_1}\right)$$

$$q_1 = 90^{\circ} - \beta - \gamma$$

Observe que:

$$\phi = 180^{\circ} - \sigma$$

$$\phi = 90^{\circ} - (-q_2)$$

$$q_2 = 90^{\circ} - \sigma$$

$$r_3^2 = a_1^2 + a_2^2 - 2 a_1 a_2 \cos(\sigma)$$
$$\cos(\sigma) = \frac{a_1^2 + a_2^2 - r_3^2}{2 a_1 a_2}$$

$$q_2 = 90^{\circ} - \cos^{-1} \left(\frac{a_1^2 + a_2^2 - r_3^2}{2 a_1 a_2} \right)$$

Análise do espaço de trabalho (desconsidera colisão):

$$r_1 \le a_1 + a_2$$

Tarefa de Simulação

- Implementar e simular no CoppeliaSim o manipulador 2R em 3D e sua cinemática inversa;
- Implementar e simular no CoppeliaSim o manipulador 3R em 3D e sua cinemática inversa;
- Usar como solução da cinemática inversa o equacionamento analítico.

Cinemática Inversa e o Posicionamento 3D – Método Numérico

A relação permanece válida:

$$v = J(q)\dot{q}$$

- Porém, J(q) em 3D é mais difícil de se obter;
- Interessados em detalhes:
 - Capítulo 3 (Seções 3.1 e 3.2) do livro Modelling and Control of Robot Manipulators (Sciavicco e Siciliano; 2000);
 - Capítulo 4 (Seções 4.6 e 4.7) do livro Robots Modelling and Control (Spong, Hutchinson e Vidyasagar; 2004)

Obtendo o Jacobiano em 3D

Parte do Jacobiano	Se a junta for Prismática	Se a junta for Rotacional
Linear (Posição)	${}^{0}R_{i-1}\begin{bmatrix}0\\0\\1\end{bmatrix}$	${}^{0}R_{i-1}\begin{bmatrix}0\\0\\1\end{bmatrix} \times ({}^{0}o_n - {}^{0}o_{i-1})$
Rotacional (Ângulos)	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	${}^{0}R_{i-1}\begin{bmatrix}0\\0\\1\end{bmatrix}$

- **J**é6×n
- n: número total de juntas do robô
- i: índice da coluna de J em preenchimento (começa em 1)
- ${}^{0}R_{i-1}$: matriz de rotação do sistema (i-1) para (0)
- 0o_n : coordenadas da origem do sistema {n} no referencial {0}
- $ullet ^0o_{i-1}$: coordenadas da origem do sistema {i-1} no referencial {0}

- Dado o arranjo cinemático em 3D, determinar o Jacobiano:
 - Determinar os sistemas de coordenadas pelas regras DH;
 - Preencher a tabela de DH;

Índice da Junta $(m{i})$	θ_i	d_i	a_i	α_i
0	q0	a0	0	90
1	q1	0	a1	0

 θ : Rotação em torno de z;

d: Translação sobre z;

a: Translação sobre *x*;

 α : Rotação em torno de x;

 Calcular e descrever as transformações homogêneas no formato simbólico, linha a linha;

$${}^{0}T_{1} = \begin{bmatrix} \cos(q_{0}) & 0 & \sin(q_{0}) & 0\\ \sin(q_{0}) & 0 & -\cos(q_{0}) & 0\\ 0 & 1 & 0 & a_{0}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}T_{2} = \begin{bmatrix} \cos(q_{1}) & -\sin(q_{1}) & 0 & a_{1}\cos(q_{1}) \\ \sin(q_{1}) & \cos(q_{1}) & 0 & a_{1}\sin(q_{1}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}T_{2} = {}^{0}T_{1} {}^{1}T_{2} = \begin{bmatrix} \cos(q_{0})\cos(q_{1}) & -\sin(q_{1})\cos(q_{0}) & \sin(q_{0}) & a_{1}\cos(q_{0})\cos(q_{1}) \\ \sin(q_{0})\cos(q_{1}) & -\sin(q_{0})\sin(q_{1}) & -\cos(q_{0}) & a_{1}\sin(q_{0})\cos(q_{1}) \\ \sin(q_{1}) & \cos(q_{1}) & 0 & a_{0} + a_{1}\sin(q_{1}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

https://colab.research.google.com/drive/1 xIUpXViZPUGjAbTTqxw0nJR_kBCsHaRC

Preencher o Jacobiano baseado na tabela

Parte do Jacobiano	Se a junta for Rotacional		
Linear (Posição)	${}^{0}R_{i-1}\begin{bmatrix}0\\0\\1\end{bmatrix} \times ({}^{0}o_n - {}^{0}o_{i-1})$		
Rotacional (Ângulos)	${}^{0}R_{i-1}\begin{bmatrix}0\\0\\1\end{bmatrix}$		

n = 2

Identificar os elementos

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} = \begin{bmatrix} {}^{0}R_{0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times ({}^{0}o_{2} - {}^{0}o_{0}) & {}^{0}R_{1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times ({}^{0}o_{2} - {}^{0}o_{1}) \\ {}^{0}R_{0} \begin{bmatrix} \dot{q}_{0} \\ 0 \\ 1 \end{bmatrix} & {}^{0}R_{1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} & {}^{0}R_{1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$${}^{0}R_{0} = I_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad {}^{0}o_{0} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$$

$${}^{0}o_{1} = \begin{bmatrix} 0 & 0 & a_{0} \end{bmatrix}^{T}$$

$${}^{0}R_{1} = \begin{bmatrix} \cos q_{0} & 0 & \sin q_{0} \\ \sin q_{0} & 0 & -\cos q_{0} \\ 0 & 1 & 0 \end{bmatrix}$$

$${}^0o_0 = [0 \quad 0 \quad 0]^T$$

$${}^{0}o_{1} = [0 \quad 0 \quad a_{0}]^{T}$$

$${}^{0}o_{2} = \begin{bmatrix} a_{1} \cos q_{0} \cos q_{1} \\ a_{1} \sin q_{0} \cos q_{1} \\ a_{0} + a_{1} \sin q_{1} \end{bmatrix}$$

$${}^{0}T_{1} = \begin{bmatrix} \cos(q_{0}) & 0 & \sin(q_{0}) & 0\\ \sin(q_{0}) & 0 & -\cos(q_{0}) & 0\\ 0 & 1 & 0 & a_{0}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}T_{2} = \begin{bmatrix} \cos\left(q_{0}\right)\cos\left(q_{1}\right) & -\sin\left(q_{1}\right)\cos\left(q_{0}\right) & \sin\left(q_{0}\right) & a_{1}\cos\left(q_{0}\right)\cos\left(q_{1}\right) \\ \sin\left(q_{0}\right)\cos\left(q_{1}\right) & -\sin\left(q_{0}\right)\sin\left(q_{1}\right) & -\cos\left(q_{0}\right) & a_{1}\sin\left(q_{0}\right)\cos\left(q_{1}\right) \\ \sin\left(q_{1}\right) & \cos\left(q_{1}\right) & 0 & a_{0} + a_{1}\sin\left(q_{1}\right) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Substituir valores e efetuar operações:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{pmatrix} \begin{bmatrix} a_{1} \cos q_{0} \cos q_{1} \\ a_{1} \sin q_{0} \cos q_{1} \\ a_{0} + a_{1} \sin q_{1} \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \cos q_{0} & 0 & \sin q_{0} \\ \sin q_{0} & 0 & -\cos q_{0} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \sin q_{0} & 0 & \cos q_{1} \\ 0 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ a_{0} \end{bmatrix}$$

$$\begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \end{bmatrix}$$

$$\begin{bmatrix} \cos q_{0} & 0 & \sin q_{0} \\ \sin q_{0} & 0 & -\cos q_{0} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \end{bmatrix}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} a_{1} \cos q_{0} \cos q_{1} \\ a_{1} \sin q_{0} \cos q_{1} \\ a_{0} + a_{1} \sin q_{1} \end{bmatrix} \begin{bmatrix} \sin q_{0} \\ -\cos q_{0} \end{bmatrix} \times \begin{bmatrix} a_{1} \cos q_{0} \cos q_{1} \\ a_{1} \sin q_{0} \cos q_{1} \\ 0 \end{bmatrix} \begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \end{bmatrix}$$

Produto Cruzado entre Vetores

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} a_1 \cos q_0 \cos q_1 \\ a_1 \sin q_0 \cos q_1 \\ a_0 + a_1 \sin q_1 \end{bmatrix} & \begin{bmatrix} \sin q_0 \\ -\cos q_0 \\ 0 \end{bmatrix} \times \begin{bmatrix} a_1 \cos q_0 \cos q_1 \\ a_1 \sin q_0 \cos q_1 \\ a_1 \sin q_0 \end{bmatrix} \begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \end{bmatrix}$$

Produto Cruzado (Cola):
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} = \begin{bmatrix} -a_{1} \sin q_{0} \cos q_{1} \\ a_{1} \cos q_{0} \cos q_{1} \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$-a_{1} \sin q_{1} \cos q_{0} \\ -a_{1} \sin q_{0} \sin q_{1} \\ a_{1} \sin^{2} q_{0} \cos q_{1} + a_{1} \cos^{2} q_{0} \cos q_{1} \\ \sin q_{0} \\ -\cos q_{0} \\ 0 \end{bmatrix} \begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \end{bmatrix}$$

- Simular no CoppeliaSim o manipulador 2R em 3D e sua cinemática inversa pelo método numérico;
- Adaptar o código para implementar e simular no CoppeliaSim o manipulador 3R em 3D e sua cinemática inversa.