Student: Anastasia Rizzo

Unit 2 Seminar

Title: Sets, Set Theory, Truth Tables and Logic

1. Read Partee et al (1993) Chapter 1 and then attempt exercises 1 and 4, located at the end of the chapter.

Exercises

1. Given the following sets:

$$\begin{array}{llll} A & = & \{a,b,c,2,3,4\} & E & = & \{a,b,\{c\}\} \\ B & = & \{a,b\} & F & = & \emptyset \\ C & = & \{c,2\} & G & = & \{\{a,b\},\{c,2\}\} \\ D & = & \{b,c\} & \end{array}$$

classify each of the following statements as true or false

(a)
$$c \in A$$
 (g) $D \subset A$ (m) $B \subseteq G$

(b)
$$c \in F$$
 (h) $A \subseteq C$ (n) $\{B\} \subseteq G$

(c)
$$c \in E$$
 (i) $D \subseteq E$ (o) $D \subseteq G$

(d)
$$\{c\} \in E$$
 (j) $F \subseteq A$ (p) $\{D\} \subseteq G$

(e)
$$\{c\} \in C$$
 (k) $E \subseteq F$ (q) $G \subseteq A$

(f)
$$B \subseteq A$$
 (l) $B \in G$ (r) $\{\{c\}\}\subseteq E$

Answer:

A	Т
В	F
С	F
D	Т
E	F
F	Т
G	Т
Н	F

I	F
J	
K	
ш	F
М	Т
N	Т
0	Т
Р	Т
Q	F
R	Т

4. Consider the following sets:

$$S1 = \{\{\emptyset\}, \{A\}, A\}$$
 $S6 = \emptyset$
 $S2 = A$ $S7 = \{\emptyset\}$
 $S3 = \{A\}$ $S8 = \{\{\emptyset\}\}$
 $S4 = \{\{A\}\}$ $S9 = \{\emptyset, \{\emptyset\}\}$
 $S5 = \{\{A\}, A\}$

Answer the following questions. Remember that the members of a set are the items separated by commas, if there is more than one, between the outermost braces only; a subset is formed by enclosing within braces zero or more of the members of a given set, separated by commas.

- (a) Of the sets S1 S9 which are members of S1?
- (b) which are subsets of S1?
- (c) which are members of S9?
- (d) which are subsets of S9?
- (e) which are members of S4?
- (f) which are subsets of S4?

Answer:

- A. S2, S3, S4, S6, S7, S8.
- B. S3, S4, S5, S7, S8.
- C. S6, S7, S8.
- D. S7, S8.
- E S2, S3.
- F. S3.

2. Read the wiki at Sharma et al (2022) and then attempt the exercises below:

- A. For each clause (a) (f) below, create truth tables for each to answer the question of when each statement is false.
- 1. ~P
- 2. $P \wedge Q$
- 3. P ∨ Q
- 4. $P \rightarrow Q$
- 5. $P \longleftrightarrow Q$
- 6. $P \rightarrow (\sim Q)$

Answer:

1. ~P (Not P)

~P	Р
0	1
1	0

2. $P \wedge Q (P \text{ and } Q)$

Р	Ø	$P \wedge Q$
0	0	0
0	1	0

Р	Q	P \(\text{Q} \)
1	0	0
1	1	1

3. P V Q (P or Q)

Р	ď	P V Q
0	0	0
0	1	1
1	0	1
1	1	1

4. $P \rightarrow Q (P \text{ implies } Q)$

Р	q	$P \rightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

5. $P \longleftrightarrow Q$ (P if and only if Q)

Р	Ø	$P \longleftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

6. $P \rightarrow (\sim Q)$ (P implies not Q)

Р	Q ~Q	P → (~Q)
---	------	----------

0	0	1	1
0	1	0	1
1	0	1	0
1	1	0	0

- B. Consider the statement (~ Q) -> (~ P).
- 1. When is it false?
- 2. Now consider $P \rightarrow Q$. When is it false?
- 3. Do you believe these two compound statements mean the same thing?
- 4. Construct the truth table for the statement (~ Q) → (~ P). Then revisit your answer to (c).

Answer:

- 1. For the statement (\sim Q) -> (\sim P), it is false only when \sim Q (not Q) is true and \sim P (not P) is false. In other words, when Q is false and P is true.
- 2. For the statement P -> Q, it is false when P is true and Q is false.
- 3. These two compound statements do not mean the same thing. The first statement $(\sim Q) \rightarrow (\sim P)$ states that if Q is false, then P must also be false. The second statement P $\rightarrow Q$ states that if P is true, then Q must also be true.
- 4. Here's the truth table for the statement (\sim Q) -> (\sim P):

Q	Р	~Q	~P	(~Q) -> (~P)
0	0	1	1	1
0	1	1	0	0
1	0	0	1	1
1	1	0	0	1

C. Construct the truth table for P XOR Q.

Answer:

<u>P</u>	Q	P XOR Q
<u>0</u>	<u>0</u>	<u>0</u>
<u>0</u>	1	1
1	<u>0</u>	1
<u>1</u>	1	<u>o</u>

$\label{eq:D.Construct} \textbf{D. Construct truth tables for the following statements.}$

- ~ (P \wedge Q)
- 2. P ∨ (Q ∧ R)
- 3. P ∨ (Q ∨ R)
- $(P \lor Q) \lor R$ (Compare to the previous statement.) $(P \to Q) \land (Q \to P)$

Answer:

1. ~ (P ∧ Q):

P	Q	P ∧ Q	~ (P \land Q)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Р	Q	R	Q ∧ R	P ∨ (Q ∧ R)
0	0	0	0	0
0	0	1	0	0

0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3. P V (Q V R):

Р	Q	R	Q∨R	P ∨ (Q ∨ R)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

4. (P V Q) V R:

Р	Q	R	P ∨ Q	(P ∨ Q) ∨ R
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1

1	1	1	1	1
•	•	•	'	•

5. $(P \rightarrow Q) \land (Q \rightarrow P)$:

Р	Q	$P \rightarrow Q$	$Q \rightarrow P$	$(P \to Q) \wedge (Q \to P)$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1