(
	CSR ≥50A Lecture 3.
	Notation :
	* Joint distribution P(XI=XI, XZ=Xz Xn=Xn)
-	* Joint distribution $P(X_1 = x_1, X_2 = x_2 - X_n = x_n)$ involves $O(2^n)$ numbers for binary random
	vanables
	+ More Compact representations
	More Efficient Algorithms
	Example:
	Example: * Binary Variable: Burglary? -> B
	* Binary Variable: Burglary? -> B Earthquak? -> E
	Alarm? $\rightarrow A$
	Who Cells? → J
	Mary Calls? -> M
	* Joint Distribution:
	P(E,B,A,J,M) = P(B) P(E B) P(A B,E)
	P(J B, E, A) P(MIJ, B, E, A)
	* Domain - Specific Assumption of (Marginal, Conditional)
	Independence.
	P(B, E, A, J, M) = P(B)P(E) P(A B, E)
	P(J A) P(M A)
	P COJIN P(MIM)
	Jihdependence from Mindependent from
	P E
	PIE. J.B.E.
	D 1 () ()
1	* Direct Acyclic Graph (DAG)
4	

A	P(J=1/A)
0	0105
1	0.9

A	P(M=1/A)
0	0,0)
1	0.7

These are called anditional probability table (CPT)

Join't probability are casy to compute:

* Any "query" can be answered from joint distribution

distribution:
e.g.
$$P(B=1, E=0|M=1) = P(B=1, E=0, M=1)$$

 $P(M=1)$

* More efficient Algorithm? Exploit structure of DAG (ordering of nodes, missing edges anditional independence) Belief Network (BNS) A Belief Network is a DAG which 1) Nodes -> rendom variables
2) Edges -> anditional dependence.
3) Tables (CPTs) -> how each node depends on parents. Conditional Independence Generally Time that P(XI, --- Xn)=P(Xi)P(Xz|Xi)---P(Xi)XI = [] (Xi | Xi-1, -. Xo) In a particular domain, suppose that = $P(X_1, -X_n) = \frac{T^n P(X_i)}{parent(X_i)}$ where parent (xi') = {x0, x2, ... x2-1}. (*) * Big Idea: represent conditional independence by DAG

* Advantage of BNs:
- complete, self-ansistent, compact:
non-redundant, representation of joint distribution. Ex: for n binery variables, if k
is max # of parents of nodes in DAG
(also celled in-degree) then $O(nz^k)$ to represent joint distribution. Versus $O(z^n)$ clean separation of qualitative & quartetive knowledge. - DAG encodes anditional independence - OPTs encodes numerical influences