Assignment 2

AI22MTECH02003 - Shrey Satapara

January 2022

Q57 Suppose $r_{1.23}$ and $r_{1.234}$ are sample multiple correlation coefficients of X_1 on X_2, X_3 and X_1 on X_2, X_3, X_4 respectively. Which of the following is possible?

- 1. $r_{1.23} = -0.3$ and $r_{1.234} = 0.7$
- 2. $r_{1.23} = 0.7$ and $r_{1.234} = 0.3$
- 3. $r_{1.23} = 0.3$ and $r_{1.234} = 0.7$
- 4. $r_{1.23} = 0.7$ and $r_{1.234} = -0.3$

Sol Here, as given in the question X_2, X_3X_4 are independent random variables and X_1 is dependent variable.

 $r_{1.23}$ is coefficient of multiple correlation of $X_1 on X_2, X_3$ and $r_1.234$ is coefficient of multiple correlation of $X_1 on X_2, X_3, X_4$.

The coefficient of multiple correlation, denoted R, is a scalar that is defined as the Pearson correlation coefficient between the predicted and the actual values of the dependent variable in a linear regression model that includes an intercept.

The coefficient of multiple correlation(R) is known as the square root of the coefficient of determination(\mathbb{R}^2)

for any multi-linear regression model \mathbb{R}^2 can be calculated using the formula given bellow

$$R^{2} = 1 - \frac{sumsquared regression(SSR)}{total sum of squares(SST)}$$
 (1)

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$
 (2)

where,

 y_i is actual value, \hat{y}_i is predicted value, and \bar{y} is mean of actual y values. So, in our case X_1 is actual value and \bar{X}_1 is mean of X_1 values. Here, values of X_1 variable can be predicted by using independent random variables X_2, X_3, X_4 by using multiple linear regression.

here, lets say \hat{X}_{123} is predicted value of X_1 using X_2 , X_3 and \hat{X}_{1234} is predicted value of X_1 using X_2 , X_3 , X_4 .

So

$$\hat{X}_{123} = \beta_2 x_2 + \beta_3 x_3 \tag{3}$$

and

$$\hat{X}_{1234_i} = \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 \tag{4}$$

So here,

$$r_{1.23}^2 = 1 - \frac{\sigma(X_{1_i} - \bar{X}_{123_i})^2}{X_{1_i} - \bar{X}_1}$$
 (5)

and

$$r_{1.234}^2 = 1 - \frac{\sigma(X_{1_i} - \hat{X_{1234_i}})^2}{X_{1_i} - \bar{X_1}}$$
 (6)

Here from equation 2 we can clearly see that coefficient of multiple correlation cannot be negative. Also, if we introduce more variables, the \mathbb{R}^2 will always increase, it can never decrease. This follows mathematically from the observation that,

$$(y - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_p - \beta_{p+1} x_{p+1})^2 \le (y - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_p)^2$$
 (7)

Hence, in our case $\sigma(X_{1_i}-\hat{X_{1234_i}})^2\leq \sigma(X_{1_i}-\hat{X_{123_i}})^2$ is always true. Means, $R_{1.234}\leq R_{1.23}$ is always true.

Hence we can conclude 2 statements that,

- Coefficient of multiple correlation cannot be negative.
- if we introduce more variables, the \mathbb{R}^2 will always increase, it can never decrease

If we look at option 1 value of $r_{1.23}$ is negative and in option 4 value of $r_{1.234}$ is negative hence these options are not possible. In option 2, value of $r_{1.23}$ is grater than value of $r_{1.234}$ which is also not possible.

Only option $3(r_{1.23} = 0.3 \text{ and } r_{1.234} = 0.7)$ satisfy both the conditions hence option 3 is the correct answer