Al VIETNAM All-in-One Course (TA Session)

VANISHING PROBLEM

Content

Giới thiệu Vanishing và Exploding Problem

- Vanishing Problem
- Exploding Problem

Fashion MNIST Vanishing Problem

- Giới thiệu vấn đề
- Solution1: Weight Increasing
- Solution2: Better Activation
- Solution3: Better Optimizer
- Solution4: Normalize Inside Network
- Solution5: Skip Connection
- Solution6: Train Some Layer

Other Methods

Content

Giới thiệu Vanishing và Exploding Problem

- Vanishing Problem
- Exploding Problem

- Giới thiệu vấn đề
- Solution1: Weight Increasing
- Solution2: Better Activation
- Solution3: Better Optimizer
- Solution4: Normalize Inside Network
- Solution5: Skip Connection
- Solution6: Train Some Layer
- Other Methods

Giới thiệu Vanishing và Exploding Problem

General Learning Circle Diagram

Forwarding

•
$$a^0 = x$$

•
$$z^{[l]} = W^{[l]T} * a^{[l-1]}$$

•
$$a^{[l]} = g(z^{[l]})$$

•
$$\widehat{y} = a^{[L]} = g(z^{[L]}) = g(W^{[L]T} * g(W^{[L-1]T} * \dots g(W^{[2]T} * g(W^{[1]T}x))))$$
 if $g(\bullet)$ là linear (identity function)

$$=> \widehat{y} = a^{[L]} = \ g(z^{[L]}) = W^{[L]T} * W^{[L-1]T} * \dots W^{[2]T} * W^{[1]T} x$$

Backpropagation Algorithm

if $g(\bullet)$ là linear (identity function)

$$\bullet \frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial a^{[L]}} * \frac{\partial a^{[L]}}{\partial a^{[L-1]}} * \frac{\partial a^{[L-1]}}{\partial a^{[L-2]}} * \dots * \frac{\partial a^{[2]}}{\partial a^{[1]}} * \frac{\partial a^{[1]}}{\partial w^{[1]}}$$

•
$$Loss = L(\widehat{y}, y), \ \widehat{y} = a^{[L]}$$

$$\bullet \ a^{[l]} = \ g(z^{[l]})$$

$$w^{[l]} = w^{[l]} - \eta \frac{\partial L}{\partial w^l}$$

Exploding Problem

•
$$a^0 = x$$

•
$$z^{[l]} = W^{[l]T} * a^{[l-1]}$$

$$\bullet \ a^{[l]} = \ g(z^{[l]})$$

•
$$\widehat{y} = a^{[L]} = g(z^{[L]}) = g(W^{[L]T} * g(W^{[L-L]T} * \dots g(W^{[2]T} * g(W^{[1]T} x))))$$

if $g(\bullet)$ là linear (identity function)

$$=> \widehat{y} = a^{[L]} = \ g(z^{[L]}) = W^{[L]T} * W^{[L-1]T} * \dots W^{[2]T} * W^{[1]T} x$$

Tất cả = 10 => chỉ 7 layers
$$\hat{y} = 10^7$$

Giới thiệu Vanishing và Exploding Problem

Exploding Problem

•
$$\frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial a^{[L]}} * \frac{\partial a^{[L]}}{\partial z^{[L]}} * \frac{\partial z^{[L]}}{\partial a^{[L-1]}}.$$

$$\bullet \frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial a^{[L]}} * \frac{\partial a^{[L]}}{\partial a^{[L-1]}} * \frac{\partial a^{[L-1]}}{\partial a^{[L-2]}} * \dots * \frac{\partial a^{[2]}}{\partial a^{[1]}} * \frac{\partial a^{[1]}}{\partial w^{[1]}}$$

•
$$\frac{\partial L}{\partial w^{[L]}} = \frac{\partial L}{\partial a^{[L]}} * \frac{\partial a^{[L]}}{\partial z^{[L]}} * \frac{\partial z^{[L]}}{\partial w^{[L]}}$$
• $\frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial a^{[L]}} * \frac{\partial a^{[L]}}{\partial z^{[L]}} * \frac{\partial z^{[L]}}{\partial a^{[L-1]}} \dots * \frac{\partial a^{[2]}}{\partial z^{[2]}} * \frac{\partial z^{[2]}}{\partial a^{[1]}} * \frac{\partial a^{[1]}}{\partial z^{[1]}} * \frac{\partial z^{[1]}}{\partial w^{[1]}}$
if $g(\bullet)$ là linear (identity function)

$$*\frac{\partial a^{[2]}}{\partial a^{[1]}}*\frac{\partial a^{[1]}}{\partial w^{[1]}}$$

•
$$Loss = L(\widehat{y}, y), \ \widehat{y} = a^{[L]}$$

•
$$a^{[l]} = g(z^{[l]})$$

$$w^{[l]} = w^{[l]} - \eta \frac{\partial L}{\partial w^l}$$

Giới thiệu Vanishing và Exploding Problem

Exploding Problem

- "exploding gradients can make learning unstable". Page 282, Deep Learning (by Goodfellow, Yoshua Bengio, Aaron Courville), 2016
- Exploding trong trường hợp tốt nhất việc update weight một lượng lớn làm network học không ổn định và không thể hội tụ
- Exploding trong trường hợp xấu nhất NaN weight không thể update
- Một số dấu hiệu của exploding: loss là NaN ,loss rất lớn và không có dấu hiệu giảm, model không ổn định loss tăng giảm không ổn định nhưng nhìn chung vẫn lớn

Vanishing Problem

•
$$a^0 = x$$

•
$$z^{[l]} = W^{[l]T} * a^{[l-1]}$$

$$\bullet \ a^{[l]} = \ g(z^{[l]})$$

•
$$\widehat{y} = a^{[L]} = g(z^{[L]}) = g(W^{[L]T} * g(W^{[L-L]T} * \dots g(W^{[2]T} * g(W^{[1]T} x))))$$

if $g(\bullet)$ là linear (identity function)

$$=> \widehat{y} = a^{[L]} = \ g(z^{[L]}) = W^{[L]T} * W^{[L-1]T} * \dots W^{[2]T} * W^{[1]T} x$$

Tất cả = 0.1 => chỉ 7 layers
$$\hat{y} = 0.1^7$$

Giới thiệu Vanishing và Exploding Problem

Vanishing Problem

Tất cả = 0.1 => chỉ 7 layers =
$$0.1^7$$

•
$$\frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial a^{[L]}} * \frac{\partial a^{[L]}}{\partial z^{[L]}} * \frac{\partial z^{[L]}}{\partial a^{[L-1]}}.$$
if $a(\bullet)$ là linear (identity function).

$$\bullet \frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial a^{[L]}} * \frac{\partial a^{[L]}}{\partial a^{[L-1]}} * \frac{\partial a^{[L-1]}}{\partial a^{[L-2]}} * \dots * \frac{\partial a^{[2]}}{\partial a^{[1]}} * \frac{\partial a^{[1]}}{\partial w^{[1]}}$$

$$*\frac{\partial a^{[2]}}{\partial a^{[1]}}*\frac{\partial a^{[1]}}{\partial w^{[1]}}$$

•
$$Loss = L(\widehat{y}, y), \ \widehat{y} = a^{[L]}$$

$$\bullet \ a^{[l]} = \ g(z^{[l]})$$

$$w^{[l]} = w^{[l]} - \eta \frac{\partial L}{\partial w^l}$$

Giới thiệu Vanishing và Exploding Problem

Vanishing Problem

- Backpropagation dùng chain rule, khi tính loss sẽ là tích của các gradient trong từng layer
- Gradient càng nhỏ khi nhân lại với nhau sẽ càng tiến về 0
- Parameter ở các layer gần input sẽ không đóng góp vào việc học của model

Al VIETNAM All-in-One Course (TA Session)

Giới thiệu Vanishing và Exploding Problem

Content

Giới thiệu Vanishing và Exploding Problem

- Vanishing Problem
- Exploding Problem

- Giới thiệu vấn đề
- Solution1: Weight Increasing
- Solution2: Better Activation
- Solution3: Better Optimizer
- Solution4: Normalize Inside Network
- Solution5: Skip Connection
- Solution6: Train Some Layer

Giới thiệu vấn đề

Fashion MNIS dataset

• **Train**: 60,000 samples

• **Test**: 10,000 samples

• Classes: 10

• **Size**: 28x28

• Image type: grayscale

Giới thiệu vấn đề

- Model1:
 - Weight Initialization: μ =0, σ =0.05
 - Hidden Layers: 3 layers
 - Activation: sigmoid
 - **Nodes**: 128
 - Loss: CE
 - Optimizer: sgd

```
MLP(
   (layer1): Linear(in_features=784, out_features=128, bias=True)
   (layer2): Linear(in_features=128, out_features=128, bias=True)
   (layer3): Linear(in_features=128, out_features=128, bias=True)
   (output): Linear(in_features=128, out_features=10, bias=True)
)
```


Giới thiệu vấn đề

– Model1:

• Weight Initialization: μ =0, σ =0.05

• Hidden Layers: 3 layers

• Activation: sigmoid

• **Nodes**: 128

• Loss: CE

Giới thiệu vấn đề

– Model2:

• Weight Initialization: μ =0, σ =0.05

Hidden Layers: 5 layers

Activation: sigmoid

• **Nodes**: 128

Loss: CE

```
MLP(
    (layer1): Linear(in_features=784, out_features=128, bias=True)
    (layer2): Linear(in_features=128, out_features=128, bias=True)
    (layer3): Linear(in_features=128, out_features=128, bias=True)
    (layer4): Linear(in_features=128, out_features=128, bias=True)
    (layer5): Linear(in_features=128, out_features=128, bias=True)
    (output): Linear(in_features=128, out_features=10, bias=True)
)
```


Giới thiệu vấn đề

– Model2:

• Weight Initialization: μ =0, σ =0.05

Hidden Layers: 5 layers

• Activation: sigmoid

• **Nodes**: 128

• Loss: CE

Giới thiệu vấn đề

– Model3:

• Weight Initialization: μ =0, σ =0.05

Hidden Layers: 7 layers

• Activation: sigmoid

• **Nodes**: 128

• Loss: CE

```
MLP(
    (layer1): Linear(in_features=784, out_features=128, bias=True)
    (layer2): Linear(in_features=128, out_features=128, bias=True)
    (layer3): Linear(in_features=128, out_features=128, bias=True)
    (layer4): Linear(in_features=128, out_features=128, bias=True)
    (layer5): Linear(in_features=128, out_features=128, bias=True)
    (layer6): Linear(in_features=128, out_features=128, bias=True)
    (layer7): Linear(in_features=128, out_features=128, bias=True)
    (output): Linear(in_features=128, out_features=10, bias=True)
)
```


Giới thiệu vấn đề

– Model3:

• Weight Initialization: μ =0, σ =0.05

Hidden Layers: 7 layers

• Activation: sigmoid

• **Nodes**: 128

• Loss: CE

Giới thiệu vấn đề

Các nguyên nhân có thể gây ra vanishing problem

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \sigma(x)(1-\sigma(x))$$

Giá trị của đạo hàm:

- $\min = 0$
- $\max = 0.25$

Giới thiệu vấn đề

Các nguyên nhân có thể gây ra vanishing problem

=> chỉ 7 layers với giá trị đạo hàm đạt tối đa cho mỗi layer = $\mathbf{0}$, $25^7 \approx \mathbf{6} \cdot \mathbf{1}^{-5}$

if $g(\bullet)$ là sigmoid function $\sigma(x)$

•
$$Loss = L(\widehat{y}, y), \widehat{y} = a^{[L]}$$

$$\bullet \ a^{[l]} = \ g(z^{[l]})$$

$$w^{[l]} = w^{[l]} - \eta \frac{\partial L}{\partial w^l}$$

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

$$f(x)$$
 = probability density function σ = standard deviation μ = mean

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

$$f(x)$$
 = probability density function σ = standard deviation μ = mean

Weight Increasing

– Model:

• Weight Initialization: μ =0, σ =1.0

• Hidden Layers: 7 layers

• Activation: sigmoid

• **Nodes**: 128

• Loss: CE

Weight Increasing

– Model:

• Weight Initialization: μ =0, σ =10.0

• Hidden Layers: 7 layers

• Activation: sigmoid

• **Nodes**: 128

• Loss: CE

Al VIETNAM All-in-One Course (TA Session)

Better Activation

– Model:

• Weight Initialization: μ =0, σ =0.05

• Hidden Layers: 7 layers

Activation: relu

• **Nodes**: 128

• Loss: CE

Better Activation

– Model:

• Weight Initialization: μ =0, σ =0.05

• Hidden Layers: 7 layers

Activation: relu

• **Nodes**: 128

• Loss: CE

• Optimizer: sgd, Ir=0.05

Better Activation

Better Activation

Các nguyên nhân có thể gây ra vanishing problem

•
$$Loss = L(\widehat{y}, y), \ \widehat{y} = a^{[L]}$$

$$\bullet \ a^{[l]} = \ g(z^{[l]})$$

if $g(\bullet)$ là ReLu function $\sigma(x)$

$$w^{[l]} = w^{[l]} - \eta \frac{\partial L}{\partial w^l}$$

Al VIETNAM All-in-One Course (TA Session)

Better Optimizer

– Model:

• Weight Initialization: μ =0, σ =0.05

• Hidden Layers: 7 layers

• Activation: sigmoid

• **Nodes**: 128

• Loss: BCE

Optimizer: Adam

Better Optimizer

- SGD với momentum

Better Optimizer

SGD với momentum

Better Optimizer

Adam: momentum + ma sát

Better Optimizer

Adam: momentum + ma sát

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while

return θ_t (Resulting parameters)

Al VIETNAM
All-in-One Course
(TA Session)

Fashion MNIST Vanishing Problem

Normalize Inside Network

– Model:

• Weight Initialization: μ =0, σ =0.05

• **Hidden Layers**: 7 layers + BatchNorm

• Activation: sigmoid

• **Nodes**: 128

• Loss: BCE

• Optimizer: sgd

Normalize Inside Network

- BatchNormalization:
 - Giúp việc học nhanh hơn và ổn định hơn
 - Train và Test phase hoạt động khác nhau

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

(1)(2) Tính mean và variance của 1 batch

- (3) normalize để mỗi node output theo 1 normal distribtuion
- (4) γ và β là 2 tham số học trong train phase để scale và ship distribtuion

Normalize Inside Network

- Problem: input có giá trị càng lớn sẽ càng bị giới hạn và tại vị trí đó dường như không có đạo hàm
- Sử dụng BatchNormalization giữ hoạt động trong range màu xanh [-4,4] nơi có đạo hàm mạnh

Normalize Inside Network

– Model:

• Weight Initialization: μ =0, σ =0.05

• **Hidden Layers**: 7 layers + CustomNorm

• Activation: sigmoid

• **Nodes**: 128

• Loss: BCE

• Optimizer: sgd

Al VIETNAM All-in-One Course (TA Session)

Skip Connection

$$H(x) = F(x) + x$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial H} \frac{\partial H}{\partial x} = \frac{\partial L}{\partial H} \left(\frac{\partial F}{\partial x} + 1 \right) = \frac{\partial L}{\partial H} \frac{\partial F}{\partial x} + \frac{\partial L}{\partial H}$$

- Khi không cần học ở nhóm layer này thì nó sẽ được điều hướng và học như identity function
- Gradient qua các layer có thể sẽ nhỏ dần và bằng 0, do đó skip connection giup thông tin truyền ngược lại dễ hơn

Skip Connection

– Model1:

• Weight Initialization: μ =0, σ =0.05

Hidden Layers: 7 layers + SkipConnection

• Activation: sigmoid

• **Nodes**: 128

• Loss: BCE

• Optimizer: sgd

Skip Connection

– Model:

• Weight Initialization: μ =0, σ =0.05

• **Hidden Layers**: 7 layers + SkipConnection

• Activation: sigmoid

• **Nodes**: 128

• Loss: BCE

• Optimizer: sgd

Al VIETNAM All-in-One Course (TA Session)

- Train lần 1:
 - Weight Initialization: μ =0, σ =0.05
 - **Hidden Layers**: sub model1 (2 layers)
 - Activation: sigmoid
 - **Nodes**: 128
 - Loss: BCE
 - Optimizer: sgd

Train Some Layer

- Train lần 2:
 - Weight Initialization: μ =0, σ =0.05
 - **Hidden Layers**: sub model1(fix) + sub model2(train)
 - Activation: sigmoid
 - **Nodes**: 128
 - Loss: BCE
 - Optimizer: sgd

fix

- Train lần 3:
 - Weight Initialization: μ =0, σ =0.05
 - Hidden Layers: sub model1(train) + sub model2(train
 - Activation: sigmoid
 - **Nodes**: 128
 - Loss: BCE
 - Optimizer: sgd

Train Some Layer

- Train lần 4:
 - Weight Initialization: μ =0, σ =0.05
 - Hidden Layers: sub model1(fix) + sub

model2(fix) + sub model3(train)

• Activation: sigmoid

• Nodes: 128

Loss: BCE

Optimizer: sqd

- Train lần 5:
 - Weight Initialization: μ =0, σ =0.05
 - Hidden Layers: sub model1(train) + sub model2(train) + sub model3(train)
 - Activation: sigmoid
 - Nodes: 128
 - Loss: BCE
 - Optimizer: sgd

- Train lần 6:
 - Weight Initialization: μ =0, σ =0.05
 - Hidden Layers: sub model1(fix) + sub model2(fix) + sub model3(fix) + sub model4(train)
 - Activation: sigmoid
 - **Nodes**: 128
 - Loss: BCE
 - Optimizer: sgd

- Train lần 7:
 - Weight Initialization: μ =0, σ =0.05
 - Hidden Layers: sub model1(train) + sub model2(train) + sub model3(train) + sub model4(train)
 - Activation: sigmoid
 - **Nodes**: 128
 - Loss: BCE
 - Optimizer: sqd

AI VIETNAM All-in-One Course (TA Session)

Other Methods

A new approach for the vanishing gradient problem on sigmoid activation

Activation functions with
$$\beta$$
 = 0.05, and their derivative functions

Sigmoid(z) =
$$\frac{1}{1 + e^{-z}}$$
$$\frac{d}{dz} (Sigmoid(z)) = Sigmoid(z)(1 - Sigmoid(z))$$

$$g(z) = \operatorname{Sigmoid}(z) + \beta z$$

$$g'(z) = \operatorname{Sigmoid}(z)(1 + \operatorname{Sigmoid}(z)) + \beta$$

- It is very close to the original sigmoid function in the range [-1,1].
- It is a differentiable and unbounded function.
- The derivative of both functions differs by a constant equal to β. That is, the derivative of g is larger than that of the sigmoid in all R.
- When its argument tends to +∞ or $-\infty$, the derivative is asymptotic to β .

A new approach for the vanishing gradient problem on sigmoid activation

```
for l = L, L - 1, \dots, 1 do (Compute \delta)
Algorithm 1 Backpropagation with modified derivative for
                                                                                                                   if l = L then
                                                                                                                      \delta_{out}^{(l)} = -(y - a^{(l)}) \bullet f'_{out}(z^{(l)})
sigmoid function
                                                                                                                      \delta_{\beta}^{(l)} = ((\theta^{(l)})^T \delta_{\beta}^{(l+1)}) \bullet (Sigmoid'(z^{(l)}) + \beta)
1: Input: x, y, \theta: weights and bias, \alpha: learning rate, \beta: modification parameter, f:
    function, f': derivative
                                                                                                      17:
                                                                                                                   end if
2: Output: \theta_{new}
                                                                                                      18:
                                                                                                               end for
3: Where: L is the number of layers,
                                                                                                               for l = L, L - 1, ..., 1 do (Compute gradient)
4: for epoch = 1, 2, ..., N do
                                                                                                                  \nabla_{\theta(l)} {}_{\beta} J(\theta; x, y) = \delta_{\beta}^{(l)} (a^{(l-1)})^T
                                                                                                      20:
       for l = 1, 2, ..., L do (Compute Activations)
          if l=1 then
                                                                                                      21:
                                                                                                               end for
           a^{(0)} = x
                                                                                                      22:
                                                                                                               for l = L, L - 1, ..., 1 do (Update Parameters)
          end if
        z^{(l)} = \theta^{(l)} a^{(l-1)}
                                                                                                                  \theta_{new}^{(l)} = \theta_{old}^{(l)} - \alpha \nabla_{\theta(l)} \beta J(\theta; x, y)
                                                                                                      23:
          a^{(l)} = Sigmoid(z^{(l)})
                                                                                                      24:
                                                                                                               end for
11:
         end for
                                                                                                      25: end for
```


A new approach for the vanishing gradient problem on sigmoid activation

AI VIETNAM All-in-One Course (TA Session)

Other Methods

Vanishing Gradient Analysis in Stochastic Diagonal Approximate Greatest
 Descent Optimization

Fig. 2. Basic operation in a perceptron.

Fig. 1. Block diagram of deep learning neural networks with the proposed optimization method – Stochastic Diagonal Approximate Greatest Descent.

Vanishing Gradient Analysis in Stochastic Diagonal Approximate Greatest
 Descent Optimization

Fig. 2. Basic operation in a perceptron.

$$W_{k+1} = W_k + \eta g(W_k),$$

$$W_{k+1} = W_k + [\mu_k J + H(W_k)]^{-1} g(W_k)$$

where $\mu_k = \frac{\|g(W_k)\|}{R_k}$ is the relative step length J is all-ones matrix.

 $H(W_k)$ is the truncated Hessian matrix and R_k R_k is the radius constant

Vanishing Gradient Analysis in Stochastic Diagonal Approximate Greatest
 Descent Optimization

Fig. 3. A hilly error surface with two local minimums and one global minimum.

Fig. 4. A deep Gaussian trench to simulate drastic gradient changes.