$\operatorname{MATH}1241$ Problem Set Solutions - Algebra

Yue Yu

 $2022~{\rm Term}~2$

Contents

6	Vector Spaces	
	6.4 Problem 4	
	6.5 Problem 5	
	6.6 Problem 6	
	6.7 Problem 7	
	6.8 Problem 8	
	6.9 Problem 9	
	5.23 Problem 23	
	6.27 Problem 27	
	6.36 Problem 36	
	6.37 Problem 37	
	6.46 Problem 46	
	6.52 Problem 52	
	6.59 Problem 59	
	6.60 Problem 60	
	6.61 Problem 61	
	6.62 Problem 62	
	6.63 Problem 63	
	6.64 Problem 64	
	6.65 Problem 65	
	6.66 Problem 66	
	67 Problem 67	

Chapter 6

Vector Spaces

6.4 Problem 4

Closure under Addition

For any vectors $\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{C}^n$, because \mathbb{C} is closed under addition, we have

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix} \in \mathbb{C}^n.$$

Thus, \mathbb{C}^n is closed under addition.

Associative Law of Addition

For any vectors
$$\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$, $w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \in \mathbb{C}^n$, because \mathbb{C} is associative, we have

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \begin{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 + w_1 \\ \vdots \\ u_n + v_n + w_n \end{pmatrix} = \begin{pmatrix} u_1 + (v_1 + w_1) \\ \vdots \\ u_n + (v_n + w_n) \end{pmatrix}$$

$$= \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{pmatrix} = \begin{pmatrix} u_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

Thus, \mathbb{C}^n is associative.

Closure under Multiplication by a Scalar

For any vector $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{C}^n$ and any scalar $\lambda \in \mathbb{C}$, since \mathbb{C} is closed under multiplication by a

scalar, we have

$$\lambda \mathbf{v} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \vdots \\ \lambda v_n \end{pmatrix} \in \mathbb{C}^n.$$

Thus, \mathbb{C}^n is closed under multiplication by a scalar.

Scalar Distributive Law

For any vector $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{C}^n$ and any scalar $\lambda, \mu \in \mathbb{C}$, due to the scalar distributive law of \mathbb{C} , we

have

$$(\lambda + \mu)\mathbf{v} = (\lambda + \mu) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} (\lambda + \mu)v_1 \\ \vdots \\ (\lambda + \mu)v_n \end{pmatrix} \in \mathbb{C}^n.$$

Thus, the scalar distributive law holds for \mathbb{C}^n .

6.5 Problem 5

Denote the *ij*th entry of M by $[M]_{ij}$ where $1 \leq i \leq m$ and $1 \leq j \leq n$. For any matrices $A, B \in M_{mn}(\mathbb{C})$ and scalars $\lambda \in \mathbb{C}$.

For axiom 1, because \mathbb{C} is closed under addition, we have

$$[A]_{ij} + [B]_{ij} \in \mathbb{C}$$
, for all i, j .

Hence, $A + B \in M_{mn}(\mathbb{C})$, which shows that axiom 1 is satisfied.

For axiom 3, because \mathbb{C} is commutative, we have

$$[A]_{ij} + [B]_{ij} = [B]_{ij} + [A]_{ij}$$
, for all i, j .

Hence, A + B = B + A, which shows that axiom 3 is satisfied.

For axiom 6, because \mathbb{C} is closed under scalar multiplication, we have

$$\lambda[A]_{ij} \in \mathbb{C}$$
, for all i, j .

Hence, $\lambda A \in M_{mn}(\mathbb{C})$, which shows that axiom 6 is satisfied.

For axiom 10, because of the distributive law in \mathbb{C} , we have

$$\lambda([A]_{ij} + [B]_{ij}) = \lambda[A]_{ij} + \lambda[B]_{ij}, \text{ for all } i, j.$$

Hence, $\lambda(A+B) = \lambda A + \lambda B$, which shows that axiom 10 is satisfied.

6.6 Problem 6

It is easy to prove that $(\mathbb{C}^n, +, *, \mathbb{R})$ is a vector space because \mathbb{R} is a subfield of \mathbb{C} . It is also easy to see that $(\mathbb{R}^n, +, *, \mathbb{C})$ is not a vector space because, for example, the closure under multiplication by a scalar does not hold.

6.7 Problem 7

This system is not a vector space.

6.8 Problem 8

a)

$$2\mathbf{v} = (1+1)\mathbf{v} = 1\mathbf{v} + 1\mathbf{v} = \mathbf{v} + \mathbf{v}.$$

b)

This can be proved by induction.

6.9 Problem 9

Multiplication of the Zero Vector

$$\lambda \mathbf{0} + \mathbf{0} = \lambda \mathbf{0} = \lambda (\mathbf{0} + \mathbf{0}) = \lambda \mathbf{0} + \lambda \mathbf{0}.$$

By the cancellation property, we obtain $\lambda \mathbf{0} = \mathbf{0}$.

Zero Products

If $\lambda = 0$, by the property of multiplication of the zero vector, we have $\lambda \mathbf{v} = \mathbf{0}$. If $\lambda \neq 0$, then $\lambda^{-1} \neq 0$, and hence,

$$\mathbf{v} = (\lambda^{-1}\lambda)\mathbf{v} = \lambda^{-1}(\lambda\mathbf{v}) = \lambda^{-1}\mathbf{0} = \mathbf{0}.$$

Cancellation Property

If $\lambda \mathbf{v} = \mu \mathbf{v}$, then $(\lambda - \mu)\mathbf{v} = \mathbf{0}$. Since $\mathbf{v} \neq \mathbf{0}$, by the property of zero products, we obtain $\lambda - \mu = 0$, that is, $\lambda = \mu$.

6.23 Problem 23

No, because the zero polynomial of \mathbb{P}_3 is not in S.

6.27 Problem 27

a)

Let W' be the intersection of $\{W_k : 1 \leq k \leq m+1\}$. We prove this by induction.

For m = 1, we have $W = W_1$, which is a subspace of V.

Suppose that for m > 1, W is a subspace of V. Then, for m + 1, since $W \leq V$ and $W_{m+1} \leq V$, we have $\mathbf{0} \in W$ and $\mathbf{0} \in W_{m+1}$, and hence, $\mathbf{0} \in W'$. For any vectors $\mathbf{u}, \mathbf{v} \in W'$ and scalars $\lambda, \mu \in \mathbb{F}$, since $W' = W \cap W_{m+1}$, \mathbf{u} and \mathbf{v} must be in both W and W_{m+1} . Also, since W and W_{m+1} are subspaces of V, they are closed under addition and multiplication by scalars from \mathbb{F} . Thus, $\lambda \mathbf{u} + \mu \mathbf{v}$ must be in both W and W_{m+1} , and hence in W'. By the alternative Subspace Theorem, W' is a subspace of V.

Therefore, by induction, W is a subspace of V.

b)

Suppose that W is not the set of finite linear combinations of vectors from S. Then, $\exists \mathbf{x} \in W$ such that $\mathbf{x} \notin \operatorname{span}(S)$. However, for any $V_i \leqslant V$ and $V_i \supseteq S$, we have $\operatorname{span}(S) \leqslant V_i$, implying that $\mathbf{x} \notin V_i$, and hence $\mathbf{x} \notin W$, which is a contradiction. Therefore, W is the set of finite linear combinations of vectors from S.

6.36 Problem 36

This problem is equivalent to proving that $\operatorname{span}(S)$ is a subspace of V over field \mathbb{F} .

Let
$$S = {\mathbf{v}_1, ..., \mathbf{v}_n} \subseteq V$$
.

The zero vector of V is in span(S) because $\mathbf{0} = 0\mathbf{v}_1 + \cdots + 0\mathbf{v}_n$.

For any vectors $\mathbf{u} = \lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n$, $\mathbf{v} = \mu_1 \mathbf{v}_1 + \cdots + \mu_n \mathbf{v}_n \in \text{span}(S)$ where $\lambda_1, ..., \lambda_n$, $\mu_1, ..., \mu_n \in \mathbb{F}$ and any scalar $\lambda \in \mathbb{F}$, we have

$$\mathbf{u} + \mathbf{v} = (\lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n) + (\mu_1 \mathbf{v}_1 + \dots + \mu_n \mathbf{v}_n)$$
$$= (\lambda_1 + \mu_1) \mathbf{v}_1 + \dots + (\lambda_n + \mu_n) \mathbf{v}_n,$$

where $(\lambda_1 + \mu_1), ..., (\lambda_n + \mu_n) \in \mathbb{F}$. Thus, $(\mathbf{u} + \mathbf{v}) \in \text{span}(S)$, which implies that span(S) is closed under addition.

Also, since

$$\lambda \mathbf{v} = \lambda(\mu_1 \mathbf{v}_1 + \dots + \mu_n \mathbf{v}_n)$$

= $(\lambda \mu_1) \mathbf{v}_1 + \dots + (\lambda \mu_n) \mathbf{v}_1$,

where $(\lambda \mu_1), ..., (\lambda \mu_n) \in \mathbb{F}$, we have $(\lambda \mathbf{v}) \in \text{span}(S)$, which implies that span(S) is also closed under multiplication by a scalar.

Therefore, by the Subspace Theorem, $\operatorname{span}(S)$ is a subspace of V, and hence, the original statement is proved.

6.37 Problem 37

We prove this by induction.

For
$$n = 1$$
, $\sum_{k=1}^{1} \lambda_k \mathbf{v}_k = \lambda_1 \mathbf{v}_1$.

Suppose that for n > 1, $\sum_{k=1}^{n} \lambda_k \mathbf{v}_k = \lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n$ holds regardless of the order. By the closures

under addition and multiplication by a scalar, $\sum_{k=1}^{n} \lambda_k \mathbf{v}_k$ is in the vector space. Hence, for n+1, by

the commutative law of addition, we have $\sum_{k=1}^{n+1} \lambda_k \mathbf{v}_k = \sum_{k=1}^n \lambda_k \mathbf{v}_k + \lambda_{n+1} \mathbf{v}_{n+1} = \lambda_{n+1} \mathbf{v}_{n+1} + \sum_{k=1}^n \lambda_k \mathbf{v}_k$ regardless of the order.

Therefore, by induction, we proved that we do not need to use brackets when writing down linear combinations.

6.46 Problem 46

For

$$\lambda_1 \mathbf{v}_1 + \dots + \lambda_m \mathbf{v}_m = \mathbf{0},$$

multiplying $\frac{\mathbf{v}_i}{\|\mathbf{v}_i\|^2}$ on both sides of the equation, since S is orthogonal, we have

$$\lambda_i = \lambda_i \mathbf{v}_i \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|^2} = (\lambda_1 \mathbf{v}_1 + \dots + \lambda_m \mathbf{v}_m) \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|^2} = \mathbf{0} \cdot \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|^2} = 0, \quad 1 \leqslant i \leqslant m,$$

which implies that $\lambda_1, ..., \lambda_m$ are all zero. Hence, S is a linearly independent set.

6.52 Problem 52

Because by the Rank-nullity Theorem, the rank cannot exceed the number of columns.

6.59 Problem 59

Performing Gaussian Elimination on the matrix whose columns are the vector representations of the polynomials, we have

$$\begin{pmatrix} 1 & 2 & 5 & 0 \\ 1 & -1 & -4 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 5 & 0 \\ 0 & -3 & 9 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Hence, S is a linearly dependent spanning set for \mathbb{P}_2 . A subset of S which is a basis for \mathbb{P}_2 can be $\{p_1, p_2\}$.

6.60 Problem 60

Since $\mathbf{w} \in \text{span}(S)$, \mathbf{w} is some linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. Hence, by the definition of linear dependence, the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}\}$ is a linearly dependent set.

6.61 Problem 61

Here gives a rather informal proof. For any subspace V of \mathbb{R}^4 , we must have $0 \leq \dim V \leq 4$. However, the given subspaces have already covered all the subspaces of dimensions from 0 to 4. Hence, the given subspaces are the only subspaces of \mathbb{R}^4 .

6.62 Problem 62

 $\det(A) = 3$ gives that the columns of A are linearly independent, and hence form a basis for \mathbb{R}^4 . Finding the coordinate vector of \mathbf{v} is equivalent to solving $A\mathbf{x} = \mathbf{v}$ for \mathbf{x} . Performing Gaussian elimination on the augmented matrix $[A|\mathbf{v}]$, we have

$$\begin{pmatrix} 1 & 2 & -1 & 1 & -2 \\ 3 & 2 & 0 & -2 & -6 \\ 0 & 1 & -1 & 1 & -4 \\ 5 & 3 & 0 & -1 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & -1 & 1 & -2 \\ 0 & -4 & 3 & -5 & 0 \\ 0 & 0 & 1 & 1 & 16 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix}.$$

Using back substitution, we obtain

$$[\mathbf{v}]_{\mathscr{B}} = \begin{pmatrix} -2\\4\\12\\4 \end{pmatrix}.$$

6.63 Problem 63

$$\mathbf{v} = A \begin{pmatrix} 1 \\ 6 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 3 & 2 & 0 & -2 \\ 0 & 1 & -1 & 1 \\ 5 & 3 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 6 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 18 \\ 7 \\ 11 \\ 19 \end{pmatrix}.$$

6.64 Problem 64

$$\mathbf{v} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 7 & 4 \\ -2 & -5 & 9 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix}.$$

6.65 Problem 65

a)

Solving

$$\mathbf{v} = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} [\mathbf{v}]_{\mathscr{B}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

for $[\mathbf{v}]_{\mathscr{B}}$, we obtain

$$[\mathbf{v}]_{\mathscr{B}} = \begin{pmatrix} 3\\2\\2 \end{pmatrix}.$$

b)

Solving

$$\mathbf{v} = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} [\mathbf{v}]_{\mathscr{B}} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix},$$

for $[\mathbf{v}]_{\mathscr{B}}$, we obtain

$$[\mathbf{v}]_{\mathscr{B}} = \begin{pmatrix} -a_1 - a_2 + 2a_3 \\ a_2 \\ -a_1 + a_3 \end{pmatrix}.$$

6.66 Problem 66

a)

$$\mathbf{v} = B[\mathbf{v}]_B = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 4 & 3 \\ 2 & 6 & -3 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 12 \\ -8 \\ 21 \end{pmatrix}.$$

b)

Solving

$$\mathbf{v} = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 4 & 3 \\ 2 & 6 & -3 \end{pmatrix} [\mathbf{w}]_B = \begin{pmatrix} 7 \\ -3 \\ 11 \end{pmatrix}$$

for $[\mathbf{w}]_B$, we obtain

$$[\mathbf{w}]_w = \begin{pmatrix} -2\\1\\-3 \end{pmatrix}.$$

6.67 Problem 67

a)

It is easy to see that $\|\mathbf{v}_1\| = \|\mathbf{v}_2\| = \|\mathbf{v}_3\| = 1$ and $\mathbf{v}_1 \cdot \mathbf{v}_2 = \mathbf{v}_2 \cdot \mathbf{v}_3 = \mathbf{v}_3 \cdot \mathbf{v}_1 = 0$. Hence, S is an orthonormal set of vectors in \mathbb{R}^3 .

b)

Let A be a 3 by 3 matrix whose columns are the vectors in S. Then, S is linearly independent because $\det(A) = 1/6 \neq 0$. Also, since |S| = 3, we have that S is a basis for \mathbb{R}^3 .

c)

Let

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \begin{pmatrix} -1\\3\\4 \end{pmatrix}, \quad x_1, x_2, x_3 \in \mathbb{R}.$$

Since S is an orthonormal set, we have

$$x_1 = (x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3) \cdot \mathbf{v}_1 = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \cdot \mathbf{v}_1 = -2\sqrt{2},$$

$$x_2 = (x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3) \cdot \mathbf{v}_2 = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \cdot \mathbf{v}_2 = 2\sqrt{3},$$

$$x_3 = (x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3) \cdot \mathbf{v}_3 = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \cdot \mathbf{v}_3 = \sqrt{6}.$$

Hence,

$$\begin{bmatrix} \begin{pmatrix} -1\\3\\4 \end{bmatrix} \end{bmatrix}_S = \begin{pmatrix} -2\sqrt{2}\\2\sqrt{3}\\\sqrt{6} \end{pmatrix}.$$

Problem 68

Suppose that

$$x_1\mathbf{u}_1 + \dots + x_n\mathbf{u}_n = \mathbf{0}, \quad x_1, \dots, x_n \in \mathbb{R}.$$
 (*)

Since S is an orthonormal set, for any $x_j \in \{x_1, ..., x_n\}$, we have

$$x_j = (x_1\mathbf{u}_1 + \dots + x_n\mathbf{u}_n) \cdot \mathbf{u}_j = \mathbf{0} \cdot \mathbf{u}_j = 0.$$

Hence, (*) holds only when $x_1 = \cdots = x_n = 0$, which implies that S is linearly independent. Also, since |S| = n, we have that S is a basis for \mathbb{R}^n . Further,

$$[\mathbf{v}]_S = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x_j = \mathbf{u}_j \cdot \mathbf{v}.$$