```
In [2]: import pandas as pd
In [3]: data=pd.read csv("/home/placement/Desktop/fiat500.csv")
In [4]: data.head()
Out[4]:
            ID model engine_power age_in_days
                                                 km previous owners
                                                                                   lon price
                                                                          lat
          0 1 lounge
                               51
                                          882
                                               25000
                                                                 1 44.907242
                                                                              8.611560 8900
                               51
                                               32500
                                                                 1 45.666359 12.241890
                  pop
                                         1186
                                                                                      8800
                               74
                                                                 1 45.503300 11.417840 4200
             3
                 sport
                                         4658
                                              142228
                               51
                                             160000
                                                                 1 40.633171 17.634609 6000
               lounge
                                         2739
                                                                 1 41.903221 12.495650 5700
             5
                  pop
                               73
                                         3074 106880
In [5]: data1=data.drop(['lat','lon','ID'],axis=1)
In [6]: data1.head()
Out[6]:
             model engine_power age_in_days
                                              km previous owners price
          0 lounge
                            51
                                      882
                                            25000
                                                              1 8900
                                      1186
                                           32500
                                                                 8800
                            51
               pop
                                                                 4200
              sport
                            74
                                      4658
                                           142228
                                                              1 6000
          3 lounge
                            51
                                      2739 160000
                            73
                                      3074 106880
                                                              1 5700
               pop
In [7]: data=pd.get dummies(data)
```

In	[8]	:	data
	LOI		aucu

Out[8]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

In [9]: data.shape

Out[9]: (1538, 11)

In [10]: data

Out[10]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

In [11]: y=data['price']

In [12]: x=data.drop('price',axis=1)

```
In [13]: y
Out[13]: 0
                 8900
                  8800
                 4200
         2
         3
                 6000
                 5700
                  . . .
         1533
                 5200
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1538, dtype: int64
        !pip install scikit-learn
In [14]:
         Requirement already satisfied: scikit-learn in ./anaconda3/lib/python3.10/site-packages (1.2.1)
         Requirement already satisfied: joblib>=1.1.1 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear
         n) (1.1.1)
         Requirement already satisfied: numpy>=1.17.3 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear
         n) (1.23.5)
         Requirement already satisfied: threadpoolctl>=2.0.0 in ./anaconda3/lib/python3.10/site-packages (from scik
         it-learn) (2.2.0)
         Requirement already satisfied: scipy>=1.3.2 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear
         n) (1.10.0)
In [15]: from sklearn.model selection import train test split
In [16]: x train, x test, y train, y test = train test split(x, y, test size=0.33, random state=42)
```

.7]: x_t	test	.hea	ad(5)									
.7]:		ID	engine_powe	r age_in_day	s km	previous_owne	ers	lat	lon model_lour	ge model_p	oop model_s	port
4	81	482	5	1 319	7 120000)	2 40.1747	02 18.167	629	0	1	0
	76	77	6	2 210	1 103000)	1 45.7978	59 8.644	440	0	1	0
15	02 1	1503	5	1 67	0 32473	3	1 41.1078	80 14.208	810	1	0	0
6	69	670	5	1 91	3 29000)	1 45.7785	91 8.946	250	1	0	0
14	09 1	1410	5	1 76	2 18800)	1 45.5386	89 9.928	310	1	0	0
.8]: x_t	trai	n.sh	nape									
8]: (10	930,	10))									
.9]: x_t	trai	n.he	ead()									
.9]:	ı	D er	ngine_power	age_in_days	km p	revious_owners	lat	lon	model_lounge	model_pop	model_sport	
52	7 52	28	51	425	13111	1	45.022388	7.58602	1	0	0	=
12	9 13	30	51	1127	21400	1	44.332531	7.54592	1	0	0	
60	2 60	03	51	2039	57039	1	40.748241	14.52835	0	1	0	
33	1 33	32	51	1155	40700	1	42.143860	12.54016	1	0	0	
32	3 32	24	51	425	16783	1	41.903221	12.49565	1	0	0	
	trai	.n.he	ead()									
[0]: 527 129 602 333 323	9 2 1 3	999 950 759 875 910	90 90 50	in+64								

Type *Markdown* and LaTeX: α^2

```
In [21]: y test.head()
Out[21]: 481
                   7900
                   7900
          76
          1502
                   9400
          669
                   8500
          1409
                   9700
          Name: price, dtype: int64
In [22]: from sklearn.linear model import LinearRegression
          reg=LinearRegression()
          reg.fit(x train,y train)
Out[22]:
         LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [23]: ypred=reg.predict(x test)
```

```
In [24]: ypred
Out[24]: array([ 5819.19308764,
                                  7248.82914161,
                                                  9741.8936974 ,
                                                                 9798.98033074,
                10055.00624601,
                                  9551.4955679 ,
                                                  9758.01743879, 10122.9778365,
                 9654.9661814 ,
                                  9251.1403257 , 10478.09512253 , 7807.3005255 ,
                  7705.15873781,
                                  6295.63244894,
                                                  9545.40486313, 10422.92177704,
                                  7756.9171161 ,
                  9616.90811615.
                                                  4893.88454414, 10581.46142719,
                 10465.24078346, 10443.29318231,
                                                  7518.43696046, 10028.21911459,
                  6990.73118896,
                                  8989.86900819,
                                                  4823.51364349,
                                                                  6989.03118684,
                  7822.83203734,
                                  9683.17944083,
                                                  7344.21343132,
                                                                  5341.43860798,
                                  5092.38401339,
                  5420.78405336,
                                                  8971.44357515,
                                                                   5702.81242412,
                  9920.16285466,
                                  8334.58448277,
                                                  6220.93323723,
                                                                  8389.23958511,
                  9695.84208061,
                                  6859.59630725,
                                                  9101.22635456, 10063.22592995,
                  8621.83915759, 10175.06753933,
                                                  9063.21918346,
                                                                  8867.24865352,
                  7094.44228184,
                                                  9474.82390731, 10406.09102832,
                                  9058.37693565.
                 10112.65006224,
                                  6820.90463865,
                                                  9700.36507783.
                                                                   9382.18149429,
                 9632.57617775, 10553.81356008,
                                                  9847.21129432,
                                                                  7247.16814789,
                 9990.23331336,
                                  7084.23300123,
                                                  9977.34233656,
                                                                   7245.01115798,
                 6490.89305576,
                                  9737.86785115,
                                                                   8568.7125607 ,
                                                  9853.54349825,
                                  6484.69051659,
                                                  7883.1895563 ,
                                                                   6870.28308427,
                  8506.81438703,
                  8263.36833348, 10551.03496347,
                                                  7434.71134313,
                                                                   8637.85174602,
                                                   7224 (0000000
In [25]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[25]: 0.8428319728488683
In [26]: from sklearn.metrics import mean squared error
         mean squared error(ypred,y test)
Out [26]: 577189.6736608233
In [27]: import math
         a=577189.6736608233
         print(math.sqrt(a))
         759.7300005007195
```

```
In [28]: y_test.head()

Out[28]: 481     7900
          76     7900
          1502     9400
          669     8500
          1409     9700
          Name: price, dtype: int64
```

```
In [29]: Results= pd.DataFrame(columns=['price', 'predicate'])
    Results['price']=y_test
    Results['predicate']=ypred
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(15)
```

Out[29]:

	index	price	predicate	ld
0	481	7900	5819.193088	0
1	76	7900	7248.829142	1
2	1502	9400	9741.893697	2
3	669	8500	9798.980331	3
4	1409	9700	10055.006246	4
5	1414	9900	9551.495568	5
6	1089	9900	9758.017439	6
7	1507	9950	10122.977837	7
8	970	10700	9654.966181	8
9	1198	8999	9251.140326	9
10	1088	9890	10478.095123	10
11	576	7990	7807.300526	11
12	965	7380	7705.158738	12
13	1488	6800	6295.632449	13
14	1432	8900	9545.404863	14

```
In [30]: Results['diff_price']=Results.apply(lambda row:row.price-row.predicate,axis=1)
```

In [31]: Results.head(15)

Out[31]:

	index	price	predicate	ld	diff_price
0	481	7900	5819.193088	0	2080.806912
1	76	7900	7248.829142	1	651.170858
2	1502	9400	9741.893697	2	-341.893697
3	669	8500	9798.980331	3	-1298.980331
4	1409	9700	10055.006246	4	-355.006246
5	1414	9900	9551.495568	5	348.504432
6	1089	9900	9758.017439	6	141.982561
7	1507	9950	10122.977837	7	-172.977837
8	970	10700	9654.966181	8	1045.033819
9	1198	8999	9251.140326	9	-252.140326
10	1088	9890	10478.095123	10	-588.095123
11	576	7990	7807.300526	11	182.699474
12	965	7380	7705.158738	12	-325.158738
13	1488	6800	6295.632449	13	504.367551
14	1432	8900	9545.404863	14	-645.404863

In []: