Chapitre 16 - TD - 27 avril 2020

TD 16 - Exercice 8 :

Soit la fonction f définie, pour $x \in \mathbb{R}^*$, par : $f(x) = \frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{ch} x - 1}$.

- 1. Écrire le développement limité à l'ordre 4 de f(x) en 0. En déduire le prolongement par continuité de f en 0.
- 2. Montrer que f, ainsi prolongée, est dérivable en 0. Préciser la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse 0 et au voisinage de ce point.

TD 16 - Exercice 10 :

On étudie la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1>0$ et $u_{n+1}=\frac{1}{n+1}e^{-u_n}$.

- 1. À l'aide d'un encadrement, montrer que (u_n) converge vers 0.
- 2. Déterminer un équivalent de u_n et en déduire un développement de la forme :

$$u_n = \frac{a}{n} + o\left(\frac{1}{n}\right).$$

- 3. Déterminer a, b réels tels que $u_n = \frac{a}{n} + \frac{b}{n^2} + o\left(\frac{1}{n^2}\right)$.
- 4. Déterminer a, b, c réels tels que $u_n = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + o\left(\frac{1}{n^3}\right)$.

TD 17 - Exercice 2 :

Dans \mathbb{R}^4 , trouver le rang de la famille de vecteurs : $\vec{a}=(3,2,1,0), \quad \vec{b}=(2,3,4,5), \quad \vec{c}=(0,1,2,3), \quad \vec{d}=(1,2,1,2), \quad \vec{e}=(0,-1,2,1).$

TD 17 - Exercice 13 :

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par f(x, y, z) = (x + y + z, x + y + z, z). Montrer que f est linéaire. Déterminer $\operatorname{Ker} f$ et $\operatorname{Im} f$.

Déterminer f(P) où P est le plan vectoriel d'équation x + y + z = 0.

TD 17 - Exercice 8:

On considère la famille de polynômes (P_1,P_2,P_3) de $\mathbb{R}_2[X]$ définis par $P_1=1+3X-X^2$, $P_2=1+4X$, $P_3=2X-X^2$.

- 1. Montrer que $F = \text{Vect}(P_1, P_2)$ et $G = \text{Vect}(P_3)$ sont deux sous-espaces vectoriels supplémentaires.
- 2. Déterminer les expressions analytiques des projections sur F et G.

TD 17 - Exercice 6 :

Soit *E* l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui s'écrivent $\forall x \in \mathbb{R}$, $f(x) = (ax^2 + bx + c)e^{4x}$ avec $(a, b, c) \in \mathbb{R}^3$.

- 1. Montrer que E est un sous-espace vectoriel de dimension finie de l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$.
- 2. Soit D l'application définie sur E par $D: f \longmapsto f'$. Montrer que D est un automorphisme de E. Déterminer son application réciproque.

TD xx - Exercice xx :

