Coming soon: PS7

Class 16:
Non-deterministic
Finite Automata

University of Virginia cs3120: DMT2
Wei-Kai Lin

Photo:

Movie Poster

Recall: Proving DFA-Comp = Reg-Fun

We proved DFA-Comp \subseteq Reg-Fun: for every DFA M, there is equivalent reg. exp. e

(see TCS Section 6.4.2 for bug-free proof)

Want the other way: for every reg. exp. e, there is equivalent DFA M

High-Level Proof Plan

We can convert every $M_A \in A$ to a $M_B \in B$ Such that for all x, M_A accepts x iff M_B accepts x

Recall: Syntax of Regular Expressions

Definition 6.6 (Regular expression)

A regular expression e over an alphabet Σ is a string over $\Sigma \cup \{(,),|,*,\emptyset,""\}$ that has one of the following forms:

- 1. $e = \sigma$ where $\sigma \in \Sigma$
- 2. e = (e'|e'') where e', e'' are regular expressions.
- Base cases: easy Inductive cases: hard
- Tradetive eases. Hara
- 3. e=(e')(e'') where e',e'' are regular expressions. (We often drop the parentheses when there is no danger of confusion and so write this as e' e''.)
- 4. $e = (e')^*$ where e' is a regular expression.

Finally we also allow the following "edge cases": $e = \emptyset$ and e = "". These are the regular expressions corresponding to accepting no strings, and accepting only the empty string respectively.

Recall: Kleene Star is Hard

Suppose M_1 is equivalent to e_1

Hard: unclear how to splits string x in concat (and *). What's the **next state** (when accepted) in M_1 ? Concat is same.

Big Idea: Non-deterministic

Suppose M_1 is equivalent to e_1

Allow transition to multiple states (clearly, not DFA) Accept if exist "a choice" to accept

How should we change our DFA description to allow for *choices*?

A (deterministic) finite automaton is a

5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- 1. Q a finite set (the *states*)
- 2. Σ a finite set (the *alphabet*)
- 3. $\delta: Q \times \Sigma \to Q$ transition function
- 4. $q_0 \in Q$ the start state
- 5. $F \subseteq Q$ the set of accept states

A **Nondeterministic** *Finite* **Automaton** is

a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- 1. Q a finite set (the *states*)
- 2. Σ a finite set (the *alphabet*)
- 3. $\delta: Q \times \Sigma \rightarrow pow(Q)$
- 4. $q_0 \in Q$ the start state
- 5. $F \subseteq Q$ the set of accept states

How to evaluate an NFA? Try all possible "choices"?

How can we try all possible "executions"?

Defining the NFA Model

A nondeterministic finite automaton is

- a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:
- 1. Q a finite set (the *states*)
- 2. Σ a finite set (the *alphabet*)
- 3. $\delta: Q \times \Sigma \to pow(Q)$
- 4. $q_0 \in Q$ the start state
- 5. $F \subseteq Q$ the set of accept states

Recall our DFA model:

The string $x = b_0 b_1 \dots b_n$ is matched by the DFA $M = (Q, \Sigma, \delta, q_0, F)$ iff there are states $s_0, s_1, s_2, \dots, s_n \in Q$ such that $s_{i+1} = \delta(s_i, b_i)$ for all $i = 0, \dots, n-1$ and $s_0 = q_0$ and $s_n \in F$.

Defining the NFA Model

A nondeterministic finite automaton is

- a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:
- 1. Q a finite set (the *states*)
- 2. Σ a finite set (the *alphabet*)
- 3. $\delta: Q \times \Sigma \to pow(Q)$
- 4. $q_0 \in Q$ the start state
- 5. $F \subseteq Q$ the set of accept states

```
The string x = b_0 b_1 \dots b_n is matched by the NFA M = (Q, \Sigma, \delta, q_0, F) iff there are states s_0, s_1, s_2, \dots, s_n \in Q such that s_{i+1} \in \delta(s_i, b_i) for all i = 0, \dots, n-1 and s_0 = q_0 and s_n \in F.
```

Recall our DFA model:

The string $x = b_0 b_1 \dots b_n$ is matched by the DFA $M = (Q, \Sigma, \delta, q_0, F)$ iff there are states $s_0, s_1, s_2, \dots, s_n \in Q$ such that $s_{i+1} = \delta(s_i, b_i)$ for all $i = 0, \dots, n-1$ and $s_0 = q_0$ and $s_n \in F$.

Recalling the High-Level Proof Plan

We can convert every $M_A \in A$ to a $M_B \in B$ Such that for all x, M_A accepts x iff M_B accepts x

High-Level Proof Plan

Base Cases are Similar to DFA

Recursive Case: OR

 $e=(e_1)|(e_2)$. Suppose we have corresponding NFA M_1 and M_2 for e_1 and e_2 .

How to make *M* for *e*?

Idea: Add a new init state and new edges

Recursive Case: Kleene Star

 $N \not\vdash A$ M_1 is equivalent to e_1

High-Level Proof Plan

Power of NFA/DFA

1. Is there any function a **DFA** can compute that cannot be computed by an **NFA**?

2. Is there any function an NFA can compute that cannot be recognized by a DFA?

Power of NFA/DFA

1. Is there any function a **DFA** can compute that cannot be computed by an **NFA**? DFA-Comp ⊆ NFA-Comp

No: NFAs are at least as powerful as DFAs.

2. Is there any function an NFA can compute that cannot be recognized by a DFA?

 $NFA-Comp \subseteq DFA-Comp?$

NFA-Comp ⊆ DFA-Comp

Idea: the states of DFA is the power set of NFA

From NFA to DFA

States Q' = pow(Q)

Alphabet
$$\Sigma' = \sum$$
Init state $q'_0 = \{ \xi_0 \}$

- Transition $\delta'(S \subseteq Q, b \in \Sigma') =$

$$S = \{A, B\}$$

• Accept states
$$F' = \{S \subseteq Q: \exists \alpha \in S, t \in A, t \in$$

$$\bigcup_{\alpha \in S} \langle \alpha, b \rangle$$

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- 1. Q a finite set (the *states*)
- Σ a finite set (the *alphabet*)
- 3. $\delta: Q \times \Sigma \to pow(Q)$
- 4. $q_0 \in Q$ the start state
- 5. $F \subseteq Q$ the set of accept states

Charge

Nondeterministic Finite Automata

From regular expressions to NFA

From NFA to DFA

Coming soon: PS7, PRR8