Prawdopodobieństwo całkowite i warunkowe

Prawdopodobieństwo całkowite. Niech będzie dana przestrzeń probabilistyczna (Ω, Σ, P) oraz zdarzenia $A_1, A_2, A_n \in \Sigma$ spełniająca warunki: $P(A_i)>0$ dla każdego i=1,...,n; $A_i\cap A_j=\emptyset$ dla wszystkich $i\neq j;$ $A_1\cup...A_n=\Omega$

Prawdopodobieństwo warunkowe: $P(B|A) = \frac{P(B \cap A)}{P(A)}$

Wtedy dla każdego zdarzenia $B \in \Sigma$ zachodzi następująca równość: $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$

Wzór Bayesa: $P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$

Niezależność zdarzeń: $P(A \cap B) = P(A) \cdot P(B), P(A_{k_1} \cap ... \cap A_{k_r}) = P(A_{k_1}) \cdot ... \cdot P(A_{k_r})$

Wartość oczekiwana i wariancja

Wartość oczekiwana dla rozkładu dyskretnego: $m = E(X) = \sum_{i=1}^{n} x_i p_i$, ciągłego: $m = E(X) = \int_{-\infty}^{\infty} x f(x) dx$

Wariancja: $\sigma^2 = D^2(X) = E((X - m)^2)$, odchylenie standardowe: $\sigma = \sqrt{\sigma^2} = \sqrt{D^2(X)}$

Wariancja dla rozkładu dyskretnego: $D^2(X) = \sum_{i=1}^n (x_i - m)^2 p_i$, dla rozkładu ciągłego: $D^2(X) = \int_{-\infty}^{\infty} (x - m)^2 f(x) dx$

Zmienne niezależne gdy dla dowolnych zdarzeń $B_1, ..., B_k \in \Sigma$: $P(X_1 \in B_1, ..., X_k \in B_k) = P(X_1 \in B_1) \cdot ... \cdot P(X_k \in B_k)$

Wartości własności i wariancji:

 $\text{jeżeli } X = const = c, \text{ to } E(X) = c; \quad E(aX) = aE(X) \\ \forall a \in \mathbb{R}; \quad E(X+Y) = E(X) \\ + E(Y); \quad D^2(X) = E(X^2) \\ - E(X)^2; \quad D^2(aX) = a^2D^2(X) \\ \forall a \in \mathbb{R}; \quad D^2(aX) = a^2D^2(X) \\ + D^2(A) = a^2$ \mathbb{R} : X = const = c to $D^2(X) = 0$:

jeżeli X i Y są niezależnymi zmiennymi losowymi, to $D^2(X+Y)=D^2(X)+D^2(Y)$

Rozkłady

Rozkład Bernouliego: $\binom{n}{k} p^k (1-p)^{n-k}$, m=np, $\sigma^2=np(1-p)$

Jeżeli $X \sim B(n,p)$ i $Y \sim B(m,p)$ są dwiema niezależnymi zmiennymi losowymi o rozkładzie dwumianowym, wtedy ich suma X+Y jest zmienną losową o rozkładzie dwumianowym B(n+m,p)

Rozkład Poissona : $f(x) = \frac{e^{-\lambda} \lambda^k}{k!}$, $m = \lambda$, $\sigma^2 = \lambda$

Dla $n\geqslant 100 \land p\leqslant \frac{1}{10}$ rozkład Poissona z $\lambda=np$ dobrze przybliza rozkład Bernouliego Dla dwóch zmiennych losowych o rozkładzie Poissona z parametrami λ i μ suma tych zmiennych losowych ma rozkład Possiona o parametrze $\lambda+\mu$ Rozkład geometryczny: $P(k)=p(1-p)^{k-1}, \ m=\frac{1}{p}, \ \sigma^2=\frac{1-p}{p^2}$

Rozkład jednostajny: $f(x) = \frac{1}{b-a}$ gdy $x \in [a,b]$, 0 gdy $x \notin [a,b]$, F(x) = 0 gdy x < a, $\frac{x-a}{b-a}$ gdy $x \in [a,b]$, 1 gdy x > b, $m = \frac{a+b}{2}$, $\sigma^2 = \frac{(b-a)^2}{12}$ Rozkład wykładniczy: $f(x) = \lambda e^{-\lambda x}$, $F(x) = 1 - e^{-\lambda x}$, $m = \frac{1}{\lambda}$, $\sigma^2 = \frac{1}{\lambda^2}$

Rozkład normalny: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$

Własności $\Phi(x)$: $\Phi(x) = 1 - \Phi(-x)$, $\Phi^{-1}(\alpha) = -\Phi^{-1}(1 - \alpha)$, $x \in \mathbb{R}$, $\alpha \in [0, 1]$, $\Phi_{m,\sigma}(x) = \Phi(\frac{x - m}{\sigma})$

Dla X bedącego zmienną losową o rozkładzie normalnym $N(m,\sigma)$ i Y=aX+b, gdzie $a\neq 0$ Y ma rozkład normalny $N(am+b,|a|\sigma)$

Dystrybuanta zmiennej losowej: $F(x) = F_X(x) = P_X((-\infty, x]) = P(X \in (-\infty, x]).$

Pochodna dystrybuanty to funkcja rozkładu: F'(x) = f(x)

Dystrybuanta jest niemalejąca, $\lim_{x\to-\infty}F(x)=0$, $\lim_{x\to\infty}F(x)=1$. Dla rozkładu dyskretnego: $F(x)=\sum_{i:x_i\leqslant x}p_i$

Centralne twierdzenie graniczne 4

Dla $S_n = X_1 + ... + X_n$, gdzie X_i to niezależne zmienne losowe z tym samym rozkładem, nadzieją m i wariancją σ^2 , $\sigma > 0$: $Z_n = \frac{S_n - E(S_n)}{\sqrt{D^2(S_n)}} = \frac{S_n - nm}{\sigma \sqrt{n}}$ - Z_n to standaryzacja sumy S_n , $E(Z_n) = 0$, $D^2(Z_n) = 1$

tw. Lindeberga-Levy'ego: $\forall x \in \mathbb{R} \lim_{n \to \infty} P(Z_n \leq x) = \Phi(x)$

Centralne twierdzenie graniczne dla sum: $\forall x \in \mathbb{R} \lim_{n \to \infty} (F_{S_n}(x) - \Phi_{nm,\sigma\sqrt{n}}(x)) = 0$ Centralne twierdzenie graniczne dla średnich: $\forall x \in \mathbb{R} \lim_{n \to \infty} (F_{\underline{S_n}}(x) - \Phi_{m,\frac{\sigma}{\sqrt{n}}}(x)) = 0$

tw. de Moivre'a-Laplace'a (gdy X_i to ciąg niezależnych prób Bernoullego z tym samym p): $\forall x \in \mathbb{R} \ P\left(\frac{S_n - np}{\sqrt{npq}} \leqslant x\right) \to \Phi(x)$

Estymacja punktowa

Niech $X_1,...,X_n$ będzie próbką prostą ze zmiennej losowej X. Estymatorem parametru θ rozkładu $P_{\theta} \in \mathbb{P}$ "odpowiednio bliskiego" rozkładowi P_X nazywamy zmienną losową $\hat{\theta} \circ (X_1, ..., X_n) = T(X_1, ..., X_n)$ gdzie T jest odpowiednio dobraną funkcją, która "rozsądnie" przybliża (estymuje) wartość θ . Przykładami estymatorów są: średnia arytmetyczna z próbki - $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$ - estymator wartości oczekiwanej E(X). Mediana z próbki - $meX_{(\lceil n/2 \rceil)}$ - estymator mediany. Wariancja z próbki - $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2$ (jeżeli E(X) = m jest znane), lub $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ (jeżeli E(X) = m nie jest znane) - estymator wariancji $D^2(X)$

Estymator nieobciażony - $E(\hat{\theta}) = \theta$.

Estymator zgodny - $P(\omega \in \Omega : \lim_{n \to \infty} \hat{\theta}_n(\omega) = \theta) = 1$

Metoda MLE: dla zmiennych losowych $X_1, ..., X_n$

 $L(\theta) = \prod_{i=1}^{n} P(X_i = x_i)$ - dla zmiennych dyskretnych

 $L(\theta) = \prod_{i=1}^{n} f(x_i)$ - dla zmiennych ciągłych

Żeby wyznaczyć MLE (θ) należy wyznaczyć maximum funkcji wiarygodności $L(\theta)$

Przedziały ufności Estymacja Przedziałowa

Dla wartości oczekiwanej w rozkładzie normalnym ze znanym odchyleniem standardowym (na poziomie ufności $1-\alpha$): $(\bar{X}-\frac{\sigma}{\sqrt{n}}\Phi^{-1}(1-\frac{\alpha}{2}),\bar{X}+\frac{\sigma}{\sqrt{n}}\Phi^{-1}(1-\frac{\alpha}{2})), (-\infty,\bar{X}+\frac{\sigma}{\sqrt{n}}\Phi^{-1}(1-\alpha)), (\bar{X}-\frac{\sigma}{\sqrt{n}}\Phi^{-1}(1-\alpha),\infty)$

$$(\bar{X} - \frac{\sigma}{2}\Phi^{-1}(1-\frac{\alpha}{2}), \bar{X} + \frac{\sigma}{2}\Phi^{-1}(1-\frac{\alpha}{2})), (-\infty, \bar{X} + \frac{\sigma}{2}\Phi^{-1}(1-\alpha)), (\bar{X} - \frac{\sigma}{2}\Phi^{-1}(1-\alpha), \infty)$$

Dla wartości oczekiwanej w rozkładzie normalnym z nieznanym odchyleniem standardowym: $(\bar{X} - \frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\frac{\alpha}{2}), \bar{X} + \frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\frac{\alpha}{2})), \ (-\infty, \bar{X} + \frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\alpha)), \ (\bar{X} - \frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\alpha), \infty),$ Dla frakcji. Próbka prosta $X_1, ..., X_n$ pochodzi z rozkładu dwupunktowego B(1, p). W przypadku. Dla próbki dużej (n > 30):

 $(\hat{p} - \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\Phi^{-1}(1-\frac{\alpha}{2}), \hat{p} + \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\Phi^{-1}(1-\frac{\alpha}{2})) \;, \; (0,\hat{p} + \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\Phi^{-1}(1-\alpha) \;, \; (\hat{p} - \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\Phi^{-1}(1-\alpha), 1) \; \text{gdzie} \; \hat{p} = \bar{X_n} = \frac{\#\{i: X_i = 1\}}{n} + \frac{(i-1)^2}{n} + \frac{(i-1)^2}{n$

Dla wariancji w rozkładzie normalnym z nieznaną wartością oczekiwaną: $\left(\frac{nS^2}{F_{n-1}^{-1}(1-\frac{\alpha}{2})}, \frac{nS^2}{F_{n-1}^{-1}(\frac{\alpha}{2})}\right), \left(0, \frac{nS^2}{F_{n-1}^{-1}(\alpha)}\right), \left(\frac{nS^2}{F_{n-1}^{-1}(1-\alpha)}, \infty\right)$ Przedziały ufności dla wartości oczekiwanej - uwagi. Jeżeli rodzina rozkładów nie jest znana oraz próbka jest duża $(n \geqslant 30)$, to konstruując

przedziały ufności dla wartości oczekiwanej m możemy rozważyć zmienną losową $Z = \frac{\bar{X} - m}{S} \sqrt{n} \approx N(0, 1)$

Jeżeli natomiast próbka jest mała (n < 30) oraz pochodzi z rozkładu B(1,p) to konstruując przedział ufności dla p możemy rozważyć zmienną losową $K = \#\{i : X_i = 1\} \sim B(n, p)$

Testowanie hipotez statystycznych

Próbka $X_1,...,X_n$ z rozkładu $N(m,\sigma)$, stat. testowe dają zm. los. przy prawdziwości hipotez zerowych.

Testowanie hipotez $H_0: m=m_0$ o wart. oczekiwanej w rozkładzie norm.: gdy σ znana $z=z(x_1,...,x_n)=\frac{\bar{x}-m_0}{\sigma}\sqrt{n}$ dająca zm. los. $Z=z(X_1,...,X_n)$ o rozkładzie N(0,1), gdy σ nieznana $t=t(x_1,...,x_n)=\frac{\bar{x}-m_0}{s}\sqrt{n-1}$ dająca zm. los. $T=t(X_1,...,X_n)$ o rozkładzie t-studenta o n-1 st. swobody. Testowanie hipotez $H_0: \sigma^2=\sigma_0^2$ o wariancji w rozkładzie norm.:

 $\chi = \chi(x_1, ..., x_n) = \frac{ns^2}{\sigma_0^2}$ dająca zm. los. $\chi = \chi(X_1, ..., X_n)$ o rozkładzie χ a o n-1 st. swobody.

Testowanie hipotez $H_0^{\circ}: p = p_0$ o frakcji,

gdy $X_1,...,X_n$ z rozkładu B(1,p): dla próbki $n\geqslant 30$ używamy stat. testowej $z=z(x_1,...,x_n)=\frac{\hat{p}-p_0}{\sqrt{\hat{p}(1-\hat{p})}}\sqrt{n}$ dająca zm. los. $Z=z(X_1,...,X_n)$ o rozkładzie N(0,1),

dla małej próbki stat. testowa $k=k(x_1,...,x_n)=\#\{i:x_i=1\}$ dająca zm. los. $K=k(X_1,...,X_n)$ o rozkładzie $B(n,p_0)$. Test t-Studenta: próbki z rozkł. $N(m_1,\sigma_1)$ i $N(m_2,\sigma_2)$, $H_0:m_1=m_2$,

dla znanych σ_1, σ_2 : $z = z(x_1, ..., x_{n_1}, y_1, ..., y_{n_2}) = \frac{\hat{x} - \hat{y}}{\sqrt{\frac{\hat{x}_1^2 + \hat{y}_2^2}{n_1 + \frac{\hat{y}_2^2}{n_2}}}}$ dająca zm. los. Z o rozkł. N(0, 1), dla nieznanych σ_1, σ_2 : $t = t(x_1, ..., x_{n_1}, y_1, ..., y_{n_2}) = \frac{\hat{x} - \hat{y}}{\sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}}}$ dająca zm. los. T o rozkładzie t-studenta o $n_1 + n_2 - 2$ st. swobody. Test χ^2 zgodnosci: dla rozkładów dyskretnych: $H_0: P_X = P$ $P(y_1) = \pi_1 > 0 \dots P(y_k) = \pi_1 > 0 \quad \pi_1 + \dots + \pi_1 - 1 \quad n_1 = \text{liczbe wystapioń } y_1 \text{ w ciocu } \pi_1 = \pi_1$

lest χ^- zgodności: dla rozkładow dyskretnych: $H_0: P\chi = P$ $P(y_1) = \pi_1 > 0, \dots, P(y_k) = \pi_k > 0, \pi_1 +, \dots, +\pi_k = 1, n_i$ - liczba wystąpień y_i w ciągu x_1, \dots, x_n $\chi = \chi(x_1, \dots, x_n) = \sum_{i=1}^k \frac{(n_i - n\pi_i)^2}{n\pi_i}$, zbiór krytyczny K to $[l, \inf)$, gdzie l to kwantyl rzędu $1 - \alpha$ rozkładu χ^2 o k - 1 stopniach swobody. Test niezależności rozkładów: dla zmiennych losowych: $X \sim P_X$ i $Y \sim P_Y$ $\chi = \chi((x_1, y_1), \dots, (x_n, y_n)) = \sum_{(s,t) \in S \times T} \frac{(n_{s,t} - \frac{n_s n_t}{n})^2}{\frac{n_s n_t}{n}}$, gdzie $S \times T$ jest nośnikiem próbki danych, $n_{s,t} = \#\{i: (s,t) = (x_i,y_i)\}, \ n_s = \#\{i: s = x_i\}, \ n_t = \#\{i: t = y_i\} \ (n = \sum_{(s,t)} n_{s,t})$ Można wtedy wykazać, że $\chi \approx \chi^2_{(\#S-1)(\#T-1)}$

Metoda bootstrap

Dla małej próbki (o wielkości n) i nieznanym rozkładzie losujemy z niej ze zwracaniem kolejno B próbek o wielkości n.

Estymator bootstrapowy parametru ze znanym estymatorem $g(x_1,...,x_n)$ to: $\hat{g}=\hat{g}(x_1,...,x_n)=\frac{1}{B}\sum_{i=1}^Bg(x_1^i,...,x_n^i)$, gdzie $x_1^i,...,x_n^i$ to próbka wylosowana za i-tym razem.

Metoda percentylowa wyznaczania przedziałów ufności parametru θ : losujemy 1000 próbek bootstrapowych, dla każdej obliczamy estymator θ . Kwantyle odpowiednich rzędów z ciągu estymatorów dla próbek są końcami przedziału ufności.

Wektor losowy

Wektor losowy: funkcja $X: \Omega \to \mathbb{R}^n \ (Y: \Omega \to \mathbb{R}^n)$ na przestrzeni (Ω, Σ, P) , rozkład wektora losowego $X: P_X(B) = P(X^{-1}(B) \ \text{dla} \ B \subset \mathbb{R}^n$. Dla Niezależność wektorów losowych o rozkładach ciągłych $f_{(X,Y)}(x,y) = P_{(X,Y)}(\mathbb{R}^n \times A_2)$ są rozkładami brzegowymi, a $P_{(X,Y)}$ to rozkład łączny. Niezależność wektorów losowych o rozkładach ciągłych $f_{(X,Y)}(x,y) = f_X(x)f_Y(y)$

dla $x \in \mathbb{R}^n, y \in \mathbb{R}^m, P_X(x) > 0, P_Y(y) > 0, f_X(x) > 0, f_Y(y) > 0$

Rozkłady warunkowe wektora losowego (dyskretny): $P_{X|Y=y}(B) = P(X \in B|Y=y) = \frac{P(X \in B, Y=y)}{P(Y=y)}$ dla $B \subset \mathbb{R}^n$

Rozkłady warunkowe wektora losowego (ciągłego): $f_{Y|X=x}(y) = \frac{f_{(X,Y)}(x,y)}{f_X(x)}$ dla $y \in \mathbb{R}^m$

Warunkowa wartość oczekiwana: E(X|Y=y)

10 Regresja Liniowa

Model regresji liniowej: $Y_i = \alpha + \beta x_i + U_i$ dla i = 1, ..., n,

Wyznaczenie estymatorów α i β MNK: wyznaczamy arg min $S(\alpha, \beta)$ dla $S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$,

otrzymujemy $\hat{\alpha}=\bar{y}-\hat{\beta\bar{x}}~\hat{\beta}=\frac{n\Sigma_{i=1}^nx_iy_i-(\Sigma_{i=1}^nx_i)(\hat{\Sigma}_{i=1}^ny_i)}{n\Sigma_{i=1}^nx_i^2-(\Sigma_{i=1}^nx_i)^2}~\hat{\alpha}$ i $\hat{\beta}$ są nieobciążone.

Wyznaczenie estymatorów metodą największej wiarygodności dla błędów normalnych:

Zał: $U_i \sim N(0, \sigma)$, czyli $Y \sim N(\alpha + \beta x_i, \sigma)$

 $L(\alpha,\beta,\sigma^2) = f_1(y_1) \cdots f_n(y_n), \text{ gdzie } f_i(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y-\alpha-\beta x_i)^2}{(2\sigma^2)}} \text{ dostajemy te same estymatory jak w MNK oraz } \hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 \text{ and } \hat{\sigma}^$ także $E(\hat{\sigma^2}) = \frac{n-2}{n} \sigma^2$

Analiza wariancji (ANOVA)

Rozkład F(-Snedecora): Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach χ_p^2 i χ_q^2 .

Zatem $F = \frac{X/p}{Y/q}$ posiada rozkład F-Snedecora o (p,q) stopniach swobody, jeżeli T jest zmienną losową o rozkładzie t_q , to $T^2 \sim F_{1,q}$, $E(F) = \frac{q}{q-2}$ oraz $D^2(F) = \frac{2q^2(p+q-2)}{p(q-2)^2(q-4)}$ dla q>4. Jednoczynnikowa analiza wariancji: Mając k niezależnych próbek prostych: $X_{11},...,X_{1n_1},X_{21},...,X_{2n_2},...,X_{k1},...,X_{kn_k}$ które pochodzą z $N(m_1,\sigma),...,N(m_k,\sigma)$ testujemy hipotezę: $H_0: m_1=m_2=...=m_k$ wobec $H_1:$ nie wszystkie wartości m_i są sobie równe. Do weryfikacji H_0 służy $f=\frac{MSTR}{MSE}, MSTR=\frac{1}{k-1}\sum_{i=1}^k n_i(\bar{x_i}-\bar{x})^2, MSE=\frac{1}{n-k}\sum_{i=1}^k n_is_i^2 n=\sum_{i=1}^k n_i,\bar{x_i}$ jest średnią arytmetyczną z i-tej próbki, s_i^2 jest wariancją z i-tej próbki, \bar{x} jest średnią arytmetyczną ze wszystkich obserwacji, która daje $F = F(X_{11},..,X_{kn_k})$ o rozkładzie F-Snedecora o (k-1, n-k) stopniach swobody.