Regression Model - Short Report

⊀ Preprocessing Steps and Rationale

1. Handling Missing Values:

• Checked for null values and imputed them using mean/mode.

2. Feature Scaling:

Standardized numerical features using StandardScaler.

3. Outlier Removal:

• Used Interquartile Range (IQR) method to remove extreme values.

4. Dimensionality Reduction:

• Principal Component Analysis (PCA) was applied to reduce feature space while preserving variance.

Insights from Dimensionality Reduction

- PCA helped in reducing feature redundancy and improving model efficiency.
- The first few principal components retained most of the variance, indicating that a reduced feature set could be effective.

Model Selection, Training, and Evaluation

Models Trained:

- 1. Ridge Regression
- 2. Lasso Regression
- 3. ElasticNet Regression
- 4. Random Forest Regressor
- 5. Gradient Boosting Regressor
- 6. Support Vector Regressor (SVR)

7. XGBoost Regressor

Best Performing Model: Lasso Regression

Model	MAE	RMSE	R ² Score
Ridge Regression	581.66	775.20	0.0266
Lasso Regression	579.82	773.37	0.0312
ElasticNet Regression	584.96	778.60	0.0180
Random Forest Regressor	517.06	807.85	-0.0571
Gradient Boosting Regressor	566.76	794.86	-0.0234
Support Vector Regressor (SVR)	516.76	784.56	0.0029
XGBoost Regressor	556.49	793.99	-0.0212

Model Performance Summary

- Lasso Regression performed the best with the highest R² score (0.0312).
- Random Forest & Gradient Boosting had negative R², indicating poor generalization.
- **SVR & XGBoost** also failed to outperform linear models.

E Key Findings & Suggestions for Improvement

▼ Findings:

- Linear models (Lasso, Ridge) outperformed complex models like Random Forest and XGBoost.
- Feature selection & scaling played a crucial role in performance.

Improvements:

- Implement **hyperparameter tuning** for tree-based models.
- Try **feature engineering** to extract meaningful variables.
- Experiment with **neural networks** for potential improvement.