

1 Note

Ce document est issus des notes d'exercices de plusieurs étudiants de Master 1 prises lors de l'année académique 2015 - 2016.

2 TP 1

Exercice 1. Les deux graphes n'ont pas été redessiné ici, voir les notes manuscrites...

Écrivez P_2 sous la forme primale d'un problème d'optimisation linéaire en nombres entiers.

Solution 1. $\min(\sum_j w_j x_j)$ où $1 \leq j \leq 12$, $x_i \in \{0, 1\} \forall i \ t. q$

$$x_i = \begin{cases} 1 & si \ S_i \in I \\ 0 & sinon \end{cases}$$

 $et \ w = (6, 10, 8, 6, 5, 9, 4)$ s.l. c

$$Z_{LP}^* = 22 \ avec \ x^*(\frac{1}{2},0,\frac{1}{2},1,\frac{1}{2},\frac{1}{2},\frac{1}{2})$$

Exercice 2. Écrivez sa forme dual et sa relaxation linéaire.

Solution 2. $\max(\sum_{i} y_i)$ où $1 \le i \le 12$ et $y_i \in \mathbb{N}$ (si relaxé : $y_i \in \mathbb{R}$) $y_i \ge 0, \forall i$ s.l. c

$$z_{LP}^* = 22 \ avec \ (y^*)^T = (0,6,0,0,0,0,3,2,7,3,0,1)$$

Exercice 3. Calculez le paramètre f de l'algorithme DET-ROUND-SC.

Solution 3.

$$f = \max_{i \in \{1, \dots, 12\}} (f_i) \ où \ f_i = |\{j : e_i \in S_j\}|$$

Donc la solution sera au pire 3 fois la solution optimale : $APP \leq 3OPT$

Exercice 4. Utilisez DET-ROUND-SC pour calculer une solution au problème en nombre entiers et verifiez la garantie à fortiori de l'algorithme.

Solution 4. On construit la solution approchée au problème P_2 de la manière suivante :

$$x_i = \begin{cases} 0 & si \ x_i^* < \frac{1}{f}, x^* \ \textit{\'etant la solution du problème relax\'e} \\ 1 & sinon \end{cases}$$

Ici, x = (1, 0, 1, 1, 1, 1, 1), APP = 38.

OPT = 23 est atteint en selectionnant S_3, S_4, S_5 et S_7 .

$$\frac{APP}{OPT} = \frac{38}{23}$$

La garantie à fortiori est donnée par :

$$\alpha = \frac{APP}{Z_{LP}^*} = \frac{38}{22}$$

Cela implique que $APP \le 2OPT$

Exercice 5. Utilisez DUAL-ROUND-SC et vérifiez le facteur d'approximation.

Solution 5. Injectons les y_i^* de $(y^*)^T = (0,6,0,0,0,0,3,2,7,3,0,1)$ dans les équations du dual de la solution de l'exercice 2.

On va sélectionner S_j dans la solution approchée ssi $\sum\limits_{i~t.q~v_i \in S_j} y_i = w_j$

On obtient la même solution que pour DET-ROUND-SC :

$$y = (1, 0, 1, 1, 1, 1, 1)$$

On a bien $38 \le 23f = 23.3 = 69$.

Exercice 6. Utilisez GREEDY-SC pour résoudre P₁.

Solution 6. Données:

i	S_i	i	$ S_i $	w_i
1	$\{1, 4, 7, 10\}$	1	4	6
2	$\{2, 5, 8, 11\}$	2	4	10
3	$\{3, 6, 9, 12\}$	3	4	8
4	$\{1, 2, 3, 4, 5, 6\}$	4	6	6
5	$\{4, 5, 7, 8\}$	5	4	5
6	$\{8, 9, 11, 12\}$	6	4	9
7	$\{10, 11\}$	7	2	4

Init:

$$\begin{aligned} &-&I=\{\}\\ &-&\widehat{S}_j=S_j, \forall j\\ \textit{It\'eration 1:} \end{aligned}$$

$$-l=4$$
 $-I=\{4\}$

i	\widehat{S}_i
1	$\{7, 10\}$
2	$\{8, 11\}$
3	$\{9, 12\}$
4	{}
5	$\{7, 8\}$
6	$\{8, 9, 11, 12\}$
7	$\{10, 11\}$

$It\'eration\ 2:$

$$\begin{array}{l} - \ l = 7 \\ - \ I = \{4, 7\} \end{array}$$

$$\begin{array}{c|c} i & \widehat{S}_i \\ \hline 1 & \{7\} \\ 2 & \{8\} \\ 3 & \{9, 12\} \\ 4 & \{\} \\ 5 & \{7, 8\} \\ 6 & \{8, 9, 12\} \\ 7 & \{\} \\ \end{array}$$

Itération 3 :

$$\begin{array}{l} - \ l = 5 \\ - \ I = \{4,7,5\} \end{array}$$

$$\begin{array}{c|c} i & \widehat{S}_i \\ \hline 1 & \{\} \\ 2 & \{\} \\ 3 & \{9,12\} \\ 4 & \{\} \\ 5 & \{\} \\ 6 & \{9,12\} \\ 7 & \{\} \end{array}$$

Itération 4 :

$$- l = 3 - I = \{4, 7, 5, 3\}$$

$$\begin{array}{c|c} i & \widehat{S}_{i} \\ \hline 1 & \{\} \\ 2 & \{\} \\ 3 & \{\} \\ 4 & \{\} \\ 5 & \{\} \\ 6 & \{\} \\ 7 & \{\} \\ \end{array}$$

 \Rightarrow La solution est donc (0,0,1,1,1,0,1). APP = 23 et OPT = 21 (avec S_1, S_4 et S_6).

Exercice 7. Calculez le paramètre g pour la méthode précédente et vérifiez son facteur d'approximation.

Solution 7. Pour GREEDY-SC, $g = \max_{i} |S_{j}|$. Ici, g = 6.

GREEDY-SC a unfacteur d'approx H_g , le $g^{i\grave{e}me}$ nombre harmonique (c.f. notes de cours).

$$H_g = \sum_{i=1}^g \frac{1}{i} = 2.45$$