Modelo no paramétrico: k Vecinos cercanos

Héctor Selley

Universidad Anáhuac México

13 de junio de 2023

Contenido

Introducción

2 Ejemplo

Descripción

El método del k-ésimo vecino cercano utiliza el conjunto de entrenamiento y uno de prueba. Para cada renglón del conjunto de prueba, se encuentran los k vectores más cercanos (distancia Euclidiana) del conjunto de entrenamiento y la clasificación se decide por mayoría de votos, en el caso de los empates se decide aleatoriamente. Si hubiera empates para el k-ésimo vector más cercano, todos los candidatos se consideran en la votación.

Nearest neighbour

¹Pieza de piedra coloreada para confeccionar un mosaico.

- Nearest neighbour
- Identifica la categoría, con base en la de su vecino más cercano de acuerdo con alguna medida de distancia.

¹Pieza de piedra coloreada para confeccionar un mosaico.

- Nearest neighbour
- Identifica la categoría, con base en la de su vecino más cercano de acuerdo con alguna medida de distancia.
- Divide el espacio de características de forma no lineal.

¹Pieza de piedra coloreada para confeccionar un mosaico.

- Nearest neighbour
- Identifica la categoría, con base en la de su vecino más cercano de acuerdo con alguna medida de distancia.
- Divide el espacio de características de forma no lineal.
- Tesela¹ o diagrama de Voronoi.

- Nearest neighbour
- Identifica la categoría, con base en la de su vecino más cercano de acuerdo con alguna medida de distancia.
- Divide el espacio de características de forma no lineal.
- Tesela¹ o diagrama de Voronoi.
- Celdas formadas por todos los puntos, que se encuentran más cerca de un punto dado del conjunto de datos.

¹Pieza de piedra coloreada para confeccionar un mosaico.

Diagrama de Voroni

• Consiste en encontrar en un conjunto de datos etiquetados, los k vecinos más cercanos (k-NN) y asignar el nuevo patrón a la clase mayoritaria.

- Consiste en encontrar en un conjunto de datos etiquetados, los k vecinos más cercanos (k-NN) y asignar el nuevo patrón a la clase mayoritaria.
 - A la de mayor probabilidad aposteriori.

- Consiste en encontrar en un conjunto de datos etiquetados, los k vecinos más cercanos (k-NN) y asignar el nuevo patrón a la clase mayoritaria.
 - ► A la de mayor probabilidad aposteriori.
- k es un número positivo entero

- Consiste en encontrar en un conjunto de datos etiquetados, los k vecinos más cercanos (k-NN) y asignar el nuevo patrón a la clase mayoritaria.
 - A la de mayor probabilidad aposteriori.
- k es un número positivo entero
 - ▶ En problemas binarios (de dos clases), es provechoso elegir un número impar.

Algoritmo k-NN

• Elegir el valor de k y la distancia a ocupar

- Elegir el valor de k y la distancia a ocupar
- ② Obtener la distancia del objeto a clasificar a cada elemento del conjunto de datos

- Elegir el valor de k y la distancia a ocupar
- Obtener la distancia del objeto a clasificar a cada elemento del conjunto de datos
- Tomar k vecinos más cercanos y contar el número de elementos que pertenecen a cada categoría

- Elegir el valor de k y la distancia a ocupar
- ② Obtener la distancia del objeto a clasificar a cada elemento del conjunto de datos
- Tomar k vecinos más cercanos y contar el número de elementos que pertenecen a cada categoría
- Asignar la categoría a la que pertenecen más vecinos

Contenido

Introducción

2 Ejemplo

Problema:

 Se tienen las coordenadas (a, b) del modelo CIELAB^{2,3} de color para pixeles rojos y naranjas.

²Sistema de interpretación de color CIE 1976 L*a*b*

³https://es.wikipedia.org/wiki/Espacio_de_color_Lab

Problema:

- Se tienen las coordenadas (a, b) del modelo CIELAB^{2,3} de color para pixeles rojos y naranjas.
- Llega una nueva observación ω con las coordenadas x=(172,160).

²Sistema de interpretación de color CIE 1976 L*a*b*

³https://es.wikipedia.org/wiki/Espacio_de_color_Lab

Problema:

- Se tienen las coordenadas (a, b) del modelo CIELAB^{2,3} de color para pixeles rojos y naranjas.
- Llega una nueva observación ω con las coordenadas x=(172,160).
- ullet ¿Cómo se clasifica ω eligiendo de 1 hasta 8 vecinos cercanos usando distancia euclidiana?

²Sistema de interpretación de color CIE 1976 L*a*b*

³https://es.wikipedia.org/wiki/Espacio_de_color_Lab

Formulación:

Población Ω: pixeles

- Población Ω: pixeles
- Clases

- Población Ω: pixeles
- Clases
 - $ightharpoonup \Omega_1$: naranja

- Población Ω: pixeles
- Clases
 - $ightharpoonup \Omega_1$: naranja
 - Ω_2 : rojo

- Población Ω: pixeles
- Clases
 - $ightharpoonup \Omega_1$: naranja
 - Ω₂: rojo
- Vector de características: X = [a, b] donde $X : \Omega \to \mathbb{R}^2$

- Población Ω: pixeles
- Clases
 - $ightharpoonup \Omega_1$: naranja
 - $\triangleright \Omega_2$: rojo
- Vector de características: X = [a, b] donde $X : \Omega \to \mathbb{R}^2$
- Función de distribución de probabilidad: no se asume

- Población Ω: pixeles
- Clases
 - $ightharpoonup \Omega_1$: naranja
 - Ω₂: rojo
- Vector de características: X = [a, b] donde $X : \Omega \to \mathbb{R}^2$
- Función de distribución de probabilidad: no se asume

- Se utilizará un archivo de datos: datosAB.txt
- Conjunto de datos de clasificación de pixeles en color de acuerdo a su valor (a, b)

¿Clasificación?

clase	distancia	k-vecinos	votos rojo	votos naranja
naranja	3.00	1		1
rojo	3.16	2	1	1
rojo	3.61	3	2	1
naranja	4.00	4	2	2
naranja	4.00	5	2	3
rojo	4.12	6	3	3
naranja	4.12	7	3	4
rojo	4.47	8	4	4

• Comparar modelos de clasificación

- Comparar modelos de clasificación
- Utilizar CP para evaluar el rendimiento del clasificador

- Comparar modelos de clasificación
- Utilizar CP para evaluar el rendimiento del clasificador

		clase estimada				
		$\overline{\Omega}=\Omega_0$	$\overline{\Omega}=\Omega_1$		$\overline{\Omega} = \Omega_j$	
<u>ا</u> ق	20	n ₀₀	n_{01}		n_{0j}	
clase rea	$\mathbf{2_1}$	n ₁₀	n_{11}		n_{1j}	
las	Ė	:	:	÷	:	
ي ٽ	Ω_{i}	n_{i0}	n_{i1}		n_{ij}	

• Proporción de clasificación correcta

$$cc = \frac{1}{N} \sum_{i=0}^{g-1} n_{ii}$$

• Proporción de clasificación correcta

$$cc = \frac{1}{N} \sum_{i=0}^{g-1} n_{ii}$$

▶ N: total de datos en CP

• Proporción de clasificación correcta

$$cc = \frac{1}{N} \sum_{i=0}^{g-1} n_{ii}$$

- ▶ N: total de datos en CP
- ► Probabilidad de éxito

• Proporción de clasificación correcta

$$cc = \frac{1}{N} \sum_{i=0}^{g-1} n_{ii}$$

- ▶ N: total de datos en CP
- Probabilidad de éxito
- ▶ En un problema de 2 clases:

$$cc = \frac{TP + TN}{TP + FN + TN + FP}$$

• Proporción de clasificación correcta

$$cc = \frac{1}{N} \sum_{i=0}^{g-1} n_{ii}$$

- N: total de datos en CP
- Probabilidad de éxito
- ▶ En un problema de 2 clases:

$$cc = \frac{TP + TN}{TP + FN + TN + FP}$$

• Proporción estimada del error = 1 - cc

		clase es	stimada		
		$\overline{\Omega}=\Omega_0$ Clase no referencia	$\overline{\Omega} = \Omega_1$ Clase referencia	Total por renglón	
clase real	Ω_0 Clase no referencia	Verdadero Negativo TN	Falso Positivo FP	Total sin la condición N- = TN + FP	
	Ω_1 Clase referencia	Falso Negativo FN	Verdadero Positivo TP	Total con la condición N+ = TP + FN	
	Total por	Ñ- = TN+FN Total de pruebas	Ñ+ = FP+TP Total de pruebas	N=TP+TN+FP+FN Total de individuos	
		negativas	positivas	en el CP	