1

ИТМО. 2 семестр. Переписывание №2 контрольной работы №1. 23.03.2024

М. Найдите определитель матрицы 12×12 (у матрицы три ненулевые диагонали)

1 1 -1 ... 0 0 0 1 1 ... 0 0 ... 1 -1 0 0 0 0 ... 1 1

- Г1. Пусть G группа, а $M \subset G$ (не обязательно подгруппа). Положим $K = \{g \in G : gM = M\}$. Докажите, что K < G.
 - $\Gamma 2$. Пусть H < G, A = aH левый смежный класс, $x,y,z \in A$. Докажите, что $xz^{-1}y \in A$.
- ГЗ. Группа G такова, что отображение $f:G\to G$, заданное формулой $f(x)=x^2$, является гомоморфизмом групп. Доказать, что G абелева.
 - **Г4.** Является ли отображение $f: S_{17} \to S_{17}$, заданное формулой $f(\sigma) = \sigma^{55}$, сюръекцией?

1.Γ3

 $(xy)^2=f(xy)=f(x)f(y)=x^2*y^2$

xyxy=xxyy

yx=xy

1. Γ **4**

Допустим f сюръекция. Так как f - функция и она действует из S_17 в S_17, то она биекция.

Если она биекция, то и инъекция.

(Цикл длины 5) 5 5 = id и (id) 5 5 = id.

Следовательно предположение неверно.

 $\Gamma 2$. Отображение $f:S_{17} o S_{17}$ задано формулой $f(\sigma)=\sigma^{101}$.

1 -1 0 ... 0 0

- а) Верно ли, что f гомоморфизм групп?
- б) Верно ли, что f биекция?

4

1. просто по определению гомоморфизма расписать 2. т.к. 101 - простое число, то для всех перестановок из S_17 число 101 взаимно просто с длинами циклов в этих перестановках. Тогда отображение о -> о^101 переставляет элементы внутри циклов, однако не меняет структуру самой перестановки (если есть перестановка, состоящая из каких-то циклов, то после возведения в степень 101, она будет состоять из этих же циклов, прокрученных 101 раз, типа у нас никакой цикл не станет id), таким образом можно установить взаимооднозначное соответствие => бискция

то есть если нормально сформулировать б, то решение такое: 101 - простое, значит, никакая перестановка, кроме id не обратится в id, т.о. ker(f)={id} => инъекция размеры множеств равны, инъекция => сюръекция т.о. биекция

ИТМО. 2 семестр. Контрольная работа 1. 14.03.2023

М1. Матрицу $A \in M_n(K)$ транспонировали относительно побочной диагонали (из левого нижнего в праый верхней угол). Как изменился определитель?

M2. Найдите определитель матрицы из $M_{n+1}(\mathbb{R})$:

2

- **P1.** Пусть $\varphi_{a,b}(x) = ax + b$, a $G = \{ \varphi_{a,b} \mid a,b \in \mathbb{R}, a \neq 0 \}$.
- а) Докажите, что G группа относительно композиции.
- б) Является ли $H=\{arphi_{1,b}\mid b\in\mathbb{R}\}$ подгруппой G?
- u2. Порождается ли группа S_6 подстановками (246) и (123456)?
- **Уз.** Пусть A непустое подмножество группы G, причем для любых $x, y, z \in A$ выполняется $xy^{-1}z \in A$. Докажите, что A правый смежный класс группы G по некоторой ее подгруппе H.
 - $\Gamma 4$. Пусть $\varphi:G\to H$ гомоморфизм групп, причем группа H абелева. Докажите, что $\ker(\varphi)\supset [G,G]$.
- Γ 5. Пусть G абелева группа, |G|=pq, где p,q различные простые числа. Докажите, что G циклическая группа.

M1. Матрица $A \in M_{101}(\mathbb{R})$ такова, что $a_{i,j} = -a_{j,i}$. Чему может быть равен $\det(A)$?

 $x \quad 0 \quad 0 \quad \dots \quad 0 \quad y$ $0 \quad x \quad 0 \quad \dots$ $0 \dots x$ $x \dots 0$ $y \quad 0 \quad 0 \quad \dots \quad 0 \quad x$

M2. Найдите определитель матрицы размера $2n \times 2n$:

- Γ 1. Пусть G множество всех вещественных чисел, отличных от -1. Доказать, что G группа относительно операции операции a * b := ab + a + b.
- Γ 2. Пусть G группа, а H_1 и H_2 её нормальные подгруппы, причем $H_1 \cap H_2 = \{e\}$. Для любых $x \in H_1$ и $y \in H_2$ докажите, что xy = yx.
 - Г3. Пусть $H < G, \, (G:H) = 2$. Докажите, что [G,G] < H.
 - $\Gamma 4$. Отображение $f:S_{19} o S_{19}$ задано формулой $f(\sigma)=\sigma^{103}$.
 - а) Верно ли, что f гомоморфизм групп?
 - б) Верно ли, что f биекция?
 - Γ 5. Докажите, что для неабелевой группы G группа G/Z(G) не является циклической. OF THE PROPERTY OF THE PARTY OF

ИТМО. 2 семестр. Переписывание №1 контрольной работы №1. 14.03.2023

- М. Пусть $A\in M(\mathbb{R})$, $\sigma\in S_n$. У матрицы A сначала переставили столбцы с помощью подстановки σ , а точно так же переставили строки. Как изменился определитель $\det(A)$?
 - П. Декажите, что бесконечная циклическая группа имеет бесконечно много подгрупп.
 - Преть H < G, A = aH левый смежный класс, $x,y \in A$. Известно, что $x^{-1}y \in A$. Докажите, что A = H
 - П. Пусть $\varphi:G \to H$ гомоморфизм групп, причем $\mathrm{Im}(G)=H$. Докажите, что $\varphi([G,G])=[H,H]$.
 - Па. Пусть $\sigma \in S_n$, $\operatorname{ord}(\sigma) = 4$, а r- количество чисел, которые σ оставляет на месте. Докажите, что n-r

1 1 - maning 1

ИТМО. 2 семестр. Контрольная работа 1. 21.13.2022 M1. В матрице $A \in M_n(K)$ сначала переставили в обратном порядке все строки. Как изменился $\det(A)$ 2 порядке все строки. Как изменился $\det(A)$?

 $0 \quad x \quad 0 \quad \dots \quad y \quad 0$ **M2.** Найдите определитель матрицы размера $2n \times 2n$: $0 \dots x \quad y \quad \dots \quad 0$

- y 0 0 ... 0 x Γ 1) Пусть G — множество всех вещественных чисел, отличных от -1. Доказать, что G — группа относительно операции операции a * b := ab + a + b.
- $\Gamma 2$. Отображение $f: S_{17} o S_{17}$ задано формулой $f(\sigma) = \sigma^{101}$.
 - а) Верно ли, что f гомоморфизм групп?
 - б) Верно ли, что f биекция?
- Γ 3.) Пусть G группа, а H_1 и H_2 её нормальные подгруппы, причем $H_1 \cap H_2 = \{e\}$. Для любых $x \in H_1$ и $y \in H_2$ докажите, что xy = yx.

 - Доказать, что любая бескопечная группа имеет бескопечно много подгрупп. Докажите, что для неабелевой группы G группа G/Z(G) не является циклической.

3. Г2

Рассмотреть коммутатор [х, у] - он в Н1 и Н2. Конец

2. Γ 2

инвариант: любая композиция перестановок в каких-то степенях не меняет местами нечётные элементы

то есть цикл (135) не получить

Вот пусть у нас есть элемент ord(a) = inf Тогда <a> = $\{$ a $^$ n | n in N $\}$ все разные Ну возьми і из N и породи <a $^$ i> Ну и все <a $^$ i> <a> < G ну и |N| = inf чтд

Однако пусть у нас нету элемента ord(a) != inf ord(a) = k
H = {<a> | a in G} - все порожденный подгруппы
От противного H != inf
Тогда |G| <= sum(<a>) по всем <a> из Н чтд вот (i – простое)

4.Г2.б

Рассмотрим а. Надо доказать, что существует b: b^101 = а. Так как 101 и 17! взаимнопросты, то существует k: 101k=1 mod 17!. а=а^(1+17!)=a^(101k)=(a^k)^101 тогда сюръекция, а значит биекция (а^17! = е (Ну разобъем а на независимые циклы, пусть их длина m1 ... mk Если мы прокрутим цикл m_i кратное i чисто раз, то положение элементов не изменится Ну для любого i от 1 до 17 17! кратно I; ord(a)=HOK(независимые циклы))) (Разбиваем на циклы просто; длина цикла | 17!) 2.Г2 уточнение

видно что подстановка 1 ((246)) меняет НУО только треугольники местами Перестановки либо меняют местами четные элементы, либо заменяют все четные на все нечетные

Не получить перестановку, которая будет менять четный не нечетный и нечетный на

нечетный

Элементарные преобразования матриц

No	Преобразование	Характеристика изменения
1	Транспонирование матрицы	Определитель не меняется
2	Перестановка двух строк (столбцов)	Определитель меняет знак
3	Сложение одной строки с другой строкой, умноженной на число	Определитель не меняется
4	Умножение одной строки на число	Определитель умножается на это число
5	Вычеркивание нулевой строки	Меняется размер матрицы

2.Γ3

4.M2

давайте к первой строке добавим все остальные с коэфф 1, в каждой ячейке будет х+у аналогично с любой другой строкой получится две одинаковые и det = 0 Там (x^2-y^2)^n попробуй к первой строке прибавить послднюю умноженную на (-y/x), потом то же самое сделай со второй м предпоследней и так далее 1.М1

там получается формула для определителя $D_n = D_{n-1} + D_{n-2}$

G/Z(G) абелева – доказали

Есть теорема о том что G/H - абелева <=> [G,

G] < H

Тогда коммутаторы коммутируют со всеми

элементами G

$$yx[x, y] = xy = x[x, y]y = y^{-1}xyy$$

x = y(-1)xy

ух=ху

х, у брали из G

1.M1

Ну и затерпеть