

## Chapter 13

## Randomized Algorithms



Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

#### Randomization

#### Algorithmic design patterns.

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, cryptography.

## 13.1 Contention Resolution

## Contention Resolution in a Distributed System

Contention resolution. Given n processes  $P_1$ , ...,  $P_n$ , each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.



#### Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at time t. Then  $1/(e \cdot n) \le Pr[S(i, t)] \le 1/(2n)$ .

Pf. By independence, 
$$Pr[S(i, t)] = p (1-p)^{n-1}$$
.

process i requests access

none of remaining n-1 processes request access

• Setting 
$$p = 1/n$$
, we have  $Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$ . • value that maximizes  $Pr[S(i, t)]$  between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:

- $(1 1/n)^n$  converges monotonically from 1/4 up to 1/e
- $(1 1/n)^{n-1}$  converges monotonically from 1/2 down to 1/e.

#### Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most 1/e. After  $e \cdot n(c \mid n)$  rounds, the probability is at most  $n^{-c}$ .

Pf. Let F[i, t] = event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have  $Pr[F(i, t)] \leq (1 - 1/(en))^{t}$ .

• Choose 
$$t = \lceil e \cdot n \rceil$$
: 
$$\Pr[F(i,t)] \leq \left(1 - \frac{1}{en}\right)^{en} \leq \left(1 - \frac{1}{en}\right)^{en} \leq \frac{1}{e}$$

• Choose 
$$t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$$
:  $\Pr[F(i,t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$ 

#### Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within  $2e \cdot n \ln n$  rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} \Pr[F[i,t]] \leq n\left(1 - \frac{1}{en}\right)^{t}$$
union bound previous slide

• Choosing  $t = 2 \lceil en \rceil \lceil c \mid ln \mid n \rceil$  yields  $Pr[F[t]] \le n \cdot n^{-2} = 1/n$ .

Union bound. Given events 
$$E_1$$
, ...,  $E_n$ ,  $\Pr\left[\bigcup_{i=1}^n E_i\right] \leq \sum_{i=1}^n \Pr[E_i]$ 

# 13.3 Linearity of Expectation

## Expectation

Expectation. Given a discrete random variables X, its expectation E[X] is defined by:  $_{\infty}$ 

 $E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$ 

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} = \frac{p}{1-p} \cdot \frac{1-p}{p^{2}} = \frac{1}{p}$$

$$\downarrow \text{j-1 tails} \quad \text{1 head}$$

## Expectation: Two Properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf. 
$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]$$

Linearity of expectation. Given two random variables X and Y defined over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces.

## Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1. Pf.

- Let  $X_i = 1$  if i<sup>th</sup> prediction is correct and 0 otherwise.
- Let  $X = number of correct guesses = X_1 + ... + X_n$ .
- $E[X_i] = Pr[X_i = 1] = 1/n$ .
- $E[X] = E[X_1] + ... + E[X_n] = 1/n + ... + 1/n = 1.$ | linearity of expectation

11

## Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is  $\Theta(\log n)$ . Pf.

- Let  $X_i = 1$  if i<sup>th</sup> prediction is correct and 0 otherwise.
- Let  $X = number of correct guesses = X_1 + ... + X_n$ .
- $E[X_i] = Pr[X_i = 1] = 1 / (n i 1).$
- $E[X] = E[X_1] + ... + E[X_n] = 1/n + ... + 1/2 + 1/1 = \Theta(\log n)$ . linearity of expectation

## 13.4 MAX 3-SAT

## Maximum 3-Satisfiability

\_ exactly 3 distinct literals per clause

MAX-35AT. Given 3-5AT formula, find a truth assignment that satisfies as many clauses as possible.

$$C_{1} = x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}$$

$$C_{2} = x_{2} \vee x_{3} \vee \overline{x_{4}}$$

$$C_{3} = \overline{x_{1}} \vee x_{2} \vee x_{4}$$

$$C_{4} = \overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}$$

$$C_{5} = x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}$$

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability  $\frac{1}{2}$ , independently for each variable.

## Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

Pf. Consider random variable 
$$Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$$

Let Z = number of clauses satisfied by random assignment.

$$E[Z] = \sum_{j=1}^{k} E[Z_j]$$
linearity of expectation 
$$= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]$$

$$= \frac{7}{8}k$$

#### The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. •

## Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?

Lemma. The probability that a random assignment satisfies  $\geq 7k/8$  clauses is at least 1/(8k).

Pf. Let  $p_j$  be probability that exactly j clauses are satisfied; let p be probability that  $\geq 7k/8$  clauses are satisfied.

$$\frac{7}{8}k = E[Z] = \sum_{j\geq 0} j p_j 
= \sum_{j<7k/8} j p_j + \sum_{j\geq 7k/8} j p_j 
\leq \left(\frac{7k}{8} - \frac{1}{8}\right) \sum_{j<7k/8} p_j + k \sum_{j\geq 7k/8} p_j 
\leq \left(\frac{7}{8}k - \frac{1}{8}\right) \cdot 1 + k p$$

Rearranging terms yields  $p \ge 1 / (8k)$ .

## Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies  $\geq 7k/8$  clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least 1/(8k). By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8k.

## Maximum Satisfiability

#### Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no  $\rho$ -approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any  $\rho > 7/8$ .

very unlikely to improve over simple randomized algorithm for MAX-3SAT

## 13.9 Chernoff Bounds

#### Chernoff Bounds

Theorem. Suppose  $X_1$ , ...,  $X_n$  are independent 0-1 random variables. Let  $X = X_1 + ... + X_n$ . Then for any  $\mu \ge E[X]$  and for any  $\delta > 0$ , we have

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$$

Theorem. Suppose  $X_1$ , ...,  $X_n$  are independent 0-1 random variables. Let  $X = X_1 + ... + X_n$ . Then for any  $\mu \le E[X]$  and for any  $0 < \delta < 1$ , we have

$$\Pr[X < (1-\delta)\mu] < e^{-\delta^2 \mu/2}$$

# 13.10 Load Balancing

## Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most  $\lceil m/n \rceil$  jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

## Load Balancing

#### Analysis.

- Let X<sub>i</sub> = number of jobs assigned to processor i.
- Let  $Y_{ij} = 1$  if job j assigned to processor i, and 0 otherwise.
- We have  $E[Y_{ij}] = 1/n$
- Thus,  $X_i = \sum_j Y_{i,j}$ , and  $\mu = E[X_i] = 1$ .
- Applying Chernoff bounds with  $\delta$  = c 1 yields  $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$
- Let  $\gamma(n)$  be number x such that  $x^x = n$ , and choose  $c = e \gamma(n)$ .

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} < \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

• Union bound  $\Rightarrow$  with probability  $\geq 1$  - 1/n no processor receives more than e  $\gamma(n) = \Theta(\log n / \log \log n)$  jobs.