Differentiable manifolds and the Hairy Ball Theorem

Jonathan Lau

February 16, 2023

Manifolds

2 Stokes' Theorem

Manifolds

Stokes' Theorem

Manifolds

A n dimensional manifold is a subset of \mathbb{R}^ℓ such that for each point p, there is a neighborhood U and a homeomorphism $\phi:U\to V\subset\mathbb{R}^n$ such that ϕ and ϕ^{-1} are smooth.

Tangent Space

Given a point $p \in M$ and a smooth curve $\gamma: (-1,1) \to M$ in M such that $\gamma(0) = p$, its velocity vector is $\frac{d\gamma}{dt}|_{t=0}$. The set of all velocity vectors at p is the tangent space at p, denoted T_pM .

If we fix a neighborhood U of p and a $\phi: U \to V \subset \mathbb{R}^n$ centered at p, construct curves $\gamma_i: t \mapsto \phi^{-1} \circ \iota_i(t)$, where ι_i is the inclusion into the ith coordinate. Their velocity vectors form a basis for the tangent space.

Example: sphere

1-form

A 1-form ω is a linear function from T_pM to \mathbb{R} . hom (T_pM,\mathbb{R}) is a vector space of dimension n, with basis dx^i , $dx^i(a_1,\ldots,a_n)=a_i$.

k-form

A k-form ω is an alternating multilinear function from $(T_pM)^k$ to \mathbb{R} .

Wedge Product

The wedge product of k 1-forms $\omega_1, \ldots, \omega_k$ is the k-form $\omega^1 \wedge \cdots \wedge \omega^k(v_1, \ldots, v_k) = det(\omega_i(v_i))$.

Theorem

 $\{dx^{i_1} \wedge \cdots \wedge dx^{i_k} | 1 \leq i_i < \cdots < i_k \leq n\}$ is a basis for $\Lambda^k(T_pM)$, the set of alternating multilinear functions on $(T_pM)^k$.

Example: On \mathbb{R}^3 , the form $dx \wedge dy$ applied to (1,2,3), (0,1,2) is $det((1,2)^T(0,1)^T) = 1$. We see that

stuff

stuff ...

Manifolds

2 Stokes' Theorem

stuff

stuff ...

Manifolds

Stokes' Theorem

stuff

stuff ...