Complete and validated genomes from metagenomes

Daniel J. Giguere¹, Alexander T. Bahcheli¹, Benjamin R. Joris¹, Julie M. Paulssen², Lisa M. Gieg², Martin W. Flatley³, Gregory B. Gloor¹

1 Department of Biochemistry, Western University, London, Canada 2 Department of Biological Sciences, University of Calgary, Calgary, Canada 3 Senior Staff Engineer, Suncor Energy, Sarnia, Canada

Introduction

- Metagenome assembly typically results in fragmented, incomplete assemblies
- Long read technology enables resolving repetitive regions
- Standards for a complete genome are not achieved for most metagenomic-assembled genomes (MAGs)
- We investigated an algal-bacterial community that is known to degrade 1-adamantanecarboxylic acid1

Methods

- . High molecular weight DNA extraction
- 2. Oxford Nanopore minION and Illumina NextSeq

Results

• 13 MAGs representing more than 60% of total DNA sequences²

Length	%GC	% C	%R	Illumina coverage	Nanopore coverage	rRNA genes	tRNA genes	Predicted taxonomy
3.14	62.8	98.59	0.00	392	193	2	48	Parvibaculum
4.47	64.4	100.00	2.82	402	94	2	49	Rhizobiaceae
3.73	63.9	100.00	0.00	68	32	2	46	Unknown
3.84	63.5	98.59	1.41	184	67	4	45	Blastomonas
3.74	72.4	100.00	0.00	121	39	4	63	UBA2363
5.16	42.6	98.59	0.00	180	97	6	40	Algoriphagus
3.98	66.9	100.00	1.41	41	16	4	51	Tabrizicola
3.96	71.9	98.59	2.82	125	57	2	53	UBA4742
4.68	66.1	100.00	2.82	57	17	4	52	Rhodobacteraceae
5.79	66.3	100.00	2.82	35	14	4	55	Aquimonas
0.79	51.0	85.92	4.23	88	36	2	40	UBA1547
3.06	65.9	100.00	0.00	1107	355	2	48	Brevundimonas
2.88	64.4	100.00	0.00	94	35	2	44	Oceanicaulis

We generated complete genomes directly from bacterial communities

Discussion

 Species level variants with possible mobile genetic elements within a single species can be detected

- Genomes from majority of population recovered 10 of 13 MAGs appear to be complete genomes
- Illumina-only assembly suffers from PCR bias in communities with high GC variability, would result in fragmented assembly

3.03 mb

Chromosome position

Future work

- What pathways are present that contribute to 1adamantanecarboxylic acid degradation?
- Can we identify functional mobile genetic elements?
- Can we apply this method to more diverse communities?

References

¹Paulssen JM, Gieg LM. Biodegradation of 1-adamantanecarboxylic acid by algalbacterial microbial communities derived from oil sands tailings ponds. Algal Research,

²Giguere DJ, et al. Complete and validated genomes from a metagenome. bioRxiv, 2020.

