A számítástudomány alapjai 2022. I. félév

6. gyakorlat. Összeállította: Fleiner Tamás (fleiner@cs.bme.hu)

Tudnivalók

Def: A G gráf síkbarajzolható (SRható), ha létezik G-nek olyan diagramja, amiben az éleknek megfelelő görbék (töröttvonalak) csak végpontokban metszhetik egymást. Az ilyen tulajdonságú diagramot síkbarajzolt (SRt) gráfnak hívjuk. A síkbarajzolt gráf a síkot tartományokra (lapokra) osztja. Lesz egy végtelen tartomány, az ún. külső tartomány. Gömbre rajzoláson lényegében ugyanezt értjük, csak sík helyett a gömb felszínén dolgozunk, külső tartomány nincs.

Tétel: $(G \text{ SRhat\acute{o}}) \iff (G \text{ g\"{o}mbre rajzolhat\'{o}})$ **K\"{o}v.:** Tetsz. konvex poliéder élhálója SRhat\'{o}. **Hasznos \"{o}sszefüggés (duális KFL):** Ha egy G SRt gráfnak e éle van, és az egyes tartományait l_1, l_2, \ldots, l_t él határolja, akkor $2e = \sum_{i=1}^t l_i$. (Multiplicitással számolunk: Ha egy uv él mindkét oldalán ugyanaz a t_i tartomány fekszik, akkor uv-t kétszer számoljuk l_i -be.)

Tétel: Ha G SRt, n csúcsa, e éle, k komponense és t tartománya van, akkor n+t=e+k+1. **Köv.:** (1) Ha G SRható, akkor bármely síkbarajzolásának ugyanannyi tartománya van.

- (2) (Euler-féle poliéderformula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, legalább 3-pontú, SRt gráf, akkor e < 3n 6.
- (4) Ha G-nek háromszöglapja sincs, akkor még $e \leq 2n 4$ is igaz.
- (5) Ha G SRható és egyszerű, akkor van legfeljebb 5-ödfokú csúcsa, azaz $\delta(G) \leq 5$.
- (6) Sem K_5 , sem $K_{3,3}$ nem SRható. ($K_{3,3}$ a "három ház, három kút" gráf.)

Def: Élfelosztás alatt azt értjük, hogy egy él törlünk, és bevezetünk egy másodfokú új csúcsot, aminek két szomszédja a törölt él két végpontja. A topologikus G olyan gráf, ami G-ből élfelosztások egymásutánjával kapható. Él összehúzása az él két végpontjának összeolvasztását jelenti.

Állítás: Csúcs és él törlése, él felosztása és él összehúzása megőrzi SRható tulajdonságot.

Köv.: SRható gráf részgráfja SRható. SRható gráfnak nincs se top. K_5 , se top. $K_{3,3}$ részgráfja.

Kuratowski-tétel: (G SRható) \iff (G nem tartalmaz se top. $K_{3,3}$, se top. K_5 részgráfot)

Fáry-Wagner-tétel: Ha G egyszerű és SRható gráf, akkor létezik G-nek olyan síkbarajzolt diagramja, amiben minden él egyenes szakasz.

Def: Legyen G=(V,E) síkbarajzolt gráf, duálisa az a $G^*=(V^*,E^*)$ gráf, amelyre V^* a G lapjainak halmaza ill. $E^*=\{e^*:e\in E\}$ és e^* az e-t határoló tartomány(ok)nak megfelelő duális csúcsokat összekötő él.

Def: A $Q \subseteq E(G)$ élhalmaz vágás, ha Q egy olyan élhalmaz, hogy egyrészt Q elhagyásakor G szétesik (azaz komponenseinek száma megnő), másrészt Q egy legszűkebb élhalmaz ezzel a tulajdonsággal, azaz Q semelyik valódi részhalmazának elhagyásától sem esik G szét. Az e él elvágó él, ha $\{e\}$ vágás. A G gráf e és e' élei soros élek, ha $\{e,e'\}$ vágás.

Tétel: Legyen G = (V, E) sr, G^* pedig a G duálisa n^*, e^*, t^*, k^* paraméterekkel. Ekkor

- (1) G^* sr, $n^* = t$, $k^* = 1$, azaz G^* öf.
- (2) Ha $v \in V(G^*)$ a G i-dik lapjához tartozik, akkor $d^*(v) = \ell_i$.
- (3) $C \subseteq E(G)$ kör G-ben $\iff C^*$ vágás G^* -ban. (4) $Q \subseteq E(G)$ vágás G-ben $\iff Q^*$ kör G^* -ban.
- (5) $e \in E(G)$ a G hurokéle (elvágó éle) $\iff f(e)$ a G^* elvágó éle (hurokéle).
- (6) $e, e' \in E(G)$ párhuzamos (soros) élek $\iff f(e), f(e')$ soros (párhuzamos) élek.

A (3,4) tulajdonságok neve kör-vágás dualitás.

Whitney egyik tétele: Legyen G^* a G SRt gráf duálisa. A H öf gráf pontosan akkor duálisa G egy alkalmas síkbarajzolásának, ha H megkapható G^* -ból az ábrán látható Whitney-operációk véges sokszori alkalmazásával.

Whitney másik tétele: Ha a G és H öf gráfok között létesíthető körvágás dualitás, akkor G és H SRható gráfok és alkalmas síkbarajzolásaik egymás duálisai.

Gyakorlatok

- 1. Hány csúcsa van egy olyan öf síkbarajzolható gráfnak, aminek három háromszöglapja, három négyszöglapja és egy ötszöglapja van? (\checkmark)
- 2. Egy 20-csúcsú poliédernek 12 lapja van, mind K oldalú sokszög. Mennyi a K értéke? (\checkmark)
- 3. Legyenek $v_2, v_3, \ldots, v_7, v_8$ a G gráf csúcsai, és pontosan akkor legyen v_i és v_j között él, ha i^2-1 -nek és j^2-1 -nek van 1-nél nagyobb közös osztója. Rajzoljuk le G egy áttekinthető diagramját, valamint döntsük el, hogy G síkbarajzolható-e. (\checkmark) (ppZH '12)

- 4. Egy konvex poliéder minden lapja négyszög vagy nyolcszög és minden pontban pontosan három lap találkozik. Mennyi a négyszög- és nyolcszöglapok számának különbsége?
- 5. Síkbarajzolhatók-e a $K_6, K_{4,2}, K_{4,3}, K_5 e, K_{3,3} e$ gráfok? Hát az alábbiak?

- 6. Van-e olyan 9-pontú G gráf, hogy sem G sem a G komplementere nem síkbarajzolható? (V '01)
- 7. Van-e olyan 8-pontú G gráf, hogy mind G, mind pedig a \overline{G} komplementergráf síkbarajzolható?
- 8. Igazoljuk, hogy ha egy egyszerű G gráfnak legalább 11 csúcsa van, akkor G és \overline{G} közül legalább az egyik nem síkbarajzolható.
- 9. Tegyük fel, hogy G olyan összefüggő, síkbarajzolt gráf, amelynek 14 tartománya van, minden csúcsának fokszáma 3 vagy 6, és a harmadfokú csúcsok száma kétszerese a hatodfokúakénak. Hány csúcsa és hány éle van G-nek?
- 10. Bizonyítsuk be, hogy ha egy egyszerű G gráf síkbarajzolható, akkor a pontjainak legfeljebb a fele lehet 10-nél nagyobb fokú. (pZH '14)
- 11. Abszurdisztán adóhivatala egy papírfecnin szerzett értesülés nyomán szeretne felderíteni bizonyos ÁFA-csalásokat. A szövevényes bűnügy felgöngyölítéséhez elkészítettek egy G gráfot. G pontjai a gyanús cégek, és két csúcs között akkor fut él, ha a két szóban forgó cég egyike számlát állított ki a másiknak. Az adatok gondos analízise nyomán az derült ki, hogy minden gyanús cégnek legalább hat másik gyanús céggel volt már közös számlázási ügye. A nyomozás sikerének pedig az a kulcsa, hogy ez a G gráf átlátható legyen, azaz, hogy G-t úgy lehessen lerajzolni egy dátummal, pecséttel és aláírással ellátott okmányra, hogy élek belső pontban ne keresztezék egymást. (Ha ugyanis eredménytelen marad a próbálkozás, akkor sajnos képtelenség felderíteni az csalásokat.) Sikerül-e vajon nyakon csípni az elvetemült bűnözőket? (ZH '14)
- 12. Egy mezőn k ház és k kút áll (ahol $k \in \mathbb{N}$). Minden háztól pontosan 4 (különböző) kúthoz vezet út (méghozzá közvetlenül, vagyis más házak vagy kutak érintése nélkül). Mutassuk meg, hogy biztosan van két olyan út, amelyek keresztezik egymást!
- 13. Bizonyítsuk be, hogy nem létezik 5 olyan ország, amik páronként szomszédosak!
- 14. A $K_{5,5}$ gráfot úgy rajzoltuk le a síkra, hogy az élek töröttvonalak, és egy ponton legfeljebb két él metszi egymást. Bizonyítsuk be, hogy ekkor legalább 9 élmetszéspont keletkezik. Mutassuk meg, hogy K_{10} lerajzolásakor legalább 42 élmetszéspontot kapunk. (!*)
- 15. Legfeljebb hány éle és hány tartománya lehet egy olyan egyszerű, n pontú, SRt G gráfnak, aminek van olyan lapja, ami G minden csúcsát tartalmazza a határán?
- 16. Ha G $n \ge 3$ pontú, egyszerű, síkbarajzolható gráf, akkor
 - (a) G egyúttal tóruszra is rajzolható;
 - (b) ha G-nek 3n-6-nál kevesebb éle van, akkor behúzható G-be új él úgy, hogy továbbra is egyszerű, síkbarajzolható gráfot kapjunk;
 - (c) G-nek van legfeljebb harmadfokú csúcsa vagy G tetszőleges síkbarajzolásának van háromszöglapja. (ZH '01)
- 17. Mutassuk meg, hogy a K_5 , K_6 , K_7 és a $K_{3,3}$ gráfok mindegyike tóruszra (úszógumira) rajzolható. Bizonyítsuk be, hogy ha a G gráf síkbarajzolható, és G-be behúzunk egy e élt, akkor a kapott G + e gráf tóruszra rajzolható.
- 18. Igazoljuk, hogy ha G olyan összefüggő, síkbarajzolt gráf, amelyben minden fokszám páros, akkor G tartományai kiszínezhetők sakktáblaszerűen két színnel úgy, hogy az élben szomszédos tartományok színe egymástól különböző legyen. (!)
- 19. Tfh G öf, SRható, és G minden lapja háromszög, ill., hogy G^* minden lapja négyszög. Hány pontja és hány éle van G-nek?
- 20. Igazoljuk, hogy ha G n pontú SRt gráf, és G izomorf G^* -gal, akkor G-nek 2n-2 éle van! Tetszőleges n > 3-ra mutassunk példát ilven G-re!
- 21. Adott n>2 egész szám esetén van-e olyan SRható G gráf, ami izomorf a duálisával és részgráfként tartalmaz egy C_n kört?