



| Morte | Const   |  |
|-------|---------|--|
| Meta, | 000 100 |  |
|       |         |  |



```
TC: O(N2)
 200=0 Col=0
                                     SC: 0(1)
while ( N>1) {
     for (i=1; i<=N-1; i++) {
            print (Alrow) [w])
             Coltt
      for(i=1; i <= N-1; i++) {
            paint (Altow) [col])
             1000 tt
      for (i=1; i<= N-1; i++) {
           paint (A [row] [w])
            col--
       for (i=1; i <=N-1; i++) {
           print (Alfon) [col])
            40w --
       howtt
        Col++
         N= N-2
  if (N==1) & print (A[ROW) [60])}
```





| First subarray of size k [0, k-]         |
|------------------------------------------|
| Last subarray of size k [0, k-]          |
| Total no. of subarrays of size k > N-k+1 |
| T B F 8°                                 |
|                                          |
| Beak (10:49- 11:00)                      |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |

| Q3) | Given  | an .     | array | find | number | of | subarrays | of |
|-----|--------|----------|-------|------|--------|----|-----------|----|
|     | length | <u> </u> |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |
|     |        |          |       |      |        |    |           |    |



S = D e = k-1 S = D e = k-1

| () 4) | Find                                        | mex        | sum        | subarray | for      | all        | subari   | ays of  | size=k   |
|-------|---------------------------------------------|------------|------------|----------|----------|------------|----------|---------|----------|
|       | N= 9                                        | <u>k</u> = | 4          |          |          |            |          |         |          |
|       | § 5                                         | 3 -        | z 3<br>·2  | 4<br>6   | 5<br>2 - | 5 7<br>I 4 | 8<br>3 } |         |          |
|       |                                             | S          |            | c        | SI       | ım         |          |         |          |
|       |                                             | 0          |            | 3        | -        | T          | Αγ       | ls : 11 |          |
|       |                                             |            |            | 4        |          | 3          |          |         |          |
|       |                                             | 2          |            | 5        | 7        | 1          |          |         |          |
|       |                                             | 3          |            | 6        | 3        |            |          |         |          |
|       |                                             | 4          |            | 7        | 11       |            |          |         |          |
|       |                                             | 5          |            | 8        | 8        |            |          |         |          |
|       |                                             |            |            |          |          |            |          |         |          |
|       |                                             | S = D      | e =        | k-1      | max.     | Sum = -    | Þ        |         |          |
|       |                                             |            | ( e <= N-  |          |          |            |          |         |          |
|       |                                             |            | uint (s, i |          |          |            |          |         |          |
|       |                                             | ,          | sum = 0    |          |          |            |          |         |          |
|       |                                             | _          | Sum        | (A[s:e]) |          |            |          |         |          |
|       | for (i=s; i<= e; i+t) {    Sum = sum + A[i] |            |            |          |          |            |          |         |          |
|       |                                             |            | 3          | JUW =    | sum T    | 71(5)      |          |         | <b>↓</b> |
|       |                                             |            | mar su     | m= ma    | x ( max  | (Jym j     | tum)     | P.      | farroy   |
|       |                                             | 3          |            |          |          |            |          |         | TODO     |

## New approach

N=9 k=4

2(5) 3 (2) (1) (6) (2) (1) (9) (3)

S=0 c=3 (Iterate & Calculate the

sum = 7

sum

s=1 e=4

subtracting A[9] and adding A[4] Sum = 7 - 5 + 6 = 8

subtracting A[i] and adding A[s] Sum = 8-3+2 = 7

S= 3 c= 6

subtracting A[2] and adding A[6] sum = 7 - (-2) + (-1) = 8

S= 4 e= 7

subtracting A[3] and adding A[7] Sum = 8-1+4= 0

S=5 C=8

subtracting A[4] and adding A[8] sum = 11 - 6 + 3 = 8

|     | Sum = 0 , max sum = -0                              |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------|--|--|--|--|--|--|--|
| 2   | for (i=0; i<=k-1; i++) {                            |  |  |  |  |  |  |  |
|     | sum = sum + A(i) (k, N-1)                           |  |  |  |  |  |  |  |
|     | marsum = mar (marsum, sum)                          |  |  |  |  |  |  |  |
|     | s=1 e=k                                             |  |  |  |  |  |  |  |
|     | while ( e <= N-1 ) {                                |  |  |  |  |  |  |  |
| N-k | # index I am gaining → e  # index I am losiny → S-1 |  |  |  |  |  |  |  |
|     | # index \( \Siny \rightarrow S-1                    |  |  |  |  |  |  |  |
|     | sum = sum + A[e] - A[s-1]                           |  |  |  |  |  |  |  |
|     | marsum = mar (marsum, sum)                          |  |  |  |  |  |  |  |
|     | 3 S++, C++                                          |  |  |  |  |  |  |  |
|     | ritun max sum                                       |  |  |  |  |  |  |  |
|     |                                                     |  |  |  |  |  |  |  |
|     | TC:Ob)                                              |  |  |  |  |  |  |  |
|     | sc. a)                                              |  |  |  |  |  |  |  |
|     |                                                     |  |  |  |  |  |  |  |
|     | - i J len-                                          |  |  |  |  |  |  |  |
| 2   |                                                     |  |  |  |  |  |  |  |
|     |                                                     |  |  |  |  |  |  |  |
|     |                                                     |  |  |  |  |  |  |  |
|     |                                                     |  |  |  |  |  |  |  |

| $\varphi_{s}$ | Given | an arro | y of   | size N   | and | a  | number | B |
|---------------|-------|---------|--------|----------|-----|----|--------|---|
|               |       | min     |        |          |     |    |        |   |
|               |       | all     |        |          |     |    |        |   |
|               |       | togethu |        |          |     |    | V      |   |
|               |       | 0       |        |          |     | B= | 5      |   |
|               | Δ: 3  | 3 1 10  | 12. 14 | 2 1      | 5 3 |    |        |   |
|               | П. (  |         | 10 11  | <u> </u> |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |
|               |       |         |        |          |     |    |        |   |