Visualize Wildfire Spread Progress in Valley

Po-Jen Hsu (<u>hsu248@purdue.edu</u>) Shuang Wu (<u>wu1716@purdue.edu</u>)

IEEE 2022 SciVis Contest Datasets

3 set of wildfire simulation

Two different mountain topographies (back curve & head curve)

A canyon topography - Las Conchas Fire (June 29, 2011 @ New Mexico)

Each dataset has a 750-second simulation

Samples in every ten second

75 Structured Grid files

Each Structured Grid file

9 scalar fields

Scalar Fields in Dataset

Scalar Fields	Meanings	Visualization Object
02	oxygen concentration	Wind
convht_1	convective heat transfer (W/m³)	
frhosiesrad_1	fire-induced radiative heat transfer to the fuels (W/m³)	
rhof_1	bulk density of dry fuel (kg/m³)	Vegetation
rhowwatervapo r	bulk density of the moisture released to the atmosphere as a result of fire (kg/m³)	
theta	potential temperature (K)	Fire
u, v, w	Three component vectors of wind	Wind

Problem Statement

1) Discover the location of fire (Static)

Visualize Fire (Flame & Smoke)

Visualize Vegetation

Visualize Wind

2) Observe the movement of Las Conchas Fire (Dynamic)

Spread progress

Preprocessing

Original Structured Grid file is about 1GB

Extracted Structured Grid file (2x MB)

Extract region of interest & downsampling

Remove unwanted scalar fields

Convert to Image Data file for Fire Volume Rendering

Visualization Method - Fire

Volume Rendering (slow)

Transfer Function:

Smoke: 310K

Flame: 400K ~ 800K

Linearly increase alpha $(0.1 \sim 0.5)$

Isosurfacing (fast)

Isovalues:

Smoke: 310K

Flame: 400K, 500K, ..., 800K

Linearly increase alpha $(0.5 \sim 0.7)$

Visualization Method - Wind

- Apply 100 streamlines
- Set the source around the ignition point
- Propagate in both directions
- Map colors to
 - oxygen concentration
 - velocity

Visualization Result

Insight

The location of smoke plumes has relatively lower oxygen concentration

Insight

Stagnant air in the valley with low oxygen concentration limits the flame direction

Insight

The vegetation density indicates the trail of the flame

Strong wind on the hill forces the flame to split and turn its progress direction

