Geography 360: GIS & Mapping

Data Models and Databases

Data Collection I

Vaishnavi Thakar

Review

- Uncertainty is much more than error
- Sources of error
- Uncertainties in three stages
 - Conception
 - Measurement and representation
 - Analysis
- Scale

Learning Objectives

- Understand the primary and secondary techniques of data capture.
- Understand concepts in remote sensing for raster data capture.
- ◆ Be familiar with techniques of vector data capture e.g. scanning, manual digitizing, vectorization.
- ◆ Familiarize with new sources of spatial data.

Data Collection

- Six components of GIS
 - Software, hardware, network, people, procedure, and data
- Can be the most expensive GIS activity
 - Data capture costs can account for up to 85% of the cost of a GIS
- Many diverse sources

Introduction

- Data capture (direct data input)
 - Primary data sources:

(direct measurement): collected in digital format specifically for use in a GI project.

– Secondary sources:

(derivation from other sources): digital and analog datasets originally captured for another purpose and needing to be converted into a suitable digital format for use in a GI project.

- Data transfer (input of data from other systems)
- Data typically 15–50% of the total cost of a GI project
 - If staff costs excluded, data collection can be as much as 60–85% of costs

Raster Data Collection

- Remote sensing
- Vector to raster conversion
- Raster data capture using scanners
- Interpolation

Raster Data Capture

Remote Sensing

- Is the measurement of physical, chemical, and biological properties of objects without direct physical contact.
- Remote sensing instruments can be flown onboard satellites, airplanes, helicopters, unmanned aerial vehicles, and balloon.

Raster Data Capture

- Remote Sensing : Passive and Active Sensors
 - Passive sensors rely on reflected solar radiation or emitted terrestrial radiation
 - Can easily be affected by cloud
 - Active sensors generate their own source of radiation to monitor the earth surface
 - Weather independent
 - Sunlight independent: can be operated day and night

Raster Data Capture

- Resolution is the key consideration
 - Spatial
 - Temporal
 - Spectral

Spatial Resolution

- Spatial resolution: refers to the size of smallest possible objects that can be detected.
- The most usual measure is the pixel size.
- For urban analysis, the spatial resolutions greater than 10m are practically useless
 - E.g., Landsat MSS data (79m) are of little value for most urban applications
- In ArcGIS,
 - right-click the raster layer, go to property/source to check the spatial resolution

Imagery of Harbor Town in Hilton Head, SC, at Various Spatial Resolutions

© 2013 Pearson Education, Inc.

10

Temporal Resolution

Temporal resolution:

generally refers to how often the remote sensor records imagery of a particular area.

e.g., every 16 days

 Multiple records of the same area obtained through time can be used to identify change and make predictions.

E.g.,

- 16-day revisit cycle NASA Landsat Thematic Mapper
- Every half hour GEOS (Geostationary Operational Environmental Satellites)

IKONOS Imagery of the World Trade Center

a. June 30, 2000.

b. September 15, 2001.

© 2013 Pearson Education, Inc.

Trade-Off Between Spatial and Temporal Resolution

Applications

Weather predication

 Require very high temporal (e.g., every half-hour) resolution but low spatial resolution (e.g., 4 to 8 km)

Emergency response

Require very high spatial (e.g., 0.5m)
resolution and high temporal resolution
(e.g., daily)

Land use mapping

 Generally require high spatial resolution imagery (1 to 5m) at relatively low temporal resolution (1 to 10 years)

- Pointabel Satellites can acquire imagery off-nadir. (Nadir = point directly below the spacecraft.)
- Obtain imagery during an emergency,
- E.g., SPOT, IKONOS, Quick Bird, ImageSat

Spatial and temporal characteristics of commonly used Earth observation remote-sensing systems and their sensors

Spectral Resolution

- Spectral resolution refers to the parts of the electromagnetic spectrum that are measured.
- Different objects emit and reflect different types and amount of radiation.

Source: http://www.rsacl.co.uk/rs.htm

Spectral Resolution

- Spectral resolution
 - ◆ Is the number and size of specific wavelength interval (referred to as bands) in the electromagnetic spectrum to which a remote sensing instrument is sensitive.
 - Multispectral remote sensing
 - Records energy in multiple bands
 - Hyperspectral remote sensing
 - Records in tens to hundreds of spectral bands

© 2013 Pearson Education, Inc.

Point vector to raster conversion:

- If there is only a single point in a cell, that point's value is assigned to the cell.
- node x,y assigned to closest raster cell.
- locational shift almost inevitable; error depends on raster size.
- two points in one cell indistinguishable
- If more than one point in a cell
 - Sum, Mean, Minimum, Maximum, Range, Most frequent
- not transitive; cannot retrieve original data without error

Transitive: the ability to reproduce the original data after conversion.

Line vector to raster conversion:

- Cells assigned if touched by line .
- Stair step appearance of diagonal lines (called aliasing).
- If there is more then one line in the cell, then:
 - Maximum_Length
 - Maximum_Combined_Length
 - If the priorities are adopted, then select the one with the highest priority.

Polygon vector to raster conversion:

There are three ways to control how the cell will be assigned a value when more than one feature falls within a cell.

- CELL_CENTER
- MAXIMUM_AREA
- MAXIMUM_COMBINED_AREA

Raster Secondary Data Capture

Raster data capture using scanners:

- Scanning of maps, aerial photographs, and other hard-copy documents into digital images.
 - Most GIS scanning is in the range 400-900 dpi (dot per inch).
- The larger the dpi, the higher the resolution, the longer it takes to scan a map.
- After scanning, the images have to be georegistered so that they provide geographic context for other spatial data.

Several terms are used to describe the act of assigning locations including **georeference**, geolocate, geocode, or tag with location.

Interpolation

 Process of creating a continuous surface based on values at isolated sample points.

Conclusion

- Primary geographic data capture
 - direct measurement of objects
- **♦** Secondary geographic data capture
 - ◆ the process of creating raster and vector files and databases from maps, photographs, and other hardcopy documents.
- ◆ Raster data capture (Primary & Secondary)
- ◆ Vector data capture (Primary & Secondary)
- ◆ New sources of spatial data

Questions?

Upcoming

- Lecture : Data Collection II
- Lab 03 due (Check Syllabus)
- Readings updated on canvas.
- Exam in Week 6
- DRS accommodations