Circuit fixe dans un champ magnétique variable

Définitions

Définition: Flux propre

On nomme *flux propre* le flux du champ magnétique produit par le courant d'intensité *i* parcourant un circuit fermé plan à travers ce *même* circuit.

Inductance propre

Le *flux propre* à travers un circuit *fermé* \mathscr{C} , noté Φ_p est proportionnel à l'intensité i du courant parcourant \mathscr{C} . On définit l'*inductance propre* du circuit par :

$$\Phi_p = Li$$

Définition

Définition : Inductance mutuelle de deux bobines

Soient deux bobines \mathcal{B}_1 et \mathcal{B}_2 orientées, parcourues par des courants d'intensités algébriques respectives i_1 et i_2 .

Le flux propre du champ magnétique créé par \mathcal{B}_2 à travers elle-même est donné par :

$$\Phi_2 = L_2 i_2,$$

avec L_2 l'inductance **propre** de \mathcal{B}_2 .

Le flux du champ magnétique créé par \mathcal{B}_1 à travers \mathcal{B}_2 , noté $\Phi_{1 \to 2}$, est proportionnel à i_1 ; on définit donc l'*inductance mutuelle* de \mathcal{B}_1 sur \mathcal{B}_2 , notée $M_{1 \to 2}$ par :

$$\Phi_{1\rightarrow 2}=i_1M_{1\rightarrow 2}$$

Le flux *total* à travers \mathcal{B}_2 , noté Φ_{2t} , est alors :

$$\Phi_{2t} = L_2 i_2 + M_{1 \to 2} i_1.$$

On a de même :

$$\Phi_{1t} = L_1 i_1 + M_{2 \to 1} i_2.$$

Relation de Neumann

Symétrie des inductances mutuelles

Les inductances mutuelles $M_{1\rightarrow 2}$ et $M_{2\rightarrow 1}$ sont *égales* quels que soient les conducteurs 1 et 2. On les notera donc M.

Modèle

Définition: Transformateur idéal

Dans un *transformateur idéal*, les résistances internes des bobines sont nulles et les inductances vérifient :

$$L_1 = kN_1^2$$
 $L_2 = kN_2^2$ $M = \sqrt{L_1L_2} = kN_1N_2$,

avec k une constante positive.

Exercice : bilan énergétique dans un système couplé

On considère le système de deux bobines couplées par inductance mutuelles. On note respectivement L_1, L_2 les inductances propres de chaque bobine, M leur inductance mutuelle, R_1 et R_2 leurs résistances. On note u_1, i_1 et u_2, i_2 les tensions et intensités parcourant chaque bobine, en convention récepteur.

- 1. Établir le système d'équations différentielles vérifié par u_1, u_2, i_1, i_2 et leurs dérivées.
- 2. En déduire la puissance totale reçue par l'ensemble des deux bobines. On y fera apparaître les termes $L_1 i_1^2/2$; $L_2 i_2^2$ et $M i_1 i_2$ qu'on interprétera.
- 3. On se place en régime sinusoïdal établi. On branche un générateur sinusoïdal idéal au primaire (1) et un résistor de résistance R_u au secondaire 2. Comparer la puissance moyenne fournie par le générateur et la puissance moyenne reçue par R_u.

Indispensable

Indispensable

- autoinduction, lien avec l'électrocinétique
- inductance mutuelle, circuits couplés
- application au transformateur