

POLITECHNIKA WARSZAWSKA

Wydział Mechaniczny Energetyki i Lotnictwa

MEL

Zakład Teorii Maszyn i Robotów

TEORIA STEROWANIA I

INŻ. DANIEL WLAZŁO

Opis rozwiązania pierwszego zadania projektowego

numer albumu: 244123

kierunek: Automatyka i Robotyka

specjalność: Robotyka

Spis treści

1	Zadanie					
	1.1	Treść	projektu	2		
	1.2	Dane	do projektu	3		
2	Proces projektowania 4					
	2.1	Spraw	dzenie zachowania symulowanego obiektu bez regulatora dyskretnego	4		
		2.1.1	Analiza transmitancji obiektu	4		
		2.1.2	Dokładna transmitancja dyskretna obiektu	5		
		2.1.3	Transmitancja widmowa	5		
		2.1.4	Transmitancja pseudoczęstotliwościowa	5		
	2.2	Projek	ktowanie regulatora	6		
		2.2.1	Dobór wzmocnienia regulatora	6		
		2.2.2	Dobór nowej pulsacji granicznej	8		
	2.3	Regula	ator	9		
		2.3.1	Transmitancja	9		
		2.3.2	Stabilność	9		
		2.3.3	Funkcje wrażliwości	11		
	2.4	Odpov	wiedzi na zadane sygnały	14		
		2.4.1	Odpowiedź układu na skok jednostkowy	15		
		2.4.2	Odpowiedź układu na skok o zadanej amplitudzie	16		
		2.4.3	Odpowiedź układu na wymuszenie sinusoidalne	18		
		2.4.4	Odpowiedź układu na wymuszenie trapezowe	19		
3	$\mathbf{W}\mathbf{n}$	ioski		22		

Rozdział 1

Zadanie

1.1 Treść projektu

Rysunek 1.1: Schemat układu regulacji

Dla układu regulacji o powyższej strukturze wybrać czas próbkowania T_p oraz dobrać tak transmitancję regulatora dyskretnego R(z), aby otrzymać układ regulacji spełniający następujące wymagania:

- uchyby położeniowy i prędkościowy w stanie ustalonym są najmniejsze z możliwych do osiągnięcia,
- \bullet wymuszenia ro maksymalnej prędkości r_1 i maksymalnym przyspieszeniu r_2 są przenoszone z uchybem nie większym niż ε ,
- odpowiedź układu regulacji na skok jednostkowy charakteryzuje się małą oscylacyjnością i niezbyt dużym czasem ustalania, co jest związane z przyjętą przez projektanta maksymalną wielkością piku rezonansowego M_p układu zamkniętego,
- \bullet moduł sterowania u nie przekracza rozsądnej granicy.

Projekt powinien przedstawiać co najmniej:

- transmitancję i równanie różnicowe wybranego regulatora,
- charakterystyki częstotliwościowe transmitancji:

$$G(j\omega), HG^*(j\omega), HG^*(jv),$$

 $L^*(jv) = R^*(jv)HG^*(jv),$

- charakterystykę Nyquista zaprojektowanego układu otwartego,
- \bullet przyjętą przez projektanta maksymalną wielkością piku rezonansowego M_p układu zamkniętego,
- charakterystykę amplitudową funkcji wrażliwości $|S*(j\omega)|$ oraz charakterystykę amplitudową dopełniającej funkcji wrażliwości (transmitancji układu zamkniętego) $|T*(j\omega)|$, charakterystykę amplitudową funkcji wrażliwości sterowania $|R*(j\omega)|$, zaprojektowanego systemu pokazujące, że spełniono postawione wymagania w dziedzinie częstotliwościowej,
- odpowiedzi układu regulacji na:
 - skok jednostkowy,
 - skok jednostkowy o amplitudzie $(r_1)^2/r_2$,
 - wymuszenie harmoniczne:

$$t \mapsto r(t) = \frac{(r_1)^2}{r_2} sin(\frac{r_2}{r_1}t)$$

- wymuszenie o trapezoidalnym przebiegu prędkości i prędkości maksymalnej równej r_1 oraz przyspieszeniu maksymalnym równym r_2 ,
- sterowanie wywołane powyższym wymuszeniem, pokazujące, że spełniono wymagania w dziedzinie czasowej.

1.2 Dane do projektu

Zestaw numer 16:

• Transmitancja:

$$G(s) = \frac{150}{s(1.12s+1)(0.224s+1)}$$

Maksymalna prędkość:

$$r_1 = 1$$

• Maksymalne przyspieszenie:

$$r_2 = 0.8$$

• Dokładność

$$\varepsilon = 0.005$$

Rozdział 2

Proces projektowania

2.1 Sprawdzenie zachowania symulowanego obiektu bez regulatora dyskretnego

2.1.1 Analiza transmitancji obiektu

Transmitancja ma postać:

$$G(s) = \frac{150}{s(1.12s+1)(0.224s+1)}$$

Obiekt można zatem przedstawić w postaci superpozycji członu proporcjonalnego, członu całkującego idealnego oraz członu inercyjnego 2 rzędu (bądź dwóch członów inercyjnych pierwszego rzędu).

Rysunek 2.1: Wizualizacja dekompozycji obiektu o transmitancji G

2.1.2 Dokładna transmitancja dyskretna obiektu

Rysunek 2.2: Obiekt wraz z układami DAC i ADC

Korzystając z wzoru:

$$HG(z) = \frac{z-1}{z} \mathcal{Z}(\mathcal{L}^{-1}(\frac{G(s)}{s})) = \frac{z-1}{z} \mathcal{D}(\frac{G(s)}{s})$$

dla czasu próbkowania $T_p = 0.04$ otrzymano dokładną transmitancję dyskretną obiektu:

$$HG(z) = \frac{6.344 \cdot 10^{-6} z^2 + 2.524 \cdot 10^{-5} z + 6.276 \cdot 10^{-6}}{z^3 - 2.979 z^2 + 2.958 z - 0.9788}$$

2.1.3 Transmitancja widmowa

Korzystając z zależności:

$$HG^*(j\omega) = HG(e^{T_p j\omega})$$

obliczono transmitancję widmową:

$$HG^*(j\omega) = \frac{6.344 \cdot 10^{-6} (e^{0.041j\omega})^2 + 2.524 \cdot 10^{-5} e^{0.041j\omega} + 6.276 \cdot 10^{-6}}{(e^{0.041j\omega})^3 - 2.979 (e^{0.041j\omega})^2 + 2.958 e^{0.041j\omega} - 0.9788}$$

${\bf 2.1.4} \quad {\bf Transmitancja} \ {\bf pseudoczęstotliwościowa}$

Transmitancja pseudoczęstotliwościowa ma postać:

$$HG^{w*}(j\nu) = \frac{1.594 \cdot 10^{-6} j\nu^3 - 8.057 \cdot 10^{-4} j\nu^2 - 1.191 j\nu + 597.9}{j\nu^3 + 5.357 j\nu^2 + 3.986 j\nu}$$

Przybliżenie transmitancji pseudoczęstotliwościowej:

$$HG_{est}^{w*}(j\nu) = G(j\nu)(1 - \frac{T_p}{2}j\nu) = \frac{-0.3j\nu + 150}{0.2509j\nu + 1.344j\nu + s}$$

Rysunek 2.3: Charakterystyka częstotliwościowa transmitancji HGw*, HGw*est, HG* oraz G

2.2 Projektowanie regulatora

2.2.1 Dobór wzmocnienia regulatora

Pierwszym krokiem zbliżającym do obliczenia wzmocnienia było wyznaczenie obszaru zabronionego. Korzystając z definicji wymagań:

Maksymalna prędkość: $r_1=1$ Maksymalne przyspieszenie: $r_2=0.8$ Dokładność: $\varepsilon=0.005$ obliczam wielkości ω_a oraz $L_g r$:

$$\omega_a = \frac{r_2}{r_1} = 0.8$$
 $L \ge \frac{1}{\epsilon} \frac{(r_1)^2}{r_2} \frac{1.16 \cdot 4}{\pi} = 369.2$

Na podstawie tych wartości wykreślono wykres obszaru zabronionego. Naniesiono na niego również wykres transmitancji $HG^{w*}(j\nu)$.

Rysunek 2.4: Obszar zabroniony

Z analizy wykresu wynika, że minimalne wzmocnienie, jakie powinien wprowadzać regulator wynosi $k_r=3\,$

2.2.2 Dobór nowej pulsacji granicznej

Naturalna pseudopulsacja graniczna obiektu: $\nu_{gob}=8.0395.$

Ograniczenie wynikające z wprowadzenia opóźnienia: $\nu_q < 110$.

Przyjęto $\nu_g = 80$.

Z faktu przyjęcia, iż $M_p=1.4$, wynika, że: $\nu_1 \leq \nu_g \frac{M_p-1}{M_p} = 22.8571; \nu_2 \geq \nu_g \frac{M_p+1}{M_p} = 137.1429$ Na podstawie przeprowadzonych symulacji działania regulatora, dobrano $\nu_1=8, \nu_2=400$.

Rysunek 2.5: Wykres Bodego dla obiektu z regulatorem

2.3 Regulator

2.3.1 Transmitancja

Transmitancja regulatora wynosi:

$$R(j\nu) = \frac{0.04664j\nu^2 + 0.7482j\nu + 3}{6.25e - 06j\nu^2 + 0.005j\nu + 1}$$

Transmitancja impulsowa regulatora wynosi:

$$R(z) = \frac{2378z^2 - 4606z + 2230}{z^3 - 0.2222z^2 + 0.01235z}$$

Równanie różnicowe:

$$u(k) = 0.2222u(k-1) - 0.01235u(k-2) + (2378e(k-1) - 4606e(k-2) + 2230)e(k-3)$$

2.3.2 Stabilność

W celu zbadania stabilności układu wykonano wykres Nyquista oraz zbadano układ poleceniem gain.

Rysunek 2.6: Wykres Nyquista petli otwartej

Rysunek 2.7: Wykres Bodego petli otwartej

2.3.3 Funkcje wrażliwości

W celu sprawdzenia reakcji układu na spektrum częstotliwości sygnału wymuszenia sporządzono wykresy:

- $\bullet\,$ funkcji wrażliwości $S=\frac{1}{1+GR}$ oraz dopełniającej funkcji wrażliwości $T=\frac{GR}{1+GR}$
- $\bullet\,$ funkcji wrażliwości na sterowanie $Q=\frac{R}{1+GR}$

Rysunek 2.8: Wykres funkcji wrażliwości oraz dopełniającej funkcji wrażliwości

Rysunek 2.9: Wykres funkcji wrażliwości na sterowanie

2.4 Odpowiedzi na zadane sygnały

Rysunek 2.10: Schemat układu

2.4.1 Odpowiedź układu na skok jednostkowy

Rysunek 2.11: Odpowiedź układu na skok jednostkowy

2.4.2 Odpowiedź układu na skok o zadanej amplitudzie

Rysunek 2.12: Odpowiedź układu na skok o zadanej amplitudzie

Rysunek 2.13: Odpowiedź układu na skok o zadanej amplitudzie

2.4.3 Odpowiedź układu na wymuszenie sinusoidalne

Rysunek 2.14: Odpowiedź układu na wymuszenie sinusoidalne

2.4.4 Odpowiedź układu na wymuszenie trapezowe

Rysunek 2.15: Odpowiedź układu na wymuszenie trapezowe

Rysunek 2.16: Sterowanie układu przy wymuszeniu trapezowym

Rysunek 2.17: Uchyb układu przy wymuszeniu trapezowym

Rozdział 3

Wnioski

Celami projektu było wybrać czas próbkowania T_p oraz dobrać tak transmitancję regulatora dyskretnego R(z), aby otrzymać układ regulacji spełniający następujące wymagania::

- uchyby położeniowy i prędkościowy w stanie ustalonym są najmniejsze z możliwych do osiągnięcia,
- wymuszenia r o maksymalnej prędkości r_1 i maksymalnym przyspieszeniu r_2 są przenoszone z uchybem nie większym niż ε ,
- odpowiedź układu regulacji na skok jednostkowy charakteryzuje się małą oscylacyjnością i niezbyt dużym czasem ustalania, co jest związane z przyjętą przez projektanta maksymalną wielkością piku rezonansowego M_p układu zamkniętego,
- moduł sterowania u nie przekracza rozsądnej granicy.

Niestety, pomimo wielokrotnych prób doboru zmiennych regulatora, nie udało się doprowadzić do sytuacji w której wszystkie z powyższych wymagań byłyby spełnione. Próby wyeliminowania uchybu, bądź przyspieszenia działania układu skutkowały utratą stabilności (układ schodził z zapasem modułu poniżej 6 dB). Aby uniknąć niestabilnie działającego układu zdecydowano się na pozostawienie regulatora w powyższej formie, zdając sobie sprawę z jego niedociągnięć.

Projekt w znaczący sposób przyczynił się do zrozumienia działania regulatorów oraz lepszego poznania oprogramowania inżynierskiego: MatLAB (z pakietem Simulink), Rstudio oraz LaTeX.

Spis rysunków

1.1	Schemat układu regulacji	2
2.1	Wizualizacja dekompozycji obiektu o transmitancji G	4
2.2	Obiekt wraz z układami DAC i ADC	
2.3	Charakterystyka częstotliwościowa transmitancji HGw*, HGw*est, HG*	
	$\mathrm{oraz}\;G\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;$	6
2.4	Obszar zabroniony	7
2.5	Wykres Bodego dla obiektu z regulatorem	8
2.6	Wykres Nyquista petli otwartej	10
2.7	Wykres Bodego petli otwartej	11
2.8	Wykres funkcji wrażliwości oraz dopełniającej funkcji wrażliwości	12
2.9	Wykres funkcji wrażliwości na sterowanie	13
2.10	Schemat układu	14
2.11	Odpowiedź układu na skok jednostkowy	15
2.12	Odpowiedź układu na skok o zadanej amplitudzie	16
2.13	Odpowiedź układu na skok o zadanej amplitudzie	17
2.14	Odpowiedź układu na wymuszenie sinusoidalne	18
2.15	Odpowiedź układu na wymuszenie trapezowe	19
2.16	Sterowanie układu przy wymuszeniu trapezowym	20
2.17	Uchyb układu przy wymuszeniu trapezowym	21

Bibliografia

- [1] Woźniak A. Materiały do wykładów z Teorii Sterowania I, Warszawa 2015
- [2] de Larminat P., Thomas Y. Automatyka Układy Liniowe, WNT, Warszawa, 1983