Introduction to structural equation modelling - advanced modelling techniques

Frank Pennekamp

27.10.2021

Department of Evolutionary Biology and Environmental Sciences

University of Zurich

Interactions

- Interactions
- · Latent variables

- Interactions
- · Latent variables
- · Composite variables

- Interactions
- · Latent variables
- Composite variables
- · Complex survey designs

- Interactions
- · Latent variables
- · Composite variables
- · Complex survey designs
- · Temporal autocorrelation

- Interactions
- · Latent variables
- · Composite variables
- · Complex survey designs
- · Temporal autocorrelation
- Spatial autocorrelation

 \cdot In nature, things often are contingent on each other.

- In nature, things often are contingent on each other.
- For instance, the effect of nutrients on plant growth, may depend on how disturbed the environment is.

- In nature, things often are contingent on each other.
- For instance, the effect of nutrients on plant growth, may depend on how disturbed the environment is.
- Such a behaviour is called an interaction, which indicates that the effect of the two main effects are different when combined.

- In nature, things often are contingent on each other.
- For instance, the effect of nutrients on plant growth, may depend on how disturbed the environment is.
- Such a behaviour is called an interaction, which indicates that the effect of the two main effects are different when combined.
- Both positive and negative interactions are possible.

- In nature, things often are contingent on each other.
- For instance, the effect of nutrients on plant growth, may depend on how disturbed the environment is.
- Such a behaviour is called an interaction, which indicates that the effect of the two main effects are different when combined.
- · Both positive and negative interactions are possible.
- In regression, the interaction is represented by a coefficient that estimates the effect of the product of the two predictors.

Interactions can be modelled in different ways in lavaan:

1) Multiple groups

Interactions can be modelled in different ways in lavaan:

- 1) Multiple groups
- 2) Composites

· We will first use multigroup fitting.

```
mod <- sem(model, group = "age_class", data = dd)</pre>
```

- · We will first use multigroup fitting.
- This allows coefficients to vary among groups.

```
mod <- sem(model, group = "age_class", data = dd)</pre>
```

- · We will first use multigroup fitting.
- This allows coefficients to vary among groups.
- Lavaan offers the "group" argument to specify for which groups coefficients should be estimated.

```
mod <- sem(model, group = "age_class", data = dd)</pre>
```

- · We will first use multigroup fitting.
- · This allows coefficients to vary among groups.
- Lavaan offers the "group" argument to specify for which groups coefficients should be estimated.
- · Importantly, groups have to be of categorical nature.

```
mod <- sem(model, group = "age_class", data = dd)</pre>
```

Lavaan allows to introduce equality constraints on various aspects
 via the group.equal argument:

```
mod <- sem(model, group = "age_class", group.equal =</pre>
c("regressions"), data = dd)
group.equal=c(
"intercepts",
"means",
"regressions",
"residuals",
"residual.covariances")
```


• Until now everything was about paths but modelling also involves variables.

7

- Until now everything was about paths but modelling also involves variables.
- Latent variables are variables that are unobserved, but whose influence can be summarized through one or more indicator variables.

7

- Until now everything was about paths but modelling also involves variables.
- Latent variables are variables that are unobserved, but whose influence can be summarized through one or more indicator variables.
- They are useful for capturing complex or conceptual properties of a system that are difficult to quantify or measure directly.

7

- Until now everything was about paths but modelling also involves variables.
- Latent variables are variables that are unobserved, but whose influence can be summarized through one or more indicator variables.
- They are useful for capturing complex or conceptual properties of a system that are difficult to quantify or measure directly.
- First, the direction of causality is reversed from what you might expect: from the latent variables to the observed variable. This is because the indicator variable is an emergent manifestation of the

Composite variables

Composite variables specify the influences of collections of other variables (examples)

