In the Claims

(currently amended) A method of reducing noise in a multi-stage power amplifier,
 comprising:
 providing a first power amplifier stage having an inductance coupled to a first switching device;
 coupling a second power amplifier stage to the first power amplifier stage, wherein the second
 power amplifier stage has an inductance coupled to a second switching device; and
 providing a feedback path from the second power amplifier stage to the first power amplifier

stage to force the DC levels of the first and second power amplifier stages to be

approximately equal, wherein the feedback path is provided by an inductor.

Claim 2 (canceled)

- 3. (original) The method of claim 1, wherein the feedback path is provided by two inductors.
- 4. (original) The method of claim 1, wherein the feedback path is provided by coupling an inductor to each of the inductances of the first and second power amplifier stages.

Claims 5-9 (canceled)

10. (currently amended) A method of reducing noise in a multi-stage power amplifier, comprising:

providing a first power amplifier stage having an inductance coupled between first and second switching devices;

Attorney Docket No.: SIL.P0064

providing a second power amplifier stage having an inductance coupled between third and fourth switching devices; and

forming a feedback path from the second power amplifier stage to the first power amplifier stage to force the DC levels of the first and second power amplifier stages to be approximately equal, wherein the feedback path is provided by an inductor.

Claim 11 (canceled)

12. (original) The method of claim 10, wherein the feedback path is formed by coupling an inductor to each of the inductances.

Claims 13-16 (canceled)

17. (currently amended) A multi-stage power amplifier comprising:

a first power amplifier stage having an inductance coupled to a first switching device;

a second power amplifier stage having an inductance coupled to a second switching device; and

a feedback path coupled between the second and first power amplifier stages so as to make the

DC levels of the first and second power amplifier stages to be approximately equal,

wherein the feedback path is formed by coupling an inductor to each of the inductances.

Claims 18-22 (canceled)

23. (currently amended) A method of reducing noise in a power amplifier, comprising: providing a power amplifier having one or more inputs and one or more outputs, and having an inductance coupled between first and second switching devices; and

Attorney Docket No.: SIL.P0064

coupling a feedback path between one of the inputs and one of the outputs of the power amplifier, wherein the feedback path is formed by an inductance coupled between the one of the inputs and one of the outputs of the power amplifier.

Claims 24-35 (canceled)

36. (currently amended) A method of reducing noise in a multi-stage power amplifier, comprising:

providing a power amplifier stage having an inductance coupled to a first switching device; and providing a feedback path from the output of the power amplifier stage to the input of the power amplifier stage to force the DC levels at the input and output of the power amplifier stage to be approximately equal, wherein the feedback path is provided by an inductor.

Claims 37-40 (canceled)

- 41. (new) A method of reducing noise in a multi-stage power amplifier, comprising:

 providing a first power amplifier stage having an inductance coupled to a first switching device;

 coupling a second power amplifier stage to the first power amplifier stage, wherein the second

 power amplifier stage has an inductance coupled to a second switching device; and

 providing a feedback path from the second power amplifier stage to the first power amplifier

 stage to force the DC levels of the first and second power amplifier stages to be

 approximately equal, wherein the feedback path is provided by an amplifier.
- 42. (new) The method of claim 41, wherein the amplifier comprises an op-amp.

Attorney Docket No.: SIL.P0064

- 43. (new) The method of claim 41, wherein the amplifier is coupled to each of the inductances of the first and second power amplifier stages.
- 44. (new) A multi-stage power amplifier comprising:
 a first power amplifier stage having an inductance coupled to a first switching device;
 a second power amplifier stage having an inductance coupled to a second switching device; and
 a feedback path coupled between the second and first power amplifier stages so as to make the
 DC levels of the first and second power amplifier stages to be approximately equal,
 wherein the feedback path is formed by coupling an amplifier between the second and
 first power amplifier stages.
- 45. (new) The multi-stage power amplifier of claim 44, wherein the feedback path is formed by coupling an op-amp between the second and first power amplifier stages.