

Art of Problem Solving 2015 Canada National Olympiad

Canada National Olympiad 2015

1	Let $\mathbb{N} = \{1, 2, 3,\}$ be the set of positive integers. Find all functions f , defined on \mathbb{N} and taking values in \mathbb{N} , such that $(n-1)^2 < f(n)f(f(n)) < n^2 + n$ for every positive integer n .
2	Let ABC be an acute-angled triangle with altitudes AD, BE , and CF . Let H be the orthocentre, that is, the point where the altitudes meet. Prove that $\frac{AB \cdot AC + BC \cdot CA + CA \cdot CB}{AH \cdot AD + BH \cdot BE + CH \cdot CF} \leq 2.$
3	On a $(4n+2) \times (4n+2)$ square grid, a turtle can move between squares sharing a side. The turtle begins in a corner square of the grid and enters each square exactly once, ending in the square where she started. In terms of n , what is the largest positive integer k such that there must be a row or column that the turtle has entered at least k distinct times?
4	Let ABC be an acute-angled triangle with circumcenter O . Let I be a circle with centre on the altitude from A in ABC , passing through vertex A and points P and Q on sides AB and AC . Assume that $BP.CQ = AP.AQ$
	Prove that I is tangent to the circumcircle of triangle BOC
5	Let p be a prime number for which $\frac{p-1}{2}$ is also prime, and let a, b, c be integers not divisible by p . Prove that there are at most $1 + \sqrt{2p}$ positive integers n such that $n < p$ and p divides $a^n + b^n + c^n$.

www.artofproblemsolving.com/community/c71018

Contributors: aditya21