Name: Byith, A. B

Roll No: B240571EC

NATIONAL INSTITUTE OF TECHNOLOGY CALICUT Department of Mathematics

Second Semester B.Tech. Mid Semester Examination

Winter Semester 2024-25

MA1011E: Mathematics II

Time: 90 minutes Maximum Marks: 30

Instructions:

- Answer all the questions.
- Answers of question 1 must be written on the first page of the main sheet.
- F, f, r are vector fields and f_1, f_2, f_3, g, ϕ are scalar valued functions.
- Calculators/other assisting gadjets/materials are not allowed for this examination.
- Sketch the surfaces/curves whenever necessary.
- 1. (a) Write a parametric form for the sphere $x^2 + y^2 + z^2 = \alpha^2$, $\alpha > 0$. (1)
 - (b) Find the line integral $\int_C \frac{27}{8} ds$, where C is the path from (0,0) to (4,8) along the curve $\mathbf{r}(t) = t \mathbf{i} + t^{\frac{3}{2}} \mathbf{j}$.
 - -(c) If σ is the surface of the sphere $x^2 + y^2 + z^2 = 9$, then find $\iint_{\mathbb{R}} 7 d\sigma$. (1)
 - (d) Without evaluating, express $\int_0^2 \int_{\frac{x-2}{2}}^{\frac{2-x}{2}} x^2 dy dx$, after changing the order of integration. (1)
 - \checkmark (e) Find $\int_0^3 \int_0^{3-x} \int_0^{3-y-x} y \, dV$. (1)
- 2. (a) Show that $\operatorname{div}(\phi \mathbf{f}) = \phi \operatorname{div}(\mathbf{f}) + \nabla \phi \cdot \mathbf{f}$, where $\phi = \phi(x, y, z)$ and $\mathbf{f} = f_1(x, y, z) \mathbf{i} + f_2(x, y, z) \mathbf{j} + f_3(x, y, z) \mathbf{k}$. (2)
 - (b) Let $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ and $r = ||\mathbf{r}||$. If g(r) is a differentiable function of the variable r and $\mathbf{F}(\mathbf{r}) = g(r)\mathbf{r}$, show that $\operatorname{div}(\mathbf{F}) = 3g(r) + rg'(r)$. (3)
- 3. Is the vector field $\mathbf{F}(x,y) = (2x + ye^{xy})\mathbf{i} + (2y + xe^{xy})\mathbf{j}$ conservative in the XY plane? If conservative, find its scalar potential and also calculate the work done by \mathbf{F} on a particle that moves it from (-1,2) to (2,3).

4. Verify Green's theorem in the plane for

$$\oint_C (xy + y^2) \, dx + x^2 \, dy,$$

where C is the closed boundary of the region bounded by y = x and $y = x^2$. (5)

- 5. A cylindrical volume of $x^2 + y^2 = 4$ is removed from inside the cone $z = 4 \sqrt{x^2 + y^2}$, $0 \le z \le 4$. Use double integral to find the volume of the portion between the cone and the cylinder. (5)
- 6. (a) Define the flux of a velocity vector field. (1)
 - (b) Find the flux of $F(x, y, z) = yz \mathbf{j} + z^2 \mathbf{k}$ outward through the surface σ cut from the cylinder $y^2 + z^2 = 1$, $z \ge 0$ by the planes x = 0 and x = 1. (4)

Question Nos.	1	2	3	4	5	6	
Course Outcomes	CO1	CO1	CO1	CO1	CO1	CO1	
Difficulty Level*	2	1	3	2	4	2	
Marks	5	5	5	5	5	5	

Course Outcomes:

- CO1: Find the parametric representation of curves and surfaces in space and evaluate integrals over curves and surfaces
- CO2: Use Laplace transform and its properties to solve differential equations and integral equations.
- CO3: Test the consistency of the system of linear equations and solve it.
- CO4: Diagonalise symmetric matrices and use it to find the nature of quadratic forms.

*1. Knowledge / Recall Level; 2. Understand / Comprehend Level; 3. Apply / Analyze Level; 4. Evaluate / Create Level