$\mathcal{N}CTU$ -EE $\mathcal{D}CS - 2017$

Lab02 Exercise

Design: Arithmetic Logic Unit (ALU)

Data Preparation

1. Extract test data from TA's directory:

% tar xvf ~dcsta02/LAB02.tar

- 2. The extracted LAB directory contains:
 - a. Exercise/:your design

Design Description and Example Wave

An arithmetic logic unit (ALU) is a digital electronic circuit that performs arithmetic and bitwise logical operations on integer binary numbers. In this exercise, a string of instructions will be given. Your job is to decode these instructions and execute.

The following is the definition of the instruction.

WHITH IN WASHINGTON		
instruction [10:8]	instruction [7:4]	instruction [3:0]
Mode	Data of Rs	Data of Rt
3-bit	4-bit	4-bit

Register (Rs) and Register (Rt) represent the data of registers. The instruction takes 3 bits to store the mode bit and takes 8 bits to store the data. Rs and Rt reserve 4 bits to store data.

e.g. Rs = 4'b0000 means the data of Rs is 0. Rt = 4'b0001 means the data of Rt is 1, and so on.

The following is the definition of the mode.

Mode[2:0]	Operation	Note
3'b000	Rs + Rt	Addition
3'b001	Rs – Rt	Absolute value after Subtraction
3'b010	Rs * Rt	Multiplication
3'b011	((Rs + Rt + 4'd15))/7	Division (accurate to the sixth digit after the decimal point)
3'b100	(Rs + Rt) << 2	Shift 2 bits

e.g. Mode = 3'b000 \cdot Rs = 4'b0010 and Rt = 4'b0001 \cdot the result is out = 8'b00000011.

Inputs

I/O	Signal name	Description
Input	Instruction[10:0]	Described above
	Multim	edia L

Outputs

I/O	Signal name	Description
output	Out[8:0]	Calculation result

Specifications

1. Top module name : ALU (File name : ALU.sv)

2. Input pins : instruction[10:0]

Output pins : out[8:0]

3. All data in registers are unsigned number, including **out[8:0**].

4. The maximal delay is 30ns.

Block Diagram

Upload File

1. ALU.sv (If renew, the original file should be replaced)

Grading Policy

- 1. Pass the RTL simulation.
- 2. Synthesis successful (no error) yreless

Note

Template folders and reference commands:

- 1. 01_RTL/(RTL simulation)./01_run
- 2. 02_SYN/ (Synthesis) ./01_run_dc

Example Waveform

