Machine Learning Lab

Section 2: Data Preprocessing

Section-1..

Python programming

Python for data science/ Machine learning

Section-2..

Data preprocessing for Machine learning

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

Importing Libraries

- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

Data Set : Data.csv -

from google.colab import drive
drive.mount('/content/drive')

```
Independent
                                 Dependent
                        C
                                         Е
                             Purchased
  Country
           Age
                    Salary
  France
                 44
                        72000 No
  Spain
                       48000 Yes
4 Germany
                       54000 No
5 Spain
                       61000 No
  Germany
                  40
                             Yes
7 France
                       58000 Yes
8 Spain
                        52000 No
9 France
                       79000 Yes
                 48
10 Germany
                       83000 No
11 France
                       67000 Yes
12
13
```

```
import pandas as pd
data = pd.read_csv("drive/My Drive/Colab Notebooks/DataSets/Data.csv")
dataset = data
```

Data Set : Data.csv

Create matrix of all independent variables

```
dataset
X = dataset.iloc[:, :-1].values
```

Independent

Data Set : Data.csv

Create matrix of all independent variables

```
dataset
X = dataset.iloc[:, :-1].values
```

Independent

<u> </u>				
ĺ				
	Α	В	С	
1	Country	Age	Salary	
2	France	44	72000	
3	Spain	27	48000	
4	Germany	30	54000	
5	Spain	38	61000	
6	Germany	40		
7	France	35	58000	
8	Spain		52000	
9	France	48	79000	
10	Germany	50	83000	
11	France	37	67000	
12				

Data Set : Data.csv

Create matrix of all independent variables

```
X = dataset.iloc[:, :-1].values
```

Create matrix of dependent variable

```
y = dataset.iloc[:, -1].values
```


Data Set : Data.csv

Create matrix of all independent variables

```
X = dataset.iloc[:, :-1].values
```

Create matrix of dependent variable

```
y = dataset.iloc[:, 3].values
```


D	Е
Purchased	d
No	
Yes	
No	
No	
Yes	
Yes	
No	
Yes	
No	
Yes	

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

	Α	В	С	D	Е
1	Country	Age	Salary	Purchased	l
2	France	44	72000	No	
3	Spain	27	48000	Yes	
4	Germany	30	54000	No	
5	Spain	38	61000	No	
6	Germany	40		Yes	
7	France	35	58000	Yes	
8	Spain		52000	No	
9	France	48	79000	Yes	
10	Germany	50	83000	No	
11	France	37	67000	Yes	
12					
13					

Handling missing values

```
# Taking care of missing data
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan,
    strategy='mean')
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
```

sklearn \rightarrow contains large number of libraries for machine learning applications impute \rightarrow library contains methods, classes for preprocessing the data set

Handling missing values

```
# Taking care of missing data
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan,
    strategy='mean')
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
```

```
SimpleImputer \rightarrow class, allow as to take care of missing values in the data set strategy = 'mean' – default value (let we specify here) imputer.fit(X[:, 1:3]) – fit all rows, 1 and 2<sup>nd</sup> col imputer.transform(X[:, 1:3]) –transform (replace) the missing values by mean
```

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

Categorical data

```
Age
                     Salary
                              Purchased
   Country
2 France
                  44
                        72000 No
                  27
                        48000 Yes
3 Spain
                        54000 No
4 Germany
5 Spain
                        61000 No
6 Germany
                  40
                              Yes
7 France
                        58000 Yes
                        52000 No
8 Spain
                        79000 Yes
9 France
                        83000 No.
10 Germany
11 France
                  37
                        67000 Yes
```

```
# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
print(X)
```

```
В
                   C
                           D
                                  E
  Country Age
                 Salary
                        Purchased
                                        [[0 44.0 72000.0]
                    72000 No
  France
                                        [2 27.0 48000.0]
  Spain
                   48000 Yes
                                        [1 30.0 54000.0]
               30
                   54000 No
  Germany
                                        [2 38.0 61000.0]
 Spain
               38
                   61000 No
                                           40.0 63777.777777778]
               40
 Germany
                        Yes
                                        [0 35.0 58000.0]
 France
               35
                   58000 Yes
                                        [2 38.777777777778 52000.0]
 Spain
                    52000 No
                                        [0 48.0 79000.0]
9 France
                    79000 Yes
               48
10 Germany
               50
                   83000 No
                                        [1 50.0 83000.0]
11 France
                   67000 Yes
                                        [0 37.0 67000.0]]
12
13
```

```
# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
print(X)
```

Categorical data

4	Α	В	С	D	E
1	Country	Age	Salary	Purchased	
2	France	44	72000	No	
3	Spain	27	48000	Yes	
4	Germany	30	54000	No	
5	Spain	38	61000	No	
6	Germany	40		Yes	
7	France	35	58000	Yes	
8	Spain		52000	No	
9	France	48	79000	Yes	
10	Germany	50	83000	No	
11	France	37	67000	Yes	
12					
13					

```
from sklearn.compose import ColumnTransformer
ct = ColumnTransformer([("Country", OneHotEncoder(),[0])], remainder="passthrough")

X = ct.fit_transform(X)

X.astype(int)
```

Categorical data

```
array([
[ 1, 0, 0, 44, 72000],
[0, 0, 1, 27, 48000],
[0, 1, 0, 30, 54000],
[0, 0, 1, 38, 61000],
[0, 1, 0, 40, 63777],
[ 1, 0, 0, 35, 58000],
[0, 0, 1, 38, 52000],
[ 1, 0, 0, 48, 79000],
[0, 1, 0, 50, 83000],
[ 1, 0, 0, 37, 67000]])
```

1	Α	В	С	D	E
1	Country	Age	Salary	Purchased	l
2	France	44	72000	No	
3	Spain	27	48000	Yes	
4	Germany	30	54000	No	
5	Spain	38	61000	No	
6	Germany	40		Yes	
7	France	35	58000	Yes	
8	Spain		52000	No	
9	France	48	79000	Yes	
10	Germany	50	83000	No	
11	France	37	67000	Yes	
12					
13					

```
# Encoding the Dependent Variable
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
y
```

array([0, 1, 0, 0, 1, 1, 0, 1, 0, 1])

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

Splitting Training and Test Data

```
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=0)
X test.astype(int)
X train
                                         X test
array([
                                          array([
                                         [ 0, 1, 0, 30, 54000],
[ 0, 1, 0, 40, 63777],
                                          [ 0, 1, 0, 50, 83000]])
[ 1, 0, 0, 37, 67000],
[0, 0, 1, 27, 48000],
[0, 0, 1, 38, 52000],
[ 1, 0, 0, 48, 79000],
[0, 0, 1, 38, 61000],
[ 1, 0, 0, 44, 72000],
[ 1, 0, 0, 35, 58000]])
```

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
X train = sc X.fit transform(X train)
X test = sc X.transform(X test)
array([
[-1., 2.64575131, -0.77459667, 0.26306757, 0.12381479],
[1., -0.37796447, -0.77459667, -0.25350148, 0.46175632],
[-1., -0.37796447, 1.29099445, -1.97539832, -1.53093341],
[-1., -0.37796447, 1.29099445, 0.05261351, -1.11141978],
[ 1. , -0.37796447, -0.77459667, 1.64058505, 1.7202972 ],
[-1., -0.37796447, 1.29099445, -0.0813118, -0.16751412],
[1., -0.37796447, -0.77459667, 0.95182631, 0.98614835],
[1., -0.37796447, -0.77459667, -0.59788085, -0.48214934]])
```

Feature Scaling

```
array([
[-1., 2.64575131, -0.77459667, -1.45882927, -0.90166297],
[-1., 2.64575131, -0.77459667, 1.98496442, 2.13981082]])
```

Data Preprocessing

- Get the data set
- Importing the Libraries
- Importing the data set
- Handling Missing data
- Categorical data
- Splitting the data set
- Feature scaling

Thank you