How to Train a Large Language Model (LLM)

From Data Collection to Fine-Tuning

Dr. Avinash Kumar Singh

AI Consultant and Coach, Robaita

Dr. Avinash Kumar Singh

- ☐ Possess 15+ years of hands-on expertise in Machine Learning, Computer Vision, NLP, IoT, Robotics, and Generative AL
- ☐ **Founded** Robaita—an initiative **empowering** individuals and organizations to build, educate, and implement AI solutions.
- ☐ **Earned** a Ph.D. in Human-Robot Interaction from IIIT Allahabad in 2016.
- ☐ **Received** postdoctoral fellowships at Umeå University, Sweden (2020) and Montpellier University, France (2021).
- ☐ Authored 30+ research papers in high-impact SCI journals and international conferences.
- ☐ Unlearning, learning, making mistakes ...

https://www.linkedin.com/in/dr-avinash-kumar-singh-2a570a31/

Discussion Points

- Data Collection and Preprocessing: Source Selection, Data Cleaning, Metadata Annotation, Format Standardization, Dataset Sharding and Storage
- Tokenization and Vocabulary Creation: Tokenizer Types, Vocabulary Design, Training the Tokenizer, Tokenization Pipeline, Efficiency and Compression
- Model Architecture and Configuration: Transformer Backbone, Configuration Parameters, Positional Encodings, Initialization and Optimization, Distributed Training Setup
- Pretraining Objectives: Causal Language Modeling (CLM), Masked Language Modeling (MLM), Next Sentence Prediction.
- Fine-Tuning and Alignment Techniques: Supervised Fine-Tuning, Reinforcement Learning from Human Feedback (RLHF), Constitutional AI / Rule-based Alignment, Parameter-Efficient Fine-Tuning (PEFT), Evaluation and Red-Teaming

Attention Network Summary

Transformer

Cross Multi-Head Attention

Let decoder attend to encoder outputs (i.e., from "the cat sat on the mat") Let:

• Encoder output = $E \in (6, 4)$

Here:

- Q = from decoder (shape = (3, 4))
- K, V = from encoder output E (shape = (6, 4))
- \rightarrow Attention shape:
- Each head: (3, 2)
- Concatenated: (3, 4)

Output shape: (3, 4)

Data Collection and Preprocessing

Objective: Gathering text data and preparing it for training

Purpose: To provide high-quality, diverse input for the model to learn language patterns

Sources: Public datasets like Wikipedia, Common Crawl, BookCorpus

```
from datasets import load_dataset
dataset = load_dataset('wikitext', 'wikitext-103-raw-v1')
```

Robotics and Artificial Intelligence Training Academy

Cleaning: Remove HTML, scripts, or broken sentences

Example: Eliminate <script> tags or gibberish

Annotation: Add fields like source: Wikipedia, language: English

Helps trace model behavior to data origins

Standardization: Convert data to JSONL format

Easier for pipelines to handle consistent formats

Storage: Use tools like WebDataset for sharded data loading

Example: Break large datasets into small files for distributed training

Dataset Information

Wikipedia

Languages Supported:

■ ~300+ languages (e.g., English, German, French, Hindi, Japanese, etc.)

Hugging Face

Robotics and Artificial Intelligence Training Academy

English Wikipedia is the largest and most frequently used in NLP tasks.

Dataset Size (English):

- ~6+ million articles
- ~20 GB in raw text (compressed XML ~16 GB)

Use Cases:

- Pretraining large language models (e.g., BERT, GPT)
- Knowledge extraction, QA systems
- Summarization, entity recognition, translation
- Creating knowledge graphs and fact-checking tools

https://huggingface.co/datasets/legacy-datasets/wikipedia

■ Datasets: 👪 legacy-datasets/wikipedia 🗀 🗘 like 593 Follow 👪 Legacy Datasets

Dataset Information

Book Corpus

Languages Supported:

 Primarily English, but includes many other languages from web pages (multi-lingual)

Dataset Size (English):

- Petabyte-scale web archive
- Monthly crawls (100–300 TB per snapshot)
- Processed subset: CCNet (~100 GB–1 TB depending on filtering)

Robotics and Artificial Intelligence Training Academy

Use Cases:

- Pretraining massive LLMs (GPT-3, LLaMA, BLOOM)
- Training web-scale language understanding
- Building search engines or domain-specific corpora
- Training models for open-ended generation

https://commoncrawl.org/overview

Dataset Information

BookCorpus

Languages Supported:

English only (original dataset)

Dataset Size (English):

- ~11,000 books
- ~1 GB plain text
- Some cleaned and reformatted versions available (e.g., bookcorpusopen on Hugging Face)

Use Cases:

 Pretraining for narrative and long-form text models (e.g., GPT, BERT, RoBERTa)

Robotics and Artificial Intelligence Training Academy

- Language modeling with coherent, story-like structure
- Fine-tuning models for fiction, dialog, or structured prose

https://github.com/jackbandy/bookcorpus-datasheet

	taset Facts		
Dataset BookCorpus Instances Per Dataset 7,185 unique books, 11,038 total			
Motivation			
Original Authors Original Use Case Funding	Zhu and Kiros et al. (2015) [39 Sentence embeddin Google, Samsung, NSERC, CIFAR, ONI		
Composition			
Sample or Complete Missing Data Sensitive Information	Sample, ≈2% of smashwords.com in 201 98 empty files, ≤655 truncated file Author email addresse		
Collection			
Sampling Strategy Ethical Review Author Consent	Free books with ≥20,000 word None state Non		
Cleaning and Labeling			
Cleaning Done Labeling Done	None stated, some implic None stated, genres by smashwords.cor		
Uses and Distribution			
Notable Uses Other Uses Original Distribution Replicate Distribution	Language models (e.g. GPT [29], BERT [9] List available on HuggingFace [12 Author website (now defunct) [39 BookCorpusOpen [13		
Maintenance and Evolution			
Corrections or Erratum Methods to Extend Replicate Maintainers	Non "Homemade BookCorpus" [21 Shawn Presser [12		
Genres	% of BookCorpus		
Romance 2,881 books	26.19		
Fantasy 1,502 books	13.69		
Vampires 600 books	5.49		
Horror 4.1% Adventure 3.5% Historical Fiction 1.6%	• Teen 3.9% • Literature 3.0%		
Not a significant source of nonf	iction.		
* Percentages based on director	ies in books_txt_full. Some books cross-listed.		

Dataset Summary

Dataset	Language(s)	Size	Use Cases
Wikipedia	~300+	~20 GB (en)	QA, summarization, NER, fine-tuning LLMs, knowledge graphs
Common Crawl	Multi-lingual	100 TB+	Pretraining LLMs, search engines, web knowledge extraction
BookCorpus	English	~1 GB	Narrative pretraining, fiction modeling, long-form dialog

Tokenization and Vocabulary Creation

Objective: Converting text to numerical tokens the model can process

Purpose: Converts human-readable input into model-understandable format

Tokenizer Types: BPE, WordPiece, Unigram

- **BPE (Byte Pair Encoding):** BPE is a compression-inspired tokenization technique. It starts with characters and iteratively merges the most frequent adjacent pairs into new "subword tokens".
 - Example: BPE splits "playing" into "play" + "ing"

Initialize Vocabulary:

["low", "lower", "new", "newest", "widest"]

We first split each word into characters and add a special end-of-word token </w>

Treat each word as a list of tokens (starting from characters) and look for adjacent token pairs.

Symbol Pair	Count
(l, o)	2
(o, w)	2
(w,)	1
(o, w)	1
(w, e)	1
(e, r)	1
(n, e)	2
(e, w)	2
(w,)	1
(e, s)	2
(s, t)	2
(t,)	2
(w, i)	1
(i, d)	1
(d, e)	1

Robotics and Artificial Intelligence Training Academy

Merge the Most Frequent Pair

In the table above, suppose the most frequent pair is (e, s) with a frequency of 2.

We then merge e and s into es in all instances:

"n e w e s t </w>" becomes "n e w es t </w>"

Then repeat:

- Recompute symbol pairs
- Find the new most frequent pair
- Merge it
- Continue until reaching desired vocabulary size or number of merges

Tokenization and Vocabulary Creation

WordPiece

WordPiece is similar to BPE but with a key difference: it selects the merge that gives the highest likelihood increase (not just frequency). It was introduced in Google's BERT.

How it works:

- Start with a base vocabulary (e.g., characters).
- Greedily add new subwords that improve the model likelihood (based on a language model).
- Use "##" to denote subword continuation.

For example "unaffordable" tokenized as ["un", "##aff", "##ord", "##able"]

Step 1: Initialize Vocabulary

- A vocabulary of known tokens, typically includes common words and subwords.
- Subwords are usually marked with ## when they are not at the start of a word.

["un", "afford", "##able", "##a", "##ff", "##or", "##d", "##able"]

Step 2: Greedy Matching – Left to Right

We try to greedily match the longest token from the vocabulary that matches a part of the word.

- Check from the start: "un" → found in vocab Remaining: "affordable"
- Check next longest: "afford" → Found Remaining: "able"
- "able" → not in vocab, but "##able" is ["un", "afford", "##able"]

Tokenization and Vocabulary Creation

- Vocabulary Size: 10k–50k tokens
 - Larger vocab = less sequence length but more memory use
- **Pipeline**: Convert "Hello world" \rightarrow [7592, 6213]
 - Each token maps to an index in the vocabulary
- **Trade-off**: Larger vocab \rightarrow better coverage, but slower inference

```
from tokenizers import ByteLevelBPETokenizer
tokenizer = ByteLevelBPETokenizer()
tokenizer.train(files=["data.txt"], vocab size=10000)
```


Model Architecture and Configuration

Objective: Structure of the neural network that processes tokens

Purpose: Enables learning from sequences of words

Backbone: Use decoder-only for GPT (e.g., text generation)

Example: GPT-2 uses only decoder blocks for left-to-right learning

```
from transformers import GPT2Config
config = GPT2Config(n_layer=2, n_head=4, n_embd=128)
```

Defines a small transformer model with 2 layers, 4 attention heads, and 128-dim embeddings

Positional Encoding: Injects information about word position

Transformers are position-agnostic by default

Distributed Training: Train on multiple GPUs with PyTorch Lightning or DeepSpeed

Robotics and Artificial Intelligence Training Academy

Speeds up training and handles large models

Step-1: Load dataset

We use the "ag_news" dataset which consists of news article titles and descriptions.

```
# Download CSVs (for Colab use)
!wget -q https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv
!wget -q https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/test.csv

# Load CSVs into DataFrames
train_df = pd.read_csv("train.csv", header=None, names=["Class Index", "Title", "Description"])
test_df = pd.read_csv("test.csv", header=None, names=["Class Index", "Title", "Description"]) # Load the
test_data

# Combine title and description for training text
train_df["text"] = train_df["Title"] + ". " + train_df["Description"]
train_dataset = Dataset.from_pandas(train_df[["text"]].head(100)) # limit to 100 samples for demo

# Combine title and description for test text and create eval dataset
test_df["text"] = test_df["Title"] + ". " + test_df["Description"]
eval_dataset = Dataset.from_pandas(test_df[["text"]].head(50)) # limit test_data_for_evaluation
```


Step-2: Tokenization (convert the words into tokens)

We tokenize the text using a pre-trained tokenizer.

- In this example, we use the GPT-2.
- Tokenization involves splitting text into tokens and padding/truncating them to a fixed length for batch processing.

```
# Step 2: Tokenization
from transformers import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from pretrained("gpt2")
tokenizer.pad token = tokenizer.eos token
def tokenize function(example):
    result = tokenizer(example["text"], truncation=True, padding="max length", max length=64)
    result["labels"] = result["input ids"].copy()
    return result.
tokenized train dataset = train dataset.map(tokenize function, batched=True)
tokenized eval \overline{d}ataset = eval \overline{d}ataset.map(\overline{t}okenize \overline{f}unction, batched=True)
```

Step-3: Configure LLM Parameters

We define the model architecture and training arguments.

- We use the distilGPT2 model for demonstration as it is small and fast to train.
- TrainingArguments specify hyperparameters such as batch size, number of epochs, logging settings, and save strategy.

```
from transformers import GPT2Config, GPT2LMHeadModel

config = GPT2Config(
   vocab_size=tokenizer.vocab_size,  # Use vocabulary size from the tokenizer
   n_positions=64,  # Maximum sequence length the model can handle
   n_ctx=64,  # Context size (same as n_positions)
   n_embd=128,  # Size of token embeddings and hidden states
   n_layer=4,  # Number of transformer blocks (depth of the model)
   n_head=4,  # Number of attention heads
   pad_token_id=tokenizer.pad_token_id # Define padding token to avoid mismatch
}
```


Step-4: Train the LLM

We now initialize the Trainer object with the model, tokenizer, training arguments, and tokenized dataset.

- Trainer handles the training loop internally.
- We then call the .train() method to start training.

```
from transformers import TrainingArguments, Trainer
training args = TrainingArguments(
    output dir="./gpt2 scratch",
                                    # Directory to save model checkpoints and final model
    evaluation strategy="epoch",
                                    # Evaluate the model after each epoch
    num train epochs=10,
                                   # Number of training epochs
   logging dir="./logs",
                                  # Directory to store training logs
    logging steps=10,
                                   # Log metrics every 10 steps
                                   # Save model checkpoint every 20 steps
    save steps=20,
   save total limit=1,
                                   # Retain only the most recent checkpoint
    fp16=False
                                    # Use mixed precision (set True if supported by GPU)
trainer = Trainer(
                                           # GPT-2 model initialized from scratch
   model=model,
   args=training args,
                                           # TrainingArguments that specify epochs, logging, batch size, etc.
   train dataset=tokenized train dataset,
                                           # Tokenized training data
   eval dataset=tokenized eval dataset,
                                           # Tokenized evaluation data (optional but useful for monitoring)
   tokenizer=tokenizer
                                           # Tokenizer used for encoding/decoding text
trainer.train()
print("  Training complete.")
```

Step-5: Inference

Now we use the trained model to generate text. We provide a prompt and let the model predict the continuation of the text.

```
def generate text(prompt):
    inputs = tokenizer(prompt, return tensors="pt")
    input ids = inputs["input ids"]
    attention mask = inputs["attention mask"]
    # Get the device of the model
    device = tiny model.device
    # Move input tensors to the model's device
    input ids = input ids.to(device)
    attention mask = attention mask.to(device)
    outputs = tiny model.generate(
        input ids=input ids,
        attention mask=attention mask,
        max new tokens=50,
        num return sequences=1,
        do sample=True,
        top k=50,
        top p=0.95,
        temperature=0.7
    return tokenizer.decode(outputs[0], skip special tokens=True)
prompt = "Breaking news:"
generated text = generate text(prompt)
print("\nGenerated Text:\n", generated text)
```

Generated Text: Breaking news: are with the all-(Reuters). Reuters - (Reuters).

Pretraining Objectives

Objective: Tasks the model learns to solve during pretraining

Purpose: Teaches the model to understand and generate language

CLM (Causal Language Modeling): Predict the next word in sequence

■ Example: Input: "The cat sat on the" → Output: "mat"

MLM (Masked Language Modeling): Predict missing words

■ Example: Input: "The [MASK] sat on the mat" → Output: "cat"

```
from transformers import GPT2LMHeadModel
model = GPT2LMHeadModel(config)
```

Robotics and Artificial Intelligence Training Academy

Loads a GPT-style model with language modeling head

Multi-task Learning: Train on QA, summarization, etc.

Helps models generalize to many tasks

Metric: Perplexity = how uncertain the model is. Lower is better.

Implementation Details [MLM]

Step-1: Load dataset

We use the "ag_news" dataset which consists of news article titles and descriptions.

```
!wget -q https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv
import pandas as pd

df = pd.read_csv("train.csv", header=None, names=["Class Index", "Title", "Description"])

df["text"] = df["Title"] + " " + df["Description"]

texts = df["text"].tolist()

texts= texts [0:5000] # taking only 2000 samples
# Display sample
print("Sample Text:\n", texts[0])
```


Step-2: Tokenization (convert the words into tokens)

We tokenize the text using a pre-trained tokenizer.

 We'll use the BERT tokenizer and apply random masking (MLM-style) using Hugging Face's built-in DataCollatorForLanguageModeling.

```
from transformers import AutoTokenizer
from datasets import Dataset

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

dataset = Dataset.from_dict({"text": texts})

def tokenize_function(examples):
    return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=64)

tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
```


Step-2: Tokenization (convert the words into tokens)

We tokenize the text using a pre-trained tokenizer.

 We'll use the BERT tokenizer and apply random masking (MLM-style) using Hugging Face's built-in DataCollatorForLanguageModeling.

Example 3: Original: oil and economy cloud stocks 'outlook (reuters) reuters - soaring crude prices plus worries \ about the economy and the outlook for earnings are expected to \ hang over the stock market next week during the depth of the \ summer doldrums. Masked: oil and economy cloud stocks 'outlook (reuters) reuters [MASK] soaring sarcastic prices plus worries \ about the [MASK] [MASK] the outlook for earnings [MASK] expected to \ hang over the stock market next week durin the depth of [MASK] eats summer doldrums.

Step-3: Configure LLM Parameters

We'll fine-tune bert-base-uncased using the prepared dataset and collator.

```
from transformers import AutoModelForMaskedLM, TrainingArguments, Trainer

model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")

training_args = TrainingArguments(
    output_dir="./bert-mlm",
    # evaluation_strategy="no", # Removed this argument as it caused a TypeError learning_rate=2e-5,
    per_device_train_batch_size=8,
    num_train_epochs=1,
    weight_decay=0.01,
    logging_steps=100,
    save_steps=500,
}
```


Step-4: Train the LLM

We now initialize the Trainer object with the model, tokenizer, training arguments, and tokenized dataset.

- Trainer handles the training loop internally.
- We then call the .train() method to start training.

```
trainer = Trainer(
    model=model,
    args=training args,
    train dataset=tokenized dataset,
    tokenizer=tokenizer,
    data collator=data_collator,
trainer.train()
```


Step-5: Inference

Now we use the trained model to generate text. We provide a prompt and let the model predict the continuation of the text.

Robotics and Artificial Intelligence Training Academy

Step-1: Load dataset

Movie Review dataset having two classes "Positive" and "Negative"

```
from datasets import load_dataset

# Load IMDB dataset normally (non-streaming)
dataset = load_dataset("imdb", split="train")
dataset = dataset.train_test_split(test_size=0.1)
```


Step-2: Tokenization (convert the words into tokens)

```
from transformers import AutoTokenizer
import torch
tokenizer = AutoTokenizer.from pretrained("gpt2")
tokenizer.pad token = tokenizer.eos token
# Define the format labels function
def format labels(example):
   # Tokenize the full input including the prompt and the label
   full sequence = f"Review: {example['text']}\\nSentiment: {example['label']}"
   tokenized input = tokenizer(
        full sequence,
       padding="max length",
        truncation=True,
       max length=128,
        return attention mask=True,
        return token type ids=False # GPT-2 doesn't use token type ids
   # Tokenize just the prompt part to find its length
   prompt sequence = f"Review: {example['text']}\\nSentiment:"
   # Tokenize the prompt without padding/truncation to get the accurate prompt length in tokens
   tokenized prompt = tokenizer(
       prompt sequence,
        add special tokens=False # Exclude special tokens for accurate length of the prompt text
```

Robotics and Artificial Intelligence Training Academy

Step-3: Configure LLM Parameters

```
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
model = AutoModelForCausalLM.from pretrained("gpt2")
model.resize token embeddings(len(tokenizer))
training args = TrainingArguments(
    output dir="./results",
    # evaluation strategy="epoch",
    learning rate=2e-5,
    weight \overline{\text{decay}}=0.01,
    per device train batch size=4,
    per device eval batch size=4,
    num train epochs=2,
    logging dir="./logs",
    push to hub=False
trainer = Trainer(
    model=model,
    args=training args,
    train dataset=tokenized datasets["train"],
    eval dataset=tokenized datasets["test"],
    tokenizer=tokenizer
```


Robotics and Artificial Intelligence Training Academy

Step-4: Train the LLM

We now initialize the Trainer object with the model, tokenizer, training arguments, and tokenized dataset.

- Trainer handles the training loop internally.
- We then call the .train() method to start training.

trainer.train()

Step-5: Inference

Now we use the trained model to generate text. We provide a prompt and let the model predict the label of the text.

```
input text = "Review: The movie was dull and boring.\nSentiment:"
inputs = tokenizer(input text, return tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
Review: The movie was great and a good
watch. Sentiment: **Positive**
```


Thanks for your time

