

Program Synthesis in Saturation

Petra Hozzová¹

joint work with Laura Kovács¹, Chase Norman² and Andrei Voronkov³

 $^{
m 1}$ TU Wien

² UC Berkeley

³ University of Manchester and EasyChair

Synthesize a program computing \overline{y} for any \overline{x} such that $F(\overline{x}, \overline{y})$ holds using a saturation-based prover proving $\forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$.

first-order formula

Synthesize a program computing \overline{y} for any \overline{x} such that $F(\overline{x}, \overline{y})$ holds using a saturation-based prover proving $\forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$.

```
term, possibly using if—then—else, and only containing computable symbols first-order formula Synthesize a program computing \overline{y} for any \overline{x} such that F(\overline{x},\overline{y}) holds using a saturation-based prover proving \forall \overline{x}.\exists \overline{y}.F(\overline{x},\overline{y}).
```

```
term, possibly using if—then—else.
                                                                                    first-order formula
     and only containing computable symbols
             Synthesize a program computing \overline{y} for any \overline{x} such that F(\overline{x}, \overline{y}) holds
                      using a saturation-based prover proving \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y}).
                              using answer literals.
supporting derivation of clauses C \vee ans(r) where C is computable,
                 expressing "if \neg C, then r is the program"
```

Proving $A_1 \wedge \cdots \wedge A_n \to \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$ by refutation using a saturation algorithm:

1. Create the set of formulas $S = \{A_1, \dots, A_n, \neg \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})\}$

Proving $A_1 \wedge \cdots \wedge A_n \to \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$ by refutation using a saturation algorithm:

1. Create the set of formulas $S = \{A_1, \ldots, A_n, \forall \overline{y}. CNF(\neg F(\overline{\sigma}, \overline{y}))\}$

Proving $A_1 \wedge \cdots \wedge A_n \to \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$ by refutation using a saturation algorithm:

- 1. Create the set of formulas $S = \{A_1, \dots, A_n, \forall \overline{y}. CNF(\neg F(\overline{\sigma}, \overline{y}))\}$
- 2. Repeat:
 - 2.1 Choose $C \in \mathcal{S}$
 - 2.2 Apply rules to derive consequences C_1, \ldots, C_n of C and clauses from S
 - 2.3 Add C_1, \ldots, C_n to S
 - 2.4 If S contains \square , return TRUE (proved)

Proving $A_1 \wedge \cdots \wedge A_n \to \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$ by refutation using a saturation algorithm:

- 1. Create the set of formulas $S = \{A_1, \ldots, A_n, \forall \overline{y}. CNF(\neg F(\overline{\sigma}, \overline{y}))\}$
- 2. Repeat:
 - 2.1 Choose $C \in \mathcal{S}$
 - 2.2 Apply rules to derive consequences C_1, \ldots, C_n of C and clauses from S
 - 2.3 Add C_1, \ldots, C_n to S
 - 2.4 If S contains \square , return TRUE (proved)

Depending on the calculus, termination might imply that the original formula is not valid. In practice, termination is rare.

Proving $A_1 \wedge \cdots \wedge A_n \to \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$ by refutation using a saturation algorithm:

- 1. Create the set of formulas $S = \{A_1, \dots, A_n, \forall \overline{y}. CNF(\neg F(\overline{\sigma}, \overline{y}))\}$
- 2. Repeat:
 - 2.1 Choose $C \in \mathcal{S}$
 - 2.2 Apply rules to derive consequences C_1, \ldots, C_n of C and clauses from S
 - 2.3 Add C_1, \ldots, C_n to S
 - 2.4 If S contains \square , return TRUE (proved)

Depending on the calculus, termination might imply that the original formula is not valid. In practice, termination is rare.

```
1.![X1:$int,X0:$int]:?[X2:$int]:($greatereq(X2,X0) & $greatereq(X2,X1) & (X0 = X2 | X1 = X2)) [input]
  2. \sim ! [X1: sint, X0: sint] : ?[X2: sint] : (sgreatereq(X2, X0) & sgreatereq(X2, X1) & (X0 = X2 | Sint) | Sint, X0: sint, X0
                                                                                                                                                                            X1 = X2)) [negated conjecture 1]
  3. \sim ! [X1: \text{sint.X0:} : ?[X2: \text{sint}] : ?[X2: \text{sint}] : (\sim \text{sless}(X2, X0) \& \sim \text{sless}(X2, X1) \& (X0 = X2 | X1 = X2)) [theory]
                                                                                                                                                                                                                    normalization 21
  9. ~$less(X0.X0) [theory axiom 144]
10. \sim$less(X1,X2) | \sim$less(X0,X1) | $less(X0,X2) [theory axiom 145]
16. \sim ! [X0 : \$int, X1 : \$int] : ?[X2 : \$int] : (\sim \$less(X2, X1) \& \sim \$less(X2, X0) \& (X1 = X2 | X0 = X2))
                                                                                                                                                                                                                                [rectify 3]
17.?[X0: $int,X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                                                                                                                                                                                                 [ennf transformation 16]
18. ?[X0 : $int,X1 : $int] : ![X2 : $int] : ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                        => ! [X2 : $int] : ($less(X2,sK1) | $less(X2,sK0) | (sK1 != X2 & sK0 != X2)) [choice axiom]
19. ![X2: $int]: ($less(X2.sK1) | $less(X2.sK0) | (sK1 != X2 & sK0 != X2)) [skolemisation 17.18]
20. $less(X2,sK1) | $less(X2,sK0) | sK0 != X2 [cnf transformation 19]
21. $less(X2,sK1) | $less(X2,sK0) | sK1 != X2 [cnf transformation 19]
22. $less(sK1,sK1) | $less(sK1,sK0) [equality resolution 21]
23. $less(sK0.sK1) | $less(sK0.sK0) [equality resolution 20]
24. $less(sK1,sK0) [subsumption resolution 22,9]
25. $less(sK0,sK1) [subsumption resolution 23,9]
66. ~$less(X0,sK1) | $less(X0,sK0) [resolution 10,24]
71. $less(sK0,sK0) [resolution 66,25]
72. $false [subsumption resolution 71.9]
```

```
2. \sim ! [X1: sint, X0: sint] : ?[X2: sint] : (sgreatereq(X2, X0) & sgreatereq(X2, X1) & (X0 = X2 | Sint) | Sint, X0: sint, X0
                                                                                                                                                                        X1 = X2)) [negated conjecture 1]
  3. \sim ! [X1: sint, X0: sint] : ?[X2: sint] : (\sim sless(X2, X0) & \sim sless(X2, X1) & (X0 = X2 | X1 = X2)) [theory]
                                                                                                                                                                                                              normalization 21
  9. ~$less(X0.X0) [theory axiom 144]
10. \sim$less(X1,X2) | \sim$less(X0,X1) | $less(X0,X2) [theory axiom 145]
16. \sim ! [X0 : \$int, X1 : \$int] : ?[X2 : \$int] : (\sim \$less(X2, X1) \& \sim \$less(X2, X0) \& (X1 = X2 | X0 = X2))
                                                                                                                                                                                                                          [rectify 3]
17.?[X0: $int,X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                                                                                                                                                                                           [ennf transformation 16]
18.?[X0: $int.X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                       => ! [X2 : $int] : ($less(X2,sK1) | $less(X2,sK0) | (sK1 != X2 & sK0 != X2)) [choice axiom]
19. ![X2: $int]: ($less(X2.sK1) | $less(X2.sK0) | (sK1 != X2 & sK0 != X2)) [skolemisation 17.18]
20. $less(X2,sK1) | $less(X2,sK0) | sK0 != X2 [cnf transformation 19]
21. $less(X2,sK1) | $less(X2,sK0) | sK1 != X2 [cnf transformation 19]
22. $less(sK1,sK1) | $less(sK1,sK0) [equality resolution 21]
23. $less(sK0.sK1) | $less(sK0.sK0) [equality resolution 20]
24. $less(sK1,sK0) [subsumption resolution 22,9]
25. $less(sK0,sK1) [subsumption resolution 23,9]
66. ~$less(X0.sK1) | $less(X0.sK0) [resolution 10.24]
71. $less(sK0,sK0) [resolution 66,25]
72. $false [subsumption resolution 71.9]
Proof by refutation, inferences deriving formulas from zero or more other formulas, theory reasoning.
preprocessing, superposition calculus
                                                                                                                                                                                                                                       3 / 12
```

1.![X1:\$int,X0:\$int]:?[X2:\$int]:(\$greatereq(X2,X0) & \$greatereq(X2,X1) & (X0 = X2 | X1 = X2)) [input]

```
1.![X1:$int,X0:$int]:?[X2:$int]:($greatereq(X2,X0) & $greatereq(X2,X1) & (X0 = X2 | X1 = X2)) [input]
  2. \sim ! [X1: sint, X0: sint] : ?[X2: sint] : (sgreatereq(X2, X0) & sgreatereq(X2, X1) & (X0 = X2 | Sint) | Sint, X0: sint, X0
                                                                                                                                                                   X1 = X2)) [negated conjecture 1]
  3. \sim ! [X1: \text{sint.X0:} : ?[X2: \text{sint}] : ?[X2: \text{sint}] : (\sim \text{sless}(X2, X0) \& \sim \text{sless}(X2, X1) \& (X0 = X2 | X1 = X2)) [theory]
                                                                                                                                                                                                         normalization 21
  9. ~$less(X0.X0) [theory axiom 144]
10. \sim$less(X1,X2) | \sim$less(X0,X1) | $less(X0,X2) [theory axiom 145]
16. \sim ! [X0 : \$int, X1 : \$int] : ?[X2 : \$int] : (\sim \$less(X2, X1) \& \sim \$less(X2, X0) \& (X1 = X2 | X0 = X2))
                                                                                                                                                                                                                    [rectify 3]
17.?[X0: $int,X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                                                                                                                                                                                       [ennf transformation 16]
18.?[X0: $int.X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                       => ! [X2 : $int] : ($less(X2,sK1) | $less(X2,sK0) | (sK1 != X2 & sK0 != X2)) [choice axiom]
19. ![X2: $int]: ($less(X2.sK1) | $less(X2.sK0) | (sK1 != X2 & sK0 != X2)) [skolemisation 17.18]
20. $less(X2,sK1) | $less(X2,sK0) | sK0 != X2 [cnf transformation 19]
21. $less(X2,sK1) | $less(X2,sK0) | sK1 != X2 [cnf transformation 19]
22. $less(sK1,sK1) | $less(sK1,sK0) [equality resolution 21]
23. $less(sK0.sK1) | $less(sK0.sK0) [equality resolution 20]
24. $less(sK1,sK0) [subsumption resolution 22,9]
25. $less(sK0,sK1) [subsumption resolution 23,9]
66. ~$less(X0.sK1) | $less(X0.sK0) [resolution 10.24]
71. $less(sK0,sK0) [resolution 66,25]
72. $false [subsumption resolution 71.9]
Proof by refutation, inferences deriving formulas from zero or more other formulas, theory reasoning.
preprocessing, superposition calculus
                                                                                                                                                                                                                                 3 / 12
```

```
2. \sim ! [X1: sint, X0: sint] : ?[X2: sint] : (sgreatereq(X2, X0) & sgreatereq(X2, X1) & (X0 = X2 | Sint) | Sint, X0: sint, X0
                                                                                                                                                                          X1 = X2)) [negated conjecture 1]
  3. \sim ! [X1: \text{sint}, X0: \text{sint}] : ?[X2: \text{sint}] : (\sim \text{sless}(X2, X0) \& \sim \text{sless}(X2, X1) \& (X0 = X2 | X1 = X2)) [theory]
                                                                                                                                                                                                                normalization 21
  9. ~$less(X0.X0) [theory axiom 144]
10. \sim$less(X1,X2) | \sim$less(X0,X1) | $less(X0,X2) [theory axiom 145]
16. \sim ! [X0 : \$int, X1 : \$int] : ?[X2 : \$int] : (\sim \$less(X2, X1) \& \sim \$less(X2, X0) \& (X1 = X2 | X0 = X2))
                                                                                                                                                                                                                            [rectify 3]
17.?[X0: $int,X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                                                                                                                                                                                              [ennf transformation 16]
18. ?[X0 : $int,X1 : $int] : ![X2 : $int] : ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                       => ! [X2 : $int] : ($less(X2,sK1) | $less(X2,sK0) | (sK1 != X2 & sK0 != X2)) [choice axiom]
19. ![X2: $int]: ($less(X2.sK1) | $less(X2.sK0) | (sK1 != X2 & sK0 != X2)) [skolemisation 17.18]
20. $less(X2,sK1) | $less(X2,sK0) | sK0 != X2 [cnf transformation 19]
21. $less(X2,sK1) | $less(X2,sK0) | sK1 != X2 [cnf transformation 19]
22. $less(sK1,sK1) | $less(sK1,sK0) [equality resolution 21]
23. $less(sK0.sK1) | $less(sK0.sK0) [equality resolution 20]
24. $less(sK1,sK0) [subsumption resolution 22,9]
25. $less(sK0,sK1) [subsumption resolution 23,9]
66. ~$less(X0.sK1) | $less(X0.sK0) [resolution 10.24]
71. $less(sK0,sK0) [resolution 66,25]
72. $false [subsumption resolution 71.9]
Proof by refutation, inferences deriving formulas from zero or more other formulas, theory reasoning.
preprocessing, superposition calculus
                                                                                                                                                                                                                                         3 / 12
```

1.![X1:\$int,X0:\$int]:?[X2:\$int]:(\$greatereq(X2,X0) & \$greatereq(X2,X1) & (X0 = X2 | X1 = X2)) [input]

```
1.![X1:$int,X0:$int]:?[X2:$int]:($greatereq(X2,X0) & $greatereq(X2,X1) & (X0 = X2 | X1 = X2)) [input]
  2. \sim ! [X1: sint, X0: sint] : ?[X2: sint] : (sgreatereq(X2, X0) & sgreatereq(X2, X1) & (X0 = X2 | Sint) | Sint, X0: sint, X0
                                                                                                                                                                    X1 = X2)) [negated conjecture 1]
  3. \sim ! [X1: \text{sint.X0:} : ?[X2: \text{sint}] : ?[X2: \text{sint}] : (\sim \text{sless}(X2, X0) \& \sim \text{sless}(X2, X1) \& (X0 = X2 | X1 = X2)) [theory]
                                                                                                                                                                                                         normalization 21
  9. ~$less(X0.X0) [theory axiom 144]
10. \sim$less(X1,X2) | \sim$less(X0,X1) | $less(X0,X2) [theory axiom 145]
16. \sim ! [X0 : \$int, X1 : \$int] : ?[X2 : \$int] : (\sim \$less(X2, X1) \& \sim \$less(X2, X0) \& (X1 = X2 | X0 = X2))
                                                                                                                                                                                                                     [rectify 3]
17.?[X0: $int,X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                                                                                                                                                                                       [ennf transformation 16]
18. ?[X0 : $int,X1 : $int] : ![X2 : $int] : ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                       => ! [X2 : $int] : ($less(X2,sK1) | $less(X2,sK0) | (sK1 != X2 & sK0 != X2)) [choice axiom]
19. ![X2: $int]: ($less(X2.sK1) | $less(X2.sK0) | (sK1 != X2 & sK0 != X2)) [skolemisation 17.18]
20. $less(X2,sK1) | $less(X2,sK0) | sK0 != X2 [cnf transformation 19]
21. $less(X2,sK1) | $less(X2,sK0) | sK1 != X2 [cnf transformation 19]
22. $less(sK1,sK1) | $less(sK1,sK0) [equality resolution 21]
23. $less(sK0.sK1) | $less(sK0.sK0) [equality resolution 20]
24. $less(sK1,sK0) [subsumption resolution 22,9]
25. $less(sK0,sK1) [subsumption resolution 23,9]
66. ~$less(X0.sK1) | $less(X0.sK0) [resolution 10.24]
71. $less(sK0,sK0) [resolution 66,25]
72. $false [subsumption resolution 71.9]
Proof by refutation, inferences deriving formulas from zero or more other formulas, theory reasoning.
preprocessing, superposition calculus
                                                                                                                                                                                                                                  3 / 12
```

```
1.![X1:$int,X0:$int]:?[X2:$int]:($greatereq(X2,X0) & $greatereq(X2,X1) & (X0 = X2 | X1 = X2)) [input]
  2. \sim ! [X1: sint, X0: sint] : ?[X2: sint] : (sgreatereq(X2, X0) & sgreatereq(X2, X1) & (X0 = X2 | Sint) | Sint, X0: sint, X0
                                                                                                                                                                   X1 = X2)) [negated conjecture 1]
  3. \sim ! [X1: \text{sint.X0:} : ?[X2: \text{sint}] : ?[X2: \text{sint}] : (\sim \text{sless}(X2, X0) \& \sim \text{sless}(X2, X1) \& (X0 = X2 | X1 = X2)) [theory]
                                                                                                                                                                                                        normalization 21
  9. ~$less(X0.X0) [theory axiom 144]
10. \sim$less(X1,X2) | \sim$less(X0,X1) | $less(X0,X2) [theory axiom 145]
16. \sim ! [X0 : \$int, X1 : \$int] : ?[X2 : \$int] : (\sim \$less(X2, X1) \& \sim \$less(X2, X0) \& (X1 = X2 | X0 = X2))
                                                                                                                                                                                                                    [rectify 3]
17.?[X0: $int,X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                                                                                                                                                                                       [ennf transformation 16]
18.?[X0: $int.X1: $int]: ![X2: $int]: ($less(X2,X1) | $less(X2,X0) | (X1 != X2 & X0 != X2))
                       => ! [X2 : $int] : ($less(X2,sK1) | $less(X2,sK0) | (sK1 != X2 & sK0 != X2)) [choice axiom]
19. ![X2: $int]: ($less(X2.sK1) | $less(X2.sK0) | (sK1 != X2 & sK0 != X2)) [skolemisation 17.18]
20. $less(X2,sK1) | $less(X2,sK0) | sK0 != X2 [cnf transformation 19]
21. $less(X2,sK1) | $less(X2,sK0) | sK1 != X2 [cnf transformation 19]
22. $less(sK1,sK1) | $less(sK1,sK0) [equality resolution 21]
23. $less(sK0,sK1) | $less(sK0,sK0) [equality resolution 20]
24. $less(sK1,sK0) [subsumption resolution 22,9]
25. $less(sK0,sK1) [subsumption resolution 23,9]
66. ~$less(X0.sK1) | $less(X0.sK0) [resolution 10.24]
71. $less(sK0,sK0) [resolution 66,25]
72. $false [subsumption resolution 71.9]
Proof by refutation, inferences deriving formulas from zero or more other formulas, theory reasoning.
preprocessing, superposition calculus
                                                                                                                                                                                                                                 3 / 12
```

Background: Selected rules of superposition calculus (simplified)

Equality resolution:
$$\frac{s \neq s' \lor C}{C\theta}$$
 where $\theta := mgu(s, s')$.

Binary resolution:
$$\frac{L \vee C - L' \vee D}{(C \vee D)\theta}$$
 where $\theta := \text{mgu}(L, L')$.

Superposition:
$$\frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{L[I']} \lor \textit{D}}{(\textit{L[r]} \lor \textit{C} \lor \textit{D})\theta} \quad \text{ where } \theta := \text{mgu}(\textit{I},\textit{I}').$$

Background: Selected rules of superposition calculus (simplified)

Equality resolution:
$$\frac{s \neq s' \lor C}{C\theta}$$
 where $\theta := mgu(s, s')$.

Binary resolution:
$$\frac{L \vee C - L' \vee D}{(C \vee D)\theta}$$
 where $\theta := \text{mgu}(L, L')$.

Superposition:
$$\frac{l = r \vee C \quad L[l'] \vee D}{(L[r] \vee C \vee D)\theta} \quad \text{where } \theta := \text{mgu}(l, l').$$

Extension of the superposition calculus: theories, induction, ...

Conjecture: $\forall x_1, x_2 \in \mathbb{Z}$. $\exists y \in \mathbb{Z}$. $(y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$ Axioms: $\forall x \in \mathbb{Z} . \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z} . ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}$. $(y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z} . \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}$. $((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[ER 1; $y \mapsto \sigma_1$] [ER 2; $y \mapsto \sigma_2$]

[axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}$. $(y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$

Axioms:
$$\forall x \in \mathbb{Z}. \neg x < x$$
, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \to x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[ER 1; $y \mapsto \sigma_1$] [ER 2; $y \mapsto \sigma_2$]

[axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

> [ER 1; $y \mapsto \sigma_1$] [ER 2; $y \mapsto \sigma_2$]

[axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[ER 1; $y \mapsto \sigma_1$] [ER 2; $y \mapsto \sigma_2$]

[axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\underline{\neg x_0 < \sigma_2} \lor x_0 < \sigma_1$
- 10. $\sigma_1 < \sigma_1$
- 11. \square

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x\mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}. (y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z}. \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}. ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2$
- 7. $\sigma_2 < \sigma_1$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1$
- 10. $\underline{\sigma_1} < \underline{\sigma_1}$
- 11.

[negated, skolemized and clausified input] [negated, skolemized and clausified input]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_1$]

BR 4, 5; $x \mapsto \sigma_2$

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Background: Maximum of two numbers with answer literals [Green 1969]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}$. $(y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z} . \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z} . ((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1 \lor ans(y)$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2 \lor ans(y)$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2 \lor \operatorname{ans}(\sigma_1)$
- 4. $\sigma_2 < \sigma_1 \vee \sigma_2 < \sigma_2 \vee \operatorname{ans}(\sigma_2)$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2 \vee \operatorname{ans}(\sigma_1)$
- 7. $\sigma_2 < \sigma_1 \vee \operatorname{ans}(\sigma_2)$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1 \lor \operatorname{ans}(\sigma_2)$
- 10. $\sigma_1 < \sigma_1 \lor \operatorname{ans}(\sigma_1) \lor \operatorname{ans}(\sigma_2)$
- 11. $\operatorname{ans}(\sigma_1) \vee \operatorname{ans}(\sigma_2)$

[neg. input with answer literal] [neg. input with answer literal]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$] [axiom]

[BR 3, 5; $x\mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

Background: Maximum of two numbers with answer literals [Green 1969]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}$. $(y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z} . \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}$. $((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1 \lor ans(y)$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2 \lor ans(y)$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2 \lor \operatorname{ans}(\sigma_1)$
- 4. $\sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2 \lor ans(\sigma_2)$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2 \vee \operatorname{ans}(\sigma_1)$
- 7. $\sigma_2 < \sigma_1 \vee \operatorname{ans}(\sigma_2)$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1 \lor \operatorname{ans}(\sigma_2)$
- 10. $\sigma_1 < \sigma_1 \vee \operatorname{ans}(\sigma_1) \vee \operatorname{ans}(\sigma_2)$
- 11. $\operatorname{ans}(\sigma_1) \vee \operatorname{ans}(\sigma_2)$

[neg. input with answer literal] [neg. input with answer literal]

[ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$]
[axiom]

[BR 3, 5; $x\mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

[BR 10, 5; $x \mapsto \sigma_1$]

Witness: either x_1 or x_2 (corresponding to σ_1 or σ_2)

Background: Maximum of two numbers with answer literals [Green 1969]

Conjecture:
$$\forall x_1, x_2 \in \mathbb{Z}$$
. $\exists y \in \mathbb{Z}$. $(y \ge x_1 \land y \ge x_2 \land (y = x_1 \lor y = x_2))$
Axioms: $\forall x \in \mathbb{Z} . \neg x < x$, $\forall x_0, x_1, x_2 \in \mathbb{Z}$. $((x_0 < x_1 \land x_1 < x_2) \rightarrow x_0 < x_2)$

- 1. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1 \lor ans(y)$
- 2. $y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2 \lor ans(y)$
- 3. $\sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2 \lor \operatorname{ans}(\sigma_1)$
- 4. $\sigma_2 < \sigma_1 \vee \sigma_2 < \sigma_2 \vee \operatorname{ans}(\sigma_2)$
- 5. $\neg x < x$
- 6. $\sigma_1 < \sigma_2 \vee \operatorname{ans}(\sigma_1)$
- 7. $\sigma_2 < \sigma_1 \vee \operatorname{ans}(\sigma_2)$
- 8. $\neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2$
- 9. $\neg x_0 < \sigma_2 \lor x_0 < \sigma_1 \lor \operatorname{ans}(\sigma_2)$
- 10. $\sigma_1 < \sigma_1 \vee \operatorname{ans}(\sigma_1) \vee \operatorname{ans}(\sigma_2)$
- 11. $\operatorname{ans}(\sigma_1) \vee \operatorname{ans}(\sigma_2)$

[neg. input with answer literal]

[neg. input with answer literal] [ER 1; $y \mapsto \sigma_1$]

[ER 2; $y \mapsto \sigma_2$]

[axiom] [BR 3, 5; $x \mapsto \sigma_1$]

[BR 4, 5; $x \mapsto \sigma_2$]

[axiom]

[BR 7, 8; $x_1 \mapsto \sigma_2, x_2 \mapsto \sigma_1$]

[BR 9, 6; $x_0 \mapsto \sigma_1$]

[BR 10, 5; $x \mapsto \sigma_1$]

Witness: either x_1 or x_2 (corresponding to σ_1 or σ_2) ...how to tell which one?

```
1. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1 \lor ans(y) [preprocessed input]
 2. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2 \lor ans(y) [preprocessed input]
 3. \sigma_1 < \sigma_1 \vee \sigma_1 < \sigma_2 \vee ans(\sigma_1)
                                                                                     [ER 1]
 4. \sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2 \lor ans(\sigma_2)
                                                                                     [ER 2]
 5. \sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2
                                                                        [ans removal 3] if \neg 5 then \sigma_1
                                                                        [ans removal 4] if \neg 6 then \sigma_2
 6. \sigma_2 < \sigma_1 \vee \sigma_2 < \sigma_2
 7. \neg x < x
                                                                                    [axiom]
 8. \sigma_1 < \sigma_2
                                                                                 [BR 5, 7]
 9. \sigma_2 < \sigma_1
                                                                                 [BR 6, 7]
                                                                                    [axiom]
10. \neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2
                                                                                [BR 9, 10]
11. \neg x_0 < \sigma_2 \lor x_0 < \sigma_1
12. \sigma_1 < \sigma_1
                                                                                [BR 11, 8]
                                                                                [BR 12, 7]
13.
```

```
1. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1 \lor ans(y) [preprocessed input]
 2. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2 \lor ans(y) [preprocessed input]
 3. \sigma_1 < \sigma_1 \vee \sigma_1 < \sigma_2 \vee \operatorname{ans}(\sigma_1)
                                                                                       [ER 1]
 4. \sigma_2 < \sigma_1 \vee \sigma_2 < \sigma_2 \vee ans(\sigma_2)
                                                                                       [ER 2]
 5. \sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2
                                                                         [ans removal 3] if \neg 5 then \sigma_1
                                                                         [ans removal 4] if \neg 6 then \sigma_2
 6. \sigma_2 < \sigma_1 \vee \sigma_2 < \sigma_2
 7. \neg x < x
                                                                                     [axiom]
 8. \sigma_1 < \sigma_2
                                                                                   [BR 5, 7]
 9. \sigma_2 < \sigma_1
                                                                                  [BR 6, 7]
                                                                                     [axiom]
10. \neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2
11. \neg x_0 < \sigma_2 \lor x_0 < \sigma_1
                                                                                 [BR 9, 10]
12. \sigma_1 < \sigma_1
                                                                                 [BR 11, 8]
                                                                                 [BR 12, 7]
13.
```

Synthesized program: $max(x_1, x_2) = \text{if } \sigma_1 \geq \sigma_1 \wedge \sigma_1 \geq \sigma_2 \text{ then } \sigma_1 \text{ else } \sigma_2$

```
1. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1 \lor ans(y) [preprocessed input]
 2. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2 \lor ans(y) [preprocessed input]
 3. \sigma_1 < \sigma_1 \vee \sigma_1 < \sigma_2 \vee ans(\sigma_1)
                                                                                     [ER 1]
 4. \sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2 \lor ans(\sigma_2)
                                                                                     [ER 2]
 5. \sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2
                                                                        [ans removal 3] if \neg 5 then \sigma_1
                                                                        [ans removal 4] if \neg 6 then \sigma_2
 6. \sigma_2 < \sigma_1 \vee \sigma_2 < \sigma_2
 7. \neg x < x
                                                                                    [axiom]
 8. \sigma_1 < \sigma_2
                                                                                 [BR 5, 7]
 9. \sigma_2 < \sigma_1
                                                                                 [BR 6, 7]
                                                                                    [axiom]
10. \neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2
11. \neg x_0 < \sigma_2 \lor x_0 < \sigma_1
                                                                               [BR 9, 10]
12. \sigma_1 < \sigma_1
                                                                               [BR 11, 8]
                                                                               [BR 12, 7]
13.
```

Synthesized program: $max(x_1, x_2) = if x_1 \ge x_1 \land x_1 \ge x_2$ then x_1 else x_2

```
1. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_1 \lor ans(y) [preprocessed input]
 2. y < \sigma_1 \lor y < \sigma_2 \lor y \neq \sigma_2 \lor ans(y) [preprocessed input]
 3. \sigma_1 < \sigma_1 \vee \sigma_1 < \sigma_2 \vee ans(\sigma_1)
                                                                                     [ER 1]
 4. \sigma_2 < \sigma_1 \lor \sigma_2 < \sigma_2 \lor ans(\sigma_2)
                                                                                     [ER 2]
 5. \sigma_1 < \sigma_1 \lor \sigma_1 < \sigma_2
                                                                        [ans removal 3] if \neg 5 then \sigma_1
                                                                        [ans removal 4] if \neg 6 then \sigma_2
 6. \sigma_2 < \sigma_1 \vee \sigma_2 < \sigma_2
 7. \neg x < x
                                                                                    [axiom]
 8. \sigma_1 < \sigma_2
                                                                                 [BR 5, 7]
 9. \sigma_2 < \sigma_1
                                                                                 [BR 6, 7]
                                                                                    [axiom]
10. \neg x_1 < x_2 \lor \neg x_0 < x_1 \lor x_0 < x_2
11. \neg x_0 < \sigma_2 \lor x_0 < \sigma_1
                                                                               [BR 9, 10]
12. \sigma_1 < \sigma_1
                                                                               [BR 11, 8]
                                                                               [BR 12, 7]
13.
```

Synthesized program: $max(x_1, x_2) = if x_1 \ge x_2 then x_1 else x_2$

Modifying saturation algorithm

Deriving a program for $A_1 \wedge \cdots \wedge A_n \rightarrow \forall \overline{x}. \exists \overline{y}. F(\overline{x}, \overline{y})$:

- 1. Create the set of formulas $S = \{A_1, \dots, A_n, \forall \overline{y}. CNF(\neg F(\overline{\sigma}, \overline{y}) \lor ans(y))\}$
- 2. Repeat:
 - 2.1 Choose $C \in S$
 - 2.2 Apply rules to derive consequences C_1, \ldots, C_n of C and clauses from S
 - 2.3 Add C_1, \ldots, C_n to S
 - 2.4 If S contains $D[\overline{\sigma}] \vee \operatorname{ans}(r[\overline{\sigma}])$ where $D[\overline{\sigma}]$ is computable, then remove $D[\overline{\sigma}] \vee \operatorname{ans}(r[\overline{\sigma}])$ from S, add $D[\overline{\sigma}]$ to S, and record $\langle D[\overline{\sigma}], r[\overline{\sigma}] \rangle$
 - 2.5 If S contains \square , construct a program from recorded fragments as

if
$$\neg D_1[\overline{x}]$$
 then $r_1[\overline{x}]$ else if $\neg D_2[\overline{x}]$ then $r_2[\overline{x}]$... else if $\neg D_{k-1}[\overline{x}]$ then $r_{k-1}[\overline{x}]$ else $r_k[\overline{x}]$

Modifying inference rules

At most 1 answer literal in each clause. Only computable functions allowed in answer literals.

Modifying inference rules

At most 1 answer literal in each clause. Only computable functions allowed in answer literals.

Equality resolution:
$$\frac{s \neq s' \lor C \lor \mathtt{ans}(\overline{t})}{(C \lor \mathtt{ans}(\overline{t}))\theta}$$
 where $\theta := \mathtt{mgu}(s, s')$, and $\overline{t}\theta$ is computable.

Binary resolution:
$$\frac{L \vee C \vee \operatorname{ans}(\overline{t_1}) - L' \vee D \vee \operatorname{ans}(\overline{t_2})}{(C \vee D \vee \operatorname{ans}(\operatorname{if} L \operatorname{then} \overline{t_2} \operatorname{else} \overline{t_1}))\theta} \quad \text{where } \theta := \operatorname{mgu}(L, L'), \text{ and}$$

$$L\theta \text{ is computable (partially [Tammet 1995])}.$$

Superposition:
$$\frac{l = r \lor C \lor \mathtt{ans}(\overline{t_1}) \quad L[l'] \lor D \lor \mathtt{ans}(\overline{t_2})}{(L[r] \lor C \lor D \lor \mathtt{ans}(\mathtt{if} \ l = r \ \mathtt{then} \ \overline{t_2} \ \mathtt{else} \ \overline{t_1}))\theta} \quad \mathsf{where} \ \theta := \mathtt{mgu}(l, l'), \ \mathsf{and} \ l\theta, r\theta \ \mathsf{are} \ \mathsf{computable}.$$

More complex rules when some functions are not computable.

More examples (1)

- Maximum for up to 23 variables
- Group examples, given

$$\forall x. i(x) * x = e, \qquad \forall x. e * x = x, \qquad \forall x, y, z. x * (y * z) = (x * y) * z$$
 find:

- ▶ right inverse: $\forall x.\exists y. \ x * y = e$ program: i(x)
- inverse of i(x) * i(y) without using $i: \forall x, y. \exists z. \ z * (i(x) * i(y)) = e$ program: y * x
- an element whose square is not e, if the group is not commutative:

```
\forall x, y. \exists z. (x*y \neq y*x \rightarrow z*z \neq e)
program: if x*(y*x)=x then x else (if e=x*(y*(x*y)) then x else x*y)
```

More examples (2)

- ▶ Quadratic equation: $\forall x_1, x_2.\exists y.(y^2 = x_1^2 + 2x_1x_2 + x_2^2)$ program: $x_1 + x_2$
- SyGuS competition examples:
 - $\forall x_1, x_2, k. \exists y. ((x_1 < x_2 \to (k < x_1 \to y = 0)) \land \\ (x_1 < x_2 \to (k > x_2 \to y = 2)) \land \\ (x_1 < x_2 \to ((k > x_1 \land k < x_2) \to y = 1)))$
 - $\forall x_1, x_2. \exists y. ((x_1 + x_2 > 5 \rightarrow y = x_1 + x_2) \land (x_1 + x_2 \leq 5 \rightarrow y = 0))$
 - $\forall x, y. \exists f_1, f_2, f_3, f_4, f_5. (f_1 + f_1 = f_2 \wedge (f_1 + f_2) y = f_3 \wedge f_2 + f_2 = f_4 \wedge f_4 + f_1 = f_5)$

Summary and challenges

What we do:

- ► Synthesis from specification
- Extended the saturation algorithm (including AVATAR) and superposition calculus
- ► Implementation in Vampire

Challenges:

- ► Future work: recursive programs, postprocessing
- ► How to get good benchmarks?