Rank-65744 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_3^3 + X_0^2 X_3 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

(1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431676330

General information

Number of lines	9
Number of points	33
Number of singular points	0
Number of Eckardt points	1
Number of double points	15
Number of single points	12
Number of points off lines	5
Number of Hesse planes	0
Number of axes	0
Type of points on lines	59
Type of lines on points	$3, 2^{15}, 1^{12}, 0^5$

Singular Points

The surface has 0 singular points:

The 9 Lines

The lines and their Pluecker coordinates are:

$$\begin{split} \ell_0 &= \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]_{337} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]_{337} = \mathbf{Pl}(0,0,0,1,0,1)_{129} \\ \ell_1 &= \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega^2 \end{array} \right]_{339} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{array} \right]_{339} = \mathbf{Pl}(0,0,0,3,0,1)_{143} \end{split}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{338} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{338} = \mathbf{Pl}(0,0,0,2,0,1)_{136}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \mathbf{Pl}(0,0,1,1,1,1)_{198}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \mathbf{Pl}(1,0,1,1,1,1)_{199}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega & \omega^{2} \end{bmatrix}_{35} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}_{35} = \mathbf{Pl}(2,3,3,0,3,1)_{307}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega^{2} & \omega \end{bmatrix}_{32} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 2 \end{bmatrix}_{32} = \mathbf{Pl}(3,2,2,0,2,1)_{245}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & \omega^{2} & 1 \end{bmatrix}_{133} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix}_{133} = \mathbf{Pl}(2,3,2,3,3,1)_{346}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & \omega & 1 \end{bmatrix}_{153} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}_{153} = \mathbf{Pl}(3,2,3,2,2,1)_{296}$$

Rank of lines: (337, 339, 338, 38, 110, 35, 32, 133, 153)

Rank of points on Klein quadric: (129, 143, 136, 198, 199, 307, 245, 346, 296)

Eckardt Points

The surface has 1 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0).$

Double Points

The surface has 15 Double points: The double points on the surface are:

$P_{38} = (0, 0, 1, 1) = \ell_0 \cap \ell_3$
$P_{42} = (0, 1, 1, 1) = \ell_0 \cap \ell_4$
$P_{65} = (0, 3, 2, 1) = \ell_1 \cap \ell_6$
$P_{57} = (0, 1, 2, 1) = \ell_1 \cap \ell_8$
$P_{77} = (0, 2, 3, 1) = \ell_2 \cap \ell_5$
$P_{73} = (0, 1, 3, 1) = \ell_2 \cap \ell_7$
$P_5 = (1, 1, 0, 0) = \ell_3 \cap \ell_4$
$P_{47} = (2, 2, 1, 1) = \ell_3 \cap \ell_5$

$$\begin{split} P_{52} &= (3,3,1,1) = \ell_3 \cap \ell_6 \\ P_{51} &= (2,3,1,1) = \ell_4 \cap \ell_7 \\ P_{48} &= (3,2,1,1) = \ell_4 \cap \ell_8 \\ P_8 &= (1,0,1,0) = \ell_5 \cap \ell_6 \\ P_{33} &= (3,2,0,1) = \ell_5 \cap \ell_7 \\ P_{36} &= (2,3,0,1) = \ell_6 \cap \ell_8 \\ P_{12} &= (1,1,1,0) = \ell_7 \cap \ell_8 \end{split}$$

Single Points

The surface has 12 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_4 = (1,1,1,1) \ \text{lies on line} \ \ell_3 \\ 1: \ P_{39} = (1,0,1,1) \ \text{lies on line} \ \ell_4 \\ 2: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_0 \\ 4: \ P_{53} = (0,0,2,1) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_7 \\ 6: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_1 \end{array}$

7: $P_{62} = (1, 2, 2, 1)$ lies on line ℓ_5 8: $P_{69} = (0, 0, 3, 1)$ lies on line ℓ_2 9: $P_{70} = (1, 0, 3, 1)$ lies on line ℓ_8 10: $P_{81} = (0, 3, 3, 1)$ lies on line ℓ_2 11: $P_{82} = (1, 3, 3, 1)$ lies on line ℓ_6 The single points on the surface are:

Points on surface but on no line

The surface has 5 points not on any line: The points on the surface but not on lines are:

 $\begin{array}{lll} 0: \, P_9 = (2,0,1,0) & 3: \, P_{14} = (3,1,1,0) \\ 1: \, P_{10} = (3,0,1,0) & 4: \, P_{27} = (1,1,0,1) \\ 2: \, P_{13} = (2,1,1,0) & \end{array}$

Line Intersection Graph

 $\begin{array}{c} 012345678 \\ \hline 00111110000 \\ 1101000101 \\ 2110001010 \\ 3100011100 \\ 4100100011 \\ 5001100110 \\ 6010101001 \\ 7001011001 \\ 8010010110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_1	P_1	P_{38}	P_{42}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_6	ℓ_8
in point	P_1	P_1	P_{65}	P_{57}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_7
in point	P_1	P_1	P_{77}	P_{73}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_6
in point	P_{38}	P_5	P_{47}	P_{52}

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_7	ℓ_8
in point	P_{42}	P_5	P_{51}	P_{48}

Line 5 intersects

Line	ℓ_2	ℓ_3	ℓ_6	ℓ_7
in point	P_{77}	P_{47}	P_8	P_{33}

Line 6 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_8
in point	P_{65}	P_{52}	P_8	P_{36}

Line 7 intersects

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_8
in point	P_{73}	P_{51}	P_{33}	P_{12}

Line 8 intersects

Line	ℓ_1	ℓ_4	ℓ_6	ℓ_7
in point	P_{57}	P_{48}	P_{36}	P_{12}

The surface has 33 points: The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$12: P_{38} = (0,0,1,1)$	24: $P_{61} = (0, 2, 2, 1)$
$1: P_4 = (1, 1, 1, 1)$	$13: P_{39} = (1,0,1,1)$	$25: P_{62} = (1, 2, 2, 1)$
$2: P_5 = (1, 1, 0, 0)$	$14: P_{42} = (0, 1, 1, 1)$	$26: P_{65} = (0, 3, 2, 1)$
$3: P_8 = (1,0,1,0)$	15: $P_{45} = (0, 2, 1, 1)$	$27: P_{69} = (0, 0, 3, 1)$
$4: P_9 = (2,0,1,0)$	$16: P_{47} = (2, 2, 1, 1)$	$28: P_{70} = (1, 0, 3, 1)$
$5: P_{10} = (3,0,1,0)$	$17: P_{48} = (3, 2, 1, 1)$	$29: P_{73} = (0, 1, 3, 1)$
$6: P_{12} = (1, 1, 1, 0)$	$18: P_{49} = (0, 3, 1, 1)$	$30: P_{77} = (0, 2, 3, 1)$
$7: P_{13} = (2, 1, 1, 0)$	$19: P_{51} = (2, 3, 1, 1)$	$31: P_{81} = (0,3,3,1)$
$8: P_{14} = (3, 1, 1, 0)$	$20: P_{52} = (3, 3, 1, 1)$	$32: P_{82} = (1, 3, 3, 1)$
$9: P_{27} = (1, 1, 0, 1)$	$21: P_{53} = (0,0,2,1)$	
$10: P_{33} = (3, 2, 0, 1)$	$22: P_{54} = (1,0,2,1)$	
11: $P_{36} = (2, 3, 0, 1)$	$23: P_{57} = (0, 1, 2, 1)$	