

R2.02 Graphes

Corentin Dufourg, Régis Fleurquin et Thibault Godin IUT de Vannes Informatique

Graphe Valué

Soit $\mathcal{G}=(S,A)$ un graphe est dit **valué** (ou pondéré, en anglais weighted) s'il existe une application $w:A\to\mathbb{R}$. On utilise souvent une matrice de valuation W de taille n. $W_{i,j}=\begin{cases} w((i,j)) \text{ si } iAj\\ \infty \text{ sinon.} \end{cases}$

Graphe Valué

Soit $\mathcal{G}=(S,A)$ un graphe est dit **valué** (ou pondéré, en anglais weighted) s'il existe une application $w:A\to\mathbb{R}$. On utilise souvent une matrice de valuation W de taille n. $W_{i,j}=\begin{cases} w((i,j)) \text{ si } iAj\\ \infty \text{ sinon.} \end{cases}$

A pour matrice de valuation :

$$\begin{pmatrix} \infty & \infty & 1 & \infty & 2 \\ 5 & \infty & \infty & \infty & \infty \\ \infty & 2 & \infty & \infty & 3 \\ \infty & 8 & \infty & \infty & \infty \\ \infty & 7 & \infty & \infty & 5 \end{pmatrix}$$

Plus court chemin

Pour aller voir ses amis, une personne doit aller de Montpellier à Poitiers. Pour cela, elle dispose des temps de trajets SNCF suivant :

Plus court chemin

Pour aller voir ses amis, une personne doit aller de Montpellier à Poitiers.

Pour cela, elle dispose des temps de trajets SNCF suivant :

	Montpellier	Lyon	Marseille	Lille	Paris	Bordeaux	Poitiers	Toulouse
Mpt	0	2h30	1h					3h
Lyon	2h30	0	1h30		2h	8h		
Mars	1h	1h30	0					
Lil				0	1h		5h	
Par		2h		1h	0		2h	
Bdx		8h				0	1h	2h
Poit				5h	2h	1h	0	
Tou	3h					2h		0

Plus court chemin

Pour aller voir ses amis, une personne doit aller de Montpellier à Poitiers.

Pour cela, elle dispose des temps de trajets SNCF suivant :

	Montpellier	Lyon	Marseille	Lille	Paris	Bordeaux	Poitiers	Toulouse
Mpt	0	2h30	1h					3h
Lyon	2h30	0	1h30		2h	8h		
Mars	1h	1h30	0					
Lil				0	1h		5h	
Par		2h		1h	0		2h	
Bdx		8h				0	1h	2h
Poit				5h	2h	1h	0	
Tou	3h					2h		0

Quel est le trajet le plus indiqué?

Plan

Plus court chemin

Algorithme de Dijskra

Algorithme de Floyd-Warshall

Arbres couvrants

Algorithme de Kruskal

Algorithme de Prim

Arbre de Steiner

5/22

Dijskra: dist(a, d) = 3

 $\mathsf{Dijskra} : \mathsf{dist}(a,d) = 3$

 $\mathsf{Faux}: \mathsf{dist}(a,d) = 2$

 $\mathsf{Dijskra}: \mathsf{dist}(a,d) = 3$

 $\mathsf{Faux}: \mathsf{dist}(a,d) = 2$

Dijskra: seulement poids positifs

 $\mathsf{Dijskra}: \mathsf{dist}(a,d) = 3$

 $\mathsf{Faux}: \mathsf{dist}(a,d) = 2$

 ${\sf Dijskra}: {\sf seulement}\ {\sf poids}\ {\sf positifs}$

Mais : bonne complexité $\approx |\mathcal{S}|^2$

Dijskra: dist(a, d) = 3

 $\mathsf{Faux}: \mathsf{dist}(a,d) = 2$

Dijskra : seulement poids positifs

Mais : bonne complexité $pprox |\mathcal{S}|^2$

rmq : BFS cas spécial de Disjstra

Plan

Plus court chemin

Algorithme de Dijskra

Algorithme de Floyd-Warshall

Arbres couvrants

Algorithme de Kruskal

Algorithme de Prim

Arbre de Steiner

```
Data: graphe G = (S, A), W, s
Result: dist(s,t)
                                                                           16
D = Copy(W);
                                                                       15
                                                 19
for k de 1 à n do
| D[k][k] = 0
for k de 1 à n do
   for s de 1 à n do
        for t de 1 à n do
            D[s][t] =
             \min(D[s][t], D[s][k] +
              D[k][t]
return D
```

```
Data: graphe G = (S, A), W, s
Result: dist(s,t)
                                                                           16
D = Copy(W);
                                                                       15
                                                 19
for k de 1 à n do
| D[k][k] = 0
for k de 1 à n do
   for s de 1 à n do
        for t de 1 à n do
            D[s][t] =
             \min(D[s][t], D[s][k] +
              D[k][t]
return D
```

```
Data: graphe \mathcal{G} = (S, A), W, s
Result: dist(s,t)
                                                                               16
D = Copy(W);
                                                                           15
                                                   19
for k de 1 à n do
| D[k][k] = 0
for k de 1 à n do
    for s de 1 à n do
        for t de 1 à n do
             D[s][t] =
              \min(D[s][t], D[s][k] +
              D[k][t]
return D
```

```
Data: graphe \mathcal{G} = (S, A), W, s
Result: dist(s,t)
                                                                                16
D = Copy(W);
                                                                            15
                                                    19
for k de 1 à n do
   D[k][k] = 0
for k de 1 à n do
    for s de 1 à n do
        for t de 1 à n do
             D[s][t] =
              \min(D[s][t], D[s][k] +
               D[k][t]
return D
```

```
Data: graphe \mathcal{G} = (S, A), W, s
Result: dist(s,t)
                                                                                16
D = Copy(W);
                                                                            15
                                                    19
for k de 1 à n do
   D[k][k] = 0
for k de 1 à n do
    for s de 1 à n do
        for t de 1 à n do
             D[s][t] =
              \min(D[s][t], D[s][k] +
               D[k][t]
return D
```



```
Data: graphe \mathcal{G} = (S, A), W, s
Result: dist(s,t)
                                                                                16
D = Copy(W);
                                                                            15
                                                    19
for k de 1 à n do
    D[k][k] = 0
for k de 1 à n do
    for s de 1 à n do
        for t de 1 à n do
             D[s][t] =
              \min(D[s][t], D[s][k] +
               D[k][t]
return D
```


 $\mathsf{dist}(a,d) \to -\infty$

Il y a un circuit de poids négatif si après exécution $\exists s$, D[s][s] < 0

 $\mathsf{dist}(a,d) \to -\infty$

Il y a un circuit de poids négatif si après exécution $\exists s$, D[s][s] < 0

 $\mathsf{dist}(a,d) \to -\infty$

Il y a un circuit de poids négatif si après exécution $\exists s$, D[s][s] < 0

$$dist(a, d) \rightarrow -\infty$$

Il y a un circuit de poids négatif si après exécution $\exists s$, D[s][s] < 0

Mais : moins bonne complexité $pprox |\mathcal{S}|^3$

$$\left(egin{array}{ccccc} 0 & 4 & \infty & \infty & \\ \infty & 0 & -3 & 0 & \\ -2 & 2 & 0 & 1 & \\ \infty & \infty & \infty & 0 & \end{array}
ight) \left(egin{array}{cccc} 0 & 4 & 1 & 4 & \\ \infty & 0 & -3 & 0 & \\ -2 & 2 & -1 & 1 & \\ \infty & \infty & \infty & 0 & \\ \end{array}
ight) \left(-1 & 3 & 0 & 1 & \\ \end{array}
ight) \left(egin{array}{cccc} -1 & 3 & 0 & \\ \end{array}
ight)$$

$$\begin{pmatrix} -1 & 3 & 0 & 1 \\ -5 & -1 & -4 & -3 \\ -3 & 1 & -2 & -1 \\ \infty & \infty & \infty & 0 \end{pmatrix} \begin{pmatrix} -1 & 3 & 0 & 1 \\ -5 & -1 & -4 & -3 \\ -3 & 1 & -2 & -1 \\ \infty & \infty & \infty & 0 \end{pmatrix}$$

 $dist(a, d) \rightarrow -\infty$

Il y a un circuit de poids négatif si après exécution $\exists s$, D[s][s] < 0

Mais : moins bonne complexité $\approx |S|^3$

 $\begin{pmatrix} 0 & 4 & \infty & \infty \\ \infty & 0 & -3 & 0 \\ -2 & 2 & 0 & 1 \\ \infty & \infty & \infty & 0 \end{pmatrix} \begin{pmatrix} 0 & 4 & 1 & 4 \\ \infty & 0 & -3 & 0 \\ -2 & 2 & -1 & 1 \\ \infty & \infty & \infty & 0 \end{pmatrix}$ Il existe un plus court chemin si et seulement ssi il n'y a pas de circuit de poids < 0

Plan

Plus court chemin

Algorithme de Dijskra

Algorithme de Floyd-Warshall

Arbres couvrants

Algorithme de Kruskal

Algorithme de Prim

Arbre de Steiner

En 1926, Otakar Borůvka doit rendre le réseau électrique de Moravie efficace : il doit relier toutes les maisons pour un coût aussi bas que possible.

En 1926, Otakar Borůvka doit rendre le réseau électrique de Moravie efficace : il doit relier toutes les maisons pour un coût aussi bas que possible. Soit $\mathcal{G}=(S,A)$ un graphe. Un arbre couvrant (spanning tree) est un graphe partiel $\mathcal{T}=(S,A')$ qui est un arbre.

En 1926, Otakar Borůvka doit rendre le réseau électrique de Moravie efficace : il doit relier toutes les maisons pour un coût aussi bas que possible. Soit $\mathcal{G}=(S,A)$ un graphe. Un arbre couvrant (spanning tree) est un graphe partiel $\mathcal{T}=(S,A')$ qui est un arbre.

Lemme

Pour tout graphe non-orienté connexe, il existe un arbre couvrant

En 1926, Otakar Borůvka doit rendre le réseau électrique de Moravie efficace : il doit relier toutes les maisons pour un coût aussi bas que possible. Soit $\mathcal{G}=(S,A)$ un graphe. Un arbre couvrant (spanning tree) est un graphe partiel $\mathcal{T}=(S,A')$ qui est un arbre.

Lemme

Pour tout graphe non-orienté connexe, il existe un arbre couvrant

preuve : on fait un parcours de graphe

Plan

Plus court chemin

Algorithme de Dijskra

Algorithme de Floyd-Warshall

Arbres couvrants

Algorithme de Kruskal

Algorithme de Prim

Arbre de Steiner

Kruskal

```
Data: graphe G=(S,A) (non-orienté)
Result: arbre T
n = length(S);
L = sort(A); (*tri des arêtes par
 ordre croissant de leur poids*)
E := \emptyset T := \emptyset:
while |E| < n-1 do
    uv = head(L);
    (*soit uv l'arête suivante dans
      l'ordre des poids*);
    if uv n'induit pas de cycle then
         T := T \bigcup \{u, v\} ;
        E := E \bigcup \{uv\} ;
    L=tail(L); (* on supprime
      l'arête de la liste*)
```

Kruskal

Complexité $\approx |A| \log |A|$

```
Data: graphe G=(S,A) (non-orienté)
Result: arbre T
n = length(S);
L = sort(A); (*tri des arêtes par
 ordre croissant de leur poids*)
E := \emptyset T := \emptyset:
while |E| < n-1 do
    uv = head(L);
    (*soit uv l'arête suivante dans
      l'ordre des poids*);
    if uv n'induit pas de cycle then
     T := T \bigcup \{u, v\} ;
E := E \bigcup \{uv\} ;
    L=tail(L); (* on supprime
      l'arête de la liste*)
```


Plan

Plus court chemin

Algorithme de Dijskra

Algorithme de Floyd-Warshall

Arbres couvrants

Algorithme de Kruskal

Algorithme de Prim

Arbre de Steiner

Prim

```
Data: graphe \mathcal{G} = (S, A)
       (non-orienté)
Result: arbre T
T := \{r\} E := \emptyset
while Card T \neq n(*tant qu'on a)
 pas tous les sommets*) do
     choisir une arête dans A
      telle que uv \in A, u \in
       T, v \notin T, w(uv) =
      \min_{A} \{ w(ab), a \in T, b \in A \}
      S \setminus T, ab \in A;
     T := T \bigcup \{v\};
     E := E \bigcup \{uv\};
```

Prim

```
Data: graphe \mathcal{G} = (S, A)
       (non-orienté)
Result: arbre T
T := \{r\} E := \emptyset
while Card T \neq n(*tant qu'on a)
 pas tous les sommets*) do
     choisir une arête dans A
      telle que uv \in A, u \in
       T, v \notin T, w(uv) =
      \min_{A} \{ w(ab), a \in T, b \in A \}
      S \setminus T, ab \in A;
     T := T \bigcup \{v\} ;
     E := E \bigcup \{uv\};
```

Complexité $\approx |S|^2$

Prim

```
Data: graphe \mathcal{G} = (S, A)
       (non-orienté)
Result: arbre T
T := \{r\} E := \emptyset
while Card T \neq n(*tant qu'on a)
 pas tous les sommets*) do
     choisir une arête dans A
      telle que uv \in A, u \in
       T, v \notin T, w(uv) =
      \min_{A} \{ w(ab), a \in T, b \in A \}
      S \setminus T, ab \in A;
     T := T \bigcup \{v\} ;
     E := E \bigcup \{uv\};
```

Complexité $\approx |S|^2$ reste connexe

Data: graphe $\mathcal{G}=(S,A)$, W, s,t

Result: dist(s,t) $\forall x \in S, D[x] = \infty \ D[s] = 0 \ V = \emptyset$ P=S;

while $P \neq \emptyset$ do

a tq D[a] min dans P;

$$P \leftarrow P \setminus \{a\};$$

for b voisin de a do

if
$$D[b] > D[a] + W[a, b]$$
 then $D[b] \leftarrow D[a] + W[a, b]$

Arbre couvrant "plus courts chemins depuis d"

Arbre couvrant "plus courts chemins depuis d" \leadsto pas de poids mini. en général

Arbre couvrant "plus courts chemins depuis d" → pas de poids mini. en général Ex : optimisation du temps de transmission depuis un serveur

Plan

Plus court chemin

Algorithme de Dijskra

Algorithme de Floyd-Warshall

Arbres couvrants

Algorithme de Kruskal

Algorithme de Prim

Arbre de Steiner

On va étudier une légère variation du problème de l'ACM : l'arbre de Steiner

On va étudier une légère variation du problème de l'ACM : l'arbre de Steiner

Soit $\mathcal{G} = (S, A)$ un graphe (avec des distances positives sur les arêtes) et $I \subset S$. On cherche le graphe de poids minimal couvrant I

On va étudier une légère variation du problème de l'ACM : l'arbre de Steiner

Soit $\mathcal{G} = (S, A)$ un graphe (avec des distances positives sur les arêtes) et $I \subset S$. On cherche le graphe de poids minimal couvrant I

Théorème

Le problème de l'arbre de Steiner est NP-difficile.

On va étudier une légère variation du problème de l'ACM : l'arbre de Steiner

Soit $\mathcal{G} = (S, A)$ un graphe (avec des distances positives sur les arêtes) et $I \subset S$. On cherche le graphe de poids minimal couvrant I

On va étudier une légère variation du problème de l'ACM : l'arbre de Steiner

Soit $\mathcal{G} = (S, A)$ un graphe (avec des distances positives sur les arêtes) et $I \subset S$. On cherche le graphe de poids minimal couvrant I

Théorème

Le problème de l'arbre de Steiner est NP-difficile.

Soit $\mathcal{G} = (S, A)$ un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

Soit $\mathcal{G} = (S, A)$ un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

1. Calculer la cloture métrique C du graphe induit par I dans G

Soit $\mathcal{G} = (S, A)$ un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C

Soit G = (S, A) un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C
- 3. Reconstruire T_C dans G (en remplaçant les arêtes par les plus courts chemins)

Soit G = (S, A) un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C
- 3. Reconstruire T_C dans G (en remplaçant les arêtes par les plus courts chemins)
- 4. Prendre un ACM de ce graphe et l'élaguer jusqu'à obtenir un arbre T dont toutes les feuilles sont dans I

Soit G = (S, A) un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C
- 3. Reconstruire T_C dans G (en remplaçant les arêtes par les plus courts chemins)
- 4. Prendre un ACM de ce graphe et l'élaguer jusqu'à obtenir un arbre T dont toutes les feuilles sont dans I

Soit G = (S, A) un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C
- 3. Reconstruire T_C dans G (en remplaçant les arêtes par les plus courts chemins)
- 4. Prendre un ACM de ce graphe et l'élaguer jusqu'à obtenir un arbre $\mathcal T$ dont toutes les feuilles sont dans $\mathcal I$

Théorème

T est un arbre couvrant I et $w(T) \leq 2w(T^*)$ (où T^* est un arbre de Steiner).

Soit G = (S, A) un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C
- 3. Reconstruire T_C dans G (en remplaçant les arêtes par les plus courts chemins)
- 4. Prendre un ACM de ce graphe et l'élaguer jusqu'à obtenir un arbre $\mathcal T$ dont toutes les feuilles sont dans $\mathcal I$

Théorème

T est un arbre couvrant I et $w(T) \le 2w(T^*)$ (où T^* est un arbre de Steiner).L'algorithme s'exécute en $O(|I||V|^2)$

Soit G = (S, A) un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C
- 3. Reconstruire T_C dans G (en remplaçant les arêtes par les plus courts chemins)
- 4. Prendre un ACM de ce graphe et l'élaguer jusqu'à obtenir un arbre $\mathcal T$ dont toutes les feuilles sont dans $\mathcal I$

Théorème

T est un arbre couvrant I et $w(T) \le 2w(T^*)$ (où T^* est un arbre de Steiner). L'algorithme s'exécute en $O(|I||V|^2)$

Si P \neq NP, il est (prouvablement) impossible d'avoir un algorithme en temps polynomial ayant un d'approximation aussi proche de 1 (ou même $< \frac{96}{95}$).

Soit G = (S, A) un graphe (avec des distances positives sur les arêtes) et $I \subset S$.

- 1. Calculer la cloture métrique C du graphe induit par I dans G
- 2. Extraire un ACM T_C de C
- 3. Reconstruire T_C dans G (en remplaçant les arêtes par les plus courts chemins)
- 4. Prendre un ACM de ce graphe et l'élaguer jusqu'à obtenir un arbre T dont toutes les feuilles sont dans I

Théorème

T est un arbre couvrant I et $w(T) \le 2w(T^*)$ (où T^* est un arbre de Steiner).L'algorithme s'exécute en $O(|I||V|^2)$

Si P \neq NP, il est (prouvablement) impossible d'avoir un algorithme en temps polynomial ayant un d'approximation aussi proche de 1 (ou même $< \frac{96}{0E}$).

Meilleur algo d'approx : ratio de $\ln(4) + \varepsilon \approx 1.386$ (randomizé, en moyenne)

• Clôture métrique des sommets *a*, *b*, *c*, *d*

- Clôture métrique des sommets
- ACM de la clôture

- Clôture métrique des sommets
 a, b, c, d
- ACM de la clôture
- Reconstruction dans G

