

Read Alignment

Practical workshop on Large-Scale Genomic Data Analyses: GWAS in structured populations

November 26th, 2018

Selene L. Fernández-Valverde regRNAlab.github.io
@SelFdz

Learning objectives

In this lesson we'll learn:

- To align raw NGS reads to a genomic reference
- To understand the SAM and BAM formats

What does it mean to map a sequence?

 It is to identify the position of origin (high similarity) of reads or transcripts sequenced in a reference sequence (genomes or transcripts)

We cannot use BLAST

- BLAST does a local alignment, which makes it very useful to look for partial and/or divergent alignments in large databases.
- BLAST is very slow to align sequences, which makes it impractical to align millions of sequences.
- Since we generally expect a high level of similarity to the reference in a massive sequencing experiment we need a semi-global and very fast alignment algorithm.

Burrows-Wheeler transform (BWT)

- Discovered by David Wheeler in 1983.
- Reversible permutation of the characters in a string originally used to compress data.
- In 2005 it was found to be extremely useful in finding substrings.
- In 2009 it began to be used to align readings resulting from massive sequencing experiments.
- Together with compressed indexes (e.g. FM index) it allows the alignment time to grow linearly with the number of sequences.
- Allows to align ~ 100 million reads per hour (Bowtie 1 thread only)

ATCTTATC\$

ATCTTATC\$ TCTTATC\$A CTTATC\$AT TTATC\$ATC ATCTTATC\$ TATC\$ATCT ATC\$ATCTT TC\$ATCTTA C\$ATCTTAT \$ATCTTATC

\$ATCTTATC ATCTTATC\$ ATC\$ATCTT TCTTATC\$A CTTATC\$AT ATCTTATC\$ TTATC\$ATC C\$ATCTTAT ATCTTATC\$ CTTATC\$AT TATC\$ATCT Permute ATC\$ATCTT TATC\$ATCT TC\$ATCTTA TC\$ATCTTA C\$ATCTTAT TCTTATC\$A TTATC\$AT \$ATCTTATC

\$ - Character that indicates the end of a string

CT\$TTTAAC

\$ATCTTATC ATCTTATC\$ TCTTATC\$A ATC ATCTT CTTATC\$AT CTTATC\$ \$ATCTTAT ATCTTATC\$ This is the only thing we TTATC\$AT save! ATC\$ATCT TC\$ATCTTA TC\$ATCTTA C\$ATCTTAT TCTTATC\$A TTATC\$AT \$ATCTTATC

\$ - Character that indicates the end of a string

CT\$TTTAAC

FT Property

Row

```
$0 ATCTTAT C0
1 A_0 TC$ATCT T_0
2 A<sub>1</sub> TCTTATC $<sub>0</sub>
3 C_0 \$ATCTTA T_1
 C_1 TTATC$A T_2
5 T_0 ATC$ATC T_3
6 T_1 C$ATCTT A_0
7 T_2 CTTATC$ A_1
8 T<sub>3</sub> TATC$AT C<sub>1</sub>
```


FT Property

Row			BWT	-
0	\$ ₀	ATCTTAT	C_0	
1	A_0	TC\$ATCT	\mathbf{T}_0	
2	A_1	TCTTATC	\$0	
3	C_0	\$ATCTTA	\mathbf{T}_1	
4	C_1	TTATC\$A	T_2	
5	\mathbf{T}_0	ATC\$ATC	T_3	
6	\mathbf{T}_1	C\$ATCTT	A_0	
7	T_2	CTTATC\$	A_1	
8	T_3	TATC\$AT	C_1	
F	- Firs	st L	- Las	st

FT Property

The range of characters are kept in the first (F) and last (L) column.

The first column can be rebuilt ordering the last

R	\cap	W
	$\mathbf{\mathcal{C}}$	vv

0	\$ ₀	C_0	
1	\mathbf{A}_0	${f T}_0$	
2	${\sf A}_1$	\$ ₀	
3	C_0	${\bf T_1}$	
4	C_1	${f T}_2$	Original coguence
5	\mathbf{T}_0	T_3	Original sequence
6	${\bf T_1}$	${\sf A}_0$	
7	${f T}_2$	${\tt A}_1$	
8	${f T}_3$	C_1	

0	\$ ₀
1	A_0
2	${\sf A}_1$
3	C_0
4	C_1
5	${f T}_0$
6	${\bf T_1}$
7	${\bf T_2}$
8	T_3

 T_3 A_0 A_1

Original sequence

Row	
$\mathbf{I} \cup \mathbf{V} \mathbf{V}$	

0	\$ ₀
1	A_0
2	${\sf A}_1$
3	C_0
4	C_1
5	${f T}_0$
6	${\bf T_1}$
7	${\bf T_2}$
8	T_3

C_0
\mathbf{T}_0
\$0
\mathbf{T}_1
T_2
T_3
A_0
A_1
C_1

Original sequence

 $T_1C_0 $_0$

Original sequence

 $A_0 T_1 C_0 $_0$ Original sequence

 $A_0 T_1 C_0 $_0$ Original sequence

 $\mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Original sequence

 $\mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Original sequence

 $\mathbf{T}_3 \, \mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Original sequence

 $\mathbf{T}_3 \, \mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Original sequence

 $C_1 T_3 T_0 A_0 T_1 C_0 $_0$ Original sequence

 $C_1 T_3 T_0 A_0 T_1 C_0 $_0$ Original sequence

 $\mathbf{T}_2 \mathbf{C}_1 \mathbf{T}_3 \mathbf{T}_0 \mathbf{A}_0 \mathbf{T}_1 \mathbf{C}_0 \mathbf{\$}_0$ Original sequence

 $\mathbf{T}_2 \mathbf{C}_1 \mathbf{T}_3 \mathbf{T}_0 \mathbf{A}_0 \mathbf{T}_1 \mathbf{C}_0 \boldsymbol{\$}_0$ Original sequence

 $\mathbf{A}_1 \, \mathbf{T}_2 \, \mathbf{C}_1 \, \mathbf{T}_3 \, \mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Original sequence

 $A_1 T_2 C_1 T_3 T_0 A_0 T_1 C_0 $_0$ Original sequence

Using BWT to map

Row

0	\$ ₀	C_0
1	\mathbf{A}_0	${f T}_0$
2	${\sf A}_1$	\$ ₀
3	\mathbf{C}_0	${\bf T_1}$
4	C_1	${f T}_2$
5	\mathbf{T}_0	T_3
6	${\bf T_1}$	${\sf A}_0$
7	${f T}_2$	${\sf A}_1$
8	T_3	C_1

Using BWT to map

Row		BWT	•	
0	\$ ₀	C_0		
1	\mathbf{A}_0	${f T}_0$		
2	${\tt A}_1$	\$ ₀		
3	\mathbf{C}_0	${f T}_1$		
4	C_1	${f T}_2$	Read:	TTATC
5	${f T}_0$	T_3		
6	${\bf T}_1$	${\sf A}_0$		
7	${f T}_2$	${\sf A}_1$		
8	${f T}_3$	C_1		

Row		BWT
0	\$ ₀	C_0
1	${\sf A}_0$	${f T}_0$
1 2	\mathtt{A}_1	\$ ₀
3	\mathbf{C}_0	${f T}_1$
4	C_1	\mathbf{T}_2
5	\mathbf{T}_0	T_3
6	${\bf T_1}$	A_0
7	${f T}_2$	${\sf A}_1$
8	T_3	$ C_1 $

Row		BWT
0	\$ ₀	C_0
1	${\sf A}_0$	${f T}_0$
2	\mathtt{A}_1	\$0
3	C_0	$ \mathbf{T}_1 $
4	C_1	T_2
5	\mathbf{T}_0	T_3
6	${f T_1}$	A_0
7	\mathbf{T}_2	${\sf A}_1$
8	T_3	C_1

Row		BWT		
0	\$ ₀	\mathbf{C}_0		
1	\mathbf{A}_0	\mathbf{T}_0		
2	${\sf A}_1$	\$ ₀		
2	C_0	$ \mathbf{T}_1 $	_ •	
4	C_1	$ \mathbf{T}_2 $	Read:	TTATC
5	${f T}_0$	T_3		
6	${\bf T}_1$	A_0		
7	${f T}_2$	A_1		
8	T_3	C_1		

Row		BWT
0	\$ ₀	\mathbf{C}_0
1	${f A}_0$	${f T}_0$
2	${\sf A}_1$	\$ ₀
3	C_0	\mathbf{T}_1
4	C_1	\mathbf{T}_2
5	${f T}_0$	T_3
6	${\bf T_1}$	$ \mathbf{A}_0 $
7	${f T}_2$	$ A_1 $
8	T_3	C_1

Row		BWT		
0	\$ ₀	C_0		
1	\mathbf{A}_0	\mathbf{T}_0		
2	${\sf A}_1$	\$ ₀		
2	C_0	${f T}_1$	_	
4	C_1	${f T}_2$	Read:	TTATC
5	${f T}_0$	T_3		
6	${\bf T_1}$	$ \mathbf{A}_0 $		
7	${f T}_2$	$ \mathbf{A}_1 $		
8	${f T}_3$	C_1		

Row		BWT
0	\$ ₀	C_0
1	\mathbf{A}_0	$ \mathbf{T}_0 $
2	${\sf A}_1$	\$0
3	C_0	${f T}_1$
4	C_1	\mathbf{T}_2
5	\mathbf{T}_0	T_3
6	${\bf T}_1$	A_0
7	${f T}_2$	A_1
8	T_3	C_1

Row		BWT		
0	\$ ₀	C_0		
1	\mathbf{A}_0	$ \mathbf{T}_0 $		
2	${\tt A}_1$	\$ ₀		
3	C_0	${f T}_1$	_ ,	
4	C_1	${f T}_2$	Read:	TTATC
5	\mathbf{T}_0	T_3		
6	${\bf T_1}$	${\sf A}_0$		
7	${\bf T_2}$	${\sf A}_1$		
8	T_3	C_1		

Read: TTATC

The read maps to our sequence but ... Where is it in the genome?

Row	Su	ffix array	
0 \$0	C_0	8	
$1 A_0$	T_0	5	
$2 A_1$	\$0	0	
$3 C_0$	\mathbf{T}_1	7	A suffix could indicate us
$4 C_1$	T_2	2	where is it in the
$5 \mathbf{T}_0$	T 3	4	original sequence. Uses
$6 \ \mathbf{T}_1$	A_0	6	a lot of space if we have
$7 T_2$	A_1	1	millions of positions
$8 T_3$	C_1	3	
	BWT		

Row	Su	ffix array	
0 \$0	C_0	8	Read: TTATC
$1 A_0$	\mathbf{T}_0	5	
2 A ₁	\$ ₀	0	
$3 C_0$	\mathbf{T}_1	7	A suffix could indicate us
$4 C_1$	T_2	2	where is it in the
$5 \mathbf{T}_0$	T_3	4	original sequence. Uses
$6 \ \mathbf{T}_1$	A_0	6	a lot of space if we have
$7 \mathbf{T}_2$	A_1	1	millions of positions
$8 T_3$	C_1	3	
	BWT	•	

Row	Su	ffix array	
0 \$0	C_0	8	Read: TTATC
$1 A_0$	\mathbf{T}_0	5	$A_1 T_2 C_1 T_3 T_0 A_0 T_1 C_0 $_0$
$2 A_1$	\$ ₀	0	
$3 C_0$	\mathbf{T}_1	7	A suffix could indicate us
$4 C_1$	T_2	2	where is it in the
$5 T_0$	T_3	4	original sequence. Uses
$6 \ \mathbf{T}_1$	A_0	6	a lot of space if we have
$7 \mathbf{T}_2$	A_1	1	millions of positions
$8 T_3$	C_1	3	
	BWT		

Full-text Minute-size (FM) index

Full-text Minute-size (FM) index

Errors or Mismatches

- If no perfect alignment of the reading to the reference sequence is identified, the partial alignments are taken and the candidate nucleus is changed to mismatch (A, T, C, G) and the aim is to continue extending the site with similarity to the reading of interest.
- This is known as "backtracking" and is generally limited to an arbitrary number of cycles to avoid increasing the alignment time too much.
- More backtracking is done in nucleotides with low quality.
- Since the calculation time is linear, it is not so slow to try to do this
 to find the place of origin of readings with errors.

Paired-end reads

 Many times a single read is found using alignment via BWT. Since we know the approximate size of the insert some algorithms use Smith-Waterman (SW) alignments to find their pair in the neighbouring region.

Programs to align reads to a reference

- bwa (<u>http://bio-bwa.sourceforge.net/</u>)
- bowtie (<u>http://bowtie-bio.sourceforge.net/index.shtml</u>)
- STAR (https://github.com/alexdobin/STAR) Recommended for RNA-Seq data

Practical - Aligning reads using BWA

https://liz-fernandez.github.io/MxBiobank_NGS/02-mapping.html

