Событийно-ориентированное программирование

Юрий Литвинов

yurii.litvinov@gmail.com

5

1. Введение

В этой лекции речь пойдёт про событийную систему С# и лямбда-функции. Лямбдафункции, на самом деле, полезны и безотносительно событийно-ориентированного программирования, но оказываются очень удобны в качестве обработчиков событий (только использовать их в этом качестве надо очень аккуратно, иначе утечки памяти гарантированы). Нужна событийная система прежде всего для разработки программ с пользовательским интерфейсом. В отличие от большинства консольных программ, программы с пользовательским интерфейсом имеют цикл обработки событий, который время от времени вызывает обработчики. Хочется заметить, что события полезны не только в оконных интерфейсах, а ещё и при написании сетевых приложений, и даже просто для организации удобного общения между объектами — событийная схема позволяет уменьшить связность классов, тем самым повысив переиспользуемость компонентов системы.

Обработка событий когда-то давно реализовывалась с помощью такого понятия, как callback. Колбэк — это, по сути, указатель на функцию, которую можно вызвать. Так, например, работал старый WinAPI (программный интерфейс операционной системы Windows) — если мы хотим ловить в нашей программе событие «пользователь нажал на кнопку», мы создаём функцию, которая будет обрабатывать это событие, берём указатель на неё, и передаём оконной системе, чтобы она связала кнопку и этот указатель. Тогда по нажатию на кнопку по указателю вызовется функция. Это плохо вяжется с ООП, потому что есть виртуальные методы (конкретный адрес, по которому надо передать управление, может быть неизвестен во время компиляции).

В объектно-ориентированном программировании колбэки идеологически правильно делать с помощью паттерна «Наблюдатель». Этот паттерн заключается в том, что есть наблюдаемый объект, который может производить некоторые события, и есть наблюдающие за ним объекты, которые хотят получать оповещения об этих событиях. В таком случае, наблюдающие объекты регистрируются в наблюдаемом (обычно просто заносятся в список), и когда в наблюдаемом объекте происходит какое-то событие, наблюдаемый объект бежит по списку наблюдателей, говоря каждому, что произошло событие:

Собственно, в Java долгое время обработчики событий реализовывались буквально как в этом паттерне. Создавался класс, реализующий интерфейс ActionListener, состоящий из одного метода actionPerformed, где и делается всё, что надо делать по клику на кнопку. Потом с помощью вызова метода кнопки addActionListener объект этого класса регистрировался в кнопке. Потом пользователь нажимал на кнопку, кнопка обходила список объектов типа ActionListener, вызывая их методы actionPerformed. Чтобы это было удобно (не приходилось долго и мучительно передавать состояние в объект-обработчик), в Java даже сделали весьма странный языковой механизм — нестатические вложенные классы, которые неявно хранили ссылку на объект объемлющего класса, который их создал. Кроме того, в Java есть «анонимные классы», или объектные выражения, которые могут реализовывать интерфейс прямо на месте, при вызове addActionListener. Такой объект, объявленный локально в методе, имел ещё и доступ к локальным переменным метода (то есть реализовывалось честное замыкание), так что до лямбда-функций оставался один шаг, который и был сделан в 2014 году в Java 8. В С# всё появилось гораздо раньше.

2. Делегаты

На самом деле, работа с событиями достаточно важна, чтобы в С# появилась довольно мощная языковая поддержка для паттерна «Наблюдатель» (как ни странно, в отличие от Java, где всё ограничилось анонимными классами и лямбда-функциями). Но появилась эта поддержка не сразу, язык эволюционировал, и довольно уродливый синтаксис первых версий языка постепенно заменился на довольно удобный синтаксис, который используется сейчас. Но поскольку эволюция шла в направлении повышения уровня абстракции, и каждый следующий вид синтаксиса на самом деле базируется на предыдущих, то имеет смысл повторить этот путь, благо в коде и в различной документации часто можно наткнуться на термины типа «Делегат». Собственно, с делегатов и начнём.

Делегат в дотнете — это объект, который по сути является ссылкой на некоторый метод. Тут важно, что делегат — это объект, он довольно многое знает о том методе, на который ссылается: его параметры (с типами), тип возвращаемого значения, адрес того метода, который надо вызвать, переменные, попавшие в замыкание делегата (но об этом попозже). В делегате можно сохранить ссылку на метод, передать куда-нибудь делегат, а потом вызвать делегат, при этом вызовется тот метод, который там лежит.

Делается это так. Сначала надо объявить тип делегата:

```
public delegate void Feedback(Int32 value);
```

delegate — ключевое слово, Feedback — имя типа делегата. Такой делегат может хранить в себе ссылку на любой метод, принимающий один int-овый параметр и ничего не возвращающий. На самом деле, Feedback — это автоматически генерируемый компилятором класс, наследуемый от библиотечного класса System.MulticastDelegate, который в свою очередь наследуется от System.Delegate, у него есть всякие методы, самый интересный из которых — генерируемый компилятором метод Invoke(...), вызов метода, на который делегат ссылается. Invoke имеет те же параметры, что и сам делегат, в данном случае, int, и возвращает то, что возвращает делегат, в данном случае — ничего.

Ещё есть методы BeginInvoke(...) и EndInvoke(), позволяющие вызвать делегат асинхронно. Это довольно часто использовавшийся раньше в стандартной библиотеке паттерн обеспечения асинхронных вызовов, Begin... инициирует асинхронную операцию, принимая необходимые аргументы и колбэк, и тут же возвращая управление вызывающему. Операция исполняется в параллельном потоке (в случае с делегатами — в свободном потоке из пула потоков, поддерживаемого рантаймом), и когда она заканчивает исполнение, вызывается колбэк (в потоке делегата, не в вызывающем), который может получить доступ к результатам вычислений, выполненных делегатом, с помощью метода EndInvoke. EndInvoke блокирует вызывавший его поток, если операция ещё не закончена, так что его вполне можно вызывать и из основного потока, чтобы синхронизироваться с асинхронно исполняющимся делегатом (но подумайте, точно ли вы хотите заблокировать основной поток).

Устроены объекты-делегаты так: у каждого делегата есть поле _target, указывающая на объект, метод которого хранится в делегате, поле _methodPtr, указывающее на метод, который надо вызывать, и поле _invocationList, используемое для Chaining-a, то есть возможности комбинировать делегаты для того, чтобы при вызове одного делегата вызывалось на самом деле сразу несколько (мы потом увидим, что это необходимо для поддержки событий). Если делегат хранит ссылку на статический метод, то в поле _target лежит null, если делегат в цепочке один, то и _invocationList — это просто null.

Интересно, что для вызова делегата можно обойтись и без Invoke, а просто вызвать делегат, как будто это обычная функция:

```
public delegate int HashFunction(string str, int hashSize);

private static class HashFunctions
{
    public static int Hash1(string str, int hashSize)
    {
        return str[0] % hashSize;
    }

    public static int Hash2(string str, int hashSize)
    {
        int result = 0;
        foreach (var ch in str)
        {
        }
}
```

```
result += ch;
}

return result % hashSize;
}

static void Main(string[] args)
{
  var h = new HashFunction(HashFunctions.Hash1);
  var result = h("ololo", 10);
}
```

Тут вызовется статический метод HashFunctions. Hash1.

3. Пример: цикл обработки событий

Делегаты даже в таком виде можно использовать для реализации событийной схемы. Собственно, можно построить модель своей собственной «оконной системы» с циклом обработки событий и обработчиками. Она у нас будет очень простая, но вполне подойдёт для примера, который будет постепенно эволюционировать, следуя за появлением языковых особенностей в С#. Положим, мы пишем компьютерную игру, и хотим, чтобы она реагировала на нажатие стрелочек на клавиатуре. Было бы разумно разделить пользовательский ввод и реакцию на действия пользователя по разным классам, так что нам потребуются классы EventLoop и Game. Псевдокод цикла обработки событий выглядел бы так:

```
public class EventLoop
{
    public void Run()
        while (true)
            var key = Console.ReadKey();
            switch (key.Key)
                case ConsoleKey.LeftArrow:
                    // Сделать что-то по нажатию на "влево"
                    break:
                case ConsoleKey.RightArrow:
                    // Сделать что-то по нажатию на "вправо"
                    break:
            }
        }
    }
}
```

```
static void Main(string[] args)
{
    var eventLoop = new EventLoop();
    eventLoop.Run();
}
```

Попользуем делегаты для того, чтобы задавать нужную нам функциональность как реакцию на события нажатия клавиш:

```
public delegate void ArrowHandler();
public class EventLoop
{
    public void Run(ArrowHandler left, ArrowHandler right)
    {
        while (true)
        {
            var key = Console.ReadKey(true);
            switch (key.Key)
                case ConsoleKey.LeftArrow:
                    left();
                    break:
                case ConsoleKey.RightArrow:
                    right();
                    break;
            }
        }
    }
}
public class Game
    public void OnLeft()
    {
        Console.WriteLine("Going left");
    }
    public void OnRight()
        Console.WriteLine("Going right");
    }
}
static void Main(string[] args)
{
    var eventLoop = new EventLoop();
```

```
var game = new Game();
eventLoop.Run(new ArrowHandler(game.OnLeft), new ArrowHandler(game.OnRight));
}
```

Обратите внимание, метод Main остаётся очень простым, всё, что он делает — это связывает цикл обработки событий и игру. Ни игра ничего не знает о цикле обработки событий, ни цикл обработки событий ничего не знает об игре, что даёт нам возможность переиспользовать эти классы в разных других ситуациях.

4. Комбинирование делегатов

Паттерн «Наблюдатель» прекрасно работает, если за одним объектом хотят наблюдать сразу несколько наблюдателей (они просто добавляются в список, и наблюдаемый объект сообщает о событии им всем). У нас пока что так нельзя, потому что делегаты передаются в конструктор нашего цикла обработки событий. Допустим, мы хотим помимо собственно игры прицепить к циклу обработки событий объект для записи действий пользователя, который бы, например, запоминал, куда ходил пользователь, и отправлял бы данные на сервера ФСБ или тайного мирового правительства. Это можно сделать прямо в Game, но это архитектурно плохо, потому что эта функциональность к Game не относится, и было бы хорошо, если бы Game вообще ничего про это не знала. Делегаты так умеют — они поддерживают так называемый мультикастинг, то есть рассылку сообщения множеству адресатов. Делегату можно приписать ещё один метод, который он будет вызывать, когда его вызовут, с помощью оператора +=, или статического метода Delegate. Сотыпе. Можно было бы написать вот такой код, который бы позволил зарегистрировать больше одного делегата на одно и то же событие:

```
public void Register(SomeDelegateType someDelegate)
{
    if (currentDelegate == null)
    {
        currentDelegate = someDelegate;
    }
    else
    {
            Delegate.Combine(currentDelegate, someDelegate);
    }
}

Более понятно должно быть из большого примера:

public delegate void ArrowHandler();

public class EventLoop
{
    private ArrowHandler leftHandler;
    private ArrowHandler rightHandler;
```

```
public void RegisterLeftHandler(ArrowHandler left)
    {
        leftHandler += left;
    }
    public void RegisterRightHandler(ArrowHandler right)
    {
        rightHandler += right;
    }
    public void Run()
        while (true)
            var key = Console.ReadKey(true);
            switch (key.Key)
            {
                case ConsoleKey.LeftArrow:
                    if (leftHandler != null)
                        leftHandler();
                    }
                    break;
                case ConsoleKey.RightArrow:
                    if (rightHandler != null)
                    {
                        rightHandler();
                    }
                    break;
            }
        }
    }
public class Game
    public void OnLeft()
    {
        Console.WriteLine("Going left");
    }
    public void OnRight()
    {
```

}

```
Console.WriteLine("Going right");
    }
}
public class Logger
    private List<string> log = new List<string>();
    public void LeftPressed()
        log.Add("left");
    }
    public void RightPressed()
        log.Add("right");
    }
}
static void Main(string[] args)
    var eventLoop = new EventLoop();
    var game = new Game();
    var logger = new Logger();
    eventLoop.RegisterLeftHandler(game.OnLeft);
    eventLoop.RegisterRightHandler(game.OnRight);
    eventLoop.RegisterLeftHandler(logger.LeftPressed);
    eventLoop.RegisterRightHandler(logger.RightPressed);
    eventLoop.Run();
}
```

Мы тут ещё пользуемся механизмом, называющимся Method Group Conversion — явно не создаём объект делегата, передавая в метод, принимающий делегат, прямо метод, на который этот делегат должен указывать. Например, eventLoop.RegisterLeftHandler(game.OnLeft);. Это то же самое, что и создание делегата, только короче. Ещё обратите внимание, что мы проверяем делегат на null перед вызовом — теперь может так оказаться, что никто не добавит свой обработчик, при этом программа не должна падать.

Можно и отписываться от событий, используя оператор -=, например, можно сделать метод

```
public void UnregisterLeftHandler(ArrowHandler left)
{
```

```
leftHandler -= left;
}
```

Делать подобные методы обычно весьма мудро, потому что пока делегат добавлен в какую-нибудь цепочку вызовов, сборщик мусора не может его собрать, а значит, не может собрать и все объекты, на которые делегат ссылается (_target и, главное, всё, что попало в замыкание). Случайно не отписанный вовремя делегат может иметь ужасные последствия в плане скорости работы и занимаемой памяти. Представим себе ситуацию, когда, например, при переинициализации рабочей области текстового редактора (например, при открытии документа) мы подписываем делегаты, обрабатывающие события нажатия на клавиши, и случайно забываем отписать те делегаты, что уже были подписаны. Если при этом редактор устроен так, что обработчики только лишь запрашивают состояние рабочей области, обновляют внутреннюю структуру документа и не производят видимых эффектов, то проблему можно будет заметить только через несколько тысяч открытий документов — редактор станет работать заметно медленнее. Вряд ли такой баг будет замечен при тестировании.

5. Внутреннее устройство цепочек делегатов

Чтобы окончательно разобраться, что происходит в делегатах с цепочками, можно посмотреть на то, как примерно выглядит сгенерированный метод Invoke для делегата Feedback, с которого начинался этот рассказ:

```
public Int32 Invoke(Int32 value) {
    Int32 result;
    Delegate[] delegateSet = _invocationList as Delegate[];
    if (delegateSet != null)
    {
        foreach (Feedback d in delegateSet)
        {
            result = d(value);
        }
    }
    else
    {
        result = _methodPtr.Invoke(_target, value);
    }
    return result;
}
```

Видим, что _invocationList — это просто массив длегатов, и если он null, то ничего интересного не происходит — вызывается метод и возвращается его значение. А вот если он не null, то делегаты последовательно вызываются из массива, при этом «наше» значение _methodPtr даже не используется. Ещё, что важно, если делегатов несколько, то и

результатов несколько, так что результатом вызова цепочки станет результат последнего вызыванного делегата. Обычно порядок делегатов в цепочке сложно предсказать — он соответствует порядку, в котором делегаты подписывались, но объект, посылающий событие, вряд ли может знать, кто и в каком порядке на него подписан. Поэтому использовать цепочки делегатов рекомендуется (очень рекомендуется) только в случае, если они возвращают void, либо возвращаемое значение можно проигнорировать. То же самое с исключениями — если кто-то из цепочки бросит исключение, оставшиеся делегаты даже не будут вызваны, что не всегда желательно.

В принципе, цепочка делегатов доступна с помощью метода GetInvocationList() у делегата, так что вызов делегатов из цепочки можно сделать и вручную, так:

Тут, если делегат из цепочки бросил исключение, исключение обрабатывается и делегаты из цепочки спокойно вызываются дальше.

6. Шаблонные типы-делегаты

Кучу кода из приведённого примера с циклом обработки событий на самом деле можно не писать. Первое, что можно заметить, что обработчик события нажатия на кнопку — это просто метод, который ничего не принимает и ничего не возвращает, нам не важно, как называется тип делегата, и никакого преимущества от объявления типа ArrowHandler мы не получили. Поэтому в стандартной библиотеке объявлены классы Action и Func, Action представляет собой генерик-делегат, принимающий до 15 каких угодно параметров и ничего не возвращающий. Func представляет делегат, который принимает до 15 параметров любого типа и возвращает значение. Например, вместо ArrowHandler можно было писать просто Action, а вместо делегата из самого начала,

```
public delegate int HashFunction(string str, int hashSize);
```

можно было использовать Func<string, int, int>. Два первых параметра-типа — это аргументы, последний — тип возвращаемого значения. Func и Action появились в стандартной библиотеке не сразу, поэтому в самой библиотеке нередки объявления типовделегатов. На самом деле, по словам Джеффри Рихтера, ситуация в стандартной библиотеке была примерно такой:

```
public delegate void TryCode(Object userData);
public delegate void WaitCallback(Object state);
public delegate void TimerCallback(Object state);
public delegate void ContextCallback(Object state);
public delegate void SendOrPostCallback(Object state);
public delegate void ParameterizedThreadStart(Object obj);
```

Понятно, что эти типы описывают одно и то же, но при этом не совместимы друг с другом (ну а что, это никак не связанные между собой типы, присваивать один делегат другому нельзя). Собственно, кто-то решил, что так дальше жить нельзя, и появились генерики Func и Action. Кстати, не всегда Func и Action подходят как типы делегатов — если ваш метод принимает out- и геf-параметры, то Func и Action не могут быть его типами (из-за вариантности: например, генерик Func контравариантен по типам параметров и ковариантен по типу возвращаемого значения, геf- или out-параметр сразу делает метод инвариантным, так что в Func его присвоить уже нельзя).

7. События

Делегаты обычно используются именно не как колбэки, а как средства для реагирования на некоторые события (бывают и другие способы их применения, но про это чуть-чуть попозже). Поэтому в С# есть специальная поддержка понятия «событие», чтобы не писать код, который позволял бы зарегистрировать/разрегистрировать делегат. Можно, конечно, поля делегатов из примера выше сделать public, и этот код не писать, регистрируя делегат непосредственно в Main-e, так:

```
eventLoop.leftHandler += game.OnLeft;
```

но это идеологически очень плохо, потому что так вызывающий может, во-первых, регистрировать/разрегистрировать что угодно без ведома класса, а во-вторых (и в главных), сам вызвать все прицепленные делегаты, вызвав eventLoop.leftHandler.Invoke(). Событие, идеологически, может быть инициировано только тем классом, в котором оно описано, иначе можно запутаться в причинно-следственных связях в программе. Так что возможность вызвать делегат извне — это страшная дыра в инкапсуляции.

Поэтому есть ключевое слово event, которое говорит, что мы хотим дать возможность подписываться на такое-то событие, и вызывать срабатывание этого события только из того класса, где оно объявлено. В нашем примере это могло бы выглядеть так:

```
public event Action LeftHandler;
public event Action RightHandler;
```

Тогда на такие события можно безопасно подписываться в Main-e, как будто они просто паблик-делегаты:

```
eventLoop.LeftHandler += game.OnLeft;
eventLoop.RightHandler += game.OnRight;
eventLoop.LeftHandler += logger.LeftPressed;
eventLoop.RightHandler += logger.RightPressed;
```

Методы регистрации делегатов больше не нужны, и инициировать событие извне класса не получится (будет ошибка компиляции). Инициирование события изнутри класса можно точно так же, как мы делали с делегатами. На самом деле, event при компиляции просто порождает методы подписывания/отписывания и private-поле для хранения делегата, которые мы писали руками. Очень похоже на свойство — там тоже генерируется поле и пара методов для чтения и записи значения в поле. Как мы увидим дальше, события действительно можно понимать как свойства для делегатов.

8. Анонимные методы

Большинство методов-обработчиков пишутся для использования только с одним каким-то событием, и нигде больше не вызываются. Можно сэкономить усилия на объявление метода и придумывание ему имени, воспользовавшись анонимными методами. Анонимные методы могут быть объявлены прямо в месте использования. В нашем примере, например, логгер мог бы быть не отдельным классом, а просто кодом в Main:

```
static void Main(string[] args)
    var eventLoop = new EventLoop();
    var game = new Game();
    eventLoop.LeftHandler += game.OnLeft;
    eventLoop.RightHandler += game.OnRight;
    var log = new List<string>();
    eventLoop.LeftHandler += delegate
    {
        log.Add("left");
    }:
    eventLoop.RightHandler += delegate
    {
        log.Add("right");
    };
    eventLoop.Run();
}
```

Обратите внимание на использование ключевого слова delegate и использование переменной log из контекста внутри тела делегата — замыкание. Делегат — это объект, так что он хранит в себе ссылки на внешние переменные просто как поля, и таскает их с собой. Делегат может жить даже когда мы вернулись из метода, и не дать умереть локальным переменным метода, пока он сам жив. Это позволяет делать довольно интересные штуки, например, вот такую фабрику функций преобразования координат из одного прямоугольника в другой:

```
static Func<Point, Point> CreateRemapFunction(Rectangle rect1, Rectangle rect2)
{
    var xScale = rect2.Width() / rect1.Width();
    var yScale = rect2.Height() / rect1.Height();
    Func<Point, Point> result = delegate(Point point)
    {
        var returnValue = new Point();
        returnValue.x = point.x * xScale;
        returnValue.y = point.y * yScale;
        return returnValue:
    }:
    return result:
}
static void Main(string[] args)
{
    var rect1 = new Rectangle()
    {
        topLeft = new Point() { x = 0, y = 0 },
        bottomRight = new Point() \{ x = 2, y = 2 \}
    };
    var rect2 = new Rectangle()
    {
        topLeft = new Point() { x = 0, y = 0 },
        bottomRight = new Point() { x = 4, y = 6 }
    };
    var remap = CreateRemapFunction(rect1, rect2);
    var point = new Point() { x = 1, y = 1 };
    Console.WriteLine($"Point: x = {point.x}, y = {point.y}");
    var transformedPoint = remap(point);
   Console.WriteLine(\$"Transformed point: x = \{transformedPoint.x\}, y = \{transformedPoint.y\}"
}
```

Здесь мы описали функцию, которая принимает какие-то параметры и на их основе со-

здаёт и возвращает нам новую функцию, которую мы потом можем использовать дальше. Впрочем, это скорее функциональное, чем событийно-ориентированное программирование, так что не совсем относится к теме, но это тот самый ещё один способ использования делегатов помимо событий — если вам почему-то не нравится F#, но хочется более фунционального стиля программирования. Обратите внимание на потенциальные утечки памяти, связанные с забытыми переменными из контекста, и на то, что в замыкание попадает не значение, а ссылка на переменную, что приводит к интересному способу прострелить себе ногу:

```
delegate void F();

class Program
{
    static void Main(string[] args)
    {
        var delegates = new F[10];
        for (var i = 0; i < 10; ++i)
        {
            delegates[i] = delegate { Console.WriteLine(i); };
        }

        foreach (var f in delegates)
        {
            f();
        }
    }
}</pre>
```

Выведется 10 раз число 10, поскольку в замыкание попадёт ссылка на локальную переменную цикла і, которая в тот момент, когда делегаты начнут вызываться, уже будет иметь значение 10. Может быть слегка не интуитивно.

9. Лямбда-выражения

Анонимные делегаты тоже никому особо не нужны, потому что есть лямбдавыражения. Что это такое на самом деле обычно рассказывают на курсе функционального программирования, обычному С#-программисту их вполне можно понимать как очень удобную форму записи анонимных делегатов.

```
delegate(список параметров)
{
        тело
};

        — это то же самое, что и
(список параметров) => { тело };
```

Вот это самое => — и есть оператор «лямбда» из лямбда-исчисления в синтаксисе С#. Наш пример можно было бы переписать так:

```
eventLoop.LeftHandler += () => log.Add("left");
eventLoop.RightHandler += () => log.Add("right");
```

Обратите внимание на (), означающий, что лямбда-выражение не требует аргументов. Если в теле один оператор, фигурные скобки можно не писать. Более того, если лямбда-выражение должно возвращать значение, и его тело состоит из одного выражения, то можно и return не писать, например, вот такое вполне ок:

```
Func<int, int> x2 = x => x * 2;
var n = x2(1); // n будет 2
```

Посмотрите, как красиво можно выбрать из списка только чётные элементы:

```
var list = new List<int>() { 20, 1, 4, 8, 9, 44 };
var evenNumbers = list.FindAll(i => (i % 2) == 0);
```

Теперь вернёмся к работе с событиями. Лямбда-выражениями можно делать обработчики, ещё лямбда-выражения бывают полезны, чтобы инициализировать события, дабы их потом не надо было прверять на null:

```
public event Action LeftHandler = () => { };
public event Action RightHandler = () => { };
```

Такая штука говорит, что события в любом случае слушает обработчик, который делает ничего, даже если никто другой на эти события не подпишется. Теперь событие можно безопасно вызывать в нашем объекте, без проверки его на null. Нельзя сказать, что это рекомендуемая практика, потому что это негативно сказывается на скорости работы программы, но иногда (особенно в процессе прототипирования) бывает удобно.

10. Каноничное объявление события

Майкрософтовский стайлгайд предписывает, чтобы обработчики событий принимали первым параметром object sender — ссылку на объект, пославший событие, а вторым параметром — объект класса, наследуемого от библиотечного класса EventArgs, который, собственно, и хранит параметры события. В принципе, это не важно, но бывает удобно: отправителя бывает полезно знать довольно часто (например, у кого спрашивать дополнительную информацию о событии, или кому слать ответ), да и параметры лучше передавать одним объектом, а не сотней. Для удобства даже есть тип делегата EventHandler<T>, который генерик, и в качестве параметра-типа принимает тип того самого наследника EventArgs, который хранит в себе параметры. Этого шаблона придерживаются все события, объявленные в стандартной библиотеке, и этого же шаблона рекомендуют придерживаться и сторонних авторов.

Итак, чтобы «идеологически правильно» объявить событие, надо выполнить следующие лействия:

- 1. Объявить наследник EventArgs, содержащий в себе параметры события
 - Если параметров нет, то обработчики события всё равно должны принимать EventArgs
 - Передавать при вызове имеет смысл EventArgs.Empty

```
internal class NewMailEventArgs : EventArgs {
    private readonly string from;
    private readonly string to;
    private readonly string subject;

public NewMailEventArgs(string from, string to, string subject) {
        this.from = from;
        this.to = to;
        this.subject = subject;
    }

public string From => from;
    public string To => to;
    public string Subject => subject;
}
```

- 2. Объявить само событие в наблюдаемом классе
 - Инстанциация шаблона EventHandler
 - public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);
 internal class MailManager

```
{
    public event EventHandler<NewMailEventArgs> NewMail;
    ...
}
```

- 3. Сделать вспомогательный метод, кидающий событие (строго говоря, не требуется стайлгайдом, но очень удобен)
 - Сюда идёт проверка списка подписчиков на null
 - Вызов лучше делать потокобезопасным

```
internal class MailManager
{
    ...
    protected virtual void OnNewMail(NewMailEventArgs e) {
        EventHandler<NewMailEventArgs> temp = Volatile.Read(ref NewMail);
        if (temp != null)
        {
            temp(this, e);
        }
}
```

```
}
}
```

}

4. Собственно, бросить событие

```
• Создаём наследника EventArgs
        • Вызываем метод, отправляющий событие наблюдателям
      internal class MailManager
         public void SimulateNewMail(string from, string to, string subject)
         {
             NewMailEventArgs e = new NewMailEventArgs(from, to, subject);
             OnNewMail(e);
         }
     }
   Теперь всё сделано «по канону» и событием можно воспользоваться вот так:
internal sealed class Fax
   public Fax(MailManager mm)
       mm.NewMail += FaxMsq;
   }
   private void FaxMsg(object sender, NewMailEventArgs e)
        Console.WriteLine("Faxing mail message:");
       Console.WriteLine($" From={e.From}, To={e.To}, Subject={e.Subject}");
   }
   public void Unregister(MailManager mm)
   {
       mm.NewMail -= FaxMsg;
   }
```

В общем, полностью отрефакторенный пример с циклом обработки событий выглядел бы вот так:

```
public class EventLoop
   public event EventHandler<EventArgs> LeftHandler = (sender, args) => { };
   public event EventHandler<EventArgs> RightHandler = (sender, args) => { };
```

```
public void Run()
    {
        while (true)
        {
            var key = Console.ReadKey(true);
            switch (key.Key)
            {
                case ConsoleKey.LeftArrow:
                    LeftHandler(this, EventArgs.Empty);
                    break:
                case ConsoleKey.RightArrow:
                    RightHandler(this, EventArgs.Empty);
                    break;
            }
        }
    }
}
public class Game
{
    public void OnLeft(object sender, EventArgs args)
        Console.WriteLine("Going left");
    }
    public void OnRight(object sender, EventArgs args)
        Console.WriteLine("Going right");
    }
}
static void Main(string[] args)
{
    var eventLoop = new EventLoop();
    var game = new Game();
    eventLoop.LeftHandler += game.OnLeft;
    eventLoop.RightHandler += game.OnRight;
    var log = new List<string>();
    eventLoop.LeftHandler += (sender, eventArgs) => log.Add("left");
    eventLoop.RightHandler += (sender, eventArgs) => log.Add("right");
    eventLoop.Run();
}
```

11. Ручное управление подписчиками

Ещё одна немаловажная особенность работы с событиями (и то, что роднит их со свойствами) — это то, что подписывание на событие и отписывание от события может быть реализовано вручную. Этим, в частности, пльзуются оконные библиотеки (например, WPF), где у одного элемента управления может быть несколько десятков разных событий, только на одно-два из которых кто-то реально подписывается и хранить несколько десятков nullob для каждого контрола, который есть на экране (а даже в случае простенькой формочки их, как правило, несколько десятков) — слишком расточительно. Потому там используется «разреженное» хранение подписиков: есть одна большая хеш-таблица с событиями на весь контрол, когда подписчик регистрирует свой обработчик, он добавляется в хештаблицу и вызывается, когда событие происходит. Если на событие никто не подписан, то в хеш-таблице его просто нет и памяти оно не занимает. Это могло бы быть реализовано примерно так:

```
public event EventHandler<FooEventArgs> Foo
{
    add { eventSet.Add(fooEventKey, value); }
    remove { eventSet.Remove(fooEventKey, value); }
}
protected virtual void OnFoo(FooEventArgs e)
{
    eventSet.Raise(fooEventKey, this, e);
}
```

fooEventKey — это уникальный идентификатор конкретного события, по которому его можно найти в хеш-таблице, eventSet — та самая хеш-таблица, имеющая ещё метод Raise, позволяющий кидать событие. Всё это работает благодаря наличию в С# ключевых слов add и remove.

Подробности такого подхода и более подробный пример кода иписаны в Рихтере, и вообще, многие примеры были взяты оттуда, поэтому Рихтер очень рекомендуется как дополнительная литература к этой лекции.