Геодезическая гравиметрия 2018

Домашнее задание № 4

Крайний срок сдачи: 26 марта 2018 г.

1. Вычислить

 $\Delta \left(\frac{\partial^3 1/r}{\partial x \partial y^2} \right), \tag{1 6.}$

 $(1 \, 6.)$

где

$$r^{2} = (x - a)^{2} + (y - a)^{2} + (z - a)^{2}.$$

2. Уравне
ие Лапласа в сферических координатах $(r,\,\vartheta,\,\lambda)$ имеет следующий вид

$$\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial f}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2 f}{\partial \lambda^2} = 0.$$

Докажите, что функция

$$f(r, \vartheta, \lambda) = \frac{1}{r^4} \sin^2 \vartheta \cos \vartheta \cos 2\lambda$$

является гармонической для всех $r \neq 0$.

- 3. Расстояние между очень близкими уровенными поверхностями потенциала W силы g в точках A и B равны H_1 и H_2 . Определить силу q в точке B, считая известной силу g_A в точке A.
- 4. Вычислить притяжение колец Сатурна на оси вращения планеты. Найти значение притяжения на высоте $z=100\times i$ км (i- вариант). Масса колец Сатурна 9.6×10^{20} кг, внутренний радиус $\rho_1=72~000$ км, внешний $\rho_2=139~000$ км, толщиной колец пренебречь. Полярный радиус Сатурна 54~400 км.