第四次上机作业 实验报告

袁雨 PB20151804

一、实验目的

通过 Jacobi 方法求给定实对称矩阵的特征值。

二、实验要求

使用 Jacobi 方法求实对称矩阵 A 的特征值, 矩阵 A 如下:

1.
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 3 & 6 & 8 & 9 \\ 4 & 7 & 9 & 10 \end{pmatrix}$$

2. 自行生成一个 4×4 的实对称随机数矩阵 A,要求 A 的每个元素均为 [0, 1] 区间内的随机数,且 A为对称阵。

要求控制精度 10^{-6} 。

程序实现完毕后,应撰写实验报告。

三、实验结果

(1)

每一次迭代后更新的矩阵 A,

以及 A 的非对角元素的平方和($\sum_{i!=j}a_{ij}^2$):

A(0): 1.000000 2.000000 3.000000 4.000000 sum(0):390.00	5. 000000 6. 000000 7. 000000	3. 000000 6. 000000 8. 000000 9. 000000	4. 000000 7. 000000 9. 000000 10. 000000
A(1): 1.000000 2.000000 -0.432302 4.981276 sum(1):228.00	5. 000000 -0. 197682 9. 217425	-0. 432302 -0. 197682 -0. 055385 0. 000000	4. 981276 9. 217425 0. 000000 18. 055385
-0. 432302	0. 232929 -0. 175589 0. 000000	-0. 432302 -0. 175589 -0. 055385 -0. 090811	5. 343328 0. 000000 -0. 090811 22. 822456
-0.400646	0. 232929 -0. 175589 -0. 115532	-0. 400646 -0. 175589 -0. 055385 -0. 186050	0. 000000 -0. 115532 -0. 186050 24. 060552
A(4): -0.554016 0.000000 -0.432410 -0.061835 sum(4):0.4786	0. 548849 0. 066108 -0. 097592	-0. 432410 0. 066108 -0. 055385 -0. 186050	-0. 061835 -0. 097592 -0. 186050 24. 060552
A(5): -0.803836 0.033071 0.000000 -0.146613 sum(5):0.1046	0. 057242 -0. 097592	0. 000000 0. 057242 0. 194435 -0. 130164	-0. 146613 -0. 097592 -0. 130164 24. 060552
A(6): -0.804700 0.032495 -0.000767 0.000000 sum(6):0.0616	0. 548849 0. 057242 -0. 097785	-0. 000767 0. 057242 0. 194435 -0. 130162	0. 000000 -0. 097785 -0. 130162 24. 061416
A(7): -0.804700 0.032495 -0.000767 0.000004 sum(7):0.027	0. 032495 0. 548849 0. 056708 -0. 098096 7902	-0. 000767 0. 056708 0. 193725 0. 000000	0. 000004 -0. 098096 0. 000000 24. 062126
A(8): -0.804700 0.032495 -0.000767 -0.000131 sum(8):0.008	0. 032495 0. 548440 0. 056707 0. 000000 5445	-0. 000767 0. 056707 0. 193725 -0. 000237	-0. 000131 0. 000000 -0. 000237 24. 062535
A(9): -0.804700 0.031988 -0.005766 -0.000131 sum(9):0.002	0. 031988 0. 557285 0. 000000 -0. 000036 1131	-0. 005766 0. 000000 0. 184880 -0. 000234	-0. 000131 -0. 000036 -0. 000234 24. 062535
A(10): -0.805451 0.000000 -0.005765 -0.000130 sum(10):0.00	0.000000 0.558036 -0.000135 -0.000040	-0. 005765 -0. 000135 0. 184880 -0. 000234	-0. 000130 -0. 000040 -0. 000234 24. 062535
A(11): -0.805485 -0.000001 0.000000 -0.000132 sum(11):0.00 over!	-0. 000001 0. 558036 -0. 000135 -0. 000040 00002	0. 000000 -0. 000135 0. 184914 -0. 000233	-0. 000132 -0. 000040 -0. 000233 24. 062535

A的特征值:

(2)

以及 A 的非对角元素的平方和($\sum_{i!=j} a_{ij}^2$):

	コトタリカコノ	し糸ロゾナノ	ייין ($\angle i!$
A(0): 0.683899 0.497742 0.599945 0.495544 sum(0):3.463	0. 497742 0. 201874 0. 404907 0. 825256 37875	0. 599945 0. 404907 0. 989075 0. 183441	0. 495544 0. 825256 0. 183441 0. 161469
A(1): 0.683899 0.702326 0.599945 0.007042 sum(1):2.10	0. 702326 1. 007175 0. 417910 0. 000000 16914	0. 599945 0. 417910 0. 989075 -0. 151497	0. 007042 0. 000000 -0. 151497 -0. 643832
A(2): 0.124851 0.000000 0.209127 0.005509 sum(2):1.11	0. 000000 1. 566223 0. 700606 0. 004385 51684	0. 209127 0. 700606 0. 989075 -0. 151497	0. 005509 0. 004385 -0. 151497 -0. 643832
A(3): 0.124851 0.116357 0.173767 0.005509 sum(3):0.13	0. 116357 2. 035359 0. 000000 -0. 080648 34699	0. 173767 0. 000000 0. 519939 -0. 128322	0. 005509 -0. 080648 -0. 128322 -0. 643832
A(4): 0.059300 0.108868 0.000000 0.050446 sum(4):0.073	0. 108868 2. 035359 0. 041068 -0. 080648 30799	0. 000000 0. 041068 0. 585489 -0. 118119	0. 050446 -0. 080648 -0. 118119 -0. 643832
A(5): 0.059300 0.108868 -0.004782 0.050219 sum(5):0.04	0. 108868 2. 035359 0. 048528 -0. 076393 51758	-0. 004782 0. 048528 0. 596736 0. 000000	0. 050219 -0. 076393 0. 000000 -0. 655079
A(6): 0.053321 0.000000 -0.007436 0.054333 sum(6):0.02	0. 000000 2. 041338 0. 048193 -0. 073523 14712	-0. 007436 0. 048193 0. 596736 0. 000000	0. 054333 -0. 073523 0. 000000 -0. 655079
A(7): 0.053321 -0.001480 -0.007436 0.054313 sum(7):0.010	-0. 001480 2. 043342 0. 048175 0. 000000	-0. 007436 0. 048175 0. 596736 0. 001313	0. 054313 0. 000000 0. 001313 -0. 657082
A(8): 0.057449 -0.001476 -0.007315 0.000000 sum(8):0.00	-0. 001476 2. 043342 0. 048175 0. 000112 47600	-0. 007315 0. 048175 0. 596736 0. 001872	0. 000000 0. 000112 0. 001872 -0. 661211
A(9): 0.057449 -0.001718 -0.007262 0.000000 sum(9):0.000	-0. 001718 2. 044944 0. 000000 0. 000174 01184	-0. 007262 0. 000000 0. 595133 0. 001868	0. 000000 0. 000174 0. 001868 -0. 661211
A(10): 0.057351 -0.001718 0.000000 0.000025 sum(10):0.00	-0. 001718 2. 044944 0. 000023 0. 000174 000129	0. 000000 0. 000023 0. 595231 0. 001867	0. 000025 0. 000174 0. 001867 -0. 661211
A(11): 0.057351 -0.001718 0.000000 0.000025 sum(11):0.00	-0. 001718 2. 044944 0. 000023 0. 000174 000060	0. 000000 0. 000023 0. 595234 0. 000000	0. 000025 0. 000174 0. 000000 -0. 661213
A(12): 0.057350 0.000000 0.000000 0.000025 sum(12):0.00	0. 000000 2. 044946 0. 000023 0. 000174 000001	0. 000000 0. 000023 0. 595234 0. 000000	0. 000025 0. 000174 0. 000000 -0. 661213

A的特征值:

 lambda(0):
 0.057350
 lambda(1):
 2.044946
 lambda(2):
 0.595234
 lambda(3):
 -0.661213

四、结果分析

迭代次数	A1非对角元素的平方和	A2非对角元素的平方和
0	390.0000000	3.4637875
1	228.0000000	2.1016914
2	58.0781564	1.1151684
3	0.9758459	0.1334699
4	0.4786215	0.0730799
5	0.1046654	0.0451758
6	0.0616744	0.0214712
7	0.0277902	0.0106598
8	0.0085445	0.0047600
9	0.0021131	0.0001184
10	0.0000666	0.0000129
11	0.0000002	0.0000060
12		0.0000001

可见,两个矩阵的非对角元素的平方和均呈下降趋势。

lambda(0):-0.805485	lambda(1):0.558036	lambda(2):0.184914	lambda(3):24.062535
lambda(0)*I-A :-0.00000002	lambda(1)*I-A :0.00000059	lambda(2)*I-A :0.00000045	lambda(3)*I-A :-0.00004241

计算 $\det(\lambda I - A)$,均近似为0,可见求得的特征值为 A 特征值的近似值。