$TD N^{\circ}2$

Optimisation du premier ordre Semi-continuité inférieure

Exercice 1 – Fonctions coercives continues sur leur domaine

Module B₁, Proposition ₅

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction coercive continue sur son domaine. Soit $M \in \mathbb{R}$. On définit l'ensemble de niveau inférieur niv $_{M}$ par

$$\operatorname{niv}_{\leq M} = \left\{ x \in \mathcal{X} \mid J(x) \leq M \right\}$$

- (a) Soit $M \in \mathbb{R}$. Montrer que $\operatorname{niv}_{\leq M}$ est un ensemble fermé. On pourra remarquer que $\operatorname{niv}_{\leq M} \subset \operatorname{dom} J$.
- (b) Montrer qu'il existe $x^0 \in \mathcal{X}$ pour lequel $\operatorname{niv}_{\leq J(x^0)}$ soit borné.
- (c) En déduire que J atteint son minimum et son maximum sur $\operatorname{niv}_{< J(x^0)}$.
- (d) Conclure quant à l'existence d'un minimiseur pour J.

Exercice 2 – Fonctions s.c.i.

Module A₃, Proposition 2

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction de domaine fermé non vide. On suppose que J est continue sur son domaine, c'est-à-dire que

$$\forall x^0 \in \text{dom } J, \forall (x_k)_{k \in \mathbb{N}} \in \text{dom } J, \qquad \lim_{k \to +\infty} x_k = x^0 \qquad \Longrightarrow \qquad \lim_{k \to +\infty} J(x_k) = J(x^0)$$

- (a) Soit $x^0 \in \text{dom } J$. Montrer que J est s.c.i. en x^0 .
- (b) Soit $x^0 \notin \text{dom } J$. Soit $(x_k)_{k \in \mathbb{N}}$ une suite convergente, de limite x^0 . Montrer que l'ensemble

$$\left\{k \in \mathbb{N} \mid x_k \in \mathrm{dom}\,J\right\}$$

est fini.

- (c) En déduire que J est s.c.i.
- (d) Application : montrer que toute indicatrice d'ensemble fermé non vide est une fonction s.c.i.

Exercice 3 – Fonctions s.c.i. coercives

Module B1, Proposition 6

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction coercive s.c.i. de domaine non vide. On suppose que J est continue sur son domaine.

(a) Montrer qu'il existe une suite $(x_k)_{k\in\mathbb{N}}\in(\text{dom }J)^{\mathbb{N}}$ telle que

$$\lim_{k \to +\infty} J(x_k) = \inf_{x \in \mathcal{X}} J(x)$$

On pourra distinguer les cas inf $J = -\infty$ et inf $J \in \mathbb{R}$.

(b) Soit $(x_k)_{k\in\mathbb{N}}\in(\text{dom }J)^{\mathbb{N}}$ une telle suite. Montrer qu'il existe M>0 tel que

$$\forall k \in \mathbb{N}, \qquad ||x_k|| \le M$$

(c) Justifier que $(x_k)_{k\in\mathbb{N}}\in(\text{dom }J)^{\mathbb{N}}$ admet une sous-suite convergente, de limite notée x^* .

Pauline Tan Sorbonne Université

5MAS01: Méthodes du premier ordre pour l'optimisation non lisse et non convexe

(d) Montrer que

$$J(x^*) = \inf_{x \in \mathcal{X}} J(x)$$

En déduire que J admet un minimiseur.

Exercice 4 - Règle de FERMAT

Module B1, Propositions 1, 9 & 10

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction de domaine non vide et soit $x^* \in \text{dom } J$.

- (a) On suppose que x^* est un minimiseur local de J. Montrer $0 \in \partial J(x^*)$.
- (b) On suppose que J est convexe. Montrer que tout minimiseur local de J est un minimiseur global de J.
- (c) On suppose que J est convexe. Montrer que si $0 \in \partial J(x^*)$, alors x^* est un minimiseur global de J.

Exercice 5 - Convergence d'un algorithme d'optimisation

Module B1, Proposition 14

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction de domaine non vide et soit $(x_k)_{k \in \mathbb{N}} \in (\text{dom } J)^{\mathbb{N}}$ une suite convergente, de limite x^* . On suppose par ailleurs que

- (1) la suite $(J(x_k))_{k\in\mathbb{N}}\in(\text{dom }J)^{\mathbb{N}}$ converge vers $J(x^*)$;
- (2) pour tout $k \in \mathbb{N}$, il existe $p_k \in \partial J(x_k)$;
- (3) la suite $(p_k)_{k\in\mathbb{N}} \in (\text{dom } J)^{\mathbb{N}}$ converge vers 0.

Démontrer que x^* est un point critique de J.