Conservation Laws

Conservation of mass

Conservation of momentum

Conservation of energy

APPLY TO FLUID MATERIAL, NOT THE SPACE THROUGH WHICH IT FLOWS

Supersonic Turbulent Jet Flow and Near Acoustic Field

Freund *at al.* (1997) Stanford Univ. DNS

Perspectives

Eulerian Perspective - Flow AC SEED AT FIXED LOCATIONS IN SPACE OR OVER FIXED VOUNTS

Lagrangian Perspective - THE FLOW AS SEEN BY FLUID MATERIAL

Conservation of Mass

From a Lagrangian Perspective

Law: Rate of Change of Mass of Fluid Material = 0

For a Fluid Particle:

$$\frac{(3dt)}{\partial t} = 0 \Rightarrow \frac{3(dt)}{\partial t}$$
PARTICLE $\Rightarrow P \neq \sqrt{3}$

$$\Rightarrow \frac{\partial (d\tau)}{\partial t} |_{PART} + \frac{\partial \Gamma}{\partial t} |_{PART}$$

$$\Rightarrow \frac{\partial \Gamma}{\partial t} |_{PART} + \frac{\partial \Gamma}{\partial t} |_{PART}$$

$$\Rightarrow \frac{\partial \Gamma}{\partial t} |_{PART} + \frac{\partial \Gamma}{\partial t} |_{PART}$$

$$\Rightarrow \frac{\partial \Gamma}{\partial t} |_{PART} + \frac{\partial \Gamma}{\partial t} |_{PART}$$

For a Fluid System:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} \Big|_{part} \quad \text{is referred to as}$$

the SUBSTANTIAL DERIVATIVE (or total, or material, or Lagrangian...)

Conservation of Momentum

From a Lagrangian Perspective (Fluid Particle)

Law: Rate of Change of Momentum = \mathbf{F}_{body} + $\mathbf{F}_{pressure}$ + $\mathbf{F}_{viscous}$

ROC of Momentum
$$= \frac{\partial \rho d\tau \mathbf{V}}{\partial t} \bigg|_{part} = \rho d\tau \frac{\partial \mathbf{V}}{\partial t} \bigg|_{part} = \rho d\tau \frac{D\mathbf{V}}{Dt}$$

$$\mathbf{F}_{\mathsf{body}} := \mathbf{f} \rho d\tau$$

Elemental Volume, Surface Forces Sides of volume have lengths $\mathrm{d}x,\,\mathrm{d}y,\,\mathrm{d}z$

On front and rear faces

• Volume $d\tau = dxdydz$

• Density ρ

• Velocity V

Conservation of Momentum

From a Lagrangian Perspective (Fluid Particle)

Law: Rate of Change of Momentum = $\mathbf{F}_{body} + \mathbf{F}_{pressure} + \mathbf{F}_{viscous}$

ROC of Momentum
$$= \frac{\partial \rho d\tau \mathbf{V}}{\partial t} \bigg|_{part} = \rho d\tau \frac{\partial \mathbf{V}}{\partial t} \bigg|_{part} = \rho d\tau \frac{D\mathbf{V}}{Dt}$$

$$\mathbf{F}_{\mathsf{body}}$$
: $= \mathbf{f} \rho d\tau$

$$\mathbf{F}_{\text{pressure}}$$
: $y component =$

Conservation of M

From a Lagrangian Perspective (Fluid Pa

Law: Rate of Change of Momentum = \mathbf{F}_{bo}

ROC of Momentum
$$= \frac{\partial \rho d\tau \mathbf{V}}{\partial t} \bigg|_{part} = \rho d\tau \frac{\partial \mathbf{V}}{\partial t}$$

$$\mathbf{F}_{\mathsf{body}}$$
: = $\mathbf{f}\rho d\tau$

F_{pressure}:
$$y \ component = \left(p - \frac{\partial p}{\partial y} \frac{1}{2} dy\right) dx dz \mathbf{j} - so \mathbf{F}_{pressure} = -\nabla p \ d\tau$$

F_{viscous}: *y component*...

Conservation of Momentum

From a Lagrangian Perspective (Fluid Particle)

Law: Rate of Change of Momentum = \mathbf{F}_{body} + $\mathbf{F}_{pressure}$ + $\mathbf{F}_{viscous}$

ROC of Momentum
$$= \frac{\partial \rho d\tau \mathbf{V}}{\partial t} \bigg|_{part} = \rho d\tau \frac{\partial \mathbf{V}}{\partial t} \bigg|_{part} = \rho d\tau \frac{D\mathbf{V}}{Dt}$$

$$\mathbf{F}_{\mathsf{body}}$$
: = $\mathbf{f}\rho d\tau$

$$\textbf{F}_{\text{viscous}} \textbf{:} \quad \begin{array}{l} y \ component... & \left(\tau_{yy} + \frac{\partial \tau_{yy}}{\partial y} \frac{1}{2} dy\right) dx dz \textbf{j} - \left(\tau_{yy} - \frac{\partial \tau_{yy}}{\partial y} \frac{1}{2} dy\right) dx dz \textbf{j} + \\ & \left(\tau_{xy} + \frac{\partial \tau_{xy}}{\partial x} \frac{1}{2} dx\right) dy dz \textbf{j} - \left(\tau_{xy} - \frac{\partial \tau_{xy}}{\partial x} \frac{1}{2} dx\right) dy dz \textbf{j} + \\ & \left(\tau_{zy} + \frac{\partial \tau_{zy}}{\partial z} \frac{1}{2} dz\right) dx dy \textbf{j} - \left(\tau_{zy} - \frac{\partial \tau_{zy}}{\partial z} \frac{1}{2} dz\right) dx dy \textbf{j} = \left(\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z}\right) \textbf{j} d\tau \end{array}$$

So,
$$\boxed{ \begin{aligned} & \mathbf{r}_{x} = \tau_{xx}\mathbf{i} + \tau_{yx}\mathbf{j} + \tau_{zx}\mathbf{k} \\ & \mathbf{r}_{y} = \tau_{xy}\mathbf{i} + \tau_{yy}\mathbf{j} + \tau_{zx}\mathbf{k} \end{aligned} }$$
 where
$$\mathbf{r}_{x} = \tau_{xx}\mathbf{i} + \tau_{yx}\mathbf{j} + \tau_{zx}\mathbf{k}$$

$$\mathbf{r}_{z} = \tau_{xz}\mathbf{i} + \tau_{yy}\mathbf{j} + \tau_{zx}\mathbf{k}$$

Conservation of Energy

From a Lagrangian Perspective (Fluid Particle)

Law: Rate of Change of Energy = $W_{body}+W_{pressure}+W_{viscous}+Q$

ROC of Energy
$$= \frac{\partial \rho d\tau (e + \frac{1}{2}V^2)}{\partial t} \bigg|_{part} = \rho d\tau \frac{D(e + \frac{1}{2}V^2)}{Dt}$$

$$W_{body} = \underline{\mathbf{f}.\mathbf{V}\rho d\tau}$$

Elemental Volume, Surface Force Work and Heat Transfer

Sides of volume have lengths dx, dy, dz

Viscous work requires expansion of *v* velocity on all six sides

components *u, v, w*

- Density ρ
- Velocity V

Conservation of Energy

From a Lagrangian Perspective (Fluid Particle)

Law: Rate of Change of Energy = $W_{body}+W_{pressure}+W_{viscous}+Q$

ROC of Energy
$$= \frac{\partial \rho d\tau (e + \frac{1}{2}V^2)}{\partial t} \bigg|_{part} = \frac{\rho d\tau}{Dt} \frac{D(e + \frac{1}{2}V^2)}{Dt}$$

$$W_{\text{body}} = \underline{\mathbf{f}.\mathbf{V}\rho d\tau}$$

$$W_{\text{pressure}} = -\nabla \cdot (p\mathbf{V}) \ d\tau$$

$$\mathbf{W}_{\mathsf{viscous}} = (\nabla \cdot (u\mathbf{\tau}_{x}) + \nabla \cdot (v\mathbf{\tau}_{y}) + \nabla \cdot (w\mathbf{\tau}_{z}))d\tau$$

Q:
$$y \ contribution = \left(k\frac{\partial T}{\partial y} + \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right)\frac{1}{2}dy\right)dxdz - \left(k\frac{\partial T}{\partial y} - \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right)\frac{1}{2}dy\right)dxdz = \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right)d\tau$$

$$so \ Q = \nabla \cdot (k\nabla T) \ d\tau$$

So,
$$\rho \frac{D(e + \frac{1}{2}V^2)}{Dt} = \rho \mathbf{f} \cdot \mathbf{V} - \nabla \cdot (p\mathbf{V}) + \nabla \cdot (u\mathbf{\tau}_x) + \nabla \cdot (v\mathbf{\tau}_y) + \nabla \cdot (w\mathbf{\tau}_z) + \nabla \cdot (k\nabla T)$$

Equations for Changes Seen From a Lagrangian Perspective

Differential Form (for a particle)

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{V}$$

$$\rho \frac{D\mathbf{V}}{Dt} = \rho \mathbf{f} - \nabla p + (\nabla \cdot \mathbf{\tau}_x) \mathbf{i} + (\nabla \cdot \mathbf{\tau}_y) \mathbf{j} + (\nabla \cdot \mathbf{\tau}_z) \mathbf{k}$$

$$\rho \frac{D(e + \frac{1}{2}V^2)}{Dt} = \rho \mathbf{f} \cdot \mathbf{V} - \nabla \cdot (p\mathbf{V}) + \nabla \cdot (u\mathbf{\tau}_x) + \nabla \cdot (v\mathbf{\tau}_y) + \nabla \cdot (w\mathbf{\tau}_z) + \nabla \cdot (k\nabla T)$$

$$\frac{D}{Dt} \int_{R} \rho \ d\tau = 0$$

Integral Form (for a system)

$$\frac{D}{Dt} \int_{R} \rho \mathbf{V} d\tau = \int_{R} \mathbf{f} \rho d\tau - \oint_{S} p \mathbf{n} dS + \oint_{S} (\mathbf{\tau}_{x}. \mathbf{n}) \mathbf{i} + (\mathbf{\tau}_{y}. \mathbf{n}) \mathbf{j} + (\mathbf{\tau}_{z}. \mathbf{n}) \mathbf{k} dS$$

$$\frac{D}{Dt} \int_{R} (e + \frac{V^{2}}{2}) \rho \, d\tau = \int_{R} \mathbf{V} \cdot \mathbf{f} \rho \, d\tau + \oint_{S} \left[-p\mathbf{n} + (\mathbf{\tau}_{x} \cdot \mathbf{n}) \, \mathbf{i} + (\mathbf{\tau}_{y} \cdot \mathbf{n}) \, \mathbf{j} + (\mathbf{\tau}_{z} \cdot \mathbf{n}) \, \mathbf{k} \right] \mathbf{V} \, dS + \oint_{S} k(\nabla T) \cdot \mathbf{n} \, dS$$

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA

Autore J S. NEWTON, Trin. Coll. Cantal. Soc. Matheleos Profesfore Lucafiano, & Societatis Regalis Sodali.

IMPRIMATUR S. PEPYS, Reg. Soc. PRÆSES.

Julis 5. 1686.

L O N D I N I,

Justi. Societatis Regia ac Typis Josephi Streater. Prostant Venales apud Sam. Smith ad instgnia Principis Wallia in Coemiterio
D. Panli, aliosq; nonnullos Bibliopolas. Anno MDCLXXXVII.

Isaac Newton 1642-1727

Equations for Changes Seen From a Lagrangian Perspective

Differential Form (for a particle)

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{V}$$

$$\rho \frac{D\mathbf{V}}{Dt} = \rho \mathbf{f} - \nabla p + (\nabla \cdot \mathbf{\tau}_x) \mathbf{i} + (\nabla \cdot \mathbf{\tau}_y) \mathbf{j} + (\nabla \cdot \mathbf{\tau}_z) \mathbf{k}$$

$$\rho \frac{D(e + \frac{1}{2}V^2)}{Dt} = \rho \mathbf{f} \cdot \mathbf{V} - \nabla \cdot (p\mathbf{V}) + \nabla \cdot (u\mathbf{\tau}_x) + \nabla \cdot (v\mathbf{\tau}_y) + \nabla \cdot (w\mathbf{\tau}_z) + \nabla \cdot (k\nabla T)$$

$$\frac{D}{Dt} \int_{R} \rho \, d\tau = 0$$

Integral Form (for a system)

$$\frac{D}{Dt}\int_{R} \rho \mathbf{V} d\tau = \int_{R} \mathbf{f} \rho d\tau - \oint_{S} p \mathbf{n} dS + \oint_{S} (\mathbf{\tau}_{x}.\mathbf{n}) \mathbf{i} + (\mathbf{\tau}_{y}.\mathbf{n}) \mathbf{j} + (\mathbf{\tau}_{z}.\mathbf{n}) \mathbf{k} dS$$

$$\frac{D}{Dt} \int_{R} (e + \frac{V^{2}}{2}) \rho \, d\tau = \int_{R} \mathbf{V} \cdot \mathbf{f} \rho \, d\tau + \oint_{S} \left[-p\mathbf{n} + (\mathbf{\tau}_{x} \cdot \mathbf{n}) \, \mathbf{i} + (\mathbf{\tau}_{y} \cdot \mathbf{n}) \, \mathbf{j} + (\mathbf{\tau}_{z} \cdot \mathbf{n}) \, \mathbf{k} \right] \mathbf{V} \, dS + \oint_{S} k(\nabla T) \cdot \mathbf{n} \, dS$$

Conversion from Lagrangian to Eulerian rate of change - Derivative

$$\frac{\partial x}{\partial t} = \frac{\partial x}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial x}{\partial y} \cdot \frac{\partial x}{\partial t} + \frac{\partial x}{\partial z} \cdot \frac{\partial z}{\partial t} + \frac{\partial x}{\partial t}$$

$$= \frac{\partial x}{\partial t} + \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial x}{\partial z}$$

$$= \frac{\partial x}{\partial t} + \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial x}{\partial z}$$

$$= \frac{\partial x}{\partial t} + \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial x}{\partial z}$$

$$\alpha(x(t),y(t),z(t),t)$$

Conversion from Lagrangian to Eulerian rate of change - Integral

$$\frac{D \int_{R} x \, dt}{Dt} = \int_{R} \frac{D(x \, dt)}{Dt} = \int_{R} \frac{Dx}{Dt} \, dt + \int_{R} \frac{Dx}{Dt} \, dt$$

$$= \int_{R} \left(\frac{\partial x}{\partial t} + \vec{V} \cdot \vec{V} \, dt + \chi \, \vec{D} \cdot \vec{V} \right) \, dt$$

$$= \int_{R} \left(\frac{\partial x}{\partial t} + \vec{V} \cdot \vec{V} \, dt + \chi \, \vec{D} \cdot \vec{V} \right) \, dt$$

$$= \int_{R} \left(\frac{\partial x}{\partial t} + \vec{V} \cdot \vec{V} \, dt + \chi \, \vec{D} \cdot \vec{V} \right) \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_{R} \frac{\partial x}{\partial t} \, dt + \int_{R} \frac{\partial x}{\partial t} \, dt$$

$$= \int_$$

Equations for Changes Seen From a Lagrangian Perspective

Differential Form (for a particle)

$$\int \frac{D}{Dt} = \frac{\partial}{\partial t} \bigg|_{part}$$

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{V}$$

$$\rho \frac{D\mathbf{V}}{Dt} = \rho \mathbf{f} - \nabla p + (\nabla \cdot \mathbf{\tau}_{x})\mathbf{i} + (\nabla \cdot \mathbf{v}_{y}) + \nabla \cdot (v\mathbf{\tau}_{y}) + \nabla \cdot (v\mathbf{\tau}_{y}) + \nabla \cdot (v\mathbf{\tau}_{z}) + \nabla \cdot (v\mathbf{v}_{z}) + \nabla \cdot$$

$$\rho \frac{D(e + \frac{1}{2}V^2)}{Dt} = \rho \mathbf{f} \cdot \mathbf{V} - \nabla \cdot (p\mathbf{V}) + \nabla \cdot (u\mathbf{\tau}_x) + \nabla \cdot (v\mathbf{\tau}_y) + \nabla \cdot (w\mathbf{\tau}_z) + \nabla \cdot (k\nabla T)$$

$$\frac{D}{Dt} \int_{R} \rho \ d\tau = 0$$

Integral Form (for a system)

$$\frac{D}{Dt} \int_{R} \rho \mathbf{V} d\tau = \int_{R} \mathbf{f} \rho \frac{D}{Dt} \int_{R} \alpha d\tau = \int_{R} \frac{\partial \alpha}{\partial t} d\tau + \oint_{S} \alpha \mathbf{V} \cdot \mathbf{n} dS$$

$$\frac{D}{Dt} \int_{R} (e + \frac{V^{2}}{2}) \rho d\tau = \int_{R} \mathbf{V} \cdot \mathbf{f} \rho d\tau + \int_{S} \mathbf{p} \mathbf{n} + (\mathbf{t}_{x} \cdot \mathbf{n}) \mathbf{I} + (\mathbf{t}_{y} \cdot \mathbf{n}) \mathbf{J} + (\mathbf{t}_{z} \cdot \mathbf{n}) \mathbf{k} \mathbf{J} \mathbf{v} dS + \int_{S} \mathbf{v} \mathbf{n} dS$$

Equations for Changes Seen From an Eulerian Perspective

Differential Form (for a fixed volume element)

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{V}$$

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{V}.\nabla$$

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla$$

$$\rho \frac{D\mathbf{V}}{Dt} = \rho \mathbf{f} - \nabla p + (\nabla \cdot \mathbf{\tau}_x) \mathbf{i} + (\nabla \cdot \mathbf{\tau}_y) \mathbf{j} + (\nabla \cdot \mathbf{\tau}_z) \mathbf{k}$$

$$\rho \frac{D(e + \frac{1}{2}V^2)}{Dt} = \rho \mathbf{f} \cdot \mathbf{V} - \nabla \cdot (p\mathbf{V}) + \nabla \cdot (u\mathbf{\tau}_x) + \nabla \cdot (v\mathbf{\tau}_y) + \nabla \cdot (w\mathbf{\tau}_z) + \nabla \cdot (k\nabla T)$$

$$\int_{R} \frac{\partial \rho}{\partial t} d\tau + \oint_{S} \rho \mathbf{V} \cdot \mathbf{n} dS = 0$$

Integral Form (for a system)

$$\int_{R} \frac{\partial \rho \mathbf{V}}{\partial t} d\tau + \oint \rho \mathbf{V}(\mathbf{V}.\mathbf{n}) dS = \int_{R} \mathbf{f} \rho d\tau - \oint_{S} \rho \mathbf{n} dS + \oint_{S} (\mathbf{\tau}_{x}.\mathbf{n}) \mathbf{i} + (\mathbf{\tau}_{y}.\mathbf{n}) \mathbf{j} + (\mathbf{\tau}_{z}.\mathbf{n}) \mathbf{k} dS$$

$$\int_{R} \frac{\partial \rho(e + \frac{1}{2}V^{2})}{\partial t} d\tau + \oint_{S} \rho(e + \frac{1}{2}V^{2}) \mathbf{V} \cdot \mathbf{n} dS = \int_{R} \mathbf{V} \cdot \mathbf{f} \rho d\tau + \oint_{S} \left[-p\mathbf{n} + (\mathbf{\tau}_{x} \cdot \mathbf{n}) \mathbf{i} + (\mathbf{\tau}_{y} \cdot \mathbf{n}) \mathbf{j} + (\mathbf{\tau}_{z} \cdot \mathbf{n}) \mathbf{k} \right] \mathbf{V} dS + \oint_{S} k(\nabla T) \cdot \mathbf{n} dS$$

Equivalence of Integral and Differential Forms

Cons. of mass (Integral form)

$$\int_{R} \frac{\partial \rho}{\partial t} d\tau + \oint_{S} \rho \mathbf{V} \cdot \mathbf{n} dS = 0$$

Divergence Theorem

$$\oint_{S} \rho \mathbf{V} \cdot \mathbf{n} dS = \int_{R} \nabla \cdot (\rho \mathbf{V}) d\tau$$

Conservation of mass for any volume R

$$\int_{R} \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) \right) d\tau = 0$$

Then we get

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \qquad \text{or} \qquad \frac{\partial \rho}{\partial t} + \mathbf{V} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{V} = 0$$

Cons. of mass (Differential form)

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{V}$$

Constitutive Relations - Closing the Equations of Motion

Could we solve, in principle, the equations we have derived for a particular flow?

Constitutive Relations

- Equations of motion
 - 5 eqns: Mass (1), Momentum (3), Energy (1)
 - Unknowns: p, ρ , u, v, w...
- THERMODYNAMICS. (RELATIONS FOR P, P, T, e) 2 MORE Q P = P(P,T)GQN-1 P = P(P,T)

- VISCOUS STRESSES

Newtonian (Isotropic) Fluid

- · VISCOUS STRESS IS PROPORTIONAL TO THE

Stress, is a tensor...
$$\begin{pmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yx} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{pmatrix} = \tau_{ij}$$

- Principal axes... axis directions for which all off shear stresses are zero
- Tensor invariants... combinations of elements that don't change with the axis directions

$$\begin{pmatrix}
\overline{\tau_{xx}} & 0 & 0 \\
0 & \overline{\tau_{yy}} & 0 \\
0 & 0 & \overline{\tau_{zz}}
\end{pmatrix}$$

$$I = \sum_{i=1}^{3} \tau_{ii} \qquad \qquad (Linear)$$

$$II = \sum_{i=1}^{3} \sum_{j=1}^{3} \tau_{ii} \tau_{jj} - \tau_{ij} \tau_{ji} \quad (Quadratic)$$

$$III = Determinant \qquad (Cubic)$$

Distortion of a Particle in a Flow

Distortion of a Particle in a Flow

Mathematically

$$d\mathbf{V} = \begin{pmatrix} du \\ dv \\ dw \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \frac{d\mathbf{V}}{d\mathbf{r}} d\mathbf{r}$$

Deformation is represented by $dV \times time$ so rate of deformation is given by dV

$$d\mathbf{V} = \begin{pmatrix} 0 & -\frac{1}{2} \left[\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] & \frac{1}{2} \left[\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right] \\ \frac{1}{2} \left[\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] & 0 & -\frac{1}{2} \left[\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right] \\ -\frac{1}{2} \left[\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right] & \frac{1}{2} \left[\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right] & 0 \end{pmatrix} d\mathbf{r} + \begin{pmatrix} \frac{\partial u}{\partial x} & 0 & 0 \\ 0 & \frac{\partial v}{\partial y} & 0 \\ 0 & 0 & \frac{\partial w}{\partial z} \end{pmatrix} d\mathbf{r} + \begin{pmatrix} 0 & \frac{1}{2} \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right] & \frac{1}{2} \left[\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} \right] \\ \frac{1}{2} \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right] & 0 & \frac{1}{2} \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right] \\ \frac{1}{2} \left[\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right] & \frac{1}{2} \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right] & 0 \end{pmatrix} d\mathbf{r}$$

Rate of deformation or strain rate

Newtonian (Isotropic) Fluid

$$\begin{pmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yx} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{pmatrix} \quad \underbrace{proportional \ to}_{ISOTROPICALLY} \qquad \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right] & \frac{1}{2} \left[\frac{\partial u}{\partial z} + \frac{\partial w}{\partial z} \right] \\ \frac{1}{2} \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right] & \frac{\partial v}{\partial y} & \frac{1}{2} \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right] \\ \frac{1}{2} \left[\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right] & \frac{1}{2} \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right] & \frac{\partial w}{\partial z} \end{pmatrix}$$

So
$$\begin{pmatrix} \overline{\tau_{xx}} & 0 & 0 \\ 0 & \overline{\tau_{yy}} & 0 \\ 0 & 0 & \overline{\tau_{zz}} \end{pmatrix} \quad \underbrace{proportional\ to}_{ISOTROPICALLY} \quad \begin{pmatrix} \overline{\frac{\partial u}{\partial x}} & 0 & 0 \\ 0 & \overline{\frac{\partial v}{\partial y}} & 0 \\ 0 & 0 & \overline{\frac{\partial w}{\partial z}} \end{pmatrix}$$

So Each stress = Const. × Corresponding strain + Const. × First invariant of comp. rate component strain rate tensor

Or
$$\overline{\tau_{xx}} = 2\mu \frac{\overline{\partial u}}{\partial x} + \lambda \left(\frac{\overline{\partial u}}{\partial x} + \frac{\overline{\partial v}}{\partial y} + \frac{\overline{\partial w}}{\partial z} \right) = 2\mu \frac{\overline{\partial u}}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$
 And likewise for y and z .

Stokes' Hypothesis

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

$$\overline{\tau_{xx}} = 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{V}$$

Stokes' Hypothesis implies, in general (non-principal) axes:

$$\tau_{xx} = 2\mu \frac{\partial u}{\partial x} - \frac{2}{3}\mu \nabla \cdot \mathbf{V}$$
 and likewise for τ_{yy} and τ_{zz}

$$\tau_{xy} = \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$
 and likewise for τ_{yz} and τ_{xz}

The Equations of Motion

Differential Form (for a fixed volume element)

The Continuity equation

$$\frac{D\rho}{Dt} = -\rho \nabla . \mathbf{V}$$

The Navier Stokes' equations

These form a closed set when two thermodynamic relations are specified

$$\rho \frac{Du}{Dt} = \rho f_{x} - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(2\mu \left(\frac{\partial u}{\partial x} - \frac{1}{3} \nabla \cdot \mathbf{V} \right) \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right)$$

$$\rho \frac{Dv}{Dt} = \rho f_{y} - \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(2\mu \left(\frac{\partial v}{\partial y} - \frac{1}{3} \nabla \cdot \mathbf{V} \right) \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right)$$

$$\rho \frac{Dw}{Dt} = \rho f_{z} - \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right) + \frac{\partial}{\partial z} \left(2\mu \left(\frac{\partial w}{\partial z} - \frac{1}{3} \nabla \cdot \mathbf{V} \right) \right)$$

The Viscous Flow Energy Equation

$$\rho \frac{D(e + \frac{1}{2}V^{2})}{Dt} = \rho \mathbf{f} \cdot \mathbf{V} - \nabla(p\mathbf{V}) + \nabla \cdot (k\nabla T) + \frac{\partial}{\partial x} \left[2\mu u \left(\frac{\partial u}{\partial x} - \frac{1}{3}\nabla \cdot \mathbf{V} \right) + \mu v \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \mu w \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right]$$

$$+ \frac{\partial}{\partial y} \left[\mu u \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + 2\mu v \left(\frac{\partial v}{\partial y} - \frac{1}{3}\nabla \cdot \mathbf{V} \right) + \mu w \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu u \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) + \mu v \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) + 2\mu w \left(\frac{\partial w}{\partial z} - \frac{1}{3}\nabla \cdot \mathbf{V} \right) \right]$$

Assumptions made / Info encoded

Assumption/Law	Mass	NS	VFEE
Conservation of mass	V		
Conservation of momentum		V	
Conservation of energy			
Continuum	V	/	/
Newtonian fluid		/	
Isotropic viscosity		/	/
Stokes' Hypothesis			/
Fourier's Law of Heat conduction			V
No heat addition except by			
conduction			V

Fluid Statics and Dynamics

 $\frac{Df}{Dt} = \frac{\partial f}{\partial t} + v. \nabla f$

The Continuity equation

$$\frac{\partial \rho}{\partial t} = \frac{D\rho}{Dt} = -\rho \nabla V$$

The Navier Stokes' equations

$$\begin{split} & \stackrel{D}{\rho} \frac{Du}{Dt} = \stackrel{\circ}{\rho} f_x - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial x} \left(2\mu (\stackrel{\circ}{\partial x} - \frac{1}{3}\nabla \mathbf{V}) \right) + \stackrel{\circ}{\partial} \left(\mu (\stackrel{\circ}{\partial y} + \stackrel{\circ}{\partial u}) \right) + \stackrel{\circ}{\partial} \left(\mu (\stackrel{\circ}{\partial u} + \stackrel{\circ}{\partial w}) \right) \\ & \stackrel{\circ}{\rho} \frac{Dv}{Dt} = \stackrel{\circ}{\rho} f_y - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial x} \left(\mu (\stackrel{\partial v}{\partial x} + \stackrel{\partial u}{\partial y}) \right) + \frac{\partial}{\partial y} \left(2\mu (\stackrel{\partial v}{\partial y} - \frac{1}{3}\nabla \mathbf{V}) \right) + \frac{\partial}{\partial z} \left(\mu (\stackrel{\partial v}{\partial z} + \stackrel{\partial w}{\partial y}) \right) \\ & \stackrel{\circ}{\rho} \frac{Dw}{Dt} = \stackrel{\circ}{\rho} f_z - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial z} \left(\mu (\stackrel{\partial u}{\partial z} + \stackrel{\partial w}{\partial y}) \right) + \frac{\partial}{\partial y} \left(\mu (\stackrel{\partial v}{\partial z} + \stackrel{\partial w}{\partial y}) \right) + \frac{\partial}{\partial z} \left(2\mu (\stackrel{\partial w}{\partial z} - \frac{1}{3}\nabla \mathbf{V}) \right) \\ & \stackrel{\circ}{\rho} \frac{Dw}{Dt} = \stackrel{\circ}{\rho} f_z - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial z} \left(\mu (\stackrel{\partial u}{\partial z} + \stackrel{\partial w}{\partial x}) \right) + \frac{\partial}{\partial y} \left(\mu (\stackrel{\partial v}{\partial z} + \stackrel{\partial w}{\partial y}) \right) + \frac{\partial}{\partial z} \left(2\mu (\stackrel{\partial w}{\partial z} - \frac{1}{3}\nabla \mathbf{V}) \right) \\ & \stackrel{\circ}{\rho} \frac{Dw}{Dt} = \stackrel{\circ}{\rho} f_z - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial z} \left(\mu (\stackrel{\partial u}{\partial z} + \stackrel{\partial w}{\partial x}) \right) + \frac{\partial}{\partial y} \left(\mu (\stackrel{\partial v}{\partial z} + \stackrel{\partial w}{\partial y}) \right) + \frac{\partial}{\partial z} \left(2\mu (\stackrel{\partial w}{\partial z} - \frac{1}{3}\nabla \mathbf{V}) \right) \\ & \stackrel{\circ}{\rho} \frac{Dw}{Dt} = \stackrel{\circ}{\rho} f_z - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial z} \left(\mu (\stackrel{\partial u}{\partial z} + \stackrel{\partial w}{\partial z}) \right) + \frac{\partial}{\partial z} \left(\mu (\stackrel{\partial v}{\partial z} + \stackrel{\partial w}{\partial z}) \right) \\ & \stackrel{\circ}{\rho} \frac{Dw}{Dt} = \stackrel{\circ}{\rho} f_z - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial z} \left(\mu (\stackrel{\partial u}{\partial z} + \stackrel{\partial w}{\partial z}) \right) + \stackrel{\circ}{\rho} \frac{\partial}{\partial z} \left(\mu (\stackrel{\partial v}{\partial z} + \stackrel{\partial w}{\partial z}) \right) \\ & \stackrel{\circ}{\rho} \frac{Dw}{Dt} = \stackrel{\circ}{\rho} f_z - \stackrel{\circ}{\partial p} + \stackrel{\circ}{\partial z} \left(\mu (\stackrel{\partial u}{\partial z} + \stackrel{\partial w}{\partial z}) \right) \\ & \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\mu (\stackrel{\partial u}{\partial z} + \stackrel{\partial w}{\partial z}) \right) + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\mu (\stackrel{\partial v}{\partial z} + \stackrel{\partial w}{\partial z}) \right) \\ & \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) \\ & \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) \\ & \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) \\ & \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left(\frac{\partial v}{\partial z} + \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \right) \\ & \stackrel{\circ}{\rho} \frac{\partial v}{\partial z} \left$$

The Viscous Flow Energy Equation

$$\rho \frac{D(e + \frac{1}{2}V^{2})}{Dt} = \rho \mathbf{f} \mathbf{N} - \nabla \cdot (p\mathbf{V}) + \nabla \cdot (k\nabla T) + \frac{\partial}{\partial x} \left[\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} \nabla \cdot \mathbf{V} + \mu v (\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}) + \mu v (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) \right] + \frac{\partial}{\partial y} \left[\mu u (\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}) + 2\mu v (\frac{\partial v}{\partial y} - \frac{1}{3}\nabla \cdot \mathbf{V}) + \mu v (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) \right] + \frac{\partial}{\partial z} \left[\mu u (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) + \mu v (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) + 2\mu v (\frac{\partial w}{\partial z} - \frac{1}{3}\nabla \cdot \mathbf{V}) \right]$$

Fluid Statics (V = 0)

Continuity

$$\frac{dS}{dt} = 0$$

Momentum

Energy (Equation of Heat Conduction)

$$g \frac{de}{dt} = \nabla \cdot (\kappa \nabla T)$$

Second Order Operators

$$\nabla \cdot \nabla \phi = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$

The Laplacian, may also be applied to a vector field.

$$\nabla(\nabla . \mathbf{A})$$

$$\nabla \times \nabla \times \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

$$\nabla \times \nabla \phi \equiv 0 -$$

- So, any vector differential equation of the form $\nabla \times \mathbf{B} = 0$ can be solved identically by writing $\mathbf{B} = \nabla \phi$.
- We say **B** is *irrotational*.
- We refer to ϕ as the **scalar potential**.

$$\nabla . \nabla \times \mathbf{A} \equiv 0$$

- So, any vector differential equation of the form $\nabla . \mathbf{B} = 0$ can be solved identically by writing $\mathbf{B} = \nabla \times \mathbf{A}$.
- We say **B** is **solenoidal** or **incompressible**.
- We refer to A as the vector potential.

Example: Liquid at Rest Under Gravity

$$\begin{array}{c|c}
\hline
\nabla P = 3\vec{+} = -fg\vec{k} \\
\hline
i\partial P + 3\vec{y} + i\partial P = -fg\vec{k} \\
\hline
x, k \mid g
\end{array}$$

$$\frac{\partial P}{\partial z} = -99$$

$$\frac{\partial P}{\partial z} = -99$$

$$\frac{\partial P}{\partial z} = \frac{\partial P}{\partial y} = 0 \quad \Rightarrow \quad P = P(z)$$

$$\Rightarrow \frac{dP}{dz} = -gg \Rightarrow$$

$$\Rightarrow \frac{dP}{dz} = -gg \Rightarrow \int dP = -\int g dz \quad Assume \quad g, g \text{ are constant}$$

Fluid Statics and Dynamics

The Continuity equation

$$\frac{D\rho}{Dt} = -\rho \nabla . \mathbf{V}$$

The Navier Stokes' equations

These form a closed set when two thermodynamic relations are specified

$$\rho \frac{Du}{Dt} = \rho \, \mathbf{f}_{x} - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(2\mu \left(\frac{\partial u}{\partial x} - \frac{1}{3} \nabla \cdot \mathbf{V} \right) \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right)$$

$$\rho \frac{Dv}{Dt} = \rho \, \mathbf{f}_{y} - \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(2\mu \left(\frac{\partial v}{\partial y} - \frac{1}{3} \nabla \cdot \mathbf{V} \right) \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right)$$

$$\rho \frac{Dw}{Dt} = \rho \, \mathbf{f}_{z} - \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right) + \frac{\partial}{\partial z} \left(2\mu \left(\frac{\partial w}{\partial z} - \frac{1}{3} \nabla \cdot \mathbf{V} \right) \right)$$

The Viscous Flow Energy Equation

$$\rho \frac{D(e + \frac{1}{2}V^{2})}{Dt} = \rho \mathbf{f} \cdot \mathbf{V} - \nabla \cdot (p\mathbf{V}) + \nabla \cdot (k\nabla T) + \frac{\partial}{\partial x} \left[2\mu u \left(\frac{\partial u}{\partial x} - \frac{1}{3}\nabla \cdot \mathbf{V} \right) + \mu v \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \mu w \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right]$$

$$+ \frac{\partial}{\partial y} \left[\mu u \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + 2\mu v \left(\frac{\partial v}{\partial y} - \frac{1}{3}\nabla \cdot \mathbf{V} \right) + \mu w \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu u \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) + \mu v \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) + 2\mu w \left(\frac{\partial w}{\partial z} - \frac{1}{3}\nabla \cdot \mathbf{V} \right) \right]$$

Kinematics

- Kinematic Concepts
 - Velocity: Fluid lines, particle paths, streamlines, etc.
 - Vorticity: Vortex lines, sheets and tubes
- Helmholtz's Vortex Theorems
- Kelvin's Circulation Theorem
- Some applications and examples

Kinematic Concepts - Velocity

Fluid Line. Any Continous STRWG OF

FUID PARTICLES.

MOVES WITH FLOW

CANNOT BE BROKEN

Particle Path.

BY FLUID PARTICLE

