Example: Let $a_1 = \sqrt{2}$ and define $a_n = \sqrt{2 + a_n}$ for all n > 1.

Decide if $\{a_n\}$ converges.

4.1 Series	(Chapter	11.2
------------	----------	------

An **infinite series**, or short **series**, is given by ______.

We define the **partial sum** S_n by ______.

Relation: ______.

We say that the series is **convergent** if _______, else, the series is ______.

• 10

• 0.34

• 4.12345678

 \bullet π

Let $a \neq 0$ and $r \in \mathbb{R}$, then the geometric series is

Can we calculate the value of this series?

<u>Hint:</u> Look at $S_n - rS_n$.

general rule:

Example: Find

$$1. \sum_{n=1}^{\infty} \frac{1}{5^n}$$

$$2. \sum_{n=0}^{\infty} 2^{n+1} 3^{-n}$$

A **telescoping series** is a series, where the terms can be written as $a_n = c_n - c_{n+1}$ for some c_n .

Example: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

Result: Assume $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$, because