

28th International Conference on Medical Image Computing and Computer Assisted Intervention

25th September 2025

Multi-scale Attention-based Multiple Instance Learning for Breast Cancer Diagnosis

Mariana Mourão, Jacinto Nascimento, Carlos Santiago and Margarida Silveira Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal

Mammographic Breast Cancer Diagnosis

Mass

Calcifications

Challenges

High workload

Complex & diverse lesion features

Intra- & inter-reader variability

Deep Learning (DL)-based Models

Full image-based DL models

- x Loss of detail from harsh downsampling
- x Lack interpretability

Region of Interest (ROI)-based DL models

- ✓ Improved performances & interpretability
- Costly annotations under fully supervised learning

Patch-wise annotations

Multiple Instance Learning (MIL)

Typical MIL Framework in Mammography

- ✓ Handles high-resolution images
- Attention-based aggregators enable image classification and instance detection
- ✓ Supervision with weak image-level labels

Limitations

- X Neglects contextual information between instances
- X Non-adaptive to multi-scale lesions

Related Works

Transformer Architectures

- ✓ Accounts for instance interactions
- \times $\mathcal{O}(n^2)$ computational complexity

Efficient Transformers!

Multi-scale MIL models

Based on Multi-scale Patches (MSP)

MuSTMIL^[1]; MSAA-Net^[2]

- High representational power across scales
- x Increases computational burden
- x Coarse patch-level detection granularity

Based on Feature Pyramids

Swin-MIL^[3]

- Enhanced pixel-level detection granularity
- × Operates on downsampled images
- x Large semantic gap across scales

Contributions

a novel multi-scale attention-based Proposed framework for weakly supervised classification and detection of breast lesions in high-resolution mammograms.

Comparison with Baselines & SoTA

Benchmark against baselines and SoTA models

Ablation Studies

Evaluate the effectiveness of the main modules

Aggregators Multi-scale

Builds a refined feature pyramid from single-scale patches

Instance Encoder

Flexible Instance

Investigated localized and context-aware attention mechanisms

Multi-scale Aggregator

Adaptive scale fusion for robustness to lesion size variability

Multi-scale Attention-based MIL Framework

Multi-scale Instance Encoder

Multi-scale Instance Encoder

Input patch

Feature Pyramid Network (FPN) [5]

Multi-scale Attention-based MIL Framework

Instance Aggregators

Attention-based MIL (AbMIL) [6]

Localized attention instance aggregation, computing instance-level attention weights independently.

Set Transformer (SetTrans) [7]

Efficient context-aware aggregation, with its basic operation – Multihead Attention Block (MAB) – being the vanilla transformer encoder.

Number of inducing points : $m = 10 \times \log(n)$

Computational Complexity: O(m.n)

Multi-scale Attention-based MIL Framework

Multi-scale Aggregator

Attention-based MIL (AbMIL) [6]

Multi-scale Attention-based MIL Framework

Experimental Setup

VinDr-Mammo Dataset

- Used original train-test slipt
- 80%–20% class-stratified patientwise train-validation split

Available annotations

Image-level labels

for training & classification evaluation

Bounding-boxes

for detection evaluation

Image Classification

Calcifications

Present

Not present

Mass

Present

Not present

Evaluation metric

AUC-ROC

Lesion Detection

Multi-scale Aggregated Heatmaps

Mass

Predicted
Bounding-box

Evaluation metric

Mean Average Precision (mAP)

Lesion size categories

Small Lesions area $\leq 128^2$

Medium Lesions

esions

Large Lesions

 $128^2 < area \le 256^2$

 $area > 256^2$

Comparison with Baselines

Single-Scale Patch-based (SSP)-MIL Baselines

- Instance Encoder: Frozen MammoCLIP [4] backbone
- MIL Aggregator: AbMIL^[6] or SetTrans^[7]

Comparison with Baselines

Best instance aggregator is lesion-dependent

SetTrans for calcifications

→ AbMIL for masses

Our FPN-MIL models significantly outperform the SSP-MIL baselines

Comparison with State-of-the-Art Models

Learning	Model	Calcifications		Mass	
P aradigms	Model	AUC	mAP	AUC	mAP
Fully Supervised Classification (FSC)	EfficientNet-B2 [4]	92.0		73.0	
Fully Supervised Object Detection (FSOD)	RetinaNet [4]		17.0		37.0
Weakly Supervised Object Detection (WSOD)	Mammo-FActOR [4]		20.0		38.0
Multipe Instance Learning (MIL)	FPN-MIL (Ours)	94.2	37.4	79.2	28.2

Our best-performing models...

- ✓ Outperformed FSC baseline in image-level classification
- ✓ Outperformed FSOD & WSOD baselines in calcification detection
- ! Underperformed FSOD & WSOD baselines in mass detection

Weakly Supervised Object Detection

Sentence-level annotations

Fully Supervised Object Detection

Bounding-box annotations

Heatmap Visualization: Our Best-Performing Models

Fig. 1. Multi-scale aggregated heatmaps produced by the proposed framework, namely the FPN-SetTrans for calcifications and FPN-AbMIL for masses.

Ablation Studies

The proposed **FPN-based instance** encoder achieves ...

✓ Improved classification performance

More discriminative instance features

Improved detection performance

Finer-grained instance features across different receptive-fields

Ablation Studies

Attention gives the best classification and detection trade-off.

- ✓ Better preserves relevant features across scales.
- ✓ Improves robustness to lesion size variability.

Conclusions & Future Work

- This work proposed a novel **multi-scale attention-based MIL framework** for weakly supervised classification and detection of breast lesions in high-resolution mammograms.
- It has a modular and adaptable design, robust across different lesion types and sizes.
- Outperformed or achieved competitive performance against baselines and SoTA models.
- Provides an extensible and strong framework for computationally and label-efficient mammographic lesion detection.

In the future:

- Investigate more instance aggregators (e.g., with positional encodings).
- Jointly analyze multi-view mammograms.

Multi-scale Attention-based Multiple Instance Learning For Breast Cancer Diagnosis

Mariana Mourão

MSc in Biomedical Engineering

marianamourao@tecnico.ulisboa.pt

Thank you!

Join me on Poster Session 3: Poster C183

Ostel Session S. I Ostel C103

Acknowledgements

References

- [1] Marini, N., et al.: Multi-scale task multiple instance learning for the classification of digital pathology images with global annotations. In: Proceedings of the MIC CAI Workshop on Computational Pathology. Proceedings of Machine Learning Research, vol. 156, pp. 170–181. PMLR (2021)
- [2] Takeshi Yoshida, Kazuki Uehara, Hidenori Sakanashi, Hirokazu Nosato, and Masahiro Murakawa, "Multi-scale feature aggregation based mul tiple instance learning for pathological image classification," in International Conference on Pattern Recognition Applications and Methods, 2023, pp. 619–628.
- [4] Ghosh, S., Poynton, C.B., Visweswaran, S., Batmanghelich, K.: Mammo-CLIP: a vision language foundation model to enhance data efficiency and robustness in mammography. In: Medical Image Computing and Computer Assisted Intervention– MICCAI 2024, pp. 632–642. Springer (2024)
- [5] Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)
- [6] Ilse, M., Tomczak, J.M., Welling, M.: Attention-based deep multiple instance learn ing. In: International Conference on Machine Learning (2018)
- [7] Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a framework for attention-based permutation-invariant neural networks. In: Pro ceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 3744–3753. PMLR (2019)

Appendix

Detection Performance across Scales

Impact of Different Multi-scale Instance Encoders

Impact of Different Multi-scale Instance Encoders

Set Transformer: Permutation Invariance Property

Encoder Stage: Permutation-equivariant function

$$f(\pi(X)) = \pi(f(X))$$

Pooling Stage: Permutation-invariant function

$$g(\pi(X)) = g(X)$$

Set Transformer → **Composition of functions**

$$Model = g(f(X))$$

$$Model(\pi(X)) = g(f(\pi(X))) = g(\pi(f(X))) = g(f(X))$$

Final model is pemutation-invariant

Set Transformer: Efficient Context-aware Aggregation

Number of instances n_s and corresponding number of inducing points m_s for all analyzed scales when using scale-specific instance aggregators modeled by SetTrans in the proposed framework. The number of patches N=6 extracted from the input mammograms are analyzed across three different scales $s=\{small, medium, large\}$, each associated with a specific reduction factor r_s relative to the original patch size dimensions $H_p=W_p=512$.

Scales	$\begin{array}{c c} \textbf{Reduction Factor} \\ r_s \end{array}$	Number of instances $n_s = N imes rac{H_p}{r_s} imes rac{W_p}{r_s}$	Number of Inducing Points $m_s = 10 \times \log(n_s)$
Small	16	6144	38
Medium	32	1536	32
Large	128	96	20

Future Work: Multi-level Instance Aggregators

Gif adapted from: https://research.google/blog/nested-hierarchical-transformer-towards-accurate-data-efficient-and-interpretable-visual-understanding/

Limitations: Multi-scale Aggregator

The multi-scale aggregator is optimized for MIL classification

Can learn non-optimal scale weights for the post-hoc detection analysis

by the small-scale branch are not fully preserved

Limitations: Multi-scale Aggregator

The multi-scale aggregator is optimized for MIL classification

Can learn non-optimal scale weights for the post-hoc detection analysis

Fine-grained details captured by the small-scale branch are not fully preserved

