TP557 - Tópicos avançados em IoT e Machine Learning: *Identificação de palavras chave*

Crédito: Marcelo Rovai-Unifei

Samuel Baraldi Mafra samuelbmafra@inatel.br

• A localização de palavras-chave (KWS) é uma técnica importante para aplicações de fala, que permite aos usuários ativar dispositivos falando uma frase de palavra-chave.

• Aplicações: Identificação de vidro quebrado (segurança)

• Aplicações: Detecção de anomalias (indústria)

• Aplicações: detecção de roncos e choros

- Desafios:
- Banda e latência;
- Precisão e personalização;
- Segurança e privacidade;
- Bateria e memória.

Como construímos um bom conjunto de dados?

- Quem são os usuários?
- O que eles precisam?
- Que tarefa eles estão tentando resolver?
- Como eles interagem com o sistema?
- Como o mundo real torna isso difícil?

Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition

> Pete Warden Google Brain Mountain View, California petewarden@google.com

https://arxiv.org/pdf/1804.03209.pdf

- Primeira versão 10 palavras
- Yes
- No
- Left
- Right
- Go
- Stop
- One
- Two
- Four
- Six

- Segunda versão: 35 palavras
- 2618 voluntários
- Mais de mil gravações de cada palavra.

Word	Number of Utterances
Backward	1,664
Bed	2,014
Bird	2,064
Cat	2,031
Dog	2,128
Down	3,917
Eight	3,787
Five	4,052
Follow	1,579
Forward	1,557
Four	3,728
Go	3,880
Happy	2,054
House	2,113
Learn	1,575
Left	3,801
Marvin	2,100
Nine	3,934
No	3,941
Off	3,745
On	3,845
One	3,890
Right	3,778
Seven	3,998
Sheila	2,022
Six	3,860
Stop	3,872
Three	3,727
Tree	1,759
Two	3,880
$_{ m Up}$	3,723
Visual	1,592
Wow	2,123
Yes	4,044
Zero	4,052

- Validação do dataset
- Verificação de palavras ditas erradas
- Retirar gravações baixas
- Retirar momentos de mudo.

- Mozilla common voice
- https://commonvoice.mozilla.org/en

Questões a serem levantadas

- Quais sons devem ser gravados?
- Qualidade do microfone;
- Ruído ambiente

16kHz signal

- 16 mil amostras por segundo
- Não dá para jogar direto como entrada de rede neural

16kHz signal

Sinal de áudio ligado/desligado

- Onde a palavra começa?
- Como alinhar?
- Como retirar partes importantes do sinal

Sinal de áudio YES/NO

Sinal de áudio ligado/desligado

- 16 mil amostras por segundo
- Amostragem A/D

- 16 mil amostras por segundo
- FFT

Sinal de áudio YES/NO

- Espectrograma
- Um espectrograma é uma forma de visualizar a intensidade de um sinal através do tempo e em várias frequências.
- Os espectrogramas são gráficos de duas dimensões (frequência x tempo), com a terceira dimensão, a amplitude, sendo representada pela variação das cores

- 16 mil amostras por segundo
- FFT
- Espectrograma
- Janelas

Sinal de áudio

- Filtros MEL
- A escala Mel relaciona a frequência percebida, ou tom, de um tom puro à sua frequência real medida. Os humanos são muito melhores em discernir pequenas mudanças no tom em frequências baixas do que em frequências altas.

https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0

Processo de classificação

A model for **Keyword Spotting**

Processo de classificação

Trabalho

- Pense em uma aplicação para identificação de palavras chave
- Faça um detalhamento da aplicação
- Quais serão os comandos ou palavras chave?
- Plote os espectrogramas das palvras chave.
- Treine uma rede neural no edge impulse.
- Criar um power point com todos as informações.

