

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07K 14/00		A2	(11) International Publication Number: WO 98/58953 (43) International Publication Date: 30 December 1998 (30.12.98)
 (21) International Application Number: PCT/DK98/00266 (22) International Filing Date: 19 June 1998 (19.06.98) (30) Priority Data: 0744/97 23 June 1997 (23.06.97) DK			 (81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
 (71)(72) Applicants and Inventors: BIRKELUND, Svend [DK/DK]; Søtoften 26, DK-8250 Egå (DK). CHRIS-TIANSEN, Gunna [DK/DK]; Søtoften 26, DK-8250 Egå (DK). (72) Inventors; and (75) Inventors/Applicants (for US only): KNUDSEN, Katrine [DK/DK]; Lundingsgade 33, Lejligheden 407, DK-8000 Århus C (DK). MADSEN, Anna-Sofie [DK/DK]; Ramshærdet 51 b, 1.tv., DK-6200 Aabenraa (DK). MYGINDE, Per [DK/DK]; Falstersgade 5, 3.tv., DK-8000 Århus C (DK).			 Published <i>Without international search report and to be republished upon receipt of that report.</i>
 (74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).			

(54) Title: NOVEL SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

(57) Abstract

The invention relates to the identification of members of a gene family from the human respiratory pathogen *Chlamydia pneumoniae*, encoding surface exposed membrane proteins of a size of approximately 89–101 kDa and of 56–57 kDa, preferably about 89.6–100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by *C. pneumoniae*, in pathology, in epidemiology, and as vaccine components.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

NOVEL SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

The present invention relates to the identification of members of a gene family from the human respiratory pathogen *Chlamydia pneumoniae*, encoding surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably about 89.6-100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by *C. pneumoniae*, in pathology, in epidemiology, and as vaccine components.

GENERAL BACKGROUND

C. pneumoniae is an obligate intracellular bacteria (Christiansen and Birkelund (1992); Grayston et al. (1986)). It has a cell wall structure as Gram negative bacteria with an outer membrane, a periplasmic space, and a cytoplasmic membrane. It is possible to purify the outer membrane from Gram negative bacteria with the detergent sarkosyl. This fraction is named the 'outer membrane complex (OMC)' (Caldwell et al. (1981)). The COMC (Chlamydia outer membrane complex) of *C. pneumoniae* contains four groups of proteins: A high molecular weight protein 98 kDa as determined by SDS-PAGE, a double band of the cysteine rich outer membrane protein 2 (Omp2) protein of 62/60 kDa, the major outer membrane protein (MOMP) of 38 kDa, and the low-molecular weight lipo-protein Omp3 of 12 kDa. The Omp2/Omp3 and MOMP proteins are present in COMC from all Chlamydia species, and these genes have been cloned from both *C. trachomatis*, *C. psittaci* and *C. pneumoniae*. However, the gene encoding 98 kDa protein from *C. pneumoniae* COMC have not been characterized or cloned.

The current state of *C. pneumoniae* serology and detection

C. pneumoniae is an obligate intra-cellular bacteria belonging to the genus Chlamydia which can be divided into

four species: *C. trachomatis*, *C. pneumoniae*, *C. psittaci* and *C. pecorum*. Common for the four species is their obligate intra cellular growth, and that they have a biphasic life cycle, with an extracellular infectious particle (the elementary body, EB), and an intercellular replicating form (the reticulate body, RB). In addition the Chlamydia species are characterized by a common lipopolysaccharide (LPS) epitope that is highly immunogenic in human infection. *C. trachomatis* is causing the human ocular infection (trachoma) and genital infections. *C. psittaci* is a variable group of animal pathogens where the avian strains can occasionally infect humans and give rise to a severe pneumonia (ornithosis). The first *C. pneumoniae* isolate was obtained from an eye infection, but it was classified as a non-typable Chlamydia. Under an epidemic outbreak of pneumonia in Finland it was realized that the patients had a positive reaction in the Chlamydia genus specific test, (the lygranum test), and the patients showed a titre increase to the untyped Chlamydia isolates. Similar isolates were obtained in an outbreak of upper respiratory tract infections in Seattle, and the Chlamydia isolates were classified as a new species, *Chlamydia pneumoniae* (Grayston et al. (1989)). In addition, *C. pneumoniae* is suggested to be involved in the development of atherosclerotic lesions and for initiating bronchial asthma (Kuo et al. (1995)). These two conditions are thought to be caused by either chronic infections, by a hypersensitivity reaction, or both.

Diagnosis of *Chlamydia pneumoniae* infections

Diagnosis of acute respiratory tract infection with *C. pneumoniae* is difficult. Cultivation of *C. pneumoniae* from patient samples is insensitive, even when proper tissue culture cells are selected for the isolation. A *C. pneumoniae* specific polymerase chain reaction (PCR) has been developed by Campbell et al. (1992).

Even though *Chlamydia pneumoniae* has in several studies been detected by this PCR it is debated whether this method is suitable for detection under all clinical situations. The reason for this is, that the cells carrying *Chlamydia* 5 *pneumoniae* in acute respiratory infections have not been determined, and that a chronic carrier state is expected but it is unknown in which organs and cells they are present. Furthermore, the PCR test is difficult to perform due to the low yield of these bacteria and due to the presence of 10 inhibitory substances in the patient samples. Therefore, it will be of great value to develop sensitive and specific sero-diagnostics for detecting both acute and chronic infections. Sero-diagnosis of *Chlamydia* infections is currently based on either genus specific tests as the 15 Lygranum test and ELISA, measuring the antibodies to LPS, or the more species specific tests where antibodies to purified EBs are measured by microimmuno fluorescence (Micro-IF) (Wang et al. (1970)). However, the micro-IF method is read by microscopy, and in order to ensure correct readings the 20 result must be compared to the results with *C. trachomatis* used as antigen due to the cross-reacting antibodies to the common LPS epitope. Thus, there exists in the art an urgent need for development of reliable methods for species specific diagnosis of *Chlamydia pneumoniae*, as has been expressed in 25 Kuo et al. (1995); "...a rapid reliable laboratory test of infection for the clinical laboratory is a major need in the field". Furthermore, the possible involvement of *C. pneumoniae* in atherosclerosis and bronchial asthma clearly warrants the development of an effective vaccine.

30 DETAILED DISCLOSURE OF THE INVENTION

The present invention aims at providing means for efficient diagnosis of infections with *Chlamydia pneumoniae* as well as the development of effective vaccines against infection with this microorganism. The invention thus relates to species 35 specific diagnostic tests for infection in a mammal, such as a human, with *Chlamydia pneumoniae*, said tests being based on

the detection of antibodies against surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably of about 89.6-100.3 kDa and about 56.1 kDa (the range in size of the deduced amino acid sequences was 5 from 100.3 to 89.6 except for Omp13 with the size of 56.1 kDa), or the detection of nucleic acid fragments encoding such proteins or variants or subsequences thereof. The invention further relates to the amino acid sequences of proteins according to the invention, to variants and 10 subsequences thereof, and to nucleic acid fragments encoding these proteins or variants or subsequences thereof. The present invention further relates to antibodies against proteins according to the invention. The invention also relates to the use of nucleic acid fragments and proteins 15 according to the invention in diagnosis of *Chlamydia pneumoniae* and vaccines against *Chlamydia pneumoniae*.

Prior to the disclosure of the present invention only a very limited number of genes from *C. pneumoniae* had been sequenced. These were primarily the genes encoding known *C. trachomatis* homologues: MOMP, Omp2, Omp3, Kdo-transferase, 20 the heat shock protein genes GroEL/Es and DnaK, a ribonuclease P homologue and a gene encoding a 76 kDa protein of unknown function. The reason why so few genes have been cloned to date is the very low yield of *C. pneumoniae* which 25 can be obtained after purification from the host cells. After such purification the DNA must be purified from the EBs, and at this step the *C. pneumoniae* DNA can easily be contaminated with host cell DNA. In addition to these inherent difficulties, it is exceedingly difficult to cultivate *C. 30 pneumoniae* and use DNA technology to produce expression libraries with very low amounts (few µg) of DNA. It has been known since 1993 (Melgosa et al., 1993) that a 98 kDa protein is present in OMC from *C. pneumoniae*. Even though the protein bands of 98 kDa was mentioned to be part of the OMC of *C. 35 pneumoniae* by Melgosa, the gene sequences and thus the deduced amino acid sequences have not been determined. Only

bands originating from *Chlamydia pneumoniae* proteins in general separated by SDS-PAGE are described therein. However, the gene encoding this protein has not been determined before the present invention. Only a very weak or 5 no reaction with patient sera can be observed to the 98 kDa protein (Campbell et al. 1990) and prior to the work of the present inventors it has not been recognized that the 89-101 kDa proteins are surface exposed or that they in fact are immunogenic. In this report it is described that a number of 10 human serum samples react with a *C. pneumoniae* protein that in SDS-PAGE migrate as 98 kDa. The protein was not further characterized and it is therefore not in conflict with the present application.

Halme et al. (1997) described the presence of human T-cell 15 epitopes in *C. pneumoniae* proteins of 92-98 kDa. The proteins were eluted from SDS-PAGE of total chlamydia proteins but the identity of the proteins were not determined.

Use of antibodies to screen expression libraries is a well known method to clone fragments of genes encoding antigenic 20 parts of proteins. However, since patient sera do not show a significant reaction with the 98 kDa protein it has not been possible to use patient serum to clone the proteins.

It was known that monoclonal antibodies generated by the 25 inventors reacted with conformational epitopes on the surface of *C. pneumoniae* and that they also reacted with *C. pneumoniae* OMC by immuno-electron microscopy (Christiansen et al. 1994). Furthermore, the 98 kDa protein is the only unknown protein from the *C. pneumoniae* OMC (Melgosa et al. 30 1993). The present inventors chose to take an unconventional step in order to clone the gene encoding the hitherto unknown 98 kDa protein: *C. pneumoniae* OMC was purified and the highly immunogenic conformational epitopes were destroyed by SDS-treatment of the antigen before immunization. Thereby an 35 antibody (PAB 150) to less immunogenic linear epitopes was obtained. This provided the possibility to obtain an

antiserum which could detect the protein, and it was shown that a gene family encoding the 89-101 kDa and 56 proteins according to the invention could be detected in colony blotting of recombinant *E. coli*.

5 Mice infected with *C. pneumoniae* generate antibodies to the proteins identified by the inventors and named Omp4-15, but do not recognize the SDS treated heat denatured antigens normally used for SDS-PAGE and immunoblotting. However, a strong reaction was seen if the antigen was not heat
10 denatured. It is therefore highly likely that if a similar reaction is seen in connection with human infections the antigens of the present invention will be of invaluable use in sero-diagnostic tests and may very likely be used as a vaccine for the prevention of infections.

15

By generating antibodies against COMC from *C. pneumoniae* a polyclonal antibody (PAB 150) was obtained which reacted with all the proteins. This antibody was used to identify the genes encoding the 89.6-101.3 kDa and 56.1 kDa proteins in an
20 expression library of *C. pneumoniae* DNA. A problem in connection with the present invention was that a family comprising a number of similar genes were found in *C. pneumoniae*. Therefore, a large number of different clones were required to identify clusters of fragments. Only because
25 the rabbit antibody generated by the use of SDS-denatured antigens contained antibodies to a high number of different epitopes positioned on different members of the protein family did the inventors succeed in cloning and sequencing four of the genes. One gene was fully sequenced, a second was
30 sequenced except for the distal part and shorter fragments of two additional genes were obtained by this procedure. To obtain the DNA sequence of the additional genes and to search for more members of the gene family long range PCR with primers derived from the sequenced genes, and primers from
35 the genes already published in the database were used. This approach gave rise to the detection of additional eight genes belonging to this family. The genes were situated in two gene

clusters: Omp12,11,10,5,4,13 and 14 in one cluster and Omp6,7,8,9 and 15 in the second. Full sequence was obtained from Omp4,5,6,7,8,9,10,11 and 13, and partial sequence of Omp12,14. Omp13 was a truncated gene of 1545 nucleotides. The 5 rest of the full length genes were from 2526 (Omp7) to 2838 (Omp15) nucleotides. The deduced amino acid sequences revealed putative polypeptides of 89.6 to 100.3 kDa, except for Omp13 of 56.1 kDa. Alignment of the deduced amino acid sequences showed a maximum identity of 49% (Omp5/Omp9) when 10 all the sequences were compared. Except for Omp13, the lowest homology was to Omp7 with no more than 34% identity to any of the other amino acid sequences. The scores for Omp13 was from 29-32% to all the other sequences.

In the present context SEQ ID Nos. 1 and 2 correspond to 15 Omp4, SEQ ID Nos 3 and 4 correspond to Omp5, SEQ ID Nos 5 and 6 correspond to Omp6, SEQ ID Nos 7 and 8 correspond to Omp7, SEQ ID Nos 9 and 10 correspond to Omp8, SEQ ID Nos 11 and 12 correspond to Omp9, SEQ ID Nos 13 and 14 corresponds to Omp10, SEQ ID Nos 15 and 16 corresponds to Omp11, SEQ ID Nos 20 17 and 18 corresponds to Omp12, SEQ ID Nos 19 and 20 corresponds to Omp13, SEQ ID Nos 21 and 22 corresponds to Omp14, and SEQ ID Nos 23 and 24 corresponds to Omp15.

The estimated size of the Omp proteins of the of the present invention are listed in the following. Omp 4 has a size of 25 98.9 kDa, Omp5 has an estimated size of 97.2 kDa, Omp6 has an estimated size of 100.3 kDa, Omp7 has an estimated size of 89.7 kDa, Omp8 has an estimated size of 90.0 kDa, Omp9 has an estimated size of 96.7 kDa, Omp10 has an estimated size of 98.4 kDa, Omp11 has an estimated size of 97.6 kDa, Omp13 has 30 an estimated size of 56.1 kDa, Omp 12 and 14 being partial.

Furthermore, SEQ ID No 25 is a subsequence of SEQ ID No 3, SEQ ID No 26 is a subsequence of SEQ ID No 4, SEQ ID No 27 is a subsequence of SEQ ID No 5, SEQ ID No 28 is a subsequence of SEQ ID No 6, SEQ ID No 29 is a subsequence of SEQ ID No 7, 35 and SEQ ID No 30 is a subsequence of SEQ ID No 8.

Part of the *omp* proteins were expressed as fusion proteins, and mice polyclonal monospecific antibodies against the proteins were produced. The antibodies reacted with the surface of *C. pneumoniae* in both immunofluorescence and 5 immunoelectron microscopy. This shows for the first time that the 89-101 kDa and 56-57 kDa protein family in *C. pneumoniae* comprises surface exposed outer membrane proteins. This important finding leads to the realization that members of the 89-101 kDa and 56-57 kDa *C. pneumoniae* protein family are 10 good candidates for the development of a sero diagnostic test for *C. pneumoniae*, as well as the development of a vaccine against infections with *C. pneumoniae* based on using these proteins. Furthermore, the proteins may be used as 15 epidemiological markers, and polyclonal monospecific sera against the proteins can be used to detect *C. pneumoniae* in human tissue or detect *C. pneumoniae* isolates in tissue culture. Also, the genes encoding the 89-101 kDa and 56-57 kDa such as the 89.6-100.3 kDa and 56.1 protein family may be 20 used for the development of a species specific diagnostic test based on nucleic acid detection/amplification.

The full length Omp4 was cloned into an expression vector system that allowed expression of the Omp4 polypeptide. This polypeptide was used as antigen for immunization of a rabbit. Since the protein was purified under denaturing condition the 25 antibody did not react with the native surface of *C. pneumoniae*, but it reacted with a 98 kDa protein in immunoblotting where purified *C. pneumoniae* EB was used as antigen. Furthermore, the antibody reacted in paraffin embedded sections of lung tissue from experimentally infected 30 mice.

A broad aspect of the present invention relates to a species specific diagnostic test for infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said test comprising detecting in a patient or preferable in a patient sample the 35 presence of antibodies against proteins from the outer membrane of *Chlamydia pneumoniae*, said proteins being of a

molecular weight of 89-101 kDa or 56-57 kDa, or detecting the presence of nucleic acid fragments encoding said outer membrane proteins or fragments thereof.

5 In the context of the present application, the term "patient sample" should be taken to mean an amount of serum from a patient, such as a human patient, or an amount of plasma from said patient, or an amount of mucosa from said patient, or an amount of tissue from said patient, or an amount of
10 expectorate, forced sputum or a bronchial aspirate, an amount of urine from said patient, or an amount of cerebrospinal fluid from said patient, or an amount of atherosclerotic lesion from said patient, or an amount of mucosal swaps from said patient, or an amount of cells from a tissue culture
15 originating from said patient, or an amount of material which in any way originates from said patient. The *in vivo* test in a human according to the present invention includes a skin test known in the art such as an intradermal test, e.g. similar to a Mantoux test. In certain patients being very
20 sensitive to the test, such as is often the case with children, the test could be non-invasive, such as a superficial test on the skin, e.g. by use of a plaster

In the present context, the term 89-101 kDa protein means proteins normally present in the outer membrane of *Chlamydia pneumoniae*, which in SDS-PAGE can be observed as one or more bands with an apparent molecular weight substantially in the range of 89-101 kDa. From the deduced amino acid sequences the molecular size varies from 89.6 to 100.3 kDa.

Within the scope of the present invention are species
30 specific sero-diagnostic tests based on the usage of the genes belonging to the gene family disclosed in the present application.

Preferred embodiments of the present invention relate to species specific diagnostic tests according to the invention,
35 wherein the outer membrane proteins have sequences selected

from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

5 When used in connection with proteins according to the present invention the term "variant" should be understood as a sequence of amino acids which shows a sequence similarity of less than 100% to one of the proteins of the invention. A variant sequence can be of the same size or it can be of a
10 different size as the sequence it is compared to. A variant will typically show a sequence similarity of preferably at least 50%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%.

15 The term "sequence similarity" in connection with sequences of proteins of the invention means the percentage of identical and conservatively changed amino acid residues (with respect to both position and type) in the proteins of the invention and an aligned protein of equal or different length. The term "sequence identity" in connection with
20 sequences of proteins of the invention means the percentage of identical amino acid with respect to both position and type in the proteins of the invention and an aligned protein of equal or different length.

25 Within the scope of the present invention are subsequences of one of the proteins of the invention, meaning a consecutive stretch of amino acid residues taken from SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24. A subsequence will
30 typically comprise at least 100 amino acids, preferably at least 80 amino acids, more preferably at least 70 amino acids, such as 50 amino acids. It might even be as small as 10-50 amino acids, such as 20-40 amino acids, e.g. about 30 amino acids. A subsequence will typically show a sequence
35 homology of at least 50%, preferably at least 60%, more

preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%.

Diagnostic tests according to the invention include immunoassays selected from the group consisting of a direct or indirect EIA such as an ELISA, an immunoblot technique such as a Western blot, a radio immuno assay, and any other non-enzyme linked antibody binding assay or procedure such as a fluorescence, agglutination or precipitation reaction, and nephelometry.

10 A preferred embodiment of the present invention relates to species specific diagnostic tests according to the invention, said test comprising an ELISA, wherein antibodies against the proteins of the invention or fragments thereof are detected in samples.

15 A preferred embodiment of the invention, is an ELISA based on detection in samples of antibodies against proteins of the invention. The ELISA may use proteins of the invention, or variants thereof, i.e. the antigen, as coating agent. An ELISA will typically be developed according to standard 20 methods well known in the art, such as methods described in "Antibodies; a laboratory manual", Ed. David Lane Harlow, Cold Spring Harbor laboratories (1988), which is hereby incorporated by reference.

25 Recombinant proteins will be produced using DNA sequences obtained essentially using methods described in the examples below. Such DNA sequences, comprising the entire coding region of each gene in the gene family of the invention, will be cloned into an expression vector from which the deduced protein sequence can be purified. The purified proteins will 30 be analyzed for reactivity in ELISA using both monoclonal and polyclonal antibodies as well as sera from experimentally infected mice and human patient sera.

From the experimentally infected mice sera it is known that non-linear epitopes are recognized predominantly. Thus, it is contemplated that different forms of purification schemes known in the art will be used to analyze for the presence of 5 discontinuous epitopes, and to analyze whether the human immune response is also directed against such epitopes.

Preferred embodiments of the present invention relate to species specific diagnostic tests according to the invention, wherein the nucleic acid fragments have sequences selected 10 from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, and SEQ ID NO: 23.

In connection with nucleic acid fragments according to the 15 present invention the term "variant" should be understood as a sequence of nucleic acids which shows a sequence homology of less than 100%. A variant sequence can be of the same size or it can be of a different size as the sequence it is compared to. A variant will typically show a sequence 20 homology of at least 50%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%.

The term "sequence homology" in connection with nucleic acid 25 fragments of the invention means the percentage of matching nucleic acids (with respect to both position and type) in the nucleic acid fragments of the invention and an aligned nucleic acid fragment of equal or different length.

In order to obtain information concerning the general distribution of each of the genes according to the present 30 invention, PCR will be performed for each gene on all available *C. pneumoniae* isolates. This will provide information on the general variability of the genes or nucleic acid fragments of the invention. Variable regions will be sequenced. From patient samples PCR will be used to

amplify variable parts of the genes for epidemiology. Non-variable parts will be used for amplification by PCR and analyzed for possible use as a diagnostic test. It is contemplated that if variability is discovered, PCR of

5 variable regions can be used for epidemiology. PCR of non-variable regions can be used as a species specific diagnostic test. Using genes encoding proteins known to be invariable in all known isolates prepared as targets for PCR to genes encoding proteins with unknown function.

10 Particularly preferred embodiments of the present invention, relate to diagnostic tests according to the invention, wherein detection of nucleic acid fragments is obtained by using nucleic acid amplification, preferably polymerase chain reaction (PCR).

15 Within the scope of the present invention is a PCR based test directed at detecting nucleic acid fragments of the invention or variants thereof. A PCR test will typically be developed according to methods well known in the art and will typically comprise a PCR test capable of detecting and differentiating
20 between nucleic acid fragments of the invention. Preferred are quantitative competitive PCR tests or nested PCR tests. The PCR test according to the invention will typically be developed according to methods described in detail in EP B 540 588, EP A 586 112, EP A 643 140 OR EP A 669 401, which
25 are hereby incorporated by reference.

Within the scope of the present invention are variants and subsequences of one of the nucleic acid fragments of the invention, meaning a consecutive stretch of nucleic acids taken from SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID
30 NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23. A variant or subsequence will preferably comprise at least 100 nucleic acids, preferably at least 80 nucleic acids, more preferably at least 70 nucleic acids, such as at least 50 nucleic acids.
35 It might even be as small as 10-50 nucleic acids, such as

20-40 nucleic acids, e.g. about 30 nucleic acids. A subsequence will typically show a sequence homology of at least 30%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%. The 5 shorter the subsequence, the higher the required homology. Accordingly, a subsequence of 100 nucleic acids or lower must show a homology of at least 80%.

A very important aspect of the present invention relates to proteins of the invention derived from *Chlamydia pneumoniae* 10 having amino acid sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24 having a sequence similarity of at least 50%, 15 preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98% and a similar biological function.

By the term "similar biological function" is meant that the protein shows characteristics similar with the proteins 20 derivable from the membrane proteins of *Chlamydia pneumoniae*. Such proteins comprise repeated motifs of GGAI (at least 2, preferable at least 3 repeats) and/or conserved positions of tryptophan, (w).

Comparison of the DNA sequences from genes encoding Omp4-15 25 shows that the overall similarity between the individual genes ranges between 43-55%. Comparison of the amino acid sequences of Omp4-15 shows 34-49% identity and 53-64% similarity. The homology is generally scattered along the entire length of the deduced amino acids. However, as seen 30 from figure 8 A - J there are some regions in which the homology is more pronounced. This is seen in the repeated sequence where the sequence GGAI is repeated 4-7 times in the genes. It is interesting that the DNA homology is not 35 conserved for the sequences encoding the four amino acids GGAI. This may indicate a functional role of this part of the

protein and indicates that the repeated structure did not occur by a duplication of the gene. In addition to the four amino acid repeats GGAI a region from amino acid 400 to 490 has a higher degree of homology than the rest of the protein, 5 with the conserved sequence FYDPI occurring in all sequences. As further indication of similarity in function the amino acid tryptophan (W) is perfectly conserved at 4-6 localizations in the C-terminal part of the protein.

Since none of the genes and deduced amino acid sequences of 10 the invention are identical the following is within the scope of the present invention; production of monospecific antibodies, the use of said antibodies for characterizing which *C. pneumoniae* proteins are expressed, the use of said antibodies for characterizing at which time during 15 developmental life cycle said *C. pneumoniae* proteins are expressed, and the use of said antibodies for characterizing the precise cellular localization of said *C. pneumoniae* proteins. Also within the scope of the present invention is the use of monospecific antibodies against proteins of the 20 invention for determining which part of said proteins is surface exposed and how proteins in the *C. pneumoniae* COMC interact with each other.

Preferred embodiments of the present invention relate to 25 polypeptides which comprise subsequences of the proteins of the invention, said subsequences comprising the sequence GGAI. Further preferred embodiments of the present invention relate to polypeptides which comprise subsequences of the proteins of the invention, said subsequences comprising the 30 sequence FSGE.

Polypeptides according to the invention will typically be of a length of at least 6 amino acids, preferably at least 15 amino acids, preferably at least 20 amino acids, preferably at least 25 amino acids, preferably at least 30 amino acids, 35 preferably at least 35 amino acids, preferably at least 40 amino acids, preferably at least 45 amino acids, preferably

at least 50 amino acids, preferably at least 55 amino acids, preferably at least 100 amino acids.

A very important aspect of the present invention relates to nucleic acid fragments of the invention derived from

5 *Chlamydia pneumoniae*, variants and subsequences thereof.

Another important aspect of the present invention relates to antibodies against the proteins according to the invention, such antibodies including polyclonal monospecific antibodies and monoclonal antibodies against proteins with sequences

10 selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

A very important aspect of the present invention relates to 15 diagnostic kits for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kits comprising one or more proteins with amino acid sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

Another very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said 25 kits comprising antibodies against a protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

30 Antibodies included in a diagnostic kit according to the invention can be polyclonal or monoclonal or a mixture hereof.

Still another very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kits comprising one or more nucleic acid fragments with sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, and SEQ ID NO: 23.

An aspect of the present invention relates to a composition for immunizing a mammal, such as a human, against *Chlamydia pneumoniae*, said composition comprising one or more proteins with amino acid sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

An important role for the proteins of the invention in prevention of infection of a mammal, such as a human, with *C. pneumoniae* is expected. Thus proteins of the invention, including variants and subsequences will be produced, typically by using recombinant techniques, and will then be used as an antigen in immunization of mammals, such as rabbits. Subsequently, the hyper immune sera obtained by the immunization will be analyzed for protection against *C. pneumoniae* infection using a tissue culture assay. In addition it is contemplated that monoclonal antibodies will be produced, typically using standard hybridoma techniques, and analyzed for protection against infection with *C. pneumoniae*.

It is envisioned that particularly interesting and immunogenic epitopes will be found in connection with the proteins of the invention, which will comprise subsequences of said proteins. It is preferred to use polypeptides comprising such subsequences of the proteins of the invention

in immunizing a mammal, such as a human, against *Chlamydia pneumoniae*.

An important aspect of the present invention relates to the use of proteins with sequences selected from the group

5 consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24 in diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*.

10 A preferred embodiment of the present invention relates to the use of proteins according to the invention in an undenatured form, in diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*.

15 A very important aspect of the present invention relates to the use of proteins with sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24, for immunizing a mammal, such as a human, against 20 *Chlamydia pneumoniae*.

A preferred embodiment of the present invention relates to the use of proteins according to the invention in an undenatured form, for immunizing a mammal, such as a human, against *Chlamydia pneumoniae*.

25 A very important aspect of the present invention relates to the use of nucleic acid fragments with nucleotide sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 30 19, SEQ ID NO: 21, and SEQ ID NO: 23 for immunizing a mammal, such as a human, against *Chlamydia pneumoniae*.

It is envisioned that one type of vaccine against *C. pneumoniae* will be developed by using gene-gun vaccination of mice. Typically, different genetic constructs containing nucleic acid fragments, combinations of nucleic acid

5 fragments according to the invention will be used in the gene-gun approach. The mice will then subsequently be analyzed for production of both humoral and cellular immune response and for protection against infection with *C. pneumoniae* after challenge herewith.

10 In line with this, the invention also relates to the uses of the proteins of the invention as a pharmaceutical (a vaccine) as well as to the uses thereof for the preparation of a vaccine against infections with *Chlamydia pneumoniae*.

15 Preparation of vaccines which contain protein sequences as active ingredients is generally well understood in the art, as exemplified by U.S. Patents 4,608,251; 4,601,903; 4,599,231; 4,599,230; 4,596,792; and 4,578,770, all incorporated herein by reference. Typically, such vaccines are prepared as injectables either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be emulsified. The active immunogenic ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like, and combinations thereof. In addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants which 20 25 30 enhance the effectiveness of the vaccines.

The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some 35 cases, oral formulations. These compositions take the form of

solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10-95% of active ingredient, preferably 25-70%, and optionally a suitable carrier.

5 The protein sequences may be formulated into the vaccine as neutral or salt forms known in the art. The vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immunogenic. The quantity to be administered
10 depends on the subject to be treated. Suitable dosage ranges are of the order of several hundred micrograms active ingredient per vaccination with a preferred range from about 0.1 μ g to 1000 μ g. The immune response may be enhanced if the vaccine further comprises an adjuvant substance as known in
15 the art. Other possibilities involve the use of immunomodulating substances such as lymphokines (e.g. IFN- γ , IL-2 and IL-12) or synthetic IFN- γ inducers such as poly I:C in combination with the above-mentioned adjuvants.

It is also possible to produce a living vaccine by introducing, into a non-pathogenic microorganism, at least one nucleic acid fragment encoding a protein fragment or protein of the invention, and effecting expression of the protein fragment or the protein on the surface of the microorganism (e.g. in the form of a fusion protein including a membrane
25 anchoring part or in the form of a slightly modified protein or protein fragment carrying a lipidation signal which allows anchoring in the membrane). The skilled person will know how to adapt relevant expression systems for this purpose.

Another part of the invention is based on the fact that
30 recent research have revealed that a DNA fragment cloned in a vector which is non-replicative in eukaryotic cells may be introduced into an animal (including a human being) by e.g. intramuscular injection or percutaneous administration (the so-called "gene gun" approach). The DNA is taken up by e.g.
35 muscle cells and the gene of interest is expressed by a

promoter which is functioning in eukaryotes, e.g. a viral promoter, and the gene product thereafter stimulates the immune system. These newly discovered methods are reviewed in Ulmer et al., 1993, which hereby is included by reference.

- 5 Thus, a nucleic acid fragment encoding a protein or protein of the invention may be used for effecting *in vivo* expression of antigens, i.e. the nucleic acid fragments may be used in so-called DNA vaccines. Hence, the invention also relates to a vaccine comprising a nucleic acid fragment encoding a
- 10 protein fragment or a protein of the invention, the vaccine effecting *in vivo* expression of antigen by an mammal, such as a human, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to infections with
- 15 *Chlamydia pneumoniae* in an mammal, such as a human.

The efficacy of such a "DNA vaccine" can possibly be enhanced by administering the gene encoding the expression product together with a DNA fragment encoding a protein which has the capability of modulating an immune response. For instance, a

- 20 gene encoding lymphokine precursors or lymphokines (e.g. IFN- γ , IL-2, or IL-12) could be administered together with the gene encoding the immunogenic protein fragment or protein, either by administering two separate DNA fragments or by administering both DNA fragments included in the same vector.
- 25 It is also a possibility to administer DNA fragments comprising a multitude of nucleotide sequences which each encode relevant epitopes of the protein fragments and proteins disclosed herein so as to effect a continuous sensitization of the immune system with a broad spectrum of these epitopes.
- 30 The following experimental non-limiting examples are intended to illustrate certain features and embodiments of the invention.

LEGENDS TO FIGURES

Figure 1. The figure shows electron microscopy of negative stained purified *C. pneumoniae* EB (A) and purified OMC (B).

Figure 2. The figure shows silver stained 15% SDS-PAGE of purified EB and OMC. Lane 1, purified *C. pneumoniae* EB; lane 5 2, *C. pneumoniae* OMC; lane 3, purified *C. trachomatis* EB; and lane 4 *C. trachomatis* OMC.

Figure 3. The figure shows immunoblotting of *C. pneumoniae* EB separated by 10% SDS-PAGE, transferred to nitrocellulose and 10 reacted with rabbit anti *C. pneumoniae* OMC.

Figure 4. The figure shows coomassie blue stained 7.5% SDS-PAGE of recombinant pEX that were detected by the rabbit anti *C. pneumoniae* serum. Arrow indicated the localization of the 117 kDa b-galactosidase protein.

15 Figure 5. The figure shows immunoblotting of recombinant pEX colones detected by colony blotting separated by 7.5% SDS-PAGE and transferred to nitrocellulose and reacted with rabbit anti *C. pneumoniae* OMC. Lane 1, seablue molecular weight standard. Lane 2-6 pEX clones cultivated at 42°C to 20 induce the production of the b-galactosidase fusion proteins.

Figure 6. The figure shows sequence strategy for Omp4 and Omp5. Arrows indicates primers used for sequencing.

Figure 7. *C. pneumoniae* omp genes. The genes are arranged in two clusters. In cluster 1 Omp12, 11, 10, 5, 4, 13, and 14 25 are found. In cluster 2 are found Omp6, 7, 8, 9, and 15.

Figure 8 A - J. The figure shows alignment of *C. pneumoniae* Omp4-15, using the program pileup in the GCG package.

Figure 9. The figure shows immunofluorescence of *C. pneumoniae* infected HeLa, 72 hrs. after infection, reacted

with mouse monospecific anti-serum against pEX3-36 fusion protein. pEX3-36 is a part of the Omp5 gene.

Figure 10. The figure shows immunoblotting of *C. pneumoniae* EB, lane 1-3 heated to 100°C in SDS-sample buffer, lane 4-6 unheated. Lane 1 reacted with rabbit anti *C. pneumoniae* OMC; lane 2 and 4 pre-serum; lane 3 and 5 polyclonal rabbit anti pEX1-1 fusion protein; lane 6 MAb 26.1.

Figure 11. The figure shows immunoblotting of *C. pneumoniae* EB, lane 1-4 heated to 100°C in SDS-sample buffer, lane 5-6 unheated. Reacted with serum from C57-black mice 14 days after infection with 10^7 CFU of *C. pneumoniae*. Lane 1 and 5 mouse 1; lane 2 and 6 mouse 2; lane 3 and 5 mouse 3; and lane 4 and 8 mouse 4.

Figure 12. The figure shows immunohistochemistry analysis of mouse lung tissue with *C. pneumoniae* inclusions present both in the bronchial epithelium and in the lung parenchyma (arrows).

EXAMPLE 1

Cloning of the genes encoding the 98/95 kDa *C. pneumoniae* COMC proteins**Purification of *C. pneumonia* EBs and COMC**

5 *C. pneumoniae* was cultivated in HeLa cells. Cultivation was done according to the specifications of Miyashita and Matsumoto (1992), with the modification that centrifugation of supernatant and of the later precipitate and turbid bottom layer was carried out at 100,000 X g. The microorganism
10 attached to the HeLa cells by 30 minutes of centrifugation at 1000 x g, after which the cells were incubated in RPMI 1640 medium (Gibco BRL, Germany cat No. 51800-27), containing 5% foetal calf serum (FCS, Gibco BRL, Germany Cat No. 10106.169) gentamicin for two hours at 37°C in 5% CO₂ atmosphere. The
15 medium was changed to medium that in addition contained 1 mg per ml of cycloheximide. After 48 hours of incubation a coverslip was removed from the cultures and the inclusion was tested with an antibody specific for *C. pneumoniae* (MAb 26.1) (Christiansen et al. 1994) and a monoclonal antibody specific
20 for the species *C. trachomatis* (MAb 32.3, Loke diagnostics, Århus Denmark) to ensure that no contamination with *C. trachomatis* had occurred. The HeLa cells were tested by Hoechst stain for Mycoplasma contamination as well as by culture in BEa and BEg medium (Freund et al., 1979). Also the
25 *C. pneumoniae* stocks were also tested for Mycoplasma contamination by cultivation in BEa and BEg medium. No contamination with *C. trachomatis*, Mycoplasmas or bacteria were detected in cultures or cells. 72 hours post-infection the monolayer was washed in PBS, the cells were loosened in
30 PBS with a rubber policeman, and the Chlamydia were liberated from the host cell by sonication. The *C. pneumoniae* EBs and RBs were purified on discontinuous density gradients (Miyashita et al. (1992)). The purity of the Chlamydia EBs were verified by negative staining and electronmicroscopy
35 (Figure 1), only particles of a size of 0.3 to 0.5 mm were

detected in agreement with the structure of *C. pneumonia* EBs. The purified Chlamydia EBs were subjected to sarkosyl extraction as described by Caldwell et al (1981) with the modification that a brief sonication was used to suspend the 5 COMC. The purified COMC was tested by electronmicroscopy and negative staining (Figure 1), where a folded outer membrane complex was seen.

SDS-PAGE analysis of purified EBs and COMC

The proteins from purified EBs and *C. pneumoniae* OMC were 10 separated on 15% SDS-polyacrylamide gel, and the gel was silver stained (Figure 2), in lane 1 it is seen that the purified EBs contain major proteins of 100/95 kDa and a protein of 38 kDa, in the purified COMC (lane 2) these two protein groups are also dominant. In addition, proteins with 15 a molecular weight of 62/60 kDa, 55 kDa, and 12 kDa have been enriched in the COMC preparation. When the purified *C. pneumoniae* EBs are compared to purified *C. trachomatis* EB (lane 3) it is seen that predominant protein in the *C. trachomatis* EB is the major outer membrane protein (MOMP), 20 and it is also the dominant band in the COMC preparation of *C. trachomatis* (lane 4), and Omp2 of 60/62 kDa as well as Omp3 at 12 kDa are seen in the preparation. However, no major bands with a size of 100/95 kDa are detected as in the *C. pneumoniae* COMC preparation.

25 Production of rabbit polyclonal antibodies against *C. pneumoniae* COMC

To ensure production of rabbit antibodies that would recognize all the *C. pneumoniae* proteins in immuno-blotting and colony-blotting 10 µg of COMC antigen was dissolved in 20 30 µl of SDS sample buffer and thereafter divided into 5 vials. The dissolved antigen was further diluted in one ml of PBS and one ml of Freund incomplete adjuvant (Difco laboratories, USA cat. No. 0639-60-6) and injected into the quadriceps muscle of a New Zealand white rabbit. The rabbit was given

three times intramuscular injections at an interval of one week, and after further three weeks the dissolved COMC protein, diluted in one ml PBS was injected intravenously, and the procedure was repeated two weeks later. Eleven weeks 5 after the beginning of the immunization, the serum was obtained from the rabbit. Purified *C. pneumoniae* EBs were separated by SDS-PAGE, and the proteins were electrotransferred to nitrocellulose membrane. The membrane was blocked and immunostained with the polyclonal COMC 10 antibody (Figure 3). The serum recognized proteins with a size of 100/95, 60 and 38 kDa in the EB preparation. This is in agreement with the sizes of the outer membrane proteins.

Cloning of the COMC proteins

Due to the cultivation of *C. pneumoniae* in HeLa cells, 15 contaminating host cell DNA could be present in the EB preparations. Therefore, the purified EB preparations were treated with DNase to remove contaminating DNA. The *C. pneumoniae* DNA was then purified by CsCl gradient 20 centrifugation. The *C. pneumoniae* DNA was partially digested with Sau3A and the fractions containing DNA fragments with a size of approx. 0.5 to 4.0 kb were cloned into the expression vector system pEX (Boehringer, Germany cat. No. 1034 766, 1034 774, 1034 782). The pEX vector system has a 25 β -galactosidase gene with multiple cloning sites in the 3' end of the β -galactosidase gene. Expression of the gene is regulated by the PR promoter, so the protein expression can be induced by elevating the temperature from 32 to 42°C. The colonies of recombinant bacteria were transferred to nitrocellulose membranes, and the temperature was increased 30 to 42°C for two hours. The bacteria were lysed by placing the nitrocellulose membranes on filters soaked in 5% SDS. The colonies expressing outer membrane proteins were detected with the polyclonal antibody raised against *C. pneumoniae* COMC. The positive clones were cultivated in suspension and 35 induced at 42°C for two hours. The protein profile of the clones were analysed by SDS-PAGE, and increases in the size

of the induced β -galactosidase were observed (Figure 4). In addition, the proteins were electrotransferred to nitrocellulose membranes, and the reaction with the polyclonal serum against COMC was confirmed (Figure 5).

5 Sequencing of positive COMC clones

To characterize the pEX clones, the inserted *C. pneumoniae* DNA was sequenced. The resulting DNA sequences were searched against the prokaryotic sequences in the GenEmbl database. The search identified 6 clones as part of the Omp2 gene, and 10 2 clones as part of the Omp3 gene, and 2 clones as part of the MOMP gene, indicating that COMC proteins had been successfully cloned. Furthermore, 32 clones were obtained, containing DNA sequences not found in the GenEmbl database. These sequences could, however, be clustered in two contigs 15 of 6 and 4 clones, and three clones were identical. In addition 19 clones were found with no overlap to the contigs (Figure 7). To obtain more sequence data for the genes, *C. pneumoniae* DNA was totally digested with BamHI restriction enzyme, and the fragments were cloned into the vector 20 pBluescript. The ligated DNA was electrotransformed into *E. coli* XL1-Blue and selected on plates containing Ampicillin. The recombinant bacterial colonies were transferred to a nitrocellulose membrane, and colony hybridisation was performed using the inserts of pEX 1-1 clone as a probe. A 25 clone containing a single BamHI fragment of 4.5 kb was found, and the hybridisation to the probe was confirmed by Southern blotting. The insert of the clone was sequenced bi-directionally using synthetic primers for approx. each 300 bp. The sequence of the BamHI fragment made it possible to 30 join the two contigs of pEX clones. Totally, together with the pEX clones it was possible to assemble 6.5 kb DNA sequence, encoding two new COMC proteins. (Figure 6)

Additional sequences were obtained by PCR performed on purified *C. pneumoniae* DNA with primers both from the known 35 Omp genes and from other known genes. The obtained PCR

products were sequenced. The sequence organisation is shown in Fig. 7. Additional 8 Omp genes were detected. The alignment of the deduced amino acid sequences are shown in Fig. 8 A and B.

5 Analysis of DNA sequence

The DNA sequence encoding the Omp4-15 proteins with a size of 89.6-100.3 kDa (and for Omp13: 56.1 kDa). Omp4 and Omp5 were transcribed in opposite directions. Downstream Omp4 a possible termination structure was located. The 3'end of the 10 Omp5 gene was not cloned due to the presence of the BamHI restriction enzyme site positioned within the gene. The translated DNA sequence of Omp4 and Omp5 was compared by use of the gap programme in the GCG package (Wisconsin package, version 8.1-UNIX, August 1995, sequence analysis software package). The two genes had an amino acid identity of 41% (similarity 61%), and a possible cleavage site for signal 15 peptidase 1 was present at amino acid 17 in Omp4 and amino acid 25 in Omp5. When the amino acid sequence encoded by two other pEX clones were compared to the sequence of Omp4 and 20 Omp5 they also had amino acid homology to the genes. It is seen that the two clones have homology to the same area in the Omp4 and Omp5 proteins. Consequently, the pEX clones must have originated from two additional genes. Therefore these 25 genes were named Omp6 and Omp7. Similar analyses were performed with the other genes. In contrast to what was seen for Omp4 and 5 none of the other putative omp proteins had a cleavage site for signal peptides.

EXAMPLE 2

30 Polyclonal monospecific antibodies against pEX fusion proteins and full length recombination + Omp4

To investigate the topology of the Omp4-7 proteins, representative pEX clones, were selected from each gene. The fusion proteins of β -galactosidase/omp were induced, and the

proteins were partially purified as inclusion bodies. Balb/c mice were immunized three times intramuscular with the antigens at an interval of one week, and after six weeks the serum was obtained from the mice. HeLa cells were infected 5 with the *C. pneumoniae*. 72 hours after the infection the mono-layers were fixed with 3.7% formaldehyde. This treatment makes the outer membrane of the Chlamydia impermeable for antibodies due to the extensive cross-linking of the outer membrane proteins by the formaldehyde. The HeLa cells were 10 permeabilized with 0.2% Triton X100, the monolayers were washed in PBS, then incubated with 20% (v/v) FCS to inactivate free radicals of the formaldehyde. The mice sera were diluted 1:100 PBS with 20% (v/v) FCS and incubated with the monolayers for half an hour. The monolayers were washed 15 in PBS and secondary FITCH conjugated rabbit anti mouse serum was added for half an hour, and the monolayers were washed and mounted. Several of the antibodies reacted strongly with the EBs in the inclusions (Figure 9). In spite of the formaldehyde fixation it could not be excluded that the 20 surface of the EB was changed by the treatments, so that the antibodies could get access to the Omp4-7. Therefore, the reaction was confirmed by immuno-electron microscopy with the antibody raised against clone pEX3-36. Purified EB of *C. pneumoniae* were absorbed to carbon coated nickel grids. After 25 the absorption the grids were washed with PBS and blocked in 0.5% Ovalbumin dissolved in PBS. The antibodies were diluted 1:100 in the same buffer and incubated for 30 minutes. The grids were washed in PBS. Rabbit anti mouse Ig conjugated with 10nm colloidal gold diluted in PBS containing 1% gelatin 30 was added to the grids for half an hour. The grids were washed in 3 x PBS with 1% gelatin and 3 times in PBS, the grids were contrastained with 0.7% phospho tungstic acid. The grids were analysed in a Jeol 1010 electron microscope at 40 kV. It was seen that the gold particles were covering the 35 surface of the purified EB. Because the *C. pneumoniae* EBs were not exposed to any detergent or fixation under either the purification or the reaction with antibodies, these

results show that the cloned proteins have surface exposed epitopes.

Polyclonal monospecific antibodies against Omp4

The Omp4 gene was amplified by PCR with primers that
5 contained LIC-sites, and the PCR product was cloned into the
pET-30 LIC vector (Novagen). The histidine tagged fusion
protein was expressed by induction of the synthesis by IPTG
and purified over a nickel column. The purified Omp4 protein
was used for immunization of a rabbit (six times, 8 µg each
10 time).

Use of rabbit polyclonal antibodies to recombinant Omp4 for detection of *Chlamydia pneumoniae* in paraffin embedded sections

The lungs of *C. pneumoniae* infected mice were obtained three
15 days after intranasal infection. The tissue samples were
fixed in 4% formaldehyde, paraffin embedded, sectioned and
deparaffinized prior to staining. The sections were incubated
with the rabbit serum diluted 1:200 in TBS (150 mM NaCl,
20mM Tris pH 7.5) for 30 min at room temperature. After wash
20 two times in TBS the sections were incubated with the
secondary antibody (biotinylated goat anti-rabbit antibodies)
diluted 1:300 in TBS, followed by two times wash in TBS. The
sections were stained with streptavidin-biotin complex
(streptABCComplex/AP, Dako) for 30 min washed and developed
25 under microscopic inspection with chromagen + new fuchsin
(Vector laboratories). The sections were counter stained with
Hematoxylin and analyzed by microscopy.

Immuno blotting analysis with hyperimmune monospecific rabbit anti-serum

30 The insert of pEX1-1 clone was amplified by PCR using primers
containing LIC sites. The PCR product could therefore be
inserted in the pET-32 LIC vector (Novagen, UK cat No. 69076-

1). Thereby the insert sequence of the pEX1-1 clone was expressed in the new vector as a fusion protein, the part of the fusion protein encoded by the pET-32 LIC vector had 6 histidine residues in a row. The expression of the fusion 5 protein was induced in this vector, and the fusion protein could be purified under denaturing condition on a Ni²⁺ column due to the high affinity of the histidine residues to divalent cations. The purified protein was used for immunization of a New Zealand white rabbit. After 6 times 10 intramuscular and 2 times intravenous immunization the serum was obtained from the rabbit. Purified *C. pneumoniae* EB was dissolved in SDS-sample buffer. Half of the sample was heated to 100°C in the sample buffer, whereas the other half of the sample was not heated. The samples were separated by 15 SDS-PAGE, and the proteins were transferred to nitrocellulose, the serum was reacted with the strips. With the samples heated to 100°C the serum recognized a high molecular weight band of approximately 98 kDa. This is in agreement with the predicted size of Omp5, of which the 20 pEX1-1 clone is a part, however, when the antibody was reacted to the strip with unheated EB, the pattern was different. Now a band was seen with a size of 75 kDa, in addition weaker bands were observed above the band (Figure 10). These data demonstrate that Omp5 needs boiling in 25 SDS-sample buffer to be fully denatured and migrate with a size as predicted from the gene product. When the samples were not boiled, the protein was not fully denatured and less SDS binds to the protein and it has a more globular structure that will migrate faster in the acrylamide gel. The band 30 pattern looked identical to what was obtained with a monoclonal antibody (MAb 26.1) (lane 6), we earlier have described (Christiansen et al., 1994), reacting with the surface of *C. pneumoniae* EB, but the antibody do not react with the fully SDS denatured *C. pneumoniae* EB in 35 immunoblotting.

Experimental infection of C57 black mice

Due to the realization of the altered migration of the Omp4-7 proteins without boiling, we chose to analyse antibodies against *C. pneumoniae* EBs after an experimental infection of 5 mice. To obtain antibodies from an infection caused by *C. pneumoniae*, C57 black mice were inoculated intranasally with 10^7 CFI of *C. pneumoniae* under a light ether anaesthesia. After 14 days of infection the serum samples were obtained and the lungs were analysed for pathological changes. In two 10 of the mice a severe pneumonia was observed in the lung sections, and in the third mouse only minor changes were observed. The serum from the mice was diluted 1:100 and reacted with purified EBs dissolved in sample buffer with and without boiling. In the preparations that had been heated to 15 100°C the sera from two of the mice reacted strongly with bands of 60/62 kDa and weaker bands of 55 kDa, but no reaction was observed with proteins of the size of Omp4-7 (Figure 11). However, when the sera were reacted with the preparation that had not been heated they all had a strong 20 reaction with a broad band of an approximate size of 75 kDa. This is in agreement with the size of the Omp4-7 proteins in the unheated preparation. Therefore, it could be concluded that the epitopes of the Omp4-7 proteins recognized by the 25 antibodies after a *C. pneumoniae* infection were discontinuous epitopes because the full denaturation of the antigen completely destroyed the epitopes. The 75 kDa protein observed in unheated samples is not Omp2 (Shown in immunoblotting with an Omp2 specific antibody)

EXAMPLE 3**30 Comparison of Omp4-7 of *C. pneumoniae* with putative outer membrane proteins (POMP) of *C. psittaci***

Longbottom et al. (1996) have published partial sequence from 98 to 90 kDa proteins from *C. psittaci*. They have entered the full sequence of 5 genes in this family in the EMBL database.

They have named the genes "putative outer membrane proteins" (POMP) since their precise location was not determined. The family is composed of two genes that are completely identical, and two genes with high homology to these genes.

5 They calculated a molecular size of 90 and 91 kDa. The 5th encode a protein of 98 kDa. The sequence of the Omp4-7 proteins of *C. pneumoniae* were compared to the sequences of the *C. Psittaci* POMP proteins with the programme pileup in the GCG package. The amino acid homologies were in the range

10 of 51-63%. It is seen that the *C. pneumoniae* Omp4-5 proteins are most related to the 98 kDa POMP protein of *C. psittaci*. Interestingly, the 98 kDa *C. psittaci* POMP protein is more related to the *C. pneumoniae* genes than to the other *C. psittaci* genes. The repeated sequences of GGAI were conserved

15 in the 98 kDa POMP protein, but only three GGAI repeats were present in the 90 and 91 kDa *C. psittaci* POMP proteins. For *C. psittaci* it has been shown that antibodies to these proteins seem to be protective for the infection.

REFERENCES

20

1. Caldwell, H.D., J. Kromhout and J. Schachter, Infect. Immun. 31, 1161-1176 (1981).
2. Campbell, L.A., M.P. Melgosa, D.J. Hamilton, C.-C. Kuo and J.T. Grayston, J. Clinical Microbiol., 30, 434-439 (1992).
3. Christiansen, G., and S. Birkelund. Eur. Microbiol. 1:24-29 (1992).
4. Christiansen, G., L. Østergaard, and S. Birkelund. Proceedings of the eight International symposium on Human Infections, Eds. Orfila et al., pp 173-176, (1994).
5. Grayston, J.T., Kuo, C.-C., Campbell, L.A., and Vang, S.-P. Int. J. Syst. Bacteriol. 39, 88-90 (1989).
6. Grayston, J.T., C.-C. Kuo, S.-P. Wang and J. Altman. 1986. N. Engl. J. Med. 315, 161-168 (1986).
- 35 7. Kuo, C.C., L.A. Jackson, L.A. Campbell and J.T. Graystone. Clin. Microbiol. Rev. 8, 451-461 (1995).

8. Longbottom, D., M. Russell, G.E Jones, A. Lainson, and A.J. Herring. FEMS Microbiol. Lett. 142, 277-281 (1996).
9. Melgosa, M.P., C.-C. Kuo and L.A. Campbell, FEMS Microbiol. Lett. 112, 199-204 (1993).
10. Campbell, L.A., C.-C kuo, S.P. Wang amd J.T. Grayston. J. Clin. Microbiol. 28, 1261-1264 (1990).
11. Halme, S., P. Saikku and H.-M. Surcel. Scand. J. Immunol. 45, 378-384 (1997).
- 10 12. Miyashita, N. and A. Matsumoto. J. Clin. Microbiol. 30, 2911-2916 (1992).
13. Wang, S.P., and J.T. Grayston, Am. J. Ophtalmol. 70, 367-374 (1970).
14. Freund, E.A., H. Ernø and R.M. Lemcke. Identification of mycoplasma, P377-443 in I. Norris and J.R. Bergen; Methods in Microbiology vol 13, A.P. Inc. London 1979)

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT

- (A) NAME: Svend Birkelund
- (B) STREET: Dept. of Medical Microbiology and Immunology,
University of Århus
- (C) CITY: Århus C
- (D) STATE OR PROVINCE:
- (E) COUNTRY: Denmark
- (F) POSTAL CODE: 8000

(ii) TITLE OF THE INVENTION: Chlamydia pneumoniae anti
gens

(iii) NUMBER OF SEQUENCES: 30

(iv) COMPUTER-READABLE FORM:

- (A) MEDIUM TYPE: Diskette
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: DOS
- (D) SOFTWARE: FastSEQ for Windows Version 2.0

(v) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3200 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 205...2987
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CAATGTCGAA GAGAGCACTA ACCAGGAAAA TTGCGATTTC ATAAACCCAC TTTATTATTA	60
AATTCTTACT TGCCTCATAT AAAATAGAAA ACTCAGAGAG TCAAGATAAA AATTCTTGAC	120
AGCTGTTTG TCATCTTAA CTTGATTAC TTATTTGTT TCTATATTGA TGCGAATAGT	180
TCTCTAAAAA ACAAAAGCAT TACC ATG AAG ACT TCG ATT CCT TGG GTT TTA	231
Met Lys Thr Ser Ile Pro Trp Val Leu	
1	5

GTT TCC TCC GTG TTA GCT TTC TCA TGT CAC CTA CAG TCA CTA GCT AAC	279		
Val Ser Ser Val Leu Ala Phe Ser Cys His Leu Gln Ser Leu Ala Asn			
10	15	20	25

GAG GAA CTT TTA TCA CCT GAT GAT AGC TTT AAT GGA AAT ATC GAT TCA	327
Glu Glu Leu Leu Ser Pro Asp Asp Ser Phe Asn Gly Asn Ile Asp Ser	
30 35 40	
GGA ACG TTT ACT CCA AAA ACT TCA GCC ACA ACA TAT TCT CTA ACA GGA	375
Gly Thr Phe Thr Pro Lys Thr Ser Ala Thr Thr Tyr Ser Leu Thr Gly	
45 50 55	
GAT GTC TTC TTT TAC GAG CCT GGA AAA GGC ACT CCC TTA TCT GAC AGT	423
Asp Val Phe Phe Tyr Glu Pro Gly Lys Gly Thr Pro Leu Ser Asp Ser	
60 65 70	
TGT TTT AAG CAA ACC ACG GAC AAT CTT ACC TTC TTG GGG AAC GGT CAT	471
Cys Phe Lys Gln Thr Thr Asp Asn Leu Thr Phe Leu Gly Asn Gly His	
75 80 85	
AGC TTA ACG TTT GGC TTT ATA GAT GCT GGC ACT CAT GCA GGT GCT GCT	519
Ser Leu Thr Phe Gly Phe Ile Asp Ala Gly Thr His Ala Gly Ala Ala	
90 95 100 105	
GCA TCT ACA ACA GCA AAT AAG AAT CTT ACC TTC TCA GGG TTT TCC TTA	567
Ala Ser Thr Thr Ala Asn Lys Asn Leu Thr Phe Ser Gly Phe Ser Leu	
110 115 120	
CTG AGT TTT GAT TCC TCT CCT AGC ACA ACG GTT ACT ACA GGT CAG GGA	615
Leu Ser Phe Asp Ser Ser Pro Ser Thr Thr Val Thr Thr Gly Gln Gly	
125 130 135	
ACG CTT TCC TCA GCA GGA GGC GTA AAT TTA GAA AAT ATT CGT AAA CTT	663
Thr Leu Ser Ser Ala Gly Gly Val Asn Leu Glu Asn Ile Arg Lys Leu	
140 145 150	
GTA GTT GCT GGG AAT TTT TCT ACT GCA GAT GGT GGA GCT ATC AAA GGA	711
Val Val Ala Gly Asn Phe Ser Thr Ala Asp Gly Gly Ala Ile Lys Gly	
155 160 165	
GCG TCT TTC CTT TTA ACT GGC ACT TCT GGA GAT GCT CTT TTT AGT AAC	759
Ala Ser Phe Leu Leu Thr Gly Thr Ser Gly Asp Ala Leu Phe Ser Asn	
170 175 180 185	
AAC TCT TCA TCA ACA AAG GGA GCA ATT GCT ACT ACA GCA GGC GCT	807
Asn Ser Ser Ser Thr Lys Gly Gly Ala Ile Ala Thr Thr Ala Gly Ala	
190 195 200	
CGC ATA GCA AAT AAC ACA GGT TAT GTT AGA TTC CTA TCT AAC ATA GCG	855
Arg Ile Ala Asn Asn Thr Gly Tyr Val Arg Phe Leu Ser Asn Ile Ala	
205 210 215	
TCT ACG TCA GGA GGC GCT ATC GAT GAT GAA GGC ACG TCG ATA CTA TCG	903
Ser Thr Ser Gly Gly Ala Ile Asp Asp Glu Gly Thr Ser Ile Leu Ser	
220 225 230	
AAC AAC AAA TTT CTA TAT TTT GAA GGG AAT GCA GCG AAA ACT ACT GGC	951
Asn Asn Lys Phe Leu Tyr Phe Glu Gly Asn Ala Ala Lys Thr Thr Gly	
235 240 245	
GGT GCG ATC TGC AAC ACC AAG GCG AGT GGA TCT CCT GAA CTG ATA ATC	999

Gly Ala Ile Cys Asn Thr Lys Ala Ser Gly Ser Pro Glu Leu Ile Ile			
250	255	260	265
TCT AAC AAT AAG ACT CTG ATC TTT GCT TCA AAC GTC GCA GAA ACA AGC			1047
Ser Asn Asn Lys Thr Leu Ile Phe Ala Ser Asn Val Ala Glu Thr Ser			
270	275	280	
GGT GGC GCC ATC CAT GCT AAA AAG CTA GCC CTT TCC TCT GGA GGC TTT			1095
Gly Gly Ala Ile His Ala Lys Lys Leu Ala Leu Ser Ser Gly Gly Phe			
285	290	295	
ACA GAG TTT CTA CGA AAT AAT GTC TCA TCA GCA ACT CCT AAG GGG GGT			1143
Thr Glu Phe Leu Arg Asn Asn Val Ser Ser Ala Thr Pro Lys Gly Gly			
300	305	310	
GCT ATC AGC ATC GAT GCC TCA GGA GAG CTC AGT CTT TCT GCA GAG ACA			1191
Ala Ile Ser Ile Asp Ala Ser Gly Glu Leu Ser Leu Ser Ala Glu Thr			
315	320	325	
GGA AAC ATT ACC TTT GTA AGA AAT ACC CTT ACA ACA ACC GGA AGT ACC			1239
Gly Asn Ile Thr Phe Val Arg Asn Thr Leu Thr Thr Thr Gly Ser Thr			
330	335	340	345
GAT ACT CCT AAA CGT AAT GCG ATC AAC ATA GGA AGT AAC GGG AAA TTC			1287
Asp Thr Pro Lys Arg Asn Ala Ile Asn Ile Gly Ser Asn Gly Lys Phe			
350	355	360	
ACG GAA TTA CGG GCT GCT AAA AAT CAT ACA ATT TTC TTC TAT GAT CCC			1335
Thr Glu Leu Arg Ala Ala Lys Asn His Thr Ile Phe Phe Tyr Asp Pro			
365	370	375	
ATC ACT TCA GAA GGA ACC TCA TCA GAC GTA TTG AAG ATA AAT AAC GGC			1383
Ile Thr Ser Glu Gly Thr Ser Ser Asp Val Leu Lys Ile Asn Asn Gly			
380	385	390	
TCT GCG GGA GCT CTC AAT CCA TAT CAA GGA ACG ATT CTA TTT TCT GGA			1431
Ser Ala Gly Ala Leu Asn Pro Tyr Gln Gly Thr Ile Leu Phe Ser Gly			
395	400	405	
GAA ACC CTA ACA GCA GAT GAA CTT AAA GTT GCT GAC AAT TTA AAA TCT			1479
Glu Thr Leu Thr Ala Asp Glu Leu Lys Val Ala Asp Asn Leu Lys Ser			
410	415	420	425
TCA TTC ACG CAG CCA GTC TCC CTA TCC GGA GGA AAG TTA TTG CTA CAA			1527
Ser Phe Thr Gln Pro Val Ser Leu Ser Gly Gly Lys Leu Leu Leu Gln			
430	435	440	
AAG GGA GTC ACT TTA GAG AGC ACG AGC TTC TCT CAA GAG GCC GGT TCT			1575
Lys Gly Val Thr Leu Glu Ser Thr Ser Phe Ser Gln Glu Ala Gly Ser			
445	450	455	
CTC CTC GGC ATG GAT TCA GGA ACG ACA TTA TCA ACT ACA GCT GGG AGT			1623
Leu Leu Gly Met Asp Ser Gly Thr Thr Leu Ser Thr Thr Ala Gly Ser			
460	465	470	
ATT ACA ATC ACG AAC CTA GGA ATC AAT GTT GAC TCC TTA GGT CTT AAG			1671
Ile Thr Ile Thr Asn Leu Gly Ile Asn Val Asp Ser Leu Gly Leu Lys			

475	480	485	
CAG CCC GTC AGC CTA ACA GCA AAA GGT GCT TCA AAT AAA GTG ATC GTA Gln Pro Val Ser Leu Thr Ala Lys Gly Ala Ser Asn Lys Val Ile Val			1719
490	495	500	505
TCT GGG AAG CTC AAC CTG ATT GAT ATT GAA GGG AAC ATT TAT GAA AGT Ser Gly Lys Leu Asn Leu Ile Asp Ile Glu Gly Asn Ile Tyr Glu Ser			1767
510	515	520	
CAT ATG TTC AGC CAT GAC CAG CTC TTC TCT CTA TTA AAA ATC ACG GTT His Met Phe Ser His Asp Gln Leu Phe Ser Leu Leu Lys Ile Thr Val			1815
525	530	535	
GAT GCT GAT GTT GAT ACT AAC GTT GAC ATC AGC AGC CTT ATC CCT GTT Asp Ala Asp Val Asp Thr Asn Val Asp Ile Ser Ser Leu Ile Pro Val			1863
540	545	550	
CCT GCT GAG GAT CCT AAT TCA GAA TAC GGA TTC CAA GGA CAA TGG AAT Pro Ala Glu Asp Pro Asn Ser Glu Tyr Gly Phe Gln Gly Gln Trp Asn			1911
555	560	565	
GTT AAT TGG ACT ACG GAT ACA GCT ACA AAT ACA AAA GAG GCC ACG GCA Val Asn Trp Thr Asp Thr Ala Thr Asn Thr Lys Glu Ala Thr Ala			1959
570	575	580	585
ACT TGG ACC AAA ACA GGA TTT GTT CCC AGC CCC GAA AGA AAA TCT GCG Thr Trp Thr Lys Thr Gly Phe Val Pro Ser Pro Glu Arg Lys Ser Ala			2007
590	595	600	
TTA GTA TGC AAT ACC CTA TGG GGA GTC TTT ACT GAC ATT CGC TCT CTG Leu Val Cys Asn Thr Leu Trp Gly Val Phe Thr Asp Ile Arg Ser Leu			2055
605	610	615	
CAA CAG CTT GTA GAG ATC GGC GCA ACT GGT ATG GAA CAC AAA CAA GGT Gln Gln Leu Val Glu Ile Gly Ala Thr Gly Met Glu His Lys Gln Gly			2103
620	625	630	
TTC TGG GTT TCC TCC ATG ACG AAC TTC CTG CAT AAG ACT GGA GAT GAA Phe Trp Val Ser Ser Met Thr Asn Phe Leu His Lys Thr Gly Asp Glu			2151
635	640	645	
AAT CGC AAA GGC TTC CGT CAT ACC TCT GGA GGC TAC GTC ATC GGT GGA Asn Arg Lys Gly Phe Arg His Thr Ser Gly Gly Tyr Val Ile Gly Gly			2199
650	655	660	665
AGT GCT CAC ACT CCT AAA GAC GAC CTA TTT ACC TTT GCG TTC TGC CAT Ser Ala His Thr Pro Lys Asp Asp Leu Phe Thr Phe Ala Phe Cys His			2247
670	675	680	
CTC TTT GCT AGA GAC AAA GAT TGT TTT ATC GCT CAC AAC AAC TCT AGA Leu Phe Ala Arg Asp Lys Asp Cys Phe Ile Ala His Asn Asn Ser Arg			2295
685	690	695	
ACC TAC GGT GGA ACT TTA TTC AAG CAC TCT CAT ACC CTA CAA CCC Thr Tyr Gly Gly Thr Leu Phe Phe Lys His Ser His Thr Leu Gln Pro			2343
700	705	710	

CAA AAC TAT TTG AGA TTA GGA AGA GCA AAG TTT TCT GAA TCA GCT ATA Gln Asn Tyr Leu Arg Leu Gly Arg Ala Lys Phe Ser Glu Ser Ala Ile 715 720 725	2391
GAA AAA TTC CCT AGG GAA ATT CCC CTA GCC TTG GAT GTC CAA GTT TCG Glu Lys Phe Pro Arg Glu Ile Pro Leu Ala Leu Asp Val Gln Val Ser 730 735 740 745	2439
TTC AGC CAT TCA GAC AAC CGT ATG GAA ACG CAC TAT ACC TCA TTG CCA Phe Ser His Ser Asp Asn Arg Met Glu Thr His Tyr Thr Ser Leu Pro 750 755 760	2487
GAA TCC GAA GGT TCT TGG AGC AAC GAG TGT ATA GCT GGT GGT ATC GGC Glu Ser Glu Gly Ser Trp Ser Asn Glu Cys Ile Ala Gly Ile Gly 765 770 775	2535
CTA GAC CTT CCT TTT GTT CTT TCC AAC CCA CAT CCT CTT TTC AAG ACC Leu Asp Leu Pro Phe Val Leu Ser Asn Pro His Pro Leu Phe Lys Thr 780 785 790	2583
TTC ATT CCA CAG ATG AAA GTC GAA ATG GTT TAT GTA TCA CAA AAT AGC Phe Ile Pro Gln Met Lys Val Glu Met Val Tyr Val Ser Gln Asn Ser 795 800 805	2631
TTC TTC GAA AGC TCT AGT GAT GGC CGT GGT TTT AGT ATT GGA AGG CTG Phe Phe Glu Ser Ser Asp Gly Arg Gly Phe Ser Ile Gly Arg Leu 810 815 820 825	2679
CTT AAC CTC TCG ATT CCT GTG GGT GCG AAA TTC GTG CAG GGG GAT ATC Leu Asn Leu Ser Ile Pro Val Gly Ala Lys Phe Val Gln Gly Asp Ile 830 835 840	2727
GGA GAT TCC TAC ACC TAT GAT CTC TCA GGA TTC TTT GTT TCC GAT GTC Gly Asp Ser Tyr Thr Tyr Asp Leu Ser Gly Phe Phe Val Ser Asp Val 845 850 855	2775
TAT CGT AAC AAT CCC CAA TCT ACA GCG ACT CTT GTG ATG AGC CCA GAC Tyr Arg Asn Asn Pro Gln Ser Thr Ala Thr Leu Val Met Ser Pro Asp 860 865 870	2823
TCT TGG AAA ATT CGC GGT GGC AAT CTT TCA AGA CAG GCA TTT TTA CTG Ser Trp Lys Ile Arg Gly Gly Asn Leu Ser Arg Gln Ala Phe Leu Leu 875 880 885	2871
AGG GGT AGC AAC AAC TAC GTC TAC AAC TCC AAT TGT GAG CTC TTC GGA Arg Gly Ser Asn Asn Tyr Val Tyr Asn Ser Asn Cys Glu Leu Phe Gly 890 895 900 905	2919
CAT TAC GCT ATG GAA CTC CGT GGA TCT TCA AGG AAC TAC AAT GTA GAT His Tyr Ala Met Glu Leu Arg Gly Ser Ser Arg Asn Tyr Asn Val Asp 910 915 920	2967
GTT GGT ACC AAA CTC CGA TT CTAGATTGCT AAAACTCCCT AGTTCTCTA GGGAG 3022 Val Gly Thr Lys Leu Arg Phe 925	
TTTTCTCATA CTTTTAGGGA AATATTGCT ATAGGGAATG CTTTCCTTGC AAACTGTAAA 3082	

AAATAACATT TGTCCCTCTT CAAAAAAGAT TTCTTTAAT AATTTCTAGT TATAATTTA	3142
TTTAAAAAC AGTTAAATAA TTAATAGACA ATAATCTATT CTTATTGACT TCTTTTTT	3200

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 928 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Thr Ser Ile Pro Trp Val Leu Val Ser Ser Val Leu Ala Phe	
1 5 10 15	
Ser Cys His Leu Gln Ser Leu Ala Asn Glu Glu Leu Leu Ser Pro Asp	
20 25 30	
Asp Ser Phe Asn Gly Asn Ile Asp Ser Gly Thr Phe Thr Pro Lys Thr	
35 40 45	
Ser Ala Thr Thr Tyr Ser Leu Thr Gly Asp Val Phe Phe Tyr Glu Pro	
50 55 60	
Gly Lys Gly Thr Pro Leu Ser Asp Ser Cys Phe Lys Gln Thr Thr Asp	
65 70 75 80	
Asn Leu Thr Phe Leu Gly Asn Gly His Ser Leu Thr Phe Gly Phe Ile	
85 90 95	
Asp Ala Gly Thr His Ala Gly Ala Ala Ser Thr Thr Ala Asn Lys	
100 105 110	
Asn Leu Thr Phe Ser Gly Phe Ser Leu Leu Ser Phe Asp Ser Ser Pro	
115 120 125	
Ser Thr Thr Val Thr Thr Gly Gln Gly Thr Leu Ser Ser Ala Gly Gly	
130 135 140	
Val Asn Leu Glu Asn Ile Arg Lys Leu Val Val Ala Gly Asn Phe Ser	
145 150 155 160	
Thr Ala Asp Gly Gly Ala Ile Lys Gly Ala Ser Phe Leu Leu Thr Gly	
165 170 175	
Thr Ser Gly Asp Ala Leu Phe Ser Asn Asn Ser Ser Ser Thr Lys Gly	
180 185 190	
Gly Ala Ile Ala Thr Thr Ala Gly Ala Arg Ile Ala Asn Asn Thr Gly	
195 200 205	
Tyr Val Arg Phe Leu Ser Asn Ile Ala Ser Thr Ser Gly Gly Ala Ile	
210 215 220	
Asp Asp Glu Gly Thr Ser Ile Leu Ser Asn Asn Lys Phe Leu Tyr Phe	
225 230 235 240	
Glu Gly Asn Ala Ala Lys Thr Thr Gly Gly Ala Ile Cys Asn Thr Lys	
245 250 255	
Ala Ser Gly Ser Pro Glu Leu Ile Ile Ser Asn Asn Lys Thr Leu Ile	
260 265 270	
Phe Ala Ser Asn Val Ala Glu Thr Ser Gly Gly Ala Ile His Ala Lys	
275 280 285	
Lys Leu Ala Leu Ser Ser Gly Gly Phe Thr Glu Phe Leu Arg Asn Asn	
290 295 300	
Val Ser Ser Ala Thr Pro Lys Gly Gly Ala Ile Ser Ile Asp Ala Ser	

305	310	315	320
Gly	Glu	Leu	Ser
Leu	Ser	Leu	Ser
Asn	Thr	Leu	Thr
Asn	Thr	Thr	Thr
Ile	Asn	Ile	Gly
Ile	Asn	Ile	Gly
Asn	His	Ile	Phe
Ser	Asp	Ile	Phe
325	330	335	
340	345	350	
355	360	365	
370	375	380	
385	390	395	400
Tyr	Gln	Gly	Thr
Gly	Thr	Ile	Leu
405	410	415	
Leu	Lys	Val	Ala
Leu	Ser	Gly	Gly
420	425	430	
435	440	445	
450	455	460	
465	470	475	480
Ile	Asn	Val	Asp
Asp	Ser	Gln	Glu
485	490	495	
Lys	Gly	Ala	Ser
500	505	510	
515	520	525	
Leu	Phe	Ser	Leu
530	535	540	
545	550	555	560
Glu	Tyr	Gly	Phe
565	570	575	
Ala	Thr	Asn	Thr
580	585	590	
Val	Pro	Ser	Pro
595	600	605	
Gly	Val	Phe	Thr
610	615	620	
Ala	Thr	Gly	Met
625	630	635	640
Asn	Phe	Leu	His
645	650	655	
Thr	Ser	Gly	Gly
660	665	670	
Asp	Leu	Phe	Thr
675	680	685	
Cys	Phe	Ile	Ala
690	695	700	
Phe	Lys	His	Ser
705	710	715	720
Arg	Ala	Lys	Phe
725	730	735	
Pro	Leu	Ala	Leu
740	745	750	
Met	Glu	Thr	His
755	760	765	

Asn Glu Cys Ile Ala Gly Gly Ile Gly Leu Asp Leu Pro Phe Val Leu
 770 775 780
 Ser Asn Pro His Pro Leu Phe Lys Thr Phe Ile Pro Gln Met Lys Val
 785 790 795 800
 Glu Met Val Tyr Val Ser Gln Asn Ser Phe Phe Glu Ser Ser Ser Asp
 805 810 815
 Gly Arg Gly Phe Ser Ile Gly Arg Leu Leu Asn Leu Ser Ile Pro Val
 820 825 830
 Gly Ala Lys Phe Val Gln Gly Asp Ile Gly Asp Ser Tyr Thr Tyr Asp
 835 840 845
 Leu Ser Gly Phe Phe Val Ser Asp Val Tyr Arg Asn Asn Pro Gln Ser
 850 855 860
 Thr Ala Thr Leu Val Met Ser Pro Asp Ser Trp Lys Ile Arg Gly Gly
 865 870 875 880
 Asn Leu Ser Arg Gln Ala Phe Leu Leu Arg Gly Ser Asn Asn Tyr Val
 885 890 895
 Tyr Asn Ser Asn Cys Glu Leu Phe Gly His Tyr Ala Met Glu Leu Arg
 900 905 910
 Gly Ser Ser Arg Asn Tyr Asn Val Asp Val Gly Thr Lys Leu Arg Phe
 915 920 925

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2815 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGAAATCGC	AATTTCTCTG	GTTAGTGCTC	TCTTCGACAT	TGGCATGTT	TACTAGTTGT	60
TCCACTGTTT	TTGCTGCAAC	TGCTGAAAAT	ATAGGCCCT	CTGATAGCTT	TGACGGAAGT	120
ACTAACACAG	GCACCTATAC	TCCTAAAAAT	ACGACTACTG	GAATAGACTA	TACTCTGACA	180
GGAGATATAA	CTCTGCAAAA	CCTTGGGGAT	TCGGCAGCTT	TAACGAAGGG	TTGTTTTCT	240
GACACTACGG	AATCTTTAAG	CTTTGCCGGT	AAGGGGTACT	CACTTTCTTT	TTTAAATATT	300
AAGTCTAGTG	CTGAAGGCGC	AGCACTTCT	GTACAACTG	ATAAAAATCT	GTCGCTAAC	360
GGATTTTCGA	GTCTTACTTT	CTTAGCGGCC	CCATCATCGG	TAATCACAAC	CCCCTCAGGA	420
AAAGGTGCAG	TTAAATGTGG	AGGGGATCTT	ACATTTGATA	ACAATGGAAC	TATTTTATT	480
AAACAAAGATT	ACTGTGAGGA	AAATGGCGGA	GCCATTCTA	CCAAGAATCT	TTCTTTGAAA	540
ACACGCACGG	GATCGATTTC	TTTGAAAGGG	AATAAATCGA	GCGCAACAGG	AAAAAAAGGT	600
GGGGCTATTT	GTGCTACTGG	TACTGTAGAT	ATTACAAATA	ATACGGCTCC	TACCCTCTTC	660
TCGAACAATA	TTGCTGAAGC	TGCAGGTGGA	GCTATAAATA	GCACAGGAAA	CTGTACAATT	720
ACAGGGAATA	CGTCTCTGT	ATTTTCTGAA	AATAGTGTGA	CAGCGACCAG	AGGAAATGGA	780
GGAGCTCTT	CTGGAGATGC	CGATGTTACC	ATATCTGGGA	ATCAGAGTGT	AACTTTCTCA	840
GGAAACCAAG	CTGTAGCTAA	TGGCGGAGCC	ATTATGCTA	AGAAGCTTAC	ACTGGCTTCC	900
GGGGGGGGGG	GGGGTATCTC	CTTTTCTAAC	AATATAGTCC	AAGGTACCAAC	TGCAGGTAAT	960
GGTGGAGCCA	TTTCTATACT	GGCAGCTGGA	GAGTGTAGTC	TTTCAGCAGA	AGCAGGGGAC	1020
ATTACCTTCA	ATGGGAATGC	CATTGTTGCA	ACTACACCAAC	AAACTACAAA	AAGAAATTCT	1080
ATTGACATAG	GATCTACTGC	AAAGATCACG	AATTTACGTG	CAATATCTGG	GCATAGCATC	1140
TTTTTCTACG	ATCCGATTAC	TGCTAATACG	GCTGCGGATT	CTACAGATAC	TTTAAATCTC	1200
AATAAGGCTG	ATGCAGGTAA	TAGTACAGAT	TATAGTGGGT	CGATTGTTTT	TTCTGGTGAA	1260

AAGCTCTCTG	AAGATGAAGC	AAAAGTTGCA	GACAACCTCA	CTTCTACGCT	GAAGCAGCCT	1320
GTAACTCTAA	CTGCAGGAAA	TTTAGTACTT	AAACGTGGTG	TCACTCTCGA	TACGAAAGGC	1380
TTTACTCAGA	CCGGGGGTTTC	CTCTGTTATT	ATGGATGCGG	GCACAACGTT	AAAAGCAAGT	1440
ACAGAGGAGG	TCACCTTAAC	AGGTCTTCC	ATTCTGTAG	ACTCTTAGG	CGAGGGTAAG	1500
AAAGTTGTAA	TTGCTGCTTC	TGCAGCAAGT	AAAAATGTAG	CCCTTAGTGG	TCCGATTCTT	1560
CTTTTGGATA	ACCAAGGGAA	TGCTTATGAA	AATCACGACT	TAGGAAAAC	TCAAGACTTT	1620
TCATTTGTGC	AGCTCTCTGC	TCTGGGTACT	GCAACAACTA	CAGATGTTCC	AGCGGTTCC	1680
ACAGTAGCAA	CTCCTACGCA	CTATGGGTAT	CAAGGTAAC	GGGAATGAC	TTGGGTTGAT	1740
GATAACGCAA	GCACTCCAAA	GACTAAGACA	GCGACATTAG	CTTGGACCAA	TACAGGCTAC	1800
CTTCCGAATC	CTGAGCGTCA	AGGACCTTA	GTTCCAATA	GCCTTGGGG	ATCTTTTCA	1860
GACATCCAAG	CGATTCAAGG	TGTCATAGAG	AGAAGTGCCT	TGACTCTTTG	TTCAGATCGA	1920
GGCTTCTGGG	CTGCGGGAGT	CGCCAATTTC	TTAGATAAAAG	ATAAGAAAGG	GGAAAAAACGC	1980
AAATACCGTC	ATAAATCTGG	TGGATATGCT	ATCGGAGGTG	CAGCGAAAC	TTGTTCTGAA	2040
AACTTAATTA	GCTTTGCCTT	TTGCCAACTC	TTGGTAGCC	ATAAAGATT	CTTAGTCGCT	2100
AAAAATCATA	CTGATACCTA	TGCAGGAGCC	TTCTATATCC	AACACATTAC	AGAATGTAGT	2160
GGGTTCATAG	GTGCTCTTT	AGATAAAACTT	CCTGGCTCTT	GGAGTCATAA	ACCCCTCGTT	2220
TTAGAAGGGC	AGCTCGCTTA	TAGCCACGTC	AGTAATGATC	TGAAGACAAA	GTATACTGCG	2280
TATCCTGAGG	TGAAAGGTT	TTGGGGGAAT	AATGCTTTA	ACATGATGTT	GGGAGCTTCT	2340
TCTCATTCTT	ATCCTGAATA	CCTGCATTGT	TTTGATACCT	ATGCTCCATA	CATCAAAC	2400
AATCTGACCT	ATATAACGTCA	GGACAGCTTC	TCGGAGAAAG	GTACAGAAGG	AAGATCTTT	2460
GATGACAGCA	ACCTCTTCAA	TTTATCTTG	CCTATAGGGG	TGAAGTTGAA	GAAGTTCTCT	2520
GATTGTAATG	ACTTTTCTTA	TGATCTGACT	TTATCCTATG	TTCCTGATCT	TATCCGAAAT	2580
GATCCCAAT	GCACTACAGC	ACTTGTAAATC	AGCGGAGCCT	CTTGGGAAAC	TTATGCCAAT	2640
AACTTAGCAC	GACAGGCCTT	GCAAGTGCCT	GCAGGCAGTC	ACTACGCCTT	CTCTCCTATG	2700
TTTGAAGTGC	TCGGCCAGTT	TGTCTTGAA	GTTCGTGGAT	CCTCACGGAT	TTATAATGTA	2760
GATCTGGGG	GTAAGTTCCA	ATTCTAGGAG	CGTCTCTCAT	GTCTCAGAAA	TTCTG	2815

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 928 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Lys	Ser	Gln	Phe	Ser	Trp	Leu	Val	Leu	Ser	Ser	Thr	Leu	Ala	Cys
1				5				10					15		
Phe	Thr	Ser	Cys	Ser	Thr	Val	Phe	Ala	Ala	Thr	Ala	Glu	Asn	Ile	Gly
							20		25			30			
Pro	Ser	Asp	Ser	Phe	Asp	Gly	Ser	Thr	Asn	Thr	Gly	Thr	Tyr	Thr	Pro
							35		40			45			
Lys	Asn	Thr	Thr	Thr	Gly	Ile	Asp	Tyr	Thr	Leu	Thr	Gly	Asp	Ile	Thr
						50		55		60					
Leu	Gln	Asn	Leu	Gly	Asp	Ser	Ala	Ala	Leu	Thr	Lys	Gly	Cys	Phe	Ser
						65		70		75			80		
Asp	Thr	Thr	Glu	Ser	Leu	Ser	Phe	Ala	Gly	Lys	Gly	Tyr	Ser	Leu	Ser
						85		90				95			
Phe	Leu	Asn	Ile	Lys	Ser	Ser	Ala	Glu	Gly	Ala	Ala	Leu	Ser	Val	Thr
							100		105			110			
Thr	Asp	Lys	Asn	Leu	Ser	Leu	Thr	Gly	Phe	Ser	Ser	Leu	Thr	Phe	Leu
							115		120			125			
Ala	Ala	Pro	Ser	Ser	Val	Ile	Thr	Thr	Pro	Ser	Gly	Lys	Gly	Ala	Val
						130		135			140				

Lys Cys Gly Gly Asp Leu Thr Phe Asp Asn Asn Gly Thr Ile Leu Phe
 145 150 155 160
 Lys Gln Asp Tyr Cys Glu Glu Asn Gly Gly Ala Ile Ser Thr Lys Asn
 165 170 175
 Leu Ser Leu Lys Asn Ser Thr Gly Ser Ile Ser Phe Glu Gly Asn Lys
 180 185 190
 Ser Ser Ala Thr Gly Lys Lys Gly Gly Ala Ile Cys Ala Thr Gly Thr
 195 200 205
 Val Asp Ile Thr Asn Asn Thr Ala Pro Thr Leu Phe Ser Asn Asn Ile
 210 215 220
 Ala Glu Ala Ala Gly Gly Ala Ile Asn Ser Thr Gly Asn Cys Thr Ile
 225 230 235 240
 Thr Gly Asn Thr Ser Leu Val Phe Ser Glu Asn Ser Val Thr Ala Thr
 245 250 255
 Ala Gly Asn Gly Gly Ala Leu Ser Gly Asp Ala Asp Val Thr Ile Ser
 260 265 270
 Gly Asn Gln Ser Val Thr Phe Ser Gly Asn Gln Ala Val Ala Asn Gly
 275 280 285
 Gly Ala Ile Tyr Ala Lys Lys Leu Thr Leu Ala Ser Gly Gly Gly Gly
 290 295 300
 Gly Ile Ser Phe Ser Asn Asn Ile Val Gln Gly Thr Thr Ala Gly Asn
 305 310 315 320
 Gly Gly Ala Ile Ser Ile Leu Ala Ala Gly Glu Cys Ser Leu Ser Ala
 325 330 335
 Glu Ala Gly Asp Ile Thr Phe Asn Gly Asn Ala Ile Val Ala Thr Thr
 340 345 350
 Pro Gln Thr Thr Lys Arg Asn Ser Ile Asp Ile Gly Ser Thr Ala Lys
 355 360 365
 Ile Thr Asn Leu Arg Ala Ile Ser Gly His Ser Ile Phe Phe Tyr Asp
 370 375 380
 Pro Ile Thr Ala Asn Thr Ala Ala Asp Ser Thr Asp Thr Leu Asn Leu
 385 390 395 400
 Asn Lys Ala Asp Ala Gly Asn Ser Thr Asp Tyr Ser Gly Ser Ile Val
 405 410 415
 Phe Ser Gly Glu Lys Leu Ser Glu Asp Glu Ala Lys Val Ala Asp Asn
 420 425 430
 Leu Thr Ser Thr Leu Lys Gln Pro Val Thr Leu Thr Ala Gly Asn Leu
 435 440 445
 Val Leu Lys Arg Gly Val Thr Leu Asp Thr Lys Gly Phe Thr Gln Thr
 450 455 460
 Ala Gly Ser Ser Val Ile Met Asp Ala Gly Thr Thr Leu Lys Ala Ser
 465 470 475 480
 Thr Glu Glu Val Thr Leu Thr Gly Leu Ser Ile Pro Val Asp Ser Leu
 485 490 495
 Gly Glu Gly Lys Lys Val Val Ile Ala Ala Ser Ala Ala Ser Lys Asn
 500 505 510
 Val Ala Leu Ser Gly Pro Ile Leu Leu Leu Asp Asn Gln Gly Asn Ala
 515 520 525
 Tyr Glu Asn His Asp Leu Gly Lys Thr Gln Asp Phe Ser Phe Val Gln
 530 535 540
 Leu Ser Ala Leu Gly Thr Ala Thr Thr Asp Val Pro Ala Val Pro
 545 550 555 560
 Thr Val Ala Thr Pro Thr His Tyr Gly Tyr Gln Gly Thr Trp Gly Met
 565 570 575
 Thr Trp Val Asp Asp Thr Ala Ser Thr Pro Lys Thr Lys Thr Ala Thr
 580 585 590
 Leu Ala Trp Thr Asn Thr Gly Tyr Leu Pro Asn Pro Glu Arg Gln Gly

595	600	605
Pro Leu Val Pro Asn Ser Leu Trp Gly Ser Phe Ser Asp Ile Gln Ala		
610	615	620
Ile Gln Gly Val Ile Glu Arg Ser Ala Leu Thr Leu Cys Ser Asp Arg		
625	630	635
Gly Phe Trp Ala Ala Gly Val Ala Asn Phe Leu Asp Lys Asp Lys Lys		
645	650	655
Gly Glu Lys Arg Lys Tyr Arg His Lys Ser Gly Gly Tyr Ala Ile Gly		
660	665	670
Gly Ala Ala Gln Thr Cys Ser Glu Asn Leu Ile Ser Phe Ala Phe Cys		
675	680	685
Gln Leu Phe Gly Ser Asp Lys Asp Phe Leu Val Ala Lys Asn His Thr		
690	695	700
Asp Thr Tyr Ala Gly Ala Phe Tyr Ile Gln His Ile Thr Glu Cys Ser		
705	710	715
Gly Phe Ile Gly Cys Leu Leu Asp Lys Leu Pro Gly Ser Trp Ser His		
725	730	735
Lys Pro Leu Val Leu Glu Gly Gln Leu Ala Tyr Ser His Val Ser Asn		
740	745	750
Asp Leu Lys Thr Lys Tyr Thr Ala Tyr Pro Glu Val Lys Gly Ser Trp		
755	760	765
Gly Asn Asn Ala Phe Asn Met Met Leu Gly Ala Ser Ser His Ser Tyr		
770	775	780
Pro Glu Tyr Leu His Cys Phe Asp Thr Tyr Ala Pro Tyr Ile Lys Leu		
785	790	795
Asn Leu Thr Tyr Ile Arg Gln Asp Ser Phe Ser Glu Lys Gly Thr Glu		
805	810	815
Gly Arg Ser Phe Asp Asp Ser Asn Leu Phe Asn Leu Ser Leu Pro Ile		
820	825	830
Gly Val Lys Phe Glu Lys Phe Ser Asp Cys Asn Asp Phe Ser Tyr Asp		
835	840	845
Leu Thr Leu Ser Tyr Val Pro Asp Leu Ile Arg Asn Asp Pro Lys Cys		
850	855	860
Thr Thr Ala Leu Val Ile Ser Gly Ala Ser Trp Glu Thr Tyr Ala Asn		
865	870	875
Asn Leu Ala Arg Gln Ala Leu Gln Val Arg Ala Gly Ser His Tyr Ala		
885	890	895
Phe Ser Pro Met Phe Glu Val Leu Gly Gln Phe Val Phe Glu Val Arg		
900	905	910
Gly Ser Ser Arg Ile Tyr Asn Val Asp Leu Gly Gly Lys Phe Gln Phe		
915	920	925

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3052 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGCGATTTT CGCTCTGCGG ATTTCTCTA GTTTTTCTT TAACATTGCT CTCAGTCTTC	60
GACACTTCTT TGAGTGCTAC TACGATTCTT TTAACCCAG AAGATAGTTT TCATGGAGAT	120
AGTCAGAATG CAGAACGTTT TTATAATGTT CAAGCTGGGG ATGTCTATAG CCTTACTGGT	180

GATGTCTCAA TATCTAACGT CGATAACTCT GCATTAAAATA AAGCCTGCTT CAATGTGACC	240
TCAGGAAGTG TGACGTTCGC AGGAAATCAT CATGGGTTAT ATTTTAATAA TATTCCTCA	300
GGAACATACAA AGGAAGGGC TGACTTTGT TGCCAAGATC CTCAAGCAAC GGCACGTTT	360
TCTGGGTTCT CCACGCTCTC TTTTATTCTAG AGCCCCGGAG ATATTAAAGA ACAGGGATGT	420
CTCTATTCAA AAAATGCACT TATGCTCTTA AACAAATTATG TAGTGCCTT TGAACAAAC	480
CAAAGTAAGA CAAAGGCGG AGCTATTAGT GGGCGAATG TTACTATAGT AGGCAACTAC	540
GATTCCGTCT CTTTCTATCA GAATGCAGCC ACTTTGGAG GTGCTATCCA TTCTTCAGGT	600
CCCCTACAGA TTGCAGTAAA TCAGGCAGAG ATAAGATTG CACAAAATAC TGCCAAGAAT	660
GGTTCTGGAG GGGCTTGTA CTCCGATGGT GATATTGATA TTGATCAGAA TGCTTATGTT	720
CTATTCGAG AAAATGAGGC ATTGACTACT GCTATAGGTA AGGGAGGGC TGTCTGTTGT	780
CTTCCCACCT CAGGAAGTAG TACTCCAGTT CCTATTGTGA CTTTCTCTGA CAATAAACAG	840
TTAGTCTTIG AAAGAAAACCA TTCCATAATG GGTGGCGGAG CCATTATGTC TAGGAAACCTT	900
AGCATCTCTT CAGGAGGTCC TACTCTATTT ATCAATAATA TATCATATGCA AAATTCGCAA	960
AATTAGGTG GAGCTATTGC CATTGATACT GGAGGGGAGA TCAGTTTATC AGCAGAGAAA	1020
GGAACAATTA CATTCCAAGG AAACCGGACG AGCTTACCGT TTTGAATGG CATCCATCTT	1080
TTACAAAATG CTAAATTCCCT GAAATTACAG GCGAGAAATG GATGCTCTAT AGAATTTTAT	1140
GATCCTATT A CTTCTGAAGC AGATGGGTCT ACCCAATTGA ATATCAACCGG AGATCCTAAA	1200
AATAAAGAGT ACACAGGGAC CATACTCTT TCTGGAGAAA AGAGTCTAGC AAACGATCCT	1260
AGGGATTTA AATCTACAAT CCCTCAGAAC GTCAACCTGT CTGCAGGATA CTTAGTTATT	1320
AAAGAGGGGG CCGAAGTCAC AGTTTCAAAA TTCACGCACT CTCCAGGATC GCATTTAGTT	1380
TTAGATTTAG GAACCAAAC T GATAGCCTCT AAGGAAGACA TTGCCATCAC AGGCCTCGCG	1440
ATAGATATAG ATAGCTTAAG CTCATCCTCA ACAGCAGCTG TTATTAAAGC AAACACCGCA	1500
AATAAACAGA TATCCGTGAC GGACTCTATA GAACATTATCT CGCCTACTGG CAATGCCTAT	1560
GAAGATCTCA GAATGAGAAA TTCACAGACG TTCCCTCTGC TCTCTTAAAGA GCCTGGAGCC	1620
GGGGGTAGTG TGACTGTAAC TGCTGGAGAT TTCCCTACCGG TAAGTCCCCA TTATGGTTTT	1680
CAAGGCAATT GGAAATTAGC TTGGACAGGA ACTGGAAACA AAGTTGGAGA ATTCTTCTGG	1740
GATAAAATAA ATTATAAGCC TAGACCTGAA AAAGAAGGAA ATTAGTTCC TAATATCTTG	1800
TGGGGGAATG CTGTAATGT CAGATCCTTA ATGCAGGTTA AAGAGACCCA TGCATCGAGC	1860
TTACAGACAG ATCGAGGGCT GTGGATCGAT GGAATTGGGA ATTCTTCCA TGTATCTGCC	1920
TCCGAAGACA ATATAAGGT ACGTCATAAC AGCGGTGGAT ATGTTCTATC TGTAAATAAT	1980
GAGATCACAC CTAAGCACTA TACTTCGATG GCATTTTCCC AACTCTTCTAG TAGAGACAAG	2040
GACTATGCGG TTTCCAACAA CGAATACAGA ATGTATTTAG GATCGTATCT CTATCAATAT	2100
ACAACCTCCC TAGGAATAT TTTCCGTTAT GCTTCGCGTA ACCCTAATGT AAACGTCGGG	2160
ATTCTCTCAA GAAGGTTCT TCAAAATCT CTTATGATT TTCATTTCCT GTGTGCTTAT	2220
GTCATGCCA CCAATGATAT GAAAACAGAC TACGCAAATT TCCCTATGGT GAAAACAGC	2280
TGGAGAAACA ATTGTTGGC TATAGAGTGC GGAGGGAGCA TGCCTCTATT GGTATTTGAG	2340
AACGGAAGAC TTTTCCAAGG TGCCATCCC TTTATGAAAC TACAATTAGT TTATGCTTAT	2400
CAGGGAGATT TCAAAGAGAC GACTGCAGAT GGCGTAGAT TTAGTAATGG GAGTTAACAA	2460
TCGATTTCTG TACCTCTAGG CATACTCTT GAGAAGCTGG CACTTCTCA GGATGTACTC	2520
TATGACTTTA GTTTCTCTA TATTCTGTAT ATTTCCTCGTA AGGATCCCTC ATGTGAAGCT	2580
GCTCTGGTGA TTAGCGGAGA CTCCTGGCTT GTTCCGGCAG CACACGTATC AAGACATGCT	2640
TTTGTAGGGA GTGGAACGGG TCGGTATCAC TTTAACGACT ATACTGAGCT CTTATGTCGA	2700
GGAAGTATAG AATGCCGCC CCATGCTAGG AATTATAATA TAAACTGTGG AAGCAAATT	2760
CGTTTTAGA AGGTTTCCAT TGCCTGTGTG GTTCCGGATC TAAACTATAA ATCCTGGACT	2820
ATGGATCATA GGCATTGGGT TTCTCGAACT TGTGTGGAGA ATAACGACAT TTTATATGCA	2880
TAACGGAATA CTCGTATCAC CTCAGCCCC AGAGACATTC TTTAGGGTT CTTTATTGTT	2940
CTAAACTTCG TATTTTATCG AGAATCCTT ACGTTCTTGG TTTGCTTGTG TCCGAGGAGT	3000
TCTCTAACGA ATCATAGGGA TTCCAGGGTT CTGTTCTTGG AGTCCTTGG CA	3052

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 922 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Arg Phe Ser Leu Cys Gly Phe Pro Leu Val Phe Ser Leu Thr Leu
 1 5 10 15
 Leu Ser Val Phe Asp Thr Ser Leu Ser Ala Thr Thr Ile Ser Leu Thr
 20 25 30
 Pro Glu Asp Ser Phe His Gly Asp Ser Gln Asn Ala Glu Arg Ser Tyr
 35 40 45
 Asn Val Gln Ala Gly Asp Val Tyr Ser Leu Thr Gly Asp Val Ser Ile
 50 55 60
 Ser Asn Val Asp Asn Ser Ala Leu Asn Lys Ala Cys Phe Asn Val Thr
 65 70 75 80
 Ser Gly Ser Val Thr Phe Ala Gly Asn His His Gly Leu Tyr Phe Asn
 85 90 95
 Asn Ile Ser Ser Gly Thr Thr Lys Glu Gly Ala Val Leu Cys Cys Gln
 100 105 110
 Asp Pro Gln Ala Thr Ala Arg Phe Ser Gly Phe Ser Thr Leu Ser Phe
 115 120 125
 Ile Gln Ser Pro Gly Asp Ile Lys Glu Gln Gly Cys Leu Tyr Ser Lys
 130 135 140
 Asn Ala Leu Met Leu Leu Asn Asn Tyr Val Val Arg Phe Glu Gln Asn
 145 150 155 160
 Gln Ser Lys Thr Lys Gly Gly Ala Ile Ser Gly Ala Asn Val Thr Ile
 165 170 175
 Val Gly Asn Tyr Asp Ser Val Ser Phe Tyr Gln Asn Ala Ala Thr Phe
 180 185 190
 Gly Gly Ala Ile His Ser Ser Gly Pro Leu Gln Ile Ala Val Asn Gln
 195 200 205
 Ala Glu Ile Arg Phe Ala Gln Asn Thr Ala Lys Asn Gly Ser Gly Gly
 210 215 220
 Ala Leu Tyr Ser Asp Gly Asp Ile Asp Ile Asp Gln Asn Ala Tyr Val
 225 230 235 240
 Leu Phe Arg Glu Asn Glu Ala Leu Thr Thr Ala Ile Gly Lys Gly Gly
 245 250 255
 Ala Val Cys Cys Leu Pro Thr Ser Gly Ser Ser Thr Pro Val Pro Ile
 260 265 270
 Val Thr Phe Ser Asp Asn Lys Gln Leu Val Phe Glu Arg Asn His Ser
 275 280 285
 Ile Met Gly Gly Ala Ile Tyr Ala Arg Lys Leu Ser Ile Ser Ser
 290 295 300
 Gly Gly Pro Thr Leu Phe Ile Asn Asn Ile Ser Tyr Ala Asn Ser Gln
 305 310 315 320
 Asn Leu Gly Gly Ala Ile Ala Ile Asp Thr Gly Gly Glu Ile Ser Leu
 325 330 335
 Ser Ala Glu Lys Gly Thr Ile Thr Phe Gln Gly Asn Arg Thr Ser Leu
 340 345 350
 Pro Phe Leu Asn Gly Ile His Leu Leu Gln Asn Ala Lys Phe Leu Lys
 355 360 365
 Leu Gln Ala Arg Asn Gly Cys Ser Ile Glu Phe Tyr Asp Pro Ile Thr
 370 375 380
 Ser Glu Ala Asp Gly Ser Thr Gln Leu Asn Ile Asn Gly Asp Pro Lys
 385 390 395 400
 Asn Lys Glu Tyr Thr Gly Thr Ile Leu Phe Ser Gly Glu Lys Ser Leu
 405 410 415
 Ala Asn Asp Pro Arg Asp Phe Lys Ser Thr Ile Pro Gln Asn Val Asn

420	425	430
Leu Ser Ala Gly Tyr Leu Val Ile Lys Glu Gly Ala Glu Val Thr Val		
435	440	445
Ser Lys Phe Thr Gln Ser Pro Gly Ser His Leu Val Leu Asp Leu Gly		
450	455	460
Thr Lys Leu Ile Ala Ser Lys Glu Asp Ile Ala Ile Thr Gly Leu Ala		
465	470	475
Ile Asp Ile Asp Ser Leu Ser Ser Ser Thr Ala Ala Val Ile Lys		
485	490	495
Ala Asn Thr Ala Asn Lys Gln Ile Ser Val Thr Asp Ser Ile Glu Leu		
500	505	510
Ile Ser Pro Thr Gly Asn Ala Tyr Glu Asp Leu Arg Met Arg Asn Ser		
515	520	525
Gln Thr Phe Pro Leu Leu Ser Leu Glu Pro Gly Ala Gly Gly Ser Val		
530	535	540
Thr Val Thr Ala Gly Asp Phe Leu Pro Val Ser Pro His Tyr Gly Phe		
545	550	555
Gln Gly Asn Trp Lys Leu Ala Trp Thr Gly Thr Gly Asn Lys Val Gly		
565	570	575
Glu Phe Phe Trp Asp Lys Ile Asn Tyr Lys Pro Arg Pro Glu Lys Glu		
580	585	590
Gly Asn Leu Val Pro Asn Ile Leu Trp Gly Asn Ala Val Asn Val Arg		
595	600	605
Ser Leu Met Gln Val Gln Glu Thr His Ala Ser Ser Leu Gln Thr Asp		
610	615	620
Arg Gly Leu Trp Ile Asp Gly Ile Gly Asn Phe Phe His Val Ser Ala		
625	630	635
Ser Glu Asp Asn Ile Arg Tyr Arg His Asn Ser Gly Gly Tyr Val Leu		
645	650	655
Ser Val Asn Asn Glu Ile Thr Pro Lys His Tyr Thr Ser Met Ala Phe		
660	665	670
Ser Gln Leu Phe Ser Arg Asp Lys Asp Tyr Ala Val Ser Asn Asn Glu		
675	680	685
Tyr Arg Met Tyr Leu Gly Ser Tyr Leu Tyr Gln Tyr Thr Thr Ser Leu		
690	695	700
Gly Asn Ile Phe Arg Tyr Ala Ser Arg Asn Pro Asn Val Asn Val Gly		
705	710	715
Ile Leu Ser Arg Arg Phe Leu Gln Asn Pro Leu Met Ile Phe His Phe		
725	730	735
Leu Cys Ala Tyr Gly His Ala Thr Asn Asp Met Lys Thr Asp Tyr Ala		
740	745	750
Asn Phe Pro Met Val Lys Asn Ser Trp Arg Asn Asn Cys Trp Ala Ile		
755	760	765
Glu Cys Gly Gly Ser Met Pro Leu Leu Val Phe Glu Asn Gly Arg Leu		
770	775	780
Phe Gln Gly Ala Ile Pro Phe Met Lys Leu Gln Leu Val Tyr Ala Tyr		
785	790	795
Gln Gly Asp Phe Lys Glu Thr Thr Ala Asp Gly Arg Arg Phe Ser Asn		
805	810	815
Gly Ser Leu Thr Ser Ile Ser Val Pro Leu Gly Ile Arg Phe Glu Lys		
820	825	830
Leu Ala Leu Ser Gln Asp Val Leu Tyr Asp Phe Ser Phe Ser Tyr Ile		
835	840	845
Pro Asp Ile Phe Arg Lys Asp Pro Ser Cys Glu Ala Ala Leu Val Ile		
850	855	860
Ser Gly Asp Ser Trp Leu Val Pro Ala Ala His Val Ser Arg His Ala		
865	870	875
		880

Phe	Val	Gly	Ser	Gly	Thr	Gly	Arg	Tyr	His	Phe	Asn	Asp	Tyr	Thr	Glu
885							890							895	
Leu	Leu	Cys	Arg	Gly	Ser	Ile	Glu	Cys	Arg	Pro	His	Ala	Arg	Asn	Tyr
900							905							910	
Asn	Ile	Asn	Cys	Gly	Ser	Lys	Phe	Arg	Phe						
915							920								

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2526 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGAAGATTC	CACTCCGCTT	TTTATTGATA	TCATTAGTAC	CTACGCTTTC	TATGTCGAAT	60
TTATTAGGAG	CTGCTACTAC	CGAAGAGCTA	TCGGCTAGCA	ATAGCTTCGA	TGGAACTACA	120
TCAACAAACAA	GCTTTCTAG	TAAAACATCA	TCGGCTACAG	ATGGCACCAA	TTATGTTTT	180
AAAGATTCTG	TAGTTATAGA	AAATGTACCC	AAAACAGGGG	AAACTCAGTC	TACTAGTTGT	240
TTTAAAAATG	ACGCTGCAGC	TGGAGATCTA	AATTTCTTAG	GAGGGGGATT	TTCTTTCACA	300
TTTAGCAATA	TCGATGCAAC	CACGGCTTCT	GGAGCTGCTA	TTGGAAGTGA	AGCAGCTAAT	360
AAGACAGTCA	CGTTATCAGG	ATTTTCGGCA	CTTTCTTTTC	TTAAATCCCC	AGCAAGTACA	420
GTGACTAATG	GATTGGGAGC	TATCAATGTT	AAAGGGAATT	TAAGCCTATT	GGATAATGAT	480
AAGGTATTGA	TTCAGGACAA	TTTCTCAACA	GGAGATGGCG	GAGCAATTAA	TTGTGCAGGC	540
TCCTTGAAGA	TCGAAACAA	TAAGTCCCTT	TCTTTTATTG	GAAATAGTTC	TTCAACACGT	600
GGCGGAGCGA	TTCATACCAA	AAACCTCACA	CTATCTTCTG	GTGGGGAAAC	TCTATTTCAG	660
GGGAATACAG	CGCCTACGGC	TGCTGGTAAA	GGAGGTGCTA	TCGCGATTGC	AGACTCTGGC	720
ACCCATATCCA	TTTCTGGAGA	CAGTGGCGAC	ATTATCTTG	AAGGCAATAC	GATAGGAGCT	780
ACAGGAACCG	TCTCTCATAG	TGCTATTGAT	TTAGGAACTA	GCGCTAAGAT	AACTGCGTTA	840
CGTGCTGCCG	AAGGACATAC	GATATACTTT	TATGATCCGA	TTACTGTAAC	AGGATCGACA	900
TCTGTTGCTG	ATGCTCTCAA	TATTAATAGC	CCTGATACTG	GAGATAACAA	AGAGTATAACG	960
GGAAACCATAG	TCTTTCTGG	AGAGAAAGCTC	ACGGAGGCAG	AAGCTAAAGA	TGAGAAGAAC	1020
CGCACTTCTA	AATTACTTCA	AAATGTTGCT	TTTAAAATG	GGACTGTAGT	TTTAAAAGGT	1080
GATGTCGTT	TAAGTGCAGA	CGGTTCTCT	CAGGATGCAA	ACTCTAAGTT	GATTATGGAT	1140
TTAGGGACGT	CGTTGGTTGC	AAACACCGAA	AGTATCGAGT	TAACGAATT	GGAAATTAAT	1200
ATAGACTCTC	TCAGGAACGG	GAAAAAGATA	AAACTCAGTG	CTGCCACAGC	TCAGAAAGAT	1260
ATTCTGTATAG	ATCGTCCTGT	TGTACTGGCA	ATTAGCGATG	AGAGTTTTA	TCAAAATGGC	1320
TTTTTGAATG	AGGACCATTG	CTATGATGGG	ATTCTTGAGT	TAGATGCTGG	GAAAGACATC	1380
GTGATTCTG	CAGATTCTCG	CAGTATAAT	GCTGTACAAT	CTCCGTATGG	CTATCAGGGA	1440
AACTGGACAA	TCAATTGGTC	TACTGATGAT	AAGAAAGCTA	CGGTTTCTTG	GGCAAAGCAA	1500
AGTTTTAAC	CCACTGCTGA	GCAGGAGGCT	CCGTTAGTTC	CTAATCTTCT	TTGGGGTTCT	1560
TTTATAGATG	TTCGTCCCTT	CCAAAATTTT	ATAGAGCTAG	GTACTGAAGG	TGCTCCTTAC	1620
GAAAAGAGAT	TTTGGGTTGC	AGGCATTTC	AATGTTTTGC	ATAGGAGCGG	TCGTAAAAT	1680
CAAAGGAAAT	TCCGTATGT	GAGTGGAGGT	GCTGTAGTAG	GTGCTAGCAC	GAGGATGCCG	1740
GGTGGTGATA	CCTTGTCTCT	GGGTTTGCT	CAGCTCTTG	CGCGTGACAA	AGACTACTTT	1800
ATGAATACCA	ATTTCGCAAA	GACCTACGCA	GGATCTTAC	GTTTGCAGCA	CGATGCTTCC	1860
CTATACTCTG	TGGTGAGTAT	CCTTTTAGGA	GAGGGAGGAC	TCCGCGAGAT	CCTGTTGCCT	1920
TATGTTTCCA	AGACTCTGCC	GTGCTCTTC	TATGGGCAGC	TTAGCTACGG	CCATACGGAT	1980
CATCGCATGA	AGACCGAGTC	TCTACCCCCC	CCCCCCCCGA	CGCTCTCGAC	GGATCATACT	2040
TCTTGGGGAG	GATATGTCTG	GGCTGGAGAG	CTGGGAACTC	GAGTTGCTGT	TGAAAATACC	2100
AGCGGCAGAG	GATTTTCCG	AGAGTACACT	CCATTGTAA	AAGTCCAAGC	TGTTTACTCG	2160
CGCCAAGATA	GCTTGTGA	ACTAGGAGCT	ATCAGTCGTG	ATTTAGTGA	TCGCATCTT	2220
TATAACCTTG	CGATTCTCT	TGGAATCAAG	TTAGAGAAAC	GGTTGCAGA	GCAATATTAT	2280

CATGTTGTAG CGATGTATTG	TCCAGATGTT TGTCTAGTA	ACCCCAAATG TACGACTACC	2340
CTACTTCCA ACCAAGGGAG	TTGGAAGGACC AAAGGTTCGA	ACTTAGCAAG ACAGGCTGGT	2400
ATTGTTCAAGG CCTCAGGTTT	TCGATCTTG GGAGCTGCAG	CAGAGCTTT CGGGAACTTT	2460
GGCTTGAAAT GGCGGGGATC	TTCTCGTAGC TATAATGTAG	ATGCGGGTAG CAAAATCAA	2520
TTTTAG			2526

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 841 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Lys Ile Pro Leu Arg Phe Leu Leu Ile Ser Leu Val Pro Thr Leu			
1 5 10 15			
Ser Met Ser Asn Leu Leu Gly Ala Ala Thr Thr Glu Glu Leu Ser Ala			
20 25 30			
Ser Asn Ser Phe Asp Gly Thr Thr Ser Thr Ser Phe Ser Ser Lys			
35 40 45			
Thr Ser Ser Ala Thr Asp Gly Thr Asn Tyr Val Phe Lys Asp Ser Val			
50 55 60			
Val Ile Glu Asn Val Pro Lys Thr Gly Glu Thr Gln Ser Thr Ser Cys			
65 70 75 80			
Phe Lys Asn Asp Ala Ala Ala Gly Asp Leu Asn Phe Leu Gly Gly			
85 90 95			
Phe Ser Phe Thr Phe Ser Asn Ile Asp Ala Thr Thr Ala Ser Gly Ala			
100 105 110			
Ala Ile Gly Ser Glu Ala Ala Asn Lys Thr Val Thr Leu Ser Gly Phe			
115 120 125			
Ser Ala Leu Ser Phe Leu Lys Ser Pro Ala Ser Thr Val Thr Asn Gly			
130 135 140			
Leu Gly Ala Ile Asn Val Lys Gly Asn Leu Ser Leu Leu Asp Asn Asp			
145 150 155 160			
Lys Val Leu Ile Gln Asp Asn Phe Ser Thr Gly Asp Gly Gly Ala Ile			
165 170 175			
Asn Cys Ala Gly Ser Leu Lys Ile Ala Asn Asn Lys Ser Leu Ser Phe			
180 185 190			
Ile Gly Asn Ser Ser Ser Thr Arg Gly Gly Ala Ile His Thr Lys Asn			
195 200 205			
Leu Thr Leu Ser Ser Gly Gly Glu Thr Leu Phe Gln Gly Asn Thr Ala			
210 215 220			
Pro Thr Ala Ala Gly Lys Gly Gly Ala Ile Ala Ile Ala Asp Ser Gly			
225 230 235 240			
Thr Leu Ser Ile Ser Gly Asp Ser Gly Asp Ile Ile Phe Glu Gly Asn			
245 250 255			
Thr Ile Gly Ala Thr Gly Thr Val Ser His Ser Ala Ile Asp Leu Gly			
260 265 270			
Thr Ser Ala Lys Ile Thr Ala Leu Arg Ala Ala Gln Gly His Thr Ile			
275 280 285			
Tyr Phe Tyr Asp Pro Ile Thr Val Thr Gly Ser Thr Ser Val Ala Asp			
290 295 300			
Ala Leu Asn Ile Asn Ser Pro Asp Thr Gly Asp Asn Lys Glu Tyr Thr			

305	310	315	320
Gly Thr Ile Val Phe Ser Gly Glu Lys		Leu Thr Glu Ala Glu Ala Lys	
325		330	335
Asp Glu Lys Asn Arg Thr Ser Lys	Leu	Leu Gln Asn Val Ala Phe Lys	
340		345	350
Asn Gly Thr Val Val Leu Lys	Gly	Asp Val Val Leu Ser Ala Asn Gly	
355		360	365
Phe Ser Gln Asp Ala Asn Ser Lys	Leu	Ile Met Asp Leu Gly Thr Ser	
370		375	380
Leu Val Ala Asn Thr Glu Ser Ile Glu	Leu	Thr Asn Leu Glu Ile Asn	
385		390	395
Ile Asp Ser Leu Arg Asn Gly Lys	Ile	Lys Leu Ser Ala Ala Thr	
405		410	415
Ala Gln Lys Asp Ile Arg Ile Asp Arg	Pro	Val Val Leu Ala Ile Ser	
420		425	430
Asp Glu Ser Phe Tyr Gln Asn Gly	Phe	Leu Asn Glu Asp His Ser Tyr	
435		440	445
Asp Gly Ile Leu Glu Leu Asp	Ala	Gly Lys Asp Ile Val Ile Ser Ala	
450		455	460
Asp Ser Arg Ser Ile Asn Ala Val Gln Ser	Pro	Tyr Gly Tyr Gln Gly	
465		470	475
Lys Trp Thr Ile Asn Trp Ser Thr Asp	Asp	Lys Lys Ala Thr Val Ser	
485		490	495
Trp Ala Lys Gln Ser Phe Asn Pro	Thr	Ala Glu Gln Glu Ala Pro Leu	
500		505	510
Val Pro Asn Leu Leu Trp Gly	Ser	Phe Ile Asp Val Arg Pro Phe Gln	
515		520	525
Asn Phe Ile Glu Leu Gly	Thr	Glu Gly Ala Pro Tyr Glu Lys Arg Phe	
530		535	540
Trp Val Ala Gly Ile Ser Asn Val	Leu	His Arg Ser Gly Arg Glu Asn	
545		550	555
Gln Arg Lys Phe Arg His Val Ser	Gly	Gly Ala Val Val Gly Ala Ser	
565		570	575
Thr Arg Met Pro Gly	Gly	Asp Thr Leu Ser Leu Gly Phe Ala Gln Leu	
580		585	590
Phe Ala Arg Asp Lys Asp Tyr	Phe	Met Asn Thr Asn Phe Ala Lys Thr	
595		600	605
Tyr Ala Gly Ser Leu Arg Leu Gln	His	Asp Ala Ser Leu Tyr Ser Val	
610		615	620
Val Ser Ile Leu Leu Gly	Glu	Gly Leu Arg Glu Ile Leu Leu Pro	
625		630	635
Tyr Val Ser Lys Thr Leu Pro	Cys	Ser Phe Tyr Gly Gln Leu Ser Tyr	
645		650	655
Gly His Thr Asp His Arg Met	Lys	Thr Glu Ser Leu Pro Pro Pro	
660		665	670
Pro Thr Leu Ser Thr Asp His	Thr	Ser Trp Gly Gly Tyr Val Trp Ala	
675		680	685
Gly Glu Leu Gly Thr Arg Val	Ala	Val Glu Asn Thr Ser Gly Arg Gly	
690		695	700
Phe Phe Arg Glu Tyr Thr Pro	Phe	Val Lys Val Gln Ala Val Tyr Ser	
705		710	715
Arg Gln Asp Ser Phe Val	Glu	Leu Gly Ala Ile Ser Arg Asp Phe Ser	
725		730	735
Asp Ser His Leu Tyr Asn Leu	Ala	Ile Pro Leu Gly Ile Lys Leu Glu	
740		745	750
Lys Arg Phe Ala Glu Gln Tyr	Tyr	His Val Val Ala Met Tyr Ser Pro	
755		760	765

Asp Val Cys Arg Ser Asn Pro Lys Cys Thr Thr Thr Leu Leu Ser Asn
 770 775 780
 Gln Gly Ser Trp Lys Thr Lys Gly Ser Asn Leu Ala Arg Gln Ala Gly
 785 790 795 800
 Ile Val Gln Ala Ser Gly Phe Arg Ser Leu Gly Ala Ala Ala Glu Leu
 805 810 815
 Phe Gly Asn Phe Gly Phe Glu Trp Arg Gly Ser Ser Arg Ser Tyr Asn
 820 825 830
 Val Asp Ala Gly Ser Lys Ile Lys Phe
 835 840

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2787 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGAAGTCTT	CTTTCCCCAA	GT	TTGTATTT	TCTACATTG	CT	ATTTCCC	TTGTCTATG	60	
ATTGCTACCG	AGACAGTTT	GG	ATTCAAGT	GCGAGTTTCG	AT	GGAAATAA	AAATGGTAAT	120	
TTTTCAGTTC	GTGAGAGTCA	GG	AAAGATGCT	GGAAC	ACTACCT	ACCTATTAA	GGGAAATGTC	180	
ACTCTAGAAA	ATATTCCCTGG	AA	CAGGCACA	GCAATCACAA	AA	AGCTGTTT	TAACAACACT	240	
AAGGGCGATT	TGACTTTAC	AG	GTAAACGGG	AACTCTCTAT	TG	TTCCAAAC	GGTGGATGCA	300	
GGGACTGTAG	CAGGGGCTGC	TG	TTAACAGC	AGCGTGGTAG	AT	AAATCTAC	CACGTTTATA	360	
GGGTTTTCTT	CGCTATCTT	TATTGCGTCT	CCTGGAAGTT	CGATAACTAC	CGGCAAAGGA	420			
GCCGTTAGCT	GCTCTACGGG	TAG	CTTGAAG	TTGACAAAAA	ATGTCAGTTT	GCTCTTCAGC	480		
AAAAACTTTT	CAACGGATAA	TGGCGGTGCT	ATCACCGCAA	AAACTCTTTC	ATTAACAGGG	540			
ACTACAATGT	CAGCTCTGTT	TTCTGAAAAT	ACCTCCTCAA	AGAAAGGCGG	AGCCATTAG	600			
ACTTCCGATG	CCCTTACCAT	TACTGAAAC	CAAGGGGAAG	TCTCTTTTC	TGACAATACT	660			
TCTTCGGATT	CTGGAGCTGC	AATT	TTTACA	GAAGCCTCGG	TGACTATTTC	TAATAATGCT	720		
AAAGTTTCCT	TTATTGACAA	TAAGGT	CACA	GGAGCGAGCT	CCTCAACAAAC	GGGGGATATG	780		
TCAGGAGGTG	CTATCTGTGC	TTATAAAACT	AGTACAGATA	CTAAGGT	TCAC	CCTCACTGGA	840		
AATCAGATGT	TACTCTTCAG	CAACAATACA	TCGACAACAG	CGGGAGGAGC	TATCTATGTG	900			
AAAAAGCTCG	AACTGGCTTC	CGGAGGACTT	AC	CTTCAATTCA	GTAGAAATAG	TGTCAATGGA	960		
GGTACAGCTC	CTAAAGGTGG	AGCC	CATAGCT	ATCGAAGATA	GTGGGAAATT	GAGTTTATCC	1020		
GCCGATAGTG	GTGACATTGT	CTT	TTAGGG	AATACAGTCA	CTTCTACTAC	TCCTGGGACG	1080		
AATAGAAGTA	GTATCGACTT	AGGAACGAGT	GCAAAGATGA	CAG	CTTGCG	TTCTGCTGCT	1140		
GGTAGAGCCA	TCTACTTCTA	TGATCCCATA	ACTACAGGAT	CTTCCACAAAC	AGTTACAGAT	1200			
GTCTTAAAAG	TTAATGAGAC	TCCGGCAGAT	TCTGCACTAC	AATATACAGG	GAACATCATC	1260			
TTCACAGGAG	AAAAGTTATC	AGAGACAGAG	GCCGCA	GATT	CTAAAAATCT	TACTTCGAAG	1320		
CTACTACAGC	CTGTAAC	CTT	CAGGAGGT	ACTCTATCTT	AAAACATGG	AGTGA	CTGCTG	1380	
CAGACTCAGG	CATTCACTCA	ACAGG	CAGAT	TCTCGTCTCG	AAATGGACGT	AGGA	ACTACT	1440	
CTAGAACCTG	CTGATACTAG	CACC	ATAAAC	AA	TTGGTCA	TAAC	ATCAG	1500	
GGTCAAAGA	AGGCAAAAT	AGAAAC	AAA	GTACGTCAA	AAAATCTGAC	TTT	ATCTGGA	1560	
ACCATCACTT	TATTGGACCC	GAC	GGGACG	TTT	TATGAAA	ATCA	TAGTTT	1620	
CAGTCCTACG	ACATCTTAGA	GCT	CAAAGCT	TCTGGA	ACTG	TAAC	AAGCAC	1680	
CCAGATCTA	TAATGGGTGA	GAA	ATTCCAT	TACGG	CTATC	AGG	GAACCTTG	1740	
GT	TTGGGGGA	CAGGGGCTTC	TACGACTGCA	AC	TTCAACT	GG	ACTAAAAC	1800	
CCTAATCCCG	AGCGTATCGG	CT	CTTAGTC	CCTAATAGCT	TATGGA	AA	TATAGAT	1860	
ATTAGCTCTC	TCCATTATCT	TAT	GGAGACT	GCAAACGAAG	GG	TGCA	GGG	AGACCGTGCT	1920
TTTTGGTGTG	CTGGATTATC	TAAC	TTCTTC	CATAAGGATA	GT	ACAAA	ACGACGCGGG	1980	
TTTCGCCATT	TGAGTGGCGG	TTAT	GTCATA	GGAGGAAACC	TAC	ACTTG	TTCAGATAAG	2040	

ATTCTTAGTG	CTGCATTTG	TCAGCTCTT	GGAAAGAGATA	GAGACTACTT	TGTAGCTAAG	2100
AATCAAGGTA	CAGTCTACGG	AGGAACCTCT	TATTACCAGC	ACAACGAAAC	CTATATCTCT	2160
CTTCCTTGCA	AACTACGGCC	TTGTTCGTTG	TCTTATGTTC	CTACAGAGAT	TCCTGTTCTC	2220
TTTCAGGAA	ACCTTAGCTA	CACCCATACG	GATAACGATC	TGAAAACCAA	GTATACAACA	2280
TATCCTACTG	TTAAAGGAAG	CTGGGGAAT	GATAGTTTCG	CTTTAGAATT	CGGTGGAAGA	2340
GCTCCGATTT	GCTTAGATGA	AAGTGCTCTA	TTTGAGCAGT	ACATGCCCTT	CATGAAATTG	2400
CAGTTTGTCT	ATGCACATCA	GGAAGGTTT	AAAGAACAGG	GAACAGAAGC	TCGTGAATT	2460
GGAAGTAGCC	GTCTTGTGAA	TCTTGCTTA	CCTATCGGG	TCCGATTTGA	TAAGGAATCA	2520
GAATGCCAAG	ATGCAACGTA	CAATCTAACT	CTTGGTTATA	CTGTGGATCT	TGTTCGTAGT	2580
AACCCCGACT	GTACGACAAC	ACTGCGAATT	AGCGGTGATT	CTTGGAAAAC	CTTCGGTACG	2640
AATTGGCAA	GACAAGCTT	AGTCCTTCGT	GCAGGGAAC	ATTTTGCTT	TAACTCAAAT	2700
TTTGAAGCCT	TTAGCCAATT	TTCTTTGAA	TTGCGTGGGT	CATCTCGCAA	TTACAATGTA	2760
GACTTAGGAG	CAAAATACCA	ATTCTAA				2787

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 928 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met	Lys	Ser	Ser	Phe	Pro	Lys	Phe	Val	Phe	Ser	Thr	Phe	Ala	Ile	Phe
1				5				10						15	
Pro	Leu	Ser	Met	Ile	Ala	Thr	Glu	Thr	Val	Leu	Asp	Ser	Ser	Ala	Ser
				20				25						30	
Phe	Asp	Gly	Asn	Lys	Asn	Gly	Asn	Phe	Ser	Val	Arg	Glu	Ser	Gln	Glu
				35				40				45			
Asp	Ala	Gly	Thr	Thr	Tyr	Leu	Phe	Lys	Gly	Asn	Val	Thr	Leu	Glu	Asn
				50				55			60				
Ile	Pro	Gly	Thr	Gly	Thr	Ala	Ile	Thr	Lys	Ser	Cys	Phe	Asn	Asn	Thr
				65				70			75				80
Lys	Gly	Asp	Leu	Thr	Phe	Thr	Gly	Asn	Gly	Asn	Ser	Leu	Leu	Phe	Gln
				85				90				95			
Thr	Val	Asp	Ala	Gly	Thr	Val	Ala	Gly	Ala	Ala	Val	Asn	Ser	Ser	Val
				100				105				110			
Val	Asp	Lys	Ser	Thr	Thr	Phe	Ile	Gly	Phe	Ser	Ser	Leu	Ser	Phe	Ile
				115				120				125			
Ala	Ser	Pro	Gly	Ser	Ser	Ile	Thr	Thr	Gly	Lys	Gly	Ala	Val	Ser	Cys
				130				135			140				
Ser	Thr	Gly	Ser	Leu	Lys	Phe	Asp	Lys	Asn	Val	Ser	Leu	Leu	Phe	Ser
				145				150			155				160
Lys	Asn	Phe	Ser	Thr	Asp	Asn	Gly	Gly	Ala	Ile	Thr	Ala	Lys	Thr	Leu
				165				170				175			
Ser	Leu	Thr	Gly	Thr	Thr	Met	Ser	Ala	Leu	Phe	Ser	Glu	Asn	Thr	Ser
				180				185				190			
Ser	Lys	Lys	Gly	Gly	Ala	Ile	Gln	Thr	Ser	Asp	Ala	Leu	Thr	Ile	Thr
				195				200				205			
Gly	Asn	Gln	Gly	Glu	Val	Ser	Phe	Ser	Asp	Asn	Thr	Ser	Ser	Asp	Ser
				210				215			220				
Gly	Ala	Ala	Ile	Phe	Thr	Glu	Ala	Ser	Val	Thr	Ile	Ser	Asn	Asn	Ala
				225				230			235				240
Lys	Val	Ser	Phe	Ile	Asp	Asn	Lys	Val	Thr	Gly	Ala	Ser	Ser	Ser	Thr

245	250	255
Thr Gly Asp Met Ser Gly Gly Ala Ile Cys Ala Tyr Lys Thr Ser Thr		
260	265	270
Asp Thr Lys Val Thr Leu Thr Gly Asn Gln Met Leu Leu Phe Ser Asn		
275	280	285
Asn Thr Ser Thr Thr Ala Gly Gly Ala Ile Tyr Val Lys Lys Leu Glu		
290	295	300
Leu Ala Ser Gly Gly Leu Thr Leu Phe Ser Arg Asn Ser Val Asn Gly		
305	310	315
Gly Thr Ala Pro Lys Gly Gly Ala Ile Ala Ile Glu Asp Ser Gly Glu		
325	330	335
Leu Ser Leu Ser Ala Asp Ser Gly Asp Ile Val Phe Leu Gly Asn Thr		
340	345	350
Val Thr Ser Thr Thr Pro Gly Thr Asn Arg Ser Ser Ile Asp Leu Gly		
355	360	365
Thr Ser Ala Lys Met Thr Ala Leu Arg Ser Ala Ala Gly Arg Ala Ile		
370	375	380
Tyr Phe Tyr Asp Pro Ile Thr Thr Gly Ser Ser Thr Thr Val Thr Asp		
385	390	395
Val Leu Lys Val Asn Glu Thr Pro Ala Asp Ser Ala Leu Gln Tyr Thr		
405	410	415
Gly Asn Ile Ile Phe Thr Gly Glu Lys Leu Ser Glu Thr Glu Ala Ala		
420	425	430
Asp Ser Lys Asn Leu Thr Ser Lys Leu Leu Gln Pro Val Thr Leu Ser		
435	440	445
Gly Gly Thr Leu Ser Leu Lys His Gly Val Thr Leu Gln Thr Gln Ala		
450	455	460
Phe Thr Gln Gln Ala Asp Ser Arg Leu Glu Met Asp Val Gly Thr Thr		
465	470	475
Leu Glu Pro Ala Asp Thr Ser Thr Ile Asn Asn Leu Val Ile Asn Ile		
485	490	495
Ser Ser Ile Asp Gly Ala Lys Lys Ala Lys Ile Glu Thr Lys Ala Thr		
500	505	510
Ser Lys Asn Leu Thr Leu Ser Gly Thr Ile Thr Leu Leu Asp Pro Thr		
515	520	525
Gly Thr Phe Tyr Glu Asn His Ser Leu Arg Asn Pro Gln Ser Tyr Asp		
530	535	540
Ile Leu Glu Leu Lys Ala Ser Gly Thr Val Thr Ser Thr Ala Val Thr		
545	550	555
Pro Asp Pro Ile Met Gly Glu Lys Phe His Tyr Gly Tyr Gln Gly Thr		
565	570	575
Trp Gly Pro Ile Val Trp Gly Thr Gly Ala Ser Thr Thr Ala Thr Phe		
580	585	590
Asn Trp Thr Lys Thr Gly Tyr Ile Pro Asn Pro Glu Arg Ile Gly Ser		
595	600	605
Leu Val Pro Asn Ser Leu Trp Asn Ala Phe Ile Asp Ile Ser Ser Leu		
610	615	620
His Tyr Leu Met Glu Thr Ala Asn Glu Gly Leu Gln Gly Asp Arg Ala		
625	630	635
Phe Trp Cys Ala Gly Leu Ser Asn Phe Phe His Lys Asp Ser Thr Lys		
645	650	655
Thr Arg Arg Gly Phe Arg His Leu Ser Gly Gly Tyr Val Ile Gly Gly		
660	665	670
Asn Leu His Thr Cys Ser Asp Lys Ile Leu Ser Ala Ala Phe Cys Gln		
675	680	685
Leu Phe Gly Arg Asp Arg Asp Tyr Phe Val Ala Lys Asn Gln Gly Thr		
690	695	700

Val Tyr Gly Gly Thr Leu Tyr Tyr Gln His Asn Glu Thr Tyr Ile Ser
 705 710 715 720
 Leu Pro Cys Lys Leu Arg Pro Cys Ser Leu Ser Tyr Val Pro Thr Glu
 725 730 735
 Ile Pro Val Leu Phe Ser Gly Asn Leu Ser Tyr Thr His Thr Asp Asn
 740 745 750
 Asp Leu Lys Thr Lys Tyr Thr Tyr Pro Thr Val Lys Gly Ser Trp
 755 760 765
 Gly Asn Asp Ser Phe Ala Leu Glu Phe Gly Gly Arg Ala Pro Ile Cys
 770 775 780
 Leu Asp Glu Ser Ala Leu Phe Glu Gln Tyr Met Pro Phe Met Lys Leu
 785 790 795 800
 Gln Phe Val Tyr Ala His Gln Glu Gly Phe Lys Glu Gln Gly Thr Glu
 805 810 815
 Ala Arg Glu Phe Gly Ser Ser Arg Leu Val Asn Leu Ala Leu Pro Ile
 820 825 830
 Gly Ile Arg Phe Asp Lys Glu Ser Asp Cys Gln Asp Ala Thr Tyr Asn
 835 840 845
 Leu Thr Leu Gly Tyr Thr Val Asp Leu Val Arg Ser Asn Pro Asp Cys
 850 855 860
 Thr Thr Leu Arg Ile Ser Gly Asp Ser Trp Lys Thr Phe Gly Thr
 865 870 875 880
 Asn Leu Ala Arg Gln Ala Leu Val Leu Arg Ala Gly Asn His Phe Cys
 885 890 895
 Phe Asn Ser Asn Phe Glu Ala Phe Ser Gln Phe Ser Phe Glu Leu Arg
 900 905 910
 Gly Ser Ser Arg Asn Tyr Asn Val Asp Leu Gly Ala Lys Tyr Gln Phe
 915 920 925

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2757 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGAGATCGT	CTTTTCCTT	GTTATTAATA	TCTTCATCTC	TAGCCTTTCC	TCTCTTAATG	60
AGTGTTCCTG	CAGATGCTGC	CGATCTCACA	TTAGGGAGTC	GTGACAGTTA	TAATGGTGAT	120
ACAAGCACCA	CAGAATTTCAC	TCCTAAAGCG	GCAACTTCTG	ATGCTAGTGG	CACGACCTAT	180
ATTCTCGATG	GGGATGTCTC	GATAAGCCAA	GCAGGGAAAC	AAACGAGCTT	AACCACAAAGT	240
TGTTTTCTA	ACACTGCAGG	AAATCTTACC	TTCTTAGGGA	ACGGATTTC	TCTTCATTTC	300
GACAATATTA	TTTCGCTCAC	TGTTGCAGGT	GTGTTGTTA	GCAATACAGC	AGCTTCTGGG	360
ATTACGAAAT	TCTCAGGATT	TTCAACTCTT	CGGATGCTTG	CAGCTCTAG	GACCACAGGT	420
AAAGGAGCCA	TTAAAATTAC	CGATGGCTG	GTGTTTGAGA	GTATAGGGAA	TCTTGACCAA	480
AATGAAAATG	CCTCTAGTGA	AAATGGGGGA	GCCATCAATA	CGAAGACTTT	GTCTTTGACT	540
GGGAGTACGC	GGTTTGTC	GTTCCTGGC	AATAGCTCGT	CGCAACAAAGG	GGGAGCGATC	600
TATGCTTCTG	GTGACTCTGT	GATTCTGAG	AATGCAGGAA	TCTTGAGCTT	CGGAAACAAAC	660
AGTGCACAA	CATCAGGAGG	CGCGATCTCT	GCTGAAGGGA	ACCTTGTGAT	CTCCAATAAC	720
CAAATATCT	TTTCGATGG	CTGCAAAGCA	ACTACAAATG	GCGGAGCTAT	TGATTGTAAC	780
AAAGCAGGGG	CGAACCCAGA	CCCTATCTTG	ACTCTTTCAAG	GAAATGAGAG	CCTGCATTTT	840
CTGAATAACA	CAGCAGGAAA	TAGTGGAGGT	GCGATTTATA	CCAAAAAATT	GGTGTATCC	900
TCAGGACGAG	GAGGAGTGT	ATTTCTAAC	AACAAAGCTG	CGAATGCTAC	TCCTAAAGGA	960

GGGGCAATTG	CGATTCTAGA	TTCTGGAGAG	ATTAGCATT	CTGCAGATCT	CGGCAATATC	1020
ATTTTCGAGG	GCAATACTAC	GAGCACTACA	GGAAAGTCCTG	CGAGTGTGAC	CAGAAATGCT	1080
ATAGATCTTG	CATCGAATGC	AAAATTTTA	AATCTCCGAG	CGACTCGGGG	AAATAAAGTT	1140
ATTTTCTATG	ATCCTATCAC	GAGCTCAGGA	GCTACTGATA	AGCTCTCTT	GAATAAAAGCT	1200
GACGCAGGAT	CTGGAAATAC	CTATGAAGGC	TACATCGTT	TCTCTGGAGA	AAAACCTCTCA	1260
GAAGAGGAAC	TTAAGAAACC	TGACAATCTG	AAGTCTACAT	TTACACAGGC	TGTAGAGCTT	1320
GCTGCAGGTG	CCTTAGTATT	GAAAGATGGA	GTGACTGTAG	TTGCAAATAC	TATAACGCAG	1380
GTCGAGGGAT	CGAAAGTCGT	TATGGATGGA	GGGACTACTT	TTGAGGCAAG	CGCTGAGGGG	1440
GTCACTCTCA	ATGGCCTAGC	CATTAATATA	GATTCCCTAG	ATGGGACAAA	TAAAGCTATC	1500
ATTAAGGCGA	CGGCAGCAAG	TAAGGATGTT	GCCTTATCAG	GGCCTATCAT	GCTTGAGAT	1560
GCTCAGGGGA	ACTATTATGA	GCATCATAAT	CTCAGTCAAC	AGCAGGTCTT	TCCTTTAATA	1620
GAGCTTCTG	CACAAGGAAC	GATGACTACT	ACAGATATCC	CCGATACCCC	AATTCTAAAT	1680
ACTACGAATC	ACTATGGGT	TCAAGGAAC	GGAAATAATTG	TTTGGGTCGA	CGATGCAACT	1740
GCAAAAACAA	AAAATGCTAC	CTTAACCTGG	ACTAAAACAG	GATACAAGCC	GAATCCAGAA	1800
CGTCAGGGAC	CTTTGGTCC	TAATAGCCTG	TGGGGTTCTT	TTGTCGATGT	CCGCTCCATT	1860
CAGAGCCTCA	TGGACCGGAG	CACAAGTCG	TTATCTTCGT	CAACAAATT	GTGGGTATCA	1920
GGAATCGCGG	ACTTTTGCA	TGAAGATCAG	AAAGGAAACC	AACGTAGTTA	TCGTCATTCT	1980
AGCGCGGGTT	ATGCATTAGG	AGGAGGATT	TTCACGGCTT	CTGAAAATT	CTTTAATT	2040
GCTTTTGTG	AGCTTTTG	CTACGACAAG	GACCATCTT	TGGCTAAGAA	CCATACCCAT	2100
GTATATGCAG	GGGCAATGAG	TTACCGACAC	CTCGGAGAGT	CTAAGACCT	CGCTAAGATT	2160
TTGTCAGGAA	ATTCTGACTC	CCTACCTTT	GTCTTCAATG	CTCGGTTGC	TTATGGCCAT	2220
ACCGACAATA	ACATGACCAC	AAAGTACACT	GGCTATTCTC	CTGTTAAGGG	AAGCTGGGA	2280
AATGATGCCT	TCGGTATAGA	ATGTGGAGGA	GCTATCCC	TAGTTGCTTC	AGGACGTCGG	2340
TCTTGGGTGG	ATACCCACAC	GCCATTCTA	AACTAGAGA	TGATCTATGC	ACATCAGAAT	2400
GACTTTAAGG	AAAACGGCAC	AGAAGGCCGT	TCTTCCAAA	GTGAAGACCT	CTTCAATCTA	2460
GCGGTTCC	TAGGGATAAA	ATTTGAGAAA	TTCTCCGATA	AGTCTACGTA	TGATCTCTCC	2520
ATAGCTTACG	TTCCCGATGT	GATTCGTAAT	GATCCAGGCT	GCACGACAAC	TCTTATGGTT	2580
TCTGGGGATT	CTTGGTCGAC	ATGTGGTACA	AGCTTGTCTA	GACAAGCTCT	TCTTGTACGT	2640
GCTGGAAATC	ATCATGCCTT	TGCTTCAAAC	TTTGAAGTTT	TCAGTCAGTT	TGAAGTCGAG	2700
TTGCGAGGTT	CTTCTCGTAG	CTATGCTATC	GATCTGGAG	GAAGATTGCG	ATTTTAA	2757

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 918 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met	Arg	Ser	Ser	Phe	Ser	Leu	Leu	Ile	Ser	Ser	Ser	Leu	Ala	Phe	
1				5				10						15	
Pro	Leu	Leu	Met	Ser	Val	Ser	Ala	Asp	Ala	Ala	Asp	Leu	Thr	Leu	Gly
			20					25						30	
Ser	Arg	Asp	Ser	Tyr	Asn	Gly	Asp	Thr	Ser	Thr	Thr	Glu	Phe	Thr	Pro
	35						40							45	
Lys	Ala	Ala	Thr	Ser	Asp	Ala	Ser	Gly	Thr	Thr	Tyr	Ile	Leu	Asp	Gly
	50					55						60			
Asp	Val	Ser	Ile	Ser	Gln	Ala	Gly	Lys	Gln	Thr	Ser	Leu	Thr	Thr	Ser
	65				70				75						80
Cys	Phe	Ser	Asn	Thr	Ala	Gly	Asn	Leu	Thr	Phe	Leu	Gly	Asn	Gly	Phe
					85				90						95
Ser	Leu	His	Phe	Asp	Asn	Ile	Ile	Ser	Ser	Thr	Val	Ala	Gly	Val	Val
				100				105							110

Val Ser Asn Thr Ala Ala Ser Gly Ile Thr Lys Phe Ser Gly Phe Ser
 115 120 125
 Thr Leu Arg Met Leu Ala Ala Pro Arg Thr Thr Gly Lys Gly Ala Ile
 130 135 140
 Lys Ile Thr Asp Gly Leu Val Phe Glu Ser Ile Gly Asn Leu Asp Gln
 145 150 155 160
 Asn Glu Asn Ala Ser Ser Glu Asn Gly Gly Ala Ile Asn Thr Lys Thr
 165 170 175
 Leu Ser Leu Thr Gly Ser Thr Arg Phe Val Ala Phe Leu Gly Asn Ser
 180 185 190
 Ser Ser Gln Gln Gly Gly Ala Ile Tyr Ala Ser Gly Asp Ser Val Ile
 195 200 205
 Ser Glu Asn Ala Gly Ile Leu Ser Phe Gly Asn Asn Ser Ala Thr Thr
 210 215 220
 Ser Gly Gly Ala Ile Ser Ala Glu Gly Asn Leu Val Ile Ser Asn Asn
 225 230 235 240
 Gln Asn Ile Phe Phe Asp Gly Cys Lys Ala Thr Thr Asn Gly Gly Ala
 245 250 255
 Ile Asp Cys Asn Lys Ala Gly Ala Asn Pro Asp Pro Ile Leu Thr Leu
 260 265 270
 Ser Gly Asn Glu Ser Leu His Phe Leu Asn Asn Thr Ala Gly Asn Ser
 275 280 285
 Gly Gly Ala Ile Tyr Thr Lys Lys Leu Val Leu Ser Ser Gly Arg Gly
 290 295 300
 Gly Val Leu Phe Ser Asn Asn Lys Ala Ala Asn Ala Thr Pro Lys Gly
 305 310 315 320
 Gly Ala Ile Ala Ile Leu Asp Ser Gly Glu Ile Ser Ile Ser Ala Asp
 325 330 335
 Leu Gly Asn Ile Ile Phe Glu Gly Asn Thr Thr Ser Thr Thr Gly Ser
 340 345 350
 Pro Ala Ser Val Thr Arg Asn Ala Ile Asp Leu Ala Ser Asn Ala Lys
 355 360 365
 Phe Leu Asn Leu Arg Ala Thr Arg Gly Asn Lys Val Ile Phe Tyr Asp
 370 375 380
 Pro Ile Thr Ser Ser Gly Ala Thr Asp Lys Leu Ser Leu Asn Lys Ala
 385 390 395 400
 Asp Ala Gly Ser Gly Asn Thr Tyr Glu Gly Tyr Ile Val Phe Ser Gly
 405 410 415
 Glu Lys Leu Ser Glu Glu Glu Leu Lys Pro Asp Asn Leu Lys Ser
 420 425 430
 Thr Phe Thr Gln Ala Val Glu Leu Ala Ala Gly Ala Leu Val Leu Lys
 435 440 445
 Asp Gly Val Thr Val Val Ala Asn Thr Ile Thr Gln Val Glu Gly Ser
 450 455 460
 Lys Val Val Met Asp Gly Gly Thr Thr Phe Glu Ala Ser Ala Glu Gly
 465 470 475 480
 Val Thr Leu Asn Gly Leu Ala Ile Asn Ile Asp Ser Leu Asp Gly Thr
 485 490 495
 Asn Lys Ala Ile Ile Lys Ala Thr Ala Ala Ser Lys Asp Val Ala Leu
 500 505 510
 Ser Gly Pro Ile Met Leu Val Asp Ala Gln Gly Asn Tyr Tyr Glu His
 515 520 525
 His Asn Leu Ser Gln Gln Gln Val Phe Pro Leu Ile Glu Leu Ser Ala
 530 535 540
 Gln Gly Thr Met Thr Thr Asp Ile Pro Asp Thr Pro Ile Leu Asn
 545 550 555 560
 Thr Thr Asn His Tyr Gly Tyr Gln Gly Thr Gly Ile Ile Val Trp Val

565	570	575
Asp Asp Ala Thr Ala Lys Thr Lys Asn Ala Thr Leu Thr Trp Thr Lys		
580	585	590
Thr Gly Tyr Lys Pro Asn Pro Glu Arg Gln Gly Pro Leu Val Pro Asn		
595	600	605
Ser Leu Trp Gly Ser Phe Val Asp Val Arg Ser Ile Gln Ser Leu Met		
610	615	620
Asp Arg Ser Thr Ser Ser Leu Ser Ser Ser Thr Asn Leu Trp Val Ser		
625	630	635
Gly Ile Ala Asp Phe Leu His Glu Asp Gln Lys Gly Asn Gln Arg Ser		
645	650	655
Tyr Arg His Ser Ser Ala Gly Tyr Ala Leu Gly Gly Phe Phe Thr		
660	665	670
Ala Ser Glu Asn Phe Phe Asn Phe Ala Phe Cys Gln Leu Phe Gly Tyr		
675	680	685
Asp Lys Asp His Leu Val Ala Lys Asn His Thr His Val Tyr Ala Gly		
690	695	700
Ala Met Ser Tyr Arg His Leu Gly Glu Ser Lys Thr Leu Ala Lys Ile		
705	710	715
Leu Ser Gly Asn Ser Asp Ser Leu Pro Phe Val Phe Asn Ala Arg Phe		
725	730	735
Ala Tyr Gly His Thr Asp Asn Asn Met Thr Thr Lys Tyr Thr Gly Tyr		
740	745	750
Ser Pro Val Lys Gly Ser Trp Gly Asn Asp Ala Phe Gly Ile Glu Cys		
755	760	765
Gly Gly Ala Ile Pro Val Val Ala Ser Gly Arg Arg Ser Trp Val Asp		
770	775	780
Thr His Thr Pro Phe Leu Asn Leu Glu Met Ile Tyr Ala His Gln Asn		
785	790	795
Asp Phe Lys Glu Asn Gly Thr Glu Gly Arg Ser Phe Gln Ser Glu Asp		
805	810	815
Leu Phe Asn Leu Ala Val Pro Val Gly Ile Lys Phe Glu Lys Phe Ser		
820	825	830
Asp Lys Ser Thr Tyr Asp Leu Ser Ile Ala Tyr Val Pro Asp Val Ile		
835	840	845
Arg Asn Asp Pro Gly Cys Thr Thr Thr Leu Met Val Ser Gly Asp Ser		
850	855	860
Trp Ser Thr Cys Gly Thr Ser Leu Ser Arg Gln Ala Leu Leu Val Arg		
865	870	875
Ala Gly Asn His His Ala Phe Ala Ser Asn Phe Glu Val Phe Ser Gln		
885	890	895
Phe Glu Val Glu Leu Arg Gly Ser Ser Arg Ser Tyr Ala Ile Asp Leu		
900	905	910
Gly Gly Arg Phe Gly Phe		
915		

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2787 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATGAAATCCT	CTCTTCATTG	GTTTGTAAATC	TCGTCATCTT	TAGCACTTCC	CTTGTCACTA	60
ATTTCCTCTG	CGTTTGCTGC	TGTTGTTGAA	ATCAATCTAG	GACCTACCAA	TAGCTTCTCT	120
GGACCAGGAA	CCTACACTCC	TCCAGCCAA	ACAACAAATG	CAGATGGAAC	TATCTATAAT	180
CTAACAGGGG	ATGTCTCAAT	CACCAATGCA	GGATCTCGA	CAGCTCTAAC	CGCTTCCTGC	240
TTTAAAGAAA	CTACTGGAA	TCTTCTTTC	CAAGGCCACG	GCTACCAATT	TCTCCTACAA	300
AATATCGATG	CGGGAGCGAA	CTGTACCTTT	ACCAATACAG	CTGCAAATAA	GCTTCTCTCC	360
TTTCAGGAT	TCTCCTATT	GTCACTAATA	CAAACCACGA	ATGCTACAC	AGGAACACAGGA	420
GCCATCAAGT	CCACAGGAGC	TTGTTCTATT	CAGTCGAACT	ATAGTTGCTA	CTTGGGCCAA	480
AACTTTCTA	ATGACAATGG	AGGCGCCCTC	CAAGGCAGCT	CTATCAGTCT	ATCGCTAAC	540
CCCAACCTAA	CGTTGCCAA	AAACAAAGCA	ACGAAAAAG	GGGGTGCCT	CTATTCCACG	600
GGAGGGATTA	CAATTAAACAA	TACGTTAACAC	TCAGCATCAT	TTTCTGAAAAA	TACCGCGGGC	660
AACAATGGCG	GAGCCATT	CACGGAAGCT	AGCAGTTTA	TTAGCAGCAA	CAAAGCAATT	720
AGCTTTATAA	ACAATAGTGT	GACCGCAACC	TCAGCTACAG	GGGGAGCCAT	TTACTGTAGT	780
AGTACATCAG	CCCCCAAACC	AGTCTTAACT	CTATCAGACA	ACGGGAAACT	GAACTTTATA	840
GGAAATACAG	CAATTACTAG	TGGTGGGGCG	ATTTATACTG	ACAATCTAGT	TCTTCTTCT	900
GGAGGACCTA	CGCTTTTAA	AAACAACCT	GCTATAGATA	CTGAGCTCC	CTTAGGAGGA	960
GCAATTGCGA	TTGCTGACTC	TGGATCTTG	AGTCTTCGG	CTCTGGTGG	AGACATCACT	1020
TTTGAAGGAA	ACACAGTAGT	CAAAGGAGCT	TCTTCGAGTC	AGACCACTAC	CAGAAATTCT	1080
ATTAACATCG	GAAACACCAA	TGCTAAGATT	GTACAGCTGC	GAGCCTCTCA	AGGCAATACT	1140
ATCTACTTCT	ATGATCCTAT	AACAACAAAC	CATACTGCAG	CTCTCTCAGA	TGCTCTAAC	1200
TTAAATGGTC	CTGACCTTGC	AGGGAACTCCT	GCATATCAAG	GAACCATCGT	ATTTTCTGGA	1260
GAGAAGCTCT	CGGAAGCAGA	AGCTGCAGAA	GCTGATAATC	TCAAATCTAC	AATTCAAGCAA	1320
CCTCTAACTC	TTGCGGGAGG	GCAACTCTCT	CTTAAATCAG	GAGTCACTCT	AGTTGCTAAG	1380
TCCTTTTCGC	AATCTCCGGG	CTCTACCCCTC	CTCATGGATG	CAGGGACCAC	ATTAGAAACC	1440
GCTGATGGGA	TCACTATCAA	TAATCTTGT	CTCAATGTAG	ATTCTTAAA	AGAGACCAAG	1500
AAGGCTACGC	AAAAAGCAAC	ACAAGCAAGT	CAGACAGTC	CTTTATCTGG	ATCGCTCTCT	1560
CTTGTAGATC	CTTCTGGAAA	TGTCTACGAA	GATGTCCTT	GGAATAACCC	TCAAGTCTT	1620
TCTTGTCTCA	CTCTTACTGC	TGACGACCCC	GCGAATATTC	ACATCACAGA	CTTAGCTGCT	1680
GATCCCCTAG	AAAAAAATCC	TATCCATTGG	GGATACCAAG	GGAATTGGGC	ATTATCTTGG	1740
CAAGAGGATA	CTGCGACTAA	ATCCAAAGCA	GGCACTCTTA	CCTGGACAAA	AAACAGGATAC	1800
AATCCGAATC	CTGAGCGTCG	TGGAACCTTA	GTGCTAACAC	CGCTATGGGG	ATCCTTTGTT	1860
GATGTGCCCT	CCATACAACA	GCTTGTAGCC	ACTAAAGTAC	GCCAATCTCA	AGAAACTCGC	1920
GGCATCTGGT	GTGAAGGGAT	CTCGAACTTC	TTCCATAAAAG	ATAGCACGAA	GATAAAATAA	1980
GGTTTCGCC	ACATAAGTGC	AGGTTATGTT	GTAGGAGCGA	CTACAACATT	AGCTTCTGAT	2040
AATCTTATCA	CTGCAAGCCTT	CTGCCAATT	TTCGGGAAAG	ATAGAGATCA	CTTTATAAAT	2100
AAAAATAGAG	CTTCTGCCTA	TGCAGCTTCT	CTCCATCTCC	AGCATCTAGC	GACCTTGCT	2160
TCTCCAAGCT	TGTTACGCTA	CCTTCCTGG	TCTGAAAGTG	AGCAGCCTGT	CCTCTTTGAT	2220
GCTCAGATCA	GCTATATCTA	TAGAAAAAT	ACTATGAAAAA	CCTATTACAC	CCAAGCACCA	2280
AAGGGAGAGA	GCTCGTGGTA	TAATGACGGT	TGGCCTCTGG	AACTTGCAG	CTCCCTACCA	2340
CACACTGCTT	TAAGCCATGA	GGGTCTCTTC	CACCGTATT	TTCCCTTCAT	CAAAGTAGAA	2400
GCTTCGTACA	TACACCAAGA	TAGCTTCAA	GAACGTAATA	CTACCTTGTT	ACGATCTTC	2460
GATAGCGGTG	ATTTAATTAA	CGTCTCTGTG	CCTATTGGAA	TTACCTTCGA	GAGATTCTCG	2520
AGAAACGAGC	GTGCGTCTTA	CGAAGCTACT	GTCTACAG	TTGCCGATGT	CTATCGTAAG	2580
AATCCTGACT	GCACGACAGC	TCTCCTAAC	AAACATACCT	CGTGGAAAAC	TACAGGAACG	2640
AATCTCTCAA	GACAAGCTGG	TATCGGAAGA	GCAGGGATCT	TTTATGCCTT	CTCTCCAAT	2700
CTTGAGGTCA	CAAGTAACCT	ATCTATGGAA	ATTGCGGAT	CTTCACGCAG	CTACAATGCA	2760
GATCTTGGAG	GTAAGTTCCA	GTTCTAA				2787

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 928 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Lys Ser Ser Leu His Trp Phe Val Ile Ser Ser Ser Leu Ala Leu
 1 5 10 15
 Pro Leu Ser Leu Asn Phe Ser Ala Phe Ala Ala Val Val Glu Ile Asn
 20 25 30
 Leu Gly Pro Thr Asn Ser Phe Ser Gly Pro Gly Thr Tyr Thr Pro Pro
 35 40 45
 Ala Gln Thr Thr Asn Ala Asp Gly Thr Ile Tyr Asn Leu Thr Gly Asp
 50 55 60
 Val Ser Ile Thr Asn Ala Gly Ser Pro Thr Ala Leu Thr Ala Ser Cys
 65 70 75 80
 Phe Lys Glu Thr Thr Gly Asn Leu Ser Phe Gln Gly His Gly Tyr Gln
 85 90 95
 Phe Leu Leu Gln Asn Ile Asp Ala Gly Ala Asn Cys Thr Phe Thr Asn
 100 105 110
 Thr Ala Ala Asn Lys Leu Leu Ser Phe Ser Gly Phe Ser Tyr Leu Ser
 115 120 125
 Leu Ile Gln Thr Thr Asn Ala Thr Thr Gly Thr Gly Ala Ile Lys Ser
 130 135 140
 Thr Gly Ala Cys Ser Ile Gln Ser Asn Tyr Ser Cys Tyr Phe Gly Gln
 145 150 155 160
 Asn Phe Ser Asn Asp Asn Gly Gly Ala Leu Gln Gly Ser Ser Ile Ser
 165 170 175
 Leu Ser Leu Asn Pro Asn Leu Thr Phe Ala Lys Asn Lys Ala Thr Gln
 180 185 190
 Lys Gly Gly Ala Leu Tyr Ser Thr Gly Gly Ile Thr Ile Asn Asn Thr
 195 200 205
 Leu Asn Ser Ala Ser Phe Ser Glu Asn Thr Ala Ala Asn Asn Gly Gly
 210 215 220
 Ala Ile Tyr Thr Glu Ala Ser Ser Phe Ile Ser Ser Asn Lys Ala Ile
 225 230 235 240
 Ser Phe Ile Asn Asn Ser Val Thr Ala Thr Ser Ala Thr Gly Gly Ala
 245 250 255
 Ile Tyr Cys Ser Ser Thr Ser Ala Pro Lys Pro Val Leu Thr Leu Ser
 260 265 270
 Asp Asn Gly Glu Leu Asn Phe Ile Gly Asn Thr Ala Ile Thr Ser Gly
 275 280 285
 Gly Ala Ile Tyr Thr Asp Asn Leu Val Leu Ser Ser Gly Gly Pro Thr
 290 295 300
 Leu Phe Lys Asn Asn Ser Ala Ile Asp Thr Ala Ala Pro Leu Gly Gly
 305 310 315 320
 Ala Ile Ala Ile Ala Asp Ser Gly Ser Leu Ser Leu Ser Ala Leu Gly
 325 330 335
 Gly Asp Ile Thr Phe Glu Gly Asn Thr Val Val Lys Gly Ala Ser Ser
 340 345 350
 Ser Gln Thr Thr Thr Arg Asn Ser Ile Asn Ile Gly Asn Thr Asn Ala
 355 360 365
 Lys Ile Val Gln Leu Arg Ala Ser Gln Gly Asn Thr Ile Tyr Phe Tyr
 370 375 380
 Asp Pro Ile Thr Thr Asn His Thr Ala Ala Leu Ser Asp Ala Leu Asn
 385 390 395 400
 Leu Asn Gly Pro Asp Leu Ala Gly Asn Pro Ala Tyr Gln Gly Thr Ile
 405 410 415
 Val Phe Ser Gly Glu Lys Leu Ser Glu Ala Glu Ala Ala Glu Ala Asp
 420 425 430
 Asn Leu Lys Ser Thr Ile Gln Gln Pro Leu Thr Leu Ala Gly Gly Gln

435	440	445	
Leu Ser Leu Lys Ser Gly Val Thr Leu Val Ala Lys Ser Phe Ser Gln			
450	455	460	
Ser Pro Gly Ser Thr Leu Leu Met Asp Ala Gly Thr Thr Leu Glu Thr			
465	470	475	480
Ala Asp Gly Ile Thr Ile Asn Asn Leu Val Leu Asn Val Asp Ser Leu			
485	490	495	
Lys Glu Thr Lys Lys Ala Thr Leu Lys Ala Thr Gln Ala Ser Gln Thr			
500	505	510	
Val Thr Leu Ser Gly Ser Leu Ser Leu Val Asp Pro Ser Gly Asn Val			
515	520	525	
Tyr Glu Asp Val Ser Trp Asn Asn Pro Gln Val Phe Ser Cys Leu Thr			
530	535	540	
Leu Thr Ala Asp Asp Pro Ala Asn Ile His Ile Thr Asp Leu Ala Ala			
545	550	555	560
Asp Pro Leu Glu Lys Asn Pro Ile His Trp Gly Tyr Gln Gly Asn Trp			
565	570	575	
Ala Leu Ser Trp Gln Glu Asp Thr Ala Thr Lys Ser Lys Ala Ala Thr			
580	585	590	
Leu Thr Trp Thr Lys Thr Gly Tyr Asn Pro Asn Pro Glu Arg Arg Gly			
595	600	605	
Thr Leu Val Ala Asn Thr Leu Trp Gly Ser Phe Val Asp Val Arg Ser			
610	615	620	
Ile Gln Gln Leu Val Ala Thr Lys Val Arg Gln Ser Gln Glu Thr Arg			
625	630	635	640
Gly Ile Trp Cys Glu Gly Ile Ser Asn Phe Phe His Lys Asp Ser Thr			
645	650	655	
Lys Ile Asn Lys Gly Phe Arg His Ile Ser Ala Gly Tyr Val Val Gly			
660	665	670	
Ala Thr Thr Thr Leu Ala Ser Asp Asn Leu Ile Thr Ala Ala Phe Cys			
675	680	685	
Gln Leu Phe Gly Lys Asp Arg Asp His Phe Ile Asn Lys Asn Arg Ala			
690	695	700	
Ser Ala Tyr Ala Ala Ser Leu His Leu Gln His Leu Ala Thr Leu Ser			
705	710	715	720
Ser Pro Ser Leu Leu Arg Tyr Leu Pro Gly Ser Glu Ser Glu Gln Pro			
725	730	735	
Val Leu Phe Asp Ala Gln Ile Ser Tyr Ile Tyr Ser Lys Asn Thr Met			
740	745	750	
Lys Thr Tyr Tyr Thr Gln Ala Pro Lys Gly Glu Ser Ser Trp Tyr Asn			
755	760	765	
Asp Gly Cys Ala Leu Glu Leu Ala Ser Ser Leu Pro His Thr Ala Leu			
770	775	780	
Ser His Glu Gly Leu Phe His Ala Tyr Phe Pro Phe Ile Lys Val Glu			
785	790	795	800
Ala Ser Tyr Ile His Gln Asp Ser Phe Lys Glu Arg Asn Thr Thr Leu			
805	810	815	
Val Arg Ser Phe Asp Ser Gly Asp Leu Ile Asn Val Ser Val Pro Ile			
820	825	830	
Gly Ile Thr Phe Glu Arg Phe Ser Arg Asn Glu Arg Ala Ser Tyr Glu			
835	840	845	
Ala Thr Val Ile Tyr Val Ala Asp Val Tyr Arg Lys Asn Pro Asp Cys			
850	855	860	
Thr Thr Ala Leu Leu Ile Asn Asn Thr Ser Trp Lys Thr Thr Gly Thr			
865	870	875	880
Asn Leu Ser Arg Gln Ala Gly Ile Gly Arg Ala Gly Ile Phe Tyr Ala			
885	890	895	

Phe	Ser	Pro	Asn	Leu	Glu	Val	Thr	Ser	Asn	Leu	Ser	Met	Glu	Ile	Arg
900													910		
Gly	Ser	Ser	Arg	Ser	Tyr	Asn	Ala	Asp	Leu	Gly	Gly	Lys	Phe	Gln	Phe
915												925			

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2793 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ATGAAAATAC	CCTTGCACAA	ACTCCGTGATC	TCTTCGACTC	TTGTCACTCC	CATTCTATTG	60
AGCATTGCAA	CTTACGGAGC	AGATGCTTCT	TTATCCCCTA	CAGATAGCTT	TGATGGAGCG	120
GGCGGCTCTA	CATTACTCC	AAAATCTACA	GCAGATGCCA	ATGGAACGAA	CTATGTCTTA	180
TCAGGAAATG	TCTATATAAA	CGATGCTGGG	AAAGGCACAG	CATTAACAGG	CTGCTGCTTT	240
ACAGAAACTA	CGGGTGTACT	GACATTACT	GGAAAGGGAT	ACTCATTTC	ATTCAACACG	300
GTAGATGCGG	GTTCGAATGC	AGGAGCTGCG	GCAAGCACAA	CTGCTGATAA	AGCCCTAACAA	360
TTCACAGGAT	TTTCTAACCT	TTCCCTCATT	GCAGCTCCTG	GAACATACAGT	TGCTTCAGGA	420
AAAAGTACTT	TAAGTTCTGC	AGGAGCCTTA	AATCTTACCG	ATAATGGAAC	GATTCTCTTT	480
AGCCAAAACG	TCTCCAATGA	AGCTAATAAC	AATGGCGGAG	CGATCACCAC	AAAAACTCTT	540
TCTATTTCTG	GGAAATAACCTC	TTCTATACC	TTCACTAGTA	ATAGCGCAA	AAAATTAGGT	600
GGAGCGATCT	ATAGCTCTGC	GGCTGCAAGT	ATTCAGGAA	ACACCGGCCA	GTTAGTCTTT	660
ATGAATAATA	AAGGAGAAC	TGGGGCGGG	GCTCTGGGT	TTGAAGCCAG	CTCCTCGATT	720
ACTCAAATAA	GCTCCCTTTT	CTTCTCTGGA	AACACTGCAA	CAGATGCTGC	AGGCAAGGGC	780
GGGGCCATT	ATTGTAAAAA	AACAGGAGAG	ACTCCTACTC	TTACTATCTC	TGGAAATAAA	840
AGTCTGACCT	TCGCCGAGAA	CTCTTCAGTA	ACTCAAGGCG	GAGCAATCTG	TGCCCATGGT	900
CTAGATCTTT	CCGCTGCTGG	CCCTACCTA	TTTCAAATA	ATAGATGCGG	GAACACAGCT	960
GCAGGCAAGG	GCGCGCTAT	TGCAATTGCC	GACTCTGGAT	CTTTAAGTCT	CTCTGCAAAT	1020
CAAGGAGACA	TCACGTTCC	TGGCAACACT	CTAACCTCAA	CCTCCGCGCC	AAACATCGACA	1080
CGGAATGCTA	TCTACCTGGG	ATCGTCAGCA	AAAATTACGA	ACTTAAGGGC	AGCCCAAGGC	1140
CAATCTATCT	ATTCTATGA	TCCGATTGCA	TCTAACACCA	CAGGAGCTTC	AGACGTTCTG	1200
ACCATCAACC	AACCGGATAG	CAACTCGCCT	TTAGATTATT	CAGGAACGAT	TGTATTTCT	1260
GGGGAAAAGC	TCTCTGCAGA	TGAAGCGAAA	GCTGCTGATA	ACTTCACATC	TATATTAAAG	1320
CAACCATTTG	CTCTAGCCTC	TGGAACCTTA	GCACCTCAAAG	GAAATGTCGA	GTTAGATGTC	1380
AATGGTTCA	CACAGACTGA	AGGCTCTACA	CTCCTCATGC	AACCAGGAAC	AAAGCTCAA	1440
GCAGATACTG	AAGCTATCAG	TCTTACAAA	CTTGTCTGTG	ATCTTCTGC	CTTAGAGGGA	1500
AATAAGAGTG	TGTCATTG	AACAGCAGGA	GCCAACAAAA	CTATAACTCT	AACTCTCCCT	1560
CTTGTCTTCC	AAGATAGTAG	CGGCAATT	TATGAAAGGC	ATACGATAAA	CCAAGCCTTC	1620
ACGCAGCCTT	TGGTGGTATT	CACTGCTGCT	ACTGCTGCTA	GCGATATTAA	TATCGATGCG	1680
CTTCTCACTT	CTCCAGTACA	AACTCCAGAA	CCTCATTACG	GGTATCAGGG	ACATTGGGAA	1740
GCCACTTGGG	CAGACACATC	AACTGCAAA	TCAGGAACTA	TGACTTGGGT	AACTACGGGC	1800
TACAACCTA	ATCCTGAGCG	TAGAGCTTCC	GTAGTTCCCG	ATTCAATTATG	GGCATCCTTT	1860
ACTGACATTC	GCACCTCTACA	GCAGATCATG	ACATCTCAAG	CGAATAGTAT	CTATCAGCAA	1920
CGAGGACTCT	GGGCATCAGG	AACTGCAAT	TTCTTCCATA	AGGATAAATC	AGGAACAAAC	1980
CAAGCATTCC	GACATAAAAG	CTACGGCTAT	ATTGTTGGAG	GAAGTGCTGA	AGATTTTCT	2040
GAAAATATCT	TCAGTGTAGC	TTTCTGCCAG	CTCTTCGGTA	AAGATAAAGA	CCTGTTTATA	2100
GTTGAAAATA	CCTCTCATAA	CTATTTAGCG	TCGCTATACC	TGCAACATCG	AGCATTCTA	2160
GGAGGACTTC	CCATGCCCTC	ATTGGAAGT	ATCACCGACA	TGCTGAAAGA	TATTCCTCTC	2220
ATTTTGAATG	CCCAGCTAAG	CTACAGCTAC	ACTAAAAATG	ATATGGATAC	TCGCTATACT	2280
TCCTATCTG	AAGCTCAAGG	TTCTGGACC	ATAATTCTG	GGGCTCTAGA	GCTCGGAGGA	2340
TCTCTGGCTC	TATATCTCCC	TAAAGAAGCA	CCGTTCTTCC	AGGGATATT	CCCCCTCTTA	2400

AAGTTCCAGG CAGTCTACAG CCGCCAACAA AACTTTAAAG AGAGTGGCGC TGAAGCCCGT	2460
GCTTTGATG ATGGAGACCT AGTGAACCTGC TCTATCCCTG TCGGCATTG GTTAGAAAAA	2520
ATCTCCGAAG ATGAAAAAAA TAATTCGAG ATTCTCTAG CCAACATTGG TGATGTGTAT	2580
CGTAAAATC CCCGTTCGCG TACTTCTCTA ATGGTCAGTG GAGCCTTGTG GACTTCGCTA	2640
TGTAAAACCC TCGCACGACA AGCCTTCTTA GCAAGTGCTG GAAGCCATCT GACTCTCTCC	2700
CCTCATGTAG AACTCTCTGG GGAAGCTGCT TATGAGCTTC GTGGCTCAGC ACACATCTAC	2760
AATGTAGATT GTGGGCTAAG ATACTCATTC TAG	2793

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 930 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Lys Ile Pro Leu His Lys Leu Leu Ile Ser Ser Ser Thr Leu Val Thr	
1 5 10 15	
Pro Ile Leu Leu Ser Ile Ala Thr Tyr Gly Ala Asp Ala Ser Leu Ser	
20 25 30	
Pro Thr Asp Ser Phe Asp Gly Ala Gly Gly Ser Thr Phe Thr Pro Lys	
35 40 45	
Ser Thr Ala Asp Ala Asn Gly Thr Asn Tyr Val Leu Ser Gly Asn Val	
50 55 60	
Tyr Ile Asn Asp Ala Gly Lys Gly Thr Ala Leu Thr Gly Cys Cys Phe	
65 70 75 80	
Thr Glu Thr Thr Gly Asp Leu Thr Phe Thr Gly Lys Gly Tyr Ser Phe	
85 90 95	
Ser Phe Asn Thr Val Asp Ala Gly Ser Asn Ala Gly Ala Ala Ser	
100 105 110	
Thr Thr Ala Asp Lys Ala Leu Thr Phe Thr Gly Phe Ser Asn Leu Ser	
115 120 125	
Phe Ile Ala Ala Pro Gly Thr Thr Val Ala Ser Gly Lys Ser Thr Leu	
130 135 140	
Ser Ser Ala Gly Ala Leu Asn Leu Thr Asp Asn Gly Thr Ile Leu Phe	
145 150 155 160	
Ser Gln Asn Val Ser Asn Glu Ala Asn Asn Asn Gly Gly Ala Ile Thr	
165 170 175	
Thr Lys Thr Leu Ser Ile Ser Gly Asn Thr Ser Ser Ile Thr Phe Thr	
180 185 190	
Ser Asn Ser Ala Lys Lys Leu Gly Gly Ala Ile Tyr Ser Ser Ala Ala	
195 200 205	
Ala Ser Ile Ser Gly Asn Thr Gly Gln Leu Val Phe Met Asn Asn Lys	
210 215 220	
Gly Glu Thr Gly Gly Ala Leu Gly Phe Glu Ala Ser Ser Ser Ile	
225 230 235 240	
Thr Gln Asn Ser Ser Leu Phe Phe Ser Gly Asn Thr Ala Thr Asp Ala	
245 250 255	
Ala Gly Lys Gly Gly Ala Ile Tyr Cys Glu Lys Thr Gly Glu Thr Pro	
260 265 270	
Thr Leu Thr Ile Ser Gly Asn Lys Ser Leu Thr Phe Ala Glu Asn Ser	
275 280 285	
Ser Val Thr Gln Gly Gly Ala Ile Cys Ala His Gly Leu Asp Leu Ser	

290	295	300
Ala	Ala	Gly
Pro	Thr	Leu
Phe	Ser	Asn
Asn	Arg	Cys
		Gly
		Asn
		Thr
		Ala
305	310	315
		320
Ala	Gly	Lys
Gly	Gly	Ala
Ile	Ala	Ile
Ala	Asp	Ser
		Gly
		Ser
		Leu
325	330	335
Leu	Ser	Ala
Asn	Gln	Gly
		Asp
		Ile
		Thr
		Phe
		Leu
		Gly
		Asn
		Thr
		Leu
340	345	350
Ser	Thr	Ser
Ala	Pro	Thr
Ser	Thr	Arg
Asn	Ala	Ile
		Tyr
		Leu
		Gly
355	360	365
Ser	Ala	Lys
Ile	Thr	Asn
Leu	Arg	Ala
Ala	Gln	Gly
		Gln
		Ser
		Ile
370	375	380
Phe	Tyr	Asp
Asp	Pro	Ile
Ala	Ser	Asn
		Thr
		Gly
		Ala
		Ser
		Asp
		Val
		Leu
385	390	395
		400
Thr	Ile	Asn
Gln	Pro	Asp
Ser	Asn	Ser
		Pro
		Leu
		Asp
		Tyr
		Ser
		Gly
405	410	415
Ile	Val	Phe
Ser	Gly	Glu
Lys	Leu	Ser
Ala	Asp	Glu
Ala	Lys	Ala
		Ala
420	425	430
Asp	Asn	Phe
		Thr
		Ser
Ile	Ile	Leu
Lys	Gln	Pro
		Leu
		Ala
		Leu
435	440	445
Thr	Leu	Ala
Leu	Lys	Gly
Asn	Val	Val
		Glu
		Leu
		Asp
		Val
		Asn
		Gly
450	455	460
Gln	Thr	Glu
Gly	Ser	Thr
Leu	Leu	Met
		Gln
		Pro
		Gly
		Thr
		Lys
465	470	475
		480
Ala	Asp	Thr
Glu	Ala	Ile
Ser	Leu	Thr
Lys	Leu	Val
Val	Val	Val
		Asp
		Leu
		Ser
485	490	495
Ala	Leu	Glu
Gly	Asn	Lys
Ser	Val	Ser
Ile	Glu	Thr
Asn	Ala	Gly
		Ala
500	505	510
Lys	Thr	Ile
Thr	Leu	Thr
Ser	Pro	Leu
		Val
		Phe
		Gln
515	520	525
Asn	Phe	Tyr
Glu	Ser	His
Thr	Ile	Asn
Gln	Ala	Phe
		Thr
		Gln
530	535	540
Val	Val	Phe
Thr	Ala	Ala
		Ser
		Asp
		Ile
		Tyr
		Ile
545	550	555
		560
Leu	Leu	Thr
Ser	Pro	Val
Gln	Thr	Pro
		Glu
		Pro
		His
		Tyr
		Gly
565	570	575
Gly	His	Trp
Glu	Ala	Thr
Trp	Ala	Asp
		Thr
		Ser
		Thr
		Ala
580	585	590
Thr	Met	Trp
Trp	Val	Thr
		Gly
		Tyr
		Asn
		Pro
		Glu
595	600	605
Ala	Ser	Val
Val	Val	Pro
Asp	Ser	Leu
		Trp
		Ala
		Ser
610	615	620
Thr	Leu	Gln
Gln	Ile	Met
		Thr
		Ser
		Gln
625	630	635
		640
Arg	Gly	Leu
		Trp
		Ala
		Ser
		Gly
645	650	655
Ser	Gly	Thr
Asn	Gln	Ala
		Phe
		Arg
		His
		Lys
		Ser
		Tyr
		Gly
660	665	670
Gly	Gly	Ser
		Ala
		Glu
		Asp
		Phe
675	680	685
Cys	Gln	Leu
		Phe
		Gly
		Lys
		Asp
		Lys
690	695	700
Ser	His	Asn
		Tyr
		Leu
		Ala
		Ser
		Leu
705	710	715
		720
Gly	Gly	Leu
		Pro
		Met
		Pro
		Ser
		Phe
725	730	735
Asp	Ile	Pro
		Leu
		Ile
		Leu
		Asn
		Ala
740	745	750

Asn	Asp	Met	Asp	Thr	Arg	Tyr	Thr	Ser	Tyr	Pro	Glu	Ala	Gln	Gly	Ser
755							760							765	
Trp	Thr	Asn	Asn	Ser	Gly	Ala	Leu	Glu	Leu	Gly	Gly	Ser	Leu	Ala	Leu
770							775							780	
Tyr	Leu	Pro	Lys	Glu	Ala	Pro	Phe	Phe	Gln	Gly	Tyr	Phe	Pro	Phe	Leu
785							790							800	
Lys	Phe	Gln	Ala	Val	Tyr	Ser	Arg	Gln	Gln	Asn	Phe	Lys	Glu	Ser	Gly
							805							815	
Ala	Glu	Ala	Arg	Ala	Phe	Asp	Asp	Gly	Asp	Leu	Val	Asn	Cys	Ser	Ile
							820							830	
Pro	Val	Gly	Ile	Arg	Leu	Glu	Lys	Ile	Ser	Glu	Asp	Glu	Lys	Asn	Asn
							835							845	
Phe	Glu	Ile	Ser	Leu	Ala	Asn	Ile	Gly	Asp	Val	Tyr	Arg	Lys	Asn	Pro
							850							860	
Arg	Ser	Arg	Thr	Ser	Leu	Met	Val	Ser	Gly	Ala	Ser	Trp	Thr	Ser	Leu
865							870							880	
Cys	Lys	Asn	Leu	Ala	Arg	Gln	Ala	Phe	Leu	Ala	Ser	Ala	Gly	Ser	His
							885							895	
Leu	Thr	Leu	Ser	Pro	His	Val	Glu	Leu	Ser	Gly	Glu	Ala	Ala	Tyr	Glu
							900							910	
Leu	Arg	Gly	Ser	Ala	His	Ile	Tyr	Asn	Val	Asp	Cys	Gly	Leu	Arg	Tyr
							915							925	
Ser	Phe														
	930														

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 840 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAAGACAATA	TAAGGTACCG	TCATAACAGC	GGGGTTATG	CACTAGGGAT	CACAGCAACA	60
ACTCCTGCCG	AGGATCAGCT	TACTTTGCC	TTCTGCCAGC	TCTTTGCTAG	AGATCGCAAT	120
CATATTACAG	GTAAGAACCA	CGGAGATACT	TACGGTGCCT	CTTTGTATTT	CCACCATACA	180
GAAGGGCTCT	TCGACATCGC	CAATTTCTC	TGGGGAAAAG	CAACCCGAGC	TCCCTGGGTG	240
CTCTCTGAGA	TCTCCCAGAT	CATTCTTTA	TCGTTCGATG	CTAAATTCAAG	TTATCTCCAT	300
ACAGACAAAC	ACATGAAGAC	ATATTATACC	GATAACTCTA	TCATCAAGGG	TTCTTGAGA	360
AACGATGCCT	TCTGTGCAGA	TCTTGGAGCT	AGCCTGCCTT	TTGTTATTT	CGTTCCGTAT	420
CTTCTGAAAG	AAGTCGAACC	TTTTGTCAAA	GTACAGTATA	TCTATGCGCA	TCAGCAAGAC	480
TTCTACGAGC	GTCATGCTGA	AGGACCGCCT	TTCAATAAAA	GCGAGCTTAT	CAACGTAGAG	540
ATTCCTATAG	CGCTCACCTT	CGAAAGAGAC	TCAAAATCAG	AAAAGGGAAC	TTACGATCTT	600
ACTCTTATGT	ATATACTCGA	TGCTTACCGA	CGCAATCCTA	AATGTCAAAC	TTCCCTAATA	660
GCTAGCGATG	CTAACTGGAT	GGCCTATGGT	ACCAACCTCG	CACGACAAGG	TTTTTCTGTT	720
CGTGCTGCGA	ACCATTCCA	AGTGAACCCC	CACATGGAAA	TCTTCGGTCA	ATTCGCTTTT	780
GAAGTACGAA	GTTCTTCACG	AAATTATAAT	ACAAACCTAG	GCTCTAAGTT	TTGTTTCTAG	840

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 279 amino acids
- (B) TYPE: amino acid

(C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Glu Asp Asn Ile Arg Tyr Arg His Asn Ser Gly Gly Tyr Ala Leu Gly
 1 5 10 15
 Ile Thr Ala Thr Thr Pro Ala Glu Asp Gln Leu Thr Phe Ala Phe Cys
 20 25 30
 Gln Leu Phe Ala Arg Asp Arg Asn His Ile Thr Gly Lys Asn His Gly
 35 40 45
 Asp Thr Tyr Gly Ala Ser Leu Tyr Phe His His Thr Glu Gly Leu Phe
 50 55 60
 Asp Ile Ala Asn Phe Leu Trp Gly Lys Ala Thr Arg Ala Pro Trp Val
 65 70 75 80
 Leu Ser Glu Ile Ser Gln Ile Ile Pro Leu Ser Phe Asp Ala Lys Phe
 85 90 95
 Ser Tyr Leu His Thr Asp Asn His Met Lys Thr Tyr Tyr Thr Asp Asn
 100 105 110
 Ser Ile Ile Lys Gly Ser Trp Arg Asn Asp Ala Phe Cys Ala Asp Leu
 115 120 125
 Gly Ala Ser Leu Pro Phe Val Ile Ser Val Pro Tyr Leu Leu Lys Glu
 130 135 140
 Val Glu Pro Phe Val Lys Val Gln Tyr Ile Tyr Ala His Gln Gln Asp
 145 150 155 160
 Phe Tyr Glu Arg His Ala Glu Gly Arg Ala Phe Asn Lys Ser Glu Leu
 165 170 175
 Ile Asn Val Glu Ile Pro Ile Gly Val Thr Phe Glu Arg Asp Ser Lys
 180 185 190
 Ser Glu Lys Gly Thr Tyr Asp Leu Thr Leu Met Tyr Ile Leu Asp Ala
 195 200 205
 Tyr Arg Arg Asn Pro Lys Cys Gln Thr Ser Leu Ile Ala Ser Asp Ala
 210 215 220
 Asn Trp Met Ala Tyr Gly Thr Asn Leu Ala Arg Gln Gly Phe Ser Val
 225 230 235 240
 Arg Ala Ala Asn His Phe Gln Val Asn Pro His Met Glu Ile Phe Gly
 245 250 255
 Gln Phe Ala Phe Glu Val Arg Ser Ser Ser Arg Asn Tyr Asn Thr Asn
 260 265 270
 Leu Gly Ser Lys Phe Cys Phe
 275

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1545 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ATGACCATAAC TTGAAATT TCTTACCTGC TCGGCTTTAT TCCTCGCTCT CCCTGCAGCA

60

GCACAAGTTG TATATCTTCA	TGAAAGTGT	GGTTATAACG	GTGCTATCAA	TAATAAAAGC	120
TTAGAACCTA AAATTACCTG	TTATCCAGAA	GGAACTTCTT	ACATCTTCT	AGATGACGTG	180
AGGATTTCCA ACGTTAAGCA	TGATCAAGAA	GATGCTGGGG	TTTTTATAAA	TCGATCTGGG	240
AATCTTTTT TCATGGCAA	CCGTTGCAAC	TTCACTTTTC	ACAACCTTAT	GACCGAGGGT	300
TTTGGCGCTG CCATTTCGAA	CCGCGTTGGA	GACACCAC	TCACTCTCTC	TAATTTTCT	360
TACTTAACGT TCACCTCAGC	ACCTCTACTA	CCTCAAGGAC	AAGGAGCGAT	TTATAGTCTT	420
GGTTCCGTGA TGATCGAAA	TAGTGAGGAA	GTGACTTCT	GTGGGAACTA	CTCTTCGTGG	480
AGTGGAGCTG CGATTTATAC	TCCCCTACCTT	TTAGGTTCTA	AGGCAGTCG	TCCTTCAGTA	540
AATCTCAGCG GGAACCGCTA	CCTGGTGT	AGAGACTATG	TGAGCCAAGG	TTATGGCGGC	600
GCCGTATCTA CCCACAATCT	CACACTCACG	ACTCGAGGAC	CTTCGTGTTT	TGAAAATAAT	660
CATGCTTATC ATGACGTGAA	TAGTAATGGA	GGAGCCATTG	CCATTGCTCC	TGGAGGATCG	720
ATCTCTATAT CCGTGAAAAG	CGGAGATCTC	ATCTTCAAAG	GAAATACAGC	ATCACAAGAC	780
GGAAATACAA TACACAAC	CATCCATCTG	CAATCTGGAG	CACAGTTAA	GAACCTACGT	840
GCTGTTTCAG AATCCGGAGT	TTATTTCTAT	GATCCTATAA	GCCATAGCGA	GTCGCATAAA	900
ATTACAGATC TTGTAATCAA	TGCTCCTGAA	GGAAAGGAAA	CTTATGAAGG	ACAATTAGC	960
TTCTCAGGAC TATGCCCTGGA	TGATCATGAA	GTTTGTGCGG	AAAATCTTAC	TTCCACAATC	1020
CTACAAGATG TCACATTAGC	AGGAGGA	ACTCTCTAT	CGGATGGGGT	TACCTTGCAA	1080
CTGCATTCTT TTAAGCAGGA	AGCAAGCTCT	ACGCTTACTA	TGTCTCCAGG	AACCACTCTG	1140
CTCTGCTCAG GAGATGCTCG	GGITCAGAAT	CTGCACATCC	TGATTGAAGA	TACCGACAAC	1200
TTTGTTCCTG TAAGGATTG	CGCCGAGGAC	AAGGATGCTC	TTGTCTCATT	AGAAAAAACTT	1260
AAAGTTGCCT TTGAGGCTTA	TTGGTCCGTC	TATGACTTTC	CTCAATTAA	GGAAGCCTTT	1320
ACGATTCCTC TTCTGA	TCTAGGGCCT	TCTTTGACA	GTCTTCTCCT	AGGGGAGACC	1380
ACTTTGGAGA GAACCCAAGT	CACAAACAGAG	AATGACGCCG	TTCGAGGTTT	CTGGTCCCTA	1440
AGCTGGGAAG AGTACCCCCC	TTCTCTGGAT	AAAGACAGAA	GGATCACACC	AACTAAGAAA	1500
ACTGTTTCC TCACTTGAA	TCCTGAGATC	ACTTCTACGC	CATAA		1545

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 514 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met	Thr	Ile	Leu	Arg	Asn	Phe	Leu	Thr	Cys	Ser	Ala	Leu	Phe	Leu	Ala
1								10						15	
Leu	Pro	Ala	Ala	Ala	Gln	Val	Val	Tyr	Leu	His	Glu	Ser	Asp	Gly	Tyr
								20						25	
Asn	Gly	Ala	Ile	Asn	Asn	Lys	Ser	Leu	Glu	Pro	Lys	Ile	Thr	Cys	Tyr
								35						40	
Pro	Glu	Gly	Thr	Ser	Tyr	Ile	Phe	Leu	Asp	Asp	Val	Arg	Ile	Ser	Asn
								50						55	
Val	Lys	His	Asp	Gln	Glu	Asp	Ala	Gly	Val	Phe	Ile	Asn	Arg	Ser	Gly
								65						70	
Asn	Leu	Phe	Phe	Met	Gly	Asn	Arg	Cys	Asn	Phe	Thr	Phe	His	Asn	Leu
								85						90	
Met	Thr	Glu	Gly	Phe	Gly	Ala	Ala	Ile	Ser	Asn	Arg	Val	Gly	Asp	Thr
								100						105	
Thr	Leu	Thr	Leu	Ser	Asn	Phe	Ser	Tyr	Leu	Thr	Phe	Thr	Ser	Ala	Pro
								115						120	
Leu	Leu	Pro	Gln	Gly	Gln	Gly	Ala	Ile	Tyr	Ser	Leu	Gly	Ser	Val	Met
								130						135	
Ile	Glu	Asn	Ser	Glu	Glu	Val	Thr	Phe	Cys	Gly	Asn	Tyr	Ser	Ser	Trp

145	150	155	160
Ser	Gly	Ala	Ala
Ile	Tyr	Thr	Pro
Tyr	Leu	Leu	Gly
Asn	Arg	Tyr	Leu
Leu	Ser	Val	Val
165	170	175	
Arg	Pro	Ser	Asn
Val	Asn	Leu	Ser
Gly	Asn	Arg	Tyr
Tyr	Tyr	Tyr	Leu
Gly	Gly	Gly	Val
Ala	Val	Ser	Thr
180	185	190	
Tyr	Val	Ser	Gln
Gly	Tyr	Gly	Ala
195	200	205	
Leu	Thr	Thr	Arg
Arg	Gly	Pro	Ser
Gly	Cys	Phe	Glu
Pro	Asn	Asn	Asn
Asp	His	Ala	Tyr
210	215	220	
Asp	Val	Asn	Ser
Asn	Gly	Gly	Ala
Ile	Ile	Ala	Ile
Ile	Ala	Pro	Gly
225	230	235	240
Ile	Ser	Ile	Ser
Val	Lys	Ser	Gly
Gly	Asp	Leu	Ile
Asp	Ile	Phe	Lys
245	250	255	
Ala	Ser	Gln	Asp
Gly	Asn	Thr	Ile
Ile	His	Asn	Ser
260	265	270	
Gly	Ala	Gln	Phe
Asn	Leu	Phe	Lys
Arg	Arg	Asn	Leu
275	280	285	
Phe	Tyr	Asp	Pro
Pro	Ile	Ser	His
Ser	Gly	Glu	Ser
His	Ile	Thr	Asp
290	295	300	
Val	Ile	Asn	Ala
Ala	Pro	Glu	Gly
Gly	Lys	Glu	Thr
305	310	315	320
Phe	Ser	Gly	Leu
Cys	Leu	Asp	Asp
His	Glu	Val	Cys
325	330	335	
Thr	Ser	Thr	Ile
Ile	Leu	Gln	Asp
Asp	Val	Thr	Leu
340	345	350	
Leu	Ser	Asp	Gly
Gly	Val	Thr	Leu
355	360	365	
Ser	Ser	Thr	Leu
Thr	Leu	Thr	Met
Met	Ser	Pro	Gly
370	375	380	
Asp	Ala	Arg	Val
Gln	Asn	Leu	His
Ile	Ile	Leu	Ile
385	390	395	400
Phe	Val	Pro	Val
Arg	Ile	Arg	Ala
Glu	Asp	Lys	Asp
405	410	415	
Leu	Glu	Lys	Leu
Lys	Val	Ala	Phe
Glu	Ala	Tyr	Trp
420	425	430	
Phe	Pro	Gln	Phe
Lys	Glu	Glu	Ala
435	440	445	
Gly	Pro	Ser	Phe
Asp	Ser	Leu	Leu
450	455	460	
Thr	Gln	Val	Thr
Thr	Glu	Asn	Asp
465	470	475	480
Ser	Trp	Glu	Tyr
Glu	Pro	Pro	Pro
Tyr	Ser	Leu	Asp
485	490	495	
Pro	Thr	Lys	Lys
Thr	Val	Phe	Leu
495	500	505	
Asn	Trp	Asn	Pro
Glu	Ile	Thr	Ser
510			
Thr	Pro		

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 787 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATGAAACGT	CTATCGTAA	GTTCTTAATT	TCTACCACAC	TGGGCCATG	TTTGCTTCA	60
ACAGCGTTA	CTGTAGAAGT	TATCATGCCT	TCCGAGAACT	TTGATGGATC	GAGTGGGAAG	120
ATTTTCCTT	ACACAACACT	TTCTGATCCT	AGAGGGACAC	TCTGTATTTT	TTCAGGGAT	180
CTCTACATTG	CGAATCTTGA	TAATGCCATA	TCCAGAACCT	CTTCCAGTTG	CTTAGCAAT	240
AGGGCGGGAG	CACTACAAAT	CTTAGGAAAA	GGTGGGGTTT	TCTCCTCTT	AAATATCCGT	300
TCTTCAGCTG	ACGGAGCCGC	GATTAGTAGT	GTAATCACCC	AAAATCCTGA	ACTATGTCCC	360
TTGAGTTTT	CAGGATTTAG	TCAGATGATC	TTCGATAACT	GTGAATCTTT	GACTTCAGAT	420
ACCTCAGCGA	GTAATGTAT	ACCTCACCGCA	TCGGCGATTT	ACGCTACAAAC	GCCCATGCTC	480
TTTACAAACA	ATGACTCCAT	ACTATTCAA	TACAACCGTT	CTGCAGGATT	TGGAGCTGCC	540
ATTCGAGGCA	CAAGCATCAC	AATAGAAAAT	ACGAAAAAAGA	GCCTTCTCTT	TAATGGTAAT	600
GGATCCATCT	CTAATGGAGG	GGCCCTCACG	GGATCTGCAG	CGATCAACCT	CATCAACAAAT	660
AGCGCTCCTG	TGATTTCTC	AACGAATGCT	ACAGGGATCT	ATGGTGGGGC	TATTTACCTT	720
ACCGGAGGAT	CTATGCTCAC	CTCTGGGAAAC	CTCTCAGGAG	TCTTGTTCGT	TTATAATAGC	780
TCGCGCT						787

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 262 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met	Lys	Thr	Ser	Ile	Arg	Lys	Phe	Leu	Ile	Ser	Thr	Thr	Leu	Ala	Pro
1				5					10						15
Cys	Phe	Ala	Ser	Thr	Ala	Phe	Thr	Val	Glu	Val	Ile	Met	Pro	Ser	Glu
				20				25							30
Asn	Phe	Asp	Gly	Ser	Ser	Gly	Lys	Ile	Phe	Pro	Tyr	Thr	Thr	Leu	Ser
				35				40							45
Asp	Pro	Arg	Gly	Thr	Leu	Cys	Ile	Phe	Ser	Gly	Asp	Leu	Tyr	Ile	Ala
				50				55							60
Asn	Leu	Asp	Asn	Ala	Ile	Ser	Arg	Thr	Ser	Ser	Ser	Cys	Phe	Ser	Asn
				65				70							80
Arg	Ala	Gly	Ala	Leu	Gln	Ile	Leu	Gly	Lys	Gly	Gly	Val	Phe	Ser	Phe
				85				90							95
Leu	Asn	Ile	Arg	Ser	Ser	Ala	Asp	Gly	Ala	Ala	Ile	Ser	Ser	Val	Ile
				100				105							110
Thr	Gln	Asn	Pro	Glu	Leu	Cys	Pro	Leu	Ser	Phe	Ser	Gly	Phe	Ser	Gln
				115				120							125
Met	Ile	Phe	Asp	Asn	Cys	Glu	Ser	Leu	Thr	Ser	Asp	Thr	Ser	Ala	Ser
				130				135							140
Asn	Val	Ile	Pro	His	Ala	Ser	Ala	Ile	Tyr	Ala	Thr	Thr	Pro	Met	Leu
				145				150							160
Phe	Thr	Asn	Asn	Asp	Ser	Ile	Leu	Phe	Gln	Tyr	Asn	Arg	Ser	Ala	Gly
				165				170							175
Phe	Gly	Ala	Ala	Ile	Arg	Gly	Thr	Ser	Ile	Thr	Ile	Glu	Asn	Thr	Lys
				180				185							190
Lys	Ser	Leu	Leu	Phe	Asn	Gly	Asn	Gly	Ser	Ile	Ser	Asn	Gly	Gly	Ala
				195				200							205
Leu	Thr	Gly	Ser	Ala	Ala	Ile	Asn	Leu	Ile	Asn	Asn	Ser	Ala	Pro	Val
				210				215							220

Ile Phe Ser Thr Asn Ala Thr Gly Ile Tyr Gly Gly Ala Ile Tyr Leu
 225 230 235 240
 Thr Gly Gly Ser Met Leu Thr Ser Gly Asn Leu Ser Gly Val Leu Phe
 245 250 255
 Val Tyr Asn Ser Ser Arg
 260

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2838 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGAAGACTT	CAGTTTCTAT	GTTGTTGGCC	CTGCTTTGCT	CGGGGGCTAG	CTCTATTGTA	60
CTCCATGCCG	CAACCACTCC	ACTAAATCCT	GAAGATGGGT	TTATTGGGGA	GGGCAATACA	120
AATACTTTTT	CTCCGAAATC	TACAACGGAT	GCTGCAGGAA	CTACCTACTC	TCTCACAGGA	180
GAGGTTCTGT	TTATAGATCC	GGGGAAAGGT	GGTTCAATT	CAGGAACCTG	CTTTGTAGAA	240
ACTGCTGGCG	ATCTTACATT	TTTAGGTAAT	GGAAATACCC	TAAAGTTCCT	GTCGGTAGAT	300
GCAGGGTGTCA	ATATCGCGGT	TGCTCATGTA	CAAGGAAGTA	AGAATTTAAG	CTTCACAGAT	360
TTCCTTTCTC	TGGTGATCAC	AGAATCTCCA	AAATCCGCTG	TTAGTACAGG	AAAAGGTAGC	420
CTAGTCAGTT	CAGGTGCAGT	CCAACTGCAA	GATATAAAC	CTCTAGTTCT	TACAAGCAAT	480
GCCTCTGTCG	AAGATGGTGG	CGTGATTA	GGAAACTCCT	GCTTGATTCA	GGGAATCAAA	540
AATAGTGCAG	TTTTTGGACA	AAATACATCT	TCGAAAAAAG	GAGGGCGAT	CTCCACGACT	600
CAAGGACTCA	CCATAGAGAA	TAACCTAGGG	ACGCTAAAGT	TCAATGAAAA	CAAAGCAGTG	660
ACCTCAGGAG	GCGCCTT	TTTAGGAGCC	GCGTCTACAT	TCACTGCGAA	CCATGAGTTG	720
ATATTTTCAC	AAAATAAGAC	TTCTGGGAAT	GCTGCAAATG	GCGGAGCCAT	AAATTGCTCA	780
GGCGACCTAA	CATTACTGA	TAACACTTCT	TTGTTACTTC	AAGAAAATAG	CACAATGCAG	840
GATGGTGGAG	CTTTGTGTAG	CACAGGAACC	ATAAGCATT	CCGGTAGTGA	TTCTATCAAT	900
GTGATAGGAA	ATACCTCAGG	ACAAAAAGGA	GGAGCGATT	CTGCAGCTTC	TCTCAAGATT	960
TTGGGAGGGC	AGGGAGGC	TCTCTTTCT	AATAACGTAG	TGACTCATGC	CACCCCTCTA	1020
GGAGGTGCCA	TTTTTATCAA	CACAGGAGGA	TCCTTGCGAC	TCTTCACTCA	AGGAGGGAT	1080
ATCGTATTG	AGGGGAATCA	GGTCACTACA	ACAGCTCCAA	ATGCTACCA	TAAGAGAAAT	1140
GTAATTCA	TCGAGAGCAC	CGCGAAGTGG	ACGGGACTTG	CTGCAAGTCA	AGGTAACGCT	1200
ATCTATTCT	ATGATCCC	TACCACCAAC	GATACTGGAG	CAAGCGATAA	CTTACGTATC	1260
AATGAGGTCA	GTGCAAATCA	AAAGCTCTCG	GGATCTATAG	TATTTCTGG	AGAGAGATTG	1320
TCGACAGCAG	AAGCTATAGC	TGAAAATCTT	ACTTCGAGGA	TCAACCAGCC	TGTCACTTTA	1380
GTAGAGGGG	GCTTAGAACT	TAAACAGGGA	GTGACCTTG	TCACACAAAGG	ATTCTCGCAG	1440
GAGCCAGAAT	CCACGCTTCT	TTTGGATTTG	GGGACCTCAT	TACAAGCTTC	TACAGAAGAT	1500
ATCGTCATCA	CAAATTCA	TATAAATGCC	GATACCATT	ACGGAAAGAA	TCCAATCAAT	1560
ATTGTAGCTT	CAGCAGCGAA	TAAGAACATT	ACCTAACAG	GAACCTTAGC	ACTTGTAAAT	1620
CGAGATGGAG	CTTTGTATGA	GAACCATACC	TTGCAAGACT	CTCAAGATTA	TAGCTTTGTA	1680
AAGTTATCTC	CAGGAGCGGG	AGGGACTATA	ATTACTCAAG	ATGCTCTCA	GAAGCTCTT	1740
GAAGTAGCTC	CTTCTAGACC	ACATTATGGC	TATCAAGGAC	ATTGGAATGT	GCAAGTCATC	1800
CCAGGAACGG	GAACCAACC	GAGCCAGGCA	AATTAGAAT	GGGTGCGGAC	AGGATACCTT	1860
CCGAATCCCG	AACGGCAAGG	ATTTTAGTT	CCCAATAGCC	TGTGGGGTTC	TTTTGTTGAT	1920
CAGCGTGTCA	TCCAAGAAAT	CATGGTAAAT	AGTAGCCAA	TCTTATGTCA	GGAACGGGGA	1980
GTCTGGGGAG	CTGGAATTGC	TAATTTCTA	CATAGAGATA	AAATTATGA	GCACGGCTAT	2040
CGCCATAGCG	GTGTCGGTTA	TCTTGTGGGA	GTGGGACTC	ATGCTTTTC	TGATGCTACG	2100
ATAAATGCGG	CTTTTGCCA	GCTCTTCAGT	AGAGATAAAG	ACTACGTAGT	ATCCAAAAT	2160
CATGGAACTA	GCTACTCAGG	GGTCGTATT	CTTGAGGATA	CCCTAGAGTT	TAGAAGTCCA	2220
CAGGGATTCT	ATACTGATAG	CTCCTCAGAA	GCTTGCTGTA	ACCAAGTCGT	CACTATAGAT	2280

ATGCAGTTGT	CTTACAGCCA	TAGAAATAAT	GATATGAAAA	CCAAATACAC	GACATATCCA	2340
GAAGCTCAGG	GATCTGGGC	AAATGATGTT	TTTGGTCTTG	AGTTTGGAGC	GACTACATAC	2400
TAATACCCCA	ACAGTACTTT	TTTATTTGAT	TAATCTCTC	CGTTTCTCAG	GCTGCAGTGC	2460
ACCTATGCTC	ACCAGGAAGA	CTTCAAAGAG	ACAGGAGGTG	AGGTTCGTCA	CTTTACTAGC	2520
GGAGATCTTT	TCAATTAGC	AGTTCCATT	GGCGTGAAGT	TTGAGAGATT	TTCAGACTGT	2580
AAAAGGGGAT	CTTATGAAC	TACCCCTGCT	TATGTTCCCTG	ATGTGATTG	CAAAGATCCC	2640
AAGAGCACGG	CAACATTGGC	TAGTGGAGCT	ACGTGGAGCA	CCCACGGAAA	CAATCTCTCC	2700
AGACAAGGAT	TACAACGTGCG	TTTAGGAAAC	CACTGTCTCA	AAATCCTGG	AATTGAGGTG	2760
TTCAGTCACG	GAGCTATTGA	ATTGCGGGGA	TCCTCTCGTA	ATTATAACAT	CAATCTCGGG	2820
GGTAAATACC	GATTTTAA					2838

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 946 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met	Lys	Thr	Ser	Val	Ser	Met	Leu	Leu	Ala	Leu	Leu	Cys	Ser	Gly	Ala
1				5				10						15	
Ser	Ser	Ile	Val	Leu	His	Ala	Ala	Thr	Thr	Pro	Leu	Asn	Pro	Glu	Asp
				20				25						30	
Gly	Phe	Ile	Gly	Glu	Gly	Asn	Thr	Asn	Thr	Phe	Ser	Pro	Lys	Ser	Thr
				35				40						45	
Thr	Asp	Ala	Ala	Gly	Thr	Thr	Tyr	Ser	Leu	Thr	Gly	Glu	Val	Leu	Phe
				50				55						60	
Ile	Asp	Pro	Gly	Lys	Gly	Ser	Ile	Thr	Gly	Thr	Cys	Phe	Val	Glu	
				65				70						80	
Thr	Ala	Gly	Asp	Leu	Thr	Phe	Leu	Gly	Asn	Gly	Asn	Thr	Leu	Lys	Phe
				85				90						95	
Leu	Ser	Val	Asp	Ala	Gly	Ala	Asn	Ile	Ala	Val	Ala	His	Val	Gln	Gly
				100				105						110	
Ser	Lys	Asn	Leu	Ser	Phe	Thr	Asp	Phe	Leu	Ser	Leu	Val	Ile	Thr	Glu
				115				120						125	
Ser	Pro	Lys	Ser	Ala	Val	Ser	Thr	Gly	Lys	Gly	Ser	Leu	Val	Ser	Ser
				130				135						140	
Gly	Ala	Val	Gln	Leu	Gln	Asp	Ile	Asn	Thr	Leu	Val	Leu	Thr	Ser	Asn
				145				150						160	
Ala	Ser	Val	Glu	Asp	Gly	Gly	Val	Ile	Lys	Gly	Asn	Ser	Cys	Leu	Ile
				165				170						175	
Gln	Gly	Ile	Lys	Asn	Ser	Ala	Ile	Phe	Gly	Gln	Asn	Thr	Ser	Ser	Lys
				180				185						190	
Lys	Gly	Gly	Ala	Ile	Ser	Thr	Thr	Gln	Gly	Leu	Thr	Ile	Glu	Asn	Asn
				195				200						205	
Leu	Gly	Thr	Leu	Lys	Phe	Asn	Glu	Asn	Lys	Ala	Val	Thr	Ser	Gly	Gly
				210				215						220	
Ala	Leu	Asp	Leu	Gly	Ala	Ala	Ser	Thr	Phe	Thr	Ala	Asn	His	Glu	Leu
				225				230						240	
Ile	Phe	Ser	Gln	Asn	Lys	Thr	Ser	Gly	Asn	Ala	Ala	Asn	Gly	Gly	Ala
				245				250						255	
Ile	Asn	Cys	Ser	Gly	Asp	Leu	Thr	Phe	Thr	Asp	Asn	Thr	Ser	Leu	Leu
				260				265						270	

Leu Gln Glu Asn Ser Thr Met Gln Asp Gly Gly Ala Leu Cys Ser Thr
 275 280 285
 Gly Thr Ile Ser Ile Thr Gly Ser Asp Ser Ile Asn Val Ile Gly Asn
 290 295 300
 Thr Ser Gly Gln Lys Gly Gly Ala Ile Ser Ala Ala Ser Leu Lys Ile
 305 310 315 320
 Leu Gly Gly Gln Gly Ala Leu Phe Ser Asn Asn Val Val Thr His
 325 330 335
 Ala Thr Pro Leu Gly Gly Ala Ile Phe Ile Asn Thr Gly Gly Ser Leu
 340 345 350
 Gln Leu Phe Thr Gln Gly Gly Asp Ile Val Phe Glu Gly Asn Gln Val
 355 360 365
 Thr Thr Thr Ala Pro Asn Ala Thr Thr Lys Arg Asn Val Ile His Leu
 370 375 380
 Glu Ser Thr Ala Lys Trp Thr Gly Leu Ala Ala Ser Gln Gly Asn Ala
 385 390 395 400
 Ile Tyr Phe Tyr Asp Pro Ile Thr Thr Asn Asp Thr Gly Ala Ser Asp
 405 410 415
 Asn Leu Arg Ile Asn Glu Val Ser Ala Asn Gln Lys Leu Ser Gly Ser
 420 425 430
 Ile Val Phe Ser Gly Glu Arg Leu Ser Thr Ala Glu Ala Ile Ala Glu
 435 440 445
 Asn Leu Thr Ser Arg Ile Asn Gln Pro Val Thr Leu Val Glu Gly Ser
 450 455 460
 Leu Glu Leu Lys Gln Gly Val Thr Leu Ile Thr Gln Gly Phe Ser Gln
 465 470 475 480
 Glu Pro Glu Ser Thr Leu Leu Leu Asp Leu Gly Thr Ser Leu Gln Ala
 485 490 495
 Ser Thr Glu Asp Ile Val Ile Thr Asn Ser Ser Ile Asn Ala Asp Thr
 500 505 510
 Ile Tyr Gly Lys Asn Pro Ile Asn Ile Val Ala Ser Ala Ala Asn Lys
 515 520 525
 Asn Ile Thr Leu Thr Gly Thr Leu Ala Leu Val Asn Ala Asp Gly Ala
 530 535 540
 Leu Tyr Glu Asn His Thr Leu Gln Asp Ser Gln Asp Tyr Ser Phe Val
 545 550 555 560
 Lys Leu Ser Pro Gly Ala Gly Gly Thr Ile Ile Thr Gln Asp Ala Ser
 565 570 575
 Gln Lys Leu Leu Glu Val Ala Pro Ser Arg Pro His Tyr Gly Tyr Gln
 580 585 590
 Gly His Trp Asn Val Gln Val Ile Pro Gly Thr Gly Thr Gln Pro Ser
 595 600 605
 Gln Ala Asn Leu Glu Trp Val Arg Thr Gly Tyr Leu Pro Asn Pro Glu
 610 615 620
 Arg Gln Gly Phe Leu Val Pro Asn Ser Leu Trp Gly Ser Phe Val Asp
 625 630 635 640
 Gln Arg Ala Ile Gln Glu Ile Met Val Asn Ser Ser Gln Ile Leu Cys
 645 650 655
 Gln Glu Arg Gly Val Trp Gly Ala Gly Ile Ala Asn Phe Leu His Arg
 660 665 670
 Asp Lys Ile Asn Glu His Gly Tyr Arg His Ser Gly Val Gly Tyr Leu
 675 680 685
 Val Gly Val Gly Thr His Ala Phe Ser Asp Ala Thr Ile Asn Ala Ala
 690 695 700
 Phe Cys Gln Leu Phe Ser Arg Asp Lys Asp Tyr Val Val Ser Lys Asn
 705 710 715 720
 His Gly Thr Ser Tyr Ser Gly Val Val Phe Leu Glu Asp Thr Leu Glu

725	730	735	
Phe Arg Ser Pro Gln Gly Phe Tyr Thr Asp Ser Ser Ser Glu Ala Cys			
740	745	750	
Cys Asn Gln Val Val Thr Ile Asp Met Gln Leu Ser Tyr Ser His Arg			
755	760	765	
Asn Asn Asp Met Lys Thr Lys Tyr Thr Thr Tyr Pro Glu Ala Gln Gly			
770	775	780	
Ser Trp Ala Asn Asp Val Phe Gly Leu Glu Phe Gly Ala Thr Thr Tyr			
785	790	795	800
Tyr Tyr Pro Asn Ser Thr Phe Leu Phe Asp Tyr Tyr Ser Pro Phe Leu			
805	810	815	
Arg Leu Gln Cys Thr Tyr Ala His Gln Glu Asp Phe Lys Glu Thr Gly			
820	825	830	
Gly Glu Val Arg His Phe Thr Ser Gly Asp Leu Phe Asn Leu Ala Val			
835	840	845	
Pro Ile Gly Val Lys Phe Glu Arg Phe Ser Asp Cys Lys Arg Gly Ser			
850	855	860	
Tyr Glu Leu Thr Leu Ala Tyr Val Pro Asp Val Ile Arg Lys Asp Pro			
865	870	875	880
Lys Ser Thr Ala Thr Leu Ala Ser Gly Ala Thr Trp Ser Thr His Gly			
885	890	895	
Asn Asn Leu Ser Arg Gln Gly Leu Gln Leu Arg Leu Gly Asn His Cys			
900	905	910	
Leu Ile Asn Pro Gly Ile Glu Val Phe Ser His Gly Ala Ile Glu Leu			
915	920	925	
Arg Gly Ser Ser Arg Asn Tyr Asn Ile Asn Leu Gly Gly Lys Tyr Arg			
930	935	940	
Phe			
945			

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3000 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 259...3000
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ATCAGGTGAT AAAAGTTCCT CGTTAGCTAG TGACTGTAGG TGACATGAGA AAGCTAACAC	60	
GGAGGAAACT AAAACCCAAG GAATCGAAGT CTTCATGGTA ATGCTTTGT TTTTTAGAGA	120	
ACTATTGCA TCAATATAGA AACAAAATAA GTAAATCAAG TTAAAGATGA CAAAACAGCT	180	
GTCAAGAATT TTTATCTTGA CTCTCTGAGT TTTCTATTTT ATATGACGCA AGTAAGAATT	240	
TAATAATAAA GTGGGTTT ATG AAA TCG CAA TTT TCC TGG TTA GTG CTC TCT		
Met Lys Ser Gln Phe Ser Trp Leu Val Leu Ser		
1	5	10

TCG ACA TTG GCA TGT TTT ACT AGT TGT TCC ACT GTT TTT GCT GCA ACT	339
Ser Thr Leu Ala Cys Phe Thr Ser Cys Ser Thr Val Phe Ala Ala Thr	
15 20 25	
GCT GAA AAT ATA GGC CCC TCT GAT AGC TTT GAC GGA AGT ACT AAC ACA	387
Ala Glu Asn Ile Gly Pro Ser Asp Ser Phe Asp Gly Ser Thr Asn Thr	
30 35 40	
GGC ACC TAT ACT CCT AAA AAT ACG ACT ACT GGA ATA GAC TAT ACT CTG	435
Gly Thr Tyr Thr Pro Lys Asn Thr Thr Gly Ile Asp Tyr Thr Leu	
45 50 55	
ACA GGA GAT ATA ACT CTG CAA AAC CTT GGG GAT TCG GCA GCT TTA ACG	483
Thr Gly Asp Ile Thr Leu Gln Asn Leu Gly Asp Ser Ala Ala Leu Thr	
60 65 70 75	
AAG GGT TGT TTT TCT GAC ACT ACG GAA TCT TTA AGC TTT GCC GGT AAG	531
Lys Gly Cys Phe Ser Asp Thr Thr Glu Ser Leu Ser Phe Ala Gly Lys	
80 85 90	
GGG TAC TCA CTT TCT TTT TTA AAT ATT AAG TCT AGT GCT GAA GGC GCA	579
Gly Tyr Ser Leu Ser Phe Leu Asn Ile Lys Ser Ser Ala Glu Gly Ala	
95 100 105	
GCA CTT TCT GTT ACA ACT GAT AAA AAT CTG TCG CTA ACA GGA TTT TCG	627
Ala Leu Ser Val Thr Thr Asp Lys Asn Leu Ser Leu Thr Gly Phe Ser	
110 115 120	
AGT CTT ACT TTC TTA GCG GCC CCA TCA TCG GTA ATC ACA ACC CCC TCA	675
Ser Leu Thr Phe Leu Ala Ala Pro Ser Ser Val Ile Thr Thr Pro Ser	
125 130 135	
GGA AAA GGT GCA GTT AAA TGT GGA GGG GAT CTT ACA TTT GAT AAC AAT	723
Gly Lys Gly Ala Val Lys Cys Gly Gly Asp Leu Thr Phe Asp Asn Asn	
140 145 150 155	
GGA ACT ATT TTA TTT AAA CAA GAT TAC TGT GAG GAA AAT GGC GGA GCC	771
Gly Thr Ile Leu Phe Lys Gln Asp Tyr Cys Glu Glu Asn Gly Gly Ala	
160 165 170	
ATT TCT ACC AAG AAT CTT TCT TTG AAA AAC AGC ACG GGA TCG ATT TCT	819
Ile Ser Thr Lys Asn Leu Ser Leu Lys Asn Ser Thr Gly Ser Ile Ser	
175 180 185	
TTT GAA GGG AAT AAA TCG AGC GCA ACA GGG AAA AAA GGT GGG GCT ATT	867
Phe Glu Gly Asn Lys Ser Ser Ala Thr Gly Lys Lys Gly Gly Ala Ile	
190 195 200	
TGT GCT ACT GGT ACT GTA GAT ATT ACA AAT AAT ACG GCT CCT ACC CTC	915
Cys Ala Thr Gly Thr Val Asp Ile Thr Asn Asn Thr Ala Pro Thr Leu	
205 210 215	
TTC TCG AAC AAT ATT GCT GAA GCT GCA GGT GGA GCT ATA AAT AGC ACA	963
Phe Ser Asn Asn Ile Ala Glu Ala Ala Gly Gly Ala Ile Asn Ser Thr	
220 225 230 235	
GGA AAC TGT ACA ATT ACA GGG AAT ACG TCT CTT GTA TTT TCT GAA AAT	1011

Gly Asn Cys Thr Ile Thr Gly Asn Thr Ser Leu Val Phe Ser Glu Asn			
240	245	250	
AGT GTG ACA GCG ACC GCA GGA AAT GGA GGA GCT CTT TCT GGA GAT GCC			1059
Ser Val Thr Ala Thr Ala Gly Asn Gly Gly Ala Leu Ser Gly Asp Ala			
255	260	265	
GAT GTT ACC ATA TCT GGG AAT CAG AGT GTA ACT TTC TCA GGA AAC CAA			1107
Asp Val Thr Ile Ser Gly Asn Gln Ser Val Thr Phe Ser Gly Asn Gln			
270	275	280	
GCT GTA GCT AAT GGC GGA GCC ATT TAT GCT AAG AAG CTT ACA CTG GCT			1155
Ala Val Ala Asn Gly Gly Ala Ile Tyr Ala Lys Lys Leu Thr Leu Ala			
285	290	295	
TCC GGG GGG GGG GGG GGT ATC TCC TTT TCT AAC AAT ATA GTC CAA GGT			1203
Ser Gly Gly Gly Gly Ile Ser Phe Ser Asn Asn Ile Val Gln Gly			
300	305	310	315
ACC ACT GCA GGT AAT GGT GGA GCC ATT TCT ATA CTG GCA GCT GGA GAG			1251
Thr Thr Ala Gly Asn Gly Ala Ile Ser Ile Leu Ala Ala Gly Glu			
320	325	330	
TGT AGT CTT TCA GCA GAA GCA GGG GAC ATT ACC TTC AAT GGG AAT GCC			1299
Cys Ser Leu Ser Ala Glu Ala Gly Asp Ile Thr Phe Asn Gly Asn Ala			
335	340	345	
ATT GTT GCA ACT ACA CCA CAA ACT ACA AAA AGA AAT TCT ATT GAC ATA			1347
Ile Val Ala Thr Thr Pro Gln Thr Lys Arg Asn Ser Ile Asp Ile			
350	355	360	
GGA TCT ACT GCA AAG ATC ACG AAT TTA CGT GCA ATA TCT GGG CAT AGC			1395
Gly Ser Thr Ala Lys Ile Thr Asn Leu Arg Ala Ile Ser Gly His Ser			
365	370	375	
ATC TTT TTC TAC GAT CCG ATT ACT GCT AAT ACG GCT GCG GAT TCT ACA			1443
Ile Phe Tyr Asp Pro Ile Thr Ala Asn Thr Ala Ala Asp Ser Thr			
380	385	390	395
GAT ACT TTA AAT CTC AAT AAG GCT GAT GCA GGT AAT AGT ACA GAT TAT			1491
Asp Thr Leu Asn Leu Asn Lys Ala Asp Ala Gly Asn Ser Thr Asp Tyr			
400	405	410	
AGT GGG TCG ATT GTT TTT TCT GGT GAA AAG CTC TCT GAA GAT GAA GCA			1539
Ser Gly Ser Ile Val Phe Ser Gly Glu Lys Leu Ser Glu Asp Glu Ala			
415	420	425	
AAA GTT GCA GAC AAC CTC ACT TCT ACG CTG AAG CAG CCT GTA ACT CTA			1587
Lys Val Ala Asp Asn Leu Thr Ser Thr Leu Lys Gln Pro Val Thr Leu			
430	435	440	
ACT GCA GGA AAT TTA GTA CTT AAA CGT GGT GTC ACT CTC GAT ACG AAA			1635
Thr Ala Gly Asn Leu Val Leu Lys Arg Gly Val Thr Leu Asp Thr Lys			
445	450	455	
GGC TTT ACT CAG ACC GCG GGT TCC TCT GTT ATT ATG GAT GCG GGC ACA			1683
Gly Phe Thr Gln Thr Ala Gly Ser Ser Val Ile Met Asp Ala Gly Thr			

460	465	470	475	
ACG TTA AAA GCA AGT ACA GAG GAG GTC ACT TTA ACA GGT CTT TCC ATT				1731
Thr Leu Lys Ala Ser Thr Glu Glu Val Thr Leu Thr Gly Leu Ser Ile				
480	485	490		
CCT GTA GAC TCT TTA GGC GAG GGT AAG AAA GTT GTA ATT GCT GCT TCT				1779
Pro Val Asp Ser Leu Gly Glu Gly Lys Lys Val Val Ile Ala Ala Ser				
495	500	505		
GCA GCA AGT AAA AAT GTA GCC CTT AGT GGT CCG ATT CTT CTT TTG GAT				1827
Ala Ala Ser Lys Asn Val Ala Leu Ser Gly Pro Ile Leu Leu Leu Asp				
510	515	520		
AAC CAA GGG AAT GCT TAT GAA AAT CAC GAC TTA GGA AAA ACT CAA GAC				1875
Asn Gln Gly Asn Ala Tyr Glu Asn His Asp Leu Gly Lys Thr Gln Asp				
525	530	535		
TTT TCA TTT GTG CAG CTC TCT GCT CTG GGT ACT GCA ACA ACT ACA GAT				1923
Phe Ser Phe Val Gln Leu Ser Ala Leu Gly Thr Ala Thr Thr Thr Asp				
540	545	550	555	
GTT CCA GCG GTT CCT ACA GTA GCA ACT CCT ACG CAC TAT GGG TAT CAA				1971
Val Pro Ala Val Pro Thr Val Ala Thr Pro Thr His Tyr Gly Tyr Gln				
560	565	570		
GGT ACT TGG GGA ATG ACT TGG GTT GAT GAT ACC GCA AGC ACT CCA AAG				2019
Gly Thr Trp Gly Met Thr Trp Val Asp Asp Thr Ala Ser Thr Pro Lys				
575	580	585		
ACT AAG ACA GCG ACA TTA GCT TGG ACC AAT ACA GGC TAC CTT CCG AAT				2067
Thr Lys Thr Ala Thr Leu Ala Trp Thr Asn Thr Gly Tyr Leu Pro Asn				
590	595	600		
CCT GAG CGT CAA GGA CCT TTA GTT CCT AAT AGC CTT TGG GGA TCT TTT				2115
Pro Glu Arg Gln Gly Pro Leu Val Pro Asn Ser Leu Trp Gly Ser Phe				
605	610	615		
TCA GAC ATC CAA GCG ATT CAA GGT GTC ATA GAG AGA AGT GCT TTG ACT				2163
Ser Asp Ile Gln Ala Ile Gln Gly Val Ile Glu Arg Ser Ala Leu Thr				
620	625	630	635	
CTT TGT TCA GAT CGA GGC TTC TGG GCT GCG GGA GTC GCC AAT TTC TTA				2211
Leu Cys Ser Asp Arg Gly Phe Trp Ala Ala Gly Val Ala Asn Phe Leu				
640	645	650		
GAT AAA GAT AAG AAA GGG GAA AAA CGC AAA TAC CGT CAT AAA TCT GGT				2259
Asp Lys Asp Lys Lys Gly Glu Lys Arg Lys Tyr Arg His Lys Ser Gly				
655	660	665		
GGA TAT GCT ATC GGA GGT GCA GCG CAA ACT TGT TCT GAA AAC TTA ATT				2307
Gly Tyr Ala Ile Gly Ala Ala Gln Thr Cys Ser Glu Asn Leu Ile				
670	675	680		
AGC TTT GCC TTT TGC CAA CTC TTT GGT AGC GAT AAA GAT TTC TTA GTC				2355
Ser Phe Ala Phe Cys Gln Leu Phe Gly Ser Asp Lys Asp Phe Leu Val				
685	690	695		

GCT AAA AAT CAT ACT GAT ACC TAT GCA GGA GCC TTC TAT ATC CAA CAC Ala Lys Asn His Thr Asp Thr Tyr Ala Gly Ala Phe Tyr Ile Gln His 700 705 710 715	2403
ATT ACA GAA TGT AGT GGG TTC ATA GGT TGT CTC TTA GAT AAA CTT CCT Ile Thr Glu Cys Ser Gly Phe Ile Gly Cys Leu Leu Asp Lys Leu Pro 720 725 730	2451
GGC TCT TGG AGT CAT AAA CCC CTC GTT TTA GAA GGG CAG CTC GCT TAT Gly Ser Trp Ser His Lys Pro Leu Val Leu Glu Gly Gln Leu Ala Tyr 735 740 745	2499
AGC CAC GTC AGT AAT GAT CTG AAG ACA AAG TAT ACT GCG TAT CCT GAG Ser His Val Ser Asn Asp Leu Lys Thr Lys Tyr Thr Ala Tyr Pro Glu 750 755 760	2547
GTG AAA GGT TCT TGG GGG AAT AAT GCT TTT AAC ATG ATG TTG GGA GCT Val Lys Gly Ser Trp Gly Asn Asn Ala Phe Asn Met Met Leu Gly Ala 765 770 775	2595
TCT TCT CAT TCT TAT CCT GAA TAC CTG CAT TGT TTT GAT ACC TAT GCT Ser Ser His Ser Tyr Pro Glu Tyr Leu His Cys Phe Asp Thr Tyr Ala 780 785 790 795	2643
CCA TAC ATC AAA CTG AAT CTG ACC TAT ATA CGT CAG GAC AGC TTC TCG Pro Tyr Ile Lys Leu Asn Leu Thr Tyr Ile Arg Gln Asp Ser Phe Ser 800 805 810	2691
GAG AAA GGT ACA GAA GGA AGA TCT TTT GAT GAC AGC AAC CTC TTC AAT Glu Lys Gly Thr Glu Gly Arg Ser Phe Asp Asp Ser Asn Leu Phe Asn 815 820 825	2739
TTA TCT TTG CCT ATA GGG GTG AAG TTT GAG AAG TTC TCT GAT TGT AAT Leu Ser Leu Pro Ile Gly Val Lys Phe Glu Lys Phe Ser Asp Cys Asn 830 835 840	2787
GAC TTT TCT TAT GAT CTG ACT TTA TCC TAT GTT CCT GAT CTT ATC CGC Asp Phe Ser Tyr Asp Leu Thr Leu Ser Tyr Val Pro Asp Leu Ile Arg 845 850 855	2835
AAT GAT CCC AAA TGC ACT ACA GCA CTT GTA ATC AGC GGA GCC TCT TGG Asn Asp Pro Lys Cys Thr Thr Ala Leu Val Ile Ser Gly Ala Ser Trp 860 865 870 875	2883
GAA ACT TAT GCC AAT AAC TTA GCA CGA CAG GCC TTG CAA GTG CGT GCA Glu Thr Tyr Ala Asn Asn Leu Ala Arg Gln Ala Leu Gln Val Arg Ala 880 885 890	2931
GGC AGT CAC TAC GCC TTC TCT CCT ATG TTT GAA GTG CTC GGC CAG TTT Gly Ser His Tyr Ala Phe Ser Pro Met Phe Glu Val Leu Gly Gln Phe 895 900 905	2979
GTC TTT GAA GTT CGT GGA TCC Val Phe Glu Val Arg Gly Ser 910	3000

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 914 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met	Lys	Ser	Gln	Phe	Ser	Trp	Leu	Val	Leu	Ser	Ser	Thr	Leu	Ala	Cys
1				5					10				15		
Phe	Thr	Ser	Cys	Ser	Thr	Val	Phe	Ala	Ala	Thr	Ala	Glu	Asn	Ile	Gly
						20			25			30			
Pro	Ser	Asp	Ser	Phe	Asp	Gly	Ser	Thr	Asn	Thr	Gly	Thr	Tyr	Thr	Pro
						35			40			45			
Lys	Asn	Thr	Thr	Thr	Gly	Ile	Asp	Tyr	Thr	Leu	Thr	Gly	Asp	Ile	Thr
						50			55			60			
Leu	Gln	Asn	Leu	Gly	Asp	Ser	Ala	Ala	Leu	Thr	Lys	Gly	Cys	Phe	Ser
						65			70			75			80
Asp	Thr	Thr	Glu	Ser	Leu	Ser	Phe	Ala	Gly	Lys	Gly	Tyr	Ser	Leu	Ser
						85			90			95			
Phe	Leu	Asn	Ile	Lys	Ser	Ser	Ala	Glu	Gly	Ala	Ala	Leu	Ser	Val	Thr
						100			105			110			
Thr	Asp	Lys	Asn	Leu	Ser	Leu	Thr	Gly	Phe	Ser	Ser	Leu	Thr	Phe	Leu
						115			120			125			
Ala	Ala	Pro	Ser	Ser	Val	Ile	Thr	Thr	Pro	Ser	Gly	Lys	Gly	Ala	Val
						130			135			140			
Lys	Cys	Gly	Gly	Asp	Leu	Thr	Phe	Asp	Asn	Asn	Gly	Thr	Ile	Leu	Phe
						145			150			155			160
Lys	Gln	Asp	Tyr	Cys	Glu	Glu	Asn	Gly	Gly	Ala	Ile	Ser	Thr	Lys	Asn
						165			170			175			
Leu	Ser	Leu	Lys	Asn	Ser	Thr	Gly	Ser	Ile	Ser	Phe	Glu	Gly	Asn	Lys
						180			185			190			
Ser	Ser	Ala	Thr	Gly	Lys	Gly	Gly	Ala	Ile	Cys	Ala	Thr	Gly	Thr	
						195			200			205			
Val	Asp	Ile	Thr	Asn	Asn	Thr	Ala	Pro	Thr	Leu	Phe	Ser	Asn	Asn	Ile
						210			215			220			
Ala	Glu	Ala	Ala	Gly	Gly	Ala	Ile	Asn	Ser	Thr	Gly	Asn	Cys	Thr	Ile
						225			230			235			240
Thr	Gly	Asn	Thr	Ser	Leu	Val	Phe	Ser	Glu	Asn	Ser	Val	Thr	Ala	Thr
						245			250			255			
Ala	Gly	Asn	Gly	Gly	Ala	Leu	Ser	Gly	Asp	Ala	Asp	Val	Thr	Ile	Ser
						260			265			270			
Gly	Asn	Gln	Ser	Val	Thr	Phe	Ser	Gly	Asn	Gln	Ala	Val	Ala	Asn	Gly
						275			280			285			
Gly	Ala	Ile	Tyr	Ala	Lys	Lys	Leu	Thr	Leu	Ala	Ser	Gly	Gly	Gly	
						290			295			300			
Gly	Ile	Ser	Phe	Ser	Asn	Asn	Ile	Val	Gln	Gly	Thr	Thr	Ala	Gly	Asn
						305			310			315			320
Gly	Gly	Ala	Ile	Ser	Ile	Leu	Ala	Ala	Gly	Glu	Cys	Ser	Leu	Ser	Ala
						325			330			335			
Glu	Ala	Gly	Asp	Ile	Thr	Phe	Asn	Gly	Asn	Ala	Ile	Val	Ala	Thr	Thr
						340			345			350			

Pro Gln Thr Thr Lys Arg Asn Ser Ile Asp Ile Gly Ser Thr Ala Lys
 355 360 365
 Ile Thr Asn Leu Arg Ala Ile Ser Gly His Ser Ile Phe Phe Tyr Asp
 370 375 380
 Pro Ile Thr Ala Asn Thr Ala Ala Asp Ser Thr Asp Thr Leu Asn Leu
 385 390 395 400
 Asn Lys Ala Asp Ala Gly Asn Ser Thr Asp Tyr Ser Gly Ser Ile Val
 405 410 415
 Phe Ser Gly Glu Lys Leu Ser Glu Asp Glu Ala Lys Val Ala Asp Asn
 420 425 430
 Leu Thr Ser Thr Leu Lys Gln Pro Val Thr Leu Thr Ala Gly Asn Leu
 435 440 445
 Val Leu Lys Arg Gly Val Thr Leu Asp Thr Lys Gly Phe Thr Gln Thr
 450 455 460
 Ala Gly Ser Ser Val Ile Met Asp Ala Gly Thr Thr Leu Lys Ala Ser
 465 470 475 480
 Thr Glu Glu Val Thr Leu Thr Gly Leu Ser Ile Pro Val Asp Ser Leu
 485 490 495
 Gly Glu Gly Lys Lys Val Val Ile Ala Ala Ser Ala Ala Ser Lys Asn
 500 505 510
 Val Ala Leu Ser Gly Pro Ile Leu Leu Leu Asp Asn Gln Gly Asn Ala
 515 520 525
 Tyr Glu Asn His Asp Leu Gly Lys Thr Gln Asp Phe Ser Phe Val Gln
 530 535 540
 Leu Ser Ala Leu Gly Thr Ala Thr Thr Asp Val Pro Ala Val Pro
 545 550 555 560
 Thr Val Ala Thr Pro Thr His Tyr Gly Tyr Gln Gly Thr Trp Gly Met
 565 570 575
 Thr Trp Val Asp Asp Thr Ala Ser Thr Pro Lys Thr Lys Thr Ala Thr
 580 585 590
 Leu Ala Trp Thr Asn Thr Gly Tyr Leu Pro Asn Pro Glu Arg Gln Gly
 595 600 605
 Pro Leu Val Pro Asn Ser Leu Trp Gly Ser Phe Ser Asp Ile Gln Ala
 610 615 620
 Ile Gln Gly Val Ile Glu Arg Ser Ala Leu Thr Leu Cys Ser Asp Arg
 625 630 635 640
 Gly Phe Trp Ala Ala Gly Val Ala Asn Phe Leu Asp Lys Asp Lys Lys
 645 650 655
 Gly Glu Lys Arg Lys Tyr Arg His Lys Ser Gly Gly Tyr Ala Ile Gly
 660 665 670
 Gly Ala Ala Gln Thr Cys Ser Glu Asn Leu Ile Ser Phe Ala Phe Cys
 675 680 685
 Gln Leu Phe Gly Ser Asp Lys Asp Phe Leu Val Ala Lys Asn His Thr
 690 695 700
 Asp Thr Tyr Ala Gly Ala Phe Tyr Ile Gln His Ile Thr Glu Cys Ser
 705 710 715 720
 Gly Phe Ile Gly Cys Leu Leu Asp Lys Leu Pro Gly Ser Trp Ser His
 725 730 735
 Lys Pro Leu Val Leu Glu Gly Gln Leu Ala Tyr Ser His Val Ser Asn
 740 745 750
 Asp Leu Lys Thr Lys Tyr Thr Ala Tyr Pro Glu Val Lys Gly Ser Trp
 755 760 765
 Gly Asn Asn Ala Phe Asn Met Met Leu Gly Ala Ser Ser His Ser Tyr
 770 775 780
 Pro Glu Tyr Leu His Cys Phe Asp Thr Tyr Ala Pro Tyr Ile Lys Leu
 785 790 795 800
 Asn Leu Thr Tyr Ile Arg Gln Asp Ser Phe Ser Glu Lys Gly Thr Glu

805	810	815
Gly Arg Ser Phe Asp Asp Ser Asn Leu Phe Asn Leu Ser Leu Pro Ile		
820	825	830
Gly Val Lys Phe Glu Lys Phe Ser Asp Cys Asn Asp Phe Ser Tyr Asp		
835	840	845
Leu Thr Leu Ser Tyr Val Pro Asp Leu Ile Arg Asn Asp Pro Lys Cys		
850	855	860
Thr Thr Ala Leu Val Ile Ser Gly Ala Ser Trp Glu Thr Tyr Ala Asn		
865	870	880
Asn Leu Ala Arg Gln Ala Leu Gln Val Arg Ala Gly Ser His Tyr Ala		
885	890	895
Phe Ser Pro Met Phe Glu Val Leu Gly Gln Phe Val Phe Glu Val Arg		
900	905	910
Gly Ser		

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1200 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 1...1200
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GAT CCT AAA AAT AAA GAG TAC ACA GGG ACC ATA CTC TTT TCT GGA GAA		48
Asp Pro Lys Asn Lys Glu Tyr Thr Gly Thr Ile Leu Phe Ser Gly Glu		
1	5	10
		15
AAG AGT CTA GCA AAC GAT CCT AGG GAT TTT AAA TCT ACA ATC CCT CAG		96
Lys Ser Leu Ala Asn Asp Pro Arg Asp Phe Lys Ser Thr Ile Pro Gln		
20	25	30
AAC GTC AAC CTG TCT GCA GGA TAC TTA GTT ATT AAA GAG GGG GCC GAA		144
Asn Val Asn Leu Ser Ala Gly Tyr Leu Val Ile Lys Glu Gly Ala Glu		
35	40	45
GTC ACA GTT TCA AAA TTC ACG CAG TCT CCA GGA TCG CAT TTA GTT TTA		192
Val Thr Val Ser Lys Phe Thr Gln Ser Pro Gly Ser His Leu Val Leu		
50	55	60
GAT TTA GGA ACC AAA CTG ATA GCC TCT AAG GAA GAC ATT GCC ATC ACA		240
Asp Leu Gly Thr Lys Leu Ile Ala Ser Lys Glu Asp Ile Ala Ile Thr		
65	70	75
		80
GGC CTC GCG ATA GAT ATA GAT AGC TTA AGC TCA TCC TCA ACA GCA GCT		288
Gly Leu Ala Ile Asp Ile Asp Ser Leu Ser Ser Ser Thr Ala Ala		
85	90	95

GTT ATT AAA GCA AAC ACC GCA AAT AAA CAG ATA TCC GTG ACG GAC TCT	336
Val Ile Lys Ala Asn Thr Ala Asn Lys Gln Ile Ser Val Thr Asp Ser	
100 105 110	
ATA GAA CTT ATC TCG CCT ACT GGC AAT GCC TAT GAA GAT CTC AGA ATG	384
Ile Glu Leu Ile Ser Pro Thr Gly Asn Ala Tyr Glu Asp Leu Arg Met	
115 120 125	
AGA AAT TCA CAG ACG TTC CCT CTG CTC TCT TTA GAG CCT GGA GCC GGG	432
Arg Asn Ser Gln Thr Phe Pro Leu Leu Ser Leu Glu Pro Gly Ala Gly	
130 135 140	
GGT AGT GTG ACT GTA ACT GCT GGA GAT TTC CTA CCG GTA AGT CCC CAT	480
Gly Ser Val Thr Val Thr Ala Gly Asp Phe Leu Pro Val Ser Pro His	
145 150 155 160	
TAT GGT TTT CAA GGC AAT TGG AAA TTA GCT TGG ACA GGA ACT GGA AAC	528
Tyr Gly Phe Gln Gly Asn Trp Lys Leu Ala Trp Thr Gly Thr Gly Asn	
165 170 175	
AAA GTT GGA GAA TTC TTC TGG GAT AAA ATA AAT TAT AAG CCT AGA CCT	576
Lys Val Gly Glu Phe Phe Trp Asp Lys Ile Asn Tyr Lys Pro Arg Pro	
180 185 190	
GAA AAA GAA GGA AAT TTA GTT CCT AAT ATC TTG TGG GGG AAT GCT GTA	624
Glu Lys Glu Gly Asn Leu Val Pro Asn Ile Leu Trp Gly Asn Ala Val	
195 200 205	
AAT GTC AGA TCC TTA ATG CAG GTT CAA GAG ACC CAT GCA TCG AGC TTA	672
Asn Val Arg Ser Leu Met Gln Val Gln Glu Thr His Ala Ser Ser Leu	
210 215 220	
CAG ACA GAT CGA GGG CTG TGG ATC GAT GGA ATT GGG AAT TTC TTC CAT	720
Gln Thr Asp Arg Gly Leu Trp Ile Asp Gly Ile Gly Asn Phe Phe His	
225 230 235 240	
GTA TCT GCC TCC GAA GAC AAT ATA AGG TAC CGT CAT AAC AGC GGT GGA	768
Val Ser Ala Ser Glu Asp Asn Ile Arg Tyr Arg His Asn Ser Gly Gly	
245 250 255	
TAT GTT CTA TCT GTA AAT AAT GAG ATC ACA CCT AAG CAC TAT ACT TCG	816
Tyr Val Leu Ser Val Asn Asn Glu Ile Thr Pro Lys His Tyr Thr Ser	
260 265 270	
ATG GCA TTT TCC CAA CTC TTT AGT AGA GAC AAA GAC TAT GCG GTT TCC	864
Met Ala Phe Ser Gln Leu Phe Ser Arg Asp Lys Asp Tyr Ala Val Ser	
275 280 285	
AAC AAC GAA TAC AGA ATG TAT TTA GGA TCG TAT CTC TAT CAA TAT ACA	912
Asn Asn Glu Tyr Arg Met Tyr Leu Gly Ser Tyr Leu Tyr Gln Tyr Thr	
290 295 300	
ACC TCC CTA GGG AAT ATT TTC CGT TAT GCT TCG CGT AAC CCT AAT GTA	960
Thr Ser Leu Gly Asn Ile Phe Arg Tyr Ala Ser Arg Asn Pro Asn Val	
305 310 315 320	
AAC GTC GGG ATT CTC TCA AGA AGG TTT CTT CAA AAT CCT CTT ATG ATT	1008

Asn Val Gly Ile Leu Ser Arg Arg Phe Leu Gln Asn Pro Leu Met Ile			
325	330	335	
TTT CAT TTT TTG TGT TAT GGT CAT GCC ACC AAT GAT ATG AAA ACA			1056
Phe His Phe Leu Cys Ala Tyr Gly His Ala Thr Asn Asp Met Lys Thr			
340	345	350	
GAC TAC GCA AAT TTC CCT ATG GTG AAA AAC AGC TGG AGA AAC AAT TGT			1104
Asp Tyr Ala Asn Phe Pro Met Val Lys Asn Ser Trp Arg Asn Asn Cys			
355	360	365	
TGG GCT ATA AAA TGC GGA GGG AGC ATG CCT CTA TTG GTA TTT GAA AAC			1152
Trp Ala Ile Lys Cys Gly Gly Ser Met Pro Leu Leu Val Phe Glu Asn			
370	375	380	
GGA AAA CTT TTC CAA GGT GCC ATC CCA TTT ATG AAA CTA CAA TTA GTT			1200
Gly Lys Leu Phe Gln Gly Ala Ile Pro Phe Met Lys Leu Gln Leu Val			
385	390	395	400

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 400 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Asp Pro Lys Asn Lys Glu Tyr Thr Gly Thr Ile Leu Phe Ser Gly Glu			
1	5	10	15
Lys Ser Leu Ala Asn Asp Pro Arg Asp Phe Lys Ser Thr Ile Pro Gln			
20	25	30	
Asn Val Asn Leu Ser Ala Gly Tyr Leu Val Ile Lys Glu Gly Ala Glu			
35	40	45	
Val Thr Val Ser Lys Phe Thr Gln Ser Pro Gly Ser His Leu Val Leu			
50	55	60	
Asp Leu Gly Thr Lys Leu Ile Ala Ser Lys Glu Asp Ile Ala Ile Thr			
65	70	75	80
Gly Leu Ala Ile Asp Ile Asp Ser Leu Ser Ser Ser Thr Ala Ala			
85	90	95	
Val Ile Lys Ala Asn Thr Ala Asn Lys Gln Ile Ser Val Thr Asp Ser			
100	105	110	
Ile Glu Leu Ile Ser Pro Thr Gly Asn Ala Tyr Glu Asp Leu Arg Met			
115	120	125	
Arg Asn Ser Gln Thr Phe Pro Leu Leu Ser Leu Glu Pro Gly Ala Gly			
130	135	140	
Gly Ser Val Thr Val Thr Ala Gly Asp Phe Leu Pro Val Ser Pro His			
145	150	155	160
Tyr Gly Phe Gln Gly Asn Trp Lys Leu Ala Trp Thr Gly Thr Gly Asn			
165	170	175	
Lys Val Gly Glu Phe Phe Trp Asp Lys Ile Asn Tyr Lys Pro Arg Pro			
180	185	190	

Glu Lys Glu Gly Asn Leu Val Pro Asn Ile Leu Trp Gly Asn Ala Val
 195 200 205
 Asn Val Arg Ser Leu Met Gln Val Gln Glu Thr His Ala Ser Ser Leu
 210 215 220
 Gln Thr Asp Arg Gly Leu Trp Ile Asp Gly Ile Gly Asn Phe Phe His
 225 230 235 240
 Val Ser Ala Ser Glu Asp Asn Ile Arg Tyr Arg His Asn Ser Gly Gly
 245 250 255
 Tyr Val Leu Ser Val Asn Asn Glu Ile Thr Pro Lys His Tyr Thr Ser
 260 265 270
 Met Ala Phe Ser Gln Leu Phe Ser Arg Asp Lys Asp Tyr Ala Val Ser
 275 280 285
 Asn Asn Glu Tyr Arg Met Tyr Leu Gly Ser Tyr Leu Tyr Gln Tyr Thr
 290 295 300
 Thr Ser Leu Gly Asn Ile Phe Arg Tyr Ala Ser Arg Asn Pro Asn Val
 305 310 315 320
 Asn Val Gly Ile Leu Ser Arg Arg Phe Leu Gln Asn Pro Leu Met Ile
 325 330 335
 Phe His Phe Leu Cys Ala Tyr Gly His Ala Thr Asn Asp Met Lys Thr
 340 345 350
 Asp Tyr Ala Asn Phe Pro Met Val Lys Asn Ser Trp Arg Asn Asn Cys
 355 360 365
 Trp Ala Ile Lys Cys Gly Gly Ser Met Pro Leu Leu Val Phe Glu Asn
 370 375 380
 Gly Lys Leu Phe Gln Gly Ala Ile Pro Phe Met Lys Leu Gln Leu Val
 385 390 395 400

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1830 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...1830

(D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GAT CTC ACA TTA GGG AGT CGT GAC AGT TAT AAT GGT GAT ACA AGC ACC	48
Asp Leu Thr Leu Gly Ser Arg Asp Ser Tyr Asn Gly Asp Thr Ser Thr	
1 5 10 15	
ACA GAA TTT ACT CCT AAA GCG GCA ACT TCT GAT GCT AGT GGC ACG ACC	96
Thr Glu Phe Thr Pro Lys Ala Ala Thr Ser Asp Ala Ser Gly Thr Thr	
20 25 30	
TAT ATT CTC GAT GGG GAT GTC TCG ATA AGC CAA GCA GGG AAA CAA ACG	144
Tyr Ile Leu Asp Gly Asp Val Ser Ile Ser Gln Ala Gly Lys Gln Thr	
35 40 45	

AGC TTA ACC ACA AGT TGT TTT TCT AAC ACT GCA GGA AAT CTT ACC TTC	192
Ser Leu Thr Thr Ser Cys Phe Ser Asn Thr Ala Gly Asn Leu Thr Phe	
50 55 60	
TTA GGG AAC GGA TTT TCT CTT CAT TTT GAC AAT ATT ATT TCG TCT ACT	240
Leu Gly Asn Gly Phe Ser Leu His Phe Asp Asn Ile Ile Ser Ser Thr	
65 70 75 80	
GTT GCA GGT GTT GTT AGC AAT ACA GCA GCT TCT GGG ATT ACG AAA	288
Val Ala Gly Val Val Ser Asn Thr Ala Ala Ser Gly Ile Thr Lys	
85 90 95	
TTC TCA GGA TTT TCA ACT CTT CGG ATG CTT GCA GCT CCT AGG ACC ACA	336
Phe Ser Gly Phe Ser Thr Leu Arg Met Leu Ala Ala Pro Arg Thr Thr	
100 105 110	
GGT AAA GGA GCC ATT AAA ATT ACC GAT GGT CTG GTG TTT GAG AGT ATA	384
Gly Lys Gly Ala Ile Lys Ile Thr Asp Gly Leu Val Phe Glu Ser Ile	
115 120 125	
GGG AAT CTT GAT CCG ATT ACT GTA ACA GGA TCG ACA TCT GTT GCT GAT	432
Gly Asn Leu Asp Pro Ile Thr Val Thr Gly Ser Thr Ser Val Ala Asp	
130 135 140	
GCT CTC AAT ATT AAT AGC CCT GAT ACT GGA GAT AAC AAA GAG TAT ACG	480
Ala Leu Asn Ile Asn Ser Pro Asp Thr Gly Asp Asn Lys Glu Tyr Thr	
145 150 155 160	
GGA ACC ATA GTC TTT TCT GGA GAG AAG CTC ACG GAG GCA GAA GCT AAA	528
Gly Thr Ile Val Phe Ser Gly Glu Lys Leu Thr Glu Ala Glu Ala Lys	
165 170 175	
GAT GAG AAG AAC CGC ACT TCT AAA TTA CTT CAA AAT GTT GCT TTT AAA	576
Asp Glu Lys Asn Arg Thr Ser Lys Leu Leu Gln Asn Val Ala Phe Lys	
180 185 190	
AAT GGG ACT GTA TTA AAA GGT GAT GTC GTT TTA AGT GCG AAC GGT	624
Asn Gly Thr Val Val Leu Lys Gly Asp Val Val Leu Ser Ala Asn Gly	
195 200 205	
TTC TCT CAG GAT GCA AAC TCT AAG TTG ATT ATG GAT TTA GGG ACG TCG	672
Phe Ser Gln Asp Ala Asn Ser Lys Leu Ile Met Asp Leu Gly Thr Ser	
210 215 220	
TTG GTT GCA AAC ACC GAA AGT ATC GAG TTA ACG AAT TTG GAA ATT AAT	720
Leu Val Ala Asn Thr Glu Ser Ile Glu Leu Thr Asn Leu Glu Ile Asn	
225 230 235 240	
ATA GAC TCT CTC AGG AAC GGG AAA AAG ATA AAA CTC AGT GCT GCC ACA	768
Ile Asp Ser Leu Arg Asn Gly Lys Lys Ile Lys Leu Ser Ala Ala Thr	
245 250 255	
GCT CAG AAA GAT ATT CGT ATA GAT CGT CCT GTT GTA CTG GCA ATT AGC	816
Ala Gln Lys Asp Ile Arg Ile Asp Arg Pro Val Val Leu Ala Ile Ser	
260 265 270	
GAT GAG AGT TTT TAT CAA AAT GGC TTT TTG AAT GAG GAC CAT TCC TAT	864

Asp Glu Ser Phe Tyr Gln Asn Gly Phe Leu Asn Glu Asp His Ser Tyr				
275	280	285		
GAT GGG ATT CTT GAG TTA GAT GCT GGG AAA GAC ATC GTG ATT TCT GCA				912
Asp Gly Ile Leu Glu Leu Asp Ala Gly Lys Asp Ile Val Ile Ser Ala				
290	295	300		
GAT TCT CGC AGT ATA GAT GCT GTA CAA TCT CCG TAT GGC TAT CAG GGA				960
Asp Ser Arg Ser Ile Asp Ala Val Gln Ser Pro Tyr Gly Tyr Gln Gly				
305	310	315	320	
AAG TGG ACG ATC AAT TGG TCT ACT GAT GAT AAG AAA GCT ACG GTT TCT				1008
Lys Trp Thr Ile Asn Trp Ser Thr Asp Asp Lys Lys Ala Thr Val Ser				
325	330	335		
TGG GCG AAG CAG AGT TTT AAT CCC ACT GCT GAG CAG GAG GCT CCG TTA				1056
Trp Ala Lys Gln Ser Phe Asn Pro Thr Ala Glu Gln Glu Ala Pro Leu				
340	345	350		
GTT CCT AAT CTT CTT TGG GGT TCT TTT ATA GAT GTT CGT TCC TTC CAG				1104
Val Pro Asn Leu Leu Trp Gly Ser Phe Ile Asp Val Arg Ser Phe Gln				
355	360	365		
AAT TTT ATA GAG CTA GGT ACT GAA GGT GCT CCT TAC GAA AAG AGA TTT				1152
Asn Phe Ile Glu Leu Gly Thr Glu Gly Ala Pro Tyr Glu Lys Arg Phe				
370	375	380		
TGG GTT GCA GGC ATT TCC AAT GTT TTG CAT AGG AGC GGT CGT GAA AAT				1200
Trp Val Ala Gly Ile Ser Asn Val Leu His Arg Ser Gly Arg Glu Asn				
385	390	395	400	
CAA AGG AAA TTC CGT CAT GTG AGT GGA GGT GCT GTA GAA GGT GCT AGC				1248
Gln Arg Lys Phe Arg His Val Ser Gly Gly Ala Val Val Gly Ala Ser				
405	410	415		
ACG AGG ATG CCG GGT GAT ACC TTG TCT CTG GGT TTT GCT CAG CTC				1296
Thr Arg Met Pro Gly Gly Asp Thr Leu Ser Leu Gly Phe Ala Gln Leu				
420	425	430		
TTT GCG CGT GAC AAA GAC TAC TTT ATG AAT ACC AAT TTC GCA AAG ACC				1344
Phe Ala Arg Asp Lys Asp Tyr Phe Met Asn Thr Asn Phe Ala Lys Thr				
435	440	445		
TAC GCA GGA TCT TTA CGT TTG CAG CAC GAT GCT TCC CTA TAC TCT GTG				1392
Tyr Ala Gly Ser Leu Arg Leu Gln His Asp Ala Ser Leu Tyr Ser Val				
450	455	460		
GTG AGT ATC CTT TTA GGA GAG GGA GGA CTC CGC GAG ATC CTG TTG CCT				1440
Val Ser Ile Leu Leu Gly Glu Gly Gly Leu Arg Glu Ile Leu Leu Pro				
465	470	475	480	
TAT GTT TCC AAT ACT CTG CCG TGC TCT TTC TAT GGG CAG CTT AGC TAC				1488
Tyr Val Ser Asn Thr Leu Pro Cys Ser Phe Tyr Gly Gln Leu Ser Tyr				
485	490	495		
GGC CAT ACG GAT CAT CGC ATG AAG ACC GAG TCT CTA CCC CCC CCC CCC				1536
Gly His Thr Asp His Arg Met Lys Thr Glu Ser Leu Pro Pro Pro				

500

505

510

CCG ACG CTC TCG ACG GAT CAT ACT TCT TGG GGA GGA TAT GTC TGG GCT	1584
Pro Thr Leu Ser Thr Asp His Thr Ser Trp Gly Gly Tyr Val Trp Ala	
515 520 525	
GGA GAG CTG GGA ACT CGA GTT GCT GTT GAA AAT ACC AGC GGC AGA GGA	1632
Gly Glu Leu Gly Thr Arg Val Ala Val Glu Asn Thr Ser Gly Arg Gly	
530 535 540	
TTT TTC CGA GAG TAC ACT CCA TTT GTA AAA GTC CAA GCT GTT TAC TCG	1680
Phe Phe Arg Glu Tyr Thr Pro Phe Val Lys Val Gln Ala Val Tyr Ser	
545 550 555 560	
CGC CAA GAT AGC TTT GTT GAA CTA GGA GCT ATC AGT CGT GAT TTT AGT	1728
Arg Gln Asp Ser Phe Val Glu Leu Gly Ala Ile Ser Arg Asp Phe Ser	
565 570 575	
GAT TCG CAT CTT TAT AAC CTT GCG ATT CCT CTT GGA ATC AAG TTA GAG	1776
Asp Ser His Leu Tyr Asn Leu Ala Ile Pro Leu Gly Ile Lys Leu Glu	
580 585 590	
AAA CGG TTT GCA GAG CAA TAT TAT CAT GTT GTT GCG ATG TAT TCT CCA	1824
Lys Arg Phe Ala Glu Gln Tyr Tyr His Val Val Ala Met Tyr Ser Pro	
595 600 605	
GAT GTT	1830
Asp Val	
610	

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 610 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Asp Leu Thr Leu Gly Ser Arg Asp Ser Tyr Asn Gly Asp Thr Ser Thr	
1 5 10 15	
Thr Glu Phe Thr Pro Lys Ala Ala Thr Ser Asp Ala Ser Gly Thr Thr	
20 25 30	
Tyr Ile Leu Asp Gly Asp Val Ser Ile Ser Gln Ala Gly Lys Gln Thr	
35 40 45	
Ser Leu Thr Thr Ser Cys Phe Ser Asn Thr Ala Gly Asn Leu Thr Phe	
50 55 60	
Leu Gly Asn Gly Phe Ser Leu His Phe Asp Asn Ile Ile Ser Ser Thr	
65 70 75 80	
Val Ala Gly Val Val Ser Asn Thr Ala Ala Ser Gly Ile Thr Lys	
85 90 95	
Phe Ser Gly Phe Ser Thr Leu Arg Met Leu Ala Ala Pro Arg Thr Thr	

100	105	110
Gly Lys Gly Ala Ile Lys Ile Thr Asp	Gly Leu Val Phe	Glu Ser Ile
115	120	125
Gly Asn Leu Asp Pro Ile Thr Val Thr	Gly Ser Thr	Ser Val Ala Asp
130	135	140
Ala Leu Asn Ile Asn Ser Pro Asp	Thr Gly Asp	Asn Lys Glu Tyr Thr
145	150	155
Gly Thr Ile Val Phe Ser Gly Glu	Lys Leu Thr	Glu Ala Glu Ala Lys
165	170	175
Asp Glu Lys Asn Arg Thr Ser Lys	Leu Leu Gln Asn Val	Ala Phe Lys
180	185	190
Asn Gly Thr Val Val Leu Lys	Gly Asp Val Val	Leu Ser Ala Asn Gly
195	200	205
Phe Ser Gln Asp Ala Asn Ser Lys	Leu Ile Met Asp	Leu Gly Thr Ser
210	215	220
Leu Val Ala Asn Thr Glu Ser Ile	Glu Leu Thr Asn	Leu Glu Ile Asn
225	230	235
Ile Asp Ser Leu Arg Asn Gly Lys	Ile Lys Leu Ser	Ala Ala Thr
245	250	255
Ala Gln Lys Asp Ile Arg Ile Asp Arg	Pro Val Val	Leu Ala Ile Ser
260	265	270
Asp Glu Ser Phe Tyr Gln Asn Gly	Phe Leu Asn Glu Asp	His Ser Tyr
275	280	285
Asp Gly Ile Leu Glu Leu Asp	Ala Gly Lys Asp	Ile Val Ile Ser Ala
290	295	300
Asp Ser Arg Ser Ile Asp Ala Val	Gln Ser Pro	Tyr Gly Tyr Gln Gly
305	310	315
Lys Trp Thr Ile Asn Trp Ser Thr	Asp Asp Lys	Lys Ala Thr Val Ser
325	330	335
Trp Ala Lys Gln Ser Phe Asn Pro	Thr Ala Glu Gln Glu	Ala Pro Leu
340	345	350
Val Pro Asn Leu Leu Trp Gly	Ser Phe Ile Asp Val	Arg Ser Phe Gln
355	360	365
Asn Phe Ile Glu Leu Gly	Thr Glu Gly Ala	Pro Tyr Glu Lys Arg Phe
370	375	380
Trp Val Ala Gly Ile Ser Asn Val	Leu His Arg	Ser Gly Arg Glu Asn
385	390	395
Gln Arg Lys Phe Arg His Val Ser	Gly Gly Ala Val Val	Gly Ala Ser
405	410	415
Thr Arg Met Pro Gly Gly Asp	Thr Leu Ser	Leu Gly Phe Ala Gln Leu
420	425	430
Phe Ala Arg Asp Lys Asp Tyr	Phe Met Asn Thr	Asn Phe Ala Lys Thr
435	440	445
Tyr Ala Gly Ser Leu Arg	Leu Gln His Asp	Ala Ser Leu Tyr Ser Val
450	455	460
Val Ser Ile Leu Leu Gly	Glu Gly Leu Arg	Glu Ile Leu Leu Pro
465	470	475
Tyr Val Ser Asn Thr Leu Pro Cys	Ser Phe Tyr	Gly Gln Leu Ser Tyr
485	490	495
Gly His Thr Asp His Arg Met	Lys Thr Glu Ser	Leu Pro Pro Pro
500	505	510
Pro Thr Leu Ser Thr Asp His	Thr Ser Trp Gly	Gly Tyr Val Trp Ala
515	520	525
Gly Glu Leu Gly Thr Arg Val	Ala Val Glu Asn	Thr Ser Gly Arg Gly
530	535	540
Phe Phe Arg Glu Tyr Thr Pro	Phe Val Lys	Val Gln Ala Val Tyr Ser
545	550	555
		560

Arg Gln Asp Ser Phe Val Glu Leu Gly Ala Ile Ser Arg Asp Phe Ser
565 570 575
Asp Ser His Leu Tyr Asn Leu Ala Ile Pro Leu Gly Ile Lys Leu Glu
580 585 590
Lys Arg Phe Ala Glu Gln Tyr Tyr His Val Val Ala Met Tyr Ser Pro
595 600 605
Asp Val
610

Claims

1. Species specific diagnostic test for identifying infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said test comprising detecting in a patient or in a patient sample the presence of antibodies against one or more proteins from the outer membrane of *Chlamydia pneumoniae*, said proteins being of a molecular weight of 100.3-89.6 kDa or of 56.1 kDa, or detecting the presence of nucleic acid fragments encoding said outer membrane proteins.
- 10 2. Diagnostic test according to claim 1, wherein the outer membrane protein has the sequence as shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or in SEQ ID NO: 24, or a variant or subsequence thereof.
- 15 3. Diagnostic test according to claim 1, wherein the nucleic acid fragment has the sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or in SEQ ID NO: 23, or a variant or subsequence thereof.
- 20 4. Diagnostic test according to claim 3 wherein detection of nucleic acid fragments is obtained by using nucleic acid amplification.
- 25 5. Diagnostic test according to claim 4, wherein detection of nucleic acid fragments is obtained by using polymerase chain reaction.
- 30 6. A nucleic acid fragment derived from *Chlamydia pneumoniae* comprising the nucleotide sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence

of said nucleotide sequence which has a sequence homology of at least 50% with any of the sequences mentioned.

7. A protein derived from *Chlamydia pneumoniae* having the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ

5 ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof having a sequence similarity of at least 50% and a similar biological function.

10 8. Polyclonal monospecific antibody against the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.

15 9. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kit comprising a protein with the amino acid sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, 20 SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.

10. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kit comprising antibodies against a protein with the amino acid 25 sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.

30 11. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kit comprising a nucleic acid fragment with the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO:

17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence thereof.

12. A composition for immunizing a mammal, such as a human, against *Chlamydia pneumoniae*, said composition comprising a protein with the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.

10 13. Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof in diagnosis of infection of a 15 mammal, such as a human, with *Chlamydia pneumoniae*.

14. Use of the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24 or a 20 variant or subsequence thereof in an undenatured form, in diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*.

15. Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a 25 variant or subsequence thereof, for immunizing a mammal, such as a human, against *Chlamydia pneumoniae*.

16. Use of the protein with the sequence shown in SEQ ID 30 NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof in an undenatured form, for

immunizing a mammal, such as a human, against *Chlamydia pneumoniae*.

17. Use of a nucleic acid fragment with the nucleotide sequence shown in SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, 5 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence of said nucleotide sequence which has a sequence homology of at least 50% with any of the sequences mentioned for immunizing a mammal, such 10 as a human, against *Chlamydia pneumoniae*.

Fig. 1

2/21

Fig. 2

3/21

Fig. 3

4/21

Fig. 4

5/21

Fig. 5

6/21

Fig. 6

7/21

C. pneumoniae *omp4-15* gene clusters

Fig. 7

8/21

0	43	- G N F S V
omp8	43	- G N F S V
omp5	48	- G N F S V
omp9	48	- G N F S V
omp11	47	- G N F S V
omp10	46	- G N F S V
omp4	45	- G N F S V
omp15	45	- G N F S V
omp7	47	- G N F S V
omp6	45	- G N F S V
omp13	43	- G N F S V
omp14	43	- G N F S V
0	90	- G N F S V
omp8	92	- G N F S V
omp5	95	- G N F S V
omp9	93	- G N F S V
omp11	94	- G N F S V
omp10	88	- G N F S V
omp4	91	- G N F S V
omp15	96	- G N F S V
omp7	90	- G N F S V
omp6	88	- G N F S V
omp13	91	- G N F S V
omp14	-	- G N F S V

Fig. 8A

9/21

8B
Fig.

10/21

omp12	T G T T M S A I F S E G N K S S S	0
omp8	K N S T R F V A F L G N S S S	224
omp5	T G S T S S I T P A K N S S S	228
omp9	S G N T S L N P N - L T F S N N Q N T S S S	225
omp11	T G T S G D A L F S A I E G Q N T S S S	228
omp10	Q G T K N S A I E G Q N T S S S	222
omp4	Q G T K N S A I E G Q N T S S S	220
omp15	Q G T K N S A I E G Q N T S S S	222
omp7	- - - - -	172
omp6	V G N Y D S V S F Y Q N A T F - - -	222
omp13	- - - - -	161
omp14	E N T K K S L I E N G N G S - - -	235
omp12	G A A T F T E A S V T I S N N A K V S F I D N K V T G A S S S T T G D M S G G A I C - - -	0
omp8	G G A I N S T G N C T I T G N Q N I F F D G C K A T - - -	266
omp5	G G A I S A E G N L V I S N N Q S L F F S G N T A I D N G G A I D C N K A - - -	261
omp9	G G A I L G F A I Y T E A S S F I S S N K A I S F I N N Q S L F F S G N T A I Y C E K T - - -	262
omp11	G G A I L D D E G T S I L S N N K F L I Y F E G N A A K T - - -	268
omp10	G G A I L D L G A A S T F T A N K T S G N A A N G G A I N C S G D L T F T D N T S L L - - -	262
omp4	G G A I L D L G A A S T F T A N K T S G N A A N G G A I N C S G D L T F T D N T S L L - - -	253
omp15	G G A I L D L G A A S T F T A N K T S G N A A N G G A I N C S G D L T F T D N T S L L - - -	272
omp7	G C A I N C A G S - - -	181
omp6	G G A L Y S D G D I D Q N A Y V L F R E N E A L T T A I G K G G A V C C - - -	260
omp13	G A A T Y T P - - -	168
omp14	G A I Y L T G G S M L T S G N L S G V L F V Y N S S R - - -	262

Fig. 8C

11/21

0	0
omp8	307
omp5	300
omp9	301
omp11	305
omp10	300
omp4	294
omp15	322
omp7	213
omp6	304
omp13	211
omp14	262
omp12	-
omp8	-
omp5	-
omp9	-
omp11	-
omp10	-
omp4	-
omp15	-
omp7	-
omp6	-
omp13	-
omp14	-
omp12	-
omp8	353
omp5	349
omp9	348
omp11	352
omp10	348
omp4	340
omp15	369
omp7	258
omp6	348
omp13	256
omp14	262

Fig. 8D

12/21

omp12	0	401
omp8	1	397
omp5	1	394
omp9	1	394
omp11	1	399
omp10	1	398
omp4	1	387
omp15	1	417
omp7	1	305
omp6	1	391
omp13	1	304
omp14	1	262

0	451	447	444	449	448	437	350	262
omp12								
omp8	L	V	N	E	T	P	A	D
omp5	N	L	N	K	A	D	A	G
omp9	L	S	L	N	K	A	D	G
omp11	L	T	I	N	Q	P	D	S
omp10	L	N	I	N	G	G	D	N
omp4	L	R	I	N	S	A	P	A
omp15	L	R	I	N	E	G	N	S
omp7	L	N	I	N	V	S	D	P
omp6	-	Q	L	N	S	P	N	K
omp13	V	-	-	-	Q	E	E	Y
omp14	-	-	-	-	Y	T	E	Y

8E
Fig.

13/21

omp12	0	0
omp8	500	548
omp5	497	545
omp9	494	542
omp11	499	547
omp10	497	545
omp4	487	535
omp15	487	562
omp7	405	454
omp6	487	536
omp13	396	445
omp14	262	262
omp12	0	0
omp8	500	548
omp5	497	545
omp9	494	542
omp11	499	547
omp10	497	545
omp4	487	535
omp15	487	562
omp7	405	454
omp6	487	536
omp13	396	445
omp14	262	262

8F
Fig.

14/21

Fig. 8G

Fig. 8H

81

17/21

omp12	N	V	E	I	P	I	G	V	T	F	E	D	S	K	S	E	K	G	T	D	S	K	227
omp8	N	L	A	L	P	I	G	I	R	F	D	K	F	S	D	C	Q	D	F	A	T	Y	227
omp5	N	L	S	L	P	I	G	I	K	F	E	K	F	S	D	C	T	T	R	N	P	876	
omp9	N	L	A	V	P	V	G	I	K	F	E	K	F	S	D	C	T	T	R	N	P	876	
omp11	N	C	S	I	P	V	S	V	P	I	G	I	R	E	K	F	E	K	F	E	R	866	
omp10	N	V	S	V	P	I	G	I	R	E	K	F	S	D	C	T	T	R	N	P	878		
omp4	N	L	S	I	P	V	G	A	K	F	E	K	F	S	D	C	T	T	R	N	P	876	
omp15	N	L	A	V	P	I	G	V	K	F	E	K	F	S	D	C	T	T	R	N	P	876	
omp7	N	L	A	T	P	L	G	I	K	L	E	K	F	S	D	C	T	T	R	N	P	514	
omp6	S	I	S	V	P	L	G	I	K	L	E	K	F	S	D	C	T	T	R	N	P	262	
omp13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
omp14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

omp12	A	Y	G	T	N	L	A	R	Q	G	F	S	V	R	A	A	N	H	F	Q	A	F	277
omp8	T	F	G	T	N	N	L	A	R	Q	A	L	V	R	A	G	S	S	N	S	S	R	277
omp5	T	Y	A	N	S	L	S	R	Q	A	L	Q	V	R	G	S	S	R	N	Y	N	V	926
omp9	T	C	G	T	S	K	N	L	A	R	Q	A	L	V	R	G	S	S	R	S	I	Y	926
omp11	S	L	C	K	N	N	L	S	R	Q	A	F	L	V	E	L	R	G	S	R	S	A	916
omp10	T	T	G	G	N	N	L	S	R	Q	A	G	I	L	R	G	S	S	R	N	Y	N	928
omp4	T	H	G	N	N	L	S	R	Q	G	L	Q	A	G	I	V	O	A	S	G	T	G	928
omp15	T	H	G	S	N	L	A	R	Q	A	F	H	A	F	V	G	S	G	R	S	N	V	926
omp7	T	K	G	S	N	L	A	R	Q	A	G	I	V	O	A	S	G	T	G	R	S	N	514
omp6	V	P	A	H	V	S	R	H	A	F	V	G	S	G	T	G	R	S	N	V	D	A	262
omp13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
omp14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

omp12	C	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	279
omp8	Q	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	928
omp5	Q	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	928
omp9	G	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	918
omp11	S	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	930
omp10	Q	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	928
omp4	R	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	945
omp15	R	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	841
omp7	K	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	922
omp6	R	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	514
omp13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
omp14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Fig. 8J

18/21

Fig. 9

Immunoblotting of *C. pneumoniae* EB, lane 1-3 heated to 100°C in SDS-sample buffer, lane 4-6 unheated. Lane 1 reacted with rabbit anti *C. pneumoniae* OMC; lane 2 and 4 pre-serum; lane 3 and 5 polyclonal rabbit anti pEX1-1 fusion protein; lane 6 MAb 26.1.

20/21

Fig. 11

21/21

Fig. 12

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/31, G01N 33/569, 33/68, C12Q 1/68, C07K 14/295, 16/12, A61K 39/118, 31/70		A3	(11) International Publication Number: WO 98/58953 (43) International Publication Date: 30 December 1998 (30.12.98)
(21) International Application Number: PCT/DK98/00266		(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 19 June 1998 (19.06.98)			
(30) Priority Data: 0744/97 23 June 1997 (23.06.97) DK			
(71)(72) Applicants and Inventors: BIRKELUND, Svend [DK/DK]; Søtoften 26, DK-8250 Egå (DK). CHRISTIANSEN, Gunna [DK/DK]; Søtoften 26, DK-8250 Egå (DK).			
(72) Inventors; and			
(75) Inventors/Applicants (for US only): KNUDSEN, Katrine [DK/DK]; Lundingsgade 33, Lejlighed 407, DK-8000 Århus C (DK). MADSEN, Anna-Sofie [DK/DK]; Ramsherreder 51 b, 1.tv., DK-6200 Aabenraa (DK). MYGIND, Per [DK/DK]; Falstersgade 5, 3.tv., DK-8000 Århus C (DK).		Published <i>With international search report.</i>	
(74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).		(88) Date of publication of the international search report: 18 March 1999 (18.03.99)	

(54) Title: SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

(57) Abstract

The invention relates to the identification of members of a gene family from the human respiratory pathogen *Chlamydia pneumoniae*, encoding surface exposed membrane proteins of a size of approximately 89–101 kDa and of 56–57 kDa, preferably about 89.6–100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by *C. pneumoniae*, in pathology, in epidemiology, and as vaccine components.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

Inte onal Application No
PCT/DK 98/00266

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/31 G01N33/569 G01N33/68 C12Q1/68 C07K14/295
C07K16/12 A61K39/118 A61K31/70

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>M. PEREZ MELGOSA ET AL.: "Outer membrane complex proteins of <i>Chlamydia pneumoniae</i>." FEMS MICROBIOLOGY LETTERS, vol. 112, no. 2, 1 September 1993, pages 199-204, XP002057607 AMSTERDAM, NL cited in the application see the whole document</p> <p>---</p> <p style="text-align: center;">-/--</p>	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

30 December 1998

Date of mailing of the international search report

14/01/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nooij, F

INTERNATIONAL SEARCH REPORT

Inte _____, Serial Application No. _____

PCT/DK 98/00266

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	L. CAMPBELL ET AL.: "Serological response to Chlamydia pneumoniae infection." JOURNAL OF CLINICAL MICROBIOLOGY, vol. 28, no. 6, June 1990, pages 1261-1264, XP002057608 WASHINGTON, DC, USA see abstract see table 1 see page 1263, right-hand column, line 63 - page 1264, left-hand column, line 5 ---	1
X	L. CAMPBELL ET AL.: "Structural and antigenic analysis of Chlamydia pneumoniae." INFECTATION AND IMMUNITY, vol. 58, no. 1, January 1990, pages 93-97, XP000083693 Washington, DC, USA see abstract ---	1
X	Y. KANAMOTO ET AL.: "Antigenic characterization of Chlamydia pneumoniae isolated in Hiroshima, Japan." MICROBIOLOGY AND IMMUNOLOGY, vol. 37, no. 6, 1993, pages 495-498, XP002088968 Tokyo, Japan see abstract ---	1
X	G. CHRISTIANSEN ET AL.: "Molecular biology of the Chlamydiae pneumoniae surface." SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES, vol. Supplementum 104, 1997, pages 5-10, XP002088986 Stockholm, Sweden see page 8, right-hand column, line 36 - page 9, left-hand column, line 8 ---	1
A	S. HALME ET AL.: "Characterization of Chlamydia pneumoniae antigens using human T cell clones." SCANDINAVIAN JOURNAL OF IMMUNOLOGY, vol. 45, no. 4, April 1997, pages 378-384, XP002057609 OXFORD, GB see abstract see page 381, right-hand column, line 3 - line 11 ---	1
A	EP 0 699 688 A (HITACHI CHEMICAL CO., LTD.) 6 March 1996 see examples see claims -----	10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 98/ 00266

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/ DK 98/00266

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Although claims 1-3 and 13 and 14 (all partially, as far as an in vivo method is concerned) are directed to a diagnostic method practised on the human/animal body, and although claims 15-17 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DK 98/00266

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 699688	A 06-03-1996	JP	8041099 A	13-02-1996
		JP	8038192 A	13-02-1996
		JP	8127599 A	21-05-1996
		JP	8333397 A	17-12-1996
		AU	692889 B	18-06-1998
		AU	2831395 A	04-04-1996
		CN	1133192 A	16-10-1996

THIS PAGE BLANK (USPTO)

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference 77813-26	FOR FURTHER ACTION see Notification of Transmittal of International Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below.	
International application No. PCT/CA 00/ 01088	International filing date (day/month/year) 15/09/2000	(Earliest) Priority Date (day/month/year) 20/09/1999
Applicant AVENTIS PASTEUR LIMITED et al.		

This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists of a total of **4** sheets.

It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report

a. With regard to the **language**, the international search was carried out on the basis of the international application in the language in which it was filed, unless otherwise indicated under this item.

the international search was carried out on the basis of a translation of the international application furnished to this Authority (Rule 23.1(b)).

b. With regard to any **nucleotide and/or amino acid sequence** disclosed in the international application, the international search was carried out on the basis of the sequence listing :

contained in the international application in written form.

filed together with the international application in computer readable form.

furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readable form.

the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.

the statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished

2. **Certain claims were found unsearchable** (See Box I).

3. **Unity of invention is lacking** (see Box II).

4. With regard to the **title**,

the text is approved as submitted by the applicant.

the text has been established by this Authority to read as follows:

5. With regard to the **abstract**,

the text is approved as submitted by the applicant.

the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box III. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.

6. The figure of the **drawings** to be published with the abstract is Figure No.

as suggested by the applicant.

because the applicant failed to suggest a figure.

because this figure better characterizes the invention.

None of the figures.

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA 00/01088

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

THIS PAGE BLANK (USPTO)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claim 27 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

As far as as "in vivo" method is concerned, claim 28 is directed to a diagnostic method practised on the human/animal body and the search has been carried out and based on the alleged effects of the compound/composition.

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International Application No
PCT/CA 00/01088

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12N15/31	C12N15/62	C12N15/85	C07K14/295	C07K16/12
	A61K31/711	A61K39/118	A61K39/40	G01N33/53	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K A61K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category [°]	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE SWALL [Online] EBI; 1 May 1999 (1999-05-01) "Putative OMP" XP002157589 Acc. No. Q9Z9G0</p> <p>---</p>	1-34
X	<p>WO 99 27105 A (GENSET SA ;GRIFFAIS REMY (FR)) 3 June 1999 (1999-06-03) abstract</p> <p>---</p>	1-15, 17-30
X	<p>WO 98 58953 A (MADSEN ANNA SOFIE ;BIRKELUND SVEND (DK); KNUDSEN KATRINE (DK); MYG) 30 December 1998 (1998-12-30) page 1, paragraph 2 page 3, line 31 -page 4, line 16</p> <p>-----</p>	33,34

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
17 January 2001	23.01.2001
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Mata Vicente, T.

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT**Information on patent family members**

International Application No

PCT/CA 00/01088

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9927105	A 03-06-1999	AU 1170299	A	15-06-1999
		BR 9814878	A	03-10-2000
		EP 1032674	A	06-09-2000
-----	-----	-----	-----	-----
WO 9858953	A 30-12-1998	AU 8011998	A	04-01-1999
		BR 9810288	A	19-09-2000
		CN 1261403	T	26-07-2000
		EP 1007685	A	14-06-2000
-----	-----	-----	-----	-----

THIS PAGE BLANK (USPTO)