Candidate's Name:	Random No.	Personal No.
Signature:		

(Do not write your School/Centre Name or Number anywhere on this booklet)

P525/1 CHEMISTRY Paper 1 2 3/4 hours

Uganda Advanced Certificate of Education CHEMISTRY Paper 1 2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in section A and six questions in section B All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables(3 – figure tables) are adequate or non-programmable scientific electronic calculators may be used

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = 101325 N m⁻²

						F	or E	xami	ner's	Use (Only						
1	12	2	14	15	6	17	8	9	10	11	12	13	14	15	16	17	Total
1	12	3	7	1	-	+′-	-	-	1								

Turn Over

SECTION A (46 MARKS)

Name the reagent(s) that can be used to distinguish between the following compounds. In each case state what would be observed when each compound is 1. separately treated with the reagent.

	^	c≡cH	(2 marks)
(a)	and	ı ()	

Reagent(s)	
Observation:	

(b)	CH ₃	and	CH ₂ Br	(2 marks)
	Br			

Reagent(s)			
	•••••	•••••	
Observation:			

2.	(a)	A buffer solution was obtained by mixing 8.3 g of ethanoic acid and 16 g of sodium ethanoate in 1 litre of distilled water. Calculate the pH of the buffer solution if 0.70 cm^3 of 1 M hydrochloric acid is added. [the acid dissociation constant, K_a , for ethanoic acid at $25^{\circ}C$ is 1.8×10^{-5} mol l^{-1}] (3 ½ marks)
•••••		en line Mineral Inches and an artist of the first of
•••••		
•••••	••••••	
•••••	(b)	State two applications of buffer solutions (1 mark)
3.	Com	plete the following equations and in each case name the major product(s)
	(a)	$(CH_3COO)_2Ca \xrightarrow{heat} \cdots$
		Name of product (1 ½ marks)
	(b)	CH ₂ -C-OH CaO/NaOH heat
		Name of product (1 ½ marks)
• • • • • • •	• • • • • • • • • • • • •	

-	
	2

(c)	$CH_3CH_2CON(CH_3)_2 \xrightarrow{\bar{O}H/H_2O}_{heat}$	
		(3 marks)

Name of product(s)

4. (a) The following data of results was obtained for the reaction

$$2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)}$$

Experiment No.	Initial concen	tration (mol dm ⁻³)	Initial rate
	$[Cl_2]$	[NO]	$\frac{d[NOCl]}{dt} \text{ (mol l}^{-1} \text{ s}^{-1}\text{)}$
1	0.10	0.10	1×10^{-4}
2	0.10	0.20	4×10^{-4}
3	0.30	0.10	3×10^{-4}

	(i)	Deduce the order of reaction with reactionChlorine	respect to (1 mark)
		Nitrogen(II) oxide	(1 mark)
	(ii)	Write the rate equation for the read	ction. (1 mark)
(b)	Calcı	late the rate constant, \mathbf{K} , for the rea	ection and state its units. (2 marks)

5. A white crystalline solid Z decomposes on heating leaving a yellow residue. When Z is warmed with concentrated sulphuric acid, a gas is evolved which burns with a blue flame and had no effect on lime water. Z dissolves in dilute nitric acid forming a colourless solution. The solution decolourises alkaline potassium manganate(VII) solution and forms a reddish-brown solution when reacted with iron(III) chloride.

(:	a)	Identif		(1 mark)
((b)		equations for the reactions that took place when Z Decomposed to a yellow residue	(1 ½ marks)
		(ii)	was warmed with concentrated sulphuric acid	(1 ½ marks)
	••••••	(iii)	solution was reacted with iron(III) chloride	(1 ½ marks)
6. <i>Obse</i>	pa (a)	irs of su) Aqu	is observed and write the ionic equations when each bstances are mixed. neous solution of copper(II) sulphate and potassium i	
Equ	uatio	n		

(b) Zinc m	etal and aqueous solution of Iron(III) chlo	oride. (02 marks)
Observation		
Equation		
(c) A satur potassi	rated aqueous solution of sulphur dioxide um manganate(VII).	and aqueous solution of (02 marks)
Observation		
Equation		
7. The standard	electrode potentials for some half-cell rea	actions are given below
14.05	Half-cell reaction	$\mathbf{E}^{\boldsymbol{\theta}}/\mathbf{V}$
$MnO_{4(aq)}^- + e^- \rightarrow$	$MnO_{4(aq)}^{2-}$	+0.56
$MnO_{4(aq)}^{2} + 2H_{2}O_{(l)}$	$+2e^- \rightarrow MnO_{2(s)} + 4\bar{O}H_{(s,s)}$	+0.60
$MnO_{4(aq)} + 8H_{(aq)}$	$+ 5e^{-} \rightarrow Mn_{(aa)}^{2+} + 4H_{2}O_{(a)}$	+1.52
$Br_{2(aq)} + 2e^- \rightarrow 2$	$Br_{(aq)}^-$	-1.06
(a) Write (i)	cell convention of the cell formed when le combined with the cell of acidified potas	promine helf - u :
(ii)	Overall cell reaction in a(i).	(1 ½ marks)

	(b)	Calculate the electromotive force of the cell in (a). (1 mark)
•••••		
	(c)	State what would happen when a solution of potassium manganate(VI) is exposed to air and write equation for the reaction that took place. (2 marks) Observation:
		Equation
8.	Drav	v the structures and name the shapes for the following species. (4½ marks)

species	Structure	Name
(i) SO ₂		
	1 2	
(") H G		
(ii) <i>H</i> ₂ <i>S</i>		
	and the second s	
(iv) SO_4^{2-}		
4		

9.	(a)	Explain briefly why chlorine is a stronger oxidising age	
	(b)	Write equation(s) for the reaction of chlorine and bromi (i) cold dilute sodium hydroxide.	
•••••	Chlo	orine	(1½ marks)
••••	Bro		(1½ marks)
	Chl	(ii) hot concentrated sodium hydroxide orine	(1½ marks)
		mine	(1½ marks)
		SECTIONB (Attempt any six questions) Additional questions answered will not be marked.	
10	. Wr Ind (a)	rite equations to show how the following compounds can be licate the reagents and conditions for the reaction. ethene to propanoic acid	synthesized.
			(03 marks)
	•••••		

	(b)	bromobenzene to phenol	(03 marks)
••••••	••••••		
	(c)	benzene to poly phenylethene	(03 marks)
11.		ain each of the following observations	
	(a)	Berrylium carbonate is thermally less stable than calcium	carbonate (03 marks)

	(b)	Aluminium fluoride is purely ionic whereas aluminium bromide is
		(03 marks)
	••••••	
***************************************	••••••	
•••••••	••••••	
	••••••	***************************************
	••••••	***************************************
••••••	••••••	The holling a
	(c)	The bolling nointe of
		(03 marks)
••••••••	••••••	(** ***********************************
••••••	•••••••	•••••••••••••••••••••••••••••••••••••••
	•••••	

	•••••	
12.	Sulni	ur diovida
	pr	nur dioxide reacts with oxygen according to the following equation:
		$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} \Delta H^{\phi} = -97 \text{ kJ mol}^{-1}$
	(a)	State the actual conditions for the reaction that favour maximum yield of sulphur trioxide. (1½ marks)
*********	••••••	
••••••	••••••	
•••••	••••	

(b)	State what would happen to the concentration of sulphur trioxide in the equilibrium mixture and give a reason for your answer if (i) the temperature to the concentration of sulphur trioxide in the	
	(i) the temperature is increased	
***************************************	(1½ marks)	
	(1½ marks)	
	(ii) nitrogen gas is added to the mixture at constant pressure.	
	$(1\frac{1}{2} marks)$	
***************************************	······································	
	·	
(c)	The equilibrium mixture of the above reaction at 700°C was found to contain 0.40 mol of sulphur dioxide, 0.30 mol of oxygen and 1.00 mol of sulphur trioxide in a 2 litre vessel.	ī
	(i) Write the expression for the equilibrium constant, K_c . (1 mark)	
	<i>2</i> 22	
	(ii) Calculate the value of K_c for the reaction at 700°C. (3½ marks)	
•••••••		
•••••		
		•

•••••••		
•••••••		
		•

13.	Com	plete the follow nanisms for the	ring equation reactions	is and in e	each case v	vrite the accepte	.u
	(a)	O II CH ₃ CH ₂ CH —		→			
						(0	03 marks)

	^ ^			
(b)	OH	H_3PO_4		
		heat	······································	
				(03 marks)

(03 marks)

14.	(a)	of P Cal	ompound P contains carbon, hydrogen and oxygen. was burnt, it gave 0.0581 g of carbon dioxide and 0 culate the empirical formula of P	.0239 g of water (3½ marks)
	(b)	Who	en 0.140 g of P was vapourised at 20°C at 740 mm H ssure, it occupied a volume of 39.5 cm ³ .	
		(i)	Calculate the molecular mass of P	(2 marks)
		(ii)	Determine the molecular formula of P.	(1 mark)
		Whe	on P was treated with sodium hydrogen carbonate, effurless gas occurred. P gave a brown precipitate when [III] chloride solution.	fervescence of a
		(i)	Identify P	(1 mark)
		(ii)	Write equation of reaction for the formation of the precipitate	brown (1½ marks)
,				

15.	a)	Briefly describ immiscible liq	oe the physica uids	l principles	involved in	the separat	ion of two ½ marks)
••••••	••••••	•••••					
		•		••••••	••••••		••••••
••••••	•••••						
••••••	•••••					••••••	•••••••••••••••••••••••••••••••••••••••
•••••	••••••					•••••••	•••••••••••••••••••••••••••••••••••••••
Ten	(b)	Phenylamine pressures of pare given in the true/°C	ne table belov	immiscible nine and pure	e liquids. Th re water at v	e saturated various temp	vapour eratures
Phe	nylam	ine:	85	90	95	100	105
Vap	our p	ressure (kPa)	3.0	3.9	4.9	6.1	7.3
vva	ter:		57.9				7.5
Var	our p	ressure (kPa)	37.9	70.1	84.5	101.3	120
	 (i) Plot on the same axes graphs of phenyl amine, pure water and the mixture against temperature. (3 marks) (ii) Using the graphs, determine and state the temperature at which the mixture of phenylamine and water boils [atmospheric pressure = 101.325 kPa] 					marks)	
•••••	••••••		•••••••••••		••••••	•••••	
•••••	••••••••		late the perce	distillate.		(.	2 marks)
•••••	•••••••••						
•••••	(c)	State one ad	vantage of st	eam distilla	tion over fra		llation. ½ mark)

16.	(a)	Compare the thermal stabilities of silicon(IV) chloride and chloride. [Include equations of reactions if any]	(2 marks)
	(b)	State conditions of reaction between tin and chlorine and words of the reaction that took place. State conditions of reaction between tin and chlorine and words are the conditions.	vrite equation (2½ marks)
	Eque		
******	(c)	Silicon(IV) chloride was dissolved in water. (i) State what was observed	(01 mark)
••••	•••••	(ii) Write equation for the reaction that took place.	(1½ marks)
******	(d)	When 0.325 g of silicon(IV) chloride was dissolved in wat resultant solution required 48 cm ³ of 0.1 M sodium hydrox complete neutralisation. Calculate the percentage purity of chloride.	cide for
	•••••		

17.	(a)	Silver ethanedioate is sparingly soluble in water. Write: (i) equation for the solubility of silver ethanedioate in water. (1½ marks)			
		(ii) the expression for the solubility product, K_{sp} of silver ethanedioate.	(½ mark)		
	(b)	The solubility product, <i>Ksp</i> , of silver ethanedioate is 5.3 x 1 25°C. Calculate the concentration of the following ions in a solution of silver ethanedioate. (i) Silver ions.	0-2 1373 -4		
		(1) Sliver ions.	(2½ marks)		
••••••					
	••••••	(ii) Ethanedioate ions	(½ mark)		
*******	(c)	Calculate the mass of silver nitrate should be added to the s solution in (b) in order to reduce the concentration of the et ions to a fifth of its original value.	aturated hanedioate (2½ marks)		
			•••••••••••		
•••••	••••••				
	••••••				
•••••	••••••				

(d)	Sodium ethanedioate solution was added to the concentration of the silver ions was affect your answer.	ed and give a reason for (1½ marks)
Reas	on	