14 – Lease Squares Fit to a Line

Physics 281 – Class 14 Grant Wilson

Class 13 Exercises

```
from matplotlib import pyplot as plt
from scipy.stats import chi2 as chi2
from scipy.stats import norm as norm
import numpy as np
```

```
#E13.1
#experiment with 40 degrees of freedom
v = 40.
#measured chisq = 80
chisq=80.
```

```
#the probability of getting this value by chance is
#given by the cumulative distribution function
prob_less = chi2.cdf(chisq,v)
prob_greater = 1.-prob_less
print "Probability of pulling a smaller value at random: "+str(prob_less*100.)+'%'
print "Probability of pulling a larger value at random: "+str(prob_greater*100.)+'%'
```

Class 13 Exercises

```
#F13.2
#simulation shows that random drive times are drawn from a normal
#distribution with mean=23 min. and std dev = 0.75 min.
#The "confidence" is just the probability that the actual drive
#time is NOT likely to have been pulled from this distribution at random.
actual = 21.
mu = 23.
sigma = 0.75
#again, use the cdf to get the probability
prob less = norm.cdf(actual,loc=mu,scale=sigma)
prob more = 1.-prob less
print "The probability that Adnan could have made the drive in less than or equal to
21 minutes is " + str(prob less)+'%'
print "This is a "+str((23.-21.)/sigma)+" sigma result."
```

14 – Lease Squares Fit to a Line

Physics 281 – Class 14 Grant Wilson Linear Interpolation is **not** fitting to a line.

Fitting to a line is **not** linear interpolation.

Why fit data to a model?

Why fit data to a model?

- gain insight about a physical system
- use knowledge of a physical system to illuminate trends in our data
- data compression
- extrapolation (!)
- Explore consistency between model and data
- provide a continuous expression of values around where we have measurements (even if the measurements are noisy)

What does it mean to find a good fit?

Is this a good fit to the data?

What does it mean to find a good fit?

Is this a good fit to the data?

What does it mean to find a good fit?

Is this a good fit to the data?

What does it mean to find the "best fit?"

What does it mean to find the "best fit?"

 Clearly we need some kind of statistic to tell us what to do.

Which fit is better? Why?

What does it mean to find the "best fit?"

 Clearly we need some kind of statistic to tell us what to do.

Enter the χ^2 Statistic

Remember

$$\chi^{2} = \sum_{i=1}^{N} \frac{(y_{i} - f(x_{i}; \vec{a}))^{2}}{\sigma_{i}^{2}}$$

- This is an error-weighted sum of the squares of the distances (in y) between the model and the data.
- Least Squares Fitting is the art of finding the model that minimizes this quantity.

Fitting Data to a Line

- Start off with something relatively easy and manageable.
- Fit a set of N-data points, (x,y) with error σ , to a line of the form

$$y = a + bx$$

- Recipe for Approach #1
 - 1. write down expression for χ^2
 - 2. find equations for minimizing χ^2 for each of our "free parameters"
 - 3. solve the system of equations from step #2

• Step 1 - write down expression for χ^2

$$\chi^{2} = \sum_{i=1}^{N} \frac{(y_{i} - (a + bx_{i}))^{2}}{\sigma^{2}}$$

• Step 2 – find equations for minimizing χ^2 for parameters a and b.

$$\frac{d\chi^2}{da} = 0$$

$$\frac{d\chi^2}{db} = 0$$

• Step 1 - write down expression for χ^2

$$\chi^{2} = \sum_{i=1}^{N} \frac{(y_{i} - (a + bx_{i}))^{2}}{\sigma^{2}}$$

• Step 2 – find equations for minimizing χ^2 for parameters a and b.

$$\frac{d\chi^2}{da} = 0 \quad \xrightarrow{\text{yields}} -2 \sum_{i=1}^{N} (y_i - a - bx_i) = 0$$

$$\frac{d\chi^2}{db} = 0 \quad \xrightarrow{\text{yields}} -2 \sum_{i=1}^{N} x_i (y_i - a - bx_i) = 0$$

Now we have two simultaneous equations in two unknowns:

$$Na + \sum x_i b = \sum y_i$$
$$\sum x_i a + \sum x_i^2 b = \sum x_i y_i$$

(talk about how to solve this for a and b)

Now we have two simultaneous equations in two unknowns:

$$Na + \sum x_i b = \sum y_i$$
$$\sum x_i a + \sum x_i^2 b = \sum x_i y_i$$

(talk about how to solve this for a and b)

The best-fit values of a and b are:

$$a = \frac{\sum x_i^2}{N \sum x_i^2 - \sum x_i \sum x_i} \sum y_i + \frac{-\sum x_i}{N \sum x_i^2 - \sum x_i \sum x_i} \sum x_i y_i$$

$$b = \frac{-\sum x_i}{N\sum x_i^2 - \sum x_i \sum x_i} \sum y_i + \frac{N}{N\sum x_i^2 - \sum x_i \sum x_i} \sum x_i y_i$$

Exercise

 Code up these two relations as functions and then use them to find the best-fit line for the following three data points:

• x = [-10.,0.,10.], y = [-20.5, 2.02, 18.9]

 Make a plot of the data (with error bars=2) and the corresponding best-fit line.

The Errors on the Fitted Parameters

- As scientists, determining a and b isn't enough. We need an estimate of the errors on each parameter.
- Use error propagation to determine σ_a^2 and σ_b^2 :

$$\sigma_a^2 = \sum_{i=1}^N \sigma^2 \left(\frac{da}{dy_i}\right)^2$$

$$\sigma_b^2 = \sum_{i=1}^N \sigma^2 \left(\frac{db}{dy_i}\right)^2$$

The result:

$$\sigma_a^2 = \sum_{i=1}^N \sigma^2 \left(\frac{da}{dy_i}\right)^2 = \frac{\sum x_i^2}{N \sum x_i^2 - \sum x_i \sum x_i} \sigma^2$$

$$\sigma_b^2 = \sum_{i=1}^N \sigma^2 \left(\frac{db}{dy_i}\right)^2 = \frac{N}{N \sum x_i^2 - \sum x_i \sum x_i} \sigma^2$$

Take a moment to code these up as functions. As you're doing it, think: are these errors independent?

Imagine an error in the slope of this line. How would that affect the y-intercept of the line?

Imagine an error in the slope of this line. How would that affect the y-intercept of the line?

Parameter-Parameter Covariance

These "linked" errors are captured in the "covariance" of the parameters:

$$\sigma_{ab}^2 = \sum_{i=1}^N \sigma^2 \left(\frac{da}{dy_i} \right) \left(\frac{db}{dy_i} \right) = \frac{-\sum x_i}{N \sum x_i^2 - \sum x_i \sum x_i} \sigma^2$$

- Take a moment to code the covariance up as a function.
- The bigger the covariance, the more linked the parameters.
- Perfectly independent parameters will have $\sigma_{ab}^2 = 0$.
- And finally, to encapsulate it all we have the "covariance matrix"

$$Cov(a,b) = \begin{pmatrix} \sigma_a^2 & \sigma_{ab}^2 \\ \sigma_{ab}^2 & \sigma_b^2 \end{pmatrix}$$

Exercise

- This is a very important simulation that will give you some insight about covariance.
- 1. Generate fake data set #1 with 20 points:
 - 1. slope = 4.
 - 2. y-intercept = -10
 - 3. errors = 1.
 - 4. x1 = np.linspace(-20.,20.,npts)
- 2. Generate fake data set #2 with 20 points:
 - 1. slope = 3.
 - 2. y-intercept = -20
 - $3. \quad \text{errors} = 1$
 - 4. x2 = np.linspace(30.,60.,npts)
- 3. Fit both synthetic data sets to a line and find the best-fit slope and y-intercept for your data. Also calculate the errors in both the slope and the y-intercept. Calculate the covariance of the two parameters as well.
- 4. Now repeat steps 1-3 1000 times. Plot the resulting best-fit y-intercepts versus the best-fit slopes. What do you see in the two cases? How does this compare to your parameter errors and the covariance?

If Time ... A Simpler Approach

 We have N-data points (20 in the last exercise) and we are looking for the best-fit line.

Consider:

$$y_1 = a + bx_1$$

$$y_2 = a + bx_2$$

Could you solve these for a and b?

If Time ... A Simpler Approach

 We have N-data points (20 in the last exercise) and we are looking for the best-fit line.

Consider:

$$y_1 = a + bx_1$$
$$y_2 = a + bx_2$$

Could you solve these for a and b? How about:

$$y_1 = a + bx_1$$

$$y_2 = a + bx_2$$

$$y_3 = a + bx_3$$

 We already know the problem here. There is no line guaranteed to pass through a general set of 3 points. Instead we search for the "least squares" solution.

Let's generalize

(temporarily ignoring σ):

$$y_{1} = a + bx_{1}$$

$$y_{2} = a + bx_{2}$$

$$y_{3} = a + bx_{3}$$

$$\vdots$$

$$y_{N} = a + bx_{N}$$

$$y_{1} = a + bx_{2}$$

$$y_{2} = a + bx_{2}$$

$$\vdots$$

$$\vdots$$

$$y_{N} = a + bx_{N}$$

$$\begin{vmatrix} y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{N} \end{vmatrix} = \begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ 1 & x_{3} \\ \vdots & \vdots \\ 1 & x_{N} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

or even more simply:

$$\vec{y} = M\vec{p}$$

Let's generalize:

$$y_{1} = a + bx_{1}$$

$$y_{2} = a + bx_{2}$$

$$y_{3} = a + bx_{3}$$

$$\vdots$$

$$y_{N} = a + bx_{N}$$

$$y_{1} = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{N} \end{pmatrix} = \begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ 1 & x_{3} \\ \vdots & \vdots \\ 1 & x_{N} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
or even more simply:
$$\vec{y} = M\vec{n}$$

With Linear Algebra

Our system of N-equations is:

$$\vec{y} = M\vec{p}$$

- Multiply both sides by transpose of M: $M^T \vec{y} = M^T M \vec{p}$
- The matrix M^TM is square so we can possibly take its inverse, $(M^TM)^{-1}$. Multiply both sides of eq (2) above by the inverse to get \vec{p}

$$\vec{p} = (M^T M)^{-1} M^T \vec{y}$$

- The Gauss-Markov Theorem states that \vec{p} is the least squares estimate of a and b.
- The covariance matrix is simply $(M^TM)^{-1}$

Exercise

- Try the linear algebra approach on this example:
- x = np.array([0.,1.,2.,3.,4.])
- y = np.array([0.05, 0.88, 2.06, 2.95, 4.13])

- Construct M by hand.
- The transpose of M, M^T is just M.transpose()
- Build alpha = $(M^T M)$
- Find the inverse of alpha with:

What could possibly go wrong?

- The last slides showed that with a little linear algebra we can make the equations for the best-fit very simple. But what about:
 - different errors on each data point?
 - repeated data points that add no new info?
 - more complicated model functions?

We'll tackle all of these next class.