RELATIONAL OPERATORS #2

CS 564- Fall 2018

WHAT IS THIS LECTURE ABOUT?

Algorithms for relational operators:

- joins
- set operators
- aggregation

JOINS

JOIN OPERATOR

Algorithms for equijoin:

```
SELECT
       R, S
FROM
       R.a = S.a
```

WHERE

Why can't we compute it as cartesian product?

JOIN ALGORITHMS

Algorithms for equijoin:

- nested loop join
- block nested loop join
- index nested loop join
- block index nested loop join
- sort merge join
- hash join

NESTED LOOP JOIN (1)

- for each page P_R in **R**
 - for each page P_S in **S**
 - join the tuples on P_R with the tuples in P_S

$$I/O = M_R + M_S \cdot M_R$$

- M_R = number of pages in \mathbf{R}
- M_S = number of pages in **S**

Observe that we ignore the cost of writing the output to disk!

NESTED LOOP JOIN (2)

- Which relation should be the outer relation in the loop?
 - The smaller of the two relations

- How many buffer pages do we need?
 - only 3 pages suffice

BLOCK NESTED LOOP JOIN (1)

Assume B buffer pages

- for each block of B-2 pages from R
 - for each page P_S in **S**
 - join the tuples from the block with the tuples in P_S

$$I/O = M_R + M_S \cdot \left[\frac{M_R}{B-2} \right]$$

BLOCK NESTED LOOP JOIN (2)

- To increase CPU efficiency, create an in-memory hash table for each block
 - what will be the key of the hash table?

- What happens if **R** fits in memory?
 - The I/O cost is only $M_R + M_S$!

NLJ VS BNLJ

Example:

- $M_R = 500$ pages
- $M_S = 1000 \text{ pages}$
- 100 tuples / page
- *B* = 12

NLJ I/O =
$$500 + 500*1,000 =$$
500,500
BNLJ I/O = $500 + \frac{500*1,000}{12-2} =$ **50,500**

The difference in I/O cost in an order of magnitude!

INDEX NESTED LOOP JOIN

S has an index on the join attribute

- for each page P_R in **R**
 - for each tuple r in R
 - probe the index of S to retrieve any matching tuples

$$I/O = M_R + |R| \cdot I^*$$

• I^* is the I/O cost of searching an index, and depends on the type of index and whether it is clustered or not

BLOCK INDEX NESTED LOOP JOIN

- for each block of B-2 pages in R
 - sort the tuples in the block
 - for each tuple *r* in the block
 - probe the index of S to retrieve any matching tuples

Why do we need to sort here?

SORT MERGE JOIN

SORT MERGE JOIN: BASIC VERSION

The basic version:

- sort R and S on the join attribute (using external merge sort)
- read the sorted relations in the buffer and merge

If **R**, **S** are already sorted on the join attribute we can skip the first step!

SORTING WITH DUPLICATES

SORTING WITH DUPLICATES

SMJ: I/O COST

- If there is no backup, the I/O cost of read + merge is only $M_R + M_S$
- If there is backup, in the worst case the I/O cost could be $M_R * M_S$
 - this happens when there is a *single* join value

Total I/O cost
$$\sim sort(R) + sort(S) + M_R + M_S$$

SORT MERGE JOIN: OPTIMIZED

- Generate sorted runs of size $\sim 2B$ for **R** and **S**
- Merge the sorted runs for R and S
 - while merging check for the join condition and output the join tuples

I/O cost
$$\sim 3(M_R + M_S)$$

But how much memory do we need for this to happen?

SMJ: MEMORY ANALYSIS

- In the first phase, we create runs of length \sim 2B
- Hence, the number of runs is $\frac{M_R + M_S}{2B}$
- To perform a k-way merge, we need k+1 buffer pages, so:

$$\frac{M_R + M_S}{2B} \le B - 1 \text{ or } B^2 \ge \max\{M_S, M_R\}$$

If B² is larger than the **maximum** number of pages of the two relations, then SMJ has I/O cost $\sim 3(M_R + M_S)$

HASH JOIN

HASH FUNCTION REFRESHER

- We will use a hash function *h* to map values of the join attribute (A) into buckets [1, B-1]
- Tuple t is then hashed to bucket h(t.A)

- A hash collision occurs when x != y but h(x) = h(y)
- Note however that it will never happen that x = y but h(x) != h(y)

HASH JOIN: OVERVIEW

Start with a hash function *h* on the join attribute

- Partition phase: partition R and S into k
 partitions using h
- Matching phase: join each partition of R with the corresponding (same hash value) partition of S using BNLJ

BUCKET SIZE

- We can create up to k = B-1 partitions in one pass
- How big are the buckets we create?
 - Ideally, each bucket has $\sim M/(B-1)$ pages
 - but hash collisions can occur!
 - or we may have many duplicate values on the join attribute (skew)
- In the matching phase, we join two buckets from R, S with the same hash value
 - We want to do this in linear time using BNLJ, so we must guarantee that each bucket from one of the two relations is at most B-1 pages

HJ: I/O COST

- Suppose $M_R \leq M_S$
- The partition phase gives buckets of size $\sim M_R/B$
- To make BNLJ run in one pass we need to make sure that:

$$\frac{M_R}{B} \le B - 2$$
 or equivalently: $B^2 \ge M_R$

If B² is larger than the **minimum** number of pages of the two relations, then HJ has I/O cost $\sim 3(M_R + M_S)$

COMPARISON OF JOIN ALGORITHMS

Hash Join vs Block Nested Loop Join

- the same if smaller table fits into memory
- otherwise, hash join is much better

COMPARISON OF JOIN ALGORITHMS

Hash Join vs Sort Merge Join

- Suppose $M_R > M_S$
- To do a two-pass join, SMJ needs $B > \sqrt{M_R}$
 - the I/O cost is: $3(M_R + M_S)$
- To do a two-pass join, HJ needs $B > \sqrt{M_S}$
 - the I/O cost is: $3(M_R + M_S)$

GENERAL JOIN CONDITIONS

- Equalities over multiple attributes
 - e.g., R.sid=S.sid and R.rname=S.sname
 - for Index Nested Loop
 - index on <sid, sname>
 - index on sid or sname
 - for SMJ and HJ, we can sort/hash on combination of join attributes

GENERAL JOIN CONDITIONS

- Inequality conditions
 - e.g., *R.rname < S.sname*
 - For BINL, we need (clustered) B+ tree index
 - SMJ and HJ not applicable
 - BNLJ likely to be the winner (why?)

SET OPERATIONS & AGGREGATION

SET OPERATIONS

- Intersection is a special case of a join
- Union and difference are similar
- Sorting:
 - sort both relations (on all attributes)
 - merge sorted relations eliminating duplicates
- Hashing:
 - partition R and S
 - build in-memory hash table for partition R_i
 - probe with tuples in S_i, add to table if not a duplicate

AGGREGATION: SORTING

- sort on group by attributes (if any)
- scan sorted tuples, computing running aggregate
 - max/min: max/min
 - average: sum, count
- when the group by attribute changes, output aggregate result
- **cost** = sorting cost

AGGREGATION: HASHING

- Hash on group by attributes (if any)
 - Hash entry = group attributes + running aggregate
- Scan tuples, probe hash table, update hash entry
- Scan hash table, and output each hash entry
- cost = scan relation
- What happens if we have many groups?

AGGREGATION: INDEX

- Without grouping
 - Can use B+ tree on aggregate attribute(s)
- With grouping
 - B+ tree on all attributes in SELECT, WHERE and GROUP BY clauses
 - Index-only scan
 - If group-by attributes prefix of search key, the data entries/tuples are retrieved in group-by order