Chương 2. Tích phân hàm số một biến

Trường Đại học Công nghiệp Thực phẩm TP. HCM

Bài 1. Nguyên hàm - Tích phân bất định

1. Các định nghĩa và tính chất

Định nghĩa 2.1.1. Cho hàm số f(x) xác định trong khoảng (a, b). Hàm F(x) được gọi là nguyên hàm của f(x) trên (a, b) nếu

$$F'(x) = f(x), \ \forall x \in (a, b). \tag{1}$$

Nhân xét 2.1.1.

• Nếu F(x) là một nguyên hàm của f(x) trên (a,b) thì F(x)+C với C là hằng số tuỳ ý, cũng là một nguyên hàm của f(x) trên (a,b).

1. Các định nghĩa và tính chất

Định nghĩa 2.1.2. Tập hợp tất cả các nguyên hàm của f(x) được gọi là tích phân bất định của hàm f(x) và ký hiệu là $\int f(x)dx$.

Theo định nghĩa trên, nếu F(x) là một nguyên hàm của f(x) thì người ta viết

$$\int f(x)dx = F(x) + C, \text{ với } C \text{ là một hằng số tùy ý.}$$
 (2)

1. Các định nghĩa và tính chất

Định lý 2.1.1. Nếu hàm số f(x) liên tục trên đoạn [a,b] (hoặc trên khoảng (a,b)) thì nó có một nguyên hàm trên đoạn [a,b] (hoặc trên khoảng (a,b)).

Ví dụ 2.1.1. a/ $\frac{x^4}{4}$ và $\frac{x^4}{4}$ + 5 là hai nguyên hàm của x^3 trên \mathbb{R} vì

$$\left(\frac{x^4}{4}\right)' = \left(\frac{x^4}{4} + 5\right)' = x^3, \forall x \in \mathbb{R}.$$

 $b/-\frac{1}{2}\cos 2x$ là nguyên hàm của $\sin 2x$ trên $\mathbb R$ vì

$$\left(-\frac{1}{2}\cos 2x\right)'=\sin 2x, \forall x\in\mathbb{R}.$$

Các tính chất cơ bản của tích phân bất định

- f'(x)dx = f(x) + C.
- 3 $\int kf(x)dx = k \int f(x)dx$, với k là hằng số.

2. Bảng tích phân các hàm số sơ cấp

- $\int e^{ax+b}dx = \frac{1}{a}e^{ax+b} + C.$
- $\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C.$
- $\int \frac{dx}{\cos^2 x} = \int (1 + \tan^2 x) dx = \tan x + C.$

2. Bảng tích phân các hàm số sơ cấp

$$9/\int \frac{dx}{\sin^2 x} = \int (1 + \cot^2 x) dx = -\cot x + C.$$

$$10/\int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C.$$

$$11/\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \ (a > 0).$$

$$12/\int \frac{dx}{1 + x^2} = \arctan x + C.$$

$$13/\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C, \ (a \neq 0).$$

$$14/\int \frac{dx}{ax + b} = \frac{1}{a} \ln|ax + b| + C, \ (a \neq 0).$$

$$15/\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C, \ (a \neq 0).$$

$$16/\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left|x + \sqrt{x^2 \pm a}\right| + C.$$

2. Bảng tích phân các hàm số sơ cấp

$$17/\int \sqrt{a^{2}-x^{2}}dx = \frac{x}{a}\sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2}\arcsin\frac{x}{a} + C.$$

$$18/\int \sqrt{x^{2}\pm a}dx = \frac{x}{a}\sqrt{x^{2}\pm a}\pm\frac{a}{2}\ln\left|x+\sqrt{x^{2}\pm a}\right| + C.$$

$$19/\int \frac{dx}{\sin x} = \ln\left|\tan\frac{x}{2}\right| + C.$$

$$20/\int \frac{dx}{\cos x} = \ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right| + C.$$

$$21/\int \frac{dx}{\cos^{2}(ax+b)} = \frac{1}{a}\tan(ax+b) + C, (a \neq 0).$$

$$22/\int \frac{dx}{\sin^{2}(ax+b)} = -\frac{1}{a}\cot(ax+b) + C, (a \neq 0).$$

3. Phương pháp tính tích phân bất định [xem thêm]

3.1. Phương pháp đổi biến số

Có hai phương pháp chính để tính tích phân bất định sau đây.

Trường hợp 1. Nếu $x=\phi(t)$ là hàm số khả vi và đơn điệu theo biến t thì

$$\int f(x)dx = \int f(\phi(t))\phi'(t)dt. \tag{3}$$

Ví dụ 2.1.2. Tính $I = \int \frac{\sin \sqrt[3]{x}}{\sqrt[3]{x^2}} dx$.

Giải: Đặt $x = t^3 \Rightarrow dx = 3t^2 dt$. Vậy

$$I = \int \frac{\sin \sqrt[3]{x}}{\sqrt[3]{x^2}} dx = \int \frac{\sin t}{t^2} .3t^2 dt$$

$$= 3 \int \sin t dt = -3 \cos t + C = -3 \cos \sqrt[3]{x} + C.$$

Ví dụ 2.1.3. Tính
$$I=\int \sqrt{1-x^2}dx$$
. Giải: Đặt $x=\sin t$, $\left(t\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right)$. Khi đó, ta có

$$\sqrt{1-x^2} = \sqrt{1-\sin^2 t} = \sqrt{\cos^2 t} = |\cos t| = \cos t.$$

 $t = \arcsin x$. $dx = \cos t dt$.

Vậy

$$I = \int \sqrt{1-x^2} dx = \int \cos t \cdot \cos t dt = \frac{1}{2} \int (1+\cos 2t) dt$$

$$= \frac{1}{2} \left(t + \frac{\sin 2t}{2} \right) + C = \frac{1}{2} \arcsin x + \frac{1}{2} x \sqrt{1-x^2} + C.$$

Trường hợp 2. Nếu u = u(x) là hàm số khả vi thì

$$\int f(u(x))u'(x)dx = \int f(u)du. \tag{4}$$

Ví dụ 2.1.4. Tính
$$I = \int \frac{e^{5x}}{e^{2x} + 1} dx$$
.

Giải: Đặt $u = e^x \Rightarrow du = e^x dx$

Suy ra

$$I=\int rac{u^4}{u^2+1}du=\int \left(u^2-1+rac{1}{u^2+1}
ight)du$$

$$=rac{u^3}{3}-u+\arctan u+C=rac{e^{3x}}{3}-e^x+\arctan e^x+C$$

Ví dụ 2.1.5. Tính
$$I = \int \frac{\sin 2x}{\cos^4 x - 4} dx$$
.
Giải: Đặt $u = \cos^2 x \Rightarrow du = -\sin 2x dx$.
Suy ra
$$I = \int \frac{-du}{u^2 - 4} = -\frac{1}{4} \ln \left| \frac{u - 2}{u + 2} \right| + C$$

$$= -\frac{1}{4} \ln \left| \frac{\cos^2 x - 2}{\cos^2 x + 2} \right| + C.$$

Ví dụ 2.1.6. Tính
$$I = \int \frac{\left(2x^2 + 1\right)x}{x^4 + 1} dx$$
.

Giải: Đặt $u = x^2 \Rightarrow du = 2xdx \Rightarrow xdx = \frac{du}{2}$.

Suy ra

$$I = \frac{1}{2} \int \frac{\left(2u + 1\right)du}{u^2 + 1} = \frac{1}{2} \int \frac{2udu}{u^2 + 1} + \frac{1}{2} \int \frac{du}{u^2 + 1}$$

$$= \frac{1}{2} \ln \left|u^2 + 1\right| + \frac{1}{2} \arctan u + C$$

$$= \frac{1}{2} \ln \left|x^4 + 1\right| + \frac{1}{2} \arctan x^2 + C.$$

3.2. Phương pháp tích phân từng phần

Giả sử u=u(x), v=v(x) là hai hàm khả vi liên tục trên một khoảng nào đó. Khi đó, ta có công thức tích phân từng phần

$$\int u dv = uv - \int v du.$$

Chú ý. Uu tiên đặt u trong công thức trên theo thứ tự của các hàm như sau:

$$\left\{ \begin{array}{c} \text{lôga} \\ \text{ngược} \end{array} \right\}$$
, đa thức, $\left\{ \begin{array}{c} \text{mũ} \\ \text{lượng giác} \end{array} \right.$

3.2. Phương pháp tích phân từng phần

Ví dụ 2.1.7. Tính $I = \int (2x+3)e^{2x} dx$.

Giải: Đặt

$$\begin{cases} u = 2x + 3 \\ dv = e^{2x} dx \end{cases} \Rightarrow \begin{cases} du = 2dx \\ v = \frac{e^{2x}}{2} \end{cases}$$

Suy ra

$$I = (2x+3)\frac{e^{2x}}{2} - \int e^{2x} dx = (2x+3)\frac{e^{2x}}{2} - \frac{e^{2x}}{2} + C$$
$$= (x+1)e^{2x} + C.$$

Lý thuyết xem ở SGK

Ví dụ 2.1.8. Tính
$$I = \int \frac{dx}{x^2 + 6x + 25}$$
.

Giải: Ta có

$$I = \int \frac{dx}{x^2 + 6x + 25} = \int \frac{dx}{(x+3)^2 + 4^2}$$

$$= \int \frac{d(x+3)}{(x+3)^2 + 4^2} = \frac{1}{4} \arctan \frac{x+3}{4} + C.$$

Ví dụ 2.1.9. Tính
$$I = \int \frac{(3x+1)dx}{x^2-4x+8}$$
.

Giải: Ta có

$$I = \int \frac{(3x+1)dx}{x^2 - 4x + 8} = \int \frac{\frac{3}{2}(2x-4) + 7}{x^2 - 4x + 8} dx$$

$$= \frac{3}{2} \int \frac{(2x-4)dx}{x^2 - 4x + 8} + 7 \int \frac{d(x-2)}{(x-2)^2 + 2^2}$$

$$= \frac{3}{2} \int \frac{d(x^2 - 4x + 8)}{x^2 - 4x + 8} + 7 \int \frac{d(x-2)}{(x-2)^2 + 2^2}$$

$$= \frac{3}{2} \ln(x^2 - 4x + 8) + \frac{7}{2} \arctan \frac{x-2}{2} + C.$$

Ví dụ 2.1.11. Tính
$$I = \int \frac{x^2 + 2x + 6}{x^3 - 7x^2 + 14x - 8} dx$$
.

Giải: Ta có

$$\frac{x^2 + 2x + 6}{x^3 - 7x^2 + 14x - 8} = \frac{x^2 + 2x + 6}{(x - 1)(x - 2)(x - 4)}$$
$$= \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 4}.$$

Qui đồng mẫu số của vế phải đẳng thức trên và đồng nhất hai vế, ta được

$$x^{2} + 2x + 6 = A(x-2)(x-4) + B(x-1)(x-4) + C(x-1)(x-2), \forall x \in \mathbb{R}.$$
 (*)

Do vậy

$$x = 1 : (*) \Rightarrow 9 = 3A \Rightarrow A = 3$$

 $x = 2 : (*) \Rightarrow 14 = -2B \Rightarrow B = -7$
 $x = 4 : (*) \Rightarrow 30 = 6C \Rightarrow C = 5$

hay

$$\frac{x^2 + 2x + 6}{x^3 - 7x^2 + 14x - 8} = \frac{3}{x - 1} - \frac{7}{x - 2} + \frac{5}{x - 4}.$$

Vậy

$$\int \frac{x^2 + 2x + 6}{x^3 - 7x^2 + 14x - 8} dx = \int \frac{3}{x - 1} dx - \int \frac{7}{x - 2} dx + \int \frac{5}{x - 4} dx$$
$$= 3 \ln|x - 1| - 7 \ln|x - 2| + 5 \ln|x - 4| + C$$
$$= \ln\left|\frac{(x - 1)^3 (x - 4)^5}{(x - 2)^7}\right| + C.$$

3.4. Tích phân các hàm vô tỉ

1) Tích phân dạng

$$\int R\left[x,(ax+b)^{\frac{m_1}{n_1}},(ax+b)^{\frac{m_2}{n_2}},...\right]$$

trong đó R là hàm hữu tỉ và $m_1, m_2, ..., n_1, n_2, ...$ là các số tự nhiên. Để tính tích phân trên ta dùng phép biến đổi $t^s = ax + b$ với s là bội chung nhỏ nhất của các số $n_1, n_2, ...$ Với phép biến đổi này, ta sẽ đưa tích phân hàm vô tỉ thành tích phân hàm hữu tỉ.

3.4. Tích phân các hàm vô tỉ

Ví dụ 2.1.12. Tính
$$I = \int \frac{dx}{\sqrt[3]{(2x-1)^2} - \sqrt{2x-1}}$$
.

Giải: Đặt $t^6 = 2x - 1 \Rightarrow dx = 3t^5 dt$.

Ta được

$$I = \int \frac{3t^5 dt}{t^4 - t^3} = 3 \int \frac{t^2 dt}{t - 1} = 3 \int \left(t + 1 + \frac{1}{t - 1} \right) dt$$
$$= 3 \left(\frac{t^2}{2} + t + \ln|t - 1| \right) + C$$
$$= \frac{3}{2} \sqrt[3]{2x - 1} + 3\sqrt[6]{2x - 1} + 3\ln\left|\sqrt[6]{2x - 1} - 1\right| + C.$$

3.4. Tích phân các hà<u>m vô tỉ</u>

2) Tích phân dạng
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

Ví dụ 2.1.13. Tính $I = \int \frac{dx}{\sqrt{x^2 + 2x + 5}}$.
Giải: Ta có

$$I = \int \frac{dx}{\sqrt{x^2 + 2x + 5}} = \int \frac{d(x+1)}{\sqrt{(x+1)^2 + 4}}$$
$$= \ln\left|x + 1 + \sqrt{(x+1)^2 + 4}\right| + C.$$

3.4. Tích phân các hàm vô tỉ

2) Tích phân dạng $\int \frac{Ax + B}{\sqrt{ax^2 + bx + c}} dx$.

Ví dụ 2.1.14. Tính
$$I = \int \frac{(3x+4)dx}{\sqrt{-x^2+6x-8}}$$
.

Giải: Ta có

$$I = \int \frac{(3x+4)dx}{\sqrt{-x^2+6x-8}} = \int \frac{-\frac{3}{2}(-2x+6)+13}{\sqrt{-x^2+6x-8}} dx$$
$$= -3\int \frac{(-2x+6)dx}{2\sqrt{-x^2+6x-8}} + 13\int \frac{d(x-3)}{\sqrt{1-(x-3)^2}}$$

$$= -3 \int \frac{d(-x^2 + 6x - 8)}{2\sqrt{-x^2 + 6x - 8}} + 13 \int \frac{d(x - 3)}{\sqrt{1 - (x - 3)^2}}$$
$$= -3\sqrt{-x^2 + 6x - 8} + 13\arcsin(x - 3) + C.$$

1) Tích phân dạng $\int R(\sin x, \cos x) dx$, trong đó R là hàm hữu tỉ. Để tính tích phân dạng này, ta dùng phép thế $t = \tan \frac{x}{2}$. Khi đó

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, $x = 2 \arctan t$, $dx = \frac{2dt}{1+t^2}$.

Với phép thế nói trên, hàm dưới dấu tích phân là hàm hữu tỉ đối với t. Trong một số trường hợp đặc biệt, việc tính tích phân $\int R(\sin x,\cos x)dx$ sẽ đơn giản hơn nếu hàm số R có tính chẵn hoặc lẻ đối với biến $\sin x$ hoặc $\cos x$. Cụ thể như sau:

Trường hợp 1. R lẻ đối với $\sin x$, đặt $t = \cos x$.

Trường hợp 2. R lẻ đối với $\cos x$, đặt $t = \sin x$.

Trường hợp 3. R chẵn đối với $\sin x$ và $\cos x$, đặt $t = \tan x$.

Ví dụ 2.1.18. Tính
$$I = \int \frac{dx}{4\sin x + 3\cos x + 5}$$
.

Giải: Đặt
$$t = \tan \frac{x}{2}$$
. Khi đó, ta có

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, $x = 2 \arctan t$, $dx = \frac{2dt}{1+t^2}$.

$$I = \int \frac{\frac{2dt}{1+t^2}}{\frac{8t}{1+t^2} + \frac{3(1-t^2)}{1+t^2} + 5} = \int \frac{dt}{t^2 + 4t + 4}$$
$$= \int \frac{dt}{(t+2)^2} = -\frac{1}{t+2} + C = -\frac{1}{1+\tan\frac{x}{2}} + C.$$

Ví dụ 2.1.19. Tính $I = \int \frac{\sin x + \sin^3 x}{\cos 2x} dx$.

Giải: Hàm dưới dấu tích phân lẻ đối với $\sin x$, nên ta đặt $t=\cos x$. Khi đó, ta có

$$\sin^2 x = 1 - t^2$$
, $\cos 2x = 2t^2 - 1$, $dt = -\sin x dx$.

$$I = \int \frac{(1+\sin^2 x)\sin x dx}{2\cos^2 x - 1} = -\int \frac{(2-t^2)dt}{2t^2 - 1}$$
$$= \frac{1}{2} \int \left(1 - \frac{3}{2t^2 - 1}\right) dt = \frac{1}{2} \int \left(1 - \frac{3}{2} \cdot \frac{1}{t^2 - \frac{1}{2}}\right) dt$$

Ví dụ 2.1.19(tt)

$$\begin{split} &= \frac{1}{2} \left(t - \frac{3}{2} \cdot \frac{1}{2 \cdot \frac{1}{\sqrt{2}}} \ln \left| \frac{t - \frac{1}{\sqrt{2}}}{t + \frac{1}{\sqrt{2}}} \right| \right) + C \\ &= \frac{1}{2} \left(t - \frac{3}{2\sqrt{2}} \ln \left| \frac{\sqrt{2}t - 1}{\sqrt{2}t + 1} \right| \right) + C \\ &= \frac{1}{2} \left(\cos x - \frac{3}{2\sqrt{2}} \ln \left| \frac{\sqrt{2}\cos x - 1}{\sqrt{2}\cos x + 1} \right| \right) + C \end{split}$$

Suy ra

Ví dụ 2.1.20. Tính
$$I = \int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx$$
.

Giải: Hàm dưới dấu tích phân lẻ đối với $\cos x$, nên ta đặt $t=\sin x$. Khi đó, ta có $\cos^2 x=1-t^2$, $dt=\cos x dx$. Vây

$$I = \int \frac{(\cos^2 x + \cos^4 x)\cos x dx}{\sin^2 x + \sin^4 x} = \int \frac{1 - t^2 + (1 - t^2)^2}{t^2 + t^4} dt$$
$$= \int \frac{t^4 - 3t^2 + 2}{t^2(1 + t^2)} dt = \int \left(1 + \frac{2}{t^2} - \frac{6}{1 + t^2}\right) dt$$

Ví dụ 2.1.20(tt)

$$= t - \frac{2}{t} - 6 \arctan t + C$$

$$= \sin x - \frac{2}{\sin x} - 6 \arctan(\sin x) + C$$

2) Tích phân dạng $\int \sin^m x \cos^n x dx$.

Để tính tích phân trên, ta chia thành ba trường hợp sau đây:

- Trường hợp 1. Có ít nhất một trong các số mũ m hoặc n là số lẻ dương.
 - Nếu n là số lẻ dương thì đặt $t = \sin x$.
 - Nếu m là số lẻ dương thì đặt $t = \cos x$
- Trường hợp 2. Cả hai số mũ m, n đều là số chẵn dương.

Trong trường hợp này, để tính tích phân ta cần sử dụng các công thức nhân đôi

$$\sin x \cos x = \frac{\sin 2x}{2}$$
, $\sin^2 x = \frac{1 - \cos 2x}{2}$, $\cos^2 x = \frac{1 + \cos 2x}{2}$.

• Trường hợp 3. Nếu là m+n số nguyên chẵn thì có thể đặt $t=\tan x$ hoặc $t=\cot x$.

Ví dụ 2.1.21. Tính
$$I = \int \sin^4 x \cos^5 x dx$$
.

Giải: Đặt $t = \sin x \Rightarrow dt = \cos x dx$.

Ta có

$$I = \int \sin^4 x \cos^5 x dx = \int t^4 (1 - t^2)^2 dt = \int (t^4 - 2t^6 + t^8) dt$$
$$= \frac{t^5}{5} - \frac{2t^7}{7} + \frac{t^9}{9} + C = \frac{\sin^5 x}{5} - \frac{2\sin^7 x}{7} + \frac{\sin^9 x}{9} + C.$$

Bài 2. Tích phân xác định

1. Các định nghĩa [xem thêm]

2. Một số tính chất [xem thêm]

Định lý 2.2.2. Giả sử f(x), g(x) là các hàm số khả tích trên đoạn [a,b]. Khi đó, ta có

$$a/\int_a^b kf(x)dx = k\int_a^b f(x)dx.$$

b/
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$
.

$$c/f(x) \ge g(x), \ \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx.$$

Đặc biệt, nếu $m \le f(x) \le M$, $\forall x \in [a, b]$ thì

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a).$$

 $\mathrm{d}/\ f(x)$ khả tích trên mọi đoạn $[a,c],c\in[a,b]$ và

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

2. Một số tính chất

- đ) |f(x)| khả tích trên [a, b] và $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.
- e) (Định lý giá trị trung bình). Nếu $m \leq f(x) \leq M$ thì tồn tại $\mu \in [m,M]$ sao cho

$$\int_{a}^{b} f(x) dx = (b - a)\mu.$$

Đặc biệt, nếu f liên tục trên đoạn [a,b] thì tồn tại $c \in [a,b]$ sao cho $\int_a^b f(x) dx = (b-a) f(c)$.

Định lý 2.2.3. Giả sử hàm số f(x) khả tích trên đoạn [a, b]. Khi đó, ta có

- a) Hàm số $\Phi(x) = \int_a^x f(t)dt$, $x \in [a, b]$ liên tục trên đoạn [a, b].
- b) Nếu hàm số f(x) liên tục tại điểm t=x thì $\Phi(x)$ có đạo hàm tại x và $\Phi'(x)=f(x)$.

3. Công thức Newton-Leibnitz

Định lí 2.2.4. Cho hàm số f(x) liên tục trên đoạn [a, b] và F(x) là một nguyên hàm của f(x) trên đoạn đó. Khi đó, ta có

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) - F(a).$$

Ví dụ.

4. Các phương pháp tính tích phân xác định [xem thêm]

2.2.4.1. Phương pháp đổi biến số

• Trường hợp 1. Nếu $x=\varphi(t)$ có đạo hàm liên tục trên $[\alpha,\beta]$, $\varphi(\alpha)=$ a, $\varphi(\beta)=$ b và $\varphi(t)\in[a,b]$, $\forall t\in[\alpha,\beta]$. Khi đó, ta có

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f\left[\varphi(t)\right] \varphi'(t) dt.$$

Ví dụ 2.2.5. Tính $I = \int_0^1 x^2 \sqrt{1 - x^2} dx$.

Giải: Đặt
$$x = \sin t$$
, $\left(t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) \Rightarrow dx = \cos t dt$.

Đổi cận

$$x = 0 \Rightarrow t = 0, \ x = 1 \Rightarrow t = \frac{\pi}{2}.$$

Ví dụ 2.2.5.(tt)

Vậy

$$I = \int_0^{\frac{\pi}{2}} \sin^2 t \sqrt{1 - \sin^2 t} \cos t dt = \int_0^{\frac{\pi}{2}} \sin^2 t \cos^2 t dt$$
$$= \frac{1}{4} \int_0^{\frac{\pi}{2}} \sin^2 2t dt = \frac{1}{8} \int_0^{\frac{\pi}{2}} (1 - \cos 4t) dt$$
$$= \frac{1}{8} \left(t - \frac{\sin 4t}{4} \right) \Big|_0^{\frac{\pi}{2}} = \frac{\pi}{16}.$$

4.1. Phương pháp đổi biến số

• Trường hợp 2. Nếu u=u(x) đơn điệu ngặt và có đạo hàm liên tục trên [a,b]. Khi đó, nếu f(x)dx trở thành g(u)du trong đó g(u) liên tục trên [u(a),u(b)] thì

$$\int_a^b f(x)dx = \int_{u(a)}^{u(b)} g(u)du.$$

Ví dụ 2.2.6. Tính
$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos^3 x}{\sqrt[3]{\sin x}} dx$$
.

Giải: Ta có

$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos^3 x}{\sqrt[3]{\sin x}} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 - \sin^2 x}{\sqrt[3]{\sin x}} \cos x dx.$$

 $\mathsf{D\mathsf{\check{a}\mathsf{t}}}\ u = \sin x \Rightarrow du = \cos x dx.$

Ví dụ 2.2.6.(tt)

Đổi cân

$$x = \frac{\pi}{4} \Rightarrow u = \frac{\sqrt{2}}{2}, \ x = \frac{\pi}{2} \Rightarrow u = 1.$$

Vậy

$$I = \int_{\frac{\sqrt{2}}{2}}^{1} \frac{1 - u^{2}}{\sqrt[3]{u}} du = \int_{\frac{\sqrt{2}}{2}}^{1} \left(u^{-\frac{1}{3}} - u^{\frac{5}{3}} \right) du$$
$$= \left(\frac{3}{2} u^{\frac{2}{3}} - \frac{3}{8} u^{\frac{8}{3}} \right) \Big|_{\frac{\sqrt{2}}{2}}^{1} = \frac{9}{8} - \frac{21\sqrt[3]{4}}{32}.$$

4.2. Phương pháp tích phân từng phần

Nếu u(x), v(x) là hai hàm khả vi liên tục trên [a, b] thì

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)|_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx$$

hay

$$\int_a^b u dv = \left. uv \right|_a^b - \int_a^b v du.$$

4.2. Phương pháp tích phân từng phần

Ví du 2.2.7. Tính

$$a/I = \int_{1}^{e} \ln x dx.$$
$$b/J = \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx.$$

Giải. a/ Đặt

$$\begin{cases} u = \ln x \\ dv = dx \end{cases} \Rightarrow \begin{cases} du = \frac{dx}{x} \\ v = x \end{cases}$$

Suy ra

$$I = \int_{1}^{e} \ln x dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} dx = e - (e - 1) = 1.$$

Ví dụ 2.2.7.(tt)

b/ Đặt

$$\left\{ \begin{array}{l} u = e^{x} \\ dv = \cos x dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = e^{x} dx \\ v = \sin x \end{array} \right.$$

Suy ra

$$J = \int_0^{\frac{\pi}{2}} e^x \cos x dx = e^x \sin x \Big|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} e^x \sin x dx = e^{\frac{\pi}{2}} - J_1.$$

Đặt

$$\left\{ \begin{array}{l} u_1 = e^x \\ dv_1 = \sin x dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du_1 = e^x dx \\ v_1 = -\cos x \end{array} \right.$$

Suy ra

$$J_1 = \int_0^{\frac{\pi}{2}} e^x \cos x dx = -e^x \cos x|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} e^x \cos x dx = 1 + J.$$

Ví dụ 3.2.7.(tt)

Do đó

$$J = e^{\frac{\pi}{2}} - J_1 = e^{\frac{\pi}{2}} - 1 - J \Rightarrow J = \frac{1}{2} \left(e^{\frac{\pi}{2}} - 1 \right).$$

5. Ứng dụng của tích phân xác định

5.1. Tính diện tích hình phẳng

• Trường hợp 1. Cho hàm số y=f(x) liên tục và $f(x)\geq 0$ trên [a,b]. Khi đó, diện tích hình thang cong giới hạn bởi đường cong là đồ thị hàm số y=f(x) và hai đường thẳng x=a, x=b và trục Ox là

$$S = \int_{a}^{b} f(x) dx. \tag{5}$$

• Trường hợp 2. Cho hàm số y=f(x) liên tục trên [a,b]. Khi đó, diện tích hình thang cong giới hạn bởi đường cong y=f(x), hai đường thẳng x=a, x=b và trục Ox là

$$S = \int_{a}^{b} |f(x)| dx. \tag{6}$$

5.1. Tính diện tích hình phẳng

• Trường hợp 3. Diện tích hình phẳng giới hạn bởi các đường cong y = f(x) và y = g(x) liên tục trên [a,b] và hai đường thẳng x = a, x = b cho bởi công thức sau

$$S = \int_{a}^{b} |f(x) - g(x)| dx.$$
 (7)

• Trường hợp 4. Giả sử đường cong cho bởi phương trình tham số $\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \text{ với } x(t), \ y(t), \ x'(t) \text{ là các hàm liên tục trên } [t_1, t_2].$ Khi đó, diện tích phẳng giới hạn bởi đường cong và các đường thẳng $x = a, \ x = b$ và trục Ox cho bởi công thức

$$S = \int_{t_1}^{t_2} |y(t)x'(t)| dt$$
, với $a = x(t_1)$, $b = x(t_2)$.

5.1. Tính diện tích hình phẳng

Ví dụ 2.2.8. Tính diện tích hình phẳng giới hạn bởi các đường $y=x^2$, $y=\frac{x^2}{2}$ và y=2x.

Ví dụ 3.2.8.

Giải: Để tính diện tích này ta chia nó làm hai phần, phần thứ nhất ứng với $x \in [0, 2]$ và phần thứ hai ứng với $x \in [2, 4]$. Ta có

$$S_1 = \int_0^2 \left(x^2 - \frac{x^2}{2} \right) dx = \left. \frac{x^3}{6} \right|_0^2 = \frac{4}{3},$$

$$S_2 = \int_2^4 \left(2x - \frac{x^2}{2}\right) dx = \left(x^2 - \frac{x^3}{6}\right)\Big|_2^4 = \frac{8}{3},$$

Diện tích hình phẳng đã cho là $S=S_1+S_2=4$.

5.1. Tính diện tích hình phẳng

Ví dụ 2.2.9. Tính diện tích hình elip $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Giải: Ta có
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Leftrightarrow y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$
.

Đường elip chính tắc đối xứng qua các trục tọa độ nên diện tích là:

$$S = 4 \int_0^a \frac{b}{a} \sqrt{a^2 - x^2} dx = 4 \frac{b}{a} \cdot \frac{\pi a^2}{4} = \pi a b.$$

5.1. Tính diện tích hình phẳng

Ví dụ 2.2.10. Cho phương trình tham số của đường cycloid $\begin{cases} x = a(t-\sin t), \\ y = a(1-\cos t), \ 0 \leq t \leq 2\pi. \end{cases}$ Tính diện tích hình phẳng giới hạn bởi đường cycloid với trục hoành trên $0 < t < 2\pi.$

Ví dụ 2.2.10(tt).

Ta có

$$S = \int_0^{2\pi} |y(t)x'(t)| dt = \int_0^{2\pi} a(1-\cos t)a(1-\cos t)dt$$

$$= a^2 \int_0^{2\pi} (1-2\cos t + \cos^2 t)dt$$

$$= a^2 \int_0^{2\pi} (1-2\cos t + \frac{1+\cos 2t}{2})dt$$

$$= a^2 \left(\frac{3t}{2} - 2\sin t + \frac{\sin 2t}{4}\right)\Big|_0^{2\pi} = 3\pi a^2.$$

5.2. Tính thể tích vật thể

• Cho hình thang cong S giới hạn bởi đường cong y=f(x) liên tục trên đoạn [a,b] trục Ox và hai đường thẳng x=a, x=b quay quanh trục Ox. Khi đó ta thu được một vật thể tròn xoay có thể tích được xác đinh bởi

$$V = \pi \int_a^b f^2(x) dx.$$

Ví dụ 2.2.12.

Tính thể tích vật thể tròn xoay tạo bởi elip $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ khi nó quay quanh trục Ox.

Giải: Ta có
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\Leftrightarrow y^2=\frac{b^2}{a^2}(a^2-x^2)=f^2(x).$$
 Do vậy

$$V = \pi \int_{a}^{b} f^{2}(x) dx = \pi \int_{-a}^{a} \frac{b^{2}}{a^{2}} (a^{2} - x^{2}) dx$$
$$= 2\pi \frac{b^{2}}{a^{2}} \int_{0}^{a} (a^{2} - x^{2}) dx = 2\pi \frac{b^{2}}{a^{2}} \left(a^{2}x - \frac{x^{3}}{3} \right) \Big|_{0}^{a} = \frac{4}{3} \pi a b^{2}.$$

5.3. Tính độ dài cung

• **Trường hợp 1.** Cho cung đường cong AB: y = f(x), f(x) có đạo hàm liên tục trên [a, b]. Khi đó độ dài cung AB được tính theo công thức

$$I(\widehat{AB}) = \int_a^b \sqrt{1 + [f'(x)]^2} dx.$$

5.3. Tính độ dài cung

• Trường hợp 2. Trường hợp cung đường cong AB cho bởi phương trình tham số $\left\{ \begin{array}{l} x=\varphi(t), \\ y=\psi(t), \ t_1\leq t\leq t_2, \end{array} \right.$

trong đó $\varphi(t)$, $\psi(t)$ là các hàm số có đạo hàm liên tục trên $[t_1,t_2]$. Khi đó độ dài cung được tính theo công thức

$$I(\stackrel{\frown}{AB}) = \int_{t_1}^{t_2} \sqrt{\left[\varphi'(t)
ight]^2 + \left[\psi'(t)
ight]^2} dt.$$

Ví dụ 2.2.13. Tính độ dài cung $\stackrel{\frown}{AB}$: $y = \frac{x^2}{2}$, $0 \le x \le 1$.

Giải: Ta có

$$I(\widehat{AB}) = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx = \int_{0}^{1} \sqrt{1 + x^{2}} dx$$
$$= \frac{1}{2} \left(x \sqrt{1 + x^{2}} + \ln(x + \sqrt{1 + x^{2}}) \right) \Big|_{0}^{1} = \frac{1}{2} \left(\sqrt{2} + \ln\sqrt{2} \right).$$

Ví dụ 2.2.14.

Ví dụ 2.3.4. Tính độ dài cung của đường cycloid $\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), \ 0 \le t \le 2\pi. \end{cases}$ Giải: Ta có

$$\begin{split} I &= \int_{t_1}^{t_2} \sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2} dt \\ &= \int_{0}^{2\pi} \sqrt{a^2 (1 - \cos t)^2 + a^2 \sin^2 t} dt \end{split}$$

$$= a \int_0^{2\pi} \sqrt{2 - 2\cos t} dt = 2a \int_0^{2\pi} \sqrt{\sin^2 \frac{t}{2}} dt$$
$$= 2a \int_0^{2\pi} \sin \frac{t}{2} dt = 8a.$$

Bài 3. Tích phân suy rộng

1. Tích phân suy rộng loại 1

2.3.1. Tích phân suy rộng loại 1

2.3.1.1. Các định nghĩa và ví dụ

Định nghĩa 2.3.1. Giả sử hàm số f(x) xác định trên $[a,+\infty)$ và khả tích trên mọi đoạn [a,b], với $b\geq a$. Nếu tồn tại giới hạn

 $\lim_{b\to +\infty}\int_a^b f(x)dx \text{ thì giới hạn đó được gọi là } tích phân suy rộng loại 1 của hàm số <math>f$ trong $[a,+\infty)$ và ký hiệu là

$$\int_{a}^{+\infty} f(x) dx \stackrel{\text{dn}}{=} : \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$
 (8)

Nếu giới hạn trên là số hữu hạn thì ta nói tích phân suy rộng $\int_a^{+\infty} f(x) dx$ hội tụ; còn nếu giới hạn vô hạn hoặc không tồn tại thì ta nói nó phân kì.

Ví dụ 2.3.1. Xét sự hội tụ của $\int_1^{+\infty} \frac{dx}{x^2}$.

Giải: Ta có

$$\int_{1}^{+\infty} \frac{dx}{x^2} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x^2} = \lim_{b \to +\infty} \left(-\frac{1}{x} \right) \Big|_{1}^{b} = \lim_{b \to +\infty} \left(-\frac{1}{b} + 1 \right) = 1$$

Vậy

$$\int_1^{+\infty}\!\frac{dx}{x^2} \text{ hội tụ và } \int_1^{+\infty}\!\frac{dx}{x^2} = 1.$$

Ví dụ 2.3.2. Xét sự hội tụ của tích phân $\int_1^{+\infty} \frac{dx}{x^{\alpha}}$.

Kết luận:

ullet Tương tự, ta định nghĩa tích phân suy rộng của f(x) trên $(-\infty,b]$ là

$$\int_{-\infty}^{b} f(x) dx \stackrel{\mathrm{dn}}{=} : \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

Nếu giới hạn này là hữu hạn ta nói $\int_{-\infty}^b f(x)dx$ hội tụ, còn nếu ngược lại thì ta nói tích phân $\int_{-\infty}^b f(x)dx$ phân kì.

- $\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$, $c \in \mathbb{R}$.
- Nếu $\int_a^{+\infty} f(x) dx$ hội tụ thì $\lim_{b \to +\infty} F(b)$ là một số hữu hạn, ta quy ước viết $\lim_{b \to +\infty} F(b) = F(+\infty)$. Khi đó ta có

$$\int_{a}^{+\infty} f(x)dx = F(+\infty) - F(a) = F(x)\big|_{a}^{+\infty}.$$

• Nếu $\int_{-\infty}^b f(x) dx$ hội tụ thì $\lim_{a \to -\infty} F(a)$ là một số hữu hạn, ta quy ước viết $\lim_{a \to -\infty} F(a) = F(-\infty)$. Khi đó ta có

$$\int_{-\infty}^{b} f(x)dx = F(b) - F(-\infty) = F(x)|_{-\infty}^{b}.$$

• Nếu $\int_{-\infty}^{+\infty} f(x) dx$ hội tụ thì $\lim_{c \to \pm \infty} F(c)$ là một số hữu hạn, ta quy ước viết $\lim_{c \to \pm \infty} F(c) = F(\pm \infty)$. Khi đó ta có

$$\int_{-\infty}^{+\infty} f(x) dx = F(+\infty) - F(-\infty) = F(x)|_{-\infty}^{+\infty}.$$

Ví dụ.

•
$$\int_{-\infty}^{0} e^{x} dx = e^{x} \Big|_{-\infty}^{0} = 1 - 0 = 1.$$

•
$$\int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = -(0-1) = 1$$

1.2. Các tiêu chuẩn hội tụ [xem thêm]

Định lý 2.3.1. (Tiêu chuẩn so sánh thứ nhất) Giả sử f(x), g(x) là hai hàm không âm trên $[a, +\infty)$, khả tích trên mọi đoạn [a, b], $\forall b > a$ và $f(x) \leq g(x)$, $\forall x \geq a$. Khi đó, ta có

- a) Nếu $\int_a^{+\infty} g(x) dx$ hội tụ thì $\int_a^{+\infty} f(x) dx$ hội tụ.
- b) Nếu $\int_a^{+\infty} f(x) dx$ phân kỳ thì $\int_a^{+\infty} g(x) dx$ phân kỳ.

Ví dụ 2.3.5. Xét sự hội tụ của $\int_1^{+\infty} \frac{dx}{x^2 + x}$.

Giải. Ta có

$$\frac{1}{x^2+x}<\frac{1}{x^2},\ \forall x\in[1,+\infty).$$

Tích phân $\int_{1}^{+\infty} \frac{dx}{x^2}$ hội tụ.

Do đó

$$\int_{1}^{+\infty} \frac{dx}{x^2 + x} \text{ hội tụ.}$$

Ví dụ 2.3.6. Xét sự hội tụ của
$$\int_1^{+\infty} \frac{dx}{\sqrt[3]{x^2+1}-1}$$
.

Giải. Ta có

$$\frac{1}{\sqrt[3]{x^2+1}-1} > \frac{1}{\sqrt[3]{x^2}}, \ \forall x \in [1,+\infty).$$

Tích phân
$$\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2}}$$
 phân kỳ.

Do đó

$$\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2 + 1} - 1} \text{ phân kỳ.}$$

Định lý 2.3.2. (Tiêu chuẩn so sánh thứ hai) Giả sử f(x), g(x) là hai hàm không âm trên $[a, +\infty)$ và khả tích trên mọi khoảng [a, b], $\forall b > a$. Khi đó, ta có

- a) Nếu $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k$, $0 < k < +\infty$ thì các tích phân $\int_a^{+\infty} f(x) dx$ và $\int_a^{+\infty} g(x) dx$ sẽ cùng hội tụ hoặc cùng phân kỳ.
- b) Nếu $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = 0$ và $\int_a^{+\infty} g(x) dx$ hội tụ thì $\int_a^{+\infty} f(x) dx$ hội tụ.
- c) Nếu $\lim_{x\to +\infty}\frac{\bar{f}(x)}{g(x)}=+\infty$ và $\int_a^{+\infty}g(x)dx$ phân kỳ thì $\int_a^{+\infty}f(x)dx$ phân kỳ.

Ví dụ 2.3.7. Xét sự hội tụ của các tích phân sau:

$$\begin{aligned} \mathbf{a}/\int_{1}^{+\infty} \frac{dx}{x^3+2x-1} \\ \mathbf{b}/\int_{1}^{+\infty} \frac{5}{\sqrt[3]{x^3+2x-1}} dx \\ \mathbf{c}/\int_{1}^{+\infty} \frac{\sqrt{x^3}}{x^2+x+1} dx \\ \mathbf{Gi\acute{a}i:} \ 1. \ L\acute{\mathbf{a}y} \ f(x) = \frac{1}{x^3+2x-1} \ \ \mathrm{v\grave{a}} \ g(x) = \frac{1}{x^3}. \ \ \mathrm{Ta} \ \ \mathrm{c\acute{o}} \\ \lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1 > 0. \end{aligned}$$

Mặt khác $\int_1^{+\infty} \frac{dx}{x^3}$ hội tụ nên tích phân $\int_1^{+\infty} \frac{dx}{x^3 + 2x - 1}$ hội tụ.

Chú ý. Nếu $f(x) \sim g(x)$, khi $x \to +\infty$ thì $\int_a^{+\infty} f(x) dx$ và $\int_a^{+\infty} g(x) dx$ cùng hội tụ hoặc cùng phân kỳ.

cùng hội tụ hoặc cùng phân kỳ. b/ Ta có
$$\frac{5}{\sqrt[3]{x^3+2x-1}}\sim \frac{5}{\sqrt[3]{x^3}}=\frac{5}{x}$$
, khi $x\to +\infty$.

Mặt khác,
$$\int_{1}^{+\infty} \frac{5}{x} dx$$
 phân kỳ.

Do đó
$$\int_{1}^{+\infty} \frac{5}{\sqrt[3]{x^3 + 2x - 1}} dx$$
 phân kỳ.

c/ Ta có
$$\frac{\sqrt{x^3}}{x^2+x+1}\sim \frac{\sqrt{x^3}}{x^2}=\frac{1}{x^{1/2}}$$
, khi $x\to +\infty$.

Mặt khác,
$$\int_{1}^{+\infty} \frac{1}{x^{1/2}} dx$$
 phân kỳ.

Do đó
$$\int_{1}^{+\infty} \frac{\sqrt{x^3}}{x^2 + x + 1} dx$$
 phân kỳ.

Định lý 2.3.3. (Hội tụ tuyệt đối và bán hội tụ) a/ Nếu $\int_a^{+\infty} |f(x)| \, dx$ hội tụ thì $\int_a^{+\infty} f(x) \, dx$ hội tụ tuyệt đối.

b/ Nếu $\int_a^{+\infty} |f(x)| \, dx$ phân kỳ nhưng $\int_a^{+\infty} f(x) dx$ hội tụ thì ta nói $\int_a^{+\infty} f(x) dx$ bán hội tụ.

Ví dụ 2.3.8. Xét sự hội tụ của $I = \int_{1}^{+\infty} \frac{\cos x}{x^2 + 1} dx$.

Giải. Ta có

$$\left| \frac{\cos x}{x^2 + 1} \right| \le \frac{1}{1 + x^2} < \frac{1}{x^2}, \ \forall x \ge 1.$$

Vì $\int_1^{+\infty} \frac{1}{x^2} dx$ hội tụ nên $\int_1^{+\infty} \left| \frac{\cos x}{x^2 + 1} \right| dx$ hội tụ. Vậy $\int_1^{+\infty} \frac{\cos x}{x^2 + 1} dx$ hội tụ tuyết đối.

2. Tích phân suy rộng loại 2 [xem thêm]

2.1. Các định nghĩa và ví dụ

Định nghĩa 2.3.2. Giả sử hàm số f(x) không bị chặn trên đoạn [a,b] nhưng bị chặn và khả tích trên mọi đoạn $[a,b-\varepsilon]$ với $0<\varepsilon< b-a$ (b được gọi là điểm bất thường của hàm số f(x)). Nếu tồn tại

 $\lim_{\varepsilon \to 0} \int_a^{b-\varepsilon} f(x) dx \text{ thì giới hạn này được gọi là tích phân suy rộng loại 2 của}$

f(x) trên [a, b] và ký hiệu là $\int_a^b f(x) dx$.

Nếu $\lim_{\varepsilon \to 0} \int_a^{b-\varepsilon} f(x) dx$ là một số hữu hạn thì ta nói $\int_a^b f(x) dx$ hội tụ.

Ngược lại, ta nói tích phân này là phân kỳ.

Về phương diện hình học tích phân suy rộng $\int_a^b f(x)dx$ biểu thị diện tích hình thang cong vô hạn như hình dưới.

Ví dụ 2.3.9. Xét sự hội tụ của $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$.

Giải: Ta có

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \lim_{\varepsilon \to 0} \int_0^{1-\varepsilon} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\varepsilon \to 0} \arcsin x \Big|_0^{1-\varepsilon}$$
$$= \lim_{\varepsilon \to 0} \left[\arcsin(1-\varepsilon) - \arcsin 0 \right] = \frac{\pi}{2}.$$

Vậy
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$
 hội tụ và $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \frac{\pi}{2}$.

Tương tự ta cũng có định nghĩa tích phân suy rông loại 2 của hàm số f(x) trên đoạn [a,b] với a là điểm bất thường của hàm số.

Định nghĩa 2.3.3. Giả sử f(x) không bị chặn trên đoạn [a,b] nhưng bị chặn và khả tích trên mọi đoạn $[a+\varepsilon,b]$ với $0<\varepsilon< b-a$ (a được gọi là điểm bất thường của hàm số f(x)). Nếu tồn tại $\lim_{\varepsilon\to 0}\int_{a+\varepsilon}^b f(x)dx$ thì giới hạn này được gọi tích phân suy rộng loại 2 của f(x) trên [a,b] và ký hiệu là $\int_a^b f(x)dx$.

Nếu $\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^b f(x) dx$ là một số hữu hạn thì ta nói $\int_a^b f(x) dx$ hội tụ. Ngược lại, ta nói tích phân phân kỳ.

Ví dụ 2.3.10. Xét sự hội tụ của $\int_0^1 \frac{dx}{x}$.

Giải: Ta có

$$\int_0^1 \frac{dx}{x} = \lim_{\varepsilon \to 0^+} \int_\varepsilon^1 \frac{dx}{x} = \lim_{\varepsilon \to 0^+} \ln|x||_\varepsilon^1 = \lim_{\varepsilon \to 0^+} -\ln\varepsilon = +\infty.$$

Vậy $\int_0^1 \frac{dx}{x}$ phân kỳ.

Tổng quát.

Khi điểm c là điểm bất thường của hàm số f(x), người ta cũng định nghĩa tích phân loại 2 của hàm số f(x) trên đoạn [a,b] như sau.

Định nghĩa 2.3.4. Giả sử hàm số f(x) xác định trên $[a,b]\backslash\{c\}$ $(c\in(a,b)$ và không bị chặn trong một lân cận nào đó của c) (c được gọi là điểm bất thường của hàm số f(x)). Khi đó, tích phân suy rộng loại 2 của f(x) trên [a,b] là tổng của hai tích phân suy rộng sau

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx, \ c \in (a,b).$$

• Nếu $\int_a^c f(x) dx$ và $\int_c^b f(x) dx$ cùng hội tụ thì ta nói $\int_a^b f(x) dx$ là hội tụ. Ngược lại, ta nói nó phần kì.

Về phương diện hình học tích phân suy rộng $\int_a^b f(x)dx$ biểu thị diện tích hình thang cong vô hạn như hình dưới.

Ví dụ 2.3.11. Xét sự hội tụ của các tích phân suy rộng

1.
$$I = \int_{-1}^{1} \frac{dx}{x^2}$$
 2. $J = \int_{0}^{2} \frac{dx}{\sqrt[3]{x-1}}$

Giải:

1. Ta có

$$\int_{-1}^{1} \frac{dx}{x^2} = \int_{-1}^{0} \frac{dx}{x^2} + \int_{0}^{1} \frac{dx}{x^2} = I_1 + I_2.$$

Mặt khác

$$\int_0^1 \frac{dx}{x^2} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^1 \frac{dx}{x^2} = \lim_{\varepsilon \to 0} \left(-\frac{1}{x} \right) \Big|_{\varepsilon}^1 = \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} - 1 \right) = +\infty.$$

Do đó I_2 phân kỳ. Vậy I phân kỳ.

2.Ta có

$$\int_0^2 \frac{dx}{\sqrt[3]{x-1}} = \int_0^1 \frac{dx}{\sqrt[3]{x-1}} + \int_1^2 \frac{dx}{\sqrt[3]{x-1}} = J_1 + J_2.$$

và

$$\int_0^1 \frac{dx}{\sqrt[3]{x-1}} = \lim_{\varepsilon \to 0} \int_0^{1-\varepsilon} \frac{dx}{\sqrt[3]{x-1}} = \lim_{\varepsilon \to 0} \frac{3}{2} \left[\sqrt[3]{(x-1)^2} \Big|_0^{1-\varepsilon} \right]$$
$$= \lim_{\varepsilon \to 0} \frac{3}{2} \left(\sqrt[3]{\varepsilon^2} - 1 \right) = -\frac{3}{2},$$

$$\int_1^2 \frac{dx}{\sqrt[3]{x-1}} = \lim_{\varepsilon \to 0} \int_{1+\varepsilon}^2 \frac{dx}{\sqrt[3]{x-1}} = \lim_{\varepsilon \to 0} \frac{3}{2} \left(1 - \sqrt[3]{\varepsilon^2}\right) = \frac{3}{2}.$$

Vậy
$$J$$
 hội tụ và $J=-\frac{3}{2}+\frac{3}{2}=0.$

Định lý 2.3.4. (Tiêu chuẩn so sánh thứ 1) Giả sử f(x), g(x) là hai hàm không âm, $f(x) \leq g(x)$ trên [a,c] $(a \leq c \leq b)$ và khả tích trên mọi khoảng [a,c]. Khi đó, ta có

- a) Nếu $\int_a^b g(x)dx$ hội tụ thì $\int_a^b f(x)dx$ hội tụ.
- b) Nếu $\int_a^b f(x)dx$ phân kỳ thì $\int_a^b g(x)dx$ phân kỳ.

Định lý 2.3.5. (Tiêu chuẩn so sánh thứ 2) Cho f(x), g(x) là hai hàm không âm trên [a,c] $(a \le c \le b)$ và khả tích trên mọi khoảng [a,c]. Khi đó, ta có

- a) Nếu $\lim_{x \to b^-} \frac{f(x)}{g(x)} = k$, $0 < k < +\infty$ thì các tích phân $\int_a^b f(x) dx$ và $\int_a^b g(x) dx$ sẽ cùng hội tụ hoặc cùng phân kỳ.
- b) Nếu $\lim_{x\to b^-} \frac{f(x)}{g(x)} = 0$ và $\int_a^b g(x) dx$ hội tụ thì $\int_a^b f(x) dx$ hội tụ.

- c) Nếu $\lim_{x\to b^-} \frac{f(x)}{g(x)} = +\infty$ và $\int_a^b g(x) dx$ phân kỳ thì $\int_a^b f(x) dx$ phân kỳ.
- **Định lý 2.3.6**. a/ Nếu $\int_a^b |f(x)| dx$ hội tụ thì $\int_a^b f(x) dx$ hội tụ. Khi đó, ta nói $\int_a^b f(x) dx$ hội tụ tuyệt đối.
- b/ Nếu $\int_a^b |f(x)| \, dx$ phân kỳ nhưng $\int_a^b f(x) \, dx$ hội tụ thì ta nói $\int_a^b f(x) \, dx$ bán hội tụ.

Nhận xét 2.3.2. Ta cũng có các định lý tương tự về tiêu chuẩn hội tụ đối với tích phân suy rộng loại 2 của hàm f(x) trên đoạn [a,b] với a hoặc $c \in (a,b)$ là điểm bất thường của hàm f(x).

Xét sự hội tụ của các tích phân suy rộng loại 2, người ta thường so sánh với các tích phân sau:

$$\int_a^b \frac{dx}{(x-a)^\lambda} \, \log \int_a^b \frac{dx}{(b-x)^\lambda}$$

với chú ý là

$$\int_{a}^{b} \frac{dx}{(x-a)^{\lambda}} \stackrel{\text{hội tụ } \lambda < 1,}{\qquad} \\ \text{phân kỳ } \lambda \geq 1.$$

$$\int_{a}^{b} \frac{dx}{(b-x)^{\lambda}} \stackrel{\text{hội tụ } \lambda < 1,}{\qquad} \\ \text{phân kỳ } \lambda \geq 1.$$

• Nếu $\int_{-\infty}^{+\infty} f(x) dx$, với a là điểm bất thường thì người ta định nghĩa

$$\int_{a}^{+\infty} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{+\infty} f(x) dx$$

và tích phân ở vế trái hội tụ nếu cả hai tích phân ở vế phải đồng thời hôi tu.

Ví dụ 2.3.12. Xét sự hội tụ của các tích phân

$$a/I = \int_{1}^{2} \frac{1}{\ln x} dx$$
 $b/J = \int_{0}^{1} \frac{dx}{e^{\sqrt{x}} - 1}$.

Giải.

Giải. a/ Ta có
$$\frac{1}{\ln x}=\frac{1}{\ln \left[1+(x-1)\right]}\sim \frac{1}{x-1}$$
, khi $x\to 1$.

Mặt khác $\int_{1}^{2} \frac{dx}{x-1}$ phân kỳ

Do đó I phân kỳ.

b/ Ta có
$$\frac{1}{e^{\sqrt{x}}-1}\sim\frac{1}{\sqrt{x}}=\frac{1}{(x-0)^{1/2}}$$
, khi $x\to 0$. Mặt khác $\int_0^1\frac{dx}{(x-0)^{1/2}}$ hội tụ. Do đó J hội tụ.