1. Derivation of State Graphs and Tables

(1) Designate the circuit states

S₀——a reset state, If a 0 input is received.

S₁——a 1 is received.

 S_2 —11 is received.

 S_3 —110 is received, and the output Z=1.

(2) Analyze transition of the states

$$S_{0} \begin{cases} X=0 \longrightarrow S_{0} & \text{II} \\ X=1 \longrightarrow S_{1} \end{cases} \begin{cases} X=1 \longrightarrow S_{2} \\ X=0 \longrightarrow S_{3} \end{cases} \begin{cases} X=0 \longrightarrow S_{0} \\ X=0 \longrightarrow S_{3} \end{cases} X=0 \longrightarrow S_{1}$$

5. Derive the flip-flop input equations and the output functions using K. maps.

Beverage vending machines 1. Derivation of State Graphs and Tables ① Designate the circuit states S_0 —a reset state, no coin is inserted. S₁—0.5 Y is received. S₂—1.0 Y is received(2 coins of 0.5 Y, or a coin of 1.0 Y) If a 0.5 Y coin is inserted, then Y=1, Z=0, state go to S_0 Else If a 1.0 Y coin is inserted, then Y=1, Z=1, and state go to S_0

2. Reduction of State Table

3. State Assignment

 S_0 — 00 ∵ N=3, 2² > 3 $S_1 - 01$ $S_2 - 10$ ∴ k = 2 **Need 2 flip flops**

Moor Circuit

Solution 2:

- Output: $Z_1 = 1 \rightarrow \text{get a bottle of drink}$, $Z_2 = 1 \rightarrow \text{change}$ all possible output $Z_1Z_2 = 00$, 10, 11
- Input: $X_1X_2 = 00 0 Y$; $X_1X_2 = 01$ —0.5 Y; $X_1X_2 = 10$ —1.0 Y •
- State: remember the money received

$$S_0 = 0 \text{ Y}, S_1 = 0.5 \text{ Y}, S_2 = 1.0 \text{ Y}$$

$$S_3 = 1.5 \text{ Y}, S_4 = 2.0 \text{ Y}$$

Moor state table

Present	t	he next stat	е	output
state	$X_1 X_2 = 00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	Z_1Z_2
S_0	S_0	S_1	S ₂	00
S_1	S_1	S_2	S ₃	00
S_2	S_2	S ₃	S ₄	00
S ₃	S_0	S_1	S_2	10
S ₄	S_0	S_1	S_2	11

Design a Sequential Lock with JK FF

- Inputs: X₁X₂, Output: Z
 - States: R、B、C、E
- Input 00 → 01 →11 Sequentially from X₁X₂ state of the lock will be changed from R to B and then to \mathbf{C} , and Z=1 (unlock)
- If the order is not above mentioned, state of the lock will be **E** (error)
- state of the lock will be reset to **R** whenever 00 are inputted from X₁X₂

1. Derivation of State Graphs and Tables

R-receive 00

B—receive 01 after 00,

C-receive 11 after 00, 01

Z = 1 (unlock)

	SXIX	0.0	01	11	10	Z
	R	R	В	E	E	0
1,	В	R	E	C	E	0
٠,	C	R	E	E	E	1
	E	R	E	E	E	0

Design a Sequential Lock with JK FF

- 2. Reduction of State Table
- 3. State Assignment

$$: N=4, 2^2=4$$

$$\therefore$$
 k = 2 flip flops

4. transition table

$X_1 X_2$	Y ₁ Y ₂	$Y_1^{n+1} Y_2^{n+1}$	$J_1 K_1$	J ₂ K ₂	Z	
0 0	0 0	0 0	0 X	0 X	0	
0 0	0 1	0 0	0 ×	X 1	0	
0 0	1 0	0 0	X 1	0 ×	0	
0 0	1 1	0 0	× 1	× 1	1	
0 1	0 0	0 1	0 ×	1 X	0	
0 1	0 1	1 0	1X	X 1	0	
0 1	1 0	1 0	\times 0	0 ×	0	
0 1	1 1	1 0	× 0	× 1	1	
1 0	0 0	1 0	1 X	0 X	0	
1 0	0 1	1 0	1 X	×1	0	
1 0	1 0	1 0	\times 0	0 ×	0	
1 0	1 1	1 0	\times 0	× 1	1	
1 1	0 0	1 0	1 X	0 ×	0	
1 1	0 1	1 1	1 X	$\times 0$	0	
1 1	1 0	1 0	\times 0	0 ×	0	
1 1	1 1	1 0	\times 0	× 1	1	4

/	YN	i+1/ Z		Y _N +	+1/ Z
Y_N	0	1	$Y_N X$	0	1
A	B/0	C/0	څ	1/0	A/1_
В	D /0	E/0	_K	A/0	A/1
C	F/0	G/0	₼~	\A7Q\	<u>}/0</u>
D	H/0	I/0	~ !!	A/0	AA
E	J/0	K/0	~ X .	4/0	A/i
F	L/0	M/0	۲.	A/0	A/i
G	N/0	P/0			
	√A/0~	A/0-			
$\overline{}$	_A/0	/A/i	_		

	X 0	1	State Assignment
A'	B'/0	B'/0	Cuideline 1: a given input, some pout state
B'	C'/0	D'/0	Guideline 1: a given input, same next state, present state code should be adjacent
C,	E'/0	F'/0	(C' D') (E'F') Guideline 1: a given present state, it's next
D'	F'/0	F'/0	state code should be adjacent
E'	A'/0	A'/0	(C'D') (E'F') Guideline 3: Output same, present state
F'	A'/0	A'/1	code should be adjacent (A'B'C'D'E')
	,		(

			Cod	e C	Conv	eı	ter				•	
	② Redu	ction	of S	tat	te Ta	ıb	le					
Гime	Input Sequence Received (Least Significant Bit First)	Present State	Next St	ate 1	Preser Output X = 0)——	Nex	t	Prese	n
0	reset	Α	В	С	1	0		Present	State	9	Output	t
1	0	B C	D E	F G	1 0	0	Time	State	X = 0	1	X = 0	
	00	D	Н	L	0	1	t ₀	Α	В	C	1	
	01	E	1	М	1	0	t.	В	D	Ε	1	_
2	10 11	F G	K	N P	1	0	1	Č	F	F	Ö	
	000	Н	А	Α	0	1	_		- "	-	•	-
	001	1	A	Α	0	1	t ₂	D	Н	Н	0	
	010	J	A	-	0	-		E	H	Μ	1	
	011	K	A	-	0	-	_			-		-
3	100	L	A	-	0	-	t_3	Н	A	Α	0	
	101	М	A	-	1	-	ll l	М	A	_	1 1	
	110	N	A	-	1	-						_
	111	P	A	-	1	-						

Transition table									
	<i>-</i>		$Q_2^+ Q_3^+$	2	7				
	$Q_1Q_2Q_3$	<i>X</i> = 0	X = 1	<i>X</i> = 0	X = 1				
Α	000	100	101	1	0				
В	100	111	110	1	0				
C	101	110	110	0	1				
D	111	0 1 1	0 1 1	0	1				
Ε	110	0 1 1	0 1 0	1	0				
Н	0 1 1	000	000	0	1				
Μ	010	000	X X X	1	Х				
_	0 0 1	xxx	$x \times x$	х	Х				