Calcolo del determinante di una matrice

Si sa che se
$$A = B \cdot C$$
, allora $det(A) = det(B) \cdot det(C)$.

Se voglio calcolare il det(A) posso sfruttare la fattorizzazione LU.

se
$$A = LU \implies det(A) = det(L) \cdot det(U)$$
.

Poichè sia L che U sono triangolari, i loro determinanti sono dati dal prodotto degli elementi diagonali.

Sappiamo che $\ell_{ii}=1$, quindi $det(L)=\ell_{11}\cdots\ell_{nn}=1$ e quindi

$$det(A) = det(U) = u_{11} \cdots u_{nn}$$
.

Per calcolare det(A) non si applica la regola di Laplace (che ha un costo $\sim n!$ operazioni), ma si esegue la fattorizzazione LU ($\sim 2n^3/3$ operazioni)

Calcolo dell'inversa di una matrice

Data $A \in \mathbb{R}^{n \times n}$ invertibile, $?A^{-1} : AA^{-1} = I$ $X = A^{-1}$ è una matrice incognita.

Per la definizione di prodotto tra matrici

$$AX = I \Leftrightarrow A\mathbf{x}_j = \mathbf{e}_j \quad per \ j = 1, \dots, n$$

Per calcolare $X = A^{-1}$ devo risolvere n sistemi lineari tutti con la stessa matrice A e termini noti \mathbf{e}_i .

calcolo la fattorizzazione LU (con pivotazione) di A UNA VOLTA SOLA

```
for j=1:n pongo \mathbf{b}=\mathbf{e}_j risolvo L\mathbf{y}=P\mathbf{b} risolvo U\mathbf{x}=\mathbf{y} copio \mathbf{x} nel vettore colonna j-simo della matrice end
```

Costo computazionale

Se A è una matrice senza struttura particolare (non è diagonale, non è triangolare, non è tridiagonale, ...), il calcolo di A^{-1} costa

$$\frac{2}{3}n^3 + n \cdot (2n^2) = \frac{8}{3}n^3$$
 operazioni elementari

Esempio

Calcolare la matrice inversa di

$$A = \begin{pmatrix} 10 & 4 & 3 & -2 \\ 2 & 20 & 20 & -1 \\ 3 & -6 & 4 & 3 \\ -3 & 0 & 3 & 1 \end{pmatrix}$$

Calcolare il vettore $\mathbf{x} = A^{-1}\mathbf{b}$

Ricordando che

$$\mathbf{x} = A^{-1}\mathbf{b} \quad \Leftrightarrow A\mathbf{x} = \mathbf{b}$$

per calcolare x:

- **NON** serve calcolare A^{-1} (che costerebbe $\sim \frac{8}{3}n^3$ operazioni),
- MA basta risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ con un costo al più di $\sim \frac{2}{3}n^3$ operazioni.