$\begin{array}{ccc} \text{Math 3220-1} & \text{HW 1} \\ \underline{\quad \text{NAME}} & \end{array}$

Due: DATE

Exercises for Section 1.1: Norm and Inner Product

1. Define the ℓ^1 -norm on \mathbb{R}^n by

$$||x||_1 = \sum_{i=1}^n |x^i|,$$

and define the **sup-norm** on \mathbb{R}^n by

$$||x||_{\infty} = \sup\left\{|x^i|\right\}.$$

Show that these satisfy Theorem 1.

Proof.

2. Prove that $||x|| \leq \sum_{i=1}^{n} |x^{i}|$. In other words, the usual norm is no greater than the ℓ^{1} -norm.

Proof.

- 3. Prove that $||x y|| \le ||x|| + ||y||$. (Compare this with part (2) of Theorem 1.) When does equality hold?
- 4. Prove that $||x|| ||y|| \le ||x y||$.
- 5. The quantity ||y x|| is called the **distance** between x and y. Prove and interpret the "triangle inequality":

$$||z - x|| \le ||z - y|| + ||y - x||.$$

- 6. Let f and g be integrable on [a, b].
 - (a) Prove the integral version of the Cauchy-Schwarz inequality:

$$\left| \int_a^b fg \right| \le \left(\int_a^b f^2 \right)^{1/2} \left(\int_a^b g^2 \right)^{1/2}.$$

Hint: Consider separately the cases $0 = \int_a^b (f - tg)^2$ for some $t \in \mathbb{R}$, and $0 < \int_a^b (f - tg)^2$ for all $t \in \mathbb{R}$

- (b) If equality holds, must f = tg for some $t \in \mathbb{R}$? What if f and g are continuous?
- (c) Show that the Cauchy-Schwarz inequality is a special case of (a).
- 7. A linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is norm preserving if

$$||T(x)|| = ||x||,$$

for all $x \in \mathbb{R}^n$, and inner product preserving if

$$\langle Tx, Ty \rangle = \langle x, y \rangle$$
,

for all $x, y \in \mathbb{R}^n$.

(a) Prove that T is norm preserving if and only if it is inner product preserving.

- (b) Prove that such a linear transformation is 1-1, and T^{-1} is norm preserving (and inner product preserving).
- 8. If $T: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is a linear transformation, show that there is a number M such that $||T(h)|| \le M||h||$ for all $h \in \mathbb{R}^m$. Hint: Estimate ||T(h)|| in terms of ||h|| and the entries in the matrix for T.
- 9. If $x, y \in \mathbb{R}^n$, and $z, w \in \mathbb{R}^m$, show that $\langle (x, z), (y, w) \rangle = \langle x, y \rangle + \langle z, w \rangle$, and $\|(x, z)\| = \sqrt{\|x\|^2 + \|z\|^2}$. Note that (x, z) and (y, w) denote points in \mathbb{R}^{n+m} .
- 10. If $x, y \in \mathbb{R}^n$, then x and y are called **perpendicular** (or **orthogonal**), and we write $x \perp y$, if $\langle x, y \rangle = 0$. If $x \perp y$, prove that $||x + y||^2 = ||x||^2 + ||y||^2$.

Exercises for Section 1.2: More Topology: Open and Closed Sets in \mathbb{R}^n

- 1. Prove that the union of any (even infinite) number of open sets is open. Prove that the intersection of two (and hence of finitely many) open sets is open. Give a counterexample for the intersection of infinitely many open sets.
- 2. If $A \subset B \subset \mathbb{R}^n$, prove that

$$clA \subset clB$$
, and $intA \subset intB$.

- 3. Prove that if B is an open subset of A, then $B \subset \operatorname{int}(A)$. Note that this says that $\operatorname{int}(A)$ is the largest open subset of A.
- 4. Prove that the n-dimensional ball centered at a of radius r,

$$B^{n}(a;r) = \{x \in \mathbb{R}^{n} : ||x - a|| < r\}$$

is open.

5. Find the interior, exterior, and boundary of the sets:

$$B^n = \left\{ x \in \mathbb{R}^n : ||x|| \le 1 \right\},$$

$$S^{n-1} = \left\{ x \in \mathbb{R}^n : ||x|| = 1 \right\},$$

$$\mathbb{Q}^n = \left\{ x \in \mathbb{R}^n : \text{ each } x^i \text{ is rational} \right\}.$$

Solution.

- 6. If $A \subset [0,1]$ is the union of open intervals (a_i,b_i) such that each rational number in (0,1) is contained in some (a_i,b_i) , show that $\partial A = [0,1] A$.
- 7. If A is a closed set that contains every rational number $r \in [0,1]$, show that $[0,1] \subset A$.
- 8. Graph generic open balls in \mathbb{R}^2 with respect to each of the "non-Euclidean" norms, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$. What shapes are they?

Solution.