Symbols	anova(), 183, 267, 271, 300, 322, 328,
β -binomial, 104	359, 360, 372, 380, 391, 411, 412,
ϕ coefficient, 222	434, 462, 473, 477
: (sequence operator), 33	aperm(),44
80–20 rule, 26	apply(), 48, 51, 52, 79, 192, 195, 487
	array(),36
A	arrays, 32, 35–37
abline(), 269	creating, 58–59
add1(),472,502	as.array(),212
added-variable plot, 312, 314	as.data.frame(),54,63,212,213,359
properties, 316	as.data.frame.table(),54
addmargins(), $45,57$	as.matrix(),63,234,256
adjusted inertia, 246	as.numeric(), 54, 377, 379
adjusted means, 278	as.table(),42
adjusted residual, 356	aspect ratio, 27, 227
AER package, 449, 468, 502, 503	assignment operator, 32
aes(),367	assoc(), 168, 357
aggregate(), 51, 447	association, 8
agreement, 146–153, 170	partial, 188–197
Cohen's κ , 148–149	association graph, 180
intraclass correlation, 148	association ordering, 18
observer agreement chart, 150	association parameters, 351
observer bias, 152–153	association plot, 116, 145, 145–146, 222
partial, 150–151	assocstats(), 9, 124, 125, 128,
agreement chart, 17	157–159
agreementplot(), 151, 152, 159	asymmetric CA plot, 249
agridat package, 19, 217	asymmetric map, 223, 224
AIC, 295, 355, 380, 390, 395, 434	avPlot(),315
AIC(), 356, 434, 462	avPlots(), 315-317
Akaike Information Criterion, 355	axes, 26, 242
allEffects(), 279, 280, 294, 466, 474	equating, 227
alpha-blending, 20	
analysis of deviance, 434	В
analysis of variance, 7, 127, 178, 262,	badness-of-fit, 355
350–351, 376	bar graph, 75, 170
animation package, 21	bar plot, 201, 436, 453
Anova (), 287, 288, 292, 321, 322, 327,	bar plots, 80, 117–118
339, 347, 360, 366, 434, 501, 502	barplot(),436

hasalina madala 170 241 245 265	dishatamaya 66 60 74 76
baseline models, 179 , 341–345, 365	dichotomous, 66–69, 74–76
Bayesian Information Criterion, 356	fitting, 87–94
BIC, 295, 356, 380, 390, 395, 434	statistical methods, 4
BIC(), 434, 462	stratifying, 127–129
binary, 116, 325, 363, 405–406	type-token, 72–73
binary events, 66	categorical frequency distributions
binary response, 262	diagnosing, 95–99
binary tree, 22	categorical variable, 4, 323
binary variables, 4 , 66–69, 74–76, 121, 209,	causal models, 186–188
241, 262	cbind(), 37, 497
binom.or(),421	cd_plot(),455
binom2.or(), 406, 411	cdplot(),455
binomial, 490	chisq.test(), 9 , 165 , 174
binomial distribution, 66–69, 74–76, 98, 99,	Cicchetti Allison weights, 149
102–104, 262	classification, 146
calculation of, 75	clustered data, 430
examples, 66–69, 90–91	CMHtest(), 125-128, 157, 158
moments of, 74	Cochran–Mantel–Haenszel tests, 125
plotting, 76, 94, 102–104	general association, 125–126
binomial samples, 66–69, 74–76, 121 , 431	linear association, 126–127
binreg_plot(), 276, 301, 302	row means differ, 125
biplot, 221 , 246 , 248 , 248–251, 254, 388	stratified analysis, 127–129
biadditive, 252–254	coef(), 266, 328, 357, 413, 497
biplot(), 224, 253	coeftest(), 266
biplots, 27, 389	Cohen's κ, 148–149
bivariate, 405–406	coindep_test(), 173, 175, 194
bivariate logistic model, 405	collapse.table(),53,60
bivariate loglinear model, 406	color palettes, 27
blogits(), 407, 414, 419, 423	Hue-Chroma-Luminance, 27
Bonferroni correction, 481	Hue-Saturation-Value, 27
boxplot, 201, 437	colorspace package, 171
bs(),411	column effects model, 377
Burt matrix, 241 , 243	complete independence, 180
Durt matrix, 241, 240	complete separation, 276
С	component-plus-residual plot, 312
c(), 32, 40, 50	compositional data, 153
CA(), 225	conditional(), 184
ca package, xvii, 224, 225, 244, 249	conditional association, 195, 352
ca (), 225, 226, 234, 238, 239, 241	conditional density plot, 455
cabipl(), 250	conditional distributions, 118, 120 , 164, 326
canonical analysis of categorical data, 222	conditional independence, 181, 189, 191,
canonical analysis of categorical data, 222 canonical correlation, 221	•
	194, 207, 358, 360
car package, xvii, 287, 292, 306–308, 311,	conditional plots, 275 , 313, 415
313, 315, 321, 322, 327, 336, 347,	conditional probabilities, 222
360, 366, 433, 434, 482, 484, 486,	conditioned plot, 143
496, 501, 502	conditioning plot, 141
case form, 5 , 31, 39–40, 270	confidence bands, 268
converting, 53	confidence ellipses, 389
categorical data, 31, 39–44	confint(), 123, 133, 274
count, 69–72, 76–86	confint.Kappa(),149
definition, 4	constraints

zero-sum, 353	Crossings(),396
constraints(), 496, 497	crossings model, 396
constructed variable plot, 312	CrossTable(),120
contingency ratios, 249	crPlot(),313
contingency table, 7, 115 , 116, 119, 147,	crPlots(),313
188, 205–209, 221, 240, 248–251,	cumulative logit, 324
270, 352	cut(),442
contingency tables, 352	cutfac(), 442, 447, 469
plotting, 138	cutq(),447
contour(),479	
contr.sum(), 351	D
contr.treatment(),351	data
contrasts, 127, 273, 353, 376	case form, 5, 7, 39–40, 270
sum-to-zero, 351	frequency form, 6, 7, 40–41, 270
treatment, 351	frequency vs. count, 6
controlled comparison, 135	table form, 41–47
Cook's distance, 303, 305 , 482, 484	data analysis
cooks.distance(), 306, 482	hypothesis testing, 10
coplot, 141 , 143, 190	hypothesis testing approach, 8
correlated data, 430	model building, 10–13
correlation, 126, 221, 349, 404, 490	data ellipse, 201, 490
corresp(), 224, 225	data frame, 32 , 37–38, 105
correspondence analysis, 221–254, 350, 382	converting, 53
asymmetric map, 224	creating, 58–59
interactive coding, 232	importing, 38
principal coordinates, 223	multinomial, 121
properties, 224	subsetting, 48, 50, 60
stacking, 232–238	data plots, 25
standard coordinates, 223	data reduction, 221
supplementary variables, 238–240	data sets
symmetric map, 224	Abortion, 61, 158
two-way tables, 222–231	Accident, 219, 257, 322
vs. mosaic displays, 231–232	AirCrash, 216, 255, 502
correspondence matrix, 223 , 248	Arbuthnot, 66, 109, 320
corrgram, 201	Arrests, 291
corrplot package, 378	Arthritis, 5, 7, 39, 55, 56, 119, 124,
cotabplot(), 152, 168, 190, 195, 196,	127, 174, 202, 263, 266–268, 273,
218, 417	275, 326, 336
count, 66	arthritis treatment, 124, 128
count data, 6 , 69–86, 109, 118–119, 175,	barley, 19
430, 433, 446, 490	Bartlett, 197, 204, 217
distributions, 73–109	Berkeley admissions, 134
plotting, 80–82, 117–118	birthwt, 321
count metameter, 99, 100	Bundesliga, 111
countreg package, 440, 450, 453, 454, 457,	Butterfly, 96
471	Caesar, 61, 321, 372
covariate, 107	caith, 218, 255
Cramer's V, 9, 128	case2201, 501
criterion variables, <i>see</i> response variables	CoalMiners, 135, 407, 409
cross-classification, 121	CodParasites, 457, 503
cross-sectional study 121	Cormorants 502

CrabSatellites, 440, 446, 451, 455	Toxaemia, 415, 421, 423-425
criminal, 216, 255	TV, 231, 256, 347
CyclingDeaths, 71, 111	UCBAdmissions, 61, 63, 116, 129, 201,
DanishWelfare, 61	210, 257, 270, 356, 357, 359, 364,
DaytonSurvey, 51, 52, 61, 372	367
death by horse kick, 97, 102	UKSoccer, 62, 78, 79, 111, 175, 253
Depends, 112	Vietnam, 219, 256, 347
Detergent, 373	Vision, 389
Donner, 282, 287, 320	visual acuity, 141
Employment, 190, 192	VisualAcuity, 63, 139, 141, 159, 390,
Federalist, 98, 110	400, 426
Federalist Papers, 98	WeldonDice, 69, 75, 90
Geissler, 62, 105, 111	Womenlf, 336, 339, 346
Gilby, 255	WomenQueue, 98, 110
gss8590, 426	data visualization, 3
HairEye, 8	data+model plots, 26
HairEyeColor, 41, 43, 48, 116, 139,	$\mathtt{data.frame(),37,40,54}$
146, 179, 182, 225	datasets package, 41, 116
HairEyePlace, 218, 255	datasets(), 61
HallOfFame, 112	dbinom(), 74, 76
Hauser79, 392, 396	ddoublebinom(),105
Health, 369	ddply(),52
HorseKicks, 54, 56, 57, 70, 88, 91, 101	density(),455
Hospital, 158	density plot, 201
housing, 346	dependent variables, <i>see</i> response variables
Hoyt, 61	depvar(), 413
ICU, 296, 308, 317, 320	deviance, 267, 304, 354, 354, 433, 444
iris, 20	deviance residual, 304, 356, 481
jansen.strawberry, 217 JobSat, 43, 158, 254	deviance test statistics, 179 DFBETA, 303, 305
Lifeboats, 155, 159	DFFITS, 305 , 482
Mammograms, 151, 159	dffits(),306
Master, 217	dgeom(),74
Mental, 118, 228, 377, 379, 381, 383,	Diag(), 390, 396, 401
387	diagnostic plots, 480–489
minnesota.barley.yield, 19	dichotomous, 116, 263
MSPatients, 147, 152	dichotomous variables, 4 , 66, 116, 121, 209,
NMES1988, 468, 491, 503	262, 405
PhdPubs, 108, 438, 445, 447, 450, 451,	dictotomous variables, 406
484, 503	dim(),34
PreSex, 186, 198, 244, 256	dimnames(),34
Punishment, 193	direct labels, 27, 302
quine, 501	direct.label(),81
RepVict, 229	directlabels package, 27, 80, 331
Saxony, 62, 103, 105, 107	discrete frequency distributions, 65–109
SexualFun, 147, 149	characteristics of, 73–74
Space shuttle disaster, 10–11	plotting, 80–82, 102–104
SpaceShuttle, 270	dispersion parameter, 83 , 431 , 432, 433
struc, 207	dispersiontest(), 449, 502, 503
Suicide, 235	distplot(), 101, 103, 109, 111, 112
Titanic, 155, 210, 214, 220, 246	distributions, 73–109

binomial, 262, 430	contrasts, 353
diagnosing, 95–99	ordinal, 400
double binomial, 105	factor analysis, 325
fitting, 87–94	Fisher's exact test, 124
gamma, 430, 431	fisher.test(),124
geometric, 446	fit statistics, 193
hypergeometric, 124	fitdistr(),89
normal, 430	fitted(), 206, 358, 381, 393, 413, 447
Poisson, 350, 354, 359, 430–432, 438	fixed zeros, see structural zeros
dlogseries(),74	Fleiss-Cohen weights, 149
dnbinom(), 74, 84	fluctile(),118
dotchart(),385	fluctuation diagram, 118
double binomial distribution, 105	foreign package, 38
doubledecker(), 168, 209, 373	fourfold(), 135, 157, 158, 372
doubledecker plot, 201, 209–211	fourfold display, 17 , 130–135
doubledecker plots, 167	confidence rings, 133
dpois(),74,80	fractions(), 264
dual scaling, 222 , <i>see</i> correspondence	frequencies
analysis	joint, 121
dummy coding, 273	marginal, 121, 163
dynamic graphics, 21 , 203–204	frequency, 66
dynamic grapmes, 21, 205–201	frequency data, 6
E	frequency form, 6 , 31, 40–41, 51–52, 115,
Effect(), 279-281, 333	270, 359, 365, 392
effect displays, 278	converting, 53
effect ordering, 18–20, 166 , 232	ftable(), 42, 46, 47, 61, 63, 233, 234
effect plot, 26, 205, 278–281, 439	104510 (7, 12, 10, 17, 01, 03, 233, 231
count data models, 465–467, 473–476	G
proportional odds model, 332–333	gam(), 478, 479
effect-order sorting, 18	gamma distribution, 431
effects package, xvii, 278–280, 291, 294,	gdata package, 38
332, 342, 345, 419, 465–467, 499	generalized additive model, 478
empirical logits, 407	generalized linear mixed models, 430
eqsplot(), 27	generalized linear model, 262, 264, 430,
events/trials form, 270	429–499
excess zeros, 451–455	assumptions, 490
exp(), 274, 413	components, 430–431
expand.dft(),56,79	count data, 430, 435–440
expand.grid(),40,80,84	diagnostic plots, 480–489
explanatory, 116	excess zeros, 451–455
explanatory model, 186	goodness-of-fit, 433–434, 450–451
explanatory variables, 7, 120–121	hypothesis tests, 432–433
exponential family, 104 , 430	leverage, 481
extracat package, 118	multivariate, 349
extracat package, 116	
F	multivariate response, 489–499 negative binomial, 446
	•
facet_grid(), 275, 331, 460	non-nested models, 434–435 overdispersion, 444–446
facet_wrap(),275	•
facets, 275	plotting, 447
FactoMineR package, 225	quasi-Poisson, 445–446
factor, 37 , 43–44, 51–447	variance functions, 431–432

generalized linear models, 104–109	legends, 26, 80, 82
generalized logit model, 324 , 341–345	lines, 268
plotting, 344	overplotting, 237
generalized pairs plot, 197	shading, 166, 169–175
geom_boxplot(),460	title, 26
geom_density2d(),503	graphics
geom_jitter(),460	80–20 rule, 26
geom_point(), 269, 271, 275	analysis graphics, 15–16
geom_smooth(), 271	aspect ratio, 27
geometric distribution, 85–86, 446	basic functions, 14
calculation of, 86	color, 27
moments of, 85–86	data plots, 25
getContrasts(), 384	data+model plots, 26
GGally package, 202	design principals, 23
ggplot (), 269, 275, 285, 331	design principles, 13–16, 135
ggplot2 package, 13, 27, 80–82, 155, 202,	effect plots, 26
268, 269, 271, 275, 276, 286, 340,	interactive, 21–22, 203–204, 207
367, 424, 437, 460, 461, 494, 503	model plots, 25
ggtern package, 155	presentation graphics, 16
ggtern(), 155	rendering, 18
ggvis package, 21	graphics package, 47, 455
GLM, see generalized linear model	grid package, 170, 202
glm(), 7, 104–106, 262, 265, 266, 270,	grouped barchart, 117
271, 273, 276, 279, 297, 304, 321,	grouped carefully, 117
322, 350, 351, 353, 354, 359–361,	Н
365, 368, 369, 371, 377, 379, 383,	half-normal plot, 486 , 485–486
409–412, 415, 419, 426, 442, 445,	half-normal plots, 489
446, 454, 499	hanging rootogram, 93
glm.nb(), 446, 467, 479, 482, 491, 497,	hatvalues(), 304
499	heplot(),491
glmlist(),398	heplot3d(),491
GLMM, see generalized linear mixed model	heplots package, 491
gls(),279	heterogeneous uniform association, 400
gnm package, xvii, 383, 384, 390	hierarchical models, 178 , 351, 351 , 430
gnm(), 383, 387, 395, 426	high-order terms, 180
goodfit(),89-91,94,103,109-112	HistData package, 67, 109
goodness-of-fit, 87 , 295, 380, 390, 433,	histograms, 80, 201
450–451	hmmm package, 404
loglinear models, 354	homogeneity, 121, 141
googleVis package, 21	homogeneity analysis, 222, see
gpairs package, xvii, 197, 202	correspondence analysis
gpairs(), 202, 321, 441	homogeneity of association, 8 , 129–130
grapcon functions, 168	homogeneous association, 354, 358, 360,
graphical elements, 167	363, 400
annotations, 27	homogeneous association model, 352
attributes, 26	hurdle(),454
axes, 82, 277	hurdle model, 454 , 454
axis labels, 26	hypergeometric distribution, 124
color palettes, 27	hypothesis
controls, 21	independence vs. homogeneity, 121
labeling, 230	hypothesis matrix, 433

hypothesis testing, 8–10 knitr package, xvii, 28, 523 hypothesis-error plot, 490, 491–492 Kruskal-Wallis test, 125 Kway(), 400, 401 L ICC(), 148 identify(), 27labeling_border(), 169 labeling_cboxed(), 169 image(),479 importing data, 38 labeling_cells(), 169 independence, 121, 140, 143, 145, 176-180, labeling_conditional(), 169 labeling_doubledecker(), 169 350, 382, 393, 404 classes of, 180 labeling_lboxed(), 169 in square tables, 389 labeling_left(), 169 independence_table(), 138, 164 labeling_left2(),169 independent, 175 labeling_list(), 169 independent variables, see explanatory labeling_residuals(), 169 variables labeling_value(), 169 index of dispersion, 79 Lahman package, 112, 217 indicator matrix, 240-246 latent class analysis, 325 indicator variables, 240 latent variable, 325, 452 LaTeX, 56-58 inertia, 222 influence, 303, 482–485 lattice package, 19, 27, 80 joint, 315 least squares means, 278 plotting, 306 legend(), 230influence.measures(), 306, 310 legend_fixed(),169 legend_resbased(), 169 influenceIndexPlot(), 307 influencePlot(), 306, 307, 484 legends, 27 inter-rater agreement, 116, see agreement leveled plot, 100, 102 interaction(), 63, 234levels(), 283, 345 interactions, 178, 294 levels model, 394 leverage, 303, 304, 481, 481 interactive coding, 232, 232 interactive graphics, 21, 203-204, 207 likelihood ratio test, 88, 125, 183, 186, 327, interp(), 172 354, 370, 433, 444 interpolation, 172 line graph, 80 intraclass correlation, 148 line plot, 367 iplots package, 21 linear hypothesis, 433 linear logistic regression model, 264 J linear logit model, 264 jitter, 268, 437 linear predictor, 273, 430 joint(), 184 linear probability model, 263 joint correspondence analysis, 246 linear probit regression, 264 joint dependence, 404 linear regression, 263-264 joint distribution, 120, 389, 403, 490 linear-by-linear model, 376, 377 joint frequencies, 121 linearHypothesis(), 433, 434, 496, joint independence, 145, 176, 179, 181, 184, 498 186, 187, 189, 207–209 lines(), 269,447joint influence, 315 link function, **430**, 432 list, 32, 89 K lm(), 7, 266, 279, 304, 351, 491 Kappa(), 149 lme(), 279Ime4 package, 279 kde2d(), 503KernSmooth package, 286 lmer(), 279

Imtest package, 266, 422, 462	residuals, 356–357
lmtest(),471	square tables, 389–399
local odds ratio, 211	loglm(), 130, 143, 178–180, 183, 184,
loddsratio(), 123, 136, 212, 377, 381,	190, 192, 194, 206, 216, 218, 219,
392, 418, 493	350, 354, 357, 360, 368, 371–373,
loess, 281, 313, 482	426
log odds, 10 , 122 , 264, 264	logmult package, xvii, 216, 255, 383, 386,
log odds ratio, 122 , 252, 406	387, 426
local, 377	lowess(), 269
log-multiplicative models, 382–389	lrm(), 297, 301, 324
plotting, 385–389	LRstats(), 183, 267, 288, 372, 399, 434
logarithmic series distribution, 86, 96, 98	LRtest(), 297, 338
moments of, 86	1rtest(), 328, 422, 462, 463
logi.hist.plot(),265	Ismeans package, 278
logistic regression, 10–13, 122, 262–270,	iomodno package, 270
325, 341–345, 404, 454	M
fitting, 265–267	main effect, 351
influence diagnostics, 304–306	main-effect ordering, 18
influential cases, 317	manipulate package, 21
interpretation, 264–265	margin.table(), 44, 45, 51, 52
leverage, 304	marginal distributions, 120 , 403
model tests, 267	marginal frequencies, 120 , 121, 163
multiple, 272	marginal homogeneity, 148, 152 , 389 , 391
multivariate, 349	marginal model, 238
nested models, 335–341	marginal relationships, 199, 415
plotting, 265–275	Marimekko chart, 170
plotting, 265	markov(), 184
residuals, 303–304	masking, 315
logit, 122, 264	MASS package, 27, 56, 89, 130, 178, 183,
logit function, 10	218, 224, 225, 255, 264, 279, 298,
logit models, 363–367, 404	324, 326, 346, 354, 357, 446, 453,
interpretation, 365–366	501, 502
plotting, 366–367	matplot(), 76, 407, 413
logLik(), 434, 462	matpoints(), 413
loglin(), 178, 184, 353, 354, 368	matrices, 32–35, 222, 279, 489
loglin2formula(), 184, 220	binding, 35
loglin2string(), 184	transposing, 35
loglinb2(), 406	matrix(),34
loglinear independence model, 351	mca(),55,224
loglinear model, 177	mcja(),242
multivariate responses, 405–406	mcnemar.test(),159
loglinear models, 130, 177–179, 205–209,	mean function, 431
349–363	mean-square contingency coefficient, 222
as GLMs, 352–353	melt(), 331, 340
extensions, 375–425	method-of-moments, 445
fitting, 179–183, 353–354, 357	mgcv package, 478
goodness-of-fit, 354–356	mjca(), 225, 241, 244, 246, 247, 256, 257
independence model, 351	mlogit package, 342
multivariate responses, 375, 403–414	model building, 10–13, 261, 434
ordinal variables, 376–389, 396–399	model comparison plot, 399
plotting, 360–363, 381–382	model comparisons, 183, 186
protting, 500 505, 501 502	model comparisons, 100, 100

model matrix, 353 , 489	examples, 92
model object, 262	model, 446
model plots, 25	moments of, 83
model.matrix(), 240	plotting, 84
mosaic(), 159, 168, 170, 171, 174, 179,	nested dichotomies, 324 , 335 , 335–341
184, 190, 193, 196, 202, 216, 218,	plotting, 340–341
219, 357, 361, 370, 372, 416	nested models, 335–341, 355 , 355, 359, 377,
mosaic display, 9 , 15, 17, 47, 161 , 161–215,	391, 434
222, 237, 244, 350, 370, 376, 379,	nlme package, 279
402, 415	nnet package, 279, 324, 342
3D, 203–204, 207	nobs(),434
conditional, 196	nominal variables, 4, 66, 323
generalized matrix, 201–203	response, 335–341
interpretation, 166	nomogram, 301
matrix, 197	nomogram(),301
shading, 166, 169–175	non-nested models, 434-435
three-way tables, 193	non-parametric regression, 268
two-way tables, 162–166	nonlinearity, 294
vs. correspondence analysis, 231	nonnest2 package, 435
mosaic displays	normal QQ plots, 486
vs. correspondence analysis, 232	normal quantile plots, 486
mosaic matrix, 197 , 240, 244	ns(), 287, 411, 414
mosaic3d(), 204, 208, 357	null model, 140
mosaicplot(), 47, 169	,
Mult(), 383	
multi-way table, 133, 141, 161, 203–204,	0
232–238, 240, 354, 400–403	observer agreement, 146 , 146–153
fitting, 179 plotting, 176	observer agreement chart, 150
multinom(), 279, 324, 342, 347	odds, 121
multinomial, 323	odds ratio, 23, 121, 122, 121–124, 129–132,
multinomial logit model, 324 , 341–345	135, 137, 274, 377, 392, 406
plotting, 344	conditional, 352
multinomial sample, 121	confidence interval, 123
1	generalized, 211–215
multiple correspondence analysis, 240–242 bivariate, 240–242	oddsratio(),158
	optimal scaling, 222, see correspondence
multivariate, 243–246 multiple testing, 481	analysis
multiplicity, 481	Ord plot, 95–99
multivariate data, 243–246	limitations, 99
multivariate data, 243–240 multivariate linear model, 404, 489	Ord_plot(), 96, 97, 99, 101, 109, 112
multivariate responses, 403–406, 414	ordered(), 39, 43, 326, 342, 345
mutual(), 184	ordinal variables, 4, 66, 125–127, 146, 175,
mutual independence, 184, 206–208, 353,	211, 323, 353, 376–381, 389,
357, 404	396–399
337, 404	response, 324–333
N	three-way tables, 400–403
natural spline, 287	outer(),76
negative binomial distribution, 82–85, 98,	outlierTest(),484
99, 108	overdispersion, 82 , 431 , 444–446, 449–450
calculation of, 84	overplotting, 237

Ρ		mgcv, 478
p.a	djust(),135	mlogit, 342
pack	cage	nlme, 279
	AER, 449, 468, 502, 503	nnet, 279, 324, 342
	agridat, 19, 217	nonnest2, 435
	animation, 21	plyr, 52
	ca, xvii, 224, 225, 244, 249	poLCA, 279
	car, xvii, 287, 292, 306–308, 311, 313,	popbio, 265
	315, 321, 322, 327, 336, 347, 360,	pscl, 435, 453
	366, 433, 434, 482, 484, 486, 496,	psych, 148
	501, 502	rCharts, 21, 22
	colorspace, 171	reshape2, 331, 340
	corrplot, 378	rggobi, 21
	countreg, 440, 450, 453, 454, 457, 471	rgl, 203, 204, 225
	datasets, 41, 116	rms, 301, 324, 329
	directlabels, 27, 80, 331	rsm, 297, 479
	effects, xvii, 278–280, 291, 294, 332,	sandwich, 445
	342, 345, 419, 465–467, 499	shiny, 21
	extracat, 118	Sleuth2, 501
	FactoMineR, 225	splines, 287, 503
	foreign, 38	stats, 47, 74, 178, 353
	gdata, 38	TeachingDemos, 155
	GGally, 202	texreg, 56
	ggplot2, 13, 27, 80–82, 155, 202, 268,	UBbipl, 250, 251
	269, 271, 275, 276, 286, 340, 367,	vcd, xvi, xvii, 5, 39, 47, 48, 60–63, 69,
	424, 437, 460, 461, 494, 503	70, 78, 89, 94, 96, 98, 101, 118,
	ggtern, 155	119, 123, 129, 135, 136, 138, 139,
	ggvis, 21	141, 147, 149, 155, 158, 167, 168,
	gnm, xvii, 383, 384, 390	170–173, 186, 190, 193, 194, 197,
	googleVis, 21	202, 209, 212, 229, 233–235, 270,
	gpairs, xvii, 197, 202	276, 357, 377, 418, 450, 455, 517
	graphics, 47, 455	vcdExtra, xvi, xvii, 51, 53, 56, 58,
	grid, 170, 202	60–62, 71, 86, 105, 108, 111, 112,
	heplots, 491	118, 125, 151, 158, 159, 183, 184,
	HistData, 67, 109	197, 204, 216, 218, 219, 254–257,
	hmmm, 404	267, 282, 288, 296, 321, 347, 357,
	iplots, 21	361, 372, 373, 392, 396, 400, 407,
	KernSmooth, 286	415, 434, 442, 502
	knitr, xvii, 28, 523	VGAM, 324, 328, 342, 404, 406, 407,
	Lahman, 112, 217	411, 413, 453, 490, 496, 499
	lattice, 19, 27, 80	XLConnect, 38
	lme4, 279	xlsx, 38
	Imtest, 266, 422, 462	xtable, 56
	logmult, xvii, 216, 255, 383, 386, 387,	pairs(), 169, 197, 200, 207, 491
	426	pairs plot, 201–203
	Ismeans, 278	pairs.table(), $201, 209$
	manipulate, 21	palette(),171
	MASS, 27, 56, 89, 130, 178, 183, 218,	panel functions, 201
	224, 225, 255, 264, 279, 298, 324,	parallel coordinate plot, 20
	326, 346, 354, 357, 446, 453, 501,	Pareto chart, 26
	502	Pareto distribution 26

Pareto principle, 26	polygon(), 269
parquet diagram, 139, see sieve diagram	polytomous, 263 , 323, 335–341
partial association, 189 , 192, 352	polytomous events, 66
partial proportional odds model, 327	polytomous response, 262, 323–345
partial residual plot, 312 , 313	polytomous variables, 4, 66
partial residuals, 279	popbio package, 265
partial-regression plot, 314	population marginal means, 278
Pascal distribution, 82	position_jitter(), 269
paste(), 43, 234, 235	power series distributions, 86-87
pbinom(),74	ppois(),74,79
pchisq(),88	prcomp(), 253
pdoublebinom(),105	predict(), 262, 269, 279, 331, 339, 479
Pearson residual, 145, 163, 231, 304 , 356 ,	predictor variables, see explanatory variables
481	principal component analysis, 221, 240, 404
Pearson residuals, 179, 222	principal coordinates, 223
persp(),479	principal inertia, 223
persp.lm(),479	princomp(), 253
pgeom(),74	print(), 58, 89, 262, 266, 279, 297
phi (ϕ) coefficient, 222	print.goodfit(),89
pickCoef(), 386, 395	probit models, 264, 325
pie chart, 130	profile contrasts, 211
plogseries(),74	prop.table(),44,45
plot(), 48, 94, 137, 159, 227, 244, 247,	proportional odds model, 324 , 324 , 324–333,
249, 262, 279, 294, 297, 298, 306,	341
388, 389, 418, 450, 475, 482, 484,	assumptions, 327–329
486	effect plot, 332–333
plot.ca(), 225, 226	fitting, 326–327
plot.goodfit(),93	latent variable interpretation, 325–326
plot.gootfit(),110	plotting, 329–333
plot.rc(), 387	proportions, 271
plot.xmean.ordinaly(),330	pscl package, 435, 453
plot3d.ca(), 225	psych package, 148
plotting, see also graphics	p., p
stratified displays, 134	Q
plyr package, 52	qbinom(),74
pnbinom(),74	qdoublebinom(), 105
Poisson distribution, 76–82, 97, 99, 108,	qgeom(),74
350, 354, 359, 431, 432, 438	qlogis(),413
calculation of, 80	qlogseries(),74
examples, 69–72, 78–80, 91–92	qnbinom(),74
moments of, 77	qnorm(),486
plotting, 80–82, 93, 94, 99–102	qnoim(),400 qpois(),74
violated assumptions, 83	qpOIs(),74 $qqPlot(),486$
Poisson regression, 350	quadratic model, 137
Poisson samples, 69–72, 76–82	quantile-quantile (QQ) plots, 485–489
Poissonness plot, 99 , 99–102	quantile–quantile (QQ) piots, 463–469 quantile–quantile plots, 93
	1 1 1
polar area chart, 130	quasi-independence, 141 , 396, 401 quasi-independence model, 389 , 393
poLCA package, 279	1
polr(), 279, 324, 326, 328, 332, 343, 347	quasi-Poisson, 431 , 445–446
poly (), 411, 414 Polya distribution, 83	quasi-Poisson model, 445
FOIVA GISTIDULION, 83	uuasi-sviiineury, 369 , 595, 401

R	rgl package, 203, 204, 225
radial diagram, 130	rlogseries(),74
rainbow(),479	rms package, 301, 324, 329
rainbow_hcl(),171	<pre>rnbinom(),74</pre>
random zeros, see sampling zeros	rnegbin(),453,487
raw residual, 356 , 481	rnorm(), 37, 487
rbinom(),74	rootogram, 93, 104, 107, 108, 436, 450
rc(), xvii, 383, 387, 427	rootogram(), 94, 109, 112, 450
rCharts package, 21, 22	row effects model, 377
rcL(),387	row plus column effects model, 377
rdoublebinom(), 105	row-and-column effects model, 382
read.csv(),38	rownames(),57
read.delim(),38	rpois(),74,256,453,487
read.table(), $38, 58, 59$	rsm package, 297, 479
reciprocal averaging, 222, see	rstandard(), 304, 482
correspondence analysis	rstudent(), 304, 482
recode(), 336	rzinegbin(),453
reference category, 365	rzipois(),453
regression, 262, 350, 352, 430, 489	_
influence, 303	S
leverage, 304	s(),480
linear, 263–264	sample(), 37
logistic, 263–270, 278, 341–345	sample odds ratio, 122
multiple logistic, 272	sampling zeros, 368
multivariate, 349	sandwich package, 445
probit, 264	sandwich(), 445, 448
regression spline, 287	saturated model, 140, 178, 178 , 180 , 267 ,
relevel(), 273, 342	351, 351 , 353, 404
reliability, 146	scale parameter, 431
rendering, 18	scale_y_log10(),437
rep(),33	scaling, 325
reshape2 package, 331, 340	scatterplot, 17, 201, 437
residual deviance, 433	scatterplot matrix, 197, 197 , 240
residualPlot(),482	scatterplotMatrix(),311
residuals, 481	score model matrix, 279
deviance, 304, 445, 481	scree plot, 225 , 239
loglinear models, 356–357	segments(), 230
partial, 279–281	seq(),33
Pearson, 145, 163, 179, 222, 231, 304,	seq_loglm(), 186
481	sequantial models, 434
response, 481	set.seed(), 37, 173
shading, 171–175	shading_binary(),169
standardized, 304, 481	shading_diagonal(),171
studentized, 304, 481, 484	shading_Friendly(),169
residuals(), 304, 357	shading_Friendly2(),173
response, 116	shading_hcl(), 169
response residual, 481	shading_hsv(), 169
response variables, 7, 120–121, 190	shading_Marimekko(),170
discrete, 263	shading_max(), 169, 173, 175
rgeom(),74	shading_sieve(), 169
rggobi package, 21	shiny package, 21

sieve(), 168, 357	labeling, 179
sieve diagram, 116, 126, 139 , 138–145, 201, 222	structable(), 42, 46, 47, 52, 61, 63, 167, 233, 234, 372
simple effects, 189	structable framework, 190
Simpson's paradox, 135, 135	structable objects, 47–48, 392
simulate(),487	subsetting, 49–50
singular value decomposition, 222 , 223,	structural zeros, 214 , 368 , 452
248–249	studentized residual, 304, 481
Sleuth2 package, 501	subset(), 50, 62
sort (), 43	subsetting, 48–50, 60
spacing_conditional(), 169	successive differences, 211
spacing_dimequal(), 169	sum(),52
spacing_equal(), 169	summarise(),52
spacing_highlighting(), 169	summary(), 89, 123, 244, 262, 266, 279,
spacing_increase(), 169	287, 297, 298, 306, 321, 327, 343,
spaghetti plot, see parallel coordinates plot	360, 365, 438, 445, 501
spineplot, 118 , 283 , 454	summary.goodfit(),89
spineplot(), 159, 455, 470	summary.Kappa(),149
spinogram, 454, 454	supplementary variables, 238
spline, 93	Symm(), 390, 401
splines package, 287, 503	symmetric map, 223 , 224
square tables, 375, 389–399	symmetry, 140, 141
models for, 390	symmetry model, 389
ordinal variables, 396–399	
three-way, 400–403	T
stacking, 232	t(), 35, 48, 57
standard coordinates, 223	table(), 36, 42, 44, 46, 48, 55, 436
standardized residuals, 304, 481	table form, 6 , 31, 41–47, 50, 52–58, 60, 115
stat_smooth(), 269, 275, 285	119, 121, 178, 354, 377
statistical analyses	collapsing, 51
Cramer's V, 9, 128	converting, 53
deviance tests, 179	converting to, 44–47
exact vs. asymptotic tests, 124	decomposition, 184
goodness-of-fit, 87	publishing, 56–58
likelihood ratio test, 88, 183	reordering, 43–44
logistic regression, 10–13	subsetting, 48–49, 60
Wald test, 335	TeachingDemos package, 155
Woolf's test, 129	ternary plot, 116
stats package, 47, 74, 178, 353	test of independence, 130
stepAIC(), 298, 347, 502	tests for linear trend, 127
str(), 34, 43	tests of association, 119-121, 124-125, 127
stratified analysis, 8 , 128 , 127–129, 134,	texreg package, 56
141, 275, 415	theme(), 82
stratifying variable, 115	three-way table, 119, 130, 141, 146, 147,
stripplot, 201	232–238, 352, 354, 363, 400–403
struc_assoc(),169	fitting, 179
struc_mosaic(),169	plotting, 176
struc_sieve(),169	thresholds, 325
strucplot(), 168	tile(), 118, 159, 168
strucplot framework, 141 , 141–146, 162 ,	tile plot, 118
167 , 167–175	toeplitz(),170

T () 200 204 207	261 272 272 202 206 400 407
Topo(), 390, 394, 395	361, 372, 373, 392, 396, 400, 407,
topological model, 394	415, 434, 442, 502
treatment contracts, 273	vcov(), 279, 448
treemap, 22	vector, 32 , 32–33, 222
trends, 376	binding, 35
trilinear plot, 116 , 153 , 153–156	transposing, 35
triplot(), 155	VGAM package, 324, 328, 342, 404, 406,
two-way table, 116–118, 121–130, 138–139,	407, 411, 413, 453, 490, 496, 499
145, 162–166, 178, 221–231, 351,	vglm(), 324, 328, 329, 404, 406, 411, 412,
376, 389	415, 420, 421, 496, 497
tests of association, 119–121, 124–125,	visual impact, 135
127	visualization, 23
type-token, 72 , 72–73	
type-token, 72, 72–73	vuong(), 435
U	Vuong's test, 434
UBbipl package, 250, 251	vuongtest(),435
uniform association, 400	
	W
uniform association model, 377, 377	Wald test, 433, 444
uniform interaction, 400	weighted.mean(), $55,88$
update(), 297, 300, 345, 379, 390, 476	weights, 126, 149, 365
V	with(),44
variable, 273	within(), $59, 79$
binary, 4, 121, 209, 241, 262	Woolf's test, 129
	woolf_test(), 129, 130, 159
dichotomous, 4, 66, 121, 405–406	
discrete, 18	X
effect ordering, 18–20	XLConnect package, 38
explanatory, 7–8, 120–121	xlsx package, 38
nominal, 5, 66, 335–341	xtable package, 56
number of, 7	xtable(), 56, 57, 63
ordered, 39, 43–44	xtabs(), 36, 42, 44, 46, 48, 52, 54, 59, 62,
ordinal, 4, 66, 125–333, 353, 376–381	
polytomous, 4, 66	63, 124, 234, 235, 238, 283, 493
response, 7–8, 120–121	xyplot(), 80, 81, 84, 85, 110
stratifying, 127–129	
varible	Z
nominal, 323	zero frequencies, 368–371
vcd package, xvi, xvii, 5, 39, 47, 48, 60–63,	sampling zeros, 368
69, 70, 78, 89, 94, 96, 98, 101,	structural zeros, 368
118, 119, 123, 129, 135, 136, 138,	zero-altered model, 454, 454
139, 141, 147, 149, 155, 158, 167,	zero-frequencies
168, 170–173, 186, 190, 193, 194,	plotting, 454–455
197, 202, 209, 212, 229, 233–235,	zero-inflated Poisson, 452
270, 276, 357, 377, 418, 450, 455,	plotting, 453
517	zero-sum constraints, 353
vcdExtra package, xvi, xvii, 51, 53, 56, 58,	zero-truncated distribution, 112
60–62, 71, 86, 105, 108, 111, 112,	zeroinfl(), 453, 454
118, 125, 151, 158, 159, 183, 184,	zeros
197, 204, 216, 218, 219, 254–257,	excess, 451–455
267, 282, 288, 296, 321, 347, 357,	ZIP, see zero-inflated Poisson
201, 202, 200, 270, 321, 371, 331,	Zii, see Zero iiiilaaca i oissoii