# Practical Predictive Analytics Seminar

Matthias Kullowatz Session 3: Predictive Models (with Life example) September 23, 2020





### Agenda

- Questions of interest for actuaries
- Logistic regression theory and application
- Associated theoretical concerns that may arise in the modeling process
- Model validation
- Hands-on time throughout!



# Theory





### Questions of interest

- When will a policyholder...
  - Lapse?
  - Make a claim or withdrawal?
  - Die?
- How much?
- What drives these "behaviors" and why?
- Are the findings implementable?



### Predictive model forms





### Regression

- OLS, GLM, regularization (ridge, lasso, elastic net)
- Pros
  - Quick fitters
  - Interpretable coefficients and output
  - Harder to overfit
  - Widely used
- Cons
  - Constrained by parametric, functional form
  - Multicollinearity issues





### Tree-based models

- Decision trees, random forest, GBM
- Pros
  - Inherently models interactions between drivers
  - Models relationships non-parametrically
- Cons
  - Black-boxy formula (enter: Kshitij)
  - Hard to implement in other software
  - Doesn't interpolate or extrapolate well





### Clustering, et. al.

- Supervised: k-nearest neighbors
- Unsupervised: k-means, hierarchical
- Pros
  - Reduces dimensionality (ease of interpretability)
  - Easy to explain predictions (k-nearest neighbors)
- Cons
  - Sensitive to outliers
  - Reduces dimensionality (loss of information)





### Neural networks

- Pros
  - Inherent interaction effects/non-parametric
  - Well-suited for problems with many predictor variables
    - Image recognition and text analysis-type problems
- Cons
  - Black-box formula (even more opaque than GBM/RF)
  - Hard to implement in other software
  - Computationally intensive



Icon made by  $\underline{\mathsf{Freepik}}$  from  $\underline{\mathsf{www.flaticon.com}}$ 



# Other modeling methods/techniques

- Survival models
  - Cox proportional hazards
  - Accelerated failure time
- Support vector machines
- Agent-based modeling
- Splines (with regularization)





### Logistic GLM

- For predicting probabilities of binary outcomes
- Link function provides much needed flexibility
- Predictor variables can be quantitative or qualitative



# Why a link function?





### The logistic function

• 
$$\widehat{y} = g(L) = \frac{e^L}{1 + e^L}$$
  
•  $L = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \widehat{\beta_2} x_2 + \dots + \widehat{\beta_p} x_p$   
•  $\lim_{L \to \infty} g(L) = 1$  and  $\lim_{L \to -\infty} g(L) = 0$ 

• 
$$g^{-1}(\hat{y}) = \ln\left(\frac{\hat{y}}{1-\hat{y}}\right) = L$$

Logit function ("logodds")



# Consequences of logit link





### Interpretation of coefficients

• 
$$\ln\left(\frac{\hat{y}(x)}{1-\hat{y}(x)}\right) = \widehat{\beta_0} + \widehat{\beta_1}x \Rightarrow \frac{\hat{y}(x)}{1-\hat{y}(x)} = e^{\widehat{\beta_0} + \widehat{\beta_1}x}$$

Continuous x-value:

• 
$$\frac{\hat{y}(x+1)}{1-\hat{y}(x+1)} \div \frac{\hat{y}(x)}{1-\hat{y}(x)} = \frac{e^{\widehat{\beta_0}+\widehat{\beta_1}(x+1)}}{e^{\widehat{\beta_0}+\widehat{\beta_1}x}}$$
$$= e^{\widehat{\beta_1}}$$

Odds ratio



### Theoretical extras

- Independent observations
- The model is fit by maximizing the following:

$$log like lihood = \sum [Y_i \ln(\hat{y}_i) + (1 - Y_i) \ln(1 - \hat{y}_i)]$$

- $AIC = -2 \times loglikelihood + 2 \times parameters$
- $BIC = -2 \times log likelihood + ln(N) \times parameters$



# Practical concerns





### Predictive analytics process





### Practical concerns: Data

- Formatting variables (1)
- Identifying and dealing with outlier data values (2)
- Accounting for missing data (2)
- Derive new variables for modeling (3)
- Compile dataset into appropriate format (4)



### Practical concerns: Modeling

- Holdout dataset (2A)
- Fitting a model (2C)
- Multicollinearity concerns (2E)
- Setting reference levels for factors (DataPrep 2)
- Piecewise terms (2F)
- Undersampling (3)



### Data outliers





### Missing values

#### > summary(data.full\$height)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 47.00 64.00 67.00 66.82 70.00 83.00 10739

#### Histogram of data.full\$height



#### Histogram of data.full\$height





### Missing values

| Model                | NA treatment | Intercept | Height<br>coefficient | Flag coefficient |
|----------------------|--------------|-----------|-----------------------|------------------|
| Death ~ height       | Removed      | -4.418    | 0.0100                | N/A              |
| Death ~ height + Ind | Set to 0     | -3.580    | 0.0100                | -0.838           |
| Death ~ height + Ind | Set to mean  | -4.245    | 0.0100                | -0.173           |
| Death ~ height       | Set to 0     | -3.589    | -0.0024               | N/A              |
| Death ~ height       | Set to mean  | -4.343    | 0.0095                | N/A              |

- The first three models are mathematically equivalent
- The second two are biased
- Flag indicates that height was not missing



# Training versus holdout data





### Multicollinearity

• pairs()



• cor()

```
height weight bmi
height 1.000000 0.637640 0.052578
weight 0.637640 1.000000 0.795710
bmi 0.052578 0.795710 1.000000
```

• vif()



### Reference levels







### Piecewise linear effects

#### A/E by predictor before piecewise split



#### Piecewise impact of example predictor





### Undersampling

- For logistic regression, undersampling can help improve runtimes:
  - All deaths (n) +
  - Randomly selected non-deaths (3n)
- Fitting the model Death ~ AttAge

| Dataset      | Records | Runtime | Intercept | AttAge<br>coefficient |
|--------------|---------|---------|-----------|-----------------------|
| Full         | 259,284 | 2.15    | -14.13    | 0.129                 |
| Undersampled | 25,152  | 0.12    | -10.99    | 0.123                 |



# Hands-on: Fit logistic GLM in R!





# Hands-on: Practical concerns in R!





# Validation





### Validation and comparison

- Overall model fit (4A)
  - Bias-variance tradeoff
- Comparison between two candidate models (4B)



### Model fit

- R<sup>2</sup>
- Log-likelihood/AIC/BIC
- Actual-to-expected plots (4A-i)
- Confusion matrix (4A-ii)
- AUC (4A-iii)



### **Confusion matrix**

- Select a threshold for predicting the outcome
- Build a 2x2 contingency table

| Prediction | Death  |       |        |
|------------|--------|-------|--------|
|            | 0      | 1     | Total  |
| 0          | 65,815 | 835   | 66,650 |
| 1          | 18,500 | 1,313 | 19,813 |
| Total      | 84,315 | 2,148 | 86,463 |

True positive rate = 1,313/2,148 = 0.658 (1 - Type-II error)False positive rate = 18,500/84,315 = 0.301 (Type-I error)



# Area under the curve (AUC)

 The curve here is the relationship of the true positive rate and false positive rate as the threshold moves from 0 to 1





### Model comparison: Lift charts

- Actual to expected (4B)
- Two-way lift (4B)







# Hands-on: Validation in R!





# Thank you!



