Содержание

1	Введение	2
2	Алгебраические структуры	2
3	Немного конечномерной линейной алгебры	2
4	Ещё немного о разных группах	2
5	Общая конструкция преобразования Фурье	3
6	Hормы на $\mathbb Q$	4
7	Обыкновенные производящие функции	4

1 Введение

Что будет затронуто:

- Введение в функциональный анализ
- Алгебраические структуры, геометрия графов
- Спектральная теория
- Гармонический анализ
- Приложения к дискретной математике

2 Алгебраические структуры

Определение 1. Напоминание определений основных структур:

- Полугруппа множество с ассоциативной операцией.
- Полугруппа с единицей.
- Группа множество с обратимой ассоциативной операцией. В том числе свободная группа и группа, заданная соотношениями $G = \langle S \mid \mathcal{A} \rangle$.

Автоматные группы. Пусть задан конечный преобразователь F с двумя состояниями $\{a,b\}$. Несколько преобразователей можно комбинировать. Получился моноид. $G(\mathcal{A}) = \langle \mathcal{A}_a, \mathcal{A}_b \rangle$, где \mathcal{A} — обратимый преобразователь, \mathcal{A}_x — преобразователь с начальным состоянием x.

3 Немного конечномерной линейной алгебры

Рассмотрим вычисление аналитических функций от матриц. $f(z) = \sum_{k=0}^{\infty} a_k z^k$.

Метод: применение интерполяционных многочленов. Если оператор диагонализуем, то все ясно, нужно знать только $f(\lambda_i)$. Утверждается, что всегда работает следующее: для каждой Жорданового блока запишем $P(\lambda_1) = f(\lambda_1), \ldots, P^{(r_1-1)}(\lambda_1) = f^{(r_1-1)}(\lambda_1)$, где r_1 — кратность λ_1 , интерполируем это и вычислим P(A).

4 Ещё немного о разных группах

Определение 2. Пусть есть последовательность F_n , тогда если $\frac{\lambda(F_n \oplus (\delta + F_n))}{\lambda(F_n)} \to 0$ для всех $z \in K$ -компакта, то эти множества называются Фёльнеровскими.

Определение 3. Аменабельная группа G — такая группа, в которой есть «последовательность» Фёльнеровских множеств F_n .

Утверждается, что если вероятность случайного блуждания вернуться в 1 за n шагов стремится к 0 очень быстро, то группа не аменабельна.

С неаменабелностью SO(3) связан парадокс Банаха-Тарского.

Насчёт автоматных групп: их можно представлять как некоторые преобразования бинарного дерева. Необходимым условием обратимости, конечно, является обратимость преобразования дерева.

Такие автоматы порождают 5 интересных групп, которые мы точно будем рассматривать.

Упражнение 1. Дискретное преобразование Фурье в $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_8$: спектр, СЗ, СВ, как все устроено.

5 Общая конструкция преобразования Фурье

Пусть есть топологическая группа G. Определелим характер $\gamma \in Hom(G, S^1), S^1 = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$), притом потребуем того, что γ — непрерывен.

Определение 4. Дуальная группа $\hat{G} = \{\gamma\}$ определена поточечным умножением характеров.

Теорема 1 (Понтрягина о двойственности). Если G — абелева топологическая группа, тогда $\hat{\hat{G}} = G$.

При этом, если G- компактна, то $\hat{G}-$ дискретна. Если G- дискретна, то $\hat{G}-$ компактна.

Топологические группы с нестандартной топологией могут быть представлены как стандратные топологии на смежных классах G/H, H < G.

Упражнение 2. Можно ли придумать нестандартную топологию на конечной группе, которая не встречатеся среди стандартных групповых топологий?

Определение 5. Преобразование Фурье: $F:f(x)\mapsto \hat{f}(\gamma)=\int\limits_G f(x)\overline{\gamma(x)}d\mu,$ где μ — левая мера Хаара.

Характеры $\mathbb{R}: \gamma_t(x) = \exp(2\pi i t x), t \in \mathbb{R}, \ \hat{\mathbb{R}} = \mathbb{R}.$ Преобразование Фурье выглядит так: $\hat{f}(t) = \int\limits_{-\infty}^{\infty} f(x) \exp(-2\pi i t x) dx$.

Тор $\mathbb{T}=\mathbb{R}/\mathbb{Z}$, его характеры $\gamma_t=\exp(2\pi itx), t\in\mathbb{Z}$, дуальная группа $\hat{\mathbb{T}}=\mathbb{Z}$. Преобразование Фурье: $\hat{f}(j)=\int\limits_0^1 f(x)\exp(-2\pi ijx)dx$.

Соответственно $\hat{\mathbb{Z}} = \mathbb{T}$, так как достаточно задать $\gamma(1) = \exp(2\pi i \alpha)$.

Для
$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$$
 характеры такие: $\gamma_j(x) = \exp(2\pi i \frac{jx}{n}), \hat{f}(j) = \sum_{x=0}^{n-1} f(x) \exp(-2\pi i \frac{jx}{n}).$

Упражнение 3. Топология на $\mathbb{Z}_{(2)}$ — односторонние двоичные последовательности со сложением. Проверить, что это компактная группа.

Упражнение 4. Преобразование Фурье на \mathbb{Z}_2^n .

6 Нормы на \mathbb{Q}

Теорема 2. Существуют следующие (мультипликативные) нормы на \mathbb{Q} :

- тривиальная
- cmandapmnas: |x| = xsgn(x)
- p-aduческая, $|x|_p = \left|\frac{a}{n^k}\right| = p^k$, p npocmoe.

Упражнение 5. Если двигаться шагами по 2^k с весом 2^{-k} от точки 0 к точке $x \in \mathbb{Z}$, то чему равен вес кратчайшего пути?

Упражнение 6. $G = \left\{ \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} \right\}$. Найти левую и правую меру Хаара.

Если пополнить p-адические числа, получим $\mathbb{Q}_{(p)}=[\mathbb{Q}]_{|\cdot|_p}$. Числа там имеют вид $\sum\limits_{j=-\infty}^{\infty}x_jp^j$. Можно выделить абелеву подгруппу $\mathbb{Z}_{(p)}$ с числами, где нет отрицательных j.

Упражнение 7. $\mathbb{Z}_{(p)}$ — компактно.

Упражнение 8. $\mathbb{Z}_{(p)}$ — гомеоморфно p-ичному дереву и канторовскому множеству.

Упражнение 9. Записать $-1, \frac{1}{2}$ как p-адическую дробь.

Упражнение 10 (**). Исследовать в *p*-адических числах $e^t = 1 + x + \frac{x^2}{2} + \dots$

Упражнение 11. Доказать, что $T: x \mapsto x+1$ непрерывно, сохраняет меру Хаара, и что все сдвиги на этой группе $R_a: x \mapsto x+a$ сводятся к T.

Упражнение 12. Найти меру Хаара этой группы.

Упражнение 13. Проверить, что характеры $\mathbb{Z}_{(p)}$ — это $\gamma_{\frac{\alpha}{p^k}}(x) = \exp(2\pi i \frac{\alpha}{p^k} x)$.

7 Обыкновенные производящие функции

 $f(t) = \sum_{n=0}^{\infty} x_n t^n \leftrightarrow (x_0, \dots, x_n, \dots)$. С помощью них можем суммировать какие-то простые ряды и прочее.

Кстати, $\lim_{n\to\infty} x_n = \lim_{t\to 1} (1-t)f(t)$.

Тривиальная производящая функция: $1,1,1,\ldots \sim \frac{1}{1-t}.$

Факториалы: $1, 1, \frac{1}{2}, \frac{1}{6}, \ldots \sim e^t$. Дельта-функция: $1, 0, 0, \ldots \sim 1$.

Биномиальные коэффиенты: $C_n^k \sim (1+t)^k$.

Упражнение 14. Производящая функция $C_n^{k_0}$ (k_0 фиксированно).

Соображение: В 90% случаев можно искать решение в виде: $f(t) = \frac{\mu}{1-t} +$ $\psi(t)$, где ψ — регулярная. Рассмотрим: $x_{n+1} = \frac{nx_n + x_{n-1}}{n+1}$.

f(t)	f'(t)
$\sum x_n t^n$	$\sum nx_nt^{n-1}$
$\sum x_{n+1}t^{n+1}$	$\sum (n+1)x_{n+1}t^n$
$\sum x_{n-1}t^{n-1}$	$\sum (n-1)x_{n-1}t^{n-2}$

$$(n+1)x_{n+1} = nx_n + x_{n-1}$$

$$f' = tf' + tf$$

$$(1-t)f' = tf + x_1$$

$$\frac{df}{f} = \frac{tdt}{1-t}$$

$$f = -t + \int \frac{dt}{1-t} = -t - \ln(1-t) + c$$

$$c\frac{e^{-t}}{1-t}(1-t) = x_1 = \int x_1 e^t dt = x_1 e^t + c_0$$

$$f(t) = \frac{x_1 + (x_0 - x_1)e^{-t}}{1-t}$$

Упражнение 15. Какое отношение эта задача имеет к числу беспорядков на n элементах?