Continuity and Asymptotes for common functions			
Function	Continuous on	Vertical Asymp-	Horizontal Asymp-
		totes	totes
$f(x) = \frac{1}{x^n}$ for n a pos-	$\mathbb{R}\setminus\{0\}$	x = 0	y = 0
itive integer			
$f(x) = \sqrt[n]{x}$	\mathbb{R} if n is odd, $\mathbb{R}_{\geq 0}$ if n	None	None
	is even		
$f(x) = a_n x^n + \dots +$	\mathbb{R}	None	None
$a_1x + a_0$			
$f(x) = \frac{P(x)}{Q(x)}$, where	All real numbers ex-	It depends!	It depends!
P(x), $Q(x)$ are poly-	cept those $x \in \mathbb{R}$ for		
nomials	which $Q(x) = 0$		
$f(x) = a^x \text{ for } a > 0$	\mathbb{R}	None	y = 0
and $a \neq 1$			
$f(x) = \ln(x)$	$\mathbb{R}_+ = (0, +\infty)$	x = 0	None
$f(x) = \sin(x)$	\mathbb{R}	None	None
$f(x) = \tan(x)$	All real numbers but	$x = \frac{k\pi}{2}$, where k is an	None
	$\frac{k\pi}{2}$, where k is an odd	odd integer.	
	integer. (This is where		
	$\cos(x) = 0.$		
$f(x) = \arcsin(x)$	[-1,1]	None	None
$f(x) = \arccos(x)$	[-1,1]	None	None
$f(x) = \arctan(x)$	\mathbb{R}	None	$y = \frac{\pi}{2}$ and $y = -\frac{\pi}{2}$