Large Language Models for Code Analysis: Do LLMs Really Do Their Job?

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Asmita Asmita, Ryan Tsang, Najmeh Nazari, Han Wang and Houman Homayoun

Aug. 14, 2024

Outline

Introduction

Experiment Settings

Results & Findings

Conclusion

Introduction

Background

Code Analysis

Code Obfuscation

```
function hi() {
   console.log("Hello_World!");
}
hi();
```


function _0x1ec3() { var _0x3ed452=['259790KgLPlj','297688NTFutg','35ACWDkX',' 145716kEyGyf', '18SFCPKB', '1701952aKOEga', '192jjwxUU', '5LPjNwr', '142417 rtWDUq', 'Hello\x20World!', '121610lhBPGW', '2032200UghFpX', '5nCOmEq', 'log'];_Oxlec3=function(){return _0x3ed452;};return _0x1ec3();](function(_0x22b342 , _0x360ffb) { var _0x5047be=_0xfb3c , _0x4c7c5c=_0x22b342 () ; while $(!![])\{try\{var = 0x40c3be = parseInt(=0x5047be(0x90))/0x1*(=$ _0x5047be(0x8e))/0x2)+-parseInt(_0x5047be(0x95))/0x3+parseInt(_0x5047be(0 x97))/0x4*(parseInt(_0x5047be(0x99))/0x5)+parseInt(_0x5047be(0x8f))/0x6+ parseInt(_0x5047be(0x94))/0x7*(parseInt(_0x5047be(0x93))/0x8)+parseInt(_0x5047be(0x96))/0x9*(-parseInt(_0x5047be(0x92))/0xa)+parseInt(_0x5047be $(0x9a)/0xb*(-parseInt(_0x5047be(0x98))/0xc); if(_0x40c3be===_0x360ffb)$ break; else _0x4c7c5c['push'](_0x4c7c5c['shift']()); catch(_0x33f4b4){ _0x4c7c5c['push'](_0x4c7c5c['shift']());}}}(_0x1ec3,0x52a68));function _0xfb3c(_0x257a0b,_0x17c420){var _0x1cc321=_0x1cc3();return _0xfb3c= $function(_0xfb3ca7,_0x44b6b2)\{_0xfb3ca7=_0xfb3ca7-0x8d; var __0x34ca8b=$ _0x1ec321[_0xfb3ca7]; return _0x34ca8b; } , _0xfb3c(_0x257a0b , _0x17c420); } function hi(){var $_0x2da467 = _0xfb3c$; console[$_0x2da467(0x91)$]($_0x2da467(0$ x8d));}hi();

Background

Experiment Settings

Research Questions

• RQ1: Do LLMs understand code?

 RQ2: Can LLMs understand obfuscated code?

LLM Selection

• GPT-3.5-turbo

• GPT-4

• LLaMA-2-13B

• Code-LLaMA-2-13B-Instruct

• StarChat-Beta

Datasets

- Non-Obfuscated Code Dataset
 - C
- Popular benchmarks
- POJ-104
- JavaScript
 - Octane 2.0
 - A list of practical JavaScript applications
- Python
 - CodeSearchNet

Datasets

Datasets

- Non-Obfuscated Code Dataset
 - C
- Popular benchmarks
- POJ-104
- JavaScript
 - Octane 2.0
 - A list of practical JavaScript applications
- Python
 - CodeSearchNet

- Obfuscated Code Dataset
 - Based on JavaScript Non-Obf Code
 - Default (DE)
 - Dead Code Injection (DCI)
 - Control Flow Flattening (CFF)
 - Split String (SS)
 - Wobfuscator (WSM) [1]
 - International Obfuscated C Code Contest (IOCCC)

[1] Alan Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang. Wobfuscator: Obfuscating javascript malware via opportunistic translation to webassembly. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1574–1589. IEEE, 2022

Measurement Methods

Ground Truth

- Comparison Metrics
 - Cosine Similarity
 - Bert-Based Semantic Similarity [2]
 - ChatGPT-Based Similarity

[2] Semantic-text-similarity. https://github.com/AndriyMulyar/semantic-text-similarity

Results & Findings

Results: Non-Obfuscated Code Dataset

Finding: GPT utilizes information provided in identifier names to assist code analysis.

Finding: GPT-4 occasionally makes wrong associations.

Results: Non-Obfuscated Code Dataset

(a) Cosine similarity score.

(b) Bert-based semantic similarity score.

(c) ChatGPT measured accuracy results.

Finding: Smaller models are unable to reliably generate consistent paragraphs of code analysis results.

Results: Obfuscated Code Dataset

(a) Cosine similarity score.

(b) Bert-based semantic similarity score.

(c) ChatGPT measured accuracy results.

Finding: Basic obfuscation techniques only slightly influence the ability of GPT models to perform code analysis.

Finding: LLMs are not able to decipher obfuscated code generated by Wobfuscator.

Results: Obfuscated Code Dataset

Finding: All models fall short of generating compilable and runnable de-obfuscated code.

Finding: GPT-4 generates code with higher readability.

Conclusion

• A thorough evaluation of code analysis capabilities of popular LLMs

Limitations of LLM

• Online Appendix: https://github.com/aseec-lab/llms-for-code-analysis

Q&A