Chapter 15: Vector Calculus

Illya Starikov

June 30, 2025

Contents

15.1	Vector Fields	2
15.2	Line Integrals	4
15.3	Conservative Vector Fields	7
15.4	Green's Theorem	9
15.5	Divergence and Curl	1
15.6	Surface Integrals	3
15.7	Stokes' Theorem	5
15.8	Divergence Theorem	ĉ

15.1 Vector Fields

Vector Fields in Two Dimensions

Let f and g be defined on a region R of \mathbb{R}^2 . A **vector field** in \mathbb{R}^2 is a function \mathbf{F} that assigns to each point in R a vector $\langle f(x,y), g(x,y) \rangle$. The vector field is written as

$$\mathbf{F}(x,y) = \langle f(x,y), g(x,y) \rangle \quad \text{or} \quad \mathbf{F}(x,y) = f(x,y)\mathbf{\hat{i}} + g(x,y)\mathbf{\hat{j}}$$
 (1)

A vector field $\mathbf{F} = \langle f, g \rangle$ is continuous or differentiable on a region R of \mathbb{R}^2 if f and g are continuous or differentiable on R, respectively.

Radial Vector Fields in \mathbb{R}^2

Let $\mathbf{r} = \langle x, y \rangle$. A vector field of the form $\mathbf{F} = f(x, y)\mathbf{r}$, where f is a scalar-valued function, is a **radial vector field**. Of specific interest are the radial vector field

$$\mathbf{F}(x, y) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x, y \rangle}{|\mathbf{r}|^p}$$
 (2)

where p is a real number. At every point (except the origin), the vectors of this field are directed outward from the origin with the magnitude of $|\mathbf{F}| = \frac{1}{|\mathbf{r}|^{p-1}}$.

Vector Fields in Three Dimensions

Let f, g, and h be defined on a region D of \mathbb{R}^3 . A **vector field** in \mathbb{R}^3 is a function \mathbf{F} that assigns to each point in D a vector $\langle f(x, y, z), g(x, y, z), h(x, y, z) \rangle$. The vector field is written as

$$\mathbf{F}(x, y, z) = \langle f(x, y, z), g(x, y, z), h(x, y, z) \rangle$$
 or (3)

$$\mathbf{F}(x, y, z) = f(x, y, z)\hat{\mathbf{i}} + g(x, y, z)\hat{\mathbf{j}} + h(x, y, z)\hat{\mathbf{k}}$$
(4)

A vector field $\mathbf{F} = \langle f, g, h \rangle$ is continuous or differentiable on a region D of \mathbb{R}^3 if f, g, h are continuous or differentiable on R, respectively. Of particular importance are the **radial vector fields**

$$\mathbf{F}(x, y, z) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x, y, z \rangle}{|\mathbf{r}|^p}$$
 (5)

where p is a real number.

Gradient Fields and Potential Functions

Let $z = \varphi(x, y)$ and $w = \varphi(x, y, z)$ be differentiable functions on regions of \mathbb{R}^2 and \mathbb{R}^3 , respectively. The vector field $\mathbf{F} = \nabla \varphi$ is **gradient field**, and the function φ is a **potential function** for \mathbf{F} .

15.2 Line Integrals

Scalar Line Integral in the Plane, Arc Length Parameter

Suppose the scalar-valued function f is defined on the smooth curve C: $\mathbf{r}(s) = \langle x(s), y(s) \rangle$, parameterized by the arc length s. The **line integral of** f **over** C is

$$\int_{C} f(x(s), y(s)) ds = \lim_{\Delta \to 0} \sum_{k=1}^{n} f(x(s_k^*), y(s_k^*)) \Delta s_k,$$
 (6)

provided this limit exists over all partitions of C. When the limit exists, f is said to be **integrable** on C.

Evaluating Scalar Line Integrals in \mathbb{R}^2

Let f be continuous on a region containing a smooth curve $C: \mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$. Then

$$\int_{a} f ds = \int_{a}^{b} f(x(t), y(t)) |\mathbf{r}'(t)| dt$$
(7)

$$= \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$
 (8)

Evaluating the Line Integral $\int_C f ds$

- 1. Find a parametric description of C in the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$
- 2. Computer $|\mathbf{r}'(t)| = \sqrt{x'(t)^2 + y'(t)^2}$
- 3. Make substitutions for x and y in the integrand and evaluate an ordinary integral

$$\int_{C} f ds = \int_{a}^{b} f(x(t), y(t)) |\mathbf{r}'(t)| dt$$
(9)

Evaluating Scalar Line Integrals in \mathbb{R}^3

Let f be continuous on a region containing a smooth curve $C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \leq t \leq b$. Then

$$\int f \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) |\mathbf{r}'(t)| \, dt \tag{10}$$

$$= \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$
 (11)

Line Integral of a Vector Field

Let **F** be a vector field that is continuous on a region containing a smooth oriented curve C parameterized by arc length. Let **T** be the unit tangent vector at each point of C consistent with the orientation. The line integral of **F** over C is $\int_C \mathbf{F} \cdot \mathbf{T} ds$.

Different Forms of Line Integrals of Vector Fields

The line integral $\int_C \mathbf{F} \cdot \mathbf{T} ds$ may be expressed in the following forms, where $\mathbf{F} = \langle f, g, h \rangle$, for $a \leq t \leq b$:

$$\int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_{a}^{b} (f \, x'(t), \, g \, y'(t), \, h \, z'(t)) \, dt$$
 (12)

$$= \int_{C} f \, dx + g \, dy + h \, dz \tag{13}$$

$$= \int_{C} \mathbf{F} \cdot d\mathbf{r} \tag{14}$$

For line integrals in the plane, we let $\mathbf{F} = \langle f, g \rangle$ and assume C is parameterized in the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$. Then

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} (f \, x'(t) + g \, y'(t)) \, dt = \int_{C} f \, dx + g \, dy = \int_{C} \mathbf{F} \cdot d\mathbf{r} \qquad (15)$$

Work Done in a Force Field

Let **F** be a continuous force field in a region D of \mathbb{R}^3 and let $C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \leq t \leq b$, be a smooth curve in D with a unit tangent vector **T** consistent with the orientation. The work done in moving an object C in the positive direction is

$$W = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(\mathbf{t}) \, dt \tag{16}$$

Circulation

Let **F** be a continuous vector field on a region D of \mathbb{R}^3 and let C be a closed smooth oriented curve in D. The **circulation** of **F** on C is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$, where **T** is the unit vector tangent to C consistent with the orientation.

Flux

Let $F = \langle f, g \rangle$ be continuous vector field on a region R of \mathbb{R}^2 . Let $C : \mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$, be a smooth oriented curve in R that does not intersect itself. The **flux** of the vector field across C is

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{a}^{b} (f \, y'(t) - g \, x'(t)) \, dt, \tag{17}$$

where $n = \mathbf{T} \times \hat{\mathbf{k}}$ is the unit normal vector and \mathbf{T} is the unit tangent vector consistent with the orientation. If C is a closed curve with counterclockwise orientation, \mathbf{n} is the outward normal vector and the flux integral gives the **outward flux** across C.

15.3 Conservative Vector Fields

Simple and Closed Curves

Suppose a curve C (in \mathbb{R}^2 and \mathbb{R}^3) is described parametrically by $\mathbf{r}(t)$, where $a \leq t \leq b$. Then C is a **simple curve** if $\mathbf{r}(t_1) \neq \mathbf{r}(t_2)$ for all t_1 and t_2 , with $a < t_1 < t_2 < b$; that is, C never intersects itself between its endpoints. The curve C is **closed** if $\mathbf{r}(a) = \mathbf{r}(b)$; that is, the initial and terminal points of C are the same.

Connected and Simply Connected Regions

An open region R in \mathbb{R}^2 (or D in \mathbb{R}^3) is **connected** if it possible to connect any two points of R by a continuous curve lying in R. An open region R is **simply connected** if every closed simple curve in R can be deformed and contracted to a point in R.

Conservative Vector Field

A vector field F is said to be **conservative** on a region (in \mathbb{R}^2 or \mathbb{R}^3) if there exists a scalar function φ such that $\mathbf{F} = \nabla \varphi$ on that region.

Test for Conservative Vector Fields

Let $\mathbf{F} = \langle f, g, h \rangle$ be a vector field defined on a connected and simply connected region D of \mathbb{R}^3 , where f, g, and h have continuous first partial derivatives on D. Then \mathbf{F} is a conservative vector field on D (there is a potential function φ such that $\mathbf{F} = \nabla \varphi$) if and only if

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}, \quad \frac{\partial f}{\partial z} = \frac{\partial h}{\partial x}, \quad \text{and} \quad \frac{\partial g}{\partial z} = \frac{\partial h}{\partial y}$$
 (18)

For vector fields in \mathbb{R}^2 , we have the single condition $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$.

Finding Potential Functions in \mathbb{R}^3

Suppose $\mathbf{F} = \langle f, g, h \rangle$ is a conservative vector field. To find φ such that $\mathbf{F} = \nabla \varphi$, take the following steps:

1. Integral $\varphi_x = f$ with respect to x to obtain φ , which includes an arbitrary function c(y, z).

- 2. Compute φ_y and equate it to g to obtain an expression for $c_y(y, z)$.
- 3. Integrate $c_y(y, z)$ with respect to y to obtain c(y, z), including an arbitrary function d(z).
- 4. Compute φ_z and equate it to h to get d(z).

Beginning the procedure with $\varphi_y = g$ or $\varphi_z = h$ maybe be easier in some cases.

Fundamental Theorem for Line Integrals

Let **F** be a continuous vector field on an open connected region R in \mathbb{R}^2 (or D in \mathbb{R}^3). There exists a potential function φ with $\mathbf{F} = \nabla \varphi$ (which means that **F** is conservative) if and only if

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A) \tag{19}$$

for all points A and B in R and all smooth oriented curves C from A to B.

Line Integrals on Closed Curves

Let R in \mathbb{R}^2 (or D in \mathbb{R}^3) be an open region. Then \mathbf{F} is a conservative vector field on R if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all simple closed smooth oriented curves C in R.

15.4 Green's Theorem

Let C be a simple closed smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \oint_{C} f \, dx + g \, dy = \iint_{R} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA. \tag{20}$$

Two-Dimensional Curl

The **two-dimensional curl** of the vector field $\mathbf{F} = \langle f, g \rangle$ is $\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}$. If the curl is zero throughout a region, the vector field is said to be **irrotational** on that region.

Area of a Plane Region by Line Integrals

Under the conditions of Green's Theorem, the area of a region R enclosed by a curve C is

$$\oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C (x \, dy - y \, dx) \tag{21}$$

Green's Thoerem, Flux Form

Let C be a simple closed smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{C} f \, dy - g \, dx = \iint_{R} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) \tag{22}$$

where \mathbf{n} is the outward unit normal vector on the curve.

Two-Dimensional Divergence

The **two-dimensional divergence** of the vector field $\mathbf{F} = \langle f, g \rangle$ is $\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$. If the divergence is zero thoughout a region, the vector field is said to be **source free** on that region.

15.5 Divergence and Curl

Divergence of a Vector Field

The **divergence** of a vector field $\mathbf{F} = \langle f, g, h \rangle$ that is differentiable on a region of \mathbb{R}^3 is

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}$$
 (23)

If $\nabla \cdot \mathbf{F} = 0$, the vector field is **source free.**

Divergence of Radial Vector Fields

For a real number p, the divergence of the radial vector field

$$\mathbf{F} = \frac{\mathbf{r}}{|r|^p} = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{\frac{p}{2}}} \text{ is } \nabla \cdot \mathbf{F} = \frac{3 - p}{|\mathbf{r}|^p}$$
(24)

Curl of a Vector Field

The **curl** of a vector field $\mathbf{F} = \langle f, g, h \rangle$ that is differentiable on a region of \mathbb{R}^3 is

$$\nabla \times \mathbf{F} = \operatorname{curl} \mathbf{F} = \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z} \right) \hat{\mathbf{i}} + \left(\frac{\partial f}{\partial z} - \frac{\partial h}{\partial x} \right) \hat{\mathbf{j}} + \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) \hat{\mathbf{k}}$$
 (25)

If $\nabla \times \mathbf{F} = \mathbf{0}$, the vector field is **irrotational**.

Curl of a Conservative Vector Field

The **general rotation vector field** is $\mathbf{F} = \mathbf{a} \times \mathbf{r}$, where the nonzero constant vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is the axis of ration and $\mathbf{r} = \langle x, y, z \rangle$. For all nonzero choices of $\mathbf{a}, |\nabla \times \mathbf{F}| = 2|\mathbf{a}|$ and $\nabla \cdot \mathbf{F} = 0$. The constant angular speed of the vector field is

$$\omega = |\mathbf{a}| = \frac{1}{2} |\nabla \times \mathbf{F}| \tag{26}$$

Curl of a Conservative Vector Field

Suppose that **F** is a conservative vector field on an open region D of \mathbb{R}^3 . Let $\mathbf{F} = \nabla \varphi$, where φ is a potential function with continuous second partial derivatives on D. Then $\nabla \times \mathbf{F} = \nabla \times \nabla \varphi = \mathbf{0}$; that is, the curl of the gradient is the zero vector and **F** is irrotational.

Divergence of the Curl

Suppose that $\mathbf{F} = \langle f, g, h \rangle$, where f, g, and h have continuous second partial derivatives. Then $\nabla \cdot (\nabla \times \mathbf{F}) = 0$: The divergence of the curl is zero.

Product Rule for the Divergence

Let u be a scalar-valued function that is differentiable on a region D and let \mathbf{F} be a vector field that is differentiable on D. Then

$$\nabla \cdot (u\mathbf{F}) = \nabla u \cdot \mathbf{F} + u(\nabla \cdot \mathbf{F}) \tag{27}$$

Properties of a Conservative Vector Field

Let \mathbf{F} be a conservative vector field whose components have continuous second partial derivatives on an open connected region D in \mathbb{R}^3 . Then \mathbf{F} has the following equivalent properties.

- 1. There exists a potential function φ such that $\mathbf{F} = \nabla \varphi$
- 2. $\int_C \mathbf{F} \cdot d\mathbf{r} = \varphi(B) \varphi(A)$ for all points A and B in D and all smooth oriented curves C from A and B.
- 3. $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all simple smooth closed oriented curves C in D.
- 4. $\nabla \times \mathbf{F} = \mathbf{0}$ at all points of D.

15.6 Surface Integrals

Surface Integrals of Scalar-Valued Functions on Parameterized Surface

Let f be a continuous function on a smooth surface S given parametrically by $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$, where $R = \{(u, v) : a \leq u \leq b, c \leq v \leq d\}$. Assume also that the tangent vectors $\mathbf{t}_u = \frac{\partial \mathbf{r}}{\partial u} = \langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \rangle$, and $\mathbf{t}_v = \frac{\partial \mathbf{r}}{\partial v} = \langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \rangle$ are continuous on R and the normal vectors $\mathbf{n} = \mathbf{t}_u \times \mathbf{t}_v$ is nonzero on R. Then the **surface integral** of the scalar-valued function f over S is

$$\iint\limits_{S} f(x, y, z) dS = \iint\limits_{R} f(x(u, v), y(u, v), z(u, v)) |\mathbf{t}_{u} \times \mathbf{t}_{v}| dA \qquad (28)$$

If f(x, y, z) = 1, the integral equals the surface area of S.

Evaluation of Surface Integrals of Scalar-Valued Functions on Explicitly Defined Surfaces

Let f be a continuous function on a smooth surfaces S given by z = g(x, y), for (x, y) in a region R. The surface integral of f over S is

$$\iint_{S} f(x, y, z) dS = \iint_{R} f(x, y, g(x, y)) \sqrt{z_x^2 + z_y^2 + 1} dA$$
 (29)

If f(x, y, z) = 1, the surface integral equals the area of the surface.

Surface Integral of a Vector Field

Suppose $\mathbf{F} = \langle f, g, h \rangle$ is a continuous vector field on a region of \mathbb{R}^3 containing a smooth oriented surface S. If S is defined parametrically as $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$, for (u, v) is a region R, then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{R} \mathbf{F} \cdot (\mathbf{t}_{u} \times \mathbf{t}_{v}) \, dA \tag{30}$$

where $\mathbf{t}_u = \frac{\partial \mathbf{r}}{\partial u} = \langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \rangle$ and $\mathbf{t}_v = \frac{\partial \mathbf{r}}{\partial v} = \langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \rangle$ are continuous on R, the normal vector $\mathbf{n} = \mathbf{t}_u \times \mathbf{t}_v$ is nonzero on R, and the direction of \mathbf{n} is

consistent with the orientation of S. If S is defined in the form $z=g(z,\,y),$ for $(x,\,y)$ in a region R, then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{R} (-fz_x - gz_y + h) \, dA \tag{31}$$

15.7 Stokes' Theorem

Let S be a smooth oriented surface in \mathbb{R}^2 with a smooth closed boundary C whose orientation is consistent with that of S. Assume that $\mathbf{F} = \langle f, g, h \rangle$ is a vector field whose components have continuous first partial derivatives on S. Then

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS \tag{32}$$

where \mathbf{n} is the unit vector normal to S determined by the orientation of S.

Curl F = 0 Implies F is Conservative

Suppose that $\nabla \times \mathbf{F} = \mathbf{0}$ throughout an open simply connected region D of \mathbb{R}^3 . Then $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all closed simple smooth curves C in D and \mathbf{F} is a conservative vector field on D.

15.8 Divergence Theorem

Let **F** be a vector field whose components have continuous first partial derivatives in a connected and simply connected region D in \mathbb{R}^3 enclosed by a smooth oriented surface S. Then

$$\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV \tag{33}$$

where \mathbf{n} is the unit outward normal vector on S.

Divergence Theorem for Hollow Regions

Suppose the vector field \mathbf{F} satisfies the conditions of the Divergence Theorem on a region D bounded by two smooth oriented surfaces S_1 and S_2 , where S_1 lies within S_2 . Let S be the entire boundary of $D(S = S_1 \cup S_2)$ and let \mathbf{n}_1 and \mathbf{n}_2 be the outward unit normal vectors for S_1 and S_2 , respectively. Then

$$\iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV = \iint\limits_{D} \mathbf{F} \cdot \mathbf{n} dS = \iint\limits_{S_{2}} \mathbf{F} \cdot \mathbf{n_{2}} \, dS = \iint\limits_{S_{1}} \mathbf{F} \cdot \mathbf{n_{1}} \, dS \qquad (34)$$