On the choice of weights for logarithmic pooling of probability distributions.

<u>Luiz Max F. de Carvalho</u> [Imax.procc@gmail.com], Daniel Villela, Flavio Coelho & Leonardo S. Bastos [Isbastos@fiocruz.br]

Scientific Computing Programme (PROCC), Oswaldo Cruz Foundation, Fiocruz, Brazil. XIII Brazilian Bayesian Statistics Meeting (EBEB 2016), Belo Horizonte, Brazil.

February 23, 2016

<u>Logarithmic pooling - Motivation</u>

 Obtain important insights on consensus belief formation and group decision making (Genest and Zidek, 1986);

- Applications in a range of fields, from infectious disease modelling (Coelho and Codeço, 2009) and wildlife conservation (Poole and Raftery, 2000) to engineering (Savchuk and Martz, 1994);
- BUT how to give each expert/information source a weight without being (totally) arbitrary?

Logarithmic pooling - Definition & Notation

Let $\mathbf{F}_{\theta} = \{f_0(\theta), f_1(\theta), \dots, f_K(\theta)\}$ be the set of prior distributions representing the opinions of K+1 experts and let $\alpha = \{\alpha_0, \alpha_1, \dots, \alpha_K\}$ be the vector of weights, such that $\alpha_i > 0 \ \forall i$ and $\sum_{i=0}^K \alpha_i = 1$. Then the log-pooled prior is

$$\pi(\theta) = t(\alpha) \prod_{i=0}^{K} f_i(\theta)^{\alpha_i}$$
 (1)

with $t(\alpha) = \int_{\Theta} \prod_{i=0}^{K} f_i(\theta)^{\alpha_i} d\theta$.

- Enjoys rather desirable properties, such as external Bayesianity (Genest and Zidek, 1986);
- Poole and Raftery (2000) prove that t(α) is always finite for the case K = 1 (2 experts/priors), which we extend for any finite K. See Theorem 1 in http://arxiv.org/pdf/1502.04206v1.pdf for a simple proof.

• If there is no information about the reliabilities of the experts one might want to assign α so as to maximise entropy of the resulting distribution:

$$H_{\pi}(\theta) = -\int_{\Theta} \pi(\theta) \ln \pi(\theta) d\theta$$
 $H_{\pi}(\theta; \alpha) = \sum_{i=0}^{K} \alpha_i E_{\pi}[-\ln f_i(\theta)] - \ln t(\alpha)$

ullet Formally, we want to find \hat{lpha} such that

$$\hat{oldsymbol{lpha}} := \operatorname{arg\,max} H_{\pi}(heta; oldsymbol{lpha})$$

 Caveats: (i) is not guaranteed to yield an unique solution; (ii) is rather prone to yield "trivial" solutions.

- What if we want to minimise conflict between the consensus and each individual opinion?
- Let $d_i = \mathsf{KL}(f_i||\pi)$ and let $L(\alpha)$ be a loss function such that

$$L(\alpha) = \sum_{i=0}^{K} d_i \tag{2}$$

$$= -K \ln t(\alpha) + \sum_{i=0}^{K} \sum_{j\neq i}^{K} \alpha_j \mathsf{KL}(f_i||f_j) \tag{3}$$

$$\hat{\alpha} := \arg\min L(\alpha) \tag{4}$$

 Contrary to the above, the loss function is convex, thus there is a unique solution (Rufo et al., 2012).

- An appealing alternative is to place a (hyper) prior on the weights (α) ;
- Two options:
 - (a) Dirichlet prior:

$$\pi(\boldsymbol{lpha}) = rac{1}{\mathcal{B}(\mathbf{X})} \prod_{i=0}^{K} lpha_i^{\mathsf{x}_i - 1}$$

(b) logistic-normal:

$$\alpha_i = \frac{e^{m_i}}{\sum_{i=0}^K e^{m_i}}, \ m_i \sim N(\mu_i, \sigma_i^2)$$

- Advantage: accomodates uncertainty in natural way, and is very flexible;
- Caveat(s): may yield inconsistent results and hardly ever allows for analytical solutions.

• $Y \sim Bernoulli(\theta)$ and

$$f_i(\theta; a_i, b_i) = \frac{\Gamma(a_i + b_i)}{\Gamma(a_i b_i)} \theta^{a_i - 1} (1 - \theta)^{b_i - 1}$$

- Allows for simple expressions for the entropy and KL divergence $[\pi(\theta; \alpha)]$ is also Beta], and efficient sampling from the hyperpriors;
- Savchuk and Martz (1994) consider an example in which four experts are required supply prior information about the survival probability of a certain unit for which there have been y=9 successes out of n=10 trials;
- We propose to evaluate performance using integrated (marginal) likelihoods, a.k.a., prior evidence.

Expert Priors

Pooled Priors and Posteriors

Table : Weights obtained using the three methods for the proportion estimation problem. 1 – Kullback-Leibler 2 – Posterior mean for α .

Method	α_0	α_1	α_2	α_3
Maximum entropy	0.00	1.00	0.00	0.00
Minimum KL ¹ divergence	0.04	0.96	0.00	0.00
Hierarchical prior ²	0.26	0.24	0.26	0.23

Table : Integrated likelihoods for the priors of each expert as well as the combined priors. 1 Calculated using the posterior mean of α

Expert priors		Pooled priors		
Expert 0	0.237	Equal weights	0.254	
Expert 1	0.211	Maximum entropy	0.211	
Expert 2	0.256	Minimum KL	0.223	
Expert 3	0.163	Hierarchical ¹	0.255	

- Our results are not yet decisive regarding which method is better;
- The Dirichlet approach seems the most natural from a Bayesian perspective, but prior sensitivity is currently unknown;

Fundação Oswaldo Cruz

- Let $\theta \in \Theta \subseteq \mathbb{R}^p$ and $y \in \mathcal{Y} \subseteq \mathbb{R}^p$ and define the model (transformation) as $M: \Theta \to \mathcal{V}$.
- Finally reacall \mathbf{F}_{θ} is a set of K distributions on θ .
- We may want to gain insight into y, even though we only have expert opinions on θ. If we apply M(·) to each component of F_θ, we get an **induced** distribution.
- Theorem: if M(·) is invertible, the order in which one pools or induces (transforms) the distributions does not matter.
- This is not always the case, though, as we shall see.

• Susceptible-Infectious-Removed (SIR) epidemic model:

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

where $S(t) + I(t) + R(t) = N \,\forall t$, β is the transmission (infection) rate and γ is the recovery rate.

Suppose we have Gamma distributions on the parameters and $p(\beta, \gamma) = p(\beta)p(\gamma)$. Interest lies in the distribution of $\mathcal{R}_0 = \frac{\beta N}{\gamma}$.

Dynamic model example - Priors

• Pool:

$$\pi(\beta) = Gamma(\theta_1^*, k_1^*)$$

 $\pi(\gamma) = Gamma(\theta_2^*, k_2^*)$

where $\theta^* = \sum_{i=0}^K \alpha_i a_i$. Then

• Induce:

$$\pi_1(\mathcal{R}_0) \propto {\mathcal{R}_0}^{k_1-1} (\theta_2^* \mathcal{R}_0 + \mathsf{N} \theta_1^*)^{-(k_1^* + k_2^*)}$$

Nice!

• Induce (transform) each distribution (Gamma ratio):

$$\pi_i(\mathcal{R}_0) \propto \mathcal{R}_0^{k_1-1} (\theta_2 \mathcal{R}_0 + \mathsf{N} \theta_1)^{-(k_1+k_2)}$$

then

Pool:

$$\pi_2(\mathcal{R}_0) \propto \prod_{i=0}^{\kappa} \pi_i(\mathcal{R}_0)$$

Ugly!

Pooled distributions

- Thank you very much for your attention!
- The authors would like to thank Professor Adrian Raftery (University of Washington) for helpful suggestions. DAMV was supported in part by Capes under Capes/Cofecub project (N. 833/15). FCC is grateful to Fundação Getulio Vargas for funding during this project.
- All the necessary code and data are publicly available at https://github.com/maxbiostat/opinion_pooling

- Coelho, F. C. and Codeço, C. T. (2009). Dynamic modeling of vaccinating behavior as a function of individual beliefs. *PLoS Comput. Biol.*, 5(7):e1000425.
- Genest, C. and Zidek, J. V. (1986). Combining probability distributions: A critique and an annotated bibliography. *Statistical Science*, pages 114–135.
- Poole, D. and Raftery, A. E. (2000). Inference for deterministic simulation models: the bayesian melding approach. *Journal of the American Statistical Association*, 95(452):1244–1255.
- Rufo, M., Martin, J., Pérez, C., et al. (2012). Log-linear pool to combine prior distributions: A suggestion for a calibration-based approach. *Bayesian Analysis*, 7(2):411–438.
- Savchuk, V. P. and Martz, H. F. (1994). Bayes reliability estimation using multiple sources of prior information: binomial sampling. *Reliability, IEEE Transactions* on, 43(1):138–144.