

Graphic Sourced – USGS.gov /U.S. Landslide Inventory, September 2023

# Landslide Identification

Harold Haugen, Max Pearton, Daniel Sery, Elena Tsvetkova

## Motivation

#### **Background**

Many research projects are focused on analyzing and identifying the susceptibility of landslides, but they require accurate inventories.

#### **Statement of Purpose**

Given increasing national and global attention on climate change, our team's objective is to apply deep learning architectures to detect/classify landslide events, even in remote areas regardless of timing.

#### **Application**

Help government and academic researchers build accurate inventories of landslides for susceptibility analysis.

## Aerial Images for CNN

Landslide Images Saved to Two Classes:

o: Landslide, 1: Non-Landslide





#### Final Data Setup:

- **7132** Train/Validation Images
  - o 6964 sourced from repositories
  - o 168 sourced from Google Earth / NASA review
- **62** Unique Test Images
  - o Google Images / NASA Earth Observatory

#### Review of NASA Landslide Observation Database

|                   | 167                                                        | 246                                                       | 265                                                           | 288                                                        |
|-------------------|------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| sat_capture       | captured                                                   | captured                                                  | captured                                                      | captured                                                   |
| latitude          | 36.501295                                                  | 35.864314                                                 | 37.680405                                                     | -23.913001                                                 |
| longitude         | -83.028366                                                 | -121.430499                                               | -119.748654                                                   | -65.465766                                                 |
| event_id          | 9779                                                       | 9734                                                      | 9691                                                          | 9723                                                       |
| event_date        | 2017-05-13<br>00:00:00                                     | 2017-05-20<br>22:00:00                                    | 2017-06-12<br>12:00:00                                        | 2017-01-10<br>00:00:00                                     |
| event_title       | Rockfall<br>blocks SR<br>70                                | Mud Creek<br>Slide on SR<br>1                             | Large<br>rockslide<br>blocks<br>access to<br>Yosemite<br>Nati | Landslide in<br>Volcan,<br>Argentina                       |
| event_description | Rockfall<br>sends large<br>boulders<br>onto road<br>expect | Massive<br>section of<br>hillside on<br>Big Sur at<br>Mud | Landslide on<br>Parkline<br>Slab cliff<br>deposits<br>4,00    | Large<br>landslide in<br>Argentina<br>almost<br>entirely w |
| landslide_size    | medium                                                     | very_large                                                | large                                                         | large                                                      |
| landslide_setting | above_road                                                 | above_road                                                | above_road                                                    | urban                                                      |
| fatality_count    | 0.0                                                        | 0.0                                                       | 0.0                                                           | 2.0                                                        |
| country_name      | United<br>States                                           | United<br>States                                          | United<br>States                                              | Argentina                                                  |

## Image Processing

#### **Key Data Pre-processing Steps**

- Storage in DropBox with modified url's for proper direct downloading to Jupyter-Notebooks
- Directory structuring within .zip files for classification requirements
- Batch processing w/ Photoshop to generate:
  - .jpg file formats
  - Appropriate cropping to square formats
  - Sizing below 1000px for easier memory usage (data file ~3GB)
  - EfficientNet required specific pixel sizes across model versions; 300x300 for B3

# Model Performance Comparison

| Model          | Training<br>Accuracy | Validation<br>Accuracy | Test Accuracy | Test Precision | Test Recall |
|----------------|----------------------|------------------------|---------------|----------------|-------------|
| Baseline CNN   | 0.8898               | 0.8953                 | 0.5053        | 0.5800         | 0.7230      |
| EfficientNetB3 | 0.9905               | 0.9969                 | 0.6340        | 0.6140         | 0.5380      |
| ResNet50       | 1.0000               | 0.9984                 | 0.5252        | 0.6538         | 0.3863      |
| MobileNet      | 0.9688               | 0.9589                 | 0.5269        | N/A            | N/A         |
| DenseNet121    | 0.9062               | 0.9700                 | 0.5526        | N/A            | N/A         |
| NasNetLarge    | 0.6903               | 0.7437                 | 0.6270        | 0.7130         | 0.2920      |

## Model Architectures

| Pre-trained Model | Size (MB) | Parameters | Depth |
|-------------------|-----------|------------|-------|
| Baseline CNN      | 10.47     | 2.8M       | 5     |
| EfficientNetB3    | 48        | 12.3M      | 210   |
| ResNet50          | 98        | 25.6M      | 107   |
| MobileNet         | 16        | 4.3M       | 55    |
| DenseNet121       | 33        | 8.1M       | 242   |
| NasNetLarge       | 343       | 88.9M      | 533   |

## EfficientNetB3

- **EfficientNetB3 Architecture:** EfficientNetB3 forms the core model, leveraging MBConv blocks and bottlenecks for feature extraction from satellite images.
- Grad-CAM Integration: Grad-CAM visualizations enhance interpretability by highlighting image regions linked to landslide predictions.



## Experiments

#### **Primary Key Deep Learning Architectures**

- 1. Start with training a **CNN model** to classify imagery to identify landslides, trying our top 2 performers: ResNet50 and ENB3.
- 2. Transfer Learning with ResNet and/or other pre-trained models focusing on Feature Extraction (e.g., extraction of meaningful features from new samples) and Fine-Tuning for joint layer training. Attempted multiple approaches to unfreezing layers.
- 3. Weight Transfer by saving the model, then unfreezing and continuing training. Layer vs Block.
- **4. Multi-modal CNN** (e.g., bring in tagging data for size) to go add more descriptive classification.
- 5. Grad CAM to help us illustrate which areas contribute the most to the prediction.

# Analysis of Varying Data Size & Diversity

- Per our Literary Review, diversity of data in prior landslide detection cases was noted as a key factor.
- We observed how homogeneity within the image space caused overfitting as noted in Set 1.
- We're surprised by the power of a small 2.4% increase in image variation. We observed a large impact on test accuracy once integrating our more diverse NASA image set into the data.

| Data                   | Size |
|------------------------|------|
| SET 1 (Train/Validate) | 2000 |
| SET 2 (Train/Validate) | 3200 |
| SET 3 (Train/Validate) | 6974 |
| SET 4 (Train/Validate) | 7132 |
| Set 7 (Test)           | 62   |





## EfficientNetB<sub>3</sub> Fine-Tuning

- Pretrained Weights: Initialized with ImageNet.
- Layer Freezing Strategy:
  - Froze initial layers to retain general features.
  - Unfrozen final layers to adapt to landslide-specific features.
- Optimizer and Learning Rate:
  - Adam optimizer, learning rate: 0.001.
  - Reduced learning rate on plateau for stability.
- Training Configuration: 15 epochs, batch size of 32.

## Fine-Tuning Scenarios

- Experimented with a variety of Layer Tuning depths with our Combined-Training data.
- Further training of higher-level features within models / EfficientNetB3 is an industry practice to customize for task-specific cases.
- Observed that further training of higher-level features improved performance; but as more layers are refined, are improvements steady and consistent?
- We monitored impacts to:
  - Overall Accuracy
  - Recall the % of Landslide images identified from the classification.
  - Precision the % accuracy of landslides predicted by the model.
  - Specificity the % of non-landslides identified from the classification.





# Weight Transfer – 2<sup>nd</sup> Model Training

- Attempted a multi-model approach which did not perform as hypothesized.
- Hypothesis Initial fine-tuned training on a pretrained model to learn basic landslide type features from a more homogenic data set.
- Transition of weights to a new model environment through '.Keras API'. (Note – not fully stable due to multi-Tensorflow versions)
- Further training / fine-tuning with a more diverse but smaller training set to improve on the already exposed model weights.
- Validation Accuracy did not come close to other design achievements, with accuracy coming out at ~60% across the epochs.



# EfficientNetB<sub>3</sub> Results





| Metric              | Value |
|---------------------|-------|
| Training Accuracy   | .9552 |
| Validation Accuracy | .9579 |
| Training Loss       | .1186 |
| Validation Loss     | .1281 |
| Test Accuracy       | .8230 |
| Test Precision      | .8120 |
| Test Recall         | .8390 |
| Test Sensitivity    | .8060 |
| Test F1 Score       | .8250 |
|                     |       |

## **Grad-Cam Visualizations**

- Bright areas align with landslide-specific features (e.g., slopes, vegetation loss).
- Dark areas indicate irrelevant regions excluded by the model.
- Used confusion matrix results from the test set to understand where the network focused its attention when predicting correctly and incorrectly
- Improved trustworthiness for end-users



## Grad CAM on False +/-

- An apparent pattern in the false positives and false negatives was a tendency for the network to focus on some of the corners of the images, particularly the top right corner
- Further work is needed to understand when and why this occurs.





## Limitations

#### Data Constraints:

- Insufficient labeled datasets for rare landslide conditions.
- Geographic bias in existing datasets limits global applicability.

#### Model Constraints:

- Performance variability when tested on unseen regions.
- Computational costs limit scalability to large-scale applications.

## Conclusions

- EfficientNetB<sub>3</sub> excelled in landslide detection with higher accuracy, precision, and recall than other pre-trained models.
  - Utilized transfer learning to enhance performance and generalization across datasets.
- Grad-CAM Visualizations: Improves interpretability and trust in predictions.
  - Expand datasets with diverse environmental conditions.
  - Incorporate temporal data for dynamic landslide prediction.
  - Optimize models for scalability and deployment efficiency.

# Summary

Team will apply deep learning architectures to build out a landslide inventory and attempt to build probability model to help predict future events. Will apply:

- CNN; Multi-modal CNN
- ResNet (transfer learning)
- Grad CAM

**Data**: Thousands of images of landslides from around the world. Higher resolution images captured manually using USGIS dataset for the location & impact, applying data augmentation due to only 100-200 of these high-resolution images.