ACTIVIDAD DE NIVELACIÓN ESPECIAL

CARDENAS SOFÍA

FÍSICA - 9°

Intitución Educativa María Goretti

18 de noviembre de 2023

ACTIVIDAD DE NIVELACIÓN ESPECIAL – FÍSICA 9° AÑO 2023

Indicadores de desempeño:

- Expresa cantidades sumamente grandes y pequeñas en notación Científica y realiza operaciones básicas con éstas.
- Convierte unidades de medidas de un sistema de medida a otro.
- Realiza ejercicios que involucran, simultáneamente, operaciones con números escritos en notación científica y la conversión de unidades de medidas de un sistema a otro
 - 1. Expresa las siguientes cantidades en notación científica:

a) 0,0000000456 =

f) 0,46 $\times 10^{17} =$

b) 256000000000 =

g) $0.732 \times 10^{-6} =$

c) 0,000678 =

h) 456000 =

d) 245×10^{-8}

i) 0.00876×10^{15}

e) 356.4×10^{12}

j) 0,00007895

2. Convertir:

a) $165 \frac{km}{h}$ a $\frac{m}{s}$

c) $128 \frac{ft}{s}$ a $\frac{mi}{h}$

f) 456 dm³ a m^3

b) $5 \, \text{m}^3$ a cm^3

d) $123 \frac{mm}{s}$ a $\frac{km}{h}$

g) 1440° a

rad

3. Convertir y expresar el resultado en notación científica:

a) $20 \times 10^5 \frac{km}{h}$

h) $2 \times 10^3 \frac{kg}{m^3}$ a

b) $8 \times 10^5 lit$ a

 cm^3

i) $85x10^4 \frac{ft}{s}$ a

c) $5 \times 10^8 \text{ mm}^3$ a

 dm^3

j) $85 \times x \cdot 10^8 \text{ cm}^2$ a

d) $3 \times 10^5 \, gr$ a

ton

k) $62 \times 10^8 s$

días

e) $2 \times 10^4 \frac{m}{s}$ a

1) $4 \times 10^{-2} \text{Km}$

mm

f) $4 \times 10^2 \frac{gr}{cm^3}$

m) 3 $\times 10^3$ ton

kg

g) $6 \times 10^4 \text{ mm}^3$ a

1it

o) $3 \times 10^4 \frac{m}{s^2}$ a

Ejercicio 1

Expresa las siguientes cantidades en notación científica:

a)
$$0.0000000456 = 4.56 \times 10^{-8}$$

c)
$$0.000678 = 6.78 \times 10^{-4}$$

d)
$$245 \times 10^{-8} = 2.45 \times 10^{-6}$$

e)
$$356.4 \times 10^{12} = 3.564 \times 10^{14}$$

$$f) 0.46 \times 10^{17} = 4.6 \times 10^{16}$$

g)
$$0.732 \times 10^{-6} = 7.32 \times 10^{-7}$$

h)
$$456000 = 4.56 \times 10^5$$

i)
$$0.00876 \times 10^{15} = 8.76 \times 10^{12}$$

$$j) 0.00007895 = 7.895 \times 10^{-5}$$

Ejercicio 2

Convertir:

a)
$$165\frac{\text{km}}{\text{h}} = 165\frac{\text{km}}{\text{h}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} \cdot \frac{1000 \text{ m}}{1 \text{ km}} = 45,833\frac{\text{m}}{\text{s}}$$

b)
$$5 \text{ m}^3 = 5 \text{ m}^3 \cdot \left[\frac{100 \text{ cm}}{1 \text{ m}}\right]^3 = 5 \times 10^6 \text{ cm}^3$$

c)
$$128\frac{\text{ft}}{\text{s}} = 128\frac{\text{ft}}{\text{s}} \cdot \frac{3600 \text{ s}}{1 \text{ h}} \cdot \frac{1 \text{ mi}}{5280 \text{ ft}} = 87,273\frac{\text{mi}}{\text{h}}$$

d)
$$123\frac{\text{mm}}{\text{s}} = 123\frac{\text{mm}}{\text{s}} \cdot \frac{1 \text{ m}}{1000 \text{ mm}} \cdot \frac{1 \text{ km}}{1000 \text{ m}} \cdot \frac{3600 \text{ s}}{1 \text{ h}} = 0,443\frac{\text{km}}{\text{h}}$$

e)
$$456 \text{ dm}^3 = 456 \text{ dm}^3 \cdot \left[\frac{1 \text{ m}}{10 \text{ dm}}\right]^3 = 4,56 \times 10^{-1} \text{ m}^3$$

f)
$$1440^{\circ} = 1440^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = 25,133 \text{ rad}$$

Ejercicio 3

Convertir y expresar el resultado en notación científica:

a)
$$20 \times 10^{5} \frac{\text{km}}{\text{h}} = 20 \times 10^{5} \frac{\text{km}}{\text{h}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} \cdot \frac{1000 \text{ m}}{1 \text{ km}} = 5,556 \times 10^{5} \frac{\text{m}}{\text{s}}$$

b)
$$8 \times 10^5 \text{ L} = 8 \times 10^5 \text{ L} \cdot \frac{m^3}{1000 \text{ L}} \left[\frac{100 \text{ cm}}{1 \text{ m}} \right]^3 = 8 \times 10^8 \text{ cm}^3$$

c)
$$5 \times 10^8 \text{ mm}^3 = 5 \times 10^8 \text{ mm}^3 \cdot \left[\frac{1 \text{ dm}}{100 \text{ mm}}\right]^3 = 5 \times 10^2 \text{ dm}^3$$

d)
$$3 \times 10^5 \text{ g} = 3 \times 10^5 \text{ g} \cdot \frac{1 \text{ kg}}{1000 \text{ g}} \cdot \frac{1 \text{ ton}}{1000 \text{ kg}} = 3 \times 10^{-1} \text{ ton}$$

e)
$$2 \times 10^4 \frac{\text{m}}{\text{s}} = 2 \times 10^4 \frac{\text{m}}{\text{s}} \cdot \frac{1 \text{ km}}{1000 \text{ m}} \cdot \frac{3600 \text{ s}}{1 \text{ h}} = 7,2 \times 10^4 \frac{\text{km}}{\text{h}}$$

$$f) \ \ 4 \times 10^2 \frac{\rm g}{\rm cm^3} = 4 \times 10^2 \frac{\rm g}{\rm cm^3} \cdot \frac{\rm 1 \ kg}{\rm 1000 \ g} \cdot \left[\frac{\rm 100 \ cm}{\rm 1 \ m} \right]^3 = 4 \times 10^5 \frac{\rm kg}{\rm m^3}$$

g)
$$6 \times 10^4 \text{ mm}^3 = 6 \times 10^4 \text{ mm}^3 \cdot \left[\frac{1 \text{ m}}{1000 \text{ mm}}\right]^3 \cdot \frac{1000 \text{ L}}{1 \text{ m}^3} = 6 \times 10^{-2} \text{ L}$$

h)
$$2 \times 10^3 \frac{\text{kg}}{\text{m}^3} = 2 \times 10^3 \frac{\text{kg}}{\text{m}^3} \cdot \frac{1000 \text{ g}}{1 \text{ kg}} \cdot \left[\frac{1 \text{ m}}{100 \text{ cm}}\right]^3 = 2 \times 10^0 \frac{\text{g}}{\text{cm}^3}$$

i)
$$85 \times 10^4 \frac{\text{ft}}{\text{s}} = 85 \times 10^4 \frac{\text{ft}}{\text{s}} \cdot \frac{3600 \text{ s}}{1 \text{ h}} \cdot \frac{1 \text{ mi}}{5280 \text{ ft}} = 5,795 \times 10^5 \frac{\text{mi}}{\text{h}}$$

- $j)~85\times 10^8~{\rm cm^2} = 85\times 10^8~{\rm cm^2}\cdot \left[\frac{1~{\rm m}}{100~{\rm cm}}\right]^2 = 8,5\times 10^5~{\rm m^2}$
- k) $62 \times 10^8 \text{ s} = 62 \times 10^8 \text{ s} \cdot \frac{1 \text{ h}}{3600 \text{ s}} \cdot \frac{1 \text{ dia}}{24 \text{h}} = 7,176 \times 10^4 \text{ dias}$
- l) $4 \times 10^{-2} \text{ km} = 4 \times 10^{-2} \text{ km} \cdot \frac{1000000 \text{ mm}}{1 \text{ km}} = 4 \times 10^4 \text{ mm}$
- m) $3 \times 10^3 \text{ ton} = 3 \times 10^3 \text{ ton} \cdot \frac{1000 \text{ kg}}{1 \text{ ton}} = 3 \times 10^6 \text{ kg}$
- n) $3 \times 10^4 \frac{\text{m}}{\text{s}^2} = 3 \times 10^4 \frac{\text{m}}{\text{s}^2} \cdot \frac{100 \text{ cm}}{1 \text{ m}} = 3 \times 10^6 \frac{\text{cm}}{\text{s}^2}$