

LessElegantNote: 一个 Typst 笔记模版

作者: IxionWheel

日期: 2024/07/14

目 录

第一章 模版简介	. 1
1.1 模版下载	
1.2 模版使用	. 1
第二章 模版设置说明	. 2
2.1 封面设置	. 2
2.2 文章格式设置	. 2
2.2.1 正文格式	. 2
2.2.2 标题格式	. 2
2.2.3 列表格式	. 2
第三章 写作示例	. 3
3.1 列表	. 3
3.1.1 无序列表	. 3
3.1.2 有序列表	. 3
3.1.3 术语列表	. 3
3.2 图表	. 3
3.3 数学公式	. 3
3.4 定理环境	. 4
3.5 代码块	. 5
A 附录	. 6
A.1 子标题	. 6

第一章 模版简介

本项目是一个 Typst 笔记模板。

1.1 模版下载

- 1. 打开项目 Github 页面(https://github.com/IxionWheel/LessElegantNote)。
- 2. 点击绿色 Code 按钮,下载 ZIP 压缩包。
- 3. 解压到你喜欢的位置。
- 4. 在 vscode 中**打开整个文件夹**,并安装 *Tinymist Typst* 插件。
- 5. 打开 example/less-elegant-note.typ, 检查能否预览。

1.2 模版使用

- 1. 参照 less-elegant-note.typ,编写你自己的笔记。
- 2. 例如可在 LessElegantNote 下新建一个 mynotes 文件夹, 在其中新建一个 数学.typ 文件, 并输入如下基础内容。

```
#import "../lib.typ": *
1
2
3 #let (
4
    // 布局函数
5
     twoside, doc, mainmatter, appendix, preface,
6
     // 页面函数
7
     fonts-display-page, cover, outline-page,
8
   ) = documentclass(
     twoside: false, // 双面模式,会加入空白页,便于打印
10
     info: (
     title: ("数学笔记"),
11
       author: "张三",
12
       submit-date: datetime.today(),
13
       cover-image: "", // 封面图片路径, 注意是相对于 pages/elgeant-cover.typ 的路径
14
15
       numbering-style:"maths" // "maths": 数学或论文风格的标题编号 | "literature": 文学风格的标题编号
16
     ),
17 )
18 // 文稿设置
19 #show: doc
20
21 #cover()// 封面页
22
23 // 前言部分
24
  #show: preface
25
26 #outline-page()// 目录
   // 正文部分
29 #show: mainmatter
30
31 = 章节标题
32
33
   <u>== 子标题</u>
34
35 正文内容
```

第二章 模版设置说明

- 2.1 封面设置
- 2.2 文章格式设置
- 2.2.1 正文格式
- 2.2.2 标题格式
- 2.2.3 列表格式

第三章 写作示例

3.1 列表

3.1.1 无序列表

- 1 无序列表项一
- 2 无序列表项二
- 3 无序子列表项一
- 4 无序子列表项二
 - 无序列表项一
 - 无序列表项二
 - · 无序子列表项一
 - · 无序子列表项二

3.1.2 有序列表

- 1 + 有序列表项一
- 2 + 有序列表项二
- 3 + 有序子列表项一
- 4 + 有序子列表项二
- 1. 有序列表项一
- 2. 有序列表项二
 - 1. 有序子列表项一
 - 2. 有序子列表项二

3.1.3 术语列表

1 / **术语一**: 术语解释 2 / **术语二**: 术语解释

术语一 术语解释 术语二 术语解释

3.2 图表

引用表 3.1,引用表 3.2,以及图 3.1。引用图表时,表格和图片分别需要加上 tbl:和 fig:前缀才能正常显示编号。

表 3.1 常规表

t	1	2	3
у	0.3s	0.4s	0.8s

表 3.2 三线表

t	1	2	3
у	0.3s	0.4s	0.8s

图 3.1 图片测试

3.3 数学公式

可以像 Markdown 一样写行内公式 x+y, 以及带编号的行间公式:

$$\phi \coloneqq \frac{1+\sqrt{5}}{2} \tag{3.1}$$

引用数学公式需要加上 eqt: 前缀,则由公式 (3.1),我们有:

$$F_n = \left\lfloor \frac{1}{\sqrt{5}} \phi^n \right\rfloor \tag{3.2}$$

我们也可以通过 <-> 标签来标识该行间公式不需要编号

$$y = \int_1^2 x^2 \, \mathrm{d}x$$

而后续数学公式仍然能正常编号。

$$F_n = \left\lfloor \frac{1}{\sqrt{5}} \phi^n \right\rfloor \tag{3.3}$$

3.4 定理环境

定理 3.4.1 (Euclid)

There are infinitely many primes.

定义 3.4.1

A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

例题 3.4.1

The numbers 2, 3, and 17 are prime. 推论 3.4.1 shows that this list is not exhaustive!

证明: Suppose to the contrary that $p_1, p_2, ..., p_n$ is a finite enumeration of all primes. Set $P = p_1 p_2 ... p_n$. Since P+1 is not in our list, it cannot be prime. Thus, some prime factor p_j divides P+1. Since p_j also divides P, it must divide the difference (P+1)-P=1, a contradiction.

推论 3.4.1

There is no largest prime number.

推论 3.4.2

There are infinitely many composite numbers.

定理 3.4.2

There are arbitrarily long stretches of composite numbers.

证明: For any n > 2, consider

 $n! + 2, \quad n! + 3, \quad ..., \quad n! + n$ (3.4)

3.5 代码块

```
1 ```py
2 def add(x, y):
3   return x + y
4 ```
```

A 附录

A.1 子标题

附录内容