

Readings for today

• Vergassola, M., Villermaux, E., & Shraiman, B. I. (2007). 'Infotaxis' as a strategy for searching without gradients. Nature, 445(7126), 406-409.

Topics

- Review of chemotaxis
- Infotaxis by entropy reduction

Review of chemotaxis

Chemotaxis

Movement in response to a chemical stimulus.

https://routledgetextbooks.com/textbooks/9780815344506/videos.php

The chemosensing algorithm

Accumulate evidence caccumulation noise
$$e_t = \gamma * \nabla o + \eta$$
 accumulation rate

Make decision

$$\theta_t = \begin{cases} \theta_{t-1}, & \text{if } e_t < a \\ U(-\pi,\pi), & \text{if } e_t \geq a \end{cases}$$
 angle random turn

The limitations of chemotaxis

The problem of dilution

In many natural environments, the dispersal of a chemical will lead to a fast reduction in the signal-to-noise and loss of the gradient altogether.

Infotaxis by entropy reduction

Search for information

Infotaxis

A search strategy that organisms or algorithms use to find a source of interest by optimizing the acquisition of information from the environment, often in situations where the source is intermittently detectable or has a sparse distribution.

A balance between exploring areas of uncertainty and exploiting areas where the source has been previously detected.

Infotaxis algorithm

Shannon entropy

detection probability

$$H(s) = -\sum_{\mathbf{x}} p(\mathbf{x}) \log_2 \mathbf{p}(\mathbf{x})$$
belief state $s = [\mathbf{x}^a, p(\mathbf{x})]$

Expected entropy

upon taking action a in belief state s

$$H(s \mid a) = \sum_{s'} \Pr(s' \mid s, a) H(s')$$
successor state

Information gain

with action a in belief state s

$$G(s, a) = H(s) - H(s \mid a)$$

Infotaxis policy

Select the action a that maximizes the expected information gain in belief s

$$\pi^{info}(s) = \underset{a}{\operatorname{arg min}} \sum_{s'} \Pr(s' \mid s, a) H(s'),$$

Maximizing information gain

Information gain is entropy reduction

Note: In Vergassola et al. 2007, S is used as the symbol for entropy. Here we use the traditional H

Infotaxis policy in more detail

Infotaxis policy

$$\pi^{info}(s) = \underset{a}{\arg\min} \sum_{s'} \Pr(s' \mid s, a) H(s')$$

$$= \underset{a}{\arg\max} G(s, a)$$

$$= \underset{a}{\arg\min} H(s \mid a)$$

At each time step, the searcher chooses the direction that **locally maximizes the expected rate of information acquisition**. Entropy decreases faster closer to the source because cues arrive at a faster rate.

Optimal source-tracking policy

$$\pi^*(s) = \underset{\pi}{\operatorname{arg\,min}} \mathbb{E}_{p_0,\pi}[T] \longrightarrow T = \text{search duration}$$

$$= \underset{a}{\operatorname{arg\,min}} \sum_{s'} \Pr\left(s' \mid s, a\right) \left[1 + v^*(s')\right]$$
Bellman optimality

Optimal Infotaxis policy

$$\pi^*(s) = 1 + \arg\min_{a} \sum_{s'} \Pr(s' \mid s, a) v^*(s')$$

Efficiency of infotaxis

Without wind

Scent detection (hit)

With wind

Infotaxis allows for a fast and efficient search in high entropy environments by tracking the information obtained from sparse signal detection events.

Robustness of infotaxis

Infotaxis allows is effective even in dynamic environments where the spatial distribution of signal varies with time.

Take home message

- Chemotaxis can fail when the signal becomes so sparse that the gradient disappears.
- Infotaxis uses the information gained from sparsely occurring events as a policy to determine search.
- Infotaxis allow for fast and efficient search behaviors in dynamic, low-signal environments.

Lab 8: Infotaxis

URL: https://coaxlab.github.io/BIX-book/notebooks/lab8-infotaxis.html

