Case 2 COVID-19 Pneumonia
Detection

2021/11/23 **CT\_01\_B@seLine** 





### **Outline**

**NI** INTRODUCTION

- Background
- Dataset

03 EXPERIMENT

- Experiment settings
- Experiment results

**METHODS** 

- Data preprocess
- Model structures

**DISCUSSION** 

Our thoughts

01.

## Introduction

- Background
- Dataset





- Typical pneumonia
  - respiratory symptoms
  - o lobar pneumonia
- Atypical pneumonia
  - fever
  - headache
  - sweating
  - o myalgia
  - bronchopneumonia







#### **Dataset - Label Distribution**

#### **COVID-19 Pneumonia Detection**

- Dataset for developing AI Models
  - 400 Non-Pneumonia
  - 400 Typical Pneumonia
  - 400 Atypical Pneumonia
- Dataset for validating AI Models
  - 50 Non-Pneumonia
  - 50 Typical Pneumonia
  - 50 Atypical Pneumonia



# Dataset - Samples

- Non-unified image sizes
- Slightly rotation

ID: 0003b2210c64 lebel: Typical P.I: MONOCHROME2 img.shape=(3480, 4248) range=(0~4095]





ID: 00af6f8c2a3d



ID: 00c9033fbc2e

# Dataset - Samples (cont'd)

Inverted color scale



ID: f697eb6613ca lebel: Negative P.I: MONOCHROME2 img.shape=(3032, 3032) range=[0~4095]



02.

## **Methods**

- Data preprocess
- Model structures



# Preprocessing



stacking 9

# Methods: Data Augumentation

Resize

Original image







Random Rotation

Original image







Random Crop

Original image







Random Invert

Original image







- ResNet101
- DenseNet121
- EfficientNet B0~B4



Source: Tan, M., & Le, Q.V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. *ArXiv, abs/1905.11946*.



#### **Ensemble Models**

Model Backbone: EfficientNet B4 (pretrained on ImageNet)

- Model 1:
  - Data: Negative:Typical:Atypical=2:3:3
- Model 2:
  - Data: Negative:Typical:Atypical=1:3:0
- Model 3:
  - Data: Negative:Typical:Atypical=1:0:3





## **Ensemble Model**



03.

# **Experiment**

- Experiment settings
- Experiment results





|                      | Model Backbone  | Dataset          | Data Augmentation                    | # of models |
|----------------------|-----------------|------------------|--------------------------------------|-------------|
| Baseline             | EfficientNet B4 | 256x256 Image    | None                                 | 1           |
| With data preprocess | EfficientNet B4 | Fuzzy & Stacking | Negative: +1<br>Typical/Atypical: +2 | 1           |
| Ensemble             | EfficientNet B4 | Fuzzy & Stacking | Refer to P.13                        | 3           |



# **Experiment Result**

|                         | Test F1-score | FI-score on public<br>leaderboard |
|-------------------------|---------------|-----------------------------------|
| Baseline                | 58.4%         | 53.33%                            |
| With data<br>preprocess | 61.5%         |                                   |
| Ensemble                | 64.0%         | 54.85%                            |



# **Experiment Result**

#### **Baseline**



#### With data preprocess





# **Experiment Result**

#### **Ensemble**



04.

**Discussion** 





#### Discussion

- Preprocessing
- 2-class v.s. 3-class (poor performance of typical/atypical)
  - weighted loss
  - o data imbalance / augmentation
  - o ensemble
- Blnary classification
  - 0 0/1:0.77
  - 0 1/2:0.61
  - 0/2:0.68
- proper image size
  - o 64 / 128: 0.55~0.58 (few param)
  - 0 192 / 224: 0.59~0.64
  - 264 / 272: 0.57~0.61(too complex)



- Proper image size
  - 64 / 128: 0.55~0.58(few param)
  - 0 192 / 224: 0.59~0.64
  - 264 / 272: 0.57~0.61(too complex)





#### Reference

- Tan, M., & Le, Q.V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. *ArXiv, abs/1905.11946*.
- https://github.com/ieee8023/covid-chestxray-dataset
- COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches

# Thank you!

The codes for this experiment are available at

https://github.com/tim310579/Digital-Medicine-Case-Presentation.git



## **Team Member Contribution**

|                  | Dataset Parsing | Preprocessing | Data Augmentation | Model/Analysis | Result Presentation |      |
|------------------|-----------------|---------------|-------------------|----------------|---------------------|------|
|                  |                 |               |                   |                | Slides              | Oral |
| 林亦盛<br>309551074 | V               | V             | V                 | V              | V                   | V    |
| 周君諦<br>310551136 | V               | V             | V                 | V              | V                   | V    |
| 陳昱銘<br>310554007 | V               | V             | V                 | V              | V                   | V    |