CPE Lyon - 3IRC Année 2021/2022

Structures de données et algorithmes avancés

Séance 2 - Complexité des algorithmes

Exercice 1. Dénombrer le nombre d'instructions d'un programme

Pour chacun des extraits de code suivants, exprimez à l'aide d'un $\mathcal{O}(f(n))$ le nombre d'opérations élémentaires effectuées (on négligera le temps passé par l'instruction for elle-même) :

```
1. Programme 1:
```

```
1 test = 0
2 for i in range(n):
3    test = test + 1
4
5 for j in range(n):
6    test = test - 1
```

 $\[\]$ En Python, range(n) renvoie l'intervalle des nombres entiers [0; n-1].

2. Programme 2:

```
1 test = 0
2 for i in range(n):
3    for j in range(n):
4    test = test + i * j
```

3. Programme 3:

```
1 a=5
2 b=6
3 c=10
4 for i in range(n):
     for j in range(n):
6
         x = i * i
7
         y = j * j
         z = i * j
  for k in range(n):
10
      w = a*k + 45
11
      v = b*b
12 d = 33
```

4. Programme 4:

```
1 i = n
2 while i > 0:
3     k = 2 + 2
4     i = i // 2
```

5. Programme 5:

```
1  sum = 0
2  for i from 1 to n*n:
3    for j from 1 to i:
4       for k from 1 to 6:
5       sum = sum + 1;
```

Exercice 2. Croissance de fonctions

Classez les fonctions suivantes par ordre de croissance :

Pour des exemples d'algorithmes ayant ces complexités : https://en.wikipedia.org/wiki/Time_complexity

Exercice 3. Comparaison de temps d'exécution

Pour chaque fonction f(n) et durée de calcul t du tableau suivant, déterminer la plus grande taille n d'un problème pouvant être résolu pendant la durée t, en supposant que si n=1, le problème est résolu est f(n) microsecondes.

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
lg n							
\sqrt{n}							
n							
$n \lg n$							
n^2							
n^3							
2^n							
n!							

Exercice 4. Notations \mathcal{O}

Vrai ou faux?

1.
$$11x^3 = O(87x^2)$$

2.
$$x^{13} = O(3^x)$$

3.
$$-2x = O(58 \log_{35} x)$$

4.
$$4x^3 + 12x^2 + 36 = O(x^3)$$

5.
$$0.01x^5 = O(48x^4)$$

6.
$$4^x = O(x^7)$$

7.
$$3x \log_2 x = O(25x)$$

8.
$$23 \ln x = O(3x)$$

9.
$$7x^5 = O(x^5)$$

10.
$$x^5 = O(7x^5)$$

Exercice 5. Notations $\mathcal{O}, \Omega, \Theta$

En utilisant les définitions, montrez que $3n^2 - 100n + 6 = \Theta(n^2)$.