Diagnosis + Compression

Team: Name: Score: Reviewer:	Team:	Name:	Score:	Reviewer:
------------------------------	-------	-------	--------	-----------

CW 每次一小時,總共六十分,互相交換改。

各題批改標準:方法對答案錯一處扣該題總分20%(同一原因扣一次)。方法錯一處扣60%。有爭議給助教改。

Each CW has 60 points in total. Answer time is one hour. Swap your test sheet with others for grading purposes. Grading criteria for each problem: if an answer is wrong but the method is correct, 20% of the total score of this problem will be deducted (Multiple wrong answers with the same root cause are treated as one). 60% deduction for a wrong method. Ask the TAs if there are disputes about grading criteria.

Problem 1 Diagnosis < video 10.3 > (15 points)

Consider the following circuit and single stuck-at fault model. We apply 4 patterns $abcd = \{0111, 0011 \ 1001, 1011\}$. Consider only a/0, c/1, e/1, h/0, g/0, g/1.

- **A.** Assume the circuit fails the 4th test pattern. Please diagnose the circuit using **dynamic cause** effect diagnosis. Show how you remove faults by the three rules.
- **B.** Show the partial fault dictionary with scores 10×TFSF TPSF. What's the diagnosed fault?
- A. Please fill in the good values into the following table first.

pattern #	a	b	c	d	e	h	g
1	0	1	1	1	0	1	1
2	0	0	1	1	1	1	0
3	1	0	0	1	0	0	1
4	1	0	1	1	0	1	1

Step 1. Structural backtracing

Only one primary output, no faults can be eliminated

Step 2. Parity check

Example : a/0: v = 0; p = 0; f = 0 $v \oplus p = 0$ fault remains

c/1: v = 1; p = 1; f = 0 $v \oplus p = 0$ fault remains

e/1: v = 1; p = 1; f = 0 $v \oplus p = 0$ fault remains

h/0: v = 0; p = 1; f = 0 $v \oplus p = 1$ fault eliminated

g/0: v = 0; p = 0; f = 0 $v \oplus p = 0$ fault remains

g/1: v = 1; p = 0; f = 0 $v \oplus p = 1$ fault eliminated

Step 3. Excitation condition check

c/1 eliminated due to no excitation (c = 1 in the 4th pattern)

B. Please fill in the following table as your partial fault dictionary.

Fault	Pattern1	Pattern2	Pattern3	Pattern4	TFSF	TPSF	Score (10×TFSF - TPSF)
a/0				X	1	0	10
e/1	X			X	1	1	9
g/0	X		X	X	1	2	8
Test Failure				X			

The diagnosed single stuck-at fault is $\frac{a}{0}$

Diagnosis + Compression

Problem 2 PODEM-X < video 15.1 > (15 points)

Consider the following circuit.

The primary fault is g SA0 fault and the secondary fault is f SA0.

Please generate a test pattern using PODEM-X algorithm. If the test doesn't exist, please explain. Use level for easy/hard to control input when backtracing.

Diagnosis + Compression

Objective: f = 1

Backtrace to PI: a = 1

Implication: f = D, k = D, fault detected

New test cube: $abcde = 1 \ 0 \ 0 \ x$

Problem 3 Static Test Compression<Video 15.2> (15 points)

Consider the following covering table (X = detection). Please answer

- **A.** Which are essential faults?
- **B.** Which are dominated rows?
- **C.** After remove dominated rows, which are dominating columns?
- **D.** What is minimum test set?
- **E.** List 01-ILP objective and all constraints (consider the original table)

	$\mathbf{f_1}$	\mathbf{f}_2	\mathbf{f}_3	f ₄	\mathbf{f}_5
t_1	X		X		X
\mathbf{t}_2		X	X		
t ₃	X			X	
t ₄	X	X	X		X

- A. f₄
- B. $t_1 \cdot t_2$
- C. f₁ is dominating column
- D. t3 · t4
- E. $t_i = 1$ if test *i* is selected; $t_i = 0$ otherwise.

Objective: $\min t_1 + t_2 + t_3 + t_4$

Constraint1: $t_1 + t_3 + t_4 \ge 1$ (for f_1)

Constraint2: $t_2 + t_4 \ge 1$ (for f_2)

Constraint3: $t_1 + t_2 + t_4 \ge 1$ (for f_3)

Constraint4: $t_3 \ge 1$ (for f_4)

Constraint5: $t_1 + t_4 \ge 1$ (for f_5)

Diagnosis + Compression

Problem 4 Tseng-Siewiorek Algorithm < video 15.2> (15 points)

For the following patterns, please use Tseng-Siewiorek Algorithm to find minimal test cube.

Pattern						
1	1	X	0	X	X	X
2	0	X	0	0	1	0
3	1	0	0	1	0	X
4	X	0	X	1	X	1
5	X	1	1	X	1	1
6	0	X	X	1	0	X
7	X	1	0	1	0	0
8	1	X	1	0	X	X

Diagnosis + Compression

Problem 5 PODEM-X < video 15.1 > (self-practice)

Please redo problem 2 using PODEM-X, while swap the primary and the secondary fault.

(Primary fault f SA0, secondary fault g SA0)

