Montagill februar 2022

Klausur Elmess Termin 2

20/49

Aufgabet: Gleiche Lösmyn und Fehler wie Hbitketchie-Koudjo-

a) Mittelwort? Verstoß gegen die Eigenstandigkeitserklärung!

J=1 5 N SK

J= 1 (.81,2+83,5+84,8+79,5+810)

J= 82°C 1

Die statistische Standardabweichung?

S=\N-1 \Z_K=1 (OK-9-)2

S= \ \ \ \frac{1}{4} \left[-0.82 + 1.52 + 2.82 + (-2.5)2 + (-1)2 \right]

= 1 (3,18) -0.93 = 1 (4,98) -9,12

S= 8,12(1) Einheit fehet

Aus der Tabelle 6,2 liest man für n=5 und des Vertraummeren 95% den Vertrauenfakter t5,95 = 2,78 Taja Talla Durcherheit Wilfrid Leya bd= 1 .t5,95.5= 1 . 2,78.2,12=2,63 °C Natrikelnummer: DU= 2,638 1 5137536 b) Vallständiges Messergebnis? Laut Datenblatt gilt AD = 0,5 % VoH +10D D=0,100 DD= 0,5% x 82°C +10x0,1=1,41°C/ \$0=(82 ± 1,41) 6 Aufgabe 4. Verstärkung La? U-= U+ = Of (Idealisierung) U = 48 · Ua = 48 · Ua Herleiteng bow. mit L. = L = Le v orgitet sich: Begründung mit In = 0 fehlt Le = 4A · Da => De = 4 · Da Va= 5 Le & Ua = 5 (1)

Taja Talla
Wilfrid kya
Matrikelnummer
5 137536

Aufgabe 2.

a) Umin Abhängigkeit van A.B und Jargeben:

Um (A,B,J)=5m A.R(J)-LOV

mit A(J) = Ro. (1+A++B. 02)

Lm (A, B, J) = 5 mA. Po. (1+A++B++) -LOV

= 5 m A. 2KS (1+AJ+B.J2)-10V

= LOV (1+AJ+B.J2)-LOV

= 10V + 10V (A-J+B. 92)-10V

Um (A, B, 9) = Lov (AJ+B, 92)

b) Um (100°C)?

Um (100°C) = LOV (A-(100°C) +B-(100°C)2)

Dim (1000) = 100 (100°(A+10.000(B)

= LOV (100 (x 0,000 x 2.105 - 2)

= Nov (0,8+0,2)

Din (100°L) = 10 V

2

Tago Talla Wilfred Leya Matrikelnummer 5137536

E =
$$\frac{\Delta y}{\Delta x} = \frac{\Delta M_m}{\Delta \theta} = \frac{D_m}{\theta} = \frac{10V}{100^{\circ}C} = 0.4V.C^{1}$$

E = $0.14V.C^{1}$

d) $D_m(\theta) = 1.0VA\theta + 1.0VB\theta^{2}$
 $\Rightarrow 1.0V.A\theta + 1.0VB\theta^{2} = D_m(\theta) = 0$
 $O_{1/3} = -\frac{A}{4B} + \sqrt{\frac{A^2}{B^2}} = D_m$

denn 0.70 ist, 0.05
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0.70
 0

Tye Talla Wifud Leya Aufgabe 6 tatukelhummer a) TM=55. Die Aufläsung St des DFT-Spektrums 6 5437536 b) für m=1= DH) = 3V +12V. sin (2(1)-1)-40TI (3.1) Ult) = 15V (sin k ott rad t) * Fun 1= 2 D(t) = 3V+12V- 1 sin ((2(2)-1)-40TT red +) 11(t) = 9 Vrin (120TT rad .+) * Fish m=3 U(t) = 3V +12V-3 run (2(3)-1)40172d .t) Withness Zyrun (200TT rad +) 0 Skizzioning: felili

Taga Talla Aufgabe 3 Wilfrid Leya Hatu Kelnummer: for an Ac Co C = an A for an anna some 5437536 C=318,309 mF * Unichesheit DC? DCA = 88 .DA = - 27 /8 - 19/2 - DA = - 211. 500H3 1000) 1000 DC & = -3,183nF DC & = 8c . Dly = -211 R (211-49-8) Dly = - (211 - 1000 1 - 1000 1 - 1000 1 - 1000 DC= \DCn2+DG2 = \((-3,183nF)^2+(-6,37nF)^2 = 7,417mF DC=7,127mF / 3

Taja Talla Wilfred Loya Katri Kelnummer 5137536

Ihren Widerstand?

Unsicherheit?

2

laja Talla Aufgabe 5 Wilfred Leya Hatu Kelnummer: A Y-Achre: In (R(T)) x-Achre: 1 - 1 To 5137536 bzw, wenn To die niedrigste Temperatur der Mensreihe it, benen y-Achre: In (A(To)); X-Achre: 1 -1