Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica – Canale 1 - Meneghesso

Compitino 2 Simulazione n. 1

N.B. le domande nel 2 compitino saranno 20, in questa simulazione ne ho messe di più

- 1) Un amplificatore differenziale con ingressi v_1 e v_2 fornisce in uscita un segnale v_0 che è proporzionale a:
 - a) la somma di v₂ e v₁
 - b) la derivata di v₁ rispetto a v₂
 - c) la differenza tra v₂ e v₁
- 2) Se diciamo che un amplificatore guadagna 20dB, significa che:
 - a) Il suo guadagno è 20
 - b) Il suo guadagno ha modulo 10
 - c) Il suo guadagno ha modulo 20
- 3) Un amplificatore di corrente si rappresenta con un doppio bipolo che all'ingresso ha una resistenza e in uscita:
 - a) Un generatore di corrente pilotato in corrente in parallelo ad una resistenza
 - b) Un generatore di corrente pilotato in tensione in parallelo ad una resistenza
 - c) Un generatore di corrente pilotato in corrente in serie ad una resistenza
- 4) Idealmente la resistenza di ingresso di un amplificatore di tensione dovrebbe essere:
 - a) Infinita
 - b) Nulla
 - c) Uguale alla resistenza di uscita
- 5) Idealmente la resistenza di uscita di un amplificatore di corrente dovrebbe essere:
 - a) Infinita
 - b) Nulla
 - c) Uguale alla resistenza di ingresso
- 6) Il circuito ai piccoli segnali di un MOSFET in saturazione è:
 - a) Un amplificatore di tensione
 - b) Un amplificatore di corrente
 - c) Un amplificatore di transconduttanza
- 7) Il circuito ai piccoli segnali di un PMOS è:
 - a) Uguale a quello di un NMOS
 - b) Uguale a quello di un NMOS, ma il generatore di corrente ha il verso invertito
 - c) Uguale a quello di un NMOS, ma il generatore di corrente è sostituto da un generatore di tensione
- 8) Nel modello ai piccoli segnali del MOSFET, la modulazione della lunghezza di canale introduce:
 - a) Un generatore di corrente pilotato in tensione collegato all'uscita.
 - b) Una resistenza in serie all'uscita.
 - c) Una resistenza in parallelo all'uscita.
- 9) Se un carico è accoppiato in AC all'uscita dell'amplificatore, significa che:
 - a) è collegato direttamente all'uscita dell'amplificatore
 - b) tra carico e amplificatore è presente un condensatore in serie
 - c) tra carico e amplificatore è presente un condensatore in parallelo
- 10) Uno stadio elementare in cui il segnale di ingresso è applicato al source del MOSFET è:
 - a) Source comune
 - b) Drain comune
 - c) Gate comune
- 11) Il guadagno di tensione di uno stadio elementare a source comune con resistenza al source è (in modulo):
 - a) Maggiore del guadagno di tensione di uno stadio a source comune senza resistenza al source.
 - b) Minore del guadagno di tensione di uno stadio a source comune senza resistenza al source.
 - c) Uguale al guadagno di tensione di uno stadio a source comune senza resistenza al source.

- 12) Uno stadio elementare a gate comune è caratterizzato da:
 - a) Guadagno di tensione circa unitario
 - b) Guadagno di tensione negativo
 - c) Guadagno di tensione positivo
- 13) Uno stadio elementare a drain comune è caratterizzato da:
 - a) Resistenza di ingresso e di uscita abbastanza alte
 - b) Resistenza di ingresso abbastanza alta e bassa resistenza di uscita
 - c) Guadagno di tensione elevato
- 14) Dato il circuito in figura, che rappresenta un amplificatore elementare a MOSFET. Che configurazione è?
 - a) Source comune
 - b) Gate comune
 - c) Drain comune

- 15) Nello stadio differenziale realizzato con una coppia di MOSFET M₁ e M₂, il guadagno di modo comune è:
 - a) Nullo
 - b) Infinito
 - c) Piccolo ma non nullo
- 16) Il rapporto di reiezione del modo comune (CMRR) indica:
 - a) Il rapporto tra il guadagno di modo comune e quello di modo differenziale
 - b) Il rapporto tra il guadagno di modo differenziale e quello di modo comune
 - c) La differenza tra il guadagno di modo differenziale e quello di modo comune
- 17) Per realizzare un amplificatore di tensione a due stadi, quali delle seguenti alternative è la migliore
 - a) Primo stadio a source comune, secondo stadio a gate comune
 - b) Primo stadio a source comune, secondo stadio a drain comune
 - c) Primo stadio a gate comune, secondo stadio a drain comune
- 18) Un amplificatore operazionale ideale ha:
 - a) Guadagno di modo differenziale infinito e guadagno di modo comune nullo
 - b) Guadagno di modo differenziale nullo e guadagno di modo comune infinito
 - c) Guadagno di modo differenziale unitario
- 19) In un AO ideale (con guadagno infinito) il principio del cortocircuito virtuale si riferisce al fatto che gli ingressi hanno lo stesso potenziale. Ciò avviene in generale:
 - a) Sempre
 - b) Se l'amplificatore lavora in retroazione
 - c) Se l'amplificatore lavora in retroazione negativa
- 20) Dato il circuito in figura realizzato con un operazionale ideale. Il guadagno è:
 - a) $1 + R_2/R_1$
 - b) $1 R_2/R_1$
 - c) $1 + R_1/R_2$

- 21) Dato il circuito in figura realizzato con un operazionale ideale. La tensione di uscita vale:
 - a) I_s·R
 - b) $-I_{S}\cdot R$
 - c) $-I_S/R$

- 22) In un amplificatore operazionale reale in retroazione negativa:
 - a) La differenza di potenziale tra gli ingressi è sempre positiva
 - b) La differenza di potenziale tra gli ingressi è sempre negativa
 - c) La differenza di potenziale tra gli ingressi è piccola ma non nulla
- 23) Come è possibile tenere conto dell'effetto della corrente di bias in un operazionale reale?
 - a) Aggiungendo un generatore di corrente costante tra l'uscita e la massa
 - b) Aggiungendo un generatore di corrente costante tra i due ingressi
 - c) Aggiungendo una coppia di generatori di corrente costante tra ciascun ingresso e la massa

- 24) Se un amplificatore operazionale reale ha guadagno di modo differenziale 80dB e un CMRR di 60dB, il guadagno di modo comune ha modulo:
 - a) Maggiore di 1
 - b) Uguale a 1
 - c) Minore di 1
- 25) Dato il circuito in figura realizzato con un operazionale reale con $V_{OS} = 0.01V$,

 $R_1 = 1k\Omega$, $R_2 = 10k\Omega$. Se $v_1 = 0$, la tensione di uscita vale:

- a) 0.1V
- b) 0.11V
- c) 0V

26) Dato il circuito in figura realizzato con un operazionale reale con IBIAS = 100nA,

 $R_1 = 1k\Omega$, $R_2 = 10k\Omega$. Se $v_1 = 0$, il modulo della tensione di uscita vale:

- a) 1 mV
- b) 0.1 mV
- c) 10 mV
- 27) Dato il circuito in figura realizzato con un operazionale reale e R_1 = 2 k Ω , R_2 = 6 k Ω . Per ridurre l'effetto della corrente di bias è necessario collegare il terminale non invertente dell'operazionale a massa mediante una resistenza

- a) $1k\Omega$
- b) $1,5k\Omega$
- c) $3 k\Omega$
- 28) Un filtro passa-alto amplifica correttamente segnali che hanno:
 - a) frequenza sufficientemente superiore alla frequenza di taglio
 - b) frequenza sufficientemente inferiore alla frequenza di taglio
 - c) frequenza compresa tra due frequenze (frequenza di taglio inferiore e frequenza di taglio superiore)
- 29) Che funzione svolge il circuito in figura?

- b) Filtro passa-banda
- c) Filtro passa-alto

- 30) Data la funzione di trasferimento il cui diagramma di bode del modulo è mostrato in figura. Essa ha:
 - a) Un polo nell'origine
 - b) Uno zero nell'origine
 - c) Né poli né zeri nell'origine

31) Sia dato un filtro la cui funzione di trasferimento è mostrata in figura. Se all'ingresso è applicato un segnale costante $v_s = 0.1V$, quanto vale il modulo della tensione di uscita?

- b) 10V
- c) **0V**

- 32) Sia data la funzione di trasferimento il cui diagramma di bode della fase è rappresentato in figura. Essa ha:
 - Uno zero nell'origine, uno polo doppio a 10³ rad/s e un polo singolo a 10⁵ rad/s

33) Dato il circuito in figura, sapendo che R = 1 k Ω , C = 10 μ F, v_i = 1V. All'istante t₀ applico la tensione v_i , quanto vale v_o a t_0 + 10 ms? (C inizialmente scarico)

- b) -10V
- c) -100V

