

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017

وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: تكنولوجيا (هندسة مدنية)

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على 03 صفحات (من الصفحة 1 من 7 إلى الصفحة 3 من 7)

الميكانيك التطبيقية: (12 نقطة)

النشاط الأول: (06 نقاط)

رافدة معدنية ترتكز على مسندين، محملة كما هو موضح في الشكل (01).

A: مسند بسیط

المطلوب:

- \mathbf{B}) \mathbf{A} احسب ردود الأفعال في المسندين
- 2) اكتب معادلات الجهد القاطع T وعزم الانحناء Mf على طول الرافدة وارسم منحنييهما البيانيين.
- مدد مقطع المجنب $\frac{1}{1}$ اللازم والكافي لتحقيق شرط المقاومة علما أن عزم الانحناء الأعظمي المطبق على حدد مقطع المجنب $\frac{1}{1}$ $\frac{1}{1$

مجنب IPN	$I/_{xx}$, (cm ⁴)	$\mathbf{W}_{\mathbf{x}\mathbf{x}'}(\mathbf{cm}^3)$	S (cm ²)
180	1450	161	27.90
200	2140	214	33.50
220	3060	278	39.60
240	4250	354	46.10

النشاط الثاني: (06 نقاط)

يبين الشكل (02) نظامًا مثلثيًا محددا سكونيا، يرتكز على مسندين: A مسند مزدوج و B مسند بسيط.

: يعطى: $\cos \alpha = 0.976$ $\sin \alpha = 0.217$ $\cos \beta = 0.747$ $\sin \beta = 0.664$

العمل المطلوب:

- 1) احسب ردود الأفعال عند المسندين A و B.
- (2) باستعمال الطريقة التحليلية (عزل العقد) أحسب الجهود الداخلية في القضبان (AE ، AD ، CD ، CA) باستعمال الطريقة التحليلية (عزل العقد) أحسب الجهود الداخلية في جدول). (EG ، EF ، DF ، DE
 - - حدّد من الجدول المرفق مقطع المجنب الزاوي اللازم والكافي لتحقيق شرط المقاومة.

التعيين	الأبعاد		المقطع	بالنسبة لـ xx'	
L	a (mm)	e (mm)	S (cm ²)	I _{/XX} ' (cm ⁴)	$W_{/xx}$, (cm ³)
30×30×3	30	3	1,74	1,4	0,65
35×35×3,5	35	3,5	2,39	2,66	1,06
40×40×4	40	4	3,08	4,47	1,55
45×45×4,5	45	4,5	3,9	7,15	2,2
50×50×5	50	5	4,5	10,96	3,05
60×60×6	60	6	6,91	22,79	5,29
70×70×7	70	7	9,4	42,3	8,41
80×80×8	80	8	12,27	72,25	12,58

لجدول المرفق

البناء: (88 نقاط)

النشاط الأول: (05 نقاط)

قطعة أرض رباعية الرؤوس (ABCD) حسب الشكل(03)، تعطى الإحداثيات القائمة لرؤوسها في الجدول التالي:

النقاط	X(m)	Y(m)	
A	80	0.00	
В	40	40	
C	50	110	
D	120	70	

- تعطى الزوايا:

$$\alpha = 33.05 \text{ gr}$$

$$\beta = 50 \text{ gr}$$

المطلوب:

- 1) احسب مساحة القطعة (ABCD) باستعمال طريقة الإحداثيات القائمة.
- 2) تحقق من مساحة القطعة (ABCD) باستعمال طريقة الإحداثيات القطبية.

النشاط الثاني: (03 نقاط)

- اذكر مختلف العناصر الأساسية المكونة للجسر.

الموضوع الثانى

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 4 من 7 إلى الصفحة 7 من 7)

الميكانيك التطبيقية: (12 نقطة)

النشاط الأول: (06 نقاط)

نرید دراسة رافدة ترتکز علی مسندین A مزدوج و B بسیط محملة کما هو موضح فی الشکل (01).

العمل المطلوب:

- . B و A احسب ردود الأفعال في المسندين A و
- البيانيين. M_f وعزم الانحناء M_f و ارسم منحنييهما البيانيين.
- (3) إذا علمت أن عرض مقطع الرافدة $b=15~{\rm cm}$ حسب الشكل (02)، و عزم الانحناء الأعظمي المطبق على الرافدة $\overline{\sigma}=216daN/cm^2$ و الاجهاد المسموح به $M_{\rm fmax}=33.50~{\rm KN.m}$
 - حدد الارتفاع h لمقطع الرافدة اللازم و الكافى لتحقيق شرط المقاومة.

النشاط الثاني: (06 نقاط)

یبین الشکل (03) نظامًا مثلثیًا متناظرًا محددا سکونیا، قضبانه مجنبات زاویة مزدوجة (الله) ویرتکز علی مسندین: A مسند مزدوج و B مسند بسیط.

العمل المطلوب:

- 1) احسب ردود الأفعال عند المسندين A و B.
- 2) باستعمال الطريقة التحليلية (عزل العقد) احسب الجهود الداخلية في قضبان الهيكل وعين طبيعتها. (تدوّن النتائج المحصل عليها في جدول).
 - ن الجدول $\overline{\sigma} = 1600 daN / cm^2$ والاجهاد المسموح به $N_{\rm max} = 134.51 \; {\rm KN}$ حدّد من الجدول المرفق مقطع المجنب الزاوي اللازم والكافي لتحقيق شرط المقاومة.

التعيين	الأبعاد		المقطع	بالنسبة لـ xx'	
L	a (mm)	e (mm)	S (cm ²)	I _{/XX} ' (cm ⁴)	$W_{/xx}$, (cm ³)
30×30×3	30	3	1,74	1,4	0,65
35×35×3,5	35	3,5	2,39	2,66	1,06
40×40×4	40	4	3,08	4,47	1,55
45×45×4,5	45	4,5	3,9	7,15	2,2
50×50×5	50	5	4,5	10,96	3,05
60×60×6	60	6	6,91	22,79	5,29
70×70×7	70	7	9,4	42,3	8,41
80×80×8	80	8	12,27	72,25	12,58

الجدول المرفق

البناء: (88 نقاط)

النشاط الأول: (05 نقاط)

لإنجاز مستوصف تَمّ اختيار قطعة الأرض الموضحة في الشكل (04).

المعطيات:

- G_{DC} =150 gr ; G_{AB} =125 gr السموت
- $L_{DC} = 80.61 \text{m}$; $L_{AB} = 74.69 \text{m}$: المسافات

المطلوب:

- 1) احسب الإحداثيات القائمة للنقاط B و C.
- 2) احسب مساحة قطعة الأرض (ABCD) المخصصة للمشروع باستعمال طريقة الاحداثيات القائمة.

النشاط الثاني: (03 نقاط)

- أكمل جدول البيانات للمظهر العرضي الموضح في الصفحة 7 من 7.

تعاد هذه الوثيقة مع أوراق الإجابة

مة	العلا	h
مجموع	مجزأة	عناصر الإجابة: الموضوع الأول
		الميكانيك المطبقة:
		النشاط الأول: q ₂ =15kN/m
		q ₁ =10kN/m (1 كوساب ردود الأفعال:
		TTTT I I I I I I I I I I I I I I I I I
		1,2m A 4,0m B
		VA VA
	0.25	$\sum F_X = 0 \Rightarrow H_B = 0$
		$\sum F_{Y} = 0 \Rightarrow V_{A} + V_{B} - (10 \times 1.2) - (15 \times 4) = 0$
		$V_A + V_B = 72kN$
		$\sum M_{/B} = 0 \Rightarrow V_A \times 4 - (10 \times 1.2 \times 4.6) - (15 \times 4 \times 2) = 0$
		$V_A = \frac{55.2 + 120}{4} = 43.8KN$
	0.5	4
	0.5	$V_A = 43.8KN$
		$\sum M_{/A} = 0 \Rightarrow -V_B \times 4 + (15 \times 4 \times 2) - (10 \times 1.2 \times 0.6) = 0$
		$V_B = \frac{120 - 7.2}{4} = 28.2 KN$
	0.5	$V_B = 28.2KN$
		$V_A + V_B = 43.8 + 28.2 = 72KN$
		محقق
		2) كتابة معادلات الجهد القاطع وعزم الانحناء
		المجال: 1.2 × ≥0
		$\mathbf{q_1=10kN/m} \qquad \mathbf{Mf} \qquad \sum F_{Y} = 0 \Rightarrow -T(x) - 10x = 0 \Rightarrow T(x) = -10x$
	0.75	$x = 0 \Rightarrow T = 0KN$; $x = 1.2 \Rightarrow T = -12KN$
	•	$X \longrightarrow X \longrightarrow$
	0.77	$\sum M_{/s} = 0 \Rightarrow -Mf(x) - 10x \cdot \frac{x}{2} = 0 \Rightarrow Mf(x) = -5x^2$
	0.75	
		$x = 0 \Rightarrow Mf = 0KN.m$; $x = 1.2m \Rightarrow Mf = -7.2KN.m$

صفحة 3 من 6

صفحة 4 من 6

		البناء:
		النشاط الأول:
		1. حساب مساحة القطعة ABCD باستعمال طريقة الاحداثيات القائمة:
	01	$S_{ABCD} = \frac{1}{2} \left[X_A (Y_D - Y_B) + X_B (Y_A - Y_C) + X_C (Y_B - Y_D) + X_D (Y_C - Y_A) \right]$
	0.5	$S_{ABCD} = \frac{1}{2} \left[80 \times (70 - 40) + 40 \times (0 - 110) + 50 \times (40 - 70) + 120 \times (110 - 0) \right]$
	0.5	$S_{ABCD} = 4850m^2$
		2. التحقق من مساحة القطعة ABCD باستعمال الاحداثيات القطبية:
	0.5	$S_{ABCD} = \frac{1}{2} \left[L_{AB} \times L_{AC} \times \sin \alpha + L_{AC} \times L_{AD} \times \sin \beta \right]$
		- حساب المسافات:
		$L_{AB} = \sqrt{\left(\Delta X_{AB}\right)^2 + \left(\Delta Y_{AB}\right)^2}$
	0.5	$L_{AB} = \sqrt{\left(-40\right)^2 + \left(40\right)^2} = \boxed{56.57m}$
		$L_{AC} = \sqrt{\left(\Delta X_{AC}\right)^2 + \left(\Delta Y_{AC}\right)^2}$
	0.5	$L_{AC} = \sqrt{(-30)^2 + (110)^2} = \boxed{114.02m}$
	0.5	$L_{AD} = \sqrt{\left(\Delta X_{AD}\right)^2 + \left(\Delta Y_{AD}\right)^2}$
	0.5	$L_{AD} = \sqrt{\left(40\right)^2 + \left(70\right)^2} = \boxed{80.62m}$
	0.5	-حساب المساحة:
	4	$S_{ABCD} = \frac{1}{2} [56.57 \times 114.02 \sin 33.05 + 114.02 \times 80.62 \sin 50]$
	01	$S_{ABCD} = 4850m^2$
05		
05		
		النشاط الثاني:
	4x0.75	• العناصر المكونة للجسر هي:
03	4,0./3	- الأساسات -المتكأ -الركائز الوسطية -سطح الجسر.
20	20	

		$\sum F_{/YY'} = 0 \Rightarrow -F - N_{CD} + N_{CE} \sin \beta - N_{CA} \sin \beta = 0(2)$			
		$(2) \Rightarrow N_{CE} = \frac{F + N_{CD} + N_{CA} \sin \beta}{\sin \beta}$			
		•			
		$\Rightarrow N_{CE} = \frac{20 + 0 + (-134.51) \times 0.447}{0.447}$			
		$\Rightarrow \boxed{N_{CE} = -89.77KN}$			
		$(1) \Rightarrow N_{CF} = [-134.51 - (-89.77)] \times 0.894$			
		$\Rightarrow N_{CF} = -40KN$ (E) العقدة			
		$\sum F_{/XX'} = 0 \Rightarrow N_{EG} \cos \beta - N_{EC} \cos \beta = 0$			
		$\Rightarrow N_{EG} = N_{EC} \Rightarrow \boxed{N_{EG} = N_{EC} = -89.77KN}$			
		$\sum F_{/YY'} = 0 \Rightarrow -N_{EF} - N_{EG} \sin \beta - N_{EC} \sin \beta = 0$			
		$\Rightarrow N_{EF} = -N_{EG} \sin \beta - N_{EC} \sin \beta = -2 \times N_{EC} \sin \beta$			
		N_{EF} N_{EF} N_{EG} $\Rightarrow N_{EF} = -(2 \times -89.77 \times 0.447)$			
		$\Rightarrow N_{EF} = 80.25KN$			
		يتم استنتاج باقي الجهود الداخلية بالتناظر.			
		- جدول النتائج:			
		EF DF=HF CF=GF CE=GE CD=GH AD=BH AC=BG Idea 80.25 123.97 40 89.77 0 123.97 134.51 (KN)			
	0.1	الطبيعة ضغط شد تركيبي ضغط ضغط شد شد شد			
	01				
		$\sigma_{\max} \leq \overline{\sigma} \Rightarrow \frac{N_{\max}}{2S} \leq \overline{\sigma}$:تحدید نوع المجنب			
		$\Rightarrow S \ge \frac{N}{\longrightarrow} \Rightarrow S \ge \frac{N}{\longrightarrow}$			
		$\Rightarrow S \ge \frac{1}{2 \times \sigma} \Rightarrow S \ge \frac{1}{2 \sigma}$			
	0.75	$\Rightarrow S \ge \frac{134.51 \times (10)^2}{2(1600)} \Rightarrow S \ge 4.20cm^2$			
		$\Rightarrow 3 \ge \frac{1}{2(1600)} \Rightarrow 3 \ge 4.20cm$			
0.6		$L(50\times50\times5)$: أي المجنب المناسب $S=4.5$ cm² من الجدول نختار			
06					
		البناء:			
		النشاط الأول:			
		1.1) حساب إحداثيات النقطة B			
	0.50	$\Delta X_{AB} = L_{AB} \times \sin G_{AB} = 74.69 \times \sin 125 \Rightarrow \Delta X_{AB} = 69m$			
		$X_B = X_A + \Delta X_{AB} \Rightarrow X_B = 65 + 69 \Rightarrow X_B = 134m$			
	0.50	$\Delta Y_{AB} = L_{AB} \times \cos G_{AB} = 74.69 \times \cos 125 \Rightarrow \Delta Y_{AB} = -28.58m$			
		$Y_B = Y_A + \Delta Y_{AB} = 135 + (-28.58) \Rightarrow Y_B = 106.42m$			
	0.25	إحداثيات النقطة B: (134, 106.42) B			

		2.1) حساب إحداثيات النقطة C:
	0.50	$\Delta X_{DC} = L_{DC} \times \sin G_{DC} = 80.61 \times \sin 150 \Rightarrow \Delta X_{DC} = 57m$
	0.50	$X_C = X_D + \Delta X_{DC} \Rightarrow X_C = 15 + 57 \Rightarrow \boxed{X_C = 72m}$
	0.50	$\Delta Y_{DC} = L_{DC} \times \cos G_{DC} = 80.61 \times \cos 150 \Rightarrow \Delta Y_{DC} = -57m$ $Y_C = Y_D + \Delta Y_{DC} = 65 + (-57) \Rightarrow \boxed{Y_C = 8m}$
	0.25	إحداثيات النقطة C (72,8) :C
		2) حساب مساحة الشكل:
	01	$S = \frac{1}{2} \left[X_A \left(Y_D - Y_B \right) + X_B \left(Y_A - Y_C \right) + X_C \left(Y_B - Y_D \right) + X_D \left(Y_C - Y_A \right) \right]$
	01	$S = \frac{1}{2} \Big[65(65 - 106.42) + 134(135 - 8) + 72(106.42 - 65) + 15(8 - 135) \Big]$
		$S = \frac{1}{2} \left[-2692.3 + 17018 + 2982.24 - 1905 \right]$
	0.50	$S = 7701.47m^2$
05		
	01 0.5 0.5	النشاط الثاني: اكمال جدول البيانات للمظهر العرضي P4 0.123 1/100 +70.00 +70.00 +70.00
	0.5	2.00
02	01	00.00 05.00 05.00 07.42 07.00 07.42 07.00 07.42
03		
20	20	