

LAGOS STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY, IKORODU COLLEGE OF BASIC SCIENCES

DEPARTMENT OF COMPUTER SCIENCES

FIRST SEMESTER EXAMINATION 2024/2025 ACADEMIC SESSION

Programme: B.Sc. Computer Science

Course Title: Discrete Structure

Course Unit: 3

No of Students: 200

Instruction: Attempt Any Four (4) From Six (6) Questions

Course Code: CSC 203

Class Level: 200

Time Allowed: 3 Hours

Question One

Define Logic and Statements

Indicate the Statements that are valid and invalid below

i. 5 is larger than 7

Would you like some ice cream? ii. iii. Of the 20 balls, 5 are black

iv. 12 is a perfect square

The product of two numbers

b. Complete this table:

(2	marks)	
----	--------	--

(1 mark) (1 mark)

(1 mark)

(1 mark) (1 mark)

piete this table:				(8 marks)	
w	M	I V W	ΛM	¬W ∧ M) ∨ ¬M	$(W \land M) \leftrightarrow (M \lor W)$
F	. T				
T	F				
T	Т				
F	F				

Question Two

Using these details, answer the questions that follow:

 $U = \{Set \ of \ even \ numbers\}; A = \{2, 4, 6, 8\}; B = \{2, 10, 6, 14, 18\}; C = \{20, 22, 2, 10\}$

a. $A \cup B \cup C$ (1 mark) b. $A \cap C \cap B$ (1 mark) c. $A \cup B$ (1 mark) d. $(A \cup C) \cap B$ (1 mark)

e. $(A \cap (B \cup C)) = (A \cap B) \cup (A \cap C)$ (2 marks) f. Proof $(B \cup (A \cup C)) = ((B \cup A) \cup C)$ (2 marks)

g. Write out all the subsets of A (3 marks) h. Draw a Venn diagram with the details given (4 marks)

Question Three

a. i. What is a partially ordered set? How does a lattice differ from a poset?

(5 marks)

ii. Define a Boolean algebra?

(3 marks)

b. i. Proof that the set of integers is a poset where $a \le b$ has the usual meaning for two integers a and b in Z.

(4 marks)

ii. Draw the diagram for the set of positive integers that are divisors of 24.

(3 marks)

Question Four

a i. Using inclusion-exclusion principle, how many positive integers ≤ 100 are multiples of either 2 or 5? (3 marks) ii. Using product rules, On an 8 × 8 chess board, how many ways can I place a pawn and a rook? (3 marks)

b i. Solve using matrices,

$$x + y - 2z = 3$$

$$3x - y + z = 5$$

$$3x + 3y - 6z = 9$$

(3 marks)

(3 marks)

$$3x + 3y - 6z = 9$$

ii. If $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ Find |A|.

iii. If
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$

(3 marks)

Question Five

a. Using Pascal's triangle's expand (1+2/x)3

(8 marks)

b. In a group of 800 people, how many people are likely to share the same birthday?

(7 marks)

Question Six

a. Let X be a discrete random variable with PGF

$$Gx(z) = Z/5(2+3Z^2)$$

Obtain the distribution of x

(10 marks)

b. How any poker hands (i.e. sets of 5 cards) can be dealt from a standard deck of 52 cards?

(5 marks)