The 8051

10/27/08

8051

- Today over fifty companies produce variations of the 8051.
- Several of these companies have over fifty versions of the 8051.
- 8051 cores are available for implementations in FPGA's or ASIC's.
- Over 100 million 8051's are sold each year.
- The 8051 has been extremely successful, and has directly influenced many of the more recent microcontroller architectures.

8051 software

- Download the Silicon Labs software form the class web page. Don't use the new version on the Silicon Labs web page.
- Download my tutorial on using the Silicon Labs University Daughter Card and go through both the C and assembly language tutorials.
- See handout on 8051 instruction set.
- The MCS 51 Family User's Manual is available on the class web page.
 - Look under Resources Other

MCS-51

- MCS-51 is Intel's designation for its family of 8051 devices.
- The 8051 is the original member of the MCS-51 family, and is the core for all MCS-51 devices.
- The original 8051 was available in three versions.
 - 8051 A fixed program in read only memory (ROM) version.
 - 8031 No internal ROM program stored in external programmable read only memory (PROM) memory.
 - 8751 Program stored in internal erasable PROM (EPROM). Erased by exposing the chip to high intensity ultraviolet light for several minutes.
 Eventually EPROM was replaced by EEPROM.

The basic 8051 Core

- 8-bit CPU optimized for control applications
- Capability for single bit Boolean operations.
- Supports up to 64K of program memory.
- Supports up to 64K of program memory.
- 4 K bytes of on-chip program memory.
 - Newer devices provide more.
- 128 or 256 bytes of on-chip data RAM
- Four 8 bit ports.
- Two 16-bit timer/counters
- UART
- Interrupts
- On-chip clock oscillator

Figure 1.1 Block Diagram of the generic 8051 Microcontroller

The 8751 in a 40-pin DIP
To use internal EPROM
/EA (pin 31) is connected to
5 volts. To use external
program memory /EA is
connected to ground.

MEMORY

CODE MEMORY Internal ROM selected by $\overline{EA} = 1$

 $CM = CM(0..0FFFFH) = CM(0..0FFFFH;7..0)^{1}$

ON CHIP DATA MEMORY

DM = DM(0..7FH) = DM(0..7FH;7..0)

ON CHIP BIT ADDRESSIABLE MEMORY

BADM = BADM(0..0FF) = BADM(0..0FF;0)

BIT ADDR DATA MEMORY

EXTERNAL RAM MEMORY

XM = XM(0..0FFFFH) = XM(0..0FFFFH;7..0)

INTERNAL REGISTERS AND PORTS

PC = PC(15..0)

SP = SP(7..0)

DPTR = DPTR(15..0)

PSW = CY|AC|F0|RS1|RS0|OV|P

TCON = TF1|TR1|TF0|TR0|IE1|IT1|IE0|IT0

Memory Organization

- The 8051 memory organization is rather complex.
- The 8051 has separate address spaces for Program Memory, Data Memory, and external RAM.
- This is refereed to as a Harvard architecture.
 - The early Mark I (1944) computer developed at Harvard was of this type of architecture.
 - Von Neumann at Princeton pointed out that it was not necessary to put instructions and data in separate memories.
 - Most machines have been Princeton architecture.
 - Recently Harvard architecture has been employed to help alleviate the memory bottleneck.
- Both program memory and external data memory are 8 bits wide and use 16 bits of address. The internal data memory is accessed using an 8-bit address.
- Since the same address can refer to different locations the specific location is determined by the type of instruction.

Program or Code Memory

- May consist of internal or external program memory. The amount of internal program memory varies depending on the device.
 - 4K bytes typical in older devices.
 - The Silicon Labs C8051F310 contains 16K of flash memory for programs.
 - The Silicon Labs C8051F020 which is on the University Daughter Card (UDC) contains 4K bytes of program memory.
- The MOVC instruction can be use to read code memory.
- To reference code memory I will use the notation:

$$CM = CM(0,...,FFFFH) = CM(0,...,FFFFH; 7,...,0)$$

• This notation can be used to specify particular bits and bytes of code memory.

For example CM(1234H) refers to the byte of code memory at address 1234H. CM(1234H;7) refers to the most significant bit in that address.

10

Figure 1.4 Program Memory Organization (Read Only)

External Memory

- Supports up to 64K bytes external memory.
 - XM(0000,...,FFFF) = XM(0000,...,FFFF; 7,...,0)
 - Accessed by using the MOVX instruction.
- On the original using external memory reduces number of available I/O ports.
- On some new devices this is not the case.
 - For example in C8051F020 64K bytes of external memory has been included in the chip.
 - The 4 standard 8051 ports are available and three additional ports have been added.

```
MOVX A,@DPTR ;A \leftarrow XM(DPTR)

MOVX A,@Rn ;A \leftarrow XM(P2|Rn)

MOVX @DPTR,A ;XM(DPTR) \leftarrow A

MOVX @Rn,A ;XM(P2|Rn) \leftarrow A
```

Data Memory

- The original 8051 had 128 bytes of on-chip data RAM.
 - This memory includes 4 banks of general purpose registers at DM(00..1F)
 - Only one bank can be active at a time.
 - If all four banks are used, DM(20..7F) is available for program data.
 - DM(20..2F) is bit addressable as BADM(00..7F).
- DM(80,...,FF) contains the special function registers such as I/O ports, timers, UART, etc.
 - Some of these are bit addressable using BADM(80..FF)
- On newer versions of the 8051, DM(80,...,FF) is also use as data memory. Thus, the special functions registers and data memory occupy the same address space. Which is accessed is determined by the instruction being used.

Data memory

	Byte Address	Bit Address							
	7F								
					_				
					Gen Purp				
					RA				
	30								
В	2F	7F	7E	7D	7C	7B	7A	79	78
i	2E	77	76	75	74	73	72	71	70
t	2D	6F	6E	6D	6C	6B	6A	69	68
	2C	67	66	65	64	63	62	61	60
Α	2B	5F	5E	5D	5C	5B	5A	59	58
d	2A	57 56 55 54 53 52 51 50						50	
d	29	4F 4E 4D 4C 4B 4A 49 4					48		
r	28	47 46 45 44 43 42 41 40						40	
е	27	3F	3F 3E 3D 3C 3B 3A 39 38						38
s	26	37	36	35	34	33	32	31	30
s	25	2F	2E	2D	2C	2B	2A	29	28
а	24	27	26	25	24	23	22	21	20
b	23	1F	1E	1D	1C	1B	1A	19	18
Ι	22	17	16	15	14	13	12	11	10
е	21	0F	0E	0D	0C	0B	0A	09	80
	20	07	06	05	04	03	02	01	00
	1F				Ban	k 3			
	18				Dan				
	17	Rank 2							
	10	Bank 2							
	0F				Ban	k 1			
	08				Dan	1			
	07		Defai	ılt Rec	nister F	Rank f	or R0	– R7	
	00		Default Register Bank for R0 – R7						

Byte Address				Bit Ad	ldress	i			
FF			_						
F0	F7	F6	F5	F4	F3	F2	F1	F0	В
							,		
E0	E7	E6	E5	E4	E3	E2	E1	E0	ACC
D0	D7	D6	D5	D4	D3	D2	-	D0	PSW
B8	-	- I	-	ВС	ВВ	ВА	В9	В8	IP
			•					•	
В0	В7	В6	B5	B4	В3	B2	B1	В0	P3
A8	AF	-	-	AC	AB	AA	A9	A8	IE
^ ^	۸.7	1 40	۸.		А3	A2		A0	P2
A0	A7	A6	A5	A4	AS	AZ	A1	AU	P2
99			Not	bit-ad	dressa	ahle			SBUF
98	9F	96	95	94	93	92	91	90	SCON
90	97	96	95	94	93	92	91	90	P1
8D			Not	bit-ad	dressa	able			TH1
8C				bit-ad					THO
8B				bit-ad					TL1
8A		Not bit-addressable						TL0	
89			Not	bit-ad					TMOD
88	8F	8E	8D	8C	8B	8A	89	88	TCON
87			Not	bit-ad	dressa	able			PCON
83	Not bit-addressable					DPH			
82	Not bit-addressable					DPL			
81				bit-ad					SP
80	87	86	85	84	83	82	81	80	P0

Table 1

Symbol	Name	Address
*ACC	Accumulator	0E0H
*B	B Register	0F0H
*PSW	Program Status Word	0D0H
SP	Stack Pointer	81H
DPTR	Data Pointer 2 Bytes	
DPL	Low Byte	82H
DPH	High Byte	83H
*P0	Port 0	80H
*P1	Port 1	90H
*P2	Port 2	0A0H
*P3	Port 3	0B0H
*IP	Interrupt Priority Control	0B8H
*IE	Interrupt Enable Control	0A8H
TMOD	Timer/Counter Mode Control	89H
*TCON	Timer/Counter Control	88H
*+T2CON	Timer/Counter 2 Control	0C8H
TH0	Timer/Counter 0 High Byte	8CH
TL0	Timer/Counter 0 Low Byte	8AH
TH1	Timer/Counter 1 High Byte	8DH
TL1	Timer/Counter 1 Low Byte	8BH
+TH2	Timer/Counter 2 High Byte	0CDH
+TL2	Timer/Counter 2 Low Byte	0CCH
+RCAP2H	T/C 2 Capture Reg. High Byte	0CBH
+RCAP2L	T/C 2 Capture Reg. Low Byte	0CAH
*SCON	Serial Control	98H
SBUF	Serial Data Buffer	99H
PCON	Power Control	87H

^{* =} Bit addressable + = 8052 only

SFR MEMORY MAP

8 Bytes

F8							
F0	В						
E8							
E0	ACC						
D8							
D0	PSW						
C8	T2CON		RCAP2L	RCAP2H	TL2	TH2	
C0							
B8	IP						
ВО	P3						
A8	ΙE						
A0	P2						
98	SCON	SBUF					
90	P1						
88	TCON	TMOD	TLO	TL1	THO	TH1	
80	P0	SP	DPL	DPH			PCON

T Bit Figure 5

Addressable

FF

F7

EF

E7

DF

D7

CF

C7

BF

B7

ΑF

Α7

9F

97

8F

87

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

CY	AC	F0	RS1	RS0	ov	_	Р		
CY	PSW.7	Carry Fla	ıg.						
AC	PSW.6	Auxiliary	Auxiliary Carry Flag.						
F0	PSW.5	Flag 0 av	Flag 0 available to the user for general purpose.						
RS1	PSW.4	Register 1	Register Bank selector bit 1 (SEE NOTE 1).						
RS0	PSW.3	Register 1	Bank selecto	r bit 0 (SEF	NOTE 1)				
ov	PSW.2	Overflow	Flag.						
_	PSW.1	User definable flag.							
P	PSW.0		g. Set/cleare the accum	d by hardwallator.	are each ins	truction o	ycle to		

NOTE:

1. The value presented by RS0 and RS1 selects the corresponding register bank.

RS1	RS0	Register Bank	Address
0	0	0	00H-07H
0	1	1 1	08H-0FH
1	0	2	10H-17H
1	1	3	18H-1FH

INTERNAL REGISTERS AND PORTS

PC = PC(15..0)

SP = SP(7..0)

DPTR = DPTR(15..0)

PSW = CY|AC|F0|RS1|RS0|OV|P

TCON = TF1|TR1|TF0|TR0|IE1|IT1|IE0|IT0

BADM(87H..80H) = P0 = P0(7..0) = BADM(87H..80H)

BADM(8FH...88H) = TCON = BADM(8FH...88H)

BADM(97H..90H) = P1 = P1(7..0) = BADM(97H..90H)

BADM(9FH...98H) = SCON = BADM(9FH...98H)

BADM(A7H..A0H) = P2 = P2(7..0) = BADM(A7H..A0H)

BADM(AFH..A8H) = IE = BADM(AFH..A8H)

BADM(B7H..B0H) = P3 = P3(7..0) = BADM(B7H..B0H)

BADM(BFH..B8H) = IP = BADM(BFH..B8H)

BADM(C7H..C0H) = BADM(C7H..C0H)

BADM(CFH..C8H) = BADM(CFH..C8H)

BADM(D7H..D0H) = PSW = BADM(D7H..D0H)

BADM(DFH..D8H) = BADM(DFH..D8H)

BADM(E7H..E0H) = ACC = A = A(7..0) = BADM(E7H..E0H)

BADM(EFH..E8H) = BADM(EFH..E8H)

 $BADM(F7H..F0H) = \mathbf{B} = BADM(F7H..F0H)$

BADM(FFH..F8H) = BADM(FFH..F8H)

RESET

 $\begin{aligned} & \text{PC} \leftarrow 0, \, \text{A} \leftarrow 0, \, \text{B} \leftarrow 0, \, \text{PSW} \leftarrow 0, \, \text{SP} \leftarrow 7\text{H}, \, \text{SPTR} \leftarrow 0, \, \text{P0-P3} \leftarrow 0 \text{FFH}, \\ & \text{IP} \leftarrow \text{XXX000000B}, \, \text{IE} \leftarrow 0 \text{XX000000B}, \, \text{TMOD} \leftarrow 0, \, \text{TCON} \leftarrow 0, \, \text{TH0} \leftarrow 0, \, \text{TL0} \leftarrow 0, \\ & \text{TH1} \leftarrow 0, \, \text{TL1} \leftarrow 0, \, \text{SCON} \leftarrow 0, \, \text{PCON} \, \leftarrow 0 \text{XXXXXXXXB}, \, \text{DPTR} \leftarrow 0000\text{H} \end{aligned}$

INTERNAL DATA MEMORY

00H-07H	RB0	Register Bank 0
08H-0FH	RB1	Register Bank 1
10H-17H	RB2	Register Bank 2
18H-1FH	RB3	Register Bank 3
20H-27H	BAM(00H)-BAM(3FH)	Bit addressable memory
28H-2FH	BAM(40H)-BAM(7FH)	Bit addressable memory
30H-37H		Available to user.
38H-3FH		Available to user.
40H-47H		Available to user.
48H-4FH		Available to user.
50H-57H		Available to user.
58H-5FH		Available to user.
60H-67H		Available to user.
68H-6FH		Available to user.
70H-77H		Available to user.
78H-7FH		Available to user.
80H	P0	

78H-7FH		Available to user.
80H	P0	
81H	SP	
82H	DPL	DPTR
83H	DPH	
84H		
85H		
86H		
87H	PCON	
88H		
89H	TMOD	Timer/Counter Mode Control
8AH	TL0	
8BH	TL1	
8CH	TH0	
8DH	TH1	
98H	SCON	Serial Port control
99H	SBUF	
		22

NOTATION DEFINITIONS

 $n \in \{0,1\}, i \in \{0,...,7\}, bit \in \{0,1\}, byte \in \{0,...,255\}, dbyte \in \{0,...,255\}$ short $\in \{0,...,03FFH\}, addr \in \{0,...,0FFFFH\}$ $Rn \in \{R0, R1\}, Ri \in \{R0, R1, ..., R7\}$ Ri = DM(i+8*RBANK)RBANK = RS1*2+RS0

	CY	AC	FO	RS1	RS0	OV		P	_
D0H	D7	D6	D5	D4	D3	D2	D1	D0	PSW

ARITHMETIC INSTRUCTIONS

ADD

A,#byte

ADD

ADD

ADD

A, @Rn

A,Ri

A,byte

 $A \leftarrow A + byte$

 $A \leftarrow A + DM(Rn)$

 $A \leftarrow A + Ri$

 $A \leftarrow A + DM(byte)$

ADDC

A,#byte

ADDC

ADDC

ADDC

A, @Rn

A,Ri

A,byte

 $A \leftarrow A + byte + CY$

 $A \leftarrow A + DM(Rn) + CY$

 $A \leftarrow A + Ri + CY$

 $A \leftarrow A + DM(byte) + CY$

Examples:

ADD**A**,#7FH ;A ← 7FH

ADD A,7FH

 $A \leftarrow DM(7FH)$

LOGICAL INSTRUCTIONS

SWAP

ANL ANL ANL ANL ANL	A,#byte A,@Rn A,Ri A,byte dbyte,#byte byte,A	$;A \leftarrow A \land byte$ $;A \leftarrow A \land DM(Rn)$ $;A \leftarrow A \land Ri$ $;A \leftarrow A \land DM(byte)$ $;DM(dbyte) \leftarrow DM(dbyte) \land byte$ $;DM(byte) \leftarrow A \land DM(byte)$
CLR	A	$;A \leftarrow 0$
CPL	A	$;A \leftarrow \overline{A}$
RL	A	$; A \leftarrow A(60) A(7)$
RLC	A	$;CY A \leftarrow A CY$
RR	A	$A \leftarrow A(0) A(71)$
RRC	A	$;A CY \leftarrow CY A$

 $;A \leftarrow A(3..0)|A(7..4)$

DATA MOVE INSTRUCTIONS

MOU	A 1/1 4	
MOV	A,#byte	$A \leftarrow byte$
MOV	A,@Rn	$A \leftarrow DM(Rn)$
MOV	A,Ri	;A ← Ri
MOV	A,byte	$A \leftarrow DM(byte)$
MOV	@Rn,A	$;DM(Rn) \leftarrow A$
MOV	@Rn,#byte	$;DM(Rn) \leftarrow byte$
MOV	@Rn,byte	$;DM(Rn) \leftarrow DM(byte)$
MOV	Ri,A	$;Ri \leftarrow A$
MOV	Ri,#byte	;Ri ← byte
MOV	Ri,byte	$;Ri \leftarrow DM(byte)$
MOV	byte,A	$;DM(byte) \leftarrow A$

MOV MOV MOV MOV	dbyte,#byte byte,@Rn byte,Ri dbyte,byte DPTR,#addr	;DM(dbyte) \leftarrow byte ;DM(byte) \leftarrow DM(Rn) ;DM(byte) \leftarrow Ri ;DM(dbyte) \leftarrow DM(byte) ;DPTR \leftarrow addr
MOVC	A,@A + DPTR	$;A \leftarrow CM(A+DPTR)$
MOVC	A,@A + PC	$;A \leftarrow CM(A+PC)$
MOVX	A,@DPTR	$;A \leftarrow XM(DPTR)$
MOVX	A,@Rn	$;A \leftarrow XM(P2 Rn)$
MOVX	@DPTR,A	$;XM(DPTR) \leftarrow A$
MOVX	@Rn,A	$;XM(P2 Rn) \leftarrow A$

```
MOVE INSTRUCTIONS
        A, #-1
 MOV
                       ;LOAD A WITH OFFH
 MOV A,@R1
                    ; LOAD A WITH DATA MEM POINTED TO BY R1
 MOV
        A,R1
                        ;LOAD A WITH CONTENTS OF R1
        A,2*30H ;LOAD A WITH CONTENTS OF DATA MEM 60H
 MOV
 MOV
                        ;LOAD A WITH CONTENTS OF PORT 2
        A,P2
        @RO,A ;STORE A IN DATA MEM POINTED TO BY RO
 MOV
 MOV
        @R1,#0FFH ; PUT ALL 1'S IN LOC POINTED TO BY R1
 MOV
        @R0,7FH
                        ; READ DATA MEMORY 7FH AND STORE IN
                        ; DATA MEMORY POINTED TO BY RO.
        R7,A
                       STORE A IN REGISTER R7
 VOM
 MOV
        R6,#01010101B ; PUT 55H IN R6
 VOM
        R0,#50H
                       ;LOAD RO WITH 50H = 80
        R7,#01010001B
                       ;LOAD R7 WITH 51H = 81
 MOV
                       ; PUT CONTENTS OF LOCATION 55 IN R5
 MOV
        R5,55
                        ; PUT A IN DATA MEM LOC 55
 VOM
         55,A
        55,#0AAH
 MOV
                       ; PUT AAH IN DM LOC 55 DECIMAL
 MOV
        P1,#OFFH
                       :SET P1 TO ALL 1'S
                      ;SET P2 TO DATA MEM POINTED TO BY R1
 MOV
      P2,@R1
 MOV PO,P3
                        ; READ PORT 3 AND OUTPUT IT TO PO
 MOV
        0,P0
                       ; READ PORT 0 AND SAVE IN DATA MEM 0
 MOV
        R2,P2
                      ;READ P2 AND SAVE IT
                                           IN R2
        DPTR, #A TABLE ; POINT DPTR TO LOOK UP TABLE
 VOM
 VOM
        A,#OAH
                        ; PUT HEX B = 1011 = 11 IN ACC
        A,@A+DPTR
                        ; CONVERT IT TO ASCII (A = 'B')
 MOVC
 CLR
                        :LOAD A WITH 0
        Α
 MOVC
        A,@A+PC
                      ; PUT OPCODE OF PC+0 (NEXT INST)
```

Push, Pop, and exchange

PUSH byte ;DM(SP+1) \leftarrow DM(byte), SP \leftarrow SP + 1 POP byte ;DM(byte) \leftarrow DM(SP), SP \leftarrow SP - 1

XCH A,Ri ; $A \leftrightarrow Ri$

XCH A,byte ; $A \leftrightarrow DM(byte)$

XCH A,@Rn ; $A \leftrightarrow DM(R_i)$

XCHD A,@Rn ;A(3..0) \leftrightarrow DM(Rn;3..0)

PROGRAM AND MACHINE CONTROL

CALL Note: Assembler translates CALL to ACALL or LCALL

ACALL short $;DM(SP+2)|DM(SP+1) \leftarrow PC+2,$

 $;PC(10..0) \leftarrow short$

LCALL addr ; $DM(SP+2)|DM(SP+1) \leftarrow PC+2$,

 $;PC(10..0) \leftarrow addr$

RET ;PC \leftarrow DM(SP)|DM(SP-1), SP \leftarrow SP-2

 $;PC \leftarrow DM(SP)|DM(SP-1), SP \leftarrow SP-2$

;Reenable equal or lower priority INT

JMP Note: JMP is translated to AJMP, LJMP, or SJMP.

AJMP short ;PC(10..0) \leftarrow short

RETI

LJMP addr ; $PC(15..0) \leftarrow addr$

SJMP byte ;PC \leftarrow PC + 2 + byte(7)..byte(7)|byte

JMP @A+DPTR ;PC $\leftarrow DPTR + A$

JZ byte ;IF A = 0 THEN

;PC \leftarrow PC + 2 + byte(7)..byte(7)|byte

;ELSE PC \leftarrow PC+2

JNZ byte ;IF $A \neq 0$ THEN

;PC \leftarrow PC + 2 + byte(7)..byte(7)|byte

;ELSE PC \leftarrow PC+2

CJNE A,dbyte,byte ;IF A \neq DM(dbyte) THEN $PC \leftarrow PC + 2 + byte(7)..byte(7)|byte$;IF A < DM(dbyte) THEN CY \leftarrow 1 ;ELSE CY $\leftarrow 0$ CJNE A,#dbyte,byte ;IF $A \neq dbyte THEN$ $PC \leftarrow PC + 2 + byte(7)..byte(7)|byte$;IF A < dbyte THEN CY \leftarrow 1 ;ELSE CY $\leftarrow 0$ CJNE Rn,#dbyte,byte ;IF Rn ≠ dbyte THEN $PC \leftarrow PC + 2 + byte(7)..byte(7)|byte$;IF A < DM(dbyte) THEN CY \leftarrow 1 ;ELSE CY $\leftarrow 0$ @Rn,#dbyte,byte CJNE ;IF $DM(Rn) \neq dbyte THEN$ $PC \leftarrow PC + 2 + byte(7)..byte(7)|byte$;IF A < dbyte THEN CY \leftarrow 1 ;ELSE CY $\leftarrow 0$

DJNZ Rn,byte ;Rn \leftarrow Rn-1, IF (Rn-1) \neq 0 THEN ;PC \leftarrow PC + 2 + byte(7)..byte(7)|byte ;ELSE PC \leftarrow PC + 2 DJNZ dbyte,byte ;DM(dbyte) \leftarrow DM(dbyte)-1, ;IF (DM(dbyte)-1) \neq 0 THEN ;PC \leftarrow PC + 3 + byte(7)..byte(7)|byte ;ELSE PC \leftarrow PC + 3 NOP ;PC \leftarrow PC + 1

BIT MANIPULATION INSTRUCTIONS

CLR	С	$;CY \leftarrow 0$
CLR	byte	$;BADM(byte) \leftarrow 0$
SETB	C	$;CY \leftarrow 1$
SETB	byte	$;BADM(byte) \leftarrow 1$
CPL	C	$;CY \leftarrow CY$
CPL	byte	$;BADM(byte) \leftarrow \overline{BADM(byte)}$
ANL	C,byte	$;CY \leftarrow CY \land BADM(byte)$
ANL	C,/byte	$;CY \leftarrow CY \land \overline{BADM(byte)}$
ANL	byte,bit	$;BADM(byte) \leftarrow BADM(byte) \land bit$
ORL	C,byte	$CY \leftarrow CY \vee BADM(byte)$
ORL	C,/byte	$;CY \leftarrow CY \lor \overline{BADM(byte)}$
ORL	byte,bit	$;BADM(byte) \leftarrow BADM(byte) \lor bit$
MOV	C,byte	$;CY \leftarrow BADM(byte)$
MOV	byte,C	$;BADM(byte) \leftarrow CY$

BIT JUMP INSTRUCTIONS

		0 0 11 0 1 10
JB	dbyte,byte	;IF $BADM(dbyte) = 1 THEN$
		$;PC \leftarrow PC + 3 + byte(7)byte(7) byte$
		;ELSE PC \leftarrow PC+3
JNB	dbyte,byte	;IF $BADM(dbyte) = 0$ THEN
		$;$ PC \leftarrow PC + 3 + byte(7)byte(7) byte
		;ELSE PC \leftarrow PC+3
JBC	dbyte,byte	;IF $BADM(dbyte) = 1 THEN$
		; BADM(dbyte) $\leftarrow 0$
		; $PC \leftarrow PC + 3 + byte(7)byte(7) byte(7) $
		;ELSE PC \leftarrow PC+3
JC	byte	;IF $CY = 1$ THEN
		$;PC \leftarrow PC + 3 + byte(7)byte(7) byte$
		;ELSE PC \leftarrow PC+3
JNC	byte	;IF $CY = 0$ THEN
		$;PC \leftarrow PC + 3 + byte(7)byte(7) byte$
		;ELSE PC \leftarrow PC+3

INSTRUCTIONS THAT AFFECT FLAGS (incomplete)

Instruction	CY OV AC	Instruction	CY OV AC
ADD	X X X	CLR C	0
ADDC	X X X	CPL C	X
SUBB	X X X	ANL C,bit	X
MUL	0 X -	ANL C,/bit	X
DIV	0 X -	ORL C,bit	X
DA	X	ORL C,bit	X
RRC	X	MOV C,bit	X
RLC	X	CJNE	X
SETB C	1		