Simplicial surfaces in GAP

Markus Baumeister (j/w Alice Niemeyer)

Lehrstuhl B für Mathematik RWTH Aachen University

30.08.2017

• Package name: SimplicialSurfaces

- Package name: SimplicialSurfaces
 - Not yet generally available

- Package name: SimplicialSurfaces
 - Not yet generally available
- Authors: Alice Niemeyer, Markus Baumeister

- Package name: SimplicialSurfaces
 - Not yet generally available
- Authors: Alice Niemeyer, Markus Baumeister
- based on current research at Lehrstuhl B including Plesken, Strzelczyk and others

- Package name: SimplicialSurfaces
 - Not yet generally available
- Authors: Alice Niemeyer, Markus Baumeister
- based on current research at Lehrstuhl B including Plesken, Strzelczyk and others
- Internally used packages:

- Package name: SimplicialSurfaces
 - Not yet generally available
- Authors: Alice Niemeyer, Markus Baumeister
- based on current research at Lehrstuhl B including Plesken, Strzelczyk and others
- Internally used packages:
 - AttributeScheduler by Gutsche

- Package name: SimplicialSurfaces
 - Not yet generally available
- Authors: Alice Niemeyer, Markus Baumeister
- based on current research at Lehrstuhl B including Plesken, Strzelczyk and others
- Internally used packages:
 - AttributeScheduler by Gutsche
 - Digraphs by De Beule, Mitchell, Pfeiffer, Wilson et al.

- Package name: SimplicialSurfaces
 - Not yet generally available
- Authors: Alice Niemeyer, Markus Baumeister
- based on current research at Lehrstuhl B including Plesken, Strzelczyk and others
- Internally used packages:
 - AttributeScheduler by Gutsche
 - Digraphs by De Beule, Mitchell, Pfeiffer, Wilson et al.
 - GAPDoc by Lübeck

- Package name: SimplicialSurfaces
 - Not yet generally available
- Authors: Alice Niemeyer, Markus Baumeister
- based on current research at Lehrstuhl B including Plesken, Strzelczyk and others
- Internally used packages:
 - AttributeScheduler by Gutsche
 - Digraphs by De Beule, Mitchell, Pfeiffer, Wilson et al.
 - GAPDoc by Lübeck
 - AutoDoc by Gutsche

Goal: Investigate paper folding

 \bullet rigid folding in \mathbb{R}^3

- rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)

- ullet rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding

- ullet rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding
 - allow more general structures:

- rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding
 - allow more general structures:

- rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding
 - allow more general structures:

Goal: Investigate paper folding

- rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding
 - allow more general structures:

embeddings are difficult to compute

- rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding
 - allow more general structures:

- embeddings are difficult to compute
 - some embeddings of asymmetric icosahedrons are infeasible to compute

- rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding
 - allow more general structures:

- embeddings are difficult to compute
 - some embeddings of asymmetric icosahedrons are infeasible to compute
- → focus on intrinsic properties

- rigid folding in \mathbb{R}^3
- consider surfaces built from triangles (simplicial surfaces)
 - not closed under folding
 - allow more general structures:

- embeddings are difficult to compute
 - some embeddings of asymmetric icosahedrons are infeasible to compute
- → focus on intrinsic properties
- → incidence geometry

• can describe incidence geometry

- can describe incidence geometry
 - allows flexible access to the incidence geometry (AttributeScheduler)

- can describe incidence geometry
 - allows flexible access to the incidence geometry (AttributeScheduler)
- can manage hierarchy of structures

- can describe incidence geometry
 - allows flexible access to the incidence geometry (AttributeScheduler)
- can manage hierarchy of structures

works well with group—theoretic descriptions

- can describe incidence geometry
 - allows flexible access to the incidence geometry (AttributeScheduler)
- can manage hierarchy of structures

- works well with group—theoretic descriptions
- difference to FinInG-package by De Beule, Neunhöffer et al.

- can describe incidence geometry
 - allows flexible access to the incidence geometry (AttributeScheduler)
- can manage hierarchy of structures

- works well with group—theoretic descriptions
- difference to FinInG-package by De Beule, Neunhöffer et al.
 - only two dimensions

- can describe incidence geometry
 - allows flexible access to the incidence geometry (AttributeScheduler)
- can manage hierarchy of structures

- works well with group-theoretic descriptions
- difference to FinInG-package by De Beule, Neunhöffer et al.
 - only two dimensions but it can work with colourings and foldings

2 Edge colouring and group properties

2 Edge colouring and group properties

3 Abstract folding

2 Edge colouring and group properties

3 Abstract folding

We want to describe different structures:

We want to describe different structures:

We want to describe different structures:

→ triangular complexes

We want to describe different structures:

→ triangular complexes

sets of vertices, edges and faces

We want to describe different structures:

- sets of vertices, edges and faces
- incidence relation between them

We want to describe different structures:

- sets of vertices, edges and faces
- incidence relation between them
- every face is a triangle

We want to describe different structures:

- sets of vertices, edges and faces
- incidence relation between them
- every face is a triangle
- every vertex lies in an edge

We want to describe different structures:

- sets of vertices, edges and faces
- incidence relation between them
- every face is a triangle
- every vertex lies in an edge and every edge lies in a face

Incidence structures can be interpreted as coloured graphs:

→ reduce to graph isomorphism problem

- → reduce to graph isomorphism problem
- → solved efficiently in practice by nauty/Traces (McKay, Piperno)

Incidence structures can be interpreted as coloured graphs:

→ reduce to graph isomorphism problem

→ solved efficiently in practice by nauty/Traces (McKay, Piperno)
In GAP: NautyTracesInterface (Gutsche, Niemeyer, Schweitzer)

- → reduce to graph isomorphism problem
- → solved efficiently in practice by nauty/Traces (McKay, Piperno)
 In GAP: NautyTracesInterface (Gutsche, Niemeyer, Schweitzer)
 - calls C-functions directly without writing files

- → reduce to graph isomorphism problem
- → solved efficiently in practice by nauty/Traces (McKay, Piperno)
 In GAP: NautyTracesInterface (Gutsche, Niemeyer, Schweitzer)
 - calls C-functions directly without writing files
 - also returns automorphism group

Some properties can be computed for all triangular complexes:

Some properties can be computed for all triangular complexes:

Connectivity

Some properties can be computed for all triangular complexes:

- Connectivity
- Euler-Characteristic

Some properties can be computed for all triangular complexes:

- Connectivity
- Euler-Characteristic

Orientability is not one of them.

Some properties can be computed for all triangular complexes:

- Connectivity
- Euler-Characteristic

Orientability is **not** one of them. Counterexample:

Some properties can be computed for all triangular complexes:

- Connectivity
- Euler-Characteristic

Orientability is **not** one of them. Counterexample:

⇒ every edge lies in at most two faces (for well–definedness)

Some properties can be computed for all triangular complexes:

- Connectivity
- Euler-Characteristic

Orientability is **not** one of them. Counterexample:

- ⇒ every edge lies in at most two faces (for well–definedness)
- → ramified simplicial surfaces

Typical example of a ramified simplicial surface:

Typical example of a ramified simplicial surface:

⇒ It is not a surface – there is a ramification at the central vertex

Typical example of a ramified simplicial surface:

 \Rightarrow It is not a surface – there is a *ramification* at the central vertex A **simplicial surface** does not have these ramifications.

Plesken/Strzelczyk classified all closed simplicial surfaces up to 20 triangles.

• building blocks are those without a 3-cycle of edges

- building blocks are those without a 3-cycle of edges
- e.g. there are 87 non-isomorphic surfaces with 20 triangles

- building blocks are those without a 3-cycle of edges
- e.g. there are 87 non-isomorphic surfaces with 20 triangles
- e.g. there is only one surface with 10 triangles:

- building blocks are those without a 3-cycle of edges
- e.g. there are 87 non-isomorphic surfaces with 20 triangles
- e.g. there is only one surface with 10 triangles:

Progress report of triangulated complexes

Already implemented:

surface hierarchy

- surface hierarchy
- elementary properties (e.g. connectivity, orientability)

- surface hierarchy
- elementary properties (e.g. connectivity, orientability)
- isomorphism testing

- surface hierarchy
- elementary properties (e.g. connectivity, orientability)
- isomorphism testing
- classification of small surfaces (as data base)

Already implemented:

- surface hierarchy
- elementary properties (e.g. connectivity, orientability)
- isomorphism testing
- classification of small surfaces (as data base)

Not yet implemented:

Already implemented:

- surface hierarchy
- elementary properties (e.g. connectivity, orientability)
- isomorphism testing
- classification of small surfaces (as data base)

Not yet implemented:

automorphism group

Already implemented:

- surface hierarchy
- elementary properties (e.g. connectivity, orientability)
- isomorphism testing
- classification of small surfaces (as data base)

Not yet implemented:

- automorphism group
- advanced properties (any wishes?)

General simplicial surfaces

2 Edge colouring and group properties

3 Abstract folding

Given: A triangular complex

Given: A triangular complex

• Can it be embedded into \mathbb{R}^3 ?

Given: A triangular complex

- Can it be embedded into \mathbb{R}^3 ?
- In how many ways?

Given: A triangular complex

- Can it be embedded into \mathbb{R}^3 ?
- In how many ways?

Given: A triangular complex

- Can it be embedded into \mathbb{R}^3 ?
- In how many ways?

Simplifications:

Only simplicial surfaces (that are built from triangles)

Given: A triangular complex

- Can it be embedded into \mathbb{R}^3 ?
- In how many ways?

- Only simplicial surfaces (that are built from triangles)
- 2 All triangles are isometric

Given: A triangular complex

- Can it be embedded into \mathbb{R}^3 ?
- In how many ways?

- Only simplicial surfaces (that are built from triangles)
- All triangles are isometric

Given: A triangular complex

- Can it be embedded into \mathbb{R}^3 ?
- In how many ways?

- Only simplicial surfaces (that are built from triangles)
- All triangles are isometric
- → Edge-colouring encodes different lengths

Consider tetrahedron

Consider tetrahedron with edge colouring

Consider tetrahedron with edge colouring

 $\textit{simplicial surface} \Rightarrow$

Consider tetrahedron with edge colouring

Consider tetrahedron with edge colouring

 $simplicial surface \Rightarrow$ at most two faces at each edge

 \leadsto every edge defines a transposition of incident faces

Consider tetrahedron with edge colouring

- → every edge defines a transposition of incident faces
 - (1,2)

Consider tetrahedron with edge colouring

- \rightsquigarrow every edge defines a transposition of incident faces
 - (1,2)(3,4)

Consider tetrahedron with edge colouring

- → every edge defines a transposition of incident faces
- → every colour class defines a permutation of the faces
 - (1,2)(3,4)

Consider tetrahedron with edge colouring

- \leadsto every edge defines a transposition of incident faces
- → every colour class defines a permutation of the faces
 - (1,2)(3,4), (1,3)(2,4)

Consider tetrahedron with edge colouring

- → every edge defines a transposition of incident faces
- → every colour class defines a permutation of the faces
- (1,2)(3,4) , (1,3)(2,4) , (1,4)(2,3)

Consider tetrahedron with edge colouring

- \leadsto every edge defines a transposition of incident faces
- → every colour class defines a permutation of the faces
 - (1,2)(3,4) , (1,3)(2,4) , (1,4)(2,3)
- → group theoretic considerations

Consider tetrahedron with edge colouring

- → every edge defines a transposition of incident faces
- → every colour class defines a permutation of the faces
 - (1,2)(3,4) , (1,3)(2,4) , (1,4)(2,3)
- → group theoretic considerations
 - The connected components of the surface correspond to

Consider tetrahedron with edge colouring

- → every edge defines a transposition of incident faces
- → every colour class defines a permutation of the faces
 - (1,2)(3,4) , (1,3)(2,4) , (1,4)(2,3)
- → group theoretic considerations
 - The connected components of the surface correspond to the orbits of $\langle \sigma_a, \sigma_b, \sigma_c \rangle$ on the faces

Consider tetrahedron with edge colouring

- → every edge defines a transposition of incident faces
- --- every colour class defines a permutation of the faces
 - (1,2)(3,4) , (1,3)(2,4) , (1,4)(2,3)
- → group theoretic considerations
 - The connected components of the surface correspond to the orbits of $\langle \sigma_a, \sigma_b, \sigma_c \rangle$ on the faces (fast computation for permutation groups)

How do faces fit together?

How do faces fit together?

Consider a face of the surface

How do faces fit together?

Consider a face of the surface and a neighbouring face.

rotation (r)

Consider a face of the surface and a neighbouring face. The neighbour can be coloured in two ways:

This gives an **mr–assignment** for the edges of the surface.

Consider a face of the surface and a neighbouring face.

The neighbour can be coloured in two ways:

This gives an **mr–assignment** for the edges of the surface.

Lemma

Permutations and mr-assignment uniquely determine the surface.

A general mr-assignment leads to complicated surfaces.

A general mr–assignment leads to complicated surfaces. Simplification: edges of same colour have the same mr–type

A general mr-assignment leads to complicated surfaces. Simplification: edges of same colour have the same mr-type Example

A general mr-assignment leads to complicated surfaces. Simplification: edges of same colour have the same mr-type Example

has only r-edges.

If all edges are mirrors, the situation is simple.

If all edges are mirrors, the situation is simple.

Lemma

A simplicial surface has only mirror-edges iff it covers a single triangle

If all edges are mirrors, the situation is simple.

Lemma

A simplicial surface has only mirror-edges iff it covers a single triangle, i. e. there is a surjective incidence-preserving map

If all edges are mirrors, the situation is simple.

Lemma

A simplicial surface has only mirror—edges iff it covers a single triangle, i. e. there is a surjective incidence—preserving map to the simplicial surface consisting of exactly one face.

If all edges are mirrors, the situation is simple.

Lemma

A simplicial surface has only mirror—edges iff it covers a single triangle, i. e. there is a surjective incidence—preserving map to the simplicial surface consisting of exactly one face.

Consider

If all edges are mirrors, the situation is simple.

Lemma

A simplicial surface has only mirror—edges iff it covers a single triangle, i. e. there is a surjective incidence—preserving map to the simplicial surface consisting of exactly one face.

Consider

⇒ Unique map that preserves incidence

If all edges are mirrors, the situation is simple.

Lemma

A simplicial surface has only mirror—edges iff it covers a single triangle, i. e. there is a surjective incidence—preserving map to the simplicial surface consisting of exactly one face.

Consider

- ⇒ Unique map that preserves incidence
 - Covering pulls back a mirror-colouring of the triangle.

If all edges are mirrors, the situation is simple.

Lemma

A simplicial surface has only mirror—edges iff it covers a single triangle, i. e. there is a surjective incidence—preserving map to the simplicial surface consisting of exactly one face.

Consider

- ⇒ Unique map that preserves incidence
 - Covering pulls back a mirror-colouring of the triangle.
 - Mirror-colouring defines a map to the triangle.

Start with three involutions σ_a , σ_b , σ_c in permutation representation

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

There exists a coloured surface with the given involutions

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

There exists a coloured surface with the given involutions where all edges are mirror edges.

The faces are the points moved by the involution triple

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

- The faces are the points moved by the involution triple
- The edges are the 1- and 2-cycles of the involutions

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

- The faces are the points moved by the involution triple
- The edges are the 1- and 2-cycles of the involutions
- The vertices are

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

- The faces are the points moved by the involution triple
- The edges are the 1- and 2-cycles of the involutions
- The vertices are

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

- The faces are the points moved by the involution triple
- The edges are the 1- and 2-cycles of the involutions
- The vertices are

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

- The faces are the points moved by the involution triple
- The edges are the 1- and 2-cycles of the involutions
- The vertices are the orbits of $\langle \sigma_a, \sigma_b \rangle$ on the faces

Start with three involutions σ_a , σ_b , σ_c in permutation representation (like generators of a finite group)

Lemma

- The faces are the points moved by the involution triple
- The edges are the 1- and 2-cycles of the involutions
- The vertices are the orbits of $\langle \sigma_a, \sigma_b \rangle$ on the faces (for all pairs)

Construction example

Construction example

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

Construction example

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

 $\sigma_b = (1,4)(2,3)(5,8)(6,7)$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

 $\sigma_b = (1,4)(2,3)(5,8)(6,7)$
 $\sigma_c = (1,5)(2,6)(3,7)(4,8)$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

 $\sigma_b = (1,4)(2,3)(5,8)(6,7)$
 $\sigma_c = (1,5)(2,6)(3,7)(4,8)$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

 $\sigma_b = (1,4)(2,3)(5,8)(6,7)$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

 $\sigma_c = (1,5)(2,6)(3,7)(4,8)$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_a = (1, 2)(3, 4)(5, 6)(7, 8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

 $\sigma_c = (1,5)(2,6)(3,7)(4,8)$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

 $\sigma_b = (1,4)(2,3)(5,8)(6,7)$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

$$\sigma_a = (1, 2)(3, 4)(5, 6)(7, 8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

 $\sigma_c = (1,5)(2,6)(3,7)(4,8)$

$$\sigma_a = (1, 2)(3, 4)(5, 6)(7, 8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

 $\sigma_c = (1,5)(2,6)(3,7)(4,8)$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

 $\sigma_b = (1,4)(2,3)(5,8)(6,7)$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

gap> DrawSurfaceToTikZ(iko,"NetIko.tex");

gap> DrawSurfaceToTikZ(iko,"NetIko.tex");

gap> DrawSurfaceToTikZ(iko,"NetIko.tex");

• Has to be manually untangled

Implemented:

• computing all colourings of a given simplicial surface

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - up to (coloured) isomorphism

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - 1 up to (coloured) isomorphism
 - with given mr-assignment

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - 1 up to (coloured) isomorphism
 - with given mr-assignment
- drawing of simplicial surfaces

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - 1 up to (coloured) isomorphism
 - 2 with given mr-assignment
- drawing of simplicial surfaces
- constructing various coloured coverings

Implemented:

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - 1 up to (coloured) isomorphism
 - with given mr-assignment
- drawing of simplicial surfaces
- constructing various coloured coverings

Still missing:

Implemented:

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - 1 up to (coloured) isomorphism
 - 2 with given mr-assignment
- drawing of simplicial surfaces
- constructing various coloured coverings

Still missing:

• for which lengths are the surfaces embeddable?

Implemented:

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - 1 up to (coloured) isomorphism
 - with given mr-assignment
- drawing of simplicial surfaces
- constructing various coloured coverings

Still missing:

- for which lengths are the surfaces embeddable?
- can we predict self-intersections?

Implemented:

- computing all colourings of a given simplicial surface
- constructing all surfaces with given involutions
 - 1 up to (coloured) isomorphism
 - 2 with given mr-assignment
- drawing of simplicial surfaces
- constructing various coloured coverings

Still missing:

- for which lengths are the surfaces embeddable?
- can we predict self-intersections?
- does varying the lengths lead to another embedding?

General simplicial surfaces

2 Edge colouring and group properties

3 Abstract folding

What kind of folding?

What kind of folding?

ullet Folding of surface in \mathbb{R}^3

- ullet Folding of surface in \mathbb{R}^3
- Fold only at given edges (no introduction of new folding edges)

- Folding of surface in \mathbb{R}^3
- Fold only at given edges (no introduction of new folding edges)
- Folding should be rigid (no curvature)

- Folding of surface in \mathbb{R}^3
- Fold only at given edges (no introduction of new folding edges)
- Folding should be rigid (no curvature)

Goal: Classify possible folding patterns (given a net)

- ullet Folding of surface in \mathbb{R}^3
- Fold only at given edges (no introduction of new folding edges)
- Folding should be rigid (no curvature)

Goal: Classify possible folding patterns (given a net)

• At every point in time the folding process has to be embedded

- At every point in time the folding process has to be embedded
- We can only show foldability for specific small examples

- At every point in time the folding process has to be embedded
- We can only show foldability for specific small examples
 - Usually using regularity (like crystallographic symmetry)

- At every point in time the folding process has to be embedded
- We can only show foldability for specific small examples
 - Usually using regularity (like crystallographic symmetry)
 - No general method

- At every point in time the folding process has to be embedded
- We can only show foldability for specific small examples
 - Usually using regularity (like crystallographic symmetry)
 - No general method
- It is very hard to define iterated foldings in an embedding

- At every point in time the folding process has to be embedded
- We can only show foldability for specific small examples
 - Usually using regularity (like crystallographic symmetry)
 - No general method
- It is very hard to define iterated foldings in an embedding

Central idea:

Don't model the folding process (needs embedding)

- Don't model the folding process (needs embedding)
- Describe starting and final folding state

- Don't model the folding process (needs embedding)
- Describe starting and final folding state
 - Only consider changes in the topology

- Don't model the folding process (needs embedding)
- Describe starting and final folding state
 - Only consider changes in the topology (like identification of faces)

- Don't model the folding process (needs embedding)
- Describe starting and final folding state
 - Only consider changes in the topology (like identification of faces)
 - allows abstraction from embedding

- Don't model the folding process (needs embedding)
- Describe starting and final folding state
 - Only consider changes in the topology (like identification of faces)
 - allows abstraction from embedding
- → Incidence geometry (triangular complex/simplicial surface)

- Don't model the folding process (needs embedding)
- Describe starting and final folding state
 - Only consider changes in the topology (like identification of faces)
 - allows abstraction from embedding
- → Incidence geometry (triangular complex/simplicial surface)
 - Captures some folding restrictions (rigidity of tetrahedron)

- Don't model the folding process (needs embedding)
- Describe starting and final folding state
 - Only consider changes in the topology (like identification of faces)
 - allows abstraction from embedding
- → Incidence geometry (triangular complex/simplicial surface)
 - Captures some folding restrictions (rigidity of tetrahedron)
 - Has to be refined

Concept should allow reversible folding

- Concept should allow reversible folding
- We need an ordering of the faces:

- Concept should allow reversible folding
- We need an ordering of the faces:

We also need a cyclic order of the faces around an edge:

- Concept should allow reversible folding
- We need an ordering of the faces:

• We also need a cyclic order of the faces around an edge:

- Concept should allow reversible folding
- We need an ordering of the faces:

We also need a cyclic order of the faces around an edge:

→ folding complex

Needs specification of two face sides:

Needs specification of two face sides:

Needs specification of two face sides:

Needs specification of two face sides:

 \Rightarrow Characterize folding by specifying the two face sides that touch

Needs specification of two face sides:

 \Rightarrow Characterize folding by specifying the two face sides that touch

 \rightsquigarrow folding plan

How does folding plan work?

How does folding plan work?

Folding of two faces can induce folding of other faces:

How does folding plan work?

Folding of two faces can induce folding of other faces:

Folding of two faces can induce folding of other faces:

• Can apply to arbitrarily many faces

Folding of two faces can induce folding of other faces:

• Can apply to arbitrarily many faces

Folding of two faces can induce folding of other faces:

• Can apply to arbitrarily many faces

- Can apply to arbitrarily many faces
- The induced folding is not unique

- Can apply to arbitrarily many faces
- The induced folding is not unique

- Can apply to arbitrarily many faces
- The induced folding is not unique

- Can apply to arbitrarily many faces
- The induced folding is not unique

- Can apply to arbitrarily many faces
- The induced folding is not unique
- ⇒ Identify only two faces at a time

- Can apply to arbitrarily many faces
- The induced folding is not unique
- ⇒ Identify only two faces at a time

- Can apply to arbitrarily many faces
- The induced folding is not unique
- ⇒ Identify only two faces at a time
 - → Relax the rigidity–constraint:

- Can apply to arbitrarily many faces
- The induced folding is not unique
- ⇒ Identify only two faces at a time
 - → Relax the rigidity–constraint:
 - Allow non-rigid configurations as transitional states

With folding plans we can perform the same folding in different folding complexes

→ more structure on the set of possible foldings

• Vertices are folding complexes (modelling folding states)

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

- Vertices are folding complexes (modelling folding states)
- Edges are folding plans connecting two folding complexes

Larger graph

Larger graph

Larger graph

Some foldings that "should" be the same, aren't:

⇒ If you know the folding structure of a small complex,

Some foldings that "should" be the same, aren't:

 \Rightarrow If you know the folding structure of a small complex, you can't easily find the folding structure of an extended complex

- \Rightarrow If you know the folding structure of a small complex, you can't easily find the folding structure of an extended complex
- → Folding plans are not optimal to model folding

In development:

In development:

folding complex

In development:

- folding complex
- folding plans

In development:

- folding complex
- folding plans
- folding graph

In development:

- folding complex
- folding plans
- folding graph

Missing:

In development:

- folding complex
- folding plans
- folding graph

Missing:

better folding description

In development:

- folding complex
- folding plans
- folding graph

Missing:

- better folding description
- properties of folding graphs

Triangulated complexes

Triangulated complexes

mostly complete

Triangulated complexes

mostly complete

Edge colouring

Triangulated complexes

mostly complete

Edge colouring

current theory implemented

Triangulated complexes

mostly complete

Edge colouring

- current theory implemented
- a lot of theory missing

Triangulated complexes

mostly complete

Edge colouring

- current theory implemented
- a lot of theory missing

Abstract folding

Triangulated complexes

mostly complete

Edge colouring

- current theory implemented
- a lot of theory missing

Abstract folding

framework exists

Triangulated complexes

mostly complete

Edge colouring

- current theory implemented
- a lot of theory missing

Abstract folding

- framework exists
- needs proper implementation

