Démonstration kholle 25

I Toute forme n-linéaire alternée est antisymétrique.

```
Propriété : Soit \phi \in A_n(E) \forall (\vec{x}_1,...,\vec{x}_n) \in E^n, \forall \sigma \in S_n, \phi(\vec{x}_{\sigma(1)},...,\vec{x}_{\sigma(n)}) = \epsilon(\sigma)\phi(\vec{x}_1,...,\vec{x}_n) On dit que \phi est antisymétrique Démonstration : cas où \sigma = (i \quad j), i < j Comme \phi est alternée : \phi(\vec{x}_1,...,\vec{x}_i + \vec{x}_j,...,\vec{x}_i + \vec{x}_j,...,\vec{x}_n) = 0 0 = \phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i + \vec{x}_j,...,\vec{x}_n) + \phi(\vec{x}_1,...,\vec{x}_j,...,\vec{x}_i + \vec{x}_j,...,\vec{x}_n) 0 = \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_n)}_{=0} + \phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_n) + \phi(\vec{x}_1,...,\vec{x}_j,...,\vec{x}_n) + \phi(\vec{x}_1,...,\vec{x}_j,...,\vec{x}_n) 0 = \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i)}_{=0} + \phi(\vec{x}_1,...,\vec{x}_j,...,\vec{x}_i) + \phi(\vec{x}_1,...,\vec{x}_j,...,\vec{x}_n)}_{=0} 0 = \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i)}_{=0} + \phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_j,...,\vec{x}_n)}_{=0} 0 = \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_n)}_{=0} + \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_n)}_{=0} 0 = \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_n)}_{=0} 0 = \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_n)}_{=0} 0 = \underbrace{\phi(\vec{x}_1,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec{x}_i,...,\vec
```

ll $det_{\mathscr{B}}$ est alternée et vaut 1 sur ${\mathscr{B}}.$

Propriété:

Soit \mathscr{B} une base de E . Alors : $det_{\mathscr{B}}$ est une forme n-alternée sur E et $det_{\mathscr{B}}(\mathscr{B})=1$ Démonstration : **n-alternée** : si $\vec{x}_i=\vec{x}_k$ avec $i\neq k$: $\forall j\in [[1,n]], a_{ij}=a_{kj}, \, \tau=(i-k)$ $det_{\mathscr{B}}(\vec{x}_1,...,\vec{x}_n)=\sum_{\sigma\in S_n}\epsilon(\sigma)\prod_{j=1}^n a_{\sigma(j),j}$ $det_{\mathscr{B}}(\vec{x}_1,...,\vec{x}_n)=\sum_{\sigma\in S_n}\epsilon(\sigma)\prod_{j=1}^n a_{\sigma(j),\tau(j)}$ car $\vec{x}_i=\vec{x}_k$ $det_{\mathscr{B}}(\vec{x}_1,...,\vec{x}_n)=\sum_{\gamma\in S_n}\underbrace{\epsilon(\gamma\tau)}_{j=1}\prod_{j=1}^n a_{\gamma(\tau(j)),\tau(j)}$ $=\epsilon(\gamma)\epsilon(\tau)=-\epsilon(\gamma)$ $det_{\mathscr{B}}(\vec{x}_1,...,\vec{x}_n)=-\sum_{\gamma\in S_n}\epsilon(\gamma)\prod_{l=1}^n a_{\gamma(l),l}$ en posant $l=\tau(j)$ $det_{\mathscr{B}}(\vec{x}_1,...,\vec{x}_n)=-det_{\mathscr{B}}(\vec{x}_1,...,\vec{x}_n)$ qui est donc nul $det_{\mathscr{B}}(\mathscr{B})=1$: $a_{ij}=\delta_{ij}$ $det_{\mathscr{B}}(\mathscr{B})=\sum_{\sigma\in S_n}\epsilon(\sigma)\prod_{j=1}^n \delta_{\sigma(j),j}$ si $\sigma\neq id$: il existe j tel que $\sigma(j)\neq j$ donc $\delta_{\sigma(j),j}=0$ produit nul $det_{\mathscr{B}}(\mathscr{B})=\epsilon(id)\prod_{j=1}^n \delta_{j,j}$ $det_{\mathscr{B}}(\mathscr{B})=1$

III Formule de changement de base des déterminants, caractérisation des bases.

```
Propriété:
Fixons \mathscr{B} base de E. Soit \phi \in A_n(E), alors :
\forall \mathscr{F} \in E, \phi(\mathscr{F}) = \phi(\mathscr{B}) det_{\mathscr{B}}(\mathscr{F})
Propriété:
formule de changement de base. Soient \mathscr{B} et \mathscr{C} bases de E. Alors :
\forall \mathcal{F}, det_{\mathscr{C}}(\mathcal{F}) = det_{\mathscr{C}}(\mathcal{B}) det_{\mathscr{B}}(\mathcal{F})
Démonstration:
cas particulier de la propriété précédente avec \phi = det_{\mathscr{C}} \in A_n
Corrolaire:
{\mathscr B} et {\mathscr C} bases de E. Alors :
det_{\mathscr{B}}(\mathscr{C}) \neq 0 et det_{\mathscr{C}}(\mathscr{B}) = \frac{1}{det_{\mathscr{B}}(\mathscr{C})}
Démonstration:
En prenant \mathscr{F}=\mathscr{C}: \underbrace{\det_{\mathscr{C}}(\mathscr{C})}_{=1}=\det_{\mathscr{C}}(\mathscr{B})\det_{\mathscr{B}}(\mathscr{C})
Corrolaire:
Soit \mathscr{B} base de E, \mathscr{F} \in E^n quelconque . Alors :
\mathscr{F} base de \mathsf{E} \Longleftrightarrow \det_{\mathscr{B}}(\mathscr{F}) \neq 0
Démonstration:
⇒ : propriété précédente

        ←: par contraposition.

Supposons que \mathscr{F} ne soit pas une base de E. Comme elle a n=dim(E) vecteurs, si elle était libre alors
ce serait une base, elle est donc liée.
Commme det_{\mathscr{B}} \in A_n(E):
det_{\mathscr{B}}(\mathscr{F}) = 0
```

- IV $det_{\mathscr{B}}(f(\mathscr{B}))$ ne dépend pas du choix de \mathscr{B} + $det_{\mathscr{B}}(f(x_1),...,f(x_n)) = det(f)det_{\mathscr{B}}(x_1,...,x_n)$.
- V Propriété variées de det(f) déduites de la question précédente.

VI
$$det(^tA) = det(A)$$

VII Déterminant triangulaire