

DOĞRUSAL REGRESYON MODELI ILE OTOMOTİV SATIŞ TAHMİNİ

Presented By Mert Dil

25.04.2023

AGENDA

Giriş	3
Veri Keşfi ve Ön İşleme	4-5
Varsayımların Test Edilmesi	6
Model Oluşturma	7
Mevsimsel Değişkenlerle Model Oluşturma	8
Modellerin Karşılaştırılması	9
Modelin Servis Haline Getirilmesi ve Test Edilmesi	10-1

LINKTERA

Çalışmanın Arka Planı

- Otomotiv sektörü, Türkiye ekonomisi için önemli bir yerdedir.
- Bu sektördeki Otomotiv Satış tahmini, firmaların planlama ve karar verme süreçlerinde kritik öneme sahiptir.
- Bu nedenle, otomotiv satış tahmini için veri bilimi yöntemleri ile bir model oluşturmak, sektördeki firmalar için büyük bir avantaj sağlayabilir.
- Bu çalışma, çoklu doğrusal regresyon modeli kullanarak Haziran 2022 - Haziran 2023 dönemi için otomotiv satışlarının tahminini amaçlamaktadır.
- Veri keşfi, model oluşturma ve modelin servis haline getirilmesi adımları takip edilerek bir çözüm geliştirilmiştir.

VERI KESFI VE ÖN İŞLEME

	Otomotiv Satis	OTV Orani	Faiz	EUR/TL	Kredi Stok
count	149.000000	149.000000	149.000000	149.000000	1.490000e+02
mean	65902.617450	43.697987	16.034380	4.808703	1.787554e+06
std	26175.801077	5.846811	5.319518	3.321767	1.176366e+06
min	14373.000000	37.000000	9.607500	1.927305	3.412441e+05
25%	50008.000000	40.000000	12.715000	2.464018	7.755455e+05
50%	63044.000000	45.000000	14.485000	3.276861	1.474594e+06
75%	79819.000000	50.000000	17.475000	6.380609	2.447479e+06
max	156173.000000	65.000000	32.782500	16.560000	4.862887e+06

Table 1. Verimizin İstatiksel Tablosu

Fig 2. Verimizin Zamana Bağlı Grafikleri

Fig 1. Verimizin Korelasyon Dağılımları

• Veri seti, 2010-2022 yılları arasında Türkiye'deki otomotiv satışlarına ait aylık verileri içermektedir.

- Veri seti, 5 farklı değişken içermektedir:
 "Otomotiv Satis" (hedef değişken), "OTV
 Oranı", "Faiz", "EUR/TL" ve "Kredi Stok".
- Veri keşfi aşamasında, veri setinin istatistiksel özellikleri (ortalama, standart sapma, vb.) incelenmiş ve değişkenler arasındaki ilişkiler görsel olarak gösterilmiştir.(Table 1)
- Veri keşfi sonuçlarına göre, "Otomotiv Satis" değişkeninin diğer değişkenlerle OTV verisi dışında negatif korelasyon gösterdiği tespit edilmiştir. (Fig. 1)
- Otomotiv satışlarındaki artış ve azalışlar, tarihlerine göre bir timeseries grafiği ile daha iyi anlaşılabilir. (Fig. 2)
- Verilere sezonsal değişkenleri eklemek için öncelikle hangi zaman aralıklarının sezonsal özellikler sahip olduğu analizi yapıldı. (Fig. 3)

VERI KEŞFI VE ÖN IŞLEME

Fig 1. Dağılım Grafikleri

Fig 2. Aykırı Değerler Tesbiti için Kutu Grafikleri

- Dağılım grafikleri, verilerin dağılımını görselleştirmek için kullanılan araçlardır. Verilerin türüne göre farklı dağılım grafikleri kullanılabilir.
- Normal dağılım grafiği, verilerin merkezi eğilimlerini ve dağılım genişliğini gösterir.(Fig. 1 Otomotiv Satis)
- Bu grafikler, verilerdeki merkezi eğilim ve dağılım genişliğini belirlemenmesinde yardımcı oldu.
- Sağa çarpık bir dağılım grafiği, verilerin sağ tarafta uzun kuyruklar oluşturduğu, sağ tarafta yoğunluğun daha az olduğu bir dağılım şeklidir. (Fig. 1 EUR/TL)
- p-value değeri düşük olan değerler "EUR/TL", "Faiz" değişkenlerine Box-Cox dönüşümü uygulanıp normal dağılıma yaklaşması sağlandı.
- Box-Cox dönüşümü modelimizi negatif score olarak etkilediği için
 Box-Cox dönüşümü yapılmadan model oluşturulmuştur.
- Aykırı değerler, veri setinin genel analizini yanıltabilir ve modele zarar verebilir. Bu nedenle, aykırı değerlerinin silinmesi, daha doğru sonuçlar elde etmek için önemlidir.
- Aykırı Değerlerin tesbiti için Kutu Grafikleri kullanıldı.(Fig. 2)
- Aykırı değerlerin elimine edilmesi için kullanılan yöntemlerden
- Standart sapma yöntemi,IQR yöntemi,Z-score yöntemi
- Çalışmada ,"Otomativ Satis","Faiz","EUR/TL" değerleri için Zscore yöntemi kullanılmış, eşik değerimiz 3 olarak belirlenmiş ve bu değerin dışında kalan değerler silinmiştir. (Fig. 2)
- Aykırı değerlerin silinmesi modelimizi negatif score olarak etkilediği için aykırı değerler çıkarılmadan model oluşturulmuştur.

DOĞRUSAL REGRESYON IÇIN VARSAYIMLARIN TEST EDILMESI

Fig 3. Doğrusallık Varsayımı

Fig 4. Normallik Kontrolü

- Doğrusal bir model kurduğumuz için, hedef
 "Otomotiv Satis" ile diğer özellikler arasındaki ilişkinin doğrusal olduğunu varsayıyoruz.
- 1.Doğrusallık Varsayımı, bağımsız değişken ile bağımlı değişken arasındaki ilişkinin doğrusal olmasını gerektirir. Bu varsayımı bazı dağılım grafikleri ve regresyon çizgileri ile test edebiliriz (Fig. 3):
- "Otomativ Satış",değişkenine bağlı iki farklı korelasyon vektörleri nedeniyle 'OTV Oranı' ve 'Faiz' özellikleri ile doğrusallık varsayımı yapıldı.
- 2.Normallik Kontrolü, bağımlı değişken olan 'Otomativ Satis 'ın normal dağılımlı olmasını gerektirir.
- Uyum iyiliği testi, örneğin Kolmogorov-Smirnov testi, bağımlı değişkendeki normalliği kontrol edebilir.
- Hedef değişkenimiz olan 'Otomativ Satis'ın nasıl davrandığını göstermek için iki grafiği de görüntüledik (Fig. 4):
- Hedef değişkenimiz olan 'Otomativ Satis' normal dağılıma sahiptir
- Uyum testimiz,doğrusal,uyumlu bir davranış sergilemiştir.

MODEL OLUŞTURMA

Mevsimsel Değişkenler Dahil Edilmeden Yapılan Model

	Actual value	Predicted value
Date		
2021-02-01	58504.0	68774.450564
2019-02-01	24875.0	42184.474305
2014-12-01	146989.0	73785.920703
2016-09-01	67593.0	71159.462082
2010-08-01	61764.0	66637.816550
2018-09-01	23028.0	26989.231761
2021-09-01	57141.0	63692.886734
2017-12-01	136240.0	75989.569828
2019-11-01	58176.0	68427.557375

Fig 1. Model Grafiğimiz

Fig 2. Time Series Forecast Model

MSE: 1066010217.2154276 RMSE: 32649.811901685247 R2 Score: 0.3632194068204203

determination of prediction Score: 0.3632194068204203

Back to Agenda

Table 3 Model Performansi

- Model eğitimi için veri seti, %94 eğitim ve %6 test verisi olarak ayrıldı.
- Modelin performansı, test verisi üzerinde RMSE (Karekök Ortalama Kare Hata) ve R-kare ölçütleri kullanılarak değerlendirildi.(Table 3)
- Model, Haziran 2022 Haziran 2023 dönemi için otomotiv satış adetlerinin tahmininde kullanılmak üzere eğitildi.(Table 1)
- Tahmin işlemi yapmak için önceden belirlenmesi istediğimiz tarihler için veriye 2022 Haz ve 2023 Haz tarihleri ve 4 bağımsız değişken eklendi.(Table 2)
- Bağımsız değişkenler random olarak eklenirken hepsinin istatiksel dağılımları özel olarak dikkate alınarak verimiz üretildi.
- Daha sonra ölçeklendirme işlemleri (standart scaler) sağlanarak verimiz tahmin edildi.(Fig. 2)
- Ridge regression ve feature selection ile model geliştirilmeye çalışıldı ancak score'lar düştüğü için modele eklenmediler.
- Elde edilen sonuçlar, modelin performansı ile birlikte sunuldu.(Fig. 1)


```
# Verilerin istatistiksel davranışlarını kullanarak rastgele değerler oluşturuyoruz

otv_values = np.random.randint(low=37, high=65, size=len(forecast_df))

kredi_values = np.random.normal(loc=1787554.29, scale=1176365.97, size=len(forecast_df))

faiz_values = np.random.normal(loc=16.03, scale=5.32, size=len(forecast_df))

eur_values = np.random.normal(loc=4.81, scale=3.32, size=len(forecast_df))

6
```

Table 2. Hedef Değişkeni Tahmin Etmek için Üretilen Bağımsız Random Değişkenler

MODEL OLUŞTURMA

MSE: 129105609.91228892 RMSE: 11362.46495758244

R2 Score: 0.8342903545377529

determination of prediction Score: 0.8342903545377529

Table 3 Model Performansi

Back to Agenda

Mevsimsel Değişikler ile Üretilen Model-2

	Actual value	Predicted value
Date		
2021-02-01	58504.0	44362.978884
2019-02-01	24875.0	23356.453710
2014-12-01	146989.0	129406.336438
2016-09-01	67593.0	72414.336936
2010-08-01	61764.0	60018.215106

Table 1. Gerçek ve tahmin verileri Tablosu

Fig 1. Model Grafiğimiz

Fig 2. Timeseries Forecast Grafiği

- Çoklu doğrusal regresyon modeli,mevsimsel değişkenler eklenerek geliştirildi.
- Otomotiv satışlarının genellikle yaz aylarında arttığı biliniyor.
 Bu nedenle, Haziran, Temmuz ve Ağustos aylarını bir sezon olarak düşünebilir.(Table 2)
- Yaz ayları haziran-ağustos dönemi olarak belirlendi.
- Bu karar aşamasından sonra verilerin aylara bölünmesi ve dummy değişkenler oluşturulması sağlandı.
- Dummy aşamasından sonra haziran ve ağustos dönemleri için yeni bir yaz değişkenini tanımlayan bir değer atandı.
- Model eğitimi için veri seti, %80 eğitim ve %20 test verisi olarak ayrıldı.(Table 1)
- Bir önceki model de olduğu gibi bağımsız değişkenler üretildi ve ölçeklendirildi
- Elde edilen sonuçlar, modelin performansı ile birlikte sunuldu.(Fig. 1)
- Modelin performans score'u ,e 0.36'dan 0.83'e artması sağlandı.(Fig. 2)

Table 2. Hedef Değişkeni Tahmin Etmek için Eklenen Sezonsal Değişkenimiz ve verimizin aylarının artılmış sütunları

MODEL TAHMINLERI VE KARŞILAŞTIRMALARI

- Mevsimsel değişikliklerin modellere eklenmesi, özellikle zaman serisi tahminimizde modelin öğrenmesi artırmıştır
- Bu yöntem, Haziran 2022- Haziran 2023 dönemleri arasında Otomativ Satış değerlerini tahmin etmede önemli bir rol oynamıştır

MODELIN SERVIS HALINE GETIRILMESI (FLASK-DOCKER)

- **Rest API,** modelin kullanıcılar tarafından kolayca erişilebilir olmasını ve uygulama tarafından modelin sonuçlarına erişebilmesini sağlar.
- Docker, modelin izole bir ortamda çalıştırılmasını ve taşınmasını kolaylaştırır. Bu sayede, modelin bağımsız bir servis haline getirilmesi mümkün olur.
- Modelin Dockerize edilmesi, herhangi bir platformda ve herhangi bir cihazda çalışabilmesini sağlar.
- Flask yardımı ile modelin Get metodu ile sorgu yapılması sağlanır.
- dockerfile oluşturularak modelin dockerize edilmesi sağlanmıştır. 8080 portu üzerinde işlemler sürdülür.
- dockerfile'de bulunan cmd komutu ile .py olarak bulunan model-2 çalıştırılıp image üzerinden kaydedilmiştir.

###Postman sorgumuz date=istediğimiz ayın birinci gününü söylediğimizde tahminimizi göstericek şekilde tasarlanmıştır.
"http://localhost:8080/prediction?date=2023-06-01"
"http://0.0.0.0:8080/prediction?date=2023-06-01"

MODELIN TEST EDILMESI (POSTMAN)

- Postman gibi araçlar ise, modelin servis haline getirildikten sonra test edilmesini sağlar ve hataların tespit edilmesine yardımcı olur.
- Bu adım, modelin gerçek hayatta kullanımını mümkün kılar ve uygulama geliştiricilerinin, modeli kolayca entegre etmelerine olanak tanır.
- Docker ile servise alınndı ve GET metodu, HTTP isteği ile datamızdan tahmin edilen aylar arasından istekte bulunuyoruz.
- Bu isteğimiz Haziran 2022-Haziran 2023 arasındaki ayları kapsayacak şekilde tahmin edilmiş verimizi kapsar.

Zaman ayırdığınız için teşekkürler.

EMAIL mertdill@outlook.com

TELEFON 05419537658

SOSYAL MEDYA https://www.linkedin.com/in/mertdil

PORTFOLIO https://github.com/Mertdil

