Задача А. Перекрёстная проверка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Разбейте множество из N объектов, каждый из которых принадлежит к одному из M классов, на K частей. Каждый объект должен попасть ровно в одну часть так, чтобы размеры частей, а также распределение классов по этим частям было сбалансировано. Формально, пусть cnt(x,c) — число объектов с классом c попавших в часть x, тогда должно выполняться $\forall x,y,c: |cnt(x,c)-cnt(y,c)| \leqslant 1$ и $\forall x,y: |\sum_c cnt(x,c)-\sum_c cnt(y,c)| \leqslant 1$.

Формат входных данных

Первая строка: три целых числа $N,\,M,\,K\,\,(1\leqslant N\leqslant 10^5,\,1\leqslant M,K\leqslant N)$ — число объектов, классов и частей.

Вторая строка: N целых чисел C_i $(1 \leqslant C_i \leqslant M)$ — класс i-го объекта.

Формат выходных данных

Выведите K строк. Каждая строка x начинается с целого числа S — размера части x. Далее идут S целых чисел — номера объектов попавших в часть x. Объекты нумеруются с единицы.

Пример

стандартный ввод	стандартный вывод
10 4 3	4 1 4 9 10
1 2 3 4 1 2 3 1 2 1	3 2 3 5
	3 6 7 8

Замечание

В первой части содержится четыре объекта, два из них первого класса, один второго и один четвёртого. Во второй и третьей части по три объекта первых трёх классов.

Задача В. F-мера

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В результате эксперимента по классификации на K классов была получена матрица неточностей (Confusion matrix) CM, где CM[c,t] — число объектов класса c, которые были классифицированы как t. Посчитайте по данной матрице неточностей средневзвешенную по классам макро и микро F-меру.

Формат входных данных

Первая строка содержит целое число K — число классов ($1 \le K \le 20$). Далее идёт K строк — описание матрицы неточностей. Каждая строка c содержит K целых чисел — c-тая строка матрицы неточностей. $\forall c,t:0 \le CM[c,t] \le 100$ и $\exists c,t:CM[c,t] \ge 1$.

Формат выходных данных

Выведите два вещественных числа с плавающей точкой — взвешенно усреднённую по классам макро и микро F-меру. Абсолютная погрешность ответа не должна превышать 10^{-6} .

Примеры

стандартный ввод	стандартный вывод
2	0.6
0 1	0.6
1 3	
3	0.326860841
3 1 1	0.316666667
3 1 1	
1 3 1	

Замечание

В первом примере классы распределены как 1:4. Точность (precision), полнота (recall) и F-мера первого класса равны 0, а второго 0.75. При этом средняя точность, полнота и F-мера равны 0.6.

Задача С. Непараметрическая регрессия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Реализуйте алгоритм непараметрической регрессии, который бы поддерживал функции расстояний, ядер И окон. Описание ядер можно найти здесь: https://en.wikipedia.org/w/index.php?oldid=911077090

Формат входных данных

Первая строка содержит два целых числа N и M — число объектов и признаков ($1 \le N \le 100$, $1 \le M \le 10$).

Далее идёт N строк — описание набора данных. Каждая строка i содержит M+1 целое число $d_{i,j}$ ($-100 \leqslant d_{i,j} \leqslant 100$) — описание i-го объекта. Первые M из этих чисел признаки i-го объекта, а последнее — его целевое значение.

Следующая строка описывает объект запроса q. Она состоит из M целых чисел $d_{q,j}$ $(-100 \leqslant d_{q,j} \leqslant 100)$ — признаки объекта q.

Далее идут три строки состоящих из строчных латинских букв.

Первая из них — название используемой функции расстояния: manhattan, euclidean, chebyshev.

Вторая — название функции ядра: uniform, triangular, epanechnikov, quartic, triweight, tricube, gaussian, cosine, logistic, sigmoid.

Tретья — название типа используемого окна: fixed — окно фиксированной ширины, variable — окно переменной ширины.

Последняя строка содержит параметр окна: целое число h ($0 \le h \le 100$) — радиус окна фиксированной ширины, либо целое число K ($1 \le K < N$) — число соседей учитываемое для окна переменной ширины.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — результат запроса.

стандартный ввод	стандартный вывод
3 2	0.000000000
0 2 1	
1 1 0	
2 0 1	
0 0	
euclidean	
uniform	
fixed	
2	
3 2	0.6090086848
0 2 1	
1 1 0	
2 0 1	
0 0	
euclidean	
gaussian	
variable	
2	

Задача D. Линейная регрессия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Найдите уравнения прямой аппроксимирующей положение объектов из заданного набора данных.

Формат входных данных

Первая строка содержит два целых числа N ($1 \le N \le 10^4$) — число объектов в обучающем множестве, и M ($1 \le M \le \min(N, 1000)$) — число признаков у объектов исключая зависимую переменную.

Следующие N строк содержат описание объектов. i-тая из этих строк содержит описание i-го объекта, M+1 целых чисел. Первые M из этих чисел: $X_{i,j}$ ($|X_{i,j}| \leq 10^9$) — признаки i-го объекта, а последнее Y_i ($|Y_i| \leq 10^9$) — значение его зависимой переменной.

Формат выходных данных

Выведите M+1 вещественных чисел с плавающей точкой A_j — коэффициенты прямой из уравнения $Y=A_0\cdot X_0+A_1\cdot X_1+\cdots+A_{M-1}\cdot X_{M-1}+A_M$

Система оценки

Пусть $Score=100\cdot \frac{B-S}{B-J}$, где S-SMAPE вашего решения, J-SMAPE решения эталона с запасом $\approx 1\%,\, B-SMAPE$ наивного решения с запасом $\approx 2\%.$

стандартный ввод	стандартный вывод
2 1	31.0
2015 2045	-60420.0
2016 2076	
4 1	2.0
1 0	-1.0
1 2	
2 2	
2 4	

Задача Е. Наивный байесовский классификатор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Реализуйте оптимальный наивный байесовский классификатор.

Априорные вероятности классов оцениваются обыкновенным частотным методом.

Вероятности встречи отдельных слов в каждом классе оцениваются с использованием аддитивного сглаживания (сглаживание Лапласа) $p(x) = \frac{count(x) + \alpha}{\sum_{y \in Q} count(y) + \alpha \cdot |Q|}$, где x — рассматриваемое событие, а Q — множество всех событий.

Каждое слово это отдельный признак с двумя возможными событиями встретилось / не встретилось.

Формат входных данных

В первой строке содержится целое положительное число K $(1\leqslant K\leqslant 10)$ — число классов.

Во второй строке содержится K целых положительных чисел λ_C $(1 \leqslant \lambda_C \leqslant 10)$ — штрафы за ошибки классификации сообщений соответствующих классов.

В третьей строке содержится целое положительное число α (1 $\leqslant \alpha \leqslant 10$) — интенсивность аддитивного сглаживания.

Следующая строка содержит целое положительное число N $(1 \leqslant N \leqslant 200)$ — число сообщений в обучающей выборке.

Следующие N строк содержат описания соответствующих сообщений из обучающей выборки. Каждое сообщение в ней начинается с целого положительного числа C_i ($1 \le C_i \le K$) — класса к которому относится i-е сообщении. Далее следует целое положительное число L_i ($1 \le L_i \le 10^4$) — число слов в i-м сообщение. Затем следует содержание сообщения — L_i слов состоящих из маленьких латинских букв.

Далее в отдельной строке содержится целое положительное число M ($1 \le M \le 200$) — число сообщений в проверочной выборке.

Следующие M строк содержат описания соответствующих сообщений из проверочной выборки. Каждое сообщение в ней начинается с целого положительного числа L_j ($1 \leqslant L_j \leqslant 10^4$) — число слов в j-м сообщении. Затем следует содержание сообщения — L_j слов состоящих из маленьких латинских букв.

Гарантируется, что сумма длин всех сообщений в обучающей и проверочной выборке меньше чем $2*10^6$.

Формат выходных данных

Выведите M строк — результаты мягкой классификации оптимального наивного байесовского классификатора соответствующих сообщений из проверочной выборки.

Каждый j-й результат мягкой классификации должен содержать K чисел p_C — вероятности того, что j-е сообщение относится к классу C.

Пример

стандартный ввод	стандартный вывод
3	0.4869739479 0.1710086840 0.3420173681
1 1 1	0.1741935484 0.7340501792 0.0917562724
1	0.4869739479 0.1710086840 0.3420173681
4	0.4869739479 0.1710086840 0.3420173681
1 2 ant emu	0.4869739479 0.3420173681 0.1710086840
2 3 dog fish dog	
3 3 bird emu ant	
1 3 ant dog bird	
5	
2 emu emu	
5 emu dog fish dog fish	
5 fish emu ant cat cat	
2 emu cat	
1 cat	

Замечание

В примере условные вероятности выглядят следующим образом:

Слово сат не рассматривается, так как оно ни разу не встретилось в обучающей выборке. Для первого запроса $p(c_1|M)\cdot p(M)=\frac{2}{4}\cdot \left(1-\frac{3}{4}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(\frac{1}{2}\right)\cdot \left(1-\frac{1}{4}\right)$ и $p(c_1|M)=\frac{3/256}{3/256+1/243+2/243}$

Задача F. Дерево принятия решений

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Постройте дерево принятия решений.

Формат входных данных

Первая строка содержит три целых положительных числа M ($1 \le M \le 100$) — число признаков у объектов (исключая класс), K ($1 \le K \le 20$) — число классов и H ($1 \le H \le 10$) — максимальная глубина (в рёбрах) дерева принятия решений.

Вторая строка содержит целое положительное число N ($1 \leqslant N \leqslant 4000$) — число объектов в обучающей выборке.

Следующие N строк содержат описания объектов в обучающей выборке. В i-й из этих N строк перечислено M+1 целое число: первые M чисел $A_{i,j}$ ($|A_{i,j}| \le 10^9$) — признаки i-го объекта, последнее число C_i ($1 \le Ci \le K$) — его класс.

Формат выходных данных

Выведите построенное дерево принятия решений.

В первой строке выведите целое положительное число S ($1 \le S \le 2^{11}$) — число вершин в дереве.

В следующих S строках выведите описание вершин дерева. В v-й из этих строк выведите описание v-й вершины:

- Если v-я вершина узел, выведите через пробел: заглавную латинскую букву 'Q', целое положительное число f_v ($1 \le f_v \le M$) индекс признака по которому происходит проверка в данном узле, вещественное число с плавающей точкой b_v константа с которой происходит сравнения для проверки, два целых положительных числа l_v и r_v ($v < l_v, r_v \le S$) индекс вершины дерева в которую следует перейти, если выполняется условие $A[f_v] < b_v$, и индекс вершины дерева в которую следует перейти, если условие не выполняется.
- Если v-я вершина лист, выведите через пробел: заглавную латинскую букву 'C' и целое положительное число D_v ($1 \le D_v \le K$) класс объекта попавшего в данный лист.

Вершины нумеруются с единицы. Корнем дерева считается первая вершина.

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F_1 -мера.

Пусть $Score=100\cdot\frac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, $J-F_1$ -мера решения эталона с запасом $\approx 1\%,\, B-F_1$ -мера наивного решения с запасом $\approx 2\%.$

Тогда
$$Verdict = \begin{cases} Ok & Score \geqslant 100 \\ PartiallyCorrect & 0 \leqslant Score \leqslant 100 \\ WrongAnswer & Score < 0 \end{cases}$$

стандартный ввод	стандартный вывод
2 4 2	7
8	Q 1 2.5 2 5
1 2 1	Q 2 2.5 3 4
2 1 1	C 1
3 1 2	C 4
4 2 2	Q 2 2.5 6 7
3 4 3	C 2
4 3 3	C 3
1 3 4	
2 4 4	

Задача G. Логическое выражение

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Постройте искусственную нейронную сеть, вычисляющую логическую функцию f, заданную таблицей истинности.

Формат входных данных

Первая строка содержит целое число M ($1 \le M \le 10$) — число аргументов f. Следующие 2^M строк содержат значения f в таблице истинности (0 — ложь, 1 — истина). Строки в таблице истинности последовательно отсортированы по аргументам функции от первого к последнему. Например:

M=1	M=2	M = 3
f(0)	f(0,0)	f(0,0,0)
f(1)	f(1, 0)	f(1, 0, 0)
	f(0, 1)	f(0, 1, 0)
	f(1, 1)	f(1, 1, 0)
		f(0, 0, 1)
		f(1, 0, 1)
		f(0, 1, 1)
		f(1, 1, 1)

Формат выходных данных

В первой строке выведите целое положительное число D ($1 \le D \le 2$) — число слоёв (преобразований) в вашей сети.

На следующей строке выведите D целых положительных чисел n_i ($1 \le n_i \le 1500$ и $n_D = 1$) — число искусственных нейронов на i-м слое. Предполагается, что $n_0 = M$.

Далее выведите описание D слоёв. i-й слой описывается n_i строками, описанием соответствующих искусственных нейронов на i-м слое. Каждый искусственный нейрон описывается строкой состоящей из n_{i-1} вещественных чисел с плавающей точкой w_j и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-го слоя. Линейная зависимость задается по формуле: $Y = \sum w_j \cdot x_j + b$. Предполагается, что после каждого вычисления линейной зависимости к её результату применяется функция ступенчатой активации $a(Y) = \begin{cases} 1 & Y > 0 \\ 0 & Y < 0 \end{cases}$. Обратите внимание, что в нуле данная функция не определена, и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.

Примеры

стандартный ввод	стандартный вывод
2	2
0	2 1
1	1.0 -1.0 -0.5
0	1.0 1.0 -1.5
1	1 1 -0.5
2	2
0	2 1
1	1.0 -1.0 -0.5
1	-1.0 1.0 -0.5
0	1 1 -0.5

Замечание

Во втором примере в результате получается следующая сеть:

Задача Н. Матричная функция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

По заданному графу вычислений. Вычислите матричную функцию и её производную.

Формат входных данных

В первой строке содержится три целых положительных числа $N,\,M,\,K\,\,(1\leqslant M,K\leqslant N\leqslant 50)$ — число вершин в графе вычислений, число входных параметров (вершин) и число выходных параметров (вершин). Далее следует N строк — описание вершин графа вычислений. i-я из этих строк содержит описание i-й вершины:

- var r c $(1 \leqslant r, c \leqslant 25)$ входной параметр функции, матрица состоящая из r строк и c столбцов.
- $tnh \ x \ (1 \le x < i)$ матрица из значений гиперболического тангенса вычисленного от соответствующих компонент матрицы полученной из x-й вершины графа вычислений.
- rlu α^{-1} x $(1 \leqslant \alpha^{-1} \leqslant 100, 1 \leqslant x < i)$ матрица из значений функции параметрического линейного выпрямителя с параметром α вычисленной от соответствующих компонент матрицы полученной из x-й вершины графа вычислений. α^{-1} целое число.
- $\mathbf{mul}\ a\ b\ (1\leqslant a,b< i)$ произведение матриц полученных из a-й b-й вершины графа вычислений соответственно.
- sum $len\ u_1\ u_2 \dots u_{len}\ (1\leqslant len\leqslant 10,\ \forall_{1\leqslant j\leqslant len}: 1\leqslant u_j< i)$ сумма матриц полученных из вершин u_1,u_2,\dots,u_{len} графа вычислений.
- had $len\ u_1\ u_2 \dots u_{len}\ (1 \leqslant len \leqslant 10,\ \forall_{1 \leqslant j \leqslant len}: 1 \leqslant u_j < i)$ произведение Адамара (покомпонентное) матриц полученных из вершин u_1,u_2,\dots,u_{len} графа вычислений.

Гарантируется, что первые M вершин и только они имеют тип ${\bf var}$. Последние K вершин считаются выходными.

Далее следует описание M матриц — входных параметров соответствующих вершин графа вычислений.

Затем следует описание K матриц — производных функции по соответствующим выходным вершинам.

Каждая строка, каждой матрицы расположена на отдельной строке. Матрицы состоят из целых чисел по модулю не превышающих 10.

Формат выходных данных

Выведите K матриц — значение параметров соответствующих выходных вершин графа вычисления. Затем выведите M матриц производных функции по соответствующим входным вершинам.

Пример

стандартный ввод	стандартный вывод
6 3 1	0.0 -0.1
var 1 3	-3.8 2.0 -1.9
var 3 2	2.0 -0.2
var 1 2	-3.0 0.3
mul 1 2	-5.0 0.5
sum 2 4 3	-1.0 0.1
rlu 10 5	
-2 3 5	
4 2	
-2 0	
2 1	
4 -2	
-1 1	

Замечание

В примере вычисляется функция $ReLU_{\alpha=0.1}\left(\begin{pmatrix} -2 & 3 & 5\end{pmatrix} \times \begin{pmatrix} 4 & 2 \\ -2 & 0 \\ 2 & 1\end{pmatrix} + \begin{pmatrix} 4 & -2 \end{pmatrix}\right)$, а $\begin{pmatrix} -1 & 1 \end{pmatrix}$ производная по её выходу.

Задача І. Коэффициент корреляции Пирсона

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Посчитайте корреляцию Пирсона двух численных признаков.

Формат входных данных

Первая строка содержит целое положительное число N $(1 \le N \le 10^5)$ — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \leqslant x_1, x_2 \leqslant 10^9$) — значения первого и второго признака описываемого объекта.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — корреляцию Пирсона двух признаков у заданных объектов.

стандартный ввод	стандартный вывод
5	-0.50000000
1 4	
2 5	
3 1	
4 2	
5 3	

Задача Ј. Коэффициент ранговой корреляции Спирмена

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Посчитайте ранговую корреляцию Спирмена двух численных признаков.

Формат входных данных

Первая строка содержит целое положительное число N $(1 \le N \le 10^5)$ — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта. Гарантируется, что все значения каждого признака различны.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — коэффициент ранговой корреляции Спирмена двух признаков у заданных объектов.

стандартный вывод
-0.50000000

Задача К. Расстояния

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Посчитайте зависимость категориального признака Y от числового X по внутриклассовому и межклассовому расстоянию:

- Внутриклассовое расстояние = $\sum_{i,j:y_i=y_j} |x_i-x_j|$
- Межклассовое расстояние = $\sum_{i,j:y_i \neq y_i} |x_i x_j|$

Формат входных данных

Первая строка содержит одно целое положительное число K $(1\leqslant K\leqslant 10^5)$ — максимальное число различных значений Y второго признака.

Следующая строка содержит одно целое положительное число N $(1\leqslant N\leqslant 10^5)$ — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x и y ($|x| \le 10^7, 1 \le y \le K$) — значения первого и второго признака описываемого объекта.

Формат выходных данных

В первой строке выведите одно целое число — внутриклассовое расстояние.

Во второй строке выведите одно целое число — межклассовое расстояние.

стандартный ввод	стандартный вывод
2	8
4	12
1 1	
2 2	
3 2	
4 1	

Задача L. Условная дисперсия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Посчитайте условную дисперсию D(Y|X).

Формат входных данных

Первая строка содержит одно целое положительное число K ($1\leqslant K\leqslant 10^5$) — максимальное число различных значений признака X.

Следующая строка содержит целое положительное число N $(1 \leqslant N \leqslant 10^5)$ — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y $(1\leqslant x\leqslant K,|y|\leqslant 10^9)$ — значения признаков X и Y.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — условную дисперсию.

стандартный вывод
1.25

Задача М. Хи-квадрат

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Посчитайте зависимость двух категориальных признаков согласно критерию хи-квадрат (критерий согласия Пирсона).

Формат входных данных

Первая строка содержит два целых положительных числа K_1 и K_2 $(1 \le K_1, K_2 \le 10^5)$ — максимальное число различных значений первого и второго признака.

Следующая строка содержит целое положительное число N $(1 \leqslant N \leqslant 10^5)$ — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x_1 и x_2 ($1 \le x_1 \le K_1$, $1 \le x_2 \le K_2$) — значения первого и второго признака описываемого объекта.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — критерий хи-квадрат зависимости двух признаков у заданных объектов.

Пример

стандартный ввод	стандартный вывод
2 3	0.833333333
5	
1 2	
2 1	
1 1	
2 2	
1 3	

Замечание

Задача N. Условная энтропия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Посчитайте условную энтропию H(Y|X). При расчётах используйте натуральные логарифмы ln(x), либо логарифмы идентичные натуральному $log_e(x)$.

Формат входных данных

Первая строка содержит два целых положительных числа K_x и K_y $(1 \leqslant K_x, K_y \leqslant 10^5)$ — максимальное число различных значений признаков X и Y.

Следующая строка содержит целое положительное число N $(1 \le N \le 10^5)$ — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y ($1 \le x \le K_x$, $1 \le y \le K_y$) — значения признаков X и Y.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — условную энтропию.

стандартный ввод	стандартный вывод
2 3	0.9364262454248438
5	
1 2	
2 1	
1 1	
2 2	
1 3	