PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12Q 1/68, C12P 19/34, C12N 15/10

A1

(11) International Publication Number:

WO 96/38591

(43) International Publication Date:

5 December 1996 (05.12.96)

(21) International Application Number:

PCT/US96/08501

(22) International Filing Date:

3 June 1996 (03.06.96)

(30) Priority Data:

08/459,046 2 June 1995 (02.06.95) US
08/462,355 5 June 1995 (05.06.95) US
08/487,112 7 June 1995 (07.06.95) US
60/006,809 15 November 1995 (15.11.95) US
08/566,334 1 December 1995 (01.12.95) US

(71) Applicant: INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventor: GUEGLER, Karl, J.; 1048 Oakland Avenue, Menlo Park, CA 94025 (US).

(74) Agent: GLAISTER, Debra, J.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: IMPROVED METHOD FOR OBTAINING FULL-LENGTH cDNA SEQUENCES

Products of XL-PCR reaction see figure 4

(57) Abstract

A method for obtaining longer cDNA sequences is provided. The method utilizes a known genomic DNA sequence or a partial cDNA sequence, such as can be obtained from GenBank partial cDNAs. Two PCR primers are designed to correspond to the ends of the known partial sequence and to anneal to DNA in a cDNA library so as to initiate extension away from the known cDNA and the other primer. The primers are added to a cDNA library with appropriate enzymes and extend through additional DNA sequence to produce PCR products, which are subsequently purified and sequenced to provide new sequences. The new sequences are then compared with the known partial cDNA sequence for areas of overlap, and the sequence is extended beyond the overlapping areas to provide longer DNA sequence.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	. MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway ·
BF	Burkina Faso	IE	Ireland .	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TŤ	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

IMPROVED METHOD FOR OBTAINING FULL-LENGTH CDNA SEQUENCES TECHNICAL FIELD

The present invention is in the field of molecular biology and more particularly, in the field of recombinant DNA technology.

BACKGROUND ART

PCR has become a widely used nucleic acid amplification technique since it was first presented by Kary Mullis at the Cold Spring Harbor Symposium (Mullis K et al (1986) Cold Spring Harbor Symp Quant Biol 51: 263-273). PCR requires that a pair of primers be generated from known sequences. However, in many cases, sequence is available only from one end of a DNA segment. Several methods have been developed to sequence an entire gene once a partial nucleotide sequence is available. As more partial cDNA sequences become available in the world's genetic databanks, more efficient and economical methods will be sought for then obtaining the complete gene.

10

15

20

25

30

PCR has become a widely used technique to complete genes for which a partial sequence is already known. Gene-specific primers and primers located in the vector into which the cDNAs have been cloned are used for this purpose. However, this method is limited by the use of primers complementary to vector sequence which is common to all clones in the library. This results in an abundance of non-specific PCR-products which have to be cloned and sequenced. Multiple rounds of amplifications with nested primers might be required. These additional operations increase the incorporation of errors.

Gobinda, Turner and Bolander (1993) in <u>PCR Methods and</u>

<u>Applications</u> 2:318-22 disclose "restriction-site PCR" as a direct method of retrieving unknown sequence which is adjacent to a known locus by using universal primers. First, genomic DNA is amplified in the presence of restriction site oligonucleotides and a primer

specific to the known region. Next, those products are subjected to a second round of PCR with the same restriction site oligonucleotides and another specific primer internal to the first one. Subsequently, the products of the last round of PCR are transcribed with an appropriate RNA polymerase and sequenced with a reverse transcriptase and an end-labeled specific primer internal to the second specific PCR primer. Gobinda et al. present data concerning Factor IX for which they identified a conserved stretch of 20 nucleotides in the 3' noncoding region of the gene.

10

15

20

25

30

Inverse PCR is the first method that reported successful acquisition of unknown sequences starting with primers based on a known region (Triglia T, Peterson MG, and Kemp DJ (1988) Nucleic Acids Res. 16:8186). Inverse PCR employs a strategy in which several restriction enzymes are used to generate a suitable fragment in the known region. The segment is then circularized by intramolecular ligation and used as a PCR template with divergent primers created from the known region. However, the requirement of multiple restriction enzyme digestions followed by multiple ligations (even before PCR is started) make the procedure slow and expensive (Gobinda et al. Supra).

Capture PCR, first disclosed by Lagerstrom M, Parik J, Malmgren H, Stewart J, Patterson U and Landegren U (1991) PCR Methods Applic. 1:111-19, is a method for PCR amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. As noted by Gobinda et al. supra, that method also requires multiple restriction enzyme digestions and ligation of an engineered double-stranded primer before PCR. Although the restriction and ligation reactions are carried out simultaneously in this method, the requirement of extension reaction, immobilization of the extended product, two rounds of PCR and purification of template prior to sequencing render it cumbersome and time consuming as well.

Walking PCR, disclosed by Parker JD, Rabinovitch PS, and Burmer GC (1991) Nucleic Acids Res 19:3055-60, teaches a method for targeted gene walking via PCR. Although this method also permits retrieval of unknown sequence, Gobinda et al, supra, note that it requires oligomer-extension assay followed by identification and gel purification of the desired band prior to sequencing. Such extra steps again limit the applicability of the method.

The enzymes originally used in PCR were limited in their ability to reliably amplify long pieces of nucleic acids over 3kb. One of the explanations for this limitation seems to be the misincorporation of nucleotides resulting in non-basepairing mismatches which these enzymes often fail to extend.

10

15

20

25

30

Only the mixture of two enzymes, rTth DNA-Polymerase and Vent, the latter of which has so-called "proofreading" activity, and the optimization of amplification conditions finally overcame this limitation and made amplification of pieces of DNA of up to 40kb possible.

The most common way to identify genes expressed in a certain tissue at a certain time is the isolation of the mRNA of that particular tissue and the conversion of this mRNA into so-called cDNA (complementary DNA). This cDNAs are subsequently cloned into a vector (plasmid or Lambda) and amplified by transfection into E.coli cells resulting in a so-called cDNA library.

First and most important to researchers attempting to obtain a complete gene is that the enzymes used in converting mRNA into cDNA are limited in their ability to produce complete copies of the existing mRNAs. This requires the researcher to isolate multiple cDNA clones of the gene of interest using specific probes and analyze each of these isolates for a complete cDNA of the gene of interest. This process is called screening of cDNA libraries.

A major problem facing molecular biologists is finding the most efficient method to use to obtain a full-length cDNA from a

partial sequence. Such sequences are appearing with increasing frequency in GenBank, from commercial cDNA libraries and privately prepared libraries. The inventive method disclosed herein is a contribution to that art.

DISCLOSURE OF THE INVENTION

5

10

15

20

25

An improved method for extending the DNA sequence of a known fragment of DNA sequence is provided. The method may be used for extending known DNA sequences of genomic or cDNA origin. The method utilizes the polymerase chain reaction (PCR) and includes the steps of:

- a) combining a first and second PCR primer with nucleic acid from a cDNA library, or pools of cDNA libraries, expected to contain said partial cDNA, or said partial cDNA that has been extended, or a genomic library, under conditions suitable for synthesis of nucleic acid PCR products from the first and second primers, wherein said first and second primers are capable of annealing to opposite strands of the partial cDNA or genomic DNA and initiating nucleic acid synthesis in an outward manner and wherein the first primer is capable of being extended by DNA polymerase in an antisense direction and the second primer is capable of being extended of being extended in a sense direction,
 - b) purifying the PCR products, and
- c) identifying extended nucleotide sequences derived from said partial cDNA or said genomic DNA. In one embodiment of the present invention, the method of identifying the extended nucleotide sequences comprises nucleic acid sequencing. In another embodiment of the present invention, the method proceeds with repeating steps 6a through 6c on the nucleotide sequences identified in step 6c.
- In another embodiment of the present invention, there is a method for extending the nucleotide sequence of a partial complementary DNA (cDNA) using polymerase chain reaction (PCR), comprising the steps of a) combining a first and second PCR primer

with nucleic acid from a cDNA library, or pools of cDNA libraries, expected to contain said partial cDNA, or said partial cDNA that has been extended, or a genomic DNA library, under conditions suitable for synthesis of nucleic acid PCR products from the first and second primers, wherein said first and second primers are capable of annealing to opposite strands of the partial cDNA and initiating nucleic acid synthesis in an outward manner and wherein the first primer is capable of being extended by DNA polymerase in an antisense direction and the second primer is capable of being extended in a sense direction.

b) purifying the PCR products,

5

10

15

20

25

30

- c) ligating the purified PCR products under conditions suitable for the formation of circular, closed nucleic acid,
- d) transforming a host cell with the circular, closed nucleic acid and culturing the transformed host cell under conditions suitable for growth,
- e) recovering said circular closed nucleic acid from the cultured, transformed host cell, and
- f) identifying extended nucleotide sequences derived from said partial cDNA or said genomic DNA.

The present invention also provides a method for extending known genomic DNA sequences which may be used for the detection and amplification of 5' untranslated nucleotide sequences and/or promoter sequences.

Also provided is an isolated DNA molecule comprising SEQ ID NO:11, the DNA for a novel human purinergic P2U receptor.

Also provided is an isolated DNA molecule comprising SEQ ID NO:12, the DNA for a novel human C5a-like seven transmembrane receptor.

These and other objects, advantages and features of the present invention will become apparent to those persons skilled in the art upon reading the details of the structure, synthesis, formulation and usage as more fully set forth below, reference

being made to the accompanying figures forming a part hereof.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a flow chart of the steps in the inventive method.

5

10

15

20

25

30

Figure 2 shows a typical plasmid obtained from the excision process of a lambdaZAP cDNA library. Typically 250-300 base pairs of the sequence are obtained in the high-throughput sequence operation. The clone is partially sequenced from the 5' end with T3 as a sequencing primer.

Figure 3 is a representation of the next step, in which pBLUESCRIPT SK plasmids in a cDNA library are used as a template and the two specially designed primers (XLR and XLS) amplify plasmids containing the gene of interest. Only plasmids containing priming sites for both XL-PCR primers and the gene of interest will be amplified during the XL-PCR reaction.

Figure 4 is a representation of the amplified DNA segments which have been obtained through the XL-PCR reaction and consequently purified after separating the products on an agarose gel. For best results, the cDNA library used as a template should be synthesized by random priming to assure the availability in this step of different amplified length of DNA (3' end) between the XLS priming site and the T7 priming site in the vector. The length of the 5' end (between the XLR priming site and the T3 priming site) in the vector will vary in size depending on how much of the mRNA of the gene of interest had been converted into cDNA during the cDNA library synthesis.

Figure 5 shows how the purified DNA segments containing the plasmid and the gene of interest are religated to form a circular plasmid and transformed into bacteria for amplification. Here chemically competent <u>E. coli</u> cells were transformed and grown on petri dishes containing LB agar and 25 mg/L carbenicillin (2XCarb) for antibiotic selection.

Figure 6 shows schematically how pure samples of clones were

obtained from the different <u>E. coli</u> colonies grown in the procedure shown in Figure 5 (also Step 1 purification, Step 2 religation and Step 3 transformation in Figure 6). These clones are screened in Step 4 for additional sequence of the gene of interest at the 5' end. For this purpose the clones were analyzed by a PCR reaction employing the XLR primer and the T3 vector primer. The size of the resulting product will indicate how much additional sequence upstream of the XLR priming site each clone contains.

Figures 7A through 7H show the results of the inventive method, in which a partial sequence from Incyte clone 14770, which was similar to heat shock protein 90, was successively sequenced to obtain a full-length cDNA.

10

15

20

25

30

Figures 8A through 8F show the results of the inventive method, in which a partial sequence from Incyte clone 87058 which was similar to cathepsin was successively sequenced to obtain extensions of the cDNA.

MODES FOR CARRYING OUT THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All patents and publications referred to herein are incorporated by reference herein.

Before the present compounds, variants, formulations and methods for making and using such are described, it is to be understood that this invention is not limited to the particular compounds, variants, formulations or methods described, as such enzymes, formulations and methodologies may, of course, vary. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of protection will be limited only by the appended claims.

In the specification and appended claims, the singular forms

"a", "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a high-fidelity PCR enzyme" includes mixtures of such enzymes and any other enzymes fitting the stated criteria, reference to the method includes reference to one or more methods for obtaining full-length cDNA sequences which will be known to those skilled in the art or will become known to them upon reading this specification.

The present method provides a way to utilize a genomic DNA library or a plasmid cDNA library (either obtained by cloning cDNAs directly into a plasmid vector or by converting a Lambda library into a plasmid library by known methods e.g. Lambda ZAP excision or Lambda ZIPLOCK conversion) which has been used for sequencing cDNAs, as a source to obtain much longer DNAs and in certain cases complete genes of partially known DNA sequences. The steps disclosed herein are based on cDNA libraries but equally apply to genomic DNA libraries.

10

15

20

25

30

This new method utilizes PCR kits which enable the researcher to amplify long pieces of DNA. The XL-PCR amplification kit (Perkin-Elmer) was employed. However, equivalent products may be available from other major suppliers. This novel method allows one person to process multiple genes (up to 96 genes) at a time and obtain extended or complete sequence (possibly full-length) of the cDNAs of interest within 6-10 days. This compares very favorably with current competitive methods like screening with labelled probes which allow one worker to process only about 3-5 genes and obtain initial results in 14-40 days. This represents an increase in throughput of at least 1000%.

This increased efficiency is possible because of the inventive combination of steps shown in the flow chart (Figure 1). First, primer design and synthesis (based on a known partial sequence) can be performed in about two days. The PCR amplification can be performed in 6-8 hours. Multiple libraries

can be pooled and therefore screened at the same time. The next steps of purification and ligation take about one day. transformation and growing up the bacteria take one day. screening for clones with additional sequence of the genes of interest by PCR takes approximately five hours. The next steps of DNA preparation and sequencing of the selected clones can be performed in about one day. This totals 6-7 days. At the end of this time, one has usually obtained a much longer cDNA sequence, assuming such a longer cDNA existed in the libraries than what was initially sequenced. If the new sequence is a complete gene, then the goal has been reached. If the complete sequence has not been obtained, one still has a much longer sequence than before, and this longer sequence can be used to design primers to repeat the procedure on the same or another library. The choice of library is up to the researcher, but a preferred library is one that has been size-selected to include only larger cDNAs.

5

10

15

20

25

30

This method presumes that one already has partial cDNA sequences, either from a publicly available database or the scientist's own earlier research, including but not limited to earlier preparation of a cDNA library whose cDNAs have been partially sequenced. The cDNA library may have been prepared with oligo dT or random primers. The difference between oligo dT and randomly primed libraries is that a randomly primed library will have more sequences which contain 5' ends of cDNAs. A randomly primed library may be particularly useful for further work when the oligo dT library does not yield a complete gene. Random priming of the library also helps yield more cDNA sequences of different lengths. Library preparation techniques which promote longer insert sizes will in turn permit the sequencing of more complete cDNAs. Obviously, the larger the protein, the less likely it is that the complete cDNA will be found in a single plasmid.

Figure 2 shows a typical plasmid containing a cDNA which had

been partially sequenced from the 5' end with T3 as a primer. The top darkened portion represents the insert containing the gene of interest.

Step 1: PCR-amplification of cDNA-clones containing the gene of interest

The first step of this method requires the design of two primers based on the known sequence. The known sequence can be obtained by those skilled in the art either by a wet lab method or from the many publicly available DNA databases. One primer is synthesized to be extended in an antisense direction (XLR) and the other in the sense direction (XLS or XLF). In effect, the primers are designed to anneal to either end of the known sequence and to be extended "outward" from there to generate amplicons containing new, unknown sequences of the genes of interest. This is different from typical PCR, in which the primers are designed to amplify a known sequence in a direction "inward" toward each other.

10

15

20

25

30

The primers need to be designed in a way displaying optimal criteria for extra long PCR. A program like Oligo 4.0s (National Biosciences, Inc., Plymouth MN) can be employed for this purpose. In general primers should be 22-30 nucleotides in length, consist of a GC content of 50% or more and anneal at 68°C-72°C to the target. Hairpin structures and primer-primer dimerizations must be avoided.

Primers varying from the conditions described above may result in amplification of the desired targets providing extension conditions have been adjusted.

Figure 3 shows the next step, in which a cDNA library is used as a template and the two primers (XLR and XLS) amplify plasmids containing the gene of interest. In this step, it is very helpful to use PCR enzymes which provide high fidelity and copy long sequences, such as that provided in the XL-PCR kit (Part No. N808-0182, Perkin Elmer, Applied Biosystems, Foster City, CA).

Generally, kit instructions should be followed, including suggestions to optimize concentrations of various reagents. In the examples disclosed infra, 25pMol of each primer worked well. Template (plasmid library) concentrations can be varied (see Examples infra for details). It is essential to thoroughly resuspend the enzyme in solution prior to use, especially if the solution has been stored at -20°C. If the enzyme is not adequately resuspended, its effectiveness is impaired. The preferred system is setup initially in two layers, employing

Ampliwax^L PCR Gems. However, efficiency can be increased by avoiding the use of these Gems and initiating amplification by using the "hot-start" technique by adding Magnesium, which is essential for amplification, at 82°C.

Although various cycling conditions are detailed in the
examples infra, the following cycling conditions have been found
to be optimal with the MJ PCT200 thermocycler (MJ Research,
Watertown, MA). Times and temperatures may be varied to optimize
conditions in different thermocyclers.

```
94° for 60 sec (initial denaturation)
     Step 1
     Step 2
20
               94° for 15 sec
     Step 3
               65° for 1 min
               68° for 7 min
     Step 4
               Repeat step 2-4 for 15 additional times
    Step 5
    Step 6
               94° for 15 sec
               65° for 1 min
25
    Step 7
               68° for 7 min + 15 sec/cycle
    Step 8
               Repeat step 6-8 for 11 additional times
     Step 9
    Step 10
               72° for 8 min
             4° for 0.00 sec (to hold at 4°)
    Step 11
```

At the end of these 28 cycles, 50 μ l of the reaction mix is removed; on the remaining reaction mix, an additional 10 additional cycles are run, as outlined below:

```
Step 1 94° for 15 sec

35 Step 2 65° for 1 min

Step 3 68° for (10 min + 15 sec)/cycle

Step 4 Repeat step 1-3 for 9 additional times

Step 5 72° for 10 min
```

Next a 5-10 μ l aliquot of the reaction mixture can be analyzed on a mini-gel to determine which reactions were successful.

5

10

15

20

25

30

Step 2: Purification of amplicons containing the gene of interest

Figure 4 is a graphical representation of the amplified cDNA segments which have been separated on an agarose gel. Note that there are a variety of lengths of cDNA. Although the rest of the method could be performed using all extended cDNA species, the method can proceed optionally after selecting the largest products (likeliest to provide the remainder of the full-length gene). Some of the larger species may in fact be hybrid clones which contain two cDNA inserts as a result of malfunction during the cDNA library construction which may represent an incomplete digestion with the restriction enzyme at the end of the cDNA synthesis. Such amplified hybrid clones, also called chimera, could result in overlooking the correct targeted extensions.

Successful reaction products should be purified on an agarose gel (preferentally low agarose concentrations 0.6-0.8% should be used) or other appropriate method. An appropriate volume of reaction mixture should be loaded to obtain good separation of the products and to separate them from the plasmid library (template) still in the reaction mixture. Contamination with the template cDNA library will result in transformants which don't contain the desired gene and will require an extensive screening of many colonies. The bands representing the genes of interest are then cut out of the gel and purified using a method like the QIAQuick gel extraction kit (Qiagen, Inc., Chatsworth, CA).

Step 3: Cloning of amplicons containing the gene of interest

Eventual overhangs are converted into blunt ends to facilitate religation and cloning of the products. For this purpose, Klenow enzyme (3 units/reaction mixture) and dNTP's (0.2 mM final concentration) are added and the reaction is incubated at room temperature for 30 min. The Klenow enzyme is then

inactivated by incubating the reaction at 75° for 15 min.

The products are then ethanol precipitated and redissolved in 13 μl of ligation buffer containing 1 mM ATP. 1ml T4-DNA ligase (15 units) and T4 Polynucleotide kinase (5 units) are added and the reaction is incubated at room temperature for 2-3 hours or overnight at 16°C.

 $3\mu l$ of the ligation mixture are transformed into 40ml of competent E.coli cells (prepared with a standard protocol). $80\mu l$ of SOC medium are added and after 1 hour of recovery of the cells at 37°C the whole transformation mixture is plated on LB-agar 2XCarb-containing petri plates.

Step 4: Screening of cloned products

10

15

The next day 8 or 12 colonies are randomly picked from each plate and grown in individual wells of a sterile 96-well microtiter plate (e.g. 96 Well Cell Culture Cluster, Catalog No. 3799, Costar Corp., Cambridge, MA 02140). Each well contains 150ml of LB/2XCarb medium. Thus, each row of the microtiter plate contains twelve clones from the same extension reaction. The cells are grown over night at 37°C.

The next day, $5~\mu l$ of these overnight cultures are tranferred 20 into a non-sterile 96-well plate (Falcon 3911 Microtest IIITM, Flexible Assay Plate, Becton Dickinson, Oxnard, CA) and diluted 1:10 with water. $5\mu l$ of each dilution are then transferred into a PCR array (e.g., Cycleplate, Robbins Scientific Corp., Sunnyvale, CA). To obtain a 1X final concentration of PCR reagents, 15 μl of 25 a 1.33% concentrated PCR mix are added to each well. Another way of efficient screening for extension products is the multiplex PCR method where multiple specific primers are pooled and submitted to the same reaction, therefore increasing the efficiency of setting up the screening mixtures. Addition of the PCR-template 30 (individual cultures) has been improved by the use of a 96-pin tool with which an aliquot of all 96 cultures grown as described

above can be transferred into the PCR-screening mix in a matter of 1-2 minutes.

For PCR amplification, the final concentrations are 1X for PCR mix, 5 μ M of each of a vector primer and one or both of the gene specific primers used for the original extension reaction and 0.75 units of Taq polymerase are added to each well. Amplification generally was performed using the following conditions:

- Step 1 94°C for 60sec
- 10 Step 2 94°C for 20sec
 - Step 3 55°C for 30sec
 - Step 4 72°C for 90sec
 - Step 5 repeat steps 2-4 for an additional 29 times
 - Step 6 72°C for 180sec
- 15 Step 7 4°C for ever

20

25

30

Aliquots of these PCR reactions are run on agarose gels together with molecular weight markers. The size of the resulting PCR products will allow direct determination of how much additional sequence the selected clones contain compared to the original partial cDNA. The efficiency of the method has been further improved by using the resulting PCR-products directly for sequencing thus avoiding the necessity of preparing plasmids.

The appropriate clones are selected and grown for plasmid preparation and sequencing.

Plasmid preparations are made with standard kits familiar to those skilled in the art. Examples include the PROMEGA Magic MINIPREP and the AGTC alkaline lysis kit.

Sequencing is performed employing standard automated ABI sequencing equipment and protocols using either dye-primer or dye-terminator kits.

Sequence processing and assemblage of the sequencing data are performed using standard ABI software, including INHERIT™ analysis and the Power assembler.

INDUSTRIAL APPLICABILITY

Example 1

5

For the initial method evaluation, a known gene was selected. A partial sequence of the human 90-kDa heat-shock protein gene (HUMHSP90, accession M16660) had been identified in a THP-1 library. This partial sequence (Incyte clone T-014201) initiated at base 1127 of the sequence with accession number M16660.

1.1 Primer design

Two primers were designed to perform the method described in the invention.

Primer 1 (XLR) 5' AGC TGT CCA TGA TGA ACA CAC G 3' (1180-1159)

Primer 2 (XLS) 5' AAT AGG CAC CAC ACC AAC TGA G 3' (2011-2032)

15 1.2 Template preparation

A THP-1 cDNA library constructed into the LambdaZAP vector (Stratagene) was converted into a plasmid library following the mass excision protocol. Plasmids of the excised libraries were prepared using the Quiagen Midi plasmid purification kit.

20 1.3 XL-PCR reaction set-up

The extension reactions were prepared following the instructions provided with the GeneAmp XL PCR Kit (Part No. N808-0182) from Perkin Elmer. A two layer system was set up as follows:

The lower reagent mix was prepared by pipetting the following components into a 0.2ml MicroAmp reaction tube.

Lower reagent mix preparation:

	Water	Water			
30	3.3X bufi	fer	12.0	μl	
	datp	(10mM)	2.0	μl	
	dCTP	(10mM)	2.0	μl	

	dGTP	(10mM)	2.0 μ1
	dTTP	(10mM)	2.0 μ1
	Primer XLS	(50µM)	1.0 μl
	Primer XLR	(50µм)	1.0 μ1
5	Mg (OAc) 2	(25mM)	4.4 μ1
			_

Total lower reagent mix 40.0 µl

One AmpliWaxTM gem was added to the tube. The wax was melted by incubating the reaction tubes at 75°C for 5 minutes. Then the 10 tubes were cooled down to 4°C.

Upper reagent mix preparation:

3.3X buffer 18.0 ml

rTth DNA Polymerase 15 $2.0 \, \mathrm{ml}$

Total upper enzyme mix $20.0~\mu\text{l}$

20 μ l of the enzyme/buffer mix are added to each tube and 20 kept separated from the lower mix by the wax layer.

Addition of template:

The template DNA (excised library) was diluted to an appropriate concentration in water and then added to the upper mix. Mixing of the components is not necessary.

25

Template	(6.25ng/ml)	40.0	μ1
		····	
Final vol	ume	100.0	u1

30 1.4 XL-PCR amplification

For amplification the following protocol was employed:

```
Step 1 94° for 60 sec (initial denaturation)
```

- Step 2 94° for 15 sec
- Step 3 65° for 1 min
- Step 4 68° for 7 min
- 5 Step 5 Repeat step 2-4 for 15 additional times
 - Step 6 94° for 15 sec
 - Step 7 65° for 1 min
 - Step 8 68° for 7 min + 15 sec/cycle
 - Step 9 Repeat step 6-8 for 11 additional times
- 10 Step 10 72° for 8 min

20

25

30

Step 11 4° for 0.00 sec (to hold at 4°)

1.5 Purification of amplified products

 $30~\mu l$ of the amplified products were run on a 0.7% agarose gel for 16 hours. Visible DNA bands were then cut out and purified using the QIAquick gel purification kit.

1.6 Cloning of amplified products

Klenow enzyme (3 units/reaction) and dNTP's (0.2mM final concentration) were added and the reactions were incubated at room temperature for 30 min followed by incubation at 75° C for 15 min. The products were then ethanol precipitated and redissolved in 13 μ l of ligation buffer containing 1mM ATP. T4-DNA ligase (15 units) and T4 Polynucleotide kinase (5 units) were added, and the reaction was incubated at room temperature for 3 hours.

3μl of the ligation mixture were transformed into 40 ml of competent E.coli cells. After heatshocking the cells at 42°C for 45 seconds, 80 μl of SOC medium were added, and the cells were allowed to recover at 37°C for 1 hour. The whole transformation mixture then was plated on LB-agar/2XCarb-containing petri dish plates.

1.7 Screening of cloned products

The next day 10 colonies were randomly picked and grown

overnight in Falcon 2059 tubes (Becton Dickinson, Oxnard, CA) containing 3 ml of LB-broth with 2X Carb.

 $5~\mu l$ of the cultures were diluted 1:10 with water and 5 ml of this dilution were transferred into MicroAmp^TM PCR tubes (Perkin . Elmer, Applied Biosystems, Foster City, CA) .

 $15\ \mu l$ of a 1.33% concentrated PCR mix were added to each well.

The 1.33 x concentrated PCR mix contained the following components:

10	10X PCR-buffer	2.0 μl
	2mM dNTPs	2.0 μ1
	M13 rev primer (0.01mM)	1.0 μ1
	Primer 2 (XLR, 0.01mM)	1.0 μ1
	Taq Polymerase	0.15 μ1
15	Water	8.85 µl

Final Volume 15.0 μ l

The PCR cycling conditions were choosen as follows:

- Step 1 94° C for 60sec
- 20 Step 2 94° C for 20sec

5

- Step 3 55° C for 30sec
- Step 4 72° C for 90sec
- Step 5 repeat steps 2-4 for an additional 29 times
- Step 6 72° C for 180 sec
- 25 Step 7 4° C for ever

Aliquots of the amplified products were run on a 0.8% agarose gel in parallel with the 1 kb DNA ladder (Life Technologies, Gaithersburg, MD 20897). Appropriate plasmids containing different size inserts were selected for sequencing analysis.

30 1.8 Sequencing analyis of cloned products
The DNA of the selected clones was prepared using the

WizardTM Minipreps DNA Purification System (Promega Corporation, Madison, WI) following the instructions of the manufacturer.

Sequencing reactions were performed using the PRISMTM Ready

Reaction DyeDeoxy Terminator Cycle Sequencing Kit (Part No 401628, Perkin Elmer, Applied Biosystems, Foster City, CA).

1.9 Analysis of sequenced products

5

10

30

Three clones were selected for sequencing (14201.3, 14201.5, 14201.13). The sequences obtained (SEQ ID NOS:3-5, respectively) were aligned using the DNASIS Multiple sequence alignment program. Clone 14201.3 initiated at base 24 of the published sequence (HUMHSP90), clone 14201.5 initiated at base 13 of the published sequence and clone 14201.13 initiated at base 538 of the published sequence, the original clone (14201) initiated at base 1127 of the published sequence.

Figure 7A-7H shows an alignment of the obtained sequences with the published human Hsp 90 nucleotide sequence. Clones 14201.3 and 14201.5 contain part of the 5' untranslated region and therefore the full coding region of the gene has been obtained. Example 2

For further method evaluation, a second known gene was selected. A partial sequence from a liver library was found to be related to that of the human cathepsin B gene (accession L16510, HUMCATHB, SEQ ID NO:6). This partial sequence (Incyte clone 87058, SEQ ID NO:7) initiated at base 1066 of the sequence with accession number L16510.

2.1 Primer design

Two primers were designed to perform the method described in the invention:

Primer 1 (XLR) 5' AAG CCA TTG TCA CCC CAG TCA G 3' (1103-1082)

Primer 2 (XLS) 5' GGT TCA CTG TGG AAT CGA ATC 3' (1125-1145)

2.2 Template preparation

A liver cDNA library constructed into the LambdaZAP vector (Stratagene) was converted into a plasmid library following the mass excision protocol. Plasmids of the excised libraries were prepared using the Quiagen Midi plasmid purification kit.

2.3 XL-PCR reaction set-up

10

30

The extension reactions were prepared following the instructions provided with the GeneAmp XL PCR Kit (Part No. N808-0182) from Perkin Elmer. A two layer system was set up as described below. The lower reagent mix was prepared by pipetting the following components into a 0.2ml MicroAmp reaction tube. Lower reagent mix preparation:

	Water		13.6 µl
	3.3 x buffer		12.0 µl
	dATP	(10mM)	2.0 µl
15	dCTP	(10mM)	2.0 μ1
	dGTP	(10mM)	2.0 µl
	dTTP	(10mM)	2.0 μ1
	Primer XLS	(50μM)	1.0 µl
	Primer XLR	(50μM)	1.0 μl
20	Mg (OAc) 2	(25µM)	4.4 µl
	Total lower re	agent mix	40.0 µl

One AmpliWax% gem was added to the tube. This was melted by incubating the reaction tubes at 75°C for 5 minutes. Then the tubes were cooled down to 4°C.

Upper reagent mix preparation:

3.3% buffer $18.0~\mu l$ rTth DNA Polymerase $2.0~\mu l$

Total upper enzyme mix

 $20.0 \mu 1$

20 μ l of the enzyme/buffer mix were added to each tube and kept separated from the lower mix by the wax layer.

5 Addition of template:

The template DNA (excised library) was diluted to an appropriate concentration in water and then added to the upper mix. Mixing of the components is not necessary.

Template $(6.25ng/\mu l)$

 $40.0 \mu 1$

10

30

Final volume

 $100.0 \mu l$

2.4 XL-PCR amplification

For amplification the following protocol was employed:

- Step 1 94° for 60 sec (initial denaturation)
- 15 Step 2 94° for 15 sec
 - Step 3 65° for 1 min
 - Step 4 68° for 7 min
 - Step 5 Repeat step 2-4 for 15 additional times
 - Step 6 94° for 15 sec
- 20 Step 7 65° for 1 min
 - Step 8 68° for 7 min + 15 sec/cycle
 - Step 9 Repeat step 6-8 for 11 additional times
 - Step 10 72° for 8 min
 - Step 11 4° for 0.00 sec (to hold at 4°)
- 25 2.5 Purification of amplified products

30 μl of the amplified products were run on a 0.7% agarose gel for 16 hours. Visible DNA bands were then cut out and purified using the QIAQuick gel purification kit.

2.6 Cloning of amplified products

Klenow enzyme (3 units/reaction) and dNTP's (0.2mM final concentration) were added, and the reactions were incubated at room temperature for 30 min followed by incubation at 75°C for 15

min.

10

15

The products were then ethanol precipitated and redissolved in 13 μ l of ligation buffer containing 1mM ATP. T4-DNA ligase (15 units) and T4 Polynucleotide kinase (5 units) were added, and the reaction was incubated at room temperature for 3 hours.

3 μ l of the ligation mixture were transformed into 40 μ l of competent E.coli cells. After heatshocking the cells at 42°C for 45 seconds, 80 μ l of SOC medium were added; and the cells were allowed to recover at 370 C for 1 hour. The whole transformation mixture then was plated on LB-agar 2x Carb-containing petri dishes.

2.7 Screening of cloned products

The next day 10 colonies were randomly picked and grown overnight in Falcon 2059 tubes (Becton Dickinson, Oxnard, CA 93030) containing 3 ml of LB-broth with 2X Carb.

 $5~\mu l$ of the cultures were diluted 1:10 with water and $5~\mu l$ of this dilution were transferred into MicroAmpTM PCR tubes (Perkin Elmer, Applied Biosystems, Foster City, CA).

 $15~\mu l$ of a 1.33 x concentrated PCR mix were added to each tube.

The 1.33 x concentrated PCR mix contained the following components:

	10 x PCR-buffer		2.0	μ l
	2mM dNTPs		2.0	μl
25	M13 rev primer (0.	01mM)	1.0	μl
	Primer 2 (XLR,	0.01mM)	1.0	μl
	Taq Polymerase		0.15	μ1
	water		8.85	μl

³⁰ Final Volume 15.0 μ l

The PCR cycling conditions were as follows:

- Step 1 94°C for 60sec
- Step 2 94°C for 20sec
- Step 3 55°C for 30sec
- Step 4 72°C for 90sec
- 5 Step 5 repeat steps 2-4 for an additional 29 times
 - Step 6 72°C for 180sec
 - Step 7 4°C for ever

10

15

30

Aliquots of the amplified products were run on a 0.8% agarose gel in parallel with the 1kb DNA ladder (Life Technologies, Gaithersburg, MD 20897). Appropriate clones containing different

size inserts were selected for sequencing analysis.

2.8 Sequencing analysis of cloned products

The DNA of the selected clones was prepared using the WizardTM Minipreps DNA Purification System (Promega Corporation, Madison, WI) following the instructions of the manufacturer. Sequencing reactions were performed using the PRISMTM Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit (Part No 401628, Perkin Elmer, Applied Biosystems, Foster City, CA).

- 2.9 Analysis of sequenced products
- Three clones were selected for sequencing (87058.6, 87058.8, 87058.16). The sequences obtained (SEQ ID NOS:8-10, respectively) were aligned using the DNASIS Multiple sequence alignment program and are shown in Figures 8A through 8F. Clone 87058.6 initiated at base 644 of the published sequence (HUMCATHB, SEQ ID NO:6),
- clone 87058.8 initiated at base 353 of the published sequence and clone 87058.16 initiated at base 58 of the published sequence, the original clone (87058, SEQ ID NO:7) initiated at base 1058 of the published sequence.

Figures 8A through 8F show an alignment of the obtained sequences with the published human Hsp 90 nucleotide sequence. Clone 87058.16 contains part of the 5'UT and therefore the full coding region of the gene.

Example 3

In Example 3, a full length cDNA (Seq ID NO 11) of a novel P2U purinergic receptor homolog was obtained by the inventive method and is the subject of U.S. Patent Application 08/459,046 filed June 2, 1995, which is hereby incorporated by reference.

Inherit[™] and BLAST search and alignment tools were used to relate a partial sequence found in Incyte Clone 179696 from the placental cDNA library to the GenBank sequence of RNU09402, a G-protein coupled surface receptor from rat (Rice WR et al (1995) Am J Respir Cell Molec Biol 12:27-32).

The cDNA of Incyte 179696 was extended to full length using a modified XL-PCR (Perkin Elmer) procedure. Primers were designed based on known sequence; one primer was synthesized to initiate extension in the antisense direction (XLR) and the other to extend sequence in the sense direction (XLF). The primers allowed the sequence to be extended "outward" from the known sequence, thus generating amplicons containing new, unknown nucleotide sequence comprising the gene of interest. The primers were designed using Oligo 4.0 (National Biosciences Inc, Plymouth MN) to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68°-72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

The cDNA library was used as a template, and XLR (bases 278-298) and XLF (bases 587-610) primers were used to extend and amplify the 179696 sequence. By following the instructions for the XL-PCR kit and thoroughly mixing the enzyme, high fidelity amplification is obtained. Beginning with 25 pMol of each primer and the recommended concentrations of all other components of the kit, PCR was performed using the MJ PTC200 thermocycler (MJ Research, Watertown MA) and the following parameters:

Step 1 94° C for 60 sec (initial denaturation)

Step 2 94° C for 15 sec

10

15

20

25

30

Step 3 65° C for 1 min

```
Step 4
                    68° C for 7 min
    Step 5
                    Repeat step 2-4 for 15 additional cycles
    Step 6
                    94° C for 15 sec
    Step 7
                    65° C for 1 min
    Step 8
                    68° C for 7 min + 15 sec/cycle
5
    Step 9
                    Repeat step 6-8 for 11 additional cycles
    Step 10
                    72° C for 8 min
    Step 11
                    4° C (and holding)
```

At the end of 28 cycles, 50 μ l of the reaction mix was removed; and the remaining reaction mix was run for an additional 10 cycles as outlined below:

Step 1 94° C for 15 sec

Step 2 65° C for 1 min

Step 3 68° C for (10 min + 15 sec)/cycle

15 Step 4 Repeat step 1-3 for 9 additional cycles

Step 5 72° C for 10 min

20

25

30

A 5-10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6-0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Although all extensions potentally contain a full length gene, some of the largest products or bands were selected and cut out of the gel. Further purification involved using a commercial gel extraction method such as QIAQuick™ (QIAGEN Inc, Chatsworth CA). After recovery of the DNA, Klenow enzyme was used to trim single-stranded, nucleotide overhangs creating blunt ends which facilitated religation and cloning.

After ethanol precipitation, the products were redissolved in 13 μl of ligation buffer. Then, $1\mu l$ T4-DNA ligase (15 units) and $1\mu l$ T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2-3 hours or overnight at 16°C. Competent E. coli cells (in 40 μl of appropriate media) were transformed with 3 μl of ligation mixture and cultured in 80 μl of SOC medium (Sambrook J et al, supra). After incubation for one

hour at 37° C, the whole transformation mixture was plated on Luria Broth (LB)-agar (Sambrook J et al, supra) containing carbenicillin at 25 mg/L. The following day, 12 colonies were randomly picked from each plate and cultured in 150 μ l of liquid LB/carbenicillin medium placed in an individual well of an appropriate, commercially-available, sterile 96-well microtiter plate. The following day, 5 μ l of each overnight culture was transferred into a non-sterile 96-well plate and after dilution 1:10 with water, 5 μ l of each sample was transferred into a PCR array.

For PCR amplification, 15 μ l of concentrated PCR reaction mix (1.33X) containing 0.75 units of Taq polymerase, a vector primer and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:

- Step 1 94° C for 60 sec
- Step 2 94° C for 20 sec
- Step 3 55° C for 30 sec
- Step 4 72° C for 90 sec
- 20 Step 5 Repeat steps 2-4 for an additional 29 cycles
 - Step 6 72° C for 180 sec
 - Step 7 4° C (and holding)

Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid and sequenced.

Example 4

10

15

25

30

In this example, the inventive method was used to obtain a novel full length cDNA from the partial sequence found in Incyte clone 08118 which was found to be somewhat homologous to the GenBank sequence of C5a anaphylatoxin receptor, a G-protein coupled surface receptor from dog (Perret J et al (1995) Biochem

J 288:911-17). Based on the partial cDNA sequence, primers (XLR = GAAAGACAGCCACCACCACCACG and XLF = AGAAAGCAAGGCAGTCCATTCAGG) were designed. Essentially the same method outlined in Example 3 above was used to extend the partial sequence of 8118 to obtain the full length sequence (Seq ID NO:12) of a novel C5a-like receptor homolog which is the subject of a U.S. Patent Application 08/462,355 filed June 5, 1995, and whose disclosure is incorporated by reference.

While the present invention has been described with reference to specific enzymes and sequences, particularly PCR enzyme, and formulations containing such, those skilled in the art understand that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, enzyme, process, process step or steps and still carry out the objective, spirit and scope of the invention. All such modifications are intended to be within the scope of the claims appended hereto.

20

15

10

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: INCYTE PHARMACEUTICALS, INC.
- (ii) TITLE OF INVENTION: IMPROVED METHOD FOR OBTAINING FULL LENGTH CDNA SEQUENCES
- (iii) NUMBER OF SEQUENCES: 12
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: INCYTE PHARMACEUTICALS, INC.
 - (B) STREET: 3330 Hillview Avenue
 - (C) CITY: Palo Alto
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94304
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: To Be Assigned
 - (B) FILING DATE: Filed Herewith
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION SERIAL NO: US 08/487,112
 - (B) FILING DATE: 7-JUN-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION SERIAL NO: US 08/462,355
 - (B) FILING DATE: 5-JUN-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION SERIAL NO: US 08/459,046
 - (B) FILING DATE: 2-JUN-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION SERIAL NO: US 08/566,334
 - (B) FILING DATE: 1-DEC-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION SERIAL NO: US 60/006,809
 - (B) FILING DATE: 15-NOV-1995
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Luther, Barbara J.
 - (B) REGISTRATION NUMBER: 33954
 - (C) REFERENCE/DOCKET NUMBER: HP-001-1 PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415-855-0555

(B) TELEFAX: 415-852-0195

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2543 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

- (A) LIBRARY: GenBank HUMHSP90
- (B) CLONE: Accession No. M16660

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CTCCGGCGCA GTGTTGGGAC TGTCTGGGTA TCGGAAAGCA AGCCTACGTT GCTCACTATT 60 ACGTATAATC CTTTTCTTTT CAAGATGCCT GAGGAAGTGC ACCATGGAGA GGAGGAGGTG 120 GAGACTTTTG CCTTTCAGGC AGAAATTGCC CAACTCATGT CCCTCATCAT CAATACCTTC 180 TATTCCAACA AGGAGATTTT CCTTCGGGAG TTGATCTCTA ATGCTTCTGA TGCCTTGGAC 240 AAGATTCGCT ATGAGAGCCT GACAGACCCT TCGAAGTTGG ACAGTGGTAA AGAGCTGAAA 300 ATTGACATCA TCCCCAACCC TCAGGAACGT ACCCTGACTT TGGTAGACAC AGGCATTGGC 360 ATGACCAAAG CTGATCTCAT AAATAATTTG GGAACCATTG CCAAGTCTGG TACTAAAGCA 420 TTCATGGAGG CTCTTCAGGC TGGTGCAGAC ATCTCCATGA TTGGGCAGTT TGGTGTTGGC 480 TTTTATTCTG CCTACTTGGT GGCAGAGAAA GTGGTTGTGA TCAGAAAGCA CAACGATGAT 540 GAACAGTATG CTTGGGAGTC TTCTGCTGGA GGTTCCTTCA CTGTGCGTGC TGACCATGGT 600 GAGCCCATTG GCATGGGTAC CAAAGTGATC CTCCATCTTA AAGAAGATCA GACAGAGTAC 660 CTAGAAGAG GGCGGGTCAA AGAAGTAGTG AAGAAGCATT CTCAGTTCAT AGGCTATCCC 720 ATCACCCTTT ATTTGGAGAA GGAACGAGAG AAGGAAATTA GTGATGATGA GGCAGAGGAA GAGAAAGGTG AGAAAGAAGA GGAAGATAAA GATGATGAAG AAAAGCCCAA GATCGAAGAT 840 GTGGGTTCAG ATGAGGAGGA TGACAGCGGT AAGGATAAGA AGAAGAAAC TAAGAAGATC 900 AAAGAGAAAT ACATTGATCA GGAAGAACTA AACAAGACCA AGCCTATTTG GACCAGAAAC 960 CCTGATGACA TCACCCAAGA GGAGTATGGA GAATTCTACA AGAGCCTCAC TAATGACTGG 1020 GAAGACCACT TGGCAGTCAA GCACTTTTCT GTAGAAGGTC AGTTGGAATT CAGGGCATTG 1080 CTATTTATTC CTCGTCGGGC TCCCTTTGAC CTTTTTGAGA ACAAGAAGAA AAAGAACAAC 1140 ATCAAACTCT ATGTCCGCCG TGTGTTCATC ATGGACAGCT GTGATGAGTT GATACCAGAG 1200

TATCTCAATT	TTATCCGTGG	TGTGGTTGAC	TCTGAGGATC	TGCCCCTGAA	CATCTCCCGA	1260
GAAATGCTCC	AGCAGAGCAA	AATCTTGAAA	GTCATTCGCA	AAAACATTGT	TAAGAAGTGC	1320
CTTGAGCTCT	TCTCTGAGCT	GGCAGAAGAC	AAGGAGAATT	ACAAGAAATT	CTATGAGGCA	1380
TTCTCTAAAA	ATCTCAAGCT	TGGAATCCAC	GAAGACTCCA	CTAACCGCCG	CCGCCTGTCT	1440
GAGCTGCTGC	GCTATCATAC	CTCCCAGTCT	GGAGATGAGA	TGACATCTCT	GTCAGAGTAT	1500
GTTTCTCGCA	TGAAGGAGAC	ACAGAAGTCC	ATCTATTACA	TCACTGGTGA	GAGCAAAGAG	1560
CAGGTGGCCA	ACTCAGCTTT	TGTGGAGCGA	GTGCGGAAAC	GGGGCTTCGA	GGTGGTATAT	1620
ATGACCGAGC	CCATTGACGA	GTACTGTGTG	CAGCAGCTCA	AGGAATTTGA	TGGGAAGAGC	1680
CTGGTCTCAG	TTACCAAGGA	GGGTCTGGAG	CTGCCTGAGG	ATGAGGAGGA	GAAGAAGAAG	1740
ATGGAAGAGA	GCAAGGCAAA	GTTTGAGAAC	CTCTGCAAGC	TCATGAAAGA	AATCTTAGAT	1800
AAGAAGGTTG	AGAAGGTGAC	AATCTCCAAT	AGACTTGTGT	CTTCACCTTG	CTGCATTGTG	1860
ACCAGCACCT	ACGGCTGGAC	AGCCAATATG	GAGCGGATCA	TGAAAGCCCA	GGCACTTCGG	1920
GACAACTCCA	CCATGGGCTA	TATGATGGCC	AAAAAGCACC	TGGAGATCAA	CCCTGACCAC	1980
CCCATTGTGG	AGACGCTGCG	GCAGAAGGCT	GAGGCCGACA	AGAATGATAA	GGCAGTTAAG	2040
GACCTGGTGG	TGCTGCTGTT	TGAAACCGCC	CTGCTATCTT	CTGGCTTTTC	CCTTGAGGAT	2100
CCCCAGACCC	ACTCCAACCG	CATCTATCGC	ATGATCAAGC	TAGGTCTAGG	TATTGATGAA	2160
GATGAAGTGG	CAGCAGAGGA	ACCCAATGCT	GCAGTTCCTG	ATGAGATCCC	CCCTCTCGAG	2220
GGCGATGAGG	ATGCGTCTCG	CATGGAAGAA	GTCGATTAGG	TTAGGAGTTC	ATAGTTGGAA	2280
AACTTGTGCC	CTTGTATAGT	GTCCCCATGG	GCTCCCACTG	CAGCCTCGAG	TGCCCCTGTC	2340
CCACCTGGCT	CCCCCTGCTG	GTGTCTAGTG	TTTTTTCCC	TCTCCTGTCC	TTGTGTTGAA	2400
GGCAGTAAAC	TAAGGGTGTC	AAGCCCCATT	CCCTCTCTAC	TCTTGACAGC	AGGATTGGAT	2460
GTTGTGTATT	GTGGTTTATT	TTATTTTCTT	CATTTTGTTC	TGAAATTAAA	GTATGCAAAA	2520
TAAAGAATAT	GCCGTTTTTA	TAC				2542

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 261 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE: (A) LIBRARY: THP-1 (B) CLONE: 14201	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
AAGAAAAAGA ACAACATCAA ACTCTATGTC CGCCGTGTGT TCA	TCATGGC AGCTGTGATG 60
AGTTGATACC AGAGTATCTC AATTTTATCC GTGGTGTGGT	CTTGAGG TCTGCCCCTG 120
AACATCTCCC GGAAATGCTC CAGCAGAGCA AAATCTTGAA AGG	CATTCGC AAAAACATTG 180
TTAAGAGTGC CTTAGCTCTT CTCTAGCTGG CAGAAGCAAG GGG	ATTTCAA GAAATTCTTT 240
TGGGGGGATT TCTTAAAAAT T	261
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (A) LIBRARY: THP-1 (B) CLONE: 14201.3 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GCTGGGTATC GGAAAGCAAG CCTACGTTGC TCACTATTAC GTA	TAATCCT TTTCTTCAAG 60
ATGCCTGAGG AAGTGCACCA TGGAGAGGAG GAGGTGGAGA CTT	TTGCCTT TCAGGCAGAA 120
ATTGCCCAAC TCATGTCCCT CATCATCAAT ACCTCCTATT CCA	ACAAGGA GATTTCCTCG 180
GGAGTTGATC TCTAATGCTT CTGATGCCTC GGACAAGATT CGC	TATGAAG CCTGACAGAC 240
CCTTCGAAGT GGTCAGCGGC AAGAGCTGAA AATTGACATC ATC	CCCAACC CTCAGGAACG 300
TCCCTGTACT TTGGGTAGAC ACAGGCATTG GCATAAACAA AGC	TGACCTC ATATTATTCG 360
GGGAACCATT GCCAAGTCTT GTCTAAAAGC ATTCATGGAG GCT	CTCAGGT TGGCGCAGAC 420
ATCTCCAGAT TGGCAGGTGG GTGTTGGCTT TATTCTGCCC ACT	TGGTGGC AGAGAAAT 478

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 508 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

(A) LIBRARY: THP-1

(B) CLONE: 14201.5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTTGGGACTG TCTGGGTATC GGAAAGCAAG CCTACGTTGC TCACTATTAC GTATAATCCT 60 TTTCTTTCA AGATGCCTGA GGAAGTGCAC CATGGAGAGG AGGAGGTGGA GACTTTTGCC 120 TTTCAGGCAG AAATTGCCCA ACTCATGTCC CTCATCATCA ATACCTCCTA TTCCAACAAG 180 GAGATTTTCC TTCGGGAGTT GATCTCTAAT GCTTCTGATG CCTTGGACAA GATTCGCTAT 240 GAGAGCCTGA CAGACCCTTC GAAGTTGGAC AGTGGTAAAG AGCTGAAAAT TGACATCATC 300 CCCAACCCTC AGGAACGTAC CCTGACTTTG GGTAGACACA GGCATCGGCA TGACCAAAAG 360 CTGATCTCAT AATAATTGGG AACCATTGCA AGTCTGGTAC TAAAGCATTC ATGGAGGCTC 420 TTCAGGCTGG TGCAGACATC TCCATGATTG GGCAGCTTGG GTGTTGCTTT ATTCTGCCTC 480 CTTGGTGGCA GAGAAAGTGT TGTGATCA 508

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 547 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

- (A) LIBRARY: THP-1
- (B) CLONE: 14201.13

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTGAGAGTAT GTCGAGTTAC TGTGGAGGTT CCTTCACTGC GTGCTGACAT GGTGAGCCCA 60
TGGGAGCGGT ACCAAGTGAT CCTCCATCTC AAAGAAGATC AGACAGAGTA CCTAGAGAGA 120
GGCGGATCAA AGAGTAGTGA TGAGCATCCT CAGATCATAG GCTATCCCAT CACCCTTTTT 180
TGGAGAAGGA CGAGAGAAGG AATTAGGATG ATGAGGCAGA GGAAGAGAAT GGTGAGAATG 240
AAGAGGAGTA ACGATGATGA AGAAACCCCA AGATCGATGA TGTGGTTCAG ATGAGGGGAT 300
GACAGCGGTA GATAAGAAGA AGAAACTAGA ATCATCGGAT CATGACAGGA AGAACTAACA 360
GATCATCTTT CGGCCAGAAT CCCTGATGTC ATCACCCCAAG AGGGTATGGA GATTTCTACA 420
TGCAGCTCAC TTTACTGGGC AAGACACTTG GCAGCAACAC TTTTCTGTAG AAGGCCATTG

CATCACGCAT	TGCTATTCTT	CCCTCGCCGT	CTCCTTTGAC	CTGGTCTGGC	ATCATGGTGT	540
CTTGATC						547

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1996 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

- (A) LIBRARY: GenBank HUMCATHB
- (B) CLONE: Accession No. L16510

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TCCGGCAACG CCAACCGCTC CGCTGCGCGC AGGCTGGGCT GCAGGCTCTC GGCTGCAGCG 60 CTGGGCTGGT GTGCAGTGGT GCGACCACGG CTCACGGCAG CCTCAGCCAC CCAGATGTAA 120 GCGATCTGGT TCCCACCTCA GCCTCCCGAG TAGTGGATCT AGGATCCGGC TTCCAACATG 180 TGGCAGCTCT GGGCCTCCCT CTGCTGCCTG CTGGTGTTGG CCAATGCCCG GAGCAGGCCC 240 TCTTTCCATC CCCTGTCGGA TGAGCTGGTC AACTATGTCA ACAAACGGAA TACCACGTGG 300 CAGGCCGGGC ACAACTTCTA CAACGTGGAC ATGAGCTACT TGAAGAGGCT ATGTGGTACC 360 TTCCTGGGTG GGCCCAAGCC ACCCCAGAGA GTTATGTTTA CCGAGGACCT GAAGCTGCCT 420 GCAAGCTTCG ATGCACGGGA ACAATGGCCA CAGTGTCCCA CCATCAAAGA GATCAGAGAC 480 CAGGGCTCCT GTGGCTCCTG CTGGGCCTTC GGGGCTGTGG AAGCCATCTC TGACCGGATC 540 TGCATCCACA CCAATGCGCA CGTCAGCGTG GAGGTGTCGG CGGAGGACCT GCTCACATGC 600 TGTGGCAGCA TGTGTGGGGA CGGCTGTAAT GGTGGCTATC CTGCTGAAGC TTGGAACTTC 660 TGGACAAGAA AAGGCCTGGT TTCTGGTGGC CTCTATGAAT CCCATGTAGG GTGCAGACCG 720 TACTCCATCC CTCCCTGTGA GCACCACGTC AACGGCTCCC GGCCCCCATG CACGGGGGAG 780 GGAGATACCC CCAAGTGTAG CAAGATCTGT GAGCCTGGCT ACAGCCCGAC CTACAAACAG 840 GACAAGCACT ACGGATACAA TTCCTACAGC GTCTCCAATA GCGAGAAGGA CATCATGGCC 900 GAGATCTACA AAAACGGCCC CGTGGAGGGA GCTTTCTCTG TGTATTCGGA CTTCCTGCTC 960 TACAAGTCAG GAGTGTACCA ACACGTCACC GGAGAGATGA TGGGTGGCCA TGCCATCCGC 1020 ATCCTGGGCT GGGGAGTGGA GAATGGCACA CCCTACTGGC TGGTTGCCAA CTCCTGGAAC 1080 ACTGACTGGG GTGACAATGG CTTCTTTAAA ATACTCAGAG GACAGGATCA CTGTGGAATC 1140

GAATCAGAAG	TGGTGGCTGG	AATTCCACGC	ACCGATCAGT	ACTGGGAAAA	GATCTAATCT	1200
GCCGTGGGCC	TGTCGTGCCA	GTCCTGGGGG	CGAGATCGGG	GTAGAAATGC	ATTTTATTCT	1260
TTAAGTTCAC	GTAAGATACA	AGTTTCAGGC	AGGGTCTGAA	GGACTGGATT	GGCCAAACAT	1320
CAGACCTGTC	TTCCAAGGAG	ACCAAGTCCT	GGCTACATCC	CAGCCTGTGG	TTACAGTGCA	1380
GACAGGCCAT	GTGAGCCACC	GCTGCCAGCA	CAGAGCGTCC	TTCCCCCTGT	AGACTAGTGC	1440
CGTGGGAGTA	CCTGCTGCCC	AGCTGCTGTG	GCCCCTCCG	TGATCCATCC	ATCTCCAGGG	1500
AGCAAGACAG	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	TTCCCCCATC	1560
AGTTCCCCCA	GTACCTCCAA	GCAAGTAGCT	TTCCACATTT	GTCACAGAAA	TCAGAGGAGA	1620
GATGGTGTTG	GGAGCCCTTT	GGAGAACGCC	AGTCTCCAGG	TCCCCCTGCA	TCTATCGAGT	1680
TTGCAATGTC	ACAACCTCTC	TGATCTTGTG	CTCAGCATGA	TTCTTTAATA	GAAGTTTTAT	1740
TTTTCGTGCA	CTCTGCTAAT	CATGTGGGTG	AGCCAGTGGA	ACAGCGGGAG	CCTGTGCTGG	1800
TTTGCAGATT	GCCTCCTAAT	GACGCGGCTC	AAAAGGAAAC	CAAGTGGTCA	GGAGTTGTTT	1860
CTGACCCACT	GATCTCTACT	ACCACAAGGA	AAATAGTTTA	GGAGAAACCA	GCTTTTACTG	1920
TTTTTGAAAA	ATTACAGCTT	CACCCTGTCA	AGTTAACAAG	GAATGCCTGT	GCCAATAAAA	1980
GGTTTCTCCA	ACTTGA					1996

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 294 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: LIVER
 - (B) CLONE: 87058
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGGCACGAGC	CAACTCCTGG	AACACTGACT	GGGGTGACAA	TGGCTTCTTT	AAAATACTCA	60
GAGGACAGGT	TCACTGTGGA	ATCGAATCAG	AAGTGGTGGC	TGGAATTCCA	CGCACCGTTC	120
AGTACTGGGA	AAAGTCTAAT	CTGCCGTGGG	CCTTCGTGCC	AGTCCTGGGG	GCGAGATGGG	180
GGTAGAAATG	CATTTTATTC	TTTAAGTTCA	CGTAAGATAC	AAGTTTCAGA	CAGGGGTCTA	240
AGGCCTGGTT	GCCAAAATCA	GACCTGTTTT	TCAAGGGGCC	CAAGTCCTGG	GTTC	294

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 552 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

(A) LIBRARY: Liver

(B) CLONE: 87058.6

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GTGAAGCTTG GAACTTCTGG ACAAGAAAAG GCCTGGTTTC TGGTGGCCTC TATGAATCCC 60 ATGTAGGGTG CAGACCGTAC TCCATCCCTC CCTGTGAGCA CCACGTCAAC GGCTCCCGGC 120 CCCCATGCAC GGGGGAGGGA GATACCCCCA AGTGTAGCAA GATCTGTGAG CCTGGCTACA 180 GCCCGACCTA CAAACAGGAC AAGCACTACG GATACAATTC CTACAGCGTC TCCAATAGCG 240 AGAAGGACAT CATGGCCGAG ATCTACAAAA ACGGCCCCGT GGAGGGAGCT TTCTCTGTGT 300 ATTCGGACTT CCTGCTCTAC AAGTCAGGAG TGTACCAACA CGTCACCGGA GAGATGATGG GTGGCCATGC CATCCGCATC CTGGGCTGGG GAGTGGAGAA TGGCACAACC TACTGGCTGG 420 TTGGCAACTC CTGGAACACT GACTGGGGTG ACAATGGGTT CACTGTGGAA TCGAATCAGA 480 AGTGGTGGTG GAATTCCACG CACGATCAAG TGCTGGGAAA AGATCTTAAT CTGCCGGGGC 540 TGTCGGCCAG TC 552

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 559 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

- (A) LIBRARY: Liver
- (B) CLONE: 87058.8

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAGGTACCTT CCTGGGTGGG CCCAAGCCAC CCCAGAGAGT TATGTTTACC GAGGACCTGA 60

AGCTGCCTGC AAGCTTCGAT GCACGGGAAC AATGGCCACA GTGTCCCACC ATCAAAGAGA 120

TCAGAGACCA GGGTCCTGTG GCTCCTGCTG GGCCTTCGGG GCTGTGGAAG CCATCTCTGA 180

CCGGATCTGA	TCCACACCAA	TGCGCACGTC	AGCGTGGAGG	TGTCGGCGGA	GGACTGCTCA	240
CATGCTGTGG	CAGATGTGTG	GGGACGGCTG	TAATGGTGGC	TATCCTGCTG	AAGCTTGGAC	300
TTCTGGACAA	GAAAAGGCCC	TGGTTTCTGG	TGGCCTCTAT	GATCCCATGT	AGGGTGTAGA	360
CCGTACTCCA	TCCCTCCCTG	TGAAGCACCA	CGTCAACGGT	TCCCGGGCCC	CATGCACGGG	420
GAGGGAGATA	CCCCCAAGTG	TAACAAGATC	TGTGAGCCTG	GGTACAGTCC	CGACCACAAA	480
CAGGAAAAGC	ACTACGGATA	CAATTCCTCA	GGTCTCCAAT	agtgagaagg	GACATCATGC	540
CGAGATCTAC	AATAACGGC					559

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 622 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: Liver
 - (B) CLONE: 87058.16

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CGGTTGAGAT TCGGACAGTC CGA	AAACGTC CGGCAAGTCA	CCCGCTCCGC	TGGCGCAGGC	60
TGGGTGCAGG CTCTCGGTGC AGG	CTGGGTG GATCTAGGAT	CCGGCTTCCA	ACATGTGGCA	120
GTTCTGGGCC TCCCTCTGTG CCT	GCTGGTG TTGGACAATG	CCCGGAGGAG	GCCTCTTTCC	180
ATCCCCTGTC GGATGAGCTG GTC	ACTATGT CAACAAACGG	AATACCACGT	GGAGGCCGGG	240
AACAACTTCT ACAACGTGGA CAT	GAGCTAC TTGAGAGGTA	TGTGGTACCT	TCCTGGGTGG	300
GCCCAAGCCA CCCCAGAGAG TTT	GTTTACC GAGGACCTGA	GCTGCCTGCA	AGCTTCGAAG	360
GACGGGAACA ATGGCCACAG TGT	CCCACCA TCAAAGAGAT	CAGAGACAGG	GCTCCTGTGG	420
TCCTGCTGGG CCTCCGGGGC TGT	GGAAGCA TCTCTGACCG	GATCTGCATC	CACACCAATG	480
GCACGTCAGC GTGGTGGTGT CGG	GGAGGAC CTGATCACCT	TTGTGGTAGC	ATGTGTGGGG	540
GACGGCTGTA ATGGTGGTTA TCC	TGTGAAG CTGGGCCTTC	TAGAAAGAAA	AGGCTGTTTT	600
GGTGGCCTTA TGACTCCCAT GT				622

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 984 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: Placenta
 - (B) CLONE: 179696

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGGAATGGG	ACAATGGCAC	AGACCAGGCT	CTGGGCTTGC	CACCCACCAC	CTGTGTCTAC	60
CGCGAGAACT	TCAAGCAACT	GCTGCTCCCA	CCTGTGTATT	CGGCGGTGCT	GGCGCCTGCC	120
CTCCCGCTGA	ACATCTGTGT	CATTACCCAG	ATCTGCACGT	CCCGCCGGGC	CCTGACCCGC	180
ACGGCCGTGT	ACACCCTAAA	CCTTGCTCTG	CCTGACCTGC	TATATGCCTG	CTCCCTGCCC	240
CTGCTCATCT	ACAACTATGC	CCAAGGTGAT	CACTGGCCCT	TTGGCGACTT	CGCCTGCCGC	300
CTGGTCCGCT	TCCTCTTCTA	TGCCAACCTG	CACGGGAGGA	TCCTCTTCCT	CACCTGCATC	360
AGCTTCCAGC	GCTACCTGGG	CATCTGCCAC	CCGCTGGCCC	CCTGGCACAA	ACGTGGGGGC	420
CGCCGGGCTG	CCTGGCTAGT	GTGTGTAGCC	GTGTGGCTGG	CCGTGACAAC	CCAGTGCCTG	480
CCCACAGCCA	TCTTCGCTGC	CACAGGCATC	CAGCGTAACC	GCACTGTCTG	TTATGACCTC	540
AGCCCGCCTG	CCCTGGCCAC	CCACTATATG	CCCTATGGGA	TGGCTCTCAC	TGTCATCGGC	600
TTCCTGCTGC	CCTTTGCTGC	CCTGCTGGCC	TGCTACTGTC	TCCTGGCCTG	CCGCCTGTGC	660
CGCCAGGATG	GCCCGGCAGA	GCCTGTGGCC	CAGGAGCGGC	GTGGCAAGGC	GGCCCGCATG	720
GCCGTGGTGG	TGGCTGCTGT	CTTTGGCATC	AGCTTCCTGC	CTTTTCACAT	CACCAAGACA	780
GCCTACCTGG	CAGTGCGCTC	GACGCCGGGC	GTCCCCTGCA	CTGTATTGGA	GGCCTTTGCA	840
GCGGCCTACA	AAGGCACGCG	GCCGTTTGCC	AGTGCCAACA	GCGTGCTGGA	CCCCATCCTC	900
TTCTACTTCA	CCCAGAAGAA	GTTCCGCCGG	CGACCACATG	AGCTCCTACA	GAAACTCACA	960
GACAAATGGC	AGAGGCAGGG	TCGC				984

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1446 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:

(A) LIBRARY: Mast Cell

(B) CLONE: 8118

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATGGCGTCTT TCTCTGCTGA	GACCAATTCA	ACTGACCTAC	TCTCACAGCC	ATGGAATGAG	60
CCCCCAGTAA TTCTCTCCAT	GGTCATTCTC	AGCCTTACTT	TTTTACTGGG	ATTGCCAGGC	120
AATGGGCTGG TGCTGTGGGT	GGCTGGCCTG	AAGATGCAGC	GGACAGTGAA	CACAATTTGG	180
TTCCTCCACC TCACCTTGGC	GGACCTCCTC	TGCTGCCTCT	CCTTGGCCTT	CTCGCTGGCT	240
CACTTGGCTC TCCAGGGACA	GTGGCCCTAC	GGCAGGTTCC	TATGCAAGCT	CATCCCCTCC	300
ATCATTGTCC TCAACATGTT	TGGCAGTGTC	TTCCTGCTTA	CTGCCATTAG	CCTGGATCGC	360
TGTCTTGTGG TATTCAAGCC	AATCTGGTGT	CAGAATCATC	GCAATGTAGG	GATGGCCTGC	420
TCTATCTGTG GATGTATCTG	GGTGGTGGCT	TTTGTGTTGT	GCATTCCTGT	GTTCGTGTAC	480
CGGGAAATCT TCACTACAGA	CAACCATAAT	AGATGTGGCT	ACAAATTTGG	TCTCTCCAGC	540
TCATTAGATT ATCCAGACTT	TTATGGGGAT	CCACTAGAAA	ACAGGTCTCT	TGAAAACATT	600
GTTCAGCCGC CTGGAGAAAT	GAATGATAGG	TTAGATCCTT	CCTCTTTCCA	AACAAATGAT	660
CATCCTTGGA CAGTCCCCAC	TGTCTTCCAA	CCTCAAACAT	TTCAAAGACC	TTCTGCAGAT	720
TCACTCCCTA GGGGTTCTGC	TAGGTTAACA	AGTCAAAATC	TGTATTCTAA	TGTATTTAAA	780
CCTGCTGATG TGGTCTCACC	TAAAATCCCC	AGTGGGTTTC	CTATTGAAGA	TCACGAAACC	840
AGCCCACTGG ATAACTCTGA	TGCTTTTCTC	TCTACTCATT	TAAAGCTGTT	CCCTAGCGCT	900
TCTAGCAATT CCTTCTACGA	GTCTGAGCTA	CCACAAGGTT	TCCAGGATTA	TTACAATTTA	960
GGCCAATTCA CAGATGACGA	TCAAGTGCCA	ACACCCCTCG	TGGCAATAAC	GATCACTAGG	1020
CTAGTGGTGG GTTTCCTGCT	GCCCTCTGTT	ATCATGATAG	CCTGTTACAG	CTTCATTGTC	1080
TTCCGAATGC AAAGGGGCCG	CTTCGCCAAG	TCTCAGAGCA	AAACCTTTCG	AGTGGCCGTG	1140
GTGGTGGTGG CTGTCTTTCT	TGTCTGCTGG	ACTCCATACC	ACATTTGGGG	AGTCCTGTCA	1200
TTGCTTACTG ACCCAGAAAC	TCCCTTGGGG	AAAACTCTGA	TGTCCTGGGA	TCATGTATGC	1260
ATTGCTCTAG CATCTGCCAA	TAGTTGCTTT	AATCCCTTCC	TTTATGCCCT	CTTGGGGAAA	1320
GATTTTAGGA AGAAAGCAAG	GCAGTCCATT	CAGGGAATTC	TGGAGGCAGC	CTTCAGTGAG	1380
GAGCTCACAC GTTCCACCCA	CTGTCCCTCA	AACAATGTCA	TTTCAGAAAG	AAATAGTACA	1440
ACTGTG					1446

CLAIMS

1. A method of extending the sequence of a partial complementary DNA (cDNA) using polymerase chain reaction (PCR), comprising the steps of:

- a) combining a first and second PCR primer with nucleic acid from a cDNA library expected to contain said partial cDNA, or a genomic library, under conditions suitable for synthesis of nucleic acid PCR products from the first and second primers, wherein said first and second primers are capable of annealing to opposite strands of the partial cDNA or genomic DNA and initiating nucleic acid synthesis in an outward manner and wherein the first primer is capable of being extended by DNA polymerase in an antisense direction and the second primer is capable of being extended in a sense direction.
 - b) purifying the PCR products, and

5

10

15 .

25

30

- c) identifying extended nucleotide sequences derived from said partial cDNA or said genomic DNA.
- 2. The method of Claim 1 wherein identifying extended sequences comprises nucleic acid sequencing.
- The method of Claim 2 further comprising extending the nucleotide sequences of step 6c by repeating steps 6a through 6c on the nucleotide sequences identified in step 6c.
 - 4. A method of extending the nucleotide sequence of a partial complementary DNA (cDNA) using polymerase chain reaction (PCR), comprising the steps of:
 - a) combining a first and second PCR primer with nucleic acid from a cDNA library expected to contain said partial cDNA, or a genomic library, under conditions suitable for synthesis of nucleic acid PCR products from the first and second primers, wherein said first and second primers are capable of annealing to opposite strands of the partial cDNA or genomic DNA and initiating nucleic acid synthesis in an outward manner and wherein the first primer is capable of being extended by DNA polymerase in an

antisense direction and the second primer is capable of being extended in a sense direction.

b) purifying the PCR products,

5

- c) ligating the purified PCR products under conditions suitable for the formation of circular closed nucleic acid.
- d) transforming a host cell with the circular closed nucleic acid and culturing the transformed host cell under conditions suitable for growth,
- e) recovering said circular closed nucleic acid from the cultured, transformed host cell,
 - f) identifying extended nucleotide sequences derived from said partial cDNA or said genomic DNA.
 - 5. The method of Claim 4 wherein identifying extended sequences comprises nucleic acid sequencing.
- 15 6. The method of Claim 4 wherein culturing the transformed host cell under conditions suitable for growth comrpises culturing in the presence of selective antibiotic conditions.
 - 7. The method of Claim 4 wherein said host cell is E.coli.
- 8. The method of Claim 4 wherein after step 4b and prior to step

 4c, the purified PCR products are treated under conditions

 sutiable for converting nucleic acid overhangs to blunt ends.

FIGURE 1

2/20

FIGURE 2

see figure 4

FIGURE 3

cDNA insert
plasmid vector
primers

FIGURE 5

FIGURE 6

Нар 90	1	CTCCGGCGCA	GTGTTGGGAC	TGTCTGGGTA	40 TCGGAAAGCA	AGCCTACGTT	50 50
14201 14201.3 14201.5 14201.13	1		GTTGGGAC	gCTGGGTA	TCGGAAAGCA TCGGAAAGCA	AGCCTACGTT AGCCTACGTT	50 50 50 50
Hsp 90 14201 14201.3 14201.5 14201.13	51 51 51	GCTCACTATT GCTCACTATT	ACGTATAATC ACGTATAATC ACGTATAATC	CTTTTCTNTN	90 CAAGATGCCT CAAGATGCCT CAAGATGCCT	GAGGAAGTGC GAGGAAGTGC GAGGAAGTGC	. 100 100 100 100 100
Hsp 90 14201 14201.3 14201.5 14201.13	101 101 101	ACCATGGAGA ACCATGGAGA	GGAGGAGGTG GGAGGAGGTG GGAGGAGGTG	GAGACTTTTG GAGACTTTTG	140 CCTTTCAGGC CCTTTCAGGC CCTTTCAGGC	AGAAATTGCC AGAAATTGCC	150 150 150 150
Hsp 90 14201 14201.3 14201.5 14201.13	151 151 151	CAACTCATGT CAACTCATGT CAACTCATGT	CCCTCATCAT CCCTCATCAT CCCTCATCAT	CAATACCTCC CAATACCTCC CAATACCTCC	190 TATTCCAACA TATTCCAACA TATTCCAACA	AGGAGATTTT AGGAGATTNT AGGAGATTTT	200 200 200 200 200
Hsp 90 14201 14201.3 14201.5 14201.13	201 201 201	CCTNCGGGAG CCTTCGGGAG	TTGATCTCTA TTGATCTCTA TTGATCTCTA	ATGCTTCTGA ATGCTTCTGA	240 TGCCTTGGAC TGCCTCGGAC TGCCTTGGAC	AAGATTCGCT AAGATTCGCT AAGATTCGCT	250 250 250 250 250
Hsp 90 14201 14201.3 14201.5 14201.13	251 251 251	ATGAGAGCCT ATGANAGCCT	GACAGACCCT GACAGACCCT GACAGACCCT	TCGAAGTNGG TCGAAGTTGG	ACAGTGGTAA TCAGCGGCAA ACAGTGGTAA	NGAGCTGAAA	300 300 300 300 300

FIGURE 7A

Hsp 90 14201 14201.3 14201.5	301 301 301	ATTGACATCA ATTGACATCA	TCCCCAACCC TCCCCAACCC	TCAGGAACGT TCAGGAACGT TCAGGAACGT	ACCCTGACTT NCCCTGACTT ACCCTGACTT	350 TGGTAGACAC TGGTAGACAC TGGTAGACAC	350 350 350 350
Hsp 90 14201 14201 14201.3 14201.5	351 351 351 351		370 ATGACCAAAG ATGAGAGCAAAG	380 CTGATCTCAT CTGACCTCAT CTGATCTCAT	390 AAATAATTEG NANTTATTEG AANTAATTNG	400 GGAACCATTG GGGAACCATT GGAACCATTG	400 400 400 400
Hsp 90 14201.13 14201.3 14201.5	401 401 401	410 CCAAGTCTGG CCAAGTCTTG	420 TACTAAAGCA TNCTAAAGCA	430 TTCATGGAGG TTCATGGAGG	440 CTCTTCAGGC CTCTNCAGGN	450 TGGTGCAGAC TGGcGCAGAC	450 450 450 450
Hsp 90 14201 14201	401 451 451 451	460 ATCTCCATGA ATCTCCANGA	470 TTGGGCAGTT	480 tGGTGTTGGC	490 TttTATTCTG	500 CCTACTTGGT	500 - 500 500
14201.5 14201.13 Hsp 90 14201	451 501 501	GGCAGAGAAA	520 GTGGTTGTGA	530 TCAGAAAGCA	540 CAACGATGAT	550 GAACAGTATG	500 500 550 550
14201.3 14201.5 14201.13	501 501 551	cTtgGgAGTc	GTNGTTGTGA 570 TtCTGcTGGA	TCA 580 GGTTCCTTCA	590 CTgtGCGTGC	GAGNAGTATG 600 TGACCATGGT	550 550 550
14201 14201.3 14201.5 14201.13	551 551 551	-TcnGnAGT-	TaCTGnTGGA	GGTTCCTŢCA		TGAC-ATGGT	600 600 600
Hsp 90 14201 14201.3 14201.5 14201.13	601 601	GAGCCCATTG GAGCCCATTG	GcAtgGGTAC	CAAAGTGATC	CTCCATCTEA	AAGAAGATCA	650 650 650 650 650

FIGURE 7B

		660	670	680	690	700	
Hsp 90	651	GACAGAGTAC	CTAGAAGAGA	GGCGGGTCAA	AGAAGTAGTG	AAGAAGCATT	700
14201	651						700
14201.3	651				• • • • • • • • • •		700
14201.5	651						700
14201.13	651	GACAGAGTAC	CTAGANGAGA	GGCGGaTCAA	AGNAGTAGTG	AtGANGCATC	700
		•					
		710	720	730	740	750	
Hsp 90		CTCAGtTCAT					750
14201							750
14201.3	701						750
14201.5	701						750
14201.13	701	CTCAGaTCAT	AGGCTATCCC	ATCACCCTTT	nTTTGGAGAA	GGnACGAGAG	750
		760	770	780	790	800	
Hsp 90		AAGGAAATTA					800
14201		~~~~~~					800
14201.3		• • • • • • • • • •					800
14201.5							800
14201.13	751	AAGGAnATTA	GNGATGATGA	GGCAGAGGAA	GAGAAtGGTG	AGAALGAAGA	800
•		810	820	020	040	050	
U 00	901			830	840	850	050
Hsp 90	001	GGAaGaTAAa	GAIGAIGAAG	AMAZGCCCAA	GAICGAAGAI	GIGGGIICAG	850
14201							850
14201.3							850
14201.5 14201.13		GGAnGnTAAc					850
14201.13	901	GGAIIGIIIAAC	GAIGAIGAAG	A-ANICCCCAA	GATCGACGAT	GIGGHIICAG	850
		860	870	880	890	900	
Hsp 90	851	ATGAGGAGGA					900
14201							900
14201.3							900
14201.5							900
14201.13		ATGAGGnGGA					900
							• • • • • • • • • • • • • • • • • • • •
		910	020	930	. 040		
Hsp 90	001	AAAGAGAAAT	920		•	950	950
14201		WAGAGAAA					950 950
14201.3				•			950
14201.5							950
14201.13							950
		••••					330
		960	970	980	990	1000	
Hsp 90	951	GACCAGAAAC	CCTGATGACA	TCACCCAAGA	GGAGTATGGA	GAATTCTACA	1000
14201							1000
14201.3	951						1000
14201:5	951						1000
14201.13	951		• • • • • • • • • •	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	1000

FIGURE 7C

10/20

Hen OO		1010		1030	1040	1050
Hsp 90	1001	AGAGCCTCAC	TAATGACTGG	GAAGACCACT	TGGCAGTCAR	CC & CTTTTCT
14201	1001					· GCACITICI
14201.3	1001		• • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
14201.5	1001					• • • • • • • • • • • • • • • • • • • •
14201.13	1001			• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •
Ven 00	1051	1060	1070			
Hsp 90	1021	GTAGAAGGTC	AGTIGGAATT	CAGGGCATTG	CTATTTATTC	CTCGTCGGGC
14201						
14201.3	1051		• • • • • • • • •			
14201.5	1051		• • • • • • • • •			
14201.13	1051		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • •
		1110				
		1110	1120	1130	1140	
Hsp 90	1101	TCCCTTTGAC	CTTTTTGAGA	ACAAGAAGAA	AAAGAACAAC	ATCAAACTCT
14201	1101			AAGAA	AAAGAACAAC	ATCAAACTCT
14201.3	1101	•••••	•••••		:	
14201.5	1101					
14201.13	1101	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
		1160	1170	1180	1190	1200
Hsp 90	1151	ATGTCCGCCG				
14201		ATGTCCGCCG				
14201.3	1151					
4201.5		• • • • • • • • • • • • • • • • • • • •				
	1131	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • •	
14201.13	1151	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		1210	1220	1230	1240	1250
Hsp 90	1201	TATCTCAATT				
14201	1201	TATCTCAATT	TTATCCGTGG	TGTGGTTGAC	ThTCACChTC	TCCCCCTCAA
14201.3	1201		11/10/03/00	igragitanc	Inidaddiiic	IGCCCCIGAA
4201.5	1201	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
4201.3	1201	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • •
.4201.13	1201	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •
		1260	1270	1280	1290	. 1300
Hsp 90	1251	CATCTCCCGa	GAAATGCTCC	AGCAGAGCAA	AATCTTGAAA	GtCATTCGCA
14201	1251	CATCTCCCGn	GAAATGCTCC	AGCAGAGCAA	AATCTTGAAA	GGCATTCGCA
14201.3	1251					
4201.5	1251					
4201.13	1251					
			• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
		1310	1320	1330	1340	1350
isp 90	1301	AAAACATTGT	TAAGAAGTGC	CTTGAGCTCT	TCTCTgAGCT	GGCAGAAGaC
14201	1301	AAAACATTGT	TAAGnAGTGC	CTTNAGCTCT	TCTCTnAGCT	GGCAGAAGnC
14201.3						
14201.5						
4201.13		• • • • • • • • • •				
	+501	• • • • • • • • • •		• • • • • • • • •	• • • • • • • • •	• • • • • • • • •

FIGURE 7D

		1360	1370		1390	1400
Hsp 90	1351	AAGGAGAATT	ACAAGAAATT	CTATGAGGCA	TTCTCTAAAA	ATCTCAAGCT
14201	1351	AACC-CCATT	TCAAGAAATT	CTTTGGGG		
14201.3	1351					
14201.5	1351	•				
14201.13	1351				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		1410	1420	1430	1440	1450
Hsp 90	1401	TGGAATCCAC	GAAGACTCCA	CTAACCGCCG	CCGCCTGTCT	GAGCTGCTGC
14201						
14201.3	1.401					
14201.5	1 4 0 1					
14201.13	1401			• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
		1460	1470	1480	1490	1500
Hsp 90	1451		CTCCCAGTCT	GGAGATGAGA	TGACATCTCT	GTCAGAGTAT
14201						
14201.3	1451					• • • • • • • • •
14201.5	1 451					
14201.13	1451					• • • • • • • • • • • • • • • • • • • •
	••	1510	1520	1530	1540	1550
Hsp 90	1501		TONDOCACAC	DCDCDAGTCC	ATCTATTACA	TCACTGGTGA
14201						
14201.3	1501					
14201.5	1 501					
14201.13	1501			• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		1560	1570	1580	1590	1600
Hsp 90	1551		CACCACCCCA	እርፕሮ እርርፕፕ ፕ	TGTGGAGCGA	GTGCGGAAAC
14201	1 5 6 3					
14201.3	1551					• • • • • • • • • • • •
14201.5	1551					
14201.13	1551			• • • • • • • • • • • • • • • • • • • •		
		. 1610	1620	1630	1640	1650
Hsp 90	1601	GGGGCTTCGA	GGTGGTATAT	ATGACCGAGC	CCATTGACGA	GTACTGTGTG
14201	1601					
14201.3	1601		• • • • • • • • •	• • • • • • • • • •		
14201.5	1601					
14201.13	1601					

FIGURE 7E

		1660	1670	1680	1690	1700	
Hsp 90	1651	CAGCAGCTCA	AGGAATTTGA	TGGGAAGAGC	CTGGTCTCAG	TTACCAAGGA	1
14201	1651						17
14201.3	1651						1
14201.5	1651						17
14201.13	1651						17
14201.13	1001						
		1710	1720	1730	1740	1750	
Hsp 90	1701	GGGTCTGGAG	CTGCCTGAGG	ATGAGGAGGA	GAAGAAGAAG	ATGGAAGAGA	1.
14201	1701						1
14201.3	1701						17
14201.5	1701						17
14201.13	1701						1
14201.13	1,01						_
		1760	1,770	1780	1790	1800	
Hsp 90	1751	GCAAGGCAAA	GTTTGAGAAC	CTCTGCAAGC	TCATGAAAGA	AATCTTAGAT	18
14201	1751						18
	1751						18
							18
14201.13							18
14201.13	1731		• • • • • • • • •			•••••	
		1810	1820	1830	1840	1850	٠.
Hsp 90	1801	AAGAAGGTTG	AGAAGGTGAC	AATCTCCAAT	AGACTTGTGT	CTTCACCTTG	18
14201	1801						18
14201.3	1801						18
	1001						18
14201.5	1001						18
14201.13	1901						
		1860	1870	1880	1890	1900	
Hsp 90	1851	CTGCATTGTG	ACCAGCACCT	ACGGCTGGAC	AGCCAATATG	GAGCGGATCA	19
14201	1851	0100/111010					19
14201.3	1851						19
14201.5	1051						19
	1021						19
14201.13	1031		• • • • • • • • •				
		1910	1920	1930	1940	1950	
Hsp 90	1901	TGAAAGCCCA	GGCACTTCGG	GACAACTCCA	CCATGGGCTA	TATGATGGCC	1
14201	1901						1
14201.3	1901						13
14201.5	1901						15
14201.13	1901						1
17401.13	T)01						
		1960	1970	1980	1990	2000	.=
Hsp 90	1951	AAAAAGCACC	TGGAGATCAA	CCCTGACCAC	CCCATTGTGG	AGACGCTGCG	20
14201	1951						. 20
14201.3	1951						2
14201.5	1951						20
14201.13							20

FIGURE 7F

Hsp 90 14201 14201.3 14201.5 14201.13	2001 2001 2001		2020 GAGGCCGACA				2050 2050 2050 2050 2050
Hsp 90 14201 14201.3 14201.5 14201.13	2051 2051 2051		2070 TGAAACCGCC				2100 2100 2100 2100 2100
Hsp 90 14201 14201.3 14201.5 14201.13	2101 2101 2101						2150 2150 2150 2150 2150
Hsp 90 14201 14201.3 14201.5 14201.13	2151 2151 2151		2170 GATGAAGTGG				2200 2200 2200 2200 2200
Hsp 90 14201 14201.3 14201.5 14201.13	2201 2201 2201		2220 CCCTCTCGAG				2250 2250 2250 2250 2250 2250
Hsp 90 14201 14201.3 14201.5 14201.13	2251 2251 2251	• • • • • • • • • • • • • • • • • • • •	2270 TTAGGAGTTC		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	2300 2300 2300 2300 2300
.Hsp 90 14201 14201.3 14201.5 14201.13	2301 2301 2301	• • • • • • • • • • • • • • • • • • • •	2320 GCTCCCACTG	• • • • • • • • • • • • • • • • • • • •			2350 2350 2350 2350 2350

FIGURE 7G

14/20

		2360	2370	2380	2390	2400	
Hsp 90	2351	CCCCTGCTG	GTGTCTAGTG	TTTTTTTCCC	TCTCCTGTCC	TTGTGTTGAA	2400
14201	2351						2400
14201.3	2351						2400
14201.5							2400
14201.13	2351	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	2400
	•	2410	2420	2430	2440	2450	
Hsp 90	2401			AAGCCCCATT	4		2450
14201				Muccochii			2450
14201.3							2450
							2450
14201.5				• • • • • • • • • • • • • • • • • • • •			2450
14201.13	2401	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		2450
		2460	2470	2480	2490	2500	
Hsp 90	2451	AGGATTGGAT	GTTGTGTATT	GTGGTTTATT	TTATTTTCTT	CATTTTGTTC	2500
Hsp 90 14201				GTGGTTTATT			2500 2500
Hsp 90 14201 14201.3	2451						
14201	2451 2451						2500
14201 14201.3	2451 2451 2451						2500 2500
14201 14201.3 14201.5	2451 2451 2451						2500 2500 2500
14201 14201.3 14201.5 14201.13	2451 2451 2451 2451	2510	2520	2530	2540	2550	2500 2500 2500 2500 2500
14201 14201.3 14201.5 14201.13	2451 2451 2451 2451 2451	2510	2520 GTATGCAAAA	2530 TAAAGAATAT	2540 GCCGTTTTTA	2550	2500 2500 2500 2500 2500
14201 14201.3 14201.5 14201.13 Hsp 90 14201	2451 2451 2451 2451 2451	2510 TGAAATTAAA	2520 GTATGCAAAA	2530 TAAAGAATAT	2540 GCCGTTTTTA	2550	2500 2500 2500 2500 2500
14201 14201.3 14201.5 14201.13	2451 2451 2451 2451 2451 2501 2501 2501	2510 TGAAATTAAA	2520 GTATGCAAAA	2530 TAAAGAATAT	2540 GCCGTTTTTA	2550	2500 2500 2500 2500 2500 2550 2550 2550
14201 14201.3 14201.5 14201.13 Hsp 90 14201	2451 2451 2451 2451 2451 2501 2501 2501	2510 TGAAATTAAA	2520 GTATGCAAAA	2530 TAAAGAATAT	2540 GCCGTTTTTA	2550	2500 2500 2500 2500 2500

FIGURE 7H

15/20

capthepsin 87058 87058.6 87058.8 87058.16		TCCGGCAACG	CCAACCGCTC	CGCTGCGCGC		GCAGGCTCTC	50 50 50 50
capthepsin 87058 87058.6 87058.8	51 51	GGCTGCAGCG	CTGGGCTGGT			CTCACGGCAG	100 100 100 100
87058.16		иси		TĆGGACNAGT	CCGAAAACGT	CCGGCAAGTC	100
capthepsin 87058 87058.6 87058.8 87058.16	101 101 101	110 CCTCAGCCAC					150 150 150 150 150
capthepsin 87058 87058.6 87058.8 87058.16	151 151 151	160 TAGTGGATCT 					200 200 200 200 200
capthepsin 87058 87058.6 87058.8 87058.16	201 201 201	210 CTGCTGCCTG					250 250 250 250 250
capthepsin 87058 87058.6 87058.8 87058.16	251 251 251	260 CCCTGTCGGA CCCTGTCGGA					300 300 300 300 300

FIGURE 8A

16/20

capthepsin	301	310	320 ACAACTTCTA	330 CAACGTGGAC	340	350 TGA=GAGGGT
87058	301					
87058.6	301					
87058.8 87058.16	301					TGAnGAGGnT
		360	370	380	300	400
capthepsin .87058	351	ATGTGGTACC	TTCCTGGGTG	GGCCCAAGCC	ACCCCAGAGA	GTTATGTTTA
.87058	351					
87058.6 87058.8	351					
87058.8 87058.16	351	GAGGTACC	TTCCTGGGTG	GGCCCAAGCC	ACCCCAGAGA	GTTATGTTTA
87058.16	321	ATGTGGTACC	TTCCTGGGTG	GGCCCAAGCC	ACCCCAGAGA	GTTNTGTTTA
		410	420	430	440	450
capthepsin	401	CCGAGGACCT	GAAGCTGCCT	GCAAGCTTCG	ATGCACGGGA	ACAATGGCCA
capthepsin 87058 87058.6 87058.8	401					
87058.8	401	CCGAGGACCT	GAAGCTGCCT	GCAAGCTTCG	ATGCACGGGA	ACANTGGCCA
87058.16	401	CCGAGGACCT	GANGCTGCCT	GCAAGCTTCG	AaGgACGGGA	ACAATGGCCA
anathonoi a	. 453	460	470	480	490	500
capthepsin 87058	451	CAGIGICCCA	CCATCAAAGA	GAICAGAGAC	CAGGGCICCI	GIGGCICCIG
87058.8	451	CAGTGTCCCA	CCATCAAAGA	GATCAGAGAC	CAGGGNTCCT	GTGGCTCCTG
87058.16	451	CAGTGTCCCA	CCATCAAAGA	GATCAGAGAN	CAGGGCTCCT	GTGGNTCCTG
•		510	520	530	540	550 ⁻
capthepsin 87058 87058.6	501	CTGGGCCTTC	GGGGCTGTGG	AAGCCATCTC	TGACCGGATC	TGCATCCACA
87058	501		******			
87058.6 87058.8	501	CTGGGCCTTC				
87058.8 87058.16	501	CTGGGCCTcC				
		560	570	580	590	600
capthepsin 87058	551	CCAATGCGCA	CGTCAGCGTG	GAGGTGTCGG	CGGAGGACCT	GCTCACATGC
	551					
87058.6	-					
87058.8 87058.16		CCAATGCGCA				
67038.16	221	CCAATGNGCA	CGTCAGCGTG	GEGGTGTCGG	NGGAGGACCT	Gattactint
	50 5	610	620	630	640	650
capthepsin 87058	601	TGTGGCAGCA	TGTGTGGGGA	CGGCTGTAAT	GGTGGCTATC	CTGCTGAAGC
87058.6						
87058.8		TGTGGCAGNA				
87058.16		TGTGGLAGCA				

FIGURE 8B

		660	670	680	690		700
capthepsin	651	TTGGAACTTC	TGGACAAGAA	AAGGCCTGGT	TTCTGGTGGC	CICIAIGAAI	700
87058	651				TTCTGGTGGC		700
87058.6	651	TIGGAACITC	TGGACAAGAA	AAGGCCTGGT	TTCTGGTGGC	CTCTATGANT	700
87058.8	621	TIGGNACTIC	TUGACAAGAA	AAGGCCIGGI	TTGGTGGC	CT-TATGACT	700
87058.16	621	INGGGNCTIC	TNAGAAAGAA	AAGGCLNGCI	11 601000	C1 1.1.1-0.01	
		710	720	730	740	750	
capthepsin	701	CCCATGTAGG	GTGCAGACCG	TACTCCATCC	CTCCCTGTGA	GCACCACGTC	750
87058	701						750
87058.6	701	CCCATGTAGG	GTGCAGACCG	TACTCCATCC	CTCCCTGTGA	GCACCACGTC	750
87058.8	701	CCCATGTAGG	GTGTAGACCG	TACTCCATCC	CTCCCTGTGA	GCACCACGTC	750
87058.16	701	CCCATGT					750
0.000.20		• • • • • • • • • • • • • • • • • • • •					
		760	770	780		800	
capthepsin	751	AACGGCTCCC	GGCCCCCATG	CACGGGGGAG	GGAGATACCC	CCAAGTGTAG	800
87058	751						800
87058.6	751	AACGGCTCCC	GGCCCCCATG	CACGGGGGAG	GGAGATACCC	CCAAGTGTAG	800
87058.8	751	AACGGtTCCC	GGgCCCCATG	CACGGNGGAG	GGAGATACCC	CCAAGTGTAa	800
87058.16	751					• • • • • • • • • •	800
	•					850	
		810	820	830	840		850
capthepsin	801	CAAGATCTGT	GAGCCTGGCT	ACAGCCCGAC	CTACAAACAG	GACAAGCACI	850
87058	801			707000000	CTACAAACAG	CACAAGCACT	850
87058.6	801	CAAGATCTGT	CACCCTCCCT	ACAGCCCGAC	CCACAAACAG	GARAAGCACT	850
87058.8	801	CAAGAICIGI	GAGCCIGGGI	ACAGECCEGA			850
87058.16	801						
		860	870	880	890	900	
capthepsin	851	ACGGATACAA	TTCCTACAGC	GTCTCCAATA	GCGAGAAGGA	CATCATGGCC	900
87058	051						900
87058.6	851	ACCCATACAA	TTCCTACAGC	GTCTCCAATA	GCGAGAAGGA	CATCATGGCC	900
87058.8	851	ACGGATACAA	TTCCT-CAGN	GTCTCCAATA	GtGAGAAGGA	CATCAT-GCC	900
87058.16	851					• • • • • • • • • •	900
		•					
•		910	920	930			
capthepsin	901	CACATCTACA	ANANCECCC	CGTGGAGGGA	GCTTTCTCTG	TGTATTCGGA	950
87058	901						950
87058.6	901	CACATCTACA	AAAACGGCCC	CGTGGAGGGA	GCTTTCTCTG	TGTATTCGGA	950
07050 0	901	CACATCTACA	At AACGGC				950
87058.16	901						950
•							
		960	970	980	990	೧೧೧೧ ಕ್ಷಮಿಕ್ ಆ	1000
capthepsin	951	CTTCCTGCTC	TACAAGTCAG	GAGTGTACCA	ACACGTCACC	GOUGUGUIGU	1000
87058	951				ACACGTCACC	GGAGAGATGA	1000
87058.6	951	CTTCCTGCTC	TACAAGICAG	GWGIGIWCCW	· · · · · · · · · · · ·		1000
87058.8	951						1000
87058.16	951						

FIGURE 8C

capthepsin		1010 TGGGTGGCCA		ATCCTGGGCT	1040 GGGGAGTGGA		1050
87058	1001						1050 1050
87058.6		TGGGTGGCCA	TGCCATCCGC	ATCCTGGGCT	GGGGAGTGGA	GAATGGCACA	1050
87058.8	1001			• • • • • • • • • • • • • • • • • • • •			1050
87058.16	1001	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		1020
		1060	1070	1080	1090	1100	
capthepsin	1051	CCCTACTGGC	TGGTTGCCAA	CTCCTGGAAC	ACTGACTGGG	GTGACAATGG	1100
87058	1051	cGg	cagacGCCAA	CTCCTGGAAC	ACTGACTGGG	GTGACAATGG	1100
87058.6	1051	aCCTACTGGC	TGGTTGgCAA	CTCCTGGAAC	ACTGACTGGG	GTGACAATGG	1100
87058.8	1051						1100
87058.16	1051						1100
						1150	
		1110	1120	1130	1140	1150	3350
capthepsin	1101	CTTCTTTAAA	ATACTCAGAG	GACAGGATCA	CTGTGGAATC	GAATCAGAAG	1150 1150
87058	1101	CTTCTTTAAA	ATACTCAGAG	GACAGGTTCA	CTGTGGAATC	GAATCAGAAG	1150
87058.6	1101	gTTC					1150
87058.8							1150
87058.16	1101	• • • • • • • • •	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	1130
		1160	1170	1180	1190	1200	
capthepsin	1151	TGGTGGCTGG	AATTCCACGC	ACCGATCAGT	ACTGGGAAAA	GATCTAATCT	1200
87058	1151	TGGTGGCTGG	AATTCCACGC	ACCGTTCAGT	ACTGGGAAAA	GNTCTAATCT	1200
87058.6							1200
87058.8	1151						1200
87058.16	1151				• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	1200
		1210	1220	1230	1240	1250	
ennthanein	1201	GCCGTGGGCC					1250
capthepsin 87058	1201	GCCGTGGGCC	TNTCCTCCCA	CTCCTGGGGG	CCACATGGGG	GTAGAAATGC	1250
87058.6	1201						1250
87058.8	1201						1250
87058.16							1250
		3000	1270	1280	1290	1300	
	1001	1260 ATTITATICT					1300
capthepsin	1521	ATTTTATTCT	TIMAGIICAC	GIAAGAIACA	AGITICAGGC	ACCCTCTONA	1300
87058							1300
87058.6							1300
87058.8		• • • • • • • • • •					1300
87058.16	1251	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •			1200
		1310	1320	1330	1340	1350	
capthepsin	1301	GGaCTGGaTT	gGCCAAACAT	CAGACCTGTC	TTCCAAGGAG	ACCAAGTCCT	. 1350
87058	1301	GGcCTGGnTT	nGCCAAAnAT	CAGACCTGT.			1350
87058.6	1301						1350
87058.8	1301						1350
87058.16	1301		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	1350

FIGURE 8D

		1360	1370	1380	1390	1400	
capthepsin	1351	GGCTACATCC	CAGCCTGTGG	TTACAGTGCA	GACAGGCCAT		1400
87058	1351			• • • • • • • • •			1400
87058.6	1351		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	1400
87058.8	1351		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	1400
87058.16	1351		•••••••	• • • • • • • • • •	• • • • • • • • • • •		1400
		1410	1420	1430	1440	1450	
	1 401	GCTGCCAGCA					1450
capthepsin 87058	1401	GCIGCCAGCA					1450
87058.6	1401						1450
87058.8	1401						1450
87058.16	1401						1450
07030.10		••••		•			
		1460	1470	1480	1490	1500	
capthepsin	1451	CCTGCTGCCC		GCCCCCTCCG		ATCTCCAGGG	1500
87058					• • • • • • • • • • •	• • • • • • • • • •	1500
87058.6	1451				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	1500 1500
87058.8	1451			• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		1500
87058.16	1451	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • •	• • • • • • • • • •	1300
	•	1510	1520	1530	1540	1550	
	. 1501	1510	1520	1530 TGGAAAGCGG			1550
capthepsin		AGCAAGACAG	AGACGCAGGA	TGGAAAGCGG			1550 1550
87058	1501	AGCAAGACAG	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	1550 1550
87058 - 87058.6	1501 1501 1501	AGCAAGACAG	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	1550 1550 1550
87058 87058.6 87058.8	1501 1501 1501	AGCAAGACAG	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	1550 1550
87058 - 87058.6	1501 1501 1501	AGCAAGACAG	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	1550 1550 1550
87058 87058.6 87058.8	1501 1501 1501 -1501	AGCAAGACAG	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	1550 1550 1550 1550
87058 87058.6 87058.8	1501 1501 1501 1501	AGCAAGACAG 1560 TTCCCCCATC	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	1550 1550 1550 1550 1550
87058 87058.6 87058.8 87058.16 capthepsin 87058	1501 1501 1501 1501 1551 1551	AGCAAGACAG 1560 TTCCCCCATC	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	AGGATGAAAG	1550 1550 1550 1550 1550
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6	1501 1501 1501 1501 1551 1551 1551	AGCAAGACAG 1560 TTCCCCCATC	AGACGCAGGA	TGGAAAGCGG	AGTTCCTAAC	1600 TTCCACATTT	1550 1550 1550 1550 1550
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6 87058.8	1501 1501 1501 1501 1551 1551 1551	AGCAAGACAG 1560 TTCCCCCATC	AGACGCAGGA 1570 AGTTCCCCCA	TGGAAAGCGG	AGTTCCTAAC 1590 GCAAGTAGCT	AGGATGAAAG 1600 TTCCACATTT	1550 1550 1550 1550 1550
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6	1501 1501 1501 1501 1551 1551 1551	AGCAAGACAG 1560 TTCCCCCATC	AGACGCAGGA 1570 AGTTCCCCCA	TGGAAAGCGG	AGTTCCTAAC 1590 GCAAGTAGCT	AGGATGAAAG 1600 TTCCACATTT	1550 1550 1550 1550 1550
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6 87058.8	1501 1501 1501 1501 1551 1551 1551 1551	1560 TTCCCCCATC	1570 AGTTCCCCA	TGGAAAGCGG	AGTTCCTAAC 1590 GCAAGTAGCT	1600 TTCCACATTT	1550 1550 1550 1550 1550 1600 1600 1600
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6 87058.8 87058.16	1501 1501 1501 1501 1551 1551 1551 1551	1560 TTCCCCCATC	1570 AGTTCCCCA	1580 GTACCTCCAA	AGTTCCTAAC 1590 GCAAGTAGCT 1640 GGAGCCCTTT	1600 TTCCACATTT	1550 1550 1550 1550 1550 1600 1600 1600
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6 87058.8 87058.16	1501 1501 1501 1501 1551 1551 1551 1551	1560 TTCCCCCATC	1570 AGTTCCCCA	1580 GTACCTCCAA	1590 GCAAGTAGCT	AGGATGAAAG 1600 TTCCACATTT 1650 GGAGAACGCC	1550 1550 1550 1550 1550 1600 1600 1600
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6 87058.8 87058.16	1501 1501 1501 1501 1551 1551 1551 1551	1560 TTCCCCCATC 1610 GTCACAGAAA	1570 AGTTCCCCA	1580 GTACCTCCAA	1590 GCAAGTAGCT	1650 GGAGAACGCC	1550 1550 1550 1550 1550 1600 1600 1600
87058 87058.6 87058.8 87058.16 capthepsin 87058 87058.6 87058.8 87058.16	1501 1501 1501 1501 1551 1551 1551 1551	1560 TTCCCCCATC	1570 AGTTCCCCA 1620 TCAGAGGAGA	1580 GTACCTCCAA	1590 GCAAGTAGCT	1600 TTCCACATTT 1650 GGAGAACGCC	1550 1550 1550 1550 1550 1600 1600 1600
87058 87058.6 87058.8 87058.16 capthepsin 87058.6 87058.8 87058.16 capthepsin 87058	1501 1501 1501 1501 1551 1551 1551 1551	1560 TTCCCCCATC	1570 AGTTCCCCA	1580 GTACCTCCAA	1590 GCAAGTAGCT	1600 TTCCACATTT 1650 GGAGAACGCC	1550 1550 1550 1550 1550 1600 1600 1600

FIGURE 8E

20/20

		1660	1.670	1.000	1.600	3 700	
	3.663		1670	1680	1690	1700	1700
capthepsin		AGTCTCCAGG					1700
87058	1651	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • •		1700
87058.6	1651		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • •		
87058.8	1651				• • • • • • • • • • •		1700
87058.16	1651	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	1700
			1720	1770	1740	1750	
		1710		1730	1740	1750	
capthepsin		TGATCTTGTG			•		1750
.87058	1701	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••	1750
87058.6	1701		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		1750
87058.8	1701	• • • • • • • • • •		• • • • • • • • • •			1750
87058.16	1701	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	1750
		1760	1770	1780	1790	1800	
capthepsin		CTCTGCTAAT			ACAGCGGGAG	CCTGTGCTGG	1800
87058	1751		• • • • • • • • •		• • • • • • • • •		1800
87058.6	1751				• • • • • • • • • •		1800
87058.8	1751						1800
87058.16	1751				• • • • • • • • •		1800
		1810	1820	1830	1840	1850	
capthepsin	1801	TTTGCAGATT	GCCTCCTAAT	GACGCGGCTC	AAAAGGAAAC	CAAGTGGTCA	1850
87058	1801						1850
87058.6	1801						1850
87058.8	1801						1850
87058.16	1801			• • • • • • • • •			1850
•		1860	1870	1880	1890	1900	
capthepsin	1851	GGAGTTGTTT	CTGACCCACT	GATCTCTACT	ACCACAAGGA	AAATAGTTTA	1900
87058	1851						1900
87058.6	1851						1900
87058.8	1851						1900
87058.16	1851						1900
		1910	1920	1930	1940	1950	
capthepsin		GGAGAAACCA				CACCCTGTCA	1950
87058	1901	• • • • • • • • •		• • • • • • • • •		• • • • • • • • •	1950
87058.6	1901	• • • • • • • • •		• • • • • • • • • • •			1950
87058.8	1901	• • • • • • • • • • •	• • • • • • • • • •				1950
87058.16	1901	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	1950
,		3060	1970		3000	2000	
				1980	1990	2000	
annthonas -	1051	1960				א ריייריי	2000
capthepsin		AGTTAACAAG	GAATGCCTGT	GCCAATAAAA			2000
87058	1951	AGTTAACAAG	GAATGCCTGT	GCCAATAAAA			2000
87058 87058.6	1951 1951	AGTTAACAAG	GAATGCCTGT	GCCAATAAAA			2000 2000
87058	1951	AGTTAACAAG	GAATGCCTGT	GCCAATAAAA			2000

FIGURE 8F

INTERNATIONAL SEARCH REPORT

Interrational Application No
PC / US 96/08501

			,
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C12Q1/68 C12P19/34 C12N1	5/10	
According	to International Patent Classification (IPC) or to both national (classification and IPC	
B. FIELD	S SEARCHED		
Minimum of IPC 6	documentation searched (classification system followed by class ${\sf C12Q} = {\sf C12N}$	ification symbols)	
Documenta	ation searched other than minimum documentation to the extent	that such documents are included in the fiel	ds searched
Electronic	data base consulted during the international search (name of da	a base and, where practical, search terms w	sed)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
X	PCR PROTOCOLS: A GUIDE TO METH APPLICATIONS. EDITOR INNIS M.; ACADEMIC,		1-8
	1990, SAN DIEGO, CALIF., pages 219-27, XP002015609 OCHMAN, H. ET AL: "Amplificat flanking sequences by inverse see whole article		
X	BIOTECHNIQUES, vol. 18, no. 5, May 1995, pages 762-64, XP000509322 COOLIDGE C ET AL: "Run-around novel way to create duplication polymerase chain reaction " see the whole document		1-8
		-/	
X Fu	rther documents are listed in the continuation of box C.	X Patent family members are li	sted in annex.
'A' documents of the consistent of the consisten	ment defining the general state of the art which is not idered to be of particular relevance or document but published on or after the international or date ment which may throw doubts on priority claim(s) or h is cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means ment published prior to the international filing date but	"T" later document published after the or priority date and not in conflicted to understand the principle invention. "X" document of particular relevance cannot be considered novel or cannot be inventive step when the document of particular relevance cannot be considered to involve document is combined with one ments, such combination being of in the art.	ct with the application but or theory underlying the ; the claimed invention unnot be considered to be document is taken alone ; the claimed invention an inventive step when the or more other such docu- bovious to a person skilled
	than the priority date claimed te actual completion of the international search	*&* document member of the same p	
	10 October 1996	25.10	
Name and	i mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Osborne, H	

Form PCT/ISA/218 (second sheet) (July 1992)

: 1

INTERNATIONAL SEARCH REPORT

Intermional Application No
PC:/US 96/08501

		PC:/US 96/08501
	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 268, no. 12, 1993, pages 8842-50, XP000604943 LEE, D. ET AL.: "Molecular cloning and genomic organization of a gene for luciferin-binding protein from dinoflagellate Gonyaulax polyedra" see the whole document	1-8
X	US,A,4 994 370 (SILVER) 19 February 1991 see the whole document	1-8
X	JOURNAL OF VIROLOGICAL METHODS, vol. 49, no. 3, January 1994, pages 269-84, XP000606337 TSUEI D-J ET AL: "Inverse polymerase chain reaction for cloning cellular sequences adjacent to integrated hepatitis b virus in hepatocellular carcinomasw" see the whole document	1-8
X	WO,A,90 14423 (THE INFERGENE CO.) 29 November 1990 see page 19	1-8
Α	WO,A,93 12257 (HYBRITECH INC) 24 June 1993 see the whole document	1-8
Α	NUCLEIC ACIDS RESEARCH, vol. 19, 1991, pages 3055-60, XP002015610 PARKER J. ET AL: "Walking PCR" cited in the application	

INTERNATIONAL SEARCH REPORT

iformation on patent family members

Interresional Application No PC 1/US 96/08501

Patent document cited in search report	Publication date	Patent memb	Publication date	
US-A-4994370	19-02-91	NONE		
WO-A-9014423	29-11-90	NONE		
WO-A-9312257	24-06-93	AU-A- US-A-	3274793 5512463	19-07-93 30-04-96

Form PCT/ISA/210 (patent family annex) (July 1992)