Theory of Computation

State Elimination Method:

Application: Used to convert DFA/NFA/E-NFA into Regular Expression

The following are the Steps.

Step 1:

The initial state of the FA must not have any incoming edge. If there exists any incoming edge to the initial state, then create a new initial state having no incoming edge to it and an outgoing edge to the old start state with E-transition. The initial state before is now normal state with added incoming E-transition.

Example:

Step 2:

There must exist only one final state in the FA. If there exist multiple final states in the FA, then convert all the final states into non-final states and create a new single final state and add outgoing E-transition to new and only final state.

Example:

Step 3:

The final state of the FA must not have any outgoing edge. If there exists any outgoing edge from the final state, then create a new final state with no outgoing edges and an incoming edge from

Section-10 & 18 (TOC-Elective)

old final state of ϵ -transition. Old final state is transformed into normal state with the added transition of ϵ .

Example:

Step 4:

- Eliminate all the intermediate states one by one.
- These states may be eliminated in any order.

In the end,

- Only an initial state going to the final state will be left.
- The cost of this transition is the required regular expression.

Question: Find regular expression for the following DFA

Solution:

Step-1:

Step-2: No multiple final state, so not applicable.

Step-3:

Step-4:

Now, we start eliminating the intermediate states.

First, let us eliminate state A.

- There is a path going from state q_i to state B via state A.
- So, after eliminating state A, we put a direct path from state q_i to state B having cost $\in .0 = 0$
- There is a loop on state B using state A.
- So, after eliminating state A, we put a direct loop on state B having cost 1.0 = 10.

Eliminating state, A, we get-

Now, let us eliminate state B.

- There is a path going from state q_i to state q_f via state B.
- So, after eliminating state B, we put a direct path from state q_i to state q_f having cost $0.(10)^*. \in = 0(10)^*$

Eliminating state B, we get-

So, the required Regular Expression is = 0(10)*

In the above question,

- If we first eliminate state B and then state A, then regular expression would be = (01)*0.
- This is also the same and correct.

Section-10 & 18 (TOC-Elective)

Q1. Find regular expression for the following FA

Ans: Regular Expression = a(b+c+d)

Q2: Find regular expression for the following FA

Ans: Regular Expression = c*a(d+bc*a)*

Q3: Find regular expression for the following FA

Ans: Regular Expression = aa* + ba*

Q4: Find regular expression for the following FA

Ans: Regular Expression = a

Q5: Find regular expression for the following FA

Ans:

- Since initial state A has an incoming edge, so we create a new initial state qi.
- Since final state A has an outgoing edge, so we create a new final state q_f.

Eliminating state B, we get-

Eliminating state C, we get-

Eliminating state A, we get-

So, Regular Expression = (ab + b(a+bb))*