Exercice 1.

1.
$$3iz - 1 = 5z - 1 \Leftrightarrow (3i - 5)z = 0 \Leftrightarrow z = 0$$
.

2.
$$(4-\overline{z})(\overline{z}-5+i)=0 \iff 4-\overline{z}=0$$
 ou $\overline{z}-5+i=0 \iff z=4$ ou $z=5+i$.

3. On pose
$$z = x + iy$$
 avec $(x; y) \in \mathbb{R}^2$.

$$\begin{aligned} 3z - 2\overline{z} &= -5 + \mathrm{i} \Leftrightarrow 3(x + \mathrm{i}y) - 2(x - \mathrm{i}y) + 5 - \mathrm{i} = 0 \\ &\Leftrightarrow 3x + 3\mathrm{i}y - 2x + 2\mathrm{i}y + 5 - \mathrm{i} = 0 \\ &\Leftrightarrow x + 5 + (5y - 1)\mathrm{i} = 0 \\ &\Leftrightarrow x + 5 = 0 \quad \text{et} \quad 5y - 1 = 0 \\ &\Leftrightarrow x = -5 \quad \text{et} \quad y = \frac{1}{5} \; \mathrm{donc} \; \mathscr{S}_{\mathbb{C}} = \left\{ -5 + \frac{1}{5}\mathrm{i} \right\} \end{aligned}$$

Exercice 2.

1.
$$z^2 - 6z + 13 = 0$$
: $\Delta = (-6)^2 - 4 \times 1 \times 13 = -16 = (4i)^2$.
 $\Delta < 0$: l'équation a donc deux solutions complexes conjuguées : $z_1 = \frac{6 - 4i}{2} = 3 - 2i$ et $z_2 = \overline{z_1} = 3 + 2i$ donc $\mathscr{S}_{\mathbb{C}} = \{3 - 2i \; ; \; 3 + 2i\}$.

2.
$$iz = \sqrt{3}z^2 \iff z(\sqrt{3} - i) = 0.$$

Or $z(\sqrt{3} - i) = 0 \iff z = 0$ ou $z = i\frac{\sqrt{3}}{3}$ donc $\mathscr{S}_{\mathbb{C}} = \left\{0; \frac{\sqrt{3}}{3}i\right\}$

3.
$$9z^2 + 49 = 0 \iff z^2 = -\frac{49}{9} = \left(\frac{7}{3}i\right)^2$$
.
 $z^2 = \left(\frac{7}{3}i\right)^2 \iff z = \pm \frac{7}{3}i \text{ donc } \mathscr{S}_{\mathbb{C}} = \left\{-\frac{7}{3}i; \frac{7}{3}i\right\}$.

Exercice 3. On considère le polynôme $P(z) = z^3 - (16 - i)z^2 + (89 - 16i)z + 89i$.

1.
$$P(-i) = 0$$
 donc $-i$ est une racine de P .

2. Facile:
$$P(z) = (z + i)(z^2 - 16z + 89)$$
.

3. On résout les équation
$$z + i = 0$$
 et $z^2 + 16z + 89 = 0$. On obtient $\mathscr{S}_{\mathbb{C}} = \{-i; -8 - 5i; 8 + 5i\}$.

Exercice 4.

On considère le polynôme P défini sur \mathbb{C} par $P(z)=z^4+\mathrm{i} z^3-125z-125\mathrm{i}$ où z est un complexe.

1.
$$(z+i)(z^3-125) = z^4+iz^3-125z-125i = P(z)$$
.

2. On a
$$z^3 - 125 = z^3 - 5^3$$
 donc $z^3 - 125 = (z - 5)(z^2 + 5z + 25)$.
Les racines de $z^2 + 5z + 25$ sont $\alpha = \frac{-5 - 5\sqrt{3}i}{2}$ et $\overline{\alpha} = \frac{-5 + 5\sqrt{3}i}{2}$ donc :
$$z^4 + iz^3 - 125z - 125i = (z + i)(z - 5)(z - \alpha)(z - \overline{z}).$$

Exercice 5. On verra ça en classe.