SENTENCE EMBEDDING AND APPLICATIONS

Minha Hwang

What are Vector Embedding?

Word Embeddings

Problems with Word Embedding: Context are Lost!

Sentence Embedding: Captures Semantic Meaning

Embedding Vectors in Other Domains

Image embeddings translate visual content into a vector form.

Video embeddings capture the characteristics of video data, including visual appearance and temporal dynamics.

Audio embeddings represent sound signals in a vector space.

Graph embeddings convert nodes, edges, and their features in a graph into vector space, preserving structural information.

Shared embedding spaces: For example, **CLIP** which generates embeddings for both text and images

Applications of Embeddings

LLMs: Input tokens are converted to token embeddings.

Semantic Search: Enhances search engines by retrieving sentences with similar meanings, improving search relevance.

RAG: Sentence embeddings enable efficient retrieval of relevant chunks

Recommendations: Representing products in embedding space and using similarity search.

Anomaly Detection: Identifies patterns in data that deviate significantly from the norm.

Sentence Embedding: Critical for RAG

Sentence Embedding Models: SBERT, Short Sentence Transformer

Demo

Semantic Query Reformulation

Topic Modeling: Query Clustering