Large-scale Open Dataset and Pipeline for Bandit Algorithms

Yuta Saito¹, Shunsuke Aihara²,

Megumi Matsutani², and Yusuke Narita³

¹Tokyo Institute of Technology ²ZOZO Technologies, Inc. ³Yale University.

Outline

- overview of off-policy evaluation (just briefly)
- open bandit project (on-going)
 - open bandit dataset v1 (v2 will be released)
 - open bandit pipeline
 - example analysis with the data and pipeline
 - limitations and future work
- Q&A

Machine Learning for Decision Making (Bandit / RL)

We often use machine learning to make decisions, not predictions

decide which items to show

Many Applications of "Machine Decision Making"

- news recommendation (by Yahoo)
- music/playlist recommendation (by Spotify)
- artwork personalization (by Netflix)
- ad allocation optimization (by Criteo)
- medicine
- education

We want to evaluate the performance of a *new decision making policy* using data generated by a *behavior, past policy*

Data Generating Process (contextual bandit setting)

Observes X (context vector, e.g., a user visit)

A policy T selects an action A (e.g., a fashion item)

Observes Y (e.g., a click indicator)

a policy interacts with the environment and produces the log data

Logged Bandit Feedback

We can use the *logged bandit feedback* collected by a *behavior* (or past) policy to estimate the policy value of a new policy

$$\mathcal{D} = \{(X_i, A_i, Y_i)\}_{i=1}^n$$
 $A_i \sim \pi_b \, (a \mid X_i)$ $Y_i = Y_i \, (A_i)$ action choice by behavior policy observed reward

Estimation Target in Off-Policy Evaluation

In OPE, we aim to estimate the following *policy value*of an *evaluation* (or new) policy

$$V(\pi_e) := \mathbb{E}_{(Y(\cdot),X)} \left[\sum_{a=0}^m Y(a) \pi_e(a \mid X) \right]$$

expected reward obtained by running π_e on a real system

Benefits of Off-Policy Evaluation

Accurately estimating the policy value of an evaluation policy

$$V(\pi_e) \approx \hat{V}(\pi_e; \mathcal{D})$$

an estimated policy value of π_e using historical data $\mathcal D$

- avoid deploying poor performing policies
- identify promising new policies among many candidates

Direct Method (DM)

DM first estimates the expected reward and uses it to estimate the policy value

$$\hat{V}_{DM}(\pi_e; \mathcal{D}) = \mathbb{E}_n[\sum_{a=0}^{\infty} \pi \left(a \mid X_i \right) \hat{\mu} \left(X_i, a \right)]$$
estimated expected reward

m

- High bias when the model is mis-specified
- Low variance

$$\mathbb{E}[Y(a) \mid X = x]$$

$$\approx \hat{\mu}(x,a)$$

Inverse Probability Weighting (IPW)

IPW re-weighs observed rewards by importance weights

$$\hat{V}_{IPW}(\pi_e; \mathcal{D}) = \mathbb{E}_n \left[Y_i \frac{\pi_e \left(A_i \mid X_i \right)}{\pi_b \left(A_i \mid X_i \right)} \right]$$

- Consistent
- High variance when old and new policies are largely different

importance weight

Doubly Robust (DR)

DR uses DM as a baseline and applies IPW to shifted rewards

$$\begin{split} \hat{V}_{DR}(\pi_e; \mathcal{D}) \\ &= \underbrace{\hat{V}_{DM}(\pi_e; \mathcal{D})}_{\text{baseline}} + \mathbb{E}_n \left[\left(Y_i - \hat{\mu} \left(X_i, A_i \right) \right) \frac{\pi_e(A_i | X_i)}{\pi_b(A_i | X_i)} \right] \\ &\qquad \qquad \text{weighted shifted reward} \end{split}$$

- Consistent
- Locally Efficient

$$\mathbb{E}[Y(a) \mid X = x]$$

$$\approx \hat{\mu}(x,a)$$

Theoretical/Methodological Advances in OPE

- Self-Normalized IPW [Swaminathan and Joachims 2015]
- Switch Doubly Robust Estimator [Wang+ 2017]
- More Robust Doubly Robust Estimator [Farajtabar+ 2018]
- Hirano-Imbence-Ridder Estimator [Narita+ 2019]
- REG and EMP [Kallus & Uehara 2019]
- Doubly Robust with Shrinkage [Su+ 2020]

It seems the OPE community have made great progress over the years!

There are many other estimators in the reinforcement learning setting

Issues with the current experimental procedures

Experiments in every OPE paper rely on

Synthetic or classification data (unrealistic)

or

(Real, but) Unpublished data (irreproduceble)

We need real-world data enabling the "evaluation of OPE"

Project's Goal and Components

We enable *realistic* and *reproducible* experiments on

- Bandit Algorithms
- Off-Policy Evaluation (OPE)

"Open Bandit Dataset"
and "Open Bandit Pipeline"

Overview of Open Bandit Dataset

Schema of Open Bandit Dataset

	£	4	$\pi_b(\cdot X)$	Y	X	
timestamp	item_id	position	propensity _score	click indicator	features	
2019-11-xx	25	1	0.0002	0	e2500f3f	•••
2019-11-xx	32	2	0.043	1	7c414ef7	
2019-11-xx	11	3	0.167	0	60bd4df9	
2019-11-xx	40	1	0.0011	0	7c20d9b5	
		•••				•••

Essential Features of Open Bandit Dataset

 over 25M records collected by online experiments of bandit algorithms on a large-scale fashion e-commerce (ZOZOTOWN)

- logged bandit feedback collected by multiple bandit policies
 - Uniform Random (fixed)
 - Bernoulli Thompson Sampling (pre-trained before collection)

enabling realistic experiments on OPE for the first time

1. Prepare two logged bandit feedback data collected by different policies

$$\mathcal{D}^{(1)} = \left\{ \left(X_i^{(1)}, A_i^{(1)}, Y_i^{(1)} \right) \right\}_{i=1}^n$$
 collected by $\pi^{(1)}$
$$\mathcal{D}^{(2)} = \left\{ \left(X_i^{(2)}, A_i^{(2)}, Y_i^{(2)} \right) \right\}_{i=1}^n$$
 collected by $\pi^{(2)}$

2. Regard one policy as an *evaluation policy* and the other as a *behavior policy*. Then, estimate the performance of the evaluation policy by OPE

$$V(\pi^{(1)}) \approx \hat{V}(\pi^{(1)}; \mathcal{D}^{(2)})$$

$$\pi^{(1)}$$
 : evaluation policy $\pi^{(2)}$: behavior policy

ullet The task here is to evaluate the accuracy of \widehat{V}

3. Regard the *on-policy estimation* of the policy value of the evaluation policy as the ground-truth policy value

$$V(\pi^{(1)}) = \mathbb{E}_{n^{(1)}}[Y^{(1)}]$$

we can do this on-policy estimation because we have $\mathcal{D}^{(1)}$ in our data

4. Compare the estimated policy value with the ground-truth to evaluate the OPE estimator, for example, using the *relative estimation error*

$$\begin{array}{c} \textit{relative estimation} \\ \textit{error of } \hat{V} \end{array} = \left| \begin{array}{c} \hat{V} \left(\pi^{(1)}; \mathcal{D}^{(2)} \right) - V \left(\pi^{(1)} \right) \\ \hline V \left(\pi^{(1)} \right) \end{array} \right|$$

By applying this procedure to several estimators, we can compare them

Comparison with Existing Real-World Bandit Datasets

Table 2: Comparison of Currently Available Large-scale Bandit Datasets

	Criteo Data (Lefortier et al. 2016)	Yahoo! Data (Li et al. 2010)	Open Bandit Dataset (ours)
Domain	Display Advertising	News Recommendation	Fashion E-Commerce
#Data	>= 103M	>= 40M	>= 26M (will increase)
#Behavior Policies	1	1	2 (will increase)
Random A/B Test Data	×	✓	✓
Behavior Policy Code	×	×	✓
Evaluation of Bandit Algorithms	✓	✓	✓
Evaluation of OPE	×	×	✓
Pipeline Implementation	×	×	✓

Our Open Bandit Dataset

- contains multiple behavior policies
- enables the evaluation of OPE for the first time
- comes with the pipeline implementations (Open Bandit Pipeline)

Open Bandit Pipeline (OBP)

We have implemented *Open Bandit Pipeline (OBP)*

to streamline and standardize experiments on OPE

Structure of Open Bandit Pipeline

OBP consists of four main modules (dataset, policy, simulator, and ope)

Proof of Concept Demo with Our Data and Pipeline

Let me now run a <u>quickstart example</u> of OBP

Other Nice Features

We can easily implement experiments on OPE or OPE itself with our OBP

```
# a case for implementing OPE of the BernoulliTS policy using log data generated by the Random policy
from obp.dataset import OpenBanditDataset
from obp.policy import BernoulliTS
from obp.simulator import run bandit simulation
from obp.ope import OffPolicyEvaluation, ReplayMethod
# (1) Data loading and preprocessing
dataset = OpenBanditDataset(behavior_policy='random', campaign='women')
bandit feedback = dataset.obtain batch bandit feedback()
# (2) Offline Bandit Simulation
counterfactual policy = BernoulliTS(n actions=dataset.n actions, len list=dataset.len list)
selected actions = run bandit simulation(bandit feedback=bandit feedback, policy=counterfactual policy)
# (3) Off-Policy Evaluation
ope = OffPolicyEvaluation(bandit feedback=bandit feedback, ope estimators=[ReplayMethod()])
estimated policy value = ope.estimate policy values(selected actions=selected actions)
# estimated performance of BernoulliTS relative to the ground-truth performance of Random
relative_policy_value_of_bernoulli_ts = estimated_policy_value['rm'] / bandit_feedback['reward'].mean()
print(relative policy value of bernoulli ts) # 1.120574...
```


Potential Users

 <u>Researchers</u> can compare their own method with others in an easy, realistic, and reproducible manner

<u>Practitioners (engineers, data scientists)</u>
 can evaluate candidate policies and identify the best
 one immediately using our pipeline and their own data

Other Nice Features

We built a detailed documentation of Open Bandit Pipeline

Comparison with Existing Bandit Packages

Table 3: Comparison of Currently Available Packages of Bandit Algorithms

	contextualbandits	RecoGym (Rohde et al. 2018)	Open Bandit Pipeline (ours)
Synthetic Data Generator	×	✓	✓
Support for Real-World Data	×	×	✓
Implementation of Bandit Algorithms	✓	√	✓
Implementation of Basic Off-Policy Estimators	✓	×	✓
Implementation of Advanced Off-Policy Estimators	×	×	✓
Evaluation of OPE	×	×	/

Our Open Bandit Pipeline

- can handle real-world bandit data (including ours)
- implements advanced OPE estimators (SNIPW, Switch, MRDR, and DML)
- streamline the evaluation of OPE

Benchmark Results of Some OPE Methods

We performed benchmark comparison on basic OPE estimators

Table 4: Comparing Relative-Estimation Errors of OPE Estimators (**Random** → **Bernoulli TS**)

	Campaigns				
Estimators	All	Men's	Women's		
DM	0.23879 [0.22998, 0.24988]	0.24155 [0.22656, 0.25592]	0.22884 [0.22224, 0.23423]		
IPW	0.03477 [0.01147, 0.06592]	0.09806 [0.07485, 0.12151]	0.03252 [0.01708, 0.04912]		
SNIPW	0.03381 [0.01005, 0.06662]	0.08153 [0.05677, 0.10592]	0.03179 [0.01562, 0.04825]		
DR	0.03487 [0.01094, 0.06784]	0.08528 [0.06186, 0.10876]	0.03224 [0.01605, 0.04843]		

IPW, SNIPW, and DR seem accurate, but this is a very simple task

身長と体重で選ぶマルチサイズアイテム 人気ブランドのアイテムをあなたに理想のサイズで

We now assume that the click of an item (reward)

depends only on that item and position

Some Limitations...

<u>assumption on the action decomposition might be too strict</u>

$$\mathcal{A} = \mathcal{I} \times \mathcal{K}$$

because it ignores the interactions among items in the same list

→ We will compare other estimators relying on other reasonable assumptions (e.g., estimators for the slate setting)

Some Limitations...

the current data contains only context-free policies

→ we will run another experiment to collect more useful bandit datasets (open bandit dataset v2)

current benchmark analysis is simple, primitive

- → we are now conducting extensive experiments to answer
 - Can OPE estimates the performance of a new policy in the future environment (out-sample policy value)?
 - How does the performance of OPE change with different settings?

Thank you!

Please come to our poster for further discussions!

github: https://github.com/st-tech/zr-obp

docs: https://zr-obp.readthedocs.io/en/latest/

dataset: https://research.zozo.com/data.html