МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Севастопольский государственный университет» КАФЕДРА «ИНФОРМАЦИОННЫЕ СИСТЕМЫ»

Лабораторная работа № 3

По дисциплине «Инфокоммуникационные системы и сети»

Исследование дискретного канала с амплитудной манипуляцией.

Выполнил:

ст. гр. ИС/б-17-2-о

Горбенко К.Н.

Проверил:

Чернега В.С.

1 ЦЕЛЬ РАБОТЫ

Углубить знания в области построения дискретных каналов, способов модуляции и демодуляции сигналов. Приобрести практические навыки в построении и исследовании схем преобразования сигналов в среде моделирования Proteus.

2 ПОСТАНОВКА ЗАДАЧИ

- 1. Повторить теоретический материал, относящийся к вопросам модуляции и демодуляции сигналов и построении дискретных каналов.
 - 2. Составить в рабочем окне симулятора схему дискретного канала.
- 3. Установить параметры генератора несущих сигналов: частота (10+i) к Γ ц, где i последняя цифра номера зачетной книжки, амплитуда 5 B.
- 4. Установить частоту информационных сигналов (1000 + 100i) Гц. Вид сигналов 1:1.
- 5. Запустить процесс моделирования, зарисовать осциллограммы в точках измерения и пояснить их характер.
- 6. Отключать по очереди конденсаторы фильтра нижних частот. Зарисовать вид сигнала на выходе приемного устройства и пояснить причину изменения их формы. Затем снова подключить оба конденсатора.
- 7. Меняя с помощью потенциометра RV2 пороговое напряжение от 0,75 до 2-х В. Измерить абсолютную и относительную величину краевых искажений.
- 8. Установить вид информационного сигнала 1:4 и измерить абсолютную и относительную величину краевых искажений. Зарисовать форму сигналов в контрольных точках.

3 ХОД РАБОТЫ

В симуляторе была составлена схема дискретного канала. Результат приведен на рисунке 1. В параметрах генератора несущей были установлены частота 17кГц и амплитуда 5В (рис. 2). А в параметрах информационного сигнала установили частоту равную 1700Гц и вид сигнала 1:1 (рис. 3).

Рисунок 1 – Схема дискретного канала

Рисунок 2 – Параметры генератора несущей

Рисунок 3 – Параметры информационного сигнала

Запустим процесс моделирования и рассмотрим осциллограмму процесса на рисунке 4.

Рисунок 4 – Осциллограмма процесса моделирования

Теперь будем отключать по очереди конденсаторы фильтра нижних частот. Осциллограммы полученных процессов представлены на рисунке 5.

Рисунок 5 – Осциллограмма процесса моделирования: а) без конденсатора C1; б) без конденсатора C2; в) без конденсаторов C1 и C2

Далее измерим абсолютную и относительную величину краевых искажений при изменении порогового напряжения на потенциометре RV2 от 0,75 до 2-х В.

$$\theta = t_{\text{max}} - t_{\text{min}}$$

Где t_{max} и t_{min} соответственно максимальное и минимальное значения смещения ДХМВ относительно ДХММ. θ - абсолютная величина краевых искажений. Краевые искажения — это изменение длительности принятых единичных элементов. Удобнее пользоваться относительной величиной краевых искажений

$$\delta = \theta / \tau_0 * 100\% = (t_{max} - t_{min}) / \tau_0 * 100\% = B (t_{max} - t_{min}) * 100\%$$
.

Здесь В -скорость передачи, Бод.

На рисунке 6 изображены измерения осциллографа, с которого снимаем данные и записываем их в таблицу 1. По рисунку 6 можно определить периоды для входного ($t_{min} = 0$, $t_{max} = 295$) и выходного сигнала ($t_{min} = 10$, $t_{max} = 490$) при напряжении 0,75 В. Таким же образом снимем эти же характеристики при увеличении напряжения и запишем в таблицу 1 полученные результаты.

Рисунок 6 – Измерения осциллографа для напряжения 0,75 В сигнала 1:1

Для входного сигнала при любом напряжении $t_{min}=0,\ t_{max}=295.$ Для выходного сигнала B=1700*2=3400.

Tr ~	ı D	U 1	1 1
Гаолица .	I — Результа	аты измерений для сигнала 1	1:1

Напряжение	Выходной сигнал		θ (мкс)	δ
	$t_{\min (MKC)}$	$t_{\max (MKC)}$		
0,75 B	10	490	480	163,2%
1 B	15	437	422	143,4%
1,25 B	17	402	385	130,9%
1,5 B	20	370	350	119%
1,75 B	45	345	300	102%
2 B	75	325	250	85%

Рассмотрев результаты изменения порогового напряжения, можно сделать вывод, что при его увеличении напряжения краевые искажения выходного сигнала уменьшаются.

Изменим вид информационного сигнала с 1:1 на 1:4 (т.е. изменим ширину пропускания канала с 50% на 20%) и измерим абсолютную и относительную величину краевых искажений по аналогии с предыдущими измерениями и запишем результаты в таблицу 2. Пример измерения представлен на рисунке

Рисунок 7 – Измерения осциллографа для напряжения 2 В для сигнала 1:4

Для входного сигнала при любом напряжении $t_{min}=0$, $t_{max}=117$. Для выходного сигнала B=1700*5=8500.

Таблица 2 – Результаты измерений для сигнала 1:4	1
--	---

Напряжение	Выходной сигнал		θ (мкс)	δ
	$t_{\min (MKC)}$	t _{max (мкс)}		
0,75 B	15	307	292	248%
1 B	15	257	242	205%
1,25 B	22	220	198	168%
1,5 B	27	190	163	138%
1,75 B	45	165	120	102%
2 B	72	140	68	58%

Можно сделать вывод, что при уменьшении ширины пропускания канала, импульсы после демодуляции сигнала восстанавливаются укороченными.

выводы

В процессе выполнения лабораторной работы были углублены знания в области построения дискретных каналов, способов модуляции и демодуляции сигналов. Приобретены практические навыки в построении и исследовании схем преобразования сигналов в среде моделирования Proteus.