Mini-Project: Solving Differential Equations

- Write a program to solve T(t) satisfying $\frac{dT(t)}{dt} = -T(t)$ with an initial condition T(0) = 1. Compare your result to the exact solution.
 - hint: use finite difference: $\left(T(t+\Delta t)-T(t)\right)/\Delta t=-T(t)$ and pick a good Δt .
- Write a parallel program to numerically solve the temperature distribution for a 2D system, i.e., a square plate with one side at a fixed temperature $T = 20^{\circ}\text{C}$ and the other three sides fixed at $T = 40^{\circ}\text{C}$.
 - hint: heat equation: $\frac{\partial T}{\partial t} = \kappa \left(\partial_x^2 T + \partial_y^2 T\right)$ with κ a constant. Similar to the above, pick a Δx to numerically evaluate $\partial_x^2 T = \left(T(x-\Delta x) + T(x+\Delta x) 2T(x)\right)/\Delta x^2$.
- Change the number of processes involved in the above 2D calculation and evaluate speedup and efficiency.

MSDM 5001