# Marching Cubes: A High Resolution 3D Surface Construction Algorithm

Based on the Paper by William E. Lorensen and Harvey E. Cline

## Introduction

### The goal:

create a constant density surface from a 3D array of data



## Introduction

One surface at a time





For another surface must run again

## Introduction

#### Idea:

- create a triangular mesh that will approximate the iso-surface
- calculate the normals to the surface at each vertex of the triangle

### Algorithm:

- locate the surface in a cube of eight pixels
- calculate normals
- march to the next cube

### Surface intersection in a cube

- assign ZERO to vertex outside the surface
- assign ONE to vertex inside the surface



#### Note:

Surface intersects those cube edges where one vertex is outside and the other inside the surface

## Surface intersection in a cube

- There are 2<sup>8</sup>=256 ways the surface may intersect the cube
- Triangulate each case





## **Patterns**

Note:

using the symmetries reduces those 256 cases to 15

patterns







symmetric case:



## **Patterns**



## Surface intersection in a cube

Create an index for each case:



 Interpolate surface intersection along each edge

$$v_i = v_1 * (1 - u) + v_2 * u$$

$$u = \frac{v_1 - v_i}{v_1 - v_2}$$



## Calculating normals

Calculate normal for each cube vertex:

$$G_{x}(i, j, k) = \frac{D(i+1, j, k) - D(i-1, j, k)}{\Delta x}$$

$$G_{y}(i, j, k) = \frac{D(i, j+1, k) - D(i, j-1, k)}{\Delta y}$$

$$G_{z}(i, j, k) = \frac{D(i, j, k+1) - D(i, j, k-1)}{\Delta z}$$

• Interpolate the normals at the vertices of the triangles:

$$\overrightarrow{n_1} = u\overrightarrow{g_2} + (1 - u)\overrightarrow{g_1}$$



## Summary

- Read four slices into memory
- Create a cube from four neighbors on one slice and four neighbors on the next slice
- Calculate an index for the cube
- Look up the list of edges from a pre-created table
- Find the surface intersection via linear interpolation
- Calculate a unit normal at each cube vertex and interpolate a normal to each triangle vertex
- Output the triangle vertices and vertex normals

### Results



## Additional features





By using solid modeling and texture mapping

### **Pros and Cons**

#### Pros:

- Simple rendering and manipulation
- High resolution

#### Cons:

- Possible holes in the model
- Model complexity

## Holes

### Holes:



### Wrong surface:



## Holes

■ The reason — "ambiguous face"



## Resolving ambiguities

Face adjacency



## Resolving ambiguities

Subdivision





### Simplex decomposition

• in 2D:





• in 3D:









patterns:



12 tetrahedra in the cube

## Resolving ambiguities

#### Bilinear contours



$$F(s_{\alpha},t_{\alpha}) \; = \; \frac{AC-BD}{A+C-B-D}$$

## Resolving ambiguities

Marching cubes 33 by Evgeni Chernyaev



## Model simplification

## Example:

| samples     | triangles |
|-------------|-----------|
| 032x032x016 | ~3,000    |
| 064x064x032 | ~18,000   |
| 128x128x064 | ~100,000  |
| 256x256x128 | ~820,000  |
| 512x512x128 | • • •     |



# Model simplification

Splitting box algorithm

## Model simplification

### Mesh simplification algorithms



Full Resolution (569K Gouraud shaded triangles)



75% decimated (142K Gouraud shaded triangles)

#### References

- Marching Cubes: A High Resolution 3D Surface Construction Algorithm
   / William E. Lorensen, Harvey E.Cline SIG '87
- Two Algorithms for the Tree-Dimensional Reconstruction of Tomograms / H. E. Cline, W. E. Lorenson, S. Ludke, C. R. Crawford, B.C. Teeter - Medical Physics, '88, pp 320-327.
- Korea University Computer Graphics II homepage
- Marching Cubes 33: Construction of Topologically Correct Isosurfaces / Evgeni V. Chernyaev
- Surface Models and the Resolution of n-Dimensional Cell Ambiguity / S. Hill, J. C. Roberts
- Decimation of Triangle Meshes / W. J. Schroeder, J. A. Zarge, W. E. Lorensen SIG '92
- Adaptive Generation of Surfaces in Volume Data / H. Müller, M. Stark The Visual Computer '93, pp 182 – 199
- An Evaluation of Implicit Surface Tilers / P. Ning, J. Bloomenthal –
   Computer Graphics and Applications November '93, 13(6):33-41