microstegium_elymus_model_summary

Amy Kendig 12/5/2019

Summary

Simulation of *Microstegium vimineum* and *Elymus virgincus* over time. *M. vimineum* is an invasive annual grass and *E. virginicus* is a native perennial grass. *E. virginicus* grows by itself for 100 years, and then *M. vimineum* is introduced. Disease effects arise 100 years later. Population dynamics are similar in the absence of disease and when both species are susceptible to disease. In both cases, *M. vimineum* reduces the size of the *E. virginicus* population. *M. vimineum* is able to recover population losses due to disease. *E. virginicus* seedlings are impacted more than adults. When only *M. vimineum* is susceptible to disease, its population crashes.

Set-up

```
# clear all existing data
rm(list = ls())

# open libraries
library(data.table)
library(plotly)
library(cowplot)
library(popbio)
library(tidyverse)

# plotting parameters
axisText = 10
axisTitle = 12
legendText = 10
legendTitle = 0

# import data
params <- read_csv("../data/mv_ev_model_parameters_120319.csv", col_types = cols())</pre>
```

Parameters

Formatting:

- subscripts follow ":"
- A = annual plant
- \bullet L = annual litter
- P = perennial adult (at least 1 year old)
- S = perennial seedling (germinated that spring)
- Composite parameters are capitalized

Settings:

```
# simulation time
simtime = 500

# invasion time
invtime = 100

# disease time
distime = invtime + 100

# initial conditions
NO.A = 0 # initial annual population size
NO.S = 1 # initial perennial seedling population size
NO.P = 0 # initial perennial adult population size
LO = 0 # initial annual litter amount
Ni.A = 1 # introduction of annual
```

Literature:

parameter	symbol	value	units	reference
annual germination without litter	g.A	0.8000	year ⁻¹	Redwood et al. 2018
litter suppression of germination	beta	0.0065	$g^{-1} year^{-1}$	Foster and Gross 1998
annual seed survival	s.A	0.1300	year ⁻¹	Redwood et al. 2018
annual biomass without competition	v.A	17.4000	g year ⁻¹	Wilson et al. 2015
annual biomass-seed conversion	y.A	86.0000	seeds g ⁻¹ year ⁻¹	Wilson et al. 2015,
				Redwood et al. 2018
annual litter-biomass conversion	a	0.9500	year ⁻¹	DeMeester and Richter 2010
litter decomposition rate	b	0.6700	year ⁻¹	DeMeester and Richter 2010
perennial germination without litter	g.S	0.8000	year ⁻¹	Garrison and Stier 2010
perennial seed survival	s.S	1.0000	year ⁻¹	Garrison and Stier 2010
adult perennial seed production without	f.P	22.0000	seeds year ⁻¹	Stevens 1957, Garrison and
competition				Stier 2010
seedling perennial seed production	f.1	2.0000	seeds year ⁻¹	1/10 of f.P
without competition				
perennial seedling survival	s.1	0.4000	year ⁻¹	Mottl et al. 2006
perennial adult survival	s.P		year ⁻¹	Mottl et al. 2006
competitive effect of annual	alpha.A	0.0200	year ⁻¹	average of alpha.iA
competitive effect of perennial seedling	alpha.S		year ⁻¹	average of alpha.iS
competitive effect of perennial adult	alpha.P		year ⁻¹	average of alpha.iP
reduction in biomass due to disease	dis	0.3500	year ⁻¹	Flory et al. 2011, Stricker et al. 2016

Model

Population equations:

Assume counts are being conducted in the spring

$$\begin{array}{l} N.A[t+1] = s.A * (1\text{-}G.A) * N.A[t] + G.A * V.A * y.A * N.A[t] \\ annual seeds = seed bank survival + seed production \\ \end{array}$$

 $L[t+1] = a * G.A * V.A * N.A[t] + (1-b) * L[t] \ annual \ litter = biomass \ from \ previous \ fall + decomposition$

```
\begin{split} N.S[t+1] &= s.S*(1\text{-}G.S)*N.S[t] + G.S*F.1*N.S[t] + F.P*N.P[t] \\ \text{perennial seeds} &= \text{seed bank survival} + \text{seedling seed production} \\ N.P[t+1] &= s.P*N.P[t] + s.1*G.S*N.S[t] \\ \text{perennial adults} &= \text{survival} + \text{seedling maturation} \end{split}
```

Litter suppression of germination

```
\begin{split} & G.A = g.A \ / \ (1 + beta \ ^*L[t]) \\ & annual \ seed \ germination = germination \ in \ the \ absence \ of \ litter \ / \ reduction \ due \ to \ litter \\ & G.S = g.S \ / \ (1 + beta \ ^*L[t]) \\ & perennial \ seed \ germination = germination \ in \ the \ absence \ of \ litter \ / \ reduction \ due \ to \ litter \end{split}
```

Density-dependence on growth and fecundity

V.A = v.A / (1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S * G.S * N.S[t]) annual growth = growth in the absence of competition / (competition from annuals + competition from perennial adults + competition from perennial seedlings)

F.1 = f.1 / (1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S * G.S * N.S[t]) perennial seedling seed production = seed production in the absence of competition / (competition from annuals + competition from perennial adults + competition from perennial seedlings)

 $F.P = f.P \ / \ (1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S * G.S * N.S[t]) \ perennial \ adult \ seed \ production = seed \ production \ in the \ absence \ of \ competition \ / \ (competition \ from \ annuals + competition \ from \ perennial \ adults + competition \ from \ perennial \ seedlings)$

Function

```
simFun = function(params, NO.A, NO.S, NO.P, LO, Ni.A, simtime, invtime,
   distime) {
    # define parameters
    g.A = filter(params, symbol == "g.A")$value
   beta = filter(params, symbol == "beta")$value
   s.A = filter(params, symbol == "s.A")$value
   v.A = filter(params, symbol == "v.A")$value
   y.A = filter(params, symbol == "y.A")$value
   a = filter(params, symbol == "a")$value
   b = filter(params, symbol == "b")$value
   g.S = filter(params, symbol == "g.S")$value
   s.S = filter(params, symbol == "s.S")$value
   f.P = filter(params, symbol == "f.P")$value
   f.1 = filter(params, symbol == "f.1")$value
    s.1 = filter(params, symbol == "s.1")$value
    s.P = filter(params, symbol == "s.P")$value
    alpha.A = filter(params, symbol == "alpha.A")$value
   alpha.S = filter(params, symbol == "alpha.S")$value
    alpha.P = filter(params, symbol == "alpha.P")$value
   dis = filter(params, symbol == "dis")$value
    # initialize populations
   N.A = rep(NA, simtime)
   N.S = rep(NA, simtime)
```

```
N.P = rep(NA, simtime)
   L = rep(NA, simtime)
   N.A[1] = NO.A
   N.S[1] = NO.S
   N.P[1] = NO.P
   L[1] = L0
   # simulate population dynamics
   for (t in 1:(simtime - 1)) {
        # introduce annual at t=100
        N.A[t] = ifelse(NO.A == 0 \& t == invtime, Ni.A, N.A[t])
        # calulate parameters to introduce disease at distime
        growth.A = ifelse(t < distime, v.A, dis * g.A)</pre>
        # reduce germination due to litter
        G.A = g.A/(1 + beta * L[t])
        G.S = g.S/(1 + beta * L[t])
        # reduce fecundity or growth due to competition
        V.A = growth.A/(1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] +
            alpha.S * G.S * N.S[t])
        F.1 = f.1/(1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S *
           G.S * N.S[t]
       F.P = f.P/(1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S *
            G.S * N.S[t])
        # population size
        N.A[t + 1] = s.A * (1 - G.A) * N.A[t] + G.A * V.A * y.A * N.A[t]
       L[t + 1] = a * G.A * V.A * N.A[t] + (1 - b) * L[t]
       N.S[t + 1] = s.S * (1 - G.S) * N.S[t] + G.S * F.1 * N.S[t] + F.P *
       N.P[t + 1] = s.P * N.P[t] + s.1 * G.S * N.S[t]
        # correct to prevent negative numbers
        N.A[t + 1] = ifelse(N.A[t + 1] < 1, 0, N.A[t + 1])
       L[t + 1] = ifelse(L[t + 1] < 1, 0, L[t + 1])
        N.S[t + 1] = ifelse(N.S[t + 1] < 1, 0, N.S[t + 1])
       N.P[t + 1] = ifelse(N.P[t + 1] < 1, 0, N.P[t + 1])
   }
    # save data
   dfN = data.frame(time = rep(1:simtime, 4), N = c(N.S, N.P, N.A, L),
        species = rep(c("Elymus seedling", "Elymus adult", "Microstegium",
            "Microstegium litter"), each = simtime))
    # return
   return(dfN)
}
```

Simulations

No disease

Add disease

```
disSim <- simFun(params, NO.A, NO.S, NO.P, LO, Ni.A, simtime, invtime, distime)
disSim %>%
    ggplot(aes(x = time, y = log(N+1), color = species)) +
    geom_line() +
    theme(axis.text = element_text(size = axisText),
        axis.title = element_text(size = axisTitle),
        legend.text = element_text(size = legendText),
        legend.title = element_text(size = legendTitle))
```


Time to extinction?