Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- > we need to find the atteibute giving maximum as information among the available atteibutes,
 - > 4 attributer are given, the IG of all 4 attributer needs to be colculated. The attribute ruth the max IG will be the toot note 4 rue Start building the free from here.
 - Consider the 18 Attribute: outlook sky condition. The possible values for outlook douby.

 V(outlook)= (Sunny, Overcast, Rain)
 - → we need to calculate the Entropy of the whole data set (5)
 4 the Entropy of individual values.

Entropy(S)

Entropy(S)
$$S = [9+,5-] = \frac{19}{14} \log_{14}(9) - \frac{5}{14} \log_{14}(\frac{5}{14}) = 0.94$$

Similarly rue need to sind the Entropy to V(outlook)

> Count the number of Examples with Sunny for outlook atteibute, we need to count the number of Ex.

Soverant =
$$\begin{bmatrix} 4+,0- \end{bmatrix}$$
, Entropy (Soverant) = $-\begin{pmatrix} 4\\4 \end{pmatrix} \log \begin{pmatrix} 4\\4 \end{pmatrix} - \begin{pmatrix} 0\\4 \end{pmatrix} \log \begin{pmatrix} 0\\4 \end{pmatrix}$

4 Examples of overlast in outlook alterbut

Note Of there are only positive or negative examples få a particular Value, rue can culente o directly.

for the 16 Knt upy = 0

1 If equal number of positive & regative examples rue can directly wenter Entropy-1

Grain (S, outlook) = Entropy(S) -
$$\frac{|S_v|}{|S|}$$
 Entropy (S_v).

Grium the datest S', Entropy of VE(Surmy, OVUCENT, Rain)

Note It is coedinality which is the number of distinct values for a column in a table.

Sy is the number of possible values for Sunny overcast & Rain

Sy is Sunny, Sovercast & Spain & Kntropy of that particul

S value.

Grain (S, outlook) = Entropy(S) - 5 x Entropy(Sunny) - 4 x Entropy(Sovercour)

Attaibute ', Temperature

Values (Temp)= (Hot, Hild, cod)

Grain (S, Temperature) = 0.94 - (14) Entropy (Shat) - (Entropy (Shad) (3) - (II) Entropy (Scool)

Crain (S, Temperature) = 0.0289

: Calculate 16, for Humidity Attribute Attaibute: Humidily Value (Humidity) = (High, Namal)

Against the second of the second on the second of the

strip times, me the safety for some contraction for the first fine same fig.

Grain (S, Humidity)= 0.1516

Atterbute: wind. Values (wind) = (String, Weak)

Grain(S, wind) = 0.04.78

of the second and the

and the same

> ruhen outlook= Sumy, it is appealing 5 times, Sp, 02 - 124 Outlook Appeals 5 times in \$ ED4, D5, D6, D10, D143 {DI,D2,D8,D9,D1]} 103, D7, D12, D13} [3+, 2-] 2+,3-] [4+,0-] now attech with mad IGI.

flere rue need to introduce a new atteibute with marx IG

we need to continue the calculation for Sunny 4 Rain

(B) we shall start with left side

-> From the 14 examply D1, D2. D14, only 5 examples chould be Considered for Sunny Le & DI, Da, De, Da, Da, Da, Da,

-> we need not consider out look since it is obridy considered

we shall consider only Temp, Humidity, wind.

Sin	1Day	Temp	Humidiby	wind	playtennis
111	Di	Hot	High	Weak	NO
	102	Hot !	High.	Stung	No
	Dy	Mild	High	weak.	No
	Da	Cool	Namal	weak.	Yes
	Di	Mild	Nomal	Staving	yes

Consider Atteibute Temperature Values (Temp) = (Hot, Mild, Cod)

Grown (Sunny, Temp) = Entropy (5) - 2. Entropy (5 not) - 2. Entropy (5mz) - 5 Entury (Scool) Grain (Ssunny, Temp) Gavin of Temp wet Sunny = 0.570 Consider the attribute Humidity, calculate the Gain of Humidity west Sounny 1c Grain (Sounny Humidity) Entupy (Sunny) will be Same as pleurious Ssummy = [2+,3-] Entappy (Sunny) = 0.97. Entropy (5 High) = 0.0 Snigh=[0+,3-] SNomal = [2+,0-] Entropy (Snomal) = 00 Gain (Sunny, Humidity) = Entury (Sunny) - (3) Enturpy Stigi-(3) Entury Snownd Grain (Sunry, Humidity) = 0.97. Grain for Humidity is Compute Gain (Ssurry, wind) = 0.0192 Higher , So One humidity atteibute us Considered meat made Grain (Sumy, Temp) = 0,570

Day Temp Humidity wind play

For Rain Value, rue Shall Consider to Temperature rund Since Outlook of Humidity has been consid

Rain	1		
Day	Temp	wind	playtennis
104	Mila	Weak	Yes
D5	Cool	weak.	Yes
	Cost	Stung	No
D6	Car	-	
plo	Mild	Weak.	Yes
1014	Mald	Stung.	NO