Université Paris 1 Panthéon-Sorbonne L2 MIASHS Algèbre linéaire 2

TD4 - Base duale, adjoint et endomorphisme symétrique

Exercice 1

1. Soit $E = \mathbb{R}^3$ et pour tout $u = (x, y, z) \in E$,

$$f_1(u) = x + y + z$$
, $f_2(u) = x - y + z$, $f_3(u) = x + z$.

- (a) Montrer que f_1, f_2, f_3 sont des formes linéaires sur E.
- (b) Déterminer la base duale \mathscr{B}_0^* de la base canonique \mathscr{B}_0 de E.
- (c) Déterminer les coordonnées de f_1, f_2, f_3 dans \mathscr{B}_0^* .
- 2. Soit $E = \mathbb{R}_1[X]$ et pour tout $P \in E$,

$$\varphi_1(P) = P(0), \quad \varphi_2(P) = P'(0).$$

Montrer que $\{\varphi_1, \varphi_2\}$ est la base duale de la base canonique de E.

- 3. Montrer que les familles suivantes sont des bases de E et trouver leurs bases duales
 - (a) $e_1 = (1, 0, -1), e_2 = (-1, -1, 2), e_3 = (-2, 1, -2) \text{ pour } E = \mathbb{R}^3$
 - (b) $P_1(X) = 1$, $P_2(X) = X 1$, $P_3(X) = X^2 X$ pour $E = \mathbb{R}_2[X]$.

Exercice 2 Soient $E = \mathbb{R}_{n-1}[X]$ et $a_1, \ldots, a_n \in \mathbb{R}$ tels que $a_i \neq a_j$ pour tout $i \neq j$. On pose

$$\forall P, Q \in E, \ \varphi(P, Q) = \sum_{i=1}^{n} P(a_i)Q(a_i) \text{ et } L_i(X) = \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}, \ i = 1, \dots, n$$

Les polynômes L_1, \ldots, L_n sont appelés **polynômes de Lagrange** pour les a_1, \ldots, a_n .

- 1. Montrer que φ est un produit scalaire sur E.
- 2. Montrer que $\{L_1, \ldots, L_n\}$ est une base orthonormée de E pour le produit scalaire φ .
- 3. On pose $F_i(P) = P(a_i)$ pour tout i = 1, ..., n et pour tout $P \in E$. Que peut-on dire de la famille $\{F_1, ..., F_n\}$? En déduire la décomposition de n'importe quel polynôme P de E dans la base $\{L_1, ..., L_n\}$.
- 4. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. On pose $a_i=a+\frac{i(b-a)}{n}$ pour $i=1,\ldots,n$. Montrez qu'il existe un unique polynôme P de degré au plus n-1 tel que $P(a_i)=f(a_i)$ pout tout $i=1,\ldots,n$.

Exercice 3

- 1. Soit $E = \mathbb{R}^n$ muni du produit scalaire euclidien classique $\langle \cdot, \cdot \rangle$. Soit f l'application définie, pour tout $(x_1, \ldots, x_n) \in E$, par $f(x_1, \ldots, x_n) = x_{n-1} 2x_n$. Montrer qu'il existe un unique $\overline{u} \in E$ tel que $f(u) = \langle u, \overline{u} \rangle$ pour tout $u \in E$. Que vaut \overline{u} ?
- 2. Soit $E = \mathbb{R}_n[X]$. Montrer qu'il existe un unique $P_0 \in E$ tel que, pour tout $P \in \mathbb{R}_n[X]$ on ait $P(1) 2P(0) = \int_{-1}^{1} P_0(t)P(t)dt$. Calculer P_0 dans le cas où n = 1.

Exercice 4 Soit $(E, <\cdot, \cdot>)$ un espace euclidien. On dit que $f \in \mathcal{L}(E)$ est une **isométrie** si

$$||f(x)|| = ||x|| \quad \forall x \in E.$$

Soit f un endomorphisme de E. Montrer que les quatre propositions suivantes sont équivalentes.

1. f est une isométrie.

- 2. Pour tous $x, y \in E$, $\langle f(x), f(y) \rangle = \langle x, y \rangle$.
- 3. $f \circ f^* = f^* \circ f = \text{Id}$, c'est-à-dire f bijective et $f^{-1} = f^*$.
- 4. La matrice de f dans une base orthonormée est orthogonale.
- 5. f transforme toute base orthonormée en une base orthonormée.

Exercice 5 Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et f un endomorphisme de E. Montrer que :

$$(\operatorname{Imf})^{\perp} = \ker f^*, \quad (\ker f)^{\perp} = \operatorname{Imf}^*.$$

Indications : on pourra commencer par montrer que $\mathrm{Im} f \subset (\ker f^*)^{\perp}$, puis que $\mathrm{Im} f^* \subset (\ker f)^{\perp}$, et conclure en utilisant les dimensions.

Exercice 6 Soit $E = \mathbb{R}_1[X]$ et soit $u \in \mathcal{L}(E)$ tel que u(P) = Q, avec Q(x) = P(x) - P'(x) pour tout $P \in E$ et tout $x \in \mathbb{R}$. Déterminer u^* pour le produit scalaire $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$ puis pour le produit scalaire $\langle P, Q \rangle = P(0)Q(0) + P'(0)Q'(0)$.

Exercice 7 Soient les matrices

$$M_1 = \begin{pmatrix} -1 & -\sqrt{2} \\ -\sqrt{2} & 0 \end{pmatrix}, \ M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \ M_3 = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & -2 \\ 2 & -2 & 7 \end{pmatrix}.$$

Pour chacune de ces matrices,

- (i) Déterminer les valeurs propres et des vecteurs propres orthonormaux associés.
- (ii) Déterminer P orthogonale et D diagonale telle que $A = PDP^{\top}$.

Exercice 8 Soit $A=(a_{i,j})_{1\leq i,j\leq n}$ une matrice symétrique réelle de taille n et de valeurs propres $\lambda_1,\cdots,\lambda_n$. Montrer que

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}.$$

Exercice 9 Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique réelle telle que $A^3 + A = 0$. Montrer qu'alors A = 0.

Exercice 10 Soit $a = (a_1, \dots, a_n)^{\top}$ un vecteur colonne non nul de \mathbb{R}^n , où $n \in \mathbb{N}^*$ et soit la matrice $A = aa^{\top}$.

- 1. Déterminer le noyau et l'image de l'endomorphisme de \mathbb{R}^n représenté par A. En déduire le rang de la matrice A.
- 2. En déduire les valeurs propres de A et les sous-espaces propres associés.
- 3. Calculer de deux façons différentes A^k pour $k \in \mathbb{N}$.