Homework 5

Problem 1

1.a Gibbs sampler

```
gibbs_sampler <- function(X, Y, alpha_init = rep(0,dim(X)[2]), sigma2_init = 1,
                           delta = 10, lambda = 10, mu = rep(0, dim(X)[2]),
                           Omega = diag(dim(X)[2]), MCsamplesize = 1000){
    \# dims of X
 n \leftarrow dim(X)[1] # sample size
  p <- dim(X)[2] # number of covariates in linear regression model/alpha-parameters
  # set starting values for parameter chains
    # variables where generated values will be saved
  alpha_chain
                  <- matrix(NA, MCsamplesize, p)</pre>
  sigma2_chain
                   <- rep (NA, MCsamplesize)
    # first values for both chains
  alpha_chain[1,] <- alpha_init # [0] * p</pre>
  sigma2_chain[1] <- sigma2_init # [1]</pre>
  # create parameter chain
  for (i in 2:(MCsamplesize)){
    alpha_chain[i,] <- alpha_chain[i-1,]</pre>
    sigma2_chain[i] <- sigma2_chain[i-1]</pre>
    for (j in 1:p){
      s_j \leftarrow 1 / (Omega[j, j] + sigma2_chain[i]^(-1) * sum(X[, j]^2))
      m_j \leftarrow s_j*(mu[j]*0mega[j, j]
                  - sum(Omega[j, -j]*(alpha_chain[i, -j] - mu[-j]))
                  + sigma2_chain[i]^(-1)*sum(X[, j]*(Y - X[, -j]\%*\%alpha_chain[i, -j])))
      alpha_chain[i,j] <- rnorm(1, m_j, sqrt(s_j)) # rnorm accepts sd, not var
    }
    sigma2_chain[i] <- 1 / rgamma(n=1, shape=delta + n/2,
                                   rate=lambda + 1/2*sum( (Y - X%*%alpha_chain[i, ])^2 ))
  }
  return(list("alpha" = alpha_chain, "sigma2" = sigma2_chain))
```

1.b

```
set.seed(999)
samplesize <- 200</pre>
dim <- 3
alpha_real <- c(-2, 0, 4)
sigma_real <- 2
X <- matrix(rnorm(samplesize*dim), nrow = samplesize, n = dim)</pre>
Y <- as.vector(X%*%alpha_real + rnorm(samplesize, 0, sigma_real)) # sd, not var
n <- dim(X)[1] # sample size</pre>
p <- dim(X)[2] # number of covariates in linear regression model/alpha-parameters
sigma2_real <- sigma_real^2</pre>
out <- gibbs_sampler(X, Y)</pre>
sigma2 <- out$sigma2</pre>
alpha <- out$alpha
par(mfcol = c(2, 2))
plot(sigma2, ylab = "sigma2", xlab = "iteration", main = paste("true sigma2=",
    round(sigma2_real, digits = 2)), type = "1")
abline(h = sigma2_real, lty = 2)
for (i in 1:p){
    plot(alpha[,i], ylab = paste("alpha",i), xlab = "iteration", main = paste(
        "true alpha", i, "=", round(alpha_real[i], digits = 2)), type = "l")
    abline(h = alpha_real[i], lty = 2)
}
```


Intrepret traceplots

As we can see, the chains converge quite fast. From the graph it can be seen that the chains converge in 10-20 iterations. Let's choose a burn-in period of 100 to be safe.

```
# no burnin values
sigma2_nb <- sigma2[101:n]
alpha_nb <- alpha[101:n,]

par(mfcol = c(2, 2))
acf(sigma2)
acf(alpha_nb[,1])
acf(alpha_nb[,2])
acf(alpha_nb[,3])</pre>
```


Intrepret ACF plots

We can see, that autocorrelation is low for each of the chains. So we can proceed without throwing away every n'th sample.

true sigma2= 4

true alpha 2 = 0

true alpha 1 = -2

true alpha 3 = 4


```
ord_lr <- lm(Y ~ X - 1) # -1 to get read of intercept ord_lr
```

```
##
## Call:
## lm(formula = Y ~ X - 1)
##
## Coefficients:
## X1 X2 X3
## -1.9238 -0.0587 4.1003
```

summary(ord_lr)

```
##
## Call:
## lm(formula = Y \sim X - 1)
##
## Residuals:
##
                1Q Median
       Min
                                3Q
                                       Max
## -5.3286 -1.5298 -0.1412 1.1600 5.2405
##
## Coefficients:
      Estimate Std. Error t value Pr(>|t|)
##
## X1 -1.9238
                   0.1510 -12.740
                                     <2e-16 ***
## X2 -0.0587
                   0.1363 -0.431
                                     0.667
```

```
## X3 4.1003 0.1465 27.980 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.956 on 197 degrees of freedom
## Multiple R-squared: 0.8355, Adjusted R-squared: 0.833
## F-statistic: 333.4 on 3 and 197 DF, p-value: < 2.2e-16</pre>
```

Intrepret 1m results

Coefficients of the linear regression are -1.9238 -0.0587 4.1003 and estimated standard error is 1.956, which means that estimated sigma2=3.83. These values are closer to the true values, than the maximum of the posterior densities estimated by Gibbs sampler.

Especially bad is the posterior of sigma2 with peak around 3.5.

1.c

```
alpha_init <- rep(20,3)
```

```
sigma_init <- 1
tau_init <- 1 / sigma_init^2</pre>
```

```
mah_mcmc <- R2jags::jags(</pre>
   data = mah_data,
   inits=list(list(alpha=alpha_init, tau=tau_init)),
   parameters.to.save = c("alpha","tau", "sigma2"),
   n.iter = samplesize,
   n.chains = 1,
   n.thin = 1,
   n.burnin = 0, # 100 iterations are run for adaption
   model.file = mah_model)
## module glm loaded
## Compiling model graph
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 200
##
      Unobserved stochastic nodes: 2
##
##
      Total graph size: 1221
##
## Initializing model
structure(mah_mcmc)
## Inference for Bugs model at "/var/folders/7n/fcgysll141n_czqxfkwtd68r0000gn/T//RtmpV3zX0F/model14dfe
## 1 chains, each with 200 iterations (first 0 discarded)
## n.sims = 200 iterations saved
##
           mu.vect sd.vect
                               2.5%
                                        25%
                                                50%
                                                        75%
                                                              97.5%
## alpha[1]
             0.180
                     0.748 -1.310 -0.301
                                              0.168
                                                      0.666
                                                              1.481
                                                              1.609
## alpha[2]
              0.212
                      0.661 -0.853 -0.277
                                              0.193
                                                      0.630
## alpha[3]
             1.665
                     0.668
                             0.266
                                     1.268
                                              1.659
                                                      2.122
                                                              2.970
## sigma2
             17.903 186.095
                              3.805
                                     4.387
                                              4.704
                                                      5.067
                                                              5.772
                      0.028
                              0.173
                                      0.197
                                              0.213
                                                      0.228
                                                              0.263
## tau
              0.212
## deviance 896.589 74.490 886.429 889.195 890.731 893.061 898.248
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 2774.4 and DIC = 3671.0
## DIC is an estimate of expected predictive error (lower deviance is better).
rafalib::bigpar(3,2)
R2jags::traceplot(mah_mcmc,mfrow=c(3,2))
```



```
## Inference for Bugs model at "/var/folders/7n/fcgysll141n_czqxfkwtd68r0000gn/T//RtmpV3zX0F/model14dfe
```

```
1 chains, each with 200 iterations (first 0 discarded)
    n.sims = 200 iterations saved
##
            mu.vect sd.vect
                                2.5%
                                          25%
                                                                 97.5%
                                                  50%
                                                           75%
                              -1.310
                                                0.168
## alpha[1]
              0.180
                       0.748
                                       -0.301
                                                         0.666
                                                                 1.481
## alpha[2]
                       0.661
              0.212
                              -0.853
                                       -0.277
                                                0.193
                                                         0.630
                                                                 1.609
## alpha[3]
              1.665
                       0.668
                               0.266
                                        1.268
                                                1.659
                                                         2.122
                                                                 2.970
## sigma2
             17.903 186.095
                               3.805
                                        4.387
                                                4.704
                                                         5.067
                                                                 5.772
              0.212
                       0.028
                               0.173
                                        0.197
                                                0.213
                                                         0.228
                                                                 0.263
## tau
## deviance 896.589
                      74.490 886.429 889.195 890.731 893.061 898.248
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 2774.4 and DIC = 3671.0
## DIC is an estimate of expected predictive error (lower deviance is better).
```

mah_mcmc

Problem 2

2.a

Full Conditionals

$$\pi(\mu_{1}, \mu_{2}) \sim \ell(\mu_{1}, \mu_{2}) \cdot p(\mu_{1}, \mu_{2})$$

$$= \ell(\mu_{1}, \mu_{2}) \cdot 1$$

$$= \ell(\mu_{1}, \mu_{2})$$

$$= N_{n}(y_{1}, \dots y_{n} \mid \mu, \Sigma)$$

$$\sim \prod_{i=1}^{n} \exp \left\{ -\frac{1}{2} (y_{i} - \mu)^{\top} \Sigma^{-1} (y_{i} - \mu) \right\}$$

$$\sim \prod_{i=1}^{n} \exp \left\{ -\frac{1}{2} \left[y_{i}^{\top} \Sigma^{-1} y_{i} - 2\mu^{\top} \Sigma^{-1} y_{i} + \mu^{\top} \Sigma^{-1} \mu \right] \right\}$$

$$\sim \prod_{i=1}^{n} \exp \left\{ -\frac{1}{2} \left[-2\mu^{\top} \Sigma^{-1} y_{i} + \mu^{\top} \Sigma^{-1} \mu \right] \right\}$$

$$= \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \left[-2\mu^{\top} \Sigma^{-1} y_{i} + \mu^{\top} \Sigma^{-1} \mu \right] \right\}$$

$$= \exp \left\{ -\frac{n}{2} \left[-2\mu^{\top} \Sigma^{-1} \bar{y} + \mu^{\top} \Sigma^{-1} \mu \right] \right\}$$

$$\sim \exp \left\{ -\frac{n}{2} \left[(\mu - \bar{y})^{\top} \Sigma^{-1} (\mu - \bar{y}) \right] \right\}$$

$$\sim N_{2}(\mu \mid \bar{y}, \frac{\Sigma}{n})$$

$$\pi(\mu_{1}, \mu_{2}) \sim N_{2}(\mu \mid \bar{y}, \frac{\Sigma}{n})$$

$$\text{where } \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

With formula 1.5:

$$\begin{split} &\pi(\mu_1 \mid \mu_2) \sim N(\bar{y}_1 + \frac{\rho \sigma_1}{\sigma_2}(\mu_2 - \bar{y}_2), \frac{\sigma_2^2(1 - \rho^2)}{n})) \\ &\pi(\mu_2 \mid \mu_1) \sim N(\bar{y}_2 + \frac{\rho \sigma_2}{\sigma_1}(\mu_1 - \bar{y}_1), \frac{\sigma_1^2(1 - \rho^2)}{n}) \mid \\ &\bar{y}_1 = \sum_{i=1}^n y_i^{(1)} \\ &\bar{y}_2 = \sum_{i=1}^n y_i^{(2)} \end{split}$$

These are the full conditionals

Gibbs sampling algorithm

With $\pi(\mu_1 \mid \mu_2)$ and $\pi(\mu_2 \mid \mu_1)$ as defined above:

- 1. Set the iteration counter to j=1 and set initial values $\mu^{(0)} = \left(\mu_1^{(0)}, \mu_2^{(0)}\right)'$
- 2. Obtain a new value $\mu^{(j)} = \left(\mu_1^{(j)}, \mu_2^{(j)}\right)'$ through successive generation of values

$$\mu_1^{(j)} \sim \pi(\mu_1 \mid \mu_2^{(j-1)})$$
 $\mu_2^{(j)} \sim \pi(\mu_2 \mid \mu_1^{(j)})$

3. Change counter j to j + 1 and return to step 2 until convergence is reached.

```
gibbs_sampler_2 <- function(Y, sigma1, sigma2, rho,</pre>
                              R=1000){
  n \leftarrow dim(Y)[1]
  # variables where generated values will be saved
               <- matrix(NA, R, 2)
  mu_chain[1,] <- runif(2,0,10)</pre>
  # same for all iterations
  sd1 <- sqrt(sigma2^2*(1-rho^2) / n)
  sd2 <- sqrt(sigma1^2*(1-rho^2) / n)
  y.mean1 \leftarrow mean(Y[,1])
  y.mean2 <- mean(Y[,2])</pre>
  # create parameter chain
  for (i in 2:(R)){
    mu_chain[i, 1] = rnorm(1,
                             mean=(y.mean1 + rho*sigma1/sigma2 * (mu_chain[i-1,2] - y.mean2)),
    mu_chain[i, 2] = rnorm(1,
                             mean=(y.mean2 + rho*sigma2/sigma2 * (mu chain[i,1] - y.mean1)),
  }
  return(mu_chain)
set.seed(42)
mu real = c(6,2)
sigma1 = sqrt(2)
sigma2 = sqrt(0.5)
rho = 0.05
n = 100
Sig = matrix(c(sigma1^2, sigma1*sigma2*rho,
                sigma1*sigma2*rho, sigma2^2), nrow = 2, ncol = 2)
Y <- MASS::mvrnorm(n, mu_real, Sig)
R1 = 100
R2 = 100000
mu_chain_1 <- gibbs_sampler_2(Y, sigma1, sigma2, rho, R=R1)</pre>
mu_chain_2 <- gibbs_sampler_2(Y, sigma1, sigma2, rho, R=R2)</pre>
compute_D <- function(mu, Y, sigma1, sigma2, rho){</pre>
    y.mean1 <- mean(Y[,1])</pre>
    y.mean2 <- mean(Y[,2])</pre>
    result <- 1/(1-rho^2) * (
        (mu[1] - y.mean1)^2 / sigma1^2 +
        (mu[2] - y.mean2)^2 / sigma2^2 +
```

```
2*rho*(mu[1] - y.mean1)*(mu[2] - y.mean2) / (sigma1*sigma2)
    )
    return(result)
}
DIC_4.12 <- function(mu_chain, Y, sigma1, sigma2, rho){</pre>
    R <- dim(mu chain)[1]
    mu.mean = c(mean(mu_chain[,1]), mean(mu_chain[,2]))
    D_of_mu.mean <- compute_D(mu.mean, Y, sigma1, sigma2, rho)</pre>
    D.mean = 0
    for (i in 1:R){
        D_of_mu.i <- compute_D(mu_chain[i,], Y, sigma1, sigma2, rho)</pre>
        D.mean <- D.mean + D_of_mu.i</pre>
    }
    D.mean \leftarrow 1/R * D.mean
    return(D.mean - D_of_mu.mean)
}
DIC_4.13 <- function(mu_chain, Y, sigma1, sigma2, rho){
    R <- dim(mu chain)[1]</pre>
    D.mean = 0
    for (i in 1:R){
        D_of_mu.i <- compute_D(mu_chain[i,], Y, sigma1, sigma2, rho)</pre>
        D.mean <- D.mean + D_of_mu.i</pre>
    D.mean \leftarrow 1/R * D.mean
    D.var = 0
    for (i in 1:R){
        D_of_mu.i <- compute_D(mu_chain[i,], Y, sigma1, sigma2, rho)</pre>
        D.var <- D.var + (D_of_mu.i - D.mean)^2</pre>
    D.var \leftarrow 1/(2*(R-1)) * D.var
    return(D.var)
}
DIC_4.12(mu_chain_1, Y, sigma1, sigma2, rho)
## [1] 0.3692384
DIC_4.12(mu_chain_2, Y, sigma1, sigma2, rho)
## [1] 0.04280324
```

```
DIC_4.13(mu_chain_1, Y, sigma1, sigma2, rho)
## [1] 5.630098
```

```
## [1] 0.001665639
```

DIC_4.13(mu_chain_2, Y, sigma1, sigma2, rho)

For both DIC from eq. 4.12 and eq. 4.13, MCMC with more iterations obtained a far lower score, which indicates that longer sampling is beneficial.