Part F

CHAPTER 3

Architecture and Organization

Alan Clements

1

These slides are provided with permission from the copyright for CS2208 use only. The slides must not be reproduced or provided to anyone outside the class.

All downloaded copies of the slides are for personal use only.

Students must destroy these copies within 30 days after receiving the course's final assessment.

ADC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Add with carry Rd \leftarrow Rn + Op2 + Carry

ADD $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Add $Rd \leftarrow Rn + Op2$

 $MLA\{cond\}\{S\}\ Rd, Rm, Rs, Rn\ Multiply\ Accumulate \ Rd \leftarrow (Rm \times Rs) + Rn$

 $MUL\{cond\}\{S\}\ Rd, Rm, Rs$ Multiply $Rd \leftarrow Rm \times Rs$

 $MOV\{cond\}\{S\}\ Rd,Op2$ Move register or constant $Rd \leftarrow Op2$

NEG{cond}{S} Rd,Rn Negate the value in a register Rd ← - Rn

RSB $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Reverse Subtract Rd \leftarrow Op2 - Rn

RSC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Reverse Subtract with Carry Rd \leftarrow Op2 - Rn - 1 + Carry

SBC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Subtract with Carry Rd \leftarrow Rn - Op2 - 1 + Carry

SUB{cond}{S} {Rd,}Rn,Op2 Subtract Rd \leftarrow Rn - Op2

AND $\{cond\}\{S\}\{Rd,\}Rn,Op2$ AND Rd \leftarrow Rn AND Op2

BIC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Bit Clear Rd \leftarrow Rn AND NOT Op2

ORR $\{cond\}\{S\}\{Rd,\}Rn,Op2$ OR Rd \leftarrow Rn OR Op2

EOR $\{cond\}\{S\}\{Rd,\}Rn,Op2\}$ Exclusive OR Rd \leftarrow Rn \oplus Op2

MVN $\{cond\}\{S\}\ Rd,Op2$ Move not $Rd \leftarrow OxFFFFFFF \oplus Op2$

CMN{cond} Rn,Op2 Compare Negative CPSR flags ← Rn + Op2

CMP{cond} Rn,Op2 Compare CPSR flags ← Rn - Op2

TEQ $\{cond\}\ Rn,Op2$ Test bitwise equality CPSR flags \leftarrow Rn \oplus Op2

TST{cond} Rn,Op2 Test bits CPSR flags ← Rn AND Op

Computer Organization and Architecture: Themes and Variations, $1^{\rm st}$ Edition

Clements

ARM Assembly Instructions Summary

B{cond} address Branch R15 ← address

BL{cond} address Branch with Link R14 \leftarrow R15, R15 \leftarrow address

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

ARM Assembly Instructions Summary

ADR{cond}Rd,label

Load address

Rd ← The address of the label

STR{cond}{B} Rd,address Store register to memory

[address] ← Rd

LDR{cond}{B} Rd,address Load register from memory

Rd ← [address]

LDR{cond} Rd,=expr

Load a 32-bit immediate value Rd ← expr

LDR{cond} Rd,=label

Load a 32-bit address

Rd ← The address of the label

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

ARM Assembly Instructions Summary

LDM{cond}{IA|IB|DA|DB}{cond} Rn{!},reglist

Load Multiple registers/Stack pop

LDM{cond}{FD|FA|ED|EA}{cond} Rn{!},reglist

Load Multiple registers/Stack pop

STM{cond}{IA|IB|DA|DB}}{cond} Rn{!},reglist

Store Multiple registers/Stack push

STM{cond}{FD|FA|ED|EA}}{cond} Rn{!},reglist

Store Multiple registers/Stack push

ADC{cond}{S} {Rd,}Rn,Op2 Add with carry $Rd \leftarrow Rn + Op2 + Carry$ ADD{cond}{S} {Rd,}Rn,Op2 Add $Rd \leftarrow Rn + Op2$ $Rd \leftarrow Rn AND Op2$ AND{cond}{S} {Rd,}Rn,Op2 AND

ADR{cond}Rd,label Load address Rd ← The address of the label

B{cond} address **Branch** R15 ← address BIC{cond}{S} {Rd,}Rn,Op2 Bit Clear Rd ← Rn AND NOT Op2 BL{cond} address Branch with Link $R14 \leftarrow R15$, $R15 \leftarrow address$

CMN{cond} Rn,Op2 **Compare Negative** CPSR flags \leftarrow Rn + Op2 CMP{cond} Rn,Op2 Compare CPSR flags \leftarrow Rn - Op2

EOR{cond}{S} {Rd,}Rn,Op2 **Exclusive OR** $Rd \leftarrow Rn \oplus Op2$

Load Multiple registers/Stack pop LDM{cond}{IA|IB|DA|DB}{cond} Rn{!},reglist Load Multiple registers/Stack pop LDM{cond}{FD|FA|ED|EA}{cond} Rn{!},reglist

LDR{cond}{B} Rd,address Load register from memory $Rd \leftarrow [address]$ LDR{cond} Rd,=expr Load a 32-bit immediate value $Rd \leftarrow expr$

LDR{cond} Rd,=label Load a 32-bit address Rd ← The address of the label

MLA{cond}{S} Rd, Rm,Rs,Rn Multiply Accumulate $Rd \leftarrow (Rm \times Rs) + Rn$

MOV{cond}{S} Rd,Op2 Move register or constant $Rd \leftarrow Op2$ MUL(cond)(S) Rd, Rm,Rs Multiply $Rd \leftarrow Rm \times Rs$

MVN{cond}{S} Rd,Op2 Move not $Rd \leftarrow 0xFFFFFFFF \oplus Op2$ Negate the value in a register

NOP No operation No operation

ORR{cond}{S} {Rd,}Rn,Op2 OR $Rd \leftarrow Rn OR Op2$

RSB{cond}{S}{ Rd,}Rn,Op2 **Reverse Subtract** $Rd \leftarrow Op2 - Rn$

RSC{cond}{S} {Rd,}Rn,Op2 Reverse Subtract with Carry $Rd \leftarrow Op2 - Rn - 1 + Carry$

SBC{cond}{S} {Rd,}Rn,Op2 Subtract with Carry $Rd \leftarrow Rn - Op2 - 1 + Carry$

Store Multiple registers/Stack push STM{cond}{IA|IB|DA|DB}}{cond} Rn{!},reglist STM{cond}{FD|FA|ED|EA}}{cond} Rn{!},reglist Store Multiple registers/Stack push

 $Rd \leftarrow -Rn$

STR{cond}{B} Rd,address [address] ← Rd Store register to memory SUB{cond}{S} {Rd,}Rn,Op2 Subtract $Rd \leftarrow Rn - Op2$

TEQ{cond} Rn,Op2 Test bitwise equality CPSR flags \leftarrow Rn \oplus Op2 TST{cond} Rn,Op2 Test bits CPSR flags ← Rn AND Op2

→ Update condition flags if S present

NEG{cond}{S} Rd,Rn

{cond} → (to be omitted for unconditional execution) Refer to the table below for the meaning of the {cond} field.

Med	<u>anin</u>	g of	{condition}	<u>field</u>			
	•					1	

0000 EQ Z set Equal (i.e., zero)	
0001 NE Z clear Not equal (i.e., no	t zero)
0010 CS C set Unsigned higher of	r same
0011 CC C clear Unsigned lower	
0100 MI N set Negative	
0101 PL N clear Positive or zero	
0110 VS V set Overflow	
0111 VC V clear No overflow	
1000 HI C set and Z clear Unsigned higher	
1001 LS C clear or Z set Unsigned lower o	r same
1010 GE N set and V set, or N clear and V clear Greater or equal	
1011 LT N set and V clear, or N clear and V set Less than	
1100 GT Z clear and N set and V set, or Greater than	
Z clear and N clear and V clear	
1101 LE Z set, or N set and V clear, Less than or equa	l
or N clear and V set	
1110 AL Always (default)	
1111 NV Never (reserved)	

225

Instruction Encoding Formats

Conversion Tables

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024 \text{ (Kilo)}$
 $2^{11} = 2048$
 $2^{12} = 4096$
 $2^{13} = 8192$
 $2^{14} = 16384$
 $2^{15} = 32768$
 $2^{16} = 65536$
 $2^{17} = 131072$
 $2^{18} = 262144$
 $2^{19} = 524288$
 $2^{20} = 1048576 \text{ (Mega)}$

```
(0)_{16} = (0)_{10} = (0000)_{2}
(1)_{16} = (1)_{10} = (0001)_{2}
(2)_{16} = (2)_{10} = (0010)_{2}
(3)_{16} = (3)_{10} = (0011)_{2}
(4)_{16} = (4)_{10} = (0100)_{2}
(5)_{16} = (5)_{10} = (0101)_{2}
(6)_{16} = (6)_{10} = (0110)_{2}
(7)_{16} = (7)_{10} = (0111)_{2}
(8)_{16} = (8)_{10} = (1000)_{2}
(9)_{16} = (9)_{10} = (1001)_{2}
(A)_{16} = (10)_{10} = (1010)_{2}
(B)_{16} = (11)_{10} = (1011)_{2}
(C)_{16} = (12)_{10} = (1100)_{2}
(D)_{16} = (13)_{10} = (1101)_{2}
(E)_{16} = (14)_{10} = (1110)_{2}
(F)_{16} = (15)_{10} = (1111)_{2}
```

```
ASCII Table
'0' → 0x30
'1' → 0x31
'2' → 0x32
'8' → 0x38
'9' → 0x39
'A' → 0x41
'B' → 0x42
'C' → 0x43
'D' - 0x44
'E' → 0x45
'F' → 0x46
'X' → 0x58
'Y' → 0x59
'Z' → 0x5A
'a' → 0x61
'b' → 0x62
'c' → 0x63
'd' → 0x64
'e' → 0x65
'f' → 0x66
'x' → 0x78
'y' → 0x79
'z' → 0x7A
```