ANALYTICS FOR HOSPITAL'S HEALTHCARE DATA

A PROJECT BASED LEARNING REPORT

SUBMITTED BY

V. SRIVARDHAN	910619104087
T.K. SIVAKUMAR	910619104081
R.C. SHREE SURYA PRASAD	910619104077
M. SIVAKUMAR	910619104080

TEAM ID: PNT2022TMID11392

INTRODUCTION

1.1 Project Overview

Recent Covid-19 Pandemic has raised alarms over one of the most overlooked areas to focus Healthcare Management. While healthcare management has various use cases for using data science, patient length of stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital.

This parameter helps hospitals to identify patients of high LOS-risk (patients who will stay longer) at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of staff/visitor infection. Also, prior knowledge of LOS can aid in logistics such as room and bed allocation planning.

1.2 Purpose

The purpose of the project is to accurately predict the Length of Stay for each patient on case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning by creating the meaningful visualizations and exploring the available data.

LITERATURE SURVEY

2.1 Existing Problem

1) Data Modeling, Confidence interval with Bootstrap, Graph Modeling, Building graphs from MTS, this technique is used to analyze the data for exploring the potential of data network. Analyzing the HER and to gain knowledge about the COVID-19 patients.

Pros:

The new way to understand and model the information handled. Analyzing the pair wise correlation without making any assessment.

Cons:

The no.of patients is not large and they were treated in same hospital so that over fitting may exit and caution when generalizing the conclusion.

2) Predictive Analysis, Artificial Intelligence, DT Algorithm, In this study, multivariate analysis to identify the key variables using the DT algorithm.

Pros:

DT model shows an intriguing role for dexamethasone in saving lives, ranging from zero risk of death.

Cons:

The DT model was further validated by unsupervised learning methods showing similar separation pattern, and ROC suggest a stable and robust DT Model.

3) Big Data Analytics and Data-driven method, in this study Medical facilities are working on both structured and unstructured which comes from database. It clearly shown that the decision made are largely data driven.

Pros:

It increased the analytics of diagnosis, preventing the public health issuessince the accurate prediction is involved.

Cons:

It is necessary to examine use of structured and unstructured data in vastarea of medical field.

4) Survival Analysis, MFT data preparation, AFT Model, AFT survival model and Truncation Corrected method both will underlying Weibull distribution, were fitted to the data to estimate LOS from hospital.

Pros:

Three different estimations of LOS of patients is used.

Cons:

Missing of large dataset which may lead in bias of estimation. Delay inupdate and delay in reporting.

2.2 References

- 1) **Data and Network Analytics for COVID-19 Patients** Sergio Martinez, Antonio G marques, Cristina Soguero-Rui. 2021
- 2) Prediction of COVID-19 Hospital Length of Stay and Risk of Death using AI based Modelling Bassam Mahboub, Hussam Alshrideh, Laila Salameh. 2021
- 3) Big Data Analytics in Healthcare Kornelia Batko, Andrzej Slezak. 2022
- 4) Hospital Length of Stay for COVID-19 patients: Data Driven method for forward planning Bindu vekaria, Christopher Overton, Arkadiusz wisniowski, Neil A Hanley and Mark J Elliot. 2021

2.3 Problem Statement

Recent Covid-19 Pandemic has raised alarms over one of the most overlooked areas to focus: Healthcare Management. While healthcare management has various use cases for using data science, patient lengthof stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital.

I am	I'm trying to	But	Because	Which makes me feel
Hospital Management	Assured treatment in any kind of situation and ensuring the spatial facility for patients	Proper allocation of resources become tough challenge in hospital	The number of affected people becomes high and couldn't predict the arriving cases and to allocate he resources and admission	Loss of
Hospital Staff	Personal care on admitted patients and to monitor the health condition of patients	It is not possible all time	The flue and virus may affect the health of monitoring staffs	TensedOver conscious
Patient	Get good treatment and getcure from COVID-19	Difficult to reach the hospitals	Lack of treatment facilities and space due to stayof other COVID patients.	FrustrationBeing helplessTensed

IDEATION AND PROPOSED SOLUTION

3.1Empathy Map

Empathy map helps is simple and easy to digest visually that captures knowledge about a user's behavior and attitudes.

1) Empathy map on Hospital Management

2) Empathy map on Patients

3.2 Ideation and Brainstorming

Brainstorming provides a free and open environment that encourages everyone within a team to participate in creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

3.2.1 Defining the Problem

ANALYTICS FOR HOSPITAL'S HEALTH CARE DATA

The goal is to accurately predict the Length of Stay for each patient on case by case basis so that the to more Hospitals can use this information for optimal resource allocation and better functioning. The length of stay is divided into 11 different classes ranging from 0-10 days than 100 days

Defining the Problem

Recent Covid-19 Pandemic has raised alarms over one of the most overlooked areas to focus: Healthcare

Management. While healthcare management has various use cases for using data science, patient length of stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital.

3.2.2Brainstorming

SRIVARDHAN. V

USER FRIENDLY	HIGH PERFORMANCE
EASY DATA EXPLORATION	PERIODIC FUNCTIONS

R.C. SHREE SURYA PRASAD

ANALYTICS TECHNIQUES	HAND IN MAINTENANCE
SEQUENTIAL	SUITABLE
FUNCTION	ALGORITHMS

SIVAKUMAR. T.K

VARIOUS	RELIABLE
INSIGHTS	SERVICE
DATASET	COST EFFICIENT

SIVAKUMAR. M

INSIGHTS	EASY TO DEPLOY
COGNOS ANALYTICAL TOOL	SUITABLE TOOL USAGE

3.3 Proposed solution

S.No	Parameters	Description
1.	Problem Statement	The goal is to accurately predict the Length of Stay for each patient on case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning. The length ofstay is divided into 11 different classes ranging from 0-10 days to more than 100 days.
2.	Idea / Solution	Predictive Analysis.
3.	Novelty / Uniqueness	Predictive analytics with AI Solution.
4.	Social Impact	Access to primary healthcare, Less Casualty.
5.	Business Model	Pharmacy companies will sell their Medical products to generate more revenue. Insurance companies will sell their health policies to needed People.
6.	Scalability of Solution	Easy access of PatientsDataUser friendly analyticsAccurate results

3.4Problem Solution Fit

The Problem-Solution Fit simply means that you have found a problem with your customer and the solution that you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why.

1. Customer SegmentsHospital	6. Customer Limitation Can't assure the effective utilization and allocation of resources	
Problems/Pains Proper allocation of resources Predicting the length of stay of COVID patients Proper utilization and treatment to patients	9. Problem Efficient less calculation and prediction of occurring situations	7. Behaviour Data tracking with available methodologies such as text mining and information retrieval
3. Triggers to Act Prevailing emergency situations and Pandemic period	10. Your Solution Using predictive analysis powered by the Artificial intelligence which is used in analytics technique	8. Channels of Behaviour 1. Online: Usage of data exploration
4. Emotions Tensed and perplexed mind set to get rectified from the pandemic period		2. Offline: Preparing the dataset on the COVID patients.

REQUIREMENT ANALYSIS

4.1Functional Requirements

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
No.	(Epic)	
FR-1	User Registration	The User has his/her own ID to get registered in the portal or Dashboard
FR-2	User Confirmation	Confirmation via OTP (if necessary)
FR-3	Dashboard	The collected data are found in visualized format and the prior data are analyzed
FR-4	Dataset	The patients record and staff records are collected and consolidated as dataset
FR-5	Report Generator	The periodic reports of patients and the LoS are reported
FR-6	Exploration	The data exploration on available dataset

4.2Non-Functional Requirements

FR	Non-Functional	Description
No.	Requirement	
NFR-1	Usability	The user can analyze about the Patients
		detail and their Length of Stay
NFR-2	Security	The data are confidential so Hospital
		Staff conscious about it
NFR-3	Reliability	The Analytics system ensures the
		reliability
NFR-4	Performance	The accurate result of patients LoS can
		be identified.
NFR-5	Availability	The availability of dataset must be
		constrained for accurate data
NFR-6	Scalability	Any kind of data can be explored and
		the
		system is quiet expandable

PROJECT DESIGN

5.1 Data Flow Diagram

Data Flow Diagram is the traditional visual representation of the information flow within the system. A neat and clear DFD can depict the right amount of the system requirements graphically.

Level - 1

5.2 Solution and Technical Architecture

5.2.1 Solution Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

5.2.2 Technical Architecture

Components and Technologies

S.No	Component	Description	Technology
1.	User Interface	The Users will be	IBM cognos
		interacting with the site	or IBM cloud
		through their convenient	
		devices	
2.	Application Logic-1	The Collecting the data	CSV File
3.	Application Logic-2	Exploring and visualizing	IBM Cognos analytics
		The data	
4.	Application Logig-3	Data model on the	AI or ML
		Available data	
5.	Cloud Database	Storing the patients data	IBM cloud
		In cloud environment	
6.	Machine Learning	Predictive Analysis on	Python, IBM Cognos
	Model	The data model	
7.	Infrastructure Service	Cloud environment	IBM Cloud and
		For analytics	Cognos Analytics

Application Characteristics

S.No	Characteristics	Description	Technology
1.	Open Source Framework	Pandas and Numpy	Python
2.	Security Implementations	Admin and User or	e.g. SHA-256,
		Management	Encryptions,
		Authorization	IAM Controls,
			OWASP etc.
3.	Availability	The data exploration	Cognos analytics
		andvisualization is a	
		timely work	
		hence the system should	
		be more available	
4.	Performance	The accurate	Predictive
		calculation of data is	Analyticsusing AI
		the well-known	or ML
		performance of this system	Model

5.3 User Stories

User Type	Functional	User	User Task	Acceptance	Priority
	Requirements	Story		Criteria	
	Hospitalization	USN-1	Patients are	Direct	High
			required to get	Hospitalization	
			Hospitalize if they		
			have COVID +ve		
Patient 7	Treatment	USN-2	Patients should	They can	Medium
	Report		collect their	receive the	
			treatment report	report from	
			and get future	Hospital	
			doctor consult		
]	Resource	USN-3	Hospital	Should be	High
	Allocation		Management	ready for any	
			should allocate	circumstance	
			necessary		
			resources		
	Predicting	USN-4	The Doctors	Exploring and	High
	Length of Stay		should be awareof	Predicting	
Hospital			Patient's	Patients LOS	
Management			condition to		
Management			predict the LOS		
	Resource	USN-5	The Hospital	Visualizing the	High
	Available		staffs should be	resource	
			aware of	availability	
			available		
			resources		
]	Staff Welfare	USN-6	The working staff		High
			should stay safe		
			from COVID-19		

PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning and Estimation

Sprint	Functional Requirements (Epic)	User Story. No	User Story / Task	Story Pts	Priority	Team Members
Sprint -1	Dataset	USN-1	User needs to collect data about patients and prepare the dataset	2	High	Sivakumar. M
Sprint -1	Data Exploration	USN-2	Data exploration is the first step in data analysis to explore and visualize data and uncover insights from start	2	High	R.C. Shree Surya Prasad
Sprint -1	Secondary Exploration	USN-3	Identifying the secondary relationship of data	1	Low	R.C. Shree Surya Prasad
Sprint -2	Data Visualization	USN-4	Patients data are visualized graphically for data verification and to know available resources	2	High	Sivakumar. T.K
Sprint -3	Dashboard, Report, Story	USN-5	The explored and visualized data are viewed in dashboard	2	High	Srivardhan. V
Sprint -4	PredictiveModel	USN-6	Predictive analysis is performed by creating predictive model	2	High	Srivardhan. V

Sprint Delivery Schedule

Sprint	Total	Duration	Sprint Start	Sprint End	Story	Sprint
	Story		Date	Date	Points	Release
	Points			(Planned)	Completed	Date
Sprint-1	20	4 days	24 Oct 2022	27 Oct	20	27 Oct
				2022		2022
Sprint-2	20	6 days	29 Oct 2022	03 Nov	20	03 Nov
				2022		2022
Sprint-3	20	6 days	04 Nov	09 Nov	20	09 Nov
			2022	2022		2022
Sprint-4	20	8 days	10 Nov	18 Nov	20	19 Nov
			2022	2022		2022

6.2 Reports from Jira

6.2.1 Burn down Charts:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.2.2 Jira Progress Chart

- Jira is an open-source software tool used for managing project tasks,issue tracking and other issues
- It is a platform-independent tool; that can be worked with differenttypes of operating systems.
- As we know, Jira is an issue tracking platform, so it is used by development and technical support teams to get work.

CODING AND SOLUTIONING

7.1 Feature 1

7.1.1 Data Exploration and Visualization:

Data exploration is the first step of data analysis used to explore and visualize data to uncover insights from the start or identify areas or patterns to dig into more. Using interactive dashboards and point-and-click data exploration, users can better understand the bigger picture and get to insights faster.

Steps:

- 1. Variable Identification
- 2. Univariate Analysis
- 3. Bi-Variable Analysis
- 4. Detecting / Treating missing values
- 5. Detecting / Treating outliers
- 6. Feature Engineering

Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data. Additionally, it provides an excellent way for employees or business owners to present data to non-technical audiences without confusion.

It can be employed as;

- Dashboards
- Story
- Reports

Code:

Data Exploration on Healthcare dataset# Import packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Reading the Dataset

```
data = pd.read_csv("/content/drive/My Drive/MachineLearning/train_data.csv")
data.head()
data.tail()
data.info()
data.nunique() / finding unique and null value
data.isnull().sum() (data.isnull()).sum()/(len(data))* 100
```

```
# Data Reduction data.drop(columns=['City_Code_Patient'], inplace = True)data.describe() / finding the mean value
```

Data Visualization on Healthcare Data:

import numpy as np import
pandas as pd import seaborn
as sns
sns.set(color_codes=True)
from matplotlib import pyplot as plt

data = pd.read_csv("/content/drive/My Drive/Machine Learning/train_data.csv")

sns.barplot(data['City_Code_Hospital'], data['City_Code_Patient'])

sns.stripplot(data['Department'], data['Available Extra Rooms in Hospital'])

radiotherapy anesthesia gynecology Chest diseaseurgery

Department

sns.scatterplot(data['Ward_Type'], data['Available Extra Rooms in Hospital'])

sns.heatmap(data.corr(),annot=True)

sns.jointplot(data['Severity of Illness'], data['Age'])

sns.pairplot(data,hue="Admission_Deposit")#multivariate

7.2 Feature 2

Predictive Model

Predictive analytics is a branch of advanced analytics that makes predictions about future outcomes using historical data combined with statistical modeling, data mining techniques and machine learning. Companies employ predictive analytics to find patterns in this data to identify risks and opportunities.

Flexible Platforms to build;

- 1. Scalability
- 2. Speed
- 3. Simplicity

Code:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as pltplt.style.use('classic')
# Preparing the data
data['Bed Grade'].fillna(data['Bed Grade'].mode()[0], inplace = True)test['Bed
Grade'].fillna(test['Bed Grade'].mode()[0], inplace = True)

data['City_Code_Patient'].fillna(data['City_Code_Patient'].mode()[0], inplace = True)

test['City_Code_Patient'].fillna(test['City_Code_Patient'].mode()[0], inplace = True)

from sklearn.preprocessing import LabelEncoderle =

LabelEncoder()
data['Stay'] = le.fit_transform(data['Stay'].astype('str'))

test['Stay'] = -1
df = pd.concat([data, test])
df.shape
```

```
# Label Encoding all the columns in Train and test datasets
for i in ['Hospital type code', 'Hospital region code', 'Department',
      'Ward_Type', 'Ward_Facility_Code', 'Type of Admission', 'Severity of Illness', 'Age']: le =
  LabelEncoder()
  df[i] = le.fit transform(df[i].astype(str))#
Spearating Train and Test Datasets data =
df[df['Stay']!=-1]
test = df[df['Stay'] == -1]
# Feature Engineering
def get_countid_enocde(data, test, cols, name):
 temp = data.groupby(cols)['case_id'].count().reset_index().rename(columns = {'case_id': name})temp2 =
 test.groupby(cols)['case id'].count().reset index().rename(columns = {'case id'}:
name})
 data = pd.merge(data, temp, how='left', on= cols)test =
 pd.merge(test,temp2, how='left', on= cols)data[name] =
 data[name].astype('float') test[name] =
 test[name].astype('float')
 data[name].fillna(np.median(temp[name]), inplace = True)
 test[name].fillna(np.median(temp2[name]), inplace = True)return
 data, test
data, test = get_countid_enocde(data, test, ['patientid'], name = 'count_id_patient') data, test
= get_countid_enocde(data, test,
                    ['patientid', 'Hospital_region_code'], name = 'count_id_patient_hospitalCode')data, test =
get_countid_enocde(data, test,
                    ['patientid', 'Ward_Facility_Code'], name = 'count_id_patient_wardfacilityCode')
# Droping duplicate columns
test1 = test.drop(['Stay', 'patientid', 'Hospital region code', 'Ward Facility Code'], axis =1) train1 =
data.drop(['case_id', 'patientid', 'Hospital_region_code', 'Ward_Facility_Code'], axis =1) # Splitting
train data for Naive Bayes and XGBoost
```

X1 = train1.drop('Stay', axis = 1)y1 =

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X1, y1, test_size = 0.20, random_state = 100)

train1['Stay']

Model

```
from sklearn.naive_bayes import GaussianNB
target = y_train.values
features = X_train.values
classifier nb = GaussianNB()
model nb = classifier nb.fit(features, target)
prediction_nb = model_nb.predict(X_test) from
sklearn.metrics import accuracy score
acc_score_nb = accuracy_score(prediction_nb,y_test)
print("Acurracy:", acc_score_nb*100)
# Segregation of features and target variable
X = \text{data.drop}(\text{'Stay'}, \text{axis} = 1)y
= data['Stay'] print(X.columns)
z = test.drop('Stay', axis = 1)
print(z.columns)
# Data Scaling
from sklearn import preprocessingX_scale =
preprocessing.scale(X) X_scale.shape
X train, X test, y train, y test = train test split(X scale, y, test size =0.20, random state =100) import
keras
from keras.models import Sequential from
keras.layers import Dense import
tensorflow as tf
from keras.utils import to_categorical
#Sparse Matrix
a = to_categorical(y_train) b
       to categorical(y test)
model = Sequential()
model.add(Dense(64, activation='relu', input_shape = (254750, 20)))
model.add(Dense(128, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(512, activation='relu'))
```

```
model.add(Dense(512, activation='relu'))
model.add(Dense(11, activation='softmax')) #
Prediction
# Naive Bayes
pred nb = classifier nb.predict(test1.iloc[:,1:]) result_nb =
pd.DataFrame(pred_nb, columns=['Stay'])result_nb['case_id']
= test1['case_id']
result_nb = result_nb[['case_id', 'Stay']]
# Neural Network
test_scale = preprocessing.scale(z)
test_scale.shape
# Naive Bayes
print(result_nb.groupby('Stay')['case_id'].nunique())
Stay
0-10
                           2598
11-20
                          26827
21-30
                          72206
31-40
                          15639
41-50
                            469
51-60
                          13651
61-70
                              92
                            955
71-80
81-90
                            296
91-100
More than 100 Days
                           4322
Name: case id, dtype: int64
```

Database Schema:

- 1. Case_id
- 2. Hospitla _code
- 3. Hospital_type_code
- 4. City_code_Hospital
- 5. Available Extra Rooms in Hospital 15. Age
- 6. Department
- 7. Ward_type
- 8. Ward_Facility_code
- 9. BedGrade
- 10.Patient_id

- 11. City_code_Patient
- 12. Type of Admission
- 13. Severity of Illness
- 14. Visitors with Patient
- 16. Admission_Deposit
- 17. Stay

TESTING

8.1 Test cases

Components	Test Scenario	Steps to Test data		Actual	Status
		Execute		Working	
Home Page	Verify user is able to navigate to the homepage	Navigate to Hospital Healthcare analytics page and view the Homepage	https:/ us1.ca.anal ytics.ibm.com/bi/? perspective=dashb oard&pathRef=.my _folders%2FAnalyti cs&action=view&m ode=dashboard	Working as expected	Pass
Analytics Dashboard	Verify that users are able to view the responsive dashboard and view the data about the current scenario	1. Enter the Analytics Homepage 2. Choose the dashboard option 3. View the data	https:/ us1.ca.anal ytics.ibm.com/bi/? perspective=dashb oard&pathRef=.my _folders%2FAnalyti cs&action=view&m ode=dashboard	Working as expected	Pass
Story	Verify whether the story is functioned on the analytics dashboard	1. Enter the Analytics Homepage 2. Choose thestory option 3. View the story about the Hospitaldata	https://us1.ca.anal ytics.ibm.com/bi/? perspective=story& pathRef=.my_folde rs%2FANALYTICS % 2BSTORY&action=v iew&mode=dashbo ard	Working as expected	Pass
Report	Verify user is able to view and run the reports	1. Enter the Analytics Homepage 2. Choose thereport option 3. View the story	https://us1.ca.anal ytics.ibm.com/bi/? pathRef=.my_folde rs%2FAnalytics%2B report	Working as expected	Pass

8.1 User Acceptance Testing

1. Purpose of the Document:

The purpose of this document is to briefly explain the test coverage and open issues of the Analytics for Hospital's Healthcare Data project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severit	Severit	Severit	Severit	Subtotal
	y1	y 2	y3	y4	
By Design	8	4	0	2	14
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	13	4	3	16	36
Not	0	0	1	0	1
Reproduced					
Skipped	0	0	1	1	2
Won't Fix	1	4	2	1	8
Totals	23	18	12	22	7
					6

3. Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested.

Section	Tota l Case s	Not Tested	Fai l	Pass
Print Engine	9	0	0	9
Client Application	43	0	0	43
Security	1	0	0	1
Outsource Shipping	1	0	0	1
Exception Reporting	9	0	0	9
Final Report Output	10	0	0	10
Version Control	1	0	0	1

RESULTS

9.1 Performance Metrics

Model Performance Testing:

ADVANTAGES AND DISADVANTAGES

ADVANTAGES

- 1. Decision making and uncovering the insights are more easier
- 2. Presence of Visualizations make the users to understand the prevailing scenario and take necessary actions
- 3. The prediction of Length of stay of patient in Hospital is made easier
- 4. Strategically Planning
- 5. Improved Health Outcomes
- 6. The staffing procedure is defined easily
- 7. Presence of Predictive Model

DISADVANTAGES

- 1. Health regulatory changes
- 2. Shortage of Healthcare staffing
- 3. Frequent collection of data
- 4. Cyber security Risk
- 5. Implementation of Predictive model may be tedious
- 6. Identifying right dataset

CONCLUSION

Analytics for Hospital's Healthcare data employed to have a track on patient's healthcare and Hospital Data. It involves in staffing and resource allocation. Thus an analytical strategy is required to take the right decision on Healthcare sector. Analytics for Hospital's Healthcare data system provides the procedure to uncover the insights and make the qualified decision making by implementing the predictive analytics.

FUTURE SCOPE

In future the analytics strategy will be equipped and employed with the improved decision making procedure, thereby choosing the right way of activity planning and processes. The visualization methods will be easy tounderstand for the stakeholders. The Predictive analytics will be equipped with more special methods.

APPENDIX

Cognos Embeded Web Application:

Source Code:

```
Index.html
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Analytics for Hospitals Healthcare Data</title>
  k href="https:/cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-
1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3"
crossorigin="anonymous">
  <script src="https:/ cdn.jsdelivr.net/npm/@popperjs/core@2.10.2/dist/umd/popper.min.js"</pre>
integrity="sha384-
7+zCNj/IqJ95wo16oMtfsKbZ9ccEh31eOz1HGyDuCQ6wgnyJNSYdrPa03rtR1zdB"
crossorigin="anonymous"></script>
  <script src="https:/ cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.min.js"</pre>
integrity="sha384-
QJHtvGhmr9XOIpI6YVutG+2QOK9T+ZnN4kzFN1RtK3zEFEIsxhlmWl5/YESvpZ13"
crossorigin="anonymous"></script>
   k rel="stylesheet" type="text/css" href="style.css">
</head>
<body>
  <div class="container-fluid" style="background-image: url(hospital.jpg); height: 500px;</pre>
background-repeat: no-repeat; background-size: cover; justify-content: center; align-items: center;
align-content: center;">
    <center>
      <div class="container">
```

<h1>ANALYTICS ON HOSPITAL'S HEALTHCARE DATA</h1>

The visualized representation of the

```
Healthcare data and patient's Health status 
       </div>
       </center>
    <br>>
    <center>
       <br/><button type="button" class="btn btn-primary" style="width:300px; color:white; font-size: larger;
font-weight: bolder;">Explore</button>
    </center>
  </div><br>
  <div class="row row-cols-1 row-cols-md-3 g-4">
    <div class="col">
      <div class="card h-100" style="box-shadow: 5px 5px 5px grey;">
       <center><img src="dashboard.png" class="card-img-top" alt="..." style="width: 270px;</pre>
padding-top: 10px;"></center>
       <div class="card-body">
        <h5 class="card-title" style="text-align: center;">DASHBOARD</h5>
        <center><a href="Dashboard.html" class="btn btn-primary" style="width: 150px;">View</a></center>
       </div>
      </div>
    </div>
     <div class="col">
      <div class="card h-100" style="box-shadow: 5px 5px 5px grey;">
       <center><img src="report.jpg" class="card-img-top" alt="..."style="width:</pre>
230px;"></center>
       <div class="card-body">
        <h5 class="card-title"style="text-align: center;">REPORT</h5>
        <center><a href="Report.html" class="btn btn-primary" style="width: 150px;">View</a></center>
       </div>
      </div>
    </div>
    <div class="col">
      <div class="card h-100" style="box-shadow: 5px 5px 5px grey;">
```

```
<center><img src="story.png" class="card-img-top" alt="..."style="width: 350px;"></center>
       <div class="card-body">
        <h5 class="card-title"style="text-align: center;">STORY</h5>
        <center><a href="story.html" class="btn btn-primary" style="width: 150px;">View</a></center>
       </div>
     </div>
    </div>
  </div>
  <br>
  <div class="container-fluid" style="display: flex; flex-wrap: wrap;">
    <div class="heading" style="background-color: yellow; padding: 20px; width: 50%;">
       <h2 style="font-family: 'Poppins',sans-seirf;text-align: center; margin-top: 50px;">Near by Hospitals</h2>
       The COVID patients can find their nearby Hospitals by visiting the
google map. Peoples can utilize the Hospitals services to test their COVID positivity.
    </div>
    <div class="map" style="width:50%;">
       <iframe
src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d62880.5582204828!2d78.
09430301984648!3d9.931052435772585!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!
1s0x3b00c572ffdcafa9%3A0xab4b16a274933755!2sApollo%20Hospitals!5e0!3m2!1sen!2sin!4
v1668337968054!5m2!1sen!2sin" width="650px" height="450" style="border:0;" allowfullscreen=""
loading="lazy" referrerpolicy="no-referrer-when-downgrade"></iframe>
    </div>
  </div>
</body>
</html>
```

Dashboard. html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>DASHBOARD: Hospital Analytics</title>
         k href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
rel="stylesheet"
                                                                                 integrity="sha384-
1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3"crossorigin="anonymous">
    <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.10.2/dist/umd/popper.min.js"</pre>
integrity="sha384-7+zCNj/IqJ95wo16oMtfsKbZ9ccEh31eOz1HGyDuCQ6wgnyJNSYdrPa03rtR1zdB"
crossorigin="anonymous"></script>
           <script
                    src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.min.js"
integrity="sha384-
QJHtvGhmr9XOIpI6YVutG+2QOK9T+ZnN4kzFN1RtK3zEFEIsxhlmWl5/YESvpZ13"
crossorigin="anonymous"></script>
  <style>a{
    text-decoration: none;
   }
  </style>
</head>
<body>
 <nav class="navbar bg-light fixed-top">
  <div class="container-fluid">
                <a class="navbar-brand"
                                             href="#"
                                                                                       font-weight:
                                                        style="font-size:
                                                                            xx-large;
bolder;">DASHBOARD</a>
           <button class="navbar-toggler" type="button" data-bs-toggle="offcanvas" data-bs-</pre>
target="#offcanvasNavbar" aria-controls="offcanvasNavbar">
    <span class="navbar-toggler-icon"></span>
   </button>
            <div class="offcanvas offcanvas-end" tabindex="-1" id="offcanvasNavbar" aria-
labelledby="offcanvasNavbarLabel">
    <div class="offcanvas-header">
     <h5 class="offcanvas-title" id="offcanvasNavbarLabel">OPTIONS</h5>
```

```
<button type="button" class="btn-close" data-bs-dismiss="offcanvas" aria-
label="Close"></button>
    </div>
    <div class="offcanvas-body">
     cli class="nav-item">
       <a class="nav-link active" aria-current="page" href="index.html">Home</a>
      <a class="nav-link dropdown-toggle" href="#" role="button" data-bs-toggle="dropdown" aria-
expanded="false">
        Dashboards
       </a>
       <a class="dropdown-item" href="dashhome.html">Dash-Home</a>
                     <a class="dropdown-item" href="department.html">Departments and</a>
Wards</a>
                 <a class="dropdown-item" href="severity.html">Patients Disease Severity</a>
Status</a>
        \langle li \rangle
         <hr class="dropdown-divider">
        <a class="dropdown-item" href="Overall.html">Overall Analysis</a>
       </div>
   </div>
  </div>
 </nav><br><br>>
  <center>
    <img src="Dashboards.png" class="img-fluid" width="60%" style="height: 430px;">
  </center>
  <div class="row row-cols-1 row-cols-md-2 g-4">
    <div class="col">
     <div class="card" style="box-shadow: 10px 10px 6px skyblue;">
      <center><img src="icon.jpg" class="card-img-top" alt="..." style="width: 250px;"></center>
      <div class="card-body" style="text-align: center;">
       <a href="dashhome.html"><h5 class="card-title">Home</h5></a>
```

```
View the Hospital region and the summary of Admission in theHospitals
      </div>
     </div>
    </div>
    <div class="col">
     <div class="card" style="box-shadow: 10px 10px 6px skyblue;">
                 <center><img src="departments.jpg" class="card-img-top" alt="..."style="width:</pre>
270px;"></center>
      <div class="card-body" style="text-align: center;">
       <a href="department.html"><h5 class="card-title">Departments and Wards</h5></a>
           Departments and Ward Data can be analyzed here and status isknown
      </div>
     </div>
    </div>
    <div class="col">
     <div class="card" style="box-shadow: 10px 10px 6px skyblue;">
                    <center><img src="Patient.jpg" class="card-img-top" alt="..." style="width:</pre>
290px;"></center>
      <div class="card-body" style="text-align: center;">
       <a href="severity.html"><h5 class="card-title">Patients Disease Severity Status</h5></a>
        COVID Patients status on severity of illness
      </div>
     </div>
    </div>
    <div class="col">
     <div class="card" style="box-shadow: 10px 10px 6px skyblue;">
                    <center><img src="analytics.jpg" class="card-img-top" alt="..."style="width:</pre>
290px;"></center>
      <div class="card-body" style="text-align: center;">
       <a href="Overall.html"><h5 class="card-title">Overall</h5></a>
        The Overall Scenario of the Hospital Visualizations
      </div>
     </div>
    </div>
   </div>
</body>
</html>
```

report.html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Report</title>
        k href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
rel="stylesheet"
                                                                           integrity="sha384-
1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3"crossorigin="anonymous">
    <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.10.2/dist/umd/popper.min.js"</pre>
integrity="sha384-7+zCNj/IqJ95wo16oMtfsKbZ9ccEh31eOz1HGyDuCQ6wgnyJNSYdrPa03rtR1zdB"
crossorigin="anonymous"></script>
          <script
                   src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.min.js"
integrity="sha384-
QJHtvGhmr9XOIpI6YVutG+2QOK9T+ZnN4kzFN1RtK3zEFEIsxhlmWl5/YESvpZ13"
crossorigin="anonymous"></script>
</head>
<body>
  <nav class="navbar navbar-expand-lg navbar-dark bg-primary">
    <div class="container-fluid">
              <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#menu">
        <span class="navbar-toggler-icon"></span>
      </button>
      <div class="collapse navbar-collapse" id="menu">
        cli class="nav-item">
           <a class="nav-link" href="index.html">Home</a>
          </div>
    </div>
  </nav>
<center><iframe
src="https://us1.ca.analytics.ibm.com/bi/?pathRef=.my_folders%2FAnalytics%2Breport&cl
oseWindowOnLastView=true&ui appbar=false&ui navbar=false&shareMode=em
```

```
bedded&action=run&format=HTML&prompt=false" width="100%" height="600" frameborder="0" gesture="media" allow="encrypted-media" allowfullscreen=""></iframe></center>
</body>
</html>
```

Story.html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Story</title>
         k href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
rel="stylesheet"
                                                                            integrity="sha384-
1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3"crossorigin="anonymous">
    <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.10.2/dist/umd/popper.min.js"</pre>
integrity="sha384-7+zCNj/IqJ95wo16oMtfsKbZ9ccEh31eOz1HGyDuCQ6wgnyJNSYdrPa03rtR1zdB"
crossorigin="anonymous"></script>
                   src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.min.js"
          <script
integrity="sha384-
QJHtvGhmr9XOIpI6YVutG+2QOK9T+ZnN4kzFN1RtK3zEFEIsxhlmWl5/YESvpZ13"
crossorigin="anonymous"></script>
</head>
<body>
  <nav class="navbar navbar-expand-lg navbar-dark bg-primary">
    <div class="container-fluid">
              <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#menu">
        <span class="navbar-toggler-icon"></span>
      </button>
      <div class="collapse navbar-collapse" id="menu">
        cli class="nav-item">
            <a class="nav-link" href="index.html">Home</a>
```

```
</div>
</div>
</div>
</center><iframe
src="https://us1.ca.analytics.ibm.com/bi/?perspective=story&amp;pathRef=.my_folders%2FAN
ALYTICS%2BSTORY&amp;closeWindowOnLastView=true&amp;ui_appbar=false&amp;ui_navbar
=false&amp;shareMode=embedded&amp;action=view&amp;sceneId=model0000018456067085
_00000001&amp;sceneTime=0" width="100%" height="600" frameborder="0" gesture="media"
allow="encrypted-media" allowfullscreen=""></iframe></center>
</body>
</html>
```

GITHUB PAGE:

https://github.com/IBM-EPBL/IBM-Project-37579-1660312773

PROJECT DEMO:

https://drive.google.com/file/d/1tZKo8TmC3N_VpShhP2KjVX7A6WYYJ0oi/view?usp=sharing