

정답 및 풀이

Ⅱ 제곱근과 실수

1. 제곱근과 실수

Ⅱ 문자와 식

- 1. 다항식의 곱셈과 인수분해
- 2. 이차방정식

Ⅲ 이차함수

- 1. 이차함수와 그래프
- 2. 이차함수 $y=ax^2+bx+c$ 의 그래프

Ⅳ 삼각비

1. 삼각비

V ^원

- 1. 원과 직선
- 2. 원주각

Ⅵ 통계

- 1. 대푯값과 산포도
- 2. 상관관계

Ⅱ. 제곱근과 실수

1. 제곱근과 실수

01~02 제곱근과 실수 기초

412쪽

10
$$-\frac{3}{7}$$

11
$$-0.2$$

13 -1 14 6
16 (1)
$$\sqrt{10}$$
 (2) <

01~02 제곱근과 실수 기본

413쪽

$$03 - 55$$

04
$$-2a+b$$
 05 5

07
$$1+\sqrt{5}$$
, $1-\sqrt{5}$

- **09** 11
- **01** ① 4의 제곱근은 $\pm \sqrt{4} = \pm \sqrt{2^2} = \pm 2$ 이다.
 - ② 제곱근 9는 $\sqrt{9} = \sqrt{3^2} = 3$ 이다.
 - ③ 어떤 수를 제곱하면 0이거나 양수이다. 음수의 제곱근 은 없다.
 - $(4)(-4)^2=16$ 이고, 16의 제곱근은 $\pm \sqrt{16} = \pm \sqrt{4^2} = \pm 4$
 - ⑤ 양수의 제곱근은 양수와 음수로 2개이지만, 0의 제곱근 은 0으로 1개이고, 음수의 제곱근은 없다.
- **03** $\sqrt{(-25)^2}$ =25이므로 25의 음의 제곱근 a는 a= -5 $\sqrt{121} = \sqrt{11^2} = 11$ 이므로 11의 양의 제곱근 $b = \sqrt{11}$ $\sqrt{11}ab = \sqrt{11} \times (-5) \times \sqrt{11}$ $=(-5)\times\sqrt{11}\times\sqrt{11}=-55$
- **04** *a*<*b*. *ab*<0이므로 *a*<0. *b*>0 그러므로 $\sqrt{4a^2} = \sqrt{(2a)^2} = -2a$, $\sqrt{b^2} = b$ $\sqrt{4a^2} + \sqrt{b^2} = -2a + b$

- **05** $\sqrt{180x} = \sqrt{2^2 \times 3^2 \times 5 \times x}$ 가 자연수가 되려면 $2^2 \times 3^2 \times 5 \times x$ 는 어떤 자연수의 제곱이 되어야 한다. 따라서 조건을 만족시키는 x는 5, 5×2^2 , 5×3^2 , …과 같이 $5 \times ($ 자연수 $)^2$ 의 꼴이고 이 중 가장 작은 자연수는 5이다.
- 06 ⑤ 수직선은 유리수와 무리수로 이루어진 실수에 대응하는 점들로 완전히 메울 수 있다.
- **08** ① $(\sqrt{10}-1)-3=\sqrt{10}-4=\sqrt{10}-\sqrt{16}<0$ 따라서 $\sqrt{10} - 1 < 3$
 - ② $(2+\sqrt{5})-(\sqrt{6}+\sqrt{5})=2+\sqrt{5}-\sqrt{6}-\sqrt{5}$ $=2-\sqrt{6}=\sqrt{4}-\sqrt{6}<0$

따라서 $2+\sqrt{5}<\sqrt{6}+\sqrt{5}$

- $(\sqrt{10}-1)-(\sqrt{10}-\sqrt{2})=\sqrt{10}-1-\sqrt{10}+\sqrt{2}$ $=-1+\sqrt{2}=-\sqrt{1}+\sqrt{2}>0$ 따라서 $\sqrt{10}-1>\sqrt{10}-\sqrt{2}$
- $(4)(4-\sqrt{7})-(\sqrt{20}-\sqrt{7})=4-\sqrt{7}-\sqrt{20}+\sqrt{7}$ $=4-\sqrt{20}=\sqrt{16}-\sqrt{20}<0$ 따라서 $4-\sqrt{7}<\sqrt{20}-\sqrt{7}$
- $(5)(\sqrt{24}+2)-7=\sqrt{24}-5=\sqrt{24}-\sqrt{25}<0$ 따라서 $\sqrt{24} + 2 < 7$
- **09** $2 < \sqrt{x} < 4$ 에서 4 < x < 16따라서 자연수 x는 5, 6, 7, ···, 15이므로 11개이다.

01~02 제곱근과 실수 발전

414쪽

- **01** 1, 10, 17, 22, 25
- **02** 0
- **03** 75
- **04** $\sqrt{\frac{1}{n}}$, n^2
- **01** $\sqrt{26-a}$ 가 자연수가 되려면 26-a가 어떤 자연수의 제곱 이어야 한다.

 $26-a=1^2$, 즉 26-a=1일 때 a=25

 $26-a=2^2$, 즉 26-a=4일 때 a=22

 $26-a=3^2$. 즉 26-a=9일 때 a=17

 $26-a=4^2$, 즉 26-a=16일 때 a=10

 $26-a=5^2$, 즉 26-a=25일 때 a=1

02 0<a<3이므로 -a<0, a-3<0, 3-a>0 $\sqrt{(-a)^2} - \sqrt{(a-3)^2} - \sqrt{a^2} + \sqrt{(3-a)^2}$ $=a-\{-(a-3)\}-a+(3-a)$ =a+a-3-a+3-a=0

- **03** f(1)=f(2)=f(3)=1
 - f(4)=f(5)=f(6)=f(7)=f(8)=2
 - f(9) = f(10) = f(11) = f(12) = f(13) = f(14)=f(15)=3
 - f(16) = f(17) = f(18) = f(19) = f(20) = f(21) = f(22)=f(23)=f(24)=4

f(25)=5이므로

- $f(1)+f(2)+f(3)+\cdots+f(23)+f(24)+f(25)$
- $=1 \times 3 + 2 \times 5 + 3 \times 7 + 4 \times 9 + 5 \times 1$
- =3+10+21+36+5=75
- **04** 0 < n < 1이므로 $0 < n^2 < n$ 이고, $n < 1 < \frac{1}{n}$ 이다. $n^2 < n$ 이므로 $\sqrt{n^2} < \sqrt{n}$ 에서 $n < \sqrt{n}$ $n < \frac{1}{n}$ 이므로 $\sqrt{n} < \sqrt{\frac{1}{n}}$ 따라서 $n^2 < n < \sqrt{n} < \sqrt{\frac{1}{n}}$ 이므로
 - 가장 큰 값은 $\sqrt{\frac{1}{n}}$ 이고, 가장 작은 값은 n^2 이다.

03 근호를 포함한 식의 계산 기초

415쪽

- **01** 5, 15
- **02** 5. 2 **03** 4. 4

- **04** $\sqrt{28}$
- **05** $\sqrt{50}$
- **06** $3\sqrt{6}$

- **07** $9\sqrt{3}$ **08** 5, 5, 5, 15 **09** 4, 7
- **10** 11, -4
- **11** 11, -6, -6, 2

- 12 $\sqrt{21}$ 13 $\sqrt{30}$ 14 $\frac{\sqrt{3}}{2}$

- 15 3 16 $\frac{2\sqrt{7}}{7}$ 17 $\frac{\sqrt{15}}{2}$
- 18 $\frac{2\sqrt{7}-5\sqrt{2}}{2}$ 19 $\frac{2\sqrt{3}+3\sqrt{6}}{6}$ 20 $3\sqrt{2}$

- **21** $-7\sqrt{3}$ **22** $\frac{7}{3}$ **23** $-\sqrt{2}+2$
- 24 3

03 근호를 포함한 식의 계산 기본

416쪽

- **01** 15
- **02** ④
- **03** 2

- **04** $3\sqrt{2}$
- **05** $9\sqrt{5}$
- **06** 8

- **07** 3008
- 08 ③
- **09** 0

- **02** $\sqrt{96} = 4\sqrt{6} = (\sqrt{2})^4 \times \sqrt{2} \times \sqrt{3} = a^5 \times b = a^5 b$
- **03** $\sqrt{98} \times \sqrt{a} = \sqrt{98a}$ 가 자연수가 되려면 98a가 어떤 자연수의 제곱이 되어야 한다. $98a = 2 \times 7^2 \times a$ 에서 a = 2

05
$$a=\sqrt{20}$$
, $b=\sqrt{45}$, $c=\sqrt{80}$ 이므로 $a+b+c=\sqrt{20}+\sqrt{45}+\sqrt{80}$ $=2\sqrt{5}+3\sqrt{5}+4\sqrt{5}$ $=9\sqrt{5}$

- **06** $\sqrt{2}A \sqrt{10}B$ = $\sqrt{2}(\sqrt{10} - \sqrt{2}) - \sqrt{10}(\sqrt{2} - \sqrt{10})$ = $2\sqrt{5} - 2 - (2\sqrt{5} - 10) = 8$
- **07** √5.92=2.433이므로 *a*=2.433 √5.75=2.398이므로 *b*=5.75 따라서 1000*a*+100*b*=2433+575=3008
- **09** 정사각형의 대각선의 길이가 $\sqrt{2}$ 이므로 점 A에 대응하는 수는 $-1+\sqrt{2}$ 이고, 점 B에 대응하는 수는 $2-\sqrt{2}$ 이다. 따라서 $2a-\sqrt{2}b=2(-1+\sqrt{2})-\sqrt{2}(2-\sqrt{2})$ $=-2+2\sqrt{2}-2\sqrt{2}+2=0$

03 근호를 포함한 식의 계산 발전

417쪽

- **01** 720
- **02** $\frac{6\sqrt{5}}{5}$
- **03** $12-4\sqrt{7}$
- **04** 둘레의 길이: $10\sqrt{11}-2$, 넓이: $42-3\sqrt{22}$
- $\begin{aligned} \textbf{01} \ \sqrt{2} \times \sqrt{3} \times \sqrt{4} \times \sqrt{5} \times \sqrt{6} \times \sqrt{7} \times \sqrt{8} \times \sqrt{9} \times \sqrt{10} \\ = & \sqrt{2} \times \sqrt{3} \times 2 \times \sqrt{5} \times (\sqrt{2} \times \sqrt{3}) \times \sqrt{7} \times 2\sqrt{2} \times 3 \times (\sqrt{2} \times \sqrt{5}) \\ = & 6 \times 2 \times 5 \times 4 \times 3 \times \sqrt{7} = 720\sqrt{7} \end{aligned}$
- 02 a > 0, ab > 0에서 b > 0이므로 $\frac{a^2}{b} \sqrt{\frac{b^3}{a^2}} + \frac{b}{a^2} \sqrt{\frac{a^2}{b^3}}$ $= \sqrt{\frac{a^4}{b^2} \times \frac{b^3}{a^2}} + \sqrt{\frac{b^2}{a^4} \times \frac{a^2}{b^3}} = \sqrt{a^2b} + \sqrt{\frac{1}{a^2b}}$ $= \sqrt{a^2b} + \frac{1}{\sqrt{a^2b}} = \sqrt{5} + \frac{1}{\sqrt{5}} = \sqrt{5} + \frac{\sqrt{5}}{5} = \frac{6\sqrt{5}}{5}$
- **03** $2 < \sqrt{7} < 3$ 이므로 $-3 < -\sqrt{7} < -2$ 이고 $4 < 7 \sqrt{7} < 5$ 이다.

- 그러므로 $7-\sqrt{7}$ 의 정수 부분 a는 a=4, $7-\sqrt{7}$ 의 소수 부분 b는 $b=(7-\sqrt{7})-4=3-\sqrt{7}$ 따라서 $\frac{7ab}{\sqrt{7}+a+b}=\frac{7\times4\times(3-\sqrt{7})}{\sqrt{7}+4+3-\sqrt{7}}=12-4\sqrt{7}$
- 04 도형의 둘레의 길이는 $2\times2\sqrt{11}-2+2(2\sqrt{11}-\sqrt{2})+2\times1+2\sqrt{11}-2+2\sqrt{2}$ $=4\sqrt{11}-2+4\sqrt{11}-2\sqrt{2}+2+2\sqrt{11}-2+2\sqrt{2}$ $=10\sqrt{11}-2$ 넓이는 $2\sqrt{11}\times(2\sqrt{11}-\sqrt{2})-(\sqrt{22}+2)$ $=44-2\sqrt{22}-\sqrt{22}-2$ $=42-3\sqrt{22}$

대단원 평가 문제

418쪽~419쪽

- 01 @
 02 @
 03 ①, @

 04 @
 05 $a=2-\sqrt{13}$, $b=2+\sqrt{13}$

 06 $10-3\sqrt{5}$ 07 @
 08 ¬, =, \Box

 09 14 m/s 10 12 11 18.25

 12 $-14+14\sqrt{2}$ 13 @
 14 $\frac{10}{3}$
- **15** $2\sqrt{10}$
- **04** 0 < a < 1에서 a-1 < 0, 1-a > 0따라서 $\sqrt{(a-1)^2} - \sqrt{(1-a)^2}$ = -a+1-(1-a)=-a+1-1+a=0
- **05** 직사각형의 대각선의 길이가 $\sqrt{2^2+3^2}=\sqrt{13}$ 이므로 점 A에 대응하는 수는 $2-\sqrt{13}$, 점 B에 대응하는 수는 $2+\sqrt{13}$, 따라서 $a=2-\sqrt{13},\ b=2+\sqrt{13}$
- 06 $2<\sqrt{5}<3$ 이므로 $4<2+\sqrt{5}<5$ 그러므로 $2+\sqrt{5}$ 의 정수 부분 a는 a=4소수 부분 b는 $b=(2+\sqrt{5})-4=\sqrt{5}-2$ 따라서 $a-3b=4-3(\sqrt{5}-2)$ $=4-3\sqrt{5}+6$ $=10-3\sqrt{5}$
- **07** $\sqrt{0.11} = \sqrt{\frac{11}{100}} = \sqrt{\frac{11}{10^2}} = \frac{\sqrt{11}}{10} = \frac{a}{10}$
- 09 h=10이므로 $v=\sqrt{2\times9.8\times10}$ $=\sqrt{2\times98}=\sqrt{2^2\times7^2}=14 \text{ (m/s)}$

12
$$\frac{10 - 2\sqrt{2}}{\sqrt{2}} - (-2\sqrt{3})^2 + \frac{1}{3} \left(4\sqrt{6} \div \frac{4}{3\sqrt{27}} \right)$$
$$= 5\sqrt{2} - 2 - 12 + \frac{1}{3} \left(4\sqrt{6} \times \frac{3\sqrt{27}}{4} \right)$$
$$= 5\sqrt{2} - 14 + \frac{1}{3} \times 27\sqrt{2}$$
$$= -14 + 14\sqrt{2}$$

15 처음 정사각형의 넓이는 새로 만들어진 정사각형 ABCD 의 넓이의 2배이므로 처음 정사각형의 한 변의 길이를 x라고 하면 $x^2 = 2 \times 20 = 40$ 따라서 $x = 2\sqrt{10}$

서술형 평가 문제

420쪽~421쪽

01
$$-28$$
 02 $-3a+b-ab$ 03 12
04 $\sqrt{3}-\sqrt{2}$ 05 $\frac{3\sqrt{5}+\sqrt{30}}{4}$ 06 2
07 -57 08 $14\sqrt{2}$

01 $64 = \sqrt{8^2} = 8$ 이고, 8의 음의 제곱근은 $-\sqrt{8}$ 이므로 $a = -\sqrt{8} = -2\sqrt{2}$ … ① $\sqrt{(-7)^2} = \sqrt{49} = \sqrt{7^2} = 7$ 이고, 7의 양의 제곱근은 $\sqrt{7}$ 이므로 $b = \sqrt{7}$ … ② $\sqrt{14}ab = \sqrt{14} \times (-2\sqrt{2}) \times \sqrt{7}$ = -28 … ③

채점 기준	배점
1 <i>a</i> 의 값 구하기	30 %
② <i>b</i> 의 값 구하기	30 %
$\sqrt[3]{14ab}$ 의 값 구하기	40 %

02 *a*<0. *b*>0이므로

$$b-a>0에서 \sqrt{(b-a)^2}=b-a \qquad \cdots 1$$

$$a-b<0에서 \sqrt{(a-b)^2}=-(a-b) \qquad \cdots 2$$

$$ab<0에서 \sqrt{a^2b^2}=-ab \qquad \cdots 3$$
따라서
$$\sqrt{a^2}-\sqrt{b^2}+\sqrt{(b-a)^2}+\sqrt{(a-b)^2}+\sqrt{a^2b^2}$$

$$=-a-b+(b-a)-(a-b)-ab$$

$$=-a-b+b-a-a+b-ab$$

$$=-3a+b-ab \qquad \cdots 4$$

채점 기준	배점
$oldsymbol{0}\sqrt{\left(b\!-\!a ight)^2}$ 간단히 하기	20 %
$oldsymbol{arrho}\sqrt{(a\!-\!b)^2}$ 간단히 하기	20 %
$oldsymbol{3}\sqrt{a^2b^2}$ 간단히 하기	20 %
4 식을 간단히 나타내기	40 %

03 큰 색종이의 한 변의 길이는 $\sqrt{75n}$ 이고 $\sqrt{75n} = \sqrt{3 \times 5^2 \times n}$ 이 자연수가 되려면 자연수 n은 $3 \times ($ 자연수 $)^2$ 의 꼴이어야 한다. 즉, n은 3×1^2 , 3×2^2 , 3×3^2 , 3×4^2 , 3×5^2 , … 에서 n은 3, 12, 27, 48, 75, … 작은 색종이의 한 변의 길이는 $\sqrt{48-n}$ 이고 $\sqrt{48-n}$ 이 자연수가 되려면 48-n은 (자연수)²의 꼴이어야 한다. 즉, 48-n은 1^2 , 2^2 , 3^2 , 4^2 , 5^2 , 6^2 에서 n은 47. 44. 49. 39. 32, 23. 12 … ②

1-1 1 0 0 1 1 1 1	X
채점 기준	배점
$oldsymbol{0}$ 큰 색종이에서 자연수 n 의 값 구하기	40 %
② 작은 색종이에서 자연수 #이 갔 구하기	40 %

따라서 조거은 마족시키는 자연수 n의 값은 12이다

 ① 큰 색종이에서 자연수 n의 값 구하기
 40 %

 ② 작은 색종이에서 자연수 n의 값 구하기
 40 %

 ③ 자연수 n의 값 구하기
 20 %

채점 기준	배점
음수인 것을 찾아 대소 비교하기	30 %
양수인 것을 찾아 대소 비교하기	40 %
❸ 크기순으로 나열하여 오른쪽에서 세 번째에 있는 수 찾기	30 %

따라서 오른쪽에서 세 번째에 있는 수는 $\sqrt{3}-\sqrt{2}$ 이다 …

 $-\sqrt{3}$, $-3+\sqrt{3}$, 0, $\sqrt{3}-\sqrt{2}$, $\sqrt{2}+1$, $2+\sqrt{3}$

05 (삼각형의 넓이)
$$= \frac{1}{2} \times (3+\sqrt{6}) \times \sqrt{30}$$
 $= \frac{3}{2} \sqrt{30} + 3\sqrt{5}$ ① (사각형의 넓이) $= \sqrt{24}x = 2\sqrt{6}x$ ② 따라서 $2\sqrt{6}x = \frac{3}{2} \sqrt{30} + 3\sqrt{5}$ 에서 $x = \left(\frac{3}{2}\sqrt{30} + 3\sqrt{5}\right) \times \frac{1}{2\sqrt{6}} = \frac{3}{4}\sqrt{5} + \frac{\sqrt{30}}{4}$ $= \frac{3\sqrt{5} + \sqrt{30}}{4}$... ③

채점 기준	배점
삼각형의 넓이 구하기	30 %
사각형의 넓이 구하기	20 %
③ <i>x</i> 의 값 구하기	50 %

06
$$\sqrt{42} \times \left(\frac{10}{\sqrt{24}} - \sqrt{3}\right) + (\sqrt{28} - 2) \div \frac{\sqrt{2}}{3}$$

$$=5\sqrt{7}-3\sqrt{14}+(2\sqrt{7}-2)\times\frac{3}{\sqrt{2}}$$

$$=5\sqrt{7}-3\sqrt{14}+3\sqrt{14}-3\sqrt{2}$$

$$=5\sqrt{7}-3\sqrt{2}=a\sqrt{7}+b\sqrt{2}$$

따라서 a=5, b=-3이므로

$$a+b=5+(-3)=2$$

...

...2

채점 기준	배점
$oldsymbol{0}$ 주어진 식을 $a\sqrt{7}+b\sqrt{2}$ 의 꼴로 정리하기	60 %
② a, b의 값 각각 구하기	20 %
③ a+b의 값 구하기	20 %

07 $x=4\sqrt{18}-2\sqrt{8}+6\sqrt{2}=12\sqrt{2}-4\sqrt{2}+6\sqrt{2}$

$$=14\sqrt{2}$$

...

$$y = 2\sqrt{125} - \sqrt{45} + 10\sqrt{5} = 10\sqrt{5} - 3\sqrt{5} + 10\sqrt{5}$$

$$=17\sqrt{5}$$

...2

따라서
$$\sqrt{2}x-\sqrt{5}y=14\times2-17\times5$$

$$=28-85=-57$$

....

채점 기준	배점
① <i>x</i> 의 값 구하기	40 %
② <i>y</i> 의 값 구하기	40 %
$\sqrt{2}x-\sqrt{5}y$ 의 값 구하기	20 %

08 정사각형 AEFB의 넓이가 18이므로

$$\overline{AB} = \sqrt{18} = 3\sqrt{2}$$

...

정사각형 ADGH의 넓이가 32이므로

$$\overline{AD} = \sqrt{32} = 4\sqrt{2}$$

...2

따라서 직사각형 ABCD의 둘레의 길이는

$$2 \times (3\sqrt{2} + 4\sqrt{2}) = 14\sqrt{2}$$

채점 기준	배점
$f O$ $\overline{ m AB}$ 의 길이 구하기	30 %
② AD의 길이 구하기	30 %
③ 직사각형 ABCD의 둘레의 길이 구하기	40 %

Ⅲ. 문자와 식

1. 다항식의 곱셈과 인수분해

01~02 다항식의 곱셈과 인수분해 기초

422쪽

423쪽

03 9

05 2. 7

06 3ac + ad - 6bc - 2bd

07
$$x^2+4x+4$$

08 $y^2 - 16$

02 4.4

04 5. 6

09
$$x^2 - 3x - 10$$

10 $6x^2 + 7x - 3$

11
$$5x^2 + 4x$$

12 $7a^2 - a - 1$ **14** 3xy(x+2y)

13
$$m(a+b)$$
 15 $(x+3)^2$

16 $(2x-3)^2$

18 $9b^2$

19
$$(x+5)(x-5)$$

20 4(2x+1)(2x-1)

21
$$(a+5)(a-2)$$

22 (x-2)(2x-1)

01~02 다항식의 곱셈과 인수분해 기본

01 ①

02 a=2, b=12, c=9

03 4

04 x+2

05 ④

06 (1), (5)

07 - 8

08 ③

09 *b*, *b*+1

- **02** $(ax+3)^2 = a^2x^2 + 6ax + 9 = 4x^2 + bx + c$ a > 0이므로 a = 2. c = 96a = b이므로 b = 12
- **03** $(x+a)(x+b)=x^2+(a+b)x+ab=x^2+mx+8$ 이므로 ab=8이고 m=a+b이다. 두 수의 곱이 8인 경우는 1과 8, 2와 4, -1과 -8, -2와 -4이므로 가능한 m의 값은 -9, -6, 6, 9이다.
- **07** $3x^2 + ax + 5$ 가 x 1을 인수로 가지므로 $3x^2 + ax + 5 = (x-1)(mx+n)$ $=mx^2+(-m+n)x-n$ 에서 m=3, n=-5이다. 따라서 a=-m+n이므로 a=-8이다.

01~02 다항식의 곱셈과 인수분해 발전

424쪽

01 12

02 (x-4)(x-6)

03 a=1 b=2

04 a=2, b=5

01 이차식 $x^2 + ax + b$ 가 완전제곱식이므로

$$b = \left(\frac{a}{2}\right)^2$$
에서 $4b = a^2$ 이다.

이때 b는 10 이하의 자연수이므로

b=1일 때 a=2, b=4일 때 a=4, b=9일 때 a=6따라서 모든 a의 값의 합은

2+4+6=12

02 경민이는 상수항을 바로 보았으므로

 $(x-1)(x-24)=x^2-25x+24$ 에서 상수항은 24이다. 선주는 x의 계수를 바로 보았으므로

 $(x-1)(x-9)=x^2-10x+9$ 에서 x의 계수는 -10이다. 따라서 $x^2-10x+24=(x-4)(x-6)$

03 $(3a+b)^2-(a-2b)^2$

=(3a+b+a-2b)(3a+b-a+2b)

=(4a-b)(2a+3b)=16

2a+3b=8이므로 4a-b=2

이때 두 일차방정식 2a+3b=8. 4a-b=2를 연립하여 풀 면 a=1, b=2이다.

04 ab-b+2a-2=b(a-1)+2(a-1)

$$=(a-1)(b+2)$$

이때 $a \ge 0$, $b \ge 0$ 이므로 (a-1)(b+2) = 7인 경우는 a-1=1, b+2=7일 때뿐이다.

따라서 구하는 a. b의 값은 a=2. b=5이다.

2. 이차방정식

01~02 이처방정식 기초

425쪽

01 ()

02 ()

03 ×

04 ×

05 (

06 ()

07 x = -2 x = 1 **08** x = -3 x = 1

09 x=0 x=5 **10** $x=\frac{3}{4}$ $x=\frac{5}{3}$

11 x = -7 $\cancel{\Xi} = x = 3$ 12 x = -6 $\cancel{\Xi} = x = -4$

13
$$x = -\frac{1}{5}$$
 $\mathcal{L} = \frac{1}{2}$

14
$$x = \frac{3}{4}$$

15
$$x = -\frac{14}{3}$$
 $x = \frac{16}{3}$

16
$$x=1\pm\sqrt{6}$$

16
$$x=1\pm\sqrt{6}$$
 17 $x=-5\pm2\sqrt{6}$

18
$$x = -\frac{1}{2}$$
 $x = \frac{3}{4}$

19
$$x = \frac{5 \pm \sqrt{65}}{4}$$

20 (7) x+1 (4) x+1 (7) x (2) 13 (9) 12 (4) 13

01~02 이처방정식 기본

426쪽

01 ③

02 ⑤

03 ⑤

04 -10 **05** ④

06 $x = \frac{1}{3}$ $\mathfrak{L} = \frac{1}{2}$

07 14

08 ③

09 ②

05
$$x^2 + x + a = 0$$
에서 $x = \frac{-1 \pm \sqrt{1^2 - 4a}}{2}$

이때 이 방정식의 해가 $x=\frac{b\pm\sqrt{3}}{2}$ 이므로

b = -1.1 - 4a = 3

따라서 $a=-\frac{1}{2}$, b=-1이므로 $ab=\frac{1}{2}$

 $\mathbf{07}$ 어떤 자연수를 x라고 하면

x(x-2)=168, $x^2-2x-168=0$

(x+12)(x-14)=0에서 x=-12 또는 x=14

그런데 x는 자연수이므로 x=14

08 $\frac{n(n-3)}{2}$ = 14에서 n^2 - 3n - 28 = 0

(n+4)(n-7)=0에서 n=-4 또는 n=7

그런데 $n \ge 3$ 이므로 n=7

따라서 대각선의 개수가 14인 다각형은 칠각형이다.

09 $30t-5t^2=40$ 에서 $t^2-6t+8=0$

(t-2)(t-4)=0에서 t=2 또는 t=4

따라서 높이가 40 m인 지점을 처음으로 지나는 것은 쏘아 올린 지 2초 후이다.

01~02 이처방정식 발전

427쪽

01 15

02 - 4

03 27

04 4 cm

- **01** 두 근을 a, a+2라고 하면 주어진 이차방정식은 (x-a)(x-a-2)=0이고 $x^{2}-(2a+2)x+a^{2}+2a=0$ 에서 2a+2=-8이므로 a=-5따라서 $k=(-5)^2+2\times(-5)=15$
- **02** $a^2+3a+1=0$ 이므로 $a^2+3a=-1$ $(a^2+3a-1)(a^2+3a+3)=(-1-1)\times(-1+3)$ $=-2\times2=-4$
- **03** 세 수를 x-2, x, x+2라고 하면 (x+2)(x-2)=8x+5 $x^{2}-8x-9=0$, (x+1)(x-9)=0즉. x = -1 또는 x = 9그런데 x는 양의 홀수이므로 x=9따라서 세 수는 7, 9, 11이고, 그 합은 7+9+11=27
- **04** $\overline{PR} = x \text{ cm라고 하면 } \overline{AQ} = (10-x) \text{ cm}$ 또. $\overline{PQ} = \overline{AQ} = (10-x)$ cm이므로 x(10-x)=24, $x^2-10x+24=0$ (x-4)(x-6)=0에서 x=4 또는 x=6이때 x < 10 - x에서 x < 5이므로 x = 4따라서 $\overline{PR} = 4 \text{ cm}$ 이다. PR=4 cm이면 PQ=AQ=6 cm이고. □PQBR의 넓이 가 24 cm²이므로 문제의 뜻에 맞는다.

대단원 평가 문제

14 1초 후

428쪽~429쪽

16 10명

01	1	02 7	03 ③
04	4	05 ①	06 ②
07	3	08 16	09 ②
10	(가) 2 (나) 1 (다)	1 (라) 1 (마) 5 (바)	$1\pm\sqrt{5}$
11	4	12 ③	13 4

15 6 cm

13 x=-1을 $4x^2-2ax+a(a-6)=0$ 에 대입하면 $a^{2}-4a+4=0$, $(a-2)^{2}=0$ 에서 a=2이때 주어진 이차방정식은 $4x^2 - 4x - 8 = 0$ 이므로 $x^2-x-2=0$, (x+1)(x-2)=0, x=-1 $\pm \frac{1}{2}$ x=2즉, 다른 한 근이 2이므로 b=2따라서 a+b=2+2=4

15 마름모의 두 대각선의 길이를 x cm. (x+2) cm라고 하면 마름모의 넓이가 24 cm²이므로

$$\frac{1}{2} \times x(x+2) = 24$$
, $x(x+2) = 48$, $x^2 + 2x - 48 = 0$
 $(x+8)(x-6) = 0$

즉.
$$x = -8$$
 또는 $x = 6$

그런데 x>0이므로 x=6이다.

따라서 두 대각선 중 짧은 것의 길이는 6 cm이다.

짧은 대각선의 길이가 6 cm이면 긴 대각선의 길이가 8 cm

이므로 마름모의 넓이는 $\frac{1}{2} \times 6 \times 8 = 24 \text{ (cm}^2)$ 로 문제의 뜻에 맞는다.

16 탁자에 앉은 사람의 수를 n명이라고 하면 악수를 한 전체 횟수는 n각형의 대각선의 개수와 같으므로

$$\frac{n(n-3)}{2}$$
 = 35, $n(n-3)$ = 70, n^2 - 3 n - 70 = 0

$$(n+7)(n-10)=0$$

즉. n = -7 또는 n = 10

그런데 n은 자연수이므로 n=10이다.

따라서 탁자에 앉은 사람은 10명이다.

원형 탁자에 앉은 사람이 10명이면 악수를 한 전체 횟수는 $\frac{10(10-3)}{9}$ = 35로 문제의 뜻에 맞는다.

서술형 평가 문제

430쪽~431쪽

02
$$-\frac{1}{3200}$$
 03 $2a-1$

06
$$x = \frac{-5 \pm \sqrt{33}}{2}$$

07
$$1+\sqrt{11}$$

- 08 1초 후 또는 4초 후
- **01** $(2x+1)^2-(x+2)(x-2)$ 를 전개하여 간단히 하면 $4x^2+4x+1-(x^2-4)=4x^2+4x+1-x^2+4$

$$=3x^2+4x+5$$

...

따라서 a=3, b=4, c=5

a+b-c=3+4-5=2

채점 기준	배점
식을 전개하여 간단히 하기	50 %
② a, b, c의 값 각각 구하기	30 %
$oldsymbol{3} a + b - c$ 의 값 구하기	20 %

(분모)=
$$66^2-34^2$$

= $(66+34)(66-34)$
= $100 \times 32 = 3200$

따라서 주어진 분수는
$$-\frac{1}{3200}$$
이다.

채점 기준	배점
● 분자의 값 구하기	45 %
② 분모의 값 구하기	45 %
❸ 분수 구하기	10 %

03
$$a^2+4a+4=(a+2)^2$$
, $a^2-6a+9=(a-3)^2$ 이므로 $\sqrt{a^2+4a+4}-\sqrt{a^2-6a+9}=\sqrt{(a+2)^2}-\sqrt{(a-3)^2}$ … 이때 $-2 < a < 3$ 이므로 $a+2>0$, $a-3 < 0$ 이다. 즉, $\sqrt{(a+2)^2}-\sqrt{(a-3)^2}=(a+2)-\{-(a-3)\}$ … ② $=a+2+a-3$

$$=2a-1$$

채점 기준	배점
근호 안의 식을 완전제곱식으로 나타내기	40 %
제곱근의 성질 이용하기	40 %
③ 주어진 다항식을 간단히 하기	20 %

04 $(x+a)(x+b)=x^2+(a+b)x+ab$ 이므로 a+b=-5, m=ab … ①

합이 -5인 두 정수와 그 수의 곱은 다음과 같다.

а	•••	2	1	0	-1	-2
b		-7	-6	-5	-4	-3
ab		-14	-6	0	4	6
а	-3	_1	-5	_6	-7	
и	J	4	J	U	'	
\boldsymbol{b}	-2	-1	0	1	2	

따라서 절댓값이 10 이하인 정수 m의 값은 -6, 0, 4, 6이다.

....

...(3)

채점 기준	배점
a+b=-5, $ab=m$ 임을 알기	30 %
❷ 합이 −5인 두 수의 곱 구하기	50 %
③ <i>m</i> 의 값 구하기	20 %

05 $x^2+2(1-k)x+2k+1=0$ 이 중근을 가지려면 (완전제곱식)=0의 꼴이어야 한다. 즉, $\left\{\frac{2(1-k)}{2}\right\}^2=2k+1$ 이므로

 $k^2 - 4k = 0, k(k-4) = 0$

따라서 k=0 또는 k=4 ···

그런데 k>0이므로 k=4이다.

채점 기준	배점
① 중근 을 가질 조건 알기	40 %
② 이차방정식 풀기	40 %
⑧ k의 값 구하기	20 %

06 $x^2+4x-1=0$ 을 근의 공식을 이용하여 풀면 $x=\frac{-4\pm\sqrt{4^2-4\times1\times(-1)}}{2\times1}=\frac{-4\pm2\sqrt{5}}{2}=-2\pm\sqrt{5}$

이므로 p=-2, q=5

...

즉, $x^2+qx+p=0$ 은 $x^2+5x-2=0$

...2

...(3)

이 이차방정식을 근의 공식을 이용하여 풀면

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 1 \times (-2)}}{2 \times 1}$$

$$=\frac{-5\pm\sqrt{33}}{2}$$

채점 기준	배점
① <i>p</i> , <i>q</i> 의 값 각각 구하기	40 %
② $x^2 + qx + p = 0$ 구하기	20 %
❸ 이차방정식 풀기	40 %

07 $x^2-2x-10=0$ 을 근의 공식을 이용하여 풀면 $x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 1 \times (-10)}}{2 \times 1}$

$$= \frac{2 \pm 2\sqrt{11}}{2} = 1 \pm \sqrt{11}$$

...1

또, 2(x+2)+1≥7에서 2(x+2)≥6이므로

 $x+2 \ge 3, x \ge 1$

...2

따라서 \bigcirc , \bigcirc 를 동시에 만족시키는 x의 값은 $1+\sqrt{11}$ 이다

채점 기준	배점
이차방정식의 해 구하기	40 %
일차부등식의 해 구하기	40 %
③ 방정식과 부등식을 동시에 만족시키는 x의 값 구하기	20 %

08 공의 높이가 20 m이면 $25t-5t^2=20$

 $t^2-5t+4=0, (t-1)(t-4)=0$ $\vec{=}, t=1 \; \text{£} : t=4$

...2

...

따라서 공의 높이가 20 m가 되는 것은 1초 후 또는 4초 후 이다. ···· 🔞

채점 기준	배점
이차방정식 만들기	30 %
이차방정식 풀기	50 %
③ 공의 높이가 20 m가 되는 것은 몇 초 후 인지 구하기	20 %

Ⅲ. 이차함수

1. 이차함수와 그래프

01~02 이처함수와 그래프 기초

432쪽

$$06 - 2$$

$$07 - 2$$

10 (1)
$$-4$$
 (2) -1 (3) 0 (4) -1 (5) -4

- 11 ()
- 12 ×
- 13 🔾
- 14 ×
- 15 (가), (나)
- 16 (라)
- 17 ¬, ≥
- 18 ¬
- 19 ㄷ과 ㄹ

01~02 이처함수와 그래프 기본

433쪽

- 01 2, 4
- 02 2
- 03 ②

- **04** -1
- **05** ③
- 06 ①

- **07** ③
- 08 (1)
- **09** $y = -3x^2$

- **10** 2
- **09** 원점을 꼭짓점으로 하고 y축을 축으로 하는 이차함수의 식을 $y = ax^2$ 으로 놓으면 점 (1, -3)을 지나므로 a = -3 따라서 구하는 이차함수의 식은 $y = -3x^2$ 이다.

10 이차함수 $y=-3x^2$ 의 그래프와 x축에 대하여 서로 대칭인 그래프는 $y=3x^2$ 이고, 이 그래프가 점 (m, 12)를 지나므로 $12=3m^2$ 에서 $m^2=4, m=\pm 2$ 그런데 m>0이므로 m=2

01~02 이처함수와 그래프 발전

434쪽

- **01** 36
- **02** $\frac{32}{3}$

- **03** 3
- **04** $-\frac{1}{2}$
- **01** 이차함수 $y=ax^2$ 의 그래프가 점 D(2,-2)를 지나므로 $-2=4a,\ a=-\frac{1}{2}$

즉, 주어진 그래프의 식은 $y=-\frac{1}{2}x^2$ 이고, 이 그래프가 y 축에 대칭이므로 $\square ABCD$ 는 $\overline{AD} \#\overline{BC}$ 이고 $\angle B=\angle C$ 인 사다리꼴이다

 \overline{BC} =8이므로 점 C의 x좌표는 4이고, y좌표는

$$y = \left(-\frac{1}{2}\right) \times 4^2 = -8$$

따라서 $\overline{AD}=4$, $\overline{BC}=8$ 이므로

$$\Box ABCD = \frac{1}{2} \times (4+8) \times 6 = 36$$

02 $D(a, a^2)(a>0)$ 이라고 하면

$$A(-a, a^2)$$
, $B(-a, -\frac{1}{2}a^2)$, $C(a, -\frac{1}{2}a^2)$

이때 $\overline{AB} = \overline{AD}$ 이므로

$$\frac{3}{2}a^2 = 2a$$
, $3a^2 - 4a = 0$, $a(3a - 4) = 0$

즉,
$$a=0$$
 또는 $a=\frac{4}{3}$

그런데 $\overline{AB} > 0$ 이므로 $a = \frac{4}{3}$

따라서 \overline{AB} = $2 \times \frac{4}{3} = \frac{8}{3}$ 이므로 정사각형 ABCD의 둘레

의 길이는
$$4 \times \frac{8}{3} = \frac{32}{3}$$

03 이차함수 $y=-x^2$ 의 그래프와 직선 y=ax+b가 만나는 두 점은 A(-2, -4), B(1, -1)이므로

직선
$$y=ax+b$$
의 기울기는 $a=\frac{(-4)-(-1)}{(-2)-1}=1$

즉, 직선 y=x+b가 점 (1, -1)을 지나므로

- -1=1+b에서 b=-2
- 따라서 a-b=1-(-2)=3
- **04** $y=ax^2$ 의 그래프가 $y=-x^2$ 과 $y=-\frac{1}{4}x^2$ 의 그래프 사이 에 있어야 하므로 $-1 < a < -\frac{1}{4}$

또. $y=ax^2$ 의 그래프와 x축에 대하여 서로 대칭인 그래프 는 $y = -ax^2$ 이고. 이 그래프가 점 (2, 2)를 지나므로 2 = -4a에서 $a = -\frac{1}{2}$

2. 이차함수 $u=ax^2+bx+c$ 의 그래프

01~02 이 차함수 $y=ax^2+bx+c$ 의 그래프 기초 435쪽

01 1

- 02 3
- 03 1
- 04 2
- **05** x축의 방향으로 1만큼. y축의 방향으로 4만큼
- **06** x축의 방향으로 -3만큼. y축의 방향으로 -7만큼
- **07** $y=6x^2+1$ **08** $y=-\frac{1}{4}(x+3)^2$
- **09** $y=3(x-2)^2-7$ **10** $y=-\frac{1}{3}x^2+7$
- **11** $y=2x^2$ **12** $y=-(x-3)^2+13$
- **13** 축의 방정식: x=0. 꼭짓점의 좌표: (0,6)
- **14** 축의 방정식: $x = \frac{1}{2}$, 꼭짓점의 좌표: $\left(\frac{1}{2}, 0\right)$
- **15** 축의 방정식: x=-1, 꼭짓점의 좌표: (-1, -7)
- **16** 축의 방정식: x=1, 꼭짓점의 좌표: (1, 3)
- **17** 축의 방정식: x=-4 꼭짓점의 좌표: (-4, -9)
- **18** 축의 방정식: x=-2, 꼭짓점의 좌표: (-2, -3)
- **19** $y=x^2-4x+3$ **20** $y=-x^2-6x-8$

01~02 이 차함수 $y=ax^2+bx+c$ 의 그래프 기본 436쪽

- 01 ②
- **02** ③
- **03** (4)

- 04 1
- **05** $\frac{9}{16}$
- **06** 0

- **07** (4), (5)
- 08 4
- **09** a=-2, b=-16, c=-31
- **05** 축의 방정식이 x = -1이므로 b = -1즉, $y=a(x+1)^2+q$ 의 그래프가 두 점 (0, -2). (4, 4)를 지나므로
 - a+q = -2

- $4 = a(4+1)^2 + q$, 25a + q = 4
- ①, ①을 연립하여 풀면 $a = \frac{1}{4}$, $q = -\frac{9}{4}$
- 따라서 $apq = \frac{1}{4} \times (-1) \times \left(-\frac{9}{4}\right) = \frac{9}{16}$

08 모든 사분면을 지나는 $y=ax^2+b$ 의 그래프는 다음과 같다.

(ii)

(i)

이때 (i)은 a > 0, b < 0이고 (ii)는 a < 0, b > 0이다. 따라서 항상 옳은 것은 ④ *ab*<0이다.

09 조건 (나). (다)에서 위로 볼록한 포물선이다. 조건 (개). (내)를 만족시키는 이차함수의 식은

$$y = -2(x-p)^2 + 1$$

또. 조건 때에서 그래프가 점 (-2, -7)을 지나므로 $-7 = (-2) \times (-2-p)^2 + 1$, $(-2-p)^2 = 4$

즉.
$$p = -4$$
 또는 $p = 0$

그런데 꼭짓점이 제2사분면 위에 있으므로 p=-4따라서 구하는 이차함수의 식은

$$y = -2(x+4)^2 + 1 = -2x^2 - 16x - 31$$

이므로 a=-2, b=-16, c=-31

- $01\sim 02$ 이처함수 $y=ax^2+bx+c$ 의 그래프 발전 437쪽
- **01** (1.5)
- **02** 제1사분면, 제2사분면

- **03** 8
- **04** $-\frac{20}{0}$
- **01** 이차함수 $y = a(x-p)^2 + q$ 의 그래프의 축의 방정식이 x=1이므로 *b*=1

y=2x-1에 x=-1을 대입하면 y=-3

y=2x-1에 x=2를 대입하면 y=3

즉, 이차함수 $y=a(x-1)^2+q$ 의 그래프가 두 점(-1, -3),

-3=4a+q

(2, 3)을 지나므로

- 3=a+q
- \bigcirc . \bigcirc . 으을 연립하여 풀면 a=-2. a=5따라서 이차함수 $y = -2(x-1)^2 + 5$ 에서 꼭짓점의 좌표는 (1.5)이다.
- **02** *a*<0, *p*>0, *q*>0이므로 $y=p(x+q)^2-a$ 의 그래프는 오른쪽 그

림과 같이 제1사분면. 제2사분면을 지 난다.

03 $y = -x^2 - 6x - 5 = -(x^2 + 6x + 9 - 9) - 5$ $=-(x+3)^2+4$ $y=-x^2-2x+3=-(x^2+2x+1-1)+3$

 $=-(x+1)^2+4$

에서 두 점 A, B는 두 이차함수의 그래프의 꼭짓점이므로 A(-3, 4), B(-1, 4)

또, $y = -(x+1)^2 + 4$ 의 그래프는

 $y = -(x+3)^2 + 4$ 의 그래프를 x축의 방향으로 2만큼 평행이동한 것이므로 다음 그림에서 \bigcirc 과 \bigcirc 의 넓이가 같다.

따라서 구하는 색칠한 부분의 넓이는 \square ACDB의 넓이와 같으므로 $2 \times 4 = 8$

04 A(p,q)라고 하면 축의 방정식은 x=3이므로 p=3 또, \triangle OAB $=\frac{1}{2}\times 6\times |q|=12$ 이므로 q=-4 즉, A(3,-4)이므로 $y=a(x-3)^2-4$ 이고, 이 이차함수의 그래프가 원점을 지나므로 0=9a-4에서 $a=\frac{4}{9}$ 따라서 구하는 이차함수의 식은 $y=\frac{4}{9}(x-3)^2-4$ 이다. a+b+c는 $y=ax^2+bx+c$ 에서 x=1일 때 y의 값이므로 $a+b+c=\frac{4}{9}\times (1-3)^2-4=-\frac{20}{9}$

대단원 평가 문제

438쪽~439쪽

01 ④	02 ②, ④	03 -4
04 $\frac{1}{3}$, 1	05 ②	06 ③
07 ④	08 $\frac{1}{3} < a < 4$	09 12
10 ⑤ 13 $p=-1$, $q=$	11 ③ = -8	12 ⑤ 14 (3, -6)

- **10** $A(a, -a^2)(a < 0)$ 이라고 하면 점 B는 점 A와 x좌표가 같고 $y = -x^2 7$ 의 그래프 위의 점이므로 $B(a, -a^2 7)$ 따라서 $\overline{AB} = |-a^2 (-a^2 7)| = 7$
- **12** 주어진 그래프에서 꼭짓점의 좌표가 (-2, -2)이므로 그 래프를 나타내는 이차함수의 식은 $y=a(x+2)^2-2$ 의 꼴로 나타낼 수 있다. 따라서 p=-2, q=-2 또, 이 그래프가 점 (0, 2)를 지나므로 $2=a\times 2^2-2, a=1$

 $apq = 1 \times (-2) \times (-2) = 4$

13 $y=\frac{1}{2}(x-p)^2+q$ 의 그래프의 축의 방정식이 x=-1이 므로 p=-1이다. 한편, $y=\frac{1}{2}(x+1)^2+q$ 의 그래프가 점 (3,0)을 지나므로 $0=\frac{1}{2}(3+1)^2+q$ 에서 q=-8

14 x<3일 때 x의 값이 증가하면 y의 값은 감소하고.

x>3일 때 x의 값이 증가하면 y의 값도 증가하므로 축의 방정식은 x=3이다. $y=x^2+2ax+a^2+2a=(x+a)^2+2a$ 이때 축의 방정식이 x=3이므로 -a=3에서 a=-3 또, $2a=2\times(-3)=-6$ 이므로 주어진 이차함수의 그래 프의 꼭짓점의 좌표는 (3,-6)이다.

€ 서술형 평가 문제

③ *a*+*b*의 값 구하기

440쪽~441쪽

20 %

01 2	02 21	03 3
04 -10	05 −1< <i>k</i> <1	06 $\frac{25}{2}$ m
07 (-2, -9)	08 D(8, 18)	

$02 y = -x^2 + 6x = -(x-3)^2 + 9$	
이므로 꼭짓점의 좌표는 (3, 9)	●
$\mathbb{E}, y = x^2 - 2px + q = (x - p)^2 + q - p^2$	
이므로 꼭짓점의 좌표는 $(p,q-p^2)$	2
이때 두 이차함수의 그래프의 꼭짓점이 일치하므로	
$p=3, q-p^2=9$	
$\stackrel{\text{\tiny def}}{=}$, $q = 9 + p^2 = 9 + 3^2 = 18$	
따라서 <i>p</i> +q=3+18=21	

채점 기준	배점
① $y = -x^2 + 6x$ 의 꼭짓점의 좌표 구하기	40 %
② $y = x^2 - 2px + q$ 의 꼭짓점의 좌표 구하기	40 %
③ <i>p</i> + <i>q</i> 의 값 구하기	20 %

03
$$y=-2x^2+4x+6=-2(x-1)^2+8$$
에서 A(1, 8) … \bullet

 $y=-2x^2+4x+6$ 에 x=0을 대입하면 y=6이므로 B(0, 6)

따라서 $\triangle ABO = \frac{1}{2} \times 6 \times 1 = 3$

채점 기준	배점
❶ 점 A의 좌표 구하기	30 %
❷ 점 B의 좌표 구하기	30 %
❸ △ABO의 넓이 구하기	40 %

 $04 y = -2x^2$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 a만큼 평행이동하면

 $y = -2(x-3)^2 + a$

...

...2

...(3)

이 그래프가 점 (5, -4)를 지나므로

$$-4=(-2)\times(5-3)^2+a$$
, $a=4$

...2

 $y = -2(x-3)^2 + 4$ 의 그래프가 점 (0, b)를 지나므로

 $b = -2 \times (0-3)^2 + 4 = -14$

...

따라서
$$a+b=4+(-14)=-10$$

...4

채점 기준	배점
• $y = -2x^2$ 의 그래프를 평행이동한 그래 프의 식 구하기	40 %
② <i>a</i> 의 값 구하기	20 %
❸ <i>b</i> 의 값 구하기	20 %
4 a+b의 값 구하기	20 %

05 $y = -(x+1)^2$ 의 그래프를 x축의 방향으로 k만큼, y축의 방향으로 (k+1)만큼 평행이동한 식은

$$y = -(x+1-k)^2 + k+1$$

...

...2

이 그래프의 꼭짓점의 좌표는 (k-1, k+1)

이 꼭짓점이 제2사분면 위에 있으므로

k-1 < 0, k+1 > 0

따라서 -1<k<1

...(3)

채점 기준	배점
① $y=-(x+1)^2$ 의 그래프를 평행이동한 식 구하기	60 %
② 꼭짓점의 좌표 구하기	20 %
$oldsymbol{3}$ k 의 값의 범위 구하기	20 %

06 지면을 x축, 가장 낮은 높이의 기둥을 y축으로 하는 좌표 축에 나타내면 점 B(20, 35)이고 포물선의 꼭짓점의 좌표 는 (0,5)이다.

포물선을 그래프로 하는 이차함수의 식을 $y=ax^2+5$ 라고 하면 이 그래프가 점 (20, 35)를 지나므로

$$35 = a \times 20^2 + 5$$
, $a = \frac{3}{40}$

$$\stackrel{\text{A}}{=}$$
, $y = \frac{3}{40}x^2 + 5$

이때 점 C의 x좌표는 -10이므로

$$y = \frac{3}{40} \times 100 + 5 = \frac{25}{2}$$

따라서 C 지점에서의 높이는 $\frac{25}{2}$ m이다.

...2

채점 기준	배점
1 포물선을 그래프로 하는 이차함수의 식 구하기	60 %
❷ C 지점에서의 높이 구하기	40 %

07 $y=ax^2+bx+8$ 의 그래프가 두 점 (-3, 5), (4, -16)을 지나므로

 $5=a\times(-3)^2+b\times(-3)+8$ 에서

3a-b=-1

.....

 $-16 = a \times 4^2 + b \times 4 + 8$ 에서

4a+b=-6

....(L)

 \bigcirc , \bigcirc 을 연립하여 풀면 a=-1, b=-2

...

=, $y = -bx^2 + 8x + a = 2x^2 + 8x - 1 = 2(x+2)^2 - 9$

이므로 구하는 꼭짓점의 좌표는 (-2, -9)이다. ... (-2, -9)

1 12 1/12 1 1 2 ()	, , , , ,
채점 기준	배점
① <i>a</i> , <i>b</i> 의 값 각각 구하기	60 %
② 꼭짓점의 좌표 구하기	40 %

08 $y=ax^2+bx+c$ 의 그래프가 점 B(0, -6)을 지나므로 c=-6

또, $y=ax^2+bx-6$ 의 그래프가 두 점 A(-1, 0),

C(6, 0)을 지나므로

 $0=a\times(-1)^2+b\times(-1)-6$ 에서

a-b-6

.....(5)

 $0=a\times6^2+b\times6-6$ 에서

6a + b = 1

.....

 \bigcirc . \bigcirc 을 연립하여 풀면 a=1, b=-5

 $= x^2 - 5x - 6$

...

한편, $\triangle ACD = 3\triangle ABC$ 이고 두 삼각형의 밑변이 \overline{AC} 로 같으므로 $\triangle ACD$ 의 높이는 $\triangle ABC$ 의 높이의 3배이다.

즉. 점 D의 *y*좌표는 18이다.

 $18=x^2-5x-6$ 에서

 $x^2-5x-24=(x-8)(x+3)=0$, x=-3 또는 x=8그런데 점 D는 제1사분면 위의 점이므로 x좌표는 8이다. 따라서 점 D(8, 18)이다.

채점 기준	배점
이차함수의 식 구하기	40 %
② 점 D의 <i>y</i> 좌표 구하기	30 %
❸ 점 D의 좌표 구하기	30 %

IV. 삼각비

1. 삼각비

01 삼각비 기초

442쪽

- **01** $\frac{12}{13}$
- **02** $\frac{5}{13}$
- **03** $\frac{5}{13}$
- **04** $\frac{5}{12}$

05 6

- 06 3
- **07** 2
- 08 $\frac{1}{4}$
- **09** 0
- **10** x=3, $y=3\sqrt{2}$
- **11** 10
- **12** 0.64
- **13** 0.77 **15** 1.4018
- **14** 0.84 **16** 46

01 삼각비 기본

443쪽

- 01 2
- **02** $2\sqrt{34}$ cm
- 03 ⑤

- **04** 2 cm
- **05** -1
- **06** ③

07 ④

05
$$\sin 30^{\circ} \times \tan 45^{\circ} - \frac{\cos 30^{\circ}}{\tan 30^{\circ}} = \frac{1}{2} \times 1 - \frac{\sqrt{3}}{2} \div \frac{1}{\sqrt{3}}$$
$$= \frac{1}{2} - \frac{\sqrt{3}}{2} \times \sqrt{3} = -1$$

01 삼각비 발전

444쪽

01 8

- **02** $\frac{5}{7}$
- **03** 55
- **04** 45°

01
$$\tan 30^\circ = \frac{y}{6} = \frac{\sqrt{3}}{3}$$
이므로 $y = 2\sqrt{3}$

또,
$$\angle C = 60^{\circ}$$
이므로 $\cos 60^{\circ} = \frac{x}{4} = \frac{1}{2}$ 에서 $x = 2$
따라서 $y^2 - x^2 = (2\sqrt{3})^2 - 2^2 = 12 - 4 = 8$

02
$$\angle B = y^\circ$$
, $\angle C = x^\circ$ 이므로 $\overline{AB} = a$ 라고 하면 $\sin x^\circ \times \tan y^\circ = \sin C \times \tan B$
$$= \frac{a}{7} \times \frac{5}{a} = \frac{5}{7}$$

03 $\overline{\text{OB}} = 1 - 0.43 = 0.57$ 에서

$$\cos x = \frac{\overline{OB}}{\overline{OA}} = \frac{0.57}{1} = 0.57$$
이고 주어진 표에서

 $\cos 55^{\circ} = 0.57$ 이므로 x = 55

04 A(-7, 0), B(0, 7)이므로 직각삼각형 AOB에서

$$\tan A = \frac{\overline{OB}}{\overline{OA}} = \frac{7}{7} = 1$$

02 삼각비의 활용 기초

445쪽

- **01** (7) x (4) $\frac{\sqrt{3}}{2}$ (7) 10 (2) $5\sqrt{3}$
- **02** $50\sqrt{3}$ m
- **03** $6\sqrt{3}$ cm²
- **04** $\frac{63}{2}$ cm² **05** $\frac{15\sqrt{3}}{2}$ cm²
- **06** $12\sqrt{2}$ cm²
- **07** 25 cm²
- **08** 6 cm
- **09** $8\sqrt{3}$ cm²
- **10** 28 cm²

02 삼각비의 활용 기본

446쪽

- **01** 3 m **02** $5\sqrt{3}$ m **03** $6\sqrt{2}$ cm
- **04** $\left(\frac{9}{2} + \frac{9\sqrt{3}}{2}\right) \text{cm}^2$ **05** 120°
- **06** $24\sqrt{3}$ cm² **07** $\frac{7\sqrt{3}}{2}$ cm² **08** 24 cm
- **02** △ABC에서 ∠CBD=∠A+∠ACB이므로

$$60^{\circ} = 30^{\circ} + \angle ACB, \angle ACB = 30^{\circ}$$

△ABC는 이등변삼각형이므로

$$\overline{AB} = \overline{BC} = 10 \text{ (m)}$$

따라서 $\overline{\text{CD}} = \overline{\text{BC}} \times \sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} \text{ (m)}$

 $\mathbf{04}$ 오른쪽 그림과 같이 점 \mathbf{A} 에서 $\overline{\mathbf{BC}}$ 에 내린 수선의 발을 H라고 하면 $\overline{CH} = 6\cos 30^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

$$\overline{AH} = \overline{BH} = 6 \sin 30^{\circ} = 6 \times \frac{1}{2} = 3$$

따라서
$$\triangle ABC = \frac{1}{2} \times (3 + 3\sqrt{3}) \times 3 = \frac{9}{2} + \frac{9}{2} \sqrt{3} \text{ (cm}^2)$$

 $\mathbf{08}$ 마름모 ABCD의 한 변의 길이를 x cm라고 하면 \square ABCD= x^2 sin $60^\circ = 18\sqrt{3}$ 에서 $\frac{\sqrt{3}}{2}x^2 = 18\sqrt{3}$ 이므로 $x^2 = 36$, x = 6 (x > 0) 따라서 마름모의 둘레의 길이는 24 cm이다.

02 삼각비의 활용 발전

447쪽

- **01** 16.7 m
- **02** $\sqrt{61}$ km
- **03** $12\sqrt{3}$ cm²
- **04** $\frac{5\sqrt{3}}{2}$ m
- **01** ∠ABC=14°(엇각)이므로 $\overline{AB} = \frac{4}{\sin 14^{\circ}} = \frac{4}{0.24} = 16.66 \dots = 16.7 \text{ (m)}$
- **02** 오른쪽 그림과 같이 점 A에서 $\overline{\mathrm{BC}}$ 의 연장선에 내린 수선의 발을 H라고 하면 ∠ACH=60°이므로

$$\overline{AH} = 4 \sin 60^{\circ} = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3} \, (km)$$

$$\overline{\text{CH}}$$
= $4\cos 60^{\circ}$ = $4 \times \frac{1}{2}$ = $2\,(\text{km})$
직각삼각형 AHB에서 피타고라스 정리에 의하여

 $\overline{AB} = \sqrt{7^2 + (2\sqrt{3})^2} = \sqrt{49 + 12} = \sqrt{61} \text{ (km)}$

03 \overline{AC} 와 평행하면서 점 B. 점 D를 지나는 선분을 각각 \overline{FG} . \overline{EH} 라고 하고, \overline{BD} 와 평행하면서 점 A, 점 C를 지나는 선 분을 각각 FE, GH라고 하면 □EFGH는 평행사변형이 다.

따라서

$$\Box ABCD = \frac{1}{2} \Box EFGH = \frac{1}{2} \times \left(6 \times 8 \times \sin 60^{\circ}\right)$$
$$= 12\sqrt{3} \text{ (cm}^2)$$

04 오른쪽 그림과 같이 점 A에서 BC에 내린 수선의 발을 H라고 하면 $\triangle ABH$ 에서 $\overline{BH} = h \tan 60^{\circ} = \sqrt{3}h$

△ACH에서

$$\overline{\text{CH}} = h \tan 30^\circ = \frac{\sqrt{3}}{3} h$$

- $\overline{BC} = \overline{BH} + \overline{CH}$ 이므로 $\sqrt{3}h + \frac{\sqrt{3}}{3}h = \frac{4\sqrt{3}}{3}h = 10$
- $h=10\times\frac{3}{4\sqrt{2}}=\frac{5\sqrt{3}}{2}$ (m)

따라서 새의 높이는 $\frac{5\sqrt{3}}{2}$ m이다.

대단원 평가 문제

448쪽~449쪽

- **01** $\frac{3\sqrt{13}}{13}$ **02** ③
- **03** $\frac{12}{13}$
- 07 ¬. ⊏. ≥
- **04** 4 cm **05** $5\sqrt{2}$ cm
- **06** $3\sqrt{6}$ cm

- 08 ② **11** ③
- 09 4 **12** $2(\sqrt{3}+1)$

- **10** ⑤ **13** ②
- **14** $3\sqrt{3}$ cm²
- **15** $25(\sqrt{3}+1)$ m

△BCH에서

- 05 오른쪽 그림과 같이 점 A에서 \overline{BC} 에 내린 수선의 발을 H라고 하면 $\overline{AH} = 10 \sin 30^{\circ} = 5 \text{ (cm)}$ 이때 △ABH에서 $\overline{BH} = \overline{AH} = 5$ cm이므로
 - $\overline{AB} = \sqrt{5^2 + 5^2} = 5\sqrt{2}$ (cm)

 $\overline{CH} = \overline{BC} \sin 45^{\circ}$

$$=9\times\frac{\sqrt{2}}{2}=\frac{9\sqrt{2}}{2} \text{ (cm)}$$

$$\triangle$$
AHC에서 $\sin 60^{\circ} = \frac{\overline{CH}}{\overline{AC}} = \frac{\sqrt{3}}{2}$ 이므로

$$\overline{AC} = \frac{2}{\sqrt{3}} \overline{CH} = \frac{2\sqrt{3}}{3} \times \frac{9\sqrt{2}}{2} = 3\sqrt{6} \text{ (cm)}$$

12 \triangle ACH에서 $\overline{AH} = x$ 라고 하면 ∠CAH=45°, ∠ACH=45°이므로 CH=x $\tan 30^{\circ} = \frac{x}{4+x}, \frac{\sqrt{3}}{3} = \frac{x}{4+x}$

$$\tan 30 = \frac{1}{4+x}, \frac{1}{3} = \frac{1}{4+x}$$

 $3x = \sqrt{3}(4+x), (3-\sqrt{3})x = 4\sqrt{3}$

따라서
$$x = \frac{4\sqrt{3}}{3-\sqrt{3}} = 2(\sqrt{3}+1)$$

15 $\overline{\text{CD}} = x$ 라고 하면 $\overline{\text{AD}} = x \tan 60^{\circ} = \sqrt{3}x$ 이고 $\overline{\mathrm{BD}} = \overline{\mathrm{CD}} = x$ 이므로

$$\overline{\text{AD}} - \overline{\text{BD}} = \sqrt{3}x - x = 50$$
에서

$$(\sqrt{3}-1)x=50$$
,

$$x = \frac{50}{\sqrt{3} - 1} = \frac{50(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = 25(\sqrt{3} + 1)$$

따라서 산의 높이는 $25(\sqrt{3}+1)$ m이다

서술형 평가 문제

450쪽~451쪽

01
$$\frac{1}{2}$$

02
$$\frac{5}{2}(3-\sqrt{3})$$

03
$$\left(\frac{80\sqrt{3}}{3} + 1.6\right)$$
 m

05
$$10\sqrt{13}$$
 m

06
$$15\sqrt{3}$$
 cm²

07
$$24\sqrt{3}$$
 cm²

08
$$\frac{1+3\sqrt{3}}{2}$$

 $\frac{01}{BC}$ 오른쪽 그림과 같이 꼭짓점 A에서 $\frac{1}{BC}$ 에 내린 수선의 발을 $\frac{1}{BC}$ 이 내린 수선의 발을 $\frac{1}{BC}$ 이 내린 수선의 발음 $\frac{1}{BC}$ 이 가입 $\frac{1}{BC}$ 이 내린 수선의 발음 $\frac{1}{BC}$ 이 가입 $\frac{1}{BC}$ 이 가입 $\frac{1}{BC}$ 이 가입 $\frac{1}{BC}$ 이 가입 $\frac{1}{BC}$ 이 $\frac{1$

$$\sin B = \frac{\overline{AH}}{2}$$
, $\sin C = \frac{\overline{AH}}{4}$

따라서
$$\frac{\sin C}{\sin B} = \frac{\overline{AH}}{4} \div \frac{\overline{AH}}{2} = \frac{1}{2}$$

	3
--	---

채점 기준	배점
직각삼각형 만들기	20 %
❷ sin B, sin C를 AH에 대한 식으로 나타내기	40 %
	40 %

02
$$\triangle ABH$$
ੀਮ tan 30° = $\frac{\overline{BH}}{h}$, $\overline{BH} = \frac{\sqrt{3}}{3}h$

$$\triangle$$
ACH에서 $\tan 45^{\circ} = \frac{\overline{CH}}{h}$, $\overline{CH} = h$

이때
$$\overline{\rm BH}+\overline{\rm CH}=\overline{\rm BC}$$
이므로 $\frac{\sqrt{3}}{3}h+h=5$

따라서
$$h = \frac{15}{3+\sqrt{3}} = \frac{15(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})} = \frac{5}{2}(3-\sqrt{3})$$

		0

	_
채점 기준	배점
$lue{f 0}$ $f BH$ 를 h 에 대한 식으로 나타내기	30 %
② CH를 ħ에 대한 식으로 나타내기	30 %
❸ <i>h</i> 의 값 구하기	40 %

$\mathbf{O3}$ $\triangle ABC에서 \overline{AC} = 80 \,\mathrm{m}$ 이므로

$$\overline{BC} = 80 \tan 30^{\circ} = \frac{80\sqrt{3}}{3} (m)$$

...1

따라서 성준이의 눈높이가 1.6 m이므로

나무의 높이는
$$\left(\frac{80\sqrt{3}}{3} + 1.6\right)$$
 m이다.

		2
		9

...

채점 기준	배점
● BC의 길이 구하기	50 %
❷ 나무의 높이 구하기	50 %

04 △ABC에서

$$\overline{AC} = 18 \sin 30^{\circ} = 9 \text{ (cm)}$$

$$\overline{BC} = 18 \cos 30^{\circ} = 9\sqrt{3} \text{ (cm)}$$

△ADC에서

$$\angle \text{CAD} = \frac{1}{2} \times (180^{\circ} - 90^{\circ} - 30^{\circ}) = 30^{\circ}$$

기므로

$$\overline{\text{CD}} = \overline{\text{AC}} \tan 30^{\circ} = 9 \times \frac{\sqrt{3}}{3} = 3\sqrt{3} \text{ (cm)}$$

따라서
$$\overline{BD} = \overline{BC} - \overline{CD} = 9\sqrt{3} - 3\sqrt{3} = 6\sqrt{3}$$
 (cm)

채점 기준	배점
● AC, BC의 길이 각각 구하기	40 %
❷ CD의 길이 구하기	40 %
③ BD의 길이 구하기	20 %

05 오른쪽 그림과 같이 꼭지점 B에서 AC에 내린 수선의 발을 H 라고 하면

$$\overline{AH} = \overline{BH} = 20\sqrt{2} \sin 45^{\circ}$$

= $20\sqrt{2} \times \frac{\sqrt{2}}{2} = 20 \text{ (m)}$

$$\overline{CH} = \overline{AC} - \overline{AH} = 50 - 20 = 30 \text{ (m)}$$

따라서 직각삼각형 BCH에서 피타고라스 정리에 의하여

$$\overline{BC} = \sqrt{\overline{BH}^2 + \overline{CH}^2} = \sqrt{400 + 900} = 10\sqrt{13} \text{ (m)}$$

채점 기준	배점
◆ AH, BH의 길이 각각 구하기	30 %
❷ CH의 길이 구하기	30 %
❸ BC의 길이 구하기	40 %

$$06 \triangle ABC = \frac{1}{2} \times 10 \times 12 \times \sin 60^{\circ}$$

$$= \frac{1}{2} \times 10 \times 12 \times \frac{\sqrt{3}}{2} = 30\sqrt{3} \text{ (cm}^2)$$

$$\triangle ACM = \frac{1}{2} \triangle ACD = \frac{1}{2} \triangle ABC$$

$$=\frac{1}{2}\times30\sqrt{3}=15\sqrt{3} \text{ (cm}^2)$$

		2
		$\overline{}$

채점 기준	배점
① △ABC의 넓이 구하기	50 %
② △ACM의 넓이 구하기	50 %

07 한 변의 길이가 4 cm인 정삼각형의 넓이는

$$\frac{1}{2} \times 4 \times 4 \times \sin 60^{\circ} = \frac{1}{2} \times 4 \times 4 \times \frac{\sqrt{3}}{2}$$

$$=4\sqrt{3} \text{ (cm}^2)$$

...

구하는 정육각형의 넓이는 한 변의 길이가 4 cm인 정삼각형 6개의 넓이와 같으므로

$$6 \times 4\sqrt{3} = 24\sqrt{3} \text{ (cm}^2)$$

...@

채점 기준	배점
정삼각형의 넓이 구하기	50 %
정육각형의 넓이 구하기	50 %

08
$$\angle A = 180^{\circ} \times \frac{2}{1+2+3} = 60^{\circ}$$

 $\sin A + \cos A + \tan A = \sin 60^{\circ} + \cos 60^{\circ} + \tan 60^{\circ}$

$$= \frac{\sqrt{3}}{2} + \frac{1}{2} + \sqrt{3}$$

$$= \frac{1+3\sqrt{3}}{2} \qquad \dots$$

채점 기준	배점
❶ ∠A의 크기 구하기	40 %
❷ sin A+cos A+tan A의 값 구하기	60 %

V. 원

1. 원과 직선

01~02 원과 직선 기초

452쪽

- **01** 2 **02** 3
- $\mathbf{03} \ \overline{\mathbf{AB}} = \overline{\mathbf{CD}} \qquad \qquad \mathbf{04} \ \overline{\mathbf{OM}} = \overline{\mathbf{ON}}$
- 05 5
 06 2

 07 이등변삼각형
 08 10
- **09** 70 **10** 7
- 11 6 12 60
- **13** x=4, y=4 **14** x=2, y=7

01~02 원과 직선 기본

453쪽

- **01** $\sqrt{13}$
- **02** $\frac{25}{6}$ cm
- **03** ④

- **04** 2√3 cm
- **05** $4\pi \text{ cm}^2$
- **06** 3 cm

- **07** 4 cm
- **02** \triangle CBD는 직각삼각형이므로 피타고라스 정리에 의하여 $5^2=3^2+\overline{BC}^2$, $\overline{BC}^2=16$

그런데 $\overline{BC} > 0$ 이므로 $\overline{BC} = 4 \text{ cm}$

원의 중심에서 현에 내린 수선은 그 현을 이등분하므로 $\overline{AC} = \overline{BC} = 4 \text{ cm}$

 $\overline{OA} = x \text{ cm}$ 라고 하면 $\overline{OC} = \overline{OD} - \overline{CD} = x - 3$ 이고.

 \triangle OAC는 직각삼각형이므로 $x^2 = (x-3)^2 + 4^2$, $x = \frac{25}{6}$

따라서 $\overline{\mathrm{OA}} = \frac{25}{6} \; \mathrm{cm}$

- **03** 원의 중심에서 서로 같은 거리에 있는 두 현의 길이는 서로 같으므로 $\overline{BC} = \overline{AC} = 5 \text{ cm}$
 - 즉 *x*=5이다.

또, $\triangle ABC$ 가 이등변삼각형이므로 $\angle A = \angle B = 65^\circ$ $\angle C = 180^\circ - (65^\circ + 65^\circ) = 50^\circ$

□ONCM에서

 $\angle y = 360^{\circ} - (90^{\circ} + 90^{\circ} + 50^{\circ}) = 130^{\circ}$

따라서 $xy=5\times130=650$

05 \triangle ABC는 직각삼각형이므로 $\overline{AC}^2 = 6^2 + 8^2 = 100$

그런데 $\overline{\mathrm{AC}}{>}0$ 이므로 $\overline{\mathrm{AC}}{=}10\,\mathrm{cm}$

이때 내접원의 반지름의 길이를 $x \, \text{cm}$ 라고 하면

 $\overline{PB} = \overline{PQ} = x \text{ cm}$

 $\overline{\text{AP}} = \overline{\text{AR}} = (6-x) \text{ cm}, \overline{\text{CQ}} = \overline{\text{CR}} = (8-x) \text{ cm}$

이때 $\overline{AC} = \overline{AR} + \overline{CR}$ 이므로

10=6-x+8-x, x=2

따라서 원의 넓이는 $\pi \times 2^2 = 4\pi$ (cm²)

06 $\overline{AD} = \overline{AF} = x \text{ cm}$ 라고 하면 $\overline{BD} = \overline{BE} = (10 - x) \text{ cm}$

 $\overline{\text{CF}} = \overline{\text{EC}} = (8 - x) \text{ cm}$

이때 $\overline{BC} = \overline{BE} + \overline{CE}$ 이므로

12 = (10-x) + (8-x), x=3

따라서 \overline{AD} =3 cm

01~02 원과 직선 발전

454쪽

- **01** $8\sqrt{3}$ cm
- **02** $6\sqrt{3}$ cm
- **03** $(4+2\sqrt{2})$ cm
- **04** $12\sqrt{3}$ cm
- **01** $\overline{\text{OF}}$ =2 cm이므로 원 O의 반지름의 길이는

 $2 \times 2 = 4 \text{ (cm)}$

OC를 그으면 △OCF는 직각삼각형이므로

 $2^{2} + \overline{CF}^{2} = 4^{2} \cdot \overline{CF}^{2} = 12$

그런데 $\overline{CF} > 0$ 이므로 $\overline{CF} = 2\sqrt{3}$ cm

 $\overline{\text{CD}} = 2 \times \overline{\text{CF}} = 2 \times 2\sqrt{3} = 4\sqrt{3} \text{ (cm)}$

이때 $\overline{AB} = \overline{CD}$ 이므로

 $\overline{AB} + \overline{CD} = 2 \times 4\sqrt{3} = 8\sqrt{3}$ (cm)

02 오른쪽 그림과 같이 \overline{OB} 를 긋고 원의 중심 \overline{OM} 의 \overline{AB} 에 내린 수선의 발을 \overline{M} , \overline{OM} 의 연장선이 원주와 만나는 점을 \overline{CP} 과 하면 \overline{OB} =6 cm이고

 $\Delta ext{OMB}$ 는 직각삼각형이므로

 $6^2 = 3^2 + \overline{MB}^2$, $\overline{MB}^2 = 27$

그런데 $\overline{\text{MB}} > 0$ 이므로 $\overline{\text{MB}} = 3\sqrt{3} \text{ cm}$

원의 중심 O에서 현 \overline{AB} 에 내린 수선은 그 현을 이등분하 므로 $\overline{AB} = 2\overline{MB} = 2 \times 3\sqrt{3} = 6\sqrt{3}$ (cm)

03 원 O의 반지름의 길이가 2 cm이므로 $\overline{DB} = \overline{EB} = 2$ cm

$$\triangle$$
ABC는 직각삼각형이므로 $(2x)^2=(x+2)^2+(x+2)^2$ $x^2-4x-4=0$, $(x-2)^2=8$, $x-2=\pm\sqrt{8}$, $x=2\pm2\sqrt{2}$ 그런데 $x>0$ 이므로 $x=2+2\sqrt{2}$ 따라서 $\overline{AB}=2+(2\sqrt{2}+2)=4+2\sqrt{2}$ (cm)

 $\mathbf{04}$ 원 O의 반지름의 길이를 x cm라고 하면 직각삼각형 OPD

에서
$$\angle DPO = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$
이므로

$$\frac{\overline{\overline{\mathrm{OD}}}}{\overline{\mathrm{OP}}} = \frac{x}{\overline{\mathrm{OP}}} = \frac{1}{2}$$
 ੀਮ $\overline{\mathrm{OP}} = 2x \text{ (cm)}$

 $\overline{\text{PE}} = 2x + x = 3x \text{ (cm)}$ 이므로 3x = 12, x = 4

즉. $\triangle OPD$ 에서 $\overline{OD}=4$ cm이므로 $\overline{PD}=4\sqrt{3}$ cm

한편 $\triangle DPC$ 는 $\overline{PD} = \overline{PC}$ 인 이등변삼각형이므로 두 밑각 의 크기가 서로 같다.

따라서 △DPC는 정삼각형이고 둘레의 길이는 $3 \times \overline{PD} = 12\sqrt{3}$ (cm)

2. 원주각

01~02 원주각 기초

455쪽

,	01	$\frac{1}{2}$	02	같디	-		03	같다	,
	04	호의 길이	05	50			06	125	
	07	60	80	100			09	47	
	10	110	11	30			12	3	
	13	110	14	80					
	15	x = 75, y = 50)		16	x=9	90, y	y=30	
	17	x=30, y=40)		18	x = x	45, y	_/ =70	

01~02 원주각 기본

456쪽

01	3	02	100	03	15 cm
04	80°	05	110°	06	4
07	30°	80	70°		

- **02** $\angle APB = \angle AQB = 45^{\circ}$ 따라서 △APR에서 ∠x=45°+55°=100°
- **03** △PCB에서 ∠BCD=80°-20°=60° 이때 ∠BCD는 호 BD에 대한 원주각이므로 호 BD에 대 한 중심각의 크기는 120°이다. 따라서 원 O의 둘레의 길이는 5×3=15 (cm)
- $\mathbf{05}$ 오른쪽 그림과 같이 \overline{OA} . \overline{OB} 를 그으면 □APBO에서 ∠AOB $=360^{\circ}-(40^{\circ}+90^{\circ}+90^{\circ})=140^{\circ}$ 따라서 $\angle x = \frac{1}{2} \times (360^{\circ} - 140^{\circ}) = 110^{\circ}$
- **06** □ABCD는 원 O에 내접하므로 $\angle x = 180^{\circ} - 100^{\circ} = 80^{\circ}, \ \angle y = \angle ABC = 85^{\circ}$ 따라서 $\angle x + \angle y = 80^{\circ} + 85^{\circ} = 165^{\circ}$
- **08** 직선 *l*이 원 O의 접선이므로 오른 쪽 그림과 같이 \overline{AT} 를 그으면 접 선과 현이 이루는 각의 성질에 의 하여

 $\angle BAT = 35^{\circ}$ 또한. $\overline{BT} = \overline{CT}$ 이므로 $\angle BAT = \angle CAT = 35^{\circ}$ 따라서 ∠x=35°+35°=70°

01~02 원주각 발전

457쪽

01 80° **02** 36 cm **03** 145° **04** 60°

 $\mathbf{01}$ 오른쪽 그림과 같이 $\overline{\mathbf{BC}}$ 를 그으면 AB의 길이는 원의 둘레의 길이의 $\frac{1}{6}$ 이므로 AB에 대한 중심각의 크기는

 $360^{\circ} \times \frac{1}{6} = 60^{\circ}$

 \widehat{AB} 에 대한 원주각의 크기는 $\angle ACB = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$

이때 \widehat{AB} : \widehat{CD} =3:5이므로 ∠ACB: ∠DBC=3:5에서

 $30^{\circ}: \angle DBC = 3:5, \angle DBC = 50^{\circ}$

따라서 △PBC에서

 $\angle x = \angle PCB + \angle PBC = 30^{\circ} + 50^{\circ} = 80^{\circ}$

- ○2 △APB에서 ∠BAP=65°-15°=50°
 이므로 호 BC에 대한 중심각의 크기는 100°이다.
 즉, 중심각의 크기가 100°인 부채꼴의 호의 길이가 10 cm
 이므로 원 O의 둘레의 길이를 x cm라고 하면
 x: 10=360°: 100°에서 x=36
 따라서 원의 둘레의 길이는 36 cm이다.
- 03
 오른쪽 그림과 같이 두 점 A, C를 연결하면

 결하면
 AB=AD

 한 원에서 같은 길이의 호에 대한 원주각의 크기는 서로 같으므로

 ∠ACB=∠ACD=35°

 사각형 ACDE는 원에 내접하는 사각형이므로

 ∠AED+∠ACD=∠AED+35°=180°

 ∠AED=180°-35°=145°
- 04 \triangle BPC에서 $\overline{PC}=\overline{BC}$ 이므로 \angle CPB= \angle CBP= $\frac{1}{2}$ $\angle x$ 오른쪽 그림과 같이 \overline{AC} 를 그으면 \angle ACP= \angle ABC= $\frac{1}{2}$ $\angle x$ 또, \overline{AB} 가 원 O의 지름이므로 P \angle ACB=90° $\frac{1}{2}x$ 따라서 $\frac{1}{2}$ $\angle x$ +90°+ $\angle x$ =180°에서 $\frac{3}{2}$ $\angle x$ =90°, $\angle x$ =60°

$\frac{1}{2}$ $\angle x = 90$, $\angle x = 60$

대단원 평가 문제

458쪽~459쪽

01 5	02 10 cm	03 $\sqrt{21}$
04 6 cm	05 13	06 3
07 24 cm ²	08 26°	09 60°
10 ④	11 ②	12 20°
13 60°		

 04 원 밖의 한 점에서 그 원에 그은 두 접선의 길이는 서로 같으므로 AB=AP, DC=DP

 따라서 AD=AP+DP=4+9=13 (cm)

 오른쪽 그림과 같이 점 A

 에서 선분 DC에 수선을 내려 만나는 점을 E라고 하면

 $\overline{\text{DE}}=\overline{\text{BC}}$, $\overline{\text{DE}}=9-4=5~(\text{cm})$ 원 O의 반지름의 길이를 r~cm라고 하면

- 직각삼각형 AED에서 피타고라스 정리에 의하여 $13^2=(2r)^2+5^2$, $4r^2=144$, $r^2=36$, $r=\pm 6$ 그런데 r>0이므로 r=6 따라서 원 O의 반지름의 길이는 6 cm이다.
- **05** 원 밖의 한 점에서 그 원에 그은 두 접선의 길이는 서로 같으므로

 $\overline{AP} = \overline{AR}, \ \overline{BP} = \overline{BQ}, \ \overline{CQ} = \overline{CR}$ $\overline{CR} = 12 - 7 = 5 = \overline{CQ}$ 이고 $\overline{BQ} = x$ 이므로 x = 18 - 5 = 13

- **06** □ABCD는 원 O에 외접하므로 AB+CD=AD+BC에서 5+(3+x)=5+6, x=3
- 07 오른쪽 그림에서 $\overline{PA} = x$ cm라고 하면 $10^2 = (2+x)^2 + (12-x)^2$, $x^2 10x + 24 = 0$, (x-4)(x-6) = 0 즉, x = 4 또는 x = 6 그런데 $\overline{AC} > \overline{BC}$ 이므로 x = 6 $\Delta ABC = \frac{1}{2} \times 8 \times 6 = 24$ (cm²)
- **11** △ABQ에서 ∠PAD=∠x+36°
 □ABCD는 원에 내접하므로 ∠ADP=∠x
 따라서 △ADP에서
 (∠x+36°)+∠x+40°=180°, 2∠x=104°, ∠x=52°
- 13 □ABCD는 원 O에 내접하므로
 ∠BCD=180°-100°=80°
 △BCD에서 ∠CBD=180°-(40°+80°)=60°
 따라서 ∠DCE=∠CBD=60°

서술형 평가 문제

460쪽~461쪽

- 01 $2\sqrt{5}$ cm
 02 10 cm
 03 2 cm

 04 $3\sqrt{3}$ cm
 05 35° 06 $25\sqrt{3}$ cm²

 07 $\angle x = 35^{\circ}$, $\angle y = 60^{\circ}$ 08 210°
- ○1 원 O의 중심에서 현에 내린 수선은 그 현을 이등분하므로
 AM = 1/2 ×8=4 (cm)
 OA를 그으면 △OAM은 직각삼각형이고, OA = 5 cm이므로
 크린데 OM > 0이므로 OM = 3 cm

이때 $\overline{MC} = 5 - 3 = 2 \text{ (cm)}$ 이고,

△AMC는 직각삼각형이므로 피타고라스 정리에 의하여 $\overline{AC}^2 = 4^2 + 2^2 = 20$

그런데 $\overline{AC} > 0$ 이므로 $\overline{AC} = 2\sqrt{5}$ cm

•	•	(3

채점 기준	배점
◆ AM의 길이 구하기	20 %
❷ OM의 길이 구하기	40 %
❸ AC의 길이 구하기	40 %

02 □ABCD와 원 O가 접하는 점 을 각각 P, Q, R, S라고 하면 $\overline{AS} = \overline{AP}$, $\overline{DS} = \overline{DR}$. $\overline{CQ} = \overline{CR}$. $\overline{BQ} = \overline{BP}$ 이므로

13 cm P

 $\overline{AD} + \overline{BC}$

 $=\overline{AS}+\overline{DS}+\overline{BQ}+\overline{CQ}$

 $=\overline{AP}+\overline{DR}+\overline{BP}+\overline{CR}$

 $=\overline{AB}+\overline{CD}$

즉. $\overline{AB} + \overline{CD} = \overline{AD} + \overline{BC}$ 이므로

13

3+CD=8+15에서 CD=10 (cm)	
채점 기준	배점

채점 기준	배점
$oldsymbol{\overline{AB}}+\overline{CD}=\overline{AD}+\overline{BC}$ 임을 알기	60 %
<u>⊘</u> CD의 길이 구하기	40 %

03 원의 외부에 있는 한 점에서 원에 그은 접선의 길이는 서로 같으므로

 $\overline{PA} = \overline{PB}, \overline{BD} = \overline{DE} = 1, \overline{AC} = \overline{CE}$

PB=1+5=6 (cm)이므로

 $\overline{PA} = 4 + \overline{AC} = 6$ 에서

 $\overline{AC} = 2 \text{ cm}$

채점 기준	배점
● PB의 길이 구하기	50 %
② AC의 길이 구하기	50 %

04 오른쪽 그림과 같이 \overline{AO} 를 그으면 △ABO는 ∠B=90°인 직각삼각형이

고,
$$\angle BAO = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$
이므로

$$\tan 30^{\circ} = \frac{\overline{OB}}{\overline{AB}}$$

3 cm

		_		
ΛP	2	/2	(cm	
ΛD	$ \mathcal{I}_{1}$	/ O	(cm	

채점 기준	배점
● AB의 길이를 구하는 식 세우기	60 %
② AB의 길이 구하기	40 %

05 직선 PT는 원 O의 접선이므로 접선과 현이 이루는 각의 성질에 의하여

 $\angle ATP = \angle ABT = 115^{\circ}$

...

△ATP에서 ∠CAT=30°이므로

 $\angle TPC = 180^{\circ} - (30^{\circ} + 115^{\circ}) = 35^{\circ}$

채점 기준	배점
❶ ∠ATP의 크기 구하기	40 %
② ∠TPC의 크기 구하기	60 %

06 □ABCD는 원 O에 내접하므로

∠B+∠D=180°에서

 $\angle D = 180^{\circ} - 120^{\circ} = 60^{\circ}$

또 $\widehat{AD} = \widehat{CD}$ 이므로 $\overline{AD} = \overline{CD}$

따라서 △ACD가 정삼각형이므로 넓이는

 $\frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ} = \frac{1}{2} \times 10 \times 10 \times \frac{\sqrt{3}}{2}$

 $=25\sqrt{3} \text{ (cm}^2)$

채점 기준	배점
① ∠D의 크기 구하기	50 %
② △ACD의 넓이 구하기	50 %

07 직선 AT는 원 O의 접선이므로

 $\angle x = \angle BAT = 35^{\circ}$

...

 $\angle DAB = 180^{\circ} - (25^{\circ} + 35^{\circ}) = 120^{\circ}$

이때 □ABCD는 원 O에 내접하므로

 $\angle C + \angle DAB = 180$ °에서

 $\angle y + 120^{\circ} = 180^{\circ}, \angle y = 60^{\circ}$

...(3)

채점 기준	배점
① ∠x의 크기 구하기	40 %
❷ ∠DAB의 크기 구하기	20 %
③ ∠y의 크기 구하기	40 %

 $\overline{08}$ 오른쪽 그림과 같이 \overline{AC} 를 그으면 호 BC의 중심각의 크기가 60°이므로 원 주각의 크기는

∠BAC=30°

 \angle CAE= $\angle x$ -30°○]고

□ACDE가 원 O에 내접하므로

 $\angle x - 30^{\circ} + \angle y = 180^{\circ}$

따라서 $\angle x + \angle y = 210^{\circ}$

채점 기준	배점
① ∠BAC의 크기 구하기	40 %
② 원에 내접하는 사각형의 성질을 이용하 여 식 세우기	40 %
③ ∠x+∠y의 크기 구하기	20 %

VI. 통계

대푯값과 산포도

01~02 대푯값과 산포도 기초

462쪽

- 01 중앙값
- 02 최빈값 03 산포도

- 04 3.8명
- **05** 13분
- **06** 163 cm

- 08 5회
- 09 7시간

- 07 4권
 08 5회

 10 7월
 11 90호
- 12 파랑

13

학생	A	В	С	D	Е	총합	평균
허리 <u>둘</u> 레 (cm)	61	63	67	71	68	330	66
편차(cm)	-5	-3	1	5	2		

분산: $\frac{64}{5}$, 표준편차: $\frac{8\sqrt{5}}{5}$ cm

01~02 대푯값과 산포도 기본

463쪼

- **01** ⑤
- **02** ③
- **03** 32

- **04** 20
- **05** 2
- **06** 6

- **07** 23
- **08** 2√2 °C
- **09** A 선수

04 (평균)=
$$\frac{88+84+92+96}{4}$$
=90(점)이므로
(분산)= $\frac{(-2)^2+(-6)^2+2^2+6^2}{4}$ =20

07 (평균)=
$$\frac{19+a+25+27+21}{5}$$
=23이므로 a =23

08 a=23이므로

(발산)=
$$\frac{(-4)^2+0^2+2^2+4^2+(-2)^2}{5}$$
=8

따라서 표준편차는 $\sqrt{8}=2\sqrt{2}(^{\circ}C)$

09 세 선수가 얻은 점수의 분산을 각각 구하면 A: 2, B: 0.8, C: 0.4 따라서 점수의 분산이 가장 큰 선수는 A이다.

01~02 대푯값과 산포도 발전

464쪽

- **02** a=15, b=17 또는 a=18, b=15
- **03** $\frac{56}{5}$
- **04** $\frac{29}{5}$

01 자료의 평균이 13이므로

$$\frac{15+8+a+15+b+12+12}{7} = 13$$

최빈값이 15이므로 a. b의 값 중 하나는 15이고 다른 하나 는 14이다

따라서 변량을 크기순으로 나열하면

8, 12, 12, 14, 15, 15, 15이므로 중앙값은 14이다.

- **02** A 모둠 5명의 윗몸 일으키기 횟수의 중앙값이 15회이므로 a=15이거나 b=15로 생각할 수 있다.
 - (i) a=15일 때

A 모둠 변량의 중앙값이 15회이므로 $a \le b$ 이다.

이때 두 모둠의 10개의 변량을 크기순으로 나열하면 중 앙값이 16회이므로

9, 10, 13, *a*-1, *a*, *b*, *b*, 19, 21, 23

중앙값은
$$\frac{a+b}{2} = \frac{15+b}{2} = 16$$
이므로 $b=17$

(ii) b=15일 때

A 모둠 변량의 중앙값이 15회이므로 $b \le a$ 이다.

이때 두 모둠의 10개의 변량을 크기순으로 나열하면 중 앙값이 16회이므로

9, 10, 13, b, b, a-1, a, 19, 21, 23

중앙값은
$$\frac{b+(a-1)}{2} = \frac{a+b-1}{2} = 16$$
이므로 $a=18$

따라서 a=15. b=17 또는 a=18. b=15

03 A. B 두 학급의 수학 점수의 평균이 75점으로 서로 같으 므로 두 학급 전체의 평균도 75점이다.

각 학급의 (편차)²의 합을 구하면

A 학급: $4^2 \times 23 = 368$ B 학급: $\left(\frac{8}{3}\right)^2 \times 27 = 192$

이므로 두 학급 전체의 (편차)²의 합은 368+192=560

따라서 두 학급 전체의 분산은 $\frac{560}{50} = \frac{56}{5}$

04 a, b, c의 평균이 12이므로

$$\frac{a+b+c}{3}$$
 = 12, $a+b+c$ = 36

분산이 7이므로 $\frac{(a-12)^2+(b-12)^2+(c-12)^2}{2}=7$

따라서 $(a-12)^2+(b-12)^2+(c-12)^2=21$

10, a, b, c, 14의 평균은

$$\frac{10+a+b+c+14}{5} = \frac{36+24}{5} = 12$$

따라서 구하는 분산은

$$\frac{(-2)^2 + (a-12)^2 + (b-12)^2 + (c-12)^2 + 2^2}{5}$$

$$=\frac{21+8}{5}=\frac{29}{5}$$

2. 상관관계

01 산점도와 상관관계 기초

465쪽

01 5명	02 평균: 9회, 분산: 2
03 3명	04 평균: 4회, 분산: $\frac{2}{3}$
05 1명	06 양의 상관관계
07 8명	08 50 % 09 10명
10 62.5 %	11 3명 12 양의 상관관계

01 산점도와 상관관계 기본

466쪽

01 ④	02 ③	03 ②
04 ¬	05 ⊏	06 49 %
07 30 %	08 음의 상관관기	4

01 산점도와 상관관계 발전

467쪽

- 01 6명 02 $\frac{9}{4}$ 시간 03 $\frac{34}{5}$, 2 04 풀이 참조
- 01 수학 점수의 평균은

$$\frac{3 \times 2 + 4 \times 2 + 5 \times 4 + 6 \times 2 + 7 \times 2 + 8 \times 4 + 9 \times 2 + 10 \times 2}{20}$$

$$=\frac{130}{20}=6.5(2)$$

과학 점수의 평균은

$$\frac{4\times2+5\times2+6\times5+7\times4+8\times1+9\times4+10\times2}{20}$$

$$=\frac{140}{20}=7(2)$$

따라서 수학 점수가 6.5점보다 크고 과학 점수가 7점보다 큰 학생은 6명이다.

- 02 대출한 도서의 수의 중앙값은 3권이고, 3권을 초과하여 대출한 학생 4명의 휴대 전화 사용 시간은 3, 2, 3, 1시간이
 므로 (평균)= 3+2+3+1/4 = 9/4 (시간)
- **03** 턱걸이 횟수가 많은 순으로 5명의 팔 굽혀 퍼기 횟수는 22, 20, 17, 15, 16이므로 평균이 18회이고, 이를 이용하면 분산은 34 이다. 턱걸이 횟수가 적은 순으로 5명의 팔 굽혀 퍼기 횟수는 1, 3, 4, 2, 5이므로 평균이 3회이고, 이를 이용하면 분산은 2이다.
- **04** 점 A의 값을 갖는 선수의 허리둘레는 비슷한 키의 다른 선수에 비해 매우 작다. 다른 선수들의 키와 허리둘레 사이에

는 양의 상관관계가 있지만 점 A가 나타내는 선수의 허리 둘레는 특이한 예이다.

대단원 평가 문제

468쪼~469쪼

01	2 02	3	03	13
04	5 05	6	06	$-2\sqrt{30}$
07	3 08	4	09	2
10	음의 상관관계		11	6.2 km/L
12	상관관계가 없다.			
13	양의 상관관계		14	3
(J

04
$$a = \frac{17+18}{2} = \frac{35}{2}$$
, $b = 20$, $c = 17$ 이므로 $c < a < b$

- 06 편차의 합은 0이므로 $a+1+2-5+0+3+1+2=0,\ a=-4$ (분산)= $\frac{60}{8}=\frac{15}{2}$ 이므로 $b=\frac{\sqrt{30}}{2}$ 따라서 $ab=-2\sqrt{30}$
- 08 표준편차가 클수록 수면 시간은 불규칙하다고 볼 수 있다.

€ 서술형 평가 문제

470쪽~471절

01	9자루	02 31 03	32
UI	9시구	02 31 03	5

- 04 풀이 참조 05 풀이 참조
- 06 양의 상관관계

07 96

- 08 풀이 참조
- **01** 최빈값이 6자루이므로 a. b의 값 중 적어도 하나는 6이다.
 - (i) a=6일 때 주어진 변량을 크기순으로 나열하면 중앙값 이 7자루이므로

중앙값은
$$\frac{a+b}{2} = \frac{6+b}{2} = 7$$
이므로 $b=8$

(ii) b = 6일 때 주어진 변량을 크기순으로 나열하면 중앙값 이 7자루이므로

중앙값은 $\frac{6+b}{2} = \frac{6+6}{2} = 6$ 이므로 문제의 조건과 맞지 않는다.

...

따라서

채점 기준	배점
$oldsymbol{0}$ 조건을 만족시키는 a , b 의 값 구하기	60 %
② 평균 구하기	40 %

02
$$\frac{a+b+c+d}{4}$$
 =10이므로 $a+b+c+d$ =40 ····•
따라서 변량 $3a-1$, $3b+2$, $3c+5$, $3d+8$, 21의 평균은
 $\frac{(3a-1)+(3b+2)+(3c+5)+(3d+8)+21}{5}$
= $\frac{3(a+b+c+d)+35}{5}$ = $\frac{3\times40+35}{5}$ =31 ···· **②**

채점 기준	배점
1 a+b+c+d의 값 구하기	40 %
주어진 변량의 평균 구하기	60 %

03 지현, 민우, 채영의 영어 듣기 시험 점수를 차례대로 a, b. c라고 하면 $\frac{a+b+c}{3}$ =17에서 a+b+c=51 또, 지현, 민우, 채영, 희정, 정환의 영어 듣기 시험 점수의

$$\frac{a+b+c+15+19}{5} = \frac{51+34}{5} = 17 \qquad \cdots$$

이때 a, b, c의 분산이 8이므로 $\frac{(a-17)^2+(b-17)^2+(c-17)^2}{3}=8$

따라서 다섯 사람의 영어 듣기 시험 점수의 분산은 $(a-17)^2 + (b-17)^2 + (c-17)^2 + (15-17)^2 + (19-17)^2$

$$= \frac{8 \times 3 + 4 + 4}{5} = \frac{32}{5}$$
 ...

채점 기준	배점
1 a+b+c의 값 구하기	20 %
다섯 사람의 평균 구하기	30 %
❸ 다섯 사람의 분산 구하기	50 %

04 서울은 10 °C 이하일 때 기온과 전력 사용량 사이에 음의 상관관계가 있다.

울산은 기온과 전력 사용량 사이에 상관관계가 없다. …2

채점 기준	배점
1 서울의 상관관계 파악하기	50 %
② 울산의 상관관계 파악하기	50 %

채점 기준	배점
1 농구 선수의 키와 리바운드 수 사이의 관계를 산점도로 바르게 나타내기	100 %

06 선수의 키가 클수록 리바운드 수가 대체로 많아진다. …1 따라서 양의 상관관계가 있다.

채점 기준	배점
산점도 분석하기	50 %
② 산점도를 보고 상관관계 파악하기	50 %

07 a, b, c의 평균을 m이라고 하면

$$m = \frac{a+b+c}{3} \text{에서 } a+b+c=3 \text{ m 이고,}$$

$$\frac{(a-m)^2+(b-m)^2+(c-m)^2}{3} = 6 \qquad \cdots$$

$$4a-5, 4b-5, 4c-5 의 평균은$$

$$\frac{(4a-5)+(4b-5)+(4c-5)}{3}$$

$$= \frac{4(a+b+c)-15}{3}$$

따라서 4a-5, 4b-5, 4c-5의 분산은 $= \frac{\{(4a-5)-(4m-5)\}^2+\{(4b-5)-(4m-5)\}^2+\{(4c-5)-(4m-5)\}^2}{3}$ $= \frac{\{4(a-m)\}^2+\{4(b-m)\}^2+\{4(c-m)\}^2}{3}$ $= 16 \times \frac{(a-m)^2+(b-m)^2+(c-m)^2}{3}$

$$=16 \times \frac{(a-m)^2 + (b-m)^2 + (c-m)^2}{3}$$

=16 \times 6=96

채점 기준 배점 ① 변량 a, b, c의 분산을 식으로 나타내기 30 % ② 새로운 변량의 평균 구하기 30 % ❸ 새로운 변량의 분산 구하기 40 %

08 블루베리 1과당 과실 무게와 시간당 수확량 사이에는 양의 상관관계가 있고, 인건비가 크게 상승하였다. 따라서 블루베리 재배 농가는 비용 절감을 위해 적절한 가 지치기를 통해 1과당 과실 무게를 크게 하고, 이를 통해 시 간당 수확량을 높임으로써 인건비를 조절하여 비용을 절감 할 수 있다.

채점 기준	배점
산점도를 보고 상관관계 파악하기	50 %
② 블루베리 재배 농가의 판단 서술하기	50 %

...(3)