WHAT IS CLAIMED IS:

1. A backflow preventor assembly comprising: first and second backflow preventor valves;

a housing encompassing said first and second backflow preventor valves, such that both of said valves automatically close if flow through said backflow preventor assembly drops below a predetermined value, said housing including an inlet opening defining an inlet flow direction, an outlet defining an outlet flow direction and a conduit providing fluid communication between said first and second backflow preventor valves

wherein at least a first portion of said conduit is movable with respect to a second portion of said conduit to permit a change in said outlet flow direction with respect to said inlet flow direction.

- 2. A backflow preventor assembly, as claimed in claim 1, wherein said conduit includes first and second spacedapart annular flats configured to accommodate a pipe coupling apparatus after being separated by cutting.
- A backflow preventor assembly, as claimed in claim 1, wherein said outlet flow direction can be changed to
 any of a plurality of directions.
 - 4. A backflow preventor assembly, as claimed in claim 3, wherein said plurality of flow directions lie substantially in a plane substantially parallel to said inlet flow direction.
 - 5. A backflow preventor assembly comprising: first and second backflow preventor valves;
 - a housing encompassing said first and second backflow preventor valves, such that both of said valves automatically close if flow through said backflow preventor assembly drops below a predetermined value, said housing including an inlet opening defining an inlet flow direction, an outlet defining an

5 ub

10

15

20

5ub A235

30

outlet flow direction and a conduit providing fluid communication between said first and second backflow preventor valves

means for permitting movement of said outlet opening 5 with respect to said inlet opening to permit a change in said outlet flow direction with respect to said inlet flow direction.

- 6. A backflow preventor assembly, as claimed in claim 5, wherein said means for permitting movement includes first and second spaced-apart annular flats on said conduit configured to accommodate a pipe coupling apparatus after said conduit is separated by cutting.
 - 7. A method for adjusting outflow direction in a backflow preventor assembly comprising:

providing first and second backflow preventor valves; encompassing said first and second backflow preventor valves in a housing, such that both of said valves automatically close if flow through said backflow preventor assembly drops below a predetermined value, said housing including an inlet opening defining an inlet flow direction, an outlet defining an outlet flow direction and a conduit providing fluid communication between said first and second backflow preventor valves

moving at least a first portion of said conduit with respect to a second portion of said conduit to change said outlet flow direction with respect to said inlet flow direction.

8. A method, as claimed in claim 7, wherein said conduit includes first and second spaced-apart annular flats, and further comprising:

cutting said housing between said first and second flats to separate said conduit into first and second portions; rotating said first portion with respect to said second portion; and

Sub

15

25

30

A3

S

35

connecting said first and second portions with a connector.

9. A backflow preventor apparatus for connection to parallel, oppositely-flowing inlet and outlet conduits, comprising:

a housing configured to accommodate first and second valves, and to receive fluid flow from said inlet conduit flowing in a first direction;

a first valve mounted in said housing having a seatable valve disc having an edge, movable between a closed configuration preventing flow and an open configuration permitting flow in the absence of substantial divergent flow around the edge of said first valve disc;

a second valve mounted in said housing having a seatable valve disc having an edge, movable between a closed configuration preventing flow and an open configuration permitting flow in the absence of substantial diverging flow around the edge of said second valve disc;

said fluid flow having an average streamline path between said inlet conduit and said outlet conduit wherein the sum of changes in flow direction of said average streamline path is not substantially greater than about 180 degrees;

said first valve disc, when in said open configuration, being positioned to direct said flow from said first direction to provide flow in a second direction towards said second valve;

said second valve disc, when in said open configuration, being positioned to direct said flow from said second direction to a third direction towards said outlet conduit; and

wherein said housing is reconfigurable to a second configuration to direct said flow from said second direction to a fourth direction, different from said third direction.

1

5

10

15

20

30

25

35