

明細書

半導体装置及びその製造方法

技術分野

[0001] 本発明は、半導体装置及びその製造方法に係り、特に裏面入射型の半導体装置及びその製造方法に関する。

背景技術

[0002] 従来からある半導体装置として、いわゆる裏面入射型の半導体光検出装置が知られている。この種の半導体装置は半導体基板を有し、その半導体基板の一面に光検出部を有している。そして、半導体基板には、光検出部と反対側で半導体基板の一部が削られて凹部が形成されている。このため、半導体基板には、光検出部がある薄型化部分が設けられている。この薄型化部分は、厚い半導体基板では吸収されて高感度に検出することができない紫外線、軟X線、電子線等のエネルギー線に対応して設けられるものであり、この薄型化部分では、半導体基板の凹部側の面に入射する光が光検出部で検出される。

[0003] 裏面入射型の半導体装置の一つとして、BT-CCD(裏面入射薄板型CCD)を有する半導体装置がある。BT-CCDは、半導体検査装置の検出部として用いられている。BT-CCDを有する従来の半導体装置としては、例えば特許文献1に記載されたものがある。

[0004] 図7は、特許文献1に記載された半導体装置の構成を示す断面図である。図7に示すように、パッケージ101内の底部に固定されている配線基板102上には、その配線基板102に対向する面にCCD103を有する半導体基板としてのP型シリコン層104が金属バンプ105を介して設置されている。金属バンプ105に一端が接続された配線基板102上の配線106の他端には、検出信号を外部から取り出すためのボンディングパッド(図示せず)が設けられており、そのボンディングパッドは、ボンディングワイヤ107によりパッケージ101のリード端子(図示せず)と電気的に接続されている。さらに、配線基板102とP型シリコン層104との間の空隙には、金属バンプ105の接合強度を補強するためのアンダーフィル樹脂108が充填されている。

特許文献1:特開平6-196680号公報

発明の開示

発明が解決しようとする課題

[0005] しかしながら、図7に示すように、アンダーフィル樹脂が半導体基板の薄型化部分と配線基板との間に充填されると、アンダーフィル樹脂の硬化時の加熱或いは冷却の際に、アンダーフィル樹脂と半導体基板との間に両者の熱膨張係数の違いに基づいて発生する応力により、薄型化部分が割れてしまう場合がある。また、割れないまでも、薄型化部分が収縮するアンダーフィル樹脂により引張られて撓んでしまう場合がある。このように半導体基板の薄型化部分が撓むと、半導体装置の使用時において光検出部に対するフォーカシングや光検出部における感度の均一性(ユニフォミティ)及び安定性に悪影響が出る場合がある。

[0006] 本発明は、前記課題に鑑みてなされたものであり、半導体基板の薄型化部分の撓み及び割れを防止し、光検出部に対する高精度なフォーカシング及び光検出部における高い感度の均一性及び安定性を維持することができる半導体装置及びその製造方法を提供することを目的とする。

課題を解決するための手段

[0007] 上述の課題を解決するために、この半導体装置は、一方の面に形成された光検出部と、他方の面の光検出部に対向する領域がエッティングされることにより形成された薄型化部分と、該薄型化部分の外縁部の一方の面上に設けられ、光検出部と電気的に接続された第1の電極とを有する半導体基板と、半導体基板の一方の面側に対向配置され、導電性バンプを介して第1の電極に接続された第2の電極を有する配線基板と、第1の電極及び第2の電極のそれぞれと導電性バンプとの接合強度を補強するために、薄型化部分の外縁部と配線基板との間の空隙に充填された樹脂と、を備え、樹脂は、薄型化部分と配線基板との間の空隙の周囲を該周囲の一部を残して囲むように予め成形された樹脂シートであることを特徴とする。

[0008] この半導体装置においては、樹脂が薄型化部分の外縁部と配線基板との間の空隙に充填されている。これにより、薄型化部分の外縁部に設けられた第1の電極と導電性バンプとの接合強度、及びこの導電性バンプと配線基板の第2の電極との接合

強度が補強される。その一方で、半導体基板の薄型化部分と配線基板との間の空隙に樹脂が充填されないため、樹脂の硬化時等の加熱或いは冷却の際に、樹脂と半導体基板との間に両者の熱膨張係数の違いに基づく応力が発生しても、その応力が薄型化部分に及ぼす影響は小さいため、薄型化部分の撓み及び割れが防止される。したがって、この半導体装置は、使用時において、光検出部に対する高精度なフォーカシングが可能であるとともに光検出部における高い感度の均一性及び安定性を呈することができる。

[0009] さらに、前記樹脂として、所望の形状、すなわち薄型化部分と配線基板との間の空隙の周囲をその周囲の一部を残して囲む形状に予め成形された樹脂シートを用いている。これにより、薄型化部分と配線基板との間の空隙を残して、導電性バンプが存在する空隙すなわち薄型化部分の外縁部と配線基板との間の空隙に樹脂が充填された構成を容易且つ確実に実現することができる。

[0010] また、薄型化部分と配線基板との間の空隙を前記樹脂によって完全に包囲すると、密閉された空間ができる場合がある。この場合、樹脂の硬化時等の加熱或いは冷却の際に、密閉された空間内の空気が膨張或いは収縮することにより、薄型化部分が撓んでしまうことがある。かかる問題に対して、この半導体装置においては、樹脂が前記空隙の周囲をその周囲の一部を残して囲む構成とすることにより、前記空隙が密閉されるのを防いでいる。しかも、予め成形された樹脂シートを用いてることにより、かかる構成もまた容易且つ確実に実現することができる。

[0011] 光検出部は、一次元又は二次元に配列された複数の画素を有することを特徴としてもよい。この場合、複数の画素間において高い感度の均一性及び安定性が要求されるため、本発明による半導体装置が特に有用となる。

また、本発明に係る半導体装置の製造方法は、一方の面に形成された光検出部と、他方の面の前記光検出部に対向する領域がエッチングされることにより形成された薄型化部分と、該薄型化部分の外縁部の前記一方の面上に設けられ、前記光検出部と電気的に接続された第1の電極とを有する半導体基板を用意する工程と、半導体基板の前記一方の面側に対向配置され、導電性バンプを介して前記第1の電極に接続された第2の電極を有する配線基板を用意する工程と、固体の樹脂シートを

前記半導体基板の前記他方の面上の所定領域上に貼り付ける工程と、樹脂シートを有する前記半導体基板を前記配線基板に熱圧着する工程とを備え、所定領域は、薄型化部分と前記配線基板との間の空隙の周囲を該周囲の一部を残して囲むように設定されることを特徴とする。

この場合、上述の機能を有する半導体装置を、樹脂シートを貼り付けることで容易に製造することができる。

発明の効果

[0012] 本発明によれば、半導体基板の薄型化部分の撓み及び割れを防止し、光検出部に対する高精度なフォーカシング及び光検出部における高い感度の均一性及び安定性を維持することができる半導体装置が実現される。

図面の簡単な説明

[0013] [図1]図1は本発明による半導体装置の一実施形態を示す断面図である。

[図2]図2は図1の樹脂32の構成を説明するための平面図である。

[図3]図3は図1の半導体装置1を製造する方法の一例を説明するための断面図である。

[図4]図4は図1の配線基板20の一構成例を示す平面図である。

[図5]図5は図4の構成例に係る配線基板20の内部配線の構成を示す断面図である。

[図6]図6は図5の内部配線60の構成を説明するための断面図である。

[図7]図7は従来の半導体装置の構成を示す断面図である。

符号の説明

[0014] 1…半導体装置

10…半導体基板

14…薄型化部分

15…外縁部

16…電極

18…アキュムレーション層

20…配線基板

- 22…電極
- 24…リード端子
- 28…チップ抵抗
- 30…導電性バンプ
- 32…樹脂
- 34…連通部

発明を実施するための最良の形態

[0015] 以下、図面とともに本発明による半導体装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。

[0016] 図1は、本発明による半導体装置の一実施形態を示す断面図である。半導体装置1は、半導体基板10、配線基板20、導電性バンプ30、及び樹脂32を備えている。半導体基板10は、BT-CCD(裏面入射薄板型CCD)であり、その表面S1側の表層の一部に光検出部としてのCCD12が形成されている。半導体基板10は、例えばシリコンのP⁺層とその上に形成されたP型のエピタキシャル層と、その上に形成され駆動信号が与えられる図示しない転送電極群とから構成される。CCD12は、二次元的に配列された複数の画素を有している。また、裏面S2のCCD12に対向する領域がエッチングされることにより薄型化された薄型化部分14が形成されている。エッチングされた部分の輪郭は四角錐台状をしている。薄型化部分14は、エッチングされている側の面が矩形状の平坦な光入射面S3となっており、この光入射面S3はCCD12と略同じ大きさに形成されている。また、半導体基板10全体としても平面視矩形状をしている。半導体基板10の厚さは、例えば、薄型化部分14が約15～40 μm、薄型化部分14の外縁部15が約300～600 μmである。なお、薄型化部分14の外縁部15とは、半導体基板10のうち薄型化部分14周囲の、薄型化部分14よりも厚い部分をいう。

[0017] 外縁部15の表面S1上には電極16(第1の電極)が形成されている。この電極16は、図示を省略する配線によりCCD12の転送電極群に電気的に接続されている。また、半導体基板10の裏面S2は、光入射面S3を含めて全体がアキュムレーション層18

によって覆われている。アキュムレーション層18は、半導体基板10と同じ導電型を有するが、その不純物濃度は半導体基板10よりも高い。

[0018] 半導体基板10は、フリップチップボンディングにより配線基板20に実装されている。すなわち、配線基板20は、半導体基板10の表面S1側に対向配置されている。配線基板20には半導体基板10の電極16と対向する位置に電極22(第2の電極)が形成されており、この電極22は導電性バンプ30を介して電極16に接続されている。すなわち、リード端子24、電極22、導電性バンプ30、電極16は、CCD転送電極に接続されており、リード端子24にはCCDの駆動信号が入力される。CCDの読み出し信号を出力するアンプの出力は、いずれかの電極16、導電性バンプ30、電極22を介して、リード端子24から取り出される。配線基板20は、例えば多層セラミック基板からなる。また、配線基板20の上面S4(半導体基板10と対向する面)は、半導体基板10よりも広い面積を有しており、上面S4の縁部には半導体基板10と対向しない領域が存在する。

[0019] 配線基板20の底面S5(上面S4と反対側の面)にはリード端子24が設けられている。リード端子24は、配線基板20の内部配線(図示せず)と接続されている。

[0020] 半導体基板10と配線基板20との間には導電性バンプ30が介在しているため空隙が存在する。この空隙のうち外縁部15と配線基板20とで挟まれる部分には、導電性バンプ30との接合強度(具体的には電極16及び電極22のそれぞれと導電性バンプ30との接合強度)を補強するため、絶縁性の樹脂32(アンダーフィル樹脂)が充填されている。樹脂32は樹脂シートであり、例えば、エポキシ系樹脂、ウレタン系樹脂、シリコーン系樹脂、若しくはアクリル系樹脂、又はこれらを複合させたものをシート状にした樹脂シートを用いることができる。

[0021] 図2を用いて、樹脂32の構成をより詳細に説明する。図2は、配線基板20をその上面S4側から見た平面図である。図2において、破線L1, L2は、それぞれ半導体基板10及び薄型化部分14の輪郭を示している。この図のI—I線に沿った断面図が図1に対応している。この図に示すように、樹脂32は、半導体基板10の薄型化部分14と配線基板20との間の空隙の周囲を囲んでいるが、その周囲の全てを囲むのではなくその周囲の一部を残して囲んでいる。具体的には、配線基板20において、薄型化部

分に対向する領域(破線L2で囲まれる長方形の領域)の四隅のそれぞれから半導体基板10と対向する領域の外側まで延びる領域を残して樹脂32が設けられている。これにより、半導体基板10と配線基板20との間の空隙には、薄型化部分14と配線基板20との間の空隙と半導体装置1の外部とを連通する連通部34が画成されている。

[0022] さらに、配線基板20の上面S4には、複数のチップ抵抗28が設けられている。チップ抵抗28は、配線基板20の薄型化部分14に対向する領域内の図中上部及び下部それぞれにおいて、図中左右方向に一次元的に配列されている。

[0023] 図1に戻って、半導体装置1の動作を説明する。光入射面S3から半導体基板10の薄型化部分14に入射した光はCCD12により検出される。その検出信号は、電極16、導電性バング30及び電極22を順に通って、配線基板20に伝えられる。配線基板20において、その検出信号は、内部配線を通ってリード端子24に伝えられ、リード端子24から半導体装置1の外部へと出力される。

[0024] 続いて、半導体装置1の効果を説明する。樹脂32が薄型化部分14の外縁部15と配線基板20との間の空隙に充填されている。これにより、薄型化部分14の外縁部15に設けられた電極16と導電性バング30との接合強度、及び導電性バング30と配線基板20の電極22との接合強度が補強される。その一方で、半導体基板10の薄型化部分14と配線基板20との間の空隙に樹脂32が充填されないため、樹脂32の硬化時等の加熱或いは冷却の際に、樹脂32と半導体基板10との間に両者の熱膨張係数の違いに基づく応力が発生しても、その応力が薄型化部分14に及ぼす影響は小さいため、薄型化部分14の撓み及び割れが防止される。したがって、半導体装置1は、使用時において、CCD12に対する高精度なフォーカシングが可能であるとともにCCD12における高い感度の均一性及び安定性を呈することができる。また、薄型化部分14の割れが防止されているので、半導体装置1の歩留まりも向上する。

[0025] さらに、前記樹脂32として、所望の形状、すなわち薄型化部分14と配線基板20との間の空隙の周囲をその周囲の一部を残して囲む形状に予め成形された樹脂シートを用いている。これにより、薄型化部分14と配線基板20との間の空隙を残して、導電性バング30が存在する空隙すなわち薄型化部分14の外縁部と配線基板20との

間の空隙に樹脂32が充填された構成を容易且つ確実に実現することができる。

[0026] また、薄型化部分14と配線基板20との間の空隙を前記樹脂32によって完全に包围すると、密閉された空間ができる場合がある。この場合、樹脂の硬化時等の加熱或いは冷却の際に、密閉された空間内の空気が膨張或いは収縮することにより、薄型化部分14が撓んでしまうことがある。かかる問題に対して、この半導体装置1においては、樹脂32が前記空隙の周囲をその周囲の一部を残して囲む構成とすることにより、前記空隙が密閉されるのを防いでいる。しかも、予め成形された樹脂シートを用いていることにより、かかる構成もまた容易且つ確実に実現することができる。

[0027] また、半導体基板10にアキュムレーション層18が設けられている。これにより、半導体基板10のアキュムレーション状態が維持される。このため、CCD12における短波長光に対する感度の均一性(ユニフォミティ)及び安定性を一層向上させることができる。

[0028] ところで、近年、裏面入射型の半導体装置においては、大面積化、及び高速応答特性の要求が高まっている。しかしながら、図7に示す半導体装置のように、半導体基板を配線基板に一旦ダイボンドした上で、その配線基板とパッケージのリード端子とをワイヤボンディングする構成では、大面積化と高速応答化とを共に実現することが困難である。すなわち、かかる構成の半導体装置において大面積化を図ろうすると、それに伴いワイヤが長くなることにより抵抗が増大してしまうという問題がある。しかも、大面積化に伴って、ワイヤ同士が近接して高密度化することにより、クロストークが発生するとともに、ワイヤ間に容量(キャパシタ)が生じてしまう等の問題があり、高速応答化が一層困難となってしまう。

[0029] これに対し、半導体装置1においては、半導体基板10が導電性バンプ30を介して配線基板20に実装されているため、半導体基板10と配線基板20とをワイヤボンディングする必要がない。さらに、配線基板20にリード端子24が設けられているため、半導体装置1においては、配線基板20の他にパッケージを設ける必要がなく、したがって、配線基板20とパッケージのリード端子とをワイヤボンディングする必要もない。このように半導体装置1においては全ての配線をワイヤボンディングを用いずに行うことができるため、大面積化を図っても、上述の問題、すなわち抵抗の増大、クロストーク

の発生及び容量の発生という問題が生じない。このため、半導体装置1は、大面積化及び高速応答化の要求を共に満たすことが可能である。例えばCCD12の画素数を2054ピクセル×1024ピクセル(チップサイズ(半導体基板10の面積)は40.0mm×20mm強)とする場合、従来の半導体装置では1.6Gピクセル/sec以上の高速化は困難であるのに対し、半導体装置1によれば3.2Gピクセル/secの高速動作が可能である。

[0030] 図3は、図1の半導体装置1を製造する方法の一例を説明するための断面図である。本例では、樹脂32として固体転写シート(樹脂シート)を用い、この固体転写シートを半導体基板10の表面S1上の所定領域上に貼り付けておく。この所定領域とは、薄型化部分14の周囲をその周囲の一部を残して囲む領域である。その後、半導体基板10を配線基板20に熱圧着することにより、図1に示す半導体装置1が得られる。なお、熱圧着の際にバンプ30が固体転写シートを貫くため、固体転写シートにおけるバンプ30に対応する部分に開口等を予め形成しておく必要はない。

[0031] 図4は、図1の配線基板20の一構成例を示す平面図である。本構成例の配線基板20は、多層セラミック基板である。この配線基板20は58.420mm四方の平面視略正方形形状をしている。配線基板20の薄型化部分14に対向する長方形形状の領域(破線L2で示している)には、複数のチップ抵抗28が設けられている。チップ抵抗28は、この領域内の図中上部及び下部それぞれに2列ずつ、図中左右方向(前記長方形の長辺方向)に一次元的に配列されている。また、前記領域の外側の領域には、複数の電極22が形成されている。電極22は、前記長方形の四辺それぞれに沿って配列されており、長辺方向には3列ずつ、短辺方向には2列ずつ配列されている。電極22の直径は0.080mmである。

[0032] 図5は、図4の構成例に係る配線基板20の内部配線の構成を示す断面図である。内部配線60は、信号出力用配線60a, 60b、クロック供給用配線60c, 60d、及びDCバイアス(グランド)供給用配線60eからなる。各内部配線60は、電極22、リード端子24及びチップ抵抗28の相互間を電気的に接続している。図6を用いて内部配線60の構成をより詳細に説明する。図6においては、説明の便宜のために、配線基板20の平面図上にリード端子24を重ねて表示している。この図に示すように、薄型化部

分14に対向する領域内には、信号出力用配線60a, 60bのみが形成されており、一方クロック供給用配線60c, 60d及びDCバイアス(クロック)供給用配線60eは、前記領域の外側に形成されている。このように、クロック供給用配線60c, 60d及びDCバイアス供給用配線60e等の駆動系配線と、信号出力用配線60a, 60bとを分離して配置することにより、駆動系信号と出力系信号との間におけるクロストークの発生を防ぐことができる。

産業上の利用可能性

[0033] 本発明は、半導体装置及びその製造方法、特に裏面入射型の半導体装置及びその製造方法に利用できる。

請求の範囲

[1] 一方の面に形成された光検出部と、他方の面の前記光検出部に対向する領域がエッチングされることにより形成された薄型化部分と、該薄型化部分の外縁部の前記一方の面上に設けられ、前記光検出部と電気的に接続された第1の電極とを有する半導体基板と、

前記半導体基板の前記一方の面側に対向配置され、導電性バンプを介して前記第1の電極に接続された第2の電極を有する配線基板と、

前記第1の電極及び前記第2の電極のそれぞれと前記導電性バンプとの接合強度を補強するために、前記薄型化部分の外縁部と前記配線基板との間の空隙に充填された樹脂と、を備え、

前記樹脂は、前記薄型化部分と前記配線基板との間の空隙の周囲を該周囲の一部を残して囲むように予め成形された樹脂シートであることを特徴とする半導体装置。

[2] 前記光検出部は、一次元又は二次元に配列された複数の画素を有することを特徴とする請求項1に記載の半導体装置。

[3] 半導体装置の製造方法において、

一方の面に形成された光検出部と、他方の面の前記光検出部に対向する領域がエッチングされることにより形成された薄型化部分と、該薄型化部分の外縁部の前記一方の面上に設けられ、前記光検出部と電気的に接続された第1の電極とを有する半導体基板を用意する工程と、

前記半導体基板の前記一方の面側に対向配置され、導電性バンプを介して前記第1の電極に接続された第2の電極を有する配線基板を用意する工程と、

固体の樹脂シートを前記半導体基板の前記他方の面上の所定領域上に貼り付ける工程と、

前記樹脂シートを有する前記半導体基板を前記配線基板に熱圧着する工程と、を備え、

前記所定領域は、前記薄型化部分と前記配線基板との間の空隙の周囲を該周囲の一部を残して囲むように設定されることを特徴とする半導体装置の製造方法。

[図1]

[図2]

[図3]

[図4]

20

[図5]

[図6]

[図7]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/013965

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ H01L27/14, H01L31/02, H01L21/56, H01L21/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ H01L27/14, H01L31/02, H01L21/56, H01L21/60

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2004
 Kokai Jitsuyo Shinan Koho 1971-2004 Toroku Jitsuyo Shinan Koho 1994-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2000-156487 A (Sharp Corp.), 06 June, 2000 (06.06.00), Full text; all drawings & US 6392217 B1	1-3
A	JP 6-196680 A (Hamamatsu Photonics Kabushiki Kaisha), 15 July, 1994 (15.07.94), Full text; all drawings (Family: none)	1-3
A	JP 6-29506 A (Hamamatsu Photonics Kabushiki Kaisha), 04 February, 1994 (04.02.94), Full text; all drawings (Family: none)	1-3

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
20 October, 2004 (20.10.04)Date of mailing of the international search report
02 November, 2004 (02.11.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C1' H01L27/14, H01L31/02, H01L21/56, H01L21/60

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1' H01L27/14, H01L31/02, H01L21/56, H01L21/60

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2004年
日本国実用新案登録公報	1996-2004年
日本国登録実用新案公報	1994-2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	J P 2000-156487 A (シャープ株式会社) 2000. 06. 06, 全文, 全図 & US 6392217 B1	1-3
A	J P 6-196680 A (浜松ホトニクス株式会社) 1994. 07. 15, 全文, 全図 (ファミリーなし)	1-3
A	J P 6-29506 A (浜松ホトニクス株式会社) 1994. 02. 04, 全文, 全図 (ファミリーなし)	1-3

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

20. 10. 2004

国際調査報告の発送日

02.11.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

柴山 将隆

4 L 3035

電話番号 03-3581-1101 内線 3462