D

Позиционные и непозиционные системы счисления

Понятие числа возникло в глубокой древности, и тогда же возникла необходимость записи чисел. До возникновения письменности люди считали с помощью пальцев, палочек, ракушек, камешков, узелков на веревке и т. п. Но легко догадаться, что такой способ счета был неудобен, особенно когда приходилось иметь дело с большими числами, их сравнением и выполнением действий над ними.

Поэтому возникла необходимость в более рациональных способах счета. Его начали вести группами сложенных из одинакового количества элементов. Целую группу предметов (палочек, черточек, камней...) начали называть одним словом и обозначать одним знаком.

Этому содействовало развитие счета с помощью пальцев рук и ног. Переход человека к пальцевому и другому погрупповому счету привел к построению различных систем счисления: двоичной, пятеричной, восьмеричной, десятичной или десятеричной (10-ной), шестидесятеричной (60-ной) и др. Самая первая система была двоичная, когда человек считал при помощи рук. Следы этой системы счисления сохранились и до сегодняшних дней. И теперь часто считают парами.

Определение. Системой счисления называют совокупность правил наименования и изображения чисел с помощью конечного набора символов, называемых цифрами.

Кратко: система счисления – это способ записи чисел с помощью цифр.

В разные исторические периоды развития человечества для подсчетов и вычислений использовались те или иные системы счисления. Например, на Ближнем Востоке была распространена двенадцатеричная система: многие предметы (ножи, вилки, тарелки, носовые платки и т. д.) и сейчас считают дюжинами. Число месяцев в году двенадцать. Двенадцатеричная система счисления сохранилась в английской системе мер (например, 1 фут = 12 дюймам) и в денежной системе (1 шиллинг = 12 пенсам).

В древнем Вавилоне существовала весьма сложная шестидесятеричная система. Она, как и двенадцатеричная система, в какой-то степени сохранилась до наших дней (например, в системе измерения времени: 1 час = 60 минутам, 1 минута = 60 секундам, аналогично в системе измерения углов: 1 градус = 60 минутам, 1 минута = 60 секундам).

У некоторых африканских племен была распространена пятеричная система счисления, у ацтеков и народов майя, населявших в течение многих столетий обширные области американского континента, – двадцатеричная система. У некоторых племен Австралии и Полинезии встречалась двоичная система.

Все системы счисления на основе записи чисел делятся на непозиционные и позиционные.

1. Непозиционные системы счисления

Определение. Система счисления называется непозиционной, если значение цифры в записи числа не зависит от позиции, которую она занимает в последовательности цифр, изображающей число. Примеры непозиционных систем счисления: римская, древнегреческая и др.

Начиналось всё с единичной системы счисления.

Единичная система счисления. Простейшая, но абсолютно неудобная система счисления. Основана на единственной цифре — единице (палочке). Позволяет записывать только натуральные числа. Чтобы представить число в этой системе счисления, нужно записать столько палочек, каково само число (взаимно однозначное соответствие между конечными множествами А палочек и В предметов, олицетворяющих данное число). Уна́рная (единичная) система счисления — положительная суммарная целочисленная система счисления с основанием, равным 1. В качестве единственной «цифры» используется «1», черточка (|), камешек, костяшка счетов, узелок, зарубка и др. Данная система счисления — положительная система счисления с основанием, равным 1.

Использовалась нецивилизованными племенами, потребности которых в счете, как правило, не выходили за рамки первого десятка. Чисто формально единичную систему счисления можно отнести к числу основных (с основанием 1). Но, в отличие от остальных основных систем счисления, можно лишь с очень сильной натяжкой считать ее позиционной, а универсальной она вообще не является (в ней нельзя представить ноль, дроби и отрицательные числа).

Римская система счисления. С помощью семи цифр можно, причем относительно несложно и довольно выразительно представлять натуральные числа в диапазоне до нескольких тысяч:

I	V	X	L	С	D	M
1	5	10	50	100	500	1000

Для записи числа в римской системе счисления, его необходимо разложить на сумму тысяч, полтысяч, сотен, полсотен, десятков, пятерок и единиц. Например, число 2367 в римской системе счисления запишется в виде MMCCCLXVII.

Вначале в римской системе счисления цифры записывались в порядке уменьшения их значения (слева направо). Потом, чтобы уменьшить количество знаков для записи числа, были приняты некоторые уточнения: когда перед цифрой с большим значением стоит цифра с меньшим значением, то это меньшее число необходимо отнять от большего. Например, число 4 стали писать IV вместо IIII, число 9 – IX вместо VIIII, 1994 записывают как MCMXCIV.

Заметим, что уточненная римская система остается непозиционной (каждая цифра означает одно и то же число). В рассмотренной римской системе, как и в любой другой непозиционной системе, неудобно записывать большие числа и выполнять арифметические действия над ними. В наше время римская система счисления большого практического применения не имеет и употребляется только для нумерации разделов и параграфов в книгах, обозначений номеров томов книг, месяцев, года, классов и т. д.

Древнегреческая система счисления, также известная как ионийская или новогреческая – непозиционная система счисления, – алфавитная запись чисел, в которой в качестве символов для счета, употребляют буквы классического греческого алфавита, а также некоторые буквы доклассической эпохи, такие как $\mathfrak F$ (дигамма), $\mathfrak F$ (коппа) и $\mathfrak F$ (сампи). Одно из начертаний дигаммы внешне похоже на распространившуюся в византийскую эпоху лигатуру $\mathfrak F$ (с $\mathfrak F$), поэтому распространилось заблуждение, что для записи числа 6 использовалась стигма. Эта система пришла на смену аттической (старогреческой) системе, господствовавшей в Греции в III в. до н. э. Необходимость сохранять порядок букв ради сохранения их числовых значений привела к относительно ранней (IV в. до н. э.) стабилизации греческого алфавита. А в V в. до н. э. появилась *алфавитная нумерация* — новая система записи чисел. В этой системе числа записывались при помощи букв алфавита, над которыми рисовались черточки (рис. 6.10).

1 2 3 4 5 6 7 8 9

at
$$f^{9}$$
 f^{9} f^{9}

Рис. 6.10. Древнегреческая ионийская десятеричная алфавитная система счисления

2. Позиционные системы счисления

Определение. Система счисления называется позиционной, если значение каждой цифры в записи числа зависит от ее позиции. Примеры позиционных систем счисления: шестидесятеричная вавилонская, десятеричная индо-арабская, шестнадцатеричная, двоичная и др.

Позиционная система счисления определяется целым числом h > 1, называемым основанием системы счисления. Система счисления с ос-

нованием h называется h-ичной (в частности, двоичной, троичной, десятичной и т. п.).

В *позиционной системе счисления* один и тот же знак-цифра может обозначать разные числа в зависимости от места (позиции), которое он занимает в записи данного числа. Например, в числе 28 381 первая слева цифра 8 показывает количество тысяч, вторая — десятков, а в числе 28 восьмерка показывает количество единиц.

В настоящее время общепринята десятичная система счисления. Современная десятичная система счисления была создана в Индии в VI в. н. э. (хотя первоначально ее изобрел древнегреческий ученый Архимед в III в. до н. э.). С помощью этой системы удобно записывать очень большие числа. Позже система была заимствована арабами и в XII в. из арабских стран попала в Европу, где к XVI в. распространилась везде.

Для записи любого числа в этой системе счисления используются, как известно, только десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Древнее изображение десятичных цифр (рис. 6.11) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0- углов нет, 1- один угол, 2- два угла и т. д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Рис. 6.11. Развернутая форма записи чисел или число в виде суммы разрядных единиц

Всякое натуральное число в десятичной системе счисления можно записать в виде суммы степеней с основанием 10:

$$a = a_{\scriptscriptstyle n} \cdot 10^{\scriptscriptstyle n} + a_{\scriptscriptstyle n-1} \cdot 10^{\scriptscriptstyle n-1} + a_{\scriptscriptstyle n-2} \cdot 10^{\scriptscriptstyle n-2} + \dots \\ + a_{\scriptscriptstyle 2} \cdot 10^{\scriptscriptstyle 2} + a_{\scriptscriptstyle 1} \cdot 10 \\ + a_{\scriptscriptstyle 0}.$$

Число a можно записать и в следующем виде: $a = \overline{a_n} \overline{a_{n-1}} \overline{a_{n-2}} \dots \overline{a_2} \overline{a_1} \overline{a_0}$.

Черта сверху показывает отличие записи числа a от произведения числа a_n , a_{n-1} , a_{n-2} , ... , a_2 , a_1 , a_0 . Если вместо букв пишутся цифры, то черта сверху не ставится.

Например,
$$423071 = 4 \cdot 10^5 + 2 \cdot 10^4 + 3 \cdot 10^3 + 0 \cdot 10^2 + 7 \cdot 10^1 + 1 \cdot 10^0 = 4 \cdot 10^5 + 2 \cdot 10^4 + 3 \cdot 10^3 + 7 \cdot 10 + 1$$
.

Обычно на практике имеют дело с числами, не превышающими 10^{12} . Существуют (и ранее ими пользовались) позиционные системы с основанием счета, отличным от 10.

В позиционной системе счисления числа разбиваются на классы, каждый класс – на три разряда, которые считаются справа налево. Каждая цифра числа обозначает количество единиц того разряда, в котором стоит (единица каждого следующего разряда в 10 раз больше единицы предыдущего).

Соответствующие названия имеют следующие разрядные единицы:

1 – единица	10 ⁹ – миллиард	Числа, меньшие 1000, принято называть
10 ¹ – десяток	10 ¹² – триллион	числами I класса;
10 ² – сотня	10 ¹⁵ – квадриллион	числа, большие 103, но меньшие 106 – 1, – числами II класса;
10 ³ – тысяча	10^{18} — квинтильон	числами и класса, числа, большие 106, но меньшие 109 – 1, –
10 ⁶ — миллион	10 ²¹ – секстильон	числами III класса и т. д.

Все позиционные системы счисления имеют одинаковую структуру.

- 1. Для записи чисел используют количество цифр, определяемое числом основания системы счисления. Так, в 10-ной системе счисления для записи чисел используют 10 знаков (цифр): 0, 1, 2, ..., 9;
- в пятеричной 5 цифр: 0, 1, 2;
- в шестеричной 6 цифр: 0, 1, 2, 3, 4, 5;
- в шестнадцатеричной 16 цифр: $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A_{16}, B_{16}, C_{16}, D_{16}$
- 2. Одна и та жа цифра имеет разные значения в зависимости от места, занимаемого ей в записи числа.

Основание	Система	Алфавит	
h = 2	Двоичная	0 1	
h = 3	Троичная	0 1 2	
h = 8	Восьмеричная	0 1 2 3 4 5 6 7	
h = 16	Шестнадцатеричная	0123456789ABCDEF	

Число a в системе счисления с основанием h можно записать в виде:

$$a=a_{_n}\cdot h^{_n}+a_{_{n-1}}\cdot h^{_{n-1}}+a_{_{n-2}}\cdot h^{_{n-2}}+\dots+a_{_2}\cdot h^2+a_{_1}\cdot h+a_{_0},$$
 где $a_{_n},a_{_{n-1}},a_{_{n-2}},\dots,a_{_2},a_{_1},a_{_0}$ – цифры числа $a.$

Например, при h=5 имеем следующую запись натурального числа в 5-ричной системе счисления:

$$a_{\scriptscriptstyle 5} = a_{\scriptscriptstyle n} \cdot 5^{\scriptscriptstyle n} + a_{\scriptscriptstyle n-1} \cdot 5^{\scriptscriptstyle n-1} + a_{\scriptscriptstyle n-2} \cdot 5^{\scriptscriptstyle n-2} + \dots \\ + a_{\scriptscriptstyle 2} \cdot 5^{\scriptscriptstyle 2} + a_{\scriptscriptstyle 1} \cdot 5 + a_{\scriptscriptstyle 0}.$$

Таблица 6.2 – Записи чисел в некоторых системах счисления

Десятичное (DEC)	Двоичное (BIN)	Четверичное (QUAT)	Восьмеричное (ОСТ)	Шестнадцатеричное (HEX)
0	0000	0	0	0
1	0001	1	1	1
2	0010	2	2	2
3	0011	3	3	3
4	0100	10	4	4
5	0101	11	5	5
6	0110	12	6	6
7	0111	13	7	7
8	1000	20	10	8
9	1001	21	11	9
10	1010	22	12	A
11	1011	23	13	В
12	1100	30	14	С
13	1101	31	15	D
14	1110	32	16	Е
15	1111	33	17	F
16	10000	40	20	10

Ответ на вопрос, возможна ли запись любого натурального числа в системе счисления с основанием h, где $h \in \mathbb{N}$ и h > 1 дает следующая теорема.

Теорема 1. Всякое натуральное число a может быть записано, причем однозначно, в системе счисления с основанием h, т. е.

$$\begin{array}{c} a_{_{\! h}}=a_{_{\! n}}\cdot h^n+a_{_{\! n-1}}\cdot h^{n-1}+a_{_{\! n-2}}\cdot h^{n-2}+\ldots \,+a_{_{\! 2}}\cdot h^2+a_{_{\! 1}}\cdot h+a_{_{\! 0}}\\ \text{ или} &a_{_{\! h}}=\overline{a_{_{\! n}}a_{_{\! n-1}}a_{_{\! n-2}}\ldots \,a_{_{\! 2}}a_{_{\! 1}}a_{_{\! 0}\,(h)}},\\ \text{ где} &h\in \mathbf{N},h>1,\,a_{_{\! n}}\neq 0,\,a_{_{\! i}}\in \mathbf{N}\,\,(i=0,1,2,\ldots,n). \end{array}$$

Развернутая форма записи чисел в двоичной и троичной системах счисления:

$$1101_{2} = 1 \cdot 10^{\frac{3}{2}} + 1 \cdot 10^{\frac{9}{2}} + 1 \cdot 10^{\frac{9}{2}} =$$

$$= 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1;$$

$$12201_{3} = 1 \cdot 10^{\frac{4}{3}} + 2 \cdot 10^{\frac{3}{3}} + 2 \cdot 10^{\frac{9}{3}} + 0 \cdot 10^{\frac{1}{3}} + 1 \cdot 10^{\frac{9}{3}} =$$

$$= 1 \cdot 3^{4} + 2 \cdot 3^{3} + 2 \cdot 3^{2} + 1.$$

\mathbf{I} ереход от записи чисел в десятеричной системе счисления к их записи в системе счисления с основанием $h \neq 10$

Чтобы число, записанное в десятичной системе счисления, записать в системе счисления с другим основанием, необходимо данное число разделить на основание новой системы с остатком, полученное частное опять делить на основание новой системы с остатком и т. д. до тех пор, пока не получится частное, меньшее основания новой системы. Последнее частное и все остатки, начиная с последнего, будут разрядными единицами данного числа, записанного в новой системе счисления.

ример 1.

1. Число 1876, заданное в десятичной системе счисления, в восьмеричной системе счисления будет иметь вид 3524₈ (рис. 6.12):

$$1876_{10} = 3524_{8}$$

2. Число 145, заданное в десятичной системе счисления, в *троичной* системе счисления будет иметь вид 3524_8 (рис. 6.13):

$$145_{10} = 12101_3$$
.

1876 8	$145 \ 3$
16 234 8	$12 \overline{48} 3$
$egin{array}{c c} 16 & 234 & 8 \ \hline 27 & 16 & 29 & 8 \ \hline \end{array}$	$25 \ 3 \ 16 \ 3$
$24 \overline{74} 24 \overline{(3)}$	$24\ 18\ 15\overline{5}\ 3$
$\begin{array}{c c} \hline 36 & 72 \hline \hline 3 & \hline \end{array}$	$\bigcirc 18 \bigcirc 1 3 \bigcirc 1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\bigcirc $\overline{\bigcirc}$ \bigcirc $\overline{\boxed{2}}$
$\overline{\overline{\bf 4}}$	

Puc. 6.12 Puc. 6.13

- Замечания. 1. Если основание системы счисления равно 10, то обычно его не указывают в записи числа: вместо 347₁₀ пишут 347; если же число записано в недесятеричной системе счисления, то необходимо указать ее основание²
 - 2. Чем меньше основание системы счисления, тем больше цифр в записи данного числа.

$$11_{10} = 1011_2 = 13_8 = B_{16}$$

¹ Вместо слова «десятеричная» часто используется слово «десятичная».

Для простоты допускается указывать основание системы 10 в случаях, когда в одной записи встречаются числа, записанные в разных системах счисления:

Переход от записи чисел в системе счисления с основанием, от 10, к их записи в десятичной системе счисления

Для того чтобы перейти к записи числа a в десятичной системе счисления, необходимо основание h и цифры числа a записать в десятичной системе в виде суммы разрядных единиц.

2)
$$30425_6 = 3 \cdot 6^4 + 0 \cdot 6^3 + 4 \cdot 8^2_{10}$$
.

Переход от записи чисел в одной недесятичной системе счисления к записи в другой недесятичной системе счисления

Теоретически указанный переход можно выполнять по тем же правилам, что и при переходе от недесятичной системы счисления к десятичной. Но на практике этим способом не пользуются потому, что в этом случае все вычисления пришлось бы выполнять в непривычной недесятичной системе счисления (необходимо знать таблицы сложения и умножения в конкретной системе счисления).

Перевод чисел из системы счисления с основанием $h \neq 10$ в другую систему счисления с основанием $q \neq 10$ счисления обычно совершают в два этапа следующим образом:

- 1) число, записанное в системе счисления с основанием h, записывают в десятичной системе счисления;
- 2) из десятичной системы счисления переходят к записи числа в системе счисления с требуемым основанием q.

ример 2. Запишем число
$$134_5$$
 в двоичной системе счисления: 1 этап) $134_5 = 1 \cdot 5^2 + 3 \cdot 5 + 4 = 25 + 15 + 4 = 44_{10}$; 2 этап) $44_{10} = 101100_2$. 44 | 2 | 22 | 2 | 11 | 2 | 0

Omsem: $134_5 = 101100_2$.

3

Операции над целыми неотрицательными числами в позиционных системах счисления

Арифметические действия в произвольной позиционной системе счисления с основанием $h \neq 0$ выполняются по тем же правилам, что и в десятичной системе счисления, поскольку ни одна позиционная система с основанием $h \neq 10$ принципиально ничем не отличается от хорошо известной нам десятичной системы счисления.

¬ложение. Сложение чисел в любой системе счисления сводится к сложению однозначных чисел при помощи таблицы сложения в данной системе счисления. При сложении чисел складываются цифры соответствующих разрядов, начиная с первого. Если в данном разряде получается сумма, которая не помещается в нем, то полученное превышение полных «десятков» переносится в следующий разряд, а остаток остается в данном разряде и т. д.

Для двух произвольных чисел, записанных в одной и той же системе счисления:

$$a_{\!\scriptscriptstyle h} = a_{\!\scriptscriptstyle n} h^{\!\scriptscriptstyle n} + a_{\!\scriptscriptstyle n-1} h^{\!\scriptscriptstyle n-1} + \dots \, a_{\!\scriptscriptstyle 1} h + a_{\!\scriptscriptstyle 0}$$

И

$$b_{h} = b_{n}h^{n} + b_{n-1}h^{n-1} + \dots b_{1}h + b_{0}$$

применим ассоциативный и коммутативный законы сложения и получим:

$$a+b=(a_n+b_n)h^n+(a_{n-1}+b_{n-1})h^{n-1}+\ldots+(a_1+b_1)h+(a_0+b_0).$$

Этот способ сложения кажется удобным только теоретически. На практике для упрощения вычислений слагаемые записывают в столбик таким образом, чтобы единицы одинаковых разрядов стояли в одном столбике, и производят сложение «в столбик».

Подробнее сложение рассмотрим на примерах в двоичной и восьмеричной системах счисления.

Воичная система счисления (h = 2)

В ней используются только две цифры: 0 и 1 и c их помощью любое натуральное число a можно записать следующим образом:

$$a=a_n2^n+a_{n-1}2^{n-1}+a_{n-2}2^{n-2}+\ldots+a_22^2+a_12+a_0,$$
 где $a_i=0$ или $a_i=1$.

Запись первых десяти чисел десятеричной системы счисления в двоичной системе счисления:

$0_{10} = 0_2$	$5_{10} = 101_2$
$1_{10} = 1_2$	$6_{10} = 110_2$
$2_{10}^{1} = 10_{2}$	$7_{10} = 111_2$
$3_{10} = 11_2$	$8_{10}^{10} = 1000_{2}$
$4_{10} = 100_2$	$9_{10} = 1001_2$

Таблица сложения в двоичной системе счисления:

+	0	1
0	0	1
1	1	10

Восьмеричная система счисления (h = 8)

В этой системе используется восемь цифр: $0, 1, 2, 3, 4, 5, 6, 7\,$ и с их помощью любое натуральное число a можно записать в виде:

$$a=a_{\scriptscriptstyle n}8^{\scriptscriptstyle n}+a_{\scriptscriptstyle n-1}8^{\scriptscriptstyle n-1}+a_{\scriptscriptstyle n-2}8^{\scriptscriptstyle n-2}+\ldots+a_{\scriptscriptstyle 2}8^{\scriptscriptstyle 2}+a_{\scriptscriptstyle 1}8+a_{\scriptscriptstyle 0},$$
 где $a_{\scriptscriptstyle i}\in\{0,1,2,3,4,5,6,7\}.$

Запись первых десяти чисел десятеричной системы в восьмеричной системе счисления:

$$\begin{array}{ccccc} \mathbf{0}_{10} = \mathbf{0}_8 & & \mathbf{5}_{10} = \mathbf{5}_8 \\ \mathbf{1}_{10} = \mathbf{1}_8 & & \mathbf{6}_{10} = \mathbf{6}_8 \\ \mathbf{2}_{10} = \mathbf{2}_8 & & \mathbf{7}_{10} = \mathbf{7}_8 \\ \mathbf{3}_{10} = \mathbf{3}_8 & & \mathbf{8}_{10} = \mathbf{10}_8 \\ \mathbf{4}_{10} = \mathbf{4}_8 & & \mathbf{9}_{10} = \mathbf{11}_8 \end{array}$$

Таблица сложения в восьмеричной системе счисления:

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	10
2	2	3	4	5	6	7	10	11
3	3	4	5	6	7	10	11	12
4	4	5	6	7	10	11	12	13
5	5	6	7	10	11	12	13	14
6	6	7	10	11	12	13	14	15
7	7	10	11	12	13	14	15	16

Таким образом, можно сформулировать алгоритм сложения чисел в произвольной позиционной системе счисления (он аналогичен алгоритму сложения в десятичной системе счисления):

- записать второе слагаемое под первым так, чтобы соответствующие разряды были записаны один под другим;
- 2) сложить цифры 1-го разряда, при этом:
 - если их сумма меньше числа h, то записать ее в этот разряд и перейти к следующему;
 - если их сумма больше числа h (или равна ему), то единицу прибавить к цифре единиц 2-го разряда первого слагаемого и в первом разряде записать разность между полученной суммой единиц 1-го разряда и h, после этого сложить единицы 2-го разряда;
- повторить те же операции с единицами всех следующих разрядов, включая старшие.

Вычитание. Вычитание одного числа из другого сводится к вычитанию единиц соответствующих разрядов и основывается на таблице сложения (она же – таблица вычитания).

Для двух произвольных чисел, записанных в одной и той же системе счисления:

$$a_{_h}=a_{_n}h^{_n}+a_{_{n-1}}h^{_{n-1}}+\dots\,a_{_1}h+a_{_0}$$
 и $b_{_h}=b_{_n}h^{_n}+b_{_{n-1}}h^{_{n-1}}+\dots\,b_{_1}h+b_{_0},$ далее получаем:

$$a-b=(a_{n}-b_{n})h^{n}+(a_{n-1}-b_{n-1})h^{n-1}+\ldots+(a_{1}-b_{1})h+(a_{0}-b_{0}).$$

На практике вычитание выполняется «в столбик»: вычитаемое подписывают под уменьшаемым так, чтобы цифры одинаковых разрядов стояли в одном столбике, и выполняют вычитание цифр вычитаемого от цифр уменьшаемого. Если вычитание чисел невозможно в какомнибудь разряде, тогда «занимается» одна единица следующего (высшего) разряда и к единицам данного разряда уменьшаемого добавляется число h — основание системы счисления, а затем выполняется вычитание единиц данного разряда.

Умножение. Умножение многозначных чисел в любой системе счисления основано, как и в десятичной системе счисления, на умножении однозначных чисел с использованием таблиц умножения в данной системе счисления с последующим сложением полученных неполных произведений.

Таблица умножения в двоичной системе счисления:

×	0	1
0	0	0
1	0	10

Легко видеть, что таблица умножения в двоичной системе счисления фактически состоит из одной строки $1 \times 1 = 1$, поскольку умножение на 0 во всякой системе счисления дает 0, а умножение на 1 не меняет числа. Поэтому умножение многозначных чисел в двоичной системе счисления фактически сводится к сдвигу (влево) и сложения — это свойство дает возможность удобно использовать двоичную систему счисления в ЭВМ.

Таблица умножения в восьмеричной системе счисления:

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	10	12	14	16
3	0	3	6	11	14	17	22	25
4	0	4	10	14	20	24	30	34
5	0	5	12	17	24	31	36	43
6	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

римеры умножения чисел

Деление — операция, обратная умножению. В основе деления многозначных чисел в любой системе счисления лежит опера-

ция деления с остатком и свойства деления с опорой на таблицу умножения (она же и таблица деления).

🕇 римеры деления чисел:

1.
$$1312_8$$
: 25_8 ; 2. 312_4 : 12_4 ; 3. 21203_5 : 32_5 ; 4. 210102_3 : 122_3 .

1.
$$-\frac{1312_8}{2} \cdot \frac{25_8}{42_8} \cdot \frac{2}{25_8} \cdot \frac{312_4}{21_4} \cdot \frac{12_4}{21_4} \cdot \frac{3}{201} \cdot \frac{21203_5}{314_5} \cdot \frac{32_5}{314_5} \cdot \frac{4}{210102_3} \cdot \frac{210102_3}{1021_3} \cdot \frac{122_3}{1021_3} \cdot \frac{12}{201} \cdot \frac{110}{201} \cdot \frac{110}{201} \cdot \frac{122}{201} \cdot \frac{122}{20$$

$$h = \frac{-2 \pm 52}{4}, \quad h_1 = -5.4 \text{ (Ho } -5.4 \not\in \mathbf{N)}; \\ h_2 = 5.$$

Ответ: 6; 5.

Задача 14. Запишите число: 1) 1876₁₀ в восьмеричной системе счисления;

2) 145_{10} в троичной системе счисления.

Пешение. 1) Во-первых, надо определить, сколько единиц второго разряда в новой системе счисления получается в данном числе (определить, сколько в нем восьмерок). Для этого разделим 1876 на 8:

$$1876 = 8 \cdot 234 + 4$$

получим 4 единицы первого разряда и 234 единицы второго.

Далее выясним, сколько единиц третьего разряда содержится в полученном частном и т. д.:

2) Для ответа на вопрос задачи выполним деление на 3 с остатком.

Получим: $145_{10} = 12101_3$.

Ombem: $1876_{10} = 3524_{\text{g}}$; $145_{10} = 12101_{\text{g}}$.

Задача 15. Запишите в десятичной системе счисления числа 1) 4753_8 ; 2) $\overline{A47}_{12}$ ($A=11_{12}$).

1)
$$4753_8$$
; **2)** $\overline{A47}_{12}$ $(A = 11_{12})$

Решение. 1)
$$4753_8 = 4 \cdot 8^3 + 7 \cdot 8^2 + 5 \cdot 8 + 3 = 2048 + 448 + 40 + 3 = 2539_{10};$$
2) $\overline{A47}_{12} = A \cdot 12^2 + 4 \cdot 12 + 7 = 11 \cdot 12^2 + 4 \cdot 12 + 7 = 1639_{10};$

Omeem: 1)
$$4753_8 = 2539$$
; **2)** $\overline{A47}_{12} = 1639_{10}$.

 $\mathbf 2$ адача 16. Запишите число $134_{_5}$ в двоичной системе счисления.

решение. Вначале запишем число 134, в десятичной системе счисления:

$$134_5 = 1 \cdot 5^2 + 3 \cdot 5 + 4 =$$

$$= 25 + 15 + 4 = 44_{10}.$$

Теперь число 44 запишем в двоичной системе счисления.

$$\begin{array}{c|c|c} -44 & 2 & \\ \hline 44 & -22 & 2 \\ \hline 0 & -10 & 5 & 2 \\ \hline 0 & 10 & 4 & 2 & 2 \\ \hline \hline 1 & 2 & 2 & 2 \\ \hline \end{array}$$

Omeem: $134_5 = 101100_9$.

$$P^{emenue.} = 1 - \frac{312}{\frac{30}{12}}$$

$$\begin{array}{c|c}
312_{4} & 12_{4} \\
30 & 21_{4} \\
\hline
12 \\
-12 \\
0
\end{array}$$

$$\begin{array}{c|c}
2) & -\frac{1312}{124} \begin{vmatrix} 25 \\ 42 \end{vmatrix} \\
-\frac{52}{0}
\end{array}$$

Omsem: 1) 21_4 ; 2) 42_8 ; 3) 3144_5 .

Задача 18. В примере $13102_5 + 1331_5 \cdot 24_5 - 23043_5 : 403_5$ необходимо: 1) выполните действия в 5-ной системе счисления;

- 2) каждое число переведите в 10-ную систему счисления и выполните действия в 10-ной системе счисления;
- 3) запишите полученный в 10-ной системе счисления результат в пятеричную и сравните с результатом, полученным в п. 1.

Пешение. 1) Для вычислений в 5-ной системе счисления сначала составим таблицы сложения и умножения и выполним действия.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	10
2	2	3	4	10	11
3	3	4	10	11	12
4	4	10	11	12	13

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	11	13
3	0	3	11	14	22
4	0	4	13	22	31

2)
$$13102_5 = 1 \cdot 5^4 + 3 \cdot 5^3 + 1 \cdot 5^2 + 0 \cdot 5 + 2 = 1027_{10};$$

 $1331_5 = 1 \cdot 5^3 + 3 \cdot 5^2 + 3 \cdot 5 + 1 = 216_{10};$
 $24_5 = 2 \cdot 5 + 4 = 14_{10};$
 $23043_5 = 2 \cdot 5^4 + 3 \cdot 5^3 + 4 \cdot 5 + 3 = 1648_{10};$
 $403_5 = 4 \cdot 5^2 + 3 = 103_{10}.$

Получим пример: $102\tilde{7} + 216 \cdot 14 - 1648 : 103$.

Выполним действия в 10-ной системе счисления:

1)
$$216 \cdot 14 = 3024$$
; 2) $1648 : 103 = 16$;

$$2) 1648 : 103 = 16$$

3)
$$1027 + 3024 = 4051$$
; 4) $4051 - 16 = 4035$.

Ответы совпали: $4035_{10} = 112120_{5}$.

Задача 19. В саду посадили 106_h кустов, из которых 31_h — ежевика, 25_h — крыжовник — и 30_h — голубика. Найдите h — основание системы счисления, в которой составлена задача.

Решение. Поскольку в саду всего 106_h кустов, составим уравнение: $106_{h} = 31_{h} + 25_{h} + 30_{h}$

и преобразуем его, представив каждое число в развернутом виде: $1 \cdot h^2 + 0 \cdot h + 6 = (3 \cdot h + 1) + (2 \cdot h + 5) + (3 \cdot h + 0).$

Решаем полученное уравнение:

$$h^2 + 6 = 8h + 6;$$

 $h^2 - 8h = 0,$

откуда $h_1 = 0$ (не является натуральным числом) и $h_2 = 8$.

Omeem: h = 8.