Dr. N. Zerf

Wintersemester 2016/17

2. Übungsblatt

Abgabe in den Tutorien 31.10.2016 Besprechung in den Tutorien 07.11.2016

Aufgabe 2.1 (5 Punkte):

Zeigen Sie die Äquivalenz der Definitionen für das Vektorprodukt in drei Dimensionen

$$V \times V \to V :$$

$$\vec{z}_k = [\vec{x} \times \vec{y}]_L = \epsilon_{ijk} x_i y_j , \qquad (1)$$

mit der Definition

$$\vec{z} \perp \vec{x}$$
, $|\vec{z}| = |\vec{x}| |\vec{y}| \sin(\theta)$, $\theta = \angle(\vec{x}, \vec{y})$, (2)

- Betrachten Sie zunächst nur den Spezialfall: $\vec{x} = (x_1, 0, 0), \vec{y} = (y_1, y_2, 0)$ mit $x_1, y_1, y_2 > 0$. Berechnen Sie dazu die Komponenten des Vektors \vec{z} nach Gleichung (1) und zeigen sie explizit, dass alle Gleichungen (2) erfüllt sind.
- Machen Sie sich klar, dass sich der Levi-Civita Tensor ϵ vollständig antisymmetrisch unter Vertauschung von zwei (beliebigen) Indices verhält. Es gilt z.B. $\epsilon_{ijk} = -\epsilon_{jik}$. Nutzen sie diese Eigenschaft, um generisch zu zeigen, daß die erste und zweite Gleichung in (2) sogar im allgemeinen Fall gilt.

(Fortsetzung folgt)

Aufgabe 2.2 (5 Punkte):

Die periodische Bewegung eines Teilchens sei beschrieben durch

$$\vec{x}(t) \equiv \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = R\cos(\omega t) \begin{pmatrix} 1 \\ \sin(\omega t) \end{pmatrix}$$

- a) Berechnen Sie Geschwindigkeit $\vec{v}(t)$ und Beschleunigung $\vec{a}(t)$ des Teilchens.
- b) Fertigen Sie eine Skizze der Teilchenbahn an. Tragen Sie dazu auf den Koordinatenachsen die Werte $x_1(t)/R$ und $x_2(t)/R$ ab. Beachten Sie, dass das Teilchen auch eine Auslenkung in x_2 -Richtung besitzt. Identifizieren Sie die Positionen $\vec{x}(t_0)$ für $\omega t_0 = 0, \pi/2, \pi, 3\pi/2$. Achten Sie auf eine korrekte Beschriftung der Achsen.
- c) Tragen Sie in die obige Skizze die Einheitsvektoren $\vec{v}(t_0)/|\vec{v}(t_0)|$ und $\vec{a}(t_0)/|\vec{a}(t_0)|$ am Punkt $\vec{x}(t_0) = R\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ ein.

Aufgabe 2.3 (10 Punkte):

Die Beschreibung der Schraubenbewegung eines Teilchens kennen Sie bereits aus der Vorlesung:

$$\vec{x}(t) = \begin{pmatrix} R\cos(\omega t) \\ R\sin(\omega t) \\ v_0 t \end{pmatrix}$$

bitte wenden

- a) Berechnen Sie die in der Vorlesung definierten Größen Bogenlänge s(t), Tangentenvektor $\vec{T}(s)$, Krümmungsradius $\rho(s)$, Normalenvektor $\vec{N}(s)$, sowie Binormalenvektor $\vec{B}(s)$. Es sei $s(t_0=0)=0$
- b) Zeigen Sie, dass $\vec{T}(s)$, $\vec{N}(s)$ und $\vec{B}(s)$ paarweise orthogonal sind.

Aufgabe 2.4 (*):

Zeigen Sie durch Integration, dass

$$\int \frac{\mathrm{d}x}{\sqrt{ax^2 + 2bx + c}} = -\frac{1}{\sqrt{-a}} \arcsin \frac{ax + b}{\sqrt{b^2 - ac}}, \quad \text{falls} \quad a < 0 \quad \text{und} \quad b^2 - ac > 0.$$

Möglicher Lösungsweg:

(a) Finden Sie eine Substitution der Form $y = x - x_0$, so dass

$$ax^2 + 2bx + c = a(y^2 - y_0^2)$$

Hierbei sind die Konstanten x_0 und y_0 zu bestimmen.

(b) Das resultierende Integral läßt sich mit Hilfe der Substitution $y = y_0 \sin \phi$ berechnen. Wo gehen die Bedingungen a < 0 und $b^2 - ac > 0$ in die Rechnung ein?