Outils Informatiques pour le Multimédia

Master 1 informatique Tronc commun

Département d'informatique Université Paul Sabatier

Extraction de l'information à partir d'images

- Introduction et définitions
- Opérations arithmétiques
- Opérations spatiales
- Opérations géométriques
 - Transformation en coordonnées homogènes
 - Algorithmes de transformation géométriques
- 5 Exemples d'applications de traitement d'images

Intro Arithmétique Spatial Géométrie Applications

Extraction de l'information à partir d'images

- Objectifs des applications de traitement d'images
 - Corriger et préparer une image pour son affichage.
 - Détecter la présence ou l'absence d'un objet.
 - Calculer les caractéristiques d'un élément de l'image.
 - o ...
- Points communs entre les applications :
 - Extraction d'informations à partir d'images

Intro Arithmétique Spatial Géométrie Applications

Extraction de l'information à partir d'images

- Objectifs des applications de traitement d'images
 - Corriger et préparer une image pour son affichage.
 - Détecter la présence ou l'absence d'un objet.
 - Calculer les caractéristiques d'un élément de l'image.
 - ...
- Points communs entre les applications :
 - Extraction d'informations à partir d'images

Opérateurs de traitement d'images

 Briques logicielles pouvant être combinées et enchaînées pour identifier ou isoler l'information recherchée. Arithmétique Spatial Géométrie Applications

Définitions

- Analogie avec les opérateurs mathématiques :
 - Opération prenant en entrée une image ou un ensemble d'informations relatif à une image, et produisant une image ou un ensemble d'informations relatives aux données initiales.

o Arithmétique Spatial Géométrie Applications

Définitions

- Analogie avec les opérateurs mathématiques :
 - Opération prenant en entrée une image ou un ensemble d'informations relatif à une image, et produisant une image ou un ensemble d'informations relatives aux données initiales.
- Analogie similaire avec les programmes informatiques

tro Arithmétique Spatial Géométrie Applications

Définitions

- Analogie avec les opérateurs mathématiques :
 - Opération prenant en entrée une image ou un ensemble d'informations relatif à une image, et produisant une image ou un ensemble d'informations relatives aux données initiales.
- Analogie similaire avec les programmes informatiques
- Familles d'opérateurs
 - Image → Image
 - Image → Informations
 - Informations → Images

- Opérateurs Image → Image
 - Pixel à pixel : arithmétique, couleur, dynamique ...
 - Locaux
 flou, morphologie, contours ...
 - Fréquentiels
 réduction de bruit, filtres passe-bande ...
 - Globaux
 calcul de distance ...

- Opérateurs Image → Informations
 - Segmentation en frontière, en région.
 découpage de l'images en zone ...
 - Classification de pixels.
 construction d'une relation pixel/information ...
 - Calcul de paramètres.
 paramètres intrinsèques ou extrinsèques de la caméra...

- Informations → Images
 - Visualisation de données météo, mécanique, finance ...
 - Dessin vectoriel.
 création artistique, illustration
 - Opérateurs de rendu. synthèse d'images

Opérateurs de traitement synthèse d'images

- Informations → Images
 - Visualisation de données météo, mécanique, finance ...
 - Dessin vectoriel.
 création artistique, illustration
 - Opérateurs de rendu. synthèse d'images

Un bon opérateur, c'est quoi???

Définition

Soit H, un opérateur tel que H(f(x,y)) = g(x,y). H est un opérateur linéaire si et seulement si :

$$H(\alpha f_1(x,y) + \beta f_2(x,y)) = \alpha g_1(x,y) + \beta g_2(x,y)$$

Définition

Soit H, un opérateur tel que H(f(x,y)) = g(x,y). H est un opérateur linéaire si et seulement si :

$$H(\alpha f_1(x,y) + \beta f_2(x,y)) = \alpha g_1(x,y) + \beta g_2(x,y)$$

Exemples

• H(I(x,y)) = 2I(x,y) est linéaire

$$H(\alpha I(x,y) + \beta J(x,y)) = 2(\alpha I(x,y) + \beta J(x,y))$$

$$= \alpha \times 2I(x,y) + \beta \times 2J(x,y)$$

$$= \alpha H(I(x,y)) + \beta H(J(x,y))$$

• $H(I(x,y)) = max_{(x,y)}(I)$ n'est pas linéaire

Intro Arithmétique Spatial Géométrie Applications

Définitions

- Une distance sur un ensemble E est une application $d: E \times E \to \mathbb{R}^+$ vérifiant les propriétés :
 - Symétrie : $\forall x, y \in E, d(x, y) = d(y, x)$

Intro Arithmétique Spatial Géométrie Applications

Définitions

- Une distance sur un ensenble E est une application $d: E \times E \to \mathbb{R}^+$ vérifiant les propriétés :
 - Symétrie : $\forall x, y \in E, d(x, y) = d(y, x)$
 - Séparation : $\forall x, y \in E, d(x, y) = 0 \Leftrightarrow x = y$

Définitions

- Une distance sur un ensenble E est une application $d: E \times E \to \mathbb{R}^+$ vérifiant les propriétés :
 - Symétrie : $\forall x, y \in E, d(x, y) = d(y, x)$
 - Séparation : $\forall x, y \in E, d(x, y) = 0 \Leftrightarrow x = y$
 - Inégalité triangulaire :

$$\forall x, y, z \in E, d(x, z) \leq d(x, y) + d(y, z)$$

Définitions

- Une distance sur un ensenble E est une application $d: E \times E \to \mathbb{R}^+$ vérifiant les propriétés :
 - Symétrie : $\forall x, y \in E, d(x, y) = d(y, x)$
 - Séparation : $\forall x, y \in E, d(x, y) = 0 \Leftrightarrow x = y$
 - Inégalité triangulaire : $\forall x, y, z \in E, d(x, z) < d(x, y) + d(y, z)$
- Distances usuelles
 - Manhattan (1-distance) : $\sum_{i=1}^{d} |x_i y_i|$
 - Euclidienne (2-distance) : $\sqrt{\sum_{i=1}^{d} |x_i y_i|^2}$
 - Minkowski (p-distance) : $\sqrt[p]{\sum_{i=1}^{d} |x_i y_i|^p}$
 - Tchebychev (∞ -distance): $\max_{1 \le i \le d} |x_i y_i|$

Arithmétique Spatial Géométrie Applications

Définitions

Interpolation

 Opération permettant, à partir d'un nombre fini de points (un ensemble discret), de construire une courbe (un ensemble continu) passant par les points initiaux.

ro Arithmétique Spatial Géométrie Applications

Définitions

Interpolation

- Opération permettant, à partir d'un nombre fini de points (un ensemble discret), de construire une courbe (un ensemble continu) passant par les points initiaux.
- Applications :
 - Re-échantillonnage
 - Reconstruction
 - Lissage
 - •

Interpolation

• Fonction f(x), discrétisée en 7 points $f(x_i)$ avec $x_i \in E = \{0, 1, 2, 3, 4, 5, 6\}$

Combien vaut f(1.3)?

Interpolation au plus proche voisin

- Soit fonction ppv(x) retournant le point $x_i \in E$ le plus proche de x
- ppv(x) = round(x)

- f(1.3) = f(ppv(1.3)) = f(1)
- Reconstruction constante par morceaux

Interpolation linéaire

- Soit la droite $L_{x_i}^{x_{i+1}}(x)$ passant par les points x_i et x_{i+1} de E encadrant x
- $L_{x_i}^{x_{i+1}}(x) = a(x-x_i) + b$ avec $a = \frac{y_{i+1}-y_i}{x_{i+1}-x_i}$ et $b = y_i$

- $f(1.3) = L_1^2(1.3)$
- Reconstruction linéaire par morceaux

- Algorithme conceptuellement simple :
 - Rechercher les voisins les plus proches de x

- Algorithme conceptuellement simple :
 - Rechercher les voisins les plus proches de x
 - Evaluer l'équation d'interpolation

- Algorithme conceptuellement simple :
 - Rechercher les voisins les plus proches de x
 - Evaluer l'équation d'interpolation
 - Attention à la complexité de recherche
 - Utilisation d'un arbre de recherche : kd-tree

- Algorithme conceptuellement simple :
 - Rechercher les voisins les plus proches de x
 - Evaluer l'équation d'interpolation
 - Attention à la complexité de recherche
 - Utilisation d'un arbre de recherche : kd-tree
 - Programmation directe mais efficace

ntro Arithmétique Spatial Géométrie Applications

Opérateurs de traitement d'images

Ça, c'est la base! Et on fait quoi avec?

Opérations arithmétiques

- Opérateurs pixels à pixels :
 - Somme : s(x, y) = f(x, y) + g(x, y)
 - Différence : d(x, y) = f(x, y) g(x, y)
 - Produit : p(x, y) = f(x, y) * g(x, y)
 - Quotient : q(x, y) = f(x, y)/g(x, y)

Exemple : Produit de 2 images 2x2

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} * b_{11} & a_{12} * b_{12} \\ a_{21} * b_{21} & a_{22} * b_{22} \end{bmatrix}$$

Opérations arithmétiques

- Opérateurs pixels à pixels :
 - Somme : s(x, y) = f(x, y) + g(x, y)
 - Différence : d(x, y) = f(x, y) g(x, y)
 - Produit : p(x, y) = f(x, y) * g(x, y)
 - Quotient : q(x, y) = f(x, y)/g(x, y)

Exemple : Produit de 2 images 2x2

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} * b_{11} & a_{12} * b_{12} \\ a_{21} * b_{21} & a_{22} * b_{22} \end{bmatrix}$$

- Implanté par parcours pixel à pixel des images
- Parallélisation triviale

ntro Arithmétique Spatial Géométrie Applications

Opérations arithmétiques Exemples

Moyenne d'images bruitées → débruitage

ntro Arithmétique Spatial Géométrie Applications

Opérations arithmétiques Exemples

Soustraction d'images → évolution

Intro Arithmétique Spatial Géométrie Applications

Opérations arithmétiques Exemples

Soustraction après rehaussement \rightarrow vaisseaux

Intro Arithmétique Spatial Géométrie Applications

Opérations arithmétiques Exemples

Multiplication d'images → correction éclairage

Opérations arithmétiques

Précautions à prendre dans le cas d'opérations arithmétiques

- Division par 0 : rajouter une petite valeur à tous les pixels nuls
- Dépassement
 - On met à 255 toutes les valeurs qui dépassent 255
 - On recadre l'image entre 0 et K (si 8 bits, K = 255)

$$f_m = f - min(f)$$

 $f_s = K \frac{f_m}{max(f_m)}$

Intro Arithmétique Spatial Géométrie Applications

Opérateurs de traitement d'images

Après le pixel, le groupe de pixels

Modification de la valeur de plusieurs pixels d'une image

Sans tenir compte des autres pixels

$$s = T(z)$$

Modification de la valeur de plusieurs pixels d'une image

Sans tenir compte des autres pixels

Modification de la valeur de plusieurs pixels d'une image

- En tenant compte des autres pixels
- Opération sur un voisinage

$$g(x,y) = \frac{1}{mn} \sum_{(r,c) \in V_{xy}} f(r,c)$$

Opérations spatiales

Modification de la valeur de plusieurs pixels d'une image

Elimination des petites structures, filtrage

Modification de la valeur de plusieurs pixels d'une image

Moyenne pondérée : détection de contours

$$f_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} g_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Modification de la valeur de plusieurs pixels d'une image

- Filtrage non linéaire
 - Calcul de la médiane sur un voisinage
 - Meilleur filtrage de bruit poivre et sel

Opérateurs de traitement d'images

Et si on modifiait la position d'un pixel?

Opérations géométriques

Modification de la relation spatiale entre les pixels

- Homothéties
- Rotations
- Translations
- Cisaillements
- ..

Homothéties 2D

Mise à l'échelle

$$\begin{cases} x' = s_x.x \\ y' = s_y.y \end{cases}$$

Notation matricielle

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix}$$

• Homothétie isomorphe si $s_x = s_y$

Rotations 2D

Rotation de centre O

$$\begin{cases} x' = \cos(\theta) . x - \sin(\theta) . y \\ y' = \sin(\theta) . x + \cos(\theta) . y \end{cases}$$

Notation matricielle

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix}$$

Translation 2D

Déplacement dans le plan

Applications

$$\begin{cases}
x' = x + t_x \\
y' = y + t_y
\end{cases}$$

Notation matricielle

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix}$$

Translation 2D

Déplacement dans le plan

$$\begin{cases} x' = x + t_x \\ y' = y + t_y \end{cases}$$

Notation matricielle

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix}$$

Pb: pas de notation matricielle : difficultés d'unification des transformations

Coordonnées homogènes

- Besoins
 - Unifier les notations pour toutes transformations géométriques

Coordonnées homogènes

Besoins

- Unifier les notations pour toutes transformations géométriques
- Combiner les transformation par simple produit matriciel

Coordonnées homogènes

Besoins

- Unifier les notations pour toutes transformations géométriques
- Combiner les transformation par simple produit matriciel
- Traiter la translation comme une transformation matricielle

Coordonnées homogènes

- Besoins
 - Unifier les notations pour toutes transformations géométriques
 - Combiner les transformation par simple produit matriciel
 - Traiter la translation comme une transformation matricielle
- Solution : définition d'un espace homogène de dimension d + 1.

Exemple en 2D

- Point 2D en coordonnées homogènes $\begin{vmatrix} x \\ y \end{vmatrix}$
- Correspond au point en coordonnées cartésiennes
- Point à l'infini dans la direction $\begin{bmatrix} x \\ y \end{bmatrix}$ sinon
- Matrices de transformation
 - Taille 3 × 3 en 2D
 - Taille 4 × 4 en 3D

Normalisation homogène

Normalisation : division par w

Translation 2D

Déplacement dans le plan

$$\begin{cases} x' = x + t_x \\ y' = y + t_y \end{cases}$$

Notation matricielle

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Transformations les plus utilisées

Identity

$$x = v$$

 $y = w$

Scaling

$$\begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = c_x v$$

$$y = c_y w$$

Rotation

$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v \cos \theta - w \sin \theta$$
$$y = v \cos \theta + w \sin \theta$$

Translation

$$x = v + t_x$$
$$y = w + t_y$$

Shear (vertical)

$$x = v + s_v u$$

 $y = w$

Shear (horizontal)

$$\begin{bmatrix} 1 & s_b & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$x = v$$
$$y = s_h v + w$$

Opérations géométriques

Et ça se code comment?

//SI 63 SS

Implantation pour des données discrètes Approche directe :

Pour chaque pixel (x, y) de l'image source **faire**

$$(x', y') = Arrondi(Transformation(x, y))$$

imageDestination[x', y'] = imageSource[x, y]

Implantation pour des données discrètes

Approche directe:

Pour chaque pixel (x, y) de l'image source **faire** (x', y') = Arrondi(Transformation(x, y))

imageDestination[
$$x',y'$$
] = imageSource[x,y]

- Problèmes liés aux arrondis!
 - Deux pixels (x_0, y_0) et (x_1, y_1) peuvent donner la même destination (x', y')
 - Perte d'information, trous, ...

Implantation pour des données discrètes

Approche inverse:

Pour chaque pixel (x, y) de l'image de destination faire

```
(x', y') = TransformationInverse(x, y)
imageDestination[x, y] =
Interpolation \Big(imageSource, (x', y')\Big)
```


Implantation pour des données discrètes

Approche inverse:

Pour chaque pixel (x, y) de l'image de destination faire

```
(x', y') = TransformationInverse(x, y)
imageDestination[x, y] =
Interpolation \Big(imageSource, (x', y')\Big)
```

- Interpolation = re-échantillonnage, reconstruction
 - Plus proches voisins : génère des à-plats
 - Linéaire : lissage de l'image

Opérations géométriques

Plus proche voisin versus bilinéaire

Opérations géométriques

A quoi ça sert?

Opérations géométriques Applications

Recalage d'images

- Deux images d'une même scène
- Deux points de vue différents
- Et si on souhaite les faire correspondre?

- Surveillance de chaîne de production
 - Vérification de la présence ou de l'absence d'une pièce en bout de chaîne
 - Souvent, un simple seuillage dans une image

Exemples concrets

- Surveillance de chaîne de production
 - Vérification de la présence ou de l'absence d'une pièce en bout de chaîne
 - Souvent, un simple seuillage dans une image
- Contrôle de la maturité en agriculture
 - Reconnaissance de la couleur et de la texture d'un fruit, légume, ...
 - Segmentation et classification

Tronc commun

- Surveillance de chaîne de production
 - Vérification de la présence ou de l'absence d'une pièce en bout de chaîne
 - Souvent, un simple seuillage dans une image
- Contrôle de la maturité en agriculture
 - Reconnaissance de la couleur et de la texture d'un fruit, légume, ...
 - Segmentation et classification
- Construction et correction de cartes géographiques
 - Recalage et simplification de photographies aériennes
 - Transformation géométriques et filtrage

- Segmentation et suivi de cellules vivantes en microscopie
 - Détection d'anomalies biologiques et médicales
 - Segmentation et classification et transformation géométriques

- Segmentation et suivi de cellules vivantes en microscopie
 - Détection d'anomalies biologiques et médicales
 - Segmentation et classification et transformation géométriques
- Analyse et authentification de tableaux
 - Etudes des couleurs et textures
 - Segmentation, classification et comparaison

- Segmentation et suivi de cellules vivantes en microscopie
 - Détection d'anomalies biologiques et médicales
 - Segmentation et classification et transformation géométriques
- Analyse et authentification de tableaux
 - Etudes des couleurs et textures
 - Segmentation, classification et comparaison
- Recherche d'image par le contenu
 - Etudes des formes, couleurs, texture, ...
 - Segmentation, classification et transformation

