```
!conda install -c conda-forge fbprophet -y
In [2]:
         Collecting package metadata (current repodata.json): ...working... done
         Solving environment: ...working... done
         # All requested packages already installed.
```

!pip install --upgrade plotly In [3]:

Requirement already up-to-date: plotly in c:\users\bviei\anaconda3\lib\site-packages (4. 14.3) Requirement already satisfied, skipping upgrade: retrying>=1.3.3 in c:\users\bviei\anaco nda3\lib\site-packages (from plotly) (1.3.3) Requirement already satisfied, skipping upgrade: six in c:\users\bviei\anaconda3\lib\sit e-packages (from plotly) (1.15.0)

In [4]:

```
!pip install fbprophet
Requirement already satisfied: fbprophet in c:\users\bviei\anaconda3\lib\site-packages
(0.7.1)
Requirement already satisfied: LunarCalendar>=0.0.9 in c:\users\bviei\anaconda3\lib\site
-packages (from fbprophet) (0.0.9)
Requirement already satisfied: matplotlib>=2.0.0 in c:\users\bviei\anaconda3\lib\site-pa
ckages (from fbprophet) (3.3.2)
Requirement already satisfied: convertdate>=2.1.2 in c:\users\bviei\anaconda3\lib\site-p
ackages (from fbprophet) (2.1.3)
Requirement already satisfied: setuptools-git>=1.2 in c:\users\bviei\anaconda3\lib\site-
packages (from fbprophet) (1.2)
Requirement already satisfied: holidays>=0.10.2 in c:\users\bviei\anaconda3\lib\site-pac
kages (from fbprophet) (0.10.4)
Requirement already satisfied: numpy>=1.15.4 in c:\users\bviei\anaconda3\lib\site-packag
es (from fbprophet) (1.19.2)
Requirement already satisfied: python-dateutil>=2.8.0 in c:\users\bviei\anaconda3\lib\si
te-packages (from fbprophet) (2.8.1)
Requirement already satisfied: tqdm>=4.36.1 in c:\users\bviei\anaconda3\lib\site-package
s (from fbprophet) (4.50.2)
Requirement already satisfied: Cython>=0.22 in c:\users\bviei\anaconda3\lib\site-package
s (from fbprophet) (0.29.17)
Requirement already satisfied: pystan>=2.14 in c:\users\bviei\anaconda3\lib\site-package
s (from fbprophet) (2.19.1.1)
Requirement already satisfied: pandas>=1.0.4 in c:\users\bviei\anaconda3\lib\site-packag
es (from fbprophet) (1.1.3)
Requirement already satisfied: cmdstanpy==0.9.5 in c:\users\bviei\anaconda3\lib\site-pac
kages (from fbprophet) (0.9.5)
Requirement already satisfied: ephem>=3.7.5.3 in c:\users\bviei\anaconda3\lib\site-packa
ges (from LunarCalendar>=0.0.9->fbprophet) (3.7.7.1)
Requirement already satisfied: pytz in c:\users\bviei\anaconda3\lib\site-packages (from
LunarCalendar>=0.0.9->fbprophet) (2019.3)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\bviei\anaconda3\lib\site-pa
ckages (from matplotlib>=2.0.0->fbprophet) (1.3.0)
Requirement already satisfied: certifi>=2020.06.20 in c:\users\bviei\anaconda3\lib\site-
packages (from matplotlib>=2.0.0->fbprophet) (2020.12.5)
Requirement already satisfied: pillow>=6.2.0 in c:\users\bviei\anaconda3\lib\site-packag
es (from matplotlib>=2.0.0->fbprophet) (8.0.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\users\bvie
i\anaconda3\lib\site-packages (from matplotlib>=2.0.0->fbprophet) (2.4.7)
Requirement already satisfied: cycler>=0.10 in c:\users\bviei\anaconda3\lib\site-package
s (from matplotlib>=2.0.0->fbprophet) (0.10.0)
Requirement already satisfied: korean-lunar-calendar in c:\users\bviei\anaconda3\lib\sit
e-packages (from holidays>=0.10.2->fbprophet) (0.2.1)
```

Requirement already satisfied: six in c:\users\bviei\anaconda3\lib\site-packages (from h

olidays>=0.10.2->fbprophet) (1.15.0)

```
import pandas as pd
In [5]:
          import numpy as np
          from numpy import sqrt
          import matplotlib.pyplot as plt
          import plotly.offline as py
          import plotly.graph objs as go
          py.init notebook mode(connected=True)
          from statsmodels.tsa.arima model import ARIMA
          from statsmodels.tsa.stattools import adfuller
          from statsmodels.graphics.tsaplots import plot acf,plot pacf
          from statsmodels.tsa.seasonal import seasonal decompose
          from pandas.plotting import lag plot
          !pip install pmdarima
          import sklearn.metrics
          from sklearn.metrics import mean absolute error
          from sklearn.metrics import mean squared error
          from sklearn.metrics import r2 score
          import statsmodels.api as sm
          from scipy import stats
          import warnings
         warnings.filterwarnings("ignore")
         from fbprophet import Prophet
         from fbprophet.diagnostics import cross_validation, performance_metrics
          from fbprophet.plot import plot cross validation metric
```

```
Requirement already satisfied: pmdarima in c:\users\bviei\anaconda3\lib\site-packages
(1.8.0)
Requirement already satisfied: joblib>=0.11 in c:\users\bviei\anaconda3\lib\site-package
s (from pmdarima) (0.17.0)
Requirement already satisfied: numpy>=1.17.3 in c:\users\bviei\anaconda3\lib\site-packag
es (from pmdarima) (1.19.2)
Requirement already satisfied: pandas>=0.19 in c:\users\bviei\anaconda3\lib\site-package
s (from pmdarima) (1.1.3)
Requirement already satisfied: scikit-learn>=0.22 in c:\users\bviei\anaconda3\lib\site-p
ackages (from pmdarima) (0.23.2)
Requirement already satisfied: urllib3 in c:\users\bviei\anaconda3\lib\site-packages (fr
om pmdarima) (1.25.11)
Requirement already satisfied: Cython<0.29.18,>=0.29 in c:\users\bviei\anaconda3\lib\sit
e-packages (from pmdarima) (0.29.17)
Requirement already satisfied: statsmodels!=0.12.0,>=0.11 in c:\users\bviei\anaconda3\li
b\site-packages (from pmdarima) (0.12.1)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in c:\users\bviei\anaconda3\l
ib\site-packages (from pmdarima) (50.3.1.post20201107)
Requirement already satisfied: scipy>=1.3.2 in c:\users\bviei\anaconda3\lib\site-package
s (from pmdarima) (1.5.2)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\bviei\anaconda3\lib\si
te-packages (from pandas>=0.19->pmdarima) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in c:\users\bviei\anaconda3\lib\site-package
s (from pandas>=0.19->pmdarima) (2019.3)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\bviei\anaconda3\lib\site
-packages (from scikit-learn>=0.22->pmdarima) (2.1.0)
Requirement already satisfied: patsy>=0.5 in c:\users\bviei\anaconda3\lib\site-packages
(from statsmodels!=0.12.0,>=0.11->pmdarima) (0.5.1)
Requirement already satisfied: six>=1.5 in c:\users\bviei\anaconda3\lib\site-packages (f
rom python-dateutil>=2.7.3->pandas>=0.19->pmdarima) (1.15.0)
```

```
In [6]: brent = pd.read_csv("brent.csv", usecols=[0,1,2,3,4,5,6], decimal=",")
wti = pd.read_csv('wti.csv', usecols=[0,1,2,3,4,5,6], decimal=",")
```

Out[7]

:		Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
	0	31.12.2019	66.00	66.65	66.93	65.63	171,01K	-3,57%
	1	30.12.2019	68.44	68.20	68.99	68.16	29,42K	0,41%
	2	27.12.2019	68.16	67.91	68.33	67.57	112,22K	0,35%
	3	26.12.2019	67.92	67.27	67.99	67.22	69,82K	1,07%
	4	24.12.2019	67.20	66.44	67.26	66.36	104,94K	1,22%
	•••				***	***	•••	•••
257	76	08.01.2010	81.37	81.51	82.05	80.59	157,49K	-0,17%
257	7	07.01.2010	81.51	82.00	82.05	81.05	131,28K	-0,46%
257	78	06.01.2010	81.89	80.38	82.21	79.77	157,87K	1,61%
257	79	05.01.2010	80.59	80.29	80.84	79.75	131,75K	0,59%
258	80	04.01.2010	80.12	78.49	80.48	78.34	122,64K	2,81%

2581 rows × 7 columns

```
In [8]: wti
```

Out[8]:		Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
	0	31.12.2019	61.06	61.68	61.88	60.63	494,54K	-1,01%
	1	30.12.2019	61.68	61.71	62.34	61.09	427,15K	-0,06%
	2	27.12.2019	61.72	61.73	61.97	61.24	351,90K	0,06%
	3	26.12.2019	61.68	61.20	61.83	61.06	265,09K	0,80%
	4	25.12.2019	61.19	61.45	61.52	61.17	-	0,13%
	•••		•••				•••	
	2586	08.01.2010	82.75	82.65	83.47	81.80	310,38K	0,11%
	2587	07.01.2010	82.66	83.20	83.36	82.26	246,63K	-0,63%
	2588	06.01.2010	83.18	81.43	83.52	80.85	370,06K	1,72%
	2589	05.01.2010	81.77	81.63	82.00	80.95	258,89K	0,32%

79.63

2591 rows × 7 columns

81.51

2590 04.01.2010

```
In [9]: #DATAS - adequa as datas e também as define como index (o que facilitará a indentificaç

brent['Data'] = pd.to_datetime(brent['Data'], format='%d.%m.%Y')

wti['Data'] = pd.to_datetime(wti['Data'], format='%d.%m.%Y')
```

81.79 79.63 263,54K 2,71%

```
brent.index = pd.to datetime(brent.Data, format='%d.%m.%Y')
             wti.index = pd.to datetime(wti.Data, format='%d.%m.%Y')
             brent.index.to_period('D')
             wti.index.to period('D')
 '2010-01-15', '2010-01-14', '2010-01-13', '2010-01-12', '2010-01-11', '2010-01-08', '2010-01-07', '2010-01-06', '2010-01-05', '2010-01-04'],
                           dtype='period[D]', name='Data', length=2591, freq='D')
             #CAMPOS COM VALORES - ajuste nos números e também no campo volume, que cotinha letras i
In [10]:
             brent["Abertura"] = brent["Abertura"].astype(str)
             brent["Último"] = brent["Último"].astype(str)
             brent["Máxima"] = brent["Máxima"].astype(str)
             brent["Minima"] = brent["Minima"].astype(str)
             brent["Var%"] = brent["Var%"].astype(str)
             brent["Vol."] = brent["Vol."].astype(str)
             brent["Abertura"]=pd.Series(brent["Abertura"]).str.replace(',', '.', regex=True)
             brent["Último"]=pd.Series(brent["Último"]).str.replace(',', '.', regex=True)
             brent["Máxima"]=pd.Series(brent["Máxima"]).str.replace(',', '.', regex=True)
             brent["Mínima"]=pd.Series(brent["Mínima"]).str.replace(',', '.', regex=True)
             brent["Var%"]=pd.Series(brent["Var%"]).str.replace(',', '.', regex=True)
brent["Var%"]=pd.Series(brent["Var%"]).str.replace('%', '', regex=True)
             brent["Var%"]=pd.Series(brent["Var%"]).str.replace('%',
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('-', '', regex=True)
brent["Vol."]=pd.Series(brent["Vol."]).str.replace(',', '', regex=True)
brent["Vol."]=pd.Series(brent["Vol."]).str.replace(',', '', regex=True)
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('M',"0000000", regex=True)
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('K',"000", regex=True)
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('B',"000000000", regex=True)
             brent["Abertura"] = pd.to_numeric(brent["Abertura"])
             brent["Último"] = pd.to_numeric(brent["Último"])
             brent["Máxima"] = pd.to numeric(brent["Máxima"])
             brent["Minima"] = pd.to_numeric(brent["Minima"])
             brent["Var%"] = pd.to numeric(brent["Var%"])
             brent["Vol."] = pd.to numeric(brent["Vol."])
             #CAMPOS COM VALORES - ajuste nos números e também no campo volume, que cotinha letras i
In [11]:
             wti["Abertura"] = wti["Abertura"].astype(str)
             wti["Último"] = wti["Último"].astype(str)
             wti["Máxima"] = wti["Máxima"].astype(str)
             wti["Mínima"] = wti["Mínima"].astype(str)
             wti["Var%"] = wti["Var%"].astype(str)
             wti["Vol."] = wti["Vol."].astype(str)
             wti["Abertura"]=pd.Series(wti["Abertura"]).str.replace(',', '.', regex=True)
             wti["Último"]=pd.Series(wti["Último"]).str.replace(',', '.', regex=True)
wti["Máxima"]=pd.Series(wti["Máxima"]).str.replace(',', '.', regex=True)
             wti["Mínima"]=pd.Series(wti["Mínima"]).str.replace(',', '.', regex=True)
             wti["Var%"]=pd.Series(wti["Var%"]).str.replace(',', '.', regex=True)
wti["Var%"]=pd.Series(wti["Var%"]).str.replace('%', '', regex=True)
wti["Vol."]=pd.Series(wti["Vol."]).str.replace('-', '', regex=True)
wti["Vol."]=pd.Series(wti["Vol."]).str.replace(',', '', regex=True)
wti["Vol."]=pd.Series(wti["Vol."]).str.replace(',', '', regex=True)
             wti["Vol."]=pd.Series(wti["Vol."]).str.replace('M',"000000", regex=True)
             wti["Vol."]=pd.Series(wti["Vol."]).str.replace('K',"000", regex=True)
```

```
wti["Vol."]=pd.Series(wti["Vol."]).str.replace('B',"000000000", regex=True)
wti["Abertura"] = pd.to_numeric(wti["Abertura"])
wti["Último"] = pd.to_numeric(wti["Último"])
wti["Máxima"] = pd.to_numeric(wti["Máxima"])
wti["Mínima"] = pd.to_numeric(wti["Mínima"])
wti["Var%"] = pd.to_numeric(wti["Var%"])
wti["Vol."] = pd.to_numeric(wti["Vol."])
```

In [12]: brent

Out

Out[12]: Data Último Abertura Máxima Mínima Vol. Var%

Data							
2019-12-31	2019-12-31	66.00	66.65	66.93	65.63	17101000.0	-3.57
2019-12-30	2019-12-30	68.44	68.20	68.99	68.16	2942000.0	0.41
2019-12-27	2019-12-27	68.16	67.91	68.33	67.57	11222000.0	0.35
2019-12-26	2019-12-26	67.92	67.27	67.99	67.22	6982000.0	1.07
2019-12-24	2019-12-24	67.20	66.44	67.26	66.36	10494000.0	1.22
•••							
2010-01-08	2010-01-08	81.37	81.51	82.05	80.59	15749000.0	-0.17
2010-01-07	2010-01-07	81.51	82.00	82.05	81.05	13128000.0	-0.46
2010-01-06	2010-01-06	81.89	80.38	82.21	79.77	15787000.0	1.61
2010-01-05	2010-01-05	80.59	80.29	80.84	79.75	13175000.0	0.59
2010-01-04	2010-01-04	80.12	78.49	80.48	78.34	12264000.0	2.81

2581 rows × 7 columns

In [13]: wti

[13]:		Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
	Data							
	2019-12-31	2019-12-31	61.06	61.68	61.88	60.63	49454000.0	-1.01
	2019-12-30	2019-12-30	61.68	61.71	62.34	61.09	42715000.0	-0.06
	2019-12-27	2019-12-27	61.72	61.73	61.97	61.24	35190000.0	0.06
	2019-12-26	2019-12-26	61.68	61.20	61.83	61.06	26509000.0	0.80
	2019-12-25	2019-12-25	61.19	61.45	61.52	61.17	NaN	0.13
	•••		•••		•••	•••		
	2010-01-08	2010-01-08	82.75	82.65	83.47	81.80	31038000.0	0.11
	2010-01-07	2010-01-07	82.66	83.20	83.36	82.26	24663000.0	-0.63
	2010-01-06	2010-01-06	83.18	81.43	83.52	80.85	37006000.0	1.72
	2010-01-05	2010-01-05	81.77	81.63	82.00	80.95	25889000.0	0.32

Data

Data Último Abertura Máxima Mínima

Vol. Var%

```
2010-01-04 2010-01-04
                                  81.51
                                           79.63
                                                   81.79
                                                           79.63 26354000.0
                                                                            2.71
         2591 rows × 7 columns
In [14]:
           brent.isnull().sum()
                      0
          Data
Out[14]:
          Último
                      0
          Abertura
                      0
          Máxima
                      a
          Mínima
                      0
          Vol.
                       1
          Var%
          dtype: int64
In [15]:
           wti.isnull().sum()
                        0
Out[15]: Data
          Último
                       0
                       0
          Abertura
                       0
          Máxima
          Mínima
                       0
          Vol.
                       74
          Var%
                       0
          dtype: int64
           brent medianaMA = brent["Máxima"].rolling(5).mean().shift(-5).round(0)
In [16]:
           brent_medianaMI = brent["Minima"].rolling(5).mean().shift(-5).round(0)
           brent_medianaAB = brent["Abertura"].rolling(5).mean().shift(-5).round(0)
           brent medianaUL = brent["Último"].rolling(5).mean().shift(-5).round(0)
           brent medianaVOL = brent["Vol."].rolling(5).mean().shift(-5).round(0)
           brent["Máxima"].fillna(brent_medianaMA, inplace=True)
           brent["Minima"].fillna(brent medianaMI, inplace=True)
           brent["Abertura"].fillna(brent medianaAB, inplace=True)
           brent["Último"].fillna(brent_medianaUL, inplace=True)
           brent["Vol."].fillna(brent medianaVOL, inplace=True)
           wti_medianaMA = wti["Máxima"].rolling(5).mean().shift(-5).round(0)
In [17]:
           wti_medianaMI = wti["Minima"].rolling(5).mean().shift(-5).round(0)
           wti_medianaAB = wti["Abertura"].rolling(5).mean().shift(-5).round(0)
           wti medianaUL = wti["Último"].rolling(5).mean().shift(-5).round(0)
           wti medianaVOL = wti["Vol."].rolling(5).mean().shift(-5).round(0)
           wti["Máxima"].fillna(wti_medianaMA, inplace=True)
           wti["Mínima"].fillna(wti_medianaMI, inplace=True)
           wti["Abertura"].fillna(wti medianaAB, inplace=True)
           wti["Último"].fillna(wti_medianaUL, inplace=True)
           wti["Vol."].fillna(wti medianaVOL, inplace=True)
In [18]:
           brent.isnull().sum()
Out[18]: Data
                      0
          Último
                      0
          Abertura
                      0
          Máxima
                      0
          Mínima
                      0
          Vol.
                      0
```

```
Var%
          dtype: int64
           wti.isnull().sum()
In [19]:
                        0
          Data
Out[19]:
          Último
                        0
          Abertura
                        0
          Máxima
                        0
                        0
          Mínima
                       27
          Vol.
          Var%
                        0
          dtype: int64
           wti_medianaVOL = wti["Vol."].rolling(5).mean().shift(-5).round(0)
In [20]:
           wti["Vol."].fillna(wti_medianaVOL, inplace=True)
           wti.isnull().sum()
In [21]:
Out[21]:
          Data
                       0
          Último
                       0
          Abertura
                       0
          Máxima
                       0
          Mínima
                       0
          Vol.
                       1
          Var%
                       0
          dtype: int64
In [22]:
           wti medianaVOL = wti["Vol."].rolling(5).mean().shift(-5).round(0)
           wti["Vol."].fillna(wti_medianaVOL, inplace=True)
           wti.isnull().sum()
In [23]:
                       0
          Data
Out[23]:
          Último
                       0
          Abertura
                       0
          Máxima
                       0
          Mínima
                       0
          Vol.
                       0
          Var%
          dtype: int64
           #JUNÇÃO DAS TABELAS, cria dataset bw
In [24]:
           brent.rename(columns= {'Data': 'data'}, inplace=True)
           wti.rename(columns= {'Data': 'data'}, inplace=True)
           bw = pd.merge(brent,wti,how='inner', on=['data'],suffixes=('_B', '_W'))
           bw.isnull().sum()
In [25]:
          data
                         0
Out[25]:
          Último B
                         0
          Abertura B
                         0
          Máxima B
                         0
          Mínima B
                         0
          Vol. B
                         0
          Var% B
                         0
          Último W
                         0
          Abertura W
                         0
          Máxima W
                         0
          Mínima W
```

Vol._W Var%_W 0 dtype: int64

In [26]:

Out[26]:

	data	Último_B	Abertura_B	Máxima_B	Mínima_B	VolB	Var%_B	Último_W	Abertura_W
0	2019- 12-31	66.00	66.65	66.93	65.63	17101000.0	-3.57	61.06	61.68
1	2019- 12-30	68.44	68.20	68.99	68.16	2942000.0	0.41	61.68	61.71
2	2019- 12-27	68.16	67.91	68.33	67.57	11222000.0	0.35	61.72	61.73
3	2019- 12-26	67.92	67.27	67.99	67.22	6982000.0	1.07	61.68	61.20
4	2019- 12-24	67.20	66.44	67.26	66.36	10494000.0	1.22	61.11	60.63
•••							•••		
2555	2010- 01-08	81.37	81.51	82.05	80.59	15749000.0	-0.17	82.75	82.65
2556	2010- 01-07	81.51	82.00	82.05	81.05	13128000.0	-0.46	82.66	83.20
2557	2010- 01-06	81.89	80.38	82.21	79.77	15787000.0	1.61	83.18	81.43
2558	2010- 01-05	80.59	80.29	80.84	79.75	13175000.0	0.59	81.77	81.63
2559	2010- 01-04	80.12	78.49	80.48	78.34	12264000.0	2.81	81.51	79.63

2560 rows × 13 columns

bw.index = pd.to_datetime(bw.data, format='%d.%m.%Y') In [27]:

In [28]:

Out[28]:

DW										
	data	Último_B	Abertura_B	Máxima_B	Mínima_B	VolB	Var%_B	Último_W	Abertura_W	
data										
2019- 12-31	2019- 12-31	66.00	66.65	66.93	65.63	17101000.0	-3.57	61.06	61.68	
2019- 12-30	2019- 12-30	68.44	68.20	68.99	68.16	2942000.0	0.41	61.68	61.71	
2019- 12-27	2019- 12-27	68.16	67.91	68.33	67.57	11222000.0	0.35	61.72	61.73	
2019- 12-26	2019- 12-26	67.92	67.27	67.99	67.22	6982000.0	1.07	61.68	61.20	

data Último_B Abertura_B Máxima_B Mínima_B

Vol._B Var%_B Último_W Abertura_W

	data									
	2019- 12-24	2019- 12-24	67.20	66.44	4 67.2	6 66.36	10494000.0	1.22	61.11	60.63
	•••	•••	•••							
		2010- 01-08	81.37	81.5	1 82.0	5 80.59	15749000.0	-0.17	82.75	82.65
	2010- 01-07	2010- 01-07	81.51	82.00	0 82.0	5 81.05	13128000.0	-0.46	82.66	83.20
		2010- 01-06	81.89	80.38	82.2	1 79.77	15787000.0	1.61	83.18	81.43
	2010- 01-05	2010- 01-05	80.59	80.29	9 80.8	4 79.75	13175000.0	0.59	81.77	81.63
	2010- 01-04	2010- 01-04	80.12	78.49	9 80.4	8 78.34	12264000.0	2.81	81.51	79.63
	2560 rov	vs × 13 cc	olumns							
	4									+
In [29]:	brent1 brent1 brent1 brent1 brent1	["data"] ["Abertu ["Máxima ["Mínima ["Último	= bw[" ra_B"] _B"]= _B"]= _B"]=	data"]	rtura_B"] a_B"] a_B"] o_B"]	Aber cura_b	, MAXIMA_	_B , MIIII	ima_B","Últ	IIIO_B ,
In [30]:	brent1									
Out[30]:		Aber	tura_B	Último_B	Máxima_B	data	VolB	Mínima_B		
	d	ata								
	2019-12	-31	66.65	66.00	66.93	2019-12-31	1=101000	CF C2	-	
	2019-12						1/101000.0	65.63		
		-30	68.20	68.44	68.99	2019-12-30		68.16		
	2019-12		68.20 67.91	68.44 68.16			2942000.0			
		-27			68.33	2019-12-30	2942000.0 11222000.0	68.16		
	2019-12	-27 -26	67.91	68.16	68.33 67.99	2019-12-30 2019-12-27	2942000.0 11222000.0 6982000.0	68.16 67.57		
	2019-12 2019-12 2019-12	-27 -26	67.91 67.27	68.16 67.92 67.20	68.33 67.99 67.26	2019-12-30 2019-12-27 2019-12-26	2942000.0 11222000.0 6982000.0 10494000.0	68.16 67.57 67.22		
	2019-12 2019-12 2019-12	-27 -26 -24 	67.91 67.27 66.44	68.16 67.92 67.20	68.33 67.99 67.26	2019-12-30 2019-12-27 2019-12-26 2019-12-24	2942000.0 11222000.0 6982000.0 10494000.0 	68.16 67.57 67.22 66.36		
	2019-12 2019-12 2019-12	-27 -26 -24 	67.91 67.27 66.44	68.16 67.92 67.20	68.33 67.99 67.26 82.05	2019-12-30 2019-12-27 2019-12-26 2019-12-24	2942000.0 11222000.0 6982000.0 10494000.0 15749000.0	68.16 67.57 67.22 66.36		
	2019-12 2019-12 2019-12 2010-01	-27 -26 -24 -08	67.91 67.27 66.44 81.51	68.16 67.92 67.20 81.37	68.33 67.99 67.26 82.05	2019-12-30 2019-12-27 2019-12-26 2019-12-24 2010-01-08	2942000.0 11222000.0 6982000.0 10494000.0 15749000.0 13128000.0	68.16 67.57 67.22 66.36 		
	2019-12 2019-12 2019-12 2010-01 2010-01	-27 -26 -24 -08 -07	67.91 67.27 66.44 81.51 82.00	68.16 67.92 67.20 81.37 81.51 81.89	68.33 67.99 67.26 82.05 82.05	2019-12-30 2019-12-27 2019-12-26 2019-12-24 2010-01-08 2010-01-07	2942000.0 11222000.0 6982000.0 10494000.0 15749000.0 13128000.0 15787000.0	68.16 67.57 67.22 66.36 80.59 81.05		

2560 rows × 6 columns

```
wti1 = pd.DataFrame(columns={"data","Abertura_W", "Máxima_W", "Mínima_W", "Último_W", "V
In [31]:
            wti1["data"]= bw["data"]
            wti1["Abertura W"]= bw["Abertura W"]
            wti1["Máxima_W"]= bw["Máxima_W"]
            wti1["Mínima W"]= bw["Mínima W"]
            wti1["Último W"]= bw["Último W"]
            wti1["Vol. W"]= bw["Vol. W"]
In [32]:
            wti1
Out[32]:
                        Mínima W
                                         data Abertura W
                                                               Vol. W Máxima W Último W
                  data
           2019-12-31
                             60.63 2019-12-31
                                                     61.68 49454000.0
                                                                             61.88
                                                                                        61.06
           2019-12-30
                             61.09
                                   2019-12-30
                                                     61.71 42715000.0
                                                                             62.34
                                                                                        61.68
           2019-12-27
                             61.24 2019-12-27
                                                           35190000.0
                                                     61.73
                                                                             61.97
                                                                                        61.72
           2019-12-26
                             61.06
                                   2019-12-26
                                                     61.20
                                                           26509000.0
                                                                             61.83
                                                                                        61.68
           2019-12-24
                                   2019-12-24
                                                     60.63
                                                           20454000.0
                                                                             61.16
                             60.47
                                                                                        61.11
                                                                                ...
           2010-01-08
                             81.80
                                   2010-01-08
                                                     82.65 31038000.0
                                                                             83.47
                                                                                        82.75
           2010-01-07
                             82.26 2010-01-07
                                                     83.20
                                                           24663000.0
                                                                             83.36
                                                                                        82.66
           2010-01-06
                             80.85
                                  2010-01-06
                                                     81.43 37006000.0
                                                                             83.52
                                                                                        83.18
           2010-01-05
                                                                             82.00
                                                                                        81.77
                             80.95 2010-01-05
                                                     81.63 25889000.0
           2010-01-04
                             79.63 2010-01-04
                                                     79.63 26354000.0
                                                                             81.79
                                                                                        81.51
          2560 rows × 6 columns
In [33]:
            brent1.rename(columns= {'data': 'Data'}, inplace=True)
            wti1.rename(columns= {'data': 'Data'}, inplace=True)
            brent1
In [34]:
Out[34]:
                        Abertura_B Último_B Máxima_B
                                                                         Vol._B Mínima_B
                                                               Data
                  data
           2019-12-31
                             66.65
                                       66.00
                                                   66.93
                                                         2019-12-31 17101000.0
                                                                                     65.63
           2019-12-30
                             68.20
                                       68.44
                                                   68.99
                                                         2019-12-30
                                                                                     68.16
                                                                      2942000.0
           2019-12-27
                             67.91
                                       68.16
                                                   68.33
                                                         2019-12-27 11222000.0
                                                                                     67.57
                                                         2019-12-26
           2019-12-26
                                       67.92
                             67.27
                                                   67.99
                                                                      6982000.0
                                                                                     67.22
           2019-12-24
                             66.44
                                       67.20
                                                   67.26
                                                         2019-12-24 10494000.0
                                                                                     66.36
           2010-01-08
                             81.51
                                       81.37
                                                   82.05 2010-01-08 15749000.0
                                                                                     80.59
```

	Abertura_B	Último_B	Máxima_B	Data	VolB	Mínima_B
data						
2010-01-07	82.00	81.51	82.05	2010-01-07	13128000.0	81.05
2010-01-06	80.38	81.89	82.21	2010-01-06	15787000.0	79.77
2010-01-05	80.29	80.59	80.84	2010-01-05	13175000.0	79.75
2010-01-04	78.49	80.12	80.48	2010-01-04	12264000.0	78.34

2560 rows × 6 columns

```
In [35]: #Serparar treino e teste
    filtroB = brent1['Data']<= "2016-12-31"
        train_B = brent1[filtroB]
        filtroW = wti1['Data']<= "2016-12-31"
        train_W = wti1[filtroW]
        filtroBteste = brent1['Data']> "2016-12-31"
        teste_B = brent1[filtroBteste]
        filtroWteste = wti1['Data']> "2016-12-31"
        teste_W = wti1[filtroWteste]

In [36]: #correlação
        train_B["Último_B"].corr(train_W["Último_W"])
Out[36]: 0.9745391323161525
```

```
In [37]: data1=train_B["Último_B"]
    data2=train_W["Último_W"]

    plt.scatter(data1, data2)
    plt.title('Gráfico de Correlação')
    plt.gcf().set_size_inches(10, 8)
    plt.show()

#diretamente proporcionais com alta correlação
```

Gráfico de Correlação


```
In [38]: eixo_x = train_B['Data']
    linha_brent1_ultimo = train_B["Último_B"]
    linha_wti1_ultimo = train_W["Último_W"]
    trace1 = go.Scatter(x = eixo_x,y = linha_brent1_ultimo,mode = 'lines', name = 'BRENT')
    trace2 = go.Scatter(x = eixo_x,y = linha_wti1_ultimo,mode = 'lines',name = 'WTI')
    data = [trace1, trace2]
    py.iplot(data)
```



```
In [39]:
            train_B.describe()
Out[39]:
                   Abertura_B
                                  Último_B
                                             Máxima_B
                                                               Vol._B
                                                                        Mínima B
                  1787.000000
                               1787.000000
                                            1787.000000
                                                        1.787000e+03
                                                                      1787.000000
           count
                    86.967857
                                 86.978215
                                              87.963212
                                                        1.943510e+07
                                                                        85.900235
           mean
              std
                    27.278378
                                 27.329470
                                              27.340258
                                                        7.398364e+06
                                                                        27.210115
                    27.990000
                                 27.880000
                                              28.750000
                                                        1.152000e+06
                                                                        27.100000
             min
             25%
                    59.580000
                                 59.230000
                                              60.560000
                                                        1.535850e+07
                                                                        58.375000
             50%
                    99.540000
                                 99.650000
                                             100.620000
                                                        1.950300e+07
                                                                        97.920000
                    109.760000
             75%
                                109.885000
                                             110.800000
                                                        2.356550e+07
                                                                        108.900000
             max
                    126.580000
                                126.650000
                                             128.400000
                                                        4.638100e+07
                                                                       125.000000
In [40]:
            import plotly.graph_objects as go
            fig = go.Figure(data=[go.Candlestick(x=train_B['Data'],
                              open=train_B['Abertura_B'], high=train_B['Máxima_B'],
                              low=train_B['Minima_B'], close=train_B["Ultimo_B"])
            fig.update_layout(xaxis_rangeslider_visible=False)
            fig.show()
```



```
import seaborn as sns
plt.figure(figsize=(10,7))
sns.set_context("notebook", font_scale=1.5, rc={'font.size':20, 'axes.titlesize':20, 'a
sns.rugplot(train_B["Último_B"], color ='red')
sns.distplot(train_B["Último_B"], color ='green')
sns.set_style("darkgrid")
plt.title("Distribuição de Fechamento - BRENT")
```

Out[41]: Text(0.5, 1.0, 'Distribuição de Fechamento - BRENT')


```
In [42]: #gráfico com dois eixos y

b = train_B["Data"]
    data1 = train_B["Último_B"]
    data2 = train_B["Vol._B"]
```

```
fig, ax1 = plt.subplots()

color = 'tab:red'
ax1.set_xlabel('')
ax1.set_ylabel('Preço', color=color)
ax1.plot(b, data1, color=color)
ax1.tick_params(axis='y', labelcolor=color)

ax2 = ax1.twinx()

color = 'tab:blue'
ax2.set_ylabel('Volume', color=color)
ax2.plot(b, data2, color=color)
ax2.tick_params(axis='y', labelcolor=color)
plt.gcf().set_size_inches(15, 10)
plt.show()
```


97.330000

98.065000

In [43]: train_W.describe()

Out[43]:		Mínima_W	Abertura_W	VolW	Máxima_W	Último_W
	count	1787.000000	1787.000000	1.787000e+03	1787.000000	1787.000000
	mean	77.664057	78.779239	3.200921e+07	79.767185	78.753643
	std	22.891260	22.954251	1.581953e+07	22.972323	22.978843
	min	26.050000	27.300000	2.210000e+06	27.480000	26.210000
	25%	52.055000	53.045000	2.244200e+07	54.005000	53.000000
	50%	85.550000	86.570000	2.941880e+07	87.770000	86.670000

97.310000 3.937150e+07

96.260000

75%

	Mínima_W	Abertura_W	VolW	Máxima_W	Último_W
max	112.250000	113.890000	1.310000e+08	114.830000	113.930000

```
In [44]: plt.figure(figsize=(10,7))
    sns.set_context("notebook", font_scale=1.5, rc={'font.size':20, 'axes.titlesize':20, 'a
    sns.rugplot(train_W["Último_W"], color ='red')
    sns.distplot(train_W["Último_W"], color ='green')
    sns.set_style("darkgrid")
    plt.title("Distribuição de Fechamento - WTI")
```

Out[44]: Text(0.5, 1.0, 'Distribuição de Fechamento - WTI')


```
In [46]:
           w = train_W["Data"]
           data1 = train W["Último W"]
           data2 = train_W["Vol._W"]
           fig, ax1 = plt.subplots()
           color = 'tab:red'
           ax1.set_xlabel('')
           ax1.set_ylabel('Preço', color=color)
           ax1.plot(w, data1, color=color)
           ax1.tick_params(axis='y', labelcolor=color)
           ax2 = ax1.twinx()
           color = 'tab:blue'
           ax2.set_ylabel('Volume', color=color)
           ax2.plot(w, data2, color=color)
           ax2.tick_params(axis='y', labelcolor=color)
           plt.gcf().set_size_inches(15, 10)
           plt.show()
```


FACEBOOK PROPHET

```
In [47]: train_start_date = '2010-01-01'
    train_end_date = '2016-12-31'

test_start_date = '2017-01-01'
    test_end_date = '2019-12-31'
```

In [48]: brent2 = brent1

In [49]: brent2

Out[49]:

	Abertura_B	Último_B	Máxima_B	Data	VolB	Mínima_B
data						
2019-12-31	66.65	66.00	66.93	2019-12-31	17101000.0	65.63
2019-12-30	68.20	68.44	68.99	2019-12-30	2942000.0	68.16
2019-12-27	67.91	68.16	68.33	2019-12-27	11222000.0	67.57
2019-12-26	67.27	67.92	67.99	2019-12-26	6982000.0	67.22
2019-12-24	66.44	67.20	67.26	2019-12-24	10494000.0	66.36
•••						
2010-01-08	81.51	81.37	82.05	2010-01-08	15749000.0	80.59
2010-01-07	82.00	81.51	82.05	2010-01-07	13128000.0	81.05
2010-01-06	80.38	81.89	82.21	2010-01-06	15787000.0	79.77
2010-01-05	80.29	80.59	80.84	2010-01-05	13175000.0	79.75

Abertura_B Último_B Máxima_B

```
data
           2010-01-04
                            78.49
                                      80.12
                                                80.48 2010-01-04 12264000.0
                                                                                 78.34
          2560 rows × 6 columns
In [50]:
            filtroB2 = brent2['Data']<= train_end_date</pre>
            train B2 = brent2[filtroB2]
            filtroB2teste = brent2['Data']> train_end_date
            teste B2 = brent2[filtroB2teste]
            train_B2.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
In [51]:
                       Último_B
Out[51]:
                                      Data
                 data
           2016-12-30
                          56.82 2016-12-30
           2016-12-29
                          56.14 2016-12-29
           2016-12-28
                          56.22 2016-12-28
           2016-12-27
                          56.09 2016-12-27
           2016-12-23
                          55.16 2016-12-23
           2010-01-08
                          81.37 2010-01-08
           2010-01-07
                          81.51 2010-01-07
           2010-01-06
                          81.89 2010-01-06
           2010-01-05
                          80.59 2010-01-05
           2010-01-04
                          80.12 2010-01-04
          1787 rows × 2 columns
In [52]:
            teste_B2.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
                       Último B
Out[52]:
                                      Data
                 data
           2019-12-31
                          66.00 2019-12-31
           2019-12-30
                          68.44 2019-12-30
           2019-12-27
                          68.16 2019-12-27
           2019-12-26
                          67.92 2019-12-26
           2019-12-24
                          67.20 2019-12-24
```

Data

Vol._B Mínima_B

```
Último B
                                     Data
                 data
           2017-01-09
                          54.94 2017-01-09
           2017-01-06
                          57.10 2017-01-06
           2017-01-05
                          56.89 2017-01-05
           2017-01-04
                          56.46 2017-01-04
           2017-01-03
                          55.47 2017-01-03
          773 rows × 2 columns
In [53]:
           train_B2_FP = pd.DataFrame({"ds":train_B2['Data'],"y":train_B2['Último_B']})
           train B2 FP.reset index(drop=True, inplace=True)
           train B2 FP
Out[53]:
                        ds
                               у
              0 2016-12-30 56.82
              1 2016-12-29 56.14
              2 2016-12-28 56.22
              3 2016-12-27 56.09
                2016-12-23 55.16
           1782 2010-01-08 81.37
           1783 2010-01-07 81.51
           1784 2010-01-06 81.89
           1785 2010-01-05 80.59
           1786 2010-01-04 80.12
          1787 rows × 2 columns
           teste_B2_FP = pd.DataFrame({"ds_teste":teste_B2['Data'],"y_teste":teste_B2['Último_B']}
In [54]:
           teste_B2_FP.reset_index(drop=True, inplace=True)
           teste_B2_FP
Out[54]:
                  ds_teste y_teste
             0 2019-12-31
                            66.00
             1 2019-12-30
                            68.44
             2 2019-12-27
                            68.16
               2019-12-26
                            67.92
               2019-12-24
                            67.20
```

	ds_teste	y_teste
768	2017-01-09	54.94
769	2017-01-06	57.10
770	2017-01-05	56.89
771	2017-01-04	56.46
772	2017-01-03	55.47

773 rows × 2 columns

Out[56]: Text(39.5, 0.5, 'Preço de cotação')


```
In [57]: prophet_forecast = prophet_forecast[prophet_forecast['ds'] > train_end_date]
    prophet_forecast.head()
```

Out [57]: ds trend yhat_lower yhat_upper trend_lower trend_upper additive_terms additive_term

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_terms	additive_tern
1788	2017- 01-01	46.522636	32.271853	54.417461	46.522636	46.522636	-3.394820	-
1789	2017- 01-02	46.522401	31.804644	53.528329	46.522401	46.522401	-3.689596	-
1790	2017- 01-03	46.522166	31.753264	53.856961	46.522166	46.522166	-3.798483	-
1791	2017- 01-04	46.521930	31.267200	53.303155	46.521930	46.523158	-3.851718	-
1792	2017- 01-05	46.521695	31.252054	53.775329	46.518990	46.529545	-3.991363	-
4								•

In [58]: fig=prophet_model.plot_components(prophet_forecast)

2017-032017-072017-112018-032018-072018-112019-032019-072019-11 ds

January 1 March 1 May 1 July 1 September November 1 January 1

Day of year

In [59]: prophet_forecast.set_index(prophet_forecast['ds'], inplace=True)

```
teste_B2_FP.set_index(teste_B2_FP['ds_teste'], inplace=True)
train_B2_FP.set_index(train_B2_FP['ds'], inplace=True)
```



```
plt.figure(figsize=(14,8))
   plt.plot(teste_B2_FP['y_teste'], 'blue', label='Teste')
   plt.plot(prophet_forecast['yhat'], 'red', label='Predição')
   plt.fill_between(prophet_forecast.index, prophet_forecast['yhat_lower'], prophet_forecaplt.legend()
   plt.grid(True)
```


Out[63]:		data	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_terms	additive_term
	0	2017- 01-03	46.522166	31.753264	53.856961	46.522166	46.522166	-3.798483	-3
	1	2017- 01-04	46.521930	31.267200	53.303155	46.521930	46.523158	-3.851718	-3
	2	2017- 01-05	46.521695	31.252054	53.775329	46.518990	46.529545	-3.991363	-3
	3	2017- 01-06	46.521460	30.806468	52.818402	46.500924	46.541872	-4.266456	-2
	4	2017- 01-09	46.520755	30.199963	53.182456	46.422887	46.607116	-5.097600	-î
	•••								
	768	2019- 12-24	46.267069	-140.691328	229.004072	-139.839156	230.808042	-2.731992	-2
	769	2019- 12-26	46.266599	-140.823405	233.369853	-140.121356	231.242182	-2.607993	-2
	770	2019- 12-27	46.266364	-143.319539	227.894682	-140.260581	231.459252	-2.729845	-2
	771	2019- 12-30	46.265659	-148.020037	227.181423	-140.970103	232.110462	-3.169816	-3

```
        data
        trend
        yhat_lower
        trend_lower
        trend_upper
        additive_terms
        additive_terms

        772
        2019-
12-31
        46.265424
        -142.323374
        234.443056
        -141.216303
        232.327532
        -3.220225
        -3
```

773 rows × 20 columns

```
In [64]: #Cálculo do erro
    print('MAE: ', mean_absolute_error(pftb2['y_teste'],pftb2['yhat']))
    print('MSE: ', mean_squared_error(pftb2['y_teste'],pftb2['yhat']))
    print('RMSE: ', np.sqrt(mean_squared_error(pftb2['y_teste'],pftb2['yhat'])))
```

MAE: 17.145523353934433 MSE: 373.3109475977907 RMSE: 19.321256366959958

SKTIME

```
In [65]:
           pip install sktime
          Requirement already satisfied: sktime in c:\users\bviei\anaconda3\lib\site-packages (0.
          Requirement already satisfied: numba>=0.50 in c:\users\bviei\anaconda3\lib\site-packages
          (from sktime) (0.51.2)
          Requirement already satisfied: wheel in c:\users\bviei\anaconda3\lib\site-packages (from
          sktime) (0.35.1)
          Requirement already satisfied: pandas>=1.1.0 in c:\users\bviei\anaconda3\lib\site-packag
          es (from sktime) (1.1.3)
          Requirement already satisfied: statsmodels>=0.12.1 in c:\users\bviei\anaconda3\lib\site-
          packages (from sktime) (0.12.1)
          Requirement already satisfied: scikit-learn>=0.23.0 in c:\users\bviei\anaconda3\lib\site
          -packages (from sktime) (0.23.2)
          Requirement already satisfied: numpy>=1.19.0 in c:\users\bviei\anaconda3\lib\site-packag
          es (from sktime) (1.19.2)
          Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in c:\users\bviei\anaconda3\l
          ib\site-packages (from numba>=0.50->sktime) (0.34.0)
          Requirement already satisfied: setuptools in c:\users\bviei\anaconda3\lib\site-packages
          (from numba>=0.50->sktime) (50.3.1.post20201107)
          Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\bviei\anaconda3\lib\si
          te-packages (from pandas>=1.1.0->sktime) (2.8.1)
          Requirement already satisfied: pytz>=2017.2 in c:\users\bviei\anaconda3\lib\site-package
          s (from pandas>=1.1.0->sktime) (2019.3)
          Requirement already satisfied: scipy>=1.1 in c:\users\bviei\anaconda3\lib\site-packages
          (from statsmodels>=0.12.1->sktime) (1.5.2)
          Requirement already satisfied: patsy>=0.5 in c:\users\bviei\anaconda3\lib\site-packages
          (from statsmodels>=0.12.1->sktime) (0.5.1)
          Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\bviei\anaconda3\lib\site
          -packages (from scikit-learn>=0.23.0->sktime) (2.1.0)
          Requirement already satisfied: joblib>=0.11 in c:\users\bviei\anaconda3\lib\site-package
          s (from scikit-learn>=0.23.0->sktime) (0.17.0)
          Requirement already satisfied: six>=1.5 in c:\users\bviei\anaconda3\lib\site-packages (f
          rom python-dateutil>=2.7.3->pandas>=1.1.0->sktime) (1.15.0)
          Note: you may need to restart the kernel to use updated packages.
           from sktime.forecasting.arima import ARIMA, AutoARIMA
In [66]:
           from sktime.forecasting.base import ForecastingHorizon
```

from sktime.forecasting.compose import (

ReducedRegressionForecaster,

EnsembleForecaster,

```
TransformedTargetForecaster,
)
from sktime.forecasting.exp_smoothing import ExponentialSmoothing
from sktime.forecasting.model_selection import (
    ForecastingGridSearchCV,
    SlidingWindowSplitter,
    temporal_train_test_split,
)
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.theta import ThetaForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster
from sktime.performance_metrics.forecasting import sMAPE, smape_loss
from sktime.transformations.series.detrend import Deseasonalizer, Detrender
from sktime.utils.plotting import plot_series

%matplotlib inline
```

```
In [135... train_B3=train_B2
    teste_B3=teste_B2

    y_trainSK=train_B3
    y_testSK=teste_B3
```

In [136... y_testSK

Out[136...

	Abertura_B	Último_B	Máxima_B	Data	VolB	Mínima_B
data						
2019-12-31	66.65	66.00	66.93	2019-12-31	17101000.0	65.63
2019-12-30	68.20	68.44	68.99	2019-12-30	2942000.0	68.16
2019-12-27	67.91	68.16	68.33	2019-12-27	11222000.0	67.57
2019-12-26	67.27	67.92	67.99	2019-12-26	6982000.0	67.22
2019-12-24	66.44	67.20	67.26	2019-12-24	10494000.0	66.36
•••						
2017-01-09	56.81	54.94	57.00	2017-01-09	26639000.0	54.74
2017-01-06	56.88	57.10	57.47	2017-01-06	23487000.0	56.28
2017-01-05	56.35	56.89	57.35	2017-01-05	26961000.0	56.01
2017-01-04	55.73	56.46	56.55	2017-01-04	28255000.0	55.33
2017-01-03	57.05	55.47	58.37	2017-01-03	34082000.0	55.30

773 rows × 6 columns

```
In [137... y_trainSK=y_trainSK.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
   y_testSK=y_testSK.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
In [138... y_trainSK
```

Out[138... Último_B Data

data

56.82	2016-12-30
56.14	2016-12-29
56.22	2016-12-28
56.09	2016-12-27
55.16	2016-12-23
81.37	2010-01-08
81.51	2010-01-07
81.89	2010-01-06
80.59	2010-01-05
80.12	2010-01-04
	56.14 56.22 56.09 55.16 81.37 81.51 81.89 80.59

Último_B

Data

1787 rows × 2 columns

```
In [139... y_trainI = y_trainSK.sort_values(by='Data')
    y_trainI
```

Out[139... Último_B Data

data		
2010-01-04	80.12	2010-01-04
2010-01-05	80.59	2010-01-05
2010-01-06	81.89	2010-01-06
2010-01-07	81.51	2010-01-07
2010-01-08	81.37	2010-01-08
•••		
2016-12-23	 55.16	 2016-12-23
 2016-12-23 2016-12-27		
	55.16	2016-12-23
2016-12-27	55.16 56.09	2016-12-23 2016-12-27 2016-12-28

1787 rows × 2 columns

```
In [140... y_testI = y_testSK.sort_values(by='Data')
    y_testI
```

Out[140... Último_B Data

data	Último_B	Data
data		
2017-01-03	55.47	2017-01-03
2017-01-04	56.46	2017-01-04
2017-01-05	56.89	2017-01-05
2017-01-06	57.10	2017-01-06
2017-01-09	54.94	2017-01-09
•••		
2019-12-24	67.20	2019-12-24
2019-12-26	67.92	2019-12-26
2019-12-27	68.16	2019-12-27
2019-12-30	68.44	2019-12-30
2019-12-31	66.00	2019-12-31

773 rows × 2 columns

```
brent3 = brent2
In [141...
           brent3=brent3.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
           brent3I = brent3.sort_values(by='Data')
           brent3I=brent3I.drop(columns=["Data"])
           y = brent3I['Último_B']
           У
Out[141... data
          2010-01-04
                         80.12
                         80.59
           2010-01-05
           2010-01-06
                         81.89
           2010-01-07
                         81.51
           2010-01-08
                         81.37
          2019-12-24
                         67.20
           2019-12-26
                         67.92
           2019-12-27
                         68.16
           2019-12-30
                         68.44
           2019-12-31
                         66.00
          Name: Último_B, Length: 2560, dtype: float64
           y.index
In [142...
'2019-12-17', '2019-12-18', '2019-12-19', '2019-12-20', '2019-12-23', '2019-12-24', '2019-12-26', '2019-12-27', '2019-12-30', '2019-12-31'],
                         dtype='datetime64[ns]', name='data', length=2560, freq=None)
In [143...
```

data

```
Out[143... 2010-01-04
                         80.12
                         80.59
          2010-01-05
          2010-01-06
                         81.89
          2010-01-07
                         81.51
          2010-01-08
                         81.37
                         67.20
          2019-12-24
          2019-12-26
                         67.92
          2019-12-27
                         68.16
          2019-12-30
                         68.44
          2019-12-31
                         66.00
          Name: Último_B, Length: 2560, dtype: float64
           y=y.resample('d').mean()
In [144...
In [145...
          data
Out[145...
          2010-01-04
                         80.12
          2010-01-05
                         80.59
          2010-01-06
                         81.89
          2010-01-07
                         81.51
          2010-01-08
                         81.37
          2019-12-27
                         68.16
          2019-12-28
                           NaN
          2019-12-29
                           NaN
          2019-12-30
                         68.44
          2019-12-31
                         66.00
          Freq: D, Name: Último B, Length: 3649, dtype: float64
           y_trainSK, y_testSK = temporal_train_test_split(y, test_size=773)
In [146...
           plot_series(y_trainSK, y_testSK, labels=["y_train", "y_test"])
           print(y_trainSK.shape[0], y_testSK.shape[0])
          2876 773
             120
                                                                                            y_train
                                                                                              y_test
             100
          В
             80
             60
             40
             In [147...
           fh = np.arange(len(y testSK)) + 1
           fh
                                             6,
                              3,
                                   4,
                                        5,
                                                  7,
                                                        8,
                                                             9,
                                                                 10,
                                                                      11,
                                                                           12,
                                                                                 13,
Out[147... array([
                   1,
                         2,
                                                                           25,
                  14,
                        15,
                                  17,
                                       18,
                                                  20,
                                                       21,
                                                            22,
                                                                      24,
                                                                                 26,
                             16,
                                            19,
                                                                 23,
                  27,
                        28,
                             29,
                                  30,
                                       31,
                                            32,
                                                  33,
                                                       34,
                                                            35,
                                                                 36,
                                                                      37,
                                                                           38,
                                                                                 39,
                  40,
                                  43,
                                            45,
                                                 46,
                                                       47,
                                                            48,
                                                                 49,
                                                                      50,
                        41,
                             42,
                                       44,
                                                                           51,
                                                                                 52,
                  53,
                        54,
                                  56,
                                       57,
                                            58,
                                                  59,
                                                       60,
                                                            61,
                                                                      63,
                             55,
                                                                 62,
                                                                           64,
                                                                                 65,
                        67,
                                            71,
                  66,
                             68,
                                  69,
                                       70,
                                                 72,
                                                       73,
                                                            74,
                                                                 75,
                                                                      76,
                                                                           77,
                                                                                 78,
                  79,
                        80,
                             81,
                                  82,
                                       83,
                                            84,
                                                 85,
                                                       86,
                                                            87,
                                                                 88,
                                                                      89,
                                                                           90,
                                  95,
                                                 98,
                                                       99, 100, 101, 102, 103, 104,
                  92,
                        93,
                             94,
                                       96,
                                            97,
                 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
                 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
                 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
                 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
```

157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,

```
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
                 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
                 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
                 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
                 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
                 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
                 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
                 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
                 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
                 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
                 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
                 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
                 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
                 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,
                 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
                 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377,
                 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
                 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,
                 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,
                 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429,
                 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,
                 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
                 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
                 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,
                 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
                 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507,
                 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520,
                 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,
                 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546,
                 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
                 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,
                 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584,
                 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
                 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
                 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624,
                 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637,
                 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650,
                 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663,
                 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676,
                 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689,
                 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702,
                 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715,
                 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728,
                 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
                 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754,
                 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767,
                 768, 769, 770, 771, 772, 773])
In [148...
           fh
              = ForecastingHorizon(y_testSK.index, is_relative=False)
          ForecastingHorizon(['2017-11-19', '2017-11-20', '2017-11-21', '2017-11-22',
                          '2017-11-23', '2017-11-24',
                                                      '2017-11-25', '2017-11-26',
                          '2017-11-27', '2017-11-28',
                          '2019-12-22', '2019-12-23', '2019-12-24', '2019-12-25',
                          '2019-12-26', '2019-12-27', '2019-12-28', '2019-12-29',
                          '2019-12-30', '2019-12-31'],
                        dtype='datetime64[ns]', name='data', length=773, freq='D', is_relative=Fal
          se)
           y.isnull().sum()
In [149...
```

```
TCC_FINALIZADO
Out[149... 1089
In [170...
          y_mediana = y.rolling(5).mean().shift(-5).round(0)
          y.fillna(y_mediana, inplace=True)
In [171...
          y.isnull().sum()
Out[171... 0
In [175...
          y_train_mediana = y.rolling(5).mean().shift(-5).round(0)
          y_trainSK.fillna(y_train_mediana, inplace=True)
          y_test_mediana = y.rolling(5).mean().shift(-5).round(0)
          y_testSK.fillna(y_test_mediana, inplace=True)
          y_trainSK.isnull().sum()
In [176...
Out[176... 0
          y_testSK.isnull().sum()
In [177...
Out[177... 0
          forecaster = NaiveForecaster(strategy="last")
In [178...
          forecaster.fit(y_trainSK)
          y_pred = forecaster.predict(fh)
          plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred"])
          smape_loss(y_pred, y_testSK)
Out[178... 0.09236973081303312
            120
                                                                                       y_train
                                                                                       y_test
            100
                                                                                       y_pred
            80
            60
            40
            plot_series(y_testSK, y_pred, labels=["y_test", "y_pred"])
In [179...
Out[179... (<Figure size 1152x288 with 1 Axes>, <AxesSubplot:ylabel='Último_B'>)
                                                                                       y_test
```

```
80
                                                                                                                    v pred
70
```

2017-11-19 00200t8902-27 00200t8906-07 00200t8909-15 00200t89012-24 00200t8904-03 00200t8907-12 00200t89010-20 00:00:00

```
TCC_FINALIZADO
In [181...
           print('MAE: ', mean_absolute_error(y_testSK,y_pred))
           print('MSE: ', mean_squared_error(y_testSK,y_pred))
           print('RMSE: ', np.sqrt(mean_squared_error(y_testSK,y_pred)))
                6.2411254851228986
          MSE: 66.676482923674
          RMSE: 8.165566907672364
```

```
In [182...
           forecaster = NaiveForecaster(strategy="last", sp=12)
           forecaster.fit(y_trainSK)
           y_pred = forecaster.predict(fh)
           plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred"])
           smape_loss(y_pred, y_testSK)
```

Out[182... 0.0951743349663283

2010-01-04 00:**201**6905-19 00:**20.122**09-30 00:**201**6902-12 00:**2016**906-27 00:**2016**911-08 00:**2012**903-23 00:**201**9908-05 00:00:00

```
In [183...
           plot_series(y_testSK, y_pred, labels=[ "y_test", "y_pred"])
```

Out[183... (<Figure size 1152x288 with 1 Axes>, <AxesSubplot:ylabel='Último_B'>)


```
from sktime.forecasting.ets import AutoETS
In [184...
           forecaster = AutoETS(auto=True, sp=12, n_jobs=-1)
           forecaster.fit(y_trainSK)
           y_pred = forecaster.predict(fh)
           plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred"])
           smape_loss(y_testSK, y_pred)
```

Out[184... 0.09332332551947344

```
120

100

80

80

40
```

2010-01-04 00:**201**3905-19 00:**201**29-09-30 00:**201**3902-12 00:**201**59-06-27 00:**201**39011-08 00:**201**3903-23 00:**201**3908-05 00:00:00

```
In [185... plot_series(y_testSK, y_pred, labels=[ "y_test", "y_pred"])
```

Out[185... (<Figure size 1152x288 with 1 Axes>, <AxesSubplot:ylabel='Último_B'>)

2017-11-19 002001:8402-27 002001:8406-07 002001:8409-15 002001:8402-24 002001:9404-03 002001:9407-12 002001:9400-20 00:00:00

```
In [186... print('MAE: ', mean_absolute_error(y_testSK,y_pred))
    print('MSE: ', mean_squared_error(y_testSK,y_pred))
    print('RMSE: ', np.sqrt(mean_squared_error(y_testSK,y_pred)))
```

MAE: 6.3015513938898815 MSE: 67.97582616714709 RMSE: 8.244745367029056

```
In [187... forecaster = ThetaForecaster(sp=12)
    forecaster.fit(y_trainSK)
    alpha = 0.05 # 95% prediction intervals
    y_pred, pred_ints = forecaster.predict(fh, return_pred_int=True, alpha=alpha)
    smape_loss(y_testSK, y_pred)
```

Out[187... 0.14674560330930167

```
fig, ax = plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred
ax.fill_between(
    ax.get_lines()[-1].get_xdata(),
    pred_ints["lower"],
    pred_ints["upper"],
    alpha=0.2,
    color=ax.get_lines()[-1].get_c(),
    label=f"{1 - alpha}% prediction intervals",
)
ax.legend();
```



```
In [189... fig, ax = plot_series(y_testSK, y_pred, labels=["y_test", "y_pred"])
    ax.fill_between(
        ax.get_lines()[-1].get_xdata(),
        pred_ints["lower"],
        pred_ints["upper"],
        alpha=0.2,
        color=ax.get_lines()[-1].get_c(),
        label=f"{1 - alpha}% intervalo de predição",
    )
    ax.legend();
```


 $2017-11-19\ 0020001: 902-27\ 0020001: 906-07\ 0020001: 909-15\ 0020001: 9012-24\ 0020001: 9004-03\ 0020001: 9007-12\ 0020001: 9010-20\ 00:00:00$

```
In [190... print('MAE: ', mean_absolute_error(y_testSK,y_pred))
    print('MSE: ', mean_squared_error(y_testSK,y_pred))
    print('RMSE: ', np.sqrt(mean_squared_error(y_testSK,y_pred)))
```

MAE: 9.488035578112644 MSE: 123.48841447144301 RMSE: 11.112534115648105

ARIMA

data

2010-01-04 80.12

Último B

data	
2010-01-05	80.59
2010-01-06	81.89
2010-01-07	81.51
2010-01-08	81.37
•••	
2016-12-23	55.16
2016-12-27	56.09
2016-12-28	56.22
2016-12-29	56.14
2016-12-30	56.82

1787 rows × 1 columns

```
stepwise_model=auto_arima(z, start_p=1, start_q=1, max_p=6, max_q=6, m=12, start_P=0, s
In [195...
           ARIMA(0,1,0)(0,0,0)[0] intercept
                                               : AIC=6378.379, Time=1.36 sec
           ARIMA(0,1,1)(0,0,0)[0] intercept
                                               : AIC=6378.085, Time=0.47 sec
                                               : AIC=6378.694, Time=0.56 sec
           ARIMA(0,1,2)(0,0,0)[0] intercept
                                               : AIC=6380.694, Time=0.73 sec
           ARIMA(0,1,3)(0,0,0)[0] intercept
           ARIMA(0,1,4)(0,0,0)[0] intercept
                                               : AIC=6381.979, Time=0.75 sec
           ARIMA(0,1,5)(0,0,0)[0] intercept
                                               : AIC=6383.962, Time=1.05 sec
                                               : AIC=6378.218, Time=0.30 sec
           ARIMA(1,1,0)(0,0,0)[0] intercept
                                               : AIC=6379.239, Time=1.52 sec
           ARIMA(1,1,1)(0,0,0)[0] intercept
                                               : AIC=6380.695, Time=0.56 sec
           ARIMA(1,1,2)(0,0,0)[0] intercept
                                               : AIC=6381.425, Time=3.27 sec
           ARIMA(1,1,3)(0,0,0)[0] intercept
                                               : AIC=6383.988, Time=1.10 sec
           ARIMA(1,1,4)(0,0,0)[0] intercept
           ARIMA(2,1,0)(0,0,0)[0] intercept
                                               : AIC=6378.652, Time=0.61 sec
           ARIMA(2,1,1)(0,0,0)[0] intercept
                                               : AIC=6380.642, Time=1.85 sec
                                               : AIC=6381.539, Time=3.60 sec
           ARIMA(2,1,2)(0,0,0)[0] intercept
                                               : AIC=inf, Time=5.92 sec
           ARIMA(2,1,3)(0,0,0)[0] intercept
           ARIMA(3,1,0)(0,0,0)[0] intercept
                                               : AIC=6380.629, Time=0.56 sec
           ARIMA(3,1,1)(0,0,0)[0] intercept
                                               : AIC=6382.633, Time=0.85 sec
           ARIMA(3,1,2)(0,0,0)[0] intercept
                                               : AIC=6381.090, Time=4.46 sec
                                               : AIC=6382.056, Time=0.67 sec
           ARIMA(4,1,0)(0,0,0)[0] intercept
           ARIMA(4,1,1)(0,0,0)[0] intercept
                                               : AIC=6384.054, Time=0.78 sec
           ARIMA(5,1,0)(0,0,0)[0] intercept
                                               : AIC=6384.055, Time=0.89 sec
          Best model: ARIMA(0,1,1)(0,0,0)[0] intercept
          Total fit time: 31.973 seconds
In [196...
           print(stepwise_model.aic())
          6378.084892238259
           trainarima=z.loc['2010-01-01':'2016-12-31']
In [197...
           testarima=y.loc['2017-01-01':]
In [198...
           stepwise model.fit(trainarima)
Out[198... ARIMA(order=(0, 1, 1), scoring_args={}, suppress_warnings=True)
```

```
In [199...
           future_forecastarima=stepwise_model.predict(n_periods=1095)
            future_forecastarima=pd.DataFrame(future_forecastarima,index=testarima.index, columns=[
In [200...
            pd.concat([testarima, future_forecastarima], axis=1).plot()
In [201...
          <AxesSubplot:xlabel='data'>
Out[201...
                                                                                               Último B
                                                                                               Predição
           80
           70
           60
           50
                            Jul
                                                          Jul
                                                                                        Jul
            Jan
                                          Jan
                                                                         Jan
                                          2018
            2017
                                                                        2019
                                                         data
In [202...
            pd.concat([z,testarima, future_forecastarima], axis=1).plot(linewidth=3)
          <AxesSubplot:xlabel='data'>
Out[202...
                                                                                                Último_B
           120
                                                                                                Último_B
                                                                                                Predição
           100
            80
            60
            40
                                                       2015
                                                               2016
              2010
                       2011
                                                                       2017
                                                                                2018
                                                                                                2020
                                                          data
           print('MAE: ', mean_absolute_error(testarima, future_forecastarima))
In [203...
           print('MSE: ', mean squared error(testarima, future forecastarima))
           print('RMSE: ', np.sqrt(mean_squared_error(testarima, future_forecastarima)))
                 15.283343938135479
          MSE:
                 319.1676593546785
          RMSE: 17.86526404379959
```

In []: