Choose the correct answer:

- An L-R circuit has a cell of emf E, which is switched on at time t = 0. The current in the circuit after switched on at t = 0, will be
 - (1) Zero
- (2) $\frac{E}{R}$

- (4) $\frac{E}{\sqrt{I^2 + R^2}}$
- 2. The ratio of secondary to the primary turns in a transformer is 5:4. If the power output be P, then the input power neglecting all loses must be equal
 - (1) 1.25 P
- (2) 0.8 P

- (4) 1.44 P
- Power delivered by the source of the alternating circuit to a series LCR circuit becomes maximum when
 - (1) $\omega L = \omega C$

- A circuit consists of 3 ohm resistance and 4 ohm reactance. The power factor of the circuit is
 - (1) 0.4
- (2) 0.6
- (3) 0.8

- (4) 1.0
- The phase difference between the current and voltage of LCR circuit in series combination at resonance is

- In an ac circuit, the current lags behind the voltage
 - by $\frac{\pi}{3}$. The components in the circuit are
 - (1) R and L
 - (2) R and C
 - (3) L and C
 - (4) Only R

- Two coils have a mutual inductance 0.05 H. The current changes in the first coil according the equation $I = I_0 \sin \omega t$, where $I_0 = 5A$ and $\omega = 50\pi$ rad/s. The maximum value of emf in the second coil is
 - (1) 1.25π
- (2) 12.5π
- (3) 25.0π
- (4) 2.5τ
- The dimension of the quantity
 - (1) [MLTA⁻¹]
- (3) [M⁰LTA⁰]
- (4) [M⁰L⁰T⁰A]
- A capacitor of capacitance C and resistance R are joined in series and connected by a source of frequency ω. Power dissipated in the circuit is

- An inducter L and a capacitor C are connected in the circuit as shown in the figure. The frequency of power suppy is equal to the resonant frequency of the circuit. Which ammeter will read zero?

(1) A_1

(2) A_2

- (4) None of there
- 11. For a series RLC circuit, $R = X_L = 2X_C$. The impedance of the circuit and phase difference between V and i will be

 - (1) $\frac{\sqrt{5}R}{2}$, $\tan^{-1}(2)$ (2) $\frac{\sqrt{5}R}{2}$, $\tan^{-1}(\frac{1}{2})$
 - (3) $\sqrt{5} X_c$, $\tan^{-1}(2)$ (4) $\sqrt{5} R$, $\tan^{-1}($

No. 1 Institute for IIT JEE

12. Which of the following plots may represent the variation of reactance of a series LC combination?

(1) I

(2) II

(3) III

- (4) IV
- 13. An electric bulbs of 100 W–300 V is connected with an AC supply of 500 V and $\left(\frac{150}{\pi}\right)$ Hz. The required inductance to save the electric bulb is
 - (1) 2H

(2) $\frac{1}{2}$ H

(3) 4H

- (4) $\frac{1}{4}H$
- 14. In the circuit given below, the AC source has voltage 20 cos ωt with ω = 2000 rad/s. The amplitude of the current will be nearest to

- (1) 2 A
- (2) 3.3 A
- (3) $\sqrt{2}\sqrt{5}$ A
- (4) $\sqrt{5}A$
- 15. In a series LCR circuit, the source frequency f is varried, but the current is kept unchanged. Which of the following curves shows changes of V_C and V_C with frequency?

(1) (i)

(2) (ii)

- (3) (iii)
- (4) (iv)

/ NEET Preperation

- 16. With increase in frequency of an AC supply, the impedance of an L–C–R series circuit
 - (1) Remains constant
 - (2) Increases
 - (3) Decreases
 - (4) Decreases at first, becomes minimum and then increases
- 17. If an alternating voltage is given by $e = e_1 + e_2 \sin \omega t$, then the root mean square value of the voltage is given by
 - (1) $\sqrt{e_1^2 + \frac{e_2^2}{2}}$
- (2) $\sqrt{\frac{e_1^2 + e_2^2}{2}}$
- (3) $\sqrt{e_1^2 + e_2^2}$
- (4) $\sqrt{\frac{e_1e_2}{2}}$
- 18. A direct current of 4A and an alternating current having a maximum value of 4A flow through two identical resistance. The ratio of heat produced in the two resistance will be
 - (1) 1:1
- (2) 2:
- (3) 1:2
- (4) 4:/1
- 19. Figure shows two bulbs B_1 and B_2 resister R and inductor L, when the switch S is turned off

- (1) Both B_1 and B_2 die out promptly
- (2) Both B_1 and B_2 die out with some delay
- (3) B_2 dies out promptly, but B_1 with some delay
- (4) B_1 dies out promptly, but B_2 with some delay
- 20. If L and R denote inductance and resistance

respectively, then the dimension of $\frac{R}{L}$ is

- (1) $[M^0L^0T^1]$
- (2) $[M^0L^1T^{-1}]$
- (3) $[M^1L^0T^{-1}]$
- (4) $[M^0L^0T^{-1}]$

Answer Keys at Page No: 148

9.

 $\mathcal{N}\!E\!E\!T$

Electromagnetic Waves

CPP-7

Choose the correct answer:

- Red light differs from blue light in its
 - (1) Speed
- (2) Frequency
- (3) Intensity
- (4) Amplitude
- Which has the largest wavelength?
 - (1) Radio wave
- (2) X-ray
- (3) Ultraviolet ray
- (4) Infra-red ray
- In an electromagnetic wave, the amplitude of electric field is 1 V/m. What is average energy density of electric field?
 - (1) $2.2 \times 10^{-12} \text{ J/m}^3$
- (2) $4.4 \times 10^{-12} \text{ J/m}^3$
- (3) $3 \times 10^{-9} \text{ J/m}^3$
- (4) $12 \times 10^{-12} \text{ J/m}^3$
- Electromagnetic wave is deflected by
 - (1) Electric field
 - (2) Magnetic field
 - (3) Both of (1) & (2)
 - (4) Neither electric field nor magnetic field
- 5. The speed of electromagnetic waves depends upon
 - (1) Electric field
 - (2) Magnetic field
 - (3) Intensity
 - (4) Medium, in which it travels
- Refractive index of a medium is given by
 - (1) $\sqrt{\mu_r \varepsilon_r}$

- Displacement current is set up between the plates of the capacitor when the potential difference across the plates is
 - (1) Maximum
- (2) Zero
- (3) Minimum
- (4) Varying
- If \vec{E} and \vec{B} represent the electric and magnetic field vectors of the electromagnetic waves, then the direction of propagation of the electromagnetic waves is that of
 - $(1) \vec{E}$

- (2) \overrightarrow{B}

generate a plane electromagnetic wave travelling in y-direction? (1) E_x , B_v (3) E_v , B_x

Which of the following pairs of space and time

varying electric and magnetic field $\overrightarrow{E} \times \overrightarrow{B}$ would

10. If an electromagnetic wave propagating through vacuum is describe by

 $E_v = E_0 \sin(kx - \omega t)$; $B_z = B_0 \sin(kx - \omega t)$, then

- $(1) E_0 k = B_0 \omega$
- $(2) E_0 B_0 = \omega k$
- $(4) \quad E_0 B_0 \triangleq \frac{\omega}{r}$
- Out of the following, choose the ray which does not travel with the velocity of light
 - (1) X-ray
- (2) Microwave
- (3) γ -rays
- (4) β-rays
- In a plane electromagnetic wave, which of the following have zero average value?
 - (a) Magnetic field
- (b) Magnetic energy
- (c) Electric field
- (d) Electric energy
- (1) (a), (c) (3) (a), (d)
- (2) (b), (c) (4) All of these
- The ratio of amplitude B_0 and E_0 of the magnetic and electric fields associated with an electromagnet wave is

- 14. The figure gives the magnetic field of an electromagnetic wave at a certain point and at a certain instant. The wave transports energy in negative y-direction. Then the direction of electric field at this point and instant is

- (1) *z*-axis
- (2) -z-axis
- (4) x-axis

Website: spectrumanoop.in

No. 1 Institute for IIT JEE

15. The amplitude of electric field at a distance *r* from a source of power *P* is (taking 100% efficiency)

$$(1) \quad \sqrt{\frac{P}{2\pi r^2 c \varepsilon_0}}$$

$$(2) \quad \sqrt{\frac{P}{4\pi r^2 c \varepsilon_0}}$$

$$(3) \quad \sqrt{\frac{P}{8\pi r^2 c\varepsilon_0}}$$

$$(4) \quad \frac{P}{2\pi r^2 c \varepsilon_0}$$

16. Which of the following pairs of electric and magnetic field vector represent an electromagnetic wave travelling along negative Z-axis?

(1)
$$E = E_0 \sin(\omega t - kz)\hat{i}$$
, $B = B_0 \sin(\omega t - kz)\hat{j}$

(2)
$$E = E_0 \sin(\omega t + kz)\hat{j}$$
, $B = B_0 \sin(\omega t + kz)\hat{i}$

(3)
$$E = E_0 \sin(\omega t + kz)\hat{i}$$
, $B = B_0 \sin(\omega t + kz)\hat{j}$

(4)
$$E = E_0 \sin(\omega t - kz)\hat{j}$$
, $B = B_0 \sin(\omega t - kz)\hat{i}$

- / NEET Preperation
- 17. If ε , ϕ and t stand for permittivity, electric flux and time respectively, then dimensions of $\varepsilon \cdot \frac{d\phi}{dt}$ is same as that
 - (1) Speed
- (2) Current
- (3) Charge
- (4) Potential difference
- 18. Ozone layer blocks the radiation of wavelength
 - (1) Less than 4×10^{-7} m
 - (2) Between 4×10^{-7} m to 8×10^{-7} m
 - (3) More than 8×10^{-7} m
 - (4) None of these
- 19. Choose the incorrect statement
 - (1) EM waves are produced by accelerated charge
 - (2) Heat radiations are a type of EM waves
 - (3) Speed of EM waves in vacuum is the same for all intensities and frequencies
 - (4) Speed of EM waves is same in all media
- 20. A free proton is placed in path of an EM wave. The proton starts moving
 - (1) In the direction of the poynting vector
 - (2) Along the direction of electric field
 - (3) Along the direction of magnetic field
 - (4) In a direction perpendicular to both electric and magnetic field

Answer Keys Alternating Current

- 1. (1)
- 2. (3)
- 3. (2)
- 4. (2)
- 5. (1)
- 6. (1)
- 7. (2)

- 8. (4)
- 9. (2)
- 10. (3)
- 11. (2)
- 12. (4)
- 13. (3)
- 14. (1)

- 15. (1)
- 16. (4)
- 17. (1)
- 18. (2)
- 19. (2)
- 20. (4)

Answer Keys Electromagnetic Waves

- 1. (2)
- 2. (1)
- 3. (1)

10. (1)

4. (4)

11. (4)

- 5. (4)
- 6. (1)

13. (1)

7. (4)

14. (2)

- 8. (3) 15. (1)
- 16. (2)

(2)

- 17. (2)
- 18. (1)

- 12. (1) 19. (4)
- 20. (2)