Big Data e Machine Learning com Hadoop e Spark

Conteúdo

CONTEÚDO PROGRAMÁTICO

- Visão geral da ciência de dados e aprendizado de máquina em escala
- Visão geral do ecossistema do Hadoop
- Instalação de um Cluster Hadoop
- Trabalhando com dados do HDFS e tabelas do Hive usando o Hue
- Visão geral do Python
- Visão geral do R
- Visão geral do Apache Spark 2
- Leitura e gravação de dados
- Inspeção da qualidade dos dados
- Limpeza e transformação de dados
- Resumindo e agrupando dados
- Combinando, dividindo e remodelando dados
- Explorando dados
- Configuração, monitoramento e solução de problemas de aplicativos Spark
- Visão geral do aprendizado de máquina no Spark MLlib
- Extraindo, transformando e selecionando recursos
- Construindo e avaliando modelos de regressão
- Construindo e avaliando modelos de classificação
- Construindo e avaliando modelos de cluster
- Validação cruzada de modelos e hiperparâmetros de ajuste
- Construção de pipelines de aprendizado de máquina
- Implantando modelos de aprendizado de máquina

MATERIAL DIDÁTICO

- Slides do treinamento em PDF
- GitHub com exercícios e códigos exemplo
- Máquinas virtuais para exercícios simulados
- Gravação das aulas disponível durante 3 meses

Sistemas de Recomendação

Filtragem Colaborativa Baseada no Usuário

- Constrói uma matriz de coisas que cada usuário comprou / visualizou / avaliou
 Computa pontuações de similaridade entre usuários
- Encontra usuários semelhantes a você
- Recomenda coisas que outros compraram / visualizaram / classificaram e que você ainda não.

Problemas com Filtragem Colaborativa Baseada no Usuário

- As pessoas são inconstantes; gostos mudam
- Geralmente há muito mais pessoas do que coisas
- As pessoas fazem coisas ruins

E se nós basearmos recomendações em relacionamentos entre as coisas em vez de pessoas?

- Um filme será sempre o mesmo filme não muda
- Geralmente há menos coisas que pessoas (menos computação para fazer)
- Difícil de enganar o sistema

- Encontre cada par de filmes que foram assistidos pela mesma pessoa
 Avalie a similaridade de suas classificações em todos os usuários que assistiram ambos
- Classificar por filme e depois por força de similaridade
- (Esta é apenas uma maneira de fazer isso!)

Vamos fazer isso

- Em seguida, usaremos o Python para criar "semelhanças de filme" reais
- usando o Conjunto de dados MovieLens.

 Além de ser importante para a filtragem colaborativa baseada em itens, esses os resultados são valiosos em si mesmos - pense que "as pessoas que gostaram do X também gostaram de Y"
- São dados do mundo real e encontraremos problemas do mundo real
- Então, usaremos esses resultados para criar recomendações de filmes para indivíduos

Exemplo

K-Nearest Neighbor

K-Nearest Neighbor

Usado para classificar novos pontos de dados com base em "distância" para dados conhecidos

Encontre os K vizinhos mais próximos, com base na sua

métrica de distância

Deixe que todos votem na classificação

É realmente simples

- Embora seja um dos modelos de aprendizado de máquina mais simples que existe, ainda se qualifica como "aprendizado supervisionado".
- Mas vamos fazer algo mais complexo com isso
- Semelhanças cinematográficas baseadas apenas em metadados!

Customers Who Watched This Item Also Watched

Exemplo

Modelos de Escolha Discreta

Modelos de Escolha Discreta

- Prevêm algumas escolhas entre alternativas discretas
- Eu pego o trem, ônibus ou carro para trabalhar hoje? (Escolha Multinomial)
 Para qual faculdade eu vou?
- (Multinomial)
- Vou trair meu cônjuge? (Binário)
 As alternativas devem ser finitas, exaustivas e mutuamente exclusivas

Modelos de Escolha Discreta

- Usa algum tipo de regressão nos atributos relevantes
- Atributos das pessoas
- Variáveis das alternativas
- Geralmente usa modelos Logit ou Probit
- Regressão Logística, Modelo Probit
- Baseado em alguma função de utilidade você define
- Similar um usa a distribuição logística, o Probit usa distribuição normal. Logística parece muito com normal, mas com caudas mais gordas (maior curtose)

Limpando seus dados

Limpando seus dados

- Muito do seu tempo como um cientista de dados será gasto preparando e "limpando" seus dados
- Outliers
- Dados ausentes
- Dados maliciosos
- Dados errados
- Dados irrelevantes
- Dados inconsistentes
- Formatação

Garbage In, Garbage Out

- Olhe seus dados! Examine!
- Questione seus resultados!
- Sempre faça isso não apenas quando você não tenha um resultado que você goste!

Vamos analisar alguns dados de log da web.

- O que eu quero: as páginas mais populares no meu site de notícias sem fins lucrativos.
- Quão difícil isso pode ser?

Exemplo

Apache Spark Introdução à MLLib

Alguns recursos do MLLib

- Extração de características
 - Freqüência a termo / Freqüência de documento inversa útil para pesquisa
- Estatísticas básicas
- Qui-quadrado, correlação de Pearson ou Spearman, min, max, média, variância
- Regressão Linear, Regressão Logística
- Máquinas de vetores de suporte
- Classificador Naïve Bayes
- Árvores de decisão
- K-significa clusters
- Análise de componentes principais, decomposição de valores singulares
- Recomendações usando Mínimos Quadrados Alternados

Exemplo

Obrigado!!!

Nos vemos amanhã!!!

Bom descanso!

