

BBC4111 A

Joint Programme Examinations 2021/22

BBC4111 Engineering Mathematics

Paper A

Time allowed 2 hours

Answer ALL questions

For examiners' use only

1	
2	
3	
4	
5	
6	
7	
8	
Total	

Complete the information below about yourself very carefully.

QM student number

BUPT student number

Class number

NOT allowed: electronic calculators and electronic dictionaries.

INSTRUCTIONS

- 1. You must NOT take answer books, used or unused, from the examination room.
- 2. Write only with a black or blue pen and in English.
- 3. Do all rough work in the answer book **do not tear out any pages**.
- 4. If you use Supplementary Answer Books, tie them to the end of this book.
- 5. Write clearly and legibly.
- 6. Read the instructions on the inside cover.

Examiners

Dr Xia Shi, Dr Huixia Mo

Copyright © Beijing University of Posts and Telecommunications & © Queen Mary University of London 2020

Filename: 2122_ BBC4111_A No answer book required

Instructions

Before the start of the examination

- 1) Place your BUPT and QM student cards on the corner of your desk so that your picture is visible.
- 2) Put all bags, coats and other belongings at the back/front of the room. All small items in your pockets, including wallets, mobile phones and other electronic devices must be **placed in your bag in advance**. Possession of mobile phones, electronic devices and unauthorised materials is an offence.
- 3) Please ensure your mobile phone is switched off and that no alarm will sound during the exam. A mobile phone causing a disruption is also an assessment offence.
- 4) Do not turn over your question paper or begin writing until told to do.

During the examination

- 1) You must not communicate with or copy from another student.
- 2) If you require any assistance or wish to leave the examination room for any reason, please raise your hand to attract the attention of the invigilator.
- 3) If you finish the examination early you may leave, but not in the first 30 minutes or the last 10 minutes.
- 4) For 2 hour examinations you may **not** leave temporarily.
- 5) For examinations longer than 2 hours you **may** leave temporarily but not in the first 2 hours or the last 30 minutes.

At the end of the examination

- 1) You must stop writing immediately if you continue writing after being told to stop, that is an assessment offence.
- 2) Remain in your seat until you are told you may leave.

Question1. [30 marks]

Fill in all the following blanks. Only the final results are required to be written down.

- a) The modulus of the complex number $\mathbf{z} = \frac{(3+i)(2-i)}{(2+i)(3-i)(1+i)}$ is ().[3 marks]
- b) The function $f(z) = \begin{cases} 0, & z = 0 \\ \frac{(\bar{z})^2}{z}, & z \neq 0 \end{cases}$ is () (continuous or discontinuous) at z = 0. [3 marks]
- c) The period of the function $f(z) = e^{\frac{z}{5}}$ is (). [3 marks]
- d) Res cot z = (). [3 marks]
- e) The Laurent series of $f(z) = \frac{1}{z^2 1}$ in the annular domain 0 < |z 1| < 2 is (). [3 marks]
- f) The standard form of the linear second order PDE $y^2u_{xx} x^2u_{yy} = 0$, $(xy \neq 0)$ is (). [3 marks]
- g) Given that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$, we can get $J_{\frac{3}{2}}(x) = ($) by the recurrence formula. [3 marks]
- h) Suppose that $\mathcal{F}[f(x)] = F(\lambda)$, where $\mathcal{F}[f(x)]$ is the Fourier integral transformation of f(x), then for any constant $c \in R$, $\mathcal{F}[f(x-c)] = ($). [3 marks]
- i) The improper integral $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx = ($). [3 marks]
- j) The Laplace integral transformation of $f(t) = e^t$ is (). [3 marks]

	Do not write in this column
a)	
b)	
c)	
d)	
e)	
f)	
g)	
h)	
i)	
j)	
	_
	30
	marks

Question 2. [10 marks]

Please determine whether the following statements are true. Put "T" if the statement is true or "F" if it's wrong.

a) If $f(z) = u(x, y) + iv(x, y)$ is an analytic function, then $-u(x, y)$ is the hard	monic	conjugate of					
v(x,y).	() [2 marks					
b) $\overline{e^z} = e^{\overline{z}}$.	() [2 marks					
c) $z = 0$ is a pole of order 3 of the function $f(z) = \frac{e^z - 1}{z^3}$.	() [2 marks					
d) The Strurm-Liourville eigenvalue problem must have a finite number of real eigenvalues and							
eigenfunctions.	() [2 marks					
e) Let $J_n(x)$ be the first kind of Bessel function of order n and $Y_n(x)$ be the sec	ond ki	nd of Bessel					
function of order n , then $J_n(x)$ and $Y_n(x)$ both have finite values at $x = 0$.	() [2 marks					

	Do not write in this column
a)	
b)	
c)	
d)	
e)	
	10
	marks

Question 3. [10 marks]

Please choose the correct answers for the following questions. Only one is correct.

- (1) The coefficients of the Laurent series of f(z) in the annular domain 0 < |z b| < 2 is ().

 - A. $C_k = \frac{f^{(k)}(b)}{k!}$ B. $C_k = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-b)^{k+1}} dz$
 - C. $C_k = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-h} dz$ D. $\frac{k!}{2\pi i} \oint_C \frac{f(z)}{(z-h)^{k+1}} dz$
- (2) For the eigenvalue problem $\begin{cases} (1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + \lambda y(x) = 0, |x| < 1\\ |y(x)|\big|_{x=\pm 1} < +\infty \end{cases}$, the eigenvalues are

 - A. $\lambda = n(n+1), n = 0, 1, 2, \dots$
- B. $\lambda = n, n = 0, 1, 2, \cdots$
- C. $\lambda = n(n+1), n = 1, 2, \dots$
- D. $\lambda = n, n = 1, 2, \dots$
- (3) The type and the characteristic curves of the equation $y^2u_{xx} x^2u_{yy} = 0$, $(x^2 + y^2 \neq 0)$ are ().
 - A. hyperbolic, $\frac{1}{2}y^2 + \frac{1}{2}x^2 = C$

B. elliptic, $\frac{1}{2}y^2 + \frac{1}{2}x^2 = C$

C. hyperbolic, $\frac{1}{2}y^2 \pm \frac{1}{2}x^2 = C$

- D. elliptic, $\frac{1}{2}y^2 \pm \frac{1}{2}x^2 = C$
- (4) Suppose that $\mathcal{F}[f(x)] = F(\lambda)$, where $\mathcal{F}[f(x)]$ is the Fourier integral transformation of f(x), then
 - $\mathcal{F}[f'(x) 3f(x)]$ is ().
 - A. $i\lambda F(\lambda) 3F(\lambda)$

B. $-i\lambda F(\lambda) + 3F(\lambda)$

C. $i\lambda F(\lambda) + 3F(\lambda)$

- D. $-i\lambda F(\lambda) 3F(\lambda)$
- (5) Suppose that $f(t) = e^{-2t}\cos 3t$, then its Laplace integral transformation $\mathcal{L}[f(t)]$ is ().
 - (Given that $\mathcal{L}[\cos 3t] = \frac{s}{s^2+9}$)
 - A. $\frac{3}{(s+2)^2+9}$

B. $\frac{s+2}{(s+2)^2+9}$

C. $\frac{3s}{(s+2)^2+9}$

D. $\frac{3(s+2)}{(s+2)^2+9}$

	Do not write in this column
a)	
b)	
e)	
d)	
e)	
	10 marks

BBC4111 Paper A 2021/22

Question 4. [12 marks]

Evaluate the following contour integral

a) $\oint_{\mathcal{C}} (|\mathbf{z}| - e^{\mathbf{z}} \sin \mathbf{z}) d\mathbf{z}$, where \mathcal{C} is the positively oriented circle $|\mathbf{z}| = a \ (a > 0)$. b) $\oint_{|\mathbf{z}|=3} \frac{z^5}{(z^2+1)(z^4+2)} d\mathbf{z}$ with positive orientation.

	Do no this	t write in column
a)		
b)		
		10 marks

BBC4111 Paper A 2021/22

Question 5. [8 marks]

Find out all points at which the function $f(z) = x^3 - y^3 + 2x^2y^2i$ is differentiable and analytic (give the explanation), and then find its derivatives.

Do not	write in
	6 marks

Question 6. [8 marks]
Solve the following problem by D'Alembert's formula:

$\int u_{tt} - a^2 u_{xx} = 0,$	$(u_{tt}-a^2u_{xx}=0,$	$t \geq 0, -\infty < x < \infty,$
	$u(x,0) = \cos x, \ u_t(x,0) =$	$=e^{-1}$, $-\infty < x < \infty$.

Do no this	t write in column
	6 marks

Question 7. [12 marks]

Solve the following problem by means of separation of variables:

$$\begin{cases} u_t - a^2 u_{xx} = 0, & t > 0, 0 < x < \pi, \\ u(0,t) = u(\pi,t) = 0, & t \ge 0 \\ u(x,0) = \sin x + 7\sin 5x, & 0 \le x \le \pi. \end{cases}$$

Do not write in this column
10 marks
marks

BBC4111 Paper A 2021/22

Question 8. [10 marks]

Evaluate the following integral:

a) $I = \int_0^x x^4 J_1(x) dx$ with $J_1(x)$ being the first order of the first kind Bessel function.

b) $I = \int_{-1}^1 x^3 P_2(x) dx$ with $P_2(x)$ being the second order Legendre polynomial.

	Do no this	t write in column
a)		
b)		
		8 marks

BBC4111 Paper A	Use this section for rough work	2020/21
		Do not write in this column
	2020-2021	
Roi	ugh Working	
Pa	ge 11 of 14	

BBC4111 Paper A	Use this section for rough work	2020/21
		Do not
		write in this
	2020-2021	
Rai	ugh Working	
1100	agii Working	
	ige 12 of 14	
	ige iz oi it	

BBC4111 Paper A	Use this section for rough work	2020/21
		Do not write in this
		write in this
<u></u>	2020-2021	
	2020-202 I	
Rai	ugh Working	
	agii troikiiig	
	40 644	
	ge 13 of 14	