Exploring the Chemistry of Re^{I} : Physical and Theoretical Investigations

by

Philip D. Bulsink

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
In partial fulfilment of the requirements
For the degree of

 $egin{aligned} Master \ of \ Science \ In \ Chemistry \end{aligned}$

Ottawa-Carleton Chemistry Institute
University of Ottawa

Supervisors: Professors Darrin Richeson & Tom Woo

© Philip D. Bulsink, Ottawa, Canada, 2014

Abstract

The development of Rhenium I photocatalysts has been pursued since Lehn first showed the excellent performance of the $\mathrm{Re^I}$ bipyridine tricarbonyl catalyst. Since then, development has modified the organic ligand to demonstrate continued or improved activity with other α -diimine bidentate geometries. Geometry has been limited to κ^2 motifs, with $fac\text{-}(\mathrm{CO})_3$ and axial halides. This work will demonstrate the synthesis, characterization, and testing of a new $\kappa^3(\mathrm{L}_3)\mathrm{-Re^1(CO)_2X}$ (X = Cl, Br, CN, OTf) family of compounds for CO_2 reduction, as well as computational investigations into the mechanism of the reduction of CO_2 to CO and other species.

Acknowledgements

Thanks to the members of the Richeson and Woo research groups, both past and present, for the assistance provided and for making the time spent researching and writing this thesis enjoyable. Thanks as well to Frank and Sean in the Brusso lab, for their willingness to allow use of their spectroscopic characterization equipment. Thanks to Jake and the Gambarotta laboratory for use of their GC, Rola and the Detellier lab for the assistance with the TGA, and to the Sciano Lab, especially Janice, Charles, and Deni, for the use of their photolysis equipment.

I'd like to thank Dr. Ilia Korobkov for his work measuring and solving the x-ray crystal structures of the compounds discussed. He assisted with some paper writing as well.

Finally, I'd like to thank my wife Leanne and my parents for their unending support, and understanding when I came home frustrated or exhausted from a day in the lab.

Contents

1	Intr	roducti	ion	1
	1.1	Photo	chemistry & Catalysis	1
	1.2	Rheni	um	3
	1.3	CO_2 I	Reduction Chemistry	5
2	Nev	w Cooi	rdination Geometries for Re ^I	7
	2.1	Introd	luction	7
	2.2	Synth	esis of Bidentate and Terdentate Re ^I Complexes	8
	2.3	Chara	cterization	11
		2.3.1	NMR Analysis	11
		2.3.2	Structure Analysis with X-Ray Crystallography and DFT	14
		2.3.3	Infrared Spectroscopy	27
		2.3.4	Photophysical Properties	30
		2.3.5	Fluorescence	34
	2.4	Concl	usions	35
3	Pho	otocata	alysis of CO ₂	36
	3.1	Introd	luction	36
	3.2	Photo	catalytic Reactions with New Compounds	37
		3.2.1	Conditions	37
		3.2.2	Experimental Results	38
		3.2.3	Rationalization of Results	38
4	Med	chanisı	m of CO ₂ Reduction	41
	4.1	Introd	luction	41
	4.2	Mecha	anism Pathways	42
		4.2.1	Eximer Formation and Decomposition of the Sacrificial Amine	44

		4.2.2 The 'Carbonate' Pathway	47
		4.2.3 The 'Formate' Pathway	52
		4.2.4 The 'Water-Gas Shift' Pathway	55
		4.2.5 Consequences From κ^2 Terpyridine Complex Inactivity	58
	4.3	Comparison Between Mechanistic Pathways	59
	4.4	Conclusions	60
5	Tur	boControl	61
	5.1	Development	62
	5.2	Usage	63
6	Con	aclusions	64
\mathbf{A}	Exp	perimental Procedures	65
	A.1	General Methods	65
	A.2	Computational Methods	66
	A.3	X-ray Crystallography	67
		A.3.1 X-Ray Structures from Multiple Vantage Points	68
	A.4	$(\text{terpy-}\kappa^2\text{-N,N'})\text{Re(CO)}_3\text{Cl }(1)$	74
	A.5	$(\text{terpy-}\kappa^3\text{-N,N',N'}')\text{Re(CO)}_2\text{Cl}(2)\dots\dots\dots\dots\dots\dots\dots\dots$	74
	A.6	$(\text{terpy-}\kappa^2\text{-N,N'})\text{Re}(\text{CO})_3\text{Br}$ (3)	75
	A.7	$(\text{terpy-}\kappa^3\text{-N,N',N''})\text{Re}(\text{CO})_2\text{Br}$ (4)	75
	A.8	$(\text{terpy-}\kappa^2\text{-N,N'})\text{Re(CO)}_3\text{OTf}$ (7)	75
	A.9	$(\text{terpy-}\kappa^3\text{-N,N',N''})\text{Re(CO)}_2\text{OTf (8)}$	76
В	Mol	lecular Orbitals and Energy Diagrams	78
\mathbf{C}	Tur	boControl and TurboGo Manual	80
	C.1	Introduction	80
	C.2	System Requirements	80
	C.3	TurboGo	81
	C.4	TurboControl	82
	C.5	Input File Format	83
		C.5.1 Keywords	84
		C.5.2 Route Card Options	85
		C 5.3 Title	86

	C.5.4	Charge and Spin	86
	C.5.5	Geometry	86
	C.5.6	Additional control File Modifications	86
	C.5.7	Example Input File	87
C.6	Code 1	Details	87
C.7	Citing	TurboControl	89
C.8	Licens	e	89
~		_	
Glossa	ry of T	derms	91

List of Tables

2.1	Crystal data and structure refinement for compounds $1, 3, 5,$ and $7 \dots$	15
2.2	Solvated and Gas Phase Energies of Axial & Trans $\kappa^{\rm x}-({\rm terpy})-{\rm Re(CO)_{5-x}CN}$	I
	(x=2,3)	18
2.3	Selected Distances, Angles, and Torsions for 2.1	20
2.4	Selected Distances, Angles, and Torsions for 2.3	21
2.5	Selected Distances, Angles, and Torsions for 2.5	22
2.6	Selected Distances, Angles, and Torsions for 2.2	25
2.7	Selected Distances, Angles and Torsions for Acetonitrile Adduct of ${\bf 2.8}$.	26
2.8	Crystal data and structure refinement for compounds ${\bf 2},{\bf 4},{\bf 6},{\rm and}{\bf 8}$	27
4.1	Gas phase and solvated energies for mechanism reactants and products .	46
4.2	Energies for the reaction steps in the excimer formation pathway	47
4.3	Gas phase and solvated energies for the 'carbonate' mechanism	48
4.4	Energies for the reaction steps in the 'carbonate' pathway	50
4.5	Gas phase and solvated energies for the 'formate' mechanism	53
4.6	Energies for the reaction steps in the 'formate' pathway	54
4.7	Gas phase and solvated energies for the 'water-gas shift' mechanism	57
4.8	Energies for the reaction steps in the 'formate' pathway	57
4.9	Energies for the reaction steps in the 'equatorial' geometry	59

List of Figures

1.1	Two common bidentate complexes using terdentate ligands	4
2.1	Results of TGA analysis on 2.1 and 2.3	9
2.2	The aromatic region of the ¹ H NMR spectra of the four bidentate compounds	12
2.3	The aromatic region of the $^1\mathrm{H}$ NMR spectra showing bidentate - terdentate	
	conversion	12
2.4	Proton-explicit skeletal drawing of 2,2':6',2"-terpyridine	13
2.5	The aromatic region of the ¹ H NMR spectra of the four terdentate com-	
	pounds	14
2.6	The 13C NMR spectra of 2.1	14
2.7	X-ray crystal structure representation for 2.1, 2.3 and 2.5	17
2.8	X-ray crystal structure representation for 2 and 8	23
2.9	FTIR Spectra for complexes 2.1 and 2.2	28
2.10	DFT predicted FTIR spectra for 2.1 and 2.2	29
2.11	FTIR Spectra for complexes 2.7 and 2.8	30
2.12	UV-Vis spectra for all compounds	31
2.13	Plots of the experimental and computed UV-Vis spectra for compound 2.1	32
2.14	Plots of the experimental and computed UV-Vis spectra for compound 2.2	33
2.15	UV-Vis and fluorescence spectra for 2.1 and 2.2	34
3.1	Structure and absorption spectra of proposed $\left[\kappa^3-(\text{terpy})-\text{Re(CO)}_3\right]^+$	40
4.1	Overview of mechanistic pathways	43
4.2	Formation of the eximer species via absorption of a photon and oxidation	
	of the sacrificial amine	45
4.3	Decomposition pathway for the sacrificial amine	46
4.4	The 'carbonate' mechanistic pathway	49
4.5	DFT calculated structures for the 'carbonate' mechanistic pathway	52

4.6	The 'formate' mechanistic pathway	53
4.7	The 'water-gas shift' mechanistic pathway	56
4.8	Reaction energies for three mechanistic pathways	60

Chapter 1

Introduction

Common distinctions split most chemical compounds into one of two categories: organic and inorganic. Organic molecules contain carbon and hydrogen, with or without additional nitrogen, oxygen, phosphorus, sulfur, and the halides. Inorganic chemistry is, therefore, considered to be the remainder of the molecules possible. While they may include come aspect of organic chemistry (especially in organometallic molecules), the main structural motif or reactive center is a non-organic feature. These inorganic compounds can range from compounds such as lithium or Grignard reagents with significant organic influence, to metallic alloys or mineral compounds. With such a wide range of possibilities, inorganic chemistry has many facets. A widely active research area is the development and testing of transition metal complexes for catalytic, photo-physical, biochemical or manufacturing uses.

1.1 Photochemistry & Catalysis

A report of the first synthesized organometallic complex was published by Zeise in 1831. To form what is now known as Zeise's salt, $K[PtCl_3(C_2H_4)] \cdot H_2O$, he mixed platinum

chloride with ethanol, followed by a reaction with potassium chloride.² After some controversy to the composition of this, it was confirmed by Griess and Martius,³ and later expanded upon by Birnbaum.⁴

The field of organometallics was expanded greatly by Frankland,² and many of his complexes were catalytically active. Further development of this new type of chemistry quickly led to useful catalysts for the conversion of petroleum products and other chemistries, using nearly all of the transition metals. These catalysts take all forms, from simple olefin and halide compounds to multi-metallic complexes with large organic ligands.

Some of the most significant organometallic catalysts since the late 1990s have been the development of earth metal pincer complexes to replace noble metal or early transition metal catalysts, which are often more toxic or expensive to produce. Brookhart and Gibson published a series of papers^{5–8} on the use of iron and cobalt with bis(imino)pyridine ligands to perform ethylene polymerization at rates exceeding those of similar noble metal complexes and metallocenes.⁹ The role of the ligand in the mechanism is still up for debate, but many modified systems have been synthesized and tested since the first work was published.¹⁰

Many of these types of pincer complexes are photochemically active. In transition metal complexes, the interaction between the metal atom(s) and the ligands can cause significant electron mobility upon the absorption of incident photons. The metal atom's d orbitals typically lie at or near the Highest Occupied Molecular Orbital (HOMO) energy, while the ligands often have low energy anti-bonding orbitals (π^*) at the Lowest Unoccupied Molecular Orbital (LUMO) levels. When a photon is absorbed and is promoted from the ground state to the excited state, that state is spatially removed from the metal centre, this motion of the electron is labelled a Metal-Ligand Charge Transfer

(MLCT). Formally, the metal atom is oxidized by the photons, this oxidation allows for redox reactivity at the metal centre for as long as the electron remains removed to the ligand. Relaxation (through photon emission via fluorescence or phosphorescence, or via vibrational or other motion processes) can return the electron to the metal to reform the ground electronic state.

1.2 Rhenium

Rhenium compounds in particular are known to have a broad range of applications. Their use in catalysis has been explored, covering olefin hydrogenation,¹¹ epoxidation (with chiral selectivity),¹² and in a host of organic bond formation reactions¹³ (Friedel-Crafts acylation and alkylation,^{14–16} nucleophilic addition,^{17,18} carbon-carbon coupling,^{19,20} as well as other heteroatom-carbon bond formation^{21–25}). Rhenium has also been used in radiopharmaceutical applications, due to the availability of moderately radioactive isotopes.^{26,27} These compounds exhibit other interesting fundamental photophysical properties as well.²⁸

Since the mid-1970's, complexes containing the α -diimine Re^I tricarbonyl core have attracted a great deal of attention due to their attractive photochemical properties. The pseudo-octahedral fac-[L₂Re(CO)₃X] and fac-[L₂(L')Re(CO)₃]⁺ complexes have been the dominant species.^{29–39} A large family of compounds with these formulations have been accessed by the addition of chelating diimine σ -donor ligands to [Re(CO)₅X] with the quantitative replacement of two cis carbonyls in the Re^I starting material.^{29,40–47} Significantly, these reactions form only bidentate coordinated ligands with facial tricarbonyl isomers as products even when a potentially tridentate σ -donor, such as bis(imino)pyridine or 2,2':6',2"-terpyridine. are employed in the reaction (see Figure 1.1).^{48–51}

These robust species have been examined for potential applications in organic light-

emitting diodes (OLEDs), 52,53 chemosensors and biotechnology probes, $^{54-58}$ fluorescence microscopy imaging of cells, 54,59,60 as chemotherapy agents, 61 and the photochemical reduction of $\rm CO_2$ to $\rm CO$. $^{62-66}$ Among the key photophysical features of these α -diimine $\rm Re^I$ compounds is the electron transfer capability of this system and the interplay between the Re center and the well-known non-innocent redox activity of the ligands. 67,68

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

Figure 1.1 Two common fac-[L₂Re(CO)₃X] complexes with terdentate σ-donor ligands: L = bis(imino)pyridine (1.1) and 2,2':6',2"-terpyridine (1.2)

Further development of this chemistry has been restricted by the limited structural and electronic variability of the common pseudo-octahedral fac-[L₂ReX(CO)₃] (L₂ = α -diimine) products. While these systems continue to receive considerable attention, studies detailing the coordination chemistry of the meridionally-coordinated tridentate triimine Re^I dicarbonyl core are quite limited.⁶⁹ For example, while κ^3 (terpy)Re(CO)₂Cl was initially reported in 1988,⁷⁰ closer analysis of the reported analytical data (including ¹H NMR) indicate that this compound is more likely κ^2 LRe(CO)₃Cl. A more recent report for this compound provides spectroscopic details of this species as well as the preliminary report for the generation of $[\kappa^3$ (terpy)Re(CO)₂L']⁺ cations (L = PPh₃, PEt₃, NC₅H₅, and NCCH₃).⁷¹ Finally, the ¹H NMR data for κ^3 (terpy)Re(CO)₂Br has been reported⁵⁰ but accompanied no other characterization.

In order to fully exploit the potential of this versatile family of compounds, the

limits imposed by the bidentate coordination need to be addressed. Furthermore, it would appear that, on the basis of the tridentate ligands that have been investigated, the concerted effort to produce the tridentate species has been essentially unsuccessful, or requiring harsh conditions.⁵¹ Attracted by this challenge we sought to synthesize, crystallographically authenticate, and investigate the photophysical properties of low-valent rhenium pincer complexes displaying an N,N',N"-chelated terpyridine array.

Complexes of 2,2':6',2"-terpyridine (terpy) are of interest due to the conceptual relationship to established bis(imino)pyridine compounds.^{72,73} This thesis will be a discussion of the development of chemistry of Re^I complexes, their characterization, and comparison of structural and photo-physical properties to computed values. Further exploration of the CO₂ reduction by photo-catalysis of these new complexes will be analyzed. This thesis will also take a more detailed look at specifics of the mechanisms proposed for current Re^I diimine catalysts, and propose new geometries for prior mechanistic steps based on experimental, computational, and literature review work.

1.3 CO₂ Reduction Chemistry

Recent years have seen an increase in the concentration of CO_2 in the atmosphere as a product of combustion of oil, gas and coal in the industry and transportation sectors. This is of significant concern due to the greenhouse gas properties of CO_2 . Attempts to reduce emissions proceed by various pathways, including the utilization of renewable resources such as wind and solar for energy production; development of more fuel and energy efficient processes; and attempts to capture CO_2 from industrial exhaust streams. The absolute resources are then be stored in underground depositories, or used as a feedstock in the production of simple molecules or fuels. Due to it being the final product in combustion and its high thermodynamic stability, the reduction of CO_2 is

an energy-intensive task. 84,85 While plant life naturally performs $\rm CO_2$ transformation via photosynthesis, no artificial means have proven to be robust and scalable enough for the task in large scale. 86

The development of catalysts for 'artificial photosynthesis' has explored various means, including utilizing metal electrodes, 87 electrocatalytic semiconductors (such as TiO_2 , ZnS, CdS, or As or S doped Ag) 88,89 , and organometallic species of Co, Ni, and Fe (particularly porphyrin complexes). $^{90-98}$ These typically require the addition of electrons, and current trends look to solar powered electricity production for a 'green' CO_2 reduction platform 99 .

Alternate solutions involves the use of photoredox catalysts, including α -imino complexes of Re^I, Ru^{II}, Os^{II}, and Ir^{III}. $^{62,100-110}$ In recent years, the popularity of these α -diimino compounds has increased, owing to their unique MLCT excited states and easily tunable photophysical properties. Of these complexes, Re^I based catalysts are of particular interest. Whether acting as a mono-metallic photocatalyst, or with Ru in multimetallic complexes, the high quantum yield (up to Φ =0.59)¹¹¹ and exclusive selectivity to production of CO is unparalleled in these catalysts. ¹¹² Research focus has turned to tuning phootphysical properties for increased use of photons in the visible spectrum (particularly lower energy) and modification of the ligand framework for increased turnover numbers and frequencies. ^{85,112,113} This thesis will focus on the synthesis and testing of a novel Re^I catalyst attempting to improve on those points.

lim2014 is ASAP

zeng2014 is ASAP, get actual once published

Chapter 2

New Coordination Geometries for Re^{I}

2.1 Introduction

As mentioned in the introduction, Re^I compounds have been typically bidentate (κ^2) compounds, even when using a potentially terdentate (κ^3) ligand such as bis(imino)pyridine or terpyridine (refer to Figure 1.1). The chemistry of this rhenium α -imino complex has been extensively invesigated, with over 1700 references appearing in a structure search for that metal-ligand motif. The ejection of an additional carbonyl and the chelation of the pendant arm of the ligand was attempted to extend the conjugated π system of the ligand and its interaction with the metal centre. This was first demonstrated by prior work in our group for the bis(imino)pyridine ligand.⁶⁹

2.2 Synthesis of Bidentate and Terdentate Re^I Complexes

Similar to the prior work, synthesis began with the production of the bidentate complex $\kappa^2(\text{terpy})\text{Re(CO)}_3\text{X}$ (X = Cl, Br) by coordination of 2,2':6',2"-terpyridine with a $\text{Re(CO)}_5\text{X}$ starting material in dry toluene at reflux for 4 hours, as shown in Scheme 2.1. A bright yellow powder precipitated from solution and was collected by filtration, washed with cold hexanes, and dried *in vacuo* to a good yield of **2.1** and **2.3** respectively. These bidentate compounds were characterized fully and used without further purification to produce $\kappa^3(\text{terpy})\text{Re(CO)}_2\text{X}$ (X = Cl, Br) via thermolysis, as well as for anion exchange reactions.

Toluene, Reflux
$$4h, N_2$$

$$X = Cl(1)$$

$$X = Br(3)$$

Scheme 2.1 Synthesis of ${\bf 2.1}$ and ${\bf 2.3}$ from ${\rm Re(CO)}_5{\rm X}$ and ${\bf 2.2}$:6',2"-terpyridine

Conversion of compounds 2.1 and 2.3 to the κ^3 moiety required the release of CO and the subsequent coordination of the free pendant arm. Prior work had identified the thermal lability of the carbonyl, based on a method first described by Buckingham with a osmium complexes.¹¹⁴ In this method, a ceramic sample boat was placed in a tube furnace at elevated temperature, under a flowing atmosphere of N_2 . After some time, the sample is removed and collected at nearly quantitative yield. Determination of

ⁱExperimental details for all compounds can be seen in Appendix A Experimental Procedures

the appropriate thermolysis temperature was performed by Thermogravimetric Analysis (TGA) of the sample. A loss of 6-8 % of starting mass from the sample is consistent with the loss of one carbonyl group from the complex. Results of TGA on **2.1** and **2.3** is shown in Figure 2.1.

Thermogravimetric Analysis of k²Re(CO)₃X -% Mass Loss, X=Cl -% Mass Loss, X=Br 96 92 90 50 100 150 200 250 300 350 Temperature (°C)

Figure 2.1 Results of TGA analysis on 2.1 and 2.3

The onset of mass loss in the TGA of **2.1**, and the onset of the main mass loss in the TGA of **2.3** were chosen to identify a thermolysis temperature for each sample. For **2.1**, thermolysis was performed at 240°C, and for **2.3** thermolysis was performed at 260°C, yielding **2.2** and **2.4** respectively, at quantitative yields, by the pathway in Scheme 2.2.

Further reactions were carried out on the above products to yield triflate and cyano complexes in bidentate and terdentate geometries. These anion exchange reactions were performed by the addition of the silver salt to $\bf 2.1$ or $\bf 2.2$, to precipitate AgCl, leaving $\kappa^2(\text{terpy})\text{Re}(\text{CO})_3\text{CN}$ ($\bf 2.5$), $\kappa^3(\text{terpy})\text{Re}(\text{CO})_2\text{CN}$ ($\bf 2.6$), $\kappa^2(\text{terpy})\text{Re}(\text{CO})_3\text{OTf}$ ($\bf 2.7a$)

check that value

Temp, 1h

$$X = Cl(1)$$
 $X = Re$
 X

Scheme 2.2 Synthesis of 2.2 and 2.4 by thermolysis of 2.1 or 2.3, respectively

and $\kappa^3(\text{terpy})\text{Re(CO)}_2\text{OTf}$ (2.8a), as shown in Scheme 2.3. Resulting in only moderate yields, 2.7b and 2.8b were synthesized by the direct addition of neat triflic acid (CF₃SO₃H) to 2.1 and 2.2 respectively. HCl was released, the solutions were quenched by addition of aqueous NaCO₃, and product was collected, again at moderate yield.

Scheme 2.3 Anion exchange pathways to synthesize 2.5 - 2.8

Remove 'AgR', replace with 'AgCN,

AgOTf', add

2.3 Characterization

Full characterization was performed, including Nuclear Magnetic Resonance (NMR) analysis, x-ray crystallography, elemental analysis, as well as UV-Vis and IR spectroscopy. Computational Density Functional and (DFT) methods were used to solve the geometries, and Time Dependent Density Functional Theorem (TD-DFT) was performed to predict UV-Vis spectra and identify electronic transitions.

2.3.1 NMR Analysis

Proton NMR was performed on each of the samples. Each sample was dissolved completely in deuterated acetonitrile (CD₃CN) and analysis was performed on a Bruker AVANCE 400 MHz spectrometer. Data was processed from the FID signal via the Top-Spin program, and spectra were analyzed using ACD NMR Processor v12.0.

Detailed peak analysis comparing bidentate samples 2.1, 2.3, 2.5, and 2.7 (Figure 2.2) or terdentate 2.2, 2.4, 2.6, and 2.8 (Figure 2.5) show little difference between samples. This is due to the distance between the anion and any protons on the ligand. While anions with different σ donor strength marginally impact the metal-ligand interactions, these have only small effect on the location of peaks, shifting between samples by typically less than 0.1 ppm. As is shown in Figure 2.2, the characteristic shape of each spectra remains constant, only exact peak locations and some peak order varies with anion choice.

The characteristic feature in the NMR spectra after the transformation from bidentate to terdentate (e.g. sample **2.1** to **2.2**) is the reduction in the total number of the signals in the aromatic region (between 7 and 9 ppm). This simplification is due to the increased symmetrization of the ligand, while the κ^2 -bidentate ligand has a freely rotating pendant group. Prior work in literature⁵⁰ and in our group¹¹⁵ shows the temperature dependence

Figure 2.2 The aromatic region of the ¹H NMR spectra for compounds 2.1 (blue), 2.3 (green), 2.5 (red) and 2.7 (purple)

of the rate of rotation of this pendant arm for various ligand species. However, the κ^3 -terdentate species has no free groups, the rigid geometry and higher order symmetry results in the simpler NMR spectrum.

Figure 2.3 The aromatic region of the ¹H NMR spectra for compounds **2.1** (blue) and **2.2** (red), showing the simplification of the spectra upon the conversion from bidentate to terdentate

check compounds & spectra

The simplification of peaks due to the symmetrization of the ligand results in the

Figure 2.4 Proton-explicit skeletal drawing of 2,2':6',2"-terpyridine

peaks from free pendant arm protons a, b, c, and d (see Figure 2.4) with peaks at 9.06, 7.63, 8.22 and 7.79 ppm, respectively, aligning with their mirroring peaks at a', b', c' and d' (with peaks at 8.77, 7.55, 7.96, and 7.80 ppm). The new symmetrized peaks show integrations of two protons per peak, relative to the single proton (f) peak from the central pyridyl ring, para to the nitrogen. As well, the presence of metal-ligand interaction in the pendant arms reduces the deshielding effect, shifting the free pyridyl ortho proton from 9.06 ppm to 8.77 in the chelated group, with similar shifts evident for the other pendant protons.

As in the case of bidentate compounds, modification of the anion has only minor effects on the NMR spectra. This is the expected behaviour, the conjugated pi system and the lack of protons near the modified anion combine to be susceptible in only a minor fashion.

Carbon NMR (¹³C) was attempted on the complexes as well. Unfortunately, Re^I complexes perform poorly in ¹³C NMR experiments, the signal to noise ratio is incredibly poor (if a signal is even visible). The effect of this is a lack of ¹³C NMR analysis of these compounds in literature, with a very few exceptions. Extensive efforts included use of a 500 MHz spectrometer, with to produce the best example, seen in Figure 2.6, with

Figure 2.5 The aromatic region of the ¹H NMR spectra for compounds **2.2** (blue), **2.4** (green), **2.6** (red) and **2.8** (purple)

average peak signal to noise ratio (s/n) of only 4 - 5.

Figure 2.6 The $^{13}\mathrm{C}$ NMR spectra of **2.1**. Spectra for other compounds could not be collected

2.3.2 Structure Analysis with X-Ray Crystallography and DFT

Single crystal analysis by x-ray crystallography yielded good structures of compounds 2.1, 2.2, 2.3, 2.4. These are the first reported crystal structures of the κ^3 terdentate

the rest of structures

Re^I compounds. A number of structural characteristics are common between the various bidentate or terdentate complexes. Much analysis has been done on the structures of bidentate complexes in literature^{116–118} the notable characteristic within terpyridine compounds is the rotation of the pendant arm pushing the nitrogen atom away from the plane of the metal-ligand bonds by approximately 100°. Cell parameters and other collection data for compounds 2.1, 2.3, 2.5, and 2.7 are located in Table 2.1.

Table 2.1 Crystal data and structure refinement for compounds 1, 3, 5, and 7

Compound	1	3	5	7
Empirical formula	$C_{19}H_{11}N_3O_3ReCl$	$\mathrm{C}_{19}\mathrm{H}_{11}\mathrm{N}_{3}\mathrm{O}_{3}\mathrm{ReBr}$	$\mathrm{C}_{20}\mathrm{H}_{11}\mathrm{N}_4\mathrm{O}_3\mathrm{Re}$	$C_{22}H_{14}N_4O_6F_3SRe$
Formula weight (g/mol)	538.96	583.41	530.04	693.63
Temperature (K)	200(2)	200	200	200
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal System	Triclinic	Monoclinic	Triclinic	
Space Group	P-1	C2/c	P-1	
a (Å)	9.8736(4)	31.1537(7)	9.9196(9)	
b (Å)	14.8202(4)	7.1176(2)	14.9902(14)	
c (Å)	16.3472(4)	16.8519(4)	16.5187(15)	
$\alpha \text{ (deg)}$	69.2890(10)	90.000	68.363(2)	
β (deg)	80.801(2)	111.0230(10)	80.929(2)	
$\gamma \text{ (deg)}$	79.836(2)	90.000	79.975(2)	
Volume ($Å^3$)	2190.00(12)	3488.00	2236.6(4)	
$Z, r (calc) (Mg/m^3)$	2, 1.997	8, 2.222	2, 1.927	
Absorption coefficient (mm ⁻¹)	6.063	9.282	5.821	
Absorption correction		Semi-empirical	from equivalents	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0397,	R1 = 0.0232,	R1 = 0.0390,	
	wR2 = 0.0839	wR2 = 0.0614	wR2 = 0.0921	
R indices (all data)	R1 = 0.0604,	R1 = 0.0285,	R1 = 0.0500,	
	wR2 = 0.0951	wR2 = 0.0642	wR2 = 0.0961	

In addition, the structures of all species were optimized using Gaussian 09¹¹⁹ employing the B3LYP^{120,121} exchange-correlation (XC) functional. The LanL2DZ basis set/effective core potential¹²² was used on Re, and the all-electron TZVP basis set¹²³ for the remaining lighter atoms. Frequency analysis of all structures was used to confirm the nature of the stationary points. Solvent effects were computed when necessary using the integral equation formalism variant of the Polarizable Continuum Model (PCM) for solvation within Gaussian 09. ^{124,125}The results of these calculations are compared to the

x-ray crystallography data in the tables below.

The crystal structure of **2.3** had a higher symmetry than the other samples. Details on the exact methods used for structure elucidation are available in section A.3, but all of the structures found are of high quality. The structures of **2.1**, **2.3**, and **2.5** can be seen in Figure 2.7. More views of these structures can be seen in Appendix section A.3. Crystals suitable for x-ray analysis were unable to be collected from compound **2.7**.

Selected bond lengths, bond angles, and torsion angles are listed in Table 2.3, Table 2.4 and Table 2.5 for products **2.1**, **2.3**, and **2.5** respectively. The experimental results agree closely with the computed values for all samples. The structures can be seen in Figure 2.7a, Figure 2.7b and Figure 2.7c, and more views of these structures can be seen in Appendix A, subsection A.3.1, X-Ray Structures from Multiple Vantage Points.

The Re^I centre in the pseudooctahedral complex is supported by a planar, pincer coordinated ligand defined by the terminal and central pyridyl group of the terpyridine. One of the carbonyl groups lies in this plane trans to the central pyridyl group, while the remaining carbonyl groups and the anionic group or other complexed species lie on an approximately perpendicular plane to the ligand. Bond angles around the Re centre show a significant deviation of up to 15° from the ideal octahedral geometry for all samples analyzed. The typical N-Re-N bond angle of 75° is due to the atomic size of rhenium, comparison to the crystal structure of an analogous compound with a manganese atom¹²⁶ shows an increase in the bonding angle for the Mn complex by approximately 4° due to a decrease of bond length from metal to nitrogen of about 0.12 Å for both the central and terminal pyridines.

The deviation from octahedral is further visible in the rotation of the X-Re-CO plane (X=halide, anion, complexed group) by approximately 10 degrees from the right angle

Figure 2.7 X-ray crystal structure representation for 2.1, 2.3, and 2.5. Co-crystallized chloroform, hydrogen atoms, and thermal ellipsoids of ligand carbon atoms are omitted for clarity.

relative to the plane of the ligand. The axial halide, anion, or chelated group typically occupies a position slightly departed from the perpendicular, angled to be over the ligand. This eclipsing is due to some unknown process, no steric interference exists upon that site, analysis of electrostatic or other short-range electronic effects computationally show

any interaction between this site and the aromatic rings. In Re^I complexes, the halide or anion is located axial relative to the plane of the ligand. For the acetonitrile complex with triflate counterion, the acetonitrile occupies the axial position. This site occupation holds through the complete set of x-ray crystal structures with a κ^2 -(bipy)Re(CO)₃X core structure motif deposited in the Cambridge Crystallography Data Centre (CCDC) database, and extends through other α -diimine complexes seen in our lab and in literature. 69

Table 2.2 Solvated and Gas Phase Energies of Axial & Trans κ^{x} – (terpy) – Re(CO)_{5-x}CN (x=2,3)

	Bidentate		Terde	entate
Geometry	E(gas) ^a	E(solution) ^b	$E(gas)^a$	E(solution) ^b
Axial	-1254.96132	-1254.99059	-1141.57255	-1141.60827
Trans	-1254.93788	-1254.97168	-1141.54660	-1141.58209
Difference	0.02343	0.01891	0.02595	0.02612
Difference (kcal/mol)	14.70	11.87	16.28	16.43

^a B3LYP SCF energy in hartrees.

The crystal structure for compound 2.5 contains two molecules per unit cell, one of which is solved to have the cyano group in the position trans to the ligand. However, careful analysis of the bond lengths, angles, and torsion data in Table 2.5 shows a remarked similarity between all -CO and -CN groups. Additionally, in an x-ray diffraction pattern, -CN and -CO are difficult to differentiate with certainty. Thus, while the structure solved to the two isomers, critical analysis would suggest that this molecule does not violate the axial position pattern laid out above. The computed structures energies in Table 2.2 show a favouring of the axial position by 12-16 kJ/mol in the gas phase and by PCM in a simulated acetonitrile solvent.

Selected bond lengths, bond angles, and torsions are listed in Table 2.3, Table 2.4

^b B3LYP SCF energy in hartrees with PCM solvation in acetonitrile.

and Table 2.5 for products 2.1, 2.3, and 2.5 respectively.

 ${\bf Table~2.3~Selected~Distances,~Angles,~and~Torsions~for~2.1}$

	Distance (Å)		
Bond	Experimental	Calculated	
Re(1)-C(16)	1.89(1)	1.916	
Re(1)- $C(17)$	1.934(8)	1.936	
Re(1)-C(18)	1.90(1)	1.918	
Re(1)-N(1)	2.162(6)	2.197	
$\operatorname{Re}(1)$ - $\operatorname{N}(2)$	2.236(9)	2.293	
Re(1)- $Cl(1)$	2.496(2)	2.525	
C(16)-O(1)	1.16(1)	1.15323	
C(17)-O(2)	1.12(1)	1.15039	
C(18)-O(3)	1.15(1)	1.15627	
Angle	Degree	s (°)	
Aligie	Experimental	Calculated	
C(16)-Re(1)-C(17)	87.6(4)	86.877	
C(16)-Re(1)- $C(18)$	88.3(4)	90.613	
C(17)-Re(1)- $C(18)$	87.3(4)	89.557	
C(16)-Re(1)-N(1)	96.4(3)	96.240	
C(17)-Re(1)-N(1)	174.9(3)	175.600	
C(18)-Re(1)-N(1)	95.9(3)	93.506	
C(16)-Re(1)-N(2)	169.3(3)	170.368	
C(17)-Re(1)-N(2)	101.1(3)	102.755	
C(18)-Re(1)-N(2)	98.3(3)	89.415	
N(2)-Re(1)-N(1)	74.5(3)	74.146	
C(16)-Re (1) -Cl (1)	91.7(3)	91.453	
C(17)-Re(1)-Cl(1)	91.7(3)	94.786	
C(18)-Re(1)-Cl(1)	179.9(3)	175.286	
N(1)-Re (1) -Cl (1)	84.0(2)	82.058	
N(2)-Re(1)-Cl(1)	81.6(2)	87.840	
O(1)- $C(16)$ - $Re(1)$	179.6(9)	178.224	
O(2)- $C(17)$ - $Re(1)$	176.0(8)	176.907	
O(3)- $C(18)$ - $Re(1)$	177.3(9)	179.317	
Torsion	Degree	s (°)	
10181011	Experimental	Calculated	
N(1)-C(5)-C(6)-N(2)	16(1)	15	
N(2)- $C(10)$ - $C(11)$ - $N(3)$	41(1)	139	

Table 2.4 Selected Distances, Angles, and Torsions for 2.3

Bond	Distance (Å)			
Dong	Experimental	Calculated		
Re(1)-C(16)	1.911(3)	1.91740		
Re(1)-C(17)	1.890(3)	1.91814		
Re(1)-C(18)	1.921(4)	1.93897		
Re(1)-N(1)	2.173(3)	2.19687		
Re(1)-N(2)	2.232(2)	2.28998		
$\operatorname{Re}(1)\text{-}\operatorname{Br}(1)$	2.6410(4)	2.67953		
C(16)-O(1)	1.150(4)	1.15290		
C(17)-O(2)	1.157(4)	1.15012		
C(18)-O(3)	1.155(5)	1.15591		
Angle	Degree			
Aligie	Experimental	Calculated		
C(16)-Re(1)-C(17)	89.1(1)	90.772		
C(16)-Re(1)-C(18)	85.9(1)	86.823		
C(16)-Re(1)-N(1)	97.9(1)	96.034		
C(17)-Re(1)-N(1)	92.5(1)	93.597		
C(18)-Re(1)-N(1)	175.4(1)	175.575		
C(16)-Re(1)-N(2)	171.2(1)	170.290		
C(17)-Re(1)-N(2)	96.0(1)	89.435		
C(18)-Re(1)-N(2)	101.3(1)	102.886		
N(1)-Re(1)- $N(2)$	74.7(1)	74.265		
C(16)-Re(1)-Br(1)	92.7(1)	90.399		
C(17)-Re(1)-Br(1)	177.6(1)	176.076		
C(18)-Re(1)-Br(1)	91.6(1)	94.069		
N(1)-Re (1) -Br (1)	85.74(7)	82.555		
N(2)-Re(1)-Br(1)	82.07(7)	88.780		
O(1)- $C(16)$ - $Re(1)$	178.6(3)	178.270		
O(2)- $C(17)$ - $Re(1)$	179.5(3)	179.355		
O(3)- $C(18)$ - $Re(1)$	179.9(3)	176.781		
Selected Torsion	$\operatorname{as} (\operatorname{deg})$			
N(1)-C(6)-C(1)-N(2)	-15.4(4)	-14.749		
N(2)-C(5)-C(11)-N(3)	141.1(3)	136.119		

 ${\bf Table~2.5~Selected~Distances,~Angles,~and~Torsions~for~2.5}$

Axial (Planar	CN			
D 1	Distance (Å)		D 1	Distance (Å)	
Bond	Exp.	Calc.	Bond	Exp.	Calc.
Re(2)-C(35)	2.148(7)	2.13963	Re(1)-C(19)	2.105(8)	1.98769
Re(2)-C(36)	1.926(6)	1.94011	Re(1)-C(16)	1.928(5)	2.09197
Re(2)-C(37)	1.954(7)	1.96758	Re(1)-C(18)	1.96(1)	2.00792
Re(2)-C(38)	1.902(9)	1.91853	Re(1)-C(17)	1.918(7)	1.90499
Re(2)-N(5)	2.242(7)	2.28998	Re(1)-N(1)	2.253(5)	2.32197
Re(2)-N(6)	2.168(5)	2.20279	Re(1)-N(2)	2.176(4)	2.18806
C(35)-N(8)	1.138(9)	1.16104	C(19)-O(3)	1.17(1)	1.14703
C(36)-O(4)	1.145(8)	1.15044	C(16)-N(4)	1.149(7)	1.16100
C(37)-O(5)	1.151(9)	1.15134	C(18)-O(2)	1.14(1)	1.14276
C(38)-O(6)	1.17(1)	1.15368	C(17)-O(1)	1.130(8)	1.15781
Angle	Degre		Angle	Degre	
	Exp.	Calc.	Tingle	Exp.	Calc.
C(36)-Re(2)- $C(38)$	87.7(3)	87.273	C(16)-Re(1)- $C(17)$	87.8(3)	90.158
C(36)-Re(2)- $C(37)$	88.0(3)	89.890	C(16)-Re(1)- $C(18)$	87.0(3)	84.822
C(36)-Re(2)- $C(35)$	92.1(3)	93.356	C(16)-Re(1)- $C(19)$	92.5(3)	88.356
C(38)-Re(2)- $C(37)$	88.5(3)	90.973	C(17)-Re(1)- $C(18)$	88.7(3)	88.453
C(38)-Re(2)-C(35)	90.8(3)	91.628	C(17)-Re(1)- $C(19)$	90.5(3)	87.745
C(37)-Re(2)- $C(35)$	179.2(3)	175.933	C(18)-Re(1)-C(19)	179.1(3)	172.179
C(36)-Re(2)-N(5)	100.6(3)	102.576	C(16)-Re(1)-N(1)	102.2(2)	98.105
C(36)-Re(2)-N(6)	174.2(3)	175.708	C(16)-Re(1)-N(2)	175.9(2)	172.047
C(38)-Re(2)-N(5)	169.3(3)	170.146	C(17)-Re(1)-N(1)	168.3(3)	170.509
C(38)-Re(2)-N(6)	96.6(3)	96.171	C(17)-Re(1)-N(2)	95.9(3)	97.544
C(37)-Re(2)-N(5)	98.4(2)	89.360	C(18)-Re(1)-N(1)	97.7(3)	88.487
C(37)-Re(2)-N(6)	96.0(2)	92.605	C(18)-Re(1)-N(2)	94.8(3)	93.374
C(35)-Re(2)-N(5)	82.3(2)	87.543	C(19)-Re(1)-N(1)	83.2(2)	96.317
C(35)-Re(2)-N(6)	83.9(2)	84.008	C(19)-Re(1)-N(2)	85.7(2)	93.899
N(5)-Re(2)-N(6)	74.7(2)	73.977	N(1)-Re(1)-N(2)	73.9(2)	73.675
O(6)-C(38)-Re(2)	179.4(7)	178.027	O(1)- $C(17)$ - $Re(1)$	178.2(7)	177.623
O(5)-C(37)-Re(2)	175.5(6)	179.414	O(2)- $C(18)$ - $Re(1)$	172.0(7)	176.452
N(8)-C(35)-Re(2)	178.0(6)	176.457	O(3)-C(19)-Re(1)	178.0(6)	176.552
O(4)- $C(36)$ - $Re(2)$	179.0(7)	177.313	N(4)- $C(16)$ - $Re(1)$	178.7(6)	178.113
Torsion	Degre		Torsion	Degre	()
10101011	Exp.	Calc.	10101011	Exp.	Calc.
N(5)-C(20)-C(25)-N(6)	14.5(9)	13.735	N(1)-C(1)-C(6)-N(2)	12.5(8)	14.777
N(5)-C(24)-C(30)-N(7)	41(1)	135.774	N(1)-C(5)-C(11)-N(3)	43.7(9)	137.014

Structural comparisons between the bidentate samples and the terdentate show many similarities. The loss of one carbonyl always accompanies the chelation of the pendant arm of the ligand. The increased coordination forces the ligand to adopt a more rigidly planar geometry, this is visible in the structure of **2.2** (Figure 2.8a) and **2.8** (Figure 2.8b). Suitable crystals for x-ray analysis were unable to be collected for the remaining complexes.

Figure 2.8 X-ray crystal structure representation for 2.2 and 2.8. Co-crystallized chloroform, hydrogen atoms, and thermal ellipsoids of ligand carbon atoms are omitted for clarity.

Selected bond lengths, bond angles, and torsions are listed in Table 2.6 and Table 2.7 for products 2.2 and 2.8. Cell parameters and collection data can be found in Table 2.8.

Both 2.2 and 2.8 structures are pseudooctahedral in geometry, with mer coordinated terpyridine ligand. The carbonyl groups and chloride/acetonitrile form a plane approximately perpendicular to the ligand. As in the κ^2 -bidentate samples discussed above, the carbonyls occupy the equatorial and one axial position relative to the ligand, and the

chloride or acetonitrile occupy the remaining axial position. The N-Re-N bond angles remain approximately 75°, and the central pyridyl N to chloride or acetonitrile angle is still approximately 80-85°.

Comparisons between the κ^2 -bidentate and κ^3 -terdentate samples (2.1 and 2.2) highlight the geometrical changes experienced in the thermolysis reaction. The distance from Re to the central pyridyl N has shortened from 2.24 to 2.08 Å. This bond shortening of 0.16 Å signifies increased metal-ligand interaction. This comes at the expense of decreased interaction with the carbonyl groups, with the bond to the planar CO increasing from 1.89 to 1.93 Å and the axial CO bond increasing from 1.901 to 1.975 Å. As the carbonyls experience less π backbonding from the metal, the internal C-O bond shortens by as much as 0.1 Å.

The κ^3 -terdentate samples (2.2 and 2.8) provide the opportunity to analyze both neutral and cationic species. Due to the weakly coordinated triflate anion in 2.8, a number of geometric differences arise compared to 2.2. While the ligand is coordinated by only 0.01 - 0.02 Å closer to the metal atom, the carbonyl groups are 0.04 - 0.1 Å closer, indicating their increased electron donation to the electron poor metal centre. As well, the C-O bonds in the carbonyls are 0.03 - 0.12 Å longer, indicating the increased π -backbonding occurring in the cation.

Table 2.6 Selected Distances, Angles, and Torsions for 2.2

Bond	Distance (Å)			
Dong	Experimental	Calculated		
	1.926(9)	1.92438		
Re(1)-C(17)	1.975(10)	1.90687		
Re(1)-N(1)	2.119(7)	2.13186		
Re(1)-N(2)	2.080(7)	2.08705		
Re(1)-N(3)	2.126(7)	2.13185		
Re(1)- $Cl(1)$	2.489(3)	2.53337		
N(1)-N(3)	4.14(1)	4.14772		
C(16)-O(1)	1.14(1)	1.16042		
C(17)-O(2)	1.05(1)	1.16341		
Angle	Degree	s (°)		
Angle	Experimental	Calculated		
C(16)-Re(1)-C(17)	91.5(4)	89.188		
C(16)-Re(1)-N(2)	173.7(4)	172.050		
C(17)-Re(1)-N(2)	94.6(3)	98.762		
C(16)-Re(1)-N(1)	103.9(3)	102.980		
C(17)-Re(1)-N(1)	92.7(3)	93.429		
N(2)-Re(1)-N(1)	77.3(3)	76.684		
C(16)-Re(1)-N(3)	101.8(3)	102.986		
C(17)-Re(1)-N(3)	91.7(3)	93.419		
N(2)-Re(1)-N(3)	76.6(3)	76.684		
N(1)-Re(1)-N(3)	153.7(3)	153.210		
C(16)-Re (1) -Cl (1)	91.8(3)	89.136		
C(17)-Re (1) -Cl (1)	176.5(2)	178.324		
N(2)-Re(1)-Cl(1)	82.1(2)	82.913		
N(1)-Re (1) -Cl (1)	85.4(2)	86.953		
N(3)-Re(1)-Cl(1)	88.7(2)	86.953		
O(1)-C(16)-Re(1)	177.9(9)	179.079		
O(2)-C(17)-Re(1)	173.2(8)	179.182		
Selected Torsion	s (deg)			
N(1)-C(5)-C(6)-N(2)	1(1)	2		
N(2)-C(10)-C(11)-N(3)	-4(1)	-2		

Table 2.7 Selected Distances, Angles and Torsions for Acetonitrile Adduct of 2.8

Bond	Distance (Å)	
	Experimental	Calculated
Re(1)-C(16)	1.889(4)	1.93046
Re(1)- $C(17)$	1.885(3)	1.92844
$\operatorname{Re}(1)$ - $\operatorname{N}(1)$	2.091(3)	2.10116
$\operatorname{Re}(1)$ - $\operatorname{N}(2)$	2.135(3)	2.15397
Re(1)-N(3)	2.131(3)	2.15392
Re(1)-N(4)	2.160(3)	2.15202
N(2)-N(3)	4.138(4)	4.18483
C(16)-O(1)	1.170(4)	1.15749
C(17)-O(2)	1.171(4)	1.15244
Angle	Degrees (°)	
	Experimental	Calculated
C(16)-Re(1)- $C(17)$	87.69(16)	88.104
C(16)-Re(1)-N(1)	175.95(12)	176.094
C(17)-Re(1)-N(1)	96.35(12)	95.802
C(16)-Re(1)-N(3)	103.81(13)	103.594
C(17)-Re(1)-N(3)	94.03(12)	92.309
N(1)-Re(1)-N(3)	76.20(10)	76.306
C(16)-Re(1)-N(2)	103.58(13)	103.598
C(17)-Re(1)-N(2)	93.73(12)	92.307
N(1)-Re(1)-N(2)	75.99(10)	76.305
N(3)-Re(1)- $N(2)$	151.77(11)	152.544
C(16)-Re(1)-N(4)	90.50(14)	88.484
C(17)-Re(1)-N(4)	178.10(12)	176.587
N(1)-Re(1)-N(4)	85.46(10)	87.611
N(3)-Re(1)- $N(4)$	86.94(10)	88.504
N(2)-Re(1)-N(4)	86.15(10)	88.485
O(1)-C(16)-Re(1)	179.1(3)	178.807
O(2)- $C(17)$ - $Re(1)$	178.0(3)	178.860
Torsion	Degrees (°)	
	Experimental	Calculated
N(1)-C(1)-C(6)-N(2)	1.7(4)	1.105
N(1)-C(5)-C(11)-N(3)	-1.8(4)	-1.110

Compound 2 6 $\mathrm{C_{21}H_{14}N_4O_5F_3SRe}$ Empirical formula $\mathrm{C_{18}H_{11}N_3O_2ReCl}$ $\mathrm{C_{18}H_{11}N_3O_2ReBr}$ $\mathrm{C}_{19}\mathrm{H}_{11}\mathrm{N}_4\mathrm{O}_2\mathrm{Re}$ Formula weight (g/mol) 530.04 502.04 665.61 510.95Temperature (K) 200(2)200 200 200 Wavelength (Å) 0.71073 0.710730.71073 0.71073 Crystal System Triclinic Triclinic Space Group P-1 P-1 a (Å) 8.5275(3)8.5745(4)14.2421(5)11.9805(5)b (Å) 17.4637(6) 13.0970(5) α (deg) 77.948(2)79.748(2)81.106(2) β (deg) 85.684(2) γ (deg) 88.091(2)79.890Volume (Å³) 2041.79(12)1307.99(10) $Z, r (calc) (Mg/m^3)$ 4, 2.050 2, 1.993 Absorption coefficient (mm⁻¹) 6.494 5.094 Absorption correction Semi-empirical from equivalents Final R indices $[I \ge 2\sigma(I)]$ R1 = 0.0636, R1 = 0.0294, wR2 = 0.1018wR2 = 0.0673R indices (all data) R1 = 0.0985, R1 = 0.0366, wR2 = 0.1110wR2 = 0.0700

Table 2.8 Crystal data and structure refinement for compounds 2, 4, 6, and 8

2.3.3 Infrared Spectroscopy

Conversion of bidenate to terdentate species was confirmed utilizing Fourier Transform Infrared (FTIR) spectroscopy. A small sample of powder product was placed on the Agilent Cary 630 FTIR spectrometer, with a 2 cm⁻¹ resolution. The instrument is fitted with a diamond ATR for solid sample analysis. Spectra are the Fourier transform of 16 scans.

Analysis of the results in Figure 2.9 shows the significant reduction of one peak in the (ca.) 2100 cm⁻¹ region. This peak is in the CO stretching frequency, the frequency of the peak lost in thermolysis is indicative of a weakly coordinated carbonyl group. A splitting occurs for the other large peak and its shoulder in the conversion from bidentate to terdentate, from 1890 to 1790 cm⁻¹, indicating the further weakening of the metal carbonyl bonds remaining in the complex. This weakened bond is likely the carbonyl co-planar to the ligand, analysis of the x-ray crystal structure shows the CO bond to

Figure 2.9 FTIR Spectra for complexes 2.1 (blue) and 2.2 (red).

be 0.1 Å longer than that of the axial carbonyl. This identification is supported by the DFT methods discussed below.

FTIR spectra were predicted using molecular frequency calculations of DFT optimized structures in Gaussian09. Prediction of this spectra was performed as a verification of the optimized structures discussed in subsection 2.3.2 above. The calculation identifies stretching or bending harmonic energies in optimized structures. The computed spectra in ?? shows three peaks for 2.1, at 2094, 2012, and 1990 cm⁻¹. The relative location of these peaks corresponds to those seen in Figure 2.10 for 2.1, but are shifted by approximately 100 cm⁻¹ to higher energy relative to the experimental. Similarly, for 2.2, peaks are seen at 2000 and 1950 cm⁻¹, compared to the 1890 and 1790 peaks seen experimentally. This computed value reflects the shift to lower energy carbonyl stretching from 2.1 to 2.2, and echoes the experimental spectra well.

Further analysis of other spectra were not successful in identification of any additional molecular properties, with the exception of a series of strong peaks appearing in the

Figure 2.10 DFT predicted FTIR spectra for 2.1 (blue) and 2.2 (red).

 $1200\text{-}1300~\mathrm{cm^{-1}}$ range, confirming the presence of the triflate anion from the -SO₃ group vibrations for samples **2.7** and **2.8** (Figure 2.11). Additionally, the small peak present at $2270~\mathrm{cm^{-1}}$ in the terdentate sample corresponds to the weakly coordinated acetonitrile occupying the moluecule's axial position.

Figure 2.11 FTIR Spectra for complexes 2.7 (blue) and 2.8 (red).

2.3.4 Photophysical Properties

A striking observation upon the conversion of the bidentate species into the terdentate complexes is that these new compounds have a substantially darker colour that reflects a significant change in the photophysical properties. This effect was investigated using a combination of UV-visible spectroscopy and DFT modelling. Spectra were collected on a Agilent Cary 5000 UV-Vis-NIR Spectrophotometer. The stronger absorbance of the terdentate complexes compared to the bidentate precoursors is evident in the UV-Vis spectra of these species, and is presented in Figure 2.12. These spectra were obtained in Dimethylsulfoxide (DMSO) with approximate concetrations of 0.01 mM for bidentate, and an order of magnitude lower (0.001 mM) for the terdentate analogues. The terdentate complexes have more intense absorbance for higher energy ligand UV-based π - π * transitions (<400 nm) and certainly a richer visible absorption profile that involve the d- π * transitions. These features are responsible for the colour change observed.

The UV-Vis spectra were modeled using TD-DFT computations within Gaussian 09,

(a) UV-Vis spectra for compounds 2.1, 2.3, (b) UV-Vis spectra for compounds 2.2, 2.4,
 2.5, and 2.7
 2.6, and 2.8

Figure 2.12 UV-Vis spectra for all compounds. Concentrations of bidentate complexes are 0.01 mM and terdentate complexes are 0.001 mM.

using the B3LYP functional with the LanL2DZ basis set and effective core potentials for the rhenium atom, and the TZVP basis set for all lighter atoms. Such functional and basis set choices are common within organometallic literature. Solvent was simulated using the integral equation formalizm variant of the PCM solvation model, with DMSO as the solvent.

The resulting computed spectra were excellent matches to the experimental spectra. The similarity of the spectra between the bidentate species and as well as the terdentate species indicates that parallel electronic transitions appear within these two groups. Specifics will be discussed for the chloro compounds, **2.1** and **2.2**, but strong parallels exist for all species. Plots of experimental and computational data for these two complexes are presented in Figure 2.13 and Figure 2.14, respectively.

Common to all bidentate compounds were peaks at wavelengths of 315-320 nm, and peak shoulders near 350-375 nm (Figure 2.12a). In the case of **2.1**, the computational results suggest that the experimental band centred at $\lambda = 315-320$ nm (31750-31250 cm⁻¹) primarily arises from two electronic transitions. The first is from HOMO-3 to

Figure 2.13 Plots of the experimental and computed UV-Vis spectra for compound **2.1**. The blue curve shows experimental result. The red vertical lines show the calculated transitions and relative intensities from the TDDFT calculations, while the red curve shows the Gauss convolution with peak width at half height of 0.250 eV.

LUMO, a π - π * transition, while the second major contribution is the excitation from HOMO to LUMO+2, which is a d- π * transition. The TD-DFT calculations suggest that the experimental band centred at $\lambda = 370$ nm (27030 cm⁻¹) corresponds to a calculated transition at approximately 400 nm, that is a d- π * (HOMO-1 to LUMO) absorbance. Computed plots of molecular orbitals are included in Appendix B Molecular Orbitals and Energy Diagrams.

Like the bidentate samples, the spectra for the terdentate samples are quite similar to one another. In general, all of these species have much higher absorbance coefficients than their bidentate analogues; all contain long trailing absorptions across the wavelengths analysed. For terdentate complex 2.2, the four experimentally observed UV-Vis absorptions observed are made up of six computed transitions. The computational model provided two equal and strong tranitions appearing at 308 and 325 nm to generate the

Figure 2.14 Plots of the experimental and computed UV-Vis spectra for compound **2.2**. The blue curve shows experimental result. The red vertical lines show the calculated transitions and relative intensities from the TDDFT calculations, while the red curve shows the Gauss convolution with peak width at half height of 0.250 eV.

experimental band centred at $\lambda = 330$ nm (30300 cm⁻¹). These arise from a transition from HOMO-5, to LUMO, a Cl lone-pair to terpy π^* -orbital absorption, and from HOMO-3 to LUMO, which is a ligand centred π - π^* transition. All of the lower energy transitions are dominated by MLCT bands. The experimental band centered at $\lambda = 400$ nm (25000 cm⁻¹) arises from an electronic transition from HOMO to LUMO+3 which is d- π^* in nature. The absorbance centred at $\lambda = 460$ nm (21740 cm⁻¹) corresponds to two MLCT d- π^* transitions; HOMO-2 to LUMO and HOMO-1 to LUMO+1. Finally, the broad experimental band 680-715 nm (14700-14000 cm⁻¹) arises from the electronic transition appearing at 718 nm, which is the excitation of a d-electron in the Re-centered HOMO to the ligand π^* LUMO.

2.3.5 Fluorescence

Fluorescence data was collected for **2.1** and **2.2** using an Agilent Cary Eclipse Fluorescence Spectrophotometer, using a 5 nm excitation slit and emission slit, using excitation wavelengths selected to correspond to the centre of UV-Vis absorption bands. Data was collected for spectra in N,N-dimethylformamide (DMF) to simulate the photocatalytic reaction environment (see chapter 3). Spectra are shown in Figure 2.15 for **2.1** and **2.2** with their UV-Vis absorption spectra for comparison. Data is normalized to equil concentration for each sample in fluorescence and absorbance.

Figure 2.15 UV-Vis and fluorescence spectra for 2.1 and 2.2. Fluorescence of 2.1 from excitation of 373 nm (blue), excitation of 2.2 by 400 nm (red) and 470 nm (green) are shown, along with the absorption spectra of 2.1 (purple) and 2.2 (orange).

Clearly the transformation from bidentate terpyridine to terdentate ligand has significant effect on the interactions of these Re compounds with visible light. Terdentate samples fluoresce and absorb more intensely at lower energy wavelengths. While the

terdentate sample is excited at various wavelengths (that should correspond to different absorption bands), the emission appears to be from one single band centred at ca. 490 nm.

Interestingly, emission is not seen with the naked eye with 400 nm excitation for the terdentate, while the bidentate emission is very strong. This may be due to self-absorbance in the terdentate samples, emission of 490 nm is easily absorbed by the molecule. In the bidentate, no absorbance bands correspond with emission seen at 470 nm or 600 nm, these appear to the naked eye as a white emission.

2.4 Conclusions

This work reported the first crystallographically authenticated rhenium(I) terpyridine terdentate complexes and thus expanded upon the prior limitations of Re coordination complexes. These terpyridine complexes are accessed via a simple, highly efficient, solid-state thermolysis pathway. They expand upon the known α -diimine photophysical properties, with enhanced metal-to-ligand d- π * electronic transitions, occurring more frequently and with lower energy than in the associated bidentate compounds. These observations are supported by computational TD-DFT results, affording an expanded understanding of the transition bands. Modification of the bidentate and terdentate species has been shown, the synthetic success of a triflate moiety should facilitate further development of reactivity and provides an opportunity for synthetic and catalytic studies.

Chapter 3

Photocatalysis of CO₂

3.1 Introduction

Only 6 years after Re^I complexes using 2,2'-bipyridine were characterized, Hawecker, Lehn, and Ziessel showed the effectiveness of the compound for the photocatalytic reduction of $\rm CO_2$. Since then, many have shown the efficacy of a wide range of α -diimino complexes for the reaction 63,118,128 and expansion of the systems to bimetallic complexes with ruthenium and osmium as electron transfer agents has produced a wide range of results. 108,111,129 The mechanism of reduction has been subject of some debate: while mechanisms have been proposed since Lehn et. al. soon after their original publication, 63 modifications have been submitted routinely over the past decades. $^{\rm keith2013}$, $^{85,111,112,130-133}$ The development of a novel terdentate geometry and the associated increase in photon absorption at lower energies of the catalyst warranted investigation of the $\rm CO_2$ reduction capabilities, having overcome the criticism of only utilizing high energy photons. 113

3.2 Photocatalytic Reactions with New Compounds

The photocatalytic cycle is, simply, a photon-induced MLCT, followed by the extraction of an electron from a sacrificial reductant. This radical, negatively charged species sheds the anion, opening up a reaction site. Reaction between a CO₂, a proton (from the decomposition of the reductant or elsewhere), and the catalyst yields any number of CO, H₂O, formate (HCO₂), or carbonate (CO₃H⁻), depending on the mechanistic pathway. Further discussion and a proposal of a new mechanism geometry based on computational and experimental data can be read in chapter 4.

3.2.1 Conditions

Reaction conditions in use in literature have remained typically unchanged since the original papers. A mixture of DMF with either Triethanolamine (TEOA) or Triethylamine (TEA) at a 5:1 ratio is used to make a 1.0 mM solution of catalyst, with 'excess' (depending on reference, a 1.1 to 25 molar ratio) electrolyte salt (typically Et_4NX or t-Bu₄NX, where X = halide from catalyst) added as a stabilizer. Solutions are degassed by bubbling of CO_2 and a consistent headspace is left to form over the solution. The reaction is monitored via Gas Chromatography (GC) analysis of the headspace, using a HP gas chromatograph with a 15 m CARBONPLOT column with 0.320 mm inner diameter and 1.50 μ m film in a 40°C oven. The instrument is fitted with a Thermal Conductivity Detector (TCD), and, while using He as a carrier gas, is able to resolve CO and CO_2 completely.

3.2.2 Experimental Results

Both bidentate and terdentate $\kappa^{\rm n}({\rm terpy}){\rm Re(CO)_{5-n}X}$ (n=2, 3) **2.1** and **2.2** complexes show no activity for ${\rm CO_2}$ reduction. Modification of testing time, light source, product analysis methods, solvent, sacrificial reductant, pH, presence of electrolyte, presence of ${\rm H_2O}$, or variation of anion (X=Cl, Br, OTf, CN) shows no change of this inactivity. Testing of $\kappa^2({\rm bipy}){\rm Re(CO)_3Cl}$ under the same reaction and testing conditions shows production of approximately 6 mL CO from ${\rm CO_2}$ (20% conversion) in 1 hour of photolysis with visible ($\lambda > 400$ nm) light, verifying the method, isolating the catalyst as the ineffective species.

3.2.3 Rationalization of Results

TEOA insertion, maybe clear is a acid, formate, carbonate, tricarbonylcation or other complex?

Kurz et al. demonstrated the requirement for fluorescence for successful catalytic candidates. The explanation for this is the requirement for a stable, long-lasting excited state, with lifetime greater than that of the timescale required for electron abstraction from the sacrificial amine. The observed fluorescence demonstrates the lack of non-radiative relaxation pathways, considered to be an analogue for the extended lifetime of the excited state. Sample 2.2 shows only poor fluorescence. While the complex is able to absorb light across the spectrum, and has HOMO to LUMO transitions with high enough energy for the catalyzed reduction of CO₂ to CO, it appears as if the catalysis is not initiated due to a short excited state lifetime. Fluorescence data presented in chapter 2, at subsection 2.3.5 shows the lack of strong fluorescence in terdentate sample 2.2.

Explanation for the lack of CO production observed in the attempted photochemical reduction of CO_2 by bidentate sample **2.1** and others must come from another angle.

 $[\]overline{}^{i}$ Electrochemical reduction of CO $_{2}$ in similar environments takes 1.7-2.1 V, equivalent to HOMO-LUMO transitions from 590-750 nm. 134

These samples are quite fluorescent, emission from the powder sample can be seen with the naked eye with simulation by a 405 nm laser pen under ambient light environments. Importantly, two clues come from the reaction mixture: under intense visible light in the presence of CO_2 the compound bleaches to a very faint yellow-green and colour does not return after storage in the dark, bubbling of new CO_2 , or other manipulations. Secondly, a mixture of sacrificial amine, DMF, and catalyst 2.1 in ratios identical to what is required in the reaction mixture changes colour from a yellow to a deep red irreversibly after 5 days at ambient temperature.

Scheme 3.1 Formation of **3.1** from catalytic excimer via reorganization of carbonyls and chelation of the pendant arm.

These variations provide some opportunity for identifying methods of deactivation. The bleaching (formation of a very pale yellow-green to clear species) may be due to the loss of the halide, followed by carbonyl reorganization and pendant arm complexation to form 3.1, see Scheme 3.1. This scheme is available to the mechanism via well known processes, lability of carbonyl groups around a metalc entre is well established. The resulting compound, $\left[\kappa^3-(\text{terpy})-\text{Re(CO)}_3\right]^+$, appears to not have been isolated in literature previously, direct comparisons to experimental colour or UV-Vis is not possible. However, TD-DFT calculations with the same parameters used in chapter 2 (B3LYP functional, with a mixed LanL2DZ and TZVP basis set) demonstrate an absorption spectra with very little visible contributions, shown in Figure 3.1. This corresponds to the bleached appearance of the reaction mixture.

The appearance of the irreversible red product may be the formation of triethanolamine-

Figure 3.1 Computational structure (inset) and predicted UV-Vis absorption spectra of $\left[\kappa^3-(\text{terpy})-\text{Re(CO)}_3\right]^+$

catalyst adducts. 135 In the presence of DMF, TEOA has been shown to bind to the open site of the excimer via the amine's oxygen atom. This is susceptible to insertion of CO_2 to form a $-OC(O)C-CH_2CH_2N(CH_2CH_2OH)_2$ group.

Chapter 4

Mechanism of CO_2 Reduction

4.1 Introduction

Within three years of the appearance of the originally reported bipyridine rhenium (I) catalyst, experimental studies on the mechanism of the photocatalytic reduction of CO_2 were available in the literature.⁶³ Studies continue on the mechanism up to the present day, ^{111,136–140} utilizing new investigative techniques as they become available to elucidate transition states and transient intermediates in situ.

Investigation includes the use of DFT methods to elucidate geometries of intermediates and transition states for of the multi-step cycle. Transition metal catalysis is a non-trivial problem computationally, particularly when considering a metal from the lower period. These elements contain a large amount of electrons, many of which can be involved in non-covalent interactions with the ligands and catalyzed products. Solving for this complex system becomes non-trivial and computationally expensive. For this reason, no overview of the mechanism as investigated by DFT methods has ever been made available in the literature.

4.2 Mechanism Pathways

Prior work in the literature has proposed three general mechanistic pathways for the photoreduction of CO_2 . In general, as seen in Figure 4.1, these pathways result in the formation of CO_2 and CO_2 , formate CO_2 , or carbonate CO_3 anions. The formation of carbonate proceeds via the formation of a catalyst dimer over a molecule of CO_2 , with the insertion of a second molecule of CO_2 to produce the carbonate and a molecule of CO_2 to Production of formate occurs via insertion of CO_2 to a rhenium hydride bond. The formation of CO_2 to an open site on the metal, followed by a double proton addition and the release of a molecule of CO_2 to the loss of one of the four carbonyl groups to open up the axial site for halide re-coordination. This is essentially the Reverse Water-Gas Shift Reaction (RWGSR), wherein protons are made available from decomposition of the sacrificial amine instead of from decomposition of CO_2 and the 'carbonate' mechanism, the 'formate' mechanism, and the 'water-gas shift' mechanism, respectively.

Each of the mechanistic pathways identified above in Figure 4.1 was studied, using DFT methods. Structures (using 2,2'-bipyridine as the bidentate ligand, and triethy-lamine as the sacrificial reductant) were optimized to ground or transition states using TurboMole 6.5,^{142,143} with the TPSS meta-GGA XC functional. The def2-TZVP basis set was used for all atoms. The TurboMole program contains a number of optimizations to the original DFT algorithms, decreasing the calculation time without compromising accuracy. Grimme's dispersion correction (version 3) was included in the calculations. Intermediates and transition states were verified by frequency analysis, the further verification of transition states by performing dynamic reaction coordinate calculations to determine the Intrinsic Reaction Coordinates (IRCs). The

Figure 4.1 An overview of the mechanistic pathways of photochemical CO_2 reduction. Catalyst is shown in blue, and the excimer species in red

effects of solvation was calculated using the Conductor-like Screening Model (COSMO) implemented in TurboMole, ¹⁵⁸ which is a continuum solvation model implicitly surrounding the solute molecule. Code was developed to assist with managing the computational jobs (see chapter 5).

Many of the intermediates have been synthesized in various studies, $^{159-162}$ indicating their reasonable stability. While individual portions of the mechanism have been studied computationally in the past, $^{131-133}$ no overarching study has compared methods relative to each other. Furthermore, while the formation of CO with H_2O is the most anticipated pathway (due to the lack of formation of carbonate or formate in most studies), no literature pathway exists to explain the addition of CO_2 to the open site of the radical catalytic species without a three body reaction step (catalyst, CO_2 and H^+ together) or

without formate reorganization. Furthermore, no mechanism proposed thus far explains the ¹²CO to ¹³CO isotopic exchange demonstrated by Lehn's group in 1986.⁶³

4.2.1 Eximer Formation and Decomposition of the Sacrificial Amine

All of the pathways require the formation of a common eximer, namely, the radical $17e^{-}$ species (Figure 4.2). This occurs through the absorption of an incident photon with enough energy to promote an electron from the metal d-orbital to the ligand π^* orbitals in the ground state catalyst, **4.01**, forming the triplet Metal-Ligand Charge Transfer (3-MLCT) complex **4.01**^{3MLCT}. This excitation requires approximately 50 kcal/mol, sourced from absorbed light. The pseudo-oxidized, electron-deficient metal atom extracts an electron from the sacrificial amine present in the reaction solution to return to the Re^I state (**4.02**). However, this complex is formally a radical anion, the halide (**4.04**) is lost to return to the neutral eximer species in solution, **4.03**. This extraction to form the radical anion catalyst and the radical cation amine is thermodynamically expensive in the gas phase, costing over 80 kcal/mol, but in solution phase in DMF releasing 5 kcal. The difference in energies demonstrates the importance of performing calculations in a simulated solution; steps that may have insurmountable energy barriers in the gas phase become possible once solvation is considered.

A slight uphill to dissociation of the chloride (15.44 kcal/mol in DMF) allows for the formation of the triplet 17 e^- excimer species **4.03**, from which the mechanism pathways discussed in following subsections may diverge. It is important to note that some studies suggest the solvent coordinates with the excimer species.^{85,140} This solvent coordination is expected to stabilize the excimer species prior to reaction with CO_2 in solution.¹⁶³ However, this event has no bearing on the overall reaction energies, the coordination and

subsequent loss of solvent is an energetically neutral occurrence and was not studied in detail.

Figure 4.2 Formation of the eximer species via absorption of a photon and oxidation of the sacrificial amine.

The decomposition of the sacrificial amine was first identified by Kalyansundarem in 1978,¹⁴¹ and is summarized in Figure 4.3. This work showed the route for decomposition of TEOA but the mechanism for decomposition of TEA is parallel. This decomposition is critical due to the protons it provides to the reaction mixture, and the presence of a simple second electron abstraction from the decomposition product. Upon absorption of a photon by the catalyst, the amine **4.05** is converted to the radical cationic species $(Et_3N^{++}, 4.06)$. This undergoes a proton transfer to a second molecule of the sacrificial reductant. The transfer removes a proton from the α carbon, leaving it a neutral radical species (**4.07**). This is then able to react in the catalytic cycle to provide a second electron and form the ethene-diethylamino compound. Triethylammonia is produced as well (**4.08**), this is a proton source for the formate and water-gas shift mechanistic pathways. This step is slightly exothermic, with energy releases of 1 kcal/mol in gas phase, or nearly 3 kcal/mol in DMF.

Energies of **4.01** - **4.10**, and **4.26** in gas and solution phases (in DMF) is shown in Table 4.1, along with the energy of solvation. Energies of each step of the reaction are listed in Table 4.2. The values show a significant 'uphill' series of steps requiring

$$Et_{3}N$$

$$4.05$$

$$Et_{3}N$$

$$+ Et_{3}N$$

$$+ Et_{3}N + Et_{3}NH$$

$$+ Et_{3}NH$$

Figure 4.3 Decomposition pathway for the sacrificial amine.

significant energy input. This energy is supplied by the incident photons; this process is a photocatalyzed activation. The reaction typically requires incident light of 400 nm energy, 62 this significant energy input allows for the pathway to be followed.

Table 4.1 Gas phase and solvated energies of mechanism reactants and product	Table 4.1 (Gas phase	and solvated	energies of	mechanism	reactants and	products.
--	-------------	-----------	--------------	-------------	-----------	---------------	-----------

Molecule	Label	$E (gas)^a$	E (solution) ^b	E (solvation) ^c
Ground State	4.01	-1374.621419	-1374.651099	18.62
3MLCT Complex	4.01^{3MLCT}	-1374.553193	-1374.565998	8.04
Radical Anion	4.02	-1374.684002	-1374.759190	47.18
Open Site Excimer	4.03	-914.3139376	-914.3287245	9.28
Chlorine Anion	4.04	-460.2890817	-460.4058583	73.28
Triethylamine (TEA)	4.05	-292.3051496	-292.3854033	50.36
Radical Cation TEA	4.06	-292.3051496	-292.3854033	50.36
Deprotonated TEA Radical	4.07	-291.9173706	-291.9211226	2.35
Triethylammonia	4.08	-292.9552538	-293.0382729	52.09
Carbon Dioxide	4.09	-188.6945676	-188.6974631	1.82
Carbon Monoxide	4.10	-113.3744946	-113.3754466	0.60
Diethylaminoethene	4.26	-291.3467768	-291.3525868	3.64

^a TPSS SCF energy in hartrees.

Geometries of the catalyst do not change significantly throughout this transformation, however, some changes occur signifying the change in electron localization. One metric

^b TPSS SCF energy in hartrees with COSMO solvation in DMF.

^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

Reaction Steps	Energy(gas) ^a	$Energy(dmf)^b$
$4.01 \longrightarrow 4.01^{3\text{MLCT}}$	42.81191677	53.40083976
$4.01^{3\text{MLCT}} + 4.05 \longrightarrow 4.02 + 4.06$	81.44966532	-5.80393275
$4.02 \longrightarrow 4.03 + 4.04$	50.816912	15.440887
$4.06 + 4.05 \longrightarrow 4.07 + 4.08$	-1.077024	-2.915901

Table 4.2 Energies for the reaction steps in the excimer formation pathway

analyzed in polyaromatic non-innocent ligand redox reactions is the bonding distance between aromatic rings.¹⁶⁴ From ground state, through triplet MLCT complex to the excited radical, the C-C_(bpy) distance decreases from 1.470 Å to 1.425 Å to 1.416 Å. This 0.06 Å decrease is noted in many previous experiments and calculations for anion radicals.^{164–168} Other key bond lengths and angles include the ligand N-Re bonds and CO-Re bonds, the addition and subtraction of electrons to and from the complex impact the bonding. As the reaction proceeds, for example, the calculated Re-N distance in solvated structures decreases from 2.18924 Å in the ground state catalyst to 2.14212 Å in the neutral radical excimer. Similarly, the distance from the metal to the axial carbonyl decreases from 1.91950 to 1.88746 Å in the same circumstances. These changes are not significant, the bond order is unchanged across these distances, but bond modification of 0.05 Å is large enough to demonstrate a change has occurred in the bonding around the metal. Subsequent steps in the mechanism demonstrate larger changes.

4.2.2 The 'Carbonate' Pathway

The carbonate pathway is shown in Figure 4.4, starting from the excimer species. This pathway has been studied in some detail in the literature, but never in a complete manner. Typical analysis consists of investigation from the formed CO_2 linked dimer,

^a TPSS SCF energy in kcal/mol.

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

through the release of CO, terminating at the bicarbonate linked dimer. Studies typically build the dimer as a three-body reaction, or start with a Re–Re bound catalyst dimer and the insertion of CO_2 . However, the formation of the $[L_2Re(CO)_3]_2$ is exceptionally slow in the presence of solvent, with a rate constant 8 orders of magnitude below¹ the solvent-stabilized radical $L_2Re(CO)_3$ (solv) complex. ¹⁶³

Energies of each of the compounds involved in this mechanism pathway are shown in Table 4.3, along with the energy of solvation. The full list of reaction energies are listed in Table 4.4.

Table 4.3 Gas phase and solvated energies of compounds, transition states and intermediates in the 'carbonate' mechanism

Molecule	Label	E (gas) ^a	E (solution) ^b	E (solvation) ^c
CO ₂ Linked Dimer	4.11	-2017.373132	-2017.412314	24.59
CO ₂ Addition TS	4.12	-2206.120721	-2206.165017	27.80
C_2O_4 Linked Dimer	4.13	-2206.047558	-2206.097328	31.23
5 Member Ringed Dimer TS	4.14	-2206.013925	-2206.061531	29.87
CO_3 Linked Dimer	4.15	-2092.678255	-2092.725669	29.75
Bicarbonate Catalyst Cation	4.16	-1178.065153	-1178.119717	34.24
Bicarbonate Anion	4.17	-264.4852375	-264.4967144	7.20
Dimer Formation TS	4.18	-2017.434125	-2017.411259	-14.34
Bicarbonate Dianion	4.19	-263.7946209	-264.1983931	253.37
Open Site Cation	4.27	-914.1064097	-914.1872844	50.75

^a TPSS SCF energy in hartrees.

check carbenergy values for 4.19

The mechanism begins with the addition of a CO_2 molecule to the excimer, forming 4.11. This is a very weakly bound species when solved in a simulated DMF environment; in the gas phase this transition complex will not solve. Energies for the gas phase for

^b TPSS SCF energy in hartrees with COSMO solvation in DMF.

^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

ⁱWith the Thermodynamic Equilibrium formula $\Delta G^{\circ} = -RT ln(K)$, if $K \approx 10^{7}$, then $\Delta G^{\circ} \approx -40$ kJ/mol, ≈ -8 kcal/mol.

Figure 4.4 The 'carbonate' mechanistic pathway

Energy(gas)^a Energy(dmf)^b Description Steps Formation of Radical Anion $4.01, 4.05 \longrightarrow 4.02, 4.06$ 124.261582 47.596907 Open site catalyst plus cl- $4.02 \longrightarrow 4.03, 4.04$ 50.816912 15.440887 Reconfiguration of TEA $4.06, 4.05 \longrightarrow 4.07, 4.08$ -1.077024-2.915901 Addition of CO₂ to open site -0.2501423 6.37310903 4.4addition of second cat to CO2 4.5118379.026 118375.044 Insertion of CO2 4.6**#VALUE!** -8.5491267 relaxation of co2 insertion 4.7**#VALUE!** -0.6637971 4.8 **#VALUE! #VALUE!** rearrange to 4ring dimer relax to long 4.9 **#VALUE! #VALUE!** rearrangement to 5ring dimer 4.1 **#VALUE!** 22.4628711relax to final 4.11 **#VALUE!** -24.839557 4.12317.951051 262.714812 break apart return to ground states 4.13-613.91666 -426.82371

Table 4.4 Energies for the reaction steps in the 'carbonate' pathway

this compound are calculated as single point energies from the solvated structure. The DMF solved structure has a Re-C bond length of 2.50654 Å, and O-C-O bonding angle of 142° , when compared to the Re-C distances of rhenium carbonyls of ca. 1.9 Å, this is a very weak bond. The formation of this 'bond' requires only 6.37 kcal/mol, the radical species is not satisfied with the addition of CO_2 and requires further electron contribution to become more stable. This unstable complex is able to extract a hydrogen to continue with the formate pathway (see below subsection 4.2.3), or combine with a second molecule of the excimer to form a dimer 4.13. This dimer formation is explicitly not favoured; although resolution of radical species is provided, the transformation via 4.12 is still kcal/mol uphill in DMF. Explanation of this untenably large value may be the root of the choice in literature to utilize the Re-Re bound dimer species as the catalyst starting point, instead of the ground state. The quenching of the radical forms much stronger bonds between the metal atoms and the linking CO_2 . The Re-C distance

numb

From this
point onwards the
reaction
proceeds in

^a TPSS SCF energy in kcal/mol.

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

has shortened from the 2.50654 Å seen in **4.11** to 2.25829 Å. This is still longer than the Re-CO bonds, expected due to the lack of π back-bonding observed with carbonyl ligands, however, it corresponds with similar published crystal structures of Re-C bond lenghts for sp² carbons. The Re-O bond is 2.13 Å, a value that remains constant for Re-O through the intermediates in the reaction pathway.

After the dimer ${\bf 4.13}$ has been formed, a second molecule of ${\rm CO_2}$ is inserted via ${\bf 4.14}$ to form the Re-C-O-C-O-Re complex 4.15 (see structures 4.12 - 4.17 in Figure 4.5). This linker contains bonds from length 1.28 - 1.44 Å, typical for sp²-carbon oxygen bonds. Bond angles are typically just under the idealized 120° expected as well. Due to the linker, the catalyst ligand bipyridines have moved from a nearly co-planar geometry to a nearly perpendicular geometry. Re-C and Re-O bonds remain constant in length compared to ${\bf 4.13}$. Following the insertion of the second molecule of ${\rm CO}_2$, internal rearrangements progress this complex through the release of a molecule of CO and the formation of the bicarbonate byproduct. The formation of a 5 membered ring in the **4.16** transition state leads to the release of the CO and the formation of a carbonate linked dimer, 4.17, returning the catalyst ligands to a more co-planar orientation. The carbonate dimer species is left to decompose to a catalyst cation 4.20 with an open site, and the bicarbonate adduct 4.18. This carbonate dianion may pick up a proton before or after the disassociation to the catalyst cationic species, resulting in the released of the bicarbonate species to solution (4.19) when the catalyst is returned to ground state **4.01** with addition of a chloride.

maybe take this out?

Some work done by Agarwal et. al. provides an opportunity for a catalytic pathway with similar results requiring only one molecule of catalyst. ¹³² Instead of capping the loosely coordinated CO_2 with the eximer, the radical is quenched with a hydride extraction from the sacrificial amine, much as in the pathway described in subsection 4.2.3.

Figure 4.5 DFT calculated structures for the 'carbonate' mechanistic pathway

A second molecule of CO₂ reacts with the acid, undergoing a series of reorganization and dissociation/re-association steps to produce the carbonate. The experimental data supporting this variation of the mechanism is not strong; further validation should be required for this mechanism variation to gain popularity in the literature.

4.2.3 The 'Formate' Pathway

In comparison to the catalytic dimer formed in the carbonate pathway above, the formate formation occurs via a much simpler mechanism. The addition of a proton to the open site axial to the ligand occurs via the simultaneous electron and proton transfer from a by-product of the reduction of the amine. CO_2 inserts into this metal hydride bond, resulting in a metal-oxide bond, with the formate anion. Separation of the weak metal-oxygen bond allows for the reinsertion of the halide to the cationic metal centre.

Energies of each of the compounds involved in this mechanism pathway are shown in Table 4.5, along with the energy of solvation.

Figure 4.6 The 'formate' mechanistic pathway

Table 4.5 Gas phase and solvated energies of compounds, transition states and intermediates in the 'formate' mechanism

Molecule	Label	E (gas) ^a	E (solution) ^b	E (solvation) ^c
Proton Transfer TS	4.21	-1206.302997	-1206.32707	15.10
Catalyst Hydride	4.22	-914.9204746	-914.9448354	15.29
CO_2 Insertion TS	4.23	-1103.581201	-1103.619960	24.32
Catalyst Formate	4.24	-1103.635283	-1103.665628	19.04
Formate Anion	-189.3051464	-189.4151284	69.01	
Open Site Cation	4.27	-914.1064097	-914.1872844	50.75

^a TPSS SCF energy in hartrees.

After formation of the excimer 4.03, the radical species extracts a hydrogen atom from the oxidized chain of the sacrificial amine 4.07 in transition state 4.21, a step with a barrier of 4.16 kcal/mol in the gas phase, and is favoured by nearly 10 kcal/mol in DMF. The sacrificial amine involved in this step had previously had one proton extracted by

fix numbering see carbonate

^b TPSS SCF energy in hartrees with COSMO solvation in DMF.

^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

Description	Steps	Energy(gas) ^a	$\overline{\rm Energy(dmf)^b}$
Formation of Radical Anion	$\begin{array}{ccccc} 4.01, 4.05 & \longrightarrow & 4.02, 4.06 \\ & 4.02 & \longrightarrow & 4.03, 4.04 \\ & 4.06, 4.05 & \longrightarrow & 4.07, 4.08 \end{array}$	124.261582	47.596907
Open site catalyst plus cl-		50.816912	15.440887
Reconfiguration of TEA		-1.077024	-2.915901
Hydride Extraction Removal of TEA Insertion of CO2 recoordination dissasotiation of HCO2-	1.4	4.09794743	-9.8319638
	1.5	-26.652434	-20.021496
	1.6	21.2356096	14.0177223
	1.7	-33.936535	-28.657394
	1.8	140.389052	39.6680755
Reformation of Catalyst	1.9	-141.76995	-36.367745

Table 4.6 Energies for the reaction steps in the 'formate' pathway

another molecule of the amine in a proton exchange step (see subsection 4.2.1), resulting in a neutral radical. Extraction of the proton and electron pair allows for the formation of an ethene arm, completing the decomposition of the amine to the final neutral, singlet molecule **4.26**. Relaxation of this transition state results in the hydrogen extraction from the radical species, yielding the formation of the hydride complex **4.22**.

Some attempt was made at performing the reaction along alternative pathways. While direct σ bonding from a metal to an oxygen atom in the CO_2 molecule (as η^1 -OCO) has been observed in a few systems (including photoreduction of CO_2), $^{170-172}$ this geometry is rare. $^{173-175}$ Attempts to coordinate CO_2 in an η^1 geometry failed to converge both in gas and solution phase, CO_2 was ejected from the complex, resulting in the excimer species **4.03**. Binding of CO_2 to the metal through π coordination of the C=O bond is more common, 174,175 but these structures failed to solve in the current DFT system as well, typically via the dissociation of the CO_2 .

This hydride complex is able to insert a molecule of CO_2 into the metal-hydrogen bond, in transition step **4.23**. CO_2 insertion to metal hydrides is commonly observed,

^a TPSS SCF energy in kcal/mol.

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

leading mechanisms in CO_2 reduction in ruthenium systems employ this addition.¹⁷⁶ Rhenium I hydrides are very rare, appearing only in literature in the discussion of the photocatalytic mechanism. The Re-H bond length is 1.76 Å, compared to the length of the Re-Cl bond from the ground state **4.01** species of 2.51 Å. This bond length difference reflects the observations on anion change from Cl to Br, the anion size is the critical factor in this variation. When a molecule of CO_2 approaches, the transition state of a pseudo-septacoordinate species **4.2?** forms. The formation is expensive, at just over 14 kcal/mol. The Re-H bond increases in length to 2.16 Å, the Re-O bond is 2.88 Å, and the O-Re-H angle is very tight, at only 45.3 °. This step completes with 28.66 kcal/mol energy release to form the formato anion complex **4.2?**.

The formato anion 4.2? contains a Re-O bond of 2.15 Å, consistent with previously discussed rhenium - oxygen bonds. This formate dissociates with a chloride addition, the exchange is endothermic by less than 3 kcal/mol. This counterion switch is likely more favoured in the real solution, the presence of excess molar equivalents of an electrolyte such as tetraethylammoniumchloride ensures a surplus of chloride anions are in solution and force the conversion by entralpic means. Further reactions of the formato anion in solution are not investigated, but the anion likely remains deprotonated in the slightly basic environment.

4.2.4 The 'Water-Gas Shift' Pathway

The water-gas shift mechanism involves the addition of two protons from the reductant to a CO_2 molecule bound to the metal centre. The first proton addition yields an acid species, this is dehydrated via the second addition of a proton and the release of one molecule of H_2O . The resulting tetracarbonyl cationic species is able then to release an axial carbonyl to return to the ground state. While any of the carbonyl groups could

be labile, the carbonyl at the axial position is the one actively replaced by the halide to return to the starting catalyst.¹⁵⁹

Figure 4.7 The 'water-gas shift' mechanistic pathway

Energies of each of the compounds involved in this mechanism pathway are shown in Table 4.7, along with the energy of solvation.

This mechanistic pathway it thought to start by the same addition of CO2 that is seen in the carbonate mechanism (see subsection 4.2.2, forming 4.11. As before, the complex is only weakly coordinated, and requires solvation effects to solve computationally. The added CO₂ is able to extract a hydrogen from the previously-reduced sacrificial amine 4.07, allowing the completion of the ethene formation 4.26. The newly formed acid species 4.32 dehydrates in the presence of a second proton (via 4.33) to form water 4.37 and the tetracarbonyl cationic species 4.38.

Typically, this reaction had been thought to proceed on the axial site of the catalyst, mirroring the pathways discussed above. However, due to the ease of migration of the

check compound numbers

Table 4.7 Gas phase and solvated energies of compounds, transition states and intermediates in the 'water-gas shift' mechanism

Molecule	Label	E (gas) ^a	E (solution) ^b	E (solvation) ^c
Catalyst-CO ₂ (Axial)	4.31	-1103.008904	-1103.016031	4.47
$Catalyst-CO_2H$ (Axial)	4.32	-1103.610331	-1103.640451	18.90
H ₂ O Dissociation (Axial) TS	4.33	-1104.018352	-1104.093313	47.04
$Catalyst-CO_2$ (Equatorial)	4.34	-1102.963633	-1102.992198	17.92
$Catalyst-CO_2H$ (Equatorial)	4.35	-1103.597572	-1103.625739	17.68
H ₂ O Dissociation (Equatorial) TS	4.36	-1104.016156	-1104.093644	48.62
Water	4.37	-76.46413339	-76.47581393	7.33
Tetracarbonyl Catalyst Cation	4.38	-1027.546073	-1027.619412	46.02
H Transfer to Axial CO ₂ TS	4.39	-1394.981543	-1395.011603	18.86
H Transfer to Equatorial CO_2 TS	4.40	-1394.938949	-1394.991623	33.05
Catalyst with Migrated Open Site	4.41	-914.2766988	-914.2972247	12.88

^a TPSS SCF energy in hartrees.

Table 4.8 Energies for the reaction steps in the 'formate' pathway

Description	Steps	Energy(gas) ^a	$\overline{\rm Energy(dmf)^b}$
Formation of Radical Anion	$4.01, 4.05 \longrightarrow 4.02, 4.06$	124.261582	47.596907
Open site catalyst plus cl-	$4.02 \longrightarrow 4.03, 4.04$	50.816912	15.440887
Reconfiguration of TEA	$4.06, 4.05 \longrightarrow 4.07, 4.08$	-1.077024	-2.915901
migration of open site?	2.4	23.3674263	19.7662463
Addition of CO2 to open site	2.5	4.78987184	1.56207334
H transfer to CO2	2.6	-61.998066	-35.596525
CO2H planar relaxation	2.7	22.2489536	-5.1943905
COOH2 ts	2.8	144.908364	116.570584
CO4 + and water	2.9	4.10436095	-1.4970678
dissassotiation of CO	2.10	40.893777	35.5673996
Reformation of Catalyst	2.11	-141.76995	-36.367745

^a TPSS SCF energy in kcal/mol.

carbonyl groups, it is proposed that the 'water-gas shift' mechanism does not occur entirely axial to the ligand, but begins with coordination of a $\rm CO_2$ molecule in between

^b TPSS SCF energy in hartrees with COSMO solvation in DMF.

^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

the facial-CO ligands, forcing a carbonyl to the axial position 4.34. This CO₂ bound in the plane of the ligand then undergoes hydrogen addition and dehydration to produce a molecule of H₂O, continuing as before. While any of the carbonyl groups could be labile, the carbonyl at the axial position is replaced by the halide to return to the starting catalyst.¹⁵⁹

This newly proposed mechanism provides a solution to a previously unexplained phenomenon. The exchange of carbonyl groups on the catalyst for 13 CO when using 13 CO₂ in the photoreduction is documented as early as Hawecker *et al.*⁶³ It was shown that complete exchange occurs with very few catalytic turnovers. Furthermore, Koike *et al.* demonstrated that photochemical ligand substitution occurs at only axial sites relative to the α -imino ligand, 137 no exchange occurs at the equatorial site, nor do the fac-(12 CO) $_2^{13}$ CO reorganize to shift the 13 CO to the equatorial position in the timeframe of the reaction. Thus the isotopic exchange does not proceed by independent uptake of product 13 CO, but in fact the conversion to the 13 CO complex must occur via the reduction mechanism.

4.2.5 Consequences From κ^2 Terpyridine Complex Inactivity

The lack of reactivity of the $\kappa^2(\text{terpy})\text{Re}(\text{CO})_3\text{X}$ motif of complexes contrasting to the activity of the originally published $\kappa^2(\text{bipy})\text{Re}(\text{CO})_3\text{X}$ indicates significant influence of the ligand on the mechanism. While the terdentate complex can be rationalized to be inactive due to its short-lived excited state (as seen in chapter 2),¹⁷⁷ this explanation does not suffice for the fluorescing bidentate complex. Other substituted bipyridine ligands are known to be active for photocatalytic reduction,^{63,118} identifying the most likely conflicting feature of the terpyridine ligand to be the pendant arm, and its availability for chelation to the metal centre. While in the radical eximer form, the chelation site is

sterically blocked by one of the three carbonyl groups. However, reorganization of the substituent carbonyls from a *facial* orientation to a *meridional* could allow for the free pyridine to form the metal-ligand bond, resulting in compound (X).

Table 4.9 Energies for the reaction steps in the 'equatorial' geometry

Description		Steps	Energy(gas) ^a	$\overline{\rm Energy(dmf)^b}$
Formation of Radical Anion	$4.01, 4.05 \longrightarrow 4.0$	02, 4.06	124.261582	47.596907
Open site catalyst plus cl-	$4.02 \longrightarrow 4.0$	03, 4.04	50.816912	15.440887
Reconfiguration of TEA	$4.06, 4.05 \longrightarrow 4.0$	07, 4.08	-1.077024	-2.915901
Addition of CO2 to open site		3.4	-0.2501423	6.37310903
H transfer to CO2		3.5	-19.133571	-33.878805
CO2H axial relaxation		3.6	-0.2145456	-1.1883574
COOH2 ts		3.7	151.907871	125.579781
CO4 + and water		3.8	5.1112987	-1.2748062
dissassotiation of CO		3.9	40.893777	35.5673996
Reformation of Catalyst		3.10	-141.76995	-36.367745

^a TPSS SCF energy in kcal/mol.

4.3 Comparison Between Mechanistic Pathways

Previous studies in literature had only analyzed one of the mechanistic pathways (or a subsection thereof), without a fuller analysis of the competitiveness of each pathway relative to the others. Discussion on the tenability of each potential pathway relied on the *in situ* observation of intermediates or transition states, the success (or lack thereof) of synthesis of the intermediates, and the relative production of by-products in the mechanistic trials.

The overall energies for each of the mechanistic pathways shown in Figure 4.1 are shown in Figure 4.8.

What is X

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

Figure 4.8 An overview of the energies of the three mechanistic pathways of photochemical CO_2 reduction

It's important to note that the energy requirements of each pathway is not the only indicator of mechanistic preference. Studies have shown the mechanism rate differs between pathways, with certain intermediates nearly blocking the progression of the redox reaction.

4.4 Conclusions

With the energies of each of the independent mechanisms elucidated, the feasibility of each mechanism becomes evident. Evidence in literature suggests that all mechanisms progress to some degree, however, the production of CO outpaces that of the partial reduction or oxidation pathways.

Chapter 5

TurboControl

The analysis of the mechanism using computational methods required a significant amount of manual set-up and analysis work of computational input and output files. The calculations required 38 different molecules, intermediates, or transition states to be calculated in multiple different environments. These calculations typically require intervention or set-up of intermediate steps to be able to fully elucidate all of the required information, for example, the set-up of frequency calculations after a geometry optimization to ensure ground state or transition state geometries.

Additionally, while TurboMole contains much faster optimization code for DFT calculations, the user interface for this software requires a significant learning curve and is based in a user-abrasive interactive text prompt environment. This contrasts to Gaussian 09, which is significantly more popular, partially due to the user-friendliness of the GaussView Graphical User Interface (GUI), despite concerns about the speed of optimization of large or complex molecules.

These two factors prompted the development of a new program, TurboControl, written in Python, with the goal of combining the user friendliness of GaussView on top of the optimization efficiency of TurboMole. This program allows a user to prepare the input TurboControl 62

files in GaussView, modify them slightly in any text editor available to them, then run a batch calculation on the files. TurboControl monitors the computational jobs, resubmitting for frequency calculations when optimization is complete if requested, and using the TurboMole tools available when required to ensure ground state or first transition state geometries are discovered. TurboControl then outputs statistics files, providing the energy and first frequency vibration of each molecule in a single output file. Additional commands can instruct TurboControl to run in a solution, do single-point energy calculations, or gather more in-depth thermodynamic information from the outputs using TurboMole's tools.

TurboControl provides this hands-off management of jobs allowing the user to spend more time in data analysis, experimental work, or to be able to produce data at a significantly higher rate compared to the manual setup and monitoring of jobs. TurboControl also contains a single job initiation script entitled TurboGo to allow for the use of the input files without the overhead of the job managing.

5.1 Development

TurboControl began as a script for the simple setup and submission of jobs in TurboMole from Gaussian input files. The jobs were submitted to the 'wooki' computing cluster available at the University of Ottawa. This computing cluster consists of approximately 1000 CPU cores, running the CentOS distribution of Linux available in the Rocks software distribution. The GridEngine queuing system ensures fair usage of computing cores for each user, and maximizes throughput by managing computational jobs.

TurboControl initially submitted jobs and monitored their successful completion or failure. Development quickly expanded to include automatic resubmission for frequency analysis of geometry optimization jobs, required to determine the success of finding an TurboControl 63

energy minima (stationary point) instead of a transition state. As the complexity of the mechanistic study (see chapter 4) increased to include analysis of thermodynamic data, calculation of transition states, calculation in solution phases, and more, the capabilities of TurboControl increased to meed these demands.

Turbocontrol is now able to handle large batches of input, with jobs of varying complexity and monitor them through successful completion or failure of TurboMole. Analysis of the computational jobs is performed to simply highlight DFT energies, first computed normal mode frequencies, and thermodynamic properties (if requested).

5.2 Usage

TurboControl is available freely on the internet, and is a fully open-source project.¹⁷⁸ The code may be downloaded by anyone and used without prior permission for personal, academic, or commercial purposes, provided that the original software license remains with the code. TurboControl works only with the stated versions of software in the 'readme' file available with the code on the internet (and included in Appendix C). The software requires no installation prior to use, and has very few dependencies beyond the typically installed packages on a unix or linux system.

TurboControl and TurboGo are not quantum mechanical packages themselves, they require a properly licensed installation of TurboMole to perform calculations. Additionally, while GaussView may be used to prepare the input files, modification of the files by hand in a text editor is required to access most features, GaussView is not required for the use of TurboControl.

Chapter 6

Conclusions

The target $\mathrm{Re^I}$ terdentate terpyridine compounds were successfully synthesized, characterized, and tested for photocatalytic $\mathrm{CO_2}$ reduction. The catalysts show no activity for the reduction, in contrast to the known excellent bipyridine compounds.

The reaction mechanisms were studied successfully with DFT methods, resulting in the proposed new geometry for the production of CO with no carbonate or formate anions. This new geometry does not conflict with known experimental studies, yet avoids three-body mechanistic steps.

Appendix A

Experimental Procedures

Experimental synthesis and characterization data for the compounds discussed in this thesis are shown below by compound number:

A.1 General Methods

Synthesis reactions were set-up in a glovebox under a nitrogen atmosphere and performed under an inert atmosphere. Solvents were sparged with nitrogen and then dried by passage through a column of activated alumina using an apparatus purchased from Anhydrous Engineering. Deuterated chloroform and deuterated acetonitrile was dried using activated molecular sieves. Rhenium starting materials were purchased from Strem Chemicals and used as received. All other chemicals were purchased from Aldrich and used without further purification. NMR spectra were run on Bruker Avance 400MHz spectrometers with CD₃CN or CDCl₃ as solvent and internal standard. Elemental analyses were performed by Midwest Microlab LLC, Indianapolis IN. Solid state reactions were carried out in a Lindberg Blue M Mini-Mite Tube Furnace (model TF55035A-1). Infrared spectra were collected using an Agilent Technologies Cary FT-IR spectrome-

ter using a diamond ATR attachment. UV-Vis spectra were collected using a Agilent Technologies Cary 5000 UV-Vis spectrometer. TGA was performed on a TA Q5000 IR instrument: approximately 10-15 mg of each sample was placed in a ceramic sample pan which was heated at a rate of 5°C/min up to 150°CC, followed by a rate of 2°CC/min to 300°C while being purged with N_2 at a flow rate of 25 mL/min. GC was performed using a HP gas chromatograph with a 15 m CARBONPLOT column with 0.320 mm inner diameter and 1.50 μ m film in a 40°C oven. The instrument is fitted with a TCD at 220°C.

A.2 Computational Methods

For the UV-Vis and experimental correlation study, the structures of all species were optimized using Gaussian 09¹¹⁹ employing the B3LYP^{120,121} exchange-correlation (XC) functional. The LanL2DZ basis set/effective core potential¹²² was used on Re and, the all-electron TZVP basis set¹²³ for the remaining lighter atoms. Frequency analysis of all structures was used to confirm the nature of the stationary points. Solvent effects were computed using the integral equation formalism variant of the PCM solvation model within Gaussian 09 for both the ground state and excited state TD-DFT calculations with DMSO as the solvent. ^{124,125} The UV-Vis absorption spectra were extracted using the Chemissian software. ¹⁷⁹ In these calculations, a pseudo-Voigt band shape was employed with a default average band width at half-height of 2000cm⁻¹.

For the mechanism study, the ground and transition state structures and energies of all species were obtained by using TurboMole 6.5 software^{142,143} with the TPSS meta-GGA XC functional.¹⁴⁴ The def2-TZVP basis set was used for all atoms.^{123,145} The TurboMole program contains a number of optimizations to the original DFT algorithms,^{146–154} decreasing the calculation time without compromising accuracy. Grimme's dispersion cor-

rection (version 3) was included in the calculations.¹⁵⁵ Intermediates and transition states were verified by frequency analysis.^{151,156,157} The effects of solvation was calculated using the Conductor-like Screening Model (COSMO) implemented in TurboMole,¹⁵⁸ which is a continuum solvation model implicitly surrounding the solute molecule.

A.3 X-ray Crystallography

Crystals were mounted on thin glass fibers using paraffin oil. Prior to data collection crystals were cooled to 200.15K. Data were collected on a Bruker AXS SMART single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with APEX II software package from BRUKER AXS53. Diffraction data for sample 3 was collected with a sequence of 0.5° ω scans at 0, 120, and 240° in ϕ . Due to lower unit cell symmetry in order to ensure adequate data redundancy, diffraction data for 1, 2 and 8 were collected with a sequence of 0.5° ω scans at 0, 90, 180 and 270° in ϕ . Initial unit cell parameters were determined from 60 data frames with 0.3° ω scan each collected at the different sections of the Ewald sphere. Semi-empirical absorption corrections based on equivalent reflections were applied. 180 Systematic absences in the diffraction data-set and unit-cell parameters were consistent with triclinic $P\overline{1}$ ($\mathcal{N}^{\mathcal{O}}2$) for compounds 1, 2 and 8, monoclinic \mathbb{C}^2/\mathbb{C} ($\mathcal{N}^{\mathcal{O}}$ 15) for compound 3. Solutions in the centrosymmetric space groups for all compounds yielded chemically reasonable and computationally stable results of refinement. The structures were solved by direct methods, completed with difference Fourier synthesis, and refined with full-matrix least-squares procedures based on F^2 .

Solutions for 1 and 2 revealed that both these structures contain two compound molecules per asymmetric unit.

Initial refinement results for the compound 1 suggested presence of two non-merohedrally twinned domains. Two independent orientation matrices were found using CELL_NOW software. Data set was re-integrated with two independent orientation matrices and consecutive model refinement was performed using HKLF5 format reflection data file. Twinning domain ratio coefficient (BASF) was successfully refined to 0.3794.

On the final model refinement stage for compound 2 thermal motion parameters for coordinated CO (-C(33)=O(3)) and Cl (Cl(2)) moieties as well as presence of unusually strong residual electron density peaks in one of the compound molecules suggested a positional CO / Cl disorder not related by symmetry. Disorder was successfully modeled with refined occupation ratio at one position CO / Cl = 70%:30%. Disorder of the second position was inversed in such way that overall occupancy summed up to one full CO and one full Cl ligands in the first coordination sphere of Re metal center. Set of geometrical (SADI) and thermal motion (SIMU, DELU) restrains were applied to achieve acceptable molecular fragment geometries and thermal motion parameter values.

For all the compounds hydrogen atoms positions were initially assigned from the residual electron density peaks coordinates. However, after initial placement all hydrogen atoms were treated as idealized contributions during the refinement. All scattering factors are contained in several versions of the SHELXTL program library, with the latest version used being v.6.12.¹⁸²

A.3.1 X-Ray Structures from Multiple Vantage Points

Multiple views of each x-ray structure (including full unit cell) as discussed in chapter 2.

Add X-ray structures

Figure A.1 X-ray crystal structure of **2.1**. Co-crystallized chloroform, hydrogen atoms, and thermal ellipsoids of ligand carbon atoms are omitted for clarity.

Figure A.2 X-ray crystal structure of **2.2**. Co-crystallized chloroform, hydrogen atoms, and thermal ellipsoids of ligand carbon atoms are omitted for clarity.

Figure A.3 X-ray crystal structure of **2.3**. Hydrogen atoms, and thermal ellipsoids of ligand carbon atoms are omitted for clarity.

Figure A.4 X-ray crystal structure of 2.5. Hydrogen atoms, and thermal ellipsoids of ligand carbon atoms are omitted for clarity.

Figure A.5 X-ray crystal structure of 2.8. Hydrogen atoms, and thermal ellipsoids of ligand carbon atoms are omitted for clarity.

A.4 $(\text{terpy-}\kappa^2-N,N')\text{Re}(CO)_3\text{Cl}(1)$

Re(CO)₅Cl (201 mg, 0.556 mmol) and 2,2:6,2 terpyridine (129 mg, 0.553 mmol) were mixed in 60 mL of toluene. The reaction mixture was heated to 100C for 1 hour under N2. During this time the solution turned a bright red. Upon cooling a yellow precipitate was formed. The solution was filtered, and the solid was washed with diethyl ether, and dried under vacuum. Compound **1** is a bright yellow powder that was isolated in 70 % yield (208 mg). Crystals were obtained from chloroform with addition of a small amount of hexanes as counter solvent. TGA: 8 % mass loss from 240-280°C. FTIR: 2019, 1981, 1889 cm⁻¹ (v C=O). ¹H NMR (CD₃CN, 400 MHz): δ 9.06 (ddd, J=5.6, 1.7, 0.8 Hz, 1H), 8.77 (ddd, J=4.9 Hz, 1H), 8.49 (td, J=8.2, 1.5 Hz, 2H), 8.28 (t, J=7.9 Hz, 1H), 8.22 (td, J=8.1, 1.6 Hz, 1H), 7.96 (td, J=7.8, 1.8 Hz, 1H), 7.79 (dt, J=7.8, 1.1 Hz, 1H), 7.80 (dd, J=7.7, 1.0 Hz, 1H), 7.63 (ddd, J=7.6, 5.5, 1.2 Hz, 1H), 7.55 (ddd, J=7.6, 5.0, 1.0 Hz, 1H). Elemental analysis calculated (%) for [C₁₈H₁₁ReClN₃O₃]: C 40.11, H 2.06, N 7.80, found C 39.96, H 2.09, N 7.69.

A.5 $(\text{terpy-}\kappa^3\text{-N,N',N'})\text{Re(CO)}_2\text{Cl (2)}$

Compound 1 (101 mg, 0.187 mmol) was placed in a tube furnace and heated to 240°C under N_2 flow for 60 minutes. A black solid was collected (90 mg) at 94 % yield based on the formula for 2. Crystals were obtained from chloroform with addition of a small amount of hexanes as counter solvent. FTIR: 1872, 1788 cm⁻¹ (v C=O). ¹H NMR (CD₃CN, 400 MHz): δ 8.70 (ddd, J=4.7, 1.8, 0.9 Hz, 2H), 8.65 (dt, J=8.0, 1.0, 1.0, 2H), 8.47 (d, J=7.8 Hz, 2H), 8.03 (t, J=7.8 Hz, 1H), 7.95 (td, J=7.7, 7.7, 1.9 Hz, 2H), 7.43 (ddd, J=7.5, 4.8, 1.2 Hz, 2H). Elemental analysis calculated (%) for [C₁₇H₁₁ReClN₃O₂]: C 39.96, H 2.17, N 8.22, found C 39.62, H 2.09, N 7.99.

A.6 $(\text{terpy-}\kappa^2\text{-N,N'})\text{Re}(\text{CO})_3\text{Br}$ (3)

Re(CO)₅Br (191 mg, 470 mmol) and 2,2:62 terpyridine (129 mg, 0.553 mmol) were allowed to react under conditions analogous to the preparation of **1**. A bright yellow powder was obtained, 0.223 g (0.382 mmol, 81 %). FTIR: 2012, 1910, 1886 cm⁻¹ (v C=O). ¹H NMR (CD₃CN, 400 MHz): δ 9.07 (ddd, J=5.6, 1.6, 0.9 Hz, 1H), 8.77 (ddd, J=4.6, 1.5, 0.8 Hz, 1H), 8.52 8.48 (m, 2H), 8.28 (t, J=7.9 Hz, 1H), 8.21 (td, J=8.0, 1.6 Hz, 1H), 7.97 (td, J=7.8, 1.8 Hz, 1H), 7.80 7.75(m, 2H), 7.63 (ddd, J=7.6, 5.5, 1.2 Hz, 1H), 7.55 (ddd, J=7.7, 4.9, 1.1 Hz, 1H). Elemental analysis calculated (%) for [C₁₈H₁₁ReBrN₃O₃]: C 37.06, H 1.90, N 7.20, found C 36.94, H 1.92, N 7.00.

A.7 $(\text{terpy-}\kappa^3-N,N',N'')\text{Re}(CO)_2\text{Br}$ (4)

Compound 3 (182 mg, 0.312 mmol) was placed in an tube furnace and heated to 230°C under N_2 flow for 60 minutes. A black solid was collected, 0.155 mg (0.279 mmol, 89 % yield). Crystals were obtained from chloroform with addition of a small amount of hexanes as counter solvent. FTIR: 1873, 1794 cm⁻¹ (v C=O). ¹H NMR (CD₃CN, 400 MHz): δ 8.95 (d, J=5.4 Hz, 2H), 8.24 (t, J = 8.1Hz, 4H), 8.05 (dd, J=8.2, 7.7 Hz, 1H), 7.90(td, J=7.9, 1.7 Hz, 2H), 7.63 (ddd, J=7.3, 5.5, 1.2 Hz, 2H) Elemental analysis calculated (%) for [C₁₇H₁₁ReBrN₃O₂]: C 36.76, H 2.00, N 7.57, found C 36.66, H 2.00, N 7.50.

A.8 $(\text{terpy-}\kappa^2\text{-N,N'})\text{Re}(\text{CO})_3\text{OTf}$ (7)

To 1 (80 mg, 0.148 mmol), $AgCF_3SO_3$ (46 mg, 0.179 mmol) was added in 10 mL CH_3CN . The reaction was stirred 24 h and kept dark. Solution was filtered to remove salts, then reduced in volume. Cold diethyl ether was used to precipitate product. Yellow-grey powder (7a) was collected by filtration, yielding 38mg (40 %). Crystals were grown from saturated chloroform with hexanes as countersolvent for X-ray crystallography. FTIR: 2030, 1895, 1890 cm⁻¹ (v C=O), 1280, 1228, 1204 cm⁻¹ (v SO₃). ¹H NMR (CD₃CN, 400 MHz): δ 9.05 (ddd, J=5.5, 1.6, 0.8 Hz, 1H), 8.79 (ddd, J=4.9, 1.8, 1.1 Hz, 1H), 8.57 (dd, J=8.1, 0.9 Hz, 1H), 8.54 (dt, J=8.2, 1.1 Hz, 1H), 8.37 (t, J=7.9 Hz, 1H), 8.31 (td, J=8.0, 1.6 Hz, 1H), 8.03 (td, J=7.7, 1.7 Hz, 1H), 7.87 (dd, J=7.8, 1.0 Hz, 1H), 7.75 (dt, J=7.8, 1.1 Hz, 1H), 7.72 (ddd, J=7.4, 5.9, 1.1 Hz, 1H), 7.61 (ddt, J=7.7, 4.8, 0.5, 0.5 Hz, 1H). Elemental analysis calculated (%) for [C₁₉H₁₁ReN₃O₆F₃S]: C 34.97, H 1.70, N 6.44, found C 31.80, H 1.73, N 5.33.

Alternately, to 1 (72 mg, 0.134 mmol) was added 10 mL CF₃SO₃H (excess) and temperature was increased to for 20 minutes. A black solution was neutralized with addition of 5% Na₂CO₃ in H₂O. Product was extracted with CHCl₃, then dried under vacuum to yield a brown solid (7b) (47 mg, 54 %).

A.9 $(\text{terpy-}\kappa^3\text{-N,N',N''})\text{Re(CO)}_2\text{OTf (8)}$

To 2 (77 mg, 0.143 mmol), AgSO₃CF₃ (47 mg, 0.183 mmol) was added in 15 mL CH₃CN. Solution was refluxed for 6 h in the dark under N₂ atmosphere. Solution was filtered, then reduced to minimal volume. Cold diethyl ether was added dropwise to precipitate product. Collected by filtration and washed with additional cold ether, yielding 75 mg (120 mmol, 80 %). Crystals grown from saturated methylene chloride, with hexanes as countersolvent for x-ray crystallography. FTIR: 1910, 1829 cm⁻¹ (v C=O), 1259, 1224, 1143 cm⁻¹ (v SO₃). ¹H NMR (CD₃CN, 400 MHz): δ 8.91(ddd, J=5.6, 1.6, 0.7 Hz, 2H), 8.32 (d, J=8.0 Hz, 2H), 8.28 (ddd, J=8.1, 1.4, 0.8 Hz, 2H), 8.19 (dd, J=8.8, 7.4 Hz, 1H), 8.02 (td, J=7.9, 1.5 Hz, 2H) 7.46 (ddd J=7.6, 5.6, 1.3 Hz, 2H). EA Elemental analysis

get temp

calculated (%) for [C $_{18}\rm H_{11}ReF_{3}SN_{3}O_{5}$]: C 34.62, H 1.78, N 6.37, found C 31.02, H 1.82, N 7.11.

Appendix B

Molecular Orbitals and Energy Diagrams

Frontier Molecular Orbitals (MOs) for each compound discussed in this thesis are collected below. These orbitals are generated with the Chemissian program.¹⁷⁹

Add all MOs

79

(a) LUMO+X

(b) LUMO

(c) HOMO-X

Figure B.1 Isosurface frontier molecular orbitals HOMO-X to LUMO+X of

Appendix C

TurboControl and TurboGo Manual

TurboControl is a series of scripts to run Turbomole jobs from Gaussian style inputs.

The following is the user manual included with distributions of TurboControl

C.1 Introduction

Gaussian software is well known for the user friendly GUI it contains (via GaussView). Turbomole, another computational suite, is known for its speed and optimizations, but has a significantly higher learning curve and is less beginner friendly. This software is an attempt to be able to use the user friendly input from Gaussian to smooth over the use of Turbomole.

C.2 System Requirements

There are two user-facing scripts available, both written to work with Turbomole 6.1-6.5 on clusters using Grid Engine queuing software. The only tests of operation are on a system with the following details:

- Rocks 6.1 (Emerald Boa)/CentOS 6.3
- Open Grid Scheduler/Grid Engine 2011.11p1
- Python 2.7.3

Other systems, including different operating systems, different versions of Grid Engine or python, or on other systems, are not supported.

Python dependencies include:

- pexpect 3.2^{183}
- \bullet openbabel^{184,185} (optional)

Prior to running TurboGo or TurboControl, a valid installation of Turbomole must be available. On systems where computational modules must be loaded, Turbomole must have been loaded to the environment. Additionally, running the Turbomole environment configuration is recommended but not required prior to launching TurboGo or TurboControl:

\$ source \$TURBODIR/Config_turbo_env

C.3 TurboGo

TurboGo is a script fun on an input file. It generates the inputs required for Turbomole jobs, and submits the job to the GridEngine queue before quitting. TurboGo is run with the following syntax:

\$ turbogo [-h] [-v] [-q] file

positional arguments:

file Read input from gaussian-type input FILE.

More info on the input files is available below. optional arguments:

- -h, --help Show this help message and exit
- -v, --verbose Run more verbose (show debugging info)
- -q, --quiet Run less verbose (show only warnings)

TurboGo saves a log file (turbogo.log) in the directory in which it is run. A second logfile (define.log) will remain if the setup crashes or is terminated at some points, or if the script is run verbose.

TurboGo writes the final coordinates to final_geometry.xyz. If openbabel is installed, it will also write finalgeom.mol. The entire optimization is written to optimization.xyz for viewing with a molecular viewer, such as vmd.

C.4 TurboControl

TurboControl is a management script called from a parent directory containing sub directories of input files. Each input file must be in its own directory. The input file format must be the same as the input format for TurboGo (listed above), with the extension '.in', '.inp', '.input', '.com', or '.gjf'. TurboControl reads the inputs and submits the jobs to the computational cluster queue. It then monitors running jobs to determine when the script has finished. If the job is an Opt-Freq, it prepares the frequency analysis and resubmits to the queue. TurboControl analyzes completed Opt-Freq jobs for true optimization, and attempts to re-run jobs with modified geometries when Transition States are found. TurboControl will not get stuck on the same transition state, but will return a 'stuck' job. TurboControl is run with the following syntax:

turbocontrol [-h] [-v/-q] [-s]

Optional arguments:

- -h, --help Show this help message and exit
- -v, --verbose Run more verbose (show debugging info)
- -q, --quiet Run less verbose (show only warnings)
- -s, --solvent List available solvents for COSMO and quit

TurboControl outputs information every 3 hours on the status of the jobs. It writes a logfile (turbocontrol.log) and may or may not leave other log files in each directory (depending on verbosity level). Ends when the last job finishes or crashes. Requires 1 node or can be run on headnode (minimal resource consumption especially after initial job preparation and submission.)

TurboControl assists with analysis by outputting a stats.txt file as jobs complete. This file contains file details, optimization and frequency timing details, energy, and the first frequency. Additional information can be requested by including the freeh keyword (see below).

C.5 Input File Format

The input file format is similar to that well known by Gaussian users. A series of keywords, one per line and indicated by a '%', is followed by the 'route card' (specific job information). Charge and spin is indicated, then the molecule is shown in Cartesian format. This is followed by optional modifications to the Turbomole Control file. Note the location of blank lines in the example (Section 5.7).

C.5.1 Keywords

Keywords are as follows:

- %nproc number of processors to use for the calculation job.
 - Synonym: %nprocessors
- %arch parallelization architecture to use for the job.
 - Synonyms: %architecture, %para_arch
- %maxcycles number of optimization iterations before failing.
- %autocontrolmod DEFAULT modify the control file to include optimizations to speed up the job.
- %nocontrolmod do not modify control file as above.
- %rt specify max expected runtime (for any part of job)in hours. Allows backfilling in gridengine queue to speed up job submission. For example, for a 1 hour opt and 4 hour freq, submit at least a rt of 4
- %cosmo use turbomole's COSMO solvation model with the specificed solvent or None to use the idealized solvent (epsilon = infinity). List of available solvents can be shown by running turbocontrol -s

Gaussian args, including %nosave, %rwf=[file], %chk=[file], and %mem=[memory] are silently ignored.

C.5.2 Route Card Options

Route cards take the form of the following:

[jobtype(s)] [joboption(s)]

Job types available:

- opt Perform a geometry optimization
- freq Perform a frequency analysis. Specify method via numforce or and affault = numforce
- sp Perform a single point energy calculation.
 - Cannot be combined with Opt or Freq
- ts Perform a transition state search to find 1 imaginary vibration.
 - Cannot be combined with Opt or Freq
- prep Prepare the job but do not submit to queue.
 - Cannot be combined with Opt or Freq

Job options available:

- ri Use Turbomole's ri approximation
- marij Use Turbomole's marij approximation
 - Requires ri
- disp Use Turbomole's implementation of Grimme's dispersion, version 3
- aoforce Use aoforce for frequency jobs

- numforce Use numforce for frequency jobs
- freeh Use Turbomole's freeh thermodynamics data script to extract thermodynamic information after frequency analysis

C.5.3 Title

Following the Route cards, a blank line is added, then a line containing the title of the calculation. This can include any characters, spaces, etc., remaining on only one line. This is followed by a blank line.

C.5.4 Charge and Spin

Charge and spin are listed as two numbers separated by a space: charge spin (eg:0 1)

C.5.5 Geometry

Geometry in xyz coordinate format: Element xcoord ycoord zcoord. Z-matrix geometry is not supported by TurboControl or TurboGo.

C.5.6 Additional control File Modifications

Additional lines to be added or removed from control. Lines automatically added are, as required,:

```
$ricore 0
$paroptions ga_memperproc 900000000000 9000000000
$parallel_parameters maxtask=10000
$ricore_slave 1
$maxcor 2048
```

Additional lines may be added, or lines removed, by placing them after the geometry with a \$ (for addition) or -\$ (for removal).

C.5.7 Example Input File

An example input file for benzene in dmf:

```
%nproc=4
%arch=GA
%maxcycles=250
%rt=6
%cosmo=dmf
# opt freq b3-lyp/def2-TZVP ri marij numforce
Benzene Optimization & Frequency
0 1
CCCCCC
   0.000
          1.396
                  0.000
   1.209
         0.698
                  0.000
   1.209 -0.698
                  0.000
   0.000 - 1.396
                  0.000
  -1.209 -0.698
                  0.000
 -1.209
          0.698
                  0.000
Η
   0.000
          2.479
                  0.000
Η
          1.240
   2.147
                  0.000
Η
   2.147 - 1.240
                  0.000
  0.000 - 2.479
                  0.000
H -2.147 -1.240
                  0.000
H -2.147
         1.240
                  0.000
$disp
-$paraoptions
```

C.6 Code Details

Coverage percentages of code unittests are listed in Table C.1. Results are low for def_op, screwer_op, cosmo_op, freeh_op, turbocontrol, and turbogo because they contain many lines of interacting with GridEngine or TurboMole. Testing is performed via monitoring the status of the scripts as they run in real conditions.

The code style is graded by PyLint and results are shown in Table C.2. PyLint describes coding style, adherence to guidelines, and readability. It does not describe code efficiency or usefulness.

 ${\bf Table~C.1~Test~Coverage~of~scripts~in~Turbocontrol}$

Name	Statements	Missing	Excluded	Coverage
cosmo_op	106	70	1	34%
$cosmo_op_test$	17	1	0	94%
def _op	302	226	1	25%
$def_{-}op_{-}test$	20	1	0	95%
$freeh_op$	162	55	1	66%
$freeh_op_test$	27	1	0	96%
screwer_op	71	25	1	65%
$screwer_op_test$	11	1	0	91%
$\operatorname{test_all}$	18	0	0	100%
turbocontrol	537	319	0	41%
$turbocontrol_test$	245	24	0	90%
turbogo	343	132	0	62%
$turbogo_helpers$	383	52	0	86%
turbogo_helpers_test	274	2	0	99%
$turbogo_test$	98	1	0	99%
TOTAL	2614	910	4	65%

 ${\bf Table~C.2~PyLint~Scores~for~Turbocontrol~Code}$

File	Score /10
test_all.py	2.22
turbogo.py	8.80
$turbogo_test.py$	6.97
turbocontrol.py	8.55
$turbocontrol_test.py$	7.18
$turbogo_helpers.py$	8.81
turbogo_helpers_test.py	7.45
${ m def_op.py}$	8.18
$def_{-}op_{-}test.py$	5.71
$screwer_op.py$	7.36
screwer_op_test.py	6.67
$freeh_op.py$	8.71
$freeh_op_test.py$	6.79
$cosmo_op.py$	8.22
$cosmo_op_test.py$	6.67

C.7 Citing TurboControl

TurboControl, Turbogo, or any other parts of this code may be cited as: Bulsink, Philip. TurboControl, v. 1.1.0. http://github.org/pbulsink/turbocontrol (accessed June 2014) Change the version number to match the version that you used, and change the accessed date to when you installed or downloaded TurboControl.

C.8 License

All third party software is a registered trademark of their respective creators. Use of third party software via this software is limited by the conditions as laid out by the respective companies. License to use this software in no way acts as a license to use any other separate referenced software.

The MIT License (MIT)

Copyright © 2014 Philip Bulsink

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-

RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Glossary of Terms

CCDC Cambridge Crystallography Data Centre

DFT Density Functional afd

DMF N,N-dimethylformamide

DMSO Dimethylsulfoxide

FTIR Fourier Transform Infrared

GC Gas Chromatography

GUI Graphical User Interface

HOMO Highest Occupied Molecular Orbital

IRC Intrinsic Reaction Coordinate

LUMO Lowest Unoccupied Molecular Orbital

MLCT Metal-Ligand Charge Transfer

MO Molecular Orbital

NMR Nuclear Magnetic Resonance

PCM Polarizable Continuum Model

RWGSR Reverse Water-Gas Shift Reaction

TCD Thermal Conductivity Detector

TD-DFT Time Dependant Density Functional Theorem

TEA Triethylamine

TEOA Triethanolamine

 \mathbf{TGA} Thermogravimetric Analysis

Bibliography

- 1. Zeise, W. C. J. Physik und Chemie (Schweigger) 1831, 62, 393–441.
- 2. Hunt, L. B. Platinum Metals Review 1984, 28, 76–83.
- 3. Griess, J. P.; Martius, C. A. Compt Rendus. 1861, 53, 922–925.
- 4. Birnbaum, K. Ann. Chem. (Liebig) **1868**, 145, 67–77.
- 5. Small, B. L.; Brookhart, M. Journal of the American Chemical Society 1998, 120, 7143–7144.
- 6. Small, B. L.; Brookhart, M.; Bennett, A. M. A. Journal of the American Chemical Society 1998, 120, 4049–4050.
- 7. J. P. Britovsek, G.; C. Gibson, V.; J. McTavish, S.; A. Solan, G.; J. P. White, A.; J. Williams, D.; J. P. Britovsek, G.; S. Kimberley, B.; J. Maddox, P. *Chem. Commun.* **1998**, 849–850.
- 8. Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Strömberg, S.; White, A. J. P.; Williams, D. J. *Journal of the American Chemical Society* **1999**, *121*, 8728–8740.
- 9. Gibson, V. C.; Redshaw, C.; Solan, G. A. *Chemical Reviews* **2007**, *107*, PMID: 17488059, 1745–1776.
- 10. Boudier, A.; Breuil, P.-A. R.; Magna, L.; Olivier-Bourbigou, H.; Braunstein, P. Chem. Commun. 2014, 50, 1398–1407.
- 11. Dudle, B.; Rajesh, K.; Blacque, O.; Berke, H. Journal of the American Chemical Society 2011, 133, 8168–8178.
- 12. Jain, K. R.; Herrmann, W. A.; Kühn, F. E. Coordination Chemistry Reviews 2008, 252, Chiral Catalysis, 556–568.
- 13. Kuninobu, Y.; Takai, K. Chemical Reviews **2011**, 111, 1938–1953.
- 14. Kusama, H; Narasaka, K Bulletin of the Chemical Society of Japan 1995, 68, 2379–2383.
- 15. Nishiyama, Y.; Kakushou, F.; Sonoda, N. Bulletin of the Chemical Society of Japan **2000**, 73, 2779–2782.

16. Kuninobu, Y.; Matsuki, T.; Takai, K. Journal of the American Chemical Society **2009**, 131, PMID: 19621953, 9914–9915.

- 17. Bolm, C.; Kesselgruber, M.; Hermanns, N.; Hildebrand, J. P.; Raabe, G. Angewandte Chemie International Edition 2001, 40, 1488–1490.
- 18. Zhao, W.-G.; Hua, R. Tetrahedron **2007**, 63, 11803 –11808.
- 19. Kawata, A.; Kuninobu, Y.; Takai, K. Chemistry Letters **2009**, 38, 836–837.
- Hori, H.; Koike, K.; Takeuchi, K.; Ishitani, O. Chemistry Letters 2000, 29, 376–377.
- 21. Hua, R.; Tian, X. The Journal of Organic Chemistry **2004**, 69, PMID: 15307759, 5782–5784.
- 22. Adams, R. D.; Falloon, S. B. Journal of the American Chemical Society 1994, 116, 10540–10547.
- 23. Adams, R. D.; Huang, M.; Huang, W.; Queisser, J. A. Journal of the American Chemical Society 1996, 118, 9442–9443.
- 24. Zhao, W.-G.; Hua, R. European Journal of Organic Chemistry **2006**, 2006, 5495–5498.
- 25. Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.-K.; Walter, E.; Yan, Y.-K. *Organometallics* **2000**, *19*, 170–183.
- 26. Bartholoma, M.; Valliant, J.; Maresca, K. P.; Babich, J.; Zubieta, J. *Chem. Commun.* **2009**, 493–512.
- 27. Schibli, R.; Schubiger, A. **2002**, 29, 1529–1542.
- 28. Coogan, M.; Fernández-Moreira, V.; Kariuki, B.; Pope, S.; Thorp-Greenwood, F. *Angewandte Chemie International Edition* **2009**, 48, 4965–4968.
- 29. Giordano, P. J.; Wrighton, M. S. Journal of the American Chemical Society 1979, 101, 2888–2897.
- 30. Fredericks, S. M.; Luong, J. C.; Wrighton, M. S. Journal of the American Chemical Society 1979, 101, 7415–7417.
- 31. Sacksteder, L.; Zipp, A. P.; Brown, E. A.; Streich, J.; Demas, J. N.; DeGraff, B. A. *Inorganic Chemistry* **1990**, *29*, 4335–4340.
- 32. Caspar, J. V.; Meyer, T. J. The Journal of Physical Chemistry 1983, 87, 952–957.
- 33. Yam, V. W.-W. Chem. Commun. 2001, 789–796.
- 34. Feliz, M.; Rodriguez-Nieto, F.; Ruiz, G.; Wolcan, E. Journal of Photochemistry and Photobiology A: Chemistry 1998, 117, 185-192.
- 35. Ruiz, G.; Wolcan, E.; Féliz, M. Journal of Photochemistry and Photobiology A: Chemistry 1996, 101, 119 –125.

36. Lin, R.; Fu, Y.; Brock, C. P.; Guarr, T. F. *Inorganic Chemistry* **1992**, *31*, 4346–4353.

- 37. Hino, J. K.; Della Ciana, L.; Dressick, W. J.; Sullivan, B. P. *Inorganic Chemistry* **1992**, *31*, 1072–1080.
- 38. Walters, K. A.; Kim, Y.-J.; Hupp, J. T. *Inorganic Chemistry* **2002**, 41, 2909–2919.
- 39. Striplin, D.; Crosby, G. Coordination Chemistry Reviews 2001, 211, 163 –175.
- Martin, T. A.; Ellul, C. E.; Mahon, M. F.; Warren, M. E.; Allan, D.; Whittlesey, M. K. Organometallics 2011, 30, 2200–2211.
- 41. Abel, E. W.; Wilkinson, G. J. Chem. Soc. 1959, 1501–1505.
- 42. Kirkham, W. J.; Osborne, A. G.; Nyholm, R. S.; Stiddard, M. H. B. *J. Chem. Soc.* **1965**, 550–553.
- 43. Zingales, F.; Sartorelli, U.; Trovati, A. Inorganic Chemistry 1967, 6, 1246–1248.
- 44. Gamelin, D. R.; George, M. W.; Glyn, P.; Grevels, F.-W.; Johnson, F. P. A.; Klotzbuecher, W.; Morrison, S. L.; Russell, G.; Schaffner, K.; Turner, J. J. *Inorganic Chemistry* **1994**, *33*, 3246–3250.
- 45. Martí, A. A.; Mezei, G.; Maldonado, L.; Paralitici, G.; Raptis, R. G.; Colón, J. L. European Journal of Inorganic Chemistry 2005, 2005, 118–124.
- 46. Morse, D. L.; Wrighton, M. S. Journal of the American Chemical Society 1976, 98, 3931–3934.
- 47. Giordano, P. J.; Fredericks, S. M.; Wrighton, M. S.; Morse, D. L. *Journal of the American Chemical Society* **1978**, *100*, 2257–2259.
- 48. Granifo, J.; Bird, S. J.; Orrell, K. G.; Osborne, A. G.; Šik, V. *Inorganica Chimica Acta* **1999**, *295*, 56 –63.
- Orrell, K. G.; Osborne, A. G.; Šik, V.; da Silva, M. W.; Hursthouse, M. B.; Hibbs,
 D. E.; Malik, K. A.; Vassilev, N. G. Journal of Organometallic Chemistry 1997,
 538, 171 –183.
- Abel, E. W.; Dimitrov, V. S.; Long, N. J.; Orrell, K. G.; Osborne, A. G.; Pain, H. M.; Sik, V.; Hursthouse, M. B.; Mazid, M. A. *J. Chem. Soc.*, *Dalton Trans.* 1993, 597–603.
- 51. Potgieter, K.; Mayer, P.; Gerber, T.; Yumata, N.; Hosten, E.; Booysen, I.; Betz, R.; Ismail, M.; van Brecht, B. *Polyhedron* **2013**, 49, 67 –73.
- 52. Gong, X.; Ng, P. K.; Chan, W. K. Advanced Materials 1998, 10, 1337–1340.
- 53. Yu, T.; Tsang, D. P.-K.; Au, V. K.-M.; Lam, W. H.; Chan, M.-Y.; Yam, V. W.-W. *Chemistry A European Journal* **2013**, *19*, 13418–13427.
- 54. Lo, K. K.-W.; Louie, M.-W.; Zhang, K. Y. Coordination Chemistry Reviews **2010**, 254, 18th International Symposium on the Photochemistry and Photophysics of Coordination Compounds Sapporo, 2009, 2603 –2622.

55. Lin, T.-P.; Chen, C.-Y.; Wen, Y.-S.; Sun, S.-S. *Inorganic Chemistry* **2007**, *46*, 9201–9212.

- 56. Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. Journal of the American Chemical Society 1995, 117, 11813–11814.
- 57. D. Beer, P.; Timoshenko, V.; Maestri, M.; Passaniti, P.; Balzani, V. *Chem. Commun.* **1999**, 1755–1756.
- 58. Beer, P. D.; Hayes, E. J. Coordination Chemistry Reviews 2003, 240, 35 Years of Synthetic Anion Receptor Chemistry 1968-2003, 167 –189.
- Amoroso, A. J.; Arthur, R. J.; Coogan, M. P.; Court, J. B.; Fernandez-Moreira,
 V.; Hayes, A. J.; Lloyd, D.; Millet, C.; Pope, S. J. A. New J. Chem. 2008, 32,
 1097–1102.
- 60. Amoroso, A. J.; Coogan, M. P.; Dunne, J. E.; Fernandez-Moreira, V.; Hess, J. B.; Hayes, A. J.; Lloyd, D.; Millet, C.; Pope, S. J. A.; Williams, C. *Chem. Commun.* **2007**, 3066–3068.
- 61. Gimeno, M. C.; Fernandez-Moreira, V.; Marzo, I. Chem. Sci. 2014, -.
- 62. Hawecker, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1983, 536–538.
- 63. Hawecker, J.; Lehn, J.-M.; Ziessel, R. *Helvetica Chimica Acta* **1986**, *69*, 1990–2012.
- 64. Takeda, H.; Ishitani, O. *Coordination Chemistry Reviews* **2010**, *254*, Inorganic Reaction Mechanisms A Tribute to Ralph Pearson on the occasion of his 90th birthday, 346 –354.
- 65. Christensen, P.; Hamnett, A.; Muir, A. V. G.; Timney, J. A. *J. Chem. Soc., Dalton Trans.* **1992**, 1455–1463.
- Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc., Chem. Commun. 1985, 1414–1416.
- 67. Caulton, K. G. European Journal of Inorganic Chemistry 2012, 2012, 435–443.
- 68. Lyaskovskyy, V.; de Bruin, B. ACS Catalysis **2012**, 2, 270–279.
- 69. Jurca, T.; Chen, W.-C.; Michel, S.; Korobkov, I.; Ong, T.-G.; Richeson, D. S. *Chemistry A European Journal* **2013**, *19*, 4278–4286.
- 70. Juris, A.; Campagna, S.; Bidd, I.; Lehn, J. M.; Ziessel, R. *Inorganic Chemistry* **1988**, *27*, 4007–4011.
- 71. Black, D. R.; Hightower, S. E. *Inorganic Chemistry Communications* **2012**, *24*, 16 –19.
- 72. Russell, S. K.; Darmon, J. M.; Lobkovsky, E.; Chirik, P. J. *Inorganic Chemistry* **2010**, 49, PMID: 20143847, 2782–2792.

Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567–570.

- 74. Song, C. Catalysis Today **2006**, 115, Proceedings of the 8th International Conference on Carbon Dioxide Utilization Dedicated to Professor Michele Aresta, 2 –32.
- 75. Matthews, H. D.; Gillett, N. P.; Stott, P. A.; Zickfeld, K. *Nature* **June 2009**, 459, 829–832.
- 76. Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S. C. B.; Frieler, K.; Knutti, R.; Frame, D. J.; Allen, M. R. *Nature* **Apr. 2009**, *458*, 1158–1162.
- 77. Neuhoff, K. Oxford Review of Economic Policy 2005, 21, 88–110.
- 78. Pera-Titus, M. Chemical Reviews **2014**, 114, 1413–1492.
- 79. Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. The Journal of Physical Chemistry Letters 2013, 4, 3056–3061.
- 80. Iremonger, S. S.; Liang, J.; Vaidhyanathan, R.; Martens, I.; Shimizu, G. K. H.; Daff Thomas, D.; Aghaji, M. Z.; Yeganegi, S.; Woo, T. K. *Journal of the American Chemical Society* **2011**, *133*, 20048–20051.
- 81. Leitner, W. Coordination Chemistry Reviews 1996, 153, 257 –284.
- 82. Olah, G. A.; Goeppert, A.; Prakash, G. K. S., Beyond Oil and Gas: The Methanol Economy, 2nd; Wiley: 2009.
- 83. Kang, P.; Cheng, C.; Chen, Z.; Schauer, C. K.; Meyer, T. J.; Brookhart, M. *Journal of the American Chemical Society* **2012**, *134*, 5500–5503.
- 84. Schwarz, H. A.; Dodson, R. W. The Journal of Physical Chemistry 1989, 93, 409–414.
- 85. Morris, A. J.; Meyer, G. J.; Fujita, E. *Accounts of Chemical Research* **2009**, *42*, PMID: 19928829, 1983–1994.
- 86. Arakawa, H. et al. Chemical Reviews **2001**, 101, PMID: 11709862, 953–996.
- 87. Li, W. In Advances in COjsub¿2j/sub¿ Conversion and Utilization; ACS Symposium Series, Vol. 1056; American Chemical Society: 2010; Chapter 5, pp 55–76.
- 88. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature Feb. 1979, 277, 637–638.
- 89. Lim, H.-K.; Shin, H.; Goddard, W. A.; Hwang, Y. J.; Min, B. K.; Kim, H. Journal of the American Chemical Society 0, 0, null.
- 90. Fisher, B. J.; Eisenberg, R. Journal of the American Chemical Society 1980, 102, 7361–7363.
- 91. Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D. H. M. W.; Mackor, A. Recueil des Travaux Chimiques des Pays-Bas 1984, 103, 288–295.

92. Beley, M.; Collin, J. P.; Ruppert, R.; Sauvage, J. P. *Journal of the American Chemical Society* **1986**, *108*, 7461–7467.

- 93. Simon-Manso, E.; Kubiak, C. P. *Organometallics* **2004**, *24*, 96–102.
- 94. Fujita, E.; Haff, J.; Sanzenbacher, R.; Elias, H. *Inorganic Chemistry* **1994**, *33*, 4627–4628.
- 95. Fujita, E.; Creutz, C.; Sutin, N.; Brunschwig, B. S. *Inorganic Chemistry* **1993**, *32*, 2657–2662.
- 96. Kimura, E.; Wada, S.; Shionoya, M.; Okazaki, Y. *Inorganic Chemistry* **1994**, *33*, 770–778.
- 97. Dhanasekaran, T.; Grodkowski, J.; Neta, P.; Hambright, P.; Fujita, E. *The Journal of Physical Chemistry A* **1999**, *103*, 7742–7748.
- 98. Lacy, D. C.; McCrory, C. C. L.; Peters, J. C. *Inorganic Chemistry* **2014**, *53*, 4980–4988.
- 99. Zeng, Q.; Tory, J.; Hartl, F. Organometallics 0, 0, null.
- Schneider, J.; Vuong, K. Q.; Calladine, J. A.; Sun, X.-Z.; Whitwood, A. C.; George, M. W.; Perutz, R. N. *Inorganic Chemistry* 2011, 50, 11877–11889.
- 101. Ishida, H.; Tanaka, K.; Tanaka, T. Organometallics 1987, 6, 181–186.
- 102. Maidan, R.; Willner, I. Journal of the American Chemical Society 1986, 108, 8100–8101.
- 103. Ishida, H.; Terada, T.; Tanaka, K.; Tanaka, T. *Inorganic Chemistry* **1990**, *29*, 905–911.
- 104. Kitamura, N.; Tazuke, S. Chemistry Letters 1983, 12, 1109–1112.
- 105. Tanaka, K.; Ooyama, D. Coordination Chemistry Reviews 2002, 226, 211 –218.
- 106. Doherty, M. D.; Grills, D. C.; Fujita, E. *Inorganic Chemistry* **2009**, 48, 1796–1798.
- 107. Doherty, M. D.; Grills, D. C.; Muckerman, J. T.; Polyansky, D. E.; Fujita, E. *Coordination Chemistry Reviews* **2010**, *254*, 18th International Symposium on the Photochemistry and Photophysics of Coordination Compounds Sapporo, 2009, 2472 –2482.
- 108. Tamaki, Y.; Koike, K.; Morimoto, T.; Yamazaki, Y.; Ishitani, O. *Inorganic Chemistry* 2013, 52, 11902–11909.
- 109. Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. Angewandte Chemie International Edition 2013, 52, 988–992.
- 110. Reithmeier, R. O.; Meister, S.; Rieger, B.; Siebel, A.; Tschurl, M.; Heiz, U.; Herdtweck, E. *Dalton Trans.* **2014**, –.
- 111. Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Journal of the American Chemical Society 2008, 130, 2023–2031.

112. Grills, D. C.; Fujita, E. The Journal of Physical Chemistry Letters **2010**, 1, 2709–2718.

- 113. Kutal, C.; Weber, M. A.; Ferraudi, G.; Geiger, D. Organometallics 1985, 4, 2161–2166.
- 114. Buckingham, D.; Dwyer, F.; Goodwin, H.; Sargeson, A. Australian Journal of Chemistry 1964, 17, 315–324.
- 115. Jurca, T. Charting New Territory in Bis(imino)pyridine Coordination Chemistry., PhD Thesis, University of Ottawa, 2012.
- 116. Anderson, P. A.; Keene, F. R.; Horn, E.; Tiekink, E. R. T. Applied Organometallic Chemistry 1990, 4, 523–533.
- 117. Civitello, E. R.; Dragovich, P. S.; Karpishin, T. B.; Novick, S. G.; Bierach, G.; O'Connell, J. F.; Westmoreland, T. D. *Inorganic Chemistry* **1993**, *32*, 237–241.
- 118. Kurz, P.; Probst, B.; Spingler, B.; Alberto, R. European Journal of Inorganic Chemistry 2006, 2006, 2966–2974.
- 119. Frisch, M. J. et al. Gaussian 09 Revision D.01., Gaussian Inc. Wallingford CT 2009.
- 120. Becke, A. D. The Journal of Chemical Physics 1993, 98, 5648–5652.
- 121. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
- 122. Hay, P. J.; Wadt, W. R. The Journal of Chemical Physics 1985, 82, 299–310.
- 123. Schäfer, A.; Huber, C.; Ahlrichs, R. The Journal of Chemical Physics 1994, 100, 5829–5835.
- 124. Tomasi, J.; Mennucci, B.; Cammi, R. Chemical Reviews 2005, 105, 2999–3094.
- 125. Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. The Journal of Chemical Physics 2006, 124 094107, -.
- 126. Compain, J.-D.; Bourrez, M.; Haukka, M.; Deronzier, A.; Chardon-Noblat, S. *Chem. Commun.* **2014**, *50*, 2539–2542.
- 127. Allen, F. H. Acta Crystallographica Section B 2002, 58, 380–388.
- 128. Portenkirchner, E.; Kianfar, E.; Sariciftci, N. S.; Knör, G. ChemSusChem 2014, 7, 1347–1351.
- 129. Rossenaar, B. D.; Hartl, F.; Stufkens, D. J. *Inorganic Chemistry* **1996**, *35*, 6194–6203.
- 130. Hayashi, Y.; Kita, S.; Brunschwig, B. S.; Fujita, E. Journal of the American Chemical Society 2003, 125, PMID: 14505419, 11976–11987.
- 131. Agarwal, J.; Johnson, R. P.; Li, G. *The Journal of Physical Chemistry A* **2011**, 115, 2877–2881.

132. Agarwal, J.; Sanders, B. C.; Fujita, E.; Schaefer III, H. F.; Harrop, T. C.; Muckerman, J. T. *Chem. Commun.* **2012**, *48*, 6797–6799.

- 133. Agarwal, J.; Fujita, E.; Schaefer, H. F.; Muckerman, J. T. Journal of the American Chemical Society 2012, 134, 5180–5186.
- 134. Grills, D. C.; Matsubara, Y.; Kuwahara, Y.; Golisz, S. R.; Kurtz, D. A.; Mello, B. A. The Journal of Physical Chemistry Letters **2014**, 5, 2033–2038.
- 135. Morimoto, T.; Nakajima, T.; Sawa, S.; Nakanishi, R.; Imori, D.; Ishitani, O. *Journal of the American Chemical Society* **2013**, *135*, 16825–16828.
- 136. Johnson, F. P. A.; George, M. W.; Hartl, F.; Turner, J. J. *Organometallics* **1996**, 15, 3374–3387.
- 137. Koike, K.; Okoshi, N.; Hori, H.; Takeuchi, K.; Ishitani, O.; Tsubaki, H.; Clark, I. P.; George, M. W.; Johnson, F. P. A.; Turner, J. J. Journal of the American Chemical Society 2002, 124, 11448–11455.
- 138. Smieja, J. M.; Benson, E. E.; Kumar, B.; Grice, K. A.; Seu, C. S.; Miller, A. J. M.; Mayer, J. M.; Kubiak, C. P. *Proceedings of the National Academy of Sciences* **2012**, *109*, 15646–15650.
- 139. Machan, C. W.; Sampson, M. D.; Chabolla, S. A.; Dang, T.; Kubiak, C. P. Organometallics 2014, Accepted Article, DOI: 10.1021/om500044a.
- 140. Kou, Y.; Nabetani, Y.; Masui, D.; Shimada, T.; Takagi, S.; Tachibana, H.; Inoue, H. *Journal of the American Chemical Society* **2014**, *136*, 6021–6030.
- 141. Kalyanasundaram, K.; Kiwi, J.; Grätzel, M. Helvetica Chimica Acta 1978, 61, 2720–2730.
- 142. TURBOMOLE V6.5, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH., available from www.turbomole-gmbh.com, 2013.
- 143. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. *Chemical Physics Letters* **1989**, *162*, 165 –169.
- Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.
- 145. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 146. Haase, F.; Ahlrichs, R. Journal of Computational Chemistry 1993, 14, 907–912.
- 147. Treutler, O.; Ahlrichs, R. The Journal of Chemical Physics 1995, 102, 346–354.
- 148. Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. 1997, 97, 119–124.
- 149. Eichkorn, K; Treutler, O; Öhm, H; Häser, M; Ahlrichs, R *Chemical Physics Letters* **1995**, 242, 652 –660.
- 150. Sierka, M.; Hogekamp, A.; Ahlrichs, R. The Journal of Chemical Physics 2003, 118, 9136–9148.

151. Deglmann, P.; May, K.; Furche, F.; Ahlrichs, R. Chemical Physics Letters **2004**, 384, 103 –107.

- 152. Weigend, F. Phys. Chem. Chem. Phys. **2002**, 4, 4285–4291.
- 153. Von Arnim, M.; Ahlrichs, R. Journal of Computational Chemistry 1998, 19, 1746–1757.
- 154. Ahlrichs, R. Phys. Chem. Chem. Phys. **2004**, 6, 5119–5121.
- 155. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. The Journal of Chemical Physics **2010**, 132 154104, -.
- 156. Deglmann, P.; Furche, F.; Ahlrichs, R. Chemical Physics Letters **2002**, 362, 511 –518.
- 157. Grimme, S.; Furche, F.; Ahlrichs, R. Chemical Physics Letters 2002, 361, 321 328.
- 158. Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 799–805.
- 159. Shaver, R. J.; Rillema, D. P. *Inorganic Chemistry* **1992**, *31*, 4101–4107.
- 160. Gibson, D. H.; Yin, X. *Journal of the American Chemical Society* **1998**, *120*, 11200–11201.
- 161. H. Gibson, D.; Yin, X. Chem. Commun. 1999, 1411–1412.
- 162. Gibson, D. H.; Yin, X.; He, H.; Mashuta, M. S. Organometallics **2003**, 22, 337–346.
- 163. Fujita, E.; Muckerman, J. T. *Inorganic Chemistry* **2004**, *43*, PMID: 15554628, 7636–7647.
- 164. Bokarev, S. I.; Hollmann, D.; Pazidis, A.; Neubauer, A.; Radnik, J.; Kuhn, O.; Lochbrunner, S.; Junge, H.; Beller, M.; Bruckner, A. *Phys. Chem. Chem. Phys.* **2014**, *16*, 4789–4796.
- 165. Chisholm, M. H.; Huffman, J. C.; Rothwell, I. P.; Bradley, P. G.; Kress, N.; Woodruff, W. H. *Journal of the American Chemical Society* **1981**, *103*, 4945–4947.
- 166. Castella-Ventura, M.; Kassab, E.; Buntinx, G.; Poizat, O. *Phys. Chem. Chem. Phys.* **2000**, *2*, 4682–4689.
- 167. Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. *Inorganic Chemistry* **2009**, *48*, PMID: 19673484, 8304–8316.
- 168. Irwin, M.; Jenkins, R. K.; Denning, M. S.; Krämer, T.; Grandjean, F.; Long, G. J.; Herchel, R.; McGrady, J. E.; Goicoechea, J. M. *Inorganic Chemistry* **2010**, *49*, 6160–6171.
- 169. Lukehart, C.; Zeile, J. V. Journal of Organometallic Chemistry 1977, 140, 309 –316.

List of To Dos 102

170. Lee, H.-J.; Lloyd, M. D.; Harlos, K.; Clifton, I. J.; Baldwin, J. E.; Schofield, C. J. Journal of Molecular Biology 2001, 308, 937 –948.

- 171. Mauser, H.; King, W. A.; Gready, J. E.; Andrews, T. J. *Journal of the American Chemical Society* **2001**, *123*, PMID: 11686683, 10821–10829.
- 172. Souter, P. F.; Andrews, L. Journal of the American Chemical Society 1997, 119, 7350–7360.
- 173. Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. *Science* **2004**, *305*, 1757–1759.
- 174. Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angewandte Chemie International Edition 2011, 50, 8510–8537.
- 175. Gibson, D. H. Chemical Reviews 1996, 96, 2063–2096.
- 176. Creutz, C.; Chou, M. H. Journal of the American Chemical Society 2007, 129, 10108–10109.
- 177. Shavaleev, N. M.; Barbieri, A.; Bell, Z. R.; Ward, M. D.; Barigelletti, F. New J. Chem. **2004**, 28, 398–405.
- 178. Bulsink, P. TurboControl v1.1.0., http://github.com/pbulsink/turbocontrol.
- 179. Skripnikov, L. Chemissian, a computer program to analye and visualize quantum-chemical calculations., http://chemissian.com.
- 180. Blessing, R. H. Acta Crystallographica Section A 1995, 51, 33–38.
- 181. Sheldrick, G. Cell_Now., Bruker AXS: Madison, WI, 2004.
- 182. Sheldrick, G. M. Acta Crystallographica Section A 2008, 64, 112–122.
- 183. Spurrier, N. Pexpect, version 3.2., http://pexpect.readthedocs.org/en/latest/index.html.
- 184. Open Babel Package, version 2.3.1., http://openbabel.org.
- 185. O'Boyle, N. M.; Banck, M; James, C. A.; Morley, C; Vandermeersch, T; Hutchison, G. R. J. Cheminf. 2011, 3, 33.

Todo list

lim2014 is ASAP	6
zeng2014 is ASAP, get actual once published	6
check that value	9
Remove 'AgR', replace with 'AgCN, AgOTf', add structure labels (2.x). Sym-	
metrize molecule, break apart bidentate & Terdentate, move HOTf to top,	
add solvent for Ag rxn	10
check compounds & spectra	12
Topspin shows scan numbers?	13
the rest of structures	14
TEOA insertion, maybe clear is a acid, formate, carbonate, tricarbonylcation or	
other complex?	38
check carbenergy values for 4.19	48
numb	50
From this point onwards the reaction proceeds in achievable downhill steps, the	
formation of the dimer is the rate limiting step for the entire reaction pathway.	50
maybe take this out?	51
fix numbering see carbonate	53
check compound numbers	56
What is X	59
SOLVE ENERGY	59
Add X-ray structures	68
get temp	76
Add all MOs	78