TD6 : Séries de Fourier

Notation : pour $n \in \mathbb{Z}$ et f continue par morceau 2π -périodique,

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{int}dt, \qquad a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t)cos(nt)dt, \qquad b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t)sin(nt)dt$$

Exercice 1.

1. Donner la série de Fourier de

$$f(x) = 3e^{2ix} - 4e^{12x}$$

$$g(x) = \sin^3(x) + \cos(2x)$$

- 2. Donner la série de Fourier de la fonction 2π -périodique h définie par h(x) = |x| pour $x \in [-\pi, \pi[$.
- 3. Déduire de la question précédente que

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} \quad \text{et} \quad \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^2}{96}$$

Exercice 2. Soit f une fonction 2π -périodique.

- 1. Pour $n \in \mathbb{N}$, quel sont les liens entre $c_n(f)$ et $c_{-n}(f)$ lorsque f est paire ou impaire? Que peut-on dire de a_n et b_n dans ces cas?
- 2. On suppose que $f \in \mathcal{C}^k(\mathbb{R})$. Montrer que $c_n = o(|n|^{-k})$ lorsque $n \to +\infty$ ou $-\infty$.

Exercice 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre complexe dont la série converge *absolument*, c'est-à-dire telle que $\sum_{n\in\mathbb{Z}} |u_n| < +\infty$ (avec la notation $\sum_{n\in\mathbb{Z}} |u_n| = |u_0| + \sum_{n=1}^{+\infty} (|u_n| + |u_{-n}|)$).

1. Montrer que la série de fonction

$$g(x) = \sum_{n \in \mathbb{Z}} u_n e^{inx} := u_0 + \sum_{n \geqslant 1} (u_n e^{inx} + u_{-n} e^{-inx})$$

converge normalement.

- 2. Montrer que g est continue, 2π -périodique et que ses coefficients de Fourier sont donnés par $c_n(f) = u_n$.
- 3. Soient $\varepsilon > 0$ et $k \in \mathbb{N}_*$. On suppose $u_n = o(|n|^{-k-1-\varepsilon})$ lorsque $n \to +\infty$ ou $-\infty$. Montrer que g est de classe \mathcal{C}^k .

Exercice 4.

1. Soit $a \neq 0$. Donner le développement en série de Fourier de la fonction 2π -périodique f définie par $f(x) = e^{ax}$ pour $x \in [0, 2\pi[$.

1

- 2. En déduire, pour $a \neq 0$, la valeur de $g(a) = \sum_{n \geqslant 1} \frac{1}{a^2 + n^2}$.
- 3. Montrer que la fonction g est continue en 0. En déduire la valeur de $\sum_{n\geqslant 1}\frac{1}{n^2}$.