```
clear; clc;
rng(123456);
% Import data
data = readtable('RRdata.xlsx'); % function: readtable
      = data.PCGDP1;
                          % GDP growth (PCGDP1)
      Tax
timeraw = (datetime(1947,01,01):calquarters(1):datetime(2007,12,01))';
%% ----- part 1.a) -----
% Estimate the model: GDPgr= a + sum^{M=12}_{i=0} b_i Tax_{t-i} + u_t;
% In the matrix form
%
               Y t = X t B + u t
% where:
%
   Y_t = GDPgr
%
      X_t = [1 X_t X_{t-1} ... X_{t-M}]
      B = [a b_i]'
% ------ Set up -----
M
     = 12; % lag length
Xlags = lagmatrix(Tax,0:M);
                                              % create lag
matrix: lagmatrix
Χ
    = Xlags(M+1:end,:);
                                   % sufficient observations of X
Y = GDPgr(M+1:end);
time = timeraw(M+1:end);
hor = 0:1:M;
                                    % sufficient observations of Y
                                   % number of response horizon
Κ
      = size(Xlags,2)+1;
                                    % number of estimators
                                    % number of observations in full
      = size(Xlags,1);
Т
samples
mdlest = fitlm(X,Y);
                                        % estimate model using
fitlm
disp(mdlest)
                                   % display regression output
```

## Linear regression model:

 $y \sim 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13$ 

## Estimated Coefficients:

|             | Estimate  | SE       | tStat    | pValue     |
|-------------|-----------|----------|----------|------------|
|             |           |          |          |            |
| (Intercept) | 0.79135   | 0.066308 | 11.934   | 1.3455e-25 |
| x1          | -0.093414 | 0.29063  | -0.32142 | 0.7482     |
| x2          | -0.29417  | 0.29048  | -1.0127  | 0.31232    |
| x3          | 0.15591   | 0.29003  | 0.53755  | 0.59144    |
| x4          | -0.51337  | 0.29023  | -1.7688  | 0.078327   |
| x5          | -0.37203  | 0.29098  | -1.2786  | 0.20242    |
| х6          | -0.24342  | 0.29056  | -0.83777 | 0.40308    |
| x7          | -0.31234  | 0.29068  | -1.0745  | 0.28379    |
| x8          | -0.76069  | 0.25272  | -3.0101  | 0.0029197  |
| x9          | -0.29469  | 0.25313  | -1.1642  | 0.24564    |
| x10         | -0.26009  | 0.25277  | -1.029   | 0.30463    |
| x11         | -0.09251  | 0.25247  | -0.36641 | 0.71441    |
| x12         | 0.36308   | 0.25262  | 1.4373   | 0.15208    |
| x13         | 0.20004   | 0.25588  | 0.78177  | 0.4352     |

```
R-squared: 0.102, Adjusted R-Squared: 0.0488
F-statistic vs. constant model: 1.91, p-value = 0.0302
% % ===== store the estimated values
% Bhat
         = mdlest.Coefficients.Estimate;
                                                % store the estimators
% res
        = mdlest.Residuals.Raw;
                                                % store the residuals
% VarBhat = mdlest.CoefficientCovariance;
%% ======= OLS estimator
% sufficient number of observations for estimation
T1 = T-M;
Xreg = [ones(T1,1) X];
Bhat =(Xreg'*Xreg)\(Xreg'*Y); % OLS estimates
res = Y-Xreg*Bhat;
Sigma u = (1/T1)*res'*res;
VarBhat = inv(Xreg'*Xreg)*Sigma_u;
% ===== cumulated effects
beta
      = Bhat(2:end);
                                              % beta=[b0 b1 ...b12]'
resp = cumsum(beta);
                                                        % cumsum
% use bootstrap to calculate the standard error estimation for
% impulse responses (cumulative effects)
% =============== boostrap ===============
ndraws=10000:
P = chol(VarBhat, 'lower'); % Cholesky decomposition.
resp bstr=zeros(ndraws,M+1);
% start boostrappingg
for j=1:ndraws
   coeff_bstr=Bhat+P*mvnrnd(0,1,K); % draw beta from the normal distribution
   bsum=cumsum(b bstr);
                                 % the cumulated effects
   resp_bstr(j,:)=bsum';
end
% mean and estimated standard error
resp_mean = mean(resp_bstr,1)';
                                      % mean
                                      % std
resp std = std(resp bstr,1)';
% t-value
gam_tval = resp./resp_std;
% lower and upper bound of 68% CI
resp lb = resp+tinv(0.16,T-M)*resp std; % lower bound
resp ub = resp+tinv(0.84,T-M)*resp std; % upper bound
% ===== plot
figure
plot(hor,resp,'b','LineWidth',1); hold on;
plot(hor,resp lb,'-k'); hold on;
```

Number of observations: 232, Error degrees of freedom: 218

Root Mean Squared Error: 0.946

plot(hor,resp\_ub,'-k'); hold on;

```
plot(hor,zeros(M+1,1),':k');
xlim([0 M]);
xlabel('horizon');
ylabel('response');
title('Response of GDP to the fiscal shock');
```







```
% ===== Ljung-Box Q-test for residual autocorrelation: lbqtest
[~,pval_lbq,stat_lbq,cval] = lbqtest(res,"Lags",1:12);
tab_lbq = table(pval_lbq',stat_lbq',cval');
disp(tab_lbq)
```

| Var1       | Var2   | Var3   |
|------------|--------|--------|
|            |        |        |
| 1.5201e-07 | 27.564 | 3.8415 |
| 1.8383e-08 | 35.624 | 5.9915 |
| 8.963e-08  | 35.631 | 7.8147 |
| 2.5616e-07 | 36.257 | 9.4877 |
| 2.6052e-07 | 38.8   | 11.07  |
| 7.4136e-07 | 38.922 | 12.592 |
| 1.5917e-06 | 39.467 | 14.067 |
| 4.0021e-06 | 39.481 | 15.507 |
| 7.3948e-06 | 40.065 | 16.919 |
| 8.7972e-06 | 41.61  | 18.307 |
| 1.769e-05  | 41.779 | 19.675 |
| 1.0137e-05 | 45.042 | 21.026 |

```
%% ------ Part 1c: Newey West standard error -----
% ===== Newey-West covariance matrix estimation: hac
q = round(T^(1/4));
covNW = hac(X,Y,"Bandwidth",q+1);
```

Estimator type: HAC Estimation method: BT Bandwidth: 5.0000 Whitening order: 0

Effective sample size: 232 Small sample correction: on

## Coefficient Covariances:

|       | Const   | x1      | x2      | x3      | x4      | x5      | x6      | x7      | x8      | x9      | x10     | ×11     |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Const | 0.0061  | -0.0008 | 0.0016  | 0.0005  | -0.0004 | 0.0050  | 0.0011  | 0.0039  | 0.0015  | -0.0010 | -0.0027 | -0.0010 |
| x1    | -0.0008 | 0.1140  | 0.0163  | 0.0375  | -0.0091 | -0.0478 | -0.0029 | -0.0187 | -0.0242 | -0.0128 | -0.0039 | -0.0024 |
| x2    | 0.0016  | 0.0163  | 0.0584  | 0.0200  | 0.0003  | -0.0057 | -0.0098 | -0.0016 | -0.0083 | 0.0006  | -0.0031 | -0.0007 |
| x3    | 0.0005  | 0.0375  | 0.0200  | 0.0404  | 0.0110  | -0.0078 | 0.0010  | -0.0104 | -0.0184 | -0.0183 | -0.0201 | -0.0069 |
| x4    | -0.0004 | -0.0091 | 0.0003  | 0.0110  | 0.0806  | 0.0250  | 0.0086  | -0.0213 | -0.0128 | -0.0164 | -0.0119 | 0.0036  |
| x5    | 0.0050  | -0.0478 | -0.0057 | -0.0078 | 0.0250  | 0.0556  | 0.0078  | 0.0002  | -0.0011 | -0.0127 | -0.0097 | -0.0048 |
| х6    | 0.0011  | -0.0029 | -0.0098 | 0.0010  | 0.0086  | 0.0078  | 0.0508  | 0.0236  | -0.0015 | -0.0154 | -0.0223 | -0.0063 |
| x7    | 0.0039  | -0.0187 | -0.0016 | -0.0104 | -0.0213 | 0.0002  | 0.0236  | 0.0643  | 0.0098  | 0.0055  | -0.0183 | -0.0110 |
| x8    | 0.0015  | -0.0242 | -0.0083 | -0.0184 | -0.0128 | -0.0011 | -0.0015 | 0.0098  | 0.0843  | 0.0468  | 0.0517  | 0.0082  |
| x9    | -0.0010 | -0.0128 | 0.0006  | -0.0183 | -0.0164 | -0.0127 | -0.0154 | 0.0055  | 0.0468  | 0.0804  | 0.0667  | 0.0210  |
| x10   | -0.0027 | -0.0039 | -0.0031 | -0.0201 | -0.0119 | -0.0097 | -0.0223 | -0.0183 | 0.0517  | 0.0667  | 0.1298  | 0.0372  |
| x11   | -0.0010 | -0.0024 | -0.0007 | -0.0069 | 0.0036  | -0.0048 | -0.0063 | -0.0110 | 0.0082  | 0.0210  | 0.0372  | 0.0378  |
| x12   | -0.0007 | 0.0140  | -0.0008 | 0.0050  | 0.0011  | -0.0048 | -0.0027 | -0.0073 | -0.0082 | 0.0008  | 0.0175  | 0.0160  |
| x13   | -0.0003 | 0.0222  | 0.0047  | 0.0093  | 0.0047  | -0.0060 | -0.0032 | -0.0164 | -0.0077 | -0.0072 | 0.0162  | 0.0205  |

```
% ================= boostrap ===========================
ndraws=10000;
P=chol(covNW, 'lower'); % Cholesky decomposition.
resp_bstr=zeros(ndraws,M+1);
% start boostrapping
for j=1:ndraws
   ABhat_bstr=Bhat+P*mvnrnd(0,1,K); % draw beta from the normal distribution
   bsum=cumsum(b_bstr);
                                % the cumulated effects
   resp_bstr(j,:)=bsum';
end
% ===== Mean and Estimated standard error for the responses
respmean = mean(resp_bstr,1)';
           = std(resp_bstr,1)';
respseNW
% ============== End boostrap ========================
% ===== Newey-West t-value
gam_NWtval=resp./respseNW;
% construct table
results3=array2table([hor', resp, gam_tval, gam_NWtval], "VariableNames",...
   ["horizon", "responses", "conventional t-value", "Newey-West t-value"]);
disp(results3)
```

| horizon | responses | conventional t-value | Newey-West t-value |
|---------|-----------|----------------------|--------------------|
|         |           |                      |                    |
| 0       | -0.093414 | -0.33056             | -0.27603           |
| 1       | -0.38759  | -0.9597              | -0.84829           |
| 2       | -0.23168  | -0.46655             | -0.38482           |
| 3       | -0.74505  | -1.3178              | -1.1217            |
| 4       | -1.1171   | -1.812               | -1.7248            |
| 5       | -1.3605   | -2.0411              | -1.9741            |
| 6       | -1.6728   | -2.369               | -2.3988            |

| 7  | -2.4335 | -3.2901 | -3.5598 |
|----|---------|---------|---------|
| 8  | -2.7282 | -3.4996 | -3.8181 |
| 9  | -2.9883 | -3.6532 | -3.5721 |
| 10 | -3.0808 | -3.618  | -3.4203 |
| 11 | -2.7177 | -3.0393 | -2.8405 |
| 12 | -2.5177 | -2.6811 | -2.403  |