

A Robust Implementation of the Expectation-Maximization Algorithm to a Hidden Markov Model

Aniruddha Deshpande¹, Alexander Birch²

¹Technology & Policy Program ²Sloan School of Management

Introduction - Hidden Markov Model

- Statistical model that can be used to describe the evolution of observable events that depend on internal factors, which are not directly observable
- **Key Assumption**: State evolution is a **Markov** process
- **S**: Unobserved internal states
- X: Observable data
- $X_t \sim P_{St}$ (.) : Set of Emission distributions
- $A_{ii} = P(S_{t+1} = j | S_t = i)$: State transition probabilities
- $\pi_i = P(S_1 = i)$: Initial State probabilities
- Given true model parameters, **Viterbi Algorithm** estimates underlying state sequence using data sequence S
- Applications: Speech recognition, Gene prediction, Computational Finance

Parameter Estimation – EM algorithm

- $\textbf{A}, \boldsymbol{\pi}$, P: Estimate transition probabilities, initial probabilities, emission distribution to be estimated
- Parameter estimation using Maximum Likelihood Estimation
- Non-trivial as full data is not observed, only X observed; states S unknown

• Expectation-Maximization Algorithm:

- Iterative algorithm used for parameter estimation with partially observable data. In each iteration
- Initialize: θ^0
- E-step: Compute $U(\theta, \theta^i) = E_{P_{Z|Y}(.|y;\theta^i)}(P_Z(z;\theta))$
- M-Step: $heta^{i+1} = argmax_{ heta \in \Theta} U(heta, heta^i)$

KEY IDEA: Transform M-step of the algorithm to a robust optimization step

- Robust M-step: $heta^{i+1} = argmax_{ heta \in \Theta} min_{y \in U} U(heta, heta^i)$
- Optimistic M-step: $heta^{i+1} = argmax_{ heta \in \Theta} max_{y \in U} U(heta, heta^i)$

Problem Formulation and Inner optimization

- Z = (S,X) ; Y = X
- Emission distributions: 1D Gaussian Emission distributions
 - Mean and Variance depending on the underlying state

- m: Number of states; T: Number of timesteps;
- **r**: Size of uncertainty set; $|\Delta x| < r$
- Inner Optimization problem:

$$\min_{|\Delta x_t| \le r; \forall t \in [T]} \sum_{i=1}^{m} \sum_{t=1}^{T} \left(-\frac{\alpha_i(t)\beta_i(t)}{2\sigma_i^2}\right) (x_t + \Delta x_t - \mu_i)$$

- **Robust: Non-convex** constrained optimization problem, with linear constraints
- Optimistic: Convex constrained optimization problem, with linear constraints
- α and β are quantities computed in the E-step

Algorithm

Dataset & Experiments

- **Dataset** Synthetic data generated from:
 - HMM with 5 states, Known 1D Gaussian emissions -
 - S, X: 10 sequences of length 500 for training, 5 sequences for testing
 X_{noisv}: Add zero-mean noise with variances 0.1 to 1.0

• Evaluation metrics:

- **D(A_{true} | | A_{est})** Average KL-Divergence b/w rows of true and estimated transition probability matrix
- **State Prediction accuracy**: Fraction of states predicted correctly using estimated parameters

Experiments:

- Run robust and optimistic EM with varying uncertainty set sizes on entire range of noisy data
- Uncertainty set: r in [0.01, 0.02, 0.05, 0.1, 0.5]
- Observe how performance metrics vary with changing r and noise
- Timing analysis

Results

Metric1:

Improvements for some cases of robust EM
No improvements with optimistic EM
Metric2:

Both robust and optimistic EM given improved performance for some cases

Trend: Best performance for intermediate r value

Metric 2: State Prediction Accuracy on Test set

Timing Analysis

Scalability					
# States	Sequence Length	# Sequences	Standard (s)	Robust(s)	Optimistic (s)
5	500	10	8.62	134.42	33.32
10	500	10	20.75	186.68	59.35
20	500	10	96.63	369.91	150.81
2	100	5	2.69	32.56	2.12
2	200	5	3.34	56.07	3.36
2	400	5	1.57	70.89	5.08
2	50	10	0.51	19.72	2.20
2	50	20	0.83	38.48	3.78
2	50	40	1.40	73.05	6.64

Areas for future work

- Generalize formulation for n-dimensional Gaussian emissions
- Generalize formulation for mixture of Gaussian emissions Applications in speech recognitions
- Explore theoretical performance bounds, or bound on uncertainty set size for improved performance