Федеральное государственное бюджетное образовательное учреждение					
высшего образования					
"Уфимский государственный авиационный технический университет"					

Кафедра Высокопроизводительных вычислительных технологий и систем

Дисциплина: Математическое моделирование

Отчет по лабораторной работе N_{2} 3

Тема: «Моделирование распространения электромагнитных волн в плоском волноводе.»

Группа ПМ-453	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Шамаев И.Р.			
Принял	Лукащук В. О.			

Цель работы: получить навык моделирования распространения электромагнитных волн в неоднородных волноводах на основе решения краевой задачи для уравнения Гельмгольца.

Постановка задачи.

Рассматривается задача распространения электромагнитной волны в плоском волноводе.

В случае полуограниченного однородного канала постоянного сечения математическая модель имеет вид краевой задачи для уравнений Гельмгольца. Рассматриваются граничные условия первого рода. Модельная задача имеет следующий вид:

$$u_{xx} + u_{yy} + k^{2}u = 0, \ x \in (0, \infty), \ y \in (0, 1);$$

$$u(0, y) = f(y), \frac{\partial u}{\partial x}\Big|_{x \to \infty} = 0, \ y \in [0, 1];$$

$$u(x, 0) = u(x, 1) = 0, \ x \in \mathcal{L},$$
(1.1)

где u – потенциал электромагнитного поля, k – волновое число.

В случае, когда канал имеет поперечную неоднородность свойств, уравнение модифицируется:

$$u_{xx} + u_{yy} + k^2 \psi(y) u = 0$$
,

где функция $\psi(y)$ описывает вид неоднородности. В данной работе будут рассматриваться каналы со слабой неоднородностью, то есть каналы, для которых справедливо представление $\psi(y) \approx 1 + \varepsilon \phi(y)$, где ε — малый параметр. Численное моделирование канала неограниченной длины не представляется возможным, поэтому рассматривается канал некоторой конечной длины L.

Таким образом, решаемая в лабораторной работе краевая задача имеет вид

$$u_{xx} + u_{yy} + k^{2}[1 + \varepsilon \phi(y)]u = 0, \ x \in (0, \infty), \ y \in (0, 1);$$

$$u(0, y) = f(y), \frac{\partial u}{\partial x}\Big|_{x = L} = 0, y \in [0, 1];$$

$$u(x, 0) = u(x, 1) = 0, \ x \in [0, L].$$
(1.2)

Функция f(y) задается в виде δ -функции:

$$f(y) = \delta(y - y_0) \tag{1.3}$$

Для модели (1.2), (1.3) в работе необходимо выполнить следующие действия:

1) разработать конечно-разностную схему численного решения задачи (1.2), (1.3) при условии, что δ -функция аппроксимируется тригонометрическим рядом:

$$\delta(y-y_0) \approx \frac{2}{N} \sum_{n=0}^{N} \sin(ny) \sin(ny_0);$$

- 2) реализовать разработанную схему в виде вычислительной программы;
- 3) для заданной в соответствии с номером индивидуального задания функции $\phi(y)$ провести серию вычислительных экспериментов, направленных на исследование влияния на решение следующих параметров задачи: N_f , ε , L, k, y_0 .

$$\phi(y) = y(1-y)\left(\frac{1}{4}-y\right)^2$$

Для решения поставленной задачи была разработана конечноразностная схема:

$$\begin{split} \frac{U_{i+1,j}-2\,U_{i,j}+U_{i-1,j}}{h_{x}^{2}} + & \frac{U_{i,j+1}-2\,U_{i,j}+U_{i,j-1}}{h_{y}^{2}} + k^{2} \Big[1+\varepsilon\,\varphi\big(j\,h_{y}\big)\Big]U_{ij} = 0\,,\\ & i = \overline{1\,,M-1}\,,j = \overline{1\,,N-1}\,;\\ & U_{0\,j} = \frac{2}{N}\sum_{n=0}^{N}\sin\big(n\,jh_{y}\big)\sin\big(n\,y_{0}\big)\,,j = \overline{0\,,N}\,;\\ & U_{i0} = U_{i} = 0\,,i = \overline{0\,,M}\,; \end{split}$$

$$U_{Mj}-U_{Mj-1}=0$$
, $j=\overline{0,N-1}$ ¿

где $U_{ij} = u(x_i, y_j), i = 0, M; j = 0, N;$

Вычислительные эксперименты:

Проведем серию вычислительных экспериментов, направленных на исследование влияния на решение следующих параметров задачи: N, ε , k, y_0 . Численное моделирование канала неограниченной длины не представляется возможным, поэтому рассматриваем канал некоторой конечной длины, а именно: L=5.

Влияние параметра y_0 :

Фиксируем N=10000, $\varepsilon=0.00001$, k=15.

 $P_{\text{ИС.}8} y_0 = 0.3$

 $P_{\text{ИС}}.9 \ y_0 = 0.4$

Pис.11 y_0 = 0.6

Рис.12 $y_0 = 0.7$

Pис.13 y_0 = 0.8

Pис.14 y_0 = 0.9

По графикам видно, что параметр y_0 влияет на начальное положение волны и ее амплитуду. По причине неоднородности волновода и вследствие симметричности функции $\varphi(y)$ относительно $y_0 = 0.5$ при смещении y_0 от центра в обе стороны на один и тот же шаг, волны будут расположены симметрично от центра, амплитуда будет возрастать и убывать симметрично относительно центра в правой и левой частях $\varphi(y)$. Также y_0 влияет на характер распространения волн. При смещении начального положения к краям наблюдаем, что фронт волны распространяется под некоторым углом к продольной оси волновода. При значении $y_0 = 0.5$ фронт волны параллелен продольной оси волновода.

Влияние параметра N:

Фиксируем ε =0.00001, k=15, y_0 =0.5.

Pис.15 N = 100

Рис.16 N = 500

Pис.17 N = 1000

Рис.18 N = 2000

Pис.19 N = 5000

Pис.20 N = 10000

Параметр N влияет на точность аппроксимации δ -функции и на амплитуду возникающих колебаний. С ростом N уменьшается амплитуда. При его малых значениях можно наблюдать осцилляции на границе, что связано с аппроксимацией через тригонометрические ряды. Анализируя рисунки, можно добавить, что варьирование данного параметра практически не влияет на картину распределения волн.

Влияние малого параметра ε :

Фиксируем N=10000, $k=15, y_0=0.5$.

Рис.21 ε = 1.0

Рис.22 ε = 0.01

Рис.23 ε = 0.001

Рис.24 ε = 0.0001

Рис.25 ε = 0.00000001

Рис.26 ε = 0.00001

Рис.27 ε =0

Анализируя графики, делаем вывод о том, что параметр ε влияет на распространение волн: при уменьшении ε волны распространяются более равномерно и симметрично относительно продольной оси волновода, что является причиной того, что при приближении ε к нулю, уравнение переходит к стандартному виду $u_{xx}+u_{yy}+k^2u=0$, решение которого представляется в виде тригонометрического ряда. При больших значениях ε усиливается влияние неоднородной части $\varphi(y)$, что служит причиной неравномерному распространению колебаний вдоль оси волновода и затуханию волн, т.е расстояние распространения тем меньше, чем больше ε .

Влияние параметра k:

Фиксируем N = 10000, $\varepsilon = 0.00001$, $y_0 = 0.5$.

Рис.28 k = 1

Pис.29 k = 5

Рис.31 k = 15

Рис.32 k = 20

Рис.33 k = 25

Рис.34 k = 35

Рис.35 k = 50

Рис.36 k = 60

Pис.37 k = 80

Получили, что варьирование параметра k влияет на частоту и амплитуду возмущений. При k < 10 наблюдаем лишь одну волну. С ростом параметра k увеличивается количество волн в рассматриваемой области. Однако с расстоянием возмущения затухают, по причине неоднородности волновода. При малых изменениях k на полученных графиках практически не наблюдаются изменения амплитуды.

Влияние параметра L:

Фиксируем N=10000, $\varepsilon=0.0000000001$, k=15, $y_0=0.5$. Шаг сетки постоянен и равен 0,1.

Рис.38 L=3

Рис.39 *L*=5

Таким образом, увеличение параметра L влечет изменение количества порождаемых волн, а также их амплитуды. При увеличении значений параметра наблюдаются затухания волн.

Вывод.

В ходе выполнения лабораторной работы было смоделировано распространение электромагнитных волн в неоднородном волноводе на основе решения краевой задачи для уравнения Гельмгольца.

Был проведён анализ влияния параметров N, y_0 , ε , k, L.

Параметр N задает степень приближения δ функции. Чем выше значение параметра, тем точнее получается приближение.

Параметр ε отвечает за распространение возмущений по волноводу от левой границы до правой.

Параметр L – это ограничение оси X, при варьировании которого изменяется масштаб отображения волны.

Параметр k отвечает за частоту колебаний, соответственно, чем выше значение этого параметра тем большее количество колебаний наблюдается в результате. При варьировании параметра замечен распад волны на гармоники.

Параметр \mathcal{Y}_0 — это место положение импульса. При варьировании параметра видно, что волны меняют свою амплитуду.

Приложение.