1.1 $Y = AC + \overline{A} \, \overline{B} C$

$$\begin{array}{rcl} Y & = & AC + \overline{A}\,\overline{B}C \\ Y & = & C(A + \overline{A}\,\overline{B}) \\ Y & = & C(A + \overline{A}\,\overline{B}) \end{array}$$

Truth Table:

A	B	C	AC	$\overline{A}\overline{B}C$	Y
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	0	1

K-Map:

			AB		
		00	01	11	10
C	0	0	0	0	0
	1	1	0	1	1

1.2 $Y = \overline{A}\overline{B} + \overline{A}B\overline{C} + \overline{(A + \overline{C})}$

$$Y = \overline{A} \, \overline{B} + \overline{A} B \overline{C} + \overline{(A + \overline{C})}$$

$$Y = \overline{A} \, \overline{B} + \overline{A} B \overline{C} + \overline{A} C$$

$$Y = \overline{A} (\overline{B} + B \overline{C} + C)$$

$$Y = \overline{A} (\overline{B} + \overline{B} \overline{\overline{C}} + C)$$

$$Y = \overline{A}(\overline{B} + \overline{\overline{B} + C} + C)$$

$$Y = \overline{A}((\overline{B} + C) + (\overline{\overline{B} + C}))$$

$$Y \quad = \quad \overline{A}$$

Truth Table:

A	B	C	$\overline{A}\overline{B}$	$\overline{A}B\overline{C}$	$\overline{(A+\overline{C})}$	Y
0	0	0	1	0	0	1
0	0	1	1	0	1	1
0	1	0	0	1	0	1
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	0	0

K-Map:

	AB						
		00	01	11	10		
С	0	1	1	0	0		
	1	1	1	0	0		

2 Problem 2

2.1 Part 1

A	B	C	Y	Minterm
0	0	0	1	$\overline{A}\overline{B}\overline{C}$
0	0	1	0	-
0	1	0	0	_
0	1	1	0	_
1	0	0	0	_
1	0	1	0	_
1	1	0	0	-
1	1	1	1	ABC

 $Y = \overline{A}\,\overline{B}\,\overline{C} + ABC$

2.2 Part 2

A	B	C	Y	Minterm
0	0	0	1	$\overline{A}\overline{B}\overline{C}$
0	0	1	0	-
0	1	0	1	$\overline{A} B\overline{C}$
0	1	1	0	-
1	0	0	1	$A \overline{B} \overline{C}$
1	0	1	0	-
1	1	0	1	$AB\overline{C}$
1	1	1	0	-

 $Y = \overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + A B \overline{C}$

3.1 Part 1

Already minimal

3.1.1 Part 2

K-Map:

	AB						
		00	01	11	10		
C	0	1	1	1	1		
	1	0	0	0	0		
$\overline{Y} =$	$\overline{\overline{C}}$						

4 Problem 4

f is true except when $x_1, \overline{x_2}$ and x_3 are all true (term 5), i.e. it is the negation of $x_1\overline{x_2}x_3$:

$$f(x_1, x_2, x_3) = \overline{x_1 \overline{x_2} x_3}$$

$$f(x_1, x_2, x_3) = \overline{x_1} + x_2 + \overline{x_3}$$

K-Map:

			x_1x_2	2	
		00	01	11	10
x_3	0	1	1	1	1
	1	1	1	1	0

 $f(x_1, x_2, x_3) = \overline{x_1} + x_2 + \overline{x_3}$

5 Problem 5

5.1 Part 1

Sum of Products:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$	Minterm
0	0	0	0	-
0	0	1	1	$\overline{x_1} \overline{x_2} x_3$
0	1	0	0	-
0	1	1	0	-
1	0	0	1	$x_1\overline{x_2}\overline{x_3}$
1	0	1	1	$x_1\overline{x_2}x_3$
1	1	0	1	$x_1x_2\overline{x_3}$
1	1	1	0	-

$$Y = \overline{x_1} \, \overline{x_2} x_3 + x_1 \overline{x_2} \, \overline{x_3} + x_1 \overline{x_2} x_3 + x_1 x_2 \overline{x_3}$$

K-Map:

	x_1x_2				
		00	01	11	10
x_3	0	0	0	1	1
	1	1	0	0	1

$$Y = x_1\overline{x_2} + x_1\overline{x_3} + \overline{x_2}x_3$$

Minimize:

 $\begin{array}{rcl} Y & = & \overline{x_1}\,\overline{x_2}x_3 + x_1\overline{x_2}\,\overline{x_3} + x_1\overline{x_2}x_3 + x_1x_2\overline{x_3} \\ Y & = & \overline{x_1}\,\overline{x_2}x_3 + x_1\overline{x_2}(\overline{x_3} + x_3) + x_1x_2\overline{x_3} \\ Y & = & \overline{x_1}\,\overline{x_2}x_3 + x_1\overline{x_2} + x_1x_2\overline{x_3} \end{array}$

 $Y = \overline{x_1} \overline{x_2} x_3 + x_1 \overline{x_2} + x_1 x_2 \overline{x_3}$ $Y = x_1 \overline{x_2} + \overline{x_1} \overline{x_2} x_3 + x_1 x_2 \overline{x_3}$ $Y = x_1 \overline{x_2} + \overline{x_1} \overline{x_2} x_3 + x_1 x_2 \overline{x_3}$

Product of sums:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$	Maxterms
0	0	0	0	$x_1 + x_2 + x_3$
0	0	1	1	-
0	1	0	0	$x_1 + \overline{x_2} + x_3$
0	1	1	0	$x_1 + \overline{x_2} + \overline{x_3}$
1	0	0	1	-
1	0	1	1	-
1	1	0	1	-
1	1	1	0	$\overline{x_1} + \overline{x_2} + \overline{x_3}$

$$Y = (x_1 + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(x_1 + \overline{x_2} + \overline{x_3})(\overline{x_1} + \overline{x_2} + \overline{x_3})$$

5.2 Part 2

Sum of Products:

111 OI 1				
x_1	x_2	x_3	$f(x_1, x_2, x_3)$	Minterm
0	0	0	1	$\overline{x_1} \overline{x_2} \overline{x_3}$
0	0	1	x	-
0	1	0	1	$\overline{x_1}x_2x_3$
0	1	1	1	$\overline{x_1}x_2x_3$
1	0	0	1	$x_1\overline{x_2}\overline{x_3}$
1	0	1	X	-
1	1	0	0	-
1	1	1	0	-

 $Y = \overline{x_1} \, \overline{x_2} \, \overline{x_3} + \overline{x_1} x_2 x_3 + \overline{x_1} x_2 x_3 + \overline{x_1} x_2 \overline{x_3}$

K-Map:

	x_1x_2				
		00	01	11	10
x_3	0	1	1	0	1
	1	X	1	0	X

 $Y = \overline{x_1} + \overline{x_2}$

Truth Table

u	u <u>th Table: </u>					
	A	В	С	D	Y	
	0	0	0	0	X	
Ī	0	0	0	1	x	
	0	0	1	0	x	
	0	0	1	1	0	
Ī	0	1	0	0	0	
Ī	0	1	0	1	x	
Ī	0	1	1	0	0	
Ī	0	1	1	1	x	
Ī	1	0	0	0	1	
Ī	1	0	0	1	0	
Ī	1	0	1	0	x	
Ī	1	0	1	1	1	
Ī	1	1	0	0	1	
	1	1	0	1	1	
Ī	1	1	1	0	X	
	1	1	1	1	1	

K-Map:

11 1/10(p.							
	AB						
		00	01	11	10		
	00	X	0	1	1		
$^{\mathrm{CD}}$	01	X	X	1	0		
	11	0	X	1	1		
	10	X	0	X	X		

Minimal:

$$Y = AB + AC + BD$$

Problems 9 and 10

$$Y = A + \overline{A} (\overline{CD} + CD)$$

or using K-map A^{CD} or of 1110 $\Rightarrow A+\overline{CD}+CD$

more simplification:
$$\overline{CD} + CD = \overline{CDD} \equiv \times NOR$$

(2

Prublem 00 \times_3 10 output 1

Problem 16° $f = \chi_1 \chi_2 + \chi_2 \chi_3 + \chi_1 \chi_$

(2)

Problem 17 Need to maintain 3 bits. Say ABC. 8 states. Fo., ... For where Fo is 000 and F₈ is 100 and rest are in gray sequence. Example of the Sequence of the Maintain state.

A	13		AN	В	N CN
0	Ø	0	0	Ó	
0	Ö		0	ç-coappromu _d	1
\bigcirc	· · ·	The second secon	6		Ó
0		6		. And the second	0
Marie		0			- American
seasographics		- Commenter		0	
		1	. Description	0 (Ó
-quience desired	0	0		0 ()

(for (v)

Let's figst draw the Broblem 18: FSM: 1 51/0 D = input y = outhut 52/1 B_N B

