Università di Parma - Facoltà di Ingegneria

Prova intermedia di sistemi multivariabili del 30 Novembre 2018

Es. 1) (9 punti)

a) Trova una rappresentazione con un modello di stato per il seguente circuito elettrico, in cui il generatore di corrente u rappresenta l'ingresso e la tensione y l'uscita. I parametri R, L, C sono strettamente positivi.

- b) Trova l'insieme di raggiungibilità X_R .
- c) Metti il sistema nella forma standard di raggiungibilità.
- d) Trova la funzione di trasferimento.

Es. 2) (6 punti) Considera il sistema a tempo discreto

$$\begin{cases} x(k+1) = Ax(k) \\ x(0) = x_0, \end{cases}$$

con

$$A = \left[\begin{array}{rrr} -2 & 0 & 0 \\ -4 & 3 & 1 \\ 4 & 0 & 2 \end{array} \right] .$$

Calcola la potenza di matrice A^k .

Es. 3) (7 punti) Considera il sistema a tempo discreto

$$x(k+1) = Ax(k) + Bu(k)$$

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

- a) Trova gli insiemi di raggiungibilità $X_R(k)$ per ogni $k \in \mathbb{N}$.
- b) Metti il sistema nella forma standard di raggiungibilità, indicando le diverse sottomatrici che compongono \hat{A} , \hat{B} .

Continua dietro.

Es. 4) (8 punti) Considera il sistema a tempo continuo

$$\dot{x}(t) = Ax(t) + Bu(t) ,$$

con

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 1 & -1 & 0 \\ -3 & 3 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

- a) Metti il sistema nella forma canonica di controllo.
- b) Trova un vettore riga F tale che A+BF abbia tutti gli autovalori in -1.

Es. 5) (3 punti bonus) Considera il sistema

$$\left\{ \begin{array}{l} \dot{x}(t) = z(t) \\ \dot{z}(t) = Ax(t) + Bu(t) \end{array} \right.$$

dove $x(t), z(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$ e A, B hanno dimensioni appropriate. Dimostra che il sistema è raggiungibile se e solo se la coppia (A, B) è raggiungibile.