

CS3120

Chap 5 Elements of Physical Design

Andy, Yu-Guang Chen

Associate Professor, Department of EE, National Central University

Adjunct Assistant Professor, Department of CS, National Tsing Hua University

andyygchen@ee.ncu.edu.tw

Andy Yu-Guang Chen

1

Outline

- ◆5.1 Basic Concept
- ◆5.2 Layout of Basic Structure
- ◆5.3 Cell Concept
- ◆5.4 FET Sizing and the Unit Transistor
- ♦5.5 Physical Design of Logic Gates
- ◆5.6 Design Hierarchies

Andy Yu-Guang Chen

Elements of Physical Design

- ◆In the previous chapter, we examined the basic fabrication sequence
- ◆In this chapter, study the details of translating logic circuits into silicon called **physical design**
 - ➤ Details such as the minimum size specifications allowed for a patterned region become critical
 - ➤ The use of CAD tools and database structures that describe the silicon masks

Andy Yu-Guang Chen

3

5.1 Basic Concept

- ◆ Physical design
 - Creating circuits on silicon
 - Schematic diagrams are translated into sets of geometric patterns
 - Every layer is defined by a distinct pattern
- ◆ The topology of the transistor network establishes the logic function

Andy Yu-Guang Chen

5.1 Basic Concept

- ◆ The process of physical design is performed using tool called layout editor
- ◆ Specify the shape, dimensions and placement of every polygon on every layer of the chip
- ◆ Reduce the complexity by using the concept of library
- ◆ Library cells are used as building blocks by creating copies of the basic cells.
 - A copy of a cell is called an instance

Andy Yu-Guang Chen

5

5.1 Basic Concept

- ◆ Designer's goal is to obtain a fast circuit in the minimum amount of area
- ◆ Small changes in the shape will affect the electrical characteristics of the circuit
- Circuit simulation also help to insure that the layout is accurate and provides a network that meets specification

Andy Yu-Guang Chen

5.1.1 CAD toolsets

- ◆Layout editor: draw transistors and wiring patterns made up of polygon. Each layer has a distinct color or fill pattern on the screen.
- ◆The electrical behavior of the design is simulated by first using an extraction tool which translate the polygon patterns into equivalent electrical network in SPICE format.
- ◆ Extraction provide important parameters such as the drawn channel width and length for each FET. And how transistors are wired together.

Andy Yu-Guang Chen

-

5.1.1 CAD toolsets

- ◆Circuit simulation by SPICE.
- ◆ Layout versus schematic (LVS): check the layout against the schematic diagram. To verify the layout corresponds the intended circuit.
- ◆ Design rule checker (DRC): check every occurrence of the design rule list on the layout. Design can fabricated within the limitation of the process.

Andy Yu-Guang Chen

- ◆ Take a text netlist describing the circuit elements (transistors, resistors, capacitors, etc.) and their connections, and translate this description into equations to be solved.
- ◆The general equations produced are nonlinear differential algebraic equations which are solved using implicit integration methods, Newton's method and sparse matrix techniques.

Andy Yu-Guang Chen

1

Writing SPICE Decks

- Writing a SPICE deck is like writing a good program
 - > Plan: sketch schematic on paper or in editor
 - Modify existing decks whenever possible
 - ➤ Code: strive for clarity
 - Start with name, email, date, purpose
 - Generously comment
 - > Test:
 - · Predict what results should be
 - Compare with actual
 - Garbage In, Garbage Out!

Andy Yu-Guang Chen

5.2 Layout of Basic Structure

- ◆ Study how to design basic structures on the chip such as n+ and p+ regions and MOSFETs using the basic masking sequence.
- ◆ The actual values for minimum line width w and minimum line spacing s depend on the layer
 - ➤ Design rules apply only to the features on the mask (a generic term for the reticle) for that layer.
- ◆ The layout sizes as the **drawn** value while the resulting size on the finished chip have effective or final value
- ◆ Our discussion will consider only Manhattan geometries where all turns are multiples of 90°.
 - Manhattan is not necessary

Figure 5.2 Minimum line width
Andy Yu-Guang Chen

15

5.2.1 n-Wells

- ◆ An n-well is required for a pFET
 - > nwell mask
- Design rules
 - W_{nw} = minimum width of an n-well mask feature
 - S_{nw-nw} = minimum edge-to-edge spacing of adjacent n-wells
- lacktriangle N-well must have a connection to the power V_{DD}

5.2.2 Active Areas

- Silicon devices are built on active areas of the substrate
 - > Active mask
- Design rules
 - W_a = minimum width of an Active feature
 - ➤ S_{a-a} = minimum edge-to-edge spacing of Active mask
- ◆ FOX = NOT (Active)
- ◆ FOX +Active = Surface

Andy Yu-Guang Chen

17

5.2.3 Doped Silicon Region

- Create n+ and p+ regions
 - > Also known as ndiff and pdiff
 - Carryover from the days when dopants were introduced into the wafer using a thermal technique called diffusion instead of ion implantation
- nSelect and pSelect masks
- $n+ = (nSelect) \cap (Active)$
 - w_a = minimum width of an Active area
 - S_{a-n}= minimum Active-to-nSelect spacing
- $p+ = (pSelect) \cap (Active) \cap (nWell)$
 - w_a = minimum Active area width
 - S_{a-n} = minimum Active-to-pSetect spacing

Figure 5.6 Design of a p+ region

Andy Yu-Guang Chen

5.2.4 MOSFET

- Self-aligned MOSFET structures exist every time a poly gate line completely crosses an n+ or p+ region
- ◆ FETs thus require the use of polygons on the Poly mask layer
- Design rules
 - \triangleright L=w_p = minimum poly width
 - The minimum poly linewidth \mathbf{w}_{p} is the same as the drawn channel length for a FET
 - S_{p-p} = minimum poly-to-poly spacing
- nFET = (nSelect) n (Active) n (Poly)
- \rightarrow n+ = (nSelect) \cap (Active) \cap (NOT [Poly])

5.2.4 MOSFET

- ◆ A pFET is created in the same manner
- ◆ n-well region is surrounded by implied p-substrate; this is shown explicitly in the top-view drawing
- lack pFET = (pSelect) \cap (Active) \cap (Poly) \cap (nWell)
- ightharpoonup p+ = (pSelect) \cap (Active) \cap (nWell) \cap (NOT[Poly])

Andy Yu-Guang Chen

5.2.4 Drawn and Effective Dimensions

- The critical dimensions of a MOSFET are the channel length L and the channel width W
- Electrical or Effective channel length
- $igoplus L_{eff}$ =L-2L₀ or L_{eff}= L- Δ L where Δ L is the total reduction in channel length due to overlay and other effect
 - ► L_n: overlap distance
 - When the wafer is heated, the dopants move toward the other side
- $W_{eff} = W \Delta W$
 - > ΔW: total reduction in channel length from all effect
 - Due to the field oxide grow
- The electrical characterization is the ratio of effective values W_{eff}/L_{eff}
 - Not the drawn value of W/L

Andy Yu-Guang Chen

21

5.2.5 Active Contacts

- ◆ An active contact is a cut in the oxide Ox1 that allows the first layer of metal to contact an active n+ or p+ region
- Defined by Active Contact Mask shown in 5.12(b)
- ◆ The contact is placed to fall inside of an n+ or p+ region, it is subject surround design rule
 - ➤ S_{a-ac} = minimum spacing between Active and Active Contact
- The dimensions of the contact are given by
 - d_{ac. v} = vertical size of the contact
 - d_{ac, h} = horizontal size o f the contact
- A square contact is obtained if
 - $d_{ac, v} = d_{ac, h} = d_{ac}$

Figure 5.12 Active contact formation

Andy Yu-Guang Chen

5.2.6 Metal 1

- ◆ Metal1 is applied to the wafer after the Ox1 oxide
 - It is used as interconnect for signal and also for power supply distributions
- Metal1 mask feature overlapping the Active Contact to attain the electrical connection
- Design rules
 - w_{m1} = minimum width of a Metal1 line
 - > s_{m1-ac} = minimum spacing from Metal1 to Active Contact
 - ≥ s_{m1-m1} is not shown

Figure 5.13 Metall line with Active Contact

Andy Yu-Guang Chen

23

5.2.6 Metal 1

- ◆ Every contact is characterized by a resistance due to the metal connections
 - $ightharpoonup R_c$ = contact resistance Ω
- ◆ To limit the overall resistance, it is common to use as many contacts as the design rules permit
- ◆ Effective resistance

$$ightharpoonup R_{c,eff} = \frac{1}{N}R_c$$

Figure 5.14 Multiple contacts to reduce contact resistance

Andy Yu-Guang Chen

5.2.6 Metal 1

- ◆ Metal1 allows access to the active regions of MOSFETs using the Active Contact oxide cut
- Design rules
 - ➤ s_{p-ac} = minimum spacing from Poly to Active Contact
 - Insure Active Contact does not destroy any of the polysilicon gate
 - ightharpoonup spacing from Active to Poly

Andy Yu-Guang Chen

25

5.2.6 Metal 1

- ◆ A Poly Contact Mask is used to allow electrical connections Metal1 and the polysilicon gate
- ◆ The Poly Contact mask defines the oxide cut as indicated by the "empty" square shown in the upper part of the layout in Fig 5.16(a)

Andy Yu-Guang Chen

5.2.7 Vias

- ◆ Figure 5.20(a) illustrates the use of a via to connect Metal1 to Metal2
- ◆ The m ask layout is shown in Figure 5.20(b)
- Design Rules
 - d_v = dimension of a Via (may be different for vertical direction)
 - ▶ w_{m2} = minimum width of Metal2 feature
 - ➤ s_{m2-m2} = minimum spacing between adjacent Metal2 features
 - s_{v-m1} = minimum spacing between Via and Metal1 edges
 - s_{v-m2} = minimum spacing between Via and Metal2 edges

Andy Yu-Guang Chen

20

5.2.8 Latch-up Prevention

- ◆ Latch up is a condition that can occur in a circuit fabricated in a bulk CMOS technology
- ◆It draws a large current from the power supply but does not function in response to input stimuli
 - ➤ A chip may be operating normally and then enter a state of latch-up
 - Removing and reconnecting may restore operations
 - The chip may enter latch-up when power is applied and never be functional
 - ➤ If Vdd reaches breakover voltage V_{BO}, blocking is overwhelmed by internal electric field

Andy Yu-Guang Chen

5.3 Cell Concepts

- ◆ Design VLSI chips are based on the idea of hierarchical design
- ◆ The basic building block are called cells
 - Can be a FET or an ALU
 - It may be used as a component to create a larger logic network
- ◆ Cell-based design is popular now
- ◆ At the cell level of design, do not care about the internal details
 - Replaced all of the layout by an equivalent logic symbol

Figure 5.26 Logic gates as basic cells

Andy Yu-Guang Chen

33

5.3 Cell Concepts

- ◆Input and output terminals are called ports
- ◆Create more complex networks by cells

$$F f = \bar{a} \cdot b$$

Figure 5.27 Creation of a new cell using basic units

Andy Yu-Guang Chen

5.3 Creating cells at the physical level

◆The placement of the power lines VDD and VSS

- D_{m1-m1}: Edge-to-edge distance between VDD and VSS
- $P_{m1-m1} = D_{m1-m1+} W_{DD}$: The pitch

Figure 5.28 VDD and VSS power supply lines

Andy Yu-Guang Chen

21

5.3 Creating cells at the physical level

- Place FETS in between VDD and VSS lines.
 - > Horizontal: limit by pitch
 - Vertical: Cell width is larger
- ◆ Since we want to choose a set of D_{m1-m1} that is used for every cell, we should investigate the effect of the FET placement on the cell dimensions

Figure 5.29 MOSFET orientation

Andy Yu-Guang Chen

5.3 Cell Concepts

- ◆ The shape of the cells affects how the cells fit together in logic cascades and determines what the more complex units may look like
- **♦** Tiling

Figure 5.31 Effect of tile shapes on larger cells

Andy Yu-Guang Chen

37

5.3 Cell Concepts

- ◆Interconnect routing considerations are important
 - ➤ Wiring is often more complicated than designing the transistor array
 - Wiring problems have a tendency of appearing at critical time

Andy Yu-Guang Chen

- FET are specified by aspect ratio $\frac{w}{L}$ Layout-dependent electrical properties
- - $A_G = LW$

 - $C_G = C_{ox} * WL$ $R_{chan} = R_{s,c} (L/W) \propto 1/W$
 - R_{s,c}: the sheet resistance of the channel region
- Electrons can move more easily than holes
 - Let mobility ratio $r = \mu_n / \mu_p$ in modern CMOS, 2<r<3
 - So for equal size FETs $r = R_p / R_n$

- \rightarrow $(W/L)_p = r^*(W/L)_n$
- \triangleright Ex 5.1: $(W/L)_n=4$ and r=2.4
- $(W/L)_p = 2.4*4 = 9.6 \rightarrow 10$

Andy Yu-Guang Chen

43

Andy Yu-Guang Chen

Summary

- ◆VLSI systems are created using the concept of design hierarchies where simple building blocks are used to design more complex units
- ◆The layout is process dependent
- ◆A new library must be built every time a new fabrication plant goes on line

Andy Yu-Guang Chen

