Fluorescence Measurements at ANL and the Auger Experiment

Motivation for Fluorescence Calibrations

AIRFLY Fluorescence Experiment at ANL

Auger Experiment Update

N₂ Molecule Vibrational Energy Levels

Franck-Condon Energy Diagram

337nm transition

Many experiments use or will use Nitrogen Fluorescence

OWL and EUSO spacebased experiments

Due to smaller model dependence, Auger normalizes to its fluorescence detectors. Looks like HiRes. Only a 1σ discrepancy (25% in energy scale). Need to reduce σ ...

0.22 Augeryears of data

One example measurement of electron-induced fluorescence

Agrees with curve?

ı	L(IVIEV)	~ U. I	0.1-1	1-10	10-100	100-1000	>1000	
	Contrib(%)	10	12	23	35	17	3	

45% of Fluorescence Due to Electrons and Positrons < 10 MeV in 10¹⁹ eV Shower

Much more information needed...

Pressure, Temperature, Humidity dependence

Oxygen quenching

More complete energy scan

Absolute measurement to 5%

Much more information needed...

Complete Spectrum from 300-400 nm (Rayleigh scattering $1/\Lambda^4$)

Spectrum has been measured before but only piece-by-piece with 14 filters, each with different inefficiencies and acceptance from wrong wavelengths

Fluorescence Calibration at Argonne

Chemistry Division Van de Graaff

Advanced

Photon

Source

HEP Division
Advanced
Wakefield
Accelerator

Complementary machines: AWA only accelerator with enough energy to do absolute calibration with Cerenkov gas. Van de Graaff only machine with enough charge to measure spectrum.

Heroes...

AWA group notably Manoel Conde, Felipe Franchini, Zikri Yusof

Chemistry staff notably Sergey Chemerisov and Bob Lowers

E(MeV)	< 0.1	0.1-1	1-10	10-100	100-1000	>1000
Contrib(%)	10	12	23	35	17	3

45% of Fluorescence Due to Electrons and Positrons < 10 MeV in 10¹⁹ eV Shower

Van de Graaff with cover removed

Resistor plates step V down to zero

Charged to 3 million volts

AIRFLY Experiment, led by Paolo Privitera from INFN

AIRFLY Experiment, led by Paolo Privitera from INFN

Beam Pickup, used for all the PMT measurements

Faraday Cup, mainly used to check Pickup

Will fit slopes from PMT vs Pickup, an experiment with 2 electronics channels!

AWA PMT Fluorescence Data, 14 MeV electrons

AWA PMT Fluorescence Data, 14 MeV electrons

AWA PMT Fluorescence Data, 14 MeV electrons

0.5 MeV Run at Van de Graaff with beam halo

Cut ±2 sigma around main beam pickup peak for both AWA and Van de Graaff

5 minutes later, beam halo is gone

Nitrogen Fluorescence Yield in Air

Don't take too seriously yet, different low energy input gives different curves.

DV420

Main goal for December running at AWA

New Method for Absolute Measurement of Fluorescence Yield

ÆIDEA: normalize to well known process (cherenkov emission) to cancel detector systematics. The normalization is done at ?

≈ 337 nm.

- ? Systematic error potentially = 5%
- ? First tests very encouraging!

The End