Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Домашнее задание По курсу " Методы машинного обучения"

Выполнил: Житенев В.Г. Студент группы ИУ5-22М

Задание

Домашнее задание по дисциплине направлено на решение комплексной задачи машинного обучения. Домашнее задание включает выполнение следующих шагов:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее трех моделей, хотя бы одна из которых должна быть ансамблевой.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется подбирать не более 1-2 гиперпараметров. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

1)Поиск и выбор набора данных для построения моделей машинного обучения.

Выбранный набор данных содержит данные для прогнозирования приема выпускников.

https://www.kaggle.com/mohansacharya/graduate-admissions

Колонки датасета:

- GRE Scores Результаты GRE
- TOEFL Scores Результаты TOEFL
- University Rating Университетский рейтинг
- Statement of Purpose and Letter of Recommendation Strength Заявление о цели и рекомендательное письмо
- Undergraduate GPA Бакалавриат GPA
- Research Experience Исследовательский опыт
- SOP балл по тестированию SOP
- LOR балл по тестированию LOR
- Sex пол кандидата
- Chance of Admit Шансы на поступление (целевой параметр)

Для данного набора необходимо решить следующую задачу регресссии:

• Определение шансов на поступление кандидата по результатам его тестирований.

Импорт библиотек

```
[407] import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pvplot as plt
     from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score, mean_squared_error, mean_absolute_error, r2_score
     from sklearn.impute import SimpleImputer
     from plotly.subplots import make_subplots
     import plotly.graph_objects as go
     import plotly.express as pltl
     from sklearn.preprocessing import LabelEncoder, MinMaxScaler, Normalizer
     from sklearn.model_selection import train_test_split
     from sklearn.model_selection import ShuffleSplit
     from sklearn.model_selection import GridSearchCV
     import plotly.graph_objects as go
     # Models
     from sklearn.linear_model import Ridge
     from sklearn.neighbors import KNeighborsRegressor
     from sklearn.ensemble import AdaBoostRegressor
     from sklearn.tree import DecisionTreeRegressor
```

Загрузка данных

```
[309] data1 = pd.read_excel('/content/drive/My Drive/Colab Notebooks/MMO/Д31/Admission_Edited.xlsx')
data1 = pd.DataFrame(data = data1)
```

2) Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.

```
[310] data1.head(5)
 ₽
        Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit Sex
                         337
                                      118
                                                            4.5 4.5 9.65
                                                                                                0.92
     1
                 2
                         324
                                                          4 4.0 4.5
                                                                     8.87
                                      107
                                                                                  1
                                                                                                0.76
                                                                                                      М
     2
                 3
                         316
                                                         3 3.0 3.5 8.00
                                      104
                                                                                                0.72
                                                                                                      М
     3
                 4
                                      110
                                                         3 3.5 2.5 8.67
                         322
                                                                                                0.80
                                                                                  0
                 5
                         314
                                      103
                                                         2 2.0 3.0 8.21
                                                                                                0.65
[311] # Размер датасета - 500 наблюдений и 10 переменных
      data1.shape
  [→ (500, 10)
```

```
[312] data1.dtypes
  Serial No.
                                  int64
       GRE Score
                                  int64
       TOEFL Score
                                 int64
       University Rating
                                 int64
       SOP
                               float64
       LOR
                                float64
       CGPA
                                float64
       Research
                                  int64
                               float64
       Chance of Admit
                                 object
       dtype: object
[313] data1.isnull().sum()

    Serial No.

       GRE Score
                                0
       TOFFL Score
                                0
       University Rating
                                0
       SOP
       LOR
       CGPA
                                0
       Research
                                0
       Chance of Admit
                                0
       Sex
       dtype: int64
 Поле Sex относится к типу object, тогда как все остальные поля относятся к численным типам данных. Также, поле sex содержит 9
пропусков, в отличии от остальных перменных, не имеющих пустых значений.
[314] # Необходимо выполнить следующие замены:
     # f -> F
     # m -> M
     # Стратегия для замены пропусков - most_frequent
     data1['Sex'].unique()

ightharpoonup array(['F', 'M', nan, 'f', 'm'], dtype=object)
[315] sexColumn = data1[['Sex']]
     imp_num = SimpleImputer(strategy='most_frequent')
     imp1 = SimpleImputer(missing_values='f', strategy='constant', fill_value='F')
imp2 = SimpleImputer(missing_values='m', strategy='constant', fill_value='M')
     withoutNAN = imp_num.fit_transform(sexColumn)
     newData1 = imp1.fit_transform(withoutNAN)
     newData2 = imp2.fit_transform(newData1)
     data1['Sex'] = newData2
     data1['Sex'].unique()
 - array(['F', 'M'], dtype=object)
[316] data1.isnull().sum()
 Serial No.
      GRE Score
     TOEFL Score
                           Θ
     University Rating
                          0
     SOP
                          0
     LOR
      CGPA
     Research
                          Θ
     Chance of Admit
                          0
     Sex
     dtype: int64
[317] strippedCols = dict()
     for name in data1.columns:
       strippedCols[name] = name.strip()
```

data1 = data1.rename(strippedCols, axis='columns', errors='raise')

data1.describe()

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
mean	250.500000	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
std	144.481833	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
min	1.000000	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
25%	125.750000	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
50%	250.500000	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.72000
75%	375.250000	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.82000
max	500.000000	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.97000

Вывод: в выбранном наборе данных содержались пропуски в наблюдениях одной переменной. Пропуски были заменены со стратегией most _frequent, все категориальные значения были приведены к общему виду. Лишние пробелы в названиях переменных были убраны.

Построим графики для понимания структуры данных

₽

3) Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

```
[319] data1.dtypes
 Serial No.
                          int64
    GRE Score
                          int64
                        int64
    TOEFL Score
    University Rating
                          int64
                       float64
    SOP
    LOR
                       float64
    CGPA
                       float64
    Research
                         int64
    Chance of Admit
                      float64
    dtype: object
```

Все признаки, за исключением Sex, являются числовыми признаками. Признак Sex необходимо привести к числовому виду с помощью LabelEncoder.

Признак serial No. отвечает за порядковый номер кандидата в списке и не несет никакой полезной информативности, поэтому имеет смысл отказаться от него. Остальные признаки необходимы для построения моделей.

Также необходимо осуществить масштабирование признаков.

Таким образом, был осуществлен перевод категориального признака в числовой.

- F -> 0
- M -> 1

```
[323] # Масштабирование данных
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data1)
data1 = pd.DataFrame( data = sc1_data, columns=data1.columns)
data1.head()

СРЕ Scape TOEEL Scape University Pating SOP LOP (GPA Paseanch Chance of Admit Sex
```

C→		GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	Sex
	0	0.94	0.928571	0.75	0.875	0.875	0.913462	1.0	0.920635	0.0
	1	0.68	0.535714	0.75	0.750	0.875	0.663462	1.0	0.666667	1.0
	2	0.52	0.428571	0.50	0.500	0.625	0.384615	1.0	0.603175	1.0
	3	0.64	0.642857	0.50	0.625	0.375	0.599359	1.0	0.730159	0.0
	4	0.48	0.392857	0.25	0.250	0.500	0.451923	0.0	0.492063	0.0

4) Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

Исходя из результатов корреляционного анализа, можно сделать вывод: в наибольшей линейной зависимости от целевой переменной (Chance of Admit) находится сдра, тогда как GRE Score и TOEFL Score находятся в чуть меньшей. Далее рассмотрим зависимости этих переменных более подробно.

Пол кандидата (переменная sex) имеет крайне низкие коэффициенты корреляции со всеми переменными, поэтому имеет смысл отказаться от нее в далнейшем анализе.

```
[325] data1 = data1.drop(['Sex'], axis=1)
```

Chance of Admit

Chance of Admit

Chance of Admit

Графики распределения показали, следующее:

- Чем выше значение CGPA у кандидата, тем больший шанс он имеет на зачисление. Имеются выбросы: некоторые кандидаты с высоким значением CGPA имеют те же шансы на поступление, что и у кандидатов с более низким значением. Однако у кандидатов с шансами на поступление >0.8, подобных выбросов не наблюдается. На графике отчетливо видна высокая кучность распределения.
- Высокое значение GRE Score, увеличивает шансы кандидата на зачисление, однако есть кандидаты, имеющие один и тот же балл GRE Score, но имеют разные шансы на поступление. Например, отчетливо наблюдается разброс в пределах 320 -330 GRE Score. Кандидаты в этом диапазоне имеют шансы на поступление как <0.6 так и >0.8. Несмотря на это, все равно наблюдается линейная зависимость.
- Исходя из построенных графиков распределения, можно сказать, что шансы на поступление слабее зависят от переменной TOEFL_Score, чем от других. Немногие кандидаты, которые имеют значения в переменной TOEFL_Score >115, имеют одинаково высокий шанс на поступление. Зачастую, кандидаты набирают одинаковое количество баллов TOEFL_Score, но при этом имеют разные шансы на поступление. Это являение выражается множеством горизонтальных групп на графике распределения.

Вывод:: Для построения моделей машинного обучения, следует обратить внимание на переменные cgpa, gre_score, toffl_score

5) Выбор метрик для последующей оценки качества моделей.

1. Mean absolute error - средняя абсолютная ошибка

```
[327] from sklearn.metrics import mean_absolute_error
```

2. Mean squared error - средняя квадратичная ошибка

```
[328] from sklearn.metrics import mean_squared_error
```

3. Метрика R2 или коэффициент детерминации

```
[329] from sklearn.metrics import r2_score
```

Методы вывода метрик

```
[403] # Метод оценки качества модели регрессии
     def regressionMetrics(y_test, y_predicted):
       MSE = mean_squared_error(y_test, y_predicted)
       MAE = mean_absolute_error(y_test, y_predicted)
       R2 = r2_score(y_true=np.array(y_test), y_pred=y_predicted )
       print('MSE: \t', MSE)
       print('MAE: \t', MAE)
       print('R2: \t', R2)
       return { 'MSE': MSE, 'MAE': MAE, 'R2': R2 }
     # Метод визуализации для сравнения качества моделей
     def modelsReference(modelName, BestModelsMetrics, BaseLineModelMetrics):
       fig, ax0 = plt.subplots()
       modelMetrics = ['MAE', 'MSE', 'R2']
       b m = BaseLineModelMetrics[modelName]
       o_m = BestModelsMetrics[modelName]
       BaseLine = []
       Optimal = []
       x = np.arange(len(modelMetrics)) # the label locations
       width = 0.35 # the width of the bars
```

```
for key in modelMetrics:
    BaseLine.append(b_m[key])
    Optimal.append(o_m[key])

ax0.barh( x - width/2, Optimal, 0.35, label='OptimalModel', align='center')
ax0.barh( x + width/2, BaseLine, 0.35, label='BaseLineModel')

ax0.set_yticks(y_pos)
ax0.set_yticklabels(modelMetrics)
ax0.invert_yaxis()
ax0.legend()
ax0.set_title(modelName)

fig.tight_layout()
plt.show()
```

6) Выбор наиболее подходящих моделей для решения задачи классификации или регрессии.

Для задачи регрессии будем использовать следующие модели:

- Линейная регрессия
- Метод ближайших соседей
- AdaBoost
- 7) Формирование обучающей и тестовой выборок на основе исходного набора данных.

8) Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.

1. Линейная регрессия

Построение базового решения.

В качестве метода регуляризации линейной регрессии будем использовать L2 регуляризацию:

$$L = rac{1}{k} \cdot \sum_{i=1}^k (y_i - \sum_{j=0}^N b_j \cdot x_{ij})^2 + lpha \cdot \sum_{j=0}^N |b_j|
ightarrow min$$

В качестве гиперпараметра модели будем использовать коэффициент регуляризации. Для базового решения коэффициент регуляризации = 10

```
[334] reg4 = Ridge( alpha=10 ).fit(np.array(X_train), np.array(y_train) )
    reg4
 Ridge(alpha=10, copy_X=True, fit_intercept=True, max_iter=None, normalize=False,
           random_state=None, solver='auto', tol=0.001)
[335] BaseLineModelMetrics['LinearRegression'] = regressionMetrics(y_test= y_test, \
                                                y_predicted= reg4.predict(X_test))

→ MSE:

             0.011121548813953245
     MAE:
              0.07657528585489624
     R2:
             0.7689169256374538
 2. Метод ближайших соседей
 Построение базового решения.
 В качестве гиперпараметра модели будем использовать количество ближайших соседей. Для базовой модели оно будет равным 10.
[336] neigh = KNeighborsRegressor(n_neighbors=10).fit(np.array(X_train), np.array(y_train))
 KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
                       metric_params=None, n_jobs=None, n_neighbors=10, p=2,
weights='uniform')
[337] BaseLineModelMetrics['KNNRegressor'] = regressionMetrics(y_test= y_test, \
                                              y_predicted= neigh.predict(X_test))
 MSE:
             0.012901856051062406
             0.08050793650793651
     R2:
             0.7319257766038831
3. AdaBoost
Построение базового решения.
В качестве гиперпараметра будет использоваться максимальная глубина "слабых моделей". Для базового решения она равна 3.
max_depth = 3
[338] # Базовая модель, лежащая в основе AdaBoost
    DTR = DecisionTreeRegressor(max_depth=3)
    ab1 = AdaBoostRegressor( base_estimator=DTR).fit(X_train, y_train)
 AdaBoostRegressor(base_estimator=DecisionTreeRegressor(ccp_alpha=0.0,
                                                                               criterion='mse',
                                                                              max_depth=3,
                                                                               max_features=None,
                                                                               max_leaf_nodes=None,
                                                                              min_impurity_decrease=0.0,
                                                                               min_impurity_split=None,
                                                                              min_samples_leaf=1,
                                                                               min_samples_split=2,
                                                                               min_weight_fraction_leaf=0.0,
                                                                               presort='deprecated',
                                                                               random state=None,
                                                                               splitter='best'),
                              learning_rate=1.0, loss='linear', n_estimators=50,
                              random state=None)
```

MSE: 0.013252334461759708 MAE: 0.08987399303753495 R2: 0.7246435508998499

9) Подбор гиперпараметров для выбранных моделей.

1. Линейная регрессия

Для подбора гиперпараметров будет использоваться GridSearchCV с применением кросс-валидации методом ShuffleSplit

```
[341] kf = ShuffleSplit(n_splits=5, test_size=0.3).split(data1[ data1.columns[:7] ], data1['Chance of Admit'])
[342] n_{range} = np.array(np.arange(0.1,30,0.1))
         tuned_parameters = [{'alpha': n_range}]
    GridSearchCV(cv=<generator object BaseShuffleSplit.split at 0x7f17be59e728>,
                                    error score=nan,
                                    estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True,
                                                                  max_iter=10000, normalize=False, random_state=None,
                                                                  solver='auto', tol=0.001),
                                   iid='deprecated', n_jobs=None,
                                    param\_grid=[\{'alpha': array([\ 0.1,\ 0.2,\ 0.3,\ 0.4,\ 0.5,\ 0.6,\ 0.7,\ 0.8,\ 0.9,\ 1.\ ,\ 1.1,\ 0.2,\ 0.8,\ 0.9,\ 1.\ ,\ 0.1,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.8,\ 0.9,\ 0.9,\ 0.8,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0.9,\ 0
                         1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9...
24.3, 24.4, 24.5, 24.6, 24.7, 24.8, 24.9, 25. , 25.1, 25.2, 25.3,
                         25.4, 25.5, 25.6, 25.7, 25.8, 25.9, 26. , 26.1, 26.2, 26.3, 26.4,
                         26.5, 26.6, 26.7, 26.8, 26.9, 27. , 27.1, 27.2, 27.3, 27.4, 27.5,
                         27.6, 27.7, 27.8, 27.9, 28. , 28.1, 28.2, 28.3, 28.4, 28.5, 28.6,
                         28.7, 28.8, 28.9, 29. , 29.1, 29.2, 29.3, 29.4, 29.5, 29.6, 29.7,
                         29.8, 29.9])}],
                                    pre dispatch='2*n jobs', refit=True, return train score=False,
                                    scoring='neg_mean_squared_error', verbose=0)
 [344] clf gs.best estimator
    Ridge(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=10000,
                       normalize=False, random_state=None, solver='auto', tol=0.001)
 [345] bestModels['LinearRegression'] = clf_gs.best_estimator_
  2. Метод ближайших соседей
  Для подбора гиперпараметров будет использоваться GridSearchCV с применением кросс-валидации методом ShuffleSplit
 [346] kf = ShuffleSplit(n_splits=5, test_size=0.3).split(data1[ data1.columns[:7] ], data1['Chance of Admit'])
 [347] n_range = np.array(np.arange(2 ,50, 1 ))
           tuned_parameters = [{'n_neighbors': n_range}]
 [348] clf_gs = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=kf, scoring='neg_mean_squared_error')
           clf_gs.fit(np.array(data1[ data1.columns[:7] ]), np.array(data1['Chance of Admit']))
   GridSearchCV(cv=<generator object BaseShuffleSplit.split at 0x7f17be4a2410>,
                                 estimator=KNeighborsRegressor(algorithm='auto', leaf_size=30,
                                                                                      metric='minkowski',
                                                                                      metric_params=None, n_jobs=None,
                                                                                      n_neighbors=5, p=2,
                                                                                      weights='uniform'),
                                 iid='deprecated', n_jobs=None,
                                 param_grid=[{'n_neighbors': array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
                       19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49])}],
                                 pre dispatch='2*n jobs', refit=True, return train score=False,
                                 scoring='neg_mean_squared_error', verbose=0)
 [349] clf gs.best estimator
   KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
                                             metric_params=None, n_jobs=None, n_neighbors=14, p=2,
                                             weights='uniform')
 [350] bestModels['KNNRegressor'] = clf_gs.best_estimator_
```

3. AdaBoost

Для кросс-валидации будет использоваться метод ShuffleSplit. Подбор гипрепараметра будет осуществляться вручную. Критерием отбора будет mean_squared_error

```
[351] # Подготовка кросс-валидации
    X = data1[ data1.columns[:7] ]
    y = data1['Chance of Admit']
    kf = ShuffleSplit(n_splits=5, test_size=0.3).split( X, y)
[352] # Подготовка варьируемого гиперпараметра
    tuned_parameters = np.array(np.arange(1 ,21, 1 ))
[353] # Подготовка моделей с варьируемым гиперпараметром
     ABModels = {}
     for m_d in tuned_parameters:
       temp_tree = DecisionTreeRegressor(max_depth=m_d)
        tempAB = AdaBoostRegressor( base_estimator=temp_tree)
        ABModels[str(m_d)] = tempAB
[354] ModelsMSE = {}
      # Подготовка сборщика результатов
      for m_d in ABModels:
        ModelsMSE[str(m_d)] = []
     # Обучение и тестирование моделей
     for train_index, test_index in kf:
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
        for m d in ABModels:
          model = ABModels[m d]
          model.fit(X_train, y_train)
          # Подсчет СКО и добавление в сборщик результатов
          modelMSE = mean_squared_error(y_test, model.predict(X_test))
          ModelsMSE[str(m d)].append(modelMSE)
 # Каждое поле сборщика содержит массив с СКО на каждом этапе кросс-валидации
 # Необходимо вычислить среднее для каждого из полей
 for m d in ModelsMSE:
   ModelsMSE[m_d] = np.mean(ModelsMSE[m_d])
 ModelsMSE
 {'1': 0.018870346118260998,
   '10': 0.011216914274027887,
  '11': 0.011813653379963833,
  '12': 0.011931709713626537,
  '13': 0.01154533406398544,
  '14': 0.011700045556941738,
  '15': 0.011827692134390786,
  '16': 0.012005191977863301,
   '17': 0.012013176189543038,
  '18': 0.011977156294616619,
  '19': 0.011636516334929037,
  '2': 0.013835803242404415,
   '20': 0.01173091458805745,
   '3': 0.012560594416603394,
   '4': 0.01165701014551759,
   '5': 0.011448479126859,
   '6': 0.011481821224894556,
   '7': 0.01143425396518237,
   '8': 0.011375707146788237,
   '9': 0.01152856812457254}
```

```
# Осталось только выбрать модель с наименьшим средним СКО
minMSE = 1.
index = ''
for m_d in ModelsMSE:
 if ModelsMSE[m_d] < minMSE:
   minMSE = ModelsMSE[m d]
   index = m_d
print( 'Max_depth = ', index, '\nMSE = ', minMSE)
Max_depth = 10
MSE = 0.011216914274027887
bestModels['AdaBoost'] = ABModels[index]
ABModels[index]
AdaBoostRegressor(base_estimator=DecisionTreeRegressor(ccp_alpha=0.0,
                                                        criterion='mse',
                                                       max_depth=10,
                                                       max_features=None,
                                                       max_leaf_nodes=None,
                                                       min_impurity_decrease=0.0,
                                                       min_impurity_split=None,
                                                       min samples leaf=1,
                                                       min_samples_split=2,
                                                       min_weight_fraction_leaf=0.0,
                                                       presort='deprecated',
                                                       random_state=None,
                                                       splitter='best'),
                  learning_rate=1.0, loss='linear', n_estimators=50,
                  random state=None)
```

10) Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.

```
[358] BestModelsMetrics = { 'LinearRegression': {}, \
                           'KNNRegressor': {}, \
                             'AdaBoost': {} }
[359] # Линейная регрессия
    LR = bestModels['LinearRegression']
    LR.fit(X_train, y_train)
    BestModelsMetrics['LinearRegression'] = regressionMetrics(y_test= y_test, \
                                          y_predicted= LR.predict(X_test))
          0.0076963215483606155
MSF:
MAE:
         0.0628887895486159
 R2:
           0.84475343650134
# Метод ближайших соседей
 KNNR = bestModels['KNNRegressor']
 KNNR.fit(X_train, y_train)
 BestModelsMetrics('KNNRegressor') = regressionMetrics(y_test= y_test, \
                                                       y_predicted= KNNR.predict(X_test))
```

MSE: 0.010568727364969678 MAE: 0.07427059712774 R2: 0.7868126229321478

MSE: 0.009953467485891881 MAE: 0.06838607150774573 R2: 0.7992233546414765

11) Формирование выводов о качестве построенных моделей на основе выбранных метрик.

Для начала сравним качество базовых и оптимальных моделей

[404] modelsReference('LinearRegression', BestModelsMetrics, BaseLineModelMetrics)

[405] modelsReference('KNNRegressor', BestModelsMetrics, BaseLineModelMetrics)

modelsReference('AdaBoost', BestModelsMetrics, BaseLineModelMetrics)

Оптимальные модели имеют лучшие показатели, в сравнении с базовыми. Необходимо выбрать наилучшую модель из

Достаточно сравнить одну из метрик каждой модели для того, чтобы определить наилучшую. Сравним среднее квадратическое отклонение ошибки.

```
[421] data5 = pd.DataFrame(data=BestModelsMetrics)
     # Use textposition='auto' for direct text
     fig = go.Figure()
     fig.add_trace(go.Bar(
                 x=data5.columns, y=data5.loc['MSE'],
                 text=data5.loc['MSE'],
                 textposition='auto',
                 name = 'MSE'
             ))
     fig.show()
```


Ridge(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, random_state=None, solver='auto', tol=0.001)

Вывод:Сравнение показало, что модель линейной регрессии с L2 регуляризацией лучше всего подходит для решения поставленной задачи. Гиперпараметр в оптимальной модели равен 0.1