1 Kalman Filter	3.2 Convex / Jensen's inequality	5 Exact inference (tree-structured BN)	6.1 Variable elimination for MPE (most proba-
$\begin{cases} X_{t+1} = FX_t + \epsilon_t & \epsilon_t \sim N(0, \Sigma_x) \\ Y_t = HX_t + \eta_t & \eta_t \sim N(0, \Sigma_v) \end{cases} X_1 \sim N(\mu_p, \Sigma_p)$	$g(x)$ is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1] : g''(x) > 0$	5.1 Variable elimination	ble explanation):
$Y_t = HX_t + \eta_t \qquad \eta_t \sim N(0, \Sigma_y)^{X_1} \sim N(\mu_p, \Sigma_p)$	$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$	- Given a BN and query $P(X E=e)$	- Given BN and evidence E=e
Then if X_0 is Gaussian then $X_t Y_{1:t} \sim N(\mu_t, \sigma_t)$:	$\varphi(E[X]) \le E[\varphi(X)]$	- Choose an ordering of $X_1,,X_n$ Eliminate va-	- Choose an ordering of X_1,x_n
$\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$	3.3 Review Probability	riables from the outside in!	- Set up initial factors $f_i = P(X_i Pa_i)$ - For $i = 1: n, X_i \notin E$:
$\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^T + \Sigma_x)$	Probability space (Ω, F, P) : Set of atomic	- Set up initial factors: $f_i = P(X_i Pa_i)$ - For $i = 1: n, X_i \notin X, E$	- For $i = 1 \cdot h$, $X_i \notin L$. - Collect and multiply all factors f_i that in-
$K_{t+1} = (F\Sigma_t F^T + \Sigma_x)H^T (H(F\Sigma_t F^T + \Sigma_x)H^T + \Sigma_y)^{-1}$	events Ω . Set of all non-atomic events	- Collect and multiply all factors f that in-	± •
· · · · · · · · · · · · · · · · · · ·	$(\sigma\text{-Algebra})$: $F \in 2^{\Omega}$. Probability measure:	clude X:	- Generate new factor by maximizing out
2 Gaussian Processes	$P: F \to [0,1]$	- Generate new factor by marginalizing out $Y: G_{n-1} = \sum_{i=1}^{n} \prod_{j=1}^{n} f_{ij}$	X_i : $g_i = \max \prod_i f_i$
$f \sim GP(\mu, k) \Rightarrow \forall \{x_1, \dots, x_n\} \ \forall n < \infty$	Bayes' rule: $P(B A) = P(A,B)/P(A) = P(A,B)/P(A)$	$X_i: g_{X_i} = \sum_{x_i} \prod_j f_j$	
$[f(x_1)f(x_n)] \sim N([\mu(x_1)\mu(x_n)], K)$	$P(A B)P(B)/P(A)$, where $P(A) = \sum_{b} P(A B)P(A)$	- Add g to set of factors	- Add g to set of factors
where $K_{ij} = k(x_i, x_j)$	Union: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	- Renormalize $P(x,e)$ to get $P(x e)$	- For $i = n-1: 1, X_i \notin E$: $\hat{x}_i = \operatorname{argmax} g_i(x_i, \hat{x}_{i+1:n})$
2.1 Gaussian Process Regression	Rules for joint distributions:	Variable elimination for polytrees:	Patriaving MAD from May Product (MAD -
$f \sim GP(\mu, k)$ then: $f y_{1:n}, x_{1:n} \sim GP(\tilde{\mu}, \tilde{k})$	Sum rule (Marginalization):	- Pick a root, (avoiding <i>X</i> and <i>E</i>)	Retrieving MAP from Max-Product (MAP = MPE for a subset of RVs):
$\tilde{\mu}(x) = \mu(x) + K_{A,x}^T (K_{AA} + \epsilon I_n)^{-1} (y_A - \mu_A)$	$P(X_{1:i-1}, X_{i+1:n}) = \sum_{x_i} P(X_{1:i-1}, X_i = x_i, X_{i+1:n})$	- Orient edges towards root	- Define max-marginals:
	Product rule (Chain rule):	- Eliminate variables according to topological	$P_{max}(X_v = x_v) := \max_{x \in X} P(x)$
$\tilde{k}(x, x') = k(x, x') - K_{A,x}^T (K_A + \epsilon I_n)^{-1} K_{A,x'}$	$P(X_{1:n}) = P(x_1)P(X_2 X_1)P(X_n X_{1:n-1})$	order	$x \sim x_v$
Where: $K_{A,z} = [k(x_1, z)k(x_n, z)]^T$	Conditional Independence:	5.2 Avoiding recomputation: factor graphs	- For tree factor graphs, max-product computes
$[K_{AA}]_{ij} = k(x_i, x_j) \text{ and } \mu_A = [\mu(x_1 \dots x_n)]^T$	$X \perp Y Z \text{ iff } P(X,Y Z) = P(X Z)P(Y Z)$	FG for a BN is a bipartite graph consisting of	max-marginals:
2.2 Kernels	If $P(Y Z) > 0 \Rightarrow P(X Z, Y) = P(X Z)$	variables (circles) and factors (rectangles). It is	$P_{max}(X_v = x_v) \propto \prod_{u \in N(v)} \mu_{u \to v}(x_v)$
	Properties of Conditional Independence:	not a unique representation.	- Can retrieve MAP solution from these (must
k(x, y) is a kernel if it's symmetric semidefinite positive:	Symmetry: $X \perp Y \mid Z \Rightarrow Y \perp X \mid Z$	f_1 f_2 f_3 f_4	be careful when ties need to be broken).
$\forall \{x_1, \dots, x_n\}$ then for the Gram Matrix	Decomposition: $X \perp (Y, W) \mid Z \Rightarrow X \perp Y \mid Z$	D I CD DIG IGS SL	6.2 Sampling based inference: compute mar-
	Contraction: $(X \perp Y \mid Z) \land (X \perp W \mid Y, Z) \Rightarrow X \perp Y, W \mid Z$		ginals as expectations
$[K]_{ij} = k(x_i, x_j) \text{ holds } c^T K c \ge 0 \forall c$	Weak union: $X \perp Y, W \mid Z \Rightarrow X \perp Y \mid Z, W$	$\begin{pmatrix} c \end{pmatrix} \begin{pmatrix} D \end{pmatrix} \begin{pmatrix} G \end{pmatrix} \begin{pmatrix} I \end{pmatrix} \begin{pmatrix} S \end{pmatrix} \begin{pmatrix} L \end{pmatrix}$	Hoeffding's inequality: Suppose <i>f</i> is bounded
Some Kernels: (h is the bandwidth hyperp.)	Intersection: $(X \perp Y \mid W, Z) \land (X \perp W \mid Y, Z) \Rightarrow$		in $[0,C]$. Then:
Gaussian (rbf): $k(x,y) = \exp(-\frac{ x-y ^2}{h^2})$	$X \perp Y, W \mid Z$	5.2.1 Sum-product/Belief Propagation (BP) Algorithm:	$P(E_P[f(X)] - \frac{1}{N} \sum_{i=1}^{N} f(x_i) \ge \epsilon) \le 2exp(\frac{-2N\epsilon^2}{C^2})$
Exponential: $k(x,y) = \exp(-\frac{ x-y }{h})$	4 Bayesian Networks	- Initialize all messages as uniform distribution	Monte Carlo Sampling from a BN:
Linear kernel: $k(x,y) = x^T y$	4.1 Basic concepts	- Until converged to:	- Sort variables in topological ordering X_1, X_n
Efficial Kernen K(x)y) x y	A Bayesian network (G, P) consists of:	- Pick a root in the factor graph and reorient	- For $i = 1$ to n , sample:
2.3 Optimization of Kernel Parameters	- A BN structure <i>G</i> (directed, acyclic graph)	the edges towards this root.	$x_i \sim P(X_1 = x_1,, X_{i-1} = x_{i-1})$
Given a dataset A , a kernel function $k(x, y; \theta)$.	- A set of conditional probability distributions	- Update messages according to this orde-	Rejection Sampling:
$y \sim N(0, K_v(\theta))$ where $K_v(\theta) = K_{AA}(\theta) + \sigma_n^2 I$	-(G,P) defines the joint distribution:	ring. Do passes from leaves to root and from root to leaves.	- Collect samples over all variables:
$\hat{\theta} = \arg \max_{\theta} \log p(y X;\theta)$	$P(X_1,, X_n) = \prod_i P(X_i Pa_{X_i})$ BNs with 3 nodes:	- If a leaf node is a variable node: $\mu_{x \to f}(x) = 1$ -	$\hat{P}(X_A = x + A X_B = x_B) = \frac{Count(x_A, x_B)}{Count(x_B)}$
		If a leaf node is a factor node: $\mu_{f \to x}(x) = f(x)$	- Throw away samples that disagree with x_B
In GP: $\hat{\theta} = \arg\min_{\theta} y^T K_y^{-1}(\theta) y + \log K_y(\theta) $	4.2 Active trails and d-separation	Messages from node v to factor u :	- Count fraction of x_a on remaining samples
We can from here $\nabla \downarrow$:	An undirected path in a BN structure G is called active trail for observed variables $O \in$	$\mu_{v \to u}(x_v) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v(x_v)}$	6.2.1 Directly sampling from the posterior:
$\nabla_{\theta} \log p(y X;\theta) = \frac{1}{2} tr\left(\left(\alpha \alpha^{T} - K^{-1}\right) \frac{\partial K}{\partial \theta}\right), \alpha = K^{-1} y$	$X_1,,X_n$ of for every consecutive triple of va-	- Messages from factor u to node v :	MCMC
Or we could also be baysian about θ	riables X, Y, Z on the path:		Markov Chain:: A (stationary) MC is a se-
2.4 Aproximation Techniques	- indirect causal effect:	$\mu_{u \to v}(x_v) = \sum_{x_u \sim x_v} f_u(x_u) \prod_{v' \in N(u) \setminus \{v\}} \mu_{v' \to u(x'_v)}$ - Break once all messages change by $\leq \epsilon$	quence of RVs $X_1,,X_N$, with prior $P(X_1)$
3 Review of useful concepts and Introduction	$X \rightarrow Y \rightarrow Z$ and Y unobserved	Hope: after convergence, we have:	and transition probabilities $P(X_{t+1} X_t)$ inde-
3.1 Multivariate Gaussian	- indirect evidential effect:		pendent of t.
$f(x) = \frac{1}{2\pi\sqrt{ \Sigma }}e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$	$X \leftarrow Y \leftarrow Z$ and Y unobserved - common cause:	$P(X_v = x_v) = \frac{1}{Z} \prod_{u \in N(v)} \mu_{u \to v}(x_v)$	Markov assumpt.: $X_{1:t-1} \perp X_{t+1:T} X_t, \forall t > 1$ Stationarity assumption:
	$X \leftarrow Y \rightarrow Z$ and Y unobserved.	$P(\overrightarrow{X_u} = \overrightarrow{x_u}) = \frac{1}{Z} f_u(\overrightarrow{x_u}) \prod_{v \in N(u)} \mu_{v \to u}(x_v)$	$P(X_{t+1} = x X_t = x') = P(X_t = x X_{t-1} = x'), \forall t > 1$
Suppose we have a Gaussian random vector		If we have a polytree Bayesian network:	If ergodic (= there exists a finite t such that
	- common effect:	ii we mave a porytree bay comminet work.	
$X_V \sim N(\mu_V, \Sigma_{VV}).$	$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is	- Choose one node as root	
$X_V \sim N(\mu_V, \Sigma_{VV})$. Suppose we take two disjoint subsets of V:	$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is observed.	Choose one node as rootSend messages from leaves to root and from	every state can be reached in exactly t steps),
$X_V \sim N(\mu_V, \Sigma_{VV})$. Suppose we take two disjoint subsets of V: $A = i_1,, i_k$ and $B = j_1,, j_m$.	$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is observed. Any variables X_i and X_j for which there is	- Choose one node as root	every state can be reached in exactly t steps), then: it has a unique and positive stationary
$X_V \sim N(\mu_V, \Sigma_{VV})$. Suppose we take two disjoint subsets of V: $A = i_1,, i_k$ and $B = j_1,, j_m$. Then, the conditional distribution:	$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is observed. Any variables X_i and X_j for which there is no active trail for observations O are called	 Choose one node as root Send messages from leaves to root and from root to leaves 	every state can be reached in exactly t steps), then: it has a unique and positive stationary distribution $\pi(X) > 0$, such for all x : $\lim_{N \to \infty} P(X_N = x) = \pi(x)$ and $\pi(X) \perp P(X_1)$.
$X_V \sim N(\mu_V, \Sigma_{VV})$. Suppose we take two disjoint subsets of V: $A = i_1,, i_k$ and $B = j_1,, j_m$. Then, the conditional distribution: $P(X_A X_B = x_B) = N(\mu_{A B}, \Sigma_{A B})$ is Gaussian:	$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is observed. Any variables X_i and X_j for which there is no active trail for observations O are called d-separated by O.	 Choose one node as root Send messages from leaves to root and from root to leaves 6 Approximate inference (loopy networks)	every state can be reached in exactly t steps), then: it has a unique and positive stationary distribution $\pi(X) > 0$, such for all x : $\lim_{N \to \infty} P(X_N = x) = \pi(x) \text{ and } \pi(X) \perp P(X_1).$
$X_V \sim N(\mu_V, \Sigma_{VV})$. Suppose we take two disjoint subsets of V: $A = i_1,, i_k$ and $B = j_1,, j_m$. Then, the conditional distribution:	$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is observed. Any variables X_i and X_j for which there is no active trail for observations O are called	 Choose one node as root Send messages from leaves to root and from root to leaves 	every state can be reached in exactly t steps), then: it has a unique and positive stationary distribution $\pi(X) > 0$, such for all x : $\lim_{N \to \infty} P(X_N = x) = \pi(x) \text{ and } \pi(X) \perp P(X_1).$

```
Start with an arbitrary (e.g. random) policy \pi.
                                                          ring: Bayesian filtering for continuous pro-
                                                                                                                                                                              over BN structure G: G^* = argmaxS(G; D)
Designing Markov Chains:
                                                                                                                    Until converged, do:
                                                          blems. RV corrupted by Gaussian distributions
- Proposal distribution R(X'|X): given X_t = x,
                                                                                                                    - Compute value function V^{\pi}(x)
                                                                                                                                                                              Examples of scores:
                                                          with zero mean. Bayesian filtering is basi-
sample "proposal" x' \sim R(X'|X=x)
                                                                                                                    - Compute greedy policy \pi_G w.r.t. V^{\pi}
                                                                                                                                                                              MLE Score:
                                                          cally the same, except that sums turn to
- Acceptance distribution
                                                                                                                   - Set \pi \leftarrow \pi_G
                                                                                                                                                                              log P(D|\theta_G, G) = N \sum_{i=1}^n \hat{I}(X_i; Pa_i) + const.
                                                          integrals. General Kalman update
   - Suppose X_t = x
                                                                                                                    Guaranteed to monotonically improve and to
                                                                                                                                                                              Where mutual information (I(X_i, X_j) \ge 0) is:
                                                         - Transition model: P(x_{t+1}|x_t) = N(x_{t+1}; Fx_t, \Sigma_x)
                                                                                                                    converge to an optimal policy \pi^* in O(n^2m/(1-m^2))
   - With probability \alpha = min \left\{ 1, \frac{Q(x')R(x|x')}{Q(x)R(x'|x)} \right\}
                                                                                                                                                                              I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) log \frac{P(x_i, x_j)}{P(x_i)P(x_i)}
                                                         - Sensor model: P(y_t|x_t) = N(y_t; Hx_t, \Sigma_v)
                                                                                                                    \gamma)) iterations (converges in polynomial num-
                                                          - Kalman update:
                                                                                                                     ber of iterations)!
                                                                                                                                                                              Empirical mutual information:
   - With probability 1 - \alpha, set X_{t+1} = x
                                                          \mu_{t+1} = F \mu_t + K_{t+1} (y_{t+1} - HF \mu_t)
                                                                                                                                                                              \hat{P}(x_i, x_j) = \frac{Count(x_i, x_j)}{N}
                                                                                                                    8.3 Value iteration (Cost O(SA\Delta))
                                                          \Sigma_{t+1} = (I - K_{t+1})(F\Sigma_t F^T + \Sigma_x)
MCMC for graphical models: Gibbs samp-
                                                                                                                    Initialize V_0(x) = max_a r(x, a)
                                                                                                     (F\Sigma_t F^T +
                                                                                                                                                                              \hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i) \hat{P}(x_j)}
                                                              Kalman gain: K_{t+1}
                                                                                                                    For t = 1 to \infty:
ling (Random Vs Practical variant):
                                                          (\Sigma_x)H^T(H(F\Sigma_tF^T+\Sigma_x)H^T+\Sigma_v)^{-1}
                                                                                                                    - For each (x, a), let:
 Start with initial assignment x to all variables
                                                                                                                                                                              Regularizing a Bayes Net:
                                                                                                                    Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x'|x, a) V_{t-1}(x')
Fix observed variables X_B = x_B
                                                          7.3 Examples with > 1 variable per time step
                                                                                                                                                                              S_{BIC}(G) = \sum_{i=1}^{n} \hat{I}(X_i; Pa_i) - \frac{\log N}{2N} |G|
                                                                                                                    - For each x, let V_t(x) = maxQ_t(x, a)
- For t = 1 to ∞, do:
                                                          Dynamic Bayesian Networks: a BN at every
                                                                                                                                                                              where G is the number of parameters, n the
   - Pick a variable i uniformly at random from
                                                                                                                    - Break if ||V_t - V_{t-1}||_{\infty} = max|V_t(x) - V_{t-1}(x)| \le \epsilon
                                                                                                                                                                              number of variables and N the number of
\{1,...,n\}\setminus B / Set ordering, and then, for each
                                                          These models typically have many loops. Exact
                                                                                                                                                                              training examples.
                                                                                                                    Then choose greedy policy w.r.t V_t.
X_i (except those in B)
                                                          inference is usually intractable.
                                                                                                                                                                              Chow-Liu algorithm:
                                                                                                                    Guaranteed to converge to \epsilon-optimal policy
   - Set v_i = values of all x except x_i
                                                          7.4 Approx. infer. for filtering (DBNs and non-
                                                                                                                                                                              - For each pair X_i, X_i of variables, compute:
                                                                                                                    (finds approximate solution in polynomial
   - Sample x_i from P(X_i|v_i)
                                                                linear Kalman filters): Particle filtering
                                                                                                                    number of iterations)!
                                                                                                                                                                              \hat{P}(x_i, x_j) = \frac{Count(x_i, x_j)}{N}
7 Dynamical models (include time)
                                                          Suppose: P(X_t|y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i:t}}, where \delta is
7.1 Examples with one variable per time step
                                                                                                                    8.4 POMDP = Belief-state MDP
                                                          the indicator function. Prediction: Propagate
                                                                                                                                                                              - Compute mutual information
                                                                                                                                                                              - Define complete graph with weight of edge
X_1,...,X_T (unobserved) hidden states
                                                          each particle: x_i' \sim P(X_{t+1}|x_{i,t})
                                                                                                                    States = beliefs over states for original POMDP
                                                                                                                                                                              (X_i, X_i) given by the mutual information
Y_1, ..., Y_T (noisy) observations
                                                                                                                    B = \Delta(1,...,n) = \{b:1,...,n \to [0,1], \sum_{x} b(x) = 1\}
                                                          Conditioning:
                                                                                                                                                                              - Find max spanning tree → undirected tree
HMMs (polytrees: can use belief propagati-
                                                                                                                    Actions: same as original MDP
                                                          - weight particles w_i = \frac{1}{7}P(y_{t+1}|x_i')
                                                                                                                                                                              - Pick any variable as root and orient the edges
on): X_i categorical, Y_i categorical (or arbitrary)
                                                                                                                    Transition model:
                                                         - resample N particles x_{i,t+1} \sim \frac{1}{7} \sum_{i=1}^{N} w_i \delta_{x_i^i}
                                                                                                                    - Stochastic observation:

P(Y_t|b_t) = \sum_{x=1}^{n} P(Y_t|X_t = x)b_t(x)
                                                                                                                                                                              away using breadth-first search.
Kalman filters: X_i, Y_i Gaussian distributions
- P(X_1): prior belief about location at time i
                                                          Conclusion we came to: Z = \sum_{i=1}^{N} w_i \delta_{x_i}
                                                                                                                                                                              10 Reinforcement Learning
                                                                                                                    - State update (Bayesian filtering!), given
- P(X_{t+1}|X_t): 'Motion model' (how do I ex-
                                                          8 Probabilistic Planning
                                                                                                                                                                              10.1 Model-based RL
                                                                                                                    b_t, y_t, a_t: b_{t+1}(x') = \frac{1}{7} \sum_{x} b_t(x) P(y_t|x) P(X_{t+1}) =
pect my target to move in the environment?):
                                                          8.1 Markov Decision Processes
                                                                                                                                                                              10.1.1 \epsilon greedy
X_{t+1} = FX + \epsilon_t where \epsilon_t \sim N(0, \Sigma_x)
                                                                                                                    x'|X_t = x, a_t
                                                          An MDP is specified by a quintuple:
                                                                                                                                                                              With probability \epsilon, pick random action. With
- P(Y_t|X_t): 'Sensor model' (what do I observe
                                                                                                                    Reward function: r(b_t, a_t) = \sum_{x} b_t(x) r(x, a_t)
                                                          (X,A,r,P(x'|x,a),\bar{\gamma}), where X are states, A
                                                                                                                                                                              prob (1-\epsilon), pick best action. If sequence \epsilon sa-
if target is at location X_t?) Y_t = HX_t + \eta_t where
                                                          are actions, r(x,a) is a reward function and
                                                                                                                    8.5 Example of approx. solution to POMDPs:
                                                                                                                                                                              tisfies Robbins Monro criteria \rightarrow convergence
\eta_t \sim N(0, \Sigma_v)
                                                                                                                           Policy gradients
                                                          transition probabilities:
                                                                                                                                                                              to optimal policy with prob 1.
7.2 Inference tasks
                                                          P(x'|x, a) = \text{Prob}(\text{Next state} = x'|\text{Action } a)
                                                                                                                                                                              10.1.2 R_{max} algorithm
                                                                                                                    - Assume parameterized policy: \pi(b) = \pi(b; \theta)
Filtering: P(X_t|y_{1,...,t}) Is it raining today?
                                                          Objective: find a stationary policy \pi: S \to A
                                                                                                                                                                              Input: starting x_0, discount factor \gamma.
                                                                                                                    - For each parameter \theta the policy induces a
Prediction: P(X_{t+\tau}|Y_{1:t}) Rain 5 days from now?
                                                          that maximizes the sum of cumulative rewards.
                                                                                                                                                                              Initially: add fairy tale state x* to MDP
Example for one step: P(X_{t+1}|Y_{1:t})
                                                          Value of a state given a policy: sum of cumu-
                                                                                                                    - Can compute expected reward J(\theta) by samp-
                                                                                                                                                                              - Set r(x, a) = R_{max} for all states x and actions a
                                                          lative rewards, given that the initial state is
\sum_{x} P(X_{t+1}, X_t = x_t | Y_{1:t}) = \sum_{x} P(X_{t+1} | X_t = x_t | Y_{1:t})
                                                                                                                                                                              - Set P(x^*|x,a) = 1 for all states x and actions a
                                                          this state \rightarrow Bellman equation:
                                                                                                                    - Find optimal parameters through search (gra-
(x_t)P(X_t|Y_{1:t}) (with KFs, you need integrals!)
                                                                                                                                                                              - Choose the optimal policy for r and P
                                                                                                                    dient ascent): \theta^* = argmax \quad J(\theta)
                                                          V^{\pi}(s) = \mathbb{E} \left[ \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, \pi(s_{t}), s_{t+1}) | s_{0} = s \right]
                                                                                                                                                                              Repeat: 1. Execute policy \pi and, for each visi-
Smoothing: P(X_{\tau}|y_{1:t}) with \tau < t Did it rain
                                                                                                                                                                              ted state/action pair, update r(x, a)
last week? [Can use sum-product (aka forward-
                                                          = \sum_{s' \in S} P(s'|s, \pi(s)) \left[ r(s, \pi(s), s') + \gamma V^{\pi}(s') \right]
                                                                                                                     9 Learning models from training data
backward).]
                                                                                                                                                                              2. Estimate transition probabilities P(x|x,a)
MPE: argmaxP(x_{1:T}|y_{1:T}) Can use max pro-
                                                                                                                                                                              3. If observed 'enough' transitions/rewards, re-
                                                          = r(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^{\pi}(s')
                                                                                                                    9.1 Learning from i.i.d data
                                                                                                                                                                              compute policy \pi, according to current model
                                                          Theorem (Bellman): a policy is optimal iff it
                                                                                                                    Algorithm for Bayes Net MLE:
duct (aka Viterbi algorithm).
                                                                                                                                                                               P and r.
                                                          is greedy w.r.t. its induced value function!
                                                                                                                    Given BN of structure G and dataset D of com-
Bayesian filtering: Start with P(X_1):
                                                                                                                                                                              Enough"? See Hoeffding's inequality. To redu-
                                                          V^*(x) = max_a[r(x, a) + \gamma \sum_{x'} P(x'|x, a)V^*(x')]
                                                                                                                    plete observations
                                                                                                                                                                              ce error \epsilon, need more samples N.
At time t, assume we have P(X_t|y_{1:t-1})
                                                          Bellman equation mais geral:
                                                                                                                    For each X_i estimate: \hat{\theta}_{X_i|Pa_i} = \frac{Count(X_i,Pa_i)}{Count(Pa_i)}
                                                                                                                                                                              Theorem: With probability 1 - \delta, R_{max} will re-
Conditioning: P(X_t|y_{1:t}) = \frac{P(X_t|y_{1:t-1})P(y_t|X_t)}{\sum_{x_t} P(X_t|y_{1:t-1})P(y_t|X_t)}
                                                          V^{*}(x) = \max_{a} \left[ \sum_{x'} P(x'|x, a) (r(a, x, x') + \gamma V^{*}(x')) \right]
                                                                                                                                                                              ach an \epsilon-optimal policy in a number of steps
                                                                                                                    Pseudo-counts for lime and cherry flavor:
                                                          Optimal policy:
                                                                                                                                                                              that is polynomial in |X|, |A|, T, 1/\epsilon and log(1/\delta).
Prediction (O(n^2) \text{ } vs \text{ } O(n) \text{ in conditioning}):
                                                                                                                    \theta_{F=c} \frac{Count(F=c) + \alpha_c}{N + \alpha_c + \alpha_l}
                                                          \pi^*(s) = argmax[r(x, a) + \gamma \sum_{x'} P(x'|x, a)V^*(x')]
P(X_{t+1}|y_{1:t}) = \sum_{x} P(X_{t+1}|X_t) P(X_t|y_{1:t})
                                                                                                                                                                              Memory O(|X^2||A|).
```

Since HMM is a polytree, smoothing/MPE

can be computed by VE/BP. Kalman filte-

Q(x)P(x'|x) = Q(x')P(x|x'), then the MC has

stationarity distribution $\pi(X) = 1/ZQ(X)$.

8.2 Policy iteration (Cost $O(S^3 + SA\Delta)$)

9.1.1 Score based structure learning

Define scoring function S(G;D) and search

10.2 Model-free RL: estimate V*(x) directly
10.2.1 Q-learning

 $Q(x,a) \leftarrow (1-\alpha_t)Q(x,a) + \alpha_t(r+\gamma \max_{a'} Q(x',a'))$

Theorem: If learning rate α_t satisfies: $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$ (Robbins-Monro), and actions are chosen at random, then Q learning converges to optimal Q^* with probability 1.

Optimistic Q learning:

Initialize: $Q(x, a) = \frac{R_{max}}{1-\gamma} \prod_{t=1}^{T_{init}} (1 - \alpha_t)^{-1}$

Same convergence time as with R_{max} . Memory O(|X||A|). Comp. O(|A|).

Parametric Q-function approximation: $Q(x,a;\theta) = \theta^T \phi(x,a)$ to scale to large state spaces. (You can use Deep NN here!)

SGD for ANNs: initialize weights. For t = 1,2..., pick a data point (x,y) uniformly at random. Take step in negative gradient direction. (In practise, mini-batches).

Deep Q Networks: use CNN to approx Q function. $L(\theta) = \sum_{(x,a,r,x') \in D} (r + \gamma \max_{a'} Q(x',a';\theta^{old}) - q')$

 $Q(x,a;\theta))^2$ **Double DQN:** current network for evaluating argmax (too optimistic, and you remove θ^{old} and put θ).

10.3 Gaussian processes

A GP is an (infinite) set of random variables (RV), indexed by some set X, i.e., for each x in X, there is a RV Y_x where there exists functions $\mu: X \to \mathbb{R}$ and $K: X \times X \to \mathbb{R}$ such that for all: $A \in X$, $A = x_1, ...x_k$, it holds that $Y_A = [Y_{x_1}, ..., Y_{x_k}] \sim N(\mu_a, \Sigma_{AA})$, where: $\Sigma_{AA} =$ matrix with all combinations of $K(x_i, x_i)$.

K is called kernel (covariance) function (must be symmetric and pd) and μ is called mean function. **Making prediction with GPs:** Suppose $P(f) = GP(f;\mu,K)$ and we observe $y_i = f(\overrightarrow{x_i}) + \epsilon_i$, $A = \{\overrightarrow{x_1} : \overrightarrow{x_k}\}$ $P(f(x)|\overrightarrow{x_1} : \overrightarrow{x_k}, y_{1:k}) = GP(f;\mu',K')$. In particular, $P(f(x)|\overrightarrow{x_1} : \overrightarrow{x_k}, y_{1:k}) = N()f(x);\mu_{x|A},\sigma_{x|a}^2$, where $\mu_{x|a} = \mu(\overrightarrow{x}) + \Sigma_{x,A}(\Sigma_{AA} + \sigma^2 I)^{-1}\Sigma_{x,A}^T(\overrightarrow{y_A} - \mu_A)$ and $\sigma_{x|a}^2 = K(\overrightarrow{x},\overrightarrow{x}) - \Sigma_{x,A}(\Sigma_{AA} + \sigma^2 I)^{-1}\Sigma_{x,A}^T$.

Closed form formulas for prediction!