1. **Definición** de diagonalización.

2. Demuestre: Una matriz cuadrada A n × n es diagonalizable si y sólo si A tiene n autovectores linealmente independientes.

3. Pasos para diagonalizar una matriz.

- **4. Teorema espectral real:** Si A es una matriz simétrica de n × n, entonces las siguientes propiedades son verdaderas:
 - 1. A es diagonalizable.
 - 2. Todos los eigenvalores de A son reales.
 - 3. Si λ es un autovalor de A con multiplicidad k, entonces λ tiene k autovectores linealmente independientes. Es decir, el autoespacio de λ es de dimensión k.

5. Defina: Matriz ortogonal.

6. **Defina:** Vector ortogonal

7. Defina: Conjunto ortonormal.

8. Demuestre: Una matriz P de n × n es ortogonal si y sólo si sus vectores columna forman un conjunto ortonormal.

9. **Propiedad:** Sea A una matriz simétrica de $n \times n$. Si λ_1 y λ_2 son autovalores distintos de A entonces sus autovectores correspondientes x_1 y x_2 son ortogonales.

10. Defina: Diagonalización ortogonal.

11. Demuestre: Sea A una matriz de orden n, A es diagonalizable ortogonalmente y tiene autovalores reales si y solo si A es simétrica.

12. Demuestre: Sea P una matriz que diagonaliza a A, de tamaño n × n, de manera que $P^{-1}AP = D$. Demuestre que para un entero positivo k, se tiene:

- **1.** $D^k = P^{-1}A^kP$
- **2.** $A^k = PD^kP^{-1}$

13. Demuestre, utilizando inducción: Sea A una matriz n x n con λ como un autovalor de A con autovector correspondiente x y k, entero positivo, se cumple que λ^k es un autovalor de A^k y x es un autovector correspondiente.

14. Demuestre que si λ es un autovalor de una matriz inversible A y x es un autovector correspondiente, entonces $\frac{1}{\lambda}$ es un autovalor de A⁻¹ y x es un autovector correspondiente.

15. Demuestre que si λ es un autovalor de una matriz inversible A y x es un autovector correspondiente, entonces $\frac{1}{\lambda^k}$ es un autovalor de A^{-k} y x es un autovector correspondiente.

16. Demuestre que la ecuación característica de la matriz

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 se puede expresar como $\lambda^2 - tr(A)\lambda + det(A) = 0$,

donde tr(A) = a + d es la traza de A. Dar una expresión para los autovalores de A.