ECG Classification Using Neural Networks

Sai Yadavalli

Content

1 Problem

 \bigcirc

2 Data

(>)

3 Algorithm

 \bigcirc

4 Training

 \bigcirc

5 Results

 \bigcirc

6 Future

 \bigcirc

Problem

- No way to automatically classify different types of heartbeats from ECG signals
- End Goal: Early, accurate detection of arrhythmias, reducing the burden on healthcare professionals by providing automated diagnostic support.

Data Description

109446

rows/samples (training + validation)

187

Features: 187 values per heartbeat (ECG signal over time)

Source

MIT-BIH

Arrhythmia Dataset

PhysioNet

Kaggle

5

Labels: Normal \rightarrow 0, Supraventricular ectopic \rightarrow 1, Ventricular ectopic \rightarrow 2, Fusion \rightarrow 3, Unknown \rightarrow 4

Each sample is a 1D vector representing a fixed-length ECG waveform segment.

Link to Kaggle Data Set

Convolutional Neural Network (CNN) Model

2

3

Libraries

- Implemented from scratch in NumPy—no deep learning libraries used
- Pandas for data processing
- Scikit-Learn for metrics

Implementation

- 1D Convolution layer extracts local ECG patterns
- Max pooling reduces feature dimensionality
- Softmax layer for probability output
- ReLU activation and backpropagation—manually implemented

Architecture (Fully Connected)

Conv → Pool → Dense → Output

Training & Testing

Data was split into...

- 80% Training
- 20%Testing/Validation
- Not Standardized

Manual implementation of...

- Forward and backward passes
- Stochastic gradient descent
- Loss: Cross-Entropy

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \, \log q(x).$$

Results & Evaluation

- Evaluated on test set using classification metrics:
 - Accuracy: 91.63%
 - o Precision: 88.85%
 - o Recall: 91.63%
 - o Fl Score: 89.59%

What Did I Learn?

- Even simple CNNs can achieve strong performance on time-series data in Arrhythmia Classification
- Implementing backpropagation, training logic, and loss function deepened understanding of ML fundamentals
- Future improvements:
 - Add more layers
 - Adjust Parameters
 - conv_filters=6,
 kernel_size=5,
 pool_size=2,
 hidden_units=32,
 learning_rate=0.01,
 epochs=10,
 batch_size=32
 - Try Scaling

Thank you

Any Questions?