Introduction to ML (CS771), Autumn 2020 Indian Institute of Technology Kanpur Homework Assignment Number 1

Date: December 19, 2020

Student Name: Machine Learner
Roll Number: 17001

QUESTION

An eigen vector v of $\frac{1}{N}XX^T$ or XX^T , satisfies a relation $XX^Tv=\lambda v$. Multiplying both sides by X^T and using associativity of matrix multiplication,

$$\frac{1}{N}X^T(XX^T)v = \frac{1}{N}X^TX(X^Tv) = \frac{1}{N}X^T\lambda v = \frac{1}{N}\lambda(X^Tv)$$

Thus,

$$\frac{1}{N}\boldsymbol{X}^T\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{v}) = \frac{1}{N}\boldsymbol{\lambda}(\boldsymbol{X}^T\boldsymbol{v})$$

Hence, we see that for each eigen vector (with a non-zero eigen-value) of $\frac{1}{N}XX^T$, we can derive an eigen vector for $\frac{1}{N}X^TX$ by pre-multiplying it by X^T .

Now, to obtain those eigen-vectors of $\frac{1}{N}X^TX$ for which the eigen value is 0, we do the following. Let's assume u is an eigen vector of X^TX with 0 eigenvalue.

$$X^T X(u) = 0 \implies u^T X^T X u = 0 \implies ||Xu||^2 = 0$$

Hence, all the vectors in the null-space of X are the eigen vectors of $\frac{1}{N}X^TX$ with 0 eigen value. The advantage of using this method is that we need to compute eigen values for a NxN matrix if we use XX^T , and hence require a computation time of $O(N^3)$, as opposed to the $O(D^3)$ time for calculating eigen vectors of the DXD matrix X^TX . Since it is given in the question that D > N, we achieve a computational advantage by doing so.

Introduction to ML (CS771), Autumn 2020 Indian Institute of Technology Kanpur Homework Assignment Number 1

Student Name: Machine Learner

Roll Number: 17001 Date: December 19, 2020 QUESTION 2

The complete log data likelihood for the model can be written as:

$$\Sigma_{n=1}^{N} \Sigma_{l=1}^{L} z_{nl} \left[log(\pi_l) + \Sigma_{m=1}^{M} log(\frac{\lambda_l^{k_{n,m}}}{e^{\lambda_l} . k_{n,m}!}) \right]$$

E-step:

We compute the posterior conditional distribution of z as:

$$p(z_{nl} = 1|k_n, \theta) \propto p(z_{nl} = 1|\theta) \cdot p(k_n|z_{nl} = 1, \theta)$$
$$= \pi_l \cdot \prod_{m=1}^M \frac{\lambda_l^{k_{n,m}}}{e^{\lambda_l} \cdot k_{n,m}!}$$

Here θ is used to denote the collective set of parameters. In order to compute $\mathbb{E}[z_n l]$, we do:

$$\mathbb{E}[z_{nl}^{(t)}] = \gamma_{nl}^{(t)} = \frac{\pi_l^{(t-1)} \cdot \prod_{m=1}^M \frac{\lambda_l^{(t-1)^{k_{n,m}}}}{e^{\lambda_l^{(t-1)}} \cdot k_{n,m}!}}{\sum_{o=1}^L \pi_o^{(t-1)} \cdot \prod_{m=1}^M \frac{\lambda_o^{(t-1)^{k_{n,m}}}}{e^{\lambda_o^{(t-1)}} \cdot k_{n,m}!}}$$

M-step:

The expression for maximizing expected CLL can be written as:

$$\underset{\pi,\lambda}{\operatorname{arg\,max}} \quad \Sigma_{n=1}^{N} \Sigma_{l=1}^{L} \mathbb{E}[z_{nl}] \left[log(\pi_l) + \Sigma_{m=1}^{M} log(\frac{\lambda_l^{k_{n,m}}}{e^{\lambda_l}.k_{n,m}!}) \right]$$

Differentiating wrt π_l , we get

$$\Sigma_{n=1}^{N} \mathbb{E}[z_{nl}] \left[\frac{1}{\pi_{l}} \right] = 0$$

$$\implies \pi_{l} = \Sigma_{n=1}^{N} \mathbb{E}[z_{nl}] \quad \forall l \in [1, L]$$

Differentiating wrt λ_l , we get

$$\begin{split} & \Sigma_{n=1}^{N} \mathbb{E}[z_{nl}] \Sigma_{m=1}^{M} \left[\frac{k_{n,m}}{\lambda_{l}} - 1 \right] = 0 \\ \Longrightarrow & \lambda_{l} = \frac{\Sigma_{n=1}^{N} \mathbb{E}[z_{nl}] \Sigma_{m=1}^{M} k_{n,m}}{M \Sigma_{n=1}^{N} \mathbb{E}[z_{nl}]} \quad \forall l \in [1, L] \end{split}$$

Introduction to ML (CS771), Autumn 2020 Indian Institute of Technology Kanpur Homework Assignment Number 1

Student Name: Machine Learner

Roll Number: 17001 Date: December 19, 2020 3

In a standard linear regression model, x_n and y_n are provided to us, and we just learn a global weight vector w, which translates the inputs to the appropriate y_n .

Here, the generative story is as follows. First, we generate a latent variable z_n belonging to one of the K classes, derived from the multinoulli distribution of z. Next, we sample an observation x_n from a gaussian, whose mean and variance are fixed but dependent on the class k that z_n belongs to. Once we have the value of x_n , we map it to another gaussian distribution whose mean is dependent on x_n , with its variance being a fixed quantity β^{-1} . We sample y_n from this gaussian distribution, which is the output for x_n .

The advantage of using this is that we are able to learn K different distributions for input data, and based on which distribution an input came from, we associate another distribution for y_n , from which we sample the final output of our model.

Essentially, we learn K different weight vectors for our linear regression model, and depending on the input, we decide which weight vector to choose.

After we generate z_n and fixing the distribution of x_n , we basically perform a probabilistic PCA for finding y_n .

Thus, y_n can be seen as a low-dimensional representation of the input x_n , which is exactly what we want to learn in the regression model.

EM Algorithm:

- 1. Initialize $\Theta = \{\pi_k, \mu_k, \Sigma_k, \mathbf{w}_k\}_{k=1}^K$ as $\Theta^{(0)}$, set t = 1
- 2. **E step:** Compute the following for all z_n . Conditional posterior distr of **Z**:

$$p(z_n = k|x_n, y_n, \theta) \propto p(z_n = k|\theta) \cdot p(x_n|z_n = k, \theta) \cdot p(y_n|z_n = k, x_n, \theta)$$
$$= \pi_k \cdot \mathcal{N}(\mu_k, \Sigma_k) \cdot \mathcal{N}(\mathbf{w}_k^{\mathbf{T}} \mathbf{x}_n, \beta^{-1})$$

This is the unnormalized version of Conditional posterior distr of Z. Upon calculation of $\mathbb{E}[z_{nk}]$, we get

$$\mathbb{E}[z_{nk}^{(t)}] = \gamma_{nk}^{(t)} = \frac{\pi_k^{(t-1)}.\mathcal{N}(\mu_k^{(t-1)}, \Sigma_k^{(t-1)}).\mathcal{N}(\mathbf{w_k^{(t-1)}T}\mathbf{x_n}, \beta^{-1})}{\Sigma_{l-1}^K \pi_l^{(t-1)}.\mathcal{N}(\mu_l^{(t-1)}, \Sigma_l^{(t-1)}).\mathcal{N}(\mathbf{w_l^{(t-1)}T}\mathbf{x_n}, \beta^{-1})}$$

3. M step: Compute CLL and maximize its expectation:

$$p(\mathbf{X}, \mathbf{Y}, \mathbf{Z}|\theta) = \prod_{n=1}^{N} p(z_n|\theta) . p(x_n|z_n, \theta) . p(y_n|z_n, x_n, \theta)$$
$$= \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k . \mathcal{N}(x_n|\mu_k, \Sigma_k) . \mathcal{N}(y_n|\mathbf{w}_k^T \mathbf{x}_n, \beta^{-1}) \right]^{z_{nk}}$$

Therefore, CLL is given as:

$$log(p(\mathbf{X}, \mathbf{Y}, \mathbf{Z}|\theta)) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left[log(\pi_k) + log(\mathcal{N}(x_n|\mu_k, \Sigma_k)) + log(\mathcal{N}(y_n|\mathbf{w_k^T}\mathbf{x_n}, \beta^{-1})) \right]$$

In this step, we maximize the expected CLL wrt Θ , as:

$$\underset{\Theta}{\operatorname{arg max}} \ \Sigma_{n=1}^{N} \Sigma_{k=1}^{K} \mathbb{E}[z_{nk}] \left[log(\pi_{k}) + log(\mathcal{N}(x_{n}|\mu_{k}, \Sigma_{k})) + log(\mathcal{N}(y_{n}|\mathbf{w_{k}^{T}x_{n}}, \beta^{-1})) \right]$$

On simplifying, we get

$$\underset{\Theta}{\operatorname{arg\,max}} \ \Sigma_{n=1}^{N} \Sigma_{k=1}^{K} \mathbb{E}[z_{nk}] \left[log(\pi_{k}) + log(\mathcal{N}(x_{n}|\mu_{k}, \Sigma_{k})) - \frac{(y_{n} - \mathbf{w}_{k}^{\mathbf{T}} \mathbf{x}_{n})^{2} \beta^{2}}{2} \right]$$

Differentiating wrt μ_k , we get

$$\mu_k^{(t)} = \frac{\sum_{n=1}^{N} \gamma_{nk}^{(t)} x_n}{\sum_{n=1}^{N} \gamma_{nk}^{(t)}}$$

Differentiating wrt Σ_k , we get

$$\Sigma_k^{(t)} = \frac{\sum_{n=1}^N \gamma_{nk}^{(t)} (x_n - \mu_k^{(t)}) (x_n - \mu_k^{(t)})^T}{\sum_{n=1}^N \gamma_{nk}^{(t)}}$$

Differentiating wrt π_k , we get

$$\pi_k^{(t)} = \frac{\sum_{n=1}^N \gamma_{nk}^{(t)}}{N}$$

Differentiating wrt \mathbf{w}_k , we get

$$\Sigma_{n=1}^{N} \mathbb{E}[z_{nk}] \left(x_n (y_n - w_k^T x_n) \right) = 0$$

$$\implies w_k = \left(\sum_{n=1}^{N} \mathbb{E}[z_{nk}] x_n x_n^T \right)^{-1} \sum_{n=1}^{N} \left(\mathbb{E}[z_{nk}] y_n \right) x_n$$

4. Set t = t + 1, and go to step 2 if not converged

Intuitive Sense: The update is very similar to the closed form solution obtained in normal linear regression $W = (X^T X)^{-1} X^T Y$

ALT-OPT Algorithm:

- 1. Initialize $\Theta = \{\pi_k, \mu_k, \Sigma_k, \mathbf{w}_k\}_{k=1}^K$ as $\Theta^{(0)}$, set t = 1
- 2. Conditional posterior distr of Z:

$$p(z_n = k|x_n, y_n, \theta) \propto p(z_n = k|\theta).p(x_n|z_n = k, \theta).p(y_n|z_n = k, x_n, \theta)$$
$$= \pi_k.\mathcal{N}(\mu_k, \Sigma_k).\mathcal{N}(\mathbf{w}_k^T \mathbf{x}_n, \beta^{-1})$$

For each n, compute the best guess of z_n as:

$$\hat{z_n} = \underset{k=1,2,\dots,K}{\operatorname{arg max}} p(z_n = k | x_n, y_n, \theta)$$
(1)

3. Solve MLE problem for θ using $\hat{z_n}$ in the last step

$$\hat{\Theta} = \underset{\Theta}{\operatorname{arg max}} \ \Sigma_{n=1}^{N} \Sigma_{k=1}^{K} \hat{z_{nk}} \left[log(\pi_{k}) + log(\mathcal{N}(x_{n}|\mu_{k}, \Sigma_{k})) + log(\mathcal{N}(y_{n}|\mathbf{w_{k}^{T}x_{n}}, \beta^{-1})) \right]$$

On simplifying, we get

$$\underset{\Theta}{\operatorname{arg\,max}} \ \Sigma_{n=1}^{N} \Sigma_{k=1}^{K} \hat{z_{nk}} \left[log(\frac{1}{k}) + log(\mathcal{N}(x_{n}|\mu_{k}, \Sigma_{k})) - \frac{(y_{n} - \mathbf{w_{k}^{T}} \mathbf{x_{n}})^{2} \beta^{2}}{2} \right]$$

Differentiating wrt μ_k , we get

$$\mu_k^{(t)} = \frac{\sum_{n=1}^{N} \hat{z_{nk}}^{(t)} x_n}{\sum_{n=1}^{N} \hat{z_{nk}}^{(t)}}$$

Differentiating wrt Σ_k , we get

$$\Sigma_k^{(t)} = \frac{\sum_{n=1}^N \hat{z_{nk}}^{(t)} (x_n - \mu_k^{(t)}) (x_n - \mu_k^{(t)})^T}{\sum_{n=1}^N \hat{z_{nk}}^{(t)}}$$

Differentiating wrt \mathbf{w}_k , we get

$$\Sigma_{n=1}^{N} \hat{z}_{nk} \left(x_n (y_n - w_k^T x_n) \right) = 0$$

$$\implies w_k = (\Sigma_{n=1}^{N} \hat{z}_{nk} x_n x_n^T)^{-1} \Sigma_{n=1}^{N} (\hat{z}_{nk} y_n) x_n$$

4. Set t = t + 1, and go to step 2 if not converged

Part 2:

EM Algorithm:

- 1. Initialize $\Theta = {\{\eta_k, \mathbf{w}_k\}_{k=1}^K \text{ as } \Theta^{(0)}, \text{ set } t = 1}$
- 2. **E step:** Compute the following for all z_n .

Conditional posterior distr of Z:

$$p(z_n = k|x_n, y_n, \theta) \propto p(z_n = k|x_n, \theta).p(y_n|z_n = k, x_n, \theta)$$
$$= \pi_k(x_n) \mathcal{N}(\mathbf{w}_{\mathbf{k}}^{\mathbf{T}} \mathbf{x}_{\mathbf{n}}, \beta^{-1})$$

This is the unnormalized version of Conditional posterior distr of Z. Upon calculation of $\mathbb{E}[z_{nk}]$, we get

$$\mathbb{E}[z_{nk}^{(t)}] = \gamma_{nk}^{(t)} = \frac{\pi_k(x_n) \mathcal{N}(\mathbf{w}_k^{\mathbf{T}} \mathbf{x}_n, \beta^{-1})}{\sum_{l=1}^K \pi_l(x_n) \mathcal{N}(\mathbf{w}_l^{\mathbf{T}} \mathbf{x}_n, \beta^{-1})}$$

3. M step: Compute CLL and maximize its expectation:

$$p(\mathbf{X}, \mathbf{Y}, \mathbf{Z} | \theta) == \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k(x_n) . \mathcal{N}(y_n | \mathbf{w}_k^T \mathbf{x}_n, \beta^{-1}) \right]^{z_{nk}}$$

Therefore, CLL is given as:

$$log(p(\mathbf{X}, \mathbf{Y}, \mathbf{Z}|\theta)) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left[log(\pi_k(x_n)) + log(\mathcal{N}(y_n|\mathbf{w_k^T}\mathbf{x_n}, \beta^{-1})) \right]$$

In this step, we maximize the expected CLL wrt Θ , as:

$$\underset{\Theta}{\operatorname{arg max}} \ \Sigma_{n=1}^{N} \Sigma_{k=1}^{K} \mathbb{E}[z_{nk}] \left[log(\pi_{k}(x_{n})) + log(\mathcal{N}(y_{n} | \mathbf{w_{k}^{T} x_{n}}, \beta^{-1})) \right]$$

On simplifying, we get

$$\underset{\Theta}{\operatorname{arg\,max}} \ \Sigma_{n=1}^{N} \Sigma_{k=1}^{K} \mathbb{E}[z_{nk}] \left[log(\pi_{k}(x_{n})) - \frac{(y_{n} - \mathbf{w}_{k}^{\mathbf{T}} \mathbf{x}_{n})^{2} \beta^{2}}{2} \right]$$

Differentiating wrt η_k , we get

$$\frac{1}{\pi_k(x_n)} \cdot \frac{d(\pi_k(x_n))}{d\eta_k} = 0$$

Differentiating wrt \mathbf{w}_k , we get

$$\Sigma_{n=1}^{N} \mathbb{E}[z_{nk}] \left(x_n (y_n - w_k^T x_n) \right) = 0$$

$$\implies w_k = \left(\Sigma_{n=1}^{N} \mathbb{E}[z_{nk}] x_n x_n^T \right)^{-1} \Sigma_{n=1}^{N} \left(\mathbb{E}[z_{nk}] y_n \right) x_n$$

4. Set t = t + 1, and go to step 2 if not converged