Signal Analyse

Hannes Reindl

November 29, 2019

(A) Design FIR Filter

Wurde mithilfe von Matlab fdatool erstellt.

Parameter: N = 100 $F_{stop} = 0.48$ $F_{pass} = 0.52$ $F_{max} = 1$

(B) Frequenzgang zu einzelnen Ausgängen

Abtastfrequenz:

$$H_{x \to x_1}: f_{S,x1} = \frac{f_S}{2}$$
 $H_{x \to x_2}: f_{S,x2} = \frac{f_S}{4}$
 $H_{x \to x_3}: f_{S,x3} = \frac{f_S}{8}$ $H_{x \to x_4}: f_{S,x4} = \frac{f_S}{8}$

$$H_{x \to x_3}: f_{S,x3} = \frac{f_S}{8} \qquad H_{x \to x_4}: f_{S,x4} = \frac{f_S}{8}$$

Frequency Resolution: ???

(C) Implementation der Filterbank Funktion

Siehe matlab file: func_filterbank()

(D) Frequenzunterteilungen

gegben: $f_S = 2 \text{ kHz}$

$$f_{\text{max}} = \frac{f_{\text{S}}}{2} = 1 \text{ kHz} \tag{1}$$

$$x_1: f_{lo} = \frac{f_{max}}{2} = 500 \text{ Hz}$$
 $f_{up} = f_{max} = 1000 \text{ Hz}$
 $x_2: f_{lo} = \frac{f_{max}}{4} = 250 \text{ Hz}$ $f_{up} = \frac{f_{max}}{2} = 500 \text{ Hz}$
 $x_3: f_{lo} = \frac{f_{max}}{8} = 125 \text{ Hz}$ $f_{up} = \frac{f_{max}}{4} = 250 \text{ Hz}$
 $x_4: f_{lo} = 0 \text{ Hz}$ $f_{up} = \frac{f_{max}}{8} = 125 \text{ Hz}$

(D) Eingangs- zu Ausgangsfrequenz: Eingangspektrum

(D) Eingangs- zu Ausgangsfrequenz: Nach Hochpasfilter

(D) Eingangs- zu Ausgangsfrequenz: Nach Downsampling

(D) Eingangs- zu Ausgangsfrequenz: Conclusio

Überall dort, wo ein Hochpassfilter mit folgenden Downsampler ist, wird das Spektrum gespiegelt. Z.B. Ein Sinus mit der Frequenz $f=900~{\rm Hz}$ am Eingang kommt bei x_1 als Sinus mit einer Frequenz von $f_{x1}=100~{\rm Hz}$ raus (für $f_S=2~{\rm kHz}$).

Dies gilt für alle Ausgänge außer x_4 , da dieser nur Tiefpassfilter nutzt und somit das Spektrum nie gespiegelt wird.

(D) Spektrogramm von erstellten Signal

Matlab: spectrogram(x,256,0,256,f_S)

 $f_S = 2 \; \mathrm{kHz} \; \; f_4 = 62.5 \; \mathrm{Hz} \; \; f_3 = 187.5 \; \mathrm{Hz} \; \; f_2 = 375 \; \mathrm{Hz} \; \; f_1 = 900 \; \mathrm{Hz}$

(D) Erstelltes Signal nach Filterbank

 $f_S = 2 \; \mathrm{kHz} \; \; f_1 = 900 \; \mathrm{Hz} \; \; f_2 = 375 \; \mathrm{Hz} \; \; f_3 = 187.5 \; \mathrm{Hz} \; \; f_4 = 62.5 \; \mathrm{Hz}$

(E) Spektrogramm vom gegebenen Signal

Matlab: spectrogram(x,256,0,256,f_S)

(E) Gegebenens Signal nach Filterbank

