

Redes de Computadores

Parte II: Camada Física

Dezembro, 2012

Professor: Reinaldo Gomes reinaldo@computacao.ufcg.edu.br

Meios de Transmissão

Meios de Transmissão

- □ Terminologia
 - A transmissão de dados ocorre entre um transmissor e um receptor através de algum meio
 - Meios guiados
 - Par traçado, cabo coaxial, fibra óptica, ...
 - Meios não guiados/sem fio
 - Ar, água, vácuo, ...

- Vantagens: menor interferência, maior distância
- Desvantagens: mais caro, precisa de aterramento, difícil instalação

Meios de Transmissão

□ Sem fio

■ Antenas: Rádio, Microondas, etc.

■ Vantagem: fácil instalação

■ Desvantagem: alta interferência

Forma de sinalização

□ Analógica:

- □ Informações geradas por fontes sonoras têm variações contínuas no tempo
- □ Digital:
 - Níveis discretos de tensão ou corrente. Pulsos nos quais a amplitude é fixa

Modos de transmissão

□ Paralela

- Transmissão simultânea de vários bits (em geral um byte), utilizando várias linhas de comunicação
- Utilizada internamente nos computadores e para distâncias curtas

□ Serial

- Os bits são transmitidos um a um, em sequência, em um única linha de dados
- Tipo de transmissão mais utilizado em redes de computadores

Ritmos de transmissão

- □ Síncrona
 - □ Cadência fixa para transmissão sequenciada dos bits
 - Transmissor e receptor devem estar sincronizados
- □ Assíncrona
 - Não exige fixação prévia de padrão de tempo
 - Tempo de transmissão entre dois grupos de bits pode variar
 - Utiliza start bits e stop bits

Modos de operação

- □ A transmissão e a recepção podem ou não existir simultaneamente no tempo
- □ Simplex
 - comunicação em uma única direção
- □ Half-Duplex
 - comunicação em ambas as direções, porém não simultaneamente
- □ Full-Duplex
 - comunicação em ambas as direções simultaneamente

Tipos de ligação

- □ Ponto-a-ponto
 - Apenas dois equipamentos interligados por um meio físico de transmissão
- □ Multiponto
 - Vários equipamentos interligados por um meio físico de transmissão

Banda passante

- □ Banda passante de um sinal
 - Intervalo de frequências que compõem o sinal (Ex.: 300Hz a 3300Hz - sinal de voz)
- □ Largura de banda
 - Tamanho da banda passante, ou seja, a diferença entre início e final da banda (Ex.: 3KHz)
- □ Taxa de transmissão de dados
 - Depende da largura de banda
 - Limitada a duas vezes a largura de banda (1 bit por intervalo de sinalização)
 - Especificada em bits por segundo (bps)

Fontes de distorção de sinais

- □ Ruídos
- □ Linha cruzada (*Crosstalk*)
- □ Atenuação
- □ Ecos

Formas de sinalização

- □ Há duas maneiras para transmissão de dados
 - Sinais Analógicos
 - Sinais Digital

Formas de sinalização

- □ Analógica
 - Informações geradas por fontes sonoras têm variações contínuas no tempo;
 - Dispositivos que transformam movimento ou condição de um evento natural em sinal elétrico ou mecânico que seja similar;

 Sofrem menos atenuações que sinais digitais em longas distâncias;

Exemplos de dados analógicos

- □ Relógio de ponteiros:
 - o seu movimento é análogo ao movimento do tempo.
- □ Termômetro:
 - mede temperaturas que mudam constantemente.
 - ação contínua e a faixa de valores não é limitada.

Formas de sinalização

- □ Digital
 - Níveis discretos de tensão ou corrente;
 - Pulsos nos quais a amplitude é fixa:
 - Um sinal digital representa um valor "instantâneo" de uma situação e não representa um movimento contínuo.

Analog Signals: Represent data with continuously varying electromagnetic wave Analog Data (voice sound waves) Digital Data (binary voltage pulses) Analog Signal (modulated on carrier frequency)

Transmissão digital

- Um sinal digital caracterizase pela presença de pulsos nos quais a amplitude é fixa;
- O sinal é construído através de uma seqüência de intervalos (de sinalização) de tamanho fixo iguais a T segundos;
- □ Cada nível representa um bit (neste exemplo).

Transmissão digital

- O número de níveis usado na transmissão pode ser maior que dois;
- Com quatro níveis podemos representar 2 bits a cada intervalo de sinalização (dibit);
- Com oito níveis podemos representar 3 bits a cada intervalo de sinalização (tribit);

Transmissão digital

- O número de intervalos de sinalização por segundo pode ser diferente do número de bits por segundo;
- O número de intervalos de sinalização por segundo de um sinal digital é o número de bauds desse sinal;

 $1 baud = \log_2 L(bps)$

□ Teorema de Nyquist:

Taxa máxima de dados = $2H \log_2 L$ bps

Onde:

- H é a largura de banda de um filtro passa baixa
- L é o número de níveis discretos

Transmissão Analógica

□ Como posso transmitir um sinal digital através de um meio de transmissão analógico?

- □ Esta função descreve o sinal correspondente a transmissão do caracter "b"
- □ O padrão de bits a ser transmitido é "01100010"

Fontes de distorção de sinais

- □ Além dos efeitos de distorção oriundos da largura de banda dos meios físicos, outros fatores podem causar distorções durante a transmissão:
 - Ruídos
 - Atenuação
 - Ecos

Fontes de distorção de sinais

- □ Ruídos
 - Interferências de sinais externos ao meio físico;
 - A quantidade de ruído é medida em termos da razão entre a potência do sinal e a potência do ruído:
 - \blacksquare razão sinal-ruído = S / N:
 - Onde S = Sinal (Signal) e N = ruído (Noise)
 - Normalmente utiliza-se uma escala logarítmica para essa relação:
 - 10 log₁₀ (S/N) em decibéis (dB)

Classificação de ruídos

- □ Ruído térmico;
- □ Ruído de intermodulação;
- □ Crosstalk;
- Ruído impulsivo

Classificação de ruídos

□ Ruído térmico;

- provocado pela agitação dos elétrons nos condutores;
- uniformemente distribuído em todas as frequências do espectro;
- □ função da temperatura;
- chamado de "ruído branco"

Classificação de ruídos

□ Ruído de intermodulação;

- ocasionado quando diferentes freqüências compartilham o mesmo meio físico através de FDM;
- Pode ocorrer devido a sinais com potência muito alta;

Classificação de ruídos

- □ Crosstalk;
 - Muito comum em sistemas telefônicos;
 - Também chamado de linha cruzada;
 - Causado por interferências induzidas por cabos muito próximos;

Classificação de ruídos

- □ Ruído impulsivo;
 - Podem ser causados por falhas em equipamentos;
 - Podem ser causados por disparos de certos equipamentos como motores elétricos ligados próximos do meio físico ou no mesmo circuito elétrico:

Lei de Shannon

□ A capacidade máxima teórica C de um canal (em bps), cuja largura de banda é H Hz e cuja a relação sinal ruído é S/N, é dada por:

 $C = H \log_2(1 + S/N)$ bps

Fontes de distorção de sinais

- □ Atenuação
 - A potência cai com a distância de modo logarítmico;
 - Normalmente expresso em Decibéis;
 - Ocorre por aquecimento;
 - Repetidores podem reforçar o sinal e retransmiti-lo.

Fontes de distorção de sinais

- □ Ecos
 - Causam efeitos similares aos ruídos;
 - Mudanças de impedâncias na linha faz com que os sinais sejam refletidos;
 - Em linhas telefônicas utilizam-se canceladores de ecos.

Multiplexação

- Motivação
 - Banda passante necessária para um sinal é, em geral, bem menor do que a banda passante dos meios físicos disponíveis;
 - Pode-se aproveitar a banda passante não utilizada para transmitir outros sinais (simultaneamente).

Multiplexação

- Multiplexação
 - □ Compartilhamento de um mesmo canal de transmissão por vários sinais, sem interferência entre eles, para aproveitar toda a banda passante;
- □ Multiplexação na freqüência e no tempo
 - FDM Frequency Division Multiplexing
 - TDM Time Division Multiplexing

FDM - Frequency Division Multiplexing

- □ Procedimento no transmissor
 - Os sinais são filtrados para preservar a faixa relativa à banda passante de cada um;
 - Deslocamento da faixa de frequência original dos sinais, para que ocupem faixas disjuntas.
- □ Procedimento no receptor
 - Conhecimento da faixa de freqüência do sinal
 - Deslocamento do sinal para a faixa original
 - Filtro para reconstituir o sinal original

FDM - Frequency Division Multiplexing

- a) Largura de banda original;
- b) Sinal deslocado na frequência;
- c) Canal multiplexado.

FDM - Frequency Division Multiplexing

- □ OFDM Orthogonal Frequency Division Multiplexing
 - Usando FDM não existe relacionamento entre as frequências no expectro - portadoras são colocadas juntas
 - No OFDM cada portadora é uma senoide com frequência igual a de uma frequência base da senoide fundamental essa condição permite a ortogonalidade

TDM - Time Division Multiplexing

- □ Capacidade de transmissão (em bps), em muitos casos excede a taxa de geração dos equipamentos conectados;
- □ Vários sinais são intercalados no tempo;
- □ TDM síncrono
 - □ intervalos (frames) e subintervalos (segmentos)
 - a canal: conjunto dos segmentos, um em cada frame
- □ TDM assíncrono
 - não existe alocação de canal
 - eliminação do desperdício

Métodos de Codificação Digital

- □ Fisicamente: comunicação por corrente elétrica, ondas de rádio, luz
- □ Computadores: dispositivos digitais

Codificação Polar Tempo Corrente elétrica para enviar bits. Voltagem negativa: bit 1 Voltagem positiva: bit 0

Codificação Bipolar + Voltage o Voltage - Voltage - Voltage o 1 1 0 1 Utiliza voltagens negativa, positiva e zero. 1 - positivo ou negativo o 0 - voltagem zero mais resistente à interferência

Modulação

Modulação

- □ Deslocamento do sinal original, de sua faixa de freqüência para outra faixa
 - Sinal original sinal modulador
 - Portadora (carrier) onda básica usada no deslocamento
- □ Modulação analógica
 - Modulação por Amplitude AM
 - Modulação por Freqüência FM
 - Modulação por Fase PM

