

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Geometria — Lista 5 Prof. Adriano Barbosa

(1) No paralelepípedo reto retângulo da figura, calcule a distância do vértice C ao segmento AM, sendo M o ponto médio de CE.

- (2) Considere o triângulo isósceles ABC, representado pela figura abaixo, cujos lados congruentes AB e AC medem 5. Assuma que o terceiro lado e o ângulo oposto a este lado sejam variáveis, medindo $\overline{BC} = x$ e $\hat{A} = \theta$, respectivamente.
 - (a) Encontre a função que expressa a área do triângulo ABC em função do ângulo θ , indicando o domínio e a expressão da função.
 - (b) Calcule a área máxima do triângulo. Quais as medidas de x e θ neste caso?

- (3) Dados uma esfera Γ de centro O e raio r, e um ponto P, com $\overline{OP} = d > r$.
 - (a) Para $T \in \Gamma$, mostre que a reta \overrightarrow{PT} é tangente a Γ se, e somente se, $\overline{PT} = \sqrt{d^2 r^2}$.
 - (b) Mostre que o lugar geométrico dos pontos $T \in \Gamma$ tais que \overrightarrow{PT} é tangente a Γ está contido em um círculo, determinando seu centro, raio e o plano em que está contido.

- (4) Considere o quadrilátero convexo abaixo, representado com suas diagonais. As letras correspondem às medidas dos segmentos e $0^{\circ} < \theta \le 90^{\circ}$ representa um dos ângulos entre as diagonais.
 - (a) Se $\theta = 90^{\circ}$, prove que $a^2 + c^2 = b^2 + d^2$.
 - (b) Se $a^2 + c^2 = b^2 + d^2$, prove que $(xw + yz)\cos\theta = -(xy + zw)\cos\theta$.
 - (c) Se $a^2 + c^2 = b^2 + d^2$, prove que $\theta = 90^{\circ}$.

- (5) Nos dois casos abaixo, demonstre a conhecida relação métrica $\overline{PA} \cdot \overline{PB} = \overline{PC} \cdot \overline{PD}$, também chamada de "potência de ponto no círculo":
 - (a) P exterior ao círculo (figura da esquerda).
 - (b) P interior ao círculo (figura da direita).

