Package 'nonnest2'

August 28, 2024

Title Tests of Non-Nested Models

Version 0.5-8

Date 2024-08-28

Description

Testing non-nested models via theory supplied by Vuong (1989) <DOI:10.2307/1912557>. Includes tests of model distinguishability and of model fit that can be applied to both nested and non-nested models. Also includes functionality to obtain confidence intervals associated with AIC and BIC. This material is partially based on work supported by the National Science Foundation under Grant Number SES-1061334.

Depends R (>= 3.0.0)

Imports CompQuadForm, mvtnorm, lavaan (>= 0.6-6), sandwich, methods

License GPL-2 | GPL-3

Suggests mirt (>= 1.42), OpenMx, tidySEM, AER, MASS, faraway, mlogit, ordinal, pscl, knitr, rmarkdown, testthat

URL https://github.com/qpsy/nonnest2

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation no

Author Edgar Merkle [aut, cre],

Dongjun You [aut],

Lennart Schneider [ctb],

Mauricio Garnier-Villarreal [ctb],

Seongho Bae [ctb],

Phil Chalmers [ctb]

Maintainer Edgar Merkle <merklee@missouri.edu>

Repository CRAN

Date/Publication 2024-08-28 17:10:02 UTC

2 icci

Contents

	icci	3
Index		7
icci	Information Criteria Confidence Intervals	-

Description

Calculate confidence intervals of AIC and BIC for non-nested models.

Usage

```
icci(object1, object2, conf.level = 0.95, ll1 = llcont, ll2 = llcont)
```

Arguments

object1	a model object
object2	a model object
conf.level	confidence level of the interval
111	an optional function for computing log-likelihood contributions of object1
112	an optional function for computing log-likelihood contributions of object2

Details

Functionality is currently available for models of classes lm, glm, glm.nb, clm, hurdle, zeroinfl, mlogit, nls, polr, rlm, and lavaan.

Users should take care to ensure that the two models have the same dependent variable (or, for lavaan objects, identical modeled variables), with observations ordered identically within each model object. Assuming the same data matrix is used to fit each model, observation ordering should generally be identical. There are currently no checks for this, however.

Note: if models are nested or if the "variance test" from vuongtest() indicates models are indistinguishable, then the intervals returned from icci() will be incorrect.

Value

an object of class icci containing test results.

Author(s)

Ed Merkle and Dongjun You

Ilcont 3

References

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. *Econometrica*, *57*, 307-333. <DOI:10.2307/1912557>

Merkle, E. C., You, D., & Preacher, K. (2016). Testing non-nested structural equation models. *Psychological Methods*, *21*, 151-163. <DOI:10.1037/met0000038>

Examples

```
## Not run:
## Count regression comparisons
require(MASS)
house1 <- glm(Freq ~ Infl + Type + Cont, family=poisson, data=housing)</pre>
house2 <- glm(Freq ~ Infl + Sat, family=poisson, data=housing)</pre>
## CI for BIC
icci(house2, house1)
## Further comparisons to hurdle, zero-inflated models
require(pscl)
bio1 <- glm(art ~ fem + mar + phd + ment, family=poisson, data=bioChemists)
bio2 <- hurdle(art ~ fem + mar + phd + ment, data=bioChemists)</pre>
bio3 <- zeroinfl(art ~ fem + mar + phd + ment, data=bioChemists)</pre>
icci(bio2, bio1)
icci(bio3, bio1)
icci(bio3, bio2)
## Latent variable model comparisons
require(lavaan)
HS.model \leftarrow 'visual = x1 + x2 + x3
               textual =^{\sim} x4 + x5 + x6
               speed = ^{\sim} x7 + x8 + x9 '
fit1 <- cfa(HS.model, data=HolzingerSwineford1939, meanstructure=TRUE)</pre>
fit2 <- cfa(HS.model, data=HolzingerSwineford1939, group="school")</pre>
icci(fit1, fit2)
## End(Not run)
```

llcont

Individual Log-Likelihoods

Description

Obtain log-likelihood values associated with individual observations, evaluated at the ML estimates.

Usage

```
llcont(x, ...)
```

4 vuongtest

Arguments

```
x a model object... arguments passed to specific methods
```

Details

This is a S3 generic function. Currently, the method is defined for lm, glm, glm.nb, clm, hurdle, zeroinfl, mlogit, nls, polr, rlm, lavaan, vglm, mirt, and OpenMx objects.

Value

An object of class numeric containing individuals' contributions to the log-likelihood. The sum of these contributions equals the model log-likelihood.

Author(s)

Ed Merkle, Dongjun You, Lennart Schneider, Mauricio Garnier-Villarreal, and Phil Chalmers

Examples

vuongtest

Vuong Tests for Model Comparison

Description

Test pairs of models using Vuong's (1989) <DOI:10.2307/1912557> theory. This includes a test of model distinguishability and a test of model fit.

Usage

```
vuongtest(
  object1,
  object2,
  nested = FALSE,
  adj = "none",
  ll1 = llcont,
  ll2 = llcont,
  score1 = NULL,
```

vuongtest 5

```
score2 = NULL,
vc1 = vcov,
vc2 = vcov
)
```

Arguments

object1	a model object
object2	a model object
nested	if TRUE, models are assumed to be nested
adj	Should an adjusted test statistic be calculated? Defaults to "none", with possible adjustments being "aic" and "bic"
111	an optional function for computing log-likelihood contributions of object1
112	an optional function for computing log-likelihood contributions of object2
score1	an optional function for computing scores of object 1
score2	an optional function for computing scores of object 2
vc1	an optional function for computing the asymptotic covariance matrix of the object1 parameters
vc2	an optional function for computing the asymptotic covariance matrix of the object2 parameters

Details

For non-nested models, the test of distinguishability indicates whether or not the models can possibly be distinguished on the basis of the observed data. The LRT then indicates whether or not one model fits better than another.

For nested models (nested=TRUE), both tests serve as robust alternatives to the classical likelihood ratio tests. In this case, the adj argument is ignored.

Users should take care to ensure that the two models have the same dependent variable (or, for lavaan objects, identical modeled variables), with observations ordered identically within each model object. Assuming the same data matrix is used to fit each model, observation ordering should generally be identical. There are currently no checks for this, however.

Value

an object of class vuongtest containing test results.

Author(s)

Ed Merkle and Dongjun You

References

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. *Econometrica*, *57*, 307-333. <DOI:10.2307/1912557>

Merkle, E. C., You, D., & Preacher, K. (2016). Testing non-nested structural equation models. *Psychological Methods*, *21*, 151-163. <DOI:10.1037/met0000038>

6 vuongtest

Examples

```
## Not run:
## Count regression comparisons
require(MASS)
house1 <- glm(Freq ~ Infl + Type + Cont, family=poisson, data=housing)</pre>
house2 <- glm(Freq ~ Infl + Sat, family=poisson, data=housing)</pre>
house3 <- glm(Freq ~ Infl, family=poisson, data=housing)</pre>
## house3 is nested within house1 and house2
anova(house3, house1, test="Chisq")
anova(house3, house2, test="Chisq")
## house 2 is not nested in house1, so this test is invalid
anova(house2, house1, test="Chisq")
## Use vuongtest() instead
vuongtest(house2, house1)
## Application to models with different distributional assumptions
require(pscl)
bio1 <- glm(art ~ fem + mar + phd + ment, family=poisson, data=bioChemists)</pre>
bio2 <- hurdle(art ~ fem + mar + phd + ment, data=bioChemists)</pre>
bio3 <- zeroinfl(art ~ fem + mar + phd + ment, data=bioChemists)</pre>
vuongtest(bio2, bio1)
vuongtest(bio3, bio1)
vuongtest(bio1, bio2)
vuongtest(bio1, bio3)
vuongtest(bio3, bio2)
## Application to latent variable models
require(lavaan)
HS.model \leftarrow 'visual = x1 + x2 + x3
              textual = \sim x4 + x5 + x6
              speed = ^{\sim} x7 + x8 + x9 '
fit1 <- cfa(HS.model, data=HolzingerSwineford1939)</pre>
fit2 <- cfa(HS.model, data=HolzingerSwineford1939, group="school")</pre>
vuongtest(fit1, fit2)
## Supplying custom vcov function
require(lme4)
require(merDeriv)
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy, REML=FALSE)</pre>
fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy, REML=FALSE)</pre>
vcl <- function(obj) vcov(obj, full=TRUE)</pre>
vuongtest(fm1, fm2, vc1=vc1, vc2=vc1, nested=TRUE)
## End(Not run)
```

Index

icci, 2
llcont, 3
vuongtest, 4