AI353: Introduction to Quantum Computing

Tutorial Sheet - Week 6

Instructor: Yugarshi Shashwat

Instructions

This tutorial focuses on the topic **Quantum Gates**, as covered in lectures. You are encouraged to work in pairs for solving these problems. Active participation during the tutorial session is rewarded: volunteers who solve and present a problem on the whiteboard will receive points. Questions in this set are adapted from Nielsen & Chuang Exercises 4.2 - 4.14.

Points Distribution:

• Attendance: 15 points

• Active participation: 10 points

• Total: 25 points

Conventions. We use the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

For a real unit vector $\hat{n} = (n_x, n_y, n_z)$ we write $\hat{n} \cdot \boldsymbol{\sigma} = n_x \sigma_x + n_y \sigma_y + n_z \sigma_z$ and define the single-qubit rotation about axis \hat{n} by angle θ as

$$R_{\hat{n}}(\theta) = \exp\left(-\mathrm{i}\frac{\theta}{2}\,\hat{n}\cdot\boldsymbol{\sigma}\right).$$

Standard x, y, z rotations are $R_x(\theta) = R_{(1,0,0)}(\theta)$, $R_y(\theta) = R_{(0,1,0)}(\theta)$ and $R_z(\theta) = R_{(0,0,1)}(\theta)$. Global phases $e^{i\alpha}$ are physically irrelevant but kept symbolically in some problems.

Theorem 0.1. [Z-Y decomposition for a single qubit] Suppose U is a unitary operation on a single qubit. Then there exist real numbers α, β, γ and δ such that

$$U = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta).$$

Theorem 0.2. If U is a single-qubit unitary, there exist single-qubit unitaries A, B, C such that $ABC = \mathbb{I}$ and $U = e^{i\alpha}AXBXC$ for some real α .

Q1. Let $x \in \mathbb{R}$ and let A be a matrix with $A^2 = \mathbb{I}$. Show that

$$\exp(ixA) = \cos(x) \mathbb{I} + i\sin(x) A.$$

Hint: Expand the exponential in a power series and split even/odd powers. Then use this result to verify the identities (for any real θ)

$$\begin{split} R_x(\theta) &= \cos\left(\frac{\theta}{2}\right) \mathbb{I} - \mathrm{i} \sin\left(\frac{\theta}{2}\right) \sigma_x, \\ R_y(\theta) &= \cos\left(\frac{\theta}{2}\right) \mathbb{I} - \mathrm{i} \sin\left(\frac{\theta}{2}\right) \sigma_y, \\ R_z(\theta) &= \cos\left(\frac{\theta}{2}\right) \mathbb{I} - \mathrm{i} \sin\left(\frac{\theta}{2}\right) \sigma_z. \end{split}$$

- **Q2.** Show that, up to a global phase, the $\pi/8$ gate satisfies $T = R_z(\pi/4)$ up to an overall phase factor. State explicitly the phase you factor out.
- Q3. Express the Hadamard gate $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ as a product of rotations using only R_x and R_z gates and a global phase $e^{i\varphi}$ for some real φ . (Give one valid decomposition and the corresponding φ .)
- **Q4.** Prove that $(\hat{n} \cdot \boldsymbol{\sigma})^2 = \mathbb{I}$ for any real unit vector \hat{n} . Verify the closed-form expression

$$R_{\hat{n}}(\theta) = \cos\left(\frac{\theta}{2}\right) \mathbb{I} - \mathrm{i} \sin\left(\frac{\theta}{2}\right) \left(n_x \sigma_x + n_y \sigma_y + n_z \sigma_z\right).$$

- **Q5.** Show that $\sigma_x \sigma_y \sigma_x = -\sigma_y$ and use this to prove $\sigma_x R_y(\theta) \sigma_x = R_y(-\theta)$.
- Q6. Show that any single-qubit unitary can be written as

$$U = e^{i\alpha} R_{\hat{n}}(\theta)$$

for some real numbers α, θ and a real unit vector \hat{n} . Provide a concise proof. Then:

- (a) Find $(\alpha, \theta, \hat{n})$ that realize the Hadamard gate H.
- (b) Find $(\alpha, \theta, \hat{n})$ that realize the phase gate $S = \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{i} \end{pmatrix}$.
- Q7. Explain why any single-qubit unitary may be written in the following form

$$U = \begin{bmatrix} e^{i(\alpha-\beta/2-\delta/2)}\cos\frac{\gamma}{2} & -e^{i(\alpha-\beta/2+\delta/2)}\sin\frac{\gamma}{2} \\ e^{i(\alpha+\beta/2-\delta/2)}\sin\frac{\gamma}{2} & e^{i(\alpha+\beta/2+\delta/2)}\cos\frac{\gamma}{2} \end{bmatrix}.$$

Q8. Give a decomposition analogous to Theorem 0.1 but using R_x instead of R_z , i.e. express a general unitary as $U = e^{i\alpha} R_x(\beta) R_y(\gamma) R_x(\delta)$.

Q9. Suppose \hat{m} and \hat{n} are non-parallel real unit vectors in \mathbb{R}^3 . Use Theorem 0.1 to show that an arbitrary single-qubit unitary U can be written

$$U = e^{i\alpha} R_{\hat{n}}(\beta) R_{\hat{m}}(\gamma) R_{\hat{n}}(\delta)$$

for suitable $\alpha, \beta, \gamma, \delta$.

- **Q10.** Read Theorem 0.2 and answer the following. Choose explicit A, B, C, α that realize the Hadamard gate H. (You may use $A = R_z(\beta)R_y(\gamma/2)$, $B = R_y(-\gamma/2)R_z(-(\delta + \beta)/2)$, $C = R_z((\delta \beta)/2)$ as a template, with appropriate β, γ, δ for H.)
- Q11. Prove the following three useful conjugation identities:

$$H\sigma_x H = \sigma_z, \qquad H\sigma_y H = -\sigma_y, \qquad H\sigma_z H = \sigma_x.$$

Hint: Either use matrix multiplication or write $H = \frac{1}{\sqrt{2}}(\sigma_x + \sigma_z)$ and use Pauli anti/commutation rules.

Q12. Use the previous question to show that HTH equals $R_x(\pi/4)$ up to a global phase. State the phase you factor out and verify your claim by a short calculation.

Reminder. When a statement says "up to a global phase", two matrices U, V are considered equivalent if $U = e^{i\phi}V$ for some real ϕ .