COMP 4901Q: High Performance Computing (HPC)

Lecture 8: CUDA Programming on the GPU

Instructor: Shaohuai SHI (shaohuais@cse.ust.hk)

Teaching assistants: Mingkai TANG (mtangag@connect.ust.hk)

Yazhou XING (yxingag@connect.ust.hk)

Course website: https://course.cse.ust.hk/comp4901q/

Outline

- CUDA Thread Organization
- Mapping Threads to Multidimensional Data
- Mapping Threads to Hardware
- Example: Matrix-Matrix Multiplication
- GPU Memories: Shared memory
- APOD Design Cycle
- CUDA Optimization Techniques
 - ▶ Kernel configurations: # of blocks, # of threads per block
 - Control flow
 - Global memory access
 - Shared memory access
 - Instruction optimization

CUDA Thread Organization

- A grid of threads are organized into I-D, or 2-D, or 3-D array of blocks, as specified by the execution configuration
 - ▶ The structure of the grid can be obtained by the built-in variable gridDim
 - gridDim.x, gridDim.y, gridDim.z
 - For compute capability below 3.0, x, y, z must be less than 65536
 - For compute capability 3.0 or above, x must be less than 2³¹, y and z must be less than 65536
 - ▶ Each block is identified by the built-in variable blockldx
 - blockldx.x, blockldx.y, blockldx.z
 - ▶ The maximum number of threads in a block¹
 - ▶ 512 for compute capability 1.x
 - ▶ 1024 for compute capability 2.x or above

CUDA Thread Organization (Cont.)

- ▶ A block of threads are further organized into I-D, or 2-D, or 3-D array of threads, as specified by the execution configuration
 - ▶ The structure of the block can be obtained by the built-in variable blockDim
 - blockDim.x, blockDim.y, blockDim.z
 - blockDim.z must be less than or equal to 64
 - All threads in the same block share the same value of blockldx
 - ▶ Each thread is identified by the built-in variable threadIdx
 - threadIdx.x, threadIdx.y, threadIdx.z

1D Example

- If you want to create a grid with 16 blocks in 1D, and each block has 128 threads in 1D:
 - dim3 dimBlock(128, I, I); /* set y and z to I, you get ID */
 - dim3 dimGrid(16, 1, 1); /* set y and z to 1, you get 1D */
 - vecAddkernel<<<dimGrid, dimBlock>>>(...);

2D Example

- If you want to create a grid with 2x2 blocks in 2D, and each block has 8x8 threads in 2D:
 - dim3 dimBlock(8, 8, 1); /* set z to 1, you get 2D */
 - dim3 dimGrid(2, 2, 1); /* set z to 1, you get 2D */
 - vecAddkernel<<<dimGrid, dimBlock>>>(...);

Mapping Threads to Multidimensional Data

The choice of ID, 2D, or 3D thread organizations is usually based on the nature of the data.

- ▶ E.g., images are 2D array of pixels.
 - ▶ Convenient to use a 2D grid that consists of 2D blocks
 - Each thread processes one pixel: the location of the pixel can be easily calculated by blockDim, blockldx, and threadldx

Example of a 76x62 Image

Figure 4.5 of Ref. 1.

Launching the Kernel

- Assume the image has a resolution of n x m
 - dim3 dimGrid(ceil(n/16.0), ceil(m/16.0), 1);
 - dim3 dimBlock(16, 16, 1);
 - pictureKernel<<<dimGrid, dimBlock>>>(...);

How would the threads be executed on GPU?

Assigning Resources to Blocks

- ▶ Once a kernel is launched, CUDA generates the corresponding grid of threads.
- The threads, organized as many blocks, are assigned to execution resources (i.e., SMs) on a block-by-block basis.
 - Demand: many thread blocks to be executed, say N blocks in total
 - Resource: a limited number of SMs, say P SMs
 - On average, each SM will execute N/P blocks
- Active blocks (or "resident blocks")
 - An SM can handle multiple blocks at the same time. We call them "active blocks"
 - After the current active blocks finish, a new set of blocks will be assigned to the SM, and they become new active blocks

Thread Scheduling

- Once a block is assigned to an SM, it is further divided into warps
 - ▶ Today, each *warp* includes 32 threads
 - ▶ Warp 0: threads 0 − 31
 - ▶ Warp I: threads 32 63
 - Warp 2: threads 64 95
 -
- Warp is the unit of thread scheduling in SMs
 - The 32 threads of a warp follow the single instruction, multiple data (SIMD) model
 - An instruction is fetched, and executed for all 32 threads in the warp

Benefit of Multi-warps: Latency Hiding

- Latency hiding by multi-warps
 - When an instruction executed by a warp needs to wait for some data, the warp will "sleep".
 - Remember that global memory has a long latency of several hundreds of GPU cycles
 - Another warp whose data is ready will be selected for execution.
 - In order to keep the execution hardware busy
 - Zero-overhead thread scheduling
 - Selecting a new active warp for execution causes little overheads
- As a general rule, we should arrange "enough" active warps for each SM.

Hardware Limitations

Due to limited hardware resources, the number of active blocks/warps/threads per SM is limited.

Compute Capability	1.x	2.x	3.x	5.0	7.0
Max. number of active blocks per SM	8	8	16	32	32
Max. number of active warps per SM	24 → 32	48	64	64	64
Max. number of active threads per SM	768 → 1024	1536	2048	2048	2048
Max. number of threads per block	512	1024	1024	1024	1024

Remark: Other limiting factors include registers and shared memory, which will be discussed later.

Example

- ▶ Assume compute capability of 3.0
- ► Case I: block size is 8x8=64
 - How many active threads at most?
- ► Case 2: block size is 16×16=256
 - How many active threads at most?
- Case 3: block size is 32x 32=1024
 - How many active threads at most?
- Case 4: block size is 64x 64=4096
 - What will happen?

```
Kernel Function
/* d Pin points to the image data */
  global void PictureKernel(float *d_Pin, float *d_Pout, int n, int m)
  int Row = blockIdx.y * blockDim.y + threadIdx.y;
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  if (Row < m) & (Col < n)
    d Pout[Row * n + Col] = 2 * d Pin[Row * n + Col];
```

Locate Your Data

- Consider the target thread:
 - There are blockldx.y number of blocks on top of its own block.

There are blockldx.x number of blocks to the left of its own block.

Col = blockldx.x * blockDim.x + threadIdx.x

Example: Matrix-Matrix Multiplication

- ightharpoonup Problem: $P = M \times N$
- M, N, P are square matrix: WIDTH x WIDTH
- Parallelization on GPU
 - ▶ The calculation of each item in *P* is done by a GPU thread
 - ▶ To perform a dot product of two vectors
 - Question: How to organize the threads into blocks?

Serial Solution

```
// Matrix multiplication on the (CPU) host
void MatMulOnHost(float* M, float* N, float* P, int Width)
                                                                                  k
  for (int i = 0; i < Width; i++)
     for (int j = 0; j < Width; j++) {
       float sum = 0.0;
       for (int k = 0; k < Width; k++) {
           sum += M[i * width + k] * N[k * width + j];
       P[i * Width + j] = sum;
```

A Tiled Solution

▶ Break-up matrix P into 2-D tiles.

▶ Threads are organized as 2-D blocks.

▶ Each thread block calculates one tile.

blockldx.x

A Small Example

- ▶ WIDTH = 4
- TILE_WIDTH = 2
- \rightarrow 2 x 2 = 4 blocks
- \triangleright Each block has $2 \times 2 = 4$ threads

A Small Example (Cont.)

The Kernel Function

```
global void MatMulKernel(float* Md, float* Nd, float* Pd, int Width)
// Calculate the row index of the P element and M
  int Row = blockIdx.y*blockDim.y + threadIdx.y;
// Calculate the column index of the P element and N
  int Col = blockIdx.x*blockDim.x + threadIdx.x;
  if ( (Row < Width) && (Col < Width) ) {
     float Pvalue = 0.0;
// each thread computes one element of the block sub-matrix
     for (int k = 0; k < Width; ++k)
       Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
     Pd[Row*Width+Col] = Pvalue;
```

Launching the Kernel

```
#define TILE WIDTH 16
// Setup the execution configuration
int NB = Width/TILE WIDTH;
if (Width % TILE WIDTH != 0) NB++;
dim3 dimGrid(NB, NB);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
// Launch the device computation threads
MatMulKernel << dimGrid, dimBlock >>> (Md, Nd, Pd, Width);
```

Timing the Kernel by gettimeofday()

```
#include <sys/time.h>
double cpuTime() {
  struct timeval tp;
  gettimeofday(&tp, NULL);
  return ( (double)tp.tv_sec + (double)tp.tv_usec * 1.e-6 );
double t start = cpuTime();
/* call your CUDA kernel */
your kernel<<<grid, block>>>(...);
/* block the host until the GPU completed the kernel function */
cudaDeviceSynchronize();
double kernel time = cpuTime() - t start;
printf("The kernel elapsed %f seconds.\n", kernel time);
```

How Good Is It?

▶ Testbed: a desktop PC, Windows 7

CPU: Intel Core i7-3770 @3.9GHz

▶ GPU: Nvidia GT640 with 384 cores @900MHz

▶ Running time comparison

Matrix Size	N = 512	N = 1024	N = 1536	N = 2048
GPU time	18.5ms	141ms	470.7ms	1112ms*
CPU time	181.6ms	6817ms	23863ms	67797ms
GPU Flops	14.5G	15.2G	15.4G	15.4G
CPU Flops	1.48G	0.31G	0.30G	0.25G
Speedup	9.8	48.3	50.7	61

^{*}Remark: The running time on Nvidia GTX780 for N = 2048 is 112.7ms!

Is it Good Enough?

- ▶ GTX780 has 2304 cores, and its theoretical single-precision computing power is close to 4TFlops
 - ▶ But our code only achieves 2x20483/112.7ms = 152.4GFlops
 - i.e., 3.8% of the GPU capacity!
- What is the problem?
 - ▶ Hints: GT640's memory bandwidth is 28.5GB/s, GTX780's memory bandwidth is 288GB/s
 - Memory accesses are the bottleneck!

CGMA: Compute-to-Global-Memory-Access Ratio

```
/* key part of the kernel function */
for (int k = 0; k < Width; ++k)
   Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];</pre>
```

- The above kernel function has 2*Width calculations, and 2*Width global memory access
 - Md[] and Nd[] are stored in GPU global memory
 - Pvalue is stored in GPU register, which is very fast
- The CGMA ratio is just I

GPU Global Memory

- ▶ GPU global memory has a large size
 - ▶ GTX780: 3GB
 - Tesla K40: I2GB
- ▶ Bandwidth: how fast can we move data from GPU memory to GPU?
 - ▶ GTX640: 28.5GB/s
 - GTX780: 288GB/s
 - Tesla K40: 288GB/s
- Latency:
 - ▶ 200-400 GPU cycles

Memory Is the Bottleneck

- The previous kernel code has a CGMA of I
- Every calculation requires I data access from global memory
- So the performance is limited by the memory bandwidth
 - Most of the time, GPU has nothing to do!

How to Improve?

- To make the GPU busy, we need to "create" many calculations for each global memory access
 - ▶ I.e., we should achieve a high CGMA ratio
- ▶ CPUs use cache to alleviate the memory bottleneck
- ▶ GPUs use on-chip "shared memory"
 - Recent GPUs also use cache to improve data access performance
 - Caches are managed by hardware, while "shared memory" can be managed by programmer

Shared Memory

- Each thread block has a shared memory
 - On-chip
 - very high bandwidth and very low latency
 - Limited size: at most 48KB for compute capability 2.x or above
 - Shared by all threads in the block

Basic Strategy to Improve CGMA Ratio

- Preparation: Allocate shared memory
- Data loading: load data from global memory to shared memory
- Data processing: reuse the data in shared memory
 - The more calculations you have on each data, the higher CGMA ratio you can achieve
- Jump to Step 2 if not end

Revisit Matrix-Matrix Multiplication

Let's focus on block (0, 0), whose size is 2x2.

Observations:

- I. $P_{0,0}$ and $P_{0,1}$ both need to access the Ist row of M.
- 2. $P_{1,0}$ and $P_{1,1}$ both need to access the 2^{nd} row of M.
- 3. $P_{0,0}$ and $P_{1,0}$ both need to access the 1st column of N.
- 4. $P_{0,1}$ and $P_{1,1}$ both need to access the 2^{nd} column of N.
- Previous solution:
 - ▶ 32 global memory accesses for each block.
 - By using shared memory, we only need 16 global memory accesses for each block.

Revisit Matrix-Matrix Multiplication

Imagine the block size is nxn. Matrix size is NxN.

Previous solution needs 2n²N global memory accesses for each block.

We can potentially reduce the global memory access by n times!

ss b	v n			N _{3,0}	N _{3,1}		
M _{0,0}	M _{0,1}	M _{0,2}	M _{0,3}	P _{0,Q}	P _{0.1}	P _{0,2}	P _{0,3}
M _{1,0}	M _{1,1}	M _{1,2}	M _{1,3}	P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}
				P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}
				P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}

New Challenge

- Shared memory has a limited size.
- It's not possible to load n rows in M and n columns in N to shared memory at once.

Solution:

- We divide the n rows and n columns into tiles, such that we can load a tile of M and a tile of N into shared memory
- We calculate based on the two tiles in shared memory
- We load another tile of M and another tile of N into shared memory, and repeat

Load and Compute

	Phase 1			P		
T _{0,0}	M _{0,0} ↓ Ms _{0,0}	N _{0,0} ↓ Ns _{0,0}	PValue _{0,0} += Ms _{0,0} *Ns _{0,0} + Ms _{0,1} *Ns _{1,0}	M _{0,2} ↓ Ms _{0,0}	N _{2,0} ↓ Ns _{0,0}	PValue _{0,0} += Ms _{0,0} *Ns _{0,0} + Ms _{0,1} *Ns _{1,0}
T _{0,1}	M _{0,1} ↓ Ms _{0,1}	N _{0,1} ↓ Ns _{0,1}	PValue _{0,1} += Ms _{0,0} *Ns _{0,1} + Ms _{0,1} *Ns _{1,1}	M _{0,3} ↓ Ms _{0,1}	N _{2,1} ↓ Ns _{0,1}	PValue _{0,1} += Ms _{0,0} *Ns _{0,1} + Ms _{0,1} *Ns _{1,1}
T _{1,0}	M _{1,0} ↓ Ms _{1,0}	N _{1,0} ↓ N _{3,0}	PValue _{1,0} += Ms _{1,0} *Ns _{0,0} + Ms _{1,1} *Ns _{1,0}	M _{1,2} ↓ Ms _{1,0}	N _{3,0} ↓ Ns _{1,0}	PValue _{1,0} += Ms _{1,0} *Ns _{0,0} + Ms _{1,1} *Ns _{1,0}
T _{1,1}	M _{1,1} ↓ Ms _{1,1}	N _{1,1} ↓ Ns _{1,1}	PValue _{1,1} += Ms _{1,0} *Ns _{0,1} + Ms _{1,1} *Ns _{1,1}	M _{1,3} ↓ Ms _{1,1}	N _{3,1} ↓ Ns _{1,1}	PValue _{1,1} += Ms _{1,0} *Ns _{0,1} + Ms _{1,1} *Ns _{1,1}

New Kernel Function

```
#define TILE_WIDTH 16
 _qlobal__ void MatMulKernel(float* Md, float* Nd, float* Pd, int Width)
   __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
   __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {</pre>
       // Collaborative loading of Md and Nd tiles into shared memory
       Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10.
        Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11.
        __syncthreads();
12.
        for (int k = 0; k < TILE_WIDTH; ++k)
13.
            Pvalue += Mds[ty][k] * Nds[k][tx];
        __syncthreads();
14.
15. Pd[Row*Width + Col] = Pvalue;
```

Breakdown of New Kernel Function (1)

```
    _shared__ float Mds[TILE_WIDTH] [TILE_WIDTH];
    _shared__ float Nds[TILE_WIDTH] [TILE_WIDTH];
```

- We use keyword __shared__ to allocate shared memory.
- ▶ The same amount of shared memory will be allocated for each thread block.
- ▶ One pair of Mds[][] and Nds[][] will be created for each thread block.
- ▶ All threads in a block can access the same Mds[][] and Nds[][].

Breakdown of New Kernel Function (2)

```
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
```

- The above statements are used to locate the data in matrix d_P for this thread
- Row is in correspondence with Y-axis
- ▶ Col is in correspondence with X-axis

Breakdown of New Kernel Function (3)

```
7. float Pvalue = 0;
    // Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
        .....
}
15. Pd[Row*Width + Col] = Pvalue;</pre>
```

- Line 7, Pvalue is a "local variable", and is usually stored in GPU register, the fastest memory in GPU.
 - Remark: the total number of registers per SM is limited, so each thread can only use a small number of registers.
 - Register spilling: if your thread has too many local variables, the registers will be used up, and global memory will be used to hold some local variables.
- Line 15, the result Pvalue is copied into global memory Pd[].

Breakdown of New Kernel Function (4)

```
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
    // Collaborative loading of Md and Nd tiles into shared memory
9.    Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10.    Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11.    __syncthreads();
    ......
}</pre>
```

- ▶ The calculation of Pvalue is divided into Width/TILE_WIDTH phases
- In Lines 9 and 10, each thread loads data from global memory Md[] and Nd[] to shared memory Mds[][] and Nds[][]
 - Each thread block will completely fill up its shared memory Mds[][] and Nds[][]
- Line II: __syncthreads() is a barrier function, which ensures that all threads in the block have finished loading the data.
 - A block has many threads that need to be scheduled at different time, so different threads may finish Line 10 at different time

Breakdown of New Kernel Function (5)

- ▶ Once the data are ready in shared memory, lines 12-13 carry out the calculations.
 - All operators are in shared memory, so the data accesses become more efficient than the old version.
- Line 14 ensures that all threads in the block finishes the calculation of the current phase.
 - So the shared memory can be reused for the next phase.

Results of the New Kernel

• On GTX640:

Matrix Size	N = 512	N = 1024	N = 1536	N = 2048
Without shared memory	18.5ms	141ms	470.7ms	1112ms
With shared memory	7ms	50.7ms	172.3ms	394.6ms
Speedup	2.64	2.78	2.73	2.82

Unrolling the For Loop

#pragma unroll for (int k = 0; k < TILE_WIDTH; ++k) Pvalue += Mds[ty][k] * Nds[k][tx];</pre>

- Without unrolling, many additional instructions are used for each multiplication and addition
- ▶ By unrolling, the "for loop" is replaced by "TILE_WIDTH" number of statements

Matrix Size	N = 512	N = 1024	N = 1536	N = 2048
Without unrolling	7ms	50.7ms	172.3ms	394.6ms
With unrolling	5.5ms	39.1ms	131.9ms	303.3ms
Speedup	1.27	1.30	1.31	1.30

Memory can Limit Parallelism

- Registers and shared memory are good, but limited in size.
- If each thread uses a lot of registers and/or shared memory, the number of "active threads" will be reduced, which may lead to poor performance.
- ▶ E.g., in Compute Capability 2.x, each SM has 32,768 registers and can support at most 1,536 active threads
 - If each thread uses 21 registers, you can achieve the maximum 1,536 active threads (1,536 x 21 < 32,768)
 - If each thread uses 22 registers, you can have at most 1,489 threads. If you block size is 512, then you can only have TWO active blocks, or 1024 active threads.

Hardware Limitations

Compute Capability	1.1	1.2, 1.3	2.x	3.0	3.5	5.0	7.0
Number of 32-bit registers per SM	8K	16K	32K	64K	64K	64K	64K
Max. number of 32-bit registers per thread	128	128	63	63	255	255	255
Max. amount of shared memory per SM	16KB	16KB	48KB	48KB	48KB	64KB	96KB
Max. amount of shared memory per thread block	16KB	16KB	48KB	48KB	48KB	48KB	48KB

APOD Motivation

- ▶ GPU consists of many hardware resources, each with different capacities
 - Arithmetic units:
 - Throughput: how many calculations per unit time?
 - Latency: How long for each calculation?
 - Memory system:
 - Bandwidth/throughput: how many bypes per unit time?
 - Latency: How long for each data access?
- The speed of a CUDA kernel greatly depends on the resource constraint of the GPU device.
- We need to understand the major types of resource constraints in GPUs in order to develop highly efficient CUDA programs.
 - E.g., in Part II, "global memory" can be the bottleneck and we use "shared memory" to improve.
- ▶ APOD: Assess, Parallelize, Optimize, and Deploy

APOD Design Cycle

► APOD: Assess, Parallelize, Optimize, and Deploy

I. Assess

- The first step is to assess the application to locate the hotspots, i.e., parts of the code that are responsible for the bulk of the execution time.
 - Through theoretical analysis: time complexity analysis for each major step of your application
 - Through profiling: profilers are software tools that measure the time consumptions of function calls or instructions. E.g.,
 - GNU gprof for Linux
 - https://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
 - For CUDA development:
 - nvprof for Linux
 - Nvidia Visual Profiler for Windows
 - ▶ Ref: http://docs.nvidia.com/cuda/profiler-users-guide

\$ nvprof ./matrix ==19300== NVPROF is profiling process 19300, command: ./matrix CUDA initialized. GPU done! Elaspsed Time by event: 16.180511 ms GPU (shared memory) done! Elaspsed Time by event: 6.920672 ms Elaspsed Time by CPU: 1458.828125 ms ==19300== Profiling application: ./matrix

==19300== Profiling result:

```
Time(%) Time Calls
                             Min
                                    Max Name
                       Avg
                    1 13.146ms 13.146ms 13.146ms MatrixMulKernel(float*, float*, float*, int)
59.04% 13.146ms
20.27% 4.5129ms
                    1 4.5129ms 4.5129ms 4.5129ms SharedMatrixMulKernel(float*, float*, float*, int)
11.90% 2.6503ms
                    4 662.59us 659.75us 669.44us [CUDA memcpy HtoD]
8.79% 1.9560ms
                   2 978.02us 749.31us 1.2067ms [CUDA memcpy DtoH]
```

==19300== API calls:

```
Time(%) Time Calls
                             Min
                                    Max Name
                       Avg
                    2 114.16ms 1.7350us 228.31ms cudaEventCreate
77.83% 228.31ms
                   1 41.047ms 41.047ms 41.047ms cudaDeviceReset
13.99% 41.047ms
                   6 3.8360ms 588.40us 14.740ms cudaMemcpy
7.85% 23.016ms
0.10% 302.22us
                  166 1.8200us 164ns 61.213us cuDeviceGetAttribute
0.09% 257.85us
                  3 85.949us 63.839us 128.96us cudaMalloc
0.06% 186.60us
                  3 62.198us 46.782us 92.858us cudaFree
0.02% 52.845us
                  2 26.422us 26.248us 26.597us cudaLaunch
0.02% 46.251us
                  2 23.125us 22.843us 23.408us cuDeviceTotalMem
                  2 17.230us 16.290us 18.170us cuDeviceGetName
0.01% 34.460us
0.01% 33.645us
                  6 5.6070us 1.6740us 14.791us cudaEventRecord
```

II. Parallelize

- After identifying the hotspots, try to parallelize them
 - You can use existing parallel libraries, such as cuBLAS, cuFFT, etc.
 - Or, you can design parallel algorithms by yourself

III. Optimize

How to implement your parallel algorithm on a specific hardware to achieve its best performance?

- Program optimization is a challenging task
 - Fully understand your application
 - Fully understand your hardware
 - Go through the APOD cycle for many rounds
 - ▶ An optimized implementation could improve the performance by I0x

CUDA Optimization Techniques

- Kernel optimizations
 - Kernel configurations: # of blocks, # of threads per block
 - Control flow
 - Global memory access
 - Shared memory access
 - Instruction optimization
- CPU-GPU interaction optimizations
 - Maximize PCI-e throughput
 - Overlapping kernel execution with memory copies

Kernel Configuration

How many blocks/threads to launch?

Key to understanding:

- Instructions are issued in order
- A thread stalls when one of the operands isn't ready
- Latency is hidden by switching threads
 - Global memory latency: several hundred cycles
 - Arithmetic latency: 18-22 cycles

Conclusion:

Need enough active warps per SM to hide latency

Global Memory Bandwidth

Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Recommendations

- Need enough warps to keep GPU busy
 - # of blocks should be much larger than # of SMs
 - Typically, at least 16 active warps per SM
- Thread block configuration
 - Threads per block should be a multiple of warp size (32)
 - Usually 128-256 threads/block are good

Control Flow

Control Flow Instructions

- Main performance concern with branching is divergence
 - Threads within a single warp take different paths
 - Different execution paths are serialized
 - The control paths taken by the threads in a warp are traversed one at a time until there is no more.
- A common case: avoid divergence when branch condition is a function of thread ID
 - **Example** with divergence:
 - If (threadIdx.x > 2) { }
 - This creates two different control paths for threads in a block
 - Branch granularity < warp size; threads 0, I and 2 follow different path than the rest of the threads in the first warp
 - Example without divergence:
 - If (threadIdx.x / WARP_SIZE > 2) { }
 - Also creates two different control paths for threads in a block
 - Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path

Execution within Warps is Coherent

Execution Diverges within a Warp

Parallel Reduction

▶ Given an array of values, "reduce" them to a single value in parallel

Examples

- Sum reduction: sum of all values in the array
- Max reduction: maximum of all values in the array
- Typical parallel implementation:
 - Recursively halve # threads, add two values per thread
 - Takes log(n) steps for n elements, requires n/2 threads

A Vector Reduction Example

- Assume an in-place reduction using shared memory
 - ▶ The original vector is in device global memory
 - ▶ The shared memory is used to hold a partial sum vector
 - Each iteration brings the partial sum vector closer to the final sum
 - The final solution will be in element 0

A Simple Implementation

Assume we have already loaded array into shared memory

```
1 __shared__ float partialSum[];
2
3 unsigned int t = threadIdx.x;
4 for (unsigned int stride = 1; stride < blockDim.x; stride *= 2)
5 {
6    __syncthreads();
7    if (t % (2*stride) == 0)
8        partialSum[t] += partialSum[t+stride];
9 }</pre>
```

Vector Reduction with Branch Divergence

Some Observations

- In each iteration, two control flow paths will be sequentially traversed for each warp
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition may cost extra cycles depending on the implementation of divergence
- No more than half of threads will be executing at any time
 - All odd index threads are disabled right from the beginning!
 - On average, less than $\frac{1}{4}$ of the threads will be activated for all warps over time.
 - After the 5th iteration, entire warps in each block will be disabled, poor resource utilization but no divergence.
 - This can go on for a while, up to 4 more iterations (512/32=16= 24), where each iteration only has one thread activated until all warps retire

Shortcomings of the Implementation

Assume we have already loaded array into shared memory

```
1 __shared__ float partialSum[];
2
3 unsigned int t = threadIdx.x;
4 for (unsigned int stride = 1; stride < block interleaved branch decisions)
5 {
6    __syncthreads();
7    if (t % (2*stride) == 0)
8        partialSum[t] += partialSum[t+stride];
9 }</pre>
```

A Better Implementation

Assume we have already loaded array into shared memory

```
1 __shared__ float partialSum[];
2
3 unsigned int t = threadIdx.x;
4 for (unsigned int stride = blockDim.x; stride > 1; stride >> 1)
5 {
6    __syncthreads();
7    if (t < stride)
8        partialSum[t] += partialSum[t+stride];
9 }</pre>
```

No Divergence until < 16 Sub-sums

CUDA Device Memory Space: Review

- Each thread can:
 - ▶ R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory

Declaration	Memory
int v	Register
int vArray[10]	Local
shared int sharedV	Shared
device int globalV; or cudaMalloc()	Global
constant int constantV[10]; and cudaMemcpyToSymbol();	Constant
cudaBindTexture2D structtextureReference	Texture

Memory	Location on/off chip	Cached	Access	Scope	Lifetime
Register	On	n/a	R/W	1 thread	Thread
Local	Off	Yes++	R/W	1 thread	Thread
Shared	On	n/a	R/W	All threads in block	Block
Global	Off	+	R/W	All threads + host	Host allocation
Constant	Off	Yes	R	All threads + host	Host allocation
Texture	Off	Yes	R	All threads + host	Host allocation

[†] Cached in L1 and L2 by default on devices of compute capability 6.0 and 7.x; cached only in L2 by default on devices of lower compute capabilities, though some allow opt-in to caching in L1 as well via compilation flags.

⁺⁺ Cached in L1 and L2 by default except on devices of compute capability 5.x; devices of compute capability 5.x cache locals only in L2.

Parallel Memory Sharing

GPU Memory Hierarchy

Global Memory Coalescing

- Memory operations are issued per warp (32 threads)
 - One instruction, 32 data accesses
 - How to satisfy these 32 data access requests?

Coalescing:

▶ Global memory loads and stores by threads of a warp (of a half warp for devices of compute capability 1.x) are coalesced into as few as one transaction when certain access requirements are met.

Global Memory Coalescing

- Global memory accesses for devices of compute capability 2.x are cached in LI (128-byte lines) by default
 - The basic global memory transaction is to read/write a continuous 128-byte segment
 - ▶ Each memory request from a warp is broken down into cache line requests
- Global memory accesses for devices of compute capability 3.x and 5.x are cached in L2 (32-byte segments)
 - ▶ The basic global memory transaction is to read/write a continuous 32-byte segment

"BAD" Access Patterns

Mis-aligned data accesses

Mis-aligned sequential addresses that fit into two 128-byte L1-cache lines

From Ref. [3]

Example 1

4-Byte Word per Thread

Cached: L1 (CC 2.x)

Uncached: no cache (CC 1.x), or L2 (CC 3.x or above)

From Ref. [2]

Example 2

For CC 1.0 and 1.1, the performance of non-sequential data access is very poor.

From Ref. [2] 76

Example 3

Mis-aligned data access: the starting address is not a multiple of 32 or 128. Some bytes in the cache line are not useful.

From Ref. [2]

Example 4: Strided Access

Adjacent threads accessing memory with a stride of 2

A stride of 2 results in a 50% of load/store efficiency since half the elements in the transaction are not used and represent wasted bandwidth.

Shared Memory

- Shared memory are on-chip
 - High bandwidth and low latency
 - Not as good as registers, but much better than global memory

Uses:

- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns

Organization:

- Divided into equally sized memory modules, named banks
- Successive 4-byte or 8-byte words belong to different banks

Shared Memory Banks

- Compute Capability I.x
 - ▶ 16 banks, 4-byte wide
- ▶ Compute Capability 2.x
 - ▶ 32 banks, 4-byte wide
- Compute capability 3.x
 - > 32-bit mode: 32 banks, 4-byte wide
 - ▶ 64-bit mode: 32 banks, 8-byte wide
- Compute capability 5.x
 - ▶ 32 banks, 4-byte wide
- Compute capability 7.x
 - > 32 banks, 4-byte wide

Bank Conflict

- Shared memory accesses are issued per 32 threads (warp)
- Serialization: bank conflict
 - if n threads in a warp access different words in the same bank, n shared memory accesses are executed serially
 - We should avoid bank conflict as much as possible.

Example 1: No Bank Conflict

Example 2: No Bank Conflict

Example 3: 2-way Bank Conflict

Example 4: 8-way Bank Conflict

Latency of Bank Conflicts

Bank Conflicts on Fermi (CC 2.x)

Stride / #-Way Bank Conflict

From Ref. [4]

Avoiding Bank Conflicts

- ▶ 32x32 shared memory array
- If each warp accesses a column
 - ▶ 32-way bank conflicts

Bank 0 Bank 1

Bank 31

Avoiding Bank Conflicts

- Add a column for padding
 - ▶ 32 x 33 shared memory array
 - No bank conflict now!

Bank 0 Bank 1

•••

Bank 31

References

- 1. David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel Processors, 2nd Edition, Morgan Kaufmann, 2013.
- 2. CUDA C Programming Guide, Nvidia. http://docs.nvidia.com/cuda/cuda-c-programming-guide/
- 3. CUDA C BEST PRACTICES GUIDE, Nvidia. http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
- 4. X. Mei and X.-W. Chu, "Dissecting GPU memory hierarchy through microbenchmarking," IEEE TPDS 2017.