课程编号: 100172203

北京理工大学 2019-2020 学年第二学期

《工科数学分析》(下)期末试题(A卷)

座号		班级			学号				姓名			
注:试	卷共6〕	页,十个	大题;解	答题必	须有过和	星;试卷原	手面空 白	纸撕下	做草稿组	(;试卷)	不得拆散	
题			三	四	五	六	七	八	九	+	总分	
号												
得												
分												
签												
名												
得分] -,	填空题	10(每小	>題 4 分	〉,共 2	0分)				
1. 点	M(1,0,	,2)到直	\mathbb{I} 线 $\frac{x}{2}$ =	$=\frac{y+1}{-2}=$	$=\frac{z-1}{1}$	 り距离見	른					
2. 函	数 u =	xyz在,	点 <i>P</i> (5,	1,2)处	沿从点	P(5,1,	2) 到点	Q(9,4)	,14 方	句的方	方向导数	
为	J											
3. 设	f(x,	y) 在	全 平	面上	连 续	,交	换 累	上次 积	分 的	积分	分次序	
$I = \int_0^{\pi} dx \int_0^{\cos x} f(x, y) dy = \underline{\qquad}.$												
4. 己	知 L 为	右半圆	$: x^2 + y$	$y^2 = R^2$	$(x \ge 0),$	计算 \int_L	y dl =		.			
5. 己	知级数	$\sum_{n=1}^{\infty} (-1)$	$n \frac{1}{n^{p-3}}$	条件收缩	敛,则 <i>p</i>	的取值	范围为	J				
得	分			. 计算点	题(每:	小题5分	〉,共2	0分)				
1. 求	点 P (1,	2, -1)	在平面	$\vec{j} 2x - y$	y + z = 5	上的投	影点的	的坐标.				

2. 设 $z = f(x + \varphi(x - y), y)$, 其中 f 具有二阶连续偏导数, φ 有二阶导数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}.$

3. 计算 $I = \iiint_V (x + y + z) dV$, 其中 V 是由 z = xy, y = x, x = 1, z = 0 所围 成的区域.

4. 已知函数 $u = x^2 + yz$, 计算 div(gradu).

得分

五、(8 分) 求常数 a,b,c 的值, 使函数

 $f(x,y,z) = axy^2 + byz + cx^3z^2$ 在点M(1,2,-1)处沿z轴正方向的方向导数有最大值64.

- (1) 求 λ 的值;
- (2) 求 $f(1,\sqrt{3})-f(2,0)$ 的值.

得分 七、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$ 的收敛区间及和函数.

得分

八、(8 分) 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x-1) 的幂级数,

并求收敛区间及 $f^{(5)}(1)$ 的值.

得分

力、(8分) 计算曲面积分 $I = \iint_S \frac{xdydz + z^2dxdy}{x^2 + y^2 + z^2}$, 其中 S 是由曲

面 $x^2 + y^2 = R^2$ 及两平面 z = R, z = -R(R > 0) 所围成的立体表面的外侧.

得分

十、(6分)设 $\Omega(t) = \{(x, y, z) | x^2 + y^2 + z^2 \le t^2 \}$, 其中 t > 0.

- (1) 求证: F(t)在 $(0,+\infty)$ 内可导,并求F'(t)的表达式;
- (2) 设 $f(0) \neq 0$, 求证: 级数 $\sum_{n=1}^{\infty} n^{1-\lambda} F'(\frac{1}{n})$ 在 $\lambda > 0$ 时收敛, $\lambda \leq 0$ 时发散.