Pretest Solutions

1. The following PLA will be used to implement the following equations:

$$X = AB'D + A'C' + BC + C'D'$$

$$Y = A'C' + AC + C'D'$$

$$Z = CD + A'C' + AB'D$$

(a) Indicate the connections that will be made to program the PLA to implement these equations.

Sol.)

(b) Specify the truth table for a ROM which realizes these same equations.

Sol.)

ABCD	XYZ
0000	1 1 1
0001	111
0010	000
0011	0 0 1
0100	1 1 1
0101	1 1 1
0110	100
0 1 1 1	101
1000	1 1 0
1001	101
1010	0 1 0
1011	1 1 1
1100	1 1 0
1 1 0 1	000
1110	1 1 0
1111	1 1 1

2. A U-V flip-flop behaves as follows:

If UV = 00, the flip-flop does not change state.

If UV = 10, the flip-flop is set to Q = 0.

If UV = 11, the flip-flop changes states.

The input combination UV = 01 is not allowed.

(a) Give the characteristic (next state) equation for this flip-flop.

Sol.)

Q	U V = 00	U V = 01	U V = 11	U V = 10
0	0	X	1	0
1	1	X	0	0

(b) Complete the following table, using don't-cares where possible.

(Sol.)

Q Q⁺	UV
00	x 0
01	1 1
10	1 x
11	0 0

(c) Realize the following next-state equation for Q using a U-V flip-flop: $Q^+ = A + BQ$. Find equations for U and V.

Sol.)

	Q ⁺					
Q	AB	AB	AB	AB		
	= 00	= 01	= 11	= 10		
0	0	0	1	1		
1	0	1	1	1		

	u v					
Q	AΒ	AB	AB	AB		
	= 00	= 01	= 11	= 10		
0	x0	x0	11	11		
1	1x	00	00	00		
U = A'B' + Q'						

3. Design a 3-bit counter which counts in the sequence:

001, 100, 101, 111, 110, 010, 011, (repeat) 001, ...

Sol.)

$A^+B^+C^+$
XXX
1 0 0
0 1 1
0 0 1
1 0 1
1 1 1
0 1 0
1 1 0

TABLE 12-9 Determination of Flip-Flop Input Equations from **Next-State** Equations © Cengage Learning 2014

		Q = 0		Q = 1		Rules for Forming Input Map From Next-State Map*	
Type of Flip-Flop	Input	$Q^{+} = 0$	$Q^{+} = 1$	$Q^{+} = 0$	$Q^{+} = 1$	Q = 0 Half of Map	Q = 1 Half of Map
Delay	D	0	1	0	1	no change	no change
Toggle	T	0	1	1	0	no change	complement
Set-Reset	S	0	1	0	X	no change	replace 1's with X's**
	R	X	0	1	0	replace 0's with X's**	complement
J-K	J	0	1	X	X	no change fill	fill in with X's
	K	X	X	1	0	in with X's	complement

Q+ means the next state of Q X is a don't-care

(a) Use D flip-flops.

Sol.)

$$D_{\rm A} = B' + AC$$
; $D_{\rm B} = AC + BC'$; $D_{\rm C} = A'B + AB'$

(b) Use J-K flip-flops.

Sol.)

$$J_{\rm A} = B', \, K_{\rm A} = BC'; \, J_{\rm B} = AC, \, K_{\rm B} = A'C; \, J_{\rm C} = A' + B', \, K_{\rm C} = A'B' + AB$$

(c) Use T flip-flops.

Sol.)

Always copy X's from the next-state map onto the input maps first.

Fill in the remaining squares with 0's.

$$T_{_{\rm A}} = A'B' + ABC'; \ T_{_{\rm B}} = A'BC + AB'C; \ T_{_{\rm C}} = A'B' + A'C' + B'C' + ABC$$

(d) Use S-R flip-flops.

Sol.)

$$S_{\rm A} = B', \, R_{\rm A} = BC'; \, S_{\rm B} = AC, \, R_{\rm B} = A'C; \, S_{\rm C} = A'B + AB', \, R_{\rm C} = A'B' + AB$$

(e) What will happen if the counter of (a) is started in state 000?

Sol.)

State 000 goes to 100, because $D_AD_BD_C = 100$.

4. (a) Construct a transition table and state graph for the circuit shown below.

Sol.)

$$\begin{array}{l} {Q_{1}}^{+} = J_{1}{Q_{1}}' + K_{1}'Q_{1} = XQ_{1}' + XQ_{2}'Q_{1} \\ {Q_{2}}^{+} = J_{2}{Q_{2}}' + K_{2}'Q_{2} = XQ_{2}' + XQ_{1}Q_{2} \\ Z = X'Q_{2}' + XQ_{2} \end{array}$$

Present State		State Q_2^+	2	Z
Q_1Q_2	X = 0	X=1	X = 0	X=1
00	00	11	1	0
01	00	10	0	1
11	00	01	0	1
10	00	11	1	0

(b) Construct a timing chart for the circuit for an input sequence X = 10111. (Assume that initially Q1 = Q2 = 0 and that X changes midway between the rising and falling clock edges.)

(Sol.)

(c) List the output values produced by the input sequence.

Sol.)
$$Z = 00011$$