

Aturan Semantik Logika Proposisional, Interpretasi yang Diperluas

MSIM 4103 – Logika Informatika Program Studi Sistem Informasi Jurusan Tehnik , FST

Materi Inisiasi 2

- Aturan Semantik
- Penentuan Nilai Kalimat
- Penentuan Interpretasi dari Kalimat
- Interpretasi yang Diperluas
- Tabel Kebenaran

Review Materi

Interpretasi

- Pemberian nilai terhadap simbol yang ada dalam kalimat
- Cara penulisan:

Misalkan I merupakan suatu interpretasi untuk kalimat \mathcal{E}_{i} maka

$$I:\{\rho\leftarrow\tau\}$$

artinya interpretasi *I* memberikan nilai kebenaran τ kepada simbol proposisional ρ yang ada dalam kalimat \mathcal{E} .

Contoh Penulisan Interpretasi

Misalkan I merupakan suatu interpretasi untuk kalimat \mathcal{E}_{ℓ} maka

artinya interpretasi I memberikan nilai kebenaran true kepada simbol kebenaran P yang ada dalam kalimat \mathcal{E}_{i}

1. Aturan Semantik

Aturan Semantik

- Aturan semantik merupakan aturan yang digunakan untuk menentukan nilai kebenaran suatu kalimat.
- Misalkan I merupakan suatu interpretasi untuk kalimat \mathcal{E}_i . Nilai kebenaran dari kalimat \mathcal{E} di bawah interpretasi I dapat diperoleh dengan menerapkan aturan semantic secara berulang-ulang.

Aturan Semantik Proposisi

 Untuk kelompok simbol kebenaran, nilai kebenarannya sesuai dengan kalimatnya.

Contoh:

Nilai kebenaran kalimat true (true yang dicetak miring) adalah true. Nilai kebenaran kalimat false (false yang dicetak miring) adalah false.

• Untuk kelompok simbol proposisional, nilai kebenaran simbol proposisional yang ada dalam kalimat $\mathcal E$ sama dengan nilai kebenaran yang diberikan oleh interpretasi I pada simbol tersebut.

Contoh:

Interpretasi I:{ P←true, R ←false} artinya P bernilai true, R bernilai false.

Aturan Semantik Negasi

Nilai kebenaran negasi kalimat adalah kebalikan dari nilai kebenaran kalimatnya.

Nilai Kebenaran Kalimat (<i>字</i>)	Nilai Kebenaran Negasi Kalimat (not 🗷)
True	False
False	True

Aturan Semantik Konjungsi

Nilai kebenaran kalimat true hanya jika nilai kebenaran pasangan kalimat keduanya adalah true.

Nilai Kebenaran Kalimat Pertama (F)	Nilai Kebenaran Kalimat Kedua (G)	Nilai Kebenaran Konjungsi Kalimat (F and G)
true	true	true
true	false	false
false	true	false
false	false	false

Aturan Semantik Disjungsi

Nilai kebenaran kalimat false hanya jika nilai kebenaran pasangan kalimat keduanya adalah false.

Nilai Kebenaran Kalimat Pertama (7)	Nilai Kebenaran Kalimat Kedua (ダ)	Nilai Kebenaran Disjungsi Kalimat (ア or タ)
true	true	true
true	false	true
false	true	true
false	false	false

Aturan Semantik Implikasi

Nilai kebenaran false hanya jika klausa if bernilai true dan klausa then bernilai false.

Nilai Kebenaran Klausa if (7)	Nilai Kebenaran Klausa then(%)	Nilai Kebenaran Implikasi Kalimat (If 7 then 9)
true	true	true
true	false	false
false	true	true
false	false	true

Aturan Semantik Ekuivalensi

Nilai kebenaran true hanya jika nilai kebenaran kalimat pada sisi kiri dan kanan sama.

Nilai Kebenaran Sisi Kiri (7)	Nilai Kebenaran Sisi Kanan (<i>Ģ</i>)	Nilai Kebenaran Ekuivalensi Kalimat (7 if and only if 9)
true	true	true
true	false	false
false	true	false
false	false	true

Aturan Semantik Kondisional

Nilai kebenaran kalimatnya bergantung nilai kebenaran kalimat klausa if.

- 1. Jika nilai kebenaran klausa if adalah true, maka nilai kebenaran kalimatnya sama dengan nilai kebenaran klausa then.
- 2. Jika nilai kebenaran klausa if adalah false, maka nilai kebenaran kalimatnya sama dengan nilai kebenaran klausa else.

Aturan Semantik Kondisional

Nilai Kebenaran Klausa if (<i>7</i>)	Nilai Kebenaran Klausa then(<i>G</i>)	Nilai Kebenaran Klausa else(ૠ)	Nilai Kebenaran Kalimat Kondisional (if 7 then 9 else 44)
true	true	true	True
true	true	false	true
true	false	true	false
true	false	false	false
false	true	true	true
false	true	false	false
false	false	true	true
false	false	false	false

2. Penentuan Nilai Kalimat

Penentuan Nilai Kalimat

Langkah:

- 1. Perhatikan interpretasi yang diberikan.
- 2. Terapkan aturan semantic pada masing-masing kalimat bagian (dari simbol proposisional hingga kalimat secara utuh).

Contoh 2.1

Perhatikan kalimat logika proposisional berikut:

 \mathcal{E} : if P then not R

dengan interpretasi K: {P \leftarrow true, R \leftarrow false} untuk kalimat \mathcal{E} . Tentukan nilai kebenaran kalimat \mathcal{E} !

(Silahkan dikerjakan sebelum melihat pembahasan pada slide selanjutnya)

Jawaban Contoh 2.1

- 1. Perhatikan interpretasi yang diberikan, yaitu K: {P \leftarrow true, R \leftarrow false} untuk kalimat \mathcal{E} .
 - Dengan aturan proposisi, diperoleh bahwa nilai kebenaran simbol proposisi P adalah true dan nilai kebenaran simbol proposisi R adalah false.
- 2. Perhatikan kalimat bagian dari kalimat $\mathcal E$ yaitu not R dan if P then not R
 - not R bernilai true, karena R bernilai false (aturan negasi)
 - if P then not R bernilai true, karena P dan not R bernilai true (aturan implikasi)

3. Penentuan Interpretasi Kalimat

Penentuan Interpretasi Kalimat

Langkah:

- 1. Perhatikan nilai kebenaran kalimat.
- 2. Tentukan nilai kebenaran kalimat bagian berdasarkan aturan semantik (dari kalimat secara utuh hingga simbol proposisional).
- 3. Tuliskan semua nilai kebenaran untuk simbol proposisional dalam suatu interpretasi.

Contoh 3.1

Diketahui bahwa kalimat logika proposisional berikut

 \mathcal{E} : if (Q and R) then S

bernilai false. Tentukan semua interpretasi yang memberikan nilai false pada kalimat $\boldsymbol{\mathcal{E}}$!

(Silahkan dikerjakan sebelum melihat pembahasan pada slide selanjutnya)

Jawaban Contoh 3.1

- 1. Perhatikan nilai kebenaran kalimat. Kalimat \mathcal{E} : **if** (Q **and** R) **then** S bernilai false, artinya dengan aturan implikasi kalimat tersebut bernilai false.
- 2. Perhatikan kalimat-kalimat bagian dari \mathcal{E} , yaitu Q and R dan S
 - Karena **if** (Q **and** R) **then** S bernilai false, maka if (Q and R) bernilai true dan klausa then (S) bernilai false. (Perhatikan tabel aturan implikasi)
 - Q and R bernilai true, artinya Q bernilai true dan R bernilai true (Perhatikan tabel aturan konjungsi).

Jawaban Soal 3.1

3. Tuliskan semua nilai kebenaran untuk simbol proposisional dalam suatu interpretasi.

Jadi, misalkan I adalah interpretasi untuk \mathcal{E} , dengan

 $I:\{Q\leftarrow true, R\leftarrow true, S\leftarrow false\}$

akan menyebabkan nilai kalimat ${\mathcal E}$ false.

Misalkan I merupakan suatu interpretasi untuk kalimat \mathcal{E}_{i} maka

artinya interpretasi I memberikan nilai kebenaran τ kepada simbol proposisional ρ yang ada dalam kalimat \mathcal{E} .

Untuk interpretasi yang diperluas, dapat dituliskan dengan cara

$$<\rho_1\leftarrow\tau_1>\bullet$$

Perluasan interpretasi di atas artinya akan dilakukan pemberian nilai τ_1 kepada simbol proposisional ρ_1 . Simbol selain ρ_1 memiliki nilai kebenaran yang tidak berubah

Tujuan perluasan interpretasi adalah:

- 1. Perluasan dilakukan untuk memberikan nilai kebenaran kepada simbol yang belum diberikan nilai kebenaran sebelumnya.
- 2. Perluasan dilakukan untuk memberikan nilai kebenaran baru kepada simbol yang sudah diberikan nilai kebenaran sebelumnya.

Hasil perluasan interpretasi $I:\{ \rho \leftarrow \tau \}$ dengan $<\rho_1 \leftarrow \tau_1 > \bullet I$ dapat dituliskan dengan cara:

Menggunakan notasi perluasan interpretasi:

$$<\rho_1\leftarrow\tau_1>\bullet I: \{\rho\leftarrow\tau, \rho_1\leftarrow\tau_1\}$$

• Melakukan permisalan interpretasi baru, misalkan interpretasi *J*, sehingga

$$J: \{\rho \leftarrow \tau, \rho_1 \leftarrow \tau_1\}$$

Langkah:

- 1. Tentukan perluasan yang akan dilakukan. Apakah memberikan nilai kebenaran kepada simbol proposisional yang belum diberikan nilai sebelumnya atau memberikan nilai kebenaran baru kepada simbol proposisional yang sudah diberikan nilai sebelumnya?
- 2. Tuliskan perluasan yang dilakukan.
- 3. Tuliskan hasil perluasan dengan notasi interpretasi baru/ notasi perluasan interpretasi.

Contoh 4.1

Lakukan perluasan untuk interpretasi *I*:{P ←true}! (Silahkan dikerjakan sebelum melihat pembahasan)

Jawaban Contoh 4.1

Perluasan dapat dilakukan dengan dua cara:

1. Memberikan nilai terhadap simbol proposisional yang belum diberikan nilainya, seperti <S←true> • I . Interpretasi <S←true> • I akan memberikan nilai kebenaran true kepada simbol proposisional S.

Hasil perluasan dapat dituliskan dengan menggunakan:

- Notasi perluasan interpretasi secara langsung:

$$<$$
S \leftarrow true $>$ • I : {P \leftarrow true ,S \leftarrow true}

- Permisalan interpretasi baru, misalkan interpretasi J, sehingga

Jawaban Contoh 4.1

Perluasan dapat dilakukan dengan dua cara:

2. Memberikan nilai kebenaran baru terhadap simbol proposisional yang sudah diberikan nilainya, seperti $< P \leftarrow false > \bullet I$. Interpretasi $< P \leftarrow false > \bullet I$ akan memberikan nilai kebenaran false kepada simbol proposisional P.

Hasil perluasan dapat dituliskan dengan menggunakan:

- Notasi perluasan interpretasi secara langsung:

$$<$$
P \leftarrow false $> \bullet I: {P}\leftarrow$ false $\}$

- Permisalan interpretasi baru, misalkan interpretasi K, sehingga

Perluasan intrepretasi dapat juga dilakukan dengan melibatkan beberapa pemberian nilai baru terhadap lebih dari satu simbol proposisional, yang disebut dengan **perluasan multi** (multiply extended).

Notasi perluasan multi secara singkat:

$$<\rho_n \leftarrow \tau_n > \bullet \dots \bullet <\rho_2 \leftarrow \tau_2 > \bullet <\rho_1 \leftarrow \tau_1 > \bullet I$$

artinya interpretasi *I* diperluas dengan $<\rho_1\leftarrow\tau_1>$ • *I* kemudian $<\rho_2\leftarrow\tau_2>$ •

$$(<\rho_1 \leftarrow \tau_1 > \bullet I)$$
, hingga $<\rho_n \leftarrow \tau_n > \bullet (\dots \bullet (<\rho_2 \leftarrow \tau_2 > \bullet (<\rho_1 \leftarrow \tau_1 > \bullet I)\dots)$

Perluasan multi terhadap interpretasi I berikut ini

$$<\rho_n \leftarrow \tau_n > \bullet \dots \bullet <\rho_2 \leftarrow \tau_2 > \bullet <\rho_1 \leftarrow \tau_1 > \bullet I$$

artinya dilakukan pemberian nilai terhadap simbol dari ρ_1 baru kemudian ρ_2 hingga yang paling akhir adalah ρ_n

Contoh 4.2

Lakukan perluasan interpretasi I:{P \leftarrow true, P₁ \leftarrow true} lebih dari satu kali!

(Silahkan dikerjakan sebelum melihat pembahasan)

Jawaban Contoh 4.2

Perluasan dapat dilakukan dengan cara berikut:

$$\bullet \bullet \bullet I$$

Ini artinya dilakukan perluasan <P \leftarrow false> • I , memberikan nilai baru kepada simbol P.

Setelah itu, diperluas kembali dengan <P $_1$ \leftarrow false> • (<P \leftarrow false>• I), memberikan nilai baru kepada simbol P $_1$.

Yang paling akhir adalah perluasan $\langle P_2 \leftarrow true \rangle \bullet (\langle P_1 \leftarrow true \rangle \bullet (\langle P_2 \leftarrow false \rangle \bullet I))$, memberikan nilai kepada simbol P_2 .

Hasil perluasan dapat dituliskan dengan menggunakan:

- Notasi perluasan secara langsung:
 <P₂ ←true> <P₁ ←false> <P ←false> I:{P ←false, P₁ ←false, P₂ ←true}
- Permisalan interpretasi baru, misalkan J, sehingga $J:\{P \leftarrow false, P_1 \leftarrow false, P_2 \leftarrow true\}$

5. Tabel Kebenaran

Tabel Kebenaran

- Tabel kebenaran adalah alat yang digunakan untuk menentukan nilai kebenaran suatu kalimat secara lengkap dari nilai-nilai yang mungkin diberikan.
- Setiap interpretasi untuk suatu kalimat logika proposisional akan bersesuaian dengan tepat satu baris dalam tabel kebenaran.

Tabel Kebenaran

Langkah membuat tabel kebenaran:

- 1. Tentukan banyak simbol proposisional.
- 2. Tentukan banyak kemungkinan interpretasi dari simbol tersebut, dapat dihitung dengan 2^x dengan x adalah banyak simbol proposisional.
- 3. Tuliskan semua kemungkinan interpretasi dari masing-masing simbol proposisional.
- 4. Tentukan nilai kebenaran kalimat dari interpretasi tersebut.

Contoh 5.1

Buatlah tabel kebenaran untuk Kalimat 7: not P!

Kalimat 7: not P memiliki satu simbol proposisional yaitu P. Kemungkinan nilai kebenaran untuk P adalah true atau false. Kemungkinan interpretasi untuk P dapat dituliskan dalam bentuk tabel kebenaran berikut:

Interpretasi	Р	Not P
I ₁	True	False
l ₂	False	True

Contoh 5.2

Buatlah tabel kebenaran untuk kalimat

7: If (not P and Q) then P else R

Kalimat 7: If (not P and Q) then P else R

- 1. Tentukan banyak simbol proposisional.
 - Banyak simbol proposisional adalah 3 buah, yaitu: P, Q, R.
- 2. Tentukan banyak kemungkinan interpretasi dari simbol tersebut, dapat dihitung dengan 2^x dengan x adalah banyak simbol proposisional.
 - Banyak kemungkinan interpretasi adalah 2³=8 buah.

Kalimat 7: If (not P and Q) then P else R

3. Tuliskan semua kemungkinan interpretasi dari masing-masing simbol proposisional.

P	Q	R
True	True	True
True	True	False
True	False	True
True	False	False
False	True	True
False	True	False
False	False	True
False	False	False

4. Tuliskan semua nilai kalimat berdasarkan masing-masing interpretasi.

Р	Not P	Q	R	not P and Q	7
True		True	True		
True		True	False		
True		False	True		
True		False	False		
False		True	True		
False		True	False		
False		False	True		
False		False	False		

Misalkan untuk baris 1

Diketahui P: true, Q: true, R: true

Karena (not P and Q) false, maka nilai kalimatnya sama dengan nilai klausa else, yaitu R (True).

Р	Not P	Q	R	not P and Q	7
True	False	True	True	False	True
True		True	False		
True		False	True		
True		False	False		
False		True	True		
False		True	False		
False		False	True		
False		False	False		

Tabel Kebenaran Kalimat

7: If (not P and Q) then P else R

Р	Not P	Q	R	not P and Q	7
True	False	True	True	False	True
True	False	True	False	False	False
True	False	False	True	False	True
True	False	False	False	False	False
False	True	True	True	True	False
False	True	True	False	True	False
False	True	False	True	False	True
False	True	False	False	False	False

Referensi

- 1. Suprapto. (2020). Logika Informatika (BMP). Tangerang Selatan: Universitas Terbuka.
- 2. Bergman, M, Moor, J, and Nelson, J. (2014). The Logic Book (6th Edition). New York: McGraw Hill.