ANÁLISIS Y DISEÑO DE ALGORITMOS

DIVIDE Y VENCERÁS

Práctica 5 de laboratorio

Entrega: Hasta el domingo 12 de marzo, 23:55h. A través de Moodle

Las siguientes recurrencias matemáticas obtienen el valor de la potencia enésima de 2 (2^n donde $n \in \mathbb{N}$). Se diferencian entre ellas en la división del problema en subproblemas y en la posterior forma de combinar las soluciones parciales.

pow2_1(n)	pow2_2(n)		
$pow2_{-1}(n) = \begin{cases} 1 & \text{si } n = 0 \\ 2 \times pow2_{-1}(n-1) & \text{si } n > 0 \end{cases}$	$pow2_{-2}(n) = \begin{cases} 1 & \text{si } n = 0\\ pow2_{-2}(n/2) \times pow2_{-2}(n/2) & \text{si } n \text{ es par}\\ 2 \times pow2_{-2}(n/2) \times pow2_{-2}(n/2) & \text{si } n \text{ es impar} \end{cases}$		
pow2_3(n)	pow2_4(n)		
$pow2_{-}3(n) = \begin{cases} 1 & \text{si } n = 0 \\ r \times r & \text{donde } r = pow2_{-}3(n/2); \text{ si } n \text{ es par} \\ 2 \times r \times r & \text{donde } r = pow2_{-}3(n/2); \text{ si } n \text{ es impar} \end{cases}$	$pow2_{-4}(n) = \begin{cases} 1 & \text{si } n = 0\\ pow2_{-4}(n-1) + pow2_{-4}(n-1) & \text{si } n > 0 \end{cases}$		

El objetivo de esta práctica es comprobar empíricamente cómo influye la división en subproblemas en la eficiencia del algoritmo resultante. Para ello se pide:

- 1. Implementar las funciones incorporándolas al código fuente que se proporciona a través de Moodle.
- 2. Ejecutar el programa resultante para obtener una tabla similar a la que se muestra. Contiene el número de llamadas recursivas que realiza cada una de las funciones para distintos valores de n (en este caso los números pares desde 0 hasta 500). Por lo tanto, cada función debe calcular también el número de llamadas recursivas que realiza, actualizando las variables $calls_pow2_x$ del mencionado código.

n	$pow2_1$	$pow2_2$	$pow2_3$	$pow2_4$
0	1	1	1	1
2	3	7	3	7
4	5	15	4	31
6	7	15	4	127
8	9	31	5	511
10	11	31	5	2047
12	13	31	5	8191
14	15	31	5	32767
16	17	63	6	131071
18	19	63	6	524287
20	21	63	6	2097151
500	501	1023	10	

- 3. Mediante Gnuplot obtén la gráfica asociada a dicha tabla (similar a la de la figura mostrada)
- 4. Justifica con el profesor los resultados obtenidos y sube a Moodle la práctica. Los ficheros a subir son cuatro: El código fuente con las funciones incorporadas, la tabla de resultados, la gráfica y el fichero de órdenes de Gnuplot que obtiene dicha gráfica.