Modéliser le comportement cinématique des systèmes mécaniques

Révision 1 - Modélisation cinématique

| Sciences | Industrielles de | I'Ingénieur

Définition — **Solide Indéformable.** On considère deux points A et B d'un solide indéformable noté S. On note t le temps. $\forall A, B \in S, \forall t \in \mathbb{R}, \overrightarrow{AB(t)}^2 = \text{constante}$.

Définition — **Trajectoire** d'un point appartenant à un solide. Soit un point P se déplaçant dans un repère $\mathcal{R}_0(O, \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$. La trajectoire du point P est définie par la courbe $\mathcal{C}(t)$ paramétrée par le temps t. On a :

$$\forall t \in \mathbb{R}^+, \overrightarrow{OP(t)} = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}_{\mathscr{R}_0} = x(t)\overrightarrow{i_0} + y(t)\overrightarrow{j_0} + z(t)\overrightarrow{k_0}$$

Définition — **Vitesse d'un point appartenant à un solide**. Soit un solide S_0 auquel on associe le repère \mathcal{R}_0 (O_0 , $\overrightarrow{i_0}$, $\overrightarrow{j_0}$, $\overrightarrow{k_0}$). Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , (O_1 , $\overrightarrow{i_1}$, $\overrightarrow{j_1}$, $\overrightarrow{k_1}$). Le solide S_1 est en mouvement par rapport au solide S_0 . Soit un point P appartenant au solide S_1 . La vitesse du point P appartenant au solide S_1 .

par rapport au solide S_0 se calcule donc ainsi : $\overline{V(P \in S_1/S_0)}(t) = \left[\frac{d\overline{O_0P(t)}}{dt}\right]_{\mathcal{R}_0}$.

■ Exemple

Résultat Lorsque il n'y a pas de degré de liberté de translation dans une liaison, la vitesse au centre de la liaison est nulle. Ainsi :

- si les solides S_1 et S_2 sont en liaison rotule de centre O alors $V(O \in S_2/S_1) = \overrightarrow{O}$;
- si les solides S_1 et S_2 sont en liaison pivot de d'axe (O, \overrightarrow{u}) alors $\overrightarrow{V(O \in S_2/S_1)} = \overrightarrow{O}$;
- si les solides S_1 et S_2 sont en liaison rotule à doigt de centre O alors $\overline{V(O \in S_2/S_1)} = \overrightarrow{O}$.

Résultat Dérivation vectorielle

Soient S_0 et S_1 deux solides en mouvements relatifs et \mathcal{R}_0 et \mathcal{R}_1 les repères orthonormés directs associés. Soit \overrightarrow{v} un vecteur de l'espace. On note $\Omega(\mathcal{R}_1/\mathcal{R}_0)$ le vecteur instantané de rotation permettant d'exprimer les rotations entre chacune des deux bases. La dérivée d'un vecteur dans une base mobile se calcule donc ainsi :

$$\left[\frac{\mathrm{d}\overrightarrow{v}}{\mathrm{d}t}\right]_{\mathcal{R}_0} = \left[\frac{\mathrm{d}\overrightarrow{v}}{\mathrm{d}t}\right]_{\mathcal{R}_1} + \overline{\Omega(\mathcal{R}_1/\mathcal{R}_0)} \wedge \overrightarrow{v}.$$

Résultat Champ du vecteur vitesse dans un solide - Formule de Varignon - Formule de BABAR

Soient A et B deux points appartenant à un solide S_1 en mouvement par rapport à S_0 . Le champ des vecteurs vitesses est donc déterminé ainsi :

$$\overrightarrow{V(\mathbf{B} \in S_1/S_0)} = \overrightarrow{V(\mathbf{A} \in S_1/S_0)} + \overrightarrow{\mathbf{BA}} \wedge \underbrace{\overrightarrow{\Omega(S_1/S_0)}}_{\overrightarrow{R}}$$

Résultat Composition du vecteur vitesse

Soit un solide S_1 en mouvement par rapport à un repère \mathcal{R}_0 et un solide S_2 par rapport au solide S_1 . Pour chacun des points A appartenant au solide S_2 , on a :

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(A \in S_1/\mathscr{R}_0)}$$

1

- $\overline{V(A \in S_2/\mathcal{R}_0)}$ est appelé vecteur vitesse absolu; $\overline{V(A \in S_2/S_1)}$ est appelé vecteur vitesse relatif;

Résultat Composition du vecteur vitesse

Soit un solide S_1 en mouvement par rapport à un repère \mathcal{R}_0 et un solide S_2 par rapport au solide S_1 . On a :

$$\overrightarrow{\Omega(S_2/\mathcal{R}_0)} = \overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathcal{R}_0)}$$

Définition Accélération d'un point appartenant à un solide

Soit un solide S_0 auquel on associe le repère $\mathcal{R}_0\left(O_0,\overrightarrow{i_0},\overrightarrow{j_0},\overrightarrow{k_0}\right)$. Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , $(O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1})$. Le solide S_1 est en mouvement par rapport au solide S_0 .

Soit un point P appartenant au solide S_1 . L'accélération du point P appartenant au solide S_1 par rapport au solide S_0 se calcule donc ainsi :

$$\overline{\Gamma(P \in S_1/S_0)}(t) = \left[\frac{d\left(\overline{V(P \in S_1/S_0)}(t)\right)}{dt} \right]_{\mathcal{R}_0}$$