Informe

Carmen Calvo Olivera

3 de julio de 2020

Resumen

En este documento se recogen los resultados obtenidos de la aplicación de diferentes técnicas de aprendizaje automático a nuestro conjunto de datos, cuyo objetivo es conseguir un modelo capaz de... calcular en tiempo real el índice de verosimilitud para una predicción meteorológica a partir de la obtencion del error cuadrático medio entre la precipitacón obtenida por el modelo WRF (Weather Research and Forecasting) y nuestro modelo.

Para ello, se ha llevado a cabo la creación de un conjunto de datos a partir de predicciones obtenidas por el modelo WRF.

1. Introducción

A lo largo de la historia, la fenómenos meteorológicos siempre has resultado de gran interés para la humanidad dada su gran influencia en actividades cotidianas de sectores como la agricultura, el transporte o el comercio.

— Poner párrafito con el avance del aprendizaje automatico y la extensión de su uso...

Dado el objetivo de este trabajo, en este documento se recogen las diferentes estapas del procesamiento de los conjuntos de datos con los que se va a trabajar así como los resultados obtenidos.

2. Dataset

La preparación de los datos supone una parte esencial a la hora de trabajar con aprendizaje automático. En esta sección de describre brevemente tanto la obtención como el tratamiento (o preprocesamiento) de las predicciones a partir de las cuales se obtienen los conjuntos de datos utilizados para el entrenamiento y validación de los distintos clasificadores.

En primer lugar, cabe destacar la necesidad del uso de dos grandes conjuntos de datos, uno para train y el otro para validation.

 train_dataset: este conjunto de datos abarca desde febrero (a la expera de añadir enero) de 2015 hasta diciembre de 2015. • validation_dataset: que abarca desde enero de 2016 hasta diciembre de 2016.

2.1. Obtención

Los datos de las predicciones se obtinen a partir del modelo WRF, un modelo meteorológico numérico de mesoescala no hidrostático, utilizado para finalidades tanto de predicciones operativas en tiempo real como para investigación atmosférica.

Los datos de inicialización del modelo WRF provienen de análisis y predicciones de otros NWP cuyo formato debe ser GRIB1 o GRIB2. En nuestro caso, todos los ficheros fuente han sifo obtenido de Research Data Archive del NCAR (Centro Nacional de Investigación Atmosférica).

Posteriormente se llevan a cabo todos los pasos incluidos dentro del flujo de procesamiento y, a continuación, comienza la simulación meterorológica. Tras todo esto, obtenemos una serie de ficheros del tipo "wrfout_d0X_yyyy-mm-dd_hh:mm:ss"donde X es el número del dominio, y la cadena yyyy-mm-dd_hh:mm:ss representa la fecha y hora de la primera salida guardada en el fichero. Todos estos ficheros son obtenidos en formato NetCDF, un formato de archivo destinado a almacenar datos científicos multidimensionales (variables) como la temperatura, la humedad o la presión.

En nuestro caso, se hará uso de los ficheros horarios para el dominio 2 representado en la Figura 1, y definido previamente en los ficheros de configuración, para 24h, es decir, para el día 1 de enero de 2016 se hace uso de 24 ficheros horarios que van desde "wrfout_d02_2016-01-02_01:00:00" hasta "wrfout_d02_2016-02-03_00:00:00".

Figura 1. Representación del dominio de predicción correspondiente a la zona del Ebro

2.2. Procesamiento

Tras la obtención de las predicciones, se llevan a cabo una serie de pasos para el tratamiento de los datos y finalmente la obtención de nuestro dataset:

■ Filtración de características: el primer paso llevado a cabo es la filtración de las variables que obtenemos de las predicciones del WRF y obtener así una seleccion de variables detalladas en la tabla Tabla 1. Mediante el uso de la libreria de python wrf-python te hace un tratamiento de los datos para, a partir de una prediccion horaria (por qué horaria (?)), obtener un único fichero .nc diario con toda la información que necesitamos. A continuación se muestra la cabecera de unos de los ficheros filtrados:

```
[ccalvo@frontend1 nc] $ ncdump -h 2016-04-12.nc
netcdf \setminus 2016-04-12 {
dimensions:
        south_north = 78;
        west_east = 123;
        time = 24;
variables:
        float XLAT(time, south_north, west_east);
        float XLONG(time, south_north, west_east);
        float HGT(time, south_north, west_east);
        float RAINC(time, south_north, west_east);
        float RAINNC(time, south_north, west_east);
        string DATE(time);
        float TIMESTAMP(time)
        float QVAPOR_500(time, south_north, west_east)
        float QVAPOR_700(time, south_north, west_east)
        float QVAPOR_850(time, south_north, west_east)
        float QCLOUD_500(time, south_north, west_east)
        float QCLOUD_700(time, south_north, west_east)
        float QCLOUD_850(time, south_north, west_east);
        float QRAIN_500(time, south_north, west_east);
        float QRAIN_700(time, south_north, west_east);
        float QRAIN_850(time, south_north, west_east);
        float QICE_500(time, south_north, west_east);
        float QICE_700 (time, south_north, west_east)
        float QICE_850(time, south_north, west_east)
        float QSNOW_500(time, south_north, west_east);
        float QSNOW_700(time, south_north, west_east);
        float QSNOW_850(time, south_north, west_east);
        float QGRAUP_500(time, south_north, west_east);
        float QGRAUP_700(time, south_north, west_east);
        float QGRAUP_850(time, south_north, west_east);
```

```
float T_{-}500 (time, south_north, west_east); float T_{-}700 (time, south_north, west_east);
```

Tabla 1. Variables utilizadas para la creación de un dataset

Variable	Descripción
DATE	Facha da la predicción
TIMESTAMP	Fecha de la predicción
XLAT	
XLONG	Coordenadas
HGT	
RAINC	Precipitación convectiva
RAINNC	Precipitación no convectiva
$T_{-}500hPa$	
$T_{-}700 hPa$	Temperatura a diferentes presiones
T_850hPa	
QVAPOR_500	
QVAPOR_700	
$QVAPOR_{-}850$	
$\mathrm{QCLOUD_500}$	
QCLOUD_{-700}	
QCLOUD_{-850}	
$QRAIN_{-}500$	
$QRAIN_{-}700$	
QRAIN850	Razón de mezcla
QICE_500	nazon de mezcia
QICE_{-700}	
QICE_850	
$QSNOW_{-}500$	
$\overline{\mathrm{QSNOW}}$ _700	
QSNOW_850	
$QGRAUP_500$	
$QGRAUP_700$	
$QGRAUP_850$	

• Creación de los csv: el siguiente paso es la creación de un dataset, para el cual los ficheros NetCDF se convierten en formato CSV y posterioremnte se añaden algunas variables (o etiquetados de los datos). En la tabla Tabla 2 se recogen las variables añadidas a nuestros ficheros.

Tabla 2. Variables añadidas a los datasets

Variable	Descripción
	Precipitación acumulada de la
PRECIPITACION_WRF	predicción del WRF (RAINC +
	RAINNC)
	Precipitación acumulada real
PRECIPITACION	(obtenida a partir pluviómetros de la
	CHE)
	Variable binaria para la predicción del
$LLUVIA_WRF$	WRF (0 \rightarrow No precipitación y 1 \rightarrow
	precipitación)
LLUVIA	Variable binaria para la CHE (0 \rightarrow No
LLUVIA	precipitación y 1 \rightarrow precipitación)
RANGO_WRF	Rango para la predicción del WRF ([0
MANGO_W MF	- 14]*)
RANGO	Rango para la CHE ($[0 - 14]*$)

^{*} Rangos (mm): 0.1,1.,1.5,2.5,5.,10.,15.,20.,25.,30.,40.,50.,80. Rangos (representación): [0-14]

■ Creación de un único csv: como último paso, y previo al entrenamiento de todos los modelos, se crean dos ficheros .csv con los días que deseamos incluir en nuestro dataset de train o de validation.

3. Resultados

A continuación, se detallan los resultados obtenidos. Todos ellos cuentan con la tasa de acierto obtenida sobre el conjunto de datos destinado a la validación de los modelos tanto en el train como en el test y posteriormente con el error cuadrático medio.

El error cuadrático medio o *mean square error* (MSE) corresponde al promedio de los errores al cuadrado, es decir, la diferencia entre el valor real y el valor estimado. Se corresponde con:

$$MSE(y, \hat{y}) = \frac{1}{n_{samples}} \sum_{i=0}^{n_{sample}-1} (y_i - \hat{y}_i)^2$$

Donde \hat{y}_i corresponde al valor predicho para cada *i*-muestra e y_i corresponde al valor real.

En cuanto a la organización de las pruebas llevadas a cabo, encontramos:

■ Binaria: en primer lugar se ha llevado a cabo en entrenamiento de diferentes clasificadores para la obtención de modelos capaces de predecir si hay precipitación

- (1) o no la hay (0). Los 3 escenarios planteados, es decir, el número de variables utilizadas para realizar las predicciones son los siguientes.
 - Todas las variables incluidas en el CSV a excepción de aquellas consideradas como etiquetas. Ver Tabla 2.
 - Todas las variables del punto anterior eliminando RAINC y RAINNC. En este caso, podemos consultar los resultados en: Tabla 3
 - Únicamente con las coordenadas y las variables RAINC y RAINNC.
- Rango: en este caso se realiza la predicción con los rangos definidos con los 3 escenarios anteriores.
 - Todas las variables incluidas en el CSV a excepción de aquellas consideradas como etiquetas. Ver Tabla 2.
 - Todas las variables del punto anterior eliminando RAINC y RAINNC. Resultados: Tabla 4
 - Unicamente con las coordenadas y las variables RAINC y RAINNC.

El error cuadrático medio correspondiente a la relación entre el valor predicho por el WRF y el valor real obtenido de los pluviómetros para todo el conjunto de datos sería el siguiente:

Error cuadrático medio (WRF - CHE)= 0.34860156086592764

Tras este cáculo, analizamos las predicciones obtenidas de muestros clasificadores respecto de la verdad terreno y calculamos nuevamente el MSE.

Tabla 3. Binaria. Todas características sin RAIN

			Error
Clasificador	Train	\mathbf{Test}	cuadrático
			${f medio}$
LDA	0.771577	0.715108	0.284892
AdaBoost	0.774947	0.713852	0.286148
DecisionTree	0.792455	0.712291	0.287709
NeuralNetwork	0.734026	0.711560	0.288440
LogisticRegression	0.733779	0.710553	0.289447
QDA	0.728639	0.703577	0.289447
RandomForest	0.712459	0.699477	0.300523
MPL	0.733471	0.697267	0.302733
SGDClassifier	0.709530	0.693649	0.306351
NaiveBayes	0.722458	0.666042	0.333958
KNeighbors	0.784630	0.630177	0.369823

Tras esta segunda evaluación, en la que se hace uso del dataset completo excluyendo las variables RAINC y RAINNC y las de etiquetado, se obtienen los resultados del MSE para cada día obteniendo los siguientes resultados para los 3 mejores clasificadores:

Tabla 4. MSE diario. Todas features sin RAIN

Día	LDA	DecisionTree	AdaBoost	NeuralNetwork
05/01/2016	0.198039	0.255686	0.298039	0.303725
08/01/2016	0.329020	0.283922	0.371176	0.313333
09/01/2016	0.074510	0.090588	0.244706	0.062157
10/01/2016	0.007451	0.014314	0.003333	0.012745
11/01/2016	0.123137	0.313333	0.270000	0.190588
13/01/2016	0.013922	0.016275	0.015882	0.055098
15/01/2016	0.300980	0.195686	0.157843	0.106471
18/01/2016	0.023529	0.024314	0.034706	0.035686
19/01/2016	0.212941	0.426275	0.206078	0.058039
21/01/2016	0.459020	0.597451	0.918235	0.670588
23/01/2016	0.902157	0.901765	0.972549	0.887255
24/01/2016	0.880980	0.896471	0.620196	0.717059
26/01/2016	0.135686	0.162549	0.125294	0.466275
27/01/2016	0.721373	0.816078	0.704510	0.932157
28/01/2016	0.021961	0.019804	0.096863	0.117451
30/01/2016	0.512941	0.446078	0.057451	0.272353
06/02/2016	0.411569	0.411569	0.431961	0.767843
11/02/2016	0.250980	0.401373	0.429412	0.476471
13/02/2016	0.012157	0.226275	0.247451	0.373333
16/02/2016	0.137059	0.078235	0.050784	0.071961
19/02/2016	0.160000	0.095686	0.100392	0.171765
20/02/2016	0.056471	0.073922	0.088235	0.184510
22/02/2016	0.920196	0.373922	0.170196	0.228235
25/02/2016	0.416275	0.320784	0.310196	0.435098
27/02/2016	0.096863	0.198039	0.128235	0.000392
29/02/2016	0.214314	0.172941	0.189804	0.194314
01/03/2016	0.412745	0.242549	0.223333	0.185882
02/03/2016	0.129020	0.050980	0.050000	0.349608
03/03/2016	0.124118	0.380392	0.441569	0.363333
04/03/2016	0.115882	0.131373	0.167647	0.203529
06/03/2016	0.045098	0.035098	0.041569	0.043725
09/03/2016	0.001961	0.001765	0.001961	0.002157
10/03/2016	0.023137	0.022549	0.021569	0.167843
12/03/2016	0.316471	0.078039	0.101765	0.230588
14/03/2016	0.149608	0.155098	0.147647	0.156667
17/03/2016	0.055490	0.012353	0.288235	0.008431

... continúa en la siguiente página

Día	\mathbf{LDA}	DecisionTree	AdaBoost	NeuralNetwork
18/03/2016	0.158824	0.233529	0.154510	0.284118
23/03/2016	0.310196	0.317843	0.371373	0.705882
28/03/2016	0.209608	0.036078	0.384706	0.504314
29/03/2016	0.635882	0.639216	0.738235	0.620588
30/03/2016	0.429608	0.170588	0.291373	0.119020
03/04/2016	0.065686	0.080392	0.077255	0.092353
06/04/2016	0.644902	0.636667	0.605294	0.205882
08/04/2016	0.415294	0.427255	0.429804	0.443922
10/04/2016	0.424314	0.841961	0.912941	0.643137
11/04/2016	0.001765	0.164902	0.003725	0.230000
12/04/2016	0.178431	0.180196	0.179412	0.396471
13/04/2016	0.590784	0.619020	0.590392	0.593529
15/04/2016	0.370784	0.465686	0.109216	0.336667
17/04/2016	0.885686	0.792353	0.924314	0.934314
19/04/2016	0.391373	0.439804	0.391176	0.539412
21/04/2016	0.029804	0.286078	0.264902	0.194510
23/04/2016	0.253137	0.012353	0.001569	0.431176
25/04/2016	0.571569	0.119020	0.574902	0.382353
27/04/2016	0.492549	0.141176	0.204118	0.559412
28/04/2016	0.033725	0.012941	0.000392	0.000196
30/04/2016	0.014902	0.022157	0.070196	0.005098
01/05/2016	0.230784	0.575294	0.676471	0.810980
03/05/2016	0.000000	0.000000	0.000000	0.005490
07/05/2016	0.949216	0.458431	0.107647	0.296275
08/05/2016	0.361569	0.380392	0.758627	0.538627
09/05/2016	0.550000	0.598824	0.749608	0.577647
10/05/2016	0.104706	0.005882	0.272745	0.043529
12/05/2016	0.486471	0.250784	0.305098	0.415490
13/05/2016	0.489412	0.471176	0.425686	0.263922
17/05/2016	0.010980	0.194118	0.162745	0.131176
18/05/2016	0.938431	0.620196	0.931569	0.722745
19/05/2016	0.078431	0.089804	0.068824	0.061373
20/05/2016	0.958824	1.000000	0.902353	0.990588
21/05/2016	0.063137	0.063137	0.063137	0.066078
23/05/2016	0.024902	0.197059	0.499804	0.521176
24/05/2016	0.000196	0.030588	0.061961	0.060392
26/05/2016	0.026471	0.061961	0.005490	0.079804
29/05/2016	0.709020	0.719804	0.639020	0.543137
31/05/2016	0.623137	0.624118	0.187647	0.713137
01/06/2016	0.001176	0.000000	0.005098	0.040000
06/06/2016	0.055686	0.047255	0.065098	0.000392

...continúa en la siguiente página

Día	LDA	DecisionTree	AdaBoost	NeuralNetwork
08/06/2016	0.085686	0.015490	0.179804	0.107451
14/06/2016	0.268824	0.176863	0.001176	0.342745
18/06/2016	0.089216	0.089216	0.089216	0.088824
19/06/2016	0.009608	0.022941	0.025098	0.154706
20/06/2016	0.000000	0.000000	0.001961	0.000000
22/06/2016	0.000196	0.000000	0.007451	0.000000
23/06/2016	0.193922	0.335490	0.131961	0.417059
24/06/2016	0.169804	0.008627	0.182157	0.000000
26/06/2016	0.922745	0.653333	0.686471	0.752549
28/06/2016	0.000000	0.000000	0.000000	0.000000
29/06/2016	0.224314	0.495098	0.921765	0.666275
02/07/2016	0.098039	0.000000	0.083137	0.000000
03/07/2016	0.001961	0.000000	0.000000	0.000000
06/07/2016	0.075294	0.000000	0.111569	0.000000
07/07/2016	0.623922	0.661569	0.454118	0.661569
08/07/2016	0.170000	0.196078	0.377059	0.004706
09/07/2016	0.970784	0.970784	0.970784	0.970784
10/07/2016	0.019216	0.539020	0.699412	0.493137
11/07/2016	0.107255	0.000000	0.027255	0.000000
13/07/2016	0.405294	0.405294	0.407255	0.405882
15/07/2016	0.013725	0.000000	0.038235	0.000000
16/07/2016	0.000000	0.003725	0.089804	0.015882
17/07/2016	0.033922	0.049804	0.044118	0.000000
19/07/2016	0.337843	0.337843	0.337059	0.337843
21/07/2016	0.246275	0.672941	0.197843	0.425294
23/07/2016	0.094118	0.023333	0.186275	0.000392
26/07/2016	0.161176	0.188431	0.397647	0.252941
29/07/2016	0.080784	0.080784	0.080784	0.080784
30/07/2016	1.000000	1.000000	0.976471	1.000000
31/07/2016	0.238039	0.131373	0.306863	0.002549
01/08/2016	0.078235	0.067843	0.124706	0.066471
02/08/2016	0.627647	0.548627	0.493137	0.013922
03/08/2016	0.446471	0.326667	0.213725	0.283725
08/08/2016	0.010980	0.000000	0.045882	0.000000
09/08/2016	0.338824	0.041569	0.034510	0.303529
11/08/2016	0.033922	0.045294	0.167647	0.065098
12/08/2016	0.500000	0.308235	0.361373	0.665294
13/08/2016	0.000000	0.000000	0.000000	0.000000
14/08/2016	0.300392	0.165294	0.187451	0.146078
21/08/2016	0.000000	0.000000	0.000000	0.000000
21/08/2016	0.945098	0.997059	0.660392	0.997059

...continúa en la siguiente página

Día	LDA	DecisionTree	AdaBoost	NeuralNetwork
22/08/2016	0.000000	0.000000	0.000000	0.000000
23/08/2016	0.000000	0.000000	0.000000	0.000000
24/08/2016	0.003529	0.000000	0.002549	0.000000
27/08/2016	0.030196	0.033529	0.032745	0.006667
28/08/2016	0.006667	0.000000	0.014118	0.000000
02/09/2016	0.919216	0.919216	0.918431	0.919216
05/09/2016	0.640980	0.679608	0.615882	0.431569
06/09/2016	0.000000	0.000000	0.000000	0.000000
08/09/2016	0.179804	0.369412	0.000000	0.158431
09/09/2016	0.367451	0.083333	0.270000	0.083333
10/09/2016	0.519412	0.592157	0.356078	0.592157
12/09/2016	0.032157	0.032157	0.036275	0.032157
13/09/2016	0.019608	0.000000	0.083333	0.000000
15/09/2016	0.266471	0.145490	0.836078	0.331961
16/09/2016	0.444118	0.460196	0.592157	0.603333
18/09/2016	0.197647	0.299608	0.247059	0.324314
19/09/2016	0.014314	0.004902	0.025098	0.004902
21/09/2016	0.924510	0.971373	0.997843	0.921373
22/09/2016	0.000000	0.000000	0.000000	0.000000
24/09/2016	0.916078	0.740980	0.741373	0.920000
27/09/2016	0.000980	0.000000	0.132549	0.319216
28/09/2016	0.071569	0.071176	0.072157	0.071176
30/09/2016	0.002745	0.000000	0.100588	0.019412
01/10/2016	0.286471	0.310588	0.265490	0.367255
03/10/2016	0.104314	0.005490	0.002157	0.392941
04/10/2016	0.450588	0.450588	0.391765	0.450588
05/10/2016	0.001176	0.041373	0.051176	0.000000
06/10/2016	0.520784	0.171765	0.194902	0.476471
08/10/2016	0.000000	0.006471	0.050784	0.007647
09/10/2016	0.566275	0.540980	0.686471	0.706667
11/10/2016	0.000000	0.000000	0.000000	0.006471
14/10/2016	0.000000	0.000000	0.138235	0.001373
16/10/2016	0.506667	0.318235	0.497647	0.556078
17/10/2016	0.321765	0.431961	0.253137	0.570196
18/10/2016	0.068627	0.497255	0.260392	0.470980
19/10/2016	0.464118	0.464118	0.464118	0.460196
20/10/2016	0.303333	0.303333	0.303333	0.283529
21/10/2016	0.250588	0.212745	0.249216	0.275098
23/10/2016	0.153529	0.197059	0.195490	0.311373
25/10/2016	0.275686	0.217647	0.087059	0.146667
27/10/2016	0.783922	0.271176	0.811765	0.750196

...continúa en la siguiente página

Día	LDA	DecisionTree	AdaBoost	NeuralNetwork
03/11/2016	0.002353	0.009216	0.002353	0.106863
05/11/2016	0.402353	0.400784	0.115686	0.282549
06/11/2016	0.114118	0.243725	0.353137	0.020980
07/11/2016	0.209804	0.215490	0.220196	0.610980
11/11/2016	0.213529	0.360392	0.050980	0.194510
13/11/2016	0.948824	0.805294	0.213137	0.488235
20/11/2016	0.038627	0.159804	0.472353	0.501765
23/11/2016	0.141569	0.507843	0.251373	0.458627
24/11/2016	0.084118	0.025882	0.003922	0.324118
27/11/2016	0.432353	0.524510	0.502353	0.506863
28/11/2016	0.891176	0.882549	0.882549	0.877059
30/11/2016	0.945490	0.865686	0.787647	0.868431
01/12/2016	0.003725	0.066275	0.004706	0.429412
04/12/2016	0.846078	0.720196	0.849804	0.541373
05/12/2016	0.224706	0.092353	0.457451	0.292745
06/12/2016	0.177843	0.215294	0.459216	0.495098
07/12/2016	0.168235	0.733725	0.788235	0.474902
09/12/2016	0.999020	0.500392	0.514314	0.414706
12/12/2016	0.698431	0.886667	0.714314	0.910784
14/12/2016	0.000000	0.009412	0.000000	0.210784
16/12/2016	0.309020	0.362941	0.303922	0.316667
17/12/2016	0.144118	0.200000	0.005686	0.020588
18/12/2016	0.685490	0.442353	0.750392	0.676863
22/12/2016	0.661569	0.529804	0.957059	0.894510
23/12/2016	0.617647	0.905294	0.820196	0.616667
24/12/2016	0.771765	0.875490	0.092745	0.667647
25/12/2016	0.602941	0.602941	0.627255	0.610392
27/12/2016	0.012549	0.001569	0.000000	0.058039
28/12/2016	0.000000	0.000000	0.000000	0.016471
29/12/2016	0.540196	0.332745	0.194510	0.577451
31/12/2016	0.313333	0.206863	0.518627	0.476667
01/01/2017	0.029804	0.001373	0.001961	0.388431

Por último, se han llevado a cabo diferentes pruebas con los tres mejores clasificadores obtenidos para predecir el valor binario, en los tres cosos de hace uso de todas las características sin incluir las variables de precipitación RAINC y RAINNC ni de etiquetado (un total de 24 variables), con diferente número de características para así intentar obtener mejores resultados. La Tabla 6 recoge los resultados obtenidos correspondientes al clasificador LDA, en la ?? se recogen los resultados para el clasificados QDA y en la ?? para el clasificador SGD. A mayores, se han incluido los resultados obtenido para el clasificador NeuralNetwork en la ??.

Tabla 5. Resultados para k características. LDA y AdaBoost

			LDA			AdaBoost	
k	Features	Train	Test	\mathbf{ECM}	Train	Test	$\mathbf{E}\mathbf{C}\mathbf{M}$
က	T_500hPa T_700hPa T_850hPa	0.723704	0.701174	0.298826	0.738748	0.706274	0.293726
4	QCLOUD_850 T_500 T_700 T_850	0.729851	0.707879	0.687748	0.739314	0.708581	0.291419
\mathcal{V}	QVAPOR_850 QCLOUD_850 T_500 T_700 T_850	0.765828	0.694558	0.305442	0.774235	0.691052	0.308948
9	QVAPOR_850 QCLOUD_850 QSNOW_700 T_500 T_700 T_850	0.765082	0.696134	0.303866	0.773623	0.692389	0.307611
<u>~</u>	XLAT QVAPOR_850 QCLOUD_850 QSNOW_700 T_500 T_700 T_850	0.768855	0.687748	0.312252	0.775894	0.692049	0.307951
∞	XLAT QVAPOR_850 QCLOUD_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	0.768837	0.687748	0.312252	0.775197	0.692281	0.307719
6	XLAT QVAPOR_850 QCLOUD_850 QRAIN_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	0.769473	0.687748	0.312252	0.773864	0.692391	0.307609
9	9 QCLOUD_850 QRAIN_850 CCLOUD_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850 CLOUD a signiente página (LDA v AdaBoost	0.769473 A v AdaBoost)	0.	687748		0.312252	0.312252 0.773864

...continúa en la siguiente página (LDA y AdaBoost

k	Features	Train	Test	ECM	Train	Test	ECM
10	XLAT QVAPOR.850 QCLOUD.700 QCLOUD.850 QRAIN.850 QSNOW.700 QSNOW.850	0.769677	0.700057	0.299943	0.775630	0.694158	0.305842
11	T_500 T_700 T_850 XLAT QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	0.770785	0.700020	0.299980	0.774494	0.693486	0.306514
12	XLAT XLONG QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	0.770913	0.702254	0.297746	0.774947	0.689883	0.310117
13	XLAT XLONG QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QICE_500 QSNOW_700 QSNOW_850 T_500 T_700 T_850	0.770737	0.698472	0.301528	0.774947	0.689883	0.310117

... continúa en la siguiente página (LDA y AdaBoost)

k	Features	Train	Test	ECM	Train	Test	$\mathbf{E}\mathbf{C}\mathbf{M}$
14	XLAT XLONG QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QICE_500 QICE_700	0.774947	0.694657	0.305343	0.770733	0.693395	0.306605
15	CLOUD-50 QSNOW-550 T.500 T.700 T.850 XLAT XLONG HGT QVAPOR.700 QVAPOR.850 QCLOUD-700 QCLOUD-500 QICE-700 QSNOW-700 QSNOW-850 T.500 T.700 T.850	0.770892	0.695122	0.304878	0.774947	0.688773	0.311227
16	XLAT XLONG HGT QVAPOR_700 QVAPOR_850 QCLOUD_700 GCLOUD_850 QRAIN_850 QICE_500 QICE_700 QSNOW_700 QSNOW_850 QGRAUP_850 T_500 T_700 T_850	0.770904	0.704773	0.295227	0.774947	0.693963	0.306037

...continúa en la siguiente página (LDA y AdaBoost)

k	Features	Train	Test	ECM	Train	Test	ECM
	XLAT XLONG HGT QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QICE_500 QICE_700 QICE_850 QSNOW_700 QSNOW_850 QSNOW_850	0.770998	0.717687	0.282313	0.774947	0.693963	0.306037
	T.850 XLAT XLONG HGT QVAPOR.700 QVAPOR.850 QCLOUD.700 QCLOUD.850 QRAIN.700 QRAIN.850 QICE.500 QICE.700 QICE.850 QSNOW.700 QSNOW.850 QGRAUP.850 T.500 T.700 T.850	0.770904	0.719913	0.280087	0.774947	0.714266	0.285734

...continúa en la siguiente página (LDA y AdaBoost)

$\mathbf{E}\mathbf{C}\mathbf{M}$	0.285734	0.306055
Test	0.714266	0.693945
Train	0.774947	0.774947
$\mathbf{E}\mathbf{C}\mathbf{M}$	0.294123	0.302438
Test	0.705877	0.697562
Train	0.770773	0.771400
Features	XLAT XLONG HGT QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_700 QRAIN_850 QICE_500 QICE_700 QICE_850 QSNOW_500 QSNOW_700 QSNOW_500 T_700	T_850 XLAT XLONG HGT QVAPOR_500 QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_700 QCLOUD_850 QICE_500 QICE_700 QICE_850 QSNOW_500 QSNOW_700 QSNOW_500 T_700 T_850
k	19	20

...continúa en la siguiente página (LDA y AdaBoost)

k	Features	Train	Test	\mathbf{ECM}	Train	Test	\mathbf{ECM}
21	XLAT XLONG HGT QVAPOR_500 QVAPOR_700 QVAPOR_850 QCLOUD_850 QRAIN_700 QCLOUD_850 QRAIN_700 QRAIN_850 QICE_500 QICE_700 QICE_850 QSNOW_500 QSNOW_700 QSNOW_500 QSNOW_700	0.771559	0.715142	0.284858	0.774947	0.713852	0.286148
22	ZGRAUF_850 T_500 T_700 T_850 XLAT XLONG HGT QVAPOR_500 QVAPOR_500 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_700 QRAIN_850 QICE_500 QSNOW_500 QSNOW_700 QGRAUP_500 QGRAUP_500 QGRAUP_700 QGRAUP_850 T_500 T_850	0.771574	0.715109	0.284891	0.774947	0.713852	0.286148

....continúa en la siguiente página (LDA y AdaBoost)

ECM								0.287341							
Test								0.712659							
Train								0.774947							
ECM								0.715563							
Test								0.715563							
Train								0.771580							
Features	XLAT XLONG HGT	QVAPOR_500	QVAPOR_700	QVAPOR_850	QCLOUD_500	QCLOUD_700	QCLOUD_850 QRAIN_700	QRAIN_850 QICE_500	QICE_700 QICE_850	QSNOW_500 QSNOW_700	QSNOW_850	QGRAUP_500	QGRAUP_700	QGRAUP_850 T_500 T_700	T_850
¥								23							

Tabla 6. Resultados para k características. LDA y AdaBoost

u	\mathbf{ECM}	0.300555	0.302644	0.302664	0.304098	0.312252	0.312252	0.312252	
NeuralNetwork	Test	0.699445	0.697356	0.697336	0.695902	0.687748	0.687748	0.687748	
Z	Train	0.715172	0.713269	0.720196	0.712502	0.732798	0.734147	0.733249	
	ECM	0.297297	0.281899	0.305673	0.302025	0.300512	0.300785	0.300785	
DecisionTree	Test	0.702703	0.718101	0.694327	0.697975	0.699488	0.699215	0.699215	
	Train	0.746223	0.746396	0.787459	0.787857	0.792044	0.792044	0.792044	A y AdaBoost)
	Features	T_500hPa T_700hPa T_850hPa	QCLOUD_850 T_500 T_700 T_850	QVAPOR_850 QCLOUD_850 T_500 T_700 T_850	QVAPOR_850 QCLOUD_850 QSNOW_700 T_500 T_700 T_850	XLAT QVAPOR_850 QCLOUD_850 QSNOW_700 T_500 T_700 T_850	XLAT QVAPOR_850 QCLOUD_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	XLAT QVAPOR_850 QCLOUD_850 QRAIN_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	continúa en la siguiente página (LDA y
	ĸ	3	4	$r \circlearrowleft$	9	!~	∞	6	cont

...continúa en la siguiente página (LDA y AdaBoost)

ECM	0.288749	0.286789	0.289041	0.288736
Test	0.711251	0.713211	0.710959	0.711264
Train	0.724090	0.727102	0.733885	0.726986
\mathbf{ECM}	0.293447	0.296822	0.296822	0.296822
Test	0.706553	0.703178	0.703178	0.703178
Train	0.792044	0.792154	0.792154	0.792154
Features	XLAT QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QSNOW_700 QSNOW_850 T 500 T 700 T 850	XLAT QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	ALAI ALONG QVAPOR_700 QVAPOR_850 QCLOUD_850 QRAIN_850 QSNOW_700 QSNOW_850 T_500 T_700 T_850	3 QCLOUD_850 QNAIN_850 QCLOUD_850 QSNOW_850 T_850 QSNOW_700 QSNOW_850 T_850 T_
k	10	11	12	13

... continúa en la siguiente página (LDA y AdaBoost)

k	Features	Train	Test	ECM	Train	Test	$\mathbf{E}\mathbf{C}\mathbf{M}$
14	XLAT XLONG QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QICE_500 QICE_700	0.792154	0.703178	0.296822	0.732753	0.711711	0.288289
15	CANOW - 700 CANOW - 500 T_500 T_700 T_850 XLAT XLONG HGT QVAPOR_700 QVAPOR_850 QCLOUD_850 QRAIN_850 QICE_500 QICE_700 QSNOW_700 QSNOW_850 T_500 T_700 T_850	0.792154	0.703178	0.296822	0.734674	0.713468	0.286532
16	XLAT XLONG HGT QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_850 QICE_500 QICE_700 QSNOW_700 QSNOW_850 QGRAUP_850 T_500 T_700	0.792154	0.709462	0.290538	0.734659	0.713574	0.286426

...continúa en la siguiente página (LDA y AdaBoost)

\boldsymbol{k}	Features	Train	Test	ECM	Train	Test	\mathbf{ECM}
17	XLAT XLONG HGT QVAPOR_700 QVAPOR_850 QCLOUD_850 QRAIN_850 QICE_500 QICE_700 QICE_850 QSNOW_700 QSNOW_850 QGRAUP_850 T_500 T_700	0.792154	0.709462	0.290538	0.728685	0.711936	0.288064
18	T_850 XLAT XLONG HGT QVAPOR_700 QVAPOR_850 QCLOUD_700 QCLOUD_850 QRAIN_700 QRAIN_850 QICE_500 QICE_700 QICE_850 QSNOW_700 QSNOW_850 QGRAUP_850 T_500 T_700 T_850	0.792154	0.705869	0.294131	0.730536	0.713150	0.286850

...continúa en la siguiente página (LDA y AdaBoost)

## Train Test Car Car	ECM Train Test ECM	0.294131 0.721706 0.709645 0.290355	0.290538 0.725789 0.713534 0.286466
	Test	0.705869	0.709462
	Features		

k	Features	Train	Test	$\mathbf{E}\mathbf{C}\mathbf{M}$	Train	Test	\mathbf{ECM}
21	XLAT XLONG HGT QVAPOR_500 QVAPOR_700 QVAPOR_850 QCLOUD_850 QRAIN_700 QCLOUD_850 QRAIN_700 QRAIN_850 QICE_500 QICE_700 QICE_850 QSNOW_500 QSNOW_700 QSNOW_500 QSNOW_700	0.792455	0.712291	0.287709	0.731724	0.712278	0.287722
22	T_850 XLAT XLONG HGT QVAPOR_500 QVAPOR_500 QVAPOR_850 QCLOUD_850 QRAIN_700 QCLOUD_850 QICE_500 QRAIN_850 QICE_500 QSNOW_500 QSNOW_700 QGRAUP_500 QGRAUP_500 QGRAUP_850 T_500 T_850	0.792455	0.712291	0.287709	0.715601	0.701982	0.298018

... continúa en la siguiente página (LDA y AdaBoost)

\mathbf{ECM}	0.292613
Test	0.707387
Train	0.734586
ECM	0.287709
Test	0.712291
Train	0.792455
Features	XLAT XLONG HGT QVAPOR_500 QVAPOR_700 QVAPOR_850 QCLOUD_500 QCLOUD_700 QCLOUD_850 QRAIN_700 QCLOUD_850 QRAIN_700 QICE_700 QICE_500 QICE_700 QICE_850 QSNOW_500 QSNOW_700 QSNOW_500 QSNOW_700 QGRAUP_500 QGRAUP_850 T_850
ĸ	23

4. Trabajo futuro

Como trabajo inmediato posterior, se pretende complementar los resultados con la siguiente información:

- Incluir enero de 2015 en el dataset de entrenamiento.
- Realizar predicciones con lo mm.
- Hacer pruebas para obtener el mejor score para distintos KBest.

5. Referencias

- [1] Precipitation Forecasting Using a Neural Network
- [2] Validación de un modelo de análogos para la predicción de precipitación y nieve en la sierra de Guadarrama
- [3] Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
 - [4] Deep Learning for Remote Sensing Data
 - [5] Machine Learning Applied to Weather Forecasting
 - [6] Breve análisis introductorio de las técnicas basadas en análogos
- [7] Machine Learning in Python for Weather Forecast based on Freely Available Weather Data
- [8] Daily quantitative precipitation forecasts based on the analogue method: Improvements and application to a French large river basin
- [9] Improving ECMWF-based 6-hours maximum rain using instability indices and neural networks [10] A Deep Learning-Based Weather Forecast System for Data Volume and Recency Analysis