Sjötta laugardagsæfingin í eðlisfræði 2021

TA T	C
1	atn:
Τ.	am.

Bekkur:

Fastar

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \mathrm{ms^{-1}}$
Þyngdarhröðun við yfirborð jarðar	$\mid g \mid$	$9.82{ m ms^{-2}}$
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	m_e	$9,11 \cdot 10^{-31} \mathrm{kg}$
Gasfastinn	R	$8,3145\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N m^2 C^{-2}}$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C^2 s^2 m^{-3} kg^{-1}}$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
Geisli jarðarinnar	R_{\oplus}	$6.38 \cdot 10^6 \mathrm{m}$
Geisli sólarinnar	R_{\odot}	$6,96 \cdot 10^8 \mathrm{m}$
Massi jarðarinnar	M_{\oplus}	$5,97 \cdot 10^{24} \mathrm{kg}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Stjarnfræðieiningin	AU	$1,50 \cdot 10^{11} \mathrm{m}$

Krossar

Hver kross gildir 3,5 stig. Vinsamlegast skráið svörin ykkar við tilheyrandi krossi hér fyrir neðan:

K1	K2	K3	K4	K5	K6	K7	K8	K9	K10

K11	K12	K13	K14	K15	K16	K17	K18	K19	K20

Krossar (70 stig)

K1.	Jóhanna sér blossa frá flugeldi og heyrir hvellinn 3,00 s síðar.	Hve langt frá flugeldinum stendur Jóhanna
	ef hljóðhraðinn er $v = 350 \mathrm{m/s}$.	

(A) $102 \,\mathrm{m}$ (B) $1050 \,\mathrm{m}$ (C) $1,30 \cdot 10^5 \,\mathrm{m}$ (D) $1,10 \cdot 10^6 \,\mathrm{m}$ (E) $9,00 \cdot 10^8 \,\mathrm{m}$

K2. Bíll ekur á jöfnum hraða $v_0 = 10,0\,\mathrm{m/s}$ á hálum ís. Stigið er fast á bremsuna þ.a. dekkin læsast og snúast ekki. Hve langt rennur bíllinn ef massi hans er $m = 1500\,\mathrm{kg}$ og núningsstuðull dekkjanna við ísinn er $\mu = 1/5$.

(A) 12,5 m (B) 25,5 m (C) 36,3 m (D) 42,9 m (E) 51,3 m

K3. Fallbyssukúlu með massann 10 kg er skotið af stað undir horni $\theta = 30^{\circ}$ m.v. lárétt, með upphafshraðann $v_0 = 15$ m/s. Hve langt frá upphafsstaðnum lendir kúlan?

(A) $10 \,\mathrm{m}$ (B) $15 \,\mathrm{m}$ (C) $20 \,\mathrm{m}$ (D) $25 \,\mathrm{m}$ (E) $30 \,\mathrm{m}$

K4. Ölfusá er vatnsmesta á landsins, en meðalrennsli Ölfusár við Selfoss er $400\,\mathrm{m}^3/\mathrm{s}$. Hvað eru það margir rúmkílómetrar (km³) af vatni á ári?

(A) $12700 \,\mathrm{km^3}$ (B) $1,26 \,\mathrm{km^3}$ (C) $12,6 \,\mathrm{km^3}$ (D) $1270 \,\mathrm{km^3}$ (E) $126 \,\mathrm{km^3}$

K5. Hafnaboltaleikmaðurinn Ian Kinsler rennir sér í höfn með miklum tilþrifum. Á hann verkar $470 \,\mathrm{N}$ núningskraftur. Hver er μ milli Kinslers og vallarins ef hann vegur $79 \,\mathrm{kg}$?

(A) 0,45 (B) 0,61 (C) 0,77 (D) 0,85 (E) 1,16

K6. Fróði stekkur um borð í kyrrstæðan fleka í vatni á hraðanum $v_1 = 5,00 \,\mathrm{m/s}$. Massi Fróða er $m_F = 50 \,\mathrm{kg}$ en massi flekans er $m_f = 200 \,\mathrm{kg}$. Hver verður hraði flekans þegar Fróði er lentur á honum? Gerið ráð fyrir að vatnið veiti enga mótstöðu.

(A) $5,00 \,\mathrm{m/s}$ (B) $2,50 \,\mathrm{m/s}$ (C) $1,25 \,\mathrm{m/s}$ (D) $1,00 \,\mathrm{m/s}$ (E) $0,50 \,\mathrm{m/s}$

K7. Kanadamaðurinn Evan Ungar á heimsmetið í jafnfætishoppi upp á 1,62 m. Hann vegur 700 N á jörðinni en 112 N á tunglinu. Hvað gæti Evan hoppað hátt á tunglinu?

(A) $1.62 \,\mathrm{m}$ (B) $0.259 \,\mathrm{m}$ (C) $4.05 \,\mathrm{m}$ (D) $10.1 \,\mathrm{m}$ (E) $63.3 \,\mathrm{m}$

K8. Ökumaður tekur af stað úr kyrrstöðu og keyrir með fastri hröðun $5 \,\mathrm{m/s^2}$. Hversu langa vegalengd hefur hann ferðast þegar hann nær hraðanum $100 \,\mathrm{km/klst?}$

(A) 77 m (B) 770 m (C) 43 m (D) 4,3 m (E) 67 m

K9. Davíð ætlar að slöngva steini í höfuðið á Golíat. Hann setur stein með massa 1 kg í slöngvuna og byrjar að sveifla henni í hring í láréttu plani. Slöngvan er 40 cm á lengd og miðlægur kraftur sem verkar á steininn er 10 N. Hver er hraði steinsins?

(A) $3.0 \,\mathrm{m/s}$ (B) $2.5 \,\mathrm{m/s}$ (C) $2.0 \,\mathrm{m/s}$ (D) $1.5 \,\mathrm{m/s}$ (E) $1.0 \,\mathrm{m/s}$

K10. Tveir krakkar, Dagur og Hrólfur, leika sér með hringekju á leikvelli. Dagur stendur á ytri brún hringekjunnar á meðan Hrólfur ýtir honum í hringi með hornhraða 1,25 rad/s. Dagur er 50 kg og radíus hringekjunnar er 1,5 m. Hver er heildarkrafturinn sem verkar á Dag á hringhreyfingunni?

(A) 25 N (B) 94 N (C) 117 N (D) 130 N (E) 146 N

K11. Mario er lítill, þybbinn Ítalskur pípari sem býr í Sveppalandi. Hinn illi Bowser hefur rænt prinsessunni, Peach. Til þess að bjarga henni þarf píparinn þarf að hoppa upp í svalir í 15 m hæð. Með uppréttar hendur er hann 150 cm að hæð. Hver þarf upphafshraði hans að vera hið minnsta svo að hann nái í svalirnar með höndunum?

2

(A) $16.4 \,\mathrm{m/s}$ (B) $11.6 \,\mathrm{m/s}$ (C) $2.67 \,\mathrm{m/s}$ (D) $1.12 \,\mathrm{m/s}$ (E) $0.53 \,\mathrm{m/s}$

K12. Stúlka rennir sér af stað til hægri frá stað A úr kyrrstöðu eftir brautinni sem sýnd er á myndinni hér fyrir neðan. Hvar nemur hún staðar ef það er enginn núningur?

 $(A) \quad A \quad (B) \quad B \quad (C) \quad C \quad (D) \quad D \quad (E) \quad \text{Hún klessir á tréð.}$

A B C D

K13. Hlutur hreyfist eftir beinni línu og á hann verkar kraftur F í hreyfistefnuna. Á myndinni hér til hægri er krafturinn sýndur sem fall af sta δ setningu s. Hver er vinnan sem krafturinn vinnur á hlutnum?

- (A) $750 \, \text{kJ}$
- (B) $1000 \,\mathrm{kJ}$ (C) $3750 \,\mathrm{kJ}$ (D) $5000 \,\mathrm{kJ}$
- (E) $7500 \, \text{kJ}$
- K14. Fær bogaskytta dregur bogastrenginn aftur um 50 cm með 150 N krafti og sleppir ör með massa 100 g af stað. Gera má ráð fyrir að krafturinn sem boginn verkar með á örina hegði sér eins og gormur með kraftstuðul k. Hver er hraði örvarinnar um leið og hún losnar af strengnum?

 - (A) $27 \,\mathrm{m/s}$ (B) $35 \,\mathrm{m/s}$ (C) $56 \,\mathrm{m/s}$ (D) $71 \,\mathrm{m/s}$ (E) $83 \,\mathrm{m/s}$

- **K15.** Þyngdarlögmál Newtons lýsir kraftinum, F, sem verkar milli tveggja massa m_1 og m_2 í fjarlægð r frá hvor öðrum. Krafturinn er gefinn með $F = \frac{Gm_1m_2}{r^2}$ þar sem G er fasti sem nefnist þyngdarlögmálsfastinn. Hver er SI-einingin á þyngdarlögmálsfastanum?

- $(A) \ m^2 \ kg \ s^{-2} \quad (B) \ m^2 \ kg^{-2} \ s^{-2} \quad (C) \ m^2 \ s^3 \ kg^{-1} \quad (D) \ m^3 \ kg^{-1} \ s^{-2} \quad (E) \ m^3 \ kg \ s^{-3}$
- **K16.** Duge brúin nær yfir kínverska fljótið Beipan. Brúin er sú hæsta í heiminum og hefur hæðina $H=565\,\mathrm{m}$ yfir vatnsborðinu. Orðrómur er um að hinn frægi frumkvöðull teygjustökksins, A.J. Hackett (sem hefur massa $m = 75 \,\mathrm{kg}$), ætli að fara í teygjustökk fram af brúnni og freista þess að snerta vatnsborðið. Gera má ráð fyrir að teygjan sé massalaus og hegði sér líkt og gormur. Hver verður mesta hröðunin, a_{max} , sem Hackett mun finna fyrir ef lengd teygjunnar er $L = 120 \,\mathrm{m}$?
- (A) $9.82 \,\mathrm{m/s^2}$ (B) $15.1 \,\mathrm{m/s^2}$ (C) $19.7 \,\mathrm{m/s^2}$ (D) $24.5 \,\mathrm{m/s^2}$ (E) $44.2 \,\mathrm{m/s^2}$

- K17. Róteind er hraðað úr kyrrstöðu yfir 10 MV spennu og svo haldið á hringhreyfingu með 100 m geisla með segulsviði. Hversu sterkt þarf segulsviðið að vera? Massi róteindar er $m_p = 1,672 \cdot 10^{-27}$ kg.
 - (A) $1.83 \,\mathrm{mT}$ (B) $3.23 \,\mathrm{mT}$ (C) $4.57 \,\mathrm{mT}$ (D) $6.46 \,\mathrm{mT}$ (E) $10.87 \,\mathrm{mT}$

- **K18.** Einlitur ljósgeisli sem hefur bylgjulengdina $\lambda = 500\,\mathrm{nm}$ og tíðni $f = 600\,\mathrm{THz}$ í lofttæmi fellur á vatn með brotsstuðul 1,33. Hvert af eftirfarandi á við um bylgjulengd ljóssins λ' og tíðni þess f' í vatninu?
 - (A) $\lambda' < \lambda$ og f = f'
 - (B) $\lambda' < \lambda \text{ og } f > f'$
 - (C) $\lambda' > \lambda$ og f = f'
 - (D) $\lambda' > \lambda$ og f > f'
 - (E) $\lambda' = \lambda \text{ og } f < f'$
- K19. 2,9 m langur, 60 cm breiður og 350 kg þungur krókódíll liggur í sólbaði. Ef styrkleiki sólarljóssins sem skín á bakið á honum er $500 \,\mathrm{W/m^2}$ og hitastig hans er upphaflega $23 \,\mathrm{^{\circ}C}$, hversu langan tíma tekur það bá fyrir krókódílinn að ná 30°C? Eðlisvarmi líkamsvefja krókódílsins er að meðaltali 3400 J/(kg K)
 - (A) 2 mínútur
 - (B) 1 klukkutíma og 3 mínútur
 - (C) 2 klukkutíma og 40 mínútur
 - (D) 3 klukkutíma og 50 mínútur
 - (E) 8 klukkutíma og 30 mínútur
- **K20.** Öll viðnámin í rafrásinni hér til hægri hafa viðnám $R = 10 \Omega$. Hvert er heildarviðnám rásarinnar?

- (A) 40Ω (B) 80Ω . (C) 5Ω . (D) 20Ω .
- (E) 10Ω .

Dæmi 1: Flugvél í flugtaki (15 stig)

Flugvél með massa $m=90\,000\,\mathrm{kg}$ tekur af stað með fastri hröðun $a=3.0\,\mathrm{m/s^2}$ niður flugbraut. Hvor vængur vélarinnar er 40 m langur og meðalbreidd þeirra er 7 m. Vængir vélarinnar eru hannaðir þannig að hraði loftsins fyrir ofan vængi flugvélarinnar er 15% meiri heldur en hraði loftsins fyrir neðan vængina. Hver er lágmarkslengd flugbrautarinnar sem flugvélin þarf til þess að hún nái að taka á loft? Eðlismassi andrúmslofts er $1.29\,\mathrm{kg/m^3}$, þyngdarhröðun jarðar er $g=9.82\,\mathrm{m/s^2}$.

Gera má ráð fyrir: að vængir flugvélarinnar séu eini hluti hennar sem gefur lyftikraft; að lögun vængjanna breytist ekki; að hraði loftsins undir vængjunum sé sá sami og hraði flugvélarinnar; að það sé logn þannig að hraði loftsins undir vængjunum er jafn hraða flugvélarinnar; að lögmál Bernoullis gildi í þessu samhengi.

Dæmi 2: Skopparabolti (15 stig)

Skoppstuðull skopparabolta er táknaður með ε og er skilgreindur þannig að:

$$\varepsilon := \frac{\text{hraði eftir árekstur}}{\text{hraði fyrir árekstur}} = \frac{v_{\text{e}}}{v_{\text{f}}}$$

Skopparabolta með massann m og skoppstuðul ε er sleppt úr hæðinni h_0 yfir jörðu. Hunsið loftmótstöðu.

- (a) Til að byrja með skulum við aðeins skoða hvaða gerist í fyrsta skoppi. Þá skoppar boltinn aftur upp í hæð $h_1 < h_0$. Ákvarðið hæðina h_1 sem einungis sem fall af h_0, m, ε og þyngdarhröðun jarðar, g.
- (b) Látum t_0 tákna tímann sem líður frá því að skopparaboltanum er sleppt úr hæð h_0 og þar til að hann skellur á jörðinni í fyrsta skipti. Ákvarðið t_0 sem fall af h_0, m, ε og þyngdarhröðun jarðar, g.

Látum h_n tákna mestu hæðina sem boltinn nær eftir n-ta skopp og látum t_n tákna tímann sem það tekur boltann að detta niður úr hæðinni h_n .

- (c) Ákvarðið h_n einungis sem fall af h_0, n og ε . Ákvarðið t_n einungis sem fall af t_0, n og ε .
- (d) Hversu lengi er boltinn í loftinu? (Formúlan $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ fyrir |x| < 1 gæti komið að góðum notum).