DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis

Explainability of Fake News Detection Models for Social Media

Batuhan Erdogdu

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis

Explainability of Fake News Detection Models for Social Media

Erklärbarkeit von Modellen zur Fake-News-Erkennung in Sozialen Medien

Author: Batuhan Erdogdu
Supervisor: Prof. Dr. Georg Groh
Advisor: M.Sc. Carolin Schuster
Submission Date: Submission date

I confirm that this master's thesis and material used.	is my own work and I have doc	umented all sources
Munich, Submission date	Batuhan E	rdogdu

Abstract

Contents

A	cknov	wledgn	nents	iii
A	bstrac	ct		iv
1	Intr	oductio	on	1
2	Bac	kgroun	d and Related Work	4
	2.1	Fake I	News Detection	4
		2.1.1	Fake News	5
		2.1.2	Foundations of Fake News	7
		2.1.3	Evolution of Fake News Detection	12
	2.2	Explai	inable Artificial Intelligence	18
		2.2.1	Importance of Explainable Artificial Intelligence	18
		2.2.2	A Good Explanation	18
		2.2.3	Overview of Explainable Artificial Intelligence	18
3	Fak	e News	Detection Models	19
	3.1	News	Content Models	19
		3.1.1	Definitons	19
		3.1.2	Dataset	19
		3.1.3	Tokenizer	19
		3.1.4	Model	19
		3.1.5	Explainability and Explanation	19
	3.2	Social	Context Models	19
		3.2.1	Geometric Deep Learning	20
		3.2.2	Dataset	20
		3.2.3	Models	20
4	Exp	lainabi	lity of Fake News Detection Models	21
	4.1		nation Techiques	21
		4.1.1	SHAP, DeepSHAP	21
		4.1.2	GNNExplainer	21
		4.1.3		21

Contents

		4.2.1 4.2.2 4.2.3	nt Based Fake News Detection Models	21 21 21 21 21
	1.0	4.3.1 4.3.2	Explaining Content and Social Feature Based Fake News Detection Models	21 21 21 21
5	Con	clusion	ı	22
Li	List of Figures			23
Lis	st of	Tables		24
Bi	Bibliography			25

1 Introduction

With the rapid development of communication technologies, social media has become one of the most frequently used news sources since it is easier, faster, and offers interaction with people. For example, a study from Pew Research Center (Walker & Matsa, 2021) reports that in 2021, 48% of U.S. adults get their news from social media "often" or "sometimes". Furthermore, global data from 2022 (Watson, 2022) shows that over 70% of adults from Kenya, Malaysia, Phillippines, Bulgaria, and Greece use social media as one of their news sources, while this share is lower than 40% for the adults in the United Kingdom, The Netherlands, Germany, and Japan. These examples show that a considerable percentage of the population uses social media as a news source. In contrast to its convenience, interactivity, and speed, social media can spread any kind of information since no regulatory authority checks the posts. As a result, a flood of false and misleading information is observed on social media (Allcott & Gentzkow, 2017).

The research community introduced numerous approaches to counteract the uncontrolled dissemination of fake news. For instance, some studies focused on building datasets (Dou et al., 2021; Nakamura et al., 2020; Santia & Williams, 2018; Shu et al., 2017; Tacchini et al., 2017; Wang, 2017), and some studies leveraged the power of *Machine Learning* (ML) to automatically detect fake news (Bian et al., 2020; Han et al., 2020; Monti et al., 2019; X. Zhou et al., 2020) by learning features from the data. Due to the number of posts and the limitation of staff to check the posts, ML-based techniques can reduce manual labor when used with human supervision to counter the spreading of fake news. However, ML-based techniques with high complexity, such as *Deep Neural Networks* (DNN), are harder to understand and interpret since they act like black-boxes (Castelvecchi, 2016).

The integration of ML-based methods into human society impacts more people every day. While incredibly helpful in some aspects, ML-based techniques do not offer a reason for a particular prediction. Furthermore, we can not simply accept classification accuracy as a metric to evaluate real-world problems (Doshi-Velez & Kim, 2017). Integrating ML-based methods into human society makes interpretability a requirement to increase social acceptance (Molnar, 2022).

Consequently, a new research field called *eXplainable Artificial Intelligence* (XAI) surfaced to fill this missing link between humans and *Artificial Intelligence* (AI). XAI proposes

creating a set of ML techniques that deliver more explainable models while preserving learning performance, and help humans to understand, properly trust, and effectively handle the emerging generation of artificially intelligent partners (Gunning & Aha, 2019). While incorporating XAI increases social acceptance, it also aims to create more privacy-aware (Edwards & Veale, 2017), fairer, and trustworthy systems (Lipton, 2016). Like all ML techniques, *Fake News Detection* (FND) models need interpretability, particularly when implementing countermeasures for fake news. However, the interpretability of a model is not often considered despite the large amount of research produced in the last decade. Incorporating social context (Shu et al., 2018), representing the propagation networks as graphs (Dou et al., 2021), and using *Graph Neural Networks* (GNN) to produce *State Of The Art* (SOTA) models (Monti et al., 2019) have increased the complexity, but also the performance of FND models. For instance, using social context data alone has proved to be more effective than textual data alone in recent studies (Dou et al., 2021). However, it is not clear which social features impact the decision process of these models.

This thesis focuses on the explainability of FND models using tools from the XAI suite. Specifically, we focus on content-based models and social context-based models to elaborate on their interpretability. Thus, we define three research objectives:

- RO1 Determine the interpretation tools for explaining FND models.
- **RO2** Show that interpretations of FND models play an essential role in understanding the shortcomings of the FND models.
- **RO3** Determine which features impact the outcome the most.

In the next section, we elaborate on fake news, FND methods and xAI. We give foundations of fake news and define its characteristics. Then we categorize FND models and give important examples from literature. After examining fake news and detection methods for it, we focus on characterization of xAI, give definitions that will be used throughout this thesis.

In the third section, we examine FND models that were used in this thesis, and characterize them as defined in 2.1.3. Furthermore, we deliver information about the model architecture, technologies and datasets used, and a detailed mathematical background on DNNs and GNNs. We also draw attention to some crucial matters such as model aging.

In the fourth section, we focus on xAI techniques that are used in this thesis. We give a comprehensive explanations and show their importance when dealing with complex models. We illustrate results from our experiments, draw attention to shortcomings of models, and show a model is fair or not. We also discuss the plausability of the produced explanantions in this section.

In the last section, we talk about our overall findings. We show that research objectives are satisfied. Additionally, we discuss the limitations that we have encountered, and possible future works.

2 Background and Related Work

We explain two research fields that create the bedrock of this thesis, namely, fake news detection and explainable artificial intelligence. Both areas provide the foundation of tools that were used in this work. The first provides the mechanisms and approaches to detect fake news, and the second offers a suite of techniques to interpret these mechanisms and approaches.

Initially, in 2.1, we discuss societal challenges, the characteristics, and the history of fake news. Then we talk about the detection methods that were developed over the years. After showing the challenges of creating FND models, we conclude the first section with SOTA FND models.

After fake news detection, in 2.2, we first examine when XAI is necessary and its importance. Then, we define the suite of explainable artificial intelligence and the goals of XAI, and finally, we determine the suite that aims to satisfy these goals.

2.1 Fake News Detection

In the past decade, social media has become a place where anyone can share information. Although fast, free, and easy to access, obtaining real news from social media can be difficult, and one should do so at their own risk and always check the facts (Allcott & Gentzkow, 2017; Lazer et al., 2018). But the news stream never ends; thus, the need to verify the credibility of news using automated systems arises. To address this necessity, the number of studies involving *Fake News* or *Fake News Detection* has dramatically increased in the last decade (Fig. 2.1).

In 2.1.1, we briefly present the history of fake news and look at studies that display the impact of fake news on society. In this section, we also define the terms fake news, disinformation, and misinformation.

In 2.1.2, we make an excursion into social sciences and human psychology, delivering insights into why humans fall for or tend to believe fake news. Furthermore, we draw some insights from the socio-technical foundations of fake news.

We then list the available datasets used in FND and talk about their advantages and disadvantages in 2.1.3. Finally, in 2.1.3, we first talk about the evolution of detection algorithms, then we classify FND algorithms with respect to their input data type and

Figure 2.1: Total number of publications that include (1) *Fake News* (blue) and (2) *Fake News Detection* (orange) publications by year. Source: Scopus; Search Arguments: (1) TITLE-ABS-KEY("fake news*") PUBYEAR AFT 2014 (2) TITLE-ABS-KEY("fake news detection")

what they focus on that data.

2.1.1 Fake News

Throughout history, various forms of widespread fake news have been recorded. For instance, in the thirteenth century BC, Rameses the Great decorated his temples with paintings that tell stories of victory in the Battle of Kadesh. However, the treaty between the two sides reveals that the outcome of the battle was a stalemate (Weir, 2009). Just after the printing press was invented in 1439, the circulation of fake news began. One of history's most famous examples of fake news is the "Great Moon Hoax" (Foster, 2016). In 1835, The Sun newspaper of New York published articles about a real-life astronomer and a made-up colleague who had observed life on the moon. It turns out that these fictionalized articles brought them new customersand almost no backlash after the newspaper admitted that the articles mentioned earlier were a hoax¹. In order to highlight the difference, using the definitions from (Pennycook & Rand, 2021), we formally define the terms disinformation and misinformation as follows,

Definition 2.1.1 (*Disinformation*). Information that is false or inaccurate and was created with a deliberate intention to mislead people.

¹https://www.politico.com/magazine/story/2016/12/fake-news-history-long-violent-214535/

Definition 2.1.2 (*Misinformation*). Information that is false, inaccurate, or misleading. Unlike disinformation, misinformation does not necessarily need to be created deliberately to mislead.

There is no fixed definition for fake news. Thus, we elaborate on the definitions of fake news. A limited definition is news articles that are intentionally or verifiably false (Allcott & Gentzkow, 2017). This definition stresses authenticity and intent. The inclusion of false information that can be confirmed refers to authenticity. On the other hand, intent refers to the deceitful intention to delude news consumers (Shu et al., 2017). This definition is widely used in other studies (Conroy et al., 2015; Mustafaraj & Metaxas, 2017; Shu et al., 2017). Furthermore, recent social sciences studies (Lazer et al., 2018; Pennycook & Rand, 2021) define fake news as fabricated information that mimics news media content in form but not in organizational process or intent. Similarly, this definition covers authenticity and intent; additionally, it includes the organizational process. More general definitions for fake news consider satire news as fake news due to the inclusion of false information even though satire news aim to entertain and inherently reveals its deception to the consumer (Balmas, 2014; Brewer et al., 2013; Jin et al., 2016; V. Rubin et al., 2016). Further definitions include hoaxes, satires, and obvious fabrications (V. L. Rubin et al., 2015) In this thesis, we are not interested in the organizational process and do not consider conspiracy theories (Sunstein & Vermeule, 2009), superstitions (Lindeman & Aarnio, 2007), rumors (Berinsky, 2017), misinformation, satire, or hoaxes. Therefore, we use the limited definition from (Allcott & Gentzkow, 2017) and formally introduce it as follows:

Definition 2.1.3 (*Fake News*). News articles that are intentionally or verifiably false.

Fake news can lead to disastrous situations, such as crashes in stock markets, resulting in millions of dollars. For example, Dow Jones industrial average went down like a bullet (see Fig. 2.2) after a tweet about an explosion injuring President Obama went out due to a hack (ElBoghdady, 2013).

The detrimental impacts of fake news further extend to societal issues. When fake news rose to prominence with the 2016 U.S. Presidential Election (Beckwith, 2021), a man, convinced by what he read on social media about a pizzeria trafficking humans, went on a shooting spree in that pizzeria. Later named Pizzagate (Fisher et al., 2016), this incident illustrates the deadly impact of fake news. In fact, fake news can even affect presidential elections (Allcott & Gentzkow, 2017; Read, 2016).

Recent history exhibits that some fake news spreads like wildfires through social media. Evidence shows that the most popular fake news stories were more widely shared than the most popular mainstream news stories (Silverman, 2016).

Digital News Report 2022 (N. Newman et al., 2022) reports in its key findings that trust

Reaction to fake tweet The Dow Jones dropped when a fake Associated Press tweet said that there were explosions at the White House. 14625 Dow Jones Industrial average Tuesday, April 23, 2013 0 9:30 4:14 1:10 a.m. p.m. p.m. Source: Bloomberg

Figure 2.2: The market's reaction to the fake tweet. The sharp decline caused by a single tweet. Image obtained from (ElBoghdady, 2013)

in the news is 42% globally, the highest (69%) in Finland, and the lowest (26%) in the U.S.A. Additionally, the same study shows that in early 2022, in the week of the survey, between 45% and 55% of the surveyed social media consumers worldwide witnessed false or misleading information about COVID-19. The same study also reports the appearance of fake news in politics was between 34% and 51%, and between 9% and 48% for fake news about celebrities, global warming, and immigration (Watson, 2022).

2.1.2 Foundations of Fake News

The environment for fake news has been the traditional news media for a long time. First started with newsprint, then continued with radio and television, and now with social media and the web, the dissemination of fake news reached its peak. Next, we discuss the psychological and social foundations of fake news to stress the importance of human psychology, especially when accepting fake news as genuine and sharing it with others. Then we focus on the technical foundations where we discuss how social media and technologiy have accelerated the diffusion of fake news.

Psychological Foundations. Understanding the difference between real and fake news is not an easy task for a human. Two psychological theories, namely, *naive realism* and *confirmation bias*, examine why humans fall for fake news. The first refers to a

Figure 2.3: The rising engagement for fake news stories observed after May-July, just before Presidential Elections. Image obtained from (Silverman, 2016)

person's disposition to believe that their point of view is the mere accurate one, while people who believe otherwise are uninformed or biased (Reed et al., 2013). The second, often called selective exposure, is the proclivity to prefer information that confirms existing views (Nickerson, 1998).

Another reason for human fallacy in fake news is that once a misperception is formed, it becomes difficult to correct. In fact, it turns out that correcting people leads them to believe false information more, especially when given factual information that refutes their beliefs (Nyhan & Reifler, 2010).

Social Foundations. The prospect theory explains the human decision-making process as a mechanism based on maximizing relative gains and minimizing losses with respect to the current state (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). This inherent inclination to get the highest reward also applies to social cases in which a person will seek social networks that provide them with social acceptance. Consequently, people with different views tend to form separate groups, which makes them feel safer, leading to the consumption and dissemination of information that agrees with their opinions. These behaviors are explained by social identity theory (Ashforth & Mael, 1989) and normative social influence (Asch & Guetzkow, 1951). Two psychological factors play a crucial role here (Paul & Matthews, 2016). The first, social credibility, is explained by a person's tendency to recognize a source as credible when that source is deemed credible by other people. The second, called the frequency heuristic, is the acceptance of a news piece by repetitively being exposed to it. Collectively, these

psychological phenomena are closely related to the well-known filter bubble (Pariser, 2011), also called echo chamber, which is the formation of homogenous bubbles in which the users are people of similar ideologies and share similar ideas. Being isolated from different views, these users usually are inclined to have highly polarized opinions (Sunstein, 2001). As a result, the main reason for misinformation dispersal turned out to be the echo chambers (Vicario et al., 2016).

Technical Foundations. Social media's easy-to-use and connected nature give rise to more people selecting or even creating their own news source. Naturally, this gives way to more junk information echoing in a group of people on social media. As algorithms evolve to understand user preferences, social media platforms recommend similar people or groups to those in echo chambers. A recent study (Cinus et al., 2022) shows that these recommenders can strengthen these echo chambers. They discuss that some of these recommenders contribute to the polarization on social media. In other words, people can convince themselves that any fake news is real by staying in their echo chambers. One main reason that some fake news spreads so rapidly on social media is the existence of malicious accounts. The account user can be an actual human or a social bot since creating accounts on social media is no cost and almost no effort. While many social bots provide valuable services, some were designed to harm, mislead, exploit, and manipulate social media discourse. Formally, a social bot is a social media account governed by an algorithm to fabricate content and interact with other users (Ferrara et al., 2016). A more recent study from the same author shows that malicious social bots were heavily used in the 2016 U.S. Presidential Elections (Bessi & Ferrara, 2016). On the other hand, malicious accounts that are not bots, such as online trolls who aim to trigger negative emotions and humans that provoke people on social media to get an emotional response, contribute to the proliferation of fake news (Cheng et al., 2017). Building upon three foundations, we draw some results for fake news to be considered when building a fake news detection model:

- 1. *Invasive*: Fake news can appear on anyone's feed if it spreads for a sufficient amount of time.
- 2. *Hard to discern*: Fake news is fabricated in such a way that it resembles the authenticity of a real news source. This indistinguishability leads to issues when working with news-content-based FND models.
- 3. *The source is crucial*: The credibility of a news source is essential. We can use news from credible sources to teach the model to distinguish genuine from fabricated.
- 4. Fake news has hot spots: The echo chambers are invaluable examples when trying

to understand the behaviors of fake news. We can leverage this attribute and use social models, such as graphs, to successfully detect fake news.

5. *Early detection is essential*: As discussed in psychological foundations, the volume of exposure to a piece of fake news can significantly affect one's opinions, thus leading to more misinformed individuals.

Data-Oriented Foundations. We define features for news content and social context to represent the news pieces in a structured manner. First, we introduce attributes for news content (Shu et al., 2017):

- *Source*: Publisher of the news piece.
- *Headline*: Short title text that aims to catch the readers' attention and describes the article's main topic.
- *Body Text*: The main text piece that details the news story.
- *Image/Video*: Part of the body content supplies visual input to articulate the story.

Using these attributes, we extract two types of features for news content:

Linguistic-based features: The news content is heavily based on textual content. Thus, the first feature that belongs to this class is lexical features which make use of character and word level frequency information which can be obtained by the utilization of term frequency-inverse term frequency (TF-IDF) (Jones, 1972; Luhn, 1957). The second feature is based on syntactic features which include sentence-level features that can be obtained via n-grams and bag-of-words (BoW) and punctuation and parts-of-speech (POS) (Daelemans, 2010) tagging. We can extend these features to domain-specific ones, such as external links and the number of graphs (Potthast et al., 2017).

Visual-based features: Particularly for fake news, the visual content is a strong tool for establishing belief (Dan et al., 2021). Hence, the features that reside in images and videos become significant. Fake images and videos which brings the fake story together are commonly used(e.g. Harding, 2012; Sawer, 2020). To counteract the effects of misleading visual input, recent studies (Qi et al., 2019) examined visual and statistical information for fake news detection. Visual features consist of clarity score, similarity distribution histogram, diversity score, and clustering score. Statistical features are listed as count, image ratio, multi-image ratio etc. (Shu et al., 2017).

Now, we define features for social context, which has recently drawn much attention from the research community (Shu et al., 2020; Shu et al., 2019). Overall, we will concern three aspects of social context data: user-based, post-based, and network-based features.

User-based: As mentioned in the Technical Foundations part of this subsection, fake news has various ways of disseminating, such as via echo chambers, malicious accounts, or bots. Therefore, analyzing user-based information can prove useful. We distinguish user-based features at the group and individual levels (Shu et al., 2017). Individual levels are extracted to deduce the credibility of each user by utilizing, for example, the number of followers and followees, the number of tweets authored by a user, etc (Castillo et al., 2011). On the other hand, group-level user-based features are the general characteristics of groups of users related to the news (Yang et al., 2012). Parallel to the social identity theory and normative social influence idea, the assumption is the consumers of real and fake news tend to form different groups, which may lead to unique characteristics. Typical group-level features stem from individual-level features by obtaining the share of verified users, and the average number of followers and followees (Ma et al., 2015).

Post-based: Analysis of reactions by users can prove helpful when determining whether a news piece is real or not. For example, if a news piece is getting doubtful comments, this can help determine the news piece's credibility. As such, postbased features are based on inferring the integrity of a news piece from three levels. Namely, post-level, group-level, and temporal-level (Shu et al., 2017). Postlevel features can be embedding values for each post or take forms as mentioned in linguistic-based features, e.g., n-grams, BoW, etc. For post-level features, we can also consider general approaches such as topic extraction (e.g., using latent Dirichlet allocation (LDA) (Blei et al., 2003)), stance extraction, which provides information about users' opinions (e.g., supports, opposes (Jin et al., 2016)), and finally credibility extraction, which deals with estimating the degree of trust for each post (Castillo et al., 2011). Group-level post-based features collect feature values for all relevant posts and apply an operation to extract pooled information. When determining the credibility of news, group-level features proved to be helpful (Jin et al., 2016). Temporal-level features deal with changes in post-level features over time. Typically, unsupervised learning methods such as Recurrent Neural Networks (RNN) are employed to capture the changes over time (Ma et al., 2016).

Network-based: As discussed in the Technical Foundations part, fake news is likely to

give rise to echo chambers, which leads to the idea of a network-based approach. When represented as networks, the propagation behavior of fake news can be analyzed further, and patterns can be discovered (Shu et al., 2017). In literature, various types of networks exist, the most common ones are stance networks, occurrence networks, and friendship networks. Stance networks are constructed upon stance detections which is a part of sentiment analysis and deal with determining a user's viewpoint using text and social data (Du et al., 2017). Using all users' stances, a network is built in which the nodes are the tweets relevant to the news piece and the edges represent the similarity of stances between nodes (Jin et al., 2016; Tacchini et al., 2017). On the other hand, occurrence networks leverage the frequency of mentions or replies about the same news piece (Kwon et al., 2013). Friendship networks are based on the follower/followee relationship of users who share posts connected to the news piece. Derived from friendship networks, in the form of one of the datasets we use in our experiments (Dou et al., 2021), diffusion networks are designed to track the course of the dissemination of news (Kwon et al., 2013). Briefly, a diffusion network consists of nodes that represent users and diffusion paths that represent the relationship and interaction between users. In detail, a diffusion path between two users u_i and u_j exists if and only if u_i follows u_i , and u_i shares a post about a news piece that u_i has already shared a post about (Shu et al., 2017). It has been shown that characterizing these networks is possible (Kwon et al., 2013). Approaches for these networks have gained traction recently, especially with some SOTA GNNs, e.g., (Monti et al., 2019).

Next, we discuss general detection methods and how they have evolved. Then, we focus on fake news detection and widely used datasets offered by the research community.

2.1.3 Evolution of Fake News Detection

Fake news detection is as old as fake news itself. Before social media became a hub for news consumers, fact-checkers, i.e., fake news detectors, were only journalists and literate people. Following the source shift of the news from printed paper to online, then social media, detection of fabricated news have become costly, cumbersome, and not as rewarding due to the endless stream of information and decreasing trust in journalism. Automatic detection for news thus became a necessity in our world (Chen et al., 2015).

Similar to what we did in the Data-Oriented Foundations part of the previous subsection, we classify fake news detection models as *News Content Models* and *Social Context Models* (see 2.4) and start with News Content Models by following the classification

Figure 2.4: Hierarchical Classification of Fake News Detection Models

principles in (Shu et al., 2017).

News Content Models. Based on news content and fact-checking methodologies, these models are the starting point of fake news detection. News content models are classified as Knowledge-based and Style-based. We first introduce style-based models as they are the initial approaches for FND.

Style-based: Previous research in psychology has mainly focused on style-based approaches to detect *manipulators* in the text. Particularly deception detection techniques were popular and commonly developed in early works in criminology and psychology. We describe two different ways to approach style-based news content models, namely, *Deception-oriented* and *Objectivity-oriented* (Shu et al., 2017).

• *Deception-oriented*: The initial approaches for automated fake news detection focus on news context and stem from deception detection in language. The first study that focuses deception detection in language (Undeutsch, 1954) hypothesized that the truthfulness of the statement is more important

than the integrity of the reporting person, and there exist definable and descriptive criteria that form a crucial mechanism for the determination of the truthfulness of statements. Even though this study is from experimental psychology, it stresses the feasibility of defining a set of rules that determine the truthfulness of a statement.

An early study from criminology, Scientific Content Analysis (SCAN) (Sapir, 1987), analyzes freely written statements. In this process, SCAN claims to detect potential instances of deception in the text but cannot label a statement as a lie or truth. The next study for SCAN (Smith, 2001) is the first known study that correlates linguistic features with deceptive behavior using high-stakes data. Similar to SCAN, the subsequent studies (Adams, 2002; M. L. Newman et al., 2003) that link linguistic features to deception classify the owner of the statement as truth-teller or liar according to the frequency of deception indicators in the statement.

Although for automated deception detection, defining a methodology is more challenging (DePaulo et al., 1997), early studies have shown that this task is achievable. A detailed study (L. Zhou et al., 2004) makes a structured approach using linguistic-based cues and draws attention to further studies for automating deception detection. In this study, the authors extend linguistic-based cues with complexity, expressivity, informality, and content diversity. Instead of using humans as cue identifiers, authors use *Natural Language Processing* (NLP) techniques, namely an NLP tool called iSkim (L. Zhou et al., 2002), to extract cues automatically. Another study also focuses on linguistic cue analysis. With a small dataset and employing the C4.5 (Salzberg, 1994) algorithm, the authors reach 60.72% accuracy using 15-fold cross-validation.

Similarly, in (Bachenko et al., 2008), the authors developed a system for automatically identifying 275 truthful or deceitful statements with the use of verbal cues using Classification and Regression Tree (CART) (Breiman et al., 1984). Additionally, the studies (Hancock et al., 2007; V. L. Rubin, 2010) make use of a relatively small dataset and analyze linguistic-based cues. Rubin's series of studies (V. Rubin et al., 2015; V. L. Rubin, 2010; V. L. Rubin & Lukoianova, 2015; V. L. Rubin & Vashchilko, 2012) makes use of Rhetorical Structure Theory (RST) and Vector Space Modeling (VSM). The first captures the coherence of a story using functional relations among meaningful text units and delivers a hierarchical structure for each news story (Mann & Thompson, 1988). The second is the way to represent rhetorical relations in high-dimensional space. The authors utilized logistic regression as their classifier and reached 63% accuracy.

Furthermore, a study from Afroz and colleagues (Afroz et al., 2012) investigates stylistic deception and uses lexical, syntactic, and content-specific features. Lexical features include both character- and word-based features. Syntactic features represent sentence-level style and include frequency of function words from LIWC (Pennebaker et al., 2007), punctuation, and POS tagging in which a text is assigned its morphosyntactic category (Daelemans, 2010). Finally, content-specific features are keywords for a specific topic. For classification, the authors then leveraged Support Vector Machines (SVM) (Hearst et al., 1998). More comprehensive and modern approaches such as (Wang, 2017) also leveraged the power of *Convolutional Neural Networks* (CNN) to determine the veracity of news.

 Objectivity-oriented: Objectivity-oriented news content models aim to detect indicators of the lessening of objectivity in news content (Shu et al., 2017). These indicators are observed in the news from misleading sources, such as hyperpartisan sources which display highly polarized opinions in favor of or against a particular political party. Consequently, this polarized behavior motivates the fabrication of news that supports the sources' political views or undermines the opposing political party. Hyperpartisan news are a subtle form of fake news and defined as misleading coverage of events that did actually occur with a strong partisan bias (Pennycook & Rand, 2019). Since the spread of hyperpartisan news can be detrimental, many approaches to detect hyperpartisanship in news articles have been developed. For instance, in (Potthast et al., 2017), the authors take a stylometric methodology to detect hyperpartisan news. In this study, the authors employ 10 readability scores, and dictionary features where each feature represent the frequency of words from a carefully crafted dictionary in a given document with the help of General Inquirer Dictionaries (Stone et al., 1966). A competition for detecting hyperpartisan news (Kiesel et al., 2019) hosted several teams with a variety of ideas which include the utilization of n-grams, word embeddings, stylometry, sentiment analysis etc. The most popular method was the usage of embeddings, particularly the models that leveraged BERT (Devlin et al.,

Also used for dissemination of hyperpartisan news (Kiesel et al., 2019), another form of fake news that is evaluated under this focus is *Yellow-journalism*, which utilizes clickbaits such as catchy headlines, images etc. that invokes strong emotions, and it aims to generate revenue (Agrawal, 2016; Palau-Sampio, 2016). Studies that aim to detect clickbaits mainly focus on headlines. For example, in (Rony et al., 2017), the authors construct a DNN

in which they use distributed subword embeddings (Bojanowski et al., 2016; Joulin et al., 2016) as features with an extension of skip-gram model (Mikolov et al., 2013).

Knowledge-based: Being the most direct way for detecting fake news, these approaches make use of external fact-checkers to verify the claims in news content (Shu et al., 2017). Fact-checkers are either sophisticated algorithms, domain experts or crowdsourced to assess the truthfulness to a claim in a specific context (Vlachos & Riedel, 2014). With growing attention on fake news detection, automated fact-checking has drawn much attention and considerable efforts have been made in this area (Barrón-Cedeño et al., 2020; Thorne & Vlachos, 2018). We categorize knowledge-based news content models as Expert-oriented, Crowdsourcing-oriented, and Computational-oriented (Shu et al., 2017).

- Expert-oriented: These approaches are essentially dependent on human domain experts who investigate the integrity of a news piece collecting relevant information and documents to come up with a decision about the truthfulness of a claim². Platforms like Politifact³ and EUfactcheck⁴ are examples for expert-oriented fact-checking for all news from a variety of sources. These platforms label news in a range such that the label reflect the veracity of news. A different approach for labeling is exercised by Snopes⁵, which extends the same logic of Politifact by including different aspects of fact-checking such as Scam, Miscaptioned, Outdated etc⁶. Recently replaced by an irrelevant magazine website, another instance was Gossipcop⁷, which dealt with celebrity fact-checking and contributed to the creation of fake news dataset (Shu et al., 2018). Even though expert-based fact-checking is reliable, with the increasing magnitude of news stream and speed of spreaed, it is not scalable to fact-check every news piece by hand, thus manual validation alone becomes insufficient (Guo et al., 2022).
- Crowdsourcing-oriented: Powered by wisdom of crowds (Galton, 1907), crowdsourcing-oriented fact-checking is a collection of annotations which are afterwards aggregated to obtain an overall result indicating the veracity of news. Unlike professional fact-checkers, who are in short supply, this approach is scalable

²https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-

³https://www.politifact.com/

⁴https://eufactcheck.eu/

⁵https://www.snopes.com/

⁶https://www.snopes.com/fact-check-ratings/

⁷https://web.archive.org/web/20190807002653/https://www.gossipcop.com/about/

given that the crowd contains enough literate people (Allen et al., 2021). For instance, Twitter launched a program called Birdwatch⁸, in which the users are able to leave notes for tweets that they think contains misinformation. Furthermore, this tool allows users to rate each other's notes, leading to the diversity of perspectives⁹. Another example is from Facebook¹⁰, which uses a third party of crowdsourced fact-checkers called International Fact-Checking Network¹¹ (IFCN).

Computational-oriented: Heavily dependent on external sources, computationaloriented models are scalable automated systems that is designed to predict whether a claim is truthful or not. The studies that focused on this type of approaches mainly try to solve two issues: (i) identifying check-worthy claims, and (ii) estimating the integrity of claims (Shu et al., 2017). The first issue requires extraction of factual claims from news content or other related textual content. For example, in (Hassan et al., 2015) the authors collect presidential debate transcripts, then label them into three classes with the help of crowdsourcing. Using annotated data and supervised learning techniques, the authors uncover some interesting patterns in these transcripts. Another study that covers both issues uses wikipedia information to generate factual claims then check whether a given claim is truthful or not (Thorne et al., 2018). The second issue, compared to the first one, requires utilization of structured external sources. Open web and structured knowledge graphs are two most prominent tools when tackling this issue. Open web tools analyze features like mutual information statistics (Etzioni et al., 2005), frequency, and web-based statistics (Magdy & Wanas, 2010). On the other hand, knowledge graphs are interconnected. One noteworthy example is ongologies such as DBPedia (Auer et al., 2007), using which one can define semantic relations and rules in order to infer whether a claim is correct (Braşoveanu & Andonie, 2019).

Social Context Models

⁸https://twitter.github.io/birdwatch/overview/

⁹https://twitter.github.io/birdwatch/diversity-of-perspectives/

 $^{^{10}}$ https://www.facebook.com/formedia/blog/third-party-fact-checking-how-it-works

¹¹https://www.poynter.org/ifcn/

2.2 Explainable Artificial Intelligence

- 2.2.1 Importance of Explainable Artificial Intelligence
- 2.2.2 A Good Explanation
- **2.2.3 Overview of Explainable Artificial Intelligence** only include what you use.

3 Fake News Detection Models

3.1 News Content Models

3.1.1 Definitons

Talk about text based models, tf-idf, bag of words(BoW), how BERT is used in these tasks, (in the end) just assert that only text based models are not sufficient.

3.1.2 Dataset

Used the Kaggle competition dataset. -> Talk about the general analysis of the dataset. (How many instances, real/fake instances,)

3.1.3 Tokenizer

Used DistilRoBERTa tokenizer. (check the tokenizer of the model and talk about it)

3.1.4 Model

Used the model in transformers repository. The model from GonzaloA was used since it also provided its dataset and their train/val/test splits.

3.1.5 Explainability and Explanation

The model seems to have memorized some basic patterns and rely on that. Talk about the properties of explanation techniques. (Localization,) Define explanability. Define explanation. Input perturbation Explain a novel news (use test data)

3.2 Social Context Models

Talk about models that incorporate social context, spatiotemporal information and other context with text data. Can be any kind of model.

3.2.1 Geometric Deep Learning

Talk about Graph Neural Networks

3.2.2 Dataset

FakeNewsNet, UPFD, explain the dataset, no of edges/nodes. Which models use this dataset,

3.2.3 Models

SAGE GNN UPFD GCNFN

4 Explainability of Fake News Detection Models

- 4.1 Explanation Techiques
- 4.1.1 SHAP, DeepSHAP
- 4.1.2 GNNExplainer
- 4.1.3 Explainability vs. Explanation
- 4.2 Content Based Fake News Detection Models
- 4.2.1 Explaining Content Based Fake News Detection Models
- 4.2.2 Introducing Unseen Data
- 4.2.3 Results
- 4.3 Content and Social Feature Based Fake News Detection Models
- 4.3.1 Explaining Content and Social Feature Based Fake News Detection Models
- 4.3.2 Introducing Unseen Data
- 4.3.3 Results

5 Conclusion

List of Figures

2.1	Fake News and Fake News Detection Publications by Year	5
2.2	Market Reaction to Fake Tweet	7
2.3	Total Facebook Engagements for Top 20 Election Stories	8
2.4	Hierarchical Classification of Fake News Detection Models	13

List of Tables

Bibliography

- Adams, S. H. (2002). Communication under stress: Indicators of veracity and deception in written narratives.
- Afroz, S., Brennan, M., & Greenstadt, R. (2012). Detecting hoaxes, frauds, and deception in writing style online. 2012 IEEE Symposium on Security and Privacy, 461–475. https://doi.org/10.1109/SP.2012.34
- Agrawal, A. (2016). Clickbait detection using deep learning. 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), 268–272. https://doi.org/10.1109/NGCT.2016.7877426
- Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. *Journal of Economic Perspectives*, 31(2), 211–36. https://doi.org/10.1257/jep.31.2. 211
- Allen, J., Arechar, A. A., Pennycook, G., & Rand, D. G. (2021). Scaling up fact-checking using the wisdom of crowds. *Science Advances*, 7(36), eabf4393. https://doi.org/10.1126/sciadv.abf4393
- Asch, S. E., & Guetzkow, H. (1951). Effects of group pressure upon the modification and distortion of judgments. *Groups, leadership, and men*, 222–236.
- Ashforth, B. E., & Mael, F. (1989). Social identity theory and the organization. *The Academy of Management Review*, 14(1), 20–39.
- Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. *Proceedings of the 6th International The Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference*, 722–735.
- Bachenko, J., Fitzpatrick, E., & Schonwetter, M. (2008). Verification and implementation of language-based deception indicators in civil and criminal narratives. *Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)*, 41–48.
- Balmas, M. (2014). When fake news becomes real: Combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism. *Communication Research*, 41(3), 430–454. https://doi.org/10.1177/0093650212453600
- Barrón-Cedeño, A., Elsayed, T., Nakov, P., Da San Martino, G., Hasanain, M., Suwaileh, R., Haouari, F., Babulkov, N., Hamdan, B., Nikolov, A., Shaar, S., & Ali, Z. S. (2020). Overview of checkthat! 2020: Automatic identification and verification of claims in social media. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis,

- H. Joho, C. Lioma, C. Eickhoff, A. Névéol, L. Cappellato, & N. Ferro (Eds.), *Experimental ir meets multilinguality, multimodality, and interaction* (pp. 215–236). Springer International Publishing.
- Beckwith, D. C. (2021). United states presidential election of 2016. In *Encyclopedia britannica*.
- Berinsky, A. J. (2017). Rumors and health care reform: Experiments in political misinformation. *British Journal of Political Science*, 47(2), 241–262.
- Bessi, A., & Ferrara, E. (2016). Social bots distort the 2016 us presidential election online discussion. *First Monday*, 21(11).
- Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., & Huang, J. (2020). Rumor detection on social media with bi-directional graph convolutional networks. https://doi.org/10.48550/ARXIV.2001.06362
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. *J. Mach. Learn. Res.*, 3(null), 993–1022.
- Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. *CoRR*, *abs*/1607.04606.
- Braşoveanu, A. M. P., & Andonie, R. (2019). Semantic fake news detection: A machine learning perspective. In I. Rojas, G. Joya, & A. Catala (Eds.), *Advances in computational intelligence* (pp. 656–667). Springer International Publishing.
- Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). *Classification and regression trees*. Taylor & Francis.
- Brewer, P. R., Young, D. G., & Morreale, M. (2013). The Impact of Real News about "Fake News": Intertextual Processes and Political Satire. *International Journal of Public Opinion Research*, 25(3), 323–343. https://doi.org/10.1093/ijpor/edt015
- Castelvecchi, D. (2016). Can we open the black box of ai? *Nature*, *538*, 20–23. https://doi.org/10.1038/538020a
- Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter. *Proceedings of the 20th International Conference on World Wide Web*, 675–684. https://doi.org/10.1145/1963405.1963500
- Chen, Y., Conroy, N. K., & Rubin, V. L. (2015). News in an online world: The need for an "automatic crap detector". *Proceedings of the Association for Information Science and Technology*, 52(1), 1–4. https://doi.org/https://doi.org/10.1002/pra2.2015. 145052010081
- Cheng, J., Bernstein, M., Danescu-Niculescu-Mizil, C., & Leskovec, J. (2017). Anyone can become a troll: Causes of trolling behavior in online discussions. *Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing*, 1217–1230. https://doi.org/10.1145/2998181.2998213

- Cinus, F., Minici, M., Monti, C., & Bonchi, F. (2022). The effect of people recommenders on echo chambers and polarization. *Proceedings of the International AAAI Conference on Web and Social Media*, 16(1), 90–101.
- Conroy, N. K., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. *Proceedings of the Association for Information Science and Technology*, 52(1), 1–4. https://doi.org/https://doi.org/10.1002/pra2.2015. 145052010082
- Daelemans, W. (2010). Pos tagging. In C. Sammut & G. I. Webb (Eds.), *Encyclopedia of machine learning* (pp. 776–779). Springer US. https://doi.org/10.1007/978-0-387-30164-8_643
- Dan, V., Paris, B., Donovan, J., Hameleers, M., Roozenbeek, J., van der Linden, S., & von Sikorski, C. (2021). Visual mis- and disinformation, social media, and democracy. *Journalism & Mass Communication Quarterly*, 98(3), 641–664. https://doi.org/10.1177/10776990211035395
- DePaulo, B. M., Charlton, K., Cooper, H., Lindsay, J. J., & Muhlenbruck, L. (1997). The accuracy-confidence correlation in the detection of deception [PMID: 15661668]. *Personality and Social Psychology Review*, 1(4), 346–357. https://doi.org/10.1207/s15327957pspr0104_5
- Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. *CoRR*, *abs/1810.04805*.
- Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. https://doi.org/10.48550/ARXIV.1702.08608
- Dou, Y., Shu, K., Xia, C., Yu, P. S., & Sun, L. (2021). User preference-aware fake news detection. *CoRR*, *abs*/2104.12259.
- Du, J., Xu, R., He, Y., & Gui, L. (2017). Stance classification with target-specific neural attention. *Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence*, *IJCAI-17*, 3988–3994. https://doi.org/10.24963/ijcai.2017/557
- Edwards, L., & Veale, M. (2017). Slave to the algorithm? why a 'right to an explanation' is probably not the remedy you are looking for. *Duke law and technology review*, 16, 18–84.
- ElBoghdady, D. (2013). Market quavers after fake ap tweet says obama was hurt in white house explosions.
- Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D. S., & Yates, A. (2005). Unsupervised named-entity extraction from the web: An experimental study. *Artificial Intelligence*, *165*(1), 91–134. https://doi.org/https://doi.org/10.1016/j.artint.2005.03.001
- Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. *Commun. ACM*, *59*(7), 96–104. https://doi.org/10.1145/2818717

- Fisher, M., Cox, J. W., & Hermann, P. (2016). Pizzagate: From rumor, to hashtag, to gunfire in d.c.
- Foster, V. S. (2016). The great moon hoax. In *Modern mysteries of the moon: What we still don't know about our lunar companion* (pp. 11–44). Springer International Publishing. https://doi.org/10.1007/978-3-319-22120-5_2
- Galton, F. (1907). Vox populi (the wisdom of crowds). Nature, 75(7), 450–451.
- Gunning, D., & Aha, D. (2019). Darpa's explainable artificial intelligence (xai) program. *AI Magazine*, 40(2), 44–58. https://doi.org/10.1609/aimag.v40i2.2850
- Guo, Z., Schlichtkrull, M., & Vlachos, A. (2022). A Survey on Automated Fact-Checking. *Transactions of the Association for Computational Linguistics*, 10, 178–206. https://doi.org/10.1162/tacl_a_00454
- Han, Y., Karunasekera, S., & Leckie, C. (2020). Graph neural networks with continual learning for fake news detection from social media. https://doi.org/10.48550/ARXIV.2007.03316
- Hancock, J. T., Curry, L. E., Goorha, S., & Woodworth, M. (2007). On lying and being lied to: A linguistic analysis of deception in computer-mediated communication. *Discourse Processes*, 45(1), 1–23. https://doi.org/10.1080/01638530701739181
- Harding, L. (2012). Putin seen behind bars in spoof video.
- Hassan, N., Li, C., & Tremayne, M. (2015). Detecting check-worthy factual claims in presidential debates. *Proceedings of the 24th ACM International on Conference on Information and Knowledge Management*, 1835–1838. https://doi.org/10.1145/2806416.2806652
- Hearst, M., Dumais, S., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. *IEEE Intelligent Systems and their Applications*, 13(4), 18–28. https://doi.org/10.1109/5254.708428
- Jin, Z., Cao, J., Zhang, Y., & Luo, J. (2016). News verification by exploiting conflicting social viewpoints in microblogs. *Proceedings of the AAAI Conference on Artificial Intelligence*, 30(1). https://doi.org/10.1609/aaai.v30i1.10382
- Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. *Journal of Documentation*, 28, 11–21.
- Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification. *CoRR*, *abs/1607.01759*.
- Kahneman, D., & Tversky, A. (1979). Prospect theory: Analysis of decision under risk. *Econometrica*, 47, 263–291.
- Kiesel, J., Mestre, M., Shukla, R., Vincent, E., Adineh, P., Corney, D., Stein, B., & Potthast, M. (2019). SemEval-2019 task 4: Hyperpartisan news detection. *Proceedings of the 13th International Workshop on Semantic Evaluation*, 829–839. https://doi.org/10.18653/v1/S19-2145

- Kwon, S., Cha, M., Jung, K., Chen, W., & Wang, Y. (2013). Prominent features of rumor propagation in online social media. 2013 IEEE 13th International Conference on Data Mining, 1103–1108. https://doi.org/10.1109/ICDM.2013.61
- Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news. *Science*, 359(6380), 1094–1096. https://doi.org/10.1126/science.aao2998
- Lindeman, M., & Aarnio, K. (2007). Superstitious, magical, and paranormal beliefs: An integrative model. *Journal of Research in Personality*, 41(4), 731–744. https://doi.org/https://doi.org/10.1016/j.jrp.2006.06.009
- Lipton, Z. C. (2016). The mythos of model interpretability. https://doi.org/10.48550/ARXIV.1606.03490
- Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information. *IBM Journal of Research and Development*, 1(4), 309–317. https://doi.org/10.1147/rd.14.0309
- Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K.-F., & Cha, M. (2016). Detecting rumors from microblogs with recurrent neural networks. *Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence*, 3818–3824.
- Ma, J., Gao, W., Wei, Z., Lu, Y., & Wong, K.-F. (2015). Detect rumors using time series of social context information on microblogging websites. *Proceedings of the 24th ACM International on Conference on Information and Knowledge Management*, 1751–1754. https://doi.org/10.1145/2806416.2806607
- Magdy, A., & Wanas, N. (2010). Web-based statistical fact checking of textual documents. *Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents*, 103–110. https://doi.org/10.1145/1871985.1872002
- Mann, W. C., & Thompson, S. A. (1988). *Text Interdisciplinary Journal for the Study of Discourse*, 8(3), 243–281. https://doi.org/doi:10.1515/text.1.1988.8.3.243
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. *CoRR*, *abs/1310.4546*.
- Molnar, C. (2022). *Interpretable machine learning: A guide for making black box models explainable* (2nd ed.).
- Monti, F., Frasca, F., Eynard, D., Mannion, D., & Bronstein, M. M. (2019). Fake news detection on social media using geometric deep learning. *CoRR*, *abs*/1902.06673.
- Mustafaraj, E., & Metaxas, P. T. (2017). The fake news spreading plague: Was it preventable? *CoRR*, *abs/*1703.06988.
- Nakamura, K., Levy, S., & Wang, W. Y. (2020). Fakeddit: A new multimodal benchmark dataset for fine-grained fake news detection. *Proceedings of the 12th Language Resources and Evaluation Conference*, 6149–6157.

- Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003). Lying words: Predicting deception from linguistic styles [PMID: 15272998]. *Personality and Social Psychology Bulletin*, 29(5), 665–675. https://doi.org/10.1177/0146167203029005010
- Newman, N., Fletcher, R., Robertson, C. T., Eddy, K., & Nielsen, R. K. (2022). Reuters institute digital news report 2022. *Digital News Report* 2022.
- Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. *Review of General Psychology*, 2(2), 175–220. https://doi.org/10.1037/1089-2680.2.2.175
- Nyhan, B., & Reifler, J. (2010). When corrections fail: The persistence of political misperceptions. *Political Behavior*, 32(2), 303–330. https://doi.org/10.1007/s11109-010-9112-2
- Palau-Sampio, D. (2016). Reference press metamorphosis in the digital context: Clickbait and tabloid strategies in elpais.com. *Communication & Society*, 29, 63–79. https://doi.org/10.15581/003.29.2.63-79
- Pariser, E. (2011). The filter bubble: What the internet is hiding from you. Penguin UK.
- Paul, C., & Matthews, M. (2016). The russian "firehose of falsehood" propaganda model: Why it might work and options to counter it.
- Pennebaker, J. W., Booth, R. J., & Francis, M. E. (2007). Linguistic inquiry and word count (liwc2007).
- Pennycook, G., & Rand, D. G. (2019). Fighting misinformation on social media using crowdsourced judgments of news source quality. *Proceedings of the National Academy of Sciences*, 116(7), 2521–2526. https://doi.org/10.1073/pnas.1806781116
- Pennycook, G., & Rand, D. G. (2021). The psychology of fake news. *Trends in Cognitive Sciences*, 25(5), 388–402. https://doi.org/https://doi.org/10.1016/j.tics.2021.02.
- Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. *CoRR*, *abs/1702.05638*.
- Qi, P., Cao, J., Yang, T., Guo, J., & Li, J. (2019). Exploiting multi-domain visual information for fake news detection. *CoRR*, *abs/1908.04472*.
- Read, M. (2016). Donald trump won because of facebook.
- Reed, E. S., Turiel, E., & Brown, T. (2013). Naive realism in everyday life: Implications for social conflict and misunderstanding.
- Rony, M. M. U., Hassan, N., & Yousuf, M. (2017). Diving deep into clickbaits: Who use them to what extents in which topics with what effects? *Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017*, 232–239. https://doi.org/10.1145/3110025.3110054
- Rubin, V., Conroy, N., & Chen, Y. (2015). Towards news verification: Deception detection methods for news discourse. https://doi.org/10.13140/2.1.4822.8166

- Rubin, V., Conroy, N., Chen, Y., & Cornwell, S. (2016). Fake news or truth? using satirical cues to detect potentially misleading news. *Proceedings of the Second Workshop on Computational Approaches to Deception Detection*, 7–17. https://doi.org/10.18653/v1/W16-0802
- Rubin, V. L. (2010). On deception and deception detection: Content analysis of computer-mediated stated beliefs. *Proceedings of the 73rd ASIST Annual Meeting on Navigating Streams in an Information Ecosystem Volume 47*.
- Rubin, V. L., Chen, Y., & Conroy, N. K. (2015). Deception detection for news: Three types of fakes. *Proceedings of the Association for Information Science and Technology*, 52(1), 1–4. https://doi.org/https://doi.org/10.1002/pra2.2015.145052010083
- Rubin, V. L., & Lukoianova, T. (2015). Truth and deception at the rhetorical structure level. *J. Assoc. Inf. Sci. Technol.*, 66(5), 905–917. https://doi.org/10.1002/asi.23216
- Rubin, V. L., & Vashchilko, T. (2012). Identification of truth and deception in text: Application of vector space model to rhetorical structure theory. *Proceedings of the Workshop on Computational Approaches to Deception Detection*, 97–106.
- Salzberg, S. L. (1994). C4.5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993. *Machine Learning*, 16(3), 235–240. https://doi.org/10.1007/BF00993309
- Santia, G., & Williams, J. (2018). Buzzface: A news veracity dataset with facebook user commentary and egos.
- Sapir, A. (1987). *Scientific content analysis (SCAN)*. Laboratory of Scientific Interrogation. Sawer, P. (2020). 'deepfake' queen's speech: Channel 4 criticised for 'disrespectful' christmas message.
- Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2018). Fakenewsnet: A data repository with news content, social context and spatialtemporal information for studying fake news on social media. https://doi.org/10.48550/ARXIV.1809. 01286
- Shu, K., Mahudeswaran, D., Wang, S., & Liu, H. (2020). Hierarchical propagation networks for fake news detection: Investigation and exploitation. *Proceedings of the International AAAI Conference on Web and Social Media*, 14(1), 626–637.
- Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. *SIGKDD Explor. Newsl.*, 19(1), 22–36. https://doi.org/10.1145/3137597.3137600
- Shu, K., Wang, S., & Liu, H. (2019). Beyond news contents: The role of social context for fake news detection. *Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining*, 312–320. https://doi.org/10.1145/3289600.3290994
- Silverman, C. (2016). This analysis shows how viral fake election news stories outperformed real news on facebook.

- Smith, N. (2001). Reading between the lines: An evauluation of the scientific content analysis techniques (scan). Home Office.
- Stone, P., Dunphy, D., Smith, M., & Ogilvie, D. (1966). *The general inquirer: A computer approach to content analysis* (Vol. 4). https://doi.org/10.2307/1161774
- Sunstein, C. R. (2001). *Echo chambers: Bush v. gore, impeachment, and beyond*. Princeton University Press.
- Sunstein, C. R., & Vermeule, A. (2009). Conspiracy theories: Causes and cures*. *Journal of Political Philosophy*, 17(2), 202–227. https://doi.org/https://doi.org/10.1111/j. 1467-9760.2008.00325.x
- Tacchini, E., Ballarin, G., Della Vedova, M. L., Moret, S., & de Alfaro, L. (2017). Some like it hoax: Automated fake news detection in social networks. https://doi.org/10.48550/ARXIV.1704.07506
- Thorne, J., & Vlachos, A. (2018). Automated fact checking: Task formulations, methods and future directions. *CoRR*, *abs/1806.07687*.
- Thorne, J., Vlachos, A., Christodoulopoulos, C., & Mittal, A. (2018). FEVER: A large-scale dataset for fact extraction and VERification. *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, 809–819. https://doi.org/10.18653/v1/N18-1074
- Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. *Journal of Risk and Uncertainty*, *5*, 297–323.
- Undeutsch, U. (1954). Die entwicklung der gerichtspsychologischen gutachtertaetigkeit. Hogrefe.
- Vicario, M. D., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Stanley, H. E., & Quattrociocchi, W. (2016). The spreading of misinformation online. *Proceedings of the National Academy of Sciences*, 113(3), 554–559. https://doi.org/10.1073/pnas.1517441113
- Vlachos, A., & Riedel, S. (2014). Fact checking: Task definition and dataset construction. Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, 18–22. https://doi.org/10.3115/v1/W14-2508
- Walker, M., & Matsa, K. E. (2021). News consumption across social media in 2021.
- Wang, W. Y. (2017). "liar, liar pants on fire": A new benchmark dataset for fake news detection. *CoRR*, *abs/1705.00648*.
- Watson, A. (2022). Usage of social media as a news source worldwide 2022.
- Weir, W. (2009). In *History's greatest lies: The startling truths behind world events our history books got wrong* (pp. 28–41). Fair Winds Press.
- Yang, F., Liu, Y., Yu, X., & Yang, M. (2012). Automatic detection of rumor on sina weibo. *Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics*. https://doi.org/10.1145/2350190.2350203

- Zhou, L., Booker, Q., & Zhang, D. (2002). Rod toward rapid ontology development for underdeveloped domains. *Proceedings of the 35th Annual Hawaii International Conference on System Sciences*, 957–965. https://doi.org/10.1109/HICSS.2002.994046
- Zhou, L., Burgoon, J. K., Nunamaker, J. F., & Twitchell, D. (2004). Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. *Group Decision and Negotiation*, 13(1), 81–106. https://doi.org/10.1023/B:GRUP.0000011944.62889.6f
- Zhou, X., Wu, J., & Zafarani, R. (2020). Safe: Similarity-aware multi-modal fake news detection. https://doi.org/10.48550/ARXIV.2003.04981