1 Γραμμικά Συστήματα

π Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 1.1 Γραμμική Εξίσωση
- 1.2 Γραμμικό σύστημα 2×2 και 3×3
- 1.3 Ορίζουσα

Θεωρήματα - Ιδιότητες 💥

- 1.1 Σημείο σε ευθεία
- 1.2 Είδη ευθειών
- 1.3 Κανόνας οριζουσών

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- 🔲 Γρ. εξίσωση Λύση Σημείο σε ευθεία
- 🗆 Ευθεία Χάραξη
- 🔲 Σημεία τομής με άξονες
- 🗹 🗌 Μέθοδος αντικατάστασης
- 🗹 🗌 Μέθοδος αντίθετων συντελεστών
- 🗹 🗌 Μέθοδος οριζουσών

- Γραφική επίλυση
- □ Προβλήματα
- Σύνθετα συστήματα
- □ Συστήματα 3 × 3
- Παραμετρικά συστήματα

Τυπολόγιο - Συμβολισμοί

- 1. Ευθεία: $ax + \beta y = \gamma$, $a \neq 0$ ή $\beta \neq 0$
- 2. Οριζόντια ευθεία : y = k
- 3. Κατακόρυφη ευθεία : x = k
- 4. Συντελεστής διεύθυνσης : $\lambda = -\frac{a}{\beta}$
- 5. Γραμμικό σύστημα 2 × 2

$$\begin{cases} ax + \beta y = \gamma \\ a'x + \beta'y = \gamma' \end{cases}$$

- 6. Λύση συστήματος : $(x, y) = \left(\frac{D_x}{D}, \frac{D_y}{D}\right)$
- 7. Ορίζουσα συντελεστών : $D = \begin{vmatrix} a & \beta \\ a' & \beta' \end{vmatrix}$
- 8. Ορίζουσες μεταβλητών:

$$D_{x} = \begin{vmatrix} \gamma & \beta \\ \gamma' & \beta' \end{vmatrix}, D_{y} = \begin{vmatrix} a & \gamma \\ a' & \gamma' \end{vmatrix}$$

2 Μη Γραμμικά Συστήματα

ដ Ημερομηνία:

Πίνακας ύλης				
Ορισμοί - Βασικές έννοιες 🗏	Θεωρήματα - Ιδιότητες 💥			
2.1 Μη γραμμική εξίσωση	2.1 Σημείο σε ευθεία			
	2.2 Είδη ευθειών			
	2.3 Κανόνας οριζουσών			
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🖍	□ Επίλυση με ανάθεση			
Τυπολόγιο - Συμβολισμοί 🖺				
1. Εξίσωση κύκλου: $x^2 + y^2 = \rho^2$ 2. Εξίσωση παραβολής: $y = ax^2$	3. Εξίσωση υπερβολής: $y = \frac{a}{x}$			

3 Μονοτονία - Ακρότατα συνάρτησης

Ε΄ Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 3.1 Γνησίως αύξουσα συνάρτηση
- 3.2 Γνησίως φθίνουσα συνάρτηση
- 3.3 Μέγιστο συνάρτησης
- 3.4 Ελάχιστο συνάρτησης
- 3.5 Άρτια Περιττή συνάρτηση

Θεωρήματα - Ιδιότητες 💥

- 3.1 Ιδιότητες διάταξης
- 3.2 Μονοτονία και εξισώσεις
- 3.3 Μονοτονία και ανισώσεις

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

🗹 🗌 Μελέτη μονοτονίας συνά	οτι	ισης
----------------------------	-----	------

- Μελέτη μονοτονίας δίκλαδης συνάρτησης - Συνάρτησης με απόλυτες τιμές
 - \square Μελέτη μονοτονίας της $f(x) = ax + \beta$
 - Μελέτη μονοτονίας σε ένωση διαστημάτων
 - Σύγκριση τιμών συνάρτησης
 - 🗆 Επίλυση εξίσωσης
 - Επίλυση ανίσωσης

- □ Μελέτη ακρότατων συνάρτησης
- Απόδειξη ότι ένας αριθμός αποτελεί ακρότατο
- Απόδειξη ανισότητας
- Προσδιορισμός ακρότατων με μονοτονία
- Μελέτη άρτιας ή περιττής συνάρτησης
- □ Γραφικές παραστάσεις άρτιων και περιττών συναρτήσεων

Τυπολόγιο - Συμβολισμοί 🖺

1. Γν. αύξουσα $f \nearrow \Delta$

Για κάθε
$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

2. Γν. φθίνουσα $f \searrow \Delta$

Για κάθε
$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

- 3. Μέγιστο $f(x) \le f(x_0)$, $x \in D_f$
- 4. Ελάχιστο $f(x) \ge f(x_0)$, $x \in D_f$

- 5. Άρτια συνάρτηση
 - i. Για κάθε $x \in D_f$ ισχύει $-x \in D_f$
 - ii. f(-x) = f(x)
- 6. Περιττή συνάρτηση
 - i. Για κάθε $x \in D_f$ ισχύει $-x \in D_f$
 - ii. f(-x) = -f(x)

4 Μετατόπιση γραφικής παράστασης

Πίνακας ύλης			
Ορισμοί - Βασικές έννοιες 🗏			
4.1 Γραφικές παραστάσεις βασικών συναρτήσεω	ν		
4.2 Κατακόρυφη μετατόπιση γραφικής παράστα	σης		
4.3 Οριζόντια μετατόπιση γραφικής παράστασης			
4.4 Συνδυασμός μετατοπίσεων			
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🎤			
☑ Γραφικές παραστάσεις βασικών συναρ- τήσεων	Συνδυασμός μετατοπίσεων		
Κατακόρυφη μετατόπιση	\Box Γραφική παράσταση της $f(x) = ax^2 +$		
Οριζόντια μετατόπιση	$\beta x + \gamma$		
Τυπολόγιο - Συμβολισμοί 🖺			
1. Κατακόρυφη μετατόπιση: $g(x) = f(x) \pm c$ 2. Οριζόντια μετατόπιση:	$g(x) = f(x \pm c)$ 3. Συνδυασμός μετατοπίσεων: $g(x) = f(x \pm c) \pm d$		
Πίνακες - Σχήματα ⊞ - 🗠			

5 Η έννοια του τριγωνομετρικού αριθμού

ដែ Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 5.1 Τριγωνομετρικοί αριθμοί οξείας γωνίας ορθογωνίου τριγώνου
- 5.2 Τριγωνομετρικοί αριθμοί σε σύστημα συντεταγμένων
- **5.3** Ακτίνιο
- 5.4 Τριγωνομετρικός κύκλος

Θεωρήματα - Ιδιότητες 💥

- 5.1 Μετατροπή Μοίρες ↔ Ακτίνια
- 5.2 Τρ. αριθμοί βασικών γωνιών
- 5.3 Πρόσημα τριγωνομετρικών αριθμών
- 5.4 Τρ. αριθμοί γωνιών που ξεπερνούν τον κύκλο
- 5.5 Βασικές ανισότητες για ημίτονο και συνημίτονο

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- Υπολογισμός τριγωνομετρικών αριθμών σε τρίγωνο
 - Υπολογισμός τριγωνομετρικών αριθμών από σημείο *xOy*
 - Μετατροπή μοιρών σε ακτίνια και αντίστροφα
- 🗹 🗆 Τριγωνομετρικοί αριθμοί βασικών γω-

νιών

- □ Τριγωνομετρικός κύκλος
- Πρόσημα τρ. Αριθμών σε κάθε τεταρτημόριο
 - □ Γωνίες μεγαλύτερες του κύκλου
 - □ Μέγιστη και ελάχιστη τιμή τριγωνομετρικών παραστάσεων

Σχήμα 5.1: Τριγωνομετρικός κύκλος

Σχήμα 5.2: Βασικές γωνίες πάνω στον κύκλο

ΒΑΣΙΚΕΣ ΓΩΝΙΕΣ Σημείο 1º Τεταρτημόριο Σημείο άξονα Θέση άξονα 0° 30° 45° 60° 90° 180° 270° Μοίρες 360° Ακτίνια 0 2π Σχήμα 0 0 -10 ημω 1 0 0 -1συνω $\Delta\epsilon\nu$ Δεν 0 0 εφω ορίζεται ορίζεται

Πίνακας 5.1: Τριγωνομετρικοί αριθμοί βασικών γωνιών

Τυπολόγιο - Συμβολισμοί

1. Ημίτονο : ημ $\omega = \frac{Aπέναντι κάθετη}{2}$ Υποτείνουσα

σφω

Προσκείμενη κάθετη 2. Συνημίτονο : συν $\omega =$ Υποτείνουσα

Δεν

ορίζεται

- Απέναντι κ. 3. Εφαπτομένη : εφω = Προσκείμενη κ.
- Προσκείμενη κ. 4. Συνεφαπτομένη : σφω = Απέναντι κ.
- 5. Τριγωνομετρικοί αριθμοί σε σύστημα συντεταγμένων:

$$\alpha$$
. $\eta \mu \omega = \frac{y}{\rho}$

$$\gamma$$
. εφ $\omega = \frac{y}{x}$, $x \neq 0$

β.
$$\sigma v \omega = \frac{x}{\rho}$$

$$\alpha. \ \eta\mu\omega = \frac{y}{\rho} \qquad \qquad \gamma. \ \epsilon\varphi\omega = \frac{y}{x}, \ x \neq 0 \qquad \qquad 9. \ -1 \leq \eta\mu\omega \leq 1$$

$$\beta. \ \sigma\upsilon\nu\omega = \frac{x}{\rho} \qquad \qquad \delta. \ \sigma\varphi\omega = \frac{x}{y}, \ y \neq 0 \qquad \qquad 10. \ -1 \leq \sigma\upsilon\nu\omega \leq 1$$

6. Απόσταση σημείου από την αρχή των αξόνων: $\rho = \sqrt{x^2 + y^2}$

0

Δεν

ορίζεται

- 7. Μετατροπή μεταξύ μοιρών και ακτινίων:
- 8. Τριγωνομετρικοί αριθμοί γωνιών > 360°

α.
$$ημ (360°κ + ω) = ημω$$

Δεν

ορίζεται

0

β.
$$\sigma v (360^{\circ} \kappa + \omega) = \sigma v v \omega$$

$$\gamma$$
. εφ $(360^{\circ} \kappa + \omega) = εφω$

δ.
$$\sigma \varphi (360^{\circ} \kappa + \omega) = \sigma \varphi \omega$$

9.
$$-1 < nu\omega < 1$$

10.
$$-1 \le \sigma v v \omega \le 1$$

6 Τριγωνομετρικές ταυτότητες

Ε΄ Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

Θεωρήματα - Ιδιότητες 💥

6.1 Βασικές τριγωνομετρικές ταυτότητες

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

🗆 Έλεγχος ὑπαρξης γωνίας

6.1 Τριγωνομετρική ταυτότητα

🗹 🗌 Απόδειξη τριγωνομετρικών ταυτοτήτων

Υπολογισμός τριγωνομετρικών αριθμών με χρήση ταυτοτήτων

Απόδειξη ανισοτήτων

Τυπολόγιο - Συμβολισμοί

1. $\eta \mu^2 x + \sigma \nu^2 x = 1$

2. εφ $x = \frac{\eta \mu x}{\sigma \upsilon v x}$, $\sigma \upsilon v x \neq 0$

3. $\sigma \varphi x = \frac{\sigma \upsilon v x}{\eta \mu x}$, $\eta \mu x \neq 0$

4. $eqx \cdot eqx = 1$, equiv = 0, equiv = 0

 $5. \ \operatorname{\sigmauv}^2 x = \frac{1}{1 + \varepsilon \varphi^2 x}$

6. $\eta \mu^2 x = \frac{\varepsilon \varphi^2 x}{1 + \varepsilon \varphi^2 x}$

7 Αναγωγή στο 1° τεταρτημόριο

🗰 Ημερομηνία:

Πίνακας ύλης

Θεωρήματα - Ιδιότητες 💥

- 7.1 Αναγωγή από 2° σε 1°
- 7.2 Αναγωγή από 3° σε 1°
- 7.3 Αναγωγή από 4° σε 1°
- 7.4 Σχέσεις συμπληρωματικών γωνιών
- 7.5 Γωνίες με διαφορά 90°
- 7.6 Γωνίες με άθροισμα 270°
- 7.7 Γωνίες με διαφορά 270°

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- 🗹 🗌 Υπολογισμός τριγωνομετρικών αριθμών γωνιών που καταλήγουν σε 20, 30, 40.
 - **Σ**υμπληρωματικές γωνίες

- Υπολογισμός παράστασης
- □ Γωνίες μεγαλύτερες του κύκλου

Τυπολόγιο - Συμβολισμοί

- 1. Παραπληρωματικές γωνίες $(2o \leftrightarrow 1o)$
 - α . $\eta \mu (180^{\circ} \omega) = \eta \mu \omega$
 - β. συν(180° ω) = -συνω
 - γ . εφ $(180^{\circ} \omega) = -\epsilon \varphi \omega$
 - δ. $\sigma \phi 180^{\circ} \omega = -\sigma \phi \omega$
- 2. Παραπληρωματικές γωνίες $(2o \leftrightarrow 1o)$
 - α . $\eta \mu (180^{\circ} \omega) = \eta \mu \omega$
 - β. $\sigma vv(180^{\circ} \omega) = -\sigma vv\omega$
 - γ . εφ $(180^{\circ} \omega) = -\epsilon \varphi \omega$
 - δ. $\sigma \phi 180^{\circ} \omega = -\sigma \phi \omega$
- 3. Γωνίες με διαφορά 180° ($3o \leftrightarrow 1o$)
 - α . $\eta\mu(180^{\circ} + \omega) = -\eta\mu\omega$

- β. $\sigma v (180^{\circ} + \omega) = -\sigma v \omega$
- γ . εφ(180° + ω) = εφω
- δ. $\sigma \phi 180^{\circ} + \omega = \sigma \phi \omega$
- 4. Αντίθετες γωνίες $(4o \leftrightarrow 1o)$
 - α . $\eta\mu(-\omega) = -\eta\mu\omega$
 - β. συν(-ω) = συνω
 - γ . $\epsilon \varphi(-\omega) = -\epsilon \varphi \omega$
 - δ. σφ ω = -σφω
- 5. Συμπληρωματικές γωνίες

 - α. ημ(90° ω) = συνω
 - β. συν(90° ω) = ημωγ. εφ(90° - ω) = σφω
 - δ. $σφ90^\circ ω = εφω$

Σχέση γωνίας φ με την ω	Τεταρτ.	Συμβολισμός $\varphi =$	ημ φ	συνφ	εφφ	σφφ
Αντίθετη	40	$-\omega$	$-\eta\mu\omega$	συνω	–εφω	-σφω
Παραπληρωματική	2o	$180^{\circ} - \omega$	ημ ω	$-\sigma v v \omega$	$-\epsilon \phi \omega$	$-\sigma \phi \omega$

	1		1			
Με διαφορά 180°	30	$180^{\circ} + \omega$	$-\eta\mu\omega$	-συν $ω$	$\epsilon \varphi \omega$	σφω
Συμπληρωματική	1o	90° – ω	συνω	ημω	σφω	εφω
Με διαφορά 90°	2o	$90^{\circ} + \omega$	συνω	$-\eta\mu\omega$	$-\sigma \phi \omega$	$-\epsilon \phi \omega$
Με άθροισμα 270°	30	$270^{\circ} - \omega$	-συν $ω$	$-\eta\mu\omega$	σφω	εφω
Με διαφορά 270°	4o	$270^{\circ} + \omega$	-συν $ω$	ημ $ω$	$-\sigma \phi \omega$	-εφω
Με άθροισμα 360°	4o	$360^{\circ} - \omega$	$-\eta\mu\omega$	συνω	$-\epsilon \phi \omega$	-σφω
Με διαφορά $\kappa \cdot 360^\circ$	1o	$\kappa \cdot 360^{\circ} + \omega$	ημω	συνω	εφ $ω$	σφω

Πίνακας 7.2: Αναγωνή στο 1° τεταρτημόριο

Τριγωνομετρικές Συναρτήσεις

Ε΄ Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

Θεωρήματα - Ιδιότητες 💥

8.1 Τριγωνομετρική συνάρτηση

8.1

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί

1. $f(x) = \eta \mu x$

2. $f(x) = \sigma v x$

3. $f(x) = \varepsilon \varphi x$

4. $f(x) = \sigma \varphi x$

5. $f(x) = \rho \cdot \eta \mu x$

6. Περίοδος της συνάρτησης f(x) = $\eta\mu(\omega x) : T = \frac{2\pi}{\omega} f(x) = \rho .$ $\eta\mu(\sigma vv(\omega x))$

7. $f(x) = \rho \cdot \epsilon \varphi(\omega x)$

8. $f(x) = \rho \cdot \sigma \varphi(\omega x)$

9. $f(x) = \rho \cdot \eta \mu(\omega x + c) + \delta$

10. $f(x) = \rho \cdot \sigma \upsilon v(\omega x + c) + \delta$

11. $f(x) = \rho \cdot \epsilon \varphi(\omega x + c) + \delta$

12. $f(x) = \rho \cdot \sigma \varphi(\omega x + c) + \delta$

Τριγωνομετρικές Εξισώσεις

🛱 Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες

9.1 Τριγωνομετρική εξίσωση

Θεωρήματα - Ιδιότητες 💥

9.1 Σύνολα λύσεων βασικών τριγωνομετρικών εξισώσεων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

	•	Λύση	απλής	τοινωνο	าแระการ	hc eE	ίσωσης
_	- 1 - 1	/\U/O	$\alpha n n n n n$	IDIVIDA	шеник	116 66	Юшинс

🗹 🗌 Λύση απλής τριγωνομετρικής εξίσωσης με αρνητικό αριθμό

Σύνθετες τριγωνομετρικές εξισώσεις

□ Επίλυση με αναγωγή στο 1° τεταρτ.

Επίλυση με τριγωνομετρικές ταυτότητες

□ Τριγωνομετρικές εξισώσεις πολυωνυμικής μορφής

Δύση εξίσωσης σε διάστημα

Συστήματα

□ Γεωμετρικές εφαρμογές

Τυπολόγιο - Συμβολισμοί

1.
$$\eta \mu x = \eta \mu \theta \Rightarrow$$

$$x = \begin{cases} 2\kappa \pi + \theta \\ 2\kappa \pi + (\pi - \theta) \end{cases}, \kappa \in \mathbb{Z}$$

2. $\text{sun} x = \text{sun} \theta \Rightarrow x = \begin{cases} 2\kappa \pi + \theta \\ 2\kappa \pi - \theta \end{cases}$, $\kappa \in \mathbb{Z}$

3. $\varepsilon \varphi x = \varepsilon \varphi \theta \Rightarrow x = \kappa \pi + \theta$, $\kappa \in \mathbb{Z}$

4. $\sigma \varphi x = \sigma \varphi \theta \Rightarrow x = \kappa \pi + \theta$, $\kappa \in \mathbb{Z}$

Τριγωνομετρικοί αριθμοί αθροίσματος

Ε΄ Ημερομηνία:

Πίνακας ύλης

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί

1.
$$ημ(φ + ω) = ημφ · συνω + συνφ · ημω$$

2.
$$\operatorname{sun}(\varphi + \omega) = \operatorname{sun}(\varphi \cdot \operatorname{sun}(\varphi - \eta \mu \varphi \cdot \eta \mu \omega))$$

3.
$$\varepsilon \varphi (\varphi + \omega) = \frac{\varepsilon \varphi \varphi + \varepsilon \varphi \omega}{1 - \varepsilon \varphi \varphi \cdot \varepsilon \varphi \omega}$$

4.
$$\sigma\varphi(\varphi + \omega) = \frac{\sigma\varphi\varphi\sigma\varphi\omega - 1}{\sigma\varphi\varphi + \sigma\varphi\omega}$$

5.
$$\eta \mu (\varphi - \omega) = \eta \mu \varphi \cdot \sigma v \omega - \sigma v \varphi \cdot \eta \mu \omega$$

6.
$$\operatorname{sun}(\varphi - \omega) = \operatorname{sun}\varphi \cdot \operatorname{sun}\omega + \operatorname{hm}\varphi \cdot \operatorname{hm}\omega$$

7.
$$\epsilon \varphi (\varphi - \omega) = \frac{\epsilon \varphi \varphi - \epsilon \varphi \omega}{1 + \epsilon \varphi \varphi \cdot \epsilon \varphi \omega}$$

8.
$$\sigma \varphi (\varphi - \omega) = \frac{\sigma \varphi \varphi \sigma \varphi \omega + 1}{\sigma \varphi \varphi - \sigma \varphi \omega}$$

Τριγωνομετρικοί αριθμοί διπλάσιας γωνίας 11

Ε΄ Ημερομηνία:

Πίνακας ύλης

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί 🖹

1.
$$ημ2φ = 2ημφ · συνφ$$

2.
$$\sigma v v 2\varphi = \begin{cases} \sigma v v^2 \varphi - \eta \mu^2 \varphi \\ 1 - 2\eta \mu^2 \varphi \\ 2\sigma v v^2 \varphi - 1 \end{cases}$$
3.
$$\varepsilon \varphi 2\varphi = \frac{2\varepsilon \varphi \varphi}{1 - \varepsilon \varphi^2 \varphi}$$
4.
$$\sigma \varphi 2\varphi = \frac{\sigma \varphi^2 \varphi - 1}{2\sigma \varphi \varphi}$$

3.
$$\varepsilon \varphi 2\varphi = \frac{2\varepsilon \varphi \varphi}{1 - \varepsilon \varphi^2 \varphi}$$

4.
$$\sigma \varphi 2\varphi = \frac{\sigma \varphi^2 \varphi - 1}{2\sigma \varphi \varphi}$$

5.
$$\eta \mu^2 \varphi = \frac{1 - \sigma v v 2 \varphi}{2}$$

6.
$$\operatorname{\sigmauv}^2 \varphi = \frac{1 + \operatorname{\sigmauv} 2\varphi}{2}$$

7.
$$\varepsilon \varphi^2 \varphi = \frac{1 - \sigma \upsilon v 2 \varphi}{1 + \sigma \upsilon v 2 \varphi}$$

8.
$$\sigma \varphi^2 \varphi = \frac{1 + \sigma v v 2 \varphi}{1 - \sigma v v 2 \varphi}$$

12 Πολυώνυμα

🗰 Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 12.1 Μονώνυμο
- 12.2 Πολυώνυμο
- 12.3 Όροι Συντελεστές πολυωνύμου
- 12.4 Βαθμός πολυωνύμου
- 12.5 Τιμή πολυωνύμου
- 12.6 Ρίζα πολυωνύμου
- 12.7 Μηδενικό Σταθερό πολυώνυμο
- 12.8 Ίσα πολυώνυμα

Θεωρήματα - Ιδιότητες 💥

- 12.1 Βαθμός πολυωνύμου
- 12.2 Ισότητα πολυωνύμων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- 🖸 🗌 Ορισμός πολυωνύμου Όροι Συντελε-
- 🗹 🗌 Βαθμός πολυωνύμου
 - □ Ισότητα πολυωνύμων

- 🗹 🗌 Τιμή πολυωνύμου Ρίζα
 - Πράξεις μεταξύ πολυωνύμων
 - Προσδιορισμός πολυωνύμου

Τυπολόγιο - Συμβολισμοί

- 1. Μονώνυμο: ax^{ν}
 - Συντελεστής: α
- Κύριο μέρος: x^{ν}

όπου $a ∈ \mathbb{R}$ και $v ∈ \mathbb{N}$.

2. Πολυώνυμο:

$$P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_1x + a_0$$

3. Όροι πολυωνύμου:

$$a_{\nu}x^{\nu}, a_{\nu-1}x^{\nu-1}, \dots, a_{1}x, a_{0}$$

4. Συντελεστές πολυωνύμου:

$$a_{\nu}, a_{\nu-1}, \ldots, a_1, a_0 \in \mathbb{R}$$

- 5. Όροι πολυωνύμου $a_{\nu}x^{\nu}, a_{\nu-1}x^{\nu-1}, \dots, a_{1}x, a_{0}$
- 6. Σταθερός όρος: α₀
- 7. Βαθμός πολυωνύμου: ν
- 8. Σταθερό πολυώνυμο: P(x) = c
- 9. Μηδενικό πολυώνυμο: P(x) = 0
- 10. Τιμή πολυωνύμου για $x = \rho : P(\rho)$
- 11. Ρίζα πολυωνύμου:

$$P(\rho) = 0 \rightarrow \rho$$
 ρίζα του $P(x)$

13 Διαίρεση πολυωνύμων

🗰 Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 13.1 Ευκλείδεια διαίρεση πολυωνύμων
- 13.2 Ταυτότητα ευκλείδειας διαίρεσης
- 13.3 Τέλεια διαίρεση
- 13.4 Παράγοντες διαιρέτες
- 13.5 Σχήμα Horner

Θεωρήματα - Ιδιότητες 💥

- 13.1 Υπόλοιπο διαίρεσης
- 13.2 Ρίζα πολυωνύμου

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- Διαίρεση πολυωνύμων
- Παραγοντοποίηση πολυωνύμου με τη χρήση διαίρεσης.
- \square Διαίρεση με διαιρέτη $x-\rho$ Σχήμα Horner.
- **Γ** Παραγοντοποίηση πολυωνύμου με τη

- χρήση σχήματος Horner.
- Υπολογισμός υπολοίπου διαίρεσης.
- □ Ρίζα πολυωνύμου.
- Εύρεση παραμέτρου.
- Σχήμα Horner με διαιρέτες άλλης μορφής.

Τυπολόγιο - Συμβολισμοί

1. Ταυτότητα διαίρεσης:

$$\Delta(x) = \delta(x) \cdot \pi(x) + \upsilon(x)$$

2. Συνθήκη διαίρεσης: βαθμός υ(x) < βαθμός δ(x).

- 3. Τέλεια διαίρεση: $\Delta(x) = \delta(x) \cdot \pi(x)$
- 4. Υπόλοιπο: υ = P(ρ)
- 5. Θεώρημα ρίζας:

 $x - \rho$: παράγοντας του $P(x) \Leftrightarrow P(\rho) = 0$

Πίνακες - Σχήματα 🖽 - 🗠

Σχήμα Horner

Συντελεστές πηλίκου $\pi(x)$

Ξ: Σημαντική ασκηση Ασκήσεις αυξημένης δυσκολίας

14 Πολυωνυμικές εξισώσεις

ដ Ημερομηνία:

Πίνακας ύλης				
Θεωρήματα - Ιδιότητες 💥				
14.1 Θεώρημα ακέραιων ριζών				
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨				
 □ Εξίσωση 1°υ βαθμού □ Εξίσωση 2°υ βαθμού □ Εξίσωση 3°υ+ βαθμού με παραγοντοποίηση ☑ Εξίσωση 3°υ+ βαθμού με σχήμα Horner □ Εξισώσεις της μορφής (P(x))^ν = a. Τυπολόγιο - Συμβολισμοί 1. Θεώρημα ακέραιων ριζών ρ: ρίζα του Πίνακες - Σχήματα □ - Δ 	Ανίσωση $1^{\text{ου}}$ βαθμού Ανίσωση $2^{\text{ου}}$ βαθμού Ανίσωση σε μορφή γινομένου Ανίσωση $3^{\text{ου}+}$ βαθμού με παραγοντοποίηση Ανίσωση $3^{\text{ου}+}$ βαθμού με σχήμα Horner			
	0 0 100			
$x - \infty \rho_1$	ρ_2 ρ_μ $+\infty$			
$A_1(x)$ 0				
$A_2(x)$	0			
i i	0 0			
$A_{\nu}(x)$ \downarrow 0				
$P(x)$ \pm 0 \pm	0 ± 0 ± 0 ±			
Πίνανας 14.1. Πίνανας πορσήμων του π	$P(x) = A_{x}(x) \cdot A_{y}(x) \cdot A_{z}(x)$			

Εκθετική συνάρτηση **15**

ii Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 15.1 Δύναμη με πραγματικό εκθέτη
- 15.2 Εκθετική συνάρτηση
- 15.3 Σταθερά ε

Θεωρήματα - Ιδιότητες 💥

- 15.1 Ιδιότητες δυνάμεων πραγματικού εκθέτη
- 15.2 Ιδιότητες εκθετικής συνάρτησης

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

🗹 🗆 Εύρεση πεδίου ορισμού εκθετικής συ-

νάρτησης

Τυπολόγιο - Συμβολισμοί

- 1. $f(x) = a^x$, $0 < a \ne 1$
- 2. Πεδίο ορισμού $D_f = \mathbb{R}$.
- 3. Σύνολο τιμών $f(D_f) = (0, +\infty)$
- 4. Η C_f τέμνει τον y'y στο A(0,1).
- 5. Η f δεν έχει ρίζες στο \mathbb{R} .
- 6. Για κάθε $x_1, x_2 \in \mathbb{R}$ ισχύει

$$x_1 = x_2 \Leftrightarrow a^{x_1} = a^{x_2}$$

7. Για τη συνάρτηση $f(x) = g(x)^{h(x)}$ πρέπει να ισχύει g(x) > 0.

A. $\Gamma \iota \alpha a > 1$

- f γνησίως αύξουσα στο \mathbb{R} .
- η C_f έχει οριζόντια ασύμπτωτη τον ημιάξονα x'.
- για κάθε ζεύγος αριθμών $x_1, x_2 \in \mathbb{R}$ ισχύει

Av
$$x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$$

B. $\Gamma \iota \alpha 0 < a < 1$

- f γνησίως φθίνουσα στο \mathbb{R} .
- η C_f έχει οριζόντια ασύμπτωτη τον ημιά-
- για κάθε ζεύγος αριθμών $x_1, x_2 \in \mathbb{R}$ ισχύει

Av
$$x_1 < x_2 \Leftrightarrow a^{x_1} > a^{x_2}$$

Πίνακες - Σχήματα 🖽 - 🗠

Περιγραφή Ιδιότητα $a^{x_1} \cdot a^{x_2} = a^{x_1 + x_2}$ Γινόμενο δυνάμεων με κοινή βάση $a^{x_1}: a^{x_2} = \frac{a^{x_1}}{a^{x_2}} = a^{x_1 - x_2}$ Πηλίκο δυνάμεων με κοινή βάση $(a \cdot \beta)^x = a^x \cdot \beta^x$ Γινόμενο υψωμένο σε δύναμη - Δυνάμεις με κοινό εκθέτη $\left(\frac{a}{\beta}\right)^x = a^x \cdot \beta^x$ Πηλίκο υψωμένο σε δύναμη - Δυνάμεις με κοινό εκθέτη $(a^{x_1})^{x_2} = a^{x_1 \cdot x_2}$ Δύναμη υψωμένη σε εκθέτη

Πίνακας 15.1: Ιδιότητες δυνάμεων με πραγματικό εκθέτη

Σχήμα 15.1: Αύξουσα εκθετική συνάρτηση

Σχήμα 15.2: Φθίνουσα εκθετική συνάρτηση

Σχήμα 15.3: Συμμετρικες εκθετικές συναρτήσεις

16 Η έννοια του λογαρίθμου

Ε΄ Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

Θεωρήματα - Ιδιότητες 💥

16.1 Λογάριθμος

16.2 Λογάριθμοι $\log \theta$ και $\ln \theta$

16.1 Ιδιότητες λογαρίθμων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί 🖺

- 1. $\log_a \theta = x$, a : βάση του λογαρίθμου
- 2. $\log_a \beta = x \Leftrightarrow a^x = \beta$
- 3. Δεκαδικός λογάριθμος: $\log x$, a=10
- 4. Φυσικός λογάριθμος: $\ln x$, a=e
- 5. $\log_a 1 = 0$
- $6. \log_a a = 1$

Ιδιότητα	Συνθήκη
Λογάριθμος γινομένου	$\log_a(x \cdot y) = \log_a x + \log_a y$
Λογάριθμος πηλίκου	$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$
Λογάριθμος δύναμης	$\log_a x^{\kappa} = \kappa \cdot \log_a x \ , \ \kappa \in \mathbb{Z}$
Λογάριθμος ρίζας	$\log_a \sqrt[\nu]{x} = \frac{1}{\nu} \log_a x \ , \ \nu \in \mathbb{N}$
Λογάριθμος ως εκθέτης	$a^{\log_a x} = x$
Λογάριθμος δύναμης με κοινή βάση	$\log_a a^x = x$
Αλλαγή βάσης	$\log_a x = \frac{\log_\beta x}{\log_\beta a}$

Πίνακας 16.2: Ιδιότητες λογαρίθμων

17 Λογαριθμική συνάρτηση

ដ Ημερομηνία:

Πίνακας ύλης

Ορισμοί - Βασικές έννοιες 🗏

17.1 Λογαριθμική συνάρτηση

Θεωρήματα - Ιδιότητες 💥

17.1 Ιδιότητες εκθετικής συνάρτησης

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί

1. Λογαριθμική συνάρτηση:

$$f(x) = \log_a x, \ 0 < a \neq 1$$

- 2. Me a = 10, a = e: $f(x) = \log x, f(x) = \ln x$
- 3. Πεδίο ορισμού $D_f = (0, +\infty)$.
- 4. Σύνολο τιμών $f(D_f) = \mathbb{R}$
- 5. Η f δεν έχει μέγιστη και ελάχιστη τιμή.
- 6. Η f έχει ρίζα τον αριθμό x=1. Η C_f τέμνει τον x'x στο A(1,0).
- 7. Για κάθε $x_1, x_2 \in \mathbb{R}$ ισχύει

$$x_1 = x_2 \Leftrightarrow \log_a x_1 = \log_a x_2$$

- 8. Για τη συνάρτηση $f(x) = \ln(g(x))$ πρέπει να ισχύει g(x) > 0.
- A. $\Gamma \iota \alpha a > 1$
 - f γνησίως αύξουσα στο $(0, +\infty)$.

- Η C_f έχει κατακόρυφη ασύμπτωτη τον ημιάξονα Oy'
- για κάθε $x_1, x_2 \in \mathbb{R}$ ισχύει

$$x_1 < x_2 \Leftrightarrow \log_a x_1 < \log_a x_2$$

- Για x>1 ισχύει $\log_a x>0$ ενώ για 0< x<1 έχουμε $\log_a x<0$.
- B. Για 0 < a < 1
 - f γνησίως αύξουσα στο $(0, +\infty)$.
 - Η C_f έχει κατακόρυφη ασύμπτωτη τον ημιάξονα Oy'
 - για κάθε $x_1, x_2 \in \mathbb{R}$ ισχύει

$$x_1 < x_2 \Leftrightarrow \log_a x_1 > \log_a x_2$$

• Για x > 1 ισχύει $\log_a x < 0$ ενώ για 0 < x < 1 έχουμε $\log_a x > 0$.

Σχήμα 17.1: Αύξουσα λογαριθμική συνάρτηση

Σχήμα 17.2: Φθίνουσα λογαριθμική συνάρτηση

Σχήμα 17.3: Συμμετρικές λογαριθμικές συναρτήσεις