周民强《实变函数论(第三版》

P11 思考题1, 2; P13 思考题 1,2; P23 思考题 7,8;P25 思考题 11, 14

11-1

Suppose $\{f_n(x)\}$ and f(x) are real valued functions on \mathbb{R} , and

$$\lim_{n o\infty}f_n(x)=f(x),\,x\in\mathbb{R},$$

then for $t \in R$,

$$\{x \in \mathbb{R}: f(x) \leqslant t\} = igcap_{k=1}^{\infty} igcup_{n=1}^{\infty} igcap_{n=m}^{\infty} \{x \in \mathbb{R}: f_n(x) < t + 1/k\}.$$

Proof: Let $B_{n,k} = \{x \in \mathbb{R} : f_n(x) < t + 1/k\}$, then

$$\{x \in \mathbb{R}: f(x) \leqslant t\} = igcap_{k\geqslant 1} \{x \in \mathbb{R}: f(x) < t+1/k\},$$

For any $x \in \mathbb{R}$, $\lim_{n \to \infty} f_n(x) = f(x) < t+1/2k$ then there exists $m \geqslant 1$ such that for any $n \geqslant m$, $f_n(x) < t+1/k$, hence

$$\{x \in \mathbb{R}: f(x) < t+1/2k\} \subset igcup_{m \geqslant 1} igcap_{n \geqslant m} B_{n,k} \subset \{x \in \mathbb{R}: f(x) \leqslant t+1/k\}.$$

Therefore

$$\{x\in\mathbb{R}:f(x)\leqslant t\}=igcap_{k\geqslant 1}igcup_{m\geqslant 1}igcap_{n\geqslant m}B_{n,k}.$$

11-2

Suppose $a_n \to a$ as $n \to \infty$, then

$$\bigcap_{k\geqslant 1}\bigcup_{m\geqslant 1}\bigcap_{n\geqslant m}\left(a_n-\frac{1}{k},a_n+\frac{1}{k}\right)=\{a\}.$$

Proof: $\lim_{n\to\infty}a_n=a$ iff for any $k\geqslant 1$ there exists $m\geqslant 1$ such that for any $n\geqslant m$, $a\in B_{n,k}=(a_n-1/k,a_n+1/k)$, i.e.

$$a\in \bigcap_{k\geqslant 1}\bigcup_{m\geqslant 1}\bigcap_{n\geqslant m}B_{n,k}.$$

Since the limit is unique,

$$\bigcap_{k\geqslant 1}\bigcup_{m\geqslant 1}\bigcap_{n\geqslant m}B_{n,k}=\{a\}$$

13-1

For $f: \mathbb{R} \to \mathbb{R}$, let $f_1(x) = f(x)$, $f_n(x) = f(f_{n-1}(x))$. If there exists n_0 such that $f_{n_0}(x) = x$, then f is injective.

Proof: If f(x)=f(y), then $x=f_{n_0}(x)=f_{n_0-1}(f(x))=f_{n_0-1}(f(y))=y$, hence f is injective.

13-2

Prove that there does not exists a continuous function f on \mathbb{R} , such that it is a bijection on \mathbb{Q}^C , but not on \mathbb{Q} . Proof: Suppose f is bijective on \mathbb{Q}^C , $f(\mathbb{R})$ should be connected, hence an interval. Since $\mathbb{Q}^C \subset f(\mathbb{R})$ which is dense in \mathbb{R} , $f(\mathbb{R}) = \mathbb{R}$, therefore f is surjective on \mathbb{R} .

If a < b and f(a) = f(b), then take $c \in (a,b)$ such that $f(c) \neq f(a)$. Assume f(c) > f(a), then for any $y \in I = (f(a), f(c)) \cap \mathbb{Q}^C$, there exists $u \in (a,c)$ and $v \in (c,b)$ such that $f(u) = f(v) = y \notin \mathbb{Q}$, where at least one of u,v is rational. Hence for each $y \in I$, there exists $u \in (a,b) \cap \mathbb{Q}$ such that f(u) = y, but I is uncountable while \mathbb{Q} is countable, a contradiction. Therefore f is bijective on \mathbb{Q} .

23-7

Determine whether there is a function $f \in C(\mathbb{R})$ such that

$$f(x) egin{cases} \in \mathbb{Q}^C, & x \in \mathbb{Q}, \ \in \mathbb{Q}, & x \in \mathbb{Q}^C. \end{cases}$$

Solution: The answer is no. Since $f(\mathbb{R}) \subset \mathbb{Q} \cup f(\mathbb{Q})$ is countable, and f(I) is connected for any interval I, f is constant, leading to contradiction.

23-8

Suppose $E\subset (0,1)$ is an infinite set. If for any sequence $\{a_n\}\subset E$, $\sum_{n=1}^\infty a_n$ converges, then E is countable.

Proof: Let $E_n=E\cap (1/n,1)$ then for any $n\geqslant 1$, E_n is finite, and

$$E=igcup_{n\geqslant 1}E_n.$$

Hence E is countable.

25-11

Suppose $E\subset\mathbb{R}$, and $|E|<|\mathbb{R}|$. Prove that there exists $a\in\mathbb{R}$ such that $E+a\subset\mathbb{R}\setminus\mathbb{Q}$. Proof: $E+a\cap\mathbb{Q}\neq\infty\iff a\in A=\{q-e:(q,e)\in\mathbb{Q}\times E\}$. Since $|\mathbb{Q}\times E|=\max\{|\mathbb{Q}|,|E|\},\mathbb{R}\setminus A$ is nonempty, and we can take $a\in A^C$.

25-14

Prove that the cardinal of transcendental numbers is $|\mathbb{R}|$.

Proof: It suffices to show that algebraic numbers are countable. The set of polynomials with integer coefficients $\mathbb{Q}[x]$ is countable, since

$$\mathbb{Q}[x] = igcup_{n \geqslant 0} \mathbb{Q}_n[x]$$

and $\mathbb{Q}_n[x] \sim \mathbb{Z}^{n+1}$.

For any algebraic number α , map it to (P,k) where P is its minimal polynomial, and α is the k-th root of P, ($\alpha=re^{i\theta}$ ordered by first r then $\theta\pmod{2\pi}$). We obtain an injection from all algebraic numbers to $\mathbb{Q}[x]\times\mathbb{N}$, hence it is countable.