CAPÍTULO 2

Vetores força

Esta torre de transmissão de energia é estabilizada por cabos que exercem forças sobre ela em seus pontos de conexão. Neste capítulo, mostraremos como expressar essas forças como vetores cartesianos, para depois determinar seu vetor resultante.

(© Vasiliy Koval/Fotolia)

2.1 Escalares e vetores

Muitas quantidades físicas na mecânica para engenharia são medidas usando escalares ou vetores.

Escalar

Um *escalar* é qualquer quantidade física positiva ou negativa que pode ser completamente especificada por sua *intensidade*. Exemplos de quantidades escalares incluem comprimento, massa e tempo.

Vetor

Um *vetor* é qualquer quantidade física que requer uma *intensidade* e uma *direção* para sua completa descrição. Exemplos de vetores encontrados na estática são força, posição e momento. Um vetor é representado graficamente por uma seta. O comprimento da seta representa a *intensidade* do vetor, e o ângulo θ entre o vetor e um eixo fixo determina a *direção de sua linha de ação*. A ponta da seta indica o *sentido da direção* do vetor (Figura 2.1).

Em material impresso, as quantidades vetoriais são representadas por letras em negrito, como \mathbf{A} , e sua intensidade aparece em itálico, como A. Para manuscritos, em geral é conveniente indicar uma quantidade vetorial simplesmente desenhando uma seta acima dela, como \overrightarrow{A} .

FIGURA 2.1

Objetivos

- Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo.
- Expressar força e posição na forma de um vetor cartesiano e explicar como determinar a intensidade e a direção do votor
- Introduzir o produto escalar a fim de usá-lo para determinar o ângulo entre dois vetores ou a projeção de um vetor sobre outro.

Multiplicação e divisão por escalares

FIGURA 2.2

 $\mathbf{R} = \mathbf{A} + \mathbf{B}$ Lei do paralelogramo (c)

FIGURA 2.3

2.2 Operações vetoriais

Multiplicação e divisão de um vetor por um escalar

Se um vetor é multiplicado por um escalar positivo, sua intensidade é aumentada por essa quantidade. Quando multiplicado por um escalar negativo, ele também mudará o sentido direcional do vetor. Exemplos gráficos são mostrados na Figura 2.2.

Adição de vetores

Ao somar dois vetores, é importante considerar suas intensidades e suas direções. Para fazer isso, temos de usar a *lei do paralelogramo da adição*. Para ilustrar, os dois *vetores componentes* \mathbf{A} e \mathbf{B} na Figura 2.3a são somados para formar um *vetor resultante* $\mathbf{R} = \mathbf{A} + \mathbf{B}$ usando o seguinte procedimento:

- Primeiro, una as origens dos vetores componentes em um ponto de modo que se tornem concorrentes (Figura 2.3*b*).
- A partir da extremidade de **B**, desenhe uma linha paralela a **A**. Desenhe outra linha a partir da extremidade de **A** que seja paralela a **B**. Essas duas linhas se cruzam no ponto *P*, formando assim os lados adjacentes de um paralelogramo.
- A diagonal desse paralelogramo que se estende até P forma \mathbf{R} , que então representa o vetor resultante $\mathbf{R} = \mathbf{A} + \mathbf{B}$ (Figura 2.3c).

Também podemos somar **B** a **A** (Figura 2.4a) usando a **regra do triân-gulo**, que é um caso especial da lei do paralelogramo, em que o vetor **B** é somado ao vetor **A** segundo o procedimento "extremidade para origem", ou seja, conectando a extremidade de **A** com a origem de **B** (Figura 2.4b). O **R** resultante se estende da origem de **A** à extremidade de **B**. De modo semelhante, **R** também pode ser obtido somando **A** e **B** (Figura 2.4c). Por comparação, vemos que a adição de vetores é comutativa; em outras palavras, os vetores podem ser somados em qualquer ordem, ou seja, $\mathbf{R} = \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.

No caso especial em que os dois vetores $\bf A$ e $\bf B$ são *colineares*, ou seja, ambos possuem a mesma linha de ação, a lei do paralelogramo reduz-se a uma *adição algébrica* ou *escalar* R = A + B, como mostra a Figura 2.5.

Adição de vetores colineares

FIGURA 2.5

Subtração de vetores

A resultante da *diferença* entre dois vetores $\bf A$ e $\bf B$ do mesmo tipo pode ser expressa como:

$$\mathbf{R}' = \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$$

Essa soma de vetores é mostrada graficamente na Figura 2.6. Portanto, a subtração é definida como um caso especial da adição, de modo que as regras da adição vetorial também se aplicam à subtração de vetores.

2.3 Adição vetorial de forças

Segundo experimentos, uma força é uma quantidade vetorial, pois possui intensidade, direção e sentido especificados, e sua soma é feita de acordo com a lei do paralelogramo. Dois problemas comuns em estática envolvem determinar a força resultante, conhecendo-se suas componentes, ou decompor uma força conhecida em duas componentes. Descreveremos agora como cada um desses problemas é resolvido usando a lei do paralelogramo.

Determinando uma força resultante

As duas forças componentes, \mathbf{F}_1 e \mathbf{F}_2 , agindo sobre o pino da Figura 2.7a podem ser somadas para formar a força resultante $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$, como mostra a Figura 2.7b. A partir dessa construção, ou usando a regra do triângulo (Figura 2.7c), podemos aplicar a lei dos cossenos ou a lei dos senos para o triângulo, a fim de obter a intensidade da força resultante e sua direção.

A lei do paralelogramo é usada para determinar a resultante das duas forças agindo sobre o gancho.

Usando a lei do paralelogramo, a força ${\bf F}$ pode ser decomposta nas componentes que agem ao longo dos cabos de suspensão u e v.

Determinando as componentes de uma força

Algumas vezes é necessário decompor uma força em duas *componentes* para estudar seu efeito de "empurrão" ou "puxão" em duas direções específicas. Por exemplo, na Figura 2.8a, **F** deve ser decomposta em duas componentes ao longo dos dois membros, definidos pelos eixos u e v. Para determinar a intensidade de cada componente, primeiramente constrói-se um paralelogramo, desenhando-se linhas iniciadas na extremidade de **F**, sendo uma linha paralela a u e a outra paralela a v. Essas linhas então se interceptam com os eixos v e u, formando um paralelogramo. As componentes da força \mathbf{F}_u e \mathbf{F}_v são, então, estabelecidas simplesmente unindo a origem de \mathbf{F} com os pontos de interseção nos eixos u e v (Figura 2.8b). Esse paralelogramo pode então ser reduzido a um triângulo, que representa a regra do triângulo (Figura 2.8c). A partir disso, a lei dos senos pode ser aplicada para determinar as intensidades desconhecidas das componentes.

Adição de várias forças

Se mais de duas forças precisam ser somadas, aplicações sucessivas da lei do paralelogramo podem ser realizadas para obter a força resultante. Por exemplo, se três forças \mathbf{F}_1 , \mathbf{F}_2 e \mathbf{F}_3 atuam em um ponto O (Figura 2.9), a resultante de quaisquer duas das forças (digamos, $\mathbf{F}_1 + \mathbf{F}_2$) é encontrada, e depois essa resultante é somada à terceira força, produzindo a resultante das três forças, ou seja, $\mathbf{F}_R = (\mathbf{F}_1 + \mathbf{F}_2) + \mathbf{F}_3$. O uso da lei do paralelogramo para adicionar mais de duas forças, como mostrado, normalmente requer cálculos extensos de geometria e trigonometria para determinar os valores numéricos da intensidade e direção da resultante. Em vez disso, problemas desse tipo podem ser facilmente resolvidos usando o "método das componentes retangulares", que será explicado na Seção 2.4.

A força resultante \mathbf{F}_R sobre o gancho requer a adição de $\mathbf{F}_1 + \mathbf{F}_2$. Depois a resultante é somada a \mathbf{F}_3 .

2.29. Determine a intensidade e a direção θ de \mathbf{F}_A de modo que a força resultante seja direcionada ao longo do eixo x positivo e tenha uma intensidade de 1250 N.

2.30. Determine a intensidade e a direção, esta medida em sentido anti-horário a partir do eixo x positivo, da força resultante atuando sobre o anel em O, se $F_A = 750$ N e $\theta = 45^\circ$.

PROBLEMAS 2.29 e 2.30

2.31. Duas forças atuam sobre o parafuso em argola. Se F = 600 N, determine a intensidade da força resultante e o ângulo θ se a força resultante for direcionada verticalmente para cima.

PROBLEMA 2.31

2.4 Adição de um sistema de forças coplanares

Quando uma força é decomposta em duas componentes ao longo dos eixos x e y, as componentes são, então, chamadas de *componentes retangulares*. Para um trabalho analítico, podemos representar essas componentes de duas maneiras, usando a notação escalar ou a notação vetorial cartesiana.

Notação escalar

As componentes retangulares da força \mathbf{F} mostradas na Figura 2.15a são determinadas usando a lei do paralelogramo, de modo que $\mathbf{F} = \mathbf{F}_x + \mathbf{F}_y$. Como essas componentes formam um triângulo retângulo, suas intensidades podem ser determinadas por:

$$F_x = F \cos \theta$$
 e $F_y = F \sin \theta$

No entanto, em vez de usar o ângulo θ , a direção de **F** também pode ser definida por um pequeno triângulo "de inclinação", como mostra a Figura 2.15b. Como esse triângulo e o triângulo maior sombreado são semelhantes, o comprimento proporcional dos lados fornece:

$$\frac{F_x}{F} = \frac{a}{c}$$

ou

$$F_x = F\left(\frac{a}{c}\right)$$

 \mathbf{F}_{r}

F

е

$$\frac{F_y}{F} = \frac{b}{c}$$

ou

$$F_{y} = -F\left(\frac{b}{c}\right)$$

Aqui, a componente y é um *escalar negativo*, já que \mathbf{F}_y está orientada ao longo do eixo y negativo.

É importante lembrar que a notação escalar positiva e negativa deve ser usada apenas para fins de cálculos, não para representações gráficas em figuras. Neste livro, a *ponta (extremidade) de uma seta do vetor* em *qualquer figura* representa *graficamente* o sentido do vetor; sinais algébricos não são usados para esse propósito. Portanto, os vetores nas figuras 2.15a e 2.15b são representados em negrito (vetor).* Sempre que forem escritos símbolos em itálico próximo às setas dos vetores nas figuras, eles indicam a *intensidade* do vetor, que é *sempre* uma quantidade *positiva*.

Notação vetorial cartesiana

Também é possível representar as componentes x e y de uma força em termos de vetores cartesianos unitários \mathbf{i} e \mathbf{j} . Eles são chamados de vetores unitários porque possuem uma intensidade adimensional de 1 e, portanto, podem ser usados para designar as direções dos eixos x e y, respectivamente (Figura 2.16).**

Como a *intensidade* de cada componente de \mathbf{F} é *sempre uma quantida-de positiva*, representada pelos escalares (positivos) F_x e F_y , então podemos expressar \mathbf{F} como um *vetor cartesiano*,

$$\mathbf{F} = F_{x}\mathbf{i} + F_{y}\mathbf{j}$$

Resultantes de forças coplanares

Qualquer um dos dois métodos descritos pode ser usado para determinar a resultante de várias *forças coplanares*, ou seja, forças que se encontram no mesmo plano. Para tanto, cada força é decomposta em suas componentes x e y; depois, as respectivas componentes são somadas usando-se *álgebra escalar*, uma vez que são colineares. A força resultante é então composta adicionando-se as componentes por meio da lei do paralelogramo. Por exemplo, considere as três forças concorrentes na Figura 2.17a, que têm as componentes x e y, como mostra a Figura 2.17b. Usando a notação vetorial cartesiana, cada força é representada como um vetor cartesiano, ou seja,

^{*} Sinais negativos são usados em figuras com notação em negrito apenas quando mostram pares de vetores iguais, mas opostos, como na Figura 2.2.

^{**} Em trabalhos manuscritos, os vetores unitários normalmente são indicados por acento circunflexo, por exemplo, $\hat{\imath}$ e \hat{j} . Além disso, observe que F_x e F_y na Figura 2.16 representam as *intensidades* das componentes, que são *sempre escalares positivos*. As direções são definidas por \mathbf{i} e \mathbf{j} . Se, em vez disso, usássemos a notação escalar, então F_x e F_y poderiam ser escalares positivos ou negativos, pois considerariam tanto a intensidade quanto a direção das componentes.

$$\mathbf{F}_{1} = F_{1x}\mathbf{i} + F_{1y}\mathbf{j}$$

$$\mathbf{F}_{2} = -F_{2x}\mathbf{i} + F_{2y}\mathbf{j}$$

$$\mathbf{F}_{3} = F_{3x}\mathbf{i} - F_{3y}\mathbf{j}$$

O vetor resultante é, portanto,

$$\mathbf{F}_{R} = \mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}_{3}$$

$$= F_{1x} \mathbf{i} + F_{1y} \mathbf{j} - F_{2x} \mathbf{i} + F_{2y} \mathbf{j} + F_{3x} \mathbf{i} - F_{3y} \mathbf{j}$$

$$= (F_{1x} - F_{2x} + F_{3x}) \mathbf{i} + (F_{1y} + F_{2y} - F_{3y}) \mathbf{j}$$

$$= (F_{Rx}) \mathbf{i} + (F_{Ry}) \mathbf{j}$$

Se for usada *notação escalar*, temos, então, indicando as direções positivas das componentes ao longo dos eixos *x* e *y* com setas simbólicas,

$$\xrightarrow{+}$$
 $(F_R)_x = F_{1x} - F_{2x} + F_{3x} + \uparrow$ $(F_R)_y = F_{1y} + F_{2y} - F_{3y}$

Esses são os *mesmos* resultados das componentes ${\bf i}$ e ${\bf j}$ de ${\bf F}_R$ determinados anteriormente.

As componentes da força resultante de qualquer número de forças coplanares podem ser representadas simbolicamente pela soma algébrica das componentes x e y de todas as forças, ou seja,

$$(F_R)_x = \sum F_x (F_R)_y = \sum F_y$$
 (2.1)

Uma vez que essas componentes são determinadas, elas podem ser esquematizadas ao longo dos eixos x e y com seus sentidos de direção apropriados, e a força resultante pode ser determinada pela adição vetorial, como mostra a Figura 2.17c. Pelo esquema, a intensidade de \mathbf{F}_R é, então, determinada pelo teorema de Pitágoras, ou seja,

$$F_R = \sqrt{(F_R)_x^2 + (F_R)_y^2}$$

Além disso, o ângulo θ , que especifica a direção da força resultante, é determinado por meio da trigonometria:

$$\theta = tg^{-1} \left| \frac{(F_R)_y}{(F_R)_x} \right|$$

Os conceitos anteriores são ilustrados numericamente nos exemplos a seguir.

A força resultante das quatro forças dos cabos que atuam sobre o poste pode ser determinada somando-se algebricamente as componentes x e y da força de cada cabo. Essa força resultante \mathbf{F}_R produz o mesmo efeito de puxão no poste que todos os quatro cabos.

Pontos importantes

- A resultante de várias forças coplanares pode ser facilmente determinada se for estabelecido um sistema de coordenadas x, y e as forças forem decompostas ao longo dos eixos.
- A direção de cada força é especificada pelo ângulo que sua linha de ação forma com um dos eixos, ou por um triângulo da inclinação.
- A orientação dos eixos x e y é arbitrária, e sua direção positiva pode ser especificada pelos vetores cartesianos unitários i e j.
- As componentes *x* e *y* da *força resultante* são simplesmente a soma algébrica das componentes de todas as forças coplanares.
- A intensidade da força resultante é determinada pelo teorema de Pitágoras e, quando as componentes são esquematizadas nos eixos *x* e *y* (Figura 2.17*c*), a direção θ é determinada por meio da trigonometria.

Exemplo 2.5

Determine as componentes x e y de \mathbf{F}_1 e \mathbf{F}_2 que atuam sobre a lança mostrada na Figura 2.18a. Expresse cada força como um vetor cartesiano.

SOLUÇÃO

Notação escalar

Pela lei do paralelogramo, \mathbf{F}_1 é decomposta nas componentes x e y (Figura 2.18b). Como \mathbf{F}_{1x} atua na direção -x e \mathbf{F}_{1y} , na direção +y, temos:

$$F_{1x} = -200 \text{ sen } 30^{\circ} \text{ N} = -100 \text{ N} = 100 \text{ N} \leftarrow$$
 Resposta
 $F_{1y} = 200 \text{ cos } 30^{\circ} \text{ N} = 173 \text{ N} \uparrow$ Resposta

A força \mathbf{F}_2 é decomposta em suas componentes x e y, como mostra a Figura 2.18c. Neste caso, a *inclinação* da linha de ação da força é indicada. A partir desse "triângulo da inclinação", podemos obter o ângulo θ , ou seja, $\theta = \mathsf{tg}^{-1}\left(\frac{5}{12}\right)$, e determinar as intensidades das componentes da mesma maneira que fizemos para \mathbf{F}_1 . O método mais fácil, entretanto, consiste em usar partes proporcionais de triângulos semelhantes, ou seja,

$$\frac{F_{2x}}{260 \text{ N}} = \frac{12}{13}$$
 $F_{2x} = 260 \text{ N} \left(\frac{12}{13}\right) = 240 \text{ N}$

Da mesma forma,

$$F_{2y} = 260 \text{ N} \left(\frac{5}{13} \right) = 100 \text{ N}$$

Observe que a intensidade da *componente horizontal*, \mathbf{F}_{2x} , foi obtida multiplicando a intensidade da força pela relação entre o *lado horizontal* do triângulo da inclinação dividido pela hipotenusa, enquanto a intensidade da *componente vertical*, F_{2y} , foi obtida multiplicando a intensidade da força pela relação entre o *lado vertical* dividido pela hipotenusa. Então, usando a notação escalar para representar essas componentes, temos

$$F_{2x} = 240 \text{ N} = 240 \text{ N} \rightarrow$$

$$F_{2y} = -100 \text{ N} = 100 \text{ N} \downarrow$$
Resposta

Notação vetorial cartesiana

Tendo determinado as intensidades e direções das componentes de cada força, podemos expressar cada uma delas como um vetor cartesiano.

$$\mathbf{F}_1 = \{-100\mathbf{i} + 173\mathbf{j}\} \mathbf{N}$$

$$\mathbf{F}_2 = \{240\mathbf{i} - 100\mathbf{j}\} \mathbf{N}$$
Resposta

Exemplo 2.6

O olhal na Figura 2.19a está submetido a duas forças, \mathbf{F}_1 e \mathbf{F}_2 . Determine a intensidade e a direção da força resultante.

SOLUÇÃO I

Notação escalar

Primeiro, decompomos cada força em suas componentes x e y (Figura 2.19b). Depois, somamos essas componentes algebricamente.

$$\stackrel{+}{\to}$$
 $(F_R)_x = \Sigma F_x$; $(F_R)_x = 600 \cos 30^\circ \text{ N} - 400 \sin 45^\circ \text{ N}$
= 236,8 N →
+ \uparrow $(F_R)_y = \Sigma F_y$; $(F_R)_y = 600 \sin 30^\circ \text{ N} + 400 \cos 45^\circ \text{ N}$
= 582,8 N \uparrow

A força resultante, mostrada na Figura 2.19c, possui uma intensidade:

$$F_R = \sqrt{(236.8 \text{ N})^2 + (582.8 \text{ N})^2}$$

= 629 N Resposta

Da adição vetorial,

$$\theta = tg^{-1} \left(\frac{582,8 \text{ N}}{236,8 \text{ N}} \right) = 67,9^{\circ}$$
 Resposta

SOLUÇÃO II

Notação vetorial cartesiana

Da Figura 2.19b, cada força é expressa inicialmente como um vetor cartesiano:

$$\mathbf{F}_1 = \{600 \cos 30^{\circ} \mathbf{i} + 600 \sin 30^{\circ} \mathbf{j} \} \mathbf{N}$$

 $\mathbf{F}_2 = \{-400 \sin 45^{\circ} \mathbf{i} + 400 \cos 45^{\circ} \mathbf{j} \} \mathbf{N}$

Assim,

$$\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 = (600 \cos 30^\circ \text{ N} - 400 \sin 45^\circ \text{ N})\mathbf{i}$$

+ $(600 \sin 30^\circ \text{ N} + 400 \cos 45^\circ \text{ N})\mathbf{j}$
= $\{236.8\mathbf{i} + 582.8\mathbf{j}\}\text{ N}$

A intensidade e a direção de \mathbf{F}_R são determinadas da mesma maneira mostrada anteriormente.

NOTA: comparando-se os dois métodos de solução, pode-se verificar que o uso da notação escalar é mais eficiente, visto que as componentes são determinadas *diretamente*, sem ser necessário expressar primeiro cada força como um vetor cartesiano antes de adicionar as componentes. Vamos mostrar, mais adiante, que a análise vetorial cartesiana é bastante vantajosa para resolver problemas tridimensionais.

Exemplo 2.7

A ponta de uma lança *O* na Figura 2.20*a* está submetida a três forças coplanares e concorrentes. Determine a intensidade e a direção da força resultante.

SOLUÇÃO

Cada força é decomposta em suas componentes x e y (Figura 2.20b). Somando as componentes x, temos:

$$^+$$
 $(F_R)_x = \Sigma F_x$; $(F_R)_x = -400 \text{ N} + 250 \text{ sen } 45^\circ \text{ N} - 200(\frac{4}{5}) \text{ N}$
= -383.2 N = 383.2 N ←

O sinal negativo indica que F_{Rx} atua para a esquerda, ou seja, na direção x negativa, como observamos pela pequena seta. Obviamente, isso ocorre porque F_1 e F_3 na Figura 2.20b contribuem com um puxão maior para a esquerda que F_2 , que puxa para a direita. Somando as componentes de y, temos:

$$+\uparrow (F_R)_y = \Sigma F_y;$$
 $(F_R)_y = 250 \cos 45^{\circ} N + 200(\frac{3}{5}) N$
= 296,8 N \uparrow

A força resultante, mostrada na Figura 2.20c, possui a seguinte intensidade:

$$F_R = \sqrt{(-383.2 \text{ N})^2 + (296.8 \text{ N})^2}$$

= 485 N Resposta

Da adição de vetores na Figura 2.20c, o ângulo de direção θ é:

$$\theta = tg^{-1} \left(\frac{296,8}{383,2} \right) = 37,8^{\circ}$$
 Resposta

NOTA: a aplicação deste método é mais conveniente quando comparada às duas aplicações da lei do paralelogramo, primeiro para somar \mathbf{F}_1 e \mathbf{F}_2 , depois para somar \mathbf{F}_3 a essa resultante.

Problemas fundamentais

F2.7. Decomponha cada força que atua sobre o poste em suas componentes x e y.

PROBLEMA F2.7

F2.8. Determine a intensidade e a direção da força resultante.

F2.9. Determine a intensidade da força resultante que atua sobre a cantoneira e sua direção θ , medida no sentido anti-horário a partir do eixo x.

PROBLEMA F2.9

F2.10. Se a força resultante que atua sobre o suporte for 750 N direcionada ao longo do eixo x positivo, determine a intensidade de \mathbf{F} e sua direção θ .

PROBLEMA F2.10