Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	6
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	9
3.1 Алгоритм конструктора класса FirstType	9
3.2 Алгоритм метода setProperties класса SecondType	9
3.3 Алгоритм функции findMax	10
3.4 Алгоритм функции main	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	12
5 КОД ПРОГРАММЫ	15
5.1 Файл FirstType.cpp	15
5.2 Файл FirstType.h	15
5.3 Файл main.cpp	16
5.4 Файл SecondType.cpp	17
5.5 Файл SecondType.h	17
6 ТЕСТИРОВАНИЕ	18
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект первого типа, у которого одно целочисленное свойство. Значение данного свойства определяется посредством параметризированного конструктора.

Создать объект второго типа, у которого две целочисленных свойства. Значение данных свойств определяется посредством метода объекта.

Реализовать дружественную функцию, которая находит максимальное значение полей объекта первого типа и полей объекта второго типа.

Написать программу:

- 1. Вводит значение для поля объекта первого типа.
- 2. Создает объект первого типа.
- 3. Вводит значения полей для полей объекта второго типа.
- 4. Создает объект второго типа.
- 5. Определяет значения полей объекта второго типа.
- 6. Определяет максимальное значение полей, созданных двух объектов разного типа посредством дружественной функции.
 - 7. Выводит полученный результат.

1.1 Описание входных данных

Первая строка:

«целое число в десятичном формате»

Вторая строка:

«целое число в десятичном формате» «целое число в десятичном формате»

1.2 Описание выходных данных

Первая строка, с первой позиции:

max = «целочисленное значение в десятеричном формате»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj1 класса FirstType предназначен для предназначен для функционирования системы;
- объект obj2 класса SecondType предназначен для предназначен для функционирования системы;
- объект cin класса потокового ввода предназначен для предназначен для функционирования системы;
- объект cout класса потокового вывода предназначен для предназначен для функционирования системы;
- функция findMax для нахождение максимального значения среди свойств оюъектов класса 'FirstType' и 'SecondType';
- оператор return вовзрат значения из функции.

Класс FirstType:

- свойства/поля:
 - о поле хранит объект типа 'FirstType':
 - наименование property;
 - тип вещественный;
 - модификатор доступа private;
- функционал:
 - о метод FirstType конструктор.

Класс SecondType:

- свойства/поля:
 - о поле первое свойство объекта типа 'SecondType':
 - наименование property1;
 - тип вещественный;

- модификатор доступа public;
- о поле второе свойство объекта типа 'SecondType':
 - наименование property2;
 - тип вещественный;
 - модификатор доступа public;
- о поле свойство объекта 'FirstType':
 - наименование property;
 - тип вещественный;
 - модификатор доступа private;
- функционал:
 - метод setProperties установка значения обоих свойств 'property1' и 'property2'.

Таблица 1 – Иерархия наследования классов

No	Имя класса		Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
1	FirstType			создание объекта	
2	SecondType			создание объекта	

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса FirstType

Функционал: конструктор.

Параметры: int value.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса FirstType

No	Предикат	Действия		
			перехода	
1		принимается один аргумент типа 'double' и инициализирует приватное	Ø	
		поле 'property' значением этого аргумента при создании объекта		
		класса 'FirstType'		

3.2 Алгоритм метода setProperties класса SecondType

Функционал: установка значения обоих свойств 'property1' и 'property2'.

Параметры: value1, value2.

Возвращаемое значение: отсутсвует.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода setProperties класса SecondType

N₂	Предикат	Действия	
			перехода
1		установка значений для двух свойств объекта класса 'SecondType',	2
		аргумент 'value1' устанавливается в свойство 'property1', аргумент	
		'value2' устанавливается в свойство 'property2'	

N₂	Предикат	Действия	No
			перехода
2		присвоение свойству 'property1' значение переменной 'value1'	3
3		присвоение свойству 'property2' значение переменной 'value2'	Ø

3.3 Алгоритм функции findMax

Функционал: нахождение максимального значения среди свойств объектов классов 'FirstType' и 'SecondType'.

Параметры: константые ссылки на объекты классов 'FirstType' и 'SecondType'.

Возвращаемое значение: целочисленное значение тах.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции findMax

N₂	Предикат	Действия	
	-	. ,	перехода
1		объявление функции 'findMax', которая принимает	2
		два константых ссылочных аргумента	
2		присвоение значений свойств объекта 'first' класса	3
		'FirstType' к переменной max	
3	second.getProperty1() > max	присвоение значений первого свойства объекта	4
		'second' класса 'SecondType' к переменной max	
			4
4	second.getProperty2() > max	присвоение значений второго свойства объекта	5
		'second' класса 'SecondType' к переменной max	
			5
5		вовзрат значения тах	Ø

3.4 Алгоритм функции main

Функционал: основной алгоритм работы программы.

Параметры: отсутсвуют.

Возвращаемое значение: целочисленнный индикатор корректности завершения программы.

Алгоритм функции представлен в таблице 5.

Таблица 5 – Алгоритм функции таіп

N₂	Предикат	Действия	
			перехода
1		объявление дробных переменных value1, value2, value3	2
2		ввод значения переменной value1	3
3		создание объекта класса 'FirstType' с именем 'obj1', и его конструктор вызывается с передачей значения 'value1' - аргумент	4
4		ввод значения переменной value2, value3	5
5		создание объекта класса 'SecondType' с именем 'obj2'	
6		вызов метода 'setProperties' объекта 'obj2' класса 'SecondType' с передачей значений value2, value3 в качестве аргументов	
7		вызов функции 'findMax', в качестве аргументов передаются объекты 'obj1' и 'obj2' , результат функции присваивается переменной 'maxValue'	
8		вывод на экран 'max', значение переменной 'maxValue'	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл FirstType.cpp

Листинг 1 – FirstType.cpp

```
#include "FirstType.h"

FirstType::FirstType(double value) : property(value) {}
```

5.2 Файл FirstType.h

```
#ifndef __FIRSTTYPE__H
#define __FIRSTTYPE__H

#include "SecondType.h"

class SecondType;

class FirstType {
  friend int findMax(const FirstType& first, const SecondType& second);
  private:
     double property;

public:
    FirstType(double value);
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include "FirstType.h"
#include "SecondType.h"
using namespace std;
int findMax(const FirstType& first, const SecondType& second);
int main() {
  double value1, value2, value3;
  cin >> value1;
  FirstType obj1(value1);
  cin >> value2 >> value3;
  SecondType obj2;
  obj2.setProperties(value2, value3);
  double maxValue = findMax(obj1, obj2);
  cout << "max = " << maxValue << endl;</pre>
  return 0;
}
int findMax(const FirstType& first, const SecondType& second) {
  double max = first.property;
  if(second.property1 > max) {
     max = second.property1;
  if(second.property2 > max) {
     max = second.property2;
  return max;
}
```

5.4 Файл SecondType.cpp

Листинг 4 – SecondType.cpp

```
#include "SecondType.h"

void SecondType::setProperties(double value1, double value2) {
   property1 = value1;
   property2 = value2;
}
```

5.5 Файл SecondType.h

Листинг 5 – SecondType.h

```
#ifndef __SECONDTYPE__H
#define __SECONDTYPE__H
#include "FirstType.h"

class FirstType;

class SecondType{
  friend int findMax(const FirstType& first, const SecondType& second);
  private:
     double property1;
     double property2;
  public:

    void setProperties(double value1, double value2);
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
5.0 10.0 20.0	max = 20	max = 20
6.0 10.0 30.0	max = 30	max = 30
25.0 5.0 10.0	max = 25	max = 25

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).