Activités Mentales

24 Août 2023

On pose
$$\forall n \in \mathbb{N}$$
,
$$\begin{cases} u_{n+1} = 9u_n + 16 \\ u_0 = -10 \end{cases}$$
.

- **1** Montrer que (v_n) définie par $v_n = u_n + 2$ est une suite géométrique de raison 9.
- 2 Donner alors v_n en fonction de n et en déduire l'expression de u_n .

On pose
$$\forall n \in \mathbb{N}$$
,
$$\begin{cases} u_{n+1} = 3u_n + 20 \\ u_0 = -3 \end{cases}$$
.

- **1** Montrer que (v_n) définie par $v_n = u_n + 10$ est une suite géométrique de raison 3.
- 2 Donner alors v_n en fonction de n et en déduire l'expression de u_n .

On pose
$$\forall n \in \mathbb{N}$$
,
$$\begin{cases} u_{n+1} = 4u_n + 9 \\ u_0 = -4 \end{cases}$$
.

- **1** Montrer que (v_n) définie par $v_n = u_n + 3$ est une suite géométrique de raison 4.
- 2 Donner alors v_n en fonction de n et en déduire l'expression de u_n .

On pose
$$\forall n \in \mathbb{N}$$
,
$$\begin{cases} u_{n+1} = 6u_n + 10 \\ u_0 = -5 \end{cases}$$
.

- **1** Montrer que (v_n) définie par $v_n = u_n + 2$ est une suite géométrique de raison 6.
- 2 Donner alors v_n en fonction de n et en déduire l'expression de u_n .

On pose
$$\forall n \in \mathbb{N}$$
,
$$\begin{cases} u_{n+1} = 9u_n + 16 \\ u_0 = -6 \end{cases}$$
.

- **1** Montrer que (v_n) définie par $v_n = u_n + 2$ est une suite géométrique de raison 9.
- 2 Donner alors v_n en fonction de n et en déduire l'expression de u_n .

① Montrons que $\forall n \in \mathbb{N}$, $v_{n+1} = 9v_n$ avec $\forall n \in \mathbb{N}$, $\begin{cases} u_n = 9u_n + 16 \\ u_0 = -10 \end{cases}$ et $v_n = u_n + 2$.

$$v_{n+1} = u_{n+1} + 2$$

$$= 9u_n + 16 + 2$$

$$= 9u_n + 18$$

$$= 9(v_n - 2) + 18 \quad \text{car } u_n = v_n - 2$$

$$= 9v_n - 18 + 18$$

$$= 9v_n$$

② On a $v_0 = u_0 + 2 = -10 + 2 = -8$ et $\forall n \in \mathbb{N}$, $v_n = v_0 \times q^n = -8 \times 9^n$. Or comme $u_n = v_n - 2$, on a finalement, $\forall n \in \mathbb{N}$, $u_n = v_n - 2 = -8 \times 9^n - 2$.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト り ぬ の の の 。

Activités Mentales 24 Août 2023

① Montrons que $\forall n \in \mathbb{N}$, $v_{n+1} = 3v_n$ avec $\forall n \in \mathbb{N}$, $\begin{cases} u_n = 3u_n + 20 \\ u_0 = -3 \end{cases}$ et $v_n = u_n + 10$.

$$v_{n+1} = u_{n+1} + 10$$

$$= 3u_n + 20 + 10$$

$$= 3u_n + 30$$

$$= 3(v_n - 10) + 30 \quad \text{car } u_n = v_n - 10$$

$$= 3v_n - 30 + 30$$

$$= 3v_n$$

② On a $v_0 = u_0 + 10 = -3 + 10 = 7$ et $\forall n \in \mathbb{N}, \ v_n = v_0 \times q^n = 7 \times 3^n$. Or comme $u_n = v_n - 10$, on a finalement, $\forall n \in \mathbb{N}, \ u_n = v_n - 10 = 7 \times 3^n - 10$.

$$v_{n+1} = u_{n+1} + 3$$

= $4u_n + 9 + 3$
= $4u_n + 12$
= $4(v_n - 3) + 12$ car $u_n = v_n - 3$
= $4v_n - 12 + 12$
= $4v_n$

② On a $v_0 = u_0 + 3 = -4 + 3 = -1$ et $\forall n \in \mathbb{N}$, $v_n = v_0 \times q^n = -1 \times 4^n$. Or comme $u_n = v_n - 3$, on a finalement, $\forall n \in \mathbb{N}$, $u_n = v_n - 3 = -4^n - 3$.

① Montrons que $\forall n \in \mathbb{N}$, $v_{n+1} = 6v_n$ avec $\forall n \in \mathbb{N}$, $\begin{cases} u_n = 6u_n + 10 \\ u_0 = -5 \end{cases}$ et $v_n = u_n + 2.$

$$v_{n+1} = u_{n+1} + 2$$

$$= 6u_n + 10 + 2$$

$$= 6u_n + 12$$

$$= 6(v_n - 2) + 12 \quad \text{car } u_n = v_n - 2$$

$$= 6v_n - 12 + 12$$

$$= 6v_n$$

② On a $v_0 = u_0 + 2 = -5 + 2 = -3$ et $\forall n \in \mathbb{N}, v_n = v_0 \times q^n = -3 \times 6^n$. Or comme $u_n = v_n - 2$, on a finalement, $\forall n \in \mathbb{N}, u_n = v_n - 2 = -3 \times 6^n - 2$.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

$$v_{n+1} = u_{n+1} + 2$$

$$= 9u_n + 16 + 2$$

$$= 9u_n + 18$$

$$= 9(v_n - 2) + 18 \quad \text{car } u_n = v_n - 2$$

$$= 9v_n - 18 + 18$$

$$= 9v_n$$

② On a $v_0 = u_0 + 2 = -6 + 2 = -4$ et $\forall n \in \mathbb{N}$, $v_n = v_0 \times q^n = -4 \times 9^n$. Or comme $u_n = v_n - 2$, on a finalement, $\forall n \in \mathbb{N}$, $u_n = v_n - 2 = -4 \times 9^n - 2$.