freeCappuccino input file specification guide

March 14th 2021

Description of input parameters and their default values, possible values, description, discussion on status of the code related to it, etc.

The description below refers to fortran namelist file e.g. 'input.nml' that is required to configure the simulation. Not all the parameters have to be present, nor do they have to be in specific order.

Parameter key 🔑	Values 💠	Description 🗩
title	String e.g. 'Laminar flow in cavity'	Descriptive name of the case which will be written in monitor file.
mesh_format	'nativeMesh' 'foamMesh'	Mesh format 'nativeMesh' for native polyMesh format or 'foamMesh' for OpenFOAM poly- Mesh.
lread	T/F	Read restart file - continue simulation from saved state?
ltest	T/F	Verbosity for linear solver convergence (for troubleshooting).
calcU	T/F	Activate Velocity field calculation?
urfU	Real array, size(3), e.g. 0.7, 0.7, 0.7	Under-relaxation factor for mo- mentum equations.
gdsU	Real, e.g. 1.0	gamma-deferred correction parameter for velocity.
cSchemeU	String e.g. 'linearUpwind'	Convection scheme for momentum equation.
dSchemeU	String, e.g. 'skewness'	Diffusion scheme for momentur equation
nrelaxU	Int, e.g. 1	Integer parameter for diffusion scheme - advanced
lSolverU	Sting, e.g. 'bicgstab'	Linear algebraic solver for mo- mentum equation

(continued next page) •

(from previous page)

Parameter key 🔑	Values 💠	Description 9
maxiterU	Int, e.g. 10	Max no of iterations for linear U-V-W equations
tolAbsU	Real, e.g. 1e-13	Absolute tolerance level for residual for linear U-V-W equations
tolRelU	Real, e.g. 0.025	Relative tolerance level for resi ual for linear U-V-W equations
ScndOrderPressIntrp	T/F	Second order (default), or mass flow weighted interpolation of pressure to faces.
calcP	T/F	Activate Pressure field calculation? True/False.
urfP	Real, eg. 0.3	Under-relaxation factor for pre sure
lSolverP	Sting, e.g. 'iccg'	Linear algebraic solver for pres sure/pressure correction
maxiterP	Int, e.g. 50	Max no of iterations for pressure/pressure correction
tolAbsP	Real, e.g. 1e-13	Absolute tolerance level for residual for pressure/pressure correction
tolRelP	Real, e.g. 0.025	Relative tolerance level for resi ual for pressure/pressure corre tion
TurbModel	String, e.g. 'none'	Turbulence model - defined by string code.
urf	Real array, size(8), e.g. 8*0.7	Under-relaxation factors. (Array of 8 values)
gds	8*1.0	Deferred correction factor. (Arra of 8 values)
cScheme	String, e.g. 'linearUpwind'	Convection scheme - default is second order upwind.

Parameter key 🔑	Values 💠	Description 9
dScheme	String, e.g. 'skewness'	Diffusion scheme, i.e. the method for normal gradient at face un- corrected/skewness/offset.
nrelax	Int, e.g. 0	Relaxation parameter non- orthogonal correction for face gradient. {-1/0/1}
lSolver	Sting, e.g. 'bicgstab'	Linear algebraic solver.
maxiter	Int, e.g. 20	Max number of iterations in linear solver.
tolAbs	Real, e.g. 1e-13	Absolute residual level.
tolRel	Real, e.g. 0.01	Relative drop in residual to exit linear solver.
calcVis	T/F	Activate dynamic viscosity recal- culation (Non-Newtonian flows)
non_newtonian_model	String, e.g. 'PowerLaw'	Self-explanatory
npow	Real, e.g. 0.4	Exponent for power-law fluids
Consst	Real, e.g. 10.0	Consistency index for power-law fluids
shearmin	Real, e.g. 1e-3	Lower limit for the shear rate magnitude for power-law fluids
Tau_0	Real	Yield stress
megp	Real	Exponential growth parameter
muplastic	Real	Plastic viscosity
muzero	Real	Zero shear rate viscosity
muinfty	Real	Infinity shear rate viscosity
lamtime	Real	Natural time - time parameter
urfVis	Real, e.g. 0.8	Under-relaxation parameter

(continued next page) **3**

(from previous page)

Parameter key 🔑	Values 💠	Description 9
calcT	T/F	Activate Temperature equation calculation? True/False.
urfT	Real, e.g. 0.7	Under-relaxation factors.
gdsT	Real, e.g. 1.0	Deferred correction factor.
cSchemeT	String, e.g. 'linearUpwind'	Convection scheme - default is second order upwind.
dSchemeT	String, e.g. 'skewness'	Diffusion scheme, i.e. the metho for normal gradient at face skew ness/offset.
nrelaxT	Int, e.g. 0	Relaxation parameter non- orthogonal correction for face gradient. Advanced.
lSolverT	String, e.g. 'bicgstab'	Linear algebraic solver.
maxiterT	Int, e.g. 20	Max number of iterations in linear solver.
tolAbsT	Real, e.g. 1e-15	Absolute residual level.
tolRelT	Real, e.g. 0.01	Relative drop in residual to exit linear solver.
sigt	Real, e.g. 0.9	sigma_t - Prandtl-Schmid num- ber for temperature.
calcEn	T/F	Activate Energy field calculation True/False.
urfEn	Real, e.g. 0.9	Under-relaxation factors.
gdsEn	Real, e.g. 1.0	Deferred correction factor.
cSchemeEn	String, e.g. 'linearUpwind'	Convection scheme - default is second order upwind.

Parameter key 🔑	Values 🗫	Description 9
dSchemeEn	String, e.g. 'skewness'	Diffusion scheme, i.e. the metho for normal gradient at face skew ness/offset.
nrelaxEn	Int, e.g. 0	Relaxation parameter non- orthogonal correction for face gradient.
lSolverEn	String, e.g. 'bicgstab'	Linear algebraic solver type (see list below).
maxiterEn	Int, e.g. 20	Max number of iterations in linear solver.
tolAbsEn	Real, e.g. 1e-15	Absolute residual level.
tolRelEn	Real, e.g. 0.01	Relative drop in residual norm t exit linear solver.
sigtEn	Real, e.g. 0.9	Prandtl-Schmid number for energy equation.
solveTotalEnergy	T/F	What we solve here - default is total energy, but other options are
solveInternalEnergy	T/F	internal energy, or
solveEnthalpy	T/F	enthaply.
addViscDiss	T/F	Add viscous dissipation term? True/False.
lbuoy	T/F	Buoyancy activated? True/False
boussinesq	T/F	Bousinesq approximation for buoyancy.
tref	Real, e.g. 300.0	Reference temperature for buoy ant flows.
gravx	Real, e.g. 0.0	Three components of gravity ve tor.
gravy	Real, e.g9.81	-

(continued next page) **3**

(from previous page)

Parameter key 🔑	Values 💠	Description 9
gravz	Real, e.g. 0.0	-
calcCon	T/F	Activate passive scalar concentration field calculation? True/False.
urfCon	Real, e.g. 0.7	Under-relaxation factors.
gdsCon	Real, e.g. 1.0	Deferred correction factor.
cSchemeCon	String, e.g. 'linearUpwind'	Convection scheme - default is second order upwind.
dSchemeCon	String, e.g. 'skewness'	Diffusion scheme, i.e. the methor for normal gradient at face skew ness/offset.
nrelaxCon	Int, e.g. 0	Type of non-orthogonal cor- rection for face gradient minimal/orthogonal/over- relaxed. 1/0/-1.
lSolverCon	String, e.g. 'bicgstab'	Linear algebraic solver.
maxiterCon	Int, e.g. 20	Max number of iterations in linear solver.
tolAbsCon	Real, e.g. 1e-15	Absolute residual level.
tolRelCon	Real, e.g. 0.01	Relative drop in residual to exit linear solver.
sigCon	Real, e.g. 0.9	Prandtl-Schmidt number for passive scalar concentration
calcEpot	T/F	Activate Electric potential field calculation? True/False.
urfEpot	Real, e.g. 0.8	Under-relaxation factor.
gdsEpot	Real, e.g. 1.0	Deferred correction factor.

Parameter key 🔑	Values 🗱	Description 9
lSolverEpot	Sting, , e.g. 'iccg'	Linear algebraic solver.
maxiterEpot	Int, e.g. 20	Max number of iterations in linear solver.
tolAbsEpot	Real, e.g. 1e-15	Absolute residual level.
tolRelEpot	Real, e.g. 0.01	Relative drop in residual to exit linear solver.
densit	Real, e.g. 1.0	Fluid density.
viscos	Real, e.g. 1e-2	Molecular dynamic viscosity.
pranl	Real, e.g. 0.71	Prandtl coefficient for specific fluid.
beta	Real, e.g. 1e-3	Thermal expansion coefficient.
lsgdh	T/F	Simple gradient hypothesis for heat-fluxes, or
lggdh	T/F	Generalized gradient hypothes for heat fluxes, or
lafm	T/F	Algebraic flux modelling for heal
facnap	Real, e.g. 1.0	Under-relaxation factor for Reynolds stresses.
facflx	Real, e.g. 1.0	Under-relaxation factor for heafluxes.
ltransient	T/F	Unsteady simulation True/Fals and chose ONE algorithm belo
bdf	T/F	Backward-Euler; First-Order Im plicit, or
bdf2	T/F	Second-Order Backward Euler; Second-Order Implicit, or
bdf3	T/F	Third-order backard, or

(continued next page) **3**

(from previous page)

Parameter key 🔑	Values 💠	Description 9
CN	T/F	Crank-Nicolson.
lstsq	T/F	Gradient approximation, chose ONE: Unweighted Least-Square gradient approximation, or
lstsq_qr	T/F	Least square gradients based on thin QR decomposition, or
lstsq_dm	T/F	Distance-square weighted version of Least-Square Gradient, or
gauss	T/F	Cell based Gauss gradient with simple linear interpolation.
nigrad	Int, e.g. 1	Number of iterations for Gauss gradient approximation.
limiter	String, e.g. 'Venkatakrishnan'	Gradient limiter - global for all gradients (none, Barth-Jespersen, Venkatakishnan, MDL)
SIMPLE	T/F	Pressure-velocity coupling method - SIMPLE, or
PISO	T/F	Pressure-velocity coupling method - PISO.
ncorr	Int, e.g. 1	Number of PISO corrections - only relevant for PISO.
npcor	Int, e.g. 1	Number of iterations for pressure/pressure correction equation - Number of Nonorthogonal corrections.
pRefCell	Int, e.g. 1	Reference cell for setting pres- sure level (since we have pure Neumann problem)
tolerance	Real, e.g. 1e-5	Desired level of convergence for SIMPLE iterations.
numstep	Int,	Total number of timesteps.

Parameter key 🔑	Values 🗫	Description 9
timestep	Real, e.g. 1e-3	Timestep size - also known as d
nzapis	Int, e.g. 100	Program writes output files eve NZAPIS timesteps.
maxit	Int, e.g. 1	Number of iterations in SIMPLE or PISO sequential equation solution loop.
CoNumFix	T/F	Adaptive timestep size based on target Courant number? True/False.
CoNumFixValue	Real, e.g. 1.0	If CoNumFix=True then set targe maximum Courant number here
const_mflux	T/F	Do we have constant mass flow in the domain? True/False.
magUbar	Real, e.g. 1.0	If const_mflux=True then set tal get bulk velocity for constant mass flow situation.

Possible **linear algebraic solvers** are: 'gauss_seidel', 'dpcg', 'iccg', 'bicgstab'. Most computational effort goes into solution of pressure Poisson equation, which is symmetric, positive definite. Use Incomplete Cholesky Conjugate Gradient (ICCG) for that one. For other transport equations with non-symmetric matrices Bi-CGStab is good option. Using LIS library enables greater choice for precodnitioner/solver combinations, when necessary.

Possible convection schemes are: 'cds', 'central', 'linearUpwind', etc.