

SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 02.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : EEE F312
Course Title : Power Systems
Instructor-in-Charge : Dheerendra Singh

Instructor(s) :

Tutorial/Practical Instructors: Dheerendra Singh, Hari Om Bansal, Rajneesh Kumar

- **1. Course Description:** Review and importance of power system, Present power system scenario, Transmission line parameters and modeling, Characteristics and performance of lines, Load flow studies, Optimal system operation, Automatic Generation and voltage Control, Power system fault analysis, Power Systems stability, Introduction of power system protection, Introduction of HVDC Transmission.
- **2. Scope and Objective of the Course:** This course aims at introducing the students to the basic features of the modern power systems, analysis and operation under steady state and transient conditions. Students will be also familiar with Power system related simulation tools
- 3. Text Books: Nagrath I.J. & D.P.Kothari, "Power System Engineering" 2nd Edition, TMH, 2008
- 4. Reference Books: 1- P. Kundur "Power System Stability And Control" 1st Edition, TMH, 1994
 - 2- C.L. Wadhwa "Electrical Power Systems" Sixth Edition, New Age Int. Publishers

5. Course Plan:

Module No.	Lecture Session	Learning outcomes	Reference
1	L 1.1 Introduction	Basics of power system, Indian power system scenario	1.1-1.4 (RB)
Transmission Line Parameters	L 1.2-1.4 Transmission line modeling	Inductance calculations for single and three phase configurations	2.1 to 2.8 (TB)
Calculation	L 1.5-1.6 Transmission line modeling	Inductance calculations for double circuit bundle conductors resistance, skin & proximity effect	2.9 to 2.12(TB)
	L 1.7-1.8 Transmission line modeling	Simple capacitance calculations	3.1 to 3.6 (TB)

L 1.9	Effect of earth, methods of GMD (Modified)	3.7 to 3.9
Transmission	bundle conductors.	(TB)
line modeling		

	L 2.1 P.U System	One line diagram and per unit system	4.3 to 4.4 (TB)
2 Modelling & Performance Analysis of Transmission Lines	L 2.2-2.4 Analysis of short and medium lines Characteristics and performance of lines		5.1 to 5.3 (TB)
	L 2.5 Characteristics and performance of lines	Long transmission lines, Equivalent circuit of long lines,	5.4 to 5.5 (TB)
	L 2.6-L2.7 Characteristics and performance of lines	Ferranti effect, tuned power lines.	5.7 to 5.8 (TB)
3 Load Flow	L3.1 Load flow studies	Introduction and importance	6.1 to 6.2 (TB)
Studies, Economic	L3.2-3.3 Load flow studies	Y Bus formulation, load flow problem	6.3 to 6.4 (TB)
Load Dispatch, Load freq. Control	L3.4 Optimal system operation	Optimal operation, Unit commitment	7.1 to 7.3 (TB)
	L3.5-L3.6 Automatic Generation and Voltage Control	Load frequency control	8.1 to 8.2 (TB) 11.1-11.2 (RB)
4 Fault	L4.1-4.2 Symmetrical Fault Analysis	Transient Short Circuits	9.1 to 9.3 (TB)
Analysis	L4.3-4.4 Symmetrical Fault Analysis	Short circuit and load selection of circuit breakers	9.4 to 9.5 (TB)
5	L5.1-5.2 Symmetrical Components	Transformation, phase shift	10.1 to 10.3 (TB)

		_		
	Symmetrical Components	L5.3-5.4 Symmetrical Components	Sequence impedances of line generation and transformers	10.4 to 10.8 (TB)
		L5.5-5.6 Symmetrical components	Construction of sequence networks	10.9 (TB)
		L5.7 Unsymmetrical fault analysis	Line to ground, line to line, and double line to ground faults, open conductor fault	11.1 to 11.6 (TB)
	6 Power System	L6.1 Power Systems stability	Dynamic of a synchronous machine	12.1 to 12.2 (TB)
	Stability	L 6.2-6.3 Power system stability	Steady-state stability of simple systems	12.3 to 12.6 (TB)
		L 6.4 Power system stability	Equal area criterion	12.7 to 12.8 (TB) 12.1-12.2 (RB)
	7	L 7.1 Circuit Breakers	Transients, rating and arc extinction	14.1 to 14.3
	Power System Protection	L7.2 Power system protection	Protective zones	15.1 to 15.2
8		L 8.1 Advanced topics in Power Systems	Advanced topics in Power Systems (Data Analytics for Smart Grid)	Course material

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test	90 Min.	30% (90 Marks)	<test_1></test_1>	СВ
Comprehensive Examination	2 h	40% (120 Marks)	<test_c></test_c>	CB + OB
Assignment		10% (30 Marks)		
Quizzes	15 Min	20% (60 Marks)		

Division website (https://academic.bits-pilani.ac.in/)* for revised comprehensive exam date and time.

- **7. Chamber Consultation Hour**: To be announced in the class.
- **8. Notices:** Notices will be posted on Nalanda.
- **9. Make-up Policy:** Make-up will be granted on genuine grounds only.
- **10. Note (if any):**

Instructor-in-charge Course No. EEE F312