LISTA 05: FIS670 - Métodos Computacionais da Física. (Prof. Leandro Rizzi)

Exercício 1. Considere uma população descrita pelo número de indivíduos P_n em um dado tempo n e que evolui segundo a relação de recorrência: $P_{n+1} = P_n(a - bP_n)$ com $n \in \mathbb{N}$. Fazendo $P_n = (a/b)x_n$ e a = 4r obtemos a seguinte aproximação para o modelo de Verhulst (vide Lista 04),

$$x_{n+1} = 4rx_n(1 - x_n) \quad ,$$

com $0 \le x_n \le 1$. Dada a condição inicial x_0 e a taxa de crescimento $0 < r \le 1$, os valores x_n para n = 0, ..., N definem uma trajetória que descreve a evolução da população do sistema. Também nos referimos à relação acima como um mapa unidimensional ou mapa logístico, definido pela(o) transformação (mapeamento) $x_{n+1} = f_r^{(1)}(x_n)$.

Dependendo do valor de r e de x_0 é interessante analisar a convergência de x_n para um valor x^* no limite $n \gg 1$. Isso pode ser feito, por exemplo, considerando duas condições iniciais parecidas, $x_0 \approx x_0$, e observando o que ocorre com a diferença entre as trajetórias, $\Delta x_n = |x_n' - x_n|$. Assumindo a relação $\Delta x_n = \Delta x_0 e^{n\lambda_r}$, podemos definir uma estimativa para o expoente de Lyapunov [1] como:

$$\lambda_r = \frac{1}{N} \ln \left| \frac{\Delta x_N}{\Delta x_0} \right| = \frac{1}{N} \sum_{n=0}^{N-1} \ln \left| \frac{\Delta x_{n+1}}{\Delta x_n} \right| , \qquad (1)$$

que, a princípio, é válida nos limites $N \gg 1$ e $\Delta x_0 \ll 1$. Na prática, no entanto, consideramos a aproximação $|\Delta x_{n+1}/\Delta x_n| \approx |(df_r^{(1)}/dx)_{x=x_n}| = |f_r'^{(1)}(x_n)|$, assim

$$\lambda_r = \frac{1}{N} \sum_{n=0}^{N-1} \ln |f_r'^{(1)}(x_n)| . {2}$$

A partir do sinal de λ_r é possível avaliar a estabilidade das trajetórias para um dado valor de r. Por exemplo, se $\lambda_r < 0$, então $\Delta x_n = \Delta x_0 \, e^{n\lambda_r} \to 0$ e x_n deve convergir para algum ponto fixo estável x^* quando $n \gg 1$, mas se $\lambda_r > 0$, então o valor de Δx_n pode divergir e x_n não converge para nenhum valor. Quando há um ponto fixo estável x_i^* , o conjunto de valores $\{x_0\}_i$ que levam a trajetória para x_i^* definem o que chamamos de bacia de atração.

- a) Analiticamente, os pontos fixos x_i^* , e.g. estáveis ou instáveis, são determinados através da igualdade $f_r^{(1)}(x_i^*) = x_i^*$ e a estabilidade desses pontos pode ser avaliada observando os valores de $|f_r^{\prime(1)}(x_i^*)|$. Se $|f_r^{\prime(1)}(x_i^*)| < 1$ o ponto x_i^* é estável (atrator); se $|f_r^{\prime(1)}(x_i^*)| > 1$, o ponto x_i^* é instável (repulsor); se $|f_r^{\prime(1)}(x_i^*)| = 1$, então x_i^* é marginal (indiferente); e se $|f_r^{\prime(1)}(x_i^*)| = 0$, o ponto x_i^* é dito superestável. Considerando esses critérios, obtenha os pontos fixos x_1^* e x_2^* e os intervalos de valores de r nos quais cada um deles é estável ou instavél.
- b) Considerando as seguintes condições iniciais: $x_0 = 0.1$, $x_0 = 0.3$, $x_0 = 0.5$, $x_0 = 0.7$ e $x_0 = 0.9$, grafique as trajetórias x_n para r = 0.24 e r = 0.26 com N = 40. Quais os valores de $x^* = x_N$ (N = 500) para esses valores de r? Esses valores são condizentes com a análise de estabilidade obtida no item (a)?
- c) Utilizando os mesmos valores das condições iniciais do item (b), obtenha trajetórias para encontrar os valores de x^* para r = 0.33, r = 0.43, r = 0.53, r = 0.63 e r = 0.73. Faça um gráfico de x^* e 1/r e compare com a relação obtida através da análise de estabilidade do item (a).
- d) Para certos valores de r é possível observar trajetórias com um comportamento periódico no limite $n \gg 1$ onde p valores, $x_1^*, x_2^*, \dots, x_p^*$, são repetidos ciclicamente. Tais valores definem um ciclo-p e podem ser determinados pela relação $x_{n+p} = f_r^{(p)}(x_n) = x_n$. Considerando as condições iniciais $x_0 = 0.1$ e 0.9, grafique trajetórias com N = 100 para r = 0.85, r = 0.87, r = 0.89 e r = 0.96. A partir dos gráficos, encontre o período p do ciclo para cada um desses valores de r.
- e) Considere r=0.91 e duas trajetórias com N=120 partindo de condições iniciais próximas, $x_0=0.5000$ e $x_0'=0.5001$. Faça os gráficos das duas trajetórias e também da diferença Δx_n . Calcule o expoente de Lyapunov λ_r utilizando a expressão (2) com $N=10^5$ e comente o que era esperado para a estabilidade das trajetórias para esse valor de r.
- f) Variando r de 0.001 e fazendo $N=10^5$, utilize a expressão (2) para encontrar os valores dos expoentes de Lyapunov λ_r no intervalo $r \in]0,1[$. Grafique λ_r por r e compare com os resultados da ref. [1]. Confira se os resultados dos items anteriores estão condizentes com os valores de λ_r obtidos.
- g) Liste os valores de λ_r mais próximos de zero para $r \geq 0.7$ calculados no item (f) e compare com os valores da ref. [1] (Tabela 6.1). Quando $\lambda_{r_k} = 0$ dizemos que r_k corresponde à um ponto de bifurcação onde, por exemplo, os períodos dobram. Discuta a relação desses pontos com a constante de Feigenbaum $\delta = 4.6692...$

Exercício 2. Considere a equação diferencial $dy/dt = -y/\tau = g(y)$. Nesse caso, uma estimativa numérica w_i para a solução exata $\bar{y}(t) = y_0 e^{-t/\tau}$ pode ser obtida, por exemplo, através do método de Euler (vide Lista 04), que é definido pela relação de recorrência $w_{i+1} = w_i + hg(w_i)$, ou seja, pela(o) transformação (mapeamento)

$$f_r^{(1)}(w_i) = w_{i+1} = (1-r)w_i$$
,

onde $r = h/\tau$ e $w_0 = y_0$. Com isso, fica evidente que a estabilidade do método de Euler com um passo de tamanho h pode ser avaliada utilizando a mesma análise descrita no Exercício 1.

a) Assumindo $y_0=1$ e $\tau=1$, obtenha o ponto fixo $f_r^{(1)}(w^*)=w^*$ e indique o intervalo $]0,h_{\max}[$ para o qual h fornece $|f_r'^{(1)}(w^*)|<1$. Faça gráficos de w_i considerando passos de tamanho $h\ll h_{\max}$ e $h=h_{\max}\pm\varepsilon$ com $\varepsilon=0.1$ e $\varepsilon=0.5$ para $t_i=ih\leq 25$. Inclua também no gráfico a solução exata $\bar{y}(t)$. Verifique que o valor de h_{\max} calculado no item (a) também pode ser obtido através da análise da "matriz" de amplificação G (veja as págs. 92 e 93 de [2]). b) Considere agora o seguinte sistema de EDOs:

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right)$$

onde \dot{x} e \dot{y} denotam as derivadas de x e y em relação ao tempo t, respectivamente. Considerando o método de Euler com passo h e identificando $\dot{x}=g_x(x,y)=ax+by$ e $\dot{y}=g_y(x,y)=cx+dy$, determine as funções de mapeamento através das estimativas $w_{i+1}^x=f_{\mathbf{M},h}^{(x)}(w_i^x,w_i^y)$ e $w_{i+1}^y=f_{\mathbf{M},h}^{(y)}(w_i^x,w_i^y)$. Com isso, a matriz \mathbf{G} é definida como [2]:

$$\mathbf{G} = \begin{pmatrix} \partial_x f_{\mathbf{M},h}^{(x)} & \partial_x f_{\mathbf{M},h}^{(y)} \\ \partial_y f_{\mathbf{M},h}^{(x)} & \partial_y f_{\mathbf{M},h}^{(y)} \end{pmatrix} ,$$

onde **M** denota o conjunto de parâmetros (a,b,c,d). Como o sistema é definido por duas equações diferenciais, a análise de estabilidade deve ser feita considerando a seguinte condição (vide ref. [2]) para os dois autovalores da matriz **G**: $|\lambda_{\mathbf{M},h}^{(1)}| < 1$ e $|\lambda_{\mathbf{M},h}^{(2)}| < 1$. A partir dessa análise, determine o intervalo de estabilidade para o tamanho do passo h considerando $w_0^x = x_0 = 2$, $w_0^y = y_0 = -3$, a = 1, b = 1, c = 4 e d = -2. Faça gráficos de w_i^x e w_i^y no intervalo $t_i \in [0,20]$ comparando com as soluções exatas $\bar{x}(t)$ e $\bar{y}(t)$ (vide pág. 131 de [3]). Considere dois valores distintos de h e discuta qual foi o seu critério de escolha.

Exercício 3. Considere um oscilador harmônico amortecido e forçado definido por uma massa m presa à uma haste leve de comprimento l tal como ilustrado na Figura ao lado. O movimento do pêndulo é determinado pela equação de Newton $ma_t = f_g + f_r + f_d$, onde $a_t = l \, d^2 \theta / dt^2$ é a aceleração tangencial, $f_g = -mg \, {\rm sen} \theta$ é a contribuição da gravidade ao longo da direção do movimento, $f_r = -\kappa v$ é uma força resistiva, sendo $v = l \, d\theta / dt$ a velocidade da massa, e $f_d(t) = f_0 \, {\rm cos} \omega_0 t$ é uma força devido a um torque externo no eixo de rotação. A equação de movimento pode ser reescrita na forma adimensional (i.e. com o tempo dado em unidades de $\sqrt{l/g}$) como

$$\frac{d^2\theta}{dt^2} + q\frac{d\theta}{dt} + \mathrm{sen}\theta = b\,\mathrm{cos}\omega_0 t \ ,$$

com $q=\kappa/m$ e $b=f_0/ml$. Como discutido na Lista 04 podemos transformar EDOs de segunda ordem em duas EDOs de primeira ordem acopladas. Escolhendo $y_1=\theta$ e $y_2=\omega=d\theta/dt$ temos

$$\frac{dy_1}{dt} = y_2 \qquad \text{e} \qquad \frac{dy_2}{dt} = -qy_2 - \sin y_1 + b\cos \omega_0 t \quad .$$

Dependendo dos parâmetros q, b e ω_0 podemos ter uma dinâmica bem diferente para as soluções $\theta(t)$ e $\omega(t)$.

- a) Utilize o método de Runge-Kutta de quarta ordem para resolver o sistema de EDOs acima (vide Lista 04). Grafique pontos no espaço de fase $\omega(t_i)$ por $\theta(t_i)$ com $t_i=ih$ com $i=0,\ldots,10000$ e $h=0.1\pi$ considerando os parâmetros $q=0.5,\ b=0.9$ e $\omega_0=2/3$ e as condições iniciais $\theta(0)=0$ e $\omega(0)=2$ (plote menos pontos se o gráfico estiver "poluído", e.g. pule 9 pontos a cada 10). Note que, por causa da natureza do problema, devemos confinar $\theta(t)$ no intervalo $[-\pi,\pi]$, ou seja, se θ sair desse intervalo transladamos ele de volta, i.e. $\theta(t)\to\theta(t)\pm 2m\pi$, com m intervalo intervalo $[-\pi,\pi]$, ou seja, se θ sair desse intervalo transladamos ele de volta, i.e. $\theta(t)\to\theta(t)\pm 2m\pi$, com m intervalo $[-\pi,\pi]$.
- b) Repita o item (a) considerando os parâmetros q=0.5, b=1.15 e $\omega_0=2/3$.
- c) Discuta o que ocorre para os dois conjuntos de parâmetros (q, b, ω_0) considerados nos items (a) e (b). Faça gráficos de $\theta(t)$ e $\omega(t)$ em função de t considerando (para cada conjunto de parâmetros) duas trajetórias com condições iniciais bem próximas entre si e semelhantes as do item (a).

Referências:

- [1] H. Gould, J. Tobochnik, W. Christian. An introduction to computer simulation methods: Applications to physical system (agosto de 2016).
- [2] F. J. Vesely. Computational Physics: An introduction (2nd ed., Livaria da Física, 2001).
- [3] S. H. Strogatz. Nonlinear dynamics and chaos with applications to Physics, Biology, Chemistry, and Engineering (Perseus Books, 1994).