CS 228 : Logic in Computer Science

Krishna, S

Satisfiability of FOL

Given a formula in FOL over some signature τ , is it satisfiable?

2/2

Herbrand Theory

- Named after the French mathematician Jacques Herbrand
- ► Famous for Herbrand's Theorem, which allows a certain reduction from FOL to propositional logic
- ▶ Herbrand's theorem allows reducing a FOL formula φ in Skolem Normal Form to an infinite set $E(\varphi)$ of propositional formulae s.t. φ is satisfiable iff $E(\varphi)$ is satisfiable
- ▶ If $E(\varphi)$ is not satisfiable, then $\emptyset \in Res^*(E(\varphi))$, and we can derive this in finite number of steps
- ▶ As $E(\varphi)$ may be infinite, there is no way to say $\emptyset \notin Res^*(E(\varphi))$.

Herbrand Universe

Herbrand Universe

Let τ be a signature. The Herbrand universe for τ is the set of all ground terms.

- ▶ If τ contains a constant c and unary function f, then the Herbrand universe contains c, f(c), f(f(c)), f(f(f(c))), . . .
- ▶ If τ contains a constant c and unary function f and binary function g, then the Herbrand universe contains $c, g(c, c), f(c), g(c, f(c)), g(g(f(f(c)), c), f(c)), \dots$
- ▶ If τ has no constants, then the Herbrand universe is empty
- \blacktriangleright If τ has no functions, then the Herbrand universe consists of the constants of τ

Herbrand Structures

Herbrand Structures

A structure $\mathcal A$ over a signature τ is a Herbrand structure if its underlying universe is a Herbrand universe.

- ▶ If the signature τ has no relations, then there is a unique Herbrand structure for τ
- If the signature τ has relations, then there are many Herbrand structures over τ depending on how you interpret them.
 - ▶ If τ contains a constant c, function f and a unary relation R, then
 - $A = (U^A = \{c, f(c), f(f(c)), \dots, \}, R^A = \{c, f(c)\})$ is a Herbrand structure for τ .
 - $A = (U^A = \{c, f(c), f(f(c)), \dots, \}, R^A = \{f(c), f(f(f(f(c))))\})$ is a Herbrand structure, and so on.

Herbrand Signature

Let Γ be a set of sentences over a signature τ .

- ▶ The Herbrand signature for Γ denoted $\tau_H = \tau \cup \{c\}$ if τ contains no constants, else it is τ .
- ▶ The Herbrand universe for Γ denoted $H(\Gamma)$ is τ_H .

Herbrand Model

A Herbrand model for Γ is a Herbrand structure M over τ_H such that $M \models \varphi$ for all $\varphi \in \Gamma$.

FO without equality

Let us focus on FO without "=". Recall that "=" is always interpreted as equality.

Herbrand Theorem

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a set of equality-free sentences in Skolem Normal Form. Then Γ is satisfiable iff Γ has a Herbrand model.

If Γ has a Herbrand model, clearly Γ is satisfiable. The converse needs a proof.

The converse

Assume Γ is satisfiable. Let τ_H be the Herbrand signature for Γ.

- Let A be a τ_H structure such that $A \models \Gamma$. (U^A need not be the Herbrand universe)
- Let \mathcal{B} be a Herbrand structure over τ_H . ($U^{\mathcal{B}}$ is the Herbrand universe)
- **Try** "merging" A and B to obtain a Herbrand model M for Γ.
 - ▶ Define *M* so that its universe is the Herbrand universe over τ_H .
 - ► Let *M* interpret functions and constants like *B* (both have the same Herbrand universe)
 - Let M interpret relations like A (not obvious, their universes are not the same.)

Building the Herbrand Model *M*

- ▶ Let *R* be ant *n*-ary relation in τ_H (hence in τ).
- ► For each *n*-tuple $(t_1, ..., t_n)$ with t_i coming from the Herbrand universe $H(\Gamma)$, we must say whether $(t_1, ..., t_n) \in R^M$ or not
- ▶ Each t_i ∈ H(Γ) is a ground term in τ_H (so variable free).
- Since A is a structure over τ_H , we know for each n-tuple (t_1, \ldots, t_n) , whether $(t_1, \ldots, t_n) \in R^A$ or not
- ▶ Define $R^M = R^A$.
- ▶ Now we prove that if $A \models \varphi$ for any $\varphi \in \Gamma$, then $M \models \varphi$.
- ▶ The proof is by induction on the number of quantifiers in φ . Recall that each φ is in Skolem Normal Form.

Base case : φ has 0 quantifiers

 $A \models \varphi$ iff $M \models \varphi$. Do structural induction on φ .

- Assume φ is an atomic formula. Then φ is $R(t_1, \ldots, t_n)$ where R is an n-ary relation from τ_H , and t_1, \ldots, t_n are all terms from $H(\Gamma)$.
- ▶ By the construction of M, $R^M = R^A$.
- ▶ Hence $M \models \varphi$ iff $A \models \varphi$.
- ▶ Same reasoning holds for $\varphi_1 \land \varphi_2$, $\varphi_1 \land \varphi_2$ and $\neg \varphi$.
- ▶ Hence, $A \models \varphi$ iff $M \models \varphi$.

Post Inductive Hypothesis

Assume that for any $\psi \in \Gamma$ with $\leqslant k-1$ quantifiers, if $\mathcal{A} \models \psi$, then $M \models \psi$. Let $\varphi \in \Gamma$ have k quantifiers, $\forall x_1 \forall x_2 \dots \forall x_k \ \zeta(x_1, \dots, x_k)$ where ζ is quantifier free.

- ▶ Let $\kappa(x_1) = \forall x_2 \dots \forall x_k \ \zeta(x_1, \dots, x_k)$, and $\varphi = \forall x_1 \kappa(x_1)$.
- $\mathcal{A} \models \varphi$ implies $\mathcal{A} \models \forall x_1 \kappa(x_1)$. That is, $\mathcal{A} \models \kappa(a)$ for any $a \in U^{\mathcal{A}}$.
- ▶ Since A is a structure over τ_H , if $t \in H(\Gamma)$ is a ground term from τ_H , A interprets t as an element of U^A .
- ▶ Thus, $A \models \kappa(t)$ for any $t \in H(\Gamma)$.
- ▶ By induction hypothesis, $M \models \kappa(t)$ for any $t \in H(\Gamma)$.
- ▶ Since $H(\Gamma)$ is the universe of M, $M \models \forall x_1 \kappa(x_1)$. That is, $M \models \varphi$.

Dealing with Equality

Assume φ is in Skolem Normal Form and uses "=". We define a equisatisfiable formula φ_E which does not use "=".

- ▶ Let τ be the signature of φ . Let E be a binary relation not in τ .
- Let φ_{\neq} be the sentence obtained by replacing all occurrences of $t_1 = t_2$ in φ with $E(t_1, t_2)$.
- ▶ Define φ_{ER} to be the sentence

$$\forall x \forall y \forall z (E(x,x) \land ((E(x,y) \leftrightarrow E(y,x)) \land (E(x,y) \land E(y,z) \rightarrow E(x,z)))$$

▶ For each relation R in τ , define φ_R as

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n ((\bigwedge_{i=1}^n E(x_i, y_i) \land R(x_1, \ldots, x_n)) \rightarrow R(y_1, \ldots, y_n))$$

▶ Let $\varphi_1 = \bigwedge_{R \in \tau} \varphi_R$

12/2

Dealing with Equality

▶ For each function f in τ , define φ_f as

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n ((\bigwedge_{i=1}^n E(x_i, y_i) \rightarrow E(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)))$$

- ▶ Let $\varphi_2 = \bigwedge_{f \in \tau} \varphi_f$
- ▶ Let $\psi_E = \varphi_{\neq} \wedge \varphi_{ER} \wedge \varphi_1 \wedge \varphi_2$
- ▶ Convert ψ_E to Prenex normal form to obtain φ_E in Skolem normal form

For any formula φ in Skolem normal form, φ is satisfiable iff φ_E is satisfiable

An Example

- $\varphi = \forall x [(f(x) \neq x) \land (f(f(x)) = x)].$
 - φ is satisfiable : $\mathcal{A} = (\{c,d\}, f^{\mathcal{A}}(c) = d, f^{\mathcal{A}}(d) = c)$ and $\mathcal{A} \models \varphi$.

 - $\varphi_2 = \forall x \forall y [E(x,y) \rightarrow E(f(x),f(y)]$
 - ▶ Conjunct $\varphi_{\neq}, \varphi_2$ and φ_{ER} and convert to Prenex normal form
 - $\varphi_{E} = \forall x \forall y \forall z [(\neg E(f(x), x) \land E(f(f(x)), x)) \land (E(x, y) \rightarrow E(f(x), f(y))) \land E(x, x) \land (E(x, y) \land E(y, z) \rightarrow E(x, z))]$
 - ▶ By Herbrand's Theorem, φ_E has a Herbrand model $M = (\{c, f(c), f(f(c)), \dots, \}, E^M = \{(t, t') \in H(\varphi_E) \mid \text{the number of } f$'s in both t, t' have the same parity $\}$)
 - $ightharpoonup M \models \varphi_E$

Herbrand's Method

Given a FO sentence φ , is it satisfiable? Wlg, assume that φ is equality-free and is in Skolem normal form.

- ▶ Let $\varphi = \forall x_1 \dots \forall x_n \psi(x_1, \dots, x_n)$
- Let $H(\varphi)$ be the Herbrand universe of φ
- Let $E(\varphi) = \{ \psi(t_1, \dots, t_n) \mid t_1, \dots, t_n \in H(\varphi) \}$ be the set obtained by substituting terms from $H(\varphi)$ for the variables x_1, \dots, x_n in φ
- φ is satisfiable iff $E(\varphi)$ is satisfiable

Herbrand's Method

- ▶ Assume φ is satisfiable. Then $\mathcal{A} \models \forall x_1, \dots, x_n \psi(x_1, \dots, x_n)$
- ▶ Then $\mathcal{A} \models \psi(t_1, \dots, t_n)$ where $t_1, \dots, t_n \in \mathcal{H}(\varphi)$
- ▶ Then $A \models \varphi_i$ for all $\varphi_i \in E(\varphi)$
- ▶ Hence, $E(\varphi)$ is satisfiable.

Herbrand's Method

- Assume $E(\varphi)$ is satisfiable. Then by Herbrand's Theorem, there is a Herbrand model M for $E(\varphi)$.
- ▶ The Herbrand signature for $E(\varphi)$ is the same as the Herbrand signature of φ .
- ▶ The universe of M is $H(\varphi)$
- ► For $t_1, \ldots, t_n \in H(\varphi)$, $M \models \psi(t_1, \ldots, t_n)$
- ▶ Then $M \models \forall x_1 \dots x_n \psi(x_1, \dots, x_n)$
- ▶ Then $M \models \varphi$ and φ is satisfiable.
- φ is unsatisfiable iff $E(\varphi)$ is unsatisfiable.

Checking Unsatisfiability of φ

- ▶ $E(\varphi) = \{\varphi_1, \varphi_2, \dots\}$ is a set of quantifier free sentences, so it can be seen as a set of propositional logic formulae
- ▶ Since φ is in Skolem normal form, each formula $\varphi_i \in E(\varphi)$ is in CNF
- ▶ We know that $E(\varphi)$ is unsatisfiable iff $\emptyset \in Res^*(E(\varphi))$
- ▶ That is, there is some finite subset $F = \{\varphi_1, \dots, \varphi_m\} \subseteq E(\varphi)$ such that $\emptyset \in Res^*(F)$
- ▶ So if $\emptyset \in Res^*(\{\varphi_1, \dots, \varphi_m\})$ for some finite m, we conclude φ is unsatisfiable

Checking Satisfiability of φ

- ▶ If $\emptyset \notin Res^*(\{\varphi_1, \dots, \varphi_m\})$, then we look at $Res^*(\{\varphi_1, \dots, \varphi_m, \varphi_{m+1}\})$
- ▶ If $\emptyset \notin Res^*(\{\varphi_1, \dots, \varphi_{m+1}\})$, then we look at $Res^*(\{\varphi_1, \dots, \varphi_{m+1}, \varphi_{m+2}\})$:
- If φ is satisfiable, then this procedure will continue.

Wrapping Up

- We have a method to show that a FOL formula φ is unsatisfiable
- \blacktriangleright First, write φ in equality free Skolem normal form
- ▶ Check if $\emptyset \in Res^*(E(\varphi))$, this may take some time
- ► There is a more systematic resolution for FOL which we do not cover (this also uses Herbrand Theory)
- We also do not cover a direct undecidability proof for the satisfiability of FOL (at least now)