

Inteligência Artificial

Lógica Difusa (Fuzzy Logic) - Introdução -

Paulo Moura Oliveira

Departamento de Engenharias Gabinete F2.15, ECT-1 UTAD

email: oliveira@utad.pt

IA. Fuzzy Logic, Paulo Moura Oliveira

Estrutura da Apresentação

- 1. Introdução e Motivação
- 2. Conjuntos Difusos (Fuzzy Sets)
- 3. Lógica
- 4. Regras Se-Então (If-Then Rules)
- 5. Sistemas de Inferência Difusos
- 6. Implementação

Nota: Grande parte dos conceitos e exemplos apresentados nesta apresentação baseiam-se na publicação: Fuzzy Logic Toolbox- For use with Matlab, Mathworks.

IA, Fuzzy Logic, Paulo Moura Oliveira

Introdução e Motivação

O que é a Lógica Difusa?

✓ Algumas reflexões introdutórias sobre Fuzzy logic :

"Precision is not truth." –Henri Matisse

"As complexity rises, precise statements lose meaning and meaningful statements lose precision.

-Lotfi Zadeh (considerado o percursor da Fuzzy Logic (Inicialmente denominada Possibilistic Logic).

Lotfi A. Zadeh, Mais info em cedido em 30-7-2018

Introdução e Motivação

O que é a Lógica Difusa?

- √ A lógica difusa é uma forma conveniente de mapear um espaço de entrada num espaço de saída.
- ✓ A lógica difusa permite obter um bom compromisso entre relevância e precisão.

Na lógica difusa o valor verdadeiro (T) pode variar entre 0 e 1: $0 \le T \le$

IA, Fuzzy Logic, Paulo Moura Oliveira

Introdução e Motivação

Relevância versus Precisão (Significance Versus Precision)

- \checkmark Considere o exemplo de um piano a cair do 15 andar com uma pessoa no rés-do-chão no local da colisão:
 - · Aviso com precisão: " Cuidado, um piano com 1200kg está a cair com uma velocidade de 40m/s e vai-te acertar exatamente em x segundos."
 - · Aviso com relevância: " Cuidado, afasta-te depressa."

Introdução e Motivação

Porquê utilizar Fuzzy Logic?

- "Fácil" de perceber conceptualmente.
- Elevada Flexibilidade e Tolerante a dados imprecisos.
- Pode modelar funções não lineares com qualquer grau de complexidade.
- Pode ser construída a partir da experiência de peritos.
- É baseada em linguagem natural (linguagem utilizada pelo comum dos mortais).

IA, Fuzzy Logic, Paulo Moura Oliveira IA, Fuzzy Logic, Paulo Moura Oliveira

Introdução e Motivação

Exemplo da Gorjeta [*]: Fuzzy versus Non-Fuzzy

√ Nos Estados Unidos as gorjetas podem ser um complemento muito importante para o salário dos empregados de restaurantes. Geralmente é de 15%, mas pode variar dependendo da qualidade do servico.

Qual a gorjeta a dar a um funcionário mediante a classificação do serviço e da comida numa escala de 0-10 (0- Péssimo ; 10- Excelente)?

* Adaptado de: Fuzzy Logic Toolbox- For use with Matlab, Mathworks.

IA, Fuzzy Logic, Paulo Moura Oliveira

Introdução e Motivação

Exemplo da Gorjeta

% Linear e const Factor = 0.15;

1. Caso considerando só a qualidade do serviço: A gorjeta **é fixa** e igual a 15% do valor da conta.

2. Caso considerando só a qualidade do servico: A gorjeta varia de forma linear desde 5% (serviço péssimo) a 25% (serviço excelente)

% Linear incremental de 5% a 25%
Factor = 0.05+ (0.20/10)*servico;

IA, Fuzzy Logic, Paulo Moura Oliveira

Introdução e Motivação

Caso considerando a qualidade do serviço (50%) e da comida (50%):

Introdução e Motivação

Caso considerando que o serviço é mais importante (80%) que a comida (20%)

Factor = 0.05+ Rel ser*((0.20/10)*servico) +Rel com*((0.20/10)*comida);

Introdução e Motivação

IA, Fuzzy Logic, Paulo Moura Oliveira

Introdução e Motivação

6. Abordagem Fuzzy: Considerando somente a qualidade do serviço:

Regra 1: Se o serviço é mau então a gorjeta é baixa.

Regra 2: Se o serviço é bom então a gorjeta é média.

Regra 3: Se o serviço é excelente então a gorjeta é alta.

7. Abordagem Fuzzy: Considerando a qualidade do serviço e da comida:

Regra 1: Se o serviço é mau ou a comida é má então a gorjeta é baixa.

Regra 2: Se o serviço é bom então a gorjeta é média.

Regra 3: Se o serviço é excelente e a comida é excelente então a gorjeta é alta.

IA, Fuzzy Logic, Paulo Moura Oliveira

7. Abordagem Fuzzy: Considerando a qualidade do serviço e da comida: File Edit View Options File Edit View Options (Imput): serviço V (Imput): comida V (Imput): comida V (Imput): gorgeta V (Imput): g

Conjuntos Difusos (Fuzzy Sets)

Um conjunto difuso não tem os limites do intervalo precisamente definidos, podendo conter elementos com um grau de pertença parcial.

> Considere-se um exemplo com um conjunto com alguns dias da semana:

Segunda Terça Sábado

- Elementos como: melro, carro, copo, não pertencem a este conjunto. Um elemento ou é um dia da semana ou não. Não pode ser as duas coisas.
- Se tentarmos definir um conjunto com os dias do fim de semana e se fizesse um inquérito a um conjunto de pessoas para classificar sexta-feira, um resultado possível seria:

Na lógica difusa, a verdade de qualquer afirmação passa a ser uma questão de grau.

IA, Fuzzy Logic, Paulo Moura Oliveira

14

Conjuntos Difusos (Fuzzy Sets)

- Quando fazemos uma pergunta a alguém podemos ter uma resposta Booleana: Sim ou Não
- No entanto, para muitas perguntas não é fácil dar uma resposta uma resposta de sim ou não (pela complexidade, por conveniência, por inaptidão, etc.)

Os humanos estão habilitados a dar respostas vagas e imprecisas. E os computadores?

- Pedindo-se a algumas pessoas para classificar se alguns dias pertencem ou não ao fim de semana e 0-1:
 - Q: Sábado é um dia do fim de semana, R: 1
 - Q: Quinta é um dia do fim de semana, R: 0
 - Q: Sexta é um dia do fim de semana, R: 0.8
 - Q: Domingo é um dia do fim de semana, R: 0.95
 - Q: Segunda-feira é um dia do fim de semana, R: 0

IA, Fuzzy Logic, Paulo Moura Oliveira

15

Conjuntos Difusos (Fuzzy Sets)

Lógica multivalente (*Multivalued Logic*) em vez de Lógica Binária

Na lógica multivalente existe um conjunto de valores infinitos entre 0 (falso) e 1 (verdadeiro).

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (Membership Function)

 Utilizando uma escala contínua para mostrar a função de pertença (membership function)

<u>Função de pertença</u> é uma curva que define como cada ponto do espaço de entrada (<u>discourse universe</u>) é mapeado para um valor (<u>ou grau</u>) de pertença

Esta função é muitas vezes representada pelo símbolo μ (ou χ) e varia entre 0 e 1.

IA, Fuzzy Logic, Paulo Moura Oliveira

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (*Membership Function)*

Apresentam-se de seguida vários exemplos de funções de partilha para classificar a altura de uma pessoa como alta de não alta.

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (Membership Function)

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (Membership Function)

> Um exemplo de representação de um conjunto clássico é:

$$A = \{x \mid x > 6\}$$

> Um exemplo de representação de um conjunto difuso é:

$$A = \left\{ \underbrace{x, \mu_A(x) \mid x \in X}_{\text{Universo de Entrada}} \right\}$$

 $\mu_A(x)$, função de pertença de x em A

LA, Fuzzy Logic, Paulo Moura Oliveira

20

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (Membership Function)

> Exemplos de funções de pertença:

IA, Fuzzy Logic, Paulo Moura Oliveira

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (Membership Function)

IA, Fuzzy Logic, Paulo Moura Oliveira

22

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (Membership Function)

IA, Fuzzy Logic, Paulo Moura Oliveira

Conjuntos Difusos (Fuzzy Sets)

Função de Pertença (Membership Function)

IA, Fuzzy Logic, Paulo Moura Oliveira

23

Conjuntos Difusos (Fuzzy Sets)

Exemplo da Temperatura [*]

✓ Consideremos um exemplo clássico onde as noções de conjuntos podem ser vagas: avaliação da temperatura:

* Exemplo adaptado de: Jeffrey Johnson and Philip Picton " Concepts on Artificial Intelligence"

IA, Fuzzy Logic, Paulo Moura Oliveira

Conjuntos Difusos (Fuzzy Sets)

Exemplo da Temperatura

 $\begin{array}{ll} T \leq T_1 & Baixa \\ T_1 < T \leq T_2 & M\'{e}dia \\ T > T_2 & Alta \end{array}$

✓ Podemos considerar uma determinada temperatura como pertencendo <u>somente</u> a um destes conjuntos:

Temperatura	BAIXA	MÉDIA	ALTA
$T \leq T_1$	1	0	0
$T_1 < T \le T_2$	0	1	0
$T > T_2$	0	0	1

IA, Fuzzy Logic, Paulo Moura Oliveira

25

26

Conjuntos Difusos (Fuzzy Sets) Exemplo da Temperatura ✓ Representação gráfica: Transições entre conjuntos muito abruptas: e.g. Se T1=12°C uma temperatura de 11.999°C neste caso pertence ao conjunto Baixa.

Conjuntos Difusos (Fuzzy Sets) Na lógica difusa utilizam-se funções de pertença que Exemplo da Temperatura suavizem as zonas de transição dos conjuntos. As funções triangulares são um dos exemplos: $\begin{array}{l} T \leq 12 \\ 12 < T \leq 26 \end{array}$ Baixa Média T > 26Alta ✓ Neste exemplo uma temperatura de 12ºC é um membro do conjunto média com um grau de pertença de 0.3 e do Baixa com 0.5. Temperatura IA, Fuzzy Logic, Paulo Moura Oliveira

L4, Fuzzy Logic, Paulo Moura Oliveira

Lógica Funções Lógicas Tabela da Verdade da Função E(AND) Tabela da Verdade da Função Tabela da Verdade da Função Negação (Not) OU (OR) S=min(A,B) S=max(A,B)S=I-A0 0 0 0 1 0 1 n 0 1 1 0 0 0 1 0 1 S=1-A1 1 1

S=max(A,B) O que aconteceu às tabelas de verdade?

✓ Notar que estas funções podem agora ser aplicadas a valores que não somente 0 e 1.

IA, Fuzzy Logic, Paulo Moura Oliveiro

IA, Fuzzy Logic, Paulo Moura Oliveira

32

Lógica

Operadores Difusos (Fuzzy Operators)

S=min(A, B)

- > Estabeleceu-se uma correspondência entre a lógica bivalente com a lógica difusa multivalente.
 - Interseção difusa ou conjunção (min).
 - União difusa ou disjunção (max)
 - Complemento difuso (complemento aditivo)
- A interseção difusa entre dois conjunto difusos A e B é geralmente especificada por um mapeamento binário T:

$$\begin{array}{c} \mu_{A \cap B}(x) = T \; (\mu_A(x), \mu_B(x)) \\ \uparrow \\ \text{Pode representar uma multiplicação} \\ \text{entre os dois conjuntos e é conhecido} \\ \text{como T-norm (T de triangular)} \end{array}$$

IA, Fuzzy Logic, Paulo Moura Oliveira

33

Lógica

Operadores Difusos (Fuzzy Operators)

A união difusa entre dois conjunto difusos A e B é geralmente especificada por um mapeamento binário S:

$$\mu_{A \cup B}(x) = S(\mu_A(x), \mu_B(x))$$

Pode representar uma adição entre os dois conjuntos e é conhecido como Snorm (ou T-conorm)

IA, Fuzzy Logic, Paulo Moura Oliveira

Regras Se-Então (*If-Then Rules*)

- ✓ Enquanto na lógica binária: p→ q (p e q são ambos falsos ou ambos verdadeiros)
- ✓ Na lógica difusa: 0.5p→ 0.5q (antecedentes parciais fornecem implicações parciais)

IA, Fuzzy Logic, Paulo Moura Oliveira

Regras Se-Então (If-Then Rules)

Regras Se-Então (If-Then Rules)

1. Fuzificar as entradas

Transformar todas as frases difusas num grau de pertença entre 0-1

Aplicar o operador difuso a partes

Se há partes múltiplas no antecedente aplicam-se operadores lógicos para obter um único número de 0-1

Molda-se o conjunto difuso de saída através de uma função de pertença

- ✓ Geralmente uma única regra não resolve o problema, sendo preciso mais do que uma.
- Os conjuntos difusos que resultam de cada regra são agregados num único conjunto
- ✓ Finalmente o conjunto difuso resultante é desfusificado resultando num só valor numérico.

IA. Fuzzy Logic, Paulo Moura Oliveiro

Sistemas de Inferência Difusos

- A inferência difusa (fuzzy) é o processo de mapear um dada entrada com uma determinada saída utilizando lógica difusa.
- > Este mapeamento permite fornecer bases para tomar decisões ou reconhecer padrões.

Dois tipos de sistemas de inferência difusa de referência são:

- Tipo Mandani (mais utilizado)
- Tipo Sugeno

IA, Fuzzy Logic, Paulo Moura Oliveira

Sistemas de Inferência Difusos

Exemplo da Gorjeta

✓ A estrutura deste sistema difuso é a seguinte:

IA, Fuzzy Logic, Paulo Moura Oliveira

Sistemas de Inferência Difusos

Exemplo da Gorjeta

✓ A estrutura deste sistema difuso é o seguinte:

- ✓ O processo de inferência pode ser organizado em 5 partes:
 - 1. Fuzificação das entradas
 - 2. Aplicação do operador Fuzzy ao antecedente (AND, OR)
 - Implicação do antecedente no consequente
 - Agregação dos consequentes das várias regras
 - 5. Desfuzificação

IA, Fuzzy Logic, Paulo Moura Oliveiro

Sistemas de Inferência Difusos

Exemplo da Gorjeta

- 1. Fuzificação das entradas
- $\mu = 0.7$ 0.7
- 2. Aplicar o operador Fuzzy
- √ Há vários operadores para o AND e OR. Considerando exemplo da aplicação do OR à regra 3 com o operador max, resulta no seguinte:

IA, Fuzzy Logic, Paulo Moura Oliveira

Sistemas de Inferência Difusos

Exemplo da Gorjeta

3. Aplicar o método de implicação

✓ De uma forma geral cada regra tem um peso associado (0-1). Neste caso todas as três regras têm a mesma ponderação (1). Mas noutros exemplos é comum testar vários pesos.

Sistemas de Inferência Difusos

Exemplo da Gorjeta

✓ Há métodos aue podem ser aplicados (comutativament e) para agregar as saídas (max, ou **probabilístico**, soma),

Sistemas de Inferência Difusos

Exemplo da Gorjeta

5. Desfuzificar

√ Há vários métodos que podem ser aplicados (comutativamente) para desfuzificar o conjunto difuso que resulta da agregação.

Um dos mais populares é o método do centróide da área delimitada pela

IA, Fuzzy Logic, Paulo Moura Oliveiro

Desfuzificação (Defuzzification)

- ✓ A forma mais comum de desfuzificar consiste em determinar o centro de gravidade considerando todas as áreas delimitadas pelas curvas dos conjuntos difusos.
- ✓ Assumindo:
 - Curva 1: área A₁ e centro de gravidade em x₁
 - Curva 2: área A₂ e centro de gravidade em x₂

Então o centro de gravidade das duas áreas é o ponto c:

$$cA_1 - x_1A_1 = x_2A_2 - cA_2$$

$$c(A_1^{\circ} + A_2) = x_1 A_1 + x_2 A_2$$

$$c = \frac{x_1 A_1 + x_2 A_2}{(A_1 + A_2)}$$

$$c = \frac{\sum x_i A_i}{\sum A_i}$$

IA, Fuzzy Logic, Paulo Moura Oliveira

Desfuzificação (Defuzzification)

✓ O cálculo do centro de gravidade de uma curva genérica pode ser simplificado pela utilização funções de pertença com curvas simétricas, pois o centro de gravidade localiza-se no eixo de simetria da curva.

Centro de Gravidade= $\frac{\sum_{i=1}^{n} centro de gravidade_{i} \times area sob a curva_{i}}{\sum_{i=1}^{n} area sob a curva_{i}}$

√ Área de um trapézio com altura h e lados l e l' pode ser calculada como:

 $A_i = \frac{(l+l')h_i}{2}$

IA, Fuzzy Logic, Paulo Moura Oliveiro

Desfuzificação (Defuzzification)

✓ Considere-se o seguinte exemplo:

Considere-se of seguinte exemplo.
$$A_{1} = \frac{2}{2}$$

$$A_{1} = \frac{(0.5 + 2.0)0.75}{2} = 0.9375$$

$$A_{2} = \frac{(1.5 + 2.0)0.25}{2} = 0.4375$$

$$A_{3} = \frac{(1.5 + 2.0)0.25}{2} = 0.4375$$

 $\frac{(0.0 \times 0.9375) + (1.0 \times 0.4375)}{0.318} = 0.318$ centro de gravidade = (0.9375 + 0.4375)

IA, Fuzzy Logic, Paulo Moura Oliveir

Desfuzificação (Defuzzification)

Exemplo da Temperatura (Cont.)

- ✓ Consideremos as seguintes regras:
- Se a temperatura é baixa então 🛊 o aquecimento é alto
- Se a temperatura é média então o aquecimento é médio
- Se a temperatura é alta então o aquecimento é desligado

IA, Fuzzy Logic, Paulo Moura Oliveira

Desfuzificação (Defuzzification)

Exemplo da Temperatura (Cont.)

- ✓ Consideremos as seguintes regras:
- 1. Se a temperatura é baixa então o aquecimento é alto
- Se a temperatura é média então o aquecimento é médio
- Se a temperatura é alta então o aquecimento é desligado

IA, Fuzzy Logic, Paulo Moura Oliv

Desfuzificação (Defuzzification)

Exemplo da Temperatura (Cont.)

✓ Cálculo do centro de gravidade:

1.0 15

$$A_1 = \frac{(5+10) \times 0.5}{4} = 1.875$$

IA, Fuzzy Logic, Paulo Moura Oliveira

50

Desfuzificação (Defuzzification)

Exemplo da Temperatura (Cont.) ✓ Cálculo do centro de gravidade:

IA, Fuzzy Logic, Paulo Moura Oliveira

53

Desfuzificação (Defuzzification)

Exemplo da Temperatura (Cont.)

Valor aproximado

centro de gravidade =
$$\frac{(10 \times 3.375) + (13 \times 1.875)}{(3.375 + 1.875)} = 11.07$$

✓ Para uma temperatura de 12ºC o aquecimento vai estar ligado na posição 11.

Desfuzificação (Defuzzification)

Exemplo do Salário

✓ Considere-se o seguinte exemplo de conjuntos que permitem determinar o valor do salário anual (com valores hipotéticos) de um funcionário.

√ Vamos considerar um conjunto de regras que permita definir o valor de pertença a cada um destes conjuntos para um dado funcionário.

IA, Fuzzy Logic, Paulo Moura Oliveira

Desfuzificação (Defuzzification)

Exemplo do Salário

- ✓ Considerem-se as seguintes regras:
- 1. Se o funcionário é altamente especializado e tem grandes responsabilidades
 - e consegue atrair novos negócios

então esse funcionário recebe um salário alto

- 2. Se o funcionário é altamente especializado e faz bem o seu trabalho então esse funcionário recebe um salário médio
- 3. Se o funcionário é pouco especializado e não tem experiência

então esse funcionário recebe um salário baixo

Desfuzificação (Defuzzification)

Exemplo do Salário

Caso do funcionário X:

- Pouco especializado: 0.9 (Altamente especializado: 0.1)
- · Pouca responsabilidade: 0.1
- Não atrai novos negócios: 0.0
- Faz o seu trabalho razoavelmente: 0.5
- Não é muito experiente: 0.6
 - ✓ Quanto ganha o funcionário X, neste sistema Fuzzy?

IA, Fuzzy Logic, Paulo Moura Oliveira

Desfuzificação (Defuzzification)

55

57

Exemplo do Salário

✓ Só é necessário calcular as áreas nos conjuntos do salário baixo e médio:

salário de A =
$$\frac{(0 \times 8.4) + (15 \times 2.85)}{(8.4 + 2.85)} \times 1000 = 11250$$
 €

IA, Fuzzy Logic, Paulo Moura Oliveira

Exemplo: Implementação no Matlab

Exemplo da Gorjeta

 ✓ Permite escolher o método para efetuar e E-lógico (and), Ou-Lógico (or), implicação, Agregação e Desfuzificação.

Exemplo: Implementação no Matlab

