RAČUNALNIŠKE KOMUNIKACIJE 2022/23 Ime in priimek: ____

1. izpit, 21. 6. 2023

/pisna	številka:	

Literatura (npr. zapiski, prosojnice, knjige) ni dovoljena. Dovoljen je preprost kalkulator. Nalogo rešujte v za to predviden prostor. Podpišite se na vse liste, ki jih oddate. Na vprašanja odgovarjajte kratko (največ 2 povedi), daljši odgovori štejejo 0 točk. Odgovori na vprašanja morajo biti utemeljeni. Čas pisanja je 90 minut.

izpolni ocenjevalec		
1		
2		
3		
4		
SKUPAJ		

1. NALOGA (25t):

Odgovori na naslednja vprašanja, odgovore utemelji:

- 1. Napadalec želi izvesti DDoS napad Smurf. Odgovori na vprašanja:
 - o Katera lastnost izbranega omrežja nevede pomaga napadalcu, da lahko izvede napad?
 - Kako napadalec pripravi paket, da izvede napad? Kaj je v njem posebnega?
 - Zakaj/kako napad škoduje izbrani žrtvi?

2. Izračunaj Vigenèrjev kriptogram čistopisa IZPIT. Kot ključ za kriptiranje uporabi besedo STOL. Za kriptiranje uporabi črke slovenske abecede (ABCČDEFGHIJKLMNOPRSŠTUVZŽ).

- 3. Pošiljatelju, ki uporablja TCP Reno, v nekem trenutku postane cwnd=10, vrednost praga pa znaša 16. Kolikšna je vrednost cwnd in praga po naslednjih dveh dogodkih:
 - pošiljatelj prejme 120 (različnih) potrditev segmentov,
 - nato pošiljatelj prejme 3 kopije iste potrditve.
- 4. Prejemnik prejme zaporedje bitov, ki je opremljeno s Hammingovo kodo in ima vrednost 1111110. Kakšna je vrednost prejetega sporočila?
- 5. 9 različnih računalniških sistemov uporablja sistem ASN.1 za predstavitev podatkov. Za koliko se zmanjša potrebno število različnih konverzij podatkovnih tipov pri uporabi ASN.1 v primerjavi s pristopom, ko sistemi neposredno pretvarjajo v vse ostale podatkovne tipe.

2. NALOGA (25t):

Podan je bločni kriptografski sistem za bloke dolžine 3, katerega ključ je podan v tabeli na desni strani. Skupaj s tem bločnim kriptosistemom uporabljamo tudi verižno kriptiranje blokov, pri čemer uporabimo inicializacijski vektor enak 011.

Naloga: Izračunaj prvih 8 kriptogramov c(1) ... c(8) za čistopis 011. Odgovore jasno zapiši v spodnjo tabelo.

čistopis	kriptogram
000	100
001	101
010	011
011	110
100	001
101	111
110	000
111	010

c(1)	
c(2)	
c(3)	
c(4)	
c(5)	
c(6)	
c(7)	
c(8)	

Prostor za reševanje:

3. NALOGA (25t):

V omrežju imamo 5 usmerjevalnikov (A, B, C, D in X), ki uporabljajo usmerjanje z vektorji razdalj na podlagi cen, ki so podane na grafu na desni sliki. Usmerjevalniki imajo ob začetku opazovanja v posredovalnih tabelah naučene takšne ocene razdalj do **usmerjevalnika X**, kot je to zapisano v prvi vrstici tabele. Nato se povezava med A in X prekine (narisano črtkano

na sliki). Zapiši, kako se v naslednjih štirih iteracijah spreminja ocenjena cena poti do usmerjevalnika X znotraj posredovalnih tabel vsakega izmed preostalih usmerjevalnikov. V primeru, če je na razpolago več poti z isto ceno, izberite pot preko usmerjevalnika, katerega oznaka je prej po abecednem vrstnem redu.

Odgovor podaj v strukturi prikazane tabele (lahko jo prerišeš tudi na list). Pri tem naj bodo zapisi v celicah tabele <u>jasno podprti z računskimi postopki</u>.

	ocenjene cene do usmerjevalnika X			
iteracija \ usmerjevalnik	Α	В	С	D
začetno stanje	2/X	3/A	4/B	5/C
	prekinite	v povezave A-X		
1. iteracija				
2. iteracija				
3. iteracija				
4. iteracija				

4. NALOGA (25t):

Pošiljatelj in prejemnik uporabljata protokol za potrjevanje, ki uporablja velikost okna 6. Pošiljatelj pošlje prejemniku 6 segmentov, od katerih se tretji pri prvem pošiljanju izgubi. Za pošiljatelja in prejemnika veljajo tudi naslednje lastnosti:

• Pošiljatelj vedno pošilja z maksimalno hitrostjo, dokler ne zapolni okna, šele nato čaka na potrditve in morebiten potek časovnih intervalov.

 Zakasnitev na komunikacijskem mediju je majhna, zato prejemnik prejema pakete z majhnim časovnim razmikom (<500ms), kot so bili tudi poslani.
Nariši shemo komuniciranja za dva različna scenarija:
a.) Pošiljatelj in prejemnik uporabljata TCP, ki dodatno uporablja tudi mehanizem zakasnjenega potrjevanja (angl. delayed acknowledgment).
b.) Pošiljatelj in prejemnik uporabljata protokol za ponavljanje N nepotrjenih segmentov (angl. go-back-N).