Computability Theory

Fall 2020

Lecture 2: Finite Automata and Regular Languages

Lecturer: Renjie Yang

2.1 Finite automata

Definition 2.1 A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function,
- 4. $q_0 \in Q$ is the start state,
- 5. $F \subseteq Q$ is the set of accept states.

Example

Figure 2.1: FSM example

$$Q = \{a, b, c, d\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = a$$

$$F = \{d\}$$

$$\sigma = \begin{bmatrix} a & b \\ b & d & a \\ c & d & b & c \end{bmatrix}$$

Definition 2.2 Let $M = (Q, \Sigma, \delta, q0, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be a string where each w_i is a member of the alphabet Σ . Then M accepts w if a sequence of states $r_0, r_1, \dots, r_n \in Q$ exists with three conditions:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \dots, n-1$

$$3. r_n \in F$$

We say that M recognizes language A if $A = \{w | Maccepts w\}$

Example The empty string ϵ . It is accepted by a FSM in which the start state is an accept state.

Example The empty language $\phi = \{\}$. It is recognized by a FSM with no directed path from start state to any accept state. If a FSM accepts no string, then it recognizes the empty language.

Example Let $\Sigma = \{0, 1\}$. Design a FSM that accepts any string containing 0011.

Figure 2.2: FSM example

Example The following FSM recognizes $\{w | w \text{ is either } 10 \text{ or } 0^+1\}$

Figure 2.3: FSM example

Definition 2.3 A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta: Q \times \Sigma_{\epsilon} \to P(Q)$ is the transition function, where $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$,
- 4. $q_0 \in Q$ is the start state,
- 5. $F \subseteq Q$ is the set of accept states.

Example Test 01010

Figure 2.4: NFA example

$$Q = \{a, b, c, d\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = a$$

$$F = \{d\}$$

$$\delta = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \begin{cases} \{a, b\} & \phi \\ \{c\} & \phi & \{c\} \\ \phi & \{d\} & \phi \\ \{d\} & \{d\} & \phi \end{bmatrix}$$

Definition 2.4 Let $M = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite automaton and let $w = y_1 y_2 \dots y_m$ be a string where each y_i is a member of the alphabet Σ_{ϵ} . Then M accepts w if a sequence of states r_0, r_1, \dots, r_m in Q exists with three conditions:

- 1. $r_0 = q_0$
- 2. $r_{i+1} \in \delta(r_i, w_{i+1}), \text{ for } i = 0, \dots, n-1$
- 3. $r_m \in F$

We say that M recognizes language A if $A = \{w | Maccepts w\}$

Example The following NFA accepts all strings that contain 0110.

Figure 2.5: NFA example

Example The equivalence of DFA and NFA

Figure 2.6: NFA example

Figure 2.7: An equivalent DFA

Figure 2.8: A more systematically constructed equivalent DFA

Theorem 2.5 Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof: Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language A. Construct a DFA $M=(Q',\Sigma,\delta',q'_0,F')$ recognizing A as follows:

- 1. Q' = P(Q)
- 2. For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \bigcup_{r \in R} \delta(r,a) = \{ q \in Q | q \in \delta(r,a) \text{ for some } r \in R \}$$

- 3. $q'_0 = \{q_0\}$
- 4. $F' = \{R \in Q' | R \text{ contains an accepted state of } N\}$

Consider the cases with ϵ arrows, define

 $E(R) = \{q | q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \epsilon \text{ arrows} \}.$

Then replace $\delta(r,a)$ by $E(\delta(r,a))$ in 2, and change q_0' to $E(\{q_0'\})$ in 3.

At every step in the computation of M on an input, it enters a state that corresponds to the subset of states that N could be in at that point.

2.2 Regular languages

Definition 2.6 A language is called a regular language if some finite automaton recognizes it.

Corollary 2.7 A language is regular if and only if some nondeterministic finite automaton recognizes it.

Definition 2.8 Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

Example

```
Let \sigma = \{a, b, c, ..., z\}

A = \{aa, b\}

B = \{x, yy\}

A \cup B = \{aa, b, x, yy\}

A \circ B = \{aax, aayy, bx, byy\}

A^* = \{\epsilon, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb...\}
```

Theorem 2.9 The class of regular languages is closed under the union operation.

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . Construct $M = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- 1. $Q = \{(r_1, r_2) | r_1 \in Q_1, r_2 \in Q_2\}$
- 2. $\Sigma = \Sigma$ for both M, M_1 and M_2
- 3. For each $r_1, r_2 \in Q$ and each $a \in \Sigma$, let $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- 4. $q_0 = (q_1, q_2)$
- 5. $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

The construction of M simulates both M_1 and M_2 running on the same string simultaneously, which guarantees that it recognizes $A_1 \cup A_2$.

Theorem 2.10 The class of regular languages is closed under the concatenation operation.

Proof: Let $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$ recognize A_1 , and $N_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$ recognize A_2 , construct $N = \{Q, \Sigma, \delta, q_0, F\}$ to recognize $A_1 \circ A_2$ as follows:

- 1. $Q = Q_1 \cup Q_2$
- 2. $q_0 = q_1$
- 3. $F = F_2$

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a), & q \in F_1 \text{ and } a \neq \epsilon \end{cases}$$
$$\delta_1(q, a) \cup \{q_2\}, \quad q \in F_1 \text{ and } a = \epsilon$$
$$\delta_2(q, a), \qquad q \in Q_2$$

Theorem 2.11 The class of regular languages is closed under the star operation.

Proof: Let $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$ recognize A_1 , construct $N = \{Q, \Sigma, \delta, q_0, F\}$ to recognize A_1^* as follows:

1. $q = q_0$, a new start state

2.
$$Q = \{q_0\} \cup Q_1$$

3.
$$F = \{q_0\} \cup F_1$$

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a), & q \in F_1 \text{ and } a \neq \epsilon \end{cases}$$

$$\delta_1(q, a) \cup \{q_1\}, & q \in F_1 \text{ and } a = \epsilon$$

$$\{q_1\}, & q = q_0 \text{ and } a = \epsilon$$

$$\phi, & q = q_0 \text{ and } a \neq \epsilon$$

2.3 Regular Expressions

Definition 2.12 Say that R is a regular expression if R is

1. a for some a in the alphabet Σ ,

$$2. \epsilon,$$

 $3. \phi,$

4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,

5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,

6. (R_1^*) , where R is a regular expressions.

Example Each regular expression describes a language. Assume $\Sigma = \{a, b, c, d\}$

- *a*
- abccb
- $(ab) \cup (cd) = ab|cd$
- ab^*c
- $a(b \cup \epsilon)c = a(b|\epsilon)c = a[b]c$
- φ
- $a(b \cup c)\phi$
- φ*

Theorem 2.13 A language is regular if some regular expression describes it.

Proof: Consider the 6 cases in the definition of regular expression:

- 1. $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\}), \text{ where } \delta(q_1, a) = \{q_2\} \text{ and } \delta(r, b) = \phi \text{ for } r \neq q_1 \text{ or } b \neq a.$
- 2. $N=(\{q_1\}, \Sigma, \delta, q_1, \{q_1\}),$ where $\delta(r,b)=\phi$ for any r and b.
- 3. $N=(\{q\},\Sigma,\delta,q,\phi),$ where $\delta(r,b)=\phi$ for any r and b.

4-6 are shown in the previous section. Thus we have converted a regular expression into an NFA. ■