LATEX für Fortgeschrittene

Praktische Tipps jenseits des Textsatzes – Was neben Bildern und Texten noch so geht

Emily Seebeck

04. Mai 2023

Gliederung des Talks

- 1. LATEX Basics & Best Practices
- 2. LATEX Tooling im Vergleich
- 3. Schnelle Compiles mit LATEX

- 4. Bibliographien mit LATEX
- 5. Beamer
- 6. TikZ

■ LATEX ist wie das Javascript unter den Markup-Sprachen

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - \rightarrow Kann sehr frustrierend sein

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - $\,\,
 ightarrow\,\,$ Kann sehr frustrierend sein
 - Sehr Flexibel

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - $\,\,
 ightarrow\,\,$ Kann sehr frustrierend sein
 - Sehr Flexibel
 - Es gibt immer eine Lösung

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - $\,\,
 ightarrow\,\,$ Kann sehr frustrierend sein
 - Sehr Flexibel
 - Es gibt immer eine Lösung, auch, wenn sie nicht schön ist

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - $\,\,
 ightarrow\,\,$ Kann sehr frustrierend sein
 - Sehr Flexibel
 - Es gibt immer eine Lösung, auch, wenn sie nicht schön ist
- LATEX wird La-Tech ausgesprochen, nicht Latex

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - → Kann sehr frustrierend sein
 - Sehr Flexibel
 - Es gibt immer eine Lösung, auch, wenn sie nicht schön ist
- LATEX wird La-Tech ausgesprochen, nicht Latex
- LATEX ist sehr viel learning-by-doing

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - → Kann sehr frustrierend sein
 - Sehr Flexibel
 - Es gibt immer eine Lösung, auch, wenn sie nicht schön ist
- LATEX wird La-Tech ausgesprochen, nicht Latex
- LATEX ist sehr viel learning-by-doing
- Google ist der beste Freund

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - \rightarrow Kann sehr frustrierend sein
 - Sehr Flexibel
 - Es gibt immer eine Lösung, auch, wenn sie nicht schön ist
- LATEX wird La-Tech ausgesprochen, nicht Latex
- LATEX ist sehr viel learning-by-doing
- Google (oder ChatGPT) ist der beste Freund

- LATEX ist wie das Javascript unter den Markup-Sprachen
 - Historisch gewachsen
 - → Kann sehr frustrierend sein
 - Sehr Flexibel
 - Es gibt immer eine Lösung, auch, wenn sie nicht schön ist
- LATEX wird La-Tech ausgesprochen, nicht Latex
- LATEX ist sehr viel learning-by-doing
- Google (oder ChatGPT) ist der beste Freund
- Diese Präsentation (+ mehr Materialen) werden hochgeladen
 - \rightarrow Freitagsrunde, GitHub

LATEX Basics & Best Practices

• Nutzt die Compile-Option -output-directory=...

• Nutzt die Compile-Option -output-directory=...

Nutzt die Compile-Option -output-directory=...

- Nutzt das Paket \usepackage [T1] {fontenc}
 - ightarrow Per default hat LATEX keinen Support für Umlaute im PDF

Nutzt die Compile-Option -output-directory=...

- Nutzt das Paket \usepackage[T1]{fontenc}
 - ightarrow Per default hat LATEX keinen Support für Umlaute im PDF
- Bei großen Dokumenten: Dinge modular gestalten
 - \include
 - Präambel von Dokument trennen
 - Einzelne Abschnitte in verschiedene Dateien auslagern

- Kennt ihr das?
 - präsentation.tex

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex
 - ullet präsentation_final_final.tex

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex
 - präsentation_final_final.tex
 - präsentation_final_final_korrigiert.tex

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex
 - präsentation_final_final.tex
 - präsentation_final_final_korrigiert.tex
- Es ist schwer zu wissen,
 - welche Datei die aktuellste ist
 - was sich zwischen den Versionen verändert hat
 - wer welche Änderungen vorgenommen hat

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex
 - präsentation_final_final.tex
 - präsentation_final_final_korrigiert.tex
- Es ist schwer zu wissen,
 - welche Datei die aktuellste ist
 - was sich zwischen den Versionen verändert hat
 - wer welche Änderungen vorgenommen hat
- → Versionskontrolle verwenden

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex
 - präsentation_final_final.tex
 - präsentation_final_final_korrigiert.tex
- Es ist schwer zu wissen,
 - welche Datei die aktuellste ist
 - was sich zwischen den Versionen verändert hat
 - wer welche Änderungen vorgenommen hat
- \rightarrow Versionskontrolle verwenden: git

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex
 - präsentation_final_final.tex
 - präsentation_final_final_korrigiert.tex
- Es ist schwer zu wissen,
 - welche Datei die aktuellste ist
 - was sich zwischen den Versionen verändert hat
 - wer welche Änderungen vorgenommen hat
- → Versionskontrolle verwenden: git, overleaf

- Kennt ihr das?
 - präsentation.tex
 - präsentation_v2.tex
 - präsentation_final.tex
 - präsentation_final_final.tex
 - präsentation_final_final_korrigiert.tex
- Es ist schwer zu wissen,
 - welche Datei die aktuellste ist
 - was sich zwischen den Versionen verändert hat
 - wer welche Änderungen vorgenommen hat
- → Versionskontrolle verwenden: git, overleaf, subversion

1. Paket \usepackage{hyperref} verwenden

- 1. Paket \usepackage{hyperref} verwenden
- 2. Label setzen

- 1. Paket \usepackage{hyperref} verwenden
- 2. Label setzen
- 3. Label referenzieren

- Paket \usepackage{hyperref} verwenden
- 2. Label setzen
- 3. Label referenzieren
- Falls deutsche Labels verwendet werden sollen: \usepackage[ngerman]{babel}

- 1. Paket \usepackage{hyperref} verwenden
- 2. Label setzen
- 3. Label referenzieren
- Falls deutsche Labels verwendet werden sollen: \usepackage[ngerman]{babel}
- Vor Referenzen immer ein unbreakable space (~) verwenden
 - \rightarrow In~\cref{fig:cat} ist eine Katze zu sehen

LATEX Basics: Referenzen – Beispiel

Α	В	С
1	2	3
4	5	6
7	8	9

Tabelle 1: Dummy-Tabelle

Abbildung 1: Dummy-Bild

$$1+1=2\tag{1}$$

LETEX Basics: Vergleich von Referenz-Commands (Tabellen)

Command	Output
	1
	Dummy-Tabelle
	Tabelle 1
\hyperref[<name>]{}</name>	<name></name>
	Tabelle 1 auf der vorherigen Seite
	Tabelle 1
	Tabelle 1

LETEX Basics: Vergleich von Referenz-Commands (Figuren)

Command	Output
	1
	Dummy-Bild
	Abbildung 1
\hyperref[<name>]{}</name>	<name></name>
	Abbildung 1 auf Seite 33
	Abbildung 1
	Abbildung 1

LETEX Basics: Vergleich von Referenz-Commands (Gleichungen)

Command	Output
	1
	<pre><section-name></section-name></pre>
	Gleichung 1
\hyperref[<name>]{}</name>	<name></name>
	Gleichung (1) auf Seite 33
	Gleichung (1)
	Gleichung (1)

• Eigentlich immer cleveref

- Eigentlich immer cleveref
- ... Aber welches Makro? \cref oder \Cref?

- Eigentlich immer cleveref
- ... Aber welches Makro? \cref oder \Cref?
 - → Keinen Unterschied im *Deutschen*
 - Im Englischen macht \cref einen Kleinbuchstaben

- Eigentlich immer cleveref
- ... Aber welches Makro? \cref oder \Cref?
 - → Keinen Unterschied im *Deutschen*
 - Im Englischen macht \cref einen Kleinbuchstaben
- \autoref geht auch, oft den gleicher Output wie cleveref

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Deutsch

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Deutsch

zwischen Wörtern:

"Mein Lieblingssport ist Schach-Boxen."

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Deutsch

- zwischen Wörtern: "Mein Lieblingssport ist Schach-Boxen."
- -- für Einschübe und Zahlenbereiche / Ranges: "Meine Oma - die übrigens auch ein hervorragendes Strudelrezept hat - kommt morgen zu Besuch."
 "Die Teilnehmerzahl liegt zwischen 50–100 Personen."

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Deutsch

- zwischen Wörtern: "Mein Lieblingssport ist Schach-Boxen."
- -- für Einschübe und Zahlenbereiche / Ranges:
 "Meine Oma die übrigens auch ein hervorragendes
 Strudelrezept hat kommt morgen zu Besuch."
 "Die Teilnehmerzahl liegt zwischen 50–100 Personen."
- --- wird oft als störend empfunden, kaum genutzt

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Englisch

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Englisch

zwischen Wörtern:

'The rock-paper-scissors-lizard-Spock game is really fun.'

Dash	In LATEX	Deutscher Name	Englischer Name
-	-	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Englisch

- zwischen Wörtern:
 'The rock-paper-scissors-lizard-Spock game is really fun.'
- -- für Zahlenbereiche / Ranges:
 'I can count from 1–10 in five different languages.'

Dash	In LATEX	Deutscher Name	Englischer Name
-	_	Viertelgeviertstrich	hyphen
_		Halbgeviertstrich	en-dash
_		Geviertstrich	em-dash

Englisch

- zwischen Wörtern:
 - 'The rock-paper-scissors-lizard-Spock game is really fun.'
- -- für Zahlenbereiche / Ranges:
 - 'I can count from 1-10 in five different languages.'
- --- für Einschübe:
 - 'I absolutely adore penguins—those waddling, tuxedo-wearing birds—they always make me smile.'
 - ightarrow Traditionell: heutzutage manchmal auch en-dash mit spaces

■ LATEX-Befehl \texttt

■ LATEX-Befehl \texttt

```
\texttt{print("Hello, world!")}

print("Hello, world!")
```

LATEX-Befehl \texttt

Aber:

LATEX-Befehl \texttt

Aber:

```
\texttt{printf("Hello, %s!", name)}
```

Fatal error occurred, no output PDF file produced!

Automatisches Escaping

- Automatisches Escaping
- Verbatim Paket: \usepackage{verbatim}

- Automatisches Escaping
- Verbatim Paket: \usepackage{verbatim}

```
\verb|printf("Hello, %s!", name)|

printf("Hello, %s!", name)
```

- Automatisches Escaping
- Verbatim Paket: \usepackage{verbatim}

```
\verb|printf("Hello, %s!", name)|

printf("Hello, %s!", name)
```

Auch als Umgebung:

- Automatisches Escaping
- Verbatim Paket: \usepackage{verbatim}

```
\verb|printf("Hello, %s!", name)|

printf("Hello, %s!", name)
```

Auch als Umgebung:

Listings

minted

- Listings
 - Rudimentäres Syntax Highlighting (Keyword-Highlighting)
 - Relativ Langsam, ziemlich alt, geschrieben in TEX
 - Muss Customized werden
 - Probleme mit Unicode
- minted

Listings

- Rudimentäres Syntax Highlighting (Keyword-Highlighting)
- Relativ Langsam, ziemlich alt, geschrieben in TEX
- Muss Customized werden
- Probleme mit Unicode

minted

- Sehr feature-reich (Kontext-Highlighting)
- Powered by Pygments
- Unterstützt mehr Programmiersprachen
- Benötigt System Setup
 - → Python, Pygments und Compiler-Option -shell-escape

ETEX Basics: Code-Listings (listings)

```
def greet(name: str):
    message = f"Hello, {name}!"
    return message
def fibonacci(n: int):
    if n <= 1:
      return n
    else:
      return fibonacci(n-1) + fibonacci(n-2)
def is palindrome(s: str):
    s = s.lower().replace(" ", "")
    return s == s[::-1]
```

LETEX Basics: Code-Listings (minted)

```
def greet(name: str):
    message = f"Hello, {name}!"
    return message
def fibonacci(n: int):
    if n <= 1:
        return n
    else:
        return fibonacci(n - 1) + fibonacci(n - 2)
def is palindrome(s: str):
    s = s.lower().replace(" ", "")
    return s == s[::-1]
```

ETEX Basics: Code-Listings (listings)

```
fn greet(name: &str) -> String {
    format!("Hello, {name}!")
}
fn fibonacci(n: u32) -> u32 {
    match n {
        0 \mid 1 => n,
        => fibonacci(n-1) + fibonacci(n-2)
}
fn is_palindrome(s: &str) -> bool {
  let s = s.to_lowercase().replace(" ", "");
  s == s.chars().rev().collect::<String>()
}
```

LETEX Basics: Code-Listings (minted)

```
fn greet(name: &str) -> String {
    format!("Hello, {name}!")
}
fn fibonacci(n: u32) -> u32 {
    match n {
        0 \mid 1 => n.
        _{-} => fibonacci(n - 1) + fibonacci(n - 2)
fn is_palindrome(s: &str) -> bool {
    let s = s.to lowercase().replace(" ", "");
    s == s.chars().rev().collect::<String>()
```

LATEX Mathe-Basics

• Mit dem \$ wird der inline Mathe-Modus eingeleitet

LATEX Mathe-Basics

• Mit dem \$ wird der inline Mathe-Modus eingeleitet

$$a = -b$$
 wird zu $a = -b$

LETEX Mathe-Basics

• Mit dem \$ wird der inline Mathe-Modus eingeleitet

$$a = -b$$
 wird zu $a = -b$

Der display Mathe Modus wird mit \[... \] eingeleitet

$$\[a = -b \]$$
 $a = -b$

LETEX Mathe-Basics

Mit dem \$ wird der inline Mathe-Modus eingeleitet

$$a = -b$$
 wird zu $a = -b$

Der display Mathe Modus wird mit \[... \] eingeleitet

$$\[a = -b \]$$
 $a = -b$

• Statt \$\$... \$\$ lieber \[... \] verwenden

LATEX Mathe-Basics

Mit dem \$ wird der inline Mathe-Modus eingeleitet

$$a = -b$$
 wird zu $a = -b$

Der display Mathe Modus wird mit \[... \] eingeleitet

$$\[a = -b \]$$
 $a = -b$

- Statt \$\$... \$\$ lieber \[... \] verwenden
- Durch \usepackage{amsmath} auch durch align möglich

LATEX Mathe-Basics

Mit dem \$ wird der inline Mathe-Modus eingeleitet

$$a = -b$$
 wird zu $a = -b$

Der display Mathe Modus wird mit \[. . . \] eingeleitet

$$\[a = -b \]$$
 $a = -b$

- Statt \$\$... \$\$ lieber \[... \] verwenden
- Durch \usepackage{amsmath} auch durch align möglich

\sqrt{2} &= c
$$\sqrt{2} = c$$
 (3)

\end{align}

- Verschiedene Kategorien
 - Gleichzeichen: =, \neq (\neq), \approx (\approx)
 - Griechische Buchstaben: α (\alpha), β (\beta)
 - Mathematische Operatoren: $\sum (\setminus sum), \int (\setminus int)$
 - $\qquad \hbox{ Zahlenmengen: } \mathbb{N} \left(\mathbb{N} \right) \text{ oder } \mathbb{N} \left(\mathbb{N} \right)$
 - Pfeile: \rightarrow (\to), \Rightarrow (\Rightarrow), \mapsto (\mapsto)

- Verschiedene Kategorien
 - Gleichzeichen: =, \neq (\neq), \approx (\approx)
 - Griechische Buchstaben: α (\alpha), β (\beta)
 - Mathematische Operatoren: ∑(\sum), ∫(\int)
 - Zahlenmengen: \mathbb{N} (\mathbb{N}) oder \mathbb{N} (\mathds{N})
 - Pfeile: \rightarrow (\to), \Rightarrow (\Rightarrow), \mapsto (\mapsto)
- Falls dein Zeichen hier nicht dabei war: Detexify

- Verschiedene Kategorien
 - Gleichzeichen: =, \neq (\neq), \approx (\approx)
 - Griechische Buchstaben: α (\alpha), β (\beta)
 - Mathematische Operatoren: ∑ (\sum), ∫ (\int)
 - Zahlenmengen: \mathbb{N} (\mathbb{N}) oder \mathbb{N} (\mathds{N})
 - Pfeile: \rightarrow (\to), \Rightarrow (\Rightarrow), \mapsto (\mapsto)
- Falls dein Zeichen hier nicht dabei war: Detexify
- lacktriangle Welches der Symbole findet ihr besser? $\mathbb N$ oder $\mathbb N$

- Verschiedene Kategorien
 - Gleichzeichen: =, \neq (\neq), \approx (\approx)
 - Griechische Buchstaben: α (\alpha), β (\beta)
 - Mathematische Operatoren: ∑(\sum), ∫(\int)
 - Zahlenmengen: \mathbb{N} (\mathbb{N}) oder \mathbb{N} (\mathds{N})
 - Pfeile: \rightarrow (\to), \Rightarrow (\Rightarrow), \mapsto (\mapsto)
- Falls dein Zeichen hier nicht dabei war: Detexify
- Welches der Symbole findet ihr besser? $\mathbb N$ oder $\mathbb N$
 - N ist eher handschriftlich

- Verschiedene Kategorien
 - Gleichzeichen: =, \neq (\neq), \approx (\approx)
 - Griechische Buchstaben: α (\alpha), β (\beta)
 - Mathematische Operatoren: ∑(\sum), ∫(\int)
 - Zahlenmengen: \mathbb{N} (\mathbb{N}) oder \mathbb{N} (\mathds{N})
 - Pfeile: \rightarrow (\to), \Rightarrow (\Rightarrow), \mapsto (\mapsto)
- Falls dein Zeichen hier nicht dabei war: Detexify
- Welches der Symbole findet ihr besser? $\mathbb N$ oder $\mathbb N$
 - IN ist eher handschriftlich
 - Falls euch etwas vorgeschrieben wird, nehmt das

- Verschiedene Kategorien
 - Gleichzeichen: =, \neq (\neq), \approx (\approx)
 - Griechische Buchstaben: α (\alpha), β (\beta)
 - Mathematische Operatoren: $\sum (\text{\sum}), \int (\text{\int})$
 - Zahlenmengen: \mathbb{N} (\mathbb{N}) oder \mathbb{N} (\mathds{N})
 - Pfeile: \rightarrow (\to), \Rightarrow (\Rightarrow), \mapsto (\mapsto)
- Falls dein Zeichen hier nicht dabei war: Detexify
- Welches der Symbole findet ihr besser? $\mathbb N$ oder $\mathbb N$
 - IN ist eher handschriftlich
 - Falls euch etwas vorgeschrieben wird, nehmt das
 - Ansonsten: Nehmt das was ihr möchtet.

Aber haltet euch dran!

$$\{x \in \mathbb{N} | x > 5\}$$

$$\{x \in \mathbb{N} | x > 5\} \quad \{x \in \mathbb{N} \mid x > 5\}$$

- Das Spacing zwischen dem Strich ist zu wenig
- Wie geht es besser? \mid

$$\{x \in \mathbb{N} | x > 5\} \quad \{x \in \mathbb{N} \mid x > 5\}$$

a := 5

$$a := 5$$
 $a := 5$

- Das Spacing zwischen dem Strich ist zu wenig
- Wie geht es besser? \mid
- Das = und der Doppelpunkt sind nicht aligned
- Wie geht es besser? \coloneq

$$a := 5$$
 $a := 5$

sin(x)

$$sin(x)$$
 $sin(x)$

- Das Spacing zwischen dem Strich ist zu wenig
- Wie geht es besser? \mid
- Das = und der Doppelpunkt sind nicht aligned
- Wie geht es besser? \coloneq
- Das sin sollte nicht kursiv geschrieben sein
- Wie geht es besser? \sin

$$sin(x)$$
 $sin(x)$

Ausgehend von NIST . . .

- Ausgehend von NIST . . .
- Mathematische Funktionen sollten nicht kursiv sein

```
\rightarrow tan(x) vs. tan(x), exp(x) vs. exp(x)
```

- Ausgehend von NIST . . .
- Mathematische Funktionen sollten nicht kursiv sein

$$\rightarrow tan(x)$$
 vs. $tan(x)$, $exp(x)$ vs. $exp(x)$

Variablen und Funktionen mit 1 Buchstaben sollten kursiv sein

$$\rightarrow x, y, z, t, r, \lambda, f(x)$$

- Ausgehend von NIST . . .
- Mathematische Funktionen sollten nicht kursiv sein

$$\rightarrow tan(x)$$
 vs. $tan(x)$, $exp(x)$ vs. $exp(x)$

• Variablen und Funktionen mit 1 Buchstaben sollten kursiv sein

$$\rightarrow x, y, z, t, r, \lambda, f(x)$$

- Einheiten sollten nicht kursiv sein
 - $\rightarrow t = 3s, r = 11cm, \lambda = 420nm$

- Ausgehend von NIST . . .
- Mathematische Funktionen sollten nicht kursiv sein

$$\rightarrow tan(x)$$
 vs. $tan(x)$, $exp(x)$ vs. $exp(x)$

Variablen und Funktionen mit 1 Buchstaben sollten kursiv sein

$$\rightarrow x, y, z, t, r, \lambda, f(x)$$

• Einheiten sollten nicht kursiv sein

$$\rightarrow t = 3s, r = 11cm, \lambda = 420nm$$

Mathematische Konstanten werden nicht kursiv geschrieben

$$\rightarrow e^{i \cdot \pi} = -1$$

- Ausgehend von NIST . . .
- Mathematische Funktionen sollten nicht kursiv sein

$$\rightarrow tan(x)$$
 vs. $tan(x)$, $exp(x)$ vs. $exp(x)$

- Variablen und Funktionen mit 1 Buchstaben sollten kursiv sein $\rightarrow x, y, z, t, r, \lambda, f(x)$
- Einheiten sollten nicht kursiv sein

$$\rightarrow t = 3$$
s, $r = 11$ cm, $\lambda = 420$ nm

Mathematische Konstanten werden nicht kursiv geschrieben

$$\rightarrow e^{i \cdot \pi} = -1$$

Der Differentialoperator sollte nicht kursiv sein

$$\rightarrow \int_a^b x^2 dx$$
 vs. $\int_a^b x^2 dx$, $f'(x) = \frac{df(x)}{dx}$ vs. $f'(x) = \frac{df(x)}{dx}$

LETEX Tooling im Vergleich

LATEX Tooling: Wie installieren?

Linux

- TEXLive durch den Paketmanager installieren
- sudo apt install texlive-latex-extra
- sudo pacman -S texlive-most
- sudo dnf install texlive-scheme-medium

LETEX Tooling: Wie installieren?

- Linux
 - TEXLive durch den Paketmanager installieren
 - sudo apt install texlive-latex-extra
 - sudo pacman -S texlive-most
 - sudo dnf install texlive-scheme-medium
- macOS
 - MacTeX
 - brew cask install mactex

LETEX Tooling: Wie installieren?

- Linux
 - TEXLive durch den Paketmanager installieren
 - sudo apt install texlive-latex-extra
 - sudo pacman -S texlive-most
 - sudo dnf install texlive-scheme-medium
- macOS
 - MacTeX
 - brew cask install mactex
- Windows
 - MiKT_EX / T_EXLive

LETEX Tooling: MiKTEX vs. TEXLive

	MiKT _E X	T _E XLive
Anzahl Pakete	Wenig	Viel
"on-the-fly" Pakete installieren	√	×
Open-Source	✓	✓
Platform	(Primär) Windows	Alle
Maintainer	Christian Schenk	T _E X Users Group

LETEX Tooling: MiKTEX vs. TEXLive

MiKT _E X	TEXLive
Wenig	Viel
√	×
✓	✓
(Primär) Windows	Alle
Christian Schenk	T _E X Users Group
	Wenig ✓ ✓ (Primär) Windows

Was ist schneller?

LATEX Live MIKTEX vs. TEXLive

	MiKT _E X	TEXLive
Anzahl Pakete	Wenig	Viel
"on-the-fly" Pakete installieren	✓	×
Open-Source	✓	✓
Platform	(Primär) Windows	Alle
Maintainer	Christian Schenk	T _E X Users Group

Was ist schneller? \rightarrow TFXLive

LATEX Tooling: Übersicht Editoren

Online Editor

LATEX Tooling: Übersicht Editoren

- Online Editor
 - Overleaf

LATEX Tooling: Übersicht Editoren

- Online Editor
 - Overleaf
- Lokaler Editor

LETEX Tooling: Übersicht Editoren

- Online Editor
 - Overleaf
- Lokaler Editor
 - Dedizierte IDE
 - TFXStudio
 - TFXMaker
 - LyX

LATEX Tooling: Übersicht Editoren

- Online Editor
 - Overleaf
- Lokaler Editor
 - Dedizierte IDE
 - TFXStudio
 - TFXMaker
 - LyX
 - IDE mit LSP / Plugin support
 - Visual Studio Code
 - IntelliJ IDEA
 - vim / emacs

LETEX Tooling: Übersicht PDF Viewer

Nicht alle PDF viewer sind gleich!

LETEX Tooling: Übersicht PDF Viewer

- Nicht alle PDF viewer sind gleich!
- Auto-refresh

LATEX Tooling: Übersicht PDF Viewer

- Nicht alle PDF viewer sind gleich!
- Auto-refresh
- Forward / Backward Search

LATEX Tooling: Übersicht PDF Viewer

- Nicht alle PDF viewer sind gleich!
- Auto-refresh
- Forward / Backward Search
- Reverse-Jump

LATEX Tooling: Übersicht PDF Viewer

- Nicht alle PDF viewer sind gleich!
- Auto-refresh
- Forward / Backward Search
- Reverse-Jump
- SyncTeX (zur relevanten Seite scrollen)

LETEX Tooling: Übersicht PDF Viewer

- Nicht alle PDF viewer sind gleich!
- Auto-refresh
- Forward / Backward Search
- Reverse-Jump
- SyncTeX (zur relevanten Seite scrollen)
- Platform

LATEX Tooling: Vergleich von PDF-Viewern

	Auto- Refresh	F/B- Search	Reverse- Jump	SyncTeX	Platform
Okular	√	√	√	✓	Alle
Evince	\checkmark	✓	✓	✓	Alle
${\sf SumatraPDF}$	✓	✓	✓	✓	Windows
Overleaf	✓	✓	X	✓	Alle
Chromium	X	X	X	X	Alle
Firefox	X	X	X	X	Alle
Preview	Х	X	✓	X	macOS
Skim	✓	✓	✓	✓	macOS

Schnelle Compiles mit LATEX

■ LATEX wird kompiliert, es ist nicht WYSIWYG

- LATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback

- LATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback
 - Positionierung von Bildern
 - TikZ Grafiken
 - ...

- ATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback
 - Positionierung von Bildern
 - TikZ Grafiken
 - . . .
- Feedback Cycle

- ATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback
 - Positionierung von Bildern
 - TikZ Grafiken
 - . . .
- Feedback Cycle

- LATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback
 - Positionierung von Bildern
 - TikZ Grafiken
 - ...
- Feedback Cycle
- Verschiedene Optimierungsdimensionen

- ATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback
 - Positionierung von Bildern
 - TikZ Grafiken
 - ...
- Feedback Cycle
- Verschiedene Optimierungsdimensionen
 - 1. Beschleunigen des Codes

- LATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback
 - Positionierung von Bildern
 - TikZ Grafiken
 - ...
- Feedback Cycle
- Verschiedene Optimierungsdimensionen
 - 1. Beschleunigen des Codes
 - 2. Reduzieren der zu verarbeitenden Code-Menge

- LATEX wird kompiliert, es ist nicht WYSIWYG
- Bis das Dokument kompiliert ist, gibt es kein Feedback
 - Positionierung von Bildern
 - TikZ Grafiken
 - ...
- Feedback Cycle
- Verschiedene Optimierungsdimensionen
 - 1. Beschleunigen des Codes
 - 2. Reduzieren der zu verarbeitenden Code-Menge
 - 3. TikZ

Schnelle Compiles: Beschleunigen des Codes

- Vermeiden von unnötigen Paketen
 - TikZ
 - Bib(La)TEX
 - minted

Schnelle Compiles: Beschleunigen des Codes

- Vermeiden von unnötigen Paketen
 - TikZ
 - Bib(La)TEX
 - minted
- Trojanische Pferde vermeiden
 - Pakete, die als Dependency ein langsames Paket haben

Schnelle Compiles: Beschleunigen des Codes

- Vermeiden von unnötigen Paketen
 - TikZ
 - Bib(La)TEX
 - minted
- Trojanische Pferde vermeiden
 - Pakete, die als Dependency ein langsames Paket haben
- Caches nutzen: Build Artefakte nicht löschen

Schnelle Compiles: Optimieren von Grafiken

- Auflösung anpassen
 - lacktriangle Reduzieren der Auflösung (4k ightarrow 1080p)
 - $\rightarrow \ \, \mathsf{Schnellere} \,\, \mathsf{Verarbeitung}$

Schnelle Compiles: Optimieren von Grafiken

- Auflösung anpassen
 - Reduzieren der Auflösung (4k \rightarrow 1080p)
 - → Schnellere Verarbeitung
- In .pdf konvertieren
 - Natives Format für LATEX-Ausgabe
 - Keine zusätzliche Formatkonvertierung
 - → Kürzere Kompilierungszeit

Schnelle Compiles: Optimieren von Grafiken

- Auflösung anpassen
 - Reduzieren der Auflösung (4k → 1080p)
 - \rightarrow Schnellere Verarbeitung
- In .pdf konvertieren
 - Natives Format für LATEX-Ausgabe
 - Keine zusätzliche Formatkonvertierung
 - → Kürzere Kompilierungszeit
- Kann automatisch gemacht werden:

- Beispiel: Dokument von 100 Seiten
- Meist wird nur 1 aktiv bearbeitet, warum alle kompilieren?

- Beispiel: Dokument von 100 Seiten
- Meist wird nur 1 aktiv bearbeitet, warum alle kompilieren?
- \usepackage{subfiles}: Zerteilen des Projekts
- Jedes Teildokument kann separat kompiliert werden

- Beispiel: Dokument von 100 Seiten
- Meist wird nur 1 aktiv bearbeitet, warum alle kompilieren?
- \usepackage{subfiles}: Zerteilen des Projekts
- Jedes Teildokument kann separat kompiliert werden
- Jedes Teildokument ist ein vollständiges LATEX-Dokument
- Die main Datei bekommt den Inhalt der Subfile
- Die Subfile bekommt die Präambel der main Datei

- Beispiel: Dokument von 100 Seiten
- Meist wird nur 1 aktiv bearbeitet, warum alle kompilieren?
- \usepackage{subfiles}: Zerteilen des Projekts
- Jedes Teildokument kann separat kompiliert werden
- Jedes Teildokument ist ein vollständiges LATEX-Dokument
- Die main Datei bekommt den Inhalt der Subfile
- Die Subfile bekommt die Präambel der main Datei
- Wird transparent von \documentclass{subfiles} gemacht
- Minimaler Overhead

Schnelle Compiles: Precompiled Header

- Die Präambel des Dokuments ändert sich (fast) nie
- Warum wird die immer wieder aufs neue kompiliert?

Schnelle Compiles: Precompiled Header

- Die Präambel des Dokuments ändert sich (fast) nie
- Warum wird die immer wieder aufs neue kompiliert?
- Abspeichern des Zustands am Ende der Präambel
 - $\rightarrow\,$ Kann bei der nächsten Kompilation geladen werden

Schnelle Compiles: Precompiled Header

- Die Präambel des Dokuments ändert sich (fast) nie
- Warum wird die immer wieder aufs neue kompiliert?
- Abspeichern des Zustands am Ende der Präambel
 - ightarrow Kann bei der nächsten Kompilation geladen werden
- Mit dem Paket mylatexformat möglich: pdflatex -ini -jobname="main" "&pdflatex" \ mylatexformat.ltx main.tex

Schnelle Compiles: Precompiled Header

- Die Präambel des Dokuments ändert sich (fast) nie
- Warum wird die immer wieder aufs neue kompiliert?
- Abspeichern des Zustands am Ende der Präambel
 - ightarrow Kann bei der nächsten Kompilation geladen werden
- Mit dem Paket mylatexformat möglich: pdflatex -ini -jobname="main" "&pdflatex" \ mylatexformat.ltx main.tex
- Heraus kommt eine ~10MB Binärdatei
- Kann über den Header %&main eingebunden werden

- Beispiel: Dokument mit 20 schönen TikZ Bildern.
- Keins ist unnötig, alle sollen gerendert werden

- Beispiel: Dokument mit 20 schönen TikZ Bildern.
- Keins ist unnötig, alle sollen gerendert werden
 - $\rightarrow \ \, \mathsf{Externalisierung} \,\, \mathsf{nutzen} \,\,$

- Beispiel: Dokument mit 20 schönen TikZ Bildern.
- Keins ist unnötig, alle sollen gerendert werden
 - $\rightarrow \ \, \mathsf{Externalisierung} \,\, \mathsf{nutzen} \,\,$
- TikZ-Bilder in separate PDFs speichern

- Beispiel: Dokument mit 20 schönen TikZ Bildern.
- Keins ist unnötig, alle sollen gerendert werden
 - ightarrow Externalisierung nutzen
- TikZ-Bilder in separate PDFs speichern
- Einfügen der PDFs in Hauptdokument

- Beispiel: Dokument mit 20 schönen TikZ Bildern.
- Keins ist unnötig, alle sollen gerendert werden
 - \rightarrow Externalisierung nutzen
- TikZ-Bilder in separate PDFs speichern
- Einfügen der PDFs in Hauptdokument
- Beschleunigung durch Vermeidung von Neuberechnungen

- Beispiel: Dokument mit 20 schönen TikZ Bildern.
- Keins ist unnötig, alle sollen gerendert werden
 - → Externalisierung nutzen
- TikZ-Bilder in separate PDFs speichern
- Einfügen der PDFs in Hauptdokument
- Beschleunigung durch Vermeidung von Neuberechnungen
- Aktualisierung nur bei Änderungen erforderlich

- Beispiel: Dokument mit 20 schönen TikZ Bildern.
- Keins ist unnötig, alle sollen gerendert werden
 - → Externalisierung nutzen
- TikZ-Bilder in separate PDFs speichern
- Einfügen der PDFs in Hauptdokument
- Beschleunigung durch Vermeidung von Neuberechnungen
- Aktualisierung nur bei Änderungen erforderlich
- Mit [list and make] ist parallele Verarbeitung möglich!
 - → Bisschen komplizierter, zum lesen

■ Diese Präsentation ist mit LATEX-Beamer erstellt

- Diese Präsentation ist mit LATEX-Beamer erstellt
- Es dauert 32s um die Präsentation vollständig zu kompilieren

- Diese Präsentation ist mit LATEX-Beamer erstellt
- Es dauert 32s um die Präsentation *vollständig* zu kompilieren
 - ightarrow 3 compile Runs + 1 biber Run

- Diese Präsentation ist mit LATEX-Beamer erstellt
- Es dauert 32s um die Präsentation vollständig zu kompilieren \rightarrow 3 compile Runs + 1 biber Run
- Ein compile Run dauert 7s

- Diese Präsentation ist mit LATEX-Beamer erstellt
- Es dauert 32s um die Präsentation vollständig zu kompilieren
 → 3 compile Runs + 1 biber Run
- Ein compile Run dauert 7s
- Mit Format-File (Template) 6s 500ms

- Diese Präsentation ist mit LATEX-Beamer erstellt
- Es dauert 32s um die Präsentation vollständig zu kompilieren
 → 3 compile Runs + 1 biber Run
- Ein compile Run dauert 7s
- Mit Format-File (Template) 6s 500ms

Subfile	Ohne Template	Mit Template
0	1s 300ms	600ms
1	3s	2s 200ms
2	1s 400ms	730ms
3	2s	1s 200ms
4	1s 400ms	700ms
5	1s 300ms	600ms
6	3s 300ms	2s 500ms

Bibliographien mit LATEX

Bibliographien mit LATEX: Backends im Vergleich

	BibTEX	biber
Programmiersprache	TeX	Perl
Geschwindigkeit	Schnell	Langsam
Unicode support	X	✓
Datumsformat	Eingeschränkt	Flexibel
Sortierung	Einfach	Benutzerdefiniert
Namensformatierung	Begrenzt	Erweitert

Bibliographien mit LaTeX: Backends im Vergleich

	BibTEX	biber
Programmiersprache	TeX	Perl
Geschwindigkeit	Schnell	Langsam
Unicode support	X	\checkmark
Datumsformat	Eingeschränkt	Flexibel
Sortierung	Einfach	Benutzerdefiniert
Namensformatierung	Begrenzt	Erweitert

Was soll ich verwenden? → biber

Command	Output
	[1]
	Kime, Wemheuer und Lehman [2]
	[3]
	[1]
	1
	2

Tabelle 2: Zitationen im Stil der IEEE

//ftp.gwdg.de/pub/ctan/graphics/pgf/base/doc/pgfmanual.pdf.

¹1.
²T. Tantau, "**TikZ and PGF Manual,"** (15. Jan. 2023), Adresse: https:

Command	Output
	[2]
	Kime, Wemheuer und Lehman [1]
	[4]
	[2]
	1
	2

Tabelle 2: Zitationen im Stil der ACM

¹2.

²T. Tantau. *TikZ and PGF Manual*. 15. Jan. 2023. URL: https://ftp.gwdg.de/pub/ctan/graphics/pgf/base/doc/pgfmanual.pdf.

Command	Output
	Knuth 1984
	Kime, Wemheuer und Lehman (2023)
	(Tantau, Wright und Miletić 2023)
	(Knuth 1984)
	1
	2

Tabelle 2: Zitationen im Stil von Chicago-Authordate

^{1.} Knuth 1984.

^{2.} Till Tantau. 2023. "TikZ and PGF Manual", 15. Januar 2023. https://ftp.gwdg.de/pub/ctan/graphics/pgf/base/doc/pgfmanual.pdf.

Command	Output
	Knuth, 1984
	Kime et al. (2023)
	(Tantau et al., 2023)
	(Knuth, 1984)
	1
	2

Tabelle 2: Zitationen im Stil der APA

¹Knuth. 1984.

²Tantau, T. (2023, 15. Januar). *TikZ and PGF Manual*. https://ftp.gwdg.de/pub/ctan/graphics/pgf/base/doc/pgfmanual.pdf

Bibliographien mit LETEX: Quellenverzeichnis

- [1] D. E. Knuth, *The TeXbook, A complete user's guide to computer typesetting with TEX.* Addison-Wesley, 1984, ISBN: 0-201-13447-0.
- [2] P. Kime, M. Wemheuer und P. Lehman, "The biblatex Package, Programmable Bibliographies and Citations,"
 (5. März 2023), Adresse: https://ctan.kako-dev.de/macros/latex/contrib/biblatex/doc/biblatex.pdf.
- [3] T. Tantau, J. Wright und V. Miletić, "The beamer class User Guide for version 3.69.," (20. Feb. 2023), Adresse: https://tug.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf.
- [4] T. Tantau, "TikZ and PGF Manual," (15. Jan. 2023), Adresse: https://ftp.gwdg.de/pub/ctan/graphics/pgf/base/doc/ pgfmanual.pdf.

Beamer

1. Dokumentklasse setzen: \documentclass{beamer}

- 1. Dokumentklasse setzen: \documentclass{beamer}
- 2. Stil wählen: \usetheme{<stil>}
 - metropolis
 - Copenhagen
 - Berlin

- 1. Dokumentklasse setzen: \documentclass{beamer}
- 2. Stil wählen: \usetheme{<stil>}
 - metropolis
 - Copenhagen
 - Berlin
- 3. Folien erstellen

- 1. Dokumentklasse setzen: \documentclass{beamer}
- 2. Stil wählen: \usetheme{<stil>}
 - metropolis
 - Copenhagen
 - Berlin
- 3. Folien erstellen

Falls Verbatim verwendet wird: Option [fragile] verwenden:

```
\begin{frame}[fragile]{<Titel>}
```

Präsentationen mit LaTEX: Animationen

- Möglich mit dem Befehl \pause
- Letzter Schritt vor dem Finalisieren der Präsentation

Präsentationen mit LaTeX: Animationen

- Möglich mit dem Befehl \pause
- Letzter Schritt vor dem Finalisieren der Präsentation

```
\begin{frame}{Pause-Beispiel}
    \begin{itemize}
        \item Erster Punkt
        \pause
        \item Zweiter Punkt
        \pause
        \item Dritter Punkt
    \end{itemize}
\end {frame}
```

Pause-Beispiel

Erster Punkt

Pause-Beispiel

- Erster Punkt
- Zweiter Punkt

Pause-Beispiel

- Erster Punkt
- Zweiter Punkt
- Dritter Punkt

Präsentationen mit LaTEX: Animationen

Aber: \pause kann nur Dinge einblenden, nicht ausblenden

Präsentationen mit LaTEX: Animationen

- Aber: \pause kann nur Dinge einblenden, nicht ausblenden
- Mehr Commands
 - \uncover<2->
 - \only<3, 4>

Präsentationen mit LaTEX: Animationen

- Aber: \pause kann nur Dinge einblenden, nicht ausblenden
- Mehr Commands
 - \uncover<2->
 - \only<3, 4>

```
\begin{frame}{Animations-Beispiel}
   \begin{itemize}
     \uncover<1->{\item Erster Punkt}
     \only<2-3>{\item Zweiter Punkt}
     \uncover<3->{\item Dritter Punkt}
     \only<5-6>{\item Vierter Punkt}
     \end{itemize}
\end {frame}
```

Erster Punkt

- Erster Punkt
- Zweiter Punkt

- Erster Punkt
- Zweiter Punkt
- Dritter Punkt

- Erster Punkt
- Dritter Punkt

- Erster Punkt
- Dritter Punkt
- Vierter Punkt

TikZ

Mit TikZ wird nicht gezeichnet, es wird programmiert

Mit TikZ wird nicht gezeichnet, es wird programmiert

```
\begin{tikzpicture}
  \node at (0, 0) {Hello, World!};
\end{tikzpicture}
```

Mit TikZ wird nicht gezeichnet, es wird programmiert

```
\begin{tikzpicture}
  \node at (0, 0) {Hello, World!};
\end{tikzpicture}
```

Sehr gutes Manual: 1300 Seiten, 24 Seiten Inhaltsverzeichnis

Mit TikZ wird nicht gezeichnet, es wird programmiert

```
\begin{tikzpicture}
  \node at (0, 0) {Hello, World!};
\end{tikzpicture}
```

- Sehr gutes Manual: 1300 Seiten, 24 Seiten Inhaltsverzeichnis
- Erweiterbarkeit: \usetikzlibrary{...}
 - positioning
 - calc
 - shapes

• Befehle für das Zeichnen

- Befehle für das Zeichnen
 - \node
 - \draw
 - \fill

- Befehle für das Zeichnen
 - \node
 - \draw
 - \fill
- Koordinaten
 - Normal: (x, y)
 - Polar: (a:b:r)

- Befehle für das Zeichnen
 - \node
 - \draw
 - \fill
- Koordinaten
 - Normal: (x, y)
 - Polar: (a:b:r)
- Positionierung neben anderen Nodes

```
\node (hello) at (0, 0) {Hello, World!};
\node[left=of hello] {Bonjour};
```

• Dem tikzpicture können optionen mitgegeben werden

- Dem tikzpicture können optionen mitgegeben werden
- Im Nachhinein kann die Größe des Bildes angepasst werden

- Dem tikzpicture können optionen mitgegeben werden
- Im Nachhinein kann die Größe des Bildes angepasst werden
 - → \begin{tikzpicture}[scale=2]
- Auch nodes sowie die meisten Befehle unterstützen das
 - Rotation: [rotate=45]
 - Farben: [red], [blue], [orange]
 - Shift: [xshift=1cm] / [yshift-0.5mm]

- Dem tikzpicture können optionen mitgegeben werden
- Im Nachhinein kann die Größe des Bildes angepasst werden
 - → \begin{tikzpicture}[scale=2]
- Auch nodes sowie die meisten Befehle unterstützen das
 - Rotation: [rotate=45]
 - Farben: [red], [blue], [orange]
 - Shift: [xshift=1cm] / [yshift-0.5mm]
- Klassischerweise: y-Achse im Koordinatensystem nach oben
- Kann geändert werden!
 - → \begin{tikzpicture}[yscale=-1]

- Dem tikzpicture können optionen mitgegeben werden
- Im Nachhinein kann die Größe des Bildes angepasst werden
 - → \begin{tikzpicture}[scale=2]
- Auch nodes sowie die meisten Befehle unterstützen das
 - Rotation: [rotate=45]
 - Farben: [red], [blue], [orange]
 - Shift: [xshift=1cm] / [yshift-0.5mm]
- Klassischerweise: y-Achse im Koordinatensystem nach oben
- Kann geändert werden!
 - → \begin{tikzpicture}[yscale=-1]
- TikZ unterstützt auch animationen!

```
\color= (0, 0) {Hello, World!};
```

```
\node (biblatex) {BibLaTeX};
\node[below=6cm of biblatex] (natbib) {natbib};
```



```
\node (biblatex) {BibLaTeX};
\node[below=6cm of biblatex] (natbib) {natbib};
\node[below=of biblatex] (s biblatex) {Setup};
\node[above=of natbib] (s natbib) {Setup};
```


Setup

Setup


```
\node (biblatex) {BibLaTeX};
\node[below=6cm of biblatex] (natbib) {natbib};
\node[below=of biblatex] (s biblatex) {Setup};
\node[above=of natbib] (s natbib) {Setup};
\node[right=of s biblatex] (1c biblatex) {1.Compile};
\node[right=of s natbib] (1c natbib) {1.Compile};
```


Setup

1. Compile

Setup 1

1. Compile

→ natbib

```
\node (biblatex) {BibLaTeX};
\node[below=6cm of biblatex] (natbib) {natbib};
\node[below=of biblatex] (s biblatex) {Setup};
\node[above=of natbib] (s natbib) {Setup};
\node[right=of s biblatex] (1c biblatex) {1.Compile};
\node[right=of s natbib] (1c natbib) {1.Compile};
\node[right=of 1c biblatex] (biber) {Biber};
\node[right=of 1c natbib] (bibtex) {BibTeX};
```


Setup

Setup

1. Compile

1. Compile

BibTeX

Biber

→ natbib

```
\node (biblatex) {BibLaTeX};
\node[below=6cm of biblatex] (natbib) {natbib};
\node[below=of biblatex] (s biblatex) {Setup};
\node[above=of natbib] (s natbib) {Setup};
\node[right=of s biblatex] (1c biblatex) {1.Compile};
\node[right=of s natbib] (1c natbib) {1.Compile};
\node[right=of 1c biblatex] (biber) {Biber};
\node[right=of 1c natbib] (bibtex) {BibTeX};
\node[right=of $(biber)!0.5!(bibtex)$] (2 compile)
\rightarrow {2. Compile};
```


Setup 1. Compile

Biber

Setup

1. Compile

2. Compile

natbib

BibTeX

```
\draw[->] (biblatex) -- (setup biblatex);
\draw (natbib) -> (setup natbib);
```



```
\draw[->] (biblatex) -- (setup biblatex);
\draw (natbib) -> (setup natbib);
\draw[->] (setup biblatex) -- (1c biblatex);
\draw[->] (setup natbib) -- (1c natbib);
```



```
\draw[->] (biblatex) -- (setup biblatex);
\draw (natbib) -> (setup natbib);
\draw[->] (setup biblatex) -- (1c biblatex);
\draw[->] (setup natbib) -- (1c natbib);
\draw[->] (1c natbib) -- node[above] {.aux} (bibtex):
\draw[->] (1c biblatex) -- node[above] {.aux}
→ node[below] {.bcf} (biber);
\draw[->] (1c biblatex) -- node[above right=-0.1]
```



```
\draw[->] (biblatex) -- (setup biblatex);
\draw (natbib) -> (setup natbib);
\draw[->] (setup biblatex) -- (1c biblatex);
\draw[->] (setup natbib) -- (1c natbib);
\draw[->] (1c natbib) -- node[above] {.aux} (bibtex);
\draw[->] (1c biblatex) -- node[above] {.aux}
→ node[below] {.bcf} (biber);
\draw[->] (1c biblatex) -- node[above right=-0.1]
\frac{1}{2}
\draw[->] ($(bibtex.east)!0.5!(bibtex.north east)$)
\rightarrow -- (\$(2 compile.west)!0.5!(2 compile.south
→ west)$);
```


Was TikZ so alles kann: Intersections

Was TikZ so alles kann: Prozessdiagramme

Bonuspunkte, wenn ihr wisst wo dieses Bild herkommt;)

Was TikZ so alles kann: Fraktale

Was TikZ so alles kann: Fraktale

Was TikZ so alles kann: Fraktale

Was TikZ so alles kann: 3d Bilder

Was TikZ so alles kann: Mindmaps

