一 网络模型

各个组织或企业对网络模型定义有所不同,但目前最常见的定义有一下两种。

TCP/IP 五层模型

网络层编号	网络层名称	协议	数据单元	地址
5	应用层	HTTP, SMTP,	Message	n/a
4	传输层	TCP/UDP	Segment/Datagram	Port
3	网络层	IP	Packet	IP
2	数据链路层	Ethernet, Wi-Fi	Frame	Mac
1	物理层	10 Base T, 802.11	Bit	n/a

- **物理层** 物理层表示与计算机互连的物理设备,其中还包括将物理设备连接在一起的 网线、光缆、连接器的规范,以及描述如何通过这些连接发送信号的规范。
- **数据链路层** 物理层仅仅涉及到的是光缆、连接器和信号发送,数据链路层负责定义解释这些信号的通用方法,以便网络设备可以进行通信。 该层中最常见的协议是以太网(Ethernet),它指定物理层属性,并定义负责同一网络或链路上的节点间传输数据的协议。
- **网络层** 也称为 Internet 层,它允许不同的网络之间通过路由器设备相互通信。数据链路层只负责的是同一链路上的数据交互,网络层负责的是跨不同网络的数据交互。
- 传输层 网络层可以负责两个不同网络中的节点间的数据交互,传输层会理清应该由那个客户端和服务器程序获取这些数据。TCP 和 UDP 是最常见的四层协议,IP 负责将数据从一个节点传输到另一个节点; TCP 和 UDP 协议负责确保数据被节点上的特定应用获取。
- 应用层 这一层包括很多协议,常见的一些包括 SSH(Secure Shell), HTTP/HTTPS(Hyper Text Transfer Protocol [Secure]), FTP(File Transfer Protocol), SMTP(Simple Mail Transfer Protocol)。

TCP/IP 5 层模型与硬件组建对应关系

OSI 七层模型

详细参照 wiki/OSI model 了解更多关于 OSI 七层模型。

三种模型对比及对应网络协议

除了 TCP/IP 五层模型外,关于网络模型在业界还有其他表述,最有影响力的表扩:OSI 七层模型和 TCP/IP 四层模型,具体对照如下表:

OSI 七层模型	TCP/IP 五层模型	TCP/IP 四层模型	对应的网络协议
应用层			HTTP, TFTZP, FTP, NFS, WAIS, SMTP
表示层	应用层	应用层	Telnet, Rlogin, SNMP, Gopher
会话层			SMTP, DNS
传输层	传输层	传输层	TCP, UDP
网络层	网络层	网络层	IP, ICMP, APR, RAPR, AKP, UUCP
数据链路层	数据链路层	数据链路层	FDDI, Ethernet, Arpanet, PDN, SLIP, PPP
物理层	物理层		IEEE 802.1A, IEEE 802.2, IEEE 802.11

- OSI 七层模型将 TCP/IP 模型中的应用层细分为三层:应层层、表示层、会话层
 - 1. 会话层(Session Layer):它负责建立、管理和终止会话,以及提供数据交换的服务。例如:RPC、SAP等。
 - 2. 表示层(Presentation Layer):它负责数据格式转换、加密和解密等数据格式转换和加密功能。例如:JPEG、ASCII、加密算法等。
 - 3. 应用层(Application Layer):它提供基于应用程序的数据传输服务,对应用程序所需的功能进行抽象和封装。例如:HTTP、FTP、SMTP等。
- 相比较 TCP/IP 五层模型,TCP/IP 四层模型将物理层和数据链路层合为一层为数据 链路层,也叫网络接口层
- 网络层也叫 Internet 层或网络互联层,数据链路层也称网络接口层