IIT-Hyderabad

Project Document

BroadCast and Multicast Routing

Computer Network 2 (CS3543)

Project Name	Implementation of Broadcast and Multicast Routing	
Date	2019-03-31	
Author	Harshit Patel - cs16btech11017	Shreyash Anarase- es16btech11002

Contents

1 SW	V Development Plan	4
1.1 1.1.1 1.2 1.3 1.4 1.4.1 1.4.2	Project Overview Objective and Project Scope Assumptions, Dependencies and Constraints Roles and Responsibilities Development Plan Development Schedule Development Environment	4 4 4 5 5 5
2 SW	Requirements Specification	6
2.1 2.2	Major Functional Requirements Non-Functional (Quality) Requirements	6 6
3 SW	V High & Detailed Level Design	7
3.1 3.2 3.2.1 3.3 3.4	Overall Architecture SW System Operation Design {Block 'n'} Structure Diagram SW Code Structure Requirement vs. Module Mapping	7 7 7 7 9
4 SW	V Unit Test Report	10
4.1	Bugs known at submission date	10
5 SW	V Development Completion Report	11
5.1 5.1.1 5.1.2 5.1.3	Project Result Analysis Development Work Promotion Results Development Results and Utilization Deliverables List	11 11 11 11
Lermin	nology / Abbreviations	12

1 SW Development Plan

1.1 Project Overview

1.1.1 Objective and Project Scope

Objective:

To implement broadcast and multicast routing and compare their performances.

Scope of Project:

- Demonstrating multimedia streaming to a dynamic group of hosts.
- Highlighting the inefficiencies of broadcast routing and emphasizing the importance of multicasting.
- Implementing IGMP protocol and Multicast routing algorithms.
- Simulating the working of routers and routing algorithm.
- Implementation of broadcast routing algorithms.
- Building and testing using circleCI

Major review items
Simulating clients which can be part of several multicast groups.
Simulating routers for packet forwarding and group management.
Centre based approach for spanning tree creation.
Dynamically modifying group of hosts.
Simulating routers for packet forwarding and group management. Centre based approach for spanning tree creation.

1.2 Assumptions, Dependencies and Constraints

<<ld><<Identify and List down the Assumptions, Dependencies and Constraints of the SW System>>

Item	Assumptions, Dependencies and Constraints	Remarks
1.	Identifying receivers of a multicast packet.	
2.	Addressing a packet sent to these receivers.	
3.	Designing the router functionalities.	
4.	Simulating multiple multicast groups with dynamically changing hosts.	
5.	Buffering of packets for persistent delivery.	
6.	Minimizing the lag while playing the multimedia at receivers end.	

7.

1.3 Roles and Responsibilities

Student Name	Roles and Responsibilities	
Harshit Patel - cs16btech11017	Developer Software Requirements Analysis Verifying requirements and performing analysis on requirements; Multicast routing	
Shreyash Anarase- es16btech11002	Developer Software Architecture -Mapping the requirements into Architecture Broadcast routing	
	 Developer - Harshit Patel multimedia streaming performance measure between multicast and broadcast routing 	
Software Development	Developer - Shreyash Anarase testing using circleCI	

1.4 Development Plan

1.4.1 Development Schedule

Estimated Project Period 25/03/2019 - 30/04/2019	
Project Team Size	2
Estimated Man Months	2

Milestone	1 st Review	Final Review
Planned Schedule	2-April-2019	During final exam week.

1.4.2 Development Environment

Item	Development Environment	Remarks	
Program Languages	C++	Follow the OOP design rule	
Compiler, Build	G++ 7.3.0 A new version is expecting is changed Specify compiler ve		

SW Project Document

Target Kernel	LINUX 4.1.0 and above	The version is expected to be changed according to new chipset.
Word Processor for Document Creation	MS Word, MS Excel	
Configuration Management	Github, circleCI	

2 SW Requirements Specification

2.1 Major Functional Requirements

No	Requirem ent Id	Function Requirement Name	Description
1	performan ce_id	performance	Ability to stream multimedia without loss and lag
2	algo_id	algorithms	Correct implementation of multicast and broadcast algorithms.
3	graph_id	graph	A connection graph between hosts, router, server for streaming multimedia.

3 SW High & Detailed Level Design

3.1 Overall Architecture

Multicasting application:

3.2 SW System Operation Design

We have 2 classes:

Host

Router

Main used to create instances of routers and connect them among themselves using the graph topology and to the hosts.

3.2.1 {DesignID} Structure Diagram

SW Project Document

Major functions:

these functions are run in threads.

accept Host IGMP: set Socket Accept Connections IGMP

accept Host: set Socket Accept Connections

connectServerRouter connectServerRouter

no. of threads = no. of content senders

 $manage Group: find Unicast Path\ ,\ create Branch,\ generate Future Spanning Tree,$

sending Broad cast Packets, sending Multicast Packets

findUnicastPath: ShortestPath, search

n threads createBranch to create the spanning tree

generateFutureSpanningTree

sendingBroadcastPackets

sendingMulticastPackets

3.2.1.1 {Module 'n'} Component Design

3.2.1.1.1 Module Description

Describe the functions of the corresponding block.

Module	Description	
acceptHost, acceptHostIGMP	to accept hosts and connect them to routers	
setSocket setSocketIGMP	creating the sockets for communication	
Managegroup	manage the sending of one media file	
sendDataToRouter() recvDataFromRouter()	send and recieve data to and from routers	
indunicastpath, search, shortestpath	finding the shortes path from from each router to centre router	
createBranch	creating the spanning tree for the graph topology	
nerateFutureSpanningTre e	dynamically modifying the spanning tree	

3.2.1.1.2 Sequence Diagram

- Initially we run over main.cpp file which acts as a master program.
- It takes the input of number of routers.
- Then we create separate hosts and connect them to their corresponding routers.
- Until this connection is set up, all the hosts and routers wait.

- After this is done, we input the graph topology which demonstrates the connection between the routers
- Connection between routers is established using this topology.
- Each node informs its corresponding router about the groups to which it is subscribed using IGMP protocol. This is done in parallel.
- Next, we create a spanning tree, using center based approach.
- The source nodes starts sending packets along this spanning tree generated.
- Each hosts reads from its separate files, to which channels should it listen at any given point. This information is communicated to its routers.
- Based on this the structure of spanning tree will keep on changing. A thread runs in the background for this purpose.
- A separate spanning tree is created for each source.
- A router on receiving a packet forwards it to its hosts(if host is present in the particular group) or just forwards the packet for other hosts.
- Each host on receiving the packet, plays the live packets and also stores the packet in a file designated for this for future access and to demonstrate the dynamically changing groups

3.3 SW Code Structure

• Mapping list of modules and files (or folders)

Modules Files/Folder

Implementing host class and its functions : host.cpp

Implementing router class and its functions : router.cpp

• A master program to establish router network: main.cpp

Hosts sending memReport(IGMP)
 Hosts storing the content received by them
 : MemReport
 : 0/1/2/3/4/5/6

For each group for a host : subfolder using group name

inside 0/1/2/3...

3.4 Requirement vs. Module Mapping

Requirement ID	SW Design Elements		
Requirement ib	Module/Function	Class	Notes
Connecting routers and clients.	acceptHost() acceptHostIGMP()	main.cpp	
Creating sockets for communication	setSocket() setSocketIGMP()	host.cpp router.cpp	
Storing unicast path towards center	findUnicastPath()	main.cpp	
calculating shortest distance for communication	shortestDistance() search()		
Managing further host and router IGMP communication	manageHost() manageRouter()	router.cpp main.cpp	

Communicating data across routers	sendDataToRouter() recvDataFromRouter()	router.cpp
Managing a particular group for its streaming	manageGroup()	main.cpp
Sending membership report and receivng membership query	routerCommunication()	host.cpp
Creating dynamic spanning tree	generateFutureSpanningTree()	main.cpp
Appending a branch to spanning tree	createBranch()	main.cpp
Playing the audio file as it is received	play0() play6()	host.cpp

4 SW Unit Test Report

4.1 Bugs known at submission date

DATE: 30/4/2019

Sometimes the host playing the packet is not terminated after all packets are played.

This is a minor bug.

5 SW Development Completion Report

5.1 Project Result Analysis

5.1.1 Development Work Promotion Results

Implemented Multicasting and simulating routers, hosts and their communication Implemented IGMP protocol and center based spanning tree creation Multimedia transfer by splitting it into smaller files and playing individual files continuously at the host end.

Items Result

Broadcasting and multicasting: Difference in the number of packets send for a file streaming.

5.1.2 Development Results and Utilization

RESULTS

For this graph we plotted packets sent in broadcasting and multicasting vs the number of routers for different graph densities when the router number is constant.

It was observed that changing graph density effects broadcasting more than multicasting for which the packets sent didn't differ much with respect to density.

broadcast vs multicast

This application can be further developed to improve the streaming quality at the receivers end and minimizing the buffering. It can be used for multimedia streaming, text streaming.

5.1.3 Deliverables List

Executable Name Description

main To implement router and host communication and Multicast implementation

host To run a host node.

Libraries: c++ thread, mutex.

■ References

Computer Networking: A top down approach, kurose ross 6th edition