GAZETA MATEMATICĂ

SERIA A

ANUL XXVII(CVI)

Nr. 2 / 2009

Câteva gânduri despre matematică și matematicieni

CORNELIU CONSTANTINESCU^{1) 2)}

1. Intuiție și rigurozitate

Majoritatea matematicienilor nu mai consideră astăzi matematica ca pe o stiință a naturii, ci ca pe un limbaj al acestor stiințe, dar un limbaj care participă la procesul de cercetare și care ajută și la crearea intuițiilor din domeniile respective. Şi o anumită reciprocă este, în parte, adevărată: multe intuiții și multe probleme din matematică provin din celelate științe. Intuițiile matematice sunt de fapt imagini din domenii ce ne sunt familiare și care au o oarecare analogie cu anumite concepte matematice, așa că le putem utiliza, până la un anumit punct în gândirea noastră, în locul lor. Asta poate fi, de altfel, și sursa unor anumite erori. Alexander Grothendieck (1928-20..) povestește în memoriile lui "Récoltes et semaille", că i s-a întâmplat adesea, să caute un rezultat pe baza unei intuiții, pentru ca în final să dea peste un contraexemplu. "Mă simțeam un pic idiot" – mărtuisește Grothendieck - "dar n-am regretat niciodată asta, căci prin această metodă am învățat foarte mult". Ceva mai complicată este situația când este vorba de o intuiție greșită la nivelul unei întregi societăți. Un contraexemplu într-o astfel de situație poate fi punctul de plecare al unei întregi teorii matematice. Cele mai multe intuiții provin din alte domenii matematice, în special exemplele sunt foarte mult utilizate. Practic vorbind, fără intuiții nu se poate face cercetare, dar fără ele nu se poate nici măcar înțelege ce au făcut alții. Ele sunt personale, cel mult răspândite într-o anumită societate la un anumit moment dat. Ele formează în acest caz un fel de dialect, care ușurează transmiterea ideilor în interiorul grupului respectiv, dar care nu prea este înțeles

¹⁾Bodenacherstr.53, CH 8121 Benglen; E-mail address: constant@math.ethz.ch

²⁾Profesorul Corneliu Constantinescu (n.1929) a fost cercetător la Institutul de Matematică al Academiei Române (1954-1972), profesor la Technische Universität Hannover (1976-1978) și la Eidgenössische Technische Hochschule Zürich (1978-1996). Este un reputat specialist în teoria funcțiilor, teoria potențialului și analiză funcționalăla. (N.R.)

de persoanele străine. Mi-a fost dat să întâlnesc discuții între matematicieni, în care, la un moment dat, unul spune: "Care sunt intuițiile tale?" Si după ce cel întrebat răspunde, i se impută: "De ce n-ai spus asta de la bun început, ași fi înțeles totul mult mai repede și mai bine". Se povestește că la un curs tinut de Claude Chevalley (1909-1984), acesta s-a împotmolit într-o demonstrație, după care s-a retras într-un colt al tablei, unde a făcut un desen misterios și a scris niște semne indescifrabile, apoi s-a luminat la fată și a dus demonstrația la bun sfârșit. Studenții l-au criticat, pentru că le-a oferit la curs numai demonstrația formală, fără să le dea o indicație asupra intuițiilor lui. Nemulțumirea studenților este desigur justificată, dar critica lor este cam îndoielnică. Transmiterea intuițiilor este de obicei mult mai complicată decât demonstrația formală. Cel mai bun lucru pe care îl poate face un matematician, când i se comunică o demonstrație, este de a încerca să "înțeleagă" demonstrația, adică să o traducă în limbajul intuițiilor lui si, eventual, să o verifice pe exemple simple. O atitudine de cumpărător suspicios, care verifică toate detaliile, ca să se convingă că n-a fost tras pe sfoară, nu pare a fi prea folositoare și costă și mult timp, dar eventual poate duce, totuși, la o înțelegere mai bună a legăturilor dintre diversele concepte ce apar în timpul demonstrației, cu condiția, însă, de a urmări în mod lucid aceste legături. Dar am întâlnit de mai multe ori în viață și cazuri diametral opuse, în care unul încearcă să explice o idee folosind un limbaj intuitiv, ca să i se reproseze: "Nu înțeleg nimic din tot ce spui, nu poți să explici lucrurile într-un limbaj matematic clar?". Acest limbaj matematic clar este de fapt o limbă străină pentru cam toți matematicienii. Ei nu o utilizează în nici un caz când gândesc și nici atunci când vorbesc cu colegii apropiați. El are rolul pe care îl avea limba latină pe vremuri: era limba în care se făceau comunicările, ca să fie înțelese de toată lumea, dar numai puțini o stăpâneau bine și în niciun caz nu o utilizau în gândirea lor de toate zilele sau în conversațiile cu cei apropiati. Adaug că, în limbajul intuițiilor, demonstrațiile joacă un rol subordonat: legăturile dintre concepte se "văd" și nu trebuie justificate.

Cu totul diferit stau lucrurile în matematica formală. Aici totul trebuie să fie riguros, iar demostrațiile joacă un rol fundamental. Tabloul obișnuit este: axiome, definiții, teoreme, demonstrații. Axiomele sunt, în majoritate, fixate pentru domenii întregi și, în mare parte, același lucru este valabil și pentru cea mai mare parte a definițiilor. Teoremele au o structură precisă: se dau ipotezele teoremei și se formulează apoi concluziile. Funcția lor este clară: dacă întâlnim în practică o situție în care ipotezele sunt îndeplinite, atunci putem utiliza concluziile, fără a mai face o demonstrație, este suficient să cităm teorema respectivă. Oamenii nu au capacitatea de a deduce spontan concluziile din ipotezele date. Evoluția lor nu i-a pregătit pentru o astfel de abilitate. Ei erau obligați să se orienteze în teren, să cunoască anumite plante și animale, să aibe anumite informații meteorologice și așa mai departe. De relații logice aveau nevoie numai la un nivel foarte elementar. În acest sens

matematica este un fel de proteză psihică, care oferă un anumit serviciu, înlocuind lipsa unei calități naturale. În loc să demonstrăm la fața locului problemele întâlnite, recurgem la memorizarea teoremelor, un fel de pastile cu o intrare și cu o ieșire. E adevărat că multe teoreme răspund mai mult unei pure curiozități intelectuale și nu urmăresc un scop util, dar adesea și aceste "teoreme inutile" se dovedesc foarte utile (acesta este, de obicei, cazul când e vorba de curiozități intelectuale justificate; ca să nu adaug că drumul parcurs pentru demonstrarea unei astfel de teoreme poate deveni o teorie matematică importantă).

Ce calităti trebuie să aibe teoremele pentru a fi utile? În primul rând ele trebuie să fie usor de memorat, să fie utilizabile în cât mai multe situatii si să înlocuiască raționamente complicate (pe care nu le putem produce spontan). Henri Poincaré (1854-1912) remarca într-unul din articolele lui filozofice, cu oarecare surprindere, că marile teoreme matematice sunt, de obicei, simple. În perspectiva utilitaristă descrisă mai sus, implicațiile par să meargă într-un sens oarecum opus: simplitatea este o conditie necesară pentru ca o teormă să fie considerată mare. Un exemplu grotesc în această direcție l-ar putea constitui o teoremă ale cărei ipoteze ar necesita câteva miliarde de pagini pentru scrierea lor. O astfel de teoremă este complet inutilă, căci nimeni nu poate memora (și nici măcar citi) aceaste ipoteze (eventual, computerele viitorului!). Ceva similar este valabil pentru întregi teorii matematice. Când aceste teorii ating o fază barocă, cu un număr prea mare de noțiuni și rezultate mărunte, pe care nu le mai putem memora în mod normal, ele devin inutile si matematicienii încep să le evite. Atle Selberg (1917-2007) si-a exprimat părerea că ideile simple sunt exact acelea care vor supraviețui. Dar există și teorii matematice care, deși nu au supraviețuit, au fost, totuși, foarte utile, prin aceea că au inspirat si au condus la aparitia unor teorii matematice foarte importante. Ca să nu adaug că anumite rezultate matematice, care nu mai sunt utilizate în matematica pură, formează pâinea cea de toate zilele în anumite domenii de aplicații ale matematicii. Capacitatea de a supraviețui în matematica pură nu poate fi, deci, ridicată la rangul de criteriu absolut în judecarea valorii unei teorii matematice. În lumea matematică actuală este destul de răspândită mentalitatea că o teoremă, care are o demonstrație dificilă și care a fost demonstrată după o perioada destul de lungă de încercări nereusite, la care au participat matematicieni renumiti, trebuie să fie considerată ca o teoremă importantă. Evident, aici e vorba în mod tacit de o definiție arbitrară a unei noțiuni, aceea de teoremă importantă, dar nu avem voie să concludem de aici că o astfel de teorema este în mod necesar și utilă.

În prezentarea rezultatelor lor publicului, matematicienii pot fi mai riguroşi sau mai puţin riguroşi. Giuseppe Peano (1858-1932) şi Edmund Landau (1877-1938) sunt exemple de matematicieni care, spre sfârşitul vieţii lor, au împins rigurozitatea textelor lor până la absurd. Se şi povestesc diferite anecdote pe seama exagerărilor lor. Henri Poincré este un exemplu opus, el

prezentând anumite teorii matematice (de exemplu topologia) aproape fără demonstrații. Recent s-a discutat mult în comunitatea matematică cazul publicațiilor cu demonstații insuficiente, dar cu pretenția de a fi riguroase. Aceste texte obligă pe alti matematicieni să facă munca ingrată, de a prezenta demonstratii riguroase pentru un rezultat, care nu va fi considerat ca obtinut de ei. Prezentarea conjecturilor cum ar fi, de exemplu, textul lui Bernhard Riemann (1826-1866) referitor la cele sase proprietăți ale funcției zeta (publicat fără demonstratii; primele cinci au fost demonstrate între timp, ultima rezistă și, sub denumirea de ipoteza lui Riemann, este considerată de foarte mulți matematicieni ca cea mai importantă problemă și cea mai mare sfidare matematică actuală), sau textul lui André Weil (1906-1998) referitor la celebrele sale patru conjecturi (demonstrate între timp de Grothendieck și Pierre Deligne (1944-20...), este, din contră, foarte apreciată, căci autorul expune publicului intuițiile lui, fără să pretindă că a produs vre-o demonstrație. Matematicianul care produce o demonstratie pentru o astfel de conjectură, devine celebru peste noapte. Recent, asta s-a întâmplat cu conjectura lui Eugène Charles Catalan (1814-1894) din anul 1844, demonstrată în 2006 de către Preda Mihăilescu (1955-20..).

Foarte dramatică este problema rigurozității în învățământ. Un curs, în care rigurozitatea este exagerată, are darul de a face materia aridă, de a pune accentul pe un fenomen totuși secundar și de a nu favoriza înțelegerea și gândirea intuitivă a studenților. Extrema cealaltă, un curs fără demonstrații și, în special, fără definiții riguroase, educă pe studenți în ideea că așa este matematica, demonstrațiile riguroase nu sunt necesare, matematica este, prin natura ei, o știință confuză. În special, lipsa definițiilor precise poate duce la dificultăți de înțelegere. Din fericire, studenții sunt confruntați cu cursuri de cele mai diferite tipuri, așa că daunele se mențin în anumite limite tolerabile. În orice caz, exagerările, într-o direcție sau alta, sunt nocive. Aici se aplică un vechi proverb arab: "Dumnezeu nu iubește pe cei ce exagerează".

Îmi permit să relatez aici o trăire dramatică, pe care am avut-o ca student, cu ocazia unei conferințe ținută de Gheorghe Galbură (1916-2007) în cadrul unui seminar al cursului de Geometrie, predat de Gheorghe Vrănceanu (1900-1979). Scopul conferinței era de a verifica o nouă demonstrație a teoremei lui Gauss-Bonnet, descoperită de Galbură. Era vorba de o schimbare de variabilă într-o integrală pe o varietate, iar Galbură nu era sigur dacă această schimbare de variabilă este permisă. În sală s-a așternut o tăcere adâncă care, pentru mine, a durat o veșnicie, în care am transpirat sânge. Îmi dădeam seama că pot gândi un veac întreg la această întrebare, fără să am cea mai mică șansă de a o rezolva, și asta pentru simplul motiv că nu cunoșteam definiția varietăților și a integralelor pe aceste varietăți. În plus, eram convins că astfel de definții nici măcar nu există și că întreaga teorie se face exclusiv la nivel intuitiv. Bietul Galbură, mă gândeam eu, a făcut, poate, o descoperire importantă, dar nu o poate publica, pentru că nu este

sigur că demonstrația lui este corectă și nici n-are cum să afle asta. Refuz să fac o astfel de matematică, urla un protest disperat în creierul meu.

Docenţii, la rândul lor, sunt confruntaţi cu grupe de studenţi de foarte diferite nivele şi cu viziuni foarte diferite despre matematică şi trebuie să-şi adapteze cursul acestei grupe. Dar cum să facă asta? Dacă ţin un curs la un nivel prea ridicat, nu vor putea fi urmăriţi de studeţii mai slabi. Dacă vor să se facă înţeleşi de toţi studenţii, riscă să nu poată avansa prea mult. Gustave Choquet (1915-2006) povesteşte cum, în tinereţea lui, fiind în S.U.A., a participat la un curs care îl interesa foarte mult şi în care docentul făcea eforturi vizibile de a se face înţeles de tot publicul. Rezultatul a fost că el nu a putut avansa prea mult. "La acest curs n-am învăţat nimic", conclude, acru, Choquet. Ceva similar s-a petrecut şi cu cursul lui Paul Bernays (1888-1977) de teoria mulţimilor, ţinut în Zürich, dar Bernays nu şi-a pierdut simpatia studenţilor lui, care îl iubeau foarte mult.

În ceea ce mă privește, am avut parte de tot felul de studenți. Am avut fericirea de a avea câtiva studenti exceptionali. La examenele orale finale dădeam, de obicei, studenților o temă matematică, care trebuia prezentată liber de către ei. Si mi s-a întâmplat, de mai multe ori, ca studentul să țină, cu această ocazie, un fel de conferință, care mă uluia, cu atât mai mult cu cât studentul nu știa ce temă îi voi da și era astfel obligat să pregătească întreaga materie. Trebuia să recunosc, în sinea mea, că eu, în locul lui, n-aș fi ținut o conferință atât de frumoasă. Dar am fost confruntat și cu cazuri disperate, în care studenții mei aveau dificultăți de înțelegere în domenii care nici măcar nu-mi treceau prin minte. Un student vine, de exemplu, la mine cu o carte de matematică, în care autorul trata mediile ponderate. În această carte se lua un șir finit de ponderi, toate diferite de zero. În loc să spună asta, din motive neclare pentru mine, autorul cere ca produsul ponderilor să fie diferit de zero, ceea ce este, de fapt, același lucru. Studentul mă întreabă, iritat, cum de are voie autorul să înmultească ponderile. Stupefiat de întrebare, îl întreb, la rândul meu, de ce să n-aibă voie. Păi, zice studentul, sunt doar ponderi. Si ce dacă sunt ponderi, întreb eu, cam derutat. Păi, zice iar studentul, ponderile se măsoară în kilograme și nu se pot înmulți kilograme cu kilograme. Contrar la ceea ce m-aș fi așteptat, studenții nu au dificultăți cu demonstrațiile complicate; dificultățile apar în zone mult mai triviale și complet neașteptate. Unii studenți sunt nemulțumiți de faptul că demostrațiile nu sunt suficient de riguroase, alții, din contră, protestează că nu li se dezvoltă bine bazele intuitive, că nu sunt învățați să facă cercetare, că nu li se prezintă destule informații istorice în legătură cu teoriile matematice prezentate, că materia este prea complicată (cea mai uzuală plângere) și așa mai departe. Ei au tot felul de dorinți, pretenții și așteptări diferite, care se exclud reciproc. Evident, marea calitate a unui docent este aceea de a-si putea entuziasma auditorul. Dacă-i reușește acest lucru, totul merge oarecum de la sine, aproape nimic nu mai contează. Studenții învață înnebuniți, apelează

la diferite cărți, se gândesc la subiectul respectiv și discută despre el între ei. În timpul cursului ei pun tot felul de întrebări, de care profită întreaga clasă și care fac cursul vioi ("cine pune o întrebare, este prost pentru un minut, cine nu întreabă este prost pentru întreaga sa viață", cum spune un vechi proverb chinez).

2. Imaginație și inteligență

Pentru a obține rezultate matematice importante un matematician trebuie să posede anumite calităti intelectuale si morale. Dintre calitătile intelectuale, două mi se par a fi cele mai importante: imaginație bogată și rapiditate de înțelegere. Ultima este evidentă, căci noi dispunem numai de un timp limitat. Un matematician, care are o viteză de înțelegere mai mică decât viteza cu care se dezvoltă domeniul în care lucrează, nu va ajunge niciodată în frontul de luptă al domeniului respectiv și va trebui să se mulțumească cu munci de consolidare și de organizare în spatele frontului. Dar unii refuză un astfel de rol, ei vor să ajungă direct pe front. In acest caz ei vor alerga nebunește, trecând în mare viteză (și eventual superficial) prin teoriile pe care trebuie să le învețe. Nu pot condamna o astfel de strategie (care, uneori, poate avea chiar succes), căci nu există un canon care să fixeze modul în care un matematician trebuie să învețe, fiecare trebuie să-și găsească metoda proprie, adaptată posibilităților și înclinațiilor lui. Dar cel care învață în viteză și nu revine asupra celor învătate (repetitio est mater studiorum), riscă să eșueze în sterilitate. Ideile ne vin, de obicei, numai în domenii pe care le posedăm la perfecție, ca un fel de limbă maternă. Matematicianul care m-a impresionat cel mai mult pentru rapiditatea înțelegerii a fost Gottfried Wilhelm Leibniz (1646-1716). Tânăr fiind, ajunge la Paris într-o misiune diplomatică, unde îl întâlnește pe Christiaan Huygens (1629-1695), un om de știință renumit la acea dată, cu aproape douăzeci de ani mai în vârstă decât el. Acesta îi explică anumite lucruri despre serii, un concept relativ nou, despre care *Leibniz* nu auzise nimic până atunci. La numai câteva zile de la întrevederea lor ei se reîntâlnesc și, cu această ocazie, Leibniz îi prezintă lui *Huyqens* un număr impresionant de rezultate, cu totul noi în acest domeniu. Huyqens mărturiseste că n-a mai întâlnit asa ceva în viata lui. Aș propune ca unitatea de măsură pentru această calitate intelectuală să fie numită "Leibniz", urmând, bineînțeles, ca în mod obișnuit să-l utilizăm pe "deci-Leibniz". André Weil și John (Johann) von Neumann (1903-1957) sunt matematicieni mai apropiați de noi, celebri pentru rapiditatea cu care își însușeau noile cunoștințe matematice.

Importanța imaginației se poate vedea din următoarea poveste despre David Hilbert (1862-1943). Intrebat odată despre soarta unui fost elev de al său, Hilbert răspunde, că acesta a abandonat matematica și a devenit un scriitor cu mare succes public; pentru matematică nu era bun, precizează Hilbert

în continuare: îi lipsea imaginația. Imaginația bogată este legată de posibilitatea de a produce ușor intuiții și de a pune probleme. Si în acest domeniu există un matematician exceptional și anume Riemann, ceea ce mă face ca să propun ca unitate de măsură pentru această abilitate pe "Riemann" și, ca mai sus, unitatea uzuală urmând să fie "deci-Riemann". Matematicienii care posedă această calitate sunt un fel de profeți. Ei explică celorlalți matematicieni cum arată universul matematic, iar aceștia din urmă ascultă, uluiți, minunându-se, cum de vede profetul toate astea. Ai impresia că te găsesti într-o societate de nevăzatori, care explorează terenul prin mijoace tactile, și care nici măcar nu-și pot inchipui ce sunt ochii, iar pentru profet, care vede, e oarecum de neînțeles de ce ceilalți nu văd lucruri atât de clare. O altă metaforă posibilă ar fi aceea a unui culegător, care se plimbă pe țărmul unui ocean și care culege fără efort darurile acestui ocean generos, în fond propriul său subconstient. Richard Dedekind (1831-1916), prietenul intim al lui Riemann, povesteste cum acesta avea obiceiul de a tine adevărate prelegeri în cercurile de prieteni matematicieni, povestindu-le viziunile sale matematice. Dacă cineva din cei prezenți îl întrerupea, întrebându-l cum se pot vedea cele afirmate de el, Riemann tăcea, încurcat. Fie că el n-a avut niciodată o demonstratie pentru afirmatia făcută - comentează Dedekind - fie că a avut-o, dar a uitat-o, întrucât nu-i acorda o prea mare importanță. Riemann este marele profet al secolului 19 și prototipul profetului care vede lucrurile ascunse celorlalți muritori. Teoriile dezvoltate de el acum un secol și jumătate fac și astăzi obiectul unor studii intensive. Alexander Grothendieck este considerat ca fiind marele profet al generației mele. Într-o viziune cu adevărat profetică, el a unificat geometria algebrică cu aritmetica si cu topologia. Matematica a fost la începutul ei o știință cantitativă, mai târziu a dezvoltat și o latură calitativă. "Pe mine nu m-a interesat în matematică nici cantitatea, nici calitatea" – scrie Grothendieck în memoriile lui – "ceea ce m-a interesat, a fost forma". Există teoreme matematice din domenii foarte diferite ale căror demonstrații au, totuși, ceva în comun. Aceasta este probabil forma la care se referă Grothendieck. Teoria categoriilor unifică multe astfel de teoreme în largul cadru pe care ea îl oferă.

Marii matematicieni posedă ambele calități: ei au o imaginație bogată și o mare rapiditate de înțelegere. Printre matematicienii obișnuiți sunt două cazuri extreme: sunt matematicieni cu o imaginație bogată, dar la care intelectul lucrează greoi și sunt matematicieni cu o inteligență sclipitoare, dar cu un subconștient sărac. Aceștia din urmă sunt oameni care se plictisesc. Ei au la dispoziție, în capul lor, un computer cu mari performanțe, care nu are ce lucra. Matematicienii din această categorie circulă foarte mult, participă la tot felul de întruniri matematice, duc o viață socială intensă, fiind membri în tot felul de foruri, în care fac muncă voluntară foarte utilă, și sunt, în general, oameni simpatici, căci, mai mult sau mai puțin conștient, ei sunt recunoscători matematicienilor pe care îi întâlnesc, pentru că îi ajută

să-și treacă timpul și să le combată plictiseala. Ei profită, în plus, de toate aceste întâlniri, căci prind ideile din zbor, chiar și pe acelea prost fomulate, și le traduc, eventual, în lucrări matematice. Ei fac parte din categoria celor ce sunt acuzati de a fura ideile altora, cum, de altfel, i s-a si întâmplat lui Leibniz de mai multe ori în viata lui. Matematicienii cu un subconstient bogat, dar cu dificultăți de a-si formula ideile și de a le înțelege ușor pe ale celorlalți matematicieni, sunt, în general, oameni închiși, nemulțumiți, eventual supărăciosi. Lucrul este usor de înteles. Ei sunt constienti de faptul că posedă o comoară nestemată în sufletul lor, dar nu sunt capabili să o valorifice. Sunt în permanentă criză de timp, lucrează mult și, până la un punct, evită societatea. Li se poate întâmpla, de exemplu, să participe la o reuniune matematică, unde să țină o conferință. În general, va fi o conferință lipsită de sclipiri retorice, eventual confuză, în care ideile nu sunt clar prezentate, poate pentru că nu-i sunt clare nici măcar conferențiarului. Dar în sală se poate găsi un matematician din categoria opusă, care pricepe pe loc, despre ce e vorba si care, după ce se întoarce acasă, se instalează la masa lui de lucru, redactează dintr-un condei lucrarea, scrisă elegant și clar. Lucrarea se publică imediat, căci matematicianul nostru nu duce lipsă de contacte sociale de toate felurile. Cel care a avut, de fapt, ideea, mai stă un timp până-și poate publica lucrarea, căci îi este clar și lui că încă nu a găsit formularea perfectă. Într-o bună zi descoperă, mai mult întâmplător, că idea lui a fost publicată sub un alt nume. Şi, dacă e cinstit sufletește, trebuie să recunoască, că este strălucit scrisă, mai bine decât ar fi putut-o face el. Eventual, trebuie chiar să recunoască, că abia acuma și-a înțeles bine ideea. Dar e, totuși, un furt, dacă autorul nu menționează, măcar într-o frază colaterală, că ideea i-a venit din conferința respectivă. Se poate chiar întâmpla ca hotul să nu fie nici măcar constient de furtul făcut. Ideeile matematice vin din tot felul de direcții și matematicienii nu sunt întotdeauna conștienți de sursa ideii. Din partea păgubașului sunt diverse reacții posibile. Intre altele, el își poate jura să nu mai pună piciorul la o întrunire matematică, unde mişună rechinii, care fură ideile altora. O astfel de opțiune nu este prea dureroasă pentru el, căci, oricum, este în mare criză de timp. În plus, ce-i poate aduce participarea la o astfel de întrunire? Noi idei? De astea are el în masă, timpul îi lipsește, pentru a le pune pe hârtie. Se poate chiar întâmpla ca matematicianul nostru să aibă dificultăți în a pricepe ce spun ceilalți în conferințele lor. Cu asta el își va agrava, însă, izolarea, cu consecințe eventual catastrofale, și va deveni și mai mult un mizantrop. De ce consecințe catastrofale? În matematică este valabil principiul că oamenii sunt produsul eredității și al mediului. O cantitate imensă de informații de tot felul o luăm din mediul înconjurător printr-un fel de osmoză, de cele mai multe ori fără ca să fim măcar constienți de asta. Întreruperea legăturii cu societatea matematică înseamnă întreruperea osmozei matematice, deci piederea unei surse de

informații deosebit de importante. Așa se și explică, parțial, de ce matematica se face, în cea mai mare parte, în centre matematice mari. Se vorbește, uneori, chiar de masa critică, necesară unei explozii matematice. E adevărat că mijloacele de comunicație actuale pot atenua, într-o oarecare măsură, izolarea matematică, evident, numai dacă aceste mijloace sunt efectiv utilizate. Doctoranzii pot fi de asemenea utilizați în astfel de situații, întrucât li se pot da ideile, iar ei trebuie să le realizeze. De alfel, matematica nu este numai o aventură personală, ci este, în primul rând, o aventură colectivă. Dar să nu ne înșelăm, o societate strălucită nu poate înlocui lipsa talentului. În plus, viața socială costă timp și există și cazuri, în care o întreagă colectivitate matematică o poate lua razna, mergând pe un drum steril. Un caz istoric de matematician cu un subconștient bogat, dar cu dificultăți de a pune pe hârtie ceea ce avea în minte, îl poate constitui matematicianul elvețian Jakob Steiner (1796-1863), care a avut parte de o viață tristă din punct de vedere matematic. Situația se agrava, în cazul lui, prin aceea că era un autodidact și nu stăpânea bine limba formală a matematicii. Anumite calităti morale (cum ar fi, de exemplu, o mare capacitate de muncă, o bună organizare a lucrului, o bună capacitate de concentrare, tenacitatea, răbdarea, trăirea intensă a matematicii etc.) pot atenua deficiențele produse de lipsa rapidității de înțelegere. Desigur că sunt și alte trăsături psihice (ca, de exemplu, ambiția, obsesia, egoismul, neglijarea unor datorii morale), care acționează cam în aceeași direcție și care ne sună mai puțin plăcut în ureche.

Si la marii matematicieni se poate vedea care din aceste două calități domină. Unii sunt rezolvitori de probleme, alții sunt creatori de noi teorii. Grothendieck este un mare creator de teorii, iar Terence Tao (1975-20..) poate servi ca exemplu recent, impresionant, de rezolvitor de probleme. Ambele activități sunt necesare, dar marele public răsfață, în primul rând, pe cei ce rezovă problemele puse. Dar, pentru știință, creatorii de teorii sunt, probabil, cei mai utili. E oarecum ca în astronautică, în care meritul principal nu revine celui care a pus primul piciorul pe lună, deși el este marele sărbătorit, ci acest merit revine în primul rând constructorilor de rachete. Nici rezolvarea de probleme celebre și nici măcar formularea listelor de astfel de probleme – cum a fost, de exemplu, vestita listă de 23 de probleme formulată de *Hilbert* în 1900 – nu joacă rolul principal în avansarea matematicii, afirmă Yuri Manin (1937-20..), ci acest rol este îndeplint de crearea de noi teorii matematice și de programe, ce duc la crearea de astfel de teorii. Ca exemple de formulatori de astfel de programe Manin mentionează pe Nicolas Bourbaki, Robert Langlands (1936-20..) și Georg Cantor (1845-1918). Nu-i mai putin adevărat, însă, că în timpul constructiei unei teorii matematice trebuie rezolvate, în permanență, tot felul de probleme, fără de care construcția nu poate avansa. Construcția unei teorii matematice este, așadar, și o sursă de noi probleme matematice. Dar si rezolvarea unei probleme matematice importante conține adesa germenii unei teorii, care este scoasă la iveală mai

târziu. Într-un articol recent apărut, Freeman Dyson (1923-20...) numește pe rezolvitorii de probleme "frogs", iar pe creatorii de teorii "birds" și dă ca exemple de "frogs" pe Francis Bacon (1561-1626), Abram Besicovitch (1891-1970) și Mary Cartwright (1900-1998), iar ca exemple de "birds" pe René Descartes (1596-1650), Hermann Weyl (1885-1955), Chen Ning Yang (1922-20...), Yuri Manin și John von Neumann.

Teoriile matematice sunt instrumentele necesare, utilizate în rezolvarea problemelor de matematică. Personal, am trăit acest fapt aproape dramatic, ca elev de liceu, când am fost confruntat cu o problemă matematică, la care nu aveam nici cea mai mică idee cum s-o atac. Un an mai târziu am învățat la școală o nouă teorie matematică și, cu noile instrumente, problema a devenit aproape trivială. Este exact ceea ce cerea Grothendieck: teoriile să fie atât de mult dezvoltate, încât toate teoremele să fie triviale; o teoremă care nu satisface această condiție este, în viziunea lui Grothendieck, o teoremă pe care nu o înțelegem încă bine. Iubitorii de teorii matematice sunt oameni care au, în general, o bună memorie matematică și care au în plus, sau o mare capacitate de lucru, sau o anumită usurintă de a învăta (de preferintă ambele). Gerd Faltings (1954-20...) remarca, într-un interviu dat după obținerea medaliei Fields, că succesele lui matematice (demonstrarea, în 1983, a conjecturii lui Louis Mordell (1888-1972) din 1922) s-au datorat, în mare parte, faptului că a utilizat teoriile create de Grothendieck. Acest lucru trebuie subliniat în special la noi în Germania, își continuă el afirmațiile, întrucât la noi domnește mentalitatea, că, pentru a învăța aceste teorii, trebuie învestit un timp imens, după care nu-ți mai rămâne prea mult timp ca să le aplici. Din păcate, acest lucru este adevărat – continuă el – dar problemele din teoria numerelor nu pot fi rezolvate pornind numai de la exemple: alături de exemple este necesară si teoria. Intrebat, dacă el învată mai repede decât ceilalti matematicieni, răspunde, că, într-adevăr, acesta este cazul. Se povestește că cei care doresc să-și facă doctoratul cu Faltings, primesc de la acesta, de la bun început – ca urare de bun venit – un vraf de cărti în brate, spunându-li-se să se prezinte din nou la el abia după ce și-au însușit bine teoriile din aceste cărți. Nu-i de mirare că o mare parte din solicitanți abandonează în timpul aceastei probe.

3. Talentul, vârsta, moda

Ca în toate domeniile de activitate umană, și în matematică abilitățile matematice cresc la început cu vârsta, se atinge un maximum, după care urmează o lungă descreștere a acestor abilități, care tind, apoi, oarecum asimptotic către zero. Jean Dieudonné (1906-1992) remarca, în una din cărțile lui de istoria matematicii, că nu se cunoaște nicio teoremă importantă de matematică, care să fi fost demonstrată de o persoană în vârstă de peste 70 de ani. Spre deosebire de celelalte științe, în matematica pură maximul este însă atins foarte timpuriu (dar, totuși, mai târziu decât în sport). De aceea se și observă la matematicieni, începând cu o anumită vârstă, o

migrație către matematica aplicată, către alte științe, către istoria matematicii si către alte domenii de activitate. În afara cauzelor pur biologice, care sunt evidente, sunt, probabil, și alte cauze care duc la acest fenomen, și s-au și propus diferite explicații în această direcție. Una din ele pune accentul pe trăirile afective legate de activitatea matematică. Conform acestei explicatii, un matematician tânăr este puternic fascinat de frumusețea unei noi teorii matematice, cu care vine în contact. Rutina face, ca la vârste mai înaintate fascinația asta să diminueze, este ceva din domeniul "déjà vu". Si emoțiile își pierd, de altfel, din intensitate cu vârsta. Fascinația fixează mai bine informațiile și impinge, în plus, pe tânărul matematician ca să se gândească - voluntar și, în special, involuntar - aproape permanent la teoria care îl preocupă, megând până acolo, încât își neglijează, uneori, nu numai unele necesități vitale, ci chiar și anumite obligații morale. Îmi vine în minte o analogie. Când intrăm într-o cameră întunecoasă, în primul moment nu distingem aproape nimic. Cu trecerea timpului începem să identificăm tot felul de obiecte și, în final, vedem totul cu destulă claritate, minunându-ne, eventual, că n-am văzut toate astea de la bun început. Ceva similar se întâmplă și în matematică, cu condiția, însă, de a ține ochii minții deschiși, adică de a ne gândi întensiv la subjectul respectiv. Cu cât ne gândim mai mult. chiar în mod nesistematic și fără formulări precise, cu atât înțelegem lucrurile mai bine; este suficientă conviețuirea intensă cu subiectul respectiv. Andrew Wiles (1953-20..) propune o metaforă similară în legătură cu demonstrația dată de el pentru celebra conjectură a lui Fermat (1601-1665). "Când intri într-o cameră întunecoasă" – spune el – "în primul rând nu distingi nimic, cu timpul, bâjbâind, începi să identifici diferite obiecte și te poți descurca oarecum în mediul înconjurător, iar la un moment dat descoperi şaltărul electric, aprinzi lumina și totul devine clar". Se povestește, că în cadrul unei discuții, cineva a amintit bătrânului Carl Friedrich Gauss (1777-1855), că a făcut multe descoperiri în viața lui. "Pentru că am gândit mult" a răspuns Gauss. "Dacă alții ar fi gândit tot așa de mult ca și mine, ar fi descoperit și ei tot așa de mult". A doua propoziție a lui Gauss este evident falsă și trebuie considerată ca un gest de modestie din partea lui. Dar prima este sigur adevărată. În perioada studenției, el făcea excursii lungi împreună cu prietenul și colegul lui, Farkas Bolyai (1775-1856) – tatăl lui Janos Bolyai (1802-1860) – în care timp cei doi nu schimbau niciun cuvânt, fiecare din ei fiind adâncit în propriile gânduri. Rolf Nevanlinna (1895-1980) spune, că talentul nu este alteeva decât intensitatea interesului. Chiar dacă această afirmație nu este total adevărată – continuă Nevanlinna – ea se găsește mult mai aproape de sută la sută, decât se crede în general. Această afirmație rimează, de altfel, cu celebra zicală a lui Thomas Edison (1847-1931), că geniul este 1% inspirație și 99% transpirație. În orice caz, Nevanlinna are dreptate în sensul următor: independent de talentul pe care îl are un matematician, productivitatea lui

matematică cade la zero în lipsa interesului pentru matematică, fapt confirmat de istorie de nenumărate ori, în diferite cazuri celebre. Productivitatea matematică a unui matematician de-a lungul vieții lui pare a varia oarecum proporțional cu interesul lui pentru matematică.

Tinerii matematicieni nu par să sufere, aflând că talentul lor se va ofili cu timpul. Asta oricum se va întâmpla într-un timp, care pare foarte îndepărtat la această vârstă (iar unii speră, în plus, că ei vor face excepție de la această regulă), asa că ei îsi duc viata în mod normal: se bucură de frumusetea matematicii, participă uneori la ea într-un spirit de competitivitate sportivă și se gândesc la cariera lor. Unii simt o bucurie ascunsă, că natura îi favorizează și că ei sunt, din acastă cauză, mai grozavi decât profesorii lor, găsiți pe panta descendentă a vieții. Dar există și cazuri, în care această bucurie penibilă nu rămâne de fel ascunsă, ci este trâmbițată pe toate drumurile, probabil un mod nu prea onorabil al tânărului de a-si da importanță. După trecerea unui anumit timp ei pot deveni îngrijorați, constatând declinul abilităților lor matematice. Dacă la asta se adaugă și o îngrijorare legată de cariera lor, care nu evoluează bine, ei pot deveni stresați, cu toate consecințele negative cunoscute în acest caz. Una din aceste consecințe ar putea consta în pierderea bucuriei de a face matematică, ceea ce le agravează situatia si ei pot intra într-un fel de cerc vicios primejdios. Cei puternici, adică cei ce nu se prăbușesc rapid sub loviturile soartei și sub loviturile primite dela ceilalți oameni și nu – așa cum se crede – cei care pot da lovituri puternice altor oameni, supraviețuiesc din punct de vedere matematic și își revin cu timpul.

"Matematica nu se face la ore fixe", spunea Grigore Moisil (1906-1973) studenților săi din București. "Când te scoli, te gândești la matematică", își continua el locuțiunea, "când te speli, te gândești la matematică, dacă te speli ..., dacă nu te speli, te gândești la matematică, când nu te speli". Îmi amintesc că am repetat odată acest sfat studentilor mei din Zürich. Dar nu numai că nu am avut niciun succes, reacția a fost total negativă. Pentru că, la acea dată și în acel loc, moda – suprema forță socială, dar strict localizată la un segment social dintr-un anumit loc și la un anumit timp (un amestec cam nefast între spirit de turmă și spirit de haită) – înfiera concentrarea pe teme stiintifice, ca o trădare a obligațiilor sociale și morale, care erau definite adhoc într-un mod foarte tendențios. În fața studenților apăream, deci, ca un bătrân cu mentalitățile eronate ale unui trecut din fericire apus, mentalități care "nu se mai poartă" (aici aveau dreptate), străin de marile revelații ale prezentului, care – așa cred toți cei înglodați într-o modă – sunt adevăruri și viziuni cu totul noi și eterne. Ca să nu adaug, că sfatul lui Moisil conține în mod tacit o componentă elitistă și contrazicea astfel frontal postulatul egalitarist – toți oamenii trebuie să fie (făcuți) egali – al modei respective (e vorba de moda 68-istilor). Astăzi în Elvetia cuvântul "elită" circulă pe toate drumurile: spitale de elită, scoli și universități de elită, profesori de

elită, elevi și studenți de elită și așa mai departe. Se creează pe bandă rulantă tot felul de rating-uri (mai mult sau mai puțin inteligente, mai mult sau mai puțin tendențioase), ca să se poată măsura "în mod obiectiv" gradul de apartenentă la elita respectivă (cum s-ar putea face altfel?), unii producători de astfel de rating-uri profitând de ocazie, pentru a-si trage spuza pe turta lor. Pur şi simplu, moda s-a schimbat (şi se va schimba din nou), nimic nou sub soare (considerând perpetua devenire ca o permanență). Dar ceea ce mă izbeste, este faptul că, printre cei urcati sus pe baricadele luptei pentu favorizarea elitelor și care luptă în prima linie a frontului sub drapelul elitist, se găsesc persoane care, cu ani în urmă, nu au îndrăznit nici măcar să ia în gură acest cuvânt infamant, fie pentru că era considerat în acea vreme în societate, ca politic, incorect, fie pentru că ei credeau cu adevărat că e vorba de ceva imoral și ei luptau pe baricadele opuse. Să vezi și să nu crezi! Dar, de fapt, nici asta nu ar trebui să mă mire, e doar ceva uzual, la mintea cocosului, ci mai vârtos ar trebui să mă mire că asa ceva mă miră. Asa sunt oamenii – ca și cum n-ași fi știut asta până acum – pe ăștia îi avem, cu ăștia defilăm. Omul – asta se știe – este cea mai măreață creație sublunară a divinității. Dar - și asta se vede de la o poștă - la creația lui a participat, în mod esential, și cu mare succes, diavolul în mod personal, fapt tinut într-un secret total atât în Biblie cât și în Coran. Modele au un fel de tiranie specifică, căreia oamenii i se supun, în parte de bună voie, în parte de frică, și participă astfel la întărirea ei. Conform vechiului proverb românesc, care-ți recomandă să urli ca un lup, dacă viața te-a plasat la un moment dat, din întâmplare, într-o haită de lupi. Numai că, dacă urli prea tare și prea mult, te poti chiar transforma într-un lup. Si se poate, de asemenea, întâmpla ca în final, să constati, că nici măcar nu te-ai găsit într-o haită de lupi, ci într-o haită de oameni, care urlau unul mai tare decât altul, fiecare crezând despre ceilalți, că sunt lupi adevărați. Călătoria în timp, obligatorie pentru toți oamenii, la care se poate adăuga, eventual, și o călătorie în spațiu, duce (sau nu!!) la o atenuare a fanatismului asociat cu moda respectivă, de obicei prin preluarea unei noi mode. Dar mode există și în cercetarea matematică, în învățământul matematic, în modul cum sunt redactate lucrările matematice, în modul cum se face cercetarea matematică, în domeniile abordate și așa mai departe. Moda e "stăpâna fără margini peste marginile lumii", dar nu i se poate contesta și o anumită utilitate, de exemplu ca antidot al imobilității. Este posibil ca ea să fie un program atavic legat de conflictul dintre generații și de solidaritatea de grup. Totul e să știm că ea nu este nici absolut nouă și că este trecătoare. Dar o modă, care știe că nu e cu totul nouă și că e trecătoare, își cam pierde ceva din elan și încetează, până la un punct, de a mai fi o modă, cel puțin în sensul agresiv al cuvântului. Mihail Eminescu (1850-1889) ne atrage atenția, în nenumărate versuri, despre perenitatea modelor: "Ce-un secol ne zice, ceilalți o dezic"; "Văd vise-ntrupate gonind după vise, pân' dau în morminte ce-așteaptă deschise"; "Ei numai doar durează-n

vânt deșerte idealuri – când valuri află un mormânt, răsar în urmă valuri"; sau profeticele lui versuri din Glosă: "Nu te prinde lor tovarăș, ce e val, ca valul trece". Şi în ceea ce privește noutatea modei, *Eminescu* remarcă: "Tot ce-a fost sau o să fie, în prezent le-avem pe toate". Modele au o componentă emoțională și una ideologică. De obicei, componenta emoțională este mai puternică, dar durează mai puțin. Modele care au o încărcătură ideologică mai mare, durează de obicei mai mult.

Marea majoritate a matematicienilor, ca de altfel a tuturor oamenilor, nu-și prea cultivă amintirile, ei au alte preocupări, și-și cam pierd, din cauza asta, unitatea ființei lor morale. Dacă li se întâmplă să fie confruntați cu afirmații, atitudini, gânduri sau sentimente avute cu ani sau cu decenii în urmă, ei sunt, în primul moment, stupefiați: ceva nu este în ordine, nu poate fi adevărat! Dacă își reamintesc, însă, bine faptele, ei pot râde de prostănacul care au fost ei cândva, cu marea satisfacție, că între timp au devenit destepți. Ideea, că, peste câtva timp, vor categorisi si noile desteptăciuni tot drept prostii, nu pare să li se prezinte spiritului lor prea des. Ceva mai penibilă poate deveni situația, dacă ei își bat joc de "proștii", care cred în tot felul de inepții, fără să-și asume răspunderea, că ei sunt, eventual, cei care le-au băgat pe gât "prostilor" ineptiile incriminate. Se pare că, si în acest domeniu - exact ca în justiție - există un fel de termen de prescripție, după care conștiința umană nu mai sancționează faptele rele făcute cu un anumit timp în urmă, fie datorită uitării, fie datorită unei anumite autotoleranțe. Dar acest termen de prescripție din domeniul moralului variază de la persoană la persoană și este, în unele cazuri extrem de scurt.

4. Specializarea

Matematicieni universali, care să stăpânească, deci, întreaga matematică a timpului lor, nu mai există în timpurile noastre. Prea mare a devenit corpul matematicii, ca să mai poată fi cuprins de o singură persoană, si asta în pofida nenumăratelor schematizări, cum ar fi structurile sau categoriile. Cei mai multi matematicieni lucrează toată viața lor într-un singur domeniu. De obicei, ei își aleg acest domeniu cu ocazia tezei de doctorat. De fapt alegerea lor nu este chiar complet liberă. Ei aleg din domeniile care le-au fost prezentate la diversele cursuri, simpatiile și antipatiile pentru profesorii respectivi jucând un rol important cu această ocazie. O viziune generală a matematicii lipsește total la acest nivel, așa că nu poate fi vorba de o alegere în adevăratul sens al cuvântului. Cei care au norocul de a se găsi, într-un astfel de moment, într-un centru matematic important sunt masiv favorizați. După terminarea tezei începe, pentru cei deciși să activeze în cercetare, lupta pentru obținerea unui post permanent. În această perioadă ei trebuie să producă diferite rezultate și să se facă cunoscuți celor mai vechi din domeniul respectiv. O schimbare de directie în această perioadă poate fi fatală pentru cariera începută. Cu trecerea anilor, ei stăpânesc relativ bine domeniul de lucru și

și-au creat și tot felul de relații în acest domeniu. O schimbare de specialitate înseamnă să se așeze din nou în băncile studențești, să pornească oarecum de la zero și, până la un punct, să rupă legăturile cu prietenii științifici, care-i pot chiar acuza de un fel de trădare sau, eventual, de denigrarea domeniului respectiv. Dacă au devenit între timp profesori, pentru o anumită perioadă de timp, ei nu vor mai putea conduce lucrări de doctorat. În niciun caz nu se recomandă trecerea la un nou domeniu pe baza unei simple toane. Dar sunt situații, în care un matematician trebuie să facă acest pas foarte dificil, de exemplu în momentul în care își dă seama că domeniul lui de cercetare dă semne de epuizare. Există, însă, și cazuri în care un domeniu aparent epuizat renaște, ca urmare a unei noi idei. Matematicenii care au o înțelegere rapidă (mulți deci-Leibniz!) pot face aceste salturi cu mai mici sacrificii, pentru ceilalți matematicieni operația poate fi catastrofală, ceea ce implică faptul că alegerea tezei de doctorat se poate dovedi catastrofală pentru anumiți matematicieni. Dar schimbarea de domeniu poate fi foarte benefică în anumite situatii si anume când cunostintele sau viziunile din vechiul domeniu pot fi transferate în noul domeniu. Intrucât specializările sunt foarte intense, o astfel de transferare este mană cerească pentru noul domeniu. Matematicienii încălecati pe mai multe domenii aduc, în felul acesta, un mare serviciu științei prin acest transfer de idei. Trecerea de la matematica pură la un domeniu aplicat este mult mai ușoară, căci în acest domeniu matematicanul va putea utiliza cunoștințele lui, care în mare parte lipsesc celorlalți. Eclatant a fost asta în cazul lui Henri Poincaré, care, spre sfârșitul vieții lui, a revoluționat astronomia și unele capitole din fizică.

5. Rigurozitatea matematică de-a lungul secolelor

Matematica din Grecia antică a fost riguroasă. Teoremele demonstrate în acea vreme, împreună cu demonstrațiile lor, sunt acceptate până astăzi. Spre deosebire de celelalte stiinte, în care pare să domnească principiul lui Eminescu "ce-un secol ne zice, ceilalți o dezic", adevărurile matematice sunt eterne. Dar au existat și perioade în care rigurozitatea a lăsat de dorit. Asta s-a întâmplat când, pe baze mai mult intuitive, matematica a făcut mari progrese, iar justificările riguroase ale acestor progrese au apărut abia după trecerea unui anumit timp. O primă situație de acest tip s-a datorat introducerii numerelor complexe. Normal ar fi fost ca aceste numere să apară cu ocazia rezolvării ecuațiilor de gradul 2. Dar asta nu s-a întâmplat, matematicenii acceptând faptul că o astfel de ecuație poate avea două soluții, sau numai una, sau niciuna. Ca să fiu mai aproape de realitatea istorică adaug că pe acea vreme, matematicienii nu acceptau nici măcar numerele negative, iar, pentru o lungă perioadă de timp, nici măcar numerele iraționale (numerele reale și pozitive erau, pe acea vreme, în realitate mărimi fizice, ca de exemplu lungimi, arii, greutăți etc. sau rapoarte de astfel de mărimi; numerele reale au fost definite abia în a doua jumătate a secolului 19). În celebra sa carte

"Ars Magna (1545)", Gerolamo Cardano (1501-1576) se ocupă de rezolvarea ecuațiilor de gradul 3 și 4. Pentru rezolvarea ecuațiilor de gradul 3, Cardano utilizează metoda, propusă independent de Scipione del Ferro (1465-1526) și de Niccolo Tartaglia (1500?-1557), care constă în a rezolva mai întâi o ecuație ajutătoare de gradul 2 si de a utiliza apoi solutiile ei pentru a rezolva ecuatia de gradul 3 dată. Se poate, însă, întâmpla ca ecuația ajutătoare de gradul 2 să nu aibă nicio soluție reală, iar ecuația dată de ordinul 3 să aibe trei solutii reale. Istoria se repetă în această carte cu ocazia rezolvării ecuatiilor de gradul 4. Aici Cardano utilizează metoda elevului său, Lodovico Ferrari (1522-1565), care constă în a construi o ecuație ajutătoare de gradul 3 și de a-i utiliza soluțiile pentru a descoperi soluțiile ecuației date de ordinul 4. Pentru a evita situația neplăcută, când ecuațiile ajutătoare nu au soluții reale, Rafael Bombelli (1526-1572) utilizează numerele complexe în carte sa "L'algebra . . . (1572)" (de fapt, primul volum al unei cărți planificată pentru trei volume, dar – ca urmare a decesului lui Bombelli – ultimele două n-au mai apărut), care a avut un mare succes de librărie, fără să precizeze bine ce sunt aceste numere complexe. Asta s-a făcut abia la începutul secolului 19. Dar problema s-a pus din nou, cu mult mai mare acuitate, în momentul în care numerele complexe au început să fie utilizate în analiză. Procedeul era de a se demonstra anumite formule pentru numerele reale și de a aplica apoi aceste formule fără demonstrații la numerele complexe. Marele maestru în acest domeniu a fost, fără îndoială, Leonhard Euler (1707-1783). Intrebat într-o scrisoare de către un matematician, dacă un astfel de procedeu poate fi admis, Euler îi răspunde foarte pragmatic, dar neconvingător, că dacă n-am face așa ceva, atunci o mare parte din analiza matematică de pe acea vreme n-ar mai exista. Că procedeul este justificat a fost demonstrat abia în secolul 19 pentru cazul în care funcțiile care apar în formulele respective sunt analitice, ceea ce a fost întotdeauna cazul cu formulele utilizate de Euler.

A doua mare etapă de nerigurozitate în matematică a fost provocată de descoperirea calculului infinitezimal (inclusiv definiția funcțiilor) și a seriilor. Integrala a fost introdusă de Bonaventura Cavalieri (1598?-1647) (un elev al lui Galileo Galilei (1564-1642), care, probabil, că l-a și inspirat în această direcție în cartea sa "Geometria indivisibilibus . . . (1635)". Istoricul francez Maximilien Marie (1819-1891) scrie despre această carte, că ar merita marele premiu pentru confuzie, dacă un astfel de premiu ar exista; nu se înțelege nimic, în fiecare loc trebuie să ghicești ce vrea autorul să spună. "Rigurozitatea e problema filozofilor, nu a geometrilor" le arunca Cavalieri criticilor lui contemporani în cap. Derivata a fost introdusă de Blaise Pascal (1623-1662) și de Pierre de Fermat (1601-1665), tot în mod neriguros. Adevărata explozie a calculului infinitezimal a început însă după descoperirea legăturii dintre integrală și derivată, făcută, independent, de către Isaac Newton (1643-1727) și Leibniz. Este vorba de una din cele mai importante descoperiri matematice ale tuturor timpurilor. Ceea ce a urmat a

fost o perioadă de înflorire a matematicii și a aplicațiilor ei la fizică, nemaicunoscută până atunci. Dar rigurozitatea a fost sacrificată pe altarul acestei dezvoltări furtunoase. Au fost și matematicieni (ca, de exemplu, Huyqens), care, din păcate, nu au participat la aceată imensă construcție, exact din motivul că lipsa de rigurozitate îi deranja. În cartea sa "The analyst" din 1734 episcopul și filozoful englez George Berkeley (1685-1753) scrie, în mod sarcastic, că misterele Sfintei Treimi sunt triviale în raport cu marile mistere ale calcului infinitezimal. S-a ajuns, totuși, la un moment în care construcția nu mai putea avansa, fără ca fundamentele ei să fie asigurate. Procesul de revenire la rigurozitate a debutat pe la începutul secolului 19 și a durat cam până către sfârșitul acestui secol. El a fost început de către Gauss, care a dat prima demonstarție riguroasă a teoremei fundamentale a algebrei (pentru orice polinom cu coeficienți numere complexe, există un număr complex pentru care acest polinom se anulează). A urmat Bernard Bolzano (1781-1848), care a definit pentru prima dată riguros noțiunea de funcție continuă si a demonstrat, că pentru o funcție reală și continuă, definită pe un segment închis al axei reale si care ia în punctele extreme ale acestui segment valori cu semne diferite, există un punct intermediar, în care această funcție se anulează. Augustin Cauchy (1789-1857) și Peter Lejeune-Dirichlet (1805-1859) au dat, pentru prima oară, o definiție a integralei unei funcții continue pe un inteval închis al axei reale. Tot Dirichlet este cel care a definit conceptul general de funcție (definită pe axa reală și cu valori reale). Cauchy, Riemann și Karl Weierstrass (1815-1897) au clarificat bazele teoriei funcțiilor analitice de o variabilă complexă, justificând în modul acesta părțile corespunzătoare din imensa operă a lui Euler. Karl Weierstrass a definit în cursurile lui, celebre în toată Europa pentru rigurozitatea lor, numerele reale și a demostrat tot felul de proprietăți ale acestor numere și ale funcțiilor reale. Din păcate, definitia dată de el nu este elegantă, iar Weierstrass nu si-a publicat cursurile. Dar asta a fost făcut de alți matematicieni, în mare parte elevi de-ai lui. Cu aceasta analiza infinitezimală a atins din nou rigurozitatea Grecilor antici. Dar, exact în acest moment, Cantor a început impresionanta sa construcție a teoriei mulțimilor infinite. Până în acel moment, în matematică nu se acceptau multimile actual infinite, ci numai cele potential infinite, distinctie cunoscută încă de către vechii greci. Din această cauză noua teorie era, în mod obligatoriu, neriguroasă, căci nu se vedea nici măcar în principiu cum ar putea fi justificată existența mulțimilor infinite cu ajutorul unei demonstrații riguroase, care, prin însăși definiția noțiunii de demonstrație riguroasă, nu avea voie să apeleze decât la mulțimi finite. Noua teorie a stârnit o violentă dezbatere în lumea matematică, împărțită în două tabere opuse, dezbatere la care au participat nenumărate celebrităti ale timpului. În favoarea teoriei multimilor si-a ridicat Hilbert puternicul său glas, formulându-si punctul de vedere într-o frază celebră, care aduce a lozincă politică: "Nimeni și nimic nu ne vor putea izgoni din acest paradis, pe care Cantor l-a creat pentru

noi". Restabilirea rigurozității în acest nou domeniu s-a făcut utilizând axiomatizarea, cu ajutorul căreia s-a atins, în întreaga matematică, un grad de rigurozitate nemaiîntâlnit până atunci. Fapt este că matematicienii utilizau un număr important de concepte bazate exclusiv pe intuitii, care, oricum, diferă de la om la om si nu prea sunt transmisibile. Acesta era, de exemplu, cazul cu numerele naturale, cu conceptele de punct, dreaptă și plan din geometrie, cu noțiunea de mulțime (finită) și cu elementele de bază ale logicii, cum ar fi de exemplu "și", "sau", "nu", "adevărat", "fals", "demonstrație" și așa mai departe. În Grecia antică, cuvântul de axiomă se utiliza pentru un adevăr evident, care nu are nevoie de demonstrație. Către sfârșitul secolului 19 sensul cuvântului de axiomă a fost schimbat, devenind un element al unei definiții. Noțiunea matematică este vidată de conținutul ei intuitiv, iar axiomele îi descriu pur și simplu proprietățile. În loc să spunem, de exemplu, că faptul că două puncte determină în mod unic o dreaptă este un adevăr evident, care nu are nevoie de o demonstrație, că este, deci, o axiomă în vechiul sens al cuvântului, se introduc notiuni nedefinite, care corespund conceptelor de "punct", "dreaptă" și "a fi situat pe", axiomele precizând modul cum pot fi manipulate conceptele introduse. Prima axiomatizare în acest sens a fost făcută de *Peano*, care a axiomatizat conceptul de număr natural. A urmat Hilbert, care a axiomatizat geometria și Ernst Zermelo (1871-1953), care a axiomatizat conceptul de mulțime. Dar marea revoluție a venit din partea lui Hilbert, prin introducerea sistemelor formale în 1917 (realizând astfel un vechi vis al lui *Leibniz*), în care se axiomatizează și ultimul bastion al intuitiei: logica. Probabil involuntar, aceste sisteme formale au deschis marea poartă pentru computere. Dar în visul lui Leibniz amintit mai sus apar și mașinile de calculat. El însuși a construit o astfel de mașină (care, de altfel, n-a functionat!) și pentru care a fost admis ca membru al "Royal Academy" din Anglia. Computerele nu au intuitii (cel putin așa se pare) și nu pot lucra decât cu semne și cu reguli bine precizate pentru manipularea lor. E adevărat, că sistemele formale au limitările lor interne (în fond, din cauza prăpastiei de netrecut care există între multimile finite și cele infinite) aşa cum a arătat Kurt Gödel (1906-1978) în 1931, dar fapt este că, practic, toată matematica actuală se poate prezenta cu ajutorul acestor sisteme formale. În felul acesta s-a atins un nivel de rigurozitate absolută, un computer putând, în principiu, verifica dacă în cursul unei demonstrații codul clar fixat de *Hilbert* în acest sens a fost sau nu respectat.

6. Generalizările

Generalizările sunt foarte răspândite în matematică și sunt o cale foarte eficientă de utilizare a intuițiilor din domeniile matematice mai simple, pentru a crea rezultate în domenii matematice mai complicate. Se ia, de exemplu, un rezultat matematic demonstrat într-un anumit cadru și se demonstrează

o nouă teoremă într-un cadru mai general, vechiul rezultat devenind eventual un corolar al noului rezultat. Un exemplu de astfel de generalizare îl poate constitui teorema lui Camille Jordan (1838-1922), de descompunere a unei măsuri reale în mod unic în diferența a două măsuri pozitive. Această teoremă a fost generalizată de Grothendieck la cazul unei funcționale continue și autoadjuncte pe o algebră C-stelată. Dar se pot generaliza întregi teorii matematice. Un astfel de exemplu ar putea fi K-teoria introdusă de Grothendieck pentru categoria spațiilor local compacte și care a fost generalizată între timp la categoria mai largă a algebrelor C-stelate. Un alt exemplu l-ar putea constitui teoria probabilităților libere, introduse de Dan Voiculescu (1949-20..), care generalizează teoria clasică a probabilităților la cazul algebrelor W-stelate.

Nu se poate, însă, vorbi despre generalizările din matematică fără a se aminti de generalizările de dragul generalizărilor. În aceste cazuri, generalizările sunt făcute fără a se urmări un scop precis, ele se fac pentru simplul motiv, că se pot face. Metoda fiind simplă, ele se fac în masă. Nu e de mirare, că majoritatea acestor generlizări rămân sterile. Dar, nu se știe niciodată de unde sare iepurele și se poate întâmpla ca o generalizare de dragul generalizării să devină totuși utilă, eventual într-un sens neanticipat de autor. Ca exemplu celebru de o astfel de situație poate servi teoria categoriilor, introduse de Samuel Eilenberg (1913-1998) și Saunders MacLane (1909-2005), ca o generalizare de dragul generalizării (la început, în discuțiile dintre ei, ea era numită, ironic, teoria nonsensului).

7. În loc de concluzii

Matematica este o știință vie, care se dezvoltă în prezent cu o rapiditate nemaicunoscută în istorie. Sfaturi de comportament și de organizare sunt, probabil, binevenite. Dar norme rigide, care să ne indice cum să învățăm, cum să cercetăm și cum să predăm matematica, sunt de evitat. Mult prea complexă este matematica, mult prea complexă este societatea matematicienilor, ca să nu mai vorbim de complexitatea oamenilor angajați în matematică. Să lăsăm matematica să se dezvolte în mod liber, ea se găsește astăzi pe drumul cel bun.

Open problems in elementary geometry

Constantin P. Niculescu¹⁾

Abstract. Analytical connections of Poncelet's closing theorem are considered and some open problems are considered.

Keywords: Poncelet's closing theorem, covex set, recurrence

MSC: Primary 51M04, 51; Secondary 37B20, SIMI6.

Since ancient times Geometry was a big source of deep results. Most of them are easy to state but difficult to prove. Here we illustrate how simple facts may lead o to unexpected connections and to new open problems.

As well known, every triangle $\triangle ABC$ admits a circumscribed circle $\mathcal{C}(O,R)$ and an inscribed circle $\mathcal{C}(I,r)$.

Letting 2s the perimeter of the given triangle, it is easy to express s, R and r in terms of the length sides a, b, c of the triangle:

$$s = \frac{1}{2}(a+b+c);$$

$$r = \frac{(s-a)(s-b)(s-c)}{s};$$

$$R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}.$$

It is natural to ask the question of the invertibility of this nonlinear system in a, b, c.

Problem 1. Determine necessary and sufficient conditions under which a triplet (s, R, r) of positive numbers represents respectively the semiperimeter, the radius of the circuscribed and the radius of the inscribed circle.

These conditions are known and easy to derive. The starting point is to notice the formulae

$$a+b+c=2s,$$

$$ab+bc+ca=s^2+r^2+4Rr,$$

$$abc=4Rrs,$$

and then to make the following change of variables:

$$x = s - a$$
, $y = s - b$ and $z = s - c$.

Then a, b, c (and their permutations) verify the triangle inequality if and only if x, y, z are positive numbers. The system under attention becomes

$$x + y + z = s,$$

$$xy + yz + zx = r(4R + r);$$

$$xyz = sr^{2}$$

¹⁾University of Craiova, Center for Nonlinear Analysis and its Applications,

and we are led to the question when all roots of the polynomial

$$X^3 - sX^2 + r(4R + r)X - sr^2$$

are real; in our case this forces the positivity of the roots. The answer is provided by its discriminant,

$$D = (x - y)^{2}(y - z)^{2}(z - x)^{2},$$

to be nonnegative. Or

$$D = \det \left(\begin{pmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{pmatrix} \cdot \begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix} \right) =$$

$$= \det \left(\sum_{x=1}^{3} x \sum_{x=1}^{x} x^2 \sum_{x=1}^{x} x^3 \sum_{x=1}^{x} x^3 \sum_{x=1}^{x} x^4 \right) =$$

$$= 4R(R - 2r)^3 - \left(s^2 - 2R^2 - 10Rr + r^2\right)^2.$$

This yields the fundamental inequality in a triangle, first noticed by Sondat in 1891 (see [1]): A triangle with s, R, r prescribed exists if and only if they satisfy the inequality

(S)
$$(s^2 - 2R^2 - 10Rr + r^2)^2 \le 4R(R - 2r)^3.$$

Clearly, (S) provides a full answer to Problem 1.

Euler's inequality, $R \geq 2r$, is a consequence of (S), so it is natural to search for the role played by this inequality in the existence of a triangle with R and r prescribed.

Problem 2. Given two circles C(O, R) and C(I, r), is there any triangle inscribed in C(O, R) and circumscribed to C(I, r)?

The answer is YES if and only if *Euler*'s identity

$$OI^2 = R(R-2r)$$

holds. We shall detail here only the sufficiency part. Since $R \geq 2r$, the circle $\mathcal{C}(I,r)$ is interior to the disc $\mathcal{D}(O,R)$. Choose an arbitrary point A of $\mathcal{C}(O,R)$ and denote by B and C the other intersections with $\mathcal{C}(O,R)$ of the two tangents from A to the circle $\mathcal{C}(I,r)$. Since AI is the bisector of $\angle BAG$, the fact that $\mathcal{C}(I,r)$ is the inscribed circle in the triangle ABC is equivalent with the property of BI of being the bisector of $\angle ABC$. We shall prove that indeed $\angle IBC = \angle IBA$.

Figure 1: Ponncelet's closing theorem illustrated by the circumscribed circle and the inscribed circle of a triangle.

For, denote by D the other intersection with $\mathcal{C}(O,R)$ of the line through A and I. We have

$$IA \cdot ID = R^2 - OI^2 = 2Rr$$

and thus $ID = \frac{2Rr}{IA} = 2R\sin\left(\frac{\angle BAC}{2}\right) = BD$. This yields $\angle BID = \angle IBD$, that is,

$$\frac{1}{2} \sphericalangle BAC + \sphericalangle IBA = \frac{1}{2} \sphericalangle BAC + \sphericalangle IBC,$$

from which we conclude that $\angle IBA = \angle IBC$.

The proof of Problem 2 reveals an interesting fact. If a triangle exists, its shape can be continuously changed so to rotate around inside circle. See Figure 1.

Suppose now that $C(O_1, R_1)$ is a circle interior to the disc $D(O_2, R_2)$ and consider on $C(O_2, R_2)$ the standard orientation. The discussion above suggests us to consider the mapping

$$P: \mathcal{C}(O_2, R_2) \to \mathcal{C}(O_2, R_2).$$

which associates to a point $A \in \mathcal{C}(O_2, R_2)$ the other intersection with $\mathcal{C}(O_2, R_2)$ of the right hand tangent from A to the interior circle. The right hand tangent is that for which the length of the oriented arc $\overrightarrow{AP(A)}$ is the smallest.

Given A, what can be said about the asymptotic behavior of its orbit, that is, of the sequence A, P(A), $P^2(A)$, ...?

The answer to this question is a nontrivial piece of higher mathematics, discovered by Jean-Victor Poncelet in 1813-1814, while a prisoner of war in Russia (and published later in 1822). It asserts that either there exists a natural number $n \geq 1$ such that $P^n(A) = A$ for every A (that is, all orbits are periodic, of the same period n), or every orbit is dense. Actually, much more is true:

Theorem 1. (Poncelet's closing thorem [8]). Consider a pair of ellipses C and E, such that E is interior to C and to each point $A \in C$ attach a new point P(A), which is the other intersection with C of the right hand tangent from A to the inferior ellipse. Then either there exists a natural number n such all orbits are periodic, of period n (and thus a circumscribed n-gon can rotated arround E changing continuously its size), ar every orbit of P is dense into C.

A nice proof, based on elements of ergodic theory, was given by $J.\ L.\ King$ [5]. See also [2], [6]. The idea is to exhibit a homeomorphism $\tau: \mathcal{C} \to \mathcal{S}^1$ and a rotation mapping

$$R_{\theta}: \mathcal{S}^1 \to \mathcal{S}^1, \qquad R_{\theta}\left(e^{2\pi i t}\right) = e^{2\pi i (t+\theta)}$$

such that the diagram

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{P} & \mathcal{C} \\ r \downarrow & & \downarrow r \\ S^l & \xrightarrow{R_{\theta}} & S^l \end{array}$$

commutes. This transfers the dynamics of R_{θ} to P. Or, a well known result due to *Kronecker*, asserts that a rotation is either periodic or all its orbits are dense (depending on whether θ is rational or not). See [3] or [4].

The existence of the homeomorphism τ (and also the proof of Theorem 1) is obvious in the case of concentric circles (that is, when $O_1 = O_2$). In the general case, this is done via a measure which is invariant under the action of the *Poncelet* mapping P.

How special is *Poncelet's* closing theorem? Surprisingly, very little is known in this respect. Among the many open problems in this area we mention here the following one:

Open Problem 1. Suppose that \mathcal{E} is the boundary of a convex compact domain in the plane. Given any circle \mathcal{C} surrounding \mathcal{E} , a Poncelet type mapping $P:\mathcal{C}\to\mathcal{C}$ can be defined by attaching to each point $A\in\mathcal{C}$ the second intersection with \mathcal{C} of the right hand support line from A to \mathcal{E} . Suppose that always P is either periodic or all its orbits are dense.

Is \mathcal{E} necessarily an ellipse?

The 3-dimensional analogue of triangles are the tetrahedrons. It is well known that every tetrahedron T admits an inscribed sphere $\mathcal{S}(I,r)$ and a circumscribed sphere $\mathcal{S}(O,R)$. Despite the lack of an analogue of the *Poncelet* mapping, the following question arises naturally:

Open Problem 2. Under the above circumstances, is any point of S(O,R) the vertex of a tetrahedron inscribed in S(O,R) and circumscribed to S(I,r)?

If YES, what about the case of n-simplices?

Any triangle $\triangle ABC$, admits a circumscribed ellipse \mathcal{C}' and an inscribed ellipse \mathcal{E} . According to Theorem 1, the *Poncelet* mapping $P: \mathcal{C} \to \mathcal{C}$ (attached to the pair $(\mathcal{C}, \mathcal{E})$ is periodic, of period 3. Consequently, the triangle $\triangle ABC$ can be rotated around \mathcal{E} , changing continuously its shape.

Open Problem 3. Find the loci of the distinguished points of the triangle

$$\triangle XP(X)P^2(X)$$

(such as the center of gravity, the orthocenter, the center of the circumscribed circle, the center of the inscribed circle etc.) as X describes C.

Determine the bounds of variation of the perimeter and of the area of this triangle.

When the two ellipses are circles, the bounds of variation of the perimeter are given by the fundamental inequality in a triangle. It turns out that

the triangle with maximum (minimum) perimeter are the same with those with maximum (minimum) area. As noticed M. Radi, [9], they can be determined by elementary means. The general case seems to be considerably more difficult and a solution might be suggested by physical arguments like those developed by M. Levi [7].

References

- [1] O. Bottema, R. Z. Dordević, R. R. Jani c, D. S. Mitrinović, P. M. Vasić, *Geometric Inequalities*, Dordrecht, Groningen, 1969.
- [2] A. Boyarsky and P. Góra, Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension, Birkhäuser, 1997.
- [3] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd. Ed. Addison-Wesley Publ. Co., 1989.
- [4] M. Gîdea and C. P. Niculescu, Chaotic Dynamical Systems. An Introduction, Universitaria Press, Craiova, 2002.
- [5] J. L. King, Three Problems in Search of a Measure, Amer. Math. Monthly 101 (1994), 609-628.
- [6] R. Kolodziej, The rotation number of some transformation related to billiards in an ellipse, Studia Math. 81 (1985), 293-302.
- [7] M. Levi, Minimal perimeter triangles, Amer. Math. Monthly 109 (2002), 890-899.
- [8] J. V. Poncelet, Traité des propriétés projectives des figures; ouvrage utile a ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain, Gauthhier-Villars, Paris, 1866, Second edition (First edition was published in 1822).
- [9] M. Radić, Extreme Areas of triangles in Poncelet's Closure Theoreme, Forum Geometricorum, 4 (2004), 23-26.

Arround Brocard's Problem

ALEXANDRU GICA¹⁾

Abstract. In this paper we present some results concerning the open problem of Brocard: the only solutions of the equation $n! + 1 = m^2$ are n = 4, 5, 7.

Keywords: Ramanujan-Brocard equation, prime factors, cubic Brocard problem.

MSC: Primary: 11D41; Secondary: 11A07, 11D25.

1. Introduction

In 1876 H. Brocard asked if the equation

$$(1) n! + 1 = m^2$$

has only three solutions in positive integers: (n, m) = (4, 5), (5, 11), (7, 71). The problem was raised also by Ramanujan in 1913 (this is the reason why some authors called this conjecture as the Brocard-Ramanujan problem).

¹⁾ University of Bucharest, Faculty of Mathematics, Str. Academiei 14, Bucharest 1, Romania RO-010014, E-mail address: alexgica@yahoo.com

Until now, nobody was able to solve the problem of *Brocard*. In 2000, *Berndt* and *Galway* showed that the above equation has no other solutions (n, m) with $n \le 10^9$ than the above indicated numbers n = 4, 5, 7.

As in the case of other problems in number theory, the question of *Brocard* can be partially answered under the assumption that the following statement is true.

Conjecture. (The abc conjecture of Szpiro). There exists a number s > 0 such that for all coprime positive integers a, b, c, if

$$a + b = c$$

we have $abc < N_0(abc)^s$. For any positive integer n, $N_0(n)$ stands for the product of the distinct prime factors of n.

In 1993, M. Overholt [9] proved that the equation (1) has only finitely many solutions, provided that the above conjecture of Szpiro holds. Under the same assumption, A. Dabrowski proved in [3] that for every positive integer A the equation

$$n! + A = m^2$$

has only finitely many solutions as well. The result of Overholt was extended further by several authors [5], [6], [8]. Together with L. Panaitopol we were able to show in [6] the following.

Theorem 1.1. Let $0 < \epsilon < 1$, and let P be a polynomial with integer coefficients, having degree 2. Then the equation

$$n(n-1)...(n-k) = P(m),$$

where m, n and k are positive integers and $n \ge k > \epsilon n$, has only finitely many solutions, provided that Szpiro's Conjecture holds.

In [5] we showed the above result for polynomials P with degree at least 2 but assuming that a stronger form of abc Conjecture holds (the form proposed by Masser and Oesterle).

2. An elementary approach

When trying to show that a positive integer a is not a perfect square, the most elementary approach is to find a prime number p such that $\left(\frac{a}{p}\right)=-1$. For example, in showing that the number 2009!+1 is not a square, it is enough to exhibit a prime p such that $\left(\frac{2009!+1}{p}\right)=-1$. Choosing a prime $p \leq 2009$, we obviouslyhave $2009! \equiv 0 \pmod{p}$ and $\left(\frac{2009!+1}{p}\right)=\left(\frac{1}{p}\right)=1$. So p must be greater than 2009. The first prime p which fulfil this condition is 2011. By Wilson's theorem $2010! \equiv -1 \pmod{2011}$ and therefore $2009! \equiv 0 \pmod{2011}$.

 $\equiv 1 \pmod{2011}$. We thus get

$$\left(\frac{2009!+1}{2011}\right) = \left(\frac{2}{2011}\right) = -1.$$

The last equality holds since $2011 \equiv 3 \pmod{8}$, which finishes the proof that 2009! + 1 is not a square. In fact the above simple exercise can be easily generalized as follows.

Theorem 2.1. If p is a prime such that p = 8k + 3 or p = 8k + 5, then (p-2)! + 1 and (p-3)! + 1 are not squares.

Proof. By Wilson's theorem, we have $(p-2)! \equiv 1 \pmod{p}$ and therefore

$$\left(\frac{(p-2)!+1}{p}\right) = \left(\frac{2}{p}\right) = -1.$$

The last equality holds since $p \equiv 3, 5 \pmod{8}$. As for the second statement of the theorem, let us suppose that $(p-3)! + 1 = m^2$, where m is a positive integer. Multiplying the last equality with p-2 and taking into account that $(p-2)! \equiv 1 \pmod{p}$, then

$$(p-2)m^2 = (p-2)! + p-2 \equiv -1 \pmod{p}.$$

Therefore $2m^2 \equiv 1 \pmod{p}$ and it follows that 2 is a quadratic residue modulo p (since $(2m)^2 \equiv 2 \pmod{p}$). Since for $p \equiv 3, 5 \pmod{8}$, 2 is a quadratic non-residue modulo p, we arrived to a contradiction.

These results can be found in [7], page 50. Let us consider now the number 237! + 1. How can we show that this number is not a square? 239 is a prime but Theorem 2.1 does not work in this case since $239 \equiv 7 \pmod{8}$. Let us try to use the prime number 241. Suppose that $237! + 1 = m^2$, for a positive integer m. Multiplying by $238 \cdot 239 \equiv (-3) \cdot (-2) = 6 \pmod{241}$ we obtain $239! + 6 \equiv 6m^2 \pmod{241}$. Using Wilson's theorem again, we infer that $7 \equiv 6m^2 \pmod{241}$ and $(6m)^2 \equiv 42 \pmod{241}$. Thus 42 must be a quadratic residue modulo 241, in contradiction with

$$\left(\frac{42}{241}\right) = \left(\frac{3}{241}\right)\left(\frac{7}{241}\right) = \left(\frac{241}{3}\right)\left(\frac{241}{7}\right) = \left(\frac{3}{7}\right) = -1$$

where the quadratic reciprocity law and elementary properties of the *Legendre* symbol were used.

The following result was proved in [4].

Theorem 2.2. If p is a prime such that $p \equiv \pm a \pmod{168}$ where

$$a \in \{5, 23, 31, 37, 43, 55, 59, 65, 67, 71, 73, 83\}$$

then (p-4)! + 1 is not a square.

Proof. We will prove only the case $p \equiv 73 \pmod{168}$ by showing that in fact this a generalization of the above situation (241 $\equiv 73 \pmod{241}$). Let us suppose that $(p-4)! + 1 = m^2$ for a positive integer m. We multiply

this equality with $(p-3) \cdot (p-2) \equiv (-3) \cdot (-2) = 6 \pmod{p}$ and we obtain that $(p-2)! + 6 \equiv 6m^2 \pmod{p}$. Using again Wilson's theorem, we infer that $7 \equiv 6m^2 \pmod{p}$ and $(6m)^2 \equiv 42 \pmod{p}$. We obtained that 42 is a quadratic residue modulo p. But this is in contradiction with

$$\left(\frac{42}{p}\right) = \left(\frac{3}{p}\right)\left(\frac{7}{p}\right) = \left(\frac{p}{3}\right)\left(\frac{p}{7}\right) = \left(\frac{3}{7}\right) = -1.$$

We used the quadratic reciprocity, the properties of *Legendre*'s symbol and the residues $p \equiv 1 \pmod{8}, p \equiv 1 \pmod{3}, p \equiv 3 \pmod{7}$. The last conditions follows from the fact that $p \equiv 73 \pmod{168}$.

3. The cubic problem

It is very natural to consider the analogue of *Brocard*'s problem in the cubic case: there exists a positive integer n such that n!+1 is a cube? It seems that the answer to this question is also negative, but as we can guess by taking into account the introduction section, this seems to be a very difficult problem. How to show, for example, that 17!+1 is not a cube? Let us suppose that $17!+1=m^3$. Using *Wilson*'s theorem, we deduce that $m^3\equiv 2\pmod{19}$. But a simple computation shows that

$$m^3 \equiv 0, 1, 7, 8, 11, 12, 18 \pmod{19}$$

and we obtained a contradiction. In a similar way we can prove the following.

Theorem 3.1. Let p be a prime such that $p \equiv 1 \pmod{3}$ and p could not be written as $p = x^2 + 27y^2$ for any integers x, y. Then the numbers (p-2)! + 1 and (p-3)! + 1 are not cubes.

Proof. Let us suppose that $(p-2)! + 1 = m^3$. By Wilson's theorem, we deduce that $m^3 \equiv 2 \pmod{p}$. This means that 2 is a cubic residue modulo p. Since $p \equiv 1 \pmod{3}$ and 2 is a cubic residue modulo p, a classical result in number theory ensures us that $p = x^2 + 27y^2$, where x and y are integers (we have to mention that the proof of this classical result uses the famous cubic reciprocity law of Gauss). The latter is in contradiction with the hypothesis. As for the second statement of the theorem, let us suppose that $(p-3)! + 1 = m^3$, where m is a positive integer. Multiplying the last equality with p-2 and taking into account that $(p-2)! \equiv 1 \pmod{p}$, then

$$(p-2)m^3 = (p-2)! + p-2 \equiv -1 \pmod{p}.$$

Therefore $2m^3 \equiv 1 \pmod{p}$ and it follows that 2 is a cubic residue modulo p. We obtained again a contradiction.

References

- [1] B. C. Berndt, W. F. Galway, On the Brocard-Ramanujan diophantine equation $n! + 1 = m^2$., Ramanujan J. 4(2000), 41–42.
- [2] H. Brocard; Question 1532., Nouv. Corresp. Math. Phys. 2(1876), 287.

- [3] A. Dabrowski, On the diophantine equation $n! + A = y^2$., Nieuw Arch. Wiskd. $\mathbf{14}(1996),\ 321-324.$
- [4] C. Helou, L. Haddad, A note on a problem of Brocard-Ramanujan., Ramanujan J. 17(2008), 155–161.
- [5] A. Gica, The diophantine equation $(n)_k = P(m)$., Rev. Roum. Math. Pures Appl. $\mathbf{50}(2005), 277-282$.
- [6] A. Gica, L. Panaitopol, On a problem of Brocard. , Bull. Lond. Math. Soc. $\bf 37 (2005)$, 502-506.
- [7] A. Gica, L. Panaitopol, Aritmetică și teoria numerelor. Probleme., Editura Universității din București, 2006.
- [8] F. Luca, The diophantine equation P(x) = n! and a result of M. Overholt., Glas. Mat. Ser. III 37(57)(2002), 269-273.
- [9] M. Overholt, The diophantine equation $n!+1=m^2$., Bull. Lond. Math. Soc. **25**(1993), 104.

On the formulae of stirling and Wallis

CORNELIU MĂNESCU-AVRAM¹⁾

Abstract. We give a generalization of the Stirling's formula for a class of real functions. A strong connection with the Wallis formula is established in terms of semigroups.

Keywords: Stirling's formula, monotonic functions, convexity, mappings of semigroups.

MSC: Primary 00A22; Secondary 26A48, 26A51, 20M15...

This note gives generalizations of the formulae of Stirling and Wallis. We remind a form of the Stirling's formula ([1]):

$$n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left[1 + \frac{1}{12n} + \frac{O(1)}{n^2} \right] \tag{1}$$

and a form of the Wallis formula ([1]):

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)! \sqrt{n}}.$$
 (2)

The start point is the following result:

Theorem 1. ([2]). Let g be a decreasing function of the real variable t, defined for $t \geq 0$, for which g(t) > 0, if $t \geq 1$. Then

$$\sum_{1 \le n \le X} g(n) = \int_{1}^{X} g(t) dt + A + O(g(X)),$$

where $n \in \mathbb{N}^*$, $X \geq 1$ and A is a constant, depending only of g.

 $^{^{1)}}$ Department of Mathematics, High School for Motor Transports, Ploiești, Romania, E-mail address : avram050652@yahoo.com

Corollary 2 ([2]). There exists a constant γ (the Euler constant) such that

$$\sum_{1 \le n \le X} \frac{1}{n} = \log X + \gamma + O\left(\frac{1}{X}\right).$$

Corollary 3. ([2]). There exists a constant B such that

$$\sum_{2 \le n \le X} \frac{1}{n \log n} = \log \log X + B + O\left(\frac{1}{X \log X}\right).$$

Corollary 4. Let $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ be a function such that $\log f$ is decreasing and f(t) > 1 for $t \ge 1$. Then

$$\prod_{1 \le n \le X} f(n) = Be^{\int_{1}^{X} \log f(t) dt + O(\log f(X))}.$$

Proof: We take $g = \log f$ in Theorem 1.

From this corollary we cannot obtain the *Stirling*'s formula, since if we take f(t) = t, then $\log t$ is not a decreasing function of t, while if we take $f(t) = \frac{1}{t}$, then we don't have f(t) > 1 for $t \ge 1$. But this result shows us that we can obtain the desired generalization by using more refined methods. We need some preliminary results.

Lemma 5. Let a, b be real numbers (a < b) and $f : [a, b] \to \mathbb{R}$ a convex function. Then

$$(b-a)f\left(\frac{a+b}{2}\right) \le \int_{a}^{b} f(x)dx \le (b-a) \cdot \frac{f(a)+f(b)}{2}$$

(Hermite - Hadamard).

Proof: From the inequality

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{f\left(\frac{a+b}{2}+x\right)+f\left(\frac{a+b}{2}-x\right)}{2}, \forall x \in \left[0,\frac{b-a}{2}\right]$$

we obtain by integration

$$(b-a)f\left(\frac{a+b}{2}\right) = 2 \cdot \frac{b-a}{2}f\left(\frac{a+b}{2}\right) = 2\int_{0}^{\frac{b-a}{2}} f\left(\frac{a+b}{2}\right) \mathrm{d}x \le$$

$$\leq \int_{0}^{\frac{b-a}{2}} f\left(\frac{a+b}{2} + x\right) dx + \int_{0}^{\frac{b-a}{2}} f\left(\frac{a+b}{2} - x\right) dx = \int_{a}^{b} f(x) dx.$$

If we consider the inequality

$$f((1-t)a+tb) \le (1-t)f(a)+tf(b), \qquad t \in [0,1]$$

and integrate it on the interval [0,1] with respect to t, we obtain

$$\int_{a}^{b} f(x)dx = (b-a) \cdot \frac{1}{b-a} \int_{a}^{b} f(x)dx = (b-a) \int_{0}^{1} f((1-t)a + tb)dt \le$$

$$\leq (b-a)\int_{0}^{1} [(1-t)f(a) + tf(b)]dt = (b-a)\frac{f(a) + f(b)}{2}.$$

Lemma 6. Let $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ be a function such that log f is concave. Then

a)
$$\int_{k}^{k+1} \log f(x) dx \ge \frac{\log f(k) + \log f(k+1)}{2}, \quad k \in \mathbb{N}^*;$$
b)
$$\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log f(x) dx \le \log f(k), \quad k \in \mathbb{N}^*.$$

Proof: Apply lemma 5 to the function $-\log f$.

Lemma 7. Let $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ be a function such that $\log f$ is concave and increasing. Then the sequence with general term

$$a_n = \int_{1}^{n} \log f(x) dx - \log f(1) - \log f(2) - \dots - \log f(n-1) - \frac{1}{2} \log f(n), \quad n \in \mathbb{N}^*$$

is convergent.

Proof: The sequence is increasing:

$$a_{n+1} - a_n = \int_{n}^{n+1} \log f(x) dx - \frac{\log f(n) + \log f(n+1)}{2} \ge 0, \quad \forall n \in \mathbb{N}^*,$$

by Lemma 6, a).

The sequence is bounded: in the inequality a) from Lemma 6, k takes successively the values $1, 2, \ldots, n-1$. Adding these inequalities we obtain

$$\int_{1}^{n} \log f(x) dx \ge \frac{\log f(1) + \log f(n)}{2} + \log f(2) + \dots + \log f(n-1),$$

whence it follows

$$a_n \ge -\frac{\log f(1)}{2}$$

In the inequality b) from Lemma 6, k takes successively the values $2, 3, \ldots, n-1$. Adding these inequalities we obtain

$$\int_{1}^{n} \log f(x) dx = \int_{1}^{\frac{3}{2}} \log f(x) dx + \int_{\frac{3}{2}}^{\frac{5}{2}} \log f(x) dx + \dots + \int_{\frac{2n-3}{2}}^{\frac{2n-1}{2}} \log f(x) dx + \dots$$

$$+ \int_{\frac{2n-1}{2}}^{n} \log f(x) dx \le \int_{1}^{\frac{3}{2}} \log f(x) dx + \log f(2) + \dots + \log f(n-1) + \int_{\frac{2n-1}{2}}^{n} \log f(x) dx \le$$

$$\leq \frac{1}{4} \left[\log f\left(\frac{3}{2}\right) - 3\log f(1) \right] + \log f(1) + \ldots + \log f(n-1) + \frac{1}{2}\log f(n),$$

whence it follows

$$a_n \le \frac{\log f\left(\frac{3}{2}\right) - 3\log f(1)}{4}.$$

The sequence (a_n) is increasing and bounded, so that it is convergent. We are now able to give generalizations of the *Stirling*'s and *Wallis*

We are now able to give generalizations of the *Stirling's* and *Wallis* formulae:

Theorem 8. In the conditions of Lemma 7, the sequence with general term

$$s_n = \frac{f(1)f(2)...f(n)}{\sqrt{f(n)}e^{\int_{1}^{n} \log f(x)dx}}$$

is convergent.

Proof: We take in lemma 7, a), $a_n = -\log c_n$. Since (a_n) is a convergent sequence, it follows that (c_n) is a convergent sequence, too.

Theorem 9. In the conditions of Lemma 7, the sequence with general term

$$w_n = \frac{f(1)f(2)\dots f(n-1)}{f(n+1)f(n+2)\dots f(2n-1)\sqrt{f(2n)}} \cdot e^{\int_{1}^{2n} \log f(x) dx - 2\int_{1}^{n} \log f(x) dx}$$

is convergent and has the same limit as the sequence (s_n) .

Proof: It suffices to observe that $w_n = \frac{s_n^2}{s_{2n}}$, which proves that (w_n) is a convergent sequence.

If
$$s = \lim_{n \to \infty} s_n$$
, $w = \lim_{n \to \infty} w_n$, then $w = \frac{\lim_{n \to \infty} s_n^2}{\lim_{n \to \infty} s_{2n}} = \frac{s^2}{s} = s$.

In the next result we study the structure of the set for which these constructions are possible.

Theorem 10. Define

$$\mathcal{M} = \left\{ f : \mathbb{R}_+^* \mathbb{R} \to \mathbb{R}_+^* \mid \log f \text{ is concave and increasing} \right\}.$$

Then

1) \mathcal{M} is a multiplicative semigroup;

2) \mathcal{M} is positive, i.e. $f \in \mathcal{M}$ implies $\frac{1}{f} \notin \mathcal{M}$;

3) s_n , s, w_n are morphisms of semigroups from \mathcal{M} to \mathbb{R}_+^* .

Proof: 1) $\log fg = \log f + \log g$ and the sum of two concave (increasing) functions is concave (increasing).

2) If $\log f$ is concave and increasing, then $\log \frac{1}{f} = -\log f$ is convex and decreasing, therefore $\frac{1}{f} \notin \mathcal{M}$.

3) We have $s_n(fg) = s_n(f)s_n(g)$, so that

$$w_n(fg) = \frac{s_n^2(fg)}{s_{2n}(fg)} = \frac{s_n^2(f)s_n^2(g)}{s_{2n}(f)s_{2n}(g)} = w_n(f)w_n(g).$$

Passing to the limit in the first equality, we obtain also s(fg) = s(f)s(g). Let us calculate now some values of the morphism s. As usual, c, x, e^x etc. denote the corresponding functions.

Theorem 11. The following equalities hold:

1)
$$s(c) = \sqrt{c}$$
, $c > 0$ is a real constant; 2) $s(x) = \frac{\sqrt{2\pi}}{e}$;

3)
$$s(e^x) = \sqrt{e};$$
 4) $s(e^{-\frac{1}{x}}) = e^{-\gamma};$

5)
$$s\left(e^{-\frac{1}{(x+1)\log(x+1)}}\right) = \frac{e^{-B}}{\log 2}$$
, where B is the constant from Corollary 3.

Proof: 1) We have

$$s_n(c) = \frac{\underbrace{c \cdot c \cdot \dots \cdot c}_{n}}{\sqrt{c} \cdot c^{n-1}} = \sqrt{c},$$

for every natural number n, so that $s(c) = \sqrt{c}$.

2) This is the classical Stirling's formula (1), multiplied by $\frac{1}{e}$. Indeed,

$$\int_{1}^{n} \log x dx = \left(x \log x - x\right) \Big|_{1}^{n} = n \log n - n + 1 \text{ and } e^{n \log n - n + 1} = e \cdot \left(\frac{n}{e}\right)^{n}.$$

3)
$$s_n(e^x) = \frac{e^1 \cdot e^2 \cdot \dots \cdot e^n}{\sqrt{e^n \cdot e^{\frac{n^2-1}{2}}}} = e^{\frac{n(n+1)}{2} - \frac{n^2+n-1}{2}} = \sqrt{e},$$

for every natural number n. It follows that

$$s(e^x) = \sqrt{e}$$
.

$$4) \ s_n\left(\mathrm{e}^{-\frac{1}{x}}\right) = \frac{e^{-\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)}}{e^{-\frac{1}{2n}}\cdot e^{-\log n}} \to e^{-\gamma},$$
 for $n\to\infty$, by Corollary 2.

for
$$n \to \infty$$
, by Corollary 2.
5) $s_n \left(e^{-\frac{1}{(x+1+\log(x+1))}} \right) = \frac{e^{-\left(\frac{1}{2\log 2} + \frac{1}{3\log 3} + \dots + \frac{1}{(n+1)\log(n+1)}\right)}}{e^{-\frac{1}{2(n+1)\log(n+1)}} \cdot e^{-\log\log(n+1) + \log\log 2}} \to \frac{e^{-B}}{\log 2},$ for $n \to \infty$, by Corollary 3.

Remark. The equality $w(x) = \frac{\sqrt{2\pi}}{e}$ is the classical Wallis formula (2), multiplied by $\frac{\sqrt{2}}{2}$.

References

- [1] C. Meghea, Introduction to mathematical analysis, Scientific Press, Bucharest, 1968 (in Romanian).
- [2] K. Chandrasekharan, Introduction to analytic number theory, Springer-Verlag, Berlin Heidelberg New York, 1968.
- [3] B. P. Demidovich, Problems and exercises in mathematical analysis, Nauka, Moscow, 1977 (in Russian).

Unele inegalități privind funcția $\pi(x)$

Magdalena Bănescu¹⁾

Abstract. Some inequalities concerning the numerical function $\pi(x)$ are discussed.

Keywords: prime numbers, number of primes.

MSC: Primary: 11N05,11N37; Secondary: 11N64.

Pentru x > 0 notăm cu $\pi(x)$ numărul numerelor prime ce nu depășesc x. In [4] J. Rosser şi L. Schoenfeld demonstrează inegalitățile:

$$\frac{x}{\ln x - \frac{1}{2}} < \pi(x) < \frac{x}{\ln x - \frac{3}{2}},\tag{RS}$$

inegalitatea din stânga având loc pentru $x \geq 67$, iar cea din dreapta pentru $x \ge e^{\frac{3}{2}} \approx 4,481.$

În [2] G. Mincu și L. Panaitopol, utilizând o rafinare a inegalității (RS), dată de P. Dusart și verificând cu calculatorul "cazurile rămase", demonstrează inegalitatea

$$\pi(ab) \ge \pi(a)\pi(b),$$
 (MP)

pentru orice $a \ge \sqrt{33} \approx 7,28$ și $b \ge \sqrt{53}$.

¹⁾Colegiul Național "Sf. Sava", București.

În [1] C. Karanikolov demonstrează inegalitatea

$$\pi(ax) < a\pi(x),\tag{K}$$

pentru orice $a \ge e^{\frac{1}{4}} \approx 1,284$ şi $x \ge 364$.

În [3] L. Panaitopol stabilește o inegalitate mai tare de același tip și anume

$$\pi(ax) < a\pi(x),\tag{P}$$

pentru a > 1 și $x > e^{\frac{4}{(\ln a)^2}}$.

În această lucrare vom stabili două inegalității privind funcțiile $\pi(x)$, prima dintre ele fiind chiar (MP), dar probată cu ajutorul inegalității (RS), iar a doua dintre ele fiind oarecum de tipul inegalităților (K) și (P).

Vom da, de asemenea, câteva consecințe și vom face unele observații.

Teorema 1.
$$Dac \ a \ge e^{\frac{5+\sqrt{14}}{2}} \approx 79,109 \ \ si \ b \ge e^{\frac{5+\sqrt{14}}{2}}, \ atunci \ \pi(ab) > \pi(a)\pi(b).$$

Demonstrație. Arătăm mai întâi că pentru $a \ge e^{\frac{5+\sqrt{14}}{2}}$ şi $b \ge e^{\frac{5+\sqrt{14}}{2}}$ are loc inegalitatea:

$$\ln(ab) - \frac{1}{2} \le \left(\ln a - \frac{3}{2}\right) \left(\ln b - \frac{3}{2}\right). \tag{1}$$

Într-adevăr, diferența dintre mebrul drept și cel stâng este:

$$\left(\ln a - \frac{3}{2}\right) \left(\ln b - \frac{3}{2}\right) - \ln(ab) + \frac{1}{2} = \ln a \ln b - \frac{5}{2} \left(\ln a + \ln b\right) + \frac{11}{4} =$$

$$= \left(\ln a - \frac{5}{2}\right) \left(\ln b - \frac{5}{2}\right) - \frac{14}{4} \ge \left(\frac{5 + \sqrt{14}}{2} - \frac{5}{2}\right)^2 - \frac{14}{4} = 0.$$

Atunci, folosind inegalitățile (RS) și (1), putem scrie:

$$\pi(ab) > \frac{ab}{\ln(ab) - \frac{1}{2}} \ge \frac{ab}{\left(\ln a - \frac{3}{2}\right) \left(\ln b - \frac{3}{2}\right)} = \frac{a}{\ln a - \frac{3}{2}} \cdot \frac{b}{\ln b - \frac{3}{2}} > \pi(a)\pi(b).$$

Teorema 2. Dacă $a \ge 67$ şi b > a sunt astfel încât raportul $\frac{b}{a}$ depăşeşte un anumit prag, atunci:

$$\frac{a}{2}\pi(b) < \pi(ab) < \frac{b}{2}\pi(a),$$

inegalitatea din stânga având loc pentru $\frac{b}{a} \ge e^{\frac{5}{2}} \approx 12,182$, iar cea din dreapta pentru $\frac{b}{a} \ge e^{\frac{1}{2}} \approx 1,648$.

Demonstrație. Arătăm mai întâi că pentru $\frac{b}{a} \ge e^{\frac{5}{2}}$ există inegalitatea:

$$\ln(ab) - \frac{1}{2} \le 2\ln b - 3,\tag{2},$$

iar pentru $\frac{b}{a} \geq \mathrm{e}^{\frac{1}{2}}$ există inegalitatea:

$$2\ln a - 1 \le \ln(ab) - \frac{3}{2}. (3)$$

Într-adevăr, (2) este echivalentă cu $\ln \frac{b^2}{ab} \geq \frac{5}{2}$, deci cu presupunerea $\frac{b}{a} \geq e^{\frac{5}{2}}$, în timp ce (3) este echivalentă cu $\ln \frac{ab}{a^2} \geq \frac{1}{2}$, deci cu presupunerea $\frac{b}{a} \geq e^{\frac{1}{2}}$.

Atunci, pentru $\frac{b}{a} \ge e^{\frac{5}{2}}$, folosind inegalitățile (RS) și (2), avem:

$$\pi(ab) > \frac{ab}{\ln(ab) - \frac{1}{2}} \ge \frac{ab}{2\ln b - 3} = \frac{a}{2} \cdot \frac{b}{\ln b - \frac{3}{2}} > \frac{a}{2}\pi(b).$$

De asemenea, pentru $\frac{b}{a} \ge e^{\frac{1}{2}}$, folosind inegalitățile (RS) și (3), avem:

$$\frac{b}{2}\pi(a) > \frac{b}{2} \cdot \frac{a}{\ln a - \frac{1}{2}} = b \cdot \frac{a}{2\ln a - 1} \ge \frac{ab}{\ln(ab) - \frac{3}{2}} > \pi(ab).$$

Consecința 1. Pentru $a_1, a_2, \ldots, a_n \ge e^{\frac{5+\sqrt{14}}{2}}, n \ge 2$, există inegaliățile:

$$\pi\left(a_{1}a_{2}\cdot\ldots\cdot a_{n}\right)>\pi\left(a_{1}\right)\pi\left(a_{2}\right)\cdot\ldots\cdot\pi\left(a_{n}\right).$$

 ${\bf Demonstrație.}$ Pentrun=2inegalitatea cerută este cea din teorema 1, după care raționăm prin inducție după n .

Consecința 2. Pentru $a \ge e^{\frac{5+\sqrt{14}}{2}}$ și $n \in \mathbb{N}$, $n \ge 2$, există inegalitatea: $\pi(a^n) > \pi(a)^n$.

Demonstrație. Aplicăm consecința 1 în care $a_1 = a_2 = \ldots = a_n = a$.

Consecința 3. Pentru $n \in \mathbb{N}$, $n \ge 2$ și $a \ge e^{\frac{5+\sqrt{14}}{2} \cdot n}$, există inegalitatea $\sqrt[n]{\pi(a)} > \pi \left(\sqrt[n]{a}\right)$.

Demonstrație. În consecința 2 se înlocuiește a cu $\sqrt[n]{a} \ge e^{\frac{5+\sqrt{14}}{2}}$ și se obține $\pi(a) > \pi \left(\sqrt[n]{a}\right)^n$, de unde $\sqrt[n]{\pi(a)} > \pi \left(\sqrt[n]{a}\right)$.

Consecința 4. Dacă $a \ge 67$ și $\frac{b}{a} \ge e^{\frac{5}{2}}$, există inegalitatea:

$$\frac{\pi(b)}{b} < \frac{\pi(a)}{a}.$$

Demonstrație. Într-adevăr, din teorema 2 rezultă $\frac{a}{2}\pi(b) < \frac{b}{2}\pi(a)$, care prin împărțire cu $\frac{ab}{2}$ devine $\frac{\pi(b)}{b} < \frac{\pi(a)}{a}$.

Observația 1. În ipoteza mai restrictivă $a \ge 67$ și $\frac{b}{a} \ge e^{\frac{5}{2}}$ teorema 1 este o consecință a teoremei 2.

Într-adevăr, întrucât $\pi(a) \leq \frac{a}{2}$, folosind inegalitatea din stânga a teoremei 2, putem scrie

$$\pi(ab) > \frac{a}{2}\pi(b) \ge \pi(a)\pi(b).$$

Observația 2. Inegalitatea din dreapta a teoremei 2 este de tipul inegalităților (K) și (P), dar ipoteza este de altă natură.

BIBLIOGRAFIE

- [1] C. Karanikolov, On some properties of the function $\pi(x)$ Univ. Beograd Publ. Elektrotehn. Fac. Ser. Mat. 1971, 357-380.
- [2] G. Mincu and L. Panaitopol, Properties of some functions connected to prime numbers, JIPAM, 9, 2008, Art. 12, 10pp.
- [3] L. Panaitopol, Inequalities concerning the function $\pi(x)$. Applications, Acta Arithmetica XCIV, 4(2000), 373-381.
- [4] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6(1962), 64-94.

NOTE MATEMATICE ŞI METODICE

În legătură cu problema 247

Aurelia Cipu¹⁾

Domnul profesor *Ovidiu Pop* a propus următoarea problemă, publicată cu numărul **247** într-un număr recent din Gazeta Matematică seria A:

Fie numerele reale strict pozitive a, b, c cu proprietatea că există o permutare a lor x, y, z astfel încât $z \le y \le x \le 8z$ și $8y \le 27z$. Să se arate

¹⁾ Grupul Scolar Transporturi C.F., București

 $c\breve{a}$

$$\max\left\{ \left| \sqrt[3]{a} - \sqrt[3]{b} \right|^3, \left| \sqrt[3]{b} - \sqrt[3]{c} \right|^3, \left| \sqrt[3]{c} - \sqrt[3]{a} \right|^3 \right\} \le \frac{a+b+c}{3} - \sqrt[3]{abc}.$$

Soluția autorului [1], este elementară în sensul că nu depășește nivelul de cunoștințe al unui elev de liceu, dar nu este simplă, necesitând studierea monotoniei mai multor funcții, și nici scurtă, depășind două pagini. Dintr-o notă a redacției aflăm că "o soluție la fel de calculatorie ca și cea a autorului a dat domnul inginer Marius Olteanu".

În această notă prezentăm o soluție alternativă, care nu are inconvenientele semnalate, rămânând complet accesibilă elevilor din învățământul obligatoriu. Un atu demn de subliniat al acestei soluții este că raționamentul rămâne valabil în condiții mai generale decât cele cerute în enunțul problemei 247.

Propoziția 1. Pentru numere reale a, b, c satisfăcând

$$0 \le a \le b \le c \le \frac{17a}{8},$$

este valabilă inegalitatea:

$$3(c-a)^3 \le a^3 + b^3 + c^3 - 3abc.$$

Demonstrație. Dacă a=0, atunci toate numerele sunt nule și relația de demonstrat este satisfăcută cu egalitate.

Fie a>0 și $\frac{b}{a}=1+y, \frac{c}{a}=1+x.$ Atunci $0\leq y\leq x\leq \frac{9}{8},$ iar inegalitatea de dovedit se exprimă, în funcție de noile variabile:

$$3x^3 \le 1 + (1 + 3x + 3x^2 + x^3) + (1 + 3y + 3y^2 + y^3) - 3(1 + y + x + xy) =$$

= $3(x^2 + y^2) + x^3 + y^3 - 3xy$, sau, echivalent:

$$2x^3 - 3x^2 + 3xy - 3y^2 - y^3 \le 0.$$

Întrucât $x \leq \frac{9}{8}$, expresia din membrul stâng al ultimei relații nu depășește

$$\frac{9}{4}x^2 - 3x^2 + 3xy - 3y^2 - y^3 = -\frac{3}{4}(x - 2y)^2 - 3y^2 - y^3,$$

care, evident, nu ia decât valori negative pentru y pozitiv.

Egalitatea se atinge pentru x = 2y și y = 0, adică pentru a = b = c.

Ideile conținute în demonstrația tocmai încheiatâ sunt folosite pentru a demonstra o minorare pentru diferența dintre media aritmetică și cea geometrică a patru numere reale supuse aceluiași gen de restricții.

Propoziția 2. Pentru numere reale a, b, c, d satisfăcând

$$0 \le a \le b \le c \le d \le \frac{64a}{27},$$

este valabilă inegalitatea:

$$4(d-a)^4 \le a^4 + b^4 + c^4 + d^4 - 4abcd.$$

Demonstrație. Dacă a=0, atunci toate numerele sunt nule și relația de demonstrat este satisfăcută cu egalitate.

Fie a>0 și $\frac{b}{a}=1+z, \frac{c}{a}=1+y, \frac{d}{a}=1+x$. Noile variabile sunt supuse restricțiilor $0 \le z \le y \le x \le \frac{37}{27}$. Inegalitatea de dovedit se reformulează

$$4x^{4} \le 1 + \left(1 + 4z + 6z^{2} + 4z^{3} + z^{4}\right) + \left(1 + 4y + 6y^{2} + 4y^{3} + y^{4}\right) + \left(1 + 4x + 6x^{2} + 4x^{3} + x^{4}\right) - 4\left(1 + z + y + x + zy + zx + xy + xyz\right) = 6\left(x^{2} + y^{2} + z^{2}\right) + 4\left(x^{3} + y^{3} + z^{3}\right) + x^{4} + y^{4} + z^{4} - 4\left(xy + yz + xz + xyz\right)$$

Având în vedere inegalitatea mediilor pentru numerele pozitive x^3 , y^3 , z^3 și binecunoscuta inegalitate $xy+yz+xz \le x^2+y^2+z^2$, este suficient să arătăm

$$3x^4 \le 2(x^2 + y^2 + z^2) + \frac{8}{3}(x^3 + y^3 + z^3) + y^4 + z^4,$$

adică

$$9x^4 - 8x^3 - 6x^2 \le 6(y^2 + z^2) + 8(y^3 + z^3) + 3(y^4 + z^4). \tag{1}$$

Studiind semnul trinomului de gradul doi $9x^2 - 8x - 6$, se vede că este strict negativ pentru $0 < x < x_0 := \frac{4 + \sqrt{70}}{9}$. Se verifică imediat că $\frac{37}{27} < x_0$, astfel că membrul stâng din relația (1) este strict negativ pentru $0 < x \le \frac{37}{27}$, în vreme ce membrul drept este evident pozitiv pentru y și z ambele pozitive. Egalitatea se atinge pentru x = y = z = 0, adică pentru a = b = c = d.

BIBLIOGRAFIE

[1] O. Pop, Soluția problemei 247, G. M. A, 26 (105)(2008), 262–264.

EXAMENE ŞI CONCURSURI

Concursul internațional de matematică al studenților din sud-estul Europei,

Ediția a III-a, Agros-Cipru, 2009

Vasile Pop¹⁾

În luna martie 2009 s-a desfășurat la Agras-Cipru, ediția a treia a concursului internațional de matematică pentru studenții universităților din sudestul Europei, cu participare internațională. La această ediție au participat 66 de studenți de la 15 universități din 6 țări: România, Grecia, Cipru, Bulgaria, Israel și Columbia.

Juriul competiției, format din profesorii de la toate universitățile participante a ales cele patru probleme date în concurs din peste 30 de probleme propuse anterior și selectate de organizatori. Nivelul de dificultate al problemelor a fost puțin mai scăzut decât la celelalte ediții, nici una din problemele date nefiind extrem de dificile. Cele mai bune rezultate au fost obținute de studenții din România (5 din cele 6 medalii de aur au fost obținute de români). Primul loc, cu 38 de puncte din 40 posibile, a fost obținut de studentul Ciprian Oprișan, de la Universitatea Tehnică din Cluj-Napoca.

Prezentăm în continuare enunțurile și soluțiile problemelor date în concurs.

Problema 1. a) Să se determine limita

$$\lim_{n \to \infty} \frac{(2n+1)!}{(n!)^2} \int_{0}^{1} (x(1-x))^n x^k dx,$$

unde $k \in \mathbb{N}$.

b) Să se determine limita:

$$\lim_{n \to \infty} \frac{(2n+1)!}{(n!)^2} \int_{0}^{1} (x(1-x))^n f(x) dx,$$

unde $f:[0,1] \to \mathbb{R}$ este o funcție continuă.

Soluție. a) Integrând prin părți obținem:

$$\int_{0}^{1} (x(1-x))^{n} x^{k} dx = \int_{0}^{1} x^{n+k} (1-x)^{n} dx = \frac{(n+k)! n!}{(2n+k+1)!}$$

¹⁾ Profesor, Universitatea Tehnică din Cluj-Napoca, E-mail: vasile.pop@math.utcluj.ro

şi

$$\int_{0}^{1} (x(1-x))^{n} dx = \frac{(n!)^{2}}{(2n+1)!}.$$

Avem

$$\lim_{n \to \infty} \frac{(2n+1)!}{(n!)^2} \cdot \frac{(n+k)!n!}{(2n+k+1)!} = \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \dots$$

$$\dots \left(1 + \frac{k}{n}\right) (2n)^k \left(1 + \frac{2}{2n}\right) \left(1 + \frac{3}{2n}\right) \dots \left(1 + \frac{k+1}{2n}\right) = \frac{1}{2^k}.$$
b) Fie
$$L_n(f) = \frac{(2n+1)!}{n} \int_{-\infty}^{1} (x(1-x))^n f(x) dx.$$

 $L_n(f) = \frac{(2n+1)!}{(n!)^2} \int (x(1-x))^n f(x) dx.$

Pentru orice polinom P, din rezultatul de la a) rezultă

$$\lim_{n \to \infty} L_n(P) = P\left(\frac{1}{2}\right).$$

Folosind teorema lui Weierstrass (de aproximare uniformă a unei funcții continue cu polinoame) avem: pentru orice $\varepsilon > 0$, există un polinom P astfel ca

$$|f(x) - P(x)| < \varepsilon, \ \forall \ x \in [0, 1]$$

și din liniaritatea operatorului L_n rezultă

$$|L_n(f) - L_n(P)| \le L_n(|f - P|) < L_n(\varepsilon) = \varepsilon.$$

Pe de altă parte, deoarece

$$\lim_{n \to \infty} L_n(P) = P\left(\frac{1}{2}\right),\,$$

există $n_0 \in \mathbb{N}$ astfel ca

$$\left| L_n(P) - P\left(\frac{1}{2}\right) \right| < \varepsilon, \ \forall \ n \ge n_0.$$

In concluzie:

$$\left| L_n(f) - f\left(\frac{1}{2}\right) \right| \le |L_n(f) - L_n(P)| + \left| L_n(P) - P\left(\frac{1}{2}\right) \right|$$

$$+ \left| f\left(\frac{1}{2}\right) - P\left(\frac{1}{2}\right) \right| < 3\varepsilon.$$

Comentariu. Problema a fost rezolvată complet de 10 studenți, după rezultate fiind cea mai ușoară. Toate soluțiile au fost pe aceeași idee, indusă de fapt (voit) de punctul a) care a fost dat în acest scop.

Un rezultat teoretic general, datorat lui Korovkin, este următorul:

Teoremă. Fie $K_n:[0,1]\to[0,\infty)$ un șir de funcții continue și operatorii

$$L_n: C[0,1] \to \mathbb{R}, \quad L_n(f) = \int_0^1 K_n(x)f(x)\mathrm{d}x.$$

Dacă există $x_0 \in [0,1]$ astfel ca $L_n(1) = 1$, $L_n(x) = x_0$ și $L_n(x^2) = x_0^2$, atunci

$$\lim_{n \to \infty} L_n(f) = f(x_0), \ \forall \ f \in C[0, 1].$$

Problema 2. Fie $P \in \mathbb{R}[X]$ un polinom de gradul cinci cu proprietatea că graficul său are trei puncte de inflexiune, coliniare. Să se determine rapoartele celor patru arii ale domeniilor mărginite cuprinse între graficul polinomului și dreapta ce conține punctele de inflexiune.

Soluție. Fie y=ax+b dreapta care conține punctele de inflexiune. Polinomul P(x)-(ax+b) are trei puncte de inflexiune pe axa Ox iar ariile se păstrează, deci putem presupune că cele trei puncte de inflexiune se află pe axa Ox și făcând o translație $(x\mapsto x-x_1)$ putem presupune că un punct de inflexiune este $x_2=0$.

În concluzie avem

$$P''(x) = \alpha(x - x_1)x(x - x_3), \quad \alpha \in \mathbb{R}^*$$

şi

$$P(x) = \alpha \left(\frac{x^5}{20} - \frac{x_1 + x_3}{12} x^4 + \frac{x_1 x_3}{6} x^3 \right) + cx + d.$$

Din condițiile $P(0)=P(x_1)=P(x_3)=0$ rezultă: $d=0,\,x_1+x_3=0$ și $c=\frac{7\alpha x^4}{60},\,x_1>0,$ deci

$$P(x) = \frac{\alpha}{60}x(x^2 - x_1^2)(3x^2 - 7x_1^2).$$

Graficul polinomul are originea ca centru de simetrie.

Avem:

$$S_1 = S_4 = \int_{x_1}^{\sqrt{\frac{7}{3}}x_1} |P(x)| dx = \frac{4|\alpha|x_1^6}{405}$$

$$S_2 = S_3 = \int_0^{x_1} |P(x)| dx = \frac{|\alpha| x_1^6}{40}.$$

Raportul ariilor este $\frac{S_1}{S_2} = \frac{81}{32}$

Comentarii. Problema s-a dovedit a fi cea mai dificilă din concurs, ea fiind rezolvată doar de 2 studenți, *Ciprian Oprișan* de la Universitatea Tehnică din Cluj-Napoca și *Lucian Turea* de la Universitatea București.

Se pare că rezultatul poate fi generalizat astfel:

Dacă P este un polinom de grad $n \geq 3$, iar graficul lui are n-2 puncte de inflexiune coliniare, atunci cele n-1 arii mărginite cuprinse între grafic și dreapta care conține punctele de inflexiune sunt în raport constant.

Problema 3. Fie $SL_2(\mathbb{Z}) = \{A \in \mathcal{M}_2(\mathbb{Z}) \mid \det A = 1\}.$

a) $S\check{a}$ se arate $c\check{a}$ exist \check{a} matricile $A,B,C\in\mathrm{SL}_2(\mathbb{Z})$ astfel ca

$$A^2 + B^2 = C^2.$$

b) $S\check{a}$ se arate $c\check{a}$ nu exist \check{a} $A,B,C\in \mathrm{SL}_2(\mathbb{Z})$ astfel ca:

$$A^4 + B^4 = C^4.$$

Soluţie. a) Un exemplu este

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

b) Teorema Cayley-Hamilton pentru $A \in SL_2(\mathbb{Z})$ dă:

$$A^{2} - (TrA)A + I_{2} = 0$$
 sau $A^{2} = aA - I_{2}$, $a \in \mathbb{Z}$

și apoi:

$$A^4 = (a^3 - 2a)A + (1 - a^2)I_2.$$

Ecuatia $A^4 + B^4 = C^4$ devine:

$$(a^3 - 2a)A + (b^3 - 2b)B + (2 - a^2 - b^2)I_2 = (c^3 - 2c)C + (1 - c^2)I_2.$$

Trecând la urme, obținem ecuația diofantică:

$$a^4 + b^4 - 4(a^2 + b^2) = c^4 - 4c^2 - 2.$$

Modulo 4 obţinem: $a^4 + b^4 - c^4 = 2 \pmod{4}$.

Dar $a^4, b^4, c^4 \in \{0, 1\} \pmod{4}$ şi atunci a, b sunt impare şi c este par. În acest caz rezultă:

$$a^4 + b^4 - 4(a^2 + b^2) = 2 \pmod{8}$$
 si $c^4 - 4c^2 - 2 = -2 \pmod{8}$.

În concluzie, ecuația nu are soluție.

Comentarii. Problema este inspirată de ecuația lui Fermat $x^n + y^n = z^n$, pentru matrici. Se pare că autorul problemei nu știe dacă ecuația $X^3 + Y^3 = Z^3$ are sau nu soluție în $SL_2(\mathbb{Z})$. Rămâne în studiu ca problemă deschisă. Problema a fost ca dificultate a treia, fiind rezolvată de 10 studenți.

Problema 4. Cu numerele reale $a_1, a_2, \ldots, a_n; b_1, b_2, \ldots, b_n$ definim matricele pătratice de ordin n: $A = [a_{ij}], B = [b_{ij}], unde a_{ij} = a_i - b_j$ şi

$$b_{ij} = \begin{cases} 1 & \text{dacă} & a_{ij} \ge 0 \\ 0 & \text{dacă} & a_{ij} < 0 \end{cases}, \quad i, j = \overline{1, n}.$$

Fie $C = [c_{ij}]$ o matrice cu elementele 0 sau 1 și cu proprietatea

$$\sum_{j=1}^{n} b_{ij} = \sum_{j=1}^{n} c_{ij}, \ i = \overline{1, n} \quad \text{si} \quad \sum_{i=1}^{n} b_{ij} = \sum_{i=1}^{n} c_{ij}, \ j = \overline{1, n}.$$

a) Să se arate că

$$\sum_{i,j=1}^{n} a_{ij}(b_{ij} - c_{ij}) = 0 \quad \text{si} \quad B = C.$$

b) În ce condiții matricea B este inversabilă? Solutie. a)

$$\sum_{i,j=1}^{n} a_{ij}(b_{ij} - c_{ij}) = \sum_{i=1}^{n} a_i \left(\sum_{j=1}^{n} b_{ij} - \sum_{j=1}^{n} c_{ij} \right) - \sum_{j=1}^{n} b_j \left(\sum_{i=1}^{n} b_{ij} - \sum_{i=1}^{n} c_{ij} \right) = 0$$

Analizăm semnul termenului

$$a_{ij}(b_{ij} - c_{ij}) = (a_i - b_j)(b_{ij} - c_{ij}). (1)$$

Dacă $a_i \ge b_j$ atunci $a_{ij} \ge 0$, $b_{ij} = 1$ şi $c_{ij} \in \{0, 1\}$, deci $a_{ij}(b_{ij} - c_{ij}) \ge 0$.

Dacă $a_i < b_j$ atunci $a_{ij} > 0$, $b_{ij} = 0$ și $c_{ij} \in \{0, 1\}$, deci $a_{ij}(b_{ij} - c_{ij}) \ge 0$. Din (1) și din $a_{ij}(b_{ij} - c_{ij}) \ge 0$, pentru orice $i, j = \overline{1, n}$ rezultă $a_{ij}(b_{ij} - c_{ij}) = 0, i, j = \overline{1, n}.$

Dacă $a_{ij} \neq 0$, atunci $b_{ij} = c_{ij}$. Dacă $b_{ij} = 0$ atunci $a_{ij} < 0 \ (a_{ij} \neq 0)$ şi deci $b_{ij} = c_{ij} = 0$.

Deci $b_{ij} \geq c_{ij}$, pentru orice $i, j = \overline{1, n}$ și, din condițiile date, $\sum_{i,j=1}^{n} b_{ij} =$

$$= \sum_{i,j=1}^{n} c_{ij}, \text{ rezultă } b_{ij} = c_{ij}, \text{ oricare ar fi } i, j = \overline{1, n}.$$

b) Putem considera că numerele sunt ordonate $a_1 \leq a_2 \leq \cdots \leq a_n$ și $b_1 \leq b_2 \leq \cdots \leq b_n$, deoarece reordonarea numerelor a_1, a_2, \ldots, a_n revine la permutarea liniilor matricei B, iar reordonarea numerelor b_1, b_2, \ldots, b_n revine la permutarea coloanelor matricei B.

Dacă există a_i și a_{i+1} între care nu se află nici un b_i atunci liniile L_i și L_{i+1} sunt egale (matricea B este neinversabilă). Dacă există b_i și b_{i+1} între care nu se află nici un a_j atunci coloanele c_i și c_{i+1} sunt egale.

In concluzie, numerele b_1, b_2, \ldots, b_n separă numerele a_1, a_2, \ldots, a_n . Dacă a_1 este cel mai mic număr, atunci prima linie are toate elementele zero. Deci cel mai mic este b_1 și avem condiția $b_1 \leq a_1 < b_2 \leq a_2 < \cdots < b_n \leq a_n$ pentru care matricea B este

$$B = \left[\begin{array}{ccccc} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 \end{array} \right],$$

care este inversabilă.

Concluzie: $b_{i_1} \leq a_{j_1} < b_{i_2} \leq a_{j_2} < \cdots < b_{i_n} \leq a_{j_n}$, unde i_1, \ldots, i_n și j_1, \ldots, j_n sunt permutări ale mulțimii $\{1, 2, \ldots, n\}$.

Comentarii. Problema a fost ca dificultate a doua din concurs, fiind rezolvată complet de 9 studenți. Ea a fost propusă de autorul acestui articol.

Notă de Alexandru Damian¹⁾ si Teodor Stihi²⁾

În această notă se prezintă soluții alternative pentru punctul b al problemelor 3 si 4 date la concursul de matematica SEEMOUS 2009.

Problema 3, punctul b

Să se arate că nu există matricele $A, B, C \in M_2(R)$ având determinantul 1 astfel încât $A^4 + B^4 = C^4$.

Soluție: Dacă $X \in M_2(R)$, det(X) = 1 atunci, conform teoremei Cayley-Hamilton, $X^2 = xX - I$, unde $x = tr(x) = x_{11} + x_{22}$.

Deducem pe rând

$$X^3 = xX^2 - X = (x^2 - 1)X - xI,$$

 $X^{3} = xX^{2} - X = (x^{2} - 1)X - xI,$ $X^{4} = (x^{2} - 1)X^{2} - xX = (x^{3} - 2x)X - (x^{2} - 1)I, \text{ aplicând urma}$ $\operatorname{tr}(X^{4}) = (x^{3} - 2x)\operatorname{tr}(X) - (x^{2} - 1)\operatorname{tr}(I) = x^{4} - 4x^{2} + 2.$

Întrucât $x^3 - x \equiv 0 \pmod{3}$, rezultă $\operatorname{tr}(x^4) \equiv 2 \pmod{3}$, deci $\operatorname{tr}(A^4 +$ $+B^4-C^4)\equiv 2+2-2\pmod 3$, ceea ce face imposibilă relația din enunț.

Problema 4, punctul b

Plecând de la sistemele ordonate (a_1, \ldots, a_n) și (b_1, \ldots, b_n) se definește $matricea\ B\ de\ ordinul\ n\ avand\ elementele$:

$$b_{ij} = \begin{cases} 0 & \text{dacă} & a_i < b_j \\ 1 & \text{dacă} & a_i \ge b_j. \end{cases}$$

Să se arate că B este inversabilă dacă și numai dacă există permutările σ şi τ ale lui $(1,\ldots,n)$ astfel încât:

$$b_{\tau(1)} \le a_{\sigma(1)} < b_{\tau(2)} \le a_{\sigma(2)} < \dots \le a_{\sigma(n-1)} < b_{\tau(n)} \le a_{\sigma(n)}$$

O permutare a numerelor $(a_i)_i$, respectiv $(b_j)_j$ produce în matricea B o permutare corespunzătoarea de linii și respectiv coloane, ceea ce nu modifică inversabilitatea. Să observăm și că, dacă $a_i = a_{i+1}$

¹⁾ Profesor, Universitatea Tehnică din Cluj-Napoca

²⁾ Profesor, Universitatea Tehnică din Cluj-Napoca

 $(b_j=b_{j+1})$, atunci liniile i și i+1 (coloanele j și j+1) din B sunt identice. În consecință, vom presupune de la început ca cele două sisteme sunt ordonate strict crescător. Arătăm că B este inversabilă dacă și numai dacă are forma triunghiular inferioară

$$\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{bmatrix}$$

Suficiența ("dacă") este imediată. Demonstrăm, prin inducție după ordinul n al lui B, necesitatea ("numai dacă).

Pentru n = 1, dacă B este inversabilă, atunci B = [1].

Presupunând proprietatea adevărată pentru n-1, o demonstrăm pentru matricea $B = [b_{ij}]_{i,j=\overline{1,n}}$.

Proprietate: Dacă $b_{kl} = 0$ atunci

(a): $b_{il} = 0$ pentru $i = \overline{1, k}$

(b): $b_{kj} = 0$ pentru $j = \overline{l, n}$

Demonstrație: În virtutea ordonării sistemelor $(a_i)_i$ şi $(b_j)_j$, din $a_k < b_l$ rezultă $a_i < b_l$ pentru $i = \overline{1, k}$ şi $a_k < b_j$ pentru $j = \overline{l, n}$.

Altfel exprimat: dacă în matricea B apare un element nul, atunci deasupra şi la dreapta lui, pe coloana şi respectiv linia lui, toate elementele sunt nule.

În consecința, B fiind inversabilă, ultima linie nu poate conține zerouri, deoarece ar conține și coloane nule. Totodată, celelalte linii trebuie să conțină zerouri, altfel ar fi identice cu ultima linie. Și astfel ultima coloană va fi alcatuită, cu excepția elementului din ultima linie, numai din zerouri. Pe scurt:

$$B = \left[\begin{array}{ccc} & & 0 \\ B' & \vdots \\ & & 0 \\ 1 & \cdots & 1 & 1 \end{array} \right].$$

B' fiind atunci inversabilă şi de ordinul n-1, conform ipotezei de inducție, va avea forma triunghiulară enunțată. Deci B va avea aceeaşi formă. Interpretând prin inegalități elementele lui B, obținem relațiile:

$$b_1 \le a_1 < b_2 \le a_2 < \dots \le a_{n-1} < b_n \le a_n$$

Concursul Traian Lalescu, 2009

Andrei Halanay¹⁾

În perioada 16-17 mai, în organizarea Universității Politehnica din București, cu sprijinul și finanțarea Ministerului Educației, Știintei și Inovării și a Societății de Științe Matematice din România, s-a desfășurat faza națională a concursului profesional studențesc de matematică "Traian Lalescu", manifestare cu o îndelungată tradiție în mediul universitar românesc.

Concursul a cuprins două activități distincte:

- 1. Concurs de probleme adresat studenților din anii I și II.
- 2. Sesiune de comunicări științifice, deschisă tuturor categoriilor de studenți, inclusiv celor din sistemul de studii masterale.

Au fost prezenți studenți din 15 universități: U.P.B., Universitatea București, Universitatea Tehnică de Construcții București, A.S.E., Universitatea Alexandru Ioan Cuza din Iași, Universitatea Tehnică Gh. Asachi din Iași, Universitatea Babeș-Bolyai din Cluj-Napoca, Universitatea Tehnică din Cluj-Napoca, Universitatea de Vest din Timișoara, Universitatea Politehnica Timișoara, Universitatea Constantin Brâncuși din Tg. Jiu, Universitatea Ovidius din Constanța, Universitatea Maritimă din Constanța, Universitatea Transilvania din Brașov, Universitatea Craiova.

La concursul de probleme au participat 80 de studenți. Au fost acordate 26 de premii și mențiuni din care 21 finanțate de M.E.C.I. și 5 finanțate de Societatea de Stiințe Matematice din România.

Universitatea Politehnica din București a obținut 2 premii I, 2 premii II, 3 premii III și 5 mențiuni.

Universitatea Tehnică din Cluj-Napoca a obținut 1 premiu II, 1 premiu III și 2 mențiuni.

Universitatea București a obținut 1 premiu I și 2 premii II (a concurat la o singură secțiune de probleme: matematica-cercetare).

Universitatea Tehnică Iași a obținut 1 premiu I și o mențiune.

Universitatea Politehnica din Timișoara a obținut 1 premiu I.

Universitatea de Vest din Timișoara a obținut 1 premiu II.

Universitatea Tehnică de Construcții București a obținut 1 premiu II.

Universitatea Maritimă Constanța a obținut 1 premiu III.

Universitatea Babeş-Bolyai din Cluj-Napoca a obținut o mențiune.

Sesiunea de comunicări științifice studențești s-a desfășurat în 3 secțiuni:

Analiză-Algebră. Juriul secțiunii a fost format din: prof.dr. *Radu Gologan* (U.P.B., F.S.A.), prof.dr. *Liviu Ornea* (Universitatea București, F.M.I.), prof.dr. *Vasile Iftode* (U.P.B., F.S.A.).

Informatică și Matematici discrete. Juriul secțiunii a fost format din: acad. *Ioan Tomescu* (Universitatea București, FMI), conf. dr. *Radu*

¹⁾ Profesor, Universitatea Politehnica din București

Gramatovici (Universitatea București, F.M.I.), lect. dr. Tiberiu Vasilache (U.P.B., F.S.A.).

Ecuații diferențiale și Matematici aplicate. Juriul secțiunii a fost format din: prof.dr. *Ion Văduva* (Universitatea București, F.M.I.), prof.dr. *Valeriu Prepeliță* (U.P.B., F.S.A.), prof.dr. *Mariana Craiu* (U.P.B., F.S.A.).

Au fost acordate 5 premii I, 4 premii II, 5 premii III și 5 mențiuni, după cum urmează:

Universitatea București a obținut 3 premii I, 1 premiu II și o mențiune. Universitatea Politehnica din Bucureti a obținut 2 premii I, 2 premii II, 3 premii III, 3 mențiuni.

Universitatea de Vest Timișoara a obținut 1 premiu II.

Universitatea Transilvania Braşov a obținut 1 premiu III.

Universitatea Ovidius Constanța a obținut 1 premiu III.

Universitatea Politehnica Timișoara a obținut o mențiune.

Premiul I la secțiunea Analiză-Algebră a fost acordat lucrării **Asupra** unor clase de inegalități variaționale-hemivariaționale, autori: *Cezar Lupu* și *Nicușor Costea*.

Două premii I la secțiunea Informatică au fost obținute de lucrările: Algoritmi și structuri de date pentru cuvinte parțiale, autor: Cătălin Tiseanu și Sortare bazată pe paduri de "trie"-uri, autori: Mircea Dima și Serban-Florin Lupulescu.

Două premii I la secțiunea Ecuații diferențiale și Matematică aplicată au fost obținute de lucrările **Aplicarea metodei transformării diferențiale** la rezolvarea problemelor la frontieră pentru ecuații diferențiale neliniare, autori: *Alina Dragomir, Flavia Frumosu* și *George Necula*.

In activitățile legate de concursul de probleme au fost implicate 23 de cadre didactice de la U.P.B. și de la universitățile participante.

Trebuie menţionat sprijinul acordat de Fundaţia "Traian Lalescu", care a atribuit un premiu de excelenţă studentului masterand *Cezar Lupu* de la Facultatea de Matematică-Informatică, Universitatea din Bucureşti şi o menţiune specială pentru interdisciplinaritate comunicării susţinute de un colectiv de la Universitatea Maritimă din Constanţa. (Software toolkit for simulating the particle detector efficiency, autori: *Alexandru Caranica*, *Vali Mihaela Ștefan*, *Andreea Toplov*).

De asemenea, Fundația "Traian Lalescu" a suplimentat celelalte premii cu câte o geantă laptop și o carte din domeniul matematicii.

Subliniem excelenta colaborare cu conducerea Facultății de Matematică și Informatică de la Universitatea din București, având drept rezultat o contribuție importantă a acesteia în bună desfășurare a evenimentului.

În acest an, pentru prima dată, S.S.M.R. a fost prezentă în colectivul de organizare, având atribuția esențială de a alcătui subiectele de concurs. Apreciem că s-a achitat foarte bine de această obligație, nefiind semnalată vreo situație de posibilă viciere a rezultatelor prin transmiterea subiectelor. De

asemenea, subiectele au corespuns așteptărilor, nesemnalându-se contestări din partea delegațiilor participante.

Merită amintit și îndemnul adresat tuturor participanților la concurs, studenți și cadre didactice, de rectorul U.P.B., prof. dr. ing. *Şerban Raicu*, de a continua să fie purtătorii aspirațiilor către excelență în activitatea universitară, de a promova idealul unui învățământ superior de calitate.

Vom prezenta, mai jos, enunțurile subiectelor date la concursul studențesc de matematică "Traian Lalescu", faza finală.

Secţiunea Matematică - Cercetare Bucureşti, 16 mai 2009

Subiectul 1. Fie $(x_n)_n$ un şir monoton crescător şi divergent de numere reale strict pozitive şi $\alpha \leq 1$. Arătați că seria

$$\sum_{n=1}^{\infty} \left(\frac{x_n - x_{n-1}}{x_n} \right)^{\alpha}$$

este divergentă.

Eugen Păltănea, Brașov

Subiectul 2. Considerăm hiperboloidul cu o pânză, în reperul cartezian Oxyz:

$$(\mathcal{H}) \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Ştiind că există punctele $M, N, P \in \mathcal{H}$ astfel încât vectorii $\overrightarrow{OM}, \overrightarrow{ON}, \overrightarrow{OP}$ sunt mutual ortogonali, demonstrați că

$$\frac{1}{a^2} + \frac{1}{b^2} > \frac{1}{c^2}.$$

Cătălin Gherghe, București

Subjectul 3. Demonstrați că oricare ar fi $n \in \mathbb{N}$, $n \geq 2$ și numerele strict pozitive x_1, x_2, \ldots, x_n cu $x_1 + x_2 + \cdots + x_n = 1$, avem

$$\sum_{k=1}^{n} \frac{x_k}{1 + k(x_1^2 + x_2^2 + \dots + x_k^2)} < \frac{\pi}{4},$$

iar constanta din dreapta este cea mai mică cu această proprietate.

Marian Andronache și Radu Gologan, București

Subjectul 4. Fie $A \in \mathcal{M}_n(\mathbb{Z})$ cu $A \neq I_n$ şi $k \in \mathbb{N}^*$, $k \geq 3$ astfel încât $\widehat{A} = \widehat{I}_n$ în $\mathcal{M}_n(\mathbb{Z}_k)$. Arătați că pentru orice $p \in \mathbb{N}^*$ avem $A^p \neq I_n$.

Marian Andronache, București

PROBLEME PROPUSE

280. Fie $n \ge 2$ un număr natural. Să se determine cel mai mare număr pozitiv C astfel încât inegalitatea:

$$2^{n-1}(x^n + y^n) - (x+y)^n \ge C[(x+3y)^n + (3x+y)^n - 2^{n+1}(x+y)^n]$$
să fie adevărată pentu orice $x, y \ge 0$.

Marian Tetiva

281. Dacă $u \in C^1([0,1])$ și u(0) = 0, u'(0) = 1, atunci să se arate că:

$$\int_{0}^{1} e^{u(x)} dx + \int_{0}^{1} (u'(x)^{2}) dx \ge 24.$$

Róbert Szász

282. Vom nota:

$$E_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!}, \ \forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}.$$

Să se arate că;

a)
$$\sum_{n=0}^{\infty} (e^x - E_n(x)) = xe^x;$$
 b) $\sum_{n=0}^{\infty} n(e^x - E_n(x)) = \frac{x^2}{2}e^x.$

Mihai Dicu

283. Fie $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ o funcție pentru care există

$$\lim_{x \to \infty} \frac{(f(x))^{\frac{1}{x}}}{x} = a \in \mathbb{R}_+^*$$

și $s,t\in\mathbb{R}$ astfel încât s+t=1. Atunci există:

$$\lim_{x \to \infty} \left((x+1)^s \left(f(x+1) \right)^{\frac{t}{x+1}} - x^s \left(f(x) \right)^{\frac{t}{x}} \right) = b \in \mathbb{R},$$

dacă și numai dacă există

$$\lim_{x \to \infty} \frac{f(x+1)}{x f(x)} = c \in \mathbb{R}_+^*$$

și avem relația $a^t \left(s + t \ln \frac{c}{a} \right) = b.$

Dumitru Bătinețu-Giurgiu

284. În tetraedrul ortocentric [ABCD] se notează cu r_A , r_B , r_C , r_D razele cercurilor înscrise fețelor BCD, ACD, ABD, ABC, iar cu r și R razele sferelor înscrisă respectiv circumscrisă tetraedrului. Să se arate că are loc următoare rafinare a inegalității Euler-Durrande $(R \ge 3r)$:

$$R^2 \ge r^2 + r_A^2 + r_B^2 + r_C^2 + r_D^2 \ge 9r^2.$$

Marius Olteanu

152 Probleme

SOLUŢIILE PROBLEMELOR PROPUSE

259. Fie E spaţiul vectorial al funcţiilor indefinit derivabile definite pe \mathbb{R} cu valori în \mathbb{C} şi fie $f \in E$. Pentru orice $t \in \mathbb{R}$, să considerăm funcţia $\varphi_t \in E$ definită de egalitatea $\varphi_t(x) = f(x+t)$ şi fie $E(f) = Sp\{\varphi_t\}_{t \in \mathbb{R}}$.

a) Să se precizeze dimensiunea spațiului E(f) în următoarele cazuri:

$$f_1(x) = e^x$$
; $f_2(x) = \sin x$; $f_3(x) = x$; $f_4(x) = xe^x$.

Să se verifice apoi că dacă f este de forma $f(x) = p(x)e^{\alpha x}$, unde p este un polinom de gradul n cu coeficienți complecși, iar $\alpha \in \mathbb{C}^{-1}$, atunci E(f) este finit dimensional și că rezultatul rămâne valabil și în cazul când f este o combinație liniară de astfel de funcții. Să se arate că, dacă:

$$f(x) = \frac{1}{x^2 + 1},$$

atunci E(f) nu are dimensiune finită.

b) Fie $\{g_1, \ldots, g_n\} \subseteq E$ un sistem de n funcții liniar independent. Să se arate că există n numere reale mutual distincte a_1, \ldots, a_n , astfel încât

$$\det(g_i(a_i)) \neq 0.$$

c) Fie $f \in E$ astfel încât $\dim_{\mathbb{C}} E(f) = n$ și fie $\{g_1, \ldots, g_n\}$ o bază în E(f). Să se arate că există funcțiile unice $h_1, \ldots, h_n \in E(f)$ astfel încât:

$$f(x+t) = h_1(t)g_1(x) + \ldots + h_n(t)g_n(x).$$

- d) În ipoteza de la punctul c), să se arate că f satisface o ecuație diferențială liniară și omogenă de ordinul n cu coeficienți constanți.
- e) Aplicând rezultatul de la punctul d), să se determine funcțiile f pentru care $\dim_{\mathbb{C}} E(f)=2$.

Dan Radu

Soluția autorului. a) Ținând seama de egalitățile:

$$\begin{split} \varphi_t^1(x) &= \mathbf{e}^t \cdot \mathbf{e}^x; & \varphi_t^2(x) = \cos t \sin x + \sin t \cos x; \\ \varphi_t^3(x) &= x + t; & \varphi_t^4(x) = \mathbf{e}^t \left(x \mathbf{e}^x \right) + \left(t \mathbf{e}^t \right) \mathbf{e}^x, \quad \text{rezultă că} \\ E\left(f_1 \right) &= S_p\{\mathbf{e}^x\}, \ E\left(f_2 \right) = S_p\{\sin x, \cos x\}, \ E\left(f_3 \right) = S_p\{x, 1\}, \ E\left(f_4 \right) = S_p\{\mathbf{e}^x, x \mathbf{e}^x\} \\ \text{şi deci} \end{split}$$

$$\dim_{\mathbb{C}} E(f_1) = 1$$
, $\dim_{\mathbb{C}} E(f_2) = \dim_{\mathbb{C}} E(f_3) = \dim_{\mathbb{C}} E(f_4) = 2$.

Un raționament simplu, analog celor de mai sus ne conduce la faptul că dacă f este de forma $f(x) = p(x)\mathrm{e}^{\alpha x}$, atunci un sistem de generatori pentru E(f) îl constituie familia $\left[x^k\mathrm{e}^{\alpha x}\right]_{0\leq k\leq n}$. Cum această familie este și liniar independentă, rezultă că, în acest caz, $\dim_{\mathbb{C}} E(f) = n+1$. În situația mai generală, când f este de forma:

$$f(x)\sum_{j=1}^{r} p_j(x)e^{\alpha_j x},$$

presupunând că numerele α_j sunt distincte pentru $j \in \{1,\dots,r\}$, va rezulta că:

$$\dim_{\mathbb{C}} E(f) \le 2\pi \left(\sum_{j=1}^{r} \operatorname{grad} p_j + 1 \right),$$

¹⁾ O funcție de forma considerată este numită, uneori, și quasipolinom. (N. A.)

egalitatea având loc atunci și numai atunci când $\operatorname{Re}\alpha_k \neq \operatorname{Re}\alpha_j$ și $\operatorname{Im}\alpha_k \neq n\alpha_j$; pentru orice $k,j \in \{1,\ldots,x\}$ cu $k \neq j$.

În cazul funcției:

$$f(x) = \frac{1}{x^2 + 1},$$

pentru a arăta că E(f) nu are dimensiune finită, este suficient – de pildă – să probăm că familia $\{\varphi_n\}_n \in \mathbb{Z}_+$ este liniar independentă. Evident, acest lucru va decurge în cazul în care vom stabili că pentru orice $n \in \mathbb{Z}_+$, familia $\{\varphi_0, \varphi_1, \dots, \varphi_n\}$ este liberă. Să presupunem că pentru $\lambda_0, \lambda_1, \dots, \lambda_n \in \mathbb{C}$ are loc egalitatea:

$$\lambda_0 \varphi_0 + \lambda_1 \varphi_1 + \ldots + \lambda_n \varphi_n = 0,$$

adică:

$$\frac{\lambda_0}{x^2+1} + \frac{\lambda_1}{(x+1)^2+1} + \ldots + \frac{\lambda_n}{(x+n)^2+1} = 0, \ \forall x \in \mathbb{R}.$$

Rezultă atunci că polinomul $p \in \mathbb{R}[x]$ definit de egalitatea:

$$p(x) = \sum_{j=0}^{n} \lambda_j \prod_{\substack{k=0\\k \neq j}}^{n} ((x+k)^2 + 1)$$

este polinomul identic nul. Dar dacă p este polinomul identic nul în $\mathbb{R}[X]$, atunci el este polinomul identic nul și în $\mathbb{C}[x]$. Să alegem atunci un $j \in \{0, 1, \dots, n\}$ arbitrar, dar fixat. Vom avea:

$$p(-j+i) = \lambda_j \prod_{\substack{k=0\\k\neq j}}^{n} ((-j+k+i)^2 + 1) = 0,$$

întrucât toți ceilalți termeni ai sumei p(x) sunt nuli, conținând factorul $(x+j)^2+1$. Dar produsul anterioreste evident nenul deoarece toți termenii săi sunt nenuli. Decurge, cu necesitate, că $\lambda_j=0$ și, cum j a fost arbitrar în mulțimea $\{0,1,\ldots,n\}$, conchidem că familia $\{\varphi_0,\varphi_1,\ldots,\varphi_n\}$ este liniar independentă peste $\mathbb C$. În baza observației făcută la început, urmează E(f) (în cazul ultim avut în vedere) este infinit dimensional.

b) Vom proceda prin inducție după n. Evident, proprietatea este adevărată pentru n=1. Să presupunem că pentru sistemele $\{g_1,\ldots,g_{n-1}\}$ constituite din n-1 funcții liniar independente ea este adevărată, urmează că există numerele $a_1,\ldots,a_{n-1}\in\mathbb{R}$ mutual distincte astfel încât:

$$\begin{vmatrix} g_1(a_1) & \dots & g_1(a_{n-1}) \\ \vdots & & \vdots \\ g_{n-1}(a_1) & \dots & g_{n-1}(a_{n-1}) \end{vmatrix} \neq 0$$

și fie sistemul $\{g_1,\dots,g_{n-1},g_n\}$ liniar independent. Să considerăm fucția

$$F(x) = \begin{vmatrix} g_1(a_1) & \dots & g_1(a_{n-1}) & g_1(x) \\ \vdots & & \vdots & \vdots \\ g_{n-1}(a_1) & \dots & g_{n-1}(a_{n-1}) & g_{n-1}(x) \\ g_n(a_1) & \dots & g_n(a_{n-1}) & g_n(x) \end{vmatrix} \neq 0.$$

Dacă F(x) = 0 pentru orice $x \in \mathbb{R}$, ar rezulta că

$$\begin{vmatrix} g_2(a_1) & \dots & g_2(a_{n-1}) \\ \vdots & & \vdots \\ g_{n-1}(a_1) & \dots & g_{n-1}(a_{n-1}) \end{vmatrix} g_1(x) + \dots + \begin{vmatrix} g_1(a_1) & \dots & g_1(a_{n-1}) \\ \vdots & & \vdots \\ g_{n-1}(a_1) & \dots & g_{n-1}(a_{n-1}) \end{vmatrix} g_n(x) = 0$$

și în baza ipotezei de inducție – deoarece ultimul determinant este nenul – am conchide că familia $\{g_1, \ldots, g_{n-1}, g_n\}$ este legată – contrar ipotezei făcute. Rămâne că există $a_n \in \mathbb{R}$

154 Probleme

(evident, diferit de a_1, \ldots, a_{n-1}) astfel încât $F(a_n) \neq 0$. Dar $F(a_n) = \det(g_i(a_j))$, ceea ce demonstrează aserțiunea.

c) Deoarece pentru orice $t \in \mathbb{R}$, $\varphi_k \in E(\xi)$, urmează că există n numere reale unic determinate $h_1(t), \ldots, h_n(t)$, astfel încât

$$\varphi(t) = h_1(t)g_1 + h_n(t)g_n.$$

Urmează că pentru orice $x, t \in \mathbb{R}$, are loc egalitatea

$$f(x+t) = h_1(t)g_1(x) + \ldots + h_n(t)g_n(x).$$
 (1)

Cum însă x și t variază independent, iar f(x+t) = f(t+x), deducem că

$$f(x+t) = h_1(x)g_1(t) + \ldots + h_n(x)g_n(t).$$
 (2)

În baza celor stabilite la pct. 4, deoarece sistemul $\{g1,\ldots,g_n\}$ este liniar independent, există numererle $a_1,\ldots,a_n\in\mathbb{R}$ astfel încât $\det(g_i(a_j))\neq 0$. Făcând pe t egal succesiv cu a_1,\ldots,a_n , obținem

$$\begin{cases}
g_1(a_1)h_1(x) + \ldots + g_n(a_1)h_n(x) = \varphi_{a_1}(x) \\
\ldots \\
g_1(a_n)h_1(x) + \ldots + g_n(a_n)h_n(x) = \varphi_{a_n}(x)
\end{cases}$$
(3)

Dar

$$\begin{vmatrix} g_1(a_1) & \dots & g_n(a_1) \\ \vdots & & \vdots \\ g_1(a_n) & \dots & g_n(a_n) \end{vmatrix} = \begin{vmatrix} g_1(a_1) & \dots & g_1(a_n) \\ \vdots & & \vdots \\ g_1(a_1) & \dots & g_n(a_n) \end{vmatrix} = \det(g_i(a_j)) \neq 0$$

și deci sistemul (3) este un sistem Cramer. Rezolvându-l după regula lui Cramer, rezultă că h_1, \ldots, h_n se scriu ca niște combinații liniare de $\varphi_{a_1}, \ldots, \varphi_{a_n}$ și deci $h_1, \ldots, h_n \in E(f)$. Aceasta încheie demonstrația.

d) Derivând relația (1) în raport cu t de k ori obținem:

$$f^{(k)}(x+t) = h_1^{(k)}(t)q_1(x) + \ldots + h_n^{(k)}(t)y_n(x)$$

și deci, pentru t=0, vom avea

$$h_1^{(0)}(t)g_1(x) + \dots + h_n^{(k)}(0)g_n(x) = f^{(k)}(x).$$
 (4)

Făcând acum pe k să parcurgă mulțimea $\{0,1,\ldots n\}$, conchidem că $f=\varphi_0,\,f'=\varphi'_0,\ldots,\,f^{(n)}=\varphi_0^{(n)}$ aparțin lui E(f). Dar sistemul $\left\{f,f',\ldots,f^{(n)}\right\}\in E(f)$ conține n+1 vectori în timp ce $\dim_{\mathbb{C}}E(f)=n$. Urmează că el este în mod necesar legat și deci există scalarii $\lambda_1,\lambda_2,\ldots,\lambda_n\in\mathbb{C}$, nu toți nuli, astfel încât

$$\lambda_0 f^{(n)} + \lambda_1 f^{(n-1)} + \ldots + \lambda_n f = \sigma. \tag{5}$$

Mai rămâne să arătăm că $\lambda_0 \neq 0$ (i.e. ordinul ecuației (5) este exact n).

Să presupunem, prin absurd, că $\lambda_0=0$. Rezultă atunci că familia $\left\{f,f',\ldots,f^{(n-1)}\right\}$ este legată. Făcând pe k să parcurgă mulțimea $\{0,1,\ldots,n-1\}$ și utilizând din nou egalitățile (4), rezultă că:

$$\sum_{k=0}^{n-1} \lambda_{n-k} \sum_{j=1}^{n} h_j^{(k)}(0) g_i = \sum_{k=0}^{n-1} \lambda_{n-k} f^{(k)} = 0,$$

de unde

$$\sum_{j=1}^{n} \left(\sum_{k=0}^{n-1} \lambda_{n-k} h_j^{(k)}(0) \right) g_j = 0$$

şi, cum familia $\{g_1, \ldots, g_n\}$ este liniar independentă, deducem:

$$\begin{cases}
h_1(0)\lambda_n + \dots + h_1^{(n-1)}(0)\lambda_1 = 0 \\
\dots \\
h_n(0)\lambda_n + \dots + h_n^{(n-1)}(0)\lambda_1 = 0.
\end{cases}$$
(6)

Dar, în baza ipotezei de reducere la absurd, sistemul (6) admite o soluție nebanală și deci

$$\begin{vmatrix} h_1(0) & \dots & h_1^{(n-1)} \\ \vdots & & \vdots \\ h_n(0) & \dots & h_n^{(n-1)}(0) \end{vmatrix} = 0.$$
 (7)

Se observă că determinantul de mai sus este tocmai $W(h_1, \ldots, h_n)$ (wronskianul sistemului $\{h_1, \ldots, h_n\}$) calculat în x=0. După o teoremă cunoscută, din egalitatea (7) decurge că familia $\{h_1, \ldots, h_n\}$ este legată în E(f). Pe de altă parte, egalitatea (7) ne arată că $\{h_1, \ldots, h_n\}$ este un sistem de generatori în E(f) și, cum dim $\mathbb{C}E(h)=n$, rezultă minimalitatea lui, deci faptul că el este o bază. Contradicția flagrantă obținută ne arată că ipoteza $\lambda_0=0$ este falsă și deci ordinul ecuației (3) este exact n.

e) În baza celor stabilite la punctul d), funcțiile f cu proprietatea din enunț vor fi soluții ale unei ecuații de ordinul 2 de tipul:

$$\lambda_0 f'' + \lambda_1 f' + \lambda_2 f = 0.$$

Dacă $r_1, r_2 \in \mathbb{C}, r_1 \neq r_2$, sunt rădăcinile ecuației caracteristice, rezultă că f este de forma:

$$f(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}, \qquad c_1, c_2 \in \mathbb{C}.$$

În cazul când $r_1=r_2=r\in\mathbb{C}$ este o rădăcină dublă a ecuației caracteristice, atunci f este de forma

$$f(x) = (c_1 + c_2 x) e^{rx}, c_1, c_2 \in \mathbb{C}.$$

260. Să se determine numerele complexe de modul 1 cu proprietatea că

$$|1+z+\ldots+z^n| \ge 1,$$

pentru orice număr natural par n.

Marian Tetiva

Soluție dată de *Marius Olteanu*, inginer la S. C. Hidroconstrucția S.A. București, sucursala "Olt-Superior" din Râmnicu-Vâlcea.

Fie $n=2p,\ p\in\mathbb{N}$, iar $z=\rho(\cos\alpha+\mathrm{i}\sin\alpha)$, unde $\rho=1$, iar $\alpha\in(0,2\pi)$. Rezultă $z^{2p}=\cos2p\alpha+\mathrm{i}\sin2p\alpha$. Atunci:

$$\left|1+z+\ldots+z^{2p}\right| =$$

$$= \left|1+(\cos\alpha+\cos2\alpha+\ldots+\cos2p\alpha)+\mathrm{i}\left(\sin\alpha+\sin2\alpha+\ldots+\sin2p\alpha\right)\right| =$$

$$= \sqrt{\left[1+(\cos\alpha+\cos2\alpha+\ldots+\cos2p\alpha)^2+(\sin\alpha+\sin2\alpha+\ldots+\sin2p\alpha)^2\right]}$$
 (1)
Se cunosc identitățile:

$$\begin{cases}
\cos \alpha + \cos 2\alpha + \dots + \cos 2p\alpha = \frac{\sin p\alpha \cdot \cos \frac{(2p+1)}{2}\alpha}{\sin \alpha^2} \\
\sin \alpha + \sin 2\alpha + \dots + \sin 2p\alpha = \frac{\sin p\alpha \cdot \sin \frac{(2p+1)}{2}\alpha}{\sin \alpha^2}
\end{cases} (2)$$

156 Probleme

Ținând seama de relațiile (1) și (2), prinridicare la pătrat, inegalitateadin enunț este echivalentă cu:

$$\left[1 + \frac{\sin p\alpha \cdot \cos \frac{(2p+1)}{2}\alpha}{\sin \alpha 2}\right]^{2} + \left[\frac{\sin p\alpha \cdot \sin \frac{(2p+1)}{2}\alpha}{\sin \alpha 2}\right]^{2} \ge 1 \Leftrightarrow$$

$$\Leftrightarrow \left[\frac{\sin p\alpha \cdot \cos \frac{(2p+1)}{2}\alpha}{\sin \alpha 2}\right]^{2} + 2 \cdot \frac{\sin p\alpha \cdot \cos \frac{(2p+1)}{2}\alpha}{\sin \alpha 2} + \left[\frac{\sin p\alpha \cdot \sin \frac{(2p+1)}{2}\alpha}{\sin \alpha 2}\right]^{2} \ge 0, \Leftrightarrow$$

$$\Leftrightarrow \sin p\alpha \cdot \cos^{2} \frac{(2p+1)}{2}\alpha + 2\sin \alpha 2 \cdot \cos \frac{2p+1}{2}\alpha + \sin p\alpha \cdot \sin^{2} \frac{2p+1}{2}\alpha \ge 0 \Leftrightarrow$$

$$\Leftrightarrow \sin p\alpha + 2\sin \frac{\alpha}{2}\cos \left(p\alpha + \frac{\alpha}{2}\right) \ge 0 \Leftrightarrow \sin p\alpha + 2\sin \frac{\alpha}{2}\left(\cos \alpha \cos \frac{\alpha}{2} - \sin \alpha \sin \frac{\alpha}{2}\right) \ge 0 \Leftrightarrow$$

$$\Leftrightarrow \sin p\alpha + 2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2} \cdot \cos \alpha - 2\sin^{2} \frac{\alpha}{2} \cdot \sin p\alpha \ge 0 \Leftrightarrow$$

 $\Leftrightarrow \sin p\alpha + \sin \alpha \cos \alpha - 2\sin^2 \frac{\alpha}{2}\sin p\alpha \ge 0 \Leftrightarrow \sin \alpha \cos p\alpha + \sin p\alpha \left(1 - 2\sin^2 \frac{\alpha}{2}\right) \ge 0 \Leftrightarrow \sin p\alpha + \sin p\alpha \cos p\alpha + \sin p\alpha + \sin p\alpha \cos p\alpha + \sin p\alpha + \cos$ $\sin \alpha \cos p\alpha + \sin p\alpha \cos \alpha \ge 0 \sin(p_1)\alpha \ge 0.$

Inegalitatea (3) este valabilă doar pentru acele valori α cae se obțin prin rezolvarea inecuației $\sin(p+1)\alpha=0$, unde $p\in\mathbb{N}$, adică $\alpha\in\bigcup_{k\in\mathbb{Z}}\left[\frac{2k\pi}{p+1},\frac{(2k+1)\pi}{p+1}\right]$, unde $p\in\mathbb{N}$, pfixat.

Cum
$$\alpha \in [0, 2\pi)$$
, rezultă $\alpha \in [0, 2\pi) \cap \left\{ \bigcup_{k \in \mathbb{Z}} \left[\frac{2k\pi}{p+1}, \frac{(2k+1)\pi}{p+1} \right] \middle| n \in \mathbb{N} \right\} =$

$$= \left[0, \frac{\pi}{p+1} \right] \cup \left[\frac{2\pi}{p+1}, \frac{3\pi}{p+1} \right] \cup \ldots \cup \left[\frac{2p\pi}{p+1}, \frac{(2p+1)\pi}{p+1} \right] = \mathcal{A}.$$

Notăm arg $z = \alpha \in \mathcal{A}$, iar Arg $z = \{\alpha + 2l\pi \mid \alpha \in \mathcal{A}, l \in \mathbb{Z}\}$

În concluzie, numerele complexe z care satisfac inegalitatea cerută, sunt numerele de forma $z = \cos \beta + \mathrm{i} \sin \beta$, unde $\beta \in \{\alpha + 2l\pi \mid l \in \mathbb{Z} \mid \alpha \in \mathcal{A}\}$, iar $\mathcal{A} = \bigcup_{j=1}^p \left[\frac{2j\pi}{p+1}, \frac{(2j+1)\pi}{p+1}\right]$, $p \in \mathbb{N}$, unde n = 2p.

261. Dacă $(a_n)_{n\geq 1}$ este un şir de numere reale strict pozitive astfel încât $\lim_{n\to\infty} (a_{n+1} - a_n) = a \in \mathbb{R}, \ s\check{a} \ se \ calculeze$

$$\lim_{n\to\infty} \left(\ln\frac{\mathrm{e}}{mn} + \sum_{k=1}^{mn}\frac{1}{k} - \gamma\right)^{a_n},$$

unde $m \in \mathbb{N}^*$ şi $\gamma = 0,577216...$ este constanta lui Euler.

Dumitru Bătinețu-Giurgiu

Soluţia autorului. Mai întâi facem observaţia că:

1.
$$\lim_{n \to \infty} \frac{a_n}{n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{(n+1) - n} = \lim_{n \to \infty} (a_{n+1} - a_n) = a,$$
(1)

2)
$$\lim_{n \to \infty} (n \cdot (\gamma_n - \gamma)) = \lim_{n \to \infty} \frac{\gamma_n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\gamma_{n+1} - \gamma_n}{\frac{1}{n+1} - \frac{1}{n}} = \lim_{n \to \infty} \frac{\gamma_n - \gamma_{n+1}}{\frac{1}{n} - \frac{1}{n+1}} =$$

$$= \lim_{n \to \infty} ((\gamma_n - \gamma_{n+1}) \cdot n \cdot (n+1)) = \lim_{n \to \infty} ((\gamma_n - \gamma_{n+1}) \cdot n^2) =$$

$$= \lim_{n \to \infty} \left(\left(\ln(n+1) - \ln n - \frac{1}{n+1} \right) \cdot n^2 \right) = \lim_{n \to \infty} \left(\left(\ln \left(1 + \frac{1}{n} \right) - \frac{1}{n+1} \right) \cdot n^2 \right) =$$

$$= \lim_{\substack{x \to 0 \\ x \in \mathbb{R}}} \left(\left(\ln(1+x) - \frac{x}{x+1} \right) \cdot \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{(x+1) \cdot \ln(1+x) - x}{x^2 \cdot (1+x)} =$$

$$= \lim_{x \to 0} \frac{\ln(1+x) + 1 - 1}{2x} = \frac{1}{2} \cdot \lim_{x \to 0} \ln(1+x) = \frac{1}{2} \cdot \ln e = \frac{1}{2}. \tag{2}$$

Rezultă atunci că

$$\lim_{n \to \infty} \left(\ln \frac{e}{m \cdot n} + \sum_{k=1}^{m \cdot n} \frac{1}{k} - \gamma \right)^{a_n} = \lim_{n \to \infty} (1 + \gamma_{m \cdot n} - \gamma)^{a_n} =$$

$$= \lim_{n \to \infty} \left((1 + \gamma_{m \cdot n} - \gamma)^{\frac{1}{\gamma_{mn} - \gamma}} \right)^{\frac{a_n}{n} \cdot n \cdot (\gamma_{mn} - \gamma)} =$$

$$= e^{\lim_{n \to \infty} \frac{a_n}{n} \lim_{n \to \infty} (n \cdot (\gamma_{mn} - \gamma))} = e^{\lim_{n \to \infty} (n \cdot (\gamma_{mn} - \gamma))}.$$
(3)

Avem, deci, de calculat:

$$\lim_{n \to \infty} \left(n \cdot (\gamma_{mn} - \gamma) \right). \tag{4}$$

Metoda1. Am demonstrat mai sus că: $\lim_{n\to\infty}\left(n\cdot(\gamma_n-\gamma)\right)=\frac{1}{2}$ și atunci rezultă că:

$$\lim_{n \to \infty} (n \cdot (\gamma_{mn} - \gamma)) = \frac{1}{m} \cdot \lim_{n \to \infty} (m \cdot n \cdot (\gamma_{mn} - \gamma)) = \frac{1}{2m}.$$
 (5)

Metoda 2. Conform inegalității lui Young, avem inegalitățile:

$$\frac{1}{2 \cdot (m \cdot n + 1)} < \sum_{k=1}^{mn} \frac{1}{k} - \gamma - \ln(m \cdot n) < \frac{1}{2mn}, \ \forall n \in \mathbb{N}^* \Leftrightarrow \frac{1}{2 \cdot (m \cdot n + 1)} < \gamma_{mn} - \gamma < \frac{1}{2mn}, \ \forall n \in \mathbb{N}^* \Leftrightarrow \frac{m}{2 \cdot (m \cdot n + 1)} < n \left(\gamma_{mn} - \gamma\right) < \frac{1}{2m}, \ \forall n \in \mathbb{N}^*,$$

de unde, prin trecerea la limită cu
$$n \to \infty$$
, rezultă că:
$$\frac{1}{2 \cdot m} \leq \lim_{n \to \infty} \left(n \cdot (\gamma_{mn} - \gamma) \right) \leq \frac{1}{2 \cdot m}, \text{ adică } \lim_{n \to \infty} \left(n \cdot (\gamma_{mn} - \gamma) \right) = \frac{1}{2m}.$$
 Relaţiile (3) şi (5) ne dau

$$\lim_{n \to \infty} \left(\ln \frac{\mathrm{e}}{mn} + \sum_{k=1}^{mn} \frac{1}{k} - \gamma \right) = \mathrm{e}^{a \cdot \frac{1}{2m}} = \mathrm{e}^{\frac{a}{2m}}.$$

Observație. Dacă m=1 și $a_n=n$, atunci a=1 și obținem $\lim_{n\to\infty} (1+\gamma_n-\gamma)^n=$ $e^{\frac{1}{2}} = \sqrt{e}$, adică problema **23928** din G.M.-B nr. 5-6/1998 propusă de *Dumitru Bătinețu*-Giurgiu, care este aceeași cu problema 182 din G.M.-A, nr. 3/2004, propusă de Mihály Bencze.

Nota redactiei. Solutii corecte ale problemei au mai trimis si domnii Nicusor Minculete de la Universitatea Creștină Dimitrie Cantemir din Brașov și Marius Olteanu de la S. C. Hidroconstrucția S.A. București, sucursala "Olt-Superior" din Râmnicu-Vâlcea.

262. Fie

$$X = \left(\begin{array}{cc} t & u \\ v & w \end{array}\right) \in \mathcal{M}_2(\mathbb{C}).$$

Pentru orice $n \in \mathbb{N}$, notăm

$$X^n = \left(\begin{array}{cc} t_n & u_n \\ v_n & w_n \end{array}\right)$$

158 Probleme

și fie a=t+w, b=tw-uv urma, respectiv determinantul matricei X. Să se arate că următoarele afirmații sunt echivalente:

- i) Sirurile $(t_n)_{n\geq 1}$, $(u_n)_{n\geq 1}$, $(v_n)_{n\geq 1}$, $(w_n)_{n\geq 1}$ sunt toate convergente.
- ii) Are loc una dintre situațiile
 - $X = I_2$ (matricea unitate de ordinul al doilea);
 - ullet a=b+1 şi b este un număr de modul mai mic ca 1;
 - $|a|^2 + |a^2 4b| < 2(|b|^2 + 1) < 4$.

Marian Tetiva

Soluția autorului. Avem nevoie de următoarele două rezultate:

Lema 1. Fie z un număr complex. Şirul $(z^n)n > 1$ este convergent dacă şi numai dacă |z| < 1 sau z = 1.

Demonstrație. Una din implicații este banală, așa că vom trece direct la demonstrarea faptului că, dacă șiml $(z^n)n > 1$ este convergent, atunci |z| < 1 sau z = 1.

În primul rând, din convergența șirului considerat rezultă convergența șirului modulelor, $(|z^n|)n > 1$ care implică $|z| \le 1$. Ne mai rămâne de demonstrat (aceasta fiind partea cea mai grea) că, dacă $(z^n)n > 1$ converge și |z| = 1, atunci z = 1. Putem considera $z = \cos \alpha + i \sin \alpha$, pentru un anume $\alpha \in [0, 2\pi)$, deci

$$z^n = \cos n\alpha + i\sin n\alpha, \ \forall n \ge 1.$$

Convergența șirului implică, după cum este bine știut, convergența șirurilor părților reale și părților imaginare ale termenilor săi; adică trebuie să fie convergente șirurile $(x_n)_{n\geq 1}$ și $(y_n)_{n\geq 1}$ definite prin

$$x_n = \cos n\alpha, \ y_n = \sin n\alpha, \ \forall n \ge 1.$$

Să notăm cu x, respectiv y limitele acestor șiruri (care trebuie să fie numere reale). Cu formulele trigonometrice bine cunoscute obținem

$$y_{n+1} = y_n \cos \alpha + x_n \sin \alpha, \ \forall n \ge 1,$$

iar prin trecere la limită în aceste relații găsim

$$\left\{ \begin{array}{l} x(1-\cos\alpha)+y\sin\alpha=0 \\ x\sin\alpha-y(1-\cos\alpha)=0. \end{array} \right.$$

Pe de altă parte,

$$x_n^2 + y_n^2 = \cos^2 n\alpha + \sin^2 n\alpha = 1, \ \forall n \ge 1,$$

deci, prin trecere la limită pentru $n\to\infty$, avem $x^2+y^2=1$, egalitate care ne spune că x și y nu pot fi ambele nule; atunci sistemul omogen de mai sus are soluții nenule, deci are determinantul nul. Acesta înseamnă că

$$(1 - \cos \alpha)^2 + \sin^2 \alpha = 0 \Rightarrow \cos \alpha = 1 \text{ si } \sin \alpha = 0,$$

deci am obținut concluzia z = 1.

Lema 2. Fie a, b numere complexe și z_1 , z_2 rădăcinile ecuației $z^2 - az + b = 0$ Atunci următoarele afirmații sunt echivalente:

$$\alpha$$
) $|z_1| < 1$ si $|z_2| < 1$;

$$\beta$$
) $|a|^2 + |a^2 - 4b| < 2(|b|^2 + 1) < 4.$

Demonstrație. Pentru două numere reale r_1 şi r_2 , relațiile $r_1 < 1$ şi $r_2 < 1$ sunt, evident echivalente cu $r_1 - 1 < 0$ și $r_2 - 1 < 0$, prin urmare cu

$$(r_1-1)+(r_2-1)<0$$
 și $(r_1-1)(r_2-1)>0$,

în cele din urmă, se obține echivalența

$$r_1 < 1$$
 si $r_2 < 1 \Leftrightarrow r_1 + r_2 < 2$ si $r_1 + r_2 < r_1 + r_2 < r_1 + r_2 < r_1 + r_2 < r_2 + 1$.

Pentru implicația $\alpha \Rightarrow \beta$ fie $r_1=|z_1|<1$ și $r_2=|z_2<1$; conform observațiilor anterioare avem:

$$r_1 + r_2 < 2$$
 și $r_1 + r_2 < r_1 r_2 + 1$.

Cum $r_1 \ge 0$ și $r_2 \ge 0$, putem ridica la pătrat a doua relație pentru a obține:

$$r_1^2 + r_2^2 < r_1^2 r_2^2 + 1 \Rightarrow 2(|z_1|^2 + |z_2|^2) < 2(|z_1|^2 |z_2|^2 + 1) \Rightarrow$$

 $\Rightarrow |z_1 + z_2|^2 + |z_1 - z_2|^2 < 2(|z_1 z_2|^2 + 1).$

Avem $z_1+z_2=a$ și $z_1z_2=b$. De asemenea, dacă a este α este un număr complex astfel încât $\alpha^2=a^2-4b$, atunci rădăcinile ecuației $z^2-az+b=0$ sunt date de:

$$z_1 = \frac{a+\alpha}{2}$$
, $z_2 = \frac{a-\alpha}{2} \Rightarrow z_1 - z_2 = \alpha$,

astfel că relația obținută devine

$$|a|^2 + |\alpha|^2 < 2(|b| + 1) \Rightarrow |a|^2 + |a^2 - 4b| < 2(|b|^2 + 1)$$

(deoarece $|\alpha|^2 = |\alpha^2| = |a^2 - 4b|$). Mai avem şi

$$|b| = |z_1| |z_2| < 1$$

de unde se obtine imediat si cea de-a doua relatie de la β).

Reciproc, să presupunem că au loc inegalitățile β), deci că

$$|a|^2 + |a^2 - 4b| < 2(|b|^2 + 1)$$
 şi $|b| < 1$.

Prima relație se transformă ca mai sus în:

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 < 2(|z_1 z_2|^2 + 1) \Rightarrow |z_1|^2 + |z_2|^2 < |z_1|^2 |z_2|^2 + 1 \Rightarrow$$

$$\Rightarrow (|z_1| + |z_2|)^2 < (|z_1| |z_2| + 1) \Rightarrow |z_1| + |z_2| < |z_1| \cdot |z_2| + 1,$$

deoarece $|z_1| \ge 0$ și $|z_2| \ge 0$. Mai avem și

$$|z_1| \cdot |z_2| = |z_1 \cdot z_2| = |b| < 1,$$

deci se obține și:

$$|z_1| + |z_2| < |z_1| \cdot |z_2| + 1 < 2.$$

Cum am văzut, dacă avem:

$$|z_1| + |z_2| < 2$$
 şi $|z_1| + |z_2| < |z_1| \cdot |z_2| + 1$

rezultă:

$$|z_1| < 1$$
 şi $|z_2| < 1$

și demonstrația este încheiată.

Să mai amintim, revenind la problema noastră, că matricea X își verifică ecuația caracteristică (teorema Cayley-Hamilton), adică

$$X^2 - aX + bI_2 = O_2$$

 $(I_2$ reprezintă matricea unitate de ordinul al doilea, iar O_2 – matricea nulă de același ordin). Prin înmulțire cu X^n obținem

$$X^{n+2} - aX^{n+1} + bX^n = O_2, \quad \forall n \ge 0$$

(convențional, $X^0=I_2$), ceea ce ne spune că fiecare dintre șinlrile $(t_n)_{n\geq 1}$, $(u_n)_{n\geq 1}$, $(v_n)_{n\geq 1}$ și $(w_n)_{n\geq 1}$ verifică aceeași relație de recurență

$$x_{n+2} - ax_{n+1} + bx_n = 0, \quad \forall n \ge 1.$$

Atunci, notând cu $T,\,U,\,V,\,W$ limitele acestor șiruri (dacă ele există și sunt finite) și trecând la limită în relația de recurență pentru fiecare din ele, obținem

$$T - aT + bT = U - aU + bU = V - aV + bV = W - aW + bW = 0.$$

160 Probleme

Demonstrăm acum implicația i) \Rightarrow ii). Presupunem așadar că pentru matricea X șirurile $(t_n)_{n\geq 1}$, $(u_n)_{n\geq 1}$, $(v_n)_{n\geq 1}$ și $(w_n)_{n\geq 1}$, definite în enunț sunt convergente (având limitele T,U,V, respectiv W). Rezultă și convergența șirurilor $(a_n)_{n\geq 1}$ și $(b_n)_{n\geq 1}$ definite prin:

$$a_n = t_n + w_n = \operatorname{tr}(X^n),$$

respectiv:

$$b_n = t_n w_n - u_n v_n = \det(X^n),$$

pentru orice $n \in \mathbb{N}^*$ (limitele lor fiind, desigur, A = T + W și B = TW - UV). Conform unei bine cunoscute proprietăți a determinantului avem:

$$\det(X^n) = (\det(X))^n \Rightarrow b_n = b^n, \quad \forall n \ge 1;$$

folosind lema 1 rezultă atunci că b este fie egal cu 1, fie un număr de modul mai mic ca 1. Să considerăm întâi că b=1. Relația de recurență verificată de oricare din cele patru

Să considerăm întâi că b = 1. Relația de recurență verificată de oricare din cele patru șiruri este acum:

$$x_{n+2} - ax_{n+1} + x_n = 0, \ \forall n \ge 1,$$

iar pentru cele patru limite avem

$$T - aT + T = U - aU + U = V - aV + V = W - aW + W = 0 \Rightarrow$$

 $\Rightarrow (2 - a)T = (2 - a)U = (2 - a)V = (2 - a)W = 0.$

De asemenea, avem:

$$t_n w_n - u_n v_n = b^n = 1, \quad \forall \, n \ge 1,$$

de unde decurge TW-UV=1 (prin trecere la limită), relație ce ne spune că $T,\,U,\,V,\,W$ nu pot fi toate nule. Atunci obligatoriu $2-a=0 \Rightarrow a=2$ și, printr-o inducție simplă, obținem:

$$X^{n} = I_{2} + n(X - I_{2}), \forall n \ge 1.$$

De aici, imediat găsim:

$$t_n = 1 + n(t-1), \ u_n = nu, \ v_n = nv, \ w_n = 1 + n(w-1),$$

pentru orice $n \in \mathbb{N}^*$; este clar acum că ipoteza de convergență a șirurilor $(t_n)_{n\geq 1}$, $(u_n)_{n\geq 1}$, $(v_n)_{n>1}$ și $(w_n)_{n>1}$, conduce la $t=1,\ u=0,\ v=0$ și w=1, adică la $X=I_2$

Mai departe, să presupunem că b este un număr complex de modul mai mic ca 1.

Mai considerăm și rădăcinile z_1 și z_2 ale ecuației $z^2 - ax + b = 0$, adică valorile proprii ale matricii X. Cum se știe, avem:

$$a = \operatorname{tr}(X^n) = z_1^n + z_2^n, \ \forall n \ge 1$$

și, de asemenea $z_1z_2=h$, deci:

$$|z_1| \cdot |z_2| = |b| < 1.$$

Aceasta înseamnă că măcar unul din numerele z_1, z_2 are, și el, modulul mai mic ca 1. Dacă, de exemplu, z_1 este acela, atunci $(z_1^n)_{n\geq 1}$ este convergent (cu limita 0); pe de altă parte și șirul urmelor matricilor X^n trebuie să fie convergent, adică este convergent șirul $(z_1^n+z_2^n)_{n>1}$. În consecință va fi convergent și șirul cu termenul general:

$$z_2^n = (z_1^n + z_2^n) - z_1^n,$$

deci (aplicăm iar lema 1) z_2 ori este 1, ori are modulul mai mic ca 1.

Rezumăm: am obținut că, în situația |b| < 1, ambele rădăcini ale ecuației caracteristice au modulele mai mici ca 1, sau una dintre ele este de modul mai mic ca 1, iar cealaltă este egală cu 1.

În acest al doilea caz ($|z_1|$) < 1 și $z_2 = 1$) vom avea, evident $b = z_1$ implică |b| < 1 și $a = z_1 + z_2 = b + 1$, deci a doua situație de la ii).

Dacă în schimb, avem $|z_1|<1$ și $|z_2|<1$, atunci, folosind lema 2, deducem că $|a|^2+\left|a^2-4b\right|<2\left(|b|^2+1\right)<4$ și astfel am dat peste a treia situație posibilă în ii). Ne-a mai rămas doar să demonstrăm implicația ii) \Rightarrow i). Pentru $X=I_2$ avem

$$X^{n} = I_{2} \Rightarrow t_{n} = w_{n} = I, \qquad u_{n} = v_{n} = 0, \ \forall n \ge 1$$

și convergența celor patru șiruri este clară.

Dacă X este o matrice cu $a = \operatorname{tr}(X) = \det(X) + 1 = b + 1$ și |b| < 1, ea va avea una din valorile proprii, adică rădăcinile ecuației $z^2 - (b+1)z + b = 0$) 1 și pe cealaltă b (de modul mai mic ca 1). Se verifică imediat că, în acest caz:

$$x^{n} = \frac{1}{b-1} [b^{n}(A - I_{2}) + bI_{2}], \quad \forall n \ge 1,$$

ceea ce conduce la formule de tip

$$x_n = cb^2 + d, \ \forall \ n \ge 1,$$

pentru $(x_n)_{n\geq 1}$, fiind oricare din cele patru şiruri $(t_n)_{n\geq 1}$, $(u_n)_{n\geq 1}$, $(v_n)_{n\geq 1}$ şi $(w_n)_{n\geq 1}$ (cu c şi d constante, altele pentru fiecare şir în parte, toate se exprimă, desigur, în funcție de elementele matricii X). Cum $\lim_{n\to\infty} b^n=0$ convergența celor patru şiruri rezultă fără probleme.

În sfârşit, a treia situație implică, pe baza lemei 2, faptul că soluțiile z_1 și z_2 ale ecuației caracteristice a matricii X, $z^2 - ax + b = 0$, sunt numere complexe de module mai mici cu 1, Aceasta este, bineînțeles, și ecuația caracteristică e recurenței verificate de fiecare din șirurile $(t_n)_{n\geq 1}$, $(u_n)_{n\geq 1}$, $(v_n)_{n\geq 1}$ și $(w_n)_{n\geq 1}$. Rezultă pentru termenul general al oricăruia din aceste șiruri (notat iarăși, generic, cu x_n) o formulă de tipul

$$x_n = cz_1^n + dz_2^n, \quad \forall \, n \ge 1,$$

(dacă $z_1 \neq z_2$), sau

$$x_n = (c + nd)z_1^n, \quad \forall n \ge 1,$$

(dacă $z_1 = z_2$). Cum $|z_1| < 1$ și $|z_2| < 1$, avem

$$\lim_{n\to\infty} z_1^n = \lim_{n\to\infty} z_2^n = 0 \text{ si } \lim_{n\to\infty} nz_1^n = 0,$$

de unde se obține, iar cu ușurinț a, convergența fiecăruia din cele patru șiruri (acum toate au limita zero). Cu aceasta soluția problemei se încheie

Nota redacției. O soluție corectă a problemei a dat și domnul inginer *Marius Olteanu* de la S. C. Hidroconstrucția S.A. București, sucursala "Olt-Superior" din Râmnicu-Vâlcea.

263. Fie G centrul de greutate al tetraedrului oarecare [ABCD] și r, R razele sferelor înscrisă, respectiv circumscrisă acestuia. Se notează cu r_1 , r_2 , r_3 , r_4 razele sferelor înscrise tetraedrelor [GABC], [GABD], [GACD] și respectiv [GBCD]. Să se arate că:

a)
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} < \frac{R^2}{r^3}$$
;

b)
$$r_1 + r_2 + r_3 + r_4 > 16 \frac{r^3}{R^2}$$
;

c)
$$r_1 + r_2 + r_3 + r_4 > \frac{8}{5}r$$
.

Marius Olteanu

 ${\bf Soluție}$ dată de ${\it Nicuşor\ Minculete}$ de la Universitatea Creștină Dimitrie Cantemir, Brașov.

Fie punctul M mijlocul laturilor [BC] şi punctul N mijlocullaturii [CD]. De asemenea, considerăm punctul G_A ca fiind centrul de greutate al triunghiului BCD, iar punctul G_D ca fiind centrul de greutate al triunghiului ABC. Prin intersecția dreptelor AG_A și

162 Probleme

 AG_D se obține punctul G, adică centrul de greutate al tetraedrului [ABCD] (vezi figura 1). Se demonstrează ușor că $\frac{GG_A}{AG_A} = \frac{1}{4}$, prm urmare, avem relația $\frac{d(G,(BCD))}{d(A,(BCD))} = \frac{GG_A}{AG_A} = \frac{1}{4}$, ceea ce înseamnă că:

$$V_{GBCD} = \frac{V}{4},$$

unde V_{GBCD} este volumul tetraedrului [GBCD], iar V este volumul tetraedrului [ABCD]. În mod analog se arată că:

$$V_{GACD} = V_{GABD} = V_{GABC} = \frac{V}{4}.$$

Dacă S_1 aria totală a tetraedrului [GBCD], iar r_1 raza sferei înscrise în tetraedrul [GBCD], atunci avem relația:

$$V_{GBCD} = \frac{S_1 r_1}{3} = \frac{V}{4},$$
$$\frac{1}{r_1} = \frac{4S_1}{3V}.$$

Analog, se obțin relațiile:

$$\frac{1}{r_2} = \frac{4S_2}{3V}, \qquad \frac{1}{r_3} = \frac{4S_3}{3V} \quad \text{si} \quad \frac{1}{r_4} = \frac{4S_4}{3V}.$$

unde S_2 este aria totală a tetraedrului [GACD], S_3 aria totală a tetraedrului [GABD], S_4 aria totală a tetraedrului [GABC].

Asadar

$$\sum_{k=1}^{4} \frac{1}{r_k} = \frac{4}{3V} \sum_{k=1}^{4} S_k = \frac{4}{3V} \left[S + 2 \left(S_{GBC} + S_{GCD} + S_{GBD} + S_{GAB} + S_{GAD} + S_{GAC} \right) \right].$$

Dar

$$2\left(S_{GBC} + S_{GCD} + S_{GBD} + S_{GAB} + S_{GAD} + S_{GAC}\right) =$$

 $=GB \cdot GC \cdot \sin \sphericalangle BGC + GC \cdot GD \cdot \sin \sphericalangle CGD + GB \cdot GD \cdot \sin \sphericalangle BGD + GA \cdot GB \cdot \sin \sphericalangle AGB + GA \cdot GD \sin \sphericalangle AGD + GA \cdot GC \sin \sphericalangle AGC \le GB \cdot GC + GC \cdot GD + GB \cdot GD + GA \cdot GB + GA \cdot GD + GA \cdot GC \le GA^2 + GB^2 + GC^2 + GD^2 = \frac{1}{4} \left(AB^2 + BC^2 + CD^2 + DA^2 + AC^2 + BD^2\right) \le 4R^2.$

Prin urmare:

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} \le \frac{4}{3V} \left(S + 4R^2 \right). \tag{*}$$

Se cunoaște următoarea inegalitate:

$$\frac{8\sqrt{3}}{3} \cdot R^2 \ge S,$$

pe care o vom utiliza în relația (*), de unde vom obține:

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} \le \frac{4}{3V} \left(\frac{8\sqrt{3}}{3} R^2 + 4R^2 \right) = \frac{16\sqrt{3}R^2 \left(2 + \sqrt{3} \right)}{9V} \le
\le \frac{16\sqrt{3}R^2 \left(2 + \sqrt{3} \right)}{72\sqrt{3}r^3} < \frac{R^2}{r^3},$$

deci:

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} < \frac{R^2}{r^3}.$$

Am utilizat o altă inegalitate cunoscută în tetraedru, și anume:

$$V > 8\sqrt{3}r^3.$$

Pentru a demonstra punctul b), vom întrebuința inegalitatea de la punctul a) și inegalitatea Cauchy-Buniakowski-Schwarz, astfel:

$$(r_1 + r_2 + r_3 + r_4) \left(\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} \right) \ge 16,$$

adică

$$(r_1 + r_2 + r_3 + r_4) \frac{R^3}{r^3} \ge 16,$$

de unde rezultă că:

$$r_1 + r_2 + r_3 + r_4 > 16 \frac{r^3}{R^3}.$$

Pentru a demonstra punctul c) se observă că $S_{GAD}=\frac{1}{2}S_{MAD}$, iar, din inegalitatea lui Steiner avem:

$$S_{MAD} < \frac{S_B + S_C}{2},$$

deci

$$S_{GAD} < \frac{S_B + S_C}{4}$$

În mod analog se demonstrează inegalitățile următoare:

$$S_{GBC} < \frac{S_A + S_D}{4}, \quad S_{GCD} < \frac{S_A + S_B}{4}, \quad S_{GBD} < \frac{S_A + S_C}{4},$$
 $S_{GAB} < \frac{S_C + S_D}{4}$ si $S_{GAC} < \frac{S_B + S_D}{4}$

Prin urmare, deducem că;

$$\sum_{k=1}^{4} S_k = S + 2\left(S_{GBC} + S_{GCD} + S_{GBD} + S_{GAB} + S_{GAD} + S_{GAC}\right) < \frac{5S}{2},$$

ceea ce înseamnă că:

$$\sum_{k=1}^{4} r_k = \frac{3V}{4} \sum_{k=1}^{4} \frac{1}{S_k} \ge \frac{12V}{\sum_{k=1}^{4} S_k} > \frac{4Sr}{\frac{5S}{2}} = \frac{8}{5}r,$$

adică ceea ce trebuia demonstrat.

Observație. Cum:

$$S_{GBC}+S_{GCD}+S_{GBD}>S_{BCD}=S_A,\quad S_{GCD}+S_{GAC}+S_{GAD}>S_{ACD}=S_B,$$

$$S_{GBD}+S_{GAD}+S_{GAB}>S_{ABD}=S_C,\quad S_{GAC}+S_{GAB}+S_{GBC}>S_{ABC}=S_D,$$
 rezultă că

$$2(S_{GBC} + S_{GCD} + S_{GBD} + S_{GAB} + S_{GAD} + S_{GAC}) > S$$

deci

$$\sum_{k=1}^{4} \frac{1}{r_k} = \frac{4}{3V} \sum_{k=1}^{4} S_k =$$

$$= \frac{4}{3V} \left[S + 2 \left(S_{GBC} + S_{GCD} + S_{GBD} + S_{GAB} + S_{GAD} + S_{G}AC \right) \right] > \frac{8S}{3V} = \frac{8}{r},$$

ceea ce înseamnă că

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} > \frac{8}{r}$$

ISTORIA MATEMATICII

George Isac (1940-2009)

Corneliu Constantinescu¹⁾

George Isac s-a născut la 1 aprilie 1940 în comuna Filipești, județul Brăila. Tatăl lui era învățător și invalid din primul război mondial (își pierduse o mână), iar mama lui era casnică. Din familie mai făceau parte o soră și un frate, ambii mai în vârstă decât el. A avut parte de o copilărie fericită, pe care a evocat-o la bătrânețe în nenumărate poezii, pline de nostalgie, care se bucură de mult succes în România de astăzi. Tatăl lui l-a condus în prima zi de şcoală și pe drum i-a spus: doresc ca tu să fi mereu primul în clasa ta. Gică, cum îi spuneam noi, prietenii, a interpretat această dorință a tatălui ca un ordin și a fost într-adevăr primul în clasă de-a lungul întregii școli primare. A rămas puternic atașat nu numai de satul lui natal, ci și de această școală, pe care a vizitat-o de mai multe ori după revoluție și pentru care a înființat o fundație, care dă un premiu în fiecare an elevului cu cele mai bune performanțe la învățătură. Liceul l-a făcut la Brăila, la Colegiul "Nicolae Bălcescu" în perioada 1954-1958, unde a avut parte de profesori deosebiți. Cel mai mult s-a atașat de profesorul de limba română, care îi remarcase deosebitul lui talent literar. Atât el cât și profesorul respectiv considerau că el va urma o carieră literară. Dar, în acel timp, România se găsea sub cumplita teroare comunistă și Gică își dădea seama că o astfel de carieră nu se poate face fără a face concesii morale majore, pe care el nu era dispus să le facă. Așa că a luat hotărârea dramatică de a urma o altă cale și s-a decis pentru matematică, spre marea decepție a profesorului de limba română, care a încercat în fel și chip să-l convingă, , fără succes însă, de a urma, totuși, o carieră literară. Tot la Brăila a cunoscut-o pe viitoarea lui soție - Viorica, născută Georgescu -, care i-a inspirat nenumărate poezii de dragoste și de recunoștință. Căsătoria a avut loc pe data de 8 mai 1965, iar din ea s-au născut doi copii: Cătălin (1970) și Roxana (1974).

După terminarea liceului s-a înscris la Facultatea de Matematică și Mecanică a Universității București, unde s-a împrietenit cu un coleg de an, *Ion Ichim*, căruia noi, prietenii, îi spuneam *Nelu*. La teminare studiului în 1963 au devenit, ambii, asistenți la catedra de analiză, al cărei șef era profesorul *Gheorghe Marinescu*, pentru care *Gică* a păstrat de-a lungul întregii sale vieți cele mai călduroase sentimente și pentru care a început să scrie, în ultimul an al vieții, o biografie care, din păcate, a rămas neterminată. Ei au și colaborat, de altfel, în matematică, publicând împreună cartea "Analiza pe corpuri ultrametrice" (1976). *Gică* a fost angajat un timp (1963-1968) și ca cercetător la Centrul de Calcul al Universității din București, condus de *Grigore Moisil*. Împreună cu *Nelu* s-au prezentat într-o zi la mine, întrebându-mă dacă ași fi dispus să-i accept ca doctoranzi, ceea ce am făcut cu mare bucurie. *Gică* a ales ca temă de doctorat o problemă din analiza funcțională, iar *Nelu*, una din teoria potențialului. Eu am părăsit România în februarie 1972, moment în care cele două teze de doctorat erau avansate, dar neterminate. Oficial, conducerea tezelor a fost preluată de *Gheorghe Marinescu*, dar, în practică, conducerea ei a fost făcută de prietenul meu *Aurel Cornea*. Titlul de doctor a fost acordat in 1973.

Gică a fost de câteva ori (1974-1977), în calitate de profesor de matematică, la "National University of Zaire", Kinshasa, Zaire, și a luat hotărârea de a utiliza o astfel de călătorie pentru a părăsi definitiv România. Înainte de a pleca, l-a vizitat pe Aurel Cornea și i-a spus de intenția lui, ceea ce era o dovadă de mare încredere în acea vreme, în care întreaga țară era împânzită de informatori ai Securității. El a adăugat că are intenția

¹⁾ Bodenacherstr. 53 CH 8121 Benglen, e-mail: constant@math.ethz.ch

de a-şi lăsa, pentru început, familia în România şi de a o aduce mai târziu la el. "Eşti nebun?" i-a strigat Aurel, căci o familie în țară era o importantă sursă de șantaj pentru Securitate. Gică i-a explicat că viitorul lui este nesigur şi că nu poate supune famila acestui risc. Aurel s-a plimbat un timp gânditor prin cameră, apoi s-a oprit brusc și i-a spus: "Uite ce zic eu, Nene Gică: pleacă, ia-ți familia și dacă o să-ți fie rău, să mă înjuri pe mine." Gică i-a ascultat sfatul, și-a luat familia cu el și a făcut o carieră strălucită în Canada, așa că nu a ajuns să-l înjure pe Aurel, ci i-a fost recunoscător pentru bunul sfat dat, de a-și lua familia cu el. În Canada a fost mai întâi profesor la "University of Sherbrooke" (1977-1978), iar apoi la "Collège Militaire Royal, Saint Jean, Québec" și la "Royal Military College, Kingstone, Ontario".

Încă din România el a început să se intereseze de matematica aplicată, unde el îşi putea utiliza cunoştinţele lui de analiza funcţională şi a şi ţinut cursuri în România în această direcţie. În Canada el a evoluat spectaculos în acest domeniu, ocupându-se de probleme de complementaritate şi teoreme de punct fix, cu aplicaţii la teoria deciziilor, teoria jocurilor, optimul Pareto, analiza neliniară şi alte domenii. Multe noţiuni, astăzi curente în aceste domenii, au fost introduse de el, ca de exemplu conurile nucleare. A publicat în timpul vieţii 176 de lucrări matematice, dintre care 11 cărţi, foarte multe în colaborare, care au fost citate până în prezent în 664 de publicaţii de către 266 de autori! Comunitatea matematică i-a remarcat realizările, a fost invitat şi a participat la nenumărate colocvii matematice, a ţinut foarte multe conferinţe şi sprjinea şi diferite periodice matematice în activitatea lor. A primit şi premii matematice, din care menţionez premiul "Spiru Haret" acordat de Academia Română în 2003. Consiliul Facultăţii de Matematică al Universităţii Babeş-Bolyai din Cluj-Napoca a aprobat propunerea de a i se acorda titlul de "Doctor Honoris Causa", dar decesul (24.2.2009) a intervenit înainte ca această propunere să treacă prin Senatul Universităţii.

Nu se poate vorbi de George Isac fără a spune ceva despre poeziile lui, o componentă importantă a personalități lui. Această activitate a început-o destul de târziu, probabil din cauza vieții agitate pe care a dus-o și a preocupărilor matematice, care nu-i lăsau nici timpul și nici liniștea sufletească necesară pentru poezie. Dar el a dus tot timpul cu sine un fel de arhivă poetică, care, când i-a venit timpul, s-a revărsat tumultuos, producând un număr impresionant de şapte volume în perioada 1999-2008, un al optulea urmând să apară postum. Dominante în aceste poezii sunt nostalgiile copilăriei și ale tinereții. Satul natal, cu tradițiile moștenite din străbuni, apare în ele viu, cu culorile și parfumurile specifice anotimpurilor, cu flori, păsări și gâze, cu râu, cimitir, lanuri, vii, coline și păduri, cu preocupările obișnuite ale copilăriei, ca, de exemplu, culegerea florilor, primăvara, sau săniușul, iarna. Foarte multe poezii sunt dedicate casei părintești, cu bogata ei grădină, în care mama joacă un rol central. Dar tot dominante trebuie considerate și temele filozofice legate de problema vieții și a morții, înfluențat fiind de filozofiile orientale vechi, pe care le-a studiat. Fiind o ființă religioasă, se avântă în problematica vieții de apoi, încercând, cu metafore poetice, să ne trezească fiorul absolutului. Nu lipsesc din aceste poezii nici sfaturile moralizatoare adresate cititorilor, de a nu acorda o importanță prea mare lucrurilor superficiale, ci de a se concentra pe aspectele profunde ale vieții. Există și o critică aspră în poeziile lui adresate societății actuale, în care vede, pe bună dreptate, tot felul de fenomene de decadență.

Greaua boală l-a surprins în plină activitate, ceea ce a făcut-o cu atât mai greu de suportat. Avea tot felul de idei matematice în minte, vroia să scrie o carte de matematică, scria la o biografie a lui *Gheorghe Marinescu* și intenționa să scrie o carte cu amintiri personale despre perioada comunistă din România, pe care o cunoștea nu numai din proprie tragică experiență dar și din povestirile tatălui lui. Dar nu a fost să fie și nu pot decât să regret că toate aceste opere s-au pierdut pentru noi toți. Prin cercetarea lui matematică,

prin poeziile lui şi prin activitate lui didactică George Isac a adus multă lumină în lume. A fost o viață trăită din plin, cu o roadă bogată, așa cum apar holdele din satul lui natal în poeziile lui. Colegiul "Nicolae Bălcescu" din Brăila a produs o listă impresionantă de personalități marcante în știință și în artă, listă care va fi lungită acuma cu un nou nume, care a activat atât în știință cât și în artă.

Acei mari dascăli pe care nu trebuie să-i uităm

Andrei Vernescu^{1) 2)}

Au existat câțiva mari profesori de matematică de liceu, pe care nu trebuie să-i uităm.

De regulă, ei nu sunt incluşi în cărțile românești de istoria matematicii (avem în vedere, în special, monumentala lucrare în trei volume a lui George Şt. Andonie, "Istoria Matematicii în România", Editura Științifică, București, 1965-1967), dar aceasta nu pentru că ar fi avut un orizont mărginit, întrucât ne referim aici la oameni luminați, ci pentru că, prin însuși profilul activității profesorilor de liceu, ei nu sunt determinați în mod obligatoriu să facă și cercetare științifică, sau, cum se spune, pentru a folosi o expresie administrativă și pe care n-o îndrăgesc în mod deosebit, cercetarea nu intră în "fișa postului"!

În cartea sa, intitulată "Pour l'honneur de l'esprit humain", (Hachette, Paris, 1987), la pagina 17, binecunoscutul matematician francez Jean Dieudonné scria, pe drept cuvânt: "Un matematician este cineva care a publicat demonstrația a cel puțin unei teoreme netriviale". Fiind întru totul de acord cu aceasta definiție și, parafrazându-l într-o anumită măsură, am putea a spune că: un mare profesor de liceu este acel profesor foarte competent, care a făcut, la școala (sau școlile) la care a predat, cel puțin câteva sute de lecții de neuitat! La care am adăuga: cu atât mai mult, dacă a fost posibil, a avut și elevi medaliați la concursurile de matematică.

Spunând aceasta, ne referim, în primul rând, la calitatea ştiințifică impecabilă a lecțiilor, la claritate, ordine, coerență, viziune de ansamblu, eleganță, accesibilitatea transmiterii şi, nu în ultimul rând, la pasiunea şi căldura umană transmisă, sau, cum se mai spune, la sufletul pe care profesorul l-a pus în lecțiile sale. Desigur, ne referim şi la succesele obținute! Deşi, poate că, totuşi, opera ziditoare, temeinică, aparent modestă, a profesorilor, de cele mai multe ori "neoferind satisfacții zgomotoase" este mai importantă nu atât prin unele performanțe de vârf, e drept foarte îmbucurătoare, atunci când există, ci, mai ales, prin ceea ce aduce ea peren, în construirea personalității tinerilor, deci în edificarea, generație cu generație, a națiunii! (expresia "neoferind satisfacții zgomotoase" a fost preluată din prefața la volumul întâi din neuitatul tratat de Analiza matematică în trei volume, al marelui nostru savant și profesor Miron Nicolescu, apărut la Editura Tehnică, în 1957).

Şi acum, că am precizat ceea ce credem că ar trebui să se înțeleagă prin mare dascăl, să trecem, așa cum se obișnuiește în cadrul discursului matematic, la prezentarea câtorva exemple remarcabile. Unele sunt deja clasicizate: *Ion Banciu* a fost un mare profesor, despre care fostul său elev *Dan Barbilian* nota:

"Pentru mine, care am îmbrățișat matematicile, Banciu a fost (...) maistrul, omul care m-a format, de la care am învățat esențialul. (...) Banciu mi-a trecut simțul lui de rigoare, mi-a sădit afectul matematic, emoția în fața frumuseții unei teoreme și patima

¹⁾Universitatea Valahia din Târgovişte

²⁾Conferință susținută la a 35-a Sesiune de comunicări metodico-științifice a profesorilor de matematică din Județul Prahova, Sinaia, 15 noiembrie 2008, text abreviat. (N. R.)

cercetării, fără de care nu poți fi matematician." (Ion Barbu, Versuri și proză, Editura Minerva, București, 1970, pag. 279).

Un alt exemplu: pe când avea circa zece ani, Dumitru V. Ionescu a rămas orfan de tată; după câtva timp mama lui s-a recăsătorit cu profesorul de matematică Gheorghe Nicolaevici. Acesta, aflând într-o bună zi că fiul său vitreg a obținut o notă maximă la geometrie doar pentru că reprodusese perfect lecția, i-a oferit câteva lecții de geometrie, cu conținut bine ales. (Am folosit informațiile din cartea citată anterior, a lui George Şt. Andonie, vol. II, pag. 110). Aceste lecții au fost suficiente pentru a declanșa plăcerea și pasiunea pentru matematici, care aveau să ducă la afirmarea viitorului matematician și mare profesor de la Universitatea din Cluj. Astfel, prin consecința benefică a acestui inspirat demers, Gheorghe Nicolaevici a constituit un alt exemplu clasicizat de mare profesor de liceu.

Profesorul Ascaniu Crişan, care a fost o vreme și director al liceului "Moise Nicoară" din Arad, a încurajat în domeniul matematicii pe foștii săi elevi Tiberiu Popoviciu și Caius Iacob, deveniți academicieni, iar două decenii mai târziu, pe Dimitrie D. Stancu și Ivan Singer, de asemenea, deveniți academicieni.

Profesoara Silvia Creangă a încurajat în domeniul matematicii pe fosta sa elevă Cabiria Andreian, viitoarea mare matematiciană și membră a Academiei, prima femeie conferențiar și, respectiv, profesor universitar la Universitatea din București.

Profesorul Gheorghe Dumitrescu, nu numai că a fost un ilustru autor de manuale, dar a fost și unul dintre cei mai remarcabili dascăli de matematică; întâmplător l-am văzut o dată, când eram copil, dar nu la catedră, ci într-o familie de prieteni ai părinților mei; îmi amintesc de parcă ar fi fost ieri, că radia o aură de echilibru și bunătate. Despre dânsul vă poate vorbi mult mai detaliat fostul său elev, distinsul nostru invitat și decan de vârstă, aici prezent, domnul profesor Alexandru Popescu-Zorica. L-a cunoscut bine și au rămas în relații de prietenie tot restul vieții dascălului. Domnia sa îmi relata că Ghiță Dumitrescu, după cum i se mai zicea, a murit în noiembrie 1968, deci exact acum 40 de ani; l-a vizitat cu puțin înainte de deces; este înmormântat la cimitirul "Sfânta Vineri" din București.

Apropiindu-ne mai mult de ziua de astăzi, vom spune că neuitați rămân profesorii Ion Grigore și Eugen Onofraș de la Ploiești, profesorul Mihai Cocuz de la Iași, profesorul Constantin Borș de la Piatra Neamţ, profesorua Mariana Ștefănescu de la Câmpina, profesorul Gheorghe Popescu de la Lugoj, precum și mulţi alţii

O menţiune specială aş dori să o fac despre profesorul de la liceul "Ion Luca Caragiale" din Bucureşti, Cristofor Gaidargi, căruia am avut norocul să-i fiu elev, un mare profesor, în sensul riguros al concepţiei enunţate la începutul acestei evocări. Toţi cei care au avut norocul să-l aibă profesor într-o perioadă care se întinde pe circa cinci-şase ani înainte să-l fi avut eu profesor şi tot cam atât după, daca îi veţi întreba, vă vor răspunde acelaşi lucru: profesorul Gaidargi a fost cel mai mare profesor de matematică din epocă, la acel liceu. Din nou apelez la tezaurul de memorie din care îmi împărtășea domnul profesor Alexandru Popescu-Zorica: domnia sa a rămas cu o foarte frumoasă impresie de la inspecţia de grad pe care i-a făcut-o, ca lector al I.C.P.P.D., profesorului Gaidargi! (Iniţialele menţionate desemnau Institutul Central pentru Perfecţionarea Pregătirii Didactice. Institutul a fost desfiinţat abuziv la sfârşitul anilor 70).

Pe profesoara Florica Ionescu de la liceul (azi Colegiul National) "Mihai Viteazul" din Bucuresti, soția profesorului universitar de matematică Haralambie P. Ionescu, fost prodecan la Facultatea T.C.M., din Politehnica bucureșteană, am cunoscut-o în cancelarie pe când eram stagiar, iar dânsa se apropia de pensie. A fost, de asemenea, o mare profesoară de matematică. Dar, mai mult, îmi amintesc ce galerie impresionantă de profesori era acolo, și la alte materii! Mulți cu studiile efectuate în perioada interbelică!

Intenționat și nu numai datorită cronologiei, l-am lăsat la sfârșit pe unul dintre cei mai de suflet oameni ai profesiei noastre, fără de care, poate, nu am fi reuniți acum aici,

în această frumoasă dimineață de toamnă şi în acest cadru geografic minunat! V-ați dat seama, desigur, că este vorba de neuitatul profesor Adrian P. Ghioca. Un mare profesor! A dedicat toate forțele sale unui singur scop, anume, unuia nobil: acela al predării matematicii și al atragerii tinerilor către știinta noastră.... După cum începusem să spun, că ne aflăm aici grație lui, a avut și o operă instituțională: a creat și a făcut tradiție din aceste atât de reușite sesiuni de comunicări metodico-științifice ale profesorilor de matematică din județul Prahova; făra efortul său susținut și constructiv, poate că nu s-ar fi realizat atât de multe, neîntrerupte și reușite ediții! Iar acum suntem absolut siguri că ele vor continua! Adrian P. Ghioca a fost și coautor, în colectivul coordonat de profesorul universitar Ion D. Ion, pentru alcătuirea unui manual de algebră de clasa a 12-a. Din acest colectiv a făcut parte și profesorul doctor Neculai I. Nediță, aici prezent, bunul meu coleg de cancelarie de la liceul de informatică din București (de vreo zece ani Colegiul Național "Tudor Vianu"), pe care l-am găsit acolo, în 1990, când m-am transferat, cu regret, dar pentru o drastică apropiere de domiciliu, de la îndrăgitul liceu "Mihai Viteazul". Manualul de algebră de clasă a 12-a, menționat, a fost foarte cunoscut, iar după el au învățat multe generații de elevi!

Enumerarea făcută este, fără îndoială, incompletă, din necunoaștere sau, poate, și din neaducere aminte, caz în care vă rog să mă scuzați! Pe de o parte, din ea au lipsit deliberat universitari, cât și profesori de liceu care și-au continuat cariera în universitate (astfel nu i-am inclus pe Nicolae Abramescu, Nicolae N. Mihăileanu, Eugen Russu, Abraham Hollingher, Cezar Coșniță, Gheorghe D. Simionescu și alții, care au avut frumoase realizări și în învățământul liceal, printre altele, și prin scrierea unor reușite cărți destinate acestui învățământ). Totodată, la alcătuirea acestei enumerări de mari profesori de liceu, după cum mă decisesem încă de la început, m-am referit numai la persoane decedate. Toți aceștia, cât și cei din ultima enumerare, au fost profund atașați matematicii românești, fiind, la vremea lor, și membri S.S.M.R.

Acești profesori au făcut mari eforturi pentru a înfățișa disciplina noastră, matematica, sub o forma cât mai interesantă, mai prietenoasă, mai caldă. Aceasta, deoarece, din păcate, o fațadă rebarbativă a contactului elevilor cu matematica persistă de multă vreme În discursul său de recepție la Academia Română (publicat în G.M.-A, vol. 31 (105) 2008), academicianul Solomon Marcus prezenta, cu multă dreptate și profundă cunoaștere, esențialul situației privitoare la eșecul educației matematice, existent de multă vreme și în numeroase țări.

"Recunoscută ca unealtă uneori utilă, matematica era încă departe de a fi și un fapt de cultură. Ciocanul este și el o unealtă utilă; devine, prin aceasta, cultură? Educația primită în școală și, uneori, și cea de la facultate nu prea lasă loc să se vadă că în matematică există și idei, istorie, conflicte, interacțiuni cu alte discipline, dileme privind formarea conceptelor și alegerea problemelor. Din variatele moduri de gândire matematică (inductivă, deductivă, abductivă, triadică, binară, analogică, metaforică, ipotetică, infinită, combinatorică, probabilistă, recursivă, topologică, algoritmică, imaginativă etc.), înzestrate cu puterea de a funcționa și în afara matematicii, practic având o rază universală de acțiune, școala nu se raportează decât la deducție și combinare, uitând că modalitatea deductivă este numai haina în care matematica se prezintă în lume, nu și substanța ei. Metabolismul matematicii cu celelalte discipline scolare este foarte slab. Așa se ajunge la situația actuală, în care elevi și părinți protestează împotriva prezenței matematicii în programele scolare ale unor elevi care nu-și propun să devină matematicieni. Intelectualii ajunși la vârsta evocărilor nostalgice au rareori amintiri semnificative despre orele de matematică. Dacă acceptăm drept cultură ce îți rămâne după ce ai uitat tot, atunci trebuie să acceptăm o realitate crudă: cei mai multi oameni nu se aleg aproape cu nimic din matematica școlară. Destui rămân marcați pe viață de spaima examenelor de matematică. Dar dacă mergem la sursa acestei situații, atunci vom identifica o complicitate, e drept, neintenționată, între matematicieni, factorii de putere din societate si birocratia învătământului. Este educatia matematică,

prin natura ei, destinată unei elite? Sunt mulți cei care dau un răspuns afirmativ acestei întrebări. Nu mă numar printre ei. Fapt este că se ajunge la ceea ce francezii numesc "mathématiques, recettes de cuisine" iar americanii, în mod similar, "cook book mathematics". Din aceasta "monstruoasă coaliție" rezultă caricatura de educație matematică pe care încercăm s-o depăsim"

Cred că nu greșesc dacă afirm că marii profesori, despre care vorbeam, cât și unii pe care nu i-am menționat, cum spuneam, din necunoaștere sau neaducere aminte, au luptat cu mijloacele pe care le-au avut la dispoziție (de multe ori foarte modeste) tocmai împotriva acestei strâmbătăți și urâțenii cu care se înfățișează matematica școlară. Au dus această luptă în condiții politice de multe ori vitrege, sub mai multe dictaturi, trebuind să înfrunte (măcar indirect) brutalitatea diriguitorilor totalitari, obtuzitatea majorității birocrației din învățământ, condiții materiale dificile și programe școlare de matematică de multe ori ilogice și profund defectuoase. Lupta inutilă, dinainte pierdută, ca a lui Don Quijote cu morile de vânt? Noi considerăm că nu! Acele mijloace modeste, de care vorbeam anterior, reduse de multe ori numai la puterea cuvântului și a exemplului personal, parcă ne amintesc de întrebarea batjocoritoare, dar, poate, premonitor îngrijorată a lui Stalin "Câte divizii are Papa de la Roma?" Noi considerăm că, și numai cu acele mijloace modeste pe care leau avut la dispoziție, marii profesori au avut puterea ca, în mijlocul unei lumi mult prea prozaice, mult prea orientate numai spre valorile materiale (iar azi și spre cele consumiste!), să țină aprinsă făclia iluminării prin cultură, să țină trează dragostea de învățătură și, în particular, de învățare a matematicii, care, cu puterile sale "magice" de formare a gândirii, logicii, rigorii, de cultivare a spiritului creator, și nu în cele din urmă a gustului pentru simetrie, pentru estetic, poate fi atât de importantă! Tocmai pentru că au făcut lecții de neuitat, acești mari profesori, au reușit, în primul rând să depășească duritatea contactului tinerilor cu matematica, iar apoi, dimpotrivă, au făcut, pentru mulți tineri, acest contact pasionant!

Astfel, acești mari profesori au luptat pentru un scop nobil. Dar ei au mai ilustrat ceva, au desfășurat prin munca lor și prin puterea exemplului personal, o superbă și generoasă pledoarie despre înalţimea etică a profesiunii de profesor!

Pentru a sintetiza cel mai bine această pledoarie, să-mi fie îngăduit a cita din cuvântul rostit de bunul meu prieten, profesorul doctor *Dorel Duca* de la Universitatea Babeş-Bolyai, la a 22-a ediție a conferinței "Didactica Matemeticii", Oradea, 6 mai 2006, când au fost sărbătoriți profesorii Almei Mater Napocensis, acad. *Petru T. Mocanu*, fost Președinte al S.S.M.R., prof. dr. *Gheorghe Coman* și prof. dr. *Ioan A. Rus*. Aceste cuvinte m-au impresionat mult. Citez:

"Meseria de educator este o mare și frumoasă profesiune care nu seamănă cu nicio alta, o meserie, care nu se părăsește seara o dată cu hainele de lucru. O meserie aspră și plăcută, umilă și mândră, exigentă și liberă, o meserie în care pregătirea excepțională este abia satisfăcătoare, o meserie care epuizează și înviorează, care te dispretuiește și exaltă, o meserie în care a ști nu înseamnă nimic fără emoție, în care dragostea este sterilă fără forța spirituală, o meserie când apăsătoare, când implacabilă, când ingrată, când plină de farmec." (Textul este publicat integral în revista anuală "Didactica Matematicii" și, parțial, dar incluzând citatul anterior, în G.M.-A, vol 29 (103), 2006).

Marii profesori au ilustrat cu plenitudine această meserie ! "Ceea ce era de demonstrat !"

Le păstrăm, cu afecțiune, respect și recunoștință, luminoasă amintire!

MANIFESTĂRI ŞTIINŢIFICE

Elevi din România la EUROMATH 2009

Romeo Zamfir¹⁾ și Vasile Berinde²⁾

În perioada 5-8 februarie 2009 s-a desfășurat la Nicosia, în Cipru, prima ediție a seriei de conferințe de matematică pentru elevi, European Student Conference in Mathematics – Creativity an Innovation from early age (EUROMATH 2009). Conferința a fost organizată de Societatea de Științe Matematice din Cipru în cooperare cu Societatea Europeană de Matematică, Universitatea din Nicosia, Ministerul Educației din Cipru, Fundația Thales din Cipru și la ea au participat 100 elevi din 7 țări care au prezentat în programul științific 35 de lucrări astfel: Cipru (19 lucrări, având ca autori 71 elevi), Bulgaria (3 lucrări, 4 elevi), Italia (2 lucrări, 7 elevi), USA (2 lucrări, 3 elevi), Finlanda (1 lucrare, 1 elev), Cehia (3 lucrări, 8 elevi) și România (5 lucrări, 6 elevi).

România a fost reprezentată la EUROMATH 2009 de 6 elevi din care 4 elevi de la Colegiul Național "Vasile Alecandri" din Galați: *Iris Mara Mergeanu, Diana-Maria Boșneagă, Andreea Maria Radu* și *Adina Dobrotă* însoțiți de profesorul *Romeo Zamfir* și de 2 elevi din Baia Mare: *Vlad Cristian Crișan* (Colegiul Național "V. Lucaciu" Baia Mare) și *Andrei Bancoș* (Colegiul Național "Gh. Şincai" Baia Mare), însoțiți de profesorul *Vasile Berinde*.

Aceștia au prezentat la EUROMATH 2009 următoarele comunicări:

- 1. Iris-Mara Mergeanu, Diana-Maria Boșneagă, Andreea Maria Radu (toate în clasa a VII-a), "Famous numbers"; Profesor îndrumător R. Zamfir.
- 2. Adina Dobrotă (clasa a X-a), "Geometrical Constructions With Compasses Only"; Profesor îndrumător R. Zamfir.
- 3. Dan Dănăilă (clasa a IX-a), "The Determination of Extreme Values for Different Physical Sizes" (Lucrarea a fost prezentată în cadrul conferinței de Adina Dobrotă). Profesori îndrumători R. Zamfir și Mihai Vasiliu.
 - 4. Andrei Bancos (clasa a IX-a), "On some classes of functional inequalities";
- 5. Vlad Cristian Crişan (clasa a X-a), "The last two digits of the powers of integers numbers".

În cadrul EUROMATH 2009, prof. univ. dr. *Vasile Berinde* a prezentat o conferință plenară cu titlul "A royal way in mathematics: from problem solving activity to research work" (O cale regală în matematică: de la rezolvarea de probleme la munca de cercetare).

EUROMATH 2009 s-a desfășurat în sălile de conferințe ale Hotelului Hilton din Nicosia și pe lângă lucrările deosebit de interesante la care au putut asista elevii participanți la conferință, în programul manifestării, au fost prevăzute două excursii și o cină de rămas bun. Într-una din excursii a fost vizitat orașul vechi Nicosia, unde mai poate fi văzută linia de demarcație ce delimitează teritoriul statului Cipru ocupat de Turcia, ce trece chiar prin centrul vechi al orașului Nicosia. În cealaltă excursie a fost vizitat castrul roman de la Kourion precum și o zonă a litoralului din vecinătatea orașului Limassol. Petrecerea de bun rămas a avut loc într-o tavernă grecească unde am participat la o autentică seară grecească.

Următoarea ediție a European Student Conference in Mathematics – Creativity an Innovation from early age va avea loc în perioada 25-28 februarie 2010 în

 $^{^{1)}}$ Colegiul Național "Vasile Alecsandri", Galați, str. Nicolae Bălcescu, nr. 41, cod 800001, e-mail: romeozamfir@gmail.com

²⁾Universitatea de Nord din Baia Mare, e-mail: vasile_berinde@yahoo.com

Austria. Mai multe informații despre EUROMATH 2009 și EUROMATH 2010 pot fi găsite pe site-ul oficial al conferinței www.euromath.org.

DIN VIAŢA SOCIETĂŢII

A XII-a Conferință Anuală a Societății de Științe Matematice din România Bacău, 16-18 octombrie 2008

Vineri 17 octombrie 2008, în Sala de Consiliu a Facultății de Științe a Universității din Bacău au fost deschise lucrările celei de a XII-a Conferințe Anuale a Societății de Științe Matematice din România de către prof. dr. Radu Gologan, președintele Societății.

Organizată cu sprijinul nemijlocit al Filialei Bacău a S.S.M.R. (președinte *Ion Radu*) și al Facultății de Științe a Universității din Bacău (decan *Mihai Tălmaciu*), Conferința a reunit cercetători, profesori din învățământul preunivesitar și universitar, învățători, din aproape toate zonele țării. Au prezentat comunicări și trei cercetători din Rusia, Bulgaria și Republica Moldova. La lucrările Conferințeei a fost prezenți acad. *Solomon Marcus* și acad. *Radu Miron*.

Academicienii Solomon Marcus și Radu Miron la lucrările Conferinței

În plen au fost prezentate conferințele: ". A fi profesor de matematică" – Solomon Marcus; "Scurtă prezentare a Societății europene de matematică" – Vasile Berinde,; "The groups generated by permutational, binomials over Fp" – Nikolay Vasiliev; "Bounds of polinomial roots" – Doru Ştefănescu; "Proprietăți ale punctului intermediar din teoremele de medie ale analizei matematice" – Dorel Duca; "O demonstrație a postulatului lui Bertrand" – Marcel Tena; "Profesorul de matematică, o meserie pe cale de dispariție; – Liviu Ornea; "Ecuații diferențiale Fuzzy" – Vasile Lupulescu.

S-au prezentat apoi lucrări pe secțiuni: Algebră și Teoria Numerelor (5 lucrări), Geometrie și Topologie (8 lucrări), Analiză matematică, Calculul probabilităților, Statistică

Matematică (7 lucrări), Ecuații diferențiale și Mecanică (6 lucrări), Informatică și Analiză numerică (6 lucrări), Didactica Matematicii , 3 secțiuni (32 lucrări), Matematica în ciclul primar (5 lucrări), Problem Solving (5 lucrări), Istoria Matematicii (15 lucrări).

La secțiunea Istoria Matematicii a fost comemorat centenarul nașterii profesorului și matemticianului *Nicolae Teodorescu*, care a fost mai bine de un sfert de veac președinele Societății.

A fost organizată și o vizită la casa natală a lui *Gheorghe Vrănceanu*, de la Valea Hogii, com. Lipova, jud. Bacău, deocamdată singurul punct muzeal din țară dedicat unui matematician.

La sfârșitul Conferinței, organizatorii au oferit o cină colegială.

Mircea Trifu

ERATĂ

 ${\bf 1.}$ În G.M.-A nr. ${\bf 1}/2009,$ la soluția problemei 258 (pp. 81-83), la pag. 83, rândul 2 de sus, în loc de:

$$J_n^{(a,b)} = \int_a^b (-x^2 + (a+b)x - ab)^n dx,$$

se va citi:

$$J_n^{(a,b)} = \int_a^b (-x^2 + (a+b)x - ab)^{n+1/2} dx.$$

Redacția