

ACADEMIC UNDERGRADUATE STUDIES DIVISION

FIRSTSEMESTER 2020-2021

Course Handout (Part - II)

Date: 17.08.2020

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. :CHEM G554

Course Title : Physical Methods in Chemistry

Instructor-in-charge :Himanshu Aggarwal

Team of Instructors: Himanshu Aggarwal and Tanmay Chatterjee.

Course Description:

Advanced spectroscopic and non-spectroscopic techniques used in chemistry; Topics will include electronic absorption spectroscopy of organic and inorganic compounds, ORD, CD; vibrational rotational spectroscopy symmetry aspects; Dynamic and Fourier transform NMR, NOE, Multipulse methods, Two-Dimensional NMR; EPR; NQR; Mossbauer spectroscopy; Magnetism; Ionization Methods: Mass spectrometry, Ion Cyclotron Resonance; Photoelectron Spectroscopy; Microscopic techniques: TEM, STM, AFM; EXAFS, XANES; X-ray Crystallography,

Scope and Objective of the Course:

Chemists extensively use modern sophisticated electronic and optical instruments in various areas such as chemical analysis, structure elucidation, identification of reaction pathways, reaction rates etc. This course aims to introduce the basic theory and experimental details of such instrumentations. Some of the popular absorption spectroscopic techniques such as UV-Visible, IR, NMR, XRDetc. will be discussed in detail; other techniques such as XPS, mass spectrometry, thermal analysis, chromatographic techniques – GC, HPLC, etc. will also be covered.

Text Books:

T1. Gary D. Christian, "Analytical Chemistry", 6th ed., John Wiley & Sons (Asia) Pvt. Ltd. Singapore (2003).

T2. Kemp W, "Organic Spectroscopy", 3rd ed., Palgrave, New York (1991).

Reference Books:

- R1. Lampman G.M., Pavia D.L., Kriz G.S., and Vyvyan J.R., "Spectroscopy", 4th Edition, Cengage Learning (2010).
- R2.Silverstein R. M., and Webster F. X., "Spectrometric Identification of Organic Compounds",6th Edition, John Wiley & Sons, New York (1998).
- R3. Willard H. H., Merritt L. L., Dean J. A., and Settle F. A. Jr., "Instrumental Methods of Analysis", 7th Edition. Wadsworth, New York (1989).
- R4. Kalsi P. S., "Spectroscopy of Organic Compounds", 6th Edition, New Age International Publishers, New Delhi (2005).

Course Plan:

A. Lecture Sessions:

Lec. No.	Topics to be covered	Learning Objectives	Learning outcomes	Reference: Chap./Sec. #(Book)
1-2	Atomic absorption, emission spectroscopy	Specific atomic energy levels for different elements; instrumentation; quantitative estimations; interferences etc.	1)Will be able to interpretatomic absorption spectroscopy 2)Explain the basicprinciples of AAS. 3)Can Illustrate the workingprinciple and outline of AAS 4)RecallMaxwell's distribution law 5) Discuss the abovesimilaritieswithFlameemissionspectrophotometry	Ch 17 (T1)
3-4	Chromatographic Techniques: GC, HPLC, Electrophoresis	Theories of separation techniques; stationary and mobile phases etc.	1)Infer the theoretical aspects of techniques used for separation 2) Make use of mobile and stationery phases and estimate certain physical parameters dealing with the above mentioned techniques	Ch. 19 20.1, 21.1(T1)
5	Thermo analytical methods	Differential Thermal Analysis; Thermo Gravimetric Analysis; Differential Scanning Calorimetry etc.	1)Define and demonstrate the thermoanalytical methods: DTA, TGA and DSC 2)Conclude the changes in the sample, exothermic or endothermic can be detected relative to the inert reference 3) Develop knowledge pertaining to the appropriate use of the instrument for thermal analysis.	Ch. 20 (R3)
6	Electro analytical methods	Analytical methods based on measurements of current voltage etc.	1)State the basic principles under electroanalytical techniques 2)Mention and explain various methods for the determination of physical parameters coming across these techniques 3)Explain the concepts of electroanalytical and electrochemical cells 4) Extend basic equations of electrochemistry and their applications to electro analysis	Ch. 15 (T1)
7	Energy and Electromagnetic spectrum	Regions of Electromagnetic Spectrum; units.	 Explain the interaction between light and matter Contrast various regions of the electromagnetic spectrum Estimate the energy of transition and relate to the units 	Ch.1 (T2)

8	Ultraviolet (UV) and visible spectroscopy: Light Absorption, theory, instrumentation	Chromophore concept; electronic energy levels.	1)Relate the basic principle of UV-Vis spectroscopyand explain relevant terms 2) Outline the working principle, analyzing the spectra and extend the construction of device 3) Evaluate absorption parameters	4.1-4.3 (T2)
9-10	UV-Visible: Solvents, applications	Solvent effects; Absorption wavelength calculations based on empirical rules	1)Recall the basic concepts of electronic transitions and organize the study of solventeffecton UV-Spectra 2)Calculate the wavelength of absorption in conjuagtedsystemsusing Woodward rule	4.4-4.10 (T2)
11-12	Fluorescence and phosphorescence	Principles of fluorescence and phosphorescence and applications	1)Define fluorescence and phosphorescence 2)ElaborateJablonskiidiagram 3)Interpret fluorescence property of the molecules 4)Decidequenchingphenomenon 5)Fluorescence lifetime and its applications 6) Fluorescence microscopy	4S.2 (T2) & 16.15 (T1)
13	Infrared spectroscopy: Molecular vibrations; related factors	IR absorption due to molecular vibrations; influence of factors such as hydrogen bonding.	 Understanding the basis of IR spectroscopy and how Hooke's law is used in IR spectroscopy. Identify bonds which are IR active. Relate IR absorption to factors such as hydrogen bonding, dipole moment, hybridization etc. 	2.1-2.3 (T2)
14	Infrared spectroscopy: Instrumentation, Applications	IR instrumentation details; FT-IR; sample preparations recording details	 What are the key components/parts in an IR spectrometer? What is FT-IR? How to do sample recording? <u>Solid/Liquid/Gas</u> Basis of using a particular compound for sample preparation. 	2.4-2.7 (T2) & 2.1-2.9 (R1)
15	Infrared spectroscopy: Correlation charts; Supplementary materials	Obtaining structural information from IR spectrum; Reflectance mode IR spectra	 Analysis of an IR spectrum, to obtain information about presence of functional groups and also examine the possibility of gettingsome structural insights. IR in reflectance mode; key aspects. 	2.8-2S.3 (T2) & 2.10-2.21 (R1)
16-18	Characterization of materials by XPS and XRF	Basic theory and applications in characterizing various materials	Understanding the basis X-ray based absorption and emission techniques	Lecture notes
19-20	Characterization of materials by XRD	Basic theory of XRD and its application in characterizing different inorganic material	Analyzingability of diffractogramsfrom the XRD study	Lecture notes
21-22	Nuclear Magnetic Resonance (NMR) spectroscopy Proton NMR Theory, chemical shift, related factors	Understanding Magnetic Resonance phenomena and the concept of chemical shift	 Identifying magnetically active nuclei. Understanding the importance of nuclear spin. Basis of NMR spectroscopy. Showing the importance of chemical shift. 	3.1-3.4 (T2)

23-25	NMR- Correlation Data, Solvents, Integrals, spin- spin coupling, related factors	Extracting chemical shift related structural information from simple NMR spectrum; spin-spin coupling and its effect on the spectrum	 Solving the structure of molecule by using NMR data. Type of solvents to be used in NMR. What is spin-spin coupling and its role? 	3.5-3.9 (T2)
26-29	NMR- Non first order spectra, simplification of spectra, tables, ¹³ C NMR applications	What is meant by non-first order NMR spectrum; different methods of extracting information from such spectra; ¹³ C NMR how to interpret.	 Meaning of non-first order spectra and extracting structural information from such spectra. What is ¹³C NMR and how to interpret ¹³C NMR spectrum? 	3.10-3.16 (T2)
30-32	NMR- double irradiation, multi pulses, MRI, polarization techniques, other isotopes ¹⁹ F, ³¹ P, ¹⁵ N, ¹⁷ O etc.	Understanding a few of the advanced methods in NMR; Interpreting NMR spectra of nuclei other than ¹ H and ¹³ C	 What are the variousadvancedmethods in NMR and how to obtainmolecular structure related information fromthem? How to interpret NMR data for othermagnetically active nucleilike¹⁹F, ³¹P, ¹⁵N, ¹⁷O etc.? Whatis the basis of MRI? 	3S.1-3S.6 (T2)
33-34	Electron Spin Resonance Spectroscopy	Principles and applications of electron spin resonance spectroscopy	 Whatis ESR and how itisuseful ? Interpretation of ESR data. 	3S.7 (T2)
35-36	Mass spectrometry: Basics, Instrumentation, Isotopic abundance, and Molecular ion.	Principles of mass spectrometry; the effect of isotopic abundance in the mass spectrum	 Basic principle of mass spectroscopy. Understanding the effect of isotopic abundance in the mass spectrum. 	5.1-5.4 (T2) & 8.3-8.5 (R1)
37-38	Mass spectrometry: Metastable ions, fragmentation processes	Understanding the molecular fragmentations at the time of ionization and during flight; stabilities of fragments.	 Understanding the molecular fragmentations and stabilities of the fragments generated at the time of ionization and during flight. 	5.5-5.6 (T2)
39-41	Mass spectrometry: fragmentations associated with functional groups	Extracting the structural information from mass spectra	1) How to interpret mass spectrum?	5.7 (T2) & 8.6 (R1)
42	Mass spectrometry: Supplementary topics	Understanding different kind of mass spectrometers, hyphenated techniques such as GC-MS, isotopic substitution etc.	What are the differentkind of mass spectrometers and the techniques they use ?	5S.1-5S.5 (T2) & 8.2 (R1)

Evaluation Scheme: Total 200 marks

Components	Duration	Weightage	Date	Remarks
Test I	30 min	15%	Sep 10 –Sep 20	Open book
Test II	30 min	15%	Oct9–Oct 20	Open book
Test III	30 min	15%	Nov 10 –Nov 20	Open book
Surprise tests/Seminars/Assign ments*		20%	Continuous	Open book
Comprehensive Examination	2 h	35%	02/12 AN	Open book

^{*} This component will be conducted in the form of a combination of assignments, seminars, and/or quiz.

Chamber Consultation Hours: Will be announced later.

Notices: Notices, if any, concerning the course will be displayed on the notice board of Chemistry Department only.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Make-up Policy: Only for Genuine Cases.

Himanshu Aggarwal