1. Parabola

In[1]:= Plot[x^2, {x, -5, 5}]

2. Kubiskā parabola

 $ln[2]:= Plot[x^3, \{x, -2, 2\}]$

3. Vienādsānu hiperbola

 $In[3]:= Plot[1/x, \{x, -4, 4\}]$

4. Parabola (augšējais zars)

5. Kubiskā parabola

vai

$$In[6]:=$$
 Plot[Sign[x] * Abs[x]^(1/3), {x, -5, 5}]

6. Puskubiskā parabola

7. Neila parabola

ln[8]:= ParametricPlot[{t^3, t^2}, {t, -2, 2}]

8. Daiļveida funkcijas grafiks

9. Parabola

Out[10]= **1**

$$ln[12] = p = 3$$

ContourPlot[y^2 == 2p * x, {x, 0, 10}, {y, -10, 10}]

Out[12]= **3**

10. Hiperbola

ln[14]:= a = 2

b = 3

Out[14]= **2**

Out[15]= **3**

Labajam zaram

Out[17]= **1**

Out[18]= **1**

11. Elipse

 $ParametricPlot[\{a*Cos[t],b*Sin[t]\},\{t,0,2Pi\}]$

Out[20]= **3**

Out[21]= **2**

12. Eksponentfunkciju grafiki

 $ln[23]:= Plot[{e^x, e^{-x}}, {x, -3, 3}]$

13. Logaritmiskā līkne

14. Hiperbolisko funkciju grafiki

In[25]:= Plot[{Sinh[x]}, {x, -4, 4}] 20 10 Out[25]= -4 -10

-20

-30

Out[26]:= Plot
$$\left[\left\{\frac{e^{x}-e^{-x}}{2}\right\}, \{x, -4, 4\}\right]$$

15. Hiperbolisko funkciju grafiki

In[28]:= Plot $\left[\left\{\frac{e^{x}+e^{-x}}{2}\right\}, \{x, -4, 4\}\right]$

16. Varbūtību līkne

In[29]:=
$$Plot[{e^{-x^2}}, {x, -3, 3}]$$

17. Cikloīda

Out[30]= 2

18. Astroīda

$$In[32]:= a = 4$$

$$ParametricPlot\big[\big\{a*\big(Cos[t]^3\big),\,a*\big(Sin[t]^3\big)\big\},\,\{t,\,-4\,Pi,\,4\,Pi\}\big]$$

Out[32]= **4**

19. Traktrise

$$ln[34]:= a = 1$$

$$ParametricPlot\Big[\Big\{a*\left(Cos[t]+Log\left[e,Tan\left[\frac{t}{2}\right]\right]\right),\ a*\left(Sin[t]^3\right)\Big\},\ \{t,-2\,Pi,\,2\,Pi\}\Big]$$

Out[34]= 1

20. Dekarta lapa

In[36]:= a = 3

ParametricPlot
$$\left[\left\{ \frac{3 * a * t}{1 + t^3}, \frac{3 * a * t^2}{1 + t^3} \right\}, \{t, -4, 4\} \right]$$

Out[36]= **3**

Out[38]= **3**

21. Dioklēsa cisoīda

ParametricPlot
$$\left[\left\{ \frac{a * t^2}{1 + t^2}, \frac{a * t^3}{1 + t^2} \right\}, \{t, -2, 2\} \right]$$

Out[40]= 3

22. Strofoīda

$$ln[42]:= a = 1$$
PolarPlot $\left[\frac{a * (1 + Sin[t])}{Cos[t]}, \{t, 0, 2Pi\}\right]$

Out[42]= **1**

23. Riņķa evolvente

24. Anjēzes līnija

$$\begin{array}{ll} & \text{In}[46] := & \text{a} = 1 \\ & \text{ParametricPlot} \Big[\Big\{ 2 * \text{a} * \text{Tan}[t] \text{, } 2 * \text{a} * \Big(\text{Cos}[t] \Big) ^2 \Big\} \text{, } \{ \text{t, } -1.2 \text{, } 1.2 \} \Big] \\ \end{array}$$

25. Arhimeda spirāle

$$ln[48]:=$$
 a = 1
PolarPlot[a * ϕ , { ϕ , 0, 5 Pi}]

Out[48]= **1**

26. Hiperboliskā spirāle

$$ln[50]:=$$
 a = 1
PolarPlot $\left[\frac{a}{\phi}, \{\phi, 0, 3 \text{ Pi}\}\right]$

Out[50]= **1**

27. Logaritmiskā spirāle

$$ln[52]:=$$
 a = 1
PolarPlot[$e^{a*\phi}$, { ϕ , -3.1, 3.1}]

Out[52]= **1**

vai

In[54]:= **a = 1** PolarPlot[E^(a \star ϕ), { ϕ , -4, 2}]

Out[54]= **1**

vai

ParametricPlot[
$$\{a * E^{(b * t)} * Cos[t], a * E^{(b * t)} * Sin[t]\}$$
, $\{t, -3, 4\}$]

Out[56]= **1**

Out[57]= **1**

28. Bernulli lemniskata

Out[59]= **1**

In[61]:= **a = 1**

ParametricPlot
$$\left[\left\{ \frac{a * Cos[t]}{1 + \left(Sin[t] \right)^2}, \frac{a * Sin[t] * Cos[t]}{1 + \left(Sin[t] \right)^2} \right\}, \{t, -10, 10\} \right]$$

Out[61]= 1

29. Paskāla līkne

$$ln[63]:= a = 2$$

 $b = 1$
 $PolarPlot[b + a * Cos[\phi], {\phi, -6, 6}]$

Out[63]= 2

Out[64]= **1**

30. Kordioīda

$$\ln[66] = \mathbf{a} = \mathbf{1}$$

$$\operatorname{PolarPlot}\left[\mathbf{a} * \left(\mathbf{1} + \operatorname{Cos}\left[\phi\right]\right), \{\phi, -5, 5\}\right]$$

Out[66]= **1**

31. Kardioīda

$$\ln[68] = \mathbf{a} = \mathbf{1}$$

$$\operatorname{PolarPlot}\left[\mathbf{a} * \left(\mathbf{1} + \operatorname{Sin}\left[\phi\right]\right), \{\phi, -5, 5\}\right]$$

Out[68]= **1**

32. Kardioīda

33. Trīslapu roze

$$ln[72]:=$$
 a = 1
PolarPlot[a * Cos[3 * ϕ], { ϕ , -5, 5}]

Out[72]= **1**

34. Trīslapu roze

PolarPlot[
$$a * Sin[3 * \phi], \{\phi, -5, 5\}$$
]

Out[74]= 1

35. Četrlapu roze

$$ln[76]:= a = 1$$
PolarPlot[a * Sin[2 * ϕ], { ϕ , -5, 5}]

Out[76]= **1**

36. Četrlapu roze

$$ln[78]:=$$
 a = 1
PolarPlot[a * Cos[2 * ϕ], { ϕ , -5, 5}]

Out[78]= **1**

37. Riņķa līnija

Out[80]= **1**

38. Riņķa līnija

Out[82]= **1**

39. Riņķa līnija

In[84]:= **a = 1** PolarPlot[$2*a*Sin[\phi]$, $\{\phi, 0, Pi\}$]

Out[84]= **1**

Stereometrija

1. Riņķa cilindrs

In[86]:=
$$r = 1$$

ContourPlot3D[$x^2 + y^2 = r^2$, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]

Out[86]= **1**

2. Paraboliskais cilindrs

$$\begin{aligned} & & \text{In}[88] := & p = 1 \\ & & \text{ContourPlot3D}[x^2 == 2 * p * y, \{x, -2, 2\}, \{y, -2, 2\}, \{z, -2, 2\}] \\ & \text{Out}[88] := & 1 \end{aligned}$$

3. Hiperboliskais cilindrs

$$\label{eq:contourPlot3D} $$ \inf_{y = 3} ContourPlot3D[x^2/a^2-y^2/b^2 = 1, \{x, -10, 10\}, \{y, -10, 10\}, \{z, -10, 10\}] $$ Out[90] = 2$$$

4. Konuss

5. Sfēra

In[95]:= **a = 0** c = 0R = 1 $ContourPlot3D \Big[\ (x-a) \ ^2 + \ (y-b) \ ^2 + \ (z-c) \ ^2 = R^2, \ \{x, -1, 1\}, \ \{y, -1, 1\}, \ \{z, -1, 1\} \Big] \Big] \\$

Out[95]= **0**

Out[96]= **0**

Out[97]= **0**

Out[98]= **1**

6. Elipsoīds

In[100]:= a = 3b = 2ContourPlot3D[$x^2/a^2+y^2/b^2+z^2/c^2=1$, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}] Out[100]= 3

Out[101]= **2**

Out[102]= **2**

7. Viendobuma hiperboloīds

```
In[104]:= a = 1
      b = 1
      ContourPlot3D[x^2/a^2+y^2/b^2-z^2/c^2=1, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}]
Out[104]= 1
```

Out[105]= **1** Out[106]= **2**

8. Divdobumu hiperboloīds

In[108]:= **a = 1** b = 1ContourPlot3D[$x^2/a^2+y^2/b^2-z^2/c^2 = -1$, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]

Out[108]= **1**

Out[109]= **1**

Out[110]= **1**

9. Eliptiskais paraboloīds

$$ln[112]:= a = 1$$

 $b = 1$

ContourPlot3D
$$\left[\frac{x^2}{a^2} + \frac{y^2}{b^2} = z, \{x, -1, 1\}, \{y, -1, 1\}, \{z, -1, 1\}\right]$$

Out[112]= **1**

Out[113]= **1**

10. Hiperboliskais paraboloīds (seglu virsma)

ContourPlot3D
$$\left[\frac{x^2}{a^2} - \frac{y^2}{b^2} = -z, \{x, -1, 1\}, \{y, -2, 2\}, \{z, -2, 2\}\right]$$

Out[115]= **1**

Out[116]= **1**

11. Tors

In[118]:=
$$a = 3$$

 $b = 1$
ContourPlot3D[$(x^2 + y^2 + z^2 + a^2 - b^2)^2 = 4 * a^2 * (x^2 + y^2), \{x, -4, 4\}, \{y, -4, 4\}, \{z, -4, 4\}$]
Out[118]= 3

12. Katenoīds

ContourPlot3D[
$$(y^2 + z^2) = \frac{a^2}{4} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right)^2, \{x, -3, 3\}, \{y, -3, 3\}, \{z, -3, 3\}$$
]

Out[121]= **1**

Out[122]= **1**

