Math 51 Notes

Sreeprasad Govindankutty

January 8, 2025

Contents

1	Pla	nes in \mathbb{R}^3	2
	1.1	Exercise 3.1	2
	1.2	Exercise 3.2	3
	1.3	Exercise 3.3	4
	1.4	Exercise 3.4	5
	1.5	Exercise 3.5	6
	1.6	Exercise 3.6	9
2	Spa	n, subspaces, and dimension	L1
	2.1	Exercise 4.1	11
	2.2	Exercise 4.2	15
	2.3	Exercise 4.3	16
	2.4	Exercise 4.4	18
	2.5	Exercise 4.5	20
	2.6	Exercise 4.6	21
	2.7	Exercise 4.7	21
	2.8	Exercise 4.8	26
	2.9	Exercise 4.9	28
	2.10	Exercise 4.10	31

1 Planes in \mathbb{R}^3

1.1 Exercise 3.1

Consider the three different points (3, -2, 5), $(\frac{1}{2}, 0, 4)$, and (1, -2, 10) in \mathbb{R}^3 .

(a) Use difference vectors to show these points are not on a common line, so there is exactly one plane \mathcal{P} containing all of them. Let

$$P = (3, -2, 5)$$
$$Q = \frac{1}{2}, 0, 4$$
$$R = (1, -2, 10)$$

$$\overrightarrow{PQ} = Q - P = \begin{bmatrix} \frac{5}{2} \\ 2 \\ -1 \end{bmatrix}$$

$$\overrightarrow{PR} = R - P = \begin{bmatrix} -2\\0\\5 \end{bmatrix}$$

we need to check whether \overrightarrow{PQ} and \overrightarrow{PR} are linearly independent. There should not be any scalar a and b both non-zero such that

$$a\overrightarrow{PQ} + b\overrightarrow{PR} = 0$$

$$a. \begin{bmatrix} \frac{5}{2} \\ 2 \\ -1 \end{bmatrix} + b. \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} = 0$$
$$\frac{5}{2}a - 2b = 0$$
$$2a = 0$$
$$-a + 5b = 0$$

Substituting

$$a = 0$$

we get

$$0 + 5.b = 0$$

This gives

$$a = 0, b = 0$$

This shows that \overrightarrow{PQ} and \overrightarrow{PR} are linearly independent and the points

are not on a common line . So there is exactly one plat \mathcal{P} containing all of them.

(b) Give a parametric form for the plane \mathcal{P} from (a).

The plane consists of all vectors of the form

$$P + t\overrightarrow{PQ} + t'\overrightarrow{PR}$$

for scalars t and t'

$$\begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} + t \begin{bmatrix} \frac{5}{2} \\ 2 \\ -1 \end{bmatrix} + t' \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$

The parametric form of equation is

$$X = \begin{bmatrix} 3 + \frac{5}{2}t - 2t' \\ -2 + 2t \\ 5 - t + 5t' \end{bmatrix}$$

1.2 Exercise 3.2

Give an equation describing the plane \mathcal{P} in Exercise 3.1

Let non-zero vector n =

 $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

that is perpendicular to all direction of plane in Exercise 3.1 As the normal vector n is perpendicular we have

$$n.\overrightarrow{PQ} = 0$$
$$n.\overrightarrow{PR} = 0$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} \frac{5}{2} \\ 2 \\ -1 \end{bmatrix} = 0$$
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} = 0$$
$$\frac{5}{2}a + 2b - c = 0$$
$$-2a + 5c = 0$$

Substituting $c = \frac{5}{2}a + 2b$ we get

$$-2a + 5(\frac{5}{2}a + 2b) = 0$$
$$-4a + 25a + 20b = 0$$
$$\frac{-21}{20}a = b$$
$$c = \frac{5}{2}a + 2 * \frac{-21}{20}a$$

$$c = \frac{9}{20}a$$

It follows that n =

$$\begin{bmatrix} a \\ \frac{-21}{20}a \\ \frac{9}{20}a \end{bmatrix}$$

when $n \neq 0$ and $a \neq 0$, let's put a = 1

$$\begin{bmatrix} 1 \\ \frac{-21}{20} \\ \frac{9}{20} \end{bmatrix}$$

Finally let

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

be a point on the plane. The vector from P (3,-2,5) to the above point is the difference vector

$$\begin{bmatrix} x - 3 \\ y - 2 \\ z - 5 \end{bmatrix}$$

The vector from P (3,-2,5) to the above point is perpendicular to the normal vector n, So

$$\begin{bmatrix} x-3\\y-2\\z-5 \end{bmatrix} \cdot \begin{bmatrix} 1\\\frac{-21}{20}\\\frac{9}{20} \end{bmatrix} = 0$$

$$x - 3 - (y - 3)\frac{21}{20} + (z - 5).\frac{9}{20} = 0$$

$$20x - 60 - 21y + 63 + 9z - 45 = 0$$

$$20x - 21y + 9z = 42$$

1.3 Exercise 3.3

Find the parametric form for the plane \mathbb{R}^3 given by the equation

$$6x - 6y - z = 7$$

Let

$$x = 1, y = 1$$

Then we from the equation

$$6x - 6y - z = 7$$

we have z = -7 So

$$P = (1, 1, -7)$$

Let

$$x = 0, y = 1$$

Then we from the equation

$$6x - 6y - z = 7$$

we have z = -13 So

$$Q = (0, 1, -13)$$

Let

$$x = 1, y = 0$$

Then we from the equation

$$6x - 6y - z = 7$$

we have z = -1 So

$$R = (1, 0, -1)$$

The parametric form of the for a plane is given by

$$P + t\overrightarrow{PQ} + t'\overrightarrow{PR}$$

$$\overrightarrow{PQ} = \begin{bmatrix} -1\\0\\-6 \end{bmatrix}$$

$$\overrightarrow{PR} = \begin{bmatrix} 0\\-1\\6 \end{bmatrix}$$

$$P + t\overrightarrow{PQ} + t'\overrightarrow{PR} = \begin{bmatrix} -7\\1\\1 \end{bmatrix} + t \cdot \begin{bmatrix} -1\\0\\-6 \end{bmatrix} + t' \begin{bmatrix} 0\\-1\\6 \end{bmatrix} = \begin{bmatrix} 1-t\\1-t'\\-7-6t+6t' \end{bmatrix}$$

1.4 Exercise 3.4

Find the equation for the plane parallel to

$$4x - 7y + 2z = 1$$

and passing through the point

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

The equation of a plane is given by

$$Ax + By + Cz = D$$

where A,B,C are coefficients of plane's normal vector and D is the constant. The given plane is

$$4x - 7y + 2z = 1$$

So the plane parallel to given plane will also have the same coefficients of plane's normal vector. So the equation of the new plane parallel to given plane is also

$$4x - 7y + 2z = D$$

As the new plane passes through the point

 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

, we can substitute this point in above equation:

$$4.1 - 7.2 + 2.3 = D$$

$$D = -4$$

So the equation for the plane parallel to

$$4x - 7y + 2z = 1$$

and passing through the point

 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

is

$$4x - 7y + 2z = -4$$

1.5 Exercise 3.5

Let P, Q be different points in \mathbb{R}^3 , and let \mathcal{P} be the collection of 3-vectors \mathbf{v} with the same distance from P and from Q:

$$\|\mathbf{P} - \mathbf{v}\| = \|\mathbf{Q} - \mathbf{v}\|.$$

(a) By squaring both sides of the distance equality and using that $\|\mathbf{w}\|^2 = \mathbf{w} \cdot \mathbf{w}$, show that \mathcal{P} consists of exactly those 3-vectors \mathbf{v} satisfying

$$\mathbf{v} \cdot (\mathbf{P} - \mathbf{Q}) = \frac{1}{2} \left(\|\mathbf{P}\|^2 - \|\mathbf{Q}\|^2 \right).$$

In particular, the plane \mathcal{P} has (nonzero) normal direction $\mathbf{P} - \mathbf{Q}$. Draw a picture to illustrate why it is reasonable that this is a plane with normal direction $\mathbf{P} - \mathbf{Q}$. Solution:

$$\|\mathbf{P} - \mathbf{v}\| = \|\mathbf{Q} - \mathbf{v}\|.$$

Squaring both sides:

$$\|\mathbf{P}\|^2 + \|\mathbf{v}\|^2 - 2(\mathbf{P} \cdot \mathbf{v}) = \|\mathbf{Q}\|^2 + \|\mathbf{v}\|^2 - 2(\mathbf{Q} \cdot \mathbf{v})$$

Rearranging the terms

$$\mathbf{v} \cdot (\mathbf{P} - \mathbf{Q}) = \frac{1}{2} (\|\mathbf{P}\|^2 - \|\mathbf{Q}\|^2).$$

See diagram below:

(b) For the case
$$\mathbf{P} = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$$
 and $\mathbf{Q} = \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix}$, give an explicit equation for the plane \mathcal{P} .

We have

$$\mathbf{v} \cdot (\mathbf{P} - \mathbf{Q}) = \frac{1}{2} (\|\mathbf{P}\|^2 - \|\mathbf{Q}\|^2).$$

$$P = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}, Q = \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix}$$

$$P - Q = \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix}$$

$$\|(\mathbf{P}\|)^2 = (3^2 + 4^2 + 3^2) = (9 + 16 + 9) = 34$$

$$\|(\mathbf{Q}\|)^2 = ((-1)^1 + (5)^2 + (-2)^2) = (1 + 25 + 4) = 30$$

Let

$$\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

be any point on the plane.

$$\mathbf{v} \cdot (\mathbf{P} - \mathbf{Q}) = \frac{1}{2} (\|\mathbf{P}\|^2 - \|\mathbf{Q}\|^2).$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix} = \frac{1}{2} \left(\|\mathbf{P}\|^2 - \|\mathbf{Q}\|^2 \right)$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix} = \frac{34 - 30}{2} = 2$$

Equation for the plane \mathcal{P} :

$$4x - y + 5z = 2$$

1.6 Exercise 3.6

Consider the following four points: P=(0,0,0), Q=(0,1,2), R=(1,-2,3), S=(1,0,7)

(a) Using difference vectors, show that no three of these points are collinear.

Solution:

$$\vec{PQ} = (0 - 0, 1 - 0, 2 - 0) = (0, 1, 2)$$

 $\vec{PR} = (1, -2, 3)$
 $\vec{PS} = (1, 0, 7)$

For checking the collinearity, check the dot product. If dot product is 0, then the points are collinear.

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix}$$
$$= i(3+4) - j(0-2) + k(0-1) = 7i + 2j - k$$

As

$$\vec{PQ} \times \vec{PR} \neq 0$$
.

 \vec{PQ} and \vec{PR} are not collinear

$$\vec{PR} \times \vec{PS} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 3 \\ 1 & 0 & 7 \end{vmatrix} = \mathbf{i} \begin{vmatrix} -2 & 3 \\ 0 & 7 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 3 \\ 1 & 7 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} = i(-14 - 0) - j(7 - 3) + k(0 + 2) = -14i - 4j + 2k$$

As

$$\vec{PR} \times \vec{PS} \neq 0$$
,

 \vec{PR} and \vec{PS} are not collinear

$$\vec{PQ} \times \vec{PS} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 1 & 0 & 7 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 1 & 2 \\ 0 & 7 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 0 & 2 \\ 1 & 7 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = i(7-0) - j(0-2) + k(0-1) = 7i + 2j - k$$

As

$$\vec{PQ} \times \vec{PS} \neq 0$$
,

 \vec{PQ} and \vec{PS} are not collinear No pair of difference vectors is linearly dependent, so no three points are collinear.

(b) Show that the four points all lie in the same plane in \mathbb{R}^3 by finding the equation of such a plane. (As a safety measure, you might want to check in private that the four points really lie on that plane.) Solution:

The equation of a plane is given by

$$Ax + By + Cz = D$$

where A,B,C are coefficients of plane's normal vector and D is the constant.

$$\vec{PQ} \times \vec{PR} = 7i + 2j - k$$

The normal vector is (7,2,-1) Substituting we get

$$7x + 2y - z = D$$

As the plane passes through the point(0,0,0) we can substitute to get D

$$7.0 + 2.0 + -1.0 = D$$

$$D = 0$$

So equation of plane is

$$7x + 2y - z = 0$$

Verifying all the points lie on the plane Q = (0,1,2)

$$(7.0) + (2.1) - (1.2) = 0$$

$$R = (1,-2,3)$$

$$(7.1) + (2. - 2) - (1.3) = 7 - 4 - 3 = 0$$

$$R = (1,0,7)$$

$$(7.1) + (2.0) - (1.7) = 7 - 7 = 0$$

All points satisfy the equation, so they lie on the same plane.

2 Span, subspaces, and dimension

2.1 Exercise 4.1

(a)

$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : z = 2x - y \right\}$$

A set of vectors $S \subseteq \mathbb{R}^n$ is a linear subspace if and only if:

- (a) The zero vector is in S.
- (b) S is closed under vector addition: if $\mathbf{u}, \mathbf{v} \in S$, then $\mathbf{u} + \mathbf{v} \in S$.
- (c) S is closed under scalar multiplication: if $\mathbf{u} \in S$ and $c \in \mathbb{R}$, then $c \cdot \mathbf{u} \in S$.

Checking each condition:

(a) The zero vector is in S.

$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Check if it satisfies z = 2x - y:

$$2 \cdot 0 - 0 = 0.$$

This is true, so the zero vector is in the set.

(b) S is closed under vector addition.

Let

$$\mathbf{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}.$$

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix}.$$

$$z_1 + z_2 = 2 \cdot (x_1 + x_2) - (y_1 + y_2).$$

$$z_1 = 2 \cdot x_1 - y_1, \quad z_2 = 2 \cdot x_2 - y_2.$$

$$z_1 + z_2 = 2 \cdot (x_1 + x_2) - (y_1 + y_2).$$

Thus, the set is closed under addition.

(c) S is closed under scalar multiplication.

Let

$$\mathbf{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

$$c \cdot \mathbf{u} = \begin{bmatrix} cx \\ cy \\ cz \end{bmatrix}.$$

$$cz = 2 \cdot (cx) - (cy).$$

But

$$z = 2x - y.$$

So

$$cz = c(2x - y) = 2 \cdot (cx) - (cy).$$

Thus, the set is closed under scalar multiplication. So this is a linear subspace.

(b)

$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : z = 1 + 2x - y \right\}$$

A set of vectors $S \subseteq \mathbb{R}^n$ is a linear subspace if and only if:

- (a) The zero vector is in S.
- (b) S is closed under vector addition: if $\mathbf{u}, \mathbf{v} \in S$, then $\mathbf{u} + \mathbf{v} \in S$.
- (c) S is closed under scalar multiplication: if $\mathbf{u} \in S$ and $c \in \mathbb{R}$, then $c \cdot \mathbf{u} \in S$.

Checking each condition:

(a) The zero vector is in S.

$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Check if it satisfies z = 1 + 2x - y:

$$2 \cdot 0 - 0 = 1 \neq 0$$

This is false, so the zero vector is not in the set. So this is not a linear subspace.

(c)

$$\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : y = x^2 \right\}$$

A set of vectors $S \subseteq \mathbb{R}^n$ is a linear subspace if and only if:

(a) The zero vector is in S.

(b) S is closed under vector addition: if $\mathbf{u}, \mathbf{v} \in S$, then $\mathbf{u} + \mathbf{v} \in S$.

(c) S is closed under scalar multiplication: if $\mathbf{u} \in S$ and $c \in \mathbb{R}$, then $c \cdot \mathbf{u} \in S$.

Checking each condition:

(a) The zero vector is in S.

$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Check if it satisfies $y = x^2$:

$$0 = 0^2 = 0$$

This is true, so the zero vector is in the set.

(b) S is closed under vector addition: if $\mathbf{u}, \mathbf{v} \in S$, then $\mathbf{u} + \mathbf{v} \in S$.

Let

$$\mathbf{u} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}.$$

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix}.$$

$$y_1 + y_2 = (x_1 + x_2)^2$$

Here

$$y1 = x1^2, y2 = x2^2$$

 $y1 + y2 = x1^2 + x2^2 \neq (x1 + x2)^2$

S is NOT closed under vector addition. So this is not a linear subspace.

(d)

$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : \frac{3x - y + z = 0}{x + y - 4z = 0} \right\}$$

A set of vectors $S \subseteq \mathbb{R}^n$ is a linear subspace if and only if:

- (a) The zero vector is in S.
- (b) S is closed under vector addition: if $\mathbf{u}, \mathbf{v} \in S$, then $\mathbf{u} + \mathbf{v} \in S$.
- (c) S is closed under scalar multiplication: if $\mathbf{u} \in S$ and $c \in \mathbb{R}$, then $c \cdot \mathbf{u} \in S$.

Checking each condition:

(a) The zero vector is in S.

$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Check if it satisfies

$$3x - y + z = 0,$$

$$x + y - 4z = 0$$

$$3 \cdot 0 - 0 + 0 = 0$$

$$0 + 0 - 4.0 = 0$$

This is true, so the zero vector is in the set.

(b)

(c) S is closed under vector addition.

Let

$$\mathbf{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}.$$

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix}.$$

$$3x - y + z = 0,$$

$$x + y - 4z = 0$$

$$z = -3x + y$$

$$z = (x + y)/4$$

$$z_1 + z_2 = -3(x_1 + x_2) + y$$

$$-3(x_1) + y_1 + -3(x_2) + y_2 = -3(x_1 + x_2) + y_1 + y_2$$

$$-3(x_1 + x_2) + y_1 + y_2 = -3(x_1 + x_2) + y_1 + y_2$$

$$z1 + z_2 = (x_1 + x_2 + y_1 + y_2)/4$$
$$(x_1 + y_1)/4 + (x_2 + y_2)/4 = (x_1 + x_2 + y_1 + y_2)/4$$
$$(x_1 + y_1 + x_2 + y_2)/4 = (x_1 + x_2 + y_1 + y_2)/4$$

This is true so S is closed under vector addition.

(d) S is closed under scalar multiplication.

Let

$$\mathbf{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

$$c \cdot \mathbf{u} = \begin{bmatrix} cx \\ cy \\ cz \end{bmatrix}.$$

$$cz = -3cx_1 + cy_1$$

$$c(-3x_1 + y_1) = -3cx_1 + cy_1$$

$$-3cx_1 + cy_1 = -3cx_1 + cy_1$$

$$cz_1 = (cx_1 + cy_1)/4$$

$$c(x_1 + y_1)/4 = (cx_1 + cy_1)/4$$

$$(cx_1 + cy_1)/4 = (cx_1 + cy_1)/4$$

This is true so S is closed under scalar multiplication. So this is a linear subspace.

2.2 Exercise 4.2

For

$$v = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$,

find scalars a, b, c so that

$$\operatorname{span}(v, w) = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : ax + by + cz = 0 \right\}.$$

Here ax + by + cz = 0

From

$$v = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

we have

$$a(2) + 0(b) + 1(c) = 0$$

 $c = -2(a)$

From

$$w = \begin{bmatrix} -1\\1\\3 \end{bmatrix}$$

we have

$$a(-1) + 1(b) + 3(c) = 0$$
$$b = a - 3c$$

Therefore we have scalars a,b,c such that

$$b = a - 3c$$

$$c = -2a$$

Substituting a = 1

$$c = -2$$

$$b = 1 - 3(-2.1) = 7$$

Substituting we have

$$1(x) + 7(y) + -2(z) = 0$$

From

$$v = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

$$1(x) + 7(y) + -2(z) = 0$$

we have

$$1(2) + 7(0) + -2(1) = 2 - 2 = 0$$

From

$$w = \begin{bmatrix} -1\\1\\3 \end{bmatrix}$$

we have

$$1(x) + 7(y) + -2(z) = 0$$

$$1(-1) + 7(1) + -2(3)$$

$$=-1+7+-6=-7+7=0$$

The resulting triplets work.

2.3 Exercise 4.3

For

$$v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$,

find scalars a, b, c so that

$$\operatorname{span}(v, w) = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : ax + by + cz = 0 \right\}.$$

For

$$v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$,

find scalars a, b, c so that

$$\operatorname{span}(v, w) = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : ax + by + cz = 0 \right\}.$$

Here ax + by + cz = 0

From

$$v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

we have

$$a(1) + 1(b) + 1(c) = 0$$

 $b = -(a + c)$

From

$$w = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$

we have

$$a(4) + 2(b) + 1(c) = 0$$

 $c = -(4a + 2b)$

Therefore we have scalars a,b,c such that

$$b = -(a+c)$$

$$c = -(4a + 2b)$$

Substituting a = 1 and solving for b and c we get

$$c = 2$$

$$b = -3$$

Substituting we have

$$1(x) - 3(y) + 2(z) = 0$$

From

$$v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
$$1(x) - 3(y) + 2(z) = 0$$

we have

$$1(1) - 3(1) + 2(1) = 3 - 3 = 0$$

From

$$w = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$

we have

$$1(x) - 3(y) + 2(z) = 0$$
$$1(4) + -3(2) + 2(1)$$
$$= 6 - 6 = 0$$

The resulting triplets work.

2.4 Exercise 4.4

For the 4-vectors

$$w = \begin{bmatrix} -2\\2\\1\\1 \end{bmatrix} \quad \text{and} \quad w' = \begin{bmatrix} 3\\4\\0\\1 \end{bmatrix},$$

show that the collection of vectors

$$V = \left\{ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 : x \cdot w = 0, \ x \cdot w' = 0 \right\}$$

is a linear subspace of \mathbb{R}^4 in each of the following ways:

- (a) For $x \in V$, solve for each of x_3 and x_4 in terms of x_1 and x_2 to write V as a span of two vectors;
- (b) For $x \in V$, solve for each of x_1 and x_4 in terms of x_2 and x_3 to write V as a span of two vectors.

Solution:

(a) For w, $w \cdot x = -2x_1 + 2x_2 + x_3 + x_4 = 0 \quad \Rightarrow \quad x_3 + x_4 = 2x_1 - 2x_2 \tag{1}$

For w',

$$w' \cdot x = 3x_1 + 4x_2 + x_4 = 0 \quad \Rightarrow \quad x_4 = -3x_1 - 4x_2 \tag{2}$$

Substitute x_4 from (2) into (1):

$$x_3 + (-3x_1 - 4x_2) = 2x_1 - 2x_2$$
$$x_3 = 5x_1 + 2x_2 \tag{3}$$

Thus, the components of x are:

$$x_3 = 5x_1 + 2x_2, \quad x_4 = -3x_1 - 4x_2$$

Substitute these into x:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ 5x_1 + 2x_2 \\ -3x_1 - 4x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 5 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 2 \\ -4 \end{bmatrix}$$

The basis vectors are:

$$\begin{bmatrix} 1\\0\\5\\-3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\-4 \end{bmatrix}.$$

(b) For w,

$$w \cdot x = -2x_1 + 2x_2 + x_3 + x_4 = 0 \quad \Rightarrow \quad x_4 = -2x_1 + 2x_2 - x_3 \tag{4}$$

For w',

$$w' \cdot x = 3x_1 + 4x_2 + x_4 = 0 \quad \Rightarrow \quad x_4 = -3x_1 - 4x_2 \tag{5}$$

Equating x_4 from (4) and (5):

$$-2x_1 + 2x_2 - x_3 = -3x_1 - 4x_2$$

Simplify:

$$x_1 + 6x_2 - x_3 = 0 \quad \Rightarrow \quad x_1 = -6x_2 + x_3$$
 (6)

Substitute x_1 from (6) into (4):

$$x_4 = -2(-6x_2 + x_3) + 2x_2 - x_3$$

$$x_4 = 12x_2 - 2x_3 + 2x_2 - x_3$$

$$x_4 = 14x_2 - 3x_3$$
(7)

Thus, the components of x are:

$$x_1 = -6x_2 + x_3$$
, $x_4 = 14x_2 - 3x_3$

Substitute these into x:

$$x = \begin{bmatrix} -6x_2 + x_3 \\ x_2 \\ x_3 \\ 14x_2 - 3x_3 \end{bmatrix} = x_2 \begin{bmatrix} -6 \\ 1 \\ 0 \\ 14 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \\ -3 \end{bmatrix}$$

The basis vectors are:

$$\begin{bmatrix} -6\\1\\0\\14 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\-3 \end{bmatrix}.$$

2.5 Exercise 4.5

Find a nonzero 3-vector \mathbf{v} so that

$$\left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = 0, \ \mathbf{x} \cdot \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} = 0 \right\} = \mathrm{span}(\mathbf{v}).$$

Then, using the *geometric* fact that any two different planes through the origin in \mathbb{R}^3 meet along a line through the origin, interpret this algebraic outcome that the left side is the span of a single vector.

Solution:

Let a,b,c be scalar so that

$$3a + 2b + c = 0$$

$$b = \frac{-c - 3a}{2}$$

$$-2a - b + c = 0$$

$$-2a - \frac{-c - 3a}{2} + c = 0$$

$$c = \frac{a}{3}$$

$$2b = -\frac{a}{3} - 3a$$

$$b = -\frac{5a}{3}$$
(1)

writing v in terms of a,

$$\begin{bmatrix} a \\ -\frac{5a}{3} \\ \frac{a}{3} \end{bmatrix}$$

$$v = a. \begin{bmatrix} 1 \\ -\frac{5}{3} \\ \frac{1}{3} \end{bmatrix}$$

The two planes defined by the equations

$$3a + 2b + c = 0 \tag{2}$$

$$-2a - b + c = 0 \tag{3}$$

intersect along a line through the origin in \mathbb{R}^3 This line is spanned by the vector v. Hence, the solution set is

$$a. \begin{bmatrix} 1 \\ -\frac{5}{3} \\ \frac{1}{3} \end{bmatrix}$$

Here $a \neq 0$ so the span is

$$\begin{bmatrix} 1 \\ -\frac{5}{3} \\ \frac{1}{3} \end{bmatrix}$$

2.6 Exercise 4.6

Find a pair of 3-vectors \mathbf{v}, \mathbf{w} so that

$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : 2x - 3y + 2z = 0 \right\} = \operatorname{span}(\mathbf{v}, \mathbf{w}).$$

we have

$$2x - 3y + 2z = 0$$

Therefore

$$x = \frac{3y - 2z}{2}$$

we can write x=

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

as x=

$$\begin{bmatrix} \frac{3y-2z}{2} \\ y \\ z \end{bmatrix}$$

x =

$$y \begin{bmatrix} \frac{3}{2} \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Two linearly independent vectors spanning the subspace are:

$$v1 = \begin{bmatrix} \frac{3}{2} \\ 1 \\ 0 \end{bmatrix}$$

and

$$v2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

2.7 Exercise 4.7

post (a)

$$V = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad W = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$V = \begin{bmatrix} -23 \\ -4 \end{bmatrix}$$

Find scalars a, b, c,d such that

$$v_1 = c_1 + q_1 \omega$$

$$v' = \alpha \begin{bmatrix} 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$a + b = 3$$

$$b = 1$$

$$a - b = 1$$

$$\Rightarrow a = 2$$

post (b)

The maximal vector perpendicular to

The maximal vector perpendicular to

y and w is got by the

vxw =
$$\begin{vmatrix} i & j & k \\ 0 & l & l \\ 0 & l & l \end{vmatrix}$$
 $v \times w = \begin{vmatrix} i & j & k \\ 0 & l & l \\ 0 & l & l \end{vmatrix}$
 $v \times w = \begin{vmatrix} i & j & k \\ 0 & l & l \\ 0 & l & l & l \end{vmatrix}$
 $v \times w = \begin{vmatrix} i & j & k \\ 0 & l & l \\ 0 & l & l & l \end{vmatrix}$
 $v \times w = \begin{vmatrix} i & l & l & l \\ 0 & l & l & l \\ 0 & l & l & l & l \end{vmatrix}$
 $v \times w = \begin{vmatrix} i & l & l & l \\ l & l & l & l \\ 0 & l & l & l & l$

$$V * \omega = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * \omega = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$$

$$V * \omega = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$-1 \times 24 + 2 = 0$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$-1 \times 24 + 2 = 0$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$V * = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

2.8 Exercise 4.8

Use Theorem 4.2.5 to determine the dimension (1, 2, or 3) of each of the following linear subspaces in \mathbb{R}^3 . Show the work to justify your answer.

(a) $\operatorname{span}(\mathbf{v}, \mathbf{w})$ for

$$\mathbf{v} = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

(b) $\operatorname{span}(\mathbf{v}', \mathbf{w}')$ for

$$\mathbf{v}' = \begin{bmatrix} 3 \\ 6 \\ -2 \end{bmatrix}, \quad \mathbf{w}' = \begin{bmatrix} -2 \\ -4 \\ 2 \end{bmatrix}.$$

(c) $\operatorname{span}(\mathbf{v''}, \mathbf{w''}, \mathbf{u''})$ for

$$\mathbf{v}'' = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \quad \mathbf{w}'' = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{u}'' = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}.$$

Solution:

(a) $\operatorname{span}(\mathbf{v}, \mathbf{w})$ for

$$\mathbf{v} = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Here check if we can combine u and v such that they cancel out each other. This can be checked by finding out a , b such that

$$a.v + b.w = 0$$

a.v means we are stretching (or shrinking) v by a. similar for b.w by combining a.v+b.w, we get a new vector if this new vector is 0 then they cancel each other. If we find non-zero values of a and b such a.v+b.w is 0 then it means v, w are linearly dependent. If the only solution is a=0 and b=0 then then v, w are linearly independent and v and we point to different directions.

$$a.v + b.w = 0$$

$$a. \begin{bmatrix} -2\\1\\1 \end{bmatrix} + b. \begin{bmatrix} 1\\1\\1 \end{bmatrix} = 0$$

This gives

$$-2a + b = 0$$
$$a + b = 0$$
$$a + b = 0$$

Substituting

$$a = -b$$
$$-2(-b) + b = 0$$

Therefore

$$b = 0$$

$$a = 0$$

This means v and w are independent. Together v and w span a plane which has dimension 2.

(b) $\operatorname{span}(\mathbf{v}', \mathbf{w}')$ for

$$\mathbf{v}' = \begin{bmatrix} 3 \\ 6 \\ -2 \end{bmatrix}, \quad \mathbf{w}' = \begin{bmatrix} -2 \\ -4 \\ 2 \end{bmatrix}.$$

Similar to (a) we have a.v + b.w = 0

$$a. \begin{bmatrix} 3 \\ 6 \\ -2 \end{bmatrix} + b. \begin{bmatrix} -2 \\ -4 \\ 2 \end{bmatrix} = 0$$

Now we have

$$3a - 2b = 0$$

$$6a - 4b = 0$$

$$-2a + 2b = 0$$

Substituting

$$a = b$$

we have

$$6(b) - 4b = 0$$

From this we have

$$b = 0$$

$$a = 0$$

This means v' and w' are independent. Together v' and w' span a plane which has dimension 2.

(c) $\operatorname{span}(\mathbf{v''}, \mathbf{w''}, \mathbf{u''})$ for

$$\mathbf{v}'' = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \quad \mathbf{w}'' = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{u}'' = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}.$$

Similar to (b) we have

$$a.v" + b.w" + c.u" = 0$$

$$a. \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + b. \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} + c. \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} = 0$$
$$a + 3b + 3c = 0$$

$$-2a - 2c = 0$$
$$3a + 2b + 4c = 0$$

Substituting

$$a = c$$

$$c + 3b + 3c = 0$$

$$b = \frac{-4}{3}c$$

$$3c + 2 \cdot \frac{-4}{3}c + 4c = 0$$

$$a = 0$$

$$b = 0$$

$$c = 0$$

This means v", w" and u" are independent and dimension is 3

2.9 Exercise 4.9

Consider the three nonzero vectors

$$v_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}.$$

- (a) Show that v_1 does not belong to the span of v_2 and v_3 . (Hint: if $v_1 = av_2 + bv_3$ for some scalars a and b, express this as a system of 3 equations on a and b and show that these equations have no simultaneous solution.)
- (b) Similarly show v_2 does not belong to the span of v_1 and v_3 , and that v_3 does not belong to the span of v_1 and v_2 .
- (c) Using (a) and (b), apply Theorem 4.2.5 to conclude that the linear subspace $V = \text{span}(v_1, v_2, v_3)$ in \mathbb{R}^3 has dimension equal to 3 (so it coincides with \mathbb{R}^3 , by Theorem 4.2.8).

Solution:

(a) Show that v_1 does not belong to the span of v_2 and v_3 . (Hint: if $v_1 = av_2 + bv_3$ for some scalars a and b, express this as a system of 3 equations on a and b and show that these equations have no simultaneous solution.)

As the hint suggested, we want to find 2 scalar a and b and express

$$v_1 = av_2 + cv_3$$

$$\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = a. \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + b. \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

$$1 = 2a + 3b$$

$$-2 = -2b$$

$$3 = a + b$$

Substituting

$$b = 1$$

$$3 = a + 1$$

Solving we get

$$a = 2$$

$$b = 1$$

But if we put a=2 and b=1 in the first equation we get

$$1 = 2(2) + 3(1)$$

$$1 \neq 7$$

This shows that there is no simultaneous solution to these system of equations. This indicates that v_1 does not belong to the span of v_2 and v_3 .

- (b) Similarly show v_2 does not belong to the span of v_1 and v_3 , and that v_3 does not belong to the span of v_1 and v_2 .
 - (i) v_2 does not belong to the span of v_1 and v_3

$$\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = a \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + b. \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

$$2 = a + 3b$$

$$0 = -2a - 2b$$

$$1 = 3a + b$$

Substituting

$$a = -b$$

we get

$$1 = 3(-b) + b$$

$$b = \frac{-1}{2}$$

Substituting

$$a = \frac{1}{2}$$

$$b = \frac{-1}{2}$$

in first equation we get

$$2 = \frac{1}{2} + 3\frac{-1}{2}$$
$$2 \neq -1$$

This shows that there is no simultaneous solution to these system of equations. This indicates that v_2 does not belong to the span of v_1 and v_3 .

(i) v_3 does not belong to the span of v_1 and v_2

$$\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} = a \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + b \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$
$$3 = a + 2b$$
$$-2 = -2a$$
$$1 = 3a + b$$

Substituting

$$a = 1$$

we get

$$1 = 3(1) + b$$
$$b = -2$$

Substituting

$$a = 1$$
$$b = -2$$

in first equation

$$3 = 1 + 2(-2)$$
$$3 \neq -3$$

This shows that there is no simultaneous solution to these system of equations. This indicates that v_3 does not belong to the span of v_1 and v_2 .

(c) Using (a) and (b), apply Theorem 4.2.5 to conclude that the linear subspace $V = \text{span}(v_1, v_2, v_3)$ in \mathbb{R}^3 has dimension equal to 3 (so it coincides with \mathbb{R}^3 , by Theorem 4.2.8).

Finding 3 scalar such that

$$a.v_1 + b.v_2 + c.v_3 = 0$$

$$a. \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + b. \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + c. \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} = 0$$

$$a + 2b + 3c = 0$$

$$-2a - 2c = 0$$

$$3a + b + c = 0$$

Substituting

$$a = -c$$

$$3(-c) + b + c = 0$$

$$b = 2c$$

$$-c + 2(2c) + 3c = 0$$

$$c = 0$$

$$b = 0$$

$$a = 0$$

This means v_1, v_2, v_3 are linearly independent vectors and they have a dimension of 3

2.10 Exercise 4.10

Let V be the span of the collection of three nonzero 3-vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}.$$

Here is an approach based on orthogonality to show dim V=3 (so $V=\mathbb{R}^3$, by Theorem 4.2.8).

(a) Explain either geometrically or algebraically why if the dimension were 1 or 2 then there would be a *nonzero* 3-vector \mathbf{n} orthogonal to the span (hint: show that for *any* linear subspace of \mathbb{R}^3 with dimension 1 or 2 there is a nonzero 3-vector orthogonal to it).

Solution

These vectors v_1, v_2, v_3 could

- (i) all point along the same line. This means they have dimension of 1.
- (ii) lie on a flat plane. This means they have dimension of 2.
- (iii) fill the 3D space. This means they have dimension of 3.

Algebraically this means,

$$n.v_i = 0$$

This means

$$n.v_1 = 0$$

$$n.v_2 = 0$$

$$n.v_3 = 0$$

where n is a non-zero vector

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Solving the system of equations we get

$$a - 2b + 3c = 0$$

$$2a + c = 0$$

$$3a - 2b + c = 0$$

Substituting

$$c = -2a$$

we get

$$3a - 2b + -2a = 0$$

$$a = 2b$$

$$(-2b) - 2b + 3(-2)(-2b) = 0$$

$$b = 0$$

$$a = 0$$

$$c = 0$$

This means there is no nonzero vector n that is orthogonal to all three vectors v_1, v_2, v_3 As there is no non-zero vector n satisfying

$$n.v_1 = 0$$

$$n.v_2 = 0$$

$$n.v_3 = 0$$

The span of v_1, v_2, v_3 must have dimension 3.

- (a) (a line): There would exist a plane of vectors (dimension 2) perpendicular to the line, meaning you could always find a nonzero vector n orthogonal to v_1
- (b) (a plane): There would exist a line of vectors (dimension 1) perpendicular to the plane, meaning you could always find a nonzero vector n orthogonal to both $v_1 and v_2$
- (c) (all of \mathbb{R}^3) There is no "room" left for a nonzero vector n to be perpendicular to the entire space. The only solution is the trivial vector n=0.
- (b) Check directly that the simultaneous conditions

$$\mathbf{n} \cdot \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = 0, \quad \mathbf{n} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 0, \quad \mathbf{n} \cdot \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} = 0,$$

on the entries of $\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ have no solution $(a,b,c) \neq (0,0,0)$.

Solution: This is already shown above

(c) Use the conclusion of (b) to rule out the possibilities of the dimension being 1 or 2 with the aid of (a) (so the dimension must be 3).

Solution

From part(b), we know that no non-zero vector n exists such that $n.v_1 = 0, n.v_2 = 0, n.v_3 = 0$ If the span had dimension 1, then a plane of 2d vector would have exists orthogonal to span. But this contradicts the dimension = 3 concluded in part(b)

If the span had dimension 2, then there would be at least one non-zero vector orthogonal to the it. But the only orthogonal vector n is the zero vector.

This means the only possibility is span having dimension 3. This aligns with the conclusion of part (b), which showed that the only n satisfying the orthogonality conditions is the zero vector.