

Cloudy with a Chance of SSRF

Vulnerability Trends & Techniques GrrCon 2023 Dr. Jared DeMott Michael Fowl

Introduction

Dr. Jared DeMott Microsoft Security Response Center

- Manager of Cloud Vulnerability and Mitigations Team
- Former NSA, MSU, Entrepreneur, Mentor, frequent Speaker and Trainer
- Love spending time with family and friends
 - Both kids are in Marching band, so we do a lot of that in the fall :)
 - Married 25 years

Introduction

Michael Fowl Microsoft Security Response Center

- Senior Security Researcher Cloud
 Vulnerability and Mitigations Team
- Enjoys using an adversarial mindset to achieve mission goals and solve hard security problems
- Always likes discussions about topics like:
 - Bug bounty hunting
 - Adversary simulation
 - Exploit chains
 - Leveraging Al

Microsoft Bounty Programs

All the SDLC Things

Internal SOC, Redteam, TI, ...

Microsoft Bounty Programs

July 01, 2022 to June 30, 2023

\$13.8M

in bounty rewards

17
Bounty programs

1,180
Eligible vulnerability reports

345
Researchers awarded

\$200K Biggest reward

Platform

Cloud

A Detailed Look at Cloud Bounty Growth

AZURE SECURITY LAB SCENARIO CHALLENGE

https://www.microsoft.com/en-us/msrc/bounty

In Azure Security Lab scenario challenges, we provide more content and resources to better arm security researchers with the tools needed to research high-impact vulnerabilities in the cloud. Please see ongoing challenges on the Azure Security Lab page.

IMPACT SCENARIOS		
	Scenario	Award
ault	Compromise logging or auditing keys	
	Leaking keys	+40%
	Editing or deleting keys	+30%
Kubernetes Service	All bounty eligible submissions targeting this service	+20%
RADETICES SCIVICE	All bounty eligible submissions targeting this service	

In all scenarios, please follow the Azure Research Rules of Engagement to ensure your research does not harm customer data, privacy, or service availability. If in doubt, please contact bounty@microsoft.com.

GENERAL AWARDS

Security Impact	Report Quality	Severity			
		Critical	Important	Moderate	Low
Remote Code Execution	High Medium Low	\$40,000 \$20,000 \$10,000	\$30,000 \$20,000 \$10,000	\$0	\$0
Elevation of Privilege	High Medium Low	\$40,000 \$30,000 \$20,000	\$10,000 \$4,000 \$2,000	\$0	\$0
Information Disclosure	High Medium Low	\$12,000 \$6,000 \$4,500	\$7,500 \$3,000 \$1,500	\$0	\$0

Case Flow

Does it meet the If accepted, assign Product engineers Prepare build for definition of a product release a case manager work to develop a vulnerability? fix Send case number Coordinate release to the researcher Cases that qualify announcements d assessed for reward for bounty are Assign CVE if Release Triage applicable Case

Most Common Web Vulnerabilities

Most Common Issues last Year (Aug 22 – Aug 23)

Our Top 5 Root Causes in OLS:

Example:

Mitigation Strategies

Mitigating Vuln Patterns

Why Focus on SSRF?

- Every cloud service provider has SSRF concerns
 - Google Researcher finds SSRF bug in internal Google Cloud project, nabs \$10,000 bounty | The Daily Swig (portswigger.net)
 - AWS <u>Steal EC2 Metadata Credentials via SSRF Hacking The Cloud</u>
 - Oracle <u>Oracle Server Side Request Forgery (SSRF)</u> | <u>Orca Security</u>
- Substantial impact
 - Access to internal resources, bypassing security controls, performing malicious actions, token disclosure, chained with other vulnerabilities...

Server-side Request Forgery (SSRF)

Demonstrating Impact Struggles

- MSRC triages lots of submissions
- We do care about every SSRF
 - Impact analysis, variant hunting, etc.
- SSRF submissions often lack impact
 - "I found a CRITICAL SSRF that tries to get an image from collaborator..."
 - You can often do better than port scanning
- High quality report helps triage
 - More impact = higher severity
 - Include a video recording, etc.
 - https://microsoft.com/en-us/msrc/bounty-example-report-submission

Bag of Tricks: What is helpful?

- Knowledge
 - Adversary mindset
 - Techniques
 - Doing vs. observing
- Interception Proxy
 - BurpSuite/MitM Proxy
 - Collaborator is limited
- Custom Web Server
 - Redirect requests/Modify response
- Custom DNS Server
 - Manipulate records

SSRF Training Dojo

- Practice like you hunt
 - Understanding
 - Experience
 - Recognize patterns
- Azure OpenAI/GitHub Copilot
 - Writing code has never been easier!
 - Labs written by an LLM
- Link
 - https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2023_ 09_GrrCON/ssrf_dojo/

Modern Cloud Architecture: Security Boundaries

- Intent
 - Not a comprehensive architecture
 - <u>Is</u> where vulnerabilities often arise
- Base Layers/Plumbing
 - "Just somebody's computer..."
 - Cloud "Kernel"
- Abstraction Layers
 - Virtualization
 - Service Fabric/k8s/Etc.

Modern Cloud Architecture: Security Boundaries

- Control Plane/Data Plane
 - Pivot from data to control
 - https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/control-plane-and-data-plane
- Network Isolation/Injection
 - Firewalls, Proxy, Segmentation
 - VNET
 - Route Tables, ARP, DNS
- Micro Services
 - State/Timing Issues
 - Service chains can have security gaps

SSRF Technique: Reaching Sensitive Endpoints

- AWS
 - http://169.254.169.254 (IMDSv1)
- Google
 - http://169.254.169.254
 - http://metadata.google.internal
- Azure
 - http://169.254.169.254/metadata (IMDS)
 - http://168.63.129.16/machine/?comp=goalstate (Wireserver: CVE-2021-27075)
- Better list (Including required headers)
 - https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery/cloud-ssrf

SSRF Technique: Reaching Sensitive Endpoints

- Loopback
 - Common ports, services
- Know your RFCs
 - RFC 1918
 - 10.0.0.0–10.255.255.255 (10/8 prefix)
 - 172.16.0.0–172.31.255.255 (172.16/12 prefix)
 - 192.168.0.0–192.168.255.255 (192.168/16 prefix)
 - RFC 6598
 - 100.64.0.0/10
 - Many more...
- Local link range
 - https://en.wikipedia.org/wiki/Link-local_address

SSRF Technique: IP Address Confusion

- Are allow/deny lists enough?
 - https://www.hacksparrow.com/networking/many-faces-of-ip-address.html
- 127.0.0.1 can look like:
 - 0177.0.0.01
 - 000177.0000.00000.01
 - %31%32%37%2E%30%2E%30%2E%31
- IP wrap around/overflow
 - 1.0.513 = 1.0.2.1
- DNS records
 - ssrf.mydomain.com > 127.0.0.1

```
PING 1.0.513 (1.0.2.1) 56(84) bytes of data.
From 10.26.0.59 icmp_seq=1 Destination Net Unreachable
From 10.26.0.59 icmp_seq=2 Destination Net Unreachable
From 10.26.0.59 icmp_seq=3 Destination Net Unreachable
```

SSRF Technique: Don't Forget IPv6 Confusion

- Clouds can run out of IPv4
- ::1 can look like:
- IPv6 URL
 - http://[::1]
- Universal Naming Convention
 - Windows sees a colon, assumes drive letter
 - IPv6 literal Windows
 - 0--1.ipv6-literal.net = ::1

- ~ ping 0--1.ipv6-literal.net
 PING 0--1.ipv6-literal.net(ip6-localhost (::1)) 56 data bytes
 64 bytes from ip6-localhost (::1): icmp_seq=1 ttl=64 time=0.019 ms
 64 bytes from ip6-localhost (::1): icmp_seq=2 ttl=64 time=0.048 ms
 64 bytes from ip6-localhost (::1): icmp_seq=3 ttl=64 time=0.049 ms
 64 bytes from ip6-localhost (::1): icmp_seq=4 ttl=64 time=0.048 ms
 64 bytes from ip6-localhost (::1): icmp_seq=5 ttl=64 time=0.051 ms
- 2001-db8-85a3--8a2e-370-7334.ipv6-literal.net = 2001:db8:85a3::8a2e:370:7334
- https://ipv6-literal.com/?ipv6=%3A%3A1

SSRF Technique: Authentication/Session Leak

- Examine the request
 - Headers
 - Body
- Response Modification
 - What happens if you impersonate?
 - 401 Unauthorized
 - Exchange server auth flow
 - Others?
- Write your own collaborator

 https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2023_09_GrrCON/ssrf_dojo/redirector.py

SSRF Technique: Redirection Strategy

- Many types of redirects
 - 301, 302, 303, 307, or 308
- Some will change request type
 - 303: POST > GET
 - https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/303
- Client-Side Request Forgery (not really SSRF)
 - DOM-based open redirection
 - Avoid dynamically setting redirection location with untrusted input
 - Can leak session tokens/account takeover
 - Meta refresh
 - <meta http-equiv="refresh" content="0; url=https://www.bing.com/">

SSRF Technique: URL Parsers

- Clouds have pieces in many programming languages
 - Parsers can behave differently
- Special Characters
 - #, @, :, ?, &
- Encoding
 - URL, Multiple URL, Unicode, etc.
- Regex issues
 - Are these both valid?
 - http://mysub.bing.com/index.html
 - http://mysub2.bing.com.xyz/index.html

```
def is_bing_url(url):
    pattern = r"https?://([a-zA-Z0-9-]+\.)*bing\.com.*"
    return re.fullmatch(pattern, url) is not None
```

SSRF Technique: URL Parsers

- Additional resources
 - https://regex101.com/
 - https://qaz.wtf/u/convert.cgi?text=127.0.0.1%3A8000
 - https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

SSRF Technique: DNS Rebinding

- Time of Check, Time of Use (TOCTOU)
 - DNS A record with very low Time To Live (TTL)
 - Respond with different IPs
 - Sometimes requires specific count
 - Exactly n requests
- Example tool
 - https://github.com/taviso/rbndr
 - https://lock.cmpxchg8b.com/rebinder.html

```
      Bash
      V
      ①
      ?
      ②
      Lt
      {}
      D

      michael
      [ ~ ]$
      nslookup 7f000001.c0a80002.rbndr.us

      Server:
      168.63.129.16#53

      Non-authoritative answer:
      Name:
      7f000001.c0a80002.rbndr.us

      Address:
      127.0.0.1

      michael
      [ ~ ]$
      nslookup 7f000001.c0a80002.rbndr.us

      Server:
      168.63.129.16#53

      Non-authoritative answer:
      Name:
      7f000001.c0a80002.rbndr.us

      Address:
      192.168.0.2

      michael
      [ ~ ]$
```

SSRF Technique: Think Outside the Box Inside the Process!

- Interception proxies have limitations
 - No proxy options
 - Encryption
 - Blackbox/Reverse Engineering
- Attach Windbg to a process = SSRF?
 - HEXACON2022 Hunting for cloudy SSRFs by Nicolas Joly
 - https://youtu.be/Q-N-LR_NoSY?t=764
 - https://www.hexacon.fr/slides/Hexacon22_Hunting_For_Cloudy_SSRFs.pdf
- Chain SSRF with Open Redirect
 - Many additional strategies

SSRF Mitigations

- Fix vulnerability is obvious
 - Remove functionality
 - Often need additional mitigations
- Allow/Deny Lists
 - Network level
 - Application level
 - Regex/Encoding challenges
 - "Wack a mole" issues
- Develop a library
 - Available to all developer teams

SSRF Mitigations

- Require special header
 - Metadata: true
 - Session token is better
- Disable anonymous access
 - Mutual authentication ideal
- Enforce URL schemas
 - Often no need for:
 - ftp://, file://, etc...
- When resolving DNS
 - Every time you send a web request
 - Use centralized allow/deny logic

SSRF Dojo Demo

List of challenges

- CornerKick Use your header to score.
- LeakyFaucet Ask nicely and check your server.
- ShapeShifter Not all IPs are as they seem.
- MisguidedParser To error is code.
- Detour Headed off-road. Redirection skills required.
- BaitAndSwitch It's always DNS.

Winning

- Reach http://127.0.0.1:8000/flag with each challenge
- Download
 - https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2023_09_GrrCON/ssrf_dojo/dojo.py

Additional Learning Resources

Learning Resources – Become an Ethical Hacker

We're hiring!

- Security Folks of all Types
- Remote friendly
- https://careers.microsoft.com

BlueHat: Come Join an Epic Event, Or Watch Prior

