Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №4

АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ Вариант №10

Группа: Р3211

Студент: Орчиков Даниил Валерьевич

Преподаватель: Малышева Татьяна Алексеевна

Оглавление

Цель работы	2
Вычислительная реализация задачи:	2
Рабочие формулы	2
Решение	2
Линейное приближение	2
Квадратичное приближение	3
Программная реализация задачи	4
Листинг программы	4
Примеры и результаты работы программы	7
Пример 1	7
Пример 2	8
Пример 3	10
Вывод	

Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Вычислительная реализация задачи:

Рабочие формулы

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 \to min$$
$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Решение

$$y = \frac{18x}{x^4 + 10}, \qquad x \in [0, 4]$$

	1	2	3	4	5	6	7	8	9	10	11
Χ	0	0.4	8.0	1.2	1.6	2	2.4	2.8	3.2	3.6	4
Υ	0	0.718	1.383	1.789	1.74	1.385	1.001	0.705	0.501	0.364	0.271

Линейное приближение

$$SX = \sum_{i=1}^{n} x_i$$
, $SXX = \sum_{i=1}^{n} x_i^2$, $SY = \sum_{i=1}^{n} y_i$, $SXY = \sum_{i=1}^{n} x_i y_i$
 $SX = 22$, $SXX = 61$, $SY = 9.857$, $SXY = 17.468$

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases}$$

$$\Delta = SXX * n - SX^2 = 193.6$$

$$\Delta_1 = SXY * n - SX * SY = -24.707$$

$$\Delta_2 = SXX * SY - SX * SXY = 222.897$$

$$a = \frac{\Delta_1}{\Delta} = -\frac{24.707}{193.6} = -0.128$$

$$b = \frac{\Delta_2}{\Delta} = \frac{222.897}{193.6} = 1.151$$

$$P_{1(x)} = -0.128x + 1.151$$

	1	2	3	4	5	6	7	8	9	10	11
X	0	0.4	8.0	1.2	1.6	2	2.4	2.8	3.2	3.6	4
Υ	0	0.718	1.383	1.789	1.74	1.385	1.001	0.705	0.501	0.364	0.271
$P_1(x)$	1.151	1.1	1.049	0.997	0.946	0.895	0.844	0.793	0.741	0.69	0.639
= ax + b											
$arepsilon_i$	1.151	0.382	-	-	-	-0.49	-	0.087	0.24	0.326	0.368
			0 335	0.702	0.704		0 157				

$$\delta = \sqrt{\frac{(1.151 - 0.0)^2 + (1.1 - 0.718)^2 + (1.049 - 1.383)^2 + (0.997 - 1.789)^2 + (0.946 - 1.74)^2 + (0.895 - 1.385)^2 + (0.844 - 1.001)^2 + (0.793 - 0.705)^2 + (0.741 - 0.501)^2 + (0.69 - 0.364)^2 + (0.639 - 0.271)^2}$$

$$= \sqrt{\frac{1.325 + 0.146 + 0.112 + 0.627 + 0.63 + 0.24 + 0.025 + 0.008 + 0.058 + 0.106 + 0.136}{11}}$$

$$= 0.557$$

Квадратичное приближение

$$\sum_{i=1}^{n} x_i = 22, \qquad \sum_{i=1}^{n} x_i^2 = 61.6, \qquad \sum_{i=1}^{n} x_i^3 = 193.6, \qquad \sum_{i=1}^{n} x_i^4 = 648.525$$

$$\sum_{i=1}^{n} y_i = 9.857, \qquad \sum_{i=1}^{n} y_i x_i = 17.468, \qquad \sum_{i=1}^{n} y_i x_i^2 = 39.046$$

$$\begin{cases} 11a_0 + 22a_1 + 61.6a_2 = 9.857 \\ 22a_0 + 61.6a_1 + 193.6a_2 = 17.468 \\ 61.6a_0 + 193.6a_1 + 648.525a_2 = 39.046 \end{cases}$$

$$a_0 = 0.368, \qquad a_1 = 1.178, \qquad a_2 = -0.326$$

$$P_2(x) = -0.326x^2 + 1.178x + 0.368$$

	1	2	3	4	5	6	7	8	9	10	11
Χ	0	0.4	8.0	1.2	1.6	2	2.4	2.8	3.2	3.6	4
Υ	0	0.718	1.383	1.789	1.74	1.385	1.001	0.705	0.501	0.364	0.271
$P_1(x)$	0.368	0.787	1.102	1.312	1.418	1.42	1.317	1.111	0.799	0.384	-
= ax + b											0.136
$arepsilon_i$	0.368	0.069	-	-	-	0.035	0.317	0.405	0.298	0.02	-
_			0.282	0.477	0.322						0.407

$$\delta = 0.312$$

Программная реализация задачи

Листинг программы

Представлен только код, непосредственно выполняющий вычисления

Весь код можно посмотреть тут (GitHub)

```
function polynomial(m) {
       m += 1
       let A = create2DArray(m, m)
               for (let j = 0; j < m; j++) {
                        XY.forEach(x => s += x[0] ** (i + j))
                        A[i][j] = s
       A[0][0] = n
       let B = Array(m)
       for (let i = 0; i < m; i++) {
               let s = 0
                XY.forEach(x => s += x[0] ** i * x[1])
               B[i] = s
       let coeffs = solveLinearSystem(A, B);
       let w = getting_rid_of_scientific_notation(coeffs)
       let latex_fun = []
       for (let i = 0; i < m; i++) {
latex_fun.push(w[i] + "*x^" + i)
       latex_fun = latex_fun.join("+")
       {\it calculator}. setExpression(\{id: 'graph' + m, latex: `f_{\$}m - 1\}\} = ` + latex\_fun\})
       latex\_fun = latex\_fun.replaceAll("^*,"**").replaceAll("{","(").replaceAll("}",")")
       XY.forEach(x => S += (eval(latex_fun.replaceAll("x", `(\{x[0]\})`)) - x[1]) ** 2)
       \label{local_document} \emph{document}. \texttt{getElementById} ("res"). \texttt{innerHTML} += `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = \$\{\textit{Math}. \texttt{round} (S*10000) / 10000\} < \texttt{br} > `S_\$\{m-1\} = S_\$\{m-1\} = S_\$\{m
       draw_table(m - 1, latex_fun)
       return [coeffs, S]
function exponential() {
      let sx = 0, sxx = 0, sy = 0, sxy = 0
       XY.forEach(x => {
               sx += x[0]
                sxx += x[0] ** 2
                sy += Math.log(x[1])
```

```
sxy += x[0] * Math.log(x[1])
 let A = [
    [n, sx],
    [sx, sxx]
 let B = [sy, sxy]
 let coeffs = solveLinearSystem(A, B)
 coeffs[0] = Math.exp(coeffs[0])
 let w = getting_rid_of_scientific_notation(coeffs)
  calculator.setExpression(\{id: 'graph6', latex: `f_e=\$\{w[0]\}*e^{\$\{w[1]\}x\}'\})
 let S = 0
 XY.forEach(x => S += (eval(latex_fun.replaceAll("x", `(\{x[0]\})`)) - x[1]) ** 2)
    document.getElementById("res").innerHTML += `S_e - невозможно аппроксимировать с помощью экспоненциальной
    document.getElementById("res").innerHTML += `S_e = ${Math.round(S * 10000) / 10000} <br/>br>`
 draw_table("e", latex_fun)
 return [coeffs, S]
function logarithmic() {
 let sx = 0, sxx = 0, sy = 0, sxy = 0
   sx += Math.log(x[0])
    sxx += Math.log(x[0]) ** 2
    sy += x[1]
   sxy += Math.log(x[0]) * x[1]
 let A = [
    [n, sx],
    [sx, sxx]
 let B = [sy, sxy]
 let coeffs = solveLinearSystem(A, B)
 let w = getting_rid_of_scientific_notation(coeffs)
 \label{localculator} \emph{calculator}. \textbf{setExpression} (\{id: \ 'graph7', \ latex: \ `f_{\{log\}} = \$\{w[1]\}^* \setminus \{n\{x\} + \$\{w[0]\}`\}) \\
 let latex_fun = \ensuremath{\mbox{$\mbox{$$}$}} (m[1]) + \ensuremath{\mbox{$$$}$} (w[0]) \cdot replaceAll("\ensuremath{\mbox{$$}$}, "(").replaceAll("\ensuremath{\mbox{$$}$}, ")")
 let S = 0
 XY.forEach(x => S += (eval(latex_fun.replaceAll("x", `(\{x[0]\})`)) - x[1]) ** 2)
 if (isNaN(S))
    document.getElementById("res").innerHTML += `S_log - невозможно аппроксимировать с помощью логарифмической
þункции<br>
 else
    document.getElementById("res").innerHTML += `S_log = ${Math.round(S*10000) / 10000} <br/>br>`
 draw_table("log", latex_fun)
 return [coeffs, S]
function power() {
 let sx = 0, sxx = 0, sy = 0, sxy = 0
 XY.forEach(x => {
   sx += Math.log(x[0])
   sxx += Math.log(x[0]) ** 2
    sy += Math.log(x[1])
    sxy += Math.log(x[0]) * Math.log(x[1])
 let A = [
    [n, sx],
    [sx, sxx]
 let B = [sy, sxy]
 let coeffs = solveLinearSystem(A, B)
 coeffs[0] = Math.exp(coeffs[0])
 let w = getting_rid_of_scientific_notation(coeffs)
 \label{lem:calculator} \textit{calculator}. \textbf{setExpression}(\{id: 'graph8', latex: `f_{power}\} = \$\{w[0]\} *x^{\$}\{w[1]\}\}`\})
 let latex_fun = f(w[0])*x**(f(w[1])).replaceAll("{", "(").replaceAll("}",
```

```
let S = 0
  XY.forEach(x => S += (eval(latex_fun.replaceAll("x", `(\{x[0]\})`)) - x[1]) ** 2)
 if (isNaN(S))
    document.getElementById("res").innerHTML += `S_power - невозможно аппроксимировать с помощью степенной функции<br/>br>
    document.getElementById("res").innerHTML += `S_power = ${Math.round(S * 10000) / 10000} <br/>br>`
 draw_table("power", latex_fun)
 return [coeffs, S]
function solveLinearSystem(A, B) {
 let n = A.length;
 for (let i = 0; i < n; i++) {
    let maxEl = Math.abs(A[i][i]);
    let maxRow = i
    for (let k = i + 1; k < n; k++)
      if (Math.abs(A[k][i]) > maxEl) {
        maxEl = Math.abs(A[k][i])
        maxRow = k
    for (let k = i; k < n; k++) {
      let tmp = A[maxRow][k]
      A[maxRow][k] = A[i][k]
      A[i][k] = tmp
    let tmp = B[maxRow]
    B[maxRow] = B[i]
    B[i] = tmp
    for (let k = i + 1; k < n; k++) {
      let c = -A[k][i] / A[i][i];
        if (i === j)
          A[k][j] = 0
          A[k][j] += c * A[i][j]
      B[k] += c * B[i]
 let x = new Array(n).fill(0);
 for (let i = n - 1; i >= 0; i--) {
    x[i] = B[i] / A[i][i]
    for (let k = i - 1; k >= 0; k--) {
      B[k] := A[k][i] * x[i]
function create2DArray(n, m) {
 let array = new Array(n);
 for (let i = 0; i < n; i++)
   array[i] = new Array(m).fill(0);
```

Примеры и результаты работы программы

Пример 1

Ввод: 1 2.7

2 7.38

3 20.08

4 54.59

5 148.41

6 403.29

-3 0.049

S. | = 68503.3146 S. 2 = 17245.7372 S. 3 = 1826.9186 S. 4 = 90.5090 S. e = 1.5967 S. log - невозможно аппроксимировать с помощью логарифмической функции S. роwer - невозможно аппроксимировать с помощью отепенной функции

Наилучшее приближение:

экспоненциальное f(x) = 1.002 * exp(0.992 * x)

+ 10 0 0	(20			F
1 (1,2.7),(2,7.38),(3,20.08),(1						+
(1,2.1),(2,1.36),(3,20.06),(1				15			
)							*
$f_1 = 3.7533138297872535$				10			
$f_2 = -67.0627640805965$							
$f_2 = -67.0627640805965$				-5			
$f_3 = 52.28341371827833^*$							
7 3 52.25511011521555	-15	-10	-5		5	10	
$f_4 = -27.5386693323551$	-15	-10	-5	0	5	10	
				a			
= 0.9917888142222484							

i		тная аппр	оксимаці	и				
	№	0	1	2	3	4	5	6
	X	1	2	3	4	5	6	-3
	Y	2.7	7.38	20.08	54.59	148.41	403.29	0.049
	P_1	37.6547	71.5562	105.4576	139.359	173.2605	207.1619	-97.951
	E_i	34.9547	64.1762	85.3776	84.769	24.8505	-196.1281	-98

r = 0.6884856457893946

, 4		1					
N_2	0	1	2	3	4	5	6
X	1	2	3	4	5	6	-3
Y	2.7	7.38	20.08	54.59	148.41	403.29	0.049
P_2	-53.2277	-18.4925	37.1429	113.6785	211.1143	329.4503	16.8333
E_i	-55.9277	-25.8725	17.0629	59.0885	62.7043	-73.8397	16.7843

Аппроксимация полиномом 3 степени

N2	0	1	2	3	4	5	6
X	1	2	3	4	5	6	-3
Y	2.7	7.38	20.08	54.59	148.41	403.29	0.049
P_3	19.8935	-3.9816	0.8352	54.5208	177.2523	389.2066	-1.2277
Εi	17.1935	-11.3616	-19.2448	-0.0692	28.8423	-14.0834	-1.2767

Аппроксимация полиномом 4 степени

№	0	1	2	3	4	5	6
X	1	2	3	4	5	6	-3
Y	2.7	7.38	20.08	54.59	148.41	403.29	0.049
P_4	0.2978	12.5378	18.9022	49.2407	153.5323	401.8848	0.1034
E_i	-2.4022	5.1578	-1.1778	-5.3493	5.1223	-1.4052	0.0544

Аппроксимация экспоненциальной функцией

№	0	1	2	3	4	5	6
X	. 1	. 2	3	4	. 5	6	-3
Y	2.7	7.38	20.08	54.59	148.41	403.29	0.049
P_e	2.7009	7.3553	20.0305	54.5486	148.5506	404.5438	0.0491
E_i	0.0009	-0.0247	-0.0495	-0.0414	0.1406	1.2538	0.0001

Аппроксимация логарифмической функцией

N2	0	1	2	3	4	5	6
X	1	2	3	4	5	6	-3
Y	2.7	7.38	20.08	54.59	148.41	403.29	0.049
P_log	NaN	NaN	NaN	NaN	NaN	NaN	NaN
E_i	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Аппроксимация степенной функцией

N ₂	0	1	2	3	4	5	6
X	1	2	3	4	5	6	-3
Y	2.7	7.38	20.08	54.59	148.41	403.29	0.049
P_power	NaN	NaN	NaN	NaN	NaN	NaN	NaN
E_i	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Пример 2

Ввод

1 0.1

2 0.69

- 3 1.09
- 4 1.38
- 5 1.6
- 6 1.79
- 7 1.94
- 8 2.08
- 0.5 -0.69
- 0.3 -1.2
- 0.002 -6.214
- 0.0000002 -15.42

+

ñ

Пример 3

Ввод

11

2 0.5

3 0.3333

4 0.25

5 0.2

6 0.16667

7 0.142

8 0.125

9 0.111111

10 0.1

№	0	1	2	3	4	5	6	7	8	9
X	1	2	3	4	5	6	7	8	9	10
Y	1	0.5	0.3333	0.25	0.2	0.16667	0.142	0.125	0.111111	0.1
P_1	0.6261	0.552	0.478	0.4039	0.3298	0.2558	0.1817	0.1076	0.0336	-0.0405
E_i	-0.3739	0.052	0.1447	0.1539	0.1298	0.0891	0.0397	-0.0174	-0.0775	-0.1405

N ₂	0	Т	1	Τ	2		3		4	Т	5		6		7		8		9	_
X	1	†	2	†	3	3 4		Ť	5	7	6		7		8		9		10	_
Y	1	T	0.5	0	0.3333 0.25		Ť	0.2	7	0.16667		0.142		0.125		0.111111		0.1	_	
P_2	0.840	7 0.6236 0.4422		2 0	0.296	2966 0.1868		8	0.1127		0.0744		0.0719		0.1051		0.174	ı		
E_i	-0.159	3 (0.1236 0.1089		9 0	0.046	-0.0132		2	-0.054		-0.0676 -0		0.0531		-0.006		0.074	ī	
ппр	оксима	цня	поли	IHON	иом	3 ст	епен	И												
N₂	0	Т	1	Τ	2		3		4	Τ	5		6		7		8		9	
X	1	Ι	2	2 3		Ι	4		5	Ι	6		7		8		9		10	
Y	1	1 0.5 0.33		.333	3	0.25		0.2	1	0.16667		0.142		0.125		0.111111		0.1		
P_3	0.945	1 (0.588	8 0	.355	3 (0.219	6	0.157	1	0.1425	; (0.1514	.1514 0.1588		0	.1399	1	0.0698	l
E_i	-0.054	9 (0.088	8 (0.022	2 -	0.030	4	-0.043	3	-0.0241	1 (0.0094		0.0338		0.0288		0.0302	
ппр	оксима	ция	поли	IHON	ном	4 ст	епен	И		_		_						_		
N_2	0	L	1	2	\perp	3	3		4		5	L	6		7		8	L	9	
X	1	Ŀ	2	3	4	4			5	L	6		7		8		9		10	
Y	1	0	.5 (.33	3333 0.2		25	5 0.2		0.	.16667 0.142		.142	0.125 0		0.1	111111		0.1	
P_4	0.985	0.	.54 (.31	3176 0.22		262 0.1969		1969	0			1581	0.1211		0.			.1097	
E_i	-0.015	0.	.04 -	0.01	.57	-0.0	238	-0.	0031	0	.0158	0.	0161	-0.0	0039	-	0.02	0.	.0097	
ппр	оксима	цня	эксп	оне	нциа	лы	ной ф	ун	кцией	i		_		_		_		_		
N_2	0	1	1 2		1	3		4		5		6		7		8		9		
X	1	1 2 3		4	4		5		6		7		8		9		10			
Y	1	4	0.5	-	0.333	\rightarrow	0.25	+	0.2	+	0.16667		-		-		0.111111		-	
P_e				0.247	6			0.1562				0.0985		0.0782						
E_i	-0.377	0.3773 -0.0055 0.0594 0.0		0.061	18 0.0476 0.03				0.0142 -0.001				0.0126	0.0218						
ппр	оксима	ция	лога	риф	мич	еск	ой фу	/НК	цией							_				
N_2	()	1		2	2	3		4		5		6		7	4	8		9	
X	1		2		3	3	4		- 5		6		7		8	1	9		10	
Y	1	_	0.		0.3		-	_	0.2		0.16667				0.125				0.1	
P_log 0.833		_	-			_	3 0.3373		-		_		0.1368		_		-		0.009	-
$\mathbf{E}_{\underline{}}$	i -0.1	662	0.08	356	0.1	07	0.08	73	0.05	73	0.0254		-0.0052		-0.036		-0.0643		-0.090	9

P_power 1.0002 0.4999 0.3332 0.2499 0.1999 0.1665 0.1427 0.1249 0.111

0.0002 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0007 -0.0001 -0.0001 -0.0001

0.142 0.125

Вывод

Во время выполнения данной лабораторной работы я познакомился с методом наименьших квадратов для аппроксимации табличной функции с помощью функций и реализовал это на языке JavaScript.