Frobenius!

Power p operation.

In char P, defines a ring hom.

Fr J Fr identity.

 $K \xrightarrow{\varphi} K$ finite field K q size p^n .

op inj (hom between fields) surj (same size)

 $(xy)^{p} = x^{p} + y^{p}$ $(x+y)^{p} = x^{p} + y^{p} \in Char p$ middle terms

dir by P.

にけ → 版出 せ → せ

$$K$$
 size P^n $P: K \rightarrow K$
 $X^{P^n} = X$ for all $X \in K$.

$$X' = X$$
 for any $X' = X$ is the identity on X .

The identity of X is the identity of X .

e.g.
$$K = \frac{\mathbb{E}[t]}{(t^3 + t + t)}$$

Roots $g \times x^3 + x + t$ in K .
 t is a noot

Prop: n is the smallest pos. number s.t.

Pf: Suppose
$$\varphi^m = id$$
, $m > 0$ $\times^p = \times$ for all $x \in K$.

 $\Rightarrow p^m \ge p^n \Rightarrow m \ge n$.

 $\Rightarrow p^m \ge p^n \Rightarrow m \ge n$.

Rem If a generator is fixed by a hom

=) the field is fixed.

(all elts of the field are fixed).

EX. K= IF [t]/(t3+t+1)

=> everything itself.

+ Frob . K= Fp[t]/ir dg 6. diff poly 8 deg 6.
irr. (, root gen. field 8 deg 6 =) generates whole fields =) only 6th power of Frob is back to

Helds

Hself poly of deg 3. look at F, [x] CK. soot. X distinct α , $\varphi(\alpha)$, $\varphi'(\alpha)$ & nouts of your oubic.

K = F. [t] / irred. deg 6. Does K contain noots of quadratic or cubics ? Does K contain subfields of size p2 & p3? m/n then Let K be a field of size p'. I If m/n, then K contains a subfield of size pm.
8 there is a unique such. If myn then K does not Suppose m divides n. q= Frob. Consider $L = \{ \{ \{ \{ \{ \} \} \} \} \}$ L is a subfield. I pm is a homomorphism. A subfield of size pm must be contained in L.

L =
$$\begin{cases} x \in K \\ p^m(\alpha) = \alpha \end{cases}$$
 wish has size $p^m = \alpha$

So L has at most p^n elts.

These are the rows $\begin{cases} x^p - x \\ x^p - x \end{cases}$ in K .

(Obs: $\begin{cases} x \in K \\ x^p - x \end{cases}$ also has distinct $\begin{cases} x^p - x \\ x^p - x \end{cases}$ also has distinct $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over $\begin{cases} x^p - x \\ x^p - x \end{cases}$ and $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over $\begin{cases} x^p - x \\ x^p - x \end{cases}$ and $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over $\begin{cases} x^p - x \\ x^p - x \end{cases}$ and $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over $\begin{cases} x^p - x \\ x^p - x \end{cases}$ and $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over $\begin{cases} x^p - x \\ x^p - x \end{cases}$ and $\begin{cases} x^p - x \\ x^p - x \end{cases}$ over