EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul școlar 2021 - 2022 Matematică

Model

BAREM DE EVALUARE SI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	(c)	5 p
2.	b)	5 p
3.	b)	5 p
4.	c)	5p
5.	a)	5p
6.	a)	5p

SUBIECTUL al II-lea (30 de puncte)

1.	c)	5p
2.	d)	5 p
3.	b)	5p
4.	d)	5p
5.	b)	5p
6.	c)	5p

SUBIECTUL al III-lea (30 de puncte)

1.	a) $61 = 21 \cdot 2 + 19$	1p
	Cum 19 ≠ 5, deducem că nu este posibil ca Radu să aibă în pungă 61 de bomboane	1p
	b) $n = 7 \cdot c_1 + 5$, $n = 14 \cdot c_2 + 5$, $n = 21 \cdot c_3 + 5$, unde n este numărul bomboanelor din pungă	1p
	și c_1 , c_2 și c_3 sunt numere naturale	
	Cel mai mic multiplu comun al numerelor 7, 14 și 21 este 42, deci $n-5$ este multiplu de 42	1p
	n = 131	1p
2.	a) $x^2 + 2x + 1 = (x+1)^2$	1p
	a) $x^2 + 2x + 1 = (x+1)^2$ $E(x) = (x+1)^2 - (x+1)^2 + (x+1)^2 = (x+1)^2$, pentru orice număr real x	1p
	b) $E(x)-x=(x+1)^2-x=x^2+x+1=$	1p
	$=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}$	1p
	$\left(x+\frac{1}{2}\right)^2 \ge 0$, deci $E(x)-x>0$, pentru orice număr real x	1p

3.	a) $f(-1)=1$	1p
	$f(2019) = 2021 \Rightarrow f(-1) \cdot f(2019) = 2021$	1p
	b) $A(-2,0)$ este punctul de intersecție a reprezentării grafice a funcției f cu axa Ox	1p
	B(0,2) este punctul de intersecție a reprezentării grafice a funcției f cu axa Oy	1p
	$\mathcal{A}_{\Delta AOB} = \frac{OA \cdot OB}{2} = 2$	1p
4.	a) $ABCD$ paralelogram $\Rightarrow AB \parallel CD$	1p
	$\Delta ABN \sim \Delta CMN$, $\frac{BN}{MN} = \frac{AB}{CM}$, deci $BN = 2 \cdot MN$ b) Cum $12^2 + 9^2 = 15^2$, obținem că triunghiul ABC este dreptunghic în B	1p
	b) Cum $12^2 + 9^2 = 15^2$, obținem că triunghiul <i>ABC</i> este dreptunghic în <i>B</i>	1p
	$\frac{AN}{CN} = \frac{AB}{CM} = 2 \Longrightarrow \frac{AN}{AC} = \frac{2}{3}$	1p
	$NT \perp AB$, unde $T \in AB \Rightarrow NT \parallel BC$, deci $\Delta ATN \sim \Delta ABC$, de unde obținem $\frac{NT}{BC} = \frac{2}{3}$,	
	deci distanța de la N la AB este $NT = 6$ cm	1p
5.	a) $AM = MC \implies \angle AMN = 2 \cdot \angle ACM = 30^{\circ}$	1p
	$\cos(\langle AMN \rangle) = \frac{MN}{AM} \Rightarrow MN = \frac{BC}{2} \cdot \cos 30^\circ = 5\sqrt{3} \text{ cm}$	1p
	b) $AMPQ$ este paralelogram și $AP \perp MQ$, deci $AMPQ$ este romb	1p
	$AN = \frac{AM}{2} = \frac{BC}{4} = 5 \text{cm}$	1p
	$\mathcal{A}_{AMPQ} = \frac{AP \cdot MQ}{2} = \frac{2AN \cdot 2MN}{2} = 50\sqrt{3} \text{ cm}^2$	1p
6.	$\mathbf{a)} \ V = \frac{1}{3} \mathcal{A}_{ABCD} \cdot VO = \frac{1}{3} \cdot AB^2 \cdot VO =$	1p
	$=\frac{256\sqrt{3}}{3}\mathrm{cm}^3$	1p
	b) Construim, prin V , dreapta d , $d \parallel AD \parallel BC$, de unde $(VAD) \cap (VBC) = d$	1p
	$VS \perp AD$, unde $S \in AD$, $VR \perp BC$, unde $R \in BC$, deci $VS \perp d$ și $VR \perp d$, de unde	1p
	$\sphericalangle((VAD),(VBC)) = \sphericalangle(VS,VR)$	
	$VR = VS = RS = 8 \text{cm}$, deci triunghiul VRS este echilateral, de unde $\angle SVR = 60^{\circ}$, deci	1p
	$\sphericalangle((VAD),(VBC)) = 60^{\circ}$	