Radical Pair Recombination Reactions

Bohaz to Prof. D. E. Manolopoulos FRS

September 26th 2025

Introduction

This note walks through the quantum mechanics in your paper on the semiclassical theory of radical pair recombination reactions.

Calculation

Consider the simplest case of single nuclear spin of I = 1/2 with no external field

$$H = a \mathbf{S} \cdot \mathbf{I} \tag{1}$$

Note the following

$$\mathbf{S} \cdot \mathbf{I}|S\rangle = -\frac{3}{4}|S\rangle \tag{2}$$

$$\mathbf{S} \cdot \mathbf{I} | T_{\alpha} \rangle = \frac{1}{4} | T_{\alpha} \rangle \tag{3}$$

$$S_z|S\rangle = \frac{1}{2}|T_0\rangle \tag{4}$$

$$S_z|T_0\rangle = \frac{1}{2}|S\rangle \tag{5}$$

where $|S\rangle$ and $|T_{+,0,-}\rangle$ are singlet and triplet states, respectively. hence

$$R_{zz}(t) = \frac{1}{4}(1 + \cos at) \tag{6}$$

In the presence of external field

$$H = \omega S_z + a \mathbf{S} \cdot \mathbf{I} \tag{7}$$

The eigenstates are

$$|1\rangle = |T_{+}\rangle \tag{8}$$

$$|2\rangle \equiv |\Gamma_{+}\rangle = \cos\theta |T_{0}\rangle + \sin\theta |S\rangle \tag{9}$$

$$|3\rangle \equiv |\Gamma_{-}\rangle = -\sin\theta |T_{0}\rangle + \cos\theta |S\rangle$$
 (10)

$$|4\rangle = |T_{-}\rangle \tag{11}$$

The eigenvalues are

$$E_1 = \frac{\omega}{2} + \frac{a}{4} \tag{12}$$

$$E_2 = \frac{\Omega}{2} - \frac{a}{4} \tag{13}$$

$$E_3 = -\frac{\Omega}{2} - \frac{a}{4} \tag{14}$$

$$E_4 = -\frac{\omega}{2} + \frac{a}{4} \tag{15}$$

where $\Omega \equiv \sqrt{\omega^2 + a^2}$ and $\tan 2\theta \equiv \omega/a$ Note the following matrix elements

$$\langle T_{\pm}|S_z|T_{\pm}\rangle = \pm \frac{1}{2} \tag{16}$$

$$\langle \Gamma_{\pm} | S_z | \Gamma_{\pm} \rangle = \pm \frac{1}{2} \sin 2\theta = \pm \frac{\omega}{2\Omega}$$
 (17)

$$\langle \Gamma_+ | S_z | \Gamma_- \rangle = \frac{1}{2} \cos 2\theta = \frac{a}{2\Omega}$$
 (18)

hence

$$R_{zz}(t) = \frac{1}{2} \sum_{n} \langle n | S_z e^{iHt} S_z e^{-iHt} | n \rangle$$

$$= \frac{1}{2} \sum_{nm} |\langle n | S_z | m \rangle|^2 e^{i(E_m - E_n)t}$$
(19)

$$R_{zz}(t) = \frac{1}{4} \left[1 + \left(\frac{\omega}{\Omega} \right)^2 + \left(\frac{a}{\Omega} \right)^2 \cos \Omega t \right]$$
 (20)

By allowing $\theta \to 0$, (6) is recovered. Note the following matrix elements

$$\langle T_{\pm}|S_{\pm}|\Gamma_{\pm}\rangle = \langle \Gamma_{\pm}|S_{\mp}|T_{\pm}\rangle = \frac{1}{\sqrt{2}}(\cos\theta - \sin\theta)$$
 (21)

$$\mp \langle T_{\pm}|S_{\pm}|\Gamma_{\mp}\rangle = \pm \langle \Gamma_{\pm}|S_{\pm}|T_{\mp}\rangle = \frac{1}{\sqrt{2}}(\cos\theta + \sin\theta)$$
 (22)

notice that

$$R_{++}(t) = R_{--}(t) = 0 (23)$$

$$2(R_{xx}(t) + iR_{xy}(t)) = R_{-+}(t) = R_{+-}(-t) = R_{+-}^*(t)$$
(24)

hence

$$R_{xx}(t) = \frac{1}{4}\cos\frac{at}{2}\left[\left(1 + \frac{\omega}{\Omega}\right)\cos\frac{\Omega + \omega}{2}t + \left(1 - \frac{\omega}{\Omega}\right)\cos\frac{\Omega - \omega}{2}t\right]$$
(25)

$$R_{xy}(t) = \frac{1}{4}\cos\frac{at}{2}\left[\left(1 + \frac{\omega}{\Omega}\right)\sin\frac{\Omega + \omega}{2}t - \left(1 - \frac{\omega}{\Omega}\right)\sin\frac{\Omega - \omega}{2}t\right]$$
(26)

Now consider the case of multiple nuclear spin with external field

$$H = \omega S_z + \sum_{\mu} a_{\mu} \mathbf{I}_{\mu} \cdot \mathbf{S} \tag{27}$$

It is difficult/impossible to solve the TISE analytically, but notice that

$$H|n\rangle = \frac{\sigma_e}{4} \left[2\omega + \sum_{\mu} a_{\mu} \sigma_{\mu} \right] |n\rangle + \frac{1}{4} \sum_{\mu} a_{\mu} (1 - \sigma_e \sigma_{\mu}) |n + \sigma_e 2^{\eta} (1 - 2^{-\mu})\rangle$$
 (28)

where $\sigma_{e/\mu}=2m_{S/I_{\mu}}$ and $|n\rangle$ is $|\sigma_{e}\sigma_{I_{1}}\cdots\sigma_{I_{\eta}}\rangle$ in the denary via the relabeling $\uparrow \rightarrow 0, \downarrow \rightarrow 1, n=0,1,\ldots,2^{\eta+1}-1$ and $\mu=1,2,\ldots,\eta$.

Hence, time propagation can be carried out without constructing the Hamiltonian (see Algorithm 1).

furthermore

$$[H, F_z] = 0 (29)$$

where ${\bf F}={\bf S}+\sum_{\mu}{\bf I}_{\mu}$ Hence, the energy and the projection of total spin on z-axis can be specified simultaneously and precisely. There exists a complete set of mutual eigenstates $\{|N, M_F\rangle\}$ that satisfy

$$H|N, M_F\rangle = E_N|N, M_F\rangle \tag{30}$$

$$F_z|N,M_F\rangle = M_F|N,M_F\rangle \tag{31}$$

Algorithm 1: The Hamiltonian subroutine

```
subroutine H(psi, Hpsi, a, omega)
1
     real(dp), intent(in) :: psi(:), a(:), omega
real(dp), intent(out) :: Hpsi(:)
2
3
     integer :: i, k, partner, ebit, kbit, D
4
     real(dp) :: se, sm, diag, amp
6
     D = size(psi)
7
     Hpsi = 0.0_dp
     ebit = ishft(1, n_spins)
9
10
     do i = 0, D-1
11
12
       amp = psi(i+1)
       if (abs(amp) < 1.0e-12_dp) cycle
13
       se = merge(+1.0_dp, -1.0_dp, .not. btest(i, n_spins))
       diag = se * (omega*0.5_dp)
16
       do k = 1, n_spins
         sm = merge(+1.0_dp, -1.0_dp, .not. btest(i, k-1))
17
         diag = diag + se * 0.25_dp * a(k) * sm
18
         if (btest(i, n\_spins) .neqv. btest(i, k-1)) then
19
                    = ishft(1, k-1)
20
           partner = ieor(i, ior(ebit, kbit))
21
22
           Hpsi(partner+1) = Hpsi(partner+1) + 0.5_dp * a(k) * amp
23
         end if
       end do
24
25
       Hpsi(i+1) = Hpsi(i+1) + diag * amp
26
     end do
   end subroutine H
27
```


Figure 1: Electron spin correlation tensors $\,$

Figure 2: Electron spin correlation tensors (No external field)