Depression Detection

• Week 10

Name: Sinchana Kumbale

University: Manipal Institute of Technology

Internship Period: Jan – July 2024

Undergraduate 4th year

Duration of the presentation: ~10 minutes

Agenda

1. Data Augmentation

- 1. Methodology per the paper
- 2. Results on Yuxin's code
- 2. Statistical Analysis: Chi-Square Test
- 3. Statistical Analysis: T-Test on Linguistic Metrics
- 4. PCA Visualization
- 5. Transformer-based Model
- 6. Tentative plan for next week

Data Augmentation

[1] Context-aware Deep Learning for Multi-modal Depression Detection (Lam et al, 2019) | Paper | Code

Fig 1: Method followed for data augmentation in line with [1]

Table 1: Dataset distribution after Augmenting

	Train	Dev	Test	Total
Original	107	35	47	189
Augment	307	35	47	389

Table 2: Results on Yuxin's code

	Precision	Recall	F1	Accuracy
Transcripts	0.63	0.67	0.65	0.66
Question based	0.62	0.64	0.63	0.62
Augmented	0.70	0.58	0.63	0.67

Statistical Analysis – Chi Square Test

Table 3: Observed Values per the DAIC-WOZ dataset

Gen / Dep	ND	D	Total
Female	56	31	87
Male	77	25	102
Total	133	56	189

Table 4: Expected values for each category

Gen / Dep	ND	D	Total
Female	61.22	25.78	87
Male	71.78	30.22	102
Total	133	56	189

$$\chi^2 = \sum rac{\left(O_i - E_i
ight)^2}{E_i}$$

Calculated $\chi 2 = 2.7833$ Table Value = 3.841 (α = 0.05)

 χ^2 = chi squared

 O_i = observed value

 E_i = expected value

Statistical Analysis – T test on Linguistic Metrics

- T test is used to verify if there is a statistical difference between the means of 2 groups
- In our case, it is used to test if there
 is a difference between the means of
 the depressed and non-depressed
 classes for each linguistic attribute.

Table 5: P values for different linguistic attributes

Attribute	P-Value
Pronoun	0.035
Absolutist	0.313
Laugh	0.754
Um	0.803
sniffle	0.564
sigh	0.596
Depressive words	0.016
Negative words	0.009
Positive words	0.461

PCA Visualization

Fig 2: Steps to create PCA graph

Output the graph with

labels

Uses PCA to

decompose to 3

components

Transformer based Model

Fig 4: Steps in the transformer model

	Precision	Recall	F1	Accuracy
Topic Based	0.65	0.53	0.59	0.63
Augmented	0.70	0.58	0.63	0.67

Table 7: Results of running the model on different datasets

Tentative Plan

Plan for next week

- 1. Collaborating with Ankit to find relevant features for PCA
- 2. Building and iteratively improving upon a model

Relevant Links

- 1. Overall project plan and timeline: Link
- 2. Analysis and notes from relevant papers: Link
- 3. GitHub documenting everyone's presentations and codes: <u>Link</u>

End

