Department of CSE AI and AIML

Introduction to Al

REPORT

EMPLOYEE SALARY ANALYSIS

NAME: DIVYANSH YADAV

PROGRAM: B.TECH

ROLL NO.: 20240110040085

BRANCH: CSE(AIML)

SECTION: B

SEMESTER: II

SUBMITTED TO: MR. ABHISHEK SHUKLA SIR

INTRODUCTION

This report presents an analysis of employee salary data to explore salary distribution, job roles, years of experience, and their correlation. The goal is to gain insights into salary trends and the impact of experience on earnings. Various statistical techniques and visualizations are employed to better understand the dataset and derive meaningful conclusions.

METHODOLOGY

The analysis follows these steps:

Data Collection

A dataset containing employee names, job titles, salaries, and years of experience was created. The data was stored in a **Pandas Dataframe** for easy manipulation and analysis.

Data Processing

- Exploratory Data Analysis (EDA) was performed to understand the dataset structure.
- Descriptive statistics were generated to summarize salary and experience distributions.
- Data visualization techniques such as histograms, box plots, scatter plots, and heatmaps were used to analyze salary trends.

CODE

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Sample dataset
employee_data = {
  'Employee': ['Divyansh', 'Dhruv', 'Disha', 'Dev', 'Rohit', 'Babloo', 'Gitansh',
'Harsh', 'Inaya', 'Jitesh'],
  'Job Title': ['Manager', 'Engineer', 'Technician', 'Manager', 'Engineer',
'Technician', 'Manager', 'Engineer', 'Technician', 'Manager'],
  'Salary': [85000, 70000, 50000, 90000, 72000, 48000, 88000, 73000, 51000,
87000],
  'Years of Experience': [10, 5, 3, 12, 6, 2, 11, 7, 4, 10]
}
# Create DataFrame
df = pd.DataFrame(employee data)
# Display the first few rows
print(df.head())
```

```
# Basic statistics
print(df.describe())
# Salary distribution
plt.figure(figsize=(8, 5))
sns.histplot(df['Salary'], bins=10, kde=True)
plt.title('Salary Distribution')
plt.xlabel('Salary')
plt.ylabel('Frequency')
plt.show()
# Box plot of salary by job title
plt.figure(figsize=(8, 5))
sns.boxplot(x='Job Title', y='Salary', data=df)
plt.xticks(rotation=45)
plt.title('Salary Distribution by Job Title')
plt.show()
# Scatter plot: Experience vs. Salary
plt.figure(figsize=(8, 5))
sns.scatterplot(x='Years of Experience', y='Salary', data=df)
```

```
plt.title('Years of Experience vs Salary')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()
# Correlation matrix
plt.figure(figsize=(6, 5))
sns.heatmap(df[['Salary', 'Years of Experience']].corr(), annot=True,
cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix')
plt.show()
# Grouping by Job Title to check average salary
avg salary by title = df.groupby('Job Title')['Salary'].mean().sort values()
print(avg_salary_by_title)
# Checking correlation between Salary and Experience
correlation = df[['Salary', 'Years of Experience']].corr()
print("\nCorrelation between Salary and Years of Experience:\n",correlation)
```

OUTPUT:

•

	Employee	Job Ti	itle 9	Salar	y Y	/ears	of	Experience
0	Divyansh	Mana	ager	8500	00			10
1	Dhruv	Engir	neer	7000	00			5
2	Disha	Technic	ian	5000	00			3
3	Dev	Mana	ager	9000	00			12
4	Rohit	Engir	neer	7200	00			6
		Salary	Years	s of	Expe	erien	ce	
CO	unt 1	0.000000			10.	00000	90	
me	an 7140	0.000000			7.	00000	90	
st	d 1658	7.813465			3.	55902	26	
mi	n 4800	0.000000			2.	00000	90	
25	% 5575	0.000000			4.	25000	90	
50	% 7250	0.000000			6.	50000	90	
75	% 8650	0.000000			10.	00000	90	
ma	x 9000	0.000000			12.	.00000	90	

Salary Distribution

Job Title

Technician 49666.666667 Engineer 71666.666667 Manager 87500.000000 Name: Salary, dtype: float64

Correlation between Salary and Years of Experience:

Salary Years of Experience

Salary 1.000000 0.965505 Years of Experience 0.965505 1.000000

REFERENCE:

Python libraries: pandas, matplotlib, seaborn.

Basic statistical analysis and visualization techniques