Экзаменационные вопросы по ЦОС

Корытов Павел, 6304 Лектор: Дмитрий Клионский СПбГЭТУ «ЛЭТИ»

22 декабря 2019 г.

СОДЕРЖАНИЕ

1	Обобщенная схема ЦОС	2
2	Типовые последовательности ЦОС	4
3	Линейные дискретные системы. Описание во временной области	10
4	Линейные дискретные системы. Описание в <i>z</i> -области	12
5	Линейные дискретные системы. Описание в частотной области	14
6	Основные характеристики ЛДС. Соотношение вход / выход. Устойчивость ЛДС	16
7	z-преобразование и его свойства	17
8	Структуры ЛДС	19
9	Цифровые фильтры	24
10	Синтез КИХ-фильтров методом окон	25
11	Синтез КИХ-фильтров методом наилучшей равномерной (чебышевской) ап-	
	проксимации	28
12	Синтез БИХ-фильтров	30
13	Описание дискретных сигналов в z -области	32
14	Описание дискретных сигналов в частотной области	33
15	Дискретное преобразование Фурье (ДПФ)	35
16	Методы непараметрического спектрального анализа	37
17	Методы параметрического спектрального анализа	42
18	Адаптивные фильтры и их применения	44

1. Обобщенная схема ЦОС

Исходная информация в обобщенной схеме ЦОС — аналоговый сигнал (x(t)) или s(t), т.е. непрерывная функция времени.

1. Аналоговый сигнал подается на вход аналогового **ФНЧ** (фильтр нижних частот). ФНЧ синтезируется одним из известных методов и выполняет роль ограничителя спектра сигнала. Это необходимо для дальнейшего применения теоремы Котельникова.

После пропускания через аналоговый Φ НЧ меняется форма сигнала, сигнал становится **ограниченным по спектру**.

2. Переход от аналогового сигнала к дискретному (применение процедуры дискретизации)

Теорема Котельникова

Любой сигнал с ограниченным спектром может быть без потерь информации представлен набором дискретных отсчётов, взятых через интервал T, удовлетворяющий условию:

$$T \leq \frac{1}{2f_{\mathtt{B}}}; f_{\mathtt{A}} \geq 2f_{\mathtt{B}},$$

где:

- T период дискретизации сигнала,
- $f_{\text{в}}$ верхняя граничная частота,

• $f_{\rm д}$ — частота дискретизации сигнала. После дискретизации сигнал дискретный — квантованный по времени, но аналоговый по уровню (состоянию). Отсчёты расположены через равноотстоящие промежутки — период дискретизации

3. Переход от дискретного сигнала к цифровому

Аналогово-цифровой преобразователь (АЦП) преобразует значения из аналоговых в цифровые. Дискретизация и квантование выполняются с помощью ПО.

Квантование сопровождается ошибкой (шумом) квантования

- 4. Обработка цифрового сигнала
 - **Система ЦОС** выполняет преобразование сигнала в соответствии с решаемой задачей. На выходе сигнал **цифровой** квантованный по времени и по состоянию.
- 5. Обратное преобразование от цифрового сигнала в аналоговый **Цифро-аналоговый преобразователь (ЦАП)** преобразует цифровой сигнал в ступенчатый аналоговый. Является ФНЧ с низкой степенью избирательности.
- 6. Устранение ступенчатого эффекта. **Сглаживающий фильтр** — ФНЧ, устраняющий ступенчатый эффект.

2. Типовые последовательности ЦОС

2.1. Цифровой единичный импульс

Рисунок 1 – Цифровой единичный импульс

$$u_0(nT) = \begin{cases} 1, & n = 0; \\ 0, & n \neq 0. \end{cases}$$
 (2.1)

2.2. Цифровой единичный скачок

Рисунок 2 – Цифровой единичный скачок

Цифровой единичный скачок — результат дискретизации аналогового скачка.

$$u_1(nT) = \begin{cases} 1, & n \ge 0; \\ 0, & n < 0. \end{cases}$$
 (2.2)

2.3. Дискретная экспонента

Рисунок 3 – Дискретная экспонента

Дискретная экспонента — результат дискретизации аналоговой экспоненты.

$$x_1(n) = \begin{cases} a^n, & n \ge 0 \\ 0, & n < 0, \end{cases}$$
 (2.3)

где n — дискретное нормированное время. От a зависит, будет ли сменяться знак экспоненты.

2.4. Дискретный гармонический сигнал

$$x_2(n) = C\cos(\hat{\omega_0}n), \tag{2.4}$$

где C — амплитуда сигнала, $\hat{\omega_0}$ — частота сигнала

2.5. Дискретный комплексный гармонический сигнал

Рисунок 4 – Графики вещественной и комплексной частей гармонического сигнала

$$x_2(n) = Ce^{j\hat{\omega}_0 n} \tag{2.5}$$

2.6. Дискретный прямоугольный импульс

Рисунок 5 – График дискретного прямоугольного импульса

$$x_3(n) = \begin{cases} U, & n_0 \le n \le (n_0 + n_{\text{imp}} - - - 1); \\ 0, & \text{иначе}, \end{cases}$$
 (2.6)

где U — амплитуда, n_0 — момент начала, $n_{\rm imp}$ — длительность.

2.7. Дискретный треугольный импульс

Рисунок 6 – График дискретного треугольного импульса

Можно получить сверткой дискретного прямоугольного импульса самим с собой на интервале L.

Аналитическая запись свертки:

$$x_4(t) = x_3(t) * x_3(t) = \sum_{\tau=0}^{N} x_3(\tau) x_3(t-\tau),$$
 (2.7)

где $x_3(\tau)$:

$$x_3(\tau) = \begin{cases} U, & n_0 \le \tau \le (n_0 + n_{imp} - 1) \\ 0, & \text{иначе} \end{cases}$$
 (2.8)

Длина свертки: L = 2N - 1.

3. Линейные дискретные системы. Описание во временной области

3.1. Линейные дискретные системы

Система обработки сигнала — объект, выполняющий требуемое преобразование входного сигнала (воздействия) в выходной (реакцию).

Рисунок 7 – Схематичное изображение ЛДС

Система — линейная, если она отвечает условиям аддитивности и однородности.

Аддитивность — реакция на сумму воздействий равна сумме реакций на воздействия:

Однородность — воздействию, умноженному на весовой коэффициент, соответствует реакция, умноженная на тот коэффициент.

$$L\{a_1x_1(n) \pm a_2x_2(n) \pm \ldots\} = a_1L\{x_1(n)\} \pm a_2L\{x_2(n)\} \pm \ldots,$$
 (3.1)

где: $x_i(n)$ — воздействие, a_i — весовой коэффициент.

Система — дискретная, если она преобразует дискретное воздействие в дискретную реакцию.

Система — **стационарная**, если её реакция инвариантна по отношению к начала отсчёта времени. По умолчанию рассматриваем стационарные линейные дискретные системы (ЛДС).

3.2. Описание ЛДС во временной области

Основная характеристика во временной области — **импульсная характеристика (ИХ)**, h(n) — реакция на цифровой единичный импульс $u_0(n)$ при ННУ.

Соотношение вход/выход ЛДС — однозначно связано с ИХ, имеет вид линейной свертки:

$$y(nT) = \sum_{m=0}^{\infty} h[(n-m)T]x(mT) = \sum_{m=0}^{\infty} h(mT)x[(n-m)T],$$
 (3.2)

$$y(n) = \sum_{m=0}^{\infty} h(n-m)x(m) = \sum_{m=0}^{\infty} h(m)x(n-m).$$
 (3.3)

Передаточная функция — однозначно связана с соотношением вход/выход, имеет вид разностного уравнения (РУ):

$$y(n) = \sum_{i=0}^{N-1} b_i x(n-i) - \sum_{k=1}^{M-1} a_k y(n-k),$$
 (3.4)
Нерекурсивная часть

где:

- b_i, a_k вещественные константы (параметры ЛДС)
- *i*, *k* задержки воздействия, реакции
- (N-1), (M-1) константы (максимальные задержки)
- x(n) воздействие
- y(n) реакция

Вычисление реакции по формуле свертки или разностому уравнению осуществляется методов прямой подстановке при начальных нулевых условиях.

Типы ЛДС:

• **Рекурсивные** — реакция зависит от текущего и предшествующих отсчётов воздействия и предшествующих отсчётов реакции.

$$\exists k: a_k \neq 0.$$

Имеют бесконечную ИХ (БИХ-ЛДС).

• **Нерекурсивные** — реакция зависит только от текущего и предшествующих отсчётов воздействия и не зависит от отсчётов реакции.

$$\forall k : a_k = 0.$$

Имеют конечную ИХ (КИХ-ЛДС). ИХ КИХ-ЛДС совпадает с коэффициентами b_i : $h(n) = b_i, n = i$

4. Линейные дискретные системы. Описание в z-области

См. 3.1 (Линейные дискретные системы).

Основная характеристика — **передаточная функция** ($\Pi\Phi$) — z-изображение импульсной характеристики:

$$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n} = \frac{Y(z)}{X(z)},$$
(4.1)

где Y(z) — z-изображение реакции, X(z) — z-изображение воздействия.

Передаточная функция с использованием разностного уравнения:

$$H(z) = \frac{\sum_{i=0}^{N-1} b_i z^{-i}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}},$$
(4.2)

где:

- z^{-i}, z^{-k} задержки воздействия и реакции,
- a_k коэффициенты передаточной функции.

Для нерекурсивных ЛДС:

$$H(z) = \sum_{i=0}^{N-1} b_i z^{-i} = \sum_{n=0}^{N-1} h(n) z^{-n}.$$
 (4.3)

Порядок рекурсивной ЛДС равен порядку знаменателя передаточной функции (M-1) при условии $(N-1) \leq (M-1)$.

Порядок нерекурсивной ЛДС равен (N-1).

Нули ПФ — корни числителя, Полюса (особые точки) ПФ — корни знаменателя. Карта нулей и полюсов — z-плоскость с единичной окружностью, нулями и полюсами.

Нули и полюсы — попарно комплексно сопряженные числа.

Для устойчивой ЛДС полюса расположены внутри единичной окружности.

ПФ рекурсивных ЛДС может быть представлена следующими разновидностями:

• Произведение простейших множителей:

$$H(z) = b_0 \prod_{k=1}^{M-1} \frac{1 - z_{0^k} z^{-1}}{1 - z_{*^k} z^{-1}},$$
(4.4)

где:

- $-z_{0^k}$ k-й нуль, z_{*^k} k-й полюс.
- Произведение множителей второго порядка:

$$H(z) = \prod_{k=1}^{L} \frac{b_{0k} + \tilde{b}_{1k}z^{-1} + \tilde{b}_{2k}z^{-2}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}},$$
(4.5)

где:

- $-b_{0k}, \tilde{b}_{1k}, \tilde{b}_{2k}, a_{1k}, a_{2k}$ вещественные коэффициенты рекурсивных звеньев 2-го порядка (биквадратов),
- *L* количество звеньев:

$$L = int(\frac{M-1}{2}). (4.6)$$

• Сумма простых дробей:

$$H(z) = \sum_{k=1}^{M-1} H_k(z) = \sum_{k=1}^{M-1} \frac{A_k}{1 - z_{*k} z^{-1}},$$
(4.7)

где:

- $-z_{*^k}$ простой (некратный) полюс,
- $-A_k$ коэффициент разложения при полюсе.

5. Линейные дискретные системы. Описание в частотной области

См. 3.1 (Линейные дискретные системы). Основная характеристика — **комплексная ча- стотная характеристика** — Фурье-изображение ИХ:

$$H(e^{j\hat{\omega}}) = \sum_{n=0}^{\infty} h(n)e^{-j\hat{\omega}n},$$
(5.1)

где $\hat{\omega}$ — нормированная частота (рад):

$$\hat{\omega} = \omega T. \tag{5.2}$$

Связь ИХ и ПФ:

$$H(e^{j\hat{\omega}}) = H(z)\big|_{z=e^{j\hat{\omega}}} = \frac{\sum_{i=0}^{N-1} b_i e^{-ji\hat{\omega}}}{\sum_{k=0}^{M-1} a_k e^{-jk\hat{\omega}}},$$
(5.3)

где:

- b_i параметры нерекурсивной части ЛДС,
- a_i параметры рекурсивной части ЛДС.

В показательной форме:

$$H(e^{j\hat{\omega}}) = \left| H(e^{j\hat{\omega}}) \right| e^{j \cdot \arg\{H(e^{j\hat{\omega}})\}} = A(\hat{\omega}) e^{j\varphi(\hat{\omega})}, \tag{5.4}$$

где $A(\hat{\omega})$ — АЧХ, $\varphi(\hat{\omega})$ — ФЧХ.

Амлитудно-частотная характеристика (АЧХ) — частотная зависимость отношения амплитуды реакции к амплитуде гармонического воздействия в установившемся режиме.

Фазочастнотная характеристика (ФЧХ) — частотная зависимость разности фаз реакции и гармонического воздействия в установившемся режиме.

Свойства АЧХ и ФЧХ:

- АЧХ и ФЧХ периодические функции;
- АЧХ четная функция частоты, ФЧХ нечетная;
- АЧХ и ФЧХ рассчитываются в основной полосе частот для систем с вещественными параметрами;
- по карте нулей и полюсов можно определить местоположение минимумов, максимумов и нулей АЧХ в основной полосе частот;
- Частота комплексно сопряженного полюса соответствует частоте максимума АЧХ (приблизительно);
- Частота комплексно сопряженного нуля соответствует частоте минимума АЧХ (приблизительно), если радиус-вектор полюса меньше 1, и нуля АЧХ, если радиусвектор равен 1. В точке нуля АЧХ наблюдается скачок на π ;
- Вещественным нулям соответствует нуль АЧХ на границе основной полосы частот 0 и/или π .

6. Основные характеристики ЛДС. Соотношение вход / выход. Устойчивость ЛДС

- Во временной области импульсная характеристика, соотношение вход/выход (см. 3.2, 3.3)
- В *z*-области передаточная функция (см. 4.1)
- В частотной области комплексная частотная характеристика (см. 5.1)

ЛДС называется устойчивой, если её реакция на любое ограниченное воздействие является ограниченной.

Критерии устойчивости:

- Критерий во временной области
 - ЛДС устойчива, если ряд отсчётов импульсной характеристики является абсолютно сходящимся
 - КИХ-фильтры устойчивы по определению
 - БИХ-фильтры требуют проверки на устойчивость
- Критерий в z-области

ЛДС устойчива, если все полюса располагаются внутри единичного круга. Граница круга соответствует **границе устойчивости**.

Чем дальше полюс от границы круга, тем больше запас устойчивости.

В неустойчивой системе возможны самовозбуждения.

7. z-преобразование и его свойства

7.1. z-преобразование и преобразование Лапласа

z-преобразования связано с **преобразованием Лапласа**:

$$X(p) = \int_0^\infty x(t)e^{-pt}dt,$$
(7.1)

где:

- x(t) непрерывная функция времени (оригинал),
- X(p) изображение
- $p = \sigma + j\omega$ оператор Лапласа.

Преобразование Лапласа справедливо в области абсолютной сходимости несобственного интеграла.

Дискретное преобразование Лапласа:

$$t \to nT,$$
 (7.2)

$$X(e^{pt}) = \sum_{n=0}^{\infty} x(nT)e^{-pnt}.$$
 (7.3)

z-преобразование:

$$z = e^{pt}, (7.4)$$

$$X(z) = \sum_{i=1}^{\infty} x(nT)z^{-n},$$
(7.5)

где:

- x(nT) функция дискретного времени,
- X(z) z-изображение x(nT).

z-преобразование справедливо в области абсолютной сходимости ряда

$$\sum_{n=0}^{\infty} |x(nT)z^{-n}| < \infty. \tag{7.6}$$

7.2. Свойства z-преобразования

1. Линейность

$$x(n) = a_1 x_1(n) + a_2 x_2(n) + \dots$$

$$X(z) = a_1 X_1(z) + a_2 X_2(z) + \dots$$
(7.7)

2. Теорема о задержке

$$x(n) \leftrightarrow X(z),$$

 $x(n-m) \leftrightarrow X(z)z^{-m}.$ (7.8)

3. Теорема о свертке

$$x(n) = \sum_{m=0}^{\infty} x_1(m)x_2(n-m) \leftrightarrow X(z) = X_1(z)X_2(z).$$
 (7.9)

8. Структуры ЛДС

Структура отображает алгоритм определения реакции по РУ (см. 3.4) и определяется видом передаточной функции.

Для рекурсивных звеньев 2-го порядка с передаточной функцией:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}},$$
(8.1)

где b_0, b_1, b_2 — нерекурсивная часть, a_1, a_2 — рекурсивная часть, и разностным уравнением

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) - a_1 y(n-1) - a_2 y(n-2)$$
(8.2)

поддерживаются далее перечисленные структуры.

8.1. Прямая структура (Direct Form I)

Рисунок 8 – Прямая структура

8.2. Прямая транспонированная структура (Direct Form I Transposed)

Рисунок 9 – Прямая транспонированная структура

8.3. Прямая каноническая структура (Direct Form II)

Рисунок 10 – Прямая каноническая структура

8.4. Прямая каноническая транспонированная структура (Direct Form II Transposed)

Рисунок 11 – Прямая каноническая транспонированная структура

8.5. Каскадная (последовательная) структура

Для звеньев с передаточной функцией:

$$H(z) = \prod_{k=1}^{K} H_k(z),$$
(8.3)

где $H_k(z)$:

$$H_k(z) = \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}}.$$
(8.4)

Система разностных уравнений:

$$\begin{cases} \nu_{1}(n) &= b_{01}x(n) + b_{11}x(n-1) + b_{21}x(n-2) - a_{11}\nu_{1}(n-1) - a_{21}\nu_{1}(n-2); \\ \nu_{2}(n) &= b_{02}\nu_{1}(n) + b_{12}\nu_{1}(n-1) + b_{22}\nu_{1}(n-2) - a_{12}\nu_{2}(n-1) - a_{22}\nu_{2}(n-2); \\ y(n) &= b_{03}\nu_{2}(n) + b_{13}\nu_{2}(n-1) + b_{23}\nu_{2}(n-2) - a_{13}y(n-1) - a_{23}y(n-2). \end{cases}$$
(8.5)

8.6. Параллельная структура

Для звеньев с передаточной функцией

$$H(z) = \sum_{k=1}^{K} H_k(z),$$
 (8.6)

где $H_k(z)$:

$$H_k(z) = \frac{B_{0k} + B_{1k}z^{-1}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}}. (8.7)$$

Рисунок 13 – Параллельная структура

Для нерекурсивной (КИХ) ЛДС, передаточная функция:

$$H(z) = \sum_{i=0}^{N-1} b_i z^{-i},$$
(8.8)

разностное уравнение:

$$y(n) = \sum_{i=0}^{N-1} b_i x(n-i).$$
 (8.9)

Для КИХ ЛДС 2-го порядка:

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2).$$
(8.10)

Рисунок 14 – Параллельная структура для КИХ ЛДС

9. Цифровые фильтры

Цифровой фильтр (ЦФ) — ЛДС, выполняющая преобразование входной последовательности в выходную по алгоритму, описываемому разностным уравнением, структурой, реализованной аппаратно, программно или аппаратно-программно.

9.1. Проектирование ЦФ

1. Синтез ЦФ

- 1.1. Выбор типа ЦФ
 КИХ-фильтр (FIR) для КИХ ЛДС, БИХ-фильтр (IIR) для БИХ ЛДС.
- 1.2. Задание требований к характеристикам ЦФ

Зависят от типа и назначения ЦФ.

По умолчанию подразумевают частотно-избирательные Ц Φ — выполняющие селекцию спектральных составляющих.

Для них типы избирательности:

- ФНЧ (фильтр нижних частот);
- ФВЧ (фильтр верхних частот);
- ПФ (полосовой фильтр);
- РФ (режекторный фильтр).
- 1.3. Выбор метода синтеза Зависит от типа и дополнительных требований.
- 1.4. Расчёт передаточной функции ЦФ
- 1.5. Выбор структуры Ц Φ
- 2. Моделирование структуры ЦФ с учетом эффекта квантования

3. Реализация структуры ЦФ

Способы реализации:

- аппаратная (с использованием ПЛИС, ЦПОС);
- программная (MATLAB, SIMULINK);
- программно-аппаратная.

10. Синтез КИХ-фильтров методом окон

10.1. КИХ-фильтр

КИХ-фильтр описывается передаточной функцией:

$$H(z) = \sum_{i=0}^{N-1} b_i z^{-i} = \sum_{n=0}^{N-1}.$$
 (10.1)

Длина КИХ-фильтра — число коэффициентов N, **порядок** — порядок R передаточной функции, равный R=N-1.

Особенности КИХ-фильтров:

- возможность обеспечить строго линейную ФЧХ (ЛФЧХ);
- устойчивость по определению.

Линейная ФЧХ (с точностью до скачков на π , где АХЧ равна нулю) обеспечивается, если для ИХ h(n) выполняется одно из условий:

- симметрии: h(n) = h(N 1 n);
- антисимметрии: h(n) = -h(N-1-n),

где ось симметрии/антисимметрии проходит через n = R/2.

Таблица 1. Типы КИХ-фильтров

Тип	$oldsymbol{\Pi}$ орядок R	$\mathbf{HX} h(n)$	ЛФЧХ	ЦФ
1	четный	симметричная	$\varphi(\hat{\omega}) = -\frac{\hat{\omega}R}{2}$	ФНЧ, ФВЧ, ПФ, РФ
2	нечетный	симметричная	$\varphi(\hat{\omega}) = -\frac{\hat{\omega}R}{2}$	ФНЧ, ПФ
2	четный	несимметричная	$\varphi(\hat{\omega}) = \frac{\pi}{2} - \frac{\hat{\omega}R}{2}$	ПФ, ЦПГ
3	нечетный	несимметричная	$\varphi(\hat{\omega}) = \frac{\pi}{2} - \frac{\hat{\omega}R}{2}$	ФВЧ, ПФ, ЦПГ, ЦД

10.2. Структуры КИХ-фильтров с ЛФЧХ

Рисунок 15 – Прямая приведенная с симметричной ИХ для КИХ-фильтра 1-го типа

Рисунок 16 – Прямая приведенная с антисимметричной ИХ для КИХ-фильтра 3-го типа

10.3. Процедура синтеза КИХ-фильтров методом окон

- 1. Задание требований к АЧХ.
- 2. Оценка порядка фильтра R и выбор окна.

Окно — весовая функция w(n) — вещественная неотрицательная последовательность N=R+1, максимальная в центре и монотонно спадающая к границам.

3. Расчёт ИХ идеального фильтра $h_{\rm u}(n)$, выделенной окном Дирихле (прямоугольным).

ИХ рассчитывается по известным аналитическим формулам для типов фильтров. Обязательный параметр — частота разрыва, на которой нормированная АЧХ равна 0.5.

4. Расчёт ИХ реального фильтра с симметричной h(n) в виде произведения:

$$h(n) = h_{\mathsf{H}}(n)w(n) \tag{10.2}$$

5. Проверка выполнения требований к АЧХ.

Заключается в проверки максимальных по модулю отклонений АЧХ от идеальной АЧХ.

Производится поиск минимального порядка, при котором выполняются требования.

6. Выбор структуры КИХ-фильтра.

11. Синтез КИХ-фильтров методом наилучшей равномерной (чебышевской) аппроксимации

См. 10.1 (КИХ-фильтр).

Метод чебышевской аппроксимации позволяет синтезировать **оптимальный КИХ-фильтр** — фильтр наименьшего возможного порядка, удовлетворяющий заданным требованиям к АЧХ

Коэффициенты оптимального КИХ-фильтра определяются поиском минимум функционала — критерия Чебышева (наилучшего равномерного приближения).

Расчёт весов:

- 1 присваивается полосе с наибольшим максимально допустимым отклонением;
- в остальных полосах рассчитываются как отношение наибольшего максимально допустимого отклонения к максимально допустимому отклонению в данной полосе.

Согласно **теореме Чебышева**, минимум максимальной (по модулю) взвешенной ошибки аппроксимации $\delta_{\min\max}$ достигается в **точках альтернанса** — частотах, на которых максимальное (по по модулю) взвешенное отклонение амплитудной функции от идеальной АЧХ минимально, одинаково и чередуется по знаку.

Таблица 2. Количество точек альтернанса и порядок КИХ-фильтра

Тип	$oldsymbol{\Pi}$ орядок R	$\mathbf{WX} h(n)$	Число точек альтернанса	Порядок фильтра
1	четный	симметричная	$m = \frac{R}{2} + 2$	R = 2m - 4
2	нечетный		$m = \frac{R-1}{2} + 2$	R = 2m - 3
2	четный	несимметричная	$m = \frac{R}{2} + 1$	R = 2m - 2
3	нечетный	несимметричная	$m = \frac{\bar{R} - 1}{2} + 1$	R = 2m - 3

Синтез КИХ-фильтра сводится к расчёту его импульсной характеристики.

Шаги процедуры:

- 1. Задание требований к АЧХ
- 2. Оценка порядка фильтра R
- 3. Расчёт ИХ фильтра.

Производится с помощью численного метода — алгоритма Паркса — Мак-Клиллена

4. Проверка выполнения требований к АЧХ.

Заключается в сравнении взвешенной ошибки аппроксимации $\delta_{\min\max}$ с допустимым взвешенным отклонением δ_{\max} АЧХ от идеальный АЧХ, равным:

• Для ФНЧ, ФВЧ:

$$\delta_{\text{max}} = \max\{\delta_1, \delta_2\} \tag{11.1}$$

• Для ПФ:

$$\delta_{\text{max}} = \max\{\delta_{21}, \delta_1, \delta_{22}\} \tag{11.2}$$

• Для РФ:

$$\delta_{\text{max}} = \max\{\delta_{11}, \delta_2, \delta_{12}\} \tag{11.3}$$

Производится итеративный поиск минимального порядка, при котором выполняются требования к АЧХ.

5. Выбор структуры КИХ-фильтра

12. Синтез БИХ-фильтров

12.1. БИХ-фильтр

БИХ-фильтр — фильтр с бесконечной импульсной характеристикой.

Передаточная функция:

$$H(z) = \frac{\sum_{i=0}^{N-1} b_i z^{-i}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}}$$
(12.1)

и при $(N-1) \le (M-1)$ имеет порядок, равный R = (M-1).

Особенности:

- нелинейность ФЧХ, т.е. наличие фазовых искажений;
- необходимость проверки на устойчивость.

12.2. Синтез методом билинейного z-преобразования

Синтез заключается в расчёте передаточной функции. Метод билинейного z-преобразования основан на использовании аналогового фильтра-прототипа (АФП):

- 1. Задание требований к характеристике затухания АЧХ БИХ-фильтра
- 2. Формирование требования к АЧХ АФП Связь граничных частот АФП Ω с граничными частотами БИХ-фильтра:

$$\Omega = \frac{2}{t} \tan \frac{\omega T}{2},\tag{12.2}$$

которая в шкале частот в герцах соответствует зависимости между частотами АФП F и БИХ-фильтра f:

$$F = \frac{f_{\pi}}{\pi} \tan \frac{\pi f}{f_{\pi}},\tag{12.3}$$

- 3. Выбор типа БИХ-фильтра.
- 4. Расчёт передаточной функции $H_a(p)$
- 5. Преобразование передаточной функции АФП $H_a(p)$ в передаточную функцию БИХ-

Таблица 3. Типы БИХ-фильтров

Название	АЧХ в ПП	АЧХ в ПЗ
Баттерворта	максимально плоская	монотонная
Чебышева I рода	равноволновая	монотонная
Чебышева II рода	максимально плоская	равноволновая
Золотарева-Кауэра	равноволновая	равноволновая

фильтра на основе формулы билинейного z-преобразования:

$$p = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}. (12.4)$$

6. Выбор структуры БИХ-фильтра

13. Описание дискретных сигналов в z-области

См. 7 (z-преобразование и его свойства)

13.1. Некоторые сигналы в z-области

$$u_0(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$
 (13.1)

— дискретный единичный импульс,

$$u_1(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$
 (13.2)

— дискретный единичный скачок (функция Хевисайда).

Таблица 4. Некоторые *z*-преобразования

Сигнал $x(n)$	z-изображение
$\overline{u_0(n)}$	1
$u_0(n-n_0)$	$\frac{1}{z^{n_0}}$
$u_1(n)$	$\frac{z}{z-1}$
$(\pm a)^n u_1(n)$	$\frac{1}{1 \mp az^{-1}}$
$\cos(\omega_0 n)u_1(n)$	$\frac{1 - z^{-1}\cos(\omega_0)}{1 2z^{-1}\cos(\omega_0) + z^{-2}}$

14. Описание дискретных сигналов в частотной области

Фурье-изображение дискретного сигнала

$$X(e^{j\omega T}) = \sum_{n=0}^{\infty} x(nT)e^{-j\omega Tn},$$
(14.1)

где T — период дискретизации, $X(e^{j\omega T})$ — спектральная плотность дискретного сигнала x(n).

Спектральная плоскость в шкале дискретного нормированного времени и нормированной частоты:

$$X(e^{j\hat{\omega}} = \sum_{n=0}^{\infty} x(n)e^{-j\hat{\omega}n}). \tag{14.2}$$

Связь z-изображения со спектральной плотностью:

$$X(e^{j\omega T}) = X(Z)\big|_{z=e^{j\omega T}} \tag{14.3}$$

Вещественная и мнимая части спектральной последовательности — вещественный и мнимый спектр последовательности.

Модуль спектральной плотности — **амплитудный спектр последовательности** Аргумент спектральной плотности — **фазовый спектр последовательности**

14.1. Свойства спектральной плотности

- 1. Непрерывность
- 2. Период равен частоте дискретизации
- 3. Линейность:

$$x(n) = a_1 x_1(n) + a_2 x_2(n) + \dots$$

$$X(e^{j\hat{\omega}}) = a_1 X_1(e^{j\hat{\omega}}) + a_2 X_2(e^{j\hat{\omega}}) + \dots$$
(14.4)

4. Модуль спектральной функции — четная функция частоты; аргумент спектральной функции — нечетная функция частоты

5. Равенство Парсеваля

$$\sum_{n=0}^{\infty} |x(nT)|^2 = \frac{T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} |X(e^{j\omega T})|^2 d\omega$$
 (14.5)

6. Сдвиг спектральной плотности в частотной области:

$$x(nT) \Leftrightarrow X(e^{j\omega T}),$$
 (14.6)

$$x(nT)e^{j\omega_0nT} \Leftrightarrow X(e^{j(\omega-\omega_0)T})$$
 — сдвиг вправо, (14.7)

$$x(nT)e^{-j\omega_0nT} \Leftrightarrow X(e^{j(\omega+\omega_0)T})$$
 — сдвиг влево. (14.8)

7. Сдвиг дискретного сигнала во временной области

$$x(nT) \Leftrightarrow X(e^{j\omega T}),$$
 (14.9)

$$x((n-m)T) \Leftrightarrow X(e^{j\omega T})e^{-j\omega mT}.$$
 (14.10)

15. Дискретное преобразование Фурье (ДПФ)

Прямое ДПФ:

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{nk}, k = 0, 1, \dots, N-1,$$
(15.1)

обратное ДПФ:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}, n = 0, 1, \dots, N - 1,$$
(15.2)

где:

- x(n) исходный сигнал, N-точечная последовательность;
- X(k) результат вычисления, N-точечное ДПФ;
- N длина последовательности;
- n = nT/T дискретное нормированное время (номер отсчёта);
- Т период дискретизации;
- к дискретная нормированная частота;
- $k=k\Delta\omega/\Delta\omega$; $\Delta\omega$ период дискретизации (разрешение) по частоте.

$$\Delta\omega = \frac{\omega_{\rm M}}{N} = \frac{2\pi}{NT}$$

 $W_N^{nk} = e^{-j\frac{2\pi}{N}nk}$ — поворачивающий множитель,

$$X(k)W_N^{-nk}=X(k)e^{j\frac{2\pi}{N}nk}$$
— k -я дискретная гармоника,

 $f=krac{f_{\mathrm{A}}}{N}$ — значения абсолютных частот дискретных гармоник.

15.1. ДПФ периодической последовательности

ДПФ X(k) представляет собой её **спектр** с точностью до постоянного множителя $\frac{I}{N}$.

Модуль ДПФ — **амлитудный спектр** периодической последовательности, четная функция частоты. Для вещественной последовательности — амплитудный спектр с точностью до постоянного множителя:

$$\begin{cases} \frac{1}{N}, & k = 0; \\ \frac{2}{N}, & k \neq 0. \end{cases}$$
 (15.3)

Аргумент ДПФ — фазовый спектр, нечетная функция частоты.

15.2. Эффект растекания спектра

Если хотя бы для одной из дискретных гармоник

$$P_i = \frac{NT}{T_i} = \frac{Nf_i}{f_{\pi}} \tag{15.4}$$

оказывается нецелым числом, наблюдается **растекание спектра** — появление в спектральном составе дополнительных составляющих.

Эффект принципиально неустраним, но:

- во многих случаях им можно пренебречь;
- можно использовать оконные функции.

16. Методы непараметрического спектрального анализа

Спектральный анализ предназначен для оценки частотного состава случайного дискретного сигнала.

Непараметрические методы основаны на вычислении оценок СПМ непосредственно по отсчётам спектральной последовательности.

Спектральная плотность мощности

$$S(\omega) = \lim_{N \to \infty} \frac{1}{2N+1} \frac{\left| X(e^{j\omega T}) \right|^2}{f_{\pi}},\tag{16.1}$$

где $S(\omega)$ — спектральная плотность мощности, N — длина последовательности, $f_{\rm д}$ — частота дискретизации,

$$X(e^{j\omega T}) = \sum_{n=-N}^{N} x(n)e^{-j\omega Tn},$$
 (16.2)

где $X(e^{j\omega T})$ — спектральная плотность последовательности x(n).

16.1. Показатели качества оценок СПМ

• Смещенность/несмещенность

Для случайного эргодического дискретного сигнала *смещение* β :

$$\beta = \alpha - E[\hat{\alpha}] = E[\alpha - \hat{\alpha}],\tag{16.3}$$

где α — истинное значение, $al\hat{p}ha$ — оценка, E — математическое ожидание. Оценка — **несмещенная**, если при усреднении по ансамблю с возрастанием числа реализаций $\beta \to 0$.

• Состоятельность/несостоятельность

Оценка — **состоятельная**, если при усреднении по ансамблю с возрастанием числа реализаций:

$$E[(\alpha - \hat{\alpha})^2] = D[\hat{\alpha}] + \beta^2 \to 0. \tag{16.4}$$

• Добротность

$$Q = \frac{\hat{S_{\rm cp}}^2}{\sigma_{\hat{S}}^2},\tag{16.5}$$

где, $\hat{S_{\rm cp}}$ — математическое ожидание, $\sigma_{\hat{S}}$ — дисперсия, Q — добротность. Несмещенная оценка дисперсии $\sigma_{\hat{S}}^2$:

$$\sigma_{\hat{S}}^2 = \frac{1}{N-1} \sum_{k=1}^{N-1} \left(\hat{S}(\omega_k) - \hat{S}_{cp} \right)^2, \tag{16.6}$$

смещенная:

$$\sigma_{\hat{S}}^2 = \frac{1}{N} \sum_{k=1}^{N-1} \left(\hat{S}(\omega_k) - \hat{S}_{cp} \right)^2, \tag{16.7}$$

где ω_k — значения частот в N равноотстоящих точках на периоде СПМ, $\hat{S}_{\rm cp}$ — среднее значение оценки СПМ:

$$\hat{S}_{cp} = \frac{1}{N} \sum_{k=0}^{N-1} \hat{S}(\omega_k). \tag{16.8}$$

CKO

Несмещенная оценка СКО:

$$\sigma_{\dot{s}} = \sqrt{\frac{1}{N-1} \sum_{k=0}^{N-1} (\hat{S}(\omega_k) - \hat{S}_{cp})^2},$$
(16.9)

смещенная:

$$\sigma_{\dot{s}} = \sqrt{\frac{1}{N} \sum_{k=0}^{N-1} (\hat{S}(\omega_k) - \hat{S}_{cp})^2}.$$
 (16.10)

16.2. Метод периодограмм

Заключается в вычислении оценки СПМ $\hat{S}(\omega)$ конечной случайной последовательности длины N — периодограммы:

$$\hat{S}(\omega) = \frac{\left| X(e^{j\omega T}) \right|^2}{N f_{\pi}}.$$
(16.11)

Периодограмма — неотрицательная, вещественная, четная функция с периодом $\omega_{\rm д}=2\pi f_{\rm д}=\frac{2\pi}{T}.$

Может наблюдаться эффект растекания спектра (см. 15.2 (Эффект растекания спектра), рис. 17).

Рисунок 17 – Эффект растекания спектра

16.3. Модифицированные методы периодограмм

16.3.1. Метод периодограмм Даньелла

Периодограмма Даньелла вычисляется на основе исходной $\hat{S}(\omega)$:

$$\hat{S}_{\text{DANIELL}}(\omega_i) = \frac{1}{2K+1} \sum_{k=i-K}^{i+K} \hat{S}(\omega_k), i = K, K+1, \dots, N-1-K,$$
 (16.12)

где N — длина $\hat{S}(\omega)$, ω_k — значения частот усреднения периодограммы, их количество для каждого значения i равно 2K+1.

Сглаживание достигается за счёт использования скользящего среднего.

16.3.2. Метод периодограмм Бартлетта

В методе Бартлетта происходит разбиение на неперекрывающиеся фрагменты $x^{(p)}(n)$ длины L:

$$x^{(p)}(n) = x(n+pL), n = 0, \dots, L-1; p = 0, \dots, P-1,$$
 (16.13)

где p — номер фрагмента, $P = \frac{N}{L}$ — их количество (при необходимости последний фрагмент дополняется 0, чтобы количество фрагментов было целым числом).

Периодограмма фрагмента:

$$\hat{S}_{\text{BARTLETT}}^{(p)}(\omega) = \hat{S}^{(p)}(\omega). \tag{16.14}$$

Периодограмма Бартлетта:

$$\hat{S}_{\text{BARTLETT}}(\omega) = \frac{1}{P} \sum_{p=0}^{P-1} \hat{S}_{\text{BARTLETT}}^{(p)}(\omega)$$
 (16.15)

Сглаживание достигается за счёт деления последовательности на неперекрывающиеся фрагменты и усреднения периодограмм фрагментов.

16.3.3. Метод периодограмм Уэлча

В методе Уэлча последовательность длины N разбивается на перекрывающиеся фрагменты $x^{(p)}(n)w(n)$ длины L со сглаживающим окном w(n) и величиной перекрытия Q < L:

$$x^{(p)}(n)w(n) = x(n+pQ)w(n), n = 0, \dots, L-1; p = 0, \dots P-1,$$
(16.16)

где p — номер фрагмента, P — их количество:

$$P = \frac{N - L}{Q} + 1. {(16.17)}$$

Периодограммы фрагментов:

$$\hat{S}_{\text{WELCH}}^{(p)}(\omega) = \hat{S}^{(p)}(\omega), p = 0, \dots, P - 1.$$
 (16.18)

Периодограмма Уэлча:

$$\hat{S}_{\text{WELCH}}(\omega) = \frac{1}{P} \sum_{p=0}^{P-1} \hat{S}_{\text{WELCH}}^{(p)}(\omega). \tag{16.19}$$

Сглаживание достигается за счёт деления последовательности на перекрывающиеся фрагменты и усреднения периодограмм фрагмента.

16.4. Метод Блэкмана-Тьюки

Для случайной последовательности x(n) длина N определяется по формуле:

$$\hat{S}_{BT}(\omega) = \frac{1}{f_{\pi}} \sum_{m=-(N_1-1)}^{N_1} \hat{R}_x(m) w(m) e^{-j\omega mT}, \qquad (16.20)$$

где $\hat{R_x}$ — оценка АКФ — четная функция длины $L_1=2N_1-1$, центрированные относительно m=0; w(m) — весовая функция той же длины.

Смещенная оценка АКФ:

$$\hat{R}_x(m) = \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n)x(n+m), -(N_1 - 1) \le m \le (N_1 - 1).$$
 (16.21)

Несмещенная оценка АКФ:

$$\hat{R}_x(m) = \frac{1}{N - |m|} \sum_{n=0}^{N - |m| - 1} x(n)x(n+m), -(N_1 - 1) \le m \le (N_1 - 1).$$
 (16.22)

17. Методы параметрического спектрального анализа

Параметрические методы оценки СПМ основаны на построении математической модели анализируемого случайного сигнала и определении (оценке) параметров модели, при которых обеспечивается наилучшее приближение моделируемого сигнала.

Основные преимущества:

- Отсутствие осцилляций
- Отсутствия искажений от оконных функций
- Информативность при коротких последователях, лучшее различение близких спектральных составляющих
- Высокое разрешение по частоте

17.1. АРСС-модель

Модель авторегрессии скользящего среднего.

Описывается разностным уравнение БИХ-фильтра:

$$y(n) = -\sum_{k=1}^{M-1} a_k y(n-1) + \sum_{i=0}^{M-1} b_i e(n-i),$$
(17.1)

где:

- e(n) входной сигнал БИХ-фильтра;
- y(n) выходной сигнал;
- a_k, b_i параметры АРСС-модели;
- (M-1) порядок АРСС-модели,
- (N-1) порядок нерекурсивной части БИХ-фильтра,
- (M-1) порядок рекурсивной части

АРСС-модели соответствует БИХ-фильтр с дробно-рациональной передаточной функцией.

$$H(z) = \frac{1 + \sum_{i=1}^{N-1} n_i z^{-i}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}} = \frac{B(z)}{A(z)},$$
(17.2)

где:

• $a_k|_{k=1}^{M-1}, b_i|_{i=1}^{N-1}$ — параметры АРСС-модели;

- (N-1) порядок СС-части;
- (M-1) порядок АР-части.

Рисунок 18 - Структурная схема АРСС-модели

17.2. АР-модель

РУ:

$$y(n) = -\sum_{k=1}^{M-1} a_k y(n-1), \tag{17.3}$$

соответствующий БИХ-фильтр — полюсный (чисто рекурсивный)

$$H(z) = \frac{1}{1 + \sum_{k=1}^{M-1} a_k z^{-k}} = \frac{1}{A(z)},$$
(17.4)

17.3. СС-модель

РУ:

$$y(n) = e(n) + \sum_{i=0}^{N-1} b_i e(n-i),$$
(17.5)

соответствующий фильтр — КИХ-фильтр:

$$H(z) = 1 + \sum_{i=1}^{N-1} n_i z^{-i}.$$
(17.6)

18. Адаптивные фильтры и их применения

Адаптивный фильтр — система, параметры которой адаптируются (подстраиваются) к сигналу с заранее неопределенной статистической моделью в процессе его обработки.

Наиболее распространены линейные адаптивные фильтры с обратной связью на основе КИХ-фильтров и БИХ-фильтров.

Рисунок 19 – Структурная схема линейного адаптивного фильтра с обратной связью

РУ КИХ-фильтра в составе АФ:

$$y(n) = \sum_{i=0}^{N-1} h_i x(n-i).$$
 (18.1)

Вычисление сигнала ошибки:

$$e(n) = d(n) - y(n) = d(n) - \sum_{i=0}^{N-1} h_i x(n-i).$$
(18.2)

Линейность $\mathbf{A}\Phi$ — линейность (аддитивность + однородность) входящего в состав КИХ-фильтра.

РУ КИХ-фильтра в АФ с переменными коэффициентами:

$$y(n) = \sum_{i=0}^{N-1} h_i(n) x_k(n-i)$$
(18.3)

18.1. Применение адаптивных фильтров

- 1. оценивание импульсной характеристики неизвестной системы (КИХ- и БИХ-системы);
- 2. очистка сигнала от шума (шумоподавление);
- 3. выравнивание частотной характеристики неизвестной системы, например, канала связи (компенсация искажений, вносимых неизвестной системой);
- 4. оценка параметров линейного предсказания сигнала.