Flod-Warshall Algorithm

Swarup Kr Ghosh

Flod-Warshall Algorithm: Multiple source and multiple destination shortest path.

- It follows both DP and greedy approaches.
- Applicable for both positive and negative edges.

A0=	V1	V2	V3	V4
V1	0	3	INF	7
V2	8	0	2	INF
V3	5	INF	0	1
V4	2	INF	INF	0

A[V4,V1]=
min(A[V4,V1], A[V4,V2]+A[V2,V1])
Min (INF, 2+3)
TRIANGULAR INEQUALITY

A1=	V1	V2	V 3	V 4
V1	0	3	INF	<mark>7</mark>
V2	8	0	2	15
V3	<mark>5</mark>	8	0	1
V4	2	5	INF	0

A2=	V1	V2	V 3	V4
V1	0	<mark>3</mark>	5	7
V2	8	0	2	<mark>15</mark>
V3	5	8	0	1
V4	2	<mark>5</mark>	7	0

A3=	V1	V2	V 3	V4
V1	0	3	5	6
V2	7	0	2	3
V 3	<mark>5</mark>	<mark>8</mark>	0	<mark>1</mark>
V 4	2	5	<mark>7</mark>	0

A4=	V1	V2	V3	V4
V1	0	3	5	<mark>6</mark>
V2	5	0	2	<mark>3</mark>
V3	3	6	0	<mark>1</mark>
V 4	2	<mark>5</mark>	<mark>7</mark>	<mark>0</mark>

```
A[V1,V2] = \min(A[V1,V2], A[V1,V3] + A[V3,V2]) for (k=1; k <= n; k++) { for (i=1; i <= n; i++) { A[i, j] = \min(A[i, j], A[i, k] + A[k, j]) } } } Time complexity = O (n^3)
```

Algorithm: Floyd-Warshall

```
Procedure: floydWarshall (G, w) for each edge (u, v | u, v \epsilon V) do A[u][v] \leftarrow w(u, v) next [u][v] \leftarrow v for each vertex v \epsilon V do A[v][v] \leftarrow 0 next [u][v] \leftarrow v while (k < |V|) do while (i < |V|) do while (j < |V|) do A[i][j] = minimum (A[i][j], A[i][k] + A[k][j])
```

$next[i][j] \leftarrow next[i][k]$

end do

end do

end do end procedure

How do you apply greedy approach of this problem? How it differ from Dijkstra algorithm.