Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе $N\!\!\!^{\circ}2$

по дисциплине «Математическая статистика»

Выполнила студентка группы 3630102/80401

Мамаева Анастасия Сергеевна

Проверил

Доцент, к.ф.-м.н.

Баженов Александр Николаевич

Санкт-Петербург 2021

СОДЕРЖАНИЕ

\mathbf{C}	ПИСОК ТАБЛИЦ	•
1	Постановка задачи	4
2	Теория	4
	2.1 Распределения	4
	2.2 Вариационный ряд	4
	2.3 Выборочные числовые характеристики	١
	2.3.1 Характеристики положения	
	2.3.2 Характеристики рассеяния	
3	Программная реализация	Ę
4	Результаты	6
	4.1 Характеристики положения и рассеяния	6
5	Обсуждение	7
6	Приложение	-

СПИСОК ТАБЛИЦ

1	Нормальное распределение (3)	(
2	Распределение Коши (4)	(
3	Распределение Лапласа (5)	(
4	Распределение Пуассона (6)	,
5	Равномерное распределение (7)	۲

1 Постановка задачи

Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} , medx, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{5}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при}|x| \le \sqrt{3} \\ 0 & \text{при}|x| > \sqrt{3} \end{cases}$$
 (7)

2.2 Вариационный ряд

Вариационным рядом называется последовательность элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются. Запись вариационного ряда: $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$. Элементы вариационного ряда $x_{(i)} (i = 1, 2, \ldots, n)$ называются порядковыми статистиками.

2.3 Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины X^* , принимающей выборочные значения $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$.

2.3.1 Характеристики положения

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & n = 2l+1\\ \frac{x_{(l)} + x_{(l+1)}}{2} & n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

• Полусумма квартилей Выборочная квартиль z_p порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & np-\text{дробноe} \\ x_{(np)} & np-\text{целоe} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

2.3.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (14)

3 Программная реализация

Лабораторная работа выполнена на языке Python вресии 3.7 в среде разработки JupyterLab. Использовались дополнительные библиотеки:

1. scipy

2. numpy

В приложении находится ссылка на GitHub репозиторий с исходныи кодом.

4 Результаты

4.1 Характеристики положения и рассеяния

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Normal E(z) 10	-0.000003	-0.008031	0.036451	-0.021004	-0.012014
Normal $D(z)$ 10	0.101239	0.091199	0.480519	0.475769	0.172801
Normal $E(z)$ 100	-0.002052	-0.004684	0.012205	-0.011495	-0.008917
Normal $D(z)$ 100	0.05601	0.050246	0.478019	0.50419	0.097187
Normal E(z) 1000	-0.001219	-0.003105	0.006667	-0.010076	-0.006475
Normal D(z) 1000	0.037681	0.033809	0.475955	0.497166	0.065463

Таблица 1: Нормальное распределение (3)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Cauchy E(z) 10	-1.787828	-0.025951	-5.130831	-3.948137	-2.645886
Cauchy D(z) 10	4390.971	0.403047	71558.563	21478.02	2724.385
Cauchy E(z) 100	-2.946291	-0.011733	-2.919987	7.274195	-5.064231
Cauchy D(z) 100	11499.485	0.214055	37287.433	194370.44	37068.767
Cauchy E(z) 1000	-2.272925	-0.007192	-1.740728	4.70099	-4.116761
Cauchy D(z) 1000	7794.082	0.143556	25043.95	129732.73	25183.86

Таблица 2: Распределение Коши (4)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Laplace E(z) 10	0.022501	0.011001	0.011483	0.023003	0.027397
Laplace $D(z)$ 10	0.103582	0.077859	0.490929	0.47279	0.169248
Laplace $E(z)$ 100	0.012271	0.005379	0.021852	0.021828	0.015041
Laplace $D(z)$ 100	0.057048	0.041891	0.492694	0.492542	0.095815
Laplace $E(z)$ 1000	0.008403	0.003924	0.022277	0.022505	0.010596
Laplace D(z) 1000	0.038374	0.028103	0.487406	0.505289	0.064555

Таблица 3: Распределение Лапласа (5)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Poisson E(z) 10	9.979	9.8525	9.9655	10.044	9.997167
Poisson D(z) 10	0.975799	1.373994	4.68356	5.018564	1.779575
Poisson E(z) 100	9.98473	9.8535	9.9615	10.0425	9.986043
Poisson D(z) 100	0.534271	0.786788	4.841018	5.073944	0.982735
Poisson E(z) 1000	9.990781	9.902	9.955	10.057	9.99035
Poisson D(z) 1000	0.359408	0.529563	4.769308	5.025751	0.661672

Таблица 4: Распределение Пуассона (6)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Uniform E(z) 10	-0.003058	-0.008189	-0.008308	-0.058391	-0.000635
Uniform $D(z)$ 10	0.10312	0.240584	0.509498	0.516179	0.1717448
Uniform $E(z)$ 100	-0.001261	-0.005273	-0.013241	-0.026719	-0.001152
Uniform $D(z)$ 100	0.056234	0.134553	0.506669	0.513444	0.095636
Uniform $E(z)$ 1000	-0.000621	-0.003033	-0.005643	-0.017729	-0.000709
Uniform $D(z)$ 1000	0.037829	0.090714	0.499291	0.501763	0.064392

Таблица 5: Равномерное распределение (7)

5 Обсуждение

Исходя из данных, приведенных в таблицах, можно судить о том, что дисперсия характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки - понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

6 Приложение

Код программы GitHub URL:

https://github.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Brig