1 Pistes de réflexion Thèse - Janvier 2015

1.1 Introduction

Soient $X_1,...,X_n$, $X_i \in \mathbb{R}^p$ un échantillon de n variables aléatoires i.i.d de loi P^* . On suppose que P^* est un mélange de K composantes Gaussiennes P_i , $1 \le j \le K$ et que K est connu:

$$P^* = \sum_{j=1}^K \pi_j P_j$$
 avec $\forall i, \quad \pi_i > 0$ et $\sum_{j=1}^K \pi_j = 1$

Où P_j a pour densité la loi normale $\mathcal{N}_p(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_j)$.

Une approche classique dans le cadre de mélange de gaussien est d'utiliser l'algorithme EM pour estimer les paramètres $\Pi = (\pi_1, \dots, \pi_n), \mu, \Sigma$. Sans hypothèse supplémentaire, la complexité de cette approche rend le calcul impossible quand la dimension \mathbf{p} devient grande (ordre p^2). Une approche est de considérer Σ diagonale mais ceci revient à considérer que les features sont indépendantes ce qui est un inconvénient.

1.2 Approche par analyse structurelle de Σ

Soient $Y_1,...,Y_n$ un échantillon de n variables aléatoires i.i.d de loi $\mathcal{N}_p(\boldsymbol{\mu}^*, \boldsymbol{\Sigma}^*)$, $Y_i \in \mathbb{R}^p$. Supposons p grand. Nous cherchons à estimer $\boldsymbol{\mu}^*$ et $\boldsymbol{\Sigma}^*$. Nous pouvons estimer la moyenne empirique $\widehat{\mu} = \bar{Y_n}$ et donc supposer que

 $\mu=0$. Pour Σ^* ceci est plus délicat et nous chercherons des hypothèses structurelles sur $\Sigma^{*-1}=\Omega$ la matrice de précision. Notamment en considérant que Ω est creuse. Interprétation: si $\omega_{j,j'}=0$ alors $Y_j \perp \!\!\!\perp Y_{j'}|\{Y_l\backslash\{Y_j,Y_{j'}\}\}$. Nous pouvons considérer le graphe G=(V,E) avec card(V)=p alors,

$$Y_j$$
 $e_{j,j'}$ $Y_{j'}$

et
$$e_{i,i'} \in E \iff \omega_{i,i'} \neq 0$$

1.2.1 Graphical Lasso

On cherche l'estimateur du maximum de vraisemblance pénalisé par la norme L_1 .

$$\widehat{\Omega} \in \arg\min_{\Omega \geq 0} \left\{ \log(\det \Omega) + \frac{1}{2} tr(\Omega S_n) + \lambda \parallel \Omega \parallel_1 \right\}$$

avec $S_n = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^T$ la matrice de covariance empirique et $\|\Omega\|_1 = \sum_{\substack{j,j' \ j \neq j'}} |\omega_{j,j'}|$. Ceci est un problème d'optimisation convexe, (problème d'optimisation SDP)

1.2.2 Column-wise Lasso

(Théorème) Si $Y \sim \mathcal{N}_p(0, (\Omega^*)^{-1})$, alors

$$Y_j = \sum_{j' \in [p] \setminus j} \left(-\frac{\omega_{jj'}^*}{\omega_{jj}^*} \right) Y^{j'} + \frac{1}{\sqrt{\omega_{jj}^*}} \xi^j$$

où
$$\xi^j \sim \mathcal{N}_p(0,1) \perp \{Y^{j'}: j' \in [p] \setminus j\}$$

Méthode d'estimation: $\forall j \in \{1,..,p\}$ on estime le vecteur $\frac{1}{\omega_{jj}}\begin{bmatrix} \omega_{j1} \\ \ddots \\ \omega_{jp-1} \end{bmatrix}$

On estime β par la méthode du Lasso:

$$\widehat{\beta} \in \arg\min_{\beta \in \mathbb{R}^{p-1}} \left\{ \| Y^j - Y^{-j} \beta_{-j} \|_2^2 + \lambda \| \beta_{-j} \|_1 \right\}$$

ou Y^{-j} matrice des $Y_{j'} \setminus Y_j$.

On pose

$$\widehat{\omega}_{jj} = \left(\frac{\parallel Y^j - Y^{-j}\beta_{-j} \parallel_2^2}{n}\right)^{-1} \quad \text{et} \quad \widehat{\omega}_{jj'} =$$

On a un lasso en dimension p, la théorie recommande:

$$\lambda = \sqrt{\frac{2\log(p)}{n}} \frac{1}{\sqrt{\omega_{jj}^*}}$$

1.2.3 Square-root Lasso

$$\widehat{\beta} \in \arg\min_{\widehat{\beta} \in \mathbb{R}^{p-1}} \left\{ \parallel Y^{j} - Y^{-j} \beta_{-j} \parallel_{2} + \lambda \parallel \beta_{-j} \parallel_{1} \right\}$$

la théorie recommande:

$$\lambda = \sqrt{\frac{2\log(p)}{n}}$$
 (Théorème)
$$\forall \lambda > 0, \exists \lambda_1 > 0 \quad | \quad \widehat{\beta}^{\sqrt{Lasso}}(\lambda) = \widehat{\beta}^{Lasso}(\lambda_1)$$

1.3 Objectifs

Injecter cette méthode du column-wise lasso dans EM sous l'hypothèse $\Omega_j = \Sigma_j^{-1}$ est creuse. Nous pourrons commencer par un cas simple, $\Omega_j = \Omega, \forall j$

1.4 Notation pratique

Nous pourrons utiliser la notation suivante:

$$\widehat{\beta}^{Lasso} \in \arg\min_{\substack{\widehat{B} \in \mathbb{R}^p \\ B_{jj} = 1}} \left\{ \parallel Y.B \parallel_2^2 + \lambda \parallel B \parallel_1 \right\}$$

avec
$$Y = [Y_1,...,Y_n]^T \in \mathbb{R}^{n,p}$$
et || $Y\widehat{B}$ ||2= $\sum_{j=1}^p \parallel Y\widehat{B}_j$ ||2