

Representações Numéricas

- Sistemas de numeração básicos:
 - Binário
 - Octal
 - Decimal
 - Hexadecimal
- Base: grupo com um determinado número de objetos

Sistema	Base	Algarismos
Binário	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Como os computadores modernos representam as informações?

Números Binários

 Como os computadores digitais representam as informações utilizando apenas dois estados possíveis - eles são totalmente adequados para números binários.

O – desligado

1 – ligado

- Número binário no computador: bit [de "Binary digIT"]
 - A unidade de informação.
 - Uma quantidade computacional que pode tomar um de dois valores, tais como verdadeiro e falso ou 1 e 0, respectivamente (lógica positiva).

- Um bit pode representar apenas 2 símbolos (0 e 1)
- Necessidade unidade maior, formada por um conjunto de bits, para representar números e outros símbolos, como os caracteres e os sinais de pontuação que usamos nas linguagens escritas.
- Unidade maior (grupo de bits) precisa ter bits suficientes para representar todos os símbolos que possam ser usados:
 - dígitos numéricos,
 - letras maiúsculas e minúsculas do alfabeto,
 - sinais de pontuação,
 - símbolos matemáticos e assim por diante.

Conversão Decimal ⇒ Base Binária

- □ Divide-se o número decimal pelo valor da base B. O resto é o algarismo procurado. Repetir enquanto quociente≠0.
- Exemplo: Converter (45)₁₀ para binário

$$45/2 = 22$$
 resto=1 d₀
 $22/2 = 11$ resto=0 d₁
 $11/2 = 5$ resto=1 d₂
 $5/2 = 2$ resto=1 d₃
 $2/2 = 1$ resto=0 d₄
 $1/2 = 0$ resto=1 d₅
 $=> (d_5 d_4 d_3 d_2 d_1 d_0) = (101101)_2$

Conversão Decimal ⇒ Base Octal

Converter $(483)_{10}$ para $()_8$

483/8 = 60 resto=3

60/8 = 7

resto=4

7/8 = 0

resto=7

 $=> (743)_8$

Conversão Decimal ⇒ Base Hexadecimal

Converter (2754)₁₀ para ()₁₆

2754/16 = 172 resto=2

172/16 = 10 resto=12=C

10/16 = 0 resto=10=A

 $=> (AC2)_{16}$ ou AC2H ou AC2h

Conversão Binário para Decimal

Converter (1110)₂ para decimal

$$(1110)_2$$
 = 1.2³ + 1.2² + 1.2¹ + 0.2⁰ =
= 8 + 4 + 2 + 0 =
= $(14)_{10}$ = 14

Conversão Octal ⇒ Decimal

Exemplo

$$(270)_8 = 2.8^2 + 7.8^1 + 0.8^0 =$$

= $128 + 56 + 0 =$
= $(184)_{10} = 184$

Conversão Hexdecimal ⇒ Decimal

Exemplo

$$(12A)_{16} = 1.16^2 + 2.16^1 + 10.16^0 =$$

= $256 + 32 + 10 =$
= $(298)_{10} = 298$

Conversão Hexadecimal para Binário

□ Representação dos 16 algarismos em 4 bits:

(0000)0	(1000)8
(0001)1	
(0010)2	
(0011)3	•
(0100)4	
(0101)5	•
(0110)6	
(0111)7	

- Desta forma, o nosso número A17,B9 ficaria em binário:
 - **-** 101000010111,10111001

Aritmética Binária

SOMA: Semelhante à soma decimal

$$0+0=0$$

 $0+1=1+0=1$
 $1+1=0$, com vai '1'

Aritmética Binária

SUBTRAÇÃO: semelhante, porém o 'empréstimo' agora vale 2 (na base decimal quando temos 0-N pegamos 10 emprestado ao algarismo da esquerda).

002
Ex: 101101
- 100111
000110

Aritmética Binária

- \square Exr₁: $(10101)_2 + (11100)_2$
- \Box Exr₂: $(100110)_2 + (0011100)_2$
- \square Exr₃: $(100101)_2$ $(011010)_2$
- \square Exr₄: $(111001001)_2$ $(10111011)_2$
- \square Resp1 = $(110001)_2$
- \square Resp2 = $(1000010)_2$
- \square Resp3 = $(001011)_2$
- \square Resp4 = $(100001110)_2$