

KE und Lernen in Spielen

Classification and Regression Trees

Markus Müller

Gliederung

- Lernen
- Entscheidungsbäume
- Induktives Lernen von Bäumen
 - ID₃ Algorithmus
 - Einfluß der Beispielmenge auf den Baum
 - Möglichkeiten zur Verbesserung
- Anwendung in Spielen
- Demonstration

Lernen allgemein

- Was bedeutet Lernen?
 - Das Abspeichern von Faktenwissen ist nicht gemeint!
 - Einschätzen (Klassifizieren) einer Situation und Durchführen einer geeigneten Reaktion.
 - Wählen einer anderen Reaktion falls in der Vergangenheit Mißerfolge → dazu lernen!
 - Vorhersagen einer Situation nach dem Durchführen einer Aktion.

Lernen in Spielen

- NPC Steuerung
 - Handlungen in unbekannten Situationen
 - An Situation angepaßte Taktik
 - Herausfordernde Gegner
 - Anpassung an Taktik des Spielers
 - Kooperative NPCs
- Modellbildung
 - Erfahrungen
 - Beispieldaten

Maschinelles Lernen

- Grundlage: Beispiele
 - Bewertete Datensätze
- Lernverfahren
 - Bilden einer Hypothese auf Grund der Beispiele
- Hypothesen
 - Hier: Entscheidungsbäume
- Gelernt wird also nicht die Klassifizierung direkt!

Entscheidungsbäume

- Berechnen den Wert eines Ausgabeattributs für eine Menge von Eingabeattributen
- Grundstruktur: Baum
 - Knoten = Entscheidungen
 - Kante = Ergebnisse
 - Blätter = Ausgabewert
- Zwei Ausprägungen
 - Classification Trees
 - Regression Trees

EB: Datenmenge

- Menge von Eingabeattributen (predictor variables)
 - Symbolische Werte oder Gleitkommawerte
- Ausgabeattribut (response variable)
 - Classification Tree: symbolischer Wert
 - Regression Tree: Gleitkommawert
- Fast jedes Attribut kann das Ausgabeattribut werden, je nach Aufgabenstellung

Gewicht	Schüsse / Minute	Kapazität (Stk.)	Entfernung (m)	Тур	Schaden
Leicht	47	10	40	Handfeuerwaffe	5%
Schwer	200	500	100	Maschinengewehr	10%
Sehr leicht	6	6	25	Handfeuerwaffe	4%
Sehr schwer	280	1000	200	Maschinengewehr	13%

Entscheidungsbäume

- Jede Entscheidung teilt die Beispielmenge in disjunkte Untermengen auf.
 - Jede Entscheidung hat für ein spezifisches Beispiel immer nur ein (!) Ergebnis.
 - (C in [o..4]) und (C in [2..5]) auf der gleichen Ebene also nicht möglich!

Bearbeiten eines Datensatzes

- Bei gegebenem Baum kann der Wert des Ausgabeattributs durch die bekannten Werte der Eingabeattribute hergeleitet werden.
- Herleitung durch traversieren durch den Baum von der Wurzel zum entsprechenden Blatt

Pseudocode

```
Node = root
Repeat
  result = node.evaluate(sample)
  for each branch from node
   if branch.match(result)
     node = branch.child
   end if
  end for
until node is a leaf
return leaf class or value
```

Induktives Lernen, ID3

- Rekursive Partitionierung
 - ID3 Algorithmus von R. Quinlan, 1975
- Die Beispielmenge wird in grob klassifizierte Untermengen geteilt.
 - Anzahl der Untermengen abhängig vom Attribut an dem geteilt wird
- Teilen wiederholen bis die Klassifizierung perfekt bzw. "gut genug" ist.

ID3-Algorithmus

- Start mit leerem Baum und voller Beispielmenge
- Attribut finden, dass die Datenmenge am Besten klassifiziert.
- Entscheidungsknoten für dieses Attribut erstellen und die Datenmenge entsprechend aufteilen.
- Beenden
 - Falls Klassifizierung perfekt oder nicht mehr zu verbessern
 - Falls keine Daten mehr

Pseudocode

```
Function partition(dataset, node)
  if not create_decision(dataset,
node)
   return
  end if
  for each sample in dataset
   result = node.evaluate(sample)
    subset[result].add(sample)
  end for
  for each result in subset
   partition(subset, child)
   node.add(branch, result)
   branch.add(child)
  end for
End function
```

ID3-Algorithmus

- Welches Attribut klassifiziert die Datenmenge am Besten?
 - Berechnen der "Unreinheit" (impurity / entropy) der Mengen in Bezug auf das Ausgabeattribut.
 - o falls nur Datensätze mit gleichem Ausgabeattribut
 - 1 falls gleichmäßige Verteilung aller möglichen Werte
 - Berechnen der möglichen Verbesserung (information gain), falls an diesem Attribut geteilt wird.
 - Wählen des Attributes mit der größten Verbesserungsmöglichkeit.

ID3-Algorithmus

- S: Beispielmenge
- t: Ausgabeattribut
- Value(t): Werte des Ausgabeattributs

Entropy

$$I(S) = -\sum_{i \in Value(t)} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

Entropy nach Teilung

$$E(a) = \sum_{v \in Value(a)} \frac{|S_V|}{|S|} I(S_v)$$

Information gain

$$Gain(S, a) = I(S) - E(a)$$

Pseudocode

```
Function create decision (dataset,
node)
  max=0
  entropy = compute entropy(dataset)
  for each attribute in dataset
    e = entropy -
compute entropy split(attribute,
dataset)
    if e > max
      max = e
      best = attribute
    end if
  end for
If best
  node.evaluation =
create test (attribute)
Else
  node.class = find class(dataset)
End if
```

Einfluß der Beispielmenge

- Der gelernte Baum ist sehr spezifisch für die verwendete Beispielmenge
 - Der Baum sollte das Problem und nicht die verwendeten Daten repräsentieren.
 - Kann für andere Beispiele zu spezifisch sein → overfitting
- Lösung: Verwenden einer zweiten Datenmenge
 - 1. Trainingsdaten für ID3-Algorithmus
 - 2. Validierungsdaten um Baum zu generalisieren

Generalisieren / Pruning

- Idee: Falls die Klassifizierung ohne einen Zweig des Baumes gleich gut oder besser ist als mit ihm, wird der Zweig aus dem Baum entfernt.
- Pruning wird nach dem Lernen des Baums ausgeführt.
- Benötigt eine andere Datenmenge, da Trainingsdaten keine Änderungen auslösen würden.

Generalisieren / Pruning

- Für jeden Entscheidungsknoten wird ausgerechnet welchen Wert das Ausgabeattribut hätte, wenn er ein Blatt wäre
 - Majorität oder Durchschnitt der enthaltenen Werte
- Bearbeiten aller Datensätze der Validierungs-menge.
- Für jeden Knoten wird festgehalten wie oft er einen Datensatz korrekt klassifiziert hat.
- Falls ein Knoten einen höheren Wert hat als die Summe seiner Nachfolger sind die Nachfolger überflüssig und können gelöscht werden.

Bagging und Boosting

- Idee: Schwache Klassifizierer werden kombiniert um so bessere zu erhalten.
- Durch Änderung bzw. Teilung der Trainingsdaten können verschiedene Bäume erzeugt werden
- Bagging
 - Die Klassifizierung mit den meisten Treffern wird ausgegeben.
- Boosting
 - Die einzelnen Klassifizierer werden zudem je nach Leistung auf den Validierungsdaten gewichtet.

Beispiel: Quake, Waffenwahl

- Idee:
 - Entscheidungsbaum für zu wählende Waffe
 - Problem: Waffe wurde u.U. noch gar nicht gefunden
- Besser:
 - Ein Entscheidungsbaum pro Waffe (Regression Tree)
 - Gibt an, wie gut eine Waffe "passt"

Beispiel: Quake, Waffenwahl

- Eingabeattribute:
 - Distanz zum Gegner [near, medium, far]
 - Eigene Lebensenergie [low, high]
 - Munitionsvorrat [low, medium, high]
 - Bewegungsrichtung [forward, backward]
- Ausgabeattribut:
 - Sollte die Waffe verwendet werden [o..1]
- Auswahl
 - Waffe mit höchstem Wert, die schon gefunden wurde

Beispiel: Black & White

- Die autonome Kreatur hat Verlangen nach
 - Essen
 - Trinken
 - Schlaf
 - Gesundheit
- Sie hat eine Meinung darüber welche Objekte zur Befriedigung welches Verlangens geeignet sind.
 - Regression Tree

Demonstration

• Eigene Implementierung des ID3 Algorithmus

Quellen

- David M. Bourg, Glenn Seemann: *AI for Game Developers*, O'Reilly, 2004
- Alex J. Champandard: *AI Game Development*, New Riders Publishing, 2003
- Knut Hartmann: Echtzeittechniken für Computerspiele – Lernfähige Agenten, Uni Magdeburg, 2005
- Richard Evens: The Use of AI Techniques in Black & White, Lionhead
- Prof. Jantke: Theorie des Algorithmischen Lernens, TU Darmstadt