Notasi Asimtotik (Part II)

Sukmawati Nur Endah

Departemen Informatika UNDIP

Ingat Kembali: Notasi Asimtotik

- ► Fungsi pertumbuhan mempunyai notasi → notasi Asimtotik
- Notasi Asimtotik
 - ▶ Big O (O besar)
 - \triangleright Big Ω (Omega Besar)
 - Big Θ (Tetha Besar)

Big O

- Notasi Big-O digunakan untuk :
 - mengkategorikan algoritma ke dalam fungsi yang menggambarkan batas atas (upper limit) dari pertumbuhan sebuah fungsi ketika masukan dari fungsi tersebut bertambah banyak

Definisi:

T(n) = O(f(n)) (artinya T(n) berorde paling besar f(n)) bila terdapat konstanta C dan n_0 sedemikian sehingga $T(n) \le C$. f(n), untuk $n \ge n_0$

Catatan:

- ▶ Dari def : T(n) = O(f(n)) bukan sebaliknya
- Simbol "=" menyatakan "adalah" bukan "sama dengan"
- ► Untuk menunjukkan T(n) = O(f(n)), hanya perlu menemukan C dan n_0 sedemikian sehingga $T(n) \le C$. f(n)
 - ► Ingat : C dan n₀ tidak unik

Contoh:

- Tunjukkkan bahwa $T(n) = 2n^2 + 6n + 1 = O(n^2)!$
- Penyelesaian 1:

Jika
$$n \ge 1$$
 maka $n \le n^2$ dan $1 \le n^2$ Sehingga
$$2n^2 + 6n + 1 \le 2n^2 + 6n^2 + n^2 = 9n^2 \text{ untuk semua } n \ge 1$$

Jadi dengan C = 9 dan n_0 = 1 terlihat bahwa $T(n) = 2n^2 + 6n + 1 = O(n^2)$

Lanj.Contoh

Penyelesaian 2

$$6n \le n^2$$
 untuk $n \ge 6$ Sehingga $2n^2 + 6n + 1 \le n^2 + n^2 + n^2 = 3n^2$ untuk semua $n \ge 6$

Jadi dengan C = 3 dan $n_0 = 6$ terlihat bahwa

$$T(n) = 2n^2 + 6n + 1 = O(n^2)$$

Lanj. Contoh

Penyelesaian 3Untuk C berapa jika n₀ = 2?

Dengan kata lain : Berapa nilai C sdh terpenuhi : $2n^2 + 6n + 1 \le Cn^2$ untuk semua $n \ge 2$

Latihan

- Tunjukkan bahwa T(n) = 5 = O(1)!
- Penyelesaian :
 - 5 = O(1) karena $5 \le 6.1$ untuk $n \ge 1$
 - 5 = O(1) karena $5 \le 10.1$ untuk $n \ge 1$

SOAL

- Tunjukkan bahwa T(n) = 3n+2 = O(n)!
- Tunjukkan bahwa kompleksitas waktu algoritma selection sort adalah $T(n) = \frac{1}{2} n (n-1) = O(n^2)!$
- Tunjukkan bahwa $T(n) = 5n^2 = O(n^3)$ dan $T(n) = n^3 \neq O(n^2)$!

Teorema

- ▶ Bila $T(n) = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0$ adalah polinom berderajat m maka $T(n) = O(n^m)$.
- Bukti:

$$T(n) = a_{m}n^{m} + a_{m-1}n^{m-1} + ... + a_{1}n + a_{0}$$

$$= \sum_{i=0}^{m} a_{i}n^{i}$$

$$\leq n^{m} \sum_{i=0}^{m} a_{i} = C n^{m}, \text{ untuk } n \geq 1$$

$$Jadi: T(n) = O(n^{m}).$$

Teorema Big O

Misalkan $T_1(n) = O(f(n))$ dan $T_2(n) = O(g(n))$, maka:

(a) (i)
$$T_1(n) + T_2(n) = O(\max(f(n), g(n)))$$

(ii)
$$T_1(n) + T_2(n) = O(f(n)+g(n))$$

(b)
$$T_1(n) T_2(n) = O(f(n) O(g(n)) = O(f(n) g(n))$$

(c)
$$O(cf(n)) = O(f(n))$$
, c adalah konstanta

(d)
$$f(n) = O(f(n))$$

Contoh

- Misalkan $T_1(n) = O(n)$, $T_2(n) = O(n^2)$ dan $T_3(n) = O(mn)$, dengan m adalah peubah, maka :
 - $T_1(n) + T_2(n) = O(\max(n, n^2)) = O(n^2)$
 - $T_2(n) + T_3(n) = O(n^2 + mn)$
 - $T_1(n) T_2(n) = O(n.n^2) = O(n^3)$
- $O(5n^2) = O(n^2)$
- $ightharpoonup n^2 = O(n^2)$

Aturan menentukan kompleksias waktu asimtotik

- Ditentukan dengan mengambil suku yang mendominasi fungsi T dan menghilangkan keofisiennya
 - Misal:
 - Algoritma Cari Elemen Terbesar : T(n) = n-1 = O(n)
 - Algoritma Pencarian Linier

$$T_{min}(n) = 1 = O(1)$$
 $T_{max}(n) = n = O(n)$
 $T_{average}(n) = \frac{1}{2}(n + 1) = O(n)$

Menghitung kompleksitas waktu terburuk saja

Notasi Big Ω

Mendefinisikan batas bawah (lower bound) dari suatu kompleksitas waktu

Definisi :

 $T(n) = \Omega(g(n))$ (artinya T(n) berorde paling kecil g(n)) bila terdapat konstanta C dan n_0 sedemikian sehingga $T(n) \geq C$. f(n), untuk $n \geq n_0$

Notasi Big ⊕

Definisi

```
T(n) = \Theta(h(n)) (artinya T(n) berorde sama dengan h(n)) jika T(n) = O(h(n)) \text{ dan } T(n) = \Omega(h(n))
```

Contoh

- Tentukan notasi Ω dan Θ untuk $T(n) = 2n^2 + 6n + 1!$
- Penyelesaian :

Karena
$$2n^2 + 6n + 1 \ge 2n^2$$
 untuk semua $n \ge 1$ maka
$$T(n) = 2n^2 + 6n + 1 = \Omega(n^2)$$

► Karena $2n^2 + 6n + 1 = O(n^2)$ dan $2n^2 + 6n + 1 = \Omega(n^2)$ maka $2n^2 + 6n + 1 = \Theta(n^2)$

Latihan

Tentukan notasi O, Ω dan Θ untuk $T(n) = 5n^3 + 6n^2 \log n$

Teorema

▶ Bila $T(n) = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0$ adalah polinom berderajat m maka T(n) adalah berode n^m .

Contoh:

Tentukan notasi O, Ω dan Θ untuk algoritma selection sort!

Penyelesaian :

$$T(n) = \frac{1}{2} n(n-1)$$

= $\frac{1}{2} n^2 - \frac{1}{2} n$

Sesuai teorema maka algoritma ini berorde

Jadi notasinya....

