Szinkron sorrendi hálózatok tervezése

1. feladat

Megoldás

Mealy modell szerinti működés szerint definiált, mert a bemenet változásával egyidőben változik a kimenet, azaz Z = f(x,y).

Előzetes állapot tábla:

x1,x2	00	01	11	10
У				
a	-,0	-	-	b,1
b	ı	c,1	ı	-,1
υ	d,0	-,1	ı	ı
d	-,0	1	1	e,0
e	1	1	f,1	-,0
f	a,0	-	-,1	-

Állapot összevonás

	a	b	c	d	e	f
A: abc	X	X	X			
B: abf	X	X				X
C: cde			X	X	X	
D: def				X	X	X

(abcdef) (bcdef) (abcf) (cdef) (bef) (aef) (abcf) (def) (cde) (abf) (abc)

(abc) (abf) (cde) (def) A B C D

Válasszuk ki A és D kompatibilitási osztályt és vegyük fel az összevont állapot táblát

x1,x2 y	00	01	11	10
A	D,0	A,1	-	A,1
D	A,0	-	D,1	D,0

Válasszuk ki B és C kompatibilitási osztályt és vegyük fel az összevont állapot táblát

x1,x2 y	00	01	11	10
В	В,0	C,1	-,1	B,1
C	C,0	-,1	B,1	C,0

A és D választása az állapottáblában több közömbös bejegyzést eredményez

Kódolt állapottábla A:0, D:1

x1,x2 y	00	01	11	10
0	1,0	0,1	-	0,1
1	0,0	-	1,1	1,0

A kimenetet előállító logikai függvény:

Z				κ1				
	0	1	-	1				
у	0	ı	1	0				
	x2							

$$Z = x2 + \overline{y} \cdot x1$$

Megvalósítás D flip-floppal

$$D = y \cdot x1 + \overline{y} \cdot \overline{x1} \cdot \overline{x2}$$

Megvalósítás J-K flip-floppal Vezérlési tábla

x1,x2 y	00	01	11	10
0	1-	0 –	_	0 –
1	-1	1	-0	-0

Megvalósítás T flip-floppal

$$T = \overline{x1} \cdot \overline{x2}$$

$$J = \overline{x1} \cdot \overline{x2}$$

$$K = \overline{x1}$$

Elvi logikai rajz, megvalósítás T flip-floppal

2. feladat

Megoldás:

x1,x2	00	01	11	10		
a	b,00	c,00	b,00	d,00	1. ütem	Most indulunk, ide többé nem jut a hálózat
b	e,00	f,00	e,00	g,00		Első bit alapján $X_1 = X_2$
c	f,00	f,00	f,00	g,00	2. ütem	Első bit alapján $X_1 \le X_2$
d	g,00	f,00	g,00	g,00		Első bit alapján $X_1 \ge X_2$
e	h,00	i,00	h,00	j,00		Első két bit alapján $X_1 = X_2$
f	i,00	i,00	i,00	j,00	3. ütem	Első két bit alapján $X_1 \le X_2$
g	j,00	i,00	j,00	j,00		Első két bit alapján $X_1 > X_2$
h	b,11	c,11	b,11	d,11	1	$X_1 = X_2$
i	b,01	c,01	b,01	d,01	1. ütem - MOORE!	$X_1 < X_2$
j	b,10	c,10	b,10	d,10	-	$X_1 > X_2$

3. feladat

Megoldás:

	1. ütem	2. ütem	3. ütem	4. ütem
2	0	0	1	0
3	0	0	1	1
5	0	1	0	1
7	0	1	1	1
11	1	0	1	1
13	1	1	0	1

3. ütemben

- 1. ütemben (a) 0 még jó lehet 1 még jó lehet
 - et

(d) **00**0 már csak rossz lehet **00**1 - jó bármi jön (2,3)

- 2. ütemben (b) 00 még jó lehet
 - 01 még jó lehet
 - (c) 10 még jó lehet 11 még jó lehet

- (e) **01**0 jó ha még 1-es jön (5) **01**1 jó ha még 1-es jön (7)
- (f) 100 már csak rossz lehet
- 101 jó ha még 1-es jön (11)
- (g) 110 jó ha még 1-es jön (13)111 már csak rossz lehet

X	0	1		
y				
a	b,1	c,1	1.ütem	most indulunk, még minden jó lehet
b	d,1	e,1	2.ütem	0
c	f,1	g,1	2.utcm	1
d	h,0	i,1		00
e	j,1	j,1	3.ütem	01
f	h,0	j1	3.dtein	10
g	j,1	h,0		11
h	a,0	a,0		már nem lehet jó
i	a,1	a,1	4.ütem	jó, ha bármi jön
j	a,0	a,1		jó, ha 1-es jön

4. feladat

Megoldás

x V	0	1	
a	a,00	b,00	Alaphelyzet, Z1,Z2=00
b	a,00	c,00	1. órajelperiódus Z1,Z2=00
c	a,10	d,10	2. órajelperiódus Z1,Z2=10
d	a,01	e,01	3. órajelperiódus Z1,Z2=01
e	a,10	f,10	4. órajelperiódus Z1,Z2=10
f	a,00	g,00	5. órajelperiódus Z1,Z2=00
g	a,11	b,11	6. órajelperiódus Z1,Z2=11

Az állapotok nem vonhatók össze

Nincs triviálistól eltérő helyettesítési tulajdonságú partíció

A szomszédos kódolás sem túl nyerő (a mindenkinek szomszédja kellene, hogy legyen. Ezen kívül csak a és g szomszédosságára van még feltétel)

Próbáljunk meg a kimenetre optimalizálni (Z1 = y1) úgy, hogy a és g szomszédosságát is biztosítsuk

0

y3y2y1		Z1 Z2
0 0 0	a	0 0
0 0 1	g	1 1
0 1 0	d	0 1
0 1 1	-	
1 0 0	f	0 0
1 0 1	e	1 0
1 1 0	1.	0 0

			y2		
	а	g	•	d	
уЗ	f	е	С	b	

Kódolt állapot tábla (y kódok olyan sorrendben, hogy könnyű legyen a Karnaugh táblák kitöltése)

	y3y2y1	0	1	Minterm indexek	
a	0 0 0	000,00	110,00	0	1
d	010	000,01	101,01	4	5
b	110	000,00	111,00	12	13
f	100	000,00	001,00	8	9
g	001	000,11	110,11	2	3
-	011	,	,	6	7
c	111	000,10	010,10	14	15
e	101	000,10	100,10	10	11

D1		y1					
	0	0	0	0			
уЗ	0	1	ı	ı	y2		
	0	1	0	0			
	0	1	0	0			
		```	Κ				

$$D3 = \overline{y3} \cdot x + \overline{y2} \cdot y1 \cdot x + y2 \cdot \overline{y1} \cdot x$$

$$D2 = \overline{y3} \cdot \overline{y2} \cdot x + y3 \cdot y2 \cdot x$$

$$D1 = y3 \cdot \overline{y1} \cdot x + y2 \cdot \overline{y1} \cdot x$$





$$Z1 = y1$$

$$Z2 = \overline{y3} \cdot y1 + \overline{y3} \cdot y2$$