Изоморфизм Карри-Ховарда

Лямбда-исчисление

Синтаксис:

$$\Lambda ::= (\lambda x.\Lambda)|(\Lambda \Lambda)|x$$

Лямбда-исчисление

Синтаксис:

$$\Lambda ::= (\lambda x. \Lambda) |(\Lambda \Lambda)| x$$

Интуиция: вызов функции.

λ -выражение	Python
$\lambda f.\lambda x.f x$	<pre>def one(f,x): return f(x)</pre>
$(\lambda x.x \ x) \ (\lambda x.x \ x)$	(lambda x: x x) (lambda x: x x)
	<pre>def omega(x): return x(x); omega(omega)</pre>

Лямбда-исчисление

Синтаксис:

$$\Lambda ::= (\lambda x.\Lambda)|(\Lambda \Lambda)|x$$

Интуиция: вызов функции.

λ -выражение	Python	
$\lambda f.\lambda x.f x$	def one(f,x): return f(x)	
$(\lambda x.x \ x) \ (\lambda x.x \ x)$	(lambda x: x x) (lambda x: x x)	
	<pre>def omega(x): return x(x); omega(omega)</pre>	

Исчисление: изучаем преобразования формул — редукция.

$$(\lambda x.A) B \rightarrow_{\beta} A[x := B]$$

$$(\lambda x.x \ x) \ (\lambda n.n) \rightarrow_{\beta} (\lambda n.n) \ (\lambda n.n) \rightarrow_{\beta} \lambda n.n$$

 $(\lambda x.x \ x) \ (\lambda x.x \ x) \rightarrow_{\beta} (\lambda x.x \ x) \ (\lambda x.x \ x)$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = f^{(n)}(x)$

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

Инкремент:
$$Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$$

$$(\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ \overline{0} = (\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ (\lambda f'.\lambda x'.x') \rightarrow_{\beta}$$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = f^{(n)}(x)$

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

MHKDEMEHT: $Inc = \lambda n \lambda f \lambda x n f (f x)$

Инкремент:
$$Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$$

$$(\lambda n.\lambda f.\lambda x.n f (f x)) \overline{0} = (\lambda n.\lambda f.\lambda x.n f (f x)) (\lambda f'.\lambda x'.x') \rightarrow_{\beta} \dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta}$$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = f^{(n)}(x)$

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

Инкремент: $Inc = \lambda n.\lambda f.\lambda x.n f(f(x))$

$$(\lambda n.\lambda f.\lambda x.n f (f x)) \overline{0} = (\lambda n.\lambda f.\lambda x.n f (f x)) (\lambda f'.\lambda x'.x') \rightarrow_{\beta} \dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta}$$

$$\ldots \lambda f.\lambda x.(\lambda x'.x') (f x) \rightarrow_{\beta}$$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = f^{(n)}(x)$

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$
Инкремент: $Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$

$$(\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ \overline{0} = (\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ (\lambda f'.\lambda x'.x') \rightarrow_{\beta}$$

$$\dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') \ f \ (f \ x) \rightarrow_{\beta}$$

$$\dots \lambda f. \lambda x. (\lambda x'. x') (f x) \rightarrow_{\beta}$$

$$\dots \lambda f. \lambda x. f. x = \overline{1}$$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = f^{(n)}(x)$

Пример

```
\overline{3} = \lambda f.\lambda x.f(f(f(x)))

Инкремент: Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x)
(\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ \overline{0} = (\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ (\lambda f'.\lambda x'.x') \rightarrow_{\beta}
\dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') \ f \ (f \ x) \rightarrow_{\beta}
\dots \lambda f.\lambda x.(\lambda x'.x') \ (f \ x) \rightarrow_{\beta}
\lambda f \ \lambda x \ f \ x = \overline{1}
```

Декремент: $Dec = \lambda n.\lambda f.\lambda x.n (\lambda g.\lambda h.h (g f)) (\lambda u.x) (\lambda u.u)$

Просто-типизированное лямбда-исчисление

Определение

Импликационный фрагмент интуиционистской логики:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma, \varphi \vdash \varphi} \qquad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \qquad \frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \varphi \to \psi}{\Gamma \vdash \psi}$$

Определение

Просто-типизированное лямбда-исчисление.

Просто-типизированное лямбда-исчисление

Определение

Импликационный фрагмент интуиционистской логики:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma, \varphi \vdash \varphi} \qquad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \qquad \frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \varphi \to \psi}{\Gamma \vdash \psi}$$

Определение

Просто-типизированное лямбда-исчисление. Типы: au ::= lpha | (au o au).

Просто-типизированное лямбда-исчисление

Определение

Импликационный фрагмент интуиционистской логики:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma, \varphi \vdash \varphi} \qquad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \qquad \frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \varphi \to \psi}{\Gamma \vdash \psi}$$

Определение

Просто-типизированное лямбда-исчисление. Типы: au:=lpha|(au o au). Язык:

$$\Gamma \vdash A : \varphi$$

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x. A : \varphi \rightarrow \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \rightarrow \psi}{\Gamma \vdash BA : \psi}$$

Изоморфизм Карри-Ховарда

λ -исчисление	исчисление высказываний
Выражение	доказательство
Тип выражения	высказывание
Тип функции	импликация
Упорядоченная пара	конъюнкция
Алгебраический тип	дизъюнкция

Изоморфизм Карри-Ховарда: отрицание

Определение

Ложь (\bot) — необитаемый тип; failwith/raise/throw: $\alpha \to \bot$; $\neg \varphi \equiv \varphi \to \bot$ Например, контрапозиция: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

$$\frac{\overline{\Phi \vdash f : \alpha \rightarrow \beta} \ Ax}{\Phi \vdash f : a : \beta} \frac{\overline{\Phi \vdash a : \alpha} \ Ax}{App} \frac{Ax}{\Phi \vdash n : \beta \rightarrow \bot} \frac{Ax}{App}$$

$$\frac{f : \alpha \rightarrow \beta, n : \beta \rightarrow \bot, a : \alpha \vdash n (f : a) : \bot}{f : \alpha \rightarrow \beta, n : \beta \rightarrow \bot \vdash \lambda a^{\alpha}.n (f : a) : \neg \alpha} \lambda$$

$$\frac{f : \alpha \rightarrow \beta \vdash \lambda n^{\beta \rightarrow \bot}.\lambda a^{\alpha}.n (f : a) : \neg \beta \rightarrow \neg \alpha}{\lambda n^{\beta \rightarrow \bot}.\lambda n^{\beta \rightarrow \bot}.\lambda a^{\alpha}.n (f : a) : (\alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha)} \lambda$$

Снятие двойного отрицания: $((\alpha \to \bot) \to \bot) \to \alpha$, то есть $\lambda f^{(\alpha \to \bot) \to \bot}$.? : α .

Порядок	Объекты	Пример
0 (И.В.)	Атомарные	Р
1 (И.П. 1)	Множества	$\{x P(x)\}$
2 (И.П. 2)	Множества множеств	$\{P \forall t.t>0\rightarrow P(t)\}$

Напомним о порядках:

Порядок	Объекты	Пример
0 (И.В.)	Атомарные	Р
1 (И.П. 1)	Множества	$\{x P(x)\}$
2 (И.П. 2)	Множества множеств	$\{P \forall t.t > 0 ightarrow P(t) \}$

lacktriangle Можно заменить схемы аксиом на аксиомы: $\forall a. \forall b. a
ightarrow b
ightarrow a$

Порядок	Объекты	Пример
0 (И.В.)	Атомарные	Р
1 (И.П. 1)	Множества	$\{x P(x)\}$
2 (И.П. 2)	Множества множеств	$\{P \forall t.t > 0 ightarrow P(t)\}$

- lacktriangle Можно заменить схемы аксиом на аксиомы: orall a.orall b.a
 ightarrow b
 ightarrow a
- lacktriangle Не так просто! $W(x) := \forall p. \forall x. p(x)$, рассматриваем ли $[\![\forall x. p(x)]\!]^{p:=W(x)}$? (импредикативность)

Порядок	Объекты	Пример
0 (И.В.)	Атомарные	Р
1 (И.П. 1)	Множества	$\{x P(x)\}$
2 (И.П. 2)	Множества множеств	$\{P \forall t.t > 0 ightarrow P(t)\}$

- lacktriangle Можно заменить схемы аксиом на аксиомы: orall a.orall b.a
 ightarrow b
 ightarrow a
- lacktriangle Не так просто! $W(x) := \forall p. \forall x. p(x)$, рассматриваем ли $[\![\forall x. p(x)]\!]^{p:=W(x)}$? (импредикативность)
- lacktriangle Простой вариант: только пропозициональные переменные. orall p.p
 ightarrow p

Порядок	Объекты	Пример
0 (И.В.)	Атомарные	Р
1 (И.П. 1)	Множества	$\{x P(x)\}$
2 (И.П. 2)	Множества множеств	$\{P \forall t.t>0 ightarrow P(t)\}$

- lacktriangle Можно заменить схемы аксиом на аксиомы: orall a.orall b.a o b o a
- ▶ Не так просто! $W(x) := \forall p. \forall x. p(x)$, рассматриваем ли $[\![\forall x. p(x)]\!]^{p:=W(x)}$? (импредикативность)
- lacktriangle Простой вариант: только пропозициональные переменные. orall p.p
 ightarrow p

$$\llbracket orall p.Q
rbracket = \left\{egin{array}{ll} \mathsf{N}, & \llbracket Q
rbracket^{p:=\mathsf{N}} = \llbracket Q
rbracket^{p:=\mathsf{N}} = \mathsf{N} \\ \mathsf{Л}, & \mathsf{иначe} \end{array}
ight.$$

Типы и значения, зависящие от типов.

▶ Что такое $T: \forall x.x \rightarrow x$?

Типы и значения, зависящие от типов.

• Что такое $T: \forall x.x \rightarrow x?$ template <class x> class T { x f (x); }

Типы и значения, зависящие от типов.

- Что такое $T: \forall x.x \rightarrow x$? template <class x> class T { x f (x); }
- ► Что такое $T : \exists x. \tau(x)$?

Типы и значения, зависящие от типов.

- Что такое $T: \forall x.x \rightarrow x$? template <class x> class T { x f (x); }
- ▶ Что такое $T:\exists x.\tau(x)$? Абстрактный тип данных: interface T $\{\tau\}$; f(T x)

Paccмoтрим код
int n; cin >> n; int arr[n];
Kaкoв тип arr?

- Рассмотрим код int n; cin >> n; int arr[n]; Каков тип arr?
- ightharpoonup sizeof(arr) = $n \cdot \text{sizeof(int)}$

- Paccмoтрим код
 int n; cin >> n; int arr[n];
 Kaкoв тип arr?
- ightharpoonup sizeof(arr) = $n \cdot$ sizeof(int)
- ightharpoonup $arr = \prod n^{int}.int[n]$

- Paccмoтрим код
 int n; cin >> n; int arr[n];
 Kaков тип arr?
- ightharpoonup sizeof(arr) = $n \cdot \text{sizeof(int)}$
- ightharpoonup $arr = \prod n^{int}.int[n]$
- ► Аналогично, printf(const char*, ...) капитуляция.

- Paccмoтрим код
 int n; cin >> n; int arr[n];
 Kaкoв тип arr?
- ightharpoonup sizeof(arr) = $n \cdot \text{sizeof(int)}$
- ightharpoonup $arr = \prod n^{int}.int[n]$
- ► Аналогично, printf(const char*, ...) капитуляция.
- ▶ Есть языки, где тип выписывается (например, Идрис).

▶ Div2: (1: int) -> (even 1) -> int

- ▶ Div2: (1: int) -> (even 1) -> int
- ▶ even 1 что это?

- ▶ Div2: (1: int) -> (even 1) -> int
- ▶ even 1 что это?

$$even(x) ::= \begin{cases} EZ, & x = 0 \\ EP(even(y)), & x = y'' \end{cases}$$

- ▶ Div2: (1: int) -> (even 1) -> int
- ▶ even 1 что это?

$$even(x) ::= \left\{ egin{array}{ll} EZ, & x=0 \\ EP(even(y)), & x=y'' \end{array} \right.$$

▶ Div2 10 (EP (EP (EP (EP EZ)))))

- ▶ Div2: (1: int) -> (even 1) -> int
- ▶ even 1 что это?

$$even(x) ::= \begin{cases} EZ, & x = 0 \\ EP(even(y)), & x = y'' \end{cases}$$

- ▶ Div2 10 (EP (EP (EP (EP EZ)))))
- ▶ А если Div2 p? В общем случае сложно. Plus2: (1: int) -> (p: even 1) -> (1+2, even (1+2)) = (1+2, EP p)

Интереснее: доказательства утверждений

Hатуральные числа: Nat := 0|suc Nat,

$$a+b=\left\{ egin{array}{ll} a, & b=0 \ \mathrm{suc}\ (a+c), & b=\mathrm{suc}\ c \end{array}
ight.$$

```
func pmap A B :
Type (f : A -> B) {a a' : A} (p : a = a') : f a = f a' => ...

func +-comm (n m : Nat) : n + m = m + n
| 0, 0 => idp
| suc n, 0 => pmap suc (+-comm n 0)
| 0, suc m => pmap suc (+-comm 0 m)
| suc n, suc m => pmap suc (+-comm (suc n) m *>
pmap suc (inv (+-comm n m)) *> +-comm n (suc m))
```

Гомотопическая теория типов

Определение

Изоморфизм Карри-Ховарда-Воеводского.

Логика	λ -исчисление	Топология
Утверждение	Тип	Пространство
Доказательство	Значение	Точка в пространстве
Предикат (=)	${\it 3}$ ависимый тип $(=)$	Путь между точками

- 1. Точный смысл равенства.
- 2. Позволяет легко формулировать утверждения про топологию, гомологическую алгебру и т.п.
- 3. Можно реализовать (кубическая теория типов). Реализации для Агды, Кока, ..., отдельные языки (Аренд)

Пример

Самое простое: x = y. Почему $x^2 = y^2$?

Пример

Самое простое: x = y. Почему $x^2 = y^2$?

А что если так $(a=b)=\{\langle a,b\rangle|a<10\ \&\ b<10\}$? Тогда 5=7, но $25\neq 49$.

Пример

Самое простое: x = y. Почему $x^2 = v^2$?

А что если так $(a = b) = \{\langle a, b \rangle | a < 10 \& b < 10 \}$? Тогда 5 = 7, но $25 \neq 49$. Постулируется в формальной арифметике: (A2) a=b o a'=b'

Пример

Самое простое: x = y. Почему $x^2 = y^2$?

А что если так $(a=b)=\{\langle a,b\rangle|a<10\ \&\ b<10\}$? Тогда 5=7, но $25\neq 49$.

Постулируется в формальной арифметике: (A2) a=b o a'=b'

Доказательство.

Путь x в y — функция $f:[0,1]\to S$, f(0)=x, f(1)=y. $f(x)=x^2$ — непрерывная функция. Тогда $f(x^2)$ — тоже непрерывная, то есть $x^2=y^2$.

Что ещё

- ▶ Метод резолюций и рядом Prolog, SMT-солверы,...
- ▶ Можно пытаться совмещать (F*, ...)