Sorbonne Université Cryptologie, cryptographie algébrique 4M035 - 2021/22 Travaux dirigés Alain Kraus

Exercices - Chapitre IV

Courbes elliptiques

Exercice 1

Soit E la courbe projective plane définie sur $\mathbb Q$ d'équation

$$y^2z = x^3 + 2xz^2 + z^3.$$

1) Montrer que E est une courbe elliptique.

Les points P = [1, 2, 1] et Q = [0, 1, 1] appartiennent au groupe $E(\mathbb{Q})$ des points de E rationnels sur \mathbb{Q} . Soit D la droite du plan projectif passant par P et Q.

- 2) Quelle est l'équation de D?
- 3) Déterminer $D \cap E$.
- 4) Quelles sont les coordonnées des points P+Q et P+2Q?
- 5) Le groupe $E(\mathbb{Q})$ a-t-il un point d'ordre 2?

Exercice 2

Pour tout nombre premier $p \geq 5$, soit E la courbe projective plane sur \mathbb{F}_p d'équation

$$y^2z = x^3 - 3xz^2 + 4z^3.$$

1) Montrer que E est une courbe elliptique sur \mathbb{F}_p .

Supposons désormais p = 5.

- 2) Déterminer le groupe $E(\mathbb{F}_5)$ des points de E rationnels sur \mathbb{F}_5 .
- 3) Soit $\phi_5: E \to E$ l'endomorphisme de Frobenius de E. Quel est son polynôme caractéristique ?

Notons E[5] le groupe des points de 5-torsion de E.

- 4) Soit P un point de E. Montrer que P est dans E[5] si et seulement si on a $\phi_5(P) = -P$.
- 5) En déduire que E[5] est contenu dans le groupe $E(\mathbb{F}_{25})$, où \mathbb{F}_{25} est le corps de cardinal 25 dans une clôture algébrique de \mathbb{F}_5 choisie implicitement.
- 6) Quel est l'ordre du groupe $E(\mathbb{F}_{25})$?

7) En déduire la classe d'isomorphisme du groupe abélien $E(\mathbb{F}_{25})$.

Exercice 3

Soit E la courbe projective plane définie sur \mathbb{F}_5 d'équation

$$y^2z = x^3 - 2z^3.$$

- 1) Montrer que E est une courbe elliptique définie sur \mathbb{F}_5 . Soient $\overline{\mathbb{F}_5}$ une clôture algébrique de \mathbb{F}_5 et α un élément de $\overline{\mathbb{F}_5}$ tel que $\alpha^2 + 3\alpha - 1 = 0$.
- 2) Expliciter, en fonction de α , le sous-groupe E[2] des points de 2-torsion de E.
- 3) Déterminer une base de E[2] sur $\mathbb{Z}/2\mathbb{Z}$.
- 4) Expliciter dans cette base la matrice de l'endomorphisme de Frobenius de E restreint à E[2].

Exercice 4

Soit E une courbe elliptique définie sur \mathbb{F}_p . Soit t la trace du Frobenius de E.

1) Montrer que pour tout $n \geq 1$, on a

$$|E(\mathbb{F}_{p^n})| \equiv 1 - t^n \mod p$$
.

Indication: On pourra reprendre la démonstration du théorème 4.9 du cours.

2) Supposons E ordinaire i.e. que le groupe E[p] des points de p-torsion de E soit d'ordre p. En déduire que $\mathbb{F}_p(E[p])$ est l'extension de \mathbb{F}_p de degré l'ordre de t modulo p.

Exercice 5

Soit E une courbe elliptique définie sur \mathbb{F}_q (q est une puissance d'un nombre premier). On suppose que l'ordre de $E(\mathbb{F}_q)$ est q+1.

- 1) Que vaut la trace du Frobenius de E?
- 2) Soit $\phi_q: E \to E$ l'endomorphisme de Frobenius de E. En déduire que pour tout point $P \in E$ on a

$$(\phi_q \circ \phi_q)(P) = -qP.$$

- 3) Soient $n \geq 1$ un entier et E[n] le sous-groupe des points de n-torsion de E. Supposons qu'il existe un point $P \in E(\mathbb{F}_q)$ d'ordre n. Montrer que E[n] est contenu dans $E(\mathbb{F}_{q^2})$, où \mathbb{F}_{q^2} est le corps de cardinal q^2 dans une clôture algébrique de \mathbb{F}_q .
- 4) **Application.** Supposons que q soit un nombre premier congru à 3 modulo 4. Soit E la courbe elliptique définie sur \mathbb{F}_q d'équation

$$y^2z = x^3 + xz^2.$$

- 4.1) Montrer que $E(\mathbb{F}_q)$ est un groupe d'ordre q+1.
- 4.2) Quels sont les points de 2-torsion de E rationnels sur \mathbb{F}_q ? En déduire que le groupe $E(\mathbb{F}_q)$ est cyclique.
- 4.3) Quel est l'ordre de $E(\mathbb{F}_{q^2})$?
- 4.4) En déduire que l'on a $E[q+1] = E(\mathbb{F}_{q^2})$.

Soit E la courbe projective plane sur \mathbb{F}_5 d'équation

$$y^2z = x^3 - xz^2 + z^3.$$

- 1) Montrer que E est une courbe elliptique définie sur \mathbb{F}_5 .
- 2) Décrire l'ensemble $E(\mathbb{F}_5)$ des points de E rationnels sur \mathbb{F}_5 .
- 3) Déterminer la classe d'isomorphisme du groupe abélien $E(\mathbb{F}_5)$.
- 4) Quel est le polynôme caractéristique du Frobenius de E? Soit \mathbb{F}_{25} le corps de cardinal 25 dans une clôture algébrique de \mathbb{F}_5 .
- 5) Quel est l'ordre du groupe $E(\mathbb{F}_{25})$ des points de E rationnels sur \mathbb{F}_{25} ?
- 6) Montrer que le groupe des points de 2-torsion de E est contenu dans $E(\mathbb{F}_{25})$.
- 7) En déduire que $E(\mathbb{F}_{25})$ n'est pas un groupe cyclique.
- 8) Admettons qu'il existe un point d'ordre 4 de E qui n'est pas rationnel sur \mathbb{F}_{25}^{-1} . En déduire la classe d'isomorphisme du groupe abélien $E(\mathbb{F}_{25})$.

¹ Soit E[4] le groupe des points de 4-torsion de E, qui est isomorphe à $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. Étant donné un point (x,y) de E, on peut démontrer qu'il est d'ordre 4 si et seulement si on a

$$(x+1)(x+3)(x^4+x^3+3x^2+1) = 0.$$

(On obtient une équation de degré 6, ce qui est conforme au fait qu'il y a douze éléments d'ordre 4 dans $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.) Posons $f = X^4 + X^3 + 3X^2 + 1 \in \mathbb{F}_5[X]$. On vérifie que f est irréductible sur \mathbb{F}_5 . Soit α une racine de f. On constate alors que

$$P = (-1, 1)$$
 et $Q = (\alpha, \alpha^3 + \alpha - 1)$

sont deux points d'ordre 4 de E et que (P,Q) est une base du $\mathbb{Z}/4\mathbb{Z}$ -module E[4]. En particulier, on a $\mathbb{F}_5(E[4]) = \mathbb{F}_5(\alpha)$ qui est de degré 4 sur \mathbb{F}_5 . Soit ϕ_5 l'endomorphisme de Frobenius de E. On a $\phi_5(P) = P$ et $\phi_5(Q) = P + Q$. La matrice de $(\phi_5)_4$ dans la base (P,Q) est donc $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. On retrouve ainsi avec cet exemple l'énoncé du théorème 4.7.

Soient K un corps fini de cardinal q et E une courbe elliptique définie sur K. On suppose qu'il existe un entier $n \geq 1$ tel que les groupes

$$E(K)$$
 et $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

soient isomorphes. Posons

$$t = q + 1 - n^2.$$

1) Montrer que l'on a $t \equiv 2 \mod n$.

Posons

$$t = 2 + rn$$
 avec $r \in \mathbb{Z}$.

- 2) Montrer que l'on a $|r| \leq 2$.
- 3) En déduire que q est l'un des entiers

$$n^2 + 1$$
, $n^2 + n + 1$, $n^2 - n + 1$, $(n+1)^2$, $(n-1)^2$.

4) Supposons $q \equiv 11 \mod 12$. Montrer que l'hypothèse faite n'est jamais réalisée.

Exercice 8

Soient \mathbb{F}_q un corps de cardinal q (une puissance d'un nombre premier) et E une courbe elliptique définie sur \mathbb{F}_q . Soit ℓ un nombre premier vérifiant les conditions suivantes :

- (1) ℓ ne divise pas q(q-1).
- (2) ℓ divise $|E(\mathbb{F}_q)|$.
- 1) Soit $n \geq 1$ un entier. Montrer que le groupe $E[\ell]$ des points de ℓ -torsion de E est contenu dans $E(\mathbb{F}_{q^n})$ si et seulement si ℓ divise $q^n 1$.

Soit E la courbe elliptique sur \mathbb{F}_7 d'équation

$$y^2z = x^3 + xz^2 + 3z^3.$$

- 2) Déterminer le groupe $E(\mathbb{F}_7)$.
- 3) En déduire que 3 divise $|E(\mathbb{F}_7)|$ et que E[3] n'est pas contenu dans $E(\mathbb{F}_7)$.

L'hypothèse que ℓ ne divise pas q-1 est donc indispensable dans l'énoncé de la première question ; on notera aussi que cet énoncé est faux si $\ell=q$.

De même, l'hypothèse que ℓ divise $|E(\mathbb{F}_q)|$ est nécessaire dans l'énoncé de cette question. En effet, soit E la courbe elliptique définie sur \mathbb{F}_5 intervenant dans l'exercice 6. On a $|E(\mathbb{F}_5)| = 8$ et $|E(\mathbb{F}_{25})| = 32$. Ainsi, avec q = 5 et $\ell = 3$, la condition (1) est

- satisfaite, mais pas la condition (2). Par ailleurs, 3 divise $5^2 1$ et le groupe E[3], qui est d'ordre 9, n'est pas contenu dans $E(\mathbb{F}_{25})$.
- 4) Considérons le polynôme $f = X^3 X^2 + 3X + 2 \in \mathbb{F}_7[X]$. Il est irréductible sur \mathbb{F}_7 (justifier pourquoi). Soit α une racine de f dans une clôture algébrique de \mathbb{F}_7 . Posons

$$P = (-1, 1)$$
 et $Q = (\alpha, \alpha - 1)$.

Montrer que (P,Q) est une base de E[3].

5) Soit ϕ_7 l'endomorphisme de Frobenius de E. Expliciter la matrice de $(\phi_7)_3$ dans la base (P,Q).

Exercice 9

Soit E la courbe projective plane sur \mathbb{F}_5 d'équation

$$y^2z = x^3 - xz^2.$$

- 1) Montrer que E est une courbe elliptique définie sur \mathbb{F}_5 .
- 2) Décrire le groupe $E(\mathbb{F}_5)$ des points de E rationnels sur \mathbb{F}_5 . En déduire que $E(\mathbb{F}_5)$ est d'ordre 8.
- 3) Quels sont les points d'ordre 2 de $E(\mathbb{F}_5)$?
- 4) En déduire la classe d'isomorphisme du groupe $E(\mathbb{F}_5)$.
- 5) Quelle est la trace du Frobenius de E ? Quel est le polynôme caractéristique du Frobenius de E ?

Soit $\overline{\mathbb{F}_5}$ une clôture algébrique de \mathbb{F}_5 . Notons \mathbb{F}_{25} le corps de cardinal 25 dans $\overline{\mathbb{F}_5}$.

- 6) Calculer l'ordre de $E(\mathbb{F}_{25})$.
- 7) Soit P = (x, y) un point de $E(\overline{\mathbb{F}_5})$.
 - 7.1) Supposons $y \neq 0$. Calculer les coordonnées de 2P.

Précision : En posant 2P = (u, v), on exprimera u et yv comme des fractions rationnelles en x.

7.2) En déduire que P est d'ordre 4 si et seulement si on a $x^6 + 1 = 0$.

Soit α un élément de $\overline{\mathbb{F}_5}$ tel que $\alpha^2 = 2$.

8) Justifier pourquoi on a $\mathbb{F}_{25} = \mathbb{F}_5(\alpha)$. Déterminer l'élément $w \in \mathbb{F}_5$ tel que $(1+\alpha)^3 = w$. Posons

$$P = (2,1), \quad Q = (3,2) \quad \text{et} \quad R = (1+\alpha, 2+\alpha).$$

- 9) Vérifier que les points P, Q, R appartiennent à $E(\mathbb{F}_{25})$ et sont d'ordre 4.
- 10) Quel est le nombre d'éléments d'ordre 4 du groupe produit $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/16\mathbb{Z}, +)$?

- 11) En déduire que $E(\mathbb{F}_{25})$ n'est pas isomorphe au groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/16\mathbb{Z}$.
- 12) En déduire la classe d'isomorphisme du groupe $E(\mathbb{F}_{25})$. Soit \mathbb{F}_{125} le corps de cardinal 125 dans $\overline{\mathbb{F}_5}$.
- 13) Calculer l'ordre de $E(\mathbb{F}_{125})$.
- 14) Déterminer la classe d'isomorphisme du groupe $E(\mathbb{F}_{125})$.

Soit E la courbe projective plane sur \mathbb{F}_5 d'équation

$$y^2z = x^3 + xz^2 + z^3.$$

- 1) Montrer que E est une courbe elliptique définie sur \mathbb{F}_5 .
- 2) Décrire le groupe $E(\mathbb{F}_5)$ des points de E rationnels sur \mathbb{F}_5 .
- 3) Pour tout point non nul $P \in E(\mathbb{F}_5)$, calculer les coordonnées de 2P.
- 4) En déduire la description du sous-groupe des points de 3-torsion de $E(\mathbb{F}_5)$.
- 5) En déduire la classe d'isomorphisme du groupe $E(\mathbb{F}_5)$.
- 6) Quel est le polynôme caractéristique du Frobenius de E?

 Notons \mathbb{F}_{5^n} le corps de cardinal 5^n dans une clôture algébrique de \mathbb{F}_5 .
- 7) Calculer les ordres des groupes $E(\mathbb{F}_{25})$ et $E(\mathbb{F}_{125})$.

Posons

$$f = X^2 - X + 2 \in \mathbb{F}_5[X].$$

C'est un polynôme est irréductible sur \mathbb{F}_5 (le justifier). Soit α une racine de f dans \mathbb{F}_{25} . Posons

$$Q = (\alpha + 3, 2\alpha + 3).$$

- 8) Vérifier que Q est un point de $E(\mathbb{F}_{25})$.
- 9) Calculer les coordonnées de 2Q.
- 10) Posons P = (2,1). Montrer que (P,Q) est une base sur \mathbb{F}_3 du groupe des points de 3-torsion de E.
- 11) En déduire la classe d'isomorphisme du groupe $E(\mathbb{F}_{25})$.
- 12) Montrer que le polynôme $X^3 + X + 1 \in \mathbb{F}_5[X]$ est irréductible sur \mathbb{F}_5 .
- 13) Quel est le corps de rationalité du groupe des points de 2-torsion de E?
- 14) Déterminer la classe d'isomorphisme du groupe $E(\mathbb{F}_{125})$.

Soit $p \ge 5$ un nombre premier vérifiant la congruence

$$p \equiv 3 \mod 4$$
.

Soit E la courbe projective plane définie sur \mathbb{F}_p d'équation

$$y^2z = x^3 - 6xz^2.$$

- 1) Montrer que E est une courbe elliptique définie sur \mathbb{F}_p .
- 2) Montrer que l'ordre du groupe $E(\mathbb{F}_p)$ est p+1.
- 3) Montrer que E a tous ses points d'ordre 2 rationnels sur \mathbb{F}_p si et seulement si p est congru à 19 ou 23 modulo 24.
- 4) En déduire que le groupe $E(\mathbb{F}_p)$ est cyclique si et seulement si p est congru à 7 ou 11 modulo 24.

Soit Q = (u, v) un point de $E(\mathbb{F}_p)$ tel que $v \neq 0$; on a $v^2 = u^3 - 6u$.

5) Montrer que l'abscisse de 2Q est

$$\left(\frac{u^2+6}{2v}\right)^2$$
.

Le point P = (-2, 2) appartient à $E(\mathbb{F}_p)$.

6) Supposons $p \equiv 7 \mod 24$. Montrer qu'il n'existe pas de points $Q \in E(\mathbb{F}_p)$ tels que l'on ait 2Q = P.

Supposons qu'il existe un entier ℓ tel que l'on ait $p = 2^{\ell} - 1$ (autrement dit que p soit un nombre premier de Mersenne).

- 7) Vérifier que l'on a $p \equiv 7 \mod 24$.
- 8) Montrer que P est un générateur de $E(\mathbb{F}_p)$.

Indication : Utiliser le fait que si G un groupe cyclique additif, non réduit à l'élément neutre et d'ordre une puissance de 2, ses générateurs sont exactement les éléments qui ne sont pas de la forme 2x où $x \in G$.

9) Déterminer les coordonnées de $2^{\ell-1}P$.

Exercice 12 (Cryptosystème de Menezes-Vanstone)

Une personne Alice souhaite pouvoir se faire envoyer des messages confidentiels chiffrés sous forme d'éléments de $\mathbb{F}_p \times \mathbb{F}_p$. Pour cela, elle choisit une courbe elliptique E définie sur \mathbb{F}_p et un point $P \in E(\mathbb{F}_p)$, de sorte que le problème du logarithme discret soit a

priori difficile à résoudre dans le sous-groupe de $E(\mathbb{F}_p)$ engendré par P. Elle choisit par ailleurs un entier s > 0 et calcule le point

$$A = sP$$
.

Alice rend public le triplet (E, P, A), qui la clé publique de l'algorithme, et garde secret l'entier s, qui est la clé secrète.

Supposons que Bob souhaite faire parvenir à Alice le message $m = (m_1, m_2) \in \mathbb{F}_p \times \mathbb{F}_p$. Pour cela, il choisit un entier k > 0 et calcule les points

$$kP$$
 et $kA = (x, y)$,

de sorte que xy soit non nul. Il envoie alors à Alice le point kP et le couple (m_1x, m_2y) de $\mathbb{F}_p \times \mathbb{F}_p$ (qui n'est pas a priori un point de $E(\mathbb{F}_p)$).

1) Comment Alice peut-elle déchiffrer le message m?

Exemple : Soit E la cubique définie sur \mathbb{F}_{11} d'équation

$$y^2 = x^3 + x + 6.$$

- 2) Montrer que E est une courbe elliptique sur \mathbb{F}_{11} .
- 3) Déterminer l'ordre du groupe $E(\mathbb{F}_{11})$.

On constate que le point P = (2,7) appartient à $E(\mathbb{F}_{11})$. Bob souhaite envoyer le message $m = (9,1) \in \mathbb{F}_{11} \times \mathbb{F}_{11}$ à Alice en utilisant le cryptosystème précédent avec le couple (E,P). La clé secrète d'Alice est l'entier s = 7.

- 4) Calculer la clé publique d'Alice.
- 5) Bob choisit l'entier k = 6. Quel est le message chiffré envoyé par Bob?
- 6) Comment Alice retrouve-t-elle le message m?