

GEOMETRÍA

Capítulo 3

CUADRILÁTEROS

MOTIVATING | STRATEGY

Veamos algunas aplicaciones de los cuadriláteros

CUADRILÁTEROS

Definición.

El cuadrilátero es un polígono de cuatro lados.

- VÉRTICES: A, B, C y D.
- LADOS: \overline{AB} , \overline{BC} , \overline{CD} y \overline{DA} .

TEOREMAS

$$\alpha + \beta + \theta + \phi = 360^{\circ}$$

$$\omega + \gamma + \varphi + \delta = 360^{\circ}$$

Teorema

$$x = \frac{a + b}{2}$$

Teorema

$$x = \frac{\mathsf{a} - \mathsf{b}}{2}$$

CLASIFICACIÓN DE LOS CUADRILÁTEROS CONVEXOS

1. TRAPEZOIDE

Es aquel cuadrilátero convexo que no tiene lados opuestos paralelos.

2. TRAPECIO

Es aquel cuadrilátero convexo que solo tiene un par de lados opuestos paralelos, denominados bases.

2.1. CLASIFICACIÓN DE TRAPECIOS

Los trapecios se clasifican de acuerdo a la longitud de sus lados no paralelos o laterales.

TRAPECIO ISÓSCELES

Es aquel cuyos lados laterales son de igual longitud.

TRAPECIO ESCALENO

Es aquel cuyos lados laterales tienen diferente longitud.

$$\theta + \phi = 180^{\circ}$$

$$\alpha + \beta = 180^{\circ}$$

2.2. Teoremas en los trapecios

MN: Base media

AM = BM

CN = DN

$$MN = \frac{a+b}{2}$$

$$\overline{AD} // \overline{BC} // \overline{MN}$$

$$BQ = DQ$$

$$\mathbf{PQ} = \frac{\mathbf{a} - \mathbf{b}}{2}$$

AD // BC // PQ

<u>PARALELOGRAMO</u>: Es aquel cuadrilátero que tiene sus dos pares de lados opuestos paralelos.

1. En la figura mostrada, halle el valor de x.

Resolución

En
$$\diamondsuit$$
 ABCD:

$$2 \alpha + 2\beta + 40^{\circ} + 80^{\circ} = 360^{\circ}$$

$$2 \alpha + 2\beta = 240^{\circ}$$

$$\alpha + \beta = 120^{\circ}$$

En
$$\Diamond$$
 BCEF:

$$\alpha + \beta + 2x = 360^{\circ}$$

$$2x = 240^{\circ}$$

$$\therefore x = 120^{\circ}$$

2. En un trapecio ABCD (BC // AD), AB = 7, BC = 3, m∢ BAD = 40° y m∢BCD = 110°. Calcule AD.

- Piden: AD = x
- Se traza $\overline{BP} /\!/ \overline{CD}$
- PD = BC = 3
- ABP: Isósceles

$$x = 7 + 3$$

∴ AD = 10

3. En el trapecio ABCD, BC // AD. Calcule la longitud de la base media.

Resolución

4. En el trapecio ABCD, \overline{BC} // \overline{AD} . Calcule la longitud del segmento que une los puntos medios de sus diagonales.

5. En un rombo ABCD, en AC se ubica el punto E, tal que m

BEC = 45°,
AE = 1 y EC = 7. Calcule AB.

• Piden: AB = x

△BOC: Notable de 37°y 53°

$$BC = 5 = x$$

6. En la figura se muestra una mayólica cuyo contorno tiene forma de un cuadrado, el cual se ha dividido en tres regiones rectangulares de igual perímetro. Calcule ($\frac{a}{b}$).

Resolución

- Piden: $\frac{a}{b}$
- Como los perímetros son iguales:

$$2p_1 = 2p_2$$

$$\Rightarrow$$
 2(a+a+b) = 2(b+ $\frac{a+b}{2}$)

$$2a + b = b + \frac{a + b}{2}$$

$$4a = a + b$$

$$3a = b$$

$$\therefore \frac{a}{b} = \frac{1}{3}$$

7. Se tiene una hoja en forma de región rectangular ABCD. Luego se unen los extremos A y C tal que la línea del doblez interseca a BC en P y a AD en Q. Si m∢PCQ = 80°, halle m∢PQC.

• Piden: m∢PQC = x

$$\triangle CDQ \cong \triangle CB'P$$

$$QC = PC = 1$$

△PQC: Isósceles

$$80^{\circ} + x + x = 180^{\circ}$$

$$2x = 100^{\circ}$$