Simulación de tráfico

Pedro López. 60711 Valentino Riera Torraca. 60212

Modelo

Intelligent driver model (IDM)

$$s_i = x_i - x_{i-1} - l_i$$
 $\Delta v_i = v_i - v_{i-1}$

Intelligent driver model (IDM)

$$\frac{dv_i}{dt} = a_i \left(1 - \left(\frac{v_i}{v_{0,i}} \right)^{\delta} - \left(\frac{s^*(v_i, \Delta v_i)}{s_i} \right)^2 \right) \qquad \qquad s^*(v_i, \Delta v_i) = s_{0,i} + v_i T_i + \frac{v_i \Delta v_i}{\sqrt{2a_i b_i}}$$

Intelligent driver model (IDM)

$$v_i(t + \Delta t) = v_i(t) + a_i(t + \Delta t) * \Delta t$$

$$x_i(t + \Delta t) = x_i(t) + v_i(t) * \Delta t$$

• En caso de obtener una velocidad negativa, esta será tomada como $v_i = 0$ m/s

Intersecciones

- Lógica vive dentro de un nodo
- El de la derecha tiene prioridad a menos que doble
- Si los dos doblan, tiene prioridad el de la derecha nuevamente
- Zona amarilla de menos velocidad
- Zona roja de frenado
- El nodo no tiene tamaño (son superposiciones de calles)

Busqueda de rutas

Se utilizó el algoritmo A* con:

• Función de costo:

$$g(x) = g(x - 1) + d + \omega * \gamma$$

- ω: Costo de doblar
- \circ γ : {1,0} si se dobló o no se dobló, respectivamente.
- d: Longitud de la ruta
- o g(0) = 0, g(x-1): costo anterior

• Heurística: $Distancia = |x_{\text{objetivo}} - x_{\text{actual}}| + |y_{\text{objetivo}} - y_{\text{actual}}|$

Implementación

Clases

Flujo de simulación

Simulaciones

Mundo de simulación

- Area de N x N manzanas iguales cuadradas
- Calles unidireccionales de un solo carril
- Direcciones de las calles intercaladas
- Intersecciones SIN semáforos
- Los vehículos se generan en los bordes
- Los vehículos desaparecen al llegar a su destino
- Calles son aristas y las intersecciones son nodos

Parámetros fijos

- Cantidad de manzanas (Largo y ancho): 19 X 19
- Cantidad de vehículos: 8000
- Longitud del vehículo (m): 5m
- Tiempo de reacción (s): 1.5s
- Aceleración máxima: 0.73 m/s²
- Desaceleración cómoda: -1.67 m/s²
- Exponente de aceleración: 4
- Distancia deseada entre vehículos: 2m
- Tiempo máximo de simulación (s): 3600s
- Tiempo esperado para generar todos los vehículos (s): 1200s
- Time step Δt (s): 0.2s
- Longitud zona roja: 15m
- Longitud zona amarilla: 30m
- Multiplicador de velocidad en zona amarilla (0 < a < 1): 0.75

Parámetros variables

- Velocidad máxima deseada (m/s): v_0
- Costo de giro: ω
- Cantidad de vehículos: N

Proporción de retraso:

$$\bar{\tau} = \frac{\sum_{i=0}^{N} \tau(i)}{N}$$

$$\tau(i) = \frac{t_{recorrido}(i)}{t_{min}(i)}$$

$$t_{min}(i) = \frac{a_i}{v_0}$$

• Promedio de velocidad promedio:

$$\bar{v} = \frac{\sum_{i=0}^{N} \bar{v_i}}{N}$$

$$\bar{v_i} = \sum_{t} \left(v_i[t] * \frac{\Delta t}{t_i} \right)$$

• Proporción de \overline{v} con velocidad deseada

$$\bar{V} = \frac{\bar{v}}{v_0}$$

• Tiempo frenado promedio:

$$\bar{s} = \frac{\sum_{i=0}^{N} \bar{s_i}}{N} \qquad \bar{s_i} = \sum_{t} \left(s_i[t] * \frac{\Delta t}{t_i} \right)$$

$$s_i[t] = \begin{cases} 1 & \text{si } v_i[t] < \epsilon \quad o \quad i \text{ est\'a en una zona roja prendida} \\ 0 & \text{en otro caso} \end{cases}$$
*Se tom\'o \varepsilon = 0.01 (m/s)

Promedio de momento de generación del último vehículo:

Promedio de Porcentaje de vehículos generados:

$$\bar{\theta}(b) = \frac{\sum_{i=0}^{S} Max(b,i)}{S} \qquad \%\bar{C} = \sum_{i} \left(\frac{n_i}{N}\right) * 100$$

$$\%\bar{C} = \sum_{i} \left(\frac{n_i}{N}\right) * 100$$

Set de simulaciones 1: Variación de N

- N={2000,3000,4000,6000,8000,10000,12000}
- $\omega = 0$ constante
- $v_0 = 11,11 \text{ m/s}$
- 6 repeticiones por valor

Set de simulaciones 2: Variación V_o

- $v_0 = \{ \{5,55\}, \{11,11\}, \{16,67\}, \{22,22\} \}$ (m/s)
- $\omega = 0$
- N = 8000
- 8 repeticiones por valor

Set de simulaciones 3: Variación de ω

- $\omega = \{0, 25, 50, 75\}$
- $v_0 = 11,11 \text{ m/s}$
- N = 8000
- 8 repeticiones por valor

Resultados

Primer grupo de simulaciones

N = 2000 N = 12000

тpromedio

т promedio vs #Autos objetivo

т promedio vs #Autos generados

Promedio velocidades

Tiempo frenado

Proporción de tiempo frenado vs #Autos objetivo

Resultados de la generación

Porcentaje de autos generados vs #Autos objetivo

Momento de generación de último auto vs #Autos objetivo

Segundo grupo de simulaciones

$$v_0 = 22.22 \text{ m/s}$$

т promedio

Porcentaje de vehículos generados vs v₀

Promedio velocidades

Tiempo frenado

Tercer grupo de simulaciones

 $\omega = 0$ $\omega = 75$

т promedio y tiempo frenado

Porcentaje de tiempo frenado vs $\,\omega$

Promedio velocidades y autos generados

Porcentaje de autos generados vs $\,\omega\,$

Conclusiones

Conclusiones

- Con los tiempos hay una capacidad de generar hasta 10000 vehículos aproximadamente.
- Generar muchos vehículos impacta negativamente al tiempo de ruta con respecto al tiempo óptimo.
- La disminución de \overline{V} al aumentar el v_0 es coherente debido a que la aceleración máxima es constante.
- Se puede correlacionar la disminución en \overline{V} con un aumento en el $\overline{\tau}$.
- Más costo al giro lleva a % stops, sabiendo que al girar hay una posibilidad de perder prioridad esto es lógico que suceda.
- El costo de giro impacta directamente en el % generado.

Muchas gracias!