Всероссийская олимпиада школьников по физике

11 класс, заключительный этап, 2002/03 год

Задача 1. Конструкция (рис.) состоит из трёх одинаковых маленьких шариков массой m каждый, шарнирно соединённых лёгкими спицами длины l. В положении равновесия конструкция удерживается вертикальной пружиной жёсткости k и имеет форму квадрата.

- 1) Найдите длину l_0 недеформированной пружины.
- 2) Пусть нижний шарик смещён по вертикали (вверх или вниз) на малое (по сравнению с l) расстояние x. Определите изменение $\Delta E_{\rm not}$ потенциальной энергии системы.

4) Определите период T малых вертикальных колебаний нижнего шарика.

$$l_0 = l\sqrt{2} - \frac{2mg}{2}; \Delta E_{\text{пот}} = \frac{2}{kx^2}; \Delta E_{\text{кин}} = mv^2; T = 2\pi\sqrt{\frac{2m}{k}}$$

Задача 2. С молем идеального газа произвели замкнутый цикл (рис.), где 3–1 — адиабата. Определите максимальное давление газа за цикл $p_{\rm max}$, его теплоёмкость C_V при постоянном объёме и вычислите (с точностью большей, чем даёт прямое измерение по графику) «тангенс» угла (${\rm K/m^3}$) между изотермой и адиабатой в точке 1 на (T,V) плоскости.

 $p_{\max} = 2.9 \text{ кЛа}; C_V = 20.5 \pm 0.2 \text{ Дж/(моль · И)}; tg \alpha = 14.1 \pm 1.4 \text{ К/м}^3$

Задача 3. Изучая некоторое вещество, экспериментатор Глюк обнаружил, что для небольшого изменения объёма ΔV требуется увеличить давление на малую величину Δp_1 , если это делать изотермически, и на малую величину Δp_2 , если сжатие производить адиабатически. Кроме того, Глюк измерил удельные теплоёмкости C_V при постоянном объёме и C_p при постоянном давлении в той же точке. К сожалению, результат последнего измерения (C_p) был утрачен. Помогите Глюку по результатам первых трёх измерений восстановить значение C_p . Рассмотрите два случая:

- 1) исследуемое вещество было идеальным газом;
- 2) исследовалось вещество с неизвестным уравнением состояния.

 $C_p = C_V \frac{\Delta p_2}{\Delta p_1}$ (в обоих случаях)

Задача 4. В неоднородном магнитном поле с индукцией $B=\alpha x$ $(x\geqslant 0)$ (рис.) стартует частица массой m и зарядом q с начальной скоростью v, направленной вдоль оси Ox. Определите максимальное смещение x_{\max} частицы вдоль оси x.

 $\frac{\frac{nm\Omega}{\sigma}}{\sqrt{\sum_{\alpha} \frac{nm\Omega}{\sigma}}} = x_{\text{max}}$

Задача 5. В цепи (рис. слева) электродвижущая сила источника $\mathscr E=12$ В, сопротивление резистора R=4 Ом, индуктивность катушки L=0.5 Гн, а нелинейный элемент $\mathcal G=0.5$ Ин, а нелинейный элемент $\mathcal G=0.5$ Кн, а нелинейный элемент $\mathcal G=0.5$ Кн, а нелинейный момент ключ $\mathcal G=0.5$ Кн, а начальный момент ключ $\mathcal G=0.5$ Кн, ток в катушке не течёт.

- 1) Какое количество теплоты выделится на нелинейном элементе после замыкания ключа?
- 2) Построить качественный график зависимости тока в катушке от времени. Укажите характерные точки на графике. Внутренним сопротивлением источника пренебречь.

жД
$$1 = \frac{2(R-V_0)^2}{2R_2} = Q$$