DC Bias Point Calculation

- To find R_D for BB
 - $V_{TN0} = 1 \text{ V}, k'_{N} = 40 \mu\text{A/V}^{2},$ W/L = 10

to the most negative potential available in the circuit (ground in this case)

$$\Rightarrow$$
 $V_{SB} = 0 \Rightarrow V_{TN} = V_{TN0}$

•
$$I_G = 0 \Rightarrow V_{GS} = V_G = 2 V$$

- $V_{GT} = V_{GS} V_{TN} = 1 V$
- Assuming saturation mode of operation and neglecting CLM:

$$I_{\rm D} = (k_{\rm N}/2)V_{\rm GT}^2 = 200 \ \mu A$$

• For BB, $V_{DS} = V_{DD}/2 = 2.5 \text{ V}$ (2-element output branch):

$$R_D = (V_{DD} - V_{DS})/I_D = 12.5 \text{ k}\Omega$$

- $V_{DS} > V_{GT} \Rightarrow Assumption of saturation$ mode of operation validated
- $P_D = V_{DS} \times I_D = 0.5 \text{ mW}$

Small-Signal Model

- The *electrical equivalent* of the MOSFET at the *DC bias point*
- Must be biased in saturation
 - > Resembles a constant current source
- DC analysis must precede, since need the information regarding the Q-point (I_D, V_{DS})
- This model for NMOS and PMOS is the same (incremental model)

Validity of the Small-Signal Model

• The instantaneous current

(assuming $\lambda V_{DS} < 0.1$):

$$I_{d} = \frac{k_{N}}{2} \left(V_{GT} + V_{i} \right)^{2}$$

$$= I_{D} + \frac{k_{N}}{2} \left[2V_{GT} V_{i} + V_{i}^{2} \right]$$

$$\Rightarrow i_{d} = k_{N} V_{GT} V_{i} \left[1 + \frac{V_{i}}{2V_{GT}} \right]$$

- Thus, for *linear relationship* between i_d and v_i , v_i must $be \ll V_{GT}$
- Note that V_{GT} (minimum) = $3V_T$
- Hence, v_i should be at least ten times less than $3V_T$
- Recall in BJT, for linear relationship between i_c and v_i , v_i has to be $<< V_T$
 - > Three times less than that for MOSFET
 - > MOSFETs are inherently more linear device than BJTs (compare quadratic with exponential)