Linear Regression

Prepared by: Joseph Bakarji

Data

Given a table of numbers, what can you do?

Living area (feet ²)	#bedrooms	Price (1000\$s)		$ x_1 $	x_2	x_3	X_4	
2104	3	400		(1)	(1)	(1)	(1)	
1600	3	330	Apt. 1	$\chi_1^{(1)}$	$x_2^{(1)}$	$\chi_{2}^{(1)}$	$X_4^{(1)}$	
2400	3	369			(2)	(2)	_	
1416	$\overline{2}$	232	Apt. 2	$x_1^{(2)}$	$\chi_2^{(2)}$	$\chi_2^{(2)}$	$x_{\perp}^{(2)}$	
3000	4	540				3	 	
:	:	: :	Apt. 3	$x_1^{(3)}$	$x_2^{(3)}$	$x_3^{(3)}$	$x_4^{(3)}$	
			Apt. 4	$x_1^{(4)}$	$x_2^{(4)}$	$x_3^{(4)}$	$\mathcal{X}_{4}^{(4)}$	
 Visualization: Look at it! 			 	 		 		

• Find statistical features: Mean, median, outliers etc.

Clean it: missing values, ...

What are the inputs and outputs?

• Inputs: quantities that are typically given

Outputs: quantities we want to predict

Living area ($feet^2$)	#bedrooms	Price (1000\$s)	
2104	3	400	
1600	3	330	Apt. 1
2400	3	369	
1416	2	232	Apt. 2
3000	4	540	
: :	:	:	Apt. 3
	I		
			Apt. 4

Inputs		Out		
\boldsymbol{x}_1	\mathcal{X}_{2}	x_3	X_4	
$x_1^{(1)}$	$x_2^{(1)}$	$x_3^{(1)}$	$x_4^{(1)}$	
$x_1^{(2)}$	$x_2^{(2)}$	$x_3^{(2)}$	$x_4^{(2)}$:
$x_1^{(3)}$	$x_2^{(3)}$	$x_3^{(3)}$	$x_4^{(3)}$:
$x_1^{(4)}$	$x_2^{(4)}$	$x_3^{(4)}$	$x_4^{(4)}$	
				I

Given inputs, predict outputs

Supervised Learning

Given the data, find a function h, a.k.a hypothesis, that predicts outputs, given inputs

$$y = h(x)$$

Assume multiple inputs, 1 output

\boldsymbol{x}_1	\mathcal{X}_2	y	
Living area (feet 2)	#bedrooms	Price (1000\$s)	••••
2104	3	400	
1600	3	330	———
2400	3	369	
1416	2	232	
3000	4	540	
:	:	:	

Inp	Output		
\boldsymbol{x}_1	$ x_2 $	y	
$x_1^{(1)}$	$x_2^{(1)}$	y ⁽¹⁾	
$x_1^{(2)}$	$x_2^{(2)}$	y ⁽²⁾	
$x_1^{(3)}$	$x_2^{(3)}$	$y^{(3)}$	
$x_1^{(4)}$	$x_2^{(4)}$	$y^{(4)}$	

Weighted average of surrounding points

Given the data, find a function h, a.k.a hypothesis, that predicts an output, given an input

Linear Interpolation

Given the data, find a function h, a.k.a hypothesis, that predicts an output, given an input

Polynomial Interpolation

Given the data, find a function h, a.k.a hypothesis, that predicts an output, given an input

Some other function?

Assume a linear hypothesis

$$h(x) = ax + b$$

What are the best a and b that fit the data?

a, b are fitting parameters

Assume a linear hypothesis

Assume a linear hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = [\theta_0, \theta_1] \cdot [1, x]$$

Unknown parameters

Input features

$$\theta \cdot \mathbf{x}$$

What's the best $\theta = [\theta_0, \theta_1]$, given the data?

What happens if we have more inputs?

Assume a linear hypothesis

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots$$

$$h_{\theta}(\mathbf{x}) = \underline{[\theta_0, \theta_1, \theta_2, \theta_3, \ldots]} \cdot \underline{[1, x_1, x_2, x_3, \ldots]}$$
 weights
$$\mathbf{X} - \mathbf{I}$$
 inputs

$$h_{\theta}(\mathbf{x}) = \theta \cdot \mathbf{x} = \theta^{\mathsf{T}} \mathbf{x}$$

Inputs Output $x_{2}^{(1)}$ $x_{2}^{(2)}$ $x_{2}^{(3)}$ $x_{2}^{(4)}$

How do we pick the best parameters θ ?

$$h_{\theta}(\mathbf{x}) = \theta^{\mathsf{T}} \mathbf{x} = \sum_{i=0}^{d} \theta_i x_i$$

Cost function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{d} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{d} \left(\theta^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)} \right)^2$$

Ordinary least squares

Interactive Demo

https://colab.research.google.com/drive/1jEMvm_qlLneleOFDC5Andr7JstletVet?usp=sharing

Choose θ to minimize $J(\theta)$

Cost function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{d} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

Gradient Descent Update

while not converged:

$$\theta_i := \theta_i - \alpha \frac{\partial J(\theta)}{\partial \theta_i}$$
 Learning Rate

Gradient can be computed explicitly

while not converged:

$$\theta_i := \theta_i - \frac{\partial J(\theta)}{\partial \theta_i}$$
 Learning Rate

Derive
$$\frac{\partial J(\theta)}{\partial \theta_i}$$
 explicitly, for one (x,y) pair

Assume
$$y = \theta_0 x + \theta_1$$

Least Mean Squares (LMS)

A.K.A Widrow-Hoff learning rule

For a single training example $(x^{(i)}, y^{(i)})$:

$$\theta_j := \theta_j - \alpha \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$

Batch Gradient Descent

for all parameters j:

$$\theta_j := \theta_j - \alpha \sum_{i=1}^n \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$

Stack and vectorize

Least Mean Squares (LMS)

Batch Gradient Descent (vectorized)

for t = 1...T:
$$\theta := \theta - \alpha \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x^{(i)}$$

Stochastic Gradient Descent

for
$$t=1...T$$
:
$$\theta := 1...n$$
:
$$\theta := \theta - \alpha \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x^{(i)}$$

Summary

1. Assume a linear hypothesis

$$h_{\theta}(\mathbf{x}) = \theta^{\mathsf{T}} \mathbf{x} = \sum_{i=0}^{d} \theta_i x_i$$

2. Cost function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{d} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

3. Minimize: Gradient Descent

$$\theta := \theta - \alpha \nabla_{\theta} J(\theta)$$

5. Predict unseen data

$$y_{pred} = h_{\hat{\theta}}(x_{new})$$

4. Optimal predictor

$$y = h_{\hat{\theta}}(x)$$

SGD

for
$$t = 1...T$$
:

for
$$i = 1...n$$
:

$$\theta := \theta - \alpha \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x^{(i)}$$

Can you find the minimum analytically?

Design matrix

$$X = \begin{bmatrix} -- & x^{(1)} & -- \\ -- & x^{(2)} & -- \\ -- & \vdots & -- \\ -- & x^{(n)} & -- \end{bmatrix} \qquad \vec{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_m \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

Parameters

$$\vec{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_m \end{bmatrix}$$

Output

$$\vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

Minimize

$$J(\theta) = \frac{1}{2} \| X\theta - \vec{y} \|_2^2 \longrightarrow$$

$$\nabla_{\theta} J(\theta) = 0$$

Normal Equation

$$\theta = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\vec{y}$$

Probabilistic Interpretation

Assume noise is normally distributed around model

$$y^{(i)} = \theta^{\mathsf{T}} x^{(i)} + \varepsilon^{(i)}$$

Normally distributed

Probabilistic Interpretation

Assume noise is normally distributed around model

$$y^{(i)} = \theta^{\mathsf{T}} x^{(i)} + \varepsilon^{(i)}$$

$$p\left(\varepsilon^{(i)}\right) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(\varepsilon^{(i)}\right)^2}{2\sigma^2}\right)$$

$$p\left(y^{(i)}|x^{(i)};\theta\right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(i)} - \theta^{\mathsf{T}}x^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

Likelihood of output given input

$$L(\theta) = \prod_{i=1}^{n} p\left(y^{(i)} | x^{(i)}; \theta\right)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

Log-likelihood

$$l(\theta) = \log L(\theta)$$

$$= \log \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

$$\sum_{i=1}^{n} 1 \left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)}\right)^{2}$$

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{\left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)} \right)^{2}}{2\sigma^{2}} \right) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)} \right)^{2}$$

Maximize Log-likelihood

$$l(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{\left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)}\right)^2}{2\sigma^2}\right)$$

$$= n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \theta^{\mathsf{T}} x^{(i)})^2$$

