Przypomnijmy, że struktura jest obiektem klasy

$$\underline{\operatorname{Str}} := \Big\{ S \, \Big| \, \bigvee_{A:\operatorname{Class}} \bigvee_{R:\operatorname{Rel}} (S = (A, R) \land A \neq \emptyset = A \cap \{\underline{\operatorname{null}}\} \Big\}.$$

Definicja 10.1. Dla dowolnych $Z : \underline{\text{Univ}} \text{ i } S : \underline{\text{Str}}, Z \text{ nazywamy:}$

- (i) nośnikiem struktury $S :\Leftrightarrow Z = S_{\text{-}} \text{supp} := S_{\text{-}} \text{fir } /\!\!/ \text{pierwszy element pary uporządkowanej } S /\!\!/ ;$
- (ii) operacją struktury $S :\Leftrightarrow Z = S_{\text{op}} := S_{\text{sec}} //\text{drugi element pary uporządkowanej } S//$.

Podstawową strukturą arytmetyczną jest struktura liczb całkowitych nieujemnych \mathbb{N}_0 -Str := (\mathbb{N}_0, T) , gdzie $T: \mathbb{N}_{1,3} \to \underline{\mathrm{Rel}}$ i

$$T_1 := \{ x \mapsto y \mid x : \mathbb{N}_0^2 \land y = x_1 + x_2 \},$$

$$T_2 := \{ x \mapsto y \mid x : \mathbb{N}_0^2 \land y = x_1 \cdot x_2 \}$$

oraz

$$T_3 := \{ x \mapsto y \mid x, y : \mathbb{N}_0 \land x \leqslant y \}.$$

Struktura \mathbb{N}_0 -Str jest dość słaba ponieważ nie można w niej na ogół rozwiązać równań typu x+a=b z niewiadomą $x:\mathbb{N}_0$ i dowolnie zadanymi $a,b:\mathbb{N}_0$. W szczególności nie istnieje $x:\mathbb{N}_0$ spełniający równanie x+3=2. Ażeby rozwiązać ten problem rozszerzymy strukturę \mathbb{N}_0 -Str do struktury o silniejszych własnościach algebraicznych opisanych w następującej definicji.

Definicja 10.2. Dla dowolnych $Z: \underline{\text{Univ}}, Z$ nazywa się *pierścieniem uporządkowanym* : $\Leftrightarrow Z: \underline{\text{Str}}, Z_{-}\text{op} : \mathbb{N}_{1,3} \to \underline{\text{Rel}}$, istnieją $\bar{0}, \bar{1}: A := Z_{-}\text{supp}$ takie, że $\bar{0} \neq \bar{1}$ i zachodzą następujące warunki:

- (I.0) $Z_{-}op(1): A^2 \to A$ $/\!\!/ Z_{-}op(1)$ jest dwuargumentową operacją w klasie $A/\!\!/$;
- (I.1) (x + y) + z = x + (y + z) dla x, y, z : A, gdzie $u + v := Z_{-}\operatorname{op}(1)((u \ v))$ dla u, v : A //łączność operacji $Z_{-}\operatorname{op}(1)$ //;
- (I.2) x + y = y + x dla x, y : A //przemienność operacji $Z_{-}op(1)$ //;
- (I.3) $x + \bar{0} = x \, dla \, x : A //\bar{0}$ jest elementem neutralnym operacji $Z_{-}op(1)//$;
- (I.4) dla każdego x:A istnieje y:A taki, że $x + y = \bar{0}$ //istnienie elementu odwrotnego do x względem operacji $Z_-op(1)$ //;
- (II.0) $Z_{-}op(2): A^{2} \rightarrow A$ $//Z_{-}op(2)$ jest dwuargumentową operacją w klasie A//;
- (II.1) $(x \bar{\ } y) \bar{\ } z = x \bar{\ } (y \bar{\ } z)$ dla x,y,z:A, gdzie $u \bar{\ } v:=Z_- \operatorname{op}(2)((u\ v))$ dla u,v:A //łączność operacji $Z_- \operatorname{op}(2)/\!\!/$;
- (II.2) $x \cdot y = y \cdot x$ dla x, y : A //przemienność operacji $Z_{-}op(2)$ //;
- (II.3) $x \bar{1} = x \operatorname{dla} x : A //\bar{1} \text{ jest elementem neutralnym operacji } Z_{-}\operatorname{op}(2)//;$
- (III.1) $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ dla x, y, z : A //rozdzielność operacji $Z_{-}op(2)$ względem operacji $Z_{-}op(1)$ //;
- (IV.0) $(A, Z_{-}op(3)) : \underline{LORel} //Z_{-}op(3)$ jest relacją porządku liniowego w klasie A//;
- (IV.1) $x \leq y \Rightarrow x + z \leq y + z$ dla x, y, z : A, gdzie $u \leq v :\Leftrightarrow (u, v) : Z_{-}op(3)$ dla u, v : A //relacja $Z_{-}op(3)$ jest zgodna z operacją $Z_{-}op(1)$ //;
- (IV.2) $\bar{0} \leqslant x \wedge \bar{0} \leqslant y \Rightarrow \bar{0} \leqslant x \cdot y$ dla x, y : A //relacja $Z_{-}op(3)$ jest zgodna z operacją $Z_{-}op(2)$ //.

Klasę wszystkich pierścieni uporządkowanych będziemy oznaczać przez ORing. Zauważmy, że struktura \mathbb{N}_0 -Str spełnia wszystkie warunki def. 10.2 z wyjątkiem warunku (I.4).

Uwaga 10.3. Elementy $\bar{0}$ i $\bar{1}$ w def. 10.2 są jedynymi elementami spełniającymi warunki (I.3) i (II.3), odpowiednio. Mianowicie, dla każdego $\bar{0}'$: A spełniającego warunek $x\bar{+}\bar{0}'=x$ dla x: A mamy

$$\bar{0}' \ /\!/(I.3)/\!/ = \bar{0}' + \bar{0} \ /\!/(I.2)/\!/ = \bar{0} + \bar{0}' = \bar{0}$$
.

Podobnie dla każdego $\bar{1}':A$ spełniającego warunek $x^{\bar{\,\cdot\,}}\bar{1}'=x$ dla x:Amamy

$$\bar{1}' \ /\!/(II.3)/\!/ = \bar{1}' \cdot \bar{1} \ /\!/(II.2)/\!/ = \bar{1} \cdot \bar{1}' = \bar{1}.$$

Elementy $\bar{0}$ i $\bar{1}$ będziemy odpowiednio oznaczać przez Z_{-} zero := $\bar{0}$ i Z_{-} unit := $\bar{1}$.

W celu uproszczenia notacji będziemy w dalszym ciągu stosować dla dowolnie zadanego $S: \underline{ORing}$ następujące oznaczenia: $x+_S y:=S_-\operatorname{op}(1)((x\ y)),\ x\cdot_S y:=S_-\operatorname{op}(2)((x\ y))$ i $x\leqslant_S y:\Leftrightarrow (x,y):S_-\operatorname{op}(3)$ dla $x,y:S_-\operatorname{supp}$.

Ćwiczenie 10.4. Wykazać, że dla każdego S: ORing mają miejsce następujące własności:

- (i) $x +_S y = x +_S z \Rightarrow y = z \text{ dla } x, y, z : S_{\text{-}} \text{supp};$
- (ii) $x \cdot_S y = 1_S \land x \cdot_S z = 1_S \Rightarrow y = z \text{ dla } x, y, z : S_\text{supp}, \text{ gdzie } 1_S := S_\text{unit};$
- (iii) $x = 0_S \lor y = 0_S \Rightarrow x \cdot_S y = 0_S \text{ dla } x, y : S_{\text{-supp}}, \text{ gdzie } 0_S := S_{\text{-zero}}.$

Definicja 10.5. Dla dowolnych Z: Univ i S: ORing, Z nazywa się:

- (i) operacją dodawania w $S :\Leftrightarrow Z = S_{-} \text{add} := S_{-} \text{op}(1);$
- (ii) operacją mnożenia w $S :\Leftrightarrow Z = S_{-} \text{mul} := S_{-} \text{op}(2);$
- (iii) zerem $w S : \Leftrightarrow Z = S_{-}zero;$
- (iv) $jedynkq \ w \ S :\Leftrightarrow Z = S_- unit;$
- (v) $operacją odejmowania w S :\Leftrightarrow$

$$Z = S_{\text{-}} \text{subtr} := \{ x \mapsto y \mid x : (S_{\text{-}} \text{supp})^2 \land y : S_{\text{-}} \text{supp} \land x_1 = y +_S x_2 \};$$

(vi) operacją dzielenia $w S :\Leftrightarrow$

$$Z = S_{-}$$
 divis := $\{x \mapsto y \mid x : (S_{-} \operatorname{supp})^2 \land y : S_{-} \operatorname{supp} \land x_1 = y \cdot_S x_2\};$

(vii) operacją elementu odwrotnego względem dodawania w $S:\Leftrightarrow$

$$Z = S_{-}$$
 ainv := $\{x \mapsto y \mid x, y : S_{-}$ supp $\land y +_S x = S_{-}$ zero $\}$;

(viii) operacją elementu odwrotnego względem mnożenia w $S:\Leftrightarrow$

$$Z = S_{\text{-}} \text{minv} := \{x \mapsto y \mid x, y : S_{\text{-}} \text{supp } \land y \cdot_S x = S_{\text{-}} \text{unit} \};$$

(ix) relacją porządku w $S : \Leftrightarrow Z = S_{-} \text{ ord } := S_{-} \text{ op}(3)$.

Definicja 10.6. Dla dowolnych $z : \underline{\text{Univ}}, S : \text{ORing i } x, y : S_{\text{-}} \text{supp}, z \text{ nazywa się:}$

- (i) $sumq\ x\ i\ y\ w\ S :\Leftrightarrow z = x +_S y\ //z = S_- \operatorname{add}((x\ y))//$;
- (ii) iloczynem x i y w S : $\Leftrightarrow z = x \cdot_S y$ $//z = S_{\text{mul}}((x y))//$;
- (iii) różnicą $x \ i \ y \ w \ S :\Leftrightarrow z : S_{\text{supp i}} \ z +_S y = x \ //z = S_{\text{subtr}}((x \ y))//$;
- (iv) ilorazem x i y w S : $\Leftrightarrow z$: S_supp i $z \cdot_S y = x$ //z = S_divis((x y))//;
- (v) elementem przeciwnym do $x \ w \ S :\Leftrightarrow z : S_{\text{-}} \text{supp i } z +_S x = 0_S \ //z = S_{\text{-}} \text{ainv}(x) // ;$
- (vi) elementem odwrotnym do $x \ w \ S :\Leftrightarrow z : S_{\text{supp i}} \ z \cdot_S x = 1_S \ //z = S_{\text{minv}}(x) //$.

Ćwiczenie 10.7. Wykazać, że dla każdego S: ORing mają miejsce następujące własności:

- (i) S_{-} ainv : S_{-} supp $\xrightarrow{1-1} S_{-}$ supp;
- (ii) $S_{\text{-}}\operatorname{ainv}(S_{\text{-}}\operatorname{ainv}(x)) = x \operatorname{dla} x : S_{\text{-}}\operatorname{supp};$
- (iii) $1_S : \underline{D}(S_-\text{ainv}) \subset S_-\text{supp} \setminus \{0_S\};$
- (iv) S_{-} minv : $\underline{D}(S_{-}$ minv) $\xrightarrow[on]{1-1} \underline{D}(S_{-}$ minv);
- (v) $S_{-}\min(S_{-}\min(x)) = x \text{ dla } x : \underline{D}(S_{-}\min(x)).$

W celu zapewnienia równości $\underline{\mathbf{D}}(S_{-}\text{minv}) = S_{-}\text{supp}\setminus\{0_S\}$ w ćw. 10.7 wzmocnimy strukturę pierścienia uporządkowanego przez dodanie dodatkowego warunku.

Definicja 10.8. Dla dowolnego $Z:\underline{\text{Univ}},\,Z$ nazywa się ciałem uporządkowanym : $\Leftrightarrow Z:\underline{\text{ORing}}$ i zachodzi następujący warunek:

(II.4) dla każdego $x:A\setminus\{\bar{0}\}$ istnieje y:A taki, że $x\bar{\cdot}y=\bar{1}$ //istnienie elementu odwrotnego do x względem operacji Z_- op(2)// ,

gdzie $A := Z_{\text{-}} \text{supp}, \ \bar{0} := Z_{\text{-}} \text{zero i } \bar{1} := Z_{\text{-}} \text{unit.}$

Klasę wszystkich ciał uporządkowanych będziemy oznaczać przez OField.

Uwaga 10.9. Porównując def. 10.2 i def. 10.8 widzimy, że $\underline{\text{OField}} \subset \underline{\text{ORing}}$. Zatem wszystkie pojęcia określone na gruncie pierścieni uporządkowanych obowiązują dla ciał uporządkowanych.

Twierdzenie 10.10. Dla dowolnych $S': \underline{ORing}, S'': \underline{Str} \ i \ h: S''_supp \xrightarrow[on]{1-1} S'_supp \ załóżmy, że \underline{D}(S''_op) = \mathbb{N}_{1,3} \ i$

$$S''_{-}\operatorname{op}(1) = \{x \mapsto y \mid x : (S''_{-}\operatorname{supp})^{2} \land y : S''_{-}\operatorname{supp} \land h(y) = S'_{-}\operatorname{op}(1)(h \circ x)\},$$

$$S''_{-}\operatorname{op}(2) = \{x \mapsto y \mid x : (S''_{-}\operatorname{supp})^{2} \land y : S''_{-}\operatorname{supp} \land h(y) = S'_{-}\operatorname{op}(2)(h \circ x)\},$$

oraz

$$S''_{-}\text{op}(3) = \{x \mapsto y \mid x, y : S''_{-}\text{supp} \land (h(x), h(y)) : S'_{-}\text{op}(3)\}.$$

Wtedy S'': ORing. Co więcej, jeśli S': OField to S'': OField.

Ćwiczenie 10.11. Wykazać, że dla każdego S: OField zachodzą następujące własności:

- (i) $x \cdot_S y = 0_S \Leftrightarrow x = 0_S \lor y = 0_S \text{ dla } x, y : S_{\text{-}} \text{supp};$
- (ii) $x \cdot_S y = x \cdot_S z \wedge x \neq 0_S \Rightarrow y = z \text{ dla } x, y, z : S \text{-supp};$
- (iii) S_{-} divis: Map i $\underline{D}(S_{-}$ divis) = $\{x \mid x : (S_{-} \operatorname{supp})^2 \land x_2 \neq 0_S\};$
- (iv) S_{-} minv : S_{-} supp $\setminus \{0_S\} \xrightarrow[on]{} S_{-}$ supp $\setminus \{0_S\}$;
- (v) $S_{-}\min(S_{-}\min(x)) = x \text{ dla } x : S_{-}\sup \setminus \{0_S\}.$

11. Liczby całkowite

Skonstruujemy strukturę liczb całkowitych \mathbb{Z} -Str : ORing, która rozszerza strukturę \mathbb{N}_0 -Str. Wyjściową strukturą naszych rozważań jest $S := \mathbb{N}_0$ -Str. Przyjmijmy $x+y := S_-$ add $((x y)), x \cdot y := S_-$ mul((x y)) dla $x, y : S_-$ supp $/\!/ = \mathbb{N}_0 /\!/$ i $\leq := S_-$ ord.

Ćwiczenie 11.1. Wykazać, że (\mathbb{N}_0^2, R) : EqRel, gdzie

$$R := \{x \mapsto y \mid x, y : \mathbb{N}_0^2 \land x_1 + y_2 = x_2 + y_1\}.$$

Ćwiczenie 11.2. Przyjmując $A := \mathbb{N}_0^2$ i Q := (A, R), gdzie R jest relacją określoną w ćw. 11.1, wykazać, że:

$$T_1 := \left\{ x \mapsto y \, \middle| \, \bigvee_{a,b:A} \left(x = ([a/Q] \, [b/Q]) \wedge y = [(a_1 + b_1 \, a_2 + b_2)/Q] \right) \right\} : (A/Q)^2 \to A/Q,$$

$$T_2 := \left\{ x \mapsto y \, \middle| \, \bigvee_{a,b:A} \left(x = ([a/Q] \, [b/Q]) \wedge y = [(a_1 \cdot b_1 + a_2 \cdot b_2 \, a_1 \cdot b_2 + a_2 \cdot b_1)/Q] \right) \right\} : (A/Q)^2 \to A/Q$$

oraz $(A/Q, T_3)$: LORel, gdzie

$$T_3 := \left\{ x \mapsto y \, \middle| \, \bigvee_{a,b:A} \left(x = [a/Q] \land y = [b/Q] \right) \land a_1 + b_2 \leqslant a_2 + b_1 \right) \right\}.$$

Twierdzenie 11.3. Przy oznaczeniach ćw. 11.2, $S' := (A/Q, (T_1 \ T_2 \ T_3)) : \underline{ORing}$. Co więcej, S'_zero = $[(0\ 0)/Q]$, S'_unit = $[(1\ 0)/Q]$ i S'_ainv $([x/Q]) = [(x_2\ x_1)/Q]$ dla x : A.

Uwaga 11.4. Przy oznaczeniach ćw. 11.2 definiujemy $\mathbb{Z} := \mathbb{N}_0 \cup (A \setminus f(\mathbb{N}_0))$, gdzie

$$f := \{ n \mapsto [(n \ 0)/Q] \mid n : \mathbb{N}_0 \}.$$

Oczywiście $f: \mathbb{N}_0 \xrightarrow{1-1} A/Q$. Dlatego

$$h := f \cup \{x \mapsto y \mid x : A \setminus f(\mathbb{N}_0) \land y = x\} : \mathbb{Z} \xrightarrow{\text{on}} A/Q.$$

Z tw. 11.3 wynika, że $S' := (A/Q, (T_1 \ T_2 \ T_3)) : \underline{ORing}$. Ponieważ S'_{-} supp = A/Q, istnieje dokładnie jedna struktura S'' o nośniku S''_{-} supp $= \mathbb{Z}$ i spełniająca założenia tw. 10.10. Tak więc tw. 10.10 implikuje, że S'': ORing. Ponadto $\mathbb{N}_0 \subset \mathbb{Z}$ i struktura S'' jest zgodna z początkową strukturą $S'' = \mathbb{N}_0$ -Str// w tym sensie, że:

$$x + y = S''_{-} \operatorname{add}((x y)), \ x \cdot y = S''_{-} \operatorname{mul}((x y))$$
 i $x \leq y \Leftrightarrow (x, y) : S''_{-} \operatorname{ord}$ dla $x, y : \mathbb{N}_0$.

Zatem struktura S'' rozszerza strukturę \mathbb{N}_0 -Str. Ponadto dla każdego $n: \mathbb{N}, S''$ -ainv $(n) = [(0 \ n)/Q]$.

Definicja 11.5. Dla dowolnego $Z : \underline{\text{Univ}}, Z$ nazywamy:

- (i) strukturą liczb całkowitych : $\Leftrightarrow Z = \mathbb{Z}$ -Str := S'', gdzie S'' jest pierścieniem uporządkowanym opisanym w uw. 11.4;
- (ii) klasą liczb całkowitych : $\Leftrightarrow Z = \mathbb{Z}$, gdzie \mathbb{Z} jest klasą zdefiniowaną w uw. 11.4;
- (iii) liczbq $całkowitq :\Leftrightarrow Z : \mathbb{Z}$.

Ćwiczenie 11.6. Wykazać, że dla każdego $n : \mathbb{Z}$,

$$n: \mathbb{N} \vee n = 0 \vee \mathbb{Z}\text{-Str}_-\text{ainv}(n): \mathbb{N}.$$

Ćwiczenie 11.7. Wykazać, że dla każdego $p: \mathbb{N}_0$ zachodzą następujące równości:

$$\mathbb{Z} = \left\{ x \,\middle|\, \bigvee_{n,m:\mathbb{N}_p} x = \mathbb{Z}\text{-Str}\, \text{-subtr}((n\ m)) \right\}.$$

12. Liczby wymierne

Ponieważ \mathbb{Z} -Str : ORing \ OField, więc skonstruujemy teraz strukturę liczb wymiernych \mathbb{Q} -Str : OField, która rozszerza strukturę \mathbb{Z} -Str. Wyjściową strukturą jest teraz $S := \mathbb{Z}$ -Str. Przyjmijmy $x + y := S_{-}$ add $((x \ y))$, $x \cdot y := S_{-}$ mul $((x \ y))$ dla $x, y : S_{-}$ supp $/\!/ = \mathbb{Z} /\!/ i \le := S_{-}$ ord.

Ćwiczenie 12.1. Wykazać, że (A, R): EqRel, gdzie $A := \{x \mid x : \mathbb{Z}^2 \land x_2 : \mathbb{N}\}$ i

$$R := \{x \mapsto y \mid x, y : A \land x_1 \cdot y_2 = x_2 \cdot y_1\}.$$

Ćwiczenie 12.2. Przyjmując Q := (A, R), gdzie A i R są zdefiniowane w ćw. 11.1, wykazać, że:

$$T_{1} := \left\{ x \mapsto y \,\middle|\, \bigvee_{a,b:A} \left(x = ([a/Q] \,[b/Q]) \land y = [(a_{1} \cdot b_{2} + a_{2} \cdot b_{1} \,a_{2} \cdot b_{2})/Q] \right) \right\} : (A/Q)^{2} \to A/Q,$$

$$T_{2} := \left\{ x \mapsto y \,\middle|\, \bigvee_{a,b:A} \left(x = ([a/Q] \,[b/Q]) \land y = [(a_{1} \cdot b_{1} \,a_{2} \cdot b_{2})/Q] \right) \right\} : (A/Q)^{2} \to A/Q$$

oraz $(A/Q, T_3)$: <u>LORel</u>, gdzie

$$T_3 := \Big\{ x \mapsto y \, \Big| \, \bigvee_{a,b:A} \Big(x = [a/Q] \wedge y = [b/Q] \big) \wedge a_1 \cdot b_2 \leqslant a_2 \cdot b_1 \Big) \Big\}.$$

Twierdzenie 12.3. Przy oznaczeniach Ex. 12.2, $S' := (A/Q, (T_1 \ T_2 \ T_3)) : \underline{OField}$. Co więcej, S'_zero = $[(0\ 1)/Q]$, S'_unit = $[(1\ 1)/Q]$ i S'_minv $([x/Q]) = [(x_2\ x_1)/Q]$ dla $x : A \setminus \{[(0\ 1)/Q]\}$.

Uwaga 12.4. Przy oznaczeniach ćw. 12.2 definiujemy $\mathbb{Q} := \mathbb{Z} \cup (A \setminus f(\mathbb{Z}))$, gdzie

$$f := \{ n \mapsto [(n \ 1)/Q] \mid n : \mathbb{Z} \}.$$

Oczywiście $f: \mathbb{Z} \xrightarrow{1-1} A/Q$. Dlatego

$$h := f \cup \{x \mapsto y \mid x : A \setminus f(\mathbb{Z}) \land y = x\} : \mathbb{Q} \xrightarrow{\text{on}} A/Q.$$

Z tw. 12.3 wynika, że $S' := (A/Q, (T_1 \ T_2 \ T_3)) : \underline{\text{OField}}$. Ponieważ $S'_{\text{-}}$ supp = A/Q, istnieje dokładnie jedna struktura S'' o nośniku $S''_{\text{-}}$ supp = $\mathbb Q$ i spełniająca założenia tw. 10.10. Zatem tw. 10.10 implikuje, że $S'' : \underline{\text{OField}}$. Ponadto $\mathbb Z \subset \mathbb Q$ i struktura S'' jest zgodna ze strukturą początkową $S'' = \mathbb Z$ -Str/// w tym senie, że:

$$x+y=S''_\mathrm{add}((x\ y)),\ x\cdot y=S''_\mathrm{mul}((x\ y))\quad \mathrm{i}\quad x\leqslant y\Leftrightarrow (x,y):S''_\mathrm{ord}\quad \, \mathrm{dla}\ x,y:\mathbb{Z}.$$

Dlatego struktura S'' rozszerza strukturę \mathbb{Z} -Str. Ponadto dla każdego $n: \mathbb{N}, S''_{-}\min v(n) = [(1\ n)/Q]$ i $S''_{-}\min v(-n) = [(-1\ n)/Q],$ gdzie $-t:=S_{-}\min v(t)$ dla $t:\mathbb{Z}$.

Definicja 12.5. Dla dowolnego Z: <u>Univ</u>, Z nazywa się:

- (i) strukturą liczb wymiernych : $\Leftrightarrow Z=\mathbb{Q}\text{-Str}:=S'',$ gdzie S'' jest ciałem uporządkowanym opisanym w uw. 12.4:
- (ii) klasą liczb wymiernych : $\Leftrightarrow Z = \mathbb{Q}$, gdzie \mathbb{Q} jest klasą zdefiniowaną w uw. 12.4;
- (iii) liczba wymiern $a:\Leftrightarrow Z:\mathbb{Q}$.

Cwiczenie 12.6. Wykazać następujące równości

$$\mathbb{Q} = \left\{ x \,\middle|\, \bigvee_{n:\mathbb{Z}} \bigvee_{m:\mathbb{N}} x = \mathbb{Q}\text{-Str}\,_{-}\operatorname{divis}((n\ m)) \right\} = \left\{ x \,\middle|\, \bigvee_{n:\mathbb{Z}} \bigvee_{m:\mathbb{Z}\setminus\{0\}} x = \mathbb{Q}\text{-Str}\,_{-}\operatorname{divis}((n\ m)) \right\}.$$

13. Liczby rzeczywiste

Wyjściową strukturą jest teraz $S := \mathbb{Q}$ -Str. Przyjmijmy $x + y := S_{-}$ add $((x y)), x \cdot y := S_{-}$ mul((x y)) dla $x, y : S_{-}$ supp $\# = \mathbb{Q}$ i $\leq := S_{-}$ ord. Mając do dyspozycji strukturę liczb wymiernych S można rozwiązać każde równanie postaci $a \cdot x + b = c$ z niewiadomą $x : \mathbb{Q}$ dla zadanych $a, b, c : \mathbb{Q}$ takich, że $a \neq 0$. Jednak w dalszym ciągu nie można na ogół rozwiązać równań postaci $x \cdot x = a$ zmiennej $x : \mathbb{Q}$ dla zadanego $a : \mathbb{Q}$ takiego, że $0 \leq a$. W szczególności nie istnieje $x : \mathbb{Q}$ spełniający równość $x \cdot x = 2$. Ażeby rozwiązać ten problem rozszerzymy strukturę S do struktury liczb rzeczywistych \mathbb{R} -Str : OField, która ma silniejsze własności niż struktura S.

Ćwiczenie 13.1. Niech \mathbb{Q}_+ będzie klasą liczb wymiernych dodatnich, tzn., $\mathbb{Q}_+ := \{x \mid x : \mathbb{Q} \land 0 \leqslant x \neq 0\}$. Przyjmując

$$\begin{split} -t &:= \mathbb{Q}\text{-Str}\, _\text{ainv}(t) \text{ and } |t| := (\mathbb{Q}, \leqslant) _\max(\{t, -t\}) \quad \text{for } t : \mathbb{Q}; \\ s - t &:= s + (-t) = \mathbb{Q}\text{-Str}\, _\text{subtr}((s\ t)) \quad \text{for } s, t : \mathbb{Q} \end{split}$$

wykazać, że $(\mathbb{N} \to \mathbb{Q}, R)$: EqRel, gdzie

$$R:=\Big\{x\mapsto y\,\Big|\,x,y:\mathbb{N}\to\mathbb{Q}\wedge \bigwedge_{\varepsilon:\mathbb{Q}_+}\bigvee_{p:\mathbb{N}}\bigwedge_{n:\mathbb{N}_p}|x_n-y_n|\leqslant\varepsilon\Big\}.$$

Tu i w dalszym ciągu $f_n := f(n)$ dla wszystkich $f : \mathbb{N} \to \underline{\text{Univ}}$ i $n : \mathbb{N}$.

Ćwiczenie 13.2. Niech R będzie relacją zdefiniowaną w ćw. 13.1 i niech $Q := (\mathbb{N} \to \mathbb{Q}, R)$. Określając

$$A := \left\{ x \,\middle|\, x : \mathbb{N} \to \mathbb{Q} \land \bigwedge_{\varepsilon : \mathbb{Q}_+} \bigvee_{p : \mathbb{N}} \bigwedge_{n, m : \mathbb{N}_p} |x_n - x_m| \leqslant \varepsilon \right\}$$

wykazać, że:

- (i) $[x/Q] \subset A \text{ dla } x : A;$
- (ii) x + y : A dla x, y : A;
- (iii) $x \cdot y : A \text{ dla } x, y : A$,

gdzie

$$f + g := \{n \mapsto f_n + g_n \mid n : \mathbb{N}\}$$
 i $f \cdot g := \{n \mapsto f_n \cdot g_n \mid n : \mathbb{N}\}$ dla $n : \mathbb{N}$.

Ćwiczenie 13.3. Niech Q i R będą zdefiniowane tak jak w ćw. 13.2. Wykazać, że:

$$T_1 := \left\{ x \mapsto y \,\middle|\, \bigvee_{a,b:A} \left(x = ([a/Q] \,[b/Q]) \land y = [a + b/Q] \right) \right\} : (A/Q)^2 \to A/Q,$$

$$T_1 := \left\{ x \mapsto y \,\middle|\, \bigvee_{a,b:A} \left(x = ([a/Q] \,[b/Q]) \land y = [a + b/Q] \right) \right\} : (A/Q)^2 \to A/Q,$$

$$T_2 := \left\{ x \mapsto y \, \middle| \, \bigvee_{a,b:A} \left(x = ([a/Q] \ [b/Q]) \land y = [a \, \bar{b}/Q] \right) \right\} : (A/Q)^2 \to A/Q$$

oraz $(A/Q, T_3)$: <u>LORel</u>, gdzie

$$T_3:=\Big\{x\mapsto y\,\Big|\,\bigvee_{a,b:A}\Big(x=[a/Q]\wedge y=[b/Q]\wedge \bigwedge_{\varepsilon:\mathbb{Q}_+}\bigvee_{p:\mathbb{N}}\bigwedge_{n:\mathbb{N}_p}a_n\leqslant b_n+\varepsilon\Big)\Big\}.$$

Twierdzenie 13.4. Przy oznaczeniach ćw. 13.3, $S' := (A/Q, (T_1 \ T_2 \ T_3)) : \underline{\text{OField.}}$ Co więcej, S'_zero = $[\{n \mapsto 0 \mid n : \mathbb{N}\}/Q]$, S'_unit = $[\{n \mapsto 1 \mid n : \mathbb{N}\}/Q]$ i S'_ainv $([x/Q]) = [\{n \mapsto -x_n \mid n : \mathbb{N}\}/Q]$ dla x : A.

Uwaga 13.5. Przy założeniach ćw. 13.2 definiujemy $\mathbb{R} := \mathbb{Q} \cup (A \setminus f(\mathbb{Q}))$, gdzie

$$f := \{x \mapsto [\{n \mapsto x \mid n : \mathbb{N}\}/Q] \mid x : \mathbb{Q}\}.$$

Oczywiście $f: \mathbb{Q} \xrightarrow{1-1} A/Q$. Dlatego,

$$h := f \cup \{x \mapsto y \mid x : A \setminus f(\mathbb{Q}) \land y = x\} : \mathbb{R} \xrightarrow{1-1} A/Q.$$

Z tw. 13.4 wynika, że $S' := (A/Q, (T_1 \ T_2 \ T_3)) : \underline{\text{OField}}$. Ponieważ S'_{-} supp = A/Q, istnieje dokładnie jedna struktura S'' o nośniku S''_{-} supp = \mathbb{R} i spełniającą założenia tw. 10.10. Zatem tw. 10.10 implikuje, że $S'' : \underline{\text{OField}}$. Ponadto $\mathbb{Q} \subset \mathbb{R}$ i struktura S'' jest zgodna z początkową strukturą $S'' = \mathbb{Z}$ -Str// w takim sensie, że:

$$x+y=S''_{-}\mathrm{add}((x\ y)),\ x\cdot y=S''_{-}\mathrm{mul}((x\ y))\quad \mathrm{i}\quad x\leqslant y\Leftrightarrow (x,y):S''_{-}\mathrm{ord}\quad \mathrm{dla}\ x,y:\mathbb{Q}.$$

To oznacza, że struktura S'' jest rozszerzeniem struktury \mathbb{Q} -Str.

Definicja 13.6. Dla dowolnego Z: Univ, Z nazywa się:

- (i) strukturą liczb rzeczywistych : $\Leftrightarrow Z = \mathbb{R}\text{-Str} := S''$, gdzie S'' jest ciałem uporządkowanym opisanym w uw. 13.5;
- (ii) klasą liczb rzeczywistych : $\Leftrightarrow Z = \mathbb{R}$, gdzie \mathbb{R} jest klasą zdefiniowaną w uw. 13.5;
- (iii) $liczba\ rzeczywista:\Leftrightarrow Z:\mathbb{R}.$

Ćwiczenie 13.7. Wykazać, że dla każdego $x : \mathbb{R}$ istnieje $a : \mathbb{N} \to \mathbb{Q}$ taki, że

$$\bigwedge_{\varepsilon:\mathbb{Q}_+} \bigvee_{p:\mathbb{N}} \bigwedge_{n:\mathbb{N}_p} |a_n - x| \leqslant \varepsilon.$$

Zgodnie z uwagami 13.5, 12.4 i 11.4 struktura $S := \mathbb{R}$ -Str rozszerza każdą ze struktur \mathbb{Q} -Str, \mathbb{Z} -Str i \mathbb{N}_0 -Str. Z tego względu możemy przedefiniować dotychczas używane symbole operatorów arytmetycznych i relacji porządku jak następuje: $x+y:=S_-$ add $((x\ y)),\ x-y:=S_-$ subtr $((x\ y)),\ x\cdot y:=S_-$ mul $((x\ y))$ i $x\leqslant y:\Leftrightarrow (x,y):S_-$ ord dla $x,y:\mathbb{R},\ x/y:=S_-$ divis $((x\ y))$ dla $x:\mathbb{R}$ i $y:\mathbb{R}\setminus\{0\}$ oraz $-x:=S_-$ ainv(x) dla $x:\mathbb{R}$. A uwagi na zgodność struktury \mathbb{R} -Str ze strukturami \mathbb{Q} -Str, \mathbb{Z} -Str i \mathbb{N}_0 -Str poprzednie znaczenie tych symboli jest zachowane. Ponadto przyjmujemy $x^2:=x\cdot x$ dla $x:\mathbb{R}$ oraz "x< y" := " $x\leqslant y\wedge x\neq y$ ", " $x\geqslant y$ " := " $y\leqslant x$ " i "x>y" := "y< x" dla $x,y:\mathbb{N}_0$ -Str.

Na mocy uw. 13.5, \mathbb{R} -Str : <u>OField</u>. Co więcej, struktura \mathbb{R} -Str ma bardzo istotną dodatkową własność, która pełni fundamentalną rolę w analizie matematycznej. Ta własność jest zazwyczaj nazywana warunkiem ciągłości struktury \mathbb{R} -Str i jest opisana w następującym twierdzeniu.

Twierdzenie 13.8. Dla każdego $A : \underline{PClass}(\mathbb{R}) \setminus \{\emptyset\}$ zachodzi następująca implikacja:

$$\bigvee_{M:\mathbb{R}} \bigwedge_{x:A} x \leqslant M \Rightarrow (\mathbb{R}, \leqslant)_{-} \sup(A) \neq \underline{\operatorname{null}}.$$

//Innymi słowy każda niepusta podklasa klasy $\mathbb R$ i ograniczona od góry posiada kres górny (supremum).//

Wniosek 13.9. Dla każdego $A: \underline{PClass}(\mathbb{R}) \setminus \{\emptyset\}$ zachodzi następująca implikacja:

$$\bigvee_{M:\mathbb{R}} \bigwedge_{x:A} x \geqslant M \Rightarrow (\mathbb{R}, \leqslant)_{-} \inf(A) \neq \underline{\operatorname{null}}.$$

 $/\!\!/Innymi$ słowy każda niepusta podklasa klasy $\mathbb R$ i ograniczona od dołu posiada kres dolny (infimum). $/\!\!/$

Uwaga 13.10. Zauważmy, że tw. 13.8 i wn. 13.9 nie są prawdziwe z zastąpieniem klasy \mathbb{R} przez klasę \mathbb{Q} . Przyjmując na przykład $A := \{x \mid x : \mathbb{Q} \land x^2 \leq 2\}$ widzimy, że $(\mathbb{Q}, \leq)_- \sup(A) = \underline{\operatorname{null}}$ i $(\mathbb{Q}, \leq)_- \inf(A) = \underline{\operatorname{null}}$, ponieważ nie istnieje $x : \mathbb{Q}$ spełniający równość $x^2 = 2$. Dlatego struktura liczb wymiernych \mathbb{Q} -Str nie spełnia warunku ciągłości. Z drugiej strony, z tw. 13.8 wynika, że dla każdego $a : \mathbb{R}$, jeśli a > 0 to istnieje

$$b := (\mathbb{R}, \leqslant)_{-} \sup(\{x \mid x : \mathbb{R} \land x^2 \leqslant a\}) : \mathbb{R}.$$

Można wykazać, że $b^2 = a$, i tym samym b jest rozwiązaniem równania $x^2 = a$ z niewiadomą $x : \mathbb{R}$.