Name: Spenser Coulette

- Make sure you write your name on all pages.
- Detailed descriptions of how you solved the problem will get you maximum partial credit if your final answer is wrong.
- You must provide the correct unit along with your answer in the answer areas. An answer without its unit will be considered incorrect.
- You may only use FE exam approved, so called dumb calculators.
- A table of commonly used constants, parameters and equations is being distributed with the exam.
- Unless noted otherwise, assume room temperature conditions, i.e. T = 300K

Question	Grade	Out of
#1	16	20
#2	20	20
#3	15	15
#4	18	18
#5	15	15
#6	15	12
Total Grade	96	100

Choice of candy: Left Twix

ECE 342 Electronics I

Oct. 26, 2018

Name: Spence Graviette

1. (20 points) Each correct answer is worth +2 points. Indicate if the following statements are True or False:		
	V	
	1	_A pn junction diode is a rectifying device.
F	1	A p-type semiconductor has very few holes compared to electrons.
	E	_The I-V characteristics of a pn junction diode are temperature independent.
	grant is	_Arsenic (As) is a group V element. It is an acceptor-type dopant in Si, which is a group IV element.
	7	_A pn junction diode can be used to regulate voltage.
	1	The resistivity of a semiconductor is related to the drift current.
	V	The depletion region of a pn junction diode will shrink with increasing reverse bias.
	<u>T</u>	_A pn junction diode can be used to amplify an AC signal.
	4	_The electronic properties of a semiconductor are temperature dependent.
	1	Diffusion current in a semiconductor is due to a gradient in the carrier concentration.

Name: Sponer Coulcille

- 2. Quick calculations (20 points). Each of the questions below are quick calculations, usually requiring a single equation.
 - a. A Si diode conducts $I_F = 2$ mA when forward biased with $V_F = 0.7$ V. What is the forward bias voltage if the current decreases to $I_F = 1$ mA? $V_T = 26$ my, and $\eta = 1$.

VEN = VERRY 25m /2 (10A) VF = 6.682 V

b. A pn junction diode with a built-in potential of $V_{bi} = 0.8$ V has a zero-bias capacitance of $C_{j0} = 2$ nF. What is its junction capacitance at a reverse bias voltage of/16 V?

C = 500 = 20 () = 11+16/0.8

 $C_i = 4360F$

What is the forward bias diffusion capacitance of a pn junction diode forward biased with $I_F = 10$ mA and a minority carrier lifetime $\tau = 260$ ns, operating at room temperature?

Cd = TT I = 2600 1000 =

CD = 400 > F

100000000

d. A p⁺n Si diode has $N_A = 2x10^{18}$ cm⁻³ and $N_D = 5x10^{15}$ cm⁻³. Calculate the built in potential, V_{bi} , at room temperature. $n_i = 10^{10}$ cm⁻³, $V_T = 26$ mV

NP:=N-IN (NAND)

 $V_{bi} = \sqrt{838} \text{ mV}$

e. What is the conductivity of an n-type Si sample which is doped with $N_0 = 5 \times 10^{15}$ cm⁻³? Take $\mu_n = 1200$ cm²/Vs and $\mu_p = 450$ cm²/Vs.

0 = 9 (NDM)

Name: Spores Gaulette

3. (15 points) The input protection diode D_{prot} in the circuit below is used to limit the voltage at node ADC, representing the analog-to-digital converter of a microcontroller. The diode has Is = 1 nA and an ideality factor of $\eta = 1.3$. The input protection resistor is $R_{prot} = 10 \text{ k}\Omega$. An external voltage source of $V_{SIG} = 7 \text{ V}$ is connected to the input pin A0 of the microcontroller. Calculate the voltage at node ADC, V_{ADC} . The supply voltage is $V_{DD} = 5 \text{ V}$.

VADC_5.405 V

Name: Spencer Coolette

- 4. (18 points) The voltage reference circuit below uses a Zener diode which conducts a current of $I_z = 1$ mA when biased with $V_z = 5$ V, and has an equivalent resistance of $r_z = 100 \Omega$. The supply voltage is $-V_{\infty} = -12 \text{ V}$.
 - a) Calculate the equivalent voltage source V₂₀ of the Zener diode.
 - b) Calculate the required value of the bias resistor R_{bias} such that $V_{out} = -5.0 \text{ V}$.
 - c) Draw the equivalent circuit. Calculate Vout if the circuit is connected to a -15 V supply instead of a -12 V supply.

a. V20= V2-I252 120= 511-1m.100 V20= 4.9V b. ID = -49-(-5) = ImA Rbias = -5-+12)

Dovout Potass

$$\Delta V_{\omega t} = \frac{100}{100 + 7k} \left(-3\right)$$

$$= 0.0422$$
 page# 5

$$V_{out} = -5 + -0.0422$$
 $V_{out} = -5.0422$

(c)
$$V_{\text{out}} = 5.042$$

Name: Spencer Goslette

- 5. (15 points) An n-type Si cylindrical sample is doped with $N_D = 2 \times 10^{16}$ cm⁻³. It has a diameter of 2r = 1 mm, and is $\ell = 10$ mm long. Use the following values: $n_i(300\text{K}) = 10^{10}$ cm⁻³, $\mu_n = 1100$ cm²/Vs, and $\mu_p = 420$ cm²/Vs. Unit charge is $q = 1.6 \times 10^{-19}$ C.
 - a) What is the conductivity of this sample, from the top surface to the bottom surface?
 - b) A 1 V bias voltage is applied between the top and bottom surfaces. Calculate the current flowing through the sample.

Name: Spence Govlette

Oct. 26, 2018

6. (10 points) Three identical diodes are used in the circuit in the figure. The only known fact about the diodes is that $I_D = 1$ mA at $V_D = 0.6$ V. Calculate the three node voltages, V_x , V_y , V_z if V_{bias} = 3.3V. Explain your reasoning.

Vy= V2 cause no corrent throug 100.02 resistor.

Assume VD=0,6V and current ID=IMA, 50 3.3 = ID.1200+ ID.1500+ VD KV

3.3 = 1.2 V + 1.5 V + O.L V Vy = Vz = 0.6 V since diade volt.

 $V_{X} = 1.5V + 0.6V$