Ex 83

1)
$$f(x) = 0 \implies S = \{-0.5; 1.5\}$$

 $f(x) = 3.5 \implies S = \emptyset$
 $f(x) = 0 \implies S = \{0.5; 2.5\}$

) ×	-1	0,5	2,5	3
Variations	2	4	72	
de f		3 - 2		34,5
signe	- M-	•	+ 0	-

$$f'(0) = \frac{2.5}{-\frac{5}{4}} = -\frac{4}{5} \times 2.5 = -\frac{10}{5} = -2$$

Ex 84

$$f(x) = 2x^2 - 8x - 3$$
 $I = \mathbb{R}$

Tableau de vaniations i

x -	000	2	+00
FI	-	4	+
2	V	AA	7
4		-11	

Ex 85

$$\frac{1}{f(x) = -x^2 + 3x + 5} \quad I = R$$

f'(x) = -7x+3 Signe de f': -7x+3>0 =1 x 6 3

Tableau de variations:

$$f\left(\frac{3}{2}\right) = -\frac{9}{4} + \frac{9}{2} + 5 = \frac{-9 + 18 + 20}{4} = \frac{29}{4}$$