MOTOR CASING THICKNESS CALCULATION

Considering design pressure:

$$P_D = \frac{2tF_{ty}}{D_0S_D} \quad \dots \dots (1)$$

Where:

 F_{ty} - Yield strength.

 P_D – Design Pressure

t – Thickness

 $\boldsymbol{D_0}$ - Outer diameter

 S_D - Safety factor

From equation (1)

$$t = \frac{P_D D_0 S_D}{2F_{ty}}$$

For:

$$P_D = 8.02 \text{ Mpa}$$

$$D_O = 73 \text{mm}$$

$$S_D = 1.87$$

$$F_{ty} = 220 \text{MPa}$$

$$t = \frac{8.02 \times 73 \times 1.87}{2 \times 220}$$

$$t = 2.5 \text{mm}$$

Thus:

$$D_{outer} = 73$$
mm

$$D_{inner} = 68$$
mm

$$t = 2.5 mm$$

For:

$$D_0 = 73 \text{mm}$$

$$B = 1.726$$

$$F_{ty}$$
= 220MPa

$$P_V = \frac{2 \times 2.5 \times 220 \times 1.726}{73}$$

= 26.0082 MPa

=26MPa

REFERENCE:

Design and Burst Pressures for Rocket Motor Casing

[Input data in blue text, English or (Si) units]

Casing Dimensions and Design Factors

Do=	2.874	in. (mm)	Diameter, outside
t =	0.098	in. (mm)	wall thickness
Sp=	1.87		Design Safety factor

Material Properties

Fty= Ftu= E= v=	58	ksi (MPa) ksi (MPa) Msi (MPa)	Yield Strength Ultimate Strength Modulus of Elasticity Poisson Ratio
β -	0.603		Fty/Ftu
B =	1.726		Burst factor

Design and Burst Pressures

$P_D =$	1282 psi (kPa)	Design pressure
Pu =	4137 psi (kPa)	Burst pressure
Su =	3.23	Burst Safety Factor