Scilab Textbook Companion for Applied Thermodynamics and Engineering by T. D. Eastop and A. Mcconkey¹

Created by
Ashay Shashikant Aswale
B.Tech
Mechanical Engineering
College of Engineering Pune
College Teacher
Ms. Shivnanda S. Bhavikatti
Cross-Checked by
K. V. P. Pradeep

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Applied Thermodynamics and Engineering

Author: T. D. Eastop and A. Mcconkey

Publisher: Pearson Education Ltd.

Edition: 5

Year: 2009

ISBN: 978-81-7758-238-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introduction and the first law of thermodynamics	5
2	The Working Fluid	10
3	Reversible and Irreversible processes	19
4	The Second Law	28
5	The Heat Engine Cycle	38
6	Mixtures	43
7	Combustion	55
8	Steam Cycles	70
9	Gas Turbine Cycles	75
10	Nozzle and Jet Propulsion	81
11	Rotodynamic Machinery	88
12	Positive Displacement Machines	95
13	Reciprocating Internal Combustion Engines	98
11	Refrigeration and Heat Pumps	101

15 Psychrometry And Air Conditioning	104
16 Heat Transfer	106
17 The Source Use and Management of Energy	112

List of Scilab Codes

Exa 1.1	$chapter \ 1 \ example \ 1 \ \dots \dots \dots \dots$	5
Exa 1.2	chapter 1 example $2 \dots \dots \dots \dots$	5
Exa 1.3	chapter 1 example $3 \dots \dots \dots \dots$	6
Exa 1.4	chapter 1 example $4 \dots \dots \dots \dots$	7
Exa 1.5	chapter 1 example 5	7
Exa 1.6	chapter 1 example $6 \dots \dots \dots \dots \dots$	7
Exa 1.7	chapter 1 example 7	8
Exa 2.1	1	10
Exa 2.2	2	11
Exa 2.3	3	11
Exa 2.4	4	12
Exa 2.5	5	13
Exa 2.6	6	14
Exa 2.7	7	15
Exa 2.8	8	15
Exa 2.9	9	16
Exa 2.10	10	16
Exa 2.11	11	17
Exa 3.1	1	19
Exa 3.2	2	20
Exa 3.3	3	21
Exa 3.4	3	21
Exa 3.5	5	22
Exa 3.6	6	22
Exa 3.7	7	23
Exa 3.8	8	24
Exa 3.9	9	25
Eva 3 10	10	25

Exa 3.11	11	25
Exa 3.12	12	26
Exa 4.1	1	28
Exa 4.2	2	28
Exa 4.3	3	29
Exa 4.4	4	30
Exa 4.5	5	31
Exa 4.6	6	31
Exa 4.7	7	32
Exa 4.8	8	33
Exa 4.9	9	33
Exa 4.10	10	34
Exa 4.11	11	35
Exa 4.12	12	35
Exa 4.13	13	35
Exa 4.14	14	36
Exa 4.15	15	37
Exa 5.1	1	38
Exa 5.2	2	38
Exa 5.3	3	39
Exa 5.4	4	40
Exa 5.5	5	40
Exa 5.6	6	41
Exa 5.7	7	41
Exa 6.1	1	43
Exa 6.2	2	44
Exa 6.3	3	44
Exa 6.4	4	45
Exa 6.5	5	47
Exa 6.6	6	47
Exa 6.7	7	48
Exa 6.8	8	49
Exa 6.9	9	50
Exa 6.10	10	51
Exa 6.11	11	52
Exa 6.12	12	52
Exa 6.13	13	53
Exa 6.14	14	54

Exa 7.1	1	55
Exa 7.2	2	57
Exa 7.3	3	58
Exa 7.4	4	59
Exa 7.5	5	60
Exa 7.6	6	61
Exa 7.7	7	61
Exa 7.8	8	62
Exa 7.9	9	63
Exa 7.10	10	63
Exa 7.12	12	64
Exa 7.13	13	64
Exa 7.14	14	64
Exa 7.15	15	65
Exa 7.16	16	65
Exa 7.17	17	66
Exa 7.18	18	66
Exa 7.19	19	67
Exa 7.20	20	68
Exa 7.21	21	68
Exa 7.22	22	68
Exa 8.1	1	70
Exa 8.2	2	71
Exa 8.3	3	72
Exa 8.4	4	73
Exa 9.1	1	75
Exa 9.2	2	76
Exa 9.3	3	77
Exa 9.4	4	78
Exa 9.5	5	79
Exa 10.1	1	81
Exa 10.2	2	82
Exa 10.3	3	83
Exa 10.4	4	84
Exa 10.5	5	84
Exa 10.6	6	85
Exa 10.7	7	86
Exa 11.1	1	88

Exa 11.2	2	 89
Exa 11.3	3	 91
Exa 11.4	4	 92
Exa 11.5	5	 93
Exa 11.10	10	 93
Exa 12.4	4	 95
Exa 12.7	7	 96
Exa 12.10	10	 96
Exa 13.1	1	 98
Exa 13.2	2	 99
Exa 13.3	3	 99
Exa 14.1	1	 101
Exa 14.6	6	 101
Exa 14.8	8	 102
Exa 15.5	5	 104
Exa 16.1	1	 106
Exa 16.2	2	 106
Exa 16.7	7	 107
Exa 16.12	12	 108
Exa 16.15	15	 108
Exa 16.16	16	 109
Exa 16.18	18	 109
Exa 16.21	21	 110
Exa 16.25	25	 110
Exa 17.1	1	 112
Exa 174	4	113

Chapter 1

Introduction and the first law of thermodynamics

Scilab code Exa 1.1 chapter 1 example 1

```
1
2 clc;
3 p=3;//bar
4 v=0.18;//m^2/kg
5 p2=0.6;//bar
6
7 c=p*v^2;
8
9 v2=(c/p2)^0.5;
10
11 W=-c*(10^5)*[(1/v)-(1/v2)];
12 disp("Work done by the fluid is:");
13 disp("N m/kg",-W);
14 //Answers vary more than than +/-5:
15 //Answers in the textbook is wrong
```

Scilab code Exa 1.2 chapter 1 example 2

```
1 clc;
2 p1=20;//bar
3 v1=0.05;//m^3
4 v2=0.1;//m^3
5 p2=p1*[(v1/v2)^2];//bar
6
7 W_12=-10^5*p1*(v1^2)*((1/v1)-(1/v2));
8
9 W_23=10^5*p2*(v2-v1);
10
11 //work done from 3-1 is zero as the piston is locked in position.
12
13 disp("The net work done by the fluid is:");
14 W=-(W_12+W_23)
15 disp("N m",W)
```

Scilab code Exa 1.3 chapter 1 example 3

```
1 clc;
2
3 heat_supplied=2800; //kJ/kg
4 heat_rejected=2100; //kJ/kg
5 sigma_dQ=heat_supplied-heat_rejected;
6
7 work_done=1000;
8 work_reqr=5;
9 sigma_dW=work_reqr-work_done;
10
11 m=-sigma_dW/sigma_dQ
12 disp("steam mass flow rate required is:");
13 disp("kg/s",m)
```

Scilab code Exa 1.4 chapter 1 example 4

Scilab code Exa 1.5 chapter 1 example 5

```
1 clc;
2 W=-100; //kJ/kg
3 u2=200; //kJ/kg
4 u1=420; //kJ/kg
5
6 Q=u2-u1-W;
7 disp("heat rejected by the air is:");
8 disp("kJ/kg",-Q);
```

Scilab code Exa 1.6 chapter 1 example 6

```
1 clc;
2 c1=60; //m/s
3 W=-14000; //kW
4 m=17; //kg/s
5 h1=1200; //kJ/kg
6 h2=360; //kJ/kg
```

```
7
8 KE_I=c1^2/2000; //kJ/kg
9 KE_0=(2.5^2)*KE_I;
10 //c2=2.5*c1;
11
12 Q=m*{[h2+(KE_I/1000)]-[h1+(KE_0/1000)]}-W;
13 disp("Heat rejected:");
14 disp("kW",-Q);
15
16 v=0.5; //m^2
17 A=m*v/c1;
18 disp("inlet area is");
19 disp("m^2",A)
```

Scilab code Exa 1.7 chapter 1 example 7

```
1 clc;
2 \text{ c1=6}; //\text{m/s}
3 c2=4.5; //m^2
4 p1=10^5; //bar
5 p2=6.9*10^5; //bar
6 v1=0.85; //\text{m}^3/\text{kg}
7 v2=0.16; //\text{m}^3/\text{kg}
8 u2_u1=88; //kJ/kg
9 m=0.4; // kg/s
10 Q = -59; / kW
11
12 KI = c1^2/2000;
13 KO = c2^2/2000;
14
15 W=m*{(u2_u1)+(p2*v2-p1*v1)+(KO-KI)}-Q;
16 disp("powar input required is:");
17 disp("kW", W/1000);
18
19 A1=m*(v1/c1);
```

```
20 disp("inlet pipe cross section area is:");
21 disp("m^2",A1);
22
23 A2=m*(v2/c2);
24 disp("outlet pipe cross section area is:");
25 disp("m^2",A2);
```

Chapter 2

The Working Fluid

Scilab code Exa 2.1 1

```
1 clc;
3 x = 0.9;
4 \text{ vg} = 0.1104;
5 v = x * vg;
6 disp("specific volume is:");
7 \text{ disp}(\text{"m}^3/\text{kg",v})
9 \text{ hf} = 885;
10 h_fg=1912;
11 h=hf+x*h_fg;
12 disp("specific enthalpy is:");
13 disp("kJ/kg",h);
14
15 uf=883;
16 ug=2598;
17 u=(1-x)*uf+x*ug;
18 disp("specific internal energy is:");
19 disp("kJ/kg",u);
```

Scilab code Exa 2.2 2

```
1 clc;
3 p=7; //bar
4 h=2600; //kJ/kg
5 hf = 697; //kJ/kg
6 h_fg=2067; //kJ/kg
7 x=(h-hf)/h_fg;
8 disp("dryness fraction is:");
9 disp(x);
10
11 vg=0.2728;
12 v = x * vg;
13 disp("specific volume is:");
14 disp("m^3/kg",v);
15
16 \text{ uf} = 696;
17 ug=2573;
18 u = (1-x) * uf + x * ug;
19 disp("specific internal energy is:");
20 \text{ disp}("kJ/kg",u)
```

Scilab code Exa 2.3 3

```
7 p=110;//bar
8 //from tables
9 h=2889;//kJ/kg
10 t=350;//C
11 disp("temperature is:");
12 disp("C",t);
13 u=h-(p*10^5)*(v/1000);
14 disp("enthalpy is:");
15 disp("kJ/kg",u);
16 disp("specific internal energy is:");
17 disp("kJ/kg",u);
```

Scilab code Exa 2.4 4

```
1 clc;
2
3 p=150; //bar
4 h=3309; //kJ/kg
6 //from tables
7 hg = 2611; //kJ/kg
8 //hence the steam is superheated.
9
10 //from table
11 t=500; //C
12 v = 0.02078; //m^3/kg
13 disp("temperature is:");
14 disp("C",t);
15 disp("specific volume is:");
16 disp("m^3/kg",v);
17
18 u=h-(p*10^5)*(v/1000);
19 disp("specific internal energy is:")
20 \text{ disp}("kJ/kg",u)
```

Scilab code Exa 2.5 5

```
1 clc;
3 //from tables;
4 v_a=0.1115; //m^3/kg
5 p_b=20; //bar
6 v_d=0.4743; //m^3/kg
8 hf = 763; //kJ/kg
9 h=2650; //kJ/kg
10 h_fg = 2015; //kJ/kg
11 x=(h-hf)/h_fg;
12 vg=0.1944; //\text{m}^3/\text{kg}
13 v_c = x * vg;
14
15 clf();
16 x=linspace(0.05,0.5,1000);
17 y=(0.09957*20)*((x)^(-1));
18 plot2d(x,y,style=1);
19
20 y = 20;
21 plot(x,y)
22
23 y = 10;
24 plot(x,y);
25
26 y=(0.4743*6)*((x)^(-1));
27 \text{ plot2d}(x,y,style=4);
29 y=(0.1115*20)*((x)^{(-1)});
30 \text{ plot2d}(x,y,style=2);
31
32 y = 6;
```

Scilab code Exa 2.6 6

```
1 clc;
2 //from tables;
4
5 \text{ v_a=0.1115}; //\text{m}^3/\text{kg}
6 \text{ u_a=2681; } //kJ/kg
7 //steami s super heated
8 disp("internal energy of part a is:");
9 \operatorname{disp}("kJ/kg",u_a);
10
11 p_b=20; //bar
12 u_b = 2600; //kJ/kg
13 disp("internal energy of part b is:");
14 disp("kJ/kg",u_b);
15
16 v_d = 0.4743; //m^3/kg
17 u_d=2881; //kJ/kg
18 disp("internal energy of part d is:");
19 disp("kJ/kg",u_d);
20
21 hf = 763; //kJ/kg
22 h=2650; //kJ/kg
23 h_fg=2015; //kJ/kg
24 x = (h-hf)/h_fg;
25 ul=762; //kJ/kg
26 \text{ ug} = 2584; //kJ/kg
27 u = (1-x)*ul+x*ug;
28 disp("internal energy of part c is:");
29 disp("kJ/kg",u);
```

Scilab code Exa 2.7 7

```
1 clc;
3 // for part (i)
4 hf = 89.8; //kJ/kg
5 x=0.95;
6 h_fg=(1420-89.8); //kJ/kg
7 hi=hf+x*h_fg; //kJ/kg
8 disp("enthalpy of part (i)");
9 \text{ disp}("kJ/kg",hi);
10
11 // for part (ii)
12 //ammonia heated by (60-20) K
13 x=40/50;
14 hf = 1462.6; //kJ/kg
15 h_fg=(1597.2-1462.6); //kJ/kg
16 hii=hf+x*h_fg;
17 disp("enthalpy of part (ii)");
18 disp("kJ/kg",hii);
```

Scilab code Exa 2.8 8

```
1 clc;
2 v1=0.2*10^5; //m^3
3 p1=1.013; //bar
4 T1=15+273; //C
5 w=0.2; //kg
6 m=28; //kg/k mole
7 R_=8314.5; //N m/K
8
9 R=R_/m;
```

```
10  m1=p1*v1/(R*T1);
11
12  m2=0.20+.237;
13  //T2=T1 & v2=v1
14  p2=m2*R*T1/v1
15  disp("the new pressure is:");
16  disp("bar",p2)
```

Scilab code Exa 2.9 9

```
1 clc;
2 p1=7*10^5; //bar
3 V1=0.003; //\text{m}^3/\text{kg}
4 m = 0.01;
5 T1=131+273; //K
6 R_=8314.5;
8 R=p1*V1/(m*T1);
10 m_=R_/R;
11 disp("tha molar mass of tha gas is:");
12 disp("kg/k mole",m_);
13
14 p2=1*10^5; //bar
15 V2=0.02; //m^3
16 \text{ m} = 0.01;
17 R = 520;
18 T2=p2*V2/(m*R);
19 disp("final temperature is:");
20 disp("C",T2-273);
```

Scilab code Exa 2.10 10

```
1 clc;
2 cp=0.846; //kJ/kg K
3 cv=0.657; //kJ/kg K
4
5 R=(cp-cv)*1000;
6 disp("the gas constant is:");
7 disp("N m/kg K",R);
8
9 R_=8314.5
10 m=R_/R;
11 disp("molar mass of the gas:");
12 disp("kg/k mole",m);
```

Scilab code Exa 2.11 11

```
1 clc;
2 R_{=8314.5};
3 \text{ m}_{=}26; //\text{kg/k mole}
4 y=1.26;
5
6 R=R_{m};
7 cv=R/[(y-1)*1000];
8 \text{ cp=y*cv};
9
10 T1=315+273; //K
11 p2=1.5; //bar
12 p1=3; //bar
13 T2=T1*p2/p1;
14
15 Q = cv * (T2 - T1);
16 disp("heat rejected in part a:");
17 disp("kJ/kg",-Q);
18
19 T2=20; //K
20 T1=280; //K
```

```
21 m_=1;
22 Q=m_*cp*(T2-T1);
23 disp("heat rejected in part b");
24 disp("kW",-Q);
```

Chapter 3

Reversible and Irreversible processes

Scilab code Exa 3.1 1

```
1 clc
2 //at 2bar
3 h1 = 2707; //kJ/kg
4 hg=h1;
5 \text{ m1} = 0.05; //\text{kg}
6 v=0.0658; //m^3
7 v2=v/m1; //m^3/kg
8 h2=3072; //kJ/kg
9 p=2*10^5;
10 v1=0.8856
11
12 Q=m1*(h2-h1);
13 disp("heat suppleid is:");
14 disp("kJ",Q);
15
16 W = -p * (v2 - v1);
17 disp("work done is:");
18 disp("N m/kg", W);
19
```

```
20  //part (ii)
21  p2=p;
22  R=0.287;
23  T2=p2*v/(m1*R*1000);
24  cp=1.005;
25  T1=130+273;
26  Q=m1*cp*(T2-T1);
27  disp("heat supplie in part (ii)");
28  disp("kJ",Q);
29
30  W=-R*(T2-T1)*m1;
31  disp("work done by the mass of gas presint:");
32  disp("kJ",W);
```

Scilab code Exa 3.2 2

```
1 clc;
2 x = 0.9;
3 \text{ uf} = 696;
4 \text{ ug} = 2573;
5 u1 = (1-x) * uf + x * ug;
6 //similarly
7 u2=2602.8;
9 disp("chang of internal energy is:");
10 disp("kJ/kg",u2-u1);
11
12 hf=697;
13 h_fg = 2067;
14 h1=hf+x*h_fg;
15 h2 = 2803; //kJ/kg
16 disp("change in enthalpy:");
17 disp("kJ/kg",h2-h1);
18
19 Q = 547;
```

```
20 W=(u2-u1)-Q;
21 disp("Work done is:");
22 disp("kJ/kg",W)
```

Scilab code Exa 3.3 3

```
1 clc;
2 R_=8.3145;
3 m_=28;
4 R=R_/m_;
5 T=273+20;
6 p2=4.2;//bar
7 p1=1.01;//bar
8 W=R*T*log(p2/p1);
9 disp("work input:");
10 disp("kJ/kg",W);
11
12 disp("heat rejected:");
13 disp("kJ/kg",W);//Q+W=0
```

Scilab code Exa 3.4 3

```
1 clc;
2 h1=3017; //kJ/kg
3 v1=0.02453; //m^3/kg
4 p1=100; //bar
5 u1=h1-p1*v1*10^5/1000;
6 ug=2602; //kJ/kg
7 u2=ug;
8 W=u2-u1;
9 disp("work done by system is :");
10 disp("kJ/kg",-W)
```

Scilab code Exa 3.5 5

```
1 clc;
2 T1 = 295; //C
3 p1=1.02; //bar
4 p2=6.8; //bar
5 y = 1.4;
6 v1=0.015; //\text{m}^3
7 \text{ cv} = 0.718;
8 R = 0.287
9
10 T2=T1*(p2/p1)^((y-1)/y);
11 disp("final temperature is:");
12 disp("k",T2);
13
14 v2=v1*{(p1/p2)^(1/y)};
15 disp("final volume is:");
16 disp("m<sup>3</sup>",v2);
17
18 w = cv * (T2 - T1);
19 m=p1*v1*10^5/(10^3*R*T1);
20 W = w * m;
21 disp("total work done is:");
22 disp("kJ",W)
```

Scilab code Exa 3.6 6

```
1 clc;
2 p1=1;//bar
3 p2=10;//bar
4 n=1.1;
5 v1=0.16;//m^3
```

```
7 v2=v1*(p1/p2)^(1/n);
9 W=(p2*v2-p1*v1)*10^5/[10^3*(n-1)];
10 disp("work done by the refrigerant is:");
11 disp("kJ",W);
12
13 hg1=174.2;
14 u1=hg1-(p1*10^5*v1/10^3);
15
16 hg2=203.8; //kJ/kg
17 vg2=0.018; //\text{m}^3
18 v=0.02; //m^3
19 h=224; //kJ/kg
20 h2=hg2+(v2-vg2)*(h-hg2)/(v-vg2);
21 u2=h2-(p2*10^5*v2/10^3)
22
23 Q = -W + (u2 - u1);
24 disp("heat transferred is:");
25 \text{ disp}("kJ/kg",Q)
```

Scilab code Exa 3.7 7

```
1 clc;
2 T1=300; //K
3 p2=6.6; //bar
4 p1=1.1; //bar
5 n=1.3;
6 T2=T1*[(p2/p1)^((n-1)/n)];
7
8 R_=8.3145;
9 m_=30;
10 R=R_/m_;
11
12 cp=2.10;
```

```
13 cv = cp - R;
14 y = cp/cv;
15 W=R*(T2-T1)/(n-1);
16 Q=(n-y)/(y-1)
17 disp("heat supplied is:");
18 disp("kJ/kg",Q);
19
20 \text{ m}_{-}=40;
21 R=R_{m};
22 cp=0.520; //kJ/kg
23 cv = cp - R;
24 \text{ y=cp/cv};
25 W=R*(T1-T2)/(n-1);
26 Q = [(n-y)/(y-1)]*W
27 disp("heat rejected is:")
28 disp("kJ/kg",Q)
```

Scilab code Exa 3.8 8

```
1 clc;
2 p1=7;//bar
3 p2=1;//bar
4 y=1.333;
5 T1=923;//K
6 T2=T1/[(p1/p2)^((y-1)/y)]
7
8 cp=1.11;
9 c2=45;
10 c1=9;
11 W=cp*(T2-T1)+[(c2^2-c1^2)/(2*10^3)];
12 disp("powar output is");
13 disp("kW",-W)
```

Scilab code Exa 3.9 9

```
1 clc;
2 V1=1; //m^3
3 VA=1; //m^3
4 VB=1; //m^3
5 V2=VA+VB;
6 p1=20; //BAR
7 p2=p1*(V1/V2);
8 disp("final pressure is:");
9 disp("bar",p2);
```

Scilab code Exa 3.10 10

```
1 clc;
2 h3=2716.4; //kJ/kg
3 hf2=640;
4 h_fg2=2109;
5 x2=(h3-hf2)/(h_fg2);
6
7 flow_rate=9;
8 m_w2=(1-x2)*(flow_rate);
9 mass_water=0.5;
10 m_w1=m_w2+mass_water
11
12 flow_rate_dry=mass_water+flow_rate-m_w1;
13 x1=flow_rate_dry/(mass_water+flow_rate);
14 disp("fraction is:");
15 disp(x1)
```

Scilab code Exa 3.11 11

1

```
2 clc;
3 x = 0.9;
4 uf=511;
5 \text{ ug} = 2531;
6 u=uf*(1-x)+(ug*x);
7 V = 10;
8 \text{ vg} = 0.8461;
9 v=x*vg;
10 m=V/v;
11 h=2944;
12 u2 = 2640;
13 v2=0.3522;
14 m2=V/v2;
15 Q=m2*u2-m*u-h*(m2-m);
16 disp("heat rejected is;");
17 disp("kJ",-Q)
18 //Answers vary more than than \pm -5:
19 //Answers in the textbook is wrong
```

Scilab code Exa 3.12 12

```
1 clc;
2 p=15; //bar
3 V=6; //m^3;
4 R=0.287;
5 T=313.5;
6 y=1.4
7
8 m=p*V/(R*T);
9
10 p2=12; //bar
11 T2=T/[(p/p2)^((y-1)/y)];
12 m2=p2*V*10^5/(R*T2*10^3);
13
14 disp("mass of air left");
```

15 disp("kg",m2)

Chapter 4

The Second Law

Scilab code Exa 4.1 1

```
1 clc;
2 s1=6.5;
3 sf1=1.992;
4 sfg1=4.717;
5 x=(s1-sf1)/sfg1;
6
7 hf1=697;//kJ/kg
8 hfg1=2067;//kJ/kg
9 h1=hf1+x*hfg1;
10
11 h2=2995;//kJ/kg
12 Q=h2-h1;
13
14 disp("heat supplied:");
15 disp("kJ/kg",Q)
```

Scilab code Exa 4.2 2

```
1 clc;
v = 0.025; //m^3
3 \text{ s=0.02994; } //\text{m}^3/\text{kg}
4 \text{ m=v/s};
5
6 h1=2990;//
7 p1=s/10<sup>3</sup>;
8 v1=80*10^5;
9 u1=h1-p1*v1;
10
11 v2=s;
12 vg1=0.03944;
13 x1=v2/vg1;
14
15 uf2=1149;
16 \text{ ug}2=2597;
17 u2=(1-x1)*uf2+x1*ug2;
18
19 Q=m*(u2-u1);
20 disp("kJ",-Q,"rejected heat:")
```

Scilab code Exa 4.3 3

```
1 clc;
2 p=1.05;//bar
3 V=0.02;//m^3
4 R=0.287;//m^3
5 T=15+273;//K
6 m=p*V*10^5/(R*T*10^3);
7
8 p2=4.2;//bar
9 T2=p2*T/p;
10
11 cv=0.714;
12 Q=m*cv*(T2-T);
```

```
13 Q_12=Q;
14
15 cp=1.005;
16 T3=288; //K
17 Q_23=m*cp*(T3-T2);
18
19 Q=Q_12+Q_23;
20 disp("heat rejected is:");
21 disp("kJ",-Q);
22
23 ch_entro=m*cp*log(T2/T3)-m*cv*log(T2/T3);
24 disp("decrease in entropy of air is:");
25 disp("kJ/K",ch_entro)
```

Scilab code Exa 4.4 4

```
1 clc;
2 \text{ s1=5.615; } //\text{kJ/kg K}
3 \text{ t1=311; } //\text{C}
4 t2=300; //C
5 t3=350; //C
6 s2=7.124+(t1-t2)/(t3-t2)*(7.301-7.124);
8 T=t1+273; //K
9 Q=T*(s2-s1);
10 disp("heat supplied is:");
11 disp("kJ/kg",Q)
12
13 u1=2545; //kJ/kg
14 u2 = 2794 + (t1 - t2) / (t3 - t2) * (2875 - 2794);
15
16 W = (u2 - u1) - Q
17 disp("work done by the steam is:");
18 disp("kJ/kg",-W)
```

Scilab code Exa 4.5 5

```
1 clc;
2 R_{-}=8314.5;
3 m_{=28};
4 R=R_{m}
5 p1=1.05; //bar
6 p2=4.2; //bar
7 \text{ s2=R*log(p1)/1000};
8 s1=R*log(p2)/1000;
9 disp("change of entropy is:");
10 disp("kJ/kg K", s2-s1);
11
12 T = 15 + 273;
13 V = 0.03;
14 \text{ m=p1*V*10^5/(R*T)};
15 \text{ S1=m*s1};
16 \text{ S2=m*s2};
17 Q=T*(S1-S2);
18 disp("heat rejected is:");
19 disp("kJ/kg",Q);
20
21 \quad W = -Q;
22 disp("work done is:");
23 disp("kJ",W)
```

Scilab code Exa 4.6 6

```
1 clc;
2 s1=6.091; //kJ/kg K
3 s2=s1;
4 sf=2.138; //kJ/kg K
```

```
5 sfg2=4.448;
6 x2=(s2-sf)/sfg2;
7
8 uf=762;
9 ug=2584;
10 u2=(1-x2)*uf+x2*ug;
11
12 h1=3017;
13 p1=100;//bar
14 v1=0.02453;//m^3
15 u1=h1-p1*v1*10^5/10^3;
16
17 W=u2-u1;
18 disp("Work done is;")
19 disp("kJ",-W)
```

Scilab code Exa 4.7 7

```
1 clc;
2 s1=1.7189;
3 v1=0.0978; //m^3
4 p1=2.01; // bar
5 p2=10; // bar
6 lamda=1.1;
7
8 v2=v1*(p1/p2)^(1/lamda);
9
10 s_1=1.7564; //kJ/kg K
11 s_2=1.7847; //kJ/kg K
12 v_1=0.0228; //m^3
13 v_2=0.0222; //m^3
14 v_3=0.0233; //m^3
15 s2=s_1+[(v_1-v_2)/(v_3-v_2)]*(s_2-s_1)
16 disp("increase in entropy");
17 disp("kJ/kg K",s2-s1)
```

Scilab code Exa 4.8 8

```
1 clc;
2 p1=6.3;//bar
3 p2=1.05;//bar
4 n=1.3;
5 T1=823;//K
6 T2=T1/([p1/p2]^([n-1]/n))
7 R=0.287;
8 sA_s1=R*log(p1/p2);//sA_s1=sA-s1
9 cp=1.005;
10 sA_s2=cp*log(T1/T2);
11
12 disp("increase in entropy is:");
13 disp("kJ/kg",sA_s1-sA_s2)
```

Scilab code Exa 4.9 9

```
1 clc;
2 R_=8314.5;
3 m_=44;
4 R=R_/m_;
5
6 p2=8.3; //bar
7 V2=0.004; //m^3
8 m=0.05;
9 T2=p2*V2*10^5/(m*R);
10
11 p2=8.3; //bar
12 pA=1; //bar
13 sA_s2=(R/1000)*log(p2/pA);
```

```
14
15 cp=0.88;
16 T2=351; //K
17 T1=288; //K
18 sA_s1=cp*log(T2/T1);
19
20 dec_ent=m*(sA_s2-sA_s1);
21 disp("decrease in entropy is:");
22 disp("kJ/K",dec_ent)
```

Scilab code Exa 4.10 10

```
1 clc;
2 \times 1 = 0.96;
3 sf1=1.992;
4 \text{ sfg1=}4.717;
5 s1=sf1+x1*sfg1;
6
7 \text{ hf1=697};
8 \text{ hfg1} = 2067;
9 h1 = hf1 + x1 * hfg1;
10 h2=h1;
11
12 hf2=584;
13 hfg2=2148;
14 	 x2 = (h2 - hf2) / hfg2;
15
16 \text{ sf} 2=1.727;
17 \text{ sfg}2=5.214;
18 	 s2=sf2+x2*sfg2;
19
20 disp("increasi in entropy is:");
21 disp("kJ/kg K", s2-s1)
```

Scilab code Exa 4.11 11

```
1 clc;
2 R=0.287;
3 ch_ent=R*log(2);//V2=2*V1
4 disp("increase in entropy is:");
5 disp("kJ/kg K",ch_ent);
```

Scilab code Exa 4.12 12

```
1 clc;
2 T1=703; //K
3 p1=6.8; //bar
4 p2=1.013; //bar
5 gama=1.4;
6 T2=T1/[(p1/p2)^([gama-1]/gama)];
7
8 //from graph:
9 T2s=423; //K
10 cp=1.005;
11 inc_ent=cp*log(T2/T2s);
12 disp("increasi in entropy is:");
13 disp("kJ/kg K",-inc_ent)
```

Scilab code Exa 4.13 13

```
1 clc;
2 h1=3248; //kJ/kg
3 h2=2965; //kJ/kg
```

```
4 h2s=2753+[(7.126-6.929)/(7.172-6.929)]*(2862-2753);
5
6 eff=(h1-h2)/(h1-h2s);
7 disp("isentropic efficiency is:");
8 disp("%",eff*100);
9
10 s1=7.126;//kJ/kg K
11 s2=7.379;//kJ/kg K
12 T0=288;//K
13 loss=h1-h2+T0*(s2-s1);
14 disp("loss of energy is:");
15 disp("kJ/kg K",loss);
16
17 e=(h1-h2)/loss;
18 disp("effectiveness is:");
19 disp("%",e*100);
```

Scilab code Exa 4.14 14

```
1 clc;
2 T2=90; //K
3 T3=40; //K
4 T1=15; //K
5 y=(T3-T1)/(T2-T3);
6
7 cp=1.005;
8 h3=40;
9 h1=15;
10 h2=90;
11 T0=288; //K
12 T3=313; //K
13 T1=288; //K
14 T2=363; //K
15 s3_s1=cp*log(T3/T1);
16 inc=cp*(h3-h1)-T0*s3_s1;
```

```
17
18 s2_s3=cp*log(T2/T3)
19 loss=0.5*[cp*(h2-h3)-T0*(s2_s3)]
20 e=inc/loss;
21 disp("effectiveness is:");
22 disp("%",e*100);//ans diff due to difference in value of logarithmic values
```

Scilab code Exa 4.15 15

```
1 clc;
2 cp=6.3;
3 h2=70;
4 h1=15;
5 T0=283; //K
6 T1=343; //K
7 T2=288; //K
8 T3=1400+273; //K
9 s2_s1=cp*log(T1/T2);
10 b2_b1=cp*(h2-h1)-T0*(s2_s1);
11
12 loss=cp*(h2-h1)*(1-T0/T3)
13 eff=b2_b1/loss
14 disp("effectiveness is:")
15 disp("%",eff*100)
```

Chapter 5

The Heat Engine Cycle

Scilab code Exa 5.1 1

```
1 clc;
2 T2=10+273; //K
3 T1=2000+273; //K
4 eta=1-T2/T1;
5 disp("highest possible efficiency is:");
6 disp("%",eta*100)
```

Scilab code Exa 5.2 2

```
1 clc;
2 T2=15+273;
3 T1=800+273;
4 eta=1-(T2/T1);
5 p4=210; //bar
6 p2=1; //bar
7 R=0.218;
8 sA_s4=R*log(p4/p2);
9
```

```
10    cp=1.005;
11    sA_s2=cp*log(T1/T2);
12
13    output=(T1-T2)*(sA_s4-sA_s2);
14
15    W41=T1*(sA_s4-sA_s2);
16    cv=0.718;
17    W21=cv*(T1-T2);
18
19    gross=W41+W21;
20    disp(W41)
21    work=output/gross;
22    disp("work ratio is");
23    disp(work)
```

Scilab code Exa 5.3 3

```
1 clc;
2 p1=1.02; //nar
3 p2=6.12; //bar
4 y = 1.4
5 eta=1-[(p1/p2)^{(y-1)/y}]
7 T1=288; //K
8 T2=[(p1/p2)^{-}[-(y-1)/y]]*T1;
9 T3=800+273; //K
10 T4=T3*[(p1/p2)^[(y-1)/y]];
11
12 \text{ cp=1.005};
13 net_output = cp*(T3-T4)-cp*(T2-T1);
14 gross_output=cp*(T3-T4);
15
16 W=net_output/gross_output
17 disp("Work ratio is:");
18 disp(W)
```

Scilab code Exa 5.4 4

```
1 clc;
2 bore=5;//cm
3 stroke=7.5;//cm
4 V=(%pi/4)*5^2*7.5
5 V0=21.3;
6 tV=V+V0;
7
8 rv=tV/V0;
9
10 y=1.4;
11 eta=1-[rv^(1-y)];
12 disp("efficiency is:");
13 disp("%",eta*100)
```

Scilab code Exa 5.5 5

```
1 clc;
2 T1=15+273; //K
3 T3=1100; //K
4 rv=12;
5 y=1.4;
6
7 T2=T1*rv^(y-1);
8 T3=1373;
9 T2=778;
10 T4=T3/[[rv*(T2/T3)]^(y-1)];
11
12 cp=1.005;
13 Q1=cp*(T3-T2);
```

```
14  cv=0.718;
15  Q=cv*(T4-T1);
16  eta=(Q1-Q)/Q1;
17  disp("efficiency is: ");
18  disp("%", eta*100)
```

Scilab code Exa 5.6 6

```
1 clc;
2 v1!v2=18;
3 y = 1.4;
4 T1=293; //K
5 T2=v1!v2^(y-1)*T1;
6
7 p3=69; //bar
8 p1=1.01; //bar
9 p2=v1!v2^y*p1
10 T3=p3*T2/p2
11
12 \text{ cv} = 0.718;
13 cp=1.005;
14 T4 = cv * (T3 - T2) / cp + T3;
15
16 v5!v4=v1!v2*(T3/T4);
17 T5=T4/[(v5!v4)^(y-1)];
18 Q1=2*cv*(T3-T2);
19
20 eta=(Q1-[cv*(T5-T1)])/Q1
21 disp("efficiency is")
22 \quad \mathtt{disp}(\%\%, eta)
```

Scilab code Exa 5.7 7

```
1 clc;
2 eta=0.682;
3 Q=260; //kJ/kg
4 W=-eta*Q;
5 R=287;
6 T1=293;
7 p1=1.01
8 v1_v2=(17/18)*(R*T1)/(p1*10^5);
9 pm=-W*10^3/(v1_v2*10^5);
10 disp("mean effective pressure is:");
11 disp("bar",pm)
```

Chapter 6

Mixtures

Scilab code Exa 6.1 1

```
1 clc;
2 M_0=23.3/100; //kg
3 \text{ M_N} = 76.7/100; //kg
4 M_C = 45/100; //kg
5 R=8.3145;
6 T = 288; //K
7 V = 0.4; //m^3
9 \text{ m_o} = 32;
10 m_n=28;
11 p0=M_0*R*T*10^3/(m_o*V*10^5);
12 pN=M_N*R*T*10^3/(m_n*V*10^5);
13 \text{ m_c} = 28;
14 pC=M_C*R*T*10^3/(m_c*V*10^5);
15 p = p0 + pN + pC;
16
17 disp("bar",pO,"partial pressure of Oxygen is:")
18 disp("bar",pN,"partial pressure of Nitrogen is:")
19 disp("bar",pC, "partial pressure of Carbon monoxide
20 disp("bar",p,"total pressure is:")
```

Scilab code Exa 6.2 2

```
1 clc;
2 R=8.3145;
3 \text{ m_o} = 31.999;
4 m_n=28.013;
5 \text{ m_a=39.948};
6 \text{ m_c} = 44.010;
8 R_0=R/m_o;
9 R_N=R/m_n;
10 R_A=R/m_a;
11 R_C=R/m_c;
12
13 mi0=0.2314;
14 \text{ miN} = 0.7553;
15 \text{ miA} = 0.0128;
16 \text{ miC=0.0005};
17
18 R_{=}(mi0*R_{0})+(miN*R_{N})+(miA*R_{A})+(miC*R_{C});
19
20 \text{ m}_=R/R_
21 disp("specific gas constant of air is:")
22 disp(R_)
23 disp("molar mass of gas is:");
24 disp(m_)
```

Scilab code Exa 6.3 3

```
1 clc;
2 mi0=0.2314; //kg/kmole
```

```
3 \text{ miN} = 0.7553; //kg/kmole
4 miA=0.0128; // kg/kmole
5 miC=0.0005; //kg/kmole
6
7 \text{ m}_0=31.999; //kg/kmole
8 \text{ m_N=} 28.013; //kg/kmole
9 m_A=39.948; // kg/kmole
10 m_C=44.010; // kg/kmole
11
12 ni0=mi0/m_0; //kmole
13 niN=miN/m_N; //kmole
14 niA=miA/m_A; //kmole
15 niC=miC/m_C;//kmole
16
17 n=niO+niN+niA+niC; //kmole
18
19 V_0=ni0*100/n;
20 V_N = niN * 100/n;
21 \ V_A = niA * 100/n;
22 \ V_C = niC * 100/n;
23
24 p = 1;
25 \text{ pi0=V_0*p/100};
26 \text{ piN} = V_N * p/100;
27 \text{ piA} = V_A * p/100;
28 \text{ piC=V_C*p/100};
29
30 disp("analysis of volume of Oxygen, Nitrogen, Argon
      and Carbon dioxide respectively are");
31 disp(V_C, V_A, V_N, V_O);
32
33 disp("partial pressure of Oxygen, Nitrogen, Argon
      and Carbon dioxide respectively are");
34 disp(piC,piA,piN,piO);
```

Scilab code Exa 6.4 4

```
1 clc;
2 V0 = 0.21;
3 VN = 0.79;
4 n=3.5;
5
6 n0=V0*n;
7 \quad nN = VN * n
8 \text{ nC=1};
9
10 m_0=32;
11 m_N = 28;
12 \text{ m}_{C}=44;
13
14 \text{ mO}=\text{m}_0*\text{nO};
15 mN=m_N*nN;
16 mC=m_C*nC;
17
18 m=mO+mN+mC;
19 disp("total mass is:");
20 disp("kg",m);
21
22 //percentage of carbon is
23 \text{ mc} = 12;
24 P = mc * 100/m;
25 disp("percentage of carbon is:");
26 disp("%",P)
27
28
29 \quad n=n0+nN+nC;
30 m_=[n0*m_0/n]+[nN*m_N/n]+[nC*m_C/n]
31
32 R_{-}=8.3145;
33 R=R_/m_;
34 disp("specific gas constant for the mix is:");
35 \operatorname{disp}("kJ/kg K",R);
36
```

```
37  T=288; //K
38  p=1; // bar
39  v=R*T*10^3/(p*10^5);
40  disp("specific volume of the mix at 1 bar and 15 C is");
41  disp("m^3/kg",v)
```

Scilab code Exa 6.5 5

```
1 clc;
2 nH=0.5; //kmole
3 m_0=32;
4 VH!V0=2;
5 x=m_0*nH/VH!V0;
6 disp("mass of oxygen required is:");
7 disp("kg",x)
8 n0=x/m_0;
9 n=nH+n0;
10 R_=8.3145;
11 T=288; //K
12 p=1; //bar
13 V=n*R_*T*10^3/(p*10^5);
14 disp("Volume of container is:");
15 disp("m^3",V);
```

Scilab code Exa 6.6 6

```
1 clc;
2 m_H=2;
3 m_C0=28;
4 xH=0.8;
5 xC0=0.2;
```

```
7 m_=xH*m_H+xCO*m_CO;
8
9 x=(xH-0.5)*9;
10 disp("mass of mixture removed is:");
11 disp("kg",x)
12
13 y=28/7.2*x;
14 disp("mass of CO added");
15 disp("kg",y)
```

Scilab code Exa 6.7 7

```
1 clc;
2 \text{ nC=0.120; } //\text{kmol}
3 \text{ n0=0.115; } //\text{kmol}
4 nN = 0.765; //kmol
 6 \text{ m_C=44; } //\text{kg/kmol}
7 \text{ m}_0=32; // \text{kg}/\text{kmol}
8 \text{ m_N=28; } //\text{kg/kmol}
9
10 miC=m_C*nC; //kg
11 mi0=m_0*n0; //kg
12 miN=m_N*nN; //kg
13
14 \text{ m=miC+miO+miN};
15
16 cpC=1.271; //kJ/kgK
17 cp0=1.110; //kJ/kgK
18 cpN=1.196; //kJ/kgK
19
20 cp=cpC*(miC/m)+cpO*(miO/m)+cpN*(miN/m);
21
22 R_=8.3145; //kJ/kg K
23
```

```
24 R = (miC/m)*(R_/m_C) + (miO/m)*(R_/m_O) + (miN/m)*(R_/m_N)
25
26 \text{ cv} = \text{cp} - R;
27
28 T1 = 1000 + 273;
29 \text{ v1! v2=1/7};
30 n=1.25;
31 T2=T1*(v1!v2)^(n-1);
32
33 W=R*(T2-T1)/(n-1);
34 disp("Work done by th gas mixture is:");
35 disp("kJ/kg", -W, R, T2);
36
37 disp("heat supplied is:");
38 Q = [cv*(T2-T1)] - W;
39 disp("kJ/kg",Q);
```

Scilab code Exa 6.8 8

```
1 clc;
2 R=0.274;
3 T1=1000+273;
4 v1!v2=1/7;
5 n=1.25;
6 T2=T1*(v1!v2)^(n-1);
7 sA_s1=R*log(1/v1!v2);
8
9 cv=0.925;
10 sA_s2=cv*log(T1/T2);
11 disp("change of entropy of mixture is:");
12 disp("kJ/kg K",sA_s1-sA_s2);
```

Scilab code Exa 6.9 9

```
1 clc;
2 \text{ cp_CO} = 29.27; //kJ/kmol K
3 \text{ cp_H=28.89; } //kJ/kmol K
4 cp_CH4=35.80; //kJ/kmol K
 5 cp_CO2=37.22; //kJ/kmol K
6 cp_N=29.14; //kJ/kmol K
8 niCO=0.29;
9 \text{ niH} = 0.12;
10 \text{ niCH4=0.03};
11 niCO2=0.04;
12 \text{ niN} = 0.52;
13
14 cp_=cp_C0*niC0+cp_H*niH+cp_CH4*niCH4+cp_C02*niC02+
       cp_N*niN;
15
16 R_{-}=8.3145;
17 \text{ cv} = \text{cp} - \text{R}_{\cdot};
18
19 m_C0=28;
20 \text{ m}_H = 2;
21 \text{ m}_CH4=16;
22 \text{ m}_{CO2} = 44;
23 m_N = 28;
24
25 m_=niC0*m_C0+niH*m_H+niCH4*m_CH4+niC02*m_C02+niN*m_N
26
27 \text{ cp=cp}/\text{m};
28 \text{ cv=cv}_/\text{m}_;
29
30 disp("the values of cp_, cv_, cp and cv respectively
       are:");
31 \operatorname{disp}("kJ/kg K", cv, "kJ/kg K", cp, "kJ/kg K", cv_, "kJ/kg
       K", cp_{-})
```

Scilab code Exa 6.10 10

```
1 clc;
2 p0=7; //bar
3 \text{ VO} = 1.5; //\text{m}^3
4 R_{-}=8.3145;
5 T0=313; //K
6 n0=p0*V0*10^5/(R_*T0*10^3);
8 pC=1; //bar
9 VC=3; //m^3
10 TC=288; //K
11 nC=pC*VC*10^5/(R_*TC*10^3);
12
13 \text{ cv0} = 21.07;
14 \text{ cvC} = 20.86;
15 U1=n0*cv0*T0+nC*cvC*TC;
16 \quad U2_T=n0*cv0+nC*cvC;
17
18 T=U1/U2_T;
19
20 p=(n0+nC)*R_*T*10^3/(V0+VC)/10^5;
21 disp("final temperature and pressure of mixture is:"
      );
22 disp("bar",p,"K",T)
23
24 //part(II)
25 VA = 4.5; //m^3
26 \text{ SA_S1_0=n0*R_*log(VA/V0)};
27 \text{ SA_S2_0=n0*cv0*log(T0/T)};
28 q1=SA_S1_0-SA_S2_0;
29
30 SA_S1_C=nC*R_*\log(VA/VC);
31 SA_S2_C = nC * cvC * log(TC/T);
```

```
32  q2=SA_S1_C-SA_S2_C;
33
34  disp("change in entropy is:");
35  disp("kJ/k",q1+q2);
```

Scilab code Exa 6.11 11

```
1 clc;
2 V = 0.3; //m^3
3 \text{ vg} = 4.133; //\text{m}^3/\text{kg}
4 m=V/vg;
5 disp("mass of water injected:");
6 disp("kg",m)
7
8 //part B
9 pa=0.7; // bar
10 pg=0.3855; //bar
11 v=0.001026;
12 ms=(V-[pa*v])/[vg-v];
13
14 \text{ mw=pa-ms};
15 \quad V_d = ms * vg
16 pa2=pa*V/V_d;
17 disp("total pressure is:");
18 disp("bar",pa2+pg);
```

Scilab code Exa 6.12 12

```
1 clc;
2 ni!n=0.15;
3 p=1.4;//bar
4 x=ni!n*p;
```

```
5 //saturation temperature corresponding to 0.21 bar
     is 61.15 C
6 t=61.15;//C
7 disp("Temperature required is:");
8 disp("C",t)
```

Scilab code Exa 6.13 13

```
1 clc;
2 \text{ ma=0.3/1000; //kg}
3 \text{ Ra} = 0.287;
4 T=311; //K
5 V = 21.63 / m^3
7 p=ma*Ra*T*10^3/(V*10^5);
9 T2=36+273; //K
10 p2=0.0594; //bar
11 vg = 23.97; //m^3/kg
12 pt=0.6624; // bar
13 pa=pt-p2;
14 \text{ mf} = 20000*0.3/1000;
15
16 Vr=mf*Ra*T2*10^3/(pa*10^5);
17
18 \text{ ms=Vr/vg}
19
20 T3=300; //K
21 P3=0.0306;
v=mf*(Ra)*T3*10^3/(P3*10^5)
23
24 \text{ vg1} = 38.81;
25 \text{ steam=v/vg1};
26 disp("steam removed is:");
27 disp("kg/H", steam)
```

Scilab code Exa 6.14 14

```
1 clc;
2 capacity_ac=778; //\text{m}^3/\text{h}
3 capacity=168.9; //\text{m}^3/\text{h}
5 red=(capacity_ac-capacity)*100/capacity_ac
6 disp("percentage reduction in air pump is:");
7 disp("%",red);
8
9 ms2=4.35; // kg/h
10 ms1=20000; // kg/h
11 ma1=6; // kg/h
12 ma2=ma1;
13 mc = 20000; //apprx
14
15 hs2=2550.3;
16 \text{ hc} = 150.7;
17 hs1=2570.1;
18
19 cp=1.005;
20 \text{ T1=38};
21 \quad T2 = 27;
22 ha1_ha2=cp*(T1-T2);
23
24 Q=ms2*hs2+{ma1*ha1_ha2}+mc*hc-ms1*hs1;
25
26 //mass of cooling water required
27 disp("mass of cooling water required");
28 t=5.5
29 M=-Q/(t*4.182);
30 \text{ disp}("kg/h",M)
```

Chapter 7

Combustion

Scilab code Exa 7.1 1

```
1 clc;
2 m_C = 12;
3 m_02=32;
4 x_C=0.9;
5 O_{req_C02=x_C*([m_02*1]/[m_C*1])};
6 CO2_prod=x_C*([m_C*1]+[m_02*1])/[m_C*1];
7 //HYDROGEN
8 \text{ m}_H2=2;
9 x_H = 0.03;
10
11 0_{req_H20=x_H*[m_02/2/2]};
12 steam_prod=x_H*\{0.5*[(m_H2)+(m_O2)/2]\};
13 //SULPHUR
14 m_S = 32;
15 x_S=0.005;
16 \ O_{req_S02} = x_S*(m_02/32);
17 SO2_prod=2*x_S;
18
20 \%0 = 23.3;
21 A=0_req*100/%0;
```

```
22 disp("A/F ratio is:");
23 disp(A);
24
25 //part (ii)
26 actual_A=A*(1+0.2);
27 \% N = 076.7;
28 \text{ m}_{N}2=28;
29 N_supp=actual_A*%N/100;
31 x_N = 0.01;
32 \text{ N2=N_supp+x_N};
33 \ 02=0_supp-0_req;
34 disp("actual A/F ratio is");
35 disp(actual_A);
36
37 \text{ m}_{C}02=\text{m}_{C}+\text{m}_{0}2;
38 \text{ m}_H20=\text{m}_H2+0.5*\text{m}_02;
39 \text{ m_SO2=m_S+m_O2};
40
41 ni_CO2=CO2_prod/m_CO2;
42 ni_H2O=steam_prod/m_H2O;
43 ni_S02=S02_prod/m_S02;
44 \text{ ni}_02=02/m_02;
45 \text{ ni}_{N2}=N2/m_{N2};
46
47 n_wet=ni_CO2+ni_H2O+ni_SO2+ni_O2+ni_N2;
48 n_dry=ni_CO2+ni_SO2+ni_O2+ni_N2;
49 disp(O_supp)
50 CO2_wet=ni_CO2/n_wet;
51 H20_wet=ni_H20/n_wet;
52 SO2_wet=ni_SO2/n_wet;
53 02_wet=ni_02/n_wet;
54 N2_wet=ni_N2/n_wet;
55
56 disp("wet analysis of CO2, H2O, SO2, O2, N2");
57 disp(N2_wet*100,02_wet*100,S02_wet*100,H20_wet*100,
      CO2_wet*100);
```

Scilab code Exa 7.2 2

```
1 clc;
2 //part I
 3 \% H2 = 0.494;
 4 \%C0=0.18;
 5 \% CH4 = 0.2;
 6 \text{ %C4H4=0.02};
 7 \%02=0.004;
 8 \% N2 = 0.062;
9 \% CO2 = 0.04;
10
11 O_H2 = \%H2/2;
12 \quad O_CO = \%CO/2;
13 O_CH4 = \%CH4 * 2;
14 \quad O_C4H4 = %C4H4 * 6;
15 \quad 0_02 = -\%02 * 1;
16
17 C_CO = %CO;
18 \text{ C_CH4} = \%\text{CH4};
19 C_C4H8=4*\%C4H4;
20 C_{C02} = \%C02;
21
22 \text{ H}_H2 = \%H2;
23 \text{ H}_CH4 = 2 * \%CH4;
24 \text{ H_C4H8=4*\%C4H4};
25
26 \quad O_{Tot} = O_{C4H4} + O_{CH4} + O_{C0} + O_{H2} + O_{O2};
27 C_Tot = C_CO + C_CH4 + C_C4H8 + C_CO2;
28 H_Tot=H_H2+H_CH4+H_C4H8;
29
30 \text{ AF=0_Tot/0.21};
31 disp(AF, "stoichiometric A/F ratio is:")
32
```

```
33 // part II
34
35 \text{ actual\_AF=AF+0.2*AF};
36 Ass_N2=0.79*actual_AF;
37 \text{ Exs}_02 = (0.21*actual_AF) - 0_Tot;
38 \text{ N2\_Tot} = \text{Ass\_N2} + \% \text{N2};
39
40 Tot_wet=H_Tot+C_Tot+Exs_02+N2_Tot;
41 Tot_dry=C_Tot+Exs_02+N2_Tot;
42
43 C_dry = (C_Tot) / Tot_dry * 100;
44 O_dry=(Exs_02)/Tot_dry*100;
45 N_dry=(N2_Tot)/Tot_dry*100;
46
47 C_wet=(C_Tot)/Tot_wet*100;
48 O_wet=(Exs_O2)/Tot_wet*100;
49 N_wet=(N2_Tot)/Tot_wet*100;
50 H_wet=(H_Tot)/Tot_wet*100;
51
52 disp("Analysis by volume of the wet product of CO2,
      H2O,O2,N2 respectively is:");
53 disp(N_wet,O_wet,H_wet,C_wet)
54
55 disp("Analysis by volume of the dry product of CO2,
      O2, N2 respectively is:");
56 disp(N_dry,O_dry,C_dry)
```

Scilab code Exa 7.3 3

```
1 clc;
2 m_C2H6O=46;
3 m_O2=3*32;
4 O2_req=m_O2/m_C2H6O;
5 s_AF=O2_req/O.233;
6 disp(s_AF, "stoichiometric A/F ratio is:")
```

```
7
8 //part II
9 disp("")
10 AF = s_AF / 0.9;
11 disp(AF, "actual A/F ratio is:")
12 mC = 2;
13 mH = 3;
14 \text{ mO=0.333};
15 mN = 12.540;
16 Tas=mC+mO+mH+mN;
17 disp(mN/Tas*100, m0/Tas*100, mH/Tas*100, mC/Tas*100, "
      wet analysis of CO2, H2O, O2, N2");
18
19 Tad=mC+mO+mN;
20 disp(mN/Tas*100, mO/Tas*100, mC/Tas*100, "dry analysis
       of CO2, O2, N2");
21
22 //part III
23 disp("")
24 \ a_AF = s_AF / 1.2;
25 disp(a_AF, "actual A/F ratio is:")
26
27 \text{ mCO} 2 = 1;
28 \text{ mCO} = 1;
29 \text{ mH2} = 3;
30 \text{ mN2} = 9.405;
31 \text{ taw=mCO2+mCO+mH2+mN2};
32
33 disp(mN2/taw*100,mH2/taw*100,mC0/taw*100,mC02/taw
      *100, "wet analysis of CO2, H2O, O2, N2");
34
35 \text{ tad=mCO2+mCO+mN2};
36 disp(mN2/tad*100, mCO/tad*100, mCO2/tad*100, "dry
       analysis of CO2, H2O, O2, N2");
```

Scilab code Exa 7.4 4

```
1 clc;
2 \text{ mC}=1;
3 m0=3;
4 mN = (3*79/21);
5 Tar = mC + mO + mN;
7 p1=1.013*10^5;
8 R=8.3145*10^3;
9 T = 338;
10 V=Tar*R*T/p1;
11
12 Vr=V/[(2*12)+6+16];
13 disp(Vr, "Volume of reactants per kilogram of fuel:")
14
15 //part II
16 \text{ mCO2=2};
17 \text{ mH20=3};
18 mN2 = (3*79/21);
19 Tap=mCO2+mH2O+mN2;
20
21 T = 393;
22 p=10^5;
23
24 V = Tap*R*T/p1;
25 \text{ Vr=V/[(2*12)+6+16]};
26
27 disp(Vr, "Volume of products per kg of fuel is:");
```

Scilab code Exa 7.5 5

```
1 clc;
2 mCO2=2;
```

```
3  mH20=3;
4  mN2=(3*79/21);
5  m_C2H60=46;
6  Tadp=mC02+mN2;
7  Tap=mC02+mN2+mH20;
8
9  nl=0.01704;
10  n=1;
11
12  n1=nl*Tadp/(1-nl)
13  m=[(mH20-n1)*18/m_C2H60]
14  disp(m)
```

Scilab code Exa 7.6 6

```
1 clc;
2 a=0.8/12;
3 b=0.12/2;
4 x=a+b/2;
5 6 s_AF=32*x/0.233;
6 disp(s_AF, "stoichiometric A/F ratio is:");
8
9 Twp=a+b+3.76*x;
10 C=a/Twp*100;
11 H=b/Twp*100;
12 N=.365/Twp*100;
13
14 disp(N,H,C,"wet analysis of C,H, and N respectively is:")
```

Scilab code Exa 7.7 7

```
1 clc;
2 a=1;
3 c={6.31-2-(2*1.95)}/2
4 d=0.03+(0.79*30)
5 tds=a+c+d;
6
7 C=a/tds*100
8 O=c/tds*100
9 N=d/tds*100
10
11 disp(N,O,C,"analysis by volume is:");
```

Scilab code Exa 7.8 8

```
1 clc;
2 B=0.9/12/0.15;
3 b=0.1/2;
4 A = 15.14;
5 a=0.02
6 \text{ AF} = \text{A};
7 \text{ disp(AF,"A/F ratio is:");}
9 \% C = .15;
10 \%0 = .20;
11 %N = .65;
12 twp=B*%C+B*%O+B*%N+b;
13
14 C=B*%C/twp*100;
15 0=B*\%0/twp*100;
16 N=B*%N/twp*100;
17 H=b/twp*100;
18
19 disp(H,N,O,C,"wet volumetric analysis is as follows:
      ");
```

Scilab code Exa 7.9 9

```
1 clc;
2 x=0.8805;
3 B=3.41*(1-x);
4 A=27.927*B;
5 AF=A;
6 disp(AF, "A/F ratio is:");
```

Scilab code Exa 7.10 10

```
1 clc;
2 b=0.228;
3 a=1-b;
4 c = [1+(2*0.455)-b-2*a]/2
6 n2=a+b+c+1.709;
7
8 p1=8.28;
9 T2=555;
10
11 n1=1+0.455+1.709;
12 T1=2968;
13 p2=p1*(n2/n1)*(T1/T2);
14 p=1;
15
16 K=a/b*[n2*p/(c*p2)]^0.5;
17 \operatorname{disp}(\log(K), "\log(K) \text{ is:"});
18 disp("2968", "from tables it is proved that
      temperatur is:")
```

Scilab code Exa 7.12 12

```
1 clc;
2 mH20=3*18;
3 q=2441.8;
4 h0=-3301397+(mH20*q)
5 disp(h0," h0 for H2O in the vapour phase:")
```

Scilab code Exa 7.13 13

```
1 clc;
2 h0=3169540
3 nR=1+7.5;
4 nP=6+3;
5 R=8.3145;
6 T=298;
7 U0=-(h0)-{(nP-nR)*R*T};
8 c=(6*12)+(6*1);
9 u0=U0/c
10 disp(u0,"specific internal energy of reaction for the combustion of benzene vapour is:")
```

Scilab code Exa 7.14 14

```
1 clc;
2 H0=282990;
3 HRo=(1*1018)+(0.5*1036);
4 HRr=(1*86115)+(0.5*90144);
5 HPo=1*1368;
```

```
6 HPr=1*140440;

7 

8 HT=H0+(HRr-HRo)-(HPr-HPo);

9 disp(HT," h at 2800 K is:")
```

Scilab code Exa 7.15 15

```
1 clc;
2 a=0.909;
3 b=0.091;
4 nR = 1 + 0.5;
5 nP=1;
6 H0 = -282990;
7 R=8.3145;
8 T0 = 298;
9
10 U0=H0-(nP-nR)*R*T0;
11
12 UR0 = -7844;
13 UR1=9487;
14 UP0=-6716;
15 UP2 = (a*281751) - (UR0 - UR1) + UP0
16
17 UP2_=(a*138720)+(b*74391)+(1.709*73555);
19 disp("which compares with the actual, hence actual
      temperature of the products is slightly greater
      than 3200 ", UP2_, "and UP2 at T=3200", UP2, "actual
      UP2 is")
```

Scilab code Exa 7.16 16

```
1 clc;
```

```
2 a=0.8;
3 T2=3000;
4 n2!p2=212.08/T2;
5 K=a/(1-a)*[n2!p2/(0.455-0.5*a)]^0.5;
6 disp("by sucha a method the value of T2 is found to be 2949 to the nerest degree")
```

Scilab code Exa 7.17 17

```
1 clc;
2 hR=-281102;
3 hP=2*-393520+3*-241830;
4 h=-hR+hP
5 disp(h,"molar enthalpY is")
```

Scilab code Exa 7.18 18

```
1 clc;
2 \text{ mw1} = 2*0.965*18;
3 \text{ mw2} = 3*0.005*18;
4 mw = mw1 + mw2;
5
6 R = 8314.5
7 T = 288;
8 p=1.013*10^5;
9 v=R*T/p
10
11 mc = mw/v;
12
13 hfg=2441.8;
14 Qgt=38700;
15 Qn=Qgt-mc*hfg;
16
```

```
17  hs = 3421;
18  hf = 419.1;
19  Q = hs - hf;
20  s_o = 31.6;
21  f_c = 2.85;
22  nB = Q*s_o/(f_c*Qn);
23
24  disp(nB*100, "boiler efficiency is:");
25
26  g_o = 25000;
27  n = g_o/(f_c*Qn)
28  disp(n*100, "overall thermal efficiency is:")
```

Scilab code Exa 7.19 19

```
1 clc;
2 n=5;
3 t0 = 25.740
4 \text{ tn} = 27.880
5 v = -[(t0-25.730)/5];
6 v1=(tn-27.870)/5;
7 t=25.735;
8 t1=27.875;
9 Et=110.9880;
10
11 corc = -5*v1+[(v1-v)/(t1-t)]*[Et+26.81-5*t];
12 temp_rise=tn-t0;
13 c_temp_rise=temp_rise+corc;
14
15 q=c_temp_rise*2500*4.187*10^-3;
16 Q=q/(.825*10^-3);
17 disp("kJ/kg",Q,"calorific value of fuel is:");
```

Scilab code Exa 7.20 20

```
1 clc;
2 mc=0.144*9;
3 Qgt=46900;
4 ufg=2304.4;
5
6 Qn=Qgt-mc*ufg;
7 disp("kJ/kg",Qn,"NCV is:")
```

Scilab code Exa 7.21 21

```
1 clc;
2 m_EtOH=46;
3 \text{ aof} = 1/\text{m}_\text{EtOH};
4 \text{ m_a=} 28.96;
5 \text{ AF} = 8.957;
6 aoa=AF/m_a;
8 Total=aof+aoa;
10 R=8314.5;
11 T = 288;
12 p=1.013*10^5;
13 V=Total*R*T/p;
14
15 NCVf = 27.8;
16 NCVm = NCVf/V;
17
18 disp("MJ/m^3", NCVm, "calorific value of the
       combustion mixture is:");
```

Scilab code Exa 7.22 22

```
1 clc;
2 m_EtOH=46;
3 \text{ aof} = 1/\text{m}_{\text{E}} \text{tOH};
4 m_a=28.96;
5 \text{ AF=8.957};
6 aoa=AF/m_a;
8 Total=aof+aoa;
9 p0=aof/Total;
10
11 //from table
12 \text{ t1=20};
13 t2=30;
14 p1=0.0584;
15 p2=0.1049;
17 t=t1+[(p0-p1)/(p2-p1)]*(t2-t1);
18 disp("C",t,"minimum temperature of the mix is:");
```

Steam Cycles

Scilab code Exa 8.1 1

```
1 clc;
2 T1 = 526.2;
3 T2 = 299.7;
4 nC = (T1 - T2) / T1;
5 disp(nC, "carnot cycle efficiency is:")
6 \quad Q = 1698;
7 W=nC*Q;
9 h1 = 2800;
10 \text{ s1=6.049};
11 	 s2=s1;
12 sf2=0.391;
13 sfg2=8.13;
14 	 x2 = (s2 - sf2) / sfg2;
15
16 hf2=112;
17 hfg2=2438;
18 h2=hf2+(x2*hfg2);
19
20 \text{ W12=h1-h2};
21
```

```
22 \text{ Wr} = \text{W} / \text{W} 12;
23 disp(Wr, "work ratio is:")
24 ssc=1/W;
25 disp("kg/k W h", ssc, "ssc is:");
26
27 //part III
28 disp("")
29 h3=112;
30 \text{ vf} = 0.001
31 p4=42;
32 p3=0.035;
33
34 \text{ PW=vf*(p4-p3)*(10^5/10^3)};
35 nR = [\{(h1-h2)-(PW)\}/\{(h1-h3)-(PW)\}]
36 disp(nR, "rankine cycle efficiency is:");
37
38 \text{ Wr} = (W12 - PW) / (W12)
39 disp(Wr, "Work ratio is");
40
41 \, \text{ssc} = 1/(W12 - PW)
42 disp("kg/k W h", ssc, "Work ratio is:");
43
44 / partIII
45 disp("");
46 \quad \text{W12} = 0.8 * \text{W12};
47 Ceff = [(h1-h2)-PW]/[(h1-h3)-PW];
48 disp(Ceff, "rankine cycle of isentropic efficiency is
       :")
49
50 \text{ Wr} = [W12\_-PW]/W12\_
51 disp(Wr, "Work ratio is:");
52
53 \, \text{ssc} = 1/[(h1-h2)-PW]
54 disp("kg/kW s",ssc,"ssc is:")
```

Scilab code Exa 8.2 2

```
1 clc;
2 h1 = 3442.6;
3 \text{ s1=7.066};
4 s2=s1;
5 \text{ sf2=0.391};
6 \text{ sfg2=8.13};
7 x2 = (s2 - sf2) / sfg2
9 hf2=112;
10 hfg2=2438;
11 h2=hf2+x2*hfg2;
12
13 h3=112;
14 W12_=h1-h2;
15
16 Q=h1-h3;
17
18 Ceff = (h1-h2)/(h1-h3);
19 disp(Ceff, "cycle efficiency is:");
20
21 \, \text{ssc}=1/(h1-h2);
22 disp("kg/kW h", ssc, "specific steam consumption is:")
23
24 disp("cycle efficiency has increased due to
      superheating and the improvement in specific
      steam consumption is even more marked:")
```

Scilab code Exa 8.3 3

```
1 clc;
2 h1=3442.6;
3 h2=2713;
```

```
4 h6=3487;
5 h7=2535;
6 h3=112;
7
8 TW=(h1-h2)+(h6-h7);
9
10 Q=(h1-h3)+(h6-h2);
11
12 Ceff=TW/Q;
13 disp(Ceff, "cycle efficiency is:");
14
15 ssc=1/TW;
16 disp("kg/kW h",ssc," specific steam consuption is:")
```

Scilab code Exa 8.4 4

```
1 clc;
2 t1 = 253.2;
3 t2=26.7;
4 	 t6 = (t1+t2)/2;
6 h7 = 584;
7 h3=112;
8 \text{ s1=6.049};
9 s6=s1;
10 \text{ s2=s1};
11
12 \times 6 = (s1-1.727)/5.214;
13 x2=(s1-0.391)/8.130;
14
15 hf6=584;
16 hfg6=2148;
17 h6=hf6+x6*hfg6;
18
19 hf2=112;
```

```
20 hfg2=2438;
21 h2=hf2+x2*hfg2;
22
23 y=(h7-h3)/(h6-h3);
24
25 h1=2800;
26 Q=(h1-h7);
27
28 Tot=(h1-h6)+[(1-y)*(h6-h2)];
29
30 Ceff=Tot/Q;
31 disp("%",Ceff*100,"cycle efficiency is:");
32
33 ssc=1/Tot
34 disp("kg/kJ",ssc,"ssc is:")
```

Gas Turbine Cycles

Scilab code Exa 9.1 1

```
1 clc;
 2 T1 = 288;
 3 p2!p1=10;
 4 y = 1.4;
5 T2s=T1*[(p2!p1)^{(y-1)/y}];
 7 \text{ nc} = 0.82;
8 T2 = (T2s - T1)/nc + T1;
 9
10 \quad T3 = 973;
11 y2=1.333;
12 T4s=T3/[(p2!p1)^{(y2-1)/y2}]
13
14 \text{ nt} = 0.85;
15 \quad T4=T3-(T3-T4s)*nt
16
17 \text{ cp}=1.005;
18 cp2=1.11;
19 Wi = cp * (T2 - T1);
20 Wo = cp2 * (T3 - T4);
21
```

```
22 N=(Wo-Wi);
23 P=(N*15)
24 disp("W",P," powar output is");
```

Scilab code Exa 9.2 2

```
1 clc;
3 T1 = 288;
4 p2!p1=10;
5 y=1.4;
6 T2s=T1*[(p2!p1)^{(y-1)/y}];
8 \text{ nc} = 0.82;
9 T2=(T2s-T1)/nc+T1;
10
11 \quad T3 = 973;
12 \quad y2=1.333;
13 T4s=T3/[(p2!p1)^{(y2-1)/y2}]
14
15 \text{ nt} = 0.85;
16 \quad T4=T3-(T3-T4s)*nt
17
18 \text{ cp=1.005};
19 cp2=1.11;
20 Wi = cp * (T2 - T1);
21 Wo = cp2 * (T3 - T4);
22
23 N = (Wo - Wi);
24
25 \ Q = cp2*(T3-T2);
26 \text{ Ceff=N/Q}
27 disp("$", Ceff*100, "cycle efficiency is:");
28
29 Wratio=N/Wo;
```

Scilab code Exa 9.3 3

```
1 clc;
2 p2!p1=8;
3 T1 = 290;
4 y = 1.4;
5 T2s=T1*({p2!p1}^{(y-1)/y});
6 \text{ nc} = 0.8;
7 T2 = [(T2s - T1)/nc] + T1;
9 \text{ cps}=1.005;
10 T3=923;
11 Wi=cps*(T2-T1);
12 \text{ Wo=Wi;}
13 \text{ cps}2=1.15;
14 T4 = T3 - [Wo/cps2]
15
16 \text{ nt} = 0.85;
17 T4s=T3-[(T3-T4)/nt];
18
19 p3=8*1.01;
20 y2=1.333;
21 p4=p3/[(T3/T4s)^{y2/(y2-1)}];
22 disp("bar",p4," pressure at entry of the LP.");
23 disp("K", T4," temperature at the entry of LP.");
24
25 p4!p5=p2!p1*(p4/p3);
26 T5s=T4/[(p4!p5)^{(y2-1)/y2}];
27
28 \text{ nT} = 0.83;
29 T5=T4-[nT*(T4-T5s)]
30 \text{ WoLP=cps2*(T4-T5)};
31
```

```
32 N=WoLP*1;
33 Wr=WoLP/(WoLP+Wo);
34 disp("kW", Wr, "Work ratio is :");
35
36 Q=cps2*(T3-T2);
37 disp("kJ/kg",Q,"Heat supplied is:");
38
39 Ceff=N/Q;
40 disp("%", Ceff*100, "cycle efficiency is:");
```

Scilab code Exa 9.4 4

```
1 clc;
2 y = 1.4;
3 p2!p1=3;
4 T1 = 288;
5 T2s=T1*[(p2!p1)^({y-1}/y)];
7 \text{ nc} = 0.8;
8 T2=T1+[T2s-T1]/nc
9
10 \text{ cps} = 1.005;
11 Wi=cps*(T2-T1);
12 \text{ Wo} = 2*(\text{Wi})/0.98;
13
14 T6=923;
15 \text{ cps}2=1.15;
16 \quad T7 = T6 - Wo/cps2
17 \text{ nT} = 0.85;
18 T7s=T6-[(T6-T7)/nT]
19 y2=1.333;
20 p8!p9=[p2!p1^2]/[(T6/T7s)^{y2}/(y2-1)];
21
22 \text{ T8=T6};
23 T9s=T8/[(p8!p9)^({y2-1}/y2)];
```

```
24
25 T9 = T8 - nT * (T8 - T9s)
26 \text{ N=cps2*(T8-T9)*0.98};
27
28 \text{ Tr} = 0.75;
29 \quad T4 = 420.5;
30 \quad T5 = T4 + Tr * (T9 - T4)
31
32 \ Q=cps2*([T6-T5]+[T8-T7]);
33 Ceff=N/Q;
34 disp(Ceff, "cycle efficiency is:");
35
36 //part II
37 GWo = Wo + N / 0.98;
38 \text{ Wr} = N/GWo;
39 disp(Wr, "work ratio is:")
40
41 / part III
42 m = 5000/N;
43 disp("kg/s",m,"rate of flow of air is:")
```

Scilab code Exa 9.5 5

```
1 clc;
2 T1=288;
3 T2s=T1*[3^0.286];
4 T2=420.5
5 T4=T2;
6 p6=8.14;
7 p6!p7=4.19;
8 p7=p6/(p6!p7);
9 p8=(p7-0.2)
10 p1=1.01
11 p10=p1
12 p9=0.05+p10
```

```
13 y2=1.333;
14 T8=923;
15 T9s=T8/[(p8/p9)^{({y2-1}/y2)};
16 \quad T9=T8-[(T8-T9s)*0.85];
17 \text{ cps}2=1.15;
18 N = cps2*(T8-T9);
19 T5=728.8;
20 \text{ T6=T8};
21 T7=686.5;
22 \quad Q = cps2*(T6-T5+T8-T7)
23 disp("kJ/kg",Q,"Heat supplied is")
24
25 \text{ Ceff} = 105.2/Q;
26 disp("%", Ceff*100," cycle efficiency is")
27 GW = (105.2/0.98) + 277;
28
29 \text{ Wr} = 105.2/\text{GW}
30 disp(Wr, "work ratio is:")
```

Nozzle and Jet Propulsion

Scilab code Exa 10.1 1

```
1 clc;
2 y = 1.4;
3 p1=8.6;
4 pc=p1*[(2/(y+1))^{y/(y-1)}];
6 T1=190+273;
7 Tc=T1*[2/(y+1)];
8 R = 287;
9 \text{ vc}=R*Tc/(10^5*pc);
10 Cc = (y*R*Tc)^0.5;
11
12 \quad m=4.5;
13 A=m*vc/Cc;
14 disp("mm^3", A*10^6, "Area of troat is:");
15
16 p2=1.03;
17 T1 = 463;
18 T2=T1/([p1/[p2]]^{([y-1]/y)};
19
20 v2=R*T2/(10^5*p2);
21 \text{ cp}=1.005
```

```
22 C2=[2*cp*10^3*(T1-T2)]^0.5;
23 A2=m*v2/C2
24 disp("mm^3",A2*10^6," Exit area is:");
```

Scilab code Exa 10.2 2

```
1 clc;
2 R_=8314.5;
3 R=R_{-}/4;
4 cp=10^3*5.19;
5 y=1/[1-(R/cp)];
6 p1=6.9;
7 pc = ([2/(y+1)]^{y/(y-1)})*p1;
9 T1 = 93 + 273;
10 p2=3.6;
11 T2=T1/[(p1/p2)^([y-1]/y)];
12
13 C2 = [2*cp*(T1-T2)]^0.5;
14 \text{ v2=R*T2/(10^5*p2)};
15
16 \quad A2=1;
17 m = A2 * C2 / v2;
18 disp("kg/s",m," mass flow per square meter of exit
      area:");
19
20 / partII
21 m_{=30};
22 R=R_{m};
23 \text{ cp=1880};
24 y=1/[1-(R/cp)]
25
26 p2=3.93;
27 T2 = 337;
28 pc=p1*[2/(y+1)]^{(y/(y-1))};
```

```
29 Tc=T1*[2/(y+1)];
30 Cc=[y*R*Tc]^0.5;
31 v2=R*T2/(10^5*p2);
32
33 m=A2*Cc/v2
34 disp("kg/s",m," mass flow per square meter of exit area is:");
```

Scilab code Exa 10.3 3

```
1 clc;
2 p1=3.5;
3 y=1.333;
4 pc=p1*[2/(y+1)]^{(y/(y-1))};
6 T1=425+273;
7 Tc=T1*[2/(y+1)];
8 T2=Tc;
9 cp=1.11*10<sup>3</sup>;
10 Cc = [2*cp*(T1-T2)]^0.5;
11 C2=Cc;
12 R = cp * (y-1)/y;
13 vc=R*Tc/10^5/pc;
14
15 \text{ m} = 18/.99;
16 \text{ Ac=m*vc/Cc}
17 disp("m^2",Ac,"throat area is:");
18 T1=698;
19 p1=3.5;
20 p2=0.97;
21 T2s=T1/[(p1/p2)^{(y-1)/y}];
22 \text{ Neff=0.94};
23 T2=T1-Neff*(T1-T2s);
24 \text{ v2=R*T2/10^5/p2};
25 C2=(2*cp*(T1-T2))^0.5;
```

```
26 m2=18;
27 A2=m2*v2/C2;
28 disp("m^2",A2,"exit area is :");
```

Scilab code Exa 10.4 4

```
1 clc;
2 y=1.135;
3 p1=10;
4 pc=p1*[2/(y+1)]^[(y/(y-1))];
5 h1=2778;
6 hc=2675;
7 xc=0.962;
8 vg=0.328;
9 vc=xc*vg;
10 Cc=(2*[h1-hc]*10^3)^0.5;
11 A_m=vc/Cc*10^6;
12 disp(A_m);
```

Scilab code Exa 10.5 5

```
1 clc;
2 h1=2846;
3 h2=2682;
4 x2=0.98;
5 vg=0.6057;
6 v2=x2*vg;
7 C2=[2*(h1-h2)*10^3]^0.5;
8 m=0.1;
9 A2=m*v2*10^6/C2;
10 disp("mm^2",A2," Exit area is:");
11
12 //part II
```

Scilab code Exa 10.6 6

```
1 clc;
2 KE=1/2*(800*1000/3600)^2/1000;
3
4 T0 = -50 + 273;
5 \text{ cp}=1.005;
6 TO_=TO + [24.7/cp];
7
8 Ieff=0.9;
9 T0_s = Ieff*(T0_-T0) + T0;
10
11 y=1.4;
12 pa=0.24;
13 p0_=[(T0_s/T0)^[y/(y-1)]]*pa;
14 p0_2!p0_=10;
15 T0_2s=T0_*[p0_2!p0_^([y-1]/y)];
16
17 TO_2 = TO_+ (TO_2 s - TO_) / Ieff;
18
19 p0_2=10*p0_;
20 p0_3=p0_2-(0.14);
21
22 \quad T0_3 = 820 + 273;
```

```
23 \text{ meff} = 0.98;
24 \text{ cp2=1.15};
25 T0_4=T0_3-[cp*(T0_2-T0_)/(cp2*meff)];
26 \quad T0_4s=T0_3-[cp*(T0_2-T0_)/(cp2*meff)]/0.92;
27 \text{ y} 2 = 1.333;
28 p0_4=3.24/[(T0_3/T0_4s)^{(y2/(y2-1))}]
29
30 pc=p0_4*([2/(y2+1)]^{y2/(y2-1)});
31 T0_5 = [2/(y2+1)] * T0_4;
32 \quad T0_5s=T0_4-\{(T0_4-T0_5)/0.92\};
33
34 p5=p0_4/[(T0_4/T0_5s)^(y2/{y2-1})];
35
36 R = cp2*(y2-1)/y2;
37 \text{ v5}=R*T0_5*1000/10^5/p5;
38
39 \quad T5 = 741.3 / K
40 Cj = (y2*R*1000*T5)^0.5;
41
42 \quad A = 0.08;
43 m=A*Cj/v5;
44 Cg = 222.2;
45 \text{ mt} = \text{m} * (\text{Cj} - \text{Cg})
46 pt=(p5-pa)*A*10^5;
47 Tt=pt+mt;
48
49 Q=m*cp2*(T0_3-T0_2)
50
51 C = 43300;
52
53 \text{ mf} = Q/\text{meff/C};
54
55 SFC=mf *10<sup>3</sup>/6453
56 disp("kg/kNs", SFC, "specific fuel consumption is")
```

Scilab code Exa 10.7 7

```
1 clc;
 v = 650 * 10^3 / 3600;
3 KE=(1/2*v^2);
4 T0 = -18 + 273;
5 \text{ cp}=1.005;
6 Ieff=0.9;
7 T01=KE/10^3/cp+T0;
8 \ T01s=T0+Ieff*(T01-T0)
9
10 p02!p01=9;
11 y = 1.4;
12 T02s=T01*(p02!p01)^{(y-1)/y};
13
14 Ieff2=0.89;
15 \quad T02 = T01 + (T02s - T01) / Ieff2
16
17 W = cp * (T02 - T01);
18 p01!p0=1.215;
19 p03!p4=p02!p01*p01!p0;
20 \quad T03=1123;
21 \quad y2=1.333;
22 T4=T03/[(p03!p4)^{(y2-1)/y2}];
23 \quad C4 = 180.5;
24 \text{ cps}=1.15*10^3;
25 \quad T04 = T4 + C4^2/(2*cps);
26 Ieff3=0.93;
27 \text{ Wo=cps*}(T03-T04)*Ieff3/1000
28 Ieff4=0.98;
29 NW = (Wo - W) * Ieff4;
30 \quad Q = cps * (T03 - T02) / 1000
31 \text{ Teff=NW/Q}
32 \text{ disp}("\%", \text{Teff}*100, "Thermal efficiency");
```

Rotodynamic Machinery

Scilab code Exa 11.1 1

```
1 clc;
2 Cai = 900;
3 \text{ Cb} = 300;
4 alpha=20*%pi/180;
5 Cri=(Cai^2+Cb^2-2*Cb*Cai*cos(alpha))^0.5;
6 b=asin(Cai*sin(alpha)/Cri);
7 Beta=180*b/%pi
8 disp("the blade inlet angle is:");
9 disp("degree", Beta)
10
11 //part II
12 k = 0.7;
13 Cre=k*Cri
14 AD=Cri*cos(b);
15 AE=Cre*cos(b);
16
17 Cw = AD + AE;
18 disp("driving force on wheel is:");
19 m = 1;
20 Df = m * Cw
21 disp("N per kg/s", Df);
```

```
22
23
24 //part III
25 Cfi=Cri*sin(b);
26 Cfe=Cre*sin(b);
27 Cf = Cfi - Cfe;
28 At=m*Cf;
29 disp("axial thrust is:");
30 \text{ disp}("N \text{ per kg/s",At})
31
32 //part IV
33 Dp = Cb * Cw;
34 disp("diagram power per unit mass flow rate:");
35 disp("kW", Dp/1000);
36
37 // part V
38 De=Cb*Cw/(Cai^2);
39 disp("Diagram efficiency is");
40 \text{ disp}("\%", \text{De}*100);
```

Scilab code Exa 11.2 2

```
1 clc;
2 k=0.9;
3 Cri1=486; //m/s
4 Cri2=187.5; //m/s
5 Caei=327; //m/s
6 Cre1=k*Cri1;
7 Cre2=k*Cri2;
8 Cai2=k*Caei;
9 //from velocity diagram;
10 disp("inlet blade angle firls row of moving blades")
;
11 Bi1=20;
12 disp("degree", Bi1)
```

```
13
14 disp("inlet blade angle fixed blades");
15 \text{ alpha=20};
16 disp("degree", alpha)
17
18 disp("inlet blade angle second row of moving blades"
      );
19 Bi2=34.5;
20 disp("degree", Bi2);
21
22 //part II
23 m = 1;
24 \text{ Cw1} = 874;
25 \text{ Cw2} = 292.5;
26 disp("N", m*Cw1, "driving force on first row:");
27 disp("N", m * Cw2, "driving force on second row:");
28
29 Cfi1=167;
30 \text{ Cfe1}=135;
31 Cfi2=106;
32 \text{ Cfe2=97};
33 \text{ At1=m*(Cfi1-Cfe1)};
34 \text{ At2=m*(Cfi2-Cfe2)};
35 \operatorname{disp}("N \operatorname{per kg/s"}, (At1+At2), "Total axial thrust:");
36
37 //part III
38 T_df = Cw1 + Cw2
39 disp("N per kg/s", T_df, "total driving force");
40 \text{ bv} = 120
41 P=T_df*bv/10^3;
42 Cai1=600;
43 E=m*Cai1^2/(2*10^3);
44 De=P/E;
45 disp("%", De*100, "diagramefficiency is");
46
47 //partIV
48 alpha_i=16*%pi/180;
49 M = \cos(alpha_i)^2;
```

Scilab code Exa 11.3 3

```
1 clc;
2 Cai=600;
3 alpha_i=16*%pi/180;
4 1=25/1000;
5 m = 5;
6 \text{ vi=0.375};
7 n=m*vi/(Cai*sin(alpha_i)*l);
8 disp("m",n,"length of nozzle arc is:");
9
10 //part II
11 p=0.025;
12 Beta_1=18*%pi/180;
13 Cre=437;
14 t=0.0005;
16 bhm=11;
17
18 Beta_2=21*%pi/180;
19 Crf = 294;
21 \quad bhf = lf
22
23 Beta_3=35*\%pi/180;
24 Crf2=169;
25 12=m*vi*p/n/(p*sin(Beta_3)-t)/Crf2;
26
27 disp("Blade height at exit of first row, fixed and
     second row is respectively");
28 disp("mm", 12*1000, "mm", bhf*1000, "mm", bhm*1000);
```

Scilab code Exa 11.4 4

```
1 clc;
2 Cai=90;
3 alpha=20*%pi/180;
4 Cf=Cai*sin(alpha)
6 Cb = 4 * Cf / 3;
8 v = 0.6686; //m^3/kg
9 m = 9000/3600;
10 A = m * v / Cf
11 h=0.04;
12 r = A/(2*\%pi*h)
13 N=Cb/(A/h)
14 disp("rev/s",N,"Wheel speed is:")
15
16 //partII
17 Cw=2*Cai*cos(alpha)-Cb;
18 DP = m * Cb * Cw;
19 disp("kW", DP/1000, "diagram powar is:");
20
21 //part III
22 R = Cb * Cw
23 Cri=[(Cai^2)+(Cb^2)-(2*Cai*Cb*cos(alpha))]^0.5
24 Ei=Cai^2-(Cri^2/2)
25 DE=R/Ei
26 disp("%",DE*100,"diagram efficiency is:");
27
28 //part IV
29 Ed=(Cai^2-Cri^2)/2;
30 \text{ Td} = 2 * \text{Ed};
31 disp("kJ/kg",Td/1000,"total enthalpy drop per stage:
```

Scilab code Exa 11.5 5

```
1 clc;
2 Cw=115; //m/s
3 Cb=200; //m/s
4 wf=0.86;
5 P=(Cw*Cb*wf)/1000;
6 CP=12*P;
7 T=20+273;
8 y=1.4;
9 ET=T*6^[(y-1)/y];
10 cp=1.005;
11 sp=cp*(ET-T);
12 Ce=sp/CP;
13 disp("%", Ce*100," compressor isintropic efficiency is :");
```

Scilab code Exa 11.10 10

```
1 clc;
2 T=20+273;
3 y=1.4;
4 Ti=T*4^([y-1]/y)
5 ir=Ti-T;
6 actual_r=ir/0.8;
7 cp=1.005;
8 P=cp*actual_r;
9 Cai=150;
10 Cbi=15000*%pi*250/(60*10^3);
11 Cwi=Cai*sin(25*%pi/180);
12 Cbe=15000*%pi*590/(60*10^3);
13 Cwe=Cbe;
```

```
14 P=178.9*10^3;
15 C_we=(P+Cbi*Cwi)/(Cbe);
16 Sf=C_we/Cwe;
17 disp(Sf, "Slip factor is:");
```

Positive Displacement Machines

Scilab code Exa 12.4 4

```
1 clc;
2 Va_Vd=14/(300*2);
3 p2=7;
4 p1=1.013;
5 n=1.3;
6 Vs=Va_Vd/[(1.05)-(0.05*[(p2/p1)^(1/n)])];
7 disp("swept volume of compressor is:");
8 disp("m<sup>3</sup>", Vs);
10 T1=288; //K
11 T2=T1*[(p2/p1)^([n-1]/n)];
12 disp("delivery temperature is:");
13 disp("K",T2);
14
15 V = 14/60;
16 P=[n/(n-1)]*{[p1*V*10^5]/(10^3)}*{[(p2/p1)^[(n-1)/n]}
      ]]-1};
17 disp("indicated power is:");
18 disp("kW",P)
```

Scilab code Exa 12.7 7

```
1 clc;
2 p=1.013; //bar
3 V=2.83; //m^3
4 R=0.287;
5 T=288; //K
6
7 m_deliv=p*V*10^5/(T*R*10^3);
8
9 n=1.3;
10 z=3;
11 p2=70; //bar
12 p1=0.98; //bar
13 m=m_deliv/60;
14
15 T_P=z*[n/(n-1)]*m*R*T*{[(p2/p1)^[(n-1)/(3*n)]]-1};
16 disp("kW",T_P," Total indicated power is:");
```

Scilab code Exa 12.10 10

```
1 clc;
2 //part I
3 p1=6.3; //bar
4 V1!V2=0.55/1.05;
5 n=1.3;
6 p2=p1*[(V1!V2)^n];
7
8 T1=297;
9 T2=T1*[(V1!V2)^[n-1]];
10 disp("Temperature after expansion is:");
```

```
11 disp("C",T2-273);
12
13
14 //part II
15 p4=1.013; //bar
16 \quad V4!V5=0.1/0.05;
17 p5=p4*[(V4!V5)^n];
18
19 A = \%pi * (63.5)^2;
20 sweptV = A * 114/(4*10^9);
21
22 V1_V6=0.5;
23 V1 = 0.55;
24 \quad V2 = 1.05;
25 p=1.013;
26 p3=p;
27 V3_V4=0.95
28 \quad V5 = 0.05;
29 \quad V4 = 0.1;
30 \text{ W_op} = [10^5*0.361*10^-3]*[p1*(V1_V6)+[(p1*V1-p2*V2)]
      /0.3]-p*V3_V4-[(p5*V5)-p*V4]/0.3]
31 disp("powar developed is:");
32 P=W_op*300/(60*010^3);
33 disp(P);
34
35 //part III
36 y = 1.4;
37 T3=T2*(p3/p2)^((y-1)/y)
38
39 \quad T4 = T3
40 R=287
41 m4=p4*V4*[10^5*0.361*10^-3]/(R*T4);
42 m1=p1*V1*[10^5*0.361*10^-3]/(R*T1);
43 ind_mass=(m1-m4);
44 rate=ind_mass*300;
45 disp("mass flow rate of air supplied is;");
46 disp("kg/min", rate)
```

Reciprocating Internal Combustion Engines

Scilab code Exa 13.1 1

```
1 clc;
2 W = 155;
3 R=0.356;
4 T = W * R;
5 disp("N m",T,"Torque is:")
7 N = 2800/60;
8 bp=2*\%pi*N*T/1000;
9 A = \%pi *0.057^2;
10 L=0.09/4;
11 n=4;
12 bmep=bp*2*10^3/(A*L*N*n*10^5)
13 disp("bar",bmep,"bmep is:")
14
15 spc_grv=0.735;
16 \text{ fc} = 6.74
17 m = (fc/3600) * spc_grv
18 \quad Q = 44200;
19 disp(m)
```

```
20 eff_BT=bp/(m*Q)
21 disp("%",eff_BT*100," brake thermal efficiency is:");
22
23 sfc=m/(bp)*3600;
24 disp("specific fuel consumption is");
25 disp("kg/kW h",sfc);
```

Scilab code Exa 13.2 2

```
1 clc;
2 \text{ spc\_grv=0.735};
3 \text{ fc} = 6.74
4 m = (fc/3600) * spc_grv;
5 AMflow=14.5*m;
6 R = 287;
7 T = 288; //K
8 p=1.013; //bar
9 V_drawn=AMflow*R*T/(p*10^5)
10
11 N = 2800/60;
12 A = \%pi * 0.057^2;
13 L=0.09/4;
14 n=4;
15 sweptV=A*L*N*n/2; //\text{m}^3/\text{min}
17 eff=V_drawn/sweptV;
18 disp("eff is:")
19 disp("%",eff*100)
```

Scilab code Exa 13.3 3

```
1 clc;
2 R=0.287
```

```
3 \text{ capct=0.003; } / \text{m}^3
4 sweptV=3500/2*capct;
5 \text{ ind_V=0.8*sweptV};
6 p=1.013;
7 blow_p=1.7*p;
8 T = 288; //K
9 y = 1.4;
10 T_{comp} = T * 1.7^{(y-1)/y};
11 blow_T=T+[T_comp-T]/0.75;
12
13 eq_V=sweptV*blow_p*T/(p*blow_T);
14 inc_ind_V = eq_V - ind_V;
15
16 inc_ip=[(blow_p-p)*10^5*sweptV]/(10^3*60);
17 Total = 40.2 + inc_ip;
18
19 inc_bp=0.8*Total;
20
21 mass_delv=blow_p*10^5*sweptV/(60*R*blow_T);
22 \text{ cp}=1.005;
23 \text{ m} = 0.149;
24 \quad W=m*cp*(blow_T-T);
25 P=W/0.8;
26 Net=inc_bp-P;
27
28 disp("kW", Net, "Net increase in bp")
```

Refrigeration and Heat Pumps

Scilab code Exa 14.1 1

```
1 clc;
2 T1=-30+273; //K
3 T2=32+273; //K
4
5 COP=T1/(T2-T1);
6
7 eff=0.75;
8 acctual_COP=eff*(COP);
9
10 Q=5; //kW
11 W=Q/acctual_COP;
12
13 disp("required powar input is:");
14 disp("kW", W);
```

Scilab code Exa 14.6 6

1 clc;

```
2 h1=301; //K
3 h2=330; //K
4 h4=145.5; //K
5
6 COP=(h1-h4)/(h2-h1);
7 disp("COP is:");
8 disp(COP)
```

Scilab code Exa 14.8 8

```
1 clc;
2 h3=162.93;
3 hf1=120.06;
4 hg1=303.38;
5 \text{ hfg1=hg1-hf1};
6 x = (h3 - hf1) / hfg1;
7 disp("the amount of vapour bled off at the flash
      chamber:");
8 \text{ disp}(x);
9
10 // part II
11 s1=1.7155; //kJ/kg K
12 	 s2=s1;
13 s3=1.7071;
14 \text{ s4}=1.7463;
15 h2=hg1+[(s1-s3)/(s4-s3)]*(314.86-hg1);
16 h3 = {(1-x)*h2} + x*hg1;
17
18 disp(h3,"h3=")
19 disp("hence vapour at inlet to the second stage
      compressor is still superheated")
20
21 //part III
22 h1=291.77;
23 \quad h4=120.06;
```

```
24 Refrigerating=(1-x)*(h1-h4);
25 disp("refrigerating effect is:");
26 \operatorname{disp}("kJ/kg", Refrigerating);
27
28 //part IV
29 h5=305.26; //kJ/kg
30 s5=s3+[(h3-hg1)/(h2-hg1)]*(s1-s3);
31
32 h6=319.54+[(s5-1.7028)/(1.7440-1.7028)
      ]*(332.87-319.54);
33
34 W = (1-x)*(h2-h1)+(h6-h5);
35 disp("kJ/kg",W,"Work done per unit mass of
      refrigerant in the condenser is:");
36
37 / part V
38 Q = 131.53; /W
39 COP = Q/W;
40 h2=319.54+[(s1-1.7028)/(1.7440-1.7028)
      ]*(332.87-319.54);
41
42 \text{ h4} = 162.93;
43 W = (h2 - h1);
44 Q=(h1-h4);
45
46 disp("coefficient of performance is:");
47 disp(COP);
```

Psychrometry And Air Conditioning

Scilab code Exa 15.5 5

```
1 clc;
2 sensible_heat=18000; //W
3 latent_heat=3600; /W
4 total_heat=sensible_heat+latent_heat;
5 \text{ w4} = 0.0089;
6 \text{ w1} = 0.0075;
7 wA = w4 - (w4 - w1) / 0.8;
9 h1=33.9; //kJ/kg
10 h2=40.2; //kJ/kg
11
12 mn1=total_heat/(h2-h1);
13 mass_flow_rate=mn1*(1+w1);
14 disp("mass flow rate of supply air is:");
15 disp("kg/s", mass_flow_rate/1000);
16
17 //part II
18 humidity = 0.00745;
19 h4=46.2; //kJ/kg
```

```
20  h5=31.1; //kJ/kg
21  cooling_load=mn1*(h4-h5);
22  disp("cooling load on washer is:");
23  disp("kW",cooling_load/1000);
24
25  //part III
26  h6=33.9; //kJ/kg
27  heat_load=mn1*(h6-h5);
28  disp("heating load is:");
29  disp("kw",heat_load/1000)
```

Heat Transfer

Scilab code Exa 16.1 1

```
1 clc;
2 lambda=10^3*0.52;
3 x=250;
4 t1=40;
5 t2=20;
6 q=lambda*(t1-t2)/x;
7 disp("rate of heat transfer per unit area:");
8 disp("W/m^2",q);
```

Scilab code Exa 16.2 2

```
1 clc;
2 alpha_a=2800;
3 lambda=10^3*50;
4 x=10;
5 alpha_b=11;
6 U=1/[1/alpha_a+x/lambda+1/alpha_b];
7
```

```
8 tA=90;
9 tB=15;
10 q=(tA-tB)*U;
11 disp("rate of heat lost per sq m of surface")
12 disp("kW",q)
13
14 //part b
15 t2=q/alpha_b+tB;
16 disp("temperature of outsede surface:");
17 disp("C",t2)
```

Scilab code Exa 16.7 7

```
1 clc;
2 alpha=88.8;
3 L=0.05;
4 \quad lambda=40;
5 Bi=alpha*L/lambda;
6 //p1L*[cos(p1L)/sin(p1L)]=1-Bi;
7 //from trial and error;
8 p1L=0.57;
9
10 tou=20*60;
11 rho=7600;
12 c=0.5*10^3;
13 R = 0.05;
14 F0=lambda*tou/(rho*c*R^2);
15
16 \text{ tF=20};
17 ti=500;
18 a=(\sin(p1L)-p1L*\cos(p1L))*(2*\%e^[-(p1L)^2*F0])/(p1L-
      sin(p1L)*cos(p1L));
19 tc=tF+a*(ti-tF);
20 disp("temperature of center is:")
21 disp("C",tc)
```

Scilab code Exa 16.12 12

```
1 clc;
2 delta_p=0.0002; // bar
3 d=25;
4 rho=7600; // assumed to run program
5 c=1.13;
6 C=24;
7 tou=delta_p*10^5*d/(4*10^3);
8 f=tou/(rho*C^2/2);
9 alpha=0.125*rho*c*C/(rho*C^2);
10 disp("heat transfer coefficient is:");;
11 disp("kW/m^2 K",alpha);
```

Scilab code Exa 16.15 15

```
1 clc;
2 delta_t=277-17;
3 d=0.15;
4 alpha=1.32*(delta_t/d)^0.25;
5 disp("heat transfer coefficient=");
6 disp("W/m^2 K",alpha);
```

Scilab code Exa 16.16 16

```
1 clc;
2 Beta=1/303;
3 g=9.81;
4 l=1;
5 delta_t=327-30;
6 v=(5.128*10^-5);
7 Gr=Beta*g*l^3*delta_t/v^2
8
9 alpha=1.31*delta_t^0.33333
10 A=1;//m^2
11 delta_t=627-27;
12 Q=alpha*A*delta_t
13 disp("rate of heat loss:");
14 disp("kW",Q/1000);
```

Scilab code Exa 16.18 18

```
1 clc;
2 m=3;
3 \text{ rho} = 500;
4 \text{ v=m/rho};
5
6 1=4; /m
7 r=0.01;
8 A=%pi*r^2;
9 n = v * 1/A;
10 disp("number of tumes is:");
11 disp(n)
12
13 alpha0=260;
14 A0=12.7;
15 alphai = 580;
16 Ai = 10;
```

```
17  U=1/[1/alpha0+A0/(alphai*Ai)];
18  N=U*%pi*(A0/1000)*l*n/(3*1.5*1000);
19  R=3*1.5/(40*1.04);
20
21  eta=[1-%e^(-N*(1-R))]/[1-R*%e^(-N*(1-R))]
22  disp(eta,"eta is:");
23
24  t2=400;
25  t1=100;
26  tL=eta*(t2-t1)+t1
27  disp("exit temperature is:");
28  disp(tL);
```

Scilab code Exa 16.21 21

```
1 clc;
2 \text{ eta=0.4};
3 \text{ sigma} = 5.67;
4 T1=13.73;
5 T2=3.13;
6 q=eta*sigma*(T1^4-T2^4);
7 disp("heat loss by radiation is:");
8 disp("kW",q/1000);
9
10 eta2=0.9;
11 q1=eta*sigma*T1^4;
12 q2=eta2*sigma*T2^4
13 q_=q1-q2;
14 disp("grey body assumptions overstimates by:");
15 \text{ pct} = (q-q_{-})/q_{-}
16 disp("%",pct*100)
```

Scilab code Exa 16.25 25

```
1 clc;
2 eta=0.8;
3 \text{ F1}_2=5.67*10^-8;
4 T1=533; //K
5 T2=293; //K
6 alpha=eta*F1_2*(T1^2+T2^2)*(T1+T2);
8 A = \%pi * 0.6 * 0.9;
9 Q1=alpha*A*(T1-T2);
10
11 alpha=8.8;
12 A = 5;
13 Q2=alpha*A*(T1-T2);
14
15 \quad Q = Q1 + Q2;
16 disp("total heat loss is:");
17 disp("kW",Q/1000)
```

The Source Use and Management of Energy

Scilab code Exa 17.1 1

```
1 clc;
2 T1 = 15 + 273; //K
3 p2!p1=8;
4 y1=1.4;
5 T2s=T1*([p2!p1]^{(y1-1)/y1]);
7 T2=T1+(T2s-T1)/0.8;
9 T3=800+273; //K
10 p3!p4=p2!p1
11 y2=1.333;
12 T4s=T3/[(p3!p4)^([y2-1]/y2)];
13
14 \quad T4=T3-0.82*(T3-T4s)
15
16 \text{ cv} = 1.11;
17 \text{ cp}=1.005;
18 W = [cv*(T3-T4)-cp*(T2-T1)];
```

```
20 heat_supp=cv*(T3-T2);
21
22 cycle_eff=W/heat_supp;
23 disp("cycle efficiency is:")
24 disp("\%", cycle_eff*100); //end of part I
25
26 //part II
27 h1=3248; //kJ/kg
28 h3=138; //kJ/kg
29 h4=h3;
30 h2s=2173; //kJ/kg
31 \quad W=0.8*(h1-h2s);
32
33 steam_heat_supp=h1-h3;
34 steam_cycle_eff=W/steam_heat_supp;
35 disp("steam cycle efficiency is:");
36 disp(steam_cycle_eff*100)
```

Scilab code Exa 17.4 4

```
1 clc;
2 boiler_eff=71; //%
3 slope=20; //GJ/D daly
4 space_heat=boiler_eff/100*slope;
5 base_load_zero=10000; //GJ/month
6 base_load=boiler_eff/100*base_load_zero;
7 consume=1000; //GJ
8 base_load_new=base_load+consume;
9
10 new_eff=75; //%
11 new_base_load=base_load_new*100/new_eff;
12 new_space_heat=space_heat/new_eff*100;
13
14 // part I
15 disp(new_space_heat)
```

```
16 annual_consum=12*new_base_load+2527*new_space_heat;
17 disp("annual consumption is:")
18 disp("GJ/annum", annual_consum);
19
20 //part II
21 max_consum=new_base_load+(379*new_space_heat);
22 disp("fuel consumption in january is:")
23 disp("GJ/month", max_consum);
24
25 / part III
26 enrgy_consume=12*base_load_new/boiler_eff*100;
27 original_space_heat = 2527 * 20;
28 saving=enrgy_consume+original_space_heat-
      annual_consum;
29 disp("enegy saving is:");
30 disp("GJ/annum", saving);
```