

Материалознание

доц. Боянка Николова

каб. 1301

Приемно време: понеделник от 11.00 ч. до 13.00 ч. вторник от 10.30 ч. до 11.30 ч.

e-mail: bnikol@tu-sofia.bg

Лабораторни упражнения – от първа седмица

Материалознание

Класификация на материалите.

Експлоатационни условия и изисквания към материалите.

Поляризация, електропроводимост, загуби, пробив и физически свойства на диелектричните материали.

Основни свойства на материалите с електронна проводимост.

Собствени и примесни полупроводници. Методи за определяне на типа на примесната проводимост.

Основни свойства на магнитните материали - намагнитване, магнитна проницаемост, хистерезисен цикъл, загуби на енергия.

Полимерни диелектрични материали. Електроизолационни компаунди и лакове. Неорганични диелектрични материали.

Метали и сплави с висока проводимост. Благородни метали. Припои и флюсове. Сплави с високо съпротивление.

Полупроводникови материали.

Магнитномеки метали и сплави. Ферити и магнитодиелектрици.

Резистори - параметри. Жични, слойни и композиционни резистори. Полупроводникови нелинейни резистори.

Кондензатори - параметри. Кондензатори с органичен и неорганичен диелектрик. Електролитни кондензатори.

Материалознание

Литература:

Пранчов, Р., "Материалознание в електрониката", София, "Нови знания", 2005.

Пранчов, Р., Д. Рашков, Б. Николова, М. Палабикян, "*Ръководство за лабораторни упражнения по материалознание в електрониката*", София, "Нови знания", 2005.

Съдържание

Строеж на материалите

Класификация на материалите

Примерни приложения

1. Енергетична (енергийна) диаграма на атома

Основни принципи на квантовата механика:

- ▶ Отделните атоми имат дискретен енергиен спектър електроните им могат да заемат само определени нива;
- ▶ Принцип на Паули не могат да съществуват два електрона с напълно еднаква енергия.

1. Енергетична (енергийна) диаграма на атома

Na (11)
$$\rightarrow$$
 1s² 2s² 2p⁶ 3s¹

Ne (10)
$$\to$$
 1s² 2s² 2p⁶

Енергетична диаграма на Na в равновесно състояние

2. Видове химични връзки

В зависимост от природата си връзките биват:

- Първични (между атоми) йонна, ковалентна и метална
- Вторични (между молекули) Ван дер Валсова

Енергията на връзката определя физическите свойства на материалите.

2.1. Йонна връзка

Възниква от прехода на валентни електрони от един атом към друг.

Енергия на връзката – много висока (от 650 до 1000 kJ/mol)

Йонен кристал на NaCl

2.2. Ковалентна връзка

Обединяването на атоми в молекули става чрез електрони, които стават общи. Представители – H₂, Cl₂, H₂O и други.

Енергия на връзката – висока (от 450 до 700 kJ/mol)

Молекула на СН₄ (метан)

2.3. Метална връзка

Възниква между положителните метални ядра и колективните (валентни) електрони.

Енергия на връзката – висока (от 70 до 800 kJ/mol)

2.4. Ван дер Ваалсова връзка

Универсална и теоретично може да възникна между всеки две частици, но на практика се установява между атомите на инертните газове и при някои органични материали.

Енергия на връзката – ниска (до 30 kJ/mol)

- 3. Особености в строежа на твърдото тяло
- 3.1. Кристални вещества

Градивните им частици образуват кристална решетка, в която може да се отдели основна градивна клетка.

Кубична стенноцентрирана решетка

3.1. Кристални вещества

a ≠ c

Тетрагонална обемноцентрирана решетка

Кристалните тела могат да бъдат:

- ✓ Монокристали представляват един кристал;
- ✓ Поликристални състоят се от много, различноориентирани кристали.

3.2. Аморфни вещества

Случайно, хаотично разположени градивни частици.

3.3. Изотропност и анизотропност

Изотропни вещества – свойствата им са еднакви във всички посоки. Такива са аморфните и поликристалните тела.

Кристалите проявяват *анизотропност* – свойствата им зависят от кристалографската ориентация на решетката им.

4. Зонна теория на твърдото тяло

Особености:

- Броят на енергетичните нива във всяка зона е равен на броят на атомите в кристала;
- Широчината на зоните не зависи от броя на атомите, а от взаимодействието между тях.

Ако материалът има идеална кристална решетка и се намира при абсолютна температурна нула, то се дефинират следните зони:

Валентна зона (ВЗ) – в нея са разположени всички валентни електрони т. е. всички енергетични нива са заети;

Свободна зона (СЗ) – получена от разрешени и незаети нива;

Забранена зона (33) – енергетичен интервал между ВЗ и СЗ, в който няма разрешени нива.

II. Класификация

1. Според електрическите свойства на материалите

Материалите се разделят на проводници, диелектрици и полупроводници.

1.1. Съгласно зонната теория (широчината на забранената зона *∆W*)

 $\Delta W > 3 \text{ eV}$ Диелектрици

II. Класификация

1.2. Съгласно специфично съпротивление ρ

II. Класификация

2. Според магнитните свойства на материалите

2.1. Немагнитни (µ_r ≈ 1):

Диамагнетици $\mu_r < 1$

Парамагнетици $\mu_r > 1$.

2.2. Магнитни – Феромагнетици $\mu_r >> 1$.

Микропроцесорни системи

USB флаш (USB *flash drive*)

- 1 USB контролер
- 2 Флаш-памет
- 3 Кварцов резонатор
- 4 Светодиод
- 5 Резистори и кондензатори
- 6 Печатна платка
- 7 USB съединител
- 8 Тестови точки

USB контролер

Микроконтролерът е интегрална схема, съчетаваща в себе си микропроцесор, тактов генератор, оперативна памет и входно-изходни устройства, което ѝ позволява да функционира като самостоятелно компютърно устройство.

Интегрална схема е електронна схема с миниатюрни размери, състояща се от **полупроводникови** устройства и пасивни компоненти, която е реализирана обикновено върху тънък кристал от **силиций или друг полупроводник**.

Флаш-памет - Електрически препрограмируема памет, която се реализира върху **полупроводникови чипове** по планарна технология

За запомняща клетка се използва MOS транзистор с плаващ гейт.

Свръх големи интегрални схеми (VLSI – Very large-scale integration)

Проводящи метали малко съпротивление и отлични физически свойства

Диелектрични материали с отлични топлопроводимост и физически свойства

Кварцов резонатор – генератор на трептения с еталонна честота.

Електромеханична трептяща система, състояща се от пластина от *кварцов кристал*, върху която са нанесени *метални* електроди.

Светодиод (LED – light-emitting diode) – *полупроводников* диод, който излъчва светлина, когато през него протича ток в права посока.

Светодиод

Резистор

Кондензатор

Печатна платка – пластина от *диелектрик*, върху която чрез *проводящ материал* са оформени електрически връзки, за реализиране на различни електронни схеми.

