

AMPLIACIÓN DE MATEMÁTICAS 2019-2020 TRABAJO PRÁCTICO 9: Homomorfismos y Teorema Chino de los Restos

Se dice que $\alpha \in \mathbb{K}$ es una raíz de f con multiplicidad r si $(x-\alpha)^r | f$ y $(x-\alpha)^{r+1} \not| f$. Una raíz múltiple es aquella cuya multiplicidad es 2 ó más. Halla las raíces múltiples del polinomio

múltiple es aquella cuya multiplicidad es
$$2$$
 ó más. Halla las raíces múltiples del polinomio
$$f(x) = 9x^4 + x^2 + 9 = 9 \left(\frac{x^4 + 2x^2 + 1}{2x^2 + 1} \right) = 0$$
 en \mathbb{C} y \mathbb{Z}_{17} . En \mathbb{C} : Accemos el camb $\mathbb{C} = \mathbb{C}$ y usamas la formula
$$\mathbb{C} = \mathbb{C} = \mathbb{C}$$

El Teorema Chino de los Restos dice que, si tenemos un sistema de n congruencias del tipo

$$x \equiv a_i \pmod{m_i}$$
,

este tiene solución cuando $mcd(m_i, m_j) = 1$ para todo $i \neq j$ con $i, j \in \{1, ..., n\}$ dados, y dicha solución es única módulo $m_1 \cdots m_n$. Vamos a resolver un sistema de congruencias:

$$\begin{cases} x \equiv 2 \pmod{7}; \\ x \equiv 8 \pmod{15}. \end{cases}$$

Para ello, calcula los coeficientes para la identidad de Bezout 7u + 15v = 1. Nótese que u es el inverso de 7 en \mathbb{Z}_{15} claramente, mientras que v es el inverso de 15 en \mathbb{Z}_7 .

$$N = 13$$
; $V = 1$

Considera el número $\alpha = 8 \cdot u \cdot 7 + 2 \cdot v \cdot 15$. Comprueba que este es solución del sistema dado. En definitiva, tenemos que toda solución de este sistema es del tipo $\alpha + (7 \cdot 35) k = \alpha + 105k$ con $k \in \mathbb{Z}$ arbitrario y $\alpha \in \mathbb{Z}$ por determinar.

En general, si tenemos $x \equiv a \pmod{m}$ y $x \equiv b \pmod{n}$ dos congruencia, con 1 = um + vn identidad de Bezout, se tiene que las soluciones de esta son del tipo umb + vna + mnk con $k \in \mathbb{Z}$ arbitrario.

Acumula esto para resolver:

$$\begin{cases} x \equiv 1 \pmod{11}; \\ x \equiv 12 \pmod{24}; \\ x \equiv 3 \pmod{25}. \end{cases}$$

Pon el Teonema Chino de los Restos, hay que resolver

600
$$u = 1 \pmod{1}$$
; $275 v = 1 \pmod{24}$; $264 w = 1 \pmod{25}$
 $25 v = 11$ $25 w = 9$

Pon el Teonema Chino de los Restos, como x2+x y x2+1 son copnimos, hay que resolver (x2+x) M(x) = 1 (mód. x2+x) i (x2+1) v(x) = 1 (mód. x2+x)

¿Te atreves a hacerlo con polinomios?
$$\begin{cases} f(x) \equiv x \pmod{x^2 + x}; \\ f(x) \equiv 1 \pmod{x^2 + 1}, \end{cases}$$
 (en $\mathbb{Z}_3[x]$).

$$\mathcal{U}(x) = x + 1$$

$$V(x) = 2x + 1$$

$$d(x) = (x^{2} + x) \cdot x \cdot (x + 1) + (x^{2} + 1) \cdot 1 \cdot (2x + 1) =$$

$$= 2x^{2} \pmod{x^{4} + x^{3} + x^{2} + x}$$