

Listing of Claims:

1. (Previously presented): A parallel architecture digital filter receiving p input signals ($I_0, \dots, I_i, \dots, I_{p-1}$) and delivering p output signals ($S_0, \dots, S_i, \dots, S_{p-1}$) which are the sum of the input signals weighted with M coefficients (C_0, C_1, \dots, C_{M-1}), this filter comprising p parallel channels ($V_0, \dots, V_i, \dots, V_{p-1}$) receiving the input signals ($I_0, \dots, I_i, \dots, I_{p-1}$), characterized in that it comprises r+1 stages ($E_0, \dots, E_j, \dots, E_r$), where r is the integer portion of ratio $(M+p-2)/2$, the stage of rank j delivering p intermediate signals ($R_0^j, \dots, R_i^j, \dots, R_{p-1}^j$) which are the weighted sums of the input signals defined by:

$$R_i^j = \sum_{q=0}^{p-1} (C_{M-i-q+i-jp}) I_{q+jp}$$

the filter further comprising a summing means (Σ) receiving said intermediate signals (R_i^j) and delivering p sum defined by:

$$S_i = \sum_{j=1}^r R_i^j$$

these p sums forming the output signals (($S_0, \dots, S_i, \dots, S_{p-1}$)).

2. (Original): The digital filter according to claim 1, wherein the number of channels p is equal to 2, the filter then comprising a first channel with first means (R^p) for storing the samples of even rank (I_k^p, I_{k-1}^p, \dots) and a second channel with second means (R^i) for storing the samples of odd rank (I, I, \dots), each channel further comprising first ($M_0^p, \dots, M_1^p, \dots, ADD^p$) and second ($M_0^p, \dots, M_1^p, \dots, ADD^p$) means respectively, for respectively calculating even (S_k^p) and odd (S_k^i) weighted sums, respectively.

3. (Previously presented): The filter according to claim 2, wherein the first and second means for calculating the even and odd weighted sums each comprise multipliers ($M_1^P, M_3^P, \dots, M_0^i, M_2^i \dots$) each receiving a sample ($I_{k-1}^P, I_k^P, \dots, I_{k-1}^i, I_k^i \dots$) and a weighting coefficient (C_1, C_3, C_0, C_2) ($C_0, C_2 C_1, C_3$), and an adder (ADD^i, ADD^P) connected to the multipliers.

4. (Previously presented): The filter according to claim 2, wherein the first and second storing means each comprises a first (R^P) and a second (R^i) shift register, respectively.

5. (Previously presented): The filter according to claim 4, wherein each shift register (R^P, R^i) comprises cells (B^P) (B^i) each consisting of a flip-flop with a input (D) and a direct output (Q), wherein the input of a flip-flop is connected to the direct output (Q) of a preceding flip-flop and the direct output (Q) of the flip-flop is connected to the input of a next flip-flop, each flip-flop further comprising a complemented output (\bar{Q}), the multipliers then being multiplexers (MPX^P) (MPX^i) with two inputs connected to the direct (Q) and complemented (\bar{Q}) outputs of the flip-flops, respectively, each multiplier further comprising a control input receiving a positive or negative control signal (C_0, C_1, \dots, C_{m-1}) and an output, which is either connected to one of the inputs, or to the other, according to the sign of the control signal.

6. (Currently amended): A receiver for direct sequence spread spectrum signals comprising:

- at least an analog/digital converter (CAN(I), CAN(Q)) receiving a spread spectrum signal and delivering digital samples of this signal,

-at least a digital filter ($F(I)$, $F(Q)$) with coefficients (C_j) adapted to the spread spectrum sequence, this filter receiving the samples delivered by the digital/analog converter and delivering a filtered signal,

-means (DD , Inf/H , D) for processing the filtered signal able to restore the transmitted data (d), this receiver being characterized in that the digital filter ($F(I)$, $F(Q)$) is a parallel architecture digital filter according to any of claims 1-to-5.

7. (Previously presented): The receiver according to claim 6, comprising first and second channels in parallel, the first channel (I) having a means for processing a signal in phase with a carrier and the second channel (Q) having a means for processing a signal in phase quadrature with said carrier, each channel comprising said parallel architecture digital filter ($F(I)$, $F(Q)$) with, for the first channel (I), notably, first and second adders ($ADD(I)^P$, $ADD(I)^i$) delivering first and second weighted sums ($S(I)_k^P$, $S(I)_k^i$) and, for the second channel (Q), notably, first and second adders ($ADD(Q)^P$, $(ADD(Q)^i)$ delivering first and second weighted sums ($S(Q)_k^P$, $S(Q)_k^i$).

8. (Currently amended): The receiver according to claim 7, wherein the processing means comprises, in the first channel (I), a first differential demodulation circuit ($DD(I)$) and in the second channel (Q), a second differential demodulation circuit ($DD(Q)$), the first differential demodulation circuit ($DD(I)$) receiving the first weighted sums ($S(I)_k^P$, $S(Q)_k^P$) delivered by filters ($F(I)$, $F(Q)$) of the first and second channel (I), (Q), and delivering a first DOT and a first CROSS signals (DOT^P , $CROSS^P$), the second differential demodulation circuit ($DD(Q)$) receiving the second weighted sums ($S(I)_k^i$) and ($S(Q)_k^i$) delivered by filters ($F(I)$, $F(Q)$) of the first and second channels (I , Q) and delivering a second DOT and a second CROSS signal[[s]] (DOT^i , $CROSS^i$).

9. (Previously presented): The receiver according to claim 8, wherein the processing means further comprise a clock and an information circuit (Inf/H) receiving the (DOT^P, CROSS^P), (DOT^I, CROSS^I), signals delivered by the first and second differential demodulation circuits (DD(I), DD(Q)) and delivering two even and odd information signals (S_{inf}^P, S_{inf}^I), a clock signal (SH) and a parity signal (Sp/i).

10. (New): A receiver for direct sequence spread spectrum signals comprising:

- at least an analog/digital converter (CAN(I), CAN(Q)) receiving a spread spectrum signal and delivering digital samples of this signal,
- at least a digital filter (F(I), F(Q)) with coefficients (C_j) adapted to the spread spectrum sequence, this filter receiving the samples delivered by the digital/analog converter and delivering a filtered signal,
- means (DD, Inf/H, D) for processing the filtered signal able to restore the transmitted data (d), this receiver being characterized in that the digital filter (F(I), F(Q)) is a parallel architecture digital filter according to claim 5.