EXERCICE N°1 Somme des premiers carrés

Pour tout entier $n \ge 1$, on note u_n la somme des n premiers carrés, c'est à dire $u_n = 1^2 + 2^2 + 3^2 + ... + n^2$.

1) Calculer les trois premiers termes de la suite u.

•
$$u_1 = 1^2$$
, ainsi $u_1 = 1$.

•
$$u_2 = 1^2 + 2^2$$
, ainsi $u_2 = 5$.

•
$$u_3 = 1^2 + 2^2 + 3^2$$
, ainsi $u_3 = 14$

2) Déterminer une relation entre u_{n+1} et u_n .

Pour
$$n \in \mathbb{N}$$
, $u_{n+1} = u_n + (n+1)^2$

3) On pose v la suite définie par : Pour tout entier nature n, $v_n = \frac{n(n+1)(2n+1)}{6}$.

3.a) Montrer que
$$v_1 = u_1$$

$$v_1 = \frac{1(1+1)(2\times 1+1)}{6} = 1 = u_1$$

3.b) Montrer que la suite v suit la même relation de récurrence que la suite u et conclure.

• Exprimons
$$v_{n+1}$$
:

$$v_{n+1} = \frac{(n+1)(n+1+1)(2(n+1)+1)}{6}$$
$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

• Calculons à présent $v_{n+1} + (n+1)^2$

$$v_n + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)[n(2n+1) + 6(n+1)]}{6}$$

$$= \frac{(n+1)[2n^2 + n + 6n + 6]}{6}$$

$$= \frac{(n+1)[2n^2 + 7n + 6]}{6}$$

factorisation par (n+1)

Or:

$$v_{n+1} = \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)(2n^2+3n+4n+6)}{6} = \frac{(n+1)(2n^2+7n+6)}{6}$$

Donc:

$$v_{n+1} = v_n + (n+1)^2$$
.

• La suite v suit bien la même relation de récurrence que la suite u.

Comme, de plus, elles ont le même premier terme, on en conclut que :

$$\forall n \in \mathbb{N}^*, u_n = v_n$$
.

• On a donc démontré que
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

(Le résultat reste vrai pour n=0)

EXERCICE N°2 Algorithme de Héron (un premier contact)

On donne a et b deux nombres réels tels que : a > 0 et $b > \sqrt{a}$.

On donne également la fonction $f: x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$.

On considère la suite u définie par $\begin{cases} u_0 = b \\ u_{n+1} = f(u_n) \end{cases}$.

Notre but est de comprendre que le terme u_n tend vers \sqrt{a} .

- 1) Un premier cas: a = 2 et b = 5.
- **1.a)** Calculer les cinq premiers termes de la suite.

1.b) À l'aide de la calculatrice, conjecturer, si elle existe, la limite de la suite u et la comparer avec \sqrt{a} .

2) Un premier cas: a = 5 et b = 10.

2.a) Calculer les cinq premiers termes de la suite.

2.b) À l'aide de la calculatrice, conjecturer, si elle existe, la limite de la suite u et la comparer avec \sqrt{a} .

EXERCICE N°3 Suite auxiliaire (sans calculatrice)

On donne la suite u définie par : $\begin{cases} u_{n+1} = \frac{1}{2} \sqrt{u_n^2 + 12} \end{cases}$

- 1) Calculer u_1 , u_2 et u_3 , on donnera les valeurs exactes.
- $u_1 = \frac{1}{2}\sqrt{u_0^2 + 12} = \frac{1}{2}\sqrt{12} = \frac{1}{2} \times 2\sqrt{3}$, ainsi $u_1 = \sqrt{3}$
- $u_2 = \frac{1}{2}\sqrt{u_1^2 + 12} = \frac{1}{2}\sqrt{3 + 12} = \frac{1}{2} \times \sqrt{15}$, ainsi $u_2 = \frac{\sqrt{15}}{2}$
- $u_3 = \frac{1}{2}\sqrt{u_2^2 + 12} = \frac{1}{2}\sqrt{\frac{15}{4} + 12} = \frac{1}{2} \times \sqrt{\frac{63}{4}} = \frac{1}{2} \times \frac{3\sqrt{7}}{2}$, ainsi $u_3 = \frac{3\sqrt{7}}{4}$
- 2) On définit la suite v par : $\forall n \in \mathbb{N}$, $v_n = u_n^2 4$
- Montrer que la suite v est géométrique et donner ses éléments caractéristiques.
- $v_0 = u_0^2 4 = 0 4$, ainsi $v_0 = -4$
- Soit $n \in \mathbb{N}$,

$$v_{n+1} = u_{n+1}^{2} - 4$$

$$= \left(\frac{1}{2}\sqrt{u_{n}^{2} + 12}\right)^{2} - 4$$

$$= \frac{1}{4}(u_{n}^{2} + 12) - 4$$

$$= \frac{1}{4}u_{n}^{2} - 1$$

$$= \frac{1}{4}(u_{n}^{2} - 4)$$

$$= \frac{1}{4}v_{n}$$
«Astuce » de la mise en facteur de « force »
$$= \frac{1}{4}v_{n}$$

- raison $q = \frac{1}{4}$ et de premier terme $v_0 = -4$ On reconnaît une suite géométrique de
- Exprimer v_n en fonction de n. 2.b)

 $\forall n \in \mathbb{N} , \left| v_n = -4 \times \left(\frac{1}{4} \right)^n \right|$

- On a admet que pour tout entier n, $v_n > -4$. En déduire une expression de u_n en 2.c) fonction de n.
- Soit $n \in \mathbb{N}$,

 $v_n = u_n^2 - 4 \Leftrightarrow u_n^2 = v_n + 4 \Leftrightarrow u_n = \sqrt{v_n + 4} \quad (\text{car } v_n - 4 > 0)$

On en déduit que, pour tout entier naturel n, $u_n = \sqrt{4-4\times\left(\frac{1}{4}\right)^n}$

Conjecturer alors la limite de la suite u.

Il semble que $\lim u_n = 2$

La suite v tend vers 0, « il reste » $\sqrt{4} = 2$

EXERCICE N°4 Suite auxiliaire et tableur

- Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = 2u_n + 2n^2 n$.
- Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par : pour tout entier naturel n, $v_n = u_n + 2n^2 + 3n$.
- 1) Voici un extrait de feuille de tableur ci-contre : Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?

• C2 :	=B2+2*A2^2+3*A2
■ B3 :	=2*B2+2*A2^2-A2

- 2) Déterminer, en justifiant, une expression de v_n puis de u_n en fonction de n.
- C n u

• Exprimons
$$v_{n+1}$$
 en fonction v_n :

Soit
$$n \in \mathbb{N}$$
,

$$v_{n+1} = u_{n+1} + 2(n+1)^2 + 3(n+1)$$

$$= 2u_n + 2n^2 - n + 2(n+1)^2 + 3(n+1)$$

$$= 2u_n + 2n^2 - n + 2n^2 + 4n + 2 + 3n + 3 + 5$$

$$= 2u_n + 4n^2 + 6n + 10$$

$$= 2(u_n + 2n^2 + 3n + 5)$$

$$= 2v_n$$

On en déduit que la suite v est géométrique de raison q=2 et de premier terme $v_0=7$

Pour v_0 , il suffit de lire la valeur dans le tableur...

• Exprimons
$$v_n$$
 en fonction n :

$$\forall n \in \mathbb{N}$$

$$v_n = v_0 \times q^n$$
, ainsi $v_n = 7 \times 2^n$

• Exprimons u_n en fonction n:

Soit $n \in \mathbb{N}$,

$$v_n = u_n + 2n^2 + 3n \Leftrightarrow u_n = v_n - 2n^2 - 3n = 7 \times 2^n - 2n^2 - 3n$$

Ainsi,

$$\forall n \in \mathbb{N} , \quad u_n = 7 \times 2^n - 2n^2 - 3n$$