Generalized Linear models

Gavin L. Simpson

February, 2017

Generalized linear models

Generalized linear models

- Generalised linear models (GLMs) are a synthesis and extension of linear regression plus Poisson, logistic and other regression models
- GLMs extend the types of data and error distributions that can be modelled beyond the Gaussian data of linear regression
- With GLMs we can model count data, binary/presence absence data, and concentration data where the response variable is not continuous.
- · Such data have different mean-variance relationships and we would not expect errors to be Gaussian.
- · Typical uses of GLMs in ecology are
 - · Poisson GLM for count data
 - · Logistic GLM for presence absence data
 - Gamma GLM for non-negative or positive continuous data 'GLMs can handle many problems that appear non-linear
- Not necessary to transform data as this is handled as part of the GLM process

The structure of a GLM

A GLM consists of three components, chosen/specified by the user

- 1. A random component, specifying the conditional distribution of of the response Y_i given the values of the explanatory data. Error Function
- 2. A Linear Predictor η the linear function of regressors

$$\eta_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_k X_{ik}$$

The X_{ij} are prescribed functions of the explanatory variables and can be transformed variables, dummy variables, polynomial terms, interactions etc.

3. A smooth and invertible Link Function $g(\cdot)$, which transforms the expectation of the response $\mu_i \equiv E(Y_i)$ to the linear predictor

$$g(\mu_i) = \eta_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_k X_{ik}$$

As $g(\cdot)$ is invertible, we can write

$$\mu_i = g^{-1}(\eta_i) = g^{-1}(\alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik})$$

/.

Conditional distribution of y_i

Originally GLMs were specified for error distribution functions belonging to the *exponential family* of probability distributions

- Continuous probability distributions
 - · Gaussian (or normal distribution; used in linear regression)
 - · Weibull
 - · Gamma (data with constant coefficient of variation)
 - · Exponential (time to death, survival analysis)
 - · Chi-square
 - · Inverse-Gaussian
- · Discrete probability distributions
 - Poisson (count data)
 - Binomial (0/1 data, counts from a total)
 - · Multinomial

Choice depends on range of Y_i and on the relationship between the variance and the expectation of Y_i — mean-variance relationship

Conditional distribution of y_i

Characteristics of common GLM probability distributions

	Canonical Link	Range of Y_i	Variance function
Gaussian	Identity	$(-\infty, +\infty)$	ϕ
Poisson	Log	$0,1,2,\dots,\infty$	μ_{i}
Binomial	Logit	$\frac{0,1,\ldots,n_i}{n_i}$	$\frac{\mu_i(1-\mu_i)}{n_i}$
Gamma	Inverse	$(0,\infty)$	$\phi\mu_i^2$
Inverse-Gaussian	Inverse-square	$(0,\infty)$	$\phi\mu_i^{\scriptscriptstyle 3}$

 ϕ is the dispersion parameter; μ_i is the expectation of Y_i . In the binomial family, n_i is the number of trials

Ecologically-relevant probability distributions

Gaussian distribution is rarely adequate in (palaoe)ecology; GLMs offer ecologically meaningful alternatives

- Poisson counts; integers, non-negative, variance increases with mean
- Binomial observed proportions from a total; integers, non-negative, bounded at 0 and 1, variance largest at $\pi=0.5$
- Binomial presence absence data; discrete values, 0 and 1, models probability of success
- Gamma concentrations; non-negative (strictly positive with log link) real values, variance increases with mean, many zero values and some high values

Timed censuses at 42 randomly-chosen leaves of the cobra lily (Darlingtonia californica)

- · Recorded number of wasp visits at 10 of the 42 leaves
- · Test hypothesis that the probability of visitation is related to leaf height
- Response is dichotomous variable (0/1)
- A suitable model is the logistic model

$$\pi = \frac{e^{\beta_0 + \beta_i X}}{1 + e^{\beta_0 + \beta_1 X_i}}$$

The logit transformation produces

$$\log_e\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X_i$$

• This is the logistic regression and it is a special case of the GLM, with a binomial error distribution and the logit link function

8

$$\log_e\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X_i$$

- \cdot β_0 is a type of intercept; determines the probability of success (Y_i = 1) π where X = 0
- · If $eta_0=$ 0 then $\pi=$ 0.5
- eta_1 is similar to the slope and determines how steeply the fitted logistic curve rises to the maximum value of $\pi=1$
- Together, β_0 and β_1 specify the range of the X variable over which most of the rise occurs and determine how quickly the probability rises from 0 to 1
- Estimate the model parameters using Maximum Likelihood; find parameter values that make the observed data most probable

9

```
> summary(mod)
Call:
glm(formula = visited ~ leafHeight, family = binomial, data = wasp)
Deviance Residuals:
    Min
               1Q Median
-2.18274 -0.46820 -0.23897 -0.08519 1.90573
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.29295 2.16081 -3.375 0.000738 ***
leafHeight 0.11540 0.03655 3.158 0.001591 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 46.105 on 41 degrees of freedom
Residual deviance: 26,963 on 40 degrees of freedom
ATC: 30.963
Number of Fisher Scoring iterations: 6
```


Wald statistics

z values are Wald statistics, which under the null hypothesis follow assymptotically a standard normal distribution

Tests the null hypothesis that $\beta_i = 0$

$$z=\hat{\beta}_i/\mathrm{SE}(\hat{\beta}_i)$$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-7.2930	2.1608	-3.3751	0.0007
leafHeight	0.1154	0.0365	3.1575	0.0016

Deviance

- In least squares we have the residual sum of squares as the measure of lack of fitted
- In GLMs, deviance plays the same role
- · Deviance is defined as twice the log likelihood of the observed data under the current model
- · Deviance is defined relative to an arbitrary constant only differences of deviances have any meaning
- · Differences in deviances are also known as ratios of likelihoods
- · An alternative to the Wald tests are deviance ratio or likelihood ratio tests

$$F = \frac{(D_a - D_b)/(df_a - df_b)}{D_b/df_b}$$

• D_j deviance of model, where we test if model A is a significant improvement over model B; df_R are the degrees of freedom of the respective model

- Radiocarbon age estimates from depths within a peat bog (Brew & Maddy, 1995, QRA Technical Guide No.~5)
- Estimate accumulation rate; assumption here is linear accumulation
- · Uncertainty or error is greater at depth; mean variance relationship
- · Fit mid-depth & mid-calibrated age points

calMid	midDepth	calLower	calUpper	ageError	ageBP	lowerDepth	upperDepth	Sample
408.0	19.00	307	509	35	355	22.0	20	SRR-4556
511.0	25.00	480	542	35	465	28.0	26	SRR-4557
608.0	31.00	545	671	35	635	34.0	32	SRR-4558
699.0	37.00	666	732	35	740	40.0	38	SRR-4559
803.5	43.00	691	916	35	865	46.0	44	SRR-4560
805.0	48.75	692	918	35	870	52.5	50	SRR-4561
881.0	55.00	795	967	35	985	58.0	56	SRR-4562
1190.5	96.00	1097	1284	35	1270	108.0	100	SRR-4563
2659.5	196.50	2558	2761	35	2575	207.0	200	SRR-4564
3592.0	256.00	3487	3697	35	3370	268.0	260	SRR-4565
5434.5	396.50	5306	5563	35	4675	407.0	400	SRR-4566
6109.0	489.50	5955	6263	35	5315	500.0	493	SRR-4567


```
> mod <- glm(calMid ~ midDepth, data = maddy, family = Gamma(link = "identity"))
> summary(mod)
Call:
glm(formula = calMid ~ midDepth, family = Gamma(link = "identity").
   data = maddv)
Deviance Residuals:
     Min
                 10
                        Median
                                                 Max
-0.161184 -0.016734 -0.002595 0.048033 0.085943
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                     22.5603 8.745 5.35e-06 ***
(Intercept) 197,2909
midDenth
            12.5799
                     0.4543 27.693 8.74e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.004612561)
   Null deviance: 10.439047 on 11 degrees of freedom
Residual deviance: 0.048316 on 10 degrees of freedom
AIC: 145.57
Number of Fisher Scoring iterations: 4
```


Re-use

Copyright © (2017) Gavin L. Simpson Some Rights Reserved

Unless indicated otherwise, this slide deck is licensed under a Creative Commons Attribution 4.0 International License.

