The pinhole camera

Lihi Zelnik-Manor, Computer Vision

Next two classes: Single-view Geometry

Today

- Pinhole cameras
- Cameras & lenses
- ▶ The geometry of pinhole cameras
- Other camera models

Today

- ▶ Pinhole cameras
- Cameras & lenses
- ▶ The geometry of pinhole cameras
- Other camera models

How do we see the world?

- Let's design a camera
 - Idea I: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening is known as the aperture

Pinhole camera

f = focal length

c = center of the camera

Historical context

- Pinhole model: Mozi (470-390 BCE),
 Aristotle (384-322 BCE)
- Principles of optics (including lenses):
 Alhacen (965-1039 CE)
- Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- First photo: Joseph Nicephore Niepce (1822)
- Daguerréotypes (1839)
- Photographic film (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)
- Television (Baird, Farnsworth, Zworykin, 1920s)
- First consumer camera with CCD: Sony Mavica (1981)
- First fully digital camera: Kodak DC\$100 (1990)

Alhacen's notes

Niepce, "La Table Servie," 1822

CCD chip

Camera obscura

In Latin, means 'dark room'

"Reinerus Gemma-Frisius, observed an eclipse of the sun at Louvain on January 24, 1544, and later he used this illustration of the event in his book <u>De Radio Astronomica et Geometrica</u>, 1545. It is thought to be the first published illustration of a camera obscura..." Hammond, John H., <u>The Camera Obscura</u>, A Chronicle

Camera obscura

Around 1870s

An attraction in the late 19th century

Camera obscura at home

Figure 1 - A lens on the window creates the image of the external world on the opposite wall and you can see it every morning, when you wake up.

http://blog.makezine.com/archive/2006/02/how_to_room_sized_camera_obscu.html

Dimensionality Reduction Machine (3D to 2D)

Projection can be tricky...

Projection can be tricky...

Projective Geometry

What is lost?

Length

Length is not preserved

Projective Geometry

What is lost?

Length

Angles

Projective Geometry

What is preserved?

Straight lines are still straight

Parallel lines in the world intersect in the image at a

"vanishing point"

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane
- Not all lines that intersect are parallel
- Vanishing point <-> 3D direction of a line
- Vanishing line <-> 3D orientation of a surface

Note on estimating vanishing points

Use multiple lines for better accuracy

... but lines will not intersect at exactly the same point in practice One solution: take mean of intersecting pairs

... bad idea!

Instead, minimize angular differences

Vanishing objects

Projection equations of ideal Pinhole

▶ 3d world mapped to 2d projection in image plane

Projection equations of ideal Pinhole

▶ 3d world mapped to 2d projection in image plane

Projection equations of ideal Pinhole

▶ 3d world mapped to 2d projection in image plane

Pinhole camera

- It is common to draw the image plane in front of the focal point
- Moving the image plane merely scales the image

When the camera is not ideal

How does the size of the aperture affect the image?

Pinhole size / aperture

Problems with small aperture:

- Less light goes through
- Diffraction effect

Adding a lens

A lens focuses light onto the film

Adding a lens

- ▶ A lens focuses light onto the film
 - More lights goes through the center than through the boundaries

Adding a lens - focus

A lens focuses light onto the film

- Rays passing through the center are not deviated
- All parallel rays converge to one point on a plane located at the focal length f

Adding a lens - focus

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"

A lens with aperture

Images from Wikipedia

http://en.wikipedia.org/wiki/Depth_of_field

A lens with aperture

A smaller aperture increases the range in which the object is approximately in focus

F

Depth from focus

Images from same point of view, different aperture

3d shape / depth estimates

[figs from H. Jin and P. Favaro, 2002]

Depth from defocus

Figure 4: Comparison of focus measures. Color coded depth maps (from near red to far blue) extracted by applying WTA over different focus measures. From top to bottom: 'Cloth', 'Synth-Cone', 'Middlebury-Cones', 'Cube' and 'Real-Cone'. Note the significant improvement obtained using the proposed focus measure.

Y. Frommer, R. Ben-Ari and N. Kiryati Shape from Focus with Adaptive Focus Measure and High Order Derivatives, BMVC 2015

Light passing through a lens

Optic laws

- Light travels in straight lines in homogeneous medium
- Reflection: incoming ray, surface normal, and reflected ray are co-planar
- Refraction: when a ray passes from one medium to another

Snell's law

 $lpha_1$ = incident angle $lpha_1$ = refraction angle $n_{1,2}$ = index of refraction

Thin lens

$$\begin{cases} Z' = f + Z_0 \\ f = \frac{Radius}{2(n-1)} \end{cases}$$

Snell's law
$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

$$\begin{cases} n_1 \alpha_1 \approx n_2 \alpha_2 \\ n_1 = 1 \quad (air) \\ n_2 = n \quad (lens) \end{cases}$$

Small angles

Today

- Pinhole cameras
- Cameras & lenses
- ▶ The geometry of pinhole cameras
- Other camera models

Cameras and lenses

Source wikipedia

Issues with lenses: Chromatic aberration

▶ A lens has different refractive indices for different wavelength: causes color fringing $f = \frac{Radius}{2(n-1)}$

Issues with lenses: Chromatic aberration

▶ Rays farther from the optical axis focus closer

Issues with lenses: Chromatic aberration

Deviations are most noticeable for rays that pass through

the edge of the lens

No distortion

Pin cushion

Fisheye

Issues with lenses: vignetting

- A lens focuses light onto the film
 - More lights goes through the center than through the boundaries

Today

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
- Other camera models

Projection: world coordinates → image coordinates

Pinhole camera

Is this a linear transformation?

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \implies \begin{cases} x = f \frac{X}{Z} \\ y = f \frac{Y}{Z} \end{cases}$$

- No − division by Z is not linear!
- How can we make it linear?

Homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array}
ight]$$

homogeneous image coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Using homogeneous coordinates

Projection is a matrix multiplication using homogeneous coordinates:

$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} fX \\ fY \\ Z \end{bmatrix}$$
Projection matrix
$$p' = \begin{bmatrix} \frac{fX}{Z} \\ \frac{fY}{Z} \end{bmatrix}$$

Image coordinate system is not always aligned with optical axis

$$p' = \begin{bmatrix} \frac{fX}{Z} + c_x \\ \frac{fY}{Z} + c_y \end{bmatrix}$$

Pixels scale could differ from metric measurements

$$p' = \begin{bmatrix} k \frac{fX}{Z} + c_x \\ k \frac{fY}{Z} + c_y \end{bmatrix}$$

Pixels could be non-square

$$p' = \begin{bmatrix} kf_{\alpha} \frac{X}{Z} + c_{x} \\ kf_{\beta} \frac{Y}{Z} + c_{y} \end{bmatrix} = \begin{bmatrix} \alpha \frac{X}{Z} + c_{x} \\ \beta \frac{Y}{Z} + c_{y} \end{bmatrix}$$

Camera axes could be not-orthogonal

$$p' = \begin{bmatrix} \alpha \frac{X}{Z} + \frac{sY}{Z} + c_x \\ \beta \frac{Y}{Z} + c_y \end{bmatrix}$$

We can write this in matrix form

$$p' = \begin{bmatrix} \alpha \frac{X}{Z} + \frac{sY}{Z} + c_x \\ \beta \frac{Y}{Z} + c_y \\ Z \end{bmatrix} = \begin{bmatrix} \alpha & s & c_x & 0 \\ 0 & \beta & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

The calibration matrix

$$p' = \begin{bmatrix} \alpha & s & c_x & 0 \\ 0 & \beta & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \qquad p' = MP = K[I \quad 0]P$$

This matrix includes 5 camera parameters and is called:

- Calibration matrix
- Camera matrix

- So far the world coordinate system was aligned with the lens
- Can we represent the scene in "world" coordinate system?

World coordinates

In 4D homogeneous coordinates

Camera translation

$$p' = MP = K \begin{bmatrix} R & T \end{bmatrix} P_w$$

$$w \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Camera translation and rotation

$$p' = MP = K \begin{bmatrix} R & T \end{bmatrix} P_w$$

$$w\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X_W \\ Y_W \\ Z_W \\ 1 \end{bmatrix}$$

Projective camera equations

$$p'_{3\times 1} = MP = K_{3\times 3} \begin{bmatrix} R_{3\times 3} & T_{3\times 1} \end{bmatrix}_{3\times 4} P_{w4\times 1}$$

11 degrees of freedom

Projective camera equations

$$p'_{3\times 1} = MP = K_{3\times 3} \begin{bmatrix} R_{3\times 3} & T_{3\times 1} \end{bmatrix}_{3\times 4} P_{w4\times 1}$$

M is defined up to scale! Multiplying M by a scalar won't change the image

$$p' \rightarrow \begin{bmatrix} \frac{M_1 P}{M_3 P} \\ \frac{M_2 P}{M_3 P} \end{bmatrix}$$

Theorem (Faugeras, 1993)

$$M = K \begin{bmatrix} R & T \end{bmatrix} = \begin{bmatrix} KR & KT \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix}$$

Let $\mathcal{M} = (\mathcal{A} \quad \mathbf{b})$ be a 3×4 matrix and let \mathbf{a}_i^T (i = 1, 2, 3) denote the rows of the matrix \mathcal{A} formed by the three leftmost columns of \mathcal{M} .

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix is that $\text{Det}(\mathcal{A}) \neq 0$.
- A necessary and sufficient condition for \mathcal{M} to be a zero-skew perspective projection matrix is that $\mathrm{Det}(\mathcal{A}) \neq 0$ and

$$(\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0.$$

• A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix with zero skew and unit aspect-ratio is that $\operatorname{Det}(\mathcal{A}) \neq 0$ and

$$\begin{cases} (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0, \\ (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_1 \times \boldsymbol{a}_3) = (\boldsymbol{a}_2 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3). \end{cases}$$

Properties of projection

- Points project to points
- Straight lines project to straight lines

Properties of projection

Angles are not preserved

Parallel lines meet

Perspective effects

Far away objects appear smaller

Today

- Pinhole cameras
- Cameras & lenses
- ▶ The geometry of pinhole cameras
- Other camera models

Weak perspective projection

Assumption:

All points have the same depth

$$\begin{cases} x' = -\frac{f}{Z_0} X \\ y' = -\frac{f}{Z_0} Y \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z_0 \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z_0/f \end{bmatrix}$$

Orthographic (affine) projection

Assumption
 Distance from center of projection to image plane is infinite

$$\begin{cases} x' = X \\ y' = Y \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} X \\ Y \\ Z \\ 1 \end{vmatrix} = \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

Weak perspective example

The kangxi emperor's southern inspection tour (1691-1698) Wang Hui

Affine or perspective?

Affine

- Simpler math
- Accurate enough when object is small and distant
- Useful for recognition

Pinhole

Used for 3D reconstruction

End – Pinhole camera

Now you know how it works