Universidad Veracruzna

Artificial Intelligence

Automata and Formal Languages

Activity 2

Leonardo Flores Torres

September 1, 2022

Build a DFA M_C that recognizes the regular language $C = \{w \mid w \text{ has at least 3 } a$'s and at least 2 b's $\}$ and has an alphabet $\Sigma = \{a, b\}$.

Solution:

To move forward with the solution of the problem, it is important to mention the following theorem:

Theorem 1 The class of regular languages is closed under the intersection operation.

Figure 1: Automata in which the automaton M_C is divided into.

Lets us assume that the language C of the automaton M_C is a regular language. In fact, a language is called a regular language if some finite automaton recognizes it^1 . The finite automaton M_C and the language it recognizes, C, can be regarded as the intersection of two regular languages A and B corresponding to the automata M_A and M_B , respectively. The regular language C was divided to take advantage of the intersection theorem between regular languages and to ease its construction. The regular languages A and B can be expressed as,

$$A = \{w \mid w \text{ has at least } 3 \text{ } a\text{'s}\},$$

$$B = \{w \mid w \text{ has at least } 2 \text{ } b\text{'s}\}.$$

The diagram of the automaton M_A is shown in fig. 1a, and it is described by the 5-tuple $(Q_A, \Sigma, \delta_A, r_0, F_A)$ where

$$\begin{aligned} Q_A &&= \{r_0, r_1, r_2, r_3\}\,, \\ F_A &&= \{r_3\}\,. \end{aligned}$$

The alphabet Σ is the same for both M_A and M_B . Additionally, the transition function has the same form, i.e., $\delta_I: Q_I \times \Sigma \to Q_I$ where $Q_I = Q_A, Q_B$. Similarly, the diagram of M_B is shown in fig. 1b and it is described by the 5-tuple $(Q_B, \Sigma, \delta_B, s_0, F_B)$ where,

$$\begin{array}{ll} Q_B &= \left\{ s_0, s_1, s_2 \right\}, \\ F_B &= \left\{ s_2 \right\}. \end{array}$$

¹Introduction to the Theory of Computation - Michael Sipser.

The transition tables that describe $\delta_A: Q_A \times \Sigma \to Q_A$ and $\delta_B: Q_B \times \Sigma \to Q_B$ are:

$Q_A \backslash \Sigma$	a	b	_	$Q_B \backslash \Sigma$	a	b
$egin{array}{c} r_0 \\ r_1 \\ r_2 \\ r_3 \end{array}$	r_1	r_0		s_0 s_1 s_2	s_0	s_1
r_1	r_2	r_1		s_1	s_1	s_2
r_2	r_3	r_2		s_2	s_2	s_2
r_3	r_3	r_3				

In the same way, the 5-tuple that describes M_C is $(Q_C, \Sigma, \delta_C, t_0, F_C)$ has a set of states such that

$$Q_C = \{t_{i,j} = (r_i, s_j) \mid r_i \in Q_A \land s_j \in Q_B\},$$

= $Q_A \times Q_B$.

The symbol $t_{i,j}$ was used to denote $t_{i,j} = (r_i, s_j)$ for convenince of use throughout this assignment.

Also, the alphabet is the same as the one originally defined, and the initial state is now a 2-tuple $t_{0,0} = (r_0, s_0)$. On the other hand, the accept states, for the intersection, are given by

$$F_C = \{t_{i,j} = (r_i, s_j) \mid r_i \in F_A \land s_j \in F_B\}$$

$$= F_A \times F_B ,$$

$$= \{r_3\} \times \{s_2\} ,$$

$$= \{(r_3, s_2)\} .$$

In contrast with the accept states coming from the union of two regular languages, the accept states in the intersection are only those whose both elements in the 2-tuple also belong to accept states.

Now, taking our attention to the transition function, it is defined as

$$\delta_C((r_i, s_j), a) = (\delta_A(r_i, a), \delta_B(s_j, a))$$
,

where $(r_i, s_i) \in Q_C$. Thus, it is possible to contruct the transition table based on the individual transitions from δ_A and δ_B , as shown below:

$Q_C \backslash \Sigma$	a	b
(r_0, s_0)	(r_1, s_0)	(r_0, s_1)
(r_0,s_1)	(r_1,s_1)	(r_0,s_2)
(r_0,s_2)	(r_1, s_2)	(r_0,s_2)
(r_1,s_0)	(r_2, s_0)	(r_1,s_1)
(r_1,s_1)	(r_2,s_1)	(r_1,s_2)
(r_1,s_2)	(r_2,s_2)	(r_1,s_2)
(r_2,s_0)	(r_3, s_0)	(r_2,s_1)
(r_2,s_1)	(r_3,s_1)	(r_2,s_2)
(r_2,s_2)	(r_3, s_2)	(r_2,s_2)
(r_3,s_0)	(r_3, s_0)	(r_3,s_1)
(r_3,s_1)	(r_3,s_1)	(r_3,s_2)
(r_3, s_2)	(r_3, s_2)	(r_3, s_2)

Figure 2: Automaton M_C that recognizes the regular language which is an intersection of the regular languages A and B.

 \therefore The resulting DFA M_C is shown in fig. 2 and it recognizes the regular language C which was constructed as an intersection of the regular languages A and B from M_A and M_B , respectively.