

Securing the Local Area Network

Layer 2 Security Considerations

Upon completion of the section, you should be able to:

- Describe CAM table overflow attacks.
- Configure port security to mitigate CAM table overflow attacks.
- Configure VLAN Truck security to mitigate VLAN hopping attacks.
- Implement DHCP Snooping to mitigate DHCP attacks.
- Implement Dynamic Arp Inspection to mitigate ARP attacks.
- Implement IP Source Guard to mitigate address spoofing attacks.

Describe Layer 2 Vulnerabilities

Switch Attack Categories

Topic 1:

CAM Table Attacks

Basic Switch Operation

```
S1# show mac-address-table
          Mac Address Table
       Mac Address
Vlan
                          Type
                                      Ports
       0001.9717.22e0
                                      Fa0/4
                          DYNAMIC
       000a.f38e.74b3
                                      Fa0/1
                          DYNAMIC
       0090.0c23.ceca
                                      Fa0/3
                          DYNAMIC
       00d0.ba07.8499
                                      Fa0/2
                          DYNAMIC
Sw1#
```

CAM Table Operation Example

CAM Table Attack

CAM Table Attack

CAM Table Attack Tools

```
macof -i eth1
36:a1:48:63:81:70 15:26:8d:4d:28:f8 0.0.0.0.26413 > 0.0.0.0.49492: S 1094191437:1094191437(0) win 512
16:e8:8:0:4d:9c da:4d:bc:7c:ef:be 0.0.0.0.61376 > 0.0.0.0.47523: S 446486755:446486755(0) win 512
18:2a:de:56:38:71 33:af:9b:5:a6:97 0.0.0.0.20086 > 0.0.0.0.6728: S 105051945:105051945(0) win 512
e7:5c:97:42:ec:1 83:73:1a:32:20:93 0.0.0.0.45282 > 0.0.0.0.24898: S 1838062028:1838062028(0) win 512
62:69:d3:1c:79:ef 80:13:35:4:cb:d0 0.0.0.11587 > 0.0.0.0.7723: S 1792413296:1792413296(0) win 512
c5:a:b7:3e:3c:7a 3a:ee:c0:23:4a:fe 0.0.0.0.19784 > 0.0.0.0.57433: S 1018924173:1018924173(0) win 512
88:43:ee:51:c7:68 b4:8d:ec:3e:14:bb 0.0.0.0.283 > 0.0.0.0.11466: S 727776406:727776406(0) win 512
b8:7a:7a:2d:2c:ae c2:fa:2d:7d:e7:bf 0.0.0.0.32650 > 0.0.0.0.11324: S 605528173:605528173(0) win 512
e0:d8:1e:74:1:e 57:98:b6:5a:fa:de 0.0.0.0.36346 > 0.0.0.0.55700: S 2128143986:2128143986(0) win 512
```

Mitigating CAM Table Attacks

Countermeasure for CAM Table Attacks

Port Security

```
S1(config)# interface f0/1
S1(config-if)# switchport port-security
Command rejected: FastEthernet0/1 is a dynamic port.
S1(config-if)# switchport mode access
S1(config-if)# switchport port-security
S1(config-if)# end
S1#
```

Enabling Port Security

Verifying Port Security

```
S1# show port-security interface f0/1
Port Security
                           : Enabled
Port Status
                           : Secure-shutdown
Violation Mode
                           Shutdown
Aging Time
                           : 0 mins
                           : Absolute
Aging Type
SecureStatic Address Aging : Disabled
Maximum MAC Addresses
Total MAC Addresses
                           : 0
Configured MAC Addresses
                           : 0
Sticky MAC Addresses
                           : 0
Last Source Address:Vlan
                           : 0000.0000.0000:0
Security Violation Count
S1#
```

Port Security Options

Enabling Port Security Options

Setting the Maximum Number of Mac Addresses

```
Switch(config-if)

switchport port-security maximum value
```

Manually Configuring Mac Addresses

```
Switch(config-if)

switchport port-security mac-address mac-address {vlan | {access | voice}}}
```

Learning Connected Mac Addresses Dynamically

```
Switch (config-if)
switchport port-security mac-address sticky
```

Port Security Violations

Security Violation Modes:

Security Violation Modes

No

- Protect
- Restrict

Shutdown

Shutdown

Security violation wodes					
Violation Mode	Forwards Traffic	Sends Syslog Message	Increases Violation Counter	Shuts Down Port	
Protect	No	No	No	No	
Restrict	No	Yes	Yes	No	

Yes

Yes

Yes

Port Security Aging

Switch (config-if)

switchport port-security aging {static | time time| type {absolute | inactivity}}

Parameter	Description
static	Enable aging for statically configured secure addresses on this port.
time time	 Specify the aging time for this port. The range is 0 to 1440 minutes. If the time is 0, aging is disabled for this port.
type absolute	 Set the absolute aging time. All the secure addresses on this port age out exactly after the time (in minutes) specified and are removed from the secure address list.
type inactivity	 Set the inactivity aging type. The secure addresses on this port age out only if there is no data traffic from the secure source address for the specified time period.

Port Security with IP Phones


```
S1(config) # interface f0/1
S1(config-if) # switchport mode access
S1(config-if) # switchport port-security
S1(config-if) # switchport port-security maximum 3
S1(config-if) # switchport port-security violation shutdown
S1(config-if) # switchport port-security aging time 120
S1(config-if) #
```

Topic 2:

Mitigating VLAN Attacks

VLAN Hopping Attacks

VLAN Double-Tagging Attack

Mitigating VLAN Hopping Attacks

switch(config-if)# switchport mode access

Configure port as an access port

Implementing Switch Port Analyzer

SPAN

Switch Port Analyzer

- The Switch Port Analyzer (SPAN) feature is used to mirror traffic from one source switch port or VLAN to a destination port.
- It allows a monitoring device, such as a network analyzer or "sniffer", to be attached to the destination port for capturing traffic.
- SPAN is available in two different forms:
 - SPAN: Both the SPAN source and destination are located on the same switch.
 - Remote SPAN (RSPAN): The SPAN source and destination are located on different switches. Mirrored traffic is copied over a special – purpose VLAN across trunks between switches from the source to the destination.

SPAN

Both the SPAN source and destination are located on the same switch.

SPAN Configuration

Define the source of the SPAN session data:

```
Switch(config)# monitor session-id source {vlan vlan-
list | interface interface-number} [tx | rx | both]
```

- session-id: Uniquely identify the SPAN session.
- source interface interface-number: Specify the interface which traffic incoming or outgoing traffic will be monitored.
- **source vlan vlan-list**: Specify the VLANs which traffic transit through will be monitored.
- tx | rx | both: Traffic can be selected for mirroring based on the direction it is traveling the SPAN source (tx: transmitted from the source, rx: received from the source, both: traffic in both directions).

SPAN Configuration (Cont.)

Identify the SPAN destination:

Switch(config) # monitor session-id destination interface interface-number [encapsulation replicate][ingress {vlan vlan-id | dot1q vlan vlan-id | is1}]

- session-id: Uniquely identify the SPAN session.
- destination interface interface-number: Identify the destination interface used by the session.
- encapsulation replicate: Capture any VLAN tagging information of the Layer 2 Protocol packets.
- ingress vlan vlan-id: Allows sending traffic into the destination port. Sending traffic will be sent untagged to VLAN vlan-id.
- ingress {dot1q vlan vlan-id | is1}: Allows sending traffic into the destination port. Sending traffic will be sent with tag dot1q or ISL. With dot1q tag, native VLAN is specified.

SPAN Configuration (Cont.)

Example:

```
SW(config) # monitor session 1 source interface g1/0/1 both
SW(config) # monitor session 1 destination interface g1/0/48
```

 Monitoring traffic going to and coming from a device connected to the interface g1/0/1 and the network analyzer is connected to the interface g1/0/48.

Introduction to the Spanning Tree Protocol

Spanning Tree Manipulation

Implementing BPDUGuard to Mitigate Spanning Tree Manipulation

```
Switch(config)#spanning-tree portfast bpduguard
or
Switch(config-if)#spanning-tree bpduguard enable
```

The BPDU – guard feature shuts down ports when ports receive BPDU.

Auto recovery from err-disable state

- If the BPDU guard feature has shutdown a port, the port can be restored to an operational state using the error-disable recovery procedure.
- Enable recovery cause is BPDU guard :

Switch (config) #errdisable recovery cause bpduguard

Set a global recovery timeout by using the command:

Switch (config) #errdisable recovery interval seconds

