Machine learning workshops for material scientists

Lecture 6: Supervised linear model with Python

October 31, 2022

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's goals

- Quick recap of linear models
- Get to know Python library
- Practice on Colab

Linear and logistic regression

Linear and logistic regression key points

- Predictions are made via linear combination of input features
 - $\hat{y} = b_0 + b_1 x_1 + \dots + b_n x_n$
 - $-\log\left(\frac{\hat{y}}{1-\hat{y}}\right) = b_0 + b_1 x_1 + \dots + b_n x_n$
- Primary objectives:
 - MSE: $\frac{1}{n}\sum (y \hat{y})^2$
 - Log-Likelihood, Cross-Entropy: $\sum y \log(\hat{y}) + (1 y) \log(1 \hat{y})$
- Regularization
 - LASSO: objective + $\alpha \sum |b_i|$ or Ridge: Objective + $\alpha \sum b_i^2$

Linear regression

https://sixsigmadsi.com/glossary/simple-linear-regression/

$$- \hat{y} = b_0 + b_1 x_1 + \dots + b_n x_n$$

- Minimize MSE: $\frac{1}{n}\sum (y \hat{y})^2$
- MSE objective is related to assumption that errors are normally distributed and centered at zero
- Data transformation (e.g., log) can be beneficial

Linear regression in Python

sklearn.linear_model.LinearRegression

class $sklearn.linear_model.Linear_Regression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_jobs=None, positive=False)$ [source]

```
from sklearn.linear_model import LinearRegression
linear = LinearRegression().fit(input_data, label)
prediction = linear.predict(new_data)

## array of fitted coefficients (b<sub>1</sub>, b<sub>2</sub>,..., b<sub>n</sub>) for input features
linear.coef_

## y-intercept (b<sub>0</sub>)
linear.intercept
```

Sample weighting

fit(X, y, sample_weight=None)

Fit linear model.

Parameters::

X: {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.

y: array-like of shape (n_samples,) or (n_samples, n_targets)

Target values. Will be cast to X's dtype if necessary.

sample_weight : array-like of shape (n_samples,), default=None
Individual weights for each sample.

- Add weight to the calculation of objective: $\sum w_i(y_i \hat{y}_i)^2$
- Large weight → focus on fitting those data points

Ridge and LASSO in Python

sklearn.linear_model.Ridge

 $class \ skleann.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize='deprecated', copy_X=True, max_iter=None, \\ tol=0.001, solver='auto', positive=False, random_state=None) \\ [source]$

sklearn.linear_model.Lasso

 $class \ \, sklearn.linear_model. Lasso(alpha=1.0, *, fit_intercept=True, normalize='deprecated', precompute=False, copy_X=True, \\ max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') \\ [source]$

- alpha = regularization strength
 - Larger alpha → try to keep coefficients small
 - Small alpha → focus more on prediction performance

Ridge and LASSO usage

```
from sklearn.linear model import Ridge, Lasso
## Ridge model
ridge = Ridge(alpha = 10, random state = 25)
ridge.fit(input data, label)
## LASSO model
lasso = Lasso(alpha = 10, random state = 25)
lasso.fit(input data, label)
## make predictions
prediction = ridge.predict(new data)
```

Logistic regression

Image from Wikipedia

 Transform linear regression output into probability via log-odd function

$$-\log\left(\frac{\hat{y}}{1-\hat{y}}\right) = b_0 + b_1 x_1 + \dots + b_n x_n$$

Minimize Cross-Entropy:

$$- \sum y \log(\hat{y}) + (1-y) \log(1-\hat{y})$$

- Data transformation (e.g., log) can be beneficial
- Well-calibrated (interpretable output)

Logistic regression in Python

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

- penalty = type or regularization (I1 = LASSO, I2 = Ridge)
- C = inverse of regularization strength (1 / alpha)
- solver = optimization algorithm to be used
 - Not all support LASSO regularization → change to "liblinear"

Logistic regression usage

```
from sklearn.linear model import LogisticRegression
logreg = LogisticRegression(penalty = '12', C = 0.01, random state = 25)
logreg.fit(input data, label)
## coefficients
logreg.coef
logreg.intercept
## predict classes
pred class = logreg.predict(new data)
## predict raw probabilities
pred prob = logreg.predict proba(new data)
```

Support vector machine

Support vector machine key points

- Hinge loss
 - Penalize correctly classified data points that lie too close to the decision boundary
 - Do not penalize small regression error
- Generalize to non-linear feature engineering via kernel
 - Radial basis
 - Polynomial

Does not output class probabilities

Source: towarddatasciences.com

Kernels

- Radial basis operates like nearest neighbor algorithm
 - Require large training data to be effective
- Polynomial can work well when there are interactions between features
 - Terms $x_i x_i$ are produced

Source: r-bloggers.com

Support vector classifier versus regressor

Rosenbaum, L. et al. J of Cheminformatics 5:33 (2013)

Support vector classifier in Python

sklearn.svm.LinearSVC

 $class \ skleann.svm. LinearSVC (penalty='l2', loss='squared_hinge', *, dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000)$

sklearn.svm.SVC

 $class \ skleann.svm.svc(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]$

- C = inverse of regularization strength
- kernel, degree = set kernel for non-linear SVM
- probability = make the model estimate probability (empirically from cross-validation), enable predict_proba

Support vector classifier usage

```
from sklearn.svm import LinearSVC, SVC
## linear kernel
linearsvc = LinearSVC(C = 0.01, random state = 25)
linearsvc.fit(input data, label)
prediction = linearsvc.predict(new data)
linearsvc.coef
## non-linear kernel
svc = SVC(C = 0.01, kernel = 'poly', degree = 2, random state = 25)
svc.fit(input data, label)
prediction = svc.predict(new data)
## get all support vectors (data points near decision boundary)
svc.support vectors
```

Support vector regressor in Python

sklearn.svm.LinearSVR

class $skleann.svm.LinearSVR(*, epsilon=0.0, tol=0.0001, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1.0, dual=True, verbose=0, random_state=None, max_iter=1000)$

sklearn.svm.SVR

class $sklearn.svm.SVR(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)$

- C = inverse of regularization strength
- kernel, degree = set kernel for non-linear SVM
- epsilon = maximum regression error to not penalize

Support vector regressor usage

```
from sklearn.svm import LinearSVR, SVR
## linear kernel
linearsvr = LinearSVR(C = 0.01, epsilon = 0.5, random state = 25)
linearsvr.fit(input data, label)
prediction = linearsvr.predict(new data)
linearsvr.coef
## non-linear kernel
svr = SVR(C = 0.01, kernel = 'poly', degree = 2, epsilon = 0.5, random state = 25)
svr.fit(input data, label)
prediction = svr.predict(new data)
## get all support vectors (data points near decision boundary)
svr.support vectors
```

Data splitting

Train-Val-Test

Source: medium.com

Data splitting tips

- **Test or no test**: can you dedicate enough sample to test set?
- Label distribution on validation and test set
 - Stratified versus 1:1
- Cross-validation versus bootstrapping
 - CV ensures that all samples will be used equally
 - Bootstrapping provides more control on label distribution
- Monitor performances on each split
 - Mean and SD

Data splitting examples

- **Example 1**: 223 negative, 77 positive
 - **Test**: 31 negative, 27 positive
 - **Validation**: 25 negative, 25 positive
 - **Training**: 167 negative, 25 positive
 - Repeat training-validation split using bootstrapping
- **Example 2**: 48 negative, 23 positive
 - 2-fold cross-validation: 24 negative, 11 positive
 - Perform only logistic regression model
 - Limited to discussion of feature importance

Data splitting in Python

sklearn.model_selection.train_test_split

```
sklearn.model_selection.train_test_split(*arrays, test_size=None, train_size=None, random_state=None, shuffle=True,
stratify=None)
[source]
```

```
from sklearn.model_selection import train_test_split

## random split
X_train, X_test, y_train, y_test = train_test_split(input_data, label, test_size = 0.25, random_state = 25)

## stratified split
X_train, X_test, y_train, y_test = train_test_split(input_data, label, test_size = 0.25, stratify = label, random_state = 25)
```

Cross-validation in Python

sklearn.model_selection.KFold

class sklearn.model_selection.KFold(n_splits=5, *, shuffle=False, random_state=None)

sklearn.model_selection.StratifiedKFold

class sklearn.model_selection.StratifiedKFold(n_splits=5, *, shuffle=False, random_state=None)

- n_splits = number of folds
- Fixed random state and set shuffle = True (otherwise will get consecutive)
- Stratification will always be done based on the label (y)

Cross-validation usage

```
from sklearn.model selection import StratifiedKFold
skf = StratifiedKFold(n splits = 10, shuffle = True, random state = 25)
## a fitted PCA can be used to transform any new data
for train index, test index in skf.split(input data, label):
   X train = input data[train index, :]
   y train = label[train index]
   X test = input data[test index, :]
   y test = label[test index]
    ## model development
```

Bootstrapping in Python

sklearn.model_selection.ShuffleSplit

class sklearn.model_selection.ShuffleSplit(n_splits=10, *, test_size=None, train_size=None, random_state=None)

sklearn.model_selection.StratifiedShuffleSplit

class sklearn.model_selection.StratifiedShuffleSplit(n_splits=10, *, test_size=None, train_size=None,
random_state=None)

- n_splits = number of bootstrap samples
- Controllable sizes of both train and test splits
- Stratification will be done based on the label (y)

Bootstrapping usage

```
from sklearn.model selection import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(n splits = 100, train size = 0.5, test size = 0.3,
random state = 25)
## a fitted PCA can be used to transform any new data
for train index, test index in sss.split(input data, label):
   X train = input data[train index, :]
   y train = label[train index]
   X test = input data[test index, :]
   y test = label[test index]
    ## model development
```

Hyperparameter tuning

Hyperparameter tuning tips

- Understand the impact of key parameters for each model family
 - Increase α in regularization $\alpha \sum b_i^2$ helps overfitting
 - Decrease α will instead help underfitting
- No need to tune aggressively
 - $\alpha \in \{0.0001, 0.01, 1, 100\}$
 - $max_depth \in \{5, 10, 20, None\}$
- Monitor multiple metrics: AUROC, average precision, etc.
- Look for pattern in the result
 - Large enough α yields good performance

Hyperparameter tuning in Python

sklearn.model_selection.GridSearchCV

class sklearn.model_selection.**GridSearchCV**(estimator, param_grid, *, scoring=None, n_jobs=None, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, return_train_score=False) [source]

- estimator = number of directions/axes to produce
- param_grid = dictionary of hyperparameters to tune
- scoring = metrics to keep track of
- n_jobs = use multiple CPU to speed up the calculation
- refit = whether to train using the optimal hyperparameters
- cv = data splitting

Hyperparameter tuning usage

```
## preparing data split, base model, hyperparameters
skf = StratifiedKFold(n splits = 10, shuffle = True, random state = 25)
logreg = LogisticRegression(solver = 'liblinear', max iter = 1000, random state = 25)
logreg param = {'C': [0.0001, 0.01, 1, 100],
                'penalty': ['11', '12']}
## define and fit GridSearchCV
grid logreg = GridSearchCV(logreg, logreg param, scoring = ['accuracy', 'roc auc',
'average precision'], n jobs = 4, refit = 'average precision', cv = skf)
grid logreg.fit(input data, label)
## dictionary containing full tuning results (performance scores, time spent, etc.)
grid logreg.cv results
```

GridSearchCV output

```
'param kernel': masked array(data = ['poly', 'poly', 'rbf', 'rbf'],
                            mask = [False False False False]...)
'param gamma': masked array(data = [-- -- 0.1 0.2],
                           mask = [ True True False False]...),
'param degree': masked array(data = [2.0 3.0 -- --],
                            mask = [False False True True]...),
'split0 test score' : [0.80, 0.70, 0.80, 0.93],
'split1 test score' : [0.82, 0.50, 0.70, 0.78],
'mean_test_score' : [0.81, 0.60, 0.75, 0.85],
'std test score' : [0.01, 0.10, 0.05, 0.08],
'rank test score' : [2, 4, 3, 1],
'split0 train score' : [0.80, 0.92, 0.70, 0.93],
'split1 train score' : [0.82, 0.55, 0.70, 0.87],
'mean train score' : [0.81, 0.74, 0.70, 0.90],
'std train score' : [0.01, 0.19, 0.00, 0.03],
'mean fit time' : [0.73, 0.63, 0.43, 0.49],
'std fit time' : [0.01, 0.02, 0.01, 0.01],
'mean score time' : [0.01, 0.06, 0.04, 0.04],
'std score time' : [0.00, 0.00, 0.00, 0.01],
'params'
                    : [{'kernel': 'poly', 'degree': 2}, ...],
```

Any question?