

An approach towards hierarchical integration for embedded system, clusters and grid: the DRBL project

Steven Shiau, Kuo-Lien Huang and Fang-Pang Lin National Center for High-performance Computing, Taiwan

http://drbl.nchc.org.tw, http://drbl.sf.net GFK Summer Workshop, Aug 2004

Outline

- Introduction to Diskless Remote Boot in Linux (DRBL)
- Embedded system DRBL-based mobile sensors
- Cluster computing scalable cluster management
- Education smart classroom
- Grid environment DRBL-G
- Q&A

Outline

- Introduction to Diskless Remote Boot in Linux (DRBL)
- Embedded system DRBL-based mobile sensors
- Cluster computing scalable cluster management
- Education smart classroom
- Grid environment DRBL-G
- Q&A

DRBL - Diskless Remote Boot in Linux

 Developed by NCHC open source task force, based on

Network boot mechanism

- PXE (Preboot Execution Environment)
- Etherboot
- NFS file system
- Other management programs
- Major Features
 - Virtually centralized management
 - Integrate distributed system, either embedded or cluster, into a virtually single system

Diskfull, diskless or systemless

- diskfull client nodes have dedicated disks
- diskless client nodes have no disks
- systemless client nodes have dedicated disks, but they don't contain a disk bootloader and they are boot from the network, disk is for swap, tmp
- Why diskless?
 - It's easier to manage one image than many individual installations
 - save budget
 - a disk is a mechanical part that is subject to failure
 - lesser mechanical parts, greater reliability

Diskfull, diskless or systemless

- Using diskless, systemless or diskfull for clients?
 - depends on applications
- DRBL provides diskless and systemless mode for clients, we also have a program called "Clonezilla" to deploy a diskfull system
- Clonezilla has been used in many schools to clone the M\$ Windows or Linux system image

Development and tuning in DRB

initrd, busybox pcitable

init, booting, runlevel

NIS, SSH, NTP...

kernel space

NBD

KNFSD

DEVFS

TMPFS

• Live CD is available in http://drbl.nchc.org.tw

Schematic figure for DRBL

server

switch

client nodes pxe/etherboot

pxe/etherboot

DHCP

—IP →

192.168.0.1

192.168.0.40

TFTP

<u>kernel</u> ►

boot

boot

NFS

file system

/, /usr, /home ...

/, /usr, /home ...

NIS

account •

user login

user login

Adopted areas

- Embedded system
 - DRBL-based mobile sensors
- Cluster computing
 - Scalable cluster management
- Education
 - Smart classroom
- Grid environment
 - DRBL-G

Hierarchical integratio n

SMPS

DRBL-G

Taiwan UniGrid

- DRBL

Storage/Data

NSYSU

THU

Embedded system

Data logger (CR10X,,campbell)

Network Backbone

DFES

Control system

Domain Knowledge Center

Computers - DRBL

LTES

Observation

Station-DRBL

NCHC

Cluster computing

Tele-robotics -**DRBL**

Outline

- Introduction to Diskless Remote Boot in Linux (DRBL)
- Embedded system DRBL-based mobile sensors
- Cluster computing scalable cluster management
- Education smart classroom
- Grid environment DRBL-G
- Q&A

Embedded system - DRBL-based mobile sensors

From sensors to robot

Eco-grid
Agriculture-grid

Wireless Robot Net

- Basic idea: intelligent and mobile sensors using Grids.
- Ex. IP-driven Horse Robot
 - Redesign the electronic control panel: PC104 w/ RS232, IDE, Ethernet and USB
 - Use both IDE HD and/or DRBL system setup
 - RS232 & Ethernet for the IP-driven, IPv4 or IPv6, wireless robot control
 - USB for webcam

- Vortex86 200MHz SoC
- 128MB SDRAM
- Setup in DRBL, easy to deploy different systems

*movie

Outline

- Introduction to Diskless Remote Boot in Linux (DRBL)
- Embedded system DRBL-based mobile sensors
- Cluster computing scalable cluster management
- Education smart classroom
- Grid environment DRBL-G
- Q&A

DRBL in cluster computing

- The advantages come with diskless/systemless environment – management, budget, reliability
- Manage one system image only
 - homogeneous system
- Client machines can be workstations at daytime, and become cluster computing nodes at night
 - These nodes can be very quickly integrated into a cluster without any alteration of the main OS stored on their disks
- Almost "zero time (effortless)" installation for the OS and application program in client nodes

NPACI Rocks & OSCAR

- NPACI Rocks
- An Open Source High Performance Linux Cluster Solution
- http://rocks.npaci.edu
- OSCAR Open Source Cluster Applications Resources
- http://oscar.sourceforge.net/

DRBL, Rocks & OSCAR

	DRBL	Rocks	OSCAR
diskless/systemless	Y	N	N (*1)
diskfull	Y(*2)	Y	Y
cluster packages	Y(*3)	Y	Y
scale up	good(*4)	excellent	excellent

- 1. A project called "Thin-OSCAR" provides the diskless/systemless OSCAR cluster
- 2. Using Clonezilla, DRBL can deploy diskfull nodes
- 3. Packages are same with those in Rocks and OSCAR, but some are not included
- 4. From good to excellent
 - Good: NFSRoot, however many-to-1 problem in large scale
 - Excellent: (1) ramdisk and multicast model or (2) hierarchical network topology, the scale can be excellent

PC clusters using DRBL in NCHC

- Two PC clusters are deployed with DRBL
 - ASE cluster : 8 + 1 nodes
 - GT3 cluster : 4 + 1 nodes
- Deploying DRBL to large scale cluster computing
 - Formosa I diskfull approach by clonezilla
 - DRBL extention to Formosa I and Taiwan Unigrid

NCHC PC Cluster - Formosa I

- Built in Oct 2003
- Rank 242 in Top500 on Jun/2004
- CPUs: 300 (2 CPUs X 150 nodes)
- Memory: 384GB (4 GB X 32 + 2 GB X 128)
- Gigabits swtich & NICs
- R_{peak}: 1.68 TFLOPS
- R_{max}: 1.002 TFLOPS

Taiwan UniGrid Topology

Hardware Infrastructure

Unigrid Project Webpage

http://unigrid.org.nchc.tw/

NEHE 財團法人國家實驗研究院籌備處 NEHE 国际高速網路與計算中心 NATIONAL CENTER FOR HIGH-PERFORMANCE COMPUTING

Taiwan

UniGrid

System Monitoring Webpage

http://unigrid.nchc.org.tw/scmswe

Outline

- Introduction to Diskless Remote Boot in Linux (DRBL)
- Embedded system DRBL-based mobile sensors
- Cluster computing scalable cluster management
- Education smart classroom
- Grid environment DRBL-G
- Q&A

A different kind of light-weight green computing - computer classroom and office

- > 100 sites, > 4000 PCs
- **DRBL** users:
 - **Public sector**
 - Primary/high school 55
 - **University/college**
 - Hospitals
 - TV stations
 - Governments
 - NPO
 - **Private sector**
 - **Internet and business** companies

Outline

- Introduction to Diskless Remote Boot in Linux (DRBL)
- Embedded system DRBL-based mobile sensors
- Cluster computing scalable cluster management
- Education smart classroom
- Grid environment DRBL-G
- Q&A

Grid Computing

DRBL-G

Implemented by
Chien-Lin Huang, Gary Wu, Julian YuChung Chen, Weicheng Huang
NCHC

- Use DRBL to setup grid-enabled clusters
 - Two testing PC clusters are grid-enabled with DRBL
 - ASE cluster: 8 + 1 nodes
 - GT3 cluster: 4 + 1 nodes
- DRBL-G environment
 - Use globus + shell script + DRBL to integrate the infrastructure
 - Web portal

- A web portal is designed to
 - Describe the workflow
 - Monitor the job execution
 - Generate the script based on the workflow description
- Use DRBL to provide a pool of grid-enabled machines
 - DRBL Server
 - Load sharing between DRBL clients
 - Provide a 'sandbox' environment for DRBL clients
 - no sensitive data
 - only /tmp have read-write permission
 - DRBL Clients
 - A pool of grid-enabled machines
 - Take care of grid proxy generation and the script execution

Use the Web Portal to describe the work flow

• Use the Web Portal to monitor the job execution

myproxy client

Reference

- DRBL Project,
 - http://drbl.sf.net; http://drbl.nchc.org.tw
- EtherBoot Project,
 - http://www.etherboot.org
- Preboot Execution Environment,
 - ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf
- ECOGRID, Grid For Long Term Ecological Research
 - http://ecogrid.nchc.org.tw
- NPACI Rocks Cluster Distribution,
 - http://rocks.npaci.edu
- OSCAR: Open Source Cluster Application Resources,
 - http://oscar.openclustergroup.org
- thin-OSCAR: systemless clients support for OSCAR
 - http://thin-oscar.ccs.usherbrooke.ca/