Binomial Coefficients and Identities

The Binomial Theorem

- As we remarked in Section 6.3, the number of r-combinations from a set with n elements is often denoted by $\binom{n}{r}$. This number is also called a **binomial coefficient** because these numbers occur as coefficients in the expansion of powers of binomial expressions such as $(a + b)^n$
- The binomial theorem gives the coefficients of the expansion of powers of binomial expressions. A **binomial** expression is simply the sum of two terms, such as a+b

The expansion of $(x+y)^3$ can be found using combinatorial reasoning instead of multiplying the three terms out. When $(x+y)^3 = (x+y)(x+y)(x+y)$ is expanded, all products of a term in the first sum, a term in the second sum, and a term in the third sum are added. Terms of the form x^3 , x^2y , xy^2 , and y^3 arise. To obtain a term of the form x^3 , an x must be chosen in each of the sums, and this can be done in only one way. Thus, the x^3 term in the product has a coefficient of 1. To obtain a term of the form x^2y , an x must be chosen in two of the three sums (and consequently a y in the other sum). Hence, the number of such terms is the number of 2-combinations of three objects, namely, $\binom{3}{2}$. Similarly, the number of terms of the form xy^2 is the number of ways to pick one of the three sums to obtain an x (and consequently take a y

from each of the other two sums). This can be done in $\binom{3}{1}$ ways. Finally, the only way to obtain a y^3 term is to choose the y for each of the three sums in the product, and this can be done in exactly one way. Consequently, it follows that

$$(x+y)^3 = (x+y)(x+y)(x+y) = (xx+xy+yx+yy)(x+y)$$

= $xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy$
= $x^3 + 3x^2y + 3xy^2 + y^3$.

THE BINOMIAL THEOREM Let *x* and *y* be variables, and let *n* be a nonnegative integer. Then

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n.$$

What is the expansion of $(x + y)^4$?

$$(x+y)^{4} = \sum_{j=0}^{4} {4 \choose j} x^{4-j} y^{j}$$

$$= {4 \choose 0} x^{4} + {4 \choose 1} x^{3} y + {4 \choose 2} x^{2} y^{2} + {4 \choose 3} x y^{3} + {4 \choose 4} y^{4}$$

$$= x^{4} + 4x^{3} y + 6x^{2} y^{2} + 4x y^{3} + y^{4}.$$

What is the coefficient of $x^{12}y^{13}$ in the expansion of $(x + y)^{25}$?

From the binomial theorem it follows that this coefficient is

$$\binom{25}{13} = \frac{25!}{13! \, 12!} = 5,200,300.$$

What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x - 3y)^{25}$?

First, note that this expression equals $(2x + (-3y))^{25}$. By the binomial theorem, we have

$$(2x + (-3y))^{25} = \sum_{j=0}^{25} {25 \choose j} (2x)^{25-j} (-3y)^j.$$

Consequently, the coefficient of $x^{12}y^{13}$ in the expansion is obtained when j=13, namely,

$$\binom{25}{13} 2^{12} (-3)^{13} = -\frac{25!}{13! \, 12!} 2^{12} 3^{13}.$$

CA1: Find the coefficient of x^5y^8 in $(x + y)^13$.

CA2: What is the coefficient of x^101y^99 in the expansion of $(2x - 3y)^200$?

CA3: What is the coefficient of x^7 in $(1 + x)^1$?

CA4: What is the coefficient of x^9 in $(2 - x)^19$?