

DUT-IDIA Semestre 1

Module Architecture des Ordinateurs

Chapitre II

ALGÈBRE DE BOOLE

Pr: Mustapha Johri

Année Universitaire: 2024 - 2025

I. Fonctions logiques

- 1. Définitions
- 2. Variables et Fonctions logiques
- 3. Opérateurs logiques

II. Lois fondamentales d'algèbre de Boole

- 1. Opérateurs: NON, ET, OU, XOR
- 2. Distributivité, Associativité, Dualité d'algèbre de Boole...
- 3. Théorèmes de De Morgan

III. Portes logiques

IV. Formes canoniques d'une fonction logique

V. Simplification des fonctions logiques

- 1. Simplification algébrique
- 2. Tableaux de Karnaugh

FONCTIONS LOGIQUES

1. Définitions

- Les machines numériques sont constituées d'un ensemble de circuits électroniques.
- Chaque circuit fournit une fonction logique bien déterminée: addition, comparaison,....

- La fonction F(A,B) est le résultat d'un ensemble d'opération effectuées sur les données A et B.
- Pour concevoir et réaliser un circuit, on doit avoir un modèle mathématique de la fonction à réaliser par ce circuit.
- Ce modèle doit prendre en considération le système binaire.

1. Définitions

- Le modèle mathématique utilisé est celui de Boole (George Boole est un logicien, mathématicien et philosophe britannique (1815-1864).
- Une variable logique (booléenne) est une variable qui peut prendre soit la valeur 0 ou 1.
- Généralement, elle est exprimée par un seul caractère alphabétique en majuscule ou minuscule (A, B, s, ...).
- Une fonction logique est une fonction qui relie N variables logiques à une seule valeur logique:

$$A,B,C,.... \rightarrow F(A,B,C,....)$$

2. Variables et fonctions logiques

- Dans l'Algèbre de Boole, il existe trois opérateurs de base: NON (négation), ET (conjonction), OU (disjonction).
- Si une fonction logique possède N variables logiques → la fonction possède 2ⁿ valeurs (2ⁿ combinaisons).

Exemple: avec deux variables logiques A et B on a 2² valeurs possibles qui sont 00, 01, 11, et 10

■ Les 2ⁿ combinaisons peuvent être représentées dans une table appelée: table de vérité (TV).

- **☐** Négation: NON
- NON: est un opérateur unaire (une seule variable) qui a pour rôle d'inverser la valeur d'une variable.

$$F(A) = Non A = A$$
 (A barre)

Α	$ar{A}$
0	1
1	0

- **□** Conjonction: ET (AND)
- ET est un opérateur binaire (deux variables), a pour rôle de réaliser un produit logique entre deux variables booléennes.
- **ET** fait la **conjonction** entre deux variables.
- ET est défini par : $F(A,B) = A \cdot B$

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

- ☐ Disjonction: OU (OR)
- OU est un opérateur binaire (deux variables), a pour rôle de réaliser la somme logique entre 2 variables logiques.
- **OU** fait la **disjonction** entre deux variables.
- OU est défini par F(A,B) = A + B (il ne faut pas confondre avec la somme arithmétique).

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

- Les opérateurs ET et OU peuvent réaliser le produit et la somme de plusieurs variables logiques.
- Dans une expression, on peut aussi utiliser les parenthèses.
- Pour évaluer une **expression logique** (**fonction logique**):
 - * Evaluer les sous expressions entre les **parenthèses**.
 - **Puis le complément: NON,**
 - * En suite le **produit** logique: ET,
 - **Enfin** la **somme** logique: OU.

$$F(A, B, C) = (\overline{A \cdot B}) \cdot (C + B) + A \cdot \overline{B} \cdot C$$

si on veut calculer $F(0,1,1)$ alors:

$$F(0,1,1) = (\overline{0.1})(1+1) + 0.\overline{1}.1$$

$$=(\overline{0})(1)+0.0.1$$

$$=1.1+0.0.1$$

$$= 1 + 0$$

=1

$$= 1 + 0$$

☐ Exercice

Trouver la table de vérité de cette fonction?

10

- Pour trouver la table de vérité, il faut trouver la valeur de la fonction F pour chaque combinaison des trois variables A, B, C.
- 3 variables \rightarrow 2 ³ = 8 combinaisons.

$$F(A, B, C) = (\overline{A . B}) . (C + B) + A.\overline{B}.C$$

$$F(0,0,0) = (\overline{0.0}) . (0+0) + 0.\overline{0}.0 = 0$$

$$F(0,0,1) = (\overline{0.0}) . (1+0) + 0.\overline{0}.1 = 1$$

$$F(0,1,0) = (\overline{0.1}) . (0+1) + 0.\overline{1}.0 = 1$$

$$F(0,1,1) = (\overline{0.1}) . (1+1) + 0.\overline{1}.1 = 1$$

$$F(1,0,0) = (\overline{1.0}) . (0+0) + 1.\overline{0}.0 = 0$$

$$F(1,0,1) = (\overline{1.0}) . (1+0) + 1.\overline{0}.1 = 1$$

$$F(1,1,0) = (\overline{1.1}) . (0+1) + 1.\overline{1}.0 = 0$$

$$F(1,1,1) = (\overline{1.1}) . (1+1) + 1.\overline{1}.1 = 0$$

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

LOIS FONDAMENTALES D'ALGÈBRE DE BOOLE

□Opérateur NON

Théorème de DE MORGAN

$$A = A$$

$$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$$

$$A + A = 1$$

$$\overline{A.B} = \overline{A} + \overline{B}$$

$$A \cdot A = 0$$

□ Opérateur **OU**

$$(A + B) + C = A + (B + C) = A + B + C$$

Associativ ité

$$A + B = B + A$$

Commutativité

$$A + A = A$$

Idempotence

$$A + 0 = A$$

Elément neutre

$$A + 1 = 1$$

Elément absorbant

□ Opérateur **ET**

$$(A.B).C = A.(B.C) = A.B.C$$

Associativ ité

$$A \cdot B = B \cdot A$$

Commutativité

$$A \cdot A = A$$

Idempotence

$$A . 1 = A$$

Elément neutre

$$A \cdot 0 = 0$$

Elément absorbant

□ Exercice

Soit la fonction logique suivante :

$$F(a,b,c) = (a+b).(\bar{a}+b+c)$$

Calculer \bar{F} ?

Développer F?

□ Autres opérateurs logiques

□ OU exclusif XOR

$$F(A, B) = A \oplus B$$

$$A \oplus B = \overline{A}.B + A.\overline{B}$$

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

□ Exercice

Calculer

$$(A+B).(\bar{A}+\bar{B})$$

□ NON ET (NAND)

$$F(A,B) = \overline{A \cdot B}$$

A	В	A•B
0	0	1
0	1	1
1	0	1
1	1	0

□ NON OU (NOR)

$$F(A,B) = \overline{A+B}$$

Α	В	A + B
0	0	1
0	1	0
1	0	0
1	1	0

- En utilisant les **NAND** et les **NOR**, on peut **exprimer** n'importe quelle **expression** (fonction) logique.
- Pour cela, il suffit d'exprimer les opérateurs de base (NON, ET, OU) avec des NAND et des NOR.

□ Distributivité

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$
 Distributivité du ET sur le OU
 $A + (B \cdot C) = (A+B) \cdot (A+C)$ Distributivité du OU sur le ET

□ Autres relations utiles

$$A + (A \cdot B) = A$$

 $A \cdot (A + B) = A$
 $(A + B) \cdot (A + \overline{B}) = A$
 $A + \overline{A} \cdot B = A + B$ Exercice

PORTES LOGIQUES

☐ Opérateurs logiques de base

• Une porte logique est un circuit électronique élémentaire qui permet de réaliser la fonction d'un opérateur logique de base.

Opérateurs logiques de base

- Les portes ET, OU, NAND, NOR peuvent avoir plus que deux entrées.
- Il n'existe pas de OU exclusif à plus de deux entrées.

□Logigramme

- C'est la traduction de la fonction logique en un schéma électronique.
- Le principe consiste à remplacer chaque opérateur logique par une porte logique correspondante.

$$F(A,B,C) = A.B + \overline{B}.C$$

Exercice: Trouver la fonction logique F

Exercice: Tracer logigramme de la fonction $N = \bar{a}c.(b + \bar{d})$

FORMES CANONIQUES

☐ Forme canonique d'une fonction logique

A	В	C	S			
0	0	0	0		A + B + C	: max terme
0	0	1	0		$A + B + \overline{C}$: max terme
0	1	0	0		$A + \overline{B} + C$: max terme
0	1	1	1		\overline{A} .B.C	: min terme
1	0	0	0		$\overline{A} + B + C$: max terme
1	0	1	1		$A.\overline{B}.C$: min terme
1	1	0	1		$A.B.\overline{C}$: min terme
1	1	1	1	-	A.B.C	: min terme

- ☐ Forme canonique d'une fonction logique
 - Somme des min termes

$$F(A,B,C) = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Produit des max termes

$$F(A,B,C) = (A+B+C) (A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)$$

 Une forme canonique d'une fonction est la forme dont chaque terme comporte toutes les variables.

$$F(A,B,C) = AB\overline{C} + A\overline{C}B + \overline{A}BC$$

• On distingue entre la première et la deuxième forme.

☐ Forme canonique d'une fonction logique

■ La 1ère forme canonique ou la forme disjonctive est une somme de produits (somme des min termes). C'est la disjonction de conjonctions.

$$F(A,B,C) = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

■ La 2ème forme canonique ou la forme conjonctive est un produit de sommes (produit des max termes). C'est la conjonction de disjonctions

$$F(A,B,C) = (A+B+C) (A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)$$

☐ Forme canonique d'une fonction logique

1.
$$F(A, B) = A + B$$

$$= A (B + \overline{B}) + B (A + \overline{A})$$

$$= AB + A\overline{B} + AB + \overline{AB}$$

$$= AB + A\overline{B} + \overline{AB}$$

2.
$$F(A, B, C) = AB + C$$

$$= AB(C + \overline{C}) + C(A + \overline{A})$$

$$= ABC + AB\overline{C} + AC + \overline{A}C$$

$$= ABC + AB\overline{C} + AC(B + \overline{B}) + \overline{A}C(B + \overline{B})$$

$$= ABC + AB\overline{C} + ABC + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

$$= ABC + AB\overline{C} + AB\overline{C} + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

SIMPLIFICATION DES FONCTIONS LOGIQUES

1. Simplification algébrique

- L'objectif de la simplification des fonctions logiques est de:
 - *Réduire le nombre de termes dans une fonction.
 - *Réduire le **nombre de variables** dans un terme.
- Cela afin de réduire le nombre de **portes logiques** utilisées → **réduire le coût du circuit.**
- Plusieurs méthodes existent pour la simplification:
 - **Méthodes algébriques.**
 - **❖** Méthodes graphiques: (Tableaux de karnaugh).

☐ Termes adjacents

$$A.B+A.B$$

- Les deux termes possèdent les mêmes variables. La seule différence est l'état de la variable B qui change.
- Si on applique les règles de simplification, on obtient :

$$AB + A\overline{B} = A(B + \overline{B}) = A$$

Ces termes sont dites adjacents.

- **☐** Termes adjacents
 - **Ces termes sont adjacents.**

$$A.B + \overline{A.B} = B$$

 $A.B.C + A.\overline{B.C} = A.C$
 $A.B.C.D + A.B.\overline{C.D} = A.B.D$

Ces termes ne sont pas adjacents.

$$A.B + \overline{A.B}$$

$$A.B.C + A.\overline{B.C}$$

$$A.B.C.D + \overline{A.B.C.D}$$

- Description
- La méthode de Karnaugh se base sur la règle précédente (termes adjacents).
- La méthode consiste à mettre en évidence par une méthode graphique (un tableau) tous les termes qui sont adjacents (qui ne différent que par l'état d'une seule variable).
- La méthode peut s'appliquer aux fonctions logiques de 2, 3, 4, 5 et 6 variables.
- Un tableau de Karnaugh comportent 2ⁿ cases (n est le nombre de variables).

□ Description

Tableau à 2 variables

Tableaux à 3 variables

□ Description

Tableau à 4 variables

Description

Dans un tableau de karnaugh, chaque case possède un certain nombre de cases adjacentes.

 Les trois cases bleues sont des cases adjacentes à la case rouge.

☐ Passage de la TV au tableau de Karnaugh

Α	В	С	S					
0	0	0	0	AB	}			
0	0	1	0	c \	00	01	11	10
0	1	0	0	0			_1	
0	1	1	1	1_		1	يا	1
1	0	0	0					→
1	0	1	1 _					
1	1	0	1 /					
1	1	1	1/					

- **■** Méthode de simplification: 3 variables
- L'idée de base est d'essayer de regrouper (regroupements) les cases adjacentes qui comportent des 1 (rassembler les termes adjacents).
- Faire des regroupements avec le maximum de cases (16,8,4 ou 2).
- Dans notre exemple, on peut faire uniquement des regroupements de 2 cases.

- **☐** Méthode de simplification: 3 variables
- Puisqu'il existe encore des cases qui sont en dehors d'un regroupement, on refait la même procédure: former des regroupements.
- Une case peut appartenir à plusieurs regroupements.

☐ Méthode de simplification: 3 variables

$$F(A, B, C) = AB + AC + BC$$

- On s'arrête lorsqu'il y a plus de 1 en dehors des regroupements.
- La fonction finale est égale à la réunion (somme) des termes après simplification.

☐ Méthode de simplification: 3 variables

■ Méthode de simplification: 4 variables

☐ Méthode de simplification: 4 variables

$$F(A,B,C,D) = A\overline{B} + \overline{B}\overline{D} + B\overline{C}D$$

☐ Méthode de simplification

Trouver la forme simplifiée des fonctions à partir des deux tableaux ?

AB C	00	01	11	10
0		1	1	1
1	1		1	1

АВ				
CD	00	01	11	10
00	1		1	1
01				
11				
10	1	1	1	1

- 1. Remplir le tableau à partir de la table de vérité ou à partir de la forme canonique.
- 2. Faire des **regroupements**: des regroupements de **16,8,4,2,1** cases. Les **même termes** peuvent participer à plusieurs **regroupements**.
- 3. Dans un **regroupement**:
 - Qui contient **un seule terme**, on peut pas éliminer de variables.
 - Qui contient deux termes, on peut éliminer une variable.
 - Qui contient 4 termes on peut éliminer 2 variables.
 - Qui contient 8 termes on peut éliminer 3 variables.
 - Qui contient 16 termes on peut éliminer 4 variables.
- 5. L'expression **logique finale** est la réunion (la somme) des groupements après simplification et élimination des variables qui changent d'état.

☐ Cas d'une fonction non totalement définie

Exemple

- Une serrure de sécurité s'ouvre en fonction de quatre clés A,
 B, C D. Le fonctionnement de la serrure est définie comme suite:

 - \$\ S(A,B,C,D) = 0 sinon.
- Les clés A et D ne peuvent pas être utilisées en même temps.
- On remarque que si la clé A et D sont utilisées en même temps l'état du système n'est pas déterminé. Ces cas sont appelés cas impossibles ou interdites.

Comment représenter le fonctionnement de cette serrure dans la table de vérité ?

- Pour les cas impossibles ou interdites, il faut mettre un X dans la T.V.
- Les cas impossibles sont représentés aussi par des X dans la table de karnaugh.

AB				
CD	00	01	11	10
00			1	
01		1	X	X
11	1	1	X	X
10		1	1	1

A B C D S 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 X 1 0 1 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 <th></th> <th></th> <th></th> <th></th> <th></th>					
0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 X 1 0 1 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 <td>A</td> <td>В</td> <td>С</td> <td>D</td> <td>S</td>	A	В	С	D	S
0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 X 1 0 1 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	0	0	0	0
0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 X 1 0 1 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 1 0 1 1 1 1 0 1 1 1 0 1 X 1 1 1 0 1	0	0	0	1	0
0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X 1 1 1 0 1	0	0	1	0	0
0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 X 1 0 1 1 X 1 1 0 0 1 1 1 0 1 X 1 1 0 1 X 1 1 0 1 X	0	0	1	1	1
0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 X 1 1 1 0 1 1 1 1 0 1	0	1	0	0	0
0 1 1 1 1 1 0 0 0 0 1 0 0 1 X 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 X 1 1 1 0 1	0	1	0	1	1
1 0 0 0 0 1 0 0 1 X 1 0 1 0 1 1 0 1 1 X 1 1 0 0 1 1 1 0 1 X 1 1 1 0 1	0	1	1	0	1
1 0 0 1 X 1 0 1 0 1 1 0 1 1 X 1 1 0 0 1 1 1 0 1 X 1 1 1 0 1	0	1	1	1	1
1 0 1 0 1 1 0 1 1 X 1 1 0 0 1 1 1 0 1 X 1 1 1 0 1	1	0	0	0	0
1 0 1 1 X 1 1 0 0 1 1 1 0 1 X 1 1 1 0 1	1	0	0	1	X
1 1 0 0 1 1 1 0 1 X 1 1 1 0 1	1	0	1	0	1
1 1 0 1 X 1 1 1 0 1	1	0	1	1	X
1 1 1 0 1	1	1	0	0	1
	1	1	0	1	X
1 1 1 1 X	1	1	1	0	1
	1	1	1	1	X

- Il est possible d'utiliser les X dans des regroupements:
 - ❖ Soit les prendre comme étant des 1.
 - ❖Ou les prendre comme étant des 0.
- Il ne faut pas former des regroupement qui contient uniquement des X.

$$AB + CD$$

$$AB + CD + BD$$

$$AB + CD + BD + AC$$

$$AB+CD+BD+AC+BC$$

HIN