Using Machine Learning to Improve Studies of the Higgs Field Using the ATLAS Detector at the LHC

PHYS 437A Presentations 9 September, 2020

Callum McCracken

Supervisor: Maximilian Swiatlowski

Co-Supervisor: Eduardo Martin-Martinez

Collaborators: Todd Seiss. Mel Shochet

ATLAS Intro

Hello, general audience!

- · Particle Physics:
 - What are the fundamental bits of the universe, and how do they interact with each other?
- · LHC: Large Hadron Collider
 - · Large (27km long)
 - · Collides hadrons (protons)
- · ATLAS:
 - General-Purpose (detects most things, not all directly)
 - \cdot Can be used to study the Higgs field

Higgs Intro

- Interaction with Higgs field responsible for particle masses
- · Higgs boson: excitation of Higgs field
- Worth studying since:
 - Not very well constrained yet, good possible source of discrepancies with existing theory (new physics)
 - Understanding mass-related things might help make links with gravity (+ interaction with dark matter?)
 - New and interesting!
- Higgs potential: (scalar) field potential, characterizes interactions

Standard Model of Elementary Particles

Link to image source

The Big Picture – Measuring the Higgs Self-Coupling

Relevant section of SM Lagrangian for Higgs Potential:

$$V(\phi) = -\mu^2\phi^2 + \lambda\phi^4 + \dots \text{ Taylor exp. at min} \rightarrow V_T(\phi) = -\frac{\mu^4}{4\lambda} + \frac{\sqrt{2}\mu^3}{\lambda}\phi - 4\mu^2\phi^2 + 2\sqrt{2\lambda}\mu\phi^3 + \dots$$

· Const. and ϕ terms can be removed via change of coordinates, ϕ^2 : mass term, ϕ^3 : self-interaction or self-coupling term, not well constrained $(\kappa_{\lambda} = (2\sqrt{2\lambda}\mu)/(2\sqrt{2\lambda}\mu)_{SM}, \kappa_{\lambda} \in [-2.3, 10.3]$ at 95% confidence)

- We can measure κ_{λ} by considering HH events
- · How to find these **HH** events? Using jets!

Jets, b-jets, And Why We Need Them

 $H \rightarrow 60\%b\bar{b} \rightarrow 2 \times b$ hadrons $\rightarrow 2 \times b$ -jets

- Jet: collection of particles with appx.
 the same direction
- ATLAS can't directly detect H or b. Instead, use b-jets, which can be directly detected.
- b-jets can be distinguished from other jets by presence of a secondary vertex (since b-hadrons have 'long' lifetimes)

How to Describe a Jet

For every jet, ATLAS records p_T , η , ϕ , the location of the jet.

- $\cdot \phi$ = azimuthal angle (around beam)
- $\eta = \ln \cot \frac{\theta}{2}$, where $\theta = \text{polar angle}$ (η is used because it has some nice invariance properties)
- p_T = momentum transverse to beam

Tag, You're A b-jet!

Jet Reconstruction: take detector data, finds jets

Classifier: takes jets, classifies as b-jets or others

To Keep in Mind

b-jets are real physical objects, **b**-tags are classifier results.

Why Focus On 3 b-tag Events?

Classifier is (for good reason) 77% efficient. ~23% of **b**-jets go untagged.

If we have 4 **b**-jets, that gives probabilities of

$$P_{4 \text{ tags}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} (0.77)^4 (0.23)^0 \approx 0.35 \qquad P_{3 \text{ tags}} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} (0.77)^3 (0.23)^1 \approx 0.42$$

$$P_{2 \text{ tags}} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} (0.77)^2 (0.23)^2 \approx 0.19 \qquad P_{1 \text{ tag}} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} (0.77)^2 (0.23)^3 \approx 0.037$$

$$P_{0 \text{ tags}} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} (0.77)^0 (0.23)^4 \approx 0.003$$

So if we can use 3 **b**-tag events, we can more than double our number of **HH** events. (and trying to work with 2- or 1-tag events may not be worth the effort)

Problem Statement

Given an event with ≥ 4 jets and 3 b-tags, can we detect the 4th untagged b-jet if it exists, or say there is no 4th if it does not exist?

Problem Statement

Given an event with ≥ 4 jets and 3 *b*-tags, can we detect the 4th untagged *b*-jet if it exists, or say there is no 4th if it does not exist?

To evaluate a solution, we can look at 5 categories of performance, (green = good, red = bad, yellow = no worse than if we do nothing):

		Truth-Matching		
(# events=304182)		4th tag exists		No 4th tag (131791)
4th Jet Reco	4th jet found	Correct 4th jet	0.0% (0)	- 0.0% (0)
		Incorrect 4th jet	0.0%	
	No 4th jet found (304182)	100.0% (172391)		100.0% (131791)

How to pick a 4th jet?

- Since the $\it HH$ interaction is "hardest," pick jet with highest $\it p_T$

- · Since the HH interaction is "hardest," pick jet with highest p_T
- Since *HH* should have $\sum_{i=1}^{4} p_{T,i} = 0$, pick the jet that gives the smallest p_T sum.

- · Since the HH interaction is "hardest," pick jet with highest p_T
- Since *HH* should have $\sum_{i=1}^{4} p_{T,i} = 0$, pick the jet that gives the smallest p_T sum.
- Play with classifier parameters

- Since the $\it HH$ interaction is "hardest," pick jet with highest $\it p_T$
- Since *HH* should have $\sum_{i=1}^{4} p_{T,i} = 0$, pick the jet that gives the smallest p_T sum.
- Play with classifier parameters
- Or we could try...

- Since the HH interaction is "hardest," pick jet with highest p_T
- Since *HH* should have $\sum_{i=1}^{4} p_{T,i} = 0$, pick the jet that gives the smallest p_T sum.
- Play with classifier parameters
- If the data is sufficiently complex, a neural network or other form of machine learning may be the best option to use.

So We Tried A Bunch of Approaches...

Dataset Analysis With t-SNE

t-SNE: creates a low-dimensional embedding of a higher-dimensional dataset, can help visualize clustering and patterns in complicated data.

Example: MNIST-Fashion

Photos of types of clothing (e.g. 1=shirt). Clustering implies some nice structure behind the categories.

Our Data - 5 Table Categories

Much less clustering visible. Implies a more complex model (e.g. neural network) may be necessary.

The Best Network Yet

- Internal Layers: (700,500,300,100,50)
- · Dropout: 10% after each internal layer
- Restrictions to match later analysis code: $p_T > 40$, $|\eta| < 2.5$

		Truth-Matching		
(# events=283508)		4th tag exists		No 4th tag
4th Jet Reco	4th jet found (114240)	Correct 4th jet	89.1% (101296)	- 5.7% (9667)
		Incorrect 4th jet	2.9% (3277)	
	No 4th jet found (169268)	8.1% (9161)		94.3% (160107)

After cross-validation it looks like the accuracy may be lower than 90%, but still significantly better than previous approaches!

Integrating Back into the Main Project

- We don't yet know how inclusion of 3 **b**-tag events will influence the Higgs self-coupling.
- But we can look at how it affects background events.

- \cdot x and y axes are masses of reconstructed Hs.
- · Blank spot: expected signal region, blinded for now.
- Addition of 3-tag events does not cause sculpting of background.

Images by Todd Seiss

Summary

Main Project: measuring Higgs self-coupling.

To do that, we need many **HH** events.

Using events with 3 b-tags may help, if we can correctly identify true b-jets (and thus keep backgrounds low).

Our neural network approach seems to enable this identification, to around 90% accuracy.

Previous Best (≈ 65%) vs. New Solution (≈ 90%)

More testing with real data to follow!

Questions? Comments? Any other techniques we should try?

Backup slides

Link to Google Slides with more images