Guilherme Bilbao Soares da Silva

Emissora FM em São Pedro de Alcântara

Guilherme Bilbao Soares da Silva

Emissora FM em São Pedro de Alcântara

Monografia apresentada à Coordenação do Curso Superior de Tecnologia em Sistemas de Telecomunicações do Instituto Federal de Educação, Ciência e Tecnologia do Estado de Santa Catarina para a obtenção do diploma de Tecnólogo em Sistemas de Telecomunicações.

Orientador

Prof. Jaci Destri

CURSO SUPERIOR DE TECNOLOGIA EM SISTEMAS DE TELECOMUNICAÇÕES INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO ESTADO DE SANTA CATARINA

Monografia sob o título " *Emissora Fm em São Pedro de Alcântara*", defendida por Guilherme Bilbao Soares da Silva e aprovada em julho de 2013, em São José, Estado de Santa Catarina, pela banca examinadora assim constituída:

Prof. Jaci Destri Orientador

Prof. Ederson Torresini IFSC

Prof. INDEFINIDO IFSC

Agradecimentos

Ao término deste trabalho, deixo aqui meus sinceros agradecimentos:

- a Deus por tudo;
- ao Prof. Dr. NOME DO PROFESSOR ORIENTADOR, por toda dedicação, paciência e estímulo em sua orientação;
- a todos os professores do Departamento de NOME DO DEPARTAMENTO da NOME DA INSTITUIÇÃO;
- Aos professores NOME DOS PROFESSORES DA PRÉ-BANCA E/OU BANCA pelas valiosas sugestões;
- a minha família, pelo incentivo e segurança que me passaram durante todo esse período;
- aos amigos do curso de NOME DO CURSO QUE ESTÁ REALIZANDO pelo agradável convívio;
- a todos que direta ou indiretamente contribuíram para a realização deste trabalho;
- à NOME/SIGLA DA INSTITUIÇÃO DE FOMENTO pelo auxílio financeiro.

Resumo

Digite seu resumo aqui.

Abstract

Write here the English version of your 'Resumo'...

Sumário

Lista de Figuras

Lista de Tabelas

1	INT	TRODUÇÃO	13
	1.1	OBJETIVO GERAL	13
	1.2	OBJETIVO ESPECÍFICO	14
	1.3	MOTIVAÇÃO E JUSTIFICATIVA	14
	1.4	ESTRUTURA DO TRABALHO	14
2		ANO BÁSICO DE DISTRIBUIÇÃO DE CANAIS DE RADIODIFUSÃO SO-	
	NO	RA EM FREQUÊNCIA MODULADA (PBMF)	15
	2.1	CANALIZAÇÃO	15
3	RES	SOLUÇÃO N° 67, DE 12 DE NOVEMBRO DE 1998	17
	3.1	RECOMENDAÇÃO UIT-R P.1546	17
		3.1.1 Conceitos Básicos	18
	3.2	ADAPTAÇÕES DA RECOMENDAÇÃO	19
		3.2.1 Nível Médio do Terreno	19
		3.2.2 Altura da antena transmissora	19
	3.3	PARÂMETROS NECESSÁRIOS PARA O CÁLCULO DE VIABILIDADE	
		TÉCNICA	19
		3.3.1 Contorno protegido	19
4	CAI	NAL PROPOSTO	20

	4.1	CARA	CTERÍSTICAS BÁSICAS	20
		4.1.1	Enquadramento na classe	21
	4.2		L MEDIO DO TERRENO E ALTURA ACIMA DO NÍVEL MÉDIO DO ENO	22
		4.2.1	Nível médio da Radial (NMR) e Nível médio do Terreno (NMT)	22
		4.2.2	Altura Acima do nível médio do Terreno	25
	4.3	CONT	ORNO PROTEGIDO	28
		4.3.1	Interferências	29
5	DEF	INIÇÕ	ES DO SISTEMA IRRADIANTE	31
	5.1	SISTE	MA IRRADIANTE	31
		5.1.1	Antena	31
		5.1.2	Guia de onda e conectores	32
		5.1.3	Transmissor	32
		5.1.4	Cálculos de ERPmax, ERPaz e a orientação da antena	33
6	DES	SENVO	LVENDO A EMISSORA FM	36
	6.1	ESPEC	CIFICAÇÕES DEFINIDAS	36
	6.2	DEFIN	NINDO AS POTÊNCIAS ERPmax E ERPaz	37
	6.3	DEFIN	NINDO OS CONTORNOS DAS ÀREAS DE SERVIÇOS	38
		6.3.1	Àrea de Serviço Urbana (66dBm)	39
		6.3.2	Àreas de Serviço Primário e Rural (74dBm e 54dBm)	41
		6.3.3	O traçado dos contornos	41
7	RES	SULTAI	OOS OBTIDOS COM O PROJETO	44
	7.1	CONS	IDERAÇÕES SOBRE OS CONTORNOS ENCONTRADOS	44
		7.1.1	Analisando a cobertura da Àrea de Serviço Urbana em São Pedro de	
			Alcântara	44

8 ROTEIRO PARA ELABORAÇÃO DE ESTUDOS TÉCNICOS 47							
	8.1	ESTUI	DO DE VIABILIDADE TÉCNICA DE UMA EMISSORA	47			
		8.1.1	Informações básicas	47			
		8.1.2	Cálculo de Viabilidade	48			
		8.1.3	Parecer Conclusivo	48			
	8.2	PROJE	TO DE INSTALAÇÃO DE UMA EMISSORA	48			
		8.2.1	Memória Descritiva	49			
		8.2.2	Situação Geral	50			
		8.2.3	Nível Médio do Terreno	51			
		8.2.4	Parecer Conclusivo	52			
		8.2.5	Anexos ao projeto de instalação	52			
9	CON	NCLUS(ÕES E TRABALHOS FUTUROS	55			
Re	ferên	cias		56			
An	exo A	A – Espe	ecificações técnicas do fabricante da antena dipolo utilizada	57			
Anexo B – Especificações técnicas do fabricante do guia de onda utilizado							
Anexo C – Mapa de Macrozoneamento de São Pedro de Alcântara 64							
Anexo D – Gráficos do perfil de terreno das 12 Radias ao redor da emissora.							

Lista de Figuras

4.1	Consulta de canais disponíveis para uso - Portal da ANATEL	20
4.2	Classificação das emissoras em função de seus requisitos máximos (tabela retirada da resolução)	21
4.3	Demonstração do layout do aplicativo da SIGANATEL	23
4.4	Traçado das 12 radias partindo da base da emissora	23
4.5	Gráfico do NMR da Radial 1 usando o aplicativo da SIGANATEL	24
4.6	Proximidade entre a base do sistema e a coordenada indicada no PBFM, para o canal proposto (GOOGLE MAPS., 2013)	30
5.1	Diagrama de Irradiação da Antena Dipolo 1/2 Onda para FM	32
6.1	Utilizando as curvas E(50,50) para encontrar as distâncias do contorno protegido.	40
6.2	Projeção da cobertura das áreas de serviços utilizando a ferramenta SIGANATEL.	43
7.1	Projeção da cobertura das Àrea de Serviço Urbana sobre a zona urbana do município.	46

Lista de Tabelas

2.1	Canalização da faixa de FM	16
4.1	Coordenadas indicando as referências latitudinais e longitudinais de cada radial.	25
4.2	Mapeamento das altitudes de cada radial	26
4.3	Valores de HSNMT para cada radial	28
6.1	Resumo das especificações técnicas da emissora.	36
6.2	Valores de ERPaz para cada radial	39
6.3	Distancias do contorno protegido (66dBm)	41
6.4	Contornos das diversas áreas de serviço por radial e dados correspondentes	42
7.1	Comparando os valores de Contorno Protegido com as distancias da Zona Urbana.	45

1 INTRODUÇÃO

Visando aprofundar os conhecimentos em rádiotransmissão, através deste estudo é apresentado os aspectos e considerações técnicas necessárias para projetar uma emissora de rádio em frequência modulada.

Comunicar-se, utilizando como meio ondas eletromagnéticas, já é um método bastante conhecido e difundido à muitos anos, consolidando-se históricamente como um dos meios de comunicação mais usados no mundo. Apesar da crescente e irreversível expansão da comunicação através da transmissão de dados, as emissoras de rádio ainda mantém seu espaço entre os uruários. Seja para ouvir músicas, notícias ou entretenimento em geral, este método de comunicação ainda mantém-se ativo devido à simplicidade para o acesso dos ouvintes, que já são culturalmente habituados à ouvir o rádio durante as suas atividades ou nos momentos de lazer.

Em municípios onde ainda prevalece entre seus habitantes as atividades rurais, as emissoras de rádio são de fato importantíssimas para estabelecer a comunicação e a interação entre as comunidades destas regiões, devido a falta de infraestrutura que possibilitaria também o uso dos meios mais modernos.

Para que a ANATEL autorize que uma emissora de rádio transmita seu sinal, fazendo uso de um dos canais disponibilizados e ainda vagos no plano básico, deve-se seguir e apresentar uma documentação técnica que esteja respeitando todos os requisitos apresentado na norma técnica (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2010), publicada no seu portal (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2013a). Demostrar os procedimentos necessários para desenvolver um projeto que respeite esta norma é o principal objetivo do estudo apresentado neste trabalho.

1.1 OBJETIVO GERAL

Estudo e compreensão das normas técnicas, relacionadas à rádio FM, e suas atualizações, juntamente com a utilizanção de ferramentas livres oferecidas pela ANATEL.

1.2 OBJETIVO ESPECÍFICO

Realizar um estudo sobre as especificações técnicas necessárias para homologar um canal de rádio FM disponível no plano básico da ANATEL. Colocar em prática os procedimentos e conhecimentos obtidos das recomendações, aplicando em um cenário real.

1.3 MOTIVAÇÃO E JUSTIFICATIVA

Uma das razões para estudar o tema, além de adquirir maiores conhecimentos em rádiotransmissão, é abordar as atualizações nas normas técnicas. Também para servir como referência para estudantes e futuros projetistas, pois, apesar de ser um tipo de projeto já muitas vezes executados em diversos cenários e situações, é grande a dificuldade para encontrar um modelo diponível para consulta. Este documento certamente pode servir de base para outros projetos de emissoras FM ou rádiotransmissão em geral.

1.4 ESTRUTURA DO TRABALHO

Nos primeiros capítulos são estudados as resoluções e normas aprovados referentes aos cálculos de viabilidade de um canal de rádio FM. Seguindo, aborda-se sobre o canal proposto. Depois começam as definições para o início dos cálculos do contorno protegido. Após são apresentados as especificações definidas para o projeto da emissora. Ao final são apresentadas as conclusões e novas propostas de trabalhos.

2 PLANO BÁSICO DE DISTRIBUIÇÃO DE CANAIS DE RADIODIFUSÃO SONORA EM FREQUÊNCIA MODULADA (PBMF)

O Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência Modulada é definido e gerenciado pela ANATEL, e nele constam os canais FM previstos para uso em todo o território nacional. Os canais que ainda estão vagos podem ser consultados no portal da ANATEL (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2013b).

A faixa de radiodifusão sonora em frequência modulada estende-se de 87,8 a 107,9*MHz*, e é dividida em 103 canais (os canais 198,199 e 200 são para uso exclusivo das estações de ROADCOM), cujas portadoras estão separadas de 200*KHz*. Cada canal é identificado por sua frequência central, que é a frequência da portadora da estação de FM, e a cada canal é atribuído um número de 198 a 300, que será o seu identificador.

2.1 CANALIZAÇÃO

A tabela de Canalização da Faixa de FM atual foi publicada na RESOLUÇÃO N°46, DE 1° DE SETEMBRO DE 2010, que altera o Regulamento Técnico para Emissoras de Radiodifusão Sonora em Frequência Modulada. A tabela 2.1, que segue, foi retirada da norma (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2010) e apresenta a faixa de Frequência para cada canal FM, definido pelo PBFM.

Frequência	CANAL	Frequência	CANAL	Frequência	CANAL
(MHz)		(MHz)		(MHz)	
87,5	198	94,5	233	101,5	268
87,7	199	94,7	234	101,7	269
87,9	200	94,9	235	101,9	270
88,1	201	95,1	236	102,1	271
88,3	202	95,3	237	102,3	272
88,5	203	95,5	238	102,5	273
88,7	204	95,7	239	102,7	274
88,9	205	95,9	240	102,9	275
89,1	206	96,1	241	103,1	276
89,3	207	96,3	242	103,3	277
89,5	208	96,5	243	103,5	278
89,7	209	96,7	244	103,7	279
89,9	210	96,9	245	103,9	280
90,1	211	97,1	246	104,1	281
90,3	212	97,3	247	104,3	282
90,5	213	97,5	248	104,5	283
90,7	214	97,7	249	104,7	284
90,9	215	97,9	250	104,9	285
91,1	216	98,1	251	105,1	286
91,3	217	98,3	252	105,3	287
91,5	218	98,5	253	105,5	288
91,7	219	98,7	254	105,7	289
91,9	220	98,9	255	105,9	290
92,1	221	99,1	256	106,1	291
92,3	222	99,3	257	106,3	292
92,5	223	99,5	258	106,5	293
92,7	224	99,7	259	106,7	294
92,9	225	99,9	260	106,9	295
93,1	226	100,1	261	107,1	296
93,3	227	100,3	262	107,3	297
93,5	228	100,5	263	107,5	298
93,7	229	100,7	264	107,7	299
93,9	230	100,9	265	107,9	300
94,1	231	101,1	266		
94,3	232	101,3	267		

Tabela 2.1: Canalização da faixa de FM.

3 RESOLUÇÃO N° 67, DE 12 DE NOVEMBRO DE 1998

A Resolução $n^{\circ}67$ aprova o Regulamento Técnico para Emissoras de Radiodifusão Sonora em Frequência Modulada. Tem por objetivo disciplinar a utilização da faixa de 87,8 a 108 MHz, no serviço de Radiodifusão sonora em Frequência modulada e em serviços nela executados, para oferecer um serviço de boa qualidade, evitar interferências sobre outros serviços de telecomunicações regularmente autorizados e reduzir possibilidades de danos físicos à população. Para isto, estabelece requisitos mínimos para os equipamentos utilizados em Radiodifusão Sonora em Frequência Modulada, afim de, além de atender o exposto anterior, racionalizar sua produção industrial.

Este é o documento principal que será usado para a realização deste projeto, pois informa todas as especificações mínimas necessárias para que uma emissora de rádio FM possa ser instalada e liberada para iniciar seus serviços. Um fator importante é sempre ficar atento as novas resoluções que atualizam este regulamento, para que o projeto possa atender as novas exigências.

A última resolução, que altera o regulamento aprovado na RESOLUÇÃO N° 67, foi a de n° 546. Esta altera alguns aspectos importantes para o desenvolvimento do projeto. Como exemplo posso citar a classificação das emissoras em função de seus requisitos máximos e as curvas de intensidade de campo (E (50,10) e E (50,10)), vindos da Recomendação UIT-R P.1546.

As resoluções podem ser consultadas através do portal da ANATEL, através do link http://legislacao.anatel.gov.br/resolucoes/

3.1 RECOMENDAÇÃO UIT-R P.1546

A UIT-R, através da Recomendação UIT-R P.1546 (UNIÃO INTERNACIONAL DE TELECOMUNICA SETOR DE RADIOCOMUNICAÇÕES., 2013), descreve um método prático para a previsão

de cobertura ponto-área para serviços terrestres, na faixa de 30 a 3000MHz. Os procedimentos que seguimos neste trabalho, principalmente para definir as áreas de serviços, foram baseados nestes métodos.

3.1.1 Conceitos Básicos

A seguir serão descritos parâmetros básicos muitos utilizados nos cálculos.

Altura acima do nível médio do terreno

A altura acima do nível médio do terreno (HNMT) é um valor que representa o nível do terreno ao redor da base transmissora.

Para encontrar o seu valor, deve-se obter cotas entre as distâncias de 3 e 15Km da antena e fazer uma média aritmética dos pontos obtidos. As alturas podem variar de 10 a 1200m, conforme a recomendação, porém o documento também descreve um método para, caso seja necessário, extrapolar esses valores.

Curvas E(L,T)

São gráficos que representam a intensidade de campo excedida em L% das localidades e T% do tempo. O método é válido apenas para distâncias de 1 a 1000km da antena transmissora. Os valores tabulados pela recomendação foram obtidos com frequências de valores nominais iguais a 100, 600 e 2000MHz; HNMT de 10, 20, 37,5, 75, 150, 300, 600 e 1200m; porcentagem de tempo de 1, 10 e 50%. Uma curva é tracejada para cada tipo de percurso e frequência. Os percursos considerados são: terrestre, sobre o mar morno e sobre o mar frio.

Novamente são descritos métodos para obter intensidade de campo quando esses valores não forem exatamente iguais aos tabulados.

As curvas utilizadas neste estudo são a E(50,50) e E(50,10) que podem ser encontradas na resolução (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2010). (RÉGIS, 2010)

3.2 ADAPTAÇÕES DA RECOMENDAÇÃO

3.2.1 Nível Médio do Terreno

Para efeitos de cálculo, no Brasil o nível médio do terreno (NMT) é calculado obtendo-se 12 valores de nível médio da radial (NMR). O NMR por sua vez é obtido calculando a média aritmética de pelo menos 50 cotas igualmente espaçadas, compreendidas entre as distâncias de 3 a 15km da antena transmissora.

As 12 radiais devem ser também igualmente espaçadas de 30 em 30 graus, e deve incluir a radial do norte verdadeiro. O NMT é então obtido, fazendo-se também uma média aritmética, dos NMR. (RÉGIS, 2010)

3.2.2 Altura da antena transmissora

Apesar de ser possível calcular a intensidade de campo para valores fora da faixa de 10 a 1200m para altura da antena transmissora, a RESOLUÇÃO considera esses os valores máximos. Ou seja, quando a HNMT da antena for interior a 10m, deve ser tomado o valor de 10m, e quando exceder os 1200m, este valor que deve ser considerado. (RÉGIS, 2010)

3.3 PARÂMETROS NECESSÁRIOS PARA O CÁLCULO DE VIABILIDADE TÉCNICA

Utilizando os métodos mencionados, vamos calcular os valores necessários para que um canal de rádio FM possa ser viabilizado.

3.3.1 Contorno protegido

O contorno protegido é a distância entre a antena transmissora até o local geométrico onde a intensidade de campo E(50,50) apresenta o valor de 66*dBm*, para um canal de rádio FM. A resolução define, através da ultima alteração (RESOLUÇÃO n° 546), que , para a classe C, a distância máxima ao contorno protegido é de 7,5km, a partir da base da antena transmissora.

4 CANAL PROPOSTO

Para que possa ser autorizado pela ANATEL a utilização de um canal de rádio FM, além da documentação solicitada conforme a resolução, deve ser considerada as características básicas do canal.

4.1 CARACTERÍSTICAS BÁSICAS

Ao analisar os canais disponíveis no Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência Modulada, observou-se a existência do canal 218, disponível na região do município de são Pedro de Alcântara.

O canal é enquadrado na classe C, sendo assim, deve seguir os requisitos que caracterizam os canais autorizados para esta classe (Figura 4.1) .

Figura 4.1: Consulta de canais disponíveis para uso - Portal da ANATEL

4.1.1 Enquadramento na classe

Como já mencionado, o canal usado para este projeto está enquadrado na classe C, conforme apresentado no portal da ANATEL (Figura 4.1) e, para que o projeto respeite as especificações desta classe, deve ser observado seus requisitos máximos, que podem ser verificados na figura 4.2.

Porém, a resolução aceita algumas diferenças aos requisitos apresentados, desde que, ainda assim, respeite algumas outras condições também informadas. Segue estas observações, que foram publicadas na RESOLUÇÃO *N*°546:

	REQUISITOS MÁXIMOS							
CLASSES		ÊNCIA RP)	DISTÂNCIA MÁXIMA AO CONTORNO PROTEGIDO	ALTURA DE REFERÊNCIA SOBRE				
	kW	dBk	(66dBμ) (km)	O NÍVEL MÉDIO DA RADIAL (m)				
E1	100	20,0	78,5	600				
E2	75	18,8	67,5	450				
E3	60	17,8	54,5	300				
A1	50	17,0	38,5	150				
A2	30	14,8	35,0	150				
A3	15	11,8	30,0	150				
A4	5	7,0	24,0	150				
B1	3	4,8	16,5	90				
B2	1	0	12,5	90				
C	0,3	-5,2	7,5	60				

Figura 4.2: Classificação das emissoras em função de seus requisitos máximos (tabela retirada da resolução).

a)Poderão ser utilizadas alturas de antena ou ERP superiores às especificadas na tabela 4.2, desde que não seja ultrapassada, em qualquer direção, a distância máxima ao contorno protegido.

b)Apenas para as emissoras de classe C poderá ser permitida a utilização de transmissor com potência nominal inferior a 50 W.

c)As distâncias apresentadas na TABELA I foram obtidas para o canal 201 e servem como referência para elaboração de estudos sem o uso de ferramentas computacionais.

4.2 NÍVEL MEDIO DO TERRENO E ALTURA ACIMA DO NÍVEL MÉDIO DO TERRENO

A seguir vamos apresentar o método usado para o reconhecimento geométrico do local onde será instalado a emissora. Estes dados são de extrema importância para o sucesso do projeto.

4.2.1 Nível médio da Radial (NMR) e Nível médio do Terreno (NMT)

A resolução exige que sejam tracejadas ao menos 12 radias com espaçamento angular de 30° e com pelo menos 50 cotas, igualmente espaçadas. O ponto previamente definido, como sendo o local onde a antena será fixada, será a origem das radias. Para tracejar estas radias, usei os mapas disponíveis no site do IBGE (citar fonte)(edição de 08-10-2007), na escala 1 : 50.000. através destas radiais vamos conseguir obter as altitudes do relevo ao redor da base da antena. Esses valores servirão de base para definir todas as características do nosso sistema. As radiais foram tracejadas a partir das coordenadas 27°34′02.72″S com 48°48′33.71″O (ponto referente à base da torre da antena), e deve, obrigatoriamente, incluir a direção do norte Verdadeiro.

Após os 12 raios tracejados, calcula-se o nível médio da Radial (NMR) para cada uma delas. O NMR é definido pela média aritmética de todas as cotas da radial, que, de acordo com a norma, devem ser compreendidas no trecho entre 3 e 15 quilômetros. Para obter esses valores das cotas, no caso os 50 valores correspondentes a alturas do terreno dentro da cada radial, existe uma ferramenta disponível no portal online da ANATEL, o SIGANATEL (citar fonte). Mas, para conseguir usar esta ferramenta, é preciso obter as coordenadas das 12 radias, nas distâncias de 3km e 15km partindo da base da emissora.

Para buscar estes valores temos que usar como referencia os valores informados no mapa (referencias de coordenadas) e sua escala. Numa escala de 1 : 50.000 cada centímetro no mapa equivale à 500m, então, as radias devem ter 30 centímetros para atingir o ponto equivalente à 15km.

Definidos os pontos de 3km e 15km em todas as radias, agora devemos buscar as coordenadas de cada um desses 24 pontos no mapa. Utilizando a regra de tres, podemos encontrar todas as coordenadas. Traçando uma linha horizontal e uma vertical, partindo dos pontos determinados antes, encontramos os valores de referência para as coordenadas que se busca, aplica-se a regra de três e defini-se todas as coordenadas que serão usadas na ferramenta SIGANATEL.

A tabela 4.1 mostra as coordenadas dos pontos definidos no mapa, a figura 4.3 mostra o layout da ferramenta SIGANATEL e a figura 4.4 detalha as 12 radiais traçadas, partindo da

base da torre.

Figura 4.3: Demonstração do layout do aplicativo da SIGANATEL.

Figura 4.4: Traçado das 12 radias partindo da base da emissora.

Esta é uma ferramenta que apresenta um gráfico com a projeção geográfica desejada. Para usar esta recurso basta apenas inserir as coordenadas dos pontos inicial e final de cada radial

(3km e 15km) e o passo, em metros, desejado para a construção da curva (12km/quantidade de passos).

O gráfico Figura 4.5 apresenta um exemplo do retorno que a aplicação nos disponibiliza. Note que usei um passo de 240 metros para cada medição, este é o valor mínimo exigido pela resolução. A partir deste gráfico, retirei os valores para descobrir o NMR de cada radial (ANEXO D).

Figura 4.5: Gráfico do NMR da Radial 1 usando o aplicativo da SIGANATEL

De posse dos resultados dos NMR's, podemos agora encontrar o nível médio do terreno (NMT), que é a média aritmética das 12 NMRs, tornando o terreno simbolicamente plano e de altura conhecida.

A tabela 4.2 apresenta os valores encontrados nas 12 radiais. Esta tabela indica as altitudes encontradas dos 50 pontos ao longo de cada radial, possibilitando obter a média para encontrar o NMR e, consequentemente, o NMT de 288,33m, como pode ser observado.

Os NMR's encontrados neste processo serão usados para obter todos os valores de intensidade de sinal para cada uma das radias, como informaremos mais á frente.

Radial	Latitude(3Km)	Longitude(3Km)	Latitude(15Km)	Longitude(15Km)
0°	27° 32' 23,51" S	48° 48' 33,71" O	27° 25' 53,51" S	48° 48' 33,71" O
30°	27° 32' 42,16" S	48° 47' 38,18" O	27° 27' 04,86" S	48° 44' 00,00" O
60°	27° 33' 15,40" S	48° 47' 00,00" O	27° 30' 00,00" S	48° 40' 38,18" O
90°	27° 34' 02,72" S	48° 46' 45,45" O	27° 34' 02,73" S	48° 39' 33,64" O
120°	27° 34' 52,37" S	48° 47' 00,00" O	27° 38' 05,67" S	48° 44' 00,00" O
180°	27° 35' 38,11" S	48° 48' 33,71" O	27° 42' 10,54" S	48° 48' 33,71" O
210°	27° 35' 25,46" S	48° 49' 29,09" O	27° 41' 05,67" S	48° 53' 05,45" O
240°	27° 34′ 52,37" S	48° 50' 09,09" O	27° 38' 07,78" S	48° 56' 29,09" O
270°	27° 34' 02,72" S	48° 50' 25,63" O	27° 34' 02,73" S	48° 57' 40,00" O
300°	27° 33' 15,40" S	48° 50' 09,09" O	27° 30' 00,00" S	48° 56' 29,09" O

Tabela 4.1: Coordenadas indicando as referências latitudinais e longitudinais de cada radial.

4.2.2 Altura Acima do nível médio do Terreno

No momento que já temos definidos os níveis médios do terreno para cada uma das 12 radiais, podemos encontrar o valores de HSNMT (Altura do nível médio do terreno) também para cada radial. Estes valores serão usados para definir os valores de intensidade do campo, que formará o contorno protegido de 66*dBm* Os valores de *HSNTM* serão aplicados posteriormente nas Curvas de Intensidade de Campo, que será abordada com maiores detalhes mais à frente.

O HSNTM é definido pela expressão:

$$HSNMT = CBT + HCGSI - NMT$$

, onde:

CBT = Altura da base da torre (Altura do terreno onde será instalada a base da emissora);

HCGSI= Altura da torre, somado com o Centro de Fase do Sistema Irradiante;

NMT = nível médio do Terreno.

Utilizando o SIGANATEL, informando as coordenadas $27^{\circ}34'02.72''S$ e $48^{\circ}48'33.71''O$, buscamos a altura do terreno da nossa base, que resultou em 285m acima do nível do mar. Assim, já temos nosso primeiro parâmetro definido.

***(mostrar imagem do siganatel ou google maps)

$$CBT = 285m$$

Mais um fato curioso, e compreensível, é que o CBT tem um valor muito próximo do

Delimentarian Altimoderian Alt	-/-	Radial 01	Radial 02	Radial 03	Radial 04	Radial 05	Radial 06	Radial 07	Radial 08	Radial 09	Radial 10	Radial 11	Radial 12	NMT
1340	Distancia.(m)	Altitude(m)												
1970 225 180 350 290 550 280 435 355 290 340 140 40 289.58														300,91
1900 1900 183 360 220 540 300 425 400 340 350 150 43 221,75								390						
4200		225	180	350		550		435	355	290			40	
4440	3960	190	183	360		540	300	425	400	340	350	150	43	
A680	4200	125	80		190	470	300	380	475	335	270	250	40	270,00
14920	4440	30	45	275	220	450	305	350	430	310			66	249,25
Section Sect	4680	25	80	180	260	350	260	325	370	310	270	350	140	243,33
Section Sect	4920	27	100	200	250	355	270	250	380	340	350	345	130	
5640 80	5160	95	105	135	190	310	320	200	330	370	430	250	55	232,50
S880	5400	80	80	137	220	250	400	175	280	330	355	200	57	213,67
6120	5640	125	30	97	240	200	430	100	270	370	360	150	35	200,58
6360 150 30 40 190 255 440 55 375 350 440 150 150 218,75 6640 125 30 43 225 285 400 51 500 375 500 300 331 262,00 7080 120 25 40 215 285 380 70 535 470 550 300 230 220 7320 238 30 50 230 250 320 100 540 530 570 330 130 278,16 7360 270 30 150 240 270 150 125 480 635 580 260 160 279,16 8200 150 30 180 315 220 80 115 450 600 600 380 310 221,8 8200 150 30 180 315 220 80 115 450 600 600 380 310 271,88 8300 25 125 179 200 170 40 115 455 500 600 380 310 271,88 8400 125 125 170 200 170 40 115 455 500 600 470 410 271,8 8400 125 125 170 200 170 40 115 455 500 600 470 410 271,8 8400 125 125 170 200 170 40 115 455 500 600 380 310 271,88 8400 125 125 120 200 130 200 130 200 200 60 115 455 500 600 370 3	5880	140	75	115	250	250	475	75	370	420	370	110	85	
6600 105 50 75 195 225 440 51 50 6840 125 30 43 30 270 190 240,50 6840 125 30 43 225 285 400 51 500 375 500 300 310 262,00 7080 120 25 40 215 285 380 70 535 470 550 300 320 283,33 7560 265 30 100 215 275 230 130 460 570 350 130 278,16 7560 265 30 100 215 275 230 130 460 570 350 130 278,16 7560 265 30 100 215 275 230 130 460 570 590 340 104 275,75 8040 250 30 180 315 220 80 115 450 635 880 260 160 279,16 8040 250 30 180 315 220 80 115 450 630 580 300 215 272,88 8220 180 30 190 220 220 80 100 100 500 650 645 315 190 295,00 8760 98 125 170 220 170 40 120 445 510 660 445 510 660 440 300 271,5 9000 125 175 220 200 150 30 115 375 500 700 370 330 272,5 9000 125 175 220 200 150 30 115 375 500 700 370 370 310 272,5 9000 125 175 220 200 150 30 115 375 500 700 370 370 310 272,5 9000 125 175 220 170 40 120 340 525 740 380 480 322,5 960 160 100 120 340 525 740 380 480 322,5 960 160 165 60 410 300 271,5 9000 125 175 220 170 40 120 20 200 445 510 660 440 302,5 9600 165 60 480 320 272,5 9600 160 185 185 130 160 250 130 25 110 340 525 740 380 485 278,3 3480 185 130 160 250 130 25 110 340 525 740 380 480 322,5 9600 165 60 195 300 200 60 100 210 550 765 450 480 302,5 9600 165 60 195 300 200 60 100 220 550 765 450 480 302,5 9600 165 60 195 300 200 60 100 220 550 765 450 480 302,5 9600 166 50 250 330 380 150 250 150 380 380,3 306,25 1140 150 150 150 150 150 150 150 150 150 15	6120	75	75	45	235	245	478	60	370	400	450	115	120	222,33
6600 105 50 75 195 223 430 53 425 350 490 270 190 240,50 66840 125 30 43 225 285 400 51 500 375 500 300 310 262,00 70800 120 25 40 215 285 380 70 535 470 550 300 330 288,33 7560 265 30 100 215 275 230 130 460 570 530 570 350 130 278,16 7800 270 30 150 240 270 150 125 480 635 580 260 160 279,16 8040 250 30 190 320 250 100 100 500 650 645 315 190 295,00 8220 150 30 180 315 220 80 115 450 630 580 300 215 272,08 8220 98 30 190 220 220 060 115 450 630 580 300 271,08 8760 98 125 175 220 200 150 30 115 375 500 700 370 310 272,5 9000 125 175 220 200 150 30 115 375 500 700 370 310 272,3 9480 185 130 160 250 130 250 130 30 195 310 510 710 470 440 302,50 9560 165 60 195 300 220 251 130 30 195 310 510 710 470 440 302,50 9560 165 60 195 300 220 250 150 30 195 310 510 710 470 440 302,50 9560 165 60 195 300 220 251 130 255 130 250 130 250 130 250 130 25	6360	150	30	40	190	255	440	55	375	350	440	150	150	218,75
TORNO 120 25	6600	105	50	75	195	253	430	53	425	350	490	270	190	240,50
TORNO 120 25	6840	125	30	43	225				500			300	310	262,00
7320 238 30 50 230 250 320 100 540 530 570 350 130 278,16 7860 270 30 150 240 275 150 125 480 635 580 260 160 279,16 8040 250 30 190 320 250 100 100 500 650 645 315 190 295,00 8280 150 30 180 315 220 80 115 450 630 580 300 215 272,08 8760 98 125 170 220 200 60 115 450 600 600 380 300 215 272,08 8760 98 125 170 220 170 40 120 445 510 650 410 300 271,5 9240 145 155 180 205 130 </td <td>7080</td> <td></td> <td>25</td> <td>40</td> <td>215</td> <td>285</td> <td>380</td> <td>70</td> <td>535</td> <td>470</td> <td>550</td> <td>300</td> <td>230</td> <td></td>	7080		25	40	215	285	380	70	535	470	550	300	230	
7560 265 30 100 215 275 220 130 460 570 590 340 104 275,75 275 280 130 270 150 125 480 635 580 260 160 279,16 279,16 280,40 250 30 190 320 250 100 100 500 650 645 315 190 295,00 28280 150 30 180 315 220 80 115 450 630 580 300 215 272,08 28280 98 30 190 220 200 60 115 450 630 580 380 310 271,08	7320	238	30	50	230	250	320	100	540	530	570	350	130	278,16
7800 270 30 150 240 270 150 125 480 635 580 260 160 279.16	7560	265	30	100	215	275	230	130	460	570	590	340	104	275,75
8280 150 30 180 315 220 80 115 450 600 600 300 215 272.08 8760 98 125 170 220 170 40 120 445 510 660 410 300 271.5 9740 145 155 175 220 200 150 30 115 375 500 700 370 310 272.5 9240 145 155 180 205 130 25 110 340 525 740 380 405 278.33 9480 185 130 160 250 130 30 195 310 510 710 470 440 290.33 9720 210 100 195 300 200 60 100 230 560 720 500 440 290.33 10200 165 50 250 340 250<			30	150	240	270	150	125		635	580	260	160	279,16
8280 150 30 180 315 220 80 115 450 600 600 300 215 272.08 8760 98 125 170 220 170 40 120 445 510 660 410 300 271.5 9740 145 155 175 220 200 150 30 115 375 500 700 370 310 272.5 9240 145 155 180 205 130 25 110 340 525 740 380 405 278.33 9480 185 130 160 250 130 30 195 310 510 710 470 440 290.33 9720 210 100 195 300 200 60 100 230 560 720 500 440 290.33 10200 165 50 250 340 250<	8040	250	30	190	320	250	100	100	500	650	645	315	190	295,00
8760 98 125 170 220 170 40 120 445 510 650 410 300 271,5 9200 200 150 30 115 375 500 700 370 310 272,5 9240 145 155 180 205 130 25 110 340 525 740 380 405 278,33 9480 185 130 160 250 130 30 195 310 510 710 470 410 290,83 9720 210 100 195 315 170 40 150 230 560 720 500 440 302,50 9960 165 60 195 300 200 60 100 210 550 765 450 480 294,58 10200 165 50 250 340 220 25 150 280 480 700 530 580 306,25 10440 150 70 190 300 220 25 150 280 480 700 530 580 306,25 10440 150 70 190 300 220 25 150 280 480 700 530 580 306,25 1106 140 50 50 50 50 25 240 1160 100 250 50 660 602 500 640 690 310,427 1160 125 30 30 40 40 23 300 140 105 250 500 650 840 690 310,427 11400 30 40 23 300 140 105 250 500 650 840 690 310,427 11460 125 30 30 40 220 340 150 150 150 150 350 580 334,83 12120 270 50 25 25 23 410 100 105 150 350 580 334,83 12120 270 50 25 25 23 410 100 40 30 40 40 23 300 140 105 310 520 675 830 730 311,91 11640 125 30 30 30 20 340 150 150 150 350 580 334,83 12120 270 50 25 25 23 410 100 40 30 40 40 23 380 150 150 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 150 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 105 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 105 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 105 40 40 390 580 700 730 810 344,00 1260 185 350 100 60 60 60 60 50 300 20 340 150 150 350 540 700 730 810 344,00 1260 185 35 140 17 300 110 70 390 610 570 510 750 334,40 1350 150 150 150 150 150 150 350 500 750 750 334,40 1350 150 25 160 20 70 125 130 50 0 50 70 70 480 710 319,16 1350 250 150 150 150 350 540 700 750 830 334,83 12120 270 50 25 160 20 70 125 130 150 470 665 650 550 750 344,00 13500 150 150 150 150 150 150 150 150 350 600 750 550 750 344,00 13500 150 150 150 150 150 150 150 150 150			30					115		630				272,08
8760 98 125 170 220 170 40 120 445 510 650 410 300 271,5 9200 200 150 30 115 375 500 700 370 310 272,5 9240 145 155 180 205 130 25 110 340 525 740 380 405 278,33 9480 185 130 160 250 130 30 195 310 510 710 470 410 290,83 9720 210 100 195 315 170 40 150 230 560 720 500 440 302,50 9960 165 60 195 300 200 60 100 210 550 765 450 480 294,58 10200 165 50 250 340 220 25 150 280 480 700 530 580 306,25 10440 150 70 190 300 220 25 150 280 480 700 530 580 306,25 10440 150 70 190 300 220 25 150 280 480 700 530 580 306,25 1106 140 50 50 50 50 25 240 1160 100 250 50 660 602 500 640 690 310,427 1160 125 30 30 40 40 23 300 140 105 250 500 650 840 690 310,427 11400 30 40 23 300 140 105 250 500 650 840 690 310,427 11460 125 30 30 40 220 340 150 150 150 150 350 580 334,83 12120 270 50 25 25 23 410 100 105 150 350 580 334,83 12120 270 50 25 25 23 410 100 40 30 40 40 23 300 140 105 310 520 675 830 730 311,91 11640 125 30 30 30 20 340 150 150 150 350 580 334,83 12120 270 50 25 25 23 410 100 40 30 40 40 23 380 150 150 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 150 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 105 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 105 150 350 540 700 750 830 334,83 12120 270 50 25 23 340 150 105 40 40 390 580 700 730 810 344,00 1260 185 350 100 60 60 60 60 50 300 20 340 150 150 350 540 700 730 810 344,00 1260 185 35 140 17 300 110 70 390 610 570 510 750 334,40 1350 150 150 150 150 150 150 350 500 750 750 334,40 1350 150 25 160 20 70 125 130 50 0 50 70 70 480 710 319,16 1350 250 150 150 150 350 540 700 750 830 334,83 12120 270 50 25 160 20 70 125 130 150 470 665 650 550 750 344,00 13500 150 150 150 150 150 150 150 150 350 600 750 550 750 344,00 13500 150 150 150 150 150 150 150 150 150	8520	98	30	190	220	200	60	115	450	600	600	380	310	271,08
9000		98	125	170	220	170	40	120		510	650		300	
9240		125	175	220		150		115		500				272,5
9480	9240	145	155	180	205	130	25	110	340	525	740	380	405	278,33
9960	9480	185	130	160	250	130		195		510	710	470	410	
10200	9720	210	100	195	315	170	40	150	230	560	720	500	440	302,50
10200			60			200		100						
10440	10200	165	50	250	340	250	50	130	230	470	750		530	
10680 160 60 160 200 160 25 100 250 520 600 590 680 292,08	10440	150	70	190	300	220	25	150	280	480	700	530	580	306,25
11160	10680	160	60	160	200	160	25	100	250	520	600	590	680	292,08
11400 30	10920	115	100	80	60	210	50	130	250	500	625	730	680	294,16
11640	11160	140	50	50	25	240	160	100	280	500	650	840	690	310,427
11880	11400	30	40	40	23	300	140	105	310	520	675	830	730	311,91
12120 270 50 25 23 410 100 40 390 580 700 730 810 344,00 12360 100 60 60 60 20 350 90 50 370 600 625 600 800 310,42 12600 185 35 140 17 300 110 70 390 610 570 510 750 307,25 12840 150 50 300 20 200 180 100 430 680 575 515 800 300,00 13080 80 60 350 23 180 170 150 470 665 650 550 780 344,00 13320 75 80 370 25 175 150 170 450 750 720 500 720 348,75 13560 98 35 365 23 130 130 130 150 480 740 770 410 730 338,42 13800 150 25 160 20 70 125 130 520 670 770 480 710 319,16 14040 200 20 170 20 35 220 120 590 600 750 550 690 335,58 14520 270 15 220 17 30 200 100 550 580 730 600 650 330,16 14760 300 15 150 19 35 180 70 520 570 760 605 690 306,25 Soma 7919 3673 8457 8310 12523 9843 7579 19740 25105 28980 20605 20266 14416,66	11640	125	30	30	20	340	150	150	350	540	700	750	830	334,58
12360	11880		80	20	23	380	150	105	310	560	695		840	
12360	12120	270	50	25	23	410	100	40	390	580	700	730	810	344,00
12600			60						370	600	625	600		310,42
12840		185	35	140	17	300	110	70	390	610	570	510	750	307,25
13080 80 60 350 23 180 170 150 470 665 650 550 780 344,00 13320 75 80 370 25 175 150 170 450 750 720 500 720 348,75 13560 98 35 365 23 130 130 150 480 740 770 410 730 338,42 13800 150 25 160 20 70 125 130 520 670 770 480 710 319,16 14040 200 20 170 20 35 200 135 540 640 790 500 650 325,00 14280 240 15 200 17 35 220 120 590 600 750 550 690 335,58 14520 270 15 220 17 30 200	12840		50			200		100		680		515	800	300,00
13560 98 35 365 23 130 130 150 480 740 770 410 730 338,42 13800 150 25 160 20 70 125 130 520 670 770 480 710 319,16 14040 200 20 170 20 35 200 135 540 640 790 500 650 325,00 14280 240 15 200 17 35 220 120 590 600 750 550 690 335,58 14520 270 15 220 17 30 200 100 550 580 730 600 650 330,16 14760 300 15 150 19 35 180 70 520 570 760 605 675 324,92 15000 280 15 130 25 10 100 55 490 580 800 500 690 306,25		80	60		23	180		150		665			780	344,00
13800 150 25 160 20 70 125 130 520 670 770 480 710 319,16 14040 200 20 170 20 35 200 135 540 640 790 500 650 325,00 14280 240 15 200 17 35 220 120 590 600 750 550 690 335,58 14520 270 15 220 17 30 200 100 550 580 730 600 650 330,16 14760 300 15 150 19 35 180 70 520 570 760 605 675 324,92 15000 280 15 130 25 10 100 55 490 580 800 500 690 306,25 80m 7919 3673 8457 8310 12523 984	13320		80	370		175	150	170	450	750	720	500	720	
14040 200 20 170 20 35 200 135 540 640 790 500 650 325,00 14280 240 15 200 17 35 220 120 590 600 750 550 690 335,58 14520 270 15 220 17 30 200 100 550 580 730 600 650 330,16 14760 300 15 150 19 35 180 70 520 570 760 605 675 324,92 15000 280 15 130 25 10 100 55 490 580 800 500 690 306,25 Soma 7919 3673 8457 8310 12523 9843 7579 19740 25105 28980 20605 20266 14416,66						130		150						338,42
14280 240 15 200 17 35 220 120 590 600 750 550 690 335,58 14520 270 15 220 17 30 200 100 550 580 730 600 650 330,16 14760 300 15 150 19 35 180 70 520 570 760 605 675 324,92 15000 280 15 130 25 10 100 55 490 580 800 500 690 306,25 Soma 7919 3673 8457 8310 12523 9843 7579 19740 25105 28980 20605 20266 14416,66	13800													
14520 270 15 220 17 30 200 100 550 580 730 600 650 330,16 14760 300 15 150 19 35 180 70 520 570 760 605 675 324,92 15000 280 15 130 25 10 100 55 490 580 800 500 690 306,25 Soma 7919 3673 8457 8310 12523 9843 7579 19740 25105 28980 20605 20266 14416,66	14040	200	20	170	20	35	200	135	540	640	790	500	650	
14760 300 15 150 19 35 180 70 520 570 760 605 675 324,92 15000 280 15 130 25 10 100 55 490 580 800 500 690 306,25 Soma 7919 3673 8457 8310 12523 9843 7579 19740 25105 28980 20605 20266 14416,66														
15000 280 15 130 25 10 100 55 490 580 800 500 690 306,25 Soma 7919 3673 8457 8310 12523 9843 7579 19740 25105 28980 20605 20266 14416,66	14520	270	15	220	17	30	200	100	550	580	730	600	650	
Soma 7919 3673 8457 8310 12523 9843 7579 19740 25105 28980 20605 20266 14416,66	14760						180		520	570				
	15000	280					100		490		800	500	690	306,25
NMR(m) 158,38 73,46 169,14 166,2 250,46 196,86 151,58 394,8 502,1 579,6 412,1 405,32 288,33	Soma	7919	3673	8457	8310	12523	9843	7579	19740	25105	28980	20605	20266	14416,66
	NMR(m)	158,38	73,46	169,14	166,2	250,46	196,86	151,58	394,8	502,1	579,6	412,1	405,32	288,33

Tabela 4.2: Mapeamento das altitudes de cada radial.

já encontrado NMT (288,33*m*), demostrando que o relevo, nas redondezas, tende à manter a mesma altura do ponto escolhido como base, porém, devemos tomar cuidado com este valor, pois trata-se de uma média das 12 radias.

Se analisarmos os valores de NMR apresentados na tabela tal, notaremos que a região voltada ao Oeste (Sudoeste - Noroeste) da base emissora, apresenta níveis de altura do terreno maiores que a base, enquanto as outras regiões são todas mais baixas. Os obstáculos atrapalham na propagação do sinal, então teremos que fazer um esforço maior nos locais onde os terrenos são mais elevados que a antena, e, ao mesmo tempo, cuidar para que o contorno protegido seja respeitado.

Embora a vida útil de uma torre de estrutura metálica (a mais utilizada) e a de um transmissor, sejam ambas de cerca de 20 anos, o transmissor apresenta, além de um custo de manutenção muito superior ao da torre, alto gasto de energia elétrica, fazendo com que, normalmente, seja mais recomendável o aumento da altura da torre, em vez da potência do transmissor.

Sendo assim, sabendo que a emissora está localizada em uma área de relevo acidentado e com algumas radias apresentado um NMR mais elevado que a base, ficará definida a altura da torre em 55 metros.

Para definir a *HCGSI*, precisamos ainda obter o valor da altura do Centro de Fase do Sistema Irradiante. Este valor é encontrado nas especificações da antena Dipolo 1/2 Onda para FM do fabricante IDEAL, conforme ANEXO A, que será usada no projeto e varia conforme o número de elementos usados na estrutura do sistema irradiante. De acordo com a especificação da antena, usando três elementos para irradiar o sinal e usando como referência os dados referentes à sistemas com frequência de 88, 1*MHz*, que é a frequência mais aproximado da que será propagada o sinal da nossa emissora (91,5*MHz*), o centro de fase do sistema fica em 4244,5*mm*, ou 4,244*m*. Efetuando-se a soma entre a altura da torre e a altura do Centro de Fase do Sistema Irradiante, teremos o seguinte valor:

$$HCGSI = 55m + 4,244m = 59,244m$$

Agora já temos definidas todas as variáveis que compõem nossa equação, vamos encontrar o HSNMT, ficou assim:

$$HSNMT = 285m + 59,244m - 288,33m$$

, encontramos o resultado aproximado de :

Radial	NMR	HSNMT
0°	158,38	185,86
30°	73,46	270,78
60°	169,14	175,10
90°	166,20	178,04
120°	250,46	93,78
150°	196,86	147,38
180°	151,58	192,66
210°	394,80	-50,55
240°	502,10	-157,85
270°	579,60	-235,35
300°	412,10	-67,85
330°	405,32	-61,07

Tabela 4.3: Valores de HSNMT para cada radial.

$$HSNMT = 55,914m$$

Na verdade, este valor de *HSNMT* encontrado vai servir somente de referência. através dele, podemos comprovar que a antena estará numa altura dentro do limite estabelecido pela resolução (60 metros), considerando a média de todas as radiais (*NMT*).

Agora, esta equação deve ser usada trocando o NMT por NMR e, assim, encontrar o HSNMT de cada radial, isoladamente.

A tabela 4.3 apresenta os valores de *HSNMT* obtidos. Essa coluna apresenta a diferença entre a altura da antena e o NMR da radial correspondente.

Os resultados negativados informam que, na direção das radias correspondentes à estes valores, o nível do terreno é mais alto que a altura da antena (344,24*m*). então podemos concluir que, o sinal irradiado para estas direções encontraria obstáculos que iriam interferir na sua propagação. Essa informação é muito importante para a otimização da área de cobertura da emissora, e será lembrada mais adiante.

4.3 CONTORNO PROTEGIDO

Como mencionado anteriormente, o contorno protegido de uma estação de rádio FM corresponde ao lugar geométrico onde a intensidade de campo do sinal apresentar o valor de 66dBm (2mV/m)(Contorno 2). Este contorno tem como finalidade atender a área de serviço urbana. Uma vez que a cobertura desta área estiver atendendo os padrões da resolução, as demais áreas

de serviços, a área de serviço primária (Contorno 1), limitada pelo contorno de 74dBm (5mV/m) e a área de serviço rural (Contorno 3), compreendida entre o contorno 2 e o contorno de 54dBm (0,5mV/m), também estará de acordo com a norma.

O que vai determinar toda a extensão deste contorno será a escolha dos equipamentos e especificações usados no Sistema Irradiante, que devem ser definidos da maneira que melhor atenda a geografia da localidade, e que também respeite todas as regularidades expostas na resolução determinada pela ANATEL, para a classe do canal proposto.

4.3.1 Interferências

A resolução mostra, em várias passagens, bastante rigor no que diz respeito à interferências entre canais. Apesar de informar que o PBFM foi organizado para evitar interferências, a norma exige que este quesito esteja incluso no estudo de viabilidade técnica, conforme previsto no subitem 3.6.2 (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2010).

Porém, a norma também informa que, no caso do sistema irradiante estar fixado próximo das coordenadas informadas no PBFM para este canal, o estudo de interferências torna-se dispensável, conforme segue no trecho da resolução:

8.3.1.2 Nos projetos de instalação de emissoras, bem como nos de mudança de localização de sistema irradiante, o demonstrativo de compatibilidade do subitem 3.6.2 é indispensável, a menos que as coordenadas geográficas de seu sistema irradiante estejam fixadas no PBFM (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2010).

O caso do nosso sistema é exatamente este, ou seja, nosso sistema irradiante está fixado muito próximo de onde o está definido o canal no PBFM, conforme apresentado na Figura 4.6. Sendo assim, ficamos isentos da obrigação de buscar estas informações.

Figura 4.6: Proximidade entre a base do sistema e a coordenada indicada no PBFM, para o canal proposto (GOOGLE MAPS., 2013).

5 DEFINIÇÕES DO SISTEMA IRRADIANTE

Agora que já conhecemos geograficamente a localidade onde será fixada a nossa emissora, e também já temos definidos os outros aspectos técnicos primários necessários, vamos para a construção do conjunto de equipamentos que formará o sistema irradiante, além de realizar os cálculos necessários para deixar a emissora enquadrada conforme a resolução.

5.1 SISTEMA IRRADIANTE

Um sistema irradiante é composto basicamente de uma antena, um guia de onda, e um transmissor. Cada um dos componentes apresenta características próprias, variando de fabricante. No levantamento das informações são apresentadas as características que influenciam diretamente nos cálculos.

A seguir serão apresentados as características do sistema irradiante, bem como os critérios usados para a utilização de cada um dos equipamentos.

5.1.1 Antena

A antena utilizada neste projeto é uma Dipolo 1/2 onda e de polarização vertical. O diagrama de irradiação desta antena é foi útil para o relevo acidentado da região de São Pedro de Alcântara. Como podemos ver na Figura 5.1, o diagrama apresenta um antena com uma irradiação levemente direcionada.

O ANEXO A contém o documento do fabricante na íntegra.

Figura 5.1: Diagrama de Irradiação da Antena Dipolo 1/2 Onda para FM

5.1.2 Guia de onda e conectores

Conforme a potência máxima irradiada e a antena escolhida, para o guia de onda deve ser usado o padrão EIA 1-5/8". Optou-se pelo 1-5/8"CELLFLEX® Lite Low-Loss Foam-Dielectric Coaxial Cable, da fabricante RFS, que apresenta uma atenuação de apenas 0.663dB/100m, operando numa frequênciancia de 88MHz; conforme especificações em ANEXO B. Como a frequência do canal que está sendo projetado é de 91,5MHz, adotaremos o valor de 0.680dB/100m.

Como já definido, a estrutura da torre onde será alocada a antena tem uma altura de 55m. Sendo assim, o comprimento do guia de onda será de 65m, visando que ele será conectado ao transmissor, que deverá estar abrigado dentro de uma estrutura adequada (já constrída no local). Portanto, a atenuação introduzida pelo cabo será de 0,442dB.

5.1.3 Transmissor

A única característica de um transmissor levada em consideração nos cálculos é a sua potência de saída. Essa potência é informada nas especificações técnicas, e dada geralmente em Wrms.

Baseando-se em pesquisas nos sites de fabricantes de transmissores nacionais, foi encon-

trado transmissores com potências nominais de 25, 100,150 e 300 Wrms. Visando atender a resolução, que limita a potência da emissora de rádio em 300Wrms para a classe C, usaremos nos cálculos um transmissor de 150Wrms, que , combinado com o ganho da antena e com a eficiência da linha de transmissão, terá que resultar numa potência P(erp) <= 300Wrms.

link http://www.videolinkpro.com.br/transmissor_fm_ex150.shtml

5.1.4 Cálculos de ERPmax, ERPaz e a orientação da antena

A seguir serão mostrados os ajustes e cálculos necessários para obter o resultado mais eficiente e dentro da norma.

Potência efetiva irradiada máxima (ERPmax)

A fórmula para obter a *ERPmax*, a partir do equipamentos escolhidos, é a seguinte:

$$ERPmax = Pt \times Gtmax \times Ef$$

A variável Pt representa a potência de saída do transmissor em Wrms, Gtmax o ganho máximo da antena representado em vezes, e Ef a eficiência da linha de transmissão.

Através das especificações do fabricante podem ser obtidos a potência de saída do transmissor e o ganho máximo da antena. Caso o *Gtmax* esteja somente representado em dBd é usado a seguinte fórmula para a conversão:

$$Gtmax = 10^{0,1 \times Gtmax(dBd)}$$

A eficiência da linha de transmssão é determinada através das perdas do sistema. Para calcular as perdas na linha usa-se a seguinte fórmula:

$$Pl = \frac{L \times Al}{100}$$

O parâmetro L informa o comprimento do guia de onda em metros, Al representa a atenuação do guia a cada 100m de comprimento, em dB/100m. É usual considerar o valor de 2dB como perda com acessórios (Pc), provenientes de conectores e divisores de linha, que deve ser somado ao valor Pl, resultando então na perda total da linha (Pd), em dB:

$$Pd = Pl + Pc$$

Converte-se então as perdas totais em vezes (Pv):

$$Pv = 10^{0,1 \times Pd}$$

Por fim, para definir o parâmetro que falta para encontrar o *ERPmax*, inverte-se o último resultado, obtendo a eficiência da linha:

$$Ef = 1/Pv$$

Potência efetiva irradiada por azimute (ERPaz)

A *ERPmax* representa a potência máxima, mas, conforme o diagrama de irradiação da antena, na prática essa potência será irradiada somente em uma direção. Então, a *ERPaz* é usada e necessária para encontrar os valores de potência em cada radial. Com eses valores definidos poderemos encontrar as distâncias e traçar os contornos do nosso sistema.

A *ERPaz* é sismplismente a parcela do *ERPmax* irradiada em um azimute determinado, e pode ser calculado com a fórmula:

$$ERPaz = ERPmax \times (E/Emax)^2$$

Onde E/Emax representa a porcentagem da potência máxima que é irradiada no azimute correspondente. Este pode ser buscado diretamente das especificações técnicas do fabricante.

Orientação da antena

Como pode ser visto na tabela 4.3, existem valores de *HSNMT* negativos. Em locais onde o terreno é acidentado, o sinal transmitido apresentará mais dificuldades em propagar-se nas direções onde o terreno é mais alto que a antena, atenuando-o conforme vai se distanciando da origem.

Na região onde está sendo projetado a emissora, o azimute 270° é a direção onde o NMR é o mais alto e, consequentemente, o HSMNT mais negativado. Gradativamente, a altura terrena nesta região vai baixando junto com as outras direções das radiais. Afim de amenizar a

atenuação do sinal neste cenário, a antena será direcionada para o oeste, ou seja, o azimute 0° da antena, que conforme a especificação irradia o *ERPmax* para esta direção, ficará apontado para o azimute 270° da base. Com esta atitude, o sinal está sendo irradiado com a maior potência possível para estas regiões.

6 DESENVOLVENDO A EMISSORA FM

Agora que já conhecemos detalhadamente o local em que vamos trabalhar, os equipamentos que vão compor a emissora, e também quais caminhos devemos seguir para desenvolver o projeto, tem-se o início do desenvolvimento.

6.1 ESPECIFICAÇÕES DEFINIDAS

Ao decorrer desta leitura, já foram mostrados alguns levantamentos que apresentam seus valores definitivos. Vimos a tabela 4.3, que apresenta o mapeamento geográfico da localidade com os valores de NMR e HSNMT, e agora temos a tabela 6.1, que agrupa as especificações técnicas já definidas até este momento.

Os próximos passos serão destinados à mostrar os valores que comprovarão que esta configuração do sistema está respeitando todos os requisitos máximos, principalmente o contorno protegido de 66dBm.

Canal	218
Frequência	91,5
Classe	С
Altura do centro geométrico do sistema irradiante (HSNMT)	55,914 metros
Orientação do Norte Verdadeiro	90° no diagrama de irradiação
Cota da base da torre	285 metros
Comprimento da linha de transmissão	65 metros
Altura da antena	59,244 metros
Atenuação do guia de onda e conectores	0,442dB (para 65 metros)
Ganho da antena	4,77dBd (para 3 elementos)
Potência do transmissor	0,150kW

Tabela 6.1: Resumo das especificações técnicas da emissora.

6.2 DEFININDO AS POTÊNCIAS ERPmax E ERPaz

O limite máximo da potência que o nosso sistema pode usar para irradiar o sinal está fixado em 0,300kW. Já temos todos os fatores necessários para saber o valor de ERPmax da emissora, vamos aos cálculos, começando pela perda da linha:

$$Pl = \frac{65 \times 0,680}{100}$$

$$Pl = 0,442dB$$

Soma-se este reultado à atenuação dos conectores:

$$Pd = 0,442 + 2$$

$$Pd = 2,442dB$$

Convertendo para perdas totais em vezes (Pv):

$$Pv = 10^{0,1 \times 2,442}$$

$$Pv = 1,754$$

Inverte-se este resultado para obter a Eficiência da linha:

$$Ef = 1/1,754$$

$$Ef = 0.569$$

Portanto, a potência de saída do sistema fica:

$$ERPmax = 0,15 \times 3 \times 0,569$$

$$ERPmax = 0,256kW$$

Se for usada a notação em dB:

$$ERPmax - 5,91dBk$$

Este resultado atende o estabelecido pela resolução, é menor que 300W, então podemos começar à calcular o ERPaz para cada um dos azimutes traçados.

Como já mencionado anteriormente, a antena ficou posicionada apontando o seu 90° em direção ao norte verdadeiro, assim ficando de frente para o azimute 270° da emissora.

Considerando a posição da antena e os valores de E/Emax (disponível na especificação da antena - ANEXO A), segue o cálculo para o azimute 0° :

$$ERPaz(0^{\circ}) = 0,256kW \times (0,78)^{2}$$

 $ERPaz(0^{\circ}) = 0,256kW \times 0,6084$
 $ERPaz(0^{\circ}) = 0,1557kW$

Convertendo para dBk $(10 \times log)$:

$$ERPaz(0^{\circ}) = -8,07dBk$$

Repete-se este procedimento para todos os outros 11 angulos. A tabela 6.2 está completa, com todos os valores de E/Emax e ERPaz para todas as radiais.

6.3 DEFININDO OS CONTORNOS DAS ÀREAS DE SERVIÇOS

Definir a distância do contorno protegido, cobertura da Àrea de Serviço Urbana com potência mínima de 66dBm, é o principal objetivo deste estudo. Esta distância é a média aritmética das distâncias a este contorno, segundo cada radial, e é o que irá identificar a classe desta emissora. Para a classe C, o Contorno 2 não deve ultrapassar 7,5km, sendo este o resultado da média das 12 radiais.

A norma também solicita as definições das outras duas àreas de serviços, a Área de Serviço Primário (74dBm) e a Àrea de Serviço Rural (54dBm), Contornos 1 e 3 respectivamente. O

Radial	E/Emax	ERPaz(kW)	ERPaz(dBk)
0°	0,78	0,1560	-8,07
30°	0,69	0,1220	-9,13
60°	0,63	0,1017	-9,92
90°	0,62	0,0985	-10,06
120°	0,63	0,1017	-9,92
150°	0,69	0,1220	-9,13
180°	0,78	0,1560	-8,07
210°	0,88	0,1985	-7,02
240°	0,95	0,2314	-6,35
270°	1,00	0,2564	-5,91
300°	0,95	0,2314	-6,35
330°	0,88	0,1985	-7,02

Tabela 6.2: Valores de ERPaz para cada radial.

conjunto desses 3 contornos compõem a àrea de serviço da emissora.

Já temos o potencial de irradiação de cada uma das radias do sistema, a próxima etapa é identificar cada uma das distâncias que formarão os contornos. As curvas de intensidade de campo E(50,50) serão usadas para esta finalidade. Através destas curvas obtemos as relações entre potência e relevo, necessárias para determinar as distâncias dos contornos das áreas de serviços. Tais curvas baseiam-se em uma potencia efetiva de 1KW irradiado por um dipolo de 1/2 onda, em espaço livre, que produz uma intensidade de campo não atenuada, a 1km, de aproximadamente $107 \, \mathrm{dBu}$.

6.3.1 Àrea de Serviço Urbana (66dBm)

Como já mencionado, a Área de Serviço Urbana é o contorno principal do projeto. Para identificar se a emissora está respeitando o contorno de 7,5km, temos que fazer uso das curvas de intensidade, combinadas com as potências ERPaz. Como as potências efetivas irradiadas, que encontramos anteriormente, são inferiores à 1KW, deve ser feito um ajuste, subtraindo estes valores em dBk do valor para o contorno desejado. O resultado será o valor referência do eixo das ordenadas. O ponto de intersecção será o valor de HSMNT correspondente à radial desta potência, que deverá ser encontrado entre as escalas apresentadas nas curvas de intensidade.

Definido o ponto, busca-se o valor, em km, que está em escala logarítmica no eixo das abscissas. A figura 6.1 mostra um exemplo deste procedimento para os valores referentes à radial 0° . À esquerda está destacado o valor resultante da subração de 66dBm - 8,07dBk = 74,07dBm e , através do valor de HSMNT de 185,86m na radial 0° , utilizando a curva correspondente obtem-se o valor de 10,5km.

Agora sabemos que à 10,5km da base da emissora, em direção ao norte verdadeiro, a intensidade do sinal apresenta uma potência de 66*dbm*. Nota-se que esta distância ultrapassa o valor de limite de 7,5km, porém, devido à irregularidade do terreno, é permitido que algumas distancias ultrapassem o limite máximo, desde que a média geral não à ultrapasse. Para que esta exclusividade seja permitida, a potência ERPmax e altura da antena não podem estar excedendo os limites de 0,3 KW e 60 metros respectivamente, sendo este o nosso caso.

Executando este procedimento em todas as 12 radias, obteve-se os resultados apresentados na tabela 6.3. Para os valores de HSMNT negativos é considerado a curva de menor valor como referencia (10m).

Figura 6.1: Utilizando as curvas E(50,50) para encontrar as distâncias do contorno protegido.

A o valor médio deste contorno protegido é de aproximadamente 7km, então este fator está de acordo com a norma.

Cobertura da Área de Serviço Urbana

Encontramos no site de prefeitura um mapa do macrozoneamento de São Pedro de Alcântara (ANEXO C), que delimita as áreas conforme sua densidade populacional urbana ou rural (pesquisa realizada em 2010).

Radial	ERPaz(dBk)	HSMNT (m)	66dBm	Contorno 2 (km)
0°	-8,07	185,86	74,07	10,5
30°	-9,13	270,78	75,13	11
60°	-9,92	175,10	75,92	9
90°	-10,06	178,04	76,06	9
120°	-9,92	96,78	75,92	7
150°	-9,13	147,38	75,13	9
180°	-8,07	192,66	74,07	11
210°	-7,02	-50,55	73,02	3,2
240°	-6,35	-157,85	72,35	3,4
270°	-5,91	-235,35	71,91	3,6
300°	-6,35	-67,85	72,35	3,4
330°	-7,02	-61,07	73,02	3,2

Tabela 6.3: Distancias do contorno protegido (66dBm).

A àrea em vermelho corresponde à àrea urbana atual, e a àrea um laranja é correspondente à àrea de expansão urbana. O contorno de 66dBm deve cobrir ao menos 90% dessas áreas para, assim, comprovar a cobertura da área urbana do município, conforme o estabelecido pela resolução.

6.3.2 Àreas de Serviço Primário e Rural (74dBm e 54dBm)

Os outros contornos de serviço, Àrea de Serviço Primário (74dBm) e Àrea de Serviço Rural (54dBm), tem como objetivos atender a àrea de maior densidade populacional e àrea rural, respectivamente, na localidade. Os mesmos procedimentos usados para encontrar as distâncias do contorno de 66dBm são usados para esses dois outros contornos. Os resultados estão na tabela 6.4.

6.3.3 O traçado dos contornos

Já sabemos todas as distancias, em todas as radias, para cada intensidade do sinal (área de serviço), que juntos formam os 3 contornos do sistema. Utilizando a ferramenta SIGANATEL, podemos visualizar estes contornos, projetados no mapa da localidade, e assim analisar, num primeiro momento, se os efeitos destas coberturas estão dentro do esperado.

A figura 6.2 apresenta as projeções das áreas de serviço da emissora em São Pedro de Alcântara.

Radiais	(graus)	0°	30°	60°	90°	120°	150°
NMT	(m)	158,38	73,46	169,20	166,20	250,46	196,86
HSMNT	(m)	185,86	270,78	175,10	178,04	93,78	147,38
E/Emax	vezes	0,78	0,69	0,63	0,62	0,63	0,69
Potência	(KW)	0,1560	0,1220	0,1017	0,0985	0,1017	0,1220
ERPaz	(dBk)	-8,07	-9,13	-9,92	-10,06	-9,92	-9,13
Contorno	74dBm	82,07	83,13	83,92	84,06	83,92	83,13
1	(km)	5,2	6	5	5	4	5
Contorno	66dBm	74,07	75,13	75,92	76,06	75,92	75,13
2	(km)	10,5	11	9	9	7	9
Contorno	54dBm	62,07	63,13	63,92	64,06	63,92	63,13
3	(km)	21	23	19	18	15	18
Radiais	(graus)	180°	210°	240°	270°	300°	330°
NMT	(m)	151,58	394,80	502,10	579,60	412,10	405,32
HSMNT	(m)	192,66	-50,55	-157,85	-235,35	-67,85	-61,07
E/Emax	vezes	0,78	0,88	0,95	1,00	0,95	0,88
Potência	(KW)	0,1560	0,1985	0,2314	0,2564	0,2314	0,1985
ERPaz	(dBk)	-8,07	-7,02	-6,35	-5,91	-6,35	-7,02
Contorno	74dBm	82,07	81,02	80,35	79,91	80,35	81,02
1	(km)	5,2	1,8	2	2,1	2	1,8
Contorno	66dBm	74,07	73,02	72,35	71,91	72,35	73,02
2	(km)	11	3,2	3,4	3,6	3,4	3,2
Contorno	54dBm	62,07	61,02	60,35	59,91	60,35	61,02
3	(km)	21	6,5	6,8	7	6,8	6,5

Tabela 6.4: Contornos das diversas áreas de serviço por radial e dados correspondentes.

Figura 6.2: Projeção da cobertura das áreas de serviços utilizando a ferramenta SIGANATEL.

7 RESULTADOS OBTIDOS COM O PROJETO

Todas as informações que precisávamos saber sobre o sistema irradiante neste projeto de emissora FM já estão definidas. Os equipamentos usados, dimensões estabelecidas e corportamento do sinal irradiado já estão mapeados.

Agora devemos analisar estes resultados e verificar se está tudo conforme orienta a resolução, tantas vezes mencionada no decorrer deste documento. O objetivo é que o projeto apresente uma tendência em anular ou, ao menos, minimizar as chances de apresentar problemas na homologação junto à ANATEL.

7.1 CONSIDERAÇÕES SOBRE OS CONTORNOS ENCONTRADOS

Uma verificação importante e indispensável é saber se as áreas de serviço, principalmente o contorno protegido, cobrem as zonas à que se destinam. Para isto, buscamos como referencia um mapeamento das zonas urbanas e rurais da cidade (ANEXO C), de 2010, publicado no portal da camara de São Pedro de Alcântara, no link:http://camaraspa.sc.gov.br/.

Cruzando as informações deste documento com os resultados do projeto, saberemos se as áreas de cobertura estão de acordo com o que estabelece à resolução.

7.1.1 Analisando a cobertura da Àrea de Serviço Urbana em São Pedro de Alcântara

A Área de Serviço Urbana, correspondente ao contorno 2 ou contorno protegido (66dBm), entre as três, é a área referência para a homologação das coberturas. É este contorno que vai indicar se o sistema está devidamente enquadrado na classe correspondente, no caso classe C.

Os requisitos mínimos apresentados pela resolução para o contorno de 66dBm são os se-

Radial	Contorno 66dBm(km)	Distancias zona urbana
0°	10,50	1,05
30°	11,00	1,85
60°	9,00	4,00
90°	9,00	7,70
120°	7,00	1,40
150°	9,00	1,60
180°	11,00	1,50
210°	3,20	1,00
240°	3,40	1,20
270°	3,60	0,75
300°	3,40	0,65
330°	3,20	0,65

Tabela 7.1: Comparando os valores de Contorno Protegido com as distancias da Zona Urbana.

guintes:

- a média aritmética das distancias a este contorno não pode ultrapassar 7,5km;
- a média aritmética das distancias a este contorno não poderá ser menor do que a distância ao contorno máximo da classe imediatamente inferior;
 - o contorno de 66dBm deve cobrir ao menos 90% dessa àrea urbana da localidade.

Primeiramente verificaremos a média aritmética das distancias do contorno protegido. Buscando os valores das distancias, apresentados na tabela 6.4, podemos encontrar esta média do contorno e saber se a emissora está respeitando este requisito. Segue o cálculo:

$$\frac{10,5+11+9+9+7+9+11+3,2+3,4+3,6+3,4+3,2}{12}=6,942km$$

Resultando aproximadamante em 7km, a média aritmética das distancias do contorno protegido é menor que 7,5km e está dentro do primeiro requisito. O segundo requisito também pode ser considerado como alcançado, pois a classe C é a última dentro da hierarquia das classes, ou seja, não existe uma classe imediatamente inferior a esta.

Para verificar o último requisito, vamos utilizar o mapa de Macrozoneamento (ANEXO C) e comparar com área de cobertura. Comparando, um à um, os valores das distâncias do contorno protegido e do contorno da área urbana, sempre partindo da base da emissora e considerando os mesmos angulos que formam as 12 radias, podemos comprovar que a área urbana está inserida praticamente 100% dentro do contorno de 66dBm, conforme representado na Figura 7.1. Os valores que foram comparados podem ser verificados na tabela 7.1.

Figura 7.1: Projeção da cobertura das Àrea de Serviço Urbana sobre a zona urbana do município.

Assim, comprovamos que a Área de serviço Urbana está devidamente coberta pelo contorno de 66dBm, conforme exige a resolução.

As outras Áreas

As Àreas de Serviço Primário e Rural (74dBm e 54dBm) não são tratadas com tanto rigor quanto a Àrea Urbana. Uma vez que a Àrea Urbana está dentro da cobertura estabelecida, as outras duas Áreas estão "amarradas" nesta situação, ou seja, se o contorno protegido está cumprindo os requisitos as outras duas Áreas, automaticamente, também estão.

8 ROTEIRO PARA ELABORAÇÃO DE ESTUDOS TÉCNICOS

A resolução contém um capítulo inteiro que aborda um roteiro para elaboração de estudos técnicos, indicando diversos parâmetros técnicos que devem ser informados sobre a emissora para as diversas e possíveis situações.

Neste capítulo vamos abordar e informar apenas as especificações e dados pertinentes ao sistema apresentado neste estudo.

8.1 ESTUDO DE VIABILIDADE TÉCNICA DE UMA EMIS-SORA

A primeira lista de informações que é solicitada faz referencia ao estudo de viabilidade técnica da emissora, conforme trecho da resolução:

O Estudo de Viabilidade Técnica de uma Emissora deverá conter, necessariamente, as seguintes partes: Informações Básicas, Cálculo de Viabilidade e Parecer Conclusivo (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2010).

8.1.1 Informações básicas

Conforme apresentado na resolução, as informações básicas para este estudo são respostas dos seguintes questionamentos:

- Nome da entidade requerente
- Localização da emissora objeto do estudo (cidade, UF).
- Propósito do estudo.

E também sobre as características técnicas pretendidas:

- frequência de operação (MHz);
- no do canal:
- classe;
- tipo de sistema irradiante;
- coordenadas geográficas de instalação

8.1.2 Cálculo de Viabilidade

Para cada emissora da lista elaborada como indicado no item anterior (informações básicas), verificar se há o atendimento às distâncias mínimas exigidas entre duas estações. Como já mencionado anteriormente, a resolução informa que, no caso do sistema irradiante estar fixado próximo das coordenadas informadas no PBFM para este canal, o estudo de interferências tornase dispensável. Então, para esta emissora não se aplica este cálculo de viabilidade.

8.1.3 Parecer Conclusivo

Resumir os tópicos importantes do estudo e emitir parecer conclusivo sobre a viabilidade do propósito do mesmo.

*** que resumo? falar sobre os itens distindos, exceções que foram usadas neste projeto?

9.1.4.1 - Profissional habilitado

- nome por extenso;
- número da inscrição no CREA;
- CPF;
- Data e assinatura.

8.2 PROJETO DE INSTALAÇÃO DE UMA EMISSORA

Agora é solicitado as informações técnicas (projeto) sobre a instalação da emissora, conforme trecho da resolução.

Este projeto deverá conter as seguintes partes: Memória Descritiva, Situação Geral, Nível Médio do Terreno, Parecer Conclusivo e Anexos, conforme especificado a seguir. (AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL), 2010).

8.2.1 Memória Descritiva

A memória descritiva é um resumo das características da emissora, juntamente com as características técnicas do sistema irradiente e linha de transmissão.

Resumo das características da emissora

- a) nome da entidade requerente;
- b) endereço completo da sede (rua, nº, localidade, município, estado, código de endereçamento postal, CEP e telefone);
- c) espécie e data do ato de outorga da autorização e a data do Diário Oficial da União que o publicou;
 - d) frequência de operação (MHz);
 - e) no do canal;
 - f) potência de operação do transmissor (kW);
 - g) classe;
 - h) modo de operação (monofônico, estereofônico, com ou sem canal secundário).

Sistema irradiante

- a) tipo de antena (onidirecional ou diretiva);
- b) fabricante e modelo da antena;
- c) polarização (horizontal, vertical, circular ou elíptica); se elíptica, dar a razão entre a componente horizontal e vertical;
 - d) ganho máximo em relação ao dipolo de meia-onda;
 - e) tipo da estrutura de sustentação (auto-suportada ou estaiada);
 - f) altura física total da estrutura de sustentação em relação à sua base (solo);

- g) altura do centro geométrico da antena em relação à base da estrutura de sustentação (solo);
 - h) altitude da base da estrutura de sustentação (solo) sobre o nível do mar;
 - i) altura do centro geométrico da antena sobre o nível médio do terreno.

Linha de transmissão de RF

- a) fabricante e modelo;
- b) impedância característica;
- c) comprimento total;
- d) atenuação em dB por 100 metros;
- e) eficiência.

Informações sobre ERPmax e ERPaz

- a) ERP máxima (kW)
- b) ERP, por radial (kW).

Enquadramento na classe

- a) ERP máxima proposta para cada radial;
- b) ERP máxima proposta para cada radial, corrigida para a altura de referência sobre o nível médio do terreno por radial, para a classe da emissora, estabelecida na Tabela 1;
 - c) Distância ao contorno de 66 dBm para cada radial;
 - d) Média aritmética das distâncias ao contorno de 66 dBm.

8.2.2 Situação Geral

Estação transmissora

- a) endereço completo do local do transmissor (rua, nº, localidade, município, estado e código de endereçamento postal CEP);
 - b) coordenadas geográficas do local do sistema irradiante;

c) em se tratando de mudança do local, indicar separadamente os endereços do local atual e do proposto.

Endereços dos estúdios

- a) principal (rua, nº, localidade, município, estado e código de endereçamento postal CEP);
 - b) auxiliar (rua, nº, localidade, município, estado e código de endereçamento postal CEP).

Distâncias aos contornos das diversas áreas de serviço, segundo cada radial, de acordo com

- a) azimute de orientação em relação ao Norte Verdadeiro;
- b) altura do centro geométrico da antena com relação ao nível médio de cada radial;
- c) intensidade de campo (dBm);
- d) distância aos contornos 1, 2 e 3, em cada radial.

8.2.3 Nível Médio do Terreno

Cartas utilizadas

- a) denominação;
- b) procedência;
- c) escala;
- d) equidistância das curvas de nível;
- e) data de publicação.

Nível médio

- a) azimute de orientação de cada radial, em relação ao Norte Verdadeiro;
- b) nível médio de cada radial;
- c) nível médio do terreno.

8.2.4 Parecer Conclusivo

Emitir parecer conclusivo sobre o projeto, declarando que o mesmo atende a todas as exigências da regulamentação técnica aplicável.

Profissional habilitado

-nome por extenso;

-número de inscrição no CREA;

-no do CPF;

-data e assinatura.

8.2.5 Anexos ao projeto de instalação

Planta da Situação Geral

A planta ou carta topográfica da situação geral, deverá ser, de preferência, em escala 1:50.000 e editada por órgãos oficiais ou oficializados. Não precisará indicar, obrigatoriamente, detalhes de altimetria. Quando não houver disponibilidade de plantas nas condições mencionadas, será permitida a utilização de cartas ou croquis de levantamentos aerofotogramétricos, nos quais constem a escala e o órgão responsável pelo levantamento. A planta da situação geral deverá ser apresentada em uma via, assinada por profissional habilitado. Nela deverão ser assinalados:

- a) a localização exata do sistema irradiante por um círculo, junto ao qual constará o númerocódigo 1. No caso de mudança, o local proposto, pelo código 1B;
- b) a localização exata do estúdio principal, por um retângulo, junto ao qual constará o número-código 2;
- c) a localização exata do estúdio auxiliar por um retângulo, junto ao qual constará o númerocódigo 3;
- d) por círculos, cada um dos sistemas irradiantes de que trata o subitem 9.2.2.5 e cada uma das estações do subitem 9.2.2.4, junto aos quais deverá constar o código alfanumérico correspondente;

OBS.: Nos casos do subitem 9.2.2.4, assinalar, também, as direções exatas dos enlaces;

e) os contornos 1, 2 e 3, de acordo com os valores calculados no subitem 9.2.2.5. Esta planta deverá comprovar o atendimento, pela emissora, do disposto no subitem 5.1.1.2, dentro das características técnicas fixadas pelo PBFM, da maior parte possível da população da localidade para a qual a permissão para exploração do serviço foi outorgada. Não sendo possível indicar estes contornos na mesma planta, indicá-los em planta separada, com escala adequada.

Planta das Instalações de Campo

Deve ser apresentado croquis, em escala adequada, indicando:

- a) casa do transmissor;
- b) antena e sua estrutura de sustentação;
- c) altura do centro geométrico da antena em relação à base da estrutura de sustentação(solo);
- d) indicação da altitude da base da estrutura de sustentação(solo) sobre o nível do mar.

Documentos diversos

- 9.2.5.3.1 Declaração do profissional habilitado atestando que a instalação não excede os gabaritos da zona de proteção dos aeródromos, de acordo com a legislação específica vigente, ou que não existem aeródromos.
- 9.2.5.3.2 Documento de aprovação expedido pelo órgão competente do Ministério da Aeronáutica, quanto à localização proposta para o sistema irradiante da emissora, no caso de exceder os gabaritos previstos na legislação específica em vigor.
- 9.2.5.3.3 Declaração de concordância com a instalação proposta, firmada pelos responsáveis pelas estações mencionadas no subitem 9.2.2.4, quando a instalação não se enquadrar no que dispõe este subitem.
- 9.2.5.3.4 Comprovação de que a instalação proposta não criará problemas de deformação dos diagramas de irradiação, como previsto na observação do subitem 9.2.2.3.
- 9.2.5.3.5 Diagrama de irradiação horizontal do sistema irradiante, orientado em relação ao Norte Verdadeiro e diagrama de irradiação vertical.
- 9.2.5.3.6 Para emissoras ainda não licenciadas, as especificações técnicas dos transmissores que serão utilizados, ou se for o caso, seus códigos de certificação na ANATEL.
 - 9.2.5.3.7 Estudo de viabilidade técnica específica, nos seguintes casos:

- a) multiplexação de estações em antena de uso comum;
- b) emprego de método de cálculo de cobertura diverso daquele utilizado na elaboração do PBFM, tal como, por exemplo, o sugerido em 8.1.5.1 ou 8.1.6.

9 CONCLUSÕES E TRABALHOS FUTUROS

Digitar as conclusões do trabalho.

Referências

AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL). *Resolução nº 67, de 12 de novembro de 1998.* [S.l.], 2010. Disponível em: http://legislacao.anatel.gov.br/resolucoes/13-1998/168-resolucao-67>. Acesso em: 27 mai. 2013.

AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL). *Portal ANATEL.* [S.l.], 2013. Disponível em: http://www.anatel.gov.br/Portal/>. Acesso em: 27 mai. 2013.

AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES (BRASIL). *SRD - SISTEMA DE CONTROLE DE RADIODIFUSÃO*. [S.1.], 2013. Disponível em: http://sistemas.anatel.gov.br/srd. Acesso em: 27 mai. 2013.

AUTOR, N. Título: Subtítudo, que vem depois de dois pontos. São Paulo: Editora, 1995.

CONCEITOS criados como exemplo. 2003. Disponível em: http://nomedodominio.com.br>. Acesso em: 8 mar. 1999.

EVANS, X. Y. Z. et al. Exemplo de citação no texto. [S.l.: s.n.], 1987.

GOOGLE MAPS. *Localização da base do sistema irradiante. São Pedro de Alcantara - 2013*. [S.l.], 2013. Disponível em: https://maps.google.com.br/>. Acesso em: 03 jun. 2013.

NOME, O. Algum nome. [S.l.: s.n.], 1978. 101-114 p.

RÉGIS, P. A. Cálculo de Viabilidade Técnica de um Canal de Televisão Digital. Blumenal: FURB, 2010.

SILVA, X. Y. *Título de exemplo*. [S.l.], 2003. Disponível em: http://nomedodominio.com.br. Acesso em: 8 mar. 1999.

UNIÃO INTERNACIONAL DE TELECOMUNICAÇÕES: SETOR DE RADIOCOMUNICAÇÕES. Recomendação P.1546 -1: Médoto de previsões pontoárea para serviços terrestres na faixa de frequências de 30 a 3000MHz. [S.l.], 2013. Disponível em: http://sistemas.anatel.gov.br/siganatel/>. Acesso em: 27 mai. 2013.

ANEXO A – Especificações técnicas do fabricante da antena dipolo utilizada

Nº de	Ganho dBd Vezes		Potência Máxima de		Ång. ½ Pot. Vertical	
Elementos			Entrada (KW)	Conexão		
1	0	1	5	EIA 1 5/8"	840	
2	3	2	10	EIA 1 5/8"	27°	
3	4,77	3	15	EIA3 1/8"	180	
4	6	4	20	EIA 3 1/8"	13°	
6	7,76	6	30	EIA 3 1/8°	8,5°	
8	9,03	8	40	EIA 4 1/16"	6.5°	

* Dipolos confeccionados em 1 5/8"

Nº de	Ganho dBd Vezes		Potência Máxima de	- Marian	Ång. ½Pot. Vertical	
Elementos			Entrada (KW)	Conexão		
1	0	1	10	EIA3 1/8"	84°	
2	3	2	20	EIA3 1/8"	270	
3	4,77	3	30	EIA3 1/8"	18°	
4	6	4	40	EIA 4 1/16"	13°	
6	7,76	6	40	EIA4 1/16	8,5°	
8	9,03	8	40	EIA 4 1/16"	6,5°	

^{*} Dipolos confeccionados em 3 1/8"

Dipolo ½ Onda para FM

Antena para transmissão de FM, com polarização Vertical. Podendo ser confeccionada em linha EIA 1 5/8" ou EIA 3 1/8".

Ideal para transmissão em média e alta potência. Podendo ser instalada em lateral de torre ou tubulão em topo de torre.

Antena de fácil instalação e baixa carga de vento.

Pode ser utilizado diagrama de elevação com tilt elétrico e/ou preenchimento de nulo. Possui confecção com alimentação inferior ou central.

É produzida, sendo sua estrutura externa em latão e suas conexões internas em cobre e latão banhados a prata. Possui tratamento anticorrosivo com epoxi em coloração branca. Com possibilidade de pressurização plena ou até a entrada da antena.

Sistemas com configurações diferentes as apresentadas, entrar em contato.

CARACTERÍSTICAS TÉCNICAS

Faixa de Frequência	87,5 a 108,1 Mhz
Largura de Banda	500 KHz
Polarização	Vertical
Impedância	50 ohms
Ganho	Vide tabela
Máxima potência por elemento	5000 Watts (EIA 1 5/8")
	10000 Watts (EIA 3 1/8")
Ângulo de ½ pot. vertical	Vide tabela
VSWR	<1.05:1
Dimensões (Altura x Diâmetro)	Vide tabela
Área exposta	Vide tabela
Carga ao Vento	Vide tabela
Peso	Vide tabela
Conexão de entrada do sistema	EIA 1 5/8", EIA 3 1/8", EIA 4 1/16"
Resistência a ventos	180 Km/h
Proteção elétrica	Por intermédio da estrutura da antena

MODELO

Dipolo de 1/2 Onda para FM

Características Mecânicas *								
Números de Elementos	A	В	C	/rea Exposta	Carga ao Vento	Peso		
1	1815	907,5		0,13	13	10		
2	5152	2576		0,61	61	39		
3	8489	4244.5	3337	0,89	89	61		
4	11826	5913	3331	1,15	115	74		
6	18500	9250		1,71	171	113		
8	25155	12577		227	227	145		

* Dados referentes a sistemas com freqüência de 88.1 Mhz em Linha 1 5/8"

Números de Elementos	A	В	C	Area	Carga ao	Peso
1	1630	815		0,12	Verto 12	8,4
2	4630	2315		0,56	56	37
3	7630	3815	3000	0,82	82	58
4	10630	5315	3000	1,06	106	70
6	16630	8315		1,57	157	107
8	22623	11312		2.09	209	136

* Dados referentes a sistemas com freqüência de 98.1 Mhz em Linha 1 5/8"

Números de Elementos	A	В	C	Area Exposta	Carga ao Vento	Pess
1	1480	740		0,11	11	7,9
2	4200	2100		0,51	51	35
3	6920	3460	2720	0,75	75	- 55
4	9640	4820	2.20	0,97	97	67
6	15080	7540		1,43	143	102
8	20520	10260		1,91	191	131

* Dados referentes a sistemas com freqüéncia de 108.1 Mhz em Linha 1 5/8"

A = Altura do sistema (mm) B = Centro de Fase do sistema (mm) C = Espaçamento entre antenas (mm)

C - Espagamento entile anterias (mini)
Area Exposta (m²)
Carga ao Vento (Kgf)
Peso (Kg)
* Características referentes a confecção em tubo padrão em tatão.

Dipolo de 1/2 Onda para FM

Diagrama de Azimute

Graus	E/Emax	(dB)	(%)	Graus	E/Emax	(dB)	(%)
0.	1,00	0,0	100,0%	90°	0,78	-2.2	60,3%
5°	0,99	-0,1	97,7%	95*	0,76	-2,4	57,5%
10°	0,99	-0.1	97,7%	100°	0,75	-2,5	56,2%
15"	0,99	-0,1	97,7%	105*	0,73	-2,7	53,7%
20"	0,98	-0,2	95,5%	110"	0,72	-2,9	51,3%
25°	0,97	-0,3	93,3%	115*	0,70	-3,1	49,0%
30"	0,95	-0.4	91,2%	120"	0,69	-3,2	47,9%
35°	0,94	-0,5	89,1%	125"	0,68	-3,4	45,7%
40"	0,93	-0,6	87,1%	130"	0,67	-3,5	44,7%
45°	0,92	-0.7	85,1%	135*	0,66	-3,6	43,7%
50°	0,90	-0.9	81,3%	140°	0,65	-3.7	42,7%
55°	0,89	-1,0	79,4%	145"	0,64	-3,9	40,7%
60°	0,88	-1,1	77,6%	150°	0,63	-4,0	39,8%
65°	0,87	-1,2	75,9%	155"	0,63	-4.0	39,8%
70°	0,85	-1.4	72,4%	160*	0,63	-4,0	39,8%
75°	0,84	-1,5	70,8%	165"	0,62	-4.2	38,0%
80°	0,82	-1.7	67,6%	170°	0,62	-4,2	38,0%
85"	0,80	-1,9	64,6%	175°	0,62	-4.2	38.0%

Graus	E/Emax	(dB)	(%)	Graus	E/Emax	(dB)	(%)
180°	0,62	-4.2	38,0%	270"	0,78	-2,2	60,3%
185°	0,62	-4.2	38,0%	275*	0,80	-1,9	64,6%
190°	0,62	-4,2	38,0%	280°	0,82	-1,7	67,6%
195°	0,62	-4.2	38,0%	285*	0,84	-1,5	70.8%
200°	0,63	-4,0	39,8%	290°	0,85	-1,4	72,4%
205°	0,63	-4.0	39,8%	295*	0,87	-1,2	75,9%
210°	0,63	-4,0	39,8%	300"	0,88	-1,1	77,6%
215°	0,64	-3,9	40,74%	305*	0,89	-1,0	79,4%
220°	0,65	-3.7	42,7%	310"	0,90	-0,9	81,3%
225°	0,66	-3,6	43,7%	315"	0,92	-0,7	85,1%
230°	0,67	-3,5	44.7%	320"	0,93	-0,6	87,1%
235°	0,68	-3,4	45,7%	325"	0,94	-0,5	89,1%
240°	0,69	-3.2	47,9%	330"	0,95	-0,4	91,2%
245°	0,70	-3.1	49,0%	335"	0,97	-0,3	93,3%
250°	0,72	-2,9	51,3%	340"	0,98	-0,2	95,5%
255°	0,73	-2,7	53,7%	345"	0,99	-0,1	97,7%
260°	0,75	-2,5	56,2%	350"	0,99	-0,1	97,7%
265°	0,76	-2,4	57,5%	355"	0,99	-0,1	97,7%

Dipolo de 1/2 Onda para FM

Diagrama de Elevação

ANEXO B - Especificações técnicas do fabricante do guia de onda utilizado

LCF158-50JFNL

1-5/8" CELLFLEX® Lite Low-Loss Foam-Dielectric Coaxial Cable

Product Description

CELLFLEX® Lite 1-5/8" low loss flexible cable Application: Main feed line, Riser-rated In-Building

Features/Benefits

 It exceeds indu 	e coaxial cable can be used outside and i stry standard for return loss performan	ice	where restrictions apply.	
	te coaxial cable means zero risk in networ	k planning.		
Technical Fea	tures			
Structure				
Inner conductor:	Corrugated Copper Tube	[mm (in)]	17.6 (0.69)	
Dielectric:	Foam Polyethylene	[mm (in)]	40.9 (1.61)	
Outer conductor:	Corrugated Aluminium	[mm (in)]	46.5 (1.83)	
Jacket:	Polyethylene, PE, Metalhydroxite Filling	[mm (in)]	50.3 (1.98)	
Mechanical Prop	erties			
Weight, approximate	ely	[kg/m (lb/ft)]	0.78 (0.52)	
Minimum bending ra	dius, single bending	[mm (in)]	200 (8)	
Minimum bending ra	dius, repeated bending	[mm (in)]	500 (20)	
Bending moment		[Nm (lb-ft)]	46.0 (34.0)	
Max. tensile force		[N (lb)]	1800 (405)	
Recommended / ma	ximum clamp spacing	[m (ft)]	1.2 / 1.5 (4.0 / 5.0)	
Electrical Proper	ties			
Characteristic imped	ance	[Ω]	50 +/- 1	
Relative propagation	velocity	[%]	90	
Capacitance		[pF/m (pF/ft)]	74.0 (22.5)	
Inductance		[µH/m (µH/ft)]	0.185 (0.056)	
Max. operating frequ	iency	[GHz]	2.75	
Jacket spark test RM	1S	[V]	10000	
Peak power rating		[kW]	310	
RF Peak voltage rati	ng	[V]	5600	
DC-resistance inner	conductor	[Ω/km (Ω/1000ft)]	1.30 (0.396)	
DC-resistance outer	conductor	[Ω/km (Ω/1000ft)]	0.68 (0.205)	
Recommended T	emperature Range			
Storage temperature	:	[°C (°F)]	-70 to +85 (-94 to +185)	
Installation temperat	ure	[°C (°F)]	-25 to +60 (-13 to +140)	
		[°C (°F)]	-50 to +85 (-58 to +185)	

Frequency	Atten	Power	
[MHz]	[dB/100m]	[dB/100ft]	[kW]
0.5	0.0480	0.0146	244
1.0	0.0680	0.0207	172
1.5	0.0834	0.0254	140
2.0	0.0963	0.0294	121
10	0.217	0.0662	53.9
20	0.309	0.0942	37.9
30	0.380	0.116	30.8
50	0.495	0.151	23.6
88	0.663	0.202	17.6
100	0.709	0.216	16.5
108	0.738	0.225	15.9
150	0.877	0.267	13.3
174	0.948	0.289	12.3
200	1.02	0.311	11.5
300	1.27	0.387	9.21
400	1.48	0.452	7.91
450	1.58	0.481	7.41
500	1.67	0.510	7.01
512	1.70	0.517	6.88
600	1.85	0.564	6.32
700	2.01	0.614	5.82
750	2.09	0.638	5.60
800	2.17	0.661	5.39
824	2.21	0.672	5.29
894	2.31	0.704	5.06
900	2.32	0.707	5.04
925	2.35	0.718	4.98
960	2.40	0.733	4.88
1000	2.46	0.750	4.76
1250	2.79	0.851	4.19
1400	2.98	0.908	3.93
1500	3.10	0.945	3.77
1700	3.33	1.02	3.51
1800	3.45	1.05	3.39
2000	3.67	1.12	3.19
2100	3.77	1.15	3.10
2200	3.88	1.18	3.02
2400	4.08	1.24	2.87
2500	4.18	1.28	2.80
2600	4.28	1.31	2.73
2700	4.38	1.34	2.67
2750	4.43	1.35 cable temperatu	2.64

Attenuation at 20°C (68°F) cable temperature
Mean power rating at 40°C (104°F) ambient temperature

RFS The Clear Choice ®

LCF158-50JFNL

[dB (VSWR)]

Phase stabilized and phase matched cables and assemblies are available upon request.

18 (1.288:1)

Rev: C / 16.DEC.2010

present datasheet is subject to confirmation at time of ordering

Fire Performance: VSWR Performance:

Other Options:

Standard

Flame Retardant, LS0H

ANEXO C – Mapa de Macrozoneamento de São Pedro de Alcântara

ANEXO D – Gráficos do perfil de terreno das 12 Radias ao redor da emissora.

Radial 1

Radial 2

Radial 3

Radial 4

Radial 5

Radial 6

Radial 7

Radial 8

Radial 10

Radial 12