Chapter 10: Circles

Basic Definitions

Circle: The set of all points in a plane which are at a fixed distance (radius) from a fixed point (centre).

★ Key Terms:

- Radius: Distance from centre to any point on the circle
- Diameter: A chord that passes through the centre (2 × radius)
- Chord: A line segment joining two points on the circle
- Arc: A part of the circle's boundary
- Segment: Area between chord and arc
- Sector: Area enclosed between two radii and the arc
- Cyclic Quadrilateral: A quadrilateral whose all vertices lie on a circle

Key Results & Theorems

- ☑ Equal chords of a circle subtend equal angles at the centre
- ▼ Equal angles at centre imply equal chords
- \checkmark A line from the centre \bot to a chord bisects it
- \checkmark A line that bisects a chord passes through the centre \bot to it
- Only one circle can pass through three non-collinear points
- Equal chords are equidistant from the centre
- Chords equidistant from the centre are equal
- Equal chords have congruent arcs, and vice versa
- Congruent arcs subtend equal angles at the centre
- \checkmark at centre = 2 × \angle at any other point on the circle (on same arc)
- ✓ Angles in the same segment are equal
- \square If \angle subtended by segment is equal at two points, then the 4 points lie on a circle (concyclic)
- Opposite angles of a cyclic quadrilateral add up to 180°
- ☑ If sum of opposite angles = 180°, quadrilateral is cyclic

Multiple Choice Practice (With Diagrams)

Sample:

- 1. If arc AXB = 75° and arc A'YB' = 25°, then arc ratio = 3:1 ✓
- 2. In circle, chords AB and CD ⊥ from centre, and ∠POQ = 150°, find ∠APQ → 75° ✓

Examples:

- Diameter = 34 cm, chord = 30 cm → Distance from centre = 8 cm
- In triangle with AB ⊥ BC, AB = 12, BC = 16 → Radius of circle = 10 cm
- If \angle ABC = 20°, then \angle AOC = 40° (double)

- If AC = BC and AB is diameter → ∠CAB = 90°
- \angle OAB = 40° \rightarrow \angle ACB = 70° (using arc rule)
- ∠AOB = 90°, ∠ABC = 30° → ∠CAO = 60°

True/False Reasoning

- 1. Chords equal distance from centre → Equal ✓
- 2. Through 3 collinear points → X circle not possible
- 3. If AB is diameter \rightarrow AC² + BC² = AB² \bigvee (Pythagorean in semicircle)
- 4. If \angle BAC = \angle BDC = 45° \rightarrow A, B, C, D are concyclic $\boxed{\checkmark}$
- 5. $\angle ADC = 120^{\circ}$ with diameter AB $\rightarrow \angle CAB = 30^{\circ}$

_

Short Answers With Explanation

- 1. If arc AXB = $\frac{1}{2}$ arc BYC $\rightarrow \angle$ BOC = 120°
- 2. If \angle ABC = 45°, then \angle AOC = 90° \rightarrow OA \perp OC \checkmark
- **© Concept:** \angle at circumference is half of \angle at centre for same arc!

_

→ Theorems & Long Conceptual Reasoning

- Theorem: Two circles can't intersect in more than 2 points
- → Because only one unique circle can pass through 3 non-collinear points
- 9 **Theorem:** Of all chords passing through a point inside a circle, the shortest one is perpendicular to the diameter passing through that point \checkmark
- \bigcirc ΔABC inscribed, P any point on minor arc BC → PA is angle bisector of ∠BPC $\boxed{\checkmark}$

_

Constructions and Reasoning Based Geometry

- Examples:
 - Equal chords intersect → segments also equal
 - Trapezium with non-parallel sides equal → Cyclic
 - A circle with radius 2 cm, chord = 2 cm → ∠ in major segment = 45°
 - Opposite angles' bisectors meet on the circle → they form a diameter
 - If AB = 2AC in a circle, p and q are distances from centre → 4q² = p² + 3r²

_

Summary Table:-

Concept	Result / Rule
∠ at centre = 2 × ∠ at circle	Always true for same arc
Opposite angles of cyclic quadrilateral	Sum = 180°
Equal chords	Equal distance from centre, same arc
Diameter subtending angle	Always 90° (angle in semicircle)
Only one circle through 3 points	True (must be non-collinear)
Equal chords produce equal arcs	And vice versa
Angle in same segment	Always equal
Chord nearest to centre	Is the longest