SEQUENCE LISTING

<110> Chiron Corporation Janatpour, Mary J. Reinhard, Christoph Garcia, Pablo

<120> Trefoil Factor 3 (TFF3) as a Target for Anti-Cancer Therapy

<130> CHIRO003-500 (19154.005)

<150> US 60/493,173

<151> 2003-08-07

<150> US 60/498,438 <151> 2003-08-28

<160> 28

<170> PatentIn version 3.2

<210> 1 <211> 74

<211> 74 <212> PRT

<213> Homo sapiens

<400> 1

Met Leu Gly Leu Val Leu Ala Leu Leu Ser Ser Ser Ser Ala Glu Glu 10 15

Tyr Val Gly Leu Ser Ala Asn Gln Cys Ala Val Pro Ala Lys Asp Arg 20 25 30

Val Asp Cys Gly Tyr Pro His Val Thr Pro Lys Glu Cys Asn Asn Arg

Gly Cys Cys Phe Asp Ser Arg Ile Pro Gly Val Pro Trp Cys Phe Lys 50 60

Pro Leu Thr Arg Lys Thr Glu Cys Thr Phe 65 70

<210> 2 <211> 73

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Gly Leu Val Leu Ala Leu Leu Ser Ser Ser Ser Ala Glu Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Tyr Val Gly Leu Ser Ala Asn Gln Cys Ala Val Pro Ala Lys Asp Arg 20 25 30

Val Asp Cys Gly Tyr Pro His Val Thr Pro Lys Glu Cys Asn Asn Arg 35 40 45 Page 1

Gly Cys Cys Phe Asp Ser Arg Ile Pro Gly Val Pro Trp Cys Phe Lys

Pro Leu Gln Glu Ala Glu Cys Thr Phe 65 70

<210> <211> 3 80

PRT Homo sapiens

Met Ala Ala Arg Ala Leu Cys Met Leu Gly Leu Val Leu Ala Leu Leu 10 15

Ser Ser Ser Ser Ala Glu Glu Tyr Val Gly Leu Ser Ala Arg Gly Cys

Ala Val Pro Ala Lys Asp Arg Val Asp Cys Gly Tyr Pro His Val Thr 35 40 45

Pro Lys Glu Cys Asn Asn Arg Gly Cys Cys Phe Asp Ser Arg Ile Pro ...50 60

Gly Val Pro Trp Cys Phe Lys Pro Leu Gln Glu Ala Glu Cys Thr Phe 65 70 75 80

<210> <211>

4 130

<213> Homo sapiens

<400>

Met Gln Glu Arg Thr Gly Ala Ala Thr Ala Arg Arg Glu Ser Leu Pro 1 10 15

Gln Ala Asn Asn Pro Glu Gln Leu Cys Lys Gln Arg Cys Ile Asn Glu

Ala Ser Trp Thr Met Lys Arg Val Leu Ser Cys Val Pro Glu Pro Thr 35 40 45

Val Val Met Ala Ala Arg Ala Leu Cys Met Leu Gly Leu Val Leu Ala 50 60

Leu Leu Ser Ser Ser Ala Glu Glu Tyr Val Gly Leu Ser Ala Asn 65 75 80

GIN Cys Ala Val Pro Ala Lys Asp Arg Val Asp Cys Gly Tyr Pro His Val Thr Pro Lys Glu Cys Asn Asn Arg Gly Cys Cys Phe Asp Ser Arg 100 105 110Ile Pro Gly Val Pro Trp Cys Phe Lys Pro Leu Gln Glu Ala Glu Cys 115 120 125 Thr Phe <210> <211> 398 DNA Homo sapiens <400> 5 gatgctgggg ctggtcctgg ccttgctgtc ctccagctct gctgaggagt acgtgggcct 60 gtctgcaaac cagtgtgccg tgccggccaa ggacagggtg gactgcggct acccccatgt 120 cacccccaag gagtgcaaca accggggctg ctgctttgac tccaggatcc ctggagtgcc 180 ttggtgtttc aagcccctga ctaggaagac agaatgcacc ttctgaggca cctccagctg 240 cccctgggat gcaggctgag cacccttgcc cggctgtgat tgctgccagg cactgttcat 300 ctcagttttt ctgtcccttt gctcccggca agctttctgc tgaaagttca tatctggagc 360 ctgatgtctt aacgaataaa ggtcccatgc tccacccg 398 <210> 6 685 DNA Homo sapiens <400> gccaaaacag tgggggctga actgacctct cccctttggg agagaaaaac tgtctgggag 60 cttgacaaag gcatgcagga gagaacagga gcagccacag ccaggaggga gagccttccc 120 caagcaaaca atccagagca gctgtgcaaa caacggtgca taaatgaggc ctcctggacc 180 atgaagcgag tcctgagctg cgtcccggag cccacggtgg tcatggctgc cagagcgctc 240 tgcatgctgg ggctggtcct ggccttgctg tcctccagct ctgctgagga gtacgtgggc 300 ctgtctgcaa accagtgtgc cgtgccagcc aaggacaggg tggactgcgg ctaccccat 360 gtcaccccca aggagtgcaa caaccggggc tgctgctttg actccaggat ccctggagtg 420 ccttggtgtt tcaagcccct gcaggaagca gaatgcacct tctgaggcac ctccagctgc 480 ccccggccgg gggatgcgag gctcggagca cccttgcccg gctgtgattg ctgccaggca 540 ctgttcatct cagcttttct gtccctttgc tcccggcaag cgcttctgct gaaagttcat 600 atctggagcc tgatgtctta acgaataaag gtcccatgct ccacccgagg acagttcttc 660 Page 3

gtgcctgaaa	aaaaaaaaa	aaaaa	•			685
<210> 7 <211> 491 <212> DNA <213> Home	o sapiens					
<400> 7 ggagtcctga	gctgcgtccc	ggagcccacg	gtggtcatgg	ctgccagagc	gctctgcatg	60
ctggggctgg	tcctggcctt	gctgtcctcc	agctctgctg	aggagtacgt	gggcctgtct	120
gcaaaccagt	gtgccgtgcc	agccaaggac	agggtggact	gcggctaccc	ccatgtcacc	180
cccaaggagt	gcaacaaccg	gggctgctgc	tttgactcca	ggatccctgg	agtgccttgg	240
tgtttcaagc	ccctgcagga	agcagaatgc	accttctgag	gcacctccag	ctgcccccgg	300
ccgggggatg	cgaggctcgg	agcacccttg	cccggctgtg	attgctgcca	ggcactgttc	360
atctcagctt	ttctgtccct	ttgctcccgg	caagcgcttc	tgctgaaagt	tcatatctgg	420
agcctgatgt	cttaacgaat	aaaggtccca	tgctccaccc	taaaaaaaaa	aaaaaaaaa	480
aaaaaaaaa	a					491
	o sapiens '					
<400> 8 cgctcccag	tagaggaccc	ggaaccagaa	ctggaatccg	cccttaccgc	ttgctgccaa	60
aacagtgggg	gctgaactga	cctctcccct	ttgggagaga	aaaactgtct	gggagcttga	120
caaaggcatg	caggagagaa	caggagcagc	cacagccagg	agggagagcc	ttccccaagc	180
aaacaatcca	gagcagctgt	gcaaacaacg	gtgcataaat	gaggcctcct	ggaccatgaa	240
gcgagtcctg	agctgcgtcc	cggagcccac	ggtggtcatg	gctgccagag	cgctctgcat	300
gctggggctg	gtcctggcct	tgctgtcctc	cagctctgct	gaggagtacg	tgggcctgtc	360
tgcaaaccag	tgtgccgtgc	cagccaagga	cagggtggac	tgcggctacc	cccatgtcac	420
ccccaaggag	tg					432
<210> 9 <211> 22 <212> DNA <213> Art	ificial sequ	neùce				
<220> <223> TFF	3 antisense	oligonucle	otide			
<400> 9 tccttggctg	gcacggcaca	ct				22

<210> <211> <212> <213>	10 23 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> cgggag	10 Icaaa gggacagaaa agc	23
<210> <211> <212> <213>	11 23 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> gaagaa	11 ctgt cctcgggtgg agc	23
<210> <211> <212> <213>	12 25 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> tcagaa	12 agtc tcaggcacga agaac	25
<212>	13 25 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> gcagca	13 gaaa taaagcacaa cctca	25
<210> <211> <212> <213>	14 25 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> aacagta	14 agcg agagtggttg tgaaa	25
<210><211><211><212><213>	15 22 DNA Artificial sequence	

<220> <223>	TFF3 antisense oligonucleotide	
<400> cggcacg	15 ggca cactggtttg ca	22
<210> <211> <212> <213>	16 25 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> ggtgcat	16 ttct gtcttcctag tcagg	25
<210> <211> <212> <213>	17 25 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> ggctcc	17 agat atgaactttc agcag	25
<210> <211> <212> <213>	18 25 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> ggtgga	18 gcat gggaccttta ttcgt /	25
<210> <211> <212> <213>	19 22 DNA Artificial sequence	
<220> <223>	TFF3 antisense oligonucleotide	
<400> tggcac	19 ggca cactggtttg ca	22
<210> <211> <212> <213>	20 8 PRT Artificial sequence	
<220>	chemically synthesized peptide	

```
<400> 20
Ala Val Pro Ala Lys Asp Arg Val
<210> 21
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> chemically synthesized peptide
<400> 21
val Pro Ala Lys Asp Arg Val Asp
1
<210> 22
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> chemically synthesized peptide
<400> 22
Ala Val Pro Ala Lys Asp Arg Val Asp
1 5
<210> 23
<211> 8
<212> PRT
<213> Artificial sequence
 <223> chemically synthesized peptide
 <400> 23
 Gly Tyr Pro His Val Thr Pro Lys
1 5
 <210> 24
<211> 8
<212> PRT
<213> Artificial sequence
 <220>
<223> chemically synthesized peptide
 <400> 24
 Tyr Pro His Val Thr Pro Lys Glu
1 5
 <210> 25
<211> 9
```

```
<212> PRT
<213> Artificial sequence
<220>
<223> chemically synthesized peptide
<400> 25
Gly Tyr Pro His Val Thr Pro Lys Glu
1 5
<210> 26
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> chemically synthesized peptide
<400> 26
Phe Lys Pro Leu Gln Glu Ala Glu
1
<210> 27
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> chemically synthesized peptide
<400> 27
Lys Pro Leu Gln Glu Ala Glu Cys
1
<210> 28
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> chemically synthesized peptide
<400> 28
Phe Lys Pro Leu Gln Glu Ala Glu Cys
1 5
```