Errata

Zuletzt aktualisiert: 16. Juni 2023, 21:29

Diese Liste besteht aus bekannten Fehlern in "Vorbereitungskurs Staatsexamen Mathematik" (2. Auflage, Springer 2021). Falls Sie weitere Irrtümer in unserem Buch entdecken, sind wir für eine E-Mail dazu (vorzugsweise an dominik.bullach@kcl.ac.uk oder johannesfunk@outlook.com) dankbar. (D.B./J.F.F.)

Algebra: Gruppentheorie

- S. 27: In der Mitte der Seite definieren wir die Matrix $A = (v \mid w_2 \mid \cdots \mid w_n)$ (der letzte Index war falsch). (Danke an Xaver Ermann)
- S. 36: In Teil b der oberen Aufgabe sind die Bezeichnungen etwas durcheinander geraten: um einheitlich zu Teil a zu bleiben, sollten A und B vertauscht werden (also $A = \mathbb{Z}/31\mathbb{Z}$ und $B = \mathbb{Z}/65\mathbb{Z}$). In der Notation aus dem Buch haben wir das Produkt $B \rtimes_{\phi} A$ konstruiert. (Danke an Xaver Ermann)
- S. 37: Die beiden ψ in der letzten Gleichungen sollen ϕ bezeichnen. (Danke an Xaver Ermann)

Algebra: Ringtheorie

- S. 86: In der Definition euklidischer Ringe sollte der Wertebereich der Höhenfunktion $|\cdot|$ richtigerweise \mathbb{N}_0 sein (wobei $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$). (Danke an Asuka Kumon)
- S. 88: Fun fact (1) unter Definition 2.9 ist zwar nicht falsch, aber auch nicht sonderlich spannend. Die Autoren können nur mutmaßen, dass hier ursprünglich stehen sollte:

Jeder euklidische Ring ist ein Hauptidealring.

Analysis reeller Variablen

■ S. 246: Zu Beginn von **b** haben wir Indizes durcheinandergebracht, es heißt korrekt $\sum_{n=0}^{\infty} q^n$. (Danke an Xaver Ermann)

Funktionentheorie

- S. 283: In Satz 6.11 (2) muss es $\sum_{n=1}^{\infty} M_n$ lauten, da die Folge $(M_n)_{n \in \mathbb{N}}$ nur über die natürlichen Zahlen indiziert ist.
- S. 291: In H12T3A5 werden in der letzten abgesetzten Rechnung (letzte Zeile davon) z und z_0 vertauscht ohne die Vorzeichenänderung zu berücksichtigen. In der angegebene Reihe muss daher jeder Summand um einen Faktor $(-1)^k$ korrigiert werden. (Danke an Lena Erndl)
- S. 301: Bei der Bestimmung von v(x,0) ist ein " x^4 " verloren gegangen. (Danke an Xaver Ermann)
- S. 303: Im ersten Satz der Seite ist mit f die Funktion f_r gemeint. (Danke an Ella Kick)

■ S. 312: Hier ist ein kompletter Absatz verloren gegangen. Korrekterweise sollte hier stehen: Wir bemerken zunächst, dass $f(z) = f(\pi)$ für $z = \pi$ stets erfüllt ist. Um die Gleichheit auch für $z \in \mathbb{C} \setminus \{\pi\}$ zu zeigen, beweisen wir, dass f konstant ist.

(Danke an Ella Kick)

- S. 324: Satz 6.30 (Cauchy-Integral formel) gilt auch für n=0 (mit der Konvention 0!=1). Anders ausgedrückt: Es sollte $n \in \mathbb{N}_0$ (anstatt lediglich $n \in \mathbb{N}$) lauten. (Danke an Maximilian König)
- S. 336: Im letzten Absatz von a sollte korrekterweise geschlussfolgert werden, dass πi eine Polstelle erster Ordnung ist. (Danke an Ella Kick)
- S. 336: In **b** berechnet sich das Residuum von f in πi mittels der "bekannten Regel" (= (2) auf Seite 328) zu Res $(f; \pi i) = \frac{1}{h'(\pi i)}$, wobei $h(z) := z \sinh(z)$ den *Nenner* der Funktion f bezeichnet. (Danke an Michi Maior)
- S. 342: In der abgesetzten Formel unten auf der Seite sollte auch im zweiten Integral der Weg γ_2 sein (anstatt γ). (Danke an Ella Kick)
- S. 362: Am Ende der Aufgabenstellung von F15T3A3 findet sich eine Fußnotenmarkierung ohne zugehörige Fußnote. Diese Markierung kann ignoriert werden. (Danke an Ella Kick)

Differentialgleichungen

- S. 389: In Teil \overline{a} ist bei der Überprüfung stets λ als λ_2 zu lesen.
- S. 424: Die abgedruckte Aufgabe ist H03T1A4 (anstatt A3 wie angegeben). (Danke an Ella Kick)
- S. 458: Die abgedruckte Aufgabe ist H10T2A4 (anstatt A3 wie angegeben). (Danke an Ella Kick)

Prüfungsaufgaben Algebra

 S. 494: Hier ist bei der Ableitung ein Faktor 5 verloren gegangen. Korrekt lauten die letzten Zeilen: Jedoch ist

$$f'(x) = 5x^4 - 4 = 5\left(x^2 - \frac{2}{\sqrt{5}}\right)\left(x^2 + \frac{2}{\sqrt{5}}\right)$$

für alle $x \in \mathbb{R}$ und hat daher nur die beiden reellen Nullstellen $\pm \frac{\sqrt{2}}{\sqrt[4]{5}}$.

(Danke an Ella Kick)

■ S. 500: In der Lösung zu F18T2A5 **b** müsste $k \in \{0, 1, ..., 5\}$ sein, wir hatten die 0 unterschlagen. (Danke an Ella Kick)

Prüfungsaufgaben Analysis

■ S. 586: In H17T2A3 **b** sollte *h* definiert sein als

$$h: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto (f(t,t), f(-t,t^2)),$$

(Danke an Ella Kick)

■ S. 634: Bei der zweiten zentrierten Gleichung zur Stabilität haben wir \tilde{x} statt korrekterweise \tilde{y} geschrieben. (Danke an Ella Kick)

- S. 635: Die Beschreibung der Kurve γ ist falsch: zum einen werden beide Kreise gegen den Uhrzeigersinn durchlaufen. Zum anderen ist die Umlaufzahl von -1+i nicht 4, sondern 2. Die Wert des Integrals in $\frac{1}{2}$ ändert sich entsprechend. (Danke an Ella Kick)
- S. 653: Hier ist und ein folgenreicher Rechenfehler unterlaufen: im letzten Residuum ist das Vorzeichen falsch. Folglich verschwindet das Integral. Folglich schließt man mit Satz 6.34 (2), dass f eine Stammfunktion besitzt. (Danke an Ella Kick)
- S. 673: In der Lösung zu Teil c haben wir ganz am Anfang zwei mal den Faktor 2 unterschlagen.
 Eine korrekte partielle Lösung ist dann

$$y_p(t) = \frac{1}{4}\sin(2t) - \frac{1}{4}\cos(2t).$$

Die allgemeine Lösung ändert sich entsprechend.

(Danke an Ella Kick)

- S. 678: In **b** ist auch im zweiten Teil der Definition von *f* statt *y* die Variable *x* gemeint. (Danke an Ella Kick)
- S. 692: In F20T1A4 a vergleichen wir f mit der Funktion $z\mapsto -5z^4$ (wir hatten ein Minus vergessen). (Danke an Ella Kick)
- S. 696: In der Lösung zu F20T2A1 a sollten in der Definition von Maximum und Minimum die Bezeichnungen b_1, \ldots, b_{N-1} (anstatt a_1, \ldots, a_{N-1}) verwendet werden. (Danke an Ella Kick)
- S. 701: In der letzten Umformung auf der Seite müsste korrekt stehen: $\cos x_1 = 1$ und $\cos x_2 = 1$. (Danke an Ella Kick)