

F8 Polarisation

Dagens föreläsning

- F4 Elektromagnetiska vågor
- F5 Böjning och upplösning
- F6 Interferens och böjning
- F7 Interferens i tunna skikt
- F8 Polarisation

Maxwells ekvationer i vakuum

$$\begin{vmatrix}
\nabla \cdot \mathbf{E} &= 0 \\
\nabla \cdot \mathbf{B} &= 0
\end{vmatrix}$$

$$\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} &= \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Transversella "plana" störningar längs x-axeln

$$\Rightarrow \begin{cases} \frac{\partial^2 E_y}{\partial t^2} = \frac{1}{\mu_0 \epsilon_0} \frac{\partial^2 E_y}{\partial x^2} \\ \frac{\partial^2 B_z}{\partial t^2} = \frac{1}{\mu_0 \epsilon_0} \frac{\partial^2 B_z}{\partial x^2} \end{cases}$$

Hur blir det om $E \parallel \hat{e}_z$?

$$\Rightarrow \begin{cases} \frac{\partial^2 E_z}{\partial t^2} = \frac{1}{\mu_0 \epsilon_0} \frac{\partial^2 E_z}{\partial x^2} \\ \frac{\partial^2 B_y}{\partial t^2} = \frac{1}{\mu_0 \epsilon_0} \frac{\partial^2 B_y}{\partial x^2} \end{cases}$$

Elektromagnetisk våg

En tredimensionell våg i vektorfält

- Vi har hittills betraktat vågor i ett skalärt fält
 - Ett värde i varje punkt i rummet
- En elektromagnetisk våg innehåller 6 värden i varje punkt
 - Elektriskt fält (3 komponenter)
 - Magnetiskt fält (3 komponenter)
 - I många fall är dessa komponenter inte oberoende

Polarisationstillstånd

Planpolariserat ljus

Polarisationstillstånd

Då man tittar i riktning mot källan rör sig elektriska fältvektorn medurs.

Polarisationstillstånd

Applet:

http://www.amanogawa.com/archive/ Polarization2/Polarization2-2.html

Polarisatorer

Hur skapas polariserat ljus?

- Dikroism
- Spridning
- Reflektion
- Dubbelbrytning
- Lasrar

Dikroism

Material med olika optiska egenskaper för olika polarisationstillstånd

 Det elektriska fältet kan driva elektronerna effektivt i vertikal led vilket leder till absorption av den vertikala komposanten

Planpolarisator

Malus' lag

Transmitterat elektriskt fält:

$$E_t = E_0 \cos \theta$$

• Transmitterad intensitet:

$$I_t = kE_t^2 = kE_0^2 \cos^2 \theta = I_0 \cos^2 \theta$$

θ är vinkeln mellan inkommande polarisationsriktning och polarisatorns transmissionsriktning

Exempel

Uppgift 20.3

Tre polaroider placeras efter varandra. Den första belyses med opolariserat ljus med intensiteten I_0 . Transmissionsriktningen hos den andra och den tredje polaroiden vrids 45° respektive 90° i förhållande till den första.

- a) Ange intensiteten mellan polaroid 1 och 2 uttryckt i $I_{
 m 0}$.
- b) Ange intensiteten mellan polaroid 2 och 3 uttryckt i I_0 .
- c) Ange intensiteten efter polaroid 3 uttryckt i I_0 .

Polarisation vid reflektion

- Infallsplanet innehåller inkommande och reflekterad stråle
- Randvillkor vid gränsytan leder till att olika polarisation har olika reflektans
- Vid Brewstervinkeln blir det reflekterade ljuset fullständigt planpolariserat
 - $-\theta_B = \arctan n$

Polarisation vid reflektion

- R₁ reflektans för ljus polariserat vinkelrätt mot infallsplanet
- R_{\parallel} reflektans för ljus polariserat parallellt med infallsplanet

Fresnells reflektionslagar

$$R_{\parallel} = \frac{\tan^2(\theta_1 - \theta_2)}{\tan^2(\theta_1 + \theta_2)}$$

$$R_{\perp} = \frac{\sin^2(\theta_1 - \theta_2)}{\sin^2(\theta_1 + \theta_2)}$$

Exempel

Förlustfri inkoppling av laserljus

 Med ett vakuumfönster i Brewstervinkeln transmitteras allt ljus om polarisationen är rätt!

Spridning av ljus från en molekyl

Polariserat ljus

FIGURE 8.35 a Scattering of polarized light by a molecule.

Spridning av ljus från en molekyl

Opolariserat ljus

Rayleighspridning: $I_s \propto 1/\lambda^4$

FIGURE 8.36 Scattering of unpolarized light by a molecule.

Polarisation genom spridning

Utan polarisator

Med polarisator

Hur kan man ändra polarisationen?

Dubbelbrytande material

Material där brytningsindex beror på polarisationsriktningen

Dubbelbrytande material

Halvvågsplatta

• Fasskillnaden mellan ordinär och extraordinär stråle

$$\phi = \frac{2\pi}{\lambda_0}(n_e - n_o)d = \pi$$

• Polarisationen roteras en vinkel 2θ (spegling i optiska axeln)

Dubbelbrytande material

Kvartsvågsplatta (cirkulär polarisator)

• Fasskillnaden mellan ordinär och extraordinär stråle

$$\phi = \frac{2\pi}{\lambda_0}(n_e - n_o)d = \frac{\pi}{2}$$

• Då $\theta=45^\circ$ fås cirkulärpolariserat ljus (annars blir det elliptiskt)

 n_o

Inducerad dubbelbrytning

Pockelcell

- Dubbelbrytning inducerad av elektriskt fält
- Högspänning krävs (1 10 kV)

Flytande kristalldisplay (LCD)

När en spänning läggs över kristallerna upphör rotationen

Stereoskop

Polarisation

Sammanfattning

- Transmission genom polarisator: $I_t = I_0 \cos^2 \theta$
- Reflektans: $R_{\parallel} = \frac{\tan^2(\theta_1 \theta_2)}{\tan^2(\theta_1 + \theta_2)}$ och $R_{\perp} = \frac{\sin^2(\theta_1 \theta_2)}{\sin^2(\theta_1 + \theta_2)}$
- Brewstervinkeln (ger $R_{\parallel} = 0$): $\theta_B = \arctan(n_2/n_1)$
- Fasskillnad i dubbelbrytande material: $\phi = \frac{2\pi}{\lambda_0}(n_e n_o)d$

Brewstervinkel och totalreflektion

Brewstervinkeln är den infallsvinkel då ljus med en viss polarisation transmitteras perfekt, alltså utan reflektionsförluster.

Då opolariserat ljus infaller i *Brewstervinkeln* blir det reflekterade ljuset perfekt polariserat.

$$\theta_B = \arcsin(n_2/n_1)$$

En stråle från ett optiskt tätare medium blir dels reflekterad, dels transmitterad med en större vinkel från normalen.

När infallsvinkeln blir större än *gränsvinkeln* för totalreflektion, är en transmitterad stråle inte möjlig, och allt ljus reflekteras.

