Summary Report – Breast Cancer Diagnosis Classification

DS:630- HMWK 3

Pranay Katta 10/17/2017

Summary

This project aims at predicting whether a cancer is benign or malignant based on 30 Variables. We compare and contrast the outcome of diagnosis from four different algorithms. Four different algorithms are as follows:

- GLM Generalized Linear Model
- LDA Linear Discriminant Analysis
- SVM Support Vector Machine
- KNN K Nearest Neighbors

Each of the ten variables are divided into three different measurements namely – mean, standard error and worst values making them 30 variables.

Ten variables are as follows:

- 1. radius (mean of distances from center to points on the perimeter)
- 2. texture (standard deviation of gray-scale values)
- 3. perimeter
- 4. area
- 5. smoothness (local variation in radius lengths)
- 6. compactness (perimeter^2 / area 1.0)
- 7. concavity (severity of concave portions of the contour)
- 8. concave points (number of concave portions of the contour)
- 9. symmetry
- 10. fractal dimension ("coastline approximation" 1)

With variables ID Number and Diagnosis outcome total variables are aggregated to 32 and have 569 observations. Observations are divided into 2 datasets 75% of observations for training i.e. 426 and 25% for testing i.e. 143. Each algorithm behaves differently in different setting and SVM comes out to be having best accuracy at 99.3007.

Cleaning the data

Before dividing the data into training and test datasets we remove ID_number since this doesn't contribute to our diagnosis outcome. Removing NA values using na.omit() if there are any. Data can be divided into training and test by randomly and the way it is given (first 75% for training and the remaining for testing). In the first part, we divide the data the way it is given. In the second part, we analyze how different algorithms behave when data is divided randomly.

Modeling the data – I

GLM – Logistic Regression

We use the following code to model logistic regression.

```
logmodel <- glm(Diagnosis~.,family =binomial(),data=data_cancer_train)
test_glm <- predict.glm(logmodel,data_cancer_test,type='response')
test_prediction_glm <- ifelse(test_glm > 0.5, "M","B" )
confusion_matrix_glm <-
table(test_prediction_glm,data_cancer_test$Diagnosis,dnn=c('Predicted'
,'Actual'))
accuracy_glm <- ((confusion_matrix_glm[1,1] +
confusion_matrix_glm[2,2])/sum(confusion_matrix_glm))*100</pre>
```

Confusion Matrix:

	Actual		
Predicted	В М		
В	98	3	
М	10	32	

With 3 false negatives and 10 false positives, its accuracy comes out to be 90.90%. When analyzing the significant values of glm all variables seem to have similar significance.

LDA – Linear Discriminant Analysis

We use the following code to model Ida using package "MASS".

```
ldamodel <- lda(Diagnosis~.,data=data_cancer_train)
pred_lda <- predict(ldamodel,data_cancer_test)</pre>
```

```
confusion_matrix_lda <-
table(pred_lda$class,data_cancer_test$Diagnosis,dnn=c('Predicted','Act
ual'))
accuracy_lda <- ((confusion_matrix_lda[1,1] +
confusion matrix lda[2,2])/sum(confusion matrix lda))*100</pre>
```

Confusion Matrix:

	Actual		
Predicted	В	М	
В	107	3	
М	1	32	

With 3 false negatives and 1 false positives, its accuracy comes out to be 97.20%

SVM – Support Vector Machine

We use the following code to model svm using package "e1071".

```
model_svm <- svm(Diagnosis ~ . , data= data_cancer_train)

test_svm <- predict(model_svm,data_cancer_test)

confusion_matrix_svm <- table(test_svm,data_cancer_test$Diagnosis,dnn
= c('predicted','actual'))

accuracy_svm <- ((confusion_matrix_svm[1,1] +
confusion_matrix_svm[2,2])/sum(confusion_matrix_svm))*100</pre>
```

Confusion Matrix:

	Actual		
Predicted	В	М	
В	105	0	
М	3	35	

With 0 false negatives and 3 false positives, its accuracy comes out to be 97.90%

KNN – K Nearest Neighbors

We use the following code to model knn using package "class".

Changing M to 1 and B to 0

```
data cancer copy$Diagnosis <- ifelse(data cancer copy$Diagnosis ==</pre>
'M', 1, 0)
data cancer train knn <-
data cancer copy[1:floor(nrow(data cancer copy) * 0.75),]
data cancer test knn <-
data cancer copy[ceiling(nrow(data cancer copy) *
0.75):nrow(data_cancer_copy),]
  prev accuracy knn <- 0
  k value <- 1
Looping through the model for selecting the most accurate model with changing K.
  repeat{
         model_knn <- knn(data_cancer_train_knn, data_cancer_test_knn,</pre>
     data_cancer_train_knn$Diagnosis, k = k_value)
     summary(model knn)
     confusion matrix knn <-
     table(model_knn,data_cancer_test$Diagnosis,dnn =
     c('prediceted','actual'))
     confusion matrix knn
     accuracy knn <- ((confusion matrix knn[1,1] +</pre>
     confusion_matrix_knn[2,2])/sum(confusion_matrix_knn)) * 100
  if(prev accuracy knn >= accuracy knn){
    accuracy_knn <- prev_accuracy_knn</pre>
    k value <- k value - 2
    break
  }
  prev accuracy knn <- NULL
  prev_accuracy_knn <- accuracy_knn</pre>
  k_value <- k_value + 2</pre>
  }
```

Confusion Matrix:

	Actual		
Predicted	В	М	
В	100	2	
М	8	33	

With 2 false negatives and 8 false positives its accuracy comes out to be 93.70% at K = 5.

Modeling the data – II

Accuracy of a model depends on the data that is being used to train the model. In the previous process of modeling we did not randomize and divide the data into training and testing. The outcome of the process has SVM the accuracy at 97.90%. Let's analyze what happens when we randomize the data or order the data with respect to a particular variable.

Accuracy when data is selected randomly						
CLAA	154	C) (D.4	L/AIAI	K	G I	
GLM	LDA	SVM	KNN	Value	Seed	Avg
97.9021	97.9021	97.9021	93.00699	1	11	96.67832
93.7063	95.1049	97.9021	93.00699	1	12	94.93007
96.5035	95.8042	97.2028	93.70629	5	13	95.8042
94.4056	95.1049	98.6014	93.70629	5	14	95.45455
95.1049	94.40559	99.3007	92.30769	3	15	95.27972
95.5245	95.6643	98.1818	93.1469	Average		95.62937

Table i

Above table describes how different algorithms behave when we randomize the data. On an average SVM seems to behave really well at 98.18% than all other algorithms. And at Seed 11 all algorithms have the highest accuracy 96.67%.

	Accuracy					
Order By Ascending	GLM	LDA	SVM	KNN	K Valu e	Avg
Default	90.90909	97.2028	97.9021	93.70629	5	94.93007
radius_mean	98.6014	96.5035	77.62238	97.2028	1	92.48252
texture_mean	88.11189	93.00699	95.8042	86.01399	1	90.73427
perimeter_mean	98.6014	<mark>99.3007</mark>	68.53147	96.5035	3	90.73427
area_mean	98.6014	97.9021	60.13986	97.2028	1	88.46154
smoothness_area	90.90909	96.5035	95.8042	92.30769	3	93.88112
compactness_mean	91.60839	95.1049	81.11888	88.11189	3	88.98602
concavity_mean	92.30769	98.6014	69.23077	87.41259	1	86.88811
concave_points_mean	97.2028	98.6014	71.32867	90.20979	3	89.33567
symmetry_mean	92.30769	96.5035	95.8042	90.90909	5	93.88112
fractal_dimension_mea n	92.30769	92.30769	90.90909	88.81119	3	91.08392
Average	93.76986	96.50349	82.19962	91.671965		91.0362

Table ii

	Accuracy					
Order By Ascending	GLM LDA SVM KNN K Value					
radius_SE	91.60839	98.6014	54.54545	95.8042	3	85.13986
texture_SE	93.00699	95.1049	95.1049	93.00699	1	94.05595
area_SE	95.8042	98.6014	46.85315	97.2028	3	84.61539
perimeter_SE	96.5035	97.2028	57.34266	93.70629	3	86.18881
smoothness_SE	96.5035	97.2028	57.34266	93.70629	3	86.18881
compactness_SE	89.51049	92.30769	84.61538	86.01399	3	88.11189
concavity_SE	93.00699	93.00699	88.11189	86.01399	1	90.03497
concave_points_SE	92.30769	91.60839	94.40559	88.11189	1	91.60839
symmetry_SE	91.60839	90.90909	90.90909	93.00699	5	91.60839
fractal_dimension_SE	93.00699	94.40559	80.41958	89.51049	5	89.33566
Average	93.286713	94.895105	74.965035	91.608392		88.68881

Table iil

Surprisingly from table i and ii, it can be seen that on an average SVM has lowest accuracy when ordered with respect to different variables. And LDA has the highest accuracy at **99.3** when ordered with respect to perimeter_mean. So it can be inferred that there is some kind of dependency. Apart from SVM, all other algorithms are really good at finding the patterns when ordered with a specific variable.

Best performance of each algorithm is as follows:

Algorithm	Accuracy	Ordered By	Accuracy when randomly ordered	Seed
GLM	98.6	radius _mean	97.9	11
LDA	99.3	perimeter_mean	97.9	11
SVM	99.3	seed 15	99.3	15
KNN	97.2	area_SE	93.7	13

Conclusion

SVM has the highest accuracy at 99.3 when randomly sampled. All other algorithms have a high level of accuracy ranging from 93 to 99. Even though, all columns were showing the same level of significance it could be because of the fact that we were using many variables and overfitting the data. We can improve the models by implementing dimensionality reduction techniques which will reduce the variables from 30 to a significant number. Increasing the number of observations and testing models would help us to learn how well algorithms are behaving. Last but not the least it is important to convey implications of the false positives and false negatives to a patient when employing a specific model to predict his/her diagnosis outcome.