

Teorema Levin-Cook

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Teorema Levin Cook

Este teorema permite

Identificar al problema SAT como el primer lenguaje NP-Completo

En primer lugar

Debemos demostrar que SAT ∈NP

Luego que todo lenguaje ∈NP se puede reducir polinomialmente a SAT

Probar que SAT ∈NP

Es sencillo, se puede construir una MT se puede relizar un verificador polinomial para hacerlo usando un certificado.

Planteo

Sea

A un lenguaje cualquier perteneciente a NP

W el input de tamaño n

N una MT no determinística que decida A en n^k -3 pasos para alguna constante k

Podemos ver que

N se va ramificando y procesando.

Cada rama se puede ver

como una sucesión de configuraciones

que parten de la configuración inicial

Transicionan a configuraciones "legales"

Tabla de transición de configuraciones

Podemos representar una rama de ejecución

En una tabla donde cada fila representa una configuración

Por conveniencia agregamos

El símbolo "#" que usaremos para delimitar cada una de nuestras configuraciones

La cantidad de columnas de la tabla

la definimos en nk

Puesto que N decide en n^k -3 pasos, el cabezal no puede pasar de n^k - 3 posiciones como mucho

Tabla - representación

Problema equivalente

Una tabla representa una computación de una rama que acepta

Por lo tanto, el problema de determinar si N acepta w

Es equivalente a saber si existe una tabla que acepta w para N

Reducción polinomial a SAT

Definiremos la reducción polinomial f de A a SAT

Para un input w produciremos una instancia φ de SAT

Sea

Q el set de estados de N

El Γ set de símbolos del alfabeto de la cinta de N

Creamos

$$C = Q \cup \Gamma \cup \{\#\}$$

Cada celda de nuestra tabla

Contiene un símbolo de C

Variables y función booleana a satisfacer

Definiremos la variables booleanas

x_{i,j,s} que vale 1 si en la celda[i,j] se encuentra el símbolo s, sino vale 0

Donde

iyjvan de 1 a nk

S son los símbolos de C

Con esto, construiremos la formula φ

Para que la asignación de las variables corresponda a una tabla de aceptación de N con w

Detalle de la formula

La formula φ estará conformada por la conjunción de 4 partes

 $\phi_{\text{c ell}}$ esta formula asegura que unicamente se asigne un símbolo a cada celda

φ_{start} esta formula asegura que la primera fila de la tabla sea la configuración inicial de N con w

φ_{move} esta formula asegura que cada fila de la tabla corresponde a una configuración que legalmente proceda a la configuración de la fila anterior

φ_{accept} esta formula asegura que en alguna de las celdas se encuentre el estado de aceptación

Entonces

$$\Phi = \phi_{c \, ell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$$

$\Phi_{\text{start}} y \phi_{\text{accept}}$

Con Φ_{start} buscamos que la primera fila contenga la configuración inicial

$$\varphi_{\text{start}} = X_{1,1,\#} \wedge X_{1,2,q0} \wedge X_{1,3,w1} \wedge X_{1,4,w2} \wedge \dots \wedge X_{1,n+2,wn} \wedge X_{1,n+3}, \quad \wedge \dots \wedge X_{1,n^{k}-1,-1} \wedge X$$

Con φ_{accept} buscamos que en alguna celda tenga el estado de aceptación

$$\varphi_{accept} = \bigvee_{1 \le i, j \le n^k} x_{i, j, q_{accept}}$$

ϕ_{cell}

Con ϕ_{cell} buscamos que unicamente se asigne un símbolo a cada celda

Se realiza para cada celda, verificamos que al menos 1 símbolo este en la celda y que no haya mas de 1 en ella

$$\varphi_{cell} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} \chi_{i,j,s} \right) \wedge \left(\bigvee_{s,t \in C} \chi_{i,j,s} \vee \chi_{i,j,t}^- \right) \right]$$

Con ϕ_{move} buscamos que cada transición entre configuraciones, es decir que cada fila, sea "legal" de acuerdo a la función de transición de N

Para hacer eso, se analiza de a bloques de la tabla.

Se verifican ventanas: un bloque de celdas de 2X3

Diremos que una ventana es legal

Si la misma no viola las acciones especificadas por la función de transición de N

Ventanas legales - ejemplos

Ejemplo:

Sean

a,b,c ∈ Γ de N

 $q_1,q_2 \in Q \text{ de } N$

 $\delta(q_1, a) = \{(q_1, b, R)\}$ y $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}$ parte de la función de transición

Las siguientes ventanas son legales entre las configuraciones

a q1 b q2 a c

Corresponde a la aplicación de $\delta(q_1, b) = \{(q_2, c, L)\}$

a q1 b
a a q2

Corresponde a la aplicación de $\delta(q_1, b) = \{(q_2, a, R)\}$

Ventanas legales - ejemplos (cont.)

Otras ventanas legales

#	b	a	Corresponde unas celdas donde la transición no afectó (contenido igual)	а	a	q1	Como no vemos sobre que símbolo esta el cabezal, y podría ser el caso de aplicación de
#	b	a		a	a	b	
							$\delta(q_1, a) = \{(q_1, b, R)\}$
b	b	b	Como cambio la primera fila, suponemos que el cabezal	а	b	a	no vemos sobre que símbolo esta el cabezal ni su estado, podría ser el caso de aplicación de
С	b	b	esta antes. Pero no sabemos en que estado. Podría ser el	а	b	q2	
			caso de aplicación de $\delta(q_1, b)$				$\delta(q_1, b) = \{(q_2, c, L)\}$
			$= \{(q_1, c, L)\}$				

Ventanas ilegales - ejemplos

Existen, por otro lado, ventanas ilegales

а	b	a	No puede cambiar de "b" a "a". No esta	а	q1	b	No corresponde a una transición declarada por
a	a	a	el cabezal ubicado antes de la celda	q2	a	a	la función de transición (seria legal si hubiese
							cambiado de "b" a "c")
b	q1	b	No puede aparecer en la fila inferior 2 estados				
q2	b	q2					

Ventanas legales - ejemplos

Para toda ventana posible

tengo que verificar que es legal

$$\varphi_{move} = \bigwedge_{1 \le i \le n^k, 1 \le j \le n^k} (la ventana (i,j) es legal)$$

La reglas para saber si la ventana es legal

se tienen que crear mediante el análisis de la función de transición y agregar el caso donde no hay modificación

$$\varphi_{\text{ventana legal}} = \vee_{a_{1,...},a_{6}} \left(x_{i,j-1,a_{1}} \wedge x_{i,j,a_{2}} \wedge x_{i,j+1,a_{3}} \wedge x_{i+1,j-1,a_{4}} \wedge x_{i+1,j,a_{5}} \wedge x_{i+1,j+1,a_{5}} \right)$$

Φ_{move} (cont.)

Con la función φ definida

$$\Phi = \phi_{c \, ell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$$

Podemos usar una MT no deterministica que resuelva SAT para resolverlo,

Si ϕ se puede satisfacer, entonces w pertenece al lenguaje de nuestro problema original

Podemos por lo tanto

Reducir cualquier problema perteneciente a NP a SAT

Verificación que la reducción es polinomial

Resta ver que la reducción es polinomial

Tenemos n^{2k} celdas. El numero de símbolos depende de la TM (pero lo podemos tomar como constante).

Tenemos por lo tanto O(n^{2k}) variables

 $\phi_{c\,ell}$ se realiza por cada celda \rightarrow O(n^{2k})

 ϕ_{start} se realiza con la primer fila de la tabla $O(n^k)$

 ϕ_{move} usa un numero constante de variables por ventana. Por n^{2k} ventanas $\rightarrow O(n^{2k})$

 ϕ_{accept} se realiza por cada celda de la tabla $O(n^{2k})$

Por lo tanto

Es una reducción polinomial. Y SAT ES NP-COMPLETO

Presentación realizada en Julio de 2020