1 Roofline

1.1 Machines Profile

The machines used for this study were a MacBook Pro late 2008 and a HP dv6-2190ep from 2010. The information about the machines were gathered from /proc/cpuinfo, /proc/meminfo, the $Intel\ Ark$ and Crucial websites and with dmidecode and sysctl linux tools.

1.1.1 Peaks

In order to calculate the rooflines, we needed the Floating-Point(FP) Performance's Peak and the Memory Bandwidth's Peak. To attain the FP Performance's Peak we calculate the following formula:

$$GFlop/s_{max} = \#_{cores} \times f_{clock} \times \#_{SIMD}$$

To calculate de Memory Bandwidth's Peak we resolve the following formula:

$$BW_{max} = \#_{channels} \times mem_{clock} \times bus_{bandwidth}$$

1.1.2 Specifications

The specifications of the MacBook Pro are displayed on Table 1.

The specifications of the HP dv6-2190ep are displayed on Table 2.

1.2 Roofline Model

1.2.1 Machines' Roofline

IMAGEM MBP IMAGEM HP

1.2.2 Ceilings

As suggested by the Roofline paper we added several ceilings to understand wich optimizations we may perform. This ceilings were given by recalculating the roofline without some key characteristics.

Peak floating-point performance The roofline, where all components and features are considered.

For memory only one ceiling was calculated, besides the roofline.

Peak stream bandwidth The roofline, where all features are considered.

One-channel

Manufacter:	Apple
Model:	MacBook Pro late 2008
_	
Processor	
Manufacturer:	Intel
Arch:	Core
Model:	Core 2 Duo T9600
Clock Frequency:	$2.80~\mathrm{GHz}$
FP Performance's Peak:	44.8 GFlops/s
Cache	
Level:	1
Size:	32KB + 32KB
Line Size:	64 B
Associative:	8-way
Memory Access Bandwidth:	VER ISTO !!!!!!!!!
Level:	2
Size:	$6~\mathrm{MB}$
Line Size:	64 B
Associative:	24-way
	•
$\mathbf{R}\mathbf{A}\mathbf{M}$	
Type:	VER ISTO !!!!!!!!
Frequency:	$1067~\mathrm{MHz}$
Size:	$4~\mathrm{GB}$
Num. Channels:	2
Latency:	13.13 ns
<i>,</i>	10.10 110

Tabela 1: MacBook Pro late 2008 specifications

Manufacter:	НР
Model:	Pavillion dv6-2190ep
Processor	
Manufacturer:	Intel
Arch:	Nehalem
Model:	i7-720QM
Clock Frequency:	$1.60~\mathrm{GHz}$
FP Performance's Peak:	51.2 GFlops/s
Cache	
Level:	1
Size:	32KB + 32KB
Line Size:	64 B
Associative:	4/8-way
Memory Access Bandwidth:	VER ISTO !!!!!!!!!!
Level:	2
Size:	$256~\mathrm{KB}$
Line Size:	64 B
Associative:	8-way
∠evel:	3
Size:	6 MB
Line Size:	64 B
Associative:	12-way
D A D #	
RAM	CDD AM DDD2 DC2 10600
Type:	SDRAM DDR3 PC3-10600 1333 MHz
Frequency: Size:	1333 MHZ 4GB
Num. Channels:	4GB 2
Latency:	13.5 ns
acticy.	13.3 118

Tabela 2: HP Pavillion dv6-2190ep specifications

2 PAPI Case Study

2.1 Problem

The case study of this report, is to analyse the performance of a matrix multiplication algorithm,

$$MatrixA * MatrixB = MatrixC$$
 (1)

wich contains a triple nested loop with the indexes i,j and k(line,column and position). Our implementation will explore the index order i,j,k of the triple nested loop.

2.2 Algorithm Analysis

The algorithm produced to calculate the matrix multiplication is:

```
for (i = 0; i < size; i++) {
   for (j = 0; j < size; j++) {
      for(k = 0; k < size; k++) {
        acc += matrixA[i][k] * matrixB[k][j];
      }
      matrixC[i][j] = acc;
      acc = 0;
   }
}</pre>
```

2.3 Counters Used

To measure the performance of our algorithm we gathered several counters from the system through PAPI.

PAPI _TOT_CYC Total number of cycles;

PAPI _TOT_INS Instructions completed;

PAPI _LD_INS number of load instructions;

PAPI _SR_INS number of store instructions;

PAPI _FP_OPS Floating point operations;

PAPI _FP_INS Floating point instructions;

PAPI _L1_DCA L1 data cache accesses;

PAPI _L1_DCM L1 data cache misses;

PAPI _L2_DCA L2 data cache accesses;

PAPI _L2_DCM L2 data cache misses;

PAPI _L3_DCA L3 data cache accesses;

- 2.4 Tests
- 2.5 Results
- 2.5.1 Analysis Miss Rates
- 2.5.2 Analysis Memory Access