МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

КАФЕДРА СИСТЕМ ШТУЧНОГО ІНТЕЛЕКТУ

Лабораторна робота №15 на тему:

«Визначення оптимальної стратегії інвестування» з курсу:

«Математичні методи дослідження операцій»

Виконав:

ст. гр. КН-210

Холод Ігор

Лабораторна роботу №15

Тема: визначення оптимальної стратегії інвестування

Мета: навчитися розв'язувати задачі оптимальної стратегії інвестування

Завдання

Розв'язати задачу пошуку оптимальної стратегії інвестування

Знайти оптимальний розподіл ресурсів між двома галузями виробництва на протязі \mathbf{n} років, якщо для кожної галузі дані функції прибутків $\mathbf{F_1}(\mathbf{x})$, $\mathbf{F_2}(\mathbf{x})$ і функції повернення $\mathbf{G_1}(\mathbf{x})$ і $\mathbf{G_2}(\mathbf{x})$. По закінченні року всі повернені кошти перерозподіляються, прибуток у виробництво не вкладається.

Варіант завдання	Початкові ресурси	К-сть років, п	Галузь 1		Галузь 2	
			Функція прибутку F ₁ (x)=a ₁ x, a ₁	Функція повернення $G_1(x) = b_1 x$, b_1	Функція прибутку F ₂ (y)=a ₂ y a ₂	Функція повернення $G_2(y)=b_2y$, b_2
4	15000	4	0,7	0,3	0,4	0,8

Хід роботи

Номер кроку відповідає номеру року. Тобто процес розв'язання можна поділити на 4 кроки. За стан системи приймемо x_{k-1} , k=1,4 - кількість коштів, що слідує перерозподілити на початку k-го року. Тому на кожному кроці буде дві змінних управління, це кількість коштів, що виділяються підприємствам 1 та 2 відповідно. Так як кошти щорічно перерозподіляються повністю, то, я позначу через u_k – кількість коштів, виділених підприємству 1, кількість коштів для підприємства 2 буде знаходитися як $x_{k-1} - u_k$.

Показником ефективності буде прибуток, отриманий від обох підприємств за 4 роки. Прибуток від k-го року рівний:

$$Z_k(x_{k-1}) = f_1(u_k) + f_2(x_{k-1} - u_k) = 0.7u_k + 0.4(x_{k-1} - u_k) = 0.3u_k + 0.4x_{k-1}$$

Рівняння стану буде виражати залишок коштів x_k після k-го кроку:

$$x_k = \varphi_1(u_k) + \varphi_2(x_{k-1} - u_k) = 0.3u_k + 0.8(x_{k-1} - u_k) = -0.5u_k + 0.8x_{k-1}$$

Рекурентне рівняння Белмана:

$$Z_4(x_3) = \max_{0 \le u_4 \le x_3} \{0.3u_4 + 0.4x_3\}$$

$$Z_k(x_{k-1}) = \max_{0 \le u_k \le x_{k-1}} \{ 0.3u_k + 0.4x_{k-1} + Z_{k+1}(-0.5u_k + 0.8x_{k-1}) \}$$

Проведемо умовну оптимізацію:

Крок 4.
$$Z_4(x_3) = \max_{0 \le u_4 \le x_3} \{0.3u_4 + 0.4x_3\},$$

 $K=d(Z_4)/d((x_3))=0.4>0$,зростаюча функція. Тому вона досягає максимуму на кінці інтервалу $[0;x_3]$, тобто при $u_4=x_3,\ u_4^*(x_3)=x_3$.

$$Z_4(x_3) = 0.7x_3$$

Κροκ 3.
$$Z_3(x_2) = \max_{0 \le u_3 \le x_2} \{0.3u_3 + 0.4x_2 + Z_4(-0.5u_3 + 0.8x_2)\} = \max_{0 \le u_3 \le x_2} \{0.3u_3 + 0.4x_2 + 0.7(-0.5u_3 + 0.8x_2)\}$$

 $K=d(Z_3)/d((x_2))=0.96>0$,зростаюча функція. Тому вона досягає максимум на кінці інтервалу $[0;x_2]$, тобто при $u_3=x_2,u_3^*(x_2)=x_2$

$$Z_3(x_2) = 0.91x_2$$

Κροκ 2.
$$Z_2(x_1) = \max_{0 \le u_2 \le x_1} \{0.3u_2 + 0.4x_1 + Z_3(-0.5u_2 + 0.8x_1)\} = \max_{0 \le u_2 \le x_1} \{0.3u_2 + 0.4x_1 + 0.91(-0.5u_2 + 0.8x_1)\}$$

 $K=d(Z_2)/d((x_1))=1.128>0$,зростаюча функція. Тому вона досягає максимум на кінці інтервалу $[0;x_1]$, тобто при $u_2=x_1,u_2^*(x_1)=x_1$

$$Z_2(x_1) = 0.973x_1$$

Крок 1.
$$Z_1(x_0) = \max_{0 \le u_1 \le x_0} \{0.3u_1 + 0.4x_0 + 1.128(-0.5u_1 + 0.8x_0)\}$$

 $K=d(Z_1)/d((x_0))=1.1784>0$,зростаюча функція. Тому вона досягає максимум на кінці інтервалу $[0;x_0]$, тобто при $u_1=x_0,u_1^*(x_0)=x_0$

$$Z_1(x_0) = 0.9919x_1$$

Тепер проведемо безумовну оптимізацію:

$$x_0 = 15000$$

 $u_1^*(15000) = 15000, Z_{max} = Z_1(15000) = 14878,5$
 $x_1^* = 0.3 \cdot 15000 + 0.8 \cdot 0 = 4500, u_2^*(4500) = 4500$
 $x_2^* = 0.3 \cdot 4500 + 0.8 \cdot 0 = 1350, u_3^*(1350) = 1350$
 $x_3^* = 0.3 \cdot 1350 + 0.8 \cdot 0 = 405, u_4^*(405) = 405$

Отже, кошти потрібно розподілити так:

Підприємство	Рік					
Пдприеметь	1	2	3	4		
1	15000	4500	1350	405		
2	0	0	0	0		

При такому розподілі ресурсів за чотири роки буде отримано прибуток $Z_{max} = 14878,5$

Висновок: я навчився розв'язувати задачу про оптимальну стратегію інвестування аналітичним методом.