HORMIGÓN ARMADO I

Edificio

Integrantes:

Brold, Germán Leonel Lu: 16835

Rodríguez, Mario Alejandro LU: 17532

Romero, Andrés Yasir LU: 17671

Veliz Rach, Rodrigo LU: 17601

<u>Índice</u>

D	escripción de la Estructura	4
Ε	structura	4
N	ledios usados en el cálculo de la estructura	4
Η	lipótesis de cálculo	4
N	lateriales a emplear	5
L	osas	6
	Losas L01-L02 IDEM L06-07 L11-L12 L16-L17	6
	Losas L03-L04 IDEM L08-09 L13-L14 L18-L19	9
	Losa L05 IDEM L010 L15 L110	. 12
	Losa L011 IDEM L111	. 21
	Losas L012 IDEM L013 L112 L113	. 24
	Losa L214	. 27
	Losa L215	. 30
	Losa L216	. 33
	Losa Escalera	. 36
V	igas	. 42
	Vigas V01-V02 IDEM V011-V012	. 42
	Vigas V03-V04 IDEM V09-V010	. 49
	Vigas V05-V06 IDEM V07-V08	. 56
	Vigas V013-V014 IDEM V015-V016 V021-V022 V023-V024	. 63
	Vigas V017-V018 IDEM V019-V020	. 69
	Viga V025 IDEM V125	. 77
	Viga V026 IDEM V126 V028 V128	. 82
	Viga V027 IDEM V127	. 87
	Viga V029 IDEM V030 V129 V130	. 92

Vigas V11-V12 IDEM V111-V112	97
Vigas V13-V14 IDEM V19-V110	103
Vigas V15-V16 IDEM V17-V18	110
Vigas V113-V114 IDEM V115-V116	117
Vigas V117-V118 IDEM V119-V120	123
Viga V231	130
Viga V232	134
Viga V233	138
Longitudes de anclaje de las vigas (ld)	142
DECALAJE (v)	143
Columnas	147
Columna C11 IDEM C13 C116 C118:	147
Columna C01 IDEM C03 C016 C018:	152
Columna C12 IDEM C117:	155
Columna C02 IDEM C017:	159
Columna C15 IDEM C114:	162
Columna C05 IDEM C014:	164
Columna C14 IDEM C16 C113 C115:	167
Columna C04 IDEM C06 C013 C015:	167
Columna C17 IDEM C19 C110 C112:	168
Columna C07 IDEM C09 C010 C012:	168
Columna C18 IDEM C111:	169
Columna C08 IDEM C011:	169
Zapatas	170
Zapata de esquina (C01)	170

Zapata centrada (C05)	173
Zapata excéntrica Medianera (C02)	176
Longitud de Anclaje de Zapatas	180

Memoria de Cálculo de la Estructura

Descripción de la Estructura

La presente memoria tiene por objeto la descripción y justificación de los distintos elementos que configuran la estructura del proyecto para la construcción de un edificio compuesto por planta baja, planta alta y azotea accesible, destinado a departamentos habitacionales.

Estructura

La estructura del edificio es una construcción de hormigón armado a base de bases aisladas, columnas, vigas y losas.

Medios usados en el cálculo de la estructura

Para el cálculo de las solicitaciones de las losas cruzadas se utilizaron las tablas Ertürk.

Para la determinación de las solicitaciones de las losas derechas y vigas se utilizó el software Ftool.

Hipótesis de cálculo

Las hipótesis de cálculo consideradas se ajustan a los criterios del reglamento CIRSOC 201.

Para las cargas permanentes y variables se han seguido los pesos específicos y sobrecargas del CIRSOC 101.

No se han considerado las acciones sísmicas o de viento.

Materiales a emplear

El hormigón adoptado para todos los elementos es un H-25.

El acero utilizado será ADN 420 para las barras y mallas Acindar T-500 para las esquinas de las losas cruzadas.

Losas

Para la determinación de las solicitaciones de losas cruzadas se utilizaron las tablas de Ertürk.

Predimensionado

$$l_n = 5,20 \ m = 5200 \ mm$$

$$\beta = \frac{5,20 \ m}{3,17 \ m} = 1,64$$

$$h \ge \frac{l_n\left(0.8 + \frac{fy}{1400}\right)}{36 + 9\beta} = \frac{5200 \ mm\left(0.8 + \frac{420 \ MPa}{1400}\right)}{36 + 9*1,64} = 112,69 \ mm$$

Adopto h = 12 cm

Losas L01-L02 IDEM L06-07 | L11-L12 | L16-L17

> Análisis de Carga

	Espesor	Peso Específico	Peso
	(m)	(kN/m³)	(kN/m²)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,12	25	3
Cielorraso	0,02	-	0,2

De tabla 19:

$$\frac{l_y}{l_x} = \frac{5,40 \text{ m}}{3,37 \text{ m}} = 1,6$$

$$M_i = \eta_i * Q$$

$$Q_i = \gamma_i * Q$$

Carga Permanente

 $q = 5,22 \text{ kN/m}^2$

$$Q = q * l_x * l_y = 5.22 \frac{kN}{m^2} * 3.37 m * 5.40 m = 95kN$$

η _{ex}	-0,051	
η _{ey}	-0,0355	
η _x	0,0238	
η _y	0,0042	
γ×	0,377	

M _{ex}	-4,84
M _{ey}	-3,37
M _x	2,26
M_{y}	0,40
Q _x	35,81

Y y1	0,156
Y v2	0,09

Q_{y1}	14,82
Q_{y2}	8,55

$$R_{ex} = \frac{Q_x}{l_y} = \frac{35,81 \, kN}{5,40 \, m} = 6,63 \, kN/m$$

$$R_{ey} = \frac{Q_{y1}}{l_x} = \frac{14,82 \text{ kN}}{3,37 \text{ m}} = 4,39 \text{ kN/m}$$

$$R_y = \frac{Q_{y2}}{l_x} = \frac{8,55 \text{ kN}}{3,37 \text{ m}} = 2,53 \text{ kN/m}$$

Sobrecarga

 $q= 2 kN/m^2$

$$Q = q * l_x * l_y = 2 \frac{kN}{m^2} * 3,37 m * 5,40 m = 37 kN$$

η _{ex}	-0,051	
η _{ey}	-0,0355	
ηx	0,0238	
η _y	0,0042	
γ _x	0,377	
Y y1	0,156	
Y y2	0,09	

M _{ex}	-1,89	
M _{ey}	-1,31	
M _x	0,88	
M_{y}	0,16	
Q _x	13,95	
Q _{y1}	5,77	
Q_{y2}	3,33	

$$R_{ex} = \frac{Q_x}{l_y} = \frac{13,95 \text{ kN}}{5,40 \text{ m}} = 2,58 \text{ kN/m}$$

$$R_{ey} = \frac{Q_{y1}}{l_x} = \frac{5,77 \text{ kN}}{3.37 \text{ m}} = 1,71 \text{ kN/m}$$

$$R_y = \frac{Q_{Y^2}}{l_x} = \frac{3,33 \ kN}{3,37 \ m} = 0,99 \ kN/m$$

$$U = 1.2 * D + 1.6 * L$$

Mu _{ex}	-8,83	kNm/m
Mu _{ey}	-6,15	kNm/m
Mu _x	4,12	kNm/m
Mu _v	0,73	kNm/m
Ru _{ex}	12,09	kN/m
Ru _{ey}	8,02	kN/m
Ru _y	4,63	kN/m

Losas L03-L04 IDEM L08-09 | L13-L14 | L18-L19

Análisis de Carga

	Espesor	Peso Específico	Peso
	(m)	(kN/m³)	(kN/m²)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,12	25	3
Cielorraso	0,02	-	0,2

D= 5,22 L= 2

De tabla 15

$$\frac{l_y}{l_x} = \frac{5,40 \text{ m}}{3,37 \text{ m}} = 1,6$$

$$M_i = \eta_i * Q$$

$$Q_i = \gamma_i * Q$$

Carga Permanente

q= 5,22 kN/m²

$$Q = q * l_x * l_y = 5.22 \frac{kN}{m^2} * 3.37 m * 5.40 m = 95kN$$

η _{ex}	-0,0685	
η _{ey}	-0,0503	
ηx	0,03	
η _y	0,0088	
¥x1	0,436	
Y _{x2}	0,252	

M _{ex}	-6,51
M _{ey}	-4,78
M _x	2,85
M_{y}	0,84
Q_{x1}	41,42
Q_{x2}	23,94

Y y1	0,198
Y y2	0,114

Q_{y1}	18,81
Q_{y2}	10,83

$$R_{ex} = \frac{Q_{x1}}{l_y} = \frac{41,42 \text{ kN}}{5,40 \text{ m}} = 7,67 \text{ kN/m}$$

$$R_x = \frac{Q_{x2}}{l_y} = \frac{23,94 \text{ kN}}{5,40 \text{ m}} = 4,43 \text{ kN/m}$$

$$R_{ey} = \frac{Q_{y1}}{l_x} = \frac{18,81 \text{ kN}}{3,37 \text{ m}} = 5,58 \text{ kN/m}$$

$$R_y = \frac{Q_{y2}}{l_x} = \frac{10,83 \ kN}{3,37 \ m} = 3,21 \ kN/m$$

Sobrecarga

 $q= 2 kN/m^2$

$$Q = q * l_x * l_y = 2 \frac{kN}{m^2} * 3,37 m * 5,40 m = 37 kN$$

η _{ex}	-0,0685	
η _{ey}	-0,0503	
η _x	0,03	
η_{y}	0,0088	
Y x1	0,436	
Y x2	0,252	
Y y1	0,198	
Y y2	0,114	

M _{ex}	-2,49
M _{ey}	-1,83
M _x	1,09
M _v	0,32
Q _{x1}	15,87
Q _{x2}	9,17
Q _{y1}	7,21
Q _{y2}	4,15

$$R_{ex} = \frac{Q_{x1}}{l_y} = \frac{15,87 \ kN}{5,40 \ m} = 2,94 \ kN/m$$

$$R_x = \frac{Q_{x2}}{l_y} = \frac{9,17 \ kN}{5,40 \ m} = 1,70 \ kN/m$$

$$R_{ey} = \frac{Q_{Y1}}{l_x} = \frac{7,21 \text{ kN}}{3,37 \text{ m}} = 2,14 \text{ kN/m}$$

$$R_y = \frac{Q_{Y^2}}{l_x} = \frac{4,15 \ kN}{3,37 \ m} = 1,23 \ kN/m$$

$$U = 1.2 * D + 1.6 * L$$

Mu _{ex}	-11,80	kNm/m
Mu _{ey}	-8,66	kNm/m
Mu _x	5,17	kNm/m
Mu _y	1,52	kNm/m
Ru _{ex}	13,90	kN/m
Ru _x	8,04	kN/m
Ru _{ey}	10,12	kN/m
Ru _y	5,83	kN/m

Losa L05 IDEM L010 | L15 | L110

> Predimensionado

Para losas macizas armadas en una dirección en voladizo:

$$h \ge \frac{l}{10} = \frac{130 \ cm}{10} = 13 \ cm$$

Para mantener el mismo espesor de losa adopto h = 12 cm.

Análisis de Cargas

	Espesor	Peso Específico	Peso
	(m)	(kN/m³)	(kN/m²)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,12	25	3
Cielorraso	0,02	-	0,2

D=	5,22
L=	5

Cargas Permanentes

Sobrecargas

$$U = 1.2 * D + 1.6 * L$$

 $M_u = 1.2 * 4.41 + 1.6 * 4.22 = 12.04 \ kNm/m$
 $R_u = 1.2 * 6.79 + 1.6 * 6.5 = 18.55 \ kN/m$

> Dimensionamiento a Flexión

En dirección "x"

Consideraciones

Encuentro L01-L03

$$\frac{M_{m\acute{a}x} - M_{m\acute{i}n}}{M_{m\acute{a}x} + M_{m\acute{i}n}} = \frac{11.8 - 8.83}{11.8 + 8.83} = 0.14 < 0.2$$

$$\therefore \ M_{prom} = \frac{M_{m\acute{a}x} + M_{m\acute{i}n}}{2} = \frac{(11.8 + 8.83)kNm/m}{2} = 10.32 \ kNm/m$$

Encuentro L01-L05

Se diseña con el momento del voladizo ya que no es posible la redistribución de esfuerzos.

Tramos

Se diseña el tramo de la losa L01 con el mayor momento de tramo ya que no siempre estará actuado la carga total del voladizo.

Tramo

$$M_n = \frac{M_u}{\varphi} = \frac{5,17 \text{ kNm/m}}{0,9} = 5,74 \text{kNm} = 0,00574 \text{ MNm/m}$$

$$d = h - c_c - \frac{1}{2}d_b = 12 \ cm - 2,5 \ cm - 0,5 \ cm = 9 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,09 \text{ m}}{\sqrt{\frac{0,00574 \text{ } MNm/m}{1 \text{ } m}}} = 1,19$$

De tabla de Flexión 3: $k_e = 24,301 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,301 \frac{cm^2}{MN} * \frac{0,00574MNm}{0,09 m} = 1,55 \frac{cm^2}{m}$$

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 12 cm = 2.16 cm^2/m$$

Adopto 1 Ø6 c/ 13 cm $(A_s = 2,17 cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$S_{l} \begin{cases} \leq 2h = 2 * 120 \ mm = 240 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$
 Verifica

Apoyo L01-L03

$$M_n = \frac{M_u}{\varphi} = \frac{10,32 \text{ kNm/m}}{0.9} = 11,47 \text{kNm} = 0.01147 \text{ MNm/m}$$

$$d = h - c_c - \frac{1}{2}d_b = 12 \ cm - 2.5 \ cm - 0.5 \ cm = 9 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,09 \ m}{\sqrt{\frac{0,01147 \ MNm/m}{1 \ m}}} = 0,84$$

De tabla de Flexión 3: $k_e = 24,766 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \frac{cm^2}{MN} * \frac{0,01147MNm/m}{0.09 m} = 3,16 \frac{cm^2}{m}$$

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 12 cm = 2.16 cm^2/m$$

Adopto 1 Ø8 c/ 15 cm $(A_s = 3.35 cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$s_{l} \begin{cases} \leq 2h = 2 * 120 \ mm = 240 \ mm \\ \leq 25d_{b} = 25 * 8 \ mm = 200 \ mm \\ \leq 300 \ mm \end{cases}$$

Verifica

Apoyo L01-L05

$$M_n = \frac{M_u}{\varphi} = \frac{12,04 \text{ kNm/m}}{0.9} = 13,38 \text{kNm} = 0.01338 \text{ MNm/m}$$

$$d = h - c_c - \frac{1}{2}d_b = 12 \ cm - 2,5 \ cm - 0,5 \ cm = 9 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,09 \text{ m}}{\sqrt{\frac{0,01338 \text{ MNm/m}}{1 \text{ m}}}} = 0,78$$

De tabla de Flexión 3: $k_e = 25,207 cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, \frac{cm^2}{MN} * \frac{0,01338MNm}{0,09 \, m} = 3,75 \, \frac{cm^2}{m}$$

$$A_{s,min} = 0.0018*b_w*h = 0.0018*100\;cm*12\;cm = 2.16\;cm^2/m$$

Adopto 1 Ø8 c/ 13 cm $(A_s = 3.87 cm^2/m)$

En el voladizo se colocará armadura de repartición igual a 1 Ø6 c/ 13 cm $(A_s = 2,17 \ cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$S_{l} \begin{cases} \leq 2h = 2 * 120 \ mm = 240 \ mm \\ \leq 25d_{b} = 25 * 8 \ mm = 200 \ mm \\ \leq 300 \ mm \end{cases}$$
 Verifica

En dirección "y"

Losas L01-L02

Tramo

Por ser muy bajo el momento se adopta armadura mínima por contracción y temperatura.

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 12 cm = 2.16 cm^2/m$$

Adopto 1 Ø6 c/ 13 cm $(A_s = 2,17 cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$s_{l} \begin{cases} \leq 2h = 2 * 120 \ mm = 240 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

<u>Verifica</u>

Apoyo L01-L02

$$M_n = \frac{M_u}{\varphi} = \frac{6,15 \text{ kNm/m}}{0,9} = 6.83 \text{ kNm} = 0,00683 \text{ MNm/m}$$

$$d = h - c_c - 1,5d_b = 12 cm - 2,5 cm - 1,5 * 1 cm = 8 cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,08 \, m}{\sqrt{\frac{0,00683 \, MNm/m}{1 \, m}}} = 0,97$$

De tabla de Flexión 3: $k_e = 24,766 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \frac{cm^2}{MN} * \frac{0,00683MNm}{0,08 m} = 2,11 \frac{cm^2}{m}$$

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 12 cm = 2.16 cm^2/m$$

Adopto 1 Ø6 c/ 13 cm $(A_s = 2.17 cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$S_{l} \begin{cases} \leq 2h = 2 * 120 \ mm = 240 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

Verifica

Losas L03-L04

<u>Tramo</u>

Por ser muy bajo el momento se adopta armadura mínima por contracción y temperatura.

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 12 cm = 2.16 cm^2/m$$

Adopto 1 Ø6 c/ 13 cm $(A_s = 2,17 \text{ } cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$s_{l} \begin{cases} \leq 2h = 2 * 120 \ mm = 240 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

Verifica

Apoyo L03-L04

$$M_n = \frac{M_u}{\varphi} = \frac{8,66 \text{ kNm/m}}{0.9} = 9,62 \text{ kNm} = 0,00962 \text{ MNm/m}$$

$$d = h - c_c - 1.5d_b = 12 cm - 2.5 cm - 1.5 * 1 cm = 8 cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0.08 \, m}{\sqrt{\frac{0.00962 \, MNm/m}{1 \, m}}} = 0.81$$

De tabla de Flexión 3: $k_e = 24,766 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \frac{cm^2}{MN} * \frac{0,00962MNm/m}{0,08 m} = 2,98 \frac{cm^2}{m}$$

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 12 cm = 2.16 cm^2/m$$

Adopto 1 Ø8 c/ 16,5 cm $(A_s = 3,05 cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$S_{l} \begin{cases} \leq 2h = 2 * 120 \ mm = 240 \ mm \\ \leq 25d_{b} = 25 * 8 \ mm = 200 \ mm \\ \leq 300 \ mm \end{cases}$$
 Verifica

> Dimensionamiento al Corte

El máximo corte último es:

$$V_u = 13,90 \, ^{kN}/_m$$

$$V_n = \frac{V_u}{\varphi} = \frac{13,90 \, ^{kN}/m}{0,75} = 18,53 \, ^{kN}/_m = 0,01853 \, MN/m$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 \, MPa} * 1 \, m * 0,12 \, m = 0,10 \, MN > V_n$$

No es necesaria armadura de corte.

Detalle de Armado

Se coloca como armadura adicional en las esquinas una malla Sima Q221 $(A_s = 2,21 \ cm^2/m)$ a una distancia, en cada dirección, igual a 1,10 m.

Losa L011 IDEM L111

> Predimensionado

Para losas macizas armadas en una dirección en voladizo:

$$h \ge \frac{l}{20} = \frac{178 \ cm}{20} = 8.9 \ cm$$

Adopto h = 10 cm

Análisis de Cargas

	Espesor	Peso Específico	Peso
	(m)	(kN/m³)	(kN/m²)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,10	25	2,5
Cielorraso	0,02	-	0,2

D=	4,72		
L=	2		

Cargas Permanentes

Sobrecargas

$$U = 1.2 * D + 1.6 * L$$

 $M_u = 1.2 * 1.87 + 1.6 * 0.79 = 3.51 \ kNm/m$
 $V_u = 1.2 * 4.20 + 1.6 * 1.78 = 7.89 \ kN/m$

> Dimensionamiento a Flexión

Tramo

Por ser muy bajo el momento se adopta armadura mínima por contracción y temperatura.

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 10 cm = 1.8 cm^2/m$$

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Armadura de repartición

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$s_{l} \begin{cases} \leq 2h = 2 * 100 \ mm = 200 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

Verifica

> Dimensionamiento al Corte

El máximo corte último es:

$$V_u = 7.89 \, ^{kN}/_{m}$$

$$V_n = \frac{V_u}{\varphi} = \frac{7.89 \, ^{kN/m}}{0.75} = 10.52 \, ^{kN}/_{m} = 0.01052 \, MN/m$$

$$V_c = \frac{1}{6} \sqrt{f^*_c} * b_w * d = \frac{1}{6} \sqrt{25 \, MPa} * 1 \, m * 0.10 \, m = 0.083 \, MN > V_n$$

No es necesaria armadura de corte.

Detalle de Armado

Losas L012 IDEM L013 | L112 | L113

> Predimensionado

Para losas macizas armadas en una dirección en voladizo:

$$h \ge \frac{l}{20} = \frac{143 \ cm}{20} = 7,15 \ cm$$

Adopto h = 10 cm

> Análisis de Cargas

	Espesor (m)	Peso Específico (kN/m³)	Peso (kN/m²)
	(m)	(KIN/III [*])	(KIN/III)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,10	25	2,5
Cielorraso	0,02	-	0,2

D=	4,72	
L=	2	

Cargas Permanentes

Sobrecargas

$$U = 1.2 * D + 1.6 * L$$

 $M_u = 1.2 * 1.2 + 1.6 * 0.5 = 2.24 \ kNm/m$
 $V_u = 1.2 * 3.40 + 1.6 * 1.4 = 6.32 \ kN/m$

> Dimensionamiento a Flexión

Tramo

Por ser muy bajo el momento se adopta armadura mínima por contracción y temperatura.

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 10 cm = 1.8 cm^2/m$$

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Armadura de repartición

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$s_{l} \begin{cases} \leq 2h = 2 * 100 \ mm = 200 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

Verifica

Dimensionamiento al Corte

El máximo corte último es:

$$V_u = 6.32 \, {}^{kN}/m$$

$$V_n = \frac{V_u}{\varphi} = \frac{6.32 \, {}^{kN/m}}{0.75} = 8.43 \, {}^{kN}/m = 0.00843 \, MN/m$$

$$V_c = \frac{1}{6} \sqrt{f^*_c} * b_w * d = \frac{1}{6} \sqrt{25 \, MPa} * 1 \, m * 0.10 \, m = 0.083 \, MN > V_n$$

No es necesaria armadura de corte.

Detalle de Armado

Losa L214

> Predimensionado

Para losas macizas armadas en una dirección en voladizo:

$$h \ge \frac{l}{20} = \frac{178 \ cm}{20} = 8,90 \ cm$$

Adopto h = 10 cm

Análisis de Cargas

	Espesor (m)	Peso Específico (kN/m³)	Peso (kN/m²)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,10	25	2,5
Cielorraso	0,02	-	0,2

D=	4,72	
L=	1	

Cargas Permanentes

Sobrecargas

$$U = 1.2 * D + 1.6 * L$$

 $M_u = 1.2 * 1.87 + 1.6 * 0.4 = 2.88 \ kNm/m$
 $V_u = 1.2 * 4.20 + 1.6 * 0.89 = 6.46 \ kN/m$

> Dimensionamiento a Flexión

Tramo

Por ser muy bajo el momento se adopta armadura mínima por contracción y temperatura.

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 10 cm = 1.8 cm^2/m$$

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Armadura de repartición

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$s_{l} \begin{cases} \leq 2h = 2 * 100 \ mm = 200 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

Dimensionamiento al Corte

El máximo corte último es:

$$V_u = 6.46 \, {}^{kN}/m$$

$$V_n = \frac{V_u}{\varphi} = \frac{6.46 \, {}^{kN}/m}{0.75} = 8.61 \, {}^{kN}/m = 0.00861 \, MN/m$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 \, MPa} * 1 \, m * 0.10 \, m = 0.083 \, MN > V_n$$

Verifica

No es necesaria armadura de corte.

Detalle de Armado

Losa L215

> Predimensionado

Para losas macizas armadas en una dirección en voladizo:

$$h \ge \frac{l}{20} = \frac{190 \ cm}{20} = 9,5 \ cm$$

Adopto h = 10 cm

Análisis de Cargas

	Espesor	Peso Específico	Peso
	(m)	(kN/m³)	(kN/m²)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,10	25	2,5
Cielorraso	0,02	-	0,2

D=	4,72	
L=	1	

Cargas Permanentes

Sobrecargas

$$U = 1.2 * D + 1.6 * L$$

 $M_u = 1.2 * 2.13 + 1.6 * 0.45 = 3.28 \ kNm/m$
 $V_u = 1.2 * 4.48 + 1.6 * 0.95 = 6.90 \ kN/m$

> Dimensionamiento a Flexión

Tramo

Por ser muy bajo el momento se adopta armadura mínima por contracción y temperatura.

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 10 cm = 1.8 cm^2/m$$

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Armadura de repartición

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$S_{l} \begin{cases} \leq 2h = 2 * 100 \ mm = 200 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

Dimensionamiento al Corte

El máximo corte último es:

$$V_u = 6.90 \, ^{kN}/_{m}$$

$$V_n = \frac{V_u}{\varphi} = \frac{6.90 \, ^{kN/m}}{0.75} = 9.20 \, ^{kN}/_{m} = 0.00920 \, MN/m$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 \, MPa} * 1 \, m * 0.10 \, m = 0.083 \, MN > V_n$$

Verifica

No es necesaria armadura de corte.

Detalle de Armado

Losa L216

> Predimensionado

Para losas macizas armadas en una dirección en voladizo:

$$h \ge \frac{l}{20} = \frac{150 \ cm}{20} = 7,5 \ cm$$

Adopto h = 10 cm

Análisis de Cargas

	Espesor (m)	Peso Específico (kN/m³)	Peso (kN/m²)
Piso	0,012	23	0,28
Carpeta	0,025	19	0,48
Contrapiso	0,07	18	1,26
Losa	0,10	25	2,5
Cielorraso	0,02	-	0,2

D=	4,72
L =	5

Consideramos la carga del tanque como una sobrecarga uniformemente repartida de 5 kN/m².

Cargas Permanentes

Sobrecargas

$$U = 1.2 * D + 1.6 * L$$

 $M_u = 1.2 * 1.33 + 1.6 * 1.41 = 3.85 \ kNm/m$
 $V_u = 1.2 * 3.54 + 1.6 * 3.75 = 10.25 \ kN/m$

> Dimensionamiento a Flexión

Tramo

Por ser muy bajo el momento se adopta armadura mínima por contracción y temperatura.

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 10 cm = 1.8 cm^2/m$$

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Armadura de repartición

Adopto 1 Ø6 c/ 15 cm
$$(A_s = 1.89 cm^2/m)$$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$s_{l} \begin{cases} \leq 2h = 2 * 100 \ mm = 200 \ mm \\ \leq 25d_{b} = 25 * 6 \ mm = 150 \ mm \\ \leq 300 \ mm \end{cases}$$

Verifica

> Dimensionamiento al Corte

El máximo corte último es:

$$V_u = 10,25 \, \frac{kN}{m}$$

$$V_n = \frac{V_u}{\varphi} = \frac{10,25 \, \frac{kN}{m}}{0,75} = 13,67 \, \frac{kN}{m} = 0,01367 \, \frac{MN}{m}$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 \, MPa} * 1 \, m * 0,10 \, m = 0,083 \, MN > V_n$$

No es necesaria armadura de corte.

Detalle de Armado

Losa Escalera

> Predimensionado

Para losas macizas armadas en una dirección en voladizo:

$$h \ge \frac{l}{20} = \frac{353 \ cm}{20} = 17,65 \ cm$$

Adopto h = 18 cm

Análisis de Cargas

			Peso
	Espesor (m)	Peso Específico (kN/m³)	(kN/m^2)
Piso	(0,27+0,17)*0,012/0,27	23	0,45
Carpeta	(0,27+0,17)*0,015/0,27	19	0,46
Escalones	0,17/2	18	1,53
Losa	0,19/cos 31,86º	25	5,59
Cielorraso	0,02/cos 31,86º	-	0,2

> Solicitaciones

Cargas Permanentes

<u>Sobrecargas</u>

Cargas Últimas

$$U = 1.2 * D + 1.6 * L$$

 $M_u = 1.2 * 14.86 + 1.6 * 3.61 = 23.61 \text{ kNm/m}$
 $V_u = 1.2 * 15.88 + 1.6 * 3.86 = 25.23 \text{ kN/m}$

> Dimensionamiento a Flexión

<u>Tramo</u>

$$M_n = \frac{M_u}{\varphi} = \frac{23,61 \text{ kNm/m}}{0,9} = 26,23 \text{ kNm} = 0,02623 \text{ MNm/m}$$

$$d = h - c_c - \frac{1}{2}d_b = 19 \ cm - 2,5 \ cm - 0,5 \ cm = 16 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0.16 \, m}{\sqrt{\frac{0.02623 \, MNm/m}{1 \, m}}} = 0.99$$

De tabla de Flexión 3: $k_e = 24,301 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,301 \, cm^2 / MN * \frac{0,02623 \, MNm / m}{0,16 \, m} = 3,98 \, cm^2 / m$$

$$A_{s,min} = 0.0018 * b_w * h = 0.0018 * 100 cm * 19 cm = 3.42 cm^2/m$$

Adopto 1 Ø8 c/ 12,5 cm $(A_s = 4,02 cm^2/m)$

Armadura de repartición

Adopto 1 Ø8 c/ 14 cm $(A_s = 3.59 cm^2/m)$

Verificación de la separación de la armadura

S/ CIRSOC 201-7.6.5

$$S_{l} \begin{cases} \leq 2h = 2 * 190 \ mm = 380 \ mm \\ \leq 25d_{b} = 25 * 8 \ mm = 2000 \ mm \\ \leq 300 \ mm \end{cases}$$
 Verifica

Dimensionamiento al Corte

El máximo corte último es:

$$V_u = 25,23 \, {}^{kN}/m$$

$$V_n = \frac{V_u}{\varphi} = \frac{25,23 \, {}^{kN}/m}{0,75} = 33,64 \, {}^{kN}/m = 0,03364 \, MN/m$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 \, MPa} * 1 \, m * 0,16 \, m = 0,13 \, MN > V_n$$

No es necesaria armadura de corte.

Detalle de Armado

Vigas

<u>Vigas V01-V02 IDEM V011-V012</u>

> Predimensionado

$$h = \frac{l}{12} = \frac{540 \ cm}{12} = 0,45 \ m$$

Adopto h = 50 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.50 m = 2.5 kN/m$$

Peso de pared:

$$p_{par} = \gamma * e * h = 10.5 \, \frac{kN}{m^3} * 0.20 \, m * 3 \, m = 6.3 \, \frac{kN}{m}$$

$$D = R_{L01D} + R_{L05D} + p_p + p_{par} = (6.63 + 6.79 + 2.5 + 6.3)kN/_{m} =$$

$$D = 22,22 \, kN/m$$

$$L = R_{L01L} + R_{L05L} = \frac{(2.58 + 6.5)kN}{m} = 9.08 \, kN/m$$

> Solicitaciones

Carga Permanente

DCL

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Q</u>

> <u>Dimensionamiento a Flexión</u>

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 45.6 + 1.6 * 18.6)kNm = 84.48 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{84,48 \text{ kNm}}{0.9} = 93,87 \text{kNm} = 0,09387 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \text{ m}}{\sqrt{\frac{0,09387 \text{ MNm}}{0,20 \text{ m}}}} = 0,66$$

De tabla de Flexión 3: $k_e = 25,625 \ cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,625 \, cm^2 / MN * \frac{0,09387MNm}{0,456 \, m} = 5,27 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 5Ø12 abajo en dos capas. ($A_s = 5,65 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ > 1.33 \ T. M. N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

<u>Apoyo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 81 + 1.6 * 33.1)kNm = 150.16 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{150,16 \text{ kNm}}{0,9} = 166,84 \text{kNm} = 0,16684 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \, m}{\sqrt{\frac{0,16684 \, MNm}{0,20 \, m}}} = 0,50$$

De tabla de Flexión 3: $k_e = 26,758 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 26,758 \, cm^2 / MN * \frac{0,16684MNm}{0,456 \, m} = 9,79 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 5Ø16 arriba ($A_s = 10.5 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 16 - 2 * 30 - 2 * 6)}{2} = 40 \ mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 16 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T.M.N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_c}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 45 + 1.6 * 18.4)kN = 83.44 kN$$

Tomamos el corte a una distancia "d" del filo del apoyo.

$$q_u = 1.2q_D + 1.6q_L = \frac{(1.2 * 22.22 + 1.6 * 9.08)kN}{m} = 41.19 kN/m$$

$$V_u = 83,44 \, kN - 0,556 \, m * 41,19 \, kN/m = 60,54 \, kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{60,54 \ kN}{0,75} = 80,72 \ kN = 0,08072 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

$$V_S = V_n - V_c = 0.08072 \, MN - 0.076 \, MN = 0.00472 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_v * d} = \frac{0,00472 \, MN * 10^4}{420 \, MPa * 0,456 \, m} = 0,49 \, cm^2/m$$

$$s = \frac{A_v}{0,49 \ cm^2/m} = \frac{2*0,28 \ cm^2}{0,49 \ cm^2/m} = 1,14 \ m$$
; Adopto smax

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

Apoyo

$$V_{tt} = 1.2 * V_D + 1.6 * V_L = (1.2 * 75 + 1.6 * 30.6)kN = 138.96 kN$$

Tomamos el corte a una distancia "d" del apoyo.

$$q_u = 1.2q_D + 1.6q_L = \frac{(1.2 * 22.22 + 1.6 * 9.08)kN}{m} = 41.19 kN/m$$

$$V_u = 138,96 \, kN - 0,556 \, m * 41,19 \, kN / m = 116,06 \, kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{116,06 \, kN}{0,75} = 154,75 \, kN = 0,15475 \, MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

$$V_s = V_n - V_c = 0.15475 \, MN - 0.076 \, MN = 0.079 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_y * d} = \frac{0,079 \, MN * 10^4}{420 \, MPa * 0,456 \, m} = 4,12 \, cm^2/m$$

$$s = \frac{A_v}{4,12 \ cm^2/m} = \frac{2 * 0,28 \ cm^2}{4,12 \ cm^2/m} = 0,14 \ m$$

Adopto estribos Ø6 de 2 ramas c/ 14 cm.

Detalle de Armado

Vigas V03-V04 IDEM V09-V010

> Predimensionado

$$h = \frac{l}{12} = \frac{540 \ cm}{12} = 0,45 \ m$$

Adopto h= 50 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.50 m = 2.5 kN/m$$

Peso de pared:

$$p_{par} = \gamma * e * h = 10.5 \, {}^{kN}/{}_{m^3} * 0.20 \, m * 3 \, m = 6.3 \, {}^{kN}/{}_{m}$$

$$D = R_{L01D} + R_{L03D} + p_p + p_{par} = {}^{(6.63 + 7.66 + 2.5 + 6.3)kN}/{}_{m} = D = 23.09 \, {}^{kN}/{}_{m}$$

$$L = R_{L01L} + R_{L03L} = {}^{(2.58 + 2.94)kN}/{}_{m} = 5.52kN/m$$

> Solicitaciones

Carga Permanente

DCL

Mf

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

Q

Dimensionamiento a Flexión

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 47.35 + 1.6 * 11.32) kNm = 74.93 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{74,93 \text{ kNm}}{0,9} = 83,25 \text{kNm} = 0,08325 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 cm - 3 cm - 0.8 cm - 0.6 cm = 45.6 cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \, m}{\sqrt{\frac{0,08325 \, MNm}{0,20 \, m}}} = 0,706$$

De tabla de Flexión 3: $k_e = 25,207 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,08325MNm}{0,456 \, m} = 4,6 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 3Ø16 abajo ($A_s = 6.03 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 16 - 2 * 30 - 2 * 6)}{2} = 40 \text{ mm}$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 16 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

<u>Apoyo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 84.16 + 1.6 * 20.12) kNm = 133.184 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{133,184 \text{ kNm}}{0.9} = 147,98 \text{ kNm} = 0,14798 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \text{ m}}{\sqrt{\frac{0,14798 \text{ MNm}}{0,20 \text{ m}}}} = 0,53$$

De tabla de Flexión 3: $k_e = 26,399 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 26,399 \, cm^2 / MN * \frac{0,14798MNm}{0,456 \, m} = 8,56 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 5Ø16 en dos capas arriba ($A_s = 10.5 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 16 - 2 * 30 - 2 * 6)}{2} = 40 \text{ mm}$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 16 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 46.75 + 1.6 * 11.17)kN = 73.97 kN$$

Tomamos el corte a una distancia "d" del filo del apoyo.

$$q_u = 1.2q_D + 1.6q_L = \frac{(1.2 * 23.09 + 1.6 * 5.52)kN}{m} = 36.05 kN/m$$

$$V_u = 73,97 \, kN - 0,556 \, m * 36,05 \, kN/m = 53,67 \, kN$$

$$V_n = \frac{V_u}{\omega} = \frac{53,67 \text{ kN}}{0.75} = 71,56 \text{ kN} = 0,07156 \text{ MN}$$

$$V_c = \frac{1}{6}\sqrt{f_c^*} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05: $Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0.33 \ cm^2$

 $s_{m\acute{a}x}=\frac{d}{2}=\frac{0,456\,m}{2}=0,\!228\,m$; Adopto smax, Adoptando estribos Ø6 de 2 ramas.

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

Apoyo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 77.92 + 1.6 * 18.63)kN = 123.31 kN$$

Tomamos el corte a una distancia "d" del apoyo.

$$V_u = 123,31 \, kN - 0,556 \, m * 36,05 \, kN/m = 103,01 \, kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{103,01 \ kN}{0,75} = 137,35 \ kN = 0,13735 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

$$V_s = V_n - V_c = 0.13735 \, MN - 0.076 \, MN = 0.06135 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_v * d} = \frac{0,06135 \, MN * 10^4}{420 \, MPa * 0,456 \, m} = 3,2 \, cm^2/m$$

$$s = \frac{A_v}{3.2 \text{ cm}^2/m} = \frac{2 * 0.28 \text{ cm}^2}{3.2 \text{ cm}^2/m} = 0.17 \text{ m}$$

Adopto estribos Ø6 de 2 ramas c/ 17 cm.

Detalle de Armado

Activar V

<u>Vigas V05-V06 IDEM V07-V08</u>

> Predimensionado

$$h = \frac{l}{12} = \frac{540 \ cm}{12} = 0,45 \ m$$

Adopto h= 50 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.50 m = 2.5 kN/m$$

Peso de pared:

$$p_{par} = \gamma * e * h = 10.5 \, \frac{kN}{m^3} * 0.20 \, m * 3 \, m = 6.3 \, \frac{kN}{m}$$

$$qD = R_{L03D} + p_p + p_{par} = \frac{(4.43 + 2.5 + 6.3)kN}{m} = \frac{(4.43 + 2.5 + 6.3)$$

$$qD = 13,23 \ kN/m \ ; R_{V025D} = 18,12 \ KN \ ; R_{V026D} = 8,8 \ KN \ ;$$

$$R_{V029D} = 4.9 \, KN$$

$$L = R_{L03L} = {(1,7)kN / m} = 1,7kN/m$$
; $R_{V025L} = 5,3 KN$

$$R_{V026L} = 3.1 \ KN \ ; R_{V029L} = 1.4 \ KN$$

> Solicitaciones

Carga Permanente

<u>DCL</u>

Mf

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Mf</u>

<u>Q</u>

> <u>Dimensionamiento a Flexión</u>

<u>Tramo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 32.5 + 1.6 * 5.1)kNm = 47.16 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{47,16 \text{ kNm}}{0.9} = 52,4 \text{kNm} = 0,0524 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \, m}{\sqrt{\frac{0,0524 \, MNm}{0,20 \, m}}} = 0,89$$

De tabla de Flexión 3: $k_e = 24,766 cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \, cm^2 / MN * \frac{0,0524MNm}{0,456 \, m} = 2,84 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 3Ø12 abajo ($A_s = 3.39 \ cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

<u>Verifica</u>

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 60.3 + 1.6 * 9.8)kNm = 88.04 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{88,04 \text{ kNm}}{0.9} = 97,82 \text{ kNm} = 0.09782 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \text{ m}}{\sqrt{\frac{0,09782 \text{ MNm}}{0,20 \text{ m}}}} = 0,65$$

De tabla de Flexión 3: $k_e = 25,625 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,625 \, \frac{cm^2}{MN} * \frac{0,09782MNm}{0,456 \, m} = 5,49 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 3Ø16 arriba ($A_s = 6.03 cm^2$)

Verificación de la separación mínima de la armadura

$$s_{l} = \frac{b - n^{\underline{o}}_{d_{b}} * d_{b} - 2c_{c} - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 16 - 2 * 30 - 2 * 6)}{2} = 40 \text{ mm}$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 16 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
 Verifica

> Dimensionamiento al Corte

Tramo

$$V_{u} = 1.2 * V_{D} + 1.6 * V_{L} = (1.2 * 29.3 + 1.6 * 4.2)kN = 41.88 kN$$

$$V_n = \frac{V_u}{\omega} = \frac{41,88 \ kN}{0.75} = 55,84 \ kN = 0.05584 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05: $Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0,33 \ cm^2$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0,456\,m}{2}=0,\!228\,m$; Adopto smax, Adoptando estribos Ø6 de 2 ramas.

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

Apoyo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 60.2 + 1.6 * 10.3)kN = 88.72 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{88,72 \ kN}{0,75} = 118,29 \ kN = 0,11829 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

$$V_s = V_n - V_c = 0.11829 \, MN - 0.076 \, MN = 0.0423 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_v * d} = \frac{0.0423 \, MN * 10^4}{420 \, MPa * 0.456 \, m} = 2.2 \, cm^2/m$$

$$s = \frac{A_v}{2.2 \text{ cm}^2/m} = \frac{2*0.28 \text{ cm}^2}{2.2 \text{ cm}^2/m} = 0.25 \text{ m}$$
; Adopto smax

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

> Detalle de Armado

62

Action 11

Vigas V013-V014 IDEM V015-V016 | V021-V022 | V023-V024

> Predimensionado

$$h = \frac{l}{12} = \frac{338 \ cm}{12} = 0.28 \ m$$

Adopto h= 30 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.30 m = 1.5 kN/m$$

Peso de pared:

$$p_{par} = \gamma * e * h = 10.5 \, {}^{kN}/{}_{m^3} * 0.20 \, m * 3 \, m = 6.3 \, {}^{kN}/{}_{m}$$
 $D014 = R_{L03D} + p_p + p_{par} = {}^{(3,21 + 1.5 + 6.3)kN}/{}_{m} = 11.01 \, {}^{kN}/{}_{m}$
 $D013 = R_{L01D} + p_p + p_{par} = {}^{(2,53 + 1.5 + 6.3)kN}/{}_{m} = 10.33 \, {}^{kN}/{}_{m}$
 $L014 = R_{L03L} = {}^{(1,23)kN}/{}_{m} = 1.23 \, {}^{kN}/{}_{m}$
 $L013 = R_{L01L} = {}^{(0,98)kN}/{}_{m} = 0.98 \, {}^{kN}/{}_{m}$

Solicitaciones

Carga Permanente

<u>DCL</u>

Mf

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Mf</u>

<u>Q</u>

> <u>Dimensionamiento a Flexión</u>

<u>Tramo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 9 + 1.6 * 1.1)kNm = 12.56 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{12,56 \text{ kNm}}{0,9} = 13,95 \text{kNm} = 0,01395 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,01395 \text{ MNm}}{0,20 \text{ m}}}} = 0,97$$

De tabla de Flexión 3: $k_e = 24,766 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \, \frac{cm^2}{MN} * \frac{0,01395MNm}{0,256 \, m} = 1,35 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 3Ø12 abajo. ($A_s = 3,39 \text{ cm}^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 15.2 + 1.6 * 1.6)kNm = 20.8 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{20.8 \text{ kNm}}{0.9} = 23.11 \text{kNm} = 0.02311 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,02311 \text{ MNm}}{0,20 \text{ m}}}} = 0,75$$

De tabla de Flexión 3: $k_e = 25,207cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,02311MNm}{0,256 \, m} = 2,27 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 3Ø12 arriba ($A_s = 3.39 cm^2$)

Verificación de la separación mínima de la armadura

$$s_{l} = \frac{b - n^{\underline{o}}_{d_{b}} * d_{b} - 2c_{c} - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

> Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 14.1 + 1.6 * 1.6)kN = 19.48 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{19,48 \ kN}{0,75} = 25,97 \ kN = 0,02597 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.256 m = 0.0426 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:
$$Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0.18 \ cm^2$$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0,256\ m}{2}=0,128\ m$; Adopto smax, Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Apoyo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 23.1 + 1.6 * 2.5)kN = 31.72 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{31,72 \ kN}{0,75} = 42,29 \ kN = 0,0423 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.256 m = 0.0426 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05: $Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0.18 \ cm^2$

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,256 \, m}{2} = 0,128 \, m$$
 ; Adopto smax.

Adopto estribos Ø6 de 2 ramas c/ 12 cm.

> Detalle de Armado

Vigas V017-V018 IDEM V019-V020

Predimensionado

$$h = \frac{l}{12} = \frac{338 \ cm}{12} = 0.28 \ m$$

Adopto h= 30 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.30 m = 1.5 kN/m$$

Peso de pared:

$$p_{par} = \gamma * e * h = 10.5 \, \frac{kN}{m^3} * 0.20 \, m * 3 \, m = 6.3 \, \frac{kN}{m}$$

 $D017 = R_{L01D} + R_{L02D} + p_p + p_{par} = \frac{(4.39 + 4.39 + 1.5 + 6.3)kN}{m} = \frac{(4.39 + 4.39 + 6.3)kN}{m} = \frac{(4.39 + 6.3)kN}{m} = \frac{(4.38 + 6.3)k$

$$D017 = 16,58 \, kN/m$$

$$D018 = R_{L03D} + R_{L04D} + p_p + p_{par} = \frac{(5,58 + 5,58 + 1,5 + 6,3)kN}{m} = D018 = 18,96 \, kN/m$$

$$L017 = R_{L01L} + R_{L02L} = \frac{(1,71 + 1,71)kN}{m} = 3,42kN/m$$

$$L018 = R_{L03L} + R_{L04L} = \frac{(2,14 + 2,14)kN}{m} = 4,28kN/m$$

> Solicitaciones

Carga Permanente

<u>DCL</u>

Mf

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Mf</u>

Q

Dimensionamiento a Flexión

<u>Tramo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 15.9 + 1.6 * 3.7)kNm = 25 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{25 \text{ kNm}}{0.9} = 27.8 \text{kNm} = 0.0278 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,0278 \text{ MNm}}{0,20 \text{ m}}}} = 0,68$$

De tabla de Flexión 3: $k_e = 25,207cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,0278MNm}{0,256 \, m} = 2,73 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.70 cm^2$$

Adopto 3Ø12 abajo. ($A_s = 3,39 \text{ } cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \text{ mm}$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 25.4 + 1.6 * 5.5)kNm = 39.28 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{39,28 \text{ kNm}}{0.9} = 43,65 \text{kNm} = 0,04365 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \, m}{\sqrt{\frac{0,04365 \, MNm}{0,20 \, m}}} = 0,548$$

De tabla de Flexión 3: $k_e = 26,399 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 26,399 \, cm^2 / MN * \frac{0,04365MNm}{0,256 \, m} = 4,5 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.7 cm^2$$

Adopto 4Ø12 arriba ($A_s = 4,52 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 4 * 12 - 2 * 30 - 2 * 6)}{3} = 26,6 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1,2 * V_D + 1,6 * V_L = (1,2 * 24,5 + 1,6 * 5,6)kN = 38,36 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{38,36 kN}{0,75} = 51,14 kN = 0,05114 MN$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 MPa} * 0,2 m * 0,256 m = 0,0426 MN$$

 $V_S = V_n - V_c = 0.05114 \, MN - 0.0426 \, MN = 0.00854 \, MN$

Adoptando estribos Ø6 de 2 ramas.

$$s_{máx} = \frac{d}{2} = \frac{0,256 \, m}{2} = 0,128 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_v * d} = \frac{0,00854 \, MN * 10^4}{420 \, MPa * 0,256 \, m} = 0,794 \, cm^2/m$$

$$s = \frac{A_v}{0.794 \text{ cm}^2/m} = \frac{2*0.28 \text{ cm}^2}{0.794 \text{ cm}^2/m} = 0.7 \text{ m}$$
; Adopto smax

Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Apoyo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 39.6 + 1.6 * 8.9)kN = 61.76 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{61,76 \text{ kN}}{0,75} = 82,34 \text{ kN} = 0,08234 \text{ MN}$$

$$V_c = \frac{1}{6}\sqrt{f_c^*} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.256 m = 0.0426 MN$$

$$V_s = V_n - V_c = 0.08234 \, MN - 0.0426 \, MN = 0.03974 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,256 \, m}{2} = 0,128 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_v * d} = \frac{0,03974 \, MN * 10^4}{420 \, MPa * 0,256 \, m} = 3,69 \, cm^2/m$$

$$s = \frac{A_v}{3,69 \text{ cm}^2/m} = \frac{2*0,28 \text{ cm}^2}{3,69 \text{ cm}^2/m} = 0,15 \text{ m}$$
; Adopto smax

Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Detalle de Armado

Viga V025 IDEM V125

> Predimensionado

$$h = \frac{l}{12} = \frac{600 \ cm}{12} = 0,50 \ m$$

Adopto h= 50 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.50 m = 2.5 kN/m$$

$$D = R_{L011D} + p_p = \frac{(4.2 + 2.5)kN}{m} = 0$$

$$D = 6.04 kN/m$$

$$L = R_{L011L} = \frac{(1.78)kN}{m} = 1.78kN/m$$

> Solicitaciones

Carga Permanente

<u>DCL</u>

Mf

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Q</u>

> <u>Dimensionamiento a Flexión</u>

<u>Tramo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 27.18 + 1.6 * 6.75)kNm = 43.41 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{43,41 \text{ kNm}}{0,9} = 48,24 \text{kNm} = 0,04824 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \text{ m}}{\sqrt{\frac{0,04824 \text{ MNm}}{0,20 \text{ m}}}} = 0,93$$

De tabla de Flexión 3: $k_e = 24,766cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \, cm^2 / MN * \frac{0,04824MNm}{0.456 \, m} = 2,62 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.7 cm^2$$

Adopto 3Ø12 abajo ($A_s = 3.39 \ cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ > 1.33 \ T.M.N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 18.12 + 1.6 * 4.5)kN = 28.94 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{28,94 \ kN}{0,75} = 38,58 \ kN = 0,03858 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c^*} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:
$$Avmin = \frac{\sqrt{f'c}*bw*s}{16fy} = 0,33 cm^2$$

 $s_{m\acute{a}x}=\frac{d}{2}=\frac{0.456\,m}{2}=$ 0,228 m ; Adopto smax, Adoptando estribos Ø6 de 2 ramas.

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

Detalle de Armado

Viga V026 IDEM V126 | V028 | V128

> Predimensionado

$$h = \frac{l}{12} = \frac{193 \ cm}{12} = 0.16 \ m$$

Adopto h= 30 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.30 m = 1.5 kN/m$$

$$D = R_{L011D} + R_{L012D} + p_p = \frac{(4.2 + 3.4 + 1.5)kN}{m} = D = 9.1 kN/m$$

$$L = R_{L011L} + R_{L012L} = \frac{(1.78 + 1.4)kN}{m} = 3.18kN/m$$

> Solicitaciones

Carga Permanente

DCL

Mf

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Mf</u>

Q

> Dimensionamiento a Flexión

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 4.2 + 1.6 * 1.5)kNm = 7.44 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{7,44 \text{ kNm}}{0.9} = 8,26 \text{kNm} = 0,00826 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,00826 \text{ MNm}}{0,20 \text{ m}}}} = 1,26$$

De tabla de Flexión 3: $k_e = 24,301cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,301 \, \frac{cm^2}{MN} * \frac{0,00826MNm}{0,256 \, m} = 0,78 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.7 cm^2$$

Adopto 2Ø12 abajo ($A_s = 2,26 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 2 * 12 - 2 * 30 - 2 * 6)}{1} = 104 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ > 1.33 \ T. \ M. \ N \end{cases}$$
 Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1,2 * V_D + 1,6 * V_L = (1,2 * 8,8 + 1,6 * 3,1)kN = 15,52 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{15,52 kN}{0,75} = 20,69 kN = 0,02069MN$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 MPa} * 0,2 m * 0,256 m = 0,0426 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05: $Avmin = \frac{\sqrt{f_c}*bw*s}{16fy} = 0,18 \ cm^2 \ cm^2$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0.256\,m}{2}=0.128\,m$; Adopto smax, Adoptando estribos Ø6 de 2 ramas.

Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Detalle de Armado

Viga V027 IDEM V127

> Predimensionado

$$h = \frac{l}{12} = \frac{215 \ cm}{12} = 0.18 \ m$$

Adopto h= 30 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.30 m = 1.5 kN/m$$

$$D = R_{L011D} + R_{LescD} + p_p = \frac{(4.2 + 17.11 + 1.5)kN}{m} = 0$$

$$D = 22.81 kN/m$$

$$L = R_{L011L} + R_{LescL} = \frac{(1.78 + 4.16)kN}{m} = 5.94kN/m$$

> Solicitaciones

Carga Permanente

DCL

Mf

<u>Sobrecarga</u>

<u>DCL</u>

Mf

Q

Dimensionamiento a Flexión

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 13.2 + 1.6 * 3.43) kNm = 21.33 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{21,33 \text{ kNm}}{0,9} = 23,7 \text{kNm} = 0,0237 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \, m}{\sqrt{\frac{0,0237 \, MNm}{0,20 \, m}}} = 0,74$$

De tabla de Flexión 3: $k_e = 25,207 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,0237MNm}{0,256 \, m} = 2,33 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 3Ø12 abajo ($A_s = 3,39 \ cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \text{ mm}$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$
 Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1,2 * V_D + 1,6 * V_L = (1,2 * 24,5 + 1,6 * 6,4)kN = 39,64kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{39,64 \ kN}{0,75} = 52,85 \ kN = 0,05285 \ MN$$

$$V_c = \frac{1}{6} \sqrt{f^*_c} * b_w * d = \frac{1}{6} \sqrt{25 \ MPa} * 0,2 \ m * 0,256 \ m = 0,0426 \ MN$$

$$V_s = V_n - V_c = 0,05285 \ MN - 0,0426 \ MN = 0,01025 \ MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,256 \, m}{2} = 0,128 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_y * d} = \frac{0,01025 \, MN * 10^4}{420 \, MPa * 0,256 \, m} = 0,95 \, cm^2/m$$

$$s = \frac{A_v}{0.95 \, cm^2/m} = \frac{2*0,28 \, cm^2}{0.95 \, cm^2/m} = 0,58 \, m; \text{ Adopto smax}$$

Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Detalle de Armado

Viga V029 IDEM V030 | V129 | V130

> Predimensionado

$$h = \frac{l}{12} = \frac{193 \ cm}{12} = 0.16 \ m$$

Adopto h= 30 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.30 m = 1.5 kN/m$$

$$D = R_{L012D} + p_p = \frac{(3.4 + 1.5)kN}{m} = 0$$

$$D = 5.04 kN/m$$

$$L = R_{L012L} = \frac{(1.4)kN}{m} = 1.4kN/m$$

> Solicitaciones

Carga Permanente

DCL

<u>Mf</u>

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

Mf

<u>Q</u>

Dimensionamiento a Flexión

<u>Tramo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 2.3 + 1.6 * 0.7)kNm = 3.88 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{3,88 \text{ kNm}}{0.9} = 4,31 \text{kNm} = 0,00431 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,00431 \text{ MNm}}{0,20 \text{ m}}}} = 1,74$$

De tabla de Flexión 3: $k_e = 24,301cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,301 \, \frac{cm^2}{MN} * \frac{0,00431MNm}{0,256 \, m} = 0,409 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.7 cm^2$$

Adopto 2Ø12 abajo ($A_s = 2,26 \text{ } cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\circ}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\circ}_{espacios}}$$

$$s_l = \frac{(200 - 2 * 12 - 2 * 30 - 2 * 6)}{1} = 104 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ > 1.33 \ T. \ M. \ N \end{cases}$$
 Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1,2 * V_D + 1,6 * V_L = (1,2 * 4,9 + 1,6 * 1,4)kN = 8,12 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{8,12 kN}{0,75} = 10,82kN = 0,01082MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0,2 m * 0,256 m = 0,0426 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05: $Avmin = \frac{\sqrt{f_c^* bw * s}}{16fy} = 0.18 cm^2$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0.256\,m}{2}=0.128\,m$; Adopto smax, Adoptando estribos Ø6 de 2 ramas.

Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Detalle de Armado

<u>Vigas V11-V12 IDEM V111-V112</u>

> Predimensionado

$$h = \frac{l}{12} = \frac{540 \ cm}{12} = 0,45 \ m$$

Adopto h= 50 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.50 m = 2.5 kN/m$$

$$D = R_{L11D} + R_{L15D} + p_p = \frac{(6.63 + 6.79 + 2.5)kN}{m} = 0$$

$$D = 15.91 kN/m$$

$$L = R_{L11L} + R_{L15L} = \frac{(2.58 + 6.5)kN}{m} = 9.08kN/m$$

> Solicitaciones

Carga Permanente

<u>DCL</u>

Mf

<u>Sobrecarga</u>

<u>DCL</u>

<u>Mf</u>

Dimensionamiento a Flexión

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 32.6 + 1.6 * 18.6)kNm = 68.9 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{68.9 \text{ kNm}}{0.9} = 76.55 \text{kNm} = 0.07655 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \, m}{\sqrt{\frac{0,07655 \, MNm}{0,20 \, m}}} = 0,737$$

De tabla de Flexión 3: $k_e = 25,207 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,0766MNm}{0,456 \, m} = 4,23 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 4Ø12 abajo. $(A_s = 4,52 cm^2)$

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 4 * 12 - 2 * 30 - 2 * 6)}{3} = 26,6 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 58 + 1.6 * 33.1)kNm = 122.56 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{122,56 \text{ kNm}}{0,9} = 136,1 \text{kNm} = 0,1361 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \, m}{\sqrt{\frac{0,1361 \, MNm}{0,20 \, m}}} = 0,55$$

De tabla de Flexión 3: $k_e = 26,021 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 26,021 \, cm^2 / MN * \frac{0,1361MNm}{0,456 \, m} = 7,76 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 4Ø16 arriba en dos capas ($A_s = 8,04 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 2 * 16 - 2 * 30 - 2 * 6)}{1} = 96 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min}$$
 $\geq d_b = 16 \ mm$ $\geq 25 mm$ $\geq 1.33 \ T. M. N$ Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

> Dimensionamiento al Corte

Tramo

$$V_u = 1,2 * V_D + 1,6 * V_L = (1,2 * 32,6 + 1,6 * 8,4)kN = 52,08 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{52,08 kN}{0,75} = 69,44 kN = 0,06944 MN$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 MPa} * 0,2 m * 0,456 m = 0,076 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05: $Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0,33 \ cm^2$

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0.456 \, m}{2} = 0.228 \, m$$
; Adopto smax

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

Apoyo

$$V_u = 1,2 * V_D + 1,6 * V_L = (1,2 * 53,7 + 1,6 * 30,65)kN = 113,5 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{113,5 kN}{0,75} = 1513 kN = 0,1513 MN$$

$$V_c = \frac{1}{6} \sqrt{f_c} * b_w * d = \frac{1}{6} \sqrt{25 MPa} * 0,2 m * 0,456 m = 0,076 MN$$

$$V_S = V_n - V_c = 0.1513 MN - 0.076 MN = 0.0753 MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_y * d} = \frac{0,076 MN * 10^4}{420 MPa * 0,456 m} = 3,96 cm^2/m$$

$$s = \frac{A_v}{3,96 \text{ cm}^2/m} = \frac{2 * 0,28 \text{ cm}^2}{3,96 \text{ cm}^2/m} = 0,14 \text{ m}$$

Adopto estribos Ø6 de 2 ramas c/ 14 cm.

Detalle de Armado

<u>Vigas V13-V14 IDEM V19-V110</u>

> Predimensionado

$$h = \frac{l}{12} = \frac{540 \ cm}{12} = 0,45 \ m$$

Adopto h= 50 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.50 m = 2.5 kN/m$$

$$D = R_{L11D} + R_{L13D} + p_p = \frac{(6.63 + 7.66 + 2.5)kN}{m} = D = 16.79 kN/m$$

$$L = R_{L11L} + R_{L13L} = \frac{(2.58 + 2.94)kN}{m} = 5.52kN/m$$

> Solicitaciones

Carga Permanente

<u>DCL</u>

Mf

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Mf</u>

Q

Dimensionamiento a Flexión

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 34.4 + 1.6 * 11.32)kNm = 59.4 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{59.4 \text{ kNm}}{0.9} = 66 \text{kNm} = 0.066 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \, m}{\sqrt{\frac{0,066 \, MNm}{0,20 \, m}}} = 0,793$$

De tabla de Flexión 3: $k_e = 25,207 \ cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,066MNm}{0,456 \, m} = 3,65 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 4Ø12 abajo. ($A_s = 4,52 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 4 * 12 - 2 * 30 - 2 * 6)}{3} = 26,6 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min}$$
 $\begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$ Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 61.2 + 1.6 * 20.12)kNm = 105.6 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{105,6 \text{ kNm}}{0.9} = 117,4 \text{kNm} = 0,1174 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \, m}{\sqrt{\frac{0,1174 \, MNm}{0,20 \, m}}} = 0,595$$

De tabla de Flexión 3: $k_e = 26,201cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 26,201 \, cm^2 / MN * \frac{0,1174MNm}{0,456 \, m} = 6,74 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 4Ø16 arriba en dos capas ($A_s = 8,04 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 4 * 16 - 2 * 30 - 2 * 6)}{3} = 26,6 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 16 \ mm \\ \geq 25mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$S \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2,5c_c = 380 \left(\frac{280}{280}\right) - 2,5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$

Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 34 + 1.6 * 11.32)kN = 58.67 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{58,67 \ kN}{0,75} = 78,23 \ kN = 0,07823MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

$$V_s = V_n - V_c = 0.07823 \, MN - 0.076 \, MN = 0.00223 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_v * d} = \frac{0,00223 \, MN * 10^4}{420 \, MPa * 0,456 \, m} = 0,116 \, cm^2/m$$

$$s = \frac{A_v}{0,116 \ cm^2/m} = \frac{2*0,28 \ cm^2}{0,116 \ cm^2/m} = 4,8 \ m$$
; Adopto smax

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

<u>Apoyo</u>

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 56.7 + 1.6 * 18.63)kN = 97.8 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{97.8 \ kN}{0.75} = 130.4 \ kN = 0.1304 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c^*} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

$$V_S = V_n - V_c = 0.1304 \, MN - 0.076 \, MN = 0.0544 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_y * d} = \frac{0,0544 \, MN * 10^4}{420 \, MPa * 0,456 \, m} = 2,84 \, cm^2/m$$

$$s = \frac{A_v}{2,84 \text{ cm}^2/m} = \frac{2 * 0.28 \text{ cm}^2}{2,84 \text{ cm}^2/m} = 0.197 \text{ m}$$

Adopto estribos Ø6 de 2 ramas c/ 19 cm.

Detalle de Armado

<u>Vigas V15-V16 IDEM V17-V18</u>

> Predimensionado

$$h = \frac{l}{12} = \frac{540 \ cm}{12} = 0,45 \ m$$

Adopto h= 50 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 \ m * 0.50 \ m = 2.5 \ kN/m$$

$$D = R_{L13D} + p_p = \frac{(4.43 + 2.5)kN}{m} = D = 6.93 \ kN/m \; ; R_{V125D} = 18.12 \ KN \; ; R_{V126D} = 8.8 \ KN \; ; R_{V129D} = 4.9 \ KN$$

$$L = R_{L13L} = \frac{(1.7)kN}{m} = 1.7kN/m \; ; R_{V125L} = 5.3 \ KN$$

$$R_{V126L} = 3.1 \ KN \; ; R_{V129L} = 1.4 \ KN$$

Solicitaciones

Carga Permanente

DCL

<u>Mf</u>

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

<u>Mf</u>

Q

Dimensionamiento a Flexión

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 19.9 + 1.6 * 5.1)kNm = 32.04 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{32,04 \text{ kNm}}{0.9} = 35,6 \text{kNm} = 0.0356 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \text{ m}}{\sqrt{\frac{0,0356 \text{ MNm}}{0,20 \text{ m}}}} = 1,08$$

De tabla de Flexión 3: $k_e = 24,301cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,301 \, cm^2 / MN * \frac{0,0356MNm}{0,456 \, m} = 1,89 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 3Ø12 abajo. ($A_s = 3,39 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \text{ mm}$$

S/ CIRSOC 201-7.6.1

$$S_{l,min}$$
 $\begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$ Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 37.3 + 1.6 * 9.8)kNm = 60.44 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{60,44kNm}{0,9} = 67,15kNm = 0,06715 MNm$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 50 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 45.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,456 \text{ m}}{\sqrt{\frac{0,06715 \text{ MNm}}{0,20 \text{ m}}}} = 0,78$$

De tabla de Flexión 3: $k_e = 25,207 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,06715MNm}{0,456 \, m} = 3,71 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 45.6 cm}{420 MPa} = 3.04 cm^2$$

Adopto 4Ø12 arriba ($A_s = 4,52 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 4 * 12 - 2 * 30 - 2 * 6)}{3} = 26,6 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

> Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 16.6 + 1.6 * 4.2)kN = 26.64 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{26,64 \ kN}{0,75} = 35,52 \ kN = 0,03552 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:
$$Avmin = \frac{\sqrt{f'c}*bw*s}{16fy} = 0.33 \ cm^2$$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0.456\ m}{2}=0.228\ m$; Adopto smax, Adopto estribos Ø6 de 2 ramas c/ 22 cm.

Apoyo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 38.9 + 1.6 * 10.3)kN = 63.16 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{63,16 \text{ kN}}{0,75} = 84,21 \text{ kN} = 0,08421 \text{ MN}$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.456 m = 0.076 MN$$

$$V_s = V_n - V_c = 0.08421 \, MN - 0.076 \, MN = 0.00821 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,456 \, m}{2} = 0,228 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_y * d} = \frac{0,00821 \, MN * 10^4}{420 \, MPa * 0,456 \, m} = 0,428 \, cm^2/m$$

$$s = \frac{A_v}{0,428 \ cm^2/m} = \frac{2*0,28 \ cm^2}{0,428 \ cm^2/m} = 1,31 \ m$$
; Adopta smax

Adopto estribos Ø6 de 2 ramas c/ 22 cm.

Detalle de Armado

Vigas V113-V114 IDEM V115-V116 | V121-V122 | V123-V124

> Predimensionado

$$h = \frac{l}{12} = \frac{338 \ cm}{12} = 0,28 \ m$$

Adopto h= 30 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.30 m = 1.5 kN/m$$
 $D114 = R_{L13D} + p_p = \frac{(3.21 + 1.5)kN}{m} =$
 $D114 = 4.71 kN/m$
 $D113 = R_{L11D} + p_p = \frac{(2.53 + 1.5)kN}{m} =$
 $D113 = 4.03 kN/m$
 $L114 = R_{L13L} = \frac{(1.23)kN}{m} = 1.23kN/m$
 $L113 = R_{L11L} = \frac{(0.98)kN}{m} = 0.98kN/m$

Solicitaciones

Carga Permanente

DCL

<u>Q</u>

<u>Sobrecarga</u>

<u>DCL</u>

Mf

<u>Q</u>

Dimensionamiento a Flexión

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 4 + 1.6 * 1.1)kNm = 6.56 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{6,56 \text{ kNm}}{0,9} = 7,29 \text{kNm} = 0,00729 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,00729 \text{ MNm}}{0,20 \text{ m}}}} = 1,34$$

De tabla de Flexión 3: $k_e = 24,301 \ cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,301 \, cm^2 / MN * \frac{0,00729MNm}{0,256 \, m} = 0,69 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.7 cm^2$$

Adopto 2Ø12 abajo. ($A_s = 2,26 \text{ cm}^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 2 * 12 - 2 * 30 - 2 * 6)}{1} = 114,8 \ mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ > 1.33 \ T. M. N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 6.2 + 1.6 * 1.6)kNm = 10 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{10 \ kNm}{0.9} = 11,11kNm = 0,01111 \ MNm$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,01111 \text{ MNm}}{0,20 \text{ m}}}} = 1,08$$

De tabla de Flexión 3: $k_e = 24,766 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \, cm^2 / MN * \frac{0,01111MNm}{0,256 \, m} = 1,07 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.7 cm^2$$

Adopto 2Ø12 arriba ($A_s = 2,26 cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 2 * 12 - 2 * 30 - 2 * 6)}{1} = 114,8 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 6.1 + 1.6 * 1.6)kN = 9.88 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{9,88 \text{ kN}}{0.75} = 13,17 \text{ kN} = 0.01317 \text{ MN}$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.256 m = 0.0426MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:
$$Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0,18 \ cm^2$$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0,256\ m}{2}=0$,128 m ; Adopto smax, Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Apoyo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 9.8 + 1.6 * 2.5)kN = 15.76 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{15,76 \text{ kN}}{0,75} = 21,01 \text{ kN} = 0,02101 \text{ MN}$$

$$V_c = \frac{1}{6}\sqrt{f_c^*} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.256 m = 0.0426 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:
$$Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0.18 \ cm^2$$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0,256\,m}{2}=$ 0,128 m ; Adopto smax, Adopto estribos Ø6 de 2 ramas c/ 12 cm.

> Detalle de Armado

Vigas V117-V118 IDEM V119-V120

> Predimensionado

$$h = \frac{l}{12} = \frac{338 \ cm}{12} = 0,28 \ m$$

Adopto h= 30 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.30 m = 1.5 \frac{kN}{m}$$
 $D117 = R_{L11D} + R_{L12D} + p_p = \frac{(4.39 + 4.39 + 1.5)kN}{m} = D117 = 10.28 \frac{kN}{m}$
 $D118 = R_{L13D} + R_{L14D} + p_p = \frac{(5.58 + 5.58 + 1.5)kN}{m} = D118 = 12.66 \frac{kN}{m}$
 $L117 = R_{L11L} + R_{L12L} = \frac{(1.71 + 1.71)kN}{m} = 3.42 \frac{kN}{m}$
 $L118 = R_{L13L} + R_{L14L} = \frac{(2.14 + 2.14)kN}{m} = 4.28 \frac{kN}{m}$

Solicitaciones

Carga Permanente

DCL

Q

<u>Sobrecarga</u>

<u>DCL</u>

Mf

<u>Q</u>

> <u>Dimensionamiento a Flexión</u>

<u>Tramo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 10.8 + 1.6 * 3.7)kNm = 18.88 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{18,88 \text{ kNm}}{0.9} = 20,97 \text{kNm} = 0,02097 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \, m}{\sqrt{\frac{0,02097 \, MNm}{0,20 \, m}}} = 0,79$$

De tabla de Flexión 3: $k_e = 25,207cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,207 \, cm^2 / MN * \frac{0,02097MNm}{0,256 \, m} = 2,06 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.70 cm^2$$

Adopto 2Ø12 abajo. ($A_s = 2,26 \text{ cm}^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 2 * 12 - 2 * 30 - 2 * 6)}{1} = 104 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ > 1.33 \ T. M. N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Apoyo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 16.4 + 1.6 * 5.5)kNm = 28.48 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{28,48 \text{ kNm}}{0.9} = 31,64 \text{kNm} = 0,03164 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 30 \ cm - 3 \ cm - 0.8 \ cm - 0.6 \ cm = 25.6 \ cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,256 \text{ m}}{\sqrt{\frac{0,03164 \text{ MNm}}{0,20 \text{ m}}}} = 0,64$$

De tabla de Flexión 3: $k_e = 25,625 cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 25,625 \, \frac{cm^2}{MN} * \frac{0,03164MNm}{0,256 \, m} = 3,16 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 25.6 cm}{420 MPa} = 1.7 cm^2$$

Adopto 3Ø12 arriba ($A_s = 3,39 cm^2$)

Verificación de la separación mínima de la armadura

$$s_{l} = \frac{b - n^{\underline{o}}_{d_{b}} * d_{b} - 2c_{c} - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 12 - 2 * 30 - 2 * 6)}{2} = 46 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 12 \ mm \\ \geq 25 mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

> Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 16.5 + 1.6 * 5.6)kN = 28.76 kN$$

$$V_n = \frac{V_u}{\omega} = \frac{28,76 \text{ kN}}{0.75} = 38,34 \text{ kN} = 0.03834 \text{ MN}$$

$$V_c = \frac{1}{6}\sqrt{f_c^*} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.256 m = 0.0426 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05: $Avmin = \frac{\sqrt{f \cdot c}*bw*s}{16fy} = 0.18 cm^2$

 $s_{m\acute{a}x}=rac{d}{2}=rac{0,256\ m}{2}=0$,128 m ; Adopto smax, Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Apoyo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 26.2 + 1.6 * 8.9)kN = 45.68 kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{45,68 \ kN}{0,75} = 60,9 \ kN = 0,0609 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.256 m = 0.0426 MN$$

$$V_s = V_n - V_c = 0.0609 \, MN - 0.0426 \, MN = 0.0183 \, MN$$

Adoptando estribos Ø6 de 2 ramas.

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,256 \, m}{2} = 0,128 \, m$$

$$\frac{A_v}{s} = \frac{V_s * 10^4}{f_v * d} = \frac{0.0183 \, MN * 10^4}{420 \, MPa * 0.256 \, m} = 1.7 \, cm^2/m$$

$$s = \frac{A_v}{1.7 \text{ cm}^2/m} = \frac{2*0.28 \text{ cm}^2}{1.7 \text{ cm}^2/m} = 0.33 \text{ m}$$
; Adopto smax

Adopto estribos Ø6 de 2 ramas c/ 12 cm.

Detalle de Armado

Viga V231

> Predimensionado

$$h = \frac{l}{12} = \frac{215 \ cm}{12} = 0.18 \ m$$

Adopto h= 25 cm

> Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.25 m = 1.25 kN/m$$

$$D = R_{L214D} = 4.2 \frac{kN}{m}$$

$$L = R_{L214L} = 0.89 \frac{kN}{m}$$

> Solicitaciones

Carga Permanente

<u>DCL</u>

<u>Mf</u>

<u>Q</u>

Sobrecarga

DCL

Mf

Q

> Dimensionamiento a Flexión

<u>Tramo</u>

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 2.43 + 1.6 * 0.51)kNm = 3.73 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{3,73 \text{ kNm}}{0.9} = 4,14 \text{kNm} = 0,00414 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 25 cm - 3 cm - 0.8 cm - 0.6 cm = 20.6 cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,206 \, m}{\sqrt{\frac{0,00414 \, MNm}{0,20 \, m}}} = 1,43$$

De tabla de Flexión 3: $k_e = 24,301 \ cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,301 \, cm^2 / MN * \frac{0,00414MNm}{0,206 \, m} = 0,49 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_y} = \frac{1.4 * 20 cm * 20.6 cm}{420 MPa} = 1.37 cm^2$$

Adopto 2Ø10 abajo ($A_s = 1,56 \text{ } cm^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 2 * 10 - 2 * 30 - 2 * 6)}{1} = 108 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 10 \ mm \\ \geq 25mm \\ > 1.33 \ T.M.N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1,2 * V_D + 1,6 * V_L = (1,2 * 4,51 + 1,6 * 0,96)kN = 6,95kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{6,95 \ kN}{0,75} = 9,27 \ kN = 0,00927 \ MN$$

$$V_c = \frac{1}{6} \sqrt{f^*_c} * b_w * d = \frac{1}{6} \sqrt{25 \ MPa} * 0,2 \ m * 0,206 \ m = 0,0343 \ MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,206 \, m}{2} = 0,103 \, m$$

$$Avmin = \frac{\sqrt{f_c}*bw*s}{16fy} = \frac{\sqrt{25MPa}*20cm*10cm}{16*420MPa} = 0,15cm^2$$

Adopto smax, Adoptando estribos Ø6 de 2 ramas (A= 0,56 cm²)

Adopto estribos Ø6 de 2 ramas c/ 10 cm.

Detalle de Armado

Viga V232

> Predimensionado

$$h = \frac{l}{12} = \frac{215 \ cm}{12} = 0.18 \ m$$

Adopto h= 25 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.25 m = 1.25 kN/m$$

$$D = R_{L214D} + R_{L215D} = (4.2 + 4.48) \frac{kN}{m} = 8.68 kN/m$$

$$L = R_{L214L} + R_{L215L} = (0.89 + 0.95) \frac{kN}{m} = 1.84 kN/m$$

> Solicitaciones

Carga Permanente

DCL

<u>Mf</u>

<u>Q</u>

Sobrecarga

DCL

Mf

Q

> <u>Dimensionamiento a Flexión</u>

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 5.02 + 1.6 * 1.06)kNm = 7.72 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{7,72 \text{ kNm}}{0.9} = 8,58 \text{ kNm} = 0,00858 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 25 cm - 3 cm - 0.8 cm - 0.6 cm = 20.6 cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,206 \, m}{\sqrt{\frac{0,00858 \, MNm}{0,20 \, m}}} = 0,99$$

De tabla de Flexión 3: $k_e = 24,766 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \frac{cm^2}{MN} * \frac{0,00858MNm}{0,206 m} = 1,03 cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 20.6 cm}{420 MPa} = 1.37 cm^2$$

Adopto 2Ø10 abajo ($A_s = 1,56 \text{ cm}^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 10 - 2 * 30 - 2 * 6)}{1} = 108 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 10 \ mm \\ \geq 25mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$S \begin{cases} \le 380 \left(\frac{280}{f_S} \right) - 2,5c_c = 380 \left(\frac{280}{280} \right) - 2,5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_S} \right) = 300 \left(\frac{280}{280} \right) = 300 \ mm \end{cases}$$

Verifica

> Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 9.33 + 1.6 * 1.98)kN = 14.36kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{14,36 \ kN}{0,75} = 19,15 \ kN = 0,01915 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.206 m = 0.0343 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,206 \, m}{2} = 0,103 \, m$$

$$Avmin = \frac{\sqrt{f^*c}*bw*s}{16fy} = \frac{\sqrt{25MPa}*20cm*10cm}{16*420MPa} = 0,15cm^2$$

Adopto smax, Adoptando estribos Ø6 de 2 ramas (A= 0,56 cm²)

Adopto estribos Ø6 de 2 ramas c/ 10 cm.

> Detalle de Armado

Viga V233

> Predimensionado

$$h = \frac{l}{12} = \frac{215 \ cm}{12} = 0.18 \ m$$

Adopto h= 25 cm

Análisis de Carga

Peso propio:

$$p_p = \gamma * b * h = 25 \frac{kN}{m^3} * 0.20 m * 0.25 m = 1.25 kN/m$$

 $D = R_{L215D} + R_{L216D} = (4.48 + 3.54) \frac{kN}{m} = 8.02 kN/m$
 $L = R_{L215L} + R_{L216L} = (0.95 + 3.75) \frac{kN}{m} = 4.7 kN/m$

> Solicitaciones

Carga Permanente

DCL

<u>Mf</u>

Q

Sobrecarga

DCL

Mf

Q

> <u>Dimensionamiento a Flexión</u>

Tramo

$$M_u = 1.2 * M_D + 1.6 * M_L = (1.2 * 4.63 + 1.6 * 2.72)kNm = 9.91 kNm$$

$$M_n = \frac{M_u}{\varphi} = \frac{9,91 \text{ kNm}}{0.9} = 11,01 \text{ kNm} = 0,01101 \text{ MNm}$$

$$d = h - c_c - \frac{1}{2}d_b - d_{est} = 25 cm - 3 cm - 0.8 cm - 0.6 cm = 20.6 cm$$

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} = \frac{0,206 \ m}{\sqrt{\frac{0,01101 \ MNm}{0,20 \ m}}} = 0,88$$

De tabla de Flexión 3: $k_e = 24,766 \text{ } cm^2/MN$

$$A_s = K_e * \frac{M_n}{d} = 24,766 \, cm^2 / MN * \frac{0,01101 \, MNm}{0,206 \, m} = 1,32 \, cm^2$$

$$A_{s,min} = \frac{1.4 * b_w * d}{f_v} = \frac{1.4 * 20 cm * 20.6 cm}{420 MPa} = 1.37 cm^2$$

Adopto 2Ø10 abajo ($A_s = 1,56 \text{ cm}^2$)

Verificación de la separación mínima de la armadura

$$s_l = \frac{b - n^{\underline{o}}_{d_b} * d_b - 2c_c - 2d_{est}}{n^{\underline{o}}_{espacios}}$$

$$s_l = \frac{(200 - 3 * 10 - 2 * 30 - 2 * 6)}{1} = 108 \, mm$$

S/ CIRSOC 201-7.6.1

$$S_{l,min} \begin{cases} \geq d_b = 10 \ mm \\ \geq 25mm \\ \geq 1,33 \ T. \ M. \ N \end{cases}$$

Verifica

S/ CIRSOC 201-10.6.4

$$s \begin{cases} \le 380 \left(\frac{280}{f_s}\right) - 2.5c_c = 380 \left(\frac{280}{280}\right) - 2.5 * 30 \ mm = 305 \ mm \\ \le 300 \left(\frac{280}{f_s}\right) = 300 \left(\frac{280}{280}\right) = 300 \ mm \end{cases}$$
 Verifica

Dimensionamiento al Corte

Tramo

$$V_u = 1.2 * V_D + 1.6 * V_L = (1.2 * 8.02 + 1.6 * 5.05)kN = 17.7kN$$

$$V_n = \frac{V_u}{\varphi} = \frac{17.7 \ kN}{0.75} = 23.6 \ kN = 0.0236 \ MN$$

$$V_c = \frac{1}{6}\sqrt{f_c} * b_w * d = \frac{1}{6}\sqrt{25 MPa} * 0.2 m * 0.206 m = 0.0343 MN$$

Vc>Vn; Del Reglamento CIROSC 201-05:

$$s_{m\acute{a}x} = \frac{d}{2} = \frac{0,206 \, m}{2} = 0,103 \, m$$

$$Avmin = \frac{\sqrt{f^*c}*bw*s}{16fy} = \frac{\sqrt{25MPa}*20cm*10cm}{16*420MPa} = 0,15cm^2$$

Adopto smax, Adoptando estribos Ø6 de 2 ramas (A= 0,56 cm²)

Adopto estribos Ø6 de 2 ramas c/ 10 cm.

> Detalle de Armado

Longitudes de anclaje de las vigas (ld)

Datos: fy= 420 MPa; f´c= 25 MPa; ψe =1(armadura sin revestir); λ =1(Hormigon de densidad normal); ψt =1; ψs =0,8(db≤16mm); adopto $(\frac{cb+ktr}{dh})$ =2,5

S/ CIRSOC 201-12.2: ANCLAJE DE LAS BARRAS SOLICITADAS A TRACCION

Para apoyos intermedios:

$$ld = \frac{9*fy*\psi t*\psi e*\psi s*\lambda}{10*\sqrt{f'c}*(\frac{cb+ktr}{db})}*db = \frac{9*420*1*1*0,8*1}{10*\sqrt{25}*2,5}*db = 24,19*db$$

Para las vigas V013-V014 | V017-V018 | V113-V114 | V117-V118 | V15-V16 con db=12mm:

$$ld = 24,19 * db = 290,3 mm = 29 cm$$

Para las vigas V01-V02/V03-V04/V05-V06/V11-V12/V13-V14 con db=16mm:

$$ld = 24,19 * db = 387,04 mm = 38,7 cm$$

Verificación:

ld≥300mm; Para las barras con db=12mm no verifica, entonces, se adopta 30 cm de longitud de anclaje para estas barras.

S/ CIRSOC 201-12.5: ANCLAJE DE LAS BARRAS TRACCIONADAS CON GANCHOS NORMALES

Para apoyos extremos:

$$ld = \frac{0.24*fy*\psi e*\lambda}{\sqrt{f'c}}*db = \frac{0.24*420*1*1}{\sqrt{25}}*db = 20.16*db$$

Para las vigas V01-V02 || V05-V06 || V013-V014 || V017-V018 || V11-V12 || V13-V14 || V113-V114 || V117-V118 || V15-V16 || V026 || V027 || V025 con db= 12 mm:

Para las vigas V03-V04 con db= 16 mm:

Id=20,16*db= 322,56 mm= 32,25 cm

Verificación:

$$\operatorname{ld} \left\{ \begin{array}{l} \geq 8*d_b = 8*12\ mm = 96\ mm \\ \geq 150mm & \underline{\text{Verifica}} \end{array} \right.$$

$$\operatorname{ld} \left\{ \begin{array}{l} \geq 8*d_b = 8*16mm = 128\,mm \\ \geq 150mm & \underline{\text{Verifica}} \end{array} \right.$$

DECALAJE (v)

Para estribos: α =90° $\longrightarrow v = 0.75 * z ; z = k_z * d$

Vigas V01-V02

Tramo

 k_z =0,929; $z = k_z * d = 0,929 * 0,456 m = 0,423m$; v = 0,75 * z = 0,75 * 0,423m = 0,32m

Apoyo

 $k_z = 0.89$; $z = k_z * d = 0.89 * 0.456 m = 0.405 m$; v = 0.75 * z = 0.75 * 0.405 m = 0.3 m

Vigas V03-V04 IDEM PARA V017-V018

Tramo

 $k_z = 0.945$; $z = k_z * d = 0.945 * 0.456 m = 0.43m$; v = 0.75 * z = 0.75 * 0.43m = 0.32m

Apoyo

 $k_z = 0.902$; $z = k_z * d = 0.902 * 0.456 m = 0.41m$; v = 0.75 * z = 0.75 * 0.41m = 0.31 m

Vigas V05-V06

Tramo

 $k_z = 0.961$; $z = k_z * d = 0.961 * 0.456 m = 0.438 m$; v = 0.75 * z = 0.75 * 0.438 m = 0.33 m

<u>Apoyo</u>

 k_z =0,929; $z = k_z * d = 0,929 * 0,456 m = 0,423m$; v = 0,75 * z = 0,75 * 0,423m = 0,32m

Vigas V013-V014

<u>Tramo</u>

 k_z =0,961; $z = k_z * d = 0,961 * 0,456 m = 0,438m$; v = 0,75 * z = 0,75 * 0,438m = 0,33m

<u>Apoyo</u>

 $k_z = 0.945$; $z = k_z * d = 0.945 * 0.456 m = 0.43m$; v = 0.75 * z = 0.75 * 0.43m = 0.32m

Vigas V11-V12 IDEM PARA V13-V14

<u>Tramo</u>

 $k_z = 0.945$; $z = k_z * d = 0.945 * 0.456 m = 0.43m$; v = 0.75 * z = 0.75 * 0.43m = 0.32m

Apoyo

 k_z =0,915; $z = k_z * d = 0,915 * 0,456 m = 0,41m$; v = 0,75 * z = 0,75 * 0,41m = 0,31 m

Vigas V113-V114

Tramo

 $k_z = 0.98$; $z = k_z * d = 0.98 * 0.456 m = 0.44m$; v = 0.75 * z = 0.75 * 0.44m = 0.33m

<u>Apoyo</u>

 k_z =0,961; $z = k_z * d = 0,961 * 0,456 m = 0,438m$; v = 0,75 * z = 0,75 * 0,438m = 0,33m

Vigas V117-V118

<u>Tramo</u>

 $k_z = 0.945$; $z = k_z * d = 0.945 * 0.456 m = 0.43m$; v = 0.75 * z = 0.75 * 0.43m = 0.32m

<u>Apoyo</u>

 k_z =0,929; $z = k_z * d = 0,929 * 0,456 m = 0,423m$; v = 0,75 * z = 0,75 * 0,423m = 0,32m

<u>Vigas V15-V16</u>

<u>Tramo</u>

 $k_z = 0.98$; $z = k_z * d = 0.98 * 0.456 m = 0.44m$; v = 0.75 * z = 0.75 * 0.44m = 0.33m

Apoyo

 $k_z = 0.945$; $z = k_z * d = 0.945 * 0.456 m = 0.43m$; v = 0.75 * z = 0.75 * 0.43m = 0.32m

Viga V026 IDEM PARA V029

 $k_z = 0.98$; $z = k_z * d = 0.98 * 0.456 m = 0.44m$; v = 0.75 * z = 0.75 * 0.44m = 0.33m

Viga V027

 $k_z = 0.945; \ z = k_z * d = 0.945 * 0.456 \ m = 0.43 \ m$; $v = 0.75 * z = 0.75 * 0.43 \ m = 0.32 \ m$

<u>Viga V025</u>

 k_z =0,961; $z = k_z * d = 0,961 * 0,456 m = 0,438 m$; v = 0,75 * z = 0,75 * 0,438 m = 0,33 m

Columnas

Columna C11 IDEM C13 | C116 | C118:

Longitud de columna: 3 m

Recubrimiento: 0,03 m

Dimensiones: 0,20 m x 0,20 m

Análisis de Carga

Peso propio:

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0,20 m)^2 * 3 m = 3 kN$$

$$D = R_{V11D} + R_{V113D} + p_p = (32,2+5+3) kN = 40,5 kN$$

$$L = R_{V11L} + R_{V113L} = (18,4+1,2)kN = 19,6 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 40,5+1,6 * 19,6)kN = 79,96 kN$$

En eje x:

Columna Superior

$$C_{s} = 0$$

$$C_{i} = \frac{L_{v} * I_{ci}}{L_{ci} * I_{v}} = \frac{5,4m * (20cm)^{4}}{3m * 20cm * (50cm)^{3}} = 0,12$$

$$q_{u} = 1,2 * q_{V11D} + 1,6 * q_{V11L} = (1,2 * 15,91 + 1,6 * 9,08)kN/m = q_{u} = 33,62 kN/m$$

$$M_{e} = \frac{q * l^{2}}{12} = \frac{33,62 * 5,40^{2}}{12} = 81,70 kNm$$

$$M_{3} = M_{e} * \frac{c_{s} + c_{i}}{1 + c_{s} + c_{i}} = 81,70 * \frac{0,12}{1,12} = 4,18 kNM$$

$$M_{i} = 0$$

$$M_{s} = M_{3} * \frac{c_{i}}{c_{s} + c_{i}} = 4,18kNm * \frac{0,33}{0.33} = 8,75 kNm$$

Columna Inferior

$$C_{i} = \frac{L_{v} * I_{ci}}{L_{ci} * I_{v}} = \frac{5,4m * (30cm)^{4}}{3,5m * 20cm * (50cm)^{3}} = 0,5$$

$$C_{s} = \frac{L_{v} * I_{cs}}{L_{cs} * I_{v}} = \frac{5,4m * (20cm)^{4}}{3m * 20cm * (50cm)^{3}} = 0,12$$

$$q_u = 1,2 * q_{V01D} + 1,6 * q_{V01L} = (1,2 * 22,22 + 1,6 * 9,08)kN/m = q_u = 41,19 kN/m$$

$$M_e = \frac{q * l^2}{12} = \frac{41,19 * 5,4^2}{12} = 100,09 kNm$$

$$M_3 = M_e * \frac{c_s + c_i}{1 + c_s + c_i} = 100,09 * \frac{0,12 + 0,5}{1 + 0,12 + 0,5} = 38,62 kNM$$

$$M_i = M_3 * \frac{c_s}{c_s + c_i} = 38,62 kNm * \frac{0,12}{0,12 + 0,5} = 7,47 kNm$$

$$M_s = M_3 * \frac{c_i}{c_s + c_i} = 38,62 kNm * \frac{0,5}{0,12 + 0,5} = 31,15 kNm$$

En eje y:

Columna Superior

$$C_s = 0$$

$$C_i = \frac{L_v * I_{ci}}{L_{ci} * I_v} = \frac{3,37m * (20cm)^4}{3 * 20cm * (30cm)^3} = 0,33$$

$$q_u = 1.2 * q_{V113D} + 1.6 * q_{V113L} = (1.2 * 4.03 + 1.6 * 0.98)kN/m =$$

$$q_u = 6.4 \ kN/m$$

$$M_e = \frac{q * l^2}{12} = \frac{17,81 * 3,37^2}{12} = 6,06 \text{ kNm}$$

$$M_3 = M_e * \frac{c_s + c_i}{1 + c_s + c_i} = 6,06 * \frac{0,33}{1,33} = 1,5 \text{ kNM}$$

$$M_i = 0$$

$$M_s = M_3 * \frac{c_i}{c_s + c_i} = 1,5kNm * \frac{0,33}{0,33} = 1,5kNm$$

Columna Inferior

$$C_i = \frac{L_v * I_{ci}}{L_{ci} * I_v} = \frac{3,37m * (30cm)^4}{3,5 * 20cm * (30cm)^3} = 1,44$$

$$C_S = \frac{L_v * I_{cS}}{L_{cS} * I_v} = \frac{3,37m * (20cm)^4}{3 * 20cm * (30cm)^3} = 0,33$$

$$q_u = 1.2 * q_{V013D} + 1.6 * q_{V013L} = (1.2 * 10.33 + 1.6 * 0.98)kN/m =$$

$$q_u = 13,96 \, kN/m$$

$$M_e = \frac{q * l^2}{12} = \frac{13,96 * 3,37^2}{12} = 13,21 \text{ kNm}$$

$$M_3 = M_e * \frac{c_s + c_i}{1 + c_s + c_i} = 13,21 * \frac{0,33 + 1,44}{1 + 0,33 + 1,44} = 8,44 \text{ kNM}$$

$$M_i = M_3 * \frac{c_s}{c_s + c_i} = 8,44 \text{ kNm} * \frac{0,33}{0,33 + 1,44} = 1,57 \text{ kNm}$$

$$M_s = M_3 * \frac{c_i}{c_s + c_i} = 8,44 \text{ kNm} * \frac{1,44}{0,33 + 1,44} = 6,87 \text{ kNm}$$

> Determinación del Grado de Esbeltez

$$\Psi_A = \frac{\frac{0.7 * 20^4}{12 * 300}}{\frac{0.35 * 20 * 30^3}{12 * 337} + \frac{0.35 * 20 * 50^3}{12 * 540}} = 0.17$$

$$\Psi_B = \frac{\frac{0.7 * 20^4}{12 * 300} + \frac{0.7 * 30^4}{12 * 350}}{\frac{0.35 * 20 * 30^3}{12 * 337} + \frac{0.35 * 20 * 50^3}{12 * 540}} = 0.91$$

S/ Nomograma k= 0,74

S/ CIRSOC 201-10.12.2:

$$\lambda = \frac{k * l_u}{r} \le \lambda_{lim} = 34 - 12 * \frac{M_1}{M_2}$$

$$M_1 = 1.5 \ kNm$$

$$M_2 = 1,57 \ kNm$$

$$r_x = r_y = \frac{b}{\sqrt{12}} = \frac{20 \text{ cm}}{\sqrt{12}} = 5,77 \text{ cm}$$

Para eje x:

$$l_u = 3m - 0.5 m = 2.5 m = 250 cm$$

$$\lambda = \frac{0.74 * 250}{5.77} = 32,06 \le 40$$

Columna Corta

Para eje y:

$$l_y = 3m - 0.3 m = 2.7 m = 270 cm$$

$$\lambda = \frac{0.74 * 270}{5.77} = 34.63 \le 40 \qquad \therefore$$

Columna Corta

> Determinación de la Armadura Longitudinal

$$n = \frac{P_u}{h * h} = \frac{0.07996 \, MN}{0.20 \, m * 0.20 \, m} = 2 \, MPa$$

$$m = \frac{M_u}{b * h^2} = \frac{0,00157 \ MNm}{0,20m * (0,20m)^2} = 0,2 \ MPa$$

S/ Diagrama II.8: $\rho = 0.01$

$$A_s = 0.01A_q = 0.01 * (20cm)^2 = 4 cm^2$$

Se adopta armadura mínima: 4 Ø12 $(A_s = 4,52 cm^2)$

Determinación de Estribos

S/ CIRSOC 201-7.10.5.1:

Para
$$d_b = 12 mm$$
 \rightarrow $d_{be} = 6 mm$

$$S \begin{cases} \leq 12d_b = 144 \ mm \\ \leq 48d_{be} = 288 \ mm \\ \leq b = 200 \ mm \end{cases}$$

Se adoptan estribos Ø6 c/ 14 cm.

Detalle de Armado

Columna C01 IDEM C03 | C016 | C018:

Longitud de columna: 3,5 m

Recubrimiento: 0,03 m

Dimensiones: 0,30 m x 0,30 m

Análisis de Carga

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0,30 m)^2 * 3,5 m = 7,88 kN$$

$$D = R_{C11D} + R_{V01D} + R_{V013} + p_p = (40,5 + 45 + 12,9 + 7,88) kN =$$

$$D = 106,28 kN$$

$$L = R_{C11L} + R_{V01L} + R_{V013L} = (19,6 + 18,4 + 1,2)kN = 39,2 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 106,28 + 1,6 * 39,2)kN = 190,26 kN$$

> Determinación del Grado de Esbeltez

$$\Psi_A = \frac{\frac{0.7 * 20^4}{12 * 300} + \frac{0.7 * 30^4}{12 * 350}}{\frac{0.35 * 20 * 30^3}{12 * 337} + \frac{0.35 * 20 * 50^3}{12 * 540}} = 0.91$$

$$\Psi_{R} = \infty$$

S/ Nomograma k= 0,97

S/ CIRSOC 201-10.12.2:

$$\lambda = \frac{k * l_u}{r} \le \lambda_{lim} = 34 - 12 * \frac{M_1}{M_2}$$

$$M_1 = 0$$

$$M_2 = 31,15$$

$$r_x = r_y = \frac{b}{\sqrt{12}} = \frac{30 \text{ cm}}{\sqrt{12}} = 8,66 \text{ cm}$$

Para eje x:

$$l_u = 3.5m - \frac{0.5 m}{2} = 3.25 m = 325 cm$$

$$\lambda = \frac{0.97 * 325}{8.66} = 36.4 > 34$$

∴ Columna Esbelta

Para eje y:

$$l_u = 3.5m - \frac{0.3 m}{2} = 3.35 m = 335 cm$$

$$\lambda = \frac{0.97 * 335}{8.66} = 37.52 > 34 \qquad \therefore \qquad Columna Esbelta$$

$$\lambda = 37,52 < 100$$

Es posible utilizar el método de los Momentos Amplificados

Momento Amplificado

$$\beta_d = \frac{1,2P_D}{1,2P_D + 1,6P_L} = \frac{1,2 * 106,28 \ kN}{190,26 \ kN} = 0,67$$

$$0.4E_cI_a = 0.4 * 23500MPa * 6,75 * 10^{-4}m^4$$

$$EI = \frac{0.4E_cI_g}{1 + \beta_d} = \frac{0.4 * 23500MPa * 6.75 * 10^{-4}m^4}{1 + 0.67} = 3.8 MNm^2$$

$$P_{c} = \frac{\pi^{2}EI}{(k*l_{u})^{2}} = \frac{\pi^{2}*3.8 MNm^{2}}{(0.97*3.35 m)^{2}} = 3.55 MN$$

$$C_{m} = 0.6 + 0.4* \frac{M_{1}}{M_{2}} = 0.6$$

$$\delta_{ns} = \frac{C_{m}}{1 - \frac{P_{u}}{0.75 P}} = \frac{0.6}{1 - \frac{0.19026 MN}{0.75*3.55 MN}} = 0.65$$

$$\delta_{ns} = 1$$

$$M_{2,min} = P_u(0.015 + 0.03h) = 190.26 * (0.015 + 0.03 * 0.30) = 4.57 \text{ kNm}$$

 $M_c = \delta_{ns} * M_2 = 1 * 31.15 \text{ kNm} = 31.15 \text{ kNm}$

> Determinación de la Armadura Longitudinal

$$n = \frac{P_u}{b * h} = \frac{0,19026 \, MN}{0,30 \, m * 0,30 \, m} = 2,11 \, MPa$$
$$m = \frac{M_u}{b * h^2} = \frac{0,03115 \, MNm}{0.30m * (0.30m)^2} = 1,15$$

S/ Diagrama II.8:
$$\rho = 0.01$$

$$A_s = 0.01A_a = 0.01 * (30cm)^2 = 9 cm^2$$

Se adopta armadura: 8 Ø12 $(A_s = 9.05 cm^2)$

> Determinación de Estribos

S/ CIRSOC 201-7.10.5.1:

Para
$$d_b = 12 mm$$
 \rightarrow $d_{be} = 6 mm$

$$s \begin{cases} \le 12d_b = 144 \ mm \\ \le 48d_{be} = 288 \ mm \\ \le b = 300 \ mm \end{cases}$$

Se adoptan estribos Ø6 c/ 14 cm.

> Detalle de Armado

Columna C12 IDEM C117:

Longitud de columna: 3 m

Recubrimiento: 0,03 m

Dimensiones: $0,20 \text{ m} \times 0,20 \text{ m}$

Análisis de Carga

$$p_p = \chi * b^2 * h = 25 \frac{kN}{m^3} * (0,20 m)^2 * 3 m = 3 kN$$

$$D = R_{V11-V12D} + R_{V117D} + p_p = (107,4 + 12,5 + 3) kN = 122,9 kN$$

$$L = R_{V11-V12L} + R_{V117L} = (61,2 + 4,2)kN = 65,4 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 122,9 + 1,6 * 65,4)kN = 252,12 kN$$

En eje y:

Columna Superior

$$C_{s} = 0$$

$$C_{i} = \frac{L_{v} * I_{ci}}{L_{ci} * I_{v}} = \frac{3,37m * (20cm)^{4}}{3 * 20cm * (30cm)^{3}} = 0,33$$

$$q_{u} = 1,2 * q_{V117D} + 1,6 * q_{V117L} = (1,2 * 10,28 + 1,6 * 3,42)kN/m = q_{u} = 17,81 kN/m$$

$$M_{e} = \frac{q * l^{2}}{12} = \frac{17,81 * 3,37^{2}}{12} = 16,85 kNm$$

$$M_{3} = M_{e} * \frac{c_{s} + c_{i}}{1 + c_{s} + c_{i}} = 16,85 * \frac{0,33}{1,33} = 4,18 kNM$$

$$M_{i} = 0$$

$$M_{s} = M_{3} * \frac{c_{i}}{c_{s} + c_{i}} = 4,18kNm * \frac{0,33}{0.33} = 4,18 kNm$$

Columna Inferior

$$C_{i} = \frac{L_{v} * I_{ci}}{L_{ci} * I_{v}} = \frac{3,37m * (30cm)^{4}}{3,5 * 20cm * (30cm)^{3}} = 1,44$$

$$C_{s} = \frac{L_{v} * I_{cs}}{L_{cs} * I_{v}} = \frac{3,37m * (20cm)^{4}}{3 * 20cm * (30cm)^{3}} = 0,33$$

$$q_{u} = 1,2 * q_{V017D} + 1,6 * q_{V017L} = (1,2 * 16,58 + 1,6 * 3,42)kN/m = q_{u} = 25,37 kN/m$$

$$M_{e} = \frac{q * l^{2}}{12} = \frac{25,37 * 3,37^{2}}{12} = 24,01 kNm$$

$$M_{3} = M_{e} * \frac{c_{s} + c_{i}}{1 + c_{s} + c_{i}} = 24,01 * \frac{0,33 + 1,44}{1 + 0,33 + 1,44} = 15,34 kNM$$

$$M_{i} = M_{3} * \frac{c_{s}}{c_{s} + c_{i}} = 15,34 kNm * \frac{0,33}{0,33 + 1,44} = 2,86 kNm$$

 $M_s = M_3 * \frac{c_i}{c_s + c_i} = 15,34 \, kNm * \frac{1,44}{0.33 + 1.44} = 12,48 \, kNm$

> Determinación del Grado de Esbeltez

$$\Psi_A = \frac{\frac{0.7 * 20^4}{12 * 300}}{\frac{0.35 * 20 * 30^3}{12 * 337} + \frac{2 * 0.35 * 20 * 50^3}{12 * 540}} = 0.01$$

$$\Psi_B = \frac{\frac{0.7 * 20^4}{12 * 300} + \frac{0.7 * 30^4}{12 * 350}}{\frac{0.35 * 20 * 30^3}{12 * 337} + \frac{2 * 0.35 * 20 * 50^3}{12 * 540}} = 0.52$$

S/ Nomograma k= 0,59

S/ CIRSOC 201-10.12.2:

$$\lambda = \frac{k * l_u}{r} \le \lambda_{lim} = 34 - 12 * \frac{M_1}{M_2}$$

$$M_1 = 2,86$$

$$M_2 = 4.18 \, kNm$$

$$r_x = r_y = \frac{b}{\sqrt{12}} = \frac{20 \text{ cm}}{\sqrt{12}} = 5,77 \text{ cm}$$

Para eje x:

$$l_u = 3m - 0.5 m = 2.5 m = 250 cm$$

$$\lambda = \frac{0,59 * 250}{5.77} = 25,56 \le 40$$

∴ Columna Corta

Para eje y:

$$l_y = 3m - 0.3 m = 2.7 m = 270 cm$$

$$\lambda = \frac{0,59 * 270}{5,77} = 27,61 \le 40 \qquad \therefore$$

Columna Corta

> Determinación de la Armadura Longitudinal

$$n = \frac{P_u}{b*h} = \frac{0.25212 \, MN}{0.20 \, m*0.20 \, m} = 6.3 \, MPa$$

$$m = \frac{M_u}{b * h^2} = \frac{0,00418 \, MNm}{0,20m * (0,20m)^2} = 0,52 \, MPa$$

S/ Diagrama II.8: $\rho = 0.01$

$$A_s = 0.01A_g = 0.01 * (20cm)^2 = 4 cm^2$$

Se adopta armadura mínima: 4 Ø12 $(A_s = 4,52 cm^2)$

Determinación de Estribos

S/ CIRSOC 201-7.10.5.1:

Para
$$d_b = 12 mm$$
 \rightarrow $d_{be} = 6 mm$

$$S \begin{cases} \leq 12d_b = 144 \ mm \\ \leq 48d_{be} = 288 \ mm \\ \leq b = 200 \ mm \end{cases}$$

Se adoptan estribos Ø6 c/ 14 cm.

Detalle de Armado

Columna C02 IDEM C017:

Longitud de columna: 3,5 m

Recubrimiento: 0,03 m

Dimensiones: 0,30 m x 0,30 m

Análisis de Carga

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0,30 m)^2 * 3,5 m = 7,88 kN$$

$$D = R_{C12D} + R_{V01-V02D} + R_{V017} + p_p = (122,9 + 150 + 20,5 + 7,88) kN = D = 301,28 kN$$

$$L = R_{C12L} + R_{V01-V02L} + R_{V017L} = (65,4 + 61,2 + 4,2)kN = 130,8 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 301,28 + 1,6 * 130,8)kN = 570,82 kN$$

> Determinación del Grado de Esbeltez

$$\Psi_A = \frac{\frac{0.7 * 20^4}{12 * 300} + \frac{0.7 * 30^4}{12 * 350}}{\frac{0.35 * 20 * 30^3}{12 * 337} + \frac{2 * 0.35 * 20 * 50^3}{12 * 540}} = 0.52$$

$$\Psi_R = \infty$$

S/ Nomograma k= 0,82

S/ CIRSOC 201-10.12.2:

$$\lambda = \frac{k * l_u}{r} \le \lambda_{lim} = 34 - 12 * \frac{M_1}{M_2}$$

$$M_1 = 0$$

$$M_2 = 12,48$$

$$r_x = r_y = \frac{b}{\sqrt{12}} = \frac{30 \text{ cm}}{\sqrt{12}} = 8,66 \text{ cm}$$

Para eje x:

$$l_u = 3.5m - \frac{0.5 m}{2} = 3.25 m = 325 cm$$

$$\lambda = \frac{0.82 * 325}{8.66} = 30.77 < 34$$

Columna Corta

Para eje y:

$$l_u = 3.5m - \frac{0.3 m}{2} = 3.35 m = 335 cm$$

$$\lambda = \frac{0,82 * 335}{8.66} = 31,72 < 34$$

Columna Corta

> Determinación de la Armadura Longitudinal

$$n = \frac{P_u}{b*h} = \frac{0,57082 \, MN}{0,30 \, m*0,30 \, m} = 6,34 \, MPa$$

$$m = \frac{M_u}{h * h^2} = \frac{0.01248 \, MNm}{0.30m * (0.30m)^2} = 0.46$$

S/ Diagrama II.8:
$$\rho = 0.01$$

$$A_s = 0.01 A_g = 0.01 * (30 cm)^2 = 9 cm^2$$

Se adopta armadura: 8 Ø12 $(A_s = 9.05 cm^2)$

> Determinación de Estribos

S/ CIRSOC 201-7.10.5.1:

Para
$$d_b = 12 mm$$
 \rightarrow $d_{be} = 6 mm$

$$s \begin{cases} \leq 12d_b = 144 \ mm \\ \leq 48d_{be} = 288 \ mm \\ \leq b = 300 \ mm \end{cases}$$

Se adoptan estribos Ø6 c/ 14 cm.

Detalle de Armado

Columna C15 IDEM C114:

Longitud de columna: 3 m

Recubrimiento: 0,03 m

Dimensiones: 0,20 m x 0,20 m

Análisis de Carga

Peso propio:

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0,20 m)^2 * 3 m = 3 kN$$

$$D = R_{V13-V14D} + R_{V117-V118D} + p_p = (113,4 + 48,4 + 3) kN = 164,8 kN$$

$$L = R_{V13-V14L} + R_{V117-V118L} = (37,26 + 16,3)kN = 53,56 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 164,8 + 1,6 * 53,56)kN = 283,46 kN$$

> Determinación del Grado de Esbeltez

$$\Psi_{A} = \frac{\frac{0.7 * 20^{4}}{12 * 300}}{\frac{2 * 0.35 * 20 * 30^{3}}{12 * 337} + \frac{2 * 0.35 * 20 * 50^{3}}{12 * 540}} = 0,0856$$

$$\Psi_{B} = \frac{\frac{0.7 * 20^{4}}{12 * 300} + \frac{0.7 * 30^{4}}{12 * 350}}{\frac{2 * 0.35 * 20 * 30^{3}}{12 * 327} + \frac{2 * 0.35 * 20 * 50^{3}}{12 * 540}} = 0,46$$

S/ Nomograma k= 0,6

S/ CIRSOC 201-10.12.2:

$$\lambda = \frac{k * l_u}{r} \le \lambda_{lim} = 34 - 12 * \frac{M_1}{M_2}$$

$$M_1 = M_2 = 0$$

$$r_x = r_y = \frac{b}{\sqrt{12}} = \frac{20 \text{ cm}}{\sqrt{12}} = 5,77 \text{ cm}$$

Para eje x:

$$l_u = 3m - 0.5 m = 2.5 m = 250 cm$$

$$\lambda = \frac{0.6 * 250}{5.77} = 26 \le 34 \qquad \qquad \therefore \qquad \qquad \textit{Columna Corta}$$

Para eje y:

$$l_u = 3m - 0.3 m = 2.7 m = 270 cm$$

$$\lambda = \frac{0.6 * 270}{5.77} = 28.08 \le 34 \qquad \qquad \therefore \qquad \qquad \textit{Columna Corta}$$

> Determinación de la Armadura Longitudinal

$$n = \frac{P_u}{b*h} = \frac{0,28346 \, MN}{0.20 \, m*0.20 \, m} = 7,09 \, MPa$$

$$m = 0$$

S/ Diagrama II.8:
$$\rho = 0.01$$

$$A_s = 0.01A_g = 0.01 * (20cm)^2 = 4 cm^2$$

Se adopta armadura mínima: 4 Ø12 $(A_s = 4,52 cm^2)$

> Determinación de Estribos

S/ CIRSOC 201-7.10.5.1:

Para
$$d_b = 12 mm$$
 \rightarrow $d_{be} = 6 mm$

$$s \begin{cases} \leq 12d_b = 144 \ mm \\ \leq 48d_{be} = 288 \ mm \\ \leq b = 200 \ mm \end{cases}$$

Se adoptan estribos Ø6 c/ 14 cm.

Detalle de Armado

Columna C05 IDEM C014:

Longitud de columna: 3,5 m

Recubrimiento: 0,03 m

Dimensiones: 0,30 m x 0,30 m

Análisis de Carga

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0.30 \text{ m})^2 * 3.5 \text{ m} = 7.88 \text{ kN}$$

$$D = R_{C15D} + R_{V03-V04D} + R_{V017-V018D} + p_p =$$

$$D = (164.8 + 155.84 + 75.1 + 7.88) kN =$$

$$D = 403,62 \, kN$$

$$L = R_{C15L} + R_{V13-V14L} + R_{V117-V118L} = (53,56 + 37,26 + 16,3)kN = 107,12 \ kN$$

$$P_u = 1.2 * P_D + 1.6 * P_L = (1.2 * 403.62 + 1.6 * 107.12)kN = 655.74 kN$$

> Determinación del Grado de Esbeltez

$$\Psi_A = \frac{\frac{0.7 * 20^4}{12 * 300} + \frac{0.7 * 30^4}{12 * 350}}{\frac{2 * 0.35 * 20 * 30^3}{12 * 337} + \frac{2 * 0.35 * 20 * 50^3}{12 * 540}} = 0.46$$

$$\Psi_B = \infty$$

S/ Nomograma k= 0,81

S/ CIRSOC 201-10.12.2:

$$\lambda = \frac{k * l_u}{r} \le \lambda_{lim} = 34 - 12 * \frac{M_1}{M_2}$$

$$M_1 = M_2 = 0$$

$$r_x = r_y = \frac{b}{\sqrt{12}} = \frac{30 \text{ cm}}{\sqrt{12}} = 8,66 \text{ cm}$$

Para eje x:

$$l_u = 3.5m - \frac{0.5 m}{2} = 3.25 m = 325 cm$$

$$\lambda = \frac{0.81 * 325}{8.66} = 30.40 < 34$$

Columna Corta

Para eje y:

$$l_u = 3.5m - \frac{0.3 \ m}{2} = 3.35 \ m = 335 \ cm$$

$$\lambda = \frac{0.81 * 335}{8.66} = 31.33 < 34$$

Columna Corta

> Determinación de la Armadura Longitudinal

$$n = \frac{P_u}{b*h} = \frac{0.65574 \, MN}{0.30 \, m*0.30 \, m} = 7.3 \, MPa$$

$$m = \frac{M_u}{b * h^2} = 0$$

S/ Diagrama II.8: $\rho = 0.01$

$$A_s = 0.01A_g = 0.01 * (30cm)^2 = 9 cm^2$$

Se adopta armadura mínima: 8Ø12 $(A_s = 9,05 cm^2)$

> Determinación de Estribos

S/ CIRSOC 201-7.10.5.1:

Para
$$d_b = 12 mm$$
 \rightarrow $d_{be} = 6 mm$

$$s \begin{cases} \leq 12d_b = 144 \ mm \\ \leq 48d_{be} = 288 \ mm \\ \leq b = 300 \ mm \end{cases}$$

Se adoptan estribos Ø6 c/ 14 cm.

> Detalle de Armado

Columna C14 IDEM C16 | C113 | C115:

Longitud de columna: 3 m

Recubrimiento: 0,03 m

Dimensiones: 0,20 m x 0,20 m

Análisis de Carga

Peso propio:

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0,20 m)^2 * 3 m = 3 kN$$

$$D = R_{V13D} + R_{V113-V114D} + p_p = (34 + 18,5 + 3) kN = 55,5 kN$$

$$L = R_{V13L} + R_{V113-V114L} = (4,7 + 11,2)kN = 15,9 kN$$

$$P_U = 1,2 * P_D + 1,6 * P_L = (1,2 * 55,5 + 1,6 * 15,9)kN = 92,04 kN$$

Columna C04 IDEM C06 | C013 | C015:

Longitud de columna: 3,5 m

Recubrimiento: 0,03 m

Dimensiones: 0,30 m x 0,30 m

> Análisis de Carga

$$p_p = \chi * b^2 * h = 25 \frac{kN}{m^3} * (0,30 m)^2 * 3,5 m = 7,88 kN$$

$$D = R_{C14D} + R_{V03D} + R_{V013-V014D} + p_p = (55,5 + 46,8 + 45,1 + 7,88) kN = 0$$

$$D = 155,28 kN$$

$$L = R_{C14L} + R_{V03L} + R_{V013-V014L} = (15,9 + 11,2 + 4,7)kN = 31,8 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 155,28 + 1,6 * 31,8)kN = 237,22 kN$$

Columna C17 IDEM C19 | C110 | C112:

Longitud de columna: 3 m

Recubrimiento: 0,03 m

Dimensiones: 0,20 m x 0,20 m

Análisis de Carga

Peso propio:

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0,20 m)^2 * 3 m = 3 kN$$

$$D = R_{V15D} + R_{V114D} + p_p = (16,6 + 6,1 + 3) kN = 25,7 kN$$

$$L = R_{V15L} + R_{V114L} = (4,2 + 1,6)kN = 5,8 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 25,7 + 1,6 * 5,8)kN = 40,12 kN$$

Columna C07 IDEM C09 | C010 | C012:

Longitud de columna: 3,5 m

Recubrimiento: 0.03 m

Dimensiones: 0,30 m x 0,30 m

> Análisis de Carga

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0,30 m)^2 * 3,5 m = 7,88 kN$$

$$D = R_{C17D} + R_{V05D} + R_{V014D} + p_p = (25,7 + 29,3 + 14,1 + 7,88) kN = 0 = 76,98 kN$$

$$L = R_{C17L} + R_{V05L} + R_{V014L} = (5,8 + 4,2 + 1,6)kN = 11,6 kN$$

$$P_u = 1,2 * P_D + 1,6 * P_L = (1,2 * 76,98 + 1,6 * 11,6)kN = 110,94 kN$$

Columna C18 IDEM C111:

Longitud de columna: 3 m

Recubrimiento: 0,03 m

Dimensiones: 0,20 m x 0,20 m

Análisis de Carga

Peso propio:

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0.20 m)^2 * 3 m = 3 kN$$

$$D = R_{V15-V16D} + R_{V118D} + p_p = (76 + 16.5 + 3) kN = 95.5 kN$$

$$L = R_{V15-V16L} + R_{V118L} = (20.5 + 5.6)kN = 26.1 kN$$

$$P_{\nu} = 1.2 * P_D + 1.6 * P_L = (1.2 * 95.5 + 1.6 * 26.1)kN = 156.36 kN$$

Columna C08 IDEM C011:

Longitud de columna: 3,5 m

Recubrimiento: 0,03 m

Dimensiones: 0,30 m x 0,30 m

Análisis de Carga

$$p_p = \gamma * b^2 * h = 25 \frac{kN}{m^3} * (0.30 \text{ m})^2 * 3.5 \text{ m} = 7.88 \text{ kN}$$

$$D = R_{C18D} + R_{V05-V06D} + R_{V018D} + p_p = (95.5 + 118.6 + 24.5 + 7.88) kN =$$

$$D=246,\!48\,kN$$

$$L = R_{C18L} + R_{V05-V06L} + R_{V018L} = (26.1 + 20.5 + 5.6)kN = 52.2 kN$$

$$P_u = 1.2 * P_D + 1.6 * P_L = (1.2 * 246.48 + 1.6 * 52.2)kN = 379.3 kN$$

Zapatas

Zapata de esquina (C01)

Datos:

> Resolución

Propongo Lx=Ly

$$6adm=Rt/(LxLy)=Rt/Lx^2 → Lx=\sqrt{\frac{Rt}{σ∂dm}}=1.17m Adopto Lx=Ly=1.2m$$

$$qu = Rtu/(Lx.Ly) = 132,15 KN/m2$$

$$bx=by=cx + 0.025m = 0,325m$$

$$kx = Lx - cx = 0.9m = ky$$

Verificaciones

a) Verificación al Punzonado:

Pu – qu.Ao
$$\leq$$
 0.75 Y Fmín bo d $\sqrt{f'c}$ / 12 $\beta = \frac{CX}{CY} = 1 \leq 2$ F1=4

$$\beta = \frac{CX}{CY} = 1 \le 2 \quad \text{F1=4}$$

$$F2 = \alpha s.d/bo+2$$

$$Mux=qu.Lx.ky^2/2 = 64.2KNm$$

$$d=dy=dx = \sqrt{\frac{6.5Mnx}{byf'c}} = 0.24m$$

$$Mnx=Mux/\phi = 71.3KNm$$

Ao=
$$(Cx+d/2)$$
 . $(Cy+d/2) = 0.17m2$

Ao=
$$(Cx+d/2)$$
. $(Cy+d/2) = 0.17m2$ bo= $(Cx+d/2) + (Cy+d/2) = 0.84m$

$$:: Pu - qu.Ao = 167.8 KN$$

$$F2 = \alpha s.d/bo+2 = 7.39$$

Fmín=F1=4

0.75 Y F bo d
$$\sqrt{f'c}$$
 / 12 = 133.5 KN \rightarrow

NO VERIFICA

Aumento d \rightarrow d= 0.35m

.:
$$Ao = 0.23 \text{ m2}$$
 $bo = 0.95 \text{ m}$

Pu- qu. Ao= 159.9 KN

0.75 Y F bo d
$$\sqrt{f'c}$$
 / 12 = 207,8 KN \rightarrow

VERIFICA

b) Verificación al Corte

$$Vux \le \varphi \frac{1}{6} \sqrt{f'c} \text{ bwy.dx}$$

Vux=Vuy

bwy= bwx=
$$(5bmin(by) + 3bmax(Ly)) / 8 = 0.65m$$

$$Vux = qu.Ly. (kx - dx) = 87.2 KN$$

$$\phi \frac{1}{6} \sqrt{f'c}$$
 bwy.dx = 142.2 KN

VERIFICA

> Dimensionado a Flexión

$$Kdx = dx / \sqrt{\frac{Mnx}{by}} = 0.75$$
 \rightarrow ke =25,207

h = d + db + cc = 0.41 m = 41 cm

Asx= ke Mnx/dx =
$$5.13$$
cm2 \rightarrow Asx=Asy

Asmín =
$$\frac{2.8 \text{ } bx \text{ } dy}{fy}$$
 = 7.58 cm2 \rightarrow 7 \phi12 (7.92cm2) en ambas direcciones

Sep=
$$\frac{L-2cc-6db}{5espacios}$$
 = 17 cm \rightarrow 1 \phi12 c/16cm

> Altura de talon (ht)

ht = cc + db + db + 0.15m = 0.22m

Zapata centrada (C05)

Datos:

> Resolución

Propongo Lx=Ly

$$\text{ fadm= Rt/ (LxLy) = Rt/Lx}^2 \quad \rightarrow \qquad \text{Lx=Ly=} \sqrt{\frac{\text{Rt}}{\sigma \, \partial \, \text{dm}}} \ = 2.21 \ \text{m} \cong \ 2.25 \text{m}$$

$$qu = Rtu/(Lx.Ly) = 129,53 KN/m2$$

$$bx=by=cx + 0.05m = 0,35m$$

$$kx=ky=(Lx - cx)/2 = 0.975m$$

Verificaciones

a) Verificación al Punzonado:

Pu – qu.Ao
$$\leq$$
 0.75 Y Fmín bo d $\sqrt{f'c}$ / 12 $\beta = \frac{CX}{CY} = 1 \leq 2$ F1=4

 $Mux=qu.Ly.kx^{2}/2 = 138.5KNm$

d= dy=dx =
$$\sqrt{\frac{6.5Mnx}{byf'c}}$$
 = 0.32m \cong \rightarrow adopto d=0.40m

ny= Mnx=Mux/ ϕ = 153.9 KNm

Ao=
$$(Cx+d)$$
 . $(Cy+d) = 0.49m2$ bo= $(Cx+d) + (Cy+d) = 1.4m$

0.75 Y F bo d
$$\sqrt{f'c}$$
 / 12 = 700 KN \rightarrow **VERIFICA**

b) Verificación al Corte

$$Vux \le \Phi \frac{1}{6} \sqrt{f'c} \text{ bwy.dx}$$
 Vux=Vuy

bwy= bwx=
$$(5bmin(by) + 3bmax(Ly)) / 8 = 1.06m$$

$$Vux = qu.Ly. (kx - dx) = 167.6KN$$

$$\phi$$
 1/6 $\sqrt{(f'c)}$ bwy.dx = 265 KN \rightarrow **VERIFICA**

> <u>Dimensionado a Flexión</u>

$$Kdx = dx / \sqrt{\frac{Mnx}{by}} = 0.60 \rightarrow ke = 25,625$$

h = d + db + cc = 0,46m = 46cm

Asx= ke Mnx/dx = 9.85cm2

Asmín =
$$\frac{2,8 \text{ bx dy}}{fy}$$
 = 9.33 cm2 \rightarrow 9 \phi12 (10,18cm2) en ambas direcciones

Asx=Asy

$$Sep = \frac{L - 2cc - 9db}{8espacios} = 25.5 \text{ cm} \rightarrow 1 \text{ } \phi 12 \text{ } c/20 \text{ cm}$$

> Altura de talon (ht)

ht = cc + db + db + 0.15m = 0.22m

Zapata excéntrica Medianera (C02)

Datos:

αs=30

> Resolución

Propongo Ly= 1,6m

$$fadm=Rt/(Lx.Ly)$$
 → Lx= Rt/ (fadm.Ly) = 2,57m Adopto Lx= 2,6m

$$qu = Rtu/(Lx.Ly) = 137,2 KN/m2$$

$$bx = cx + 0.05m = 0.35m$$

$$kx=(Lx - cx)/2 = 1,15m$$

$$by=cy+0.025m = 0.325m$$

$$ky = (Ly - cy) = 0.65m$$

$$Mux=qu.Ly.kx^{2}/2 = 145.2KNm$$

$$Mnx = Mux/ \phi = 161.33KNM$$

$$Muy=qu.Lx.ky^2/2 = 75.35KNm$$

Mny= Muy/
$$\phi$$
= 83.73KNm

$$dx = \sqrt{\frac{6.5Mnx}{byf'c}} = 0.36m$$

$$d = (dx+dy)/2 = 0.32m$$

$$dy = \sqrt{\frac{6.5Mny}{bxf'c}} = 0.25m$$

$$dx = d + db/2 = 0.325m$$

$$dy=d-db/2 = 0,315m$$

Verificaciones

a) Verificación al Punzonado:

Pu – qu.Ao
$$\leq$$
 0.75 Y Fmín bo d $\sqrt{f'c}$ / 12

Ju.Ao
$$\leq 0.75$$
 Y Fmin bo d $\sqrt{f'c}$ / 12

F1=4 F2=
$$\alpha$$
s.d/bo+2 =9.74

Ao=
$$(Cx+d)$$
 . $(Cy+d/2) = 0.38m2$

$$\beta = \frac{CX}{CY} = 1 \le 2$$

bo=
$$(Cx+d) + (Cy+d/2) = 1,24m$$

0.75 Y F bo d
$$\sqrt{f'c}$$
 / 12 = 372 KN

NO VERIFICA

Adopto d= 0.45m dx= 0.455m dy=0.445m

Ao=0.56m2 bo=1.5m

Pu - qu.Ao= 494 KN

0.75 Y F bo d
$$\sqrt{f'c}$$
 / 12 = 632.8 KN

VERIFICA

b) Verificación al Corte

$$Vux \le \Phi \frac{1}{6} \sqrt{f'c}$$
 bwy.dx

$$Vuy \le \varphi \frac{1}{6} \sqrt{f'c} \text{ bwx.dy}$$

bwy=
$$(5bmin(by) + 3bmax(Ly)) / 8 = 0.8m$$

$$bwx = (5bmin(bx) + 3bmax(Lx)) / 8 = 1,20m$$

$$Vux = qu.Ly. (kx -d) = 153.66KN$$

$$Vuy = qu.Lx. (ky -d) = 71.34KN$$

Vux=
$$\phi$$
 1/6 $\sqrt{(f'c)}$ bwy.dx = 225 KN

VERIFICA

Vuy =
$$\phi$$
 1/6 $\sqrt{(f'c)}$ bwx.dy = 337.5 KN

VERIFICA

Dimensionado a Flexión

En eje x:

$$Kdx = dx / \sqrt{\frac{Mnx}{by}} = 0.64 \rightarrow ke = 25,625$$

h = d + db + cc = 0.51m = 51cm

Asx= ke Mnx/dx = 9.18cm2

Asxmín =
$$\frac{2.8 \ by \ dx}{fy}$$
 = 9.85cm2 \rightarrow adopto 9 \phi12 (10.18cm2)

Sepx =
$$\frac{Lx - 2cc - 9db}{8espacios}$$
 = 0,3 cm \rightarrow 1 \phi12 c/20cm

En eje y:

$$Kdy = dy / \sqrt{\frac{Mny}{bx}} = 0.93 \rightarrow ke = 24.766$$

Asy= ke Mny/dy = 4.67cm2

Asymín =
$$\frac{2.8 \ bx \ dy}{fy}$$
 = 10,38 cm2 \rightarrow adopto 6 \(\phi\) 16 (12.06cm2)

Sepy =
$$\frac{\text{Ly} - 2\text{cc} - 9\text{db}}{8espacios}$$
 = 28cm \rightarrow 1 \phi16c/20cm

> Altura de talon (ht)

ht = cc + db + db + 0.15m = 0.22m

> Separación máxima

$$smin \begin{cases} 2,5h \\ 25\emptyset \\ 30cm \end{cases}; smin \begin{cases} 2,5.30cm = 75cm \\ 25.0,8cm = 20cm \\ 30cm \end{cases}$$

VERIFICAN LAS 3 ZAPATAS

Longitud de Anclaje de Zapatas

$$ldh \ge \begin{cases} 8db \\ 150mm \\ - \end{cases}$$

$$Ldh = \frac{0.24\psi e \ \lambda f y}{\sqrt{f'c}} \ db$$

$$\lambda$$
= 1 fy=420Mpa f´c= 25Mpa ψe = 1

$$Ldh = 20,16 db$$

. Para zapata con doble excentricidad

$$ldh \ge \begin{cases} 8db = 9.6cm \\ 150mm \end{cases}$$

VERIFICA

Para Zapata centrada: db= 12mm | ldh = 20db = 24cm

Para Zapata con excentricidad: db=12mm - ldh = 20db = 24cm (eje x)

db = 16mm - Idh = 20db = 32cm (eje y)

Planilla Resumen de Losas H-25 **ADN 420** Solicitaciones Cargas Luz [m] $[kN/m^2]$ R(der) R(inf) R(sup) Losa Dirección R(izq) Mux Mux Muy Muy Tramo Apoyo Tramo Apoyo D D D D D Χ У -6,15 -8,83 L01 5,4 3,37 Cruzada 5,22 2 2,53 0,99 4,39 1,71 6,63 2,58 6,63 2,58 0,73 4,12 5,22 2,53 0,99 2,58 2,58 -6,15 -8,83 5,4 3,37 Cruzada 4,39 1,71 6,63 6,63 0,73 4,12 L02 2 5,4 3,37 5,22 3,21 2,14 5,58 1,23 7,67 2,94 4,43 1,7 1,52 -8,66 5,17 -11,8 L03 Cruzada 2 5,4 3,37 5,22 1,23 3,21 7,67 L04 Cruzada 2 5,58 2,14 2,94 4,43 1,7 1,52 -8,66 5,17 -11,8 5,22 L05 1,3 Derecha 5 6,79 6,5 12,04 1,78 4,72 1,78 3,51 L011 _ Derecha 2 4,2 4,2 1,78 _ -1,43 1,4 2,24 L012 2 Derecha 4,72 3,4 3,4 1,4 -1,78 4,72 4,2 4,2 L214 Derecha 1 0,89 0,89 2,88 L215 4,72 4,48 0,95 4,48 0,95 3,28 1,9 Derecha 1 4,72 3,75 3,54 3,75 L216 1,5 Derecha 5 3,54 3,85

15,58

3,86

23,61

14,29

3,47

3,53

LEsc

8,23

Derecha

Planilla Ro	H-2	5	AD	ADN 420			C _c =2,5 cm		
	h [cm]	d [cm]							
Losa			Arm	cipal	Arm. Secundaria/ de Rep.			Observaciones	
			cm² nec.	Ø	sep. [cm]	cm² nec.	Ø	sep. [cm]	
L01=L06	12	9	2,16	6	13	2,16	6	13	Se colocará
L02=L07	12	9	2,16	6	13	2,16	6	13	armadura de
L03=L08	12	9	2,16	6	13	2,16	6	13	esquina igual a la
L04=L09	12	9	2,16	6	13	2,16	6	13	del tramo
L05=L010	12	9	3,75	8	13	2,16	6	13	
Apoyo L01-L02/L06-L07	12	9	2,16	6	13	-	-	-	
Apoyo L01-L03/L06-L08	12	9	3,16	8	15	-	-	-	
Apoyo L02-L04/L07-L09	12	9	3,16	8	15	-	-	-	
Apoyo L03-L04/L08-L09	12	9	2,98	8	16,5	-	-	-	
L011	10	7	1,8	6	15	1,8	6	15	
L012=L013	10	7	1,8	6	15	1,8	6	15	
L214	10	7	1,8	6	15	1,8	6	15	
L215	10	7	1,8	6	15	1,8	6	15	
L216	10	7	1,8	6	15	1,8	6	15	
Lesc	19	16	3,98	8	12,5	3,42	8	14	

Planilla Resumen de Columnas								H-25			ADN 420			C _c =3 c∣	m	
l Columna I Iramo I	Altura [m]	Carga	s [kN]	Momentos		Dimensiones		Ast	Ast Adoptado		ado	o Estribos o				
			Servicio	Últimas Mu [kNm]	hx	hx	Ag	Nec.		d	0	d	sep.	Observaciones		
		Pc	Pu	Х	У	[cm]	[cm]	[cm ²]	[cm²]	cant.	Ø	Ast	Ø	[cm]		
C11	1º	3	60,1	79,96	-	-	20	20	400	4	4	12	4,52	6	14	IDEM C13=C116=C118
C01	P.B.	3,5	145,48	190,26	-	-	30	30	900	9	8	12	9,05	6	14	IDEM C03=C016=C018
C12	1º	3	188,3	252,12	-	-	20	20	400	4	4	12	4,52	6	14	IDEM C117
C02	P.B.	3,5	432,08	570,82			30	30	900	9	8	12	9,05	6	14	IDEM C017
C15	1º	3	218,36	283,46	-	-	20	20	400	4	4	12	4,52	6	14	IDEM C114
C05	P.B.	3,5	510,74	655,74	-	-	30	30	900	9	8	12	9,05	6	14	IDEM C014
C14	1º	3	71,4	92,04	-	-	20	20	400							IDEM C16=C113=C115
C04	P.B.	3,5	187,08	237,22	-	-	30	30	900							IDEM C06=C013=C015
C17	1º	3	31,2	40,12	-	-	20	20	400							IDEM C19=C110=C112
C07	P.B.	3,5	88,58	110,94	-	-	30	30	900							IDEM C09=C010=C012
C18	1º	3	121,6	156,36	-	-	20	20	400							IDEM C111
C08	P.B.	3,5	298,68	379,3	-	ı	30	30	900							IDEM C011