

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002

QUÍMICA

TEMA 5: EQUILIBRIO QUÍMICO

- Junio, Ejercicio 3, Opción A
- Junio, Ejercicio 6, Opción B
- Reserva 1, Ejercicio 3, Opción A
- Reserva 1, Ejercicio 5, Opción B
- Reserva 2, Ejercicio 3, Opción A
- Reserva 2, Ejercicio 5, Opción B
- Reserva 3, Ejercicio 3, Opción B
- Reserva 3, Ejercicio 6, Opción B
- Reserva 4, Ejercicio 6, Opción A
- Septiembre, Ejercicio 6, Opción A

En un matraz vacío se introducen igual número de moles de H_2 y N_2 que reaccionan según la ecuación: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Justifique si, una vez alcanzado el equilibrio, las siguientes afirmaciones son verdaderas o falsas:

- a) Hay doble número de moles de amoniaco de los que había inicialmente de N_2 .
- b) La presión parcial de nitrógeno será mayor que la presión parcial de hidrógeno.
- c) La presión total será igual a la presión de amoniaco elevada al cuadrado.
- QUÍMICA. 2002. JUNIO. EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

- a) Falso. Habrá doble número de moles de amoníaco de los que han desaparecido de hidrógeno pero no de los que inicialmente había.
- b) Verdadero. Por cada mol que se consume de nitrógeno, se consumen tres de hidrógeno. Si inicialmente se introduce igual número de moles de ambos, cuando se llegue al equilibrio habrá más moles de nitrógeno que es del que menos se gasta, y, si hay más moles de nitrógeno, su presión parcial será mayor.
- c) Falso. La presión total será la suma de las presiones parciales de los tres gases en equilibrio: amoníaco, nitrógeno e hidrógeno.

Al calentar PCl₅(g) a 250° C, en un reactor de 1 litro de capacidad, se descompone según:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

Si una vez alcanzado el equilibrio, el grado de disociación es 0'8 y la presión total es 1 atm, calcule:

- a) El número de moles de PCl₅ iniciales.
- b) La constante $K_{_{D}}$ a esa temperatura.

Dato: R = 0.082 atm $\cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

QUÍMICA. 2002. JUNIO. EJERCICIO 6. OPCIÓN B

RESOLUCIÓN

a)

El número total de moles es: $n_T = n(1-\alpha) + n\alpha + n\alpha = n(1+\alpha)$.

Aplicando la fórmula: $P \cdot V = n \cdot R \cdot T$, tenemos:

$$P \cdot V = n \cdot R \cdot T \Rightarrow 1 \cdot 1 = n \cdot (1 + 0.8) \cdot 0.082 \cdot 523 \Rightarrow n = 0.013$$

b)

$$K_{p} = \frac{\left(\frac{n\alpha}{n(1+\alpha)}P_{T}\right) \cdot \left(\frac{n\alpha}{n(1+\alpha)}P_{T}\right)}{\left(\frac{n(1-\alpha)}{n(1+\alpha)}P_{T}\right)} = \frac{\alpha^{2} \cdot P_{T}}{1-\alpha^{2}} = \frac{0'8^{2} \cdot 1}{1-0'8^{2}} = 1'77 \text{ at } \frac{1-\alpha^{2}}{1-\alpha^{2}} = \frac{0'8^{2} \cdot 1}{1-0'8^{2}} = 1'77 \text{ at } \frac{1-\alpha^{2}}{1-\alpha^{2}} = \frac{0'8^{2} \cdot 1}{1-0'8^{2}} = 1'77 \text{ at } \frac{1-\alpha^{2}}{1-\alpha^{2}} = \frac{0'8^{2} \cdot 1}{1-0'8^{2}} = 1'77 \text{ at } \frac{1-\alpha^{2}}{1-\alpha^{2}} = \frac{0'8^{2} \cdot 1}{1-0'8^{2}} = \frac{0'8^{2} \cdot 1}{1-0'8^{2$$

El nitrógeno y el hidrógeno reaccionan según la siguiente ecuación química:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H < 0$

Indique, razonadamente, qué ocurrirá cuando una vez alcanzado el equilibrio:

- a) Se añade N,
- b) Se disminuye la temperatura
- c) Se aumenta el volumen del reactor, manteniendo constante la temperatura.
- QUÍMICA. 2002. RESERVA 1. EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

El Principio de Le Chatelier dice que si en un sistema en equilibrio se modifica alguno de los factores externos (temperatura, presión o concentración), el sistema evoluciona de forma que se desplaza en el sentido que tienda a contrarrestar dicha variación. Atendiendo a él, se pueden razonar las tres cuestiones anteriores:

- a) Si se añade nitrógeno, para consumir el que se adiciona, el sistema evoluciona desplazando el equilibrio hacia la derecha, hacia la formación de amoníaco.
- b) Una disminución de la temperatura favorece el sentido exotérmico de la reacción, ya que el sistema tenderá a generar calor para contrarrestar la bajada de temperatura. Se desplaza por tanto hacia la derecha.
- c) Un aumento de volumen del reactor provoca una disminución de la presión en el interior del mismo y el sistema evoluciona aumentando dicha presión. Para ello se desplazará hacia la izquierda porque por cada 2 moles de gas que desaparecen de los productos, aparecen cuatro de reactivos. Aumenta el número de moles gaseosos y, por lo tanto, aumenta la presión.

En un recipiente de 10 L se hacen reaccionar, a 450° C, 0'75 moles de H_2 y 0'75 moles de I_2 , según la ecuación: $H_2(g) + I_2(g) \rightleftarrows 2HI(g)$

Sabiendo que a esa temperatura $K_c = 50$, calcule en el equilibrio:

- a) El número de moles de H_2 , I_2 y de HI.
- b) La presión total en el recipiente y el valor de $K_{\rm p}$.

Dato: $R = 0.082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

QUÍMICA. 2002. RESERVA 1. EJERCICIO 5. OPCIÓN B

RESOLUCIÓN

a)

$$K_{c} = \frac{\left[HI\right]^{2}}{\left[H_{2}\right] \cdot \left[I_{2}\right]} = \frac{\left(\frac{2x}{10}\right)^{2}}{\left(\frac{0'75 - x}{10}\right) \cdot \left(\frac{0'75 - x}{10}\right)} = \frac{4x^{2}}{0'5625 + x^{2} - 1'5x} = 50 \Rightarrow x = 0'585$$

moles de H_2 = moles de I_2 = 0'75 - 0'585 = 0'165

moles de HI = $2 \cdot 0'585 = 1'17$

b) Como $\Delta n = 0 \Longrightarrow K_c = K_p = 50$, y el valor de la presión se puede calcular con el número total de moles (que será el mismo que inicialmente por ser $\Delta n = 0$), con la ecuación de los gases ideales:

$$P_{T} \cdot 10 = 1'5 \cdot 0'082 \cdot 723 \Rightarrow P_{T} = 8'89 \text{ atm}$$

Sea el sistema en equilibrio: $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

Indique, razonadamente, si las siguientes afirmaciones son verdaderas o falsas:

- a) La presión total del reactor será igual a la presión parcial del CO₂.
- b) $K_{_{\mathrm{D}}}$ es igual a la presión parcial del $CO_{_{2}}$.
- c) K_p y K_c son iguales.

QUÍMICA. 2002. RESERVA 2. EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

- a) Verdadero porque el único gas existente en el reactor es el dióxido de carbono.
- b) Verdadero por la misma razón.
- c) Falso. Para que así fuese, la variación del número de moles de sustancias gaseosas tendría que ser cero, pero en este caso vale 1, por lo que $K_p = K_c \cdot (RT)^{\Delta n} = K_c \cdot RT$

En un recipiente de 1 L y a una temperatura de 800° C, se alcanza el siguiente equilibrio: $CH_4(g) \ + \ H_2O(g) \ \rightleftarrows \ CO(g) \ + \ 3H_2(g)$

Calcule:

a) Los datos que faltan en la tabla:

	[CH ₄]	$[H_2O]$	[CO]	$[H_2]$
Moles iniciales	2'00	0'50		0'73
Variación en el nº de moles al alcanzar el equilibrio		-0'40		
Nº de moles en el equilibrio			0'40	

b) La constante de equilibrio K_n .

Dato: R = 0.082 atm $\cdot L \cdot K^{-1} \cdot mol^{-1}$.

QUÍMICA. 2002. RESERVA 2. EJERCICIO 5. OPCIÓN B

RESOLUCIÓN

a) Dado que de agua se consume lo mismo que de metano, la variación de moles de metano será la misma que la de agua (-0,40) y también será esta la cantidad de moles que aparecen de monóxido y de hidrógeno, aunque de hidrógeno habrá más que de monóxido en el equilibrio, ya que había una cantidad inicial que habrá que sumársela a la que aparece. Así, la tabla quedará:

	[CH ₄]	[H ₂ O]	[CO]	$[H_2]$
Moles iniciales	2'00	0'50		0'73
Variación en el nº de moles al alcanzar el equilibrio	-0'40	-0'40		
N° de moles en el equilibrio	1'60	0'1	0'40	1'93

b)
$$K_{p} = K_{c} \cdot (RT)^{\Delta n} = \frac{0'40 \cdot 1'93^{3}}{1'60 \cdot 0'10} \cdot (0'082 \cdot 1073)^{2} = 1'39 \cdot 10^{5} \text{ at}^{2}$$

En la figura se muestra el diagrama de energía para una hipotética reacción química. Razone si son verdaderas o falsas las siguientes afirmaciones:

- a) La reacción directa es exotérmica.
- b) La energía de activación de la reacción directa es mayor que la energía de activación de la reacción inversa.
- c) La energía de la reacción química es igual a la diferencia entre las energías de activación de la reacción inversa y directa.

QUÍMICA. 2002. RESERVA 3. EJERCICIO 3. OPCIÓN B

RESOLUCIÓN

- a) Verdadero: la entalpía de los productos es inferior a la de los reactivos y se desprenderá energía en la reacción.
- b) Falso. En la figura se puede apreciar que E_{a1} (energía de activación de la reacción directa) es menor que E_{a2} (energía de activación de la reacción inversa).
- c) Falso. La energía de la reacción química es igual a la diferencia entre las energías de activación de la reacción directa e inversa, $\Delta H = E_{a1} E_{a2}$

Una muestra de 6'53 g de NH4HS se introduce en un recipiente de 4 L de capacidad, en el que previamente se ha hecho el vacío, y se descompone a 27º C según la ecuación:

$$NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$$

Una vez establecido el equilibrio la presión total en el interior del recipiente es 0'75 atm. Calcule:

- a) Las constantes de equilibrio K_c y K_n .
- b) El porcentaje de hidrógenosulfuro de amonio que se ha descompuesto.

Datos: R = 0.082 atm · L · K ⁻¹ · mol ⁻¹. Masas atómicas: H = 1, N = 14; S = 32.

QUÍMICA. 2002. RESERVA 3. EJERCICIO 6. OPCIÓN B

RESOLUCIÓN

a) Se trata de un equilibrio heterogéneo en el que los únicos gases son los que aparecen en los productos y como aparece la misma cantidad de cada uno, la presión parcial de cada uno de ellos será la mitad de la total.

$$P_{NH_3} = P_{H_2S} = \frac{0'75}{2} = 0'375$$

$$K_P = P_{NH_S} \cdot P_{H_SS} = 0'375 \cdot 0'375 = 0'14 \text{ at}^2$$

$$K_c = K_P (RT)^{-\Delta n} = \frac{0'14}{(0'082 \cdot 300)^2} = 2'31 \cdot 10^{-4} (mol/L)^2$$

b) Los moles que desaparecen de NH₄HS son los mismos que aparecen de amoníaco o de sulfuro de hidrógeno:

$$0'375 = \frac{\text{n} \cdot 0'082 \cdot 300}{4} \Rightarrow \text{n} = 0'061 \text{ moles NH}_4 \text{HS} = 3'11 \text{ g de NH}_4 \text{HS}$$

$$\frac{3'11 \text{ g}}{6'53 \text{ g muestra}} \cdot 100 = 47'6\%$$

$$\frac{3'11 \text{ g}}{6'53 \text{ g muestra}} \cdot 100 = 47'6\%$$

A 25° C el valor de la constante K_p es 0'114 para la reacción en equilibrio:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

En un recipiente de un litro de capacidad se introducen 0'05 moles de N_2O_4 a 25° C. Calcule, una vez alcanzado el equilibrio:

- a) El grado de disociación del N₂O₄.
- b) Las presiones parciales de N_2O_4 y de NO_2 .

Dato: R = 0.082 atm $\cdot L \cdot K^{-1} \cdot mol^{-1}$.

QUÍMICA. 2002. RESERVA 4. EJERCICIO 6. OPCIÓN A

RESOLUCIÓN

a)

$$\begin{array}{ccc} & N_2O_4 & \rightleftarrows & 2NO_2 \\ \text{inicial} & 0'05 & 0 \\ \text{equilibrio} & 0'05 \cdot (1-\alpha) & 2 \cdot 0'05 \cdot \alpha \end{array}$$

moles totales en el equilibrio: $0'05 \cdot (1 + \alpha)$

$$K_{p} = \frac{P_{NO_{2}}^{2}}{P_{N_{2}O_{4}}^{2}} = \frac{\left(\frac{2 \cdot 0'05 \cdot \alpha}{0'05 \cdot (1+\alpha)} P_{T}\right)^{2}}{\left(\frac{0'05 \cdot (1-\alpha)}{0'05 \cdot (1+\alpha)} P_{T}\right)} = \frac{4\alpha^{2} P_{T}}{1-\alpha^{2}} = 0'114$$

$$P_{T} = \frac{n \cdot (1+\alpha) \cdot R \cdot T}{V} = \frac{0'05 \cdot (1+\alpha) \cdot 0'082 \cdot 298}{1} = 1'222 \cdot (1+\alpha)$$

Resolviendo el sistema formado por las dos ecuaciones, nos queda:

$$\frac{4\alpha^{2}P_{T}}{1-\alpha^{2}} = 0'114$$

$$P_{T} = 1'222 \cdot (1+\alpha)$$

$$\Rightarrow \alpha = 0'142$$

b) $P_T = 1'222 \cdot (1 + \alpha) = 1'4$ at

$$P_{NO_2} = \frac{2 \cdot 0'05 \cdot \alpha}{0'05 \cdot (1+\alpha)} P_T = \frac{2 \cdot 0'05 \cdot 0'142}{0'05 \cdot (1+0'142)} \cdot 1'4 = 0'348 \text{ at}$$

$$P_{N_{2}O_{4}} = \frac{0'05 \cdot (1-\alpha)}{0'05 \cdot (1+\alpha)} P_{T} = \frac{0'05 \cdot 0'858}{0'05 \cdot (1+0'142)} \cdot 1'4 = 1'052 \text{ at}$$

Para la reacción: $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$

 $K_{_{\rm D}}=10$, a la temperatura de 815° C. Calcule, en el equilibrio:

- a) Las presiones parciales de ${\rm CO_2}\,$ y ${\rm CO}\,$ a esa temperatura, cuando la presión total en el reactor es de 2 atm.
- b) El número de moles de CO₂ y de CO, si el volumen del reactor es de 3 litros.

Dato: $R = 0.082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

OUÍMICA. 2002. SEPTIEMBRE. EJERCICIO 6. OPCIÓN A

RESOLUCIÓN

a)

$$CO_2(g) + C(s) \iff 2CO(g)$$

inicial n 0
equilibrio $n \cdot (1-\alpha)$ $2 \cdot n \cdot \alpha$

moles totales en el equilibrio: $n \cdot (1 + \alpha)$

$$K_{p} = \frac{P_{CO}^{2}}{P_{CO}_{2}} = \frac{\left(\frac{2 \cdot n \cdot \alpha}{n \cdot (1 + \alpha)} P_{T}\right)^{2}}{\left(\frac{n \cdot (1 - \alpha)}{n \cdot (1 + \alpha)} P_{T}\right)} = \frac{4\alpha^{2} P_{T}}{1 - \alpha^{2}} \Rightarrow 10 = \frac{4\alpha^{2} \cdot 2}{1 - \alpha^{2}} \Rightarrow \alpha = 0.755$$

$$P_{CO} = \frac{2 \cdot n \cdot \alpha}{n \cdot (1 + \alpha)} P_{T} = \frac{2 \cdot \alpha}{(1 + \alpha)} P_{T} = \frac{2 \cdot 0'75 \cdot 2}{1'75} = 1'71 \text{ at}$$

$$P_{CO_2} = \frac{n \cdot (1 - \alpha)}{n \cdot (1 + \alpha)} P_T = \frac{(1 - \alpha)}{(1 + \alpha)} P_T = \frac{0'25 \cdot 2}{1'75} = 0'29 \text{ at}$$

b) Aplicamos la fórmula: $P \cdot V = n \cdot R \cdot T$

moles de CO₂
$$\Rightarrow$$
 n = $\frac{P \cdot V}{R \cdot T} = \frac{0'29 \cdot 3}{0'082 \cdot 1088} = 9'75 \cdot 10^{-3}$

moles de CO
$$\Rightarrow$$
 n = $\frac{P \cdot V}{R \cdot T} = \frac{1'71 \cdot 3}{0'082 \cdot 1088} = 0'058$