Содержание

Литература (?)

Определение 1. Граф Кэли $Cayley(G,S) = (G,\{x \mapsto sx\})$, где $S \subset G$ (ориентированный граф).

Определение 2. Граф Шрейра $(G/H, \{xH \mapsto sxH\})$, где $S \subset G$ (ориентированный мультиграф).

В качестве простой конструкции нетривиальной группы рассмотрим так называемые автоматные группы. Пусть \mathbb{A} — алфавит ($\{0,1\}$). Рассматриваются конечные преобразователи на двух состояниях a,b. На каждый входной символ выдается один выходной. Мы хотим рассматривать только обратимые преобразования, поэтому можно показать, что вершины можно разметить на два класса: 1 — в вершине выдается тот же символ, что и на входе, ε — выдается противоположный. Естественным образом у такого автомата есть два преобразования: преобразовать слово, начав в вершине a или b. Автоматная группа образована этими самыми преобразованиями $G = \langle A_a, A_b \rangle$.

Можно рассматривать эти преобразования как автоморфизмы двоичного дерева. Тут удобен формализм преобразования вершины вида $\varepsilon^k(\xi,\eta)$, где $k\in\{0,1\}$, а (ξ,η) — это преобразования двух дочерних поддеревьев. Заметим также, что $\varepsilon(\xi,\eta)=(\eta,\xi)\varepsilon$. Тогда в примере автомата, прибавляющего единицу (adding machine): $a=\varepsilon(a,b),b=(b,b)$, откуда b=Id, а $\langle a\rangle=\mathbb{Z}$.

Возможные автоматные группы: $\mathbb{Z}, \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2, D_{\infty}$ — простые примеры. Нетривиальный пример: lamplighter group.