

HCC4051B/52B/53B HCF4051B/52B/53B

ANALOG MULTIPLEXERS-DEMULTIPLEXERS

4051B - SINGLE 8-CHANNEL

4052B - DIFFERENTIAL 4-CHANNEL

4053B - TRIPLE 2-CHANNEL

- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- LOW "ON" RESISTANCE : 125Ω (typ.) OVER 15V p.p. SIGNAL-INPUT RANGE FOR VDD-VEE = 15V
- HIGH "OFF" RESISTANCE: CHANNEL LEAK-AGE ± 100pA (typ.) VDD – VEE = 18V
- BINARY ADDRESS DECODING ON CHIP
- VERY LOW QUIESCENT POWER DISSIPATION UNDER ALL DIGITAL CONTROL INPUT AND SUPPLY CONDITIONS: $0.2 \mu W$ (typ.), $V_{DD} V_{SS} = V_{DD} V_{EE} = 10V$
- MATCHED SWITCH CHARACTERISTICS : $R_{ON} = 5\Omega$ (typ.) for $V_{DD} V_{EE} = 15V$
- WIDE RANGE OF DIGITAL AND ANALOG SIG-NAL LEVELS: DIGITAL 3 TO 20V, ANALOG TO 20V p.p.
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100mA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N° 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC 4051B, 4052B and 4053B (extended temperature range) and HCF4051B, 4052B and 4053B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and plastic micropackage. HCC/HCF4051B, HCC/HCF4052B, and HCC/HCF4053B analog multiplexers/demultiplexers are digitally controlled analog switches having low ON impedance and very low OFF leakage

PIN CONNECTIONS

June 1989 1/17

current. These multiplexer circuits dissipate extremely low quiescent power over the full $V_{DD}-V_{SS}$ and $V_{DD}-V_{EE}$ supply-voltage ranges, independent of the logic state of the control signals. When a-logic "1" is present at the inhibit input terminal all channel are off. The **HCC/HCF4051B** is a single 8-channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output. The **HCC/HCF4052B** is a differential 4-channel multi-

plexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs. The **HCC/HCF4053B** is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a singlepole double-throw configuration.

FUNCTIONAL DIAGRAMS AND TRUTH TABLES

4053 A or B or C Inhibit 0 0 ax or bx or cx 0 1 ay or by or cy Χ None X = Don't care. IN/QUT LOGIC LEVEL рх (2) ð (3) ô **V_AD**D (9) ALL INPUTS ARE PROTECTED BY COS/MOS PROTECTION NETWORK Q

FUNCTIONAL DIAGRAMS AND TRUTH TABLES (continued)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types	- 0.5 to + 20	V
	HCF Types	- 0.5 to + 18	V
V_{i}	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I _I	DC Input Current (any one input)	± 10	mA
P_{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for T _{op} = Full Package-temperature Range	100	mW
Top	Operating Temperature : HCC Types	- 55 to + 125	°C
,	HCF Types	- 40 to + 85	°C
T_{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C ℃

^{*} All voltage values are referred to V_{SS} pin voltage.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

	Test Conditions Value													
Symbol	Parame	tor	V _{IS}	V _{EE}	V _{SS}	V _{DD}	Т.	* OW		25 °C		T _H	Unit	
Syllibol	Faranie	itei	(V)	(V)	(V)	(V)	Min.	Max.	Min.		Max.	Min.		Ollit
IL.	Quiescent	1	(V)	()	()	5	IVIIII.	5	IVIIII.	0.04	5	IVIIII.	Max. 150	
'L		нсс				10		10		0.04	10		300	
	Device	1				15		20		0.04	20		600	
	Current	Types				20		100		0.04	100		3000	^
						5		20		0.04	20		150	μΑ
		HCF				10		40		0.04	40		300	
		Types				15		80		0.04	80		600	
SWITC	H				l	13		00		0.04	00		000	
ON	Resistance		0 ≤ V ₁			5		880	I	470	1050		1200	
011	resistance	HCC	$\leq V_{DD}$	0	0	10		310		180	400		580	
		Types	≥ v DD	0	"	15		220		125	280		400	
			0 ≤ V _I			5		880		470	1050		1200	Ω
		HCF	$\leq V_{DD}$	0	0	10		330		180	400		520	
		Types	≥ v DD		"	15		230		125	280		360	
ΔΟΝ	Resistance A					5		200		10	200		000	
1 2011	(between a			0	0	10				10				Ω
	,	ily Z			"	15				5				22
OFF (•)	channels)	1								ا				
	Any	нсс		_		40		1,00		۱. ۸ ۸	400		4000	
Channel	Channel	Types		0	0	18		100		± 0.1	100		1000	nA
Leakage	OFF	1 ypes												
Current	All													
	Channels	нсс												
	OFF			0	0	18		100		± 0.1	100		1000	nA
	(common	Types			~	'Ŭ		'00		l - 0. i	100		''''	'"'
	OUT/IN)													
	Any													
		HCF		0	0	15		300		± 0.1	300		1000	nA
	Channel	Types		U	0	15		300		± U. i	300		1000	IIA
	OFF	1,7000												
	All													
	Channels	HCF												
	OFF	Types		0	0	15		300		± 0.1	300		1000	nA
	(common	Types		_		_								
	OUT/IN)													
С	Input									5				
Capaci	Output 405	1								30				_
tance	Output 405		1	_	_	_				18				pF
lance	Output 405	3		- 5	- 5	5				9				
	Feedthroug									0.2				
CONTR	OL (Address	or Inhil	oit)											
V _{IL}	Input Low V		= V _{DD}	V _{FF} =	= V _{SS}	5		1.5			1.5		1.5	
"	•	J	Thru	R =	1ΚΩ	10		3			3		3	V
			1ΚΩ	to \		15		4			4		4	
			11125		vss 2μA	5	3.5		3.5			3.5		
V _{IH}	Input High \	/oltage		IIS <	2μΑ	10	7		7			7		.,
					all off	15	11		11			11		V
	11.00			chan	nels)									
I _{IH} , I _{IL}	Input HCC		$V_1 =$	0/18\	/	18		± 0.1		±10 ⁻³	+ 0 1		± 1	
	Leakage	Types								ļ,			ļ	
	Current	HCF	$V_{l} =$	0/15\	/	15		± 0.3		±10 ⁻³	± 0.3		± 1	μΑ
		Types											<u> </u>	
Cı	Input Capac	itance	Any Add	ress o	r Inhib	it				5	7.5			pF
'	•		Input											·
							•	•		-	•	•		

^(•) Determined by minimum feasible leakage measurement for automatic testing. (*) $T_{Low} = -55^{\circ}C$ for **HCC** device : $-40^{\circ}C$ for **HCF** device. (*) $T_{High} = +125^{\circ}C$ for **HCC** device : $+85^{\circ}C$ for **HCF** device.

DYNAMIC ELECTRICAL CHARACTERISTICS

 $(T_{amb} = 25^{\circ}C, C_L = 50pF \text{ all input square wave rise and fall time} = 20ns)$

	Test Condi					Cond	itions		Va	lue	
Parameter	V _{EE} (V)	R _L (kΩ)	f _i (kHz)	V _{IS} (V)	V _{SS} (V)	V _{DD} (V)			Тур.	Max.	Unit
SWITCH											
t _{pd} Propagation Delay Time				10 V		5			30	30	
(signal input to output)		200		1_F		10			15	60	ns
						15			11	20	
Frequency Response	= V _{SS}	1		5 (•)		10	Vo at Common	4053B	30		
Channel "ON" (sine wave							OUT/IN	4052B	25		
input)								4051B	20		MHz
at 20 Log $\frac{V_o}{V_I} = -3dB$							V _o at any Channel		60		
Feedthrough (all channels	= V _{SS}	1		5 (•)		10	Vo at Common	4053	8		
OFF)							OUT/IN	4052	10],,,,,
at 20 Log $\frac{V_o}{V_I} = -40 \text{dB}$								4051	12		MHz
VI							V _o at any Channel		8		
Frequency Signal Crosstalk							Between any 2 Ch	annels	3		
at 20 Log $\frac{V_0}{V_1} = -40 dB$	= V _{SS}	1		5 (•)		10	Between Sections	measured	6		
at 20 Log _{VI} = - 40dB							4052B only	on			MHz
								common			
								measured	10		
								on any			
							Potygon ony 2	channel	2.5		-
							Between any 2 Sections 4053B	in Pin 2 out Pin 14	2.5		l .
							only	in Pin 15	6		MHz
							o,	out Pin 14	0		
Sine Wave Distortion	= V _{SS}	10	1	2 (•)		5			0.3		
$f_{is} = 1kHz$ Sine Wave		10	1	3 (•)		10			0.2		%
		10	1	5 (•)		15			0.12		
CONTROL (Address or Inh	ibit)										
Progation Delay Time:	0				0	5			360	720	
Address-to Signal OUT	0				0	10			160	320	
Channels ON or OFF	0				0	15			120	240	ns
	- 5				0	5			225	450	
Propagation Delay Time:	0				0	5			360	720	
Inhibit to Signal OUT	0	10			0	10			160	320	
(channel turning ON)	0	10			0	15			120	240	ns
	- 10				0	5			200	400	
Propagation Delay Time :	0					5			200	450	
Inhibit to Signal OUT	0	0.3				10			90	210	,,,
(channel turning OFF)	0	0.3				15			70	160	ns
	- 10					5			130	300	
Address or Inhibit to Signal Crosstalk	0	10*			0	10	$V_C = V_{DD} - V_{SS}$ (sq wave)	uare	65		mV peak

^(●) Peak to peak voltage symmetrical about VDD-VEE

^(*) Both ends of channel.

Typical Channel ON Resistance vs. Input Signal Voltage (all types).

Typical Channel ON Resistance vs. Input Signal Voltage (all types).

Typical Channel ON Resistance vs. Input Signal Voltage (all types).

Typical Channel ON Resistance vs. Input Signal Voltage (all types).

Typical Dynamic Power Dissipation/Package vs. Switching Frequency and Test Circuit (4051B).

Typical ON Characteristics for 1 of 8 Channels (4051B).

Typical Dynamic Power Dissipation/Package vs. Switching Frequency and Test Circuit (4052B).

Typical Dynamic Power Dissipation/Package vs. Switching Frequency and Test Circuit (4053B).

WAVEFORMS

Channel Being Turned ON ($R_L = 10K\Omega$).

Channel Being Turned OFF ($R_L = 300 \text{K}\Omega$).

TYPICAL BIAS VOLTAGES

The ADDRESS (digital-control inputs) and INHIBIT logic levels are : "0"= V_{SS} and "1"= V_{DD} . The analog signal (trough the TG) may swing from V_{EE} to V_{DD} .

TYPICAL APPLICATIONS

TYPICAL TIME-DIVISION APPLICATION OF THE 4052B

SPECIAL CONSIDERATIONS

Control of analog signals up to 20V peak-to-peak can be achieved by digital signal amplitudes of 4.5 to 20V (if $V_{DD} - V_{SS} = 3V$, a $V_{DD} - V_{EE}$ of up to 13V can be controlled; for $V_{DD} - V_{EE}$ level differences above 13V, a $V_{DD} - V_{SS}$ of at least 4.5V is required). For example, if $V_{DD} = +5V$, $V_{SS} = 0$, and $V_{EE} = -13.5V$, analog signals from -13.5V to +4.5V can be controlled by digital inputs of 0 to 4.5V. In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To

avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0,8 volt (valvulated from R_{ON} values shown in ELECTRICAL CHARACTERISTICS CHART). No V_{DD} current will flow through R_L if the switch current flows into lead 3 on the **HCC/HCF4051**; leads 3 and 13 on the **HCC/HCF4053**.

TEST CIRCUITS

Off Channel Leakage Current-any Channel OFF.

Off Channel Leakage Current-all Channel OFF.

Propagation Delay-adress Input to Signal Output.

TEST CIRCUITS (continued)

Propagation Delay-Inhibit Input to Signal Output.

Input Voltage.

Quiescent Device Current.

Channel ON Resistance Meaurement Circuit.

TEST CIRCUITS (continued)

Input Current.

Feedthrough (All Types).

Crosstalk Betwen any two Channels (All Types).

Crosstalk Betweenn Duals or Triplets (4052-4053).

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

