Ridge, Suppose n=2, p=2, X11 = X12 X21 = X21 y, + y2 =0, X11 + X21 =0, X12 + X22 =0 So, \$ =0 (a) ridge oftimization X11 = X12 = X1 minimizing $(y_1 - \beta_1 \times 1 - \beta_2 \times 1)^2$ + (y2- \beta, X2- \beta2 X2)2 + \ (\beta, + \beta, 2) if we'd like to minimize above problem, the need to keep take first derivative wrt B, and Bz wrt B, 26 y - β₁ x₁ - β₂ x₁). (-x₁) + 26 y₂ - β₁ x₂ - β₂ x₂). (-x₂) + 2 \ \begin{picture}(\begin{picture}(

=
$$-2yx_1 + 2\beta_1 x_1^2 + 2\beta_2 x_1^2 - 2y_2 x_2 + 2\beta_1 x_2^2 + 4\beta_2 x_2^2$$

+ $2x \beta_1 = 0$
= $-x_1 y_1 + \beta_1 (x_1^2 + x_2^2 + x_2) - y_2 x_2$
+ $\beta_2 (x_1^2 + x_2^2 + x_2) = 0$
=> $\beta_1 (x_1^2 + x_2^2 + x_2) + \beta_2 (x_1^2 + x_2^2) = x_1 y_2 + x_1 y_1 = 0$
WITE β_2
=> $\beta_2 (x_1^2 + x_2^2 + x_2) + \beta_1 (x_1^2 + x_2^2) = x_2 y_2 + x_1 y_1 = 0$
WITE β_2
=> $\beta_2 (x_1^2 + x_2^2 + x_2^2) + \beta_1 (x_1^2 + x_2^2) = x_2 y_2 + x_1 y_1 = 0$
($\beta_1 - \beta_2$) ($x_1^2 + x_2^2 + x_2^2 + x_2^2 + x_2^2 = x_2 y_2 + x_1 y_1 = 0$
($\beta_1 - \beta_2$) ($x_1^2 + x_2^2 + x_2^2 + x_2^2 + x_2^2 = x_2 y_2 + x_1 y_1 = 0$
Since $x_1^2 + x_2^2 = 0$
then $x_1^2 - x_2^2 = 0$
 $x_1^2 + x_2^2 = 0$
 $x_1^2 +$

minimizin + (y2 - \beta, \2 - \beta_2 \x2)2 Assum true $\beta_i = 5$ and $\beta_i + \beta_2 = 5$. (d*)* then => indifferent
for lasso problem. there're multiple solution 50