

Laguna State Polytechnic University

Province of Laguna

Exercise No. 4					
Topic:	Module 2.0: Probabilistic Reasoning in AI	Week No.	7-9		
Course Code:	CSST101	Term:	1st Semester		
Course Title:	Advance Representation and Reasoning	Academic Year:	2024-2025		
Student Name		Section			
Due date		Points			

Topic 2.2: Bayesian Networks

Implementation of Bayesian Networks in Google Colab

Exercise 1: Setting Up the Environment

- 1. Install the Required Library:
 - Start by installing pgmpy in your Google Colab environment.

```
!pip install pgmpy
```

2. Import Libraries:

• Import the necessary libraries.

```
import numpy as np
import pandas as pd
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
from pgmpy.inference import BeliefPropagation
from pgmpy.factors.discrete import TabularCPD
```

Exercise 2: Building a Simple Bayesian Network

1. Define the Structure:

- Create a Bayesian Network for the following variables: Weather (Sunny, Rainy), Traffic (Light, Heavy), and Late (On Time, Late). Define the relationships:
 - o Traffic depends on Weather.
 - Late depends on Traffic.

```
# Define the structure of the Bayesian Network
model = BayesianModel([('Weather', 'Traffic'), ('Traffic', 'Late')])
```


Laguna State Polytechnic University Province of Laguna

2. Define Conditional Probability Tables (CPTs):

• Use **TabularCPD** to define the CPDs for each variable.

```
# Weather CPD
cpd_weather = TabularCPD(variable='Weather', variable_card=2, values=[[0.8], [0.2]])
# Traffic CPD given Weather
cpd_traffic = TabularCPD(variable='Traffic', variable_card=2,
                        values=[[0.9, 0.5], [0.1, 0.5]], # P(Light | Sunny, Rainy)
                        evidence=['Weather'],
                         evidence_card=[2])
# Late CPD given Traffic
cpd_late = TabularCPD(variable='Late', variable_card=2,
                     values=[[0.95, 0.4], [0.05, 0.6]], # P(On Time | Light, Heavy)
                     evidence=['Traffic'],
                     evidence card=[2])
# Add CPDs to the model
model.add_cpds(cpd_weather, cpd_traffic, cpd_late)
# Check if the model is valid
assert model.check_model()
```

Exercise 3: Querying the Bayesian Network

1. Perform Exact Inference:

 Use the variable elimination method to determine the probability of being Late given that it is Rainy.

```
# Create an inference object
inference = VariableElimination(model)

# Query the probability of being Late given that Weather is Rainy
result = inference.query(variables=['Late'], evidence={'Weather': 1}) # 1 corresponds
print(result)
```


Laguna State Polytechnic University Province of Laguna

Exercise 4: Parameter Learning

1. Simulate a Dataset:

o Create a synthetic dataset of observations for Weather, Traffic, and Late.

```
# Create a synthetic dataset
# 0 for Sunny, 1 for Rainy
data = pd.DataFrame({
    'Weather': np.random.choice([0, 1], size=1000, p=[0.8, 0.2]),
    'Traffic': np.nan,
    'Late': np.nan
})
# Fill Traffic based on Weather
data.loc[data['Weather'] == 0, 'Traffic'] = np.random.choice(
    [0, 1],
   size=data[data['Weather'] == 0].shape[0],
   p=[0.9, 0.1]
data.loc[data['Weather'] == 1, 'Traffic'] = np.random.choice(
   [0, 1],
   size=data[data['Weather'] == 1].shape[0],
   p=[0.5, 0.5]
# Fill Late based on Traffic
data['Late'] = np.where(
   data['Traffic'] == 0,
   np.random.choice([0, 1], size=data.shape[0], p=[0.95, 0.05]),
    np.random.choice([0, 1], size=data.shape[0], p=[0.4, 0.6])
```


Laguna State Polytechnic University Province of Laguna

2. Estimate the Parameters:

• Use the dataset to estimate the CPDs for the Traffic and Late nodes.

```
from pgmpy.estimators import MaximumLikelihoodEstimator

# Create a Bayesian Model
model = BayesianModel([('Weather', 'Traffic'), ('Traffic', 'Late')])

# Fit the model to the data using Maximum Likelihood Estimation
model.fit(data, estimator=MaximumLikelihoodEstimator)

# Check the estimated CPDs
for cpd in model.get_cpds():
    print(cpd)
```

Exercise 5: Visualizing the Bayesian Network

- 1. Visualize the Network Structure:
 - Use the networkx library to visualize the Bayesian Network.

```
import matplotlib.pyplot as plt
import networkx as nx

# Convert the Bayesian Model to a NetworkX graph
nx_graph = model.to_networkx()

# Draw the graph
plt.figure(figsize=(8, 6))
pos = nx.spring_layout(nx_graph)
nx.draw(
    nx_graph, pos,
    with_labels=True, node_color='lightblue',
    font_weight='bold', arrows=True
)
plt.title('Bayesian Network Structure')
plt.show()
```


Laguna State Polytechnic University Province of Laguna

Submission Format:

- Upload your Python scripts and Notebook to your GitHub repository.
- Ensure the repository is well-organized, with folders and files clearly labeled (e.g., scripts/, notebooks/, README.md)
- Filename [SECTION]-[SURNAME]-EXER4 e.g. 3A-BERNARDINO-EXER4

Rubric for Exercises on Bayesian Networks Using Google Colab

Criteria	Excellent (4 points)	Good (3 points)	Fair (2 points)	Poor (1 point)
Exercise 1:	Libraries are installed	Minor issues in library	Libraries are	Libraries are not
Setting Up the	correctly, and all	imports; however, the	partially installed or	installed or
Environment	necessary libraries are	main functionality is	imported, causing	imported, leading
	imported without	intact.	some functionality	to multiple errors.
	errors.		issues.	
Exercise 2:	Bayesian Network	The structure is mostly	The structure has	The structure is not
Building a Simple	structure is defined	correct; however, one	significant errors,	defined, or there
Bayesian	correctly with all	or two relationships or	with major	are critical errors
Network	relationships	CPTs may be slightly	relationships or CPTs	in all CPTs.
	accurately	incorrect.	incorrectly defined.	
	represented. All CPTs			
	are correctly			
	implemented and			
	added to the model.			
Exercise 3:	Exact inference is	Inference is mostly	Inference is	Inference is not
Querying the	performed correctly,	correct, but minor	attempted, but	performed or
Bayesian	with accurate query	errors exist in query	significant errors	completely
Network	results printed. Code is	formulation or result	lead to incorrect	incorrect, leading
	clean and well-	interpretation.	results or unclear	to no results.
	organized.		code.	
Exercise 4:	A synthetic dataset is	The dataset is mostly	Dataset generation	Dataset is not
Parameter	generated correctly,	generated correctly, but	has significant issues,	generated, and
Learning	and parameters are	minor issues may affect	affecting parameter	parameter
	estimated accurately	parameter estimation.	estimation. Outputs	estimation is
	using Maximum	Outputs are	are poorly	absent or incorrect.
	Likelihood Estimation.	documented but lack	documented.	
	All outputs are well-	some clarity.		
	documented.			
Exercise 5:	The network structure	Visualization is mostly	Visualization is	Visualization is
Visualizing the	is visualized	clear but has minor	unclear or poorly	missing, poorly
Bayesian	effectively and clearly,	issues with labeling or	presented, making it	executed, or
Network	with appropriate	presentation.	difficult to	entirely incorrect.
	labels and colors. Code		understand the	
	is well-structured.		network structure.	

Laguna State Polytechnic University Province of Laguna

Criteria	Excellent (4 points)	Good (3 points)	Fair (2 points)	Poor (1 point)
Clarity and	Code is well-	Code has some	Minimal	No documentation
Documentation	documented, with	documentation, but a	documentation,	provided; code is
	clear comments	few areas lack clarity or	making it difficult to	unclear and
	explaining the logic	explanation.	follow the logic of the	difficult to
	and steps taken		code.	understand.
	throughout the			
	exercises.			
Creativity and	Demonstrates	Shows some creativity	Limited creativity;	No evidence of
Insight	exceptional creativity	in implementation, but	implementation is	creativity;
	in implementing the	mostly follows provided	basic and does not	implementation is
	exercises, providing	guidelines.	explore additional	straightforward
	additional insights or		insights.	and lacks depth.
	extensions.			