

MT7615D 802.11ac Wi-Fi 2x2 Dual-band Con-current Single Chip

Version: 1.0

Release date: 2016-05-04

© 2016 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Specifications are subject to change without notice.

Document Revision History

Revision	Date	Author	Description
1.0	2016-05-04	CH Hung	Formal release

Table of Contents

Docu	ıment	t Revision Historyontents	2
Table	e of C	ontents	3
1	Syste	em Overview	5
	1.1	General Descriptions.	5
	1.2	Features	5
	1.3	Operation Systems Support	6
	1.4	Block Diagram	6
2	Prod	uct Descriptions	7
	2.1	Pin Layout	7
	2.2	PIN Description	
	2.3	Strapping Option	. 11
	2.4	IO Control Option	
	2.5	Package Information	. 13
	2.6	Reflow Information	. 15
	2.7	Ordering Information	. 15
	2.8	TOP Marking Information	.16
3	Elect	rical Characteristics	.17
	3.1	Absolute Maximum Rating	. 17
	3.2	Recommended Operating Range	. 17
	3.3	DC Characteristics	. 17
	3.4	Thermal Characteristics	.18
	3.5	Current Consumption	.18
		3.5.1 WLAN Current Consumption	.18
	3.6	Wi-Fi RF Specification	.18
		3.6.1 Wi-Fi RF Block Diagram	.18
		3.6.2 Wi-Fi 2.4GHz Band RF Receiver Specifications	.19
		3.6.3 Wi-Fi 2.4GHz Band RF Transmitter Specifications	20
		3.6.4 Wi-Fi 5GHz Band RF receiver specifications	. 21
		3.6.5 Wi-Fi 5GHz Band RF Transmitter Specifications	22
	3.7	PMU Electrical Characteristics	23
4	Func	tional Specification	24
	4.1	System	24
		4.1.1 Power Management Unit	24
		4.1.2 EFUSE	24
	7	4.1.3 GPIO	25
	4.2	Host Interface Architecture	25
	/	4.2.1 PCI Express	25
	4.3	MCU Subsystem	25
		4.3.1 Network MCU Subsystem	25
		4.3.2 Radio MCU Subsystem	25
	4.4	Wi-Fi Subsystem	26

Confidential A

4.4.1	Wi-Fi MAC	20
	WLAN Baseband	
4.4.3	WLAN RF	2
Lists of Tables		
Table 2-1. Pin desc	criptions	8
Table 2-2. Strappi	ing option	11
Table 2-3. IO cont	trol option	11
Table 2-4. Orderin	trol optionng information	15
Table 3-1. Absolut	e maximum ratings	17
Table 3-2. Recomr	mended operating range	17
Table 3-3. DC desc	cription	17
Table 3-4. Therma	al information	18
Table 3-5. WLAN	current consumption	18
Table 3-6. 2.4GHz	RF receiver specifications	19
Table 3-7. 2.4GHz	RF transmitter specifications	21
Table 3-8. 5GHz R	RF receiver specifications	21
Table 3-9. 5GHz R	RF transmitter specifications	23
Table 3-10. PMU ϵ	electrical characteristics	23
Figure 1-1 MT761	5D block diagram	6
_	ew of MT7615D DRQFN pin-out	
	ge outline drawing	
	ge outline drawing parameters	_
	w profile guideline	
	narking	
	Hz RF front-end configuration	
0 ,, 0	block diagram	-
1 1gure 4-1, 1 MO D	nock diagram	24

Confidential A

1 System Overview

1.1 General Descriptions

MT7615D is a highly integrated Wi-Fi single chip which supports 1266 Mbps PHY rate. It fully complies with IEEE 802.11ac and IEEE 802.11 a/b/g/n standards, offering feature-rich wireless connectivity at high standards, and delivering reliable, cost-effective throughput from an extended distance.

Optimized RF architecture and baseband algorithms provide superb performance and low power consumption. Intelligent MAC design deploys a high efficient offload engine and hardware data processing accelerators which completely offloads Wi-Fi task of the host processor. MT7615D is designed to support standard based features in the areas of security, quality of service and international regulations, giving end users the greatest performance any time and in any circumstance.

MT7615D supports concurrent dual-band operation at 5GHz and 2.4GHz band (DBDC, Dual-Band-Dual-Concurrent). It enables diversified applications that require one link at 2.4GHz band, and the other at less crowded 5GHz band simultaneously.

With the advent of 802.11ac, multiuser MIMO (MU-MIMO) is defined. MT7615D supports MU-MIMO with different configurations. An AP is able to use its antenna arrays to transmit multiple frames to different clients at the same time and over the same frequency spectrum.

1.2 Features

- Supports 2x2 2SS 11ac wave2 MU-MIMO
- MU-MIMO configurations of
 - 2 users: 2*1ss
- Supports 20, 40, 80 channels
- Embedded ARM Cortex R4 processor for full host CPU offload
- Embedded 32-bit RISC microprocessor
- iNIC Gen2 with full Wi-Fi offload
- Highly integrated RF with 40nm low power process
- 2T2R(11ac)+2T2R(11n) with support of up to 1266Mbps PHY rate
- Configurable 2x2n+2x2ac DBDC
- Hardware-based Airtime Fairness (QoS)
- Integrate high efficiency internal 2.4G/5G PAs
- Intelligent Calibration (iCal) reduces the production time
- Supports external PA/LNA/TRSW design
- Proprietary LTE coexistence over UART
- Compact 12mm*12mm DRQFN118 package with PCIe Gen2 interface

1.3 Operation Systems Support

- Linux
- OpenWrt
- Android

1.4 Block Diagram

Figure 1-1. MT7615D block diagram

2 Product Descriptions

2.1 Pin Layout

MT7615D uses a 118 pins DR-QFN package. The pin order is shown below.

1 ACCOURT MEN 1 ACCOUR		118	117	116	115	114	113	112	111	110	109	108	107		ne i	105	104	10	2	102	101		00			
1		110	11/	ļ		114		112	111		109	108						10								
1 AUDOLE_WYS_TRIX 2 AUDOLE_WYS_SY 3		WPO_RFION_G	WPO_RFIOP_G		WPO_AUX_RXIN_G	Z	AVDD33_WP0_TX	GND	¥	AVDD33_WPO_PA	WF1_RFION_G	WF1_RFIDP_G	WDD33_WF1_TX		WF1 AUX RXIN O	Ä	WDD33_WF1_TX	QN9		g	AVDD33_WF1_PA		AVDD33_BBPLL	WDD16_WF2_TRS		
A AMODIS_NO A AMODIS_NO A AMODIS_NO A NO B CLK_OUT_F B CLK_OUT_F B CLK_OUT_F CLK_OUT_F				<u> </u>						<u></u>					,k		İ								NC	98
S	3 AVDD16_XO																								NC	97
R CLK_OUT_P WOULD WRD_LE	5 XO													,,											AVDD33_WF2_TX_A	96
MODIS_WFG_ES WFG_ES WFG_	7 CLK_OUT_N									,			7												NC	95
12 0 0 0 0 1 0 0 0 0 0										X															WF2_AUX_RXIN_A	94
14 GP035 GP0057 NC SP GP0059 NC SP	12 DVDD11									4		ĺ													GND	93
17 G GP0037 18 DVP0033 19 GP000 GP001 GP001 GP003 GP000	14 GPI034										\forall														WF2_RFIO_A	92
15	16 GPI036										/														AVDD33_WF2_PA_A	91
20 GPIO1	18 DVDD33																								NC	90
22 GPI03 GPI04 GPI05 GPI06 GPI06 GPI07	20 GPI01)																NC	89
24 GPIO5 CPIO6 GPIO6 GPIO6 GPIO6 GPIO7 GPIO7 CPIO	22 GPIO3																									
26 GPIO5	24 GPI05						1																			-
28 GPIO3/EET_CS 29 GPIO9/EET_CK 30 GPIO11/EE_MISO 31 GPIO11/EE_MISO 32 DVDO11 33 GPIO11/EE_MISO 33 GPIO12/ED_WISO 34 GPIO13 35 GPIO12/ED_WISO 36 GPIO12/ED_WISO 37 GPIO13/ED_WISO 38 GPIO13/ED_WISO 38 GPIO14/ED_WISO 39 GPIO14/ED_WISO 39 GPIO15 WAKE N 39 GPIO16 W8812 KEIL CERT N W88	26 GPI06							7																		
30 GPROIL/FE_MINOS 32 DVDOI1	28 GPIO8/EEFL_CS																									
S2 OPD011)																			
S4 GPI013 AVDD16_WF3_TRX S1 S2 GPI015/LID_WP5 S3 GPI015/LID_WF3 S2 GPI015/LID_WF3 S3 GPI015/LID_WF3 S3 GPI015/LID_WF3 S3 GPI015/LID_WF3 S3 GPI015	33 GPI012																									
Second State Seco	35 GPIO14/LED_WLAN					<i>y</i> '																				
39 GPI016 Property	37 WAKE_N																									80
41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77			,		7			· · · · · · · · · · · · · · · · · · ·		; <u>;</u>		,			.,		·····						·			79
41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77	_	GPIO17 AWDD33	WDD16_CLD0	PCIE_CLKN	AWSS12_PCIE PCIE_VRT	AVDD33_PCIE PCIE_TXN	AVSS12_PCIE PCIE_TXP	AWDD12_PCIE PCIE_RXN	PERST_N PCIE_RXP	LDG_RST_N	GPI039/LTE_UMRT_I	GPI018	GPI019	GPI020	DVDD11	GPI022 GPI021	GPI023	GPID25	GPI027 GPI026	GPID28	GPI030	GPI031	DVDD11	DVDD11		
		41 40	43 42	45 44	47 46	7 49 48	51 50	53 52	55 54	57 56		6: 60	62	3 64		67 66	68	59 70			7 74	5 76		78		

Figure 2-1. Top view of MT7615D DRQFN pin-out

2.2 PIN Description

Table 2-1. Pin descriptions

Confidential A

DRQFN 118	Pin name	Pin description	Default PU/PD	I/O	Supply domain
31	GPIO11	Programmable input/output	PD	In/out	DVDD33
33	GPIO12	Programmable input/output	PD	In/out	DVDD33
34	GPIO13	Programmable input/output	PD	In/out	DVDD33
39	GPIO16	Programmable input/output	PU	In/out	DVDD33
41	GPIO17	Programmable input/output	PU	In/out	DVDD33
61	GPIO18	Programmable input/output	PU	In/out	DVDD33
62	GPIO19	Programmable input/output	PU	In/out	DVDD33
64	GPIO20	Programmable input/output	PU	In/out	DVDD33
66	GPIO21	Programmable input/output	PD	In/out	DVDD33
67	GPIO22	Programmable input/output	PD	In/out	DVDD33
68	GPIO23	Programmable input/output	PD	In/out	DVDD33
69	GPIO24	Programmable input/output	PU	In/out	DVDD33
70	GPIO25	Programmable input/output	PU	In/out	DVDD33
71	GPIO26	Programmable input/output	PU	In/out	DVDD33
72	GPIO27	Programmable input/output	PU	In/out	DVDD33
73	GPIO28	Programmable input/output	PU	In/out	DVDD33
74	GPIO29	Programmable input/output	PD	In/out	DVDD33
75	GPIO30	Programmable input/output	PD	In/out	DVDD33
76	GPIO31	Programmable input/output	PD	In/out	DVDD33
60	GPIO40	Programmable input/output	PD	In/out	DVDD33
LED	·	1			
35	GPIO14/LED_WLAN	Programmable open-drain LED controller	PU	In/out	DVDD33
36	GPIO15/LED_WPS	Programmable LED controller	PU	In/out	DVDD33
WIFI ra	adio interface			1	
83	WF3_RFIO_A	WF3 RF a-band RF port	N/A	In/Out	
86	WF3_AUX_RXIN_A	WF3 RF a-band auxiliary RF LNA port	N/A	Input	
92	WF2_RFIO_A	WF2 RF a-band RF port	N/A	In/Out	
94	WF2_AUX_RXIN_A	WF2 RF a-band auxiliary RF LNA port	N/A	Input	
106 □ WF	WF1_AUX_RXIN_G	WF1 RF g-band auxiliary RF LNA port	N/A	Input	
108	WF1_RFIOP_G	WF1 RF g-band RF port	N/A	In/Out	
109	WF1_RFION_G	WF1 RF g-band RF port	N/A	In/Out	
115	WFo_AUX_RXIN_G	WFo RF g-band auxiliary RF LNA port	N/A	Input	
117	WFo_RFIOP_G	WFo RF g-band RF port	N/A	In/Out	
118	WFo_RFION_G	WFo RF g-band RF port	N/A	In/Out	
7	CLK_OUT_N	XTAL buffered clock output	N/A	Output	
8	CLK_OUT_P	XTAL buffered clock output	N/A	Output	
PMU					
43	CLDO	LDO 1.15V output	N/A	Output	
42	AVDD16_CLDO	Digital LDO 1.68V power supply	N/A	Power	
40	AVDD33	3.3V power supply	N/A	Power	

Confidential A

DRQFN 118	Pin name	Pin description	Default PU/PD	I/O	Supply domain
LTE coe	xistence			_/	
58	GPIO38/LTE_UART_ RX	UART RX	ΡU	In/out	DVDD33
59	GPIO39/LTE_UART_ TX	UART TX	PU	In/out	DVDD33
Power s	upplies		7		
18, 63	DVDD33	Digital 3.3v I/O power supply	N/A	Power	
12, 25, 32,57,65 ,77,78,7 9, 80	DVDD11	Digital 1.15v core power supply	N/A	Power	
49	AVDD33_PCIE	PCIe 3.3V power supply	N/A	Power	
53	AVDD12_PCIE	PCIe 1.2V power supply	N/A	Power	
85	AVDD33_WF3_TX_A	RF 3.3v power supply	N/A	Power	
88	AVDD33_WF3_TX	RF 3.3v power supply	N/A	Power	
91	AVDD33_WF2_PA_A	RF 3.3v power supply	N/A	Power	
96	AVDD33_WF2_TX_A	RF 3.3v power supply	N/A	Power	
99	AVDD16_WF2_TRSX	RF1.68v power supply	N/A	Power	
100	AVDD33_BBPLL	BBPLL 3.3v power supply	N/A	Power	
101	AVDD33_WF1_PA	RF 3.3v power supply	N/A	Power	
104	AVDD33_WF1_TX	RF 3.3v power supply	N/A	Power	
107	AVDD33_WF1_TX_G	RF 3.3v power supply	N/A	Power	
110	AVDD33_WFo_PA	RF 3.3v power supply	N/A	Power	
113	AVDD33_WFo_TX	RF 3.3v power supply	N/A	Power	
116	AVDD33_WFo_TX_G	RF 3.3v power supply	N/A	Power	
81	AVDD16_WF3_TRX	RF 1.68v power supply	N/A	Power	
1	AVDD16_WF0_TRSX	RF 1.68v power supply	N/A	Power	
2	AVDD16_WF0_SX	RF 1.68v power supply	N/A	Powers	
3	AVDD16_XO	XTAL 1.68v power supply	N/A	Power	
10	AVDD16_WFo_LF	RF 1.68v power supply	N/A	Power	
47,51	AVSS12_PCIE	PCIe ground	N/A	Ground	
4,9	AVSS16_XO	XTAL ground	N/A	Ground	
82,84,9 3,103,11 2		RF ground	N/A	Ground	
6,87,89, 90,95,9 7,98,102 ,105,111, 114	NC	Reserved	N/A	N/A	
E-PAD	VSS	Ground	N/A	Ground	

2.3 Strapping Option

Four pins are used to set up the default status of the chip for different normal mode applications. The pins are all internally pulled down. Users can connect the pin with an external small resistor (1K Ω or less) to VDD33 when they want to change the application. Those pins are sampled at Power-On-reset to determine the default status.

GPIO7 is used to identify if the external EEPROM or the internal Efuse is used. GPIO10 is used for testing purpose, and the user should set up normal mode for normal application.

Default strap Power down **Definition** Pull setting(1) pull setting(2) pull setting(3) o: use xtal clock as co-clock input Pull Down, 75K co-clock input Pull Down, 75K GPIO6 High-Z ohm (PU/PD 1: use external source selection ohm clock as co-clock adjustable) input Pull Down, 75K o: EFUSE **EEPROM** Pull Down, 75K GPIO₇ ohm (PU/PD High-Z selection 1: EEPROM ohm adjustable) o: current mode Pull Down, 75K 1: voltage mode co-clock mode Pull Down, 75K GPIO8 (co-clock output High-Z ohm (PU/PD selection ohm adjustable) buffer is default turned on) Pull Down, 75K o: normal mode test mode Pull Down, 75K GPIO₁₀ High-Z ohm (PU/PD selection ohm 1: test mode adjustable)

Table 2-2. Strapping option

Note:

- 1) PAD pull-up/pull down setting when I/O 3.3V power is not ready.
- 2) PAD pull-up/pull down setting in strapping mode, i.e. power on reset is asserted or LDO_RST_N is LOW.
- 3) PAD pull-up/pull down setting in normal mode, i.e. power on reset is de-asserted and LDO_RST_N is HIGH.

2.4 O Control Option

MT7615D provides 41 configurable I/O functions to support diversified applications. The IO functions can be configured through the control register PINMUX_SEL. It supports external front-end module on dual bands for high power requirement. Open drained IOs are available for WLAN LED. The most common configuration is listed in the table below.

Table 2-3. IO control option

Confidential A

	PAD Name	Function 0	Function 1	Function 2
11	PAD_GPIO32	gpio[32] (I/O)	antsel 0[19](O)	
12	PAD_GPIO33	gpio[33] (I/O)	antsel 0[18](O)	
13	PAD_GPIO34	gpio[34] (I/O)	antsel 0[17] (O)	7
14	PAD_GPIO35	gpio[35] (I/O)	antsel 0[16] (O)	Y
16	PAD_GPIO36	gpio[36] (I/O)	antsel 0[15] (O)	
17	PAD_GPIO37	gpio[37] (I/O)	antsel 0[14] (O)	7
19	PAD_GPIO0	gpio[0] (I/O)	antsel 0[13] (O)	
20	PAD_GPIO1	gpio[1] (I/O)	antsel 0[12](O)	7
21	PAD_GPIO2	gpio[2] (I/O)	antsel 0[11] (O)	
22	PAD_GPIO3	gpio[3] (I/O)	antsel 0[10] (O)	
23	PAD_GPIO4	gpio[4] (I/O)	antsel 0[9] (O)	n9 debug uart tx (O)
24	PAD_GPIO5	gpio[5] (I/O)	antsel 0[8] (O)	or4 debug uart tx (O
26	PAD_GPIO6	gpio[6] (I/O)	antsel 0[7] (O)	
27	PAD_GPIO7	gpio[7] (I/O)	antsel 0[6] (O)	
28	PAD_GPIO8	gpio[8] (I/O)	antsel 0[5] (O)	
29	PAD_GPIO9	gpio[9] (I/O)	antsel 0[4] (O)	
30	PAD_GPIO10	gpio[10] (I/O)	antsel 0[3] (O)	
31	PAD_GPIO11	gpio[11] (I/O)	antsel 0[2] (O)	
33	PAD_GPIO12	gpio[12] (I/O)	antsel 0[1](O)	
34	PAD_GPIO13	gpio[13] (I/O)	antsel 0[0] (O)	rbist ok (I)
35	PAD_GPIO14	led wlan od (I/O)		gpio[14] (I/O)
36	PAD_GPIO15	led wps (O)		gpio[15] (I/O)
39	PAD_GPIO16	eint in[0] (I)		gpio[16] (I/O)
41	PAD_GPIO17	eint in[1] (I)		gpio[17] (I/O)
58	PAD_GPIO38	Ite uart rx (I)		gpio[38] (I/O)
59	PAD_GPIO39	Ite uart tx (O)	eint in[2] (I)	gpio[39] (I/O)
60	PAD_GPIO40	gpio[40] (I/O)	eint in[3] (I)	
61	PAD_GPIO18	n9 debug uart tx (O)	antsel 1[13] (O)	gpio[18] (I/O)
62	PAD_GPIO19	mcu jtms (I)	antsel 1[12] (O)	gpio[19] (I/O)
64	PAD_GPIO20	mau jtrst b (I)	antsel 1[11] (O)	gpio[20] (I/O)
66	PAD_GPI021	mau jtak (I)	antsel 1[10] (O)	gpio[21] (I/O)
67	PAD_GPI022	mcu jtdi (I)	antsel 1[9] (O)	gpio[22] (I/O)
68	PAD_GPI023	mcu jtdo (O)	antsel 1[8] (O)	gpio[23] (I/O)
69	PAD_GPIO24	mcu dbgin (I)	antsel 1[7] (O)	gpio[24] (I/O)
70	PAD_GPIO25	mcu dbgackn (O)	antsel 1[6] (O)	gpio[25] (I/O)
72	PAD_GPIQ26	or4 debug uart tx (O)	antsel 1[5] (O)	gpio[26] (I/O)
74	PAD_GPIO27	a4 jtms (I/O)	antsel 1[4] (O)	gpio[27] (I/O)
	PAD_GPIO28	cr4 jtrst b (I)	antsel 1[3] (O)	gpio[28] (I/O)
77,	PAD_GPIO29	or4 jtok (I)	antsel 1[2] (O)	gpio[29] (I/O)
78	PAD_GPIO30	cr4 jtdi (I)	antsel 1[1] (O)	gpio[30] (I/O)
	PAD GPIO31	cr4 itdo (O)	antsel 1[0] (O)	apio(311 (I/O)

2.5 Package Information

Figure 2-2. Package outline drawing

Item	SYMBOL	MIN.	NOM.	MAX.	
TOTAL THICKNESS	Α	0.80	0.85	0.90	7
LEAD STAND OFF.	A1	0.00	0.02	0.05	
MOLD THICKNESS	A2	0.65	0.70	0.75	
L/F THICKNESS	А3		0.15 REF		
LEAD WIDTH	b	0.18	0.22	0.30	
	D			7	
PACKAGE SIZE	Е	11.90	12.00	12.10	
	D1		11.75 BS	SC	
Mold Edge size	E1		11.75 BS	SC .	
E 848	D2	7.60	7.70	7.80	
E-PAD size	E2	7.90	8.00	8.10	
LEAD LENGTH	L/	0.30	0.40	0.50	
LEAD PITCH (BSC.)	еŢ		0.50 BS		
LEAD PITCH (BSC.)	eR	7	0.65 BS0		
ANGLE	θ1	5°		15*	
LEAD ARC	R	0.09		0.14	
Lead to E-PAD Toler-ance	К	0.20			
PKG EDGE TOLER-ANCE	aaa		0.10		
PACKAGE PROFILE OF A SURFACE			0.10		
LEAD PROFILE OF A SURFACE			0.10		
LEAD POSITION	ddd		0.05		
LEAD PROFILE OF A SURFACE EPAD POSTION	eee fff		0.08		
Mold edge OF A & C SURFACE	ggg		0.10		
	333	ı			

Figure 2-3. Package outline drawing parameters

2.6 Reflow Information

Notes;

- 1. Reflow profile guideline is designed for SnAgCu lead-free solder paste.
- Reflow temperature is defined at the the lead of package.
- MTK would recommend customer following the solder paste vendor's guideline to design a profile appropriate your line and products.
- Appropriate N₂ atmosphere is recommended since it would widen the process window and mitigate the risk for having solder open issues.

Figure 2-4. Reflow profile guideline

2.7 Ordering Information

Table 2-4. Ordering information

Part number	Package	Operational temperature range
MT7615D	12*12*0.85 mm 118-DRQFN	TBD

2.8 TOP Marking Information

MEDIATEK ARM

MT7615DN DDDD-#### BBBBBBB MT7615DN : Part number

DDDD : Date code

: Internal control code

BBBBBBB : Lot number

Figure 2-5. Top marking

3 Electrical Characteristics

3.1 Absolute Maximum Rating

Stresses beyond those conditions indicated in this section may cause permanent damage to the device.

Table 3-1. Absolute maximum ratings

Symbol	Parameters	Max. rating	Unit
AVDD33	3.3V supply voltage	-0.3 to 3.63	V
DVDD33	3.3V supply voltage	-0.3 to 3.63	V
AVDD16	1.68V supply voltage	-0.3 to 1.77	V
DVDD11	1.15V supply voltage	-0.3 to 1.265	V
T_{STG}	T _{STG} Storage temperature		°C
VESD	ESD protection (HBM)	2000	V

3.2 Recommended Operating Range

Functional operation beyond those conditions indicated in this section is not recommended.

Table 3-2. Recommended operating range

Symbol	Rating	Min.	Typ.	Max.	Unit
AVDD33	3.3V supply voltage	2.97	3.3	3.63	V
DVDD33	3.3V supply voltage	2.97	3.3	3.63	V
AVDD16	1.68V supply voltage	1.6	1.68	1.77	V
DVDD11	1.15V supply voltage	1.09	1.15	1.21	V

3.3 DC Characteristics

Table 3-3. DC description

Symbol	Parameter	Conditions	Min.	Max.	Unit
$V_{\rm IL}$	Input low voltage	LVTTL	-0.28	0.6	V
$V_{\rm IH}$	Input high voltage		2.0	3.63	V
V_{T-}	Schmitt trigger negative going threshold voltage		0.68	1.36	v
V_{T+}	Schmitt trigger positive going threshold voltage	LVTTL	1.36	1.7	V
V_{OL}	Output low voltage	I _{OL} = 1.6~14 mA	-0.28	0.4	V
Voh	Output high voltage	I _{OH} = 1.6~14 mA	2.4	VDD33+0.33	V

Confidential A

Symbol	Parameter	Conditions	Min.	Max.	Unit
R_{PU}	Input pull-up resistance	PU=high, PD=low	40	190	ΚΩ
R_{PD}	Input pull-down resistance	PU=low, PD=high	40	190	ΚΩ

3.4 Thermal Characteristics

Table 3-4. Thermal information

Symbol	Description	Perform	ance	
	Description	Тур.	Unit	
$T_{ m J}$	Max. junction temperature (plastic package)	125	°C	
$\Theta_{ m JA}$	Junction to ambient temperature thermal resistance[1]	15.73	°C/W	
$\Theta_{ m JC}$	Junction to case temperature thermal resistance	4.86	°C/W	
$\Psi_{ m Jt}$	Junction to the package thermal resistance	1.11	°C/W	

Note:

[1] JEDEC 4L 51-7 system FR4 PCB size: 76.2*114.3mm

3.5 Current Consumption

3.5.1 WLAN Current Consumption

Table 3-5. WLAN current consumption with integrated PA/LNA

Doggrintion	Perform	nance
Description	Typ.	Unit
Sleep mode	5	mA
2.4GHz RX Active, HT40, MCS15+5GHz Rx Active, VHT80, MCS9 2SS	415	mA
RX Power saving, DTIM=1	62	mA
2.4GHz TX CCK1M(2T), @21.5dBm and 5G 6M(2T)@19.5dBm	1510	mA

Note: TX power is measured at antenna port.

3.6 Wi-Fi RF Specification

3.6.1 Wi-Fi RF Block Diagram

The frond-end loss with diplexer:

- 2.4GHz insertion loss is 1.5 dB
- 5GHz insertion loss is 1.5 dB

Figure 3-1 2.4/5GHz RF front-end configuration

3.6.2 Wi-Fi 2.4GHz Band RF Receiver Specifications

Table 3-6. 2.4GHz RF receiver specifications

Parameter	Description	Performance	mance		
	Description	Min.	Typ.	yp. Max.	Unit
Frequency range		2412	ı	2484	MHz
RX sensitivity	1 Mbps DSSS	-	-97	-	dBm
	2 Mbps DSSS	-	-94	ı	dBm
	5.5 Mbps CCK	-	-92	ı	dBm
	11 Mbps CCK	-	-89	ı	dBm
Y	6 Mbps OFDM	-	-94	ı	dBm
	9 Mbps OFDM	-	-91.5	-	dBm
RX sensitivity	12 Mbps OFDM	-	-91	-	dBm
	18 Mbps OFDM	-	-88.5	1	dBm
	24 Mbps OFDM	-	-85	-	dBm

Confidential A

D	Description	Performance				
Parameter	Description	Min.	Typ.	Max.	Unit	
	36 Mbps OFDM	-	-82	-	dBm	
	48 Mbps OFDM	-	-77.5	-	dBm	
	54 Mbps OFDM	- /	-76.5	ı	dBm	
	MCS o		-93.5	-	dBm	
	MCS 1	1	-90	ı	dBm	
RX sensitivity	MCS 2	- 7	-87.5	ı	dBm	
BW=20MHz	MCS 3		-84.5	-	dBm	
Mixed Mode	MCS 4	_	-81	-	dBm	
800ns Guard Interval	MCS 5	-	-77	-	dBm	
Non-STBC	MCS 6	-	-75.5	-	dBm	
	MCS 7	-	-74	-	dBm	
	MCS 15	-	-74	-	dBm	
	MCS o	-	-90	-	dBm	
	MCS 1	-	-87	-	dBm	
RX sensitivity	MCS 2	-	-84.5	-	dBm	
BW=40MHz	MCS 3	-	-81.5	-	dBm	
Mixed Mode	MCS 4	-	-78	-	dBm	
800ns Guard Interval	MCS 5	-	-74	-	dBm	
Non-STBC	MCS 6	-	-72.5	-	dBm	
	MCS 7	-	-71	-	dBm	
	MCS 15	-	-71	-	dBm	
	11 Mbps CCK	-	-5	-	dBm	
	6 Mbps OFDM	-	-10	-	dBm	
Maximum receive level	54 Mbps OFDM	-	-10	-	dBm	
	MCSo	-	-10	-	dBm	
	MCS7	-	-10	-	dBm	
	1 Mbps DSSS	-	Note*	-	dB	
Receive adjacent	11 Mbps CCK	-	Note*	-	dB	
channel rejection	6 Mbps OFDM	-	Note*	-	dB	
Receive adjacent channel rejection (HT20)	54 Mbps OFDM	-	Note*	-	dB	
	MCS o	-	Note*	-	dB	
	MCS 7	-	Note*	-	dB	
Receive adjacent	MCS o	-	Note*	-	dB	
channel rejection (HT40)	MCS 7	-	Note*	-	dB	

Note*: Receive adjacent channel rejection comply IEEE spec.

3.6.3 Wi-Fi 2.4GHz Band RF Transmitter Specifications

Table 3-7. 2.4GHz RF transmitter specifications

Parameter	Deganistics		Performance			
	Description	Min.	Typ.	Unit		
Frequency range		2412		2484	MHz	
	1~11 Mbps CCK/DSSS	-	21.5	-	dBm	
	6 Mbps OFDM		20.5	-	dBm	
Output power	54 Mbps OFDM		18.5	-	dBm	
	HT40, MCS o		19.5	-	dBm	
	HT40, MCS 7	-	17.5	-	dBm	
Output power variation ¹	TSSI closed-loop control across temperature and channels and VSWR ≦ 1.5:1.	-1.5	-	1.5	dB	
Carrier suppression		-	-	-30	dBc	
Harmonic output	2nd Harmonic	-	-45	-	dBm/MHz	
power	3rd Harmonic	-	-45	-	dBm/MHz	

Note 1: VDD33 voltage is within $\pm 5\%$ *of typical value.*

Note2: Second and third harmonic level correlate closely with diplexer's rejection (Please refer to HDK for diplexer p/n)

3.6.4 Wi-Fi 5GHz Band RF receiver specifications

Table 3-8. 5GHz RF receiver specifications

Parameter	Description	Performance			
Parameter	Description	Min.	Typ.	Max.	Unit
Frequency range		5180	-	5825	GHz
	6 Mbps OFDM	-	-93	-	dBm
∠ V	9 Mbps OFDM	-	-90.5	-	dBm
	12 Mbps OFDM	-	-90	-	dBm
DV consitivity	18 Mbps OFDM	-	-87.5	-	dBm
RX sensitivity	24 Mbps OFDM	-	-84	-	dBm
5.3	36 Mbps OFDM	-	-81	-	dBm
	48 Mbps OFDM	-	-76.5	-	dBm
	54 Mbps OFDM	-	-75	-	dBm
	MCS o	-	-92.5	-	dBm
RX sensitivity BW=20MHz VHT Mixed Mode 800ns Guard Interval Non-STBC	MCS 1	-	-89	-	dBm
	MCS 2	-	-86.5	-	dBm
	MCS 3	-	-83.5	-	dBm
	MCS 4	-	-80	-	dBm
	MCS 5	-	-75.5	-	dBm

Confidential A

	B 1.0		Perfor	mance	
Parameter	Description	Min.	Typ.	Max.	Unit
	MCS 6	-	-74.5	-	dBm
	MCS 7	-	-73	-	dBm
	MCS 8	- /	-68.5	-	dBm
	MCS o		-89	-	dBm
	MCS 1	-	-86	-	dBm
	MCS 2	(- Y	-83.5	-	dBm
RX sensitivity	MCS 3		-80	-	dBm
BW=40MHz VHT Mixed Mode	MCS 4	-	-77	-	dBm
800ns Guard Interval	MCS 5) -	-72.5	-	dBm
Non-STBC	MCS 6	-	-71.5	-	dBm
	MCS 7	-	-70	-	dBm
	MCS 8	-	-65.5	-	dBm
	MCS 9	-	-64	-	dBm
	MCS o	-	-86	-	dBm
	MCS 1	-	-83	-	dBm
	MCS 2	-	-80	-	dBm
RX sensitivity	MCS 3	-	-77	-	dBm
BW=80MHz VHT Mixed Mode	MCS 4	-	-73.5	-	dBm
800ns Guard Interval	MCS 5	-	-69.5	-	dBm
Non-STBC	MCS 6	-	-68	-	dBm
	MCS 7	-	-66.5	-	dBm
	MCS 8	-	-62.5	-	dBm
	MCS 9	-	-60.5	-	dBm
	6 Mbps OFDM	-	-10	-	dBm
Maximum receive	54 Mbps OFDM	-	-10	-	dBm
level	MCSo	-	-10	-	dBm
	MCS7	-	-10	-	dBm
Receive adjacent channel rejection (VHT20)	MCSo	-	Note*	-	dB
	MCS8	-	Note*	-	dB
Receive adjacent channel rejection (VHT40)	MCS o	-	Note*	-	dB
	MCS 9	-	Note*	-	dB
Receive adjacent	MCS o	-	Note*	-	dB
channel rejection (VHT80)	MCS 9	-	Note*	-	dB

Note*: Receive adjacent channel rejection comply IEEE spec.

3.6.5 Wi-Fi 5GHz Band RF Transmitter Specifications

Table 3-9. 5GHz RF transmitter specifications

Dawanatan	Description	Performance			e
Parameter	Description	Min.	Min. Typ. Max.	Max.	Unit
Frequency range		5180	_	5825	MHz
	6 Mbps OFDM	-	19.5	-	dBm
	54 Mbps OFDM	-	17	-	dBm
Output power	HT20, MCS o	1	18.5	-	dBm
	HT20, MCS 7	_	16	-	dBm
	VHT80, MCS0) ⁷ -	18.5	-	dBm
	VHT80, MCS9	-	15	-	dBm
Output power variation ¹	TSSI closed-loop control across temperature and channels and VSWR \leq 1.5:1.	-2	-	2	dB
Carrier suppression		-	-	-35	dBc
Harmonic output	2nd Harmonic	_	-45	-	dBm/MHz
rower	3rd Harmonic	-	-45	-	dBm/MHz

Note 1: VDD33 voltage is within $\pm 5\%$ of typical value.

Note2: Second and third harmonic level correlate closely with diplexer's rejection (Please refer to HDK for diplexer p/n)

3.7 PMU Electrical Characteristics

Table 3-10. PMU electrical characteristics

Parameter	Conditions	Performance			
	Conditions	Min.	. Typ. Max.	Unit	
PCIE LDO	y				
Input voltage	7-/	1.51	1.68	1.84	V
Output voltage	Y	1.14	1.2	1.26	V
Output current		-	-	40	mA
Quiescent current		-	60	-	uA

4 Functional Specification

4.1 System

4.1.1 Power Management Unit

Power Management Unit (PMU) contains Two Low Drop-out Regulators (LDOs), power-on reset and the reference band-gap circuit. The circuits are optimized for quiescent current, drop-out voltage, and output noise.

Three power sources are required for MT7615D, The 3.3V power source is directly supplied to EFuse LDO, digital I/Os, PCIe PHY, and RF related circuit. The 1.68V power source is supplied to PCIe LDO and RF related circuit. The 1.15V power source is supplied to digital circuit.

Figure 4-1. PMU block diagram

4.1.2 **EFUSE**

MT7615D uses embedded Efuse to store device specific configuration information such as MAC addresses, and power control settings.

Below illustrates the major fields defined in the Efuse.

MAC addresses

Confidential A

- Wi-Fi configuration setting
- TSSI parameters, TX power level
- NIC configuration: RF front-end configuration, LED mode, baseband configuration
- Wi-Fi BeamForming parameter
- PCIe PHY parameters

It uses logical address mapping table scheme to make easy programming on efuse content. The total efuse size is 7680 bits.

4.1.3 GPIO

MT7615D has 41 GPIO pins with software access. Pins are multiplexed with other functions including the LED control, external RF front-end module control, LTE coexistence, etc. Each GPIO supports internal pull-up/pull-down options as well as driving strength control.

4.2 Host Interface Architecture

4.2.1 PCI Express

MT7615D supports the high-speed interface which conforms to the PCI Express Base Specification v2.0. It supports PCIe link power states Lo, Los, L1, and L2. It also supports the new L1 sub-states to provide low power modes of operation.

The interface contains all necessary function blocks including transaction layer, data link layer, and physical layer. The standard configuration space and extended configuration space are supported.

4.3 MCU Subsystem

4.3.1 Network MCU Subsystem

MT7615D features ARM Cortex R4 processor.

R4 is a power efficient processor core with 8-stage dual issue pipeline and with tightly-coupled memory system. It is based on ARMv7R architecture with Thumb-2 / ARM instruction set.

It allows Wi-Fi functions to be performed on MT7615D and minimizes the computing power required for the host CPU.

4.3.2 Radio MCU Subsystem

MT7615D features Andes N9 processor and embedded ROM/RAM.

Confidential A

The radio MCU subsystem is used to perform Wi-Fi related functions. That includes the low power function that can minimize the loading of CR4 and the host CPU.

4.4 Wi-Fi Subsystem

4.4.1 Wi-Fi MAC

MT7615D MAC supports the following features:

- 802.11 to 802.3 header translation offload
- TCP/UDP/IP checksum offload
- Multiple concurrent clients as an access point
- Multiple concurrent clients as an repeater
- Aggregates MPDU RX (de-aggregation) and TX (aggregation)
- AMSDU in AMPDU support
- MU-MIMO supports two multi-user contains one primary user and one secondary users
- DBDC supports 2.4G and 5G active concurrently
- Airtime fairness and bandwidth control
- Transmit rate adaptation
- Transmit power control
- RTS with BW signaling
- CTS with BW signaling in response to RTS with BW signaling
- Security
 - 64-bit WEP (WEP-40) and 128-bit WEP (WEP-104) encryption with hardware TKIP processing
 - AES-CCMP and GCMP hardware processing
 - SMS4-WPI (WAPI) hardware processing

4.4.2 WLAN Baseband

MT7615D baseband supports the following features:

- Respective two spatial streams of 2.4G and 5G
- 11ac wave-1/2 feature
 - 20, 40, 80MHz channels
 - MCSo-7 (BPSK, r=1/2 through 64QAM, r=5/6)
 - MCS8-9 (256QAM, r=3/4 and r=5/6)
 - VHT A-MPDU delimiter for RX and TX for single MPDU
 - Clear Channel Assessment (CCA) on secondary
 - Short Guard Interval
 - STBC
 - · Low Density Parity check (LDPC) coding
 - SUBF
 - MU-MIMO
- Beamforming

Confidential A

- · Explicit Beamforming with support of NDP sounding
- Explicit Beamforming with support of immediate feedback generation using compressed steering matrix
- Proprietary Implicit Beamforming
- MU-MIMO configuration of 2 users: 2*1ss
 - 2 users: 2*1ss
- DBDC
- Digital pre-distortion to enhance PA performance
- Smoothing (channel estimation) extension to MIMO case
- Dynamic frequency selection (DFS) radar pulse detection
- ProprietaryrReceiver MIMO power save scheme.

4.4.3 WLAN RF

MT7615D RF supports the following features:

- Integrated 2T2R 2.4GHz and 5GHz PA and LNA
- Integrated 5GHz Balun
- 2.4GHz and 5GHz external PA and LNA
- Improves the efficiency of RF PA with Digital Pre-Distortion (DPD)
- Improves the power variation with TSSI compensated TX power control

Confidential A

ESD CAUTION

MT7615D is ESD (electrostatic discharge) sensitive device and may be damaged with ESD or spike voltage. Although MT7615D is with built-in ESD protection circuitry, please handle with care to avoid the permanent malfunction or the performance degradation.