

PROCESADORES DE LENGUAJE

Ingeniería Informática Especialidad de Computación Tercer curso Segundo cuatrimestre

Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico 2023 - 2024

Hoja de ejercicios de FLEX

Observación

- Se deberá proporcionar un fichero makefile y un fichero de entrada con datos para probar el analizador léxico desarrollado en cada ejercicio.
- En todos los ejercicios,
 - o se debe comprobar si el número de argumentos es correcto,
 - o si el fichero de entrada existe o no
 - o y, de forma opcional, enviar los resultados a un fichero de salida, que no debe existir antes.
 - programa.exe entrada.txt salida.txt
 - programa.exe entrada.txt

1. Direcciones de correo electrónico

- Codifica un analizador léxico denominado correo.l que permita reconocer direcciones de correo electrónico que deben tener la siguiente estructura
 - o usuario@entidad.ext
- donde
 - o usuario:
 - debe ser una cadena de caracteres compuesta por letras, números, el punto "." o el símbolo "_",
 - pero deberá empezar por una letra
 - y el símbolo "_" no podrá aparecer dos veces seguidas ni al final.
 - o *entidad*: representa la organización, asociación o empresa y debe estar compuesta solamente por letras.
 - o ext: representa la extensión que debe estar compuesta por dos o tres letras.
- Por ejemplo
 - o i32gavap@uco.es

- o carmen.lara@empresa.com
- o pablo.luque-19@ayuda.org
- Ejemplos no válidos
 - 1jefe@ejemplo.es
 - o error--1@ejemplo.es1
 - o error2-@ejemplo.12
- El programa deberá
 - o contar el número de direcciones de correo electrónico correctas que haya reconocido
 - o y mostrar un mensaje de error cuando no reconozca una dirección de correo electrónico correcta.

2. Fichero con figuras geométricas

- Codifica un analizador léxico denominado **figura.** I que permita reconocer figuras geométricas, como, por ejemplo, las siguientes:
 - o triángulo (0.0 0,0) (1.0 0.0) (1.0 1.0)
 - Se indican las coordenadas de los tres puntos del triángulo
 - o cuadrado (0.0 0.0) (1.0 1.0)
 - Se indican las coordenadas de dos vértices del cuadrado que ocupan posiciones diagonalmente opuestas.
 - o círculo (0.0 0.0) 1.0
 - Se indican las coordenadas del centro y el radio.
 - ∘ Nota:
 - El radio y las coordenadas de los puntos serán números reales, que podrán tener notación científica.
 - Las palabras "triángulo" y "círculo" se podrán escribir con y sin acento.
- El programa deberá funcionar de dos formas diferentes
 - Modo interactivo
 - Los datos de las figuras se introducirán desde el teclado
 - Al reconocer una figura, deberá calcular su perímetro y su área.
 - Se mostrará un mensaje de error cuando no reconozca una figura geométrica correcta.
 - El programa finalizará con el carácter fin de fichero o al teclear "#" al principio de la línea.
 - Al finalizar, el analizador deberá mostrar el número de figuras que haya reconocido de cada tipo.

Modo no interactivo:

- Se utilizará un fichero de entrada con los datos de las figuras geométricas
- Por ejemplo

triángulo (0.0 0.0) (1.0 0.0) (1.0 1.0) cuadrado (0.0 0.0) (1.0 1.0) círculo (0.0 0.0) 1.0

- Al reconocer una figura, deberá calcular su perímetro y su área.
- Se mostrará un mensaje de error cuando no reconozca una figura geométrica correcta.
- Al finalizar, el analizador deberá mostrar el número de figuras que haya reconocido de cada tipo.

3. Simulación de un autómata finito determinista

 Utiliza los estados de flex para codificar un analizador léxico denominada automata.l que permita simular el funcionamiento del siguiente autómata finito determinista.

- Este autómata finito determinista simula el funcionamiento básico de un automóvil.
- El analizador se podrá usar de forma interactiva o usando ficheros de entrada o salida.

4. Cola de impresión de una impresora

- Un fichero contiene la siguiente información sobre los documentos enviados a una impresora:
 - DD-MM-AAAA HH:MM documento
- Por ejemplo

09-03-2023 09:00 fichero1.pdf 10-03-2023 09:15 fichero2.docx

•••

- Codifica un analizador léxico denominado impresora.l que reciba un fichero con el listado de documentos enviados a la impresora y que muestre
 - o el número de documentos enviados a la impresora
 - o el número medio de documentos enviados a la impresora

cada día.

- El analizador se podrá usar de forma interactiva o usando ficheros de entrada o salida.
- Observaciones
 - Nota:
 - Este ejercicio se debe realizar usando estados de flex.
 - Se deberá comprobar si la fecha y las horas son correctas. En caso contrario, se mostrará un mensaje por pantalla. En particular, se deberá comprobar si el año es bisiesto.
 - También se deberá comprobar que la hora de entrada sea anterior a la hora de salida de cada fecha.

5. Analizador léxico de pseudocódigo

• Codifica un analizador léxico que permita reconocer los componentes léxicos de un programa escrito en pseudocódigo.

Palabras reservadas

- inicio, fin, leer, escribir, si, entonces, si_no, fin_si, mientras, hacer, fin_mientras, repetir, hasta_que, para, desde, hasta, paso, fin_para
- o No se distinguirá entre mayúsculas ni minúsculas.
- Las palabras reservadas no se podrán utilizar como identificadores.

Identificador

- Características
 - Estarán compuestos por una serie de letras, dígitos y el subrayado;
 - Deben comenzar por una letra.
 - No podrán acabar con el símbolo de subrayado, ni tener dos subrayados consecutivos.
 - No se distinguirá entre mayúsculas ni minúsculas.
- Ejemplos
 - Identificadores válidos:

dato, dato 1, dato 1 a

Identificadores no válidos:

dato, dato, dato 1

Número

- Se utilizarán números enteros, reales de punto fijo y reales con notación científica.
- o Todos ellos serán tratados conjuntamente como números.

Cadena

o Estará compuesta por una serie de caracteres delimitados por

comillas simples:

'Ejemplo de cadena'

- Deberá permitir la inclusión de la comilla simple utilizando la barra (\):
 - 'Ejemplo de cadena con \' comillas\' simples'.
- Nota:
 - Las comillas exteriores no formarán parte de la cadena.
- Operador de asignación
 - ASIGNACIÓN: =
 - ASIGNACIÓNSUMA: +=
 - ASIGNACIÓNRESTA: -=
 - ASIGNACIÓNPRODUCTO: *=
 - ASIGNACIÓNDIVISION: /=
- Operadores aritméticos:
 - SUMA:
 - INCREMENTO: ++
 - o **RESTA**:
 - o DECREMENTO: --
 - o PRODUCTO: *
 - DIVISIÓN:
 - DIVISIÓN ENTERA: //
 - o MÓDULO: %
 - o POTENCIA: **
- Operador alfanumérico:
 - o CONCATENACIÓN: ||
- Operadores relacionales de números y cadenas:
 - MENOR_QUE:
 - O MENOR IGUAL QUE: <=</p>
 - o MAYOR_QUE: >
 - O MAYOR IGUAL QUE: >=
 - IGUAL: ==
 - o DISTINTO: <>
- Operadores lógicos:
 - o DISYUNCIÓN LÓGICA: #o
 - o CONJUNCIÓN_LÓGICA: #y
 - NEGACIÓN_LÓGICA: #no
 - Por ejemplo:
 - (A >= 0) #y #no (control <> 'stop')
- Comentarios
 - De varias líneas: delimitados por << y >>

```
<< ejemplo
de comentario
de tres líneas >>
```

- De una línea:
 - Todo lo que siga a los dos caracteres "!!" hasta el final de la línea.

!! ejemplo de comentario de una línea

Otros componentes léxicos

- FIN_SENTENCIA: ;
- Paréntesis
 - Izquierdo: (
 - Derecho:)

Control de errores

- o El intérprete deberá controlar toda clase de errores:
 - Identificador mal escrito.
 - Números mal escritos.
 - Utilización de símbolos no permitidos.
 - Etc.

Prueba

- Se deberá comprobar el funcionamiento del analizador léxico usando tres ficheros:
 - Fichero denominado Newton.txt
 - ejemplo_1.txt: fichero original sin errores.
 - ejemplo_2.txt: fichero original con errores.
- Importante
 - Se valorará que los ejemplos propuestos tengan un código de un algoritmo o tarea interesante.