

Facultad de Ingeniería y Ciencias Agropecuarias

Carrera de Ingeniería Ambiental EIA860 / Diseño de plantas de tratamiento de aguas residuales Período 2016-2

1. Identificación

Número de sesiones: 32

Número total de horas de aprendizaje: 120 h = 48 h presenciales + 72 h de trabajo

autónomo.

Créditos - malla actual: 3

Profesor: Ing. Santiago Piedra, MBA, MSc.

Correo electrónico del docente (Udlanet): s.piedra@udlanet.ec

Coordinador: Ing. Paola Posligua MSc.

Campus: Queri

Pre-requisito: EIA-830

Co-requisito: Paralelo: 1 y 2 Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación							
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes			
	X						

2. Descripción del curso

Este módulo estudia el sistema de tratamiento de aguas residuales de carácter doméstico y el pre dimensionamiento de sus diferentes reactores. El pre dimensionamiento de los reactores incluye cálculos para determinar el espacio necesario del proyecto como también el presupuesto para determinar la factibilidad del uso de alguna tecnología como por ejemplo: lagunas de estabilización, zanjas de oxidación y filtros percoladores. Este módulo requiere conocimientos de matemáticas e hidromecánica.

3. Objetivo del curso

Pre dimensionar una planta de tratamiento de aguas residuales domésticas mediante ecuaciones estandarizadas y metodologías internacionales para que el estudiante genere el criterio del espacio necesario, del costo y del grado de tratamiento que se puede lograr con las tecnologías disponibles en países en vías de desarrollo.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Integra procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento de agua contaminada durante el diseño de la infraestructura.	Participa de manera consciente y dirige proyectos multidisciplinarios de la gestión integral de recursos (agua, suelo, aire y biota), de procesos de tratamiento de contaminantes generados por las actividades industriales y de centros urbanos, así como de conservación de entornos naturales.	
Diseña soluciones ingenieriles, técnicamente y económicamente factibles y viables para prevención y remediación de la contaminación de aguas residuales y aguas crudas	Diseña, proactivamente y optimiza e innova tecnologías y procesos de prevención y remediación, enfocado en el control ambiental mediante la investigación e implementación de principios de producción más limpia, eficiencia de los recursos energéticos, estudios de ordenamiento territorial, evaluaciones de impacto ambiental y auditorías ambientales basados en el cumplimiento de la normativa ambiental vigente generando soluciones técnicamente factibles y económicamente viables en el diseño de tratamiento de residuos y efluentes.	Inicial () Medio () Final (x)
Plantea métodos y técnicas de ingeniería, análisis, interpretación y solución de problemas de las aguas contaminadas superficiales y subterráneas.	Aplica su conocimiento en forma de consultoría en la búsqueda innovadora de soluciones económicamente viables y atractivas para realizar remediación de sistemas, con responsabilidad social y ambiental.	
Evalúa la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental-estadístico, resultados, rechazo de hipótesis de aguas contaminadas.	Aplica metodologías de investigación en la búsqueda, fundamentación y elaboración de soluciones que garanticen la conservación, sustentabilidad, sostenibilidad y gestión integral de los recursos.	

5. Sistema de evaluación.

Progreso 1						
Examen	20% 35%					
Ejercicios y problemas aplicados.						
Progreso 2						
Examen	20%	35%				
Ejercicios y problemas aplicados	os y problemas aplicados 15%					
Evaluación final						
Examen final	30%	30%				
Total (Progreso 1, progreso 2 y evaluación final)		100%				

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

La metodología consistirá en presentaciones del facilitador utilizando fórmulas, gráficos y figuras que muestren objetivamente el contenido de la materia. Es relevante la deducción de fórmulas para el entendimiento de la materia como también para procedimientos lógicos para la obtención de resultados. La estrategia consiste en proporcionar conceptos y criterios fundamentales para que luego el mismo estudiante a través de gráficos y figuras interprete el comportamiento de una cuenca y el impacto que produce el cambio de las propiedades físicas de la misma.

El uso del idioma inglés es fundamental para el desarrollo del curso pues la información relevante encontrada en la bibliografía se encuentra escrita y desarrollada en inglés. La lectura de artículos científicos será en inglés.

6.1. Escenario de aprendizaje presencial.

Talleres en clase.

Durante el curso se realizará talleres en clase. El estudiante deberá resolver problemas propuestos en los talleres que con la ayuda de las diapositivas y mediante preguntas al facilitador asimilará la magnitud de las variables analizadas.

6.2. Escenario de aprendizaje virtual

Lecturas de artículos científicos.

Durante el curso el estudiante deberá leer artículos en inglés y manuales de procedimientos estandarizados para el procesamiento espacial y temporal de datos.

6.3. Escenario de aprendizaje autónomo.

Análisis de material bibliográfico.

Como complemento del aprendizaje, el estudiante deberá revisar mapas para evidenciar las magnitudes de las variables de estudio del curso.

7. Temas y subtemas del curso.

RDA	Temas	Sub temas
Evalúa la cadena de	1 Introducción	1.1 Estadística sobre la cobertura de servicios básicos en el Ecuador.
investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental-estadístico,		1.2 Factores que influyen en el diseño y funcionamiento de un sistema de alcantarillado
resultados, rechazo de hipótesis de aguas contaminadas.		1.3 Determinación del caudal de aporte a un planta de tratamiento de aguas residuales
Plantea métodos y técnicas de ingeniería, análisis,	2 Transporte de materia	2.1 Introducción al fenómeno del transporte
interpretación y solución de problemas de las aguas		2.2 Procesos de transporte
contaminadas superficiales y		2.3 Reactores
subterráneas.		2.4 Advección y dispersión.
	3 Tratamiento de aguas residuales	3.1 Condiciones de borde
		3.2 Procesos de una planta de tratamiento
		3.3 Tratamiento mecánico
Integra procesos naturales y antropogénicos: transporte,		3.4 Tratamiento biológico
monitoreo, control y tratamiento de agua contaminada durante el		3.5 Clarificación
diseño de la infraestructura.	4 Tratamiento de lodos	4.1 Sedimentación
		4.2 Estabilización biológica de lodos
		4.3 Reducción de volumen
		4.4 Disposición de lodos
Diseña soluciones ingenieriles, técnicamente y económicamente factibles y	5 Evaluación de tecnologías	5.1 Lagunas de estabilización.
viables para prevención y remediación de la		5.2 Filtros percoladores.
contaminación de aguas residuales y aguas crudas		5.3 Zanjas de oxidación.

8. Planificación secuencial del curso

RDA	Temas	Sub temas		ividad/ codología/clase	Tarea / trabajo autónomo	Mde
	1 Introducción	1.1 Estadística sobre la cobertura de servicios básicos en el Ecuador.	(1)	Presentación del sílabo		
Evalúa la cadena			(1)	Presentación de cobertura de servicios básicos en el mundo y en el Ecuador		
de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental- estadístico,		de un sistema de alcantarillado	(1)	Presentación de sostenibilidad con respecto a PTAR		
resultados, rechazo de hipótesis de aguas			(1)	Presentación de factores del agua potable que influyen en una PTAR	Resolución de ejercicios	Entrega de
contaminadas.	1.3 Determinación del caudal de aporte a un planta de tratamiento de aguas residuales	(1)	Presentación de caudales que recibe una PTAR I	enviados por el facilitador y presentación del primer informe de los cálculos preliminares	informe (fecha de entrega 4 de abril 2016)	
		2.4	(1)	Presentación de caudales que recibe una PTAR II	de una PTAR (3)	examen
Plantea métodos y técnicas de ingeniería,	2 Transporte de materia	2.1 Introducción al fenómeno del transporte	(1)	Presentación de ejercicio y cálculos preliminares de una PTAR		
análisis, interpretación y		2.2 Procesos de transporte	(1)	Presentación de reactores I		
solución de problemas de las		2.3 Reactores	(1)	Presentación de reactores II		
aguas contaminadas superficiales y subterráneas.		2.4 Advección y dispersión.	(1)	Presentación de reactores III - Resolución de ejercicio enviado en la hora 10		
Integra procesos naturales y antropogénicos: transporte,	3 Tratamiento de aguas residuales	3.1 Condiciones de borde	(1)	Examen hasta subtema 2.4		
monitoreo, control y			(1)	Examen hasta subtema 2.4		

Sílabo 2016-2 (Pre-grado)

tratamiento de agua contaminada		3.2 Procesos de una planta de tratamiento	(1)	Retroalimentación		
durante el diseño de la infraestructura.		tratamento	(1)	Presentación de condiciones de borde y procesos de una PTAR		
		3.3 Tratamiento mecánico	(1)	Presentación de procesos de una PTAR		
			(1)	Presentación de tratamientos mecánicos I		
		3.4 Tratamiento biológico	(1)	Presentación de tratamientos mecánicos II	Resolución	
			(1)	Presentación de tratamientos biológicos I	de ejercicios enviados por el facilitador	Entrega de informe
		3.5 Clarificación	(1)	Presentación de tratamientos biológicos II	y presentación del segundo	(fecha de entrega
			(1)	Presentación de clarificación	informe de los cálculos	31 de mayo
	4 Tratamiento de lodos	4.1 Sedimentación	(1)	Presentación de ejercicio y cálculos preliminares de una PTAR	preliminares de una PTAR (3)	y examen
			(1)	Presentación de sedimentación de lodos		
		4.2 Estabilización biológica de lodos	(1)	Presentación de estabilización biológica de lodos		
			(1)	Presentación de reducción de volumen y disposición de lodos		
		4.3 Reducción de volumen	(1)	Examen hasta subtema 4.4		
			(1)	Examen hasta subtema 4.4		
		4.4 Disposición de lodos	(1)	Retroalimentación	Resolución	
Diseña soluciones ingenieriles,	5 Evaluación de tecnologías	5.1 Lagunas de estabilización.	(1)	Presentación de ejercicio y evaluación final de una PTAR	de ejercicios enviados por el facilitador	
técnicamente y económicamente factibles y			(1)	Presentación del diseño de lagunas de estabilización	y presentación del tercer	Examen 19 de
viables para prevención y remediación de		5.2 Filtros percoladores.	(1)	Presentación del diseño de filtros percoladores	informe de los cálculos preliminares	julio
la contaminación de aguas			(1)	Presentación del diseño de zanjas de oxidación	de una PTAR (3)	

Sílabo 2016-2 (Pre-grado)

residuales y	5.3 Zanjas de	(1)	Examen final	
aguas crudas	oxidación.	(1)	Examen illiai	

9. Normas y procedimientos para el aula

El uso de celulares está permitido en el aula. No existe ninguna restricción de la hora de llegada del estudiante. Sin embargo, si el estudiante no asiste a clases no habrá ninguna justificación para ponerlo en lista.

A pesar del libre uso de tecnologías de comunicación en clases, el facilitador recordará las personas que alteren el ambiente en el aula y se tomará en cuenta al momento de la exigencia en la calificación de los progresos.

Cualquier persona que haga caso omiso de dos llamadas de atención del facilitador tendrá que abandonar el aula previo aviso del facilitador.

10. Referencias bibliográficas

10.1. Principales.

Maskew, G. Geyer, J. Okun, A. (1994). *Ingeniería sanitaria y de aguas residuales*, Mexico DF, Mexico: Limusa.

Metcalf & Eddy, Inc (2014). Wastewater Engineering Treatment and Reuse. USA: McGraw-Hill.

Trivedy, R.K. (2010). *Low cost wastewater treatment technologies*, Nueva Delhi India: ABD Publishers.

10.2. Referencias complementarias.

Glynn, J. Gary, W. (1999). Ingeniería ambiental. Mexico DF, Mexico. Prentice Hall.

11. Perfil del docente

Experiencia con estándares nacionales e internacionales en calidad, medio ambiente y seguridad industrial. El conocimiento ganado en el MBA en calidad y operaciones generó un criterio sobre la importancia de manejar procedimientos estandarizados para planificar y ejecutar proyectos efectivos y eficientes con el uso de normas como el PMbok, ISO, etc. El MSc en ciencias del agua e ingeniería sirvió para mejorar el conocimiento en procesos relacionados con el recurso agua con el estudio de Hidrogeología, Climatología, Hidrodinámica, Gestión de Inundaciones, etc.

- MSc en ciencias del agua e ingeniería Alemania / Oct 2011 Sep 2013 UNIVERSIDAD TÉCNICA DE DRESDEN
- MBA en operaciones y calidad Ecuador / Feb 2008 Feb 2014
 ESCUELA POLITÉCNICA NACIONAL
 - Ingeniería civil Ecuador / Oct 2001 Nov 2007

ESCUELA POLITÉCNICA DEL EJÉRCITO

• Secundaria - Ecuador / Oct 1998 - Jul 2001

COLEGIO INTISANA

Primaria – Estados Unidos de América / Nov 1996 - Jun 1998
 SHORELESS LAKE SCHOOL