Amendments to the Claims:

Please cancel claims 50-70 without prejudice.

This listing of claims will replace all prior versions and/or listings of claims in the application.

Claims 1 -33. (Cancelled)

33. (Previously presented) A method for oxidative waste treatment, comprising:

injecting a first fluid of a first temperature at a first flow rate into a second fluid of a second temperature at a second flow rate, wherein the first fluid is corrosive in a corrosive temperature range, wherein the corrosive temperature range excludes the second temperature and includes the first temperature;

transporting the first fluid in a first conduit adapted to transport the first fluid;

transporting the second fluid in a second conduit adapted to transport the second fluid, wherein the first conduit comprises an end within the interior of the second conduit, and wherein the first conduit is in fluid communication with the second conduit; and

mixing the first and the second fluids in the second conduit within a mixing length downstream of the end of the first conduit, wherein the second conduit comprises a tube or liner having at least an inner surface area made of a corrosion resistant material and extending along the mixing length to inhibit corrosion of the second conduit;

wherein the first and second temperatures and the first and second flow rates are selected such that the mixed fluids downstream of the mixing length are at a temperature that is substantially non-corrosive for the first fluid.

- 34. (Previously presented) The method of claim 33, wherein the corrosive temperature range lies between the first temperature and the second temperature.
- 35. (Previously presented) The method of claim 33, wherein the first fluid is corrosive at the first temperature, and wherein at least an inner surface area of the first conduit is made of a corrosion resistant material to inhibit corrosion of the first conduit.
- 36. (Previously presented) The method of claim 33, wherein the first fluid comprises nitric acid, and wherein the corrosive temperature range is between about 270 °C and about 380 °C.
- 37. (Previously presented) The method of claim 33, wherein the first fluid comprises sulfuric acid.
- 38. (Previously presented) The method of claim 33, wherein the first fluid comprises hydrochloric acid.
- 39. (Previously presented) The method of claim 33, wherein the first fluid comprises a halogen.
- 40. (Previously presented) The method of claim 33, wherein the second temperature is selected to be higher than the corrosive temperature range, and wherein the first and second temperatures and the first and second flow rates are selected such that the temperature of the mixed fluids downstream of the mixing length is higher than the corrosive temperature range.
- 41. (Previously presented) The method of claim 40, wherein the second fluid comprises

supercritical water.

- 42. (Previously presented) The method of claim 41, wherein the second fluid comprises nitrogenous compound.
- 43. (Previously presented) The method of claim 33, further comprising feeding the mixed fluids from the second conduit to a reactor of a high pressure and high temperature reaction system for oxidation of waste material.
- 44. (Previously presented) The method of claim 33, wherein the second conduit comprises part of a reactor of a high pressure and high temperature reaction system for oxidation of waste material.
- 45. (Previously presented) The method of claim 33, wherein the second temperature is selected to be lower than the corrosive temperature range, and wherein the first and second temperatures and the first and second flow rates are selected such that the temperature of the mixed fluids downstream of the mixing length is lower than the corrosive temperature range.
- 46. (Previously presented) The method of claim 45, wherein the second fluid comprises cooling water.
- 47. (Previously presented) The method of claim 46, wherein the first fluid comprises destructed supercritical wastewater output from a reactor of a high pressure and high temperature reaction system.
- 48. (Previously presented) The method of claim 47, wherein the mixed fluids in the second conduit are output from the high pressure and high temperature reaction system.

49. (Previously presented) The method of claim 33, wherein at least the inner surface area of the tube or liner is made of a material selected from the group of titanium, zirconium, platinum, tantalum, niobium, or alloys thereof.

Claims 50 - 70 (Cancelled)

Response to Office Action Mailed October 15, 2003

Applicant hereby elects the claims of Group I, namely claims 33-49 drawn to a method, without traverse. Applicant reserves the right to file a divisional application at a later date capturing the subject matter recited in claims 50-70.

Applicant respectfully requests a one-month extension of time to respond to the Office Action dated October 15, 2003. A fee authorization form in the amount of \$55.00 is enclosed for the extension of time fee. If any further extension of time is required, Applicant hereby requests the appropriate extension of time. If any fees are inadvertently omitted or if any additional fees are required or have been overpaid, please appropriately charge or credit those fees to Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C. Deposit Account Number 50-1505/5045-03200/EBM

Respectfully submitted,

Eric B. Meyertons Reg. No. 34,876

Attorney for Applicant

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C. P.O. BOX 398 AUSTIN, TX 78767-0398 (512) 853-8800 (voice) (512) 853-8801 (facsimile)

Date: 11-41-03