Hausdorff Gap の証明

石井大海

2013/09/01 23:38:34 JST

定理 1 (Hausdorff). ブール代数 $\mathfrak{P}\omega$ /Fin について、次を満たす $\{a_{\alpha}\}_{\alpha<\omega_1}$, $\{b_{\alpha}\}_{\alpha<\omega_1}$ が存在する.

- (1) $a_{\alpha} < a_{\beta} < b_{\beta} < a_{\alpha} \ (\alpha < \beta < \omega_1)$
- (2) $a_{\alpha} \leq b \leq b_{\alpha}$ ($\alpha < \omega_1$) を満たすような $b \in \mathfrak{P}\omega$ /Fin は存在しない.

以後, $[\]: \mathfrak{P}\omega \to \mathfrak{P}\omega/\mathrm{Fin}$ を標準写像とする。この定理の証明の為に,幾つかの命題を証明しておく。まず,次の事は簡単に確認出来る:

Fact 1. (i) $[A] = 1 \Leftrightarrow A$ は補有限

- (ii) $[A] \leq [B] \Leftrightarrow A \setminus B \in \text{Fin}$
- (iii) $[A] \neq [B] \Leftrightarrow A \land B \notin Fin$

補題 1. $a_n \le a_{n+1} < 1$ $(n < \omega)$ ならば、 $a_n \le b < 1$ $(n < \omega)$ となるような b が存在する.

Proof. $[A_n] = a_n$ となるような $A_n \subseteq \omega$ を取る. 次のようにして, $j_n < j_{n+1}$ を $A_i \cap [j_n, \omega) \subseteq A_n$ (i < n) を満たすように再帰的に定める.

まず、 $j_0=0$ とする。そこで j_n まで $A_i\cap [j_n,\omega)\subseteq A_n$ (i< n) を満たすように取れているとして、 j_{n+1} を作りたい。ここで、

$$j_{n+1} = \min \left\{ j_n < j < \omega \mid A_n \cap [j, \omega) \subseteq A_{n+1} \right\}$$

により j_{n+1} を定めよう。もし右辺の集合が空集合であれば、どんな $j>j_n$ に対しても $A_n\cap[j,\omega)\subsetneq A_{n+1}$ となるので、 $|A_n\setminus A_{n+1}|=\aleph_0$ となる。しかし、仮定より $[A_n]\leq [A_{n+1}]$ であったので、 $A_n\setminus A_{n+1}\in \mathrm{Fin}$ でなくてはならず、矛盾.よって $n<\omega$ に対し常に題意を満たす j_n が取れる.

次に、 $j_n \leq k_n, k_n < k_{n+1}$ $(n < \omega)$ を満たすように $k_n \notin A_n$ を構成したい。今、仮定より A_n は補有限ではないので、 $\omega \setminus A_n$ は ω で非有界である。よって、このような k_n は常に取れる。

すると、m>n なら $k_m\notin A_n$ が成立する. なぜなら、m>n の時 $A_n\cap [j_m,\omega)\subseteq A_m$ であり、今 $j_m\leq k_m$

であったので $A_n \cap [k_m, \omega) \subseteq A_m$ である.ここで $k_m \in A_n$ とすると, $k_m \in A_n \cap [k_m, \omega) \subseteq A_m$ となるが, $k_m \in \omega \setminus A_m$ なので矛盾.

そこで、 $A = \omega \setminus \{k_n \mid n < \omega\}$ とおけば、b = [A] が求めるものである。まず、構成から A は補有限でないので、b = [A] < 1 である。また、 $A'_n = A_n \cap [k_n, \omega)$ とおけば、 $A_n \setminus A'_n \subseteq [0, k_n) \in \text{Fin}$ より $[A_n] \le [A'_n]$ 。また $A'_n \subset A_n$ より $[A_n] \le [A'_n]$ 。よって $[A_n] = [A'_n] = a_n$ である。 $j \in A'_n$ とすると、 $j > k_n$ かつ $j \ne k_m$ (m > n).よって、 $A'_n \subseteq \omega \setminus \{k_n \mid n < \omega\}$ となるので、 $a_n = [A_n] \le [A] = b$ である。

補題 2. $a_n \le a_{n+1}, b_n \le b_{n+1}, a_n \wedge b_n = 0 \ (n < \omega)$ ならば、 $a_n \le c$ かつ $b_n \wedge c = 0 \ (n < \omega)$ となる c が存在する.

Proof. $a_n = [A_n], b_n = [B_n]$ とする. $a_n \wedge b_n = 0$ より $A_n \cap B_n \in \text{Fin } (n < \omega)$ である. そこで、

$$A_i \cap [j_n, \omega) \subseteq A_n$$

$$A_n \cap B_i \subseteq [0, j_n) \quad (i \le n)$$
(*)

を満たすように $j_n < j_{n+1}$ を取りたい。まず, $A_n \cap B_n \in \mathrm{Fin}$ より, $A_0 \cap B_0 \subseteq [0,j_0)$ となるような最小の j_0 が取れる。この時, $A_0 \cap [j_0,\omega) \subseteq A_0$ は自明に成立しているので,n=0 の時は OK.そこで,(*) を満たす j_n が取れているとき, j_{n+1} を次のように定める:

$$j_{n+1} = \min \{ j_n < j < \omega \mid A_{n+1} \cap B_i \subseteq [0,j) \ (i < n+1), A_n \cap [j,\omega) \subseteq A_{n+1} \}$$

ここで、 $A_{n+1} \cap B_i \subseteq [0,j)$ となるような j が取れることは補題 1 の証明で既に示した。また、 $A_{n+1} \cap B_i \in \mathrm{Fin}\ (i \leq n+1)$ だから、各 i に対し $\subseteq [0,j)$ となるような j が取れる。全順序性より二条件を満たすものは明らかに存在するので、 j_{n+1} は well-defined である。以上から、 $j_n < j_{n+1}$ が取れる。

ここで $A_n' = A_n \cap [j,\omega)$ とおくと、有限の差しかないので $[A_n'] = [A_n] = a_n$ である.そこで、

$$C = \bigcup \{ A'_n \mid n < \omega \} = \bigcup \{ A_n \cap [j_n, \omega) \mid n < \omega \}$$

として, c = [C] とおけば, $a_n \le c$ を満たす。また,

$$\begin{split} B_m \cap C &= \bigcup_{n < \omega} (A_n \cap B_m \cap [j_n, \omega)) \\ &= \bigcup_{n < m} (A_n \cap B_m \cap [j_n, \omega)) \cup \bigcup_{m \le n < \omega} (A_n \cap B_m \cap [j_n, \omega)) \\ &\subseteq \bigcup_{n < m} (A_n \cap B_m \cap [j_n, \omega)) \cup \bigcup_{m \le n < \omega} ([0, j_n) \cap [j_n, \omega)) \\ &\subseteq \bigcup_{n < m} (A_n \cap B_m) \in \operatorname{Fin} \end{split}$$

よって、 $b_m \wedge c = 0 \ (m < \omega)$ も成立.

補題 3. λ を無限順序数とする. $X \subseteq \omega, X_{\alpha} \subseteq \omega$ $(\alpha < \lambda), [X] \leq [Y]$ とする. このとき, もし任意の $k < \omega$ について $\{\alpha < \lambda \mid X_{\alpha} \cap X \subseteq k\}$ が有限なら, Y も同様の性質を満たす.

Proof. 対偶を示す。つまり、 $[X] \leq [Y]$ として、ある $k < \omega$ に対し、 $Y \cap X_{\alpha_j} \subseteq k \ (j < \omega)$ を満たすような $\alpha_j < \omega$ が取れたとする。今、 $[X] \leq [Y]$ より $X \setminus Y \in \mathrm{Fin}$. そこで、 $\ell = \sup^+ (X \setminus Y) < \omega$ と置く.この時、

$$X \cap X_{\alpha_j} = ((X \cap Y) \cup (X \setminus Y)) \cap X_{\alpha_j}$$
$$= (X \cap Y \cap X_{\alpha_j}) \cup (X \setminus Y) \cap X_{\alpha_j}$$
$$\subseteq k \cup \ell = \max(k, \ell)$$

よって $m = \max(k, \ell)$ とおけば $\{ \alpha < \lambda \mid X \cap X_{\alpha} \subseteq m \} \notin \text{Fin となる. よって示された.}$

以上、三つの補題が、以下の証明において本質的な役割を果す。

定理の証明. 以下を満たすように A_{α}, B_{α} ($\alpha < \omega_1$) を帰納的に構成する:

- (a) $[A_{\alpha}] \vee [B_{\alpha}] < 1$
- (b) $[A_{\alpha}] \wedge [B_{\alpha}] = 0$
- (c) $[A_{\alpha}] < [A_{\beta}], [B_{\alpha}] < [B_{\beta}] (\alpha < \beta < \omega_1)$
- (d) 各 $k < \omega, \beta < \omega_1$ に対し、 $\{ \alpha < \beta \mid A_\beta \cap B_\alpha \subseteq k \}$ は有限

 $\alpha = 0$ の時は、 $A_0 = B_0 = \emptyset$ とおけばよい.

 α が後続順序数の時. $A_{\alpha+1}, B_{\alpha+1}$ を作ることを考える. $\beta < \alpha$ とすると、帰納法の仮定より $A_{\alpha} \cup B_{\beta}$ は補有限ではない. そこで、 $\omega \setminus (A_{\alpha} \cup B_{\alpha}) = \{ n_k \mid k < \omega \} \ (\ell < k \Rightarrow n_\ell < n_k)$ として、

$$P = \{ n_k \mid k \equiv 0 \pmod{3} \} \quad Q = \{ n_k \mid k \equiv 1 \pmod{3} \}$$
$$A_{\alpha+1} = A_{\alpha} \cup P \quad B_{\alpha+1} = B_{\alpha} \cup Q$$

とおく. このとき, $\omega \setminus (A_{\alpha+1} \cup B_{\alpha+1}) = \{ n_k \mid k \equiv 2 \pmod{3} \}$ となるので, $[A_{\alpha+1}] \vee [B_{\alpha+1}] < 1$ である. よって条件 (a) は成立. また, 条件 (b) についても,

$$A_{\alpha+1} \cap B_{\alpha+1} = (A_{\alpha} \cup P) \cap (B_{\alpha} \cup Q)$$

$$= (A_{\alpha} \cap B_{\alpha}) \cup \underbrace{(A_{\alpha} \cap Q)}_{=\emptyset} \cup \underbrace{(B_{\alpha} \cap P)}_{=\emptyset} \cup \underbrace{(P \cap Q)}_{=\emptyset}$$

$$= A_{\alpha} \cap B_{\alpha} \in \operatorname{Fin}$$

より $[A_{\alpha+1}] \wedge [B_{\alpha+1}] = 0$ となるので OK.

構成法より $A_{\alpha+1}\setminus A_{\alpha}=P, B_{\alpha+1}\setminus B_{\alpha}=Q$ はいずれも無限集合なので, $[A_{\alpha}]<[A_{\alpha+1}], [B_{\alpha}]<[B_{\alpha+1}]$ である.帰納法の仮定より $[A_{\beta}]<[A_{\alpha}], [B_{\beta}]<[B_{\alpha}]$ ($\beta<\alpha$) が成立するので,これらを組み合わせれば $[A_{\beta}]<[A_{\alpha+1}], [B_{\beta}]<[B_{\alpha+1}]$ ($\beta<\alpha+1$) となり,条件 () も成立.

最後に(d) が成立することを背理法により示そう。そこで, $\{\beta < \alpha + 1 \mid A_{\alpha+1} \cap B_{\beta} \subseteq k\}$ が無限となるような $k < \omega$ が存在したとする。この時,増大列 $\beta_n < \beta_{n+1} \ (n < \omega)$ であって $A_{\alpha+1} \cap B_{\beta_n} \subseteq k$ となるものが取れる。構成から $A_{\alpha} \subseteq A_{\alpha+1}$ であるので, $A_{\alpha} \cap B_{\beta_n} \subseteq k \ (n < \omega)$ となる。これは帰納法の仮定に反す

る. よって (d) も成立. 以上より、 α が後続順序数の時、条件 $(a)\sim (d)$ を満たすように A_{α},B_{α} を作ることが出来る.

 $\alpha=\beta$ が極限順序数の時. $\gamma<\beta$ のとき、帰納法の仮定の (a) および (c) と補題 1 から $[A_{\gamma}]\vee[B_{\gamma}]\leq [X]<1$ $(\gamma<\beta)$ を満たす $X\subseteq\omega$ が取れる.同様に補題より

$$[A_{\gamma}] \le [S], \quad [B_{\gamma}] \land [S] = 0 \qquad (\gamma < \beta) \tag{1}$$

を満たす S が取れ、特に $S \subseteq X$ としてよい (特に $[X] \wedge [S]$ を考えれば、 $[X] \wedge [S] \geq ([A_\gamma] \vee [B_\gamma]) \wedge [S] = [A_\gamma]$ であり、 $[X] \wedge [S] \wedge [B_\gamma] = 0$ なので条件を満たす。また、 $[X] \wedge [S] \subseteq [X]$ より $[S'] = [X] \wedge [S]$ で $S' \subseteq X$ を満たすような S' が取れる).

補題 2 を使って A_{β} を定めたい。そこで,まずは $\beta=\omega$ の場合について, $[B_{\gamma}]$ について補題 2 の前提を満たす列 $S\subseteq [S_k]$ を作りたい:

$$\begin{cases}
[S_k] \leq [S_{k+1}] & (k < \omega) \\
[B_n] \leq [B_{n+1}] & (n < \omega) \\
[S_n] \wedge [B_n] = 0 & (n < \omega)
\end{cases}$$
(2)

今, $I_k=\{n<\omega\mid S\cap B_n\subseteq k\}$ $(k<\omega)$ とおき,これを用いて S を膨らませた列を作ることを考える.上の条件を満たす $[S_k]$ を得るため, $[S_k]\wedge [B_n]=0$ かつ $\{n\in I_k\mid S_{k+1}\cap B_n\subseteq k\}$ が有限となるように $[S_k]$ を帰納的に定める.k=0 の時は, $S_0=S$ とすれば良い.そこで, S_k まで条件を満たすように構成出来 たとして, S_{k+1} を作ろう.

 I_k が有限集合の時は, $S_{k+1}=S_k$ とおく. I_k が無限集合の時を考える. $\{n < m \mid S \cap B_n \subseteq k\}$ は有限集合であるので, $\langle I_k, < \rangle$ は各始切片が有限集合であるような無限整列集合である.このような性質を持つ順序数は ω のみであるので,同型 $e:\omega \to I_k$ が取れ,特に e は狭義単調増加な全射である.更に,このとき $\sup\{e(n)\mid n<\omega\}=\omega$ である.これを示すには,e が全射であることから $\sup\{e(n)\mid n<\omega\}=\sup I_k$ となるので, $\sup I_k=\omega$ を示せばよい.もし $\sup I_k=m<\omega$ とすれば,特に $I_k=\{n< m+1\mid S\cap B_n\subseteq k\}$ と書けることになる.今, $m+1<\omega$ であり,(*) より I_k は有限集合となり,仮定に反する.よって $\sup I_k=\omega$ となる.

さて, $[B_{\alpha}]$ に関する帰納法の仮定(c)より $[B_n]<[B_{n+1}]$ ($n<\omega$)である.よって,数学的帰納法により $0<[B_{e(n)}\setminus\bigcup_{i< n}B_{e(i)}]\leq [X]$ となることがわかる.従って $B_{e(n)}\setminus\bigcup_{i< n}B_{e(i)}$ が無限なので, $p_n\in (B_{e(n)}\setminus\bigcup_{i< n}B_{e(i)})\cap X$ を満たすような $n\leq p_n$ が取れ,特に $p_n< p_{n+1}$ とできる.そこで, $S_{k+1}=\{p_k\mid k<\omega\}\cup S_k$ と置く.この時, $B_{e(m)}\cap \{p_n\mid n<\omega\}\subseteq \{p_n\mid n\leq m\}\in F$ in より $[B_{e(m)}]\wedge [\{p_n\mid n<\omega\}]=0$ であるので,帰納法の仮定と合わせて

$$[S_{k+1}] \wedge [B_{e(m)}] = ([\{ p_k \mid k < \omega \}] \wedge [B_{e(m)}]) \vee ([S_k] \wedge [B_{e(m)}])$$

= 0 \leq 0 = 0

を得る.

最後に $\ell < \omega$ について $\{n \in I_k \mid S_{k+1} \cap B_n \subseteq \ell\}$ が有限であることを示す。まず,先程の議論より e は ω から I_k への順序同型なので $\{n \in I_k \mid S_{k+1} \cap B_n \subseteq \ell\} \approx \{n < \omega \mid S_{k+1} \cap B_{e(n)} \subseteq \ell\}$ である。今, $S_{k+1} \cap B_{e(n)} = (\{p_k \mid k < \omega\} \cap B_{e(n)}) \cup (S_k \cap B_{e(n)})$ なので,これが $\subseteq \ell$ となるには, $\{p_k \mid k \leq n\} \subseteq \ell$ となる必要があり,特に $p_n < \ell$ でなくてはならないが, p_n の取り方より $n \leq p_n$ に取っているので, $n < \ell$ でなくてはならない。よって, $S_{k+1} \cap B_{e(n)} \subseteq \ell$ に含まれるような n の候補は高々 ℓ 個しかない。よって, $\{n \in I_k \mid S_{k+1} \cap B_n \subseteq \ell\}$ は有限である。

以上より、(2) を満たすように S_k $(k < \omega)$ を取ることが出来た.よって、補題 2 よりある $[A_\omega]$ が存在し、

$$[S_k] \leq [A_\omega], [A_\omega] \wedge [B_n] = 0 \ (n < \omega)$$

となる. 特に、先程 S を取った時と同様な議論により $A_\omega\subseteq X$ としてよい. よって、特に $[A_\omega]\le [X]<1$ である.

そこで、 $B_{\omega} = X \setminus A_{\omega}$ とおいて、これが条件 $(a) \sim (d)$ を満たすことを示す.

- (a) $[A_{\omega}] \vee [B_{\omega}] = [X] < 1$ なので成立.
- (b) $[A_{\omega}] \wedge [B_{\omega}] = [\emptyset] = 0$ より成立.
- (c) $n < \omega$ とすれば、帰納法の仮定により $[A_n] < [A_{n+1}] \le [S_0] \le [A_\omega]$ より $[A_n] < [A_\omega]$. また、 $B_n \setminus B_\omega = B_n \cap A_n \in \text{Fin }$ なので $[B_n] \le [B_\omega]$. よって、先程と同様の議論により $[B_n] < [B_{n+1}] \le B_\omega$ となる.よって OK.
- (d) 任意の $k<\omega$ に対し、 $\{n<\omega\,|\,A_\omega\cap B_n\subseteq k\}$ が有限であることを示す。もし $I_k=\{n<\omega\,|\,S\cap B_n\subseteq k\}$ が有限であれば、 $[S]\leq [A_n]$ であることから補題 3 が適用出来、 $\{n<\omega\,|\,A_\omega\cap B_n\subseteq k\}$ も有限となる。

そこで、 I_k が無限の場合を考える。この時、構成法から $\{n \in I_k \mid S_{k+1} \cap B_n \subseteq k\}$ は有限である。よって、構成時に使った e について、 $\{n < \omega \mid S_{k+1} \cap B_{e(n)} \subseteq k\}$ も有限。今、 $[S_{k+1}] \leq [A_\omega]$ より、補題 3 から $\{n < \omega \mid A_\omega \cap B_{e(n)} \subseteq k\}$ も有限となる。そこで、 $n_0 = \sup^+ \{n < \omega \mid A_\omega \cap B_{e(n)} \subseteq k\}$ とおけば $e(n_0) < \omega$ なので、 $\{n < e(n_0) \mid A_\omega \cap B_n \subseteq k\}$ は有限となる。 n_0 の取り方と I_k の定義より、 $\{n < \omega \mid A_\omega \cap B_n \subseteq k\}$ となるので示された。

最後に $\beta>\omega$ の場合を考える。 $\omega<\beta<\omega_1$ より, β は基数でないので特に特異順序数である。また, β は可算な極限順序数であるので, $cf(\beta)=\omega$ となる。そこで, $f:\omega\to\beta$ を狭義単調増加な共終写像とする。この時, $A'_n=A_{f(n)}, B'_n=B_{f(n)}$ を考えると, A_α, B_α に関する帰納法の仮定から,上の議論を適用でき, A'_ω, B'_ω が取れる。そこで $A_\beta=A'_\omega, B_\beta=B'_\omega$ とおけば,これが題意を満たすものとなっていることがわかる:(a), (b) が成り立つことは明らか。(c) については, $\alpha<\beta$ とすると, ω の β での共終性から $n<\omega$ で $\alpha\leq f(n)$ となるものが取れる。よって $[A_\alpha]\leq [A_{f(n)}]<[A_\beta]$ となる。 $[B_\beta]$ についても同様である。(d) については,少し議論が必要である。まず,各 $k<\omega$ に対し $J_k=\left\{n<\omega\,\middle|\, A_\beta\cap B_{f(n)}\subseteq k\right\}$ は有限個である。そこで $n=\max J_k$ とおくと,f の共終性と B_n の単調性から $\left\{\alpha<\beta\,\middle|\, A_\beta\cap B_\alpha\subseteq k\right\}$ は有限。そこのに対しるので,相題 3 から $\left\{\alpha< f(n+1)\,\middle|\, A_{\beta\cap B_\alpha\subseteq k}\right\}$ は有限。 $\left\{\alpha, C_{\beta(n+1)}\,\middle|\, C_{\beta(n$

以上より、 $(a)\sim(d)$ を満たすような列 A_{α},B_{α} $(\alpha<\omega_1)$ が取れた.そこで、 $a_{\alpha}=[A_{\alpha}],b_{\alpha}=\neg[B_{\alpha}]$ とおけば,これが定理の主張する列となることを示す.

まず, $a_{\alpha} < a_{\beta}, b_{\beta} < b_{\alpha}$ $(\alpha < \beta)$ は条件 (c) から直ちに従う. また, 条件 (b) より $a_{\alpha} \land \neg b_{\alpha} = [A_{\alpha}] \land [B_{\alpha}] = 0$ なので、ブール代数の一般論から $a_{\alpha} \leq b_{\alpha}$ となる.また、同様に条件 (a) から $a_{\alpha} \lor \neg b_{\alpha} = [A_{\alpha}] \lor [B_{\alpha}] < 1$ なので $b_{\alpha} \not\leq a_{\alpha}$ である.よって $a_{\alpha} < b_{\alpha}$ $(\alpha < \omega_{1})$ となる.以上より $a_{\alpha} < a_{\beta} < b_{\beta} < b_{\alpha}$ $(\alpha < \beta < \omega_{1})$ は示された.

二つめの条件を示せば、証明が完了する。 そこで、 $a_{\alpha} \leq b \leq b_{\alpha} \ (\alpha < \omega_1)$ となるような b が存在したとして、矛盾を導こう。まず $\{\alpha < \omega_1 \mid B \cap B_{\alpha} \subseteq k\}$ が有限であることを示す。証明には、次の二つの命題を

使う:

命題 1. κ : 正則基数, $X_{\alpha} \subseteq X_{\beta}$ ($\alpha < \beta < \kappa$) とする. この時, $\{X_{\alpha} \mid \alpha < \kappa\}$ に包含関係に関する最大元が存在しない $\Rightarrow |\bigcup \{X_{\alpha} \mid \alpha < \kappa\}| \geq \kappa$

Proof. $\delta_0=0, \delta_\beta=\min\left\{\,\gamma<\kappa\,\,\Big|\,\,X_\gamma\setminus\bigcup_{\alpha<\beta}X_{\delta_\alpha}\neq\emptyset\,\right\}\,\,(\beta\neq0)$ とおく、この時、任意の $\beta<\kappa$ に対し δ_β が定まる。もしある $\beta<\kappa$ に対し $\left\{\,\gamma<\kappa\,\,\Big|\,\,X_\gamma\setminus\bigcup_{\alpha<\beta}X_{\delta_\alpha}\neq\emptyset\,\right\}=\emptyset$ となったとすると、

$$\forall \gamma < \kappa, \, X_{\gamma} \subseteq \left\{ \, \left\{ \, X_{\delta_a} \mid \alpha < \beta \, \right\} \right.$$

が成立する。今, κ は正則なので, $\left\{\delta_{\alpha} \mid \alpha < \beta\right\}$ は κ で有界となる。よって, $\delta = \sup\left\{\delta_{\alpha} \mid \alpha < \beta\right\} < \kappa$ が 定まり,条件から $X_{\delta_{\alpha}} < X_{\delta}$ となる。すると,上の議論から X_{γ} が $\left\{X_{\alpha} \mid \alpha < \kappa\right\}$ の最大元となり矛盾。よって δ_{β} は well-defined である。そこで, $x_{\beta} \in X_{\delta_{\beta}} \setminus \bigcup \left\{X_{\delta_{\alpha}} \mid \alpha < \beta\right\}$ を取れば,各 x_{β} はそれぞれ異なるので, $\left|\left\{x_{\beta} \mid \beta < \kappa\right\}\right| = \kappa$ である。よって $\left\{x_{\beta} \mid \beta < \kappa\right\} \subseteq \bigcup \left\{X_{\alpha} \mid \alpha < \kappa\right\}$ なので $\left|\bigcup \left\{X_{\alpha} \mid \alpha < \kappa\right\}\right| \geq \kappa$ となる。

更に,次の命題も成立する:

命題 2. κ : 基数, F_{α} : 有限集合, $(\alpha < \kappa)$, $F_{\alpha} \subseteq F_{\beta}$ $(\alpha < \beta < \kappa) \Longrightarrow |\bigcup \{F_{\alpha} \mid \alpha < \kappa\}| \leq \omega$

Proof. まず、包含関係に関して正則基数型を持つ $\{F_{\alpha} \mid \alpha < \kappa\}$ の共終部分集合を取る。共終性より、その共終部分集合の和集合は元の集合の和と一致するから、以後、 κ は正則基数だと思えばよい。

そこで、命題1に倣って

$$\delta_0 = 0, \delta_\beta = \min \left\{ \gamma < \kappa \mid X_\gamma \setminus \bigcup_{\alpha < \beta} X_{\delta_\alpha} \neq \emptyset \right\} (\beta \neq 0)$$

とおき、 x_{β} を命題 1 と同様に定義する。 δ_{β} が定義されるような β の全体は明らかに順序数となるので,それを α と置く.この時, $\alpha \leq \omega$ である.もしこの $\alpha > \omega$ とすると, $\kappa > \omega$ であり,このとき $\{x_n \mid n < \omega\} \subseteq F_\omega$ となってしまい, F_i の有限性に反するからである.もし $\kappa \leq \omega$ ならば,可算集合の可算和は高々可算であることから主張は明らか.そこで, $\kappa > \omega$ とする. κ は正則としてよかったので, $\delta = \sup^+ \delta_\alpha < \kappa$ が取れ,上の議論から特に $\delta \leq \omega$ となる.もし, $\delta = \omega$ とすると, δ_n の取り方より $F_{\delta_n} \subsetneq F_{\delta_m}$ (n < m) なので, F_ω が無限集合となり矛盾.よって,この場合は $\delta < \omega$ となるので,わかり易いように $N = \delta$ と書くことにする.このとき, $F_{\delta_n} \subsetneq F_{\gamma}$ (n < N) となるような $\gamma < \kappa$ が存在すれば, $F_{\gamma} \setminus \bigcup \{F_{\delta_n} \mid n < N\} \neq \emptyset$ なので, $\gamma = \delta_N$ となり矛盾.よって, $\{F_{\delta_n} \mid n < N\}$ は非有界なので,その和は元の集合の和に一致し,特に有限集合の有限和となるので,全体として有限になる.以上より,命題は示された.

以上の二つの命題を踏まえて、 $J_k=\{\, \alpha<\omega_1\mid B\cap B_\alpha\subseteq k\,\}$ の有限性を証明する.まず A_α,B_α の構成法

より、 $\beta < \omega_1$ について、 $\{\alpha < \beta \mid A_\beta \cap B_\alpha \subseteq k\}$ は有限である。よって、補題 3 および仮定の $[A_\beta] \leq [B]$ より $\{\alpha < \beta \mid B \cap B_\alpha \subseteq k\}$ も有限となる。

そこで、 $F_{\beta} = \{ \alpha < \beta \mid B \cap B_{\alpha} \subseteq k \}$ $(\beta < \omega_1)$ とおけば、 $\{ F_{\beta} \mid \beta < \kappa \}$ は有限集合族であり、明らかに $F_{\alpha} \subseteq F_{\beta}$ $(\alpha < \beta)$ となる。また、明らかに $J_k = \bigcup \{ F_{\alpha} \mid \alpha < \omega_1 \}$ である。すると、命題 2 より $|\bigcup \{ F_{\alpha} \mid \alpha < \kappa \}| \leq \omega < \omega_1$ である。よって、 ω_1 の正則性と命題 1 の対偶より、 $\{ F_{\alpha} \mid \alpha < \omega_1 \}$ は最大元 F_{γ} を持つ。よって、 $F_{\alpha} \subseteq F_{\gamma}$ $(\alpha < \omega_1)$ より $J_k = \bigcup \{ F_{\alpha} \mid \alpha < \omega_1 \} = F_{\gamma}$ となる。 F_{γ} は有限だったから、各 J_k も有限となる。

すると、 $\bigcup_{n<\omega}J_n$ は有限集合の可算和なので高々可算である。よって、 $\alpha_0\in\omega_1\setminus\bigcup_{n<\omega}J_n$ が取れ、各 J_k の定義より $B\cap B_{\alpha_0}$ は無限集合となる。よって、 $b\wedge\neg[b_{\alpha_0}]=[B]\wedge[B_{\alpha_0}]>0$ となるので、ブール代数の一般論より $b\not\leq b_{\alpha_0}$ となる。これは $b\leq b_{\alpha}$ に反する。よって、このような b は存在しない。