Factor Analysis Examples

PC method vs ML method on stock data

STAT 32950-24620

Spring 2025 (wk2)

1/30

Orthogonal factor model assumptions

Assumptions on common factors

•
$$E(F) = 0_m$$

•
$$Cov(F) = I_m$$

Assumptions on errors (specific factors)

• $E(\varepsilon) = 0_p$,

Assumptions on covariance between common and specific factors

•
$$Cov(\varepsilon) = diag\{\psi_1, \cdots, \psi_p\} = \Psi$$

•
$$Cov(F, \varepsilon) = E(F\varepsilon') = 0_{m \times p}$$

•
$$Cov(\varepsilon, F) = E(\varepsilon F') = 0_{p \times m}$$

Orthogonal Factor Model

$$X = \mu + LF + \varepsilon$$

• $X = [X_1 \cdots X_p]'$

— Observable, random, $E(X) = \mu$

• $F = [F_1 \cdots F_m]'$

— Latent factors, unobservable, random

• $L = L_{p \times m}, m \le p$

— Factor loading matrix, parameters, to be estimated

2/30

Covariance structure in factor model

Key structure assumption of the model:

$$\Sigma = LL' + \Psi$$

$$Cov(X, F) = L$$

where

$$\Sigma = Cov(X)$$

under the factor relation

$$X = \mu + LF + \epsilon$$

FA parameter estimation methods

- By Principal Components
- By Maximum Likelihood

The Maximum Likelihood method is usually preferred.

5/30

Obtain the e-vector e_i for the L matrix

```
# Using original data (alternative: var. variance=1 later)
summary(princomp(stock), loading=T)
```

```
## Importance of components:
                         Comp.1 Comp.2 Comp.3 Comp.4 (
## Standard deviation
                         0.0368 0.02635 0.01585 0.01188 0
## Proportion of Variance 0.5293 0.27133 0.09822 0.05518 0.
## Cumulative Proportion 0.5293 0.80059 0.89881 0.95399 1.
##
## Loadings:
             Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## JPMorgan
             0.223 0.625 0.326 0.663 0.118
              0.307 0.570 -0.250 -0.414 -0.589
## Citibank
## WellsFargo 0.155 0.345
                                 -0.497 0.780
## Shell
              0.639 -0.248 -0.642 0.309 0.148
## Exxon
             0.651 -0.322 0.646 -0.216
```

Principal factor estimation method

$$L_m = \left[\sqrt{\lambda_1}e_1, \cdots, \sqrt{\lambda_m}e_m\right], \quad m \leq p$$

When m = p: $\Sigma = L_p L'_p$

When m < p: $\Sigma = L_m L'_m + \cdots$

In orthogonal factor model

$$X = \mu + LF + \varepsilon$$

PC method uses the approximation

$$\Sigma \approx L_m L_m' + \Psi$$

for factor model with m < p factors.

6/30

Obtain λ_i for the L matrix

```
rtev = princomp(stock)$sdev # =sqrt of e-values of cov(X)
sqrt(eigen(cov(stock))$values) # verify: same as above
```

[1] 0.03698 0.02648 0.01593 0.01194 0.01090

rtev

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 ## 0.03680 0.02635 0.01585 0.01188 0.01085

7/30

Two common factors (PC method)

Choose m=2

Take the first 2 PC's

$$Y_i = e_i' X, \quad i = 1, 2.$$

On original data (using covariance matrix)

princomp(stock)\$loading[,1:2]

```
## Comp.1 Comp.2

## JPMorgan 0.2228 0.6252

## Citibank 0.3073 0.5704

## WellsFargo 0.1548 0.3445

## Shell 0.6390 -0.2479

## Exxon 0.6509 -0.3218
```

9/30

Factor loadings for m=2 (PC method)

$$L_2 = \left[\sqrt{\lambda_1} e_1, \sqrt{\lambda_2} e_2 \right]$$

Scale the PC variables by $\sqrt{\lambda_i}$ to get common factor loadings:

```
## [,1] [,2]
## JPMorgan 0.008200 0.016475
## Citibank 0.011309 0.015030
## WellsFargo 0.005697 0.009078
## Shell 0.023515 -0.006534
## Exxon 0.023955 -0.008481
```

10/30

Plot of variables on two factors (PC method)

```
plot(L,type="n",main="Var. loadings on 2 common factors")
text(L,labels=(row.names(L)),col=1:5)
```

Var. loadings on 2 common factors

Comparison: Plot of variables on PC1 and PC2

Covariance structure estimation (PC method)

Model assumption

$$\Sigma = LL' + \Psi$$

PC estimation method:

Let

$$\hat{L} = \hat{L}_m$$

Then

$$\widehat{\Sigma} \approx \widehat{\mathit{L}}\widehat{\mathit{L}}' + \widehat{\Psi}$$

13 / 30

Estimate of LL'

Get $\widehat{L}\widehat{L}'$, the estimate of LL'

```
LLT= L%*%t(L)
round(10000*LLT,3)
```

	${\tt JPMorgan}$	Citibank	WellsFargo	Shell	Exxon
JPMorgan	3.387	3.404	1.963	0.852	0.567
Citibank	3.404	3.538	2.009	1.677	1.434
WellsFargo	1.963	2.009	1.149	0.747	0.595
Shell	0.852	1.677	0.747	5.957	6.187
Exxon	0.567	1.434	0.595	6.187	6.458
	JPMorgan Citibank WellsFargo Shell Exxon	JPMorgan 3.387 Citibank 3.404 WellsFargo 1.963 Shell 0.852	JPMorgan 3.387 3.404 Citibank 3.404 3.538 WellsFargo 1.963 2.009 Shell 0.852 1.677	JPMorgan 3.387 3.404 1.963 Citibank 3.404 3.538 2.009 WellsFargo 1.963 2.009 1.149 Shell 0.852 1.677 0.747	Citibank 3.404 3.538 2.009 1.677 WellsFargo 1.963 2.009 1.149 0.747 Shell 0.852 1.677 0.747 5.957

14 / 30

Estimate of specific factor matrix Φ (PC method)

Get the estimate of $\Psi = Cov(\varepsilon)$ (×10⁴)

```
## get the specific factors
Psi = diag(cov(stock)) - diag(LLT)
round(10000*Psi,3)
```

```
## JPMorgan Citibank WellsFargo Shell Exxon ## 0.946 0.849 1.091 1.268 1.199
```

Compared with sample variance $s_{ii} = s_i^2 \ (\times 10^4)$

```
## get sample variance
round(10000*diag(cov(stock)),3)
```

##	JPMorgan	Citibank	WellsFargo	Shell	Exxon
##	4.333	4.387	2.240	7.225	7.657

15 / 30

Estimate of communality h_i^2 (PC method)

Get the estimate of communality $h_i^2 = \ell_{i1}^2 + \cdots + \ell_{im}^2$ (×10⁴), the portion of $Var(X_i)$ explained by common factors, which are diagonal elements of estimated LL':

```
## get communality h_i^2
round(10000*diag(LLT),3)
```

##	JPMorgan	Citibank	WellsFargo	Shell	Exxon
##	3.387	3.538	1.149	5.957	6.458

%vaiance explained by each common factor (PC)

For $j = 1, \dots, m$.

$$\frac{\hat{\ell}_{1j}^2 + \dots + \hat{\ell}_{pj}^2}{s_{11} + \dots + s_{pp}} = \frac{(\sqrt{\hat{\lambda}_j} e_j)(\sqrt{\hat{\lambda}_j} e_j)'}{tr(\mathbf{S})} = \frac{\hat{\lambda}_j ||e_j||^2}{tr(\mathbf{S})} = \frac{\hat{\lambda}_j}{\sum_{i=1}^p \hat{\lambda}_i}$$

eigen(cov(stock))\$value[1:2]/sum(eigen(cov(stock))\$value)
[1] 0.5293 0.2713

17 / 30

Maximum loading with m=5 factors (PC method)

```
1.5=
princomp(stock)$loading[,1:5]%*%
  +diag((princomp(stock)$sdev))
round(L5,4)
##
                [,1]
                        [,2]
                                [,3]
                                       [,4]
                                               [.5]
## JPMorgan 0.0082 0.0165 0.0052 0.0079
                                            0.0013
## Citibank
             0.0113 0.0150 -0.0040 -0.0049 -0.0064
## WellsFargo 0.0057 0.0091 -0.0006 -0.0059 0.0085
## Shell
             0.0235 -0.0065 -0.0102 0.0037 0.0016
## Exxon
             0.0240 -0.0085 0.0102 -0.0026 -0.0010
```

The approximation $\Sigma \approx L_2 L_2' + \Psi \ (\times 10^4)$

```
round((LLT + diag(Psi))*10000,2)
              JPMorgan Citibank WellsFargo Shell Exxon
                  4.33
                            3.40
                                       1.96 0.85 0.57
## JPMorgan
## Citibank
                           4.39
                  3.40
                                       2.01 1.68 1.43
## WellsFargo
                  1.96
                           2.01
                                       2.24 0.75 0.59
## Shell
                                       0.75 7.22 6.19
                  0.85
                           1.68
## Exxon
                  0.57
                                       0.59 6.19 7.66
                           1.43
Sample \Sigma (\times 10^4)
round((cov(stock))*10000,2)
##
              JPMorgan Citibank WellsFargo Shell Exxon
## JPMorgan
                  4.33
                            2.76
                                       1.59 0.64 0.89
## Citibank
                  2.76
                           4.39
                                       1.80 1.81 1.23
## WellsFargo
                  1.59
                           1.80
                                       2.24 0.73 0.61
## Shell
                  0.64
                           1.81
                                       0.73 7.22 5.08
                                       0.61 \quad 5.08 \quad 7.66_{18/30}
## Exxon
                  0.89
                           1.23
```

Numerical rounding errors

We should have $L_5L_5'=\Sigma$ in theory, but there are rounding errors. . .

round((L5%*%t(L5))*10000,2)

```
##
              JPMorgan Citibank WellsFargo Shell Exxon
## JPMorgan
                  4.29
                           2.73
                                      1.57 0.63 0.88
## Citibank
                  2.73
                           4.34
                                      1.78 1.80 1.22
## WellsFargo
                  1.57
                           1.78
                                      2.22 0.73 0.60
## Shell
                  0.63
                           1.80
                                      0.73 7.15 5.03
## Exxon
                  0.88
                           1.22
                                      0.60 5.03 7.58
round((cov(stock))*10000,2)
##
              JPMorgan Citibank WellsFargo Shell Exxon
## JPMorgan
                  4.33
                           2.76
                                      1.59 0.64 0.89
                  2.76
## Citibank
                           4.39
                                      1.80 1.81 1.23
## WellsFargo
                  1.59
                           1.80
                                      2.24 0.73 0.61
## Shell
                  0.64
                           1.81
                                      0.73 7.22 5.08
                                      0.61 \quad 5.08 \quad 7.66_{20/30}
                           1.23
## Exxon
                  0.89
```

Factor model estimation by Maximum Likelihood method

```
Create normalized data with variance = 1
normdata=(as.matrix(stock))%*%diag(1/sqrt(diag(cov(stock)))
dim(normdata)
## [1] 103 5
cov(normdata)
##
           Γ.17
                  [.2]
                        [,3]
                                [,4]
                                       [,5]
## [1,] 1.0000 0.6323 0.5105 0.1146 0.1545
## [2,] 0.6323 1.0000 0.5741 0.3223 0.2127
## [3,] 0.5105 0.5741 1.0000 0.1825 0.1462
## [4,] 0.1146 0.3223 0.1825 1.0000 0.6834
## [5,] 0.1545 0.2127 0.1462 0.6834 1.0000
```

```
ML2 =factanal(normdata,2, rotation="none")
ML2$call

## factanal(x = normdata, factors = 2, rotation = "none")
ML2$method

## [1] "mle"
ML2$uniquenesses

## [1] 0.4165 0.2747 0.5420 0.0050 0.5298

ML2$loadings # next page
```

22 / 30

Proportion of vaiance explained by 2 common factors (ML)

```
## Loadings:
           Factor1 Factor2
## [1,] 0.121
                        0.754
## [2,] 0.328
                        0.786
    [3,] 0.188
                        0.650
## [4.] 0.997
## [5,] 0.685
##
                          Factor1 Factor2
## SS loadings
                             1.622
                                       1.610
## Proportion Var
                            0.324
                                        0.322
## Cumulative Var
                            0.324
                                        0.646
        \frac{\hat{\ell}_{1j}^2 + \dots + \hat{\ell}_{pj}^2}{s_{11} + \dots + s_{pp}} = \frac{\hat{\ell}_{1j}^2 + \dots + \hat{\ell}_{pj}^2}{p}, \qquad j = 1, \dots, m.
```

Plots of variables on two factors

Lm = factanal(normdata,2,rotation="none")\$loading[,1:2]
plot(Lm,type="n",main="Factor loadings (m=2) by ML")
text(Lm,labels=(row.names(L)),col=1:5)

Factor loadings (m=2) by ML

23 / 30

Remarks on ML method for FA

• ML method for FA always estimate correlation matrix

```
factanal(stock,2,rotation="none") #same as using normdata
```

Large sample test for the number of common factors*

```
ML2$STATISTIC # Bartlett chisq approximation for LR test

## objective
## 1.974

ML2$dof # [(p-m)^2 - p - m]/2

## [1] 1

ML2$PVAL # p-value

## objective
## 0.16
```

25 / 30

Check model performance

```
Residual matrix = \Sigma - LL' - \Psi
```

PC (m=2) on correlation matrix

```
##
             JPMorgan Citibank WellsFargo Shell Exxon
## JPMorgan
                0.000
                        -0.099
                                   -0.185 -0.025 0.056
## Citibank
               -0.099
                        0.000
                                  -0.134 0.014 -0.054
               -0.185
                      -0.134
                                   0.000 0.003 0.006
## WellsFargo
## Shell
               -0.025
                        0.014
                                  0.003 0.000 -0.156
## Exxon
                0.056
                       -0.054
                                   0.006 -0.156 0.000
```

Factor estimations by ML vs PC

```
Check residuals \Sigma - LL' - \Psi
ML (m=2)
Lm = factanal(normdata,2, rotation="none")$loading[,1:2]
Psim = factanal(normdata, 2, rotation="none") uniq
# Residual matrix for m = 2, using ML method
round(cor(stock) - Lm%*%t(Lm) - diag(Psim).3)
              JPMorgan Citibank WellsFargo Shell Exxon
                                                0 0.052
## JPMorgan
                 0.000
                          0.000
                                     -0.003
## Citibank
                          0.000
                                                0 - 0.033
                 0.000
                                     0.002
## WellsFargo
                -0.003
                          0.002
                                     0.000
                                                0 0.001
## Shell
                 0.000
                          0.000
                                     0.000
                                                0.000
                         -0.033
                                                0.000
## Exxon
                 0.052
                                     0.001
```

26 / 30

Which method is better for this data set?

- Compare proportions of variation explained
- Compare residual matrix (1-norm, 2-norm)

```
# ML methods sum-abs and sum-sq of residual(ij), m=2
c(sum(abs(cor(stock) - Lm%*%t(Lm) - diag(Psim))),
    sum((cor(stock) - Lm%*%t(Lm) - diag(Psim))^2))

## [1] 0.180946 0.007612

#PC method sum-abs, sum-sq of residuals, m=2, corr mat
c(sum(abs(cor(stock) - Ln%*%t(Ln) - diag(rep(1,5)
    - diag(Ln%*%t(Ln)))), sum((cor(stock) -
Ln%*%t(Ln) - diag(rep(1,5) - diag(Ln%*%t(Ln))))^2))

## [1] 1.4630 0.1861
```

Optimality of PC in F-norm:

```
W/O diagonal Ψ, PC should be optimal low-dim approx by F-norm
# ML methods sum-abs and sum-sq of residual(ij), m=2
c(sum(abs(cor(stock) - Lm%*%t(Lm))),
   sum((cor(stock) - Lm%*%t(Lm))^2))
## [1] 1.9490 0.8311
#PC method sum-abs, sum-sq of residuals, m=2,corr mat
c(sum(abs(cor(stock) - Ln%*%t(Ln))),
   sum((cor(stock) - Ln%*%t(Ln))^2))
## [1] 2.6187 0.4756
```

Comparison: Specific var ψ estimates

```
diag(cor(stock) - Lm%*%t(Lm)) # ML diagonal Psi
     JPMorgan
               Citibank WellsFargo
                                        Shell
                                                   Exxon
    0.416538
               0.274690 0.542023 0.004998
                                                0.529843
diag(cor(stock) - Ln%*%t(Ln)) # PC diagonal Psi
               Citibank WellsFargo
##
     JPMorgan
                                        Shell
                                                   Exxon
##
      0.2732
                 0.2305
                            0.3329
                                       0.1527
                                                  0.1665
round(cor(stock),2)
             JPMorgan Citibank WellsFargo Shell Exxon
##
## JPMorgan
                                     0.51 0.11 0.15
                 1.00
                          0.63
## Citibank
                 0.63
                          1.00
                                     0.57 0.32 0.21
## WellsFargo
                          0.57
                 0.51
                                     1.00 0.18 0.15
## Shell
                 0.11
                          0.32
                                     0.18 1.00 0.68
## Exxon
                 0.15
                          0.21
                                     0.15 0.68 1.00
                                                     30 / 30
```