Algebra liniowa 1R, Lista 3

- 1. a) Sprawdź, że przekształcenie $\binom{x}{y} \to \binom{ax+by}{cx+dy}$ jest addytywne i jednorodne.
 - b) Sprawdź, że dla dowolnych macierzy M, N, L i wektora U: (MN)U = M(NU), L(MN) = (LM)N.
 - c) Udowodnij bezpośrednim rachunkiem wzór $\det(MN) = \det M \det N$.
- 2. Oblicz MN oraz NM dla (a) $M=\begin{pmatrix}1&2\\-1&1\end{pmatrix},\,N=\begin{pmatrix}3&-4\\2&1\end{pmatrix}$, (b) $M=\begin{pmatrix}1&2\\7&1\end{pmatrix},\,N=\begin{pmatrix}1&1\\0&3\end{pmatrix}$.
- 3. Znajdź macierze P_U oraz S_U gdy $U = {\binom{-1}{3}}$
- 4. Narysuj w układzie współrzędnych obraz siatki $\left\{ {x \choose y} : (x \in \mathbf{Z}) \lor (y \in \mathbf{Z}) \right\}$ przez przekształcenie liniowe zadane macierzą: (a) ${4-1 \choose 1}$; (b) ${-2 \choose -3}$.
- 5. Policz M^{-1} dla następujących macierzy M: $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, $\begin{pmatrix} 3 & -4 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 \\ 7 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}$, $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$.
- 6. Znajdź wzór we współrzędnych opisujący przekształcenie:
 - (a) $P_{\binom{1}{0}}$, (b) $T_{\binom{3}{4}} \circ P_{\binom{1}{0}}$, (c) $R_{\pi} \circ T_{\binom{1}{2}}$, (d) $R_{\pi/3}$.
- 7. Znajdź macierz liniowego przekształcenia płaszczyzny A wiedząc że (a) $A\binom{5}{0} = \binom{3}{1}$, $A\binom{0}{7} = \binom{-2}{3}$, (b) $A\binom{4}{1} = \binom{2}{3}$, $A\binom{1}{-1} = \binom{0}{1}$.
- 8. Czy prawdziwy jest wzór $\det(A+B) = \det(A) + \det(B)$? Udowodnij lub podaj kontrprzykład.
- 9. Znajdź przekształcenie liniowe $J: \mathbf{R}^2 \to \mathbf{R}^2$, takie by dla dowolnych $U, V \in \mathbf{R}^2$ zachodził wzór $\det(U, V) = \langle U, J(V) \rangle$.
- 10. Znajdź wszystkie macierze M takie, że $M \left(\begin{smallmatrix} 3 & 0 \\ 0 & 4 \end{smallmatrix} \right) = \left(\begin{smallmatrix} 3 & 0 \\ 0 & 4 \end{smallmatrix} \right) M.$
- 11. Sprawdź, że pomnożenie dowolnej macierzy M przez macierz $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ z lewej strony zamienia rzędy macierzy M, zaś z prawej strony zamienia jej kolumny. Opisz słowami co dzieje się z macierzą M po pomnożeniu jej z prawej strony przez $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- 12. Rozwiąż podane równania macierzowe posługując się macierzami odwrotnymi:

$$(a) \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} M = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix}, \quad (b) \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} M \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 2 & 2 \end{pmatrix}.$$

- 13. Niech S_x , S_y będą odbiciami względem osi układu, P_x , P_y rzutami prostokątnymi na osie, J_r jednokładnością o skali r (względem początku układu) zaś R_θ obrotem o kąt θ (wokół początku układu).
 - (a) Napisz macierze powyższych przekształceń.
 - (b) Posługując się macierzami uzasadnij, że $R_{\pi/2} \circ S_x \circ R_{-\pi/2} = S_y$, $J_r \circ J_s = J_{rs}$, $R_\theta \circ R_\phi = R_{\theta+\phi}$.
 - (c) Posługując się macierzami rozpoznaj następujące przekształcenia złożone: $R_{\pi/2} \circ P_y \circ R_{-\pi/2}$, $S_x \circ S_y$, $S_x \circ P_x$, $P_x \circ S_x$, $P_x \circ P_y$.
- 14. Niech $U, W \in \mathbf{R}^2$ będą liniowo niezależne.
 - a) Uzasadnij, że dowolny $X \in \mathbf{R}^2$ zapisuje się jednoznacznie w postaci kombinacji liniowej U, W.
 - b) Uzasadnij, że jeśli F,G są przekształceniami liniowymi płaszczyzny, takimi że F(U)=G(U) i F(W)=G(W), to F=G.
 - c) Uzasadnij, że dla dowolnych wektorów A, B istnieje (jedyne) przekształcenie liniowe płaszczyzny F, takie że F(U) = A, F(W) = B.
- 15. Udowodnij dla dowolnych macierzy odwracalnych wzory $\det(M^{-1}) = \frac{1}{\det(M)}, (MN)^{-1} = N^{-1}M^{-1}.$
- 16. Napisz we współrzędnych wzór na S_{ℓ} , gdzie ℓ jest prosta 2x + 3y = 5.
- 17. Niech A, B będą macierzami 2×2 . Uzasadnij, że jeśli AB = I, to BA = I.
- 18. Udowodnij, że dla każdej macierzy odwracalnej A istnieje liczba $\epsilon > 0$, taka że jeśli wyrazy macierzy B różnią się od odpowiadających im miejscami wyrazów macierzy A o mniej niż ϵ , to macierz B też jest odwracalna.
- 19.** Niech $F: \mathbf{R}^2 \to \mathbf{R}^2$ będzie przekształceniem różnowartościowym i na (surjektywnym), przy czym F(0) = 0. Załóżmy, że obrazem dowolnej prostej przez przekształcenie F jest pewna prosta. Pokaż, że F jest liniowe.