移动机器人地图构建与自主导航实验指导书

实验项目编号 01089201008

一、实验目的

1. 了解常用建图导航功能包优缺点、熟悉建图测试流程

二、实验内容及要求

- 1. 实验内容
 - ①了解机器人常用建图功能包,熟悉实机建图和导航操作。

2. 实验要求

- ①提供机器人建图功能包计算图级。
- ②提供机器人导航功能包计算图级。
- ③提供建立的地图和 Rviz 显示的代价地图。
- ④第二次实验课开始,每次实验时必须提交上次实验的实验报告。最后一次实验报告由实验后两星期内提交,否则不再受理。

三、实验原理

1、机器人建图及导航操作

SLAM (simultaneous localization and mapping), 也称为 CML (Concurrent Mapping and Localization),即时定位与地图构建,或并发建图与定位。

问题可以描述为:将一个机器人放入未知环境中的未知位置,是 否有办法让机器人一边逐步描绘出此环境完全的地图,同时一边决定 机器人应该往哪个方向行进。

例如扫地机器人就是一个很典型的 SLAM 问题,所谓完全的地图 (a consistent map) 是指不受障碍行进到房间可进入的每个角落。

SLAM 最早由 Smith、Self 和 Cheeseman 于 1988 年提出。由于其重要的理论与应用价值,被很多学者认为是实现真正全自主移动机器人的关键。

当你来到一个陌生的环境时,为了迅速熟悉环境并完成自己的任 务(比如找饭馆,找旅馆),你应当做以下事情:

- a.用眼睛观察周围地标如建筑、大树、花坛等,并记住他们的特征(特征提取)
- b.在自己的脑海中,根据双目获得的信息,把特征地标在三维地 图中重建出来(三维重建)
- c.当自己在行走时,不断获取新的特征地标,并且校正自己头脑中的地图模型(bundle adjustment or EKF)
 - d.根据自己前一段时间行走获得的特征地标,确定自己的位置 (trajectory)
- e.当无意中走了很长一段路的时候,和脑海中的以往地标进行匹配,看一看是否走回了原路(loop-closure detection)。实际这一步可有可无。

下表为 2D 激光 SLAM 方案特点

年份	方案	传感器	特点
1988	EKF-SLAM	2D 激光	构建特征地图,计算量复杂,鲁棒

			性较差。
2002	FastSLAM	2D 激光	最早实时输出栅格地图;消耗内存,
			粒子耗散严重。
2007	Gmapping	2D 激光	缓解粒子耗散; 非常依赖于里程计
			信息。
2010	Optimal RBPF	2D 激光	进一步减少粒子退化问题。
2010	Karto SLAM	2D 激光	首个图优化框架开源方案,认识到
			稀疏性;时间消耗大。
2010	CoreSLAM	2D 激光	最小损失函数的算法。
2011	Hector-SLAM	2D 激光	不需里程计数据; 强旋转漂移, 初
			值敏感,
			难以闭环。
2012	LagoSLAM	2D 激光	图优化 SLAM 系统,最小化非线
			性非凸代价
			函数。
2016	Cartographer	2D 激光	CSM 与梯度优化的前端,图优化的
			后端,加速的闭环检测。

四、实验步骤

1、移动机器人建图及导航实验步骤

- ①启动机器人 SLAM 节点
- ➤ 打开机器人 slam 节点开始建图

roslaunch bobac2_slam bobac2_slam.launch

▶ 开启新终端打开手柄控制节点

roslaunch bobac2_joy bobac2_joy.launch

▶ 使用手柄控制小车进行移动进行建图

②保存地图

> 进入地图保存路径

roscd bobac2_navigation/maps

或

cd bobac2_ws/src/bobac2_navigation/maps

▶ 使用 map_server 保存地图至上述路径

rosrun map_server map_saver -f <<mark>文件名</mark>>

> 妥善保存建好的地图

eog <文件名>.pgm

③移动机器人导航实验

▶ 打开 map_server.launch 文件进行地图修改

cd bobac2_ws/src/bobac2_navigation/launch

gedit map_server.launch

红色部分替换为自己保存的地图

▶ 打开机器人导航功能包,将出项 rviz 界面

roslaunch bobac2_navigation bobac2_nav_2d.launch

红色 "2D Pose Estimate": 是手动给机器人估计当前位置。

绿色 "2D Nav Goal": 让机器人导航到目标位置去。

机器人下方的绿色箭头为机器人位姿粒子点云。

使用 2D Nav Goal 给定机器人导航目标如下图红框所示,机器人会自动行进至目标位姿。目标点为红色箭头,绿色直线为规划的全局路径。

五、实验结果(图片/表格)

- a) 机器人构建的二维地图;
- b) 机器人导航的 rviz 截图 (可见代价地图、全局规划轨迹);
- c) 机器人建图时的实体照片