Graphic Lasso: Possible Accuracy for Multi-Layer Model

Jiaxin Hu

January 6, 2021

1 Discussion about Identifiability

Suppose we have a dataset with p variables and K categories. In multi-layer model, we assume the rank of decomposition r is known, and the precision matrices are of form

$$\Omega^k = \Theta_0 + \sum_{l=1}^r u_{lk} \Theta_l, \quad \text{for} \quad k = 1, ..., K.$$
 (1)

The identifiability problem for $\{\Theta_0, \Theta_1, ..., \Theta_r, \mathbf{u}_1, ..., \mathbf{u}_r\}$ is actually an identifiability problem for tensor decomposition.

Let $\mathcal{Y} \in \mathbb{R}^{p \times p \times K}$ denote the collection of K networks, where $\mathcal{Y}[,,k] = \Omega^k, k \in [K]$. Let $\mathcal{C} \in \mathbb{R}^{p \times p \times (r+1)}$ denote the collection of "core" networks, where $\mathcal{C}[,,1] = \sqrt{K}\Theta_0$, $\mathcal{C}[,,l] = \Theta_{l-1}, l = 2, ..., (r+1)$. Let $U \in \mathbb{R}^{K \times (r+1)} = (\mathbf{u}_0, \mathbf{u}_1, ..., \mathbf{u}_r)$ denote the factor matrix, where $\mathbf{u}_0 = \mathbf{1}_K/\sqrt{K}$. Rewrite the model (1) in tensor form.

$$\mathcal{Y} = \mathcal{C} \times_3 \mathbf{U}. \tag{2}$$

Therefore, the identifiability problem for $\{\Theta_l, \mathbf{u}_l\}$ becomes the identifiability problem for $\{\mathcal{C}, \mathbf{U}\}$. Before we discuss the identifiable condition case by case, we first assume \mathcal{C} is full rank on mode 3.

1. No sparsity constrain on U.

Proposition 1. The decomposition C and U are identifiable if U is an orthonormal matrix, i.e., $U^TU = I_{r+1}$.

Proof. Let Unfold(\cdot) denote the unfold representation of a tensor on mode 3. The model (2) is equal to

$$Unfold(\mathcal{Y}) = UUnfold(\mathcal{C}).$$

By matrix SVD, we have $\operatorname{Unfold}(\mathcal{Y}) = \tilde{U}\Sigma V^T$, where \tilde{U} is an orthonormal matrix. The SVD decomposition is unique up to orthogonal rotation (ignore row permutation).

Note that $\mathbf{u}_0 = \mathbf{1}_K/\sqrt{K}$. There always has a unique orthonormal matrix \mathbf{R} such that the first column of $\tilde{\mathbf{U}}\mathbf{R}$ is equal to $\mathbf{1}_K/\sqrt{K}$. Let $\mathbf{U} = \tilde{\mathbf{U}}\mathbf{R}$ and $\mathrm{Unfold}(\mathcal{C}) = \mathbf{R}^T \Sigma \mathbf{V}$. Then, \mathbf{U} and \mathcal{C} are identifiable.

2. Membership constrain on U. (Without intercept Θ_0)

If U is a membership matrix, we are clustering K categories into r groups. Then, the model (1) becomes

$$\Omega^k = \Theta_{i_k}, \quad \text{for} \quad k = 1, ..., K,$$

where $i_k \in [r]$ is the group for the k-th category. Then, let $C \in \mathbb{R}^{p \times p \times r}$, where $C[, l] = \Theta_l, l = 1, ..., r$, and $U \in \mathbb{R}^{K \times r} = (\mathbf{u}_1, ..., \mathbf{u}_r)$.

Proposition 2. The decomposition C and U are identifiable up to permutation if U is a membership matrix, i.e., in each row of U there is only 1 copy of 1 and massive 0.

Proof. If U is a membership matrix, the model (2) is a special case of tensor block model. By Proposition 1 in Wang, the matrix U is identifiable if C is irreducible on mode 3. In our case, we assume C is full rank on mode 3, and thus $\{U, C\}$ are identifiable.

Remark 1. The sparsity of Θ_l won't affect the identifiability in these two cases under the assumption that \mathcal{C} is full rank on mode 3. In no sparsity constrain case, we only need the full rankness of Unfold(\mathcal{C}), and the sparsity on the first and second mode of \mathcal{C} does not affect the rank of Unfold(\mathcal{C}). In membership constrain, we only need the mode 3 irreducibility of \mathcal{C} .

Remark 2. The two cases above are two extreme cases. Intermediate cases include the fuzzy clustering, where $\sum_{l=1}^{r} u_{lk} = 1, k \in [K]$, and the sparsity constrain for the column, where $|\mathbf{u}_l|_0 < a, l \in [r]$.

2 A simple extension

bad notation. The function Q(\cdot) varies depending on k, because S depends on k.

Let $Q(\Omega) = \operatorname{tr}(S\Omega) - \log |\Omega|$. Assume the rank of decomposition r is known. Consider the constrained optimization problem

$$\min_{\mathcal{C}} \quad \sum_{k=1}^{K} \left[Q(\Omega^{k}) \right]
s.t. \quad \Omega^{k} = \Theta_{0} + \sum_{l=1}^{r} u_{lk} \Theta_{l}, \quad \text{for} \quad k = 1, ..., K,
\|\Theta_{l}\|_{0} \leq b, \quad \text{for} \quad l = 1, ..., r,
\|\Theta_{0}\|_{0} \leq b_{0},
\mathbf{u}_{l}^{T} \mathbf{u}_{l} = 1, \quad \text{for} \quad l = 1, ..., r,
\mathbf{u}_{k}^{T} \mathbf{u}_{l} = 0, \quad \text{for} \quad k \neq l.$$

where a, b, b_0 are fixed positive constants, $|\cdot|_0$ refers to the vector L_0 norm, and $||\cdot||_0$ refers to the matrix L_0 norm. For simplicity, let $\hat{\mathcal{C}} = \{\hat{\Theta}_0, \hat{\Theta}_1, ..., \hat{\Theta}_r, \hat{\mathbf{u}}_1,, \hat{\mathbf{u}}_r\}$ denote the estimation, and $\hat{\Omega}^k = \hat{\Theta}_0 + \sum_{l=1}^r \hat{u}_{lk} \hat{\Theta}_l$ for k = 1, ..., K.

For true precision matrices Ω^k , let $T^k = \{(j,j') | \omega_{j,j'}^k \neq 0\}$ and $q^k = |T^k|$. Let $T = T^1 \cup \cdots \cup T^k$ and q = |T|.

Theorem 2.1. Suppose two assumptions hold. Let $\{\Omega^k\}$ denote the true precision matrices. For the estimation $\hat{\mathcal{C}}$ such that $\sum_{k=1}^K \left[Q(\hat{\Omega}^k)\right] \leq \sum_{k=1}^K \left[Q(\Omega^k)\right]$ and satisfies the constrains, the following accuracy bound holds with probability tending to 1. What is n?

 $\sum_{k=1}^K \left\| \hat{\Omega}^k - \Omega^k \right\|_F = \mathcal{O}_p \left[\left\{ \frac{(p+q)\log p}{n} \right\}^{1/2} \text{Write down the closed form.} \right].$

Proof. Let Ω^k denote the true precision matrices for k=1,...,K. Consider the estimation $\hat{\mathcal{C}}$ such that $\sum_{k=1}^K \left[Q(\hat{\Omega}^k)\right] \leq \sum_{k=1}^K \left[Q(\Omega^k)\right]$. Let $\Delta^k = \hat{\Omega}^k - \Omega^k$. Define the function

$$G(\left\{\Delta^k\right\}) = \sum_{k=1}^K \operatorname{tr}(S(\Omega^k + \Delta^k)) - \operatorname{tr}(\Omega^k) - \log|\Omega^k + \Delta^k| + \log|\Omega^k| = I_1 + I_2,$$

where

explain the notation

$$I_1 = \sum_{k=1}^K \operatorname{tr}((S^k - \Sigma^k)\Delta^k), \quad I_2 = \sum_{k=1}^K (\tilde{\Delta}^k)^T \int_0^1 (1 - v)(\Omega^k + v\Delta^k)^{-1} \otimes (\Omega^k + v\Delta^k)^{-1} dv \tilde{\Delta}^k.$$

With probability tending to 1, we have

$$I_1 \leq C_1 \left(\frac{\log p}{n} \right)^{1/2} \sum_{k=1}^K \left(|\Delta_{T^k}^k|_1 + |\Delta_{T^{k,c}}^k|_1 \right) + C_2 \left(\frac{p \log p}{n} \right)^{1/2} \sum_{k=1}^K \left\| \Delta^k \right\|_F, \quad I_2 \geq \frac{1}{4\tau_2^2} \sum_{k=1}^K \left\| \Delta^k \right\|_F^2.$$

Note that $|\Delta_{T^k}^k|_1 \leq q^{1/2} \|\Delta^k\|_F$. Then, we only need to deal with $|\Delta_{T^{k,c}}^k|_1$. Rewrite the term, we have

$$|\Delta_{T^{k,c}}^{k}|_{1} = |\hat{\Theta}_{0,T^{k,c}} + \hat{u}_{1k}\hat{\Theta}_{1,T^{k,c}} + \dots + \hat{u}_{rk}\hat{\Theta}_{r,T^{k,c}}|_{1} \le (b_{0} + rb) \left\|\Delta^{k}\right\|_{\max} \le (b_{0} + rb) \left\|\Delta^{k}\right\|_{F}.$$

Then, by Guo et al, we have

How? elaborate.

Pay special attention to factors
$$\sum_{k=1}^{K} \left\| \hat{\Omega}^k - \Omega^k \right\|_F = \mathcal{O}_p \left[\left\{ \frac{(p+q)\log p}{n} \right\}^{1/2} \right].$$
 (3)

П

Remark 3. Note that q can be replaced by $\max_k q^k$, where $q^k \leq (b_0 + rb)$ for all k = 1, ..., K. Also, the accuracy (3) holds when q^k are fixed. Otherwise, the accuracy is of order $\mathcal{O}_p\left[q\left\{\frac{\log p}{n}\right\}^{1/2}\right]$.

Remark 4. This proof does not utilize the special structure of Ω^k . We can go through the proof with the constrain $|\Omega^k| < s$.

add a section: How does the accuracy result differs between our constrained estimator vs. penalized estimator.

3 Next Any reason?

- Think about the identifiability of the intermediate cases (spare matrix factorization).
- Think about the proof which utilizes the special structure of the Ω^k .