

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

ETM2156 – FUNDAMENTALS OF COMMUNICATIONS (TE)

14 MARCH 2020 2.30 p.m. – 4.30 p.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 9 pages with 4 Questions and Appendices.
- 2. Attempt ALL questions. Each question carries an equal total mark and the mark distribution for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

(a) Define communication system. Give three advantages of a digital communication system over an analog communication system.

[4 marks]

(b) Sketch two signals that one represents periodic signal and the other represents aperiodic signal. Name the common techniques used to analyze the spectral components of these signals.

[4 marks]

(c) Given a signal $g(t) = t^2$ is periodic over the interval (-1, 1). Find the trigonometric Fourier series to represent g(t) for $0 \le n \le 4$.

[9 marks]

(d) From $X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$, find the Fourier Transform of the waveform y(t) shown in Figure Q1(d).

[4 marks]

(e) Based on the Fourier transform property for time shift that is given as $x(t-\tau) \Leftrightarrow X(f)e^{-j2\pi f\tau}$ and the Fourier transform found in part (d), find the Fourier transform of the rectangular function illustrated in Figure Q1(e).

[4 marks]

Continued ...

HAG 2/9

(a) Define the term modulation and give three benefits of modulation.

[5 marks]

(b) The message signal m(t) whose spectrum is shown in Figure Q2(b) is passed through the system shown in the same figure. The bandpass filter has a bandwidth of 2W centered at frequency f_0 and the lowpass filter has a bandwidth of W. Plot the double-sided spectrum of the signals x(t), $y_2(t)$, $y_3(t)$, and $y_4(t)$.

Figure Q2(b)

[8 marks]

(c) Briefly explain the reason for single sideband (SSB) modulation scheme being unsuitable for video and computer data transmission. State the available modulation scheme for such transmission.

[2 marks]

(d) State the **TWO** methods used to determine bandwidth in FM.

[2 marks]

(e) An angle-modulated signal is described as:

$$x(t) = 10\cos[2\pi(10^6)t + 0.1\sin(10^3)\pi t]$$

- (i) Considering x(t) as a PM signal with phase deviation constant $k_p = 10$, find m(t).
- (ii) Considering x(t) as an FM signal with frequency deviation constant $k_f = 10\pi$, find m(t).

[8 marks]

Continued ...

HAG 3/9

(a) A 4-bit PCM system is applied to digitize a signal represented, which is represented as $m(t) = 5\sin(2\pi t)$. This linear midrise quantizer has a step-size Δ of 1 V. Sketch the resulting PCM wave for one complete cycle of the m(t) input signal, assuming a sampling rate of four samples per second, with samples taken at t = 1/8, 3/8, 5/8, ... seconds.

[10 Marks]

- (b) An information signal is fed into a uniform PCM system, which uses a 8-bit encoder and produces an output signal at a rate of 48 Mbps.
 - (i) Determine the bandwidth of the analog signal if the system operates at minimum sampling rate.

[3 Marks]

(ii) Find the output signal-to-quantisation noise ratio if the analog signal is a full-load sinusoidal wave of frequency 1 MHz.

[3 Marks]

(c)

A message signal

$$m(t) = \cos(1500\pi t) + \cos(500\pi t)$$

for a DM system, which is designed for audio signal of up to 3400 Hz, is sampled at 64 kHz.

(i) Calculate the minimum value of the step size Δ to avoid slope overload.

[3 Marks]

(ii) Find the granular-noise power N_o .

[3 Marks]

(iii) With the noise power found in (ii), determine the SNR.

[3 Marks]

Continued ...

HAG 4/9

- (a) One of the main disturbances in communication systems is intersymbol interference (ISI).
 - (i) Define ISI.
 - (ii) Sketch a figure showing the effects of ISI on the received bits.
 - (iii) Briefly describe two approaches that can be taken to combat and control ISI.

[2+4+4 Marks]

- (b) A 9,600 bits/s data terminal is connected to a modern. Calculate the transmission bandwidth required and the baud rate at the modern output for each of the following schemes. 50% roll-off shaping is used in all cases
 - i) 4-QAM
 - ii) 16-QAM
 - iii) QPSK
 - iv) PSK

[3+3+3+2 Marks]

- (c) A telephone circuit is assumed to be modeled as an AWGN channel with a bandwidth of 5 kHz.
 - (i) Determine the capacity of this circuit if the SNR is 20 dB.
 - (ii) Determine the SNR required for an error-free transmission rate of 6000 bits/s.

[2+2 Marks]

Continued ...

HAG 5/9

Appendix I

Trigonometric Preliminaries

1.
$$\sin(n\pi) = 0$$
, $n = \text{integer}$

2.
$$\cos(n\pi) = (-1)^n = \begin{cases} 1, & n = even \\ -1, & n = odd \end{cases}$$

3.
$$\sin^2 x = \frac{1}{2} (1 - \cos 2x)$$

4.
$$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$$

5.
$$\sin x \sin y = \frac{1}{2} \left[-\cos(x+y) + \cos(x-y) \right]$$

6.
$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

7.
$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

Continued ...

HAG 6/9

Appendix II

Fourier Transform Pairs

x(t)	X(f)
$\delta(t)$	1
$\delta(t-t_o)$	$e^{-j2\pi f t_o}$
1	$\delta(f)$
$e^{j2\pi f_o \iota}$	$\delta(f-f_o)$
u(t)	$\frac{1}{2}\mathcal{S}(f) + \frac{1}{j2\pi f}$
$e^{-at}u(t)$	$\frac{1}{a+j2\pi f}, \text{ for } a>0$
$e^{at}u(-t)$	$\frac{1}{a-j2\pi f}, \text{ for } a>0$
$e^{-a t }$	$\frac{2a}{a^2 + (2\pi f)^2}, \text{ for } a > 0$
$t^n e^{-at} u(t)$	$\frac{n!}{(a+j2\pi f)^{n+1}}, \text{ for } a>0$
$rect \left(rac{t}{T} ight)$	$T \operatorname{sinc}(fT)$
sinc(2Wt)	$\frac{1}{2W} rect \left(\frac{f}{2W} \right)$
$\Delta\left(\frac{t}{T}\right)$	$\frac{T}{2}\mathrm{sinc}^2\left(\frac{fT}{2}\right)$
$W \mathrm{sinc}^2(Wt)$	$\Delta \left(rac{f}{2W} ight)$
$e^{-\pi l^2}$	$e^{-\pi f^2}$

Continued ...

HAG 7/9

Appendix III

Fourier Transform Pairs and Properties

$\cos(2\pi f_o t)$	$\frac{1}{2}\mathcal{S}(f-f_o) + \frac{1}{2}\mathcal{S}(f+f_o)$					
$\sin(2\pi f_o t)$	$\frac{1}{2j} \left[\delta(f - f_o) - \delta(f + f_o) \right]$					
$\operatorname{sgn}(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$	$\frac{1}{j\pi f}$					
$\frac{1}{\pi t}$	$-j\operatorname{sgn}(f)$					
$\sum_{i=-\infty}^{\infty} \delta(t - iT_o)$	$\frac{1}{T_o} \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_o})$					
$e^{-at}\cos(2\pi f_o t)u(t)$	$\frac{a+j2\pi f}{(a+j2\pi f)^2 + (2\pi f_o)^2}, \text{ for } a > 0$					
$e^{-at}\sin(2\pi f_a t)u(t)$	$\frac{2\pi f_o}{(a+j2\pi f)^2 + (2\pi f_o)^2}, \text{ for } a > 0$					
Let $x(t) \Leftrightarrow X(f), x_1(t)$	$\Leftrightarrow X_1(f) \text{ and } x_2(t) \Leftrightarrow X_2(f)$; and					
a , b , t_o and f_o scalar quantities.						
Linearity	$ax_1(t) + bx_2(t) \Leftrightarrow aX_1(f) + bX_2(f)$					
Conjugation	$x^*(t) \Leftrightarrow X^*(-f)$					
Duality	$X(t) \Leftrightarrow x(-f)$					
Scaling $(a \neq 0)$	$x(at) \Leftrightarrow \frac{1}{ a } X\left(\frac{f}{a}\right)$					
Time Shifting	$x(t-t_o) \Leftrightarrow X(f)e^{-j2\pi f t_o}$					
Frequency Shifting	$x(t)e^{j2\pi f_o t} \Leftrightarrow X(f-f_o)$					
Modulation	$x(t)\cos(2\pi f_0 t) \Leftrightarrow \frac{1}{2}X(f-f_0) + \frac{1}{2}X(f+f_0)$					
Time Differentiation	$\frac{d^n}{dt^n}x(t) \Leftrightarrow (j2\pi f)^n X(f)$					
Frequency Differentiation	$(-jt)^n x(t) \Leftrightarrow \frac{d^n}{df^n} X(f)$					

Continued ...

HAG 8/9

Appendix IV

Bessel Function Table

n	$\beta = 0$	B = 0.05	β = 0.1	β = 0.2	<i>β</i> = 0.3	<i>β</i> = 0.5	$\beta = 0.7$	β = 1	<i>β</i> = 2	β = 3	<i>β</i> = 5	<i>β</i> = 7	<i>β</i> = 8	<i>β</i> = 10
0	1.000	0.999	0.998	0.990	0.978	0.938	0.881	0.765	0.224	-0.260	-0.178	0.300	0.172	-0.246
1	uhinimininininin/hdeb	0.025	0.050	0.100	0.148	0.242	0.329	0.440	0.577	0.339	-0.328	-0.005	0.235	0.043
2			0.001	0.005	0.011	0.031	0.059	0.115	0.353	0.486	0.047	-0.301	-0.113	0.255
3					0,001	0.003	0.007	0.020	0.129	0.309	0.365	-0.168	-0.291	0.058
4		(pq.114-)14-24111111111111111111111111111111111					0.001	0.002	0.034	0.132	0.391	0.158	-0.105	-0.220
5				,					0.007	0.043	0.261	0.348	0.186	-0.234
6		mmunum (h-shr #11-11-1)					İ		0.001	0.011	0.131	0.339	0.338	-0.014
7										0.003	0.053	0.234	0.321	0.217
8											0.018	0.128	0.223	0.318
9					I						0.008	0.059	0.126	0.292
10					,,,,						0.001	0.024	0.061	0.207
11												800,0	0,026	0.123
12		and the state of t										0.003	0.010	0.063
13												0.001	0.003	0.029
14		p.p.mittizmaqittara											0.001	0.012
15														0.005
16												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.002
17	.p.otomorous			TO THE PARTY OF TH	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								į	0.001

and the second s	N		N		Ŋ		Ŋ
$\beta = 0.05$	1	$\beta = 0.7$	4	β = 5	10	<i>β</i> = 20	28
<i>β</i> = 0.1	2	$\beta = 0.8$	4	β = 6	12	β = 25	34
<i>β</i> = 0.2	2	β = 0.9	4	β = 7	13	β = 30	39
$\beta = 0.3$	3	$\beta = 1$	4	<i>β</i> = 8	14	<i>β</i> = 35	45
$\beta = 0.4$	3	β = 2	6	β = 9	15	β = 40	50
$\beta = 0.5$	3	β = 3	7	β = 10	17	β = 45	55
<i>β</i> = 0.6	3	β = 4	9	<i>β</i> = 15	22	β = 50	61

HAG 9/9