JEE Security Structure Part 1

Ari Ayvazyan

29.09.2014

Contents

1	JEE	Security Structure Part 1
	1.1	Introduction to Security Architecture
	1.2	Authentication
	1.3	Authorization
	1.4	Deployment Descriptors
	1.5	Principals
	1.6	Credential
	1.7	Groups
	1.8	Roles
	1.9	Realms
	1.10	Implementation sample
	1.11	Frameworks
		1.11.1 Shiro
		1.11.2 Spring
		1.11.3 JAAS - Java Authentication and Authorization Service
	1.12	Output escaping
	1.13	Whats to come in Part 2 (Adrian)

Chapter 1

JEE Security Structure Part 1

1.1 Introduction to Security Architecture

Most web applications have a few things in common:

They need to figure out who is the user that is using the application and what is he allowed to do and see.

A typical application has more than one security layer, it may be protected by only being available from a specified network or VPN. In addition there usually is some kind of identity determination followed by a SQL user with permission to query only the required functions and data sets.

On top of this, there should be output escaping to ensure that a attacker, who is able to manipulate the output for users, is limited in the harm he is able to cause.

Figure 1.1: Security Layers in a common JEE application

According to Oracle[4], there are two ways to implement such access control functionality with Java EE:

- 1. Programmatic
- 2. Declarative (this includes Annotations and XML-Files)

While the programmatic implementation offers a wider range of customization, the declarative provides a well structured and easy to use approach.

1.2 Authentication

Authentication describes the identification process. This is mostly done by asking for a user-name & password or sending a Token/Hash.

1.3 Authorization

Authorization is what happens after you are authenticated. It deals with the question of what a authenticated person is allowed to do.

Figure 1.2: Authentication & Authorization

1.4 Deployment Descriptors

Describes how the Application should be Deployed. Defines Security Constraints

- Protected Information
- Probably SSL
- Specify which user may access them

Deployment Descriptors are XML-Files Usually located in /WEB-INF/

- web.xml
- Vendor-specific.xml (E.g. Glassfish: glassfish-web.xml)

web.xml

Protected Resources Security Roles Authentication methods

(vendor-specific).xml

User – Role mapping Group – Role mapping

Vendor specific settings

1.5 Principals

A Principal is a identity that can be authenticated. E.g. a Unique user name

1.6 Credential

A Credential is defined as information that is used to authenticate a Principal.

E.g. a Password

1.7 Groups

Groups and Principals can be mapped to Roles. Groups are defined in vendor-specific.xml

1.8 Roles

Permissions are granted to Roles. Roles are defined in the web.xml file

1.9 Realms

aka Security policy domain Provides information about principals, their Groups and their credentials May be a Database, File structure, connection...

In other words: It contains user information E.g. Username, Password & Permissions

1.10 Implementation sample

https://github.com/aayvazyan-tgm/JavaEESecurityExample

Figure 1.3: The user tries to access a resource without authentication

Figure 1.4: The user sends authentication data with his request

1.11 Frameworks

1.11.1 Shiro

Offers: Authentication, Authorization, Cryptography

Simple to use

Advantages/Disadvantages Implementation Sample

1.11.2 Spring

Offers: Authentication, Authorization, Cryptography Very structured

Advantages/Disadvantages

1.11.3 JAAS - Java Authentication and Authorization Service

Offers: Authentication, Authorization, Cryptography Included in Java SE since Java 1.4 (javax.security.auth)

Advantages/Disadvantages

1.12 Output escaping

Escape user input to prevent injections.

Escape the output to add a extra layer of security. Use a Framework to do so!

1.13 Whats to come in Part 2 (Adrian)

• Working with Digital Certificates

- \bullet Securing Application Clients
- Security with Enterprise Beans
- Further Framework Information

Bibliography

[1] JavaOne 2014: The Anatomy of a Secure Web Application Using Java, Shawn McKinney & John Field, September 29, 2014 San Francisco

[2] Java Security: Sicherheitslücken identifizieren und vermeiden,

Marc Schönefeld, 1. edition 2011

Publisher: Hüthig Jehle Rehm GmbH, Heidelberg.

ISBN/ISSN 978-3-8266-9105-8

[3] Enterprise Java Security: Building Secure J2EE Applications, Marco Pistoia, Nataraj Nagaratnam, Larry Koved, Anthony Nadalin,

1. edition 2004

Publisher: Addison-Wesley Professional.

ISBN/ISSN: ISBN 0-321-11889-8

[4] Official JavaEE Documentation, Oracle, 29.09.2014 http://docs.oracle.com/javaee/7/tutorial/partsecurity.htm#GIJRP Java EE 6,

Dirk Weil, 1. edition 2012 Publisher: entwickler.press ISBN 978-3-86802-077-9

[5] Java EE 6 Cookbook for Securing, Tuning, and Extending Enterprise Applications,

Mick Knutson,

1. edition June 2012

Publisher: Addison-Wesley Professional.

ISBN/ISSN: ISBN 9781849683166