Does Size Matter? (Estimation of Banana Weight with a Regression Modeling Approach)

Scott Graham, Kaisa Roggeveen February 13, 2018

Summary

Introduction

The purpose of this study was to determine the most effective regression model to predict the weight of a banana using external measurements. This study also demonstrated multiple techniques for developing regression models. These models were then examined to demonstrate their effectiveness at creating regression models.

Data Collection

First a small sample set bananas were purchased from the Real Canadian Superstore. The weight, length, diameter and circumference were then calculated using a scale and a ruler.

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.1885	0.6148	0.713	0.7039	0.8061	0.9782

In order to determine the minimum sample size needed, random sample sizes of 10 were generated using radius and length as the predictors. The correlation of the random sample sizes were calculated and a matrix of the correlations were generated. The value of the squared population multiple correlation coefficients with two predictor variables was then calculated and determined to be approximately 0.7039. From this the minimum sample size required was then determined from the table from Gregory T. Knofcznski's Sample Size When Using Multiple Linear Regression for Prediction, the minimum sample size was determined to be between 15 and 35, therefore the minimum number of bananas required was finalized at 24 bananas.

Analysis

Statistic	Weight	Radius	Length	Circumference
Min.	157.0000	18.30000	128.0000	115.0000
1st Qu.	179.5000	18.90000	243.2500	119.0000
Median	193.5000	19.30000	256.5000	121.0000
Mean	193.7917	19.50417	250.2083	122.5417
3rd Qu.	203.2500	20.20000	268.5000	127.0000
Max	231.0000	20.50000	283.0000	129.0000

To begin analysis, a model using all predictor variables was created. In this case the density of the banana is assumed to be a constant. In the following models all measured bananas were considered.

Let:

$$W = \text{Weight (g)}, L = \text{Length (mm)}, R = \text{Radius (mm)}$$

Then:

$$\log(W) = \beta_0 + \beta_1 \log(L) + \beta_2 \log(R) + \beta_3 \log(C) \implies W = e^{\beta_0} \times L^{\beta_1} \times R^{\beta_2} \times C^{\beta_3}$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	10.06	26.32	0.3822	0.7063
${f Length_log}$	0.123	0.1275	0.9652	0.346
Radius_log	7.526	14.09	0.5341	0.5992
${f Circumference_log}$	-5.788	14.16	-0.4088	0.687

Table 4: Fitting linear model: Weight_log ~ Length_log + Radius_log + Circumference_log

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
24	0.09248	0.3318	0.2316

In the second model the predictor variable, circumference, was removed. This is because $C = 2\pi R$.

$$\log(W) = \beta_0 + \beta_1 \log(L) + \beta_2 \log(R)$$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-0.6702	1.913	-0.3503	0.7296
${f Length_log}$	0.1223	0.1249	0.9787	0.3389
$Radius_log$	1.77	0.5596	3.163	0.004684

Table 6: Fitting linear model: Weight_log ~ Length_log + Radius_log

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
24	0.09062	0.3262	0.2621

The third model considered the predictor, length.

$$\log(W) = \beta_0 + \beta_1 \log(L)$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.99	0.8037	6.209	3e-06
Length_log	0.04917	0.1457	0.3374	0.739

Table 8: Fitting linear model: Weight_log \sim Length_log

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
24	0.1076	0.005146	-0.04007

The fourth model considered only one predictor, radius.

$$\log(W) = \beta_0 + \beta_2 \log(R)$$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.3046	1.632	0.1867	0.8536
Radius_log	1.669	0.5494	3.038	0.006043

Table 10: Fitting linear model: Weight_log \sim Radius_log

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
24	0.09054	0.2955	0.2635

Table 11: Analysis of Variance Table: Model 1 vs. Model 2

Res.Df	RSS	Df	Sum of Sq	F	$\Pr(>F)$
21	$0.1725 \\ 0.171$	NA	NA	NA	NA
20		1	0.001429	0.1671	0.687

Table 12: Analysis of Variance Table: Model 1 vs. Model 3

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
22	0.2547	NA	NA	NA	NA
20	0.171	2	0.08362	4.889	0.01868

Table 13: Analysis of Variance Table: Model 2 vs. Model 3

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
22	0.2547	NA	NA	NA	NA
21	0.1725	1	0.08219	10.01	0.004684

 $\mbox{\tt \#\#}$ Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3 observations $\mbox{\tt \#\#}$ per fold

 $\mbox{\tt \#\#}$ Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3 observations $\mbox{\tt \#\#}$ per fold

	_
(Intercept)	5.261471
Length	0.000000
Radius	0.000000
Circumference	0.000000
Length_log	0.000000
Radius_log	0.000000
$Circumference_log$	0.000000

Removal of Outliers

The second part of the analysis included removing any potential outliers from the analysis. In this case, one outlier was removed.

Cross Validation

```
## Analysis of Variance Table
##
## Response: Weight_log
             Df Sum Sq Mean Sq F value Pr(>F)
## Length_log 1 0.0013 0.0013
                                  0.16 0.6928
## Radius_log 1 0.0822 0.0822
                                 10.01 0.0047 **
## Residuals 21 0.1725 0.0082
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## fold 1
## Observations in test set: 8
                [,1]
                       [,2]
                              [,3]
                                      [, 4]
                                             [,5]
                                                     [,6]
                                                            [,7]
                                                                   [,8]
              5.2368 5.2368 5.196 5.1998 5.3143 5.2304 5.344 5.215
## Predicted
              5.2428 5.2428 5.207 5.2131 5.3184 5.2464 5.358 5.222
## cvpred
## Weight_log 5.2832 5.2679 5.106 5.1818 5.3613 5.1818 5.220 5.193
## CV residual 0.0404 0.0251 -0.101 -0.0314 0.0429 -0.0646 -0.137 -0.029
##
## Sum of squares = 0.04
                           Mean square = 0
                                              n = 8
##
## fold 2
## Observations in test set: 8
                  [,1] [,2] [,3]
                                      [,4]
                                             [,5]
                                                     [,6]
                                                            [,7]
## Predicted
               5.24195 5.348 5.333 5.2350 5.2548 5.3386 5.1853 5.3251
               5.23389 5.324 5.310 5.2248 5.2417 5.3184 5.1822 5.3056
## cvpred
               5.22575 5.434 5.442 5.1705 5.2933 5.2470 5.2523 5.3423
## Weight log
## CV residual -0.00814 0.109 0.132 -0.0543 0.0516 -0.0714 0.0701 0.0367
##
## Sum of squares = 0.05
                           Mean square = 0.01
                                                 n = 8
##
## fold 3
## Observations in test set: 8
              [,1]
                     [,2]
                             [,3]
                                    [,4]
                                           [,5]
                                                  [,6]
                                                         [,7]
## Predicted
              5.22 5.318 5.1488 5.3497 5.2822 5.2976 5.2173 5.2101
              4.78 5.267 5.1137 5.3771 5.2744 5.2788 5.2464 5.2500
## cvpred
## Weight_log 5.33 5.069 5.0562 5.4424 5.3083 5.3083 5.2627 5.2933
## CV residual 0.55 -0.198 -0.0574 0.0654 0.0339 0.0295 0.0163 0.0433
## Sum of squares = 0.35
                           Mean square = 0.04
## Overall (Sum over all 8 folds)
##
      ms
## 0.0183
## # A tibble: 24 x 13
        ID Weight Radius Length Circumference Weight_log Radius_log
##
      <int> <int> <dbl> <int>
                                        <int>
                                                   <dbl>
                                                              <dbl>
##
   1
         1
              197
                    19.1
                            272
                                          120
                                                    5.28
                                                               2.95
## 2
              194
                            272
         2
                    19.1
                                          120
                                                    5.27
                                                               2.95
## 3
         3
              165
                    18.8
                            246
                                          118
                                                               2.93
                                                    5.11
## 4
         4
              186
                    19.3
                            244
                                          121
                                                    5.23
                                                               2.96
```

```
5
##
          5
                178
                      18.9
                               234
                                              119
                                                         5.18
                                                                     2.94
##
    6
          6
                207
                      19.9
                               128
                                               125
                                                         5.33
                                                                     2.99
                                                         5.36
                                                                     2.99
##
    7
          7
                213
                      19.9
                               283
                                              125
##
    8
          8
                178
                      19.3
                               222
                                              121
                                                         5.18
                                                                     2.96
                229
##
    9
          9
                      20.4
                               261
                                              128
                                                         5.43
                                                                     3.02
## 10
         10
                231
                      20.2
                               265
                                              127
                                                         5.44
                                                                     3.01
         with 14 more rows, and 6 more variables: Length_log <dbl>,
       Circumference_log <dbl>, Predicted <dbl>, cvpred <dbl>, `CV
## #
       Residual` <dbl>, Residual <dbl>
```

MAE

```
## # A tibble: 1 x 2
## MAE MPAE
## <dbl> <dbl>
## 1 13.7 0.0722
```

Recommendations

Using the first set of data before the outlier was removed, it can be determined that the best way to predict the weight of a banana is by measuring the radius of the banana. The model that is then used for banana weight prediction is the following:

$$\log(W) = \beta_0 + \beta_1 \log(R)$$
$$\log(W) = 0.3046 + 1.669 \log(R)$$

After the removal of the outlier, the model that was determined to be the best predictor for banana weight was the following:

Appendix

