

PostGIS – Fonctions spatiales de base

Nicolas Ribot - Licence GNU FDL - Version 1.2

Fonctions de gestion

Fonction de gestion

- -AddGeometryColumn: Ajoute une colonne géométrique a une table et met a jour les métadonnées spatiales
- DropGeometryColumn: Supprime une colonne géométrique d'une table spatiale et met a jour les métadonnées spatiales
- DropGeometryTable: Supprime une table spatiale et met a jour les métadonnées spatiales
- -postgis_full_version: Affiche la version courante de Postgis, GEOS, PROJ4 et PostgreSQL
- -UpdateGeometrySRID: Met à jour le SRID de toutes les entités d'une colonne géographique, de la table gemetry_columns, et de la contrainte sur le SRID de la table

Constructeurs de géométries

Constructeurs de géométries

- -ST_GeomFromText: Construit une géométrie a partir de sa représentation WKT.
 - Exemple:
 - select st geomFromText('2.5 43', 4326)
- -ST_GeometryFromText: Alias pour st_geomFromText
- -ST_GeomFromWKB: Construit une géométrie a partir de sa représentation WKB.
- -ST Box2D, ST Box3D: Construit une bbox a partir de points.
- -ST_MakePoint/ST_Point:Construit un point à partir de coordonnées
 - Exemple:
 - SELECT ST MakePoint(1,2);

Constructeurs de géométries (suite)

- -ST MakeLine: Construit une ligne a partir de points
 - Exemple:
 - SELECT ST_AsText(ST_MakeLine(ST_MakePoint(1,2),
 ST MakePoint(3,4)));
- -ST_MakePolygon: Construit un polygone a partir d'une ligne fermée
 - Exemple:
 - SELECT ST_AsText(ST_MakeLine(ST_MakePoint(1,2), ST_MakePoint(3,4)));

Accesseurs de géométries

Accesseurs de géométries

- -GeometryType/ST_GeometryType:Retourne le type de la géométrie ('POINT', 'POLYGONE'), respectivement ('ST_POINT', 'ST_POLYGONE')
- -ST_Boundary: Retourne l'ensemble formant la frontière d'un object
 - Exemple:
 - select st boundary(st point(0, 0));
 - select st_boundary(st_geomFromText('LINESTRING(0 0, 1 1, 2 2)', -1));
 - select astext (st_boundary (st_polygonFromText
 ('POLYGON((0 0, 6 0, 6 6, 0 6, 0 0), (1 1, 5 1, 5 5,
 1 5, 1 1))')));

- -st_CoordDim: Retourne la dimension des coordonnées de la géométrie
- -ST_EndPoint/ST_StartPoint: Retourne le dernier, respectivement le premier point d'une LINESTRING
- ST_Envelope: Retourne une géométrie représentant le rectangle englobant de la géométrie.
- -ST_ExteriorRing: Retourne une LINESTRING représentant l'extérieur du POLYGONE
- ST_GeometryN: Retourne la Nieme géométrie (commençant à 1) d'une collection (GeomCol, MULTI*)
- -ST_InteriorRingN: Retourne la Nieme LINESTRING représentant l'intérieur d'un POLYGONE

- -ST_IsClosed: Vrai si le premier et le dernier point d'run LINESTRING sont les mêmes
- -ST_IsEmpty: Vrai si cette géométrie est vide (GEOMETRYCOLLECTION(EMPTY))
- -ST_IsRing: Retourne vrai si la géométrie est un ring (linestring fermée)
- -ST_IsSimple: Retourne vrai si la géométrie est simple (polygone ne se croisant pas, par exemple)
- -ST_IsValid: Vrai si cette géométrie est bien formée
- -ST_IsValidReason: Retourne la raison de l'invalidité de la géométrie. (v 1.4+)

- -ST_NPoints: Retourne le nombre total de sommets dans la géométrie.
- -ST_NRings: Si la géométrie est un POLYGONE ou MULTIPOLYGONR, retourne le nombre total de rings.
- -ST_NumGeometries: Si la géométrie est une GEOMETRYCOLLECTION ou un MULTI*, retourne le nombre total de géométries dans la collection.
- -ST_NumInteriorRings: Si la géométrie est un POLYGONE ou un MULTIPOLYGON, retourne le nombre de rings intérieurs dans le premier polygone de la géométrie.

- -ST_PointN: Retourne le Nieme point dans une ST_LINESTRING ou ST_CIRCULARSTRING.
- -ST_Summary: Retourne un résumé de la géométrie
 - Exemple:
 - select st_summary(the_geom) from departements;
- -ST_X, ST_Y, ST_Z:Retourne les coordonnées X, Y, Z, respectivement, du POINT

Editeurs de géométries

Editeurs de géométries

- -ST_AddPoint/ST_RemovePoint: Ajoute/supprime un point à une LINESTRING avant le/au point de position donnée (0-based index).
- -ST_Affine, ST_Rotage, ST_RotateX, ST_RotateY, ST_Scale, ST_Transcale: Effectue des opérations math. de transformation affine, rotation mise à l'échelle, translation, etc.
- -ST_Force2D, ST_Force3D, ST_Force3DM: Force la dimension de la géométrie
- -ST_ForceRHR: Force l'orientation des sommets du POLYGONE selon la règle de la main droite (sens horaire)

Editeurs de géométries (suite)

- -ST_LineMerge: Assemble des LINESTRING entre elles provenant d'une MULTILINESTRING
- -ST_Multi:Force la géométrie a etre de la forme MULTI*.
 - Exemple st_multi(point) -> MULTIPOINT

muillapem

- -ST_Force2D, ST_Force3D, ST_Force3DM: Force la dimension de la géométrie
- -ST_ForceRHR: Force l'orientation des sommets du POLYGONE selon la règle de la main droite (sens horaire)
- -ST_Reverse:Inverse l'ordre les sommets de la géométrie

Editeurs de géométries (suite)

- -ST_Tranform: Change le système de coordonnées de la géométrie passée en argument et retourne une nouvelle géométrie
 - Exemple:
 - ST_Transform(geometry geom, integer srid)
 - SELECT ST_Transform(the_geom, 4326) FROM ma_table;
- -ST_SetSRID: Met à jour le SRID de la géométrie
- -ST_Segmentize: Retourne la geometry modifiée de telle sorte que la longueur maximum d'un segment soit inférieur ou égale a la distance donnée.

Sorties en différents formats

Sorties en différents formats

- -ST_Binary: Retourne la représentation WKB de la géométrie
- ST_AsGeoJson: Retourne la représentation GeoJson de la géométrie
- ST_AsGML: Retourne la représentation GML 2 ou 3 de la géométrie
- ST_Askml: Retourne la représentation KML de la géométrie, avec controle de la sortie (précision, version)
- ST_AsSVG: Retourne la représentation SVG (data path) de la géométrie
- ST_AsGeoHash: Retourne la représentation GeoHash de la géométrie

Relations spatiales et mesures

Relations spatiales et mesures

- -ST_Azimuth: Retourne l'angle en radian formé par le vecteur composé des deux POINTs
- -ST_LineCrossingDirection: Etant données deux LINESTRING, retourne un nombre entre -3 et 3 donnant le type de croisement, 0 voulant dire pas de croisement:
 - 0: LINE NO CROSS
 - -1: LINE CROSS LEFT
 - 1: LINE CROSS RIGHT
 - -2: LINE MULTICROSS END LEFT
 - 2: LINE MULTICROSS END RIGHT
 - -3: LINE MULTICROSS END SAME FIRST LEFT
 - 3: LINE MULTICROSS END SAME FIRST RIGHT

Relations spatiales et mesures (suite)

- -ST_Distance: Retourne la distance cartésiéne minimale entre deux géométries.
- ST_MaxDistance: Retourne la distance cartésiéne maximale entre deux géométries.
- -ST_DistanceSphere: Retourne la distance en mètres de deux points situés sur la sphère terrestre (rayon 6370986 m)
- -ST_DistanceSpheroid: Retourne la distance en mètres de deux points situés sur le sphéroïde donné
- ST_DWithin: Retourne vrai si deux géométries sont plus proche que la distance donnée.

Relations spatiales et mesures (suite)

- ST_OrderingEquals: Retourne vrai si les deux géométries sont égales et leurs poins sont dans le meme ordre
- ST_Relate: Retourne vrai si les deux géométries ont une relation spatiale entre leurs intérieurs, extérieurs, frontières correspondant a la définition données dans la matrice d'intersection. Si aucune matrice d'intersection n'est passée, retourne la matrice d'intersection maximale qui relie les deux géométries

Relations spatiales : st_relate

 Matrice d'intersection (DE-9IM) Dimensionallyextended, 9 intersection matrix

	Interior	Boundary	Exterior	
Interior	$dim(I(a) \cap I(b))$	$dim(\ \emph{\textbf{I}}(a) \cap \emph{\textbf{B}}(b)\)$	$dim(\ \emph{\textbf{I}}(a) \cap \emph{\textbf{E}}(b)\)$	
Boundary	$dim(\ m{B}(a) \cap m{I}(b)\)$	$dim(\ m{B}(a) \cap m{B}(b)\)$	$dim(\ m{B}(a) \cap m{E}(b)\)$	
Exterior	$dim(\ {\it E}(a) \cap {\it I}(b)\)$	$dim({\it E}(a) \cap {\it B}(b))$	$dim(\ {\it E}(a) \cap {\it E}(b)\)$	

Where:

Relations spatiales : st_relate

-Exemple:

Interior	2	1	2
Boundary	1	0	1
Exterior	2	1	2

$$ST_Relate(a, b) = '212101212'$$

Relations spatiales: st_relate

- Exemple: Trouver tous les pontons inclus dans le lac, ne touchant pas les berges

Quels prédicats utiliser ? ST_Within? ST_Contains? ST_Touches?

```
SELECT a.id
FROM docks a, lakes b
WHERE a.geom && b.geom
AND ST_Relate(a.geom, b.geom, 'TFFTFF212');
```

mage

ST_Area

- Renvoie la surface en unités carrées (*) d'une géométrie polygonale
- Prototype:

```
ST Area (geometry geom)
```

-Exemple:

```
SELECT ST Area (the geom) FROM ma table;
```

- Voir aussi:
 - ST Perimeter

ST_Centroid

- Renvoie la géométrie du centroïde d'une géométrie polygonale
- Prototype:

```
ST Centroid (geometry geom)
```

- Exemple:

```
SELECT ST_Centroid(the_geom) FROM ma_table;
```

- Attention, le centroïde n'est pas toujours situé sur la surface
- Voir aussi:
 - ST_PointOnSurface

ST_Length

- -Renvoie la longueur(*) d'une géométrie linéaire
- Prototype:

```
ST_Length (geometry geom)
```

-Exemple:

```
SELECT ST Length (the geom) FROM ma table;
```

- Voir aussi:
 - ST_Length_Sphere/spheroid (distance en mètres)
 - ST Perimeter

muillapem

ST Extent

- -Renvoie la BBOX agrégée d'un ensemble de géométries
- Prototype:

```
ST Extent (geometry set geom)
```

- Exemple:

```
SELECT ST Extent (the geom) FROM ma table;
```

- Voir aussi:
 - ST Box2D et ST Box3D
 - ST Expand
 - ST Enveloppe
 - ST Estimated Extent

Fonction de traitement géométrique

ST_Simplify

- -Renvoie une géométrie généralisée (algo: Douglas Peuker)
- Prototype:

```
ST Simplify(geometry geom, integer tolerance)
```

-Exemple:

```
SELECT ST_Simplify(the_geom, 100) FROM ma_table;
```

- Voir aussi:
 - ST_SnapToGrid
 - ST_SimplifyPreserveTopology

ST_Intersection

- Renvoie la géométrie résultant de l'intersection entre deux géométries données
- Prototype:

```
ST Intersection (geometry geom A, geometry geom B)
```

- Exemple:

```
SELECT ST_Intersection(
   (SELECT the_geom FROM ma_table WHERE gid='4'),
   (SELECT the_geom FROM ma_table WHERE gid='2')
):
```

- Voir aussi:
 - ST_Union
 - ST_Difference, ST_sym_difference

ST_Buffer

- -Renvoie une géométrie représentant un buffer de X unités(*) autour d'une géométrie donnée. (unités des données)
- Prototype:

```
ST_Buffer(geometry geom, double buffer_distance, [integer number_of_segments])
```

-Exemple:

```
SELECT ST_Buffer(the_geom, 30) FROM ma_table;
```

- Nota:
 - La valeur du buffer peut être négative (buffer inverse)

Fonction de traitement géométrique

- -ST_Collect: Retourne une géométrie de type collection (GeometryCollection ou MULTI*) a partir de la liste de géométries donnée (fonctionne avec une colonne, deux géométries ou un tableau de géométries).
- ST_ConvexHull: Retourne l'enveloppe convexe de la géométries donnée
- ST_Dump: Retourne un ensemble de géométries constituant la géométrie donnée (Collection)
- ST_Polygonize: Retourne une GEOMETRYCOLLECTION contenant des polygones possiblement formés a partir du réseau de lignes constitué par la géométrie donnée.