Subject: Engineering Mathematics Chapter: Vector Calculus

DPP-02

Topic: Gradient of scalar function & directional derivative

- The directional derivative of the function f(x, y, z) = x + y at the point P(1, 1, 0) along the direction $\hat{i} + \hat{j}$ is
 - (a) $\frac{1}{\sqrt{2}}$
- (c) $-\sqrt{2}$
- (d) 2
- The derivative of f(x, y) at point (1, 2) in the direction of vector i + j is $2\sqrt{2}$ and in the direction of the vector -2i is -3. Then the derivative of f(x, y) in direction -i -2j is
 - (a) $2\sqrt{2} + \frac{3}{2}$ (b) $\frac{-7}{\sqrt{5}}$
 - (c) $-2\sqrt{2} \frac{3}{2}$ (d) $\frac{1}{\sqrt{5}}$
- The directional derivative $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at point P(2, 1, 3) in the direction of the vector $\vec{a} = \vec{i} - 2\vec{k}$

 - (a) $\frac{4}{\sqrt{5}}$ (b) $-\frac{4}{\sqrt{5}}$

 - (c) $\frac{\sqrt{5}}{4}$ (d) $-\frac{\sqrt{5}}{4}$
- The maximum value of the directional derivative of the function $\phi = 2x^2 + 3y^2 + 5z^2$ at a point (1, 1, -1) is
 - (a) 10
- (b) -4
- (c) $\sqrt{152}$
- (d) 152
- The directional derivative of the scalar function $f(x, y, z) = x^2 + 2y^2 + z$ at the point P = (1, 1, 2) in the direction of the vector $\vec{a} = 3\vec{i} - 4\vec{j}$ is
 - (a) -4
- (b) -2
- (c) -1
- (d) 1

- For the scalar field $u = \frac{x^2}{2} + \frac{y^2}{3}$, the magnitude of the gradient at the point (1, 3) is
 - (a) $\sqrt{\frac{13}{9}}$ (b) $\sqrt{\frac{9}{2}}$

- A scalar field is given by $f = x^{2/3} + y^{2/3}$, where x and y are the Cartesian coordinates. The derivative of 'f' along the line y = x directed away from the origin at the point (8, 8) is

- (d) $\frac{3}{\sqrt{2}}$
- The magnitude of the gradient of the function $f = xyz^3$ at (1, 0, 2) is
 - (a) 0
- (b) 3
- (c) 8
- (d) ∞
- For the function $\phi = ax^2y y^3$ to represent the velocity potential of an ideal fluid, $\nabla^2 \phi$ should be equal to zero. In that case, the value of 'a' has to be
 - (a) -1
- (b) 1
- (c) -3
- (d) 3
- **10.** The gradient of field $f = y^2 x + xyz$ is
 - (a) y(y+z)i + x(2y+z)j + xyk
 - (b) y(2x + z)i + x(x + z)j + xyk
 - (c) $y^2i + 2yxj + xyk$
 - (d) y(2y + z)i + x(2y + z)j + xyk
- **11.** The magnitude of the gradient of the function $f = xyz^3$ at (1, 0, 2) is
 - (a) 0
- (b) 3
- (c) 8
- (d) ∞

12. Let $f: R^2 \rightarrow R$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{for}(x,y) \neq (0,0) \\ 0 & \text{for}(x,y) = (0,0) \end{cases}$$

The directional derivative of f at (0, 0) in the direction

of the vector
$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 is

(a) 0

(b)
$$\frac{1}{2}$$

(c)
$$\frac{1}{2\sqrt{2}}$$

(d)
$$\frac{1}{4\sqrt{2}}$$

Answer Key

1. (b)

2. (b)

3. (b)

4. (c)

5. (b)

6. (c)

7. (a)

8. (c)

9. (d)

10. (a)

11. (c)

12. (a)

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4