数字电路综合设计 实验报告

姓名: 唐韩宇 班级: 23 通信工程 2 班 组别: 2-10 小组成员: 唐韩宇 钮卓远

- (1) 课题名称: 彩灯循环控制器的设计
- (2) 内容摘要:
- 1) 实现控制器控制红绿黄(其实是三只同色发光二极管)循环发光,分别亮1S、2S、3S,要求利用 NE555、74LS161、74LS138 以及74LS00 芯片实现。
- (3) 设计内容、要求及电路框图:
- 1) 要求 NE555 实现 1 HZ 的矩形脉冲输出。
- 2) 要求 74LS161 实现其输出在 0000-0101 之间转化。

图 1 逻辑循环状态转换图

- 3) 要求 74LS138 以及后续的逻辑门电路实现灯的按时间亮灭。
 - (4) 单元电路设计、参数计算和器件选择:
 - 1) NE555 部分

2) 74LS161 部分

3)74LS138部分

Clk

编入 YaY, Ya Ya Ya Ya . 要新输出 ABC 刚果真值表

4)逻辑门电路

\mathbf{Y}_{0}	\mathbf{Y}_{1}	\mathbf{Y}_{2}	Y ₃	Y ₄	Y ₅	A	В	C
0	1	1	1	1	1 1 1 1 1 0	0	1	0
1	0	1	1	1	1	0	1	0
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	1	0	0
1	1	1	1	0	1	1	0	0
1	1	1	1	1	0	0	0	1

ABC <u>的逻辑公式</u>化简为:

$$A = Y_2 \cdot Y_3 \cdot Y$$

$$B = \overline{Y_{0}}.Y$$

$$C = \overline{Y}$$

第四部:逻辑门电路(只有PLSOb)

(5) 电路 EDA 仿真原理图、波形图及仿真结论;

图 2 EDA 原理图

仿真结论: 能够实现 LED1、2、3 的按顺序亮指定时间。

(6) 调试过程:

在本次实验中主要使用的仪器仪表为电路试验箱,示波器以及万用表。

本次实验中遇到的几个问题:

1) 1 Hz 方波信号生成选择的参数:

本次实验最终选择的方案为 R_1 =200 Ω 、 R_2 =15.1k Ω , C=47 μ F 此时的占空比为 50%,此方案直接使用了实验箱上的 200 Ω 电阻,以及将 10k Ω 和 5.1k Ω 串联实现,不需要使用滑动变阻器调到指定的电阻,此生成波形的参数,相较于初始参数 R_1 =28.86k Ω 、 R_2 =57.72k Ω ,C=10 μ F 更加方便调整稳定,同时也解决了 74LS 计数功能时接生成波形无法正常运行的问题(应该是负载匹配的问题)

2) 74LS161 的疑似问题排除:

当计数功能一直不正确时,我们怀疑是否是因为芯片损坏导致的,此时我们将其处于计数状态,将四个引脚接到 LED 上,通过观察亮灭发现能实现 0-15 的计数证明芯片的正常。

(7) 实验总结:

本电路设计考虑到了 555 的多谐震荡状态,74LS161 的计数状态,74LS138 的 3-8 线译码器作用以及对最小项的化简,该课题结合了组合逻辑电路的知识和时序逻辑电路的知识,对所学知识进行了综合性的巩固,以及提升了对问题的解决方案能力。

改进意见为如果换成 74LS160 异步清零,需要重新考虑清零的设置。

(8) 元器件清单;

电阻	电容	芯片
R1=200 Ω	C=47 µ F	NE555
$R2=15.1k \Omega$	$C_f=10nF$	74LS161
Rl=100 Ω		74LS138
		74LS00