Tema 2: Cossos

- **2.1.** Trobeu les relacions d'inclusió que hi ha entre els cossos $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(i, \sqrt{3})$, $\mathbb{Q}(\sqrt{-3} \sqrt{3})$ i $\mathbb{Q}(i + \sqrt{-3})$.
- **2.2.** Sigui K un cos de característica $\neq 2$. Demostreu que tota extensió E/K de grau 2 és de la forma $E = K(\sqrt{d})$ per a un element $d \in K$.
- **2.3.** Expresseu els elements següents com a polinomis en X de grau ≤ 3 en el cos $\mathbb{Q}[X]/\langle X^4-2X+2\rangle$:

$$X^{-1}$$
, $(X^2 + 2X)^3$, $(X^3 + X^2 - 1)(-2X^3 + X^2 - 1)^{-1}$.

- **2.4.** Sigui $P(X) \in K[X]$ un polinomi irreductible. Demostreu que, per a tot element $a \in K$, el polinomi P(X + a) també és irreductible i que es té un isomorfisme de cossos $K[X]/\langle P(X) \rangle \simeq K[X]/\langle P(X+a) \rangle$.
- **2.5.** Siguin α, β elements algebraics sobre un cos K. Demostreu que si $\operatorname{Irr}(\alpha, K; X) = \operatorname{Irr}(\beta, K; X)$ aleshores $K(\alpha) \simeq K(\beta)$, però que el recíproc no és cert.
- **2.6.** Sigui K un cos de característica diferent de 3. Siguin $\alpha, \beta \in K$ elements que no són el cub de cap element de K i sigui E/K una extensió que contingui arrels cúbiques $\sqrt[3]{\alpha}$ i $\sqrt[3]{\beta}$ (és a dir, arrels dels polinomis $X^3 \alpha, X^3 \beta$).
 - 1. Demostreu que si $K(\sqrt[3]{\alpha}) = K(\sqrt[3]{\beta})$ aleshores β/α o β/α^2 són el cub d'algun element de K.

INDICACIÓ: eleveu al cub una expressió $\sqrt[3]{\beta} = a + b\sqrt[3]{\alpha} + c\sqrt[3]{\alpha}^2$ amb $a, b, c \in K$ i, calculant amb els coeficients d'aquesta expressió, deduïu que a = c = 0 o bé a = b = 0.

- 2. Demostreu que si K conté les arrels cúbiques de la unitat (les tres arrels del polinomi $X^3 1 \in K[X]$) aleshores el recíproc de l'apartat anterior també és cert.
- **2.7.** Demostreu que les extensions $\mathbb{Q}(\sqrt{p})$ per als diferents nombres primers p són totes no isomorfes entre elles.
- **2.8.** Calculeu el polinomi irreductible de $\sqrt{3} + \sqrt{5}$ sobre els cossos següents: \mathbb{Q} , $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{10})$, $\mathbb{Q}(\sqrt{15})$.
- **2.9.** Calculeu el grau de l'extensió $\mathbb{Q}(e^{2\pi i/n} + e^{-2\pi i/n})/\mathbb{Q}$.

- **2.10.** Considerem l'extensió de cossos \mathbb{C}/\mathbb{R} i la \mathbb{R} -base $\{1,i\}$. Donat un element $\alpha = a + bi \in \mathbb{C}$, trobeu la matriu en aquesta base de l'endomorfisme $m_{\alpha} : \mathbb{C} \to \mathbb{C}$, on $m_{\alpha}(x) = \alpha x$. Calculeu el seu polinomi característic.
- **2.11.** Considerem una extensió quadràtica $K = \mathbb{Q}(\sqrt{d})/\mathbb{Q}$, amb $d \in \mathbb{Z}$ lliure de quadrats, i fixem la \mathbb{Q} -base de K $\{1, \sqrt{d}\}$. Escriviu la representació matricial en aquesta base d'un element $\alpha \in K$ qualsevol. Calculeu el polinomi caracterísitic i el polinomi mínim-
- **2.12.** Sigui $K = \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, i considerem la \mathbb{Q} -base $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ de K. Determineu la representació matricial d'un element qualsevol de K respecte d'aquesta base. Calculeu la representació matricial de $\beta = 1/(1 + \sqrt[3]{2} + \sqrt[3]{4})$.
- **2.13.** Sigui $K = \mathbb{Q}(\gamma)/\mathbb{Q}$, el cos cúbic generat per una arrel del polinomi $X^3 X 1 \in \mathbb{Q}[X]$. Determineu la representació matricial d'un element qualsevol de K respecte la \mathbb{Q} -base $\{1, \gamma, \gamma^2\}$ de K.
- **2.14.** Si L/K és una extensió finita, definim la traça i la norma d'un element $\alpha \in L$ respecte l'extensió L/K com a:

$$\operatorname{Tr}_{L/K}(\alpha) = \operatorname{Tr}(m_{\alpha}), \qquad N_{L/K}(\alpha) = \det(m_{\alpha}),$$

on $m_{\alpha} \colon L \to L$ és l'endomorfisme K-lineal de E definit per $m_{\alpha}(x) = \alpha x$.

- a) Quant valen la traça i la norma d'un element de K?
- b) Proveu que la traça és additiva i que la norma és multiplicativa.
- c) Determineu la traça i la norma en els exemples dels problemes anteriors.
- d) Proveu que $1 + \sqrt[3]{2}$ no és un quadrat perfecte a $\mathbb{Q}(\sqrt[3]{2})$.
- e) Sigui M/L una altra extensió finita. Demostreu que:

$$N_{M/K}(\alpha) = N_{L/K}(N_{M/L}(\alpha)), \qquad \operatorname{Tr}_{M/K}(\alpha) = \operatorname{Tr}_{L/K}(\operatorname{Tr}_{M/L}(\alpha)).$$

- **2.15.** Trobeu elements primitius de cossos de descomposició dels polinomis X^3-2 i X^4-2 sobre \mathbb{Q} .
- **2.16.** Siguin α, β elements algebraics de grau 3 sobre un cos K. Estudieu les diferents possibilitats per al grau $[K(\alpha, \beta) : K]$.

- **2.17.** Sigui $r = f(X)/g(X) \in K(X)$ una funció racional no constant a coeficients en un cos K, expressada com a quocient de polinomis f i $g \neq 0$ relativament primers. Demostreu que
 - 1. L'element $r \in K(X)$ és transcendent sobre K.
 - 2. $[K(X):K(r)] = \max\{\deg f, \deg g\}.$
 - 3. Els automorfismes de K(X) que deixen fixos els elements de K són els que envien X a $\frac{aX+b}{cX+d}$ amb $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(K)$.
- **2.18.** Siguin α, β elements tals que α és transcendent sobre K i algebraic sobre $K(\beta)$. Demostreu que β és transcendent sobre K i algebraic sobre $K(\alpha)$.
- **2.19.** Sigui E/K una extensió. Demostreu que els elements de E que són algebraics sobre K formen un subcos E^a amb $K \subseteq E^a \subseteq E$.
- **2.20.** Construiu explícitament els cossos finits \mathbb{F}_8 i \mathbb{F}_{16} . Per a cadascun d'ells doneu un element primitiu sobre el seu cos primer \mathbb{F}_2 .
- **2.21.** Doneu dues construccions diferents del cos \mathbb{F}_9 com a extensió de \mathbb{F}_3 . Establiu un isomorfisme entre elles.
- **2.22.** Estudieu els cossos que s'obtenen en fer el quocient de l'anell $\mathbb{Z}[i]$ per un ideal maximal. Recordeu que aquest anell és principal i que els seus primers no nuls, llevat d'unitats, són els següents:
 - els nombres primers $q \equiv 3 \pmod{4}$;
 - els elements a + bi amb $a^2 + b^2$ un primer $p \equiv 1 \pmod{4}$; i
 - l'element 1+i.
- **2.23.** Per a quins cossos finits \mathbb{F}_q existeixen polinomis irreductibles de la forma $X^3 a$ a l'anell $\mathbb{F}_q[X]$?
- **2.24.** Determineu els cossos finits \mathbb{F}_q en els quals el polinomi $X^2 + X + 1$ és primer.
- **2.25.** Quins polinomis primers de $\mathbb{F}_5[X]$ segueixen sent primers a $\mathbb{F}_{25}[X]$?
- 2.26. Caracteritzeu els cossos finits per als quals la inclusió entre els seus subcossos és un ordre total: donats dos subcossos qualsevol sempre un dels dos està contingut a l'altre.
- **2.27.** Sigui \mathbb{F}_q un cos finit de característica $\neq 2$. Demostreu que un element $a \in \mathbb{F}_q^*$ té arrel quadrada a \mathbb{F}_q si, i només si, $a^{(q-1)/2} = 1$. Quins elements tenen arrel quadrada a un cos finit de característica 2?

- **2.28.** Sigui $P(X) \in \mathbb{F}_q[X]$ un polinomi irreductible a coeficients en un cos finit. Demostreu que P(X) descompon completament en tota extensió E/\mathbb{F}_q que contingui alguna arrel de P(X).
- **2.29.** Considerem el cos $K = \mathbb{F}_p(S,T)$ de les fraccions polinòmiques en les variables S,T amb coeficients en el cos finit \mathbb{F}_p .
 - a) Demostreu que els polinomis $f(X) = X^p S, g(X) = X^p T \in K[X]$ són irreductibles.
 - b) Siguin $\alpha = \sqrt[p]{S}, \beta = \sqrt[p]{T}$ respectivament arrels de f(X) i g(X) en K_{fg} . Demostreu que $[K(\alpha, \beta) : K] = p^2$.
 - c) Proveu que tot $\gamma \in K(\alpha, \beta)$ satisfà $\gamma^p \in K$.
 - d) Concloeu que l'extensió $K(\alpha, \beta)/K$ no admet cap element primitiu.