Semana 4

- En la cuarta semana se sugiere resolver los ejercicios 28 a 36 de la Guía 1.
- Se sugiere antes de resolver los ejercicios ver los videos de YouTube de los temas coorrespondientes así como también leer la bibliografía recomendada y el material teórico subido en el campus del curso.
- A continuación se presentan algunos ejercicios resueltos y algunas observaciones para resolver los ejercicios correspondientes a la semana 4. Los ejercicios propuestos que no están en la guía (pero que se relacionan con los mismos) no tienen numeración.

Coordenadas de un vector en una base

Antes de ponernos a resolver ejercicios de la semana 4, recordemos la definición de las coordenadas de un vector en una base.

Definición. Sea \mathbb{V} un \mathbb{K} -espacio vectorial de dimensión finita y sea $B = \{v_1, \dots, v_n\}$ una base de \mathbb{V} . Dado $x \in \mathbb{V}$ existen únicos $a_1, \dots, a_n \in \mathbb{K}$ tales que $x = a_1v_1 + \dots + a_nv_n$. El vector $\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{K}^n$ se llama el vector de coordenadas de x en la base B y será denotado por $[x]^B$, por $C_B(x)$ ó por $[x]_B$.

Vamos a usar la notación $[x]^B$, que es la que se usa en la guía. Para entender la definición (y la notación) que acabamos de ver, supongamos que estamos en $\mathbb{R}_2[x]$ y tomamos $B = \{1, x^2, x\}$ que es

una base de $\mathbb{R}_2[x]$. Si q(x) = 1 - x entonces $[q]^B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \in \mathbb{R}^3$, porque $q(x) = 1 \cdot x + 0 \cdot x^2 + (-1) \cdot x$, para todo $x \in \mathbb{R}$.

Por otra parte, si $p \in \mathbb{R}_2[x]$ es tal que $[p]^B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, entonces $p(x) = 1.1 + 2.x^2 + 3.x = 1 + 2x^2 + 3x$ y de esa manera obtenemos el vector p sabiendo sus coordenadas en una base.

La expresión $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$]^B NO tiene sentido. En la notación que definimos: $[v]^B$, el vector v es un

elemento de \mathbb{V} . En este caso en particular, $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \in \mathbb{R}^3$, claramente $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \notin \mathbb{R}_2[x]$ y no tiene sentido calcularle las coordenadas en una base de $\mathbb{R}_2[x]$ a un vector que no esté en dicho espacio.

Observar que si \mathbb{V} es un \mathbb{K} espacio vectorial tal que la $\dim(\mathbb{V}) = n$, dado $v \in \mathbb{V}$ el vector de coordenadas $[v]^B$ siempre es un vector de \mathbb{K}^n . Y si $B = \{v_1, \dots, v_n\}$ es una base de \mathbb{V} y $[v]^B = \{v_1, \dots, v_n\}$

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{K}^n \text{ entonces } v = a_1v_1 + \dots + a_nv_n \text{ y recuperamos al vector } v.$$

Por último, notar que "tomar coordenadas" es lineal. Es decir, si $v, w \in \mathbb{V}$ y $\alpha, \beta \in \mathbb{K}$, entonces

$$[\alpha v + \beta w]^B = \alpha [v]^B + \beta [w]^B.$$

De hecho, si
$$[v]^B = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 y $[w]^B = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$, entonces $v = a_1v_1 + \dots + a_nv_n$ y $w = b_1v_1 + \dots + b_nv_n$.

Entonces, $\alpha v + \beta w = \alpha(a_1v_1 + \dots + a_nv_n) + \beta(b_1v_1 + \dots + b_nv_n) = (\alpha a_1 + \beta b_1)v_1 + \dots + (\alpha a_n + \beta b_n)v_n$. Por lo tanto,

$$[\alpha v + \beta w]^B = \begin{bmatrix} \alpha a_1 + \beta b_1 \\ \vdots \\ \alpha a_1 + \beta b_1 \end{bmatrix} = \alpha [v]^B + \beta [w]^B.$$

Este tema suele traer muchas confusiones por lo que a continuación propongo resolver algunos ejercicios para fijar ideas.

Ejercicio: Sean $\mathbb{V} = gen\{1, e^x, e^{-x}\}$ un \mathbb{R} -espacio vectorial, $B = \{1, e^x, e^{-x}\}$ un conjunto de \mathbb{V} y g(x) = senh(x). Entonces:

- a) Demostrar que B es una base de \mathbb{V} .
- b) Obtener $[g]^B$.
- c) Encontrar un vector $h \in \mathbb{V}$ tal que $[h]^B = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Existe otro vector h' con esas coordenadas en la base B?

Antes de comenzar a resolver el ejercicio, es importante entender que cada elemento del conjunto B es una función (no un número real!). En general se suele abusar un poco de la notación y eso puede llegar a confundir un poco. Estrictamente hablando, si definimos las funciones $f_1(x) = 1$, (la función que siempre vale 1), $f_2(x) = e^x$, $f_3(x) = e^{-x}$, entonces $B = \{f_1, f_2, f_3\}$ y es como se debe interpretar esa notación. Meditar un poco sobre esto porque es crucial para resolver el ejercicio.

Dem. a): Observar que cada elemento de B pertenece a \mathbb{V} . Por definición de \mathbb{V} , el conjunto $\{f_1, f_2, f_3\}$ es un sistema de generadores de \mathbb{V} . Sólo falta probar que el conjunto es LI. Para eso, por ejemplo, podemos calcular el Wronskiano.

$$W(f_1, f_2, f_3)(x) = \det\left(\begin{bmatrix} 1 & e^x & e^{-x} \\ 0 & e^x & -e^{-x} \\ 0 & e^x & e^{-x} \end{bmatrix}\right) = e^x e^{-x} + e^{-x} e^x = 1 + 1 = 2 \neq 0.$$

Por lo tanto el conjunto es LI. Entonces B es una base de \mathbb{V} y dim $(\mathbb{V}) = 3$.

b): Recordar que
$$g(x) = senh(x) = \frac{e^x - e^{-x}}{2} \in \mathbb{V}$$
. Si $[g]^B = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, entonces $\frac{e^x - e^{-x}}{2} = a.1 + b.e^x + c.e^{-x}$ para todo $x \in \mathbb{R}$. Entonces $0 = a.1 + (b - \frac{1}{2}).e^x + (c + \frac{1}{2}).e^{-x}$, para todo $x \in \mathbb{R}$.

Si 0 es la función nula (que es el elemento neutro de V), la ecuación anterior es equivalente a $\mathbf{0} = af_1 + (b - \frac{1}{2})f_2 + (b + \frac{1}{2})f_3$. Como recién vimos que B es una base (en particular un conjunto LI) y tenemos una CL de los elementos de B igualadas al elemento neutro de \mathbb{V} , se sigue que a=0,

$$b-\frac{1}{2}=0$$
 y $c+\frac{1}{2}=0$. Entonces $a=0,\ b=\frac{1}{2},\ c=-\frac{1}{2}$ y por lo tanto $[g]^B=\begin{bmatrix}0\\\frac{1}{2}\\-\frac{1}{2}\end{bmatrix}$.

c) : Si
$$[h]^B = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, por definición de las coordenadas de un vector en una base, $h(x) =$

 $1+2e^x-e^{-x}$. Por supuesto que no existe otra función con esas coordenadas en base B. Supongamos

que sí, es decir, que existe
$$h' \in \mathbb{V}$$
 tal que $[h']^B = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Entonces $h'(x) = 1 + 2e^x - e^{-x} = h(x)$ para todo $x \in \mathbb{R}$. Entonces $h' = h$.

Ejercicio 1.29: Sean $p_1(x) = \frac{1}{2}(x-1)(x-2), p_2(x) = -x(x-2)$ y $p_3(x) = \frac{1}{2}x(x-1)$.

- a) Demostrar que $B = \{p_1, p_2, p_3\}$ es una base de $\mathbb{R}_2[x]$.
- b) Si $p \in \mathbb{R}_2[x]$ entonces

$$[p]^B = \left[\begin{array}{c} p(0) \\ p(1) \\ p(2) \end{array} \right].$$

c) Hallar $[p]^B$ si $p(x) = x^2 - x + 1$.

Dem. a): Claramente, $p_1, p_2, p_3 \in \mathbb{R}_2[x]$. Como dim $(\mathbb{R}_2[x])=3$, por un ejercicio que vimos en la semana 2 ("n vectores LI de un subespacio de dimensión n forman un base de dicho subespacio"), sólo basta ver que B es un conjunto LI para probar que B es una base de $\mathbb{R}_2[x]$. Veamos que es LI, por ejemplo, calculando el Wronskiano

por ejemplo, calculando el Wronskiano.
$$W(p_1,p_2,p_3)(x) = det \begin{pmatrix} \frac{1}{2}(x-1)(x-2) & -x(x-2) & \frac{1}{2}x(x-1) \\ x-\frac{3}{2} & -2x+2 & x-\frac{1}{2} \\ 1 & -2 & 1 \end{pmatrix}$$
). Si evaluamos el Wronskiano en $x=1$, nos queda $W(p_1,p_2,p_3)(1) = det \begin{pmatrix} 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ 1 & -2 & 1 \end{pmatrix}$) = $(-1)(-\frac{1}{2}-\frac{1}{2}) = 1 \neq 0$. Encontramos un punto donde el Wronskiano no se apula, por lo tanto B es un conjunto LL x (por

kiano en
$$x = 1$$
, nos queda $W(p_1, p_2, p_3)(1) = det(\begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ 1 & -2 & 1 \end{bmatrix}) = (-1)(-\frac{1}{2} - \frac{1}{2}) = 1 \neq 0$

Encontramos un punto donde el Wronskiano no se anula, por lo tanto B es un conjunto LI y (por los argumentos que dimos arriba) es una base de $\mathbb{R}_2[x]$.

b): Sea
$$p \in \mathbb{R}_2[x]$$
, si $[p]^B = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, entonces $p(x) = ap_1(x) + bp_2(x) + cp_3(x)$, para todo $x \in \mathbb{R}$.

Entonces,

$$p(0) = ap_1(0) + bp_2(0) + cp_3(0) = a.1 + b.0 + c.0 = a,$$

$$p(1) = ap_1(1) + bp_2(1) + cp_3(1) = a.0 + b.1 + c.0 = b,$$

$$p(2) = ap_1(2) + bp_2(2) + cp_3(2) = a.0 + b.0 + c.1 = c.$$

Por lo tanto
$$[p]^B = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} p(0) \\ p(1) \\ p(2) \end{bmatrix}$$
.

c): Usando b), tenemos que
$$[p]^B = \begin{bmatrix} p(0) \\ p(1) \\ p(2) \end{bmatrix} = \begin{bmatrix} 0^2 - 0 + 1 \\ 1^2 - 1 + 1 \\ 2^2 - 2 + 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$
.

Matriz de cambio de base

Recordemos la definición de matriz de cambio de base.

Definición. Sea \mathbb{V} un \mathbb{K} -espacio vectorial de dimensión n y sean $B_1 = \{v_1, \cdots, v_n\}$ y $B_2 = \{w_1, \cdots, w_n\}$ dos bases de \mathbb{V} . Se llama la matriz de cambio de base de B_1 a B_2 y (se nota $M_{B_1}^{B_2} \in \mathbb{K}^{n \times n}$) a la matriz

$$M_{B_1}^{B_2} := [[v_1]^{B_2} \ [v_2]^{B_2} \ \cdots \ [v_n]^{B_2}],$$

es decir a la matriz cuya columna i-ésima son las coordenadas del vector v_i (de la base B_1) en la base B_2 , para cada $i \in \{1, 2, \dots, n\}$.

Para entender la definición anterior hagamos el ejercicio 1.31 b).

Ejercicio 1.31 b) Supongamos que estamos en $\mathbb{R}_2[x]$ y tomamos como bases $B_1 = \{1, x, x^2\}$ y $B_2 = \{p_1, p_2, p_3\}$ (donde p_1, p_2, p_3 son los polinomios definidos en el ejercicio 1.29), obtener $M_{B_1}^{B_2}$. Dem. Por definición,

$$M_{B_1}^{B_2} = [[1]^{B_2} \ [x]^{B_2} \ [x^2]^{B_2}] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix},$$

donde usamos $[p]^{B_2}=\begin{bmatrix}p(0)\\p(1)\\p(2)\end{bmatrix}$, que ya lo probamos en el ejercicio 1.29. \Box

Por otra parte, tener en cuenta que, si \mathbb{V} es un \mathbb{K} -espacio vectorial de dimensión n y $B_1 = \{v_1, \cdots, v_n\}$ y $B_2 = \{w_1, \cdots, w_n\}$ son dos bases de \mathbb{V} . Dado $v \in \mathbb{V}$, se cumple que

$$[v]^{B_2} = M_{B_1}^{B_2} \ [v]_{B_1}$$

Entonces, la matriz de cambio de base de B_1 a B_2 (como era de esperar) nos permite obtener las coordenadas de v en la base B_2 sabiendo las coordenadas de dicho v en base B_1 .

La prueba de esta propiedad es muy simple. Supongamos que $[v]^{B_1}=\left|\begin{array}{c}a_1\\a_2\\\vdots\\a_n\end{array}\right|$, entonces

$$M_{B_1}^{B_2} [v]_{B_1} = [[v_1]^{B_2} [v_2]^{B_2} \cdots [v_n]^{B_2}] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a_1 [v_1]^{B_2} + a_2 [v_2]^{B_2} + \cdots + a_n [v_n]^{B_2} = [a_1 v_1 + a_2 b_2 + \cdots + a_n v_n]^{B_2},$$

donde usamos que tomar coordenadas es lineal. Por lo tanto, como $v=a_1v_1+a_2b_2+\cdots+a_nv_n$, tenemos que $M_{B_1}^{B_2}[v]_{B_1}=[a_1v_1+a_2b_2+\cdots+a_nv_n]_2^B=[v]^{B_2}$ y probamos lo que queríamos.

El siguiente ejercicio es similar al ejercicio 1.32.

Ejercicio: Sea $E = \{1, x, x^2\}$ la base canónica de $\mathbb{R}_2[x]$.

- a) Hallar una base B de $\mathbb{R}_2[x]$ tal que $M_E^B=\left[\begin{array}{ccc} 1 & -2 & 3 \\ 0 & -1 & 2 \\ 0 & 1 & -1 \end{array}\right].$
- b) Para cada $p \in \mathbb{R}_2[x]$ determinar la expresión de las coordenadas de p en la base B.
- c) Hallar todos los vectores $p \in \mathbb{R}_2[x]$ tales que $[p]^B = [p]^E$.

Dem. a): Por definición $M_E^B = [[1]^B [x]^B [x^2]^B]$. Entonces, si $B = \{q, r, s\}$ (con q, r, s polinomios a determinar), tenemos que

$$1 = 1.q(x) + 0.r(x) + 0.s(x)$$
, para todo $x \in \mathbb{R}$, (1)

entonces q(x) = 1. También

$$x = (-2).q(x) + (-1).r(x) + 1.s(x) = -2 - r(x) + s(x)$$
, para todo $x \in \mathbb{R}$, (2)

y finalmente,

$$x^{2} = 3.q(x) + 2.r(x) + (-1).s(x) = 3 + 2r(x) - s(x), \text{ para todo } x \in \mathbb{R}.$$
 (3)

Despejando en (2), nos queda que s(x) = x + 2 + r(x), para todo $x \in \mathbb{R}$ y reemplazando en (3), tenemos que $x^2 = 3 + 2r(x) - s(x) = 3 + 2r(x) - (x + 2 + r(x)) = 1 - x + r(x)$, para todo $x \in \mathbb{R}$. Entonces $r(x) = x^2 + x - 1$ y $s(x) = r(x) + 2 + x = x^2 + x - 1 + x + 2 = x^2 + 2x + 1$. Por lo tanto, $B = \{q, r, s\} = \{1, x^2 + x - 1, x^2 + 2x + 1\}$.

Nota: En el próximo ejercicio, veremos que la matriz de cambio de base siempre es inversible y que $(M_E^B)^{-1} = M_B^E$. Entonces, otra manera de resolver este ejercicio sería calcular

$$(M_E^B)^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} = M_B^E = [[q]^E \ [r]^E \ [s]^E].$$

Por lo tanto $q(x) = 1.1 + 0.x + 0.x^2 = 1$, $r(x) = -1.1 + 1.x + 1.x^2 = -1 + x + x^2$, $s(x) = 1.1 + 2.x + 1.x^2 = 1 + 2x + x^2$, y obtenemos lo mismo.

b): Si $p \in \mathbb{R}_2[x]$ tiene como expresión $p(x) = a + bx + cx^2$ con $a, b, c \in \mathbb{R}$, entonces $[p]^E = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

Por lo tanto

$$[p]^B = M_E^B [p]^E = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 2 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a-2b+3c \\ -b+2c \\ b-c \end{bmatrix}.$$

c): Si $p \in \mathbb{R}_2[x]$ es tal que $[p]^B = [p]^E$, entonces, usando que $[p]^B = M_E^B$ $[p]^E$, nos queda que $[p]^B = M_E^B$ $[p]^E = [p]^E$, es decir,

$$M_E^B [p]^E - [p]^E = (M_E^B - I)[p]^E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Entonces $[p]^E \in nul(M_E^B - I).$ Entonces, calculemos el espacio nulo de

$$M_E^B - I = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 0 & -1 & 2 \\ 0 & 1 & -1 \end{array} \right] - I = \left[\begin{array}{ccc} 0 & -2 & 3 \\ 0 & -2 & 2 \\ 0 & 1 & -2 \end{array} \right].$$

Resolviendo, tenemos que $nul(M_E^B-I)=gen\{\left[\begin{array}{c}1\\0\\0\end{array}\right]\}.$ Entonces, $[p]^B=[p]^E$ si y sólo si $[p]^E\in$

 $gen\{\begin{bmatrix}1\\0\\0\end{bmatrix}\}$. Es decir, $[p]^E=a\begin{bmatrix}1\\0\\0\end{bmatrix}=\begin{bmatrix}a\\0\\0\end{bmatrix}$, con $a\in\mathbb{R}$. Entonces, $p(x)=a.1+0.x+0.x^2=a$, con $a\in\mathbb{R}$. Escrito de otra manera $\{p\in\mathbb{R}_2[x]:[p]^E=[p]^B\}=gen\{1\}$.

Ejercicio de examen: Sea \mathbb{V} un \mathbb{K} -espacio vectorial de dimensión n y sean B_1, B_2, B_3 tres bases de \mathbb{V} . Demostrar las siguientes afirmaciones:

- a) $M_{B_1}^{B_2}$ es una matriz inversible y además vale que $M_{B_2}^{B_1} = (M_{B_1}^{B_2})^{-1}$.
- b) $M_{B_1}^{B_2} = M_{B_3}^{B_2} M_{B_1}^{B_3}$.

Dem.~a): Supongamos que $B_1=\{v_1,\cdots,v_n\}$ y $B_2=\{w_1,\cdots,w_n\}$. Entonces, por definición

$$M_{B_1}^{B_2} := [[v_1]^{B_2} \ [v_2]^{B_2} \ \cdots \ [v_n]^{B_2}].$$

Veamos que las columnas de la matriz $M_{B_1}^{B_2}$ (que son vectores de \mathbb{K}^n) son LI. Sean $a_1, a_2, \dots, a_n \in \mathbb{K}$ tales que

$$a_1[v_1]^{B_2} + a_2[v_2]^{B_2} \cdot \cdot \cdot \cdot a_n[v_n]^{B_2} = 0_{\mathbb{K}}^n.$$

Entonces, como tomar coordenadas es lineal, tenemos que

$$0_{\mathbb{K}}^{n} = a_{1}[v_{1}]^{B_{2}} + a_{2}[v_{2}]^{B_{2}} \cdots a_{n}[v_{n}]^{B_{2}} = [a_{1}v_{1} + a_{2}v_{2} + \cdots + a_{n}v_{n}]^{B_{2}}.$$

Entonces,

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0w_1 + \dots + 0w_n = 0$$
_V.

Finalmente, como $\{v_1, \dots, v_n\}$ es un conjunto LI (forman una base), y tenemos una CL de dichos elementos igualada al elemento neutro de \mathbb{V} , se sigue que $a_1 = a_2 = \cdots = a_n = 0$. Es decir las columnas de $M_{B_1}^{B_2}$ son LI. Por lo tanto $rg(M_{B_1}^{B_2}) = \dim(col(M_{B_1}^{B_2})) = n$ y como $M_{B_1}^{B_2} \in \mathbb{K}^{n \times n}$, tenemos que $M_{B_1}^{B_2}$ es inversible.

Por otra parte, sabemos que para todo $v \in \mathbb{V}$ vale que $[v]^{B_2} = M_{B_1}^{B_2}[v]^{B_1}$. Entonces, multiplicando por $(M_{B_1}^{B_2})^{-1}$ a ambos lados de la igualdad anterior, tenemos

$$(M_{B_1}^{B_2})^{-1}[v]^{B_2} = (M_{B_1}^{B_2})^{-1}M_{B_1}^{B_2}[v]^{B_1} = I[v]^{B_1} = [v]^{B_1}.$$

También sabemos que $[v]^{B_1} = M_{B_2}^{B_1}[v]^{B_2}$, entonces, igualando ambas expresiones, nos queda que

$$(M_{B_1}^{B_2})^{-1}[v]^{B_2} = [v]^{B_1} = M_{B_2}^{B_1}[v]^{B_2}$$
 para todo $v \in \mathbb{V}.$

Entonces $M_{B_2}^{B_1}=(M_{B_1}^{B_2})^{-1}$ como queríamos ver. **Justificación para los que no están convencidos** Si no estás convencido de este último paso, observar que tenemos que $M_{B_2}^{B_1}[v]^{B_2}=(M_{B_1}^{B_2})^{-1}[v]^{B_2}$, para todo $v\in\mathbb{V}$. Recordemos que

$$B_2 = \{w_1, \dots, w_n\}$$
. Entonces, por ejemplo, $[w_1]^{B_2} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ (pues $w_1 = 1.w_1 + 0.w_2 + \dots + 0.w_n$)

y entonces, volviendo a la iguladad anterior,

$$M_{B_2}^{B_1} \left[egin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array}
ight] = (M_{B_1}^{B_2})^{-1} \left[egin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array}
ight].$$

Siempre que hacemos $A \left[\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right]$ obtenemos la primera columna de la matriz A (si no se ve, hacer la

cuenta). Entonces, la igualdad anterior nos indica que la primera columna de $M_{B_2}^{B_1}$ y de $(M_{B_2}^{B_1})^{-1}$ coinciden. Si hacemos lo mismo para $v=w_2$, tendremos que la segunda columna de dichas matrices coinciden y así sucesivamente. En definitiva, todas la columnas de ambas matrices coinciden y por lo tanto son iguales.

b) : Sabemos que para todo $v\in\mathbb{V}$ vale que $[v]^{B_2}=M_{B_1}^{B_2}[v]^{B_1},\ [v]^{B_2}=M_{B_3}^{B_2}[v]^{B_3}$ y $[v]^{B_3}=0$ $M_{B_1}^{B_3}[v]^{B_1}$. Entonces

$$M_{B_1}^{B_2}[v]^{B_1} = [v]^{B_2} = M_{B_3}^{B_2}[v]^{B_3} = M_{B_3}^{B_2}(M_{B_1}^{B_3}[v]^{B_1}) = M_{B_3}^{B_2}M_{B_1}^{B_3}[v]^{B_1} \text{ para todo } v \in \mathbb{V}.$$

Es decir, $M_{B_1}^{B_2}[v]^{B_1}=M_{B_3}^{B_2}M_{B_1}^{B_3}[v]^{B_1}$ para todo $v\in\mathbb{V}$. Por lo tanto, con la misma justificación que usamos en a), tenemos que $M_{B_1}^{B_2}=M_{B_3}^{B_2}M_{B_1}^{B_3}$ y probamos lo que queríamos.

Operaciones entre subespacios

En esta parte de la guía vamos a estudiar dos tipos de operaciones entre subespacios que nos devuelven otro subespacio. Sea $\mathbb V$ un $\mathbb K$ -espacio vectorial y $\mathcal S$ y $\mathcal T$ subespacios de $\mathbb V$. Entonces

$$S \cap T := \{ v \in V : v \in S \ y \ v \in T \}.$$

$$\mathcal{S} + \mathcal{T} := \{ v \in \mathbb{V} : \exists \ s \in \mathcal{S}, t \in \mathcal{T} : v = s + t \} = \{ s + t : s \in \mathcal{S}, t \in \mathcal{T} \}.$$

La siguiente propiedad es muy útil para calcular un sistema de generadores de S + T sabiendo un sistema de generadores de S y T. La idea vale para espacios vectoriales de cualquier dimensión, pero para simplificar la notación, lo vamos a ver para un espacio vectorial de dimensión finita.

Sea \mathbb{V} un \mathbb{K} -espacio vectorial de dimensión finita y \mathcal{S} y \mathcal{T} subespacios de \mathbb{V} tales que $\mathcal{S} = gen\{v_1, \dots, v_r\}$ y $\mathcal{T} = ge\{w_1, \dots, w_s\}$. Entonces

$$S + T = gen\{v_1, \cdots, v_r, w_1, \cdots, w_s\}.$$

La prueba de esta propiedad es muy simple y se sugiere hacerla para ejercitar un poco hacer demostraciones.

Otra propiedad que usaremos ampliamente es la del teorema de la dimensión para la suma de subespacios. Recordemos que si \mathbb{V} es un \mathbb{K} -espacio vectorial de dimensión finita y \mathcal{S} y \mathcal{T} subespacios de \mathbb{V} , tenemos que:

$$\dim(\mathcal{S} + \mathcal{T}) = \dim(\mathcal{S}) + \dim(\mathcal{T}) - \dim(\mathcal{S} \cap \mathcal{T}).$$

Ejercicio 1.34: Para la siguientes elecciones de S_1 y S_2 del espacio vectorial V, hallar una base del mayor subespacio contenido en ambos y otra del menor subespacio que los contiene.

c)
$$S_1 = gen\left\{ \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\}, S_2 = gen\left\{ \begin{bmatrix} 4\\2\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\2\\0 \end{bmatrix} \right\}.$$

Antes de resolver el ejercicio, vamos a probar que $S_1 \cap S_2$ es el mayor subespacio contenido en S_1 y S_2 y que $S_1 + S_2$ es el menor subespacio que contiene a S_1 y S_2 . Aunque en el ejercicio no se aclara, con "mayor" y "menor" nos referimos respecto a la inclusión de conjuntos.

 $S_1 \cap S_2$ es el mayor subespacio contenido en S_1 y S_2 y $S_1 + S_2$ es el menor subespacio que contiene a S_1 y S_2 .

La inclusión de conjuntos permite "ordenar" conjuntos. Pero, es necesario resaltar, que a diferencia del orden que conocemos de los números reales, este orden de conjuntos no es un orden total. Es decir, si $a,b \in \mathbb{R}$, sabemos que sólo tenemos 3 opciones a=b ó a < b ó b < a. En el caso de conjuntos (y la inclusión) eso no necesariamente pasa. Por ejemplo, en \mathbb{R}^2 , consideremos $\mathcal{S}_1 = gen\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\}$ y $\mathcal{S}_2 = gen\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$. Observar que, $\mathcal{S}_1 \neq \mathcal{S}_2$, $\mathcal{S}_1 \not\subseteq \mathcal{S}_2$ y $\mathcal{S}_2 \not\subseteq \mathcal{S}_1$, es decir, en este caso, \mathcal{S}_1 y \mathcal{S}_2 NO se comparan (no podemos decir nada acerca de quien es "mayor, menor ó igual" respecto del orden que provee la inclusión de conjuntos). Sin embargo, hay casos (como el de este ejercicio) donde los conjuntos se comparan y uno es "mayor" o "menor" que el otro.

Veamos que $S_1 \cap S_2$ es el mayor subespacio contenido en S_1 y S_2 . Por un lado, claramente $S_1 \cap S_2 \subseteq S_1$, pues si $x \in S_1 \cap S_2$ entonces $x \in S_1$ (y también $x \in S_2$) y tenemos la inclusión $S_1 \cap S_2 \subseteq S_1$. De la misma manera, $S_1 \cap S_2 \subseteq S_2$. Es decir, probamos que $S_1 \cap S_2$ es un subespacio que está contenido en S_1 y S_2 . Falta ver que es el mayor (respecto de la inclusión). Para eso, supongamos que tenemos otro subespacio \mathcal{T} tal que $\mathcal{T} \subseteq S_1$ y $\mathcal{T} \subseteq S_2$ (es decir contenido en S_1 y S_2) entonces $\mathcal{T} \subseteq S_1 \cap S_2$, pues si $x \in \mathcal{T}$ entonces, por hipótesis, $x \in S_1$ y $x \in S_2$ entonces $x \in S_1 \cap S_2$ y vale la inclusión que escribimos. Por lo tanto, como \mathcal{T} era cualquiera, concluimos que $S_1 \cap S_2$ es el mayor (respecto de la inclusión) subespacio contenido en S_1 y S_2 .

Finalmente, $S_1 + S_2$ es el menor subespacio que contiene a S_1 y S_2 . Primero veamos que $S_1 \subseteq S_1 + S_2$. Si $x \in S_1$ entonces como $x = x + 0_{\mathbb{V}}$ y $0_{\mathbb{V}} \in S_2$ (porque S_2 es un subespacio), por definición de la suma de subespacios, $x \in S_1 + S_2$ y probamos la inclusión. De la misma manera, se prueba que $S_2 \subseteq S_1 + S_2$. Hasta acá vimos que $S_1 + S_2$ es un subespacio que contiene a S_1 y a S_2 . Falta ver que es el menor (respecto de la inclusión). Para eso, supongamos que T es un subespacio tal que $S_1 \subseteq T$ y $S_1 \subseteq T$. Entonces $S_1 + S_2 \subseteq T$, porque si $x \in S_1 + S_2$, existen $y \in S_1$ y $z \in S_2$ tales que x = y + z, pero por hipótesis $y \in T$ y $z \in T$. Además como T es un subespacio $x + y \in T$ (la suma de elementos de T pertenece a T) entonces $x = y + z \in T$ y tenemos que $S_1 + S_2 \subseteq T$, como T era cualquiera, concluimos que $S_1 + S_2$ es el menor (respecto de la inclusión) subespacio que contiene a S_1 a S_2 .

Ahora sí, hagamos cuentas. Usando la propiedad que enunciamos arriba, tenemos que

$$S_1 + S_2 = gen\left\{ \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\2\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\2\\0 \end{bmatrix} \right\}.$$

Entonces sólo tenemos que extraer una base, viendo la independencia lineal de los generadores de $S_1 + S_2$. Haciendolo por definición o colocando los vectores en la fila de una matriz y triangulando

vemos que
$$\begin{bmatrix} 2\\0\\2\\0 \end{bmatrix}$$
 es CL de los otros vectores. Entonces,

$$B_{\mathcal{S}_1+\mathcal{S}_2} = \left\{ \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\2\\2\\0 \end{bmatrix} \right\}.$$

Calculemos ahora $S_1 \cap S_2$. Sea $x \in S_1 \cap S_2$ entonces, $x \in S_1$ y $x \in S_2$. Entonces $x = a \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix} +$

$$b \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ para ciertos } a, b \in \mathbb{R} \text{ y } x = c \begin{bmatrix} 4 \\ 2 \\ 2 \\ 0 \end{bmatrix} + d \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix} \text{ para ciertos } c, d \in \mathbb{R}. \text{ Entonces}$$

$$a \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = c \begin{bmatrix} 4 \\ 2 \\ 2 \\ 0 \end{bmatrix} + d \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}.$$

Operando, nos queda el siguiente sistema de ecuaciones,

$$a+b-4c-2d=0$$
, $b-2c=0$, $2a+b-2c-2d=0$, $a+b=0$.

Despejando nos queda, a=-2c, b=2c, d=-2c. Volviendo a la expresión de x, nos queda

$$x=a\begin{bmatrix}1\\0\\2\\1\end{bmatrix}+b\begin{bmatrix}1\\1\\1\\1\end{bmatrix}=c\begin{bmatrix}0\\2\\-2\\0\end{bmatrix}, \text{ con } c\in\mathbb{R}. \text{ Nos hubiera dado lo mismo si reemplazamos en}$$

la otra expresión de x. Es decir, x=c $\begin{bmatrix}4\\2\\2\\0\end{bmatrix}+d\begin{bmatrix}2\\0\\2\\0\end{bmatrix}=c\begin{bmatrix}0\\2\\-2\\0\end{bmatrix}$ con $c\in\mathbb{R}$. En conclusión

$$S_1 \cap S_2 = gen\left\{ \begin{bmatrix} 0\\2\\-2\\0 \end{bmatrix} \right\}$$
 y una base podría ser $B_{S_1 \cap S_2} = \left\{ \begin{bmatrix} 0\\2\\-2\\0 \end{bmatrix} \right\}$.

Ejercicio: En $\mathbb{V} = gen\{1, e^x, e^{-x}\}$, consideremos $\mathcal{S} = gen\{3, 4e^x\}$ y $\mathcal{T} = \{g \in \mathbb{V} : g'(0) = 0\}$. Hallar bases de $\mathcal{S} \cap \mathcal{T}$ y $\mathcal{S} + \mathcal{T}$.

Dem. Primero obtengamos $S \cap T$. Si $f \in S \cap T$, entonces $f \in S$, es decir $f(x) = a.3 + b.4e^x$, con $a, b \in \mathbb{R}$ y además, $f \in T$, entonces como $f'(x) = (a.3 + b.4e^x)' = 4be^x$, tenemos que f'(0) = 4b = 0, entonces b = 0. Por lo tanto f(x) = 3a, con $a \in \mathbb{R}$, $S \cap T = gen\{1\}$ y una base podría ser $B_{S \cap T} = \{1\}$.

Ahora obtengamos S+T. Primero busquemos un sistema de generadores de T. Si $g \in T$ entonces $g(x) = a.1 + b.e^x + c.e^{-x}$ con $a, b, c \in \mathbb{R}$ y además como $g'(x) = be^x - ce^{-x}$, tenemos que g'(0) = b - c = 0, es decir b = c. Entonces $g(x) = a.1 + b(e^x + e^{-x})$, con $a, b \in \mathbb{R}$. Entonces $T = gen\{1, e^x + e^{-x}\}$ y

fácilmente vemos que $\dim(\mathcal{T}) = 2$. De la misma manera vemos que $\dim(\mathcal{S}) = 2$. Entonces, usando el teorema de la dimensión, $\dim(\mathcal{S} + \mathcal{T}) = \dim(\mathcal{S}) + \dim(\mathcal{T}) - \dim(\mathcal{S} \cap \mathcal{T}) = 2 + 2 - 1 = 3$. Por lo tanto como $\mathcal{S} + \mathcal{T} \subseteq \mathbb{V}$ y $\dim(\mathbb{V}) = \dim(\mathcal{S} + \mathcal{T}) = 3$, tenemos que $\mathcal{S} + \mathcal{T} = \mathbb{V}$. Una base de $\mathcal{S} + \mathcal{T}$ es cualquier base de \mathbb{V} , por ejemplo, como vimos arriba, $B_{\mathcal{S} + \mathcal{T}} = \{1, e^x, e^{-x}\}$ es una base posible. \square

Suma directa

Recordemos la definición de suma directa de subespacios:

Definición. Sea \mathbb{V} un \mathbb{K} -espacio vectorial y \mathcal{S} y \mathcal{T} subespacios de \mathbb{V} . Diremos que \mathcal{S} y \mathcal{T} están en suma directa (y la notamos $\mathcal{S} \oplus \mathcal{T}$) si para cada $v \in \mathcal{S} + \mathcal{T}$ existen únicos $s \in \mathcal{S}$ y $t \in \mathcal{T}$ tales que v = s + t.

Se puede probar que S y T están en suma directa si y sólo si $S \cap T = \{0\}$.

El siguiente ejercicio es muy similar al ejercicio 1.36.

Ejercicio: En $\mathbb{R}_3[x]$ consideremos los subespacios $S_1 = gen\{1 + x, 1 - x^2, 1 + x^3\}$ y $S_2 = \{p \in \mathbb{R}_3[x] : p(x) = 0\}$. Hallar un subespacio \mathcal{T} de $\mathbb{R}_3[x]$ tal que

$$\mathcal{S}_1 \oplus \mathcal{T} = \mathcal{S}_2 \oplus \mathcal{T} = \mathbb{R}_3[x].$$

Dem. Primero busquemos un sistema de generadores de S_2 . Sea $p \in S_2$, entonces $p(x) = ax^3 + bx^2 + cx + d$ con $a, b, c, d \in \mathbb{R}$ y además p(0) = d = 0. Entonces $S_2 = gen\{x^3, x^2, x\}$. Observar que $\dim(S_1) = \dim(S_2) = 3$. Entonces, como $\dim(\mathbb{R}_3[x]) = 4$, por el teorema de la dimensión, $\dim(\mathcal{T}) = \dim(S_1 \oplus \mathcal{T}) - \dim(S_1) - \dim(S_1 \cap \mathcal{T}) = \dim(\mathbb{R}_3[x]) - 3 - 0 = 4 - 3 = 1$ y \mathcal{T} debe ser un subespacio de dimensión 1 que está en suma directa con S_1 y S_2 , es decir, el generador de \mathcal{T} debe ser LI con los 3 generadores de S_1 y S_2 . Propongo $\mathcal{T} = gen\{1\}$. Claramente $\dim(\mathcal{T}) = 1$, además como los conjuntos $\{1, 1 + x, 1 - x^2, 1 + x^3\}$ y $\{1, x, x^2, x^3\}$ son LI, se sigue que $S_1 \cap \mathcal{T} = S_2 \cap \mathcal{T} = \{0\}$ y el \mathcal{T} propuesto cumple.

El siguiente ejercicio parece similar al anterior pero con un (gran) pequeño detalle.

Ejercicio de examen: En $\mathbb{R}_3[x]$ consideremos los subespacios $\mathcal{S}_3 = gen\{1 + x, 1 - x^2\}$ y $\mathcal{S}_4 = \{p \in \mathbb{R}_3[x] : p(-1) = 0\}$. Hallar un subespacio \mathcal{T} de $\mathbb{R}_3[x]$ tal que $\mathcal{S}_3 \oplus \mathcal{T} = \mathcal{S}_4$.

Dem. Primero observar que $S_3 \subseteq S_4$ porque sino el ejercicio no tendría sentido. De hecho, si $p \in S_3$ entonces $p(x) = a(1+x) + b(1-x^2)$ con $a, b \in \mathbb{R}$. Entonces p(-1) = a.0 + b.0 = 0 y $p \in S_4$. Entonces vale $S_3 \subseteq S_4$.

Por otra parte, busquemos un sistema de generadores de S_4 . Si $p \in S_4$ entonces $p(x) = ax^3 + bx^2 + cx + d$ con $a, b, c, d \in \mathbb{R}$ y además p(-1) = -a + b - c + d = 0. Entonces a = b - c + d y volviendo a la expresión de p, nos queda $p(x) = b(x^3 + x^2) + c(x^3 - x) + d(x^3 + 1)$, entonces $S_4 = gen\{x^3 + x^2, x^3 - x, x^3 + 1\}$ y dim $(S_4) = 3$. Entonces, el subespacio \mathcal{T} que buscamos debe cumplir 3 cosas:

- 1. $\mathcal{T} \subseteq \mathcal{S}_4$.
- 2. $\dim(\mathcal{T}) = \dim(\mathcal{S}_3 \oplus \dim \mathcal{T}) \dim(\mathcal{S}_3) \dim(\mathcal{S}_3 \cap \mathcal{T}) = \dim(\mathcal{S}_4) 2 0 = 3 2 = 1.$

3. El generador de \mathcal{T} debe ser LI con los dos generadores de \mathcal{S}_3 .

Propongo $\mathcal{T} = gen\{x^3+1\}$. Claramente, $\mathcal{T} \subseteq \mathcal{S}_4$, $\dim(\mathcal{T}) = 1$ y como el conjunto $\{1+x, 1-x^2, x^3+1\}$ es LI entonces $\mathcal{S}_3 \cap \mathcal{T} = \{0\}$. Por lo tanto, el \mathcal{T} propuesto cumple, ya que \mathcal{T} y \mathcal{S}_3 están en suma directa, $\mathcal{T} \oplus \mathcal{S}_3 \subseteq \mathcal{T}$ y $\dim(\mathcal{T} \oplus \mathcal{S}_3) = 3 = \dim(\mathcal{S}_4)$, lo que nos da que $\mathcal{S}_3 \oplus \mathcal{T} = \mathcal{S}_4$.

En el ejercicio anterior, observar que, por ejemplo, el subespacio $\mathcal{T}' = gen\{x^3\}$ está en suma directa con \mathcal{S}_3 y tiene dimensión 1, pero como $\mathcal{T}' \not\subseteq \mathcal{S}_4$ no sirve, es decir $\mathcal{S}_3 \oplus \mathcal{T} \neq \mathcal{S}_4$.