MATH6321 - Theory of functions of one real variable

Homework I

Joel Sleeba

February 5, 2025

1. Solution: For the sake of contradiction, assume that $\|(f+g)/2\|_p = 1$. That is $\|f+g\|_p = 2$, while $\|f\|_p = \|g\|_p = 1$. Thus we have an equality in the Minkowski's inequality. We know that equality in Minkowski's inequality for $1 occour if and only if <math>f = \lambda g$ for some scalar $\lambda \in \mathbb{C}$. Thus we see that $f = \lambda g$. Then

$$2 = ||f + g||_p = ||(1 + \lambda)f||_p = |1 + \lambda|||f||_p = |1 + \lambda|$$

and

$$1 = ||g||_p = ||\lambda f||_p = |\lambda| ||f||_p = |\lambda|$$

The only complex number which satisfy both of them are $\lambda = 1$. But this would give f = g, which is a contradiction. Hence we are done.

2. **Solution:** Let f_n be a cauchy sequence in M. Then $f_n \to f$ in C([0,1]), since C([0,1]) is complete under sup norm. For $\varepsilon > 0$, let $N_{\varepsilon} \in \mathbb{N}$ such that $||f_n - f||_{\infty} < \varepsilon$ for all $n > N_{\varepsilon}$. Then

$$\frac{-\varepsilon}{2} \le \int_0^{\frac{1}{2}} f - f_n \ d\mu \le \frac{\varepsilon}{2}$$

and similarly

$$\frac{-\varepsilon}{2} \le \int_{\frac{1}{2}}^{1} f - f_n \ d\mu \le \frac{\varepsilon}{2}$$

Together, they give us

$$\frac{-\varepsilon}{2} + \frac{-\varepsilon}{2} \le \int_0^{\frac{1}{2}} f - f_n \, dx - \int_{\frac{1}{2}}^1 f - f_n \, dx \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

Thus, we see that

$$\left| \int_{0}^{\frac{1}{2}} f \ dx - \int_{\frac{1}{2}}^{1} f \ dx - 1 \right| = \left| \left(\int_{0}^{\frac{1}{2}} f \ dx - \int_{\frac{1}{2}}^{1} f \ dx \right) - \left(\int_{0}^{\frac{1}{2}} f_{n} \ dx - \int_{\frac{1}{2}}^{1} f_{n} \ dx \right) \right|$$

$$= \left| \int_{0}^{\frac{1}{2}} f - f_{n} \ dx - \int_{\frac{1}{2}}^{1} f - f_{n} \ dx \right|$$

$$\leq \varepsilon$$

But since $\varepsilon > 0$ was chosen arbitrarily, we get that $f \in M$.

Now if $f, g \in M$, and h = tf + (1 - t)g for $t \in [0, 1]$, then

$$\int_{0}^{\frac{1}{2}} h(x) dx - \int_{\frac{1}{2}}^{1} h(x) dx = \int_{0}^{\frac{1}{2}} tf(x) + (1 - t)g(x) dx - \int_{\frac{1}{2}}^{1} tf(x) - (1 - t)g(x) dx$$

$$= t \left(\int_{0}^{\frac{1}{2}} f(x) dx - \int_{\frac{1}{2}}^{1} f(x) dx \right) + (1 - t) \left(\int_{0}^{\frac{1}{2}} g(x) dx - \int_{\frac{1}{2}}^{1} g(x) dx \right)$$

$$= t1 + (1 - t)1$$

$$= 1$$

Thus we get that M is convex.

Now we'll show that if $f \in M$, then $||f||_{\infty} > 1$. Let $f \in C([0,1])$, such that $||f||_{\infty} \le 1$. Then

$$\left| \int_0^{\frac{1}{2}} f(x) \, dx \le \left| \int_0^{\frac{1}{2}} f(x) \, dx \right| \le \int_0^{\frac{1}{2}} |f(x)| \, dx \le \int_0^{\frac{1}{2}} 1 \, dx = \frac{1}{2}$$

and by a similar reasoning, we get

$$-\int_{\frac{1}{2}}^{1} f(x) \ dx \le \Big| \int_{\frac{1}{2}}^{1} f(x) \ dx \Big| \le \int_{\frac{1}{2}}^{1} |f(x)| \ dx \le \int_{\frac{1}{2}}^{1} 1 \ dx = \frac{1}{2}$$

which gives

$$\int_0^{\frac{1}{2}} f(x) \ dx - \int_{\frac{1}{2}}^1 f(x) \ dx \le 1$$

Thus equality in the above inequalities hold only when

$$\int_0^{\frac{1}{2}} f(x) \ dx = \frac{1}{2} = -\int_1^{\frac{1}{2}} f(x) \ dx$$

Now if f(x) = u(x) + iv(x), where u(x), v(x) are real valued functions, this would imply that

$$\int_0^{\frac{1}{2}} u(x) \ dx = \frac{1}{2} = -\int_1^{\frac{1}{2}} u(x) \ dx$$

and

$$\int_0^{\frac{1}{2}} v(x) \ dx = 0 = \int_1^{\frac{1}{2}} v(x) \ dx$$

This is rather replacing f(x) with u(x), and therefore without loss of generality, we might very well assume that f is a real valued function. Moreover

$$\frac{1}{2} = \int_0^{\frac{1}{2}} f(x) \ dx \le \int_0^{\frac{1}{2}} |f(x)| \ dx \le \frac{1}{2}$$

shows that f = |f| almost everywhere in $[0, \frac{1}{2}]$. Again since $||f||_{\infty} \le 1$, $\chi_{[0, \frac{1}{2}]} - f$ is a non-negative function in $[0, \frac{1}{2}]$ which satisfy

$$\int_0^{\frac{1}{2}} f - \chi_{[0,\frac{1}{2}]} \ dx = \int_0^{\frac{1}{2}} f \ dx - \int_0^{\frac{1}{2}} \chi_{[0,\frac{1}{2}]} \ dx = \frac{1}{2} - \frac{1}{2} = 0$$

Then by a result we proved before which states that if

$$\int_{E} f \ d\mu = 0$$

either $\mu(E)=0$ or f=0 almost everywhere, we get that $f=\chi_{[0,\frac{1}{2}]}$ almost everywhere in $[0,\frac{1}{2}]$. By continuity of f, we see that f(x)=1 for all $x=[0,\frac{1}{2})$. By a similar reasoning we get $f(x)=\frac{-1}{2}$ for all $x\in(\frac{1}{2},1]$. But such a continuous function do not exist. Hence we have shown that if $f\in M$, then $\|f\|_{\infty}>1$.

Now we'll find a sequence of functions $f_i \in M$ such that $||f_i||_{\infty} \to 1$. Define

$$f_n(x) = \begin{cases} 1 + \frac{1}{n}, & 0 \le x \le \frac{1}{2} - \frac{1}{n} \\ (n+1)(\frac{1}{2} - x), & \frac{1}{2} - \frac{1}{n} < x \le \frac{1}{2} + \frac{1}{n} \\ -1 - \frac{1}{n}, & \frac{1}{2} + \frac{1}{n} < x \le 1 \end{cases}$$

Then $f_n \in M$ for all $n \geq 2$ and $||f_n||_{\infty} = 1 + \frac{1}{n}$. Hence $||f_n||_{\infty} \to 1$.

3. Solution: Let $f \in M$, then

$$1 = \int f \ dm \le \int |f| \ dm = ||f||_1$$

Thus the minimal norm of elements of M is 1. Now let $f_n = n\chi_{[0,1/n]}$. Clearly, each $f_n \in L^1([0,1])$ and

$$||f_n||_1 = \int |f_n| \ dm = \int f_n \ dm = \int n\chi_{[0,\frac{1}{n}]} \ dm = nm([0,1/n]) = 1$$

Thus f_n is an example of infinitely many elements in M attaining minimal norm.

4. Solution: Part I: X_m is closed

We'll first show that the collection $X_m = \{f \in C([0,1]) : \exists x \in [0,1], \forall y \in [0,1], |f(x)-f(y)| \leq m|x-y|\}$ is closed. Let (f_n) be a cauchy sequence in X_m . Since $X_m \subset C([0,1])$ and C([0,1]) is closed under the sup norm, $f_n \to f \in C([0,1])$. We'll show that $f \in X_m$. Let $x_n \in [0,1]$ correspond to each f_n such that for all $y \in [0,1]$,

$$|f_n(x_n) - f_n(y)| \le m|x_n - y|$$

Since [0,1] is compact, x_n has a convergent subsequence x_{n_k} which converge. Let $x_{n_k} \to x_0$ and $\varepsilon > 0$. Since $f_{n_k} \to f$ in the sup norm, by a slight abuse of notation assume $x_n \to x_0$. Let $N_{\varepsilon} \in \mathbb{N}$ such that for all $n > N_{\varepsilon}$, we have $||f - f_n||_{\infty} < \varepsilon$. Let $M_{\varepsilon} \in \mathbb{N}$ such that for all $n > M_{\varepsilon}$, $|x_0 - x_n| < \varepsilon/m$. Then for $n > N := \max\{N_{\varepsilon}, M_{\varepsilon}\}$ and $y \in [0, 1]$,

$$|f(x_0) - f(y)| \le |f(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_n)| + |f_n(x_n) - f_n(y)| + |f_n(y) - f(y)|$$

$$< \varepsilon + m|x_n - x_0| + m|x_n - y| + \varepsilon$$

$$< \varepsilon + \varepsilon + m|x_n - y| + \varepsilon$$

$$= 3\varepsilon + m|x_n - x_0 + x_0 - y|$$

$$\le 3\varepsilon + m|x_n - x_0| + m|x_0 - y|$$

$$< 4\varepsilon + m|x_0 - y|$$

Since $\varepsilon > 0$ was chosen arbitrarily, this gets that $|f(x_0) - f(y)| \le m|x_0 - y|$. Thus $f \in X_m$, and we get that X_m is closed. We restate one of the results we proved, since we'll reuse it in below.

Proposition 0.1. If $f_n \to f$, uniformly in X_m , and $x_n \in [0,1]$ such that for all $y \in [0,1]$,

$$|f_n(x_n) - f_n(y)| = m|x_n - y|$$

Then for any convergent subsequence $x_{n_k} \to x_0 \in [0,1]$, we have that for all $y \in [0,1]$

$$|f(x_0) - f(y)| \le m|x_0 - y|$$

Part II: X_m has empty interior

Now to show that X_m has empty interior, for any $\varepsilon > 0$ we'll find an $h \in B_{\varepsilon}(f)$ such that $h \notin X_m$. Let $f \in X_m$, and $\varepsilon > 0$ be given. Assume for contradiction that $B_{\varepsilon}(f) \subset X_m$. Let $h_{p,q}(x) := f(x) + \varepsilon/p \sin(qx)$ for $p, q \in \mathbb{N}$

$$||f - h_{p,q}||_{\infty} = ||\varepsilon/p\sin(qx)|| = \frac{\varepsilon}{p}$$

shows that $h_{p,q} \in B_{\varepsilon}(f) \subset X_m$. Then there exist $x_{p,q} \in [0,1]$ such that for all $y \in [0,1]$,

$$|f(x_{p,q}) - f(y) + \varepsilon/p(\sin(qx_{p,q}) - \sin(qy))| = |h_{p,q}(x_{p,q}) - h_{p,q}(y)| \le m|x_{p,q} - y|$$

Then for all $y \in [0, 1]$

$$\left| \left| f(x_{p,q}) - f(y) \right| - \varepsilon/p \left| \sin(qx_{p,q}) - \sin(qy) \right| \right| \le m |x_{p,q} - y|$$

which gives that

$$\varepsilon/p|\sin(qx_{p,q}) - \sin(qy)| \le |f(x_{p,q}) - f(y)| + m|x_{p,q} - y|$$

by choosing $a = |f(x_{p,q})|, b = 1/p|\sin(qx_{p,q}) - \sin(qy)|$, and $c = m|x_{p,q} - y|$, and using the fact that

$$|a - b| \le c$$

$$\implies -c \le a - b \le c$$

$$\implies -c - a \le -b \le c - a$$

$$\implies b < a + c$$

But since for a fixed $q \in \mathbb{N}$, $h_{p,q}$, as a sequence indexed by p converge uniformly to f, by Proposition 0.1, for a subsequence of $x_{p,q}$ (indexed by p), converging to x_q , we have for all $y \in [0,1]$,

$$|f(x_q) - f(y)| \le m|x_q - y|$$

Without loss of generality, assume that for any fixed q, $x_{p,q} \to x_q$ as a sequence in p. Then for all $\delta > 0$ there exists an $M_p \in \mathbb{N}$, such that for all $p > M_p$, $|x_{p,q} - x_q| < \frac{\delta}{m}$. Then for $p > M_p$,

$$|f(x_{p,q}) - f(y)| + m|x_{p,q} - y| \le |f(x_{p,q}) - f(x_q)| + |f(x_q) - f(y)| + m|x_{p,q} - y|$$

$$\le m|x_{p,q} - x_q| + m|x_q - y| + m|x_{p,q} - y|$$

$$< \delta + m|x_q - x_{p,q}| + m|x_{p,q} - y| + m|x_{p,q} - y|$$

$$< \delta + \delta + 2m|x_{p,q} - y|$$

$$= 2\delta + 2m|x_{p,q} - y|$$

Since $\delta > 0$ was arbitrary, this shows that for $p > M_p$, for all $y \in [0, 1]$

$$\varepsilon/p|\sin(qx_{p,q}) - \sin(qy)| < 2m|x_{p,q} - y|$$

But we know that for $q > 15 > 4\pi$ (some estimate), either $[x_{p,q} - \frac{2\pi}{q}, x_{p,q}]$ or $[x_{p,q}, x_{p,q} + \frac{2\pi}{q}]$ is a subset of [0,1]. Let us call this subset A, then there is $y \in A$ such that $|\sin(qx_{p,q}) - \sin(qy)| > 1$. Moreover for such y, we'll have $|x_{p,q} - y| < \frac{2\pi}{q}$. Thus we get that for a fixed $p > M_p$,

$$\frac{\varepsilon}{p} \le \varepsilon/p|\sin(qx_{p,q}) - \sin(qy)| < 2m|x_{p,q} - y| \le \frac{4m\pi}{q}$$

Since this is true for all q, and a fixed ε, p , this gives a contradiction as $q \to \infty$ and $\frac{4m\pi}{q} \to 0$.

Part III: G_{δ} dense set of nowhere differentiable functions

Since each X_n is closed and has empty interior, each X_n are nowhere dense. Then X_n^c are dense open subsets of C([0,1]). Then by the Baire category theorem, we get that

$$X = \bigcap_{n=1}^{\infty} X_n^c$$

is a dense G_{δ} subset of C([0,1]). We'll show that X is precisely the set of nowhere differentiable functions. Let $f \in C([0,1])$ be differentiable at $x \in [0,1]$. Then by the definition of the derivative, there is a $\delta > 0$ such that

$$|x-y| < \delta \implies \left| \frac{f(x) - f(y) - f'(x)(x-y)}{x-y} \right| < 1$$

Then for $y \in B_{\delta}(x)$,

$$||f(x) - f(y)| - |f'(x)(x - y)|| < |x - y|$$

By taking a = |f(x) - f(y)|, b = |f'(x)(x - y)|, and c = |x - y| and using the same reasoning as in part II, we get

$$|f(x) - f(y)| \le (|f'(x)| + 1)|x - y|$$

Let $\mathbb{N} \ni N_1 \ge |f'(x)| + 1$. If $y \notin B_{\delta}(x)$, then choose $M = ||f||_{\infty}$ and $N_2 \in \mathbb{N}$ such that $2M < N_2\delta$. Then

$$|f(x) - f(y)| \le 2M < N_2 \delta \le N_2 |x - y|$$

Now for $N = \max\{N_1, N_2\}$, we see that for all $y \in [0, 1]$

$$|f(x) - f(y)| \le N|x - y|$$

and therefore $f \in X_N$. Thus we see that if $f \in X$, then f is not differentiable anywhere in [0,1]. Hence we are done.