PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-121881

(43) Date of publication of application: 12.05.1995

(51)Int.CI.

G11B 7/007

G11B 7/00

(21)Application number: 05-268593

(71)Applicant: HITACHI LTD

(22)Date of filing:

27.10.1993

(72)Inventor: MAEDA TAKESHI

SUGIYAMA HISATAKA

(54) OPTICAL INFORMATION RECORDING AND REPRODUCING METHOD

(57)Abstract:

PURPOSE: To make a high density by combining single marks of a specified form and expressing unit information with plural marks consisting of the presence or absence of a mark and of the positional shifting of a mark. CONSTITUTION: The dimension of a single rugged pit 100 is set to about 0.3μ m smaller than a dimension determined from about 0.65 µ m resolutable with an optical system and the interval between pits is set to about 0.6μ m and the depth of the pit is set to the 1/4 of the wave length of a light source. Then. information are allowed to correspond to pit arrangements in which the presence or

absence of a single mark and the shifting from a specific repeating position are combined. In (a), pits are arranged with a constant spacing and a detected light becomes a constant value in spite of the movement of a light spot 1. When pits 2 to 12 are moved like in (b) to (i), the detected lights are changed owing to mutual

interferences in accordance with positional shiftings of marks. As a result, information are demodulated based on relative levels of detected lights. Thus, a recording and reproducing having a facial density which is approximately four to five times as dense as a normal density is performed.

LEGAL STATUS

[Date of request for examination]

06.03.2000

[Date of sending the examiner's decision 16.10.2001

of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

FΙ

(11)特許出顧公開番号

特開平7-121881

(43)公開日 平成7年(1995)5月12日

(51) Int.Cl.6

識別記号

庁内整理番号

技術表示箇所

G11B 7/007 7/00

9464-5D

Q 9464-5D

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出願番号

特顯平5-268593

(71)出願人 000005108

株式会社日立製作所

平成5年(1993)10月27日 (22)出願日

東京都千代田区神田駿河台四丁目6番地

(72)発明者 前田 武志

東京都国分寺市東茲ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(72)発明者 杉山 久貴

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 弁理士 小川 勝男

(54) 【発明の名称】 光情報記録再生方法

(57)【要約】

【目的】 面密度で現状の約4から5倍密度を実現する 記録再生方式を提案する。とくに光記録プロセス上で安 定に記録でき、かつ検出信号波形の変化の中で、多値の レベルとそのレベルをとるときのタイミングに情報を持 たせる記録再生方式を提案する。

【構成】 情報の構成要素を光学的な深さの違ったマー クの配列として表現し、該マーク配列は特定形状の単一 マークの組合せからなり、該マークの有無、マークの位 置ズレからなる複数のマークによって単位情報を表現 し、該マークピッチは再生光学系の空間周波数よりも高 くする。

[効果] 現状のデジタルオーデイオデイスクに比較して 4倍以上の髙密度化を実現できる。

囱 1						
	0.3um		74 × 11		<u> </u>	スポット進
0	ϕ	0	ϕ	0	0	— →
0	9	٠Ő	O	0	0	0
0	0	\mathcal{C}		0	0	0
0	Ö)	0	\circ	0	0
(e) CEPPE						
0	0	C.		\sim	0	0
0	0		0	0	\circ	0
0	\propto	$\dot{\Sigma}$	0	0	0	0
Estis Estis						
	00000				0.3um 24.5 y h 1	0.3um 2xfyh1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

【特許請求の範囲】

【請求項1】光学的に識別可能な形態で情報を記録し、 再生する情報記録再生方法において、情報坦体の形態が 光学的な深さの違ったマークの配列として表わされ、該 マーク配列は特定形状の単一マークの組合せからなり、 該マークの有無、マークの位置ズレからなる複数のマー クによって単位情報を表現し、該マークピッチは再生光 学系の空間周波数よりも高いことを特徴とする情報記録 再生方法。

【請求項2】光学的に識別可能な形態で情報を記録し、 再生する光情報記録再生装置において、情報坦体の形態 が光学的な深さの違ったマークの配列として表わされ、 該マーク配列は特定形状の単一マークの組合せからな り、該マークの有無、マークの位置ズレからなる複数の マークによって単位情報を表現し、該マークピッチは 0.8ミクロン以下であることを特徴とする光情報記録 再生方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は情報を光学的に記録し、 再生する方法に係わり、特に光ディスク装置の高密度記 録再生方法に関する。

[0002]

【従来の技術】現在の再生専用光デイスクの面密度は約 660Mbit/in'であり、トラックピッチは1. 6ミクロン、線方向密度は0.6ミクロン/ビット程度 である。しかし、情報容量の増加とともに近年高密度化 の要求が強くなってきている。これは特に、画像情報の 圧縮技術が向上したことにより従来では困難と思われて いたことに可能性がでてきたことによる。すなわち、1 20mm径の円板にMPEG2の画像圧縮を行い、1時 間から1時間半程度のデジタル化した画像を記憶できる 可能性がでてきた。しかし、この時の面密度は現在の約米

*4から5倍と飛躍的に向上させなくてはならず、従来の 技術では実現できなかった。

【0003】現在検討されている方法としては例えば、 従来のデジタルオーデオデイスクに用いられた記録方式 を採用し、之れを改良することにより上述の高密度化を 実現しようとしている。従来の記録方式は情報を長マー クの両エッジに対応させ、エッジの位置を検出する。以 下との方式を図3を用いて簡単に説明する。

【0004】記録すべき n ビットのユーザデータをデイ スク面上に記録する血チャネルビットに変換する。とと で最小記録マーク長さTmin、と最大記録マーク長さ Tmax、検出窓幅Twと符号を定義づける(d, k) との関係は表1のようになる。

[0005] 【表1】

表 1 (d,k) RLL変調関係

Tw = (n/m) T

Tmin=(d+1)Tw Tmax=(k+1)Tw

【0006】ユーザデータのビット間隔をTとすると光 デイスク記録再生特性から見た分解能の限界は最小記録 マーク長さで決められることから、この値を固定すると 記録容量を上げるためにはdを大きくする必要がある。 【0007】しかし、情報理論によればdとTwの間に はおおよそ図4のような関係があり、 dを大きくしてい くと検出窓幅が狭くなり、対応する密度を実現するため にはS/Nを上げていく必要がある。このS/Nに対応 30 した最大転送速度Rmaxとの間には次の関係式が知ら れている。

[0008]

Rmax = 1 / (2 Tmin) Log₁ (1 + S/N)

20

しかし、この式は理想的な関係を表しており実際には符 号化の方式によってこの関係式からずれる。

【0009】図5には検出エラー率を10の-5乗にと ったときの関数を点線で示した。また従来の記録方式で 定すると、実線のようになりS/Nの向上の割には転送 速度が上がらないという効率の悪い記録方式であること がわかる。現状のデジタルオーデイオデイスは、符号と しては若干効率は悪いが、 dがおおよそ2 に近いところ にある。従って、現状では記録再生帯域で規格化したR max/(1/(2Tmin))が2となるS/N状態 となっている。

【0010】とのS/N状態を用いて実線上の記録方式 で、約4になる方式が提案されている。しかし、この方

(式1)

近い斜線領域を実現することが望ましい。この領域は情 報を検出信号波形のレベルに対応させる記録方式で実現 できることが知られている。さらに詳細にのべると、通 信理論では限られた伝送帯域において帯域あたりの伝送 のS/Nと転送速度の関係を求めると同じエラー率を仮 40 効率がよいのは振幅位相シフトキーイングであることが 示されている。

> 【0011】 このためにはディスク面上からの検出信号 が多値レベルをもつ必要があるが、このために記録マー クの面積を変える、反射率を変える、マークの光学的位 相量を変える等が考えられる。しかし、凹凸ピットに情 報を持たせる方式では記録プロセスの安定性の上から上 記の方式はとれない。

[0012]

【発明が解決しようとする課題】面密度で現状の約4か 式が成立するならば、同じS/Nを用いてさらに点線に 50 ら5倍密度を実現する記録再生方法を提案する。とくに

光記録プロセス上で安定に記録でき、かつ検出信号波形 の変化の中で、多値のレベルとそのレベルをとるときの タイミングに情報を持たせる記録再生方法を提案する。 [0013]

3

【課題を解決するための手段】情報の構成要素を光学的 な深さの違ったマークの配列として表現し、該マーク配 列は特定形状の単一マークの組合せからなり、該マーク の有無、マークの位置ズレからなる複数のマークによっ て単位情報を表現し、該マークピッチは再生光学系の空 間周波数よりも高くする。

[0014]

【作用】光スポットが単一マークを通過するときに、情 報を表わすマーク配列を構成する各単一マークからの反 射及び透過光に与える影響の相互干渉の結果として総合 的に反射及び透過光が変化する。この変化は、複数の単 **一マークの在る無し、または一定周期からの位置ずれに** 対応して変化する。情報の符号化はマーク配列と反射及 び透過光のスポット通過位置に対する光量レベルの変化 に対応させ、復号化はスポット通過各位置に対する再生 光量のレベルを多値レベルに対応づけ、かつ複数の位置 における前記レベルの変化をみることにより情報を検出 する。

[0015]

【実施例】図1に凹凸ピットを用いた本発明の実施例を 示す。光学系のパラメータは再生光源の波長は680n m. 対物レンズの開口数は0.55とする。するとスポ ット1の径はおおよそ1.3ミクロンとなる。単一の凹 凸ピット100の大きさは上記光学系で分解できる0. 65ミクロンピットピッチから決まる大きさよりも、小 さいり、3ミクロンとする。このピットを一定間隔毎に 図1の(a)のように配列すると光スポット1の移動に 対して図2の(a)の信号が得られる。ピット径は0. 3ミクロン、間隔は0.6ミクロンである。

【0016】ピット深さは光源の波長の1/4に設定す る。(a)の配列では対物レンズを通過してくる光量を すべて一つの検出器で受光する従来の検出方式ではスポ ットの移動に係らず一定の値v1となる。しかし、との 状態から一つのピット2をわずかにシフトさせると、例 えば0.15ミクロンだけシフトさせると前述の値v1 得られる。そして値vlとの交点はずらしたピットの中 心、すなわち0.15ミクロンの処となる。逆に-0. 15ミクロンシフトさせた配列(c)では、検出波形は 図2の(c)の波形となり、原点を中心とする波形

(b) とは点対称な波形となる。さらに-0.3ミクロ ンシフトした配列(d)では検出波形は図2の(d)の ようになり値v1に対して、-0.3ミクロンの処を中 心にした点対称な波形となり、その大きさはシフト量に 応じて大きくなる。

のはマークが凹凸ピットであるため単一マークの応答の 単純な重ねあわせでは検出波形が合成できないことによ る。すなわち、単一マークが孤立で存在する場合、

(e)のような配列での検出波形は図2の(e)のよう な波形になるが、光学的に分解できない程度にマークが 近接してくると相互の干渉が強くそれぞれのマークの応 答(e)の単純加算が成立しない。

【0018】さらに真中のピットを0.15ミクロン、 2番目のピットも0.15ミクロン同じ方向にシフトさ 10 せた配列 (f) では検出波形は図2の (f) のようにな り、波形(b)の値v1の下側の波形部分が全体0.6 ミクロンシフトした様な波形となる。

【0019】これまでの例はすべて配列(a)のピット の位置がずれたときの波形を示したが、配列(a)のピ ットが無くなったり、余分なピットが付加されたときの 様子を以下に示す。真中のビットが無い配列(g)では 検出波形は図2の(g)の様になり、値v1から増加す る単峰的な波形であり、そのピークは無くなったビット の中心位置となる。また逆に配列(a)に-0.3ミク ロン位置にピットを追加した配列(h)ではその波形は 図2の(h)のようになり、値v1から減少する単峰的 な波形であり、そのピークは追加ピットの中心位置0. 3ミクロンの位置となる。 さらにこれらの組合せとして 真中のピットを無くし、-0.3と-0.9ミクロンに ピットを置いた配列(i)での波形は図2の(i)のよ うになり、値v1の上と下に飽和した2つのレベルを持 つ。この波形はこれまでの長マークの両エッジに情報を 持たせる方法に似ているが、今回検出するのは波形の変 化する途中の位置を求めるのではなく、記録ピット位置 に対応した波形のレベルを検出する。

【0020】本発明では単一マークの有無と特定繰返し 位置からのずれを組み合わせたピット配列に情報を対応 させ、この配列から検出される信号は前述のようにレベ ルの複雑な変化になるが、この波形のレベル変化を検出 し記録情報を復調する。この時のレベルは波形(i)の 上下2つの飽和レベルの間の値に離散的な値をとること になる。

【0021】従来方法の高密度化では、Tを0.3ミク ロンとすると、検出窓幅は0.12ミクロンと非常に狭 に対して上下にほとんど対称的に変化した波形 (b) が 40 くなる。このため記録するマークのエッジの位置精度は やく一桁下の0.01ミクロンとなり、マーク作成時の プロセスの変動に非常に弱くなる。原板製造時の感光材 の感度むら、厚さむら、記録レーザパワーの変動、焦点 合わせの変動等によってエッジが変動する。またスタン ピングの過程でインジェクションによる成型むらの影響 が大きくなる。再生時には光スポットの収差の影響を受 けやすくなり、とくにコマ収差の影響によりエラーが発 生しやすくなる。 本発明によれば、記録マークは単一 丸形状であり、これの組合せで情報を表現するために、

【0017】 このような特徴的な振舞を検出波形がする 50 記録時に制御するのはこのマークの中心位置と半径のみ

であり、これは記録レーザ変調波形を短いパルスにし、 感光材を露光することにより中心位置は正確に形成され る。またマークの径は感光材のガンマ特性と記録レーザ スポットの強度分布によって決まるが、強度分布の半値 幅で0.3ミクロン程度であり実施例でしめしたマーク は形成可能である。また径の多少の変動があっても値v 1は上下するが波形は変化しないので、値 v 1を基準に すればレベルの値を相対的に検出できる。また再生時の 光スポットの収差は単一マークの組合せであることから 単一マークに対する影響分んだけ一様に変化するため、 信号処理上補正が容易にできる。従って本方式を使用す れば従来方式の改良によって高密度化するよりも、同一 S/Nでも記録プロセスに特別な要求することなく、よ り髙密度化できる。

【0022】例えば現状のデジタルオーデイオデイスク の読みだし波長は780nm, 開口数は0.47程度で あり、スポット径は1.7ミクロンとなっている。現状 の記録方式では線記録密度は0.6ミクロン/ビットで ある。波長を現状しよう可能な630nmとすると波長 比だけで1.5倍の密度向上が期待しできる。さらに開 20 口数を0.55まで上げると1.4倍となる。両方の効 果を合わせると2倍の高密度化は可能となる。実施例で*

【図1】

*示したような記録方式で0.3ミクロン位置毎に2値化 情報を対応させることは容易にできるので、0.3ミク ロン/ビット以上の線密度を実現することは可能とな る。これは記録方式だけで1.5倍以上の線密度向上と なる。トラックピッチも従来の比較して検出窓幅が0. 3ミクロンと約3倍程度広くできるのでつめることがで きて、従来スポット径で決めてきたものに比較して1. 5倍以上つめることができる。

[0023]

【発明の効果】以上により現状のデジタルオーデイオデ イスクに比較して4倍以上の高密度化を実現できる。

【図面の簡単な説明】

- 【図1】本発明のピット配列の平面図。
- 【図2】本発明の検出波形の説明グラフ図。
- 【図3】従来記録方式の説明概念図。
- 【図4】従来記録方式における検出窓幅と最短マーク長 さの関係を示すグラフ図。
- 【図5】記録方式の違いによるS/Nと最大転送速度の 関係を示すグラフ図。
- 【符号の説明】 光スポット…1、凹凸ピット…100。

図ユ 0 0 0 [図3]

[図2]

チャネル 記録ビット 【図4】

【図5】

