COMP 1433: Introduction to Data Analytics & COMP 1003: Statistical Tools and Applications

Lecture 3 — Statistics Basics for Data Analytics

Dr. Jing Li

Department of Computing

The Hong Kong Polytechnic University

30&31 Jan 2023

Discussion: Tears of Sally

Sally Clark was the victim of a miscarriage of justice in 1999.

She was found guilty of the murder of two infant sons, both died within the first few weeks of their births; and only the mother is present when the babies die.

- Here are the arguments from the defense:
 - 1 in 8,500 babies died from sudden infant death syndrome (SIDS), which causes the babies' death in the first few weeks of their births.
 - The probability that two babies both died from SIDS is 1 in 73 million (the square of 1/8500)
 - The probability that the mother kills the sons is $1 - \frac{1}{73M} \approx 1$, so the mother is the murder!
- QUESTION: How can you fight back?

Roadmap

- Expectation and Variance
- Sample Statistics
- Hypothesis Testing
- Statistics vs. Data Analytics
 - Naïve Bayes (cont.)
 - Probabilistic Language Models (cont.)

Roadmap

- Expectation and Variance
- Sample Statistics
- Hypothesis Testing
- Statistics vs. Data Analytics
 - Naïve Bayes (cont.)
 - Probabilistic Language Models (cont.)

Expectation of Random Variables

- The expected value for discrete random variable X
 - $E[X] \equiv \sum_k x_k P(X = x_k) = \sum_k x_k p_X(x_k)$
 - It represents the *weighted average sum* of *X*
 - Also called the mean of X
- **Example**. The *expected value* of *rolling a die* is:

•
$$E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = \frac{1}{6} \cdot \sum_{k=1}^{6} k = \frac{7}{2}$$

PROPERTIES

- E[aX] = aE[X]
- E[aX + b] = aE[X] + b

Variance and Standard Deviation

- Let the mean of X be $\mu = E[X]$
- Then the *variance* of *X* is:
 - $Var(X) \equiv E[(X \mu)^2] = \sum_k (x_k \mu)^2 p_X(x_k)$
 - The weighted *square distance* from the *mean*.
- We have another form of variance as:
 - $Var(X) = E[X^2] \mu^2$
- The *standard deviation* is $\sigma(X) = \sqrt{Var(X)}$
 - The weighted *distance* from the *mean*.
- The *variance* of *rolling the die* is:

•
$$Var(X) = \sum_{k=1}^{6} \left[k^2 \cdot \frac{1}{6}\right] - \mu^2 = \frac{1}{6} \cdot \frac{6(6+1)(2\cdot 6+1)}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$$

• The standard deviation
$$\sigma = \sqrt{\frac{35}{12}} \cong 1.70$$

Roadmap

- Expectation and Variance
- Sample Statistics
- Hypothesis Testing
- Statistics vs. Data Analytics
 - Naïve Bayes (cont.)
 - Probabilistic Language Models (cont.)

What is *Sampling*?

Sampling can consist:

- Gathering random data from a large population, e.g.,
 - Measuring the height of randomly selected adults.
 - Measuring the starting salary of random CS students.
- Recording the results of experiments, e.g.,
 - Measuring the *breaking strengths* of randomly selected bolts
 - Measuring the *lifetime* of randomly selected bulbs.

Assumptions:

- The population is *infinite* (or very *large*).
- The observations are independent.
 - The experiment outcome does not affect other experiments.

What is Sample Statistics?

- A random sample from a population consists of:
 - Independent, identically distributed random variables, $X_1, X_2, ..., X_n$
- The values of X_i are called the *outcomes* of the experiment.
- A *statistic* is a *function* of $X_1, X_2, ..., X_n$.
- Thus, a statistic itself is a random variable.

Important Statistics

• The sample mean:

•
$$\overline{X} \equiv \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

The sample variance and standard deviation:

•
$$S^2 \equiv \frac{1}{n-1} \sum_{k=1}^{n} (X_k - \bar{X})^2$$
 and $S = \sqrt{\frac{1}{n-1}} \sum_{k=1}^{n} (X_k - \bar{X})^2$

- The *order statistic* in which the observation are *ordered in size*, e.g., *increasing order*
- The sample median is:
 - The mid-value of the order statistic (if n is an odd)
 - The average of the two middle values (if n is an even)
- The *sample range* is the *difference between the largest and smallest observations*.

Example: Important Statistics

- For the 8 observations:
 - -0.737, 0.511, -0.083, 0.066, -0.562, -0.906, 0.358, 0.359
- What is the sample mean:
 - $\bar{X} = \frac{1}{8}(-0.737 + 0.511 0.083 + 0.066 0.562 0.906 + 0.358 + 0.359) = -0.124$
- What is the sample variance:
 - $S^2 = \frac{1}{8-1} [(-0.737 + 0.124)^2 + (0.511 + 0.124)^2 + (-0.083 + 0.124)^2 + (0.066 + 0.124)^2 + (-0.562 + 0.124)^2 + (-0.906 + 0.124)^2 + (0.358 + 0.124)^2 + (0.359 + 0.124)^2] = 0.297$
- What is the sample standard deviation:
 - $S = \sqrt{0.297} = 0.545$

Example: Important Statistics

- For the 8 observations:
 - -0.737, 0.511, -0.083, 0.066, -0.562, -0.906, 0.358, 0.359
- What is the order statistics?
 - -0.906, -0.737, -0.562, -0.083, 0.066, 0.358, 0.359, 0.511.
- What is the sample median?

- What is the *sample range*?
 - 0.511 (-0.906) = 1.417

Discussion:

The Trap of Mean

- NEWS TITLE: The average income of Company T's employees is 100K HKD/month
- Is the news title *misleading*?
- Considering the following example:
 - 10% of the employees earn 910K
 - 90% of the employees earn 10K
- What is the *mean* of their monthly income?
- Is it able to reflect the overall situation?
- What is a better alternative?

Sample Mean vs. Population Mean

- Suppose the population mean and standard deviation are μ and σ .
- The sample mean is $\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$
 - It is also a random variable:
 - Expected value

•
$$\mu_{\bar{X}} \equiv E[\bar{X}] = E\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right] = \mu$$

Variance

•
$$\sigma_{\bar{X}}^2 \equiv Var(\bar{X}) = \frac{\sigma^2}{n} \rightarrow n \rightarrow +\infty \text{ and } \sigma_{\bar{X}}^2 \rightarrow 0$$

• So, the expected value of *sample mean* is the *population mean* μ .

Law of Large Number

- Chebyshev's Inequality. For any random variables:
 - $P(|X \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2} \ (\mu = E[X] \text{ and } \sigma = \sqrt{Var(X)})$
- Then $P(|\bar{X} \mu| \le \epsilon) \ge 1 \frac{\sigma_{\bar{X}}^2}{\epsilon^2} = 1 \frac{\sigma^2}{n\epsilon^2}$
- For $n \to +\infty$, $P(|\bar{X} \mu| \le \epsilon) = 1$ for any $\epsilon > 0$
- The sample mean approximates the population mean μ for very large n.

Markov Inequality and Chebyshev's Inequality

- Chebyshev's Inequality. For any random variables, we have:
 - $P(|X \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$, where $\mu = E[X]$ and $\sigma = \sqrt{Var(X)}$
 - $P(|X \mu| \ge \epsilon) = P((X \mu)^2 \ge \epsilon^2) \le \frac{\sigma^2}{\epsilon^2}$
- *Markov Inequality*. For discrete random variable $X \ge 0$ and $\epsilon > 0$:
 - $P(X \ge \epsilon) \le \frac{E[X]}{\epsilon}$
 - $E[X] = \sum_{x \ge 0} x p(x) \ge \sum_{x \ge \epsilon} x p(x) \ge \epsilon \sum_{x \ge \epsilon} p(x) = \epsilon P(X \ge \epsilon)$
 - It also holds for continuous random variables!

Law of Large Number

- Chebyshev's Inequality. For any random variables:
 - $P(|X \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2} \ (\mu = E[X] \text{ and } \sigma = \sqrt{Var(X)})$
- Then $P(|\bar{X} \mu| \le \epsilon) \ge 1 \frac{\sigma_{\bar{X}}^2}{\epsilon^2} = 1 \frac{\sigma^2}{n\epsilon^2}$
- For $n \to +\infty$, $P(|\bar{X} \mu| \le \epsilon) = 1$ for any $\epsilon > 0$
- The *sample mean* approximates the *population* $mean \mu$ for very large n.

Central Limit Theorem

- Suppose the population mean and standard deviation are μ and σ .
- The sample mean is $\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$

•
$$\mu_{\bar{X}} \equiv E[\bar{X}] = E\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right] = \mu$$

- $\sigma_{\bar{X}}^2 \equiv Var(\bar{X}) = \frac{\sigma^2}{n}$
- NOTE. \overline{X} is approximately *general normal* (or satisfies *normal distribution*) for very large n.
 - The proof requires advanced knowledge in Calculus.
 - This explains why normal distribution is so important!

General Normal

Galton Knocked Boards

$$\frac{P(x \le X \le x + \Delta x)}{\Delta x}$$
 where Δx is very small

General and Standard Normal

- For *continuous random variable X*, if for all $x \in R$
 - We have $\frac{P(x \le X \le x + \Delta x)}{\Delta x} \equiv f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x \mu)^2}$
 - where Δx is a very small value

Probability
Density
Function

- We say X is general normal or $X \sim N(\mu, \sigma^2)$
- PROPERTIES.
 - $E[X] = \mu$ and $Var(X) = \sigma^2$.
- When $\mu = 0$ and $\sigma = 1$
 - $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$
 - *X* is standard normal or $X \sim N(0,1)$

General and Standard Normal

• For *continuous random variable X*, if for all $x \in R$

• We have
$$\frac{P(x \le X \le x + \Delta x)}{\Delta x} = f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- where Δx is a very small value
- We say X is general normal or $X \sim N(\mu, \sigma^2)$
- PROPERTIES.
 - $\frac{X-\mu}{\sigma} \sim N(0,1)$
 - BECAUSE:

Central Limit Theorem

- Suppose the population mean and standard deviation are μ and σ .
- The sample mean is $\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$

•
$$\mu_{\bar{X}} \equiv E[\bar{X}] = E\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right] = \mu$$

- $\sigma_{\bar{X}}^2 \equiv Var(\bar{X}) = \frac{\sigma^2}{n}$
- NOTE. \overline{X} is approximately *general normal* (or satisfies *normal distribution*) for very large n.
 - $\frac{\bar{X} \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} \mu}{\frac{\sigma}{\sqrt{n}}}$ is approximately *standard normal* for very large n.

Standard Normal

• For *continuous random variable X*, if for all $x \in R$

•
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$
, say $X \sim N(0,1)$

• The cumulative distribution function

•
$$F(x) \equiv P(X \le x) \equiv \Phi(x)$$

Standard Normal

• For *continuous random variable X*, if for all $x \in R$

•
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$
, say $X \sim N(0,1)$

• The cumulative distribution function

•
$$F(x) \equiv P(X \le x) \equiv \Phi(x)$$

•
$$P(-x \le X \le x) = 1 - 2\Phi(-x)$$

0	:						
9							_
8				/	/		_
7				/			
				/			
5	<u>:</u> :		/	/			
4			/				
3			/				
2			/				
1		/	(
0_4 -			1				3 4
	9	9 8 7 7 6 6 4 3 3 2 2 1 1	9 8 7 6 5 4 3 3 2 1	9 8 7 6 6 5 4 3 2 2 1	9 8 7 6 6 5 4 4 3 2 2 1	9 8 7 6 5 4 3 2 2 1	9 8 7 6 5 4 3 2 2 1

z	$\Phi(z)$	z	$\Phi(z)$
0.0	.5000	-1.2	.1151
-0.1	.4602	-1.4	.0808
-0.2	.4207	-1.6	.0548
-0.3	.3821	-1.8	.0359
-0.4	.3446	-2.0	.0228
-0.5	.3085	-2.2	.0139
-0.6	.2743	-2.4	.0082
-0.7	.2420	-2.6	.0047
-0.8	.2119	-2.8	.0026
-0.9	.1841	-3.0	.0013
-1.0	.1587	-3.2	.0007
	-	_	

QUESTION. How about positive z?

Roadmap

- Expectation and Variance
- Sample Statistics
- Hypothesis Testing
- Statistics vs. Data Analytics
 - Naïve Bayes (cont.)
 - Probabilistic Language Models (cont.)

Hypothesis Testing

- How to test whether a hypothesis is true or false?
- First, we gather data (i.e., samples).
- Second, we hypothesize that a random variable *has* a given mean.
- Third, we decide to *accept* or *reject* the hypothesis based on the data we collect.

Example: Hypothesis Tests

- We want to order a large shipment of light bulbs.
- The manufacturer claims that:
 - The lifetime of bulbs has a normal distribution.
 - The *mean* lifetime is $\mu = 1000$ hours.
 - The *standard deviation* is $\sigma = 100$ hours.
- We want to *test the hypothesis* that $\mu = 1000$.
- We assume that:
 - The lifetime of bulbs has indeed a *normal distribution*.
 - The *standard deviation* is indeed $\sigma = 100$ hours.
- We sample 25 light bulbs for the test.

Example: Hypothesis Tests

• The manufacturer *claims* that:

• $\mu = 1000$ hours.

• $\sigma = 100$ hours.

We assume that:

• Indeed, $\sigma = 100$ hours.

• We sample 25 light bulbs for the test.

- The *sample* average lifetime is $\bar{X} = 960$
- Do we accept the hypothesis that $\mu=1000$?
- We know $P(\bar{X} \le 960) = \Phi\left(\frac{960-1000}{\frac{100}{\sqrt{25}}}\right)$ = $\Phi(-2.0) = 2.28\%$

One-sided probability

Example: Hypothesis Tests

• The manufacturer *claims* that:

• $\mu = 1000$ hours.

• $\sigma = 100$ hours.

We assume that:

• Indeed, $\sigma = 100$ hours.

• We sample 25 light bulbs for the test.

- The *sample* average lifetime is $\bar{X} = 1040$
- Do we accept the hypothesis that $\mu = 1000$?
- We know $P(\bar{X} \ge 1040) = \Phi\left(\frac{1040 1000}{\frac{100}{\sqrt{25}}}\right)$

One-sided probability = $\Phi(-2.0) = 2.28\%$

Would you accept and pay for the shipment!

- The manufacturer *claims* that:
 - $\mu = 1000$ hours.
 - $\sigma = 100$ hours.
- We assume that:
 - Indeed, $\sigma = 100$ hours.
 - We *accept* that $\mu = 1000$ if

$$960 \le \bar{X} \le 1040$$

- We sample 25 light bulbs for the test
- The probability that we *accept*:

•
$$P(|\bar{X} - 1000| \le 40) = 1 - 2\Phi(\frac{960 - 1000}{100/\sqrt{25}})$$

= $1 - 2\Phi(-2.0) \cong 95\%$

And we reject with 5% probability

Example (cont.)

Example 1 (two-sided)

- Given a sample size 9 from a normal population with $\sigma=0.2$, has sample mean $\bar{X}=4.88$
- Claim: The population mean is $\mu = 5.00$ (Null Hypothesis H_0)
- Since $Z \equiv \frac{X-\mu}{\sigma/\sqrt{n}}$ is standard normal, the *p-value* is

•
$$P(|\bar{X} - \mu| \ge 0.12) = P(|Z| \ge \frac{0.12}{\frac{0.2}{\sqrt{9}}}) = 2\Phi(-1.8) \cong 7.18\%$$

- We *reject* the hypothesis if $P(|\bar{X} \mu| \ge 0.12)$ is *rather small*, say if $P(|\bar{X} \mu| \ge 0.12) < 10\%$ (*level of significance* 10%).
- We *reject* the hypothesis if $P(|\bar{X} \mu| \ge 0.12) < 5\%$ (*level of significance* 5%) --- We are more tolerant .

Example 2 (one-sided)

- Given a sample size 64 from a normal population with $\sigma = 0.234$, has sample mean $\bar{X} = 4.847$
- We will test the *Null Hypothesis* H_0 : $\mu \le 4.8$
- We will reject H_0 if $P(\bar{X} \ge 4.847)$ is small, e.g., $P(\bar{X} \ge 4.847) < 5\%$
- Then the p-value:

•
$$P(\bar{X} - \mu \ge 0.847) = P\left(\frac{\bar{X} - \mu}{\sigma} \ge \frac{4.847 - 4.8}{\frac{0.234}{8}}\right) = P\left(\frac{\bar{X} - \mu}{\sigma} \ge 1.6\right) = \Phi(-1.6) = 5.48\%$$

- We (barely) accept H_0 at the level of significance 5%
- We reject H_0 at the level of significance 10%

Roadmap

- Expectation and Variance
- Sample Statistics
- Hypothesis Testing
- Statistics vs. Data Analytics
 - Naïve Bayes (cont.)
 - Probabilistic Language Models (cont.)

Descriptive vs. Inferential Statistics

- Descriptive: e.g., Median; describes data you have but can't be generalized beyond that
- Inferential: e.g., hypothesis testing; enables inferences about the population beyond our data samples
 - These are the techniques we'll leverage for many Machine Learning techniques

Examples of Business Questions

Simple (descriptive) Statistics

• E.g., "Who are the most profitable customers?"

Hypothesis Testing (answering yes/no with samples)

• E.g., "Is there a difference in value to the company of these customers?"

Segmentation/Classification

 E.g., What are the common characteristics of these customers?

Prediction

E.g., Will this new customer become a profitable customer?
 If so, how profitable?

Statistics vs. Data Analytics

- Most business questions are causal: what would happen if? (e.g., I show this ad)
- But it's easier to ask correlational questions, (what happened in this past when I showed this ad).
- Generalize the statistics of observations to predict in the future scenarios.

Roadmap

- Expectation and Variance
- Sample Statistics
- Hypothesis Testing
- Statistics vs. Data Analytics
 - Naïve Bayes (cont.)
 - Probabilistic Language Models (cont.)

Put them in in the log space

Instead of this:

Parameters to be estimated

This:

$$c_{NB} = \operatorname*{argmax}_{c_j \in C} P(c_j) \prod_{i \in positions} P(x_i \mid c_j) \qquad \text{be estimated from the data}$$

$$c_{NB} = \operatorname*{argmax}_{c_j \in C} \left[\log P(c_j) + \sum_{i \in positions} \log P(x_i \mid c_j) \right]$$

This is ok since log doesn't change the ranking of the classes (class with highest prob still has highest log prob)

Model is now just max of sum of weights: a *linear* function of the inputs

So naive bayes is a *linear classifier*

Learning the Multinomial Naive Bayes Model

- First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

$$count(w, c_j)$$

$$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

V is the vocabulary maintaining all the words used for classification.

Parameter estimation

$$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

 $\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{i} count(w, c_i)}$ fraction of times word w_i appears among all words in documents with class c_i

- Create mega-document for class j by concatenating all docs with the class label
 - Use frequency of w in mega-document

Problem with Maximum Likelihood

• What if we have seen no training documents with the word *fantastic* and classified in the topic **positive** (*thumbs-up*)?

$$\hat{P}(\text{"fantastic" | positive}) = \frac{count(\text{"fantastic", positive})}{\sum_{w \in V} count(w, \text{positive})} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Laplace (add-1) Smoothing for Naive Bayes (empirically, it works!)

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)}$$

$$= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$

Unknown words

- What about unknown words
 - that appear in our test data
 - but not in our training data or vocab
- We *ignore* them
 - Remove them from the test document!
 - Pretend they weren't there!
 - Don't include any probability for them at all.
- Why don't we build an unknown word model?
 - It doesn't help: knowing which class has more unknown words is not generally a useful thing to know!

Stop words

- Some systems ignore another class of words:
- Stop words: very frequent words like the and a.
 - Sort the whole vocabulary by frequency in the training, call the top 10 or 50 words the stopword list.
 - Now we remove all stop words from the training and test sets as if they were never there.
- But in some specific text classification applications, removing stop words don't help, so it's more common to NOT use stopword lists and use all the words in Naive Bayes (case-by-case).

Multinomial Naïve Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate $P(c_i)$ terms
 - For each c_j in C do $docs_j \leftarrow$ all docs with class $=c_j$

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Calculate $P(w_k \mid c_i)$ terms
 - $Text_j \leftarrow single doc containing all <math>docs_j$
 - For each word w_k in *Vocabulary* $n_k \leftarrow \#$ of occurrences of w_k in $Text_j$

$$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

e.g.,
$$\alpha = 1$$
 (add-1)

Let's do a worked sentiment example!

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

A worked sentiment example

Cat	Documents
-	just plain boring
-	entirely predictable and lacks energy
-	no surprises and very few laughs
+	very powerful
+	the most fun film of the summer
?	predictable with no fun
	- - - + +

Prior from training:

$$P(-) = 3/5$$

 $P(+) = 2/5$

Drop "with"

Likelihoods from training:

$$P(\text{"predictable"}|-) = \frac{1}{14+20} \qquad P(\text{"predictable"}|+) = \frac{1}{14+20}$$

$$P(\text{"no"}|-) = \frac{1+1}{14+20} \qquad P(\text{"no"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"fun"}|-) = \frac{0+1}{14+20} \qquad P(\text{"fun"}|+) = \frac{1+1}{9+20}$$

$$P(\text{``predictable''}|-) = \frac{1+1}{14+20}$$
 $P(\text{``predictable''}|+) = \frac{0+1}{9+20}$ Scoring the test set:

$$P(\text{"no"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"fun"}|+) = \frac{1+1}{9+20}$$

$$P(-)P(S|-) = \frac{3}{5} \times \frac{2 \times 2 \times 1}{34^3} = 6.1 \times 10^{-5}$$

$$P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{29^3} = 3.2 \times 10^{-5}$$

Roadmap

- Expectation and Variance
- Sample Statistics
- Hypothesis Testing
- Statistics vs. Data Analytics
 - Naïve Bayes (cont.)
 - Probabilistic Language Models (cont.)

Estimating N-gram Probabilities

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$
 Count

Example: <s>I am Sam </s>

<s> Sam I am </s>

<s>I do not like green eggs and ham </s>

$$P({\rm I}|{\rm < s>}) = \frac{2}{3} = .67 \qquad P({\rm Sam}|{\rm < s>}) = \frac{1}{3} = .33 \qquad P({\rm am}|{\rm I}) = \frac{2}{3} = .67 \\ P({\rm < / s>}|{\rm Sam}) = \frac{1}{2} = 0.5 \qquad P({\rm Sam}|{\rm am}) = \frac{1}{2} = .5 \qquad P({\rm do}|{\rm I}) = \frac{1}{3} = .33$$

More Examples

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

Out of 9,222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw Bigram Probabilities

Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Results

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram Estimates of Sentence Probabilities

```
P(\langle s \rangle | I \text{ want english food } \langle s \rangle) = P(I|\langle s \rangle)
\cdot P(I|\langle s \rangle)
\cdot P(want|I)
\cdot P(english|want)
\cdot P(food|english)
\cdot P(\langle s \rangle | food)
= 0.000031
```

What did we learn?

- P(english|want) = 0.0011
- P(chinese|want) = 0.0065
- P(to|want) = 0.66
- $P(eat \mid to) = 0.28$
- $P(food \mid to) = 0$
- P(want | spend) = 0
- P(i | < s >) = .25

A slide to take away

- What is expectation and variance?
- What are the statistics to represent the data?
- How to connect expectation with the sample mean with the law of large number?
- How to describe the distribution of sample means with the *central limit theorem*?
- What is the p-value and when to accept/reject a hypothesis?
- How to estimate the likelihoods and priors to train a Naïve Bayes classifier?
- How to estimate N-gram probabilities?