Master Thesis: Poverty estimation based on M-quantile Small Area Methods

Enno Tammena M.Sc. Statistics Humboldt–Universität zu Berlin

Advisors:

Prof. Dr. Timo Schmid Prof. Dr. Ulrich Rendtel Freie Universität Berlin Fachbereich Wirtschaftswissenschaft Institut für Statistik und Ökonometrie

Introduction — 1-1

Motivation

"The diffusion of technological change throughout statistics is closely tied to its embodiment in statistical software." (Koenker and Hallock, 2001, p.153)

Introduction — 1-2

Motivation

Current Situation:

- M-quantile regression developed by Breckling and Chambers (1988), MQ-SAE approach by Chambers and Tzavidis (2006), but no R-Packages exist
- Some R-Code available from the "S.A.M.P.L.E. Project", but limited functionality and not very user friendly

Aim of this thesis:

- Provide user friendly functions, that can be integrated in the emdi package
- Compare performance to direct estimation and the EBP
- → Facilitate poverty estimation with linear and non-linear indicators based on the MQ approach for future research

Introduction — 1-3

Outline

- 1. M-quantiles and MQ-Regression
- 2. MQ-Pseudo Random Effects
- 3. MQ in Small Area Estimation
- 4. Implementation in R
- 5. Replication
- 6. Simulations
- 7. Application

M-Estimation of the Central Point

Consider the following minimization problem:

$$\min_{\theta} \sum \rho \underbrace{(x_i - \theta)}_{e_i} \tag{1}$$

The HP2 Loss function

The HP2 loss function is given by:

$$ho_{HP2}(e) = egin{cases} rac{1}{2}e^2 & \textit{for} |e| \leq k \ k|e| - rac{1}{2}k^2 & \textit{for} |e| > k \end{cases}$$

where k is a tuning parameter.

Figure 1: L1, L2, HP2 Loss Functions

M-quantiles

In a finite sample x_1, \ldots, x_n the τ th M-quantile is obtained by solving

$$\min_{\theta} \sum_{i=1}^{N} \rho_{MQ} \underbrace{\left(x_i - \theta\right)}_{e_i} \tag{2}$$

where

$$\rho_{MQ}(e) = \begin{cases} \rho_{HP2}(e)(1-\tau) & \text{for } e \leq 0\\ \rho_{HP2}(e)\tau & \text{for } e > 0 \end{cases}$$

$$\rho_{HP2}(e) = \begin{cases} \frac{1}{2}e^2 & \text{for } |e| \leq k\\ k|e| - \frac{1}{2}k^2 & \text{for } |e| > k \end{cases}$$

and $au \in [0,1]$

Plots of M-quantiles, quantiles and expectiles

Figure 2: Asymmetric Loss and Influence functions

Regression

 OLS regression line (or hyperplane) models the conditional mean of Y given X

$$E[y|X] = X\beta_{OLS} \tag{3}$$

 Quantile regression line (or hyperplane) models the qth conditional Quantile of Y given X

$$Q_q[y|X] = X\beta_q \tag{4}$$

$$MQ_{\tau}[y|X] = X\beta_{\tau} \tag{5}$$

M-quantile Regression

If ρ is differentiable:

- $oxed{oxed}$ weight function: $w(e) = rac{\psi(e)}{e}$
- Use Iteratively re-weighted least squares (IWLS)
 - 1. Starting solution: e.g. $\hat{\beta}^{(0)} = \hat{\beta}_{OLS}$
 - 2. Repeat s times until convergence:
 - 2.1 At iteration s calculate $e_i^{(s-1)} = y_i \hat{y}_i^{(s-1)}$
 - 2.2 Apply the weight function $w_{HP2,\tau}(e)$
 - 2.3 Weighted regression: $\hat{\beta_{\tau}}^{(s)} = [X'W^{(s-1)}X]^{-1}X'W^{(s-1)}y, \text{ where } W^{(s-1)} = diag(w_1^{(s-1)}, \dots, w_n^{(s-1)})$

Figure 3: HP2 Weight function for $\tau_{0.5}$

Pseudo-Random Effects with M-quantiles

Assume observations y_i can be attributed to d clusters/domains. Note that $\forall y_i \exists \tau_i$ such that $y_i = MQ_{\tau_i}(y|x)$

- 1. Run M-quantile regressions for a fine grid of au values
- 2. For each y_i find the corresponding τ_i , using an interpolation procedure
- 3. Average the au for each domain j using the mean $ar{ au}_j = rac{1}{N_i} \sum_{i \in j} au_i$
- 4. Run M-quantile regressions for the τ_j values resulting from (3) to obtain the pseudo random effects

Pseudo Random Effect of Area j: $\hat{eta}_{\hat{ au}_i}$

Pseudo-Random Effects Example

Figure 4: Scatterplot of Example Scenario

Pseudo-Random Effects Example 2

Figure 5: Fine grid of M-quantile Regression lines

Pseudo-Random Effects Example 3

Figure 6: Plot of Pseudo Random Effects

Naive Estimator of the Mean

Assume the basic unit level model

$$y_{ij} = x_{ij}^{\mathsf{T}} \beta + \vartheta_j + e_{ij} \tag{6}$$

- Consider e.g. the EBLUP estimator for the mean (under assumptions):

$$\hat{\theta}_{j}^{EBLUP} = \frac{1}{N_{j}} \left(\sum_{i \in s_{j}} y_{ij} + \sum_{i \in r_{j}} \underbrace{(x_{ij}^{T} \hat{\beta} + \hat{\vartheta}_{i})}_{\hat{y}_{ij}} \right)$$
(7)

□ Naive MQ-estimator given for $\hat{y}_{ij} = x_{ii}^T \hat{\beta}_{\hat{\tau}_i}$

EBP Algorithm

1. Using the sampled data, obtain estimators

$$\hat{\beta}, \hat{\sigma}_u^2, \hat{\sigma}_e^2, \hat{u}_j = E[u_j|y_j], \hat{\gamma}_j = \frac{\hat{\sigma}_u^2}{\hat{\sigma}_u^2 + \frac{\hat{\sigma}_e^2}{n_j}}$$

- 2. For I = 1, ..., L
 - 2.1 Generate pseudo-populations: $y_{ii}^{*(l)} = x_{ii}^T \hat{\beta} + \hat{\vartheta}_i + \hat{u}_i + u_i^* + e_{ii}^*$ where
 - For sampled domains: $e_{ii}^* \sim \mathcal{N}(0, \hat{\sigma}_e^2)$ and $u_i^* \sim \mathcal{N}(0, \hat{\sigma}_u^2(1-\hat{\gamma}_i))$
 - For non-sampled domains: $e_{ii}^* \sim \mathcal{N}(0, \hat{\sigma}_e^2)$ and $u_i^* \sim \mathcal{N}(0, \hat{\sigma}_{ii}^2), \hat{u}_i = 0$
 - 2.2 Calculate linear or non-linear target indicator $\hat{\theta}_i^{(I)}$
- 3. Calculate $\hat{\theta}_i^{EBP} = \frac{1}{L} \sum_{l=1}^{L} \hat{\theta}_i^{(l)}$ for each domain

Motivation for the MQ (SAE)-Approach

$$\hat{F}_{j}^{Naive}(t) = \frac{1}{N_{j}} \left[\sum_{i \in s_{j}} I(y_{ij} \le t) + \sum_{k \in r_{j}} I(\hat{y}_{kj} \le t) \right]$$
(8)

$$\hat{F}_{j}^{CD}(t) = \frac{1}{N_{j}} \left[\sum_{i \in s_{j}} I(y_{ij} \le t) + \frac{1}{n_{j}} \sum_{i \in s_{j}} \sum_{k \in r_{j}} I(\hat{y}_{kj} + e_{ij}^{*} \le t) \right]$$
 (9)

The MQ (SAE) Algorithm

- 1. Using the sampled data, obtain the M-quantile pseudo random effects. Calculate vector of residuals $e_r = (e_{11}, \ldots, e_{n_j j_d})^T$ with $e_{ij} = y_{ij} x_{ij}^T \hat{\beta}_{\hat{\tau}_i}$
- 2. For I = 1, ..., L
 - 2.1 Generate pseudo population values $y_{ij}^* \in r_j$
 - For $e_1^*, \ldots, e_j^*, i \in r_j$, take a random sample with replacement from e_r of length $N_j n_j$
 - Generate $y_{ij}* \in r_j$ of length $N_j n_j$ with $y_{ij}^{*(l)} = x_{ij}^T \hat{\beta}_{\hat{\tau}_j} + e_{ij}^*$
 - 2.2 Combine vector of sampled values $y_{ij} \in s_j$ and $y_{ij}^* \in r_j$
 - 2.3 Calculate linear or non-linear target indicator $\hat{\theta}_i^{(l)}$
- 3. Calculate $\hat{\theta}_j^{MQ} = \frac{1}{L} \sum_{l=1}^L \hat{\theta}_j^{(l)}$ for each domain

Non-Parametric Bootstrapping for MQ (SAE)

1. Using the sampled data, obtain the M-quantile pseudo random effects. Calculate centered vector of residuals e_r based on $e_{ij} = y_{ij} - x_{ii}^T \hat{\beta}_{\hat{\tau}_i}$

- 2. for b = 1, ..., B
 - 2.1 Generate superpopulation, maintaining N_j : $y_{ij}^{*(b)} = x_{ij}^T \hat{\beta}_{\hat{\tau}_j} + e_{ij}^*$, where e_{ij}^* results from random sample with replacement from e_r
 - 2.2 for s = 1 ... S
 - Take a stratified random sample without replacement from superpopulation such that $n_i^* = n_i$
 - Use MQ (SAE) Algorithm to calculate measure of interest
- 3. Calculate bias and variance

MSE Calculation

$$\hat{Bias}(\hat{\nu}_j) = \frac{1}{B} \frac{1}{S} \sum_{b=1}^{B} \sum_{s=1}^{S} \left[\hat{\nu}_j^{*bs} - \nu_j^{*b} \right]$$
 (10)

$$\hat{Var}(\hat{\nu}_j) = \frac{1}{B} \frac{1}{S} \sum_{b=1}^{B} \sum_{s=1}^{S} \left[\hat{\nu}_j^{*bs} - \bar{\hat{\nu}}_j^{*bs} \right]^2$$
 (11)

$$\widehat{MSE}(\hat{\nu}_j) = \widehat{Var}(\hat{\nu}_j) + \widehat{Bias}(\hat{\nu}_j)^2$$
 (12)

Implementation

Package mquantreg

- mquantile M-quantiles of a variable
- mmqm Mixed M-quantile models
- mq_sae M-quantile small area models incl. non-parametric bootstrapping

Replication: Setup

Scenario

Normal Scenario

$$y_{ij} = 3000 - 150 * x_{ij} + \gamma_j + \epsilon_{ij}$$

 $\gamma_j \sim N(0, 200^2)$
 $\epsilon_{ij} \sim N(0, 800^2)$
 $x_{ij} \sim N(\mu_j, 1)$
 $\mu_j \sim U[4, 10]$

 μ_j are fixed over all simulations. (c.f. Marchetti et al., 2012)

Scenario

 χ^2 Scenario

$$y_{ij} = 11 - x_{ij} + \gamma_j + \epsilon_{ij}$$

 $\gamma_j \sim \chi(1)$
 $\epsilon_{ij} \sim \chi(6)$
 $x_{ij} \sim N(\mu_j, 1)$
 $\mu_i \sim U[8, 11]$

 μ_j are fixed over all simulations. Error terms are centered.

Replication: Setup 2

Do 500 times:

- Generate population of size N
- Take stratified random sample for 30 areas (without replacement)
- \square Run MQ (SAE) algorithm with L=50 iterations B=1 bootstrap populations and S=400 bootstrap samples

Fixed $N = 840, 50 \le N_j \le 150$, $n = 282, 5 \le n_j \le 15$

$$RB(\hat{\nu}_j) = \frac{1}{H} \sum_{h=1}^{H} \left(\frac{\hat{\nu}_{j,h} - \nu_j}{\nu_j} \right) \tag{13}$$

$$RMSE(\hat{\nu}_j) = \left[\frac{1}{H} \sum_{i=1}^{H} (\hat{\nu}_{j,h} - \nu_j)^2\right]^{0.5}$$
(14)

Replication — 5-3

Replication Results: Point Estimation

Figure 7: Point-Estimation Results (Marchetti et al., 2012)

Figure 8: Point-Estimation Results (Replication)

Replication — 5-4

Replication Results: MSE Estimation

	HCR	HCR	PG	PG
χ^2 scenario	Original	Replicated	Original	Replicated
True	0.096	0.098	0.094	0.097
Estimated	0.096	0.099	0.095	0.099
Rel Bias (%)	0.19	2.58	0.26	3.49
RMSE	0.019	0.021	0.019	0.022
	HCR	HCR	PG	PG
Normal scenario	HCR Original	HCR Replicated	PG Original	PG Replicated
Normal scenario True			. •	. •
	Original	Replicated	Original	Replicated
True	Original 0.063	Replicated 0.065	Original 0.028	Replicated 0.033

Table 1: Comparision of Original and Replicated Result

Simulations: General Setup

Do 500 times:

- ☐ Generate population according to the defined scenario
- $oxed{\Box}$ Take stratified random sample without replacement of n_j per area
- Using the sample data, calculate estimators:
 - ▶ The direct estimator
 - ► The EBP estimator, with L=50 Monte-Carlo iterations and Box-Cox transformation
 - ▶ The MQ estimator, with L=50 Monte-Carlo iterations
- □ Calculate true value per bootstrap population

Fixed
$$N_j = 200$$
, $8 \le n_j \le 29$ and $j = 1..., 50$

Normal Scenario: Setup

Scenario

Normal Errors

$$y_{ij} = max(4500 - 400 * x_{ij} + \vartheta_j + e_{ij}, 0)$$

 $x_{ij} \sim N(\mu_j, 3)$
 $\vartheta_j \sim N(0, 500^2)$
 $e_{ij} \sim N(0, 1000^2)$
 $\mu_i \sim U[-3, 3]$

Normal Scenario: Bias/Rel. Bias

Figure 9: Rel. Bias of Point-Estimation Results for EBP vs. MQ 📳

Normal Scenario: RMSE

Figure 10: RMSE of Point-Estimation Results for EBP vs. MQ vs. Direct

Log-Outcomes Scenario: Setup

Scenario

Log-Scale Outcomes

$$log(y_{ij}) = 10 - x_{ij} + \vartheta_j + e_{ij}$$

$$x_{ij} \sim N(\mu_j, 0.5)$$

$$e_{ij} \sim N(0, 0.8^2)$$

$$v_j \sim N(0, 0.4^2)$$

$$\mu_j \sim U[2, 3]$$

Log-Outcomes: Rel. Bias

Figure 11: Point-Estimation Results for EBP vs. MQ in scenaric

Log-Outcomes: RMSE

Figure 12: RMSE of Point-Estimation Results for EBP vs. MQ in scenario log-scale

Contaminated Normal Scenario: Setup

Scenario

Contaminated Normal Errors

$$y_{ij} = max(4500 - 400 * x_{ij} + \vartheta_j + e_{ij}, 0)$$

 $x_{ij} \sim N(\mu_j, 3)$
 $\vartheta \sim N(0, 500^2)$
 $e_{ij} \sim 0.95 * N(0, 1000^2) + 0.05 * N(0, 6000^2)$
 $\mu \sim U[-3, 3]$

Cont. Normal Scenario: Relative Bias

Figure 13: Rel. Bias of Point-Estimation Results for EBP vs.

Cont. Normal Scenario: RMSE

Figure 14: RMSE of Point-Estimation Results for EBP vs. MQ vs. Direct

Pareto Scenario: Setup

Scenario

Pareto Errors

$$y_{ij} = 12000 - 400 * x_{ij} + v_j + e_{ij}$$

 $x_{ij} \sim N(\mu_j, 7.5)$
 $e_{ij} \sim \sqrt{2} * Pareto(scale = 2000, shape = 3)$
 $v_j \sim N(0, 500^2)$
 $\mu_i \sim U[-3, 3]$

Note: e is centered to expectation 0

Pareto Scenario: Relative Bias

Figure 15: Rel. Bias of Point-Estimation Results for EBP vs.

Pareto Scenario: RMSE

Figure 16: RMSE of Point-Estimation Results for EBP vs. MQ vs. Direct

Simulation Setup for MSE Simulations

Like above, but with

- $N_i = 100$

- $\Box B = 50$ Bootstrap Populations
- S = 50 Bootstrap Samples (for MQ (SAE))

Normal (MSE) Scenario: Relative Bias of MSE

Figure 17: Rel. Bias of MSE-Estimation Results for EBP vs

Normal (MSE) Scenario: RMSE of MSE

Figure 18: RMSE of MSE-Estimation Results for EBP vs. MQ

Pareto (MSE) Scenario: Rel. Bias of MSE

Figure 19: Rel. Bias of MSE-Estimation Results for EBP vs. MQ

Pareto (MSE) Scenario: RMSE of MSE

Figure 20: RMSE of MSE-Estimation Results for EBP vs. MQ

Application — 8-1

Application

- Poverty Mapping for the Austrian EU-SILC dataset
- Data set is provided by the emdi package
- 4 numeric variables and 1 factor variable are used to build the models
- Poverty/Inequality measures: Gini, Poverty Gap, Head Count Ratio

Application 8-2

Diagnostics

Figure 21: Pseudo Random Effects of the numeric independent variables

Figure 22: Density Plot of dependent variable

Application 8-3

Point Estimation Results

Figure 23: Point Estimation Results for Poverty Mapping in

Application 8-4

MSE Estimation Results

Figure 24: MSE Estimation Results for Poverty Mapping in I_i°

Application — 8-5

Summary

- The MQ (SAE) can be regarded as beneficial method in some scenarios
 - For normally distributed errors and log-scale outcomes the EBP performs better (Rel. Bias and RMSE)
 - ► For long-tail distributions the MQ (SAE) approach performs better (Rel. Bias and RMSE)
- Further Research:
 - ▶ MQ (SAE) for non-normal ϑ_i
 - Transformations in MQ (SAE)
 - Role of weights in MQ (SAE)

References — 9-1

References

■ Breckling, J. and R. Chambers (1988): "M-quantiles", Biometrika, 75.

- Chambers, R. and N. Tzavidis (2006): "M-quantile models for small area estimation", Biometrika, 93.
- Huber, P. J. (1963): "Robust Estimation of a Location Parameter", The Annals of Mathematical Statistics, 73.
- Marchetti, S., N. Tzavidis, and M. Pratesi (2012a): "Non-parametric bootstrap mean squared error estimation for -quantile estimators of small area averages, quantiles and poverty indicators", Comp. Stat. and Data Analysis, 56.

