8. ()
1
가 (parameter) 가 ()
가 ()
가 ()
가 ()
(statistical inference)

8.1.

8.1.1.

(parameter) .

(statistic)

II Example II

IQ

50 IQ

115 10 (115, 10)

II Example II

. 100

35 0.35가

8.1.2.

(point estimation)

가? Best Linear Unbiased

Estimator

(interval estimation)

8.1.3. 가 (statistical hypothesis)

가 가 (hypothesis testing) .
가 가 (alternative hypothesis) .
가 가 (research hypothesis) .

가

가

II Example II

가: **m**=120 **m**=

IQ

가 : **m**>120

(one-sided hypothesis)

II Example II

가 : m = 120 m =

IQ

가 : **m**≠120

(two-sided hypothesis)

가

가

가

2 가

(error)가

()		
	가	가
가	1 (a) type I error	
가		2 (b) type II error

1

2

1

(significant level)

0.1(10%), 0.05(5%),

1

가

0.01(1%)

가

2

가 .

95% IQ 5%

가

(100,130)

가

가

 $H_0: \mathbf{m} = \mathbf{m}_0, \mathbf{m}_0$

100

95%

130

8.2.

(sampling distribution)

m,

가 *s*

 (\bar{x})

m

 \mathbf{s}/\sqrt{n} .

8.2.1. (normal distribution)

Gauss (1777-1855)가

(symmetric, bell shaped)

. Gauss

Gauss

m, 가 s

$$f(x) = \frac{1}{\sqrt{2ps}} e^{-\frac{1}{2s^2}(x-m)^2}, -\infty < x < \infty$$

110
$$x (= |Q|) (m = 120, s = 10) . |Q| 7$$

 $= \Pr(x \ge 110)$ $= \Pr(x \ge 110)$ $-1 \quad m = 0$ $\Pr(\frac{x - 120}{10} \ge \frac{110 - 120}{10}) = \Pr(z \ge -1)$

$$Pr(z \ge -1) = 0.3413 + 0.5 = 0.8413$$
 84%.

II Exercise II

IQ

120,

가 5

가

1) IQ가 125

:

$$\Pr(X \ge 125) = \Pr(\frac{X - 120}{5} \ge \frac{125 - 120}{5}) = \Pr(z \ge 1) = 1 - 0.3413 = 0.1587$$

- 2) IQ가 110 , 120
- ? Pr(110 < X > 120) = Pr(-2 < z < 0) = 0.4772

3) IQ가 110

? Pr(X > 110) = Pr(z > -2) = 0.9772

8.2.2.

$$(x_1, x_1, \dots, x_n) \qquad (\overline{x})$$

$$(= \mathbf{m}, = \mathbf{s}/n)$$

$$\overline{x} = \sum_{i=1}^n x_i/n \sim Normal(\mathbf{m}, \mathbf{s}/\sqrt{n})$$

(S) $\overline{x} = \sum_{i=1}^{n} x_i / n \sim Normal(\mathbf{m}, s / \sqrt{n})$

m

8.2.2.

t- . (W.S. Gosset, pen-name Student) $\frac{\overline{x} - \mathbf{m}}{s / \sqrt{n}} \sim t(n-1) \ (=0, =n/(n-2))$

가 t- (approximate) . t (0.1, 0.05, 0.01)

8.3.

IQ **II EXAMPLEII** 20 (SRS) IQ 110 125 100 146 152 114 128 103 132 111 126 127 105 109 115 138 127 120 116 136

IQ

평균	122
표준 오차	3,187145233
중앙값	122,5
최빈값	127
표준 편차	14,25334679
분산	203, 1578947
첨도	-0,426424555
왜도	0,413319889
범위	52
최소값	100
최대값	152
합	2440
관측수	20
신뢰 수준(95,0%)	6,67077371

 (\mathbf{m}) (\overline{x}) .

122

(100-a)%

(**m**) . 가

·

. t- Bell-shaped

•

(100-a)%
$$(\overline{x} - z_{a/2} \frac{s}{\sqrt{n}}, \overline{x} + z_{a/2} \frac{s}{\sqrt{n}})$$

₽[

가

II EXAMPLE II

IQ 95%

$$(122-1.96\frac{14.25}{\sqrt{20}},122+1.96\frac{14.25}{\sqrt{20}})$$
 \rightarrow (115.33, 128.67)

a 가

가 가

1) 가 : **m**= **m**₀

2) $\forall m \in \mathbf{m}_0$ (), $\mathbf{m} > \mathbf{m}_0$ / $\mathbf{m} < \mathbf{m}_0$ ()

3) : 가

가 가 .

$$T = \frac{\overline{x} - \mathbf{m}_0}{s / \sqrt{n}} \sim Normal(0,1)$$

4) : 가 가

가 가

. a

(critical value) .

II EXAMPLEII

IQ 120

IQ

가 120

. (5%, a = 0.05)

1) $rac{m} = 120$,

IQ (**m**) 120

2) 7 : m > 120,

IQ (**m**) 120

3) :

$$T = \frac{\overline{x} - \mathbf{m}_0}{s / \sqrt{n}} = \frac{122 - 120}{14.25 / \sqrt{20}} = 0.63 \sim Normal(0,1)$$

0.63 1.64

4) :
$$(0.63) \qquad (\{T>1.64\}) \qquad \qquad 7! \\ \text{p-value } 0.26437! \qquad 0.05 \qquad \qquad 7! \qquad . \\ \text{IQ} \qquad .$$

가 ₽ [p-value] 가 р

II EXAMPLEII IQ가 IQ

5%, a = 0.05)

가 : **m**=120, 1)

IQ (\mathbf{m}) 120

가 : **m**≠120, 2)

IQ (m)120

$$T = \frac{\overline{x} - \mathbf{m}_0}{s / \sqrt{n}} = \frac{122 - 120}{14.25 / \sqrt{20}} = 0.63 \sim Normal(0,1)$$

-1.96 0.63 1.96

4) (0.63) $(\{ |T| > 1.96 \})$

> 가 p-value 0.5286(=0.2643*2)가 0.05

IQ

가

요[] 가 . (100-α)% 가 가 α

8.3.1.

3)

2가

가 . (가)

t-

II EXAMPLEII IQ가 IQ (120)

16

(a = 0.05) 5% 가 95%

 $\overline{x} = 125$, s = 8

1) 가 : m = 120, IQ (m)120

가 : **m**≠120, 2) IQ (m)120

 $T = \frac{\overline{x} - \mathbf{m}_0}{s / \sqrt{n}} = \frac{125 - 120}{8 / \sqrt{16}} = 2.5 \sim t(n - 1) = t(15)$

4) : tbell-shaped

> $\{ |T| > 2.131 \}$ 0.05, T=2.5 가

IQ

t =15)

$$(\overline{x}-t_{\mathbf{a}/2}(n-1)\frac{s}{\sqrt{n}},\overline{x}+t_{\mathbf{a}/2}(n-1)\frac{s}{\sqrt{n}})$$

$$(125 - 2.131 \frac{8}{\sqrt{16}}, 125 + 2.131 \frac{8}{\sqrt{16}}) \Rightarrow (120.74, 129.26)$$

8.4

$$(x_i)$$
 "Success" $(x_i = 1)$ "Fail"

$$(x_i = 0) .(binary)$$

$$x_i = 1$$
,

 $x_i = 0$

$$(x_1, x_1, \ldots, x_n)$$

 $(\overline{x} = \sum x_i / n)$ 가

(p)(sample proportion)

$$\hat{p} = \frac{\#of\ success}{n} = \sum_{i=1}^{n} x_i / n$$

 $\min(np, n(1-p)) > 9$

$$p \qquad \qquad \sqrt{p(1-p)/n} \qquad .$$

$$\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \sim Normal(0,1)$$

II EXAMPLEII

100

=0.05

100 35

1)
$$7 : p = 0.27$$
,

0.27

2)
$$7!: p \neq 0.27$$
,

3)
$$T = \frac{\hat{p} - p_0}{\sqrt{p_0 (1 - p_0) / n}} = \frac{0.35 - 0.27}{\sqrt{0.27 * 0.73 / 100}} = 1.81 \sim Normal(0,1)$$

4) :
$$(1.81)$$
 ({

({ | T |> 1.96 })—

(1.81)

가

p-value 0.07가

0.05

(100-a)%
$$(\hat{p} - z_{a/2} \sqrt{\hat{p}(1-\hat{p})/n}, \hat{p} + z_{a/2} \sqrt{\hat{p}(1-\hat{p})/n})$$

$$(0.35-1.96\sqrt{0.35(1-0.35)/100}, 0.35+1.96\sqrt{0.35(1-0.35)/100}) \rightarrow (0.257, 0.443)$$

라[p-value 가 .

.

HOMEWORK #6 Due the next class

- (1) 1000, 가 100 .
 - A. Pr $(1000 \le X \le 1200)$
 - B. Pr(X > 1257)
 - C. Pr (X <1035)
 - D. Pr $(857 \le X \le 1183)$
 - E. $Pr(X \le 700)$
 - F. Pr $(812 \le X \le 913)$
 - G. Pr(X > 891)
- (2) A .

$$n = 65, \overline{x} = 42.95, s = 2.6424$$

- A. 99% .
- B. 95% .
- C. A, B 가? ?
- D. 60 . A 가
 - ? (=0.05)
- (3) A . (n=15)
 - 가 .
- 1.31 1.05 1.45 1.21 1.19
- 1.46 1.33 1.29 1.32 1.65
- A. A 99%
- B. A 95% .
- C. 1.2 . A 가 1.2
 - 가? (=0.05)
- (4) 5 0.51:0.49 . 500

280 .

? (=0.05)