(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-12215

(P2000-12215A)

(43)公開日 平成12年1月14日(2000.1.14)

(51) Int.Cl.'	識別記号	F I		デーマコート*(参考)
H 0 5 B 33/08		H 0 5 B 33/08		2H093
G02F 1/133	5 3 5	G 0 2 F 1/133	535	3 K 0 0 7
	5 5 0		550	

審査請求 未請求 請求項の数4 FD (全 6 頁)

	·	
(21)出願番号	特顧平10-193633	(71)出願人 000131430
		株式会社シチズン電子
(22)出顧日	平成10年6月25日(1998.6.25)	山梨県富士吉田市上幕地1丁目23番1号
		(72)発明者 佐藤 佳彦
		山梨県富士吉田市上幕地1丁目23番1号
		株式会社シチズン電子内
		(74)代理人 100085280
		弁理士 高宗 寛晓
		Fターム(参考) 2H093 NC42 NC50 NC56 NC62 ND39
		ND42
		3K007 AB02 AB18 GA00 GA04

(54) 【発明の名称】 EL駆動回路システム

(57)【要約】

【課題】 夜間ではEL素子の輝度を落とし、昼でも明暗に応じて輝度を自動的に調整するEL駆動回路システムの構成を提案する。

【解決手段】 EL駆動回路システム300を、コンバータ220と、コンバータ220の前段にCPUブロック310と、ブリッジ211とで構成し、CPUブロック310を明暗センサ311、信号増幅器312、A/Dコンバータ313、CPU301とでASIC等で同一の回路基板上に構成する。リアルタイムクロック及び明暗センサ311に対応する出力周波数をCPU301からコンバータ220の発振器209に導入してEL素子205の輝度を環境に適応するように自動的に調整する。

【特許請求の範囲】

【請求項1】 コンバータおよびEL素子を駆動するH ブリッジで構成されるEL駆動回路システムにおいて、 前記コンバータの前段にCPUブロックを設け、該CP Uブロックを、明暗センサと、信号増幅器と、A/Dコ ンバータと、明暗センサの出力に応じて可変となる出力 周波数を前記EL駆動回路のコンバータの外部同期式発 振器に導入するCPUとで構成し、前記CPUブロック を同一回路基板上に形成したことを特徴とするEL駆動 回路システム。

【請求項2】 前記CPUブロックは、前記明暗センサ の出力を信号増幅してA/Dコンバータで少なくとも1 ビット以上にデジタイズし、予め前記CPUにエンコー ドされている出力周波数を前記A/Dコンバータの出力 に応じてデコードし、明暗に応じて可変となる出力周波 数を送出することを特徴とする請求項1に記載のEL駆 動回路システム、

【請求項3】 前記CPUブロックは、CPUから送出 されたリアルタイムクロック信号によって、予め前記C PUにエンコードされている出力周波数を前記リアルタ 20 イムクロック信号に応じてデコードし、リアルタイムク ロック信号に応じて可変となる出力周波数を送出するこ とを特徴とする請求項1に記載のEL駆動回路システ

【請求項4】 前記CPUブロックのA/Dコンバータ を少なくとも1ビット以上望ましくは4ビットに構成し たことを特徴とする請求項2または求項3に記載のEL 駆動回路システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車載用AV機器 や、携帯機器であるPDA、携帯電話、PHS及びペジ ャー等に用いられている液晶表示装置のバックライトと なるEL (エレクトロルミネッセンス) 素子を駆動する 駆動回路に関し、特に多機能を有する駆動回路システム の構成に関するものである。

[0002]

【従来の技術】車載用AV機器や、携帯機器であるPD A、携帯電話、PHS及びペジャー等には、表示を見や すくするために光透過型の液晶表示装置が用いられるこ 40 とが多く、その場合は液晶表示装置の裏側にバックライ トが用いられる。そして、前述のバックライトには、蛍 光管やEし素子が使用されることがあるが、最近では軽 薄短小と厳しいコスト要求に答えるために、フィルムに 印刷技術で製造された約0.5㎜以下の厚みに形成でき る分散型EL素子が普及してきている。前記EL素子 は、駆動回路の負荷としては容量負荷であり、搭載され る機器によっては輝度約20Cd/m² が必要であり、 且つEし素子の駆動の直流分による劣化を避けて更に輝 度を得るには、片振幅で約80~90 Vの300 Hz前 50 イッチングトランジスタ208はオフとなる。一方で、

後の交流電圧での駆動が必要である。特に、車載用AV 機器では200Cd/m²以上の輝度が要求されること があり、それに伴って高電圧の駆動電圧が必要となる。 そして、前記機器には、電池が用いられており、従って EL素子を駆動するためにはDC-ACコンバータが必 要となる。前述のEL素子を駆動するDC-ACコンバ ータの従来例としては、商品番号SP4425(米国・ Sipex社製)等の駆動IC(以下駆動回路Aと称す) を挙げることができる。以下では、駆動回路Aと関連す 10 る複合機能の問題について説明する。

[0003]

【発明が解決しようとする課題】図6は、駆動回路Aを 示す構成概略図である。図7は、回路基板上に構成され る駆動回路Aの主要ブロック図である。同2において、 駆動回路Aは、主として点線で囲まれたコンバータ22 0とEL素子を駆動する駆動回路であるHブリッジ22 1とで構成されている。コンパータ220は、主として 発振器209、分周器210、211とで構成され、H ブリッジ221は主として駆動スイッチングトランジス 夕(以下スイッチングトランジスタ)208、サイリス タ202、204、EL駆動パイポーラトランジスタ (以下トランジスタ) 201、203とで構成される。 直流入力電源(この場合は電池)は電源端子212(V DD)、206 (VDD)、217 (VSS) に接続され、同 じ電源に接続された発振器209は、発振器209の発 振周波数を適宜分周する分周器210、211と接続さ れ、分周器210、211は前記携帯機器のメインボー ド(図示せず)からの指示によってEL素子の点灯をオ ンオフするメインスイッチ213に接続される。スイッ 30 チングトランジスタ208のベースにはメインスイッチ 213に接続されているアンド回路214の出力端子が 接続され、スイッチングトランジスタ208の負荷とし てマグネットワイヤが巻回されて形成されたインダクタ 207が接続される。EL素子205は負荷容量とし て、サイリスタ202、204を経由してトランジスタ 201、203のコレクタに接続され、更にトランジス タ201、203のコレクタに接続されている。また、 トランジスタ201、203のベースには、メインスイ ッチ213に接続されているアンド回路215、216 の出力端子が夫々接続されている。

【0004】図6において、今、携帯機器のメインボー ドからの指示でメインスイッチ213が閉じると、発振 器209の発振周波数を適宜分周する分周器210、2 11を経由して、アンド回路214の出力がスイッチン グトランジスタ208のベースに加わり、スイッチング トランジスタ208はオンとなる。このオンになる周期 は、数10kHzでありその約94%のデューティで駆 動されて、インダクタ207には電磁エネルギーが蓄え られる。前記周波数の残りの約6%のデューティで、ス

EL素子205の印加されている電圧の極性に応じてア ンド回路215または216の出力が夫々ベースに印加 されてトランジスタ201または203はオンとなって おり、EL素子205には電荷が蓄積されて電圧が上昇 し、EL素子205はアンド回路215または216を 交互にオンさせる300Hz前後の駆動周波数で交互に 駆動されて、電気エネルギーを変換して発光するのであ る。

【0005】図7において、点線で囲んで示したEL駆 動回路102は、図2の従来例と同様にコンバータ22 10 る。 0、Hブリッジ221とで構成されて回路基板101上 に形成される。回路基板101の両端には、接続端子が 設けられ、例えば一端側にはVdd端子104、外部信号 を受けるHon端子105、Vss端子106、コンデンサ 端子110、111、他端側にはEL素子205に接続 されるEL1端子107、EL2端子108、Vss端子 109が配設される。コンバータ220は、発振器20 9、分周器210、211とで構成され、Hブリッジ2 21は、図6の従来例と同様に主として駆動スイッチン グトランジスタ(以下スイッチングトランジスタ)20 8サイリスタ202、204、EL駆動バイポーラトラ ンジスタ(以下トランジスタ)201、203とで構成 されるが、従来例との重複を避けて詳細は省略する。直 流入力電源(この場合は電池)は回路基板101のVdd 端子104、Vss端子106に接続され、そしてVdd端 子104、Vss端子106はEL駆動回路102の直流 入力電源(この場合は電池)は電源端子212(VD D)、217 (VSS) に接続され、インダクタ207が 電源端子212(VDD)とHブリッジ221間に接続さ れ、電源に接続された発振器209は、発振器209の 30 発振周波数を適宜分周する分周器210、211と接続 され、分周器210、211は前記携帯機器のメインボ ード (図示せず) からの指示によってEL素子の点灯を イネーブルにするHon端子105に接続される。そし て、回路基板101のEL1端子107、EL2端子1 08間にはEL素子105がHブリッジの負荷として接 続される。そして、コンデンサ103が発振器209の コンデンサ端子110、111に接続されて発振周波数 がきめられる構成となる。

【0006】図6、図7において、EL駆動回路102 の発振器209には、コンデンサ103が接続されてい る。直流電源がVdd端子104、Vss端子106に接続 され、Hon端子105にイネーブル信号が印加される と、EL素子205は点灯する。

【0007】しかしながら、文献Aで開示された回路構 成のみでは、例えば夜間ではEL素子の輝度を落とすこ とや、昼でも明暗に応じて輝度を自動的に調整すること が要求されているが対処することができない。一方、従 来から多機能を有するEL駆動回路は発表されている。

では時計機能が内臓されている。また、米国・Sipe x社製の商品番号SP4460では、時計用モータドラ イバが、同SP4501ではピエゾブザードライバー が、同SP4441では多機能タイマが内臓されてい る。しかしながら、EL素子の輝度を生活時間、明暗の 環境に合わせて、総合的に設けられた多機能というより 複合機能を有するEL駆動回路システムは提案されてい ない。本発明の目的は、前述の欠点を除去して、複合機 能を有するEL駆動回路システムを提案するものであ

[0008]

【課題を解決するための手段】課題を解決するためにな された請求項1の本発明のEL駆動回路システムは、コ ンバータおよびEL素子を駆動するHブリッジで構成さ れるEL駆動回路システムにおいて、前記コンバータの 前段にCPUブロックを設け、該CPUブロックを、明 暗センサと、信号増幅器と、A/Dコンバータと、明暗 センサの出力に応じて可変となる出力周波数を前記EL 駆動回路のコンバータの外部同期式発振器に導入するC PUとで構成し、前記CPUブロックを同一回路基板上 に形成したことを特徴とする。

【0009】課題を解決するためになされた請求項2の 本発明のEL駆動回路システムは、前記CPUブロック は、前記明暗センサの出力を信号増幅してA/Dコンバ ータで少なくとも1ビット以上にデジタイズし、予め前 記CPUにエンコードされている出力周波数を前記A/ Dコンバータの出力に応じてデコードし、明暗に応じて 可変となる出力周波数を送出することを特徴とする。

【0010】課題を解決するためになされた請求項3の 本発明のEL駆動回路システムは、前記CPUブロック は、CPUから送出されたリアルタイムクロック信号に よって、予め前記CPUにエンコードされている出力周 波数を前記リアルタイムクロック信号に応じてデコード し、リアルタイムクロック信号に応じて可変となる出力 周波数を送出することを特徴とする。

【0011】課題を解決するためになされた請求項4の 本発明のEし駆動回路システムは、前記CPUブロック のA/Dコンバータを少なくとも1ビット以上望ましく は4ビットに構成したことを特徴とする請求項2または 求項3に記載のEL駆動回路システム。

[0012]

【発明の実施の形態】以下では、本発明の実施の形態 を、従来例との重複を避け同一の符号を用い、図面に基 づいて説明する。図1は、本発明のEL駆動回路システ ムの構成図である。図2は、本発明のCPUブロックの 基本構成図である。図3は、本発明のCPUブロックの 回路構成図である。図4は、明暗センサの増幅出力説明 図である。図5は、他の発明のリアルタイムクロックに 対応する輝度説明図である。図1、図2において、EL 例えば、米国・Sipex社製の商品番号SP4415 50 駆動回路システム300は、ASIC等で同一の回路基

5

板上にコンバータ220、コンバータ220の前段に設 けられたCPUブロック310、Hブリッジ211で構 成される。CPUブロック310は、明暗センサ31 1、信号増幅器312、A/Dコンパータ313、CP U301とで構成され、Vdd314を経由してVdd端子 104に、VSS315を経由してVss端子106に接続 される。明暗センサ311の出力は、信号増幅器312 を経てA/Dコンバータ313に入力され信号増幅器3 12のアナログ出力はデジタイズされる。予めCPU3 01にエンコードされている出力周波数は、A/Dコン バータ313の出力でデコードされる。CPU301の 出力周波数端子111はコンデンサ端子110に接続さ れ、イネーブル信号端子302はHon端子105に接続 される。本発明の発振器209は外部信号同期型であ り、前記出力周波数信号はCPU301によって供給さ れる。一般に、EL素子205の輝度は、発振器209 の発振周波数が上がると上昇することが確認されてい

【0013】図3において、CPUブロック310の本実施例では、明暗センサ311はホトトランジスタで構 20成され、その出力はエミッタ接置の信号増幅器312に接続され、その出力はA/Dコンバータ313に接続され、A/Dコンバータ313の出力に応じてCPU301から出力周波数が送出される。明暗センサ311はホトダイオードやCdS等で構成してもよい。

【0014】図3、図4において、環境の明暗によって 変化する光を明暗センサ311が受光すると出力電圧が 発生し、その出力電圧は信号増幅器312によって増幅 される。増幅された信号はアナログ量であるが、少なく とも1ビット以上4ビット程度までのA/Dコンバータ 30 313によってデジタイズされる。A/Dコンバータ3 13のビット数は、1ビットでは単なる1段階の明暗で あるが、もう少しきめ細かくするなら4ビットもあれば 1/16ずつ明るさを制御できる。これ以上ビット数を 大きくしても顕著な効果は余り期待できなずコストアッ プに繋がる。従って、A/Dコンバータ313のビット 数は、1以上4程度が望ましい。昼間のように外光が明 るいときには、明暗センサ311によって外光の明るさ を検出してCPU301からの出力周波数を上げてそれ と同期する発振器209の発振周波数をあがるようにし 40 てEL素子205の輝度を上げ、また夜間のように外光 が暗いときには、センサによって外光の明るさを検出し てCPU301からの出力周波数を下げてそれと同期す る発振器209の発振周波数を下げてEL素子205の 輝度を下がるようにする。

【0015】図5において、CPU301のリアルタイムクロック機能によって生活時間に合わせて昼間、夜間等に必要なEL素子205の輝度を調整するように、CPUプロック310のCPU301から送出されたリアルタイムクロック信号によって、予めCPU301にエ 50

ンコードされている出力周波数を前記リアルタイムクロ ック信号に応じてデコードし 、リアルタイムクロック 信号に応じて可変となる出力周波数を送出する。例えば 夏であれば7時から18時間までを比較的高い周波数を 送出すれば、発振器209の発振周波数ををあげてEL 素子205の輝度を増加することができる。18時から 翌朝の7時までを低い周波数を送出すれば、発振器20 9の発振周波数を下げてEL素子205の輝度を低下す るようにできる。冬の場合は、それに見合うリアルタイ ムクロックの設定をすればよい。このように、リアルタ イムクロック機能や、環境の明暗に適応する出力周波数 の可変機能によって複合的な機能を有するEL駆動回路 システムを構成できる。なを、図5では、輝度が1段階 の差でしか表示されていないが、A/Dコンバータ31 3のビット数で多様に輝度を調整できることは明らかで ある。また、リアルタイムクロックの内容を時間軸上で 細かく分割してもよいことは明らかである。また、明暗 機能とリアルタイム機能を併用しても本発明の趣旨を妨 げるものではない。

[0016]

【発明の効果】本発明によれば、EL素子の輝度を生活時間、明暗の環境に合わせて、総合的に設けられた複合機能を有するコスト/パフォーマンスの優れたEL駆動回路システムがASIC等によって容易に構成でき、実用効果は顕著である。

【図面の簡単な説明】

【図1】本発明のEL駆動回路システムの構成図である。

- 【図2】本発明のCPUブロックの基本構成図である。
- 【図3】本発明のCPUブロックの回路構成図である。
 - 【図4】明暗センサの増幅出力説明図である。
 - 【図5】他の発明のリアルタイムクロックに対応する輝 度説明図である。
 - 【図6】駆動回路Aを示す構成概略図である。
 - 【図7】回路基板上に構成される駆動回路Aの主要ブロック図である。

【符号の説明】

- 101 回路基板
- 102 EL駆動回路
- 0 103 容量変化検出コンデンサ
 - 104、212、314 Vdd端子
 - 105 Hon端子
 - 106、109、217, 315 Vss端子
 - 107 EL1端子
 - 108 EL2端子
 - 110 コンデンサ端子
 - 111 出力周波数端子
 - 205 EL素子
 - 207 インダクタ素子
- 50 209 発振器

(5) 開2000-12215 (P2000-12215A)

7

210、211 分周器

220 コンバータ

221 Hブリッジ

300 EL駆動回路システム

301 CPU

302 イネーブル信号端子

310 CPUブロック

311 明暗センサ

312 信号增幅器

313 A/Dコンバータ

【図1】

【図2】

出力陷于

【図3】

【図4】

301 CPU

【図5】

信号端子

【図6】

【図7】

