

Attention-Passing Models for Robust and Data-Efficient End-to-End Speech Translation

Seminar: Speech-to-Speech translation

Dennis Keck | July 15th, 2019

Introduction

Abstract

Attention-Passing Models for Robust and Data-Efficient End-to-End Speech Translation

Matthias Sperber, Graham Neubig, Jan Niehues, Alex Waibel

Three main achievements:

- Compares performance and data efficiency of direct to cascaded models for speech translation
- Application of a two-stage model for end to end speech translation
- Introduction of an attention-passing enhancement for the two-stage model

Context

- Speech translation: audio input \rightarrow text translations
- Previously: cascadeding an automatic speech recognition (ASR) and a machine translation (MT) component
- Problem: propagation of error, source text coming from ASR component might be erroneous and lead to follow-up errors

4/31

Context

- More recently: Huge interest in direct models for end to end training of speech translation
- But: Reports comparing direct and cascaded models give no clear result yet
- But: usually more training data available for cascaded models as ASR and MT components can be trained seperately

Overview (Task)

Attention mechanism

Vanilla sequence to sequence model

- Fixed context vector length from encoder's last hidden state
- Problem: Can't remember long sentences. Model has "forgotten" first part when processing whole input.

Attention basic idea

- build "shortcuts" between context vector and source input
- decoder can "attend" to different parts of the input at every output step
- now each decoder output word depends on a weighted combination of all input states

Alignment between the Characters and Audio

from Chan et al.: Listen, Attend and Spell (2017)

Models in detail

Overview (Architectures) ... 在 在 在 ... **SoftMax** MT tanh **LSTM** Attention **LSTM** ASR loss < **SoftMax** ...slid on the smooth... **SoftMax** tanh y_{i-1} **Attention** tanh **ASR Attention LSTM** (deep conv seq2seq) **LSTM** Speech features a) Direct model b) Cascaded model c) Two stage model

Introduction

All of the models have in common: - Audio input encoded as Mel-Bank-Features

Cascaded model

TODO

- traditionally used and still state of the art
- easier to learn complex audio to text mapping
- cannot be trained end to end
- but: can make use of more abundant text translation and speech recognition corpi
- propagation of error problem

15/31

Direct model

$$\begin{aligned} s_{i} &= \text{LSTM}([W_{e}y_{i-1}\,;\,c_{i-1}],s_{i-1}\,;\,\theta_{lstm}) \\ c_{i} &= \text{Attention}([s_{i}e_{1:L}\,;\,\theta_{att}]) \\ \widetilde{s_{i}} &= \tanh(W_{s}[s_{i}\,;\,c_{i}] + b_{s}) \\ p(y_{i}|y_{< i},e_{1:L}) &= \text{SoftMaxOut}(\widetilde{s_{i}}\,;\,\theta_{out}) \end{aligned} \tag{1}$$

Variables:

- e_{1:L} L audio encoder states
- W_*, θ_*, b_s trainable parameters
- y_i output characters

Direct model

- more recently shown
- complex mapping from audio to text has to be learned in the model with little guidance
- needs speech to translation datasets for training => a lot less data available

Two stage model

$$\begin{split} s_{i}^{src} &= \text{LSTM}([W_{e}^{src}y_{i-1}^{src}\,;\,c_{i-1}^{src}],s_{i-1}^{src}\,;\,\theta_{lstm}^{src})\\ c_{i}^{src} &= \text{Attention}([s_{i}^{src},e_{1:L}\,;\,\theta_{att}^{src}])\\ \widetilde{s}_{i}^{src} &= \text{tanh}(W_{s}^{src}[s_{i}^{src}\,;\,c_{i}^{src}]+b_{s}^{src})\\ p(y_{i}^{src}|y_{< i},e_{1:L}) &= \text{SoftMaxOut}(\widetilde{s}_{i}^{src}\,;\,\theta_{out}^{src}) \end{split}$$

$$\begin{split} s_{i}^{trg} &= \text{LSTM}([W_{e}^{trg}y_{i-1}^{trg}; \ c_{i-1}^{trg}], s_{i-1}^{trg}; \ \theta_{lstm}^{trg}) \\ c_{i}^{trg} &= \text{Attention}([s_{i}^{trg}s_{1:N}^{src}; \ \theta_{att}^{trg}]) \\ \widetilde{s}_{i}^{trg} &= \text{tanh}(W_{s}^{trg}[s_{i}^{trg}; \ c_{i}^{trg}] + b_{s}^{trg}) \\ p(y_{i}^{trg}|y_{< i}, e_{1:L}) &= \text{SoftMaxOut}(\widetilde{s}_{i}^{trg}; \ \theta_{out}^{trg}) \end{split}$$

$$(3)$$

Two stage model

- two encoder-decoder stages, but decoder of first and encoder of second stage shared:
 - unlike cascaded model the second stage does not use the ASR output
 - calculates attention vectors directly on the first decoder state:

$$c_i^{trg} = \text{Attention}([s_i^{trg} s_{1:N}^{src} ; \theta_{att}^{trg}])$$

- keeps end-to-end trainability
- can also be trained with ASR and MT data

Model comparison

Attention passing model

Architecture comparision

Performance

Bleu score

Datasets

Data efficiency

Closing

Comments

differences in architecture might make them less comparable

Related work

References

