Tutorial 5

Q.1. Use the Bode approach to sketch the magnitude of each of the following

$$\frac{4}{s^3 + 7s^2 + 12s}$$

(b)

$$\frac{s + 300}{s(5s + 8)}$$

Q.2.

For the circuit shown in Fig. 16.1, let R=1 k Ω , C=22 mF, and L=12 mH. (a) Calculate α , ω_0 , ζ , f_0 , and ω_d for the circuit. (b) If $\mathbf{I}=1/0^\circ$ A, plot \mathbf{V} , \mathbf{I}_{LC} , \mathbf{I}_L , and \mathbf{I}_C as a function of frequency, and verify that \mathbf{I} and \mathbf{V} are in phase at ω_0 . (c) What is the relationship of \mathbf{I}_L to \mathbf{I}_C at ω_0 ?

Q.3.

A parallel *RLC* network is constructed with a 5 mH inductor, and the remaining component values are chosen such that $Q_0 = 6.5$ and $\omega_0 = 1000$ rad/s. Determine the approximate value of the input impedance magnitude for operation at (a) 500 rad/s; (b) 750 rad/s; (c) 900 rad/s; (d) 1100 rad/s. (e) Plot your estimates along with the exact result using a linear frequency (rad/s) axis.

Q.4.

With regard to the series RLC circuit described in Exercise 15, adjust the resistor value such that Q_0 is reduced to 5, and (a) estimate the angle of the impedance at 90 krad/s, 100 krad/s, and 110 krad/s. (b) Determine the percent error in the estimated values, compared to the exact expression.

Q.5.

For the network represented in Fig. 16.55, determine the resonant frequency and the corresponding value of $|\mathbf{Z}_{in}|$.

■ FIGURE 16.55