Esame di TEORIA DEI SEGNALI

Quesito A1

Si dimostri che se A e B sono eventi indipendenti, lo sono anche gli eventi A e B^c .

Quesito A1 - (Soluzione)

Sia *S* lo spazio campione e siano *A* e *B* due eventi. Si deve dimostrare che se *A* e *B* sono indipendenti, ossia se vale la seguente:

$$P(AB) = P(A)P(B)$$

allora sono indipendenti anche A e B^c , ossia vale la seguente:

$$P(AB^c) = P(A)P(B^c)$$
.

E' noto che: AS = A e che: $B + B^c = S$. Quindi si può scrivere:

$$A = AS = A(B + B^{c}) = AB + AB^{c}$$

E quindi passando alle probabilità e osservando che AB e AB^c sono disgiunti:

$$P(A) = P(AB) + P(AB^{c})$$

e per l'indipendenza di *A* e *B*:

$$P(A) = P(A) P(B) + P(AB^{c})$$

da cui:

$$P(A)[1 - P(B)] = P(AB^{c})$$

E osservando che $[1 - P(B)] = P(B^c)$, segue:

$$P(A) P(B^c) = P(AB^c)$$

che è ciò che si voleva dimostrare.

Forme di TEORIA DEI SEGNALI

Si vuole riservare l'acesso a un certo servizio a M = 100 utenti a ciascuno dei quali viene assegnata una diversa password formata da n cifre decimali.

- Si trovi il valore minimo di n (lunghezza della password) che garantisca una probabilità P minore di 10^{-2} che una persona non autorizzata riesca ad accedere al servizio eseguendo k=10 tentativi

Quesito A5 (Soluzione)

Sia N=10m il numero totale di stringhe - Se solo Modi queste sono passivona la probabilità di trovare una passivona scegliendo una stringa a caso (un tentativo) $\bar{e}: \phi = \frac{M}{N}$, infetti la spazio si può assumere uniforme date le condizioni del problema - Naturalmente la probabilità di non trovare una password facendo un tentativo é il complemento onia: q=1-p=1-M.

La probabilité de si vuole manteuere minore di 10-2 e la probabilità di trovare almeno una passivonde facendo le tentativi (supposti indipendenti) che si puo esprimere Cost:

P=1-Pr{non trovare alcuna password in ktentetivi}= = 1-9k

Si cerca quindi il minimo value di N (e quindi di m) che soddisti la sequente:

P=1-9k<10-2

 $1-\left(1-\frac{M}{N}\right)^{\frac{1}{k}}<10^{-2}$ \longrightarrow $N>\frac{M}{1-\left(1-10^{-2}\right)^{\frac{1}{2}}}=$

 $=\frac{100}{1-0.99\%}=0.99\cdot10^{5}\simeq10^{5}\rightarrow10^{5}$

Le passiona devons esse di almeno M=5 cifre decimali -

Esame di TEORIA DEI SEGNALI

Quesito A8

Si lanciano contemporaneamente e indipendentemente un dado e quattro monete.

Si calcoli la probabilità che il numero di "teste" ottenute con le monete sia uguale al punteggio ottenuto col dado.

Querito A8 (folizione)

Si chiede di calclore la probabilità:

$$P(D=T) = P(D=1, T=1) + P(D=2, T=2) + P(D=3, T=3) + P(D=4, D=4)$$

le probabilité si sommans perché gli events sons disgiunti - l'indipendenta fra i lanci punerte di scrivere: 16.

$$P(D=T) = P(D=1) \cdot P(T=1) + \cdots \cdot P(D=4) P(T=4) =$$

Hove P(T=k) et la probabilité di avec le teste (successi) su M=4 momete (prove), dove insoltre le probabilité pu = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove), dove insoltre le probabilité pour = 4 momete (prove) de la probabilité pour = 4 momete (prove) de la probabilité pour = 4 momete (prove) de la probabilité pour = 4 momete (probabilité de la probabilité de l

di successo (testa in un laurio di una moneta) e p = 1 -

Quaindi or ha: $(\frac{1}{2})^4$ $(\frac{1}{2})^4$

$$=\frac{1}{6}\cdot\left(\frac{1}{2}\right)^{4}\left[\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}\right]=\frac{1}{6}\cdot\frac{1}{16}\left[4+6+4+1\right]=\frac{1}{6}\cdot\frac{1}{16}=\frac$$

Esame di TEORIA DEI SEGNALI

Quesito A22 - (Soludione)

Conviene cambiare facile se, dato il risultato dei do tivi, e più probatoile che il fucile usato sia il B (peggine) pruttanto che l'A (miglione).

Quindi, definiti gli eventi:

$$B = \frac{1}{2}$$
 " " By

Conviene combine fucile se:

$$P(A|C) < P(B|C)$$
 ovvers se $\frac{P(A|C)}{P(B|C)} < 1$

Poide e:

$$P(A|C) = \frac{P(C|A)P(A)}{P(C)} = {10 \choose 7} \frac{P^{7}(1-P_{A})^{3}}{P(C)} = \frac{P(A)}{P(C)}$$

$$P(B|C) = \frac{P(C|B)P(B)}{P(C)} = {10 \choose 7}P_B^{7}(1-P_B)^{3} \cdot \frac{P(B)}{P(C)}$$

Assunto $P(A) = P(B) = \frac{1}{2}$ (sælta a caso), si ha:

$$\frac{P(A|C)}{P(B|C)} = \left(\frac{P_A}{P_B}\right)^7 \left(\frac{1 - P_A}{1 - P_B}\right)^3 = \left(\frac{o_1 8}{o_1 6}\right)^7 \cdot \left(\frac{o_1 2}{o_1 4}\right)^3 \simeq 0.94 < 1$$

Ouindi nel coso proposto conviene cambiare fucile.

Volendo calcelare le due probabilità da confrontare si ha:

Dalle sequenti:

$$P(CIA) = {10 \choose 1} P_A^{\frac{1}{4}} (1-P_A)^{\frac{3}{2}} = 100.0,8^{\frac{1}{4}}.0,2^{\frac{3}{2}} = 0,2013$$

$$P(c|B) = {10 \choose 1} P_B^{\frac{1}{5}} (1 - P_B)^3 = 120.0, 6^{\frac{1}{5}}.0, 4^3 = 0,215$$

$$\frac{G' \text{ ni con a}:}{P(A|C)} = \frac{P(c|A). P(A)}{P(C)} = \frac{0,2013-0,5}{0,2081} \stackrel{\sim}{=} 0,48$$

$$P(B|C) = \frac{P(c|B)P(B)}{P(c)} = \frac{0.215.0.5 \approx 0.52}{0.2081}$$

Esame di

TEORIA DEI SEGNALI

Quesito A25

18/2/2003

Si supponga che in un'elezione con due candidati il 65% degli elettori sia favorevole al candidato A e il 35% al candidato B. Per eseguire un semplice sondaggio si chiede a 7 elettori scelti a caso di manifestare la loro preferenza.

Quanto vale la probabilità che la maggioranza degli intervistati sia favorevole a B (ossia che il sondaggio sia fallace)?

Quento AZS - (Soluzione)

E'un problema di prove ripetute in cui il successos e l'evento B = { risposta favorevole al caudidato B}
Detto na e na i numeri delle risposte favorevoli ad A e a B

rispettivamente si cerca:

Pfenito fallace j = Pf MB>nAj = Pf 4 & MB & 7)

Si cerca cioè la probabilità che il 40 di nicumi n'a Compreso fra 4 e 7, estremi inclusi.

Omervands che la probabilità di sucusso può essere assunta, come si sicava dal testo: $\phi = P(B) = 0,35$ si ha:

$$\boxed{\frac{2 \ln_{B} > n_{A}}{\sum_{i=4}^{7} \left(\frac{7}{i}\right) p^{i} \left(1-p\right)^{7-i}} =$$

Quesito A32

Le probabilità che un calciatore di serie A e un calciatore dilettante segnino un gol tirando un calcio di rigore siano rispettivamente $p_A = 0.8$ e $p_D = 0.5$.

Un calciatore scelto a caso da un gruppo formato da 2 calciatori di serie A e 8 dilettanti tira 8 calci di rigore e segna 6 gol.

Qual è la probabilità che il calciatore fosse di serie A e quale che fosse dilettante?

Questo A32 (Solutione)

Si definiscano i sequenti eventi:

A = { Il tinatone e di serie Ay

D = 1 " " dilettante y

M= 16 gol om 8 trois.

Si cerca P(A|M) e P(D|M) (= 1-P(A|M))

Dol tenema di Bayes:

 $P(A|M) = \frac{P(M|A) \cdot P(A)}{P(M)}$

dove P(M) n' nicava dal tenema delle puolo. totali:

P(M) = P(M|A).P(A) + P(M|O).P(D)

dove aucona: P(A) = 2/10 e P(D) = 8/10 m nicavano dal testo

e le pros. condizionete sono (prove ripetute)!

P(H/A)=(8) PA6(1-PA)8-6= 28.0,86.0,22= 0,294

 $P(M|D) = {8 \choose 6} p_0^6 (1-p_0)^{8-6} = 28.0,56.0,5^2 = 0,109$

Quindi:

P(H) = 0,294.0,2+0,109.0,8=0,146

e sufine: $P(A|M) = \frac{0,294.0,2}{0,146} \approx 0,4$ e $P(D|M) \approx 1-0,4 = 0,6$ Pab. Sevie A Prob. Diletarite

[Veds anche Bonowi, Fernani Prob. 3.33, punto2]

TEORIA BEI SEGNALI

Quesito A40

15/6/2012

Due giocatori lanciano una coppia di dadi a turno. Vince chi per primo ottiene la somma 7. Qual è la probabilità di vincere per ciascun giocatore?

Quento A40 (Salutione)

Si considerino i lanci come una sense di prove ripetute esequite a turno dai due giocatori -Indichiamo con i = 1,2,... l'i-esimo lancio della serie (clinque sia il giocatore) - Si ha la sequente ugua glianta (di eventi):

{I} \= {Vince il giocotore che lancia per primo} =

= f Esce somma 7 al 1º lancio y U

U fesce somma 7 al 3º lancio, see somma ≠ 7 hei due precedentiy U

i f Esce somma 7 al lancis i dispani, esce somma \$7 hei (1'-1) ju
précedents'

Si trata dell'unione di Infinite eventi mutuamente esclusivi ciascumo dei quali (tranne il primo) e l'intersezione di eventi indpendenti (le uscite nelle ringole prove ripetute).

Detta p=1-9 la probabilità di Henere somma 7 nel generico lancio si può quindi scrivere:

$$P(I) = \sum_{i=1,3,5\cdots}^{+\infty} p \cdot q^{(i-1)}$$

che col combio d'indice: i=2k+1 con k=0,1,2...

$$P(I) = \sum_{i=1,3,5...}^{+\infty} q \cdot q^{(i-1)} = \sum_{k=0}^{+\infty} p \cdot q^{2k} = p \cdot \sum_{k=0}^{+\infty} (q^{2})^{k} = p \cdot \frac{1}{1-q^{2}}$$

L'altims passagpist esequits nibradands la somma di una senie geometrica di ragione q² (<1) -

Freudo:

$$\phi \triangleq P\{\text{Esce somma} \text{ fine generic lancio}\} = (16, 25, ... 61)$$

$$= \frac{(\text{M. coppie che danno somma} \text{ 7})}{(\text{N. coppie totali'})} = \frac{6}{36} = \frac{1}{6} \left(-1-9\right)$$

$$\boxed{P(I) = p \cdot \frac{1}{1 - q^2} = \frac{1}{6} \cdot \frac{1}{1 - (\frac{5}{6})^2} = \frac{6}{11} = 0,54}$$

La probabilité che vinca il giocatore che laracia per secondo (II) è naturalmente il complemento a 1:

$$P(T) = 1 - P(T) = 1 - \frac{6}{11} = \frac{5}{11} = 0,45$$

Quest'ultima potera comunque essere calcolata in modo simile alla prima, con i che assume solo valoni. pani:

$$P(\Pi) = \sum_{i=2,4,6...} p \cdot q^{(i-1)} = \sum_{k=0}^{+\infty} p \cdot q^{(2k+1)} = pq \cdot \sum_{k=0}^{+\infty} (q^2)^k = pq \cdot \frac{1}{1-q^2}$$

Dove n'é usats il cambio di indice i=2k+2, k=0,1,2... $\overline{+}$ facule verificare che l'espressione trovata per $P(\Pi)$ $\overline{-}$ uquele a: 1-P(I)

TEORIA DEI SEGNALI

Quesito A41

15/6/12

E' più probabile che un evento di probabilità 1/3 si verifichi almeno una volta in 3 prove (indipendenti) oppure che un evento di probabilità un milionesimo si presenti almeno una volta in un milione di prove?

Quesito 441 (Soluzione)

Sia Pn la podsalsilita che un evendo di probabilità p si veni fichi almeno una volta in n prove. Si può scrivere: Pn=P{almeno una volta in n prove}=1-P{Ovolte in n prove}= = 1-(1-p)n

e se la probabilité è $p = \frac{1}{m}$ si ha:

 $P_{M} = 1 - (1 - \frac{1}{M})^{M}$

Il problema chiede di confrontare P3 con P106 -Nei due così si ha:

 $P_3 = 1 - \left(1 - \frac{1}{3}\right)^3 \approx 0,703$

 $P_{106} = 1 - \left(1 - \frac{1}{106}\right)^{106} \approx 0,632$

Quindi P3>P106

Si onevi che: $P_{\infty} \stackrel{\triangle}{=} \lim_{M \to +\infty} \left[1 - \left(1 - \frac{1}{M}\right)^{M}\right] = 1 - e \stackrel{\triangle}{=} 0,632$

l'andament di Pn è riportato in figura:

 $1-e^{-\frac{1}{2}}0,632$

Si onevi che: Pro-6 - Pro < 10-6

Limite

-same of TEORIA DEI SEGNALI

Ouesito A99

Due amici A e B si sfidano al tiro al bersaglio sparando tre colpi ciascuno. La probabilità che i due centrino il bersaglio sparando un colpo siano rispettivamente p_A e p_B Si scriva l'espressione della probabilità che A vinca la gara, ossia la probabilità P_A dell'evento $\{n_A > n_B\}$ essendo n_A e n_B il numero dei centri ottenuti rispettivamente dai due amici.

Successivamente e facoltativamente si sostituiscano nell'espressione trovata i valori $p_A = 0.6$ e $p_B = 0.5$ e si calcoli con tali valori la probabilità cercata.

Querito Agg (Solutione)

Per comodità indichiamo on ?i, le l'evento ongimeto: [Ma=i, MB=kg oma: JA fa i centri & B for k centrily Gli eventi di questo tipo sono tutti mutuamente esclusivi quindi la probabilità cercata si prio scrivere 6si (3º assisma): P273>105=P23,2)+P22,1)+P23,03+P22,19+P22,09+P21,09. Eneudo i tinatori distinti si pris assumere indipendenta fra gli eventi del tipo {ha=ige {hB=kg, quindi au bra; P/1/4>1/3/= P/1/4=3/. P/1/8=2/+P/1/4=3/.P/1/8=1/+...ecc. Ogni probabilita del tipo 2/1 = ig si può saivere Que: P{h=i}=(3)pi(1-p)3-i eneudo p la pub. di alpine il bersaglis con un alpo e q=1-p re ono complemento. So ha quindi: D{nA>nB} = D{nA=3} [P{nB=2}+P{nB=1}+P{nB=0}] +

$$= (\frac{3}{3}) \frac{1}{12} \frac{3}{12} \frac{1}{12} \frac{1}{12$$

 $= p_{A}^{3} \left[3 p_{B}^{2} q_{B} + 3 p_{B} q_{B}^{2} + q_{B}^{3} \right] + 3 p_{A} q_{A}^{2} \left[3 p_{B}^{2} q_{B} + q_{B}^{3} \right] + 3 p_{A} q_{A}^{2} q_{B}^{3}$

La pobabilità tovata pro-essue espressa su vanimodi.
fra ani il sequente

$$P\{h_{A}>h_{B}\}=\sum_{i=1}^{3}\left[\binom{3}{i}h_{A}^{i}q_{A}^{3-i}\sum_{k=0}^{i-1}\binom{3}{k}h_{B}^{k}q_{B}^{3-k}\right]$$

Con i valor proposti: pa=0,6 e pB=0,5 or ha!

$$= 0,216 \cdot [0,875] + 0,432 \cdot [0,5] + 0,288 \cdot [0,125] = 0,441$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$7 \cdot (0,5)^{3} \qquad 4 \cdot (0,5)^{3} \qquad (0,5)^{3}$$

La probaboilité che A vinca la gara è quind.

del 44,1% - Il complement a 1 (55,9%) è la

probaboilità che vinca B più la probabilità d' pareggio -

Frame

TEOP2'A BEI SEGNALI

Quesito A111

Un'azienda ha due impianti, detti A e B, con cui produce componenti di un certo tipo. Ciascun impianto produce la metà del numero totale di componenti, ma il 5% dei componenti prodotti dall'impianto A risulta difettoso mentre risulta difettoso l' 1% di quelli prodotti dall'impianto B.

Si sceglie a caso un lotto di 60 componenti tutti prodotti da uno dei due impianti scelto a caso e si trova

che 2 di essi sono difettosi.

Qual è la probabilità che il lotto scelto provenga dall'impianto A? E quale dall'impianto B?

Quesito AM1 (Solutione) Si definiscens i sequent' event': A = & Il lotto scelto provient dall'impranto A' $B = \frac{1}{2}u$ 11 11 11 11 11 C= { Due component' del lotto scelto sono difettosi'} Si cercano le probabilità : P(A|C) e P(B|C) = 1-P(A|C) S' ha (Teorema di Bayes): P(AIC) = P(C/A)·P(A) Dalla descritione del problema n' può assumere P(A)=P(B)= 1 Sians inoltre \$1=0,05 e \$8=0,01 le probabilité (date) che un componente es ca difertoso dal corrispondente imprianto-Si pur quindi scrivere (prove aipequite)! $P(c|A) = {\binom{60}{2}} {\binom{1}{4}} {\binom{1-1}{4}}^{58} = \frac{60.59}{1.2} (0.05)^{2} (0.95)^{58} \approx 0.226$

 $\mathbb{P}(C|B) = \binom{60}{2} + \frac{2}{10} (1 - \frac{1}{10})^{58} = \frac{60.59}{1.2} (0,01)^{2} (0,99)^{58} \approx 0.0988$

e in fine (probabilità totali):

P(c) = P(c/A) + P(c/B) - P(B) = 0,226.1 + 0,0988.1 = 0,162

Si hauns infine le due probabilité cercate:

P(A|C) = 0,026.1/2 ~ 0,696; P(B|C)=1-P(A|C)=0,304

JSi veda anche il Quento ADO, praticamente identico y