

Multirate Multicast: Algorithms and Implementation

Georgios S. Paschos

Massachusetts Institute of Technology

Joint work with:

Chih-ping Li & Eytan Modiano (MIT)

Kostas Choumas & Thanassis Korakis (CERTH)

Introduction

- Resolving congestion of multicast sessions is complex
 - Several operators involved
 - Large number of receivers
 - Sources may not be trusted
 - Network variability
- Common approach: cooperation source/receivers

In this talk:

Resolve congestion inside the network without source cooperation

- Sources inject packets
- The network adapts by dropping packets

Multicast

- Multicast offers efficiency
 - Increases achievable rate
 - Or, reduces aggregated traffic

Max achievable rate: 1

Max achievable rate: 2

Multirate multicast

• Transmitting same rate to all receivers: inefficient

- Multirate multicast
 - Same stream at **different rate** per receiver
 - Layered video coding [Li98]
 - Basic layer packets: necessary for decoding at lowest quality
 - Enhanced layer packets: improve quality

Congestion control of multicast sessions

- Demand λ is outside the throughput region
 - Admit r≤λ
- Per-receiver NUM: $\max_{\mathbf{r}} \sum_{c,u} g(r_u^c)$ throughput of receiver u s.t. $\mathbf{r} \in \Lambda$ session c $\mathbf{r} < \lambda$

- Max sum throughput
- Proportional fairness

$$g(x) = x$$
$$g(x) = \log x$$

- Optimal decision affected by network variability
 - Channel quality, network failures, user population, demand, and capabilities

variability & congestion

Adaptive solutions

- Previous
 - Primal-Dual algorithms: [Kar02], [Deb04]
 - Messaging between sources and receivers
 - Backpressure-based: [Neely05], [Bui08]
 - Sources decide how many packets to inject
- Proposed: Adaptation inside the network
 - Sources inject all packets
 - The network drops packets where necessary
- Goal: robust solution to the NUM problem

Outline

- Reformulate per-receiver NUM using dropping rates
- In-network optimal control policy
 - Threshold-based dropping
 - Backpressure routing
 - Receiver-based congestion control

Maximum throughput — Maximum utility

Per-receiver NUM (dropping rate formulation)

• Throughput maximization $\max_{\boldsymbol{f},\boldsymbol{q}}\sum_{u}r_{u}$

Equivalent to minimization of weighted dropping rates

$$\min_{\boldsymbol{f},\boldsymbol{q}} \sum m_l q_l$$

Where m_l is the number of receivers fed through link l

Dropping rate minimization for max throughput

$$\min_{oldsymbol{f},oldsymbol{q}}\sum_{l}m_{l}q_{l}$$

- Where m_l is the number of receivers fed through link l
- The more the fed receivers, the more costly to drop packets!

Use Lyapunov optimization to derive control laws [Neely10]

Real-time control – proposed dropping

- At every slot
 - Choose $\mu(t)$ to route packets
 - Choose d(t) to drop packets
- Threshold-based dropping: If Q(t)>V drop d_{\max} packets, else zero

Proposed routing (path)

• **Backpressure routing**: Transmit at capacity if Qa(t)>Qb(t) (positive differential backlog)

Backpressure+threshold-based dropping = maximum sum throughput for single session unicast

Proposed routing (multiple sessions)

- Backpressure weight:
 - Transmit the session with the maximum weight

Backpressure+threshold-based dropping = maximum sum throughput for multiple unicast

Proposed routing (tree)

Max throughput for multirate multicasting on trees

Our policy adapts to channel changes

• Variable capacities *x*

Threshold-based dropping+BP

- Goal: maximize total throughput
 - Optimal allocation on link (s,a): red = x, blue =1-x

Utility maximization

- Update Backpressure weight calculation:
- $W_{ad} = Q_a Y$

- How *Y* evolves:
 - Arrivals: #of packets arriving at d

virtual pressure

• Service: $\max_{x} Vg(x)$

parameter s.t. $x \in [0, \max]$ utility function

Theorem: As $V \to \infty$, the average received rate approaches the **optimal** utility.

Testbed experimentation

- Testbed experimentation
 - NITOS testbed (Volos, Greece)
- Implementation of the policy
 - Exchange backlog information
 - Virtual slot mechanism
 - Scheduling on wireless links

Results

- Full throughput
- Maximum Utility: selected nodes get more video layers
- Negligible messaging overhead
- 8-10% CPU occupancy ✓

Conclusions

- Proposed a multi-rate multicast congestion control scheme
 - Resource allocation in the network
 - Adaptive and distributed solution of the per-receiver NUM
- Future work:
 - Energy efficiency
 - Multi-hop wireless
- Visit our demo!
 - Wednesday 12:30-3:30pm
 - Harbour B

