CTT009 Lưu trữ dữ liệu

Nội dung

- Nhắc lại
- Nén dữ liệu
- □ Lỗi giao tiếp
- □ Hệ thống tập tin

Nhắc lại

Số nguyên không dấu

n	Minimum	Maximum
8	0	2 ⁸ - 1 = 255
16	0	2^{16} - 1 = 65,535
32	0	2^{32} - 1 = 4,294,967,295
64	0	2 ⁶⁴ - 1 = 18,446,744,073,709,551,615

Nhắc lại

Số nguyên có dấu

n	_ minimum	_ maximum
_	-2' = -128	2'-1 = +127
16	$-2^{15} = -32,768$	2^{15} - 1 = +32,767
		$2^{31} - 1 = +2,147,483,647$
64	-2 ⁶³ = -9,223,372,036,854,775,808	2 ⁶³ - 1 = +9,223,372,036,854,775,807

Nhắc lại

□ Dấu chấm động

Precision	Min	Max
Single	1.1754 x 10 ⁻³⁸	3.40282 x 10 ³⁸
Double	2.2250 x 10 ⁻³⁰⁸	1.7976 x 10 ³⁰⁸

NÉN DỮ LIỆU

Tại sao phải nén dữ liệu?

- Mục đích
 - Lưu trữ dữ liệu
 - □ Truyền tải dữ liệu
- Data compression
 - ☐ Giảm kích thước của dữ liệu nhưng vẫn giữ lại các thông tin cơ bản

- ☐ Không mất (lossless)
 - Không làm mất thông tin trong quá trình nén
- ☐ Mất thông tin (lossy)
 - Có thể mất mát thông tin
 - Nén nhiều hơn lossless và lỗi nhỏ
 - Trường hợp ảnh và âm thanh

- Run-length encoding
 - Dữ liệu được nén là những chuỗi dài có cùng giá trị
 - Thay thế các chuỗi có những phần tử giống nhau bằng 1 mã (code)
 - Phần tử được lặp lại
 - Số lần xuất hiện trong chuỗi

- Frequency-dependent encoding
 - Chiều dài của chuỗi bits được dùng để biểu diễn cho 1 phần tử dữ liệu bằng tần suất sử dụng phần tử đó
 - Mã hóa với độ dài thay đối
 - Phần tử dữ liệu được mã hóa với độ dài khác nhau
 - Huffman code

Relative encoding

- Các luồng dữ liệu (data streams) chứa nhiều đơn vị, mà mỗi đơn vị chỉ khác 1 chút so với đơn vị trước đó
 - Khung liên tiếp của một ảnh động
- Ghi nhận lại sự khác nhau giữa các đơn vị dữ liệu liên tiếp
 - Mã hoá mối quan hệ của 1 đơn vị với đơn vị trước
- ☐ Có thể là lossless hoặc lossy
 - Sự khác biệt giữa các đơn vị dữ liệu liên tiếp được mã hóa chính xác hay xấp xỉ

- Dictionary encoding
 - Thông điệp (message) được mã hóa thành 1 chuỗi các tham chiếu đến từ điển
 - Ví dụ : word processors
 - Có sử dụng những bộ từ điển cho mục đích kiểm tra chính tả
- Adaptive dictionary encoding
 - □ Biến thể của mã hóa từ điển
 - LZW encoding

Nén ảnh

- ☐ GIF
 - Graphic Interchange Format
 - Phim hoạt hình
- JPEG
 - Joint Photographic Experts Group
 - Chụp hình
- TIFF
 - Tagged Image File Format
 - Lưu trữ hình ảnh

Nén âm thanh và video

- MPEG
 - Motion Photographic Experts Group
 - □ Phát sóng truyền hình HD
 - Video conferencing
- MP3
 - MPEG layer 3

LÕI GIAO TIÉP

Lỗi giao tiếp là gì?

- Khi thông tin được
 - Chuyển đổi qua lại giữa các thành phần khác nhau của máy tính
 - Lưu trữ trong máy tính
- Chuỗi bit sau cùng nhận được có thể không giống với chuỗi bit ban đầu
- Nguyên nhân
 - Bụi bẩn trên bề mặt đĩa
 - Mạch bị hỏng làm cho việc đọc/ghi không chính xác
 - Đường truyền dữ liệu bị hỏng
 - Bức xạ làm thay đổi chuỗi bits trên bộ nhớ chính

- □ Bit chẵn lẻ (parity bits)
 - Phát hiện sai sót dựa trên nguyên tắc: nếu 1 chuỗi bit có số lượng lẻ các bit 1 với một chuỗi bit có số lượng chẵn các bit 1 được tìm thấy, thì phải có lỗi xãy ra

Nguồn: Computer Science - An Overview, 12e

- Checkbyte
 - □ Tập hợp gồm nhiều parity bits
 - □ Từng parity bit nằm rải rác trong chuỗi bits
 - Ví dụ, 1 parity bit liên kết với mỗi bit thứ 8 trong chuỗi bits
- □ Biến thể
 - Checksums and cyclic redundancy checks (CRC)

Mã sửa lỗi

- ☐ Hamming distance (2 chuỗi bits)
 - Số lượng bits khác nhau trong các chuỗi
- ☐ Ví dụ
 - □ Hamming(00**0000**, 00**1111**) = 4
 - □ Hamming(10101100, **01**10**0**100) = 3

Ví dụ

Symbol	Code
A	000000
В	001111
C	010011
D	011100
E	100110
F	101001
G	110101
H	111010

Nguồn: Computer Science - An Overview, 12e

Ví dụ

Character	Code	Pattern received	Distance between received pattern and code	
A	0 0 0 0 0 0	0 1 0 1 0 0	2	
В	0 0 1 1 1 1	0 1 0 1 0 0	4	
С	0 1 0 0 1 1	0 1 0 1 0 0	3	
D	0 1 1 1 0 0	0 1 0 1 0 0	1	– S
E	1 0 0 1 1 0	0 1 0 1 0 0	3	C
F	1 0 1 0 0 1	0 1 0 1 0 0	5	
G	1 1 0 1 0 1	0 1 0 1 0 0	2	
Н	1 1 1 0 1 0	0 1 0 1 0 0	4	

Nguồn: Computer Science - An Overview, 12e

HỆ THỐNG TẬP TIN

Phân loại

- ☐ Tập tin văn bản thô
 - Cấu trúc đơn giản và thông dụng
 - Có thể xem nội dung và sửa chữa bằng các lệnh của hệ điều hành hay chương trình soạn thảo đơn giản
- ☐ Tập tin nhị phân
 - Cấu trúc hóa theo một quy ước nào đó
 - Thường có phần header chứa thông tin mô tả sự bố trí và mối liên hệ của các bytes dữ liệu ở phía sau
 - Mở bằng các công cụ (phần mềm) chuyên dụng

Ví dụ tập tin văn bản thô

- Tập tin theo cấu trúc văn bản ANSI (hay ASCII)
 - Chứa các ký tự (mã từ) trong bảng mã ASCII
- □ Ví dụ : ma trận có 3 dòng 4 cột
 - Dòng đầu cho biết số dòng, số cột
 - 3 dòng tiếp theo mỗi dòng 4 giá trị: nội dung ma trận
- Loại tập tin văn bản cấu trúc thông dụng
 - *.RTF hoặc *.HTML

Ví dụ tập tin văn bản mở rộng

- □ Văn bản thô ANSI text dựa trên cơ sở các ký tự 8-bit (256 ký hiệu)
 - □ Bất tiện khi lưu văn bản của nhiều ngôn ngữ
- Văn bản thô dạng mở rộng cho phép lưu trữ được nhiều ngôn ngữ
 - ☐ Unicode text (lưu ký tự UTF-16)
 - UTF-8 text

Ví dụ tập tin nhị phân

- Tập tin mã thực thi
 - *.EXE, *.COM, *.DLL trên Windows
- Tập tin văn bản tích hợp văn bản, hình ảnh, bảng biểu
 - *.DOC của MS Word hay Open Office
- □ Tập tin multimedia
 - □ Ånh: *.bmp, *.jpg, ...
 - □ Âm thanh: *.wav, *.mp3, ...
 - □ Video: *.avi, *.mp4, ...

TÓM TẮT

Bài giảng hôm nay

- ☐ Các kỹ thuật
 - Nén dữ liệu
 - □ Phát hiện và sửa lỗi giao tiếp

- Dưới góc độ lập trình
 - □ Hệ thống tập tin

Bài giảng lần tới

- ☐ Thao tác dữ liệu (chapter 2)
 - ☐ Kiến trúc máy tính
 - Ngôn ngữ máy
 - ☐ Thực thi chương trình

