
ELECTRICAL CHARACTERIZATION OF STANDARD AND RADIATION-HARDENED RCA CDP1856D

JUNE 1974

(NASA-CR-158725) ELECTRICAL
CHARACTERIZATION OF STANDARD AND
RADIATION-HARDENED RCA CDP1856D 4-BIT, CMOS,
BUS BUFFER/SEPARATOR Final Report (Hughes
Aircraft Co.) 74 p. HC-A04/MF-A01 CSCI 09C G3/33

N79-26314
Unclassified
27815

ELECTRICAL CHARACTERIZATION OF
STANDARD AND RADIATION-HARDENED RCA CDP1856D
4-BIT, CMOS, BUS BUFFER/SEPARATOR

FINAL REPORT

JUNE 1979

CONTRACT NUMBER JPL 954816, MODIFICATION 2

PREPARED BY

R. L. STOKES

TECHNOLOGY SUPPORT DIVISION

HUGHES AIRCRAFT COMPANY • CULVER CITY, CALIFORNIA

PREPARED FOR

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91103

Approved A.P. Arquero
A. P. Arquero
Program Manager

Approved G.I. Robinson for
K. H. Tendick
Manager
Components and Materials
Laboratory

TEST ABSTRACT

Electrical characterization tests were performed on 25 standard and 15 radiation-hardened RCA CDP1856D, 4-bit, noninverting, bus separators. The tests included functional tests and AC and DC parametric tests at ambient temperatures of -55^oC, -20^oC, 25^oC, 85^oC, and 125^oC.

All measurements were performed on a Tektronix S-3260 Automated Test System. Temperatures were controlled by a Temptronic TP450A thermal airstream unit.

All 40 devices passed the functional tests and yielded nominal values in the AC and DC parametric tests.

CONTENTS

1. 0	INTRODUCTION	1-1
2. 0	DEVICE DESCRIPTION	2-1
2. 1	Pin Descriptions	2-2
2. 1. 1	Chip Select Input (CS)	2-2
2. 1. 2	Memory Read Input (MRD)	2-2
2. 1. 3	Data-In Inputs (DI0 to DI3)	2-3
2. 1. 4	Data-Out Outputs (DO0 to DO3)	2-3
2. 1. 5	Data Bus (DB0 to DB3)	2-3
2. 2	Device Operation	2-3
3. 0	DESCRIPTION OF TESTS	3-1
3. 1	Functional Tests	3-1
3. 2	AC Parametric Tests	3-1
3. 3	DC Parametric Tests	3-7
4. 0	TEST RESULTS	4-1
4. 1	Summary	4-1
4. 2	Data Tabulation	4-1
APPENDIX A	HISTOGRAMS	A-1

ILLUSTRATIONS

Figure		Page
1	CDP1856D Pin Connections	2-1
2	CDP1856D Functional Diagram	2-2
3	Functional Test Timing	3-3
4	Propagation Delay Definitions	3-4
5	Transition Time	3-4
6	Output Load (On/Off)	3-5
7	Output Load	3-5

TABLES

Table		Page
1	Functional Test Pattern	3-2
2	Functional Test Conditions	3-3
3	AC-Parametric Test Conditions	3-5
4	DC-Parametric Tests	3-8
5	VIN and VIL Test Conditions	3-9
6	List of Histograms	4-2

1.0 INTRODUCTION

This report documents the results of electrical characterization test to determine the electrical performance characteristics of the 25 standard and 15 radiation-hardened RCA CDP1856D, 4-bit, CMOS, bus separators. Electrical characteristics of the devices were measured and recorded under various test conditions. The data was analyzed and tabulated to show the effect of operating conditions on performance and to indicate parameter deviations among devices in each group. Accuracy was given precedence over test-time efficiency where practical, and tests were designed to measure worst-case performance.

The tests were divided into three categories: functional, AC parametric, and DC parametric. The functional tests were performed on a pass/fail basis to verify that the device under test (DUT) was logically correct. All voltage and timing conditions, except supply voltage, were set to nominal values in order to distinguish between functional failures and statistically unusual devices. The AC parametric tests consisted of propagation delays and transition times. These tests were performed using the "one-shot" measurement system. The DC parametric measurements were static measurements made by forcing specified conditions on the DUT and measuring the resultant voltage or current.

All of these tests were performed on a Tektronix S-3260 Automated Test System. All devices were subjected to the full set of tests at ambient temperatures of -55°C, -20°C, 25°C, 85°C, and 125°C. The temperature environment was provided by a Temptronic TP450A thermal airstream unit.

2.0 DEVICE DESCRIPTION

The RCA CDP1856D is a 4-bit, noninverting bus separator designed for use in the CDP-1800 series microprocessor systems. The device can be directly controlled by the CDP1802 microprocessor without the use of additional components. The CDP1856 uses static silicon-gate CMOS circuitry with a single voltage supply. It is compatible with the CD4000 series and may be used as a general purpose bus buffer or separator. It is supplied in a ceramic, 16-lead, hermetic, dual-in-line package. A brief operational description of the device is given below. Pin connections are shown in Figure 1, and a functional diagram appears in Figure 2.

Figure 1. CDP1856D pin connections.

Figure 2. CDP1856D functional diagram.

2.1 PIN DESCRIPTIONS

2.1.1 Chip Select Input (CS)

The chip select input enables (logic "1") or disables (logic "0"), the tristate output drivers.

2.1.2 Memory Read Input (MRD)

The memory read input determines the direction of data flow when the device is enabled.

2.1.3 Data-In Inputs (DI0 to DI3)

The data-in inputs receive input data for transfer to the bus.

2.1.4 Data-Out Outputs (DO0 to DO3)

The data-out outputs transfer output data from the bus tristate drivers.

2.1.5 Data Bus (DB0 to DB3)

The data bus provides inputs or outputs, depending on the direction of data flow.

2.2 DEVICE OPERATION

When CS is low (logic "0"), all outputs are disabled. When CS is high (logic "1"), MRD determines the direction of data flow. When MRD = 0, the bus drivers are enabled and data is transferred from the DATA-IN terminals to the bus. When MRD = 1, the bus drivers are disabled and the DATA-OUT drivers are enabled, allowing transfer of data from the bus to the DATA-OUT outputs.

3.0 DESCRIPTION OF TESTS

3.1 FUNCTIONAL TESTS

Functional tests were performed on a pass/fail basis with the pattern given in Table 1 and under the test conditions given in Table 2. (See Figure 3 for timing.) In general, the purpose of the functional tests was to verify that each device performed in accordance with its expected truth table. Performing the tests at both VDD = 3V and VDD = 15V (13V for the radiation-hardened devices) guaranteed that the devices operated over the specified voltage extremes. The lower VDD voltage of 13V for the radiation-hardened devices was used to accommodate the lowered transistor breakdowns common to irradiated CMOS devices.

The functional tests were performed at ambient temperatures of -55°C, -20°C, 25°C, 85°C, and 125°C using a Temptronic TP450A thermal airstream unit to control the device test temperature. All 40 devices passed the functional tests at the specified temperature and voltage extremes.

3.2 AC PARAMETRIC TESTS

AC parametric tests performed on the 1856 included propagation delays and transition times. Propagation delays were measured by a "one-shot" (real time) method, which makes a direct measurement of the time between two transitions. Transition times were measured by measuring the delay to the output under test at two levels (usually the 10-percent and 90-percent points of output swing). The difference between the two delays is the transition time between the two levels. See Figure 4 for propagation delay definitions and Figure 5 for transition time. AC-parametric test conditions are given in Table 3.

TABLE 1. FUNCTIONAL TEST PATTERN

Name	Pin	Time Slot																																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Input	CS	15	0	0	1	1																1													
	MRD	10	0	1	1	0																1													
	DIO	1	1				0	1	0	0	0	1	1	1	0	1	1	0	1	0	0	1													
	D11	2	1				0	0	1	0	0	1	1	0	1	1	0	1	1	0	1														
	D12	7	1				0	0	0	1	0	1	0	1	1	0	1	1	0	0	1	1													
Bidirectional	D13	9	1				0	0	0	0	1	0	1	1	1	0	0	0	1	1	1														
	DB0	14	0				1	0	1	0	0	0	1	1	1	0	1	1	0	1	0	1	1	0	1	1	0	1	1	0	0	1	1		
	DB1	13	0				1	0	0	1	0	0	1	1	0	1	1	0	1	0	1	0	1	0	1	1	0	1	1	0	1	0	1		
	DB2	12	0				1	0	0	0	1	0	1	0	1	1	0	1	1	0	0	1	1	0	0	1	0	1	1	0	0	1	1		
	DB3	11	0				1	0	0	0	0	1	0	1	1	1	0	0	0	1	1	1	1	0	0	0	1	0	1	1	1	0	1		
Output	DQ0	3	X		0	X																1	0	0	0	0	1	1	1	0	1	1	0	0	1
	DQ1	4	X		0	X																0	1	0	0	1	1	0	1	1	0	1	0	1	
	DQ2	5	X		0	X																0	0	1	0	1	0	1	1	0	1	0	0	1	
	DQ3	6	X		0	X																0	0	0	1	0	1	1	1	0	0	1	1	1	
Leakage Test																																			

X denotes high-impedance state; blank indicates no change from previous state

ORIGINAL PAGE IS
 OF POOR QUALITY

TABLE 2. FUNCTIONAL TEST CONDITIONS

Parameter	At VDD=3V	At VDD=15V (Standard)	At VDD=13V (Rad-Hard)
Input Driver Level, High (Logic "1")	3V	1.5V	13V
Input Driver Level, Low (Logic "0")	0V	0V	0V
Output Compare Level, High	1.5V	7.5V	6.5V
Output Compare Level, Low	1.5V	7.5V	6.5V
Cycle Time (Period)	16 μ s	16 μ s	16 μ s
Compare Window:			
Start	15.95 μ s	15.95 μ s	15.95 μ s
Duration	8 ns	8 ns	8 ns

Figure 3. Functional test timing.

Figure 4. Propagation delay definitions.

Figure 5. Transition time.

TABLE 3. AC-PARAMETRIC TEST CONDITIONS

Parameter	At VDD=5V	At VDD=10V
Drivers, High	5V	10V
Drivers, Low	0V	0V
Comparators		
Delays to On/Off		
High	3.75V	7.5V
Low	1.25V	2.5V
Other Delays		
High	2.5V	5V
Low	2.5V	5V
Transition Time		
High	4.5V	9V
Low	0.5V	1V
Cycle Time	5 μ s	5 μ s
Output Loads		
On/Off	Figure 6	Figure 6
Other	Figure 7	Figure 7

*INCLUDES SYSTEM CAPACITANCE

Figure 6. Output load (on/off).

*INCLUDES SYSTEM CAPACITANCE

Figure 7. Output Load

The following AC parameters were measured at VDD voltage of 5V and 10V:

<u>Parameter</u>	<u>Symbol</u>
1. MRD to DB on, low	.TEB0
2. MRD to DB on, high	TEB1
3. CS to DB on, low	TEB2
4. CS to DB on, high	TEB3
5. MRD to DB off, low	TEB4
6. MRD to DB off, high	TEB5
7. CS to DB off, low	TEB6
8. CS to DB off, high	TEB7
9. MRD to DO on, low	TED0
10. MRD to DO on, high	TED1
11. CS to DO on, low	TED2
12. CS to DO on, high	TED3
13. MRD to DO off, low	TED4
14. MRD to DO off, high	TED5
15. CS to DO off, low	TED6
16. CS to DO off, high	TED7
17. DI to DB, low	TIB0
18. DI to DB, high	TIB1
19. DB to DO, low	TBO0
20. DB to DO, high	TBO1
21. Transition time low-to-high	TTLH
22. Transition time high-to-low	TTHL

3.3 DC PARAMETRIC TESTS

Most of the DC parametric tests were performed in a straightforward manner. Input conditions were applied using the drivers as in the functional and AC tests, and the pin under test was forced with a regulated voltage or current supply (depending on the specific parameter). The parameter under test was then measured and recorded.

The exceptions were the VIH (minimum logic "1" input voltage) and VIL (maximum logic "0" input voltage) tests. These were performed by running a functional test pattern while varying the input level under test. In the VIH test, all inputs except the one under test had drive levels of VDD and 0V. Timing conditions were generous. The logic "0" level of the input under test was set at 0V, and the logic "1" level was set to a low enough voltage to ensure that the device would fail to function properly. The functional test was run repeatedly, with the logic "1" level on the input under test raised each time, until the device passed. The voltage at which the device first passed was the minimum logic "1" voltage for the input under test. The VIL test was performed in a similar manner.

Table 4 lists the DC parameters measured. VIH and VIL were measured using the functional test pattern of Table 5. The timing and output comparator conditions were the same as those for the functional tests (Table 2). The input voltages were varied in 0.1-volt increments as shown in Table 5. Each input was tested separately at each voltage.

TABLE 4. DC-PARAMETRIC TESTS

Symbol	Parameter Name	Pin(s)	Voltage or Current Forced	VDD-VSS	Comments ¹
VICP	Input clamp voltage, positive	Each input	1 mA	0V	VDD and VSS grounded.
VICN	Input clamp voltage, negative	Each input	-1 mA	0V	VDD and VSS grounded.
I _H	Input current, high	Each input	15V ²	15V ²	0V on other inputs.
I _L	Input current, low	Each input	0V	15V ²	15V ² on other inputs.
IOH	Output current, high	Each output	4.6V 4.6V 9.5V 9.0V 10.5V	5V 5V 10V 10V 12V	Output under test is in Logic "1" (high) state.
IOL	Output current, low	Each output	0.4V 0.5V 0.5V 1.0V 1.5V	5V 5V 10V 10V 12V	Output under test is in Logic "0" (low) state.
IOZ1	High-impedance output current	Each output	12V ³ 15V ²	12V ³ 15V ²	0V on all data inputs. Outputs disabled.
IOZ2	High-impedance output current	Each output	0V 0V	12V ³ 15V ²	VDD on all data inputs. Outputs disabled.
ISS	Quiescent supply current	VSS	0V 0V	10V 15V ²	Inputs forced with functional test pattern at time slots 1, 2, 3, 35, 4, and 5 for 6 tests at each voltage. Logic 1 = VDD, logic 0 = VSS on inputs. Outputs are open.

¹ Bidirectional bus pins are included in both input and output measurements.² 13V for radiation-hardened parts.³ 10V for radiation-hardened parts.

TABLE 5. VIH AND VIL TEST CONDITIONS

Parameter	VDD (V)	Varied		Pin Under Test		Other Pins		Compare Levels	
		From (V)	To (V)	VIH (V)	VIL (V)	VIH (V)	VIL (V)	High (V)	Low (V)
VIH	5	0	5	—	0	5	0	2.5	2.5
VIL	5	5	0	5	—	5	0	2.5	2.5
VIH	10	0	10	—	0	10	0	5	5
VIL	10	10	0	10	—	10	0	5	5
VIH	12	0	12	—	0	12	0	6	6
VIL	12	12	0	12	—	12	0	6	6

1.0 INTRODUCTION

This report documents the results of electrical characterization tests to determine the electrical performance characteristics of the 25 standard and 15 radiation-hardened RCA CDP1856D, 4-bit, CMOS, bus separators. Electrical characteristics of the devices were measured and recorded under various test conditions. The data was analyzed and tabulated to show the effect of operating conditions on performance and to indicate parameter deviations among devices in each group. Accuracy was given precedence over test-time efficiency where practical, and tests were designed to measure worst-case performance.

The tests were divided into three categories: functional, AC parametric, and DC parametric. The functional tests were performed on a pass/fail basis to verify that the device under test (DUT) was logically correct. All voltage and timing conditions, except supply voltage, were set to nominal values in order to distinguish between functional failures and statistically unusual devices. The AC parametric tests consisted of propagation delays and transition times. These tests were performed using the "one-shot" measurement system. The DC parametric measurements were static measurements made by forcing specified conditions on the DUT and measuring the resultant voltage or current.

All of these tests were performed on a Tektronix S-3260 Automated Test System.^{as} All devices were subjected to the full set of tests at ambient temperatures of -55°C, -20°C, 25°C, 85°C, and 125°C. The temperature environment was provided by a Temptronic TP450A thermal airstream unit.

4.0 TEST RESULT

4.1 SUMMARY

All of the devices in both groups passed the functional tests and yielded nominal values in the parametric tests.

4.2 DATA TABULATION

For each parameter the data was tabulated by device serial number and temperature. The sign "<*" to the right of a value was used to indicate out-of-range measurements. The minimum, maximum, mean, standard deviation, and median values were listed at the bottom of each temperature column. Out-of-range measurements were excluded from the statistics.

The standard parts were numbered 3 through 27; the radiation-hardened parts were numbered 28 through 42. The statistics for each group were calculated separately.

In addition to the printed data, histograms of some of the parameters were provided. Each histogram displays data for one or more parameters at all five temperatures, in ascending order (-55°C, -20°C, 25°C, 85°C, 125°C). The histograms illustrate the effect of temperature and the distribution of devices for each parameter. The standard and radiation-hardened parts were plotted separately. Table 6 is a list of the parameters plotted. The histograms are provided in Appendix A.

TABLE 6. LIST OF HISTOGRAMS

Parameters	Conditions	
Propagation Delays	VDD	
DC Parameters	VDD	VO
TEB0, TEB1, TEB2, TEB3	5V	10V
TEB4, TEB6	5V	10V
TEB5, TEB7	5V	10V
TED0, TED1, TED2, TED3	5V	10V
TED4, TED6	5V	10V
TED5, TED7	5V	10V
TIB0, TIB1	5V	10V
TBO0, TBO1	5V	10V
TTLH, TTSH	5V	10V
IOH	5V	4.6V
IOH	10V	9.5V
IOL	5V	0.4V
IOL	10V	0.5V
IOZ	15V*	15V*
IOZ	15V*	0V
ISS	10V	—
ISS	15V	—

*13V for radiation-hardened parts.

APPENDIX A
HISTOGRAMS

RADIATION-HARDENED DEVICES

S-3260

DATA FOR TEB03A

TEB0, 1, 2, 3 AT 50

08 NOV 78

A-1

DATA OF POOR QUALITY IS
REMOVED FROM THIS PLOT

DATA EDITED
OF CELLS 50
CELL SIZE 5.000N

READINGS:
MAXIMUM: 239
MEAN: 92.19N
MINIMUM: 34.65N
STD. DEV.: 28.45N

239
156.0N
91.00N
37.70N
32.03N

240
177.5N
102.9N
41.85N
37.12N

240
206.0N
119.4N
48.40N
43.77N

238
225.5N
131.3N
52.30N
48.04N

S-3260

DATA FOR TEB03B

TEB0,1,2,3 AT 100

08 NOV 78

READINGS:

MAXIMUM

239

MEAN:

53.18N

MINIMUM

33.36N

STD. DEV.

11.95N

240

60.65N

37.23N

18.45N

10.46N

239

70.85N

42.82N

20.65N

12.56N

239

84.70N

50.81N

19.70N

12.56N

240

94.40N

56.27N

24.10N

17.80N

S-3260

DATA FOR TEB46A

TEB4/TEB6 AT 50

08 NOV 78

S-3260 DATA FOR TEB46B

TEB4/TEB6 AT 10V

09 NOV 78

READINGS:

120

120

120

120

120

MAXIMUM:

571.0N

578.0N

584.5N

599.0N

601.0N

MEAN:

511.1N

518.3N

528.2N

540.9N

548.8N

MINIMUM:

438.0N

435.0N

458.0N

453.0N

477.0N

STD.DEV.: .

40.90N

39.98N

36.24N

34.78N

33.12N

S-3260

DATA FOR TEB57A

TEBS/TEB7 AT 50

08 NOV 78

READINGS:	120	120	120	120	120
MAXIMUM:	576.5N	587.0N	604.5N	616.5N	632.0N
MEAN:	533.7N	539.4N	548.2N	557.7N	566.3N
MINIMUM:	460.5N	435.0N	458.0N	356.0N	476.0N
STD. DEV.:	28.77N	32.28N	35.64N	43.62N	43.24N

S-3260 DATA FOR TEB57B

TEB5/TEB7 AT 100

09 NOV 78

READINGS:	120	120	120	120	120
MAXIMUM:	524.0N	531.0N	539.0N	550.0N	556.5N
MEAN:	468.0N	473.6N	482.1N	492.1N	499.2N
MINIMUM:	386.0N	374.5N	408.5N	405.5N	419.0N
STD.DEV.:	35.56N	35.37N	33.68N	33.58N	32.54N

S-3260

DATA FOR TED03A

TED0,1,2,3 AT 50

08 NOV 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

240

128.0N

81.25N

37.35N

27.89N

240

142.5N

89.93N

40.95N

31.38N

240

162.0N

101.8N

45.80N

36.13N

240

188.5N

117.9N

52.00N

42.48N

240

207.0N

128.9N

56.45N

46.83N

S-3260 DATA FOR TED03B

TED0,1,2,3 AT 10V

08 NOV 78

OF CELLS 50
CELL SIZE 2.000m

FREQ. OF OCCURRENCE

READINGS:	240	240	240	240	240
MAXIMUM:	54.200	61.350	70.900	83.900	93.250
MEAN:	36.220	40.220	46.050	54.110	59.690
MINIMUM:	19.200	20.800	23.300	26.850	29.300
STD.DEV.:	9.531m	10.99m	13.15m	16.09m	18.11m

S-3260

DATA FOR TED46A

TED4/TED6 AT 50

09 NOV 78

READINGS:	120	120	120	120	120	120
MAXIMUM:	477.5N	488.0N	500.5N	519.5N	535.0N	
MEAN:	449.3N	447.8N	457.3N	470.4N	479.0N	
MINIMUM:	401.0N	403.0N	406.5N	414.5N	419.5N	
STD. DEV.:	22.00N	24.87N	28.01N	32.38N	35.47N	

S-3260 DATA FOR TED46B

TED4/TED6 AT 10U

09 NOV 78

READINGS:	120	120	120	120	120
MAXIMUM:	716.5N	722.0N	729.0N	736.5N	744.0N
MEAN:	659.7N	663.9N	668.9N	675.3N	679.4N
MINIMUM:	617.0N	618.5N	621.5N	627.0N	628.5N
STD.DEV.:	30.01N	30.55N	31.08N	32.12N	32.59N

S-3260

DATA FOR TED57A

TED5/TED7 AT 50

09 NOV 78

READINGS:

120

120

120

120

120

MAXIMUM:

441.5N

453.0N

466.5N

481.0N

490.0N

MEAN:

397.6N

404.7N

414.3N

426.6N

434.8N

MINIMUM:

352.5N

356.5N

360.5N

366.0N

370.5N

STD.DEV.:

23.82N

26.16N

29.57N

33.81N

36.38N

S-3260 DATA FOR TED57B

TED5/TED7 AT 10V

09 NOV 78

S-3260

DATA FOR TIB01A

TIB0.1 AT 50

09 NOV 78

DATA ZONE

A-13

DATA EDITED

OF CELLS 50

CELL SIZE 4.000N

FREQ. OF OCCURRENCE

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

120

112.0N

63.92N

28.60N

21.76N

120

119.0N

69.98N

31.45N

23.32N

120

129.5N

78.56N

35.45N

25.80N

120

145.0N

89.94N

26.00N

22.98N

119

156.0N

98.46N

44.60N

31.96N

S-3260 DATA FOR TIB01B

TIB0.1 AT 100

09 NOV 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

120

41.80N

26.96N

14.95N

6.760N

120

47.10N

29.98N

16.10N

7.791N

120

53.80N

34.29N

17.95N

9.256N

120

63.35N

40.36N

20.40N

11.27N

120

69.75N

44.59N

22.25N

12.59N

S-3260

DATA FOR TB001A

TB00,1 AT 5V

09 NOV 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

120
90.85N
55.40N
26.25N
17.57N

120
96.30N
60.75N
28.45N
19.40N

120
105.5N
68.38N
31.80N
21.78N

120
118.5N
78.69N
36.65N
25.13N

120
127.5N
85.74N
39.80N
27.56N

S-3260 DATA FOR TB001B

TB00, 1 AT 16V

09 NOV 78

OF CELLS 50
CELL SIZE 2.000M

FREQ. OF OCCURRENCE

READINGS :

120

**READING
MAXIMUM:**

120

MEAN:

27.10

MINIMUM:

13.9

STD. DEV.: :

6.1354

120

46.05K

120

53.60N

120

59.25M

S-3260

DATA FOR TTA

TTLH/TTHL AT 50

09 NOV 78

READINGS:	240	240	240	239	240
MAXIMUM:	105.2N	109.9N	117.5N	128.2N	136.3N
MEAN:	60.85N	64.28N	69.27N	76.47N	81.31N
MINIMUM:	21.85N	23.45N	26.60N	30.10N	33.25N
STD.DEV.:	17.88N	18.46N	19.41N	21.08N	22.50N

S-3260 DATA FOR TTB:

TTLH/TTHL AT 10V

09 NOV 78

READINGS:	240	240	240	240	240
MAXIMUM:	72.60N	75.30N	78.90N	81.45N	83.70N
MEAN:	33.06N	35.29N	38.39N	42.59N	45.64N
MINIMUM:	12.55N	13.20N	14.95N	16.20N	18.69N
STD. DEV.:	15.45N	15.54N	15.57N	15.61N	15.51N

S-3260 DATA FOR IOH1

IOH: U00=50 U0=4 60

09 NOV 78

READINGS:	120	120	120	120	120	120
MAXIMUM:	-1.600M	-1.400M	-1.200M	-960.0U	-920.0U	-920.0U
MEAN:	-2.074M	-1.814M	-1.540M	-1.324M	-1.187M	-1.187M
MINIMUM:	-2.880M	-2.560M	-2.240M	-1.920M	-1.760M	-1.760M
STD. DEV.:	331.9U	316.8U	287.4U	246.2U	229.2U	229.2U

S-3260 DATA FOR IOH3

IOH: VDD=10V VO=9.5V

09 NOV 78

S-3260

DATA FOR IOL1

IOL: UDD=50 UD=0.40

09 NOV 78

READINGS:	120	120	120	120	120	120
MAXIMUM:	8.020M	7.280M	6.400M	5.375M	4.830M	4.335M
MEAN:	6.670M	6.088M	4.425M	3.722M	3.335M	2.380M
MINIMUM:	4.160M	3.725M	3.215M	2.695M	2.380M	1.786M
STD.DEV.:	1.257M	1.152M	1.018M	866.7U	786.6U	

S-3260 DATA FOR IOL3

IOL: VDD=10V VO=0.5V

09 NOV 78

OF CELLS 50
CELL SIZE 200.0U
DATA OUTSIDE = '+'

READINGS:
MAXIMUM: 120 120 120 120 120
MEAN: 15.10M 13.55M 11.85M 10.05M 9.33M
MINIMUM: 11.99M 10.77M 9.349M 7.906M 7.065M
STD.DEV.: 9.750M 8.870M 7.580M 6.280M 5.540M
1.672M 1.463M 1.308M 1.268M 1.207M

S-3260

DATA FOR IOE1

IOE1 UDD=130 UD=130

09 NOV 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

120

585.0P

124.4P

6.157P

111.7P

120

986.2P

139.1P

6.337P

151.7P

120

960.6P

351.5P

72.23P

237.9P

120

1.229H

315.8P

16.00P

239.1P

114

21.51N

6.334N

66.67P

3.843N

S-3260 DATA FOR I022

I02: VDD=13U VO=6U

09 NOV 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

120

-1.893P

-18.43P

-247.0P

34.76P

120

-1.833P

-18.31P

-212.7P

33.18P

120

-4.020P

-97.14P

-224.0H

279.0P

120

-64.67P

-25.63N

-744.5N

97.24N

120

-11.65N

-196.4N

-4.690U

627.5N

S-3260

DATA FOR ISSA

ISS UDD=100

09 NOV 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD. DEV.:

90
-137.5P
-1.885N
-158.50N
20.55N

90
-100.0P
-10.02N
-60.00N
20.60N

90
-225.0P
-10.41N
-62.50N
20.43N

90
-4.500N
-20.87N
-114.5N
22.90N

90
-117.0N
-218.9N
-1.1300
157.2N

S-3260 DATA FOR ISSE

ISS: VDD=13V

09 NOV 78

READINGS:
MAXIMUM:
MEAN:
MINIMUM:
STD. DEV.:

90	90	90	90	90
-125.0P	-212.5P	-387.5P	-7.550N	-146.5N
-16.25N	-17.42N	-21.31N	-109.0N	-171.9N
-92.00N	-99.50N	-116.5N	-172.5U	-11.800
25.38N	25.81N	28.00N	273.3N	1.883U

STANDARD DEVICES

S-3260

DATA FOR TEB03A

TEB0,1,2,3 AT 5U

23 OCT 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

400
99.85N
69.25N
41.25N
11.66N

400
137.0N
93.65N
55.15N
16.33N

400
179.5N
125.3N
73.05N
21.80N

S-3260 DATA FOR TEB03B

TEB0.1,2,3 AT 10V

23 OCT 78

READINGS:

MAXIMUM:	400	400	394
MEAN:	44.35N	59.05N	77.28N
MINIMUM:	31.63N	41.26N	55.21N
STD.DEV.:	20.25N	26.00N	33.95N
	4.778N	6.610N	8.795N

S-3260 DATA FOR TEB47A

TEB4,5,6,7 AT 50

23 OCT 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD. DEV.:

400

672.0N

588.8N

5512.0N

31.23N

400

699.5N

609.0N

5527.0N

33.28N

400

796.5N

633.8N

544.0N

35.48N

S-3260 DATA FOR TEB47B

TEB4,5,6,7 AT 10V

23 OCT 78

FREQ

READINGS:

MAXIMUM

MEAN:

MINIMUM

STD.DEV

400
597.5N
518.8N
413.5N
50.21N

400
612.0N
539.1N
435.0N
40.34N

394
624.0N
562.8N
487.0N
31.62N

S-3260

DATA FOR TEO03A

TEO0.1,2,3 AT 5U

23 OCT 78

S-3260 DATA FOR TED03B

TED0,1,2,3 AT 10V

23 OCT 78

REC

DATA EDITED
OF CELLS 50

CELL SIZE 2.000N

FREQ. OF OCCURRENCE

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

400

46.25N

33.85N

22.70N

5.062N

400

61.75N

44.31N

29.00N

7.029N

395

80.30N

59.01N

37.60N

9.076N

S-3260 DATA FOR TED46A

TED4/TED6 AT SV

23 OCT 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV.:

200

472.0N

448.5N

422.5N

10.34N

200

504.0N

469.8N

443.0N

11.80N

199

525.0N

493.5N

461.0N

13.96N

S-3268 DATA FOR TED46B

TED4/TED6 AT 10V

23 OCT 78

DATA EDITED
OF CELLS 50
CELL SIZE 2.000N

FREQ. OF OCCURRENCE

READINGS	200	200	198
MAXIMUM:	688.5N	704.0N	710.5N
MEAN:	668.5N	679.4N	691.9N
MINIMUM:	648.0N	660.5N	671.5N
STD. DEV.:	9.355N	9.417N	9.876N

S-3260

DATA FOR TED57A

TED5/TED7 AT 5U

23 OCT 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD DEV.:

200

443.5N

419.5N

390.0N

9.348N

200

472.0N

439.8N

407.0N

11.65N

199

500.5N

462.2N

423.5N

14.11N

S-3260 DATA FOR TED57B

TED5/TED7 AT 10V

READINGS:	200	200	198
MAXIMUM:	624.0N	637.5N	652.5N
MEAN:	597.9N	609.6N	622.8N
MINIMUM:	568.5N	578.0N	591.0N
STD.DEV.:	12.76N	11.89N	11.14N

S-3260 DATA FOR TIB01A

TIB0/TIB1 AT 5V

23 OCT 78

READINGS:	200	200	200
MAXIMUM:	74.45N	99.80N	131.5N
MEAN:	56.80N	76.19N	101.0N
MINIMUM:	36.85N	49.80N	65.25N
STD. DEV.:	7.272N	10.10N	13.75N

S-3260 DATA FOR TIB01B

TIB0/TIB1 AT 10V

READINGS:	200	200	200
MAXIMUM:	37.25N	48.60N	61.80N
MEAN:	27.29N	35.44N	46.53N
MINIMUM:	18.15N	23.40N	30.65N
STD.DEV.:	4.019N	5.067N	6.416N

S-3260 DATA FOR TB001A

TB00/TB01 AT 5V

23 OCT 72

S-3260

DATA FOR TB001B

TB00/TB01 AT 100

23 OCT. 78

OF CELLS 50
CELL SIZE 1.000N

FREQ. OF OCCURRENCE

READINGS:	200	200	200
MAXIMUM:	33.90N	44.05N	56.00N
MEAN:	25.12N	32.63N	42.60N
MINIMUM:	16.65N	21.60N	28.25N
STD.DEV.:	3.744N	4.576N	5.791N

**NASA
FORMAL
REPORT**

S-3260

DATA FOR TTA

TTLH/TTHL AT 50

23 OCT 78

SEC

OF CELLS

50
CELL SIZE 4.000N

FREQ. OF OCCURRENCE

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD.DEV

400
61.80N
40.04N
22.20N
7.760N400
93.40N
56.19N
29.65N
12.66N400
129.3N
77.51N
40.10N
17.97N

S-3260

DATA FOR TTB

TTLH/TTHL AT 100

23 OCT 78

S
E
C

OF CELLS 50
CELL SIZE 1.000N

FREQ. OF OCCURRENCE

READINGS:	400	400	400
MAXIMUM:	30.85N	40.90N	57.90N
MEAN:	21.69N	27.60N	37.01N
MINIMUM:	13.29N	16.10N	20.45N
STD. DEV.:	4.115N	5.465N	7.823N

S-3260 DATA FOR IOH1

IOH: VDD=5V VOH=4.6V

23 OCT 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD DEV :

200
-3.220M
-3.917M
-4.910M
356.3U

200
-2.200M
-2.639M
-3.305M
237.2U

200
-1.620M
-1.919M
-2.420M
168.3U

S-3260 DATA FOR IOH3

IOH: VDD=10V VOH=9.5V

23 OCT 78

OF CELLS 50
CELL SIZE 200.0U

READINGS:	200	200	200
MAXIMUM:	-7.050M	-5.000M	-3.745M
MEAN:	-8.601M	-6.021M	-4.460M
MINIMUM:	-11.05M	-7.480M	-5.560M
STD. DEV.:	822.8U	530.1U	379.7U

S-3260 DATA FOR IOL1

IOL: VDD=5U VOL=0.4U

23 OCT 78

READINGS:

MAXIMUM:

MEAN:

MINIMUM:

STD DEV.:

200

9.090M

6.780M

5.310M

750.9U

200

6.505M

4.831M

3.775M

543.7U

200

4.600M

3.382M

2.710M

382.5U

S-3260 DATA FOR IOL3

IOL: VDD=10V VOL=0.5V

23 OCT 78

AMPS

OF CELLS 50
CELL SIZE 400.0U

FREQ. OF OCCURRENCE

READINGS:	200	200	200
MAXIMUM:	20.60M	14.65M	10.30M
MEAN:	16.62M	11.62M	8.874M
MINIMUM:	13.40M	9.410M	6.645M
STD.DEV.:	1.435M	1.064M	.759.6U

S-3260 DATA FOR I021

I021 · VDD=15V VO=15V

23 OCT 78

S-3260 DATA FOR I021

I021: VDD=15V VO=15V

23 OCT 78

A
M
P
S

DATA EDITED.
OF CELLS 50
CELL SIZE 200.0P
DATA OUTSIDE= '+'

READINGS: 199 198 194
MAXIMUM 1.241N 10.96N 11.48N
MEAN 37.72P 111.6P 218.72N
MINIMUM 13.27P 25.87P 31.333P
STD.DEV.: 88.63P 774.7P 2.068N

S-3260 DATA FOR I022

I022: VDD=15V VO=0V

23 OCT 78

DATA EDITED
OF CELLS 50
CELL SIZE 2.000P

FREQ. OF OCCURRENCE

READINGS:	197	197	0
MAXIMUM:	-333.3E-15	-4.867P	0.000
MEAN:	-11.92P	-19.65P	0.000
MINIMUM:	-56.84P	-86.38P	0.000
STD.DEV.:	6.867P	8.507P	-----

S-3260 DATA FOR I022

I022: VDD=15V VO=0V

AMPS

23 OCT 78

DATA EDITED

OF CELLS 50
CELL SIZE .400.0P
DATA OUTSIDE= '+'

READINGS:

MAXIMUM	199	199	198
MEAN:	-333.3E-15	-4.867P	-5.893N
MINIMUM:	-219.3P	-304.4P	-10.80N
STD.DEV	-38.87N	-50.91N	-28.61N
	2.759N	3.622N	2.944N

S-3260 DATA FOR ISS10

ISS AT 100' (-55,25,85,125 C)

READINGS:	119	129	158	150
MAXIMUM:	0.000	0.000	-4.463N	-120.5N
MEAN:	-16.57N	-15.55N	-20.60N	-214.4N
MINIMUM:	-98.50N	-141.5N	-155.0N	-566.5N
STD. DEVI.	31.63N	31.60N	28.50N	65.43N

ORIGINAL PAGE IS
OF POOR QUALITY

S-3260 DATA FOR ISS15

ISS AT 15U (-55,25,85,125 C)

DATA OUTSIDE= '+'

READINGS:

MAXIMUM:	0.000	130	146	150	150
MEAN:	-22.94N	-12.50P	-27.14N	-54.59N	-170.0N
MINIMUM:	-273.5N	-455.0N	68.23N	-1.065U	-3.240U
STD DEVI:	46.23N	141.4N			295.5N