Vibrations and Waves by George C. King Notes

Chris Doble

April 2022

Contents

1 Simple Harmonic Motion

1

1 Simple Harmonic Motion

• The equation of motion for a simple harmonic oscillator is

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

where

$$\omega^2 = \frac{k}{m}$$

• The general solution of the equation of motion for a simple harmonic oscillator is

$$x = A\cos(\omega t + \phi)$$

or equivalently

$$x = a\cos\omega t + b\sin\omega t$$

- The angular frequency ω is determined entirely by properties of the oscillator, e.g. its mass and spring coefficient
- The total energy of a harmonic oscillator is

$$E = \frac{1}{2}kA^2$$

- Nearly all potential wells have a shape that is parabolic when sufficiently close to the equilibrium position, so most oscillating systems will oscillate with SHM when the amplitude of oscillation is small
- The vibrations of nuclei in a molecule can be modeled by SHM, but only a discrete set of vibrational energies is possible, namely

$$\frac{1}{2}\hbar\omega, \frac{3}{2}\hbar\omega, \frac{5}{2}\hbar\omega, \dots$$

where \hbar is Planck's constant divided by 2π

 \bullet The total energy of a system undergoing SHM is always given by an expression of the form

$$E = \frac{1}{2}\alpha v^2 + \frac{1}{2}\beta x^2$$

where α and β are physical constants — if we obtain this equation during the analysis of a system we know we have SHM

• The equation of motion for a system described by the energy equation above is

$$\frac{d^2x}{dt^2} = -\frac{\beta}{\alpha}x$$