Research Report

Thursday 11/21/2013 Wei Wang

review of the issues to solve/What I needed to do

- Needed to know how existing programs perform the memory/dependency analysis
- Needed to reconstruct loops and array accesses from the trace only
- Others
 - Lulesh (using INRIA PPCG)
 - PNNL benchmark

Progress

- Reconstruct from the trace
 - With the help of Prof Ketterlin's Nested Loop Recognizer (NLR)
 - Change the format of NLR output to SCoP output (example shown in next slides)
 - Fake the operators because it does not affect dependency analysis!
 - Dump the SCoP with PoCC standard process flow: the SCoP (constructed from trace and NLR) ---> clan ----> candl

Generate SCoP from Trace (without knowing the source)

NLR, only one loop nest;

```
for i0 = 0 to 0x63
 for i1 = 0 to 0x63
    val Read
      . 0xbfb4ba04
      , Read
      , 0xbfb4ba08
      , Write
      0x804b060 + 800*i0 + 8*i1
      , Read
      , 0xbfb4ba04
      , Read
      , 0xbfb4ba08
      , 0x804b060 + 800*i0 + 8*i1
      , Read
      , 0xbfb4ba04
      , Read
      , 0x8072480 + 8*i0
      , Read
      , 0xbfb4ba08
      , Read
      0 \times 8072 de0 + 8 \times i1
      , Read
      , 0xbfb4ba04
      , Read
      , 0x80727a0 + 8*i0
      , Read
      , 0xbfb4ba08
      , Read
      , 0x8072ac0 + 8*i1
```

Target SCoP Code

```
pragma scop
for (i0 = 0; i0 < N; i++)
  for (i1 = 0; i1 < N; i++)
      A[i0][i1] =
    A[i0][i1] +
      B[i0] +
      C[i1] +
      D[i0] +
      E[i1];
for (i0 = 0; i0 < N; i++)
  for (i1 = 0; i1 < N; i++)
      F[i0] =
      F[i0] +
      G +
      A[i0][i1]+
      H[i1];
for (i0 = 0; i0 < N; i++)
    F[i0]=
    F[i0]+
    I[i0];
for (i0 = 0; i0 < N; i++)
  for (i1 = 0; i1 < N; i++)
      J[i0] =
      J[i0] +
      K +
      A[i0][i1] +
      F[i1]:
#pragma endscop
```

The Plan

- Write the program that does the previous conversion
 - Modify NLR code to dump out the required array form and loop form.
 - Some post processing to get rid of loop iterator read