

Unmanned Solar Powered Airship Concept Evaluation

Critical Design Report

Electrical Power System

Document Reference No.: USPACE-CDR-EPS-00

Document Status: DRAFT

Authors	$____Supervisors$
Zhou Hao	Kjell Lundin
Dries Agten	Alf Wikström
Morten Olsen	
$\underline{Project\ Manager}$	$\underline{\hspace{0.5cm} Quality \ Manager}$
Dries Agten	Morten Olsen

June 13, 2012 Luleå University of Technology Rymdcampus, Kiruna, Sweden

Normative References

 ${\bf Table} \,\, {\bf 1} - {\it Normative} \,\, {\it References} \,\, {\it for this} \,\, {\it document}$

Document title	Doc. Ref. No.	Doc. status
Preliminary Design Report - Electrical Power	USPACE-PDR-EPS-A1	Review
System		
Preliminary Design Report	USPACE-PDR-A1	Review

Acronyms

IGBT Insulated Gate Bipolar Transistor

MEA Main Error Amplifier

APR Array Power Regulator MPP Maximum Power Point **BCR** Battery Charge Regulator MPPT Maximum Power Point Tracking **BJT** Bipolar Junction Transistor MPPTU Maximum Power Point Tracking Unit CDR Critical Design Review ${\bf NTC}\,$ Negative Temperature Coefficient COTS Commercial Of-The-Shelf **OpAmp** Operational Amplifier **DM** Development Model PCB Printed Circuit Board ECSS European Cooperation for Space Standardization PDR Preliminary Design Review **PSA** Pressure Sensitive Adhesive **EMI** Electromagnetic Interference **EPS** Electrical Power System PWM Pulse Width Modulated FM Flight Model SAR Solar Array Regulator GaAs Gallium Arsenide SA Solar Array **TBD** To Be Decided IC Integrated Circuit

 \mathbf{TV} Thermal Vacuum

UVP Under Voltage Protection

List of Figures

1	Electrical Power System (EPS) simple blockdiagram	4
2	Chosen solar cell	4
3	Maximum Power Point Tracking (MPPT) regulator diagram	7
4	EPS detailed block diagram diagram	9

List of Tables

1	Normative References for this document	j
2	U-SPACE EPS design changes from PDR to CDR $\ \ldots \ \ldots \ \ldots$	1
3	Technical requirements for the EPS	2
4	Expected performance of the EPS	3
5	Specifications of chosen solar cell	5
6	Specification of chosen battery	5
7	External interfaces	8
8	Telemetry and telecommands	10
9	Main EPS design and implementation tasks	11
10	Main EPS design and implementation tasks	12

Contents

	Nor	rmative References	i
	Acr	ronyms	ii
	List	t of Figures	iii
	List	t of Tables	iv
1	Inti	roduction	1
	1.1	Changes from PDR to CDR	1
2	Fun	actional and Technical Requirements	2
	2.1	Functional Requirements	2
	2.2	Technical Requirements	2
	2.3	Expected Performance	3
3	Cri	tical Design	4
	3.1	Solar Array Design	4
	3.2	Battery Design	5
		3.2.1 Battery Charge Regulator	5
		3.2.2 Battery Temperature Monitoring	6
		3.2.3 Battery Discharge Current Limiter	6
	3.3	Maximum Power Point Tracking Regulator	6
		3.3.1 Mainbus Under Voltage Protection	7
	3.4	Complete EPS Diagram	8
	3.5	External Interfaces	8
	3.6	Telemetry and Telecommands	8
4	Tes	t and Verification of Design	10
	4.1	Preliminary Verification of Design	10
	4.2	Design Models and Verification Methods	10
5	Res	sources and Scheduling	10
	5.1	Main Tasks	10
	5.2	Parts List and Costs	11
	5.3	Electronics Ground Support Equipment (EGSE)	12
	5.4	Mechanical Ground Support Equipment (MGSE)	12
	Ref	erences	13

1 Introduction

The Electrical Power System (EPS) will provide sufficient power to the motors, communication system and payloads. Power is generated from solar cells and stored in batteries. DC-DC regulators are used to control the operating voltage of the solar cell and to provide regulated voltages to payloads and onboard computers.

1.1 Changes from PDR to CDR

The U-SPACE Preliminary Design Review (PDR) for the EPS is documented in [1]. Table 2 lists the major EPS design changes between the PDR and the Critical Design Review (CDR) and the argumentations behind these design changes.

Table 2 – U-SPACE EPS design changes from PDR to CDR

Area of change	Changed parame-	Argumentation for change
	ter	
Total power budget	increased to $> 40 W$	Increased airship total mass and size
Solar cells	New part	Old solar cell was much heavier than listed in
		manufacturer datasheet due to a glass cover
Total system cost	increased to	Increased power requirements and new light-
	> 12000SEK	weight solar cells are more expensive
Solar cell mounting	New part	New solar cell is flexible instead of rigid and
		can be mounted with Pressure Sensitive Ad-
		hesive (PSA)

2 Functional and Technical Requirements

2.1 Functional Requirements

Below are listed the primary functional requirements for the EPS:

- Provide adequate power to motors and payload
- Proof that flying on solar energy is possible i.e more power produced than consumed

Additional desired requirements are:

- Scalability to higher power levels
- Flexible and robust design, allowing flight in more extreme conditions (altitude, weather etc.)
- Provide adequate protection circuits for battery and loads
- Optimal design and high performance to increase power capability and minimize system mass

2.2 Technical Requirements

The EPS technical requirements are listed in table 3.

Table 3 – Technical requirements for the EPS

Minimum power output	40W
Maximum mass	1000 g(including solar arrays)
Maximum cost	$5000SEK^a$
Output voltages	6.0 - 9.2 V(un-regulated), $5 V$ (reg-
	ulated)
Maximum output current (worst	10.5A
case)	
Regulator phase margin	60deg
Regulator gain margin	10 dB
Control loop bandwidth	> 10 kHz
Operational temperature	$-20^{\circ}C$ $to+25^{\circ}C$
Battery capacity	> 5 Wh
07 A.A. 1.1 . 1 0	

^aInitial budget for 2 students.

2.3 Expected Performance

 ${\bf Table}~{\bf 4}-{\it Expected~performance~of~the~EPS}$

Power conversion efficiency(overall)	80 - 90%
Power output(overall)	$\sim 57-65W$
- (
Battery capacity	7.3Wh
Mass	$\sim 910g$
Total cost	$\sim 12000SEK^a$

^aSolar cells are significantly more expensive than anticipated. A request for more funds is under preparation.

3 Critical Design

This section describes in more detail the EPS design. A simple block diagram of the EPS design is shown in Figure 1.

Figure 1 - EPS simple blockdiagram

3.1 Solar Array Design

As was mentioned in section 1.1, a new solar cell has been selected. This solar cell is shown in Figure 2 and Table 5 lists the important specifications for this cell.

Figure 2 - Chosen solar cell

Table 5 – Specifications of chosen solar cell

Nominal output current	100mA
Nominal output voltage	7.2V
Nominal output power	0.72W
Dimensions	$270mm\times90mm\times0.2mm$
Weight	7.6g
No. of required cells 100^a	
Total solar panel area	$2.43m^2$ (assuming 100% fill factor)

a[2] offers good discount for +100 units order

The solar panels will be configured with two series-connected solar cells thus having an output voltage of:

$$V_{panel,out} = 14.4 V \tag{1}$$

3.2 Battery Design

Two Panasonic PA-L60.K02 [3] Li-ion batteries are used. The battery has the following important specifications:

Table 6 – Specification of chosen battery

Chemistry	Li-ion
Nominal voltage	3.6V
Capacity	$1.03Ah\ /\ 3.61Wh$
Weight	25g
Dimensions	56mm imes34.2mm imes5.8mm
Maximum charge current	970mA
Maximum discharge current (continuous)	1.455A

Future Recommendations The chosen type of Li-ion battery supports only a relative low charge- and discharge rate of about $1\,C$. For bigger battery capacity and higher loads, it is recommended to use a battery like [4] which provides much higher discharge rates (> $20\,C$) and also cheaper price per Wh. Only disadvantage is a mass increase of around 15-25%.

3.2.1 Battery Charge Regulator

From the battery datasheet, maximum charge current is $I_{REG} = 970 \, mA$. From the Battery Charge Regulator (BCR) datasheet, the minimum current sense resistor value is

calculated as

$$R_{sense} = \frac{V_{FCS}}{I_{REG}}$$

$$R_{sense} = \frac{120 \, mV}{970 \, mA} = 123 \, m\Omega$$
(2)

The required thermal rating of the pass transistor is calculated as

$$P_{max} = (V_{in,max} - V_{bat,min}) \cdot I_{charge} = (9.5 V - 5.5 V) \cdot 970 \, mA = 3.88 \, W \tag{3}$$

3.2.2 Battery Temperature Monitoring

The BCR chip includes a temperature monitoring feature. The battery is rated, in chargemode, to temperature in the interval $10 - 45^{\circ}C$. The maximum allowed temperature is set slightly lower to $40^{\circ}C$. The Li-ion battery has a build-in Negative Temperature Coefficient (NTC) thermistor with B = 3980 K and $R_{25} = 10k \Omega$. The required restance values of the temperature control resistors are determined from the BCR chip datasheet as

$$R_{cold} = R_{25}e^{B(\frac{1}{T} - \frac{1}{T_0})} = 10 k\Omega e^{3980 K(\frac{1}{283 K} - \frac{1}{298 K})} = 20.3 k\Omega$$

$$R_{hot} = 10 k\Omega e^{3980 K(\frac{1}{313 K} - \frac{1}{298 K})} = 5.3 k\Omega$$

$$R_{T1} = 2 \frac{R_{cold} R_{hot}}{R_{cold} - R_{hot}} = 14.2 k\Omega$$

$$R_{T2} = 2 \frac{R_{cold} R_{hot}}{R_{cold} - 3R_{hot}} = 47.8 k\Omega$$
(4)

3.2.3 Battery Discharge Current Limiter

The selected MOSFET has a typical gate threshold voltage of $V_{Gth} = 550 \, mV$. The chosen Bipolar Junction Transistor (BJT) has a typical collector-emitter voltage drop of $V_{CE} = 120 \, mV$. The battery is rated for a maximum discharge current of $I_{discharge} = 1.455 \, A$. The required current sense resistor is then calculated as

$$V_{sense} = V_{Gth} - V_{CE} = 550 \, mV - 120 \, mV = 430 \, mV \Rightarrow$$

$$R_{sense} = \frac{V_{sense}}{I_{discharge}} = \frac{430 \, mV}{1.455 \, A} = 295 \, m\Omega$$
(5)

The exact required resistance must be determined by testing the precise parameters of the discrete components.

3.3 Maximum Power Point Tracking Regulator

In [1] it was decided to use a Maximum Power Point Tracking Unit (MPPTU) for the Array Power Regulator (APR) due to its high efficiency and robustness to changing environmental constraints.

In first step, only the DC-DC converter will be implemented. When time and resources allows the Maximum Power Point Tracking (MPPT) part will be added. A simple buck DC-DC converter topology is used, comprising a transistor, free-wheel diode, inductor and output capacitor. When the full MPPTU is implemented, it will operate in three different operation regions:

- Battery discharge MPPT when the solar array input power is insufficient to cover the load power demand, the battery is slowly discharged in order to maintain the output voltage.
- Battery charge MPPT when the solar array input is greater than the load power, the excessive power is used to recharge the battery.
- Input power limitation when the battery is fully charged, the regulator will operate the solar array at a non-optimal voltage, thus limiting the input power to keep the output voltage constant. The extra potential input power is dissipated as heat externally on the solar arrays.

Figure 3 – MPPT regulator diagram

3.3.1 Mainbus Under Voltage Protection

The power from battery and solar cells is limited. It is thus possible that the motors will try to draw more current than what can be delivered. If this happens, the output capacitor of the APR will quickly discharge and the main output voltage drops out. To prevent this situation, an Under Voltage Protection (UVP) circuit is added. This is implemented using an STN888 PNP BJT along with two resistors, R3 and R4 as shown in Figure 4. When the main output voltage is around $6.2\,V$ the Base-Emitter voltage drop is close to $1.2\,V$ and the BJT is fully conducting and effectively works as a short circuit. If the output

voltage drops significantly below 6.2 V the BJT will begin to decrease the output current until the output voltage stabilizes. The current gain of STN888 is about 100, hence to allow an maximum output current of 10 A, the resistors R3 and R4 must be designed to pass $100 \, mA$ at $6.2 \, V$ output voltage. To minimize efficiency it is important that the forward voltage drop of the BJT is kept as low as possible.

Further Recommendations It is hard to find suitable BJTs rated for much more than 5 A. If the power output is increased in future designs, it is suggested to either parallel connect several BJTs however this might cause issues with thermal runaway. Alternatively high current Insulated Gate Bipolar Transistors (IGBTs) can be used, however they have higher forward voltage drops and thus they are more suitable for a design with a higher output voltage.

3.4 Complete EPS Diagram

The complete EPS diagram is shown in Figure 4. For providing the 5V regulated voltage to the payloads, Commercial Of-The-Shelf (COTS) DC-DC regulator(s) are used. The battery charging/discharging is controlled by the Solar Array Regulator (SAR).

3.5 External Interfaces

The interfaces of the EPS external are listed in table 7.

Table 7 – External interfaces

External interface	Implementation
Solar cells mounting	PSA
DC-DC regulators	Mounted on PCB which sits in system housing. Thermal contact points should be included, to remove internal heat dissipation.
Battery telemetry	Analog signals to Microcontroller
Mounting of batteries Supply voltages	To Be Decided (TBD) $6.0-9.2V \ ({\rm unregulated}) \ {\rm and} \ 5.0V ({\rm regulated})$

3.6 Telemetry and Telecommands

The required/recommended telemetry and telecommands, EPS, are listed in table 8.

 ${f Figure}~{f 4}-EPS~detailed~block~diagram~diagram$

Table 8 – Telemetry and telecommands

Telemetry	Data rate/frequency	Data size
Battery voltage	Every 30 sec	2 bytes
Battery temperature	Every 5 sec	2 bytes

4 Test and Verification of Design

4.1 Preliminary Verification of Design

TBD...

4.2 Design Models and Verification Methods

PSpice Simulations

PSpice transient and average simulation models of the SAR will be created. These will help in the design and testing of the regulator performance and system stability during transient loading.

Development Model

A Development Model (DM) will be build using self-made "mini-mount" pads and mainly surface-mount components, to minimize parasitic effects. System stability will be tested using a Network Analyzer and MPPT performance will be tested in a Thermal Vacuum (TV) chamber cycling the solar array temperature.

Flight Model

If time allows, a dedicated Flight Model (FM) will be build, using a custom designed Printed Circuit Board (PCB) schematic layout. An optimized PCB layout will minimize the system mass and size while maximizing the efficiency and system robustness.

5 Resources and Scheduling

5.1 Main Tasks

TBD...

5.2 Parts List and Costs

TBD...

5.3 Electronics Ground Support Equipment (EGSE)

TBD...

References

- [1] M. Olsen, D. Agten, and Z. Hao. Preliminary Design Report Electrical Power System. Tech. rep. USPACE-PDR-EPS-A1. Luleå University of Technology, 2012.
- [2] Avnet Express. RC7.2-75 PSA. http://avnetexpress.avnet.com. 2012.
- [3] PA-L60.K02. http://se.farnell.com/panasonic/pa-l60/battery-li-ion-1s1p-3-7v-1-03ah/dp/1900166. 2012.
- [4] RC Flight. LM Fast Charge 2300 2S 20C LiPo. http://rcflight.se/visaprodukt.aspx?id=1495.