TOÁN 10

OH3-2

PHƯƠNG TRÌNH ĐƯỜNG TRÒN

TRUY CẬP https://diendangiaovientoan.vn/tai-lieu-tham-khao-d8.html ĐỂ ĐƯỢC NHIỀU

HƠN

Contents

PHÂN A. CÂU HỎI	1
DẠNG 1. NHẬN DẠNG PHƯƠNG TRÌNH ĐƯỜNG TRÒN	1
DẠNG 2. TÌM TỌA ĐỘ TÂM, BÁN KÍNH ĐƯỜNG TRÒN	2
DẠNG 3. VIẾT PHƯƠNG TRÌNH ĐƯỜNG TRÒN	2
Dạng 3.1 Khi biết tâm và bán kính	2
Dạng 3.2 Khi biết các điểm đi qua	3
Dạng 3.3 Sử dụng điều kiện tiếp xúc	4
DẠNG 4. TƯƠNG GIAO CỦA ĐƯỜNG THẮNG VÀ ĐƯỜNG TRÒN	5
Dạng 4.1. Phương trình tiếp tuyến	5
Dạng 4.2 Bài toán tương giao	6
DẠNG 5. CÂU HỎI MIN-MAX	8
PHẦN B. LỜI GIẢI THAM KHẢO	9
DẠNG 1. NHẬN DẠNG PHƯƠNG TRÌNH ĐƯỜNG TRÒN	9
DẠNG 2. TÌM TỌA ĐỘ TÂM, BÁN KÍNH ĐƯỜNG TRÒN	10
DẠNG 3. VIẾT PHƯƠNG TRÌNH ĐƯỜNG TRÒN	11
Dạng 3.1 Khi biết tâm và bán kính	11
Dạng 3.2 Khi biết các điểm đi qua	11
Dạng 3.3 Sử dụng điều kiện tiếp xúc	13
DẠNG 4. TƯƠNG GIAO CỦA ĐƯỜNG THẮNG VÀ ĐƯỜNG TRÒN	15
Dạng 4.1. Phương trình tiếp tuyến	15
Dạng 4.2 Bài toán tương giao	18
DANC 5. CÂU HỘI MINI MAY	2.4

PHẦN A. CÂU HỎI

DẠNG 1. NHẬN DẠNG PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Câu 1. Tìm tất cả các giá trị của tham số m để phương trình $x^2 + y^2 - 2(m+2)x + 4my + 19m - 6 = 0$ là phương trình đường tròn.

A. 1 < m < 2.

B. m < -2 hoặc m > -1.

C. m < -2 hoặc m > 1. **D.** m < 1 hoặc m > 2.

Câu 2. Trong mặt phẳng *Oxy*, phương trình nào sau đây là phương trình của đường tròn?

A.
$$x^2 + 2y^2 - 4x - 8y + 1 = 0$$

B.
$$x^2 + y^2 - 4x + 6y - 12 = 0$$
.

C.
$$x^2 + y^2 - 2x - 8y + 20 = 0$$
.

D.
$$4x^2 + y^2 - 10x - 6y - 2 = 0$$
.

Phương trình nào sau đây là phương trình của đường tròn? Câu 3.

A.
$$2x^2 + y^2 - 6x - 6y - 8 = 0$$
.

B.
$$x^2 + 2v^2 - 4x - 8v - 12 = 0$$
.

C.
$$x^2 + y^2 - 2x - 8y + 18 = 0$$
.

D.
$$2x^2 + 2y^2 - 4x + 6y - 12 = 0$$
.

(Cụm liên trường Hải Phòng-L1-2019) Phương trình nào sau đây là phương trình của một đường Câu 4.

A.
$$x^2 + y^2 - 4xy + 2x + 8y - 3 = 0$$
.

B.
$$x^2 + 2y^2 - 4x + 5y - 1 = 0$$
.

C.
$$x^2 + y^2 - 14x + 2y + 2018 = 0$$
.
D. $x^2 + y^2 - 4x + 5y + 2 = 0$.

D.
$$x^2 + y^2 - 4x + 5y + 2 = 0$$
.

(THPT Quỳnh Lưu- Nghệ An- 2019) Cho phương trình $x^2 + y^2 - 2mx - 4(m-2)y + 6 - m = 0$ (1) Câu 5. . Điều kiên của m để (1) là phương trình của đường tròn.

A.
$$m = 2$$
.

$$\mathbf{B.} \begin{bmatrix} m < 1 \\ m > 2 \end{bmatrix}.$$

C.
$$1 < m < 2$$
.

$$\mathbf{D.} \begin{bmatrix} m=1 \\ m=2 \end{bmatrix}.$$

DANG 2. TÌM TOA ĐÔ TÂM, BÁN KÍNH ĐƯỜNG TRÒN

Trong mặt phẳng Oxy, đường tròn (C): $x^2 + y^2 + 4x + 6y - 12 = 0$ có tâm là. Câu 6.

A.
$$I(-2;-3)$$
.

B.
$$I(2;3)$$
.

C.
$$I(4;6)$$
.

D.
$$I(-4;-6)$$
.

Đường tròn $x^2 + y^2 - 10y - 24 = 0$ có bán kính bằng bao nhiều? Câu 7.

D.
$$\sqrt{29}$$
 .

Xác định tâm và bán kính của đường tròn $(C):(x+1)^2+(y-2)^2=9$. Câu 8.

A. Tâm I(-1;2), bán kính R=3.

B. Tâm I(-1,2), bán kính R = 9.

C. Tâm I(1;-2), bán kính R = 3.

D. Tâm I(1;-2), bán kính R = 9.

 $(\mathbf{\Phi}\mathring{\mathbf{E}}\ \mathbf{THI}\ \mathbf{TH}\mathring{\mathbf{U}}\ \mathbf{\Phi}\mathring{\mathbf{O}}\mathbf{NG}\ \mathbf{\Phi}\mathring{\mathbf{A}}\mathbf{U}\mathbf{-V}\mathbf{\tilde{I}}\mathbf{NH}\ \mathbf{PH}\mathring{\mathbf{U}}\mathbf{C}\ \mathbf{L}\mathring{\mathbf{A}}\mathbf{N}\ \mathbf{01}$ - $\mathbf{2018}$ - $\mathbf{2019})$ Tìm tọa độ tâm I và bán Câu 9. kính R của đường tròn (C): $x^2 + y^2 - 2x + 4y + 1 = 0$.

A.
$$I(-1;2); R = 4$$

B.
$$I(1;-2); R=2$$
.

A.
$$I(-1;2); R = 4$$
. **B.** $I(1;-2); R = 2$. **C.** $I(-1;2); R = \sqrt{5}$. **D.** $I(1;-2); R = 4$.

D.
$$I(1;-2); R=4$$

Trong mặt phẳng Oxy, cho đường tròn $(C):(x-2)^2+(y+3)^2=9$. Đường tròn có tâm và bán kính **Câu 10.**

A.
$$I(2;3), R = 9$$

B.
$$I(2;-3), R=3$$

A.
$$I(2;3), R=9$$
. **B.** $I(2;-3), R=3$. **C.** $I(-3;2), R=3$. **D.** $I(-2;3), R=3$.

D.
$$I(-2;3), R=3$$

Câu 11. Tìm tọa độ tâm I và tính bán kính R của đường tròn $(C): (x+2)^2 + (y-5)^2 = 9$.

A.
$$I(-2;5)$$
, $R = 81$.. **B.** $I(2;-5)$, $R = 9$.. **C.** $I(2;-5)$, $R = 3$.. **D.** $I(-2;5)$, $R = 3$.

B.
$$I(2;-5)$$
, $R=9$.

C.
$$I(2;-5)$$
, $R=3$...

D.
$$I(-2;5)$$
, $R=3$

Câu 12. Đường tròn $(C): x^2 + y^2 - 2x + 4y - 3 = 0$ có tâm I, bán kính R là

A.
$$I(-1;2), R = \sqrt{2}$$
.

A.
$$I(-1;2), R = \sqrt{2}$$
. **B.** $I(-1;2), R = 2\sqrt{2}$. **C.** $I(1;-2), R = \sqrt{2}$. **D.** $I(1;-2), R = 2\sqrt{2}$.

C.
$$I(1;-2), R = \sqrt{2}$$
.

D.
$$I(1;-2), R = 2\sqrt{2}$$
.

DANG 3. VIẾT PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Dạng 3.1 Khi biết tâm và bán kính

Câu 13. Phương trình đường tròn có tâm I(1;2) và bán kính R=5 là

A.
$$x^2 + y^2 - 2x - 4y - 20 = 0$$
.

B.
$$x^2 + y^2 + 2x + 4y + 20 = 0$$
.

C.
$$x^2 + y^2 + 2x + 4y - 20 = 0$$
.

D.
$$x^2 + y^2 - 2x - 4y + 20 = 0$$
.

Câu 14. Đường tròn tâm I(-1,2), bán kính R=3 có phương trình là

A.
$$x^2 + y^2 + 2x + 4y - 4 = 0$$
.

B.
$$x^2 + y^2 - 2x - 4y - 4 = 0$$
.

C.
$$x^2 + y^2 + 2x - 4y - 4 = 0$$
.

D.
$$x^2 + y^2 - 2x + 4y - 4 = 0$$
.

Câu 15. (THPT NGUYỄN TRÃI-THANH HOÁ - Lần 1.Năm 2018&2019) Phương trình nào sau đây là phương trình của đường tròn tâm I(-1,2), bán kính bằng 3?

A.
$$(x-1)^2 + (y+2)^2 = 9$$
.

B.
$$(x+1)^2 + (y+2)^2 = 9$$
.

C.
$$(x-1)^2 + (y-2)^2 = 9$$
.

D.
$$(x+1)^2 + (y-2)^2 = 9$$
.

Dang 3.2 Khi biết các điểm đi qua

Câu 16. Đường tròn (C) đi qua hai điểm A(1;1), B(5;3) và có tâm I thuộc trục hoành có phương trình là

A.
$$(x+4)^2 + y^2 = 10$$
.

A.
$$(x+4)^2 + y^2 = 10$$
. **B.** $(x-4)^2 + y^2 = 10$.

C.
$$(x-4)^2 + y^2 = \sqrt{10}$$
.

C.
$$(x-4)^2 + y^2 = \sqrt{10}$$
. D. $(x+4)^2 + y^2 = \sqrt{10}$.

Câu 17. (KSNLGV - THUẬN THÀNH 2 - BẮC NINH NĂM 2018 - 2019) Trong mặt phẳng với hệ tọa độ Oxy, tìm tọa độ tâm I của đường tròn đi qua ba điểm A(0;4), B(2;4), C(2;0).

B.
$$I(0;0)$$
.

C.
$$I(1;2)$$
.

D.
$$I(1;0)$$
.

Câu 18. Cho tam giác ABC có A(1;-1), B(3;2), C(5;-5). Toạ độ tâm đường tròn ngoại tiếp tam giác

A.
$$\left(\frac{47}{10}; -\frac{13}{10}\right)$$

B.
$$\left(\frac{47}{10}; \frac{13}{10}\right)$$

A.
$$\left(\frac{47}{10}; -\frac{13}{10}\right)$$
. **B.** $\left(\frac{47}{10}; \frac{13}{10}\right)$. **C.** $\left(-\frac{47}{10}; -\frac{13}{10}\right)$. **D.** $\left(-\frac{47}{10}; \frac{13}{10}\right)$.

D.
$$\left(-\frac{47}{10}; \frac{13}{10}\right)$$

3

Câu 19. Trong mặt phẳng Oxy, đường tròn đi qua ba điểm A(1;2), B(5;2), C(1;-3) có phương trình là.

A.
$$x^2 + y^2 + 25x + 19y - 49 = 0$$
.

B.
$$2x^2 + y^2 - 6x + y - 3 = 0$$
.

C.
$$x^2 + y^2 - 6x + y - 1 = 0$$
.

D.
$$x^2 + y^2 - 6x + xy - 1 = 0$$
.

Câu 20. Lập phương trình đường tròn đi qua hai điểm A(3,0), B(0,2) và có tâm thuộc đường thẳng d: x + v = 0.

A.
$$\left(x - \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{13}{2}$$
.

B.
$$\left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{13}{2}$$
.

C.
$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{13}{2}$$
.

D.
$$\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{13}{2}$$
.

- **Câu 21.** Cho tam giác *ABC* biết H(3;2), $G(\frac{5}{3};\frac{8}{3})$ lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x+2y-2=0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC
 - **A.** $(x+1)^2 + (y+1)^2 = 20$.
 - **B.** $(x-2)^2 + (y+4)^2 = 20$.
 - C. $(x-1)^2 + (y+3)^2 = 1$.
 - **D.** $(x-1)^2 + (y-3)^2 = 25$.
- (Nông Cống Thanh Hóa Lần 1 1819) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có **Câu 22.** trực tâm H, trọng tâm G(-1;3). Gọi K,M,N lần lượt là trung điểm của AH,AB,AC. Tìm phương trình đường tròn ngoại tiếp tam giác ABC biết đường tròn ngoại tiếp tam giác KMN là (C): $x^2 + y^2 + 4x - 4y - 17 = 0$.
 - **A.** $(x-1)^2 + (y-5)^2 = 100$.
 - **B.** $(x+1)^2 + (y-5)^2 = 100$.
 - C. $(x-1)^2 + (y+5)^2 = 100$.
 - **D.** $(x+1)^2 + (y+5)^2 = 100$.
- (THPT TRIÊU THI TRINH LÂN 1 2018) Trong mặt phẳng toa đô Oxy, cho tam giác ABC **Câu 23.** có trực tâm O. Gọi M là trung điểm của BC; N, P lần lượt là chân đường cao kẻ từ B và C. Đường tròn đi qua ba điểm M, N, P có phương trình là $(T):(x-1)^2+\left(y+\frac{1}{2}\right)^2=\frac{25}{4}$. Phương

trình đường tròn ngoại tiếp tam giác ABC là:

A. $(x-1)^2 + (y+2)^2 = 25$.

B. $x^2 + (v-1)^2 = 25$.

- C. $x^2 + (y-1)^2 = 50$. D. $(x-2)^2 + (y+1)^2 = 25$.

Dang 3.3 Sử dung điều kiên tiếp xúc

- (THPT Công Hiền Lần 1 2018-2019) Trong mặt phẳng toa đô Oxy, phương trình của đường Câu 24. tròn có tâm là gốc tọa độ O và tiếp xúc với đường thẳng Δ : x+y-2=0 là

 - **A.** $x^2 + y^2 = 2$. **B.** $x^2 + y^2 = \sqrt{2}$.
 - C. $(x-1)^2 + (y-1)^2 = \sqrt{2}$.
- **D.** $(x-1)^2 + (v-1)^2 = 2$.
- (Trường THPT Chuyên Lam Sơn_2018-2019) Trong mặt phẳng tọa độ (Oxy), cho đường tròn Câu 25. (S) có tâm I nằm trên đường thẳng y = -x, bán kính R = 3 và tiếp xúc với các trục tọa độ. Lập phương trình của (S), biết hoành độ tâm I là số dương.
 - **A.** $(x-3)^2 + (y-3)^2 = 9$.

B. $(x-3)^2 + (y+3)^2 = 9$.

C. $(x-3)^2 - (y-3)^2 = 9$.

- **D.** $(x+3)^2 + (y+3)^2 = 9$.
- Một đường tròn có tâm I(3;4) tiếp xúc với đường thẳng $\Delta:3x+4y-10=0$. Hỏi bán kính đường tròn bằng bao nhiệu?

A.
$$\frac{5}{3}$$
.

$$\frac{3}{5}$$
.

Câu 27. Trong hệ trục tọa độ Oxy, cho điểm I(1;1) và đường thẳng (d):3x+4y-2=0. Đường tròn tâm I và tiếp xúc với đường thẳng (d) có phương trình

A.
$$(x-1)^2 + (y-1)^2 = 5$$
. **B.** $(x-1)^2 + (y-1)^2 = 25$.

C.
$$(x-1)^2 + (y-1)^2 = 1$$
. D. $(x-1)^2 + (y-1)^2 = \frac{1}{5}$.

(LƯƠNG TÀI 2 BẮC NINH LẦN 1-2018-2019) Trên hệ trục tọa độ Oxy, cho đường tròn (C) Câu 28. có tâm I(-3;2) và một tiếp tuyến của nó có phương trình là 3x + 4y - 9 = 0. Viết phương trình của đường tròn (C).

A.
$$(x+3)^2 + (y-2)^2 = 2$$
.

B.
$$(x-3)^2 + (y+2)^2 = 2$$
.

C.
$$(x-3)^2 + (y-2)^2 = 4$$

D.
$$(x+3)^2 + (y-2)^2 = 4$$
.

Câu 29. Trên mặt phẳng toạ độ Oxy, cho các điểm A(3;0) và B(0;4). Đường tròn nội tiếp tam giác OABcó phương trình

A.
$$x^2 + y^2 = 1$$
.

A.
$$x^2 + y^2 = 1$$
. **B.** $x^2 + y^2 - 4x + 4 = 0$.

C.
$$x^2 + y^2 = 2$$

C.
$$x^2 + y^2 = 2$$
. **D.** $(x-1)^2 + (y-1)^2 = 1$.

Câu 30. (LÂN 01_VĨNH YÊN_VĨNH PHÚC_2019) Cho hai điểm A(3;0), B(0;4). Đường tròn nội tiếp tam giác OAB có phương trình là

A.
$$x^2 + y^2 = 1$$
.

B.
$$x^2 + y^2 - 2x - 2y + 1 = 0$$
.

C.
$$x^2 + y^2 - 6x - 8y + 25 = 0$$
.

D.
$$x^2 + y^2 = 2$$
.

DANG 4. TƯƠNG GIAO CỦA ĐƯỜNG THẮNG VÀ ĐƯỜNG TRÒN

Dang 4.1. Phương trình tiếp tuyến

Câu 31. Đường tròn $x^2 + y^2 - 1 = 0$ tiếp xúc với đường thẳng nào trong các đường thẳng dưới đây?

A.
$$3x - 4y + 5 = 0$$
 B. $x + y = 0$

B.
$$x + y = 0$$

C.
$$3x + 4y - 1 = 0$$

D.
$$x + y - 1 = 0$$

Câu 32. Đường tròn nào sau đây tiếp xúc với trục Ox:

A.
$$x^2 + y^2 - 10x = 0$$
. **B.** $x^2 + y^2 - 5 = 0$.

B.
$$x^2 + y^2 - 5 = 0$$
.

C.
$$x^2 + y^2 - 10x - 2y + 1 = 0$$
.

D.
$$x^2 + y^2 + 6x + 5y + 9 = 0$$
.

Câu 33. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x - 4y + 3 = 0$. Viết phương trình tiếp tuyến d của đường tròn (C) biết tiếp tuyến đó song song với đường thẳng $\Delta : 3x + 4y + 1 = 0$.

A.
$$3x + 4y + 5\sqrt{2} - 11 = 0$$
; $3x + 4y - 5\sqrt{2} + 11 = 0$.

B.
$$3x + 4y + 5\sqrt{2} - 11 = 0$$
, $3x + 4y - 5\sqrt{2} - 11 = 0$.

C.
$$3x + 4y + 5\sqrt{2} - 11 = 0$$
, $3x + 4y + 5\sqrt{2} + 11 = 0$.

D.
$$3x + 4y - 5\sqrt{2} + 11 = 0$$
, $3x + 4y - 5\sqrt{2} - 11 = 0$.

thẳng dưới đây là tiếp tuyến của đường tròn (C) tại điểm A.

A. y - 5 = 0.

B. v + 5 = 0.

C. x+y-5=0. D. x-y-5=0.

Câu 35. Cho đường tròn (C): $x^2 + y^2 - 4 = 0$ và điểm A(-1,2). Đường thẳng nào trong các đường thẳng dưới đây đi qua A và là tiếp tuyến của đường tròn (C)?

A. 4x-3y+10=0. **B.** 6x+y+4=0. **C.** 3x+4y+10=0. **D.** 3x-4y+11=0.

Câu 36. Trong mặt phẳng Oxy, cho đường tròn $(C):(x-1)^2+(y-4)^2=4$. Phương trình tiếp tuyến với đường tròn (C) song song với đường thẳng $\Delta: 4x - 3y + 2 = 0$ là

A. 4x - 3y + 18 = 0.

B. 4x-3y+18=0.

C. 4x-3y+18=0; 4x-3y-2=0.

D. 4x-3y-18=0; 4x-3y+2=0.

tròn (C): $x^2 + y^2 - 2x + 4y + 1 = 0$ **Câu 37.** Số tiếp tuyến chung của 2 đường và (C'): $x^2 + y^2 + 6x - 8y + 20 = 0$ là

A. 1.

B. 2.

C. 4.

D. 3.

(THI HK1 LÓP 11 THPT VIÊT TRÌ 2018 - 2019) Viết phương trình tiếp tuyến của đường tròn Câu 38. (C): $(x-2)^2 + (y+4)^2 = 25$, biết tiếp tuyến vuông góc với đường thẳng d: 3x-4y+5=0.

A. 4x + 3y + 29 = 0. **B.** 4x + 3y + 29 = 0 hoặc 4x + 3y - 21 = 0.

C. 4x-3y+5=0 hoặc 4x-3y-45=0

D. 4x + 3y + 5 = 0 hoặc 4x + 3y + 3 = 0.

(ĐỀ KT NĂNG LỰC GV THUÂN THÀNH 1 BẮC NINH 2018-2019) Trong mặt phẳng toa đô Câu 39. Oxy, cho đường tròn (C) có phương trình $x^2 + y^2 - 2x + 2y - 3 = 0$. Từ điểm A(1,1) kẻ được bao nhiều tiếp tuyến đến đường tròn (C)

A. 1.

B. 2.

C. vô số.

Câu 40. Trong mặt phẳng Oxy, cho đường tròn $(C):(x-1)^2+(y-4)^2=4$. Phương trình tiếp tuyến với đường tròn (C), biết tiếp tuyến đó song song với đường thẳng $\Delta: 4x-3y+2=0$ là

A. 4x-3y+18=0 và -4x-3y-2=0. **B.** 4x-3y+18=0 và 4x-3y-2=0.

C. -4x-3y+18=0 và 4x-3y-2=0. D. -4x+3y-18=0 và -4x-3y-2=0.

Câu 41. Trên mặt phẳng toạ độ Oxy, cho điểm P(-3;-2) và đường tròn $(C):(x-3)^2+(y-4)^2=36$. Từ điểm P kẻ các tiếp tuyến PM và PN tới đường tròn (C), với M, N là các tiếp điểm. Phương trình đường thẳng MN là

A. x + y + 1 = 0.

B. x-y-1=0. **C.** x-y+1=0. **D.** x+y-1=0.

6

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(-3;1) và đường tròn $(C): x^2 + y^2 - 2x - 6y + 6 = 0$ **Câu 42.** . Gọi T_1 , T_2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng T_1T_2 .

A. 5.

 \mathbf{R} , $\sqrt{5}$

C. $\frac{3}{\sqrt{5}}$.

D. $2\sqrt{2}$

Dang 4.2 Bài toán tương giao

- **Câu 43.** Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường tròn (C_1) , (C_2) có phương trình lần lượt là $(x+1)^2 + (y+2)^2 = 9$ và $(x-2)^2 + (y-2)^2 = 4$. Khẳng định nào dưới đây là **sai**?
 - **A.** Đường tròn (C_1) có tâm $I_1(-1;-2)$ và bán kính $R_1=3$.
 - **B.** Đường tròn (C_2) có tâm $I_2(2;2)$ và bán kính $R_2=2$.
 - C. Hai đường tròn (C_1) , (C_2) không có điểm chung.
 - **D.** Hai đường tròn (C_1) , (C_2) tiếp xúc với nhau.
- Tìm giao điểm 2 đường tròn (C_1) : $x^2 + y^2 4 = 0$ và (C_2) : $x^2 + y^2 4x 4y + 4 = 0$. **A.** (2;2) và (-2;-2). **B.** (0;2) và (0;-2). **C.** (2;0) và (-2;0). **D.** (2;0) và (0;2).
- **Câu 45.** Trong mặt phẳng với hệ trục Oxy, cho hai đường tròn $(C):(x-1)^2+y^2=4$ và (C'): $(x-4)^2 + (y-3)^2 = 16$ cắt nhau tại hai điểm phân biệt A và B. Lập phương trình đường thẳng AB
 - **B.** x y + 2 = 0 **C.** x + y + 2 = 0. **D.** x y 2 = 0. **A.** x + y - 2 = 0.
- **Câu 46.** Cho đường thẳng $\Delta: 3x-4y-19=0$ và đường tròn $(C): (x-1)^2+(y-1)^2=25$. Biết đường thẳng Δ cắt (C) tại hai điểm phân biệt A và B, khi đó độ dài đọan thẳng AB là **A.** 6. **B.** 3. **C.** 4. **D.** 8.
- Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có tâm I(1;-1) bán kính R=5. Biết rằng đường thẳng (d): 3x-4y+8=0 cắt đường tròn (C) tại hai điểm phân biệt A,B. Tính độ dài đoạn thẳng AB.
 - C_{1} AB = 3**D.** AB = 6A, AB = 8**B.** AB = 4
- Câu 48. Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình $(x-2)^2 + (y+2)^2 = 4$ và đường thẳng d:3x+4y+7=0. Gọi A,B là các giao điểm của đường thẳng d với đường tròn (C). Tính đô dài dây cung AB.
 - A. $AB = \sqrt{3}$ **B.** $AB = 2\sqrt{5}$ **C.** $AB = 2\sqrt{3}$
- **Câu 49.** Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(3;1), đường tròn (C): $x^2 + y^2 2x 4y + 3 = 0$. Viết phương trình tổng quát của đường thẳng d đi qua A và cắt đường tròn (C) tại hai điểm B, C sao cho $BC = 2\sqrt{2}$.
 - **A.** d: x + 2y 5 = 0. **B.** d: x 2y 5 = 0. **C.** d: x + 2y + 5 = 0. **D.** d: x 2y + 5 = 0.
- Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường tròn $(C_1),(C_2)$ có phương trình lần lượt là $(x+1)^2 + (y+2)^2 = 9$ và $(x-2)^2 + (y-2)^2 = 4$. Viết phương trình đường thẳng d' đi qua gốc tọa đô và tao với đường thẳng nối tâm của hai đường tròn một góc bằng 45°.
 - **A.** d': x 7y = 0 hoặc d': 7x + y = 0. **B.** d': x + 7y = 0 hoặc d': 7x + y = 0.
 - C. d': x + 7y = 0 hoặc d': 7x y = 0. **D.** d': x - 7y = 0 hoặc d': 7x - y = 0.
- (KSCL LÂN 1 CHUYÊN LAM SON THANH HÓA 2018-2019) Trong mặt phẳng tọa độ Oxy Câu 51. cho điểm I(1;2) và đường thẳng (d): 2x + y - 5 = 0. Biết rằng có hai điểm M_1, M_2 thuộc (d) sao cho $IM_1 = IM_2 = \sqrt{10}$. Tổng các hoành độ của M_1 và M_2 là

A	7
Α.	<u>5</u> .

B.
$$\frac{14}{5}$$

D. 5.

Câu 52. (NGÔ GIA TỰ LẦN 1_2018-2019) Trong hệ tọa độ Oxy, cho đường tròn (C) có phương trình: $x^2 + y^2 - 4x + 2y - 15 = 0$. I là tâm (C), đường thẳng d đi qua M (1; -3) cắt (C) tại A, B. Biết tam giác IAB có diện tích là B. Phương trình đường thẳng D là: D la. D la. D la.

Câu 53. (KSCL LÀN 1 CHUYÊN LAM SƠN - THANH HÓA_2018-2019) Trong mặt phẳng Oxy cho tam giác ABC có đỉnh A(5;5), trực tâm H(-1;13), đường tròn ngoài tiếp tam giác có phương trình $x^2 + y^2 = 50$. Biết tọa độ đỉnh C(a;b), với a < 0. Tổng a + b bằng **A.** -8. **B.** 8. **C.** 6. **D.** -6.

Câu 54. (**Nông Cống - Thanh Hóa - Lần 1 - 1819**) Trong mặt phẳng Oxy, cho $\triangle ABC$ nội tiếp đường tròn tâm I(2;2), điểm D là chân đường phân giác ngoài của góc \widehat{BAC} . Đường thẳng AD cắt đường tròn ngoại tiếp $\triangle ABC$ tại điểm thứ hai là M (khác A). Biết điểm J(-2;2) là tâm đường tròn ngoại tiếp $\triangle ACD$ và phương trình đường thẳng CM là: x+y-2=0. Tìm tổng hoành độ của các đỉnh A, B, C của tam giác ABC.

A.
$$\frac{9}{5}$$
.

B.
$$\frac{12}{5}$$
.

C.
$$\frac{3}{5}$$
.

D.
$$\frac{6}{5}$$
.

Câu 55. Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng $(\Delta): x+3y+8=0$; $(\Delta'): 3x-4y+10=0$ và điểm A(-2;1). Đường tròn có tâm I(a;b) thuộc đường thẳng (Δ) , đi qua A và tiếp xúc với đường thẳng (Δ') . Tính a+b.

A.
$$-4$$
.

Câu 56. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:3x-4y-1=0 và điểm I(1;-2). Gọi (C) là đường tròn có tâm I và cắt đường thẳng d tại hai điểm A và B sao cho tam giác IAB có diện tích bằng A. Phương trình đường tròn (C) là

A.
$$(x-1)^2 + (y+2)^2 = 8$$
.**B.** $(x-1)^2 + (y+2)^2 = 20$.
C. $(x-1)^2 + (y+2)^2 = 5$.**D.** $(x-1)^2 + (y+2)^2 = 16$.

DANG 5. CÂU HỔI MIN-MAX

Câu 57. Cho đường tròn (C): $x^2 + y^2 - 2x - 4y - 4 = 0$ và điểm M(2;1). Dây cung của (C) đi qua điểm M có độ dài ngắn nhất là

A. 6.

 \mathbf{B} , $\sqrt{7}$.

C. $3\sqrt{7}$.

D. $2\sqrt{7}$.

Câu 58. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(0;-3), B(4;1) và điểm M thay đổi thuộc đường tròn (C): $x^2 + (y-1)^2 = 4$. Gọi P_{\min} là giá trị nhỏ nhất của biểu thức P = MA + 2MB. Khi đó ta có P_{\min} thuộc khoảng nào dưới đây?

A. (7,7;8,1)..

B. (7,3;7,7)..

C. (8,3;8,5)...

D. (8,1;8,3).

Câu 59. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x - 4y + 3 = 0$. Tìm tọa độ điểm $M(x_0; y_0)$ nằm trên đường tròn (C) sao cho $T = x_0 + y_0$ đạt giá trị lớn nhất.

A. M(2;3).

B. M(0:1).

C. M(2;1).

D. M(0;3).

Câu 60. Trong mặt phẳng Oxy, cho điểm M nằm trên đường tròn (C): $x^2 + y^2 + 8x - 6y + 16 = 0$. Tính độ dài nhỏ nhất của OM?

A. 3.

B. 1.

C. 5

Câu 61. Gọi I là tâm của đường tròn $(C):(x-1)^2+(y-1)^2=4$. Số các giá trị nguyên của m để đường thẳng x + y - m = 0 cắt đường tròn (C) tại hai điểm phân biệt A, B sao cho tam giác IAB có diện tích lớn nhất là

A. 1.

Điểm nằm trên đường tròn (C): $x^2 + y^2 - 2x + 4y + 1 = 0$ có khoảng cách ngắn nhất đến đường **Câu 62.** thẳng d: x-y+3=0 có toạ độ M(a;b). Khẳng định nào sau đây **đúng**?

A. $\sqrt{2}a = -b$.

B. a = -b.

C. $\sqrt{2}a = b$.

Câu 63. Cho tam giác ABC có trung điểm của BC là M(3;2), trọng tâm và tâm đường tròn ngoại tiếp tam giác lần lượt là $G\left(\frac{2}{3};\frac{2}{3}\right)$, $I\left(1;-2\right)$. Tìm tọa độ đinh C, biết C có hoành độ lớn hơn 2.

A. C(9;1).

B. C(5;1).

C. C(4;2).

D. C(3;-2).

(THPT Yên Mỹ Hưng Yên lần 1 - 2019) Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x - 4y - 25 = 0$ và điểm M(2;1). Dây cung của (C) đi qua M có độ dài ngắn nhất

A. $2\sqrt{7}$.

B. $16\sqrt{2}$

 $C 8\sqrt{2}$

D. $4\sqrt{7}$

(Trường THPT Chuyên Lam Sơn_2018-2019) Cho các số thực a,b,c,d thay đổi, luôn thỏa mãn Câu 65. $(a-1)^2 + (b-2)^2 = 1$ và 4c - 3d - 23 = 0. Giá trị nhỏ nhất của biểu thức $P = (a-c)^2 + (b-d)^2$ là: **A.** $P_{\min} = 28$. **B.** $P_{\min} = 3$.

 $C. P_{\min} = 4$.

9

Câu 66. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $(x-1)^2 + (y-2)^2 = 4$ và các đường thẳng $d_1: mx + y - m - 1 = 0$, $d_2: x - my + m - 1 = 0$. Tìm các giá trị của tham số m để mỗi đường thẳng d_1, d_2 cắt (C) tại 2 điểm phân biệt sao cho 4 điểm đó lập thành 1 tứ giác có diện tích lớn nhất. Khi đó tổng của tất cả các giá trị tham số m là:

A. 0.

B. 1.

C. 3.

D. 2.

PHẦN B. LỜI GIẢI THAM KHẢO

DANG 1. NHÂN DANG PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Câu 1. Chon D

Ta có $x^2 + y^2 - 2(m+2)x + 4my + 19m - 6 = 0$ (1)

 $\Rightarrow a = m + 2; b = -2m; c = 19m - 6.$

Phương trình (1) là phương trình đường tròn $\Leftrightarrow a^2 + b^2 - c > 0$

 $\Leftrightarrow 5m^2 - 15m + 10 > 0 \Leftrightarrow m < 1 \text{ hoăc } m > 2$.

Câu 2. Chọn B

Để là phương trình đường tròn thì điều kiện cần là hệ số của x^2 và y^2 phải bằng nhau nên loại được đáp án A và **D**.

Ta có:
$$x^2 + y^2 - 2x - 8y + 20 = 0 \Leftrightarrow (x - 1)^2 + (y - 4)^2 + 3 = 0$$
 vô lý.

Ta có:
$$x^2 + y^2 - 4x + 6y - 12 = 0 \Leftrightarrow (x - 2)^2 + (y + 3)^2 = 25$$
 là phương trình đường tròn tâm $I(2; -3)$, bán kính $R = 5$.

Câu 3. Chon D

Biết rằng $x^2 + y^2 - 2ax - 2by + c = 0$ là phương trình của một đường tròn khi và chỉ khi $a^2 + b^2 - c > 0$.

Ta thấy phương trình trong phương án A và B có hệ số của x^2 , y^2 không bằng nhau nên đây không phải là phương trình đường tròn.

Với phương án C có $a^2+b^2-c=1+16-18<0$ nên đây không phải là phương trình đường tròn. Vậy ta chọn đáp án D.

Câu 4. Chọn D

Phương án A: có tích xy nên không phải là phương trình đường tròn.

Phương án B: có hệ số bậc hai không bằng nhau nên không phải là phương trình đường tròn.

Phương án C: ta có $x^2 + y^2 - 14x + 2y + 2018 = 0 \Leftrightarrow (x - 7)^2 + (y + 1)^2 + 1968 = 0$ không tồn tại x, y nên cũng không phải phương trình đường tròn.

Còn lại, chọn D.

Câu 5. Chọn B

 $x^2 + y^2 - 2mx - 4(m-2)y + 6 - m = 0$ (1) là phương trình của đường tròn khi và chỉ khi

$$(m)^2 + [2(m-2)]^2 - (6-m) > 0 \Leftrightarrow 5m^2 - 15m + 10 > 0 \Leftrightarrow \begin{bmatrix} m < 1 \\ m > 2 \end{bmatrix}$$

DẠNG 2. TÌM TỌA ĐỘ TÂM, BÁN KÍNH ĐƯỜNG TRÒN

Câu 6. Chọn A

Ta có phương trình đường tròn là: $(x+2)^2 + (y+3)^2 = 25$.

Vậy tâm đường tròn là: I(-2,-3).

Câu 7. Chọn B

Đường tròn $x^2 + y^2 - 10y - 24 = 0$ có tâm I(0; 5), bán kính $R = \sqrt{0^2 + 5^2 - (-24)} = 7$.

Câu 8. Chọn A

Câu 9. Chọn B

(C) có tâm
$$I(1;-2)$$
, bán kính $R = \sqrt{1^2 + (-2)^2 - 1} = 2$.

Câu 10. Chọn B

Đường tròn (C) có tâm I(2;-3) và bán kính R=3.

Câu 11. Chọn D

Theo bài ra ta có tọa độ tâm I(-2;5) và bán kính R=3.

Câu 12. Chọn D

Tâm
$$I(1;-2)$$
, bán kính $R = \sqrt{1^2 + (-2)^2 - (-3)} = \sqrt{8} = 2\sqrt{2}$.

DANG 3. VIẾT PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Dạng 3.1 Khi biết tâm và bán kính

Câu 13. Chọn A

Phương trình đường tròn có tâm I(1;2) và bán kính R = 5 là $(x-1)^2 + (y-2)^2 = 5^2$ $\Leftrightarrow x^2 - 2x + 1 + y^2 - 4y + 4 = 25 \Leftrightarrow x^2 + y^2 - 2x - 4y - 20 = 0$.

Câu 14. Chọn C

Đường tròn tâm I(-1;2), bán kính R=3 có phương trình là $(x+1)^2 + (y-2)^2 = 9 \Leftrightarrow x^2 + y^2 + 2x - 4y - 4 = 0$.

Câu 15. Chọn D

Phương trình đường tròn tâm I(-1;2) và bán kính R=3 là: $(x+1)^2+(y-2)^2=9$.

Dạng 3.2 Khi biết các điểm đi qua

Câu 16. Chọn B

Gọi
$$I(x;0) \in Ox$$
; $IA^2 = IB^2 \Leftrightarrow (1-x)^2 + 1^2 = (5-x)^2 + 3^2 \Leftrightarrow x^2 - 2x + 1 + 1 = x^2 - 10x + 25 + 9$
 $\Leftrightarrow x = 4$. Vậy tâm đường tròn là $I(4;0)$ và bán kính $R = IA = \sqrt{(1-4)^2 + 1^2} = \sqrt{10}$.

Phương trình đường tròn (C) có dạng $(x-4)^2 + y^2 = 10$.

Câu 17. Chọn C

Giả sử phương trình đường tròn đi qua 3 điểm A, B, C có dạng (C): $x^2 + y^2 + 2ax + 2by + c = 0$ Thay tọa độ 3 điểm A(0;4), B(2;4), C(2;0) ta được:

$$\begin{cases} 8b + c = -16 \\ 4a + 8b + c = -20 \Leftrightarrow \begin{cases} a = -1 \\ b = -2 \Rightarrow (C) : x^2 + y^2 - 2x - 4y = 0 \\ c = 0 \end{cases}.$$

Vậy (C) có tâm I(1,2) và bán kính $R = \sqrt{5}$.

Câu 18. Chọn A

Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC.

Ta có:
$$\begin{cases} AI^2 = BI^2 \\ AI^2 = CI^2 \end{cases} \Leftrightarrow \begin{cases} (x-1)^2 + (y+1)^2 = (x-3)^2 + (y-2)^2 \\ (x-1)^2 + (y+1)^2 = (x-5)^2 + (y+5)^2 \end{cases} \Leftrightarrow \begin{cases} 4x + 6y = 11 \\ 8x - 8y = 48 \end{cases} \Leftrightarrow \begin{cases} x = \frac{47}{10} \\ y = -\frac{13}{10} \end{cases}$$
$$\Rightarrow I\left(\frac{47}{10}; -\frac{13}{10}\right).$$

Câu 19. Chọn C

Phương trình đường tròn có dạng $x^2 + y^2 - 2ax - 2by + c = 0$. Đường tròn này qua A, B, C nên

$$\begin{cases} 1+4-2a-4b+c=0 \\ 25+4-10a-4b+c=0 \\ 1+9-2a+6b+c=0 \end{cases} \Leftrightarrow \begin{cases} a=3 \\ b=-\frac{1}{2} \\ c=-1 \end{cases}$$

Vậy phương trình đường tròn cần tìm là $x^2 + y^2 - 6x + y - 1 = 0$.

Câu 20. Chon A

A(3;0), B(0;2), d:x+y=0.

Gọi I là tâm đường tròn vậy I(x;-x) vì $I \in d$.

$$IA^2 = IB^2 \iff (3-x)^2 + x^2 = x^2 + (2+x)^2 \iff -6x + 9 = 4x + 4 \iff x = \frac{1}{2}$$
. Vây $I(\frac{1}{2}; -\frac{1}{2})$.

$$IA = \sqrt{\left(3 - \frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{26}}{2}$$
 là bán kính đường tròn.

Phương trình đường tròn cần lập là: $\left(x - \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{13}{2}$.

Câu 21. Chọn D

*) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC.

$$\Rightarrow \overrightarrow{HI} = \frac{3}{2} \overrightarrow{HG} \Rightarrow \begin{cases} x_I - 3 = \frac{3}{2} \left(\frac{5}{3} - 3 \right) \\ y_I - 2 = \frac{3}{2} \left(\frac{8}{3} - 2 \right) \end{cases} \Rightarrow \begin{cases} x_I = 1 \\ y_I = 3 \end{cases}.$$

(Do đó ta có thể chọn đáp án D luôn mà không cần tính bán kính).

*) Gọi M là trung điểm của $BC \Rightarrow IM \perp BC \Rightarrow IM : 2x - y + 1 = 0$.

$$M = IM \cap BC \implies \begin{cases} 2x - y = -1 \\ x + 2y = 2 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 1 \end{cases} \Rightarrow M(0;1).$$

Lại có:
$$\overrightarrow{MA} = 3\overrightarrow{MG} \implies \begin{cases} x_A = 3.\frac{5}{3} \\ y_A - 1 = 3.\left(\frac{8}{3} - 1\right) \end{cases} \Rightarrow \begin{cases} x_A = 5 \\ y_A = 6 \end{cases}$$

Suy ra: bán kính đường tròn ngoại tiếp tam giác ABC là R = IA = 5.

Vậy phương trình đường tròn ngoại tiếp tam giác ABC là $(x-1)^2 + (y-3)^2 = 25$.

Câu 22. Chọn A

Gọi E là trung điểm BC, J là tâm đường tròn ngoại tiếp ΔABC .

Ta có
$$\begin{cases} MK \parallel BH \\ ME \parallel AC \Rightarrow MK \perp ME \end{cases} (1), \begin{cases} KN \parallel CH \\ NE \parallel AB \Rightarrow KN \perp NE \end{cases} (2)$$
$$CH \perp AB$$

Từ $(1),(2) \Rightarrow KMEN$ là tứ giác nội tiếp đường tròn đường kính KE.

Đường tròn (C): $x^2 + y^2 + 4x - 4y - 17 = 0$ có tâm I(-2;2) bán kính $r = 5 \Rightarrow I$ là trung điểm KE

KHEJ là hình bình hành $\Rightarrow I$ là trung điểm JH

Ta có:
$$\overrightarrow{IJ} = 3\overrightarrow{IG} \implies \begin{cases} x_J + 2 = 3(-1+2) \\ y_J - 2 = 3(3-2) \end{cases} \Rightarrow \begin{cases} x_J = 1 \\ y_J = 5 \end{cases} \Rightarrow J(1;5).$$

Bán kính đường tròn ngoại tiếp $\triangle ABC$ là R = JA = 2IK = 2r = 10.

Phương trình đường tròn ngoại tiếp $\triangle ABC$ là: $(x-1)^2 + (y-5)^2 = 100$.

Câu 23.

Ta có M là trung điểm của BC; N, P lần lượt là chân đường cao kẻ từ B và C. Đường tròn đi qua ba điểm M, N, P là đường tròn Euler. Do đó đường tròn ngoại tiếp tam giác ABC chính là ảnh của đường tròn Euler qua phép vị tự tâm là O, tỷ số k=2.

Gọi I và I' lần lượt là tâm đường tròn ngoại tiếp tam giác MNP và tam giác ABC.

Gọi R và R' lần lượt là bán kính đường tròn ngoại tiếp tam giác MNP và tam giác ABC.

Ta có
$$I\left(1; -\frac{1}{2}\right)$$
 và do đó $\overrightarrow{OI'} = 2\overrightarrow{OI} \Rightarrow I'\left(2; -1\right)$.

Mặt khác
$$R = \frac{5}{2} \Longrightarrow R' = 5$$
.

Vậy phương trình đường tròn ngoại tiếp tam giác ABC là: $(x-2)^2 + (y+1)^2 = 25$.

Nhận xét: Đề bài này rất khó đối với học sinh nếu không biết đến đường tròn Euler.

Dạng 3.3 Sử dụng điều kiện tiếp xúc

Câu 24. Chọn A

Đường tròn (C) có tâm O, bán kính R tiếp xúc với Δ nên có:

$$R = d(O; \Delta) = \frac{|-2|}{\sqrt{2}} = \sqrt{2}$$
.

Phương trình đường tròn (C): $x^2 + y^2 = 2$.

Câu 25. Chọn B

Do tâm I nằm trên đường thẳng $y = -x \Rightarrow I(a; -a)$, điều kiện a > 0.

Đường tròn (S) có bán kính R=3 và tiếp xúc với các trục tọa độ nên:

$$d(I;Ox) = d(I;Oy) = 3 \Leftrightarrow |a| = 3 \Leftrightarrow a = 3(n) \lor a = -3(l) \Rightarrow I(3;-3).$$

Vậy phương trình $(S):(x-3)^2+(y+3)^2=9$

Câu 26. Chon C

Đường tròn tâm I(3;4) tiếp xúc với đường thẳng $\Delta:3x+4y-10=0$ nên bán kính đường tròn chính là khoảng cách từ tâm I(3;4) tới đường thẳng $\Delta:3x+4y-10=0$.

Ta có:
$$R = d(I, \Delta) = \frac{|3.3 + 4.4 - 10|}{\sqrt{3^3 + 4^2}} = \frac{15}{5} = 3$$
.

Câu 27. Chọn C

Đường tròn tâm I và tiếp xúc với đường thẳng (d) có bán kính $R = d(I,d) = \frac{|3.1 + 4.1 - 2|}{\sqrt{3^2 + 4^2}} = 1$

Vậy đường tròn có phương trình là: $(x-1)^2 + (y-1)^2 = 1$.

Câu 28. Chọn D

Vì đường tròn (C) có tâm I(-3;2) và một tiếp tuyến của nó là đường thẳng Δ có phương trình là 3x + 4y - 9 = 0 nên bán kính của đường tròn là $R = d(I, \Delta) = \frac{\left|3.(-3) + 4.2 - 9\right|}{\sqrt{3^2 + 4^2}} = 2$

Vậy phương trình đường tròn là: $(x+3)^2 + (y-2)^2 = 4$

Câu 29. Chọn D

Vì các điểm A(3;0) và B(0;4) nằm trong góc phần tư thứ nhất nên tam giác OAB cũng nằm trong góc phần tư thứ nhất. Do vậy gọi tâm đường tròn nội tiếp là I(a,b) thì a>0,b>0.

Theo đề ra ta có: d(I;Ox) = d(I;Oy) = d(I;AB).

Phương trình theo đoạn chắn của AB là: $\frac{x}{3} + \frac{y}{4} = 1$ hay 4x + 3y - 12 = 0.

Do vậy ta có:
$$\begin{cases} |a| = |b| \\ |4a + 3b - 12| = 5|a| \end{cases} \Leftrightarrow \begin{cases} |a| = |b| \\ 7a - 12 = 5a \\ 7a - 12 = -5a \end{cases} \Leftrightarrow \begin{cases} a = b > 0 \\ a = 6(l). \end{cases}$$

Vậy phương trình đường tròn cần tìm là: $(x-1)^2 + (y-1)^2 = 1$.

Câu 30. Chon B

Ta có OA = 3, OB = 4, AB = 5.

Gọi $I(x_i; y_i)$ là tâm đường tròn nội tiếp tam giác OAB.

Từ hệ thức $AB.\overrightarrow{IO} + OB.\overrightarrow{IA} + OA.\overrightarrow{IB} = \overrightarrow{0}$ (Chứng minh) ta được

$$\begin{cases} x_I = \frac{AB.x_O + OB.x_A + OA.x_B}{AB + OB + OA} = \frac{4.3}{5 + 4 + 3} = 1 \\ y_I = \frac{AB.y_O + OB.y_A + OA.y_B}{AB + OB + OA} = \frac{3.4}{5 + 4 + 3} = 1 \end{cases} \Rightarrow I(1;1)$$

Mặt khác tam giác OAB vuông tại O với r là bán kính đường tròn nội tiếp tam giác thì

$$r = \frac{S}{p} = \frac{\frac{1}{2}OA.OB}{\frac{OA + OB + AB}{2}} = \frac{3.4}{3 + 4 + 5} = 1 \text{ (S, p lần lượt là diện tích và nửa chu vi tam giác).}$$

Vậy phương trình đường tròn nội tiếp tam giác OAB là $(x-1)^2 + (y-1)^2 = 1$ hay $x^2 + y^2 - 2x - 2y + 1 = 0$.

DANG 4. TƯƠNG GIAO CỦA ĐƯỜNG THẮNG VÀ ĐƯỜNG TRÒN

Dạng 4.1. Phương trình tiếp tuyến

Câu 31. Chọn A

$$x^2 + y^2 - 1 = 0$$
 có tâm $O(0,0), R = 1$.

Điều kiện để đường thẳng tiếp xúc với đường tròn là khoảng cách từ tâm tới đường thẳng bằng bán kính.

Xét đáp án A:

$$\Delta: 3x - 4y + 5 = 0 \Rightarrow d(O, \Delta) = \frac{|3.0 - 4.0 + 5|}{\sqrt{3^2 + 4^2}} = 1 = R \Rightarrow \Delta \text{ tiếp xúc với đường tròn.}$$

Câu 32. Chọn D

Đường tròn (C) tiếp xúc với trục Ox khi d(I,Ox) = R với I và R lần lượt là tâm và bán kính của đường tròn (C).

 \square Đường tròn: $x^2 + y^2 - 10x = 0 \Leftrightarrow (x-5)^2 + y^2 = 25$ có tâm I(5,0), bán kính R = 5,

d(I,Ox) = 0. Suy ra: $d(I,Ox) \neq R$. Vậy (C) không tiếp xúc với trục Ox.

⇒ không phải là phương trình đường tròn.

 \Box . Xét phương trình đường tròn: $x^2 + y^2 - 5 = 0$ có I(0,0) và $R = \sqrt{5}$, d(I,Ox) = 0.

Suy ra: $d(I,Ox) \neq R$. Vậy (C) không tiếp xúc với trục Ox.

 \square Xét phương trình đường tròn: $x^2 + y^2 - 10x - 2y + 1 = 0$ có I(5;1) và R = 5, d(I,Ox) = 1.

Suy ra: $d(I,Ox) \neq R$. Vậy (C) không tiếp xúc với trục Ox.

 $\Box \text{X\'et phuong trình đường tròn: } x^2 + y^2 + 6x + 5y + 9 = 0 \text{ c\'o } I\left(-3; -\frac{5}{2}\right) \text{ và } R = \frac{5}{2}, d\left(I, Ox\right) = \frac{5}{2}.$

Suy ra: d(I,Ox) = R. Vậy (C) tiếp xúc với trục Ox

Câu 33. Chon B

$$\frac{(C): x^2 + y^2 - 2x - 4y + 3 = 0}{(C): x^2 + y^2 - 2x - 4y + 3 = 0} \Leftrightarrow (x - 1)^2 + (y - 2)^2 = 2.$$

Do đó đường tròn có tâm I = (1,2) và bán kính $R = \sqrt{2}$.

Do d song song với đường thẳng Δ nên d có phương trình là 3x + 4y + k = 0, $(k \neq 1)$.

Ta có
$$d(I;d) = R \Leftrightarrow \frac{|11+k|}{\sqrt{3^2+4^2}} = \sqrt{2} \Leftrightarrow |11+k| = 5\sqrt{2} \Leftrightarrow \begin{bmatrix} 11+k=5\sqrt{2} \\ 11+k=-5\sqrt{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} k=5\sqrt{2}-11 \\ k=-5\sqrt{2}-11 \end{bmatrix}$$

Vậy có hai phương trình tiếp tuyến cần tìm là $3x + 4y + 5\sqrt{2} - 11 = 0$, $3x + 4y - 5\sqrt{2} - 11 = 0$.

Câu 34. Chọn A

Đường tròn (C) có tâm $I(1;2) \Rightarrow \overrightarrow{IA} = (0;3)$.

Gọi d là tiếp tuyến của (C) tại điểm A, khi đó d đi qua A và nhận vecto \overrightarrow{IA} là một VTPT.

Chọn một VTPT của d là $\overrightarrow{n_d} = (0;1)$.

Vậy phương trình đường thẳng d là y-5=0.

Câu 35. Chon A

Đường tròn (C) có tâm là gốc tọa độ O(0;0) và có bán kính R=2.

Họ đường thẳng Δ qua A(-1,2): a(x+1)+b(y-2)=0, với $a^2+b^2\neq 0$.

Điều kiện tiếp xúc
$$d(O; \Delta) = R$$
 hay $\frac{|a-2b|}{\sqrt{a^2+b^2}} = 2 \Leftrightarrow (a-2b)^2 = 4(a^2+b^2)$

$$\Leftrightarrow 3a^2 + 4ab = 0 \Leftrightarrow \begin{bmatrix} a = 0 \\ 3a = -4b \end{bmatrix}.$$

Với a=0, chọn b=1 ta có $\Delta_1: y-2=0$.

Với
$$3a = -4b$$
, chọn $a = 4$ và $b = -3$ ta có $\Delta_2 : 4(x+1) - 3(y-2) = 0 \Leftrightarrow 4x - 3y + 10 = 0$.

Nhận xét: Thực ra bài này khi thay tọa độ điểm A(-1;2) vào các đường thẳng ở các phương án thì ta loại C. và D. Tính khoảng cách từ tâm của đường tròn đến đường thẳng thì chỉ có phương án A. thỏa.

Câu 36. Chọn C

Đường tròn $(C):(x-1)^2+(y-4)^2=4$ có tâm I(1;4) và bán kính R=2.

Gọi d là tiếp tuyến của (C).

Vì $d//\Delta$ nên đường thẳng $d:4x-3y+m=0 (m \neq 2)$.

d là tiếp tuyến của
$$(C) \Leftrightarrow d(I;(d)) = R \Leftrightarrow \frac{|4.1 - 3.4 + m|}{\sqrt{4^2 + (-3)^2}} = 2$$

$$\Leftrightarrow |m-8| = 10 \Leftrightarrow \begin{bmatrix} m=18 \\ m=-2 \end{bmatrix}$$
 (thỏa mãn điều kiện)

Vậy có 2 tiếp tuyến cần tìm : 4x-3y+18=0; 4x-3y-2=0.

Câu 37. Chọn C

Đường tròn (C): $x^2 + y^2 - 2x + 4y + 1 = 0$ có tâm I(1; -2) bán kính R = 2.

Đường tròn (C'): $x^2 + y^2 + 6x - 8y + 20 = 0$ có tâm I'(-3,4) bán kính $R' = \sqrt{5}$.

$$II' = 2\sqrt{13}$$
.

Vậy II' > R + R' nên 2 đường tròn không có điểm chung suy ra 2 đường tròn có 4 tiếp tuyến chung.

Câu 38. Chọn B

Đường tròn (C): $(x-2)^2 + (y+4)^2 = 25$ có tâm I(2;-4), bán kính R=5.

Đường thẳng Δ vuông góc với đường thẳng d:3x-4y+5=0 có phương trình dạng: 4x+3y+c=0

 Δ là tiếp tuyến của đường tròn (C) khi và chỉ khi: $d(I;\Delta) = R \Leftrightarrow \frac{\left|4.2 + 3.(-4) + c\right|}{\sqrt{4^2 + 3^2}} = 5$

 $\Leftrightarrow |c-4| = 25 \Leftrightarrow \begin{bmatrix} c-4=25 \\ c-4=-25 \end{bmatrix} \Leftrightarrow \begin{bmatrix} c=29 \\ c=-21 \end{bmatrix}. \text{ Vậy có hai tiếp tuyến cần tìm là: } 4x+3y+29=0 \text{ và}$ 4x+3y-21=0.

Câu 39. Chon D

(C) có tâm
$$I(1;-1)$$
 bán kính $R = \sqrt{1^2 + (-1)^2 - (-3)} = \sqrt{5}$

Vì IA = 2 < R nên A nằm bên trong (C). Vì vậy không kẻ được tiếp tuyến nào tới đường tròn (C)

Câu 40. Chọn B

Đường tròn (C): $(x-1)^2 + (y-4)^2 = 4$ có tâm I(1;4) và bán kính R=2.

Gọi d là tiếp tuyến của (C).

Vì $d//\Delta$ nên đường thẳng $d:4x-3y+m=0 (m \neq 2)$.

d là tiếp tuyến của $(C) \Leftrightarrow d(I;(d)) = R \Leftrightarrow \frac{|4.1-3.4+m|}{\sqrt{4^2+(-3)^2}} = 2$

$$\Leftrightarrow |m-8| = 10 \Leftrightarrow \begin{bmatrix} m=18 \\ m=-2 \end{bmatrix}$$
 (thỏa mãn điều kiện)

Vậy có 2 tiếp tuyến cần tìm : 4x-3y+18=0; 4x-3y-2=0.

Câu 41. Chọn D

Gọi I là tâm của đường tròn, ta có tọa độ tâm I(3;4).

Theo đề ra ta có tứ giác IMPN là hình vuông, nên đường thẳng MN nhận $\overrightarrow{IP} = \begin{pmatrix} -6; -6 \end{pmatrix}$ làm VTPT, đồng thời đường thẳng MN đi qua trung điểm K(0;1) của IP. Vậy phương trình đường thẳng MN: 1.(x-0)+1.(y-1)=0 hay x+y-1=0.

Câu 42. Chọn C

$$+(C): x^2 + y^2 - 2x - 6y + 6 = 0 \Leftrightarrow (x-1)^2 + (y-3)^2 = 4 \text{ suy ra } (C) \text{ có tâm I } (1;3) \text{ và } R = 2$$

+ Phương trình đường thẳng d đi qua M(-3;1) có phương trình: A(x+3)+B(y-1)=0.

 $\frac{1}{d}$ là tiếp tuyến với đường tròn khi và chỉ khi d(I;d) = R.

$$\Rightarrow$$
 ta có phương trình:
$$\frac{\left|A+3B+3A-B\right|}{\sqrt{A^2+B^2}} = 2 \Leftrightarrow 3A^2+4AB = 0 \Leftrightarrow \begin{bmatrix} A=0\\3A=-4B \end{bmatrix}$$

+ Với A = 0, chọn B = 1, phương trình tiếp tuyến thứ nhất là (d_1) : y = 1.

Thế y = 1 vào (C): $x^2 + y^2 - 2x - 6y + 6 = 0$, ta được tiếp điểm là $T_1(1;1)$.

+ Với 3A = -4B, chọn A = -4; B = 3, phương trình tiếp tuyến thứ hai là (d_2) : -4x + 3y - 15 = 0

Tiếp điểm
$$T_2\left(x; \frac{4x}{3} + 5\right) \in (C)$$
 nên $(x-1)^2 + \left(\frac{4x}{3} + 5 - 3\right)^2 = 4 \Leftrightarrow x = -\frac{3}{5} \Rightarrow T_2\left(-\frac{3}{5}; \frac{21}{5}\right)$.

+ Phương trình đường thẳng $T_1T_2: 2(x-1)+1(y-1)=0 \Leftrightarrow 2x+y-3=0$.

+ Khoảng cách từ O đến đường thẳng T_1T_2 là: $d(0;T_1T_2) = \frac{\left|-3\right|}{\sqrt{2^2+1^2}} = \frac{3}{\sqrt{5}}$.

Dang 4.2 Bài toán tương giao

Câu 43. Chọn D

Ta thấy đường tròn (C_1) có tâm I(-1;-2) và bán kính $R_1 = 3$. Đường tròn (C_2) có tâm $I_2(2;2)$ và bán kính $R_2 = 2$.

Khi đó: $5 = R_1 + R_2 = I_1 I_2 = \sqrt{(2+1)^2 + (2+2)^2} = 5 \Longrightarrow (C_1)$ và (C_2) tiếp xúc nhau.

Câu 44. Chon D

Giao điểm 2 đường tròn là nghiệm của hệ phương trình sau:

$$\begin{cases} x^2 + y^2 - 4 = 0 \\ x^2 + y^2 - 4x - 4y + 4 = 0 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 = 4 \\ 4x + 4y = 8 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 = 4 \\ x + y = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 + y^2 = 4 \\ x = 2 - y \end{cases} \Leftrightarrow \begin{cases} (2 - y)^2 + y^2 = 4 \\ x = 2 - y \end{cases} \Leftrightarrow \begin{cases} 2y^2 - 4y = 0 \\ x = 2 - y \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ x = 2 \\ x = 0 \end{cases}$$

Vậy giao điểm 2 đường tròn là: (2;0) và (0;2).

Câu 45. Chọn A

NG TOÁN THƯỚNG GẶP

Cách 1: Xét hệ
$$\begin{cases} (x-1)^2 + y^2 = 4 \\ (x-4)^2 + (y-3)^2 = 16 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 - 2x - 3 = 0 \\ x^2 + y^2 - 8x - 6y + 9 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 2 - x \\ x^2 + (2 - x)^2 - 2x - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} y = 2 - x \\ 2x^2 - 6x + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{3 + \sqrt{7}}{2}, y = \frac{1 - \sqrt{7}}{2} \\ x = \frac{3 - \sqrt{7}}{2}, y = \frac{1 + \sqrt{7}}{2} \end{cases}$$

Suy ra
$$A\left(\frac{3+\sqrt{7}}{2}, \frac{1-\sqrt{7}}{2}\right)$$
, $B\left(\frac{3-\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right)$.

$$(C)$$
 có tâm $O(1;0)$, (C') có tâm $O'(4;3) \Rightarrow \overrightarrow{OO'} = (3;3)$

Nên đường thẳng AB qua A và nhận $\vec{n}(1;1)$ là vécto pháp tuyến.

Phương trình:
$$1\left(x-\frac{3+\sqrt{7}}{2}\right)+1\left(y-\frac{1-\sqrt{7}}{2}\right)=0 \Leftrightarrow x+y-2=0$$
. Chọn A .

Cách 2: Giả sử hai đường tròn $(C):(x-1)^2+y^2=4$ và $(C'):(x-4)^2+(y-3)^2=16$ cắt nhau tại hai điểm phân biệt A và B khi đó tọa độ của A và thỏa mãn hệ phương trình:

$$\begin{cases} (x-1)^2 + y^2 = 4 \\ (x-4)^2 + (y-3)^2 = 16 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 - 2x - 3 = 0 \\ x^2 + y^2 - 8x - 6y + 9 = 0 \end{cases}$$
 (1)

Lấy (1) trừ (2) ta được: $6x + 6y - 12 = 0 \Leftrightarrow x + y - 2 = 0$ là phương trình đường thẳng đi qua 2 điểm A và B

Câu 46. Chon A

Tù
$$\Delta : 3x - 4y - 19 = 0 \Rightarrow y = \frac{3}{4}x - \frac{19}{4}(1)$$
.

Thế (1) vào (C) ta được

$$(x-1)^2 + \left(\frac{3}{4}x - \frac{23}{4}\right)^2 = 25$$

$$\Leftrightarrow \frac{25}{16}x^2 - \frac{85}{8}x + \frac{145}{16} = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = \frac{29}{5} \end{bmatrix}.$$

+)
$$x_A = 1 \Rightarrow y_A = -4 \Rightarrow A(1, -4)$$
.

+)
$$x_B = \frac{29}{5} \Rightarrow y_B = -\frac{2}{5} \Rightarrow B\left(\frac{29}{5}; -\frac{2}{5}\right)$$
.

Độ dài đoạn thẳng
$$AB = \sqrt{\left(\frac{29}{5} - 1\right)^2 + \left(-\frac{2}{5} + 4\right)^2} = 6$$
.

Câu 47. Chon A

Gọi H là trung điểm của đoạn thẳng AB . Ta có $IH \perp AB$ và

$$IH = d(I; AB) = \frac{|3.1 - 4.(-1) + 8|}{\sqrt{3^2 + (-4)^2}} = 3.$$

Xét tam giác vuông AHI ta có: $HA^2 = IA^2 - IH^2 = 5^2 - 3^2 = 16 \implies HA = 4 \implies AB = 2HA = 8$

Câu 48. Chọn C

Đường tròn (C) có tâm I(2;-2) bán kính R=2.

$$d(I,d) = \frac{|3.2 + 4.(-2) + 7|}{\sqrt{3^2 + 4^2}} = 1 < R = 2 \text{ nên } d \text{ cắt } (C) \text{ tại hai điểm phân biệt.}$$

Gọi A, B là các giao điểm của đường thẳng d với đường tròn (C).

$$AB = 2\sqrt{R^2 - d^2(I,d)} = 2\sqrt{3}$$
.

Câu 49. Chọn A

Đường tròn (C) có tâm I(1;2) và bán kính $R = \sqrt{1^2 + 2^2 - 3} = \sqrt{2}$.

Theo giả thiết đường thẳng d đi qua A và cắt đường tròn (C) tại hai điểm B, C sao cho $BC = 2\sqrt{2}$.

Vì $BC = 2\sqrt{2} = 2R$ nên BC là đường kính của đường tròn (C) suy ra đường thẳng d đi qua tâm I(1;2)

Ta chọn: $\overrightarrow{u_d} = \overrightarrow{IA} = (2; -1) \Rightarrow \overrightarrow{n_d} = (1; 2)$.

Vậy đường thẳng d đi qua A(3;1) và có VTPT $\overrightarrow{n_d} = (1;2)$ nên phương trình tổng quát của đường thẳng d là: $1(x-3)+2(y-1)=0 \Leftrightarrow x+2y-5=0$.

Câu 50. Chọn A

Tọa độ tâm I_1 của đường tròn (C_1) là: $I_1(-1;-2)$.

Tọa độ tâm I_2 của đường tròn (C_1) là: $I_2(2;2)$.

Ta có: $\overline{I_1I_2}(3;4)$. Gọi d,d' lần lượt là đường thẳng nối tâm của hai đường tròn đã cho và đường thẳng cần lập. Chọn một vector pháp tuyến của đường thẳng d là: $\overline{n_d}(4;-3)$. Gọi $\overline{n_{d'}}(a;b)$, $a^2+b^2\neq 0$ là một vector pháp tuyến của đường thẳng d'.

Theo đề
$$\cos(d,d') = \frac{\sqrt{2}}{2} \Leftrightarrow \left|\cos(\overrightarrow{n_d}, \overrightarrow{n_{d'}})\right| = \frac{\sqrt{2}}{2} \Leftrightarrow \frac{|4a - 3b|}{\sqrt{3^2 + 4^2} \cdot \sqrt{a^2 + b^2}} = \frac{\sqrt{2}}{2}$$
.

CÁC DẠNG TOÁN THƯỜNG GẶP
$$\Leftrightarrow 7a^2 - 48ab - 7b^2 = 0 \Leftrightarrow \begin{bmatrix} a = 7b \neq 0 \\ a = -\frac{1}{7}b \neq 0 \end{bmatrix}$$

Với $a = -\frac{1}{7}b \neq 0$, chọn $b = -7 \Rightarrow a = 1$. Phương trình đường thẳng d': x - 7y = 0.

Với $a = 7b \neq 0$, chọn $b = 1 \Rightarrow a = 7$. Phương trình đường thẳng d': 7x + y = 0.

Câu 51.

$$\begin{cases} IM_1 = IM_2 = \sqrt{10} \\ I(1;2) \end{cases} \Rightarrow M_1, M_2 \in (C): (x-1)^2 + (y-2)^2 = 10.$$

Mặt khác, M_1 , M_2 thuộc (d): 2x+y-5=0 nên ta có tọa độ M_1 , M_2 là nghiệm của hệ

$$\begin{cases} (x-1)^2 + (y-2)^2 = 10 & (1) \\ 2x + y - 5 = 0 & (2) \end{cases}$$

(2)
$$\Leftrightarrow$$
 $y = -2x + 5$, thay vào (1) ta có $5x^2 - 14x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \frac{14}{5} \end{bmatrix}$

Gọi x_1, x_2 lần lượt là hoành độ của M_1 và $M_2 \Rightarrow x_1 + x_2 = 0 + \frac{14}{5} = \frac{14}{5}$.

Câu 52. Chon B

(C) có tâm I(2;-1), bán kính $R=2\sqrt{5}$.

Đặt
$$h = d(I, AB)$$
. Ta có: $S_{IAB} = \frac{1}{2}h.AB = 8 \Rightarrow h.AB = 16$.

Mặt khác:
$$R^2 = h^2 + \frac{AB^2}{4} = 20$$

Suy ra:
$$\begin{cases} h = 4 \\ AB = 4 \end{cases}$$
;
$$\begin{cases} h = 2 \\ AB = 8 \end{cases}$$

Vì d đi qua M(1;-3) nên $1-3b+c=0 \Rightarrow 3b-c=1 \Rightarrow c=3b-1$

Với
$$h = 4 = \frac{|2 - b + c|}{\sqrt{1 + b^2}} = \frac{|2 - b + 3b - 1|}{\sqrt{1 + b^2}} = \frac{|1 + 2b|}{\sqrt{1 + b^2}} \Rightarrow b \in \Phi$$

Với
$$h = 2 = \frac{|2 - b + c|}{\sqrt{1 + b^2}} = \frac{|2 - b + 3b - 1|}{\sqrt{1 + b^2}} = \frac{|1 + 2b|}{\sqrt{1 + b^2}} \Rightarrow b = \frac{3}{4} \Rightarrow c = \frac{5}{4} \Rightarrow b + c = 2.$$

Câu 53. Chon D

Gọi K là chân đường cao hạ từ A của tam giác ABC, gọi E là điểm đối xứng với H qua K suy ra E thuộc đường tròn ngoại tiếp tam giác ABC (Tính chất này đã học ở cấp 2).

Ta có
$$\overrightarrow{AH} = (-6,8)$$
, chọn $\overrightarrow{u_{AH}} = (3,-4)$.

Phương trình đường thẳng AH qua A ở dạng tham số $\begin{cases} x = 5 + 3t \\ y = 5 - 4t \end{cases}$

 $K \in AH$ suy ra tọa độ điểm K có dạng K(5+3t;5-4t)

H và E đối xứng nhau qua K suy ra tọa độ E theo t là E(11+6t;-3-8t)

$$E \in (C) \implies (11+6t)^2 + (-3-8t)^2 = 50$$

$$\Leftrightarrow 5t^2 + 9t + 4 = 0$$

$$\Leftrightarrow \begin{bmatrix} t = -1 \\ t = \frac{-4}{5} \end{bmatrix}$$

$$\Box$$
 Với $t = -1$, $E(5;5)$ (loại vì $E \equiv A$)

$$\Box$$
 Với $t = \frac{-4}{5}$, $E\left(\frac{31}{5}; \frac{17}{5}\right)$, $K\left(\frac{13}{5}; \frac{41}{5}\right)$

Phương trình đường thẳng BC có $\overrightarrow{u_{BC}} = \overrightarrow{n_{AH}} = (4,3)$ và qua điểm K có phương trình tham số

$$\begin{cases} x = \frac{13}{5} + 4t \\ y = \frac{41}{5} + 3t \end{cases} \Rightarrow C \in BC \Rightarrow C\left(\frac{13}{5} + 4t; \frac{41}{5} + 3t\right).$$

$$C \in (C) \implies \left(\frac{13}{5} + 4t\right)^2 + \left(\frac{41}{5} + 3t\right)^2 = 50$$

$$\Leftrightarrow 25t^2 + 70t + 24 = 0$$

$$\Leftrightarrow \left[t = -\frac{2}{5} \Rightarrow C(1;7) \Rightarrow (KTM)\right]$$

$$t = \frac{-12}{5} \Rightarrow C(-7;1)$$

Vậy
$$C(a;b) = C(-7;1) \Rightarrow a+b=-6$$
.

Câu 54. Chọn A

Ta có:

$$\widehat{BCM} = \widehat{BAM}$$
 (cùng chắn cung BM) (1)

$$\widehat{BAM} = \widehat{MAT} = \widehat{DAC}$$
 (do AD là đường phân giác ngoài A) (2)

Từ (1), (2) suy ra
$$\widehat{DAC} = \widehat{BCM}$$
, mà $\widehat{BCM} = \widehat{CDA} + \widehat{AMC}$, $\widehat{DAC} = \widehat{ACM} + \widehat{AMC}$ từ đó suy ra

 $\widehat{CDA} = \widehat{ACM}$, do đó MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ACD có tâm J nên $JC \perp MC$. Hay C là hình chiếu của J lên đường thẳng CM.

Đường thẳng qua J và vuông góc với CM có phương trình:

$$(x+2)-(y-2)=0 \Leftrightarrow x-y+4=0$$

Tọa độ điểm
$$C$$
 là nghiệm của hệ:
$$\begin{cases} x+y=2 \\ x-y=-4 \end{cases} \Leftrightarrow \begin{cases} x=-1 \\ y=3 \end{cases} \Rightarrow C(-1;3).$$

AC là đường thẳng qua C và vuông góc với $\overrightarrow{IJ}(-4; 0)$ nên có phương trình: x+1=0.

Do đó tọa độ điểm A có dạng A(-1; a). Ta có $IA^2 = IC^2 \Leftrightarrow 9 + (a-2)^2 = 9 + 1 \Leftrightarrow \begin{bmatrix} a = 1 \\ a = 3 \end{bmatrix}$.

Vì $A \neq C$ nên A(-1; 1).

Tọa độ điểm M có dạng M(m; 2-m). Ta có

$$IM^{2} = IC^{2} \Leftrightarrow (m-2)^{2} + m^{2} = 10 \Leftrightarrow m^{2} - 2m - 3 = 0 \Leftrightarrow \begin{bmatrix} m = -1 \\ m = 3 \end{bmatrix}.$$

Vì $M \neq C$ nên M(3; -1).

BC là đường thẳng qua C và vuông góc với $\overrightarrow{MI}(-1;3)$ nên có phương trình:

$$-(x+1)+3(y-3)=0 \Leftrightarrow x-3y+10=0$$
.

Tọa độ điểm
$$B$$
 có dạng $B(3b-10; b)$. Ta có $IB^2 = IC^2 \Leftrightarrow (3b-12)^2 + (b-2)^2 = 10 \Leftrightarrow b = 3$

$$b = 3$$

$$b = \frac{23}{5}$$

Vì
$$B \neq C$$
 nên $B\left(\frac{19}{5}; \frac{23}{5}\right)$.

Vậy tổng hoành độ của các đỉnh A, B, C là $-1-1+\frac{19}{5}=\frac{9}{5}$.

Câu 55. Chọn D

•

Vì
$$I \in (\Delta)$$
 nên $a+3b+8=0 \Leftrightarrow a=-8-3b$.

Vì đường tròn đi qua A và tiếp xúc với đường thẳng (Δ') nên:

$$d(I;\Delta') = IA \Leftrightarrow \frac{|3a-4b+10|}{5} = \sqrt{(-2-a)^2 + (1-b)^2}$$
 (1).

Thay a = -8 - 3b vào (1) ta có:

$$\frac{\left|3(-8-3b)-4b+10\right|}{5} = \sqrt{\left(-2+8+3b\right)^2 + \left(1-b\right)^2}$$

$$\Leftrightarrow |-14 - 13b| = 5\sqrt{10b^2 + 34b + 37}$$

$$\Leftrightarrow (-14 - 13b)^2 = 25(10b^2 + 34b + 37)$$

$$\Leftrightarrow 81b^2 + 486b + 729 = 0 \Leftrightarrow b = -3$$
.

Với
$$b = -3 \Leftrightarrow a = 1$$
.

$$a + b = -2$$
.

Câu 56. Chọn A

Ta có:

$$IH = d(I;d) = 2$$
.

$$S_{\Delta IAB} = \frac{1}{2} IH.AB \Rightarrow AB = \frac{2S_{\Delta IAB}}{IH} = \frac{2.4}{2} = 4 \Rightarrow AH = 2 \; .$$

$$\Rightarrow R = IA = \sqrt{AH^2 + IH^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2}.$$

$$\Rightarrow (C): (x-1)^2 + (y+2)^2 = 8.$$

DANG 5. CÂU HỔI MIN-MAX

Câu 57. Chọn D

Ta có
$$(C)$$
: $x^2 + y^2 - 2x - 4y - 4 = 0 \Leftrightarrow (C)$: $(x-1)^2 + (y-2)^2 = 9$ nên có tâm $I(1;2)$, $R = 3$
Vì $IM = \sqrt{2} < 3 = R$.

Gọi d là đường thẳng đi qua M cắt đường tròn (C) tại các điểm A, B. Gọi J là trung điểm của AB. Ta có:

Ta co:
$$AB = 2AJ = 2\sqrt{R^2 - IJ^2} \ge 2\sqrt{R^2 - IM^2} = 2\sqrt{9 - 2} = 2\sqrt{7}$$
.

Câu 58. Chọn. D.

Đường tròn (C): $x^2 + (y-1)^2 = 4$ có tâm I(0;1) bán kính R = 2.

IA = IB = 4 > R nên A, B nằm ngoài đường tròn.

Gọi N là giao điểm của IA và đường tròn(C)

Trên đoạn IN lấy điểm P sao cho $IP = \frac{1}{2}IN \Rightarrow \overrightarrow{IP} = \frac{1}{4}\overrightarrow{IA} \Rightarrow P$ trùng với gốc tọa độ.

Ta có
$$\triangle IAM \sim \triangle IMP \Rightarrow \frac{MA}{MP} = \frac{IM}{IP} = \frac{IN}{IP} = 2 \Rightarrow MA = 2MP$$
.

Do đó $P = MA + 2MB = 2MP + 2MB \ge 2PB \Rightarrow P_{\min} = 2PB = 2\sqrt{17} \Rightarrow P_{\min} \in (8,1;8,3)$. Chọn. **D.**

Câu 59. Chọn A

(C):
$$x^2 + y^2 - 2x - 4y + 3 = 0$$
, (C) có tâm $I(1;2)$, $R = \sqrt{2}$

Suy ra
$$(C)$$
: $(x-1)^2 + (y-2)^2 - 2 = 0$.

Có
$$T = x_0 + y_0 = (x_0 - 1) + (y_0 - 2) + 3$$
.

Áp dụng bất đẳng thức **B. C. S** cho 2 bộ số $(1;1),((x_0-1);(y_0-2))$.

$$\left| \left(x_0 - 1 \right) + \left(y_0 - 2 \right) \right| \le \sqrt{2 \left[\left(x_0 - 1 \right)^2 + \left(y_0 - 2 \right)^2 \right]} = 2, \text{ do } \left(x_0 - 1 \right)^2 + \left(y_0 - 2 \right)^2 = 2.$$

$$\Rightarrow -2 \le (x_0 - 1) + (y_0 - 2) \le 2 \Rightarrow 1 \le (x_0 - 1) + (y_0 - 2) + 3 \le 5 \Rightarrow 1 \le T \le 5.$$

Dấu đẳng thức xảy ra khi
$$\begin{cases} (x_0 - 1) = (y_0 - 2) \\ (x_0 - 1)^2 + (y_0 - 2)^2 = 2 \end{cases}$$

$$\Rightarrow (x_0 - 1)^2 = 1 \Rightarrow \begin{bmatrix} x_0 - 1 = 1 \\ x_0 - 1 = -1 \end{bmatrix} \Rightarrow \begin{bmatrix} x_0 = 2, y_0 = 3, T = 5 \\ x_0 = 0, y_0 = 1, T = 1 \end{bmatrix}.$$

Vậy max T = 5 khi $x_0 = 2, y_0 = 3$.

Câu 60. Chọn D

Đường tròn (C) có tâm I(-4;3), bán kính R=3.

Ta có $\overrightarrow{OI} = (-4,3)$ suy ra phương trình đường thẳng OI là $\begin{cases} x = -4t \\ y = 3t \end{cases}$.

 $OI \cap (C) = \{M\}$ Tọa độ (x; y) của M là nghiệm hệ

$$\begin{cases} x^{2} + y^{2} + 8x - 6y + 16 = 0 \\ x = -4t \\ y = 3t \end{cases} \Leftrightarrow \begin{cases} 25t^{2} - 50t + 16 = 0 \\ x = -4t \\ y = 3t \end{cases} \Leftrightarrow \begin{cases} t = \frac{8}{5} \\ x = \frac{-32}{5} \\ y = \frac{24}{5} \end{cases} = \begin{cases} t = \frac{2}{5} \\ x = \frac{-8}{5} \\ y = \frac{6}{5} \end{cases}$$

Suy ra
$$M_1\left(-\frac{32}{5}; \frac{24}{5}\right), M_2\left(-\frac{8}{5}; \frac{6}{5}\right)$$

Ta có
$$OM_1 = \sqrt{\left(-\frac{32}{5}\right)^2 + \left(\frac{24}{5}\right)^2} = 8, OM_2 = \sqrt{\left(-\frac{8}{5}\right)^2 + \left(\frac{6}{5}\right)^2} = 2 \Rightarrow OM_{\min} = OM_2 = 2.$$

Cách 2

Đường tròn (C) có tâm I(-4;3), bán kính $R = \sqrt{4^2 + 3^2 - 16} = 3$.

Phương trình đường thẳng OI đi qua O(0;0) có vtpt $\vec{n}(3;4)$ là:

$$3x + 4y = 0$$
.

Tọa độ $M = OI \cap (C)$ là nghiệm của hệ:

$$\begin{cases} 3x + 4y = 0 \\ x^2 + y^2 + 8x - 6y + 16 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{32}{5} \\ y = \frac{24}{5} \end{cases} \sqrt{\begin{cases} x = -\frac{8}{5} \\ y = \frac{6}{5} \end{cases}}$$

$$\text{Ta có } OM_1 = \sqrt{\left(\frac{32}{5}\right)^2 + \left(\frac{24}{5}\right)^2} = 8; OM_2 = \sqrt{\left(\frac{8}{5}\right)^2 + \left(\frac{6}{5}\right)^2} = 2. \text{ Vậy } OM_{\min} = 2.$$

Câu 61. Chọn C

Gọi: d: x + y - m = 0; tâm của (C) là I(1;1), để $d \cap (C)$ tại 2 phân biệt khi đó:

$$0 \le d(I;d) < 2 \leftrightarrow 0 \le \frac{|2-m|}{\sqrt{2}} < 2 \leftrightarrow 2 - 2\sqrt{2} < m < 2 + 2\sqrt{2}(*)$$

Xét Δ*IAB* có:
$$S_{\Delta AIB} = \frac{1}{2} .IA.IB. \sin \widehat{AIB} = \frac{1}{2} .R^2. \sin \widehat{AIB} \le \frac{1}{2} .R^2$$

Dấu "=" xảy ra khi:
$$\sin \widehat{AIB} = 1 \Leftrightarrow \widehat{AIB} = 90^{\circ} \Rightarrow AB = 2\sqrt{2}$$

$$\Rightarrow d(I;d) = \sqrt{2} \leftrightarrow \frac{|2-m|}{\sqrt{2}} = \sqrt{2} \leftrightarrow \begin{bmatrix} m=0 & (TM) \\ m=4 & (TM) \end{bmatrix}.$$

Câu 62. Chọn C

Đường tròn (C) có tâm I(1;-2), bán kính R=2.

Gọi Δ là đường thẳng qua I và vuông góc với d. Khi đó, điểm M cần tìm là một trong hai giao điểm của Δ và (C).

Ta có phương trình $\Delta: x + y + 1 = 0$

Xét hệ:
$$\begin{cases} x + y + 1 = 0 \\ x^2 + y^2 - 2x + 4y + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x - 1 \\ (x - 1)^2 + (y + 2)^2 = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = -x - 1 \\ 2(x - 1)^2 = 4 \end{cases} \Leftrightarrow \begin{cases} y = -x - 1 \\ x = 1 \pm \sqrt{2} \end{cases} \Leftrightarrow \begin{cases} \begin{cases} x = 1 + \sqrt{2} \\ y = -2 - \sqrt{2} \end{cases} \\ \begin{cases} x = 1 - \sqrt{2} \\ y = -2 + \sqrt{2} \end{cases} \end{cases}$$

Với
$$B(1+\sqrt{2};-2-\sqrt{2}) \Rightarrow d(B,d) = 2+3\sqrt{2}$$

Với
$$C(1-\sqrt{2};-2+\sqrt{2}) \Rightarrow d(C,d) = -2+3\sqrt{2} < d(B,d)$$

Suy ra
$$M(1-\sqrt{2};-2+\sqrt{2}) \Rightarrow a=1-\sqrt{2}; b=-2+\sqrt{2}=\sqrt{2}(1-\sqrt{2})=\sqrt{2}a$$
.

Câu 63. Chọn B

Vì $\overrightarrow{GA} = -2\overrightarrow{GM}$ nên A là ảnh của điểm M qua phép vị tự tâm G, tỉ số -2, suy ra A(-4;-2).

Đường tròn ngoại tiếp ABC có tâm I, bán kính R = IA = 5 có phương trình $(x-3)^2 + (y-2)^2 = 25$.

Ta có
$$\overrightarrow{IM} = (2;4)$$
.

Đường thẳng BC đi qua M và nhận vecto \overline{IM} làm vecto pháp tuyến, phương trình BC là: $1(x-3)+2(y-2)=0 \Leftrightarrow x+2y-7=0$.

Điểm C là giao điểm của đường thẳng BC và đường tròn (I;R) nên tọa độ điểm C là nghiệm của hệ phương trình:

$$\begin{cases} (x-3)^2 + (y-2)^2 = 25 \\ x+2y-7 = 0 \end{cases} \Leftrightarrow \begin{bmatrix} x=1, y=3 \\ x=5, y=1 \end{bmatrix}$$

Đối chiếu điều kiện đề bài ta có tọa độ điểm C(5;1).

- +) (C) có tâm I(1,2), bán kính $R = \sqrt{30}$
- +) AB là dây cung của (C) đi qua M
- +) Ta có $AB \min \Leftrightarrow AB \perp IM$.

Thật vậy, giả sử CD là dây cung qua M và không vuông góc với IM .

Gọi K là hình chiếu của I lên CD ta có:

$$AB = 2AM = 2\sqrt{IA^2 - IM^2} = 2\sqrt{R^2 - IM^2}$$

$$CD = 2KD = 2\sqrt{ID^2 - KD^2} = 2\sqrt{R^2 - IK^2}$$

Do tam giác IMK vuông tại K nên IM > IK.

Vậy
$$CD > AB$$
.

+) Ta có:
$$IM = \sqrt{(2-1)^2 + (1-2)^2} = \sqrt{2}$$

$$MA = \sqrt{R^2 - IM^2} = \sqrt{30 - 2} = \sqrt{28} = 2\sqrt{7}$$

$$\Rightarrow AB = 2MA = 4\sqrt{7}$$
.

Câu 65. Chọn D

Xét tập hợp điểm M(a;b) thỏa mãn $(a-1)^2 + (b-2)^2 = 1$ thì M thuộc đường tròn tâm I(1;2); R=1

Xét điểm N(c;d) thỏa mãn 4c-3d-23=0 thì N thuộc đường thẳng có phương trình 4x-3y-23=0.

Ta thấy $d(I;d) = \frac{|4-6-23|}{5} = 5 > R = 1$. Do đó đường thẳng không cắt đường tròn.

Đường thẳng qua I vuông góc với d tại L và cắt đường tròn ở T, K (K ở giữa T và L) Vẽ tiếp tuyến tại K cắt MN tại P.

Có
$$KL \le PN \le MN$$
, mà $KL = d(I,d) - R$

Do đó MN ngắn nhất khi MN = KL

Từ đây ta suy ra $P = (a-c)^2 + (b-d)^2 = MN^2$ bé nhất khi và chỉ khi

$$MN = d(I;d) - R = 5 - 1 = 4$$
. Vậy giá trị nhỏ nhất $P_{\min} = 16$

Câu 66. Chọn A

Ta có
$$(C)$$

$$\begin{cases} I(1;2) \\ R=2 \end{cases}$$

Ta dễ thấy đường thẳng d_1 và d_2 cắt nhau tại điểm M(1;1) cố định nằm trong đường tròn (C) và $d_1 \perp d_2$. Gọi A,B là giao điểm của d_1 và (C), C,D là giao điểm của d_2 và (C). H,K lần lượt là hình chiếu của I trên d_1 và d_2

Khi đó

$$\frac{\text{C\'AC D\'ANG TO\'AN THU'\rONG G\'AP}}{S_{ABCD} = \frac{1}{2} AB.CD = 2 AH.CK = 2 \sqrt{R^2 - \left[d\left(I, d_1\right)\right]^2} . \sqrt{R^2 - \left[d\left(I, d_2\right)\right]^2}}$$

$$= 2 \sqrt{4 - \frac{1}{m^2 + 1}} \sqrt{4 - \frac{m^2}{m^2 + 1}} = 2 \frac{\sqrt{\left(4m^2 + 3\right)\left(3m^2 + 4\right)}}{m^2 + 1} \le \frac{4m^2 + 3 + 3m^2 + 4}{m^2 + 1} = 7$$

Do đó $\max S_{ABCD} = 7$ khi $m = \pm 1$. Khi đó tổng các giá trị của m bằng 0.