FrontISTR イントロダクション

FrontISTR Commons

2020年10月5日

目次

1 Fro	ontISTR イントロダクション	2
1.1 マニ	ニュアルリスト	2
1.2 本	マニュアルの記載内容	2
1.3 リリ	リースノート	3
1.3.1	Ver.5.0 における更新内容	3
1.3.2	Ver.3.8 における更新内容	4
1.3.3	Ver.3.7 における更新内容	4
1.3.4	Ver.3.6 における更新内容	5
1.3.5	Ver.3.5 における更新内容	6
1.4 チー	ートシート	7
1.4.1	インストール	7
1.4.2	並列実行	7
1.4.3	入力	7
1.4.4	出力	7
1.4.5	全体制御ファイル (hecmw_ctrl.dat)	8
1.4.6	領域分割制御データ (hecmw_part_ctrl.dat)	8
1.4.7	メッシュファイル	8
1.4.8	バージョン	9
1.4.9	静解析	9
1.4.10	接触	9
1.4.11	熱応力	9
1.4.12	固有値	10
1.4.13	熱伝導	10
1.4.14	動解析	10
1.4.15	時刻歷応答	11
1.4.16	周波数応答	11
1.4.17	解析ステップ	11
1.4.18	自動時間増分	11
1.4.19	出力	12
1.4.20	リスタート	12
1.4.21	局所座標	12

1.4.22	セクション	12
1.4.23	材料物性值	12
1.4.24	ソルバー制御	13
1.4.25	ソルバー制御(AMG)	14
1.4.26	ポスト処理(ParaView 用データ出力)	14
1.4.27	ポスト処理(BMP 画像出力)	14
1.4.28	非線形解析	14

1 FrontISTR イントロダクション

本ソフトウェアは文部科学省次世代 IT 基盤構築のための研究開発「イノベーション基盤シミュレーションソフトウェアの研究開発」プロジェクトによる成果をシーズとして、継続的に開発されている並列有限要素解析プログラムです。本ソフトウェアを無償または営利目的でご使用になる場合、「MIT ライセンス」をご了承頂くことが前提となります。

項目	説明
ソフトウェア名称	FrontISTR
バージョン	5.1
ライセンス形態	MIT License
問い合わせ先	一般社団法人 FrontISTR Commons 東京都文京区弥生二丁目 11 番 16 号 (東京大学大学
	院工学系研究科 総合研究機構内)E-mail: support@frontistr.com

1.1 マニュアルリスト

- イントロダクション
- インストールマニュアル
- 理論マニュアル
- 解析マニュアル
- チュートリアル
- FAQ

本マニュアルでは、大規模並列 FEM 非線形構造解析プログラム FrontISTR の概要を説明します。

1.2 本マニュアルの記載内容

- PDF
- 概要

- クイックスタートガイド
- マニュアル
 - インストールマニュアル
 - 理論マニュアル
 - 解析マニュアル
 - チュートリアル
- リリースノート
- チートシート (コマンド早見表) PDF

1.3 リリースノート

1.3.1 Ver.5.0 における更新内容

FrontISTR Ver.5.0 において、以下に示す機能が追加された。

- 解析機能・アルゴリズム
 - 接触解析機能の改善:探索の高速化、リファイン対応、ほか多数の不具合修正含む
 - シェル要素の質量マトリックス計算
 - 動的接触陽解法の追加
 - Lagrange 乗数法接触における follower force 更新タイミングをサブステップ冒頭から NR 反復内部に移動(接触なし NR 法との仕様統一)
- 入出力
 - 要素主ひずみ/主応力の出力
 - result ファイルへのグローバル変数出力の追加:時刻、固有値など
 - 解析制御ファイルでの!INITIAL 指定
- 線形ソルバー
 - intel MKL pardiso 直接法ソルバ I/F の非接触解析および分散並列対応
- 起動方法
 - openMP 並列数指定オプション -t の追加
- チュートリアル
 - Tutorial 01 の荷重量を変更(線形解析としては大きすぎる変形)
- 不具合修正
 - 動解析陰解法における変数未初期化
 - SSOR 前処理のメモリリーク
 - fstr_make_dynamic_result での segmentation fault
 - いくつかの test example が fail する問題
 - 熱伝導解析の自動時間増分
 - 熱伝導解析の openmp 並列対応
 - 反復法前処理のメモリ解放漏れ
 - AMG 前処理(ML パッケージ)で不要な ML_Set_Symmetrize の呼び出し
 - !SUBDIR が thread-safe でない問題
 - 33 シェルと 33 梁の混在計算ができない問題

1.3.2 Ver.3.8 における更新内容

FrontISTR Ver.3.8 において、以下に示す機能が追加された。

- 解析機能・アルゴリズム
 - 回転変位の境界条件の実装
 - トルクの境界条件の実装
 - 3次元線形静解析の反力計算の計算方法の変更
 - 非圧縮性流体解析機能の導入(RC版)

要素

- 非圧縮性流体解析用の四面体要素(3414要素)を追加
- (積層)シェル要素の応力値計算部分の修正

材料

- メッシュファイル内の材料定義部分の読み込みを高速化
- 解析制御ファイル内の材料定義部分の読み込みを高速化
- 非圧縮性流体解析用の材料物性を追加
- 線形ソルバー
 - MUMPS 使用時のログ出力方法を細分化
 - 4×4 CG ソルバーの修正
 - 6x6 CG ソルバーの修正
- メッシュ・リファイン関連
 - 大規模モデルをリファインした際の不具合を修正
- また、以下に示す修正が行われた
 - 非線形静解析の結果を引き継いだ固有値解析(!STATICEIGEN)での要素定義の不具合を修正
 - 接触解析時の scan contact state 関数のメモリリーク
 - コンパイル時に warning が表示される部分を修正
 - プログラムコード先頭のヘッダを変更
 - LICENSE ファイルの変更

1.3.3 Ver.3.7 における更新内容

FrontISTR Ver.3.7 において、以下に示す機能が追加された。

- 入出力
 - 6 自由度ソルバにおける応力値計算部分の修正
 - 主応力・主ひずみの算出機能の追加
 - 積層シェル要素の出力部分の修正
 - 解析ファイル (cnt ファイル) の INCLUDE 機能追加
 - !EQUATION の MPC 入力に LINK カードを追加
 - UCD 出力に Material ID (要素形状 ID) を出力するよう変更
 - !SOLVER に STEPLOG 機能の追加
 - 行列の非零要素プロット機能の追加
 - !SUBDIR フラグの MONITOR 出力機能の追加
 - 刺激係数と有効質量の出力機能の追加 (固有値解析)
 - 大規模メッシュへの対応

- !AMPLITUDE の入力時に TYPE=TIMEVALUE を追加
- Abaqus 用インプット関数の改良
- 解析ファイル (cnt ファイル) に設定された MATERIAL 関数の名前検索部分の修正
- Logfile アウトプットの修正
- Global summary の修正
- リファイナ
 - 接触問題のリファイン機能を追加
 - リファイン時の UCD 出力の修正
- 解析
 - バネ境界条件機能の修正
 - 接触解析の接触ペア探索の高速化 (アルゴリズムの更新、OpenMP 並列化を実施)
- 要素
 - TLOAD_C3D8IC 機能の追加 (熱応力荷重の付加)
 - トラス要素 (301 要素) と 4 面体 1 次要素 (341 要素) を並列接触解析への対応
- 材料
 - OpenMP 有効時の弾塑性材料の計算に関する不具合の修正
- 機能
 - flush テストの修正
- 線形ソルバ
 - ISAINV 前処理・IRIF 前処理の追加
 - Intel PARDISO インターフェースの追加
 - OpenMP atomic 記述子に関する部分の不具合修正
 - !SOLVER の USEJAD カードの不具合修正
 - METIS ver. 5.0 への対応
 - hecmw_solver_direct ルーチンの修正
 - OpenMP=1 の場合の SSOR 前処理の不具合修正
 - ML 前処理の剛体モードの算出部分の自由度混在要素対応
- 例題・チュートリアル
 - 自由度混在用シェル要素(761 要素・781 要素)の例題追加
 - バネ境界条件機能の例題追加
 - 付属チュートリアル例題の全てが正しく実行できることを確認
- パーティショナ
 - パーティショナが1領域の分散メッシュを正しく生成するよう修正
- その他軽微な修正
 - fstr_setup_util.f90 における初期化忘れの修正
 - intent 文の修正

1.3.4 Ver.3.6 における更新内容

FrontISTR Ver.3.6 において、以下に示す機能が追加された。

- 入出力
 - ファイル読込の高速化
 - 781 シェル要素と 761 シェル要素を使用した場合の出力変更
 - デバッグ用のメッセージ消去

- リファイナ
 - !EQUATION の定義で、右辺の定数を設定した場合に、正しくリファインされない不具合を修正
- 解析
 - 周波数応答解析に関する修正
 - !SOLUTION,TYPE=STATIC を通る場合の熱応力解析に関する修正
 - !SOLUTION,TYPE=NLSTATIC を通る場合の圧力法線方向更新に関する修正
 - 接触剛性マトリックスのサブルーチン getContactStiffness の修正
- 要素
 - 要素ループの OpenMP 並列化
 - B-bar 要素 (ソリッド要素) に関する修正
 - シェル要素に関する修正
 - トラス要素に関する修正
 - シェル, ビーム, トラス, ソリッドが全て混在した場合に発生するメモリ不正の修正
- 材料
 - 直交異方弾性体に関する修正
- 線形ソルバー
 - 行列ダンプ機能の修正
 - 3×3 ILU 前処理の省メモリ化
 - 4×4 CG ソルバーの追加
 - 6×6 CG ソルバーの追加
 - 3×3 CG, GMRES ソルバーによる前処理適用後行列の条件数推定(試験的)
 - 3×3 CG ソルバーへの発散チェック追加
 - 3×3 ソルバー使用時の前処理セットアップ情報の再利用
 - 3×3 ソルバー用外部 AMG 前処理ライブラリ(ML)へのインターフェース(試験的)
 - 3×3 ソルバーの行列ベクトル積での通信隠蔽(試験的)
 - 陽的な自由度消去法による多点拘束条件処理
 - 接触解析における反復法ソルバーの利用(試験的)
- パーティショナ関連
 - ファイル入力の高速化
 - ログ出力の機能拡張
 - 分散メッシュ作成ループの OpenMP 並列化

1.3.5 Ver.3.5 における更新内容

FrontISTR Ver.3.5 において、以下に示す機能が追加された。

- 解析機能関連
 - シェル・梁要素とソリッド要素の混在解析対応(3.7、4.1、6.3(3)参照)
 - シェル要素における直交異方性材料対応(4.2.2(3)参照)
 - 積層シェル対応(4.2.2(3)参照)
 - 大変形解析の際の圧力荷重の FOLLOW 機能 (7.4.2(14) 参照)
 - 梁要素の動解析対応(3.7参照)
 - 動解析における複数節点のモニタリング (7.4.5(1) 参照)
 - 動解析における節点応力・節点ひずみのモニタリング(7.4.5(1)参照)
 - 連成解析における入力流体力へのウィンドウ関数の適用(7.4.5(4)参照)

~{

- パーティショナ関連
 - 大幅な高速化
 - Metis Ver.5 系列への対応(インストールマニュアル参照)
- メッシュ・リファイン関連
 - 要素タイプ混在モデルのリファイン対応
 - 入力温度データのリファイン情報に基づく補間に対応
- 線形ソルバ関連(7.4.6(1)参照)
 - 前処理におけるマルチカラー処理およびハイブリッド並列対応
 - ベクトル計算機向けオーダリング
 - 自由度3の問題で利用可能な前処理と反復解法の組み合わせの拡大
 - 行列データのダンプ機能
- また、以下に示す修正が行われた
 - シェル要素の Drilling DOF の修正
 - 非線形解析における収束判定の修正
 - 線形動解析のリスタート時の時刻の修正
 - 連成解析時のメッセージ内の節点番号表示の修正
 - ILU 前処理の修正
 - 一部のコンパイラによる最適化時の不具合回避

1.4 チートシート

1.4.1 インストール

- \$ tar xzf FrontISTR-v5.1.tar.gz
- \$ cd FrontISTR-v5.1
- \$ mkdir build; cd build
- make -j2; make install

1.4.2 並列実行

- \$ hecmw part1

1.4.3 入力

ファイルの種類	ファイル名
全体制御ファイル	hecmw_ctrl.dat
メッシュデータ	.msh
解析制御データ	.cnt
領域分割制御データ	$hecmw_part_ctrl.dat$

1.4.4 出力

ファイルの種類	ファイル名
ログファイル	<0>.log
解析結果ファイル7	.res $.$ < $0>.$

1.4.5 全体制御ファイル (hecmw_ctrl.dat)

!MESH, NAME=part_in , TYPE=HECMW-ENTIRE

<ModelName>.msh

 $!MESH, \ NAME=part_out \ , \ TYPE=HECMW-DIST$

<ModelName>.p

!MESH, NAME=fstrMSH, TYPE=HECMW-DIST, REFINE=<1>

<ModelName>.p

!CONTROL, NAME=fstrCNT

<ModelName>.cnt

!RESTART, NAME=restart_in , IO=INOUT

<ModelName>. restart

!RESULT, NAME=fstrTEMP, IO=IN

 $<\!\!\mathrm{ModelName}\!\!>\!.\,\mathrm{res}$

!RESULT, NAME=fstrRES, IO=OUT, TYPE=BINARY

<ModelName>.res

 $!RESULT,\ NAME=vis_out\ ,\ IO=OUT$

<ModelName> $_{\rm vis}$

!SUBDIR, ON

1.4.6 領域分割制御データ (hecmw_part_ctrl.dat)

!PARTITION, TYPE=NODE-BASED, METHOD=PMETIS, DOMAIN=<4>

1.4.7 メッシュファイル

!HEADER

<TITLE>

!NODE

<NODE_ID>, <x>, <y>, <z>

!ELEMENT, TYPE=<341>, EGRP=<E1>

<ELEM_ID>, <node1>, <node2>, <node3>, ...

!MATERIAL, NAME=<STRMAT>, ITEM=<3>

!ITEM=1, SUBITEM=2

< Young Modulus>, < Poisson Ratio>

!ITEM=2

<Density>

!ITEM=3

<ExpansionCoeff>

!MATERIAL, NAME=<HEATMAT>, ITEM=<3>

!ITEM=1, SUBITEM=2

<Density>, <Temperature>

!ITEM=2, SUBITEM=2

```
<SpecificHeat>, <Temperature>
!ITEM=3, SUBITEM=2
 <Conductivity>, <Temperature>
!SECTION, TYPE=<SOLID>, EGRP=<E1>, MATERIAL=<STRMAT>
!NGROUP, NGRP=<NG1>
 < node1 >, < node2 >, ...
!SGROUP, SGRP=<SG1>
 <elem1>, <localsurf1>, <elem2>, <localsurf2>, ...
!EGROUP, EGRP=<EG1>
 <elem1>, <elem2>, ...
!CONTACT PAIR, NAME=<CP1>
 <Slave_NodeGroup>, <Master_SurfaceGroup>
!AMPLITUDE, NAME=<AMP1>, VALUE=<RELATIVE | ABSOLUTE>
 \langle value1 \rangle, \langle time1 \rangle, \langle value2 \rangle, \langle time2 \rangle, ...
!EQUATION
 <Num_terms>, <RHS>
 <NODE_ID>, <dof>, <coeff>, ...
!ZERO
 <AbsoluteZero>
!END
1.4.8 バージョン
! VERSION
 5
1.4.9 静解析
!SOLUTION, TYPE=STATIC
!STATIC
!BOUNDARY, GRPID=<1>
 <NODE_ID>, <開始自由度>, <終了自由度>, <拘束値>
!CLOAD, GRPID=<1>
 <NODE_ID>, <自由度>, <荷重值>
!DLOAD, GRPID=<1>
 <SGRP>, <荷重タイプ>, <荷重パラメータ>
!SPRING,GRPID=<1>
 <NODE_ID>, <拘束自由度>, <ばね定数>
```

1.4.10 接触

!CONTACT_ALGO, TYPE=<SLAGRANGE|ALAGRANGE>

!CONTACT, GRPID=<1>, NTOL=<法線方向閾値>, TTOL=<接線方向閾値>, NPENALTY=<法線方向ペナルティ! <接触ペア名>, <摩擦係数>, <摩擦のペナルティ剛性>

1.4.11 熱応力

!REFTEMP

<温度>

!TEMPERATURE, READRESULT=<結果ステップ数>, SSTEP=<開始ステップ>, INTERVAL=<ステップ間隔>

1.4.12 固有値

!SOLUTION, TYPE=EIGEN

!EIGEN

<固有值数>, <許容差>, <最大反復数>

!BOUNDARY

1.4.13 熱伝導

!SOLUTION, TYPE=HEAT

!HEAT

<DT>, <計算時間>, <時間增分>, <許容変化>, <最大反復>, <判定値>

!INITIAL_CONDITION, TYPE=<TEMPERATURE>

<NODE ID>, <温度>

!FIXTEMP

<NODE_ID>, <温度>

!CFLUX

<NODE ID>, <熱流束>

!DFLUX

<ELEMENT ID>, <荷重タイプ>, <熱流束>

!SFLUX

<SGRP>, <熱流束>

!FILM

<<u>ELEMENT_ID></u>, <荷重タイプ>, <熱伝達係数>, <雰囲気温度>

!SFLIM

<SGRP>, <熱 伝 達 係 数 >, <雰 囲 気 温 度>

!RADIATE

<<u>ELEMENT_ID></u>, <荷重タイプ>, <輻射係数>, <雰囲気温度>

!SRADIATE

<SGRP>, <輻射係数>, <雰囲気温度>

 $! WELD_LINE$

<電流>, <電圧>, <入熱効率>, <トーチ移動速度>

<EGRP>, <DOF>, <始 点 座 標 >, <終 点 座 標 >, <溶 接 源 の 幅 >, <溶 接 開 始 時 刻 >

1.4.14 動解析

!SOLUTION, TYPE=DYNAMIC

!BOUNDARY

!CLOAD

!DLOAD

!SPRING

!VELOCITY, TYPE=<INITIAL|TRANSIT>, AMP=<NAME>

<NODE_ID>, <自由度>, <自由度>, <拘束值>

!ACCELERATION, TYPE=<INITIAL | TRANSIT>, AMP=<NAME>

<NODE_ID>, <自由度>, <自由度>, <拘束値>

 $! INITIAL_CONDITION\,,\ TYPE \!\!=\!\!\!<\!\! VELOCITY\,|ACCELERATION\!\!>$

<NODE ID>, <DOF>, <value>

1.4.15 時刻歴応答

!DYNAMIC, TYPE=<LINEAR | NONLINEAR>

<陰解法1|陽解法11>, <時刻歷1>

<開始時刻>, <終了時刻>, <全ステップ数>, <時間増分>

 $<\gamma>,<\beta>$

<集中質量1 | consistent質量2>, 1, <Rm>, <Rk>

1, <モニタリング節点>, <モニタリング出力間隔>

<変位>, <速度>, <加速度>, <反力>, <ひずみ>, <応力>

1.4.16 周波数応答

!DYNAMIC, TYPE=NONLINEAR

<陰解法1|陽解法11>, <周波数2>

<下限周波数>, <上限周波数>, <応答計算点数>, <変位測定周波数>

<振動開始時刻>, <振動終了時刻>

<集中質量1>, 1, <Rm>, <Rk>

<サンプリング数>、<モード空間1|物理空間2>、<モニタリング節点>

 $< g \Leftrightarrow 0 > , < x \Leftrightarrow 0 > , < m \Leftrightarrow 0 > , 0 < 0 > , 0$

!EIGENREAD

<固有値解析のログファイル>

<モード始点>, <モード終点>

!FLOAD

<NODE_ID>, <自由度>, <荷重值>

1.4.17 解析ステップ

!STEP, TYPE—STATIC|VISCO>, SUBSTEPS—<最大サブステップ数>, CONVERG—<判定値>, MAXITER—<最大反
<時間増分値>, <ステップ時間幅>

BOUNDARY, <GRPID>

 $LOAD, \ \, <\!\! GRPID\!\! >$

CONTACT, <GRPID>

1.4.18 自動時間増分

!AUTOINC PARAM, NAME=<AP1>

<時間増分減少率>, <最大反復数>, <合計反復数>, <接触反復数>, <減少条件成立サブステップ> <時間増分増加率>, <最大反復数>, <合計反復数>, <接触反復数>, <増加条件成立サブステップ> <カットバック時間増分減少率>, <カットバック回数>

!TIME POINTS, NAME=<時刻リスト>, TIME=<STEP|TOTAI>

<TIME>

!STEP, TYPE—≪STATIC|VISCO>, SUBSTEPS=≪最大サブステップ数>, CONVERG=≪判定値>, MAXITER=≪最大反
<初期時間増分値>, <ステップ時間幅>, <時間増分下限>, <時間増分上限>

BOUNDARY, <GRPID>

LOAD, <GRPID>

CONTACT, <GRPID>

境界条件種類	属するカード
BOUNDARY	!BOUNDARY, !SPRING
LOAD	!CLOAD, !DLOAD, !TEMPERATURE
CONTACT	!CONTACT

1.4.19 出力

!WRITE, VISUAL, FREQUENCY=<出力間隔>

!WRITE, RESULT, FREQUENCY=<出力間隔>

!OUTPUT_VIS

<出力変数名>, <ON|OFF>

!OUTPUT_RES

<出力変数名>, <ON|OFF>

主な出力変数名

変数名	物理量	対象
DISP	変位	VIS,RES
REACTION	節点反力	VIS,RES
NSTRAIN	節点ひずみ	VIS,RES
NSTRESS	節点応力	VIS,RES
NMISES	節点 Mises 応力	VIS,RES
ESTRAIN	要素ひずみ	RES
ESTRESS	要素応力	RES
EMISES	要素 Mises 応力	RES
VEL	速度	VIS,RES
ACC	加速度	VIS,RES
TEMP	温度	VIS,RES

1.4.20 リスタート

!RESTART, FREQUENCY=<n>

1.4.21 局所座標

!ORIENTATION, NAME=<座標系名>, DEFINITION=COORDINATES <ax , ay , az >, <bx , by , bz >, <cx , cy , cz >

!ORIENTATION,NAME=<座 標 系 名 >,DEFINITION=NODES <a , b , c>

1.4.22 セクション

!SECTION, SECNUM=<メッシュデータのSECTION順>, ORIENTATION=<局所座標系名>, FORM361=<FBAR|IC|I

1.4.23 材料物性值

!MATERIAL, NAME=<材料名>

!ELASTIC, TYPE=<ISOTROPIC|ORTHOTROPIC>, DEPENDENCIES=<0>
<ヤング率>, <ポアソン比>

!DENSITY

<質量密度>

!EXPANSION_COEFF, TYPE=<ISOTROPIC|ORTHOTROPIC>, DEPENDENCIES=<0> <線 膨 張 係 数>

!PLASTIC, YIELD=MISES, HARDEN=BILINEAR, DEPENDENCIES=<0><初期降伏応力>, <硬化係数>

!PLASTIC, YIELD=MISES, HARDEN=MULTILINEAR, DEPENDENCIES=<0>

<降伏応力>, <塑性ひずみ>

<降伏応力>, <塑性ひずみ>

. .

!PLASTIC, YIELD=MISES, HARDEN=SWIFT, DEPENDENCIES=<0> $<\varepsilon$ 0>, <K>, <n>>

!PLASTIC, YIELD=<Mohr-Coulomb | Drucker-Prager>, HARDEN=BILIENAR, DEPENDENCIES=<0> <粘 着 カ>, <内 部 摩 擦 角 >, <硬 化 係 数>

!HYPERELASTIC, TYPE=NEOHOOKE

<C10>, <D>

! VISCOELASTIC

<せん断緩和弾性率>, <緩和時間>

1.4.24 ソルバー制御

!SOLVER, METHOD=<CG>, PRECOND=<1>, MPCMETHOD=<3>

<反復回数>,<前処理繰り返し数>,<クリロフ>,<目標色数>,<セットアップ再利用></fd><打切り誤差>,<対角成分倍率>,<0.0

解法	備考
CG	
BiCGSTAB	
GMRES	クリロフ部分空間数を設定すること
GPBiCG	
DIRECT	
DIRECTmkl	接触解析で使う
MUMPS	

値	前処理
1,2	SSOR
3	Diagonal Scaling
5	AMG
10	Block $\mathrm{ILU}(0)$
11	Block ILU(1)
12	Block $\mathrm{ILU}(2)$

値 MPC 手法

- 1 ペナルティ法
- 2 MPC-CG 法
- 3 陽的自由度消去法

1.4.25 ソルバー制御 (AMG)

!SOLVER, METHOD=<CG>, PRECOND=5, MPCMETHOD=<3>

< 反復回数>, < 前処理繰り返し数>, < クリロフ>, < 目標色数>, < セットアップ再利用>

<打切り誤差>,<対角成分倍率>,0.0

<粗グリッドソルバ>, <スムーザー>, <マルチグリッドサイクル>, <最大レベル>, <コースニングスキ

1.4.26 ポスト処理 (ParaView 用データ出力)

!VISUAL

 $!\,output_type\!\!=\!\!\!V\!T\!K$

1.4.27 ポスト処理 (BMP 画像出力)

!VISUAL, method=PSR

 $!\,surface_num{=}1$

!surface

!surface_style=1

 $!\, display_method {=} 1$

 $! color_comp_name\!\!=\!\!STRESS$

!color_comp=7

!x_resolution=800

!y_resolution=600

!output_type=BMP

1.4.28 非線形解析

解析の種類	関連するカード
静解析	!SOLUTION, TYPE=NLSTATIC!STEP
動解析	!DYNAMIC, TYPE=NONLINEAR!STEP
接触解析	!CONTACT!CONTACT_ALGO!STEP
材料非線形	!PLASTIC!HYPERELASTIC!VISCOELASTIC!CREEP