1 Ćwiczenia 7.10.2022

Aksjomat Archimedesa. Dla każdej liczby rzeczywistej a istnieje liczba naturalna n taka, że n > a.

$$\forall_{a \in \mathbb{R}} \exists_{n \in \mathbb{N}} \ n > a$$

Lemat 1. Niech $A \subseteq \mathbb{R}$ będzie zbiorem ograniczonym z góry, a M pewnym ograniczeniem górnym zbioru A. Wówczas równoważne są zdania:

- (i) $M = \sup A$;
- (ii) $\forall_{\varepsilon>0} \exists_{a \in A} \ a > M \varepsilon$.

Lemat 2. Niech $A \subseteq \mathbb{R}$ będzie zbiorem ograniczonym z dołu, a m pewnym ograniczeniem dolnym zbioru A. Wówczas równoważne są zdania:

- (i) $m = \inf A$;
- (ii) $\forall_{\varepsilon > 0} \exists_{a \in A} \ a < m + \varepsilon$.

Wnioski.

- (I) Jeśli 0 < a < b. to istnieje $n \in \mathbb{N}$ takie, że $n \cdot a > b$.
- (II) Jeśli $x_1 < x_2$, to istnieją $\varepsilon_1, \varepsilon_2 > 0$ takie, że $(x_1 \varepsilon_1, x_1 + \varepsilon_1) \cap (x_2 \varepsilon_2, x_2 + \varepsilon_2) = \emptyset$
- (III) $\forall_{h>0,a\in\mathbb{R}} \exists_{k\in\mathbb{N}} (k-1)h \leqslant a < kh$
- (IV) $\forall_{a < b} \forall_{a,b \in \mathbb{R}} \exists_{c \in \mathbb{R}} \exists_{c' \in \mathbb{R} \setminus \mathbb{Q}} \ c, c' \in (a,b)$

Lemat 3. Dla dowolnych podzbiorów $A, B \subseteq \mathbb{R}$ mamy

- (a) $\sup (A + B) = \sup A + \sup B$,
- (b) $\sup (A B) = \sup A \inf B$.

Lemat 4. Dla niepustego podzbioru $A \subseteq mamy \sup (-A) = -\inf A$

Definicja. O ciągu zbiorów A_1, A_2, \ldots mówimy, że jest zstępujący, jeśli $A_1 \supseteq a_2 \supseteq \ldots$

Twierdzenie 1. Jeśli I_1, I_2, \ldots jest ciągiem zstępujących przedziałów domnkniętych prostej rzeczywistej to $\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$.

2 Ćwiczenia 21.10

Lemat 5. Dane są dwa ciągi (x_n) , (y_n) . Jeśli (y_n) jest ograniczony oraz $x_n \to 0$, wówczas $x_n y_n \to 0$.

Twierdzenie 2. Jeśli $a_n \to g$, to $A(a_1, a_2, \dots, a_n) = \frac{a_1 + a_2 + \dots + a_n}{n} \to g$.

3 Ćwiczenia 25.10

Twierdzenie o przenikających się ciągach. Niech dane będą trzy ciągi liczb rzeczywistych $(x_n), (y_n)$ oraz (c_n) . Jeśli $x_n \to x$ i $y_n \to y$ oraz $c_n = \frac{x_1y_n + \ldots + x_ny_1}{n}$, wówczas $c_n \to xy$.

4 Ćwiczenia 28.10.2022

Lemat 6. Niech $S = \{\lim_{n\to\infty} x_n : (x_{n_k}) - podciąg zbieżny, ciągu <math>(x_n)$, do granicy skończonej lub nie $\}$. $Jeśli +\infty, -\infty \notin S$, to zbiór S jest ograniczony, więc zawiera podciąg zbieżny, zatem $S \neq \emptyset$.

Lemat 7. Przyjmując oznaczenia jak powyżej:

- (a) $Je\acute{s}li \infty \notin S$, to $\inf S \in \mathbb{R}$ lub $\inf S = +\infty$,
- (b) $Je\acute{s}li + \infty \notin S$, to $\sup S \in \mathbb{R}$ $lub \sup S = -\infty$.

Lemat 8. Jeśli (a_n) jest ograniczony z góry/dołu, to $\sup S/\inf S \in S$.

Definicja.

Lemat subaddytywny Fekete. Jeśli ciąg (x_n) spełnia warunek: $x_{n+m} \leqslant x_n + x_m$, to istnieje granica $\lim_{n\to\infty}\frac{x_n}{n}$ i co więcej

$$\lim_{n\to\infty}\frac{x_n}{n}=\inf\{\frac{x_n}{n}, n\in\mathbb{N}\}.$$