Math 2301

* From last time: functions

A function is a relation R SXT satisfier two additional properties:

- (1) If $(s,t_1) \in \mathbb{R}$ and $(s,t_2) \in \mathbb{R}$ for some $s \in S$ and $t_1,t_2 \in T$, then $t_1 = t_2$ (unique "output" for each "input" that appears)
- (2) [Conventionally] for every SES, there is a tet such that (sit) ER.

 (for any "input" s, there is an output" t)

In this case, we say that S is the domain t T is the codomain, and usually write functions as $f: S \rightarrow T$.

** Example

square = x2: IN __o IN

* Graphs

- Used to organise information visually
- Also an excellent computational tool.
- ** Definition: A directed graph consists of a set V of "vertices"/"nodes", and a binary relation on V, called E \(\subseteq V \times V\). The elements of E are ordered pairs of vertices, called "edges".

* * Drawing directed graphs:

$$E = \{(1,1), (1,2), (2,3), (2,5), (3,2), (4,1), (4,3), (4,5)\}$$

* Warning: Renumbering the vertices in a drawing, you'll get a graph that bods the same, but has a different V and a different E.

Technically, you'll get a different graph, but it's isomorphic to the first one.

More about this later.

no Many (V,E) pairs give you the same drawing

- At the moment, our definition says there'll be at most one edge in a given direction between two vertices.

* * The adjacency matrix

Recall: A matrix is a rectangular away of numbers (typically).

Consider a graph G = (V, E). Choose an $1 \cdot \frac{Q_2}{\sqrt{2}}$ ordering on the set V.

Let n be the number of elements in V.

Consider an (n x n) matrix rows of columns

Detn: Let (V,E) be a graph with n vertices (ordered). The adjacency matrix is an $n \times n$ matrix whose $(i,j)^{th}$ entry is the number of edges from i to j.

* Properties of relations (vis-a-vis the adjacency matrix).

** Fix a set S, and the relation R will be on S

** Reflexivity: A relation is called reflexive if

for each $s \in S$, the pair $(s,s) \in R$

*** Example $S = \{1,2,3\}, R = \{(1,1), (2,2), (3,3)\}$ "7=y"

*** Graph

Q [workshop]

What property

Q Q should the
adjacency matrix

Sah's fy?

** Symmetry

Defn: R is symmetric if whenever $(x,y) \in R$,

we have $(y,x) \in R$.

*** Example

S = {0,1,2}; (x,y) ER if 2+y is even.

(Equivalently, y+x is even, because x+y=y+x.)

Q: [workshop]

O Q

Adjacency matrix?

** Anti-symmetry [bad name "]

Defn: R is anti-symmetric if whenever $(x,y) \in \mathbb{R}$ and $x \neq y$, the pair $(y,x) \notin \mathbb{R}$.

Warning: A relation can be both symmetric and anti-symmetric! — workshop.

*** Example S= {0,1,23, (x,y) ER if 26y.

*** Graph

** Being a function

f: $\{1,2,3\}$ $\rightarrow \{1,2,3\}$ f(x) = 4-x

*** Graph

2