Lectures et exercices

ECN 6578, Hiver 2021

William McCausland

2021-03-08

Cours 1, le 18 janvier

Sujets

- 1. Notation pour les rendements des actifs et des portfeuilles
- 2. Fonctions linéaires des variables aléatoires, mélanges des lois.
- 3. La loi des espérances itérées, avec applications
- 4. L'inégalité de Jensen, avec applications

Exercices théoriques

- 1. Pour les deux placements décrits à la diapo "Fonctions linéaires vs mélanges, un exemple", calculez la moyenne et la variance du rendement.
- 2. Étudiez la preuve du théorème de variance totale et prouvez le théorème de covariance totale : pour variables aléatoires X, Y et Z telles que les moments suivants existent,

$$Cov[X, Y] = E[Cov[X, Y|Z]] + Cov[E[X|Z], E[Y|Z]].$$

- 3. Soit Z une variable aléatoire qui prend la valeur 1 avec probabilité 1/2 et la valeur -1 avec probabilité 1/2. Soit (X,Y) un vecteur aléatoire avec la loi conditionnelle sachant Z suivante: $(X,Y)|Z \sim N((Z,-Z),I)$, où I est la matrice identitaire 2×2 . Trouvez Cov[X,Y].
- 4. Trouvez l'aplatissement du mélange suivant de deux lois gaussiennes, chacune avec probabilité 0.5: N(0,0.9) et N(0,1.1).

Exercices avec R (Travail préliminaire, pas à remettre)

- 1. Téléchargez R et R Studio.
- 2. Créez un fichier HTML à partir du gabarit R Markdown.

Cours 2, le 25 janvier

Sujets

- 1. Log rendements, rendements multi-période, annualisation
- 2. Asymmétrie et aplatissement, non-normalité des rendements
- 3. Stationnarité et covariance-stationnarité
- 4. Non-corrélation versus indépendence.
- 5. Autocorrélation
- 6. Faits empiriques

Lectures préparatoire (à faire avant le cours) Dans le livre de Tsay, 3e édition

- 1. Dans la section 1.1, "Asset Returns"
 - a. Multiperiod simple returns
 - b. Continuous compounding
 - c. Continuously compounded returns
- 2. Dans la section 1.2, "Distributional properties of returns"
 - a. Moments of a random variable (jusqu'à la fin de la page 9)
- 3. Dans la section 2.2, "Correlation and Autocorrelation"
 - a. Introduction (sans nom)
 - b. Autocorrelation

Autres lectures

- 1. L'article de Cont (2001) que j'ai mis sur StudiUM.
- 2. Tsay, 3e édition:
 - a. 1.2.1 (lois statistiques et leurs moments)
 - b. 1.2.2 (la loi des rendements)
 - c. 1.2.3 (rendements multivariés)
 - d. 1.2.5 (propriétés empiriques des rendements)
 - e. 2.1 (stationnarité)
 - f. 2.2 (corrélation et la fonction d'autocorrélation)
 - g. 2.3 (le bruit blanc et les séries temporelles linéaires)

Exercices

- 1. La v.a. X suit une loi qui est un mélange de deux lois gaussiennes, chacune avec probabilité 0.5 : $N(\mu, \sigma^2)$ et $N(-\mu, \sigma^2)$. Calculez l'aplatissement K_x et $\lim_{\sigma^2 \downarrow 0} K_x$.
- 2. Trouvez l'asymétrie et l'aplatissement d'un mélange général de deux v.a. gaussiennes. Le site suivant donne les quatres premiers moments non centraux d'une v.a. $N(\mu, \sigma^2)$: https://fr.wikipedia.org/wiki/Loi normale#Moments.
- 3. Le prix d'un actif le 4 janvier est de 14.50 dollars. Le prix de l'actif le 15 fevrier est de 13.15. Quel est le rendement simple annualisé et le log rendement annualisé?
- 4. On observe un échantillon X_1, \ldots, X_T , où $X_t \sim \operatorname{iid} N(\mu, \sigma^2)$. Si on fait les tests 1 et 2 de la diapo "Attention : tests multiples!" quelle est la probabilité d'au moins un rejet, comme fonction de α ?

Exercices avec R Travail, cours du 25 janvier

- 1. Téléchargez le fichier des données d-3m7008.txt et faites la graphique des rendements journaliers de l'action 3M avec la commande plot, option 'l' (L minuscule).
- 2. Faites un test de l'hypothèse que les rendements sont iid gaussiens, avec la statistique test Jarque-Bera. Calculez les valeurs critiques en utilisant la fonction de quantile (comme qnorm ou qchisq) de la loi asymptotique de la statistique test sous l'hypothèse nulle.

Cours 3, le 1 février

Sujets

- 1. Le bruit blanc et des séries temporelles linéaires
- 2. Le modèle AR(p)
- 3. Le modèle MA(p)
- 4. Le modèle ARMA(p,q)

Lectures préparatoire

- 1. Tsay, 3e édition:
 - a. 2.3
 - b. 2.4 Intro (avant 2.4.1)
 - c. 2.5 Intro (avant 2.5.1)
 - d. 2.6 Intro (avant 2.6.1)

Autres lectures

- 1. Tsay, 3e édition:
 - a. 2.4 (modèles AR)
 - b. 2.5 (modèles MA)
 - c. 2.6 (modèles ARMA)
 - d. 2.8.1 et 2.8.2 (pour faire l'exercise 2.4)

Exercices

- 1. Ecrivez les équations Yule-Walker pour un process AR(3) et pour un processus ARMA(1,1).
- 2. Trouvez la fonction d'autocorrélation pour un processus MA(3).
- 3. Considérez le process AR(3) suivant :

$$r_t = 1.9r_{t-1} - 1.4r_{t-2} + 0.45r_{t-3} + a_t$$
.

- a. Il y a une racine réelle du polynôme caractéristique du processus : 0.9^{-1} . Trouvez les autres racines.
- b. Est-ce que la condition de stationnarité tient?
- 4. Trouvez ψ_1, ψ_2, ψ_3 de la représentation MA infinie pour un ARMA(1,2) général.

Exercices avec R Travail, cours du 1 février

1. Considérez le process ARMA(3,1) suivant :

$$r_t = 1.9r_{t-1} - 1.4r_{t-2} + 0.45r_{t-3} + a_t - 0.3a_{t-1}.$$

- a. Simulez le séries pour T = 500 observations.
- b. Faites la graphique de la fonction d'autocorrélation ρ_k de la population, pour $k=1,\ldots,25$
- c. Faites la graphique de la fonction d'autocorrélation $\hat{\rho}_k$ de l'échantillon, pour $k=1,\ldots,25$.
- d. Estimez les paramètres d'un modèle ARMA(3,1) en vous servant de l'échantillon que vous avez tiré. Donnez des estimations ponctuelles avec leurs écarts-types.
- 2. Tsay, Exercice 2.4. Lisez les sections 2.8.1 et 2.8.2 sur la saisonnalité.

Cours 4, le 8 février

Sujets

- 1. Prévision avec un modèle ARMA(p,q)
- 2. Modèles pour la moyenne conditionnelle, modèles pour la variance conditionnelle.
- 3. Modèles ARCH et GARCH
 - a. propriétés théorique, moments
 - b. simulation
 - c. évaluation de la log-vraisemblance

Lectures préparatoires

- 1. Tsay, 3e édition
 - a. 3.1
 - b. 3.2

Autres lectures

- 1. Tsay 3e édition:
 - a. Sections 1.2.2 (Distributions des rendements)
 - b. Sections 1.2.4 (Fonction de vraisemblance des rendements)
 - c. Section 3.3 (Construction des modèles)
 - d. Section 3.4.1 (Propriétés des modèles ARCH)
 - e. Section 3.4.2 (Faiblesses des modèles ARCH)

Exercices

- 1. Mettons que r_t suit un modèle ARMA(1,3) avec moyenne zéro. Au moment t, trouvez les prévisions de r_{t+1} et de r_{t+2} qui minimisent l'erreur moyenne carrée. Trouvez la variance de l'erreur de prévision dans les deux cas
- 2. Mettons que r_t suit un GARCH(1,1) gaussien avec moyenne zéro. Calculez la variance, l'asymétrie et l'aplatissement de r_t . Vous pouvez vérifier la variance et l'aplatissement en comparant vos résultats aux résultats à la page 132 de Tsay.

Exercices en R Travail, cours du 8 février

- 1. a. Prenez le code de la diapo 'Simulation du modèle ARCH(3)' et modifiez-le pour simuler un GARCH(1,1) gaussien à moyenne zéro pendant T=1000 périodes. Utilisez les valeurs des paramètres $\alpha_0=0.000084, \, \alpha_1=0.1213, \, \beta_1=0.8523.$
 - b. Calculez la variance, l'asymétrie et l'aplatissement de l'échantillon. Suggestion : comparez à la variance, à l'asymétrie et l'aplatissement de la population obtenues dans les exercices théoriques.
 - c. Faites la graphique de r_t et de σ_t^2 .

Cours 5, le 15 février

Sujets

- 1. La théorie des estimateurs maximum de vraisemblance
- 2. Évaluation de la vraisemblance des modèles GARCH
- 3. Modèle EGARCH et l'effet de levier
- 4. Introduction à l'inférence bayésienne
- 5. Modèles de volatilité stochastique

Lectures préparatoires

- 1. Dans Tsay, 3e édition:
 - a. 3.5 intro (avant 3.5.1) (Modèle GARCH)
 - b. 3.8 intro, 3.8.1 (Modèle EGARCH)
- 2. Au site web suivant : https://fr.wikipedia.org/wiki/Maximum_de_vraisemblance
 - a. Sections Exemple, Principe, Définitions, Propriétés, Exemples (au moins l'exemple Poisson)

Autres lectures

- 1. Dans Tsay, 3e édition:
 - a. 3.5.1 (exemple GARCH)

Exercices

- 1. Trouvez la moyenne et la variance de $\ln \sigma_t^2$ pour un modèle EGARCH(1,1) avec $\theta = 0$ et $\epsilon_t \sim N(0,1)$.
- 2. Faites des prévision du rendement r_{T+1} pour une modèle AR(1)-GARCH(1,1). Quelle est la variance conditionnelle des erreurs de prévision? Exprime le résultat en termes des paramètres, de r_T et de σ_T^2 .

Exercices avec R Travail, cours du 15 février

- 1. Pour cette question, utilisez les données dans le fichier d-3m7008.txt (action 3M, rendements journaliers, 1970-2008). Je recommande le paquet fGARCH, utilisé pour les démonstrations du cours 5. Pour tous les modèles suivants, calculez la valeur maximale de la log-vraisemblance. Quel est le meilleur modèle selon le critère AIC? Pour ce modèle, reportez les estimations MV (maximum de vraisemblance) des paramètres et leurs écarts-types asymptotiques et faites la graphique de la séquence de volatilités estimées.
 - a. GARCH(1,1), distribution conditionnelle gaussienne.
 - b. GARCH(1,1), distribution conditionnelle t de Student.
 - c. ARCH(2), distribution conditionnelle t de Student.
 - d. GARCH(2,1), distribution conditionnelle t de Student.
 - e. AR(1)-GARCH(1,1), distribution conditionnelle t de Student.

Cours 6, le 8 mars

Sujets

- 1. Un modèle de volatilité stochastique
- 2. L'analyse bayésienne
- 3. La computation bayésienne

Lectures préparatoires

- 1. Dans Tsay, 3e édition:
 - a. 3.12 (Modèle de volatilité stochastique)
 - b. 12.3 intro, 12.3.1 (inférence bayésienne, lois postérieures)

Autres lectures

- 1. Dans Tsay, 3e édition:
 - a. 12.3.2 (lois a priori conjuguées)
 - b. 12.4.1, 12.4.2 Algorithme Metropolis-Hastings

Exercices

- 1. Trouvez la loi *a posteriori* quand les observations sont iid Poisson(λ) et la loi *a priori* de λ est la loi Gamma($\bar{\alpha}, \bar{\beta}$), où $\bar{\alpha}$ et $\bar{\beta}$ sont des hyperparamètres fixes.
- 2. Trouvez la loi a posteriori conditionnelle de h dans le modèle gaussien.
- 3. Prenez le modèle de volatilité stochastique. L'exercice est de trouver comment construire la densité prédictive $f(y_{T+1}|y_1,\ldots,y_T)$ sur une grille de points.
 - a. Montrez que

$$f(y_{T+1}|y_1,\ldots,y_T) = E[f(\log h_{T+1}|\log h_T,\theta,y_1,\ldots,y_T) \cdot f(y_{T+1}|\log h_{T+1},\log h_T,\theta,y_1,\ldots,y_T)],$$

où l'espérance est par rapport à la loi conditionnelle de (θ, h_T) sachant y_1, \ldots, y_T .

- b. Écrivez les densités $f(\log h_{T+1}|\log h_T, \theta, y_1, \dots, y_T)$ et $f(y_{T+1}|\log h_{T+1}, \log h_T, \theta, y_1, \dots, y_T)$ en utilisant les équations d'état et d'observation.
- c. Comment peut-on approximer la densité prédictive $f(y_{T+1}|y_1,...,y_T)$ sur une grille à partir d'un échantillon de la loi de θ , $\log h_T|y_1,...,y_T$? Indice: comme étape intermédiaire, créez un échantillon de la loi de θ , $\log h_T$, $\log h_{T+1}|y_1,...,y_T$.

Exercices avec R

1. Dans le fichier postsim.txt se trouve un échantillon MCMC qui représente la loi a posteriori des paramètres α_0 , α_1 et ω_v , ainsi que la log-volatilité log h_T du modèle de volatilité stochastique décrit dans le cours. L'échantillon des données utilisé pour l'analyse comprend 3139 log rendments du taux d'échange entre le dollar canadien et l'euro, du 3 janvier 2000 au 4 avril 2012. Faites la graphique de la densité prédictive de r_{T+1} sur une grille de points dans l'intervalle [-0.01, 0.01].

Cours 7, le 15 mars

Sujets

- 1. Des modèles à facteurs
- 2. Le modèle CAPM
- 3. Le modèle APT
- 4. Un modèle à trois facteurs

Lectures préliminaires

1. CLM 5.0, 5.1

Autres lectures

- 1. CLM 5.2, 5.3
- 2. CLM 5.7.1 (anomalies)
- 3. CLM 6.0, 6.1 (APT)
- 4. Fama et French (1993), "Common risk factors in the returns on stocks and bonds", Journal of Financial Economics.

Exercices

1. Prouvez les 5 résultats des diapos 16 et 17, « Résultats I » et « Résultats II »

Voici des suggestions pour les 5 résultats :

- 1. Le résultat dépend de l'unicité de la solution $g + \mu_p h$. Si vous n'en servez pas, la solution est incorrecte.
- 2. Exprimez $\sigma_p^2 \equiv (g + \mu_p h)\Omega(g + \mu_p h)$ et minimisez. Écrivez le résultat en terms de μ , Ω . 3. La covariance entre le rendement du portefeuille $g + \mu_p h$ et celui du portefeuille $g + \mu_q h$ est $(g + \mu_p h)$ $\mu_p h$) $\Omega(g + \mu_q h)$.
- 4. Servez-vous du troisième résultat pour trouver le μ_{op} unique, en termes de μ_p , qui donne $\text{Cov}[R_p, R_{op}] =$
- 5. La covariance entre le rendement du portefeuille p sur le FMV et le portefeuille arbitraire ω est $(g + \mu_p h)\Omega\omega$. Écrivez-la en forme $\lambda \mu_i + \gamma$, où $\mu_i = E[R_i]$, et λ et γ sont des fonctions de μ_p, A, B, C, D . Écrivez l'équation pour deux cas spéciaux, i = op et i = p, pour obtenir (5.2.19) dans le manuel CLM.