Plan:

- 1. Work through two conceptual examples
- 2. Explain screeplots and loadings

PCA: Examples

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science sellis@ucsd.edu

Stock Price returns for Chevron (CVX) and ExxonMobil (XOM)

PC1 and PC2 are the dotted lines on the plot

Figure 7-1. The principal components for the stock returns for Chevron and ExxonMobil

Principal Component Analysis (PCA)

But....PCA shines when you're dealing with high-dimensional data. So we have to move *beyond* two predictors to many predictors....

Step 1: Combine all predictors in linear combination

Step 2: Assign weights that optimize the collection of the covariation to the first PC (Z_1) (maximizes the % total variance explained)

Step 3: Repeat Step 2 to generate new predictor Z_2 (second PC) with different weights. By definition Z_1 and Z_2 are uncorrelated. Continue until you have as many new variables (PCs) as original predictors

Step 4: Retain as many components as are needed to account for *most* of the variance.

S&P 500 Data: 5648 days (1993-2015) x 517 stocks

Į.	ADS	C	4	MSFT	RHT	CTSH	CSC	EMC	IBM	XRX	ALTR	ADI	AVGO	BRCM	FSLR	INTC	LLTC	MCHP	MU	NVDA
1/29/93		0 0	.06012444	-0.0220998		0	0 0.0188974	0.00736807	0.0921652	0.25914009	-0.0071053	-0.0157849		0	0	0 -0.0504878	-0.0898696	0	0.03702057	0
2/1/93		0	-0.180389	0.02762115		0	0 0.0188888	0.01842489	0.11520651	-0.1007745	0.06389288	-0.0157929		0	0	0 0.09536733	0.0449348	0	0.03702038	0
2/2/93		0 -	0.1202566	0.03589987		0	0 -0.075572	0.02948172	-0.0230413	0.02879553	-0.0141924	0.0473628		0	0	0 0	0.0674022	0	0.12340155	0
2/3/93		0	0.0601242	-0.024857		0	0 -0.15112	0.00368875	-0.2534543	-0.04319	-0.0071053	0.20523612		0	0	0 -0.050495	0.0224674	0	-0.0123403	0
2/4/93		0 -	0.3607697	-0.0607567		0	0 0.1133502	-0.0221136	0.0698618	0	-0.0070962	-0.0315699		0	0	0 0	0.0224674	0	-0.0740409	0
2/5/93		0 0	.03005777	0.09389247		0	0 0.0944528	-0.0479066	0.04657454	0.17276006	-0.0212976	-0.0631478		0	0	0 -0.0476873	-0.0674022	0	-0.0123403	0
2/8/93		0 0	.03006643	-0.0607498		0	0 -0.113350	-0.0110568	0.11643635	-0.04319	0.00709618	0		0	0	0 -0.0196321	-0.1235743	0	-0.0617008	0
2/9/93		0 -	0.0901902	-0.063521		0	0 -0.132239	-0.0147456	0.06986181	-0.115169	0.04969143	-0.0157929		0	0	0 -0.0112235	0.0224674	0	0	0
2/10/93		0 0	.12025657	0.02209981		0	0 0.0944528	0.01474557	-0.2561599	0.01439448	0.02838473	0.01578495		0	0	0 0.04487956	0.11233699	0	0.07404095	0
2/11/93		0 0	.03005825	-0.0220927		0	0 -0.018897	0.01474556	-0.1397236	-0.04319	0.02129762	-0.0315699		0	0	0 -0.0532953	0.06740222	0	-0.0246804	0
2/12/93		0 -	0.0901901	-0.0358999		0	0 -0.037786	-0.0073681	-0.0698618	-0.1871546	0	-0.0473628		0	0	0 -0.0336561	-0.112337	0	-0.0370204	0
2/16/93		0 -	0.6313411	-0.0607497		0	0 -0.037786	-0.0479066	-0.0931491	-0.04319	-0.0283938	-0.1262955		0	0	0 -0.098175	-0.1460417	0	-0.0246803	0
2/17/93		0 0	.12025657	-0.0165712		0	0 -0.170025	-0.0110568	0.04657453	-0.08638	-0.0142015	0.03157785		0	0	0 0.04487955	0	0	-0.0123403	0
2/18/93		0 -	0.1803808	0.00828562		0	0 -0.056675	0.00368875	-0.0931491	-0.08638	0	-0.0157849		0	0	0 -0.0168315	0.0224674	0	0.03702056	0
2/19/93		0 0	.03006595	-0.0469427		0	0	0.00736807	-0.0232873	0.115169	0.01419237	0.03157785		0	0	0 0.10378311	0.15727183	0	0.14808196	0
2/22/93		0 0	.03005825	-0.0662782		0	0 -0.132247	-0.0184249	0.13972361	0	0.02839382	-0.0631557		0	0	0 -0.0168317	-0.0674022	0	0	0
2/23/93		0 -	0.0300583	0.03314266		0	0	-0.0479066	-0.0698618	-0.1439645	-0.0070962	0.03157785		0	0	0 -0.0336631	-0.0337047	0	-0.0493606	0
2/24/93		0 0	.15031459	0.10769942		0	0.0188888	0.04421782	0.1397236	0.08638003	0.00709618	0		0	0	0 0.11781411	-0.0224674	0	0.09872137	0
2/25/93		0 0	.15032277	0.04142827		0	0.0188888	-0.0110568	0.37259628	0	0.02839382	0		0	0	0 0.0112163	0.15727183	0	-0.0370205	0
2/26/93		0 -	0.0300659	-0.0193286		0	0 -0.018888	0.01105682	0.06986181	0.05759106	0	0.01578495		0	0	0 -0.028055	-0.0224674	0	-0.074041	0
3/1/93		0	-0.180381	-0.0497068		0	0 -0.094461	-0.0073681	0	0.04358505	0.00709618	0.09472561		0	0	0 -0.0336631	0.0224674	0	0	0
3/2/93		0	0	0.06351413		0	0 0.1511365	0.00368875	-0.0698618	0.116229	0	0.11051053		0	0	0 0.09537435	-0.0449348	0	0.12340155	0
3/3/93		0 0	.12025658	0		0	0 -0.056675	0.03684977	0.16301088	0.02905891	-0.0070962	0		0	0	0 0.01402383	-0.112337	0	-0.0370204	0
3/4/93		0 -	0.1503146	-0.0220927		0	0 0.037786	0.00367932	-0.0698618	-0.1452879	-0.0070962	-0.015785		0	0	0 -0.0252473	-0.0674022	0	0.01234016	0
3/5/93		0 0	.03005825	-0.0165714		0	0 -0.094461	0.00368875	-0.0232873	0	0.03549001	0		0	0	0 -0.0617041	0.0449348	0	0.02468042	0
3/8/93		0 0	.06012444	0.02209275		0	0 0.0188888	-0.025793	0.11643634	0.21792524	0	0.04736279		0	0	0 0.06731932	0.13480441	0	0.09872114	0
3/9/93		0 0	.09019015	0.00552151		0	0 0.0944614	0.00736807	0.09314908	-0.0290523	-0.0070962	-0.0157849		0	0	0 0.0112163	0.0898696	0	0	0
3/10/93		0 0	.03006595	0.01104991		0	0	0.01105681	-0.1862981	0.02905891	-0.0141924	-0.0157849		0	0	0 -0.0196321	-0.0449348	0	0	0
3/11/93		0 -	0.0300583	0.02761408		0	0 0.2267005	3 0	-0.1862982	-0.0581112	0.00709618	0.06314774		0	0	0 -0.0196392	0.01123011	0	0	0
3/12/93		0	0	0.06627822		0	0 -0.018897	0.01474556	0.30273448	-0.1452813	0.02839381	0.06314774		0	0	0 0.02524749	0.01123729	0	0.13574153	0

For this example: we'll focus on 16 top companies

Screeplot

The vernacular definition of "scree" is an accumulation of loose stones or rocky debris lying on a slope or at the base of a hill or cliff.

Loading of PCs 1-5

PC1: Overall stock market trend

PC2: Price change of energy stocks

PC3: movements of Apple and CostCo.

PC4: movements of Schlumberger to other stocks

PC5: Financial companies

How many PCs to select?

Option 1: Visually through the **screeplot**

Option 2: % Variance explained (i.e. 80% variance explained)

Option 3: Inspect loadings for an intuitive interpretation

Option 4: Cross-validation

PCA : Key Ideas

- 1. PCs are linear combinations of the predictor variables (numeric data only)
- 2. Calculated to minimize correlation between components (minimizes redundancy)
- 3. A limited number of components will typically explain most of the variance in the outcome variable
- 4. Limited set of PCs can be used in place of original predictors (dimensionality reduction)

For more on PCA:

- https://blog.bioturing.com/2018/06/14/principal-component-analysis-explained-simply/
- http://setosa.io/ev/principal-component-analysis/

Case Study: Diet in the UK

1/ foods x 4 countries

PCA: Diet in the K

Can already tell that N Ireland is distinct

If we look back at the raw data Northern Ireland, eats way more fresh potatoes and way fewer fresh fruits, cheese, & fish. This reflects real world geography...

Case Study: Genetics and Geography

Letter Published: 31 August 2008

Genes mirror geography within Europe

John Novembre [™], Toby Johnson, Katarzyna Bryc, Zoltán Kutalik, Adam R. Boyko, Adam Auton, Amit Indap, Karen S. King, Sven Bergmann, Matthew R. Nelson, Matthew Stephens & Carlos D. Bustamante

The Data: 1,387 Europeans x 500,000 SNPs

SNP (Single Nucleotide Polymorphism)

- Reminder: Your DNA is made up of four bases: G, C, T, & As
- A **SNP** is a position in one's DNA that varies between individuals (appears in at least 1% of the population)
 - This results from normal human variation
 - Some contribute to disease, but many are just differences between humans
 - These are used by companies like 23andMe and Ancestry.com

The Data: 1,387 Europeans x 500,000 SNPs

Step 1: Measure genotype (GCTA) at 500,000 positions (SNPs) along the genome in 1387 European individuals

Step 2: Calculate PCs from 500,000 SNPs

Step 3: Plot PC1 and PC2 (each point is an individual)

Step 4: Compare to the map of Europe

PC1 is East-West; PC2 is North-South

Dimensionality Reduction with PCA: Pros & Cons

Pros:

- Helps compress data; reduced storage space.
- reduces computation time.
- helps remove redundant features (if any)
- Identifies outliers in the data

Cons:

- may lead to some amount of data loss.
- tends to find linear correlations between variables, which is sometimes undesirable.
- fails in cases where mean and covariance are not enough to define datasets.
- may not know how many principal components to keep
- highly affected by outliers in the data