(7M)

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2019 MATHEMATICS-II (MM)

(Com. to CE, EEE, ME, AE, AME, Bio-Tech, Chem E, Metal E, Min E, PCE, PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)

- 2. Answering question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART –A

- 1. a) Find the interval of the existence of root of logx-cosx = 0. (2M)
 - b) Find the relation between E and δ . (2M)
 - c) Write formula for Simpson's 3/8th rule. (2M)
 - d) Write Dirichlet conditions on Fourier series. (2M)
 - e) Write the shifting theorem in Fourier transforms. (2M)
 - f) Write the linear solution of heat (one dimensional) equations. (2M)
 - g) Write the procedure to solve ODE using Euler's method. (2M)

PART-B

- 2. a) Find the Real root of the equation $x^3 + 2x^2 + 10x 20 = 0$ using Newton Raphson (7M) method.
 - b) Find the Real root of the equation $xe^x = \cos x$ using Bisection method. (7M)
- 3. a) Find y(10) from the following data. (7M)

x	5	6	9	11
y	12	13	14	16

b) Find y(8) from the following data.

X	4	5	6	7
у	4	10	12	20

- 4. a) Evaluate $\int_{0}^{5} \frac{dx}{4x+5}$ using (i) Simpson's 3/8th rule with h = 0.5 (ii) Trapezoidal rule (7M) with h = 0.5
 - b) Find y(1.2) given that $y! = \frac{2xy + e^x}{x^2 + xe^x}$, y(1) = 0 by RK method of fourth order (7M)
- 5. a) Find the Fourier series for $f(x) = \begin{cases} -\pi, & -1 < x < 0 \\ \pi, & 0 < x < 1 \end{cases}$ (7M)

- b) Find the Half range cosine series of $f(x) = \begin{cases} x & 0 < x < \frac{\pi}{2} \\ -x & \frac{\pi}{2} < x < \pi \end{cases}$ (7M)
- 6. a) Find the Fourier sine transform of (a) $e^{-ax} \cos ax$ (b) $e^{-ax} \sin ax$ (7M)
 - b) Find the Fourier cosine transform of $f(x) = \begin{cases} x & \text{if } 0 < x < \frac{1}{2} \\ 1 x & \text{if } \frac{1}{2} < x < 1 \\ 0 & \text{if } x > 1 \end{cases}$ (7M)
- 7. a) Solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ given that $u(0, y) = 3e^{-y} e^{-5y}$ (7M)
 - b) Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to (7M)
 - (i) u(0, y) = 0 for all y
 - (ii) u(a, y) = 0 for all y
 - $(iii) u(x, \infty) = 0, 0 \le x \le a$
 - $(iv)\ u(x,0) = kx,\ 0 \le x \le a$