Import the required libraries

In []:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Loading of dataset

In []:

```
df = pd.read_csv("/content/abalone.csv")
```

Out[]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

```
#modifying the dataset
df['Age'] = df.Rings + 1.5
df=df.rename(columns = {'Whole weight':'Whole_weight', 'Shucked weight': 'Shucked_weigh
t','Viscera weight': 'Viscera_weight',
                            'Shell weight': 'Shell_weight'})
df
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 10 columns

In []:

df.shape

Out[]:

(4177, 10)

df.mean

Out[]:

<bound< th=""><th>l met</th><th>hod NDF</th><th>rameadd_</th><th>_numeric_</th><th>operati</th><th>ons.<loo< th=""><th>cals>.mean of</th><th>Sex</th><th>L</th></loo<></th></bound<>	l met	hod NDF	rameadd_	_numeric_	operati	ons. <loo< th=""><th>cals>.mean of</th><th>Sex</th><th>L</th></loo<>	cals>.mean of	Sex	L
ength	Dia	meter	Height Wh	nole_weig	ht Shu	icked_wei	ight \		
0	Μ	0.455	0.365	0.095		0.5140	0.2245		
1	Μ	0.350	0.265	0.090		0.2255	0.0995		
2	F	0.530	0.420	0.135		0.6770	0.2565		
3	Μ	0.440	0.365	0.125		0.5160	0.2155		
4	I	0.330	0.255	0.080		0.2050	0.0895		
• • •	• •	• • •		• • •		• • •	• • •		
4172	F	0.565	0.450	0.165		0.8870	0.3700		
4173	Μ	0.590	0.440	0.135		0.9660	0.4390		
4174	Μ	0.600	0.475	0.205		1.1760	0.5255		
4175	F	0.625	0.485	0.150		1.0945	0.5310		
4176	М	0.710	0.555	0.195		1.9485	0.9455		
	\/:		ala Chall		D:	A			
	VISC	_	ght Shell	_	_	_			
0			1010	0.1500	15				
1			9485	0.0700	7	8.5			
2			L 41 5	0.2100					
3			140	0.1550	10				
4		0.0	395	0.0550	7	8.5			
• • •			• • •	• • •	• • •	• • •			
4172			2390	0.2490	11				
4173		0.2	2145	0.2605	10	11.5			
4174		0.2	2875	0.3080	9	10.5			
4175		0.2	2610	0.2960	10	11.5			
4176		0.3	3765	0.4950	12	13.5			

[4177 rows x 10 columns]>

Visualization

```
#Univarient analysis
plt.hist(df['Age'])
```

Out[]:

```
(array([ 17., 431., 1648., 1388., 329., 228., 100., 29.,
          3.]),
array([ 2.5, 5.3, 8.1, 10.9, 13.7, 16.5, 19.3, 22.1, 24.9, 27.7, 30.
5]),
 <a list of 10 Patch objects>)
```


sns.countplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWa rning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretat ion.

FutureWarning

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa5afa97750>


```
plt.pie(df['Sex'].value_counts(),labels=['Male','Female','Infant'])
```

Out[]:

```
([<matplotlib.patches.Wedge at 0x7fa5af4df050>,
  <matplotlib.patches.Wedge at 0x7fa5af560310>,
  <matplotlib.patches.Wedge at 0x7fa5af4df910>],
 [Text(0.45010440780275796, 1.0036961801643607, 'Male'),
 Text(-1.0848393519507589, -0.18199884741134378, 'Female'),
 Text(0.6099659291018239, -0.9153914820091724, 'Infant')])
```



```
#Bi-varient analysis:
sns.barplot(x = df.Sex,y = df.Whole_weight)
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa5af4f8890>

In []:

```
sns.lineplot(x = df.Age, y = df.Whole_weight, color = 'blue')
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa5af458590>


```
plt.scatter(df.Shucked_weight,df.Shell_weight)
plt.xlabel("Shucked_weight")
plt.ylabel("Shell_weight")
sns.set_style('ticks')
```


In []:

```
#multi varient analysis
corr = df.corr()
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns)
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa5af36fe50>


```
sns.pairplot (df)
plt.show()
```


Descriptive statistics

```
In [ ]:
```

```
df.describe()
```

Out[]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weigh
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.00000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.18059
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.10961
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.00050
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.09350
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.17100
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.25300
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.76000

Handling missing values

In []:

```
df.isnull().sum()
```

Out[]:

Sex 0 Length 0 Diameter 0 Height 0 Whole_weight 0 Shucked_weight 0 Viscera_weight 0 Shell_weight 0 Rings 0 Age 0 dtype: int64

Outliers handling

In []:

```
outliers=df.quantile(q=(0.25,0.75)) outliers
```

Out[]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329
4							•

```
q1 = df.Age.quantile(0.25)
q2 = df.Age.quantile(0.75)
q3 = q2 - q1
lower_limit = q1 - 1.5 * q3
df.median(numeric_only=True)
```

Out[]:

Length	0.5450
Diameter	0.4250
Height	0.1400
Whole_weight	0.7995
Shucked_weight	0.3360
Viscera_weight	0.1710
Shell_weight	0.2340
Rings	9.0000
Age	10.5000
d+ C1+ C4	

dtype: float64

In []:

```
df['Age'] = np.where(df['Age'] < lower_limit, 7, df['Age'])</pre>
sns.boxplot(x=df.Age,showfliers = False)
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa5ab05f090>

Encoding

```
In [ ]:
```

```
from sklearn.preprocessing import LabelEncoder
encode = LabelEncoder()
df.Sex = encode.fit_transform(df.Sex)
df
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 10 columns

Independent and Dependent Variables

```
#independent variable
x = df.iloc[:,:8]
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 8 columns

```
#dependent variable
y = df.iloc[:,9:]
У
```

Out[]:

	Age	
0	16.5	
1	8.5	
2	10.5	
3	11.5	
4	8.5	
4172	12.5	
4173	11.5	
4174	10.5	
4175	11.5	
4176	13.5	
4177 r	ows ×	1 columns

1.84048058]]

Scaling

```
In [ ]:
from sklearn import preprocessing
standardisation = preprocessing.StandardScaler()
new_x = standardisation.fit_transform(x)
print(new_x)
[[ 1.15198011 -0.57455813 -0.43214879 ... -0.60768536 -0.72621157
  -0.63821689]
 [ 1.15198011 -1.44898585 -1.439929 ... -1.17090984 -1.20522124
  -1.21298732]
 [-1.28068972 0.05003309 0.12213032 ... -0.4634999 -0.35668983
  -0.20713907]
 [ 1.15198011 0.6329849
                          0.67640943 ... 0.74855917 0.97541324
  0.49695471]
 [-1.28068972 0.84118198 0.77718745 ... 0.77334105 0.73362741
   0.41073914]
 [ 1.15198011 1.54905203 1.48263359 ... 2.64099341 1.78744868
```

```
In [ ]:
```

```
min max scaler = preprocessing.MinMaxScaler()
new_x = min_max_scaler.fit_transform(x)
print(new_x)
[[1.
             0.51351351 0.5210084 ... 0.15030262 0.1323239 0.14798206]
[1.
             0.37162162 0.35294118 ... 0.06624075 0.06319947 0.06826109]
[0.
             0.61486486 0.61344538 ... 0.17182246 0.18564845 0.2077728 ]
 . . .
            0.70945946 0.70588235 ... 0.3527236 0.37788018 0.30543099]
[1.
 [0.
             0.74324324 0.72268908 ... 0.35642233 0.34298881 0.29347285]
[1.
             0.85810811 0.84033613 ... 0.63517149 0.49506254 0.49177877]]
```

Split the data into training and testing

In []:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y)
```

Model building

```
In [ ]:
```

```
from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)
```

Out[]:

LinearRegression()

Training and testing

x_test

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
564	0	0.470	0.355	0.130	0.5465	0.2005	0.1260	
1584	0	0.515	0.375	0.110	0.6065	0.3005	0.1310	
3613	0	0.610	0.490	0.170	1.3475	0.7045	0.2500	
885	0	0.670	0.585	0.160	1.3090	0.5445	0.2945	
3106	1	0.300	0.220	0.065	0.1235	0.0590	0.0260	
56	2	0.445	0.350	0.120	0.4425	0.1920	0.0955	
1890	2	0.565	0.455	0.155	0.9355	0.4210	0.1830	
1299	1	0.530	0.415	0.110	0.5745	0.2525	0.1235	
3392	2	0.645	0.515	0.185	1.4605	0.5835	0.3155	
195	2	0.500	0.405	0.155	0.7720	0.3460	0.1535	

1045 rows × 8 columns

In []:

y_test

Out[]:

	Age
564	15.5
1584	7.5
3613	12.5
885	11.5
3106	6.5
56	9.5
1890	12.5
1299	10.5
3392	20.5

195 13.5

1045 rows × 1 columns

```
In [ ]:
```

```
from sklearn.metrics import r2_score
r2_score(mlr.predict(x_test),y_test)
```

Out[]:

0.0557067898421757