Homework 10 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

April 28, 2024

1. (a)
$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} 1 + 2h\sin(\frac{1}{h}) = 1.$$

- (b) $\lim_{x\to 0} f(x) = \lim_{h\to \infty} \frac{1}{h} + 2\frac{\sin(h)}{h^2} = 0$. Thus, f is continuous on 0. And for any x close to 0, $|f(x+h)-f(x)| \le |h| + 2|(x+h)^2| + 2|x^2| \to 0$ as $h, x\to 0$, f is continuous on a small interval I_1 . Since $f'(x) = 1 + 2(2x\sin(\frac{1}{x}) \cos(\frac{1}{x}))$, there exsits x in any interval contains 0 s.t. f'(x) < 0. Therefore, f is neither increasing nor decreasing and not one to one in any interval contains 0. Thus, f is not invertible near 0.
- (c) This is not contradict to inverse function theorem.

2.

$$||f(x_1) - f(x_2) - (x_1 - x_2)|| = ||x_1 + g(x_1) - (x_2 + g(x_2)) - (x_1 - x_2)||$$

$$= ||g(x_1) - g(x_2)||$$

$$\leq a||x_1 - x_2||$$

Then, for any $x_1, x_2 \in \mathbb{R}^n$ and $x_1 \neq x_2$, $||f(x_1) - f(x_2)|| \ge ||f(x_1) - f(x_2) - f(x_2)|| + ||x_1 - x_2|| \ge (1-a)||x_1 - x_2|| > 0$. Thus, f is one-to-one.

Since f is continuous, $f(\mathbb{R}^n)$ is closed. And for any f(x), assume that for any $\varepsilon > 0$, $D(f(x), \varepsilon) \not\subseteq f(\mathbb{R}^n)$. Thus, $f(\mathbb{R}^n)$ is both open and closed, that is, $f(\mathbb{R}^n) = \mathbb{R}^n$ and f is onto. Therefore, f is bijection.

3. Since $||f(x) - f(y)|| \ge C||x - y||$ and C > 0,