Descriptive Performance Analysis for Jaguar and Panther Equipment

Using Recent Performance Data

Submitted to:

Miss Ada Lovelace

Operations Manager

Submitted by:

Geo Angelo D. Butas

Bachelor of Science in Computer Engineering -2^{ND} Year

Supervised by:

Engr. Gyro A. Madrona

Professor in Engineering Data Analysis

Technological University of The Philippines – Visayas

January 2025

From: Geo Angelo D. Butas (Student in Engineering Data Analysis)

Subject: Performance Analysis for Jaguar and Panther Equipment

Good day, Miss Lovelace!

Attached herewith is my analysis of the recent performance data of your machines: Jaguar and Panther. As requested, I have included the step-by-step process of my manual calculations through the datasheet you have provided, and my findings have been summarized with

visualizations (bar graphs and boxplots). Critical details are discussed within the report.

Regards,

Geo

I. Background

The purpose of this report is to evaluate the performance of the two (2) machine equipment: Jaguar and Panther. Their latest performance datasheet has been provided and will be used in the descriptive statistical analysis.

II. Requirements

The following have been requested and therefore will be used in the statistical analysis.

Measures of Central Tendency:

• Mean: Average of the data provided

• Median: Middle value of the data provided

• Mode: Most frequent value

Measures of Variability:

• Range: Measure of data spread

• Standard Deviation: Measure of variability

• Coefficient of Variation (CV): Ratio of standard deviation to the mean

III. Data Overview

Lot No	Jaguar	Panther	Lot No	Jaguar	Panther
1	997	1035	16	933	935
2	1153	975	17	790	1710
3	920	982	18	999	946
4	1074	1038	19	1028	1073
5	1013	891	20	976	986
6	960	907	21	1015	1078
7	890	960	22	932	969
8	910	978	23	957	1083
9	944	1041	24	936	790
10	1065	1026	25	977	1007
11	1083	590	26	1037	934
12	1820	990	27	997	999
13	859	1076	28	1730	1011
14	1043	1092	29	1046	942
15	1710	1026	30	1840	1090
N (Size)	30	30	Sum	32634	30160

Figure 1. Raw Datasheet of Jaguar and Panther

Lot No	Jaguar (Sorted from Lowest to Highest)	Lot No	Panther (Sorted from Lowest to Highest)			
1	790	1	590			
2	859	2	790			
3	890	3	891			
4	910	4	907			
5	920	5	934			
6	932	6	935			
7	933	7	942			
8	936	8	946			
9	944	9	960			
10	957	10	969			
11	960	11	975			
12	976	12	978			
13	977	13	982			
14	997	14	986			
15	997	15	990			
16	999	16	999			
17	1013	17	1007			
18	1015	18	1011			
19	1028	19	1026			
20	1037	20	1026			
21	1043	21	1035			
22	1046	22	1038			
23	1065	23	1041			
24	1074	24	1073			
25	1083	25	1076			
26	1153	26	1078			
27	1710	27	1083			
28	1730	28	1090			
29	1820	29	1092			
30	1840	30	1710			
N (Total Population) = 30						

Figure 2. Sorted (Ascending) Datasheet of Jaguar and Panther

IV. Manual Calculations

A. Measures of Central Tendency

	Formula	Jaguar	Panther
Mean	$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{n}$	$\overline{x} = \frac{32634}{30}$ $\overline{x} = 1087.8$	$\overline{x} = \frac{30160}{30}$ $\overline{x} = 1005.33$
Median	$M_d = \frac{n+1}{2}(th \ position)$	$M_d = \frac{30 + 1}{2} (th \ position)$ $M_d = 15.5 (th \ position)$ $M_d = \frac{15th + 16th}{2}$ $M_d = \frac{997 + 999}{2} = 998$	$M_d = \frac{30 + 1}{2} (th \ position)$ $M_d = 15.5 (th \ position)$ $M_d = \frac{15th + 16th}{2}$ $M_d = \frac{990 + 999}{2} = 994.5$
Mode	$M_o = most frequent value$	$M_o = 997$ Frequency: 2	<i>M_o</i> = 1026 Frequency: 2

Figure 3. Measures of Central Tendency Manual Calculations

B. Measures of Variability

$Jaguar (\overline{x} = 1087.8)$			Panther ($\overline{x} = 1005.33$)				
Lot No	x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Lot No	x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
1	997	-90.8	8244.64	1	1035	29.67	880.3089
2	1153	65.2	4251.04	2	975	-30.33	919.9089
3	920	-167.8	28156.84	3	982	-23.33	544.2889
4	1074	-13.8	190.44	4	1038	32.67	1067.3289
5	1013	-74.8	5595.04	5	891	-114.33	13071.3489
6	960	-127.8	16332.84	6	907	-98.33	9668.7889
7	890	-197.8	39124.84	7	960	-45.33	2054.8089
8	910	-177.8	31612.84	8	978	-27.33	746.9289
9	944	-143.8	20678.44	9	1041	35.67	1272.3489
10	1065	-22.8	519.84	10	1026	20.67	427.2489
11	1083	-4.8	23.04	11	590	-415.33	172499.0089
12	1820	732.2	536116.8	12	990	-15.33	235.0089
13	859	-228.8	52349.44	13	1076	70.67	4994.2489
14	1043	-44.8	2007.04	14	1092	86.67	7511.6889
15	1710	622.2	387132.8	15	1026	20.67	427.2489
16	933	-154.8	23963.04	16	935	-70.33	4946.3089
17	790	-297.8	88684.84	17	1710	704.67	496559.8089
18	999	-88.8	7885.44	18	946	-59.33	3520.0489
19	1028	-59.8	3576.04	19	1073	67.67	4579.2289
20	976	-111.8	12499.24	20	986	-19.33	373.6489
21	1015	-72.8	5299.84	21	1078	72.67	5280.9289
22	932	-155.8	24273.64	22	969	-36.33	1319.8689
23	957	-130.8	17108.64	23	1083	77.67	6032.6289
24	936	-151.8	23043.24	24	790	-215.33	46367.0089
25	977	-110.8	12276.64	25	1007	1.67	2.7889
26	1037	-50.8	2580.64	26	934	-71.33	5087.9689
27	997	-90.8	8244.64	27	999	-6.33	40.0689
28	1730	642.2	412420.8	28	1011	5.67	32.1489
29	1046	-41.8	1747.24	29	942	-63.33	4010.6889
30	1840	752.2	565804.8	30	1090	84.67	7169.0089
Total:	2341744.80		Total:	801642.67			
Variance:	80749.8207 Vari		Variance:	27642.8506			
Standard Deviation:		284.165	313	Standard Deviation:	166.26139		

Figure 4. Variance Datasheet for Measures of Variability

	Formula	Jaguar	Panther
Range	$Range = x_{max} - x_{min}$	Range = 1840 - 790 Range = 1050	Range = 1710 - 590 Range = 1120
Variance	$s^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{n-1}$	$s^2 = 80749.8207$	$s^2 = 27642.8506$
Standard Deviation	$s = \sqrt{s^2}$	$s = \sqrt{80749.8207}$ $s = 284.16513$	$s = \sqrt{27642.8506}$ $s = 166.26139$
Coefficient of Variance	$\widehat{c_v} = \frac{s}{\overline{x}}$	$\widehat{c_v} = \frac{284.16513}{1087.8}$ $\widehat{c_v} = 0.2612$	$\widehat{c_v} = \frac{166.26139}{1005.33}$ $\widehat{c_v} = 0.1653$

Figure 5. Measures of Variability Manual Calculations

V. Data Analysis & Interpretations

A. Mean - Panther is closer to the target value of 1k ohms (Ω) since it has a mean value of 1005.33 Ω , while Jaguar's mean is farther with a value of 1087.8 Ω .

Figure 6.A. Mean of Jaguar and Panther

B. Median - Jaguar's median value of 998Ω is closer to the target rating of $1k\Omega$, while Panther's median value of 994.5Ω is farther away. This means that Jaguar is more *accurate* than Panther

Figure 6.B. Median of Jaguar and Panther

C. Mode - Jaguar frequently produces resistors with a rating of 997Ω which is closer to the target value than the most frequent resistors with ratings of 1026Ω that Panther produces.

Figure 6.C. Mode of Jaguar and Panther

D. Range - Panther has a range of 1120Ω while Jaguar has a range of 1050Ω , which may indicate Panther's higher variability in production.

Figure 6.D. Range of Jaguar and Panther

E. Variance - Jaguar's variance of 80,749.82 is significantly higher than that of Panther's which has a value of 27,642.85. This suggests that Panther produces resistors with great consistency in reaching the target rating compared to Jaguar.

Figure 6.E. Variance of Jaguar and Panther

F. Standard Deviation - Jaguar's has a standard deviation of **284.17**, indicating higher variability in its resistor's resistance ratings than of Panther's which has a standard deviation of **166.26**.

Figure 6.F. Standard Deviation of Jaguar and Panther

G. Coefficient of Variance/Variation - Jaguar has a coefficient of variation of **0.26**, while Panther has a coefficient of variation of **0.17**. This suggests that Panther is more *consistent* in production.

Figure 6.G. Coefficient of Variation of Jaguar and Panther

VI. Summary

- **Jaguar** has higher fluctuations in output, which could indicate operational inconsistencies or external factors influencing its performance. This fluctuation might be undesirable in production settings where consistency is essential.
- **Panther** shows much higher consistency in producing the target $1k\Omega$ resistors, with low variability and fewer outliers.

VII. Recommendations

- Panther has shown to be reliable in the production of $1k\Omega$ resistors, but it is still recommended to find the cause of its outliers to lessen errors, though it is of a lower priority.
- **Jaguar's** consistency and accuracy in production are sub-standard, which might indicate some issues with the machine itself. As such, it is highly recommended that Jaguar is checked for maintenance and/or recalibrated post-haste as to lessen any production issues it may cause.

VIII. Conclusion

In conclusion, Panther is consistent in producing $1k\Omega$, with minimal variance and fewer outliers. However, due to said outliers, it is still recommended that it is checked or recalibrated to further improve its performance, although this is a lower priority. Jaguar, on the other hand, shows a lot of variances in its output, making it unreliable for consistent production of $1k\Omega$ resistors. It is of utmost priority that Jaguar is checked for maintenance and possibly recalibrating it, to improve its reliability and avoid further issues.