JF PY1T10 Special Relativity

Lecture 9:

Relativistic Dynamics

So far we have considered measurements of:

- Position
- Time
- Velocity

These are kinematics.

Now we go on to consider:

- Momentum
- Mass
- Force

These are **dynamics**.

Newton's Laws & Classical Dynamics

Newton's Laws:

$$\boldsymbol{F} = \frac{d}{dt}\boldsymbol{p}$$

and

$$p = mv$$

If we assume mass is independent of velocity, then:

$$F = ma$$

 ${m F}=m{m a}$ implies that, under a constant ${m F},{m v}$ will increase indefinitely. But will it?

Newton's Laws & Classical Dynamics

Can test this. Consider an electron. Because of its small mass relative to its charge, we can accelerate it to very high speeds (in an electric field):

Instead of increasing in proportion to the KE, v^2 asymptotically approaches a limit, c^2 .

i.e. You can give the particle as much energy as you please, but you cannot give it an arbitrarily high speed. This is limited by *c.*

v approaches c, but does not reach it.

If m is constant, then $v \rightarrow c$ (const.)

Therefore $p \to constant$. Even though F > 0.

This is <u>inconsistent</u> with $m{F} = rac{d}{dt} m{p}$

To solve this, we need to assume that the mass of an object depends on its velocity.:

$$m = m(\boldsymbol{v})$$

Need to find the form of this relationship.

Consider an elastic collision between two particles:

Assume there are two experimenters – one in S, the other in S'.

In S: The experimenter is at rest. They project a particle $\bf A$ along the yaxis with a speed u_0 (as measured in S)

In S': The experimenter is at rest. They project a particle **B** along the y-axis with a speed $-u_0$ (as measured in S')

 u_0 is small but S and S' have a very large relative velocity to each other along x.

① In S:

Before collision:

After collision:

Look at y-components:

y-component of ${\bf A}=+u_0$ before collision $=-u_0 \ {\rm after\ collision}$ y-component of ${\bf B}=+u$ before collision $=-u \ {\rm after\ collision}$

What is *u* as measured in *S*?

$$u_y = \frac{u_y'/\gamma}{1 + \frac{vu_x}/c^2}$$
 (In S', u_x' of **B** is 0.), $u = \frac{u_0}{\gamma} = u_0 \sqrt{1 - \frac{v^2}{c^2}}$

② In S':

The situation is symmetric, $\bf A$ and $\bf B$ are interchanged and the sign of v is reversed.

③ It is an elastic collision, so the speed doesn't change. It is either u_0 or $\sqrt{u^2+v^2}$

So there are only two possible values for m:

$$m(u_0)$$
 or $m(\sqrt{u^2 + v^2}) \equiv m(V)$

Conservation of momentum (in y, as measured in S)

$$m(u_0)u_0 - m(V)u = -m(u_0) + m(V)u$$
$$2m(u_0)u_0 = 2m(V)u$$

$$\frac{m(V)}{m(u_0)} = \frac{u_0}{u}$$
 Eq. ①

Let $u_0 \to 0$. Then $m(u_0) = m_0$ (the rest mass)

Also $u_0 \ll v$.

$$\Rightarrow u \ll v \text{ as } u = \frac{u_0}{\gamma}$$

$$\Rightarrow V \cong v$$

So from, Eq. \odot and letting $u_0 \rightarrow 0$

$$m(v) = \gamma m_0$$

$$m(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Then:

$$\boldsymbol{p} = m(\boldsymbol{v})\boldsymbol{v} = \gamma m_0 \boldsymbol{v}$$

Let us consider this expression for inertial mass more closely:

$$m(v) = \gamma m_0 = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Use the binomial expansion:

$$m = m_0 \left[1 + \frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} + \dots \right]$$

$$\Delta m = m - m_0 = \frac{1}{2} \frac{m_0 v^2}{c^2} \left[1 + \frac{3}{4} \frac{v^2}{c^2} + \cdots \right]$$

$$\Delta mc^2 = \frac{1}{2}m_0v^2\left[1 + \frac{3}{4}\frac{v^2}{c^2} + \cdots\right]$$
This is just classical KE.

Х

A change in kinetic energy corresponds to the work done by external forces:

$$dE = F dx$$

$$F = \frac{d}{dt}p = \frac{d}{dt}(\gamma m_0 v) = m_0 \gamma \frac{dv}{dt} + m_0 v \frac{d\gamma}{dt}$$

$$\frac{d\gamma}{dt} = \frac{d\gamma}{dv} \frac{dv}{dt}$$

$$\frac{d\gamma}{dv} = \frac{d}{dv} \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}} = \frac{v}{c^2} \left(1 - \frac{v^2}{c^2}\right)^{-\frac{3}{2}} = \frac{\gamma^3 v}{c^2}$$

$$\frac{d\gamma}{dt} = \frac{\gamma^3 v}{c^2} \frac{dv}{dt}$$

Eq. ①

Eq. 2

Put this into Eq. ①:

$$F = m_0 \gamma \frac{dv}{dt} \left(1 + \frac{\gamma^2 v^2}{c^2} \right)$$
 But $\gamma^2 = \frac{1}{1 - \frac{v^2}{c^2}}$ $\Rightarrow \frac{v^2}{c^2} = 1 - \frac{1}{\gamma^2}$
$$F = m_0 \gamma \frac{dv}{dt} \left(1 + \left(1 - \frac{1}{\gamma^2} \right) \gamma^2 \right)$$

$$F = m_0 \gamma \frac{dv}{dt} \left(1 + \gamma^2 - 1 \right)$$

$$F = m_0 \gamma^3 \frac{dv}{dt}$$

Use Eq. 2:

$$F = m_0 \gamma^3 \frac{c^2}{v^3 v} \frac{d\gamma}{dt} = m_0 \frac{c^2}{v} \frac{d\gamma}{dt}$$
 Eq. 3

Kinetic Energy = $\int_0^x F \ dx = \int_0^t F \ v \ dt$

[Using Eq. ③: $F = m_0 \frac{c^2}{v} \frac{d\gamma}{dt} \Rightarrow F v dt = m_0 c^2 d\gamma$]

$$KE = m_0 c^2 \int_1^{\gamma} d\gamma$$

$$KE = m_0 c^2 (\gamma - 1)$$

where the upper limit of $\gamma = \left(1 - \frac{V^2}{c^2}\right)^{-\frac{1}{2}}$

Change in limits:

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\gamma(t = 0) = \gamma(v(t = 0)) = \gamma(v = 0) = 1$$

$$\gamma(t) \equiv \gamma(V)$$

So:

$$F = m_0 \gamma^3 \frac{dv}{dt}$$

$$KE = m_0 c^2 (\gamma - 1)$$

The kinetic energy in a particular reference frame can be defined as the difference between the energy an object has when it is moving and at rest:

$$KE = mc^2 - m_0c^2$$

or

$$mc^2 = KE + m_0c^2$$

Call mc^2 the total energy E.

Then

$$E = mc^2 = KE + m_0c^2$$

So:

The total energy = kinetic energy + rest mass

- Energy is conserved
- Energy has mass
- Mass is conserved (not necessarily the rest mass)
- Mass and energy are different physical quantities.

A Useful Relation

$$p = \gamma m_0 v$$

$$E = \gamma m_0 c^2$$

$$\therefore E^2 - p^2 c^2 = \gamma^2 m_0^2 c^4 - \gamma^2 m_0^2 v^2 c^2 = m_0^2 c^4 \gamma^2 \left(1 - \frac{v^2}{c^2}\right)$$

$$E^2 - p^2 c^2 = m_0^2 c^4$$

But, m_0 and c are invariant under a Lorentz Transform:

- $\Rightarrow E^2 p^2c^2$ is also invariant under a L.T.
- $\Rightarrow E^2 p^2c^2$ is the same for all observers!

Summary

$$p = mv$$

$$E = mc^2 = KE + m_0c^2$$

$$m = \gamma m_0$$

$$E^2 - p^2 c^2 = m_0^2 c^4$$

Photons

v = c for all observers

Since
$$m = \gamma m_0$$
 and $m_0 = m \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$ $\Rightarrow m_0 = 0$

Using
$$E^2 - p^2c^2 = m_0^2c^4 = 0$$

$$\Rightarrow E^2 = p^2c^2$$

$$\Rightarrow p = \frac{E}{c} = \frac{hV}{c}$$

Light (photon) has momentum.

Example: laser cooling for Bose-Einstein condensation of atoms

Graphene Light Sail

Aim: Propel a space probe to the closest star system using a solar sail made from an ultralight material onto which laser light is shone from Earth.

Concept Question

A proton, with rest mass equal to 1.67×10^{-27} kg, is accelerated from rest by a constant force of 3.34×10^{-11} N to a speed of 0.9c.

(i) Using the non-relativistic from of Newton's second law, calculate the distance travelled by the proton.

(ii) Using the correct, relativistic, approach, find the distance travelled.