Intelligence Artificielle Contraintes

Bruno Bouzy

http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr

Licence 3 Informatique
UFR Mathématiques et Informatique
Université Paris Descartes

Problèmes de satisfaction de contraintes

- Exemples de CSP
- Recherche en arrière pour les CSPs (backtracking search)
- Structure des problèmes
- CSP et recherche locale

Problèmes de satisfaction de contraintes

- Exemples de CSP
- Recherche en arrière pour les CSPs (backtracking search)
- Structure des problèmes
- CSP et recherche locale

Problèmes de satisfaction de contraintes (CSP)

- Problèmes de recherche "classiques" :
 - Un état est une "boite noire"
 - N'importe quelle structure de données qui contient un test pour le but, une fonction d'évaluation, une fonction successeur

CSP :

- Un état est défini par un ensemble de variables X_i, dont les valeurs appartiennent au domaine D_i
- Le test pour le but est un ensemble de contraintes qui spécifient les combinaisons autorisées pour les valeurs sur des sous-ensembles de variables
- Exemple simple d'un langage formel de représentation
- Permet d'utiliser des algorithmes généraux plus efficaces que les algorithmes de recherche standards

Exemple : coloriage de carte

- Variables: WA, NT, SA, Q, NSW, V, T
- Domaines : $D_i = \{rouge, vert, bleu\}$
- Contraintes : les régions adjacentes doivent être de couleurs différentes
 - Par exemple, $WA \neq NT$ (si le langage le permet)
 - Ou (WA, NT) ∈ {(rouge, vert), (rouge, bleu), (vert, rouge), (vert, bleu)...}

Exemple : coloriage de carte

- Les solutions sont des affectations qui satisfont toutes les contraintes
- Par exemple, {WA = rouge, NT = vert, Q = rouge, NSW = vert, V = rouge, SA = bleu, T = vert}

Graphe de contraintes

- CSP binaires : chaque contrainte lie au maximum deux variables
- Graphe de contraintes : les nœuds sont des variables, les arcs représentent les contraintes

- Les algorithmes CSP utilisent les graphes de contraintes
- Permet d'accélerer la recherche : par exemple, colorier la Tasmanie est un sous-problème indépendant

Variétés de CSPs

Variables discrètes

- Domaines finis : si de taille d, il y a $O(d^n)$ affectations complètes
 - Par exemple, CSPs booléens
- Domaines infinis (entiers, caractères...)
 - Par exemple, mise en place d'un planning, avec date de début/de fin pour chaque tâche
 - Nécessite un langage de contraintes. Eg StartJob₁ + 5 < StartJob₅
 - Si les contraintes sont linéaires, le problème est soluble
 - Si les contraintes sont non linéaires, problème indécidable

Variable continues

- Par exemple, temps de début/fin pour les observations du télescope de Hubble
- Contraintes linéaires solubles en temps polynomial en utilisant des méthodes de programmation linéaire

Variétés de contraintes

- Contraintes unaires, ne concernent qu'une seule variable
 - Par exemple, $SA \neq vert$
- Contraintes binaires, concernent une paire de variables
 - Par exemple, $SA \neq WA$
- Contraintes d'ordre plus élevé, concernent 3 variables ou plus
 - Par exemple, contraintes sur les puzzles cryptarithmétiques
- Préférences (ou contraintes souples)
 - Par exemple, rouge est mieux que vert
 - Souvent représentable par un coût associé à chaque affectation de variable
 - ⇒ Problèmes d'optimisation de variables

Exemple: puzzle cryptarithmétique

- Variables : F, T, U, W, R, O, X₁, X₂, X₃
- Domaines : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Contraintes :
 - Alldiff(F, T, U, W, R, O)
 - $O + O = R + 10X_1$
 - $X_1 + W + W = U + 10X_2$
 - o . . .

Problèmes CSPs du monde réel

- Problèmes d'affectation (eg. qui enseigne quel cours?)
- Problèmes d'emploi du temps
- Configuration de matériels
- Planification pour les transports
- Planification dans les usines
- Allocation de salles
- . . .
- Note: beaucoup de problèmes du mondé réel impliquent des variables à valeurs réelles

Formulation de la recherche standard (recherche incrémentale)

- Les états sont définis par les valeurs des variables déjà affectées
- Etat initial: un ensemble d'affectations vides {}
- Fonction successeur : attribuer une valeur à une variable non encore affectée, de façon cohérente (vis à vis des contraintes) à l'affectation actuelle
- Test du but : toutes les variables sont affectées

Formulation de la recherche standard (recherche incrémentale)

- Cet algorithme de recherche marche pour tous les CSPs
- Chaque solution apparait à une profondeur de n s'il y a n variables
 - → Utiliser la recherche en profondeur d'abord
- n: nombre de variables; d: taille du domaine des variables; b: facteur de branchement
- b = (n p)d à profondeur p
 - $\rightarrow n!d^n$ feuilles
 - \rightarrow alors qu'il n'y a que d^n affectations possible!!

Problèmes de satisfaction de contraintes

- Exemples de CSP
- Recherche en arrière pour les CSPs (backtracking search)
- Structure des problèmes
- CSP et recherche locale

Backtracking search

- L'affectation des variables est commutative
 - L'ordre dans lequel on affecte les variables n'a pas d'importance
 - WA = rouge puis NT = vert est la même chose que NT = vert puis WA = rouge
- Il n'y a donc besoin de ne considérer qu'une seule variable par nœud de l'arbre de recherche
 - $\rightarrow b = d$. et donc d^n feuilles
- Recherche en profondeur d'abord avec l'affectation d'une variable à la fois est appelée recherche par retour arrière (backtracking search)
- Algorithme de recherche basique pour les CSPs
- Permet de résoudre le problème des n reines pour $n \sim 25$

Algorithme de recherche par retour arrière

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var \leftarrow \text{Select-Unassigned-Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values(var, assignment, csp) do
       if value is consistent with assignment given Constraints[csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```


Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- 2. Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- 2. Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

Valeurs minimum restantes (MRV)

- Heuristique des valeurs minimum restantes (MRV)
 - ⇒ choisir une des variables ayant le moins de valeur "légale" possible

Heuristique du degré

- Si plusieurs variables ne peuvent pas être départagées par l'heuristique MRV
- Heuristique du degré
 - ⇒ choisir la variable qui a le plus de contraintes à respecter parmi les variables restantes

Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- 2. Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

Valeur la moins contraignante

- Etant donné une variable, choisir celle qui a la valeur la moins contraignante
 - ⇒ la variable qui empêche le moins d'affectations possibles sur les variables restantes

Valeur la moins contraignante

- Etant donné une variable, choisir celle qui a la valeur la moins contraignante
 - ⇒ la variable qui empêche le moins d'affectations possibles sur les variables restantes

• Combiner ces heuristiques permet de résoudre le problème des n reines, avec n = 1000

Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- 2. Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

Propagation de contraintes

 La vérification en avant permet de propager l'information des variables affectées aux variables non affectées, mais ne permet pas de détecter tous les échecs

Propagation de contraintes

 La vérification en avant permet de propager l'information des variables affectées aux variables non affectées, mais ne permet pas de détecter tous les échecs

Propagation de contraintes

 La vérification en avant permet de propager l'information des variables affectées aux variables non affectées, mais ne permet pas de détecter tous les échecs

- NT et SA ne peuvent pas être tous les deux bleus!
- La propagation de contraintes permet de vérifier les contraintes localement

Consistence des arcs

- La forme la plus simple de propagation est de rendre les arcs consistents
- X → Y est consistant ssi pour toute valeur x de X, il y a au moins un y autorisé

- La forme la plus simple de propagation est de rendre les arcs consistents
- $X \to Y$ est consisistant ssi pour **toute** valeur x de X, il y a **au moins un** y autorisé

- La forme la plus simple de propagation est de rendre les arcs consistents
- $X \to Y$ est consisistant ssi pour **toute** valeur x de X, il y a **au moins un** y autorisé

- La forme la plus simple de propagation est de rendre les arcs consistents
- X → Y est consisistant ssi pour toute valeur x de X, il y a au moins un y autorisé

• Si X perd une valeur, les voisins de X doivent être revérifiés

- La forme la plus simple de propagation est de rendre les arcs consistents
- X → Y est consisistant ssi pour toute valeur x de X, il y a au moins un y autorisé

- Si X perd une valeur, les voisins de X doivent être revérifiés
- Repère un échec avant la vérification en avant
- Peut être lancé comme un pré-processeur ou après chaque affectation intelligence artificielle

Algorithme de vérification de consistence d'arcs

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then for each X_k in NEIGHBORS[X_i] do add (X_k, X_i) to queue
```

function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds $removed \leftarrow false$ for each x in Domain $[X_i]$ do

if no value y in Domain $[X_j]$ allows (x,y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from Domain $[X_i]$; $removed \leftarrow true$ return removed.

Problèmes de satisfaction de contraintes

- Exemples de CSP
- Recherche en arrière pour les CSPs (backtracking search)
- Structure des problèmes
- CSP et recherche locale

Structure des problèmes

- La Tasmanie est un sous-problème indépendant
- Identifiables comme étant des composants connexes du graphe de contraintes

CSPs structurés sous forme d'arbre

Theorem

Si le graphe de contraintes ne contient pas de cycles, le CSP a une complexité en temps de $O(nd^2)$

Cas général: complexité en temps de $O(d^n)$

Algorithme pour les CSPs structurés sous forme d'arbre

 Choisir une variable comme étant la racine, et ordonner les variables de la racine aux feuilles, de façon à ce que le parent de chaque nœud le précède

- 2. Pour j de n à 2, appliquer Removelnconsistent($Parent(X_i), X_i$)
- Pour j de 1 à n, affecter X_j de façon à ce qu'il soit consistent avec Parent(X_j)

CSPs quasiment structurés sous forme d'arbre

 Conditionnement : instancier une variable, restreindre les domaines de ses voisins

- Conditionnement du coupe-cycle : instancier (de toutes les façons possibles) un ensemble de variables de façon à ce que le graphe de contraintes restant soit un arbre
- Cycle coupé de taille $c \Rightarrow$ complexité en $O(d^c \times (n-c)d^2)$
- Très rapide pour c petit

Problèmes de satisfaction de contraintes

- Exemples de CSP
- Recherche en arrière pour les CSPs (backtracking search)
- Structure des problèmes
- CSP et recherche locale

CSP et recherche locale

- Les algorithmes de recherche locale fonctionnent avec des états "complets", c'est à dire dans lesquels toutes les variables sont affectées.
- Pour appliquer ces algorithmes aux CSPs :
 - Permettre d'avoir des états avec des contraintes non satisfaites
 - Les opérateurs permettent de réaffecter la valeur d'une variable
- Sélection des variables : n'importe quelle variable en conflit
- Sélection d'une valeur grace à l'heuristice min-conflict
 - choisir une valeur qui enfreint le moins de contraintes
 - par exemple, hillclimb avec h(n) = nombre total de contraintes non respectées

Exemple: les *n* reines

• Etats: 4 reines sur 4 colonnes (4⁴ = 256 états)

• Actions : déplacer une reine dans sa colonne

• Test du but : pas d'attaque entre les reines

• Evaluation : h(n) est le nombre d'attaques sur le plateau

 Etant donné un état initial aléatoire, cet algorithme peut résoudre avec une grande probabilité le problème des *n*-reines pour tout *n* en temps presque constant (e.g., n = 10000000)