

Course Overview

6.S063 Engineering Interaction Technologies

Prof. Stefanie Mueller | MIT CSAIL | HCI Engineering Group

instructor: Stefanie Mueller

Assistant Professor, MIT EECS / MechE

Research:

Human-Computer Interaction & Rapid Prototyping

TA: Jared Counts

MEng, course 6.3

enrollment

admission::

at the end of this class, we will pass around a sign up sheet.

you **must sign in today** to stay enrolled in the class.

Signup Sheet

6.S063 Engineering Interactive Technologies (Fall 2017)

NAME	EMAIL	YEAR	PREREQUISITES (Check each one taken)			
			6.005	6.031	6.111	6.115
						-
			+	-	-	-
			+-			\vdash
			+-	-	-	-
			+			\vdash
			+-	_	-	-
			+			

enrolled / waitlisted::

I will send an **email today** with enrolled / waitlist notifications.

goal of this course

#1

learn

- about different fields of interactive technologies
- how the technology evolved over time
- how the underlying engineering concepts developed

multi-touch technology, augmented reality, haptics, shape changing interfaces...

multi-touch technology

wearable computing

brain computer interfaces

sound interfaces

shape changing interfaces

natural user interfaces

telepresence systems

 $[\dots]$

what would be the **benefit** of knowing how tech developed over the last 30 years?

<30s brainstorming>

what would be the **benefit** of knowing how tech developed over the last 30 years?

- be able to predict what comes next
- invent the next big tech
- useful if you want to have a startup or for research

#2

learn

- practical engineering skills
- required to build those interactive technologies yourself.

laser cutting, 3D printing, electronics, breadboarding...

laser cutting

3D printing

basic electronics

computer vision with openCV

camera - projector calibration

signal processing

#3

learn

- about how to showcase your work
- either for a research paper or an industry demo

photography, rotoscoping, video recording / editing, webpage design, press training

photography

rotoscoping and information graphics

video recording / editing

SUBSCRIB MANAGE M STUDENT SCHOOLS A GIVE A GIFT

Home | News | Technology

INNOVATION 19 July 2012

Freehand laser cutter creates instant flat-pack design

Video: Interactive table lets you make a jar holder

By Colin Barras

You could call it the rebirth of the 2D printer. A new device generates flat pack-like designs in seconds using a laser pointer and a laser cutter – the latest addition to the new field of "interactive fabrication", which promises to further help ordinary consumers become product designers.

press training

open ended project

Keeping Firefighters Safe

Will Porter
Simon Scott
Yi Tong
Mitchell Karchemsky

HD Video

Temperature

büng the autonomous barrel gauge

open ended project:

teams of 1-2 students

requirements for final prototype:

must involve some laser cut / 3D printed parts
must involve some custom electronics
must involve some code you wrote and data via wifi
must be interactive (senses user input + does sth with it)
must solve real-world problem

deliveries #1:

- everything required to replicate your prototype
 - laser cut / 3D printable files
 - all electronics you used and where you bought them
 - the code that runs your prototype

deliveries #2:

- a website showcasing your work
 - a video in which you pitch your prototype
 - quality photos of your prototype
 - presentation graphics (e.g. a rotoscope)
 - log of your weekly progress at the bottom

Opportunity

Using the navigation tools from smartphones and digital technology located in the bicycle helmet, it is possible to create ways to direct cyclists through those last hundred meters.

Smartphone application for setting up ride

Helmet with embedded technology

Improved bicycle navigation

sensory helmet: http://jicorrea.com/sensory-helmet/

we will make time in class to

- find a team mate
- brainstorm ideas
- collect feedback
- do initial prototyping

•

but it's helpful to start collecting ideas now.

project budget

- project budget of \$50 per student
- + micro-controller with wifi module
- breadboard and some other basic components

reimbursement

- give Jared your receipts
- put your name on them
- you will get a check in return

free resources

- 3D printing at IDC is free
- EDS has many basic electronics on stock

laboratory assignment / problem set

pset: laser cut + electronics + computer vision code

we give you all materials on friday including the micro-controller

grading

no written exams

50% group project

40% laboratory assignments / problem set

10% nano-quizzes

warm up for your group project

not every week, I will announce it

home works

- pass / no pass
- small exercises, will be helpful for group project
- install software / setup controller, need this for class

location

International Design Center (IDC)

Engineering Design Studio (EDS)

N52-387

38-501 (this friday!)

both have a workshop!

class resources

class website with slides:

http://hcie.csail.mit.edu/ engineering-interactive-technologies.html

piazza:

post questions on piazza do not email us!

office hours:

my office hour is Mondays, 4-5pm. TA office hours tbd.

this is a new course!

this is the first time we give this course, not everything will be perfect but we will try our best!

(if you like to have everything perfect this is not the course for you—please come back next year.)

questions?

let's take a 5 minute break!

let's take a 5 minute break!

enc.