ETSETB Curso 2004-05 Primavera EXAMEN DE TRANSMISIÓN DE DATOS 23 de junio de 2005

Publicación de notas provisionales: 28/06/05 Fecha límite para las alegaciones: 29/06/05 Publicación de notas definitivas: 30/06/05

NOTAS IMPORTANTES:

- Toda hoja de respuestas que no esté completamente identificada será anulada.
- La numeración en la hoja de respuestas es la de la izquierda (correlativas)
- No se responderá a ninguna pregunta sobre el enunciado. El alumno responderá según su criterio pudiendo realizar las alegaciones que considere oportunas por escrito en la secretaría de la ETSETB a partir de la publicación de las calificaciones provisionales y hasta el plazo arriba indicado. En ellas debe consignarse OBLIGATORIAMENTE el DNI y el código de la prueba.
- QUEDA EXPRESAMENTE PROHIBIDO EL USO DE CUALQUIER DISPOSITIVO DE COMUNICACIÓN. EL INCUMPLIMIENTO DE ESTA NORMA SUPONDRÁ LA EXPULSIÓN DEL EXAMEN.

CÓDIGO DE LA PRUEBA: 230 11510 00 0

- 1. Para un código ternario sistemático de repetición Cod(3,1) es FALSO que:
 - a) La matriz de generación es G = (111)
 - b) El subespacio ortogonal al código está generado por la base $\{(1,0,2),(0,1,2)\}$
 - c) El número de síndromes distintos de 0 es 8
 - d) Alguna de las anteriores es falsa

- 2. ¿Cuánto vale $\Psi(12)$?
 - a) 2
 - b) 4
 - c) 6
 - d) Ninguna de las anteriores

c) 120

d) Ninguno de los anteriores

- 4. Una fuente emite 3 símbolos independientes con probabilidades {0.7, 0.2, 0.1}. La fuente se codifica mediante un código de Huffman y luego mediante un código de Hamming (15,11). La entropía de la fuente codificada es:
 - a) 0.92 bits/simb
 - b) 1.03 bits/simb
 - c) 1.16 bits/simb
 - d) Ninguna de las anteriores

- 5. Se utiliza un codigo de Hamming (15,11) para codificar un canal binario simétrico con una tasa de error $p_e = 10^{-4}$. La tasa binaria de error a la SALIDA del decodificador es:
 - $a) 0.14 10^{-6}$
 - $b) 0.21 10^{-6}$
 - $c) 0.10 10^{-5}$
 - d) Ninguna de los anteriores

- 6. Para proteger la comunicación a través de un canal sin memoria con una tasa de error de bit de $0.6 \ 10^{-5}$, se emplea un código corrector (15,11) y un codigo polinómico usado como detector con polinomio generador de grado 40 ¿Cuál es el número máximo de bits de información de usuario que puede contener la trama si se especifica una tasa de retransmisiones inferior a 10^{-7} ?
 - a) 123 bits
 - b) 192 bits
 - c) 246 bits
 - d) Niguna de las anteriores.

- 7. Para $a \ge b$ dos números naturales, ambos menores que n, puede asegurarse:
 - a) Si ay bson los divisores de n,entonces $\Psi(n)=(a-1)(b-1)$
 - b) Si a y b pertenecen al conjunto reducido de residuos de n, entonces (a*b)modn también pertenece a este conjunto
 - c) Si $a^b=1\ mod n$, entonces a^{b-2} es la inversa de $a\ mod n$
 - d) Niguna de las anteriores.

- 8. Para una fuente binaria sin memoria es cierto que:
 - a) Si la eficiencia del código de fuente es 1, entonces la información media por dígito binario codificado no puede ser de 1 bit por dígito.
 - b) Sumar XOR la secuencia con otra perfectamente aleatoria antes de realizar la codificación de fuente mejora la longitud de codificación.
 - $c)\,$ Si es perfectamente aleatoria la entropía es de 1 bit por símbolo
 - d) Niguna de las anteriores.

- 9. Para una fuente binaria es FALSO que:
 - a) La entropía de la fuente es como máximo 1 bit/símbolo
 - b) La entropía de la fuente, cuando los símbolos son equiprobables, es mayor cuando no tiene memoria
 - c) Aumenta la eficiencia de la codificación al utilizar una extensión de fuente cuando los símbolos no son equiprobables
 - d) Alguna de las anteriores es falsa

10. Sabiendo que la información mutua entre dos variables aleatorias A y B NO es nula, es FALSO que:

- $a) \ H(B/A) < H(B)$
- b) H(A, B) < H(A) + H(B)
- c) H(A/B) < H(A) H(B)
- d) Alguna de las anteriores es falsa

- 11. En un canal binario simétrico con probabilidad de error 1/8 y para una fuente binaria cuya probabilidad de emisión del símbolo 1 es 3/4, la entropía a la salida del canal, H(Y) en bits/símbolo, cumple:
 - a) $0.00 \le H(Y) < 0.50$
 - b) $0.50 \le H(Y) < 0.75$
 - c) $0.75 \le H(Y) < 0.85$
 - d) $0.85 \le H(Y) < 1.00$

12.	n un sistema RSA todos los valores de n contienen siempre un mismo factor primo. Para un valor de $e=11$, indique qué valo
	n no es apropiado en dicho sistema:

- a) 413
- b) 649
- c) 1003
- d) 1357

- 13. Para un código binario polinómico cuyo generador es $D^3 + D^2 + 1$, ¿cuál de las siguientes palabras no pertenece al código?
 - a) $D^4 + D^3 + D$
 - $b) \ D^5 + D^4 + D^3 + D^2 + 1$
 - c) 0
 - d) $D^4 + D^2 + D + 1$

14. ¿Qué afirmación es correcta?

- a) El llamado Código Telefónico funciona así: A cada tecla del teléfono se le asignan tres letras en el siguiente orden: 2-ABC, 3-DEF, 4-GHI, 5-JKL, 6-MNO, 7-PRS, 8-TUV, 9-WXY, 1-ÑQZ. Cada letra se sustituye por el número al que está asignada + la posición que ocupa (que puede ser 1, 2 ó 3); así la letra E se codifica como 32. El mensaje "HOLA" tiene como criptograma "42635322".
- b) El sistema RSA utiliza como módulo el valor N = pq, con p y q primos grandes. La clave privada d deberá ser inversa de la clave pública e módulo (N). Su robustez está basada en el problema de la factorización de números primos.
- c) En el sistema DES, la clave original de 64 bits se convierte en una clave real de 56 bits al eliminarse el bit de paridad de cada octeto. El algoritmo tiene 12 rondas.
- d) Ninguna de las anteriores.

- 15. Sobre las propiedades detectoras del código polinómico con polinomio generador $g(D) = 1 + D^3 = (1 + D)(1 + D + D^2)$, ¿qué afirmación es correcta?
 - a) Se detectan todos los errores simples, impares y dobles.
 - b) Se detectan todos los errores simples, impares y los errores dobles con posiciones de bit erróneos que disten menos de 7 posiciones.
 - c) Se detectan todas las ráfagas de error de longitud menor que 4, aquellas ráfagas de error de longitud 4 con probabilidad del $75\,\%$ y aquellas ráfagas de error de longitudes mayores que 4 con probabilidad del $87.5\,\%$
 - d) Ninguna de las anteriores.

16. ¿Qué afirmación es FALSA?

- $a)\,$ Una clave será buena para cifrar si, entre otras cosas, su entropía es muy alta.
- b) El cifrado de Vigènere consiste en una sustitución polialfabética.
- $c)\,$ El algoritmo DES simple no es recomendable porque el espacio de claves es muy bajo.
- d) Alguna de las anteriores es falsa.

- 17. Sean F1 y F2 dos fuentes equiprobables cuyos elementos pertenecen al conjunto $\{1,2,3\}$. Sea F una fuente cuya salida es el máximo común divisor de los símbolos emitidos simultaneamente por F1 y F2. Calcule H(F):
 - a) 0 bits/símb
 - b) 0.9864 bits/símb
 - c) 1.58 bits/símb
 - d) Ninguna de las anteriores

- 18. Sea M el mensaje en claro, C el criptograma y k la clave de cifrado. Para un criptosistema incodicionalmente seguro es FALSO que:
 - $a) \ H(M/C) > H(M)$
 - $b) \ longitud(k) \ge longitud(M)$
 - $c)\,$ Son de poca utilidad práctica
 - d) Ninguna de las anteriores

19. Sea $c(D) = D^6 + D + 1$ un polinomio primitivo de grado 6. Calcule D^{195} mod C(D).

- a) 1
- $b) D^3$
- c) D+1
- d) Ninguna de las anteriores

- 20. ¿Para elegir una clave numérica, lanzamos repetidas veces un dado no trucado. Si la clave tiene 4 dígitos, la entropía del espacio de claves es de:
 - a) $log_2(6)$ bits/símbolo
 - $b) log_2(1/6^4) bits/símbolo$
 - c) $log_2(6^4)$ bits/símbolo
 - d) Ninguna de las anteriores.