

ESSA APRESENTAÇÃO POSSUI QRCODE PARA ACESSAR INFORMAÇÕES ADICIONAIS AOS SLIDES.

Código QR Reader

Código QR

INTRODUÇÃO A CIRCUITOS LÓGICOS

- No nosso dia-a-dia estamos repletos de circunstâncias em que somente dois estados são possíveis : luz apagada ou acesa, pessoa morta ou viva, porta fechada ou aberta, etc.
- Em 1854 o matemático George Boole descreveu um conjunto de regras capaz de relacionar estas circunstâncias (entradas) de maneira a permitir a tomada de decisões (saídas).
- Este conjunto de regras foi denominado de álgebra booleana.

FUNÇÕES E VARIÁVEIS LÓGICAS

Seguem algumas definições importantes :

- Variável booleana: é uma quantidade que pode ser, em diferentes momentos, igual a 0 ou 1.
- Função booleana: associa a cada n variáveis de entrada uma única saída.

Podemos descrever uma função booleana utilizando:

- tabela verdade
- portas lógicas
- equações
- formas de onda

Diferente da álgebra comum, a álgebra booleana possui somente três operações básicas : OR, AND e NOT, conhecidas como operações lógicas.

TABELA VERDADE

Seja uma função $f(A_1, \dots, A_n)$ com n entradas. A tabela verdade expressa o estado da saída para todas as combinações possíveis dos estados de entrada $\{A_1, \dots, A_n\}$. Segue m exemplo para duas entradas.

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	1
1	0	1
1	1	0

Além de 0s e 1s a função $f(\cdot)$ pode ser igual ao caracter x , chamado de don't care. Este caracter serve para indicar que para uma dada combinação de entradas, x pode ser tanto 0 como 1.

• Operação NOT: Para qualquer entrada A, ela é definida como:

$$f(A) = \bar{A}$$

ou seja, é a entrada negada (barrada). Para uma entrada A_1 , por exemplo temos:

Tabela verdade

A_1	$f(A_1)$
0	1
1	0

• Operação OR: Para qualquer entrada $\{A_1, \dots, A_n\}$, ela é definida como:

$$f(A_1,\dots,A_n) = \sum_{i=1}^n A_i$$

E vale 1 se qualquer uma das entradas for igual a 1. Para duas entradas temos:

-			
Ia	bel	a	verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	1
1	0	1
1	1	1

• Operação AND: Para qualquer entrada $\{A_1, \dots, A_n\}$, ela é definida como:

$$f(A_1,\dots,A_n) = \prod_{i=1}^n A_i$$

E vale 1 apenas se todas as entradas forem iguais a 1. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	0
1	0	0
1	1	1

• Operação NOR: É a operação OR negada. Para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1 + A_2}$$

E vale 1 apenas se todas as entradas forem iguais a 0. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	0
1	0	0
1	1	0

- Sobre a porta NOR, podemos realizar os seguintes comentários:
 - Utilizando a tabela verdade podemos verificar que:

$$\overline{A_1 + A_2} = \overline{A_1} . \overline{A_2}$$

Que é um dos resultados do teorema de Morgan que veremos a seguir...

Tabela verdade

A_1	A_2	$\overline{A_1 + A_2}$	$\overline{A_1}$. $\overline{A_2}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

• Utilizando apenas a porta NOR, podemos obter as outras três portas básicas:

• Operação NAND: É a operação AND negada. Para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1 \cdot A_2}$$

E vale 0 apenas se todas as entradas forem iguais a 1. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	1
1	0	1
1	1	0

- Sobre a porta NAND, podemos realizar os seguintes comentários:
 - Utilizando a tabela verdade podemos verificar que:

$$\overline{A_1}$$
 . $\overline{A_2} = \overline{A_1 + A_2}$

Que é um dos resultados do teorema de Morgan que veremos a seguir...

Tabela verdade

A_1	A_2	$\overline{A_1.A_2}$	$\overline{A_1} + \overline{A_2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

 Utilizando apenas a porta NAND, podemos obter as outras três portas básicas:

• Operação XOR (ou exclusivo): Definida para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1} \cdot A_2 + \overline{A_2} \cdot A_1 = A_1 \oplus A_2$$

E vale 1 apenas se as entradas forem diferentes. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	1
1	0	1
1	1	0

• Operação XNOR (coincidência): Definida para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1} . \overline{A_2} + A_1 . A_2 = A_1 \odot A_2$$

E vale 1 apenas se as entradas forem iguais. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	0
1	0	0
1	1	1

ÁLGEBRA DE BOOLE

- As regras operacionais de minimização utilizando a álgebra de Boole decorrem dos postulados e propriedades a segui:
 - Postulados da complementação

$$\bar{\bar{A}} = A$$

Postulados da adição

$$A + 0 = A, A + 1 = 1, A + A = A, A + \overline{A} = 1$$

Postulados da multiplicação

$$A.0 = 0, A.1 = A, A.A = A, A.\bar{A} = 0$$

 Propriedades: Comutativa, associativa e distributiva são válidas para a adição e a multiplicação.

TEOREMA DE DE MORGAN

 O seguinte teorema e importante pois permite simplificar expressões booleanas ⇒minimização

Teorema de De Morgan

As seguintes igualdades são verdadeiras :

•
$$\overline{A \cdot B \cdot C \cdot \cdots \cdot N} = \overline{A} + \overline{B} + \cdots + \overline{N}$$

•
$$\overline{A+B+C+\cdots+N} = \overline{A} \cdot \overline{B} \cdot \cdots \cdot \overline{N}$$

Exemplo 1 : Minimize a expressão sem utilizar o teorema.

$$ar{A}ar{B} + ar{A}B + Aar{B} = ar{A}(B + ar{B}) + Aar{B}$$

$$= ar{A}(1 + ar{B}) + Aar{B}$$

$$= ar{A} + (A + ar{A})ar{B}$$

$$= ar{A} + ar{B}$$

TEOREMA DE DE MORGAN

 Exemplo 2 : Minimize a mesma expressão utilizando o teorema de De Morgan.

$$\bar{A}\bar{B} + \bar{A}B + A\bar{B} = \bar{A}(B + \bar{B}) + A\bar{B}$$

$$= \bar{A} + \bar{A}\bar{B}$$

$$= \bar{A} \cdot (\bar{A} + B)$$

$$= \bar{A}B$$

$$= \bar{A} + \bar{B}$$

Exemplo 3 : Minimize a seguinte expressão

$$ABC + A\overline{B} + A\overline{C} = A(BC + \overline{B} + \overline{C})$$

 $= A(BC + (\overline{B} + \overline{C}))$
 $= A(BC + \overline{BC})$
 $= A$

EXERCÍCIOS

Descreva a expressão lógica que representa o circuito a seguir

A expressão lógica é dada por

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{\overline{A} \cdot \overline{C}})$$

SIMPLIFICAÇÃO

Minimizar a expressão de um circuito lógico, significa obter uma outra equivalente com menos termos e operações. Isto implica em menos portas lógicas e conexões.

- Como vimos, podemos usar a álgebra de Boole para realizar a minimização.
- Neste caso, a simplificação nem sempre é óbvia.
- Geralmente, podemos seguir dois passos essenciais :
 - colocar a expressão na forma de soma de produtos
 - identificar fatores comuns e realizar a fatoração
- Algumas vezes devemos contar com habilidade e experiência para obter uma boa simplificação.

SIMPLIFICAÇÃO

 Utilizando a álgebra de Boole, podemos minimizar a expressão da função do exercício anterior

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} \cdot \overline{C})$$

$$= A \cdot B \cdot C + A \cdot \overline{B} \cdot (A + C)$$

$$= A \cdot C \cdot (B + \overline{B}) + A \cdot \overline{B}$$

$$= A \cdot (C + \overline{B})$$

O circuito lógico simplificado é dado por.

A quantidade de portas lógicas foi reduzida de 7 para 3!!!

EXERCÍCIOS

 A partir do circuito apresentado anteriormente, obtenha a sua tabela verdade e, a partir dela, obtenha a expressão lógica.

Α	В	C	f(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Utilizando a tabela, sua expressão lógica é dada por

$$f(A, B, C) = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

embora seja equivalente à função obtida através do circuito, ela possui um número maior de termos.

INTRODUÇÃO A CIRCUITOS LÓGICOS

Os circuitos lógicos dos sistemas digitais podem ser de dois tipos:

Circuitos combinacionais

 Um circuito combinacional é constituído por um conjunto de portas lógicas as quais determinam os valores das saídas diretamente a partir dos valores atuais das entradas.

Circuitos sequenciais

 Um circuito sequencial, por sua vez, emprega elementos de armazenamento denominados latches e flip-flops, além de portas lógicas.

INTRODUÇÃO A CIRCUITOS COMBINACIONAIS

ANÁLISES DE CIRCUITOS COMBINACIONAIS

O objetivo da análise de um circuito combinacional é determinar seu comportamento.

Então, dado o diagrama de um circuito, deseja-se encontrar as equações que descrevem suas saídas.

Uma vez encontradas tais equações, pode-se obter a tabela verdade, caso esta seja necessária.

É importante certificar-se que o circuito é combinacional e não sequencial.

Um modo prático é verificar se existe algum caminho (ou ligação) entre saída e entrada do circuito. Caso não exista, o circuito é combinacional.

ANÁLISES DE CIRCUITOS COMBINACIONAIS

- Vamos agora utilizar os conceitos iniciais apresentados para realizar a síntese de alguns circuitos combinacionais importantes :
 - meio somadores e somadores completos
 - comparadores
 - codificadores e decodificadores
 - multiplexadores e demultiplexadores

ANÁLISES DE CIRCUITOS COMBINACIONAIS

- Vamos agora utilizar os conceitos iniciais apresentados para realizar a síntese de alguns circuitos combinacionais importantes :
 - meio somadores e somadores completos
 - comparadores
 - codificadores e decodificadores
 - multiplexadores e demultiplexadores

MEIO SOMADORES

 O meio somador aceita duas variáveis de entrada A e B e possui como saídas a soma Σ e o carry out C_{out}.

Tabela verdade

A	В	Σ	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Meio somador

MEIO SOMADORES

Não é difícil verificar que

$$\Sigma = \bar{A}B + A\bar{B}$$
$$= A \oplus B$$

e que

$$C_{out} = AB$$

Seu circuito é dado por

 O somador completo possui como variáveis de entrada A, B e o carry in C_{in} e como variáveis de saída a soma Σ e o carry out C_{out}.

Tabela verdade

Α	В	C_{in}	Σ	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador completo

Podemos verificar que

$$\Sigma = A \oplus B \oplus C_{in}$$

e que

$$C_{out} = \bar{A}BC_{in} + A\bar{B}C_{in} + AB\bar{C}_{in} + ABC_{in}$$

= $(A \oplus B)C_{in} + AB$

Seu circuito é dado por

 O somador completo pode ser construído a partir de dois meio somadores.

 Para números de 4 bits, um somador paralelo básico está apresentado a seguir.

 Podemos cascatear os somadores de maneira a considerar palavras maiores.

CODIFICADOR E DECODIFICADOR

Os circuitos codificadores e decodificadores são aqueles que efetuam a passagem de um código para outro

O circuito codificador torna possível a passagem de um número decimal para um número binário.

Exemplo: o circuito inicial de uma calculadora que transforma decimal (nossa linguagem) para binário (linguagem da máquina).

O circuito decodificador faz o inverso, ou seja, transforma um código desconhecido em outro conhecido. É claro, que o termo codificador ou decodificador depende do referencial que estamos considerando.

CODIFICADOR

• Exemplo de um teclado. Entradas e saídas ativas em nível baixo.

DECODIFICADOR

 Segue um exemplo de decodificador BCD para decimal. Ele possui 4 variáveis de entrada e 10 variáveis de saída relacionadas como na tabela a seguir.

A	B	C	D	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0

DECODIFICADOR

 Procedendo com a simplificação para os demais dígitos, obtemos o seguinte resultado.

$$D_{8} = A \cdot \bar{D}$$
 $D_{7} = B \cdot C \cdot D$
 $D_{6} = B \cdot C \cdot \bar{D}$
 $D_{5} = B \cdot \bar{C} \cdot D$
 $D_{4} = B \cdot \bar{C} \cdot \bar{D}$
 $D_{3} = \bar{B} \cdot C \cdot \bar{D}$
 $D_{2} = \bar{B} \cdot C \cdot \bar{D}$
 $D_{1} = \bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$
 $D_{0} = \bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$

Verifique!

MULTIPLEXADOR

- Os multiplexadores são circuitos que permitem passar uma informação digital proveniente de diversos canais em um só canal. Eles também são chamados de selecionadores de dados.
- A Figura a seguir apresenta o esquema de um multiplexador.

MULTIPLEXADOR

 Vamos supor que temos 4 linhas de informações e apenas uma linha de transmissão. Neste caso o selecionador possui 2 bits e seu circuito está apresentado a seguir.

Tabela verdade

A	В	S
0	0	<i>l</i> ₀
0	1	I_1
1	0	<i>l</i> ₂
1	1	<i>I</i> ₃

DEMULTIPLEXADOR

- Os demultiplexadores são circuitos capazes de enviar informações contidas em um único canal de entrada à vários canais de saída.
- A Figura a seguir apresenta o esquema de um demultiplexador.

DEMULTIPLEXADOR

 Vamos supor que temos 1 linha de informação e 4 linhas de transmissão. Neste caso o selecionador possui 2 bits e seu circuito está apresentado a seguir.

Tabela verdade

Α	В	<i>S</i> ₀	S_1	<i>S</i> ₂	S_3
0	0	Ε	0	0	0
0	1	0	Ε	0	0
1	0	0	0	Ε	0
1	1	0	0	0	E

Demultiplexador de 4 entradas

COMPARADOR

- A função do comparador é comparar a magnitude de números binários.
- Para comparar a igualdade de dois bits, basta utilizar a porta lógica XNOR, que fornecerá nível lógico alto apenas na igualdade.
- Desta maneira, para comparar se dois números binários, por exemplo, A = A₃A₂A₁A₀ e B = B₃B₂B₁B₀ são iguais basta agrupar os bits dois a dois da forma {A₃, B₃}, {A₂, B₂}, {A₁, B₁} e {A₀, B₀} e conectá-los, respectivamente, à quatro portas XNORs. As saídas destas portas são conectadas à uma porta AND de quatro entradas. A saída da porta AND terá nível alto somente se os números forem iguais.

COMPARADOR

 Para comparar se dois números são diferentes e detectar qual deles é o maior, basta analisá-los começando com o bit mais significativo. Por exemplo, para dois números binários A = A₃A₂A₁A₀ e B = B₃B₂B₁B₀, o procedimento a seguir é realizado.

- Se $A_3 = 1$ e $B_3 = 0$ então A > B.
- Se $A_3 = 0$ e $B_3 = 1$ então A < B.
- Se A₃ = B₃ realizam-se as verificações anteriores para o bit consecutivo menos significativo.

REFERÊNCIAS

STALLINGS, William. **Arquitetura e organização de computadores: projeto para o desempenho**. 8 ed. São Paulo: Prentice Hall: Person Education, 2010. 624 p. ISBN 9788576055648.

TANENBAUM, Andrew S. **Organização estruturada de computadores**. 5. ed São Paulo: Pearson Prentice Hall, 2007. 449 p. ISBN 9788576050674.

TOCCI & WIDMER **Sistemas Digitais: Princípios e Aplicações**, 10^a Edição. Editora LTC, 2007

http://www.fem.unicamp.br/~grace/circuitos_combinacionais.pdf

