Data Structures and Algorithms

Lecture 13: B+ Trees II

Department of Computer Science & Technology
United International College

B+ Tree Review

- A B+ tree of order M
 - Each internal node has at most M children (M-1 keys)
 - Each internal node, except the root, has between $\lceil M/2 \rceil$ –1 and M –1 keys
 - Each leaf has between | L/2 | and L keys and corresponding data items

Deletion

- To delete a key target, we find it at a leaf x, and remove it.
- Two situations to worry about, then:
 - 1. The target is a key in some internal node (needs to be replaced, according to our convention)
 - 2. After deleting target from leaf x, x contains less than \[\L/2\] keys (needs to merge nodes)

Situation 1: Removal of a Key

- The target can appear in at most one ancestor y of x as a key (WHY?)
- Node y is seen when we searched down the tree.
- After deleting from node x, we can access y directly and replace target by the new smallest key in x

Situation 2: Handling Leaves with Too Few Keys

- Suppose we delete the record with key target from a leaf.
- Let u be the leaf that has L/2 1 keys (too few)
- Let v be a sibling of u with at least \[\(\L/2 \] +1 keys
- Let k be the key in the parent of u and v that separates the pointers to u and v
- There are two cases

Handling Leaves with Too Few Keys

- Case 1: v contains \[\textsup L/2 \] +1 or more keys and v is the right sibling of u
 - Move the leftmost record from v to u
- Case 2: v contains L/2+1 or more keys and v is the left sibling of u
 - Move the rightmost record from v to u
- Then set the key in parent of u that separates u and v to be the new smallest key in u

Deletion Example

Initial tree, M = 5

Want to delete 15

15 deleted, shaded entries have been changed

Want to delete 10, situation 1

9 deleted

10 deleted, step 1

10 deleted, final step: borrow from right sibling

Merging Two Leaves

- If no sibling leaf with \[\textsup L/2 \] +1 or more keys exists, then merge two leaves.
- Case 1: Suppose that the right sibling v of u contains exactly L/2 keys. Merge u and v
 - -Move the keys in u to v
 - -Remove the pointer to u at parent
 - -Delete the separating key between u and v from the parent of u

Merging Two Leaves (Cont'd)

- Case 2: Suppose that the left sibling v of u contains exactly \[\textsup L/2 \] keys. Merge u and v
 - -Move the keys in u to v
 - -Remove the pointer to u at parent
 - -Delete the separating key between u and v from the parent of u

Example

Want to delete 12

12 deleted, merge with right sibling

12 deleted, delete the empty leaf and the separating key 13 in parent

Deleting a Key in an Internal Node

- Suppose we remove a key from an internal node u, and u has less than [M/2]-1 keys after that
- Case 1: u is a root
 - -Thus u has only one child, then we remove u and make its child the new root

Deleting a key in an internal node

- Case 2A: the right sibling v of u has [M/2] keys or more
 - Move the separating key between u and v in the parent of u and v down to u
 - Move the leftmost key in v to become the separating key between u and v in the parent of u and v.
 - Make the leftmost child of v the rightmost child of u
- Case 2B: the left sibling v of u has [M/2] keys or more
 - Move the separating key between u and v in the parent of u and v down to u.
 - Move the rightmost key in v to become the separating key between u and v in the parent of u and v.
 - Make the rightmost child of v the leftmost child of u

... Continue From Previous Example

Cont'd

12 deleted, final step: borrow from parent and right sibling

Deleting a key in an internal node

- Case 3: all sibling v of u contains exactly
 M/2 1 keys
 - -Move the separating key between u and v in the parent of u and v down to v
 - -Move the keys and child pointers in u to v
 - -Remove the pointer to u at parent.

Example

5 deleted, step 1

5 deleted, merge with left sibling

5 deleted, delete the empty leaf and the separating key 6

5 deleted, borrow from parent and merge with right sibling

5 deleted, delete empty internal node