Goppa & Background Knowledge

https://youtu.be/BCmEclBZXbg

최승주

Contents

대수

실수 좌표 공간

해밍 코드

선형 부호

고파 부호

대수(Algebra)

• 정수론(수론): 수학의 한 분야, 각종 수의 성질을 대상으로 함 (가우스가 많은 기여)

• 대수학: 수 대신에 문자를 사용하여 방정식의 풀이 방법이나 대수적 구조를 연구하는 학문

ex)
$$10 * X = 5000$$

 $10 * X / 10 = 5000 / 10$
 $X = 500$

• Vector: 속력 + 방향

$$\overrightarrow{\mathsf{AB}}$$

- |R² R²: 2차원 실수 좌표 공간
 - R: 실수 좌표 공간
 - 2: 차원

- 가능한 모든 실수의 2 튜플 튜플: 순서가 정해진 숫자들의 리스트
- 실수 2개의 순서 리스트

$$\begin{array}{c} \text{ex} \\ \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -3 \\ 4 \end{bmatrix} \end{array}$$

• |R³ R³: 3차원 실수 좌표 공간

• 실수 3개의 튜플

$$\begin{array}{c}
\text{ex} \\
5 \\
3
\end{array} = \overrightarrow{X} \qquad \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \qquad \begin{bmatrix}
1 \\
-3 \\
4
\end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -3 \\ 4 \\ 8 \end{bmatrix} (X)$$

• |Rⁿ Rⁿ: n차원 실수 좌표 공간

단위 벡터(unit vector)
 정수의 1과 같은 역할

• |Rⁿ Rⁿ: n차원 실수 좌표 공간

단위 벡터(unit vector)
 정수의 1과 같은 역할

수평
$$^{\uparrow}$$
 $\begin{bmatrix} 1\\0 \end{bmatrix}$

$$= \begin{bmatrix} 2\\3 \end{bmatrix} (2,3) \xrightarrow{ } \begin{bmatrix} 0\\1 \end{bmatrix} \Rightarrow = 2*\hat{i} + 3*\hat{j}$$

• |Rⁿ Rⁿ: n차원 실수 좌표 공간

해밍 코드(Hamming Code)

- 오류 정정 부호의 일종
- 이전 선형 블록
- 1950년 Bell 연구소에서 고안
- 최대 2 비트 오류를 감지하거나 1 비트 오류를 수정할 수 있음

• 신드롬: 오류 검사에 사용되는 유일한 패턴

해밍 코드(Hamming Code)

- 홀수 짝수 패리티 비트 개념
- 1101(1의 개수 3) → 11011(짝수)
- 11111(1의 개수 홀수)로 전송이 되면 오류가 발생 했다는 것을 알 수 있음

해밍 코드(Hamming Code)

- 해밍 부호는 어떤 길이의 데이터어(data word)에도 사용 가능
- 해밍 코드는 n개의 데이터어에 k개 패리티 비트를 더하여 새로운 코드어(code word)를 생성한다.

• 오류 감지 및 오류 수정 가능?

Ex)

(7, 4) 해밍 코드

- 4개의 비트 메시지
- 3개의 패리티 비트 사용
- 총 7개의 비트

• (7, 4) 해밍 코드

메시지 비트: x₃ x₂ x₁ x₀

패리티 비트: p₄ p₂ p₁

구조

1	2	3	4	5	6	7
p ₁	p ₂	X ₃	p ₄	X ₂	X ₁	X ₀

• (7, 4) 해밍 코드 구조 ₁

1	2	3	4	5	6	7
p ₁	p ₂	X ₃	p_4	X ₂	X ₁	x_{o}

• (7, 4) 해밍 코드

구조

1	2	3	4	5	6	7
p ₁	p ₂	X ₃	p_4	X_2	X ₁	x_0

• P1 → 1, 3, 5, 7 담당 P1 = $x_3 \oplus x_2 \oplus x_0$

1	001
3	01 1
5	10 1
7	11 1

• (7, 4) 해밍 코드

구조

1	2	3	4	5	6	7
p ₁	p ₂	X ₃	p_4	X ₂	X ₁	x_0

• P1 →1, 3, 5, 7

$$P1 = x_3 \oplus x_2 \oplus x_0 \qquad P2 = x_3 \oplus x_1 \oplus x_0$$

1	001
3	01 1
5	10 1
7	11 1

 $p2 \rightarrow 2, 3, 6, 7$

$$P2 = x_3 \oplus x_1 \oplus x_0$$

2	0 1 0
3	0 1 1
6	1 1 0
7	1 1 1

• (7, 4) 해밍 코드

구조

1	2	3	4	5	6	7
p ₁	p ₂	X ₃	p_4	X ₂	X ₁	X_0

$$P1 = x_3 \oplus x_2 \oplus x_0$$

$$p2 \rightarrow 2, 3, 6, 7$$

$$P2 = x_3 \oplus x_1 \oplus x_0$$

2	010
3	0 1 1
6	1 1 0
7	1 1 1

$$\begin{array}{c|c} p_1 & x_3 & p_2 \\ \hline x_2 & x_1 \\ \hline p_4 & \end{array}$$

$$p4 \rightarrow 4, 5, 6, 7$$

$$P4 = X_2 + X_1 + X_0$$

4	1 00
5	1 01
6	1 10
7	1 11

• (7, 4) 해밍 코드

구조

1	2	3	4	5	6	7
p ₁	p ₂	X ₃	p_4	X_2	X ₁	x_0

$$P1 = x_3 \oplus x_2 \oplus x_0$$

$$P2 = x_3 \oplus x_1 \oplus x_0$$

2	010
3	011
6	1 1 0
7	1 1 1

$$p4 \rightarrow 4, 5, 6, 7$$

$$P4 = X_2 + X_1 + X_0$$

4	1 00
5	1 01
6	1 10
7	1 11

•
$$C_1 = P1 + x_3 + x_2 + x_0$$

•
$$C_2 = P2 + x_3 + x_1 + x_0$$

•
$$C_4 = P4 + x_2 + x_1 + x_0$$

C의 결과로 어디에 에러가 발생했는지 확인 가능

•
$$C_1 = P1 + x_3 + x_2 + x_0$$

•
$$C_2 = P2 + x_3 + x_1 + x_0$$

•
$$C_4 = P4 + x_2 + x_1 + x_0$$

1	2	3	4	5	6	7
p ₁	p_2	X ₃	p ₄	X_2	X ₁	\mathbf{x}_0
1	1	0	0	1	1	0
1	0	0	0	1	1	0

•
$$C_1 = P1 + x_3 + x_2 + x_0$$

•
$$C_2 = P2 + x_3 + x_1 + x_0$$

•
$$C_4 = P4 + x_2 + x_1 + x_0$$

C1: 0

C2: 1

C4: 0 010 → 위치 2번에 문제 발생

1	2	3	4	5	6	7
p ₁	p ₂	X ₃	p_4	X ₂	X ₁	\mathbf{x}_0
1	1	0	0	1	1	0
1	0	0	0	1	1	0

•
$$C_1 = P1 + x_3 + x_2 + x_0$$

•
$$C_2 = P2 + x_3 + x_1 + x_0$$

•
$$C_4 = P4 + x_2 + x_1 + x_0$$

1	2	3	4	5	6	7
p ₁	p_2	X ₃	p_4	X_2	X ₁	x_0
1	1	0	0	1	1	0
1	1	0	0	0	1	0

•
$$C_1 = P1 + x_3 + x_2 + x_0$$

•
$$C_2 = P2 + x_3 + x_1 + x_0$$

•
$$C_4 = P4 + x_2 + x_1 + x_0$$

C1: 1

C2: 0

C4: 1 101 → 위치 5번에 문제 발생

1	2	3	4	5	6	7
p ₁	p_2	X ₃	p_4	X_2	X ₁	x_0
1	1	0	0	1	1	0
1	1	0	0	0	1	0

선형 부호(Linear Code)

- [n, k] code를 갖고 진행
 - n: 코드의 길이(words)
 - k: 차원
- G = Generating Matrix =

• H = Parity Check Matrix =
$$\begin{bmatrix} -P^T & I & I_{n-k} \end{bmatrix}$$
 n-k

선형 부호(Linear Code)

• [n, k] code

$$\cdot G = \begin{bmatrix} 1001 \\ 0110 \end{bmatrix} \begin{bmatrix} I_k \mid P \end{bmatrix} \rightarrow \begin{bmatrix} 1001 \\ 0110 \end{bmatrix}$$

$$A = \begin{bmatrix} a b \\ c d \end{bmatrix} \qquad A^{T} = \begin{bmatrix} a c \\ b d \end{bmatrix} \qquad \qquad \begin{bmatrix} 0110 \\ 1001 \end{bmatrix}$$

고파 부호

• 고파 부호 링크 참조

https://www.youtube.com/watch?v=u4y3YehFivA&list=PLdOq9g7U6Pdt5ZIWeffEU-ViDUS6j-jFS&index=21&t=487s

Q&A

