PCT/EP2004/ U5 103/

BUNDESREPUBLIK DEUTSCHLAND

3 0 JUL 2004

REC'D **2 0 AUG 2004**WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 41 840.7

Anmeldetag:

09. September 2003

Anmelder/Inhaber:

Siemens Aktiengesellschaft,

80333 München/DE

Bezeichnung:

Kraftstoff-Fördereinheit

IPC:

F 04 D 5/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

A 9161

München, den 01. Juli 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Remus

Y DO ELECTRICA I SEE

Beschreibung

Kraftstoff-Fördereinheit

Die Erfindung betrifft eine Kraftstoff-Fördereinheit für ein Kraftfahrzeug mit einer von einem Elektromotor angetriebenen Kraftstoffpumpe, mit einem zwischen zwei Gehäuseteilen angeordneten Laufrad der Kraftstoffpumpe, wobei das Laufrad drehfest auf einer Welle des Elektromotors befestigt ist.

10

Solche Kraftstoff-Fördereinheiten werden in heutigen Kraftfahrzeugen häufig eingesetzt und sind aus der Praxis bekannt.
Die Gehäuseteile der Kraftstoffpumpe sind meist aus Metall
oder einer Sinterkeramik gefertigt oder weisen eine in Kunststoff eingepresste Sinterbuchse als Lagerung für die Welle
auf. Die Gehäuseteile stehen dem Laufrad mit besonders geringem Abstand gegenüber und bilden damit eine Spaltdichtung der
Kraftstoffpumpe. Ein Wärmeeintrag durch Reibung oder Wärme
des Elektromotors führt jedoch zu einer Ausdehnung der Gehäuseteile und des Laufrades und damit zu einer Verringerung des
Spaltes zwischen den Gehäuseteilen und dem Laufrad. In der
Folge entsteht weitere Reibung in der Kraftstoffpumpe, die im
ungünstigsten Fall zu deren Klemmen führt. Insbesondere bei
einem Trockenlauf der Kraftstoff-Fördereinheit blockiert die
Kraftstoffpumpe in sehr kurzer Zeit.

25

30

20

Der Erfindung liegt das Problem zugrunde eine Kraftstoff-Fördereinheit der eingangs genannten Art so weiterzubilden, dass ein Klemmen der Kraftstoffpumpe insbesondere bei einem Trockenlauf weitgehend vermieden wird.

Dieses Problem wird erfindungsgemäß dadurch gelöst, dass zumindest eines der Gehäuseteile eine Dehnfuge hat.

Durch diese Gestaltung kann sich das Gehäuseteil bei Wärmeeintrag oder bei Reibung ausdehnen. Die Formänderung der Gehäuseteile lässt sich durch eine entsprechende Anordnung der Dehnfuge oder mehrerer Dehnfugen auffangen und damit von der Lagerung der Welle und dem Laufrad fernhalten. Der Dichtspalt zwischen den Gehäuseteilen und dem Laufrad lässt sich dank der Erfindung auch bei einer Wärmeausdehnung der Gehäuseteile weitgehend konstant halten. Damit wird die Erzeugung weiterer Reibung besonders gering gehalten und ein Klemmen der Kraftstoffpumpe weitgehend vermieden. Die erfindungsgemäße Kraftstoff-Fördereinheit kann daher über einen besonders langen Zeitraum trocken und damit ohne Kraftstoff betrieben werden, ohne dass die Kraftstoffpumpe klemmt.

10

Die erfindungsgemäße Kraftstoff-Fördereinheit lässt sich besonders kostengünstig fertigen, wenn zumindest eines der Gehäuseteile aus Kunststoff gefertigt ist und wenn der Kunststoff eine Lagerschale zur unmittelbaren Lagerung der Welle bildet. Bei bekannten Kraftstoff-Fördereinheiten für Otto-Kraftstoffe konnten die Gehäuseteile einschließlich der Lagerung der Welle nicht vollständig aus Kunststoff gefertigt werden, da zu dem Wärmeeintrag über den Elektromotor zusätzlich eine Formänderung durch Quellen des Kunststoffs bei Kontakt mit Kraftstoff eine Abdichtung der Gehäuseteile gegenüber dem Laufrad verhindert. Die Dehnfugen nach der Erfindung nehmen die Formänderung des Kunststoffs durch Quellen auf und verhindern damit, dass der Dichtspalt gegenüber dem Laufrad und ein Lagerspalt gegenüber der Welle verändert wird. Ein weiterer Vorteil der Verwendung von Kunststoff als Gehäuseteil besteht darin, dass von dem Elektromotor erzeugte Wärme besonders schlecht weitergeleitet wird. Dies führt zu einer weiteren Verminderung der Reibung in der Kraftstoffpumpe.

30

35

20

In axialer wie in radialer Richtung auftretende Formänderungen lassen sich durch eine entsprechende Anordnung der Dehnfugen gemäß einer anderen vorteilhaften Weiterbildung der Erfindung einfach ausgleichen, wenn das dem Elektromotor zugewandte Gehäuseteil einen radialen, auf die Welle zulaufenden Abschnitt und einen axialen, parallel zu der Welle von dem Laufrad weggeführten Abschnitt aufweist.

Ein Wärmeeintrag in das dem Elektromotor zugewandte Gehäuseteil lässt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung besonders gering halten, wenn die Dehnfuge an dem axialen Abschnitt nahe des Laufrades angeordnet und als Beabstandung des Gehäuseteils von der Welle ausgebildet ist.

5

10

30

35

Zur weiteren Verringerung der Reibung im Bereich der Lagerung der Welle trägt es gemäß einer anderen vorteilhaften Weiterbildung der Erfindung bei, wenn sich die Dehnfuge über ungefähr die Hälfte des axialen Abschnittes erstreckt.

Zur weiteren Verringerung der Reibung im Bereich der Lagerung der Welle trägt es gemäß einer anderen vorteilhaften Weiterbildung der Erfindung bei, wenn sich die Dehnfuge an dem axialen Abschnitt über die gesamte Höhe des radialen Abschnitts erstreckt. Der radiale Abschnitt des dem Elektromotor zugewandten Gehäuseteils kann sich hierdurch in seiner Ebene ausdehnen, ohne zu einer verstärkten Reibung in der Lagerung der Welle zu führen.

Eine Verformung eines der Abschnitte durch eine Formänderung des anderen Abschnitts lässt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung einfach vermeiden, wenn die Dehnfuge im aufeinander treffenden Eckbereich der beiden Abschnitte angeordnet ist.

Eine Beeinflussung des Dichtspaltes zwischen den Gehäuseteilen und dem Laufrad lässt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung einfach vermeiden, wenn die Dehnfuge an der dem Laufrad abgewandten Seite des dem Elektromotor zugewandten Gehäuseteils angeordnet ist.

Das dem Elektromotor zugewandte Gehäuseteil lässt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung besonders kostengünstig in einer axial endformbaren Spritzgussform fertigen, wenn die Dehnfuge als um den axialen Abschnitt umlaufende Nut ausgebildet ist.

Zur weiteren Verringerung der Fertigungskosten der erfindungsgemäßen Kraftstoff-Fördereinheit trägt es bei, wenn der axiale Abschnitt und der radiale Abschnitt einstückig gefertigt sind.

5

10

20

30

Die Erfindung lässt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt in

Figur 1 eine erfindungsgemäße Kraftstoff-Fördereinheit für ein Kraftfahrzeug,

Figur 2 eine stark vergrößerte Darstellung eines Teilbereichs II einer Kraftstoffpumpe der Fördereinheit aus Figur 1.

Figur 1 zeigt eine zur Anordnung in einem Kraftstoffbehälter eines Kraftfahrzeuges vorgesehene Kraftstoff-Fördereinheit mit einem Gehäuse 1 und mit einer von einem Elektromotor 2 angetriebenen Kraftstoffpumpe 3. Die Kraftstoffpumpe 3 ist als Seitenkanalpumpe ausgebildet und weist ein zwischen zwei Gehäuseteilen 4, 5 drehbar angeordnetes Laufrad 6 auf. Das Laufrad 6 ist auf einer Welle 7 des Elektromotors 2 befestigt. Der Elektromotor 2 hat einen Spulen 8 und die Welle 7 aufweisenden Rotor 9 und einen mit dem Gehäuse 1 verbundenen Stator 10 mit Magnetschalen. Der Elektromotor 2 lässt sich über an der Außenseite des Gehäuses 1 angeordnete elektrische Kontakte 11 mit elektrischem Strom versorgen. Die Fördereinheit hat eine Axiallagerung 12 mit einer in dem dem Elektromotor 2 abgewandten Gehäuseteil 5 angeordneten, die Welle 7 abstützenden Kugel 13 und eine Radiallagerung 14 in dem dem Elektromotor 2 zugewandten Gehäuseteil 4.

Bei einem Antrieb des Laufrades 6 saugt die Kraftstoffpumpe 3 über einen Ansaugkanal 15 Kraftstoff an und fördert diesen über einen Auslasskanal 16 in das Gehäuse 1 der Fördereinheit. Der Kraftstoff durchströmt anschließend den Elektromotor 2 in einem Spalt zwischen dem Stator 10 und dem Rotor 9. Zur Verdeutlichung sind in der Zeichnung die Strömungen des Kraftstoffs mit Pfeilen gekennzeichnet. Anschließend strömt der Kraftstoff über ein Rückschlagventil 17 zu einem Anschlussstutzen 18. An dem Anschlussstutzen 18 lässt sich eine nicht dargestellte, mit einer Brennkraftmaschine des Kraftfahrzeuges verbundene Kraftstoffleitung anschließen.

Figur 2 zeigt stark vergrößert einen Teilbereich des zwischen dem Laufrad 6 und dem Elektromotor 2 angeordneten Gehäuseteils 4 im Bereich der Welle 7. Das dem Elektromotor 2 zugewandte Gehäuseteil 4 der Kraftstoffpumpe 3 hat einen radialen, auf die Welle 7 zulaufenden Abschnitt 19 und einen axialen, parallel zu der Welle 7 angeordneten Abschnitt 20. Eine erste Dehnfuge 21 erstreckt sich von dem Laufrad 6 angrenzend an die Welle 7 über die Hälfte des axialen Abschnitts 20. Die Radiallagerung 14 der Welle 7 ist auf der zweiten Hälfte des axialen Abschnitts 20 angeordnet. Eine zweite Dehnfuge 22 ist als in dem radialen Abschnitt 19 angeordnete, um den axialen Abschnitt 20 umlaufende Nut ausgebildet.

10

20

25

30

35

Bei einem Trockenlauf und damit ohne Förderung von Kraftstoff wird von dem Elektromotor 2 erzeugte Wärme über den als Radiallagerung 14 ausgebildeten Bereich des axialen Abschnitts 20 in die Kraftstoffpumpe 3 eingebracht. In der Dehnfuge 21 des axialen Abschnitts 20 kann nur unwesentlich Wärme auf die Kraftstoffpumpe 3 übertragen werden, da hier das Gehäuseteil 4 einen Abstand zu der Welle 7 aufweist. Zur Verdeutlichung ist in der Zeichnung der Wärmestrom mit Pfeilen gekennzeichnet. Die Wärme kann zu einer Ausdehnung des axialen Abschnitts 20 in radialer Richtung erfolgen. Bei einem Trockenlauf und damit ohne Förderung von Kraftstoff führt von der Kraftstoffpumpe 3 erzeugte Reibungswärme zu einer Ausdehnung des radialen Abschnitts 19 in auf die Welle 7 weisender Richtung. Der radiale Abschnitt 19 vermag sich durch die beiden Dehnfugen 21, 22 geringfügig zu der Welle 7 hin auszudehnen, ohne Kräfte in die Radiallagerung 14 einzuleiten. Zur Verdeutlichung sind in der Zeichnung strichpunktiert bei einer

Temperaturerhöhung entstehende Ausdehnungen des zwischen der Kraftstoffpumpe 3 und dem Elektromotor 2 aus Figur 1 angeordneten Gehäuseteils 4 dargestellt.

Die Erfindung wurde beispielhaft an einer Seitenkanalpumpe dargestellt. Selbstverständlich kann es sich bei der Kraftstoffpumpe 3 auch um eine Peripheralpumpe oder eine Verdrängerpumpe, wie beispielsweise eine so genannte G-Rotor-Pumpe handeln.

Patentansprüche

10

20

- 1. Kraftstoff-Fördereinheit für ein Kraftfahrzeug mit einer von einem Elektromotor angetriebenen Kraftstoffpumpe, mit einem zwischen zwei Gehäuseteilen angeordneten Laufrad der Kraftstoffpumpe, wobei das Laufrad drehfest auf einer Welle des Elektromotors befestigt ist, dadurch gekenn-zeichnet, dass zumindest eines der Gehäuseteile (4, 5) eine Dehnfuge (21, 22) hat.
 - 2. Kraftstoff-Fördereinheit nach Anspruch 1, dadurch gekennzeich net, dass zumindest eines der Gehäuseteile (4, 5) aus Kunststoff gefertigt ist und dass der Kunststoff eine Lagerschale zur unmittelbaren Lagerung der Welle (7) bildet.
 - 3. Kraftstoff-Fördereinheit nach Anspruch 1 oder 2, da-durch gekennzeichnet, dass das dem Elektromotor (2) zugewandte Gehäuseteil (4) einen radialen, auf die Welle (7) zulaufenden Abschnitt (19) und einen axialen, parällel zu der Welle (7) von dem Laufrad (6) weggeführten Abschnitt (20) aufweist.
 - 4. Kraftstoff-Fördereinheit nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeich net, dass die Dehnfuge (21) an dem axialen Abschnitt (20) nahe des Laufrades (6) angeordnet und als Beabstandung des Gehäuseteils (4) von der Welle (7) ausgebildet ist.
- 5. Kraftstoff-Fördereinheit nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Dehnfuge (21) über ungefähr die Hälfte des axialen Abschnittes (20) erstreckt.
- 6. Kraftstoff-Fördereinheit nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Dehnfuge (21) an dem axialen Abschnitt

- (20) über die gesamte Höhe des radialen Abschnitts (19) erstreckt.
- 7. Kraftstoff-Fördereinheit nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dehnfuge (22) im aufeinander treffenden Eckbereich der beiden Abschnitte (19, 20) angeordnet ist.
- 8. Kraftstoff-Fördereinheit nach zumindest einem der vorher10 gehenden Ansprüche, dadurch gekennzeichnet, dass die Dehnfuge (22) an der dem Laufrad (6) abgewandten Seite des dem Elektromotor (2) zugewandten Gehäuseteils (4) angeordnet ist.
- 9. Kraftstoff-Fördereinheit nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dehnfuge (22) als um den axialen Abschnitt (20) umlaufende Nut ausgebildet ist.
- 20 10. Kraftstoff-Fördereinheit nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der axiale Abschnitt (20) und der radiale Abschnitt (19) einstückig gefertigt sind.

Zusammenfassung

Kraftstoff-Fördereinheit

Bei einer Kraftstoff-Fördereinheit hat ein zwischen einem Elektromotor (2) und einer Kraftstoffpumpe (3) angeordnetes Gehäuseteil (4) Dehnfugen zum Ausgleich von Wärmeausdehnungen oder einem Quellen des Materials des Gehäuseteils (4). Die Dehnfugen ermöglichen es, einen Spalt zwischen Laufrad (6) und Gehäuseteilen (4, 5) der Kraftstoffpumpe (3) besonders konstant zu halten. Damit wird ein Klemmen der Kraftstoffpumpe (3), insbesondere bei einem Trockenlauf weitgehend vermieden.

5 (Figur 1)

Bezugszeichenliste

	1		Gehäuse
5	2		Elektromotor
	3		Kraftstoffpumpe
	4, 5		Gehäuseteil
	6		Laufrad
	7		Welle
10	8		Spule
	9		Rotor
_	10		Stator
	11		Kontakt
	12		Axiallagerung
15	13		Kugel
	14		Radiallagerung
	15		Ansaugkanal
	16		Auslasskanal
	17		Rückschlagventil
20	18		Anschlussstutzen
	19,	20	Abschnitt

21, 22 Dehnfuge

FIG 1

FIG 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.