Algorítmica y Programación I UNTDF - IDEI

PRÁCTICA nro 8 - 2 y 3 dimensiones

- 1) Dada una matriz cuadrada de N x N elementos enteros, con N dato y N <= 10, escribir subprogramas que calculen e impriman:
 - a) La cantidad de elementos nulos que existen en las diagonales principal y secundaria.
 - b) La cantidad de elementos nulos que existen en el triángulo inferior.
 - c) La cantidad de elementos nulos que existen en el triángulo superior.
 - d) La matriz y su traspuesta
 - e) Si es o no una matriz simétrica.
 - f) Si es o no la matriz identidad.
- 2) Dada una matriz rectangular de N x M elementos reales con N y M datos, escribir un subprograma que imprima:
 - a) La matriz que resulta de permutar las filas I y K (datos a leer).
 - b) La cantidad de elementos nulos.
- 3) Realice subprogramas que permitan calcular suma, diferencia y producto de dos matrices, con valores numéricos cualesquiera, establezca las condiciones necesarias para la factibilidad de dichas operaciones.
- 4) Dada una matriz de M filas por N columnas, realizar un subprograma para generar un vector columna que tenga el máximo de cada fila.
- 5) Una concesionaria de autos tiene 10 sucursales numeradas de 1 a 10, y vende 6 tipos de vehículos numerados de 1 a 6. Al final de cada mes, desea sacar una estadística de ventas, y para ello procesa la información de todas las facturas de ese mes en la siguiente forma:

Nro de sucursal	Tipo de vehículo	Cant. Uni. Vendidas
4	2	5
1	1	1
3	5	2
4	3	1
7	4	1
4	3	2

Algorítmica y Programación I UNTDF - IDEI

0 (Fin de datos)

Se desea:

a) Imprimir la información agrupada de la siguiente forma:

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						_

Referencia

Tipo de vehículos	
Nro de sucursal	

- b) Cuál o cuáles fueron las sucursales que más vendieron (sin importar el tipo el tipo de vehículo).
- c) Cuál o cuáles fueron los vehículos más vendidos (sin importar la sucursal).
- 6) En un pueblo del interior, se realizaron las elecciones para intendente. Se presentaron cuatro candidatos A, B, C y D. Los datos se ingresarán por mesa, en el momento que los integrantes de esta última finalicen el escrutinio. Ejemplo.:

Algorítmica y Programación I UNTDF - IDEI

Mesa	А	В	С	D
5	10	100	31	0
7	20	200	50	3
1	17	50	20	2

0 (fin de datos)

Se pide calcular e imprimir:

- a) ¿Cúal fue el candidato más votado?
- b) Qué porcentaje de votos recibió, y si este es > 50% indicar que es el GANADOR. Caso contrario, decir cuáles fueron los dos candidatos más votados, que son los que irán a segunda ronda de elecciones.
- 7) Dada una zona cuadrada de N manzanas de lado, se conoce la cantidad de habitantes de cada una de las manzanas. Escribir un programa que lea esos datos de la siguiente forma:
 - Ubicación (Dada por coordenadas I, J).
 - Cantidad de habitantes de la manzana.

Sólo se leen los datos de las manzanas habitadas. Como fin de datos utilice el par (0,0).

Hacer SUBPROGRAMAS para imprimir la ubicación y cantidad de habitantes de la o las manzanas que:

- a) Están rodeadas de mayor cantidad de manzanas deshabitadas.
- b) Tiene mayor población que cada una de las manzanas que la rodean.

NOTA: Realice el ejercicio:

- 1) Excluyendo las manzanas del borde.
- 2) Sin excluir el borde.
- 8) Se desea conocer la temperatura promedio de los últimos 3 años en la ciudad de Ushuaia (1997,1998, 1999) e imprimir un listado ordenado por fecha (dd/mm/aaaa), para los días de este período que superaron dicho promedio.
- 9) Ha Usted le han solicitado que aconseje sobre la o las estructuras de datos estáticas, más convenientes, para guardar la información asociada con el siguiente problema:

Un cierto grupo estadístico realiza una encuesta, categorizando a las mismas por la edad (rangos. 0..19; 20..29;30..39; 40..49; 50 o +), nivel socioeconómico 8 que debe

Algorítmica y Programación I UNTDF - IDEI

ser A, B o C), y estudios realizados (Universitarios, Terciario, Secundario, Primario o Ninguno).

- 10) Una empresa de alimentación tiene N supermercados. Definir la estructura de datos más adecuada para almacenar por día, mes, y supermercado el total de caja recaudado. Considere que la información se guarda para todo un año. Imprimir, además:
 - a) Qué supermercado/s ha realizado el máximo de ventas totales anual.
 - b) Qué supermercado/s ha realizado el máximo de venta totales mensual y en qué mes.
 - c) Qué día del año se ha obtenido la mayor venta, en cada uno de los supermercados.
- 11) La empresa de construcciones "AL MAR SRL" promueve la construcción de un edificio que consta de 20 pisos y 6 departamentos por piso. Para cada una de las viviendas la constructora desea guardar la información del número de metros cuadrados, el número de habitaciones, el precio, y si está o no vendida.

Se pide:

- a) definir los tipos de datos capaces de describir toda esta información, sabiendo que las claves para acceder a la información de una vivienda son el nro de piso y el nro de departamento.
- b) Realizar un listado para cada piso donde se informe las unidades que han sido vendidas, detallando las características de la misma.
- 12) Cómo modificaría el algoritmo anterior, si ahora el programa debe servir para un complejo de viviendas, donde hay 5 torres (que se identifican con las letras A,B,C,D y E), y cada torre posee un edificio con las características del ejercicio anterior. Se pide además realizar los items a) y b) del ejercicio 11, pero ahora para este nuevo problema.