

# Molecular and Functional Diversity of Histamine Receptor Subtypes

JEAN-MICHEL ARRANG, GUILLAUME DRUTEL,  
MONIQUE GARBARG, MARTIAL RUAT,  
ELISABETH TRAFFORT,  
AND JEAN-CHARLES SCHWARTZ

*Unité de Neurobiologie et Pharmacologie (U. 109) de l'INSERM  
Centre Paul Broca  
2ter rue d'Alésia  
75014 Paris, France*

The early history of histamine is largely associated with allergy. The major actions of histamine were described at the beginning of this century by Sir Henry Dale and his colleagues after its isolation from ergot extracts. Namely, its potent contractile effects on smooth muscles and the capillary dilation it induces, which mimic some initial manifestations of the anaphylactic shock, were identified by these scientists. They also detected the presence of the amine in many tissues, but it was another British scientist, Feldberg, who clearly demonstrated that histamine was released from the lung during the anaphylactic response and that it induced a marked bronchoconstriction.

The idea that histamine exerts its various biological effects via interaction with several distinct receptor subtypes progressively arose mainly with the design of subtype-selective antagonists. It was first realized that the "antihistamines" (now termed H<sub>1</sub>-receptor antagonists), the first of which were designed by Bovet and Staub,<sup>1</sup> did not block uniformly all actions of histamine, leaving, for instance, gastric secretion unaffected. On this basis as well as on the differential action of agonists, Ash and Schild<sup>2</sup> clearly postulated the existence of a second receptor subtype. The existence of the H<sub>2</sub> receptor was definitively established with the design of burimamide, a selective (non-H<sub>1</sub>) antagonist, as well as of several relatively selective agonists.<sup>3</sup>

Arrang *et al.*<sup>4</sup> proposed the existence of the third receptor subtype, an autoreceptor controlling the synthesis and release of histamine in cerebral neurons. Four years later, the existence of the H<sub>3</sub> receptor was definitively established with the design of highly potent and selective agonists and antagonists.<sup>5</sup>

The fields of histamine receptor pharmacology and biochemistry were recently reviewed in an extensive manner.<sup>6-8</sup> However, the very recent cloning of the genes encoding the histamine H<sub>1</sub>- and H<sub>2</sub>-receptor subtypes has notably enlarged our knowledge of these receptors. Although the histamine H<sub>3</sub> receptor has not yet been cloned, all three seem to belong to the superfamily of receptors with seven transmembrane domains and coupled to guanylnucleotide-sensitive G-proteins (TABLE 1).

## THE HISTAMINE H<sub>1</sub> RECEPTOR

The H<sub>1</sub>-receptor pharmacology was initially defined in functional assays such as smooth muscle contraction, with the design of potent antagonists, the so-called

antihistamines, most of which are known to interfere with central histaminergic transmissions and display prominent sedative properties. Biochemical and localization studies of the  $H_1$  receptor were made feasible with the design of reversible and irreversible radiolabeled probes such as [ $^3H$ ]mepyramine, [ $^{125}I$ ]iodobolpyramine, and [ $^{125}I$ ]iodoazidophenylpyramine (reviewed in refs. 9–11).

Initial biochemical studies indicated that the cerebral guinea pig  $H_1$  receptor was a glycoprotein of apparent molecular mass of 56 kDa with critical disulfide bonds and that agonist binding was regulated by guanyl nucleotides, implying that the receptor

TABLE I. Properties of Three Histamine Receptor Subtypes

| Property                   | $H_1$                                                                            | $H_2$                                                    | $H_3$                                                                                               |
|----------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Coding sequence            | 491 a.a. (bovine)<br>488 a.a. (guinea pig)<br>486 a.a. (rat)<br>487 a.a. (human) | 358 a.a. (rat)<br>359 a.a. (dog, human)                  | ?                                                                                                   |
| Chromosome localization    | Chromosome 3                                                                     | ?                                                        | ?                                                                                                   |
| Highest brain densities    | Thalamus<br>Cerebellum<br>Hippocampus                                            | Striatum<br>Cerebral cortex<br>Amygdala                  | Striatum<br>Frontal cortex<br>Substantia nigra                                                      |
| Autoreceptor               | No                                                                               | No                                                       | Yes                                                                                                 |
| Affinity for histamine     | Micromolar                                                                       | Micromolar                                               | Nanomolar                                                                                           |
| Characteristic agonists    | 2(m. chlorophenyl)histamine                                                      | Imipromidine<br>Sopromidine                              | (R) $\alpha$ -methylhistamine<br>Imetit                                                             |
| Characteristic antagonists | Mepyramine<br>(pyrilamine)                                                       | Cimetidine                                               | Thioperamide                                                                                        |
| Radioligands               | [ $^3H$ ]Mepyramine<br>[ $^{125}I$ ]Iodobolpyramine                              | [ $^3H$ ]Tiotidine<br>[ $^{125}I$ ]Iodoamino-potentidine | [ $^3H$ ](R) $\alpha$ -methylhistamine<br>[ $^{125}I$ ]Iodophenopropit<br>[ $^{125}I$ ]Iodoproxyfan |
| Second messengers          | Inositol phosphates (+)<br>Arachidonic acid (+)<br>cAMP (potentiation)           | cAMP (+)<br>Arachidonic acid (-)<br>$Ca^{2+}$ (+)        | Inositol phosphates (-)                                                                             |

a.a.: Amino acid residue.

belongs to the superfamily of receptors coupled to G-proteins. In addition, various intracellular responses were found to be associated with  $H_1$ -receptor stimulation, for example, inositol phosphate release, increase in  $Ca^{2+}$  fluxes, cyclic AMP and cyclic GMP accumulation in whole cells, arachidonic acid release.<sup>6,12</sup> It was not known, however, whether such a variety of responses corresponds to a single receptor or to distinct isoreceptors. Indeed several photoaffinity-labeled proteins of slightly different masses, but similar  $H_1$  pharmacology, were detected in some tissues.<sup>10</sup>

In spite of preliminary attempts using affinity columns with a mepyramine derivative, the  $H_1$  receptor was never purified to homogeneity. Nevertheless, the deduced amino acid sequence of a bovine  $H_1$  receptor was recently disclosed after expression cloning of a corresponding cDNA. The latter was based upon the detection of a  $Ca^{2+}$ -dependent  $Cl^-$  influx into microinjected *Xenopus* oocytes. Following the transient expression of the cloned cDNA into COS-7 cells, the identity of the protein as an  $H_1$  receptor was confirmed by binding studies.<sup>13</sup> More recently, by using the cloned bovine cDNA as a probe, the gene encoding the  $H_1$  receptor was isolated in rats,<sup>14</sup> guinea pigs,<sup>15,16</sup> and humans.<sup>17</sup>

We recently cloned a guinea-pig cDNA encoding an  $H_1$  receptor in order to identify the signaling systems of the  $H_1$  receptor in a well-studied animal species, as well as to assess the possible existence of iso-receptors.<sup>16</sup> It encodes a glycoprotein of 488 amino acids (FIG. 1) with a calculated  $M_r$  of 56 kDa, in good agreement with the apparent size of the photoaffinity-labeled receptor from guinea-pig brain or heart, as determined by SDS/PAGE analysis.<sup>18,19</sup> Northern blot analysis of a variety of guinea-pig peripheral or cerebral tissues identified, in most cases, a single transcript of 3.3 kb. However, in some tissues—for example, ileum or lung—a second transcript of 3.7 kb was generated, possibly by the use of distinct promoter or polyadenylation sites or corresponding to a transcript from a distinct gene.<sup>15,16</sup>

*In situ* hybridization studies showed a highly contrasted expression of the  $H_1$  receptor gene transcript in guinea-pig brain.<sup>16</sup> When compared with the autoradiographic localization of the corresponding receptor protein,<sup>20</sup> consistent as well as complementary information was provided. For instance, the mRNAs were found in high levels in cerebellar Purkinje cells and hippocampal pyramidal cells, whereas dense [<sup>125</sup>I]iodobolopyramine binding sites are found in the molecular layers of both areas. This presumably reflects the synthesis of the receptor in perikarya and its final insertion in membranes of the abundant dendritic trees of both cell types.

Transfection with the guinea-pig gene followed by stable expression of  $H_1$  receptors by a CHO cell line allowed the characterization of multiple signaling pathways.<sup>21</sup> In each case the involvement of a  $G_i/G_o$  protein with pertussis toxin (PTX), the influence of extracellular  $Ca^{2+}$  and of protein kinase C (PKC) activation by phorbol 12-myristate 13-acetate (PMA) were assessed.

Histamine induced in a PTX- and PMA-insensitive manner a biphasic increase in intracellular  $Ca^{2+}$  level of which only the second, sustained phase was dependent on the extracellular  $Ca^{2+}$  level. In addition, histamine also caused a threefold elevation of inositol phosphate production, which was PTX-insensitive but slightly inhibited by PMA and reduced by 75% in the absence of extracellular  $Ca^{2+}$ .

Histamine also caused a massive release of arachidonic acid (AA), occurring in a  $Ca^{2+}$ - and PMA-sensitive manner, probably through the activation of a cytosolic phospholipase  $A_2$ , which partly involves coupling to a PTX-sensitive G-protein. In comparison, in HeLa cells endowed with a native  $H_1$  receptor, the histamine-induced arachidonic acid release was also  $Ca^{2+}$ - and PMA-sensitive, but totally PTX-insensitive.

Finally, in the same CHO( $H_1$ ) cell line, histamine in very low concentrations potentiated the cyclic AMP accumulation induced by forskolin. This response appeared to be insensitive to PTX, extracellular calcium, and PMA.

These various observations show that stimulation of a single receptor subtype, the guinea-pig  $H_1$  receptor, can trigger four major intracellular signals, presumably through coupling to several G-proteins, which are variously modulated by extracellular  $Ca^{2+}$  and PKC activation.



FIGURE 1. Amino acid sequence of the guinea-pig histamine H<sub>1</sub> receptor. Y indicates the presence of glycosylation sites.

### THE HISTAMINE H<sub>2</sub> RECEPTOR

Until recently, the information on H<sub>2</sub> receptors was mainly derived from the physiological and biochemical responses they mediate, and molecular properties of the H<sub>2</sub> receptor have remained largely unknown for a long time. For instance, only recently the reversible labeling of the H<sub>2</sub> receptor was achieved using [<sup>3</sup>H]tiotidine<sup>22</sup> or, more reliably, [<sup>125</sup>I]iodoaminopotentidine.<sup>23</sup> Irreversible labeling, achieved with a photoaffinity probe, followed by SDS-PAGE, led to the identification of H<sub>2</sub> receptor peptides from the guinea-pig brain.<sup>23</sup>

By screening cDNA or genomic libraries with homologous probes, the gene encoding the H<sub>2</sub> receptor was first identified in dogs<sup>24</sup> and, subsequently, in rats<sup>25</sup> and humans.<sup>26</sup> Comparison of these proteins shows that they display a high degree of homology, that is, 82% between the rat and dog receptor (FIG. 2), whereas the degree of homology between the H<sub>1</sub> and H<sub>2</sub> receptors is limited. The H<sub>2</sub> receptor is organized like other receptors positively coupled to adenylyl cyclase; that is, it displays a short (30 amino acids) third intracellular loop and a long (71 amino acids) C-terminal cytoplasmic tail (FIG. 2).

Consistent with their histamine binding function, the H<sub>2</sub> receptors display in the third transmembrane helix (TM3) an aspartate residue (Asp<sup>98</sup>) likely to bind the ammonium group of the endogenous ligand, because it is found in all other aminergic receptors. In the TM5, an aspartate and a threonine residue (Asp<sup>185</sup> and Thr<sup>189</sup> in the rat and Asp<sup>186</sup> and Thr<sup>190</sup> in the dog) seemed responsible for hydrogen bonding with the nitrogen atoms of the imidazole ring of histamine. This was partially confirmed by site-directed mutagenesis.<sup>27</sup>

A potential regulation of the rat H<sub>2</sub> receptor by phosphorylation is suggested by the presence of three consensus sites for protein kinase C.

Northern blot analysis of various tissues using a probe derived from the rat cDNA sequence revealed the presence of a single major transcript of 6.0 and 4.5 kb in rat and guinea pig, respectively.<sup>25,28</sup> The distribution of the mRNAs in these two species was consistent with the known distribution of the receptor as mainly established using the sensitive probe [<sup>125</sup>I]iodoaminopotentidine.<sup>23</sup>

Transfected CHO cells were found to express a high level of rat H<sub>2</sub> receptors.<sup>28</sup> In these cells, histamine, in low concentration, induced an accumulation of cAMP, confirming the association of the H<sub>2</sub> receptor with adenylyl cyclase. In addition, in the same cells, histamine potently inhibited the release of arachidonic acid induced by stimulation of constitutive purinergic receptors or by application of a Ca<sup>2+</sup> ionophore. This inhibition was independent of either cAMP or Ca<sup>2+</sup> levels in the cells. The results indicate that a single H<sub>2</sub> receptor may be linked not only to adenylyl cyclase activation but also to reduction of phospholipase A<sub>2</sub> activity. Because H<sub>1</sub> receptors have been reported to stimulate arachidonic acid release, inhibition of this release, an unexpected signaling pathway for H<sub>2</sub> receptors, may account for the opposite physiological responses elicited in many tissues by activation of these two receptor subtypes.

In rat hepatoma-derived cells transfected with the canine H<sub>2</sub>-receptor gene, histamine induced an increase in intracellular cAMP and Ca<sup>2+</sup> concentrations, revealing in this system a positive coupling of the H<sub>2</sub> receptor to two signaling mechanisms.<sup>29</sup>

### THE HISTAMINE H<sub>3</sub> RECEPTOR

The H<sub>3</sub> receptor was initially detected as an autoreceptor controlling histamine synthesis and release in brain.<sup>4</sup> It was thereafter shown to inhibit presynaptically the



FIGURE 2. Amino acid sequence of the rat histamine H<sub>2</sub> receptor. The shaded amino acid residues are those that are not identical in dog and rat.

release of other monoamines in brain and peripheral tissues as well as of neuropeptides from unmyelinated C-fibers (reviewed in refs. 7 and 30).

The molecular structure of the H<sub>3</sub> receptor remains to be established. Reversible labeling of this receptor was first achieved using a highly selective agonist [<sup>3</sup>H](R)-α-methylhistamine,<sup>5</sup> [<sup>3</sup>H]N<sup>α</sup>-methylhistamine, a less selective agonist,<sup>31</sup> and, more recently, [<sup>125</sup>I]iodoproxyfan, a selective antagonist,<sup>32</sup> were also proposed. It appears that the binding of [<sup>3</sup>H](R)-α-methylhistamine is regulated by guanyl nucleotides, strongly suggesting that the H<sub>3</sub> receptor, like the other histamine receptors, belongs to the superfamily of receptors coupled to G-proteins.<sup>33</sup> Constitutive H<sub>3</sub> receptors in a gastric cell line appear to be negatively coupled to phospholipase C.<sup>34</sup> In the vascular smooth muscle, H<sub>3</sub> receptors mediate voltage-dependent Ca<sup>2+</sup>-channel stimulation via a pertussis-insensitive G-protein.<sup>35</sup>

During the last few years several potent and highly selective H<sub>3</sub> receptor agonists were designed.<sup>36</sup> Among them, (R)-α-methylhistamine<sup>5</sup> and (R)α,(S)β-dimethylhistamine<sup>36</sup> display a high degree of stereoselectivity, imetit<sup>37</sup> being a nonchiral and very potent H<sub>3</sub>-receptor agonist (TABLE 2).

TABLE 2. Potent and Selective H<sub>3</sub>-Receptor Agonists

| Compound                                                          | Relative Potency at Receptors |                |                |
|-------------------------------------------------------------------|-------------------------------|----------------|----------------|
|                                                                   | H <sub>1</sub>                | H <sub>2</sub> | H <sub>3</sub> |
| Histamine: Im-CH <sub>2</sub> -CH <sub>2</sub> -NH <sub>2</sub>   | 100                           | 100            | 100            |
| (R)-α-methylhistamine: Im-CH <sub>2</sub> -CH-NH <sub>2</sub>     | 0.5                           | 1              | 1,500          |
| (R)α,(S)β-dimethylhistamine: Im-CH-CH-NH <sub>2</sub>             | 0.03                          | 0.2            | 1,800          |
| Imetit: Im-CH <sub>2</sub> -CH <sub>2</sub> -SC(=NH) <sub>2</sub> | <0.1                          | 0.6            | 6,200          |

By the use of these compounds as well as the prototypic H<sub>3</sub>-receptor antagonist thioperamide,<sup>5</sup> several effects and physiological roles of histamine could be unraveled or confirmed.

In the brain, H<sub>3</sub>-receptor ligands have largely confirmed the role played by histaminergic neurons in cortical activation and arousal mechanisms.<sup>7,38</sup> In the respiratory tract, H<sub>3</sub> receptors inhibit both acetylcholine release from the vagus nerve and the release of neuropeptides from sensory nerves.<sup>39</sup> In the digestive system, similar prejunctional H<sub>3</sub> receptors are involved in the regulation of gastrointestinal functions.<sup>40</sup> However, a direct stimulation of H<sub>3</sub> receptors on enterochromaffin-like cells in the effector organs has also been reported.<sup>41,42</sup> Both populations of H<sub>3</sub> receptors are likely to be involved in the regulation of gastric acid secretion.<sup>40,43</sup>

## CONCLUSIONS

All three histamine receptor subtypes presently known were identified through the classical strategy based upon the design of a suitable bioassay and the synthesis of

new chemical drugs. In the case of  $H_1$  and  $H_2$  receptors, this strategy has led not only to fundamental discoveries in the field of receptors, but, at the same time, to very useful drugs for treating life-threatening allergic and gastrointestinal disorders. A similar classical process involving a collaboration between pharmacologists and chemists led us to define the  $H_3$  receptor. Although this remains to be firmly established, it can be anticipated that some of the  $H_3$ -receptor ligands will constitute novel drugs for the treatment of central or peripheral disorders in humans. The molecular biology approach has already allowed to complement, in greater detail, information about  $H_1$  and  $H_2$  receptors. It would be surprising if this cloning strategy, which has been so fruitful for the discovery of new isoforms or receptor subtypes, does not lead, as in other areas, to an expansion of the histamine receptor family during the coming years.

## REFERENCES

1. BOVET, D. & A. M. STAUB. 1937. Action protectrice des éthers phénoliques au cours de l'intoxication histaminique. *C. R. Soc. Biol. Paris* **124**: 547-549.
2. ASH, A. S. F. & H. O. SCHILD. 1966. Receptors mediating some actions of histamine. *Br. J. Pharmacol. Chemother.* **27**: 427-439.
3. BLACK, J. W., W. A. M. DUNCAN, C. J. DURANT, C. R. GANELLIN & M. E. PARSONS. 1972. Definition and antagonism of histamine  $H_2$ -receptors. *Nature* **236**: 385-390.
4. ARRANG, J. M., M. GARBARG & J-C. SCHWARTZ. 1983. Autoinhibition of histamine release mediated by a novel class ( $H_3$ ) of histamine receptor. *Nature* **302**: 832-837.
5. ARRANG, J. M., M. GARBARG, J-C. LANCELOT, J. M. LECOMTE, H. POLLARD, M. ROBBA, W. SCHUNACK & J-C. SCHWARTZ. 1987. Highly potent and selective ligands for histamine  $H_3$ -receptors. *Nature* **327**: 117-123.
6. HILL, S. J. 1990. Distribution, properties and functional characteristics of three classes of histamine receptors. *Pharmacol. Rev.* **42**: 46-83.
7. SCHWARTZ, J-C., J. M. ARRANG, M. GARBARG, H. POLLARD & M. RUAT. 1991. Histaminergic transmission in the mammalian brain. *Physiol. Rev.* **71**: 1-51.
8. SCHWARTZ, J. C. & H. L. HAAS, Eds. 1992. *The Histamine Receptor*. Vol. 16. Receptor Biochemistry and Methodology. Wiley Liss Inc. New York.
9. GARBARG, M., E. TRAFFORT, M. RUAT, J. M. ARRANG & J-C. SCHWARTZ. 1992. Reversible labelling of  $H_1$ ,  $H_2$  and  $H_3$ -receptors. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 73-95. Wiley Liss Inc. New York.
10. RUAT, M., E. TRAFFORT & J-C. SCHWARTZ. 1992. Biochemical properties of histamine receptors. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 97-107. Wiley Liss Inc. New York.
11. POLLARD, H. & M. L. BOUTHENET. 1992. Autoradiographic visualization of the three histamine receptor subtypes. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 179-192. Wiley Liss Inc. New York.
12. HILL, S. J. & J. DONALDSON. 1992. The  $H_1$  receptor and inositol phospholipid hydrolysis. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 109-128. Wiley Liss Inc. New York.
13. YAMASHITA, M., H. FUKUI, K. SUGAWA, Y. HORIO, S. ITO, H. MIZUGUCHI & H. WADA. 1991. Expression cloning of a cDNA encoding the bovine histamine  $H_1$  receptor. *Proc. Natl. Acad. Sci. USA* **88**: 11515-11519.
14. FUJIMOTO, K., Y. HORIO, K. SUGAMA, S. ITO, Y. Q. LIU & H. FUKUI. 1993. Genomic cloning of the rat histamine  $H_1$  receptor. *Biochem. Biophys. Res. Commun.* **190**: 294-301.
15. HORIO, Y., Y. MORI, I. IGUCHI, K. FUJIMOTO, S. ITO & H. FUKUI. 1993. Molecular cloning of the guinea pig histamine  $H_1$  receptor gene. *J. Biochem.* **114**: 408-414.
16. TRAFFORT, E., R. LEURS, J. M. ARRANG, J. TARDIVEL-LACOMBE, J. DIAZ, J-C. SCHWARTZ & M. RUAT. 1994. Guinea pig histamine  $H_1$  receptor. I. Gene cloning, characterization and tissue expression revealed by *in situ* hybridization. *J. Neurochem.* **62**: 507-518.

17. DE BACKER, M. D., W. GOMMEREN, H. MOEREELS, G. NOBELS, P. VAN GOMPEL, J. E. LEYSEN & W. H. M. L. LUYTEN. 1993. Genomic cloning, heterologous expression and pharmacological characterization of a human histamine H<sub>1</sub> receptor. *Biochem. Biophys. Res. Commun.* **197**: 1601-1608.
18. RUAT, M., M. KÖRNER, M. GARBARG, C. GROS, J-C. SCHWARTZ, W. TERTIUK & C. R. GANELLIN. 1988. Characterization of histamine H<sub>1</sub>-receptor binding peptides in guinea pig brain using [<sup>125</sup>I]iodoazidophenylpyramine, an irreversible specific photoaffinity probe. *Proc. Natl. Acad. Sci. USA* **85**: 2743-2747.
19. RUAT, M., M. L. BOUTHENET, J-C. SCHWARTZ & C. R. GANELLIN. 1990. Histamine H<sub>1</sub> receptor in heart: Unique electrophoretic mobility and autoradiographic localization. *J. Neurochem.* **55**: 379-385.
20. BOUTHENET, M. L., M. RUAT, N. SALES, M. GARBARG & J-C. SCHWARTZ. 1988. A detailed mapping of histamine H<sub>1</sub>-receptors in guinea pig central nervous system established by autoradiography with [<sup>125</sup>I]iodobolypyramine. *Neuroscience* **26**: 553-600.
21. LEURS, R., E. TRAFFORT, J. M. ARRANG, J. TARDIVEL-LACOMBE, M. RUAT & J-C. SCHWARTZ. 1994. Guinea pig histamine H<sub>1</sub> receptor. II. Stable expression in Chinese hamster ovary cells reveals the interaction with three major signal transduction pathways. *J. Neurochem.* **62**: 519-527.
22. GAJTKOWSKI, G. A., D. B. NORRIS, T. J. RISING & T. P. WOOD. 1983. Specific binding of <sup>3</sup>H-tiotidine to histamine H<sub>2</sub>-receptors in guinea pig cerebral cortex. *Nature* **304**: 65-67.
23. RUAT, M., E. TRAFFORT, M. L. BOUTHENET, J-C. SCHWARTZ, J. HIRSCHFELD, A. BUSCHAUER & W. SCHUNACK. 1990. Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H<sub>2</sub> receptor and [<sup>125</sup>I]iodinated probes. *Proc. Natl. Acad. Sci. USA* **87**: 1658-1662.
24. GANTZ, I., M. SCHAFFER, J. DELVALLE, C. LOGSDON, V. CAMPBELL, M. UHLER & T. YAMADA. 1991. Molecular cloning of a gene encoding the histamine H<sub>2</sub> receptor. *Proc. Natl. Acad. Sci. USA* **88**: 429-433.
25. RUAT, M., E. TRAFFORT, J. M. ARRANG, R. LEURS & J-C. SCHWARTZ. 1991. Cloning and tissue expression of a rat histamine H<sub>2</sub>-receptor gene. *Biochem. Biophys. Res. Commun.* **179**: 1470-1478.
26. GANTZ, I., G. MUNZERT, T. TASHIRO, M. SCHAFFER, L. WANG, J. DELVALLE & T. YAMADA. 1991. Molecular cloning of the human histamine H<sub>2</sub> receptor. *Biochem. Biophys. Res. Commun.* **178**: 1386-1392.
27. GANTZ, I., J. DELVALLE, L. D. WANG, T. TASHIRO, G. MUNZERT, Y. J. GUO, Y. KONDA & T. YAMADA. 1992. Molecular basis for the interaction of histamine with the histamine H<sub>2</sub> receptor. *J. Biol. Chem.* **267**: 20840-20843.
28. TRAFFORT, E., M. RUAT, J. M. ARRANG, R. LEURS, D. PIOMELLI & J-C. SCHWARTZ. 1992. Expression of a cloned rat histamine H<sub>2</sub> receptor mediating inhibition of arachidonate release and activation of cAMP accumulation. *Proc. Natl. Acad. Sci. USA* **89**: 2649-2653.
29. DELVALLE, J., L. WANG, I. GANTZ & T. YAMADA. 1992. Characterization of H<sub>2</sub>-histamine receptor: Linkage to both adenylate cyclase and [Ca<sup>2+</sup>]i signaling systems. *Am. J. Physiol.* **263**: G967-G972.
30. ARRANG, J. M., M. GARBARG & J-C. SCHWARTZ. 1992. H<sub>3</sub>-receptor and control of histamine release. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 145-159. Wiley Liss Inc. New York.
31. KORTE, A., J. MYERS, N. Y. SHIH, R. W. EGAN & M. A. CLARK. 1990. Characterization and tissue distribution of H<sub>3</sub>-histamine receptors in guinea pigs by N<sup>ω</sup>-methylhistamine. *Biochem. Biophys. Res. Commun.* **168**: 979-986.
32. LIGNEAU, X., M. GARBARG, M. L. VIZUETE, J. DIAZ, K. PURAND, H. STARK, W. SCHUNACK & J. C. SCHWARTZ. 1994. [<sup>125</sup>I]Iodoproxyfan, a new antagonist to label and visualize cerebral histamine H<sub>3</sub> receptors. *J. Pharmacol. Exp. Ther.* **271**: 452-459.
33. ARRANG, J. M., J. ROY, J. L. MORGAT, W. SCHUNACK & J-C. SCHWARTZ. 1990. Histamine H<sub>3</sub>-receptor binding sites in rat brain membranes: Modulation by guanine nucleotides and divalent cations. *Eur. J. Pharmacol.* **188**: 219-227.

34. CHERIFI, Y., C. PIGEON, M. LE ROMANCER, A. BADO, F. REYL-DESMARS & M. J. M. LEWIN. 1992. Purification of a histamine H<sub>3</sub> receptor negatively coupled to phosphoinositide turnover in the human gastric cell line HGT1. *J. Biol. Chem.* **267**: 25315-25320.
35. OIKE, M., K. KITAMURA & H. KURIYAMA. 1992. Histamine H<sub>3</sub>-receptor activation augments voltage-dependent Ca<sup>2+</sup> current via GTP hydrolysis in rabbit saphenous artery. *J. Physiol.* **448**: 133-152.
36. LIPP, R., H. STARK & W. SCHUNACK. 1992. Pharmacochemistry of H<sub>3</sub> receptors. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 57-72. Wiley Liss Inc. New York.
37. GARBARG, M., J. M. ARRANG, A. ROULEAU, X. LIGNEAU, M. DAM TRUNG TUONG, J-C. SCHWARTZ & C. R. GANELLIN. 1992. S-[2-(4-Imidazolyl)ethyl]isothiourea, a highly specific and potent histamine H<sub>3</sub>-receptor agonist. *J. Pharmacol. Exp. Ther.* **263**: 304-310.
38. LIN, J. S., K. SAKAI, G. VANNI-MERCIER, J. M. ARRANG, M. GARBARG, J-C. SCHWARTZ & M. JOUVET. 1990. Involvement of histaminergic neurons in arousal mechanisms demonstrated with H<sub>3</sub>-receptor ligands in the cat. *Brain Res.* **523**: 325-330.
39. BARNES, P. J. 1992. Histamine receptors in the respiratory tract. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 253-270. Wiley Liss Inc. New York.
40. BERTACCINI, G. & G. CORUZZI. 1992. Histamine receptors in the digestive system. In *The Histamine Receptor*. J-C. Schwartz & H. L. Haas, Eds.: 193-230. Wiley Liss Inc. New York.
41. SCHWÖRER, H., S. KATSOULIS & K. RACKE. 1992. Histamine inhibits 5-hydroxytryptamine release from the porcine small intestine: Involvement of H<sub>3</sub> receptors. *Gastroenterology* **102**: 1906-1912.
42. PRINZ, C., M. KAJIMURA, D. R. SCOTT, F. MERCIER, H. F. HELANDER & G. SACHS. 1993. Histamine secretion from rat enterochromaffinlike cells. *Gastroenterology* **105**: 449-461.
43. BADO, A., L. MOIZO, J. P. LAIGNEAU & M. J. M. LEWIN. 1992. Pharmacological characterization of histamine H<sub>3</sub> receptors in isolated rabbit gastric glands. *Am. J. Physiol.* **262**: G56-G61.