Métodos de Rendering de Superfície

Uéliton Freitas

Universidade Católica Dom Bosco - UCDB freitas.ueliton@gmail.com

29 de setembro de 2014

Sumário

- Introdução
- 2 Rendering de Superfícies com Intensidade Constante
- 3 Rendering de Superfícies de Gouraud
- 4 Rendering de Superfícies de Phong

Introdução

Introdução

- Baseado no modelo de Iluminação, um método de rendering de superfície é usado para determinar a cor dos pixels.
- O modelo de iluminação pode ser usado de formas diferentes para definir a cor de uma superfície.
 - Ray-Tracing: executado em cada pixel (maior realismo).
 - **Scan-Line**: Escutado em alguns pixels e interpolado no restante(tempo real).

Introdução

Introdução

- A maioria das API's gráficas reduz o processamento usando scan-line.
 - As intensidades são calculadas em cada vértice e interpoladas nas regiões restantes dos polígonos.

Rendering de Superfícies com Intensidade Constante

Rendering de Superfícies com Intensidade Constante

- O método mais simples para renderizar uma superfície é usar a mesma cor para todos os seus piexel (flat Surface rendering).
- O modelo de iluminação é empregado para determinar a intensidade das 3 componentes RGB em uma única posição da superfície.
 - Vértice ou centroide do polígono.

Rendering de Superfícies com Intensidade Constante

Rendering de Superfícies com Intensidade Constante

- A flat surface rendering possui bons resultados quando:
 - O polígono é uma face de um pliedro e não uma uma seção de uma superfície curva.
 - Todas as fontes de luz estão longe o suficiente da superfície de forma que N · L e a função de atenuação são constantes
 - A posição de visão é distante o suficiente do polígono de forma que V · R(ou N · H) é constante.

$$I = k_a I_a + \sum_{l=1}^n I_l[k_d(\mathbf{N} \cdot \mathbf{L}) + k_s(\mathbf{N} \cdot \mathbf{H})^{ns}]$$

 Mesmo se uma das condições for falsa, uma boa aproximação pode ser feita se os polígonos forem pequenos.

- O rendering de superfície de Gouraud interpola linearmente as intensidades nos vértices por toda a face do polígono de um objeto iluminado.
- Foi desenvolvido para aproximar superfícies curvas e amenizar as transições de intensidades entre polígonos adjacentes.
 - Elimina a descontinuidade de intensidades de cor da flat surface rendering.

- Cada polígono de uma superfície é processado usando os seguintes métodos:
 - Determina-se o vetor unitário normal médio em cada vértice do polígono.
 - Aplica-se o modelo de iluminação em cada vértice para obter as intensidades.
 - Interpola linearmente as intensidades dos vértices sobre a área projetada do polígono.

Rendering de Superfícies de Gouraud

 O vetor normal médio N em um vértice é obtido fazendo a média das normais de todos os polígonos que compartilham esse vértice.

$$\mathbf{N}_{v} = \frac{\sum_{k=1}^{n} \mathbf{N}_{k}}{|\sum_{k=1}^{n} \mathbf{N}_{k}|}$$

 Usando essas normais o modelo de iluminação é aplicado e então executado para calcular as intensidades de cada vértice.

- Estes valores de intensidade são então interpolados para se obter as intensidades ao longo de scan-lines que intersectam a área projetada do polígono.
- As intensidades das intersecções das scan-lines com as arestas dos polígonos são calculadas interpolando linearmente as intensidades dos pontos finais das retas.

Rendering de Superfícies de Gouraud

• Por exemplo, a intensidade em 4 pode ser obtida considerando somente os deslocamento vertical da scan-line.

$$I_4 = \frac{y_4 - y_2}{y_1 - y_2} I_1 + \frac{y_1 - y_4}{y_1 - y_2} I_2$$

• A intensidade de 5 é obtida de forma análoga.

Rendering de Superfícies de Gouraud

 Considerando as intensidades obtidas em 4 e 5, as intensidades de qualquer ponto p sobre a scan-line são obtidas interpoladas na horizontal.

$$I_4 = \frac{x_5 - x_p}{x_5 - x_4} I_4 + \frac{x_p - x_1}{x_5 - x_4} I_5$$

 Este método é conhecido como interpolação bilinear e é executado para os 3 componentes RGB separadamente.

- Esta interpolação de intensidades elimina descontinuidades mas ainda assim há alguns **problemas**.
 - Brilhos na superfície podem apresentar formatos estranhos.
 - Intensidades claras ou escuras podem parecer "riscadas" (mach bands).

Rendering de Superfícies de Gouraud

 Efeitos de match bands consiste em faixas claras ou escuras que são percebidas próximo das fronteiras entre duas regiões de diferentes gradientes de luz.

Rendering de Superfícies de Phong

Rendering de Superfícies de Phong

- Um método mais preciso de interpolação é conhecido como Phong surface rendering.
- Ao invés de interpolar valores de intensidades, normais são interpoladas.
 - Cálculos mais precisos de intensidades.
 - Brilhos mais realísticos de superfícies.
 - Redução do feitos match-band.
- Contudo é mais custoso computacionalmente do que o método de Gouraud.

Rendering de Superfícies de Phong

Rendering de Superfícies de Phong

- Cada polígono é processado da seguinte forma:
 - Determina-se o vetor unitário médio de cada vértice do polígono.
 - 2 Interpola-se linearmente as normais dos vértices sobre a área projetada do polígono.
 - Aplica-se o modelo de iluminação nas posições ao longo da scan-line para calcular a intensidade dos pixels usando as normais interpoladas.

Rendering de Superfícies de Phong

Rendering de Superfícies de Phong

- O procedimento de interpolação das normais é o mesmo da interpolação das intensidades do método de Gouraud.
- Por exemplo, o vetor N é verticalmente interpolado a partir das normais nos vértices 1 e 2 da seguinte forma:

$$\mathbf{N} = \frac{y - y_2}{y_1 - y_2} \mathbf{N}_1 + \frac{y_1 - y}{y_1 - y_2} \mathbf{N}_2$$

