Module 2, Lecture 3 Chemical Thermodynamics Part 3

Learning Objectives:

- Calculate $\Delta_r G^\circ$ from $\Delta_f G^\circ$ values and from $\Delta_r G^\circ = \Delta_r H^\circ T \Delta_r S^\circ$.
- · Understand the concept of coupled reactions.
- Understand the concept that, when $\Delta_r G = 0$, the reaction is at equilibrium.
- Appreciate the difference between $\Delta_r G$ and $\Delta_r G^o$ in relation to equilibrium.
- Carry out calculations relating $\Delta_r G$, $\Delta_r G^o$ and K.

Textbook: Chapter 19

1

_

Gibbs energy

• Gibbs energy (G) is defined as follows

$$G = H - TS$$

- H is the enthalpy of the system
- S is the entropy of the system
- T is the temperature in Kelvin (0 °C = 273 K)

Josiah Willard Gibbs

• Can't measure absolute values of G, so always talk about the **change** in G for a process, ΔG

$$\Delta G = \Delta H - T \Delta S$$

 When referring to a chemical reaction (rather than a physical change) we use the usual terminology

$$\Delta_{r}G = \Delta_{r}H - T\Delta_{r}S$$

△G and spontaneity

• The sign of ΔG tells us whether or not a particular process is spontaneous.

If ΔG is negative, the process is spontaneous If ΔG is zero, the system is at equilibrium If ΔG is positive, the process is non-spontaneous

- If a process is non-spontaneous, its reverse will be spontaneous.
- The magnitude of ΔG is unimportant with respect to spontaneity, but does tell us how far a spontaneous process will proceed towards completion.

3

3

Spontaneity

- If ΔH is +ve and ΔS is –ve, the reaction can never be spontaneous at any T
- If ΔH is –ve and ΔS is +ve, the reaction is spontaneous at all T
- If ΔH and ΔS have the same sign, the spontaneity of the reaction depends on T

 $\Delta G = \Delta H - T \Delta S$

4

Examples

$$\Delta_{r}G = \Delta_{r}H - T\Delta_{r}S$$

· Melting of ice

$$H_2O(s) \rightarrow H_2O(I)$$

- ΔH is +ve, and ΔS is +ve. We would therefore expect this reaction to be spontaneous only at 'high' temperatures i.e. above 0 °C
- · Freezing of water

$$H_2O(I) \rightarrow H_2O(s)$$

• ΔH is –ve, and ΔS is –ve. We would therefore expect this reaction to be spontaneous only at 'low' temperatures – i.e. below 0 °C

5

5

Entropy of dissolution

$$KCI(s) \rightarrow K^{+}(aq) + CI^{-}(aq)$$

$$S^{\circ}(KCI, s) = 83 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$S^{\circ}(K^{+}, aq) = 103 \text{ J mol}^{-1} K^{-1}$$

$$S^{\circ}(Cl^{-}, aq) = 57 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$\Delta S^{\circ}$$
 = ((103 + 57) – 83) J mol⁻¹ K⁻¹ = 77 J mol⁻¹ K⁻¹

• The entropy change for dissolution of any ionic salt is favourable, as it always involves the formation of a less ordered system

Enthalpy of dissolution

KCI(s) → K⁺(aq) + CI⁻(aq)

$$\Delta_f H^o(\text{KCI}, s) = -436 \text{ kJ mol}^{-1}$$

 $\Delta_f H^o(\text{K}^+, aq) = -252 \text{ kJ mol}^{-1}$
 $\Delta_f H^o(\text{CI}^-, aq) = -167 \text{ kJ mol}^{-1}$

Be careful that signs don't get lost when subtracting negatives

 $\Delta H^{\circ} = [(-252 + -167) - (-436)] \text{ kJ mol}^{-1} = +17 \text{ kJ mol}^{-1}$


```
Hence, \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}
            = 17 \times 10^3 J mol<sup>-1</sup> – (298 K × 77 J mol<sup>-1</sup> K<sup>-1</sup>)
           = -5.9 kJ mol<sup>-1</sup> Spontaneous
```

ΛG°

• Because most thermodynamic data are tabulated under standard conditions, ΔH° and ΔS° values are used to obtain ΔG° values

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

- However, it is imperative to realise that ΔG° can **only be used as a criterion** of spontaneity under standard conditions.
- As we will see, ΔG° is important as a means of determining the position of equilibrium in a chemical system.

Calculations involving Δ_r G

- Can generally calculate ΔG for a reaction by one of two methods:
 - a) Using $\Delta_r G = \Delta_r H T \Delta_r S$

Utilising the fact that G is a measure of energy including enthalpy and entropy.

b) Using ∆_fG data

Utilising the fact that the standard Gibbs energy of formation, $\Delta_f G^{\circ}$ is **analogous** to the standard enthalpy of formation, $\Delta_f H^{\circ}$.

• $\Delta_f G^\circ$ of any pure element is defined as zero.

<u>_</u>

Calculations involving Δ_r G

(a) Calculate $\Delta_r G^\circ$ for the reaction

$$CO(NH_2)_2(aq) + H_2O(I) \rightarrow CO_2(g) + 2NH_3(g)$$

at 25.0 °C given

$$\Delta_{\rm r} H^{\rm o} = +119.2 \text{ kJ mol}^{-1}$$

$$\Delta_r S^o = +354.8 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$\Delta_{\mathbf{r}}G^{\circ} = \Delta_{\mathbf{r}}H^{\circ} - T\Delta_{\mathbf{r}}S^{\circ}$$

=
$$+119.2 \times 10^3$$
 J mol⁻¹ $- (298 \text{ K} \times 354.8 \text{ J K}^{-1} \text{ mol}^{-1})$

$$= +13.2 \times 10^3 \text{ J mol}^{-1}$$

= +13.2 kJ mol⁻¹

Careful Must convert units of either ΔH^0 or ΔS^0 Must use temperature in K

The reaction is nonspontaneous under standard conditions

Calculations involving Δ_r G

(b) Values of $\Delta_f G^o$ are tabulated and can be used in Hess's Law-type calculations.

```
\Delta_r G^\circ = \sum [\Delta_f G^\circ \text{ (products)}] - \sum [\Delta_f G^\circ \text{ (reactants)}]
```

(taking account of stoichiometry)

The standard Gibbs energy change for a reaction equals the sum of the Gibbs energies of formation of the products minus the sum of the Gibbs energies of formation of the reactants.

11

11

Calculations involving Δ_r G

```
(b) Calculate \Delta_r G^{\circ} for the reaction
```

$$C_2H_5OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$$

at 25.0 °C given:

$$\Delta_f G^o(C_2H_5OH, I) = -174.8 \text{ kJ mol}^{-1}$$

 $\Delta_f G^o(CO_2, g) = -394.4 \text{ kJ mol}^{-1}$

$$\Delta_{\rm f}G^{\rm o}({\rm H_2O,~g})$$
 = -228.6 kJ mol⁻¹

$$\Delta_r G^o = [2 \times -394.4 \text{ kJ mol}^{-1} + 3 \times -228.6 \text{ kJ mol}^{-1}]$$

$$- [1 \times -174.8 \text{ kJ mol}^{-1} + 3 \times 0 \text{ kJ mol}^{-1}]$$

 $= -1299.8 \text{ kJ mol}^{-1}$

The reaction is spontaneous under standard conditions

Coupled reactions

Can use a spontaneous reaction (ΔG -ve) to drive a non-spontaneous reaction (ΔG +ve) by **coupling** them together.

In biological systems, the hydrolysis reaction of **adenosine triphosphate**, **ATP**, is often involved.

 $\Delta_r G = -30.5 \text{ kJ mol}^{-1} \text{ at pH} = 7$

NB: Eq. not balanced

13

13

e.g. First step is glucose metabolism is the reaction of glucose with hydrogen phosphate to give glucose-6-phosphate, $\Delta_r G = +13.4 \text{ kJ mol}^{-1}$ at pH = 7.

Glu

Glu-6-P

$$CH_2OH$$
 OH
 OH

Glu + ATP → Glu-6-P + ADP

 $\Delta_{\rm r}G = -17.1 \; {\rm kJ \; mol^{-1}}$

therefore spontaneous at pH = 7

 $\Delta G = 0$?

- What happens if ΔG is neither +ve or –ve, but zero?
- If $\Delta G = 0$, there is no driving force for chemical or physical change; the system is at equilibrium

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

1 =

15

$$N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$$

- The equilibrium composition of the N₂,H₂/NH₃ mixture is the same, regardless of whether we start with pure N₂ and H₂, or with pure NH₃.
- The forward and reverse reactions are both occurring at equilibrium. Their rates are identical, so there is **no net change in composition**.
- Why does neither the forward nor reverse reaction proceed to completion?
 Because equilibrium is the point where G is minimised.

Equilibrium and G

 $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$

The reaction mixture will reach equilibrium when it reaches the composition corresponding to the minimum G.

17

17

$\Delta_r G$, $\Delta_r G^o$, and K

• $\Delta_r G$ is *the* criterion of spontaneity of a process. It is related to $\Delta_r G^\circ$, which can be obtained from tables, by the equation

$$\Delta_{r}G = \Delta_{r}G^{\circ} + RT \ln Q$$

• Have already seen that if $\Delta_r G = 0$, the system is at equilibrium. Also, we know that Q = K at equilibrium. Therefore,

$$0 = \Delta_{\mathbf{r}}G^{\circ} + RT \ln K$$

and hence

$$\Delta_{\mathbf{r}}\mathbf{G}^{\circ} = -\mathbf{R}\mathbf{T} \ln \mathbf{K}$$
 Careful Don't forget the negative!

R is the gas constant, 8.314 J mol⁻¹ K⁻¹

Example

Lugol's lodine is a solution of the triiodide (I₃-) ion which is used to treat iodine deficiency and as a disinfectant.

 I_3 is prepared by the reaction of I_2 with I.

$$I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$$
 $K = 1.26 \times 10^{-3} \text{ at } 298 \text{ K}.$

- (a) What is the value of $\Delta_{\mathbf{r}}G^{\circ}$ for this reaction?
- (b) If a solution contains $[I_2] = 0.65$ mol L⁻¹, $[I^-] = 1.30$ mol L⁻¹ and $[I_3^-] = 0.02$ mol L⁻¹, will the reaction be at equilibrium (ie is $\Delta_r G = 0$?) and, if not, will the concentration of I_3^- in increase or decrease as equilibrium is established?

19

19

For $I_2(aq) + I^-(aq) \Rightarrow I_3^-(aq)$ K = 1.26x10⁻³ at 298 K.

(a) What is the value of $\Delta_r G^o$ for this reaction?

$$\Delta_{\mathbf{r}}G^{\circ} = -RT \ln K$$

 $= -8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{ x } 298 \text{ K x ln}(1.26\text{x}10^{-3})$

Careful Don't forget the negative!

 $= 16542 \text{ J mol}^{-1}$

Answer will be in J mol⁻¹ if R is in J K⁻¹ mol⁻¹

 $= 16.54 \text{ kJ mol}^{-1}$

20

For $I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$ $K = 1.26 \times 10^{-3}$ at 298 K.

(b) If a solution contains $[I_2] = 0.65 \text{ mol L}^{-1}$, $[I^-] = 1.30 \text{ mol L}^{-1}$ and $[I_3^-] = 0.02 \text{ mol L}^{-1}$, will the reaction be at equilibrium? (i.e. is $\Delta_r G = 0$?) If not, will the concentration of I_3^- in increase or decrease as equilibrium is established?

$$Q = \frac{[I_3^-]}{[I_2][I^-]} = \frac{(0.02)}{(0.65)(1.30)} = 0.0237$$

$$\Delta_r G = \Delta_r G^\circ + RT \ln Q$$

Careful Make sure $\Delta_r G^o$ is in J mol⁻¹ to match R.

= $16.54 \times 10^3 \text{ J} + (8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{ x } 298 \text{ x In } (0.0237))$

= 7270 J mol⁻¹

 $= 72.7 \text{ kJ mol}^{-1}$

 $\Delta_r G \neq 0$, therefore the system is not at equilibrium.

21

21

Since the value of $\Delta_r G$ is +ve, the position of equilibrium will move to the left to achieve equilibrium and, in doing so, the $[I_3]$ will decrease.

* Homework *

Chemistry – the central science 15th Ed

Brown et al.

Problem 19.79

Answers on Blackboard

23