Bezprzewodowe sterowanie oświetleniem

Jan Komorkiewicz <u>jankomorkiewicz@gmail.com</u> https://github.com/jankele/remote_light

Zastosowanie

Zastosowanie

Sterowanie oświetleniem w domu za pomocą modułów:

- Wykrywania ruchu
- Wykrywania natężenia światła
- Sterowania za pomocą urządzenia mobilnego w OS Android

Opis funkcjonalności

Opis funkcjonalności

- → Sterowanie trzema źródłami światła
 - ♦ Każdy moduł ma przypisane do siebie źródło światła
- → Możliwość wyboru używanych modułów
 - ♦ Wybierane w aplikacji z menu "konfiguracje"
- → Odzwierciedlenie rzeczywistego stanu ON/OFF w aplikacji
 - ♦ Przedstawione za pomocą widżetu switch
- → Możliwość połączenia z dowolnym urządzeniem z systemem Android
 - ♦ Wymagany poziom API 21 lub wyższy

Wykorzystane technologie

Wykorzystane technologie

- C++
- Java

- Android Studio
- Arduino IDE

Komponenty układu

Wymagania układu

Wymagania:

- Płytka Arduino z pamięcią EEPROM
- Moduł Bluetooth HC-05
- Czujka zmierzchowa
- Pasywny czujnik podczerwieni
- Diody LED (symulacja rzeczywistego oświetlenia)
- Płytka prototypowa
- Arduino IDE
- Android Studio
- Urządzenie mobilne z OS Android

Komponent	Ilość
Arduino	1
Bluetooth HC-05	1
Płytka prototypowa	1
Dioda LED	3
Rezystor 220Ω	3
Rezystor 1kΩ	1
Rezystor 2kΩ	1
Rezystor10kΩ	1
Czujka PIR	1
Fotorezystor	1

Schemat

fritzing

Scenariusz działania

Arduino - Setup

- 1. Inicjalizacja pinów diody, moduły
- 2. Inicjalizacja portu szeregowego przygotowanie do transmisji bajtów przez Bluetooth
- 3. Nadanie początkowych wartości counterom
- 4. Wybranie domyślnej konfiguracji (w wypadku zresetowania pamięci EEPROM)

Arduino - Loop

- 1. Sprawdzenie konfiguracji i wybranie odpowiedniego case'a
- 2. Odczytanie bajtów z portu szeregowego
- 3. Jeżeli dane pojawią się w buforze
- 4. Zapisz obecny czas
- 5. Wykonaj akcję przypisaną otrzymanemu znakowi
- 6. Wyślij sygnał do urządzenia Android informujący o wykonanej akcji
- 7. Zatrzymaj akcję gdy minie wyznaczony przez countery czas

Android - Wątek Główny

- 1. Pokaż wszystkie sparowane urządzenia Bluetooth
- 2. Wyświetl menu sterowania diodami
- 3. (Po naciśnięciu przycisku) Pokaż menu konfiguracji
- 4. Wróć do menu sterowania diodami

Android - Wątek Poboczny

- 1. Ustanowienie połączenia z urządzeniem
- 2. Stworzenie Handlerów dla wysyłania i odbierania danych
- 3. Wejście w nieskończoną pętlę while w celu nasłuchiwania

Testowanie

Testowanie eksploracyjne

- 1. Planowanie dodania nowego feature'a
- 2. Początkowa implementacja
- 3. Testowanie poprawności działania
- 4. Poprawienie / usprawnienie
- 5. Testowanie systemowe
- 6. Akceptacja

Prezentacja

Możliwości rozwojowe

Możliwości rozwojowe

- Sterowanie odstępami czasowymi z poziomu aplikacji
- Podmiana diody na prawdziwą żarówkę
- Usprawnienie Interfejsu graficznego aplikacji
- Minimalizacja oraz zamknięcie układu w obudowie
- Stworzenie wsparcia na większej ilości wersji systemu Android

Dziękuję za uwagę!

Bezprzewodowe sterowanie oświetleniem