Optimization

Lusine Poghosyan

AUA

April 1, 2019

Barrier Methods

minimize
$$f(x)$$
 subject to $x \in \Omega$,

where $\Omega \subset \mathbb{R}^n$.

Barrier Methods are procedures when constrained optimization problems are approximated by "unconstrained optimization" problem. The approximation is accomplished by adding to the objective function a term that favors points interior to the feasible set over those near boundary.

Here we assume that the feasible set is robust, i.e., each feasible point can be approached by a sequence of interior points.

Definition

A function B(x) defined on the interior of Ω is called a barrier function for the constrained minimization problem above, if it satisfies the following conditions

- **1.** *B* is continuous on the interior of Ω (int(Ω)),
- **2.** $B(x) \geq 0, \forall x \in \text{int}(\Omega),$
- **3.** $B(x) \to \infty$ as x approaches the boundary of Ω .

Assume $\{c_k\}$ is a strictly increasing sequence of positive numbers such that $\lim_{k\to\infty}c_k=\infty$. Now we consider the following problem

minimize
$$f(x) + \frac{1}{c_k}B(x)$$

subject to $int(\Omega)$.

In fact we have a constrained optimization problem but we can apply the methods for unconstrained optimization problems. Take an initial approximation from $\operatorname{int}(\Omega)$, use some method to calculate next approximation and it will be in $\operatorname{int}(\Omega)$ (if carefully implemented) since $B(x) \to \infty$ as x approaches the boundary.

As equality constraints don't give robust sets we don't consider problems with equality constraints.

minimize
$$f(x)$$

subject to $g_i(x) \le 0$, $i = 1, ... p$.

We assume that the objective function and constraint functions are continuous.

If $int(\Omega) = \{x : g_i(x) < 0, \forall i \in \overline{1, p}\}$, then the barrier function can be given by the following formula

$$B(x) = -\sum_{i=1}^{\rho} \frac{1}{g_i(x)}, \quad x \in \operatorname{int}(\Omega).$$

Example

Consider the following constrained minimization problem

minimize
$$f(x) = -\frac{1}{x^2 + 1}$$

subject to $x \le 2$,
 $x > -1$.

$$r(x,c) = -\frac{1}{x^2+1} - \frac{1}{c} \cdot \frac{1}{x-2} - \frac{1}{c} \cdot \frac{1}{-x-1}, \quad x \in (-1,2)$$

Figure: The red line is the graph of f(x) and blue lines are the graphs of r(x, c) for different parameters.

Figure: The green point is the solution of constrained minimization problem and the blue one is the minimizer of r(x, c).