계량경제학 남 준우 교수

1. Verify the following statement:

$$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} (X_i - \overline{X})Y_i = \sum_{i=1}^{n} X_i(Y_i - \overline{Y})$$
$$= \sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}$$

(Hint) Easy way to prove the above equality: derive the first three equations in terms of the last equation, $\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}$

(Note) Substituting $Y_i = X_i$ into the above equation makes the following equality:

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} (X_i - \overline{X}) X_i = \sum_{i=1}^{n} X_i^2 - n \overline{X}^2$$

2. Prove that the following statement: The sum of squared deviations around the sample mean is as small as the squared deviations around any other number,

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 \le \sum_{i=1}^{n} (X_i - a)^2 \text{ for any number } a.$$

This implies that $\sum_{i=1}^{n} (X_i - a)^2$ is minimized by choosing $a = \overline{X}$.

- 3. Suppose that $V(Y_i) = \sigma_i^2$, that is, $V(Y_1) = \sigma_1^2$, $V(Y_2) = \sigma_2^2$, \cdots , $V(Y_n) = \sigma_n^2$. And also, $Cov(Y_i, Y_j) = \sigma_{ij}$, that is, $Cov(Y_1, Y_2) = \sigma_{12}$, $Cov(Y_1, Y_3) = \sigma_{13}$, \cdots , $Cov(Y_{n-1}, Y_n) = \sigma_{n-1 n}$, where Cov(X, Y) denotes covariance of X and Y.
- (1) Find $V\left(\sum_{i=1}^{n} w_{i} Y_{i}\right)$ where w_{i} 's are constants.
- (2) Now suppose $\sigma_{ij} = 0$ for all $i \neq j$. Find $V\left(\sum_{i=1}^{n} w_i Y_i\right)$.
- (3) In addition to (2), suppose $\sigma_i^2 = \sigma^2$ for all $i = 1, 2, \dots, n$. Find $V\left(\sum_{i=1}^n w_i Y_i\right)$.