Experimento 10: Controle de um sistema torcional com dois discos

Daniel Dello Russo. Marcelli Tiemi Kian

Universidade Estadual de Campinas

21 de junho de 2015

- 1 Descrição do Problema
 - Equipamento
 - Determinação da Planta
 - Controlador PI
- 2 Teste de controle
- 3 Comentários finais
- 4 Perguntas

Equipamento

Equipamento

- Sistema ELVIS
- Software Labview
- Sistema torcional
- Modulo de potência

Determinação da Planta

Sistema Torcional eletro-mecânico

Cálculo da planta a partir de 4 ensaios.

Determinação da Planta

Ensaio com motor travado

Analisar a parte elétrica do sistema

Descrição do Problema

Determinação da Planta

Ensaio com o motor livre Analisar o comportamento do motor

Ensaio com o motor desligado

Analisar o comportamento dos discos e da mola

Parâmetros

Parâmetro	Significado	Valor
J_1	Momento de inércia do disco 1	$4.1188 \cdot 10^{-4} kg \cdot m^2$
J_2	Momento de inércia do disco 2	$3.7095 \cdot 10^{-4} kg \cdot m^2$
b_1	Coeficiente de amortecimento do disco 1	$4.2052 \cdot 10^{-5} \textit{N} \cdot \textit{m} \cdot \textit{s}$
b_2	Coeficiente de amortecimento do disco 2	$9.5110 \cdot 10^{-4} \textit{N} \cdot \textit{m} \cdot \textit{s}$
κ	Constante elástica da mola	0.1708 <i>N</i> ⋅ <i>m</i> / <i>rad</i>
V	Tensão no motor	12 <i>V</i>
K	Constante mecânica do motor	0.0663 <i>V</i> · s
R	Resistência do motor e da medida	4.0709Ω
L	Indutância do motor	0 <i>H</i>

Equação de Estados

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -\frac{\kappa}{J_1} & -\frac{(b_1 + K^2/R)}{J_1} & 0 \\ \frac{\kappa}{J_2} & 0 & -\frac{b_2}{J_2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{K}{RJ_1} \\ 0 \end{bmatrix} V$$

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -414.71 & -2.73 & 0 \\ -460.46 & 0 & -2.56 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 39.54 \\ 0 \end{bmatrix} V$$

Simulação

Controlador PI

Descrição do Problema

Controlador PI

Modelo da planta pouco confiável, robustez desejada.

$$K(s) = \kappa_p + \frac{\kappa_i}{s} = 0.097 + \frac{0.229}{s}$$

Simulação

Teste de controle

Teste de controle

Novo controlador Pl

$$K(s) = \kappa_p + \frac{\kappa_i}{s} = 0.1 + \frac{0.1}{s}$$

Perguntas?