Math 181A HW3

Neo Lee

04/18/2023

Problem 5.2.6

$$L(\theta) = \prod_{i \in [1,4]} \frac{\theta}{2\sqrt{y_i}} e^{-\theta\sqrt{y_i}}$$
$$l(\theta) = \sum_{i \in [1,4]} \ln \theta - \ln(2\sqrt{y_i}) - \theta\sqrt{y_i}$$
$$l'(\theta) = \sum_{i \in [1,4]} \frac{1}{\theta} - \sqrt{y_i}.$$

Then, set $l'(\theta) = 0$,

$$l'(\theta) = 0 = \sum_{i \in [1,4]} \frac{1}{\theta} - \sqrt{y_i}$$
$$0 = \frac{4}{\theta} - \sqrt{6.2} - \sqrt{7.0} - \sqrt{2.5} - \sqrt{4.2}$$
$$\hat{\theta}_{MLE} = \frac{4}{\sqrt{6.2} + \sqrt{7.0} + \sqrt{2.5} + \sqrt{4.2}}$$
$$\approx 0.456.$$

Problem 5.2.12

$$L(\theta) = \prod_{i \in [1,n]} \frac{2y_i}{\theta^2}.$$

We realize that $L(\theta)$ is a strictly decreasing function for $\theta \geq 0$. Thus, $L(\theta)$ is maximized when $\theta \rightarrow 0$. However, notice that $0 \leq y \leq \theta$, so $L(\theta)$ is maximized when $\theta = max(y_i)$ for $i \in [1, n]$.

Hence, we can write $\hat{\theta}_{MLE} = max(y_i)$.

Problem 5.2.15

$$\begin{split} L(\alpha,\beta) &= \prod_{i \in [1,n]} \alpha \beta y_i^{\beta-1} e^{-\alpha y_i^{\beta}} \\ l(\alpha,\beta) &= \sum_{i \in [1,n]} \ln \alpha + \ln \beta + (\beta-1) \ln y_i - \alpha y_i^{\beta}. \end{split}$$

Then, we differentiate $l(\alpha, \beta)$ with respect to α and set it equal to 0,

$$\frac{\partial}{\partial \alpha} l(\alpha, \beta) = \sum_{i \in [1, n]} \frac{1}{\alpha} - y_i^{\beta} = 0$$
$$\frac{n}{\alpha} = \sum_{i \in [1, n]} y_i^{\beta}$$
$$\hat{\alpha}_{MLE} = \frac{n}{\sum_{i \in [1, n]} y_i^{\beta}}.$$

Problem 5.3.1 $\bar{y} \sim N(107.5, \frac{15}{\sqrt{50}}).$

$$CI = \bar{y} \pm z_{\alpha/2} \frac{15}{\sqrt{50}}$$

$$CI = 107.9 \pm 1.96 \frac{15}{\sqrt{50}}$$

$$CI \approx 107.9 \pm 4.16.$$

Hence, the 95% confidence interval is (103.74, 112.06).

Problem 5.3.2 Let X_i be the FEV₁/VC ratio of the *i*th subject. Then,

$$\bar{X} = \frac{1}{19} \sum_{i=1}^{19} x_i$$

$$= \frac{1}{19} (0.61 + \dots + 0.85 + 0.87)$$

$$\approx 0.766.$$

Then, we can compute the standard error of \bar{X} ,

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$
$$= \frac{0.09}{\sqrt{19}}$$
$$\approx 0.0206.$$

Hence, the 95% confidencen interval is

$$\begin{split} CI &= \bar{X} \pm z_{\alpha/2} \sigma_{\bar{X}} \\ &= 0.766 \pm 1.96 \times 0.0206 \\ &\approx 0.766 \pm 0.0404 \\ &= (0.726, 0.806). \end{split}$$

Therefore, the norm 0.80 still falls within our 95% confidence interval, and it is believable that the exposure has not particular effect.