Math 355/655: Introduction to Numerical Methods Homework #5 Due: October 12, 2012

Read Section 3.3, 3.4

- 1. Consider the data points (-2,1), (-1,4), (0,11), (1,16), (2,13), (3,-4).
 - (a) Write down the divided difference table associated to this data.
 - (b) Determine from the table, the degree of the interpolating polynomial of least degree passing through these data points.
- 2. Simplify $f[x_0, x_1, x_2]$ and $f[x_2, x_0, x_1]$ and verify they are the same.
- 3. Consider the data points (-2,-1), (0,1), (-1,3).
 - (a) Write down the interpolating polynomial for this data using a divided difference table.
 - (b) Add the data point (1,-1) and write down the new interpolating polynomial.
 - (c) Evaluate the polynomial you obtained in part (b) and its derivative at x = 1/2.
- 4. Given $x_0 = -1$, $x_1 = 1$ and $f(x_0) = 0$, $f(x_1) = 2$, and $f'(x_0) = 1$, $f'(x_1) = -1$:
 - (a) Find the Hermite interpolating polynomial using divided differences.
 - (b) Add the information $x_2 = 0$ and $f(x_2) = 1$ and $f'(x_2) = 2$ and find the resulting Hermite interpolating polynomial.
 - (c) For your answer for part (b), verify that the Hermite interpolating polynomial both interpolates the data and interpolates the derivative at each data point.
- 5. Let S(x) be a natural cubic spline on [0,4] interpolating the data points (0,3), (2,4), (4,2). Find the cubic spline. (Hint: You may use MATLAB but be sure to write down on your paper the linear system you plug into MATLAB.)
- 6. Suppose we have data points $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$. Instead of using cubics to build a spline, suppose we use polynomials of degree less than or equal to 5. We require the spline to interpolate the data points, i.e., $S(x_i) = y_i$. In addition, we require continuity of the spline up to and including the 4th derivative on $[x_0, x_n]$ (i.e., $S^{(iv)}$ is continuous). How many degrees of freedom remain? (In other words, how many more equations are there than constraints?).