(19)日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(11)特許番号

特許第3039159号 (P3039159)

(45)発行日 平成12年5月8日(2000.5.8)

(24)登録日 平成12年3月3日(2000.3.3)

(51) Int.Cl.7

·識別記号

G01F 1/66

101

FΙ

G01F 1/66

101

Α

請求項の数1(全 6 頁)

最終頁に続く

(21)出願番号	特顏平4-264009	(73)特許権者	000005234
			富士電機株式会社
(22)出願日	平成4年10月2日(1992.10.2)		神奈川県川崎市川崎区田辺新田1番1号
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者	太田 徹
(OH) () HE HE FE	A BUTTO LITORY	「お元为日	
(65)公開番号	特開平6-117895		神奈川県川崎市川崎区田辺新田1番1号
(43)公開日	平成6年4月28日(1994.4.28)		富士電機株式会社内
審査請求日	平成10年5月20日(1998.5.20)	(74)代理人	100085833
			弁理士 松崎 清
			7-2-1 KM 16
		審査官	江塚 政弘
		(56) 参考文献	特開 昭61-147112(J P. A)
			特開 昭63-233323 (JP. A)
			特開 平5-209766 (JP, A)
			実開 昭57-72679 (JP, U)

(54) 【発明の名称】 超音波流量計

1

(57)【特許請求の範囲】

【請求項1】 配管内を流れる流体の流れに対しくさび 材を介して或る一定の打ち込み角度をもって音波を伝搬 させ、上流の超音波振動子から下流の超音波振動子まで の音波の伝搬時間と下流の超音波振動子から上流の超音 波振動子までの音波の伝搬時間との差から流体の流速ま たは流量を計測する超音波流量計において、

前記超音波振動子を圧電材料から、また、前記くさび材 をボリイミド系のエンジニアリングプラスチックから形 成するとともに、両者を接着するためのボリイミド系の 接着材に充填材としてシリカを混入したことを特徴とす る超音波流量計。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、流体の流れに対して

2

斜めに音波を伝播させたときの、超音波の伝搬時間差から流体の流速または流量を計測するようにした、いわゆる超音波流量計に関する。

[0002]

10

【従来の技術】図6は透過型超音波流量計の測定原理を説明するための説明図である。まず、上流の超音波振動子1を超音波により励起すると、出射された超音波は斜角クサビ3に伝搬される。この斜角クサビ3は流体の流れ5に対し、超音波を斜めに入射させるものである。さらに、超音波は配管4から配管内の流れ5へと伝搬するが、斜角クサビ3と配管4、配管4と配管内の流れ5との各境界面においては、図7に示す如きスネルの法則に従って音波は屈折する。なお、図7のi、oはそれぞれ媒質、θi、θoはそれぞれ入射角、反射(出射)角、Co、Ciはそれぞれ媒質i, oでの音速を示してい

る。

【0003】配管内の流れ5へと伝搬した音波は対向面 に到達し、再び境界面(流体と配管、配管とクサビ)で 屈折したのち下流の超音波振動子2で受信される。この 上流から下流の超音波センサに到達するまでの音波の伝 搬時間をT12とし、逆に下流の超音波振動子2を励起*

$$T12 = 2 \tau + \frac{2 D/c \circ s \theta}{C + V \cdot s i n \theta}$$

$$T21 = 2 \tau + \frac{2 D/c \circ s \theta}{C - V \cdot s i n \theta}$$

【0004】上式からも明らかなように、流速があると (Vが零でないとき) T12, T21に時間差が生じる とが分かる。かかる超音波流量計は内径が25 mm~ 3000mmの配管内の流速,流量が測定できることか ら、一般に幅広く用いられている。ところで、斜角クサ ビの材料としてはその内部での多重反射が問題とならな いような、適度の音波減衰率を持つ樹脂が用いられ、一 20 般にはアクリル、エポキシ系の樹脂が用いられる。これ らの樹脂の耐熱温度はアクリルでは80℃、エポキシで は120℃付近であり、200℃以上の高温高精度流量 計の実現は不可能とされていた。しかし、最近、各種の 耐熱性エンジニアリングプラスチック(以下、エンプラ とも云う)が商品化され、クサビ材としての耐熱性には 問題はなくなった。しかし、振動子とエンプラとの線膨 張係数の相違により、両者が破壊するという新たな問題 が生じている。

[0005]

[発明が解決しようとする課題] つまり、動作温度範囲が広範囲にわたる場合には、振動子、接着剤、クサビ材それぞれの線膨張係数の相違から熱応力を生じ各部材の破壊を招くという問題がある。また、接着剤がPure(純粋)な樹脂のみとすると、振動子と接着剤との音響インピーダンスの差が大きく、振動子からの音波がクサビ材へ充分に伝搬しないという問題もある。したがって、との発明の課題は振動子とクサビ材の間に発生する熱応力を緩和するとともに、クサビ材への音波の伝搬率を高めることにある。

[0006]

【課題を解決するための手段】 かかる課題を解決するため、この発明では、配管内を流れる流体の流れに対しくさび材を介して或る一定の打ち込み角度をもって音波を伝搬させ、上流の超音波振動子から下流の超音波振動子までの音波の伝搬時間と下流の超音波振動子から上流の超音波振動子までの音波の伝搬時間との差から流体の流速または流量を計測する超音波流量計において、前記

* し上流の超音波振動子 1 で音波を受信する場合の伝搬時間をT21 とすると、それぞれの伝搬時間は次の (1), (2) 式で表わされる。なお、 τ は配管、斜角 クサビでの伝搬時間、D は配管の内径、C は流体の音速、V は流体の流速をそれぞれ示す。

... (1)

... (2)

超音波振動子を圧電材料から、また、前記くさび材をボ リイミド系のエンジニアリングプラスチックから形成す るとともに、両者を接着するためのポリイミド系の接着 材に充填材としてシリカを混入したことを特徴としてい る。

[0007]

【作用】超音波振動子とくさび材とを接着するための接着剤に充填材を混入することにより、接着剤全体としての線膨張係数が小さくなる。これにより、振動子、接着剤、クサビ材相互の熱応力が緩和される。また、密度が大きくなり硬度も増すことから、超音波の減衰も小さくなる。

[8000]

【実施例】図1はこの発明の1実施例を示す構成図であ る。同図は超音波振動子6、接着剤7 およびクサビ材 (斜角クサビ) 3の関係を示しており、斜角クサビ3の 30 上面に振動子6を接着剤7により取り付けて構成した超 音波センサを示している。つまり、とのような構成自体 は公知であるが、ことでは振動子6には例えばPZT [Pb(Zr·Ti)O,]の如き圧電素子を用い、斜 角クサビ3にはポリイミド系のエンプラを用いており、 エンプラの線膨張係数は振動子に比べて1桁程度大きい ので、その両者の線膨張係数の差を緩和するために、ポ リイミド系の接着剤に球状溶融シリカを充填した点など を特徴としている。そして、球状溶融シリカとしては、 平均0.5μmで真球状のシリカの微粉末とし、その大 40 きさとしては、使用する超音波(1MHz)の波長の1 /10以下の値とし、かつ形状を球形とすることで超音 波の散乱、屈折などの悪影響をなくすようにしている。 【0009】次に、樹脂に充填剤を混入した場合、線膨 張係数αと縦弾性係数Εとの間にはφを体積分率(φ 1, φ2の1で接着剤、2で充填材を示し、以下同様と する。)、Bを体積弾性率、Gを横弾性率、レをポアソ ン比として、(3), (4)式のような関係が成立す る。

... (4)

【0010】図2は上記(3)、(4)式に従い充填材の体積分率 ϕ 2を0~90%まで変化させたときの、線膨張係数 α と縦弾性係数E0変化を示している。同図から明らかなように、充填量を多くすれば実線にて示す線膨張係数 α は小さくなるが、点線にて示す縦弾性係数Eは次第に大きくなって行く。また、図3は図2の α とEをもとに計算した熱応力を示している。この場合の計算モデルとしては図4に示すような、円盤型の振動子6を充分大きなクサビ材3に接着剤7で接着した場合の例を想定している。図3からも分かるように、シリカの充填量を増やせば振動子の熱応力は低下して行くが、接着剤*

*とクサビ材の熱応力は上昇傾向にある。これは、接着剤の線膨張係数の低下により振動子の熱応力が緩和される一方で、クサビ材に接着剤と同じポリイミド系の樹脂を用いたため、シリカ充填により線膨張係数の差がかえって大きくなってしまうためと考えられている。なお、図3の実線は振動子、点線は接着剤、一点斜線はクサビ材3の場合をそれぞれ示している。また、図4(イ)は超音波センサの上面図、同(ロ)はその側面図、(ハ)は熱膨張した結果を示す側面図である。

【0011】この発明の実施例で用いる接着剤と充填材の物性値の一例を表1に示す。

表]

	接着剤	充填材
線膨張率〔 /℃〕	α1=44.3×10 ⁻⁶	α2=0.5 ×10 ⁻⁸
体積分率	φ1=1	φ2=0 ~0.90
体積緯線率〔×10°Pa〕	B1=5.02	B2=37.00
横弾性率 [×10°Pa]	G1=5.02	
縦弾性率 〔×10°Pa〕	E1=5.02	E2=73.00
ポアソン比	ν 1=0. 35	
最大充填分率		φm=0.9

【0012】図5はシリカの充填量による接着剤の音響インピーダンス変化の様子を示している。接着剤に比べてシリカは密度が大きく硬いので、充填量を増やすことによって音響インビーダンスが大きく変化することが分かる。以上の考察から、シリカの充填量を増やせば音響50

特性は良くなるが、熱応力については一概に良いとは言えない。したがって、使用用途に合わせて両者のバランスを考えて充填量を決めることが必要となる。

[0013]

【発明の効果】との発明によれば、接着剤に充填材を混

入することにより、その線膨張係数を超音液振動子とエンジニアリングプラスチックとの中間的な値にするようにしたので、振動子と接着剤との境界で発生する熱応力を緩和することができる。さらには、接着剤の音響インピーダンスが大きくなることから、超音波の伝搬率を向上させることが可能となる利点が得られる。

【図面の簡単な説明】

【図1】 この発明の実施例を示す斜視図である。

【図2】充填量に応じた線膨張係数と縦弾性率の関係を 示す特性図である。

【図3】振動子、接着剤、くさび材の充填量に応じた熱 応力を示す特性図である。 *【図4】図3の特性変化を得るために用いられた振動子,接着剤およびクサビ材の例を説明するための説明図である。

【図5】充填量による音響インビーダンスを説明するための特性図である。

【図6】透過型超音波流量計の測定原理を説明するため の説明図である。

【図7】スネルの法則を説明するための説明図である。 【符号の説明】

10 1, 2, 6…超音液振動子、3…斜角クサビ、4…配管、5…流体(流れ)、7…接着剤。

[図1]

【図5】

[図2]

[図3]

【図6】

上流の超音波振動子 3 料角クサビ 2下流の超音波振動子 4 配管 0 172 6 V 5 指体

[図4]

つ フロントページの続き

▶ (58)調査した分野(Int.Cl.⁷, DB名) GO1F 1/66 101

G01F 1/66