Quantitative Genetics - Multiple Loci

Peter von Rohr

2024-10-11

Two and more Loci

- ► Two loci A and B having an effect on the same quantitative trait.
- ► Additional effect in genetic model: **Interaction** effect (also known as epistasis)
- ► Interaction occurs if effect of one locus can have an influence on the effect of the other locus
- ► Interaction is quantified by

$$I_{AB} = V - V_A - V_B$$

Influence of Two Loci on Quantitative Trait

Two Loci Influencing a Quantitative Trait

Quantify Interaction Effect

For Animal d with genotype:

 $A_iA_jB_kB_l$

Total Genetic Value V_{ijkl} as mean phenotypic value (Y) accross different environments (E1 to E7):

$$V_{ijkl} = rac{1}{N} \sum_{m=1}^{N} Y_{ijklm}$$

More Than Two Loci

Many Loci Influencing a Quantitative Trait

$$V = V_A + V_B + V_C + \ldots + I_{A \cdot B \cdot C \cdot \ldots}$$

with $I_{A \cdot B \cdot C} = I_{AB} + I_{AC} + I_{BC} + I_{ABC}$

Summary Genetic Model

Given genetic model

$$V = V_A + V_B + V_C + \dots + I_{A \cdot B \cdot C \cdot \dots}$$

Decomposition

$$V = \mu_A + BV_A + D_A + \mu_B + BV_B + D_B + \mu_C + BV_C + D_C + \dots + I_{A \cdot B \cdot C \cdot \dots}$$

Re-group

$$V = \mu_A + \mu_B + \mu_C + \dots + BV_A + BV_B + BV_C + \dots + D_A + D_B + D_C + \dots + I_{A \cdot B \cdot C \cdot \dots}$$

► Collect

$$V = \mu + BV + D + I_{A \cdot B \cdot C \cdot \dots}$$

Extend to Phenotypes

We know from earlier

$$Y = V + E$$

► Insert decomposition of *V*

$$Y = \mu + BV + D + I_{A \cdot B \cdot C \cdot ...} + E$$

ightharpoonup For breeding, only BV is important

$$Y = \mu + BV + E^*$$

with $E^* = D + I_{A \cdot B \cdot C \cdot ...} + E$

Split of Environment

Non-genetic environment is split into

- known part, corresponding to additional information on animal, like herd, age, sex, \dots leads to vector of fixed effects and regression coefficients $\rightarrow b$
- ightharpoonup unknown part leads to random resiudal part ightharpoonup e

Model of Phenotypic Observation

Phenotypic observation (y_i) of an animal i can be modelled as

$$y_i = x_i^T \cdot b + u_i + e_i$$

where

y_i phenotypic observation of animal i

 x_i vector of regression covariates or indicator values for fixed effects

b vector of unknown fixed effects and unknown regression coefficients

 u_i random breeding value of animal i

ei random environmental effects of animal i

Aggregation over Population

Take all observations from all animals in a given population

$$y = X \cdot b + Z \cdot u + e$$

where

- y vector of phenotypic observations of all animals
- b vector of unknown fixed effects and unknown regression coefficients
- u vector of random breeding values of all animals
- e vector of random environmental effects
- X design matrix with regression covariates or indicator values for fixed effects
- Z design matrix relating breeding values to observations

Example Dataset I					
Animal	Sire	Dam	Herd	Weaning Weight	Breast Circumference
12	1	4	1	2.61	1.62
13	1	4	1	2.31	1.96
14	1	5	1	2.44	1.48
15	1	5	1	2.41	1.47
16	1	6	2	2.51	1.50
17	1	6	2	2.55	1.47
18	1	7	2	2.14	1.35
19	1	7	2	2.61	1.41
20	2	8	1	2.34	1.46
21	2	8	1	1.99	1.38
22	2	9	1	3.10	1.70
23	2	9	1	2.81	1.68
24	2	10	2	2.14	1.71
25	2	10	2	2.41	1.36
26	3	11	2	2.54	1.50
27	3	11	2	3.16	1.61

Example Dataset II

- Weaning weight as response variable y
- ▶ Breast circumference as regression variable
- ► Herd as fixed effect
- Breeding values for
 - animals with observations: own-performance
 - sires: sire model
 - all animals in pedigree: animal model