NEW ORGANOSILICON COMPOUND, ITS PRODUCTION AND SURFACE TREATING AGENT AND RESIN ADDITIVE USING THE SAME

Patent number:

JP2000297093

Publication date:

2000-10-24

Inventor:

KUMAGAI MASASHI

Applicant:

JAPAN ENERGY CORP

Classification:
- international:

C07F7/18; C08K5/541; C08K5/544; C08L101/12;

C09D5/00; C09D7/12; C09D183/08; C23C22/00; C09K3/00; C07F7/00; C08K5/00; C08L101/00; C09D5/00; C09D7/12; C09D183/08; C23C22/00;

C09K3/00; (IPC1-7): C07F7/18; C08K5/541; C08L101/12;

C09K3/00

- european:

Application number: JP19990108237 19990415 **Priority number(s):** JP19990108237 19990415

Report a data error here

Abstract of JP2000297093

PROBLEM TO BE SOLVED: To produce a new compound useful as a surface treating agent, etc., for improving the adhesion of a metal such as copper, steel or aluminum or an inorganic substance such as glass fibers, silica, aluminum oxide or aluminum hydroxide to a resin. SOLUTION: This compound is represented by formula I [R1 to R3 are each H, a 1-20C alkyl, vinyl, phenyl or benzyl or R2 and R3 may be bonded to provide a benzene ring; R4 and R5 are each a (1-5C alkoxylsubstituted)1-5C alkyl; m is 1-10; n is 1-3], e.g. a compound represented by formula II. The compound represented by formula I can be produced by a method, etc., for reacting, e.g. (A) an imidazole compound represented by formula III with (B) an isocyanatosilane represented by formula IV in an amount of 0.1-10 mol, preferably 1 mol based on the component A at 30-100 deg.C. The compound represented by formula I is contained as an active component to afford a surface treating agent or a resin additive.

$$R^{\frac{2}{N}} \stackrel{A^{\frac{3}{N}}}{\stackrel{O}{\longrightarrow}} N \stackrel{H}{\longrightarrow} C \stackrel{H}{\longrightarrow} K \stackrel{H}{\longrightarrow$$

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-297093

(P2000-297093A)

(43)公開日 平成12年10月24日(2000.10.24)

(51) Int.Cl.7	識別配号	F I	•	テーマコート*(参考)
C 0 7 F	7/18	C 0 7 F	7/18 T	4H049
C08K	5/541	C08L1	.01/12	4 J O O 2
C08L	101/12	C 0 9 K	3/00 R	
C09K	3/00	C08K	5/54	

審査請求 未請求 請求項の数4 OL (全 7 頁)

		日本日本 不明不 明不久の数4 〇七 (土 「 兵)
(21)出願番号	特願平11-108237	(71)出顧人 000231109
		株式会社ジャパンエナジー
(22)出顧日	平成11年4月15日(1999.4.15)	東京都港区虎ノ門二丁目10番1号
		(72)発明者 熊谷 正志
		茨城県北茨城市華川町臼場187番地4 株
		式会社ジャパンエナジー磯原工場内
		(74)代理人 100094709
		弁理士 加々美 紀雄 (外2名)
		Fターム(参考) 4H049 VN01 VP01 VQ64 VR20 VR40
		VS44 VT40 VT43 VT46 VT49
		VU16 VU21 VW02
		4J002 AA011 AA021 CD001 EX076
		FD146 FD156 FD206

(54) 【発明の名称】 新規有機ケイ素化合物およびその製造方法並びにそれを用いる表面処理剤および樹脂添加剤

(57)【要約】

【課題】 金属又は無機材料と樹脂との接着性を向上させる有機ケイ素化合物の提供。

【解決手段】 下記一般式(1)で表される新規有機ケイ素化合物。

[{£1]

$$R^2$$
 R^3
 $N - C - N + CH_2 \rightarrow m$ SI (OR⁴) $_n R^5$ (3-n) (1)

(ただし、式中、 R^1 、 R^2 、 R^3 は水素、炭素数が $1\sim 20$ のアルキル基、ビニル基、フェニル基、又はベンジル基であり、 R^4 、 R^3 は炭素数 $1\sim 5$ のアルコキシル基で置換された又は無置換の炭素数 $1\sim 5$ のアルキル基であり、mは $1\sim 10$ 、nは $1\sim 3$ の整数である。ただし、 R^2 、 R^3 は結合してベンゼン環になっても良い。)

1

【特許請求の範囲】

【請求項1】 下記一般式(1)で表される新規有機ケイ素化合物。

【化1】

(ただし、式中、R¹、R²、R³は水素、炭素数が1~20のアルキル基、ビニル基、フェニル基、又はベンジル基であり、R¹、R³は炭素数1~5のアルコキシル基で置換された又は無置換の炭素数1~5のアルキル基であり、mは1~10、nは1~3の整数である。ただし、R²、R³は結合してベンゼン環になっても良い。)【請求項2】 下記一般式(2)で表されるイミダゾール化合物と下記一般式(3)で表されるイソシアネートシランを30~100℃で反応させることを特徴とする請求項1記載の有機ケイ素化合物の製造方法。

【化2】

$$0 = C = N + CH_{2} + \frac{1}{m} Si (OR^{4})_{n} R^{5}_{(3-n)}$$
 (3)

(ただし、R¹、R²、R³、R⁴、R⁵、m、nは一般式(1)と同義)

【請求項3】 請求項1 に記載の有機ケイ素化合物を有効成分とする表面処理剤。

【請求項4】 請求項1に記載の有機ケイ素化合物を有効成分とする樹脂添加剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、銅、鉄鋼、および アルミニウム等の金属またはガラス繊維、シリカ、酸化 アルミニウム、水酸化アルミニウム等の無機物質と樹脂 との接着性の改善を行うための表面処理剤、または、エ ボキシ樹脂等の樹脂の機械的強度の改善を行うための樹 脂添加剤およびさらに有用な有機ケイ素化合物に関す る。

[0002]

【従来の技術】電子機器のボードは銅箔と紙-フェノール樹脂含浸基材やガラス-エポキシ樹脂含浸基材等を加熱、加圧して銅張積層板を作成した後、エッチングして回路網を形成し、これに半導体装置等の素子を搭載することにより作られる。

【0003】 これらの過程では、銅箔と基材との接着、加熱、酸やアルカリ液への浸漬、レジストインクの塗布、ハンダ付け等が行われるため、さまざまな性能が要求される。これらの要求を満たすために、銅箔は黄銅層形成処理(特公昭51-35711号公報、同54-6701号公報)やクロメート処理、亜鉛または酸化亜鉛とクロム酸化物とからなる亜鉛ークロム基混合物被覆処理(特公昭58-7077号公報)、シランカップリング剤処理等が検討されている。また、樹脂は樹脂や硬化利の種類およびその配合量を変えたり、添加剤等によって上記要求特性を満足させている。また、ガラス繊維はシランカップリング剤等の表面処理等が検討されている。しかしながら、最近、プリント回路が緻密化しているので、使用される電子機器用のボードに要求される特性はますます厳しくなっている。

【0004】 これに伴うエッチング精度の向上に対応するため銅箔のプリプレグと接着される粗化面(M面)にはさらに低い表面粗さ(ロープロファイル)も求められている。しかし、M面の表面粗さは一方ではプリプレグ20 との接着にあたって、アンカー効果をもたらしているので、M面に対するこのロープロファイルの要求と接着力の向上とは二律背反の関係にあり、ロープロファイル化によるアンカー効果の低減分は別の手段による接着力の向上で補償することが必要である。

【0005】また、発電所などの高電圧・高容量の機器や半導体の封止等に使われている電気絶縁用注型材料はエポキシ樹脂のマトリックス中にシリカやアルミナ等の無機物質を充填した複合材料である。これらの材料には様々な電気的・機械的特性が要求されており、それらの30 特性を満足させるためには、無機物質と樹脂の接着性を向上させる必要がある。この対策としてシランカップリング剤を樹脂中に添加したり、無機物質をシランカップリング剤で表面処理することが提案されているが、さらなる樹脂/無機物質界面の改善が要求されている。

[0006]

【発明が解決しようとする課題】本発明は、こうした要請に対応できる、すなわち銅、鉄鋼、およびアルミニウム等の金属またはガラス繊維、シリカ、酸化アルミニウム、水酸化アルミニウム等の無機物質と樹脂との接着性を向上させることができる新規な有機ケイ素化合物、その製造方法、並びにそれを用いた表面処理剤または樹脂添加剤を提供することを目的とするものである。

[0007]

【課題を解決するための手段】本発明者は、鋭意研究を進めた結果、前記一般式(1)に示す新規有機ケイ素化合物を金属または無機物質に表面処理した場合、樹脂との接着性を向上させることができ、また、エポキシ樹脂等の樹脂に添加しても硬化反応が促進され、かつ機械的強度が改善されることを見出した。

50 【0008】本発明は、かかる知見に基づきなされたも

2

のであり、その要旨は、

(1)下記―般式(1)で表される新規有機ケイ素化合物、

(2)下記一般式(2)で表されるイミダゾール化合物 と下記一般式(3)で表されるイソシアネートシランを 20 30~100℃で反応させることを特徴とする前記

(1)記載の有機ケイ素化合物の製造方法、

[0011]

[化4]

 $0 = C - N + CH_{2} + \frac{7}{11} Si (OR^{4})_{0} R^{5}_{(3-n)}$ (3)

 $\begin{array}{c}
R^{2} \\
N \\
N \\
R^{1}
\end{array}$ $\begin{array}{c}
R^{3} \\
R^{3} \\
R^{5} \\
R^{5}$

【0018】(反応式中、各記号は前記と同義)上記反応式(4)のイミダゾール化合物とイソシアネートシランの反応モル比はイミダゾール化合物1モルに対して0.1~10モルのイソシアネートシランを反応させることにより製造できるが、イミダゾール化合物1モルに対してイソシアネートシランを1モルで反応させることが望ましい。

* [0012] (ただし、R¹、R²、R³、R⁴、R³、

m、nは一般式(1)と同義)

(3)前記(1)に記載の有機ケイ素化合物を有効成分とする表面処理剤、

(4)前記(1)に記載の有機ケイ素化合物を有効成分とする樹脂添加剤、にある。

【0013】上記一般式(1)におけるR'、R'、R'は、水素、炭素数1~20のアルキル基、ビニル基、フェニル基、又はベンジル基であれば本発明の効果を十分10に発揮する。ただし、とれらの置換基は使用する用途によって適したものを選定する必要がある。すなわち、フィラーや金属等に水溶液で表面処理したい場合は、水素または炭素数の少ないアルキル基が溶解性の点で好ましい。

【0014】また、樹脂に添加する場合は、対象樹脂との相溶性が高い置換基を選定する必要がある。上記一般式(1)におけるR⁴、R³は、炭素数1~5のアルコキシル基で置換された又は無置換の炭素数1~5のアルキル基であるが、特には合成の容易性やシランの加水分解、縮合のし易さの点からメチル基またはエチル基が好適である。また、nは1~3であるが、金属、無機物質や樹脂との反応性や架橋性の高い方が接着特性が向上するため、nは2または3が好適である。また、mは1~10である。

【0015】以下に本発明をさらに詳細に説明する。

【0016】本発明の上記新規有機ケイ素化合物(1)は下記反応式(4)で表される反応により合成される。 すなわち、イミダゾール化合物とイソシアネートシラン を混合し、30~100℃に加熱することにより製造す 30 ることができる。

【0017】 【化5】

【0019】上記、新規有機ケイ素化合物を金属または無機物質の表面処理剤として用いる場合、その金属または無機物質には特に制限がない。例えば、金属では、銅、鉄、アルミニウム、亜鉛等またはそれらの合金、無機物質ではガラス繊維、シリカ、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、炭酸バリウム、

50 タルク等である。表面処理は、そのまま塗布しても良い

(4)

5

が、水、メタノール、エタノール、アセトン、酢酸エチル、トルエン等の溶剤で0.001~20重量%になるように希釈して噴霧するか、この液に金属または無機物質を浸漬させる方法で塗布することが簡便で好ましい。 【0020】なお、この新規有機ケイ素化合物は単独で用いても良いが、他のシランまたはチタネートカップリング剤、防錆剤と混合しても良い。

【0021】上記、本発明の新規有機ケイ素化合物は樹脂添加剤として用いる場合、その樹脂には特には制限がなく、熱可塑性樹脂でも熱硬化性樹脂でも良いが、特にはエボキシ樹脂に添加すると硬化剤または硬化促進剤として効果的に作用し、本発明の効果を十分に発揮するととができる。本発明の新規有機ケイ素化合物は樹脂中のそのまま添加してもアルコール系、芳香族系、脂肪族系有機溶剤に溶解して添加しても良い。添加量は樹脂100に対して0.001~50添加すれば本発明の効果を十分発揮できる。なお、本発明の新規有機ケイ素化合物は、硬化剤、シランカップリング剤、可塑剤等の添加剤等と併用しても良い。

[0022]

【発明の実施の形態】実施例1

イミダゾール6.8g(0.1 モル)とイソシアネート プロビルトリエトキシシラン24.9g(0.1 モル) を混合し、ジブチルスズラウレートを触媒として0.1 g添加し、50℃で1時間反応させ、下記式(5)の有 機ケイ素化合物を得た。反応の確認は液体クロマトグラ フィーにより反応物の消失により行った。得られた化合* *物はFT-IR、NMRにより同定した。本化合物の¹ H-NMR、¹³C-NMR、FT-IRスペクトルを図 1~3に示す。

[0023]

[{{16}}

【0024】実施例2

10 表面処理剤としての適用

アルミ合金板(JIS H4000に規定するA2024P、日本テストパネル製、厚さ1.6mm、25×100mm)を上記実施例1で得られた有機ケイ素化合物の0.4%メタノール溶液に浸漬した後、熱風乾燥するととにより表面処理した。との表面処理したアルミ合金板2枚をエポキシ樹脂組成物[エピコート828(エポキシ樹脂、油化シェルエポキシ製):100部、ジシアンジアミド(関東化学(株)製):5部、2-エチルー4-メチルイミダゾール(四国化成製):1部]により100℃で1時間+150℃で1時間の硬化条件で接着し、JIS K6850に準じて引っ張り剪断接着試験を行った。また比較として未処理のアルミ合金板、および0.4%3-グリシドキシプロビルトリメトキシシランのメタノール溶液で処理したアルミ合金板についても同様に評価した。その結果を表1に示す。

[0025]

【表1】

表 1 引張り剪断接着試験結果

処理剤	接着強度 (KN/cm²)	
新規有機ケイ素化合物	1, 15	
3 ーグリンドキシプロピルトリメトキシシラン	0.79	
未処理	0.75	

【0026】実施例3

樹脂への添加剤としての適用

未処理のアルミ合金板2枚をエポキシ樹脂組成物[エピコート828:100部、ジシアンジアミド(関東化学(株)製):5部、実施例1で得られた有機ケイ素化合物:1部]により100℃で1時間+150℃で1時間の硬化条件で接着し、JIS K6850に準じて引っ※40

※ 張り剪断接着試験を行った。その結果を表2に示す。また、比較として新規有機ケイ素化合物の代わりに、2-エチルー4-メチルイミダゾール1部を用いて同様に評価した。その結果を表2に示す。

[0027]

【表2】

表 2 引張り剪断接着試験結果

添加 剤	接着強度(KN/cm²)
新規有機ケイ楽化合物	1. 12
2-2+4-4-1+41341-8	0.75

(00281

【発明の効果】以上説明したように、本発明の新規有機 ケイ素化合物は表面処理剤、樹脂添加剤として金属と樹 脂との接着性を改善することができる。

【図面の簡単な説明】

【図1】実施例1で得られた有機ケイ素化合物の'H-NMRチャート。

50 【図2】同上、1°C-NMRチャート。

6

【図3】同上、FT-IRチャート。

【図1】

【図2】

【図3】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.