

06 12 2021

Masterkurs Bildgebende Optische Systeme

Geometrische und Wellenoptik Optik:

Hardware: Kameras, Lichtquellen

Bewertung, Kalibrierung Software:

Jürgen Sum Bernd Jödicke **Matthias Franz**

Kamera-Qualität / Labortests

(zusammen mit Prof. Franz)

- 1. Radiometrische Kalibrierung Kamera ohne Objektiv; U-Kugel, Spektral Lichtquelle, Photometer ein Messplatz im Dunkelraum
- 2. MTF Kamera mit Objektiv; Linienmuster, Lichtquellen, optische Bank
- 3. Inspektionsaufgabe Konzeption – was soll gemessen werden **Umsetzung – exemplarisch**
- 4. Geometrische Kalibrierung (nur wenn für 3 nötig) Kamera mit Objektiv; Punkteraster; Lichtquellen, optische Bank

Mögliche Inspektions-Aufgaben

(zusammen mit Prof. Hettich)

- Erdfeld aus fallender Kugel (Münze)
- 2. Zählen von Teilen auf einem Tisch
- 3. Unterscheiden von farbigen Teilen
- 4. Vermessen von Münzdurchmessern
- 5. Vermessen von Bohrungsdurchmessern
- 6. Geschwindigkeitsmessung von rutschenden Gegenständen
- 7. Überwachungsaufgabe (wenn etwas geschehen ist, 10 Sekunden Film speichern)
- 8.

Diese Aufgaben müssen so gewählt werden, dass die Gruppe sich in der Lage fühlt sie zu bearbeiten. Es erfolgt ein Coaching, aber keine genauen Programmierhilfen

Inspektions-Aufgaben

Hardware (Kamera, Beleuchtung, Vereinzelung) Software Konzeption

Welches Merkmal wollen Sie betrachten?

- 2. Wie genau wollen Sie dieses Merkmal betrachten?
- 3. Wie extrahieren Sie Ihr Merkmal aus dem Bild?
- 4. Wie generieren Sie aus Ihren Merkmalen Ihre Entscheidung, bzw. Ihren Messwert?

Kamerauslegung

Sie haben die Aufgabe bekommen, in einem Busch Vögel zu identifizieren und zu zählen. Der Busch hat eine Höhe von ca. 10 Metern, der Beobachtungspunkt liegt ca. 30 m vom Busch entfernt. Beantworten Sie folgende Fragen (mit kurzer Begründung bzw. Berechnung)

(Bemerkung: 30 m ist praktisch im Unendlichen)

- Wählen Sie einen schwarz-weiß oder Farbsensor?
- Welche Pixelzahl benötigt Ihr Sensor?

Sie haben 2 Sensoren zur Auswahl, einen S1 mit 1 µm großen, der andere S2 mit 5 µm Pixeln. Beantworten Sie folgende Fragen für jeweils beide Sensoren

- Wie groß sind die beiden Sensoren jeweils?
- Bestimmen Sie den Abbildungsmaßstab für den jeweiligen Sensor
- Bestimmen Sie die jeweils benötigte Brennweite des Objektivs c)
- Welche Blendenzahl müssen die Objektive mindestens haben?
- Welche Blendenöffnung (Durchmesser) müssen die Objektive mindestens haben?
- Wie unterscheiden sich die beiden Objektive in Bezug auf Anforderungen
 - 1.) optische Qualität/MTF
 - 2.) Baugröße
 - 3.) Bildkreisdurchmesser

Weg zum Optischen System

Gegenstand	Größe	Detail	Geschwindigkeit	
	G	d	V	
Abbildung	Gegenstandsweite	Bildweite	Abbildungsmaßstab	
	g	b	$\beta = \frac{B}{G} = \frac{b}{g}$	
Objektiv	Brennweite	Blendenzahl	Durchmesser	Bildkreis-
	f	$k = \frac{f}{D}$	Eingangspupille	durchmesser
		$\kappa = D$	D	Φ_{BK}
Kamera/Sensor	Pixelzahl	Pixelgröße	Abtastrate <u>fps</u>	
	$N_a \times N_b$	S _{px}	f_{S}	

Systemauswahl Vorgehen

- Vorgaben:
- Detail auf 3 pixel abbilden (Rezept)

$$N_a = \frac{3 \cdot G_a}{d}$$

N_b dazu passend

B) bewegte Prozesse

A) Sensor Rohdaten:

1 px pro Frame (für genaue Auflösung)

$$v = \frac{\Delta s}{\Delta t}$$
; $\Delta s = \frac{d}{3} \Rightarrow f_s = \frac{1}{\Delta t} = \frac{3 \cdot v}{d}$; Δt : Belichtungszeit

Kommentar: manchmal genügt es ein Bild pro Frame aufzunehmen

3. Pixelgröße festlegen (dies geschieht durch Wahl der möglichen Sensoren)

G, d, v

$$\beta = \frac{3 \cdot s_{pX}}{d} = \frac{B}{G} = \frac{b}{g}$$

Abbildungsmaßstab, Bildgröße berechnen

Bildkreis berechnen $\Phi_{BK} = s_{px} \cdot \sqrt{N_a^2 + N_b^2}$

Brennweite festlegen

 $f \ge \Phi_{BK}$

(Rezept: mindestens Normalbrennweite verwenden)

f eher größer wählen, wenn g fix, dann Schritt 4 und 5

tauschen

Gegenstandsweite berechnen

$$\frac{1}{f} = \frac{1}{b} + \frac{1}{g}$$
 und $\beta = \frac{b}{g}$

$$\beta = \frac{b}{a}$$

6. Maximale Blendenzahl

$$k_{max} \approx \frac{s_{px}}{1,34 \ \mu m}$$

Beugungsbegrenzung sichtbares Licht (550 nm)