5.8

The set of $n \times n$ matrices with determinant 2 under matrix multiplication does not form a subgroup of $GL(n,\mathbb{R})$. Let A,B be $n \times n$ matrices with $\det(A) = \det(B) = 2$. Note then that $\det(AB) = \det(A) \det(B) = 4 \neq 2$. Therefore AB is not contained within the set, hence closure is not satisfied and not a subgroup.

5.15

Let F_0 denote the subset of all $f \in F$ such that f(1) = 0

Part A

 F_0 does form a subgroup of F under addition.

Proof. Let F_0 denote the subset of all $f \in F$ such that f(1) = 0. Let $f, g \in F_0$. Then f(1) + g(1) = 0 + 0 = 0, therefore F_0 is closed under functional addition. The identity element of F is the zero constant function, that is e(x) = 0. Note that e(1) = 0, therefore $e \in F_0$, hence the identity element of F is in F_0 . Let $f \in F_0$. Let $f^{-1} = -f$, that is the negative of f. $-f \in F_0$ since -f(1) = 0. Additionally, f + (-f) = 0 = e, thefore every element of F_0 has an inverse. Therefore $F_0 \le F$ under addition.

Part B

 F_0 does not form a subgroup of \tilde{F} under multiplication. Note that every element in F_0 by definition has a zero value at 1, hence $F_0 \nsubseteq \tilde{F}$, meaning F_0 cannot be a subgroup of \tilde{F} under multiplication.

5.20

$$G_i \le G_i ext{ for } i = \{1, 2, \dots, 9\}$$
 $G_2 < G_8 < G_7 < G_1 < G_4$
 $G_9 < G_3 < G_5$
 $G_6 < G_5$.

5.21

Part A

$$\{\ldots, -50, -25, 0, 25, 50, \ldots\}.$$

Part B

$$\left\{\ldots, 4, 2, 0, \frac{1}{2}, \frac{1}{4}\ldots\right\}.$$

Part C

$$\left\{\ldots,\frac{1}{\pi^2},\frac{1}{\pi},0,\pi,\pi^2\ldots\right\}.$$

5.33

Note that

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

And also that

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Therefore the only elements that are generated by the matrix are the identity element and itself, hence the order of the subgroup is 2.

5.35

Note that

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

The inverse of the matrix is

$$\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

which under repeated multiplication

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Therefore the generated elements are the inverse of the matrix, the matrix itself, and the identity element. Hence the order of the subgroup is 3.

5.36

Part A

+		l .	l		4	
		l .	l		4	
1	1	2	3	4	5	0
		l .			0	
		l .			1	
		l .	l		2	3
5	5	0	1	2	3	4

Part B

$$\langle 0 \rangle = \{0\}$$

$$\langle 1 \rangle = \{0, 1, 2, 3, 4, 5\}$$

$$\langle 2 \rangle = \{0, 2, 4\}$$

$$\langle 3 \rangle = \{0, 3\}$$

$$\langle 4 \rangle = \{0, 2, 4\}$$

$$\langle 5 \rangle = \{0, 1, 2, 3, 4, 5\}.$$

Part C

Both 1 and 5 are generators for \mathbb{Z}_6 .

Part D

5.42

Proof. Let $\langle G, * \rangle$ and $\langle G', *' \rangle$ be groups and let $\phi : G \to G'$ be an isomorphism between G and G'. Assume that G is a cylic group. Therefore there exists $g \in G$ such that $\langle g \rangle = G$. Examine $\phi(g)$ as a candidate for a generator of G'. Let $a' \in G'$. Since ϕ is an isomorphism, there is an $a \in G$ such that $\phi(a) = a'$. Since g is a generator, there is an $n \in \mathbb{Z}$ such that $a = g^n$. Therefore $a' = \phi(g^n)$. By repeated application of the

homorphism property of ϕ , $a' = \phi(g)^n$. There all elements of G' can be generated by $\phi(g)$, hence G' is cyclic.

5.46

Proof. Let G be a cyclic group and assume it has only one generator. Since G is cyclic there is an $a \in G$ such that

$$G = \{e, a, a^2, \dots, a^{n-1}\}.$$

Note that $a^{-1} = a^{n-1}$ is also a generator of G since for all k from 1 to n-1 since

$$(a^{-1})^k = (a^k)^{-1} = a^{n-k}.$$

Therefore if G has only one generator, $a = a^{n-1}$, or equivalently by examining the powers

$$n - 1 = 1$$
$$n = 2.$$

Therefore the group must be of size 2. Note that if $G = \{e\}$, it would also work. Hence if a cyclic group has a single generator it has an order of at most 2.

5.47

Proof. Let G be an abelian group. Define the set $H = \{x \in G : x^2 = e\}$. Let $a, b \in H$. Then

$$a^2b^2 = e$$
 $aabb = e$
 $abab = e$
 $(ab)(ab) = e$
 $(ab)^2 = e$.

(Since G is abelian)
(By associativity)

Therefore $ab \in H$, meaning H is closed under the group operation of G. Consider the identity e of G. Since ee = e, it is in H. Let $a \in H$. Since aa = aa = e, a is its own inverse and therefore every element of H has an inverse. Therefore since H is closed under the group operation of G, has the identity of G, and has an inverse for every element, $H \leq G$.

4

5.49

Proof. Let G be a finite group and let $a \in G$. Consider the set $S = \{a, a^2, a^3, \ldots, a^m, a^{m+1}\}$ where m = |G|. Since there are m+1 elements in S, there has to be a repeat otherwise S would contain m+1 unique elements which is larger than |G|. Therefore there exists $\alpha, \beta \in \mathbb{Z}^+$ such that $\alpha \neq \beta$ and $\alpha^{\alpha} = \alpha^{\beta}$. Without loss of generality let $\alpha < \beta$. Then

$$a^{\beta} = a^{\alpha}$$
$$a^{\beta - \alpha} = e.$$

Since $\alpha < \beta$, $\beta - \alpha > 0$ meaning $\beta - \alpha \in \mathbb{Z}^+$. Therefore for any $\alpha \in G$ there exists a $n \in \mathbb{Z}^+$ such that $\alpha^n = e$.

5.50

Proof. Let G be a finite group. Let $H \subseteq G$ where |H| = m and m is finite and assume H is closed under the binary operation of G. Let $\alpha \in H$. Consider the set $S = \{\alpha, \alpha^2, \alpha^3, \ldots, \alpha^m, \alpha^{m+1}\}$. Every element of S is in H since H is closed. Since there are m+1 elements in S, there has to be a repeat otherwise S would contain m+1 unique elements which is larger than |H|. Therefore there exists $\alpha, \beta \in \mathbb{Z}^+$ such that $\alpha \neq \beta$ and $\alpha^\alpha = \alpha^\beta$. Without loss of generality let $\alpha < \beta$. Then

$$a^{\beta} = a^{\alpha}$$
$$a^{\beta - \alpha} = e.$$

Since $\alpha < \beta$, $\beta - \alpha > 0$ meaning $\beta - \alpha \in \mathbb{Z}^+$. Therefore $e \in H$. Additionally every element of H has an inverse since

$$a^{\beta-\alpha-1}a = a^{\beta-\alpha} = e.$$

Therefore since H is closed under the group operation of G, has the identity of G, and has an inverse for every element, $H \leq G$.

5.51

Proof. Let G be a group and let $a \in G$. Define $H_a = \{x \in G : xa = ax\}$. Let $x, y \in H_a$. Then note that xya = x(ya) = xay = (xa)y = axy, therefore $xy \in H_a$. Note the identity

of *G* is in H_a since ea = a = ae. Let $x \in H_a$. Then

$$xa = ax$$

$$a = x^{-1}ax$$

$$ax^{-1} = x^{-1}a.$$

Therefore $x^{-1} \in H_a$. Therefore since H is closed under the group operation of G, has the identity of G, and has an inverse for every element, $H \leq G$.

5.54

Proof. Let G be a group. Let H and K be sets such that $H \leq G$ and $K \leq G$. Consider $H \cap K$. Let $a, b \in H \cap K$. Then $a, b \in H$ and $a, b \in K$. Additionally since both are subgroups of G, $ab \in H$ and $ab \in K$ by closure. Therefore $ab \in H \cap K$. Since both H and H are subgroups of H, they both contain the identity element of H, and therefore $H \cap K$ contains the identity element. Let $H \cap K$. Then $H \cap K$ and $H \cap K$ since both are subgroups and hence have inverses for every element. Therefore since $H \cap K$ in $H \cap K$ and $H \cap K$. Hence $H \cap K \cap K$.