

## Computer Security Lecture 5



# Simplified Advanced Encryption Standard

### Dr. Mohamed Loey

Lecturer, Faculty of Computers and Information Benha University

Egypt

#### Table of Contents

Simplified Advanced Encryption Standard

**S-AES** Encryption and Decryption

**S-AES** Key Generation

**S-AES Encryption** 

**S-AES Decryption** 

#### Table of Contents

Simplified Advanced Encryption Standard

**S-AES Encryption and Decryption** 

**S-AES** Key Generation

**S-AES Encryption** 

**S-AES Decryption** 

#### Simplified Advanced Encryption Standard

□ Simplified AES (S-AES) was developed by Professor Edward Schaefer of Santa Clara University in 2003

- ☐ its purpose is educational, since its key and block size are very small 16bits
- it is possible for students to encrypt or decrypt a block doing all operations by hand
- it easier for students to understand the structure AES

#### Table of Contents

Simplified Advanced Encryption Standard

**S-AES** Encryption and Decryption

**S-AES** Key Generation

**S-AES Encryption** 

**S-AES Decryption** 

#### S-AES Encryption and Decryption



Dr Mohamed Loey

#### S-AES Encryption Example

□ 16-bit Plaintext, P= D7 28

=1101 0111 0010 1000

□ 16-bit Key, K= 4A F5

=0100 1010 1111 0101

#### Table of Contents

Simplified Advanced Encryption Standard

**S-AES** Encryption and Decryption

**S-AES Key Generation** 

**S-AES Encryption** 

**S-AES Decryption** 





- □ K= 4A F5
  - = 0100 1010 1111 0101

- ☐ The input key, K, is split into 2 words, w0 and w1:
- $\square$  w0 = 0100 1010
- $\square$  w1 = 1111 0101



☐ S-AES Key Expansion



☐ Function g





- $\square$  w0 = 0100 1010, w1 = 1111 0101
- $\square$  w2 = w0  $\oplus$  Rcon(1)  $\oplus$  SubNib( RotNib(w1))
- □ RotNib() is "rotate the nibbles", which is equivalent to swapping the nibbles, Rcon is a round constant
- □ SubNib() is "apply S-Box substitution on nibbles using encryption S-Box"
- $\square$  RotNib(w1) = 0101 1111
- □ SubNib(0101 11111) = 0001 0111
- $\square$  Rcon(1) = 10000000

| C D   | 20V | j  |    |    |    |  |  |  |
|-------|-----|----|----|----|----|--|--|--|
| S-Box |     | 00 | 01 | 10 | 11 |  |  |  |
| i     | 00  | 9  | 4  | A  | В  |  |  |  |
|       | 01  | D  | 1  | 8  | 5  |  |  |  |
|       | 10  | 6  | 2  | 0  | 3  |  |  |  |
|       | 11  | С  | Е  | F  | 7  |  |  |  |

- $\square$  w0 = 0100 1010, w1 = 1111 0101
- $\square$  w2 = w0  $\oplus$  Rcon(1)  $\oplus$  SubNib( RotNib(w1))
  - = 0100 1010 \( \oplus \) 1000 0000 \( \oplus \) 0001 0111
  - = 0100 1010 \( \oplus \) **1001 0111**=1101 1101
- $\square$  w2 =1101 1101
- $\square$  w3 = w2  $\oplus$  w1 = 1101 1101  $\oplus$  1111 0101= 0010 1000
- $\square$  w3 = 0010 1000



```
\square w2 = 1101 1101, w3 = 0010 1000
\square w4 = w2 \oplus Rcon(2) \oplus SubNib(RotNib(w3))
      = 1101 1101 \oplus 0011 0000 \oplus SubNib( 1000 0010 )
      = 1110 1101 \oplus 0011 0000 \oplus 0110 1010
      = 1110 1101 \oplus 0101 1010
      = 1011 \ 0111
```

| $w5 = w4 \oplus w3$ |        |      |
|---------------------|--------|------|
| =1011 0111          | ⊕ 0010 | 1000 |
| =1001 1111          |        |      |

| S-B | Юх | j  |    |    |    |  |  |  |  |
|-----|----|----|----|----|----|--|--|--|--|
|     |    | 00 | 01 | 10 | 11 |  |  |  |  |
|     | 00 | 9  | 4  | A  | В  |  |  |  |  |
| i   | 01 | D  | 1  | 8  | 5  |  |  |  |  |
|     | 10 | 6  | 2  | 0  | 3  |  |  |  |  |
|     | 11 | С  | Е  | F  | 7  |  |  |  |  |



- ☐ Key
- $\square$  Key0 = w0w1
  - = 0100 1010 1111 0101
- $\square$  Key1 = w2w3
  - = 1101 1101 0010 1000
- $\Box$  Key2 = w4w5
  - = 1011 0111 1001 1111



#### Table of Contents

Simplified Advanced Encryption Standard

**S-AES** Encryption and Decryption

**S-AES** Key Generation

**S-AES Encryption** 

**S-AES Decryption** 



- ☐ Assume: P= 1101 0111 0010 1000
- $\square$  Key0 = w0w1
  - = 0100 1010 1111 0101
- $\square$  Key1 = w2w3
  - = 1101 1101 0010 1000
- $\square$  Key2 = w4w5
  - = 1000 0111 1010 1111



- □ Round 0
- □ P= 1101 0111 0010 1000
- ☐ Key0 = 0100 1010 1111 0101
- $\square$  R0= P  $\oplus$  Key0
  - = 1101 0111 0010 1000 ⊕
    - 0100 1010 1111 0101
  - = 1001 1101 1101 1101



#### ☐ S-AES Encryption Round



□ S-AES Transformation (Substitution and Shift row)







- ☐ Round 1
- 1) Nibble Substitution:
- 2) Shift Row:
- ☐ Swap 2nd nibble and 4th nibble
- ☐ ShRow(0010 1110 1110)

= 0010 1110 1110 1110

| S-Box |    | j  |    |    |    |  |  |  |  |
|-------|----|----|----|----|----|--|--|--|--|
|       |    | 00 | 01 | 10 | 11 |  |  |  |  |
| i     | 00 | 9  | 4  | A  | В  |  |  |  |  |
|       | 01 | D  | 1  | 8  | 5  |  |  |  |  |
|       | 10 | 6  | 2  | 0  | 3  |  |  |  |  |
|       | 11 | С  | Е  | F  | 7  |  |  |  |  |

#### Key Generation

#### ☐ S-AES Encryption Round





□ S-AES Transformation (Mix Column)



☐ Mix Column Table

| * | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | C | D | Ε | F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 4 | 6 | 8 | Α | С | E | 3 | 1 | 7 | 5 | В | 9 | F | D |
| 4 | 4 | 8 | С | 3 | 7 | В | F | 6 | 2 | E | Α | 5 | 1 | D | 9 |
| 9 | 9 | 1 | 8 | 2 | В | 3 | Α | 4 | D | 5 | С | 6 | F | 7 | Ε |

- □ Round 1
- 3) Mix Columns:

$$\square$$
 MixCol (0010 1110 1110 1110) =  $\begin{pmatrix} 0010 & 1110 \\ 1110 & 1110 \end{pmatrix} * \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix} =$ 

$$\Box = \begin{pmatrix} 2 & E \\ E & E \end{pmatrix} * \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} (2*1 \oplus E*4) & (E*1 \oplus E*4) \\ (2*4 \oplus E*1) & (E*4 \oplus E*1) \end{pmatrix}$$

$$\Box = \begin{pmatrix} (2 \oplus D) & (E \oplus D) \\ (8 \oplus E) & (D \oplus E) \end{pmatrix} = \begin{pmatrix} (0010 \oplus 1101) & (1110 \oplus 1101) \\ (1000 \oplus 1110) & (1101 \oplus 1110) \end{pmatrix}$$

$$\square \begin{pmatrix} (0010 \oplus 1101) & (11110 \oplus 1101) \\ (1000 \oplus 1110) & (1101 \oplus 1110) \end{pmatrix} = \begin{pmatrix} 1111 & 0011 \\ 0110 & 0011 \end{pmatrix}$$

= 1111 0110 0011 0011



- ☐ Round 1
- 4) Add round Key1
- ☐ Key1 = 1101 1101 0010 1000
- $\square$  R1= Key1  $\oplus$  MixCol(ShRow(SubNib(R0)))
  - $= 1101 \ 1101 \ 0010 \ 1000 \oplus 1111 \ 0110 \ 0011 \ 0011$
  - = 0010 1011 0001 1011





□ S-AES Transformation (Substitution and Shift row)





- □ Round 2
- 1) Nibble Substitution:
- □ SubNib(0010 1011 0001 1011)= 1010 0011 0100 0011
- 2) Shift Row:
- ☐ Swap 2nd nibble and 4th nibble
- ☐ ShRow(1010 0011 0100 0011)
  - = 1010 0011 0100 0011

| S-Box |    | j  |    |    |    |
|-------|----|----|----|----|----|
|       |    | 00 | 01 | 10 | 11 |
| i     | 00 | 9  | 4  | A  | В  |
|       | 01 | D  | 1  | 8  | 5  |
|       | 10 | 6  | 2  | 0  | 3  |
|       | 11 | С  | Е  | F  | 7  |



- □ Round 2
- 4) Add round Key2
- ☐ Key2 = 1000 0111 1010 1111
- $\square$  R2= Key2  $\oplus$  ShRow(SubNib(R1))
  - $= 1101 \ 1101 \ 0010 \ 1000 \oplus 1010 \ 0011 \ 0100 \ 0011$
  - = 0010 0100 1110 1100
    - Ciphertext = 0010 0100 1110 1100

#### Table of Contents

Simplified Advanced Encryption Standard

**S-AES** Encryption and Decryption

**S-AES** Key Generation

**S-AES Encryption** 

# S-AES Encryption and Decryption



Dr Mohamed Loey



- ☐ Assume: C= 0010 0100 1110 1100
- $\square$  Key0 = w0w1
  - = 0100 1010 1111 0101
- $\square$  Key1 = w2w3
  - = 1101 1101 0010 1000
- $\square$  Key2 = w4w5
  - = 1000 0111 1010 1111



- $\Box$  Key2 = w4w5
  - = 1000 0111 1010 1111
- □ C= 0010 0100 1110 1100
- □ R0= C ⊕ Key2 = 0010 0100 1110 1100 ⊕ 1000 0111 1010
  - 1111
- $\square = 1010\ 0011\ 0100\ 0011$





- ☐ Round 1
- 1) Inverse Shift Row
- $\square$  IShRow(RO)=IShRow(1010 0011 0100 0011)=
  - = 1010 0011 0100 0011
- 2) Inverse Nibble Sub
- □ ISubNib( 1010 0011 0100 0011 )=
  - = 0010 1011 0001 1011

| Inv S-Box |    | j  |    |    |    |  |
|-----------|----|----|----|----|----|--|
|           |    | 00 | 01 | 10 | 11 |  |
| i         | 00 | A  | 5  | 9  | В  |  |
|           | 01 | 1  | 7  | 8  | F  |  |
|           | 10 | 6  | 0  | 2  | 3  |  |
|           | 11 | С  | 4  | D  | Е  |  |



- 3) Add Round 1 Key
- □ 0010 1011 0001 1011 ⊕ Key1
  - $= 0010 \ 1011 \ 0001 \ 1011 \oplus 1101 \ 1101 \ 0010 \ 1000$
  - =1111 0110 0011 0011



- □ Round 1
- 4) Inverse Mix Columns:
- $\square$  MixCol (11111 0110 0011 0011) =  $\begin{pmatrix} 11111 & 0011 \\ 0110 & 0011 \end{pmatrix} * \begin{pmatrix} 9 & 2 \\ 2 & 9 \end{pmatrix} =$

$$\Box = \begin{pmatrix} F & 3 \\ 6 & 3 \end{pmatrix} * \begin{pmatrix} 9 & 2 \\ 2 & 9 \end{pmatrix} = \begin{pmatrix} (F*9 \oplus 6*2) & (3*9 \oplus 3*2) \\ (F*2 \oplus 6*9) & (3*2 \oplus 3*9) \end{pmatrix}$$

$$\Box = \begin{pmatrix} (E \oplus C) & (8 \oplus 6) \\ (D \oplus 3) & (6 \oplus 8) \end{pmatrix}$$

$$\Box = \begin{pmatrix} (1110 \oplus 1100) & (1000 \oplus 0110) \\ (1101 \oplus 0011) & (0110 \oplus 1000) \end{pmatrix}$$

$$\Box \begin{pmatrix} (1110 \oplus 1100) & (1000 \oplus 0110) \\ (1101 \oplus 0011) & (0110 \oplus 1000) \end{pmatrix} = \begin{pmatrix} 0010 & 1110 \\ 1110 & 1110 \end{pmatrix}$$

$$R1 = 0010 1110 1110 1110$$





- □ Round 2
- 1) Inverse Shift Row
- ☐ IShRow(R1)=IShRow(0010 1110 1110)=
  - = 0010 1110 1110 1110
- 2) Inverse Nibble Sub
- □ ISubNib( 0010 1110 1110 1=
  - = 1001 1101 1101 1101

|           |    | j  |    |    |    |
|-----------|----|----|----|----|----|
| Inv S-Box |    | 00 | 01 | 10 | 11 |
| i         | 00 | A  | 5  | 9  | В  |
|           | 01 | 1  | 7  | 8  | F  |
|           | 10 | 6  | 0  | 2  | 3  |
|           | 11 | С  | 4  | D  | Е  |



- 3) Add Round 2 Key
- □ R2= 1001 1101 1101 1101 ⊕ Key0
  - $= 1001 \ 1101 \ 1101 \ 1101 \oplus 0100 \ 1010 \ 1111 \ 0101$
  - =1101 0111 0010 1000

Plaintext = 1101 0111 0010 1000 = D7 28

#### Contact Me





