

#14

SEQUENCE LISTING

<110> Benedetto, James J.
Ranieri, John P.
Whitney, Marsha L.
Akella, Rama

<120> METHOD OF PROMOTING NATURAL BYPASS

<130> SBI-042-CIP

<140> 09/748,038
<141> 2000-12-22

<150> 09/173,989
<151> 1998-10-16

<160> 31

<170> PatentIn version 3.1

<210> 1
<211> 11
<212> PRT
<213> Bos Taurus

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa = any amino acid

<400> 1

Xaa Leu Ala Ala Ala Gly Tyr Asp Val Glu Lys
1 5 10

<210> 2
<211> 11
<212> PRT
<213> Bos Taurus

<400> 2

Ala Leu Ala Ala Ala Gly Tyr Asp Val Glu Lys
1 5 10

<210> 3
<211> 11
<212> PRT
<213> Bos Taurus

<400> 3

Ser Leu Glu Lys Val Cys Ala Asp Leu Ile Arg

1

5

10

<210> 4
<211> 14
<212> PRT
<213> Bos Taurus

<400> 4

Val Val Cys Gly Met Leu Gly Phe Pro Ser Glu Ala Pro Val
1 5 10

<210> 5
<211> 14
<212> PRT
<213> Bos Taurus

<400> 5

Val Val Cys Gly Met Leu Gly Phe Pro Gly Glu Lys Arg Val
1 5 10

<210> 6
<211> 15
<212> PRT
<213> Bos Taurus

<400> 6

Ser Thr Gly Val Leu Leu Pro Leu Gln Asn Asn Glu Leu Pro Gly
1 5 10 15

<210> 7
<211> 20
<212> PRT
<213> Bos Taurus

<400> 7

Ser Thr Gly Val Leu Leu Pro Leu Gln Asn Asn Glu Leu Pro Gly Ala
1 5 10 15

Glu Tyr Gln Tyr
20

<210> 8
<211> 9
<212> PRT
<213> Bos Taurus

<400> 8

Ser Thr Gly Val Leu Leu Pro Leu Gln
1 5

<210> 9
<211> 8
<212> PRT
<213> Bos Taurus

<220>
<221> MISC_FEATURE
<222> (7) .. (7)
<223> Xaa = any amino acid

<400> 9

Ser Gln Thr Leu Gln Phe Xaa Glu
1 5

<210> 10
<211> 8
<212> PRT
<213> Bos Taurus

<400> 10

Ser Gln Thr Leu Gln Phe Asp Glu
1 5

<210> 11
<211> 4
<212> PRT
<213> Bos Taurus

<400> 11

Val Tyr Ala Phe
1

<210> 12
<211> 14
<212> PRT
<213> Bos Taurus

<400> 12

His Ala Gly Lys Tyr Ser Arg Glu Lys Asn Thr Pro Ala Pro
1 5 10

<210> 13
<211> 14

<212> PRT
<213> Bos Taurus

<400> 13

His Gly Gly Lys Tyr Ser Arg Glu Lys Asn Gln Pro Lys Pro
1 5 10

<210> 14
<211> 9
<212> PRT
<213> Bos Taurus

<400> 14

Ser Gln Thr Leu Gln Phe Asp Glu Gln
1 5

<210> 15
<211> 8
<212> PRT
<213> Bos Taurus

<400> 15

Ser Leu Lys Pro Ser Asn His Ala
1 5

<210> 16
<211> 9
<212> PRT
<213> Bos Taurus

<400> 16

Ala Ala Leu Arg Pro Leu Val Lys Pro
1 5

<210> 17
<211> 9
<212> PRT
<213> Bos Taurus

<400> 17

Ala His Ile Gln Val Glu Arg Tyr Val
1 5

<210> 18
<211> 5
<212> PRT
<213> Bos Taurus

<400> 18

Ala Ile Val Glu Arg
1 5

<210> 19
<211> 7
<212> PRT
<213> Bos Taurus

<400> 19

His Gln Ser Asp Arg Tyr Val
1 5

<210> 20
<211> 15
<212> PRT
<213> Bos Taurus

<220>
<221> MISC_FEATURE
<222> (1)..(10)
<223> Xaa = any amino acid

<400> 20

Xaa Ala Leu Phe Gly Ala Gln Leu Gly Xaa Ala Leu Gly Pro Ile
1 5 10 15

<210> 21
<211> 10
<212> PRT
<213> Bos Taurus

<400> 21

Ser Gln Thr Leu Gln Phe Asp Glu Gln Thr
1 5 10

<210> 22
<211> 6
<212> PRT
<213> Bos Taurus

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa = any amino acid

<400> 22

Ser Gln Thr Leu Xaa Phe
1 5

<210> 23

<211> 6

<212> PRT

<213> Bos Taurus

<400> 23

Ser Gln Thr Leu Gln Phe
1 5

<210> 24

<211> 13

<212> PRT

<213> Bos Taurus

<400> 24

Val Leu Ala Thr Val Thr Lys Pro Val Gly Gly Asp Lys
1 5 10

<210> 25

<211> 4

<212> PRT

<213> Bos Taurus

<400> 25

Val Phe Ala Leu
1

<210> 26

<211> 10

<212> PRT

<213> Bos Taurus

<400> 26

Ala Val Pro Gln Leu Gln Gly Tyr Leu Arg
1 5 10

<210> 27

<211> 10

<212> PRT

<213> Bos Taurus

<400> 27

Ala Ile Pro Gln Leu Gln Gly Tyr Leu Arg
1 5 10

<210> 28
<211> 9
<212> PRT
<213> Bos Taurus

<400> 28

Ala Leu Asp Ala Ala Tyr Cys Phe Arg
1 5

<210> 29
<211> 14
<212> PRT
<213> Bos Taurus

<400> 29

Gly Tyr Asn Ala Asn Phe Cys Ala Gly Ala Cys Pro Tyr Leu
1 5 10

<210> 30
<211> 9
<212> PRT
<213> Bos Taurus

<400> 30

Val Asn Ser Gln Ser Leu Ser Pro Tyr
1 5

<210> 31
<211> 8
<212> PRT
<213> Bos Taurus

<400> 31

Lys Ala Ala Lys Pro Ser Val Pro
1 5