Digital Electronic Circuits Section 1 (EE, IE)

Lecture 22

An Example

 To analyse the circuit and find how states change with the input clock and how output is generated.

Note that,

- for the basic logic gate part of the circuit, output will be considered as immediately available when input is presented and
- for the flip-flop / memory element part of the circuit, its output change as per Truth Table / Characteristic Eqn. waits till the clock trigger.
- Basic gate delay is negligible compared to clock time period. Effect of those delay will be considered later.

Defining Flip-Flop Inputs and Output

For Flip-Flop A,

$$S_A = A_n'$$

 $R_A = A_n$

For Output,

$$X = A_n.B_n$$

For Flip-Flop B,

$$S_B = A_n.B_n'$$

 $R_B = A_n.B_n$

State Analysis Table

	Curren	t State	Current Flip-Flop Input			Next State		Output	
CLK	B_n	A_n	S _B	R_B	S _A	R_A	B_{n+1}	A_{n+1}	X
0	0	0	0	0	1	0	0	1	0
1	0	1	1	0	0	1	1	0	0
2	1	0	0	0	1	0	1	1	0
3	1	1	0	1	0	1	0	0	1
4	0	0	0	0	1	0	0	1	0
5	0	1			•••				

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	N.A.

$$S_A = A_n'$$

 $R_A = A_n$ $X = A_n.B_n$

$$S_B = A_n.B_n'$$

 $R_B = A_n.B_n$

- Clock 0: The initial state is assumed to be 0 for each flip-flop.
- Clock n: Next state of clock (n-1) is the present state at clock n and the circuit evolves.
- State transition as per Flip-Flop Truth Table for the input present.

Analysis Result

The circuit generates an **output = 1** at **every 4**th **clock** trigger when it reaches the state BA = 11 and repeats the state transition $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \rightarrow ...$

Using Timing Diagram

- Starting with initial 00 state, progress with time where Flip-Flop can change state only at -ve edge of the clock.
- Timing diagram can show the effect of delay in various elements and any deviation in performance due to propagation delay.

Using Timing Diagram

Using Characteristic Equation

SR Flip-Flop Characteristic Eqn.: $Q_{n+1} = S + R' \cdot Q_n$

$$S_A = A_n'$$

 $R_A = A_n$

$$A_{n+1} = S_A + R_A'.A_n$$

Substituting, $A_{n+1} = A_n' + A_n' \cdot A_n$ $= A_n'$

$$S_B = A_n \cdot B_n'$$

 $R_B = A_n \cdot B_n$

$$B_{n+1} = S_B + R_B'.B_n$$

Substituting,

$$B_{n+1} = A_n . B_n' + (A_n . B_n)' . B_n$$

$$= A_n . B_n' + (A_n' + B_n)' . B_n$$

$$= A_n . B_n' + A_n' . B_n + B_n' . B_n$$

$$= A_n . B_n' + A_n' . B_n$$

$$= A_n . B_n' + A_n' . B_n$$

$$= A_n . B_n' + A_n' . B_n$$

CLK	B_n	\boldsymbol{A}_n	B_{n+1}	A_{n+1}	X
0	0	0	0	1	0
1	0	1	1	0	0
2	1	0	1	1	0
3	1	1	0	0	1
4	0	0	0	1	0
5	0	1			

$$X = A_n.B_n$$

Another Example

Q_n	X	D	Q_{n+1}	Y
0	0	0	0	0
0	1	1	1	1
1	0	1	1	0
1	1	0	0	0

T Flip-Flop

State toggles when input is 1, else maintains previous state. Output is 1 when input received at State 0 is 1, else output is 0.

$$D = X \oplus Q_n$$

$$Y = X.Q_n'$$

D to other Flip-Flops

$$Q_{n+1} = D$$

$$Q_{n+1} = T.Q_n' + T'.Q_n$$

$$D = T.Q_n' + T'.Q_n$$

$$Q_{n+1} = J.Q_n' + K'.Q_n$$

$$D = J.Q_n' + K'.Q_n$$

$$Q_{n+1} = S + R'.Q_n$$

$$D = S + R'.Q_n$$

SR, JK Flip-Flops to D Flip-Flop

$$Q_{n+1} = S + R'.Q_n$$

Consider,

$$S = D$$

 $R = D'$

Then,

$$Q_{n+1} = D + (D')'.Q_n$$

= $D + D.Q_n$
= $D.(1 + Q_n)$
= $D.1 = D$

$$Q_{n+1} = J.Q_n' + K'.Q_n$$

Consider,

$$J = D$$
$$K = D'$$

Then,

$$Q_{n+1} = D.Q_{n}' + (D')'.Q_{n}$$

= $D.Q_{n}' + D.Q_{n}$
= $D.(.Q_{n}' + Q_{n})$
= $D.1 = D$

$$Q_{n+1} = T.Q_n' + T'.Q_n$$

D Flip-Flop from T Flip-Flop

D	Q_n	$\rightarrow Q_{n+1}$	T
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

$$T = D.Q_n' + D'.Q_n$$

- Truth Table
- Excitation Table

$$Q_{n+1} = T.Q_n' + T'.Q_n$$

$$= (D.Q_n' + D'.Q_n).Q_n' + (D.Q_n' + D'.Q_n)'.Q_n$$

$$= D.Q_n' + (D'.Q_n' + D.Q_n).Q_n$$

$$= D.Q_n' + D.Q_n = D$$

Conversion: SR and JK

• JK Flip-Flop can directly replace SR Flip-Flop as the Truth Table differs only for 11 input which is avoided in a circuit that uses SR Flip-Flop.

J_n	K_n	Q_n	Q_{n+1}	S_n	R_n
0	0	0	0	0	×
0	0	1	1	×	0
0	1	0	0	0	×
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	×	0
1	1	0	1	1	0
1	1	1	0	0	1

Q_n -	$\rightarrow Q_{n+1}$	S	R
0	0	0	×
0	1	1	0
1 1	0 1	0 ×	1
1	1		U

To obtain *JK* Flip-Flop from *SR* Flip-Flop

Conversion: SR and JK

J_n	K_n	Q_n	Q_{n+1}	S_n	R_n
0	0	0	0	0	×
0	0	1	1	×	0
0	1	0	0	0	×
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	×	0
1	1	0	1	1	0
1	1	1	0	0	1

Flip-Flop Timing Parameters

Setup time: Minimum amount of time data must be present before clock trigger arrives.

Hold time: Minimum amount of time data must be held after clock trigger.

Propagation delay: Time taken for the output to change after clock trigger in response to the input.

Parameter	74L 5 74A (V _{cc} =5V)	74HC74 (V _{cc} =4.5V)
t _{setup} (Data) [^]	20	25
t _{hold} ^	5	≈ 0
t _p (CLK to Q)#	25/40*	44
f _{max} \$	33	50
	TTL	CMOS

^:minimum time in ns

#:maximum time in ns

*:L to H / H to L

\$:typical in MHz

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill