Package 'mixedsde'

October 13, 2022

2 ad.propSd

	EstParamNormal	9
	Freq.fit-class	9
	likelihoodNormal	10
	likelihoodNormalestimfix	11
	mixedsde.fit	12
	mixedsde.sim	18
	mixture.sim	
	neuronal.data	
	out	
	plot,Bayes.fit,ANY-method	
	plot,Bayes.pred,ANY-method	
	plot,Freq.fit,ANY-method	
	plot2compare	
	plot2compare,Bayes.fit-method	
	plot2compare,Bayes.pred-method	
	pred	
	pred,Bayes.fit-method	
	pred,Freq.fit-method	
	print,Bayes.fit-method	
	print,Freq.fit-method	
	summary,Bayes.fit-method	
	summary,Freq.fit-method	
	UV	
	valid	
	valid, Bayes, fit-method	
	valid,Freq.fit-method	
	vand,rieq.in-method	30
Index		37

Adaptation For The Proposal Variance

Description

 ${\sf ad.propSd}$

Calculation of new proposal standard deviation

Usage

```
ad.propSd(chain, propSd, iteration, lower = 0.3, upper = 0.6,
  delta.n = function(n) min(0.1, 1/sqrt(n)))
```

Arguments

chain vector of Markov chain samples
propSd old proposal standard deviation
iteration number of current iteration
lower lower bound

ad.propSd_random 3

upper upper bound

delta.n function for adding/subtracting from the log propSd

References

Rosenthal, J. S. (2011). Optimal proposal distributions and adaptive MCMC. Handbook of Markov Chain Monte Carlo, 93-112.

ad.propSd_random

Adaptation For The Proposal Variance

Description

Calculation of new proposal standard deviation for the random effects

Usage

```
ad.propSd_random(chain, propSd, iteration, lower = 0.3, upper = 0.6,
  delta.n = function(n) min(0.1, 1/sqrt(n)))
```

Arguments

chain matrix of Markov chain samples

propSd old proposal standard deviation

iteration number of current iteration

lower bound upper upper bound

delta.n function for adding/subtracting from the log propSd

References

Rosenthal, J. S. (2011). Optimal proposal distributions and adaptive MCMC. Handbook of Markov Chain Monte Carlo, 93-112.

4 Bayes.pred-class

Bayes.fit-class

S4 class for the Bayesian estimation results

Description

S4 class for the Bayesian estimation results

Slots

```
sigma2 vector of posterior samples for \sigma^2 mu matrix of posterior samples for \mu omega matrix of posterior samples for \omega alpha matrix of posterior samples for \alpha beta matrix of posterior samples for \beta random 1, 2 or c(1,2) burnIn proposal for the burn-in phase thinning proposal for the thinning rate model 'OU' or 'CIR' prior list of prior values, input variable or calculated by the first 10% of series times vector of observation times, storage of input variable X matrix of observations, storage of input variable ind.4.prior indices of series used for the prior parameter calculation, if prior knowledge is available it is set to M+1
```

Bayes.pred-class

S4 class for the Bayesian prediction results

Description

S4 class for the Bayesian prediction results

Slots

```
phi.pred matrix of predictive samples for the random effect Xpred matrix of predictive samples for observations coverage.rate amount of covering prediction intervals qu.u upper prediction interval bound qu.l lower prediction interval bound estim list of Bayes.fit object entries, storage of input variable
```

BayesianNormal 5

BayesianNormal	Bayesian Estimation In Mixed Sta	ochastic Differential Equations
3		33

Description

Gibbs sampler for Bayesian estimation of the random effects (α_j, β_j) in the mixed SDE $dX_j(t) = (\alpha_j - \beta_j X_j(t))dt + \sigma a(X_j(t))dW_j(t)$.

Usage

Arguments

times	vector of observation times
Χ	matrix of the M trajectories (each row is a trajectory with $N=T/\Delta$ column).
model	name of the SDE: 'OU' (Ornstein-Uhlenbeck) or 'CIR' (Cox-Ingersoll-Ross).
prior	list of prior parameters: mean and variance of the Gaussian prior on the mean mu, shape and scale of the inverse Gamma prior for the variances omega, shape and scale of the inverse Gamma prior for sigma
start	list of starting values, my sigma
Star t	list of starting values: mu, sigma
random	random effects in the drift: 1 if one additive random effect, 2 if one multiplicative random effect or $c(1,2)$ if 2 random effects.
	random effects in the drift: 1 if one additive random effect, 2 if one multiplica-

Value

alpha	posterior samples (Markov chain) of α
beta	posterior samples (Markov chain) of β
mu	posterior samples (Markov chain) of μ
omega	posterior samples (Markov chain) of $\boldsymbol{\Omega}$
sigma2	posterior samples (Markov chain) of σ^2

References

Hermann, S., Ickstadt, K. and C. Mueller (2016). Bayesian Prediction of Crack Growth Based on a Hierarchical Diffusion Model. *Appearing in: Applied Stochastic Models in Business and Industry*.

Rosenthal, J. S. (2011). 'Optimal proposal distributions and adaptive MCMC.' Handbook of Markov Chain Monte Carlo (2011): 93-112.

6 chain2samples

bx

Computation Of The Drift Coefficient

Description

Computation of the drift coefficient

Usage

```
bx(x, fixed, random)
```

Arguments

x vector of data

fixed drift constant in front of X (when there is one additive random effect), 0 other-

wise

random 1 if there is one additive random effect, 2 one multiplicative random effect or

c(1,2) for 2 random effects

Value

b The drift is $b(x, \phi) = \phi_1 b_1(x) + \phi_2 b_2(x)$, the output is b_2 except when random

c(1,2) then the output is the vector $(b_1, b_2)^t$

chain2samples

Removing Of Burn-in Phase And Thinning

Description

Transfers class object Bayes.fit from the original to the thinned chains

Usage

chain2samples(res, burnIn, thinning)

Arguments

res Bayes.fit class object

burnIn number of burn-in samples

thinning thinning rate

dcCIR2

dcCIR2

Likelihood Function For The CIR Model

Description

Likelihood

Usage

```
dcCIR2(x, t, x0, theta, log = FALSE)
```

Arguments

x current observationt time of observation

x0 starting point, i.e. observation in time 0

theta parameter (α, β, σ)

log logical(1) if TRUE, log likelihood

References

Iacus, S. M. (2008). Simulation and Inference for Stochastic Differential Equations.

diagnostic

Calcucation Of Burn-in Phase And Thinning Rate

Description

Proposal for burn-in and thin rate

Usage

```
diagnostic(results, random)
```

Arguments

results Bayes.fit class object random one out of 1, 2, c(1,2)

8 eigenvalues V

discr

Simulation Of Random Variables

Description

Simulation of (discrete) random variables from a vector of probability (the nonparametrically estimated values of the density renormalised to sum at 1) and a vectors of real values (the grid of estimation)

Usage

```
discr(x, p)
```

Arguments

x n real numbers

p vector of probability, length n

Value

y a simulated value from the discrete distribution

eigenvaluesV

Matrix Of Eigenvalues Of A List Of Symetric Matrices

Description

Computation of the eigenvalues of each matrix V_j in the case of two random effects (random =c(1,2)), done via eigen

Usage

```
eigenvaluesV(V)
```

Arguments

V list of matrices Vj

Value

eigenvalues

Matrix of 2 rows and as much columns as matrices V

References

See Bidimensional random effect estimation in mixed stochastic differential model, C. Dion and V. Genon-Catalot, *Stochastic Inference for Stochastic Processes 2015, Springer Netherlands*, **1–28**

EstParamNormal 9

EstParamNormal	Maximization Of The Log Likelihood In Mixed Stochastic Differential Equations

Description

Maximization of the loglikelihood of the mixed SDE with Normal distribution of the random effects $dXj(t) = (\alpha_j - \beta_j Xj(t))dt + \sigma a(Xj(t))dWj(t)$, done with likelihoodNormal

Usage

```
EstParamNormal(U, V, K, random, estim.fix, fixed = 0)
```

Arguments

U	matrix of M sufficient statistics U
V	list of the M sufficient statistics matrix V
K	number of times of observations
random	random effects in the drift: 1 if one additive random effect, 2 if one multiplicative random effect or $c(1,2)$ if 2 random effects.
estim.fix	1 if the fixed parameter is estimated, when random 1 or 2 , 0 otherwise
fixed	value of the fixed parameter if known (not estimated)

Value

mu	estimated value of the mean
Omega	estimated value of the variance
BIChere	BIC indicator

AIChere BIC indicator

AIC indicator

Freq.fit-class	S4 class for the frequentist estimation results

Description

S4 class for the frequentist estimation results

10 likelihoodNormal

Slots

```
model character 'OU' or 'CIR'
random numeric 1, 2, or c(1,2)
fixed numeric value of the fixed effect if there is one
gridf matrix of values on which the estimated is done
mu numeric MLE estimator for parametric approach
omega numeric MLE estimator for parametric approach
cutoff value of the cutoff if there is one
sigma2 numeric estimated value of \sigma^2
estimf.trunc matrix estimator of the density of \phi for the truncated estimateur of the random
     effects
estimphi.trunc matrix truncated estimator of the random effects
index index of the used trajectories
estimphi matrix of the estimator of the random effects
estimf estimator of the density of \phi
estim. fixed estimator of the fixed parameter if option estim. fix = 1
estim. fix 1 if the user asked for the estimation of fixed parameter
bic numeric bic
aic numeric aic
times vector of observation times, storage of input variable
X matrix of observations, storage of input variable
```

likelihoodNormal

Computation Of The Log Likelihood In Mixed Stochastic Differential Equations

Description

Computation of -2 loglikelihood of the mixed SDE with Normal distribution of the random effects $dXj(t) = (\alpha_j - \beta_j Xj(t))dt + \sigma a(Xj(t))dWj(t)$.

Usage

```
likelihoodNormal(mu, omega, U, V, estimphi, random)
```

Arguments

mu	current value of	f the mean of	the normal	distribution
IIIU	current value of	i tiic iiicaii oi	tiic nomia	distribution

omega current value of the standard deviation of the normal distribution

 $\begin{array}{ll} \text{U} & \text{vector of the } M \text{ sufficient statistics } U \text{ (see UV)} \\ \text{V} & \text{vector of the } M \text{ sufficient statistics } V \text{ (see UV)} \\ \text{estimphi} & \text{vector or matrix of estimators of the random effects} \end{array}$

random random effects in the drift: 1 if one additive random effect, 2 if one multiplica-

tive random effect or c(1,2) if 2 random effects.

likelihoodNormalestimfix 11

Value

L value of -2 x loglikelihood

References

Maximum likelihood estimation for stochastic differential equations with random effects, M. Delattre, V. Genon-Catalot and A. Samson, *Scandinavian Journal of Statistics* 2012, Vol 40, **322–343**

likelihoodNormalestimfix

Likelihood Function When The Fixed Effect Is Estimated

Description

Computation of -2 loglikelihood of the mixed SDE with Normal distribution of the random effects when the fixed effect is estimated for random 1 or $2 dX j(t) = (\alpha_j - \beta_j X j(t)) dt + \sigma a(X j(t)) dW j(t)$.

Usage

likelihoodNormalestimfix(mu1, mu2, omega, U, V, estimphi, random)

Arguments

mu1	current value of the mean of the first effect
mu2	current value of the mean of the second effect

omega current value of the standard deviation of the normal distribution

U vector of the M sufficient statistics U (see UV) $V \hspace{1cm} \text{vector of the M sufficient statistics V (see UV)}$

estimphi vector or matrix of estimators of the random effects

random random effects in the drift: 1 if one additive random effect, 2 if one multiplica-

tive random effect or c(1,2) if 2 random effects.

Value

L value of -2 x loglikelihood

References

Maximum likelihood estimation for stochastic differential equations with random effects, M. Delattre, V. Genon-Catalot and A. Samson, *Scandinavian Journal of Statistics* 2012, Vol 40, **322–343**

mixedsde.fit	Estimation Of The Random Effects In Mixed Stochastic Differential Equations

Description

Estimation of the random effects (α_j, β_j) and of their density, parametrically or nonparametrically in the mixed SDE $dX_j(t) = (\alpha_j - \beta_j X_j(t)) dt + \sigma a(X_j(t)) dW_j(t)$.

Usage

```
mixedsde.fit(times, X, model = c("OU", "CIR"), random, fixed = 0,
  estim.fix = 0, estim.method = c("nonparam", "paramML", "paramBayes"),
  gridf = NULL, prior, nMCMC = NULL)
```

Arguments

times	vector of observation times
X	matrix of the M trajectories (each row is a trajectory with as much columns as observations)
model	name of the SDE: 'OU' (Ornstein-Uhlenbeck) or 'CIR' (Cox-Ingersoll-Ross)
random	random effects in the drift: 1 if one additive random effect, 2 if one multiplicative random effect or $c(1,2)$ if 2 random effects
fixed	fixed effect in the drift: value of the fixed effect when there is only one random effect and it is not estimated, 0 otherwise
estim.fix	default 0, 1 if random = 1 or 2, method = 'paramML' then the fixed parameter is estimated
estim.method	estimation method: 'paramML' for a Gaussian parametric estimation by maximum likelihood, 'paramBayes' for a Gaussian parametric Bayesian estimation or 'nonparam' for a non-parametric estimation
gridf	if nonparametric estimation: grid of values on which the density is estimated, a matrix with two rows if two random effects; NULL by default and then grid is chosen as a function of the estimated values of the random effects. For the plots this grid is used.
prior	if method = 'paramBayes', list of prior parameters: mean and variance of the Gaussian prior on the mean mu, shape and scale of the inverse Gamma prior for the variances omega, shape and scale of the inverse Gamma prior for sigma
nMCMC	if method = 'paramBayes', number of iterations of the MCMC algorithm

Details

Estimation of the random effects density from M independent trajectories of the SDE (the Brownian motions W_j are independent), with linear drift. Two diffusions are implemented, with one or two random effects:

Ornstein-Uhlenbeck model (OU):

```
If random = 1, \beta is a fixed effect: dX_j(t) = (\alpha_j - \beta X_j(t))dt + \sigma dW_j(t)
If random = 2, \alpha is a fixed effect: dX_j(t) = (\alpha - \beta_j X_j(t))dt + \sigma dW_j(t)
If random = c(1,2), dX_j(t) = (\alpha_j - \beta_j X_j(t))dt + \sigma dW_j(t)
```

Cox-Ingersoll-Ross model (CIR):

```
If random = 1, \beta is a fixed effect: dX_j(t) = (\alpha_j - \beta X_j(t))dt + \sigma \sqrt{X_i(t)}dW_j(t)

If random = 2, \alpha is a fixed effect: dX_j(t) = (\alpha - \beta_j X_j(t))dt + \sigma \sqrt{X_j(t)}dW_j(t)

If random = c(1,2), dX_j(t) = (\alpha_j - \beta_j X_j(t))dt + \sigma \sqrt{X_j(t)}dW_j(t)
```

The nonparametric method estimates the density of the random effects with a kernel estimator (onedimensional or two-dimensional density). The parametric method estimates the mean and standard deviation of the Gaussian distribution of the random effects.

Validation method: For a number of trajectory numj (fixed by the user or randomly chosen) this function simulates Mrep =100 (by default) new trajectories with the value of the estimated random effect. Then it plots on the left graph the Mrep new trajectories $(Xnumj^k(t1),...Xnumj^k(tN)), k = 1,...Mrep$ with in red the true trajectory (Xnumj(t1),...Xnumj(tN)). The right graph is a qq-plot of the quantiles of samples $(Xnumj^1(ti),...Xnumj^{Mrep}(ti))$ for each time ti compared with the uniform quantiles. The outputs of the function are: a matrix Xnew dimension Mrepx N+1, vector of quantiles quantiles length N and the number of the trajectory for the plot numj

Prediction method for the frequentist approach: This function uses the estimation of the density function to simulate a new sample of random effects according to this density. If plot.pred =1 (default) is plots on the top the predictive random effects versus the estimated random effects from the data. On the bottom, the left graph is the true trajectories, on the right the predictive trajectories and the empiric prediction intervals at level level=0.05 (defaut). The function return on a list the prediction of phi phipred, the prediction of X Xpred, and the indexes of the corresponding true trajectories indexpred

Value

index	is the vector of subscript in $1,, M$ where the estimation of phi has been done, most of the time $index=1:M$
estimphi	matrix of estimators of $\phi = \alpha, or\beta, or(\alpha, \beta)$ from the efficient statitics (see UV), matrix of two lines if random =c(1,2), numerical type otherwise
estim.fixed	if estim.fix is TRUE and random = 1 or 2, estimator of $\phi=\alpha, or\beta$ from the efficient statitics (see UV), 0 otherwise
gridf	grid of values on which the estimated is done for the nonparametric method, otherwise, grid used for the plots, matrix form
estimf	estimator of the density of ϕ from a kernel estimator from package: stats, function: density, or package: MASS, function: kde2D. Matrix form: one line if one random effect or square matrix otherwise

If there is a truncation threshold in the estimator

cutoff the binary vector of cutoff, FALSE otherwise estimphi.trunc troncated estimator of ϕ , vector or matrix of 0 if we do not use truncation, matrix of two lines if random =c(1,2), numerical type otherwise

estimf.trunc troncated estimator of the density of ϕ , vector or matrix of 0 if we do not use

truncation, matrix if random =c(1,2), numerical type otherwise

For the parametric maximum likelihood estimation

mu estimator of the mean of the random effects normal density, 0 if we do nonpara-

metric estimation

omega estimator of the standard deviation of the random effects normal density, 0 if we

do nonparametric estimation

bic BIC criterium, 0 if we do nonparametric estimation aic AIC criterium, 0 if we do nonparametric estimation

model initial choice
random initial choice
fixed initial choice
times initial choice
X initial choice

For the parametric Bayesian estimation

alpha posterior samples (Markov chain) of α beta posterior samples (Markov chain) of β mu posterior samples (Markov chain) of μ omega posterior samples (Markov chain) of Ω sigma2 posterior samples (Markov chain) of σ^2

model initial choice random initial choice

burnIn proposal for burn-in period thinning proposal for thinning rate

prior initial choice or calculated by the first 10% of series

times initial choice X initial choice

ind.4.prior in the case of calculation of prior parameters: the indices of used series

References

For the parametric estimation see: Maximum likelihood estimation for stochastic differential equations with random effects, M. Delattre, V. Genon-Catalot and A. Samson, *Scandinavian Journal of Statistics* 2012, Vol 40, 322–343

Bayesian Prediction of Crack Growth Based on a Hierarchical Diffusion Model. S. Hermann, K. Ickstadt and C. Mueller, *appearing in: Applied Stochastic Models in Business and Industry 2016*.

For the nonparametric estimation see:

Nonparametric estimation for stochastic differential equations with random effects, F. Comte, V. Genon-Catalot and A. Samson, *Stochastic Processes and Their Applications 2013*, Vol 7, **2522–2551**

Estimation for stochastic differential equations with mixed effects, V. Genon-Catalot and C. Laredo 2014 *e-print: hal-00807258*

Bidimensional random effect estimation in mixed stochastic differential model, C. Dion and V. Genon-Catalot, *Stochastic Inference for Stochastic Processes 2015, Springer Netherlands*, **1–28**

Examples

```
# Frequentist estimation
# Two random effects
model = 'CIR'; T <- 10
delta <- 0.1; M <- 100 # delta <- 0.001 and M <- 200 would yield good results
N <- floor(T/delta); sigma <- 0.01;
random <- c(1,2); density.phi <- 'gammainvgamma2'; param<- c(1.8, 0.8, 8, 0.05);
simu <- mixedsde.sim(M=M, T=T, N=N, model=model,random=random, density.phi=density.phi,</pre>
               param=param, sigma=sigma, invariant = 1)
X <- simu$X ; phi <- simu$phi; times <- simu$times</pre>
estim.method<- 'nonparam'
estim <- mixedsde.fit(times=times, X=X, model=model, random=random, estim.method= 'nonparam')</pre>
#To stock the results of the function, use method \code{out}
#which put the outputs of the function on a list according to the frequentist or
# Bayesian approach.
outputsNP <- out(estim)</pre>
## Not run:
plot(estim)
## End(Not run)
# It represents the bidimensional density, the histogram of the first estimated random
# effect \eqn{\alpha} with the marginal of \eqn{\hat{f}} from the first coordonate which
# estimates the density of \eqn{\alpha}. And the same for the second random effect
# \eqn{\beta}. More, it plots a qq-plot for the sample of estimator of the random effects
# compared with the quantiles of a Gaussian sample with the same mean and standard deviation.
summary(estim)
print(estim)
# Validation
validation <- valid(estim)</pre>
# Parametric estimation
estim.method<-'paramML'
estim_param <- mixedsde.fit(times= times, X= X, model= model, random= random,</pre>
           estim.method = 'paramML')
outputsP <- out(estim_param)</pre>
#plot(estim_param)
summary(estim_param)
# Not run
## Not run:
test1 <- pred(estim, invariant = 1)</pre>
test2 <- pred(estim_param, invariant = 1)</pre>
```

```
## End(Not run)
# More graph
fhat <- outputsNP$estimf</pre>
fhat_trunc <- outputsNP$estimf.trunc</pre>
fhat_param <- outputsP$estimf</pre>
gridf <- outputsNP$gridf; gridf1 <- gridf[1,]; gridf2 <- gridf[2,]</pre>
marg1 <- ((max(gridf2)-min(gridf2))/length(gridf2))*apply(fhat,1,sum)</pre>
marg1_trunc <- ((max(gridf2)-min(gridf2))/length(gridf2))*apply(fhat_trunc,1,sum)</pre>
marg2 <- ((max(gridf1)-min(gridf1))/length(gridf1))*apply(fhat,2,sum)</pre>
marg2_trunc <- ((max(gridf1)-min(gridf1))/length(gridf1))*apply(fhat_trunc,2,sum)</pre>
marg1_param <- ((max(gridf2)-min(gridf2))/length(gridf2))*apply(fhat_param,1,sum)</pre>
marg2_param <- ((max(gridf1)-min(gridf1))/length(gridf1))*apply(fhat_param,2,sum)</pre>
f1 <- (gridf1^(param[1]-1))*exp(-gridf1/param[2])/((param[2])^param[1]*gamma(param[1]))
f2 \leftarrow (gridf2^{-1}) * exp(-(1/param[4])*(1/gridf2)) *
  ((1/param[4])^param[3])*(1/gamma(param[3]))
par(mfrow=c(1,2))
plot(gridf1,f1,type='l', lwd=1, xlab='', ylab='')
lines(gridf1,marg1_trunc,col='blue', lwd=2)
lines(gridf1,marg1,col='blue', lwd=2, lty=2)
lines(gridf1,marg1_param,col='red', lwd=2, lty=2)
plot(gridf2,f2,type='l', lwd=1, xlab='', ylab='')
lines(gridf2,marg2_trunc,col='blue', lwd=2)
lines(gridf2,marg2,col='blue', lwd=2, lty=2)
lines(gridf2,marg2_param,col='red', lwd=2, lty=2)
cutoff <- outputsNP$cutoff</pre>
phihat <- outputsNP$estimphi</pre>
phihat_trunc <- outputsNP$estimphi.trunc</pre>
par(mfrow=c(1,2))
plot.ts(phi[1,], phihat[1,], xlim=c(0, 15), ylim=c(0,15), pch=18); abline(0,1)
points(phi[1,]*(1-cutoff), phihat[1,]*(1-cutoff), xlim=c(0, 20), ylim=c(0,20),pch=18, col='red');
plot.ts(phi[2,], phihat[2,], xlim=c(0, 15), ylim=c(0,15),pch=18); abline(0,1)
points(phi[2,]*(1-cutoff), phihat[2,]*(1-cutoff), xlim=c(0, 20), ylim=c(0,20), pch=18, col='red');
abline(0,1)
# one random effect:
## Not run:
model <-'OU'
random <- 1
M \leftarrow 80; T \leftarrow 100 ; N \leftarrow 2000
sigma <- 0.1 ; X0 <- 0
density.phi <- 'normal'
fixed <- 2; param <- c(1, 0.2)
#-----
#- simulation
simu <- \ mixedsde.sim(M,T=T,N=N,model=model,random=random,\ fixed=fixed,density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=density.phi=den
                              param=param, sigma=sigma, X0=X0)
X <- simu X
phi <- simu$phi
```

```
times <-simu$times</pre>
plot(times, X[10,], type='l')
#- parametric estimation
estim.method<-'paramML'
estim_param <- mixedsde.fit(times, X=X, model=model, random=random, estim.fix= 1,</pre>
               estim.method=estim.method)
outputsP <- out(estim_param)</pre>
estim.fixed <- outputsP$estim.fixed #to compare with fixed</pre>
#or
estim_param2 <- mixedsde.fit(times, X=X, model=model, random=random, fixed = fixed,</pre>
             estim.method=estim.method)
outputsP2 <- out(estim_param2)</pre>
#- nonparametric estimation
estim.method <- 'nonparam'
estim <- mixedsde.fit(times, X, model=model, random=random, fixed = fixed,</pre>
           estim.method=estim.method)
outputsNP <- out(estim)</pre>
plot(estim)
print(estim)
summary(estim)
plot(estim_param)
print(estim_param)
summary(estim_param)
valid1 <- valid(estim)</pre>
test1 <- pred(estim )</pre>
test2 <- pred(estim_param)</pre>
## End(Not run)
# Parametric Bayesian estimation
# one random effect
random <- 1; sigma <- 0.1; fixed <- 5; param <- c(3, 0.5)
sim <- mixedsde.sim(M = 20, T = 1, N = 50, model = 'OU', random = random, fixed = fixed,
       density.phi = 'normal',param= param, sigma= sigma, X0 = 0, op.plot = 1)
# here: only 100 iterations for example - should be much more!
prior <- list( m = c(param[1], fixed), v = c(param[1], fixed), alpha.omega = 11,</pre>
            beta.omega = param[2]^2*10, alpha.sigma = 10, beta.sigma = sigma^2*9)
estim_Bayes <- mixedsde.fit(times = sim$times, X = sim$X, model = 'OU', random,</pre>
           estim.method = 'paramBayes', prior = prior, nMCMC = 100)
validation <- valid(estim_Bayes, numj = 10)</pre>
plot(estim_Bayes)
outputBayes <- out(estim_Bayes)</pre>
summary(outputBayes)
(results_Bayes <- summary(estim_Bayes))</pre>
plot(estim_Bayes, style = 'cred.int', true.phi = sim$phi)
print(estim_Bayes)
## Not run:
```

18 mixedsde.sim

```
pred.result <- pred(estim_Bayes)</pre>
summary(out(pred.result))
plot(pred.result)
pred.result.trajectories <- pred(estim_Bayes, trajectories = TRUE)</pre>
## End(Not run)
# second example
## Not run:
random <- 2; sigma <- 0.2; fixed <- 5; param <- c(3, 0.5)
sim <- mixedsde.sim(M = 20, T = 1, N = 100, model = 'CIR', random = random,</pre>
     fixed = fixed, density.phi = 'normal',param = param, sigma = sigma, X0 = 0.1, op.plot = 1)
prior <- list(m = c(fixed, param[1]), v = c(fixed, param[1]), alpha.omega = 11,
         beta.omega = param[2]^2*10, alpha.sigma = 10, beta.sigma = sigma^2*9)
estim_Bayes <- mixedsde.fit(times = sim$times, X = sim$X, model = 'CIR', random = random,
                 estim.method = 'paramBayes', prior = prior, nMCMC = 1000)
pred.result <- pred(estim_Bayes)</pre>
## End(Not run)
# invariant case
## Not run:
random <- 1; sigma <- 0.1; fixed <- 5; param <- c(3, 0.5)
sim <- mixedsde.sim(M = 50, T = 5, N = 100, model = 'OU', random = random, fixed = fixed,
          density.phi = 'normal',param = param, sigma = sigma, invariant = 1, op.plot = 1)
prior \leftarrow list(m = c(param[1], fixed), v = c(param[1], 1e-05), alpha.omega = 11,
       beta.omega = param[2]^2*10, alpha.sigma = 10, beta.sigma = sigma^2*9)
estim_Bayes <- mixedsde.fit(times = sim$times, X = sim$X, model = 'OU', random,
       estim.method = 'paramBayes', prior = prior, nMCMC = 100)
plot(estim_Bayes)
pred.result <- pred(estim_Bayes, invariant = 1)</pre>
pred.result.traj <- pred(estim_Bayes, invariant = 1, trajectories = TRUE)</pre>
## End(Not run)
```

mixedsde.sim

Simulation Of A Mixed Stochastic Differential Equation

Description

Simulation of M independent trajectories of a mixed stochastic differential equation (SDE) with linear drift and two random effects (α_j, β_j) $dX_j(t) = (\alpha_j - \beta_j X_i(t))dt + \sigma a(X_j(t))dW_j(t)$, for j = 1, ..., M.

mixedsde.sim 19

Usage

```
mixedsde.sim(M, T, N = 100, model, random, fixed = 0, density.phi,
  param, sigma, t0 = 0, X0 = 0.01, invariant = 0, delta = T/N,
  op.plot = 0, add.plot = FALSE)
```

Arguments

M number of trajectories
T horizon of simulation.

N number of simulation steps, default Tx100.

name of the SDE: 'OU' (Ornstein-Uhlenbeck) or 'CIR' (Cox-Ingersoll-Ross).
random effects in the drift: 1 if one additive random effect, 2 if one multiplica-

tive random effect or c(1,2) if 2 random effects.

fixed fixed effects in the drift: value of the fixed effect when there is only one random

effect, 0 otherwise. If random =2, fixed can be 0 but β has to be a non negative

random variable for the estimation.

density.phi name of the density of the random effects.

param vector of parameters of the distribution of the two random effects.

sigma diffusion parameter t0 time origin, default 0.

x0 initial value of the process, default X0=0.

invariant 1 if the initial value is simulated from the invariant distribution, default 0.01 and

X0 is fixed.

delta time step of the simulation (T/N).

op.plot 1 if a plot of the trajectories is required, default 0.

add.plot 1 for add trajectories to an existing plot

Details

Simulation of M independent trajectories of the SDE (the Brownian motions Wj are independent), with linear drift. Two diffusions are implemented, with one or two random effects:

Ornstein-Uhlenbeck model (OU): If random = 1, β is a fixed effect: $dX_j(t) = (\alpha_j - \beta X_j(t))dt + \sigma dW_j(t)$

If random = 2, α is a fixed effect: $dX_j(t) = (\alpha - \beta_j X_j(t))dt + \sigma dW_j(t)$ If random = c(1,2), $dX_j(t) = (\alpha_j - \beta_j X_j(t))dt + \sigma dW_j(t)$

Cox-Ingersoll-Ross model (CIR): If random = 1, β is a fixed effect: $dX_j(t) = (\alpha_j - \beta X_j(t))dt + \sigma \sqrt{X_j(t)}dW_j(t)$

If random = 2, α is a fixed effect: $dX_j(t) = (\alpha - \beta_j X_j(t)) dt + \sigma \sqrt{X_j(t)} dW_j(t)$ If random = c(1,2), $dX_j(t) = (\alpha_j - \beta_j X_j(t)) dt + \sigma \sqrt{X_j(t)} dW_j(t)$

The initial value of each trajectory can be simulated from the invariant distribution of the process: Normal distribution with mean α/β and variance $\sigma^2/(2\beta)$ for the OU, a gamma distribution $\Gamma(2\alpha/\sigma^2,\sigma^2/(2\beta))$ for the C-I-R model.

20 mixedsde.sim

Density of the random effects: Several densities are implemented for the random effects, depending on the number of random effects.

If two random effects, choice between

'normalnormal': Normal distributions for both α β and param=c(mean_ α , sd_ α , mean_ β , sd_ β)

'gammagamma': Gamma distributions for both α β and param=c(shape_ α , scale_ α , shape_ β , scale_ β)

'gammainvgamma': Gamma for α , Inverse Gamma for β and param=c(shape_ α , scale_ α , shape_ β , scale_ β)

'normalgamma': Normal for α , Gamma for β and param=c(mean_ α , sd_ α , shape_ β , scale_ β)

'normalinvgamma': Normal for α , Inverse Gamma for β and param=c(mean_ α , sd_ α , shape_ β , scale_ β)

'gammagamma2': Gamma $+2 * \sigma^2$ for α , Gamma +1 for β and param=c(shape_ α , scale_ α , shape_ β , scale_ β)

'gammainvgamma2': Gamma $+2*\sigma^2$ for α , Inverse Gamma for β and param=c(shape_ α , scale_ α , shape_ β , scale_ β)

If only α is random, choice between

'normal': Normal distribution with param=c(mean, sd)

lognormal': logNormal distribution with param=c(mean, sd)

'mixture.normal': mixture of normal distributions $pN(\mu 1, \sigma 1^2) + (1-p)N(\mu 2, \sigma 2^2)$ with param=c(p, $\mu 1, \sigma 1, \mu 2, \sigma 2$)

'gamma': Gamma distribution with param=c(shape, scale)

'mixture.gamma': mixture of Gamma distribution $p\Gamma(shape1, scale1) + (1-p)\Gamma(shape2, scale2)$ with param=c(p, shape1, scale1, shape2, scale2)

'gamma2': Gamma distribution $+2 * \sigma^2$ with param=c(shape, scale)

'mixed.gamma2': mixture of Gamma distribution $p\Gamma(shape1, scale1) + (1-p)\Gamma(shape2, scale2) + +2 * \sigma^2$ with param=c(p, shape1, scale1, shape2, scale2)

If only β is random, choice between 'normal': Normal distribution with param=c(mean, sd)

'gamma': Gamma distribution with param=c(shape, scale)

'mixture.gamma': mixture of Gamma distribution $p\Gamma(shape1, scale1) + (1-p)\Gamma(shape2, scale2)$ with param=c(p, shape1, scale1, shape2, scale2)

Value

X matrix (M x (N+1)) of the M trajectories.

phi vector (or matrix) of the M simulated random effects.

References

This function mixedsde.sim is based on the package sde, function sde.sim. See Simulation and Inference for stochastic differential equation, S.Iacus, *Springer Series in Statistics* 2008 Chapter 2

See Also

https://cran.r-project.org/package=sde

mixture.sim 21

Examples

```
#Simulation of 5 trajectories of the OU SDE with random =1, and a Gamma distribution.  simuOU <- mixedsde.sim(M=5, T=10,N=1000,model='OU', random=1,fixed=0.5, \\ density.phi='gamma', param=c(1.8, 0.8) , sigma=0.1,op.plot=1) \\ X <- simuOU$X ; \\ phi <- simuOU$phi \\ hist(phi)
```

mixture.sim

Simulation Of A Mixture Of Two Normal Or Gamma Distributions

Description

Simulation of M random variables from a mixture of two Gaussian or Gamma distributions

Usage

```
mixture.sim(M, density.phi, param)
```

Arguments

M number of simulated variables

density.phi name of the chosen density 'mixture.normal' or 'mixture.gamma'

param vector of parameters with the proportion of mixture of the two distributions and

means and standard-deviations of the two normal or shapes and scales of the two

Gamma distribution

Details

```
If 'mixture.normal', the distribution is pN(\mu 1, \sigma 1^2) + (1-p)N(\mu 2, \sigma 2^2) and param=c(p, \mu 1, \sigma 1, \mu 2, \sigma 2) If 'mixture.gamma', the distribution is pGamma(shape1, scale1) + (1-p)Gamma(shape2, scale2) and param=c(p, shape1, scale1, shape2, scale2)
```

Value

Y vector of simulated variables

22 neuronal.data

Examples

neuronal.data

Trajectories Interspike Of A Single Neuron Of A Ginea Pig

Description

The neuronal data data has 240 measurements of the membrane potential in volts for one single neuron of a pig between the spikes, along time, with 2000 points for each. The step time is delta = 0.00015 s.

Usage

```
data("neuronal.data")
```

Format

This data frame has a list form of length 2. The first element in the matrix named Xreal. Each row is a trajectory, that one can model by a diffusion process with random effect. The realisation can be assumed independent. The second element is a vector of times of observations times

Source

The parameters of the stochastic leaky integrate-and-fire neuronal model. Lansky, P., Sanda, P. and He, J. (2006). *Journal of Computational Neuroscience* Vol 21, **211–223**

References

The parameters of the stochastic leaky integrate-and-fire neuronal model. Lansky, P., Sanda, P. and He, J. (2006). *Journal of Computational Neuroscience* Vol 21, **211–223**

Examples

```
model <- "OU" random <- c(1,2) M <- 240 \qquad \text{# number of trajectories, number of rows of the matrix of the data} \\ T <- 0.3 \qquad \text{# width of the interval of observation} \\ \text{delta} <- 0.00015 \qquad \text{# step time} \\ N <- T/\text{delta} \qquad \text{# number of points in the time interval 2000}
```

neuronal.data 23

```
data(neuronal.data)
# reduction of data for example to save running times
ind <- seq(1, 2000, by = 20)
X <- neuronal.data[[1]][1:100, ind]</pre>
times <- neuronal.data[[2]][ind]</pre>
\# plot(times, X[10, ], type = 'l', xlab = 'time', ylab = '', col = 'blue', ylim = c(0,0.016))
random \leftarrow c(1,2)
#- nonparametric estimation
estim.method <- 'nonparam'
estim <- mixedsde.fit(times=times, X=X, model=model, random=random, estim.method='nonparam')</pre>
#- parametric estimation
estim.method<-'paramML'
estim_param <- mixedsde.fit(times=times, X=X, model=model, random= random, estim.method= 'paramML')</pre>
#- implemented methods
# plot(estim);
print(estim); #valid(estim)
print(estim_param); #plot(estim_param); valid(estim_param)
#test1 <- pred(estim)</pre>
#test2 <- pred(estim_param)</pre>
#- Other possible plots
par(mfrow=c(1,2))
outputsNP <- out(estim)</pre>
outputsP <- out(estim_param)</pre>
fhat <- outputsNP$estimf</pre>
fhat_param <- outputsP$estimf</pre>
gridf <- outputsNP$gridf</pre>
gridf1 <- gridf[1,]; gridf2 <- gridf[2,]</pre>
marg1 \leftarrow ((max(gridf2)-min(gridf2))/length(gridf2))*apply(fhat,1,sum) #with cutoff
marg2 <- ((max(gridf1)-min(gridf1))/length(gridf1))*apply(fhat,2,sum)</pre>
marg1_param <- ((max(gridf2)-min(gridf2))/length(gridf2))*apply(fhat_param,1,sum)</pre>
marg2_param <- ((max(gridf1)-min(gridf1))/length(gridf1))*apply(fhat_param,2,sum)</pre>
plot(gridf1,marg1,type='l', col='red')
lines(gridf1,marg1_param, lwd=2, col='red')
plot(gridf2, marg2,type='l', col='red')
lines(gridf2,marg2_param, lwd=2, col='red')
# Bayesian
# reduction of data to save running time
estim_Bayes <- mixedsde.fit(times, X[1:20,], model = "OU", random = 1,</pre>
               estim.method = "paramBayes", nMCMC = 100)
plot(estim_Bayes)
```

```
pred_Bayes1 <- pred(estim_Bayes)
pred_Bayes2 <- pred(estim_Bayes, trajectories = TRUE)</pre>
```

out

Transfers the class object to a list

Description

Method for the S4 classes

Usage

out(x)

Arguments

Х

Freq.fit, Bayes.fit or Bayes.pred class

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
plot, Bayes. fit, ANY-method
```

Plot method for the Bayesian estimation class object

Description

Plot method for the S4 class Bayes.fit

```
## S4 method for signature 'Bayes.fit,ANY'
plot(x, plot.priorMean = FALSE,
  reduced = FALSE, style = c("chains", "acf", "density", "cred.int"),
  level = 0.05, true.phi, newwindow = FALSE, ...)
```

Arguments

X	Bayes.fit class
plot.priorMean	logical(1), if TRUE, prior means are added to the plots
reduced	logical(1), if TRUE, the chains are reduced with the burn-in and thin rate
style	one out of 'chains', 'acf', 'density' or 'cred.int'
level	alpha for the credibility intervals, only for style 'cred.int', default = 0.05
true.phi	only for style 'cred.int', for the case of known true values, e.g. for simulation
newwindow	logical(1), if TRUE, a new window is opened for the plot
• • •	optional plot parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

Examples

plot, Bayes.pred, ANY-method

Plot method for the Bayesian prediction class object

Description

Plot method for the S4 class Bayes.pred

```
## S4 method for signature 'Bayes.pred,ANY'
plot(x, newwindow = FALSE,
   plot.legend = TRUE, ylim, xlab = "times", ylab = "X", col = 3,
   lwd = 2, ...)
```

Arguments

X	Bayes.fit class
newwindow	logical(1), if TRUE, a new window is opened for the plot
plot.legend	logical(1)
ylim	optional
xlab	optional, default 'times'
ylab	optional, default 'X'
col	color for the prediction intervals, default 3
lwd	linewidth for the prediction intervals, default 2

optional plot parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
plot, Freq. fit, ANY-method
```

Plot method for the frequentist estimation class object

Description

Plot method for the S4 class Freq.fit

Usage

```
## S4 method for signature 'Freq.fit,ANY'
plot(x, newwindow = FALSE, ...)
```

Arguments

```
x Freq.fit classnewwindow logical(1), if TRUE, a new window is opened for the plotoptional plot parameters
```

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

plot2compare 27

plot2compare

Comparing plot method

Description

Method for classes

Usage

```
plot2compare(x, y, z, ...)
```

Arguments

- x Bayes.fit or Bayes.pred class
- y Bayes.fit or Bayes.pred class
- z Bayes.fit or Bayes.pred class (optional)
- ... other parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
plot2compare, Bayes.fit-method
```

Comparing plot method plot2compare for three Bayesian estimation class objects

Description

Comparison of the posterior densities for up to three S4 class Bayes.fit objects

```
## S4 method for signature 'Bayes.fit'
plot2compare(x, y, z, names, true.values,
  reduced = TRUE, newwindow = FALSE)
```

Arguments

X	Bayes.fit class
у	Bayes.fit class

z Bayes.fit class (optional)

names character vector of names for x, y and z

true.values list of parameters to compare with the estimations, if available

reduced logical(1), if TRUE, the chains are reduced with the burn-in and thin rate

newwindow logical(1), if TRUE, a new window is opened for the plot

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
plot2compare, Bayes.pred-method
```

Comparing plot method plot2compare for three Bayesian prediction class objects

Description

Comparison of the results for up to three S4 class Bayes.pred objects

Usage

```
## S4 method for signature 'Bayes.pred'
plot2compare(x, y, z, newwindow = FALSE,
    plot.legend = TRUE, names, ylim, xlab = "times", ylab = "X", ...)
```

Arguments

Х	Bayes.pred class
у	Bayes.pred class

z Bayes.pred class (optional)

newwindow logical(1), if TRUE, a new window is opened for the plot

plot.legend logical(1), if TRUE, a legend is added

names character vector with names for the three objects appearing in the legend

ylim optional

xlab optional, default 'times'ylab optional, default 'X'optional plot parameters

pred 29

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

Examples

pred

Prediction method

Description

Prediction

Usage

```
pred(x, ...)
```

Arguments

x Freq.fit or Bayes.fit class

... other optional parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

pred, Bayes.fit-method Bayesian prediction method for a class object Bayes.fit

Description

Bayesian prediction

Usage

```
## S4 method for signature 'Bayes.fit'
pred(x, invariant = FALSE, level = 0.05,
   newwindow = FALSE, plot.pred = TRUE, plot.legend = TRUE, burnIn,
   thinning, only.interval = TRUE, sample.length = 500,
   cand.length = 100, trajectories = FALSE, ylim, xlab = "times",
   ylab = "X", col = 3, lwd = 2, ...)
```

Arguments

X	Bayes.fit class
invariant	logical(1), if TRUE, the initial value is from the invariant distribution $X_t N(\alpha/\beta, \sigma^2/2\beta)$ for the OU and $X_t \Gamma(2\alpha/\sigma^2, \sigma^2/2\beta)$ for the CIR process, if FALSE (default) X0 is fixed from the data starting points
level	alpha for the predicion intervals, default 0.05
newwindow	logical(1), if TRUE, a new window is opened for the plot
plot.pred	logical(1), if TRUE, the results are depicted grafically
plot.legend	logical(1), if TRUE, a legend is added to the plot
burnIn	optional, if missing, the proposed value of the mixedsde.fit function is taken
thinning	optional, if missing, the proposed value of the mixedsde.fit function is taken
only.interval	logical(1), if TRUE, only prediction intervals are calculated, much faster than sampling from the whole predictive distribution
sample.length	number of samples to be drawn from the predictive distribution, if only.interval = FALSE
cand.length	number of candidates for which the predictive density is calculated, i.e. the candidates to be drawn from
trajectories	logical(1), if TRUE, only trajectories are drawn from the point estimations instead of sampling from the predictive distribution, similar to the frequentist approach
ylim	optional
xlab	optional, default 'times'
ylab	optional, default 'X'
col	color for the prediction intervals, default 3
lwd	linewidth for the prediction intervals, default 3
	optional plot parameters

pred,Freq.fit-method 31

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
pred,Freq.fit-method Prediction method for the Freq.fit class object
```

Description

Frequentist prediction

Usage

```
## S4 method for signature 'Freq.fit'
pred(x, invariant = 0, level = 0.05,
   newwindow = FALSE, plot.pred = TRUE, ...)
```

Arguments

x Freq.fit class

invariant 1 if the initial value is from the invariant distribution, default X0 is fixed from

Xtrue

level alpha for the prediction intervals, default 0.05

newwindow logical(1), if TRUE, a new window is opened for the plot plot.pred logical(1), if TRUE, the results are depicted grafically

... optional plot parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
print, Bayes. fit-method
```

Print of acceptance rates of the MH steps

Description

Method for the S4 class Bayes.fit

```
## S4 method for signature 'Bayes.fit'
print(x)
```

Arguments

Χ

Bayes.fit class

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
print, Freq. fit-method Description of print
```

Description

Method for the S4 class Freq.fit

Usage

```
## S4 method for signature 'Freq.fit'
print(x)
```

Arguments

Χ

Freq.fit class

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
summary, Bayes.fit-method
```

Short summary of the results of class object Bayes.fit

Description

Method for the S4 class Bayes.fit

```
## S4 method for signature 'Bayes.fit'
summary(object, level = 0.05, burnIn, thinning)
```

Arguments

object Bayes.fit class
level default is 0.05
burnIn optional
thinning optional

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
summary, Freq. fit-method
```

Short summary of the results of class object Freq.fit

Description

Method for the S4 class Freq.fit

Usage

```
## S4 method for signature 'Freq.fit'
summary(object)
```

Arguments

object

Freq.fit class

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

U۷

Computation Of The Sufficient Statistics

Description

Computation of U and V, the two sufficient statistics of the likelihood of the mixed SDE $dX_j(t) = (\alpha_j - \beta_j X_j(t))dt + \sigma a(X_j(t))dW_j(t)$.

```
UV(X, model, random, fixed, times)
```

34 valid

Arguments

X matrix of the M trajectories.

name of the SDE: 'OU' (Ornstein-Uhlenbeck) or 'CIR' (Cox-Ingersoll-Ross).

random effects in the drift: 1 if one additive random effect, 2 if one multiplica-

tive random effect or c(1,2) if 2 random effects.

fixed fixed effects in the drift: value of the fixed effect when there is only one random

effect, 0 otherwise.

times times vector of observation times.

Details

Computation of U and V, the two sufficient statistics of the likelihood of the mixed SDE $dX_j(t) = (\alpha_j - \beta_j X_j(t))dt + \sigma a(X_j(t))dW_j(t) = (\alpha_j, \beta_j)b(X_j(t))dt + \sigma a(X_j(t))dW_j(t)$ with $b(x) = (1, -x)^t$:

 $U: U(Tend) = \int_0^{Tend} b(X(s))/a^2(X(s))dX(s)$

 $\mathbf{V}:V(Tend)=\int_{0}^{Tend}b(X(s))^{2}/a^{2}(X(s))ds$

Value

U vector of the M statistics U(Tend)
V list of the M matrices V(Tend)

References

See Bidimensional random effect estimation in mixed stochastic differential model, C. Dion and V. Genon-Catalot, *Stochastic Inference for Stochastic Processes 2015, Springer Netherlands* **1–28**

valid

Validation of the chosen model.

Description

Validation of the chosen model. For the index numj, Mrep=100 new trajectories are simulated with the value of the estimated random effect number numj. Two plots are given: on the left the simulated trajectories and the true one (red) and one the left the corresponding qq-plot for each time.

Usage

Arguments

x Freq.fit or Bayes.fit class... other optional parameters

valid,Bayes.fit-method 35

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

```
valid, Bayes. fit-method
```

Validation of the chosen model.

Description

Validation of the chosen model. For the index numj, Mrep=100 new trajectories are simulated with the value of the estimated random effect number numj. Two plots are given: on the left the simulated trajectories and the true one (red) and one the left the corresponding qq-plot for each time.

Usage

```
## S4 method for signature 'Bayes.fit'
valid(x, Mrep = 100, newwindow = FALSE,
    plot.valid = TRUE, numj, ...)
```

Arguments

Х	Bayes.fit class
Mrep	number of trajectories to be drawn
newwindow	logical(1), if TRUE, a new window is opened for the plot
plot.valid	logical(1), if TRUE, the results are depicted grafically
numj	optional number of series to be validated
	optional plot parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

36 valid,Freq.fit-method

```
valid, Freq. fit-method Validation of the chosen model.
```

Description

Validation of the chosen model. For the index numj, Mrep=100 new trajectories are simulated with the value of the estimated random effect number numj. Two plots are given: on the left the simulated trajectories and the true one (red) and one the left the corresponding qq-plot for each time.

Usage

```
## S4 method for signature 'Freq.fit'
valid(x, Mrep = 100, newwindow = FALSE,
    plot.valid = TRUE, numj, ...)
```

Arguments

X	Freq.fit class
Mrep	number of trajectories to be drawn
newwindow	logical(1), if TRUE, a new window is opened for the plot
plot.valid	logical(1), if TRUE, the results are depicted grafically
numj	optional number of series to be validated
	optional plot parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.

Index

```
* datasets
    neuronal.data, 22
* drift
    bx, 6
* estimation
    mixedsde.fit, 12
ad.propSd, 2
ad.propSd\_random, 3
Bayes.fit-class, 4
Bayes.pred-class, 4
BayesianNormal, 5
bx, 6
chain2samples, 6
dcCIR2, 7
diagnostic, 7
discr, 8
eigenvaluesV, 8
EstParamNormal, 9
Freq.fit-class, 9
likelihoodNormal, 10
likelihoodNormalestimfix, 11
mixedsde.fit, 12
mixedsde.sim, 18
{\tt mixture.sim}, {\tt 21}
neuronal.data, 22
out, 24
plot, Bayes.fit, ANY-method, 24
plot, Bayes. pred, ANY-method, 25
plot, Freq. fit, ANY-method, 26
plot2compare, 27
plot2compare, Bayes.fit-method, 27
```

```
plot2compare, Bayes.pred-method, 28
pred, 29
\mathsf{pred}, \mathsf{Bayes}. \mathsf{fit}-\mathsf{method}, \mathsf{30}
pred, Freq. fit-method, 31
print, Bayes. fit-method, 31
print,Freq.fit-method, 32
summary, Bayes.fit-method, 32
summary, Freq. fit-method, 33
UV, 10, 11, 13, 33
valid, 34
valid, Bayes.fit-method, 35
valid, Freq. fit-method, 36
```