Mecânica Clássica I André Del Bianco Giuffrida

Um foguete acha-se em órbita elíptica em torno da Terra, perigeu r_1 , apogeu r_2 , medidos a partir do centro da Terra. Em certo ponto de sua órbita, o motor é ligado durante um tempo curto para fornecer um acréscimo Δv na velocidade que coloca o foguete em órbita e que permite escapar à velocidade v_0 relativa à terra. Mostre que Δv é um mínimo, se o impulso for aplicado no perigeu e paralelo a velocidade orbital. Determine Δv para este caso, em termo dos parâmetros da orbita elíptica ϵ e a; a aceleração g; a distância R do centro da Terra e a velocidade final v_0 . Você pode explicar sob as leis da Física porque Δv será tanto menor quanto maior for ϵ ?

Sendo:

$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} \quad , \quad r(\theta) = \frac{a(1 - \epsilon^2)}{1 + \epsilon cos(\theta)} \quad , \quad \dot{r} = \frac{a(1 - \epsilon^2)sin(\theta)\dot{\theta}}{(1 + \epsilon cos(\theta))^2}$$