Chapitre 6

Polynômes

Sommaire		
1	Définitions et vocabulaire	1
2	Égalité de deux polynômes	1
3	Operations sur les polynômes	1
	3.1 Somme de deux polynômes	1
	3.2 Produit de deux polynômes	2
	3.3 Division d'un polynôme par un binôme de la forme $x-a$	2
	3.4 Racine d'un polynôme	3
4	Exercices	3

Polynômes Mathématiques

1 Définitions et vocabulaire

Définitions

- Toute expression de la forme ax^n , avec a un réel et n un entier naturel, est appelée «monôme de degré n», et le réel a est appelé «coefficient du monôme de degré n».
- Toute somme finie de monôme est appelée «polynôme».
- Toute expression de la forme ax + b, avec a et b des réels tels que $a \neq 0$, est appelée «binôme de premier degré».
- Toute expression de la forme $ax^2 + bx + c$, avec a, b et c des réels tels que $a \neq 0$, est appelée «**trinôme** du second degré».
- Toute expression de la forme $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, avec a_0, a_1, \dots, a_{n-1} et a_n des réels tels que $a_n \neq 0$, est appelée «**polynôme de degré** n».
- Un polynôme est souvent noté par P(x), Q(x), R(x), S(x),
- Le degré d'un polynôme P est noté $\deg(P)$ ou $\mathrm{d}^{\circ} P$.
- Un polynôme P est dit «**nul**», si tous ses coefficients sont nuls, ce qui signifie que P(x) = 0, pour tout x de \mathbb{R} .

Exemples

On considère $P(x) = -x^5 + \frac{1}{2}x^4 + x^2\sqrt{2} + x - 5$.

- $-x^5$, $\frac{1}{2}x^4$, $x^2\sqrt{2}$, x et -5 sont des monôme de degrés respectifs 5, 4, 2, 1 et 0.
- les réels $-1, \frac{1}{2}, \sqrt{2}, 1, -5$ sont les coefficients respectifs des monômes $-x^5, \frac{1}{2}x^4, x^2\sqrt{2}, x$ et -5.
- P(x) est un polynôme de degré 5. On a d° P=5.
- les réels $-1, \frac{1}{2}, 0, \sqrt{2}, 1, -5$ sont les coefficients du polynôme P(x).

2 Égalité de deux polynômes

Propriétés

Deux polynômes sont égaux, si et seulement si, leurs coefficients des termes de même degré sont égaux.

Exercice

Déterminer les réels a, b et c dans les cas suivants, sachant que P(x) = Q(x):

- 1. $P(x) = 3x^2 + (b-1)x$ et $Q(x) = (a+1)x^2 + 2x + c$.
- 2. $P(x) = 2x^3 5x^2 4x + 3$ et Q(x) = (x+1)(x-3)(ax+b).

3 Operations sur les polynômes

3.1 Somme de deux polynômes

Activité

Compléter les additions suivantes :

Propriété

La somme de deux polynômes P(x) et Q(x) est le polynôme, noté (P+Q)(x), défini par :

$$(P+Q)(x) = P(x) + Q(x),$$

et on a $d^{\circ}(P+Q) \leq \sup(d^{\circ}P; d^{\circ}Q)$.

3.2 Produit de deux polynômes

Activité

1. Compléter la multiplication suivante :

2. Développer $P(x) \times Q(x)$, où $P(x) = x^2 - x + 1$ et $Q(x) = -x^3 + x - 2$.

Propriété

Le produit de deux polynômes non nuls P(x) et Q(x) est le polynôme, noté $(P \times Q)(x)$, défini par $(P \times Q)(x) = P(x) \times Q(x)$,

et on a $d^{\circ}(P \times Q) = d^{\circ}P + d^{\circ}Q$.

3.3 Division d'un polynôme par un binôme de la forme x-a

Activité

On considère le polynôme $P(x) = x^3 - 4x^2 - 3x + 18$.

1. Compléter les divisions euclidiennes ci-dessous.

 $-4x^2 -3x +18$

2. Calculer P(3) et P(2).

Propriété

Soit P(x) un polynôme de degré n, avec $n \in \mathbb{N}^*$, et a un réel.

Il existe un unique polynôme Q(x) de degré n-1 tel que P(x)=(x-a)Q(x)+P(a).

- Le polynôme Q(x) est appelé «quotient de la division euclidienne de P(x) par x-a».
- Le réel P(a) est appelé «reste de la division euclidienne P(x) par x-a».

Exercice

Déterminer le reste et le quotient de la division euclidienne de $P(x) = 4x^3 - 3x + 1$ par x - 1, puis par x + 1.

Définition

Soit P(x) un polynôme de degré n, avec $n \in \mathbb{N}^*$, et a un nombre réel.

P(x) est dit «divisible par x-a» s'il existe un polynôme Q(x) de degré n-1 tel que P(x)=(x-a)Q(x).

Polynômes Mathématiques

3.4 Racine d'un polynôme

Définition

Soit P(x) un polynôme.

Tout nombre réel a vérifiant P(a) = 0 est appelé «**racine**» ou «**zéro**» du polynôme P(x).

Propriétés

Soit P(x) un polynôme et a un nombre réel.

P(x) est divisible par x-a si et seulement si a est une racine du polynôme P(x).

Exercice

On considère le polynôme $P(x) = 2x^3 + x^2 - 13x + 6$.

- 1. Montrer que 2 est une racine de P(x).
- 2. Déterminer le polynôme Q(x) tel que P(x) = (x-2)Q(x).
- 3. Montrer que Q(x) est divisible par x + 3.
- 4. Déterminer les réels a et b tel que P(x) = (x-2)(x+3)(ax+b).

4 Exercices

Exercice 1

Déterminer le degré du polynôme P(x), dans chacun des cas suivants :

(a)
$$P(x) = (x+1)^2 - 2(x-1)^2$$
.

(b)
$$P(x) = x^4 - 1 + 3x^5$$
.

(c)
$$P(x) = (2x^2)^3 - 3x^5$$
.

(d)
$$P(x) = (x+2)^3 - (x^3+8)$$
.

Exercice 2

Déterminer les réels a, b et c sachant que P(x) = Q(x) dans les cas suivants :

(a)
$$P(x) = 2x^3 + 7x^2 + 2x - 3$$
 et $Q(x) = (ax + b)(x + 1)(x + 3)$.

(b)
$$P(x) = 12x^4 - 36x^3 + 47x^2 - 30x + 7$$
 et $Q(x) = (2x^2 - 3x + 1)(ax^2 + bx + c)$.

(c)
$$P(x) = (x^2 - 1)(ax^3 + bx^2 + cx)$$
 et $Q(x) = x^5 + x^3 - 2x$.

Exercice 3

On considère les deux polynômes $P(x) = 2x^2 + 3x - 2$ et $Q(x) = x^4 - 5x^3 + x^2 - 1$. Déterminer 2P(x) - Q(x) et $P(x) \times Q(x)$.

Exercice 4

Effectuer la division euclidienne de P(x) par x-a, dans les cas suivants :

(a)
$$P(x) = 2x^3 + 3x^2 - 5x + 1$$
 et $a = -2$

(b)
$$P(x) = 5x^4 - 3x^2 + 2x - 3$$
 et $a = 1$

(c)
$$P(x) = 4x^3 - 5x^2 + x - 5$$
 et $a = -\frac{3}{2}$.

(d)
$$P(x) = 4x^5 - 5x^3 + 1$$
 et $a = 1$.

Exercice 5

On considère le polynôme $P(x) = x^3 - 2x^2 - 5x + 6$.

- 1. Montrer que P(x) est divisible par x-1.
- 2. Déterminer Q(x) tel que P(x) = (x-1)Q(x).
- 3. Vérifier que -2 est une racine de Q(x).
- 4. Écrire P(x) sous forme de produit de binômes de premier degré.
- 5. Résoudre l'équation P(x) = 0.

Polynômes Mathématiques

Exercice 6

On considère le polynôme P de variable réelle x tel que : $P(x) = x^4 - x^3 - 7x^2 + x + 6$.

- 1. vérifier que 1 est une racine de P(x).
- 2. Déterminer Q(x) tel que P(x) = (x-1)Q(x).
- 3. vérifier que -1 est une racine de Q(x).
- 4. Déterminer h(x) tel que Q(x) = (x+1)h(x)
- 5. vérifier que 3 est une racine de h(x).
- 6. Écrire P(x) sous la forme de produit de binômes du premier degré.
- 7. Résoudre l'équation P(x) = 0.

Exercice 7

On considère le polynôme $P(x) = x^3 - 7x + 6$.

- 1. Calculer P(1) et P(-3).
- 2. Factoriser P(x) en produit de binômes du premier degré.
- 3. Soit $x \in [0; 1]$. Montrer que $\left| \frac{P(x)}{x+3} \right| \le 2$.

Exercice 8

On considère le polynôme $P(x) = 2x^3 + 3x^2 - 3x - 2$.

- 1. Calculer P(-2) et P(1)
- 2. Effectuer la division euclidienne de P(x) par x + 2.
- 3. Montrer que si α est une racine de P(x) alors $\frac{1}{\alpha}$ l'est aussi.
- 4. Déduire toutes les racines de P(x).

Exercice 9

On considère le polynôme P de variable réelle x tel que $P(x) = x^3 - x^2 - 3x - 1$.

- 1. Vérifier que -1 est une racine de Q(x).
- 2. Déterminer Q(x) tel que P(x) = (x+1)Q(x).
- 3. Calculer $Q(1+\sqrt{2})$.
- 4. Déterminer a tel que $Q(x) = (x 1 \sqrt{2})(x + a)$.
- 5. Montrer que pour tout $x \in [2, 1 + \sqrt{2}]$: -4 < P(x) < 0.

Exercice 10

Soit $n \in \mathbb{N}$, on considère le polynôme P de variable réelle x tel que $P(x) = (x-2)^{3n} + (x-1)^{2n} - 1$.

- 1. Montrer qu'il existe un polynôme Q(x) tel que P(x) = (x-2)Q(x).
- 2. Déterminer le degré de Q(x) en fonction de n.
- 3. Calculer P(1) en fonction de n.
- 4. Déterminer les valeurs de n pour lesquelles P(x) est divisible par x-1.
- 5. On suppose que n = 1.

Déterminer a et b deux réels tels que $P(x) = (x-2)((x-a)^2 + bx)$.

Exercice 11

On considère le polynôme P de degré 3 vérifiant P(1) = 7, P(4) = 16, P(3) = 9 et P(2) = 4. On pose $Q(x) = P(x) - x^2$.

- 1. Montrer qu'il existe k tel que Q(x) = k(x-2)(x-3)(x-4).
- 2. Calculer Q(1), puis déduire la valeur de k.
- 3. Déterminer l'expression de P(x).