

Digitale Regelung

Vorlesung Sommersemester 2023

Dr.-Ing. Andreas Michalka

Organisatorisches

Dozenten

Vorlesung: Dr.-Ing. Andreas Michalka (<u>andreas.michalka@fau.de</u>, Cauerstr. 7, 3. OG, Raum 03.035)

Übung: Alexander Verhoolen, M.Sc. (<u>alexander.verhoolen@fau.de</u>, Cauerstr. 7, 4. Stock, Raum 04.029)

Termine und Ort

Vorlesung: Donnerstag, 8:15 - 9:45, H5

Übung: Freitag, 8:15 - 9:45, H5

Vorlesungsunterlagen

Werden in der Vorlesung ausgegeben und auf StudOn verfügbar gemacht.

Prüfungsmodalitäten

schriftlich (90 Min.), zulässige Hilfsmittel: Vorlesungs- und Übungsunterlagen, eigene

Zusammenfassung, Taschenrechner

Voraussetzungen

Vorlesungen "Regelungstechnik A" oder "Einführung in die RT", sowie zusätzlich "Regelungstechnik B"

Vorlesungsinhalt

1. Struktur digital realisierter Regelungen

2. Beschreibung von zeitdiskreten Systemen

- Zustandsmodell
- z-Übertragungsfunktion

3. Analyse von zeitdiskreten Systemen

- Lösung der Zustandsgleichungen
- Stabilität, Steuer- und Beobachtbarkeit von Abtastsystemen
- Nullstellen von Abtastsystemen

4. ZFG-Regelung für Abtastsysteme: quasi-kontinuierlicher Entwurf

- Wiederholung zeitkontinuierlicher Entwurf
- Zeitdiskretisierung des Reglers und Integralapproximationen

Vorlesungsinhalt

5. ZFG-Regelung für Abtastsysteme: zeitdiskreter Entwurf

- Beobachterbasierter Zustandsregler
- Deadbeat-Regler
- "Inter-sampling"-Verhalten
- Wahl der Auflösungen von AD- und DA-Wandler

6. Zusammenfassendes Beispiel

Literatur zur Vorlesung

Deutschsprachige Literatur:

• J. Lunze: Regelungstechnik 2, Springer, 2005.

Englischsprachige Literatur:

- V. Kucera: **Analysis and Design of Discrete Linear Control Systems,** Prentice Hall, 1991
- M. Fadali, A. Visioli: **Digital Control Engineering,** Academic Press, 2012
- G. Goodwin, S. Graebe, M. Salgado: Control System Design, Prentice Hall, 2000.
- A. Oppenheim, A. Willsky: **Signals and Systems**, Prentice-Hall, 1998.

- 1.1 Übergang von zeitkontinuierlichen zu zeitdiskreten Regelungen
- 1.2 Übergang von lokalen zu örtlich verteilten Regelungen
- 1.3 Auswirkung der digitalen Reglerimplementierung
- 1.4 Prinzipielle Vorgehensweisen zum Reglerentwurf

1.1 Übergang von zeitkontinuierlichen zu zeitdiskreten Regelungen

Analoge Regelung (zeitkontinuierlich)

1.1 Übergang von zeitkontinuierlichen zu zeitdiskreten Regelungen

Digitalisierung der Steuerung und Regelung

Steuerung und Regelung verarbeiten Eingabesignale in periodischen Zyklen statt zeitkontinuierlich

- ⇒ A/D-Umsetzer: wandelt zeitkontinuierliches Signal in zeitdiskrete Folge
 - D/A-Umsetzer: wandelt zeitdiskrete Folge in zeitkontinuierliches Signal

1.1 Übergang von zeitkontinuierlichen zu zeitdiskreten Regelungen

Digitale Regelung (zeitdiskret)

Signaltransport: analog (kodiert durch reellwertige Spannungen/Ströme)

Digitalisierung von Sensor, Aktor, Sollvorgabe und Signaltransport

Signaltransport: digital (binär kodiertes serielles/paralleles Bussystem)

zeitkontinuierlich zeitdiskret

- 1.1 Übergang von zeitkontinuierlichen zu zeitdiskreten Regelungen
- 1.2 Übergang von lokalen zu örtlich verteilten Regelungen
- 1.3 Auswirkung der digitalen Reglerimplementierung
- 1.4 Prinzipielle Vorgehensweisen zum Reglerentwurf

1.2 Übergang von lokalen zu örtlich verteilten Regelungen

Motivation:

Digitale Technologien erlauben

- sichere Verbindungen auf weiten Distanzen
- Integration von Signal-Vorverarbeitung auf Sensorbaustein ("smart sensors")
- Realisierung komplexer Sensorsysteme
 (z.B. Positionserfassung mittels "motion tracking"-Kameras oder GPS)
- Handhabung von Redundanzen in der Steuerung und Regelung zur Erhöhung der Sicherheit
- Bearbeitung mehrerer Anwendungen auf einem zentralen Rechner
 (z.B. Regelungsanwendung + Monitoring-Software + Fehlerbehandlung + Kommunikation mit übergeordneter Steuerungsebene)
- ⇒ zunehmende Komplexität von digitalen Regelungen

1.2 Übergang von lokalen zu örtlich verteilten Regelungen

Beispiel lokale Regelung

- Steuerung und Regelung,
 Aktor und Sensor in unmittelbarer Nähe zum Prozess
- "einfache" Verbindungsarten,
 z.B. Analogleitung,
 8-Bit Parallelleitung, I²C-Bus

verteilte Regelung

- Steuerung und Regelung,
 Aktoren und Sensor
 räumlich getrennt
- komplexere Datenverbindungen
- komplexes Sensorsystem

1.2 Übergang von lokalen zu örtlich verteilten Regelungen

Probleme:

- Bei komplexen Signalwegen und Sensorsystemen können signifikante Totzeiten (konstant oder variabel) und Datenausfälle auftreten
- Abtastraten bei komplexen Sensorsystemen meist gering
- Synchonisierung aller Teile der Regelung u.U. schwierig
- Periodische Ausführung des Regelalgorithmus durch Drittanwendungen auf Zentralrechner gefährdet

- 1.1 Übergang von zeitkontinuierlichen zu zeitdiskreten Regelungen
- 1.2 Übergang von lokalen zu örtlich verteilten Regelungen
- 1.3 Auswirkung der digitalen Reglerimplementierung
- 1.4 Prinzipielle Vorgehensweisen zum Reglerentwurf

1.3 Auswirkung der digitalen Reglerimplementierung

Konsequenzen der digitalen Reglerimplementierung:

- Verarbeitung von Datenfolgen ⇒ Diskretisierung der Zeitvariable
 - ⇒ zeitkontinuierliche Stellgesetze nicht unmittelbar realisierbar
 - Störeinflüsse bleiben vorübergehend unbemerkt
- Datenrepräsentation mit endlicher Wortbreite \Rightarrow Diskretisierung der Signalwerte
 - ⇒ Quantisierungsfehler
 - numerische Rechenfehler
- Totzeiten bei Signaltransport oder in Recheneinheit (veränderliche Totzeit = *Jitter*)
 - ⇒ inkonsistente Mess- und Stelldaten

1.3 Auswirkung der digitalen Reglerimplementierung

in dieser Vorlesung:

- Berücksichtigung von
 - Zeitdiskretisierung bei konstanter Abtastperiode ⇒ angepasste Reglerentwurfsverfahren
 - konstante Totzeiten ⇒ Erweiterung des Streckenmodells
- Vernachlässigung von
 - Quantisierungsfehlern
 - Jitter
 - numerischen Rechenfehlern

- 1.1 Übergang von zeitkontinuierlichen zu zeitdiskreten Regelungen
- 1.2 Übergang von lokalen zu örtlich verteilten Regelungen
- 1.3 Auswirkung der digitalen Reglerimplementierung
- 1.4 Prinzipielle Vorgehensweisen zum Reglerentwurf

1.4 Prinzipielle Vorgehensweisen zum Reglerentwurf

Betrachtete Ansätze zum Entwurf digital implementierter Regler

quasi-kontinuierlicher Entwurf

$$\dot{x}(t) = Ax(t) + bu(t)$$
$$y(t) = c^{T}x(t)$$

z.B. beobachterbasierter Zustandsregler

$$\dot{\hat{x}}(t) = (A - lc^T)\hat{x}(t) + bu(t) + ly(t)$$

$$u(t) = -k^T \hat{x}(t)$$

– Gleichung erfordert Auswertung zu jedem Zeitpunkt t

$$\widehat{x}(t) = \int_0^t (A - lc^T)\widehat{x}(\tau) + bu(\tau) + ly(\tau) d\tau$$

$$u(t) = -k^T \hat{x}(t)$$

Integration erfordert kontinuierliche Zeitvariable

 \Rightarrow digitale Implementierung nicht möglich

1.4 Prinzipielle Vorgehensweisen zum Reglerentwurf

• zeitdiskreter Entwurf

Regelalgorithmus

z.B. beobachterbasierter Zustandsregler

$$\hat{x}_{k+1} = (A_d - lc_d^T)\hat{x}_k + b_d u_k + ly_k$$
$$u_k = -k^T \hat{x}_k$$