VIETNAM NATIONAL UNIVERSITY, HO CHI MINH CITY

UNIVERSITY OF SCIENCE FACULTY OF INFORMATION TECHNOLOGY

USER GUIDE Individual Lab 1

Computer Vision

Performed by: Student's ID: 21127730

Student's name: Hoang Le Cat Thanh

Instructors: Pham Minh Hoang

Ho Chi Minh City, March 4, 2024

Contents

1	1 Introduction			2
2	Ins	Installation and set up		
3	Running program			
	3.1	Comm	nand line	
		3.1.1	Convert color image to grayscale	2
		3.1.2	Change image brightness	2
		3.1.3	Change image contrast	3
		3.1.4	Filter image using Average filter	3
		3.1.5	Filter image using Median filter	3
		3.1.6	Filter image using Gaussian filter	4
		3.1.7	Image edge detection using 3x3 Sobel kernel	4
		3.1.8	Image edge detection using 3x3 Laplace kernel	4
	3.2	Call th	he program	4
	3.3		e process	

1 Introduction

The project is the implementation of several image manipulations using C++ including:

- Convert a color image to the gray image
- Change the brightness/contrast of an image
- Filter an image using Average, Median and Gaussian filter
- Edge detection using Sobel and Laplacian filter

2 Installation and set up

- Install OpenCV library
- Set up environment variables
- Configure project
 - Open project's Properties, add Include Directories and Library Directories as well as lib
 file.
 - Copy opency world341d.dll to the Debug folder containing the exe file.

3 Running program

3.1 Command line

3.1.1 Convert color image to grayscale

⟨Executable file⟩ -rgb2gray ⟨InputFilePath⟩ ⟨OutputFilePath⟩

where

- -rgb2gray: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image

3.1.2 Change image brightness

 $\langle Executable file \rangle$ -brightness $\langle InputFilePath \rangle$ $\langle OutputFilePath \rangle$ $\langle C \rangle$

where

- -brightness: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image
- C: the brightness factor (integer). Postive value will result in brighter image while negative value will lead to darker image.

3.1.3 Change image contrast

 $\langle Executable file \rangle$ -contrast $\langle InputFilePath \rangle$ $\langle OutputFilePath \rangle$ $\langle C \rangle$

where

- -contrast: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image
- C: the contrast factor (float). Value greater than 1 will enhance image contrast while value between 0 and 1 will lower image's contrast.

3.1.4 Filter image using Average filter

 $\langle Executable \ file \rangle$ -avg $\langle InputFilePath \rangle$ $\langle OutputFilePath \rangle$ $\langle k \rangle$

where

- -avg: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image
- k: the filter kernel size (integer). The program only takes in odd value from 3 as valid kernel size. Larger kernels result in more extensive averaging or blurring of pixel values, leading to a smoother appearance in the image.

3.1.5 Filter image using Median filter

⟨Executable file⟩ -med ⟨InputFilePath⟩ ⟨OutputFilePath⟩ ⟨k⟩

where

- -med: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image
- k: the filter kernel size (integer). The program only takes in odd value from 3 as valid kernel size. Larger kernels result in more extensive averaging or blurring of pixel values, leading to a smoother appearance in the image.

3.1.6 Filter image using Gaussian filter

⟨Executable file⟩ -gau ⟨InputFilePath⟩ ⟨OutputFilePath⟩ ⟨k⟩

where

- -gau: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image
- k: the filter kernel size (integer). The program only takes in odd value from 3 as valid kernel size. Larger kernels result in more extensive averaging or blurring of pixel values, leading to a smoother appearance in the image.

3.1.7 Image edge detection using 3x3 Sobel kernel

⟨Executable file⟩ -sobel ⟨InputFilePath⟩ ⟨OutputFilePath⟩

where

- -sobel: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image

3.1.8 Image edge detection using 3x3 Laplace kernel

⟨Executable file⟩ -laplace ⟨InputFilePath⟩ ⟨OutputFilePath⟩

where

- -laplace: command for the function
- InputFilePath: the path of input file/ image
- OutputFilePath: the path of output file/ image

3.2 Call the program

- Run the program once to create exe file. (Assuming that the *opencv world341d.dll* has been copied to the project)
- The executable file is located in the debug file after the project run once.
- In the *Debug* folder, right click and choose *Open in Terminal*.
- After open the Terminal, enter the desired command line from the list of given command line with the *Executable file* is named 21127730.
- If there is no error, the input and output image will be shown. After that, press Enter to close the images and save the output. If save successfully, there will be a notification on where the image is saved.

3.3 Sample process

Figure 1: Open Terminal

Figure 2: Terminal screen

Figure 3: Enter the command line (convert to grayscale image)

Figure 4: Input and Output image after process

Figure 5: Output image saved successfully to the path