UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Les récepteurs couplés aux protéines G (RCPG)

Pr JM Senard

Les Récepteurs Couplés aux Protéines G (RCPG)

A. Généralités

- · Définitions/organisation générale
- · Méthodes d'étude
- · Les protéines G, la bêta-arrestine
- · Classifications

B. Les RCPGs en pathologie

C. Le fonctionnement:

- La vision classique
- La vision moderne

Les récepteurs couplés aux protéines G (RCPGs): définition/organisation générale

Les récepteurs couplés aux protéines G (RCPGs): importance en pharmacologie

- · Séquençage du génome humain:
 - · Environ 1000 séquences codant pour RCPG
 - · 1% du génome humain
 - · 30% des cibles pharmacologiques connues
- · Le « marché » des RCPGs:
 - · 35-40% des médicaments commercialisés
 - · Nouveaux ligands: anticorps monoclonaux
 - Nombreuses nouvelles cibles potentielles
 - Au moins 150 récepteurs sans ligand connu (récepteurs orphelins)
 - Dimères de RCPG
 - Complexes RCPG/Prot G...

Les Récepteurs Couplés aux Protéines G (RCPG): Méthodes d'étude

- Les méthodes d'étude (1960-2016)
 - * Techniques de « binding », liaison de molécules radioactives

* Cristallisation

* Techniques basées sur le transfert d'énergie par résonance

Les récepteurs couplés aux protéines G (RCPGs): les protéines G

• Protéines hétérotrimériques: sous-unités α , β et γ

Gq/G11: stimule l'accumulation de calcium dans cellule G12/13: divers effecteurs intracellulaires

Les récepteurs couplés aux protéines G (RCPGs): les protéines G

· Protéines G hétérotrimériques (aby): cycle d'activation

Les récepteurs couplés aux protéines G (RCPGs): la bêta-arrestine

· internalisation des RCPGs et signalisation

Nature Reviews | Molecular Cell Biology

Les récepteurs couplés aux protéines G (RCPGs): classifications

• 1/ en fonction des homologies de séquence (et du site de liaison des ligands)

Classe A (Rhodopsine, β2AR)

Classe B (Glucagon, calcitonine)

R adrénergiques CCK, endothéline, opsine Angiotensine II, chemokines, opioïdes...

R calcitonine, CGRP Glucagon, GLP-1, VIP, Sécrétine...

Classe C

(R métabotropiques, Ca²⁺)

R Glutamate GABA, Ca2+, Adénosine, Cannabinoïde, Phéromones, Goût...

Les récepteurs couplés aux protéines G (RCPGs): classifications

· 2/ en fonction de la protéine G associée

Gs
β-adrénergiques
Histamine (H2)
GLP1-R...

Muscariniques M2 α2-adrénergiques Opiacés...

Gi

Gq
α1-adrénergiques
H1 histaminergique
5HT2 sérotoninergique

Les Récepteurs Couplés aux Protéines G (RCPG)

A. Généralités

- · Définitions/organisation générale
- · Méthodes d'étude
- · Les protéines G, la bêta-arrestine
- · Classifications

B. Les RCPGs en pathologie

C. Le fonctionnement:

- La vision classique
- La vision moderne

1. Les mutations inactivantes

 Récepteur Vasopressine V2 / Diabète nephrogène insipide

-

2. Mutations RCPG activantes

(récepteurs constitutivement actifs)

- Récepteur thyrotropine / Adénome thyroïdien, hyperthyroïdie
- Récepteur Hormone lutéinisante / puberté précoce

3. Mutations RCPG / expression récepteur

- Récepteur CCR5* / Résistance infection HIV

^{*}Jumeaux OGM Lulu et Nana: ablation de CCR5 par Crisp/Cas9

4. Les auto-anticorps anti-RPGs (souvent agonistes)

NB: le site de liaison des AA diffère de celui des ligands du récepteur

Maladies cardiovasculaires:

- Anti- β 1AR: insuffisance cardiaque, troubles du rythme
- Anti- α 1AR: HTA maligne
- Anti-AT1: HTA maligne
- Anti-ETA: HT pulmonaire
- Anti-M3: hypotension orthostatique

Maladies neurologiques:

- Encéphalites auto-immunes: AntimGlu5, Anti-GABA_B
- Démences antiα1AR

Autres maladies :

- Asthme
- Sclérodermie
- Diabète sucré...

Les RCPGs en pathologie: 2/ Les RCPGs au cours des maladies Désensibilisation (temps-dépendant)

a) Couplage b) Désensibilisation c) Internalisation Récepteur/protéines G Découplage des protéines G des récepteurs

Les RCPGs en pathologie: 2/ Les RCPGs au cours des maladies

"receptor Downregulation / Upregulation"

 \rightarrow Mécanisme de régulation concentration ligand-dépendant (exemple: récepteurs β -adrénergiques)

Antagonistes bêta-adrénergiques (β -bloquants)

Les Récepteurs Couplés aux Protéines G (RCPG)

A. Généralités

- · Définitions/organisation générale
- · Historique / Importance en pharmacologie
- · Les protéines G, la bêta-arrestine
- · Classifications

B. Les RCPGs en pathologie

C. Le fonctionnement:

- La vision classique
- La vision moderne

Les Récepteurs Couplés aux Protéines G « vision classique des mécanismes d'activation »

Les Récepteurs Couplés aux Protéines G « vision classique des mécanismes d'activation »

Les Récepteurs Couplés aux Protéines G (RCPG)

A. Généralités

- · Définitions/organisation générale
- · Méthodes d'étude
- · Les protéines G, la bêta-arrestine
- · Classifications

B. Les RCPGs en pathologie

C. Le fonctionnement:

- La vision classique
- La vison moderne

Lefkowitz & Kobilka (Nobel de Chimie 2012)

- 1. Dimérisation, oligomérisation
- 2. Complexes préformés G prot
- 3. Interactions avec les protéines non réceptrices
- 4. Agonisme biaisé

1. Dimérisation, oligomérisation Ancienne Vision Monomère R

Nouvelle vision Homodimère R

Rhodopsine

1. Dimérisation, oligomérisation
Hétérodimère obligatoire: GABA-B (GBR)

GABA GBR2

GBR1

GBR1

Effet intracellulaire Effet physiologique (inhibition neuronale) Physiopathologie (épilepsie)

2. Précouplage aux protéines G

2. Précouplage aux protéines G

Conséquence pharmacologique du « précouplage »:

2. Précouplage aux protéines G

3. Partenaires non récepteurs

CGRP: calcitonine gene related peptide

ADM: adrénomedulline

CGRP-R: calcitonin gene related peptide receptor

RAMP: Receptor Activity-Modifying Protein

3. Partenaires non récepteurs

Application: traitement de la migraine

Vasodilatation artères crâniennes — douleur

4. Séléctivité fonctionnelle des ligands (agonisme "biaisé") (en parallèle)

4. Séléctivité fonctionnelle des ligands (agonisme "biaisé") (en parallèle)

4. Séléctivité fonctionnelle des ligands (agonisme "biaisé") (en parallèle)

Classification RCPG website IUPHAR

(International Union of Basic and Clinical Pharmacology)

http://www.iuphar-db.org/GPCR/ReceptorListForward

CLASS A

[5 | A | B | C | D | E | F | G | H | K | L | M | N | O | P | R | S | T | U | V | Orphans | Official Human Mouse **IUPHAR** Family name gene Receptor code Ligand Rat gene name gene Comment receptor name name name 5-HT_{1A} Hydroxytryptamine 2.1:5HT:1:5HT1A HTR1A Htr1a Htr1a hydroxytryptamine 5-HT_{1A} receptors Hydroxytryptamine 2.1:5HT:2:5HT1B HTR1B Htr1b Htr1b hydroxytryptamine receptors **Database Links** Entrez Gene 3350 5-HT_{1D} Hydroxytryptamine 2.1:5HT:3:5HT1D HTR1D Htr1d Htr1d hydroxytryptamine HomoloGene 20148 receptors UniGene Hs. 247940 GeneCards HTR1A 109760 Structural Information class A G protein-coupled receptor Accession Chromosomal Species TM References Number Location Name 7 422 NP 000515 5q11.2-q13 HTR1A 54, 57 422 NP 036717 2q16 Htr1a 52, 53 Mouse 7 421 NP 032334 13 D2.1 Htr1a 60 **Functional Assays** Measurement of cAMP levels in COS-7 cells transfected with the 5-HT_{1.6} receptor. Species: Human COS-7

Response measured:

References:

Inhibition of cAMP accumulation.

54, 88