Facultat de Matemàtiques i Estadística Examen parcial d'Àlgebra Lineal 5 de novembre de 2012

Problema 1. Es consideren els quatre vectors de \mathbb{R}^5 següents:

$$\boldsymbol{u}_1 = (\frac{1}{2}, -1, 3, -4, \frac{5}{4}), \ \boldsymbol{u}_2 = (-1, 2, -\frac{1}{2}, -3, -8), \ \boldsymbol{u}_3 = (0, 0, \frac{1}{2}, -1, -\frac{1}{2}), \ \boldsymbol{u}_4 = (1, -2, 1, 2, \pi).$$

- 1. Doneu una base del subespai $U = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3, \boldsymbol{u}_4 \rangle \subseteq \mathbb{R}^5$.
- 2. Digueu si els vectors següents són o no del subespai U:

$$v_1 = (2, -4, \frac{9}{4}, \frac{7}{2}, 1), \quad v_2 = (1, -1, 1, -1, \pi), \quad v_3 = (2, -4, \frac{9}{4}, \frac{7}{2}, -2\pi).$$

3. Doneu un subespai complementari V de U dins de \mathbb{R}^5 .

SOLUCI: 1. Reduint per files la matriu que té per files els quatre vectors u_i queda la matriu:

$$\begin{pmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Gràcies a que les transformacions elementals conserven el subespai generat es dedueix que els tres vectors

$$u'_1 = (1, -2, 0, 4, 0), \quad u'_2 = (0, 0, 1, -2, 0), \quad u'_3 = (0, 0, 0, 0, 1),$$

generen l'espai U. Aquests vectors són clarament una base de U (estan esglaonats). Naturalment moltes altres bases són possibles; per exemple qualsevol subconjunt de tres dels u_i diferent dels tres primers és una base.

2. Usant aquests tres vectors per resoldre les equacions $xu'_1 + yu'_2 + zu'_3 = v_i$ és evident que $v_2 \notin U$, ja que tota combinació dels vectors u'_i ha de començar per (x, -2x, ...), i que $v_1 = 2u'_1 + \frac{9}{4}u'_2 + u'_3$ i $v_3 = 2u'_1 + \frac{9}{4}u'_2 + (-2\pi)u'_3$ són de U.

Una altra manera de veure-ho és trobar equacions del subespai U, que es pot fer usant els quatre generadors u_i de l'enunciat o —més fàcil— els tres vectors u_i' de la base trobada. De totes dues maneres es troben les equacions 2X + Y = 2Y + 2Z + T = 0 (o dues d'equivalents) que defineixen el subespai U, i substituint els vectors v_i es comprova que $v_2 \notin U$ i que $v_1, v_3 \in U$.

3. Els cinc vectors $\boldsymbol{u}_1', \boldsymbol{e}_2, \boldsymbol{u}_2', \boldsymbol{e}_4, \boldsymbol{u}_3'$ són clarament una base de \mathbb{R}^5 , ja que la matriu que els té per files és esglaonada. Per tant el subespai $V = \langle \boldsymbol{e}_2, \boldsymbol{e}_4 \rangle$ és un possible complementari de U, entre altres infinites possibilitats. Noti's que per trobar V NO N'HI HA PROU amb trobar dos vectors $\boldsymbol{w}_1, \boldsymbol{w}_2$ independents entre ells tals que $\boldsymbol{w}_i \notin U$, ja que només amb aquestes propietats podria passar que tots cinc vectors $\boldsymbol{u}_1', \boldsymbol{u}_2', \boldsymbol{u}_3', \boldsymbol{w}_1, \boldsymbol{w}_2$ fossin dependents.

Problema 2. Sigui $V \subseteq M_n(\mathbb{R})$ el subconjunt següent:

$$V = \left\{ \boldsymbol{A} \in \mathcal{M}_n(\mathbb{R}) \colon \exists \mu \in \mathbb{R} \text{ tal que } \boldsymbol{A} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\}.$$

Demostreu que V és un subespai vectorial de $M_n(\mathbb{R})$ i calculeu la seva dimensió. Per a n=3 doneu una base de V.

SOLUCI: Es denota $u \in M_{n \times 1}(\mathbb{R})$ la matriu columna amb totes les entrades 1.

Subespai: V és clarament no buit ja que conté la matriu zero (que compleix la propietat amb $\mu = 0$). Si $A, B \in V$ siguin $\mu, \nu \in \mathbb{R}$ tals que $Au = \mu u$ i $Bu = \nu u$. Aleshores:

$$(A+B)u = Au + Bu = \mu u + \nu u = (\mu + \nu)u$$
 amb $\mu + \nu \in \mathbb{R} \Rightarrow A + B \in V$,

i, per a tot escalar $\lambda \in \mathbb{K}$:

$$(\lambda \mathbf{A})\mathbf{u} = \lambda(\mathbf{A}\mathbf{u}) = \lambda(\mu \mathbf{u}) = (\lambda \mu)\mathbf{u}$$
 amb $\lambda \mu \in \mathbb{R} \Rightarrow \lambda \mathbf{A} \in V$

Per tant V és efectivament un subespai.

La condició que defineix les matrius $\mathbf{A} = (a_{i,j}) \in V$ és que existeixi un nombre real μ tal que per a cada $i = 1, \ldots, n$ sigui $\sum_{j=1}^{n} a_{i,j} = \mu$. És a dir, que la suma de les entrades de les files de la matriu doni el mateix per a totes les files. Això es pot traduir en el sistema homogeni de n-1 equacions lineals amb n^2 incògnites següent, que assegura que la suma dels elements de totes les files dóna sempre és mateix, igualant aquesta suma per a les n-1 primeres files amb la suma de l'última fila:

$$a_{1,1} + a_{1,2} + \dots + a_{1,n} = a_{n,1} + a_{n,2} + \dots + a_{n,n}$$
 $a_{2,1} + a_{2,2} + \dots + a_{2,n} = a_{n,1} + a_{n,2} + \dots + a_{n,n}$
 \dots
 $a_{n-1,1} + a_{n-1,2} + \dots + a_{n-1,n} = a_{n,1} + a_{n,2} + \dots + a_{n,n}$

Aquestes equacions són òbviament independents ja que cadascuna té variables que no són a les altres. Per tant la dimensió de V, que és la dimensió de l'espai de les solucions, és igual al nombre de variables menys el rang: $n^2 - (n-1) = n^2 - n + 1$.

Per a n=3, passant totes les variables a la dreta menys la primera, les dues equacions són:

$$a_{1,1} = -a_{1,2} - a_{1,3} + a_{3,1} + a_{3,2} + a_{3,3},$$

 $a_{2,1} = -a_{2,2} - a_{2,3} + a_{3,1} + a_{3,2} + a_{3,3},$

i s'obté una base de les solucions donant valors u i zero als paràmetres:

$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

El cas general es faria anàlogament i la base que s'obtindria, expressada en termes de les matrius $E_{i,j}$ de la base canònica de $M_n(\mathbb{R})$, és:

$$egin{aligned} m{E}_{1,1} - m{E}_{1,2}, & m{E}_{1,1} - m{E}_{1,3}, & \dots, & m{E}_{1,1} - m{E}_{1,n} \ m{E}_{2,1} - m{E}_{2,2}, & m{E}_{2,1} - m{E}_{2,3}, & \dots, & m{E}_{2,1} - m{E}_{2,n} \ & \dots \ m{E}_{n-1,1} - m{E}_{n-1,2}, & m{E}_{n-1,1} - m{E}_{n-1,3}, & \dots, & m{E}_{n-1,1} - m{E}_{n-1,n}, \ m{E}_{1,1} + m{E}_{2,1} + \dots + m{E}_{n-1,1} + m{E}_{n,1}, \ m{E}_{1,1} + m{E}_{2,1} + \dots + m{E}_{n-1,1} + m{E}_{n,2}, \ & \dots \ m{E}_{1,1} + m{E}_{2,1} + \dots + m{E}_{n-1,1} + m{E}_{n,n}. \end{aligned}$$

O sigui,

$$\mathscr{B} = \left\{ \boldsymbol{E}_{i,1} - \boldsymbol{E}_{i,j} : 1 \leqslant i \leqslant n - 1, 2 \leqslant j \leqslant n \right\} \cup \left\{ \boldsymbol{E}_{n,j} + \sum_{i=1}^{n-1} \boldsymbol{E}_{i,1} : 1 \leqslant j \leqslant n \right\}.$$

Problema 3. Veritat o fals? En cada cas, demostreu-ho.

- 1. Per a cada matriu $\mathbf{A} \in \mathrm{M}_n(\mathbb{K})$ invertible existeix una matriu $\mathbf{B} \in \mathrm{M}_n(\mathbb{K})$ no nul·la tal que $\mathbf{A}\mathbf{B} = \mathbf{0}$ és la matriu nul·la.
- 2. La matriu $\begin{pmatrix} 8 & -k \\ k^2 & 1 \end{pmatrix}$ és invertible per a tot nombre real k.
- 3. Si dues matrius invertibles \boldsymbol{A} i \boldsymbol{B} commuten, aleshores \boldsymbol{A}^{-1} i \boldsymbol{B}^{-1} també commuten.
- 4. Si \mathbf{A} i \mathbf{B} són matrius 2×2 , aleshores la fórmula $\det(\mathbf{A} + \mathbf{B}) = \det(\mathbf{A}) + \det(\mathbf{B})$ és vàlida.
- 5. Si \mathbf{A} és una matriu 3×3 tal que $(\mathbf{A} + \mathbf{1}_3)^2 = \mathbf{0}$, aleshores \mathbf{A} és invertible.

Soluci:

- 1. Fals. Si AB = 0 aleshores $B = A^{-1}AB = A^{-1}0 = 0$.
- 2. Fals. Si k = -2 la primera fila de la matriu és el doble de la segona i per tant el determinant val zero i la matriu no pot ser invertible. Aquest valor -2 es troba igualant el determinant $8 + k^3$ a zero.
- 3. Cert. Si AB = BA aleshores $A^{-1}B^{-1} = (BA)^{-1} = (AB)^{-1} = B^{-1}A^{-1}$.
- 4. Fals. La fórmula gairebé mai es compleix. Per exemple, si $\mathbf{A} = \mathbf{E}_{11}$ i $\mathbf{B} = \mathbf{E}_{22}$ es té $\det(\mathbf{A} + \mathbf{B}) = 1$ però, en canvi, $\det(\mathbf{A}) + \det(\mathbf{B}) = 0 + 0 = 0$.
- 5. Cert. Com que $(A + \mathbf{1}_3)^2 = A^2 + 2A + \mathbf{1}_3 = \mathbf{0}$, passant la matriu identitat a l'altre costat, canviant de signe, i traient factor comú de A pels dos costats, es té: $A(2\mathbf{1}_3 A) = (2\mathbf{1}_3 A)A = \mathbf{1}_3$, i, per tant, $2\mathbf{1}_3 A$ és la matriu inversa de la matriu A.

Problema 4. Sigui f l'endomorfisme de \mathbb{R}^4 que sobre la base canònica pren els valors:

$$f(e_1) = (1, 0, 1, 1), \quad f(e_2) = (0, 1, 1, 0), \quad f(e_3) = (-1, 1, 0, 1), \quad f(e_4) = (0, -1, 0, 1).$$

- 1. Demostreu que f és un isomorfisme (o sigui, que és bijectiu).
- 2. Demostreu que si U, V són subespais amb $U \oplus V = \mathbb{R}^4$ aleshores també $f(U) \oplus f(V) = \mathbb{R}^4$.
- 3. Siguin $U = \{(x, y, z, t) \in \mathbb{R}^4 : 2x + y = z + t = 0\}, V_1 = \{(x, y, z, t) \in \mathbb{R}^4 : y = z = x + t\}, V_2 = \{(x, y, z, t) \in \mathbb{R}^4 : y = z = x t\}.$ Comproveu que per a cada i = 1, 2 és $U \oplus V_i = \mathbb{R}^4$ i que f(U) = U. És cert també que $f(V_i) = V_i$?

SOLUCI: És un problema de les llistes i la seva solució es pot trobar als "exercicis resolts i comentats". L'endomorfisme f és

$$f(x, y, z, t) = f(xe_1 + ye_2 + ze_3 + te_4) = (x - z, y + z - t, x + y, x + z + t)$$

i la seva matriu en la base canònica és la que té per columnes les coordenades dels $f(e_i)$:

$$\mathbf{A} = \operatorname{Mat}(f; \mathscr{B}_e) = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}.$$

- 1. Bijectiu vol dir injectiu i exhaustiu. Injectiu equival a nucli trivial (dimensió zero); exhaustiu equival a imatge igual a \mathbb{R}^4 (dimensió 4). Per la fórmula de Grassmann totes dues condicions són equivalents i per tant demostrant-ne una de les dues ja n'hi ha prou. Per tant, entre altres maneres possibles, es pot fer una de les coses següents:
 - Es pot veure directament que és bijectiva demostrant que la matriu A és invertible (i això es pot fer veient que el determinant és diferent de zero o bé que el rang és quatre).

- Per calcular Ker f es resol el sistema homogeni AX = 0; es veu que és compatible determinat ja que la matriu A té rang 4 i per tant té solució única X = 0 i Ker f és trivial.
- Per calcular Im f es resol el sistema $\mathbf{AX} = \mathbf{v}$ on $\mathbf{v} = (a, b, c, d)$ és un vector arbitrari de \mathbb{R}^4 ; el sistema és compatible determinat ja que el rang de \mathbf{A} és quatre, i per tant té sempre solució, de manera que Im $f = \mathbb{R}^4$. També es pot calcular observant que Im f està generada pels quatre vectors $f(\mathbf{e}_i)$, i veient que aquests vectors són independents es dedueix que la imatge és tot \mathbb{R}^4 .
- 2. Es té: $f(U) \oplus f(V) = \mathbb{R}^4 \Leftrightarrow f(U) + f(V) = \mathbb{R}^4 \text{ i } f(U) \cap f(V) = \{\mathbf{0}\}.$

Es comença $f(U) + f(V) = \mathbb{R}^4$. Com que $f(U), f(V) \subseteq \mathbb{R}^4$ la inclusió \subseteq és immediata. S'ha de veure la recíproca. Donat $\mathbf{w}_2 \in \mathbb{R}^4$, per ser f exhaustiva existeix un vector $\mathbf{w}_1 \in \mathbb{R}^4$ amb $f(\mathbf{w}_1) = \mathbf{w}_2$. Com que $\mathbb{R}^4 = U + V$ es pot escriure $\mathbf{w}_1 = \mathbf{u} + \mathbf{v}$ amb $\mathbf{u} \in U$ i $\mathbf{v} \in V$. Aleshores $\mathbf{w}_2 = f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v}) \in f(U) + f(V)$. Per tant, $\mathbb{R}^4 = f(U) + f(V)$.

Ara $f(U) \cap f(V) = \{0\}$. Si $\mathbf{w} \in f(U) \cap f(V)$ és $\mathbf{w} = f(\mathbf{u}) = f(\mathbf{v})$ amb $\mathbf{u} \in U$ i $\mathbf{v} \in V$. Per injectivitat de f ha de ser $\mathbf{u} = \mathbf{v}$. Aleshores aquest vector $\mathbf{u} = \mathbf{v}$ és de la intersecció $U \cap V = \{0\}$. Per tant, $\mathbf{u} = \mathbf{v} = \mathbf{0}$ i $\mathbf{w} = f(\mathbf{u}) = f(\mathbf{v}) = \mathbf{0}$.

Un altre argument és fer servir que la suma de subespais és suma directa si, i només si, la reunió de bases dels subespais és una base de l'espai, junt amb el fet que un isomorfisme envia bases a bases. Aleshores, si u_1, \ldots, u_r és base de U i v_1, \ldots, v_s és base de V (amb r+s=4) la reunió de tots és base de \mathbb{R}^4 per ser $U \oplus V = \mathbb{R}^4$. Com que f és isomorfisme, $f(u_1), \ldots, f(u_r)$ és base de $f(U), f(v_1), \ldots, f(v_s)$ és base de f(V) i la reunió de tots és base de $f(\mathbb{R}^4) = \mathbb{R}^4$, d'on es dedueix que $f(U) \oplus f(V) = \mathbb{R}^4$.

3. Els subespais U, V_1, V_2 són de dimensió 2 ja que estan definits per dues equacions clarament independents dins d'un espai de dimensió 4. Si es volen calcular bases n'hi ha prou a resoldre les equacions, que són molt senzilles, i es troben per exemple les bases $\boldsymbol{u}_1 = (1, -2, 0, 0), \boldsymbol{u}_2 = (0, 0, -1, 1)$ de $U, \boldsymbol{v}_1 = (1, 1, 1, 0), \boldsymbol{v}_2 = (0, 1, 1, 1)$ de V_1 i $\boldsymbol{w}_1 = (1, 1, 1, 0), \boldsymbol{w}_2 = (0, -1, -1, 1)$ de V_2 , entre altres moltes possibilitats.

Per veure que $U \oplus V_1 = U \oplus V_2 = \mathbb{R}^4$ es pot comprovar que les sumes respectives donen \mathbb{R}^4 o que les interseccions respectives són trivials (per Grassmann una condició implica l'altra). La primera propietat es veu mirant que els quatre vectors \boldsymbol{u}_i i \boldsymbol{v}_i són independents (la matriu que els té per files o columnes té rang quatre) i el mateix pels quatre \boldsymbol{u}_i i \boldsymbol{w}_i . La segona es veu resolent els sistemes de quatre equacions reunió de les dues equacions de U i les dues equacions de V_1 (resp. de V_2) i veient que tots dos sistemes tenen solució única igual a zero.

La inclusió $f(U) \subseteq U$ es veu calculant $f(\mathbf{u}_1) = (1, -2, -1, 1), f(\mathbf{u}_2) = (0, 0, 1, -2)$ i veient que són $\mathbf{u}_1 + \mathbf{u}_2$ i \mathbf{u}_1 , respectivament. Com que aquests dos vectors $f(\mathbf{u}_i)$ són òbviament independents, per tenir la mateixa dimensió els dos espais són iguals. Anàlogament es veu que $f(V_1) = V_1$ calculant $f(\mathbf{v}_1) = 2\mathbf{v}_2$ i $f(\mathbf{v}_2) = -\mathbf{v}_1 + 2\mathbf{v}_2$. En canvi $f(V_2) \neq V_2$ ja que cap dels dos vectors $f(\mathbf{w}_1) = (0, 2, 2, 2)$ ni $f(\mathbf{w}_2) = (1, -3, -1, 0)$ no pertany a V_2 ja que les equacions $x\mathbf{w}_1 + y\mathbf{w}_2 = f(\mathbf{w}_i)$ no tenen solució.