## **Grafos**

**Fundamentos** 

**Prof. Edson Alves** 

Faculdade UnB Gama

 $\star$  Os grafos abstraem todas as outras estruturas de dados

 $\star$  Os grafos abstraem todas as outras estruturas de dados

 $\star$  Grafos modelam muitos problemas reais

- $\star$  Os grafos abstraem todas as outras estruturas de dados
- \* Grafos modelam muitos problemas reais
- \* Travessias em grafos são eficientes e úteis

- $\star$  Os grafos abstraem todas as outras estruturas de dados
- \* Grafos modelam muitos problemas reais
- \* Travessias em grafos são eficientes e úteis
- \* Algoritmos clássicos resolvem problemas recorrentes

# Grafo

Grafo vértice



## Grafo



## Grafo







## **Grafo simples**



## Multigrafo



## Grafo completo



## Subgrafo



## Subgrafo



### Grafo não-direcionado



## Grafo direcionado





## Grafo esparso



## Grafo denso



 $\star$  Grau de entrada  $g_i(u)$ : # vértices que chegam em u

 $\star$  Grau de entrada  $g_i(u)$ : # vértices que chegam em u

 $\star$  Grau de saída  $g_o(u)$ : # vértices que partem de u

- $\star$  Grau de entrada  $g_i(u)$ : # vértices que chegam em u
- $\star$  Grau de saída  $g_o(u)$ : # vértices que partem de u
- $\star$  Se G é não-direcionado, então  $g_i(u)=g_o(u)$ ,  $orall u\in V$









u

A

В

2 4

2







| $g_i(u)$ | $g_o(u)$ |
|----------|----------|
| 2        | 4        |
| 2        | 3        |
| 2        | 3        |
| 4        | 1        |
|          | 2 2 2    |



| u | $g_i(u)$ | $g_o(u)$ |
|---|----------|----------|
| A | 2        | 4        |
| В | 2        | 3        |
| С | 2        | 3        |
| D | 4        | 1        |
| E | 1        | 2        |
|   |          |          |



| u | $g_i(u)$ | $g_o(u)$ |
|---|----------|----------|
| A | 2        | 4        |
| В | 2        | 3        |
| С | 2        | 3        |
| D | 4        | 1        |

#### **Caminhos**

Um caminho é uma sequência não-nula de vértices da forma

$$(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{n-1}, w_n), (w_n, v)$$

onde  $\boldsymbol{u}$  é o ponto de partida e  $\boldsymbol{v}$  o ponto de chegada

#### **Caminhos**

Um caminho é uma sequência não-nula de vértices da forma

$$(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{n-1}, w_n), (w_n, v)$$

onde u é o ponto de partida e v o ponto de chegada









#### Referências

- 1. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 2. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 3. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.