Behavioral Tolerance, Vigor, and resilience

David R. Clark, Jason Walsman, Rachael Kramp, and Jessica Stephenson

2024-03-25

Contents

1	Intr	roduction	1
	1.1	Overall summary	1
	1.2	Quick experimental summary	1
	1.3	Load in packages needed for analysis	1
	1.4	Load in dataframe	1
	1.5	Calculate metrics needed for further analyses	2
	1.6	Description of data, structure, and type	19

1 Introduction

- 1.1 Overall summary
- 1.2 Quick experimental summary
- 1.3 Load in packages needed for analysis

```
# Clear the working environment
rm(list = ls())
# Visualization
library(ggplot2)
library(visreg)
source("http://highstat.com/Books/BGS/GAMM/RCodeP2/HighstatLibV6.R")
# (generalized) Linear mixed modeling
library(lme4)
library(glmmTMB)
library(lmodel2)
# Statistcal analysis reporting and model validation
library(performance)
library(car)
library(lmtest)
library(DHARMa)
# Data wrangling
library(dplyr)
```

```
library(plyr)
library(tidyverse)
library(tidylog)
```

1.4 Load in dataframe

```
# Loading in data set
IndBehav <- read_csv("VIEBehavior_20210913_V2.csv", col_types = cols(fishID = col_character(),</pre>
   Infection = col_character(), InfDate = col_character(), BehavGroup = col_character(),
    dayofinf = col_character(), CountDay = col_character(), Behavdate = col_character(),
   TOD = col_character(), Duration = col_double(), Velocity = col_double(), Distance = col_double()))
## New names:
## * 'fishID' -> 'fishID...2'
## * 'fishID' -> 'fishID...19'
## * 'AUC2' -> 'AUC2...21'
## * 'TrialTime' -> 'TrialTime...23'
## * 'Ratebf' -> 'Ratebf...24'
## * 'Recov' -> 'Recov...25'
## * 'TrialTime' -> 'TrialTime...31'
## * 'AUC2' -> 'AUC2...37'
## * 'Recov' -> 'Recov...40'
## * 'Ratebf' -> 'Ratebf...48'
# Filtering Data set so we can perform our analysis
IndBehav1 <- IndBehav %>%
    # Removing columns we dont need
select(-c(Blind.ID, fishID...19, TrialTime...31, AUC2...37, InfLength, Recov...40,
    Ratebf...48, LateLength, dayofinf, Countintial, Notes, InfWeight)) %>%
    # Renaming some of the columns with funky names for ease of coding and
    # naming
rename(fishID = fishID...2, AUC = AUC2...21, TrialTime = TrialTime...23, Ratebf = Ratebf...24,
   Recov = Recov...25)
## select: dropped 12 variables (Blind.ID, InfWeight, InfLength, LateLength, dayofinf, ...)
## rename: renamed 5 variables (fishID, AUC, TrialTime, Ratebf, Recov)
```

1.5 Calculate metrics needed for further analyses

1.5.1 Calculating all body condition metrics

```
IndBehav1 <- IndBehav %>%
select(-c(Blind.ID, fishID...19, TrialTime...31, AUC2...37, InfLength, Recov...40,
    Ratebf...48, LateLength, dayofinf, Countintial, Notes, InfWeight)) %>%
rename(fishID = fishID...2, AUC = AUC2...21, TrialTime = TrialTime...23, Ratebf = Ratebf...24,
    Recov = Recov...25)
```

select: dropped 12 variables (Blind.ID, InfWeight, InfLength, LateLength, dayofinf, ...)

```
## rename: renamed 5 variables (fishID, AUC, TrialTime, Ratebf, Recov)
##### This code is just to examine how many fish cleared their infection
##### (13)#### IndBehavRec<- IndBehav1 %>% filter(Recov==1)%>% filter(Fish==1)
##### This code is just to examine how many fish died during their infection
##### (2)#### IndBehavDead<- IndBehav1 %>% filter(Died==1)%>% filter(Fish==1)
FemaleOnly <- IndBehav1 %>%
   filter(Sex == "F")
## filter: removed 541 rows (49%), 564 rows remaining
MaleOnly <- IndBehav1 %>%
   filter(Sex == "M")
## filter: removed 565 rows (51%), 540 rows remaining
# Calculating SMI metrics Preinfection SMI####
# PreinfectionSMI for females To calculate the SMI we take the OLS slope
lmodel2(log(as.numeric(PreWeight) + 1) ~ log(as.numeric(PreLength) + 1), data = FemaleOnly)
## RMA was not requested: it will not be computed.
## No permutation test will be performed
##
## Model II regression
## Call: lmodel2(formula = log(as.numeric(PreWeight) + 1) ~
## log(as.numeric(PreLength) + 1), data = FemaleOnly)
##
## n = 564
           r = 0.9103118 r-square = 0.8286675
## Parametric P-values:
                         2-tailed = 1.890218e-217
                                                      1-tailed = 9.451089e-218
## Angle between the two OLS regression lines = 4.099607 degrees
##
## Regression results
## Method Intercept
                          Slope Angle (degrees) P-perm (1-tailed)
## 1
       OLS -1.114762 0.4206982
                                       22.81640
## 2
        MA -1.155627 0.4341311
                                       23.46717
                                                               NA
## 3
       SMA -1.240856 0.4621474
                                       24.80390
                                                               NA
##
## Confidence intervals
   Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope
## 1
       OLS
                -1.163000
                                 -1.066525 0.4048487
                                                        0.4365478
## 2
                -1.205686
                                 -1.106162 0.4178711
                                                        0.4505866
        MA
## 3
                                 -1.193466 0.4465696
       SMA
                -1.289899
                                                       0.4782687
## Eigenvalues: 0.009625885 0.0002518475
## H statistic used for computing C.I. of MA: 0.0001893902
```

```
# Take the median length from summary
summary(FemaleOnly$PreLength)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
##
                    20.20
                                             24.20
     16.60
           18.40
                             20.03
                                     21.20
# Adding PreSMI to Dataframe
FemaleOnly <- FemaleOnly %>%
   group_by(fishID) %>%
   mutate(PreSMI = PreWeight * ((20.2/PreLength)^0.4206982))
## group_by: one grouping variable (fishID)
## mutate (grouped): new variable 'PreSMI' (double) with 47 unique values and 0% NA
# PreinfectionSMI for males
lmodel2(log(as.numeric(PreWeight) + 1) ~ log(as.numeric(PreLength) + 1), data = MaleOnly)
## RMA was not requested: it will not be computed.
## No permutation test will be performed
##
## Model II regression
## Call: lmodel2(formula = log(as.numeric(PreWeight) + 1) ~
## log(as.numeric(PreLength) + 1), data = MaleOnly)
##
           r = 0.7784225
                           r-square = 0.6059415
## n = 540
## Parametric P-values: 2-tailed = 7.086423e-111
                                                      1-tailed = 3.543211e-111
## Angle between the two OLS regression lines = 6.76859 degrees
## Regression results
    Method Intercept
                           Slope Angle (degrees) P-perm (1-tailed)
## 1
       OLS -0.4620565 0.1938185
                                        10.96898
                                                                NA
## 2
        MA -0.4750867 0.1984879
                                        11.22660
                                                                NA
## 3
       SMA -0.6160126 0.2489888
                                        13.98170
                                                                NA
##
## Confidence intervals
    Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope
## 1
       OLS
                -0.4990055
                                -0.4251076 0.1805813 0.2070557
## 2
        MΑ
                -0.5130172
                                -0.4373522 0.1849657
                                                        0.2120803
## 3
       SMA
                -0.6539329
                                -0.5800547 0.2361033
                                                       0.2625776
##
## Eigenvalues: 0.00431447 9.773707e-05
## H statistic used for computing C.I. of MA: 0.0001701002
# Take the median length from summary
summary(MaleOnly$PreLength)
```

```
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
##
     13.70
           14.50
                     15.30
                             15.32
                                     16.00
                                             18.50
# Adding PreSMI to Dataframe
MaleOnly <- MaleOnly %>%
    group_by(fishID) %>%
   mutate(PreSMI = PreWeight * ((15.3/PreLength)^0.1938185))
## group_by: one grouping variable (fishID)
## mutate (grouped): new variable 'PreSMI' (double) with 44 unique values and 0% NA
##### Late Infection SMI####
# Late infection SMI for females Take OLS slope from this model
lmodel2(log(as.numeric(LateWeight) + 1) ~ log(as.numeric(PreLength) + 1), data = FemaleOnly)
## RMA was not requested: it will not be computed.
## No permutation test will be performed
## Model II regression
##
## Call: lmodel2(formula = log(as.numeric(LateWeight) + 1) ~
## log(as.numeric(PreLength) + 1), data = FemaleOnly)
##
## n = 516
           r = -0.127178
                           r-square = 0.01617424
## Parametric P-values:
                          2-tailed = 0.003807557
                                                    1-tailed = 0.001903778
## Angle between the two OLS regression lines = 57.58662 degrees
##
## Regression results
    Method Intercept
                             Slope Angle (degrees) P-perm (1-tailed)
              2.033718 -0.5976124
                                         -30.86306
## 1
       OLS
                                                                  NΑ
## 2
        MA 107.560934 -35.3034151
                                         -88.37748
                                                                  NA
## 3
       SMA 14.504560 -4.6990243
                                         -77.98610
                                                                  NA
##
## Confidence intervals
##
    Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope
## 1
        OLS
                                             -1.001497 -0.1937279
                 0.8050897
                                  3.262347
## 2
        MA
                64.2522935
                                331.105245 -108.822693 -21.0600644
                                           -5.120234 -4.3124649
## 3
        SMA
                13.3291795
                                 15.785299
## Eigenvalues: 0.1896132 0.008435402
##
## H statistic used for computing C.I. of MA: 0.0003658854
# Take the median length from summary
summary(FemaleOnly$PreLength)
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
```

24.20

21.20

20.20

20.03

##

16.60

18.40

```
# Adding PreSMI to Dataframe
FemaleOnly <- FemaleOnly %>%
    group by(fishID) %>%
   mutate(LateSMI = PreWeight * ((20.1/PreLength)^-0.5976124))
## group_by: one grouping variable (fishID)
## mutate (grouped): new variable 'LateSMI' (double) with 47 unique values and 0% NA
# Late Infection SMI for males Take OLS slope from this model
lmodel2(log(as.numeric(LateWeight) + 1) ~ log(as.numeric(PreLength) + 1), data = MaleOnly)
## RMA was not requested: it will not be computed.
## No permutation test will be performed
##
## Model II regression
## Call: lmodel2(formula = log(as.numeric(LateWeight) + 1) ~
## log(as.numeric(PreLength) + 1), data = MaleOnly)
## n = 456
           r = -0.06095677
                               r-square = 0.003715728
## Parametric P-values:
                         2-tailed = 0.1938354
                                                 1-tailed = 0.09691771
## Angle between the two OLS regression lines = 64.27059 degrees
##
## Regression results
    Method Intercept
                            Slope Angle (degrees) P-perm (1-tailed)
       OLS
             1.492739
                        -0.472241
                                        -25.27860
                                        -89.54158
## 2
        MA 348.385697 -124.982883
                                                                  NΔ
## 3
       SMA 21.760991
                        -7.747145
                                         -82.64494
                                                                  NA
##
## Confidence intervals
    Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope
## 1
       OLS
               -0.4947141
                                  3.480193 -1.185443
                                                      0.2409615
              138.8775568
                               -682.296809 244.961036 -49.7839131
## 2
        MA
## 3
       SMA
                19.8652425
                                 23.839279 -8.493107 -7.0667022
##
## Eigenvalues: 0.204658 0.003396832
## H statistic used for computing C.I. of MA: 0.0001459962
# Take the median length from summary
summary(MaleOnly$PreLength)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
                            15.32 16.00
##
     13.70 14.50
                   15.30
                                             18.50
# Adding PreSMI to Dataframe
MaleOnly <- MaleOnly %>%
   group by(fishID) %>%
   mutate(LateSMI = PreWeight * ((15.3/PreLength)^-0.472241))
```

```
## group_by: one grouping variable (fishID)

## mutate (grouped): new variable 'LateSMI' (double) with 44 unique values and 0% NA

#####

# Bringing the male and female dataframes together to create our overall
# dataframe
IndBehav2 <- rbind(FemaleOnly, MaleOnly)

# View(IndBehav2)</pre>
```

1.5.2 Checking that fish velocity is not different at different times of day.

We recorded the velocity of the fish at 3 time periods over the course of the day. Once in the monring between 0900-1100, once in the afternoon 1200-1400, 1500-1700. Therefore we wanted to confirm that there is no consistent Time of day effect before we collapse the behavioral measurements into means for each day.

```
##### First visually look at the TOD effect for behavior####
ggplot(IndBehav2, aes(TOD, Velocity)) + geom_boxplot() + geom_jitter() + xlab("Time of Day") +
    ylab("Velocity (cm/s)") + theme_classic()
```


Verify that this is not statistically significant####
anova(lm(Velocity ~ TOD, IndBehav2))

Visually there does not seem to be a distinguished pattern overall and an anova confirms it. It also does not seem to visually differ by sex or infection status. Therefore we can collapse the three different time points within a day to a mean velocity and variance of velocity across each time point, Before, Early, Late, and Later.

1.5.3 Calculating the behavioral tolerance metrics needed for analyses

We are calculating behavioral tolerance through two metrics. First is a measure of behavioral tolerance using linear mixed models using slope random effects for fishID. This allows us to extract each individuals change in activity with parasite burden and therefore allow us to calculate the tolerance (fishID slope) for each individual. This also allows us to use the random effect intercept for fishID as a measure of behavioral vigor. The second way we could calculate these metrics are a measure of change in behavior between two points of behavior (often referred to as point tolerance, CITATION FOR THIS). This is calculated in the second half of the code as the change in behavior between pre-infection and early, late, and later points of infection.

```
# Calulating the behavioral tolerance metrics were interested in for our
# analysis

# Random slope from random effects model Random effects model with random slope
# for each fish by worm burden prior to measuring its activity. This slope is
# the tolerance an individual has to changing its behavior as infection
# increases. The slope of the behavior is the individuals behavioral vigor, or
# its pre-infection behavior####
BehavTolLM <- lmer(Velocity ~ (Wormbf | fishID), IndBehav2)
summary(BehavTolLM)</pre>
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Velocity ~ (Wormbf | fishID)
     Data: IndBehav2
##
## REML criterion at convergence: 1369.3
##
## Scaled residuals:
      Min
##
              1Q Median
                                3Q
                                       Max
## -2.8571 -0.6195 -0.0263 0.5647 4.1663
##
## Random effects:
## Groups Name
                         Variance Std.Dev. Corr
## fishID
            (Intercept) 6.101e-01 0.781095
                        1.231e-05 0.003509 -0.42
##
             Wormbf
## Residual
                         5.539e-01 0.744248
## Number of obs: 541, groups: fishID, 48
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 1.906
                           0.111
                                   17.17
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 4.0577 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
##### Extracting the intercept and slope from the linear mixed model####
betaTol <- data.frame(coef(BehavTolLM)$fishID)</pre>
##### Renaming the slope and intercept to align with our metrics#####
betaTol <- betaTol %>%
   rename(BehavTol = Wormbf, BehavVig = X.Intercept.)
## rename: renamed 2 variables (BehavTol, BehavVig)
##### Creating a fishID column for combination with future dataframe####
betaTol <- cbind(fishID = rownames(betaTol), betaTol)</pre>
# Calculating the mean and variance in velocity per day, per fish
# We need to split the dataframes into the differnet time periods to calculate
# averages since mutate isnt splitting by TrialTime.
##### creating a dataframe to calculate the mean and variance of velocity for
##### before measurements.####
InBehavBefore <- IndBehav2 %>%
    drop_na(Velocity) %>%
   filter(TrialTime == "Before") %>%
    select(-c(InfDiff, Fish, Behavdate, Duration, Distance, comp3, Totworm, rate05,
       rate012, rate512, rate1216, rate18end, TOD, day, linf, maxlinf, maxworm,
       peakday, Ddate, Rdate, CountDay)) %>%
    mutate(AvgVel = mean(Velocity), VarVel = var(Velocity)) %>%
    distinct(fishID, .keep_all = TRUE)
```

```
## filter (grouped): removed 750 rows (74%), 270 rows remaining
## select: dropped 21 variables (Fish, CountDay, day, Totworm, comp3, ...)
## mutate (grouped): new variable 'AvgVel' (double) with 91 unique values and 0% NA
                     new variable 'VarVel' (double) with 91 unique values and 0% NA
##
## distinct (grouped): removed 179 rows (66%), 91 rows remaining
##### creating a dataframe to calculate the mean and variance of velocity for
##### early measurements.#####
InBehavEarly <- IndBehav2 %>%
    drop_na(Velocity) %>%
   filter(TrialTime == "Early") %>%
   select(-c(InfDiff, Fish, Behavdate, Duration, Distance, comp3, Totworm, rate05,
       rate012, rate512, rate1216, rate18end, TOD, day, linf, maxlinf, maxworm,
       peakday, Ddate, Rdate, CountDay)) %>%
   mutate(AvgVel = mean(Velocity), VarVel = var(Velocity)) %>%
    distinct(fishID, .keep_all = TRUE)
## drop_na (grouped): removed 84 rows (8%), 1,020 rows remaining
## filter (grouped): removed 760 rows (75%), 260 rows remaining
## select: dropped 21 variables (Fish, CountDay, day, Totworm, comp3, ...)
## mutate (grouped): new variable 'AvgVel' (double) with 87 unique values and 0% NA
##
                     new variable 'VarVel' (double) with 87 unique values and 0% NA
## distinct (grouped): removed 173 rows (67%), 87 rows remaining
##### creating a dataframe to calculate the mean and variance of velocity for
##### Late measurements. #####
InBehavLate <- IndBehav2 %>%
   drop_na(Velocity) %>%
   filter(TrialTime == "Late") %>%
    select(-c(InfDiff, Fish, Behavdate, Duration, Distance, comp3, Totworm, rate05,
       rate012, rate512, rate1216, rate18end, TOD, day, linf, maxlinf, maxworm,
        peakday, Ddate, Rdate, CountDay)) %>%
   mutate(AvgVel = mean(Velocity), VarVel = var(Velocity)) %>%
    distinct(fishID, .keep_all = TRUE)
## drop_na (grouped): removed 84 rows (8%), 1,020 rows remaining
## filter (grouped): removed 761 rows (75%), 259 rows remaining
```

```
## select: dropped 21 variables (Fish, CountDay, day, Totworm, comp3, ...)
## mutate (grouped): new variable 'AvgVel' (double) with 87 unique values and 0% NA
##
                     new variable 'VarVel' (double) with 87 unique values and 0% NA
## distinct (grouped): removed 172 rows (66%), 87 rows remaining
##### creating a dataframe to calculate the mean and variance of velocity for
##### Later measurements.####
InBehavLater <- IndBehav2 %>%
    drop_na(Velocity) %>%
   filter(TrialTime == "Later") %>%
    select(-c(InfDiff, Fish, Behavdate, Duration, Distance, comp3, Totworm, rate05,
        rate012, rate512, rate1216, rate18end, TOD, day, linf, maxlinf, maxworm,
       peakday, Ddate, Rdate, CountDay)) %>%
   mutate(AvgVel = mean(Velocity), VarVel = var(Velocity)) %>%
   distinct(fishID, .keep_all = TRUE)
## drop_na (grouped): removed 84 rows (8%), 1,020 rows remaining
## filter (grouped): removed 789 rows (77%), 231 rows remaining
## select: dropped 21 variables (Fish, CountDay, day, Totworm, comp3, ...)
## mutate (grouped): new variable 'AvgVel' (double) with 79 unique values and 0% NA
##
                     new variable 'VarVel' (double) with 79 unique values and 0% NA
## distinct (grouped): removed 152 rows (66%), 79 rows remaining
#### Adding these dataframes together to create one large one####
IndBehav3 <- rbind(InBehavBefore, InBehavEarly, InBehavLate, InBehavLater)</pre>
##### Pivoting wider so I can subtract velocity changes between periods to get
##### change in behavior####
IndBehav4 <- IndBehav3 %>%
    group_by(TrialTime, fishID, add = TRUE) %>%
    select(-Velocity) %>%
   pivot_wider(names_from = TrialTime, values_from = c(Wormbf, Ratebf, AvgVel, VarVel))
## group_by: 2 grouping variables (fishID, TrialTime)
## select: dropped one variable (Velocity)
## pivot_wider: reorganized (Wormbf, TrialTime, Ratebf, AvgVel, VarVel) into (Wormbf_Before, Wormbf_Ear
```

```
##### subset down to infected individuals only and calculate point tolerance
##### metrics for each timeframe. #####
IndBehav4Inf <- IndBehav4 %>%
    group by(fishID) %>%
   filter(Infection == 1) %>%
   mutate(EChBe = AvgVel_Early - AvgVel_Before, LChBe = AvgVel_Late - AvgVel_Before,
       LtrChBe = AvgVel_Later - AvgVel_Before, ERatebf = (Wormbf_Early - Wormbf_Before)/6,
       LRatebf = (Wormbf_Late - Wormbf_Early)/6, LtrRatebf = (Wormbf_Later - Wormbf_Late)/6) %>%
   pivot longer(cols = starts with("Wormbf"), names to = "TrialTime", names prefix = "Wormbf",
        values_to = "Wormbf") %>%
    select(-c(AvgVel_Before, AvgVel_Early, AvgVel_Late, AvgVel_Later, Ratebf_Before,
       Ratebf_Early, Ratebf_Late, Ratebf_Later)) %>%
   filter(fishID != 44)
## group_by: one grouping variable (fishID)
## filter (grouped): removed 38 rows (42%), 53 rows remaining
## mutate (grouped): new variable 'EChBe' (double) with 50 unique values and 8% NA
                     new variable 'LChBe' (double) with 50 unique values and 8% NA
##
##
                     new variable 'LtrChBe' (double) with 43 unique values and 21% NA
                     new variable 'ERatebf' (double) with 23 unique values and 11% NA \,
##
                     new variable 'LRatebf' (double) with 42 unique values and 11% NA
##
                     new variable 'LtrRatebf' (double) with 37 unique values and 25% NA
##
## pivot_longer: reorganized (Wormbf_Before, Wormbf_Early, Wormbf_Late, Wormbf_Later) into (TrialTime,
## select: dropped 8 variables (Ratebf_Before, Ratebf_Early, Ratebf_Late, Ratebf_Later, AvgVel_Before,
## filter (grouped): removed 4 rows (2%), 208 rows remaining
##### Make two dataframes with pivot longer for wormbf and velocity then merge
##### them together on fishID and TrialTime####
IndBehav4InfV <- IndBehav4 %>%
   filter(Infection == 1) %>%
   pivot_longer(cols = starts_with("AvgVel"), names_to = "TrialTime", names_prefix = "AvgVel_",
       values_to = "AvgVel") %>%
    select(fishID, AvgVel, TrialTime) %>%
   filter(fishID != 44)
## filter (grouped): removed 38 rows (42%), 53 rows remaining
## pivot_longer: reorganized (AvgVel_Before, AvgVel_Early, AvgVel_Late, AvgVel_Later) into (TrialTime,
## select: dropped 24 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
## filter (grouped): removed 4 rows (2%), 208 rows remaining
```

```
##### Making the growth rate columns into one column for infected
##### individuals####
IndBehavGRInf <- IndBehav4 %>%
   filter(Infection == 1) %>%
   pivot_longer(cols = starts_with("Ratebf"), names_to = "TrialTime", names_prefix = "Ratebf_",
        values_to = "Ratebf") %>%
   select(fishID, TrialTime, Ratebf)
## filter (grouped): removed 38 rows (42%), 53 rows remaining
## pivot_longer: reorganized (Ratebf_Before, Ratebf_Early, Ratebf_Late, Ratebf_Later) into (TrialTime,
## select: dropped 24 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
##### Making the new growth rate columns into one column for infected
##### individuals####
IndBehavNGRInf <- IndBehav4Inf %>%
    select(fishID, ERatebf, LRatebf, LtrRatebf) %>%
    rename(NRatebf_Early = ERatebf, NRatebf_Late = LRatebf, NRatebf_Later = LtrRatebf) %>%
   add_column(NRatebf_Before = 0) %>%
   pivot_longer(cols = starts_with("NRatebf"), names_to = "TrialTime", names_prefix = "NRatebf_",
        values_to = "NRatebf") %>%
    select(fishID, TrialTime, NRatebf) %>%
    distinct(fishID, TrialTime, .keep_all = TRUE)
## select: dropped 21 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
## rename: renamed 3 variables (NRatebf_Early, NRatebf_Late, NRatebf_Later)
## pivot_longer: reorganized (NRatebf_Early, NRatebf_Late, NRatebf_Later, NRatebf_Before) into (TrialTi
## select: no changes
## distinct (grouped): removed 624 rows (75%), 208 rows remaining
##### Making the Variance columns into one column for infected individuals#####
IndBehavVarInf <- IndBehav4Inf %>%
    select(-TrialTime) %>%
   pivot_longer(cols = starts_with("VarVel"), names_to = "TrialTime", names_prefix = "VarVel_",
       values_to = "VarVel") %>%
    select(fishID, TrialTime, VarVel) %>%
   distinct(fishID, TrialTime, .keep_all = TRUE)
## select: dropped one variable (TrialTime)
## pivot_longer: reorganized (VarVel_Before, VarVel_Early, VarVel_Late, VarVel_Later) into (TrialTime,
## select: dropped 19 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
## distinct (grouped): removed 624 rows (75%), 208 rows remaining
```

```
##### Merging the tolerance and vigor metrics ####
IndBehav4Inf1 <- merge(IndBehav4Inf, betaTol, by.x = "fishID", by.y = "fishID")</pre>
##### Merge the two dataframes together based on the fishID and TrialTime to
##### get all variables we want into one dataframe####
IndBehav5Inf <- merge(IndBehav4InfV, IndBehav4Inf1, by.x = c("fishID", "TrialTime"),</pre>
    by.y = c("fishID", "TrialTime"), all = TRUE)
IndBehav5Inf2 <- merge(IndBehav5Inf, IndBehavGRInf, by.x = c("fishID", "TrialTime"),</pre>
   by.y = c("fishID", "TrialTime"), all = TRUE)
IndBehav5Inf3 <- merge(IndBehav5Inf2, IndBehavNGRInf, by.x = c("fishID", "TrialTime"),</pre>
    by.y = c("fishID", "TrialTime"), all = TRUE)
IndBehav5Inf4 <- merge(IndBehav5Inf3, IndBehavVarInf, by.x = c("fishID", "TrialTime"),</pre>
    by.y = c("fishID", "TrialTime"), all = TRUE)
# Subset down to uninfected individuals and calculate their point tolerance
# metrics Creating a dataframe for calculating the tolerance metrics and then
# pivot longer by Wormbf####
IndBehav4Unf <- IndBehav4 %>%
   filter(Infection == 0) %>%
    mutate(EChBe = AvgVel_Early - AvgVel_Before, LChBe = AvgVel_Late - AvgVel_Before,
        LtrChBe = AvgVel_Later - AvgVel_Before, NRatebf_Early = (Wormbf_Early - Wormbf_Before)/5,
        NRatebf_Late = (Wormbf_Late - Wormbf_Early)/5, NRatebf_Later = (Wormbf_Later -
            Wormbf Late)/5, ) %>%
    group_by(fishID) %>%
   pivot_longer(cols = starts_with(c("Wormbf")), names_to = "TrialTime", names_prefix = c("Wormbf_"),
        values_to = "Wormbf") %>%
    select(-c(AvgVel_Before, AvgVel_Early, AvgVel_Late, AvgVel_Later, Ratebf_Before,
        Ratebf_Early, Ratebf_Late, Ratebf_Later))
## filter (grouped): removed 53 rows (58%), 38 rows remaining
## mutate (grouped): new variable 'EChBe' (double) with 38 unique values and 0% NA
##
                     new variable 'LChBe' (double) with 38 unique values and 0% NA
                     new variable 'LtrChBe' (double) with 38 unique values and 3% NA
                     new variable 'NRatebf_Early' (double) with one unique value and 100% NA
##
                     new variable 'NRatebf_Late' (double) with one unique value and 100% NA
##
##
                     new variable 'NRatebf_Later' (double) with one unique value and 100% NA
## group by: one grouping variable (fishID)
## pivot longer: reorganized (Wormbf Before, Wormbf Early, Wormbf Late, Wormbf Later) into (TrialTime,
## select: dropped 8 variables (Ratebf_Before, Ratebf_Early, Ratebf_Late, Ratebf_Later, AvgVel_Before,
##### Creating a second dataframe where we pivot longer for velocity####
IndBehav4UnfV <- IndBehav4 %>%
   filter(Infection == 0) %>%
   pivot_longer(cols = starts_with("AvgVel"), names_to = "TrialTime", names_prefix = "AvgVel_",
        values to = "AvgVel") %>%
   select(fishID, TrialTime, AvgVel)
```

```
## filter (grouped): removed 53 rows (58%), 38 rows remaining
## pivot_longer: reorganized (AvgVel_Before, AvgVel_Early, AvgVel_Late, AvgVel_Later) into (TrialTime,
## select: dropped 24 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
##### Making the growth rate columns into one column for uninfected
##### individuals####
IndBehavGRUnf <- IndBehav4 %>%
    filter(Infection == 0) %>%
   pivot_longer(cols = starts_with("Ratebf"), names_to = "TrialTime", names_prefix = "Ratebf_",
        values_to = "Ratebf") %>%
   select(fishID, TrialTime, Ratebf)
## filter (grouped): removed 53 rows (58%), 38 rows remaining
## pivot_longer: reorganized (Ratebf_Before, Ratebf_Early, Ratebf_Late, Ratebf_Later) into (TrialTime,
## select: dropped 24 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
##### Making the new growth rate columns into one column for infected
##### individuals####
IndBehavNGRUnf <- IndBehav4Unf %>%
    select(-TrialTime) %>%
    add_column(NRatebf_Before = 0) %>%
   pivot_longer(cols = starts_with("NRatebf"), names_to = "TrialTime", names_prefix = "NRatebf_",
       values to = "NRatebf") %>%
    select(fishID, TrialTime, NRatebf) %>%
   distinct(fishID, TrialTime, .keep_all = TRUE)
## select: dropped one variable (TrialTime)
## pivot_longer: reorganized (NRatebf_Early, NRatebf_Late, NRatebf_Later, NRatebf_Before) into (TrialTi
## select: dropped 20 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
## distinct (grouped): removed 456 rows (75%), 152 rows remaining
##### Making the Variance columns into one column for infected individuals#####
IndBehavVarUnf <- IndBehav4Unf %>%
    select(-TrialTime) %>%
   pivot_longer(cols = starts_with("VarVel"), names_to = "TrialTime", names_prefix = "VarVel_",
        values_to = "VarVel") %>%
    select(fishID, TrialTime, VarVel) %>%
   distinct(fishID, TrialTime, .keep_all = TRUE)
## select: dropped one variable (TrialTime)
## pivot_longer: reorganized (VarVel_Before, VarVel_Early, VarVel_Late, VarVel_Later) into (TrialTime,
## select: dropped 19 variables (Sex, PreWeight, PreLength, Treatment, Infection, ...)
## distinct (grouped): removed 456 rows (75%), 152 rows remaining
```

```
##### Merge the different datasets together####
IndBehav5Unf <- merge(IndBehav4UnfV, IndBehav4Unf, by.x = c("fishID", "TrialTime"),</pre>
    by.y = c("fishID", "TrialTime"), all = TRUE)
IndBehav5Unf2 <- merge(IndBehav5Unf, IndBehavGRUnf, by.x = c("fishID", "TrialTime"),</pre>
    by.y = c("fishID", "TrialTime"), all = TRUE)
IndBehav5Unf3 <- merge(IndBehav5Unf2, IndBehavNGRUnf, by.x = c("fishID", "TrialTime"),</pre>
    by.y = c("fishID", "TrialTime"), all = TRUE)
IndBehav5Unf4 <- merge(IndBehav5Unf3, IndBehavVarUnf, by.x = c("fishID", "TrialTime"),</pre>
   by.y = c("fishID", "TrialTime"), all = TRUE)
# Creating the BehavTol and BehavVig columns for the uninfected and calculating
# the metric for uninfected individual so we can combine these dataframes
# together
IndBehav5Unf4 <- IndBehav5Unf4 %>%
    group_by(fishID) %>%
    add_column(BehavTol = 0, BehavVig = 0)
## group_by: one grouping variable (fishID)
# Rbinding our infected and uninfected dataframes together into one overall
# dataframe
IndBehav5 <- rbind(IndBehav5Unf4, IndBehav5Inf4)</pre>
## Pivot longer for Change in behavior
IndBehav5ChBe <- IndBehav5 %>%
    select(-TrialTime) %>%
   rename(ChBehav_Early = EChBe, ChBehav_Late = LChBe, ChBehav_Later = LtrChBe) %>%
   add column(ChBehav Before = 0) %>%
   pivot_longer(cols = starts_with("ChBehav"), names_to = "TrialTime", names_prefix = "ChBehav_",
        values_to = "ChBehav") %>%
   select(fishID, TrialTime, ChBehav) %>%
   distinct(fishID, TrialTime, .keep_all = TRUE)
## select: dropped one variable (TrialTime)
## rename: renamed 3 variables (ChBehav_Early, ChBehav_Late, ChBehav_Later)
## pivot_longer: reorganized (ChBehav_Early, ChBehav_Late, ChBehav_Later, ChBehav_Before) into (TrialTi
## select: dropped 29 variables (AvgVel, Sex, PreWeight, PreLength, Treatment, ...)
## distinct (grouped): removed 1,092 rows (75%), 364 rows remaining
# Merge dataframes together for one large dataframe
IndBehav6 <- merge(IndBehav5, IndBehav5ChBe, by.x = c("fishID", "TrialTime"), by.y = c("fishID",</pre>
    "TrialTime"), all = TRUE)
# Removing some of the columns we dont want in the dataframe
IndBehav6 <- IndBehav6 %>%
    select(-c(ERatebf, LRatebf, LtrRatebf, NRatebf_Early, NRatebf_Late, NRatebf_Later,
        VarVel_Before, VarVel_Early, VarVel_Late, VarVel_Later))
```

```
## select: dropped 10 variables (VarVel_Before, VarVel_Early, VarVel_Late, VarVel_Later, NRatebf_Early,
```

```
# Create a point tolerance metric for each timepoint

IndBehav6 <- IndBehav6 %>%

mutate(PTo1 = ChBehav/Wormbf) %>%

select(-c(EChBe, LChBe, LtrChBe))

## mutate: new variable 'PTo1' (double) with 123 unique values and 63% NA

## select: dropped 3 variables (EChBe, LChBe, LtrChBe)

# Remove dataframes used for data wrangling and managing rm(c(IndBehav,
# IndBehav1, IndBehav2, IndBehav3, IndBehav3Inf1, IndBehav4, IndBehav4Inf, IndBehav4Inf1, IndBehav4InfV, IndBehav4Inf0, IndBehav4Inf1, IndBehav4In
```

```
##
       fishID
                     TrialTime
                                            AvgVel
                                                             Sex
                     Length:364
                                                         Length:364
  Min. : 1.00
                                        Min.
                                               :0.2942
   1st Qu.: 49.00
                     Class :character
                                        1st Qu.:1.3380
                                                         Class : character
                     Mode :character
## Median: 85.00
                                        Median :1.9069
                                                         Mode :character
## Mean : 80.96
                                              :1.9968
                                        Mean
##
   3rd Qu.:118.00
                                        3rd Qu.:2.5410
##
  Max.
          :148.00
                                        Max.
                                               :4.7609
##
                                        NA's
##
                                                         Infection
     PreWeight
                       PreLength
                                      Treatment
##
          :0.0570
                     Min. :13.70
                                     Length:364
                                                        Length:364
   1st Qu.:0.0800
                     1st Qu.:15.40
                                     Class :character
                                                        Class : character
## Median :0.1130
                    Median :17.30
                                     Mode :character
                                                        Mode :character
## Mean
         :0.1356
                    Mean
                           :17.86
## 3rd Qu.:0.1930
                     3rd Qu.:20.30
## Max.
          :0.3380
                            :24.20
                    Max.
## NA's
          :24
                     NA's
                            :24
##
                                           AUC
                                                           Recov
     LateWeight
                        wormJump
          : 0.0480
                             :0.000
                                                              :0.0000
  Min.
                    Min.
                                     Min.
                                                 4.0
                                                       Min.
                                     1st Qu.: 276.0
  1st Qu.: 0.0880
                     1st Qu.:2.000
                                                       1st Qu.:0.0000
##
## Median : 0.1330
                     Median :2.000
                                     Median : 759.5
                                                       Median :0.0000
## Mean
         : 0.6023
                     Mean :1.907
                                      Mean
                                            :1114.2
                                                       Mean
                                                              :0.2115
   3rd Qu.: 0.1720
                     3rd Qu.:2.000
                                      3rd Qu.:1584.5
                                                       3rd Qu.:0.0000
##
  Max.
          :19.6000
                     Max.
                            :3.000
                                      Max.
                                             :3758.5
                                                       Max.
                                                              :1.0000
                            :192
                                                              :156
##
   NA's
           :52
                     NA's
                                      NA's
                                             :168
                                                       NA's
##
        Died
                         PreSMI
                                           LateSMI
                                                              Wormbf
                                                          Min. : 0.00
## Min.
          :0.00000
                                       Min.
                     Min.
                             :0.05737
                                               :0.05611
##
   1st Qu.:0.00000
                     1st Qu.:0.08062
                                       1st Qu.:0.07924
                                                          1st Qu.:
## Median :0.00000
                     Median :0.11700
                                       Median :0.10895
                                                          Median: 9.00
          :0.01923
                     Mean :0.13510
                                       Mean
                                             :0.13701
                                                          Mean
                                                                 : 56.95
                                        3rd Qu.:0.19642
##
  3rd Qu.:0.00000
                     3rd Qu.:0.18909
                                                          3rd Qu.: 62.00
           :1.00000
                                               :0.37766
## Max.
                     Max.
                           :0.31326
                                       {\tt Max.}
                                                          Max.
                                                                 :876.00
## NA's
                     NA's
                                        NA's
                                                          NA's
           :156
                             :24
                                               :24
                                                                 :183
       Ratebf
                         NRatebf
                                             VarVel
                                                               BehavTol
          :-1.24245
## Min.
                     \mathtt{Min}.
                              :-12.667
                                       \mathtt{Min}.
                                               :0.000141
                                                           Min.
                                                                   :-0.003462
## 1st Qu.: 0.00000
                     1st Qu.: 0.000
                                       1st Qu.:0.072862 1st Qu.: 0.000000
```

```
Median : 0.07192
                                   0.000
                                            Median :0.211791
                                                                Median: 0.000000
##
                        Median:
                                                                        : 0.000514
##
    Mean
            : 0.09818
                        Mean
                                   5.082
                                            Mean
                                                    :0.395958
                                                                Mean
    3rd Qu.: 0.26378
                                                                 3rd Qu.: 0.000743
                         3rd Qu.:
                                   3.542
                                            3rd Qu.:0.444907
                                                                        : 0.005554
##
    Max.
            : 0.97296
                        Max.
                                :121.167
                                            Max.
                                                    :5.251273
                                                                Max.
##
    NA's
            :178
                         NA's
                                :140
                                            NA's
                                                    :21
                                                                NA's
                                                                        :24
##
       BehavVig
                         ChBehav
                                              PTol
##
    Min.
            :0.000
                             : -2.5747
                                                :
                                                      -Inf
                     Min.
                                         Min.
##
    1st Qu.:0.000
                     1st Qu.: 0.0000
                                         1st Qu.:-0.00563
##
    Median :1.126
                     Median : 0.0000
                                         Median: 0.00534
##
    Mean
            :1.015
                     Mean
                             : 0.3132
                                         Mean
##
    3rd Qu.:1.918
                     3rd Qu.: 0.7296
                                         3rd Qu.: 0.02462
##
    Max.
            :3.211
                     Max.
                               3.2250
                                         Max.
                                                       Inf
                                                :230
    NA's
            :24
                     NA's
                             :26
                                         NA's
```

```
# Setting some characters as factors
IndBehav6$TrialTime <- as.factor(IndBehav6$TrialTime)
IndBehav6$Sex <- as.factor(IndBehav6$Sex)
IndBehav6$Infection <- as.factor(IndBehav6$Infection)
IndBehav6$Recov <- as.factor(IndBehav6$Recov)
IndBehav6$Died <- as.factor(IndBehav6$Died)
IndBehav6$Treatment <- as.factor(IndBehav6$Treatment)</pre>
```

Now we have to decided how best to calculate whether an individual has recovered. In the experiment only had 13 fish recover from infection totally, therefore we are thinking of another metric that indicates a fish is in recovery during infection.

1.6 Description of data, structure, and type

fishID: The individual ID of each fish used in the trial.

TrialTime: The point of infection where each behavior trial happened. Early - early infection (6 days), Late - late in infection (12 days), Later - later in infection (18 days)

AvgVel: The average velocity from three separate behavioral trials of each fish for each of the Trial Times. (cm/s)

Sex: The sex of the individual. F - female, M - male

PreWeight: The weight of the individual prior to their fist behavior trial and pre-infection. (grams)

PreLength: The length of the individual prior to their first behavior trial and pre-infection (mm)

Treatment: What treatment the fish received prior to their first behavior and pre-infection. VIE - visible implant elastomer implant, UNTOUCHED - control individual, received no injection nor implant (mm)

Infection: Whether or not the individual was infected with Gyrodactylus turnbulli. 1 - infected, 0 - uninfected

LateWeight: The weight of the individual after their final behavior trial and after infection. (grams)

wormJump: The number of worms that jumped from the donor fish to the trial fish during manual infections.

AUC: The area under the curve of infection over the total infection trajectory for each individual.

Recov: Whether or not the individual recovered from infection during the experimental trial. 1 - recovered, 0 - did not recover

Died: Whether or not the individual Died from infection during the experimental trial. 1 - Died, 0 - did not died

PreSMI: The body condition of the individual prior to their first behavioral trial and pre infection. (mm/g) **LateSMI**: The body condition of the individual after to their last behavioral trial and after infection. (mm/g)

Wormbf: The number of worms on the fish prior to each trial.

Ratebf: The rate of growth of worms on the fish prior to each trial from the worm count immediately prior

to the trial.

NRatebf: The rate of growth of worms on the fish prior to each trial calculated as the change in worms between each time point. (For Example, From before to early).

VarVel: The variance in velocity from the separate behavioral trials during each time point. $((cm/s)^2)$

BehavTol:The behavioral tolerance of each individual calculated as the slope of a random effect model where fishID is the random effect term.

 $\textbf{BehavVig:} \textbf{The behavioral Vigor of each individual calculated as the intercept of a random effect model where fishID is the random effect term$

ChBehav: The change in behavior between trial times. (cm/s)

PTol:Point tolerance metric calculated by dividing the change in behavior between time points by the worms on the fish before the trial (cm/s/worms)

```
pairs(~AvgVel + TrialTime + AvgVel + Sex + PreWeight + PreLength + Treatment + Infection +
    LateWeight + wormJump + AUC + Recov + Died + PreSMI + LateSMI + Wormbf + Ratebf +
    NRatebf + VarVel + BehavTol + BehavVig + ChBehav + PTol, lower.panel = panel.smooth,
    diag.panel = panel.hist, upper.panel = panel.cor, data = IndBehav6)
```

