## A Note of Calculus-Michael Spivak

Son To <sup>1</sup>

 $Ravintola\ Kiltakellari$ 

 $23rd\ June,\ 2017$ 

 $<sup>^{1}\</sup>mathrm{Contact}$  me at: son.trung.to@gmail.com



## Preface

This is the note for the book Calculus written by Michael Spivak, citing what I think the most interesting and important subjects mentioned in the book.



## Contents

| Preface  |                            | i |
|----------|----------------------------|---|
| Ι        | Prologue                   | 1 |
| 1        | Basic properties of number | 3 |
| <b>2</b> | Number of various sorts    | 9 |



# Part I Prologue

### Chapter 1

## Basic properties of number

(P1) If a, b, and c are any numbers, then

$$a + (b+c) = (a+b) + c$$

See problem 24 for the generalization of  $a_1 + a_2 + a_3 + \cdots + a_n$  for (P1). The number 0 has important properties.

(P2) If a is any number, then

$$a + 0 = 0 + a = a$$

(P3) For every number a, there is also a number -a such that

$$a + (-a) = (-a) + a = 0$$

We now prove Lemma 1.

**Lemma 1.** If a + x = a, then x = 0

Proof.

If 
$$a + x = a$$
  
then  $(-a) + (a + x) = (-a) + a = 0$  (by (P3))  
hence  $((-a) + a) + x = 0$  (by (P1))  
hence  $0 + x = 0$  (by (P3) again)  
therefore,  $x = 0$  (by (P2))

Also, remember that the order of addition does not matter.

(P4) If a and b are any numbers, then

$$a + b = b + a$$

However, with only (P1)-(P4), we are powerless to figure out what conditions needed to have a - b = b - a. Therefore, we need to set new properties, and, oddly, they involve multiplication.

(P5) If a, b and c are any numbers, then

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

(P6) If a is any number, then

$$a \cdot 1 = 1 \cdot a = a$$

Moreover,  $1 \neq 0$  (This cannot be proved by other properties listed!)

(P7) For every number  $a \neq 0$ , there is a number  $a^{-1}$  such that

$$a \cdot a^{-1} = a^{-1} \cdot a = 1 (\Leftarrow 0 \cdot b = 0 \ \forall b)$$

This is why 1/0 is meaningless!

(P8) If a and b are any numbers, then

$$a \cdot b = b \cdot a$$

From (P5), (P6) and (P7), we have two lemmas:

**Lemma 2.** If  $a \cdot b = a \cdot c$  then  $a = 0 \lor b = c$ 

*Proof.* If a = 0 then the lemma is trivial. Suppose now  $a \neq 0$ ,

Multiply 
$$a^{-1}$$
 to both sides, 
$$(a^{-1}) \cdot (a \cdot b) = (a^{-1}) \cdot (a \cdot c)$$
By (P5), 
$$(a^{-1} \cdot a) \cdot b = (a^{-1} \cdot a) \cdot c$$
By (P7), 
$$1 \cdot b = 1 \cdot c$$
By (P6), 
$$b = c$$

**Lemma 3.** If  $a \cdot b = 0$  then  $a = 0 \lor b = 0$ 

*Proof.* If a = 0, there is nothing to prove. Suppose now  $a \neq 0$ , follow the proof of Lemma 2 by consecutively applying (P5), (P7) and (P6) in that order to finish the proof.

We, however, will not able to prove anything without a relationship between multiplication and addition. Therefore, the next property is definitely necessary.

(P9) If a, b and c are any numbers, then

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

By (P8), it is also true that 
$$(b+c) \cdot a = b \cdot a + c \cdot a$$

We will see in the next remark and lemmas that properties are not built in a straight line. Rather, it is a result of necessities, of fixes and starts that somehow fits the pieces of a puzzle perfectly.

Remark. When a - b = b - a?

Solution.

Add b at both sides, 
$$(a-b)+b=(b-a)+b==b+(b-a)$$
 by (P4)  
By (P1),  $a+(-b+b)=(b+b)+(-a)$   
By (P3),  $a+0=b+b-a$   
By (P2),  $a=b+b-a$   
Add both sides to a,  $a+a=(b+b-a)+a$   
By (P1),  $a+a=b+(b+(-a+a))=b+b$  by (P2) and (P3)  
By (P9),  $a\cdot (1+1)=b\cdot (1+1)$   
By Lemma 2,  $a=b$ 

Note that the proof above based on the presumption that we know  $1+1\neq 0$ . How do we prove it?

**Lemma 4.**  $a \cdot 0 = 0$ 

Proof.

We have 
$$a \cdot 0 + a \cdot 0 = a \cdot (0+0)$$
 by (P9) 
$$= a \cdot 0$$
 Add  $-a \cdot 0$ , 
$$a \cdot 0 = 0$$

Lemma 5. The product of two negative numbers is positive

*Proof.* We first prove that  $(-a) \cdot b = -(a \cdot b)$ ,

We have by (P9), 
$$(-a) \cdot b + (a \cdot b) = (-a + a) \cdot b$$
$$= 0$$
Adding  $-(a \cdot b)$  to both sides, 
$$(-a) \cdot b = -(a \cdot b)$$

5

Now, let's prove the main statement.

From above,

$$(-a) \cdot (-b) + [-(a \cdot b)] = (-a) \cdot (-b) + [(-a) \cdot b]$$
  
=  $(-a) \cdot (-b + b)$   
=  $0$ 

Adding  $(a \cdot b)$  to both sides,

$$(-a) \cdot (-b) = (a \cdot b)$$

We say that Lemma 5 is a direct consequence of (P1)-(P9).

Also, (P9) has important consequences: Justifying the algebraic manipulations (e.g.,  $x^2 - 3x + 2 = (x - 1)(x - 2)$ ) and the way one multiplies arabic numerals,

$$\begin{array}{r}
 13 \\
 \times 24 \\
 \hline
 52 \\
 \underline{26} \\
 312
 \end{array}$$

Denote the set of all positive numbers by P.

- (P10) (Trichotomy law) For every number a, one and only one of the following holds:
  - (i) a = 0
  - (ii)  $a \in P$
  - (iii)  $-a \in P$
- (P11) (Closure under addition) If  $a \in P \land b \in P$  then  $a + b \in P$
- (P12) (Closure under multiplication) If  $a \in P \land b \in P$  then  $a \cdot b \in P$

These properties should be complemented by the following definitions:

$$a > b$$
 if  $a - b \in P$   
 $a < b$  if  $b > a$   
 $a \ge b$  if  $a = b$  or  $a > b$   
 $a \le b$  if  $a = b$  or  $a < b$ 

The following lemmas are easy to prove...

**Lemma 6.** If a < b then a + c < b + c

*Proof.* If 
$$a < b$$
, then  $b - a \in P$ , which is surely  $(b + c) - (a + c) \in P$ 

**Lemma 7.** If  $a < b \land b < c$  then a < c

*Proof.* Then 
$$b-a \in P$$
 and  $c-b \in P$ . By (P11),  $(b-a)+(c-b)=c-a \in P$ 

**Lemma 8.** If  $a < 0 \land b < 0$  then  $a \cdot b > 0$ 

*Proof.* Then 
$$-a>0 \land -b>0$$
. By (P12),  $(-a)\cdot (-b)=a\cdot b>0$ , by Lemma 5.

**Lemma 9.** If  $a \neq 0$ , then  $a^2 \neq 0$ 

*Proof.* Because if  $a > 0 \land b > 0$  and  $a < 0 \land b < 0$  then  $a \cdot b > 0$ , let b = a

This implies that 1 > 0 (since  $1^2 = 1$ ).

We now prove a basic theorem relating to the absolute value.

#### Theorem 1.1. $\forall a \land b$ ,

$$|a+b| \le |a| + |b|$$

*Proof.* We apply the straightforward proof. A more elegant proof appears in the exercises. We will consider 4 cases:

$$a \ge 0$$
 and  $b \ge 0$  (1)

$$a \ge 0$$
 and  $b \le 0$  (2)

$$a \le 0$$
 and  $b \ge 0$  (3)

$$a \le 0$$
 and  $b \le 0$  (4)

For (1), the statement occurs with equality; that is,

$$|a + b| = a + b = |a| + |b|$$

For (4), the same is true by observing,

$$|a+b| = -(a+b) = (-a) + (-b) = |a| + |b|$$

For (2), the job is dumped down to proving that  $|a+b| \le a-b$ . This divides the case into two subcases.

Subcase 1:  $a+b \ge 0$ 

Then note that  $b \leq (-b)$ , which is true since  $b \leq 0$ .

Subcase 2:  $a+b \leq 0$ 

Then we have  $(-a) \leq a$ , which is true since  $a \geq 0$ .

For (3), the case is proved by interchanging the role of a and b.

Note from the proof above that equality happens if a and b have the same sign, or one of the two is zero.

Remark. It is crucial to understand that (P1)-(P12) are not enough to account for all properties of numbers. The deficiency is profound and subtle; and, hopefully, will be discovered in the rest of the note.



#### Chapter 2

### Number of various sorts

 $\mathbb{N}$  is the basic set and has many deficiencies. ((P2) and (P3)).

Mathematical induction principle is the basic property of N; however, even though proof by induction is quite straightforward, the method by which the formula was discovered remains a mystery.

**Theorem 2.1** (Well-ordering principle). If A is a nonnull set of natural numbers, then A has a least member.

*Proof.* Suppose A has no least member. Let B be the collection of n natural numbers  $1, \ldots, n$  that are not all in A. Clearly, 1 is in B (if not, 1 would be the least member in A). Moreover, if  $1, \ldots, k$  are not in A, surely k+1 is not in A either (else, k+1 would be the least member in A). This shows that if  $k \in B$ , then  $k + 1 \in B$ . Hence, B is the set of all natural numbers, and  $A = \emptyset$ . 

N can be defined either by the well-ordering principle for by mathematical induction since they are equivalent.

Principle of complete induction:

- (1) 1 is in A,
- (2) k+1 is in A if  $1, \ldots, k$  are in A,

then A is the set of all natural numbers.

Complete induction is the consequence of induction.

Recursive definition.

Deficiencies of  $\mathbb{N}$  can be partially remedied by  $\mathbb{Z}((P7))$  fails.), which is remedied by  $\mathbb{Q}$ , which is smaller than  $\mathbb{Z}$ .

Every natural number n is either odd or even.

if n is odd,  $n^2$  is odd; if n is even,  $n^2$  is even. Hence,

if  $n^2$  is even, n is even; if  $n^2$  is odd, n is odd.