Qualitative Comparison of Shape Matching Methods

by Zane Smith

Methods Compared

1. "Bending Invariant Signatures" from Elad and Kimmel [1]

combined with

"Shape Distributions" from Osada, Funkhouser, Chazelle, Dobkin [2]

2. Matching Shape Contexts with Earth Mover's Distance

Data set used and Geodesic Distance

Data Set

148 shapes in 12 groups

Triangle Mesh

Geodesic Calculation

 Both methods need Geodesic Distance

 Dijkstra's Algorithm on mesh

Invariant Signature and the D2 Distribution

 Apply Classical MDS to Geodesic Distance Matrix

 Create shape distribution function from D2 shape function in Osada et. al.

Shape Context

- Each point defines a probability density function of distances from itself to every other point
- Use Earth Mover's Distance as distance between each local distribution
- Use EMD again to find distance between two shapes' global distribution

Representing Data

Block Matrix

MDS

Distance Matrix

MDS

 Scale distance matrix to 2D Euclidean space point set

Display said set in a Scatter Plot

References

[1] "On Bending Invariant Surfaces" by Elad and Kimmel

[2] "Shape Distributions" by Osada, Funkhouser, Chazelle, Dobkin