INTERPRETACIÓN TABLA OPTIMA DEL SIMPLEX ING. CLAUDIA SCREPNIK

EL CASO

Se fabrican dos artículos, cada uno consume para su fabricación 1 litro de determinada materia prima, cuya disponibilidad es 10 litros. De otra materia de la cual se dispone de 24 kg el primer artículo necesita 2 kg. y el segundo 3 kg. El segundo artículo necesita 1 m2 de papel metálico para su conservación, del cual se dispone de 6 m2. Los beneficios son \$1 y \$2 respectivamente

Plantear el modelo y hallar la solución que maximice las ganancias.

EL MODELO

Las variables:

X1 = Cantidad de artículo 1 a producir (unidades)

X2 = Cantidad de artículo 2 a producir (unidades)

Las restricciones:

$$X1 + X2 \le 10$$

$$2X1 + 3 X2 \le 24$$

El objetivo:

$$Z = 1X1 + 2X2 \rightarrow MAXIMIZAR$$

MÉTODOS DE RESOLUCIÓN ALGEBRAICO

Agregando las variables slack a las restricciones:

$$1X1 + 1X2 + 1X3 = 10$$

$$2X1 + 3X2 + X4 = 24$$

$$X2 + X5 = 6$$

 $X1, X2, X3, X4, X5 \ge 0$

El objetivo:

$$Z = 1X1 + 2X2 + 0X3 + 0X4 + 0X5 \rightarrow MAXIMIZAR$$

RESUELTO POR EL MÉTODO SIMPLEX

Tabla 3			1	2	0	0	0
Xk	Cb	Base	X1	X2	Х3	X4	X5
X3	0	1	0	0	1	-1/2	1/2
X1	1	3	1	0	0	1/2	-3 / 2
X2	2	6	0	1	0	0	1
Z		15	0	0	0	1/2	1/2

Tabla 3			1	2	0	0	0
Xk	СЬ	Base	X1	X2	Х3	X4	X5
Х3	0	1	0	0	1	-1 / 2	1 / 2
X1	1	3	1	0	0	1 / 2	-3 / 2
X2	2	6	0	1	0	0	1
Z		15	0	0	0	1 / 2	1 / 2

 $Z = 1X1 + 2X2 + 0X3 + 0X4 + 0X5 \rightarrow MAXIMIZAR$

Tabla 3			1	2	0	0	0
Xk	Cb	Base	X1	X2	Х3	X4	X5
Х3	0	1	0	0	1	-1 / 2	1 / 2
X1	1	3	1	0	0	1 / 2	-3 / 2
X2	2	6	0	1	0	0	1
Z		15	0	0	0	1 / 2	1 / 2

	Tabla 3			1	2	0	0	0
ı	Xk	Cb	Base	X1	X2	X3	X4	X5
	X3	0	1	0	0	1	-1 / 2	1 / 2
	X 1	1	3	1	0	0	1 / 2	-3 / 2
	X2	2	6	0	1	0	0	1
	Z		15	0	0	0	1 / 2	1 / 2

Tabla 3			1	2	0	0	0
Xk	Cb	Base	X1	X2	Х3	X4	X5
Х3	0	1	0	0	1	-1 / 2	1 / 2
X1	1	3	1	0	0	1 / 2	-3 / 2
X2	2	6	0	1	0	0	1
Z		15	0	0	0	1 / 2	1 / 2

TABLA ÓPTIMA DE SIMPLEX - RESUMEN

- $X1 = 3 \rightarrow Costo de Oportunidad del producto = 0$
- $X2 = 6 \rightarrow Costo de Oportunidad del producto = 0$
- $X3 = 1 \rightarrow Valor marginal del recurso = 0$
- $X4 = 0 \rightarrow Valor marginal del recurso = 1/2$
- $X5 = 0 \rightarrow Valor marginal del recurso = 1/2$

OTRO CASO

VEAMOS OTRO EJEMPLO PARA AFIANZAR

ESCENARIO

Una empresa de muebles planea introducir una línea para jardín que conste de sillas, mecedoras y sillones.

Cada mueble requiere madera, plástico y aluminio para su fabricación de acuerdo con la

siguiente tabla.

	Madera	Plástico	Aluminio
Silla	1 unidad	1 unidad	2 unidades
Mecedora	1 unidad	1 unidad	3 unidades
Sillón	1 unidad	2 unidades	5 unidades

La empresa dispone de 400 unidades de madera, 500 de plástico y 1,450 de aluminio para iniciar la producción. Considera que puede vender cada silla en 21 dólares, cada mecedora en \$24 y cada sillón en \$36 y que puede colocar en el mercado toda su producción. Determina los niveles de producción para cada uno de sus productos a fin de obtener el mayor ingreso posible.

EL MODELO

Definición de variables de decisión

X1 = número de sillas producidas

X2 = número de mecedoras producidas

X3 = número de sillones producidos

Objetivo

$$Z = 21X1 + 24X2 + 36X3 \rightarrow MAXIMIZAR$$

Restricciones:

 $X1 + X2 + X3 \le 400$ [unidades de madera requeridas]

 $X1 + X2 + 2X3 \le 500$ [unidades de plástico requeridas]

 $2X1 + 3X2 + 5X3 \le 1450$ [unidades de aluminio requeridas]

TABLA ÓPTIMA

	Tabla 3			21	24	36	0	0	0
5	Base	Cb	Solución	X1	X2	Х3	X4	X5	X6
	X2	24	300	1	1	0	2	-1	0
	Х3	36	100	0	0	1	-1	1	0
	X6	0	50	-1	0	0	-1	-2	1
	Z		10.800	3	0	0	12	12	0

OTRO CASO

VEAMOS OTRO EJEMPLO DE MINIMIZACIÓN, CUIDADO CON LA INTERPRETACIÓN DE VALORES EN LA TABLA!

MINIMIZAR

En un tambo se ha establecido que el alimento debe contener por lo menos 27 unidades del nutriente A, 21 del nutriente B y 30 del nutriente C. Existen en el mercado dos tipos de alimentos compuestos que proporcionan dichos nutrientes: el RUSEMIN y el CARGILL, y que contienen cada kg. De alimento RUSEMIN: 3 unidades de A, 1 unidad de B, y 1 unidad de C, y cada kg. De alimento CARGILL: 1 unidad de A, 1 unidad de B, y 2 unidades de C.

El precio del alimento RUSEMIN es de 4 \$/kg y el de CARGILL es 2 \$/kg.

Se desea establecer en que proporción deben suministrarse estos alimentos para cumplir con los requerimientos nutritivos, minimizando el costo de alimentación.

MODELO

$$3x1 + x2 \ge 27 \rightarrow 3x1 + x2 - x3 = 27$$

 $x1 + x2 \ge 21 \rightarrow x1 + x2 - x4 = 21$
 $x1 + 2x2 \ge 30 \rightarrow x1 + 2x2 - x5 = 30$

$$Z = 4 \times 1 + 2 \times 2 \rightarrow MIN$$

$$Z = 4 \times 1 + 2 \times 2 + 0 \times 3 + 0 \times 4 + 0 \times 5 \rightarrow MIN$$

TABLA ÓPTIMA

Tabla óptima		Cį	4	2	0	0	0
Base	Cb	Sol	X1	X2	Х3	X4	X5
X1	4	3	1	0	-0.5	0.5	0
X5	0	9	0	0	0.5	-2.5	1
X2	2	18	0	1	0.5	-1.5	0
Z		48	0	0	-1	-1	0