

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

General Description

The SC1621SS is a 128 dots (32×4), memory mapping, and multi-function LCD driver. The S/W con-figuration feature of the SC1621SS makes it suitable for multiple LCD applications including LCD modules and display subsystems. Only three or four lines are required for the interface between the host controller and the SC1621SS. The SC1621SS contains a power down command to reduce power consumption.

Features

- Operating voltage: 2.4V~5.2V
- 8 kinds of time base/WDT clock sources
- Built-in 256kHz RC oscillator
- 32x4 LCD driver
- External 32.768kHz crystal or 256kHz frequency source input
- Built-in 32x4 bit display RAM
- Selection of 1/2 or 1/3 bias, and selection of 1/2 or 1/3 or 1/4 duty LCD applications
- 3-wire serial interface
- Internal time base frequency sources
- Internal LCD driving frequency source
- Two selectable buzzer frequencies (2kHz/4kHz)
- Software configuration feature
- Built-in time base generator and WDT
- Data mode and command mode instructions
- Time base or WDT overflow output
- R/W address auto increment
- Three data accessing modes
- VLCD pin for adjusting LCD operating voltage
- Power down command reduces power Consumption

Block Diagram

The IC substrate should connected to VDD in the PCB layout artwork

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

Pad Descriptions

Pad No.	Pad Name	I/O	Description
1	CS-	Ι	Chip selection input with pull-high resistor. When the CS- is logic high, the data and command read from or written to the SC1621SS are disabled. The serial interface circuit is also reset. But if CS- is at logic low level and is input to the CS- pad, the data and command transmission between the host controller and the SC1621SS are all enabled.
2	RD-	I	READ clock input with pull-high resistor. Data in the RAM of the SC1621SS are clocked out on the falling edge of the RD-signal. The clocked out data will appear on the DATA line. The host controller can use the next rising edge to latch the clocked out data.
3	WR-	I	WRITE clock input with pull-high resistor. Data on the DATA line are latched into the SC1621SS on the rising edge of the WR-signal.
4	DATA	I/O	Serial data input/output with pull-high resistor
5	GND		Negative power supply, ground
6	OSCO	О	The OSCI and OSCO pads are connected to a 32.768kHz crystal in order to generate a system clock. If the system clock comes from an external clock source, the external
7	OSCI	I	clock source should be connected to the OSCI pad. But if and on-chip RC oscillator is selected instead, the OSCI and OSCO pads can be left open.
8	VLCD	I	VLCD I LCD power input
9	VDD		Positive power supply
10	IRQ	О	Time base or WDT overflow flag, NMOS open drain output
11,12	BZ, BZ-	О	2kHz or 4kHz tone frequency output pair
13~16	COM0~COM3	О	LCD common outputs
48~17	SEG0 ~ 31	О	LCD segment outputs

Absolute Maximum Ratings

Supply Voltage
Input Voltage VSS - $0.3V \sim VDD + 0.3V$
Storage Temperature
Operating Temperature

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

D.C. Characteristics

Parameter	Sym	Min	Tron	Max	Units	Test Conditions		
Farameter	Sym	IVIIII	Тур	Max	Units	$\mathbf{V}_{\mathbf{DD}}$	Conditions	
Operating Voltage	$V_{ m DD}$	3.0		5.0	V			
Stand by Current	I_{DD}		0.1	5.0	uA	3V	No load	
Stand by Current	1DD		0.3	10.0	uA	5V	Power down mode	
Operating Current	I_{OP}		150	300	mA	3V	No load/LCD ON	
Operating Current	1Ob		300	600	IIIA	5V	On-chip RC oscillator	
Operating Current	ī		60	120	mA	3V	No load/LCD ON	
Operating Current	I_{OP}		120	240	IIIA	5V	Crystal oscillator	
Operating Current	ī		100	200	mA	3V	No load/LCD ON	
Operating Current	I_{OP}		200	400	IIIA	5V	External clock source	
Input Low Voltage	W	0		0.6	V	3V	DATA, WR-, CS-, RD-	
Input Low Voltage	$V_{\rm IL}$	0		1.0]	5V		
Input High Voltage	V _{IH}	2.4	1	3.0	V	3V	DATA, WR-, CS-, RD-	
input riigii voitage		4.0	1	5.0	·	5V	DATA, WK-, CS-, KD-	
DATA DZ DZ IDO	I_{OL1}	0.5	1.2		A	3V	V _{OL} =0.3V	
DATA, BZ, BZ-, IRQ-		1.3	2.6		mA	5V	$V_{OL}=0.5V$	
DATA, BZ, BZ-	I _{OH1}	-0.4	-0.8		mA	3V	V _{OH} =2.7V	
DAIA, BL, BL-		-0.9	-1.8		IIIA	5V	V _{OH} =4.5 V	
LCD Common Sink Current	T	80	150		uA	3V	$V_{OL}=0.3V$	
LCD Common Sink Current	I_{OL2}	150	250		uA	5V	$V_{OL}=0.5V$	
LCD Common Source Current	ī	-80	-120		uA	3V	V _{OH} =2.7V	
LCD Common Source Current	I_{OH2}	-120	-200		uA	5V	V _{OH} =4.5 V	
LCD Seamont Sink Current	ī	60	120		uA	3V	V _{OL} =0.3V	
LCD Segment Sink Current	I_{OL3}	120	200		uA	5V	V _{OL} =0.5V	
I CD Sagment Source Current	ī	-40	-70		11 A	3V	V _{OH} =2.7V	
LCD Segment Source Current	I _{OH3}	-70	-100		uA	5V	V _{OH} =4.5 V	
Dull High Designer	D	40	80	150	ΚΩ	3V	DATA WD CC	
Pull High Resistor	R_{PH}	30	60	100	1. 7.7	5V	DATA, WR-, CS-	

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

A.C. Characteristics

Parameter		Min	Trm	Max	Units	Test Conditions		
rarameter	Sym	Min	Тур	Max	Units	V_{DD}	Conditions	
System Clock			256		KHz	3V	On Chip RC Oscillator	
System Clock	f_{SYS1}		256		TTTL	5V	on emp ite osemutor	
System Clock	f_{SYS2}		32.768		KHz	3V 5V	Crystal Oscillator	
			32.768 256			3 V		
System Clock	f_{SYS3}		256		KHz	5V	External clock source	
			F _{SYS1} /1024			<i>3</i> v	On-chip RC oscillator	
LCD Clock	f_{LCD}		F _{SYS2} /128		Hz		Crystal Oscillator	
	202		F _{SYS3} /1024				External clock source	
LCD Common Period	t_{COM}		$n/f_{\rm LCD}$		S		n: Number of COM	
Serial Date Clock (WR- Pin)	f_{CLK1}			150	KHz	3V	Duty cycle 50%	
Serial Date Clock (WR-1 III)	1CLK1			300	KHZ	5V	Duty Cycle 3070	
Serial Date Clock (RD- Pin)	f_{CLK2}			75	KHz	3V	Duty cycle 50%	
				150		5V	5	
Tone Frequency	f_{TONE}		2.0 or 4.0		KHz		On-chip RC oscillator	
Serial Interface Reset Pulse Width (Figure 3)	t_{CS}		250		ns	3V 5V	CS-	
· · ·		3.34				3 V	Write mode	
		6.67				5V	Read mode	
WR-, RD- Input Pulse Width (Figure 1)	t_{CLK}	1.67			us	3V	Write mode	
		3.34				5V	Read mode	
Rise/Full Time Serial Data Clock Width		0.0.	120			3V	11000 111000	
Figure 1)	t_{r,t_f}		120		ns	5V		
Setup Time for Data to WR-, RD- Clock Width	+		120		12.0	3V		
(Figure 1)	t_{su}		120		ns	5V		
Hold Time for Data to WR-, RD- Clock Width	$t_{\rm h}$		120		ns	3V		
(Figure 1)			120		115	5V		
Setup Time for Data to CS- Clock Width	t_{su1}		100		ns	3V		
(Figure 1)	∙su1		100		113	5V		
Hold Time for Data to CS- Clock Width (Figure 1)	t _{h1}		100		ns	3V 5V		
()	<u> </u>	<u> </u>	L	L				

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

Functional Description

• Display memory - RAM

The static display memory (RAM) is organized into 32X4 bits and stores the displayed data. The contents of the RAM are directly mapped to the contents of the LCD driver. Data in the RAM can be accessed by the READ, WRITE, and READ-MODIFY-WRITE commands. The following is a mapping from the RAM to the LCD pattern:

RAM Mapping

• System oscillator

The SC1621SS system clock is used to generate the time base/Watchdog Timer (WDT) clock frequency, LCD driving clock, and tone frequency. The source of the clock may be from an on-chip RC oscillator (256 kHz), a crystal oscillator (32.768 kHz), or an external 256 kHz clock by the S/W setting. The configuration of the system oscillator is as shown. After the SYS DIS command is executed, the system clock will stop and the LCD bias generator will turn off. That command is, however, available only for the on-chip RC oscillator or for the crystal oscillator. Once the system clock stops, the LCD display will become blank, and the time base/WDT lose its function as well.

The LCD OFF command is used to turn the LCD bias generator off. After the LCD bias generator switches off by issuing the LCD OFF command, using the SYS DIS command reduces power consumption, serving as a system power down command. But if the external clock source is chosen as the system clock, using the SYS DIS command can neither turn the oscillator off nor carry out the power down mode. The crystal oscillator option can be applied to connect an external frequency source of 32 kHz to the OSCI pin. In this case, the system fails to enter the power down mode, similar to the case in the external 256 kHz clock source operation. At the initial system power on, the SC1621SS is at the SYS DIS state.

• Time base and Watchdog Timer (WDT)

The time base generator is comprised by an 8-stage count-up ripple counter and is designed to generate an accurate time base. The watch dog timer (WDT), on the other hand, is composed of an 8-stage time base generator along with a 2-stage count-up counter, and is designed to break the host controller or other subsystems from abnormal states such as unknown or unwanted jump, execution errors, etc. The WDT time-out will result in the setting of an internal WDT time-out flag. The outputs of the time base generator and of the WDT time-out flag can be connected to the IRQ- output by a command option. There are totally eight frequency sources available for the time base generator and the WDT clock. The

frequency is calculated by the following equation. The 32 kHz in the above equation indicates that the source of the system frequency is derived from a crystal oscillator of 32.768 kHz, an on-chip oscillator (256 kHz), or an external frequency of 256 kHz. If an on-chip oscillator (256 kHz) or an

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

external 256 kHz frequency is chosen as the source of the system frequency, the frequency source is by default rescaled to 32 kHz by a 3-stage presale. Employing both the time base generator and the WDT related

commands, one should be careful since the time base generator and WDT share the same 8-stage counter. For example, invoking the WDT DIS command disables the time base generator whereas executing the WDT EN command not only enables the time base generator but activates the WDT time-out flag output (connect the WDT time-out flag to the IRQpin). After the TIMER EN command is transferred, the WDT is disconnected from the IRQ- pin, and the output of the time base generator is connected to the IRQ- pin. The WDT can be cleared by executing the CLR WDT command, and the contents of the time base generator is cleared by executing the CLR WDT or the CLR TIMER command. The CLR WDT or the CLR TIMER command should be executed prior to the WDT EN or the TIMER EN command respectively. Before executing the IRQ- EN command the CLR WDT or CLR TIMER command should be executed first. The CLR TIMER command has to be executed before switching from the WDT mode to the time base mode. Once the WDT time-out occurs, the IRQ- pin will stay at a logic low level until the CLR WDT or the IRQ- DIS command is issued. After the IRQ- output is disabled the IRQ- pin will remain at the floating state. The IRQ- output can be enabled or disabled by executing the IRQ-EN or the IRQ- DIS command, respectively. The IRQ- EN makes the output of the time base generator or of the WDT time-out flag appear on the IRQ- pin. The configurations of the time base generator along with the WDT are as shown. In the case of on-chip RC oscillator or crystal oscillator, the power down mode can reduce power consumption since the oscillator can be turned on or off by the corresponding system commands. At the power down mode the time base/WDT loses all its functions.

On the other hand, if an external clock is selected as the source of system frequency the SYS DIS command turns out invalid and the power down mode fails to be carried out. That is, after the external clock source is selected, the SC1621SS will continue working until system power fails or the external clock source is removed. After the system power on, the IRQ- will be disabled.

• Tone output

A simple tone generator is implemented in the SC1621SS. The tone generator can output a pair of differential driving signals on the BZ and BZ, which are used to generate a single tone. By executing the TONE4K and TONE2K commands there are two tone frequency outputs selectable. The TONE4K and TONE2K commands set the tone frequency to 4kHz and 2kHz, respectively. The tone output can be turned on or off by invoking the TONE ON or the TONE OFF command. The tone outputs, namely BZ and BZ, are a pair of differential driving outputs used to drive a pies buzzer. Once the system is disabled or the tone output is inhibited, the BZ and the BZ outputs will remain at low level.

• LCD Driver

The SC1621SS is a 128 (32_4) pattern LCD driver. It can be configured as 1/2 or 1/3 bias and 2 or 3 or 4 commons of

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

LCD driver by the S/W configuration. This feature makes the SC1621SS suitable for multiply LCD applications. The LCD driving clock is derived from the system clock. The value of the driving clock is always 256Hz even when it is at a 32.768kHz crystal oscillator frequency, an on-chip RC oscillator frequency, or an external frequency. The LCD corresponding commands are summarized in the table.

The bold form of 100, namely 100, indicates the command mode ID. If successive commands have been

Name	Command Code	Function
LCD OFF	10000000010X	Turn off LCD output
LCD ON	1000000011X	Turn on LCD output
		c=0:1/2 bias option
		c=1:1/3 bias option
BIAS&COM	1000010abXcX	ab=00:2 commons option
		ab=01:3 commons option
		ab=10:4 commons option

issued, the command mode ID except for the first command, will be omitted. The LCD OFF command turns the LCD display off by disabling the LCD bias generator. The LCD ON command, on the other hand, turns the LCD display on by enabling the LCD bias generator. The BIAS and COM are the LCD panel related commands. Using the LCD related commands, the SC1621SS can be compatible with most types of LCD panels.

Commanded Formant

The SC1621SS can be configured by the S/W setting. There are two mode commands to configure the SC1621SS resources and to transfer the LCD display data. The configuration mode of the SC1621SS is called command mode, and its command mode ID is 100. The command mode consists of a system configuration command, a system frequency selection command, a LCD configuration command, a tone frequency selection command, a timer/WDT setting command, and an operating command. The data mode, on the other hand, includes READ, WRITE, and READ-MODIFY-WRITE operations. The following are the data mode IDs and the command mode ID:

Operation	Mode	ID
READ	Data	110
WRITE	Data	101
READ-MODIFY-WRITE	Data	101
COMMAND	Command	100

The mode command should be issued before the data or command is transferred. If successive commands have been issued, the command mode ID, namely 100, can be omitted. While the system is operating in the non-successive command or the non-successive address data mode, the CS- pin should be set to "1" and the previous operation mode will be reset also. Once the CS- pin returns to "0" a new operation mode ID should be issued first.

Interfacing

Only four lines are required to interface with the SC1621SS. The CS- line is used to initialize the serial interface circuit and to terminate the communication between the host controller and the SC1621SS. If the CS- pin is set to 1, the data and command issued between the host controller and the SC1621SS are first disabled and then initialized. Before issuing a mode command or mode switching, a high level pulse is required to initialize the serial interface of the SC1621SS. The DATA line is the serial data input/output line. Data to be read or written or commands to be written have to be passed through the DATA line. The RD- line is the READ clock input. Data in the RAM are clocked out on the falling edge of the RD- signal, and the clocked out data will then appear on the DATA line. It is recommended that the host controller read in correct data during the interval between

The rising edge and the next falling edge of the RD- signal. The WR line is the WRITE clock input. The data, address, and command on the DATA line are all clocked into the SC1621SS on the rising edge of the WR signal. There is an

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

optional IRQ- line to be used as an interface between the host controller and the SC1621SS. The IRQ- pin can be selected as a timer output or a WDT overflow flag output by the S/W setting. The host controller can perform the time base or the WDT function by being connected with the IRQ- pin of the SC1621SS.

Timing Diagrams

\triangleright	READ mode (com	manded code: 110)	
	CS-		
	WR-		
	RD-		
	DATA	1 1 0 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 1 1 0 A5 A4 A3 A2 A1 A0 I Memory Address1 (MA1) Data (MA1) Memory Address 2 (MA2)	
>	READ mode (succe	essive address reading)	
	CS-		
	WR-		
	RD-		
	DATA	1 1 0 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 Memory Address (MA) Data (MA) Data (MA+1) Data (MA+2) Data (MA+2)	D2 D3 D0 (MA+3)
>	WRITE mode (com	nmand code: 1 0 1)	
	CS-		
	WR-		
	DATA	1 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 1 0 1 A5 A4 A3 A2 A1 A0 D Memory Address1 (MA1) Data (MA) Memory Address 2 (MA2) 1	
>	WRITE mode (succ	cessive address writing)	
	CS-		
	WR-		บบป
	DATA	1 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 Memory Address (MA) Data (MA) Data (MA+1) Data (MA+2) Data (MA+2)	D2 D3 D0 (MA+3)

➤ READ-MODIFY-WRITE mode (command code: 1 0 1)

Note:

深圳市富满电子有限公司

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC16	2155 (文件编号: S	&CIC0739)	KAM	Mapped	132×4 L(D Driver
CS-						
WR-						
RD-			· L i			<u> </u>
DA TA		3 A2 A1 A0 D0 D1 D Address 1 (MA1) Data (M		\Box	3 A2 A1 A0 D0 D1 D2 I ddress 2 (MA2) Data (MA2)	
> REA	D-MODIFY-WRITE m	ode (successive a	ddress accessing)			
CS-						
WR-						
RD-						
DA TA		3 A2 A1 A0 D0 D1 D ddress (MA) Data (M	2 D3 D0 D1 D2 D3 D0 D A) Data (MA) Data	1 D2 D3 D0 D1 D2 (MA+1) Data (MA-		D1 D2 D3 D0 D1 D2 a (MA+2)
> Com	mand mode (command	code: 100)				
	CS-				Л	
	WR-					LFL
	DATA 1		C4 C3 C2 C1 C0 XXXX Canadl Command.	C8 C7 C6 C5 C4 C	i Command or	Data
					Mode	
> Mode	e (data and command m	ode)				
	WR-				<u> </u>	
	DA TA	ommand Address & Date		Idress & Data	Command Address & Da	ta ta
	Da	or ta Mode	or Data Mode		or Data Mode	
	RD-	<u> </u>	M A	*	<u> </u>	*

It is recommended that the host controller should read in the data from the DATA line between the rising edge of the RD- line and the falling edge of the next RD- line.

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

Command Summary

Name	ID	Command Code	D/C	Function	Def.
READ	110	A5A4A3A2A1A0D0D1D2D3	D	Read data to the RAM	
WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	Write data to the RAM	
SYS DIS	100	0000-0000-X	С	Turn off system oscillator and LCD bias generator	Yes
SYS EN	100	0000-0001-X	С	Turn on system oscillator	
LEC OFF	100	0000-0010X	С	Turn off LCD bias generator	Yes
LCD ON	100	0000-0011-X	С	Turn on LCD bias generator	
TIMER DIS	100	0000-0100-X	С	Disable time base output	
WDT DIS	100	0000-0101-X	С	Disable WDT time-out flag output	
TIMER EN	100	0000-0110-X	С	Enable time base output	
WDT EN	100	0000-0111-X	С	Enable WDT time-out flag output	
TONE OFF	100	0000-1000-X	С	Turn off tone outputs	Yes
TONE ON	100	0000-1001-X	С	Turn on tone outputs	
CLR TIMER	100	0000-11XX-X	С	Clear the contents of time base generator	
CLR WDT	100	0000-111X-X	C	Clear the contents of WDT stage	
XTAL32K	100	0001-01XX-X	C	System clock source, crystal oscillator	
RC 256K	100	001-10XX-X	C	System clock source, external clock source	Yes
EXT 256K	100	0001-11XX-X	C	System clock source, external clock	
				LCD 1/2 bias option	
DIAC 1/2	100	0010 -LV0 V	C	ab=00:2 command option	
BIAS 1/2	100	0010-abX0-X	C	ab=01:3 commons option	
				ab=10:4 commons option	
				LCD 1/3 bias option	
DIAG 1/2	100	0010 13/13/	C	ab=00:2 command option	
BIAS 1/3	100	0010-abX1-X	C	ab=01:3 commons option	
				ab=10:4 commons option	
TONE 4K	100	010X-XXXX-X	С	Tone frequency, 4kHz	
TONE 2K	100	011X-XXXX-X	С	Tone frequency, 2kHz	
IRQ- DIS	100	100X-0XXX-X	С	Disable IRO- output	Yes
IRQ- EN	100	100X-1XXX-X	С	Enable IRO- output	
	100		С	Time base/WDT clock; output: 1Hz;	
F1	100	101X-X000-X		The WDT time-out flag after: 4s	
F2	100	101X-X001-X	С	Time base/WDT clock output: 2Hz	
FZ	100	101X-X001-X		The WDT time-out flag after: 2s	
F4	100	101X-X010-X	С	The WDT time-out flag after: 2s Time base/WDT clock output: 4Hz	
F4	100	101X-X010-X		The WDT time-out flag after: 1s	
E0	100	101V V011 V	С	The WDT time-out flag after: 1s Time base/WDT clock output: 8Hz	
F8	100	101X-X011-X		The WDT time-out flag after: 1/2s Time base/WDT clock output: 16Hz	
F16	100	101X-X100-X	С	Time base/WDT clock output: 16Hz	
F10	100	101X-X100-X		The WDT time-out flag after: 1/4s	
E22	100	101V V101 V	C	The WDT time-out flag after: 1/4s Time base/WDT clock output: 32Hz	
F32	100	101X-X101-X	C	The WDT time-out flag after: 1/8s	
E64	100	101V V110 V	-	Time base/WDT clock output: 64Hz	
F64	100	101X-X110-X	C	The WDT time-out flag after: 1/16s	
E120	100	101V V111 V	-	Time base/WDT clock output: 128Hz	V
F128	100	101X-X111-X	C	The WDT time-out flag after: 1/32s	Yes
TEST	100	1110-0000-X	С	<u> </u>	
NORMAL	100	1110-0011-X	Č		Yes

Note: X: Don't care; A5~A0: RAM addresses; D3~D0: RAM data; D/C: Data/command mode; Def.: Power on reset default All the bold forms, namely 110, 101, and 100, are mode commands. Of these, 100 indicates the command mode ID. If successive commands have been issued, the command mode ID except for the first command will be omitted. The source of the time base/WDT clock frequency is derived from an on-chip 256kHz RC oscillator. Calculation of the frequency is based on the system frequency sources as stated above. It is recommended that the host controller should initialize the SC1621SS after power on reset, for power on reset may fail, which in turn leads to the malfunctioning of the SC1621SS

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

Pad Assignment

The IC substrate should be connected to VDD in the PCB layout artwork

D. IN.	D. I.M.	Coor	dinate	Dod No	D. I.N.	Coor	Coordinate	
Pad No.	Pad Name	X	Y	Pad No.	Pad Name	X	Y	
1	CSB	754.90	-625.10	25	SEG23	-755.10	624.90	
2	RDB	754.90	-500.10	26	SEG22	-755.10	499.90	
3	WRB	754.90	-375.10	27	SEG21	-755.10	374.90	
4	DATA	754.90	-250.10	28	SEG20	-755.10	249.90	
5	VSS	754.90	-125.10	29	SEG19	-755.10	124.90	
6	OSCO	754.90	-0.10	30	SEG18	-755.10	-0.10	
7	OSCI	754.90	124.90	31	SEG17	-755.10	-125.10	
8	VLCD	754.90	249.90	32	SEG16	-755.10	-250.10	
9	VDD	754.90	374.90	33	SEG15	-755.10	-375.10	
10	IRQB	754.90	499.90	34	SEG14	-755.10	-500.10	
11	BZ	754.90	624.90	35	SEG13	-755.10	-625.10	
12	BZB	754.90	754.90	36	SEG12	-755.10	-755.10	
13	COM0	624.90	754.90	37	SEG11	-625.10	-755.10	
14	COM1	499.90	754.90	38	SEG10	-500.10	-755.10	
15	COM2	374.90	754.90	39	SEG9	-375.10	-755.10	

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

16	COM3	249.90	754.90	40	SEG8	-250.10	-755.10
17	SEG31	124.90	754.90	41	SEG7	-125.10	-755.10
18	SEG30	-0.10	754.90	42	SEG6	-0.10	-755.10
19	SEG29	-125.10	754.90	43	SEG5	124.90	-755.10
20	SEG28	-250.10	754.90	44	SEG4	249.90	-755.10
21	SEG27	-625.10	754.90	45	SEG3	374.90	-755.10
22	SEG26	-500.10	754.90	46	SEG2	499.90	-755.10
23	SEG25	-375.10	754.90	47	SEG1	624.90	-755.10
24	SEG24	-755.10	754.90	48	SEG0	754.90	-755.10

Package Information

48-pin SSOP (300mil) Outline Dimensions

Cumb al	Dimensions in mil						
Symbol	Min.	Nom.	Max.				
A	395	_	420				
В	291	_	299				
С	8	_	12				
C'	613	_	637				
D	85	_	99				
E	_	25					
F	4	_	10				
G	25	_	35				
Н	4	_	12				
α	0°	_	8°				

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

SEG7 🖂 1	✓ 48 🖂 SEG8	SEG7 🖂 1	48 🗀 SEG8		
SEG6 🖂 2	47 🖂 SEG9	SEG6 🖂 2	47 🖂 SEG9		
SEG5 🖂 3	46 🖂 SEG10	SEG5 🖂 3	46 🖂 SEG10		
SEG4 🖂 4	45 🖂 SEG11	SEG4 🖂 4	45 🖂 SEG11		
SEG3 🖂 5	44 🖂 SEG12	SEG3 🖂 5	44 🖂 SEG12		
SEG2 🖂 6	43 🖂 SEG13	SEG2 🖂 6	43 🖂 SEG13		
SEG1 ☐ 7	42 🖂 SEG14	SEG1 🖂 7	42 SEG14		
SEGO 🖂 8	41 🖂 SEG15	SEGO 🖂 8	41 🖂 SEG15		
CS/	40 🖂 SEG16	CS/	40 🖂 SEG16		
RD/ ☐ 10	39 🖂 SEG17	RD/ ☐ 10	39 🖂 SEG17		
WR∕ 📥 11	38 🖂 SEG18	₩R/ 🖂 11	38 🖂 SEG18	SEG5 🖂 1	28 🗀 SEG7
DATA 🖂 12	37 🖂 SEG19	DATA 🖂 12	37 🖂 SEG19	SEG3 🔀 2	27 🗀 SEG9
VSS <u></u> 13	36 🖂 SEG20	VSS 🖂 13	36 🖂 SEG20	SEG1	26 🗀 SEG11
0SC0 ☐ 14	35 🖂 SEG21	0SC0 🖂 14	35 🖂 SEG21	CS/ 🗖 4	25 🗀 SEG13
NC <u></u> 15	34 🖂 SEG22	0SCI 🖂 15	34 🖂 SEG22	RD∕ <u></u> 5	24 🗀 SEG15
0SCI <u></u> 16	33 🖂 SEG23	VLCD 🖂 16	33 🖂 SEG23	WR/ <u></u> 6	23 🗀 SEG17
VDD/VLCD 🖂 17	32 🖂 SEG24	VDD ☐ 17	32 🖂 SEG24	DATA 🖂 7	22 🗀 SEG 19
IRQ/ 📥 18	31 🖂 SEG25	IRQ/ <u></u> 18	31 🖂 SEG25	vss □ 8	21 🗀 SEG21
BZ 🖂 19	30 🖂 SEG26	BZ 🖂 19	30 🖂 SEG26	VLCD 🔀 9	20 🗀 SEG23
BZ/ 🗖 20	29 🗀 SEG27	BZ/ 🗖 20	29 🖂 SEG27	VDD 🖂 10	19 🗀 SEG25
COMO 🖂 21	28 🗀 SEG28	СОМО 🖂 21	28 🖂 SEG28	IRQ/ 🖂 11	18 🗀 SEG27
COM1 🖂 22	27 🗀 SEG29	COM1 <u></u> 22	27 🗀 SEG29	BZ 🖂 12	17 🗀 SEG29
COM2 <u></u> 23	26 🖂 SEG30	COM2 🖂 23	26 🖂 SEG30	COMO <u></u> 13	16 🗀 SEG31
COM3 🖂 24	25 🖂 SEG31	COM3 📥 24	25 🖂 SEG31	COM1 14	15 🖂 COM2
SC1621		SC1621		SC1621	
-48 SS0	P	-48 SSOP/	'DIP	-28 Skinr	ıy
		·			=

封装脚位说明(SSOP-48L)

序号	脚位名称	序号	脚位名称	序号	脚位名称	序号	脚位名称
1	SEG7	13	VSS	25	SEG31	37	SEG19
2	SEG6	14	OSCO	26	SEG30	38	SEG18
3	SEG5	15	NC	27	SEG29	39	SEG17
4	SEG4	16	OSCI	28	SEG28	40	SEG16
5	SEG3	17	VDD/VLCD	29	SEG27	41	SEG15
6	SEG2	18	IRQ/	30	SEG26	42	SEG14
7	SEG1	19	BZ	31	SEG25	43	SEG13
8	SEG0	20	BZ/	32	SEG24	44	SEG12
9	CS/	21	COM0	33	SEG23	45	SEG11
10	RD/	22	COM1	34	SEG22	46	SEG10
11	WR/	23	COM2	35	SEG21	47	SEG9
12	DATA	24	COM3	36	SEG20	48	SEG8

SHENZHEN FUMAN ELECTRONICS CO., LTD.

SC1621SS(文件编号: S&CIC0739)

RAM Mapped 32×4 LCD Driver

封装脚位说明(SSOP/DIP-48L)

序号	脚位名称	序号	脚位名称	序号	脚位名称	序号	脚位名称
1	SEG7	13	VSS	25	SEG31	37	SEG19
2	SEG6	14	OSCO	26	SEG30	38	SEG18
3	SEG5	15	OSCI	27	SEG29	39	SEG17
4	SEG4	16	VLCD	28	SEG28	40	SEG16
5	SEG3	17	VDD	29	SEG27	41	SEG15
6	SEG2	18	IRQ/	30	SEG26	42	SEG14
7	SEG1	19	BZ	31	SEG25	43	SEG13
8	SEG0	20	BZ/	32	SEG24	44	SEG12
9	CS/	21	COM0	33	SEG23	45	SEG11
10	RD/	22	COM1	34	SEG22	46	SEG10
11	WR/	23	COM2	35	SEG21	47	SEG9
12	DATA	24	COM3	36	SEG20	48	SEG8

Application Circuits

Host controller with an SC1621SS display system

Note: The connection of IRQ and RD pin can selected depending on the requirement of the μ C.

The voltage applied to V_{LCD} pin must be lower than V_{DD}

Adjust VR to fit LCD display, at V_{DD} =5V, V_{LCD} =4V,VR=15k $\Omega \pm 20\%$

Adjust R(external pull-high resistance)to fit user s time base clock.