Morning Exam - 2019 CCC - Version A

(*) 1. Consider the ellipse *E* defined by the set of all points (x,y) in the plane such that $\frac{x^2}{4} + y^2 = 1$:

Find the volume of the elliptic torus \widetilde{E} obtained by rotating E around the y=-2 line.

- (A) 8π
- (B) $4\pi^2$
- (C) $8\pi^2$
- (E) none of these

2. Let Γ be the curve in the plane parametrized by γ : $[0,1] \to \mathbb{R}^2$ be given by

$$\gamma(t) = \left(t, \left(1 - t^{2/3}\right)^{3/2}\right)$$

(D) 4π

for all $t \in [0, 1]$:

Compute the arclength of Γ .

- (A) $\frac{3}{2}$
- (B) $\frac{\pi}{2}$ (C) $\frac{5\pi}{2}$
- (D) $\frac{5}{2}$
- (E) none of these

3. Compute $\int_0^{\sin x} \arcsin t dt$

- (A) $x \sin x + \cos x + C$
- (B) $\sin x + x \cos x + C$

(C) 4

- $(C) -x\sin x + \cos x + C$
- (D) $\sin x x \cos x + C$
- (E) none of these

- 4. Compute $\sum_{n=1}^{\infty} \frac{4}{n^2+2n}$
 - (A) 2
- (B) 3
- (D) does not converge
- (E) none of these

6. Compute $-\frac{13}{2} \int_0^{\pi} e^{2x} \cos(3x) dx$

- (A) $1 + 3\pi$
- (B) $1 + 2\pi$
- (C) $-1 + 2\pi$
- (D) $-1 + \pi$
- (E) none of these

7. Compute $\int \frac{\ln(\ln x)}{x \ln x} dx$

- (A) $\ln^2(\ln x) + C$ (B) $\frac{1}{2}\ln^2(\ln x) + C$ (C) $\ln(\ln^2 x) + C$ (D) $\frac{1}{2}\ln(\ln^2 x) + C$
- (E) none of these

(*) 8. Define $\varphi \colon \mathbb{N} \to \mathbb{N}$ by

$$\varphi(m) = \min\{n \in \mathbb{N} \mid 2^m < 3^n\}.$$

for all $m \in \mathbb{N}$. Thus $\varphi(1) = 1$, $\varphi(2) = 2$, $\varphi(3) = 2$, $\varphi(4) = 3$, and so on. The function φ can be described more explicitly by

- (A) $\lceil m \ln(2) / \ln(3) \rceil$
- (B) $\lceil m \ln(3) / \ln(2) \rceil$
- (C) $\lfloor m \ln(3) / \ln(2) \rfloor$
- (D) $|m \ln(2) / \ln(3)|$
- (E) none of these

(**) 9. Determine whether the following series converges. Justify your answer.

$$\sum_{n=1}^{\infty} (-1)^n \sum_{i=n^2}^{(n+1)^2 - 1} \frac{1}{i}.$$

If the series converges, then provide an upper bound for it.