H.T NO.										MLR18
---------	--	--	--	--	--	--	--	--	--	-------

Course Code: A4BS02

MLR INSTITUTE OF TECHNOLOGY

(An Autonomous Institute)

I B.Tech. I Semester Supplementary Examination September-2023

LINEAR ALGEBRA AND CALCULUS

(Common to CSE & IT)

Time: 3 Hours. Max. Marks: 70

Note: 1. This question paper contains two parts A and B.

- 2. Part -A is Compulsory which carries 20 marks. Answer all Questions in part A.
- 3. Part -B consists 5units. Answer any one question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

$10 \times 2M = 20Marks$

	a)	Find Integrating factor of $\frac{dy}{dx} - \frac{y}{x} = x$	2M	CO1	BL3
	b)	Solve $(D^2 + 4)y = \sin 2x$	2M	CO1	BL3
	c)	Test for convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.	2M	CO2	BL4
	d)	Test for convergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$.	2M	CO2	BL4
_	e)	Find the value of k such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.	2M	CO3	BL1
1.	f)	Define Orthogonal matrix and Unitary matrix.	2M	CO3	BL1
	g)	Explain, Why the set $S = \{(2,1,-2), (-2,-1,2), (4,2,-4)\}$ is not a basis of \mathbb{R}^3 .	2M	CO4	BL2
	h)	Find the nullity of the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}$	2M	CO4	BL2
i)	:)	Find a unit vector which is orthogonal to the vector α =	2M	CO5	BL2
	$(2,-1,6)$ of $V_3(R)$ with respect to standard inner product.	∠1V1		DL2	
	j)	Find the eigen values of A, Where $A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$	2M	CO5	BL1

PART- B

$5 \times 10M = 50Marks$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
b) Solve $(D^2 + 3D + 2)y = e^x sinx$. OR 3 Solve $D^2 + 3D + 2)y = e^x sinx$. 10M CO1 L3 4 a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2}$ 5M CO2 L4 b) Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$. 5M CO2 L4 OR OR 3 Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$. 5M CO2 L4 Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots$ is absolutely convergent.			Solve $(2x - y + 1)dx + (2y - x - 1)dy = 0$	5M	CO1	L3			
OR 3 Solve $D^2 + 3D + 2)y = e^x sinx$. 10M CO1 L3 4 a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2}$ 5M CO2 L4 b) Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$. 5M CO2 L4 OR a) Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots $ 5M CO2 L4 5 Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots $ is absolutely convergent. 5M CO2 L4	2	b)		5M	CO1	L3			
3 Solve $D^2 + 3D + 2)y = e^x sinx$. 10M CO1 L3 4 a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2}$ 5M CO2 L4 b) Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$. 5M CO2 L4 OR 5 a) Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots $ 5M CO2 L4 b) Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots $ is absolutely 5M CO2 L4 convergent.									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OK.						
b) Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$. 5M CO2 L4 OR a) Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots \dots $ 5M CO2 L4 b) Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots \dots $ is absolutely convergent.	3		10M	CO1	L3				
b) Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$. 5M CO2 L4 OR a) Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots \dots $ 5M CO2 L4 b) Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots \dots $ is absolutely convergent.									
b) Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{5}{2}}}$. 5M CO2 L4 OR a) Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots \dots $ 5M CO2 L4 b) Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots \dots $ is absolutely convergent.	,		Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2}$	5M	CO2	L4			
a) Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots \dots $ 5M CO2 L4 b) Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots \dots $ is absolutely convergent.	4	b)	Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$.	5M	CO2	L4			
5 b) Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots$ is absolutely convergent. 5M CO2 L4		OR							
b) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		a)	Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots \dots$	5M	CO2	L4			
	5	b)		5M	CO2	L4			

6	a)	If $A = \begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$ then show that matrix A is Hermitian and matrix iA is Skew-Hermitian.	5M	СОЗ	L3					
6	b)	Convert the given matrix into Normal form and hence find it's rank where $A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$	5M	CO3	L5					
	OR									
7	a)	Solve the following system of equations $x + y - 3z + 2w = 0$, $2x - y + 2z - 3w = 0$, $3x - 2y + z - 4w = 0$, $-4x + y - 3z + w = 0$.	5M	соз	L3					
	b)	Test for consistency and solve the system of equations $x - 2y - 3z = 1$, $3x + 4y - 6z = -2$, $4x + 2y - 3z = 5$.	5M	CO3	L4					
8		The linear transformation $T: V_2 \to V_3$ is defined as $T(x,y) = (x,x+y,y)$ then find the Range, Kernel, Rank and Nullity of T. and also find whether T is one-one or not?	10M	CO4	L3					
		OR								
9		Find the matrices of the linear transformation T on $V_3(R)$ defined as $T(a,b,c)=(2b+c,a-4b,3a)$ with respect to standard ordered basis $B=\{(1,0,0),(0,1,0),(0,0,1)\}$ and ordered basis $B^1=\{(1,1,1),(1,1,0),(1,0,0)\}$.	10M	CO4	L4					
	'			•						
10		Diagonalize the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	10M	CO5	L3					
	OR									
11		Apply Gram-Schmidt orthogonalization process to the vectors $\boldsymbol{\beta}_1$ = (1,0,1), $\boldsymbol{\beta}_2$ = (1,0,-1), $\boldsymbol{\beta}_3$ = (0,3,4) to obtain an orthonormal basis ($\alpha_1,\alpha_2,\alpha_3$) for R ³ With Standard inner product.	10M	CO5	L3					

---00000---