1.
$$AB = r\theta$$

= $\frac{1}{2}r^2\theta \times \frac{2}{r}$

$$=21.6 \times \frac{2}{5.4}$$
 (A1)

$$= 8 \text{ cm}$$
 (A1)

OR
$$\frac{1}{2} \times (5.4)^2 \theta = 21.6$$

$$\Rightarrow \theta = \frac{4}{2.7} \ (= 1.481 \text{ radians}) \tag{M1}$$

$$AB = r\theta \tag{A1}$$

$$=5.4\times\frac{4}{2.7}\tag{M1}$$

$$= 8 \text{ cm}$$
 (A1) (C4)

2. Perimeter =
$$5(2\pi - 1) + 10$$

Note: Award (M1) for working in radians; (A1) for $2\pi - 1$; (A1) for +10.

$$= (10\pi + 5) \text{ cm} (= 36.4, \text{ to } 3 \text{ sf})$$
 (A1) (C4)

3. AB = AC = BC = r

So,
$$\angle CAB = \frac{\pi}{3}$$
 or 60°

Sin $\frac{\pi}{3} = \frac{Cb}{Ac} = \frac{\sqrt{3}}{2}$... $cb = \frac{\sqrt{3}r}{2}$

$$\operatorname{Sin} \frac{11}{3} = \frac{2\lambda}{Ac} = \frac{\sqrt{3}}{2} \quad \text{a. } 2\lambda = \frac{\sqrt{3}}{2}\gamma$$

:. Area
$$\Im \Delta = \frac{1}{2} (r) \left(\frac{\sqrt{3}}{2} \gamma \right)$$
 (ni)

$$= \sqrt{\frac{3}{4}} \Upsilon^2 \qquad \boxed{6}$$

Shaded Area of Sentor

= Area of Sentor - Area of
$$\triangle$$
 (MI)

= $\frac{1}{2}$ r^2 . $\frac{17}{3}$ - $\frac{\sqrt{3}}{4}$ r^2 (MI)

$$= \frac{\pi r^2}{6} - \frac{\sqrt{3}}{4} r^2 \boxed{\text{Al}}$$

$$= 3\left[\frac{11}{6}r^{2} - \frac{13}{4}r^{2}\right] + \frac{13}{4}r^{2} \boxed{M}$$

$$= \frac{11}{2}r^{2} - \frac{3}{4}\frac{13}{4}r^{2} + \frac{13}{4}r^{2}$$

$$= \frac{11}{2}r^{2} - \frac{2}{4}\sqrt{3}r^{2} + \frac{13}{4}r^{2}$$

$$= \frac{11}{2}r^{2} - \frac{2}{4}\sqrt{3}r^{2}$$

$$= \frac{1}{2}\left[11 - \sqrt{3}\right]$$
(A)