A Generating Function Problem

Aresh Pourkavoos

April 3, 2022

Problem:

$$f(x,0) = \frac{e^x - 1}{x}$$
$$f(x,y) = \frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y)$$

Solution: Define

$$A(j,k) = \frac{\partial^{j+k} f}{\partial x^j \partial y^k}(0,0)$$

Get Taylor series of base case:

$$f(x,0) = \frac{1}{x} \left(\sum_{i=0}^{\infty} \frac{x^i}{i!} - 1 \right) = \frac{1}{x} \left(\sum_{i=1}^{\infty} \frac{x^i}{i!} \right) = \frac{1}{x} \left(\sum_{i=0}^{\infty} \frac{x^{i+1}}{(i+1)!} \right) = \sum_{i=0}^{\infty} \frac{x^i}{(i+1)!}$$

Find partial derivatives wrt x:

$$A(j,0) = \frac{\partial^{j} f}{\partial x^{j}} \sum_{i=0}^{\infty} \frac{x^{i}}{(i+1)!} = \frac{\partial^{j} f}{\partial x^{j}} \frac{x^{j}}{(j+1)!} = \frac{j!}{(j+1)!} = \frac{1}{j+1}$$

Use diffeq to establish recurrence relation on A:

$$\begin{split} A(j,k) &= \frac{\partial^{j+k} f}{\partial x^j \partial y^k}(0,0) \\ &= \frac{\partial}{\partial x} \left(\frac{\partial^{j+k} f}{\partial x^j \partial y^k} \right)(0,0) + \frac{\partial}{\partial y} \left(\frac{\partial^{j+k} f}{\partial x^j \partial y^k} \right)(0,0) \\ &= \frac{\partial^{j+k+1} f}{\partial x^{j+1} \partial y^k}(0,0) + \frac{\partial^{j+k+1} f}{\partial x^j \partial y^{k+1}}(0,0) \\ &= A(j+1,k) + A(j,k+1) \end{split}$$

Rearrange to compute higher values of k:

$$A(j, k + 1) = A(j, k) - A(j + 1, k)$$

These are sufficient to determine all A(j,k), which may be found by computation and guess-and-check:

$$A(j,k) = \frac{j!k!}{(j+k+1)!} = B(j+1,k+1)$$

where B is the beta function. Construct 2D Taylor series:

$$f(x,y) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} A(j,k) \frac{x^{j}y^{k}}{j!k!}$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{j!k!}{(j+k+1)!} \frac{x^{j}y^{k}}{j!k!}$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{x^{j}y^{k}}{(j+k+1)!}$$

$$= \sum_{n=0}^{\infty} \sum_{j+k=n} \frac{x^{j}y^{k}}{(j+k+1)!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \sum_{j+k=n} x^{j}y^{k}$$

$$= \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \frac{x^{n+1} - y^{n+1}}{x - y}$$

$$= \frac{1}{x-y} \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} - \sum_{n=0}^{\infty} \frac{y^{n+1}}{(n+1)!} \right)$$

$$= \frac{1}{x-y} ((e^{x}-1) - (e^{y}-1))$$

$$= \frac{e^{x} - e^{y}}{x-y}$$

Check answer:

$$\frac{\partial f}{\partial x} = \frac{e^x(x-y) - (e^x - e^y)}{(x-y)^2}$$
$$\frac{\partial f}{\partial y} = \frac{-e^y(x-y) + (e^x - e^y)}{(x-y)^2}$$
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = \frac{(e^x - e^y)(x-y)}{(x-y)^2}$$
$$= \frac{e^x - e^y}{(x-y)}$$
$$= f(x,y)$$