

X

0.2

Interpreting Output

- 1 model = smf.glm(formula='Response~Age',data=data,family=sm.families.Binomial())
- 2 result = model.fit()
- 3 print(result.summary())

Generalized Linear Model Regression Results

Dep. Variable Model: Model Family Link Function Method: Date: Time: No. Iteration	y: on: We	Bino 1 ed, 26 Dec	GLM Df R mial Df M ogit Scal IRLS Log- 2018 Devi 7:16 Pear	Likelihood: .ance:		92 90 1 1.0000 -24.968 49.937 46.3 nonrobust	
========	coef	std err	z	P> z	[0.025	0.975]	
Intercept Age	-20.4078 0.4259	4.523 0.095	-4.512 4.492	0.000	-29.273 0.240	-11.542 0.612	

1 result.null_deviance

123.15634524584677

Interpreting Output- Deviance

Deviance or Residual Deviance is similar to SSE in the sense it measures how much remains unexplained by the model built with predictors included.

Null Deviance shows how well the model predicts the response with only the intercept as a parameter. The intercept is the logarithm of the ratio of cases with y=1 to the number of cases with y=0. This is similar to SST, which gives total variation when all coefficients are zero (null hypothesis).

Interpreting Output- Testing the overall Model

The z-values and the associated p-values provide significance of individual predictor variables.

Python outputs AIC (Akaike's Information

Dep. Variab Model: Model Famil Link Functi	у:	Bind	GLM Df F omial Df M logit Scal			92 90 1 1.0000	
Method: Date: Time: No. Iterati		•	2018 Devi 07:16 Pear	Log-Likelihood: Deviance: Pearson chi2: Covariance Type:			
	coef	std err	Z	P> z	[0.025	0.975]	
Intercept Age		4.523 0.095		0.000 0.000	-29.273 0.240	-11.542 0.612	

1 result.null deviance

123.15634524584677

1 result.aic

53.936628910751196

Criterion) and you need to pick the model with the lowest AIC.

Interpreting Output- Testing the Overall Model

- AIC provides a means for model selection.
- AIC = D + 2k, where k is the # of parameters in the model including the intercept.
- AIC is *similar to Adjusted R2*in the sense it penalizes for adding more parameters to the model.
- It offers a relative estimate of the information lost when a model is used to represent the process that generated the data.
- It does not test a model in the sense of null hypothesis and hence doesn't tell anything about the quality of the model. It is only a relative measure between multiple models.
- AIC = n Log(SSE/n) + 2k for Ordinary Least Squares

Logistic Regression – Pseudo \mathbb{R}^2

- Note that R^2 is not defined in Logistic Regression
- McFadden's Pseudo R^2

<pre>model = smf.glm(formula='Response~Age', data=data, family=sm.families.Binomial result = model.fit() print(result.summary())</pre>									
		General	ized	Line	ar Mod	del Reg	ression Resul	lts	
Dep. Variab Model: Model Famil Link Functi Method: Date:	у:	Wed	1, 26	Bino l	GLM mial ogit IRLS 2018	Df Re: Df Moo Scale Log-L: Devian	: ikelihood: nce:		92 90 1 1.0000 -24.968 49.937
Time: No. Iterations:				01:0	7:16		on chi2: iance Type:		46.3 nonrobust
=======		coef	std	err	=====	z	P> z	[0.025	0.975]
Intercept	-20	.4078	4	.523		4.512	0.000	-29.273	-11.542

1 result.null_deviance

123.15634524584677

• Pseudo
$$R^2 = 1 - \frac{Residual \ Dev}{Null \ Dev}$$

$$\bullet = 1 - \frac{49.937}{123.156} = 0.59$$

Residual Plot

Understanding Residual Plot

Reference

Head First Statistics