

Números em Ponto Fixo e Ponto Flutuante

Disciplina: Introdução à Arquitetura de Computadores

Luciano Moraes Da Luz Brum

Universidade Federal do Pampa – Unipampa – Campus Bagé

Email: <u>lucianobrum18@gmail.com</u>

- > <u>Números em Ponto Fixo;</u>
- > Operações aritméticas com números em Ponto Fixo;
- ➤ Números em Ponto Flutuante;
- Operações aritméticas com números em Ponto Flutuante;
- > Resumo

Sonúmeros tratados até aqui não possuíam vírgula explicitamente;

Utilizando-se bits para representar frações, diminuem-se os bits para representar inteiros;

A notação em ponto fixo determina quantos bits são usados para representar a parte inteira e quantos bits são usados para representar a parte fracionária;

Para a mesma cadeia de bits, tem-se:

A vírgula não é representada explicitamente;

Dos 'n' bits: 't' bits ($t \ge 0$) são usados para parte inteira e 'f' bits ($f \ge 0$) são usados para parte fracionária (t + f = n);

 ➤ A quantidade total de valores representáveis segue a mesma, independente da posição da vírgula (2ⁿ);

A faixa de valores depende da posição da vírgula;

A fórmula é a mesma utilizada para complemento de B e B-1, sinal-magnitude e inteiros positivos, porém, todos divididos por um fator de 2^f ;

Ex: Complemento de B $\rightarrow \left[\frac{-2^{n-1}}{2^f}, \frac{(2^{n-1}-1)}{2^f}\right];$

 \triangleright Os números fracionários estão separados entre si por uma diferença de 2^{-f} ;

n	t	f	Qtia de n°s	Menor n°	Maior n°	Intervalo
8	8	0	256	-128	127	1
8	7	1	256	-64	63,5	0,5
8	6	2	256	-32	31,75	0,25
8	5	3	256	-16	15,875	0,125
8	4	4	256	-8	7,9375	0,0625
8	3	5	256	-4	3,96875	0,03125
8	2	6	256	-2	1,984375	0,015625
8	1	7	256	-1	0,9921875	0,0078125
8	0	8	256	-0,5	0,49609375	0,00390625

Tabela 1: Possibilidades de números em ponto fixo de 8 bits. Fonte: Adaptado de Weber, 2001.

- Números em Ponto Fixo;
- Operações aritméticas com números em Ponto Fixo;
- ➤ Números em Ponto Flutuante;
- > Operações aritméticas com números em Ponto Flutuante;
- > Resumo;

- ➤ Soma e subtração:
- Efetua-se da mesma maneira que para números inteiros, porém os números devem ter a mesma posição para a vírgula ('t' e 'f' iguais para todos operandos);
- Caso tenham diferentes posições, converte-se um dos números para a representação do outro;
- \triangleright Ex: m1 (t1 e f1) + m2 (t2 e f2) = m3 (t1 e f1 ou t2 e f2)

- > 1° Caso: 't1' > 't2' (t1 parte inteira de m1 e t2 parte inteira de m2).
- Parte Inteira: t2 deve ser estendido para t1 bits, mantendo sinal e valor do número.
 - > Para Inteiros-positivos, (t1-t2) zeros são colocados à esquerda de m2;
 - > Para números em complemento de B, o sinal deve ser duplicado à esquerda por (t1-t2) bits;

- > Parte Fracionária: f2 deve ser reduzida para f1 bits.
 - > Truncagem: f2-f1 bits a direita de m2 são eliminados;
 - \triangleright Arredondamento: somar $2^{-(f_1+1)}$ a m2 e após, truncagem;

Na tabela 2, considere que o número final deve ser representado em 4 bits de parte

inteira e 4 bits de parte fracionária;

N° Original	Representação	Parte Inteira (t)	Fração (T)	Fração (A)
01,101101 ₂	Inteiro-Positivo	00012	10112	10112
11,101101 ₂	Inteiro-Positivo	00112	10112	10112
010,001112	Inteiro-Positivo	00102	00112	01002
01,101101 ₂	Complemento de dois	00012	10112	1011 ₂
11,101101 ₂	Complemento de dois	1111 ₂	10112	10112
010,001112	Complemento de dois	00102	00112	01002

Tabela 2: Exemplos de redução de fração. Fonte: Adaptado de Weber, 2001.

- > 2° Caso: 't1' < 't2' (t1 parte inteira de m1 e t2 parte inteira de m2).
- Parte Inteira: t2 deve ser reduzido para t1 bits, mantendo sinal e valor do número.
 - ➢ Isso somente se for possível representar o mesmo número com t1 bits, caso contrário, ocorre estouro de representação;

- > Parte Fracionária: f2 deve ser estendida para f1 bits.
 - ➤ Basta acrescentar f1-f2 bits em zero a direita da fração de m1;

Na tabela 2, considere que o número final deve ser representado em 4 bits de parte inteira e 4 bits de parte fracionária;

N° Original	Representação	Parte Inteira (t)	Fração (f)
01101,101 ₂	Inteiro-Positivo	11012	10102
111011,01 ₂	Inteiro-Positivo	Estouro	01002
01000,111 ₂	Inteiro-Positivo	10002	1110 ₂
0110110,12	Complemento de dois	Estouro	10002
11101,101 ₂	Complemento de dois	11012	10102
0001011,12	Complemento de dois	Estouro	10002

Tabela 3: Exemplos de redução de mantissa. Fonte: Adaptado de Weber, 2001.

Exemplo: (Inteiro Positivos) 1° operando (3t e 3f) e 2° operando (1t e 5f):

$$(t1 > t2) \qquad 100111_2 + 111010_2 = 100,111_2 + 1,11010_2 = 100,111_2 \qquad 100,111_2 + 001,110_2 (T) + 001,111_2 (A) 110,101_2 \qquad 110,110_2$$

Multiplicação em Ponto Fixo: Procede-se da mesma forma que para números inteiros, porém cuidando agora a posição da vírgula.

 \rightarrow M1 (t1 + f1) X M2 (t2 + f2) = M3 (t1+t2 de parte inteira e f1 + f2 de parte fracionária);

Divisão em Ponto Fixo: Procede-se da mesma forma que para números inteiros, porém cuidando agora a posição da vírgula do dividendo e divisor.

- \rightarrow M1 (2.t + 2.f) / M2 (t + f) =
 - > Q = n bits ('t' de parte inteira e 'f' de parte fracionária);
 - ightharpoonup R = n bits ('2f' de parte fracionária);

Tópicos

- Números em Ponto Fixo;
- Operações aritméticas com números em Ponto Fixo;
- > Números em Ponto Flutuante;
- Operações aritméticas com números em Ponto Flutuante;
- > Resumo;

A faixa de números representáveis pelos números em ponto fixo é insuficiente para aplicações científicas;

➤ A representação de números em ponto flutuante é a versão binária da notação científica;

 $> N = m \times b^e$, onde: N = número, m = mantissa, b = base, e = expoente;

A precisão de um número é determinado pelo número de bits da mantissa;

A faixa de representação R depende do número de bits do expoente;

- Números em Ponto Flutuante são inerentemente redundantes;
- \triangleright Ex: 1,0 x 10¹⁸ ou 0,1 x 10¹⁹ ou 0,01 x 10²⁰;

Devemos normalizar as mantissas para evitar redundâncias;

- Definição: A mantissa está **normalizada** quando:
 - É constituída somente de uma parte fracionária, sem parte inteira, e quando o primeiro dígito após a vírgula é diferente de 0;
 - No caso de números em complemento de B:
 - \triangleright Positivos: começam por 0,1₂;
 - \triangleright Negativos: começam por 1,0₂;
- Normalizar um número envolve apenas deslocamentos da mantissa e incremento ou decrementos no expoente;

Estouro na mantissa é resolvido com um deslocamento para a direita e corrigindo o sinal;

- Estouro no expoente indica estouro de capacidade de representação:
 - > Se o expoente ultrapassou o maior n° positivo: overflow.
 - > Se o expoente ultrapassou o maior n° negativo: underflow.

Formato de um número em Ponto Flutuante (recomendado pela IEEE):

	Simples	Duplo	Quádruplo
Campos:			
S = sinal	1 bit	1 bit	1 bit
E = expoente	8 bits	11 bits	15 bits
L = primeiro bit	(não representado)	(não representado)	1 bit
F = fração	23 bits	52 bits	111 bits
Expoente:			
Excesso de	127	1023	16383
Maior valor	255	2047	32767
Menor valor	0	0	0

Tabela 4: Formatos IEEE. Fonte: Adaptado de Weber, 2001.

- \triangleright Representar o número 4,75₁₀: (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,75 ₁₀ x 2 ₁₀	1,5 ₁₀	12
0,5 ₁₀ x 2 ₁₀	1,0 ₁₀	12
4 ₁₀ / 2 ₁₀	2 ₁₀	02
2 ₁₀ /2 ₁₀	1 ₁₀	02
1 ₁₀ /2 ₁₀	0 ₁₀	12

Resultado: $100,11_2 \rightarrow$ Forma normalizada: $1,0011_2 \times 2^2$

- > 2° passo: Calcular o expoente em excesso de 127₁₀.

> 3° passo: Obter a mantissa.

Resultado: $100,11_2 \rightarrow$ Forma normalizada: $1,0011_2 \times 2^2$

Mantissa: 0011...₂ (23 bits)

 \rightarrow 4° Passo: analisar sinal. Positivo = 0.

Sinal	Expoente	Mantissa	
0_2	$1000\ 0010_2$	$001\ 1000\ 0000\ 0000\ 0000\ 0000_2$	
Resposta: 0100000010011000000000000000000000000			

- Representar o número -0.75_{10} : (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,75 ₁₀ x 2 ₁₀	1,5 ₁₀	12
0,5 ₁₀ x 2 ₁₀	1,0 ₁₀	12
Resultado: $-0.11_2 \rightarrow$ Forma normalizada: $-1.1_2 \times 2^{-1}$		

- ≥ 2° passo: Calcular o expoente em excesso de 127₁₀.

> 3° passo: Obter a mantissa.

Resultado: $-0.11_2 \rightarrow$ Forma normalizada: $-1.1_2 \times 2^{-1}$

Mantissa: $1..._2$ (23 bits)

> 4° Passo: analisar sinal. Negativo = 1.

Sinal	Expoente	Mantissa	
12	0111 1110 ₂	1000000000000000000000000000000000000	
	Resposta: 1011111101000000000000000000000000000		

- Representar o número 0.6875_{10} : (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado

- Representar o número 0.6875_{10} : (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,6875 ₁₀ x 2 ₁₀	1,375 ₁₀	12

- \triangleright Representar o número 0.6875₁₀: (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,6875 ₁₀ x 2 ₁₀	1,375 ₁₀	12
0,375 ₁₀ x 2 ₁₀	0,65 ₁₀	02

- \triangleright Representar o número 0.6875₁₀: (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,6875 ₁₀ x 2 ₁₀	1,375 ₁₀	12
0,375 ₁₀ x 2 ₁₀	0,75 ₁₀	02
0,75 ₁₀ x 2 ₁₀	1,5 ₁₀	12

- Representar o número 0.6875_{10} : (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,6875 ₁₀ x 2 ₁₀	1,375 ₁₀	12
0,375 ₁₀ x 2 ₁₀	0,75 ₁₀	02
0,75 ₁₀ x 2 ₁₀	1,5 ₁₀	12
0,5 ₁₀ x 2 ₁₀	1,0 ₁₀	12

- \triangleright Representar o número 0.6875₁₀: (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,6875 ₁₀ x 2 ₁₀	1,375 ₁₀	12
0,375 ₁₀ x 2 ₁₀	0,75 ₁₀	02
0,75 ₁₀ x 2 ₁₀	1,5 ₁₀	12
0,5 ₁₀ x 2 ₁₀	1,0 ₁₀	12
Resultado: $0,1011_2 \rightarrow Forma normalizada: 1,011_2 \times 2^{-1}$		

- Representar o número 0.6875_{10} : (1 bit sinal, 8 expoente, 23 mantissa)
 - ➤ 1° passo:

Divisão/Multiplicação	Quociente/Resultado	Resto/Resultado
0,6875 ₁₀ x 2 ₁₀	1,375 ₁₀	12
0,375 ₁₀ x 2 ₁₀	0,75 ₁₀	02
0,75 ₁₀ x 2 ₁₀	1,5 ₁₀	12
0,5 ₁₀ x 2 ₁₀	1,0 ₁₀	12

Resultado: $0,1011_2 \rightarrow$ Forma normalizada: $1,011_2 \times 2^{-1}$

- > 2° passo: Calcular o expoente em excesso de 127₁₀.

> 3° passo: Obter a mantissa.

Resultado: $0,1011_2 \rightarrow$ Forma normalizada: $1,011_2 \times 2^{-1}$

> 4° Passo:

Sinal	Expoente	Mantissa

> 3° passo: Obter a mantissa.

Resultado: $0,1011_2 \rightarrow Forma normalizada: 1,011_2 \times 2^{-1}$

Mantissa: 011...

> 4° Passo:

Sinal	Expoente	Mantissa

> 3° passo: Obter a mantissa.

Resultado: $0,1011_2 \rightarrow$ Forma normalizada: $1,011_2 \times 2^{-1}$

Mantissa: 011...

> 4° Passo: analisar sinal. Positivo= 0.

Sinal	Expoente	Mantissa

Números em Ponto Flutuante

> 3° passo: Obter a mantissa.

Resultado: $0,1011_2 \rightarrow Forma normalizada: 1,011_2 \times 2^{-1}$

Mantissa: 011...

> 4° Passo: analisar sinal. Positivo= 0.

Sinal	Expoente	Mantissa				
0_2	0111 1110 ₂	$011000000000000000000000_2$				
Resposta: 001111111001100000000000000000000000						

Números em Ponto Flutuante

IEEE precisão simples (32 bits)						
sinal	expoente	Mantissa	valor			
0	0000 00002	000 0000 0000 0000 0000 0000 2	+ 0	7		
1	0000 00002	000 0000 0000 0000 0000 00002	- 0	Zero		
0	1111 1111 ₂	000 0000 0000 0000 0000 00002	+ ∞	Infinito		
1	1111 1111 ₂	000 0000 0000 0000 0000 00002	- ∞			
0	1111 1111 ₂	000 0100 0100 0000 0000 0000 ₂	+ NaN	Não-Número		
1	1111 1111 ₂	010 0000 0000 0000 0000 00002	- NaN			
0	0000 00002	Qualquer valor ≠ 0	Número não-normalizado			
1	0000 00002	Qualquer valor ≠ 0	Número não-normalizado			
0	0000 0001 ₂ até 1111 1110 ₂	Qualquer valor	Número normalizado			
1	0000 0001 ₂ até 1111 1110 ₂	Qualquer valor	Número normalizado			

Tabela 5: Diferentes grupos de números no formato simples da IEEE. Fonte: Elaborada pelo autor.

Números em Ponto Flutuante

Links úteis:

http://carlosrafaelgn.com.br/aula/flutuante.html

http://www.h-schmidt.net/FloatConverter/IEEE754.html

Tópicos

- ➤ Números em Ponto Fixo;
- Operações aritméticas com números em Ponto Fixo;
- ➤ Números em Ponto Flutuante;
- > Operações aritméticas com números em Ponto Flutuante;
- > Resumo;

➤ Soma e subtração:

São feitas as operações sobre as mantissas e os expoentes são mantidos. Ambos operandos devem ter o mesmo expoente!

➤ Se são diferentes, o menor deve ser igualado ao maior e a mantissa deslocada para a direita para manter o valor representado pelo número.

- \triangleright Sejam X e Y dois operandos: X_m e Y_m suas mantissas e X_e e Y_e seus expoentes;
 - ≥ 1. Se $X_e = Y_e$, então $X \pm Y = (X_m \pm Y_m) \cdot 2^{X_e}$
 - > 2. Se $X_e < Y_e$, então $X \pm Y = (X_m. 2^{(X_e Y_e)} \pm Y_m). 2^{y_e}$

> 3. Se $X_e > Y_e$, então $X \pm Y = (X_m \pm Y_m, 2^{(Y_e - X_e)}) \cdot 2^{X_e}$

> Após a operação, devemos normalizar a mantissa (pode ocorrer estouro);

- Multiplicação: multiplica-se as mantissas e somam-se os expoentes;
- A multiplicação segue as mesmas regras da multiplicação normal e a mantissa resultado terá o dobro de bits de comprimento;
- Para reduzir ao número normal de bits, basta realizar truncagem ou arredondamento;

$$Y = (X_m x Y_m) \cdot 2^{(X_e + Y_e)}$$

> Após a multiplicação, normalizar o resultado (pode ocorrer estouro);

- Divisão: dividimos as mantissas e subtraímos os expoentes;
- A divisão segue as mesmas regras da divisão normal: a mantissa do dividendo é estendida para o dobro do n° de bits e depois as mantissas são divididas;
- > O resto é desprezado e as etapas que corrigem quociente e resto podem ser eliminadas

$$\triangleright X \div Y = (X_m \div Y_m) \cdot 2^{(X_e - Y_e)}$$

> Após a divisão, normalizar o resultado (pode ocorrer estouro);

Tópicos

- Números em Ponto Fixo;
- Operações aritméticas com números em Ponto Fixo;
- ➤ Números em Ponto Flutuante;
- Operações aritméticas com números em Ponto Flutuante;
- **Resumo**;

Resumo

Números em Ponto Fixo e Ponto Flutuante;

> Operações aritméticas com números em Ponto Fixo e Ponto Flutuante;

➤ Foi apresentado o Padrão IEEE 754 – 32 bits (simples);

Exemplos de conversão de números decimais para ponto flutuante em binário;

Exercício

Converta o número a seguir para decimal (IEEE 754 – single precision);

Dúvidas ?