Data Valorization: Logistic Regression

Lionel Fillatre

fillatre@unice.fr

Outline

- Introduction
- Odds and logit
- Interpretation
- Maximum Likelihood
- Conclusion

1 Introduction

General Linear Models

• Family of regression models

• Response	<u> Model Type</u>	
 Continuous 	Linear regression	
Counts	Poisson regression	
 Survival times 	Cox model	
Binomial	Logistic regression	

- Uses
 - Model building, risk prediction, etc.

Logistic Regression

- Models relationship between set of variables X_i
 - dichotomous (yes/no, smoker/nonsmoker,...)
 - categorical (social class, race, ...)
 - continuous (age, weight, gestational age, ...)
- And a dichotomous categorical response variable Y
 e.g. Success/Failure, Remission/No Remission, Survived/Died, etc...

Scatterplot with Y=(0,1)

Y = Hired-Not Hired; X= Experience

Simple Linear Regression

Binary Logistic Regression or "Logit"

- Selects regression coefficient to force predicted values for Y to be between (0,1)
- Produces S-shaped regression predictions rather than straight line
- Selects these coefficient through "Maximum Likelihood" estimation technique

Picture of Logistic Regression

Requirements for Logistic Regression

The Following need to be specified:

- 1) An outcome variable with two possible categorical outcomes (1=success; 0=failure).
- 2) A way to estimate the probability *P* of the outcome variable success.
- 3) A way of linking the outcome variable to the explanatory variables.
- 4) A way of estimating the coefficients of the regression equation.

2 Odds and Logit

Definition of odds

- Let *P* the probability that *Y* takes the value 1
- Since $0 \le P \le 1$, we might use odds $= \frac{P}{1-P}$
- The natural way to interpret odds for is as the ratio of events to non-events in the long run.
 - Example: odds for rolling six with a fair die are 1 to 5. This is because, if one rolls the die many times, and keeps a tally of the results, one expects 1 six event for every 5 times the die does not show six.
- Odds has no "ceiling" but has "floor" of zero.

Definition of logit

• So we use the logit transformation

$$\ln\left(\frac{P}{1-P}\right) = \ln(\text{odds}) = \log(P)$$

Logit does not have a floor or ceiling.

Inverse of logit: Logistic Function

- Since odds = P/(1-P), it follows that P = odds/(1 + odds).
- Besides, ln(odds) = logit(P) involves odds $= e^{logit(P)}$, hence

$$P = \frac{e^{\operatorname{logit}(P)}}{1 + e^{\operatorname{logit}(P)}} = \frac{1}{1 + e^{-\operatorname{logit}(P)}} = f(\operatorname{logit}(P))$$

where $f(z) = \frac{1}{1+e^{-z}}$ is called the logistic function.

Logistic Regression Model

- Assumption: $P = P(Y = 1|X) = P(X) = P(X_1, X_2, ..., X_k)$
- Logistic Regression Model (LOGIT Transform):

$$logit(P(X)) = ln\left(\frac{P(X)}{1 - P(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$
or
$$odds(X) = e^{logit(P(X))} = e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k}$$

• The coefficients β_0 , β_1 ,..., β_k should be estimated (discussed later).

3 Interpretation

Interpretation

- $logit(P(X)) = ln(\frac{P(X)}{1-P(X)}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$
- β_0 represents the global factor
- β_1 represents the fraction by which the risk is altered by a unit change in X_1
- β_2 is the fraction by which the risk is altered by a unit change in X_2
- And so on.
- What changes is the log odds; the odds themselves are changed with an exponential factor.

Interpretation

• If $\ln(\text{odds}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$ then

odds =
$$(e^{\beta_0}) (e^{\beta_1 X_1}) (e^{\beta_2 X_2}) ... (e^{\beta_k X_k})$$

Model is multiplicative on the odds scale

Example: Dichotomous Predictor

 Consider a dichotomous predictor (X) which represents the presence of risk (1 = present)

	Risk Factor (X)			
	Disease (Y)	Present (X = 1)	Absent (X = 0)	
	Yes (Y = 1)	P(Y=1 X=1)	P(Y=1 X=0)	
	No $(Y = 0)$	1 - P(Y = 1 X = 1)	1 - P(Y = 1 X = 0)	
$\frac{P(Y=1 X)}{1-P(Y=1 X)} = e^{\beta_o + \beta_1 X} \blacktriangleleft$	$e^{-}=e^{eta_o+eta_1 X}$	Odds for Disease wit		$\frac{=1 \mid X=1)}{=1 \mid X=1)} = e^{\beta_o + \beta_1}$
	Odds for Disease wit	II ICISIC I LOSCIIL —	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	
			B	⊥ <i>R</i>

Therefore the odds ratio (OR) =
$$\frac{\text{Odds for Disease with Risk Present}}{\text{Odds for Disease with Risk Absent}} = \frac{e^{\beta_o + \beta_1}}{e^{\beta_o}} = e^{\beta_o}$$

Interpretation of odds ratio (binary case)

- $OR_i = 1$: the « success » is independent of the variable X_i
- $OR_i > 1$: the « success » occurs more often for samples when X_i is true
- $OR_i < 1$: the « success » occurs more often for samples when X_i is false

Example: Odds Ratio

- P is proportion of individuals with a Myocardial Infarction
- Predictors:
 - age in years
 - htn = hypertension (1 = yes, 0 = no)
 - smoke = smoking (1 = yes, 0 = no)
- Estimated model:
 - Logit(P) = $\beta_0 + \beta_1$ age + β_2 htn + β_3 smoke
- Question: want OR for a 40 year old with hypertension vs otherwise identical 30 year old without hypertension.
- Answer: $\beta_0 + \beta_1 40 + \beta_2 + \beta_3$ smoke- $(\beta_0 + \beta_1 30 + \beta_3 \text{ smoke})$ = $\beta_1 10 + \beta_2 = \log 0 \text{R} \implies 0 \text{R} = e^{10\beta_1 + \beta_2}$

4 Maximum Likelihood

Constructing the estimated model

• Training data set with N samples $(y_i, X_i = (X_{i,1}, ..., X_{i,k}))$: $\{(y_1, (X_{1,1}, ..., X_{1,k})), (y_2, (X_{2,1}, ..., X_{2,k})), ..., (y_N, (X_{N,1}, ..., X_{N,k}))\}$

• The joint conditional probability of the training labels is

$$\Pr(y_1, y_2, ..., y_N | X_1, ..., X_N) = \Pr(y_1 | X_1) \Pr(y_2 | X_2) \cdots \Pr(y_N | X_N) = \prod_{i=1}^{N} \Pr(y_i | X_i)$$

Assumption: independent y_i 's

Maximum Likelihood (ML)

- Recall that
 - $\ln\left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)}\right) = \operatorname{logit}(\Pr(Y=1|X)) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$
 - $Pr(Y = 1|X) = f(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)$ where f is the logistic function
- Hence, the joint conditional probability of the labels is

$$\Pr(y_1, y_2, ..., y_N | X_1, ..., X_N) = \prod_{i=1}^{N} \Pr_{\beta}(y_i | X_i)$$

where $\beta = (\beta_0, \beta_1, \beta_2, \dots, \beta_k)$ is the vector of parameters to be estimated.

• From the ML principle, we choose parameters $\hat{\beta}$ that satisfy

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^{k+1}}{\operatorname{argmax}} \prod_{i=1}^{N} \operatorname{Pr}_{\beta}(y_i | X_i)$$

ML calculation

- Let us denote $p = p(X) = Pr(Y = 1|X) = Pr_{\beta}(Y = 1|X)$.
- Then, for dichotomous outcome, Pr(Y = 0|X) = 1 Pr(Y = 1|X) = 1 p. It is rewritten as:

$$Pr(y|X) = p^y (1-p)^{1-y}$$
 for $y \in \{0,1\}$

- Proof:
 - For y = 1, $Pr(y|X) = Pr(Y = 1|X) = p^{1}(1-p)^{0} = p$
 - For y = 0, $Pr(y|X) = Pr(Y = 0|X) = p^0(1-p)^1 = 1-p$

ML calculation

• So, given that $\Pr(y_i|X_i) = p_i^{y_i}(1-p_i)^{1-y_i}$ with $p_i = \Pr(Y_i = 1|X_i)$:

$$L = \prod_{i=1}^{N} \Pr(y_i|X_i) = \prod_{i=1}^{N} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$= \prod_{i=1}^{N} p_i^{y_i} \left(\frac{1}{1 - p_i}\right)^{y_i} (1 - p_i)$$

$$= \prod_{i=1}^{N} \left(\frac{p_i}{1 - p_i}\right)^{y_i} (1 - p_i)$$

ML calculation

• Taking the logarithm of both sides:

$$\ln L = \sum_{i} y_i \ln \left(\frac{p_i}{1 - p_i} \right) + \sum_{i} \ln(1 - p_i)$$

Remember that

$$\ln\left(\frac{p_i}{1 - p_i}\right) = \ln\left(\frac{P(y_i|X_i, \beta)}{1 - P(y_i|X_i, \beta)}\right) = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_k X_{i,k} = \beta X_i$$

- Vector notation: $\beta X_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_k X_{i,k}$
- Substituting in using logistic regression model:

$$\ln L = \sum_{i} y_i \beta X_i - \sum_{i} \ln (1 + e^{\beta X_i}) = J(\beta)$$

Gradient Calculation

- Cost: $J(\beta) = \sum_i y_i \beta X_i \sum_i \ln(1 + e^{\beta X_i})$
- Unfortunately, there is no closed form solution to maximizing $J(\beta)$ with respect to β .
- Therefore, one common approach is to use **gradient ascent**.
- Gradient with respect to β :

$$\nabla_{\beta}J(\beta) = \sum_{i} y_i X_i - \sum_{i} \frac{e^{\beta X_i}}{1 + e^{\beta X_i}} X_i = \sum_{i} X_i (y_i - \hat{p}_i)$$

Gradient Ascent

- Take a guess $\hat{\beta}_0$
- Loop over t = 1, ..., M
 - Move in the direction of the gradient

$$\hat{p}_{i,t} = \frac{1}{1 + e^{-\hat{\beta}_t X_i}} = \hat{p}_{i,t} (\hat{\beta}_t, X_i)$$

$$\hat{\beta}_{t+1} = \hat{\beta}_t + \gamma \sum_i X_i (y_i - \hat{p}_{i,t})$$

• Comment: γ is the step of the ascent (to tune carefully).

6 Conclusion

Conclusion

Very useful for binary outcomes

The logistic function is often used to estimate binary probability

Model easy to estimate

Extension to multiple outcomes