LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection

Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff ICML, 2016

> 2020. 1. 22 Seonyoung Kim

CONTENTS

- 1. Introduction
- 2. Related Work with Motivations
- 3. Proposed method: EncDec-AD
- 4. Experiments
- 5. Observation
- 6. Conclusion

Introduction

- Mechanical devices are instrumented with numerous sensors to capture the behavior and health of the machine
- Anomaly Detection
 - the process of identifying unexpected items or events in data sets, which differ from the normal data

Related Work and Motivations

- Traditional techniques monitoring anomalies use statistical measures to detect changes in the underlying distribution
 - Exponentially weighted moving average (EWMA), SVR
- Long Short Term Memory Networks for Anomaly Detection in Time Series
 [4]
 - Stacked LSTM based prediction model

A time series $X = \{x^{(1)}, x^{(2)}, ..., x^{(L)}\}$ of length L $x^{(i)} \in R^m$: an m – dimensinal vector of readings for m variables at time instance t_i $\tilde{x}^{(i)}$: the predicted value of $x^{(i)}$

Related Work and Motivations

- Predictable & Unpredictable time-series
 - control variable: variable which are not captured by sensor and it can be simple or changes frequently in certain range
 - result = predictable time series or unpredictable time-series

 Detecting anomalies with control variable that changes frequently becomes challenging using traditional approaches based on prediction models

- Solve the problem of the prediction model for anomaly detection
 - Predictable & Unpredictable problem
 - Uses autoencoder-based method to detect the anomalies
- Overview
 - Train LSTM Encoder—Decoder model
 - the LSTM Encoder learns a fixed length vector representation of the normal time-series data
 - 2. the LSTM Decoder uses this representation to reconstruct the time-series
 - Compute likelihood of anomaly
 - ✓ With trained model, compute likelihood of anomaly of time-series data

LSTM Encoder–Decoder as reconstruction model

- \checkmark a time series $X = \{x^{(1)}, x^{(2)}, ..., x^{(L)}\}\ of\ length\ L$
- $\checkmark x^{(i)} \in \mathbb{R}^m$: an m dimensinal vector of readings for m variables at time instance t_i
- ✓ $h_E^{(i)} \in \mathbb{R}^c$: the hidden state of encoder at time t_i for each $i \in \{1, 2, ..., L\}$, where c is the number of LSTM units in the hidden layer of the encoder
- ✓ $h_D^{(i)} \in \mathbb{R}^c$: the hidden state of decoder at time t_i for each $i \in \{1,2,...,L\}$, where c is the number of LSTM units in the hidden layer of the decoder
- \checkmark w: weight matrix
- ✓ b: bias
- The model is trained to minimize the objective function:

$$\sum_{X \in s_N} \sum_{i=1}^{L} \left\| x^{(i)} - x'^{(i)} \right\|^2$$

✓ s_N : set of normal training sequences

- Computing likelihood of anomaly(1/3)
 - Divide the normal time-series into four sets of time-series
 - \checkmark s_N : set of normal training sequences
 - \checkmark v_{N1} : set of normal validation sequences_1
 - \checkmark v_{N2} : set of normal validation sequences_2
 - ✓ t_N : set of normal test sequences
 - Divide the anomalous time-series into two set of time-series
 - ✓ v_A : set of anomalous validation sequences
 - \checkmark t_A : set of anomalous test sequences

- Computing likelihood of anomaly(2/3)
 - The set of sequence s_N is used to learn the LSTM encoder-decoder reconstruction model
 - The reconstruction error vector at time t_i
 - ✓ The error vector $e^{(i)} = |x^{(i)} x'^{(i)}|$
 - The error vectors for the points in the sequences in v_{N1} are used to estimate a Normal distribution $N(\mu, \Sigma)$ using Maximum Likelihood Estimation
 - ✓ Given v_{N1} set $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
 - $\checkmark \mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$
 - $\checkmark \sum_{i=1}^{m} \sum_{i=1}^{m} (x^{(i)} \mu)(x^{(i)} \mu)^{T}$

- Computing likelihood of anomaly(3/3)
 - The anomaly score
 - \checkmark For any point $x^{(i)}$

$$\checkmark a^{(i)} = (e^{(i)} - \mu)^T \sum_{i=1}^{T} (e^{(i)} - \mu)^T$$

- ✓ If $a^{(i)} > \tau$, a point in a sequence can be predicted \rightarrow "anomalous"
- ✓ Otherwise, a point in a sequence can be predicted → "normal"
- The v_{N2} and v_A are used to learn τ by maximizing $F_{\beta}-score$

$$\checkmark F_{\beta} = (1 + \beta^2) \times P \times \frac{R}{\beta^2 P + R}$$

- \checkmark P: precision
- $\checkmark R : recall$

Experiments

Dataset

- Power demand
 - ✓ One univariate time—series with 35,040 readings for power demand recorded over a period of one year
 - ✓ Length of sequence = 84
- Space shuttle
 - ✔ Periodic sequences with 1000 points per cycle, and 15 such cycles
 - ✓ Length of sequence = 1500
- Engine data
 - ✓ Reading for 12 sensors such as coolant temperature, torque, accelerator etc.
 - ✓ Consider two different applications of the engine : Engine-P, Engine-NP
 - ✓ Engine-P has a discrete external control with two states: 'high' and 'low' → "predictable"
 - ✓ Engine-NP has any value within a certain range and changes very frequently → "unpredictable"
 - ✓ Length of sequence = 30
- ECG
 - ✓ Quasi-periodic time-series
 - ✓ Contains one anomaly corresponding to a pre-ventricular contraction
 - ✓ Length of sequence = 208

Experiments

Normal

Anomaly Experiments (f) Engine-P-A (e) Engine-P-N Anomaly (h) Engine-NP-A (g) Engine-NP-N

Anomalous

Normal

Experiments

Observation

Datasets	L	c	β	P	R	F_{β} -score	TPR/FPR
Power Demand	84	40	0.1	0.92	0.04	0.77	33.0
Space Shuttle	500	50	0.05	0.83	0.08	0.81	4.9
Engine-P	30	40	0.05	0.94	0.02	0.82	13.8
Engine-NP	30	90	0.05	1.0	0.01	0.83	∞
ECG	208	45	0.05	1.0	0.005	0.65	∞

- \checkmark L: Length of sequence
- \checkmark c: the number of LSTM units in the hidden layer of encoder and decoder
- ✓ β : the value of β in F_{β} score
- \checkmark P: Precision
- ✓ TPR: Ture Positive Rates ✓ FPR: False Positive Rates
- The positive likelihood ratio(TPR/FPR) > 1 for all the datasets
 - The probability of reporting an anomaly in anomalous region is much higher than the probability of reporting an anomaly in normal region.
- For periodic time-series, we experiment with varying window lengths
 - Being able to detect anomalies in all scenarios
- Compare to LSTM-AD[3], this method gives better results for Engine-NP where the sequence are not predictable

Conclusion

- This paper proposes EncDec-AD for anomaly detection in multi-sensor time-series
- EncDec-AD first learns a LSTM-based Encoder-Decoder model to reconstruct values of normal time-series
- Then, EncDec-AD computes anomaly score of each time step by calculating the likelihood value with reconstruction error vectors
- Experimental results show that EncDec-AD detects anomalies in not only predictable time-series but also unpredictable time-series data

References

- [1] SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to sequence learning with neural networks. *Advances in NIPS*, 2014.
- [2] CHO, Kyunghyun, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.
- [3] HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long short-term memory. *Neural computation*, 1997, 9.8: 1735-1780.
- [4] Malhotra, Pankaj, Vig, Lovekesh, Shroff, Gautam, and Agarwal, Puneet. Long short term memory networks for anomaly detection in time series. In ESANN, 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2015.

Thank you