GATE 2009 GG: GEOLOGY AND GEOPHYSICS

EE25BTECH11032 -Kartik Lahoti

PART A: COMMON TO BOTH GEOLOGY AND GEOPHYSICS CANDIDATES

Q.1 -	Q.20 carry one mark each.		
Q.1.	The Gutenberg discontinuity is lo	(GATE GG 2009)	
	(a) 35 km	(c) 2900 km	
	(b) 150 km	(d) 5000 km	
Q.2.	What is the age of the "Barail Se	ries"?	(GATE GG 2009)
	(a) Jurassic	(c) Oligocene	
	(b) Paleocene	(d) Miocene	
Q.3.	Thermohaline circulation in the c	oceans is driven by	(GATE GG 2009)
	(a) only salinity gradients		
	(b) both temperature and salinit	ty gradients	
	(c) only temperature gradients		
	(d) only density difference		
Q.4.	Which one of the following mine	erals cannot be used as an abrasive?	(GATE GG 2009)
	(a) Garnet	(c) Quartz	
	(b) Corundum	(d) Gypsum	
Q.5.	Which one of the following lake (GATE GG 2009)	xes is interpreted to be of meteori	tic impact origin ?
	(a) Lonar Lake	(c) Kolleru Lake	
	(b) Chilika Lake	(d) Pulicat Lake	
Q.6.	Which one of the following geor (GATE GG 2009)	morphic features is not related to de	esert environments ?

	(a)	yardang	(c) hamada	
	(b)	bajada	(d) esker	
Q.7.	Whi	ch one of the following is located closes	st to the Ninety-East Ridge	? (GATE GG 2009)
	(b) (c)	Bombay High Lakshwadweep Islands Andaman And Nicobar Islands Maldives		
Q.8.	LPG	(Liquefied Petroleum Gas) consists m	ainly of	(GATE GG 2009)
	(b) (c)	propane and butane methane and ethane methane and butane ethane and propane		
Q.9.	Who	proposed the principle "the present is	the key to the past"?	(GATE GG 2009)
	(a)	Carl von Linnaeus	(c) William Smith	
	(b)	James Hutton	(d) Alcide d'Orbigny	
Q.10.	Of th	ne following, which is an ore of nickel	?	(GATE GG 2009)
	(a)	Pentlandite	(c) Cassiterite	
	(b)	Cinnabar	(d) Scheelite	
Q.11.	layer	r a three layered earth, comprising of r and hard rock basement, a resistivity ed VES curve is		
	(a)	K-type	(c) H-type	
	(b)	A-type	(d) Q-type	
Q.12.	The	logging tool for direct determination o	f permeability is	(GATE GG 2009)
	(a)	induction	(c) sonic	
	(b)	litho-density	(d) NMR	
Q.13.	Whi	ch of the following parameters is unit?	iquely resolved by residua	al gravity anomaly (GATE GG 2009)
	(b) (c)	lateral density contrast excess/deficit mass absolute density geometric dimensions of geophysical	model	
Q.14.		le oil density, in degree API (Americar The value of 10 API is of	n Petroleum Institute), is a	measure of viscos- (GATE GG 2009)

(a) water	(c) average crude	
(b) heavy crude	(d) light crude	
Q.15. For perfectly conducting medium	m, skin depth (m) is	(GATE GG 2009)
(a) 10^5	(c) 10	
(b) 100	(d) 0	
Q.16. If a planet revolves around the Sun would be (in terms of distant	±	n its distance from the (GATE GG 2009)
(a) two times	(c) six times	
(b) four times	(d) eight times	
Q.17. A vast majority of earthquake so	ources are often linked to	(GATE GG 2009)
(a) inner core		
(b) outer core		
(c) brittle part of the earth's cru	ust	
(d) molten part of earth's mant	ele	
Q.18. In paleomagnetism, detrital magn	netization is an important process f	For study of (GATE GG 2009)
(a) sedimentary rocks		
(b) metamorphic rocks		
(c) basic igneous rocks		
(d) acidic igneous rocks		
Q.19. A Geiger-Muller counter is used	for measuring	(GATE GG 2009)
(a) gamma radiation		
(b) alpha particles		
(c) beta particles		
(d) both alpha and beta particle	es	
Q.20. The presence of crustal root bene	eath a mountain chain can be best e	xplained by (GATE GG 2009
(a) Pratt's model		
(b) Airy's Model		
(c) Vening Meinesz model		
(d) Plume model		

END OF PART A

PART B (SECTION 1): FOR GEOLOGY CANDIDATES ONLY

Q.21 - Q.60 carry two marks each.

- Q.21. Which one of the following is a typical Lower Gondwana plant assemblage? (GATE GG 2009)
 - (a) Glossopteris, Ptilophyllum, Nilssonia, Bucklandia
 - (b) Glossopteris, Gangamopteris, Schizoneura, Sphenophyllum
 - (c) Gangamopteris, Lycopodites, Brachyphyllum, Nilssonia
 - (d) Vertebraria, Alethopteris, Otozamites, Glossopteris
- Q.22. Which of the following is not correct for a Pelecypod shell? (GATE GG 2009)
 - (a) Pedicle is present.
 - (b) Pallial sinus, if present, is on the posterior side.
 - (c) Lunule is towards anterior.
 - (d) Both the valves have teeth and sockets.
- Q.23. Match the following:

(GATE GG 2009)

Group I

- (P) Muschelkalk
- (Q) Katrol Formation
- (R) Uttatur Stage
- (S) Baripada beds
- (a) P-3, Q-6, R-5, S-1
- (b) P-1, Q-2, R-3, S-4

Group II

- 1. Cambrian
- 2. Miocene
- 3. Middle Triassic
- 4. Cretaceous
- 5. Pleistocene
- 6. Late Jurassic
- (c) P-3, Q-6, R-4, S-2
- (d) P-6, Q-3, R-1, S-2

Q.24. Match the following:

(GATE GG 2009)

Group I

- (P) Pelagic
- (Q) Pycnocline
- (R) Psychrosphere
- (S) Humboldt Current

Group II

- 1. Open ocean
- 2. Cold sphere
- 3. North Atlantic
- 4. Density
- 5. Thermocline
- 6. East Pacific

Q.25.	Match the following	(GATE GG 2009)				
	Group I		Group I	I		
			1. Lower C	ambrian		
	(P) Globigerina bu	lloides	2. Echinod	ermata		
	(Q) Olenellus		3. Graptoli	tes		
			4. Upwellii	ng		
	(R) Ambulacrum		5. Coelente	erata		
	(S) Nema		6. Silurian			
	(a) P-1, Q-6, R-2, S	S-5				
	(b) P-5, Q-6, R-2, S					
	(c) P-4, Q-1, R-2,	S-3				
	(d) P-2, Q-4, R-5, S	S-6				
Q.26.	Dinosaurs can be dis	tinguished from the	other Mesozoic re	ptiles by	(GATE GG 2009)	
	(a) Large size		(c) Erect stance	e		
	(b) Carnivorous ha	bit	(d) Sprawling	stance		
Q.27.	Which of the following	ng is a polar plankti	c formanifer?		(GATE GG 2009)	
	(a) Globigerenoide	es rubber				
	(b) Neogloboquadi	ina pachyderma				
	(c) Globorotalia m	enardii				
	(d) Orbulina unive	rsa				
Q.28.	Which one of the fol ?	lowing mass-wasting	g processes is desig	gnated as a	a slow flowage type (GATE GG 2009)	
	(a) Mudflow	(b) Solifluction	(c) Slump	(d)	Rockslide	
Q.29.	Which of the following	ing accurately descri	bes the rock 'phon	olite'?	(GATE GG 2009)	
	(a) Undersaturated ultramafic volcanic rock					
	(b) Undersaturated	mafic plutonic rock				
	(c) Undersaturated	ultrabasic volcanic	rock			
	(d) Intermediate al	kaline plutonic rock				

(c) P-5, Q-6, R-1, S-3

(d) P-1, Q-4, R-2, S-6

(a) P-1, Q-4, R-3, S-6

(b) P-6, Q-2, R-1, S-5

Q.30. Match the assemblages in Group I with the corresponding metamorphic facies in Group II: (GATE GG 2009)

Group I	Group II		
(P) Albite-jadeite-glaucophane-lawsonit	te 1. Greenschist		
(Q) Garnet-orthopyroxene-clinopyroxene-plagioclase	2 Blueschist		
	3. Granulitec		
(R) Garnet-muscovite-biotite-sillimanite	4. Amphibolite		
quartz	5. Zeolite		
(S) Albite-chlorite-epidote-actinolite	6. Prehnite-pumpellyite		
(a) P-1, Q-6, R-2, S-5	(c) P-2, Q-3, R-4, S-1		
(b) P-5, Q-1, R-3, S-4	(d) P-3, Q-2, R-1, S-6		
Q.31. When underplated by mafic magmas, and rience during metamorphis	-		
(a) isobaric heating followed by isothers	mal decompression		
(b) isothermal compression followed by	isobaric heating		
(c) isobaric heating followed by isother	mal compression		
(d) isobaric heating-cooling trajectory			
Q.32. Match the minerals in Group <i>I</i> with their (GATE GG 2009)	r characteristic optical properties in Group II:		
Group I	Group II		
	1. Uniaxial negative		
(P) Biotite	2. Mottled extinction		
(Q) Sodalite	3. Uniaxial positive		
(D) Nanhalina	4. Isotropic, low relief		
(R) Nepheline	4. Isotropic, low relief5. Isotropic, high relief		
(R) Nepheline(S) Quartz	•		
· · · · · · ·	5. Isotropic, high relief		
(S) Quartz	5. Isotropic, high relief6. Biaxial negative		
(S) Quartz (a) P-5, Q-1, R-3, S-6	5. Isotropic, high relief6. Biaxial negative(c) P-3, Q-2, R-4, S-5(d) P-2, Q-4, R-1, S-3		
(S) Quartz (a) P-5, Q-1, R-3, S-6 (b) P-6, Q-2, R-5, S-1	5. Isotropic, high relief6. Biaxial negative(c) P-3, Q-2, R-4, S-5(d) P-2, Q-4, R-1, S-3		

Q.34.	34. A strike-slip dip fault strikes $30^{\circ}N$, and dips $45^{\circ}SE$. The net slip of the fault plung (GATE GG 2009)				
	(a) 30° towards $45^{\circ}N$	(c) 45° towards 120°N			
	(b) 0° towards $30^{\circ}N$	(d) 90° towards $30^{\circ}N$			
Q.35.	The boundary between the Indian and Eura	asian plates is the	(GATE GG 2009)		
	(a) Main Central Thrust				
	(b) Main Boundary Thrust				
	(c) South Tibetan Detachment Zone				
	(d) Indus-Tsangpo Suture Zone				
Q.36.	Plagioclase feldspars belong to the	crystal system.	(GATE GG 2009)		
	(a) Triclinic	(c) Orthorhombic			
	(b) Monoclinic	(d) Rhombic			
Q.37.	The plane by which twinned crystals are un	nited is called the	(GATE GG 2009)		
	(a) mirror plane	(c) glide plane			
	(b) twin plane	(d) composition plane			
Q.38.	In satellite remote-sensing, the spectral ban of	ds near $1.4 \mu m$ and $1.9 \mu m$ a	are avoided because (GATE GG 2009)		
	(a) absorption due to H_2O and CO_2 in the	e atmosphere			
	(b) absorption due to ozone layer in the a	ntmosphere			
	(c) absorption due to nitrogen in the atmo	osphere			
	(d) absorption by vegetation				
Q.39.	Formation of chromitite from a basaltic ma	agma can be explained by	(GATE GG 2009)		
	(a) liquid immiscibility	(c) magma mixing			
	(b) assimilation	(d) Soret effect			
Q.40.	Match the following economic deposits in Group <i>II</i> :	Group I with their places	s of occurrences in (GATE GG 2009)		

	Group I	Group II	
		1. Naliya	
	(P) Bauxite	2. Maldeota	
	(Q) Phosphorite	3. Pahalgam	
	(R) Magnesite	4. Salem	
	· · ·	5. Mangampeta	
	(S) Barite	6. Belgaum	
	(a) P-1, Q-2, R-4, S-5	(c) P-3, Q-1, R-6, S-5	
	(b) P-2, Q-3, R-4, S-6	(d) P-6, Q-2, R-4, S-5	
Q.41. V	What is the host rock for sulphide mineralization	ation in Rampura-Agucha belt? (GATE GG 2009)
	(a) Graphitic mica schist		
	(b) Garnetiferous mica schist		
	(c) Graphitic biotite-sillimanite gneiss		
	(d) Garnetiferous sillimanite-feldspar gne	iss	
Q.42. V	Which of the following is the correct order or	f decreasing permeability? (GAT	E GG 2009)
	(a) silty sandstone > siltstone > sandstone	e > pebbly sandstone	
	(b) siltstone > silty sandstone > sandstone	e > pebbly sandstone	
	(c) pebbly sandstone > sandstone > silty	sandstone > siltstone	
	(d) pebbly sandstone > sandstone > siltstone	one > silty sandstone	
Q.43. V	Which of the following varieties of coal has	s the least H/C ratio? (GAT	E GG 2009)
	(a) peat	(c) bituminous	
	(b) lignite	(d) anthracite	
Q.44. V	What is the age of the reservoir rock in the	Cambay basin? (GAT	TE GG 2009)
	(a) Eocene	(c) Miocene	
	(b) Oligocene	(d) Paleocene	
_	Which one of the following can be consid GATE GG 2009)	ered the best cap rock for oil an	nd gas traps?
	(a) chert	(c) sandstone	
	(b) evaporite	(d) shale	
_	A negative Eu anomaly will develop in a fGATE GG 2009)	fractionating magma following s	separation of

(a) garnet

(c) plagioclase

(b) olivine

- (d) orthopyroxene
- Q.47. In which of the following islands is the Mid-oceanic ridge exposed above sea-level? (GATE GG 2009)
 - (a) Japan

(c) Hawaii

(b) Seychelles

- (d) Iceland
- Q.48. _____ dams are constructed where the foundation rock is strong. (GATE GG 2009)
 - (a) Gravity

(c) Buttress

(b) Arch

- (d) Earth
- Q.49. Which type of cross-bedding is a definite indicator of tidal currents? (GATE GG 2009)
 - (a) epsilon cross-bedding
- (c) hummocky cross-bedding
- (b) herring-bone cross-bedding
- (d) trough cross-bedding
- Q.50. Which type of sedimentary basin is formed close to continent-continent collisional settings? (GATE GG 2009)
 - (a) Fore-arc basin

- (c) Back-arc basin
- (b) Peripheral foreland basin
- (d) Retro-arc foreland basin

Common Data Questions

Common Data Questions 51 and 52:

A rock contains 65% forsterite (Fo), 27% enstatite (En) and 8% pigeonite (Pig) and its melting relationships at 1 bar can be represented by the figure given below:

Q.51. The name of the rock is

(GATE GG 2009)

(a) Lherzolite

(c) Wehrlite

(b) Harzburgite

(d) Dunite

Q.52. On partially melting this rock, the first melt will have the composition of point (GATE GG 2009)

(a) P

(c) R

(b) Q

(d) S

Common Data Questions 53 and 54:

An unfossiliferous sedimentary succession is characterized by the following features - (i) sandstone-shale alternation, with sheet-like geometry of the sandstone beds;(ii) the sandstones exhibit graded bedding;(iii) erosional structures under the sandstone beds;(iv) convolute lamination, and (v)ripple marks on the sandstone beds.

Q.53. Which depositional environment is indicated for the above sedimentary succession? (GATE GG 2009)

(a) Fluvial

(c) Intertidal

(b) Eolian

(d) Deep marine

Q.54. What type of paleocurrent pattern is expected from the erosional structures in the succession? (GATE GG 2009)

(a) Unimodal

(c) Bimodal - bipolar

(b) Bimodal

(d) Polymodal

Common Data Questions 55 and 56:

Examine the given geological section, which contains sedimentary successions interrupted by a dyke, and which contains no tectonic discontinuities.

Q.55. How many unconformities can be identified in the section?

(GATE GG 2009)

	(a) 3	(c) 5	
	(b) 4	(d) 6	
Q.56.	Which of the following contact	es is a nonconformity?	(GATE GG 2009)
	(a) Granite gneiss - Red Sand	lstone	
	(b) Black Shale - Limestone		
	(c) Limestone - Red Shale		
	(d) Red Shale - Arkosic Sand	Istone	
	Linked Answer Que	stions	
	Statement for Linked A	nswer Questions 57 and 58:	
	Microfossils may have following	ng is a siliceous microfossil group?	
Q.57.	Which of the following is a sili	(GATE GG 2009)	
	(a) Conodonts	(c) Dinoflagellates	
	(b) Radiolaria	(d) Foraminifera	
Q.58.	What is the preferred microhab Q.57?	pitat of the microfossil group that is t	he correct answer in (GATE GG 2009)
	(a) Benthic	(c) Nektic	
	(b) Planktic	(d) Nektobenthic	
	Statement for Linked A	nswer Questions 59 and 60:	
	Pb - Zn sulphide deposits can	form in different types of host rocks.	
Q.59.	Of the following, where do w deposits?	e get predominantly carbonate-hoste	ed $Pb - Zn$ sulphide (GATE GG 2009)
	(a) Mochia - Zawar	(c) Pur - Banera	
	(b) Sargipalli	(d) Sindesar-Khurd	
Q.60.	What is the age of the host rock	x to the correct answer in $Q.59$?	(GATE GG 2009)
	(a) Neoproterozoic	(c) Paleoproterozoic	
		(d) Archean	
	(b) Mesoproterozoic		
	END OI	F SECTION 1 OF PART B	

PART B (SECTION 2): FOR GEOPHYSICS CANDIDATES ONLY

Q.20 - Q.60 carry two marks each.

Q.21. Match the following functions in time-domain with their Fourier spectra: (GATE GG 2009)

Group I

Group II

P.
$$\Pi(t) = \begin{cases} 1, -1/2 \le t \le 1/2 \\ 0, t < -1/2 \text{ and } t > 1/2 \end{cases}$$

1. 1
2. $\frac{\sin{(\pi f)}}{f}, \text{where f is frequency}$

Q. Dirac delta function, $\delta(t)$

3.

$$R. \ x(t) = e^{-|t|}$$

 $\frac{2}{1+4\pi^2f^2}$, where f is frequency

S.
$$\Lambda(t) = \begin{cases} 1+t, -1 < t < 0 \\ 1-t, 0 < t < 1 \\ 0, otherwise \end{cases}$$

4.

$$\frac{\sin^2(\pi f)}{f^2}$$
, where f is frequency

(c) P-1, Q-4, R-2, S-3

(d) P-2, Q-1, R-3, S-4

Q.22. The teleseismic rays are those that arrive at a seismometer for a distance greater than (GATE GG 2009)

(a) 18°

(b) 28°

(c) 38°

(d) 48°

Q.23. Match the following seismic source generated noise type with its appearance on the seismogram: (GATE GG 2009)

Group I

Group II

(P) Reverberation

1. Coherent hyperbolic events

(Q) Multiples

2. Tails on reflected events

(R) Guided waves

3. Events paralleling first breaks

(S) Diffractions

4. Reflections at even time intervals after the primary reflections

(a) P-1, Q-3, R-2, S-4

(c) P-2, Q-4, R-3, S-1

(b) P-3, Q-4, R-2, S-1

(d) P-4, Q-1, R-3, S-2

Q.24. Which is the parameter for measuring the size of the earthquake that does not need an instrumental record? (GATE GG 2009)

	(b) Intensity			(d) M _v	7				
Q.25.	The standard form of wave equation for propagation of cubical dilatation (θ) is (GATE GG 20)					GG 2009)			
	$\rho \frac{\partial^2 \theta}{\partial t^2} = (\lambda +$	2μ) $\nabla^2\theta$							
	The compressional	wave veloci	ty is given l	by					
	(a)	(b)		(c)		(d)			
	$\sqrt{\frac{2\lambda+\mu}{\rho}}$	<u></u>	$\sqrt{\frac{\lambda + 2\mu}{2\rho}}$		$\sqrt{\frac{\lambda + \mu}{\rho}}$		$\sqrt{\frac{\lambda}{\lambda}}$	$\frac{-2\mu}{\rho}$	
Q.26.	PKIKP is a seismic	body wave	which trave	els throug	gh		(GATE C	G 20	09)
	(a) upper mantle(b) upper and low(c) mantle, outer(d) mantle and outer	core and inn	er core						
Q.27.	A seismic signal is (ms) to avoid aliasi		_	ey band,	50 – 100 F	Hz. The	e sampling (GATE C		
	(a) 5	(b) 10		(c) 15		(d) 2	20		
Q.28.	The minimum apprimum one is 20.0 c	-		•		ter is 0.	2 mm and (GATE C		
	(a) 80	(b) 60		(c) 40		(d) 2	20		
Q.29.	Match the following	ıg:					(GATE C	G 20	09)
	Group I			(Group <i>II</i>				
					Propagate nedium	along	surface	of	the
	(P) Primary wave			2. Particle motion is orthogonal to direc-				rec-	
	(Q) Secondary wa	ave		tion of propagation3. Particle motion describes a retrograde			ade		
	(R) Rayleigh way	ve .			ellipse Particle mo	otion in	tha dina	ation	of
	(S) Love wave				propagation		i the thic	cuon	OI
	(a) P-3, Q-4, R-1	, S-2		(c) P-1	, Q-3, R-2,	S-4			
	(b) P-1, Q-4, R-2	., S-3		(d) P-4	, Q-2, R-3,	S-1			

(c) Moment

(a) Richter Magnitude

- **Q.30.** Which of the following is a minimum-phase wavelet? The first value in each case is at time zero. (GATE GG 2009)
 - (a) $\{-2, 5, -2\}$

(c) $\{6, -1, -2\}$

(b) $\{-2, 5, 2\}$

- (d) $\{3, 4, -4\}$
- **Q.31.** In a gas zone, true porosity ϕ_t , neutron log ϕ_n , and density derived porosity ϕ_d are related as (GATE GG 2009)
 - (a) $\phi_n < \phi_d > \phi_t$

(c) $\phi_n > \phi_d = \phi_t$

(b) $\phi_n > \phi_d > \phi_t$

- (d) $\phi_n < \phi_d = \phi_t$
- **Q.32.** Identify the equation for formation water resistivity (Rw_e) estimation from SP log, wherein SSP, K(T), and R_{mfe} are respectively static SP, temperature dependent coefficient and mudfiltrate resistivity. (GATE GG 2009)
 - (A) $SSP = -Rw_e log \left(\frac{K(T)}{R_{mfe}}\right)$
 - (B) $SSP = -K(T) log \left(\frac{Rw_e}{R_{mfe}}\right)$
 - (C) $SSP = -R_{mfe}log\left(\frac{K(T)}{Rw_e}\right)$
 - (D) $SSP = -K(T)log\left(\frac{R_{mfe}}{Rw_e}\right)$
- **Q.33.** Gamma ray detected in density log is

(GATE GG 2009)

- (a) natural gamma present in the formation
- (b) gamma ray from epithermal neutron source
- (c) gamma ray scattered from the formation
- (d) gamma ray emitted from neutron capture reaction
- Q.34. In Turam method, one measures the reduced field ratio of the amplitude and of the phase difference between the two coils. In the absence of subsurface conducting body, the response is characterized as (GATE GG 2009)
 - (a) the successive reduced field ratio is equal to 1.0 and phase difference is 0°
 - (b) the successive reduced field ratio is equal to 1.0 and phase difference is 45°
 - (c) the successive reduced field ratio is equal to 0.5 and phase difference is 90°
 - (d) the successive reduced field ratio is equal to 0.5 and phase difference is 60°
- **Q.35.** Electric field (\overrightarrow{E}) through a polarizable dielectric medium with polarization vector (\overrightarrow{P}) , electric susceptibility (χ_e) and dielectric permittivity (ε_0) . The electric displacement vector (\overrightarrow{D}) for the medium can be written as (GATE GG 2009)

(a) $\overrightarrow{D} = \varepsilon_0 (1 + \chi_e)$

(c) $\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} + \chi_e$

(b) $\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} - \overrightarrow{P}$

- (d) $\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} + \overrightarrow{P}$
- **Q.36.** Using different electrodes configuration, maximum depth of investigation is achieved in (GATE GG 2009)
 - (a) Schlumberger

(c) tri-electrodes

(b) dipole

- (d) Wenner
- Q.37. Relevant differential equation to study low frequency electromagnetic prospecting for a conducting target can be written in the form of (GATE GG 2009)
 - (a) Wave equation

(c) Helmholtz equation

(b) Laplace's equation

- (d) Poisson's equation
- **Q.38.** In a layered medium, if the basement is perfectly conducting, magnetotelluric phase response asymptotically approaches to (GATE GG 2009)
 - (a) 0°

(c) 60°

(b) 45°

- (d) 90°
- **Q.39.** Magnetotelluric spectral impedance can be defined as

(GATE GG 2009)

- (a) the ratio of the spatial spectrum from mutually orthogonal horizontal components of the electric and magnetic field
- (b) the ratio of the spatial spectrum of the vertical component to the horizontal component of magnetic field
- (c) the ratio of the spatial spectrum of the vertical component to the horizontal component of electric magnetic field
- (d) the ratio of the spatial spectrum of the two horizontal components of electric field
- **Q.40.** Following four electrodes array: P1, P2 are measuring electrodes and C1, C2 are current electrodes used in resistivity measurement. Inter-electrode separation is also shown in figure. (GATE GG 2009)

The above electrodes configuration is

	(b)	parallel dipole		(d) Wenner	
Q.41.	In D	C resistivity metl	hod, direct filter coeff	icients are used to con	mpute (GATE GG 2009)
	(b) (c)	resistivity transf	vity data from resistive form from apparent revity from measured povity from one electron	sistivity data otential difference	her electrode configura-
	(u)	tion	They make the theorem	to of	ner electrode configura
Q.42.	dead	•	•	•	diation counter having a he absence of dead time
	(a)	13,333	(b) 14,333	(c) 15,333	(d) 16,333
Q.43.		output of a linear output for an inpu		for a unit input is {3,	1}. Then what would be (GATE GG 2009)
	(a)	{-6, 1, 1}	(b) {-1, 1, 6}	(c) $\{-1, 6, 1\}$	(d) $\{1, -1, 6\}$
Q.44.	Geo	physical inverse p	problems are describe	d by	(GATE GG 2009)
	(b) (c)	Fredholm's integ	gral equation of first keep gral equation of second kind on		
Q.45.	 (a) Singular value decomposition (b) Monte-Carlo technique (c) Ridge regression procedure (d) Back propagation technique 				
Q.46.	 46. The concept of resolving kernel is used in (a) Tikhonov's regularization method (b) Ridge regression method (c) Backus-Gilbert method (d) Simulated annealing method 				
Q.47.	For u	underwater gravit	y measurements, the f	Collowing correction is	s needed: (GATE GG 2009)
		Prey correction Free-air correcti	ion		

(c) Schlumberger

(a) radial dipole

- (c) Bouguer correction
- (d) Isostatic correction

Q.48. The source of magnetic anomalies extend up to

(GATE GG 2009)

- (a) upper mantle
- (b) core-mantle boundary
- (c) lower mantle
- (d) Curie-point isotherm
- **Q.49.** In magnetic prospecting scalar magnetometers are used. Then, the prime assumption involved in magnetic data acquisition is (GATE GG 2009)
 - (a) remnant magnetization is predominant
 - (b) both remnant and induced magnetization are responsible
 - (c) induced magnetization plays a dominant role
 - (d) only diamagnetic sources are responsible
- **Q.50.** Source of main geomagnetic field is best represented by

(GATE GG 2009)

- (a) a system of electric currents at core-mantle boundary
- (b) a system of dipoles, quadrupoles, octupoles and multipoles
- (c) an inclined geomagnetic dipole at center of earth
- (d) a system of currents in the ionosphere

Common Data Questions

Common Data Questions 51 and 52:

In a resistivity sounding experiment using Schlumberger configuration the apparent resistivity function asymptotically approaches a sloping straight line of slope 45° with abscissa.

Q.51. From the above data it can be inferred that the basement is

(GATE GG 2009)

- (a) Perfectly conducting
- (c) Relatively conducting

(b) Relatively resistive

- (d) Perfectly resistive
- **Q.52.** If the intercept at $\rho_a = 1$ ohm m is 5 and resistivity of top layer is 10 ohm m, then the depth of basement is (GATE GG 2009)
 - (a) 50.0 m

(c) $2.0 \, m$

(b) 5.0 m

(d) $0.5 \, m$

Common Data Questions 53 and 54:

In a seismic refraction experiment involving a two-layered earth of P-wave velocities, $3 \, km/sec$ and $4.5 \, km/sec$ the delay time is found to be $49.69 \, ms$.

Q.53. From the above data, the depth to the interface is given by

(GATE GG 2009)

(a) 150 m

(c) 100 m

(b) 120 m

- (d) 50 m
- **Q.54.** Using the above depth, the computed critical distance (*m*) would be (GATE GG 2009)
 - (a) 151.20

(c) 221.67

(b) 178.88

(d) 169.87

Common Data Questions 55 and 56:

The peak gravity anomaly over a 2-D line mass of circular cross-section (horizontalcylinder) of density contrast $500 \, kg/m^3$ is $1.674 \, mgal$. The anomaly decreases to $0.837 \, mgal$ at a distance of $500 \, m$ along a principal profile. The universal gravitation constant, $G = 6.6667 \times 10^{-11} m^3 sec^{-2} kg^{-1}$

- **Q.55.** The depth (m) to center of line mass and radius (m) of the horizontal cylinder are (GATE GG 2009)
 - (a) 500, 199.80

(c) 200, 100.33

(b) 200, 150.93

- (d) 100, 60.37
- **Q.56.** Hence compute the excess mass per unit length (kg/m) of the line mass (GATE GG 2009)
 - (a) 11.0×10^7

(c) 6.27×10^7

(b) 9.0×10^7

(d) 3.67×10^7

Linked Answer Questions

Statement for Linked Answer Questions 57 and 58:

Resistivity log recorded using normal device with measuring electrode, M, is situated close to the current electrode, A, in logging device placed in borehole. A constant current, I, injected from current electrode into the formation.

- **Q.57.** If the spacing between A and M is r, and the potential difference ΔV is measured between the measuring electrode, M and remotely placed surface electrode. Then the expression for the apparent resistivity can be written as (GATE GG 2009)
 - (a) $\rho_a = \frac{2\pi r}{I} \Delta V \qquad \qquad \rho_a = \frac{4\pi r^2}{I} \Delta V$

(c)
$$\rho_a = \frac{2\pi r^2}{I} \Delta V \qquad \qquad \rho_a = \frac{4\pi r}{I} \Delta V$$

Q.58. If $r = 0.40 \, m$; $I = 0.02 \, amp$; $\Delta V = 0.04 \, volt$, then the measured apparent resistivity will be (GATE GG 2009)

(a) $1 \Omega m$

(c) $10 \Omega m$

(b) $5\Omega m$

(d) $20 \Omega m$

Statement for Linked Answer Questions 59 and 60:

Given the wavelets, $a = \{3, -2\}$ and $b = \{1, -2\}$

Q.59. The cross-correlation, ϕ_{ab} , is given by

(GATE GG 2009)

(a) $\{-6, 7, -2\}$

(c) $\{-4, -11, -6\}$

(b) $\{-6, 10, -12\}$

(d) $\{-6, 11, -4\}$

Q.60. The inverse of wavelet 'a', W_a^{-1} is given by

(GATE GG 2009)

- (a) {4/3, 16/9, 17/7, 64/81}
- (c) {4/9, 1/3, 64/81, 16/27}
- (b) {1/3, 2/9, 4/27, 8/81}
- (d) {16/27, 64/81, 4/9, 1/3}

END OF THE QUESTION PAPER