Analysis of Algorithms (Fall 2013) Istanbul Technical University Computer Eng. Dept.

Course slides from Kevin Wayne @Princeton have been used in preparation of these slides. Chapter 19 Binomial Heaps

Last updated: December 23, 2009

Purpose

- Understand data structures known as mergeable heaps that can support
 - MAKE-HEAP(), INSERT(H, x),
 MINIMUM(H), EXTRACT-MIN(H),
 UNION(H₁, H₂)
 - DECREASE-KEY(H, x, k), DELETE(H, x)

Outline

- Binomial Trees and Binomial Heaps
- Operations on Binomial Heaps
 - Creating New Binomial Heap
 - Finding Minimum Key
 - Uniting Two Binomial Heaps
 - Inserting Node
 - Extracting Node with Minimum Key
 - Deleting Key
 - Decreasing Key

Priority Queues

- Supports following operations
 - Insert element x
 - Return min element
 - Return and delete minimum element
 - Decrease key of element x to k
- Applications
 - Dijkstra's shortest path algorithm
 - Prim's MST algorithm
 - Event-driven simulation
 - Huffman encoding
 - Heapsort, etc.

Priority Queues in Action

Dijkstra's Shortest Path Algorithm

```
PQinit()
for each v \in V
   key(v) \leftarrow \infty
   PQinsert(v)
\text{key}(s) \leftarrow 0
while (!PQisempty())
   v = PQdelmin()
   for each w \in Q s.t (v,w) \in E
       if \pi(w) > \pi(v) + c(v,w)
           PQdecrease(w, \pi(v) + c(v,w))
```

Priority Queues

		Heaps				
Operation	Linked List	Binary	Binomial	Fibonacci *	Relaxed	
make-heap	1	1	1	1	1	
insert	1	log N	log N	1	1	
find-min	N	1	log N	1	1	
delete-min	N	log N	log N	log N	log N	
union	1	N	log N	1	1	
decrease-key	1	log N	log N	1	1	
delete	N	log N	log N	log N	log N	
is-empty	1	1	1	1	1	
			Λ.			

Dijkstra/Prim
1 make-heap
|V| insert
|V| delete-min
|E| decrease-key

Binary Heap: Definition

- Almost complete binary tree
 - filled on all levels, except last, where filled from left to right
- Min-heap ordered
 - every child greater than (or equal to) parent

Binary Heap: Properties

- Min element is in root
- Heap with N elements has height = $\lfloor \log_2 N \rfloor$

Week 12: Binomial Heaps

Implementing Binary Heaps: Array Implementation

 Use an array: no need for explicit parent or child pointers.

- Parent(i) =
$$|i/2|$$

- Left(i) = 2i

- Insert element x into heap
 - Insert into next available slot
 - Bubble up until it is heap ordered

- Insert element x into heap
 - Insert into next available slot
 - Bubble up until it is heap ordered

- Insert element x into heap
 - Insert into next available slot
 - Bubble up until it is heap ordered

- Insert element x into heap
 - Insert into next available slot
 - Bubble up until it is heap ordered

Binary Heaps: Decrease Key

- Decrease key of element x to k
 - Bubble up until it is heap ordered
 - O(logn) operations

- Delete minimum element from heap
 - Exchange root with rightmost leaf
 - Bubble root down until it is heap ordered

- Delete minimum element from heap
 - Exchange root with rightmost leaf
 - Bubble root down until it is heap ordered

- Delete minimum element from heap
 - Exchange root with rightmost leaf
 - Bubble root down until it is heap ordered

- Delete minimum element from heap
 - Exchange root with rightmost leaf
 - Bubble root down until it is heap ordered

- Delete minimum element from heap
 - Exchange root with rightmost leaf
 - Bubble root down until it is heap ordered

Binary Heaps: Heapsort

- Insert N items into binary heap
- Perform N delete-min operations
- O(N log N) sort
- No extra storage

Binary Heaps: Union

- Combine two binary heaps H₁ and H₂ into single heap
- No easy solution
 - $-\Omega(N)$ operations apparently required (Remember BUILD-MAX-HEAP's running time of O(N) for inserting N items.)
- Can support fast union with fancier heaps:
 - Binomial Heaps
 - Fibonacci Heaps

H₂

Mergeable Heap Operations

- MAKE-HEAP()
- INSERT(H,x)
- MINIMUM(H)
- EXTRACT-MIN(H)
- UNION(H1,H2)
- DECREASE-KEY(H,x,k)
- DELETE(H,x)
- H: heap, x: node in the heap, k: key value
- Inefficient search operation

Priority Queues

		Heaps			
Operation	Linked List	Binary	Binomial	Fibonacci *	Relaxed
make-heap	1	1	1	1	1
insert	1	log N	log N	1	1
find-min	N	1	log N	1	1
delete-min	N	log N	log N	log N	log N
union	1	N	log N	1	1
decrease-key	1	log N	log N	1	1
delete	N	log N	log N	log N	log N
is-empty	1	1	1	1	1

Binomial Tree

Recursive definition

Binomial Tree

- Useful properties of order k binomial tree B_k
 - Number of nodes = 2^k
 - Height = k
 - Degree of root = k
 - Deleting root yields binomial trees B_{k-1}, \ldots, B_0

- Proof:
 - By induction on k

Binomial Tree

- A property useful for naming the data structure
- B_k has $\binom{k}{i}$ nodes at depth i

Binomial Heap

- Vuillemin, 1978
- Sequence of binomial trees that satisfy binomial heap property
 - each tree is min-heap ordered

Binomial Heap: Implementation

- Represent trees using left-child, right sibling pointers [Ch. 10.4]
 - three links per node (parent, left, right)
- Roots of trees connected with singly linked list

Binomial Heap

Leftist Power-of-2 Heap

heap

Binomial Heap: Properties

- Properties of N-node binomial heap
 - Min key contained in root of B₀, B₁, . . . , B_k
 - Contains binomial tree B_i iff b_i = 1 where $b_n \cdot b_2 b_1 b_0$ is binary representation of N

- Create heap H that is union of heaps H' and H"
 - "Mergeable heaps"
 - Easy if H' and H" are each order k binomial trees
 - connect roots of H' and H"
 - · choose smaller key to be root of H

$$19 + 7 = 26$$

		1	1	1	
	1	0	0	1	1
+	0	0	1	1	1
	1	1	0	1	0

Binary Heaps: Union

- Create heap H that is union of heaps H' and H"
 - Analogous to binary addition
- Running time: O(log N)
 - Proportional to number of trees in root lists $≤ 2(\lfloor log_2 N \rfloor + 1)$

$$19 + 7 = 26$$

Binary Heaps: Delete Min

- Delete node with minimum key in binomial heap H
 - Find root x with min key in root list of H, and delete
 - H' ← broken binomial trees
 - $H \leftarrow Union(H', H)$

Binary Heaps: Delete Min

- Delete node with minimum key in binomial heap H
 - Find root x with min key in root list of H, and delete
 - H' ← broken binomial trees
 - $H \leftarrow Union(H', H)$
- Running time: O(log N)

40

Binary Heaps: Decrease Key

- Decrease key of node x in binomial heap H
 - Suppose x is in binomial tree B_k
 - Bubble node x up the tree if x is too small

Binomial Heaps: Delete

- Delete node x in binomial heap H.
 - Decrease key of x to -∞
 - Delete min

Running time: O(log N)

Binomial Heaps: Insert

- Insert a new node x into binomial heap H
 - $-H' \leftarrow MakeHeap(x)$
 - $-H \leftarrow Union(H', H)$

Binomial Heaps: Sequence of Inserts

- Insert a new node x into binomial heap H
 - If N =0, then only 1 steps
 - If N =01, then only 2 steps
 - If $N = \dots 011$, then only 3 steps
 - If N =0111, then only 4 steps

- Inserting 1 item can take $\Omega(\log_2 N)$ time
 - If N = 11...111, then log_2N steps
- But, inserting sequence of N items takes O(N) time! $\sum_{i=1}^{i} \frac{i}{2^{i}} = 2 \frac{N}{2^{N}} \frac{1}{2^{N-1}}$ (N/2)(1) + (N/4)(2) + (N/8)(3) + . . . \leq 2N
 - $(N/2)(1) + (N/4)(2) + (N/8)(3) + \dots \le 2N$
 - Amortized analysis
 - Basis for getting most operations down to constant time

$$\sum_{i=1}^{N} \frac{i}{2^{i}} = 2 - \frac{N}{2^{N}} - \frac{1}{2^{N-1}}$$

$$\leq 2$$

$$\leq N \sum_{i=0}^{\infty} \frac{1}{2^{i}} = 2N$$

Amortized Analysis

- Worst-case analysis
 - Analyze running time as function of worst input of a given size
- Average case analysis
 - Analyze average running time over some distribution of inputs
 - Ex: quicksort
- Amortized analysis
 - Worst-case bound on sequence of operations
 - Ex: splay trees, union-find
- Competitive analysis
 - Make quantitative statements about online algorithms
 - Ex: paging, load balancing

Binomial Heap Operations

- MAKE-HEAP()
- INSERT(H,x)
- MINIMUM(H)
- EXTRACT-MIN(H)
- UNION(H1,H2)
- DECREASE-KEY(H,x,k)
- DELETE(H,x)

- MAKE-HEAP() [Trivial, just create an object H, head[H]=nil]
- MINIMUM(H) [Trivial: Return the minimum among binomial tree roots in the binomial heap]

Priority Queues

		Heaps			
Operation	Linked List	Binary	Binomial	Fibonacci *	Relaxed
make-heap	1	1	1	1	1
insert	1	log N	log N	1	1
find-min	N	1	log N	1	1
delete-min	N	log N	log N	log N	log N
union	1	N	log N	1	1
decrease-key	1	log N	log N	1	1
delete	N	log N	log N	log N	log N
is-empty	1	1	1	1	1

Summary

- Binomial Trees and Binomial Heaps
- Operations on Binomial Heaps
 - Creating New Binomial Heap
 - Finding Minimum Key
 - Uniting Two Binomial Heaps
 - Inserting Node
 - Extracting Node with Minimum Key
 - Deleting Key
 - Decreasing Key