Inhaltsverzeichnis

Ι	Ele	ementare	Zah	len	th	eo	ri	\mathbf{e}											1
1	Seit	e 28																	1
	1.1	Aufgabe 1																	1
	1.2	Aufgabe 2																	2
	1.3	Aufgabe 3																	3
	1.4	Aufgabe 4																	4
	1.5	Aufgabe 5																	6
	1.6	Aufgabe 6														•			7
2	Seit	e 33																	8
	2.1	Aufgabe 3																	8
	2.2	Aufgabe 4																	9
3	Seit	e 53																	11
	3.1	Aufgabe 1																	11
	3.2	Aufgabe 2			•													 •	12
T.	itors	aturverzei	chni	ie															13

Teil I

Elementare Zahlentheorie

Aufgaben aus dem Buch: Reinhold Remmert und Peter Ullrich (2008). Elementare Zahlentheorie. Springer. ISBN: 978-3-7643-7730-4.

1 Seite 28

1.1 Aufgabe 1

Seien a, b, c Ziffern aus der Menge $\{0, 1, 2, \dots, 9\}$ und $a \neq 0$. Zeigen Sie: 13 teilt die natürliche Zahl abcabc (Zifferndarstellung).

Beweis. Es werden die Differenzen betrachtet, wenn sich a, b, c um einen Wert verändern:

$$a = 1$$
 nach $a = 2 : \triangle 100100$
 $b = 0$ nach $b = 1 : \triangle 10010$
 $c = 0$ nach $c = 1 : \triangle 1001$

Es ist zu sehen 13 | 1001 mit 1001 = $13 \cdot 77$. Hieraus folgt 13 | 10010, 13 | 100100 und damit auch 13 | $1001 \cdot v_1 + 10010 \cdot v_2 + 100100 \cdot v_3 = abcabc$ mit $v_{1,2,3} \in \{0, 1, 2, \dots, 9\}$. \square

1.2 Aufgabe 2

Sei n eine natürliche Zahl, n>1. Beweisen Sie: Aus $n\mid (n-1)!+1$ folgt $n\in\mathbb{P}.$

Beweis. Ist n eine zusammengesetzte Zahl n=ab mit a,b>1, dann gilt $a\mid (n-1)!$ und dadurch $a\nmid (n-1)!+1$ weshalb ebenfalls $n\nmid (n-1)!+1$.

Der restliche Beweis mit dem Satz von Wilson

1.3 Aufgabe 3

Sei p_n die n-te Primzahl, d. h. $p_1=2,\,p_2=3$ usw. Zeigen Sie: $p_n\leq 2^{2^{n-1}}$ für alle $n\geq 1$. Beweis.

1.4 Aufgabe 4

Sei p eine Primzahl. Beweisen Sie: p ist ein Teiler von $\binom{p}{v}$ für $1 \le v < p$.

Beweis. Per Definition gilt:

$$\binom{p}{v} = \frac{p(p-1)\cdot\ldots\cdot(p-v+1)}{v!}$$

Es gilt außerdem:

$$\binom{n}{v} \in \mathbb{N} \quad \text{für alle } n, v \in \mathbb{N}$$

Die Primzerlegung des Nenners muss vollständig in der des Zählers vorhanden sein. Wegen p > v ist p jedoch niemals Teil dieser Zerlegung und kann im Zähler nicht gekürzt werden. Es folgt $p \mid \binom{p}{v}$.

Es kann nun eine verallgemeinerte Eigenschaft der eben beschriebenen Teilbarkeit beschrieben werden. Der Beweis des folgenden Lemmas wir in der nächsten Aufgabe hilfreich sein.

Lemma 1. Sei p eine Primzahl. Dann gilt

$$p \mid \binom{p^n}{v}$$
 für alle $n \in \mathbb{N}$ und $1 \le v < p^n$

Beweis. Die folgende Identität ist korrekt:

$$\binom{p^n}{v} = \frac{p^n}{v} \binom{p^n - 1}{v - 1}$$
$$v \binom{p^n}{v} = p^n \binom{p^n - 1}{v - 1}$$

Es ist somit zu sehen, dass $p^n \mid v\binom{p^n}{v}$.

- 1. Sind p und v teilerfremd, gilt $p^n \mid {p^n \choose v}$ und es bleibt nichts mehr zu zeigen
- 2. Anderenfalls ist $v=p^{n-a}q$ mit $a\in\mathbb{N}$ und $0< a\leq n$ (bemerke p und q sind teilerfremd und a>0 wegen $v< p^n$)

Es gilt daher

$$p^{n-a}q\binom{p^n}{v} = p^n \binom{p^n-1}{v-1}$$
$$q\binom{p^n}{v} = p^a \binom{p^n-1}{v-1}$$

und somit $p^a \mid \binom{p^n}{v}$. Außerdem gilt $p \mid p^a$ und letztendlich $p \mid \binom{p^n}{v}$.

1.5 Aufgabe 5

Seien $p \in \mathbb{P}$, $n \in \mathbb{N}^{\times}$ und $a, b \in \mathbb{Z}$. Zeigen Sie durch Induktion nach n: p ist ein Teiler von $((a+b)^{p^n}-(a^{p^n}+b^{p^n}))$.

Beweis. Es ist B die Menge aller Zahlen $n \in \mathbb{N}^{\times}$, sodass für alle $a, b \in \mathbb{Z}$ die behauptete Teilbarkeit richtig ist. Es ist $1 \in B$, denn es gilt nach dem Binomischen Lehrsatz (Remmert und Ullrich 2008, S. 19):

$$(a+b)^{p} - (a^{p} + b^{p}) = \left[a^{p} + {p \choose 1} a^{p-1} b + \dots + {p \choose p-1} a b^{p-1} + b^{p} \right] - (a^{p} + b^{p})$$
$$= {p \choose 1} a^{p-1} b + \dots + {p \choose p-1} a b^{p-1}$$

Jeder Summand ist als Produkt von $\binom{p}{1}, \ldots, \binom{p}{p-1}$ durch p teilbar. Sei $n \in B$. Um $n+1 \in B$ zu verifizieren, rechnen wir wie folgt:

$$(a+b)^{p^{n+1}} - (a^{p^{n+1}} + b^{p^{n+1}}) = \binom{p^{n+1}}{1} a^{p^{n+1}-1} b + \dots + \binom{p^{n+1}}{p^{n+1}-1} a b^{p^{n+1}-1}$$

Wieder ist zu sehen, dass jeder Term als ein Vielfaches von $\binom{p^{n+1}}{1}, \ldots, \binom{p^{n+1}}{p^{n+1}-1}$ durch p teilbar ist.

1.6 Aufgabe 6

Sei $n \geq 2$ eine natürliche Zahl. Zeigen Sie
: $n^4 + 4^n$ ist keine Primzahl.

Beweis.

2 Seite 33

2.1 Aufgabe 3

Seien a und b positive natürliche Zahlen mit der Eigenschaft, dass es keine Primzahl gibt, die zugleich a und b teilt. Beweisen Sie: Gibt es ein $c \in \mathbb{N}$ mit $ab = c^2$, so existieren $x, y \in \mathbb{N}$ mit $a = x^2$ und $b = y^2$.

Beweis. Es ist c eine beliebige zusammengesetzte Zahl und $c^2 = p_1^{2m_1} p_2^{2m_2} \cdot \ldots \cdot p_r^{2m_r}$ ihre Primzerlegung. Man überlege jetzt, wie diese Faktoren zwischen a und b verteilt sein können. Damit keine Primzahl in a oder b gemeinsam vorkommt, müssen die Primpotenzen $p_i^{2m_i}$ mit $i=1,\ldots,r$ vollständig zwischen a und b verteilt sein. Somit sind es immer Quadratzahlen.

Zum Beispiel:

$$20^2 = 2^4 5^2$$
 1) $ab = (2^4)(5^2) = 4^2 \cdot 5^2$
 $210^2 = 2^2 3^2 5^2 7^2$ 1) $ab = (2^2 3^2 5^2)(7^2) = 30^2 \cdot 7^2$
2) $ab = (2^2 3^2)(5^2 7^2) = 6^2 \cdot 35^2$

3) $ab = (2^2)(3^25^27^2) = 2^2 \cdot 105^2$

2.2 Aufgabe 4

Es seien a, b natürliche Zahlen, für die gilt: $a \mid b^2, b^2 \mid a^3, a^3 \mid b^4, b^4 \mid a^5, \dots$ Zeigen sie: a = b.

Beweis. Es sind

$$a = X_1^{m_1} \cdot X_2^{m_2} \cdot \ldots \cdot X_r^{m_r}$$

$$b = Y_1^{n_1} \cdot Y_2^{n_2} \cdot \ldots \cdot Y_r^{n_r} \qquad X_i, Y_i \in \mathbb{P} \text{ mit } i = 1, \ldots, r$$

die Primzerlegungen von a und b. Es ist direkt festzuhalten, dass $X_i = Y_i$ für alle i = 1, ..., r. Hätte a mehr Primfaktoren wie b, verletzt dies das Teilbarkeitskriterium (Remmert und Ullrich 2008, S. 33) in $a \mid b^2$; hätte a weniger, verletzt dies $b^2 \mid a^3$. Es bleibt zu zeigen, dass auch die Primpotenzen nicht verschieden sind. Angenommen $a \neq b$ und es werden zwei Fälle unterschieden:

1) Es gilt 0 < a < b und a hat somit mindestens einen Primfaktoren der Form $X_i^{m_i-s_i}$ mit $0 < s_i < m_i$. Für diesen Beweis reicht es genau einen dieser Faktoren zu untersuchen und wir schreiben X^{m-s} ohne den Index i. Es werden die folgenden Fakten aufgeschrieben:

Es lassen sich die folgenden Ungleichungen ableiten oder direkt ablesen:

$$2km \ge 2km - m - 2ks + s$$

$$0 \ge -m - 2ks + s \tag{1}$$

$$m + (2k - 1)s \ge 0$$

$$2km + m - 2ks - s \ge 2km$$

$$m - (2k+1)s \ge 0$$
(2)

Es ist zu sehen, dass Ungleichung 1 für alle k, m, s wahr ist. In 2 wird k = m gewählt und man führt die ursprüngliche Behauptung mit $(1 - 2s)m - s \ge 0$ zum Widerspruch. Der Term 1 - 2s ist wegen s > 0 immer negativ.

2) Es gilt a > b und a hat somit mindestens einen Primfaktoren der Form $X_i^{m_i + s_i}$ mit $s_i > 0$. Es wird nach demselben Prinzip wie zuvor aufgeschrieben

$$X^{(2k-1)m+(2k-1)s} \mid X^{2km} \qquad \qquad X^{2km} = X^{(2k-1)m+(2k-1)s} \cdot X^{m-(2k-1)s}$$

$$X^{2km} \mid X^{(2k+1)m+(2k+1)s} \quad X^{(2k+1)m+(2k+1)s} = X^{2km} \cdot X^{m+(2k+1)s}$$

und die folgenden Ungleichungen abgelesen:

$$m - (2k - 1)s \ge 0 \tag{3}$$

$$m + (2k+1)s \ge 0 \tag{4}$$

Es ist zu sehen, dass Ungleichung 4 für alle k, m, s wahr ist. In 3 wird k = m + 1 gewählt und man führt die ursprüngliche Behauptung mit $(1 - 2s)m - s \ge 0$ zum Widerspruch. Es folgt a = b.

3 Seite 53

3.1 Aufgabe 1

Sei p eine Primzahl, a,b seien von Null verschiedene rationale Zahlen, $a+b\neq 0$. Zeigen Sie: $w_p(a+b)\geq \min\left(w_p(a),w_p(b)\right)$

Beweis. Sei $m = \min(w_p(a), w_p(b))$. Es gilt $p^m \mid a, p^m \mid b$ und damit auch $p^m \mid a + b$. Wir schreiben $a + b = p^m \cdot v$ und zeigen durch umformen:

$$w_p(a+b) = w_p(p^m \cdot v)$$

$$= w_p(p^m) + w_p(v)$$

$$= m + w_p(v)$$

$$= \min(w_p(a), w_p(b)) + w_p(v)$$

Es ist zu sehen $w_p(a+b) \ge \min(w_p(a), w_p(b))$.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

3.2 Aufgabe 2

Für x reell bezeichne $\lfloor x \rfloor$ die größte ganze Zahl m mit $m \leq x$. Zeigen Sie, dass für p eine Primzahl und $n \in \mathbb{N}$ beliebig gilt:

$$w_p(n!) = \sum_{i=0}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

Beweis. \Box

Literaturverzeichnis

Remmert, Reinhold und Peter Ullrich (2008). *Elementare Zahlentheorie*. Springer. ISBN: 978-3-7643-7730-4.