1 definitions

- Questions denotations (more or less Hamblin (possible answers rather than true answers):
 - (1) Polar questions

a. syntax: $?\phi$

b. semantics:
$$\lambda p[p = \phi \lor p = \neg \phi]$$
 $\{\phi, \neg \phi\}$

(2) Alternative questions

a. syntax: $?\phi \lor_a \psi$

b. semantics:
$$\lambda p[p = \phi \lor p = \psi]$$
 $\{\phi, \psi\}$

- (3) Constituent questions
 - a. syntax: $?x\phi$

b. semantics: $\lambda p[\exists x(p = \phi(x))]$

$$\{\phi(d), \phi(d'), ...\}$$

- Partitions (exhaustive and partial answers)
 - (4) $\operatorname{Part}(\mathbf{Q}) = \{(w, v) \mid \forall \alpha \in Q : w \in \alpha \text{ iff } v \in \alpha\}$

exhaustive answers = cells in Part(Q)

exhaustive true answer in w = cell including w

partial answers (true in w)= unions of cells of Part(Q) (including w)but different from Part(Q)

- Knowledge:
 - (5) s knows Q wrt C in w iff $(K_w \cap QUD_C)$ entails the exhaustive true answer to Q in w Or alternatively (prob equivalent)
 - (6) s knows Q wrt C in w iff for all true partial answer A ($K_w \cap QUD_C$) entails A in w (this second formulation would maybe allow us to express partial knowledge, and the following entailment (if we define not know Q = for all partial answers A not know (A)):
 - (7) not know (A or B) \Rightarrow not know A and not know B
- Context and updates (this is very crude):
 - (8) Context = info state (set of world) + question under discussion (set of propositions)
 - (9) a. $C + P = (s_C \cap P), QUD)$ (assertions) b. $C + Q = (s_C, QUD \cup Q)$ (questions)
- Our example. Lets take s_C to be $\{w_B\}$, and $K_w = \{w_B, w_F\}$. Then,
 - (10) a. Ralph knows whether it is B or J on TV.
 - b. true in $C + (?b \vee_A j)$, but false in $C + ?(b \vee_A j) + ?(b \vee_A f)$
 - (11) a. Ralph knows whether it is B or F on TV.
 - b. false in $C+?(b \vee_A f)$