TAVE Research

Learning the network

11-785 Introduction to Deep Learning

- lecture 5 -

TAVE Research DL001 Heeji Won

01. Computing the derivative

02. Computing the gradient

03. Special cases

01. Computing the derivative

02. Computing the gradient

03. Special cases

01. Computing the derivative

Total training loss

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

Total derivative

$$\frac{dLoss}{dw_{ij}^{(k)}} = \frac{1}{T} \sum_{t} \frac{dDiv(Y_t, d_t)}{dw_{ij}^{(k)}}$$
 Want!

✓ Chain Rule

- For any nested function y = f(g(x))

$$z = g(x) \Longrightarrow \Delta z = \frac{dg(x)}{dx} \Delta x$$

$$y = f(z) \implies \Delta y = \frac{df}{dz} \Delta z = \frac{df}{dg(x)} \frac{dg(x)}{dx} \Delta x$$

Distributed Chain rule

$$y = f(g_1(x), g_1(x), \dots, g_M(x))$$

Let
$$z_i = g_i(x)$$

$$\Delta y = \frac{\partial f}{\partial z_1} \Delta z_1 + \frac{\partial f}{\partial z_2} \Delta z_2 + \dots + \frac{\partial f}{\partial z_M} \Delta z_M$$

$$\Delta y = \frac{\partial f}{\partial z_1} \frac{dz_1}{dx} \Delta x + \frac{\partial f}{\partial z_2} \frac{dz_2}{dx} \Delta x + \dots + \frac{\partial f}{\partial z_M} \frac{dz_M}{dx} \Delta x$$

$$\frac{dy}{dx} = \frac{\partial f}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial f}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial f}{\partial g_M(x)} \frac{dg_M(x)}{dx}$$

01. Computing the derivative

02. Computing the gradient

03. Special cases

02. Computing the gradient

• computation of the derivative $\frac{dDiv(Y,d)}{dw_{ij}^{(k)}}$

✓ requires intermediate and final output values of the network in response to the input

The forward pass

: the process of computing the output from an input as the forward pass

02. Computing the gradient

The backward pass

: the process of computing the gradient from an output as the backward pass

01. Computing the derivative

02. Computing the gradient

03. Special cases

03. Special cases

Case 1. Vector activation

y^(k-1) z^(k) y^(k)

- < Scalar activation >
- Each z_i
- influences one y_i
 - initide ices one y_i
 - $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{dy_i^{(k)}}{dz_i^{(k)}}$

- < Vector activation >
- Each z_i
- influences all, $y_1, ..., y_M$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{i} \frac{\partial Div}{\partial y_i^{(k)}} \frac{dy_i^{(k)}}{dz_i^{(k)}}$$

- Case 2. Non-differentiable activations
- ReLU

- ✓ At the differentiable points, we can use any sub-gradients
- Max

$$y = \max_{j} z_{j}$$
 $\xrightarrow{\partial y}$ $\frac{\partial y}{\partial z_{i}} = \begin{cases} 1, i = argmax_{j}z_{j} \\ 0, & otherwise \end{cases}$

01. Computing the derivative

02. Computing the gradient

03. Special cases

04. Vector formulation

Vector formulation

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$

$$\mathbf{y}_{k} = f_{k}(\mathbf{z}_{k})$$

The forward pass

The Complete computation

$$Y = f_N(\mathbf{W}_N f_{N-1}(...f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) ...) + \mathbf{b}_N)$$

$$Div(Y, d) = Div(f_N(\mathbf{W}_N f_{N-1}(...f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)...) + \mathbf{b}_N), d)$$

04. Vector formulation

- The Jacobian
- The distributed chain rule

$$y = f(g_1(x), g_1(x), \dots, g_M(x))$$

$$\downarrow$$

$$\Delta y = \frac{\partial f}{\partial z_1} \Delta z_1 + \frac{\partial f}{\partial z_2} \Delta z_2 + \dots + \frac{\partial f}{\partial z_M} \Delta z_M$$

✓ What if y is a vector?

What if y is a **Vector**?
$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \end{pmatrix} \longrightarrow J_y(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \cdots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \cdots & \frac{\partial y_2}{\partial z_D} \\ \vdots & \ddots & \ddots & \ddots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \cdots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

$$\Delta \mathbf{y} = J_{\mathbf{y}}(\mathbf{z}) \Delta \mathbf{z}$$

- Chain rule
- For vector functions of vector inputs

$$y = f(z(x)) \rightarrow J_y(x) = J_y(z)J_z(x)$$

For scalar functions of vector inputs

$$D = f(\mathbf{z}(\mathbf{x})) \to \nabla_{\mathbf{x}}D = \nabla_{\mathbf{z}}(D)J_{\mathbf{z}}(\mathbf{x})$$
$$(\because \Delta D = \nabla_{\mathbf{z}}(D)\Delta\mathbf{z}, \quad \Delta\mathbf{z} = J_{\mathbf{z}}(x)\Delta x)$$

Affine functions

$$z = Wy + b \rightarrow J_z(y) = W$$

$$(\because W(y + \Delta y) + b = (Wy + b) + W\Delta y)$$

$$= z + \Delta z$$

04. Vector formulation

The backward pass

$$\nabla_{\mathbf{W}_{1}}Div = \mathbf{x}\nabla_{\mathbf{z}_{1}}Div$$

$$\nabla_{\mathbf{b}_{1}}Div = \nabla_{\mathbf{z}_{1}}Div$$

In some problems we will also want to compute the derivative w.r.t. the input

Thank you