Tracking Moving Object in Different Scenes

Cheng An Hsieh (chengan2)

Ben Chiang (benchian)

18752 Project

Content

- Problem statement (1 slide)
- Data collection and pre-processing (up to 2 slides)
- Feature extraction (3 slides)
 - Including Data visualization (1 slide)
- Regression/classification/time series prediction (4 slides)
 - One of these methods should meet the performance specification
- Picture of the software code (up to 2 slides)
 - Explain each section of the code
- Slides explaining methods that are unfamiliar to the class (up to 4 slides)
 because they were not taught in the lectures
- You can also include additional slides if they help explain the project better

Problem Statement

This project aims to solve the problem of tracking moving object in different scenes. Data will be in the form of a video captured by a stationary camera. We will hand label scene classes and object-of-interest's position. This project is particularly interesting and useful to solve because accurate tracking of an object-of-interest in wide variety of scenes is critical for many downstream applications, such as self-driving, path planning, and scene understanding where there might be some important objects that algorithms should attend to at all times. For instance, pedestrians in autonomous vehicles.

Data collection

- Device:
 - Iphone 15
 - HD mode(1920x1080), 30 FPS
- 4 Scenes:
 - Living Room
 - Bedroom
 - Bathroom
 - Dining room
- Moving object:
 - CMU water bottle

Bedroom

Dining Room

Image Samples of All Scenarios

Different scenes with and without water bottle

Data Pre-processing

- Annotation:
 - human-labeling:
 - object bounding box
 - scene category
 - tool: Roboflow
- Preprocessing:
 - Resize to 640x640
- Dataset format:
 - Coco
- Data amount:
 - 4 videos(30s) in different scenes
 - 512 images in total

Feature extraction 1

Histogram of Gradients(HOG)

Input image

Input image

Histogram of Oriented Gradients

Histogram of Oriented Gradients

Feature extraction 2

List of keypoints(corners)

Feature extraction

t-SNE

Clear separation of different classes in embedding space!

Shows that the task of classifying different scenes is feasible