La fonction d'exécution

CPU, Mémoire

La couche « microarchitecture »

La couche « microarchitecture »

- Des fonctions logiques évoluées sont interconnectées :
 - Registres
 - Contrôleur
 - Unité Arithmétique et logique
- Couche supérieures : ISA (jeu d'instructions)
- Couche inférieure : Logique numérique

CPU: Structure

 Dans les ordinateurs réels, le jeu d'instructions est encodé en binaire et la logique câblée remplace le LM

- CU (Control Unit) contrôle, interprète les instructions, lit le compteur d'instructions et fait la séquence d'actions correspondantes au cycle Fetch/Execute
- ALU + CU = CPU (Central Processing Unit)

Little Man Computer

CPU & Registres

- Exécute les instructions machines placées en mémoire centrale
 - Est constitué de quatre parties
 - L'unité arithmétique et logique (UAL)
 - Exécution de tous les calculs de microprocesseur
 - Les registres
 - Zones de mémorisation de l'information internes au microprocesseur
 - L'unité de commande (CU control unit)
 - Exécute les instructions machines en utilisant les registres et l'UAL
 - Le bus de communication interne

Registres LMC

- Zones de mémorisation de l'information internes au microprocesseur
 - Registres spécifiques:
 - 2 registres pour la manipulation des instructions
 - PC (le compteur ordinal)
 - IR (le registre d'instruction)
 - 2 registres permettant la communication avec les autres modules via le bus
 - MAR (le registre d'adresses)
 - MDR (le registre de données)
 - Registres généraux
 - Un seul registre : Acc (accumulateur)

Compteur de programme (PC)

C'est un registre d'adresses.

Contient l'adresse de la prochaine instruction à exécuter.

Incrémenté après l'exécution de chaque instruction.

Peut être changé lors de l'exécution: instruction "jump".

Initialiser à zéro ou « reset » au début.

Le registre d'instruction (IR)

C'est un registre de données. Il contient une instruction à exécuter. **Op Code** + Adresse Localisation des données Type de traitement à réaliser ADD 99:

Registre d'adresses (MAR)

Contient l'adresse du mot mémoire. Cette adresse est placée sur le bus d'adresses et devient la valeur d'entrée du circuit de sélection qui va à partir de cette entrée sélectionner le mot correspondant.

Registre de données (MDR)

Il permet l'échange d'informations (contenu d'un mot mémoire) entre la mémoire centrale et le processeur (registre)

Accumulateur

Registre (ou l'ensemble de registres) utilisé pour la manipulation des données.

D'habitude contient les résultats des opérations arithmétiques ou logiques.

Opération de la mémoire

- Une unité Mémoire consiste en un ensemble de cellules de stockage possédant une adresse propre et pouvant stocker une valeur binaire
- MAR registre contenant l'adresse de la mémoire où sera stockée la donnée
- MDR registre contenant la donnée/Instruction a être stockée/lu

Mémoire et les registres MDR & MAR

Exemple MAR-MDR

Analogie visuelle

Cellule mémoire

Capacité Mémoire

Déterminée par deux facteurs:

- 1. Nombre de bits dans MAR
 - □ LMC = 100 (00 to 99)
 - Nombre d'adresses mémoires pouvant être décodées
- 2. Taille du champs adresse dans l'instruction
 - 4 bits permet 16 locations
 - 8 bits permet 256 locations
 - **32** bits permet 4,294,967,296 ou 4 GB

L'exécution d'une instruction

- L'exécution d'une instruction implique:
 - Le microprocesseur
 - Registres
 - UAL
 - Unité de commande
 - Bus interne
 - Le bus de communication mémoire/microprocesseur
 - La mémoire centrale

L'exécution d'une instruction

- Exécuter une instruction équivaut à permettre des interactions efficaces entre ces trois composants
 - Microprocesseur
 - Le bus de communication mémoire/microprocesseur
 - La mémoire centrale

Registres CPU LMC

Compteur de programme (PC)

Registre d'instruction (IR)

Registre d'adresses (MAR)

Registre de données (MDR)

Accumulateur (A or Acc)

Little Man vs CPU Cycle Fetch-Execute

Cycle d'instruction: Fetch-Execute

06 LDA 15 A ←M[15] 515

«Fetch»

- C'est la phase de recherche et de chargement de l'instruction, pointée par le compteur de programme PC dans le registre instruction IR
 - Le contenu du PC est placé dans le registre d'adresses MAR
 - L'accès mémoire
 - Placer le contenu du registre MDR dans le registre IR

PC -> MAR

kc

L'accès mémoire à l'adresse 06

Le contenu M[06] dans MDR:

MDR -> IR

«Execute»

- Analyse de l'instruction
- L'unité de commande déclenche la séquence de micro-instructions nécessaires à la réalisation de l'instruction
- Incrémenter le compteur de programme
- Dépend de l'instruction
 - On continue l'exemple : LDA 15

IR [partie adresse] -> MAR

LOAD => M[15] = 10 => MDR

MDR = 10

IR [op code] s'exécute: MDR -> A

$PC + 1 \rightarrow PC$

Fin!

Fetch-Execute Cycle de l'instruction Load

Fetch-Execute Cycle de l'instruction ADD

Maintenant:

07 ADD 18

M[18] = 71, le reste est le même

PC -> MAR

MAR accède l'adresse 7

Contenu de M[7] -> MDR

MDR -> IR

IR [adresse] -> MAR

M[MAR] accédé

M [18] -> MDR

IR [opcode] exécuté: A = A + MDR

PC = PC + 1

Fetch-Execute Cycle de l'instruction ADD

■ R(address) -> MAR

Fetch-Execute Cycle de l'instruction STORE

R(address) -> MAR

LMC Fetch/Execute

<u>SUB</u>	<u>IN</u>	<u>OUT</u>	<u>HLT</u>
PC → MAR	PC → MAR	PC → MAR	PC → MAR
MDR → IR	MDR → IR	$MDR \rightarrow IR$	MDR → IR
IR[adr] → MAR	IOR → A	$A \rightarrow IOR$	
$A - MDR \rightarrow A$	$PC + 1 \rightarrow PC$	$PC + 1 \rightarrow PC$	
PC + 1 → PC			
	BR	Branchement co	<u>nditionnel</u>
	PC → MAR	PC → MAR	
	$MDR \rightarrow IR$	$MDR \rightarrow IR$	
	IR[adr] → PC	Si la condition est faux: PC + 1 → PC	
		Si la condition es	t vrai: IR[adr] → PC

LMC, la couche microarchitecture

