Algebra 1 Exercise sheet 3

Solutions by: Eric Rudolph and David Čadež

11. Mai 2023

Exercise 1.

- 1. Height of the ideal (0) is obviously 0. Height of (f) is 1 because of irreducibility of f (easy to see). For (π, g) , with $\pi \in A$ prime and $g \in A[T]$ irreducible in $(A/\pi)[T]$, we have a chain $(0) \subseteq (g) \subseteq (\pi, g)$. So dimension is at least 2. But it obviously cannot be more, there cannot be $(\tau, f) \subseteq (\pi, g)$ for some prime $\tau \in A$ and $f \in A[T]$ irreducible in $(A/\tau)[T]$. We also cannot have $(f_1) \subseteq (f_2)$ for irreducible $f_1, f_2 \in A[T]$. So we easily excluded all possible chains of length more than 2.
- 2. Pick any $a = \sum_{i=0}^{\infty} a_i u^i \neq 0$. If $a_0 \neq 0$, then it is invertible anyway in k[[u]]. Else let j be the smallest with $a_j \neq 0$. Since we treat u as invertible, we can multiply a with $(u^{-1})^j$ and get an invertible element in k[[u]]. Thus a is invertible in $A[u^{-1}]$. Since we can look at $A[u^{-1}] = A[T]/_{(uT-1)}$, we deduce that the ideal $(uT-1) \subseteq A[T]$ is maximal. Also, ideal (uT-1) is obviously of height 1.

Exercise 2.

- 1. Assumption of k being algebraically closed means that the only irreducible polynomials are those of degree 1.
 - Since k is a field, k[x] is a PID and thus every maximal ideal in k[x,y] = k[x][y] has height 2. Only maximal ideals in k[x][y] are therefore (π,g) with $\pi \in k[x]$ prime and $g \in k[x][y]$ whose image in $(k[x]/\pi)[y]$ is irreducible. Because k is algebraically closed, π must be of degree 1. That means $k[x]/\pi = k$. So g must an irreducible polynomial in k[y], and thus of degree 1, which is exactly what we want to show. Leading coefficients can be 1 because k is a field and we can just multiply with their inverses.
- 2. First write k[x, y, T]/(xT-1) and k[u, v, T]/(uT-1).

First we note that $\phi(xT-1)=0$ and so $\phi(T)=T$. For sure there exist more elegant ways, but for injectivity we can suppose $\phi(g)=f(uT-1)=0+(uT-1)$. Then $\phi(g)=f(\phi(xT-1))=0$. So it remains to show that ϕ is injective as a mapping $k[x,y,T]/(xT-1)\to k[u,v,T]$. That is true since it does not decrease the degrees of polynomials.

For surjectivity it is enough to show $u, v, T \in \text{im}(\phi)$. Of course $\phi(x) = u$ and $\phi(T) = T$. We want $v = \phi(t)$ for some t. We multiply with u and get $uv = u\phi(t) = \phi(xt)$. Putting it all on one side we get $\phi(xt - y) = 0$. We get xt - y = 0 and so t = Ty. Really $\phi(Ty) = Tuv = v$. So it is also surjective.

3.

Exercise 3. Let $n = \dim A$.

Let $p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_n$ prime ideals in A. Then we can increase this chain with $p_{n+1} = p_n + (T)$ and get strictly longer chain. To see that p_{n+1} is still prime, we take $ab \in p_{n+1}$. So it is of the form $ab = \gamma_0 + \gamma_1 T$ for $\gamma_0 \in p_n$ and $\gamma_1 \in A$. Write $a = \alpha_0 + \alpha_1 T$ and $b = \beta_0 + \beta_1 T$ for $\alpha_0, \beta_0 \in A, \alpha_1, \beta_1 \in A[T]$. We get that $\alpha_0\beta_0 = \gamma_0 \in p_n$ and thus either $\alpha_0 \in p_n$ or β_0 . If former, then $a \in p_{n+1}$, otherwise $b \in p_{n+1}$. This proves the lower bound.

Let $p_0 \subsetneq \cdots \subsetneq p_k$ be a chain in A[T]. Look at the chain

$$p_0 \cap A \subsetneq \cdots \subsetneq p_n \cap A.$$
 (1)

Since every prime ideal $p_1 \in A[T]$ is either pA[T] or directly above pA[T] (meaning there are no other prime ideal above pA[T] and below p_1), where $p = p_1 \cap A$. Therefore we cannot have a chain (with strict inclusions) of more than two prime ideals in A[T] that would contract to the same prime ideal in A. Then we immediately see that in the chain 1 at most two consecutive elements can be the same, therefore $k \leq 2n + 1$.

Exercise 4.

1. Of course $S \subseteq \iota_S^{-1}((S^{-1}A)^*)$. We also easily see that for $ab \in \iota_S^{-1}((S^{-1}A)^*)$ we have $\iota_S(a)\iota_S(b)$ invertible and thus each of them must be invertible. So the set $\iota_S^{-1}((S^{-1}A)^*)$ is saturated by itself.

Take now $a \in \iota_S^{-1}((S^{-1}A)^*)$. That means there exist $r \in A$ and $s \in S$ such that

$$\frac{r}{s}\frac{a}{1} = \frac{1}{1}.$$

So there exists $t \in S$ such that t(ra-s) = 0 from which we get $tra = ts \in S$ and thus $a \in \bar{S}$, which proves the other inclusion.

- 2. Because $S \subseteq T$, we have $\iota_T(S) \subseteq (T^{-1}A)^*$. By universal property there exists a unique map $\iota \colon S^{-1}A \to T^{-1}A$ with $\iota_T = \iota \circ \iota_S$.
- 3. If ι is isomorphism, then it preserves invertible elements and thus

$$\bar{S} = \iota_S^{-1} \big(\big(S^{-1} A \big)^* \big) = \iota_S^{-1} \big(\iota^{-1} \big(\big(T^{-1} A \big)^* \big) \big) = \iota_T^{-1} \big(\big(T^{-1} A \big)^* \big) = \bar{T}.$$

If $\bar{S} = \bar{T}$, then from uniqueness and universal property of ι it follows that $\iota = \mathrm{id}.$