Introduction to Algorithms Lecture 5: Dynamic Programming (DP)

Prof. Charles E. Leiserson and Prof. Erik Demaine Massachusetts Institute of Technology

April 8, 2025

Introduction to Algorithms

Content has been extracted from *Introduction to Algorithms*, Fourth Edition, by Cormen, Leiserson, Rivest, and Stein. MIT Press, 2022.

Visit https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/.

Original slides from Introduction to Algorithms 6.0461/18.4011, Fall 2005 Class by Prof. Charles Leiserson and Prof. Erik Demaine. MIT OpenCourseWare Initiative available at https://ocw.mit.edu/courses/6-046j-introduction-to-algorithms-sma-5503-fall-2005/.

Introduction

Different types of algorithms can be used to solve the all-pairs shortest paths problem:

- ▶ Dynamic programming
- ► Matrix multiplication
- ► Floyd-Warshall algorithm
- ▶ Johnson's algorithm
- ▶ Difference constraints

Single-Source Shortest Paths

- ▶ Given directed graph G = (V, E), vertex $s \in V$ and edge weights $w : E \to \mathbb{R}$
- ► Find $\delta(s, v)$, equal to the shortest-path weight $s \to v, \forall v \in V$ (or $-\infty$ if negative weight cycle along the way, or ∞ if no path)

Single-Source Shortest Paths

- ▶ Given directed graph G = (V, E), vertex $s \in V$ and edge weights $w : E \to \mathbb{R}$
- ▶ Find $\delta(s, v)$, equal to the shortest-path weight $s \to v, \forall v \in V$ (or $-\infty$ if negative weight cycle along the way, or ∞ if no path)

Situtation	${f Algorithm}$	Time
unweighted $(w=1)$	BFS	O(V+E)
non-negative edge weights	Dijkstra	$O(E + V \lg V)$
general	Bellman-Ford	O(VE)
acyclic graph (DAG)	Topological sort $+$ one pass of B-F	O(V+E)

All of the above results are the best known. We achieve a $O(E+V \lg V)$ bound on Dijkstra's algorithm using **Fibonacci heaps**.

All-Pairs Shortest Paths (APSP)

- ▶ Given edge-weighted graph, G = (V, E, w).
- ▶ Find $\delta(u, v)$ for all $u, v \in V$.
- ▶ A simple way of solving APSP problems is by running a single-source shortest path algorithm from each of the *V* vertices in the graph.

All-Pairs Shortest Paths (APSP)

- ▶ Given edge-weighted graph, G = (V, E, w).
- ightharpoonup Find $\delta(u,v)$ for all $u,v\in V$.
- ▶ A simple way of solving APSP problems is by running a single-source shortest path algorithm from each of the *V* vertices in the graph.

Situtation	Algorithm	Time	$E = \Theta(V^2)$
unweighted $(w = 1)$	V + BFS	O(VE)	$O(V^3)$
non-negative edge weights	V + Dijkstra	$O(VE + V^2 \lg V)$	$O(V^3)$
general	V + Bellman-Ford	$O(V^2E)$	$O(V^4)$
general	Johnson's	$O(VE + V^2 \lg V)$	$O(V^3)$

These results (apart from the third) are also best known –don't know how to beat $|V| \times Dijkstra$.

Algorithms to solve APSP*

Dynamic Programming (attempt 1):

- 1. Sub-problems: $d_{uv}^{(m)}$ = weight of shortest path $u \to v$ using \leq edges.
- 2. **Guessing**: What's the last edge (x, v)?
- 3. Recurrence:

$$\begin{aligned} d_{uv}^{(m)} &= \min(d_{uv}^{(m-1)} + w(x,v) & \text{for } x \in V) \\ d_{uv}^{(0)} &= \begin{cases} 0 & \text{if } u = v. \\ \infty & \text{otherwise.} \end{cases} \end{aligned}$$

- 4. Topological ordering: for m = 0, 1, 2, ..., n 1: for u and v in V.
- 5. **Original problem**: If graph contains no negative-weight cycles (by Bellman-Ford analysis), then shortest path is simple $\Rightarrow \delta(u,v) = d_{uv}^{(n-1)} = d_{uv}^{(n)} = \cdots$

^{*}For all the algorithms described, we assume that $w(u,v)=\infty$ if $(u,v)\in E$

Bottom-up via Relaxation Steps[†]

```
1 for m \leftarrow 1 to n by 1

2 for u in V

3 for v in V

4 for x in V

5 if d_{uv} > d_{ux} + d_{xv}

6 if d_{uv} = d_{ux} + d_{xv}
```

 $^{^{\}dagger}$ In the above pseudocode, we omit superscripts because more relaxation can never burt.

Time complexity

- ▶ In this Dynamic Program, we have $O(V^3)$ total sub-problems.
- ightharpoonup Each sub-problem takes O(V) time to solve, since we need to consider V possible choices.
- ▶ This gives a total runtime complexity of $O(V^4)$.
- ▶ Note that this is no better than $|V| \times$ Bellman-Ford.

Recall the task of standard matrix multiplication:

▶ Given $n \times n$ matrices A and B, compute $C = A \cdot B$, such that $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$.

- ▶ Given $n \times n$ matrices A and B, compute $C = A \cdot B$, such that $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$.
 - 1. $O(n^3)$ using standard algorithm.

- ▶ Given $n \times n$ matrices A and B, compute $C = A \cdot B$, such that $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$.
 - 1. $O(n^3)$ using standard algorithm.
 - 2. $O(n^{2.807})$ using Strassen algorithm.

- ▶ Given $n \times n$ matrices A and B, compute $C = A \cdot B$, such that $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$.
 - 1. $O(n^3)$ using standard algorithm.
 - 2. $O(n^{2.807})$ using Strassen algorithm.
 - 3. $O(n^{2.376})$ using Coppersmith-Winograd algorithm.

- ▶ Given $n \times n$ matrices A and B, compute $C = A \cdot B$, such that $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$.
 - 1. $O(n^3)$ using standard algorithm.
 - 2. $O(n^{2.807})$ using Strassen algorithm.
 - 3. $O(n^{2.376})$ using Coppersmith-Winograd algorithm.
 - 4. $O(n^{2.3728})$ using Vassilevska-Williams algorithm.

Connection to Shortest Paths

- ▶ Let's define $\oplus = \min$ and $\odot = +$.
- ▶ Then, $C = A \odot B$ produces $c_{ij} = \min_k (a_{ik} + b_{kj})$.
- ▶ Define $D^{(m)} = (d_{ij}^{(m)}), W = (w(i,j)), V = \{1, 2, ..., n\}$

With the above definitions, we see that $D^{(m)}$ can be expressed as $D^{(m-1)} \odot W$. In other words, $D^{(m)}$ can be expressed as the circle-multiplication of W with itself m times.

▶ n-2 multiplications $\Rightarrow O(n^4)$ time (still no better).

- ▶ n-2 multiplications $\Rightarrow O(n^4)$ time (still no better).
- ▶ Repeated squaring: $((W^2)^2)^{2\cdots}$

- ▶ n-2 multiplications $\Rightarrow O(n^4)$ time (still no better).
- Repeated squaring: $((W^2)^2)^{2\cdots} = W^{2^{\lg n}}$

- ▶ n-2 multiplications $\Rightarrow O(n^4)$ time (still no better).
- ▶ Repeated squaring: $((W^2)^2)^{2\cdots} = W^{2^{\lg n}} = W^{n-1} = (\delta(i,j))$ if no negative-weight cycles.

- ▶ n-2 multiplications $\Rightarrow O(n^4)$ time (still no better).
- ▶ Repeated squaring: $((W^2)^2)^{2\cdots} = W^{2^{\lg n}} = W^{n-1} = (\delta(i,j))$ if no negative-weight cycles.
- ▶ Time complexity of this algorithm is now $O(n^3 \lg n)$.

Floyd-Warshall Algorithms

Dynamic Programming (attempt 2):

- 1. **Sub-problems**: $c_{uv}^{(k)}$ = weight of shortest path $u \to v$ whose intermediate vertices $\in \{1, 2, \dots, k\}$
- 2. **Guessing**: Does shortest path use vertex k?
- 3. Recurrence:

$$\begin{split} c_{uv}^{(k)} &= \min(c_{uv}^{(k-1)}, c_{ux}^{(k-1)} + c_{xv}^{(k-1)}) \\ c_{uv}^{(0)} &= w(u, v) \end{split}$$

- 4. **Topological order**: for k: for u and v in V:
- 5. Original problem: $\delta(u,v) = c_{uv}^{(n)}$. Negative weight cycle \Leftrightarrow negative $c_{uu}^{(n)}$

End of Lecture 5.

TDT5FTOTTC

5 Computing Fibonacci numbers or finding the longest palindromic subsequence becomes efficient when subproblem results are cached to prevent repeated computation.

- 5 Computing Fibonacci numbers or finding the longest palindromic subsequence becomes efficient when subproblem results are cached to prevent repeated computation.
- 4 The LCS problem uses a table-based approach to find the length and content of the longest common subsequence in quadratic time.

- 5 Computing Fibonacci numbers or finding the longest palindromic subsequence becomes efficient when subproblem results are cached to prevent repeated computation.
- 4 The LCS problem uses a table-based approach to find the length and content of the longest common subsequence in quadratic time.
- 3 DP Has Four Key Steps: identifying the structure, defining recurrence, computing solutions bottom-up, and reconstructing the optimal result.

- 5 Computing Fibonacci numbers or finding the longest palindromic subsequence becomes efficient when subproblem results are cached to prevent repeated computation.
- 4 The LCS problem uses a table-based approach to find the length and content of the longest common subsequence in quadratic time.
- 3 DP Has Four Key Steps: identifying the structure, defining recurrence, computing solutions bottom-up, and reconstructing the optimal result.
- 2 DP optimizes problems that have **overlapping subproblems** and **optimal substructure**.

- 5 Computing Fibonacci numbers or finding the longest palindromic subsequence becomes efficient when subproblem results are cached to prevent repeated computation.
- 4 The LCS problem uses a table-based approach to find the length and content of the longest common subsequence in quadratic time.
- 3 DP Has Four Key Steps: identifying the structure, defining recurrence, computing solutions bottom-up, and reconstructing the optimal result.
- 2 DP optimizes problems that have **overlapping subproblems** and **optimal substructure**.
- 1 Dynamic Programming = recursion + memoization.

Introduction to Algorithms

Content has been extracted from *Introduction to Algorithms*, Fourth Edition, by Cormen, Leiserson, Rivest, and Stein. MIT Press, 2022.

Visit https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/.

Original slides from Introduction to Algorithms 6.0461/18.4011, Fall 2005 Class by Prof. Charles Leiserson and Prof. Erik Demaine. MIT OpenCourseWare Initiative available at https://ocw.mit.edu/courses/6-046j-introduction-to-algorithms-sma-5503-fall-2005/.