Problème 2 : La loi du milieu

Soit n un entier naturel non nul. Dans un sac, on place 2n+1 boules indiscernables au toucher et numérotées $0,1,2,\ldots,2n$. On vide alors progressivement le sac jusqu'à n'y laisser qu'une seule boule, selon le protocole suivant :

- on tire trois boules simultanément;
- si les trois boules tirées ont pour numéros a, b et c, avec a < b < c, on élimine les boules de numéros a et c et on replace dans le sac la boule de numéro b;
- on recommence les opérations précédentes.

Au bout de n tirages, il ne reste plus qu'une seule boule, et on note D_n son numéro. Pour tout entier k, on note $\mathbf{P}[D_n=k]$ la probabilité que la dernière boule restant dans le sac soit celle de numéro k.

I – Étude des petits cas

- 1) Déterminer la loi de la variable aléatoire D_1 .
- 2) Déterminer la loi de la variable aléatoire D_2 .

II - Valeurs extrêmes et symétrie

- 3) Déterminer la probabilité $P[D_n = 0]$.
- 4) Déterminer la probabilité $P[D_n = 1]$ en fonction de n.
- 5) Soit *i* un entier tel que $0 \le i \le 2n$. Pourquoi a-t-on $P[D_n = i] = P[D_n = 2n i]$?
- 6) Calculer l'espérance de la variable aléatoire D_n en fonction de n.

III - Comportement limite

Dans cette partie, on souhaite étudier la loi de D_n lorsque n tend vers $+\infty$. Afin de faciliter cette étude, on démontre tout d'abord un résultat préliminaire.

7) On considère la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=1$ et par

$$u_n = \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2n-1}{2n}$$

pour tout $n \ge 1$. Démontrer que $u_n \le \frac{1}{\sqrt{3n+1}}$ pour tout $n \ge 0$.

Il est maintenant temps d'étudier la loi de D_n elle-même.

- 8) Déterminer, pour tout entier j tel que $0 \le j \le 2n$, la probabilité p_j que la boule de numéro j soit éliminée lors de la première sélection.
- 9) Démontrer que, si $n \ge 3$, alors $p_j \ge \frac{1}{2n}$ pour tout entier j tel que $0 \le j \le 2n$.
- 10) On note M_n la plus grande des probabilités $\mathbf{P}[D_n = j]$ lorsque $0 \le j \le 2n$. Démontrer que M_n tend vers 0 lorsque n tend vers $+\infty$.