CSC373 Worksheet 5 Solution

August 8, 2020

1. Rough Works:

Assume that a flow network G = (V, E) violates the assumption that the network contains a path $s \rightsquigarrow v \rightsquigarrow t$ for all vertices $v \in V$. Let u be a vertex for which there is no path $s \rightsquigarrow u \rightsquigarrow t$.

I must show such that there is no flow at vertex u. That is, there exists a maximum flow f in G such that f(u,v)=f(v,u)=0 for all vertices $v \in V$.

I will do so in cases

- 1. Case 1: When u only has no flow going in and out
 - Show

Assume u only has no flow going in and out.

Then, we know that $(u, v) \notin E$ for all $v \in V$.

Then, we know by the edge case of flow conservation that f(u, v) = 0 for all $v \in V$.

Then, we can write

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u) = 0$$
 [By flow conservation] (1)

Then, using the capacity constraint $(\forall a, b \in V, 0 \leq f(a, b))$, we can write f(v, u) in $\sum_{v \in V} f(v, u)$ must be 0 for all $v \in V$.

So,
$$f(v, u) = 0$$

This applies to all $u \in V$.

\underline{Notes}

• Maximum Flow:

 $-% \frac{1}{2}$ Finds a flow of maximum value $^{\left[1\right] }$

Example

Here, the maximum flow is 10 + 5 + 13 = 28

• Flow Network:

- -G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$.
- Two vertices must exist: **source** s and **sink** t
- path from source s to vertax v to sink t is represented by $s \leadsto v \leadsto t$

• Capacity:

- Is a non-negative function $f: V \times V \to \mathbb{R}_{\geq 0}$
- Has capacity constraint where for all $u, v \in V$ $0 \le f(u, v) \le c(u, v)$
 - * Means flow cannot be above capacity constraint

• Flow:

- Is a real valued function $f: V \times V \to \mathbb{R}$ in G
- Satisfies capacity constraint (i.e for all $u, v \in V$, $0 \le f(u, v) \le c(u, v)$)
- Satisfies flow conservation

For all $u \in V - \{s, t\}$, we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \tag{2}$$

Means flow into vertex u is the same as flow going out of vertex u. [1]

Example:

$\underline{\mathbf{References}}$

1) Princeton University, Network Flow 1, link