EE240B HW 2

Vighnesh Iyer

February 22, 2019

1 Electronic Noise

Noise source	Amplifier A	Amplifier B
$\sqrt{rac{\overline{v_n^2}}{\Delta \mathbf{f}}}$	$1\frac{nV}{\sqrt{Hz}}$	$10\frac{\text{nV}}{\sqrt{\text{Hz}}}$
$\sqrt{rac{oldsymbol{ec{\iota}_n^2}}{\Delta \mathbf{f}}}$	$1\frac{pA}{\sqrt{Hz}}$	$1\frac{fA}{\sqrt{Hz}}$

(a) Calculate the input referred noise in $V/\sqrt{\rm Hz}$ achieved with the two amplifiers for $R_S=50\Omega,5\mathrm{M}\Omega$. Only consider the amplifier noise. Assume the amplifier voltage and current sources are uncorrelated.

R_s	Amplifier A	Amplifier B
50 Ω	$1.05 \frac{\text{nV}}{\sqrt{\text{Hz}}}$	$10\frac{\text{nV}}{\sqrt{\text{Hz}}}$
$5~\mathrm{M}\Omega$	$5000 \frac{\text{nV}}{\sqrt{\text{Hz}}}$	$15\frac{\text{nV}}{\sqrt{\text{Hz}}}$

(b) Significance of the result?

If the input voltage source's resistance is low, an amplifier with low voltage noise should be chosen (since the amplifier's current noise won't see a large resistance). Use a BJT op-amp.

If the input voltage source's resistance is high, an amplifier with low current noise should be chosen. This is usually a FET op-amp.

2 Amplifier Noise

Derive analytical expressions as a function of $g_m, \gamma, f_T, R_L, R_S$, and C_L

EE240B HW 2 2

(a) The voltage gain $a_v(s) = v_o/v_i$

This is a standard source-degenerated common-source amplifier with a complex load.

$$Z_L = (R_L || C_L) = (R_L || \frac{1}{sC_L}) = \frac{R_L}{a + sR_L C_L}$$

 $a_v(s) =$