第八章 计算机组成原理实验设计

8.1 实验一 MIPS 汇编编程

1.实验介绍

本实验通过编写汇编程序来熟悉在 CPU 设计中涉及到的 54 条的 MIPS 汇编指令。

2. 实验目标

- 学习使用 MARS MIPS 模拟器
- 熟悉 54 条 MIPS 指令
- 编写几个 MIPS 汇编程序: Fibonacci 数列、冒泡排序、Booth 乘法

3. 实验原理

- 1) MIPS 汇编基本格式
 - (1) 代码段由.text 开头
 - (2) 数据段以.data 开头(本次试验可以不使用数据段)
 - (3) 跳转标记格式如"lable:",为标记名+冒号
- 2) MARS 是一个 MIPS 模拟器,可以使用其来编写并调试 MIPS 汇编程序
- 3) MIPS 程序要求
- (1) Fibonacci 数列: 将寄存器\$2,\$3 初始化为 fibonacci 数列的前两个数 0,1; 寄存器\$4 为数列中所需得到的数字的序号(\$4=4 即表示得到第四个 Fibonacci 数);最后得到的结果存入寄存器\$1
- (2)将一串数列输入寄存器\$2-\$6,用冒泡排序算法对其进行排序
- (3)运用布斯乘法算法实现两个数的乘法,结果用两个寄存器表示,具体算法可参考 wikipedia 上的相关词条
- PS: 由于 MIPS 的一些默认操作会改变寄存器\$1 的值,所以运算时尽量不要使用寄存器\$1
- 4) 使用如表 8.4.1 所示指令来编写 MIPS 的汇编程序

表 8.4.1 54 条 MIPS 指令表

Mnemonic			Camplo							
Symbol			Sample							
R型指令										
Bit#	31-26	25-21	20-16	15-11	10-6	5-0				
R-type	op	rs	rt	rd	shamt	func				
add	000000	rs	rt	rd	0	100000	add \$1,\$2,\$3			

addu	000000	rs	rt	rd	0	10000	1 a	addu \$1,\$2,\$3			
sub	000000	rs	rt	rd	0	100010		sub \$1,\$2,\$3			
subu	000000	rs	rt	rd	0			subu \$1,\$2,\$3			
and	000000	rs	rt	rd	0			and \$1,\$2,\$3			
or	000000	rs	rt	rd	0	100101		or \$1,\$2,\$3			
xor	000000	rs	rt	rd	0	100110		xor \$1,\$2,\$3			
nor	000000	rs	rt	rd	0	100111		nor \$1,\$2,\$3			
slt	000000	rs	rt	rd	0	101010		slt \$1,\$2,\$3			
sltu	000000	rs	rt	rd	0	101011		sltu \$1,\$2,\$3			
sll	000000	0	rt	rd	shamt	000000		sll \$1,\$2,10			
srl	000000	0	rt	rd	shamt	000010		srl \$1,\$2,10			
sra	000000	0	rt	rd	shamt	000011		sra \$1,\$2,10			
sllv	000000	rs	rt	rd	0	000100		sllv \$1,\$2,\$3			
srlv	000000	rs	rt	rd	0	00011	0 5	srlv \$1,\$2,\$3			
srav	000000	rs	rt	rd	0	00011	1 5	Srav \$1,\$2,\$3			
jr	000000	rs	0	0	0	001000		jr \$31			
I 型指令											
Bit#	31-26	25-2	1 20-16)	15-0						
I-type	op	rs	rt	i	immediate						
addi	001000	rs	rt	i	immediate			addi \$1,\$2,100			
addiu	001001	rs	rt	i	immediate		addiu \$1,\$2,100				
andi	001100	rs	rt	i	immediate		andi \$1,\$2,10				
ori	001101	rs	rt	i	immediate		ori \$1,\$2,10				
xori	001110	rs	rt	i	immediate		xori \$1,\$2,10				
lw	100011	rs	rt	i	immediate		lw \$1,10(\$2)				
SW	101011	rs	rt	i	immediate		sw \$1,10(\$2)				
beq	000100	rs	rt	i	immediate		beq \$1,\$2,10				
bne	000101	rs	rt	i	immediate		bne \$1,\$2,10				
slti	001010	rs	rt	i	immediate		slti \$1,\$2,10				
sltiu	001011	rs	rt	i	immediate		sltiu \$1,\$2,10				
lui	001111	0000	0 rt	i	immediate			lui \$1,10			
J型指令											
Bit#	31-26	5	25-0								
J-type	Op		Index								
j	00001	0	address					j 10000			
jal	00001	1	<u></u>	jal 10000							

4.实验步骤

- 1.下载并打开 MARS
- 2.在 MARS 中编写汇编程序
- 3.运行并调试汇编程序