Project: Creditworthiness

Step 1: Business and Data Understanding

Provide an explanation of the key decisions that need to be made. (250 word limit)

Key Decisions:

Answer these questions

What decisions needs to be made?

As a loan officer, I need to process 500 credit loans within one week based on applications' creditworthiness. So to solve the problem, I would need to build a classification model based on past loan data, and make predictions for new loan applications by implementing this prediction mode.

What data is needed to inform those decisions?

Data on all past applications:

This dataset contains lots of background information and performance of past applicants, such as their age, credit amount and credit history, etc.

I would generate my classification model based on this dataset.

The list of customers that need to be processed in the next few days

This dataset contains new applications' background information, combined this dataset and prediction model, I can generate predictions about each applicant's creditworthiness.

 What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Binary model, because we only concern about whether or not the applicant is creditworthy.

Step 2: Building the Training Set

Build your training set given the data provided to you. The data has been cleaned up for you already so you shouldn't need to convert any data fields to the appropriate data types.

Note: For the sake of consistency in the data cleanup process, impute data using the median of the entire data field instead of removing a few data points. (100 word limit)

To achieve consistent results reviewers expect.

Answer this question:

• In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

Data Cleanup

Below is the EDA for checking the health of the dataset. Correlations:

Correlation Matrix with ScatterPlot

Foreig No Vollidentier den Grettetel Northelitr Attalianiertal peblee at Talignetinge airs. Et urrent. address

Field Summary:

Name	Plot	% Missing	Unique Values	Min	Mean	Median	Max	Std Dev	Remarks
Age-years		2.4%	54	19.000	35.637	33.000	75.000	11.502	
Duration-in- Current-address		68.8%	5	1.000	2.660	2.000	4.000	1.150	This field has over 10% missing values. Consider imputing these values. This field has a small number of unique values, and appears to be a categorical field. Consider changing the field data type to "string".
Occupation	MINISTER NO. 1002 100 1 001401000000 MINISTER NO. 1002 100 100 100 100 100 100 100 100 10	0.0%	1	1.000	1.000	1.000	1.000	0.000	This field has a small number of unique values, and appears to be a categorical field. Consider changing the field data type to "string".
Telephone		0.0%	2	1.000	1.400	1.000	2.000	0.490	This field has a small number of unique values, and appears to be a categorical field. Consider changing the field data type to "string".

I removed 7 columns of the original dataset following the steps:

Columns Removed:

Duration in Current Address, Concurrent-Credits, Occupation, Guarantors, Telephone, No of Dependents, Foreign Workers.

Columns Imputation:

Age of Years (Replace NULL value with Average Age of Years)

Steps:	Results:
1	

Numerical data fields, are there any fields that highly-correlate with each other?	The Heatmap showed there were no variables highly correlated with other variables. (all correlations were < 0.5)
2. Missing Data	Remove 'Duration in Current Address', with 68.8% missing data. (Conduct imputation for 'Years of Age', replace 2.4% missing data.)
3. Low- Variability Data	'Concurrent-Credits': One value 'Occupation': One value 'Guarantors','Telephone', 'No of Dependents', 'Foreign Workers': High skewed toward one side.

Alteryx Workflow for reference:

Step 3: Train your Classification Models

First, create your Estimation and Validation samples where 70% of your dataset should go to Estimation and 30% of your entire dataset should be reserved for Validation. Set the Random Seed to 1.

Create all of the following models: Logistic Regression, Decision Tree, Forest Model, Boosted Model

Answer these questions for each model you created:

- Which predictor variables are significant or the most important? Please show the p-values or variable importance charts for all of your predictor variables.
- Validate your model against the Validation set. What was the overall percent accuracy?
 Show the confusion matrix. Are there any bias seen in the model's predictions?

Logistic Regression:

Model Comparison Report								
Fit and erro	r measures							
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy			
Step_credit	0.7600	0.8364	0.7306	0.8762	0.4889			
Model: model na	mes in the current co	omparison.						
				classes divided by total sample number.				
	•			ed as the number of cases that are correctly	predicted to be Class Iclass name) divided by			
				me], this measure is also known as recall.	predicted to be closs (closs floring, difference,			
	the ROC curve, only a	-	-					
					bers of a class that were predicted to be in that			
				t class. In situations where there are three or r				
•	s classes are used to			t class. In situations where there are three or i	note classes, average precision and average			
recall values acros	s classes are used to	calculate ti	ie FT score.					
Confusion n	natrix of Step_	_credit						
				Actual_Creditworthy	Actual_Non-Creditworthy			
	Predicted_	Creditwor	thy	92	23			
					23			

From the logistic regression report, we can see there are following significant Predictor Variables, (with p-value <0.05)

- Account-Balance
- Payment-Status-of-Previous-Credit
- Purpose
- Credit-Amount

- Length-of-current-employment
- Instalment-per-cent

Accuracy: The overall accuracy for the model is 0.76. The confusion matrix exhibited that, for Accuracy of creditworthy is 0.80, and Accuracy of non-creditworthy is 0.63. We can infer that the prediction model is biased, toward predicting Creditworthy.

Decision Tree:

Model Comparison Report								
Fit and error measures								
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy			
Decision_Tree_Credit	0.7467	0.8304	0.7035	0.8857	0.4222			
Model: model names in the curre								
Accuracy: overall accuracy, numb	er of correct pr	edictions	of all classes	divided by total sample number.				
Accuracy_[class name]: accurac	y of Class [class	name] is	defined as th	e number of cases that are correctly pred	cted to be Class [class name] divided by			
the total number of cases that act	ually belong to	Class [clas	ss name], this	measure is also known as recall.				
AUC: area under the ROC curve, or	only available fo	r two-clas	s classificatio	n.				
F1: F1 score, 2 * precision * recall	/ (precision + re	ecall). The	precision mea	asure is the percentage of actual members	of a class that were predicted to be in that			
class divided by the total number	of cases predict	ed to be i	n that class. I	n situations where there are three or more	classes, average precision and average			
recall values across classes are use	ed to calculate t	he F1 scor	e.					
Confusion matrix of De	ecision_Tr	ee_Cre	dit					
			1	Actual_Creditworthy	Actual_Non-Creditworthy			
Predic	ted_Creditwor	thy		93	26			
Predicted_1	Non-Creditwor	thy		12	19			

From the Decision Tree report, we can see the three most important variables are:

- Account-Balance
- Value-Saving-Stocks
- Duration-of-Credit-Month

Accuracy: The overall accuracy for the model is 0.75. The confusion matrix exhibited that, for Accuracy of creditworthy is 0.78, and Accuracy of non-creditworthy is 0.61. We can infer that the prediction model is biased, toward predicting Creditworthy.

Forest Model:

Variable Importance Plot

From the Forest Model report, we can see the three most important variables are:

- Credit-Amount
- Age-years
- Duration-of-Credit-Month

Accuracy: The overall accuracy for the model is 0.79. The confusion matrix exhibited that, for Accuracy of creditworthy is 0.78, and Accuracy of non-creditworthy is 0.84. We can infer that the

prediction model is not biased, since the accuracy for predicting creditworthy and non-creditworthy were pretty close.

Boosted Mode:

Report for Boosted Model Test_Model

Basic Summary:

Loss function distribution: Bernoulli Total number of trees used: 4000

Best number of trees based on 5-fold cross validation: 1955

Number of Iterations Assessment Plot

Model Comparison Report								
Fit and erro	r measures							
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy			
Test_Model	0.7933	0.8670	0.7539	0.9619	0.4000			
Model: model na	ames in the current co	mparison.						
			dictions of all cla	isses divided by total sample number.				
	•			· · · · · · · · · · · · · · · · · · ·	predicted to be Class [class name] divided by			
			-	, this measure is also known as recall.	. , ,			
	the ROC curve, only av	_	-					
					pers of a class that were predicted to be in tha			
lass divided by the	ne total number of cas	es predicte	d to be in that c	lass. In situations where there are three or m	nore classes, average precision and average			
•	ss classes are used to o							
Confusion r	natrix of Test_l	Model						
				Actual_Creditworthy	Actual_Non-Creditworthy			
	Predicted_C	Creditwort	hy	101	27			
	Predicted_Non-C	reditwort	hv	4	18			

From the Boosted Model report, we can see the three most important variables are:

- Account-Balance
- Credit-Amount

Accuracy: The overall accuracy for the model is 0.79. The confusion matrix exhibited that, for Accuracy of creditworthy is 0.79, and Accuracy of non-creditworthy is 0.82. We can infer that the prediction model is not biased, since the accuracy for predicting creditworthy and non-creditworthy were pretty close.

Step 4: Writeup

Decide on the best model and score your new customers. For reviewing consistency, if Score_Creditworthy is greater than Score_NonCreditworthy, the person should be labeled as "Creditworthy"

Write a brief report on how you came up with your classification model and write down how many of the new customers would qualify for a loan. (250 word limit)

Which model did you choose to use?

For this question, I would choose the Forest Model to perform my prediction. Because it has overall best Accuracy with 0.79 (slightly less than Boosted Model). Forest Model also has the highest Accuracy within Creditworthy.

Based on our ROC curve, the Forest Model reached the highest True Positive first and has the highest True Positive rate.

From the Confusion Matrices, we can calculate that the accuracy for Creditworthy is 0.78 and accuracy for Non-Creditworthy is 0.84. This results shows that the prediction model is not biased.

Please see the following graphs for reference.

Model Comparison Report						
Fit and error meas	ures					
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy	
Decision_Tree_Credit	0.7467	0.8304	0.7035	0.8857	0.422	
Forest_Credit	0.7867	0.8644	0.7389	0.9714	0.355	
Boosted_Credit	0.7933	0.8670	0.7539	0.9619	0.400	
Step_credit	0.7600	0.8364	0.7306	0.8762	0.4889	
Accuracy_[class name]: a the total number of cases th AUC: area under the ROC co	ccuracy of Class [clas at actually belong to urve, only available fo	s name] is Class [clas or two-clas	defined as the n is name], this me s classification.	ded by total sample number. umber of cases that are correctly predicte asure is also known as <i>recall</i> .	ed to be Class [class name] divided by	
100	mber of cases predic	ted to be i	n that class. In si	re is the percentage of actual members of tuations where there are three or more cla	a class that were predicted to be in the asses, average precision and average	

Confusion matrix of Boosted_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	27
Predicted_Non-Creditworthy	4	18
Confusion matrix of Decision_Tree_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	93	26
Predicted_Non-Creditworthy	12	19
Confusion matrix of Forest_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	Actual_Creditworthy	Actual_Non-Creditworthy 29
Predicted_Creditworthy Predicted_Non-Creditworthy	- /	
_ /	102	29
Predicted_Non-Creditworthy	102	29
Predicted_Non-Creditworthy	102 3	29 16

How many individuals are creditworthy?

Based on the Forest Model we built, there would total 412 individuals predicted creditworthy.

Alteryx Workflow for Score:

