EDA Student Performance Indicator

Data Collection

- Dataset Source https://www.kaggle.com/datasets/spscientist/students-performance-in-exams?datasetId=74977
- The data consists of 8 column and 1000 rows.

Dataset Information

- gender: sex of students -> (Male/female)
- race/ethnicity: ethnicity of students -> (Group A, B,C, D,E)
- parental level of education : parents'
- education -> (bachelor's degree,some college,master's degree,associate's degree,high school)
- lunch: having lunch before test (standard or free/reduced)
- test preparation course : complete or not complete before test
- math score
- reading score
- writing score

Problem statement

This project understands how the student's performance (test scores) is affected by other variables such as Gender, Ethnicity, Parental level of education, Lunch and Test preparation course.

```
# Import all Library
In [40]:
          import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          %matplotlib inline
In [41]: # Read the Dataset
         df = pd.read csv("Student.csv")
In [42]:
         df.head()
Out[42]:
             gender race_ethnicity parental_level_of_education
                                                                    lunch test_preparation_course math_score reading_score writing_score
                           group B
                                             bachelor's degree
             female
                                                                  standard
                                                                                                          72
                                                                                                                         72
                                                                                                                                       74
                                                                                            none
                                                 some college
                                                                  standard
                                                                                       completed
                                                                                                                                       88
             female
                          group C
                                                                                                                         90
                                                                                                          69
                                               master's degree
             female
                          group B
                                                                  standard
                                                                                                          90
                                                                                                                         95
                                                                                                                                       93
                                                                                            none
                                             associate's degree free/reduced
                                                                                                          47
                                                                                                                         57
                          group A
                                                                                                                                       44
               male
                                                                                            none
                                                                                                                                       75
                          group C
                                                 some college
                                                                                                          76
                                                                                                                         78
                                                                  standard
               male
                                                                                            none
In [43]: df.shape
Out[43]: (1000, 8)
In [44]: df.ndim
Out[44]: 2
In [45]: df.size
```

Out[45]: 8000

```
In [46]: df.dtypes
                                         object
Out[46]: gender
         race ethnicity
                                         object
          parental level of education
                                         object
                                         object
          lunch
         test preparation course
                                         object
         math score
                                          int64
         reading score
                                          int64
         writing score
                                          int64
          dtype: object
```

Data checks to perform

- check missing values
- check duplicates
- check the datatype
- check the number of unique values of each column
- check statistics of dataset
- check various categories present in the different categorical column

```
In [48]: df.isna().sum()
                                        0
Out[48]: gender
         race ethnicity
                                        0
         parental level of education
                                        0
         lunch
         test preparation course
         math_score
         reading score
                                        0
         writing score
                                        0
         dtype: int64
In [49]: ## Check Duplicates
         df.duplicated().sum()
Out[49]: 0
In [50]: ## check datatypes
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 8 columns):
             Column
                                         Non-Null Count Dtype
            gender
                                         1000 non-null object
                                         1000 non-null object
            race ethnicity
            parental level of education 1000 non-null object
                                         1000 non-null object
         3
            lunch
         4
            test preparation course
                                         1000 non-null object
            math score
                                         1000 non-null int64
            reading score
                                         1000 non-null int64
            writing score
                                         1000 non-null int64
        dtypes: int64(3), object(5)
        memory usage: 62.6+ KB
In [51]: ##Checking the number of uniques values of each columns
         df.nunique()
```

```
Out[51]: gender
                                          2
         race ethnicity
         parental level of education
                                          6
          lunch
                                          2
         test preparation course
                                          2
         math score
                                         81
         reading score
                                         72
         writing score
                                         77
         dtype: int64
```

In [52]: ## Check the statistics of the dataset
df.describe()

Out[52]:

	math_score	reading_score	writing_score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

Insights or Observation

- From the above description of numerical data, all means are very close to each other- between 66 and 69
- All the standard deviation are also close- between 14.6- 15.19
- While there is a minimum of 0 for maths, other are having 17 and 10 value

In [53]: ## Explore more info about the data
df.head()

Out[53]:		gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_course	math_score	reading_score	writing_score
	0	female	group B	bachelor's degree	standard	none	72	72	74
	1	female	group C	some college	standard	completed	69	90	88
	2	female	group B	master's degree	standard	none	90	95	93
	3	male	group A	associate's degree	free/reduced	none	47	57	44
	4	male	group C	some college	standard	none	76	78	75

In [54]: sns.pairplot(df)
 plt.show()


```
0 25 50 75 100 20 40 60 80 100 20 40 60 80 100 math_score reading_score writing_score
```

```
In [55]: [feature for feature in df.columns if df[feature].dtype=='0']
Out[55]: ['gender',
           'race ethnicity',
           'parental level of education',
           'lunch',
           'test preparation course']
        #segrregate numerical and categorical features
In [56]:
         numerical features=[feature for feature in df.columns if df[feature].dtype!='0']
         categorical feature=[feature for feature in df.columns if df[feature].dtype=='0']
In [57]: numerical features
Out[57]: ['math score', 'reading score', 'writing score']
In [58]: categorical feature
Out[58]: ['gender',
           'race ethnicity',
           'parental level of education',
           'lunch',
           'test preparation_course']
In [59]: ## Aggregate the total score with mean
         df['total score']=(df['math score']+df['reading score']+df['writing score'])
         df['average']=df['total score']/3
         df.head()
```

Out[59]:		gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_course	math_score	reading_score	writing_score	tota
	0	female	group B	bachelor's degree	standard	none	72	72	74	
	1	female	group C	some college	standard	completed	69	90	88	
	2	female	group B	master's degree	standard	none	90	95	93	
	3	male	group A	associate's degree	free/reduced	none	47	57	44	
	4	male	group C	some college	standard	none	76	78	75	
In [60]:	<pre>fig,axis=plt.subplots(1,2,figsize=(15,7)) plt.subplot(121) sns.histplot(data=df,x='average',bins=30,kde=True,color='g') plt.subplot(122) sns.histplot(data=df,x='average',bins=30,kde=True,hue='gender') plt.show()</pre>									•

Female student tend to perform well than male students

```
In [61]: plt.subplots(1,3,figsize=(40,10))
   plt.subplot(141)
   sns.histplot(data=df,x='average',kde=True,hue='lunch')
   plt.subplot(142)
   sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='lunch')
   plt.subplot(143)
   sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='lunch')
   plt.show()
```


Insights

- Standard Lunch help students perform well in exams.
- Standard lunch helps perform well in exams be it a male of female

```
In [62]: plt.subplots(1,3,figsize=(25,6))
plt.subplot(141)
ax =sns.histplot(data=df,x='average',kde=True,hue='parental_level_of_education')
plt.subplot(142)
ax =sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='parental_level_of_education')
plt.subplot(143)
ax =sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='parental_level_of_education')
plt.show()
```


More Insight

- In general parent's education don't help student perform well in exam.
- 2nd plot shows that parent's whose education is of associate's degree or master's degree their male child tend to perform well in exam
- 3rd plot we can see there is no effect of parent's education on female students.

```
In [63]: plt.subplots(1,3,figsize=(25,6))
    plt.subplot(141)
    ax =sns.histplot(data=df,x='average',kde=True,hue='race_ethnicity')
    plt.subplot(142)
    ax =sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='race_ethnicity')
    plt.subplot(143)
    ax =sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='race_ethnicity')
    plt.show()
```


Insights

- Students of group A and group B tends to perform poorly in exam.
- Students of group A and group B tends to perform poorly in exam irrespective of whether they are male or female

In []: