BROUILLON - NEWTON, BERNOULLI, LEIBNIZ, FIBONACCI ET BELL

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Des identités bien connues	2
2.	La loi binomiale révèle	2
2.1.	. De l'utilité des arbres	2
2.2.	. En route directement vers le binôme de Newton	3
2.3.	. Leibniz sans effort	9
2.4.	. Une petite astuce pour Fibonacci	4
2.5.	Avec des coefficients binomiaux	4
2.6.	. Bell sonne la fin du jeu	5
2.7.	Généraliser aux coefficients multimoniaux	6
3.	La formule du binôme de Newton implique	6

Date: 2 Avril 2025 - 3 Avril 2025.

1. Des identités bien connues

Les formules suivantes intriguent par leur ressemblance. Bien qu'elles appartiennent à des domaines distincts, leur similitude n'est pas le fruit du hasard. À travers deux démonstrations adoptant des approches différentes, nous révélerons les liens combinatoires qui unissent ces objets en apparence indépendants.

- Formule du binôme de Newton : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- Formule de dérivation de Leibniz : $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$.
- Loi binomiale : $P(X = j) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} \delta_{jk}$, même s'il est d'usage de juste écrire $P(X = j) = {n \choose j} p^j (1-p)^{n-j}$.
- Une identité portant sur la suite de Fibonacci : $F_{2n} = \sum_{k=0}^{n} {n \choose k} F_k$.
- Une formule similaire avec des coefficients binomiaux : $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k}$.
- Une équation liant les nombres de Bell : $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$ où B_s est le nombre de façons de partitionner un ensemble de s éléments en sous-ensembles non vides : par exemple, $B_3 = 5$, car l'ensemble $\{a, b, c\}$ admet les partitions $\{a\} \cup \{b\} \cup \{c\}, \{a, b, c\}, \{a\} \cup \{b, c\}, \{b\} \cup \{a, c\} \text{ et } \{c\} \cup \{a, b\}.$

2. La loi binomiale révèle...

2.1. De l'utilité des arbres. Lorsque l'on présente la loi binomiale, il est courant d'utiliser un arbre de probabilité comme le suivant où S désigne un succès et E un échec, un succès ayant une probabilité p de se réaliser (ici nous avons un niveau de profondeur de 3).

Définition 1. $\binom{n}{k}$ désigne le nombre de chemins avec exactement k succès dans la version générale à n niveaux de l'arbre précédent. Dans cette section, nous n'utiliserons ni la définition combinatoire de $\binom{n}{k}$ via les sous-ensembles à k éléments, ni la formule factorielle de $\binom{n}{k}$.

Notant X la variable aléatoire comptant le nombre de succès, ainsi que q=1-p, il est immédiat que nous avons $P(X=j)=\binom{n}{j}p^jq^{n-j}$, soit de façon équivalente $P(X=j)=\sum_{k=0}^n\binom{n}{k}p^kq^{n-k}\delta_{jk}$.

^{1.} δ_{jk} est le symbole de Kronecker valant 1 si j=k, et 0 sinon, tandis que X désigne la variable aléatoire comptant le nombre de succès d'un schéma de Bernoulli de paramètre (n;p).

Nous pouvons calculer les probabilités aux feuilles de l'arbre via le mini-arbre de calcul \mathcal{T}_c suivant dans lequel un choix de chemin vers le bas, soit un déplacement vers un succès, implique de multiplier la valeur p^iq^j par p, et sinon de multiplier par q.

$$x < qx \qquad p^a q^b < p^{a+1} q^b \qquad p^a q^{b+1}$$

Arbre de calcul.

Un calcul intermédiaire.

Si l'on part de la racine de la valeur 1 pour construire un arbre binaire complet via les règles de calcul de \mathcal{T}_c , nous retrouvons $P(X=j) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} \delta_{jk}$ de façon combinatoire, voir cidessous, mais surtout via une méthode généralisable à d'autres contextes comme nous allons le constater.

2.2. En route directement vers le binôme de Newton. XXXX

YYY

2.3. Leibniz sans effort. XXXX

Arbre de calcul.

Un calcul intermédiaire.

YYY

2.4. Une petite astuce pour Fibonacci. XXXX

Arbre de calcul.

 $Un\ calcul\ interm\'ediaire.$

YYY

génarlisable à F_{n+m}

2.5. Avec des coefficients binomiaux. Notant $C_k^n = \frac{n!}{k!(n-k)!}$ si et $C_k^n = 0$ sinon, nous allons démontrer que $C_k^n = \binom{n}{k}$. XXXX

$$C_k^n < C_{k-1}^{n-1}$$

$$C_{k-b}^{n-a} < C_{k-(b+1)}^{n-(a+1)}$$

$$C_{k-b}^{n-a} < C_{k-b}^{n-(a+1)}$$

Arbre de calcul.

Un calcul intermédiaire.

YYY

Passons à l'identité $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k}$ que nous allons démontrer sous la forme équivalente $C_n^{2n} = \sum_{k=0}^{n} \binom{n}{k} C_{n-k}^n$.

YYY

Remarque 2. Notant C(n,k) le nombre de sous-ensembles à la dernière identité devient éévidente.

Plus généralement, formule de Van der Monde $\binom{m+n}{p} = \sum_{k=0}^{p} \binom{m}{k} \binom{n}{p-k}$

2.6. Bell sonne la fin du jeu. XXXX

 $B_n = \mathcal{B}_0^n = \mathcal{B}_{n-1}^{n-1}$ si $\mathcal{B}_k^n = \mathcal{B}_{k-1}^n + \mathcal{B}_{k-1}^{n-1}$ avec $\mathcal{B}_0^0 = \mathcal{B}_0^1 = 1$ et $\mathcal{B}_k^n = 0$ si???. situtaion similaire aux coefficients binomiaux XXXX

$$\mathcal{B}_{k}^{n} \underbrace{\hspace{1cm}}_{k-1}^{\mathcal{B}_{k-1}^{n}} \mathcal{B}_{k-k}^{n-a} \underbrace{\hspace{1cm}}_{k-(b+1)}^{\mathcal{B}_{k-1}^{n-a}} \mathcal{B}_{k-(b+1)}^{n-a}$$

Arbre de calcul.

Un calcul intermédiaire.

2.7. Généraliser aux coefficients multimoniaux. XXX

Arbre de calcul.

Un calcul intermédiaire.

XXX

attention au piège car l'astuce de Fibonnaci ne se génarlise pas

Arbre de calcul.

Un calcul intermédiaire.

3. La formule du binôme de Newton implique...

XXXX