ДЗ 12 (Непротиворечивая трансфинитность)

Владимир Латыпов donrumata03@gmail.com

Содержание

1 Распространение противоречия	. 3
${\cal S}_\infty$ 2 Перенос индукции из метатеории в ${\cal S}_\infty$	
3 Бесконечное доказательство	
4 Madus Panans	5

1 Распространение противоречия

Условие 1.1 Покажите, что, если $\vdash _{\infty} \neg (\alpha \lor \neg \alpha)$, то $\vdash _{\infty} 1=0.$

 α и $\neg \alpha$ получаем через обращение правила Де Моргана.

Показаваем с помощью схемы аксиом 10и которая доказуема в ФА, а значит её аналог из \mathcal{S}_{∞} :

$$\frac{\alpha \quad \neg \alpha}{\beta}$$

доказуем в \mathcal{S}_{∞} .

Теперь применим это правило к α и $\neg \alpha$, и $\beta = ,1 = 0$ "

2 Перенос индукции из метатеории в \mathcal{S}_{∞}

Условие 2.2 Покажите $\vdash \forall a. \forall b. a + b = b + a.$

Сначала покажем, что при каждом $a \equiv \overline{x}$,

$$\mathop{\vdash}\limits_{\infty} \forall b.\overline{x} + b = b + \overline{x}$$

.

Для этого докажем для всех y утверждения вида $\vdash \overline{x} + \overline{y} = \overline{y} + \overline{x}$. И воспользуемся бесконечной индукцией для формулы $\varphi_{x(y)} = \overline{x} + \overline{y} = \overline{y} + \overline{x}$.

Теперь воспользуемся бесконечной индукцией ещё раз — по a: получим требуемое.

3 Бесконечное доказательство

НЕПРАВИЛЬНО: может быть доказательство конечного порядка с бесконечной индукцией (так как посылки могут иметь одинаковый номер)!

Идея от Штукена: использовать ту же формулу, но сказать, что раз мы хотим перебрать все доказательства, получив квантор всеобщности, нужно следовать за ходом каждого и опровергнуть его, а доказательства могут быть неограниченной длины. \rightarrow суммарная длина будет бесконечна.

Условие 3.3 Постройте утверждение, доказательство которого не может иметь порядок, меньший ω .

То есть нужно утверждение, которое не докать без бесконечной индукции.

Заметим, что доказательство, использующее только остальные, легко передалать в доказательство в формальной арифметике:

• Каждое из верных арифметических (предметных) выражений легко доказывается за конечное число шагов.

$$\frac{\neg \alpha[x := \theta] \lor \delta}{(\neg \forall x.\alpha) \lor \delta}$$

- транслируется в

$$\frac{\alpha[x := \theta] \to \delta}{(\forall x . \alpha) \to \delta}$$

или

$$\frac{\neg \delta \to \neg \alpha[x \coloneqq \theta]}{\neg \delta \to \neg (\forall x.\alpha)}$$

, а тут — дедукция + дедукция обратно + контрапозиция + схема аксиом 11.

• Слабые правила, сечение, ... — полнота КИВ.

Тогда возьмём утверждение $\forall x. \neg \omega(x, \overline{{}^{\mathsf{r}} \sigma^{\mathsf{l}}}).$

Оно не доказуемо в формальной арифметике, так как она непротиворечива.

4 Modus Ponens

Условие 4.4 Покажите, что если $\vdash \atop \infty \alpha$ и $\vdash \atop \infty \neg \alpha \lor \beta$, то $\vdash \atop \infty \beta$. (правило Modus Ponens — источник появления сечений в перенесённых доказательствах из формальной арифметики).

$$\frac{\frac{\alpha}{a \vee \alpha} \quad \neg \alpha \vee \beta}{a \vee \beta}$$