Machine Learning Analysis on the JET Pedestal Database

or how I learned to worry about high n_e^{ped}

9 June, 2021

Overview

JET Pedestal Database

Machine Learning

Table of Contents

JET Pedestal Database

Machine Learning

JET pedestal database contains 3000+ entries of H-mode, pre-ELM plasmas

Use only main engineering parameters to predict n_e^{ped}

Eng. Param	Domain	
I_P [MA]	[0.81, 4.48]	
B_T [MW]	[0.97, 3.68]	
<i>a</i> [m]	[0.83, 0.97]	
R [m]	[2.8, 2.975]	
δ [-]	[0.16, 0.48]	
M _{eff} [-]	[1.0, 2.18]	
P_{NBI} [MW]	$[10^{-3}, 32.34]$	
P _{ICRH} [MW]	[0, 7.96]	
P_{TOT} [MW]	[3.4, 38.22]	
V_P [m ³]	[58.3, 82.19]	
q ₉₅ [-]	[2.42, 6.04]	
Γ [10 ²² e/s]	[0, 15.5]	
H [-]	[0, 0.18]	
$P_{SD} [10^{22} \text{ e/s}]$	[0, 1000]	
DC [-]	[<i>VV</i> · · ·]	

Take only deuterium shots, no RMPs, kicks, or pellets, and remove R, P_{SD}, DC from input space

- ▶ Shafranov Shift \rightarrow remove R
- \triangleright P_{SD} varies too much.
- Only numerical columns used as input
- ► HRTS Validated

Eng. Param	Domain
I _P [MA]	[0.81, 4.48]
B_T [MW]	[0.97, 3.68]
<i>a</i> [m]	[0.83, 0.97]
R [m]	[2.8, 2.975]
δ [-]	[0.16, 0.48]
M _{eff} [-]	[1.0, 2.18]
P_{NBI} [MW]	$[10^{-3}, 32.34]$
P _{ICRH} [MW]	[0, 7.96]
P_{TOT} [MW]	[3.4, 38.22]
V_P [m ³]	[58.3, 82.19]
q ₉₅ [-]	[2.42, 6.04]
Γ [10 ²² e/s]	[0, 15.5]
H [-]	[0, 0.18]
$P_{SD} [10^{22} e/s]$	[0, 1000]
<i>ÐC</i> [−]	[VV ···]

Table of Contents

JET Pedestal Database

Machine Learning

Utilizing more input parameters yeilds higher prediction quality than existing scaling law

$$n_e^{ped} = (9.9 \pm 0.3) I_p^{1.24 \pm 0.19} P_{TOT}^{-0.34 \pm 0.11} \delta^{0.62 \pm 0.14} \Gamma^{0.08 \pm 0.04} M_{eff}^{0.22 \pm 0.2}$$

4 □ > 4 圖 > 4 圖 > 4 圖 >

Including more input params reduces interpretability

► Prediction uncertainty normally distributed between 1.6 - 1.8

Feature	μ	σ^2
I_p	0.15	0.06
B_T	0.956	0.072
a	2.966	0.479
δ	12.95	0.154
V_P	-0.05	0.007
q 95	-1.064	0.0542
P_{NBI}	-1.911	0.0546
P _{ICRH}	-1.976	0.0561
Ртот	1.926	0.0557
Г	0.125	0.007
Н	-4.016	0.374
M_{eff}	1.369	0.053

Non-linear models like Random Forests and Extreme Randomized Trees outperform linear models

 Prediction uncertainty determined from std of each decision tree

Meta-modeling has no effect on RFs and ERTs

Can reduce dimensionality for Gaussian Processes using sensitivity analysis \rightarrow remove H, M_{eff} from input space

GPs outpreform RFs and ERTs, and heteroscedastic models can capture local uncertainty

Shallow Artifical Neural Networks outperform larger nets

Ensembling for prediction uncertainty \rightarrow increases with size of ensemble

Table of Contents

JET Pedestal Database

Machine Learning

Conclusion

- Non-linear models outpreform linear models
- RFs and ERTs work well as black box models
- Heteroscedastic GPs can map local uncertainty
- ▶ $n_e^{ped} \ge 9$ is elusive to non-linear models

Future Work

- Fit models on varied subsets of database
- ► UQ of main engineering parameters
- ► Ideas?