	As rendered by TeX	As rendered by your browser
1	x^2y^2	x^2y^2
2	$_2F_3$	₂ F ₃
3	$\frac{x+y^2}{k+1}$	$\frac{x+y^2}{k+1}$
4	$x + y^{\frac{2}{k+1}}$	$x+y^{\frac{2}{k+1}}$
5	$\frac{a}{b/2}$	$\frac{a}{b/2}$
6	$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \frac{1}{a_{4}}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$
7	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$
8	$\binom{n}{k/2}$	$\binom{n}{k/2}$

9	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$
10	$\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j)$	$\hat{\hat{\mathbf{a}}}^{\boldsymbol{\hat{\gamma}}}_{0\ \hat{\mathbf{a}}\%^{\mathbf{\Pi}}\ i\ \hat{\mathbf{a}}\%^{\mathbf{\Pi}}\ m}P(i,j)$
11	x^{2y}	x^{2y}
12	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$	$ \hat{\mathbf{a}}^{\hat{\mathbf{r}}} \hat{\mathbf{a}}^{\hat{\mathbf{r}}} \hat{\mathbf{a}}^{\hat{\mathbf{r}}} \hat{\mathbf{a}}^{\hat{\mathbf{r}}} \hat{\mathbf{a}}^{\hat{\mathbf{r}}} a_{ij} b_{jk} c_{ki} $
13	$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}$	$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + x}}}}}$
14	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left \varphi(x+iy)\right ^2 = 0$	$\left(\frac{\hat{a}^{,2}}{\hat{a}^{,}, x^{2}} + \frac{\hat{a}^{,2}}{\hat{a}^{,}, y^{2}}\right) \ddot{I} \dot{\uparrow} (x + iy) \Big ^{2} = 0$
15	$2^{2^{2^x}}$	$2^{2^{2^x}}$
16	$\int_{1}^{x} \frac{dt}{t}$	$\hat{\mathbf{a}} \sim_1^x \frac{dt}{t}$
17	$\iint_D dx dy$	$\hat{a} \hat{a}_D dx dy$

18	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$	$f(x) = \begin{cases} 1/3 & \text{if } 0 \text{ â}\% \times x \text{ â}\% \times 1; \\ 2/3 & \text{if } 3 \text{ â}\% \times x \text{ â}\% \times 4; \\ 0 & \text{elsewhere.} \end{cases}$
19	$\underbrace{x + \cdots + x}^{k \text{ times}}$	$x + \dots + x$
20	y_{x^2}	\mathcal{Y}_{x^2}
21	$\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$	$\hat{\mathbf{g}}_{p \text{ prime}} f(p) = \hat{\mathbf{a}} \cdot \mathbf{w}_{t > 1} f(t) d\ddot{\mathbf{I}} \in (t)$
22	$\{\underbrace{a,\ldots,a}_{k+l \text{ elements}},\underbrace{b,\ldots,b}_{l \text{ b's}}\}$	$\{a,,a,b,,b\} \ k+\hat{a},$ elements
23	$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ 0 & \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{pmatrix}$	$ \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ 0 & \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{pmatrix} $
24	$\det \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0$	$ \begin{vmatrix} c_0 & c_1 & c_2 & \hat{\mathbf{a}} \in \mathbf{k} & c_n \\ c_1 & c_2 & c_3 & \hat{\mathbf{a}} \in \mathbf{k} & c_{n+1} \\ c_2 & c_3 & c_4 & \hat{\mathbf{a}} \in \mathbf{k} & c_{n+2} \\ \hat{\mathbf{a}}^{\otimes} & \hat{\mathbf{a}}^{\otimes} & \hat{\mathbf{a}}^{\otimes} & \hat{\mathbf{a}}^{\otimes} \\ c_n & c_{n+1} & c_{n+2} & \hat{\mathbf{a}} \in \mathbf{k} & c_{2n} \end{vmatrix} > 0 $

25	y_{x_2}	\mathcal{Y}_{x_2}
26	$x_{92}^{31415} + \pi$	$x_{92}^{31415} + \ddot{\mathbf{I}} \in$
27	$x_{y_b^a}^{z_c^d}$	$x^{z_c^d}_{c}_{y_b^a}$
28	y_3'''	y ₃ â€′