

SEARCH TECHNIQUES

Uninformed Vs Informed Search

Uninformed search: Use only the information available in the problem definition. Example: breadth-first, depth-first, depth limited, iterative deepening, uniform cost and bidirectional search

Informed search: Use domain knowledge or heuristic to choose the best move. Example. Greedy best-first, A*, IDA*, and beam search

Using problem specific knowledge to aid searching

- With knowledge, one can search the state space as if he was given "hints" when exploring a maze.
 - Heuristic information in search = Hints
- Leads to dramatic speed up in efficiency.

More formally, why heuristic functions work?

- In any search problem where there are at most b choices at each node and a depth of d at the goal node, a naive search algorithm would have to, in the worst case, search around $O(b^d)$ nodes before finding a solution (Exponential Time Complexity).
- Heuristics improve the efficiency of search algorithms by reducing the effective branching factor from b to (ideally) a low constant b* such that
 - 1 =< b* << b

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes	Yes	No	No	Yes
Time	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
Space	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	O(bm)	O(bl)	O(bd)
Optimal?	Yes	Yes	No	No	Yes

Heuristic Functions

- A heuristic function is a function f(n) that gives an <u>estimation</u> on the "cost" of getting from node n to the goal state so that the node with the least cost among all possible choices can be selected for expansion first.
- Three approaches to defining f:
 - f measures the value of the current state (its "goodness")
 - f measures the estimated cost of getting to the goal from the current state:
 - f(n) = h(n) where h(n) = an estimate of the cost to get from n to a goal
 - f measures the estimated cost of getting to the goal state from the current state and the cost of the existing path to it. Often, in this case, we decompose f:
 - f(n) = g(n) + h(n) where g(n) = the cost to get to n (from initial state)

Approach 1: f Measures the Value of the Current State

- Usually the case when solving optimization problems
 - Finding a state such that the value of the metric f is optimized
- Often, in these cases, f could be a weighted sum of a set of component values:
 - N-Queens
 - Example: the number of queens under attack ...
 - Data mining
 - Example: the "predictive-ness" (a.k.a. accuracy) of a rule discovered

Approach 2: *f* Measures the Cost to the Goal

A state *X* would be better than a state *Y* if the estimated cost of getting from *X* to the goal is lower than that of *Y* – because *X* would be closer to the goal than *Y*

• 8–Puzzle

h₁: The number of misplaced tiles (squares with number).

h₂: The sum of the distances of the tiles from their goal positions.

Goal State

Approach 3: *f* measures the total cost of the solution path (Admissible Heuristic Functions)

- A heuristic function f(n) = g(n) + h(n) is admissible if h(n) never overestimates the cost to reach the goal.
 - Admissible heuristics are "optimistic": "the cost is not that much ..."
- However, g(n) is the exact cost to reach node n from the initial state.
- Therefore, f(n) never over-estimate the true cost to reach the goal state through node n.
- Theorem: A search is optimal if h(n) is admissible.
 - I.e. The search using h(n) returns an optimal solution.
- Given $h_2(n) > h_1(n)$ for all n, it's always more <u>efficient</u> to use $h_2(n)$.
 - h_2 is more realistic than h_1 (more informed), though both are optimistic.

Traditional informed search strategies

- Greedy Best first search
 - "Always chooses the successor node with the best f value" where f(n) = h(n)
 - We choose the one that is nearest to the final state among all possible choices
- A* search
 - Best first search using an "admissible" heuristic function f that takes into account the current cost g
 - Always returns the optimal solution path

Informed Search Strategies

Best First Search

An implementation of Best First Search

function BEST-FIRST-SEARCH (*problem, eval-fn*) **returns** a solution sequence, or failure

queuing-fn = a function that sorts nodes by eval-fn

return GENERIC-SEARCH (problem, queuing-fn)

Informed Search Strategies

Greedy Search

eval-fn: f(n) = h(n)

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
Α	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

(A) Start

Path cost(A-E-F-I) = 253 + 178 + 0 = 431dist(A-E-F-I) = 140 + 99 + 211 = 450

Greedy Search: Optimal?

State	Heuristic: h(n)
Α	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

f(n) = h (n) = straight-line distance heuristic dist(A-E-G-H-I) = 140+80+97+101=418 29

Greedy Search: Complete?

State	Heuristic: h(n)
А	366
В	374
** C	250
D	244
Е	253
F	178
G	193
Н	98
I	0

(A) Start

Greedy Search: Time and Space Complexity?

Greedy search is not optimal.

- Greedy search is incomplete without systematic checking of repeated states.
- In the worst case, the Time and Space Complexity of Greedy Search are both O(b^m)

Where b is the branching factor and m the maximum path length

Informed Search Strategies

A* Search

eval-fn: f(n)=g(n)+h(n)

A* (A Star)

- Greedy Search minimizes a heuristic h(n) which is an estimated cost from a node n to the goal state. Greedy Search is efficient but it is not optimal nor complete.
- Uniform Cost Search minimizes the cost g(n) from the initial state to n. UCS is optimal and complete but not efficient.
- New Strategy: Combine Greedy Search and UCS to get an efficient algorithm which is complete and optimal.

A* (A Star)

- A* uses a heuristic function which combines g(n) and h(n): f(n) = g(n) + h(n)
- **g(n)** is the exact cost to reach node *n* from the initial state.

• **h(n)** is an estimation of the remaining cost to reach the goal.

A* (A Star)

A* Search

State	Heuristic: h(n)
Α	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

f(n) = g(n) + h (n)Goal

g(n): is the exact cost to reach node n from the initial state. 42

(A) Start

A* with f() not Admissible

h() overestimates the cost to reach the goal state

A* Search: h not admissible!

State	Heuristic: h(n)
А	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	138
I	0

Gof(n) = g(n) + h (n) - (H-I) Overestimated

g(n): is the exact cost to reach node n from the initial state. 52

A Start

A* not optimal !!!

A* Algorithm

A* with systematic checking for repeated states ...

A* Algorithm

- 1. Search queue Q is empty.
- 2. Place the start state s in Q with f value h(s).
- 3. If Q is empty, return failure.
- 4. Take node n from Q with lowest f value. (Keep Q sorted by f values and pick the first element).
- 5. If n is a goal node, stop and return solution.
- Generate successors of node n.
- 7. For each successor n' of n do:
 - a) Compute f(n') = g(n) + cost(n,n') + h(n').
 - b) If n' is new (never generated before), add n' to Q.
 - c) If node n' is already in Q with a higher f value, replace it with current f(n') and place it in sorted order in Q.

End for

8. Go back to step 3.

- A* is complete except if there is an infinity of nodes with f < f(G).
- •A* is optimal if heuristic *h* is admissible.
- •Time complexity depends on the quality of heuristic but is still exponential.
- •For space complexity, A* keeps all nodes in memory. A* has worst case O(bd) space complexity, but an iterative deepening version is possible (IDA*).

Informed Search Strategies

Iterative Deepening A*

Iterative Deepening A*:IDA*

Use f(N) = g(N) + h(N) with admissible and consistent h

 Each iteration is depth-first with cutoff on the value of f of expanded nodes

Consistent Heuristic

 The admissible heuristic h is consistent (or satisfies the monotone restriction) if for every node N and every successor N' of N:

$$h(N) \le c(N,N') + h(N')$$

(triangular inequality)

A consistent heuristic is admissible.

IDA* Algorithm

- In the first iteration, we determine a "f-cost limit" cut-off value $f(n_0) = g(n_0) + h(n_0) = h(n_0)$, where n_0 is the start node.
- We expand nodes using the depth-first algorithm and backtrack whenever f(n) for an expanded node n exceeds the cut-off value.
- If this search does not succeed, determine the lowest f-value among the nodes that were visited but not expanded.
- Use this f-value as the new limit value cut-off value and do another depth-first search.
- Repeat this procedure until a goal node is found.

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

f(N) = g(N) + h(N)8-Puzzle with h(N) = number of misplaced tiles

f(N) = g(N) + h(N)8-Puzzle with h(N) = number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

8-Puzzle
$$f(N) = g(N) + h(N)$$
 with $h(N) =$ number of misplaced tiles

When to Use Search Techniques

- The search space is small, and
 - There are no other available techniques, or
 - It is not worth the effort to develop a more efficient technique
- The search space is large, and
 - There is no other available techniques, and
 - There exist "good" heuristics

Popular AI Search Problems

Classic AI search problems, Map searching (navigation)

Romania with step costs in km

traight-line distan Bucharest	ce
rad	366
ucharest	0
raiova	160
)obreta	242
forie	161
agaras	176
agaras Jiurgiu	77
lirsova	151
asi	226
ugoj	244
[ehadia	241
leamt	234
)radea	380
itesti	10
limnicu Vilcea	193
ibiu	253
imisoara	329
rziceni	80
aslui	199
erind	374

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - $g(n) = \cos t$ so far to reach n
 - h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

•
$$f(G_2) = g(G_2) + h(G_2)$$

- $f(G_2) = g(G_2)$ [since $h(G_2) = 0$](1)
- Again, f(G) = g(G) + h(G)
- f(G) = g(G) [since h(G) = 0](2)
- But, $g(G_2) > g(G)$ [since G_2 is suboptimal].....(3)
- Therefore, $f(G_2) > f(G)$ [from equation (1), (2) and (3)] (4)

Optimality of A* (proof)

- - Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.
 - Therefore, $f(G_2) > f(G)$ (4) [from equation (1), (2) and (3)]
 - Again, $h(n) \le h^*(n)$ (5) [since h is admissible; Here, $h^*(n)$ is the true cost to reach the goal state from n]
 - g(n) + h(n)≤ g(n) + h*(n) (6) [Adding g(n) in both sides of equation (5)]
 - $f(n) \le f(G)$ (7) [Because, f(n) = g(n) + h(n); and $f(G) = g(n) + h^*(n)$; Here, $h^*(n)$ is the true cost to reach the goal state from n] $f(n) \le f(G) < f(G_2)$ [From equation (4) and (7)]

Therefore, $f(G_2) > f(n)$ and A^* will never select G_2 for expansion before expanding n to reach at optimal goal G.

Consistent heuristics

$$h(n) \le c(n,a,n') + h(n')$$

If h is consistent, we have f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') ≥ g(n) + h(n) = f(n)

- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- Time? Depends on the quality of heuristic but still exponential.
- Space? Keeps all nodes in memory. A* has worst case O(b^d) space complexity
- Optimal? Yes

Local beam search

- Keep track of k states rather than just one
 - Start with k randomly generated states
 - At each iteration, all the successors of all k states are generated
 - If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Local Beam Search

- Begin with k random states
- Generate all successors of these states
- Keep the k best states
- Stochastic beam search: Probability of keeping a state is a function of its heuristic value

Conclusions

- Frustration with *uninformed* search led to the idea of using domain specific knowledge in a search so that one can intelligently explore only the relevant part of the search space that has a good chance of containing the goal state. These new techniques are called informed (heuristic) search strategies.
- Even though heuristics improve the performance of informed search algorithms, they are still time consuming especially for large size instances.

References

- University of Berkeley, USA
- http://www.aima.cs.berkeley.edu