Hypothesis testing

EE209 - Eléments de Statistiques pour les Data Sciences

Telling apart two distributions based on an observation

Let's assume that X can follow two distributions:

- Under the *null hypothesis* $H_0: X \sim \mathcal{N}(\mu_0, \sigma_0^2)$
- Under the alternate hypothesis $H_1: X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, with $\mu_0 < \mu_1$ and σ_0, σ_1 not too large.

Can we try to decide based on an observation x of X which hypothesis is the correct one?

We can choose a $\it critical\ value\ t_c$ on the value $\it x$, and

- if $x \leq t_c$, decide that H_0 is correct
- if $x > t_c$, decide that H_1 is correct

We can define

- ullet $\alpha = \mathbb{P}_0(X > t_c)$ where \mathbb{P}_0 is "the probability **if** H_0 is true"
- $\beta = \mathbb{P}_1(X \leq t_c)$ where \mathbb{P}_1 is "the probability if H_1 is true"

EE-209 Hypothesis testing 2/:

Types of errors

With the same setting as on previous slide, let's denote by $\boldsymbol{\Delta}$ our decision with

- $\Delta = 0$ if we decide that H_0 is correct
- $\Delta = 1$ if we decide that H_1 is correct

We have:

$$\bullet \ \{\Delta=0\}=\{X\leq t_c\} \ \text{and}$$

•
$$\{\Delta = 1\} = \{X > t_c\}$$

	$\Delta = 0$	$\Delta = 1$
H_0	©	Type I-error ©
H_1	Type II-error ©	©

$$\mathbb{P}_0(\Delta = 1) = \mathbb{P}_0(X > t_c) = \alpha$$
$$\mathbb{P}_1(\Delta = 0) = \mathbb{P}_0(X \le t_c) = \beta$$

The probabilities of the configurations are

	$\Delta = 0$	$\Delta = 1$
H_0	$1-\alpha$	α
H_1	eta	$1 - \beta$

Telling apart two distributions based on a sample

Let's assume that X_1, \ldots, X_n are i.i.d. but can follow two distributions:

- Hypothesis $H_0: X_i \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(\mu_0, \sigma_0^2)$
- Hypothesis $H_1: X_i \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(\mu_1, \sigma_1^2)$,

Can we try to decide based on a sample x_1, \ldots, x_n which hypothesis is the correct one?

We can for example compute \bar{x} and use the fact that

- Hypothesis $H_0: \bar{X} \sim \mathcal{N}(\mu_0, \frac{\sigma_0^2}{n})$
- Hypothesis $H_1: \bar{X} \sim \mathcal{N}(\mu_1, \frac{\sigma_1^2}{n})$,

Since the variance decrease with n, with a well chosen t_c , the probability of error should decrease with n.

Testing an alternative with one hypothesis to privilege by default

When deciding between hypotheses, the situation is very often asymmetric: there is one hypothesis which should be privileged by default.

Ham vs spam.

If a spam filter has to decide between two hypotheses

- This email is valid correspondence ("ham")
- This email is spam

it is much worse to classify ham as spam than the opposite.

By default we would rather consider that a mail is ham. This will be the null hypothesis, H_0 .

Tumor vs not.

If the result of an analysis based on a radio or a CT-SCAN has to detect the presence of a tumor, it is much worse to fail to detect an existing tumor than to detect something which will turn out later not to be. So here the null hypothesis H_0 will be "there is a tumor."

The Neyman-Pearson hypothesis testing framework

We assume that

- the data follows a distribution $p(\cdot; \theta)$ from a statistical model parameterized by $\theta \in \Theta$.
- Under the null hypothesis $\theta \in H_0 \subset \Theta$, and under the alternate hypothesis, $\theta \in H_1 \subset \Theta$.
- $H_0 \cap H_1 = \varnothing$.
- We assume that there is a *statistic* of the data $T=T(X_1,\ldots,X_n)$ which tends to be small under H_0 and larger under H_1
- The null hypothesis H_0 is privileged by default
- Our priority is to make sure that the Type-I error $\alpha = \mathbb{P}_0(\Delta = 1)$ is low.
- We will thus choose the *critical value* t_c on T to guarantee that α is low.

The Neyman-Pearson testing framework: vocabulary

- α is the significance level (Type-I error)
- ullet 1-lpha is the confidence level
- ullet eta is the Type-II error level
- ullet 1-eta is the power

- We will decide that H_1 is correct (i.e. set $\Delta=1$) typically if $T\in [t_c,+\infty)$ which is called the *critical region* of the test. This set can take other forms.
- ullet if $\Delta=1$ we say that "we reject the null hypothesis" and that the result is "statistically significant.

EE-209 Hypothesis testing 7

One-sided Gaussian test

We assume that $X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ where σ is known.

- We consider the simple alternative $H_0: \mu = \mu_0$ vs $H_1: \mu = \mu_1$ with $\mu_1 > \mu_0$.
- We consider the test statistic

$$T(X_1,\ldots,X_n)=T:=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}.$$

We have $T \stackrel{H_0}{\sim} \mathcal{N}(0,1)$, so $\mathbb{P}_0(T > z_{1-\alpha}) = \alpha$ and we can choose $t_c = z_{1-\alpha}$ to control the type-I error.

We will reject the null hypothesis if T falls in the *critical region* $[z_{1-\alpha}, +\infty)$. In that case, we also say that \bar{X} is *significantly larger* than μ_0 .

We have
$$T - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \stackrel{H_1}{\sim} \mathcal{N}(0,1)$$
, so

$$\beta = \mathbb{P}_1(T \le t_c) = \mathbb{P}_1\left(T - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \le t_c - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}\right) = \Phi\left(-\sqrt{n}\left(\frac{\mu_1 - \mu_0}{\sigma}\right) + t_c\right)$$

EE-209 Hypothesis testing 8/21

Simple hypothesis vs composite hypothesis

A simple hypothesis is a hypothesis $H_k = \{\theta_k\}$ which specifies a single value for θ . A non-simple hypothesis is called a *composite* hypothesis.

Simple alternative

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta = \theta_1$.

Composite alternative

Assuming that $\theta \in \mathbb{R}$,

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta > \theta_0$.

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta < \theta_0$.

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta \neq \theta_0$.

Other alternatives leading to the one-sided Gaussian test

$$H_0: \mu = \mu_0$$
 vs $H_1: \mu > \mu_0$

Given that t_c is only determined by the distribution under H_0 , the *critical region* is again $[z_{1-\alpha}, +\infty)$

$$H_0: \mu = \mu_0$$
 vs $H_1: \mu = \mu_1$ with $\mu_1 < \mu_0$.

In this case, we can reject if T is lower than an *critical value* such that $\mathbb{P}_0(T < t_c) = \alpha$, which entails $t_c = z_\alpha$. Of course, the *critical region* is now $(-\infty, z_\alpha]$.

$$H_0: \mu = \mu_0$$
 vs $H_1: \mu < \mu_0$

Given that t_c is only determined by the distribution under H_0 , this case is the same as the case just before for the determination of the *critical region*.

p-value

One limitation of the test methodology that we have to choose a significance level α . I could be useful to report a value such that one can easily assess whether the test would be rejected at other levels and which would directly measure the significance of the value $t_{\rm obs}$.

p-value definition

If $t_{\rm obs}$ is the observed value of the test statistic T then the associated p-value is

$$p_{\mathsf{obs}} = \mathbb{P}_0(T \ge t_{\mathsf{obs}}).$$

Interpretations of the p-value

The p-value is

- the probability to observe a more extreme value of T than t_{obs} under H_0 .
- ullet the smallest significance level such that the null would be rejected for $T=t_{
 m obs}.$
- the significance level of the test with $t_c = t_{\rm obs}$.
- ullet a measure of significance of the test statistic value $t_{
 m obs}.$

Test decision in terms of the p-value

By definition H_0 is rejected iff $(t_{\text{obs}} > t_c) \Leftrightarrow (p_{\text{obs}} < \alpha)$.

Example: p-value for a one-sided Gaussian test.

We have $T \stackrel{H_0}{\sim} \mathcal{N}(0,1)$, so

$$p_{\mathsf{obs}} = \mathbb{P}_0(T \ge t_{\mathsf{obs}}) = 1 - \Phi(t_{\mathsf{obs}}).$$

Two-sided Gaussian test

We assume that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ where σ is known.

- We consider the composite alternative $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$.
- We consider the test statistic

$$|T(X_1,\ldots,X_n)|=|T|:=\left|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right|.$$

We have $T \stackrel{H_0}{\sim} \mathcal{N}(0,1)$, so $\mathbb{P}_0\big(|T| > z_{1-\alpha/2}\big) = 1 - \mathbb{P}_0\big(z_{\alpha/2} \le T \le z_{1-\alpha/2}\big) = \alpha$ and we can choose $t_c = z_{1-\alpha/2}$ to control the type-I error.

In case of rejection of the null hypothesis, we say that \bar{X} is significantly different from μ_0 .

The p-value is
$$p_{\text{obs}} = \mathbb{P}_0(|T| \ge |t_{\text{obs}}|) = 2 \big(1 - \Phi(|t_{\text{obs}}|)\big).$$

EE-209 Hypothesis testing 13,

Relationship between Gaussian confidence intervals and Gaussian tests

Two-sided test:

The null hypothesis is **not** rejected iff as $|T| \le t_c$ but

$$-t_c \le \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \le t_c \quad \Leftrightarrow \quad \bar{X} - t_c \frac{\sigma}{\sqrt{n}} \le \mu_0 \le \bar{X} + t_c \frac{\sigma}{\sqrt{n}}.$$

But $t_c=z_{1-\alpha/2}$, so the null hypothesis is rejected at the level of significance α iff

$$\mu_0 \notin \left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right].$$

In other words:

The hypothesis that $\mu=\mu_0$ is rejected at a level of significance α if and only if μ_0 is not inside the (symmetric) Gaussian confidence interval of level $1-\alpha$.

EE-209 Hypothesis testing 14,

Relationship between Gaussian confidence intervals and Gaussian tests

One-sided test:

The null hypothesis is **not** rejected iff as $T \leq t_c$ but

$$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \le t_c \quad \Leftrightarrow \quad \bar{X} \le \mu_0 + t_c \frac{\sigma}{\sqrt{n}} \quad \Leftrightarrow \quad \bar{X} - t_c \frac{\sigma}{\sqrt{n}} \le \mu_0.$$

But $t_c = z_{1-\alpha}$, so the null hypothesis is rejected at the level of significance α iff

$$\mu_0 \notin \left[\bar{X} - z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, +\infty \right).$$

In other words:

The hypothesis that $\mu=\mu_0$ is rejected at a level of significance α if and only if

 μ_0 is not inside the semi-infinite upper Gaussian confidence interval of level $1-\alpha$.

One-sided Student test

We assume that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ where σ is **unknown**.

- We consider the simple alternative $H_0: \mu = \mu_0$ vs $H_1: \mu = \mu_1$ with $\mu_1 > \mu_0$.
- We consider the test statistic

$$T(X_1,\ldots,X_n)=T:=\frac{\bar{X}-\mu_0}{S/\sqrt{n}}.$$

We have $T \stackrel{H_0}{\sim} \operatorname{St}_{n-1}$, so $\mathbb{P}_0(T > t_{1-\alpha}^{(n-1)}) = \alpha$ and we can choose $t_c = t_{1-\alpha}^{(n-1)}$ to control the type-I error.

We have $T - \frac{\mu_1 - \mu_0}{S/\sqrt{n}} \stackrel{H_1}{\sim} \operatorname{St}_{n-1}$, so

$$\beta = \mathbb{P}_1(T \le t_c) = \mathbb{P}_1\left(T - \frac{\mu_1 - \mu_0}{S/\sqrt{n}} \le t_c - \frac{\mu_1 - \mu_0}{S/\sqrt{n}}\right) = F_{\mathsf{St}_{n-1}}\left(-\sqrt{n}\left(\frac{\mu_1 - \mu_0}{S}\right) + t_c\right).$$

The p-value is $p_{\text{obs}} = \mathbb{P}_0(T \ge t_{\text{obs}}) = (1 - F_{\mathsf{St}_{n-1}}(t_{\text{obs}})).$

EE-209 Hypothesis testing 16/21

Two-sided Student test

We assume that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ where σ is **unknown**.

- We consider the composite alternative $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$.
- We consider the test statistic

$$|T(X_1,\ldots,X_n)|=|T|:=\left|\frac{\bar{X}-\mu_0}{S/\sqrt{n}}\right|.$$

We have $T \stackrel{H_0}{\sim} \operatorname{St}_{n-2}$, so $\mathbb{P}_0 \left(|T| > t_{1-\alpha/2}^{(n-1)} \right) = 1 - \mathbb{P}_0 \left(t_{\alpha/2}^{(n-1)} \leq T \leq t_{1-\alpha/2}^{(n-1)} \right) = \alpha$ and we can choose $t_c = t_{1-\alpha/2}^{(n-1)}$ to control the type-I error.

The p-value is $p_{\text{obs}} = \mathbb{P}_0(|T| \geq |t_{\text{obs}}|) = 2\big(1 - F_{\mathsf{St}_{n-1}}(|t_{\text{obs}}|)\big)$

One-sided asymptotic Gaussian test

We assume that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$ where P is unknown, but we assume that $\mathbb{E}[X_1^2] < \infty$.

- We consider the simple alternative $H_0: \mu = \mu_0$ vs $H_1: \mu = \mu_1$ with $\mu_1 > \mu_0$.
- We consider the test statistic

$$T(X_1,\ldots,X_n)=T:=\frac{\bar{X}-\mu_0}{\hat{\sigma}/\sqrt{n}},$$

where $\hat{\sigma}$ is a consistent estimator of σ , like S for example.

By the CLT, under H_0 , $T \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1)$, so $\mathbb{P}_0(T>z_{1-\alpha}) \xrightarrow[n \to \infty]{\alpha} \alpha$ and we can choose $t_c=z_{1-\alpha}$ to asymptotically control the type-I error.

Symmetrically, under H_1 , $T - \frac{\mu_1 - \mu_0}{\hat{\sigma}/\sqrt{n}} \xrightarrow[n \to \infty]{(0, 1)}$, so

$$\beta = \mathbb{P}_1(T \le t_c) = \mathbb{P}_1\left(T - \frac{\mu_1 - \mu_0}{\hat{\sigma}/\sqrt{n}} \le t_c - \frac{\mu_1 - \mu_0}{\hat{\sigma}/\sqrt{n}}\right) \approx \Phi\left(-\sqrt{n}\left(\frac{\mu_1 - \mu_0}{\hat{\sigma}}\right) + t_c\right).$$

We can define similarly two-sided asymptotic Gaussian tests.

EE-209 Hypothesis testing 18/21

One-sided χ^2 test for the variance σ^2

We assume that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ where μ is **unknown**.

- We consider the simple alternative $H_0: \sigma = \sigma_0$ vs $H_1: \sigma = \sigma_1$ with $\sigma_1 > \sigma_0$.
- We consider the test statistic

$$T(X_1, \dots, X_n) = T := (n-1)\frac{S^2}{\sigma_0^2} = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \bar{X})^2.$$

We have $T \stackrel{H_0}{\sim} \chi^2_{n-1}$, so if $\chi^2_{n-1,1-\alpha}$ is the quantile of level $1-\alpha$ of a χ^2_{n-1} distribution, $\mathbb{P}_0(T>\chi^2_{n-1,1-\alpha})=\alpha$ and we can choose $t_c=\chi^2_{n-1,1-\alpha}$ to control the typelerror.

We have
$$\frac{\sigma_0^2}{\sigma_1^2}T \overset{H_1}{\sim} \chi_{n-1}^2$$
, so $\beta = \mathbb{P}_1(T \leq t_c) = \mathbb{P}_1\Big(\frac{\sigma_0^2}{\sigma_1^2}T \leq \frac{\sigma_0^2}{\sigma_1^2}t_c\Big) = F_{\chi_{n-1}^2}\Big(\frac{\sigma_0^2}{\sigma_1^2}t_c\Big)$.

The p-value is $p_{\text{obs}} = \mathbb{P}_0(T \ge t_{\text{obs}}) = \left(1 - F_{\chi^2_{n-1}}(t_{\text{obs}})\right)$, with $F_{\chi^2_{n-1}}$ the cdf of a χ^2_{n-1} r.v. We could define similarly a two-sided χ^2 test.

Two-sided Wald test

We assume that $\hat{\theta}$ is the MLE for the parameter θ based on an i.i.d. sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p(\cdot; n)$ with $\theta = \psi(n)$. We consider the log-likelihood $\ell(\theta)$, the Fisher information matrix $I(\theta)$.

- We consider the composite alternative $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.
- We consider the *test statistic* |T| with

$$T(X_1,\ldots,X_n)=T:=\sqrt{I(\hat{\theta})}(\hat{\theta}-\theta_0).$$

By the CLT with Slutsky, under $H_0, \quad T \overset{(d)}{\underset{n \to \infty}{\longrightarrow}} \mathcal{N}(0,1), \text{ so } \mathbb{P}_0(|T| > z_{1-\alpha/2}) \overset{}{\underset{n \to \infty}{\longrightarrow}} 1 - \alpha \text{ and }$ we can choose $t_c=z_{1-\alpha/2}$ to asymptotically control the type-I error.

We can define an asymptotic p-value $\mathbb{P}_0(|T| > |t_{\text{obs}}|) = 2(1 - \Phi(|t_{\text{obs}}|))$.

- In the Neyman-Pearson framework a null hypothesis H_0 is the default hypothesis.
- We can *reject* the null hypothesis in favor of an alternative if the value of a *test* statistics is larger than a *critical value*.
- ullet We focus on controlling the Type-I error level lpha, aka the *significance level*.
- Instead of setting the *critical value* based on a *significance level*.
- The p-value p_{obs} is the probability $\mathbb{P}_0(T \geq t_{\text{obs}})$.
- It is possible to construct one and two-sided Gaussian and Student tests.
- It is possible to construct asymptotic Gaussian tests.
- One form of asymptotic test for $\hat{\theta}_{\mathsf{MLE}}$ is the Wald test.
- The null is rejected at the confidence level α in a two-sided test iff the parameter μ_0 or θ_0 is not in the corresponding (symmetric) confidence interval.
- The same holds for one-sided test, but with one-sided confidence intervals.