EXERCICE I commun à tous les candidats (10 points)

OBSERVATION DE LA PLANÈTE MARS

La planète Mars est une planète du système solaire au cœur de multiples projets scientifiques internationaux destinés à mieux connaître son sol et son histoire.

Les objectifs de l'exercice sont de déterminer quelques caractéristiques de la planète Mars à partir :

- de la mesure de l'angle sous lequel elle est vue par un observateur terrestre :
- de l'observation de Phobos, l'un de ses satellites naturels.

Source: Wikipédia

Données:

 \succ angle θ , exprimé en radian, sous lequel la planète Mars est vue par un observateur terrestre :

- \triangleright on se place dans le cadre de l'approximation des petits angles ($\theta << 1 \text{ rad}$):
 - $tan(\theta) \approx \theta$ avec θ en rad;
 - la distance Terre-Mars, notée D, étant suffisamment grande devant le diamètre de Mars, noté d_M , l'angle θ (en rad) a pour expression :

$$\theta \approx \frac{d_{\rm M}}{D}$$

- pouvoir séparateur de l'œil humain : il correspond à l'angle minimal, noté ε , au-dessus duquel l'œil humain peut différencier deux points. Il a pour valeur $\varepsilon = 2.9 \times 10^{-4}$ rad ;
- \triangleright constante de gravitation universelle : $G = 6.67 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$
- \triangleright diamètre moyen de référence de la planète Mars : $d_{Ref} = 6.78 \times 10^3 \text{ km}$;
- rayon de l'orbite, supposée circulaire, de Mars autour du Soleil : r_{SM} = 2,28×10⁸ km ;
- \rightarrow masse de la Terre : $M_T = 5.97 \times 10^{24}$ kg.

1. Observation de Mars avec une lunette astronomique

On peut observer la planète Mars avec une lunette astronomique afocale composée de deux lentilles minces convergentes L_1 et L_2 de distances focales respectives f_1 ' = 900 mm et f_2 ' = 20 mm. Le schéma donné en **ANNEXE** À **RENDRE AVEC LA COPIE** représente des rayons lumineux provenant des deux points de Mars P_1 et P_2 .

Ces deux points sont :

- situés à la surface de Mars ;
- supposés à l'infini ;
- diamétralement opposés ;
- écartés d'un angle θ correspondant à l'angle sous lequel la planète Mars est vue par un observateur terrestre ;
- observés depuis la surface de la Terre.

Q1. Indiquer sur le schéma en ANNEXE À RENDRE AVEC LA COPIE, au-dessus de la lentille correspondante, la lentille qui joue le rôle d'objectif et celle qui joue le rôle d'oculaire.

Q2. Citer la propriété caractéristique d'une lunette astronomique dite « afocale ». Donner la position du foyer objet F_2 de la lentille L_2 par rapport à celle du foyer image F_1 ' de la lentille L_1 de cette lunette. Placer ces deux points sur le schéma en **ANNEXE** À **RENDRE AVEC LA COPIE**.

22-PYCJ2ME1 Page 2/15

Q3. Tracer sur le schéma en **ANNEXE** À **RENDRE AVEC LA COPIE** la marche des rayons lumineux issus des points P_1 et P_2 de Mars :

- à travers la lentille L₁ en faisant apparaître les images intermédiaires P₁' et P₂', des points P₁ et P₂;
- puis à travers la lentille L_2 en faisant apparaître l'angle θ ' sous lequel la planète Mars est vue en sortie de la lunette.

On admet que le grossissement de la lunette astronomique afocale s'exprime par la relation :

$$G_{\text{lunette}} = \frac{f_1'}{f_2'}$$

Q4. Calculer la valeur du grossissement *G*_{lunette} de la lunette utilisée.

En janvier 2021, l'angle sous lequel la planète Mars est vue par un observateur terrestre à l'œil nu était de $\theta = 4.9 \times 10^{-5}$ rad. Cet observateur voit alors un point lumineux.

Q5. Justifier cette observation.

Q6. Indiquer ce qu'il observe en utilisant la lunette astronomique précédente. Justifier par un calcul.

2. Détermination du diamètre de Mars

À l'aide des mesures effectuées en début de chaque mois avec la lunette astronomique, on détermine l'angle θ sous lequel la planète Mars est vue par un observateur terrestre à partir de janvier 2018.

Lorsque Mars n'est pas visible, on utilise des données simulées.

Les valeurs de l'angle θ sont représentées en fonction du temps t sur la figure 1. La date t = 0 correspond au 1^{er} janvier 2018.

Figure 1. Évolution de l'angle θ sous lequel la planète Mars est vue par un observateur terrestre en fonction du temps t

22-PYCJ2ME1 Page 3/15

Le schéma présenté en figure 2 montre les deux positions extrêmes de Mars par rapport à la Terre ainsi que les angles θ_1 et θ_2 sous lesquels la planète Mars est vue par un observateur terrestre pour ces deux positions.

Figure 2. Schéma des positions relatives de Mars par rapport à la Terre (échelle non respectée)

Q7. Associer, en expliquant votre démarche, les angles θ_1 et θ_2 sous lesquels la planète Mars est vue par un observateur terrestre aux points A et B de la figure 1. En déduire les valeurs de θ_1 et θ_2 .

Q8. En utilisant la figure 2, montrer que l'expression du diamètre d_M de la planète Mars s'exprime de la façon suivante :

$$d_{\rm M} = \frac{2 r_{\rm SM}}{\left(\frac{1}{\theta_1} + \frac{1}{\theta_2}\right)}$$

Q9. Calculer la valeur du diamètre $d_{\rm M}$ de la planète Mars. Commenter.

3. Détermination de la masse de Mars

La planète Mars, que l'on peut assimiler à une sphère de diamètre d_M , possède une masse M_M environ dix fois moins grande que celle de la Terre.

La masse M_M de Mars peut être déterminée par l'observation de Phobos, l'un des satellites naturels de la planète et par l'utilisation des lois de Newton.

Ce satellite:

- a une période de révolution T de 7 h 39 min autour de Mars ;
- possède une trajectoire quasi-circulaire autour de Mars de rayon r_{MP} = 9,38×10³ km;
- n'est soumis qu'à la seule force de gravitation de Mars.

Q10. En utilisant une loi de Newton, établir que l'expression de la vitesse de Phobos sur son orbite circulaire autour de Mars est :

$$V = \sqrt{\frac{G \cdot M_{\text{M}}}{r_{\text{MP}}}}$$

Q11. Déterminer la valeur de la masse $M_{\rm M}$ de Mars. Commenter.

Le candidat est invité à prendre des initiatives et à présenter la démarche suivie, même si elle n'a pas abouti. La démarche est évaluée et nécessite d'être correctement présentée.

22-PYCJ2ME1 Page 4/15

ANNEXE À RENDRE AVEC LA COPIE

EXERCICE I

La lunette astronomique peut-être modélisée par le schéma ci-dessous qui n'est pas à l'échelle.

