Модели и методы решения задач с нечеткими параметрами и четкими отношениями

Я. А. Воронцов Научный руководитель: М.Г.Матвеев, д.т.н., профессор.

Материалы для защиты диссертации на соискание учёной степени кандидата физико-математических наук Специальность 05.13.18 — математическое моделирование, численные методы и комплексы программ

ФГБОУ ВПО «Воронежский государственный университет»

Воронеж, 2015

Цель и задачи исследования

Цель: построение и исследование моделей учёта нечёткой неопределённости, обеспечивающих требуемые свойства решения различных прикладных задач, а также разработка методов эффективного численного решения на основе вводимых моделей

Задачи:

- анализ существующих методик нечётких вычислений с точки зрения сохранения свойств решения задач;
- разработка модели представления нечётких чисел, позволяющей максимально сохранять исходную экспертную информацию и обеспечить требуемые качественные свойства решений (устойчивость, сохранение чётких математических соотношений и т.п.);

Цель и задачи исследования

- разработка методики эффективной численной реализации решения задач с нечёткими параметрами, основанной на подходящих алгебраических структурах и её тестирование на примере задачи сетевого планирования с нечёткими параметрами;
- разработка и верификация программного обеспечения, реализущего предложенную модель представления нечётких параметров и методики численного решения задач с нечёткими параметрами.

Научная новизна

- модификация метода моделирования экспертных числовых оценок, полученных в классе LR-чисел, отличающаяся наличием L-преобразования LR-числа в соответствующие LL/RR-числа;
- эффективные вычислительные методы решения задач с нечёткими параметрами, отличающиеся использованием описанной в работе алгебраической структуры (поле модифицированных нечётких чисел) и позволяющие параметрически управлять устойчивостью решения;
- программный комплекс для решения задачи сетевого планирования с нечёткими параметрами, реализующий предложенные вычислительные методы, модули которого используют стандартные вычислительные операции (в отличие от специализированных программных пакетов).

Представление нечёткой информации

 нечёткие множества (подмножества предопределённого универсального множества X)

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | x \in X\}; E(\mu_{\tilde{A}}(x)) = [0; 1]$$
 (1)

- нечёткие числа (подмножества множества действительных чисел \mathbb{R})
 - кусочная непрерывность $\mu_{\tilde{A}}(x)$;
 - выпуклость $\mu_{\tilde{A}}(x)$

$$\forall x_1, x_2 \in \mathbb{R}; \forall \gamma \in [0; 1]$$

$$\mu_{\tilde{A}}(\gamma x_1 + (1 - \gamma) x_2) \geqslant \min \left\{ \mu_{\tilde{A}}(x_1), \mu_{\tilde{A}}(x_2) \right\}$$
(2)

• нормальность $\mu_{\tilde{A}}(x)$

$$\sup_{x \in \mathbb{R}} \left(\mu_{\tilde{A}}(x) \right) = 1 \tag{3}$$

Основные понятия

ullet Нечёткие числа LR-типа: $L(x):\mathbb{R} o\mathbb{R},\ R(x):\mathbb{R} o\mathbb{R}$

$$L(-x) = L(x);$$

 $R(-x) = R(x);$
 $L(0) = R(0) = 1.$

L и R являются невозрастающими на интервале $[0; +\infty)$

• Функция принадлежности *LR*-числа

$$\mu_{\tilde{A}}(x) = \begin{cases} L\left(\frac{m-x}{a}\right); & x \leq m \\ R\left(\frac{x-m}{b}\right); & x > m \end{cases}$$
(4)

• При известной форме функции принадлежности удобнее запись $\tilde{A}=(m;a;b)$

Основные понятия

• Треугольное нечёткое число $ilde{A} = \langle m, a, b
angle$

$$\mu_{\tilde{A}}(x) = \begin{cases} \frac{x - m + a}{a}; & x \in [m - a; m] \\ \frac{m + b - x}{b}; & x \in (m; m + b] \\ 0; & \text{в остальных случаях} \end{cases}$$
 (5)

• Формы записи — коэффициенты нечёткости $\langle m,a,b \rangle$ и границы $\left\langle x_{\tilde{a}}^{L},m,x_{\tilde{a}}^{R} \right\rangle$

$$\begin{bmatrix}
x_{\tilde{A}}^{L} = m - a \\
x_{\tilde{A}}^{R} = m + b
\end{bmatrix}$$
(6)

 Число LL (RR)-типа — правый (левый) коэффициент нечёткости числа равен нулю

Основные понятия

• Теорема о декомпозиции

$$\tilde{A} = \bigcup_{\alpha \in [0;1]} A_{\alpha} \tag{7}$$

• Число как совокупность lpha-интервалов $X_lpha = \left[x^L(lpha); x^R(lpha)
ight]$

$$\begin{bmatrix}
x^{L}(\alpha) = m - a + a\alpha \\
x^{R}(\alpha) = m + b - b\alpha
\end{bmatrix} (8)$$

Классификация нечётких моделей

- Исследуются модели, использующие чёткие отношения и нечёткие параметры (модели второго типа)
- Существующие подходы к нечётким вычислениям далеко не всегда применимы в моделях второго типа

Проблемы существующих способов вычислений

- требуются значительные вычислительные ресурсы (принцип обобщения);
- неоправданно расширяется носитель функции принадлежности (алгебры и арифметики LR-чисел);
- происходит выход за класс используемых в арифметике чисел из-за искажения формы функции принадлежности;
- ограничивается область определения функции принадлежности;
- нарушаются классические отношения равенства и частичного порядка.

Требования к разрабатываемой методике

- ограничение роста неопределенности результатов обработки нечеткой информации;
- сохранение чётких отношений в модельных уравнениях при подстановке данных;
- возможность представления линейного порядка на множестве нечётких чисел;
- возможность использования стандартных программных средств реализации численных методов решений;
- возможность управления устойчивостью решения решаемой задачи.

Преобразование L

Исходная задача $\tilde{Y} = f\left(\tilde{X}, \tilde{A}\right)$ с нечёткими числовыми параметрами и переменными рассматривается как совокупность задач с интервальной неопределенностью

$$\tilde{Y} = f\left(\tilde{X}, \tilde{A}\right) \to \bigcup_{\alpha=0}^{1} y_{\alpha} = f\left(X_{\alpha}, A_{\alpha}\right)$$
 (9)

с последующим переходом к полной определённости на каждом α -уровне, для чего на каждом α -уровне внутри интервала X_{α} выбирается точка $\bar{x}(\alpha)$. Предлагается выбирать значение $\bar{x}(\alpha)$ с помощью линейного параметрического преобразования L

$$\bar{x}(\alpha) = L(X_{\alpha}) = \lambda x^{L}(\alpha) + (1 - \lambda) x^{R}(\alpha). \tag{10}$$

Преобразование (10) приводит к потерям информации

Модифицированные нечёткие числа

После решения чётких α -уровневых задач полученные результаты $y(\alpha)$ аппроксимируются нечётким числом

$$\tilde{Y}^* = \{ y(\alpha) | \mu_{\tilde{Y}}(y) = \alpha \}$$
(11)

Результат (11) есть модифицированное решение задачи (9). Происходит переход от использования «полноценных» нечётких чисел к алгебрам для чисел LL/RR-типа. Функция принадлежности чисел LL/RR-типа является обратной к функции $\bar{x}(\alpha)$:

$$\mu_{\tilde{A}^*}(x) = (\bar{x}(\alpha))^{-1} \tag{12}$$

и Число (12) и есть **модифицированное нечёткое число**. Является числом LL/RR-типа

Свойства преобразования L

- 1. Преобразование L сохраняет моду нечёткого числа, т. е. $\forall \lambda \in [0;1]: \ m_{\tilde{\Delta}} = m_{\tilde{\Delta}^*}.$
- 2. При некоторых значениях параметра λ преобразование L сохраняет
 - 2.1 знак степени асимметрии:

$$\exists \lambda \in [0;1]: sign(AS_{\tilde{A}}) = sign(AS_{\tilde{A}^*});$$

2.2 значение степени асимметрии: $\exists \lambda \in [0;1]: \ AS_{\tilde{A}} = AS_{\tilde{A}^*}.$

$$\lambda^* = rac{a}{a+b} = rac{a}{d_{ ilde{a}}}$$
 сохраняет значение степени асимметрии.

3. $\forall \lambda \in [0;1]: A^*_{\alpha} \subset A_{\alpha}; \ d_{\tilde{A}} \geqslant d_{\tilde{A}^*}$ — преобразование L уменьшает длину носителя нечёткого числа и оставляет α -интервалы модифицированного числа внутри α -интервалов исходного числа.

Алгебра модифицированных нечётких чисел

Строится чёткая алгебра $P=\langle K; +, * \rangle$, $K=\{\bar{x}(\alpha)\}$ и показывается, что P удовлетворяем всем аксиомам поля. Используется более удобная форма записи модифицированного числа

$$\bar{x}\left(\alpha\right) = c + k\alpha,\tag{13}$$

$$\begin{bmatrix}
c = m + b - \lambda (a + b) \\
k = \lambda (a + b) - b
\end{bmatrix}$$

$$\lambda \in [0; 1]; c, k \in \mathbb{R}$$
(14)

Сложение и его свойства

На множестве K вводится операция сложения (15)

$$\bar{x}_1(\alpha) + \bar{x}_2(\alpha) = r_1(\alpha) = c_1 + c_2 + (k_1 + k_2)\alpha, r_1(\alpha) \in K;$$
 (15)

нейтральный по сложению элемент (16)

$$\bar{0} = 0 + 0\alpha \in K : \forall \bar{x}(\alpha) \in K :$$

$$\bar{x}(\alpha) + \bar{0} = c + k\alpha + 0 + 0\alpha = \bar{x}(\alpha);$$
 (16)

противоположный по сложению элемент (17)

$$-\bar{x}(\alpha) = -c - k\alpha \in K : \bar{x}(\alpha) + (-\bar{x}(\alpha)) = \bar{0}.$$
 (17)

Доказываются свойства ассоциативности и коммутативности операции (15).

Умножение и его свойства

На множестве K вводится операция умножения (18)

$$r_2(\alpha) = c_1c_2 + (c_1k_2 + c_2k_1 + k_1k_2)\alpha; \ r_2(\alpha) \in K.$$
 (18)

нейтральный по умножению элемент (19)

$$\bar{1} = 1 + 0\alpha \in K : \forall \bar{x} (\alpha) \in K \quad \bar{x} (\alpha) \cdot \bar{1} = \bar{x} (\alpha);$$
 (19)

обратный по умножению (20) элемент.

$$\bar{x}^{-1}(\alpha) = \frac{1}{c} - \frac{k}{c(c+k)} \alpha \in K, \ c \neq 0 : \ \bar{x}(\alpha) \bar{x}^{-1}(\alpha) = \bar{1}. \quad (20)$$

Доказываются свойства ассоциативности и коммутативности, а также свойство дистрибутивности умножения (18) относительно сложения (15).

Показано, что для существования обратного элемента число $\bar{x}\left(\alpha\right)$ должно иметь ненулевую моду, поскольку, согласно (14), $c+k=m\neq0$.

Двухточечные вычисления

В диссертации для модифицированных нечётких чисел показывается эквивалентность записи в виде (??) и в виде

$$\bar{x}_{\tilde{A}}(\alpha) = \bar{x}_{\tilde{A}}(0) + \alpha \left(\bar{x}_{\tilde{A}}(1) - \bar{x}_{\tilde{A}}(0)\right) = \alpha \bar{x}_{\tilde{A}}(1) + (1 - \alpha) \bar{x}_{\tilde{A}}(0).$$
(21)

На основании (21) предложен способ нечётких вычислений, называемый двухточечными вычислениями, позволяющий решать нечёткую задачу как две чёткие при $\alpha=0$ и $\alpha=1$. Если обозначить за * произвольную арифметическую операцию, то для чисел в форме (21) её результат будет выглядеть следующим образом:

$$\bar{x}_{\tilde{A}}(\alpha)*\bar{x}_{\tilde{B}}(\alpha) = \alpha \left(\bar{x}_{\tilde{A}}(1)*\bar{x}_{\tilde{B}}(1)\right) + (1-\alpha)\left(\bar{x}_{\tilde{A}}(0)*\bar{x}_{\tilde{B}}(0)\right). \tag{22}$$

Преимущества двухточечных вычислений:

- сводятся к алгебре модифицированных нечётких чисел;
- избавляют от необходимости вводить отношение линейного

Устойчивость задачи ЛП

Устойчивость задачи ЛП

Задача сетевого планирования

Модифицированная задача сетевого планирования

Решение задачи сетевого планирования

Результат решения задачи

Программное обеспечение

Главное окно приложения

Результаты работы

- Комплекс методов для моделей с чёткими отношениями и нечёткими параметрами
 - применение классических методы решения
 - достижение требуемых качественных свойств решения
- Параметрическая модель представления нечёткого числа
 - максимальное сохранение экспертной информации
 - двухточечные вычисления эффективная численная реализации решения
- Устойчивость решения задачи линейного программирования с нечёткими параметрами
 - свёртка критериев для управления устойчивостью
 - алгоритм получения устойчивого решения задачи
- Апробация методов задача сетевого планирования
- Программный комплекс решение задачи оценки сроков разработки программного обеспечения

Апробация работы и публикации

Основные положения работы докладывались на конференциях:

- Современные проблемы прикладной математики, теории управления и математического моделирования (Воронеж, 2012 г.)
- Информатика: проблемы, методология, технологии (Воронеж, 2013–2014 гг.);
- Современные технологии в задачах управления, автоматики и обработки информации (Алушта, 2013–2014 гг.);
- Радиоэлектроника, электротехника и энергетика (Москва, 2014).

Основное содержание диссертационного исследования изложено в 11 научных работах, из них 4 статьи в изданиях, рекомендованных ВАК РФ.