

MATH1131 Mathematics 1A – Algebra

Lecture 10: Complex Division and Conjugates

Lecturer: Sean Gardiner – sean.gardiner@unsw.edu.au

Based on slides by Jonathan Kress

Argand diagram

The set of complex numbers

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

is often represented as a plane called the Argand diagram or complex plane:

If a and b are real numbers, then the complex number

$$z = a + bi$$

has real part a and imaginary part b.

We write:

$$Re(z) = a$$
 and $Im(z) = b$.

Real and imaginary parts

Note that z = Re(z) + Im(z)i, where $\text{Re}(z) \in \mathbb{R}$ and $\text{Im}(z) \in \mathbb{R}$.

We say $z \in \mathbb{C}$ is real if $z = \text{Re}(z) \iff \text{Im}(z) = 0$.

We say $z \in \mathbb{C}$ is imaginary if $z = \text{Im}(z)i \Leftrightarrow \text{Re}(z) = 0$.

Examples

- 3 is real
- 3*i* is imaginary
- Both 3 and 3i are complex

Equality of complex numbers

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

By assumption,
$$23 + 14i = (3 + 4i)(a + bi)$$

= $3a + 3bi + 4ai + 4bi^2$
= $(3a - 4b) + (4a + 3b)i$

Comparing real and imaginary parts, we need:

$$3a - 4b = 23$$
 and $4a + 3b = 14$.

Solving these simultaneously gives the answer a = 5 and b = -2.

Note: We will see a neater way to solve this problem in a few slides.

Inverse of a complex number

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number a + bi with $a, b \in \mathbb{R}$, such that

$$(2+5i)(a+bi)=1.$$

Expanding yields

$$(2a-5b)+(5a+2b)i=1=1+0i,$$

so
$$2a - 5b = 1$$
 and $5a + 2b = 0$.

Solving these simultaneously gives the answer $a = \frac{2}{29}$ and $b = -\frac{5}{29}$.

Hence

$$(2+5i)^{-1} = \frac{1}{2+5i} = \frac{2}{29} - \frac{5}{29}i.$$

Note: We will see a neater way to solve this problem in a few slides.

Square roots

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a + bi with $a, b \in \mathbb{R}$, such that

$$(a+bi)^2 = -3+4i$$
.

Expanding yields

$$a^2 + 2abi + b^2i^2 = (a^2 - b^2) + 2abi = -3 + 4i$$
,
so $a^2 - b^2 = -3$ and $2ab = 4$.

Substituting for a gives $b^4 - 3b^2 - 4 = (b^2 - 4)(b^2 + 1) = 0$, so $b = \pm 2$ and $a = \pm 1$ respectively.

Thus the square roots of -3 + 4i are 1 + 2i and -1 - 2i.

Note: We will see a neater way to solve this problem in a few lectures, once we have seen the polar form.

Complex conjugate

Definition

Let z=a+bi be a complex number with $a,b\in\mathbb{R}$. The complex conjugate of z is

$$\overline{z} = a - bi$$
.

Examples

$$\overline{2+i} = 2-i$$

$$\overline{-2i} = 2i$$

$$\overline{3} = 3$$

Inverse of a complex number - revisited

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number $\frac{1}{2+5i}$ in the form a+bi for $a,b\in\mathbb{R}$.

$$\frac{1}{2+5i} = \frac{1}{2+5i} \times \frac{2-5i}{2-5i}$$

$$= \frac{2-5i}{2^2-(5i)^2}$$

$$= \frac{2-5i}{4+25}$$

$$= \frac{2}{29} - \frac{5}{29}i$$

Inverse of a general complex number

Example

What is

$$\frac{1}{a+bi}$$

for any $a, b \in \mathbb{R}$ (not both 0)?

We use the same process:

$$\frac{1}{a+bi} = \frac{1}{a+bi} \times \frac{a-bi}{a-bi}$$

$$= \frac{a-bi}{a^2-(bi)^2}$$

$$= \frac{a-bi}{a^2+b^2}$$

$$= \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

Division of complex numbers

We can use the same method for division by complex numbers.

Example

Find $a,b\in\mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i$$
.

Rearranging, we want to find $a + bi = \frac{23 + 14i}{3 + 4i}$.

$$\frac{23+14i}{3+4i} = \frac{23+14i}{3+4i} \times \frac{3-4i}{3-4i}$$

$$= \frac{23\times 3 - 23\times 4i + 14\times 3i - 14\times 4i^2}{3^2 - (4i)^2}$$

$$= \frac{125-50i}{25}$$

$$= 5-2i$$

Division of general complex numbers

Exercise

What is

$$\frac{c + di}{a + bi}$$

for $a, b, c, d \in \mathbb{R}$ with a and b not both zero?

We again use the same process:

$$\frac{c+di}{a+bi} = \frac{c+di}{a+bi} \times \frac{a-bi}{a-bi}$$

$$= \frac{ac-bci+adi-bdi^2}{a^2-(bi)^2}$$

$$= \frac{(ac+bd)+(ad-bc)i}{a^2+b^2}$$

$$= \frac{ac+bd}{a^2+b^2} - \frac{ad-bc}{a^2+b^2}i$$

Theorem

For all $z \in \mathbb{C}$,

- $\overline{(\overline{z})} = z$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- $z\overline{z} = (\text{Re}(z))^2 + (\text{Im}(z))^2$, so $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$

Proof

Let $z=a+bi\in\mathbb{C}$ where $a,b\in\mathbb{R}$. Then

$$\overline{(\overline{z})} = \overline{(\overline{a+bi})} = \overline{a-bi} = a+bi = z.$$

Theorem

For all $z \in \mathbb{C}$,

- $\overline{(\overline{z})} = z$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- $z\overline{z} = (\text{Re}(z))^2 + (\text{Im}(z))^2$, so $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$

Proof

Let
$$z = a + bi \in \mathbb{C}$$
 where $a, b \in \mathbb{R}$. Then

$$z + \overline{z} = (a + bi) + (a - bi) = 2a = 2\operatorname{Re}(z)$$

and

$$z - \overline{z} = (a + bi) - (a - bi) = 2bi = 2\operatorname{Im}(z)i.$$

Hence
$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
 and $\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z})$.

Theorem

For all $z \in \mathbb{C}$,

- $\overline{(\overline{z})} = z$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- $z\overline{z}=(\mathsf{Re}(z))^2+(\mathsf{Im}(z))^2$, so $z\overline{z}\in\mathbb{R}$ and $z\overline{z}\geq 0$

Proof

Let $z = a + bi \in \mathbb{C}$ where $a, b \in \mathbb{R}$. Then

$$z\overline{z} = (a + bi)(a - bi) = (a^2 - (bi)^2) = a^2 + b^2$$

Since $a, b \in \mathbb{R}$, and the square of a real number is non-negative, it follows that $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$.

Theorem

For all $z, w \in \mathbb{C}$,

•
$$\overline{z+w} = \overline{z} + \overline{w}$$
 and $\overline{z-w} = \overline{z} - \overline{w}$

•
$$\overline{zw} = \overline{z} \overline{w}$$
 and $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$

Proof

Let $z=a+bi\in\mathbb{C}$ and $w=c+di\in\mathbb{C}$ where $a,b,c,d\in\mathbb{R}$. Then

$$\overline{z+w} = \overline{(a+bi)+(c+di)} \qquad \overline{z-w} = \overline{(a+bi)-(c+di)}$$

$$= \overline{(a+c)+(b+d)i} \qquad = \overline{(a-c)+(b-d)i}$$

$$= (a+c)-(b+d)i \qquad = (a-c)-(b-d)i$$

$$= (a-bi)+(c-di) \qquad = \overline{z}+\overline{w}, \text{ and} \qquad = \overline{z}-\overline{w}.$$

Theorem

For all $z, w \in \mathbb{C}$,

•
$$\overline{z+w} = \overline{z} + \overline{w}$$
 and $\overline{z-w} = \overline{z} - \overline{w}$

•
$$\overline{zw} = \overline{z} \ \overline{w}$$
 and $\left(\frac{z}{w}\right) = \frac{\overline{z}}{\overline{w}}$

Proof

Let
$$z = a + bi \in \mathbb{C}$$
 and $w = c + di \in \mathbb{C}$ where $a, b, c, d \in \mathbb{R}$. Then
$$\overline{zw} = \overline{(a + bi)(c + di)}$$
$$= \overline{(ac - bd) + (ad + bc)i}$$
$$= (ac - bd) - (ad + bc)i$$
$$= (a - bi)(c - di)$$

It follows that
$$\overline{z} = \overline{\left(\frac{z}{w}\,w\right)} = \overline{\left(\frac{z}{w}\right)}\,\overline{w}$$
. Hence $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$.

 $= \overline{z} \overline{w}$.

Complex conjugate - Example

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

To prove something is imaginary, show that its real part is 0:

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\frac{z}{z}+\overline{w}}}{\overline{z}-\overline{w}}\right)$$

$$= \frac{1}{2}\left(\frac{(z+w)(\overline{z}-\overline{w}) + (\overline{z}+\overline{w})(z-w)}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{z\overline{z}-z\overline{w}+w\overline{z}-w\overline{w}+\overline{z}z-\overline{z}w+\overline{w}z-\overline{w}w}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{2(z\overline{z}-w\overline{w})}{(z-w)(\overline{z}-\overline{w})}\right) = 0 \quad (z\overline{z}=w\overline{w})$$

So since its real part is 0, the expression is imaginary.