Hot day #3

ในวันที่อากาศร้อนวันหนึ่งอีกแล้ว นายชิกำลังแต่งโจทย์การแข่งขันเขียนโปรแกรมเพื่อนำมาพัฒนา เหล่าเด็ก ๆ อนาคตไกลให้ได้อัพเวลไปอีกขั้น บังเอิญว่าวันนี้นายชิได้คันพบสมการวิธีคำนวณจำนวนวิธีใน การซื้อลอตเตอรี่ให้ถูกรางวัลที่ 1 ภายใต้ข้อจำกัดที่เข้มงวดออกมาได้ ด้วยเหตุนี้จึงได้โจทย์ออกมาว่า

ให้จำนวนเต็ม a,b,c,d,e และสมการเวียนเกิดดังนี้

$$T(n) = a \cdot T(n-1) + b \cdot T(n-2) + c \cdot T(n-5);$$

 $T(0) = T(1) = 1;$
 $T(2) = T(3) = d;$
 $T(4) = e$

มีคำถาม q คำถาม แต่ละคำถามให้จำนวนเต็ม k จงหาค่าของ $T(k) mod (10^9 + 7)$

ข้อมูลนำเข้า

บรรทัดแรก รับจำนวนเต็ม a,b,c,d,e ตามลำดับ แทนเหล่าตัวเลขในสมการของนายชิ แต่ละตัวคั่น ด้วยช่องว่าง 1 ช่อง โดย $0 \le a,b,c,d,e \le 10^9$

บรรทัดต่อมารับจำนวนเต็ม q แทนจำนวนคำถาม โดย $1 \leq q \leq 10^5$ บรรทัดต่อไปอีก q บรรทัด แต่ละบรรทัดรับจำนวนเต็ม k แทนคำถามโดย $0 \leq k \leq 10^{18}$

ข้อมูลส่งออก

มีทั้งหมด q บรรทัด แต่ละบรรทัดแสดงคำตอบของแต่ละคำถาม

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1 2 3 4 5	1
10	1
0	4
1	4
2	5
3	16
4	29
5	73
6	968992470
7	858678024
888	
1123581321345589	

คำอธิบายตัวอย่าง

จากตัวอย่างข้อมูลนำเข้าจะได้ว่า a=1,b=2,c=3,d=4,e=5 นั่นจึงทำให้ได้สมการ เวียนเกิดดังนี้

$$T(n) = T(n-1) + 2T(n-2) + 3T(n-5);$$

 $T(0) = T(1) = 1;$
 $T(2) = T(3) = 4;$
 $T(4) = 5$

สำหรับคำถามเมื่อ k=0 ถึง k=4 สามารถตอบตาม base case ได้เลย

สำหรับคำถามเมื่อ k=5 ใช้สมการเวียนเกิดจะได้ว่า

$$T(5) = T(5-1) + 2T(5-2) + 3T(5-5)$$

= $T(4) + 2T(3) + 3T(0)$
= $5 + 2(4) + 3(1) = 16$

นั่นคือ T(5)=16 ตามข้อมูลส่งออก

ในทำนองเดียวกัน

$$T(6) = T(5) + 2T(4) + 3T(1) = 16 + 2(5) + 3(1) = 29$$
 $T(7) = T(6) + 2T(5) + 3T(2) = 29 + 2(16) + 3(4) = 73$
ในกรณีเมื่อ $k = 888$ ค่าของ $T(888)$ เดิมจะใหญ่มากนั่นคือ 25,276,569,515,850,232,821,381,615,324,385,243,123,491,009,370,859,099,999,860,698,260,352,460,325,660,482,087,121,136,825,901,641,829,042,883,264,817,088,697,396,568,846,097,670,424,329,301,003,886,647,658,997,719,147,045,922,913,659,744,124,290,306,123,742,002,625,282,804,703,352,567,938,713,482,342,935,702,641,961,721,239,198,531,828,146,140,345,231,856,269,695,448,763,576,929 ซึ่งประมาณว่า 2 หมื่น 5 พัน 2 ร้อย 7 สิบ 6 แล้วเติมคำว่าล้านอีก 47 รอบ กระนั้นแล้วเมื่อนำค่าดังกล่าว มา mod ด้วย $10^9 + 7$ จะได้ 968992470 ตามข้อมูลส่งออก และในทำนองเดียวกัน

 $T(1123581321345589) \mod (10^9 + 7) = 858678024$

การให้คะแนน

- lacktriangle 10% ของชุดทดสอบ $k \leq 10^6$
- lacksquare 20% ของชุดทดสอบ b=0; c=0
- 30% ของชุดทดสอบ a=1; b=1; c=0
- นอกจากนี้ไม่มีเงื่อนไขเพิ่มเติม