MATRIX CAPSULES WITH EM ROUTING

hc3040, jak2294, st3186

Columbia University

Overview

- The Model
 - What is a capsule ?
 - Using EM for Routing-by-agreement
 - Global Architecture
- 2 Experiments
 - Results on SmallNORB Dataset
 - Novel Viewpoints
 - Adverserial Robustness

Capsule

A capsule network has several layers of capsules

A capsule i in layer L contains :

- $M_i = 4x4$ "pose" matrix
- $a_i \in [0,1]$ an activation probability

In between each capsule i in layer L and j in layer L+1 there is a 4x4 trainable transformation matrix W_{ii}

Capsule i can cast a **vote** $V_{ij} = M_i W_{ij}$ for the pose matrix M_j

We calculate the poses and activations of L+1 with an

Expectation-Maximisation procedure (EM)

We do this **DYNAMICALLY** at each **every single forward pass** of the network !

This replaces pooling in a normal CNN.

EM Routing

EM = Expectancy Maximisation

Notations:

 Ω_L is the layer L i and j represent capsules R_{ij} is the amount of data coming from i that is assigned to j a is the activation value $V_{ij} = M_i W_{ij}$ is vote value of i on j

procedure EM ROUTING(a, V):

$$\forall i \in \Omega_L, \forall j \in \Omega_{L+1}: R_{ij} \leftarrow \frac{1}{|\Omega_{L+1}|}$$
 FOR t iterations do : $\{ \forall j \in \Omega_{L+1} \ \mathbf{M} \ \mathbf{step}(a,R,V,j)$ $\forall i \in \Omega_L \ \mathbf{E} \ \mathbf{step}(\mu,\sigma,a,V,i) \ \}$ RETURN (\mathbf{a},\mathbf{M})

E-step

E-step = Calculate expectation with respect to the latent variables, for the previous value of the parameters

Notations

 μ^h_j and σ^h_j are the parameters of Gaussian j along dimension h a_i is the activation of capsule i $V_{ij} = M_i W_{ij}$ with M and W being 4x4. So $V_{ij} \in \mathbb{R}^4$ V^h_{ii} is the h th dimension of the vote of capsule i on j

procedure **E** step(μ , σ , a, V, i):

$$\begin{aligned} \forall j \in \Omega_{L+1} : p_j \leftarrow \frac{1}{\sqrt{\Pi_h^H 2\pi(\sigma_j^h)^2}} exp\left(-\sum_h^H \frac{(V_{ij} - \mu_j^h)^2}{2(\sigma_j^h)^2}\right) \\ \forall j \in \Omega_{L+1} : R_{ij} \leftarrow \frac{a_j p_j}{\sum_{k \in \Omega_{L+1}} a_k p_k} \end{aligned}$$

M-step

M-step = Maximize this expectation

Notations

 μ^h_j and σ^h_j are the parameters of Gaussian j along dimension h a_i is the activation of capsule i V^h_{ij} is the h th dimension of the vote of capsule i on j β_a,β_u are learned discriminatively and the inverse temperature λ increases at each iteration with a fixed schedule.

procedure **M** step(a, R, V, j):

$$\forall i \in \Omega_L : R_{ij} \leftarrow a_i$$

$$\forall h : \mu_j^h \leftarrow \frac{\sum_i R_{ij} V_{ij}^h}{\sum_i R_{ij}} \text{ and } (\sigma_j^h)^2 \leftarrow \frac{\sum_i R_{ij} (V_{ij} - \mu_j^h)^2}{\sum_i R_{ij}}$$

$$cost^h \leftarrow (\beta_u + log(\sigma_j^h)) \sum_i R_{ij}$$

$$ai \leftarrow logistic(\lambda(\beta_a - \sum_h cost^h))$$

Architecture

A network with one ReLU convolutional layer followed by a primary convolutional capsule layer and two more convolutional capsule layers.

Loss function

Spread Loss

We use a margin m,

The loss for a the target class a_t :

$$L = \sum_{i \neq t} L_i$$

$$L_i = \max(0, m - (a_t - a_i))^2$$

It is like a multi-dimensional hinge loss.

"By starting with a small margin of 0,2 and linearly increasing it during training to 0,9, we avoid dead capsules in the earlier layers"

Experiments¹

Dataset: SmallNORB

- Five classes of toys photographed from different viewpoints
- Each toy pictured at 18 azimuths, 9 elevations, 6 lighting conditions
- 5 instances of each toy class for training/testing
- Each instance 24,300 stereo pairs of 96x96 images

Why this dataset?

- Natural images in different forms
- Intuition behind capsules

Data Processing

- Downsampled each snallNORB image to 48x48 pixels
- Normalized each image (0 mean,unit variance)
- Took 32x32 patches and added random brightness and contrast during training
- Applied model to 32x32 patch cropped from center of image for testing

Results

Table 1: The effect of varying different components of our capsules architecture on smallNORB.

Routing iterations	Pose structure	Loss	Coordinate Addition	Test error rate
1	Matrix	Spread	Yes	9.7%
2	Matrix	Spread	Yes	2.2%
3	Matrix	Spread	Yes	1.8%
5	Matrix	Spread	Yes	3.9%
3	Vector	Spread	Yes	2.9%
3	Matrix	Spread	No	2.6%
3	Vector	Spread	No	3.2%
3	Matrix	Margin ¹	Yes	3.2%
3	Matrix	CrossEnt	Yes	5.8%
В	5.2%			
CNN of Cireşan e	2.56%			
Our Best mode	1.4%			

Results Cont...

- Best model variation: 1.8% test error (1.4% if averaged class activations over multiple crops)
- Previous best reported on smallNORB: 2.56% (Ciresanetal.(2011))
- Achieved 2.6% on NORB dataset (snallNORB with added background), compared to best reported 2.7% (Ciresan et al. (2012))

Baseline Model

CNN (result of optimized hyperparameter search)

- 2 conv. layers with 32/64 channels
- Both with kernel size of 5, stride of 1, 2x2 max pooling
- 3rd layer: 1024 unit fully connected layer with dropout
- *Hidden units: ReLU non-linearity
- 5 class softmax output layer

Result: 5.2% test error, 4.2M params (compare to 310k of Capsule network)

EM-Iteration Visual

Each iteration, vote assignments are adjusted to identify clusters of votes. Histogram shows distances of votes to each class mean (distances are weighted by assignment probability)

- Iteration 1: votes are equally distributed between classes
- Iteration 2: assignment probability for agreeing votes increases, majority of votes assigned to detected clusters

Testing Novel Viewpoints

Isolating performance on novel viewpoints from performance on all viewpoints:

- Use limited set of viewpoints for training and test on a much wider range
- Match error rate between Capsule model and baseline CNN model, then compare on testing set

Testing Novel Viewpoints Cont...

Test set	Azimuth		Elevation	
	CNN	Capsules	CNN	Capsules
Novel viewpoints Familiar viewpoints	20% 3.7%	13.5% 3.7%	17.8% 4.3%	12.3% 4.3%

Testing Robustness

Adverserial Attack Testing

Slightly changing inputs to neural network to confuse network into making incorrect classifications; designed to exploit model vulnerability.

Notable Adverserial Attack Method: FGSM (Goodfellowetal.(2014))

Testing Robustness

FGSM

Computes gradient of loss with respect to each pixel's intensity and adjusts pixel intensity by fixed amount in direction that increases the loss; only includes one hyper parameter.

Basic Iterative Method (Kurakin et al (2016))

Similar to FGSM method but multiple small steps as opposed to one step.

Robustness Cont...

Figure 3: Accuracy against ϵ after an adversarial attack (left) and Success Rate after a targeted adversarial attack (right). The targeted attack results were evaluated by averaging the success rate after the attack for each of the 5 possible classes.

Conclusions

- Ability to classify regardless of configuration/viewpoint
- Effective generalization to novel viewpoints
- Better defense against white-box adverserial attacks

Drawback: Time for EM dynamic routing layer to layer; not efficient for GPU parallelization.

References

G.Hinton et al (2012)

Matrix Capsules with EM Routing ICLR 2018

The End