

EZ3D: Rastreamento Visual de Movimentos Faciais sem Marcadores para Modelos de Animação Tridimensionais

> Juarez Aires Sampaio Filho Rodrigo de Assis Ramos Lima

> > Universidade de Brasília

8 de Dezembro de 2016

Conteúdo

- Introdução
 - O Mercado de Animação
 - Técnicas para Transferência de Movimentos
 - Motivação
- Metodologia Utilizada
 - Rastreamento de Pontos do Rosto
 - Estimação de Tridimensionalidade e Filtros Digitais
 - Mistura de Poses
- Resultados
 - Rastreamento de Pontos do Rosto
 - Estimação de Tridimensionalidade e Filtros Digitais
 - Resultado Final
- Conclusões

Introdução

Definição

Animação Computacional é a arte de criar imagens em movimento pelo uso de computadores.

Figura: A técnica de animação dá vida aos modelos ao posicioná-los em poses ligeiramente diferentes, criando a ilusão do movimento

Animações computacionais são utilizadas em filmes completamente digitalmente animados.

Figura: Um único quadro com o personagem Sully custou em média de 11 a 12 horas de trabalho criativo.

Ou também para compor filmes onde atores interagem com modelos computacionais.

Figura: O ator interage com personagem completamente digital.

É possível também transferir movimentos de atores para modelos

Figura: Movimentos e expressões são transferidos do ator para o modelo. Artistas gráficos dão o retoque final na animação para garantir que o resultado seja o mais convincente possível.

- Motivação:
 - os produtos existente apresentam alto custo:
 - inúmeras horas de trabalho artístico
 - equipamentos especias de captura
 - ambientes controlados
 - Esse custo pode se tornar proibitivo para aplicações independentes que não dispõe do mesmo orçamento que blockbusters.
- Será que é possível desenvolver um sistema de baixo custo que realize transferência de movimento para um avatar computacional?

Vídeo sobre Blend Shapes no Maia

Metodologia

Rastreamento de Pontos do Rosto

Modelo de Distribuição de Pontos - PDM

Definição

O PDM modela linearmente variações de forma não-rígidas e as compõe com uma transformação rígida global, colocando o i-ésimo ponto de interesse \mathbf{v}_i em:

$$\mathbf{v}_{i} = s\mathbf{R}(\mathbf{v}_{i,0} + \Phi_{i}\mathbf{q}) + \mathbf{t} \tag{1}$$

Rastreamento de Pontos do Rosto

Figura: Visualização das componentes de deformação aprendidas pela análise PCA.

Estimação de Tridimensionalidade

Triangulação:

$$X = (u_x/f_1)Z$$
 ou $X = (u'_x/f_2)Z + b$
 $Y = (u_y/f_1)Z$ ou $Y = (u'_y/f_2)Z$
 $Z = f_1f_2b/(u_xf_2 - u'_xf_1)$

Calibração dos Parâmetros Intrínsecos:

Estimação de Tridimensionalidade

Calibração dos Parâmetros Intrínsecos:

Filtros

Figura: Respostas aos filtros projetados

Mistura de Poses

- ▶ Blend Shapes:
 - A técnica de Mistura de Poses MP, do inglês *Blend Shapes* ou *Morph Target*, é uma das opções comumente empregadas para animar objetos deformáveis como a **face humana**.
 - Definição:
 - A técnica consiste em gerar poses intermediárias como uma combinação linear de poses pré-definidas. Os modelos que representam as poses chaves devem ter a mesma quantidade de vértices.
 - ► Equação para a Renderização de uma pose J:

$$J = \sum_{i=1}^{L} w_i M_i$$

$$J = M_1 + \sum_{i=2}^{L} w_i \Delta M_i$$

Resultados

Rastreamento de Pontos do Rosto:

Resultados

Rastreamento de Pontos do Rosto:

Estabilização do Rastreamento

Estimação da Tridimencionalidade:

Filtros:

Figura: Resultado da resposta ao sinal dos filtros projetados para o movimento do olho esquerdo e da boca

Filtros:

Figura: Resultado da resposta ao sinal dos filtros projetados para o movimento do sorriso

Mistura de Poses:

Figura: Pose Neutra

Mistura de Poses:

Figura: Poses pré definidas utilizadas neste trabalho

Resultado Final:

Conclusões

- Análise:
- Trabalhos Futuros: