Índice

	1.	Presentación	1
		1.1. Obxectivos	1
		1.2. Motivación	1
	2.	Principios físicos	2
Guión das prácticas no IGFAE Prácticas optativas de Grao · Curso 22-23		2.1. Un detector gasoso	2
		2.2. Perdas de enerxía na materia	2
		2.3. Resolución en enerxía	3
Universidade de Santiago de Compostela		2.4. Cinemática	3
	3.	Para comezar	4
		3.1. Introdución a ROOT	4
		3.2. Github	4
	4.	Programa	4

1. Presentación

1.1. Obxectivos

O obxectivo destas prácticas vai ser reproducir a resposta real do detector *ACtive TARget and Time Projection Chamber* (ACTAR TPC) nun computador de cara a preparar a campaña experimental de 2025. Simularase unha reacción nuclear de cuxos resultados avaliaremos a resolución na reconstrucción de ángulos.

Abarcaremos varias áreas:

- **Programación**: Aprenderemos a programar en C++ con ROOT. Utilizaremos progamas sinxelos para que a adaptación sexa o máis liviana posíbel e fomentaremos o recurso á documentación na web.
- **Detectores**: ACTAR TPC é un detector gasoso moi recente que abre todo unha nova ventá de posibilidades no eido das reaccións nucleares. Introduciremos os conceptos básicos dun detector gasoso e complementarémolos cos de detectores de Silicio.
- **Teoría**: Expoñeremos as leis básicas da cinemática que rixen calquera reacción entre partículas e introduciremos os fundamentos da interacción radiación-materia, básicos para a detección experimental.

Iremos adaptando o guión das prácticas en función das necesidades e do tempo dispoñíbel. Gran parte do código computacional está xa listo, e o que se requerirá será facer uso del en programas máis simples.

1.2. Motivación

En 2025 levarase a cabo un experimento coa reacción $^{11}\text{Li}(d,p)^{12}\text{Li}$ para estudar a estrutura nuclear do ^{12}Li . En particular, este tipo de reaccións de transferencia dun nucleón permiten acceder de forma pormenorizada á información espectroscópica do núcleo resultante; neste caso, co obxectivo principal de estudar o estado fundamental do ^{12}Li .

Para lograr este obxectivo, necesitamos varias compoñentes:

- **Detector**: O gas que encherá ACTAR TPC será unha mestura de D_2 e i C_4H_{10} (95 % e 5 %, respectivamente) a unha presión de 900 mbar. Será o D_2 o que provea os d da reacción.
- **Reacción**: A xa mencionada:

$$^{11}\text{Li} + ^{2}\text{H} \longrightarrow ^{1}\text{H} + ^{12}\text{Li}$$

■ **Feixe**: O ¹¹Li terá unha enerxía de 7,5 AMeV (é dicir, 82,5 MeV).

2. Principios físicos

2.1. Un detector gasoso

ACTAR TPC segue os principios de funcionamento dunha *time projection chamber*: as partículas ao pasaren polo gas ionizan os átomos, liberando electróns que **derivan** baixo aplicación dun campo eléctrico. Esta carga é recollida nun sensor amplamente fragmentado (), permitindo *seguir* as partículas no seu traspaso dentro do medio en 2D.

Pero é máis: pódese engadir a terceira coordenada coñecendo o tempo que lle leva aos electróns chegar ao pad plane, pois a **velocidade de deriva** é constante. Deste xeito, o seguimento das partículas faise en **3D**.

Finalmente, o principio de *active target* engade a vantaxe de ser o gas o propio albo da reacción: este actúa como medio de reacción e de detección. O seguinte esquema ilustra este modo de funcionamento.

Figura 1: Esquema de funcionamento dunha TPC.

Figura 2: Deseño do detector ACTAR TPC. A rexión de detección é a parte negra interna.

Para a simulación vamos necesitar poñerlle números ao detector:

- O tamaño da zona de detección (Figura 2) é de 256 × 256 × 255 mm³.
- O criterio de dimensións é que o beam vai no eixo X, e a dimensión vertical é Z.
- Os detectores auxiliares poden poñerse arredor desta zona nos diferentes lados. Nós usaremos algo parecido ao da figura, cun detector de Si (como os azuis) cara adiante.

2.2. Perdas de enerxía na materia

As partículas ao propagarse a través do gas interaccionarán co campo de Coulomb dos átomos deste, perdendo enerxía e liberando electróns. Esta perda de enerxía en cada interacción é moi pequena, pero como é moi elevado o número de colisións no gas (é, polo tanto, un proceso estocástico), chega a ser moi importante. Nunha aproximación continua, está dada pola **ecuación de Bethe-Bloch**:

$$-\frac{dE}{dx} \cong \frac{4\pi e^4}{m_e} \left(\rho \frac{N_A}{M}\right) \frac{z^2 Z}{v^2} \ln \frac{2m_e v^2}{I}$$

Depende esencialmente da partícula a considerar (Z e A) e do gas (a través de ρ). É interesante definir:

■ Rango (R): É o camiño percorrido por unha partícula ata que case se detén. É función da enerxía inicial e do material a atravesar. Existe unha relación unívoca E ← R que imos utilizar para estimar a perda da enerxía en función da distancia percorrida pola partícula.

 Straggling: Como a perda de enerxía é un proceso estatístico, dúas partículas coa mesma enerxía inicial non van depositar a mesma ΔE. O straggling mide, dalgunha forma, a σ desta distribución.

Esta información está tabulada nun programa que se coñece como *SRIM* e que utilizaremos sistematicamente nas prácticas. Basicamente, contén táboas cos parámetros que vamos necesitar para os cálculos: enerxías, rangos e stragglings.

Unha pequena apreciación: SRIM vainos dar o *straggling* en posición, mais nós deberémolo converter a en enerxía. Aquí o algoritmo que imos usar:

- **1.** Calculamos R_{ini} coa enerxía inicial, xunto co seu *straggling*.
- 2. Sabendo que a partícula percorre unha distancia d o rango nese punto será $R_L = R_{Ini} d$. Avaliamos o stragg. para este valor.
- **3.** O *straggling* na distancia estará **correlacionado con ambos**, e sabendo que $u^2(R_{Ini}) = u^2(R_{Left}) + u^2(d)$, despexamos u(d).
- **4.** Aleatorizamos o valor de d cunha gaussiana centrada no seu valor e de $\sigma = u(d)$. Recalculamos o valor de $R_{Left} \longrightarrow R'_{Left}$ coa nova $d \longrightarrow d'$.
- **5.** Con este novo rango calculamos a enerxía final, efectivamente implementando o *straggling!*

2.3. Resolución en enerxía

Complementariamente acostuman situarse detectores de Si que nos van permitir medir a enerxía das partículas á súa saída do *pad plane* (seguindo os mesmos principios que na anterior Sección). Un parámetro importante destes é a **resolución en enerxía**, definida como a capacidade para *resolver* enerxías depositadas distintas: R = FWHM/E.

Para o noso experimento, esta resolución está tabulada en 50 keV a 5,5 MeV e podemos extrapolala ao resto de enerxías coa función:

$$R = \frac{2,35\sigma}{E} = \frac{K}{\sqrt{E}} \implies \sigma = \frac{K}{2,35}\sqrt{E} = \frac{0,0213 \text{ MeV}}{2,35}\sqrt{E}$$

Isto vai significar que a perda de enerxía ΔE que calcules nos Si deberala aleatorizar cunha gaussiana de σ obtida coa anterior fórmula.

2.4. Cinemática

Todo proceso de interacción entre partículas podes escribirse en termos de variables cinemáticas (enerxías e ángulos) usando as **leis de conservación** de enerxía e de momento. Esta pode ser descrita no sistema LAB ou no CM (mediante unha transformación Lorentz a un sistema con 3-momento nulo en ambas canles de entrada e saída) do seguinte xeito:

No LAB:
$$p_1 = (E_1, \boldsymbol{p_1})$$
; $p_2 = (m_2, \boldsymbol{0})$; $p_3 = (E_3, \boldsymbol{p_3})$; $p_4 = (E_4, \boldsymbol{p_4})$
No CM: $p_1' = (E_1', \boldsymbol{p_1'})$; $p_2' = (E_2', -\boldsymbol{p_1'})$; $p_3' = (E_3', \boldsymbol{p_3'})$; $p_4' = (E_4', -\boldsymbol{p_3'})$

É estándar asumir unha partícula target (a 2) en repouso. O que vamos necesitar para a simulación é:

- Partiremos da enerxía cinética *T*₁ do feixe (1) no LAB.
- Calculares a transformación Lorentz da canle de entrada ao CM.
- Repartiremos a E_{CM} (enerxía total no centro de masas) entre as partículas de saída cun θ_{CM} e ϕ_{CM} aleatorios.
- Finalmente, recuperaremos as enerxías de saída de ambas partículas no LAB coa transformación inversa.

■ Tamén necesitaremos os ángulos no laboratorio, θ_{Lab} e $\phi_{Lab} = \phi_{CM}$.

Algunhas fórmulas que che poden ser interesantes para unha transformación Lorentz en X (o feixe móvese nesa dirección; é un convenio):

$$E' = \gamma (E - \beta p_x),$$
 $p'_x = \gamma (p_x - \beta E)$
 $E = \gamma (E' + \beta p'_x),$ $p_x = \gamma (p'_x + \beta E')$

Onde as variables primadas indican que son no CM. Cando transformes ao final do CM ao LAB terás en conta θ_{CM} : $p_3 = p_3' \cdot \cos(\theta_{CM})$. O ángulo ϕ_{CM} non aparece de momento posto que é transversal á transformación.

3. Para comezar

3.1. Introdución a ROOT

O primeiro de todo é aprender a programar en C++ con ROOT. No repositorio de Github, dentro da carpeta *Macros*, tes algúns exemplos de como traballar con el. Comeza polo básico e despois vas ver como podes crear histogramas, gráficos e números aleatorios: o básico que necesitamos para estar prácticas.

Velaquí algunha información básica que necesitas para comezar:

■ ROOT é un código desenvolto polo CERN que permite executar código de C++ sen compilar, mediante o que se coñece como **macros**:

```
$ root -1 NomeDoMacro.cxx
```

Vai executar a función chamada *NomeDoMacro* dentro dese ficheiro. Polo tanto, debes nomear o ficheiro igual que a función principal que conteña dentro. Isto non impide que definas outras funcións dentro do mesmo.

- Debes saír sempre da sesión unha vez o programa termina, escribindo .q
- ROOT provee de numerosas clases que realizan múltiples funcións: TH1D (histogramas), TGraph (gráficos), ... Sempre podes consular a documentación na web cando non saibas como se constrúe ou que funcións ten unha clase. Escribe no teu buscador favorito: NomeDaClase root cern e deberías ter a documentación no primeiro resultado.

3.2. Github

Git é unha ferramenta de control de versións que che permitirá manter un historial do teu código, podendo volver atrás cando sexa necesario. Github é unha web para almacenar repositorios Git. Vamos utilizala para poder revisar o código a distancia.

Para iso, o primeiro é ter unha conta en www.github.com. Tras unha configuración inicial un pouco tediosa, o plan de traballo é o seguinte, que se debe executar cando fagas cambios importantes ou cando remates a túa sesión de traballo:

- 1. git add . vai engadir todos os cambios dende o anterior commit
- 2. git commit abrirá un editor de texto no que crear unha mensaxe para informar dos cambios. Péchase con Ctrl+S, Ctrl+X
- 3. git push envía os cambios á nube

4. Programa

Desenvolveremos a simulación de forma modular, separando as distintas partes en diferentes macros e xuntando todo ao final.

A proposta é a seguinte:

- **Primeira semana**: Configuración do entorno e familiarización con ROOT. Macros para constuír gráficos e samplear en histogramas.
- Segunda semana: Resolución da cinemática e implementación da xeometría.
- Terceira semana: Introdución das perdas de enerxía e das distintas resolucións.
- Cuarta semana: Estudo sistemático da resolución en θ_{Lab} para distintas configuracións da xeometría, gases, etc.
- Quinta semana: Posibilidade de engardir máis cousas á simulación (en función da evolución) ou comezo da memoria.