Aprendizagem

Instituto Superior Técnico outubro de 2023

Homework 4 - Report

Joana Pimenta (103730), Rodrigo Laia (102674)

Pen and Paper

1. Fórmulas utilizadas:

$$\gamma_{ki} = p(c_k|\mathbf{x}_i) = \frac{p(c_k)p(\mathbf{x}_i|c_k)}{p(\mathbf{x}_i)}$$
(1)

$$p(\mathbf{x}_i) = p(c_1)p(\mathbf{x}_i|c_1) + p(c_2)p(\mathbf{x}_i|c_2)$$
(2)

NAO SEI SE POSSO PROPRIAMENTE METER ESTA EQ ASSIM ????????

$$p(\mathbf{x}_i|c_k) = \begin{cases} p_k \cdot \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) & \text{se } y_1 = 1\\ (1 - p_k) \cdot \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) & \text{se } y_1 = 0 \end{cases}$$
(3)

E-step:

Cálculo das probabilidades $p(\mathbf{x}_i)$

$$p(\mathbf{x}_1) = 0.05185$$

$$p(\mathbf{x}_2) = 0.02775$$

$$p(\mathbf{x}_3) = 0.04337$$

$$p(\mathbf{x}_4) = 0.05243$$

Cálculos dos γ_{ki}

$$\gamma_{k=1,i=1} = 0.19259$$

$$\gamma_{k=2,i=1} = 0.80741$$

$$\gamma_{k=1,i=2} = 0.63135$$

$$\gamma_{k=2,i=2} = 0.36865$$

$$\gamma_{k=1,i=3} = 0.55181$$

$$\gamma_{k=2,i=3} = 0.44819$$

$$\gamma_{k=1,i=4} = 0.16892$$

$$\gamma_{k=2,i=4} = 0.83108$$

M-step:

Cada observação \mathbf{x}_i permite atualizar os parâmetros com peso γ_{ki} . Assim calculamos os novos parâmetros atualizados para cada cluster utilizando as seguintes fórmulas.

$$N_k = \sum_{i=1}^4 \gamma_{ki} \tag{4}$$

$$\pi_k = \frac{N_k}{N} \tag{5}$$

EU INVENTEI ISTO, PODE NAO TAR CERTO!!!!!!!

$$P_k(y_1 = 1) = \frac{\sum_{i=1}^4 \gamma_{ki} \cdot p(y_1 = 1 | \mathbf{x}_i)}{\sum_{i=1}^4 \gamma_{ki}}$$
 (6)

Nota: A probabilidade $p(y_1 = 1 | \mathbf{x}_i)$ é 1 se y_1 de \mathbf{x}_i for 1 e 0 caso contrário.

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{i=1}^4 \gamma_{ki} \mathbf{x}_i \tag{7}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^4 \gamma_{ki} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^T$$
(8)

Parâmetros atualizados:

$$\pi_1 = 0.38617$$

$$\pi_2 = 0.61383$$

$$P_{k=1}(y_1=1)=0.23404$$

$$P_{k=2}(y_1=1)=0.66732$$

$$\boldsymbol{\mu}_1 = \begin{bmatrix} 0.02651 \\ 0.50713 \end{bmatrix}$$

$$\mu_2 = \begin{bmatrix} 0.30914 \\ 0.21042 \end{bmatrix}$$

$$\Sigma_1 = \begin{bmatrix} 0.14137 & -0.10541 \\ -0.10541 & 0.09605 \end{bmatrix}$$

$$\Sigma_2 = \begin{bmatrix} 0.10829 & -0.08865 \\ -0.08865 & 0.10412 \end{bmatrix}$$

2. Considerando o critério de $m\'{a}ximo$ a posteriori Para decidir a que cluster pertence a observação \mathbf{x}_{new} precisamos de calcular o seu posterior. Para isso utilizamos a seguinte fórmula:

$$p(cluster = k | \mathbf{x}_{new}) = \frac{p(cluster = k)p(\mathbf{x}_{new}|cluster = k)}{p(\mathbf{x}_{new})}$$
(9)

Cálculos:

$$p(\mathbf{x}_{new}) = 0.03048$$

$$p(cluster = 1|\mathbf{x}_{new}) = 0.08029$$

$$p(cluster = 2|\mathbf{x}_{new}) = 0.91971$$

Como $p(cluster = 2|\mathbf{x}_{new}) > p(cluster = 1|\mathbf{x}_{new})$, então a observação \mathbf{x}_{new} pertence ao cluster 2.

3. Neste exercício assumimos que o cluster atribuído a cada observação é é escolhido pelo critério de *maximum likelihood*. Assim, o cluster escolhido é dado por:

$$cluster = \arg\max_{k} p(\mathbf{x}_{i}|cluster = k)$$
 (10)

Em que $p(\mathbf{x}_i|cluster = k)$ é dado pela fórmula (3).

Assim,

Observação	$p(\mathbf{x}_i cluster = 1)$	$p(\mathbf{x}_i cluster = 2)$	Cluster atribuído
$\mathbf{x_1}$	0.59941	1.54691	2
$\mathbf{x_2}$	1.26633	0.08874	1
X ₃	1.43811	0.45417	1
$\mathbf{x_4}$	0.02077	0.72331	2

Coeficiente de Silhueta:

$$s_i = 1 - \frac{a(\mathbf{x}_i)}{b(\mathbf{x}_i)} \tag{11}$$

em que $a(\mathbf{x}_i)$ é a distância média entre \mathbf{x}_i e as outras observações no mesmo cluster e $b(\mathbf{x}_i)$ é a distância média entre \mathbf{x}_i e as observações no outro cluster.

A silhueta de um cluster é dada pela média dos coeficientes de silhueta de todas as observações pertencentes a esse cluster.

A silhueta da solução é por sua vez dada pela média das silhuetas de todos os clusters.

Neste caso a distância considerada é a distância de Manhattan, logo:

$$d(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^{n} |u_i - v_i|$$
(12)

Assim, as silhuetas obtidas foram:

cluster	\mathbf{x}_i	$a(\mathbf{x}_i)$	$b(\mathbf{x}_i)$	$s(\mathbf{x}_i)$	s(cluster)	s(sol)
1	\mathbf{x}_2	0.3(9)	2.25	0.(6)	0.58(3)	0.702(7)
1	\mathbf{x}_3	0.9	2.7	0.4(9)	0.58(5)	
2	\mathbf{x}_1	0.9	1.7(9)	0.8(2)	0.8(2)	
	\mathbf{x}_4	0.3(9)	2.25	0.8(2)	0.0(2)	

4. A purity é dada por:

$$purity = \frac{1}{N} \sum_{k=1}^{K} \max_{j} |c_k \cap t_j|$$
 (13)

Uma vez que temos uma purity de 0.75 e um número total de observações de 4, então $\sum_{k=1}^K \max_j |c_k \cap t_j| = 3$

Programming - Código Python e Resultados Obtidos

- 1. Código Utilizado:
- 2. Código Utilizado:
- 3. Código Utilizado:
- 4.