MetaboAnalystを用いた PCA, PLS-DA

https://www.metaboanalyst.ca/

データファイルの作り方

各サンプルが各行になるようにする。行と列を入れ替えることも可能

1列目にID、2列目にサンプルの分類情報、3列目以降に変数データを記入する

id	class	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1	M	100	100	50	70	10	100	100	
2	F	80	100	90	100	0	90	100	
3	F	50	100	100	100	0	70	80	
4	F	100	100	50	50	0	70	100	
5	F	94	80	98	30	60	98	99	
6	F	99	100	80	70	0	10	60	
7	M	50	40	80	50	0	80	40	
8	F	55	50	69	100	0	0	15	
9	F	25	0	100	100	0	25	75	
10	F	30	75	80	60	0	90	80	
11	M	85	100	85	90	0	100	40	転置可能
12	M	23	74	87	72	0	68	82	
13	F	70	100	80	100	10	60	60	
14	F	55	90	100	80	30	50	42	
15	F	50	80	100	80	0	30	100	
16	F	90	50	70	70	0	0	40	
17	M	80	30	100	100	2	30	95	

データファイルの作り方

カンマ区切りファイル(csv)にしたいデータだけを記載した、エクセルシートを作る。

そのシートを閲覧している状態で、 「名前を付けて保存」から、カンマ区切り(csv)を選んで で保存する。

MetaboAnalystへアクセス

click here to startをクリック

- user-friendly, streamlined metabolomics MetaboAnalyst 5.0 data analysis

Home

Data Formats

Tutorials

FAQs

APIs

Update History

MetaboAnalystR

Contact

User Stats

Publications

About

News & Updates

- Check out our <u>MetaboAnalyst 5.0 paper</u> now available on the 2021 NAR web server issue; issue;
- . For multi-omics analysis, try our OmicsAnalyst for various data-driven approaches, or OmicsNet for knowledge-based integ NEW.
- Improved size calculation for heatmap visualization in Statistics module (08/05/2021);
- Added support for VIP plot for Orthogonal Partial Least-Squares (OPLS) in Statistics module (07/15/2021);
- Minor bug fixes based on user feedback (05/31/2021);
- Improved functional meta-analysis data upload page for more flexible data processing (04/27/2021);
- Fixed the issue with synchronized 3D scatter plots for scores and loadings (04/12/2021);
- Upgraded to PrimeFaces 10 and fixed the issue for multi-group figure legend (04/06/2021);
- Added support for merging technical replicates with different mathematical models and QC measures (02/18/2021);

Read more

Click here to start

Overview

MetaboAnalyst is a comprehensive platform dedicated for metabolomics data analysis via userfriendly, web-based interface. Over the past decade, MetaboAnalyst has evolved to become the most widely used platform (>300.000 users) in the

Statistical Analysisをクリック

Module Overview

Input Data Type	Available Modules (click on a module to proceed, or scroll down for more details)							
Raw Spectra (mzML, mzXML or mzData)				LC-MS Spectra Processing				
MS Peaks (peak list or intensity table)			Functional Analysis Functional Me analysis					
Annotated Features (compound list or table)		Enrichment Analysis	Pathway Analysis	Joint-Pathway Analysis	Network Analysis			
Generic Format (.csv or .txt table files)	Statistical Analysis	Biomarker Analysis	Time-series/Two- factor Analysis	Statistical Meta- analysis	Power Analysis	Other Utilities		

どちらでもOK

Statistical Analysis

nonly used statistical and

machine learning methods including t-tests, ANOVA, PCA, PLS-DA and Orthogonal PLS-DA. It also provides clustering and visualization tools to create dendrograms and heatmaps as well as to classify data based on random forests and SVM.

Spectral Analysis

Time period/Two factor Analysis

This module allows users to upload raw LC-MS spectra (mzML, mzXML or mzData) to be processed using our optimized workflow based on MetaboAnalystR - OptiLCMS. The module supports common LC-MS platforms. The result peak intensity table can be used for statistical and functional analysis.

Functional Analysis (MS Peaks)

Biomarker Analysis

new sample prediction.

This module accepts high-resolution LC-MS spectral peak data to perform metabolic pathway enrichment analysis and visual exploration based on the well-established mummichog algorithm. It currently supports 26 organisms including Human, Mouse, Zebrafish, C. elegans, and other species.

This module performs various biomarker analyses based on

receiver operating characteristic (ROC) curves for a single or

allows users to manually specify biomarker models and perform

multiple biomarkers using well-established methods. It also

♠ Enrichment Analysis

Pathway Analysis (targeted)

This module supports pathway analysis (integrating enrichment analysis and pathway topology analysis) and visualization for 26 model organisms, including Human, Mouse, Rat, Cow, Chicken, Zebrafish, *Arabidopsis thaliana*, Rice, Drosophila, Malaria, *S. cerevisae*, *E.coli*, and others species.

• Functional Meta-analysis (MS peaks)

This module aims to identify robust functional profiles across multiple global metabolomics datasets via two approaches: 1) integrating functional profiles from independent studies conducted under compatible LC-MS conditions; or 2) pooling peaks from complementary instruments within the same studies.

Inint Pathway Analysis

準備したCSVファイルをアップロード

必要に応じて、Formatなどを選択する

Submitボタンを押す

1) Upload your data

Data Type: ● Concentrations	
Format: Samples in rows (unpaired)	
	nit
Data File: ファイルを選択 okonomi.csv	

データチェックが行われる 問題なければskipで先に進む

Data Integrity Check:

- 1. Checking the class labels at least three replicates are required in each class.
- 2. If the samples are paired, the pair labels must conform to the specified format.
- The data (except class labels) must not contain non-numeric values.
- The presence of missing values or features with constant values (i.e. all zeros).

Data processing information: Checking data content ...passed. Samples are in rows and features in columns The uploaded file is in comma separated values (.csv) format. The uploaded data file contains 33 (samples) by 29 (compounds) data matrix. Samples are not paired. 2 groups were detected in samples. Only English letters, numbers, underscore, hyphen and forward slash (/) are allowed. Other special characters or punctuations (if any) will be stripped off. All data values are numeric. A total of 0 (0%) missing values were detected. By default, missing values will be replaced by 1/5 of min positive values of their corresponding variables Click the **Skip** button if you accept the default practice; Or click the Missing value imputation to use other methods. Proceed Edit Groups

必要に応じて、データの標準化(normalization)、変換(transformation)、スケーリング方法を選択する

Normalizeボタンを押す

Normalization overview:

The normalization procedures are grouped into three categories. The sample normalization allows general-purpose adjustment for differences among your sample; data transformation and scaling are two different approaches to make individual features more comparable. You can use one or combine them to achieve better results.

5	ample Normalization						
	• None						
	Sample-specific normalization (i.e. weight, volume) Specify						
	Normalization by sum						
	Normalization by median						
	Normalization by reference sample (PQN)	<u>Specify</u>					
	Normalization by a pooled sample from group	Specify					
	Normalization by reference feature	<u>Specify</u>					
	Quantile normalization						
E	ata transformation						
	• None						
	Log transformation (generalized logarithm transformation or glog)						
	Cube root transformation (takes the cube root of data values)						
[ata scaling						
	• None						
	Mean centering (mean-centered only)						
	Auto scaling (mean-centered and divided by the standard deviation of each variable)						
	Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable)						
	Range scaling (mean-centered and divided by the range of each variable)						
ı	Normalize	View Result	Proceed				

右上にこのウィンドウが出ればOK

アクティブになったProceedボタンを押す

主成分分析 Principal Component Analysis (PCA) をクリック

Select an analysis path to explore:

Univariate Analysis Fold Change Analysis T-tests Volcano plot One-way Analysis of Variance (ANOVA) Correlation Heatmaps Pattern Search Correlation Networks (DSPC) **Chemometrics Analysis** Principal Component Analysis (PCA) Partial Least Squares - Discriminant Analysis (PLS-DA) Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA) Orthogonal Partial Least Squares - Discriminant Analysis (orthoPLS-DA) Feature Identification Significance Analysis of Microarray (and Metabolites) (SAM) Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM) Cluster Analysis Hierarchical Clustering: Dendrogram Heatmans

結果画面が表示される

Principal Component Analysis (PCA)

2D Scores Plot

Display sample nameにチェックが入っていると、サンプル名が一緒に表示される。

※条件を変えた後に「Update」ボタンを押して反映させます。

Loadings Plot

プロットをクリックすると、その変数の特徴が表示される。

Biplot

スコアプロットとローディングプロットが一緒に描かれたもの。

PLSDA

Upload

▶ Processing

Normalization

▼ Statistics

Fold change

T-test

Volcano plot

ANOVA

Correlations

DSPC network

PatternHunter

OrthoPLSDA

SAM

EBAM

Dendrogram

2D Scores Plot

Loadings Plot

VIP値

累積寄与率と構築したモデルの精度(Q)

