0.1 幂级数

定义 0.1

所谓幂级数,是指形如

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + \dots + a_n (z - z_0)^n + \dots$$
 (1)

的级数,它的通项是幂函数,这里, a_0,\cdots,a_n,\cdots 和 z_0 都是复常数.

注 为讨论简便起见, 不妨假定 $z_0 = 0$, 这时级数(1) 成为

$$\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + \dots + a_n z^n + \dots$$
 (2)

通常, 只要作变换 $w = z - z_0$, 就能把级数(1)化为级数(2).

定义 0.2

如果存在常数 R, 使得当 |z| < R 时, 级数 (2) 收敛; 当 |z| > R 时, 级数(2) 发散, 就称 R 为级数 (2) 的**收敛半 径**, $\{z: |z| < R\}$ 称为级数(2)的**收敛圆**.

定理 0.1

级数 (2)存在收敛半径

$$R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}.$$

证明 我们要证明下列三件事:

- (i) 先证 (i) 当 R = 0 时, $\sum_{n=0}^{\infty} a_n z^n$ 只在 z = 0 处收敛;
- (ii) 当 $R = \infty$ 时, $\sum_{n=0}^{\infty} a_n z^n$ 在 \mathbb{C} 中处处收敛;
- (iii) 当 $0 < R < \infty$ 时, $\sum_{n=0}^{\infty} a_n z^n$ 在 $\{z : |z| < R\}$ 中收敛, 在 $\{z : |z| > R\}$ 中发散.

先证 (i). 级数 $\sum_{n=0}^{\infty} a_n z^n$ 在 z=0 处收敛是显然的. 现固定 $z\neq 0$, 由于 $\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}=\infty$, 故必有子列 n_k , 使得

 $\frac{n\sqrt{|a_{n_k}|}}{|z|}>\frac{1}{|z|}$,于是 $|a_{n_k}z^{n_k}|>1$. 所以, 由推论??可知级数 $\sum_{n=0}^{\infty}a_nz^n$ 发散.

再证 (ii). 任取 $z \neq 0$, 因为 $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 0$, 对于 $\varepsilon = \frac{1}{2|z|}$, 存在正整数 N, 当 n > N 时, $\sqrt[n]{|a_n|} < \frac{1}{2|z|}$, 于是 $|a_n z^n| < \frac{1}{2^n}$. 所以, 由 Weierstrass 一致收敛判别法可知, 级数 $\sum_{n=1}^{\infty} a_n z^n$ 一致收敛, 从而也收敛.

最后证 (iii). 取定 $z \neq 0, z \in B(0, R)$. 选取 ρ , 使得 $|z| < \rho < R$. 于是 $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{R} < \frac{1}{\rho}$, 因而存在 N, 当 n > N 时, $\sqrt[n]{|a_n|} < \frac{1}{\rho}$, 即 $|a_n z^n| < \left(\frac{|z|}{\rho}\right)^n < 1$. 所以由 Weierstrass 一致收敛判别法可知, $\sum_{n=0}^{\infty} |a_n z^n|$ 一致收敛, 从而

$$\sum_{n=0}^{\infty} |a_n z^n| < \infty.$$

再设 |z| > R, 选取 r, 使得 |z| > r > R. 因而 $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{R} > \frac{1}{r}$, 故有 $\{n_k\}$, 使得 $\sqrt[nk]{|a_{n_k}|} > \frac{1}{r}$, 即 $|a_{n_k}z^{n_k}| > \left(\frac{|z|}{r}\right)^{n_k} > 1$. 故由推论**??**可知级数 $\sum_{n=0}^{\infty} a_n z^n$ 发散.

1

定理 0.2 (Abel 定理)

如果 $\sum_{n=0}^{\infty} a_n z^n$ 在 $z = z_0 \neq 0$ 处收敛, 则必在 $\{z : |z| < |z_0|\}$ 中内闭绝对一致收敛.

 $^{\circ}$

证明 设 K 是 $\{z: |z| < |z_0|\}$ 中的一个紧集, 选取 $r < |z_0|$, 使得 $K \subset B(0,r)$. 于是, 当 $z \in K$ 时, 有 |z| < r. 因为 $\sum_{n=0}^{\infty} a_n z_0^n$ 收敛, 所以由推论??可知 $|a_n z_0^n| < M$, 这里, M 是一个常数. 于是, 当 $z \in K$ 时, 有

$$|a_n z^n| = \left| a_n z_0^n \frac{z^n}{z_0^n} \right| \le M \frac{|z|^n}{|z_0|^n} \le M \left(\frac{r}{|z_0|} \right)^n.$$

因为 $r < |z_0|$,所以由 Weierstrass 一致收敛判别法, $\sum_{n=0}^{\infty} |a_n z^n|$ 在K中一致收敛.

定理 0.3

幂级数在其收敛圆内确定一个全纯函数, 即幂级数的和函数在其收敛圆内必是全纯函数,

证明 由Abel 定理知道,幂级数在其收敛圆内是内闭一致收敛的. 根据 Weierstrass 定理,它的和函数是收敛圆内的全纯函数. □

例题 0.1 级数 $\sum_{n=0}^{\infty} z^n$ 的收敛半径为 1, 它在收敛圆周 |z|=1 上处处发散.

例题 0.2 级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ 的收敛半径为 1, 它在收敛圆周 |z|=1 上处处收敛.

例题 **0.3** 级数 $\sum_{n=1}^{\infty} \frac{z^n}{n}$ 的收敛半径为 1, 它在 z=1 处是发散的, 但在收敛圆周的其他点 $z=\mathrm{e}^{\mathrm{i}\theta}(0<\theta<2\pi)$ 处则是收敛的.

证明 这是因为

$$\sum_{n=1}^{\infty} \frac{z^n}{n} = \sum_{n=1}^{\infty} \frac{e^{in\theta}}{n} = \sum_{n=1}^{\infty} \frac{\cos n\theta}{n} + i \sum_{n=1}^{\infty} \frac{\sin n\theta}{n},$$

由 Dirichlet 判别法知道, 实部和虚部的两个级数都是收敛的.

定理 0.4

设 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ 的收敛半径为 R, 则其和函数

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

是圆盘 $B(z_0, R)$ 中的全纯函数, 并且

$$f'(z) = \sum_{n=1}^{\infty} na_n (z - z_0)^{n-1},$$

.....,

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) a_n (z-z_0)^{n-k},$$

.

 \Diamond

证明 由定理 0.3, 和函数

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

是圆盘 $B(z_0,R)$ 中的全纯函数. 命题??(3) 可知 $f \in C^{\infty}$. 再由 Weierstrass 定理, 得

$$f'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1},$$

 $f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(z-z_0)^{n-k},$

现若 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ 在收敛圆周 $|z-z_0|=R$ 上某点 ζ 处收敛, 那么 $\sum_{n=0}^{\infty} a_n (\zeta-z_0)^n$ 和 f 有什么关系呢? 为了简化问题的讨论, 作变换 $w=\frac{z-z_0}{\zeta-z_0}$, 那么

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} a_n (\zeta - z_0)^n w^n = \sum_{n=0}^{\infty} b_n w^n,$$

这里, $b_n = a_n(\zeta - z_0)^n$. $\sum_{n=0}^{\infty} b_n w^n$ 的收敛半径为

$$\frac{1}{\overline{\lim_{n\to\infty}}\sqrt[n]{|b_n|}} = \frac{1}{|\zeta - z_0|} \cdot \frac{1}{\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}} = \frac{1}{R} \cdot R = 1,$$

且在 w=1 处收敛. 因此, 不妨就收敛半径为 1, 且在 z=1 处收敛的幂级数 $\sum_{n=0}^{\infty} a_n z^n$ 来讨论.

定义 0.3

设 g 是定义在单位圆中的函数, $e^{i\theta_0}$ 是单位圆周上一点, $S_{\alpha}(e^{i\theta_0})$ 如图 1所示,其中 $\alpha < \frac{\pi}{2}$. 如果当 z 在 $S_{\alpha}(e^{i\theta_0})$ 中趋于 $e^{i\theta_0}$ 时,g(z) 有极限 l, 就称 g 在 $e^{i\theta_0}$ 处有**非切向极限** l, 记为

$$\lim_{\substack{z \to e^{i\theta_0} \\ z \in S_{\alpha}(e^{i\theta_0})}} g(z) = l.$$

定理 0.5 (Abel 第二定理)

设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$ 的收敛半径 R=1, 且级数在 z=1 处收敛于 S, 那么 f 在 z=1 处有非切向极限 S, 即

$$\lim_{\substack{z \to 1 \\ z \in S_{\alpha}(1)}} f(z) = S. \tag{3}$$

 \Diamond

证明 如图 2所示, 只要能证明级数 $\sum_{n=0}^{\infty} a_n z^n$ 在 $S_{\alpha}(1) \cap B(1,\delta)$ (这里, $\delta = \cos \alpha$) 的闭包上一致收敛, 那么由 Weierstrass 定理可知 f(z) 便在 z=1 处连续, 因而 (3) 式成立.

记

$$\sigma_{n,p} = a_{n+1} + \cdots + a_{n+p},$$

因为 $\sum_{n=0}^{\infty}a_nz^n$ 在 z=1 处收敛, 即 $\sum_{n=0}^{\infty}a_n$ 收敛, 故对任给的 $\varepsilon>0$, 存在正整数 N, 当 n>N 时, $|\sigma_{n,p}|<\varepsilon$ 对任意自然数 p 成立. 注意

$$a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p} = \sigma_{n,1}z^{n+1} + (\sigma_{n,2} - \sigma_{n,1})z^{n+2} + \dots + (\sigma_{n,p} - \sigma_{n,p-1})z^{n+p}$$

$$= \sigma_{n,1}z^{n+1}(1-z) + \sigma_{n,2}z^{n+2}(1-z) + \dots + \sigma_{n,p-1}z^{n+p-1}(1-z) + \sigma_{n,p}z^{n+p}$$

$$= z^{n+1}(1-z)(\sigma_{n,1} + \sigma_{n,2}z + \dots + \sigma_{n,p-1}z^{p-2}) + \sigma_{n,p}z^{n+p}.$$

因而当 $|z| < 1, p = 1, 2, \dots, n > N$ 时, 便有

$$|a_{n+1}z^{n+1}+\cdots+a_{n+p}z^{n+p}|<\varepsilon|1-z|(1+|z|+\cdots)+\varepsilon = \frac{\text{Taylor } \triangle \mathfrak{K}}{1-|z|}\varepsilon\left(\frac{|1-z|}{1-|z|}+1\right). \tag{4}$$

现在任取 $z \in S_{\alpha}(1) \cap B(1,\delta)$, 记 $|z| = r, |1-z| = \rho$, 那么

$$r^2 = 1 + \rho^2 - 2\rho \cos \theta.$$

故有

$$\frac{|1-z|}{1-|z|} = \frac{\rho}{1-r} = \frac{\rho(1+r)}{1-r^2} \le \frac{2\rho}{2\rho\cos\theta - \rho^2} = \frac{2}{2\cos\theta - \rho}.$$

因为 $z \in B(1, \delta)$, 所以 $\rho = |1 - z| < \delta = \cos \alpha$. 又因 $\theta < \alpha$, 所以

$$\frac{|1-z|}{1-|z|} \le \frac{2}{2\cos\alpha - \rho} < \frac{2}{\cos\alpha}$$

由(4)式便可得

$$|a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}| < \varepsilon \left(\frac{2}{\cos\alpha} + 1\right)$$

又当z=1时,有

$$|a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}| = |\sigma_{n,p}| < \varepsilon$$

这样, 我们就证明了级数 $\sum_{n=0}^{\infty} a_n z^n$ 在 $S_{\alpha}(1) \cap B(1,\delta)$ 的闭包上一致收敛, 因而 (3) 式成立.

例题 **0.4** 计算级数 $\sum_{n=1}^{\infty} \frac{z^n}{n}$ 的和.

m 容易知道该级数的收敛半径为 1, 所以它的和 f(z) 是单位圆盘中的全纯函数, 因而有

$$f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, \quad f'(z) = \sum_{n=1}^{\infty} z^{n-1} = \frac{1}{1-z}.$$

由此得

$$f(z) = -\log(1-z),$$

即

$$\sum_{n=1}^{\infty} \frac{z^n}{n} = -\log(1-z), \ |z| < 1.$$

这个级数在收敛圆周上除了点 z=1 外都收敛, 故由Abel 第二定理, 当 $z=e^{i\theta}$ (0 < θ < 2π) 时, 有

$$\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n} = -\log(1 - e^{i\theta}) = -\log|1 - e^{i\theta}| - i\arg(1 - e^{i\theta}).$$
 (5)

注

从图 3容易看出

$$|1 - e^{i\theta}| = 2\sin\frac{\theta}{2}$$
, $\arg(1 - e^{i\theta}) = -\varphi$,

但 $2\varphi = \pi - \theta$, $\varphi = \frac{\pi - \theta}{2}$. 这样, 由(5)式便可得

$$\sum_{n=1}^{\infty} \frac{\cos n\theta}{n} = -\log\left(2\sin\frac{\theta}{2}\right), \quad \sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = \frac{\pi - \theta}{2}.$$

上面两个等式都在 $0 < \theta < 2\pi$ 中成立. 特别地, 当 $\theta = \pi$ 时, 得

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \log 2;$$

$$\sin \frac{n\pi}{2} = \begin{cases} 0, & n = 2k; \\ (-1)^k, & n = 2k+1, \end{cases}$$

所以得

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}.$$