I SEMESTER EXAMINATION, 2022 – 23 Ist Year, B.Tech. –(Common to All Branch) Introduction to Engineering Mathematics

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1. Answer any four parts of the following.

- 5x4=20
- a) Verify Roll's Theorem for the function $f(x) = \log(\frac{x^2 + ab}{x(b+a)})$ in [a, b].
- b) Discuss the applicability of Lagrange's mean value theorem for the function $f(x) = \begin{cases} 2 + x^2 & \text{if } x \le 1 \\ 3x & \text{if } x > 1 \end{cases} \text{ on } [-1,2].$
- c) If $x^x y^y z^z = c$. Show that at x = y = z, $\frac{\partial^2 z}{\partial x \partial y} = -(x \log e x)^{-1}$.
- d) Find the minimum value of $x^2 + y^2 + z^2$, given that ax + by + cz = p.
- e) Find the first six terms of the expansion of the function $e^x log(1 + y)$ in a Taylor series in the neighbourhood of the point (0,0).
- f) Expand sinx in power of $\left(x \frac{\pi}{2}\right)$. Hence find the value of $sin91^0$. Given $1^0 = 0.0174 \ rad$.

Q 2. Answer any four parts of the following.

5x4=20

- a) Prove that $\int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \beta(m,n)$.
- b) Change the order of integration in $\int_0^\infty \int_0^x xe^{-\frac{x^2}{y}} dy dx$ and hence evaluate it.
- c) Change to polar coordinates and then evaluate $\iint \frac{x^2y^2dxdy}{x^2+y^2}$ over the annular region between circles $x^2+y^2=a^2$ and $x^2+y^2=b^2$; a>b>0.
- d) Trace the curve $y^2(a-x) = x^2(a+x)$ by giving all its features in detail.
- e) Find the possible percentage error in computing the parallel resistance r of three resistances r_1 , r_2 , r_3 from the formula $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$ if r_1 , r_2 , r_3 are each in error by + 1.2 %.
- f) Find the directional derivative of $\emptyset(x, y, z) = x^2yz + 4xz^2$ at (1, -2, 1) in the direction of $2\hat{\imath} \hat{\jmath} 2\hat{k}$.

Q 3.	Answer any two parts of the following.	10x2= 20
	a) If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and $u + v + w = x^2 + y^2 + z^2$, then find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$.	
	$\partial(x,y,z)$	
	b) Find the volume and surface generated by the revolution of the Astroid $x = a\cos^3\theta$, $y = a\sin^3\theta$, about the x – axis.	
	c) A triangular thin plate with vertices $(0,0)$, $(2,0)$, and $(2,4)$ has density	
	$\rho = 1 + x + y$. Then find: (i) The mass of the plate	
	(ii) The position of its centre of gravity G.	
Q 4.	Answer any two parts of the following.	10x2= 20
	a) Show that the vector field $\vec{F} = \frac{\vec{r}}{ \vec{r} ^3}$ where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ is irrotational as well	
	as solenoidal. Find the scalar potential \emptyset such that $\vec{F} = \nabla \emptyset$.	
	b) Apply Divergence Theorem to evaluate $\iint \vec{F} \hat{\alpha} da$ where	
	b) Apply Divergence Theorem to evaluate $\iint_S \vec{F} \cdot \hat{n} ds$, where $\vec{F} = 4x^3\hat{i} - x^2y\hat{j} + x^2z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = a^2$	
	bounded by the planes $z = 0$ and $z = b$.	
	c) Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken around the rectangle bounded by the lines $x = \pm a, y = 0$ and $y = b$.	
Q 5.	Answer any two parts of the following.	10x2=20
	a) Find the eigen values and the corresponding eigen vectors of the matrix $\begin{bmatrix} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{bmatrix}$.	
	b) Reduce the matrix $\begin{bmatrix} 2 & 3 & -2 & 4 \\ 3 & -2 & 1 & 2 \\ 3 & 2 & 3 & 4 \\ -2 & 4 & 0 & 5 \end{bmatrix}$ to normal form and hence find the rank.	
	c)Test the consistency of the system of equations and solve, if consistent: $x_1 + 2x_2 - x_3 - 5x_4 = 4$ $x_1 + 3x_2 - 2x_3 - 7x_4 = 5$ $2 x_1 - x_2 + 3x_3 = 3$	