Time Left :

00:04:59:43

Submissions

Split the Array

Accuracy: 53.18% Submissions: 692 Points: 20

You are given an array $\bf A$ of length $\bf N$. You can split the array into non-empty consecutive subarrays. Different subarrays can have different lengths, and every element in the array should be included in exactly one subarray. If the $\bf i^{th}$ element of the array is at the $\bf j^{th}$ position in the $\bf k^{th}$ subarray, then it adds the following beauty to the array:

•
$$(-1)^{(j+k)}$$
%2 * A_i

Find the **maximum** beauty obtainable by optimally partitioning the array.

Input Format:

The first line of the input contains a single integer \mathbf{T} denoting the number of test cases. The description of \mathbf{T} test cases is as follows:

- The first line of each test case contains an integer \mathbf{N} the array's length.
- The second line of each test case contains N space-separated integers A_1 , A_2 ,... A_N .

Output Format:

For each test case, print the **maximum** beauty obtainable by optimally partitioning the array followed by a newline character.

Note: Generated output is white space sensitive, do not add any extra spaces on unnecessary newline characters.

Constraints:

1 ≤ **T** ≤ 2500

 $1 \le N \le 10000$

 $0 \le |A_i| \le 10^9$

The sum of \mathbf{N} over all test cases does not exceed 500000.

Example: