University of Wisconsin-Madison Department of Economics

Econ 703 Prof. R. Deneckere Fall 2002

Homework #1

- 1. Prove the following proposition : If $x \in \phi$, then x is a square orange. (Hint : Use a contrapositive proof).
- 2. Let A and B be sets of real numbers. Write the negation of each of the following statements:
 - (a) For every $a \in A$, it is true that $a^2 \in B$.
 - (b) For at least one $a \in A$, it is true that $a^2 \in B$.
 - (c) For every $a \in A$, it is true that $a^2 \notin B$.
 - (d) For at least one $a \notin A$, it is true that $a^2 \in B$.
- 3. Let $f: \Re \to \Re$ be given by the rule $f(x) = x^3 x$. By restricting the domain and range of f appropriately, obtain from f a bijective function g. Draw the graphs of g and g^{-1} (there are several possible choices for g).
- 4. Define two points (x_0,y_0) and (x_1,y_1) of the plane to be equivalent if $y_0 x_0^2 = y_1 x_1^2$. Verify that this is an equivalence relation, and describe the equivalence classes.
- 5. Prove by induction that given $n \in \mathbb{Z}_+$, every nonempty subset of $\{1,...,n\}$ has a largest element.