В

There are a total of four problems. You have to solve all the problems.

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{length of } w \text{ is exactly three}\}$

 $L_2 = \{w : \text{ every even position in } w \text{ is } 1\}$

 $L_3 = \{w : 10 \text{ appears even number of times in } w \text{ as a substring}\}$

$$L_4 = L_1 \cap L_2 \cap L_3$$

 $L_5 = \{w : 1^m 0^n, \text{ where } m, n \ge 0\}$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L_1 . (3 points)
- (b) **Give** the state diagram for a DFA that recognizes L_2 . (3 points)
- (c) Give the state diagram for a DFA that recognizes L_3 . (3 points)
- (d) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L_4 , how many states would it have? (1 point)
- (e) **Find** all the strings in L_4 . (1 point)
- (f) Give the state diagram for a DFA that recognizes L_4 using only five states. (2 points)
- (g) Is L_4 is a subset of L_5 ? **Give** justification for your answer. (2 points)

Problem 2 (CO2): Converting NFA to DFA (5 points)

Consider the following NFA:

Now solve the following problems. Note that you do not need to convert the given NFA into its equivalent DFA in order to answer the following questions.

- (a) If you convert the given NFA into an equivalent DFA using the subset construction method, what is the maximum number of states the DFA can have? (1 Point)
- (b) Write the subsets of states of the given NFA that will be the rejecting states in its equivalent DFA (1 Point)
- (c) Write the ε -closure of state q_1 in the given NFA. (1 Point)
- (d) What is $\delta(\{q_0, q_2\}, 1)$ in the given NFA? **Write** all the states. [Recall: $\delta(\{q\}, a)$ is the set of states the NFA transitions to when it is in state q and receives input a.] (2 Points)

Problem 3 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{ w \text{ does not contain consecutive 0} \}$

$$L_2 = \{ w \text{ starts with 1} \}$$

 $L_3 = \{w \text{ starts and ends with the different character}\}$

$$L_4 = L_2 \setminus L_3$$

Now solve the following problems.

- (a) **Give** a regular expression for the language L_1 . (3 points)
- (b) **Give** a regular expression for the language $\overline{L_2}$. [Recall: $\overline{L_2}$ denotes the complement of the language L_2 i.e., $\overline{L_2} = \Sigma^* L_2$] (3 points)
- (c) **Give** a regular expression for the language L_3 . (3 points)
- (d) Write four four-letter strings in L_4 . (2 point)
- (e) **Give** a regular expression for the language L_4 . [Recall: $L_2 \setminus L_3$ contains all strings that are in L_2 but not in L_3] (2 points)
- (f) **Give** a regular expression for the language $\overline{L_4}$. (2 points)

Problem 4 (CO2): Converting Regular Expressions to NFA (10 points)

Convert the following regular expression over $\Sigma = \{a, b\}$ into an equivalent NFA. Note that $R_1 + R_2$ is the same as $R_1 \cup R_2$.

$$(bb + a^*b)^*a + b(aa)^*$$

After you are done with the test, please indicate where you stand on the smiley face spectrum.

