Travaux dirigés 5 : Algèbre relationnelle Correction

1 Rencontres sportives

Nous souhaitons réaliser une base permettant de gérer des rencontres sportives. Voici l'ensemble des attributs que nous souhaitons enregistrer :

- nom équipe
- date début (d'un joueur dans une équipe)
- date fin (d'un joueur dans une équipe)
- nom joueur
- nom poste (d'un joueur lors d'un match)
- date match
- nom stade (où se déroule un match)
- adresse stade
- ville stade
- 1. Représentez ces attributs sous la forme d'un graphe de couverture minimale (ajoutez si nécessaire des numéros identifiants pour les futures entitées).

2. À partir du graphe de couverture minimale, produisez une schéma entité-association.

3. Traduisez ce schéma entité-association en modèle relationnel.

Joueurs (Numéro Joueur, Nom Joueur)

Historiques equipe (Numéro Historique, Date début, Date fin, #Numéro Joueur, #Numéro Equipe)

Equipes (<u>Numéro Equipe</u>, Nom Equipe)

Participer (#Numéro Joueur, #Numéro Poste, #Numéro Match)

Postes (Numéro Poste, Nom Poste)

Matchs (Numéro Match, Date, #Numero Stade)

Stades (Numéro Stade, Adresse Stade, Ville Stade)

2 Algèbre relationnelle

Soient les relations suivantes :

R		
Α	В	С
1	2	3
4	5	6
7	0	5
4	5	8

S	
С	D
6	1
1	0
3	9
6	5

T	
D	Е
2	4
6	8
6	1
3	9

Calculer:

1. $\Pi_{A,B}(R)$;

A	В
1	2
4	5
7	0

2. $\Pi_{C}(S)$;

С	
6	
1	
3	

3. S - T;

6	1
3	9

4. $\sigma_{A>C}(R)$;

A	В	С
7	0	5

5. $\bowtie_{B < D} (R, T);$

A	В	C	D	Е
1	2	3	6	8
1	2	3	6	1
1	2	3	3	9
4	5	6	6	8
4	5	6	6	1
7	0	5	2	4
7	0	5	6	8
7	0	5	6	1
7	0	5	3	9
4	5	6	6	8
4	5	6	6	1
4	5	8	6	8
4	5	8	6	1

6. $\bowtie (R, S)$;

A	В	С	D
1	2	3	9
4	5	6	1
4	5	6	5
4	5	6	1
4	5	6	5

7. Les semi-jointures de R et S (\ltimes (R,S) et \rtimes $(R,S))^1$.

 $- \ltimes (R, S)$:

A	В	С
1	2	3
4	5	6
4	5	6
4	5	6
4	5	6

 $-- \bowtie (R, S)$:

C	D
3	9
6	1
6	5
6	1
6	5

3 Produit-fournisseur

On considère la base de données suivante :

Produit: numprod, nomprod, quantité.

Fournisseur: numfour, nomfour, adresse, ville.

- 1. Donner un schéma conceptuel et un schéma relationnel.
- 1. Une semi-jointure est une jointure entre deux tables, dont le résultat ne conserve que les colonnes de l'une des deux.

- 2. Donner une expression algébrique et un arbre algébrique pour chacune des requêtes suivantes :
 - Les produits disponibles sur Bordeaux.

 $\Pi_{nomprod}(\sigma_{(ville\ =\ 'Bordeaux')}(Produit\bowtie Fournir\bowtie Fournisseur))$

— Les fournisseurs qui vendent tous les produits (cf. division).

 $\Pi_{nomfour}((Fournisseur \bowtie Fournir) \div Produit)$

4 Élèves-matières

Soit le schéma relationnel suivant (les clés primaires sont <u>soulignées avec une ligne droite</u>, les clés étrangères sont précédées du symbole « # ») qui représente des élèves, des matières et le fait que des élèves suivent des matières.

Élève (<u>Numéro_Élève</u>, Nom_Élève, Prénom_Élève)
Matière (<u>Numéro_Matière</u>, Nom_Matière)
Suivre (<u>#Numéro_Élève</u>, <u>#Numéro_Matière</u>)
Écrire en algèbre relationnelle les requêtes suivantes:

Donner la liste des matières suivies par un étudiant qui s'appelle Jean Dupont.

 $\Pi_{\text{Nom_Matière}}(\sigma_{(\text{Prénom_\'{Elève}} = 'Jean') \text{ et (Nom_\'{Elève}} = 'Dupont')}(\acute{Elève} \bowtie \text{Suivre} \bowtie \text{Matière}))$

2. Donner le nom et prénom des élèves qui suivent le cours de Bases de Données.

$$\Pi_{\text{Prénom.}\acute{E}l\grave{e}ve.\ Nom.\acute{E}l\grave{e}ve}(\sigma_{\text{Nom.Matière}} = \text{'SGBD'}(\acute{E}l\grave{e}ve \bowtie Suivre} \bowtie Mati\grave{e}re))$$

3. Donner la liste des élèves qui ont le même nom, mais pas le même prénom.

Élève E1
$$\bowtie_{(E1.Nom.\acute{E}l\grave{e}ve} = E2.Nom.\acute{E}l\grave{e}ve)$$
 et $(E1.Pr\acute{e}nom.\acute{E}l\grave{e}ve \neq E2.Pr\acute{e}nom.\acute{E}l\grave{e}ve)$ Élève E2

4. Donner la liste des élèves qui suivent tous les cours.

$$\Pi_{\text{Pr\'enom_\'El\`eve, Nom_\'El\`eve}}(\text{(\'El\`eve}\bowtie Suivre}\bowtie Mati\`ere) \div Mati\`ere)$$