Documentação Técnica - Decisões e Resultados

Informações do Projeto

Projeto: Sistema de Previsão de Preços de Energia Elétrica

Submercado: Sudeste

Período dos dados: 2012-01-01 a 2025-09-14

Total de registros: 716 (dados semanais)

Data de execução: 2025

1. Decisões de Arquitetura

1.1 Estrutura do Projeto

Decisão: estrutura original fornecida no desafio

Justificativa:

- Compatibilidade com testes existentes
- Reduz risco de quebrar funcionalidades

Arquivos criados:

- improved_predictor.py Modelo ensemble
- main_comparison.py Script de comparação
- generate report.py Geração de relatórios
- loaders/newave loader.py Atualizado

Arquivos mantidos sem alteração:

- predictor/next_step_predictor.py Baseline
- loaders/csv_loader.py Loader de preços
- tests/* Suite de testes
- main.py Script original

1.2 Abordagem de Modelagem

Decisão: Modelo ensemble com três componentes

Componentes escolhidos:

- 1. Análise de tendência (EMA) 40%
- 2. Correlações entre maturidades 35%

3. Sazonalidade mensal - 25%

Justificativa:

- EMA captura dinâmica recente do mercado
- Correlações aproveitam informação entre séries relacionadas
- Sazonalidade captura padrões anuais do setor elétrico

Alternativas consideradas e descartadas:

- ARIMA: complexidade alta, difícil interpretabilidade
- LSTM: requer mais dados, maior tempo de treinamento
- XGBoost: necessita feature engineering extensivo

2. Decisões de Implementação

2.1 Médias Móveis Exponenciais (EMA)

Janelas escolhidas: 4, 12, 26 semanas

Justificativa:

- 4 semanas: tendência de curtíssimo prazo (1 mês)
- 12 semanas: tendência de médio prazo (3 meses)
- 26 semanas: tendência de longo prazo (6 meses)

Implementação:

```
ema_4 = data.ewm(span=4, adjust=False).mean()
ema_12 = data.ewm(span=12, adjust=False).mean()
ema_26 = data.ewm(span=26, adjust=False).mean()
```

Alternativas consideradas:

- SMA (Simple Moving Average): descartada por não dar peso maior a dados recentes
- Janelas maiores (52 semanas): descartada por reduzir responsividade

2.2 Correlações entre Maturidades

Decisão: Usar top-3 maturidades mais correlacionadas

Justificativa:

- Evita ruído de correlações fracas
- Reduz complexidade computacional
- Mantém foco em relações mais fortes

Observação dos dados:

• M+0 \leftrightarrow M+1: correlação \sim 0.95

A+0 ↔ A+1: correlação ~0.98

M+ ↔ A+: correlação 0.60-0.80

2.3 Decomposição Sazonal

Decisão: Agregação mensal simples

Justificativa:

- Padrões do setor elétrico são mensais (período seco/úmido)
- Implementação simples e interpretável
- · Baixo risco de overfitting

Padrão observado:

- Agosto-Outubro: preços mais altos (período seco)
- Dezembro-Março: preços mais baixos (período úmido)

2.4 Pesos do Ensemble

Decisão: 40% tendência, 35% correlação, 25% sazonalidade

Justificativa:

- Tendência tem maior impacto em previsões de curto prazo
- Correlações são fortes mas não determinísticas
- Sazonalidade é relevante mas não dominante

Método de definição:

- Análise empírica dos dados históricos
- Testes com diferentes combinações
- Não houve otimização automática por grid search

3. Decisões de Validação

3.1 Split de Dados

Decisão: 80% treino, 20% teste (split temporal)

Valores:

Treino: 572 registros (2012-01-01 a ~2023-07)

• Teste: 144 registros (~2023-07 a 2025-09-14)

Justificativa:

- Split temporal respeita natureza de séries temporais
- 20% de teste fornece amostra significativa (144 registros)
- Evita data leakage

Alternativas consideradas:

- Split aleatório: descartado (viola premissa temporal)
- K-fold: descartado (n\u00e3o apropriado para s\u00e9ries temporais)
- Walk-forward: ideal mas não implementado por limitação de tempo

3.2 Horizonte de Previsão

Decisão: 3 passos à frente

Justificativa:

- · Horizonte prático para operações de trading
- Balanceia complexidade e utilidade
- Permite avaliação robusta

3.3 Métricas de Avaliação

Métricas escolhidas:

- MAE (Mean Absolute Error)
- RMSE (Root Mean Squared Error)
- MAPE (Mean Absolute Percentage Error)

Justificativa:

- MAE: interpretável diretamente em R\$/MWh
- RMSE: penaliza erros grandes
- MAPE: permite comparação entre maturidades

4. Implementação do NewaveLoader

4.1 Parser do Formato

Desafio: Arquivo cmarg*.out tem formato complexo

Estrutura identificada:

- Header com metadados
- Dados organizados por mês e patamar

- 3 patamares por mês (PAT 1, 2, 3)
- 12 cenários + coluna MEDIA

Decisão de parsing:

```
# Agregar patamares calculando média
df_agg = df.groupby('date').agg({
    'scenario_1': 'mean',
    ...,
    'mean': 'mean'
})
```

Justificativa:

- Simplifica dados para uso no modelo
- Mantém informação essencial (custos médios)
- · Reduz dimensionalidade

4.2 Limitação de Dados

Situação: Apenas deck de agosto/2025 disponível

Decisão: Implementar loader completo mas não integrar ao modelo

Justificativa:

- Modelo requer histórico completo (2012-2025)
- Integração seria trivial com dados disponíveis

Plano de integração futura:

- 1. Coletar histórico mensal do Newave
- 2. Alinhar temporalmente com preços semanais
- 3. Adicionar como feature com peso 15-20%
- 4. Avaliar melhoria incremental

5. Resultados Obtidos

5.1 Métricas Gerais

Dataset de teste: 144 registros (20.1%)
Horizonte de avaliação: 3 passos à frente

5.2 Maturidades de Longo Prazo (A+)

Maturidade Baseline MAPE Melhorado MAPE Melhoria

Maturidade Baseline MAPE Melhorado MAPE Melhoria

A + 0	6.24%	5.49%	+11.9%
A + 1	4.49%	2.46%	+45.1%
A + 2	3.90%	2.12%	+45.5%
A + 3	2.22%	0.96%	+56.9%
A + 4	1.66%	0.52%	+68.6%

MAPE médio baseline: 3.70% MAPE médio melhorado: 2.31%

Melhoria média: +45.4%

5.3 Maturidades de Curto Prazo (M+)

Maturidade Baseline MAPE Melhorado MAPE Melhoria

M + 0	6.37%	7.19%	-12.8%
M + 1	0.67%	2.32%	-248.3%
M + 2	1.31%	2.48%	-88.8%
M + 3	0.59%	1.75%	-195.0%

MAPE médio baseline: 2.24% MAPE médio melhorado: 3.44%

Melhoria média: -121.2%

5.4 Resultado Consolidado

Maturidades melhoradas: 5/9 (55.6%) Maturidades pioradas: 4/9 (44.4%)

6. Análise dos Resultados

6.1 Por que o Ensemble Falhou em Curto Prazo

Hipótese 1: Over-smoothing

Alta volatilidade e comportamento errático, influenciado por fatores de curtíssimo prazo (clima, carga instantânea, indisponibilidade de geração). Menor influência de tendências estruturais, que são justamente as que o ensemble tenta capturar. O modelo baseline de persistência já é extremamente competitivo, pois no curto prazo o preço de amanhã tende a ser semelhante ao de hoje. O ensemble, ao tentar aprender padrões mais complexos, acabou "superajustando" e perdendo eficiência frente a um modelo simples.

Hipótese 2: Features adicionam ruído

Em horizontes curtos, correlações e sazonalidade podem introduzir ruído em vez de sinal preditivo.

Evidência:

- M+1 teve pior desempenho (-248%)
- M+1 é altamente volátil mas tem correlação forte com M+0
- Correlação pode ter propagado ruído

Hipótese 3: Período de teste atípico

Os últimos 20% dos dados (teste) podem ter comportamento diferente do histórico de treino.

6.2 Por que o Ensemble Funcionou em Longo Prazo

Fator 1: Estabilidade

Maturidades A+ têm menor volatilidade, permitindo que features de tendência e sazonalidade capturem padrões reais.

Fator 2: Correlações fortes

Correlações entre maturidades A+ são muito altas (>0.95), permitindo propagação de informação com baixo ruído.

Fator 3: Tendências confiáveis

Horizontes longos têm tendências mais suaves e previsíveis, favorecendo análise EMA.

7 Dashboard Interativo

Decisão: Criar visualização HTML standalone

- Facilita apresentação visual
- Funciona offline
- Não requer dependências externas

Funcionalidades implementadas:

- 4 abas navegáveis (Visão Geral, Análise, Insights, Dados)
- Gráficos de barras comparativos
- Tabela completa de métricas
- Análise crítica dos resultados

8. Conclusão

Objetivos Alcançados

Modelo preditivo melhorado para longo prazo

NewaveLoader completo e funcional

Avaliação quantitativa rigorosa

Dashboard interativo para análise Documentação completa de decisões

Objetivos Parciais

- △ Melhoria em curto prazo (falhou, mas entendido)

Contribuições Principais

Técnica:

- Implementação de modelo ensemble interpretável
- Parser completo do formato Newave
- Framework de comparação extensível

Analítica:

- Identificação clara de limitações por horizonte
- · Proposta de modelo híbrido específico
- Roadmap de melhorias baseado em evidências

Anexos

A. Requisitos de Sistema

Python: 3.8+ Bibliotecas:

- pandas >= 1.3.0
- numpy >= 1.21.0
- scipy >= 1.7.0

B. Arquivos Entregues

- 1. improved predictor.py Modelo ensemble (500 linhas)
- 2. main comparison.py Script de comparação (200 linhas)
- 3. generate report.py Gerador de relatórios (300 linhas)
- 4. loaders/newave loader.py Parser Newave (250 linhas)
- 5. dashboard.html Interface visual (300 linhas)
- 6. DOCUMENTACAO TECNICA.md Este documento

C. Testes

Suite original: 35/35 testes passando

Cobertura: 77% (484 linhas, 110 não cobertas)

D. Referências

CCEE: https://www.ccee.org.brONS: https://www.ons.org.br

Newave: Programa CEPEL de otimização energética
Inewave: Biblioteca Python para manipulação Newave

Documento gerado em: 2025 **Autor:** Lucas Galdino da Mata

Projeto: Desafio de Modelagem Preditiva - Preços de Energia