Homework Set 3, CPSC 8420, Fall 2024

Your Name

Due 11/11/2024, 11:59PM EST

Problem 1

Please download the image from https://en.wikipedia.org/wiki/Lenna#/media/File:Lenna_(test_image).png with dimension $512 \times 512 \times 3$. Assume for each RGB channel data X, we have $[U, \Sigma, V] = svd(X)$. Please show each compression ratio and reconstruction image if we choose first 2, 5, 20, 50, 80, 100 components respectively. Also please determine the best component number to obtain a good trade-off between data compression ratio and reconstruction image quality. (Open question, that is your solution will be accepted as long as it's reasonable.)

Problem 2

Let's revisit Least Squares Problem: minimize $\frac{1}{2} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{n \times p}$.

- 1. Please show that if p > n, then vanilla solution $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$ is not applicable any more.
- 2. Let's assume $\mathbf{A} = [1, 2, 4; 1, 3, 5; 1, 7, 7; 1, 8, 9], \mathbf{y} = [1; 2; 3; 4]$. Please show via experiment results that Gradient Descent method will obtain the optimal solution with Linear Convergence rate if the learning rate is fixed to be $\frac{1}{\sigma_{max}(\mathbf{A}^T\mathbf{A})}$, and $\boldsymbol{\beta}_0 = [0; 0; 0]$.
- 3. Now let's consider ridge regression: minimize $\frac{1}{2} \|\mathbf{y} \mathbf{A}\boldsymbol{\beta}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|_2^2$, where $\mathbf{A}, \mathbf{y}, \boldsymbol{\beta}_0$ remains the same as above while learning rate is fixed to be $\frac{1}{\lambda + \sigma_{max}(\mathbf{A}^T \mathbf{A})}$ where λ varies from 0.1, 1, 10, 100, 200, please show that Gradient Descent method with larger λ converges faster.

Problem 3

We consider matrix completion problem. As we discussed in class, the main issue of softImpute (Matrix Completion via Iterative Soft-Thresholded SVD) is when the matrix size is large, conducting SVD is computational demanding. Let's recall the original problem where $\mathbf{X}, \mathbf{Z} \in \mathbb{R}^{n \times d}$:

$$\min_{\mathbf{Z}} \frac{1}{2} \|P_{\Omega}(\mathbf{X}) - P_{\Omega}(\mathbf{Z})\|_F^2 + \lambda \|\mathbf{Z}\|_*$$
 (1)

People have found that instead of finding optimal **Z**, it might be better to make use of *Burer-Monteiro* method to optimize two matrices $\mathbf{A} \in \mathbb{R}^{n \times r}$, $\mathbf{B} \in \mathbb{R}^{d \times r} (r \geq rank(\mathbf{Z}^*))$ such that $\mathbf{A}\mathbf{B}^T = \mathbf{Z}$. The new objective is:

$$\min_{\mathbf{A}, \mathbf{B}} \frac{1}{2} \| P_{\Omega} (\mathbf{X} - \mathbf{A} \mathbf{B}^T) \|_F^2 + \frac{\lambda}{2} (\| \mathbf{A} \|_F^2 + \| \mathbf{B} \|_F^2).$$
 (2)

- Assume $[\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}] = svd(\mathbf{Z})$, show that if $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}^{\frac{1}{2}}, \mathbf{B} = \mathbf{V}\mathbf{\Sigma}^{\frac{1}{2}}$, then Eq. (??) is equivalent to Eq. (??).
- The Burer-Monteiro method suggests if we can find \mathbf{A}^* , \mathbf{B}^* , then the optimal \mathbf{Z} to Eq. (??) can be recovered by $\mathbf{A}^*\mathbf{B}^{*T}$. It boils down to solve Eq. (??). Show that we can make use of least squares with ridge regression to update \mathbf{A} , \mathbf{B} row by row in an alternating minimization manner as below. Assume n = d = 2000, r = 200, please write program to find \mathbf{Z}^* .

$$\begin{split} T \leftarrow 100, i \leftarrow 1 & \text{ \% you can also set T to be other number instead of 100} \\ \text{if } i \leq T \text{ then} \\ & update \ A \ row \ by \ row \ while \ fixing \ B \\ & update \ B \ row \ by \ row \ while \ fixing \ A \\ & i \leftarrow i+1 \end{split}$$
 end if