Introdução à Teoria de Probabilidades

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 04 de abril de 2022

Sumário 5

1 Continuidade da medida de probabilidade

Propriedades

- Dado $(\Omega, \mathcal{F}, \mathbb{P})$ um espeço de probabilidade então vale:
- Subaditividade: para quaisquer eventos $A_1, A_2, A_3, \dots \in \mathcal{F}$ temos

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mathbb{P}\left(A_n\right)$$

- Continuidade Monótona: Seja $\{A_n\} \in \mathcal{F}$ então
 - (i) Se $A_n \uparrow A$ então $\mathbb{P}(A_n) \uparrow \mathbb{P}(A)$.
 - (ii) Se $A_n \downarrow A$ então $\mathbb{P}(A_n) \downarrow \mathbb{P}(A)$.

Propriedades

• Lema de Fatou:

$$\mathbb{P}\left(\liminf_{n\to\infty} A_n\right) \leq \liminf_{n\to\infty} \mathbb{P}\left(A_n\right)$$

$$\leq \limsup_{n\to\infty} \mathbb{P}\left(A_n\right) \leq \mathbb{P}\left(\limsup_{n\to\infty} A_n\right).$$

• Se $A_n \to A$, então $\mathbb{P}(A_n) \to \mathbb{P}(A)$

Exemplos

- Dados $\mathbb{P}(A)$ e $\mathbb{P}(B)$ determine os valores máximo e mínimo de $\mathbb{P}(A\cap B)$.
- Demonstre as seguintes propriedades:
 - (a) Se $\mathbb{P}(A_n) = 0$ para todo $n \geq 1$, então $\mathbb{P}(\bigcup_{i=1}^{\infty} A_n) = 0$
 - (b) Se $\mathbb{P}(A_n)=1$ para todo $n\geq 1$, então $\mathbb{P}(\bigcap_{i=1}^\infty A_n)=1$
 - (c) Sejam $\{A_n, n \geq 1\}$ e $\{B_n, n \geq 1\}$ eventos de um mesmo espaço de probabilidade tais que $\mathbb{P}(A_n) \to 1$ e $\mathbb{P}(B_n) \to p$. Mostre que $\mathbb{P}(A_n \cap B_n) \to p$, em que $p \in [0, 1]$.
 - (d) Sejam $\{A_n, n \geq 1\}$ eventos em $(\Omega, \mathcal{F}, \mathbb{P})$ com $\mathbb{P}(A_n) \geq c > 0$, para todo $n \geq 1$. Mostre que $\mathbb{P}(\limsup_{n \to \infty} A_n) \geq c$.