1. (a) Compute the first three terms (whether zero or not) of Taylor Series for $f(x) = \sin(2x)$ centered about $x = \pi$.

(b) Write down the n-th term in the Taylor series.

- (c) On a separate sheet plot the degree 0, 1, 2, and 3 approximations on the same plot over the interval $[0, 2\pi]$.
- (d) Use Taylor's Inequality to find the optimal bound of the remainder $R_3(x)$ over the interval $I = [0, 2\pi]$.

2. 3D Crystals of Na⁺ and Cl⁻ form a square lattice like the one shown below.

The energy required to pull apart all the ions in the crystal from the central Na⁺ ion can be approximated by the sum of the work W(x) required to break each bond as a function of the distances x relative to the central Na⁺ atom. This results in an alternating series. Focusing on the Na⁺ ion at the center of the cubic unit cell, note that this positive ion is attracted to 6 Cl⁻ ions at distance r^* , repelled by 12 Na⁺ ions at distance $\sqrt{2}r^*$ away, then attracted to 8 Cl- ions at distance $\sqrt{3}r^*$ away, and so on out to the edge of the crystal.

$$E_{Na^{+}} = \frac{C}{r^{*}} \left(\frac{6}{1} - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \frac{24}{\sqrt{5}} + \dots \right)$$
$$= \frac{C}{r^{*}} M,$$

where the constant $M \approx 1.7475$ is the approximate value of the alternating series, and is termed the Madelung constant after its discoverer.

