

[Revision of ASME B1.1-1989 (R2001)]

Unified Inch Screw Threads

(UN and UNR Thread Form)

AN AMERICAN NATIONAL STANDARD

AN AMERICAN NATIONAL STANDARD

UNIFIED INCH SCREW THREADS

(UN and UNR Thread Form)

ASME B1.1-2003 [Revision of ASME B1.1-1989 (R2001)]

Date of Issuance: September 30, 2004

The 2004 edition of this Standard is being issued with an automatic addenda subscription service. The use of addenda allows revisions made in response to public review comments or committee actions to be published as necessary. This Standard will be revised when the Society approves the issuance of a new edition.

There will be no written interpretations of the requirements of this Standard issued to this edition.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

The American Society of Mechanical Engineers Three Park Avenue, New York, NY 10016-5990

Copyright © 2004 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved Printed in U.S.A.

CONTENTS

		e Roster	vi viii
	•		1
1		eral	1
	1.1	Scope	1
	1.2	Unified Screw Thread Standards	1
	1.3	UN and UNR Screw Threads	1
	1.4	Interchangeability	1
	1.5	Designations	1
	1.6	Reference Documents	1
	1.7	Acceptability	2
	1.8	Reference Temperature	2
	1.9	Units of Measure	2
	1.10	Federal Government Use.	2
2	Scre	w Thread Profile	2
_	2.1	Scope	2
	2.2	Basic Profile	2
	2.3		2
		Design Profiles	2
	2.4	Formulas and Symbols	2
3	Scre	w Thread Series	2
	3.1	Thread Series Definition	2
	3.2	Order of Selection	2
	3.3	Coarse-Thread Series Applications	3
	3.4	Fine-Thread Series Applications	3
	3.5	Extra-Fine-Thread Series Applications	3
	3.6	Constant-Pitch Thread Series Applications	3
	3.7	Fine Threads for Thin-Wall Tubing	7
		ŭ	,
4		w Thread Classes	36
	4.1	Thread Classes	36
	4.2	Combinations of Classes	36
5	Scre	w Thread Allowance and Tolerance	36
	5.1	Allowance	36
	5.2	Pitch Diameter Tolerance, All Classes	36
	_		37
	5.3	Special Lengths of Engagement, LE	
	5.4	Minor Diameter Tolerance and Allowance for External Threads	54
	5.5	Major Diameter Tolerance for Internal Threads	54
	5.6	Minor Diameter Tolerance and Length of Engagement for Internal Threads	55
	5.7	Disposition of Allowance and Tolerance	55
	5.8	Formulas for Allowance and Tolerance	55
		Lead and Flank Angle Tolerances	58
	5.9		
		Coated or Plated Threads	58
	5.11	Circular Runout	58
6		w Thread Designation	58
	6.1	Basic Method of Designating	58

	6.2 6.3 6.4 6.5 6.6	Method of Designating Coated Threads Method of Designating Left-Hand Threads Method of Designating UNS Threads Designations for Other Threads Method of Designating Threads Having Special Length of	61 62 62 62
	6.7	Engagement	63 63
7	Dime	ensional Accommodation of Coating or Plating for 60-deg Threads	64
	7.1	Introduction	64
	7.2	Material Lifts for Coated Threads	64
	7.3	Dimensional Effects of Coating	64
	7.4	External Thread With Allowance Available for Coating	64
	7.5	External Thread With No Allowance for Coating	64
	7.6	Internal Threads	66
	7.7	Electrodeposited Coatings	67
	7.8	Other Considerations	67
8	Stan	dard Series Threads (UN/UNR) and Limits of Size for Standard Series	
		d UNS/UNRS Series Threads	67
	8.1	Standard Series	67
	8.2	Limits of Size	67
	8.3	Formulas for Limits of Size	67
	8.4	Example of Calculations From Formulas	68
9	Lead	and Angle Tolerances	68
	9.1	Lead and Flank Angle Acceptance	68
10		ulas and Symbols for Thread Form	69
	10.1	Thread Form Formulas and Symbols	69
11	Table	es of Basic Dimensions	70
		Table Content	70
	11.2	Thread Series	70
Figu			
1		c Profile for UN and UNR Screw Threads	3
2		position of Diametral Tolerances, Allowance, and Crest Clearance for	
		nified Inch Screw Thread Classes 1A, 2A, 1B, and 2B	4
3		position of Diametral Tolerances and Crest Clearances for Unified Inch	_
		rrew Thread Classes 3A and 3B	5
4		o of Pitch Diameter Change to Thickness of Coating on 60-deg	. -
_		nreads	65
5		ct of Electrodeposited Coatings on 60-deg External Threads	66
6	App	lication of General Thread Symbols	70
Tabl	es		
1		dard Series Threads (UN/UNR)	6
2		its of Size for Standard Series Threads (UN/UNR)	8
3		wable Variations in Lead and Equivalent Change in Functional iameter	38
4		ements in Pitch Diameter Tolerance — Class 2A	56
5		rad Form Data	59
6		c Dimensions for Coarse-Thread Series (UNC/UNRC)	72
7		c Dimensions for Fine-Thread Series (UNF/UNRF)	73
8		c Dimensions for Extra-Fine-Thread Series (UNEF/UNREF)	74
a		c Dimensions for A Thread Series (A LINE)	75

10	Basic Dimensions for 6-Thread Series (6-UN/6-UNR)	76
11	Basic Dimensions for 8-Thread Series (8-UN/8-UNR)	77
12	Basic Dimensions for 12-Thread Series (12-UN/12-UNR)	79
13	Basic Dimensions for 16-Thread Series (16-UN/16-UNR)	81
14	Basic Dimensions for 20-Thread Series (20-UN/20-UNR)	83
15	Basic Dimensions for 28-Thread Series (28-UN/28-UNR)	84
16	Basic Dimensions for 32-Thread Series (32-UN/32-UNR)	85
17A	Outline Guide for Determining Limits of Size of External Threads	86
17B	Outline Guide for Determining Limits of Size of Internal Threads	86
18A	Examples of External Screw Threads	87
18B	Examples of Internal Screw Threads	90
19	Allowable Variation in 30 deg Basic Half Angle of External and Internal	
	Screw Threads	92
20	General Symbols	93
Nonr	mandatory Appendices	
A	Terminology and Identification of Unified Inch Screw Threads	95
В	Thread Strength Design Formulas	97
C	Unified Inch Screw Threads — Metric Translation	98
D	Special Threads	134
E	Changes to ASME B1.1-1989 Tables 3A and 3B	177

FOREWORD

This Standard is the outgrowth of and supersedes previous editions that were published as B1-1924, B1.1-1935, B1.1-1949, B1.1-1960, B1.1-1974, B1.1-1982, and B1.1-1989. Throughout such development, special attention has been given to the practical aspects of thread standardization, and many details of the current Standard result from studies and tests based on user problems. For example, there was disclosed the need for free assembly in high-production industries and the desirability of making some provision for threads that require a coating. The tolerance classes 2A/2B were developed to meet these two major requirements as well as to provide a general standard for externally and internally threaded fasteners. Thread symbols and nomenclature were changed to be expressed according to ASME B1.7. Thread acceptability now refers to ASME B1.3.

This issue includes the following changes to ASME B1.1-1989:

(a) The revision of some of the values in Table 2. These revisions are the result of the application of the consistent eight place decimal and rounding rules established in ASME B1.30-1992 that were mandated for use in all new and future revisions of ASME B1 documents. ASME B1.30 was developed under the direction of the B1 Committee as the basis for rounding of decimal values associated with the computation of screw thread dimensions. Using the thread calculation formulas in paras. 5 and 8 of this document and following the rounding rules of B1.30 all parties using a calculator or standard computer spreadsheet program will derive precisely the same values.

Table E-1 of Nonmandatory Appendix E identifies the thread sizes in Table 2 that have been revised and lists the dimensions from the ASME B1.1-1989 standard. The majority of the dimensional changes are within \pm 0.0001 in.

Paragraph 8.2.1 states that both the values in Tables 2 and E-1 should be considered acceptable until a future revision of this standard makes the values in Table 2 the only acceptable values.

- (b) Former Table 3B has been moved to Nonmandatory Appendix D. This table provides calculated values for various UNS (Unified Specials). ASME B1 strongly urges the adoption of the standard thread sizes in Table 2 whenever possible instead of those listed in Table D-1.
- (c) Former Tables 20 through 30 have been eliminated because the allowances and tolerances contained in them was determined to be redundant with data provided in Table 2.
- (*d*) Former Tables 31 through 40 have been moved to Nonmandatory Appendix D and were renamed Tables D-2 through D-11. These tables were used in the past for the quick calculation of special threads. In some cases the derived values resulted in values that differ from those derived by use of the formulas in paras. 5 and 8 of ASME B1.1. All future special threads should be based on calculations in paras. 5 and 8 in this document using the rounding rules in ASME B1.30 to ensure uniformity and consistency.
- (e) All references to percent of thread engagement have been eliminated from this document. Past changes in the thread form designation of the "basic" thread height from 0.750H to 0.625H confused the calculation of percent of thread engagement. This calculation has been used in the past for threaded products users to determine drill size selection. It is now recommended that users select a drill size that will result in a hole size that lies between the maximum and minimum size of the internal thread's minor diameter shown in the tables included in this Standard.
- (f) The definition of "functional diameter" has been included in this document and the term has been added in Table 2 in the same column as "pitch diameter" since both characteristics have the same limits of size.
 - (g) The effects of coating on threads have been explained in more depth in para. 7.

The Unified Screw Threads Standard is an integrated system of threads for fastening purposes in mechanisms and structures. Its outstanding characteristic is general interchangeability of threads, achieved through the standardization of thread form, diameter-pitch combinations, and limits of size.

The Standard has as its original basis the work done more than a century ago by William Sellers in the United States and Sir Joseph Whitworth in Great Britain. Throughout the intervening

years there have been many further developments and revisions, culminating in the system of Unified Threads approved and adopted for use by all inch-using countries.

The achievements represented by ASME B1.1 in development, standardization, and unification are the result of cooperation and coordination of many organizations, including The American Society of Mechanical Engineers, Society of Automotive Engineers, National Institute of Science and Technology (formerly National Bureau of Standards), Committee B1, the former National Screw Thread Commission, the former Interdepartmental Screw Thread Committee, British Standards Institution, Canadian Standards Association, and American National Standards Institute.

Unification of screw thread standards received its impetus from the need for interchangeability among the billions of fasteners used in the complex equipment of modern technology and made in different countries. Equally important, however, are international trade in mechanisms of all kinds and the servicing of transportation equipment which moves from country to country. These have made unification not only highly advantageous, but practically essential. In sizes ½ in. and larger, complete unification of certain thread series and six tolerance classes was signaled by the signing of an accord on November 18, 1948. Since that time, further unification has been extended into smaller sizes. Working through Technical Committee No. 1 of the International Organization for Standardization (ISO), the unified standard was adopted as an ISO inch screw thread standard, ISO 5864, parallel to the ISO metric screw thread system. Both systems have a common basic profile. The standard was subject to Quadripartite Standardization Agreement (QSTAG) 247, in the ABCA Army Standardization Program of America, Britain, Canada, and Australia.

Suggestions for improvement of this Standard will be welcomed. They should be sent to the American Society of Mechanical Engineers at ASME International, Three Park Avenue, New York, NY 10016-5990, U.S.A.

ASME B1.1-2003 was approved by the American National Standards Institute (ANSI) on March 27, 2003.

ASME STANDARDS COMMITTEE B1 Standardization and Unification of Screw Threads

(The following is the roster of the Committee at the time of approval of this Standard.)

OFFICERS

A. L. Barrows, Chair
D. S. George, Vice Chair
R. L. Crane, Secretary

COMMITTEE PERSONNEL

G. L. Allen, L. S. Starret Co.

A. L. Barrows, Kennametal — IPG

M. H. Bernier, Standard Nut and Bolt

F. G. Calderone, Quality Systems Implementers

R. L. Crane, The American Society of Mechanical Engineers

L. N. Dixon, Jr., General Electric

R. Dodge, Pennoyer-Dodge Co.

G. A. Flannery, Mercury Gage Co.

D. Skierski, Alternate, Mercury Gage Co.

H. N. Frost, Defense Supply Center Phildelphia

I. O. Gehret. Vermont Thread Gage

D. S. George, Ford Motor Co.

J. R. Gervasi, Kerr Lakeside Inc.

J. Greenslade, Greenslade & Co.

J. Vance, Alternate, Greenslade and Co.

R. J. Hukari, SPS Tehnologies

L. C. Johnson, The Johnson Gage Co.

D. D. Katz, Precision Fittings

R. P. Knittel, Leitech-U.S., Ltd.

B. Larzelere, Deltronic Corp.

L. L. Lord, Caterpillar, Inc.

R. L. Tennis, Alternate, Caterpillar, Inc.

M. H. McWilliams, PMC Gage, Inc.

D. Miskinis, Kennametal-IPG

W. R. Newman, Consultant

M. W. Rose, Southern Gage, Inc.

W. A. Watts, Alternate, Southern Gage, Inc.

E. Schwartz, Consultant

R. H. Searr, Consultant

B. F. Sheffler, Dresser-Rand Co.

A. D. Shepherd, Jr., Emuge Corp.

A. G. Strang, Consultant

R. D. Strong, General Motors Corp.

A. F. Thibodeau, Swanson Tool Manufacturing Co.

R. E. Vincent, Jr., General Plug Manufacturing Co.

C. J. Wilson, Industrial Fasteners Institute

F. W. Akstens, Alternate, Industrial Fasteners Institute

SUBCOMMITTEE 1 — UNIFIED SCREW THREADS

A. L. Barrows, *Chair,* Kennametal — IPG

D. Miskinis, *Vice-Chair,* Kennametal — IPG

M. H. Bernier, Standard Nut and Bolt

M. Cox, Frank J. Cox Sales, Ltd.

L. N. Dixon, Jr., General Electric

H. N. Frost, Defense Supply Center Philadelphia

D. S. George. Ford Motor Co.

J. R. Gervasi, Kerr Lakeside, Inc.

J. Greenslade, Greenslade & Co.

J. Vance, Alternate, Greenslade & Co.

D. H. Honsinger. Consultant

R. J. Hukari, SPS Tehnologies

L. C. Johnson, The Johnson Gage Co.

J. M. Kane, Boeing

D. D. Katz, Precision Fittings

R. P. Knittel, Leitech - U.S., Ltd.

B. Larzelere, Deltronic Corp.

L. L. Lord, Consultant

W. R. Newman, Consultant

E. Schwartz, Consultant

R. H. Searr, Consultant

B. F. Sheffler, Dresser-Rand Co.

J. D. Smith, Hi-Shear Corp.

R. D. Strong, GM Vehicle Engineering Ctr.

A. F. Thibodeau, Swanson Tool Manufacturing, Inc.

R. E. Vincent, Jr., General Plug Manufacturing Co.

C. J. Wilson, Industrial Fasteners Institute

F. W. Akstens, Alternate, Industrial Fasteners Institute

UNIFIED INCH SCREW THREADS

(UN AND UNR THREAD FORM)

1 GENERAL

1.1 Scope

This Standard specifies the thread form, series, class, allowance, tolerance, and designation for unified screw threads. (In order to emphasize that unified screw threads are based on inch modules, they may be denoted unified inch screw threads.) Several variations in thread form have been developed for unified threads; however, this Standard covers only UN and UNR thread forms.

For easy reference, a metric translation of this Standard has been incorporated as Nonmandatory Appendix C. Nonmandatory Appendices A through E contain useful information that is supplementary to the sections of this Standard.

1.2 Unified Screw Thread Standards

The standards for unified screw threads published in this Standard are in agreement with formal standards of the International Organization for Standardization for diameter-pitch combinations, designations, and tolerances for 60 deg triangular form inch screw threads. Unified screw threads had their origin in an accord signed in Washington, D.C., on November 18, 1948, by representatives of standardizing bodies of Canada, the United Kingdom, and the United States, and have subsequently superseded American National screw threads.

1.3 UN and UNR Screw Threads

UNR applies only to external threads; the difference between UN and UNR threads, in addition to designation, is that a flat or optional rounded root contour is specified for UN threads, while only a rounded root contour is specified for UNR threads.

1.4 Interchangeability

Unified (UN/UNR) and its predecessor, American National screw threads, have substantially the same thread form, and threads of both standards having the same diameter and pitch are mechanically interchangeable. The principal differences between these standards relate to the application of allowances, the variation of tolerances with size, differences in the amounts of pitch diameter tolerances for external and internal threads, and differences in thread designations. Unified inch and

ISO metric screw threads are not mechanically interchangeable.

1.5 Designations

Unified thread sizes (specific combinations of diameter and pitch) are identified by the letter combination "UN" in the thread symbol. In the unified standards, the pitch diameter tolerances for external threads differ from those for internal threads; for this reason the letter "A" is used in the thread symbol to denote an external thread and the letter "B," an internal thread. Where the letters "U," "A," or "B" do not appear in the thread designation, the threads conform to the outdated American National screw threads. Details regarding thread designations are given in para. 6.

1.6 Reference Documents

The latest issues of the following documents form a part of this Standard to the extent specified herein.

When the following American National Standards referred to in this Standard are superseded by a revision approved by the American National Standards Institute, Inc., the revision should apply.

ASME B1.2, Gages and Gaging for Unified Inch Screw Threads

ASME B1.3, Screw Thread Gaging Systems for Dimensional Acceptability — Inch and Metric Screw Threads ASME B1.7, Nomenclature, Definitions, and Letter Symbols for Screw Threads

ASME B1.30, Screw Threads — Standard Practices for Calculating and Rounding Dimensions

ASME B47.1, Gage Blanks

ASME B94.11, Twist Drills

ASME Y14.5, Dimensioning and Tolerancing

Publisher: The American Society of Mechanical Engineers (ASME International), Three Park Avenue, New York, NY 10016-5990; Order Department: 22 Law Drive, Box 2300, Fairfield, NJ 07007-2300

ISO 68, General Purpose Screw Threads — Basic Profile Publisher: International Organization for Standardization (ISO), 1 rue de Varembé, Case Postale 56, CH-1211, Genève 20, Switzerland/Suisse

1.7 Acceptability

Acceptability of product threads shall be in accordance with ASME B1.3. Gages and gaging shall be in accordance with ASME B1.2.

1.8 Reference Temperature

The reference temperature is 68°F for dimensions defined by this system.

1.9 Units of Measure

All dimensions in this Standard, including all tables, are in inches unless otherwise specified.

1.10 Federal Government Use

When this Standard is approved by the Department of Defense and federal agencies and is incorporated into FED-STD-H28/2, Screw-Thread Standards for Federal Services, para. 2, the use of this Standard by the federal government will be subject to all the requirements and limitations of FED-STD-H28/2.

2 SCREW THREAD PROFILE

2.1 Scope

The basic profile and design profiles are defined in this paragraph and are the basis of all thread dimensions given in this Standard.

2.2 Basic Profile

The basic profile for UN screw threads is identical to that for UNR screw threads and is shown in Fig. 1. Profile applies to an axial plane.

For reference, the basic profile for UN and UNR screw threads is identical to that for ISO metric screw threads shown in ISO 68.

2.3 Design Profiles

The design profiles define the maximum-material conditions for external and internal threads with no allowance and are derived from the basic profile. The design profiles of both external and internal screw threads vary from the basic profile.

- **2.3.1 Design Profiles of External Threads.** The design profiles of external UN and UNR screw threads are included in Figs. 2 and 3. A flat root contour is specified for UN threads; however, it is permissible to provide for some threading tool crest wear. Therefore, a rounded root contour cleared beyond the 0.250*P* flat width of the basic profile is optional. The rounded root also reduces the rate of threading tool crest wear and improves fatigue strength over that of a flat root thread.
- (a) The root contour of external UNR screw threads shown in Figs. 2 and 3 shall have a smooth, continuous, nonreversing contour with a radius of curvature not less than 0.10825318P at any point and shall blend tangentially into the flanks and any straight segment. At the

maximum-material condition, the point of tangency shall be at a distance not less than 0.54126588*P* (0.625*H*) below the basic major diameter.

NOTE: The maximum full root radius is 0.14433757*P*, but this may be exceeded when the root contour consists of a combination of flats and radii.

- (*b*) The design profiles of external UN and UNR screw threads have flat crests. However, in practice, product thread crests may be flat, or partially corner rounded. A rounded crest tangent at a 0.125*P* flat is shown as an option in Figs. 2 and 3.
- **2.3.2 Design Profile of Internal Threads.** The design profile of the internal UN screw thread is included in Figs. 2 and 3 (there is no internal UNR screw thread). In practice, it is necessary to provide for some threading tool crest wear; therefore, the root of the design profile is rounded and cleared beyond the 0.125*P* flat width of the basic profile.

2.4 Formulas and Symbols

The formulas and symbols pertaining to the basic profile and the design profiles are given in para. 10.

3 SCREW THREAD SERIES

3.1 Thread Series Definition

Thread series are groups of diameter-pitch combinations distinguished from each other by the number of threads per inch applied to a series of specific diameters. There are two general series classifications: standard and special.

- **3.1.1 Standard Series.** The standard series consists of three series with graded pitches (coarse, fine, and extra fine) and eight series with constant pitches (4, 6, 8, 12, 16, 20, 28, and 32 threads per inch). The standard series is shown in Table 1. Limits of size are shown in Table 2. See para. 8 for limits of size.
- **3.1.2 Special Series.** The special series consists of all threads with diameter-pitch combinations that are not included in the standard series. When allowances and tolerances of special series threads are derived from unified formulation as shown in para. 5, the threads are designated UNS or UNRS. If allowance and tolerance are not derived from unified formulation, the threads are designated "SPL 60 degree Form." See para. 6 for details of designation.

3.2 Order of Selection

Wherever possible, selection should be made from Table 2, Standard Series — Unified Screw Threads, preference being given to the coarse- and fine-thread series. Second choice; if the threads in the standard series in Table 2 do not meet the requirements of the design,

GENERAL NOTE: For standardization, values have been established based on a function of pitch, *P*. The thread values based on a function of height, *H*, are used for reference only.

Fig. 1 Basic Profile for UN and UNR Screw Threads

special thread sizes should be selected from Table E-1 of Nonmandatory Appendix E and their limits calculated using the formulas in para. 8. The limits in Table D-1 of Nonmandatory Appendix D are for reference only and are not recommended for new applications.

3.3 Coarse-Thread Series Applications

The coarse-thread series (UNC/UNRC) is generally used for the bulk production of screws, bolts, and nuts. It is commonly used in relatively low-strength materials such as cast iron, aluminum, magnesium, brass, bronze, and plastic, because the coarse-thread series provide more resistance to internal thread stripping than the fine or extra-fine series. Coarse-thread series are advantageous where rapid assembly or disassembly is required, or if corrosion or damage from nicks due to handling or use is likely.

3.4 Fine-Thread Series Applications

The fine-thread series (UNF/UNRF) is commonly used for bolts and nuts in high-strength applications. This series has less thread depth and a larger minor

diameter than coarse-thread series. Consequently, thinner walls are permitted for internal threads and more strength is available to external threads than for coarse-thread series of the same nominal size. In order to prevent internal thread stripping, a longer length of engagement is required for fine-thread series than for coarse-thread series for thread materials of the same strength levels. However, for both fine- and coarse-thread series, length of engagement in tapped holes must be selected to meet strength requirements. This also allows for finer adjustment in cases such as a slotted nut and cotter pin assembly.

3.5 Extra-Fine-Thread Series Applications

The extra-fine-thread series (UNEF/UNREF) is used particularly for equipment and threaded parts that require fine adjustment, such as bearing retaining nuts, adjusting screws, etc., and for thin-wall tubing and thin nuts.

3.6 Constant-Pitch Thread Series Applications

The various constant-pitch series (UN/UNR) with 4, 6, 8, 12, 16, 20, 28, and 32 threads per inch, given in

GENERAL NOTE: Lead and angle tolerances are defined in para. 9.

Fig. 2 Disposition of Diametral Tolerances, Allowance, and Crest Clearance for Unified Inch Screw Thread Classes 1A, 2A, 1B, and 2B

GENERAL NOTE: Lead and angle tolerances are defined in para. 9.

Fig. 3 Disposition of Diametral Tolerances and Crest Clearances for Unified Inch Screw Thread Classes 3A and 3B

Table 1 Standard Series Threads (UN/UNR)

								Thread	s/in.					
				With G Pitches	raded									
Nomina	al Size, in.	Basic	Cauraa	Fin.	Extra			Ser	ies With	Constant	Pitches			Naminal
Primary	Secondary	Major Diameter	Course UNC	Fine UNF	Fine UNEF	4-UN	6-UN	8-UN	12-UN	16-UN	20-UN	28-UN	32-UN	Nominal Size, in.
0		0.0600		80										0
	1	0.0730	64	72										1
2		0.0860	56	64										2
	3	0.0990	48	56										3
4		0.1120	40	48										4
5		0.1120	40	44		• • •				• • •				5
6	• • •	0.1230			• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		
	• • •		32	40	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	UNC	6
8	• • •	0.1640	32	36	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	UNC	8
10		0.1900	24	32		• • •	• • •	• • •	• • •	• • •	• • •		UNF	10
• • •	12	0.2160	24	28	32	• • •	• • •	• • •	• • •	• • •	• • •	UNF	UNEF	12
1/4		0.2500	20	28	32						UNC	UNF	UNEF	1/4
5/16		0.3125	18	24	32						20	28	UNEF	5/16
3/8 7/16 1/2 9/16 5/8		0.3750	16	24	32					UNC	20	28	UNEF	⁵ / ₁₆ ³ / ₈
7/16		0.4375	14	20	28					16	UNF	UNEF	32	7/16
1/2		0.5000	13	20	28					16	UNF	UNEF	32	1/2
9/1		0.5625	12	18	24				UNC	16	20	28	32	9/16
5/2		0.6250	11	18	24				12	16	20	28	32	5/8
	 11/ ₁₆	0.6875			24	• • •	• • •	• • •	12	16	20	28	32	11/ ₁₆
···				1			• • •	• • •			UNEF			/16 3 /
	137	0.7500	10	16	20	• • •		• • •	12	UNF		28	32	3/4 13/16
7,	¹³ / ₁₆	0.8125	• • •		20	• • •	• • •	• • •	12	16	UNEF	28	32	716
⁷ / ₈	15 /	0.8750	9	14	20	• • •	• • •	• • •	12	16	UNEF	28	32	7/8 15/16
• • •	¹⁵ / ₁₆	0.9375	• • •	• • •	20	• • •	• • •	• • •	12	16	UNEF	28	32	13/16
1		1.0000	8	12	20			UNC	UNF	16	UNEF	28	32	1
	$1^{1}/_{16}$	1.0625			18			8	12	16	20	28		$1^{1}/_{16}$
$1^{1}/_{8}$		1.1250	7	12	18			8	UNF	16	20	28		$1\frac{1}{8}$
	$1^{3}/_{16}$	1.1875			18			8	12	16	20	28		$1^{3}/_{16}$
$1^{1}/_{4}$		1.2500	7	12	18			8	UNF	16	20	28		$1^{1}/_{4}$
	$1^{5}/_{16}$	1.3125			18			8	12	16	20	28		$1^{5/16}$
$1^{3}/_{8}$	•••	1.3750	6	12	18		UNC	8	UNF	16	20	28		13/8
- / 8	$1^{7}/_{16}$	1.4375			18		6	8	12	16	20	28		$1^{7}/_{16}$
$1^{1}/_{2}$	- / 16	1.5000	6	12	18		UNC	8	UNF	16	20	28		$1^{1}/_{2}$
	$1^{9}/_{16}$	1.5625			18		6	8	12	16	20			$1^{9}/_{16}$
15/8	1 /16	1.6250			18		6	8	12	16	20		• • •	$1\frac{7}{8}$
			• • •	• • •								• • •	• • •	1 /8 111/
43/	$1^{11}/_{16}$	1.6875		• • •	18	• • •	6	8	12	16	20	• • •	• • •	$1^{11}/_{16}$
$1^{3}/_{4}$		1.7500	5	• • •	• • •	• • •	6	8	12	16	20	• • •	• • •	$1^{3}/_{4}$
· · ·	$1^{13}/_{16}$	1.8125	• • •	• • •	• • •	• • •	6	8	12	16	20	• • •	• • •	$1^{13}/_{16}$
$1^{7}/_{8}$	15.	1.8750	• • •		• • •		6	8	12	16	20	• • •	• • •	$1\frac{7}{8}$
• • •	$1^{15}/_{16}$	1.9375	• • •	• • •	• • •	• • •	6	8	12	16	20	• • •	• • •	$1^{15}/_{16}$
2		2.0000	$4^{1}/_{2}$				6	8	12	16	20			2
	2 ¹ / ₈	2.1250					6	8	12	16	20			$2^{1}/_{8}$
$2^{1}/_{4}$		2.2500	$4^{1}/_{2}$				6	8	12	16	20			$2^{1}/_{4}$
	$2^{3}/_{8}$	2.3750					6	8	12	16	20			$2^{3}/_{8}$
$2^{1}/_{2}$		2.5000	4			UNC	6	8	12	16	20			$2^{1/2}$
	25/8	2.6250				4	6	8	12	16	20			$\frac{2^{5}}{8}$
$2^{3}/_{4}$	- / 8	2.7500	4			UNC	6	8	12	16	20			$\frac{2^{3}}{4}$
	$2^{7}/_{8}$	2.8750				4	6	8	12	16	20			$\frac{2^{7}}{4}$
• • •	∠ /8	2.0/30	• • •	• • •	• • •	4	0	0	12	10	20	• • •	• • •	∠ /8

Table 1 Standard Series Threads (UN/UNR) (Cont'd)

								Thread	s/in.					
			Series F	With G Pitches	raded									
Nomina	al Size, in.	Basic Major	Course	Fine	Extra Fine			Ser	ies With	Constant	Pitches			Nominal
Primary	Secondary	Diameter	UNC	UNF	UNEF	4-UN	6-UN	8-UN	12-UN	16-UN	20-UN	28-UN	32-UN	Size, in.
3		3.0000	4			UNC	6	8	12	16	20			3
	$3^{1}/_{8}$	3.1250				4	6	8	12	16				$3^{1}/_{8}$
$3^{1}/_{4}$		3.2500	4			UNC	6	8	12	16				$3^{1}/_{4}$
	$3^{3}/_{8}$	3.3750				4	6	8	12	16				$3^{3}/_{8}$
$3^{1}/_{2}$		3.5000	4			UNC	6	8	12	16				$3^{1}/_{2}$
	3 ⁵ / ₈	3.6250				4	6	8	12	16				35/8
$3^{3}/_{4}$	•••	3.7500	4			UNC	6	8	12	16				$3^{3}/_{4}$
	$3^{7}/_{8}$	3.8750				4	6	8	12	16				3 ⁷ / ₈
4		4.0000	4			UNC	6	8	12	1.6				4
	4 ¹ / ₈	4.1250				4	6	8	12	16				$4^{1}/_{8}$
$4^{1}/_{4}$	• • •	4.2500				4	6	8	12	16				41/4
	$4^{3}/_{8}$	4.3750				4	6	8	12	16				$4^{\frac{3}{8}}$
$4^{1}/_{2}$		4.5000				4	6	8	12	16				$4^{1}/_{2}$
	4 ⁵ / ₈	4.6250				4	6	8	12	16				$4^{\frac{7}{8}}$
$4^{3}/_{4}$	•••	4.7500				4	6	8	12	16				43/4
	$4^{7}/_{8}$	4.8750				4	6	8	12	16				47/8
5		5.0000				4	6	8	12	16				5
	5 ¹ / ₈	5.1250				4	6	8	12	16				5 ¹ / ₈
5 ¹ / ₄	• • •	5.2500				4	6	8	12	16				5 ¹ / ₄
	$5^{3}/_{8}$	5.3750				4	6	8	12	16				$5^{3}/_{8}$
$5^{1}/_{2}$	• • •	5.5000				4	6	8	12	16				$5^{1}/_{2}$
	55/8	5.6250				4	6	8	12	16				55/8
5 ³ / ₄	• • •	5.7500				4	6	8	12	16				5 ³ / ₄
	5 ⁷ / ₈	5.8750				4	6	8	12	16				$5^{7}/_{8}$
6	• • •	6.0000				4	6	8	12	16				6

GENERAL NOTE: Series designation shown indicates the UN thread form; however, the UNR thread form may be specified by substituting UNR in place of UN in all designations for external use only.

Table 1, offer a comprehensive range of diameter-pitch combinations for those purposes where the threads in the coarse-, fine-, and extra-fine-thread series do not meet the particular requirements of the design. The primary sizes of the 8-UN, 12-UN, and 16-UN series shown in Table 1 are the most commonly used.

Whenever a thread in a constant-pitch series also appears in the UNC, UNF, or UNEF series, the symbols and tolerances for limits of size of those standard series are applicable.

3.6.1 8-Thread Series. The 8-thread series (8-UN) is a uniform-pitch series for large diameters or as a compromise between coarse and fine thread series. Although originally intended for high-pressure-joint bolts and nuts, it is now widely used as a substitute for the coarse thread series for diameters larger than 1 in.

3.6.2 12-Thread Series. The 12-thread series (12-UN) is a uniform-pitch series for large diameters requiring

threads of medium-fine pitch. Although originally intended for boiler practice, it is now used as a continuation of the fine thread series for diameters larger than $1\frac{1}{2}$ in.

3.6.3 16-Thread Series. The 16-thread series (16-UN) is a uniform-pitch series for large diameters requiring fine-pitch threads. It is suitable for adjusting collars and retaining nuts and also serves as a continuation of the extra-fine thread series for diameters larger than $1^{11}/_{16}$ in.

3.7 Fine Threads for Thin-Wall Tubing

The limits of size for a 28-thread series, ranging from 0.216 in. to 1.5 in. nominal size, are included in Table 2. These threads are recommended for general use on thinwall tubing. The 27-thread series is no longer standard but is included in Table D-1 of Nonmandatory Appendix D.

Table 2 Limits of Size for Standard Series Threads (UN/UNR)

						External [Note (1)]	ote (1)]						ln	Internal [Note (1)]	ote (1)]		
	Series			W	jor Diameter	iter	Pitch Func	Pitch Diameter and Functional Diameter [Note (4)]	r and meter	UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in	Desig-	Class	Allowance	Max.	Min	Min. [Note (3)]	Max.	M.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Minor Diameter	Max	_ iiM	[Note (4)]	Tolerance	Diameter,
0-80 or 0.060-80	UNF	1			0.0563		0.0514	0.0496	0.001762	0.0446	2B 3B	10.10	ST ST		21.10		0.0600
(7) 1–64 or 0.073–64 UNC	UNC	2A 3A	0.0006	0.0724	0.0686	: :	0.0623	0.0603	0.001970	0.0538	2B 3B	0.0561	0.0622 (0.0629 (0.0655	0.0026	0.0730
(7) 1–72 or 0.073–72 (7)	UNF	2A 3A	0.0006	0.0724	0.0689	: :	0.0634	0.0615	0.001899	0.0559	2B 3B	0.058	0.0634 (0.0640 0.0640	0.0665	0.0025	0.0730
2–56 or 0.086–56	UNC	2A 3A	0.0006	0.0854	0.0813	: :	0.0738	0.0717	0.002127	0.0641	2B 3B	0.0667	0.0737 (0.0744 0	0.0772	0.0028	0.0860
(7) 2–64 or 0.086–64 (7)	UNF	2A 3A	0.0006	0.0854	0.0816	: :	0.0753	0.0733	0.002040	0.0668	2B 3B	0.0691	0.0752 (0.0759 (0.0786	0.0027	0.0860
3-48 or 0.099-48	UNC	2A 3A	0.0007	0.0983	0.0938	: :	0.0848	0.0825	0.002302	0.0735	2B 3B	0.0764	0.0845 (0.0855 (0.0885	0.0030	0.0990
3–56 or 0.099–56	UNF	2A 3A	0.0007	0.0983	0.0942	: :	0.0867	0.0845	0.002191	0.0770	2B 3B	0.0797	0.0865 (0.0874 (0.0902	0.0028	0.0990
4-40 or 0.112-40	UNC	2A 3A	0.0008	0.1112	0.1061	: :	0.0950	0.0925	0.002507	0.0814	2B 3B	0.0849	0.0939 (0.0958 (0.0991	0.0033	0.1120 0.1120
4-48 or 0.112-48	UNF	2A 3A	0.0007	0.1113	0.1068	: :	0.0978	0.0954	0.002361	0.0865	2B 3B	0.0894	0.0968 (0.0985	0.1016	0.0031	0.1120
5-40 or 0.125-40	UNC	2A 3A	0.0008	0.1242	0.1191	: :	0.1080	0.1054	0.002562	0.0944	2B 3B	0.0979	0.1062 (0.1088 (0.1121	0.0033	0.1250
5-44 or 0.125-44	UNF	2A 3A	0.0007	0.1243	0.1195	: :	0.1095	0.1070	0.002484	0.0972	2B 3B	0.1004	0.1079 (0.1102 C	0.1134	0.0032	0.1250
6–32 or 0.138–32	NNC	2A 3A	0.0008	0.1372	0.1312	: :	0.1169	0.1141	0.002820	0.1000	2B 3B	0.104	0.114 (0.1139 (0.1177 (0.1214	0.0037	0.1380
6-40 or 0.138-40	UNF	2A 3A	0.0008	0.1372	0.1321	: :	0.1210	0.1184	0.002614	0.1074	2B 3B	0.111	0.119 (0.1186 (0.1218 (0.1218 (0.1252	0.0034	0.1380

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	ote (1)]						Int	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	eter	Pitch Funci	Pitch Diameter and Functional Diameter [Note (4)]	r and meter	UNR Minor Diameter, Max		Minor	ior	Pitch Functi	Pitch Diameter and Functional Diameter	er and Imeter	Maior
Nominal Size and Threads/in.	Desig- nation		Class Allowance	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	<u></u>	Class	Diameter Min. Ma	eter Max.	Min.	[Note (4)] Max. T] Tolerance	Diameter, Min.
8 – 32 or 0.164 – 32	UNC	2A 3A	0.0009	0.1631	0.1571	: :	0.1428	0.1399	0.002916	0.1259	2B (0.130	0.139 (0.1437 (0.1475	0.0038	0.1640
8 – 36 or 0.164 – 36	UNF	2A 3A	0.0008	0.1632	0.1577	: :	0.1452	0.1424	0.002804	0.1301	2B (0.134 0.1340	0.142 (0.1416 (0.1460 (0.1496	0.0036	0.1640
(7) 10 – 24 or 0.190 – 24	UNC	2A 3A	0.0010	0.1890	0.1818	: :	0.1619	0.1586	0.003319	0.1394	2B (0.145 0.1450	0.155 C	0.1629 (0.1672	0.0043	0.1900
10 – 32 or 0.190 – 32	UNF	2A 3A	0.0009	0.1891	0.1831	: :	0.1688	0.1658	0.003004	0.1519	2B (0.156 0.1560	0.164 C	0.1697 (0.1697 (0.1736	0.0039	0.1900
12 – 24 or 0.216 – 24	UNC	2A 3A	0.0010	0.2150	0.2078	: :	0.1879	0.1845	0.003400	0.1654	2B (0.171	0.181 (0.1807 (0.1889 (0.1889 (0.1933	0.0044	0.2160
12 – 28 or 0.216 – 28	UNF	2A 3A	0.0010	0.2150	0.2085	: :	0.1918	0.1886	0.003224	0.1725	2B (0.177	0.186 (0.1857 (0.1928 (0.1928 (0.1970	0.0042	0.2160
(7) 12 – 32 or 0.216 – 32	UNEF	2A 3A	0.0010	0.2150	0.2090	: :	0.1947	0.1915	0.003184	0.1778	2B (0.182 0.1820	0.190 (0.1895 (0.1957 (0.1957 (0.1998	0.0041	0.2160
$\frac{1}{4}$ – 20 or 0.2500 – 20	UNC	1A 2A 3A	0.0011 0.0011 0.0000	0.2489 0.2489 0.2500	0.2367 0.2408 0.2419	0.2367	0.2164 0.2164 0.2175	0.2108 0.2127 0.2147	0.005600 0.003731 0.002800	0.1894 0.1894 0.1905	1B (2B (3B (0.196 0.196 0.1960	0.207 (0.207 (0.2067 (0.2175 (0.2175 (0.2175 (0.2248 0.2224 0.2211	0.0073	0.2500 0.2500 0.2500
$\frac{1}{4} - 28 \text{ or } 0.2500 - 28$	UNF	1A 2A 3A	0.0010 0.0010 0.0000	0.2490 0.2490 0.2500	0.2392 0.2425 0.2435	: : :	0.2258 0.2258 0.2268	0.2208 0.2225 0.2243	0.005000 0.003322 0.002500	0.2065 0.2065 0.2075	1B (2B (3B (4B)	0.211 0.211 0.2110	0.22 (0.220 (0.2190 (0.2268 (0.2268 (0.2268 (0.2333 0.2311 0.2300	0.0065	0.2500 0.2500 0.2500
$\frac{1}{4} - 32$ or $0.2500 - 32$	UNEF	2A 3A	0.0010	0.2490	0.2430	: :	0.2287	0.2255	0.003229	0.2118	2B (0.216	0.224 (0.2297 (0.2339	0.0042	0.2500
$\frac{5}{16} - 18$ or $0.3125 - 18$	UNC	1A 2A 3A	0.0012 0.0012 0.0000	0.3113 0.3113 0.3125	0.2982 0.3026 0.3038	0.2982	0.2752 0.2752 0.2764	0.2691 0.2712 0.2734	0.006100 0.004041 0.003000	0.2451 0.2451 0.2463	1B (2B (3B (0.252 0.252 0.2520	0.265 (0.265 (0.2630 (0.2764 (0.2764 (0.2764 (0.2843 0.2817 0.2803	0.0079	0.3125 0.3125 0.3125
(7) 5 / ₁₆ - 20 or 0.3125 - 20	N O	2A 3A	0.0012	0.3113	0.3032	: :	0.2788	0.2747	0.004060	0.2518	2B (0.258	0.270 (0.2800 (0.2853	0.0053	0.3125 0.3125

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					E	External [Note (1)]	ote (1)]						Int	Internal [Note (1)]	ote (1)]		
v.	Series			Maj	Major Diameter	ter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	r and meter	UNR Minor Diameter, Max		Minor	ō	Pitch Functio	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Do Threads/in.		lass A	Class Allowance	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	<u>=</u>	Class	Diameter Min. Ma	eter Max.	Min.	[Note (4)] Max. T	 	Diameter, Min.
75 - 74		<			7002 0	- 1	27800	0 3 7 8 8	0 005 500					Ι,	Ι.,	- 1	0.31.75
12 (217.0 10 12		2A	0.0011	0.3114	0.3042	: :	0.2843	0.2806	0.003660	0.2618					0.2902		0.3125
			0.0000	0.3125	0.3053	: :	0.2854	0.2827	0.002700	0.2629		0	4				0.3125
(7) $\frac{5}{16}$ - 28 or 0.3125 - 28 U	NU		0.0010	0.3115	0.3050	:	0.2883	0.2848	0.003495	0.2690		0.274 (0.282	0.2893 0	0.2938	0.0045	0.3125
(2)	•	3A	0.0000	0.3125	0.3060	:	0.2893	0.2867	0.002600	0.2700	3B (0.2740 (0.2807	0.2893 0	0.2927	0.0034	0.3125
(7) $\frac{5}{16}$ - 32 or 0.3125 - 32 U	UNEF	2A 3A	0.0010	0.3115	0.3055	: :	0.2912	0.2879	0.003302	0.2743	2B (0.279 (0.286 0	0.2922 0	0.2965	0.0043 (0.3125
7				7				,,,,,,	0								1
78 - 16 0r 0.3/30 - 16 U	ר ח ח	1A 2A	0.0013	0.3737	0.3643	0.3595	0.3331	0.3287	0.006500	0.2993	2B (0.307	0.321 0	0.3344	0.3429 0.3401	0.0085	0.3750
	•		0.0000	0.3750	0.3656	:	0.3344	0.3311	0.003300	0.3006		0	7				0.3750
$\frac{3}{8}$ – 20 or 0.3750 – 20 U	N	2A	0.0012		0.3657	:	0.3413	0.3372	0.004124	0.3143				0.3425 0	0.3479		0.3750
			0.0000	0	0.3669	:	0.3425	0.3394	0.003100	0.3155	3B	0.3210 (0.3297 (0.3425 0	0.3465	0.0040	0.3750
$\frac{3}{8}$ – 24 or 0.3750 – 24 U	UNF		0.0011	0.3739	0.3631	:	0.3468	0.3411	0.005700	0.3243							0.3750
		2A	0.0011	0.3739	0.3667	:	0.3468	0.3430	0.003804	0.3243					0.3528		0.3750
			0.0000	0.3750	0.3678	:	0.3479	0.3450	0.002900	0.3254	38 (0.3300 (0.3372 0	0.3479 0	0.3516	0.0037	0.3750
$\frac{3}{8}$ – 28 or 0.3750 – 28 U	NN	2A	0.0011	0.3739	0.3674	:	0.3507	0.3471	0.003559	0.3314	2B (0.3750
			0.0000	0.3750	0.3685	:	0.3518	0.3491	0.002700	0.3325		0.3360 (0.3426 (0.3518 0	0.3553	0.0035	0.3750
$\frac{3}{8} - 32$ or $0.3750 - 32$ U	UNEF	2A	0.0010	0.3740	0.3680	:	0.3537	0.3503	0.003366	0.3368		0.341 (0.349 (0.3547 0	0.3591	0.0044	0.3750
			0.000.0	0.3750	0.3690	:	0.3547	0.3522	0.002500	0.3378	3B (0.3410 (0.3469	0.3547 0	0.3580	0.0033	0.3750
$\frac{7}{16} - 14$ or $0.4375 - 14$ U	ONC		0.0014	0.4361	0.4206	:	0.3897	0.3826	0.007100	0.3510	18 (0.36	0.376	0.3911 0	0.4003	0.0092	0.4375
ł		2A	0.0014	0.4361	0.4258	0.4206	0.3897	0.3850	0.004713	0.3510					0.3972		0.4375
	•		0.0000	0.4375	0.4272	:	0.3911	0.3876	0.003500	0.3524	38	0.3600 (0.3717 0	0.3911 0	0.3957	0.0046	0.4375
$(7)^{7/16} - 16 \text{ or } 0.4375 - 16 \text{ U}$	N N	2A	0.0014	0.4361	0.4267	:	0.3955	0.3909	0.004626	0.3617	2B (0.4029		0.4375
(2)			0.0000	0.43/5	0.4281	:	0.3969	0.3934	0.003500	0.3631		0.3/00	0.3800	0.3969 0	0.4014	0.0045	1.4375
$(7)^{7/16} - 20 \text{ or } 0.4375 - 20 \text{ U}$	UNF		0.0013	0.4362	0.4240	:	0.4037	0.3974	0.006300	0.3767	18 (0.4050 0	0.4131		0.4375
		2A 3A	0.000.0	0.4375	0.4281	: :	0.4050	0.4019	0.003100	0.3780		0.3830	0.3916 0	0.4050 0	0.4104	0.0054	0.4375

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	lote (1)]						ᄪ	Internal [Note (1)]		
	Series			Majo	Major Diameter	iter	Pitcl Functiona	Pitch Diameter and ional Diameter [Not	e (4)]	UNR Minor Diameter, Max.		Minor	ior .	Pitch Diameter and Functional Diameter	leter and Diameter	Major
Nominal Size and Threads/in.		Class	M Allowance [Not	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[(9	Class	Diameter Min. Ma	Max.	[Note (4)] Min. Max. T	(4)] . Tolerance	ቯ
$(7)^{7}/1_{6} - 28$ or $0.4375 - 28$	UNEF	2A 3A	0.0001	0.4364	0.4299	: :	0.4132	0.4096	0.003616	0.3939	2B (0.399	0.407	0.4143 0.4190 0.4143 0.4178	0 0.0047 8 0.0035	0.4375
$(7)^{7}/_{16} - 32$ or $0.4375 - 32$	N	2A 3A	0.0010	0.4365	0.4305	: :	0.4162	0.4128	0.003423	0.3993	2B 3B	0.404	0.4094	0.4172 0.4216 0.4172 0.4205	6 0.0044 5 0.0033	0.4375
$\frac{1}{2} - 13$ or $0.5000 - 13$	UNC	1A 2A 3A	0.0015 0.0015 0.0000	0.4985 0.4985 0.5000	0.4822 0.4876 0.4891	0.4822	0.4485 0.4485 0.4500	0.4411 0.4435 0.4463	0.007400 0.004965 0.003700	0.4069 0.4069 0.4084	1B 2B 3B	0.417 0.417 0.4170	0.434 0.434 0.4284	0.4500 0.4597 0.4500 0.4565 0.4500 0.4548	7 0.0097 5 0.0065 8 0.0048	0.5000 0.5000 0.5000
$\frac{1}{2} - 16 \text{ or } 0.5000 - 16$	N	2A 3A	0.0014	0.4986	0.4892	: :	0.4580	0.4533	0.004678	0.4242	2B (0.432	0.446	0.4594 0.4655 0.4594 0.4640	5 0.0061 0 0.0046	0.5000
¹ / ₂ – 20 or 0.5000 – 20	UNF	1A 2A 3A	0.0013 0.0013 0.0000	0.4987 0.4987 0.5000	0.4865 0.4906 0.4919	: : :	0.4662 0.4662 0.4675	0.4598 0.4619 0.4643	0.006400 0.004288 0.003200	0.4392 0.4392 0.4405	1B 2B 3B	0.446 0.446 0.4460	0.457 0.457 0.4537	0.4675 0.4759 0.4675 0.4731 0.4675 0.4717	9 0.0084 1 0.0056 7 0.0042	0.5000 0.5000 0.5000
$\frac{1}{2} - 28$ or $0.5000 - 28$	UNEF	2A 3A	0.0011	0.4989	0.4924	: :	0.4757	0.4720	0.003668	0.4564	2B (0.461	0.470	0.4768 0.4816 0.4768 0.4804	6 0.0048 4 0.0036	0.5000
$\frac{1}{2}$ – 32 or 0.5000 – 32	N	2A 3A	0.0010	0.4990	0.4930	: :	0.4787	0.4752	0.003475	0.4618	2B (0.466	0.474	0.4797 0.4842 0.4797 0.4831	2 0.0045 1 0.0034	0.5000
$^{9}_{16}$ – 12 or 0.5625 – 12	ONC	1A 2A 3A	0.0016 0.0016 0.0000	0.5609 0.5609 0.5625	0.5437 0.5495 0.5511	0.5437	0.5068 0.5068 0.5084	0.4990 0.5016 0.5045	0.007800 0.005225 0.003900	0.4617 0.4617 0.4633	1B 2B 3B	0.472 0.472 0.4720	0.49 0.490 0.4843	0.5084 0.5186 0.5084 0.5152 0.5084 0.5135	6 0.0102 2 0.0068 5 0.0051	0.5625 0.5625 0.5625
$^{9}/_{16}$ – 16 or 0.5625 – 16 $^{(7)}$	N	2A 3A	0.0014	0.5611	0.5517	: :	0.5205	0.5158	0.004725	0.4867	2B (0.495	0.509	0.5219 0.5280 0.5219 0.5265	0 0.0061 5 0.0046	0.5625
$^{9}_{16}$ – 18 or 0.5625 – 18	U F	1A 2A 3A	0.0014 0.0014 0.0000	0.5611 0.5611 0.5625	0.5480 0.5524 0.5538	: : :	0.5250 0.5250 0.5264	0.5182 0.5205 0.5230	0.006800 0.004547 0.003400	0.4949 0.4949 0.4963	1B 2B 3B	0.502 0.502 0.5020	0.515 0.515 0.5106	0.5264 0.5353 0.5264 0.5323 0.5264 0.5308	3 0.0089 3 0.0059 8 0.0044	0.5625 0.5625 0.5625
(7) $^{9}/_{16} - 20$ or $0.5625 - 20$	N	2A 3A	0.0013	0.5612	0.5531	: :	0.5287	0.5244	0.004280	0.5017	2B (0.508	0.520	0.5300 0.5356 0.5300 0.5342	6 0.0056	0.5625
(7) $\frac{9}{16}$ = 24 or 0.5625 = 24 (7)	UNEF	2A 3A	0.0012	0.5613	0.5541	: :	0.5342	0.5302	0.003960	0.5117	2B 3B	0.517	0.527	0.5354 0.5405 0.5354 0.5393	5 0.0051 3 0.0039	0.5625

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					ч	External [Note (1)]	ote (1)]						In	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	ter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	r and meter	UNR Minor Diameter, Max		Minor	or	Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Maior
Nominal Size and Threads/in.	Desig- nation		Class Allowance	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	<u>=</u>	Class	Diameter Min. Ma	eter Max.	Min.	[Note (4)] Max. T	J Tolerance	Diameter, Min.
%16 – 28 or 0.5625 – 28	1		0.0011	0.561	0.5549		0.5382	0.5345	0.003715				_	I m m	1	1	0.5625
$(7)^{9/16} - 32$ or $0.5625 - 32$	N O	2A 3A	0.0001	0.5614	0.5554	: :	0.5411	0.5376	0.003522	0.5242	2B (0.529 (0.536 (0.5422 (0.5468	0.0046	0.5625
(7) $\frac{5}{8} - 11$ or $0.6250 - 11$	UNC	1A 2A 3A	0.0017 0.0017 0.0000	0.6233 0.6233 0.6250	0.6051 0.6112 0.6129	0.6052	0.5643 0.5643 0.5660	0.5560 0.5588 0.5619	0.008300 0.005501 0.004100	0.5150 0.5150 0.5167	1B (2B (3B (0.527 (0.527 (0.5270 (0.546 (0.546 (0.5391 (0.5660 (0.5660 (0.5660 (0.5767 0.5732 0.5714	0.0107 0.0072 0.0054	0.6250 0.6250 0.6250
$\frac{5}{8} - 12$ or $0.6250 - 12$	N O	2A 3A	0.0016	0.6234	0.6120	: :	0.5693	0.5639	0.005443	0.5242	2B (0.535 (0.553 (0.5709 (0.5780	0.0071	0.6250
$\frac{5}{8}$ – 16 or 0.6250 – 16	N O	2A 3A	0.0014	0.6236	0.6142	: :	0.5830	0.5782	0.004769	0.5492	2B (0.557 (0.571 (0.5844 (0.5906	0.0062	0.6250
$\frac{5}{8} - 18$ or $0.6250 - 18$	UNF	1A 2A 3A	0.0014 0.0014 0.0000	0.6236 0.6236 0.6250	0.6105 0.6149 0.6163	: : :	0.5875 0.5875 0.5889	0.5805 0.5828 0.5854	0.007000 0.004652 0.003500	0.5574 0.5574 0.5588	1B (2B (3B (3B (0.565 (0.565 (0.5650 (0.578 (0.578 (0.5730 (0.5889 (0.5889 (0.5889 (0.5980 0.5949 0.5934	0.0091 0.0060 0.0045	0.6250 0.6250 0.6250
$\frac{5}{8}$ - 20 or 0.6250 - 20	N O	2A 3A	0.0013	0.6237	0.6156	: :	0.5912	0.5869	0.004324	0.5642	2B (0.571 (0.582 (0.5925 (0.5981	0.0056	0.6250
$\frac{5}{8}$ – 24 or 0.6250 – 24	UNEF	2A 3A	0.0012	0.6238	0.6166	: :	0.5967	0.5927	0.004004	0.5742	2B (0.580 0.5800	0.590 (0.5869 (0.5979 (0.6031	0.0052	0.6250
$\frac{5}{8}$ – 28 or 0.6250 – 28	N O	2A 3A	0.0001	0.6239	0.6174	: :	0.6007	0.5969	0.003759	0.5814	2B (0.586 0	0.595 (0.6018 (0.6067	0.0049	0.6250
$(7)^{5}/_{8} - 32$ or $0.6250 - 32$	N O	2A 3A	0.0001	0.6239	0.6179	: :	0.6036	0.6000	0.003566	0.5867	2B (0.591 (0.5910 (0.599 (0.5969 (0.6047 (0.6093	0.0046	0.6250
$_{(7)}^{11}$ $_{16}$ -12 or 0.6875-12	N O	2A 3A	0.0016	0.6859	0.6745	: :	0.6318	0.6263	0.005485	0.5867	2B (0.597 (0.5970 (0.6085	0.6334 (0.6405	0.0071	0.6875
$^{(7)}$ $^{11}\!\!/_{16}$ -16 or 0.6875-16	N O	2A 3A	0.0014	0.6861	0.6767	: :	0.6455	0.6407	0.004811	0.6117	2B (0.620 (0.634 (0.6469 (0.6532	0.0063	0.6875

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					"	External [Note (1)]	te (1)]						<u>‡</u>	Internal [Note (1)]	_	
	Series	. <u>.</u>		Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	er and meter]	UNR Minor Diameter, Max.		Minor	or.	Pitch Diameter and Functional Diameter	ter and Jiameter	Major
Nominal Size and Threads/in.	Desig- nation	n Class	Max. Allowance [Note (2)]	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Diameter Min. Ma	eter Max.	[Note (4)] Min. Max. T	(4)] Tolerance	
$_{(7)}^{11}$ $_{16}$ -20 or 0.6875-20	N D	2A 3A	0.0013	0.6862	0.6781	: :	0.6537	0.6493	0.004366	0.6267	2B 3B	0.633 0	0.645 0	0.6550 0.6607 0.6550 0.6593	0.0057	0.6875
$(7)^{11}/_{16}$ or 0.6875–24	UNEF	2A 3A	0.0012	0.6863	0.6791	: :	0.6592	0.6552	0.004046	0.6367	2B 3B	0.642 0	0.652 0	0.6604 0.6657 0.6604 0.6643	0.0053	0.6875
$^{11}\!\!/_{16}$ -28 or 0.6875-28 $^{(7)}$	N N	2A 3A	0.0001	0.6864	0.6799	: :	0.6632	0.6594	0.003801	0.6439	2B 3B	0.649 0	0.657 C	0.6643 0.6692 0.6643 0.6680	0.0049	0.6875
(7) $^{11}/_{16}$ -32 or 0.6875-32	N N	2A 3A	0.0011	0.6864	0.6804	: :	0.6661	0.6625	0.003608	0.6492	2B 3B	0.654 0	0.661 C	0.6672 0.6719 0.6672 0.6707	0.0047	0.6875
$\frac{3}{4}$ – 10 or 0.7500 – 10	UNC	1A 2A 3A	0.0018 0.0018 0.0000	0.7482 0.7482 0.7500	0.7288 0.7353 0.7371	0.7288	0.6832 0.6832 0.6850	0.6744 0.6773 0.6806	0.008800 0.005894 0.004400	0.6291 0.6291 0.6309	1B 2B 3B	0.642 0 0.642 0 0.6420 0	0.663 C 0.663 C 0.6545 C	0.6850 0.6965 0.6850 0.6927 0.6850 0.6907	0.0115 0.0077 0.0057	0.7500 0.7500 0.7500
$\frac{3}{4} - 12$ or $0.7500 - 12$	N	2A 3A	0.0017	0.7483	0.7369 0.7386	: :	0.6942	0.6887	0.005524	0.6491	2B 3B	0.660 0	0.678 0	0.6959 0.7031 0.6959 0.7013	0.0072	0.7500
$\frac{3}{4} - 16 \text{ or } 0.7500 - 16$	UNF	1A 2A 3A	0.0015 0.0015 0.0000	0.7485 0.7485 0.7500	0.7343 0.7391 0.7406	: : :	0.7079 0.7079 0.7094	0.7004 0.7029 0.7056	0.007500 0.005024 0.003800	0.6741 0.6741 0.6756	1B 2B 3B	0.682 0 0.682 0 0.6820 0	0.696 0.696 0.6999	0.7094 0.7192 0.7094 0.7159 0.7094 0.7143	0.0098	0.7500 0.7500 0.7500
$\frac{3}{4}$ – 20 or 0.7500 – 20 (7)	UNEF	2A 3A	0.0013	0.7487	0.7406	: :	0.7162 0.7175	0.7118	0.004405	0.6892	2B 3B	0.696 0	0.707 0	0.7175 0.7232 0.7175 0.7218	0.0057	0.7500
$\frac{3}{4}$ – 28 or 0.7500 – 28 (7)	Z D	2A 3A	0.0012	0.7488	0.7423	: :	0.7256	0.7218	0.003840	0.7063	2B 3B	0.711 C 0.7110 C	0.720 C	0.7268 0.7318 0.7268 0.7305	0.0050	0.7500
$\frac{3}{4}$ – 32 or 0.7500 – 32	Z D	2A 3A	0.0011	0.7489	0.7429	: :	0.7286	0.7250	0.003647	0.7117	2B 3B	0.716 C 0.7160 C	0.724 C 0.7219 C	0.7297 0.7344 0.7297 0.7333	0.0047	0.7500
(7) 13 / ₁₆ -12 or 0.8125-12 (7)	N D	2A 3A	0.0017	0.8108	0.7994	: :	0.7567	0.7511	0.005561	0.7116	2B 3B	0.722	0.740 C	0.7584 0.7656 0.7584 0.7638	0.0072	0.8125 0.8125
(7) 13 / ₁₆ -16 or 0.8125-16 (7)	Z O	2A 3A	0.0015	0.8110	0.8016	: :	0.7704	0.7655	0.004887	0.7366	2B 3B	0.745 C 0.7450 C	0.759 C	0.7719 0.7783 0.7719 0.7767	0.0064	0.8125 0.8125

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					E	External [Note (1)]	ote (1)]						Int	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	ter	Pitcl Func	Pitch Diameter and Functional Diameter [Note (4)]		UNR Minor Diameter, Max.				Pitch Functi	Pitch Diameter and Functional Diameter	and neter	Major
Nominal Size and	Desig-			Max.	1		Max.		Tolerance	[Note (6)]	ī	ä	meter	_	<u></u>		Diameter,
Inreads/in.	nation	class	Class Allowance [Note (2)]	[Note (2)]	MID.	[Note (3)]	[Note (2)]	WIII.	[(c) along	(Ket.)	class	MIn.	Max.	MIn.	Max.	lolerance	MIn.
(7) $^{13}/_{16}$ -20 or 0.8125-20 (7)	UNEF	2A 3A	0.0013	0.8112	0.8031	: :	0.7787	0.7743	0.004442	0.7517	2B 3B	0.758 0.0.7580 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.770 0	0.7800 0	0.7858	0.0058 0	0.8125 0.8125
(7) 13 / ₁₆ -28 or 0.8125-28 (7)	N S	2A 3A	0.0012	0.8113	0.8048	: :	0.7881	0.7842	0.003877	0.7688	2B 3B	0.774 0.0.7740 0.	0.782 0 0.7801 0	0.7893 (0.7893 (0.7943	0.0050 0	0.8125 0.8125
(7) $^{13}/_{16}$ -32 or 0.8125-32 (7)	N O	2A 3A	0.0011	0.8114	0.8054	: :	0.7911	0.7874 0.7894	0.003684	0.7742	2B 3B	0.779 0.0.7790 0.	0.786 0 0.7844 0	0.7922 0	0.7970	0.0048 0	0.8125 0.8125
$\frac{7}{8} - 9 \text{ or } 0.8750 - 9$	UNC	1A 2A 3A	0.0019 0.0019 0.0000	0.8731 0.8731 0.8750	0.8523 0.8592 0.8611	0.8523	0.8009 0.8009 0.8028	0.7914 0.7946 0.7981	0.009500 0.006305 0.004700	0.7408 0.7408 0.7427	1B 2B 3B	0.755 0. 0.755 0. 0.7550 0.	0.778 0 0.778 0 0.7681 0	0.8028 C	0.8151 0.8110 0.8089	0.0123 C 0.0082 C 0.0061 C	0.8750 0.8750 0.8750
$(7)^{7/8}$ -12 or 0.8750-12 (7)	N S	2A 3A	0.0017	0.8733	0.8619	: :	0.8192	0.8136	0.005596	0.7741	2B 3B	0.785 0.000.7850 0.000.0000.0000000000000000000000000	0.803 0 0.7952 0	0.8209 0	0.8282	0.0073 0	0.8750
(7) $\frac{7}{8}$ or 0.8750–14 (7)	UNF	1A 2A 3A	0.0016 0.0016 0.0000	0.8734 0.8734 0.8750	0.8579 0.8631 0.8647	: : :	0.8270 0.8270 0.8286	0.8189 0.8216 0.8245	0.008100 0.005420 0.004100	0.7883 0.7883 0.7899	1B 2B 3B	0.798 0.0798 0.0798 0.07980 0.07980 0.07980	0.813 0 0.813 0 0.8067 0	0.8286 C 0.8286 C 0.8286 C	0.8392 0.8356 0.8339	0.0106 0 0.0070 0 0.0053 0	0.8750 0.8750 0.8750
$(7)^{7/8}-16$ or $0.8750-16$	N S	2A 3A	0.0015	0.8735	0.8641	: :	0.8329	0.8280	0.004922	0.7991	2B 3B	0.807 0.0	0.821 0 0.8159 0	0.8344 C	0.8408	0.0064 0	0.8750
$(7)^{7}/_{8}$ -20 or 0.8750-20 (7)	UNEF	2A 3A ⁷	0.0013	0.8737	0.8656	: :	0.8412	0.8367	0.004477	0.8142	2B 3B	0.821 0. 0.8210 0.	0.832 0 0.8286 0	0.8425 C	0.8483	0.0058 0	0.8750
$(7)^{7/8}$ -28 or 0.8750-28	N O	2A 3A ⁷	0.0012	0.8738	0.8673	: :	0.8506	0.8467	0.003912	0.8313	2B 3B	0.836 0.8360 0.8	0.845 0 0.8426 0	0.8518 C	0.8569	0.0051 C	0.8750
$(7)^{7/8}$ or 0.8750–32 $(7)^{7/8}$	N D	2A 3A	0.0001	0.8739	0.8679	: :	0.8536	0.8499	0.003719	0.8367	2B 3B	0.841 0. 0.8410 0.	0.849 0 0.8469 0	0.8547 C	0.8595	0.0048 0	0.8750
$_{(7)}^{15}/_{16}$ -12 or 0.9375-12	N D	2A 3A ⁷	0.0017	0.9358	0.9244	: :	0.8817	0.8761	0.005629	0.8366	2B 3B	0.847 0.8 0.8470 0.8	0.865 0 0.8575 0	0.8834 C	0.8907	0.0073 0	0.9375
(7) $^{15}/_{16}$ -16 or 0.9375-16	N D	2A 3A	0.0015	0.9360	0.9266	: :	0.8954	0.8904	0.004955	0.8616	2B 3B	0.870 0.8	0.884 0 0.8784 0	0.8969 0	0.9033	0.0064 0.0048 0	0.9375

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					"	External [Note (1)]	ote (1)]						드	Internal [Note (1)]	lote (1)]		
	Series			Maj	Major Diameter	ter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	er and ameter i]	UNR Minor Diameter,				Pitch Funct	Pitch Diameter and Functional Diameter	er and ameter	Major
Nominal Size and Threads/in.	Desig- nation	Class	Max. Class Allowance [Note (2)]	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Minor D Min.	Minor Diameter Min. Max.	Min.	[Note (4)] Max. 7	J Tolerance	Diameter, Min.
$^{15}/_{16} - 20 \text{ or } 0.9375 - 20$	UNEF	2A 3A	0.0014	0.9361	0.9280	: :	0.9036	0.8991	0.004510	0.8766	2B (0.883	0.895	0.9050	0.9109	0.0059	0.9375
(7) $^{15}/_{16}$ - 28 or 0.9375 - 28 (7)	N	2A 3A	0.0012	0.9363	0.9298	: :	0.9131	0.9092	0.003945	0.8938	2B (0.899	0.907	0.9143	0.9194	0.0051	0.9375
$^{15}/_{16} - 32$ or $0.9375 - 32$	N	2A 3A	0.0001	0.9364	0.9304	: :	0.9161	0.9123	0.003752	0.8992	2B (0.904	0.9094	0.9172	0.9221	0.0049	0.9375
(7) 1 – 8 or 1.0000 – 8	UNC	1A 2A 3A	0.0020 0.0020 0.0000	0.9980 0.9980 1.0000	0.9755 0.9830 0.9850	0.9755	0.9168 0.9168 0.9188	0.9067 0.9101 0.9137	0.010100 0.006750 0.005100	0.8492 0.8492 0.8512	1B (2B (3B (0.865 0.865 0.8650	0.89 0.890 0.8797	0.9188 0.9188 0.9188	0.9320 0.9276 0.9254	0.0132 0.0088 0.0066	1.0000 1.0000 1.0000
1 – 12 or 1.0000 – 12	UNF	1A 2A 3A	0.0018 0.0018 0.0000	0.9982 0.9982 1.0000	0.9810 0.9868 0.9886	: : :	0.9441 0.9441 0.9459	0.9353 0.9382 0.9415	0.008800 0.005862 0.004400	0.8990 0.8990 0.9008	1B (2B (3B (0.91 0.910 0.9100	0.928 0.928 0.9198	0.9459 0.9459 0.9459	0.9573 0.9535 0.9516	0.0114 0.0076 0.0057	1.0000 1.0000 1.0000
(7) 1 – 14 or 1.0000 – 14 (7)	UNS (8)	2A 3A	0.0000	0.9984	0.9881	: :	0.9520	0.9467	0.005285	0.9133	2B (0.923	0.938	0.9536	0.9605	0.0069	1.0000
1 – 16 or 1.0000 – 16	N	2A 3A	0.0015	0.9985	0.9891	: :	0.9579	0.9529	0.004987	0.9241	2B (0.932	0.946	0.9594	0.9659	0.0065	1.0000
1 – 20 or 1.0000 – 20	UNEF	2A 3A	0.0014	0.9986	0.9905	: :	0.9661	0.9616	0.004542	0.9391	2B (0.946	0.957	0.9675	0.9734	0.0059	1.0000
1 – 28 or 1.0000 – 28	N	2A 3A	0.0012	0.9988	0.9923	: :	0.9756	0.9716	0.003977	0.9563	2B (0.961 0.9610	0.970	0.9768	0.9820	0.0052	1.0000
1 – 32 or 1.0000 – 32	N	2A 3A	0.0001	0.9989	0.9929	: :	0.9786	0.9748	0.003784	0.9617	2B (0.966	0.974	0.9797	0.9846	0.0049	1.0000
$1^{1}/_{16} - 8 \text{ or } 1.0625 - 8$	N	2A 3A	0.0020	1.0605	1.0455	: :	0.9793	0.9725	0.006827	0.9117	2B (0.927	0.952	0.9813	0.9902	0.0089	1.0625 1.0625
$1^{1}/_{16} - 12$ or $1.0625 - 12$	N O	2A 3A	0.00017	1.0608	1.0494	: :	1.0067	1.0010	0.005692	0.9616	2B (0.972	0.990	1.0084	1.0158	0.0074	1.0625 1.0625
$1\frac{1}{16} - 16 \text{ or } 1.0625 - 16$	N O	2A 3A	0.0015	1.0610	1.0516	: :	1.0204	1.0154	0.005018	0.9866	2B (0.995	1.009	1.0219	1.0284	0.0065	1.0625 1.0625

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					<u>ن</u>	External [Note (1)]	ote (1)]						Inte	Internal [Note (1)]	te (1)]		
	Series			Maj	Major Diameter	ter	Pitch F Diame	Pitch Diameter and Functional Diameter [Note (4)]		UNR Minor Diameter, Max				Pitch [Functio	Pitch Diameter and Functional Diameter	and ieter	Major
Nominal Size and Threads/in.	Desig- nation	Class	- Class Allowance [Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	M Class	Minor Diameter Min. Max.	ļ	Min.	[Note (4)] Max. To)] Tolerance	Diameter, Min.
(7) $1^{1/16}_{116} - 18$ or $1.0625 - 18$	UNEF	2A 3A	0.0014	1.0611	1.0524	: :	1.0250 1	1.0202	0.004776	0.9949	2B 1.0	1.002 1.	1.015 1.0105 1.0	1.0264 1.	1.0326 0	0.0062 1	1.0625
(7) $1\frac{1}{16} - 20$ or $1.0625 - 20$	N	2A 3A	0.0014	1.0611	1.0530	: :	1.0286 1	1.0240	0.004573	1.0016	2B 1.0	1.0080 1.0080 1.0	1.020 1.0 1.0161 1.0	1.0300 1. 1.0300 1.	1.0359 0 1.0345 0	0.0059 1	1.0625 1.0625
$1^{1}/_{16} - 28$ or $1.0625 - 28$	N	2A 3A	0.0012	1.0613	1.0548	: :	1.0381 1	1.0341	0.004008	1.0188	2B 1.0	1.024 1. 1.0240 1.	1.032 1.0 1.0301 1.0	1.0393 1. 1.0393 1.	1.0445 0 1.0432 0	0.0052 1 0.0039 1	1.0625 1.0625
$1\frac{1}{3}$ or $1.1250 - 7$	UNC	1A 2A 3A	0.0022 0.0022 0.0000	1.1228 1.1228 1.1250	1.0982 1.1064 1.1086	1.0982	1.0300 1.0300 1.0322	1.0191 1.0228 1.0268	0.010900 0.007250 0.005400	0.9527 0.9527 0.9549	1B 0. 2B 0. 3B 0.	0.97 0.970 0.970 0.970 0.970	0.998 1.0 0.998 1.0 0.9875 1.0	1.0322 1. 1.0322 1. 1.0322 1.	1.0463 0 1.0416 0 1.0393 0	0.0141 1 0.0094 1 0.0071 1	1.1250 1.1250 1.1250
$1\frac{1}{8} - 8$ or $1.1250 - 8$	N	2A 3A	0.0021	1.1229	1.1079	1.1004	1.0417 1	1.0348	0.006901	0.9741	2B 0.9	0.990 1.1 0.9900 1.1	1.015 1.0 1.0047 1.0	1.0438 1. 1.0438 1.	1.0528 0 1.0505 0	0.0090 1	1.1250 1.1250
$1\frac{1}{8} - 12$ or $1.1250 - 12$	UNF	1A 2A 3A	0.0018 0.0018 0.0000	1.1232 1.1232 1.1250	1.1060 1.1118 1.1136	: : :	1.0691 1.0691 1.0709	1.0601 1.0631 1.0664	0.009000 0.006013 0.004500	1.0240 1.0240 1.0258	18 1.0 28 1.0 38 1.0	1.035 1. 1.035 1. 1.0350 1.	1.053 1.0 1.053 1.0 1.0448 1.0	1.0709 1. 1.0709 1. 1.0709 1.	1.0826 0 1.0787 0 1.0768 0	0.0117 1 0.0078 1 0.0059 1	1.1250 1.1250 1.1250
(7) $1\frac{1}{8} - 16$ or $1.1250 - 16$	N	2A 3A	0.0015	1.1235	1.1141	: :	1.0829 1	1.0806	0.005047	1.0491	2B 1.0	1.057 1.0570 1.0	1.071 1.0 1.0659 1.0	1.0844 1. 1.0844 1.	1.0910 0 1.0893 0	0.0066 1	1.1250
(7) $1\frac{1}{8} - 18$ or $1.1250 - 18$	UNEF	2A 3A	0.0014	1.1236	1.1149	: :	1.0875 1	1.0827	0.004805	1.0574	2B 1.0	1.0650 1.0650 1.0	1.078 1.0 1.0730 1.0	1.0889 1. 1.0889 1.	1.0951 0 1.0936 0	0.0062 1	1.1250
(7) $1\frac{1}{8} - 20$ or $1.1250 - 20$	N	2A 3A	0.0014	1.1236	1.1155	: :	1.0911 1	1.0865	0.004602	1.0641	2B 1.0	1.071 1.0710 1.0710 1.0	1.082 1.0 1.0786 1.0	1.0925 1. 1.0925 1.	1.0985 0 1.0970 0	0.0060 1	1.1250
$1\frac{1}{8} - 28$ or $1.1250 - 28$	N	2A 3A	0.0012	1.1238	1.1173	: :	1.1006 1	1.0966	0.004037	1.0813	2B 1.0	1.0860 1.0860 1.0	1.095 1.7	1.1018 1. 1.1018 1.	1.1070 0 1.1057 0	0.0052 1 0.0039 1	1.1250
$1\frac{3}{16} - 8$ or $1.1875 - 8$	N	2A 3A	0.0021	1.1854	1.1704	: :	1.1042 1	1.0972	0.006973	1.0366	2B 1.0	1.052 1.1	1.077 1.	1.1063 1. 1.1063 1.	1.1154 0 1.1131 0	0.0091 1	1.1875 1.1875
(7) $1\frac{3}{16} - 12$ or $1.1875 - 12$	S	2A 3A	0.0017	1.1858	1.1744	: :	1.1317 1	1.1260	0.005749	1.0866	2B 1.0	1.097 1. 1.0970 1.	1.115 1.11073 1.	1.1334 1. 1.1334 1.	1.1409 0 1.1390 0	0.0075 1	1.1875 1.1875

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					Ð	External [Note (1)]	ote (1)]						Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	eter	Pitch I Diam	Pitch Diameter and Functional Diameter [Note (4)]	er and al te (4)]	UNR Minor Diameter,			Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Maior
Nominal Size and Threads/in.	Desig- nation		Class Allowance [N	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Mino Class Min.	Minor Diameter Min. Max.	Min.	[Note (4)] Max.	Tolerance	Diameter, Min.
$1^{3}/_{16} - 16 \text{ or } 1.1875 - 16$	N	2A 3A	0.0015	1.1860	1.1766	: :	1.1454	1.1403	0.005075	1.1116	2B 1.120 3B 1.1200) 1.134)0 1.1284	1.1469	1.1535	0.0066	1.1875
(7) $1^3/_{16} - 18$ or $1.1875 - 18$	UNEF	2A 3A	0.0014	1.1861	1.1774	: :	1.1500	1.1452	0.004833	1.1199	2B 1.127 3B 1.1270	7 1.140 70 1.1355	1.1514	1.1577	0.0063	1.1875
(7) $1^3/_{16} - 20$ or $1.1875 - 20$	N	2A 3A	0.0014	1.1861	1.1780	: :	1.1536	1.1490	0.004630	1.1266	2B 1.133 3B 1.1330	3 1.145 30 1.1411	1.1550	1.1610	0.0060	1.1875
$1\frac{3}{16} - 28$ or $1.1875 - 28$	N	2A 3A	0.0012	1.1863	1.1798	: :	1.1631	1.1590	0.004065	1.1438	2B 1.149 3B 1.1490) 1.157 90 1.1551	1.1643	1.1696	0.0053	1.1875
$1\frac{7}{4} - 7$ or $1.2500 - 7$	UNC	1A 2A 3A	0.0022 0.0022 0.0000	1.2478 1.2478 1.2500	1.2232 1.2314 1.2336	1.2232	1.1550 1.1550 1.1572	1.1439 1.1476 1.1517	0.011100 0.007392 0.005500	1.0777 1.0777 1.0799	1B 1.095 2B 1.095 3B 1.0950	5 1.123 5 1.123 50 1.1125	1.1572 1.1572 1.1572	1.1716 1.1668 1.1644	0.0144 0.0096 0.0072	1.2500 1.2500 1.2500
$1\frac{1}{4} - 8 \text{ or } 1.2500 - 8$	N	2A 3A	0.0021	1.2479	1.2329	1.2254	1.1667	1.1597	0.007043	1.0991	2B 1.115 3B 1.1150	5 1.140 50 1.1297	1.1688	1.1780	0.0092	1.2500
$1\frac{7}{4} - 12$ or $1.2500 - 12$	UNF	1A 2A 3A	0.0018 0.0018 0.0000	1.2482 1.2482 1.2500	1.2310 1.2368 1.2386	: : :	1.1941 1.1941 1.1959	1.1849 1.1879 1.1913	0.009200 0.006155 0.004600	1.1490 1.1490 1.1508	1B 1.16 2B 1.160 3B 1.1600	1.178) 1.178)0 1.1698	1.1959 1.1959 1.1959	1.2079 1.2039 1.2019	0.0120 0.0080 0.0060	1.2500 1.2500 1.2500
$1\frac{1}{4} - 16 \text{ or } 1.2500 - 16$	N	2A 3A	0.0015	1.2485	1.2391 1.2406	: :	1.2079	1.2028 1.2056	0.005103	1.1741	2B 1.182 3B 1.1820	2 1.196 20 1.1909	1.2094	1.2160	0.0066	1.2500
$1\frac{1}{4} - 18$ or $1.2500 - 18$	UNEF	2A 3A	0.0015	1.2485	1.2398 1.2413	: :	1.2124	1.2075	0.004861	1.1823	2B 1.190 3B 1.1900) 1.203 00 1.1980	1.2139	1.2202	0.0063	1.2500
$1\frac{1}{4} - 20 \text{ or } 1.2500 - 20$	N	2A 3A	0.0014	1.2486	1.2405 1.2419	: :	1.2161	1.2114	0.004658	1.1891	2B 1.196 3B 1.1960	5 1.207 50 1.2036	1.2175	1.2236	0.0061	1.2500
$1\frac{1}{4} - 28$ or $1.2500 - 28$	N	2A 3A	0.0012	1.2488	1.2423 1.2435	: :	1.2256	1.2215	0.004093	1.2063	2B 1.211 3B 1.2110	1.220 10 1.2176	1.2268	1.2321	0.0053	1.2500
$1^{5}/_{16} - 8$ or $1.3125 - 8$	N	2A 3A	0.0021	1.3104	1.2954 1.2975	: :	1.2392	1.2221	0.007110	1.1616	2B 1.177 3B 1.1770	7 1.202 70 1.1922	1.2313	1.2405	0.0092	1.3125

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	lote (1)]						II.	Internal [Note (1)]	ote (1)]		
	Series			Maji	Major Diameter	eter	Pitch Fund	Pitch Diameter and Functional Diameter [Note (4)]		UNR Minor Diameter, Max.				Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Maior
Nominal Size and Threads/in.	Desig- nation	Class ,	Allowance	Desig- nation Class Allowance [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Minor D	Minor Diameter Min. Max.	Min.	[Note (4)] Max. T	olerance	Diameter, Min.
$1^{5}/_{16} - 12 \text{ or } 1.3125 - 12$	N n	2A 3A	0.0000		1.2994		1.2567	1.2509	0.005803	1.2116	2B 1 3B 1	1.222	1	1.2584	1 ~ -		1.3125
(7) $1^{5}/_{16} - 16$ or $1.3125 - 16$	N	2A 3A	0.0015	1.3110	1.3016	: :	1.2704	1.2653 1.2681	0.005129	1.2366	2B 1 3B 1	1.245	1.259	1.2719	1.2786	0.0067	1.3125 1.3125
(7) $1^{5}/_{16} - 18$ or $1.3125 - 18$	UNEF	2A 3A	0.0015	1.3110	1.3023	: :	1.2749	1.2700	0.004887	1.2448	2B 1 3B 1	1.252	1.265	1.2764	1.2828	0.0064	1.3125 1.3125
$1^{5}/_{16} - 20 \text{ or } 1.3125 - 20$	N	2A 3A	0.0014	1.3111	1.3030	: :	1.2786	1.2739	0.004684	1.2516	2B 1 3B 1	1.258	1.270	1.2800	1.2861 1.2846	0.0061	1.3125 1.3125
(7) $1^{5}/_{16} - 28$ or $1.3125 - 28$	N	2A 3A	0.0012	1.3113	1.3048	: :	1.2881	1.2840	0.004119	1.2688	2B 1 3B 1	1.274	1.282	1.2893	1.2947	0.0054	1.3125 1.3125
$1\frac{3}{8} - 6$ or $1.3750 - 6$	UNC	1A 2A 3A	0.0024 0.0024 0.0000	1.3726 1.3726 1.3750	1.3453 1.3544 1.3568	1.3453	1.2643 1.2643 1.2667	1.2523 1.2563 1.2607	0.012000 0.007970 0.006000	1.1741 1.1741 1.1765	18 1 28 1 38 1	1.195 1.195 1.1950	1.225 1.225 1.2146	1.2667 1.2667 1.2667	1.2822 1.2771 1.2745	0.0155 0.0104 0.0078	1.3750 1.3750 1.3750
$1\frac{3}{8} - 8$ or $1.3750 - 8$	N	2A 3A	0.0022	1.3728	1.3578	1.3503	1.2916	1.2844	0.007177	1.2240	2B 1 3B 1	1.240	1.265	1.2938	1.3031	0.0093	1.3750
13/8 – 12 or 1.3750 – 12	UNF	1A 2A 3A	0.0019 0.0019 0.0000	1.3731 1.3731 1.3750	1.3559 1.3617 1.3636	: : :	1.3190 1.3190 1.3209	1.3096 1.3127 1.3162	0.009400 0.006289 0.004700	1.2739 1.2739 1.2758	1B 1 2B 1 3B 1	1.285 1.285 1.2850	1.303 1.303 1.2948	1.3209 1.3209 1.3209	1.3332 1.3291 1.3270	0.0123 0.0082 0.0061	1.3750 1.3750 1.3750
(7) $1\frac{3}{8} - 16$ or $1.3750 - 16$	N	2A 3A	0.0015	1.3735	1.3641 1.3656	: :	1.3329	1.3277	0.005155	1.2991	2B 1 3B 1	1.307	1.321	1.3344	1.3411	0.0067	1.3750
(7) $1\frac{3}{8} - 18$ or $1.3750 - 18$	UNEF	2A 3A	0.0015	1.3735	1.3648	: :	1.3374	1.3325	0.004913	1.3073	2B 1 3B 1	1.315	1.328	1.3389	1.3453	0.0064	1.3750
$1\frac{3}{8} - 20 \text{ or } 1.3750 - 20$	N N	2A 3A	0.0014	1.3736	1.3655 1.3669	: :	1.3411	1.3364	0.004710	1.3141	2B 1 3B 1	1.321	1.332	1.3425	1.3486	0.0061	1.3750
(7) $1\frac{3}{8} - 28$ or $1.3750 - 28$	N	2A 3A	0.0012	1.3738	1.3673	: :	1.3506	1.3465	0.004145	1.3313	2B 1 3B 1	1.336	1.345	1.3518	1.3572	0.0054	1.3750 1.3750

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					4	External [Note (1)]	lote (1)]						In	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	eter	Pitch Diam	Pitch Diameter and Functional Diameter [Note (4)]	er and al te (4)]	UNR Minor Diameter, Max				Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Desig- nation	Class ,	Desig- nation Class Allowance [Note (2)]	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	<u> </u>	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (4)] Max. 1	olerance	Diameter,
$1^{7}/_{16} - 6 \text{ or } 1.4375 - 6$	S	2A 3A	0.0024	1.4351	1.4169	: :	1.3268	1.3188	0.008034	1.2366	2B 3B	1.257	1.288 1	1.3292 1	1.3396	0.0078	1.4375
$17/_{16} - 8 \text{ or } 1.4375 - 8$	N O	2A 3A	0.0022	1.4353	1.4203 1.4225	: :	1.3541	1.3469	0.007241	1.2865	2B 3B	1.302	1.327	1.3563 1 1.3563 1	1.3657	0.0094	1.4375 1.4375
$1^{7}/_{16} - 12$ or $1.4375 - 12$	N O	2A 3A	0.0018	1.4357	1.4243 1.4261	: :	1.3816	1.3757	0.005854	1.3365	2B 3B	1.347	1.365	1.3834 1	1.3910	0.0076	1.4375 1.4375
(7) $17/_{16} - 16$ or $1.4375 - 16$	N D	2A 3A	0.0016	1.4359	1.4265 1.4281	: :	1.3953	1.3901	0.005180	1.3615	2B 3B	1.370	1.384	1.3969 1	1.4036	0.0067	1.4375 1.4375
(7) $1\frac{7}{16} - 18$ or $1.4375 - 18$	UNEF	2A 3A	0.0015	1.4360	1.4273 1.4288	: :	1.3999	1.3950	0.004938	1.3698	2B 3B	1.377	1.390	1.4014 1 1.4014 1	1.4078	0.0064	1.4375 1.4375
(7) $1^{7}/_{16} - 20$ or $1.4375 - 20$	N O	2A 3A	0.0014	1.4361	1.4280 1.4294	: :	1.4036	1.3989	0.004735	1.3766	2B 3B	1.383	1.395	1.4050 1	1.4112 1.4096	0.0062	1.4375
(7) $17/_{16} - 28$ or $1.4375 - 28$	N	2A 3A	0.0013	1.4362	1.4297	: :	1.4130	1.4088	0.004170	1.3937	2B 3B	1.399	1.407	1.4143 1 1.4143 1	1.4197 1.4184	0.0054	1.4375 1.4375
$1\frac{7}{2} - 6$ or $1.5000 - 6$	ONC	1A 2A 3A	0.0024 0.0024 0.0000	1.4976 1.4976 1.5000	1.4703 1.4794 1.4818	1.4703	1.3893 1.3893 1.3917	1.3772 1.3812 1.3856	0.012100 0.008097 0.006100	1.2991 1.2991 1.3015	1B 2B 3B	1.32 1.320 1.3200	1.35 1.350 1.3396	1.3917 1 1.3917 1 1.3917 1	1.4075 1.4022 1.3996	0.0158 0.0105 0.0079	1.5000 1.5000 1.5000
$1\frac{1}{2} - 8$ or $1.5000 - 8$	N D	2A 3A	0.0022	1.4978	1.4828 1.4850	1.4753	1.4166	1.4093	0.007304	1.3490	2B 3B	1.365	1.390	1.4188 1	1.4283	0.0095	1.5000
$1\frac{7}{2} - 12$ or $1.5000 - 12$	UNF	1A 2A 3A	0.0019 0.0019 0.0000	1.4981 1.4981 1.5000	1.4809 1.4867 1.4886	: : :	1.4440 1.4440 1.4459	1.4344 1.4376 1.4411	0.009600 0.006416 0.004800	1.3989 1.3989 1.4008	1B 2B 3B	1.41 1.410 1.4100	1.428 1.428 1.4198	1.4459 1 1.4459 1 1.4459 1	1.4584 1.4542 1.4522	0.0125 0.0083 0.0063	1.5000 1.5000 1.5000
(7) $1\frac{1}{2} - 16$ or $1.5000 - 16$	N D	2A 3A	0.0016	1.4984	1.4890	: :	1.4578	1.4526 1.4555	0.005204	1.4240 1.4256	2B 3B	1.432 1.4320	1.446	1.4594 1 1.4594 1	1.4662 1.4645	0.0068	1.5000
(7) $1\frac{1}{2} - 18$ or $1.5000 - 18$	UNEF	2A 3A	0.0015	1.4985	1.4898	: :	1.4624	1.4574 1.4602	0.004962	1.4323 1.4338	2B 3B	1.440	1.453 1	1.4639 1 1.4639 1	1.4704	0.0065	1.5000

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

				1	External [Note (1)]	lote (1)]						u	Internal [Note (1)]	ote (1)]		
	Series			Major Diameter	eter	Pitch Functi	Pitch Diameter and Functional Diameter [Note (4)]	_	UNR Minor Diameter, Max				Pitch Funct	Pitch Diameter and Functional Diameter	ır and meter	Major
Nominal Size and Threads/in.	Desig- nation	Class	Desig- nation Class Allowance [Note (2)]	Max. [Note (2)] Min.	Min. [Note (3)]	Min. Max. [Note (3)] [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (4)] Max.] Tolerance	Diameter, Min.
$1\frac{1}{2}$ - 20 or 1.5000 - 20 (7)	S	2A 3A	0.0014	1.4986 1.4905 1.5000 1.4919	: :	1.4661 1	1.4613	0.004759	1.4391	2B 3B	1.446	1.457	1.4675	1.4737	0.0062	1.5000
$1\frac{1}{2}$ – 28 or 1.5000 – 28	N S	2A 3A	0.00013	1.4987 1.4922 1.5000 1.4935	: :	1.4755 1 1.4768 1	1.4713	0.004194	1.4562	2B 3B	1.461	1.470	1.4768	1.4823	0.0055	1.5000
$1^{9}/_{16} - 6$ or $1.5625 - 6$	N S	2A 3A	0.0024	1.5601 1.5419 1.5625 1.5443	: :	1.4518 1 1.4542 1	1.4436	0.008159	1.3616	2B 3B	1.382	1.413	1.4542 1.4542	1.4648	0.0106	1.5625 1.5625
$1\%_{16} - 8 \text{ or } 1.5625 - 8$	N D	2A 3A	0.0022	1.5603 1.5453 1.5625 1.5475	: :	1.4791 1 1.4813 1	1.4717	0.007366	1.4115 1.4137	2B 3B	1.427	1.452	1.4813	1.4909	0.0096	1.5625 1.5625
(7) $1^{9}/_{16} - 12$ or $1.5625 - 12$	N O	2A 3A	0.0018	1.5607 1.5493 1.5625 1.5511	: :	1.5066 1 1.5084 1	1.5007	0.005902	1.4615	2B 3B	1.472	1.490	1.5084	1.5161 1.5142	0.0077	1.5625 1.5625
$1^9/_{16} - 16 \text{ or } 1.5625 - 16$	N O	2A 3A	0.0016	1.5609 1.5515 1.5625 1.5531	: :	1.5203 1 1.5219 1	1.5151 1.5180	0.005228	1.4865	2B 3B	1.495	1.509	1.5219	1.5287	0.0068	1.5625 1.5625
$1^9\!\!/_{16} - 18$ or $1.5625 - 18$	UNEF	2A 3A	0.0015	1.5610 1.5523 1.5625 1.5538	: :	1.5249 1	1.5199	0.004986	1.4948	2B 3B	1.502	1.515	1.5264	1.5329	0.0065	1.5625 1.5625
$1^{9}/_{16} - 20 \text{ or } 1.5625 - 20$	N O	2A 3A	0.0014	1.5611 1.5530 1.5625 1.5544	: :	1.5286 1 1.5300 1	1.5238 1.5264	0.004783	1.5016	2B 3B	1.508	1.520	1.5300	1.5362 1.5347	0.0062	1.5625 1.5625
$1\frac{5}{8} - 6$ or $1.6250 - 6$	N O	2A 3A	0.0025	1.6225 1.6043 1.6250 1.6068	: :	1.5142 1 1.5167 1	1.5060	0.008219	1.4240	2B 3B	1.445	1.475	1.5167	1.5274 1.5247	0.0107	1.6250 1.6250
$1^{5}/_{8} - 8$ or $1.6250 - 8$	N O	2A 3A	0.0022	1.6228 1.6078 1.6250 1.6100	1.6003	1.5416 1 1.5438 1	1.5342 1.5382	0.007426	1.4740	2B 3B	1.490	1.515	1.5438 1.5438	1.5535	0.0097	1.6250 1.6250
(7) $1\frac{5}{8} - 12$ or $1.6250 - 12$	N O	2A 3A	0.0018	1.6232 1.6118 1.6250 1.6136	: :	1.5691 1	1.5632 1.5665	0.005925	1.5240	2B 3B	1.535	1.553	1.5709	1.5786	0.0077	1.6250
(7) $1\frac{5}{8} - 16$ or $1.6250 - 16$	N O	2A 3A	0.0016	1.6234 1.6140 1.6250 1.6156	: :	1.5828 1	1.5775	0.005251	1.5490	2B 3B	1.557	1.571	1.5844 1.5844	1.5912 1.5895	0.0068	1.6250 1.6250
(7) $1\frac{5}{8} - 18$ or $1.6250 - 18$	UNEF	2A 3A	0.0015	1.6235 1.6148 1.6250 1.6163	: :	1.5874 1 1.5889 1	1.5824	0.005009	1.5573 1.5588	2B 3B	1.565	1.578	1.5889	1.5954 1.5938	0.0065	1.6250 1.6250

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					 ॼ	External [Note (1)]	te (1)]						트	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	ter	Pitch Functi [Pitch Diameter and Functional Diameter [Note (4)]		UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Desig- nation	r n Class	Desig- nation Class Allowance [N	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[6]	_ Class	Minor Diameter Min. Max.	ameter Max.	Min.	[Note (4)] Max	Folerance	Diameter, Min.
(7) $1\frac{5}{8} - 20$ or $1.6250 - 20$	N	2A 3A	0.0014	1.6236	1.6155	: :	1.5911	1.5863	0.004806	1.5641	2B 1.	1.571 1	1.582 1	1.5925 1	1.5987	0.0062	1.6250
$1^{11}/_{16} - 6$ or $1.6875 - 6$	N	2A 3A	0.0025	1.6850	1.6668	: :	1.5767	1.5684	0.008278	1.4865	2B 1.	1.507 1	1.538 1	1.5792 1	1.5900	0.0081	1.6875
$1^{11}/_{16} - 8$ or $1.6875 - 8$	N	2A 3A	0.0022	1.6853	1.6703	: :	1.6041	1.5966	0.007485	1.5365 1.5387	2B 1.	1.552 1 1.5520 1	1.577 1	1.6063 1	1.6160 1.6136	0.0097	1.6875
(7) $1^{11}/_{16} - 12$ or $1.6875 - 12$	N	2A 3A	0.0018	1.6857	1.6743	: :	1.6316	1.6257	0.005947	1.5865 1.5883	2B 1 3B 1	1.597 1 1.5970 1	1.615 1	1.6334 1	1.6411	0.0077	1.6875
$1^{11}/_{16} - 16 \text{ or } 1.6875 - 16$	N	2A 3A	0.0016	1.6859	1.6765	: :	1.6453	1.6400	0.005273	1.6115	2B 1.	1.620 1	1.634 1.6284 1	1.6469 1	1.6538	0.0069	1.6875
(7) $1^{11}/_{16} - 18$ or $1.6875 - 18$	UNEF	: 2A 3A	0.0015	1.6860	1.6773	: :	1.6499	1.6449	0.005031	1.6198	2B 1 3B 1	1.627 1 1.6270 1	1.640 1	1.6514 1	1.6579	0.0065	1.6875
(7) $1^{11}/_{16} - 20$ or $1.6875 - 20$	N	2A 3A	0.0014	1.6861	1.6780	: :	1.6536	1.6488	0.004828	1.6266	2B 1.	1.633 1	1.645 1	1.6550 1	1.6613	0.0063	1.6875
(7) $1\frac{3}{4}$ - 5 or 1.7500 - 5 (7)	UNC	1A 2A 3A	0.0027 0.0027 0.0000	1.7473 1.7473 1.7500	1.7165 1.7268 1.7295	1.7165	1.6174 1.6174 1.6201	1.6040 1.6085 1.6134	0.013400 0.008922 0.006700	1.5091 1.5091 1.5118	18 1 28 1 38 1	1.533 1 1.533 1 1.5330 1	1.567 1 1.567 1 1.5575 1	1.6201 1.6201 1.6201	1.6375 1.6317 1.6288	0.0174 0.0116 0.0087	1.7500 1.7500 1.7500
$1\frac{3}{4} - 6$ or $1.7500 - 6$	N	2A 3A	0.0025	1.7475	1.7293	: :	1.6392	1.6309	0.008335	1.5490	2B 1.	1.570 1	1.600 1	1.6417 1	1.6525 1.6498	0.0081	1.7500
$1\frac{3}{4} - 8 \text{ or } 1.7500 - 8$	N	2A 3A	0.0023	1.7477	1.7327	1.7252	1.6665	1.6590	0.007542	1.5989	2B 1.	1.615 1 1.6150 1	1.640 1	1.6688 1	1.6786	0.0098	1.7500
$1\frac{3}{4} - 12$ or $1.7500 - 12$	N	2A 3A	0.0018	1.7482	1.7368	: :	1.6941	1.6881 1.6914	0.005969	1.6490 1.6508	2B 1.	1.660 1	1.678 1	1.6959 1	1.7037	0.0078	1.7500
$1\frac{3}{4} - 16 \text{ or } 1.7500 - 16$	N	2A 3A	0.0016	1.7484	1.7390	: :	1.7078	1.7025	0.005295	1.6740 1.6756	2B 1.	1.682 1 1.6820 1	1.696 1 1.6909 1	1.7094 1	1.7163	0.0069	1.7500
$1^{3}/_{4} - 20 \text{ or } 1.7500 - 20$	N	2A 3A	0.0015	1.7485	1.7404	: :	1.7160	1.7112	0.004850	1.6890	2B 1.	1.696 1	1.707 1	1.7175 1	1.7238	0.0063	1.7500

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					_ <u></u>	External [Note (1)]	lote (1)]						ᄪ	Internal [Note (1)]	ote (1)]		
	Series	. <u>.</u>		Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note 4)]		UNR Minor Diameter, Max				Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Maior
Nominal Size and Threads/in.	Desig- nation	ີ າ Class ,	Allowance	Desig- nation Class Allowance [Note (2)]	Min.	Min. Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	<u>[</u>	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (4)] Max.	Tolerance	Diameter, Min.
$1^{13}/_{16} - 6 \text{ or } 1.8125 - 6$	S	2A 3A	0.0025	1.8100	1.7918	: :	1.7017	1.6933	0.008391	1.6115	2B 3B	1.632 1.6320	1.663	1.7042	1.7151	0.0109 1	1.8125
$1^{13}/_{16} - 8$ or $1.8125 - 8$	N	2A 3A	0.0023	1.8102 1.8125	1.7952 1.7975	: :	1.7290	1.7214	0.007598	1.6614	2B 3B	1.677	1.702	1.7313	1.7412 1.7387	0.0099 1	1.8125 1.8125
$1^{13}/_{16} - 12$ or $1.8125 - 12$	N	2A 3A	0.0018	1.8107 1.8125	1.7993	: :	1.7566	1.7506	0.005990	1.7115	2B 3B	1.722 1.7220	1.740	1.7584	1.7662 1.7642	0.0078 1	1.8125 1.8125
$1^{13}/_{16} - 16 \text{ or } 1.8125 - 16$	N	2A 3A	0.0016	1.8109	1.8015 1.8031	: :	1.7703	1.7650	0.005316	1.7365	2B 3B	1.745 1.7450	1.759	1.7719	1.7788	0.0069 1	1.8125 1.8125
$1^{13}/_{16} - 20 \text{ or } 1.8125 - 20$	N	2A 3A	0.0015	1.8110	1.8029	: :	1.7785	1.7736	0.004871	1.7515	2B 3B	1.758	1.770	1.7800	1.7863	0.0063 1	1.8125 1.8125
$1\frac{7}{8} - 6$ or $1.8750 - 6$	N	2A 3A	0.0025	1.8725	1.8543 1.8568	: :	1.7642	1.7558	0.008447	1.6740	2B 3B	1.695 1.6950	1.725	1.7667	1.7777	0.0110 1	1.8750 1.8750
$1\frac{7}{8} - 8 \text{ or } 1.8750 - 8$	N	2A 3A	0.0023	1.8727	1.8577	1.8502	1.7915	1.7838	0.007654	1.7239	2B 3B	1.740	1.765	1.7938	1.8038	0.0100 1	1.8750 1.8750
$1\frac{7}{8} - 12$ or $1.8750 - 12$	N	2A 3A	0.0018	1.8732	1.8618 1.8636	: :	1.8191	1.8131	0.006011	1.7740	2B 3B	1.785 1.7850	1.803	1.8209	1.8287	0.0078 1	1.8750
$1\frac{7}{8} - 16 \text{ or } 1.8750 - 16$	N	2A 3A	0.0016	1.8734	1.8640 1.8656	: :	1.8328	1.8275	0.005337	1.7990	2B 3B	1.807	1.821	1.8344	1.8413 1.8396	0.0069 1	1.8750
(7) $1\frac{7}{8} - 20$ or $1.8750 - 20$	N	2A 3A	0.0015	1.8735	1.8654 1.8669	: :	1.8410	1.8361	0.004892	1.8140	2B 3B	1.821 1.8210	1.832	1.8425	1.8489	0.0064 1	1.8750
$1^{15}/_{16} - 6$ or $1.9375 - 6$	N	2A 3A	0.0026	1.9349	1.9167 1.9193	: :	1.8266	1.8181	0.008501	1.7364	2B 3B	1.757	1.788	1.8292	1.8403	0.00111 1	1.9375
$1^{15}/_{16} - 8$ or $1.9375 - 8$	N	2A 3A	0.0023	1.9352	1.9202 1.9225	: :	1.8540	1.8463	0.007708	1.7864	2B 3B	1.802	1.827	1.8563	1.8663 1.8638	0.0100 1	1.9375
(7) $1^{15}/_{16} - 12$ or $1.9375 - 12$	N	2A 3A	0.0018	1.9357	1.9243 1.9261	: :	1.8816	1.8756 1.8789	0.006031	1.8365	2B 3B	1.847 1.8470	1.865	1.8834	1.8912 1.8893	0.0078 1	1.9375

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					_ <u></u>	External [Note (1)]	lote (1)]						_ n	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	_	UNR Minor Diameter, Max				Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Desig- nation	ı Class	Desig- nation Class Allowance [Note (2)]	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	_	Minor Diameter Min. Max.	Min.	[Note (4)] Max.	 Tolerance	Diameter, Min.
$1^{15}/_{16} - 16 \text{ or } 1.9375 - 16$	S	2A 3A	0.0016	1.9359	1.9265	: :	1.8953	1.8929	0.005357	1.8615	2B 3B	1.870	1.884	1.8969	1.9039	0.0070 1	1.9375
$1^{15}/_{16} - 20 \text{ or } 1.9375 - 20$	N	2A 3A	0.0015	1.9360	1.9279 1.9294	: :	1.9035	1.8986	0.004912	1.8765	2B 3B	1.883	1.895	1.9050	1.9114	0.0064 1	1.9375
2 – 4.5 or 2.0000 – 4.5	UNC	1A 2A 3A	0.0029 0.0029 0.0000	1.9971 1.9971 2.0000	1.9641 1.9751 1.9780	1.9641	1.8528 1.8528 1.8557	1.8385 1.8433 1.8486	0.014300 0.009514 0.007100	1.7325 1.7325 1.7354	1B 2B 3B	1.759 1.759 1.7590	1.795 1.795 1.7861	1.8557 1.8557 1.8557	1.8743 1.8681 1.8650	0.0186 2 0.0124 2 0.0093 2	2.0000 2.0000 2.0000
2 – 6 or 2.0000 – 6	N	2A 3A	0.0026	1.9974 2.0000	1.9792 1.9818	: :	1.8891	1.8853	0.008554	1.7989	2B 3B	1.820	1.8396	1.8917	1.9028	0.00111 2	2.0000
2 – 8 or 2.0000 – 8	N	2A 3A	0.0023	1.9977	1.9827 1.9850	1.9752	1.9165	1.9087	0.007761	1.8489	2B 3B	1.865 1.8650	1.890	1.9188	1.9289	0.0101 2	2.0000
2 – 12 or 2.0000 – 12	N	2A 3A	0.0018	1.9982	1.9868 1.9886	: :	1.9441	1.9380	0.006051	1.8990	2B 3B	1.910 1.9100	1.928	1.9459	1.9538 1.9518	0.0079 2	2.0000
2 – 16 or 2.0000 – 16	S	2A 3A	0.0016	1.9984	1.9890 1.9906	: :	1.9578 1.9594	1.9524 1.9554	0.005377	1.9240	2B 3B	1.932 1.9320	1.946	1.9594	1.9664 1.9646	0.0070 2	2.0000
2 – 20 or 2.0000 – 20	N	2A 3A	0.0015	1.9985	1.9904 1.9919	: :	1.9660	1.9611 1.9638	0.004932	1.9390	2B 3B	1.946 1.9460	1.957	1.9675	1.9739	0.0064 2	2.0000
$2\frac{1}{8} - 6$ or $2.1250 - 6$	S	2A 3A	0.0026	2.1224 2.1250	2.1042 2.1068	: :	2.0141	2.0054	0.008658	1.9239	2B 3B	1.945 1.9450	1.975	2.0167	2.0280	0.00113 2	2.1250 2.1250
$2\frac{1}{8} - 8$ or $2.1250 - 8$	N	2A 3A	0.0024	2.1226	2.1076 2.1100	2.1001	2.0414	2.0335	0.007865	1.9738	2B 3B	1.990	2.0015	2.0438	2.0540	0.0102 2	2.1250 2.1250
$2\frac{1}{8} - 12$ or $2.1250 - 12$	N	2A 3A	0.0018	2.1232 2.1250	2.1118 2.1136	: :	2.0691	2.0630	0.006089	2.0240	2B 3B	2.035 2.0350	2.053	2.0709	2.0788	0.0079 2	2.1250 2.1250
$2\frac{1}{8} - 16 \text{ or } 2.1250 - 16$	S	2A 3A	0.0016	2.1234 2.1250	2.1140	: :	2.0828	2.0803	0.005415	2.0490	2B 3B	2.057 2.0570	2.071	2.0844	2.0914	0.0070 2	2.1250 2.1250
(7) $2\frac{1}{8}$ – 20 or 2.1250 – 20 (7)	N	2A 3A	0.0015	2.1235	2.1154	: :	2.0910	2.0860	0.004970	2.0640	2B 3B	2.071 2.0710	2.082	2.0925	2.0990	0.0065 2	2.1250 2.1250

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	lote (1)]							Internal [Note (1)]	Note (1)]		
	Series			Maj	Major Diameter	eter	Pitcl Func	Pitch Diameter and Functional Diameter [Note (4)]		UNR Minor Diameter, Max.				Pitcl Func	Pitch Diameter and Functional Diameter	er and ımeter	Maior
Nominal Size and	Desig-	5				Min.			Tolerance	[Note (6)]		Minor E	Minor Diameter	1	[Note (4)]	00 10 10 10 10 10 10 10	Diameter,
Inreads/In.	nation	LIASS	nation class Allowance inote	(z) aloue	I	[(S) axion	[Note (2)]	MIII.	[(c) alon]	(Ker.)	class	MII.	Max.	WIII.	Max.	Iolerance	WIII.
$2\frac{1}{4} - 4.5$ or $2.2500 - 4.5$	UNC	1A 2A 3A	0.0029 0.0029 0.0000	2.2471 2.2471 2.2500	2.2141 2.2251 2.2280	2.2141	2.1028 2.1028 2.1057	2.0882 2.0931 2.0984	0.014600 0.009719 0.007300	1.9825 1.9825 1.9854	18 28 38	2.009 2.009 2.0090	2.045 2.045 2.0361	2.1057 2.1057 2.1057	2.1247 2.1183 2.1152	0.0190 0.0126 0.0095	2.2500 2.2500 2.2500
$2^{1/4}_{4} - 6 \text{ or } 2.2500 - 6$	N	2A 3A	0.0026	2.2474	2.2292 2.2318	: :	2.1391	2.1303	0.008759	2.0489	2B 3B	2.070	2.100	2.1417	2.1531 2.1502	0.0085	2.2500
$2\frac{1}{4} - 8$ or $2.2500 - 8$	N	2A 3A	0.0024	2.2476	2.2326 2.2350	2.2251	2.1664 2.1688	2.1584 2.1628	0.007966	2.0988	2B 3	2.115 2.1150	2.140	2.1688	2.1792 2.1766	0.0104	2.2500
(7) $2^{1}/_{4} - 12$ or $2.2500 - 12$	N	2A 3A	0.0018	2.2482	2.2368 2.2386	: :	2.1941 2.1959	2.1880	0.006127	2.1490	2B 3B	2.160 2.1600	2.178	2.1959	2.2039	0.0080	2.2500
(7) $2^{1}/_{4} - 16$ or $2.2500 - 16$	N	2A 3A	0.0016	2.2484	2.2390	: :	2.2078	2.2023	0.005453	2.1740 2.1756	2B 3B	2.182 2.1820	2.196	2.2094	2.2165	0.0071	2.2500
(7) $2^{1}/_{4} - 20$ or $2.2500 - 20$	N	2A 3A	0.0015	2.2485	2.2404	: :	2.2160	2.2110	0.005008	2.1890	2B 3	2.196 2.1960	2.207 2.2036	2.2175	2.2240	0.0065	2.2500
(7) $2^3/8 - 6$ or $2.3750 - 6$	N	2A 3A	0.0027	2.3723	2.3541 2.3568	: :	2.2640	2.2551	0.008856	2.1738	2B 3	2.195 2.1950	2.225 2.2146	2.2667	2.2782	0.0086	2.3750 2.3750
$2\frac{3}{8} - 8$ or $2.3750 - 8$	N	2A 3A	0.0024	2.3726	2.3576 2.3600	: :	2.2914	2.2833	0.008063	2.2238	2B 3	2.240 2.2400	2.265 2.2547	2.2938	2.3043	0.0105	2.3750 2.3750
(7) $2\frac{3}{8} - 12$ or $2.3750 - 12$	N	2A 3A	0.0018	2.3732	2.3618 2.3636	: :	2.3191	2.3129	0.006162	2.2740	2B 3	2.285 2.2850	2.303	2.3209	2.3289	0.0080	2.3750
(7) $2^3/_8 - 16$ or $2.3750 - 16$	N	2A 3A	0.0016	2.3734	2.3640	: :	2.3328	2.3273	0.005488	2.2990	2B 3	2.307 2.3070	2.321	2.3344	2.3415	0.0071	2.3750
(7) $2^3/_8 - 20$ or $2.3750 - 20$	N	2A 3A	0.0015	2.3735	2.3654	: :	2.3410	2.3360	0.005043	2.3140	2B 3	2.321 2.3210	2.3286	2.3425 2.3425	2.3491	0.0066	2.3750
$2\frac{7}{2} - 4$ or $2.5000 - 4$	UNC	1A 2A 3A	0.0031 0.0031 0.0000	2.4969 2.4969 2.5000	2.4612 2.4731 2.4762	2.4612	2.3345 2.3345 2.3376	2.3190 2.3241 2.3298	0.015500 0.010361 0.007800	2.1992 2.1992 2.2023	1B 2B 3B	2.229 2.229 2.2290	2.267 2.267 2.2594	2.3376 2.3376 2.3376	2.3578 2.3511 2.3477	0.0202 0.0135 0.0101	2.5000 2.5000 2.5000

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					_	External [Note (1)]	lote (1)]						<u> </u>	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	r and meter I	UNR Minor Diameter, Max				Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Desig- nation	Class	Allowance	Desig- nation Class Allowance [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class		Minor Diameter Min. Max.	Min.	[Note (4)] Max.] Tolerance	Diameter, Min.
$2\frac{1}{2} - 6$ or $2.5000 - 6$	N N	2A 3A	0.0027	2.4973	2.4791	: :	2.3890	2.3800	0.008951	2.2988	2B 3B	2.320	2.350	2.3917	2.4033	0.0116	2.5000
$2\frac{1}{2} - 8$ or $2.5000 - 8$	N	2A 3A	0.0024	2.4976	2.4826 2.4850	2.4751	2.4164 2.4188	2.4082 2.4127	0.008158	2.3488	2B 3B	2.365 2.3650	2.390	2.4188	2.4294	0.0106	2.5000
$2\frac{1}{2} - 12$ or $2.5000 - 12$	N	2A 3A	0.0019	2.5000	2.4867 2.4886	: :	2.4440	2.4378	0.006197	2.3989	2B 3B	2.410 2.4100	2.428	2.4459	2.4540	0.0081	2.5000
$2\frac{1}{2} - 16 \text{ or } 2.5000 - 16$	N	2A 3A	0.0017	2.4983	2.4889	: :	2.4577	2.4522 2.4553	0.005523	2.4239	2B 3B	2.432 2.4320	2.446	2.4594	2.4666	0.0072	2.5000
$2\frac{1}{2} - 20 \text{ or } 2.5000 - 20$	N	2A 3A	0.0015	2.4985	2.4904 2.4919	: :	2.4660	2.4609	0.005078	2.4390	2B 3B	2.446 2.4460	2.457	2.4675	2.4741 2.4725	0.0066	2.5000
$2^{5}/_{8} - 6$ or $2.6250 - 6$	N	2A 3A	0.0027	2.6223	2.6041 2.6068	: :	2.5140	2.5050	0.009042	2.4238	2B 3B	2.445 2.4450	2.475	2.5167	2.5285	0.0118	2.6250
$2\frac{5}{8} - 8$ or $2.6250 - 8$	N	2A 3A	0.0025	2.6225	2.6075	: :	2.5413 2.5438	2.5331 2.5376	0.008249	2.4737 2.4762	2B 3B	2.490 2.4900	2.515	2.5438	2.5545	0.0107	2.6250 2.6250
(7) $2^{5}/_{8} - 12$ or $2.6250 - 12$	N	2A 3A	0.0019	2.6231	2.6117 2.6136	: :	2.5690	2.5628	0.006230	2.5239	2B 3B	2.535 2.5350	2.553	2.5709	2.5790	0.0081	2.6250 2.6250
(7) $2^{5}/_{8} - 16$ or $2.6250 - 16$	N	2A 3A	0.0017	2.6233	2.6139 2.6156	: :	2.5827	2.5771 2.5802	0.005556	2.5489	2B 3B	2.557 2.5570	2.571	2.5844	2.5916 2.5898	0.0072	2.6250 2.6250
$2^{5}/_{8} - 20 \text{ or } 2.6250 - 20$	N O	2A 3A	0.0015	2.6235	2.6154 2.6169	: :	2.5910	2.5859	0.005111	2.5640	2B 3B	2.571 2.5710	2.582	2.5925	2.5991 2.5975	0.0066	2.6250
$2\frac{3}{4}$ - 4 or 2.7500 - 4	UNC	1A 2A 3A	0.0032 0.0032 0.0000	2.7468 2.7468 2.7500	2.7111 2.7230 2.7262	2.7111	2.5844 2.5844 2.5876	2.5686 2.5739 2.5797	0.015800 0.010542 0.007900	2.4491 2.4491 2.4523	1B 2B 3B	2.479 2.479 2.4790	2.517 2.517 2.5094	2.5876 2.5876 2.5876	2.6082 2.6013 2.5979	0.0206 0.0137 0.0103	2.7500 2.7500 2.7500
$2^{3}/_{4} - 6$ or $2.7500 - 6$	S	2A 3A	0.0027	2.7473	2.7291 2.7318	: :	2.6390	2.6299	0.009132	2.5488	2B 3B	2.570 2.5700	2.5896	2.6417	2.6536 2.6506	0.0119	2.7500
$2^{3}/_{4} - 8$ or $2.7500 - 8$	N	2A 3A	0.0025	2.7475	2.7325 2.7350	2.7250	2.6663	2.6580	0.008339	2.5987	2B 3B	2.615 2.6150	2.640	2.6688	2.6796 2.6769	0.0108	2.7500

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					"	External [Note (1)]	ote (1)]						<u>=</u>	Internal [Note (1)]	ote (1)]		
	Series			Maje	Major Diameter	eter	Pitch Func	Pitch Diameter and Functional Diameter [Note (4)]	er and ameter)]	UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter	r and neter	Major
Nominal Size and Threads/in.	Desig- nation	Class	Desig- nation Class Allowance [Note (2)]	Max. [Note (2)]	Min.	Min. Max. [Note (3)] [Note (2)]	Max. [Note (2)]] Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Minor D Min.	Minor Diameter Min. Max.	Min.	[Note (4)] Max.	Tolerance	Diameter, Min.
(7) $2\frac{3}{4} - 12$ or $2.7500 - 12$	N	2A 3A	0.0019	2.7481	2.7367	::	2.6940	2.6877	0.006263	2.6508	2B 3B	2.660	2.678	2.6959	2.7040	0.0081 2	2.7500
(7) $2^{3}/_{4} - 16$ or $2.7500 - 16$	N	2A 3A	0.0017	2.7483	2.7389	: :	2.7077	2.7021	0.005589	2.6739	2B 3B	2.682 2.6820	2.696	2.7094	2.7167 2.7148	0.0073 2	2.7500
(7) $2^{3}/_{4} - 20$ or $2.7500 - 20$	N	2A 3A	0.0015	2.7485	2.7404 2.7419	: :	2.7160	2.7109	0.005144	2.6905	2B 3B	2.696 2.6960	2.707	2.7175	2.7242	0.0067 2 0.0050 2	2.7500 2.7500
$2^{7}/_{8} - 6$ or $2.8750 - 6$	N	2A 3A	0.0028	2.8722	2.8540 2.8568	: :	2.7639	2.7547	0.009219	2.6737	2B 3B	2.695 2.6950	2.725	2.7667	2.7787 2.7757	0.00120 2	2.8750 2.8750
$2\frac{7}{8} - 8$ or $2.8750 - 8$	N	2A 3A	0.0025	2.8725	2.8575	: :	2.7913	2.7829	0.008426	2.7237 2.7262	2B 3B	2.740	2.765	2.7938	2.8048	0.00110 2	2.8750 2.8750
$2\frac{2}{8} - 12 \text{ or } 2.8750 - 12$	N	2A 3A	0.0019	2.8731	2.8617 2.8636	: :	2.8190	2.8127	0.006294	2.7739	2B 3B	2.785 2.7850	2.803	2.8209	2.8291 2.8270	0.0082 2	2.8750 2.8750
$2\frac{7}{8} - 16 \text{ or } 2.8750 - 16$	N	2A 3A	0.0017	2.8733	2.8639 2.8656	: :	2.8327	2.8271	0.005620	2.7989	2B 3B	2.807 2.8070	2.821	2.8344	2.8417 2.8399	0.0073 2 0.0055 2	2.8750 2.8750
(7) $2\frac{7}{8} - 20$ or $2.8750 - 20$	N	2A 3A	0.0016	2.8734	2.8653 2.8669	: :	2.8409	2.8357	0.005175	2.8139	2B 3B	2.821 2.8210	2.832	2.8425	2.8492 2.8475	0.0067 2 0.0050 2	2.8750 2.8750
3 – 4 or 3.0000 – 4	UNC	1A 2A 3A	0.0032 0.0003	2.9968 2.9968 3.0000	2.9611 2.9730 2.9762	2.9611	2.8344 2.8344 2.8376	2.8183 2.8237 2.8296	0.016100 0.010714 0.008000	2.6991 2.6991 2.7023	11B 2B 3B	2.729 2.729 2.7290	2.767 2.767 2.7594	2.8376 2.8376 2.8376	2.8585 2.8515 2.8480	0.0209 3 0.0139 3 0.0104 3	3.0000 3.0000 3.0000
3 – 6 or 3.0000 – 6	N	2A 3A	0.0028	2.9972 3.0000	2.9790 2.9818	: :	2.8989	2.8796	0.009304	2.7987	2B 3B	2.820 2.8200	2.8396	2.8917	2.9038	0.0121 3 0.0091 3	3.0000
3 – 8 or 3.0000 – 8	N	2A 3A	0.0026	2.9974	2.9824 2.9850	2.9749	2.9162 2.9188	2.9077	0.008511	2.8486	2B 3B	2.865 2.8650	2.890	2.9188	2.9299 2.9271	0.00111 3	3.0000
3 – 12 or 3.0000 – 12	N	2A 3A	0.0019	2.9981 3.0000	2.9867 2.9886	: :	2.9440	2.9377	0.006324	2.8989	2B 3B	2.910 2.9100	2.928	2.9459	2.9541 2.9521	0.0082 3	3.0000
(7) 3 – 16 or 3.0000 – 16 (7)	S	2A 3A	0.0017	2.9983	2.9889	: :	2.9577 2.9594	2.9521 2.9552	0.005650	2.9239 2.9256	2B 3B	2.932 2.9320	2.946	2.9594	2.9667 2.9649	0.0073 3 0.0055 3	3.0000

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	lote (1)]						- u	Internal [Note (1)]	ote (1)]		
	Series			Majo	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	er and Imeter]	UNR Minor Diameter,				Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Maior
Nominal Size and Threads/in.	Desig- nation (Class /	Allowance	Designation Class Allowance [Note (2)]	Min.	Min. [Note (3)]	Min. Max. [Note (3)] [Note (2)]	Min.	Tolerance [Note (5)]	<u>6</u>	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (4)] Max.	Tolerance	Diameter, Min.
3 – 20 or 3.0000 – 20	N	2A 3A	0.0016	3.0000	2.9903	: :	2.9659	2.9607	0.005205	2.9389	2B 2 3B 2	2.946 2.9460	2.957	2.9675	2.9743	0.0068	3.0000
3½ – 6 or 3.1250 – 6	N	2A 3A	0.0028	3.1222	3.1040	: :	3.0139	3.0045	0.009388	2.9237	2B 2 3B 2	2.945 2.9450	2.975	3.0167	3.0289	0.0122	3.1250 3.1250
3½ – 8 or 3.1250 – 8	N	2A 3A	0.0026	3.1224	3.1074	: :	3.0412 3.0438	3.0326 3.0374	0.008595	2.9736 2.9762	2B 2 3B 2	2.990	3.0047	3.0438	3.0550 3.0522	0.00112	3.1250 3.1250
(7) $3\frac{1}{8} - 12$ or $3.1250 - 12$	N	2A 3A	0.0019	3.1231	3.1117	: :	3.0690	3.0626	0.006354	3.0239	2B 3	3.035 3.0350	3.053	3.0709	3.0792	0.0083	3.1250 3.1250
(7) $3\frac{1}{8} - 16$ or $3.1250 - 16$	N	2A 3A	0.00017	3.1233	3.1139 3.1156	: :	3.0827	3.0770	0.005680	3.0489	2B 3	3.057 3.0570	3.0659	3.0844	3.0918 3.0899	0.0074	3.1250 3.1250
3½ – 4 or 3.2500 – 4	UNC	1A 2A 3A	0.0033	3.2467 3.2467 3.2500	3.2110 3.2229 3.2262	3.2110	3.0843 3.0843 3.0876	3.0680 3.0734 3.0794	0.016300 0.010879 0.008200	2.9490 2.9490 2.9523	1B 2 2B 2 3B 2	2.979 2.979 2.9790	3.017 3.017 3.0094	3.0876 3.0876 3.0876	3.1088 3.1017 3.0982	0.0212 0.0141 0.0106	3.2500 3.2500 3.2500
$3\frac{1}{4} - 6$ or $3.2500 - 6$	N	2A 3A	0.0028	3.2472	3.2290	: :	3.1389	3.1294	0.009469	3.0487	2B 3	3.070	3.0896	3.1417	3.1540	0.0123	3.2500
$3\frac{1}{4} - 8 \text{ or } 3.2500 - 8$	N	2A 3A	0.0026	3.2474	3.2324 3.2350	3.2249	3.1662	3.1575 3.1623	0.008676	3.0986	2B 3	3.115 3.1150	3.140	3.1688	3.1801	0.00113	3.2500 3.2500
(7) $3\frac{1}{4} - 12$ or $3.2500 - 12$	N	2A 3A	0.0019	3.2481	3.2367 3.2386	: :	3.1940	3.1876	0.006383	3.1489	2B 3	3.160	3.178	3.1959	3.2042 3.2021	0.0083	3.2500
(7) $3\frac{1}{4} - 16$ or $3.2500 - 16$	N	2A 3A	0.0017	3.2483	3.2389	: :	3.2077	3.2020	0.005709	3.1739	2B 3	3.182 3.1820	3.196	3.2094	3.2168 3.2150	0.0074	3.2500
$3\frac{3}{8} - 6$ or $3.3750 - 6$	N	2A 3A	0.0029	3.3721	3.3539	: :	3.2638	3.2543	0.009549	3.1736	2B 3	3.195 3.1950	3.225	3.2667	3.2791 3.2760	0.0124	3.3750
$3\frac{3}{8} - 8$ or $3.3750 - 8$	N	2A 3A	0.0026	3.3724	3.3574	: :	3.2912 3.2938	3.2824 3.2872	0.008756	3.2236 3.2262	2B 3	3.240 3.2400	3.265	3.2938	3.3052	0.00114	3.3750
(7) $3\frac{3}{8} - 12$ or $3.3750 - 12$	N	2A 3A	0.0019	3.3731	3.3617	: :	3.3190	3.3126 3.3161	0.006411	3.2739	2B 3	3.285 3.2850	3.303	3.3209	3.3292	0.0083	3.3750

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	ote (1)]						드	Internal [Note (1)]	ote (1)]		
	Series			Majo	Major Diameter	əter	Pitch Func	Pitch Diameter and Functional Diameter [Note (4)]	er and ameter]	UNR Minor Diameter, Max.				Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and	Desig-	;	;	Max.	;	Min.	Max.		Tolerance	[Note (6)]	,	Minor D	Minor Diameter		[Note (4)]		Diameter,
Threads/in.	nation	Class	nation Class Allowance [Note (2)]	[Note (2)]	Min.	[Note (3)] [Note (2)]	[Note (2)]	Min.	[Note (5)]	(Ref.)	Class	Min.	Мах.	Min.	Max.	Tolerance	Min.
(7) $3\frac{3}{8} - 16$ or $3.3750 - 16$	N D	2A 3A	0.0017	3.3733	3.3639	: :	3.3327 3.3344	3.3270 3.3301	0.005737	3.2989	2B 3B	3.307	3.321 3.3159	3.3344	3.3419 3.3400	0.0075	3.3750 3.3750
$3\frac{1}{2} - 4$ or $3.5000 - 4$	UNC	1A 2A 3A	0.0033	3.4967 3.4967 3.5000	3.4610 3.4729 3.4762	3.4610	3.3343 3.3343 3.3376	3.3177 3.3233 3.3293	0.016600 0.011036 0.008300	3.1990 3.1990 3.2023	18 28 38	3.229 3.229 3.2290	3.267 3.267 3.2594	3.3376 3.3376 3.3376	3.3591 3.3519 3.3484	0.0215 3 0.0143 3 0.0108	3.5000 3.5000 3.5000
$3\frac{1}{2} - 6$ or $3.5000 - 6$	N D	2A 3A	0.0029	3.4971	3.4789	: :	3.3888	3.3792 3.3845	0.009626	3.2986	2B 3B	3.320 3.3200	3.350 3.3396	3.3917	3.4042 3.4011	0.0125	3.5000
$3\frac{1}{2} - 8$ or $3.5000 - 8$	N	2A 3A	0.0026	3.4974	3.4824 3.4850	3.4749	3.4162 3.4188	3.4074 3.4122	0.008833	3.3486	2B 3B	3.365 3.3650	3.390 3.3797	3.4188 3.4188	3.4303 3.4274	0.00115	3.5000
$3\frac{1}{2} - 12$ or $3.5000 - 12$	N D	2A 3A	0.0019	3.4981	3.4867	: :	3.4440	3.4376 3.4411	0.006438	3.3989	2B 3B	3.410 3.4100	3.428 3.4198	3.4459	3.4543 3.4522	0.0084	3.5000
$3\frac{1}{2} - 16 \text{ or } 3.5000 - 16$	N S	2A 3A	0.0017	3.4983	3.4889	: :	3.4577	3.4519 3.4551	0.005764	3.4239	2B 3B	3.432 3.4320	3.446 3.4409	3.4594	3.4669	0.0075	3.5000
$3\frac{5}{8} - 6$ or $3.6250 - 6$	N S	2A 3A	0.0029	3.6221	3.6039	: :	3.5138 3.5167	3.5041 3.5094	0.009703	3.4236 3.4265	2B 3B	3.445 3.4450	3.475 3.4646	3.5167	3.5293	0.0126	3.6250 3.6250
$3\frac{5}{8} - 8$ or $3.6250 - 8$	N D	2A 3A	0.0027	3.6223	3.6073	: :	3.5411 3.5438	3.5322 3.5371	0.008910	3.4735	2B 3B	3.490 3.4900	3.515 3.5047	3.5438 3.5438	3.5554 3.5525	0.0116	3.6250 3.6250
$3\frac{5}{8} - 12 \text{ or } 3.6250 - 12$	N S	2A 3A	0.0019	3.6231	3.6117 3.6136	: :	3.5690	3.5625 3.5661	0.006465	3.5239	2B 3B	3.535 3.5350	3.553 3.5448	3.5709	3.5793	0.0084	3.6250 3.6250
(7) $3\frac{5}{8} - 16$ or $3.6250 - 16$	N D	2A 3A	0.0017	3.6233	3.6139 3.6156	: :	3.5827 3.5844	3.5769 3.5801	0.005791	3.5489	2B 3B	3.557 3.5570	3.571 3.5659	3.5844	3.5919	0.0075	3.6250 3.6250
$3\frac{3}{4}$ – 4 or 3.7500 – 4	UNC	1A 2A 3A	0.0034 0.0034 0.0000	3.7466 3.7466 3.7500	3.7109 3.7228 3.7262	3.7109	3.5842 3.5842 3.5876	3.5674 3.5730 3.5792	0.016800 0.011188 0.008400	3.4489 3.4489 3.4523	18 28 38	3.479 3.479 3.4790	3.517 3.517 3.5094	3.5876 3.5876 3.5876	3.6094 3.6021 3.5985	0.0218 3 0.0145 3 0.0109 3	3.7500 3.7500 3.7500
$3\frac{3}{4} - 6$ or $3.7500 - 6$	N N	2A 3A	0.0029	3.7471	3.7289	: :	3.6388	3.6290	0.009778	3.5486 3.5515	2B 3B	3.570	3.5896 3.5896	3.6417 3.6417	3.6544	0.0127	3.7500

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	lote (1)]						트	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	r and meter I	UNR Minor Diameter, Max				Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Desig- nation	Class	Allowance	Designation Class Allowance [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Minor D Min.	Minor Diameter Min. Max.	Min.	[Note (4)] Max.] Tolerance	Diameter, Min.
3 ³ / ₄ – 8 or 3.7500 – 8	S	2A 3A	0.0027	3.7473	3.7323 3.7350	3.7248	3.6661	3.6571 3.6621	0.008985	3.5985	2B 3B	3.615 3.6150	3.640 3.6297	3.6688	3.6805	0.0117	3.7500
(7) $3\frac{3}{4} - 12$ or $3.7500 - 12$	N	2A 3A	0.0019	3.7481	3.7367 3.7386	: :	3.6940	3.6875 3.6910	0.006491	3.6489	2B 3B	3.660	3.678 3.6698	3.6959	3.7043 3.7022	0.0084	3.7500
(7) $3^{3}/_{4} - 16$ or $3.7500 - 16$	N	2A 3A	0.0017	3.7483 3.7500	3.7389 3.7406	: :	3.7077	3.7019 3.7050	0.005817	3.6739	2B 3B	3.682 3.6820	3.696 3.6909	3.7094	3.7170 3.7151	0.0076	3.7500 3.7500
$3\frac{7}{8} - 6$ or $3.8750 - 6$	N	2A 3A	0.0030	3.8720 3.8750	3.8538 3.8568	: :	3.7637	3.7538 3.7593	0.009852	3.6735	2B 3B	3.695 3.6950	3.725 3.7146	3.7667	3.7795	0.0128	3.8750 3.8750
$3\frac{7}{8} - 8$ or $3.8750 - 8$	N	2A 3A	0.0027	3.8723	3.8573	: :	3.7911 3.7938	3.7820 3.7870	0.009059	3.7235 3.7262	2B 3B	3.740 3.7400	3.765 3.7547	3.7938 3.7938	3.8056 3.8026	0.0118	3.8750 3.8750
$3\frac{7}{8} - 12$ or $3.8750 - 12$	N	2A 3A	0.0020	3.8730	3.8616 3.8636	: :	3.8189 3.8209	3.8124 3.8160	0.006517	3.7738	2B 3B	3.785 3.7850	3.803 3.7948	3.8209	3.8294	0.0085	3.8750 3.8750
(7) $3\frac{7}{8} - 16$ or $3.8750 - 16$	N	2A 3A	0.0018	3.8732	3.8638 3.8656	: :	3.8326 3.8344	3.8268 3.8300	0.005843	3.7988	2B 3B	3.807 3.8070	3.821 3.8159	3.8344	3.8420 3.8401	0.0076	3.8750 3.8750
4 – 4 or 4.0000 – 4	UNC	1A 2A 3A	0.0034 0.0034 0.0000	3.9966 3.9966 4.0000	3.9609 3.9728 3.9762	3.9609	3.8342 3.8342 3.8376	3.8172 3.8229 3.8291	0.017000 0.011334 0.008500	3.6989 3.6989 3.7023	1B 2B 3B	3.729 3.729 3.7290	3.767 3.767 3.7594	3.8376 3.8376 3.8376	3.8597 3.8523 3.8487	0.0221 0.0147 0.0111	4.0000 4.0000 4.0000
4 – 6 or 4.0000 – 6	N	2A 3A	0.0030	3.9970	3.9788 3.9818	: :	3.8887	3.8788	0.009924	3.7985 3.8015	2B 3B	3.820 3.8200	3.850 3.8396	3.8917 3.8917	3.9046 3.9014	0.0129	4.0000
4 – 8 or 4.0000 – 8	N	2A 3A	0.0027	3.9973	3.9823 3.9850	3.9748	3.9161 3.9188	3.9070 3.9120	0.009131	3.8485 3.8512	2B 3B	3.865 3.8650	3.890 3.8797	3.9188 3.9188	3.9307 3.9277	0.0119	4.0000
4 – 12 or 4.0000 – 12	N	2A 3A	0.0020	3.9980	3.9866 3.9886	: :	3.9439 3.9459	3.9374 3.9410	0.006542	3.8988	2B 3B	3.910 3.9100	3.928 3.9198	3.9459	3.9544 3.9523	0.0085	4.0000
4 – 16 or 4.0000 – 16 (7)	N	2A 3A	0.0018	3.9982	3.9888	: :	3.9576 3.9594	3.9517 3.9550	0.005868	3.9238 3.9256	2B 3B	3.932 3.9320	3.946 3.9409	3.9594	3.9670 3.9651	0.0076	4.0000
$4\frac{1}{8} - 6$ or $4.1250 - 6$	N	2A 3A	0.0030	4.1220 4.1250	4.1038 4.1068	: :	4.0137	4.0037	0.009996	3.9235	2B 3B	3.945 3.9450	3.975 3.9646	4.0167	4.0297 4.0264	0.0130	4.1250 4.1250

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					_	External [Note (1)]	ote (1)]						п	Internal [Note (1)]	lote (1)]		
				Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	er and ameter i]	UNR Minor Diameter,		Ä	Minor	Pitch Functi	Pitch Diameter and Functional Diameter	er and ameter	
Nominal Size and Threads/in	Desig-	- Cass	Designation Class Allowance [Note (2)]	Max.	ž.	Min.	Max.	ž	Tolerance [Note (5)]	Max. [Note (6)] (Ref.)	Class	≥	Diameter in Max	, is	[Note (4)]	Tolerance	Major Diameter, Min
4½ – 8 or 4.1250 – 8	S	2A 3A	0.0028	4.1222	4.1072		4.0438	4.0318	0.009203	3.9734	2B 3B	m m	4.0047	_ ~ ~			4.1250
(7) $4\frac{1}{8} - 12$ or $4.1250 - 12$	N O	2A 3A	0.0020	4.1230	4.1116 4.1136	: :	4.0689	4.0623	0.006567	4.0238 4.0258	2B 3B	4.035 4.0350	4.053 4.0448	4.0709 4	4.0794	0.0085	4.1250 4.1250
(7) $4\frac{1}{8}$ – 16 or 4.1250 – 16 (7)	S	2A 3A	0.0018	4.1232 4.1250	4.1138 4.1156	: :	4.0826	4.0767	0.005893	4.0488	2B 3B	4.057 4.0570	4.071	4.0844 4	4.0921 4.0901	0.0077	4.1250 4.1250
$4^{1/4}_4 - 4$ or $4.2500 - 4$	N D	2A 3A	0.0034	4.2466	4.2228	: :	4.0842	4.0727	0.011475	3.9489	2B 3B	3.979 3.9790	4.007	4.0876 4	4.1025 4.0988	0.0149	4.2500 4.2500
$4^{1/4}_{4} - 6$ or $4.2500 - 6$	N O	2A 3A	0.0030	4.2470	4.2388	: :	4.1387	4.1286 4.1342	0.010065	4.0485 4.0515	2B 3B	4.070	4.100 4.0896	4.1417 4.1548 4.1417 4.1515	4.1548 4.1515	0.0031	4.2500
(7) $4^{1/4}_{4} - 8$ or $4.2500 - 8$	N D	2A 3A	0.0028	4.2472	4.2322	: :	4.1660	4.1567 4.1618	0.009272	4.0984	2B 3B	4.115 4.1150	4.140 4.1297	4.1688 4.1809 4.1688 4.1778	4.1809 4.1778	0.0021	4.2500
(7) $4^{1/4}_{4} - 12$ or $4.2500 - 12$	N	2A 3A	0.0020	4.2480	4.2366	: :	4.1939 4.1959	4.1873 4.1910	0.006591	4.1488 4.1508	2B 3B	4.160 4.1600	4.178 4.1698	4.1959 4 4.1959 4	4.2045 4.2023	0.0086	4.2500
(7) $4^{1/4}_{4}$ – 16 or 4.2500 – 16	N O	2A 3A	0.0018	4.2482	4.2406	: :	4.2076	4.2017	0.005917	4.1738	2B 3B	4.182 4.1820	4.196 4.1909	4.2094 4	4.2171 4.2152	0.0077	4.2500
$4^{3}/_{8} - 6$ or $4.3750 - 6$	N O	2A 3A	0.0030	4.3720	4.3538	: :	4.2637	4.2536 4.2591	0.010133	4.1735 4.1765	2B 3B	4.195 4.1950	4.225 ,	4.2667 4	4.2799	0.0032	4.3750 4.3750
(7) $4\frac{3}{8} - 8$ or $4.3750 - 8$	N	2A 3A	0.0028	4.3722	4.3572	: :	4.2910 4.2938	4.281 <i>7</i> 4.2868	0.009340	4.2234	2B 3B	4.240 4.2400	4.265	4.2938 4	4.3059	0.0021	4.3750 4.3750
(7) $4\frac{3}{8} - 12$ or $4.3750 - 12$	N	2A 3A	0.0020	4.3730	4.3616	: :	4.3189	4.3123 4.3159	0.006614	4.2738	2B 3B	4.285 4.2850	4.303 4.2948	4.3209 4	4.3295 4.3273	0.0086	4.3750 4.3750
(7) $4\frac{3}{8}$ – 16 or 4.3750 – 16 (7)	N O	2A 3A	0.0018	4.3732	4.3638	: :	4.3326	4.3267	0.005940	4.2988	2B 3B	4.307 4.3070	4.321 4.3159	4.3344 4	4.3421 4.3402	0.0077	4.3750
$4\frac{1}{2} - 4$ or $4.5000 - 4$	N D	2A 3A	0.0035	4.4965	4.4727 4.4762	: :	4.3341	4.3225	0.0011611	4.1988	2B 3B	4.229 4.2290	4.229 4.267 4.2290 4.2594	4.3376 4.3527 4.3376 4.3489	4.3527	0.0151	4.5000

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

						External [Note (1)]	Note (1)]						프	Internal [Note (1)]	ote (1)]		
	Series			Maje	Major Diameter	eter	Pitcl Func	Pitch Diameter and Functional Diameter [Note (4)]	_	UNR Minor Diameter, Max.				Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Desig- nation	Class	Desig- nation Class Allowance [Note (2)]	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]] Min.	Tolerance [Note (5)]	<u>6</u>	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (4)] Max.	Tolerance	Diameter, Min.
$4^{1/2} - 6$ or $4.5000 - 6$	S	2A 3A	0.0031	4.4969	4.4787 4.4818	: :	4.3886	4.3784	0.010201	4.2984	2B 2 3B 4	4.320 4.3200	4.3396	4.3917	4.4050 4.4016	0.00133 2	4.5000
$4\frac{1}{2} - 8$ or $4.5000 - 8$	N	2A 3A	0.0028	4.4972	4.4822 4.4850	: :	4.4160	4.4066	0.009408	4.3484 4.3512	2B 4 3B 4	4.365 4.3650	4.390	4.4188 4.4188	4.4310 4.4280	0.00122 4	4.5000
(7) $4\frac{1}{2} - 12$ or $4.5000 - 12$	N	2A 3A	0.0020	4.4980	4.4866	: :	4.4439	4.4373	0.006637	4.3988	2B 4 3B 4	4.410 4.4100	4.428 4.4198	4.4459 4	4.4545 4.4524	0.0086 2	4.5000
(7) $4^{1}/_{2} - 16$ or $4.5000 - 16$	N	2A 3A	0.0018	4.4982	4.4888	: :	4.4576	4.4516 4.4549	0.005963	4.4238 4.4256	2B 4 3B 4	4.432 4.4320	4.4469 4.4409	4.4594 4.4594	4.4672 4.4652	0.0078 4	4.5000
$4\frac{5}{8} - 6$ or $4.6250 - 6$	N	2A 3A	0.0031	4.6219	4.6037	: :	4.5136	4.5033	0.010268	4.4234	2B 4 3B 4	4.445 4.4450	4.4646	4.5167 4	4.5300 4.5267	0.0133 4	4.6250
(7) $4^{5}/_{8} - 8$ or $4.6250 - 8$	N	2A 3A	0.0028	4.6222	4.6072 4.6100	: :	4.5410 4.5438	4.5315	0.009475	4.4734	2B 4 3B 4	4.490	4.515 4.5047 4	4.5438 4.5438	4.5561 4.5530	0.0123 4	4.6250 4.6250
$4\frac{5}{8} - 12$ or $4.6250 - 12$	N	2A 3A	0.0020	4.6230	4.6116 4.6136	: :	4.5689	4.5622	0.006660	4.5238 4.5258	2B 4 3B 4	4.535 4.5350	4.553 , 4.5448 ,	4.5709 4	4.5796	0.0087	4.6250 4.6250
(7) $4^{5}/_{8} - 16$ or $4.6250 - 16$	N	2A 3A	0.0018	4.6232	4.6138 4.6156	: :	4.5826	4.5766	0.005986	4.5488	2B 4 3B 4	4.557 4.5570	4.5659	4.5844 4.5844 4	4.5922 4.5902	0.0078 4	4.6250 4.6250
$4^3/_4 - 4$ or $4.7500 - 4$	N	2A 3A	0.0035	4.7465	4.7227 4.7262	: :	4.5841	4.5724	0.008800	4.4488	2B 4 3B 4	4.479	4.5094	4.5876 4	4.6029	0.0153 4	4.7500
$4^{3}/_{4} - 6$ or $4.7500 - 6$	N	2A 3A	0.0031	4.7469	4.7287 4.7318	: :	4.6386	4.6283	0.010333	4.5484 4.5515	2B 4 3B 4	4.570 4.5700	4.5896	4.6417 4	4.6551 4.6518	0.0134 4	4.7500
$4^{3}/_{4} - 8$ or $4.7500 - 8$	N	2A 3A	0.0029	4.7471	4.7321 4.7350	: :	4.6659	4.6564	0.009540	4.5983 4.6012	2B 4 3B 4	4.615 4.6150	4.640	4.6688	4.6812 4.6781	0.0124 4	4.7500
$4\frac{3}{4} - 12$ or $4.7500 - 12$	N	2A 3A	0.0020	4.7480	4.7366 4.7386	: :	4.6939	4.6872	0.006682	4.6488 4.6508	2B 4 3B 4	4.660	4.678	4.6959 4	4.7046 4.7024	0.0087	4.7500
(7) $4^3/_4 - 16$ or $4.7500 - 16$	S	2A 3A	0.0018	4.7482	4.7388 4.7406	: :	4.7076	4.7016 4.7049	0.006008	4.6738 4.6756	2B 4 3B 4	4.682 4.6820	4.696	4.7094 <i>,</i> 4.7094 <i>,</i>	4.7172 4.7153	0.0078 /	4.7500

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					_	External [Note (1)]	lote (1)]						n	Internal [Note (1)]	ote (1)]		
	Sories			Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]	r and imeter]	UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter	r and meter	Moior
Nominal Size and Threads/in.	Desig- nation	Class	Allowance	Desig- nation Class Allowance [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (4)] Max.	Tolerance	Diameter, Min.
4 ⁷ / ₈ – 6 or 4.8750 – 6	N	2A 3A	0.0031	4.8719	4.8537 4.8568	: :	4.7636	4.7532 4.7589	0.010398	4.6734	2B ,	4.695 4.6950	4.725 4	4.7667	4.7802	0.0135 4	4.8750
$4^{7}/_{8} - 8$ or $4.8750 - 8$	N	2A 3A	0.0029	4.8721 4.8750	4.8571 4.8600	: :	4.7909	4.7813 4.7866	0.009605	4.7233 4.7262	2B ,	4.740	4.765	4.7938 4	4.8063	0.0025 4	4.8750 4.8750
$4\frac{7}{8} - 12$ or $4.8750 - 12$	N	2A 3A	0.0020	4.8730	4.8616 4.8636	: :	4.8189	4.8122 4.8159	0.006704	4.7738 4.7758	2B ,	4.785 4.7850	4.803 4.7948	4.8209 4	4.8296	0.0087 4	4.8750
(7) $4\frac{7}{8} - 16$ or $4.8750 - 16$	N	2A 3A	0.0018	4.8732	4.8638	: :	4.8326	4.8266 4.8299	0.006030	4.7988	2B ,	4.807 4.8070	4.821 4.8159 4	4.8344 4.8344 4	4.8422 4.8403	0.0078 4	4.8750
5 – 4 or 5.0000 – 4	N	2A 3A	0.0036	4.9964	4.9726 4.9762	: :	4.8340	4.8221 4.8287	0.011872	4.6987	2B ,	4.729 4.7290	4.767 4.7594	4.8376	4.8530 4.8492	0.0154 5	5.0000
5 – 6 or 5.0000 – 6	N	2A 3A	0.0031	4.9969	4.9787 4.9818	: :	4.8886	4.8781 4.8839	0.010462	4.7984	2B ,	4.820 4.8200	4.850 , 4.8396 ,	4.8917 4.4.8917	4.9053 4.9019	0.0136 5	5.0000
5 – 8 or 5.0000 – 8	N	2A 3A	0.0029	4.9971 5.0000	4.9821 4.9850	: :	4.9159 4.9188	4.9062 4.9115	0.009669	4.8483 4.8512	2B ,	4.865 4.8650	4.890 4.8797	4.9188 4.9188 4	4.9314 4.9282	0.0026 5	5.0000
5 – 12 or 5.0000 – 12	N	2A 3A	0.0020	4.9980	4.9866	: :	4.9439 4.9459	4.9372 4.9409	0.006726	4.8988	2B ,	4.910 4.9100	4.928 , 4.9198 ,	4.9459 4	4.9546 4.9525	0.0087 5	5.0000
5 – 16 or 5.0000 – 16	N	2A 3A	0.0018	4.9982	4.9888	: :	4.9576 4.9594	4.9515 4.9549	0.006052	4.9238	2B ,	4.932 4.9320	4.946 , 4.9409 ,	4.9594 <i>4</i> .9594 4	4.9673 4.9653	0.0079 5	5.0000
$5\frac{1}{8} - 6$ or $5.1250 - 6$	N	2A 3A	0.0032	5.1218	5.1036 5.1068	: :	5.0135	5.0030	0.010525	4.9233 4.9265	2B ,	4.945 4.9450	4.975	5.0167	5.0304	0.0137 5	5.1250 5.1250
(7) $5\frac{1}{8} - 8$ or $5.1250 - 8$	N	2A 3A	0.0029	5.1221	5.1071	: :	5.0409	5.0312 5.0365	0.009732	4.9733 4.9762	2B ,	4.990 4.9900	5.015	5.0438	5.0565	0.0027 5	5.1250 5.1250
(7) $5\frac{1}{8} - 12$ or $5.1250 - 12$	N	2A 3A	0.0020	5.1230	5.1116	: :	5.0689	5.0622	0.006747	5.0238	2B 3B	5.035 5.0350	5.053	5.0709	5.0797	0.0088 5	5.1250 5.1250
$5\frac{1}{8} - 16 \text{ or } 5.1250 - 16$	N	2A 3A	0.0018	5.1232 5.1250	5.1138	: :	5.0826	5.0765	0.006073	5.0488	2B 3B	5.057 5.0570	5.071	5.0844	5.0923	0.0079 5	5.1250 5.1250

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					T.	External [Note (1)]	ote (1)]						ű	Internal [Note (1)]	te (1)]		
				: S	Maior Diameter	yter.	Pitch Functi	Pitch Diameter and Functional Diameter [Note (4)]	er and meter	UNR Minor Diameter,				Pitch E	Pitch Diameter and Functional Diameter	r and meter	
Nominal Size and	Series Desig-			Max		Min	Max	E) arouil	Tolerance	Max. [Note (6)]		Minor D	Minor Diameter	_	[Note (4)]		Major Diameter
Threads/in.	nation	Class	nation Class Allowance [N		Min.	3]	[Note (2)]	Min.	[Note (5)]	(Ref.)	Class	Min.	Мах.	Min.	Мах. Т	Tolerance	Min.
$5\frac{1}{4} - 4$ or $5.2500 - 4$	N	2A 3A	0.0036	5.2464 5.2500	5.2226	: :	5.0840	5.0720	0.0011997	4.9487 4.9523	2B 3B	4.979	5.017	5.0876 5. 5.0876 5.	5.1032 5.0993	0.0156	5.2500
$5\frac{1}{4} - 6 \text{ or } 5.2500 - 6$	N	2A 3A	0.0032	5.2468	5.2286 5.2318	: :	5.1385	5.1279	0.010587	5.0483	2B 3B	5.070	5.100	5.1417 5. 5.1417 5.	5.1555	0.0138	5.2500
$5\frac{1}{4} - 8 \text{ or } 5.2500 - 8$	N	2A 3A	0.0029	5.2471	5.2321 5.2350	: :	5.1659	5.1561	0.009794	5.0983	2B 3B	5.115	5.140 5.1297	5.1688 5. 5.1688 5.	5.1815	0.0027	5.2500
(7) $5\frac{1}{4} - 12$ or $5.2500 - 12$	N	2A 3A	0.0020	5.2480	5.2366	: :	5.1939	5.1871 5.1908	0.006768	5.1488	2B 3B	5.160	5.178	5.1959 5. 5.1959 5.	5.2047	0.0088	5.2500
$5\frac{7}{4} - 16 \text{ or } 5.2500 - 16$	N	2A 3A	0.0018	5.2482 5.2500	5.2388	: :	5.2076	5.2015 5.2048	0.006094	5.1738	2B 3B	5.182	5.196	5.2094 5. 5.2094 5.	5.2173 5.2153	0.0079	5.2500
$5\frac{3}{8} - 6$ or $5.3750 - 6$	N	2A 3A	0.0032	5.3718	5.3536 5.3568	: :	5.2635	5.2529	0.010649	5.1733	2B 3B	5.195	5.225 5.2146	5.2667 5. 5.2667 5.	5.2805	0.0138	5.3750
(7) $5\frac{3}{8} - 8$ or $5.3750 - 8$	N	2A 3A	0.0030	5.3720	5.3570	: :	5.2908	5.2809	0.009856	5.2232	2B 3B	5.240	5.265 5.2547	5.2938 5. 5.2938 5.	5.3066	0.0128	5.3750
(7) $5\frac{3}{8} - 12$ or $5.3750 - 12$ (7)	N	2A 3A	0.0020	5.3730	5.3616 5.3636	: :	5.3189	5.3121 5.3158	0.006789	5.2738	2B 3B	5.285 5.2850	5.303 5.2948	5.3209 5. 5.3209 5.	5.3297 5.3275	0.0088	5.3750
$5\frac{3}{8} - 16 \text{ or } 5.3750 - 16$	N	2A 3A	0.0018	5.3732	5.3638	: :	5.3326	5.3265	0.006115	5.2988	2B 3B	5.307	5.321 5.3159	5.3344 5. 5.3344 5.	5.3423 5.3404	0.0079	5.3750
$5\frac{1}{2} - 4$ or $5.5000 - 4$	N	2A 3A	0.0036	5.4964	5.4726 5.4762	: :	5.3340	5.3219	0.012119	5.1987	2B 3B	5.229	5.267 5.2594	5.3376 5. 5.3376 5.	5.3534 5.3494	0.0158	5.5000
$5\frac{1}{2} - 6$ or $5.5000 - 6$	N	2A 3A	0.0032	5.4968	5.4786 5.4818	: :	5.3885	5.3778	0.010709	5.2983	2B 3B	5.320	5.350 5.3396	5.3917 5. 5.3917 5.	5.4056 5.4021	0.0139	5.5000
$5\frac{1}{2} - 8$ or $5.5000 - 8$	N	2A 3A	0.0030	5.4970	5.4820 5.4850	: :	5.4158 5.4188	5.4059	0.009916	5.3482	2B 3B	5.365 5.3650	5.390	5.4188 5. 5.4188 5.	5.4317 5.4285	0.0129	5.5000
(7) $5\frac{1}{2} - 12$ or $5.5000 - 12$	N	2A 3A	0.0020	5.4980	5.4866	: :	5.4439	5.4371	0.006809	5.3988	2B 3B	5.410	5.428	5.4459 5. 5.4459 5.	5.4548	0.0089	5.5000

Table 2 Limits of Size for Standard Series Threads (UN/UNR) (Cont'd)

					Ľ	External [Note (1)]	lote (1)]						п	Internal [Note (1)]	ote (1)]		
							Pitch Funct	Pitch Diameter and Functional Diameter	er and Imeter	UNR Minor Diameter				Pitch	Pitch Diameter and	ır and	
	Series	ις		Majo	Major Diameter	eter		[Note (4)]		Max.		Minor	Minor Diameter	Funct	Functional Diameter		Major
Nominal Size and Threads/in.	Desig- nation	r Class	Desig- nation Class Allowance [Note (2)]	Max. [Note (2)]	Min.	Min. [Note (3)]	Min. Max. [Note (3)]	Min.	Tolerance [Note (5)]	[Note (6)] (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Diameter, Min.
(7) $5\frac{1}{2} - 16$ or $5.5000 - 16$	N D	2A 3A	0.0018	5.4982	5.4888	: :	5.4576	5.4515 5.4548	0.006135	5.4238	2B g	5.432 5.4320	5.446	5.4594	5.4674	0.0080 5	5.5000
5 ⁵ / ₈ – 6 or 5.6250 – 6	N	2A 3A	0.0032	5.6218	5.6036	: :	5.5135	5.5027	0.010769	5.4233	2B 3B	5.445 5.4450	5.475	5.5167	5.5307	0.0140 5	5.6250
$5\frac{5}{8} - 8 \text{ or } 5.6250 - 8$	N S	2A 3A	0.0030	5.6220	5.6070	: :	5.5408	5.5308	0.009976	5.4732	2B 5	5.490	5.515	5.5438	5.5568	0.00130 5	5.6250
(7) $5\% - 12$ or $5.6250 - 12$	N D	2A 3A	0.0020	5.6230	5.6116	: :	5.5689	5.5621 5.5658	0.006829	5.5238	2B 3B	5.535	5.553	5.5709	5.5798	0.0089 5	5.6250
(7) $5\% - 16$ or $5.6250 - 16$	S	2A 3A	0.0018	5.6232	5.6138 5.6156	: :	5.5826	5.5764	0.006155	5.5488	2B 3B	5.557	5.571	5.5844	5.5924	0.0080 5	5.6250
$5\frac{3}{4} - 4$ or $5.7500 - 4$	N O	2A 3A	0.0037	5.7463	5.7225 5.7262	: :	5.5839	5.5717	0.012237	5.4486	2B 3B	5.479	5.517	5.5876	5.6035	0.0159 5	5.7500
$5\frac{3}{4}$ - 6 or 5.7500 - 6	N S	2A 3A	0.0032	5.7468	5.7286 5.7318	: :	5.6385	5.6277	0.010827	5.5483	2B 3B	5.570	5.5896	5.6417	5.6558	0.0141 5	5.7500
(7) $5\frac{3}{4} - 8$ or $5.7500 - 8$	S	2A 3A	0.0030	5.7470	5.7320 5.7350	: :	5.6658	5.6558	0.010034	5.5982	2B 3B	5.615	5.640	5.6688	5.6818	0.00130 5	5.7500
(7) $5\frac{3}{4} - 12$ or $5.7500 - 12$	N S	2A 3A	0.0021	5.7479	5.7365 5.7386	: :	5.6938	5.6870	0.006848	5.6487	2B 3B	5.660	5.678	5.6959	5.7048	0.0089 5	5.7500
(7) $5\frac{3}{4} - 6$ or $5.7500 - 16$	N D	2A 3A	0.0019	5.7481	5.7387	: :	5.7075	5.7013 5.7048	0.006174	5.6737	2B 3B	5.682	5.696	5.7094	5.7174 5.7154	0.0080 5	5.7500
$5\frac{7}{8} - 6$ or $5.8750 - 6$	S	2A 3A	0.0033	5.8717	5.8535	: :	5.7634	5.7525	0.010886	5.6732	2B 3B	5.695	5.725	5.7667	5.7809	0.0142 5	5.8750
(7) $5\frac{7}{8} - 8$ or $5.8750 - 8$	N O	2A 3A	0.0030	5.8720	5.8570	: :	5.7908	5.7807	0.010093	5.7232 5.7262	2B 3B	5.740 5.7400	5.765	5.7938	5.8069	0.0031 5	5.8750
(7) $5\frac{7}{8} - 12$ or $5.8750 - 12$	N O	2A 3A	0.0021	5.8729	5.8615 5.8636	: :	5.8188	5.8119 5.8157	0.006868	5.7737	2B 3B	5.785	5.803	5.8209	5.8298	0.0089 5	5.8750

Limits of Size for Standard Series Threads (UN/UNR) (Cont'd) Table 2

					1	External [Note (1)]	Note (1)]						Int	Internal [Note (1)]	ote (1)]		
	Series			Maj	Major Diameter	eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (4)]		UNR Minor Diameter, Max.				Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and	Desig-	_		Max.		Min.	Max.		Tolerance	[Note (6)]	I	Minor Diameter	iameter		[Note (4)]		Diameter,
Threads/in.	nation	Class	nation Class Allowance [Note (2)]	[Note (2)]		[Note (3)]	Min. [Note (3)] [Note (2)]	Min.	[Note (5)]	(Ref.) C	Class	Min.	Мах.	Min.	Max.	Tolerance	Min.
5% - 16 or 5.8750 - 16	N D	2A 3A	0.0019	5.8731	5.8637	: :	5.8325	5.8263	0.006194	5.7987	2B 5. 3B 5.	5.807	5.821 5 5.8159 5	5.8344	5.8425	0.0081	5.8750 5.8750
6 – 4 or 6.0000 – 4	N D	2A 3A	0.0037	5.9963	5.9725	: :	5.8339	5.8215	0.012353	5.6986	2B 5.	5.729	5.767 5	5.8376	5.8537	0.0161	6.0000
6 – 6 or 6.0000 – 6	N	2A 3A	0.0033	5.9967	5.9785	: :	5.8884	5.8775	0.010943	5.7982	2B 5.	5.820	5.850 5	5.8917	5.9059	0.0142	000009
(7) 6 – 8 or 6.0000 – 8 (7)	N	2A 3A	0.0030	5.9970	5.9820	: :	5.9158	5.9057 5.9112	0.0010150	5.8482	2B 5.	5.865	5.890 5	5.9188 5.9188	5.9320	0.0132	000009
6 – 12 or 6.0000 – 12	N D	2A 3A	0.0021	5.9979	5.9865	: :	5.9438 5.9459	5.9369	0.006887	5.8987	2B 5. 3B 5.	5.910	5.928 5 5.9198 5	5.9459	5.9549	0.0090	000009
6 – 16 or 6.0000 – 16	N	2A 3A	0.0019	5.9981	5.9887	: :	5.9575	5.9513 5.9547	0.006213	5.9237	2B 5. 3B 5.	5.932	5.946 5 5.9409 5	5.9594 5.9675 5.9594 5.9655	5.9675	0.0081	6.0000
			and a character; and a	_	1 2 F 1 th		2 17 61411	3		ŭ							

GENERAL NOTE: Series designation shown indicates the UN thread form; however, the UNR thread form may be specified by substituting UNR in place of UN in all designations for external use only.

NOTES:

(1) Thread classes may be combined. See para. 4.2. (2) For Class 2A threads having an additive finish, the maximum major and pitch diameters, after coating, may equal the basic sizes, whose values are the same as maximum values shown for Class 3A in these columns. See paras. 4.1.1 and 4.1.3.

For unfinished hot material, not including standard fasteners with rolled threads.

See para. 5.2.1 for Functional Diameter.

2A pitch diameter tolerance ($7d_2$) is listed and used to a six place decimal to calculate the listed Class 1A/1B, 2B, 3A/3B tolerances and Class 1A/2A allowances and all dimensional limits that depend upon them. (5)

These values are for reference only. UN series external thread maximum minor diameter is basic ($heta_1$ in para. 11) for 9

One or more of the numbers listed in this row have been changed to correct for calculation and rounding errors. The original numbers from past issues of B1.1 are listed in Appendix E and are for reference only. Class 3A and basic minus allowance for Classes 1A and 2A. 5

Formerly NF. Not a recommended standard size. Tolerances and allowances are based on one diameter length of 8

4 SCREW THREAD CLASSES

4.1 Thread Classes

Thread classes are distinguished from each other by the amounts of tolerance and allowance. Classes 1A, 2A, and 3A apply to external threads only, and Classes 1B, 2B, and 3B apply to internal threads only. Allowance is specified only for Classes 1A and 2A and the allowance is identical for both classes. Tolerance decreases as class number increases (e.g., tolerance for Class 3A is less than that for Class 2A, which is less than that for Class 1A).

4.1.1 Classes 1A and 1B Threads. Classes 1A (external) and 1B (internal) threads replaced American National Class 1 screw threads. These classes provide for applications where a liberal tolerance and an allowance are required to permit easy assembly even with slightly nicked threads. These classes are intended for ordnance and other special uses. Maximum diameters of Class 1A threads are less than basic by the amount of the allowance (the allowance is identical to that for Class 2A). The allowance is not available for plating or coating; and consequently, in some cases it may be necessary to make special provisions in thread manufacturing for accommodation of plating or coating. The minimum diameters of Class 1B threads, whether or not plated or coated, are basic and consequently afford no allowance or clearance for assembly at maximum-material limits.

4.1.2 Classes 2A and 2B Threads. Classes 2A (external) and 2B (internal) threads are the most commonly used thread classes for general applications, including production of bolts, screws, nuts, and similar threaded fasteners.

The maximum diameters of Class 2A uncoated threads are less than basic by the amount of the allowance. The allowance minimizes galling and seizing in high-cycle wrench assembly, or it can be used to accommodate plated finishes or other coating. However, for threads with additive finish, the maximum diameters of Class 2A may be exceeded by the amount of the allowance; i.e., the 2A maximum diameters apply to an unplated part or to a part before plating, whereas the basic diameters apply to a part after plating. The minimum diameters of Class 2B threads, whether or not plated or coated, are basic, affording no allowance or clearance in assembly at maximum-material limits.

4.1.3 Classes 3A and 3B Threads. Classes 3A (external) and 3B (internal) threads provide for applications where closeness of fit and/or accuracy of thread elements are important. The maximum diameters of Class 3A threads and the minimum diameters of Class 3B threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly at maximum-material limits.

4.2 Combinations of Classes

The requirements for screw thread fits for specific applications are predicated on end use and can be met by specifying the proper combinations of thread classes for the components. For example, a Class 2A external thread may be used with a Class 1B, 2B, or 3B internal thread.

5 SCREW THREAD ALLOWANCE AND TOLERANCE

5.1 Allowance

Allowance is specified only for Classes 1A and 2A external threads. For Class 1A threads, its purpose is to preclude the possibility of surface-to-surface fit between mating parts and it cannot be used to accommodate plating or coating. For Class 2A threads, the allowance may be used to accommodate plating or coating. Allowance for Classes 1A and 2A is identical and is based on Class 2A pitch diameter tolerance for the respective series standard length of engagement and is applicable for all lengths of engagement.

Formulas for allowance are given in para. 5.8.1(a). Applications of allowances to the basic thread form are shown in Fig. 2.

EXAMPLE: 2.0625-12-UNS-2A

From para. 5.8.1(a): Allowance, $es = 0.300 Td_2(2A)$. From para. 5.2, example (1): $Td_2(2A) = 0.006070$.

Therefore, $es = 0.300 \times 0.006070 = 0.001821$, or 0.0018 in. when rounded.

5.2 Pitch Diameter Tolerance, All Classes

NOTE: Refer to Table 1 for the standard series of diameter-pitch combinations. Allowances and tolerances for standard series threads are applied in Table 2. All other diameter-pitch combinations are considered nonstandard. Allowances and tolerances for nonstandard threads must be calculated using the appropriate formulas contained in this Standard.

The pitch diameter tolerances specified in Table 2 for all classes of the UNC and UNF series are based on a length of engagement equal to the basic major (nominal) diameter and are applicable for lengths of engagement from 5 pitches to up to 1.5 diameters. For the 4-UN, 6-UN, and 8-UN series, the pitch diameter tolerances specified for Classes 2A, 2B, 3A, and 3B are based on a length of engagement equal to the basic major (nominal) diameter and are applicable for lengths of engagement up to 1.5 diameters.

The pitch diameter tolerances specified in Table 2 for all classes of the UNEF, 12-UN, 16-UN, 20-UN, 28-UN, and 32-UN series are based on a length of engagement of 9 pitches and are applicable for lengths of engagement from 5 to 15 pitches.

The pitch diameter tolerances specified in Table D-1 of Nonmandatory Appendix D for all classes of the UNS series are based on a length of engagement of 9 pitches and are applicable for lengths of engagement from 5 to 15 pitches.

Formulas for pitch diameter tolerance are given in paras. 5.8.1(c) and 5.8.2(b).

Applications of tolerances to the thread form are shown in Figs. 2 and 3.

For special threads, tolerances and allowances shall be computed from the formulas in paras. 5.8.1 and 5.8.2. If the length of engagement is between 5 and 15 pitches or is unknown, use 9 pitches in the applicable formulas. For all other lengths of engagement, use the known values.

EXAMPLES:

(1) 2.0625-12-UNS-2A (length of engagement not specified)

 $Td_2 = 0.0015 \sqrt[3]{D} + 0.0015 \sqrt{LE} + 0.015 \sqrt[3]{P^2}$

 $Td_2 = 0.0015 \sqrt[3]{2.0625} + 0.0015 \sqrt{9/12} + 0.015 \sqrt[3]{0.08333333^2}$

 $Td_2 = 0.001909 + 0.001299 + 0.002862$

 $Td_2 = 0.006070$

(2) 2.0625-12-UNS-SE2A (18 pitches length of engagement)

 $Td_2 = 0.0015 \sqrt[3]{D} + 0.0015 \sqrt{LE} + 0.015 \sqrt[3]{P^2}$

 $Td_2 = 0.0015 \sqrt[3]{2.0625} + 0.0015\sqrt{1.500} + 0.015 \sqrt[3]{0.08333333^2}$

 $Td_2 = 0.001909 + 0.001837 + 0.002862$

 $Td_2 = 0.006608$

5.2.1 Functional Diameter. Functional diameter size includes the effects of all variations in pitch diameter, thread form, and profile. The variations in the individual thread characteristics, such as flank angle, lead, taper, and roundness, on a given thread cause the measurements of the pitch diameter and functional diameter to vary from one another on most threads. The pitch diameter and functional diameter on a given thread are equal to one another only when the thread form is perfect.

When required to inspect/evaluate either the pitch diameter and/or the functional diameter for thread acceptance (see ASME B1.3), use the same limits of size for the appropriate thread size and class.

5.3 Special Lengths of Engagement, LE

For special applications, the required length of engagement might be the determining factor in the proper selection of thread tolerances. When design considerations require nonstandard pitches or extreme conditions of engagement not covered by the tables, the tolerances may be adjusted using the formulas. It is particularly important that changes in tolerance be noted by the user for external threads designated Class 3A when using longer than standard lengths of engagement.

5.3.1 Long LE Using Gage Length LG Equal to LE

(a) High-Strength Materials Using Standard Pitch Diameter Tolerances. For applications of long length of engagement of mating parts involving very high-strength

materials, increases in tolerances based on standard length of engagement may be detrimental. In these cases, the tolerances based on the standard length of engagement may be applied to increased length of engagement threads. This requires the GO thread gages to have a special length equal to the length of engagement.

(b) Standard Bolt, Added Allowance in Tapped Hole, LE Increases. In some cases where greater than standard length of engagement is required, it is desirable to use standard externally threaded parts with tolerances based on standard length of engagement. For example, in the case of a standard bolt assembled into a tapped hole in aluminum, the designation of the bolt thread will conform to that of a thread for a standard length of engagement.

To ensure proper assembly, the tapped hole thread into which the bolt is assembled must not interfere with the bolt thread. This could happen if no special provisions were made in the tapped hole thread due to the cumulative effect of lead variation on the bolt thread, inasmuch as the increased length of engagement exceeds the thickness of the GO thread gage used for acceptance of the bolt thread. To avoid this condition, an allowance should be provided in the tapped hole, the amount of which should be the diameter equivalent of the cumulative lead variation for the increased length of engagement, which is one-half the pitch diameter tolerance of the bolt thread allowed for the standard length of engagement. This requires the GO thread and GO plain gages to have a special length equal to the length of engagement.

EXAMPLE: 0.5000-13UNC-SE2B; LE=1 in. (2 diameters); assembled with standard bolt thread.

Add allowance $EI = \frac{1}{2}Td_2$ for standard bolt thread. From Table 3, column 5, $\frac{1}{2}Td_2$ (standard) = 0.0025. Therefore, the thread is redesignated to indicate a nonstandard internal thread with the allowance of 0.0025 added to the basic size of 0.5000. New designation is 0.5025-13UNS-SE2B. Allowance is also added to the standard minor diameter size limits and to the adjusted pitch diameter size limits. See para. 6.6.1.

(c) Standard Internal Thread, Added Allowance on External Thread, es, Increases. In some cases where greater than standard length of engagement is required, it is desirable to use standard internally threaded parts with tolerances based on standard length of engagement. In these cases an allowance should be added to the mating external thread.

EXAMPLE: 0.3750-24UNF-SE2A; LE=0.88 in. (2.35 diameters); assembled with standard internal thread.

Add allowance, equal to ${}^1\!\!/_2TD_2$ for standard internal thread. From Table 3, column 8, ${}^1\!\!/_2TD_2$ (standard) = 0.00245, which is rounded to 0.0025. Therefore, the thread is redesignated to indicate a nonstandard external thread with the allowance of 0.0025 subtracted from the basic size of 0.3750. New designation is 0.3725-24UNS-SE2A. The added allowance is also subtracted from the standard major diameter size limits and from the adjusted pitch diameter size limits. See para. 6.6.1.

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_2$ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., ½TD2 (-)
1	2	3	4	5	6	7	8
0 – 80 or 0.060 – 80	UNF	2A 3A	0.00052 0.00038	0.00090 0.00065	2B 3B	0.00066 0.00048	0.00115 0.00085
1 – 64 or 0.073 – 64	UNC	2A 3A	0.00058 0.00043	0.00100 0.00075	2B 3B	0.00075 0.00055	0.00130 0.00095
1 – 72 or 0.073 – 72	UNF	2A 3A	0.00055 0.00040	0.00095 0.00070	2B 3B	0.00072 0.00055	0.00125 0.00095
2 – 56 or 0.086 – 56	UNC	2A 3A	0.00061 0.00046	0.00105 0.00080	2B 3B	0.00081 0.00061	0.00140 0.00105
2 - 64 or 0.086 - 64	UNF	2A 3A	0.00058 0.00043	0.00100 0.00075	2B 3B	0.00078 0.00058	0.00135 0.00100
3 – 48 or 0.099 – 48	UNC	2A 3A	0.00066 0.00049	0.00115 0.00085	2B 3B	0.00087 0.00064	0.00150 0.00110
3 – 56 or 0.099 – 56	UNF	2A 3A	0.00064 0.00046	0.00110 0.00080	2B 3B	0.00081 0.00061	0.00140 0.00105
4 – 40 or 0.112 – 40	UNC	2A 3A	0.00072 0.00055	0.00125 0.00095	2B 3B	0.00095 0.00069	0.00165 0.00120
4 – 48 or 0.112 – 48	UNF	2A 3A	0.00069 0.00052	0.00120 0.00090	2B 3B	0.00089 0.00066	0.00155 0.00115
5 – 40 or 0.125 – 40	UNC	2A 3A	0.00075 0.00055	0.00130 0.00095	2B 3B	0.00095 0.00072	0.00165 0.00125
5 – 44 or 0.125 – 44	UNF	2A 3A	0.00072 0.00055	0.00125 0.00095	2B 3B	0.00092 0.00069	0.00160 0.00120
6 – 32 or 0.138 – 32	UNC	2A 3A	0.00081 0.00061	0.00140 0.00105	2B 3B	0.00107 0.00078	0.00185 0.00135
6 – 40 or 0.138 – 40	UNF	2A 3A	0.00075 0.00058	0.00130 0.00100	2B 3B	0.00098 0.00072	0.00170 0.00125
8 – 32 or 0.164 – 32	UNC	2A 3A	0.00084 0.00064	0.00145 0.00110	2B 3B	0.00110 0.00081	0.00190 0.00140
8 – 36 or 0.164 – 36	UNF	2A 3A	0.00081 0.00061	0.00140 0.00105	2B 3B	0.00104 0.00078	0.00180 0.00135
10 – 24 or 0.190 – 24	UNC	2A 3A	0.00095 0.00072	0.00165 0.00125	2B 3B	0.00124 0.00092	0.00215 0.00160
10 – 32 or 0.190 – 32	UNF	2A 3A	0.00087 0.00066	0.00150 0.00115	2B 3B	0.00113 0.00084	0.00195 0.00145
12 – 24 or 0.216 – 24	UNC	2A 3A	0.00098 0.00075	0.00170 0.00130	2B 3B	0.00127 0.00095	0.00220 0.00165
12 – 28 or 0.216 – 28	UNF	2A 3A	0.00092 0.00069	0.00160 0.00120	2B 3B	0.00121 0.00089	0.00210 0.00155
12 – 32 or 0.216 – 32	UNEF	2A 3A	0.00089 0.00069	0.00155 0.00120	2B 3B	0.00118 0.00089	0.00205 0.00155
¹ / ₄ – 20 or 0.250 – 20	UNC	1A 2A 3A	0.00162 0.00107 0.00081	0.00280 0.00185 0.00140	1B 2B 3B	0.00211 0.00141 0.00104	0.00365 0.00245 0.00180

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	mal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., \(\frac{1}{2}Td_2 \) (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. 1/2TD2 (-)
1	2	3	4	5	6	7	8
¹ / ₄ – 28 or 0.250 – 28	UNF	1A	0.00144	0.00250	1B	0.00188	0.00325
74 20 01 0.230 20	0111	2A	0.00095	0.00165	2B	0.00124	0.00215
		3A	0.00072	0.00125	3B	0.00092	0.00160
¹ / ₄ – 32 or 0.250 – 32	UNEF	2A	0.00092	0.00160	2B	0.00121	0.00210
, ,		3A	0.00069	0.00120	3B	0.00089	0.00155
⁵ / ₁₆ – 18 or 0.3125 – 18	UNC	1A	0.00176	0.00305	1B	0.00223	0.00395
/16 10 01 0.3123 10	Oite	2A	0.00175	0.00200	2B	0.00153	0.00265
		3A	0.00087	0.00150	3B	0.00113	0.00195
$\frac{5}{16}$ – 20 or 0.3125 – 20	UN	2A	0.00115	0.00200	2B	0.00150	0.00260
/16 20 01 0.5125 20	ON	3A	0.00017	0.00200	3B	0.00130	0.00195
5/ 0/ 00/05 0/							
⁵ / ₁₆ – 24 or 0.3125 – 24	UNF	1A	0.00159	0.00275	1B	0.00205	0.00355
		2A 3A	0.00107	0.00185	2B	0.00139	0.00240
_			0.00078	0.00135	3B	0.00104	0.00180
⁵ / ₁₆ – 28 or 0.3125 – 28	UN	2A	0.00098	0.00170	2B	0.00127	0.00220
		3A	0.00075	0.00130	3B	0.00095	0.00165
$\frac{5}{16}$ - 32 or 0.3125 - 32	UNEF	2A	0.00092	0.00160	2B	0.00121	0.00210
		3A	0.00069	0.00120	3B	0.00089	0.00155
³ / ₈ – 16 or 0.375 – 16	UNC	1A	0.00188	0.00325	1B	0.00245	0.00425
78 10 0. 0.575 10	00	2A	0.00127	0.00220	2B	0.00165	0.00285
		3A	0.00095	0.00165	3B	0.00124	0.00215
$\frac{3}{8}$ – 20 or 0.375 – 20	UN	2A	0.00118	0.00205	2B	0.00156	0.00270
,,		3A	0.00089	0.00155	3B	0.00115	0.00200
$\frac{3}{8}$ – 24 or 0.375 – 24	UNF	1A	0.00165	0.00285	1B	0.00214	0.00370
/8 - 24 01 0.373 - 24	ONI	2A	0.00103	0.00190	2B	0.00214	0.00370
		3A	0.000110	0.00196	3B	0.00141	0.00185
$\frac{3}{8}$ – 28 or 0.375 – 28	UN	2A	0.00104	0.00180	2B	0.00133	
/8 - 20 01 0.3/3 - 20	UN	2A 3A	0.00104	0.00180	2B 3B	0.00133	0.00230 0.00175
2.							
$\frac{3}{8}$ – 32 or 0.375 – 32	UNEF	2A	0.00098	0.00170	2B	0.00127	0.00220
		3A	0.00072	0.00125	3B	0.00095	0.00165
⁷ / ₁₆ – 14 or 0.4375 – 14	UNC	1A	0.00205	0.00355	1B	0.00266	0.00460
		2A	0.00136	0.00235	2B	0.00176	0.00305
		3A	0.00101	0.00175	3B	0.00133	0.00230
⁷ / ₁₆ – 16 or 0.4375 – 16	UN	2A	0.00133	0.00230	2B	0.00170	0.00295
		3A	0.00098	0.00170	3B	0.00130	0.00225
$\frac{7}{16}$ – 20 or 0.4375 – 20	UNF	1A	0.00182	0.00315	1B	0.00234	0.00405
710 20 0. 0. 1575 20		2A	0.00121	0.00210	2B	0.00156	0.00270
		3A	0.00089	0.00155	3B	0.00118	0.00205
⁷ / ₁₆ – 28 or 0.4375 – 28	UNEF	2A	0.00104	0.00180	2B	0.00133	0.00230
716 20 01 014373 20	OTTE	3A	0.00078	0.00135	3B	0.00101	0.00175
⁷ / ₁₆ – 32 or 0.4375 – 32	UN	2A	0.00098	0.00170	2B	0.00127	0.00220
/10 52 51 5.75/5 52	J.1	3A	0.00072	0.00176	3B	0.00127	0.00220
1/ 12 00 0 00 12	LING						
$\frac{1}{2}$ – 13 or 0.500 – 13	UNC	1A 2A	0.00214 0.00144	0.00370 0.00250	1B 2B	0.00280 0.00188	0.00485 0.00325
		3A	0.00144	0.00230	3B	0.00133	0.00323

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inter	nal
Nominal Size and	Series		Allowable Variation in Lead,	Equivalent Change in Functional Diameter, in.,		Allowable Variation in Lead, in.	Equivalent Change in Functional Diameter, in.
Threads/in.	Designation	Class	in. (±)	$^{1}/_{2}Td_{2}$ (+)	Class	(±)	$^{1}/_{2}TD_{2}$ (-)
1	2	3	4	5	6	7	8
$\frac{1}{2}$ – 16 or 0.500 – 16	UN	2A	0.00136	0.00235	2B	0.00176	0.00305
		3A	0.00101	0.00175	3B	0.00133	0.00230
¹ / ₂ – 20 or 0.500 – 20	UNF	1A	0.00185	0.00320	1B	0.00242	0.00420
		2A	0.00124	0.00215	2B	0.00162	0.00280
		3A	0.00092	0.00160	3B	0.00121	0.00210
$\frac{1}{2}$ – 28 or 0.500 – 28	UNEF	2A	0.00107	0.00185	2B	0.00139	0.00240
		3A	0.00081	0.00140	3B	0.00104	0.00180
$\frac{1}{2}$ – 32 or 0.500 – 32	UN	2A	0.00101	0.00175	2B	0.00130	0.00225
		3A	0.00075	0.00130	3B	0.00098	0.00170
⁹ / ₁₆ – 12 or 0.5625 – 12	UNC	1A	0.00225	0.00390	1B	0.00294	0.00510
		2A	0.00150	0.00260	2B	0.00196	0.00340
		3A	0.00113	0.00195	3B	0.00147	0.00255
⁹ / ₁₆ – 16 or 0.5625 – 16	UN	2A	0.00136	0.00235	2B	0.00176	0.00305
		3A	0.00101	0.00175	3B	0.00133	0.00230
⁹ / ₁₆ – 18 or 0.5625 – 18	UNF	1A	0.00196	0.00340	1B	0.00257	0.00445
		2A	0.00130	0.00225	2B	0.00170	0.00295
		3A	0.00098	0.00170	3B	0.00127	0.00220
⁹ / ₁₆ – 20 or 0.5625 – 20	UN	2A	0.00121	0.00210	2B	0.00159	0.00275
		3A	0.00092	0.00160	3B	0.00118	0.00205
⁹ / ₁₆ – 24 or 0.5625 – 24	UNEF	2A	0.00113	0.00195	2B	0.00147	0.00255
, 10		3A	0.00084	0.00145	3B	0.00110	0.00190
⁹ / ₁₆ – 28 or 0.5625 – 28	UN	2A	0.00107	0.00185	2B	0.00139	0.00240
710 20 0. 0.3023 20		3A	0.00081	0.00140	3B	0.00104	0.00180
⁹ / ₁₆ – 32 or 0.5625 – 32	UN	2A	0.00101	0.00175	2B	0.00130	0.00225
/16 92 01 0.3023 92	0.11	3A	0.00075	0.00179	3B	0.00098	0.00170
⁵ / ₈ – 11 or 0.625 – 11	UNC	1A	0.00240	0.00415	1B	0.00309	0.00535
/8 11 01 0.025 11	ONC	2A	0.00240	0.00415	2B	0.00208	0.00353
		3A	0.00133	0.00205	3B	0.00156	0.00270
⁵ / ₈ – 12 or 0.625 – 12	UN	2A	0.00156	0.00270	2B	0.00205	0.00355
/8 - 12 01 0.023 - 12	ON	3A	0.00130	0.00276	3B	0.00203	0.00353
⁵ / ₈ – 16 or 0.625 – 16	UN	2A	0.00139	0.00240	2B	0.00179	0.00310
/8 - 10 01 0.025 - 10	UN	2A 3A	0.00139	0.00240	3B	0.00179	0.00310
5/ 10 0* 0 (25 10	LINE		0.00202				
⁵ / ₈ – 18 or 0.625 – 18	UNF	1A 2A		0.00350 0.00235	1B 2B	0.00263	0.00455
		2A 3A	0.00136 0.00101	0.00233	3B	0.00173 0.00130	0.00300 0.00255
⁵ / ₈ – 20 or 0.625 – 20	LINI						
7 ₈ - 20 or 0.625 - 20	UN	2A 3A	0.00124 0.00092	0.00215 0.00160	2B 3B	0.00162 0.00121	0.00280 0.00210
r .							
⁵ / ₈ – 24 or 0.625 – 24	UNEF	2A	0.00115	0.00200	2B	0.00150	0.00260
F .		3A	0.00087	0.00150	3B	0.00113	0.00195
⁵ / ₈ – 28 or 0.625 – 28	UN	2A	0.00110	0.00190	2B	0.00141	0.00245
		3A	0.00081	0.00140	3B	0.00107	0.00185
⁵ / ₈ – 32 or 0.625 – 32	UN	2A	0.00104	0.00180	2B	0.00133	0.00230
		3A	0.00078	0.00135	3B	0.00101	0.00175
11/ 42 0/075 42	LINI	2.4	0.00156	0.00270	2B	0.00205	0.00355
$^{11}/_{16}$ – 12 or 0.6875 – 12	UN	2A	0.00136	0.00270	20	0.00203	0.00555

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., 1/2Td ₂ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. ½TD2 (–)
1	2	3	4	5	6	7	8
11/ ₁₆ – 16 or 0.6875 – 16	UN	2A 3A	0.00139 0.00104	0.00240 0.00130	2B 3B	0.00179 0.00133	0.00310 0.00230
$^{11}/_{16}$ – 20 or 0.6875 – 20	UN	2A 3A	0.00124 0.00092	0.00215 0.00160	2B 3B	0.00162 0.00121	0.00280 0.00210
$^{11}/_{16}$ – 24 or 0.6875 – 24	UNEF	2A 3A	0.00115 0.00087	0.00200 0.00150	2B 3B	0.00150 0.00113	0.00260 0.00195
¹¹ / ₁₆ – 28 or 0.6875 – 28	UN	2A 3A	0.00110 0.00081	0.00190 0.00140	2B 3B	0.00141 0.00107	0.00245 0.00185
$^{11}/_{16}$ – 32 or 0.6875 – 32	UN	2A 3A	0.00104 0.00078	0.00180 0.00135	2B 3B	0.00133 0.00101	0.00230 0.00175
³ / ₄ – 10 or 0.750 – 10	UNC	1A 2A 3A	0.00254 0.00170 0.00127	0.00440 0.00295 0.00220	1B 2B 3B	0.00332 0.00222 0.00165	0.00575 0.00385 0.00285
$\frac{3}{4}$ – 12 or 0.750 – 12	UN	2A 3A	0.00159 0.00118	0.00275 0.00205	2B 3B	0.00208 0.00156	0.00360 0.00270
³ / ₄ – 16 or 0.750 – 16	UNF	1A 2A 3A	0.00217 0.00144 0.00110	0.00375 0.00250 0.00190	1B 2B 3B	0.00283 0.00188 0.00141	0.00490 0.00325 0.00245
³ / ₄ – 20 or 0.750 – 20	UNEF	2A 3A	0.00127 0.00095	0.00220 0.00165	2B 3B	0.00165 0.00124	0.00285 0.00215
$\frac{3}{4}$ – 28 or 0.750 – 28	UN	2A 3A	0.00110 0.00084	0.00190 0.00145	2B 3B	0.00144 0.00107	0.00250 0.00185
$\frac{3}{4}$ – 32 or 0.750 – 32	UN	2A 3A	0.00104 0.00078	0.00180 0.00135	2B 3B	0.00136 0.00104	0.00235 0.00180
$^{13}/_{16}$ – 12 or 0.8125 – 12	UN	2A 3A	0.00159 0.00118	0.00275 0.00205	2B 3B	0.00208 0.00156	0.00360 0.00270
$^{13}/_{16}$ – 16 or 0.8125 – 16	UN	2A 3A	0.00141 0.00104	0.00245 0.00180	2B 3B	0.00182 0.00136	0.00315 0.00235
$^{13}/_{16}$ – 20 or 0.8125 – 20	UNEF	2A 3A	0.00127 0.00095	0.00220 0.00165	2B 3B	0.00165 0.00124	0.00285 0.00215
$^{13}/_{16}$ – 28 or 0.8125 – 28	UN	2A 3A	0.00110 0.00084	0.00190 0.00145	2B 3B	0.00144 0.00107	0.00250 0.00185
$^{13}/_{16}$ – 32 or 0.8125 – 32	UN	2A 3A	0.00104 0.00078	0.00180 0.00135	2B 3B	0.00136 0.00104	0.00235 0.00180
⁷ / ₈ – 9 or 0.875 – 9	UNC	1A 2A 3A	0.00274 0.00182 0.00136	0.00475 0.00315 0.00235	1B 2B 3B	0.00355 0.00237 0.00176	0.00615 0.00410 0.00305
$\frac{7}{8}$ – 12 or 0.875 – 12	UN	2A 3A	0.00159 0.00118	0.00275 0.00205	2B 3B	0.00208 0.00156	0.00360 0.00270
⁷ / ₈ – 14 or 0.875 – 14	UNF	1A 2A 3A	0.00234 0.00156 0.00118	0.00405 0.00270 0.00205	1B 2B 3B	0.00306 0.00202 0.00153	0.00530 0.00350 0.00265
⁷ / ₈ – 16 or 0.875 – 16	UN	2A 3A	0.00141 0.00104	0.00245 0.00180	2B 3B	0.00182 0.00136	0.00315 0.00235

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., \(\frac{1}{2}Td_2 \) (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. ½TD2 (-)
1	2	3	4	5	6	7	8
⁷ / ₈ – 20 or 0.875 – 20	UNEF	2A 3A	0.00127 0.00095	0.00220 0.00165	2B 3B	0.00165 0.00124	0.00285 0.00215
⁷ / ₈ – 28 or 0.875 – 28	UN	2A 3A	0.00110 0.00084	0.00190 0.00145	2B 3B	0.00124 0.00144 0.00107	0.00250 0.00185
⁷ / ₈ – 32 or 0.875 – 32	UN	2A 3A	0.00104 0.00078	0.00149 0.00180 0.00135	2B 3B	0.00136 0.00104	0.00235 0.00180
¹⁵ / ₁₆ – 12 or 0.9375 – 12	UN	2A 3A	0.00165	0.00255	2B 3B	0.00214	0.00370
¹⁵ / ₁₆ – 16 or 0.9375 – 16	UN	2A 3A	0.00121	0.00210 0.00250 0.00185	2B 3B	0.00159	0.00275 0.00325
¹⁵ / ₁₆ – 20 or 0.9375 – 20	UNEF	2A 3A	0.00107 0.00130 0.00098	0.00185 0.00225 0.00170	2B 3B	0.00141 0.00170 0.00127	0.00245 0.00295 0.00220
¹⁵ / ₁₆ – 28 or 0.9375 – 28	UN	2A 3A	0.00038 0.00115 0.00087	0.00200 0.00150	2B 3B	0.00127 0.00150 0.00113	0.00220 0.00260 0.00195
¹⁵ / ₁₆ – 32 or 0.9375 – 32	UN	2A 3A	0.00110 0.00081	0.00190 0.00140	2B 3B	0.00141 0.00107	0.00245 0.00185
1 – 8 or 1.000 – 8	UNC	1A 2A 3A	0.00292 0.00196 0.00147	0.00505 0.00340 0.00255	1B 2B 3B	0.00381 0.00254 0.00191	0.00660 0.00440 0.00330
1 – 12 or 1.000 – 12	UNF	1A 2A 3A	0.00147 0.00254 0.00170 0.00127	0.00440 0.00295 0.00220	1B 2B 3B	0.00191 0.00329 0.00219 0.00165	0.00570 0.00380 0.00285
1 – 14 or 1.000 – 14	UNS	1A 2A 3A	0.00242 0.00162 0.00121	0.00420 0.00280 0.00210	1B 2B 3B	0.00315 0.00211 0.00156	0.00545 0.00365 0.00270
1 – 16 or 1.000 – 16	UN	2A 3A	0.00144 0.00107	0.00250 0.00185	2B 3B	0.00188 0.00141	0.00325 0.00245
1 – 20 or 1.000 – 20	UNEF	2A 3A	0.00130 0.00098	0.00225 0.00170	2B 3B	0.00170 0.00127	0.00295 0.00220
1 – 28 or 1.000 – 28	UN	2A 3A	0.00115 0.00087	0.00200 0.00150	2B 3B	0.00150 0.00113	0.00260 0.00195
1 – 32 or 1.000 – 32	UN	2A 3A	0.00110 0.00081	0.00190 0.00140	2B 3B	0.00141 0.00107	0.00245 0.00185
$1^{1}/_{16}$ – 8 or 1.0625 – 8	UN	2A 3A	0.00196 0.00147	0.00340 0.00255	2B 3B	0.00257 0.00193	0.00445 0.00335
$1^{1}/_{16}$ – 12 or 1.0625 – 12	UN	2A 3A	0.00165 0.00121	0.00285 0.00210	2B 3B	0.00214 0.00159	0.00370 0.00275
$1^{1}/_{16}$ – 16 or 1.0625 – 16	UN	2A 3A	0.00144 0.00107	0.00250 0.00185	2B 3B	0.00188 0.00141	0.00325 0.00245
$1^{1}/_{16}$ – 18 or 1.0625 – 18	UNEF	2A 3A	0.00136 0.00104	0.00235 0.00180	2B 3B	0.00179 0.00133	0.00310 0.00230
$1^{1}/_{16}$ – 20 or 1.0625 – 20	UN	2A 3A	0.00130 0.00098	0.00225 0.00170	2B 3B	0.00170 0.00127	0.00295 0.00220

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_2$ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. 1/2TD ₂ (-)
1	2	3	4	5	6	7	8
$1^{1}/_{16}$ – 28 or 1.0625 – 28	UN	2A 3A	0.00115 0.00087	0.00200 0.00150	2B 3B	0.00150 0.00113	0.00260 0.00195
1 ¹ / ₈ – 7 or 1.125 – 7	UNC	1A 2A 3A	0.00315 0.00208 0.00156	0.00545 0.00360 0.00270	1B 2B 3B	0.00407 0.00271 0.00205	0.00705 0.00470 0.00355
$1^{1}/_{8}$ – 8 or 1.125 – 8	UN	2A 3A	0.00199 0.00150	0.00345 0.00260	2B 3B	0.00260 0.00193	0.00450 0.00335
1 ¹ / ₈ – 12 or 1.125 – 12	UNF	1A 2A 3A	0.00260 0.00173 0.00130	0.00450 0.00300 0.00225	1B 2B 3B	0.00338 0.00225 0.00170	0.00585 0.00390 0.00295
$1\frac{1}{8}$ – 16 or 1.125 – 16	UN	2A 3A	0.00144 0.00107	0.00250 0.00185	2B 3B	0.00188 0.00141	0.00325 0.00245
$1\frac{1}{8}$ – 18 or 1.125 – 18	UNEF	2A 3A	0.00136 0.00104	0.00235 0.00180	2B 3B	0.00179 0.00133	0.00310 0.00230
$1\frac{1}{8}$ – 20 or 1.125 – 20	UN	2A 3A	0.00130 0.00098	0.00225 0.00170	2B 3B	0.00170 0.00127	0.00295 0.00220
$1\frac{1}{8}$ – 28 or 1.125 – 28	UN	2A 3A	0.00115 0.00087	0.00200 0.00150	2B 3B	0.00150 0.00113	0.00260 0.00195
$1^{3}/_{16} - 8$ or 1.1875 – 8	UN	2A 3A	0.00202 0.00150	0.00350 0.00260	2B 3B	0.00263 0.00196	0.00455 0.00340
$1\frac{3}{16}$ – 12 or 1.1875 – 12	UN	2A 3A	0.00167 0.00124	0.00290 0.00215	2B 3B	0.00217 0.00162	0.00375 0.00280
$1^{3}/_{16}$ – 16 or 1.1875 – 16	UN	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
$1\frac{3}{16} - 18$ or $1.1875 - 18$	UNEF	2A 3A	0.00141 0.00104	0.00245 0.00180	2B 3B	0.00182 0.00136	0.00315 0.00235
$1\frac{3}{16}$ – 20 or 1.1875 – 20	UN	2A 3A	0.00136 0.00101	0.00235 0.00175	2B 3B	0.00176 0.00130	0.00305 0.00225
$1\frac{3}{16}$ – 28 or 1.1875 – 28	UN	2A 3A	0.00118 0.00089	0.00205 0.00155	2B 3B	0.00153 0.00115	0.00265 0.00200
1 ¹ / ₄ – 7 or 1.250 – 7	UNC	1A 2A 3A	0.00320 0.00214 0.00159	0.00555 0.00370 0.00275	1B 2B 3B	0.00416 0.00277 0.00208	0.00720 0.00480 0.00360
1 ¹ / ₄ – 8 or 1.250 – 8	UN	2A 3A	0.00202 0.00153	0.00350 0.00265	2B 3B	0.00266 0.00199	0.00460 0.00345
1 ¹ / ₄ – 12 or 1.250 – 12	UNF	1A 2A 3A	0.00266 0.00179 0.00133	0.00460 0.00310 0.00230	1B 2B 3B	0.00346 0.00231 0.00173	0.00600 0.00400 0.00300
1 ¹ / ₄ – 16 or 1.250 – 16	UN	2A 3A	0.00147 0.00100	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
1 ¹ / ₄ – 18 or 1.250 – 18	UNEF	2A 3A	0.00141 0.00104	0.00245 0.00180	2B 3B	0.00182 0.00136	0.00315 0.00235
$1^{1}/_{4}$ – 20 or 1.250 – 20	UN	2A 3A	0.00136 0.00101	0.00235 0.00175	2B 3B	0.00176 0.00130	0.00305 0.00225

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_2$ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. 1/2TD2 (-)
1	2	3	4	5	6	7	8
1 ¹ / ₄ – 28 or 1.250 – 28	UN	2A 3A	0.00118 0.00089	0.00205 0.00155	2B 3B	0.00153 0.00115	0.00265 0.00200
$1\frac{5}{16} - 8$ or $1.3125 - 8$	UN	2A 3A	0.00205 0.00153	0.00355 0.00265	2B 3B	0.00266 0.00199	0.00460 0.00345
$1\frac{5}{16}$ – 12 or 1.3125 – 12	UN	2A 3A	0.00167 0.00124	0.00290 0.00215	2B 3B	0.00217 0.00162	0.00375 0.00280
$1\frac{5}{16}$ – 16 or 1.3125 – 16	UN	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
$1\frac{5}{16} - 18$ or 1.3125 – 18	UNEF	2A 3A	0.00141 0.00104	0.00245 0.00180	2B 3B	0.00182 0.00136	0.00315 0.00235
$1\frac{5}{16}$ – 20 or 1.3125 – 20	UN	2A 3A	0.00136 0.00101	0.00235 0.00175	2B 3B	0.00176 0.00130	0.00305 0.00225
$1\frac{5}{16}$ – 28 or 1.3125 – 28	UN	2A 3A	0.00118 0.00089	0.00205 0.00155	2B 3B	0.00153 0.00115	0.00265 0.00200
$1^{3}/_{8} - 6$ or 1.375 – 6	UNC	1A 2A 3A	0.00346 0.00231 0.00173	0.00600 0.00400 0.00300	1B 2B 3B	0.00447 0.00300 0.00225	0.00775 0.00520 0.00390
$1^{3}/_{8} - 8$ or $1.375 - 8$	UN	2A 3A	0.00208 0.00156	0.00360 0.00270	2B 3B	0.00268 0.00202	0.00465 0.00350
1 ³ / ₈ – 12 or 1.375 – 12	UNF	1A 2A 3A	0.00271 0.00182 0.00136	0.00470 0.00315 0.00235	1B 2B 3B	0.00355 0.00237 0.00176	0.00615 0.00410 0.00305
$1^{3}/_{8}$ – 16 or 1.375 – 16	UN	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
$1\frac{3}{8}$ – 18 or 1.375 – 18	UNEF	2A 3A	0.00141 0.00104	0.00245 0.00180	2B 3B	0.00182 0.00136	0.00315 0.00235
$1^{3}/_{8}$ – 20 or 1.375 – 20	UN	2A 3A	0.00136 0.00101	0.00235 0.00175	2B 3B	0.00176 0.00130	0.00305 0.00225
$1^{3}/_{8}$ – 28 or 1.375 – 28	UN	2A 3A	0.00118 0.00089	0.00205 0.00155	2B 3B	0.00153 0.00115	0.00265 0.00200
$1^{7}/_{16}$ – 6 or 1.4375 – 6	UN	2A 3A	0.00231 0.00173	0.00400 0.00300	2B 3B	0.00300 0.00225	0.00520 0.00390
$1^{7}/_{16} - 8$ or 1.4375 - 8	UN	2A 3A	0.00208 0.00156	0.00360 0.00270	2B 3B	0.00271 0.00205	0.00470 0.00355
$1^{7}/_{16}$ – 12 or 1.4375 – 12	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380 0.00285
$1^{7}/_{16}$ – 16 or 1.4375 – 16	UN	2A 3A	0.00150 0.00113	0.00260 0.00195	2B 3B	0.00196 0.00147	0.00340 0.00255
$1^{7}/_{16}$ – 18 or 1.4375 – 18	UNEF	2A 3A	0.00144 0.00107	0.00250 0.00185	2B 3B	0.00188 0.00139	0.00325 0.00240
$1^{7}/_{16}$ – 20 or 1.4375 – 20	UN	2A 3A	0.00139 0.00104	0.00240 0.00180	2B 3B	0.00179 0.00133	0.00310 0.00230
$1^{7}/_{16}$ – 28 or 1.4375 – 28	UN	2A 3A	0.00121 0.00089	0.00210 0.00155	2B 3B	0.00159 0.00118	0.00275 0.00205

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and	Series		Allowable Variation in Lead,	Equivalent Change in Functional Diameter, in.,		Allowable Variation in Lead,	Equivalent Change in Functional Diameter, in.
Threads/in.	Designation	Class	in. (±)	$^{1}/_{2}Td_{2}$ (+)	Class	in. (±)	$^{1}/_{2}TD_{2}$ (-)
1	2	3	4	5	6	7	8
$1^{1}/_{2}$ – 6 or 1.500 – 6	UNC	1A	0.00349	0.00605	1B	0.00456	0.00790
, -		2A	0.00234	0.00405	2B	0.00303	0.00525
		3A	0.00176	0.00305	3B	0.00228	0.00305
$1^{1}/_{2}$ – 8 or 1.500 – 8	UN	2A	0.00211	0.00365	2B	0.00274	0.00475
		3A	0.00159	0.00275	3B	0.00205	0.00355
$1\frac{1}{2} - 12$ or 1.500 – 12	UNF	1A	0.00277	0.00480	1B	0.00361	0.00625
, 2		2A	0.00185	0.00320	2B	0.00240	0.00415
		3A	0.00139	0.00240	3B	0.00182	0.00315
$1\frac{1}{2} - 16$ or 1.500 – 16	UN	2A	0.00150	0.00260	2B	0.00196	0.00340
1/2 10 01 1.500 10	OIV	3A	0.00130	0.00195	3B	0.00147	0.00255
41/ 40 - 4 500 40	LINEE						
$1\frac{1}{2} - 18$ or 1.500 – 18	UNEF	2A 3A	0.00144 0.00107	0.00250 0.00185	2B 3B	0.00188	0.00325
4.						0.00139	0.00240
$1\frac{1}{2} - 20$ or 1.500 – 20	UN	2A	0.00139	0.00240	2B	0.00179	0.00310
		3A	0.00104	0.00180	3B	0.00133	0.00230
$1^{1}/_{2}$ – 28 or 1.500 – 28	UN	2A	0.00121	0.00210	2B	0.00159	0.00275
		3A	0.00089	0.00155	3B	0.00118	0.00205
1 ⁹ / ₁₆ – 6 or 1.5625 – 6	UN	2A	0.00237	0.00410	2B	0.00306	0.00530
, 10		3A	0.00176	0.00305	3B	0.00231	0.00400
1 ⁹ / ₁₆ – 8 or 1.5625 – 8	UN	2A	0.00214	0.00370	2B	0.00277	0.00480
1/16 0 01 1.3023 0	ON	3A	0.00114	0.00376	3B	0.00277	0.00360
1 ⁹ / ₁₆ – 12 or 1.5625 – 12	UN	2A			2B	0.00219	0.00380
1/16 - 12 01 1.3023 - 12	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	3B	0.00219	0.00380
.0,							
$1\frac{9}{16}$ – 16 or 1.5625 – 16	UN	2A	0.00150	0.00260	2B	0.00196	0.00340
		3A	0.00113	0.00195	3B	0.00147	0.00255
$1^{9}/_{16}$ – 18 or 1.5625 – 18	UNEF	2A	0.00144	0.00250	2B	0.00188	0.00325
		3A	0.00107	0.00185	3B	0.00139	0.00240
$1^{9}/_{16}$ – 20 or 1.5625 – 20	UN	2A	0.00139	0.00240	2B	0.00179	0.00310
		3A	0.00104	0.00180	3B	0.00133	0.00230
$1\frac{5}{8}$ – 6 or 1.625 – 6	UN	2A	0.00237	0.00410	2B	0.00309	0.00535
,0		3A	0.00179	0.00310	3B	0.00231	0.00400
1 ⁵ / ₈ – 8 or 1.625 – 8	UN	2A	0.00214	0.00370	2B	0.00280	0.00485
1 /8 0 01 1.025 0	ON	3A	0.00162	0.00370	3B	0.00208	0.00360
45/ 42 4 (25 42							
1 ⁵ / ₈ – 12 or 1.625 – 12	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380
)A	0.00127	0.00220		0.00165	0.00285
1 ⁵ / ₈ – 16 or 1.625 – 16	UN	2A	0.00150	0.00260	2B	0.00196	0.00340
		3A	0.00113	0.00195	3B	0.00147	0.00255
1 ⁵ / ₈ – 18 or 1.625 – 18	UNEF	2A	0.00144	0.00250	2B	0.00188	0.00325
		3A	0.00107	0.00185	3B	0.00130	0.00240
1 ⁵ / ₈ – 20 or 1.625 – 20	UN	2A	0.00139	0.00240	2B	0.00179	0.00310
		3A	0.00104	0.00180	3B	0.00133	0.00230
1 ¹¹ / ₁₆ – 6 or 1.6875 – 6	UN	2A	0.00240	0.00415	2B	0.00312	0.00540
1 /16 0 01 1.00/ 3 - 0	ON	3A	0.00240	0.00413	3B	0.00312	0.00340
411/ 0 - 4 4075 6	1181						
$1^{11}/_{16} - 8$ or $1.6875 - 8$	UN	2A 3A	0.00217	0.00375	2B	0.00280	0.00485
		3A	0.00162	0.00280	3B	0.00211	0.00365

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_2$ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. ½7D ₂ (–)
1	2	3	4	5	6	7	8
$1^{11}/_{16}$ – 12 or 1.6875 – 12	UN	2A 3A	0.00173 0.00130	0.00300 0.00225	2B 3B	0.00225 0.00167	0.00390 0.00290
$1^{11}/_{16}$ – 16 or 1.6875 – 16	UN	2A 3A	0.00153 0.00115	0.00265 0.00200	2B 3B	0.00199 0.00150	0.00345 0.00260
44 .							
$1^{11}/_{16}$ – 18 or 1.6875 – 18	UNEF	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00141	0.00330 0.00245
$1^{11}/_{16}$ – 20 or 1.6875 – 20	UN	2A	0.00139	0.00240	2B	0.00182	0.00315
1 /16 20 01 1.00/ 5 20	ON	3A	0.00199	0.00180	3B	0.00132	0.00235
$1^{3}/_{4}$ – 5 or 1.750 – 5	UNC	1A	0.00387	0.00670	1B	0.00502	0.00870
= /4 5 0. 2., 50 5	56	2A	0.00257	0.00445	2B	0.00335	0.00580
		3A	0.00193	0.00335	3B	0.00251	0.00435
$1^{3}/_{4}$ – 6 or 1.750 – 6	UN	2A	0.00240	0.00415	2B	0.00312	0.00540
		3A	0.00182	0.00315	3B	0.00234	0.00405
$1^{3}/_{4}$ – 8 or 1.750 – 8	UN	2A	0.00217	0.00375	2B	0.00283	0.00490
		3A	0.00165	0.00285	3B	0.00214	0.00370
$1^{3}/_{4}$ – 12 or 1.750 – 12	UN	2A	0.00173	0.00300	2B	0.00225	0.00390
		3A	0.00130	0.00225	3B	0.00167	0.00290
$1^{3}/_{4}$ – 16 or 1.750 – 16	UN	2A	0.00153	0.00265	2B	0.00199	0.00345
		3A	0.00115	0.00200	3B	0.00150	0.00260
$1^{3}/_{4}$ – 20 or 1.750 – 20	UN	2A	0.00139	0.00240	2B	0.00182	0.00315
		3A	0.00104	0.00180	3B	0.00136	0.00235
$1^{13}/_{16}$ – 6 or 1.8125 – 6	UN	2A	0.00242	0.00420	2B	0.00315	0.00545
		3A	0.00182	0.00315	3B	0.00237	0.00410
$1^{13}/_{16} - 8$ or $1.8125 - 8$	UN	2A	0.00219	0.00380	2B	0.00286	0.00495
		3A	0.00165	0.00285	3B	0.00214	0.00370
$1^{13}/_{16}$ – 12 or 1.8125 – 12	UN	2A	0.00173	0.00300	2B	0.00225	0.00390
		3A	0.00130	0.00225	3B	0.00167	0.00290
$1^{13}/_{16}$ – 16 or 1.8125 – 16	UN	2A	0.00153	0.00265	2B	0.00199	0.00345
		3A	0.00115	0.00200	3B	0.00150	0.00260
$1^{13}/_{16}$ – 20 or 1.8125 – 20	UN	2A	0.00139	0.00240	2B	0.00182	0.00315
		3A	0.00104	0.00180	3B	0.00136	0.00235
$1^{7}/_{8}$ – 6 or 1.875 – 6	UN	2A	0.00242	0.00420	2B	0.00318	0.00550
		3A	0.00182	0.00315	3B	0.00237	0.00410
$1^{7}/_{8}$ – 8 or 1.875 – 8	UN	2A	0.00222	0.00385	2B	0.00289	0.00500
		3A	0.00165	0.00285	3B	0.00217	0.00375
$1^{7}/_{8}$ – 12 or 1.875 – 12	UN	2A	0.00173	0.00300	2B	0.00225	0.00390
		3A	0.00130	0.00225	3B	0.00167	0.00290
$1^{7}/_{8}$ – 16 or 1.875 – 16	UN	2A	0.00153	0.00265	2B	0.00199	0.00345
		3A	0.00115	0.00200	3B	0.00150	0.00260
$1^{7}/_{8}$ – 20 or 1.875 – 20	UN	2A	0.00139	0.00240	2B	0.00182	0.00315
		3A	0.00104	0.00180	3B	0.00136	0.00235
$1^{15}/_{16}$ – 6 or 1.9375 – 6	UN	2A	0.00245	0.00425	2B	0.00320	0.00555
		3A	0.00185	0.00320	3B	0.00240	0.00415

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size	Series	CI.	Allowable Variation in Lead,	Equivalent Change in Functional Diameter, in.,	e.	Allowable Variation in Lead,	Equivalent Change in Functional Diameter, in.
Threads/in.	Designation	Class	in. (±)	¹ / ₂ Td ₂ (+)	Class	in. (±)	¹/₂TD₂ (−)
1	2	3	4	5	6	7	8
$1^{15}/_{16} - 8$ or $1.9375 - 8$	UN	2A 3A	0.00222 0.00167	0.00385 0.00290	2B 3B	0.00289 0.00217	0.00500 0.00375
$1^{15}/_{16}$ – 12 or 1.9375 – 12	UN	2A 3A	0.00176 0.00130	0.00305 0.00225	2B 3B	0.00228 0.00170	0.00395 0.00295
$1^{15}/_{16}$ – 16 or 1.9375 – 16	UN	2A 3A	0.00156 0.00115	0.00270 0.00200	2B 3B	0.00202 0.00150	0.00350 0.00260
$1^{15}/_{16}$ – 20 or 1.9375 – 20	UN	2A 3A	0.00141 0.00107	0.00245 0.00185	2B 3B	0.00185 0.00139	0.00320 0.00240
$2 - 4^{1}/_{2}$ or $2.000 - 4.5$	UNC	1A 2A	0.00413 0.00274	0.00715 0.00475	1B 2B	0.00537 0.00358	0.00930 0.00620
2 – 6 or 2.000 – 6	UN	3A 2A 3A	0.00205 0.00248 0.00185	0.00355 0.00430 0.00320	3B 2B 3B	0.00268 0.00320 0.00240	0.00465 0.00555 0.00415
2 – 8 or 2.000 – 8	UN	2A 3A	0.00225 0.00167	0.00390 0.00290	2B 3B	0.00292 0.00219	0.00505 0.00380
2 – 12 or 2.000 – 12	UN	2A 3A	0.00176 0.00130	0.00305 0.00225	2B 3B	0.00223 0.00170	0.00395 0.00295
2 – 16 or 2.000 – 16	UN	2A 3A	0.00156 0.00115	0.00270 0.00200	2B 3B	0.00202 0.00150	0.00350 0.00260
2 – 20 or 2.000 – 20	UN	2A 3A	0.00141 0.00107	0.00245 0.00185	2B 3B	0.00185 0.00139	0.00320 0.00240
$2^{1}/_{8}$ – 6 or 2.125 – 6	UN	2A 3A	0.00251 0.00188	0.00435 0.00325	2B 3B	0.00326 0.00242	0.00565 0.00420
$2^{1}/_{8}$ – 8 or 2.125 – 8	UN	2A 3A	0.00228 0.00170	0.00395 0.00295	2B 3B	0.00294 0.00212	0.00510 0.00385
$2^{1}/_{8}$ – 12 or 2.125 – 12	UN	2A 3A	0.00176 0.00130	0.00305 0.00225	2B 3B	0.00228 0.00170	0.00395 0.00295
$2^{1}/_{8}$ – 16 or 2.125 – 16	UN	2A 3A	0.00156 0.00115	0.00270 0.00200	2B 3B	0.00202 0.00150	0.00350 0.00260
$2^{1}/_{8}$ – 20 or 2.125 – 20	UN	2A 3A	0.00141 0.00107	0.00245 0.00185	2B 3B	0.00185 0.00139	0.00320 0.00240
$2^{1}/_{4} - 4^{1}/_{2}$ or 2.250 – 4.5	UNC	1A 2A 3A	0.00421 0.00280 0.00211	0.00730 0.00485 0.00365	1B 2B 3B	0.00548 0.00364 0.00274	0.00950 0.00630 0.00475
$2^{1}/_{4}$ – 6 or 2.250 – 6	UN	2A 3A	0.00254 0.00191	0.00440 0.00330	2B 3B	0.00329 0.00214	0.00570 0.00425
$2^{1}/_{4}$ – 8 or 2.250 – 8	UN	2A 3A	0.00231 0.00173	0.00400 0.00300	2B 3B	0.00300 0.00225	0.00520 0.00390
$2^{1}/_{4}$ – 12 or 2.250 – 12	UN	2A 3A	0.00176 0.00130	0.00305 0.00225	2B 3B	0.00228 0.00170	0.00395 0.00295
2 ¹ / ₄ – 16 or 2.250 – 16	UN	2A 3A	0.00156 0.00115	0.00270 0.00200	2B 3B	0.00202 0.00150	0.00350 0.00260
$2^{1}/_{4}$ – 20 or 2.250 – 20	UN	2A 3A	0.00141 0.00107	0.00245 0.00185	2B 3B	0.00185 0.00139	0.00320 0.00240

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., 1/2Td ₂ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. 1/2TD2 (-)
1	2	3	4	5	6	7	8
2 ³ / ₈ – 6 or 2.375 – 6	UN	2A 3A	0.00257 0.00191	0.00445 0.00330	2B 3B	0.00332 0.00248	0.00575 0.00430
$2^{3}/_{8}$ – 8 or 2.375 – 8	UN	2A 3A	0.00234 0.00173	0.00405 0.00300	2B 3B	0.00303 0.00228	0.00525 0.00395
$2^{3}/_{8}$ – 12 or 2.375 – 12	UN	2A 3A	0.00179 0.00133	0.00310 0.00230	2B 3B	0.00234 0.00173	0.00405 0.00300
$2^{3}/_{8}$ – 16 or 2.375 – 16	UN	2A 3A	0.00159 0.00118	0.00275 0.00205	2B 3B	0.00208 0.00155	0.00360 0.00270
$2^{3}/_{8}$ – 20 or 2.375 – 20	UN	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
$2^{1}/_{2}$ – 4 or 2.500 – 4	UNC	1A 2A 3A	0.00447 0.00300 0.00225	0.00775 0.00520 0.00390	1B 2B 3B	0.00583 0.00390 0.00292	0.01010 0.00675 0.00505
$2^{1}/_{2}$ – 6 or 2.500 – 6	UN	2A 3A	0.00260 0.00193	0.00450 0.00335	2B 3B	0.00335 0.00251	0.00580 0.00435
$2^{1}/_{2}$ – 8 or 2.500 – 8	UN	2A 3A	0.00237 0.00176	0.00410 0.00305	2B 3B	0.00306 0.00231	0.00530 0.00400
$2^{1}/_{2}$ – 12 or 2.500 – 12	UN	2A 3A	0.00179 0.00133	0.00310 0.00230	2B 3B	0.00234 0.00173	0.00405 0.00300
$2^{1}/_{2}$ – 16 or 2.500 – 16	UN	2A 3A	0.00159 0.00118	0.00275 0.00205	2B 3B	0.00208 0.00156	0.00360 0.00270
$2^{1}/_{2}$ – 20 or 2.500 – 20	UN	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
$2^{5}/_{8}$ – 6 or 2.625 – 6	UN	2A 3A	0.00260 0.00196	0.00450 0.00340	2B 3B	0.00341 0.00254	0.00590 0.00440
$2^{5}/_{8}$ – 8 or 2.625 – 8	UN	2A 3A	0.00237 0.00179	0.00410 0.00310	2B 3B	0.00309 0.00231	0.00535 0.00400
$2^{5}/_{8}$ – 12 or 2.625 – 12	UN	2A 3A	0.00179 0.00133	0.00310 0.00230	2B 3B	0.00234 0.00173	0.00405 0.00300
$2^{5}/_{8}$ – 16 or 2.625 – 16	UN	2A 3A	0.00159 0.00118	0.00275 0.00205	2B 3B	0.00208 0.00156	0.00360 0.00270
$2^{5}/_{8}$ – 20 or 2.625 – 20	UN	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
$2^{3}/_{4}$ – 4 or 2.750 – 4	UNC	1A 2A 3A	0.00456 0.00303 0.00228	0.00790 0.00525 0.00395	1B 2B 3B	0.00595 0.00395 0.00297	0.01030 0.00685 0.00515
$2^{3}/_{4}$ – 6 or 2.750 – 6	UN	2A 3A	0.00263 0.00196	0.00455 0.00340	2B 3B	0.00344 0.00257	0.00595 0.00445
$2^{3}/_{4}$ – 8 or 2.750 – 8	UN	2A 3A	0.00240 0.00182	0.00415 0.00315	2B 3B	0.00312 0.00234	0.00540 0.00405
$2^{3}/_{4}$ – 12 or 2.750 – 12	UN	2A 3A	0.00179 0.00133	0.00310 0.00230	2B 3B	0.00234 0.00173	0.00405 0.00300

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_{2}(+)$	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. ½7D ₂ (–)
1	2	3	4	5	6	7	8
2 ³ / ₄ – 16 or 2.750 – 16	UN	2A 3A	0.00159 0.00118	0.00275 0.00205	2B 3B	0.00208 0.00156	0.00360 0.00270
$2^{3}/_{4}$ – 20 or 2.750 – 20	UN	2A 3A	0.00147 0.00110	0.00255 0.00190	2B 3B	0.00191 0.00144	0.00330 0.00250
$2^{7}/_{8}$ – 6 or 2.875 – 6	UN	2A 3A	0.00266 0.00199	0.00460 0.00345	2B 3B	0.00346 0.00280	0.00600 0.00450
$2^{7}/_{8}$ – 8 or 2.875 – 8	UN	2A 3A	0.00242 0.00182	0.00420 0.00315	2B 3B	0.00318 0.00237	0.00550 0.00410
$2^{7}/_{8}$ – 12 or 2.875 – 12	UN	2A 3A	0.00182 0.00136	0.00315 0.00235	2B 3B	0.00237 0.00179	0.00410 0.00310
$2^{7}/_{8}$ – 16 or 2.875 – 16	UN	2A 3A	0.00162 0.00121	0.00280 0.00210	2B 3B	0.00211 0.00159	0.00365 0.00275
$2^{7}/_{8}$ – 20 or 2.875 – 20	UN	2A 3A	0.00150 0.00113	0.00260 0.00195	2B 3B	0.00196 0.00147	0.00340 0.00255
3 – 4 or 3.000 – 4	UNC	1A 2A 3A	0.00465 0.00309 0.00231	0.00805 0.00535 0.00400	1B 2B 3B	0.00603 0.00401 0.00300	0.01045 0.00695 0.00520
3 – 6 or 3.000 – 6	UN	2A 3A	0.00268 0.00202	0.00465 0.00350	2B 3B	0.00349 0.00263	0.00605 0.00455
3 – 8 or 3.000 – 8	UN	2A 3A	0.00245 0.00185	0.00425 0.00320	2B 3B	0.00320 0.00240	0.00555 0.00415
3 – 12 or 3.000 – 12	UN	2A 3A	0.00182 0.00136	0.00315 0.00235	2B 3B	0.00237 0.00179	0.00410 0.00310
3 – 16 or 3.000 – 16	UN	2A 3A	0.00162 0.00121	0.00280 0.00210	2B 3B	0.00211 0.00159	0.00365 0.00275
3 – 20 or 3.000 – 20	UN	2A 3A	0.00150 0.00113	0.00260 0.00195	2B 3B	0.00196 0.00147	0.00340 0.00255
$3^{1}/_{8}$ – 6 or 3.125 – 6	UN	2A 3A	0.00271 0.00202	0.00470 0.00350	2B 3B	0.00352 0.00266	0.00610 0.00460
$3\frac{1}{8}$ – 8 or 3.125 – 8	UN	2A 3A	0.00248 0.00185	0.00430 0.00320	2B 3B	0.00323 0.00242	0.00560 0.00420
$3^{1}/_{8}$ – 12 or 3.125 – 12	UN	2A 3A	0.00182 0.00136	0.00315 0.00235	2B 3B	0.00237 0.00179	0.00410 0.00310
$3^{1}/_{8}$ – 16 or 3.125 – 16	UN	2A 3A	0.00162 0.00121	0.00280 0.00210	2B 3B	0.00211 0.00159	0.00365 0.00275
3 ¹ / ₄ – 4 or 3.250 – 4	UNC	1A 2A 3A	0.00471 0.00315 0.00237	0.00815 0.00545 0.00410	1B 2B 3B	0.00612 0.00407 0.00306	0.01060 0.00705 0.00530
$3^{1}/_{4}$ – 6 or 3.250 – 6	UN	2A 3A	0.00274 0.00205	0.00475 0.00355	2B 3B	0.00355 0.00266	0.00615 0.00460
3 ¹ / ₄ – 8 or 3.250 – 8	UN	2A 3A	0.00251 0.00188	0.00435 0.00325	2B 3B	0.00326 0.00245	0.00565 0.00425
$3\frac{1}{4}$ – 12 or 3.250 – 12	UN	2A 3A	0.00182 0.00136	0.00315 0.00235	2B 3B	0.00237 0.00179	0.00410 0.00310

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_2$ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. ½TD2 (-)
1	2	3	4	5	6	7	8
3 ¹ / ₄ – 16 or 3.250 – 16	UN	2A 3A	0.00162 0.00121	0.00280 0.00210	2B 3B	0.00211 0.00159	0.00365 0.00275
$3\frac{3}{8}$ – 6 or 3.375 – 6	UN	2A 3A	0.00274 0.00208	0.00475 0.00360	2B 3B	0.00358 0.00258	0.00620 0.00465
$3^{3}/_{8}$ – 8 or 3.375 – 8	UN	2A 3A	0.00254 0.00191	0.00440 0.00330	2B 3B	0.00329 0.00245	0.00570 0.00425
$3^{3}/_{8}$ – 12 or 3.375 – 12	UN	2A 3A	0.00185 0.00139	0.00320 0.00242	2B 3B	0.00242 0.00182	0.00420 0.00315
$3\frac{3}{8}$ – 16 or 3.375 – 16	UN	2A 3A	0.00167 0.00124	0.00290 0.00215	2B 3B	0.00217 0.00162	0.00375 0.00280
$3^{1}/_{2}$ – 4 or 3.500 – 4	UNC	1A 2A 3A	0.00479 0.00318 0.00240	0.00830 0.00550 0.00415	1B 2B 3B	0.00621 0.00413 0.00312	0.01075 0.00715 0.00540
$3^{1}/_{2}$ – 6 or 3.500 – 6	UN	2A 3A	0.00277 0.00208	0.00480 0.00360	2B 3B	0.00361 0.00271	0.00625 0.00470
$3^{1}/_{2}$ – 8 or 3.500 – 8	UN	2A 3A	0.00254 0.00191	0.00440 0.00330	2B 3B	0.00332 0.00248	0.00575 0.00430
$3^{1}/_{2}$ – 12 or 3.500 – 12	UN	2A 3A	0.00185 0.00139	0.00320 0.00240	2B 3B	0.00242 0.00182	0.00420 0.00315
$3^{1}/_{2}$ – 16 or 3.500 – 16	UN	2A 3A	0.00167 0.00124	0.00290 0.00215	2B 3B	0.00217 0.00162	0.00375 0.00280
$3\frac{5}{8}$ – 6 or 3.625 – 6	UN	2A 3A	0.00280 0.00211	0.00485 0.00365	2B 3B	0.00364 0.00274	0.00630 0.00475
$3\frac{5}{8}$ – 8 or 3.625 – 8	UN	2A 3A	0.00257 0.00193	0.00445 0.00335	2B 3B	0.00335 0.00251	0.00580 0.00435
$3\frac{5}{8}$ – 12 or 3.625 – 12	UN	2A 3A	0.00185 0.00139	0.00320 0.00240	2B 3B	0.00242 0.00182	0.00420 0.00315
$3\frac{5}{8}$ – 16 or 3.625 – 16	UN	2A 3A	0.00167 0.00214	0.00290 0.00215	2B 3B	0.00217 0.00162	0.00375 0.00280
3 ³ / ₄ – 4 or 3.750 – 4	UNC	1A 2A 3A	0.00485 0.00323 0.00242	0.00840 0.00560 0.00420	1B 2B 3B	0.00629 0.00419 0.00315	0.01090 0.00725 0.00545
$3^{3}/_{4}$ – 6 or 3.750 – 6	UN	2A 3A	0.00283 0.00211	0.00490 0.00365	2B 3B	0.00367 0.00274	0.00635 0.00475
$3^{3}/_{4}$ – 8 or 3.750 – 8	UN	2A 3A	0.00260 0.00193	0.00450 0.00335	2B 3B	0.00338 0.00254	0.00585 0.00440
$3^{3}/_{4}$ – 12 or 3.750 – 12	UN	2A 3A	0.00185 0.00139	0.00320 0.00240	2B 3B	0.00242 0.00182	0.00420 0.00315
$3^{3}/_{4}$ – 16 or 3.750 – 16	UN	2A 3A	0.00167 0.00124	0.00290 0.00215	2B 3B	0.00217 0.00162	0.00375 0.00280
$3^{7}/_{8}$ – 6 or 3.875 – 6	UN	2A 3A	0.00286 0.00214	0.00495 0.00370	2B 3B	0.00369 0.00277	0.00640 0.00480

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_2$ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. 1/2TD ₂ (-)
1	2	3	4	5	6	7	8
$3^{7}/_{8}$ – 8 or 3.875 – 8	UN	2A 3A	0.00263 0.00196	0.00455 0.00340	2B 3B	0.00341 0.00254	0.00590 0.00440
$3^{7}/_{8}$ – 12 or 3.875 – 12	UN	2A 3A	0.00188 0.00141	0.00325 0.00245	2B 3B	0.00245 0.00185	0.00425 0.00320
$3^{7}/_{8}$ – 16 or 3.875 – 16	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380 0.00285
4 – 4 or 4.000 – 4	UNC	1A 2A 3A	0.00491 0.00326 0.00245	0.00850 0.00565 0.00425	1B 2B 3B	0.00638 0.00424 0.00320	0.01105 0.00735 0.00555
4 – 6 or 4.000 – 6	UN	2A 3A	0.00286 0.00214	0.00495 0.00370	2B 3B	0.00372 0.00280	0.00645 0.00485
4 – 8 or 4.000 – 8	UN	2A 3A	0.00263 0.00196	0.00455 0.00340	2B 3B	0.00344 0.00257	0.00595 0.00445
4 – 12 or 4.000 – 12	UN	2A 3A	0.00188 0.00141	0.00325 0.00245	2B 3B	0.00245 0.00185	0.00425 0.00320
4 – 16 or 4.000 – 16	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380 0.00285
$4^{1}/_{8}$ – 6 or 4.125 – 6	UN	2A 3A	0.00289 0.00217	0.00500 0.00375	2B 3B	0.00375 0.00280	0.00650 0.00485
$4\frac{1}{8}$ – 8 or 4.125 – 8	UN	2A 3A	0.00266 0.00199	0.00460 0.00345	2B 3B	0.00346 0.00260	0.00600 0.00450
$4^{1}/_{8}$ – 12 or 4.125 – 12	UN	2A 3A	0.00188 0.00141	0.00325 0.00245	2B 3B	0.00245 0.00185	0.00425 0.00320
$4\frac{1}{8}$ – 16 or 4.125 – 16	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380 0.00285
$4^{1}/_{4} - 4$ or $4.250 - 4$	UN	2A 3A	0.00332 0.00248	0.00575 0.00430	2B 3B	0.00430 0.00323	0.00745 0.00560
$4^{1}/_{4}$ – 6 or 4.250 – 6	UN	2A 3A	0.00292 0.00217	0.00505 0.00375	2B 3B	0.00378 0.00283	0.00655 0.00490
$4^{1}/_{4} - 8$ or $4.250 - 8$	UN	2A 3A	0.00268 0.00202	0.00465 0.00350	2B 3B	0.00346 0.00263	0.00600 0.00455
$4^{1}/_{4}$ – 12 or 4.250 – 12	UN	2A 3A	0.00188 0.00141	0.00325 0.00245	2B 3B	0.00245 0.00185	0.00425 0.00320
$4^{1}/_{4}$ – 16 or 4.250 – 16	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380 0.00285
$4\frac{3}{8}$ – 6 or 4.375 – 6	UN	2A 3A	0.00292 0.00219	0.00505 0.00380	2B 3B	0.00381 0.00286	0.00660 0.00495
$4\frac{3}{8} - 8 \text{ or } 4.375 - 8$	UN	2A 3A	0.00268 0.00202	0.00465 0.00350	2B 3B	0.00346 0.00263	0.00600 0.00455
$4^{3}/_{8}$ – 12 or 4.375 – 12	UN	2A 3A	0.00188 0.00141	0.00325 0.00245	2B 3B	0.00245 0.00185	0.00425 0.00320
$4\frac{3}{8}$ – 16 or 4.375 – 16	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380 0.00285

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	rnal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in., $\frac{1}{2}Td_2$ (+)	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. 1/2TD2 (-)
1	2	3	4	5	6	7	8
$4^{1}/_{2}$ – 4 or 4.500 – 4	UN	2A 3A	0.00335 0.00251	0.00580 0.00435	2B 3B	0.00436 0.00326	0.00755 0.00565
$4^{1}/_{2}$ – 6 or 4.500 – 6	UN	2A 3A	0.00294 0.00222	0.00510 0.00385	2B 3B	0.00384 0.00286	0.00665 0.00495
$4^{1}/_{2} - 8$ or $4.500 - 8$	UN	2A 3A	0.00271 0.00205	0.00470 0.00355	2B 3B	0.00352 0.00266	0.00610 0.00460
$4^{1}/_{2}$ – 12 or 4.500 – 12	UN	2A 3A	0.00188 0.00141	0.00325 0.00245	2B 3B	0.00245 0.00185	0.00425 0.00320
$4^{1}/_{2}$ – 16 or 4.500 – 16	UN	2A 3A	0.00170 0.00127	0.00295 0.00220	2B 3B	0.00219 0.00165	0.00380 0.00285
$4\frac{5}{8}$ – 6 or 4.625 – 6	UN	2A 3A	0.00297 0.00222	0.00515 0.00385	2B 3B	0.00384 0.00289	0.00665 0.00500
$4\frac{5}{8}$ – 8 or 4.625 – 8	UN	2A 3A	0.00274 0.00205	0.00475 0.00355	2B 3B	0.00358 0.00268	0.00620 0.00465
$4\frac{5}{8}$ – 12 or 4.625 – 12	UN	2A 3A	0.00193 0.00144	0.00335 0.00250	2B 3B	0.00251 0.00191	0.00435 0.00330
$4\frac{5}{8}$ – 16 or 4.625 – 16	UN	2A 3A	0.00176 0.00130	0.00305 0.00225	2B 3B	0.00228 0.00170	0.00395 0.00295
$4^{3}/_{4}$ – 4 or 4.750 – 4	UN	2A 3A	0.00338 0.00254	0.00585 0.00440	2B 3B	0.00442 0.00329	0.00765 0.00570
$4^{3}/_{4}$ – 6 or 4.750 – 6	UN	2A 3A	0.00297 0.00222	0.00515 0.00385	2B 3B	0.00387 0.00292	0.00670 0.00505
4 ³ / ₄ – 8 or 4.750 – 8	UN	2A 3A	0.00274 0.00205	0.00475 0.00355	2B 3B	0.00358 0.00268	0.00620 0.00465
4 ³ / ₄ – 12 or 4.750 – 12	UN	2A 3A	0.00193 0.00144	0.00335 0.00250	2B 3B	0.00251 0.00191	0.00435 0.00330
4 ³ / ₄ – 16 or 4.750 – 16	UN	2A 3A	0.00176 0.00130	0.00305 0.00225	2B 3B	0.00228 0.00170	0.00395 0.00295
$4^{7}/_{8}$ – 6 or 4.875 – 6	UN	2A 3A	0.00300 0.00225	0.00520 0.00390	2B 3B	0.00390 0.00292	0.00675 0.00505
$4^{7}/_{8}$ – 8 or 4.875 – 8	UN	2A 3A	0.00277 0.00208	0.00480 0.00360	2B 3B	0.00361 0.00271	0.00625 0.00470
4 ⁷ / ₈ – 12 or 4.875 – 12	UN	2A 3A	0.00193 0.00144	0.00335 0.00250	2B 3B	0.00251 0.00101	0.00435 0.00330
$4^{7}/_{8}$ – 16 or 4.875 – 16	UN	2A 3A	0.00174 0.00176 0.00130	0.00305 0.00225	2B 3B	0.00228 0.00170	0.00395 0.00295
5 – 4 or 5.000 – 4	UN	2A 3A	0.00130 0.00344 0.00257	0.00595 0.00445	2B 3B	0.00445 0.00335	0.00770 0.00580
5 – 6 or 5.000 – 6	UN	2A 3A	0.00237 0.00303 0.00225	0.00443 0.00525 0.00390	2B 3B	0.00333 0.00393 0.00294	0.00580 0.00680 0.00510

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

			Exte	rnal		Inte	mal
Nominal Size and	Series		Allowable Variation in Lead,	Equivalent Change in Functional Diameter, in.,		Allowable Variation in Lead,	Equivalent Change in Functional Diameter, in.
Threads/in.	Designation	Class	in. (±)	$\frac{1}{2}Td_{2}$ (+)	Class	in. (±)	$\frac{1}{2}TD_2$ (-)
1	2	3	4	5	6	7	8
5 – 8 or 5.000 – 8	UN	2A	0.00280	0.00485	2B	0.00364	0.00630
3 0 01 3.000	0.11	3A	0.00211	0.00365	3B	0.00274	0.00475
5 – 12 or 5.000 – 12	UN	2A	0.00193	0.00335	2B	0.00251	0.00435
		3A	0.00144	0.00250	3B	0.00191	0.00330
5 – 16 or 5.000 – 16	UN	2A	0.00176	0.00305	2B	0.00228	0.00305
		3A	0.00130	0.00225	3B	0.00170	0.00295
$5\frac{1}{8}$ – 8 or 5.125 – 8	UN	2A	0.00280	0.00485	2B	0.00364	0.00630
		3A	0.00211	0.00365	3B	0.00274	0.00475
$5\frac{1}{8}$ – 12 or 5.125 – 12	UN	2A	0.00193	0.00335	2B	0.00251	0.00435
		3A	0.00144	0.00250	3B	0.00191	0.00330
$5\frac{1}{8}$ – 16 or 5.125 – 16	UN	2A	0.00176	0.00305	2B	0.00228	0.00395
		3A	0.00130	0.00225	3B	0.00170	0.00295
$5^{1}/_{4}$ – 4 or 5.250 – 4	UN	2A	0.00346	0.00600	2B	0.00450	0.00780
		3A	0.00260	0.00450	3B	0.00385	0.00585
$5^{1}/_{4}$ – 8 or 5.250 – 8	UN	2A	0.00283	0.00490	2B	0.00367	0.00635
		3A	0.00214	0.00370	3B	0.00277	0.00480
$5\frac{1}{4}$ – 12 or 5.250 – 12	UN	2A	0.00193	0.00335	2B	0.00251	0.00435
		3A	0.00144	0.00250	3B	0.00191	0.00330
$5^{1}/_{4}$ – 16 or 5.250 – 16	UN	2A	0.00176	0.00305	2B	0.00228	0.00395
		3A	0.00130	0.00225	3B	0.00170	0.00295
$5\frac{3}{8}$ – 8 or 5.375 – 8	UN	2A	0.00286	0.00495	2B	0.00372	0.00645
		3A	0.00214	0.00370	3B	0.00280	0.00485
$5\frac{3}{8}$ – 12 or 5.375 – 12	UN	2A	0.00193	0.00335	2B	0.00251	0.00435
3/8 12 0. 3.3/3 12	0	3A	0.00144	0.00250	3B	0.00191	0.00330
$5\frac{3}{8}$ – 16 or 5.375 – 16	UN	2A	0.00176	0.00305	2B	0.00231	0.00395
3/8 10 0. 3.3/3 10	0	3A	0.00130	0.00225	3B	0.00170	0.00295
$5^{1}/_{2}$ – 4 or 5.500 – 4	UN	2A	0.00349	0.00605	2B	0.00456	0.00790
3/2 4 01 3.300 4	0.11	3A	0.00263	0.00455	3B	0.00341	0.00500
$5^{1}/_{2}$ – 8 or 5.500 – 8	UN	2A	0.00286	0.00495	2B	0.00372	0.00645
,-		3A	0.00214	0.00370	3B	0.00280	0.00485
$5\frac{1}{2}$ – 12 or 5.500 – 12	UN	2A	0.00193	0.00335	2B	0.00251	0.00435
- ,2		3A	0.00144	0.00250	3B	0.00191	0.00330
$5^{1}/_{2}$ – 16 or 5.500 – 16	UN	2A	0.00176	0.00305	2B	0.00228	0.00395
,-		3A	0.00130	0.00225	3B	0.00170	0.00295
$5\frac{5}{8}$ – 8 or 5.625 – 8	UN	2A	0.00289	0.00500	2B	0.00375	0.00650
		3A	0.00217	0.00375	3B	0.00283	0.00490
$5\frac{5}{8}$ – 12 or 5.625 – 12	UN	2A	0.00199	0.00345	2B	0.00260	0.00450
· •		3A	0.00150	0.00260	3B	0.00193	0.00335
$5^{5}/_{8}$ – 16 or 5.625 – 16	UN	2A	0.00179	0.00310	2B	0.00234	0.00405
· ·		3A	0.00136	0.00235	3B	0.00176	0.00305
$5^{3}/_{4}$ – 4 or 5.750 – 4	UN	2A	0.00352	0.00610	2B	0.00459	0.00795
· -	-	3A	0.00266	0.00460	3B	0.00344	0.00595

Table 3 Allowable Variations in Lead and Equivalent Change in Functional Diameter (Cont'd)

GENERAL NOTE: See paras. 9.1.3 through 9.1.6 for applicability.

			Exter	nal		Inter	nal
Nominal Size and Threads/in.	Series Designation	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, ½Td ₂	Class	Allowable Variation in Lead, in. (±)	Equivalent Change in Functional Diameter, in. 1/2TD ₂ (-)
1	2	3	4	5	6	7	8
$5\frac{3}{4} - 8$ or $5.750 - 8$	UN	2A 3A	0.00289 0.00217	0.00500 0.00375	2B 3B	0.00375 0.00283	0.00650 0.00490
$5\frac{3}{4}$ – 12 or 5.750 – 12	UN	2A 3A	0.00199 0.00150	0.00345 0.00260	2B 3B	0.00260 0.00193	0.00450 0.00335
$5\frac{3}{4}$ – 16 or 5.750 – 16	UN	2A 3A	0.00179 0.00136	0.00310 0.00235	2B 3B	0.00234 0.00176	0.00405 0.00305
$5^{7}/_{8}$ – 8 or 5.875 – 8	UN	2A 3A	0.00292 0.00219	0.00505 0.00380	2B 3B	0.00378 0.00283	0.00655 0.00490
$5^{7}/_{8}$ – 12 or 5.875 – 12	UN	2A 3A	0.00199 0.00150	0.00345 0.00260	2B 3B	0.00260 0.00193	0.00450 0.00335
$5^{7}/_{8}$ – 16 or 5.875 – 16	UN	2A 3A	0.00179 0.00136	0.00310 0.00235	2B 3B	0.00234 0.00176	0.00405 0.00305
6 – 4 or 6.000 – 4	UN	2A 3A	0.00358 0.00268	0.00620 0.00465	2B 3B	0.00455 0.00346	0.00805 0.00600
6 – 8 or 6.000 – 8	UN	2A 3A	0.00294 0.00222	0.00510 0.00385	2B 3B	0.00384 0.00286	0.00665 0.00495
6 – 12 or 6.000 – 12	UN	2A 3A	0.00199 0.00150	0.00315 0.00260	2B 3B	0.00260 0.00193	0.00450 0.00335
6 – 16 or 6.000 – 16	UN	2A 3A	0.00179 0.00136	0.00310 0.00235	2B 3B	0.00234 0.00176	0.00405 0.00305

5.3.2 Long Length of Engagement Using Standard Thread Gage Limits. ASME B1.2 recommends that the length of the GO gage should approximate the length of engagement. However, it is sometimes more economical to accept these threads with GO thread gages made from standard gage blanks (refer to ASME B47.1), which have length approximating the standard lengths of engagement.

NOTE: When this is done, additional precautions are necessary to determine the effect of cumulative variation of lead and straightness of thread axis due to a long length of engagement.

If applicable, an additional allowance should be provided, preferably on the external thread, the amount of which should be the diameter equivalent of the cumulative lead variation for the increased length of engagement, equal to the sum of one-half the pitch diameter tolerances of the external and internal threads allowed for the standard length of engagement.

EXAMPLE: 0.3750-24UNF-2A; LE=0.88 in. (2.35 diameters); with external and internal thread gages of standard length.

Add allowance equal to $\frac{1}{2}Td_2 + \frac{1}{2}TD_2$ for standard mating threads. From Table 3, column 5, $\frac{1}{2}Td_2$ (standard) = 0.0019.

From Table 3, column 8, $\frac{1}{2}TD_2$ (standard) = 0.00245.

The sum of these, after rounding, is equal to 0.0044, which is the added allowance. Therefore, the thread is redesignated to indicate a

nonstandard external thread, with the allowance of 0.0044 subtracted from the basic size of 0.3750. New designation is 0.3706-24UNS-2A. The added allowance is also subtracted from the standard major diameter and pitch diameter size limits. See para. 6.6.2.

5.4 Minor Diameter Tolerance and Allowance for External Threads

The tolerance for minor diameter is for reference only. In dimensioning external threads, the minimum minor diameter is not specified, being established by the crest of an unworn tool. In practice, the minor diameter of an external thread is satisfactory when accepted by a gage or gaging method that represents the maximum-material condition of the internal thread less the allowance, *es*, if any. A formula for the minor diameter tolerance of external threads is given in para. 5.8.1(d).

5.5 Major Diameter Tolerance for Internal Threads

The tolerance for major diameter is for reference only. In dimensioning internal threads, the maximum major diameter is not specified, being established by the crest of an unworn tool. In practice, the major diameter of an internal thread is satisfactory when accepted by a

gage or gaging method that represents the maximummaterial condition of an external thread which has no allowance. A formula for the major diameter tolerance of internal threads is given in para. 5.8.2(a).

5.6 Minor Diameter Tolerance and Length of Engagement for Internal Threads

Formulas for the minor diameter tolerance for internal threads are given in para. 5.8.2(c).

Internal thread minor diameter tolerances are suitable for lengths of engagement up to 1.5 diameters. For applications having shorter or longer lengths of engagement, it may be advantageous to decrease or increase the tolerance as explained in para. 5.6.1.

5.6.1 The principal practical factors that govern minor diameter tolerance are ease of tapping, standard drill sizes, and height of engagement.

NOTE: Height of engagement is measured in a radial direction, while length of engagement is measured in an axial direction.

Height of engagement correlates with the stripping strength of the thread assembly and, therefore, also with the length of engagement. It also correlates with the tendency toward disengagement of the threads on one side when assembly is eccentric. The amount of possible eccentricity is one-half of the sum of the allowance and pitch diameter tolerances on both mating threads. For a given pitch, or height of thread, this sum increases with the diameter, and accordingly, this factor would require a decrease in minor diameter tolerance with an increase in thread diameter. However, such a decrease in tolerance often is not feasible without requiring special drill sizes; therefore, to be able to use as many as possible of the available standard drill sizes listed in ASME B94.11M, the minor diameter tolerance for Classes 1B and 2B of a given pitch for $\frac{1}{4}$ in. diameter and larger is constant.

There may be applications where the lengths of engagement of the mating threads or the combination of materials used for mating threads are such that the maximum tolerance may not provide the desired strength of the fastening. Experience has shown that for lengths of engagement less than 0.67D (the minimum thickness of standard nuts), the minor diameter tolerance may be reduced without causing tapping difficulties.

In other applications, the length of engagement of mating threads may be long because of design considerations or the combination of materials used for mating threads. As the threads engaged increase in number, their height of engagement may be shallower and still develop stripping strength greater than the external thread breaking strength. In these cases, the maximum tolerance should be increased to reduce the possibility of tapping difficulties.

It is particularly important to reduce the number of minor diameter tolerances to a practical minimum. This reduction is usually obvious to the producer of longer internally threaded components, but sometimes is not understood by the user.

The tolerances for lengths of engagement less than 0.33*D* are 0.50 times the formula values in para. 5.8.2 (c). For lengths of engagement from 0.33*D* to 0.67*D*, the tolerances are 0.75 times the formula values; for lengths of engagement from 0.67*D* to 1.5*D*, the tolerances are equal to the formula values; and for lengths of engagement over 1.5*D*, the tolerances are 1.25 times the formula values. Where the tolerance value so computed is more than 0.394*P*, the value is adjusted to equal 0.394*P*.

5.7 Disposition of Allowance and Tolerance

The disposition of allowance, tolerance, and crest clearances for the various thread classes is shown in Figs. 2 and 3.

5.8 Formulas for Allowance and Tolerance

The following formulas for allowance and tolerance are used for unified formulation and apply to standard and special series screw threads.

The following symbols are used in the equations:

D bsc = basic major (nominal) diameter

LE = length of engagement, in.

P = pitch, in. = 1/n

H = height of fundamental triangle

= 0.86602540P

n =threads per inch

5.8.1 External Thread

- (a) Allowance (External Threads)
- (1) Classes 1A and 2A = 0.300 Class 2A pitch diameter tolerance¹
 - (2) Class 3A = no allowance
 - (b) Major Diameter Tolerance (External Threads)
 - (1) Class $1A = 0.090 \sqrt[3]{P^2}$
 - (2) Classes 2A and 3A = $0.060 \sqrt[3]{P^2}$

The tolerance for Class 2A coarse and the 8-thread series threads of unfinished, hot-rolled material is $0.090\sqrt[3]{P^2}$. This does not apply to standard fasteners with rolled threads.

- (c) Pitch Diameter Tolerance (External Threads)
- (1) Class 1A = 1.500 Class 2A pitch diameter tolerance¹
 - (2) Class 2A = $0.0015 \sqrt[3]{D} + 0.0015 \sqrt{LE} + 0.015 \sqrt[3]{P^2}$

NOTE: See Table 4 for the values of these terms corresponding to given values of diameter, length of engagement.¹

(3) Class 3A = 0.750 Class 2A pitch diameter tolerance¹

¹ Calculations shall use Class 2A pitch diameter tolerance with six decimal places. Final values shall be rounded to four decimal places.

Table 4 Increments in Pitch Diameter Tolerance — Class 2A (PD Tolerance = $0.0015 \sqrt[3]{D} + 0.0015 \sqrt{LE} + 0.015 \sqrt[3]{P^2}$)

										Lens	th of E	Length of Engagement, <i>LE</i>	, LE						
				Based on Note (1)	on Note	9 (1)			Basec	Based on Note (1)	te (1)			Base	Based on Note (1)	ı			
	Diam	Diameter, D		1 D	96	20 <i>P</i>			1 D	96	20 <i>P</i>			1 D	20 <i>P</i>	ı	·	Pit	Pitch, P
О	$0.0015 \sqrt[3]{\overline{D}}$	Q	$0.0015\sqrt[3]{\overline{D}}$	for Sizes			0 <i>3</i> 7	0.0015 <u>\(\ir\ E} \</u>	for Sizes	for	for TPI	IE	$0.0015\sqrt{LE}$	for Sizes	for TPI	37	$0.0015 \ \sqrt{LE}$	Threads/ in.	$0.015 \sqrt[3]{p^2}$
0.0600 0.0625 0.0730 0.0860 0.0938	0.000587 0.000595 0.000627 0.000662 0.000682	1.9375 2.0000 2.1250 2.2500 2.3750	0.001870 0.001890 0.001928 0.001966 0.002001	#0 1/16 #1 3/64 #2	:::::	0.0	0.0600 0.0625 0.0730 0.0781 0.0860	0.000367 0.000375 0.000405 0.000419 0.000440	1/2 /16 5/8	18 16 	40 36 32	0.5000 0.5556 0.5625 0.6250	0.001061 0.001118 0.001125 0.001186	$2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$: 8 : : 2	2.3750 2.5000 2.6250 2.7500 2.8571	0.002312 0.002372 0.002430 0.002487	80 72 64 60 56	0.000808 0.000867 0.000938 0.000979 0.001025
0.0990 0.1120 0.1250 0.1380 0.1640	0.000694 0.000723 0.000750 0.000775	2.5000 2.6250 2.7500 2.8750 3.0000	0.002036 0.002069 0.002102 0.002133	3,32 #3 /64 #4	80	0.00	0.0938 C 0.0990 C 0.1094 C 0.1120 C	0.000459 0.000472 0.000496 0.000502	11/16	13	28 27	0.6875 0.6923 0.7143 0.7407 0.7500	0.001244 0.001248 0.001268 0.001291 0.001299	2 ⁷ / ₈ 3 ¹ / ₈ 3 ¹ / ₄	: : : : 9	2.8750 3.0000 3.1250 3.2500	0.002543 0.002598 0.002652 0.002704 0.002739	50 48 44 42 40	0.001105 0.001136 0.001204 0.001241 0.001282
0.1875 0.1900 0.2160 0.2500 0.3125	0.000859 0.000862 0.000900 0.000945 0.001018	3.1250 3.2500 3.3750 3.5000 3.6250	0.002193 0.002222 0.002250 0.002277 0.002304	#5 #6 5/32	72 64 56	0.1	0.1250 C 0.1380 C 0.1406 C 0.1562 C	0.000530 0.000557 0.000562 0.000593	13/16	$11^{1/2}$	24	0.7826 0.8125 0.8182 0.8333 0.8750	0.001327 0.001352 0.001357 0.001369 0.001403	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	: : : : :	3.3750 3.5000 3.6250 3.7500 3.8750	0.002756 0.002806 0.002856 0.002905	36 34 32 30 28	0.001376 0.001429 0.001488 0.001554 0.001627
0.3750 0.4375 0.5000 0.5625 0.6250	0.001082 0.001139 0.001191 0.001238	3.7500 3.8750 4.0000 4.1250 4.2500	0.002330 0.002356 0.002381 0.002406 0.002430	#8 11/64 3/16 #10 13/64	48	0.15 0.13 0.19	0.1640 C 0.1719 C 0.1875 C 0.1900 C	0.000607 0.000622 0.000650 0.000654	$\frac{15}{16}$ $\frac{1}{16}$ $\frac{1}{16}$	9 :	20	0.9000 0.9375 1.0000 1.0625 1.1111	0.001423 0.001452 0.001500 0.001546 0.001581	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5	4.0000 4.1250 4.2500 4.3750	0.003000 0.003047 0.003092 0.003137 0.003162	27 26 24 22 20	0.001667 0.001709 0.001803 0.001910 0.002036
0.6875 0.7500 0.8125 0.8750	0.001324 0.001363 0.001400 0.001435 0.001468	4.3750 4.5000 4.6250 4.7500 4.8750	0.002453 0.002476 0.002499 0.002521 0.002543	#12 //32 	44 40	0.22	0.2045 C 0.2160 C 0.2188 C 0.2250 C	0.000678 0.000697 0.000702 0.000712	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$	8 : : <u>'</u> :	16 : :	1.1250 1.1875 1.2500 1.2857 1.3125	0.001591 0.001635 0.001677 0.001701 0.001718	4 ¹ / ₂ 4 ³ / ₄ 4 ⁷ / ₈ 5	: : : : 4	4.5000 4.6250 4.7500 4.8750 5.0000	0.003182 0.003226 0.003269 0.003312 0.003354	18 16 14 13	0.002184 0.002362 0.002582 0.002713 0.002862
1.0000 1.0625 1.1250 1.1875 1.2500	0.001500 0.001531 0.001560 0.001588 0.001616	5.0000 5.1250 5.2500 5.3750 5.5000	0.002565 0.002586 0.002607 0.002628 0.002648	$\frac{1}{4}$ $\frac{17}{64}$ $\frac{17}{64}$ $\frac{19}{64}$	36	80 0.2 72 0.2 0.28	0.2500 C 0.2656 C 0.2778 C 0.2812 C 0.2969 C	0.000750 0.000773 0.000791 0.000795	$\frac{1}{3}$ 8 $\frac{1}{1}$ 1 $\frac{1}{1}$ 2	: : : 9 :	14	1.3750 1.4286 1.4375 1.5000 1.5385	0.001759 0.001793 0.001798 0.001837	5,27,3%	: : : : :	5.1250 5.2500 5.3750 5.5000 5.6250	0.003396 0.003437 0.003478 0.003518	$11^{1/2}$ 11 10 9	0.002944 0.003033 0.003232 0.003467 0.003750

Table 4 Increments in Pitch Diameter Tolerance — Class 2A (Cont'd) $(PD \text{ Tolerance} = 0.0015 \sqrt[3]{D} + 0.0015 \sqrt{LE} + 0.015 \sqrt[3]{P^2})$

										Leng	th of En	Length of Engagement, LE	TE .						
			•											Base	Based on				
				Based on Note (1)	on Note	£ (£)			Based	Based on Note (1)	te (1)			Not	Note (1)				
	Diam	Diameter, D		1 D	. 46	20 <i>P</i>			1 D	96	20 <i>P</i>			1 D	20 <i>P</i>	ı		<u>a</u>	Pitch, P
c	0.0015 3/0	c	0.00015 3/0	for		for	1	0.0015	for	for	for	1	0.0015	for	for	16	0 0015	Threads/	0.045 3/02
۵	a \ c100.0		- 1	31263	<u> </u>			0.0013 1/15	21762	=	=	77	0.0013 12	21762	=	1	0.0013 1/15	┋	1 × C10.0
1.3125	0.001642	5.6250	0.002668	5/16	:	64 0.	0.3125	0.000839	$1^{9}/_{16}$:	:	1.5625	0.001875	53/4	:	5.7500	0.003597	7	0.004099
1.3750	0.001668	5.7500	0.002687	:	78	.0	0.3214	0.000850	$1\frac{5}{8}$:	:	1.6250	0.001912	57/8	:	5.8750	0.003636	9	0.004543
1.4375		5.8750	0.002707	21/64	:	.0	0.3281	0.000859	:	:	12	1.6667	0.001936	9	:	0000.9	0.003674	$5\frac{1}{2}$	0.004814
1.5000			0.002726	:	27	0.0	0.3333	0.000866	$1^{11}/_{16}$:	:	1.6875	0.001949	$6^{1/2}$:	6.5000	0.003824	2	0.005130
1.5625	0.001741	7.0000 0.	0.002869	11/32	:	.0	0.3438	0.000880	:	:	$11^{1}/_{2}$	1.7391	0.001978	7	:	7.0000	0.003969	$4^{1/2}$	0.005503
1.6250			.003000	:	:	56 0.	0.3571	968000.0	$1\frac{3}{4}$:	:	1.7500	0.001984	$7^{1}/_{2}$:	7.5000	0.004108	4	0.005953
1.6875	-	9.0000 0.003120	.003120	23/64	:	.0	0.3594	0.000899	:	2	:	1.8000	0.002012	_∞	:	8.0000	0.004243	:	:
1.7500	0.001808	10.0000 0.003232	.003232	% %	74		0.3750	0.000919	$1^{13}/_{16}$:	:	1.8125	0.002019	$8^{1}/_{2}$:	8.5000	0.004373	:	:
1.8125	0.001829	12.0000 0.003434	.003434	25/64	:	0.	0.3906	0.000937	:	:	11	1.8182	0.002023	6	:	9.0000	0.004500	:	:
1.8750	0.001850	14.0000 0.003615	.003615	13/32	:	. 0.	0.4063	0.000956	1%	:	:	1.8750	0.002054	$9^{1}/_{2}$:	9.5000	0.004623	:	:
							!		7 7 7					:					
:	:	16.0000 0.003780	.003780	:	:	48 0.	0.4167	0.000968	$1^{1.7}/_{16}$:	:	1.9375	0.002088	10	:	10.0000	0.004743	:	:
:	:	18.0000 0.003931	.003931	27/64	:	.0	0.4219	0.000974	7	$4^{1/2}$	10	2.0000	0.002121	$10^1/_2$:	10.5000	0.004861	:	:
:	:	20.0000 0.004072	.004072	//16	:	.0	0.4375	0.000992	$2^{1/8}$:	:	2.1250	0.002187	11	:	11.0000	0.004975	:	:
:	:	24.0000 0.004327	.004327	:	70	.0	0.4500	0.001006	:	:	6	2.222	0.002236	$11^{1}/_{2}$:	11.5000	0.005087	:	:
:	:	:	:	:	:	44 0.	0.4545	0.001011	$2^{1/4}$	4	:	2.2500	0.002250	12	:	12.0000	0.005196	:	:

GENERAL NOTE: Class 2A tolerances are the bases for the tolerances for Classes 1A, 3A, 1B, 2B, and 3B.

NOTE: (1) For example: LE=0.5000 is equivalent to one diameter for the $^1/_2$ in. size, 9 pitches for 18 threads per inch, or 20 pitches for 40 threads per inch.

- (d) Minor Diameter Tolerance (External Threads)
- (1) UNR Classes. To intersection of rounded root with its centerline (see Figs. 2 and 3), equals pitch diameter tolerance for class of thread specified, plus 0.10825318P (see Table 5).
- (2) UN Classes 1A, 2A, and 3A. To intersection of flat root with flanks of threads (see Figs. 2 and 3), equals pitch diameter tolerance for class of thread specified, plus 0.21650635P (see Table 5).

5.8.2 Internal Thread

- (a) Major Diameter Tolerance (Internal Threads)
- (1) For Classes 1B, 2B, and 3B, equals 0.14433757P (see Table 5) plus the pitch diameter tolerance of the class of thread under consideration.
 - (b) Pitch Diameter Tolerance (Internal Threads)
- (1) Class 1B = 1.950 Class 2A pitch diameter tolerance (nominally equal to 1.5 Class 2B)¹ (see page 55 for footnote)
- (2) Class 2B = 1.300 Class 2A pitch diameter tolerance¹
- (3) Class 3B = 0.975 Class 2A pitch diameter tolerance (nominally equal to 0.750 Class 2B)¹
 - (c) Minor Diameter Tolerance (Internal Threads)
- (1) Classes 1B and 2B. For all thread series and special threads in sizes less than $\frac{1}{4}$ in., equals $[0.0500\,\sqrt[3]{P^2} + 0.03\,P/D] 0.002$ in., within the following limitations:
 - (a) Tolerances shall not be greater than 0.39400P.
- (b) Tolerances shall not be less than $0.2500P 0.400P^2$

The formulas are suitable for general applications having lengths of engagement up to 1.5 diameters.

For all thread series and special threads ${}^{1}\!\!/_{4}$ in. and larger, 80 to 4 threads per inch, inclusive, equals $0.25P - 0.4P^{2}$. For all thread series and special threads ${}^{1}\!\!/_{4}$ in. and larger with less than 4 threads per inch, equals 0.15P.

- (2) Class 3B. For all thread series, equals $[0.05 \sqrt[3]{P^2} + 0.03 \ P/D] 0.002$ in., within the following limitations:
 - (a) Tolerance shall be not greater than 0.394P.
 - (b) Tolerance shall be not less than
- (1) for 80 to 13 threads per inch, inclusive, $0.23P 1.5P^2$
- (2) for 12 threads per inch and coarser, 0.120*P* The formulas are suitable for general applications having lengths of engagement up to 1.5 diameters.

5.9 Lead and Flank Angle Tolerances

See para. 9.

5.10 Coated or Plated Threads

See para. 7 for dimensional accommodation and limits for coated threads.

5.11 Circular Runout

- **5.11.1** Circular Runout Is the Full Indicator Movement (FIM) (See ASME Y14.5). Runout of the crest (minor diameter of internal thread or major diameter of external thread) relative to the functional diameter cylinder shall not be so great that the basic profile is transgressed.
- **5.11.2 Internal Thread.** Maximum runout, which will maintain the crest inside the basic thread profile, is the difference between the measured minor diameter and the basic minor diameter. An out-of-round functional diameter cylinder may reduce the available runout.
- **5.11.3 External Thread.** Maximum runout, which will maintain the crest inside the basic thread profile, is the difference between the measured major diameter and the basic major diameter. An out-of-round functional diameter cylinder may reduce the available runout.

6 SCREW THREAD DESIGNATION

6.1 Basic Method of Designating

The designation specifies in sequence the nominal size, number of threads per inch, thread series symbol, thread class symbol, and gaging system per ASME B1.3 (see screw thread designations listed at the end of this paragraph). The nominal size is the basic major diameter and is specified as the fractional diameter, screw number, or their decimal equivalent. Where decimal equivalents are used for size callout, they shall be shown in four place decimals (omitting the cipher in the fourth place) for fractional sizes, and in three place decimals for number sizes. They shall be interpreted as being nominal size designations only and shall have no dimensional significance beyond the fractional size or number designation. The thread series symbol indicates the thread form (see para. 2), series, and tolerance formulation (see para. 3). The thread series symbols for the UN thread form are UNC, UNF, UNEF, or UN for only those sizes of the various series shown in Table 1 and UNS for any other intermediate and larger size diameter-pitch combination having tolerances to unified formulation. The corresponding thread series symbols for the UNR thread form are UNRC, UNRF, UNREF, or UNR. The symbol UNRS corresponds to UNS. The thread class symbols are 1A, 1B, 2A, 2B, 3A, or 3B, where the suffixes A and B relate to external and internal threads, respec-

The basic method of designating a screw thread is used where the standard tolerances or limits of size based on the standard length of engagement are applicable, as indicated in para. 5.

UNS threads and threads having special length of engagement require certain additional information as shown in paras. 6.4 and 6.6.

Table 5 Thread Form Data

							0.1875 <i>H</i> [Note (1)]	0.2500H
					0.1250 <i>H</i> [Note (1)]		Truncation of UNR Design	[Note (1)] External
		Basic Flat at Internal Thread Crest,	Flat at Internal Thread Root	<i>H</i> [Note (1)]	Truncation of Internal Thread Root	0.1667 <i>H</i> [Note (1)]	Profile External Thread Root	Thread Root and Truncation of
Threads/	Pitch, <i>P</i>	and External UN Thread Root, $F_{rs} = F_{cn} = P/4 = 0.25000000P$	and External Thread Crest, $F_{rn} = F_{cs} =$ P/8 = 0.12500000 <i>P</i>	Height of Sharp V-Thread = 0.86602540P	and External Thread Crest, $f_m = f_{es} =$ 0.10825318 <i>P</i> [Note (2)]	External Thread Root Full Radius, Max., $r_{rs} = 0.14433757P$	and Half Addendum of External Thread, $S_{rs} = 0.16237976P$	Internal Thread Crest, $f_{rs} = f_{cn} =$ 0.21650635 <i>P</i> [Note (3)]
1	2	3	4	5	6	7	8	9
	-		-					
80	0.01250000	0.003125	0.001563	0.010825	0.001353	0.001804	0.002030	0.002706
72	0.01388889	0.003472	0.001736	0.012028	0.001504	0.002005	0.002255	0.003007
64	0.01562500	0.003906	0.001953	0.013532	0.001691	0.002255	0.002537	0.003383
56	0.01785714	0.004464	0.002232	0.015465	0.001933	0.002577	0.002900	0.003866
48	0.02083333	0.005208	0.002604	0.018042	0.002255	0.003007	0.003383	0.004511
44	0.02272727	0.005682	0.002841	0.019682	0.002460	0.003280	0.003690	0.004921
40	0.02500000	0.006250	0.003125	0.021651	0.002706	0.003608	0.004059	0.005413
36	0.02777778	0.006944	0.003472	0.024056	0.003007	0.004009	0.004511	0.006014
32	0.03125000	0.007813	0.003906	0.027063	0.003383	0.004511	0.005074	0.006766
28	0.03571429	0.008929	0.004464	0.030929	0.003866	0.005155	0.005799	0.007732
27	0.03703704	0.009259	0.004630	0.032075	0.004009	0.005346	0.006014	0.008019
24	0.04166667	0.010417	0.005208	0.036084	0.004511	0.006014	0.006766	0.009021
20	0.05000000	0.012500	0.006250	0.043301	0.005413	0.007217	0.008119	0.010825
18	0.0555556	0.013889	0.006944	0.048113	0.006014	0.008019	0.009021	0.012028
16	0.06250000	0.015625	0.007813	0.054127	0.006766	0.009021	0.010149	0.013532
14	0.07142857	0.017857	0.008929	0.061859	0.007732	0.010310	0.011599	0.015465
13	0.07692308	0.019231	0.009615	0.066617	0.008327	0.011103	0.012491	0.016654
12	0.08333333	0.020833	0.010417	0.072169	0.009021	0.012028	0.013532	0.018042
11.5	0.08695652	0.021739	0.010870	0.075307	0.009413	0.012551	0.014120	0.018827
11	0.09090909	0.022727	0.011364	0.078730	0.009841	0.013122	0.014762	0.019682
10	0.10000000	0.025000	0.012500	0.086603	0.010825	0.014434	0.016238	0.021651
9	0.11111111	0.027778	0.013889	0.096225	0.012028	0.016038	0.018042	0.024056
8	0.12500000	0.031250	0.015625	0.108253	0.013532	0.018042	0.020297	0.027063
7	0.14285714	0.035714	0.017857	0.123718	0.015465	0.020620	0.023197	0.030929
6	0.16666667	0.041667	0.020833	0.144338	0.018042	0.024056	0.027063	0.036084
5	0.20000000	0.050000	0.025000	0.173205	0.021651	0.028868	0.032476	0.043301
4.5	0.2222222	0.055556	0.027778	0.192450	0.024056	0.032075	0.036084	0.048113
4	0.25000000	0.062500	0.031250	0.216506	0.027063	0.036084	0.040595	0.054127

Table 5 Thread Form Data (Cont'd)

		0.625 <i>H</i> [Note (1)] Height of			0.04/711			
	0.375 <i>H</i> [Note (1)]	Internal Thread, UN External	0.6875H	0.7500 <i>H</i> [Note (1)]	0.9167H [Note (1)] Difference	1.2500 <i>H</i> [Note (1)]	1.3750 <i>H</i>	
	Addendum of External Thread, $h_{as} = 0.32475953P$	Thread, and Depth of Thread Engagement, $h_s = h_n = h_e = h_e$	[Note (1)] Height of UNR External Thread, $h_s =$	Twice the External Thread Addendum, $h_b = 2h_{as} =$	Between Max. Major and Pitch Diameters of Internal Thread =	Double Height of Internal Thread and External UN Thread, $2h_n =$	[Note (1)] Double Height of External UNR Thread, $2h_s =$	0.5000 <i>H</i> [Note (1)]
in.	[Note (4)]	0.54126588 <i>P</i>	0.59539247 <i>P</i>	0.64951905P	0.79385662P	1.08253175P	1.19078493 <i>P</i>	0.43301270 <i>P</i>
1	10	11	12	13	14	15	16	17
80	0.004059	0.006766	0.007442	0.008119	0.009923	0.013532	0.014885	0.005413
72	0.004511	0.007518	0.008269	0.009021	0.011026	0.015035	0.016539	0.006014
64	0.005074	0.008457	0.009303	0.010149	0.012404	0.016915	0.018606	0.006766
56	0.005799	0.009665	0.010632	0.011599	0.014176	0.019331	0.021264	0.007732
48	0.006766	0.011276	0.012404	0.013532	0.016539	0.022553	0.024808	0.009021
44	0.007381	0.012301	0.013532	0.014762	0.018042	0.024603	0.027063	0.009841
40	0.008119	0.013532	0.014885	0.016238	0.019846	0.027063	0.029770	0.010825
36	0.009021	0.015035	0.016539	0.018042	0.022052	0.030070	0.033077	0.012028
32	0.010149	0.016915	0.018606	0.020297	0.024808	0.033829	0.037212	0.013532
28	0.011599	0.019331	0.021264	0.023197	0.028352	0.038662	0.042528	0.015465
27	0.012028	0.020047	0.022052	0.024056	0.029402	0.040094	0.044103	0.016038
24	0.013532	0.022553	0.024808	0.027063	0.033077	0.045105	0.049616	0.018042
20	0.016238	0.027063	0.029770	0.032476	0.039693	0.054127	0.059539	0.021651
18	0.018042	0.030070	0.033077	0.036084	0.044103	0.060141	0.066155	0.024056
16	0.020297	0.033829	0.037212	0.040595	0.049616	0.067658	0.074424	0.027063
14	0.023197	0.038662	0.042528	0.046394	0.056704	0.077324	0.085056	0.030929
13	0.024982	0.041636	0.045799	0.049963	0.061066	0.083272	0.091599	0.033309
12	0.027063	0.045105	0.049616	0.054127	0.066155	0.090211	0.099232	0.036084
11.5	0.028240	0.047067	0.051773	0.056480	0.069031	0.094133	0.103547	0.037653
11	0.029524	0.049206	0.054127	0.059047	0.072169	0.098412	0.108253	0.039365
10	0.032476	0.054127	0.059539	0.064952	0.079386	0.108253	0.119078	0.043301
9	0.036084	0.060141	0.066155	0.072169	0.088206	0.120281	0.132309	0.048113
8	0.040595	0.067658	0.074424	0.081190	0.099232	0.135316	0.148848	0.054127
7	0.046394	0.007030	0.085056	0.092788	0.113408	0.154647	0.170112	0.061859
6	0.054127	0.090211	0.099232	0.108253	0.132309	0.180422	0.198464	0.072169
5	0.064952	0.108253	0.119078	0.129904	0.158771	0.216506	0.238157	0.086603
4.5	0.072169	0.120281	0.132309	0.144338	0.176413	0.240563	0.264619	0.096225
4	0.081190	0.135316	0.148848	0.162380	0.198464	0.270633	0.297696	0.108253

GENERAL NOTES:

NOTES

⁽a) All dimensions are in inches.

⁽b) All thread calculations are to be performed using a function of pitch (P); the use of thread height (H) is for reference only as stated in ASME B1.30.

⁽¹⁾ The thread values based on a function of height "H" are used for reference only.

⁽²⁾ The values tabulated in column 6 also pertain to the minimum root radius of UNR screw threads. See paras. 2.3.1 and 2.3.1(a).

⁽³⁾ $h_{an} = f_{cn} = 0.25H = 0.21650635P$

⁽⁴⁾ $h_{dn} = h_{as} = 0.375H = 0.32475953P$

NOTE: Thread acceptability gaging system requirement of ASME B1.3 may be added to the thread size designation as noted above or as specified in pertinent documentation, such as drawing or procurement document.

6.2 Method of Designating Coated Threads

Specification on drawings of the before and after coating dimensions for screw threads is sometimes dictated by an engineering or production consideration that the size before and after coating be controlled. This results from coated screw threads having two stages of design, the before coating stage and the after coating stage. The threaded product may be produced by a supplier and coated by a user. In this case, it is necessary that a clear understanding of the coating requirements and the allowance for coating buildup be agreed upon by both supplier and user (see para. 7).

The before coating (plating) dimensions have a definite bearing on the strength of the screw threads. The before coating stage is, therefore, decidedly an engineering consideration; it is also a production consideration in requiring that proper allowance be made for the specified coating thickness. The finished parts should be of a size after coating that will allow them to be assembled with their coating components as intended.

Recommended methods for designating coated thread under various conditions are described in para. 6.2.1.

6.2.1 For coated (or plated) Class 2A external threads, the basic (max.) major and basic (max.) pitch diameters shall be given, preceded by the words AFTER COATING. The major and pitch diameter limits of size before coating shall also be given, preceded by the words BEFORE COATING.

EXAMPLE:

$$\frac{3}{4} - 10 \text{ UNC} - 2\text{A (21)}$$

$$\frac{\text{After Coating}}{\text{Max. major diameter 0.7500}}$$

$$\frac{\text{Max. PD 0.6850}}{\text{Major diameter 0.7482}}$$

$$\frac{\text{Before Coating}}{\text{Major diameter 0.7482}}$$

$$\frac{\text{Values shown from}}{\text{Table 2 for Class 2A}}$$

$$\frac{\text{Values shown from}}{\text{Table 2 for Class 2A}}$$

Threads accepted to Class 2A limits before coating are accepted after coating by basic size Class 3A GO thread gages. The allowance given in the dimensional tables for Class 2A thread is sufficient to allow for a limited amount of coating as described in para. 7. However, if a greater coating thickness is required, it will be necessary to calculate the before coating limits in accordance with para. 7.

6.2.2 For coated (or plated) Class 3A external threads, the maximum major and maximum pitch diameters may optionally be given, preceded by the words AFTER COATING, thereby indicating that the thread before coating must have special provisions to allow for coating thickness. The major and pitch diameter limits of size before coating (calculated in accordance with para. 7 shall be given, followed by the letters SPL (special) and preceded by the words BEFORE COATING.

EXAMPLE: Thickness of coating 0.0002 in. to 0.0003 in. $^{1}4$ – 28 UNF-3A (21)

After Coating

Max. major diameter 0.2500

Max. PD 0.2268

Defore Coating

Major diameter 0.2494 - 0.2431 SPL

PD 0.2256 - 0.2235 SPL

6.2.3 For coated (or plated) Class 1A external threads, the maximum major and maximum pitch diameters may optionally be given, preceded by the words AFTER COATING, thereby indicating that the thread before coating must have special provisions to allow for coating thickness. The major and pitch diameter limits of size before coating (calculated in accordance with para. 7 shall be given, followed by the letters SPL (special) and preceded by the words BEFORE COATING.

EXAMPLE: Thickness of coating 0.0002 in. to 0.0003 in. $^{1}4$ – 20 UNC-1A (21)

```
After Coating

Max. major diameter 0.2489

Max. PD 0.2164

Defore Coating

Major diameter 0.2483 – 0.2363 SPL

PD 0.2152 – 0.2100 SPL
```

6.2.4 Where an allowance is required to accommodate coating (or plating) on Class 1B, 2B, or 3B internal threads, the minimum minor and minimum pitch diameters may optionally be given, preceded by the words AFTER COATING. The minor and pitch diameter limits of size before coating (calculated in accordance with para. 7 shall be given, followed by the letters SPL (special) and preceded by the words BEFORE COATING.

EXAMPLES: Thickness of coating 0.0002 in. to 0.0003 in.

(a) $\frac{1}{4}$ – 20 UNC-1B (21)

After Coating

Min. minor diameter 0.196 Min. PD 0.2175 Optional Information

Before Coating

Minor diameter 0.197 – 0.207 SPL *PD* 0.2187 – 0.2256 SPL

(b) $\frac{3}{4}$ – 10 UNC-2B (22)

After Coating

Min. minor diameter 0.642 Min. PD 0.6850 Optional Information

Before Coating

Minor diameter 0.643 – 0.663 SPL PD 0.6862 – 0.6935 SPL

(c) $\frac{1}{4}$ – 28 UNF-3B (23)

After Coating

Min. minor diameter 0.2110 Min. PD 0.2268

Optional Information

Before Coating

Minor diameter 0.2116 – 0.2194 SPL *PD* 0.2280 – 0.2308 SPL

NOTE: The after coating limits for all of the examples above are the minor and *PD* values in Table 2 for the respective class of thread.

6.3 Method of Designating Left-Hand Threads

Unless otherwise specified, threads are right hand; a left-hand thread shall be designated LH as follows:

EXAMPLE: 1/4 - 20 UNC-3A-LH (21)

6.4 Method of Designating UNS Threads

UNS threads are special combinations of diameter and pitch with tolerance to unified formulation.

UNS threads have the basic form of designation set out above, supplemented always by the limits of size.

EXAMPLES:

(a) ¹₄ – 24 UNS-3A (21) Major diameter 0.2500 – 0.2428 PD 0.2229 – 0.2201 Max. Minor diameter 0.205

(b) 0.495 - 20 UNS-3A (21)
 Major diameter 0.4950 - 0.4869
 PD 0.4625 - 0.4593
 Max. Minor diameter 0.441

(c) 1.200 – 10 UNS-2B (21) Minor diameter 1.092 – 1.113 PD 1.1350 – 1.1432 Min. Major diameter 1.200

6.5 Designations for Other Threads

Threads having tolerances that do not conform to unified formulation and threads having multiple start or lead, or special form, also require additional considerations in the thread designation. The recommended methods of designating these threads are described in paras. 6.5.1 through 6.5.3.

6.5.1 Method of Designating Threads Having Tolerances Not to Unified Formulation. If a standard series thread is altered in any respect other than revised pitch diameter limits for a special length of engagement, the modification of crests, or the adjustment of the limits of size to accommodate coating, as shown above, it is designated in accordance with the following:

EXAMPLES:

 (a) ⁷/₁₆ – 24 Unified Form SPL-EXT (22) Major diameter 0.4340 – 0.4280 SPL PD 0.4065 – 0.4025 SPL Max. Minor diameter 0.3889 LE 0.38

 (b) 1/2 - 13 Unified Form SPL-INT (22) Minor diameter 0.424 - 0.434 SPL PD 0.4500 - 0.4580 SPL Min. Major diameter 0.5000 LE 0.50

6.5.2 Method of Designating Multiple Start Threads.

If a thread is required with a multiple start or lead, it is designated by specifying in sequence the nominal size, pitch (in decimals or threads per inch), and lead (in decimals or fractions), number of starts in parenthesis, thread series, class, and gaging system in parenthesis if required to the following examples:

EXAMPLES:

(a) 3_4 – 0.0625P – 0.1875L (3 STARTS) UNF SPL-EXT (23) Major diameter 0.7485 – 0.7391 PD 0.7079 – 0.7003 SPL Max. Minor diameter 0.6808 LE 0.75

(b) $\frac{3}{4} - 16 - 0.1875L$ (3 STARTS) UNF-2A (21)

6.5.3 Method of Designating Special Form Threads.

If a thread for design consideration requires a variation from unified standard thread contour and is not covered by another recognized standard, such as when the detail of the root differs from that for the standard thread form, the designation shall not include either the letters "UN" or the word "UNIFIED", but shall be as follows:

EXAMPLE:

 $\frac{7}{8}$ – 18 SPL 60 deg Form-EXT (22) Major diameter 0.8750 – 0.8668 PD 0.8384 – 0.8343 Max. Minor diameter 0.8068 LE 0.69

6.6 Method of Designating Threads Having Special Length of Engagement

In the assembly of threads in mating parts, the length of engagement varies according to the design requirements. It should be noted that the length of engagement is not necessarily the same as the full thread length provided on the part, but is the length of assembled thread in the mating parts.

Where a standard series thread has a special length of engagement differing from that for which the standard pitch diameter tolerances are applicable as indicated in para. 5, the thread class symbol is qualified by the addition of the letters SE (special engagement) preceding the class symbol. The specification of the special pitch diameter limits of size and the length of engagement *LE*, rounded to a two place decimal, are a requirement.

EXAMPLES:

- (a) ½ 13 UNC-SE2A (23) PD 0.4485 – 0.4423 LE 1.00
- (b) ½ 24 UNS-SE3A (23) Major diameter 0.2500 – 0.2428 PD 0.2229 – 0.2194 LE 0.88

6.6.1 In some cases where greater than standard length of engagement is required, it is desirable to use standard externally threaded parts with tolerances based on standard length of engagement. For example, in the case of a standard bolt assembled into a tapped hole in aluminum, the designation of the bolt thread will conform to that of a thread for a standard length of engagement.

The designation for the tapped hole thread should include the allowance in the basic size, the pitch diameter limits of size, and the length of gage, in addition to the information normally given. See para. 5.3.1(b).

EXAMPLE: Requiring use of $1.00\ \text{long}$ GO thread and GO plain gages.

0.5025 – 13 UNS-SE2B (21) Minor diameter 0.420 – 0.437 PD 0.4525 – 0.4606 LG 1.00

Similarly, where greater than standard length of engagement is required, it is desirable to use standard internally threaded parts with tolerances based on standard length of engagement. Therefore, the external thread is provided with an added allowance. See para. 5.3.1(c).

The designation for the external thread should include the added allowance in the basic size, the pitch diameter limits of size, and the length of gage, in addition to the information normally given. EXAMPLE: Requiring use of 0.88 long GO thread and GO plain gages.

0.3725 – 24 UNS-SE2A (21) Major diameter 0.3714 – 0.3642 PD 0.3443 – 0.3396 LG 0.88

6.6.2 When a long length of engagement is required and standard length GO thread and GO plain gages are to be used, the thread designation should indicate the thread modifications and a standard gage length, *LG* Std. See para. 5.3.2.

EXAMPLES: With additional allowance indicating use of standard length GO thread and GO plain gages.

- (a) 0.5058 13 UNS-2B (22) Minor diameter 0.423 – 0.440 PD 0.4558 – 0.4623 LG Std.
- (b) 0.3706 24 UNS-2A (22) Major diameter 0.3695 – 0.3623 PD 0.3424 – 0.3386 LG Std.
- **6.6.3** For applications of long length of engagement of mating parts involving very high strength materials, increases in tolerances based on standard length of engagement may be detrimental. In these cases, the tolerances based on the standard length of engagement may be applied to increased length of engagement threads. This requires the GO thread gages to have a special length equal to the length of engagement as specified.

The designations for restricted applications should be qualified with the abbreviation SPL (special) as shown in the examples below. See para. 5.3.1(a)

EXAMPLES: Requiring use of 1.00 long GO thread and GO plain gages

- (a) 0.500 20 UNF-3A SPL (21) LG 1.00 SPL
- (b) 0.500 20 UNF-3B SPL (21) LG 1.00 SPL

NOTE: In drawings, tolerances tabulated for the standard length of engagement in ASME B1.1 shall apply over the full length of engagement.

6.7 Method of Designating Threads Having Modified Crests

It is occasionally necessary to modify the limits of size of the major diameter of an external thread or the minor diameter of an internal thread within the maximum-material limits established for standard series and special threads in order to fit a specific purpose, but without change in class of thread or pitch diameter limits. (It should be noted that standard pitch diameter gages may be used to accept such threads.) Such threads shall be specified with the established thread designation, followed by a statement of the modified diameter limits and the designation MOD. This practice also applies to modifications of internal thread minor diameters described in para. 5.6.1.

EXAMPLES:

(a) $\frac{3}{8}$ – 24 UNF-3A MOD (21) Major diameter 0.3720 – 0.3648 MOD

(b) 1½ – 10 UNS-3B MOD (21) Minor diameter 1.398 – 1.409 MOD PD 1.4350 – 1.4412 Min. major diameter 1.500

7 DIMENSIONAL ACCOMMODATION OF COATING OR PLATING FOR 60-deg THREADS

7.1 Introduction

It is not within the scope of this Standard to make recommendations for thickness of, or to specify limits for, coatings. However, it will aid mechanical interchangeability if certain principles are followed wherever conditions permit. The guidelines in paras. 7.4, 7.5, and 7.6 should be helpful in determining the amount and direction of the alterations to establish applicable limits of size before coating threads with a 60 deg included angle. Some commonly used and firmly established processes for heavy coatings, such as hot dip galvanizing, do not fall within the scope of this paragraph. Heavy coating, for purposes of this standard, is defined as a coating thickness greater than 0.25 times the thread's allowance.

NOTE: The term *coating* refers to one or more applications of additive material to threads, including, but not limited to, electroplated deposits, dip-spin applied materials, and mechanically applied platings. It does not include soft or liquid lubricants that are readily displaced in assembly and gaging.

This Standard specifies limits of size that pertain whether threads are coated or uncoated. Only in Class 2A threads is the allowance available to accommodate coatings. Thus, in all classes of internal threads and in all Classes 1A and 3A external threads, limits of size must be adjusted before plating to provide suitable provision for the desired coating.

7.2 Material Limits for Coated Threads

Unless otherwise specified, size limits for standard external thread Class 2A apply prior to coating. The external thread allowance may thus be used to accommodate the coating thickness on coated parts, provided that the maximum coating thickness is no more than one-fourth of the allowance (see Fig. 4). Thus, the thread after coating is subject to acceptance using a basic Class 3A GO thread gage and a Class 2A thread gage for either minimum material or NOT GO. Where external thread has no allowance, or allowance must be maintained after coating, and for standard internal threads, sufficient allowance must be provided prior to coating to ensure that finished product threads do not exceed the maximum-material limits specified. For thread Class 3A, Class 2A allowances should be applied whenever possible in accordance with calculations in para. 5.

7.3 Dimensional Effects of Coating

- **7.3.1** On a cylindrical surface, the effect of coating is to change the diameter by twice the coating thickness, one coating thickness on each side of the cylinder. On a screw thread, this would apply to the major and minor diameter.
- **7.3.2** Because the coating thickness is measured perpendicular to the coated surface, while the pitch diameter is measured perpendicular to the thread axis, the effect of a uniformly coated thread flank on the pitch diameter is a change of four times the thickness of coating on the flank (see Fig. 4). The diameters of external threads before coating will be smaller, while the diameters of internal threads before coating will be larger, than the coated diameters.
- **7.3.3** Most coatings and platings do not apply uniformly on threads (see Fig. 5). Different coating materials and processes have different application characteristics. The threaded part's overall length and other configuration characteristics also affect the way the coatings build up on the threads. Paragraphs 7.4, 7.5, and 7.6 provide general guidelines for calculating precoating thread size to allow for coating buildup while preventing interference in assembly. The exact precoating thread size for a given part with a given type of coating will frequently have to be developed by the producer experimentally.

7.4 External Thread With Allowance Available for Coating

7.4.1 Maximum and Minimum Coating Thickness Specified. The amount of the allowance on the pitch diameter is sufficient if 4 times the maximum coating thickness is equal to or less than the allowance tabulated in Table 2 or calculated per formula in para. 5.8.1(a).

7.4.2 Only Nominal or Minimum Coating Thickness Specified. If no thickness tolerance is given, it is recommended that a tolerance of plus 50% of the nominal or minimum thickness be assumed. Then the amount of the allowance on the pitch diameter is sufficient if 6 times the specified coating thickness is equal to or less than the allowance tabulated in Table 2 or calculated per formula in para. 5.8.1(a).

7.5 External Thread With No Allowance for Coating

- **7.5.1 Maximum and Minimum Coating Thickness Specified.** To determine before coating gaging limits decrease
- (a) the maximum pitch diameter by 4 times the maximum coating thickness
- (b) the minimum pitch diameter by 4 times the minimum coating thickness
- (c) the maximum major diameter by 2 times the maximum coating

Fig. 4 Ratio of Pitch Diameter Change to Thickness of Coating on 60-deg Threads

(*d*) the minimum major diameter by 2 times the minimum coating thickness

EXAMPLE: $\frac{3}{8}$ – 16 UNC-2A (21) AFTER COATING Coating thickness 0.0002 – 0.0003 in.

To determine the before coating maximum material sizes, decrease the maximum pitch diameter of 0.3331 in. by 0.0012 in. (4 \times 0.0003) to 0.3319 in., and the maximum major diameter of 0.3737 in. by 0.0006 in. (2 \times 0.0003) to 0.3731 in. For the before coating minimum sizes, decrease the minimum pitch diameter of 0.3287 in. by

0.0008 in. (4 × 0.0002) to 0.3279 in., and the minimum major diameter of 0.3643 in. by 0.0004 in. (2 × 0.0002) to 0.3639 in. The before coating sizes should be included in the thread designation (see para. 6.2.1).

7.5.2 Only Nominal or Minimum Coating Thickness Specified. If no coating thickness tolerance is given, it is recommended that a tolerance of plus 50% of the nominal or minimum thickness be assumed. Then, to determine before coating gaging limits for a coated thread, decrease

GENERAL NOTE: Electrodeposited coatings build up more heavily at sharp corners; is greater at the extreme ends and edges; and is least in the center and recessed areas.

Fig. 5 Effect of Electrodeposited Coatings on 60-deg External Threads

- (a) the maximum pitch diameter by 6 times the coating thickness
- (b) the minimum pitch diameter by 4 times the coating thickness
- (c) the maximum major diameter by 3 times the coating thickness
- (*d*) the minimum major diameter by 2 times the coating thickness

EXAMPLE: $\frac{1}{2}$ – 13 UNC-3A (22) Coating thickness 0.0004 in.

Since the allowance for Class 2A thread is 0.0015 in., the nominal or minimum coating thickness that may be applied is equal to 0.0015 in. divided by 6, or 0.00025 in. (the maximum thickness of coating that may be applied is equal to 0.0015 divided by 4 or 0.0038 in.). This is not sufficient for the required nominal or minimum coating of 0.0004 in. specified, so additional adjustments to the before coating pitch and major diameters must be made.

To determine the before coating maximum material sizes, decrease the maximum pitch diameter of 0.4500 in. by 0.0024 in. (6×0.0004) to 0.4476 in., and the maximum major diameter of 0.5000 in. by 0.0012 in. (3×0.0004) to 0.4988 in. For the before coating minimum sizes, decrease the minimum pitch diameter of 0.4463 in. by 0.0016 in. (4×0.0004) to 0.4447 in., and the minimum major diameter of 0.4891 in. by 0.0008 in. (2×0.0004) to 0.4883 in. The before coating sizes should be included in the thread designation (see para. 6.2.1).

- **7.5.3 Adjusted Size Limits.** It should be noted in the preceding examples that the before coating material limit tolerances are less than the tolerances after coating. This is because the coating tolerance consumes some of the product tolerance. In some instances, there may be insufficient pitch diameter tolerance available in the before coating condition, so that additional adjustments and controls will be necessary.
- **7.5.4 Strength.** On small thread sizes (0.190 in. and smaller) there is a possibility that coating thickness adjustments will cause base material (minimum) conditions that may significantly affect strength of externally threaded parts. Limitations on coating thickness, or part redesign, may be necessary.

7.6 Internal Threads

Standard internal threads provide no allowance for coating thickness. To determine before coating gaging limits for a coated thread, increase

- (a) the minimum pitch diameter by 4 times the maximum coating thickness, if specified, or by 6 times the minimum or nominal coating thickness, if not specified
- (b) the maximum pitch diameter by 4 times the minimum or nominal coating thickness
- (c) the minimum minor diameter by 2 times the maximum coating thickness, if specified, or by 3 times the minimum or nominal coating thickness, if not specified
- (*d*) the maximum minor diameter by 2 times the minimum or nominal coating thickness

7.7 Electrodeposited Coatings

Electroplated coatings do not cover threads uniformly. Deposits build up more on thread crests than on thread flanks and coating thickness is greater on lead end of a thread than on threads in the center of a part. The guidelines for calculating precoating thread sizes for uniformly coated threads can be used as a starting place in determining the precoating thread sizes on a given part, but the exact sizes for any given part may have to be determined by trial and error experimentation.

One of the effects of electrodeposited coatings not applying uniformly is that the functional diameter of an external thread will generally increase by a greater magnitude than the increase of the pitch diameter on a given part. Depending on an externally threaded part's configuration an electrodeposited coating of 0.0001 in. on a thread flank will probably result in a growth of the pitch diameter of approximately 0.0004 in., but the functional diameter may change by as much as 0.0006 in. or more. In the case of internally threaded parts, electrodeposited coatings cause the pitch diameter and functional diameter to decrease in size, with the pitch diameter decreasing less than the functional diameter on a given part.

Another effect of the nonuniform buildup of electrodeposited coatings is that the coating thickness on the lead end of a thread is commonly greater than the thickness on the threads in the center of the part. This results in the pitch diameter and functional diameter of a thread to be considerably larger on the end of the part than their comparable measurements away from the end. The longer the part, in the case of external threads, or the thicker the part, in the case of internal threads, the greater these differences tend to be. The part producer and the plater can not control this phenomenon. It is the nature of electrodeposited coatings on threaded parts. It is conceivable that a part's dimensions can measure within limits on the lead threads and be beyond their limits on the threads away from the lead threads.

7.8 Other Considerations

It is essential to adequately review all possibilities and consider limitations in the threading and coating production processes before finalizing the coating process and the allowance required to accommodate the coating. A no allowance thread after coating shall not transgress the basic profile, and is therefore subject to acceptance using a basic Class 3A, 1B, 2B, or 3B size GO thread gage.

8 STANDARD SERIES THREADS (UN/UNR) AND LIMITS OF SIZE FOR STANDARD SERIES AND UNS/UNRS SERIES THREADS

8.1 Standard Series

The standard series for unified inch screw threads is listed in Table 1. Although the designations shown are

for the UN thread form, UNR designations may be used in all cases.

8.2 Limits of Size

The limits of size are defined by the design profile at its maximum-material condition and the minimum profile at the minimum-material condition. The limits are specified as diameters (major diameter, minor diameter, pitch diameter), and the practical interpretation of these limits on a three-dimensional threaded product depends on the method of inspection/evaluation. These dimensions serve as a basis for measurement and gaging of the thread, but the methods, techniques, and equipment used for thread evaluation establish the degree of thread conformance to the tabulated dimensions. Current techniques for measuring and gaging do not verify exact conformance of a thread to its specified maximum and minimum envelope. See ASME B1.3 for gaging systems for dimensional acceptability.

8.2.1 Limits of size for the majority of the standard series are shown in Tables 2 and E-1. Until this Standard is revised to require the calculated and rounded values per ASME B1.30 shown in Table 2, both these and the values in Table E-1 will be equally acceptable. It is recommended that all users prepare for the eventual adoption of only the values in Table 2.

Omissions are the secondary size range in the 4-UN series, and all sizes over 6 in. refer to Table 1 for a list of secondary sizes.

8.2.2 Limits of size not given may be calculated from the formulas given in the following paragraphs. Formulas and symbols for thread form are given in para. 10.

8.3 Formulas for Limits of Size

These formulas were used to calculate the values shown in Table 2 for standard series. The following symbols are used in the equations. (See Figs. 1 and 6.)

D bsc = basic major (nominal) diameter

 D_1 bsc = basic minor diameter $(D - 2h_n)$ (see Tables 6 through 16)

 D_2 bsc = basic pitch diameter $(D - h_b)$ (see Tables 6 through 16)

 d_3 = UNR series design minor diameter [d_1 – (H/8)] (see Tables 6 through 16)

 h_{as} = screw addendum height (see Table 5)

 $h_b = 2h_{as}$ (see Table 5)

 h_n = height of internal thread (see Table 5)

 h_s = height of external thread (see Table 5)

P = pitch, in.

To obtain limits of size using the formulas, see Table 5 for basic thread form data, para. 11 for basic dimensions, and para. 5 for formulas of allowance and tolerance. For easy reference, outline guides for determining

limits of size of external and internal threads are given in Tables 17A and 17B.

8.3.1 External Thread

- (a) Maximum Major Diameter (External Threads)
- (1) For Classes 1A and 2A, d = basic major diameter, D bsc, minus allowance.
 - (2) For Class 3A, d =basic major diameter, D bsc.
- (b) Minimum Major Diameter (External Threads). For all classes, equals maximum major diameter, minus major diameter tolerance for respective class of thread.
 - (c) Maximum Pitch Diameter (External Threads)
- (1) For Classes 1A and 2A, d_2 = basic pitch diameter D_2 bsc, minus allowance.
 - (2) For Class 3A, d_2 = basic pitch diameter D_2 bsc.
- (d) Minimum Pitch Diameter (External Threads). For all classes, equals maximum pitch diameter, minus pitch diameter tolerance for respective class of thread.
- (e) Maximum Minor Diameter (External Threads). In dimensioning UN series external threads, the minor diameter is not specified. In practice, the minor diameter is satisfactory when accepted by a standard GO thread gage in accordance with ASME B1.2. When it is desirable to obtain minor diameter values for reference purposes and for UNR threads, they can be calculated as follows:
 - (1) For UN series threads, the formulas are:
- (a) for Classes 1A and 2A, d_1 = basic minor diameter D_1 bsc, minus allowance
- (b) for Class 3A, d_1 = basic minor diameter D_1 bsc
 - (2) For UNR series threads, the formulas are:
- (a) for Classes 1A and 2A, d_3 = basic minor diameter D_1 bsc, minus allowance, minus H/8
- (b) or Class 3A, d_3 = basic minor diameter D_1 bsc, minus H/8
- (f) Minimum Minor Diameter (External Threads). When it is desirable for design purposes to calculate the minimum diameter, it can be obtained for all classes by the formula: minimum pitch diameter minus 0.64951905P.

8.3.2 Internal Thread

- (a) Maximum Major Diameter (Internal Threads). In dimensioning internal threads, the maximum major diameter is not specified, being established by the crest of an unworn tool. In practice, the major diameter of an internal thread is satisfactory when accepted by a gage or gaging method that represents the maximum-material condition of an external thread that has no allowance.
- (b) Minimum Major Diameter (Internal Threads), D bsc. For all classes, equals basic diameter D bsc.
- (c) Minimum Pitch Diameter. For all classes, D_2 bsc equals basic pitch diameter D_2 minimum.
- (d) Maximum Pitch Diameter (Internal Threads). For all classes, equals minimum pitch diameter D_2 bsc, plus pitch diameter tolerance for respective class of thread.

- (e) Minimum Minor Diameter (Internal Threads). For all classes, D_1 bsc equals minimum pitch diameter D_2 minimum minus 0.43301122P, then rounded off to the nearest 0.001 in. for sizes 0.138 in. and larger. For Class 3B, a cipher is added to yield four decimal places.
- (f) Maximum Minor Diameter (Internal Threads). All classes are calculated before rounding, then rounded for Classes 1B and 2B to the nearest 0.001 in. for sizes 0.138 in. and larger. Class 3B values are rounded to four decimal places.

8.4 Example of Calculations From Formulas

Tables 18A and 18B are based on the practices for calculating and rounding screw thread dimensions as specified in ASME B1.30.

9 LEAD AND ANGLE TOLERANCES

9.1 Lead and Flank Angle Acceptance

Acceptance of lead and flank angles of product screw threads shall be in accordance with the following. Also, these are factors contributing to visual identification of gross defects in thread profile.

- **9.1.1** When Thread Gaging System 21 of ASME B1.3 is specified, product thread lead (including helix) and flank angle variations are not considered as separate elements.
- **9.1.2** When Thread Gaging System 22 of ASME B1.3 is specified, with the pitch diameter or thread-groove diameter inspection/evaluation required, the product thread lead (including helix) and flank angles shall be considered acceptable when the minimum-material characteristic (pitch diameter or thread-groove diameter in Tables 1 and 2, columns C and D of ASME B1.3) and the maximum-material characteristic (GO in Tables 1 and 2, column A of ASME B1.3) are accepted by the gages specified for System 22, over the standard GO thread gage length.

When Thread Gaging System 22 is specified with NOT GO functional diameter combined with inspection/ evaluation of lead and flank option, agreements must be reached between the purchaser and the supplier on lead and flank angle limits and method of evaluation.

9.1.3 When Thread Gaging System 23 of ASME B1.3 is specified, product thread lead and flank angles shall be acceptable if within the allowable variations specified in Tables 3 and 19, respectively. Also, the minimum-material characteristic (pitch diameter or thread-groove diameter in Tables 1 and 2, columns C and D of ASME B1.3) and the maximum-material characteristic (GO in Tables 1 and 2, column A of ASME B1.3) must be accepted by the gages specified for System 23, over the standard GO thread gage length.

Allowable variations in lead and flank angles are maximum values. Maximum variation in these and pitch

diameter tolerance cannot be taken simultaneously (see paras. 9.1.5 and 9.1.6).

- **9.1.4** When individual inspection/evaluation of lead (including helix) and flank angle variations are required in addition to thread gaging System 21 or 22 of ASME B1.3, the allowable variations for these characteristics shall be as specified in Tables 3 and 19.
- **9.1.5** For sizes not included in Tables 3 and 19, the allowable lead variation is equal to 0.57735 times one-half the pitch diameter tolerance. This is the lead variation that causes a change in functional diameter equal to one-half the pitch diameter tolerance. The allowable flank half-angle variation in minutes of arc is equal to 30 plus 1.875 times the number of threads per inch, rounded to the nearest 5 min.
- **9.1.6** For the requirements of paras. 9.1.4 and 9.1.5, lead variation values tabulated or calculated are the maximum variations from specified lead between any two points not farther apart than the length of the standard GO thread gage. Flank angle variation values are maximum variations from the basic 30 deg angle between thread flanks and perpendiculars to the thread axis.

10 FORMULAS AND SYMBOLS FOR THREAD FORM

10.1 Thread Form Formulas and Symbols

Formulas are given below; data are tabulated in Table 5.

The general symbols used are defined in Table 20 and application of the symbols is shown in Fig. 6.

(a) Included Angle of Thread

$$2\alpha = 60 \deg$$

(b) Half angle of thread

$$\alpha = 30 \deg$$

(c) Number of threads per inch (TPI) is 1/P Pitch of thread.

$$P = 1/\text{TPI}$$

(d) Height of sharp V-thread (fundamental triangle)

$$H = 0.86602540P$$

(e) Height of UNR external thread, design form

$$h_s = 0.59539247P = (11/16H)$$

(f) Height of internal thread and UN external thread

$$h_s = h_n = 0.54126588P = (5/8H)$$

(g) Height of thread engagement

$$h_s = 0.54126588P = (5/8H)$$

(h) Flat at crest of external thread

$$F_{cs} = 0.12500000P = P/8$$

(i) Truncation of UN external thread crest

$$f_{cs} = 0.10825318P = (H/8)$$

(j) Truncation of UNR external thread (for calculating minor diameter values in tables)

$$S_{rs} = 0.16237976P = (3/16H)$$

(k) Basic flat at crest of internal thread and root of external thread

$$F_{rs} = F_{cn} = 0.25000000P = P/4$$

(l) Truncation of internal thread crest

$$f_{cn} = 0.21650635P = (H/4)$$

(m) Flat at root of internal thread

$$F_{rn} = 0.12500000P = P/8$$

(n) Truncation of internal thread root

$$f_{rn} = 0.10825318P = (H/8)$$

(o) Addendum of external thread

$$h_{as} = 0.32475953P = (3/8H)$$

(p) Major diameter of external thread is d. Pitch diameter of external thread

$$d_2 = d - 2h_{as} = d - 0.64951905P$$

(q) Minor diameter of UNR external thread

$$d_3 = d - 2h_s = 1.19078493P$$

(r) Minor diameter of UN external thread

$$d_1 = d - 2h_s = d - 1.08253175P$$

(s) Major diameter of internal thread is D. Pitch diameter of internal thread is D_2 . Minor diameter of internal thread:

$$D_1 = D - 2h_n = D - 1.08253175P$$

TABLES OF BASIC DIMENSIONS

11.1 Table Content

The basic dimensions tabulated in Tables 6 through 16 include major diameter, pitch diameter, minor diameter of external threads, minor diameter of internal threads, lead angle, cross-sectional area at the minor diameter, and the tensile stress area.

11.2 Thread Series

Basic dimensions are given for each of the standard series threads.

NOTE:

(1) Portion of thread fully formed at crest and root.

Fig. 6 Application of General Thread Symbols (See Table 5)

Lead and Helix Angles

Internal Thread

GENERAL NOTE: These diagrams are not intended to show standard thread forms, but only to illustrate the application of symbols.

Fig. 6 Application of General Thread Symbols (See Table 5) (Cont'd)

Table 6 Basic Dimensions for Coarse-Thread Series (UNC/UNRC)

Nominal Size,	Basic Major Diameter,	Threads/	Basic Pitch Diameter,	UNR Design Minor Diameter External, d_3 , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in. [Notes (1),
in.	Diameter, D, in.	in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	(2)]
1 (0.073) [Note (3)]	0.0730	64	0.0629	0.0544	0.0561	4	31	0.00218	0.00263
2 (0.086)	0.0860	56	0.0744	0.0648	0.0667	4	22	0.00310	0.00370
3 (0.099) [Note (3)]	0.0990	48	0.0855	0.0741	0.0764	4	26	0.00406	0.00487
4 (0.112)	0.1120	40	0.0958	0.0822	0.0849	4	45	0.00496	0.00604
5 (0.125)	0.1250	40	0.1088	0.0952	0.0979	4	11	0.00672	0.00796
6 (0.138)	0.1380	32	0.1177	0.1008	0.1042	4	50	0.00745	0.00909
8 (0.164)	0.1640	32	0.1437	0.1268	0.1302	3	58	0.01196	0.0140
10 (0.190)	0.1900	24	0.1629	0.1404	0.1449	4	39	0.01450	0.0175
12 (0.216) [Note (3)]	0.2160	24	0.1889	0.1664	0.1709	4	1	0.0206	0.0242
1/4 5/16	0.2500	20	0.2175	0.1905	0.1959	4	11	0.0269	0.0318
5/16	0.3125	18	0.2764	0.2464	0.2524	3	40	0.0454	0.0524
3/8	0.3750	16	0.3344	0.3005	0.3073	3	24	0.0678	0.0775
7/16	0.4375	14	0.3911	0.3525	0.3602	3	20	0.0933	0.1063
716 3/8 7/16 1/2	0.5000	13	0.4500	0.4084	0.4167	3	7	0.1257	0.1419
9/16	0.5625	12	0.5084	0.4633	0.4723	2	59	0.162	0.182
5/8	0.6250	11	0.5660	0.5168	0.5266	2	56	0.202	0.226
3/4	0.7500	10	0.6850	0.6309	0.6417	2	40	0.302	0.334
9/16 5/8 3/4 7/8	0.8750	9	0.8028	0.7427	0.7547	2	31	0.419	0.462
1	1.0000	8	0.9188	0.8512	0.8647	2	29	0.551	0.606
$\frac{1^{1}/8}{1^{1}/4}$	1.1250	7	1.0322	0.9549	0.9704	2	31	0.693	0.763
11/4	1.2500	7	1.1572	1.0799	1.0954	2	15	0.890	0.969
$1^{3}/_{8}$	1.3750	6	1.2667	1.1766	1.1946	2	24	1.054	1.155
$1\frac{3}{8}$ $1\frac{1}{2}$	1.5000	6	1.3917	1.3016	1.3196	2	11	1.294	1.405
13/4	1.7500	5	1.6201	1.5119	1.5335	2	15	1.74	1.90
2	2.0000	$4^{1}/_{2}$	1.8557	1.7353	1.7594	2	11	2.30	2.50
$2^{1}/_{4}$	2.2500	$4^{1/2}$	2.1057	1.9853	2.0094	1	55	3.02	3.25
$2^{1}/_{4}$ $2^{1}/_{2}$	2.5000	4	2.3376	2.2023	2.2294	1	57	3.72	4.00
23/4	2.7500	4	2.5876	2.4523	2.4794	1	46	4.62	4.93
3	3.0000	4	2.8376	2.7023	2.7294	1	36	5.62	5.97
3 ¹ / ₄	3.2500	4	3.0876	2.9523	2.9794	1	29	6.72	7.10
$3^{1/2}$	3.5000	4	3.3376	3.2023	3.2294	1	22	7.92	8.33
3 ¹ / ₄ 3 ¹ / ₂ 3 ³ / ₄	3.7500	4	3.5876	3.4523	3.4794	1	16	9.21	9.66
4	4.0000	4	3.8376	3.7023	3.7294	1	11	10.61	11.08

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Secondary sizes.

Table 7 Basic Dimensions for Fine-Thread Series (UNF/UNRF)

	Basic Major Diameter, <i>D</i> ,	Threads/	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Nominal Size, in.	in.	in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)
0 (0.060)	0.0600	80	0.0519	0.0451	0.0465	4	23	0.00151	0.00180
1 (0.073) [Note (3)]	0.0730	72	0.0640	0.0565	0.0580	3	57	0.00237	0.00278
2 (0.086)	0.0860	64	0.0759	0.0674	0.0691	3	45	0.00339	0.00394
3 (0.099) [Note (3)]	0.0990	56	0.0874	0.0778	0.0797	3	43	0.00451	0.00523
4 (0.112)	0.1120	48	0.0985	0.0871	0.0894	3	51	0.00566	0.00661
5 (0.125)	0.1250	44	0.1102	0.0979	0.1004	3	45	0.00716	0.00830
6 (0.138)	0.1380	40	0.1218	0.1082	0.1109	3	44	0.00874	0.01015
8 (0.164)	0.1640	36	0.1460	0.1309	0.1339	3	28	0.01285	0.01474
10 (0.190)	0.1900	32	0.1697	0.1528	0.1562	3	21	0.0175	0.0200
12 (0.216) [Note (3)]	0.2160	28	0.1928	0.1734	0.1773	3	22	0.0226	0.0258
1/4	0.2500	28	0.2268	0.2074	0.2113	2	52	0.0326	0.0364
5/16	0.3125	24	0.2854	0.2629	0.2674	2	40	0.0524	0.0580
3/8	0.3750	24	0.3479	0.3254	0.3299	2	11	0.0809	0.0878
7/16	0.4375	20	0.4050	0.3780	0.3834	2	15	0.1090	0.1187
1/4 5/16 3/8 7/16 1/2	0.5000	20	0.4675	0.4405	0.4459	1	57	0.1486	0.1599
9/16	0.5625	18	0.5264	0.4964	0.5024	1	55	0.189	0.203
5/8	0.6250	18	0.5889	0.5589	0.5649	1	43	0.240	0.256
3/4	0.7500	16	0.7094	0.6763	0.6823	1	36	0.351	0.373
9/ ₁₆ 5/ ₈ 3/ ₄ 7/ ₈	0.8750	14	0.8286	0.7900	0.7977	1	34	0.480	0.509
1	1.0000	12	0.9459	0.9001	0.9098	1	36	0.625	0.663
$1^{1}/_{8}$	1.1250	12	1.0709	1.0258	1.0348	1	25	0.812	0.856
$1^{1}/_{4}$	1.2500	12	1.1959	1.1508	1.1598	1	16	1.024	1.073
1 ¹ / ₄ 1 ³ / ₈ 1 ¹ / ₂	1.3750	12	1.3209	1.2758	1.2848	1	9	1.260	1.315
$1^{1}/_{2}$	1.5000	12	1.4459	1.4008	1.4098	1	3	1.521	1.581

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Secondary sizes.

Table 8 Basic Dimensions for Extra-Fine-Thread Series (UNEF/UNREF)

Nomina	al Size, in.	Basic Major Diameter,	Threads/	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	<i>D</i> , in.	in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
	12 (0.216)	0.2160	32	0.1957	0.1788	0.1822	2	55	0.0242	0.0270
1/4		0.2500	32	0.2297	0.2128	0.2162	2	29	0.0344	0.0379
5/16		0.3125	32	0.2922	0.2753	0.2787	1	57	0.0581	0.0625
3/8		0.3750	32	0.3547	0.3378	0.3412	1	36	0.0878	0.0932
1/4 5/16 3/8 7/16	• • •	0.4375	28	0.4143	0.3949	0.3988	1	34	0.1201	0.1274
1/2 9/16 5/8		0.5000	28	0.4768	0.4574	0.4613	1	22	0.162	0.170
9/16		0.5625	24	0.5354	0.5129	0.5174	1	25	0.203	0.214
5/8		0.6250	24	0.5879	0.5754	0.5799	1	16	0.256	0.268
• • •	11/16	0.6875	24	0.6604	0.6379	0.6424	1	9	0.315	0.329
3/4		0.7500	20	0.7175	0.6905	0.6959	1	16	0.369	0.386
	¹³ / ₁₆	0.8125	20	0.7800	0.7530	0.7584	1	10	0.439	0.458
⁷ / ₈		0.8750	20	0.8425	0.8155	0.8209	1	5	0.515	0.536
• • •	¹⁵ / ₁₆	0.9375	20	0.9050	0.8780	0.8834	1	0	0.598	0.620
1		1.0000	20	0.9675	0.9405	0.9459	0	57	0.687	0.711
	$1^{1}/_{16}$	1.0625	18	1.0264	0.9964	1.0024	0	59	0.770	0.799
$1^{1}/_{8}$		1.1250	18	1.0889	1.0589	1.0649	0	56	0.871	0.901
• • •	$1^{3}/_{16}$	1.1875	18	1.1514	1.1214	1.1274	0	53	0.977	1.009
11/4		1.2500	18	1.2139	1.1839	1.1899	0	50	1.090	1.123
	$1^{5}/_{16}$	1.3125	18	1.2764	1.2464	1.2524	0	48	1.208	1.244
$1^{3}/_{8}$		1.3750	18	1.3389	1.3089	1.3149	0	45	1.333	1.370
• • •	$1^{7}/_{16}$	1.4375	18	1.4014	1.3714	1.3774	0	43	1.464	1.503
11/2		1.5000	18	1.4639	1.4339	1.4399	0	42	1.60	1.64
	$1^{9}/_{16}$	1.5625	18	1.5264	1.4964	1.5024	0	40	1.74	1.79
15/8		1.6250	18	1.5889	1.5589	1.5649	0	38	1.89	1.94
	$1^{11}/_{16}$	1.6875	18	1.6514	1.6214	1.6274	0	37	2.05	2.10

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

Table 9 Basic Dimensions for 4-Thread Series (4-UN/4-UNR)

Nominal S	ize, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, A	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
$2^{1}/_{2}$ [Note (3)]		2.5000	2.3376	2.2023	2.2294	1	57	3.72	4.00
	$2^{5}/_{8}$	2.6250	2.4626	2.3273	2.3544	1	51	4.16	4.45
2 ³ / ₄ [Note (3)]		2.7500	2.5876	2.4523	2.4794	1	46	4.62	4.93
• • •	$2^{7}/_{8}$	2.8750	2.7126	2.5773	2.6044	1	41	5.11	5.44
3 [Note (3)]		3.0000	2.8376	2.7023	2.7294	1	36	5.62	5.97
	$3^{1}/_{8}$	3.1250	2.9626	2.8273	2.8544	1	32	6.16	6.52
3 ¹ / ₄ [Note (3)]	•••	3.2500	3.0876	2.9523	2.9794	1	29	6.72	7.10
	$3^{3}/_{8}$	3.3750	3.2126	3.0773	3.1044	1	25	7.31	7.70
3 ¹ / ₂ [Note (3)]		3.5000	3.3376	3.2023	3.2294	1	22	7.92	8.33
,,,,	$3^{5}/_{8}$	3.6250	3.4626	3.3273	3.3544	1	19	8.55	9.00
$3^{3}/_{4}$ [Note (3)]		3.7500	3.5876	3.4523	3.4794	1	16	9.21	9.66
	$3^{7}/_{8}$	3.8750	3.7126	3.5773	3.6044	1	14	9.90	10.36
4 [Note (3)]		4.0000	3.8376	3.7023	3.7294	1	11	10.61	11.08
	4 ¹ / ₈	4.1250	3.9626	3.8273	3.8544	1	9	11.34	11.83
41/4		4.2500	4.0876	3.9523	3.9794	1	7	12.10	12.61
	$4^{3}/_{8}$	4.3750	4.2126	4.0773	4.1044	1	5	12.88	13.41
41/2		4.5000	4.3376	4.2023	4.2294	1	3	13.69	14.23
	4 ⁵ / ₈	4.6250	4.4626	4.3273	4.3544	1	1	14.52	15.1
$4^{3}/_{4}$		4.7500	4.5876	4.4523	4.4794	1	0	15.4	15.9
	4 ⁷ / ₈	4.8750	4.7126	4.5773	4.6044	0	58	16.3	16.8
5		5.0000	4.8376	4.7023	4.7294	0	57	17.2	17.8
	5 ¹ / ₈	5.1250	4.9626	4.8273	4.8544	0	55	18.1	18.7
5 ¹ / ₄		5.2500	5.0876	4.9523	4.9794	0	54	19.1	19.7
• • •	5 ³ / ₈	5.3750	5.2126	5.0773	5.1044	0	52	20.0	20.7
5 ¹ / ₂		5.5000	5.3376	5.2023	5.2294	0	51	21.0	21.7
• • • •	5 ⁵ / ₈	5.6250	5.4626	5.3273	5.3544	0	50	22.1	22.7
53/4	• • •	5.7500	5.5876	5.4523	5.4794	0	49	23.1	23.8
• • • •	5 ⁷ / ₈	5.8750	5.7126	5.5773	5.6044	0	48	24.2	24.9
6	• • •	6.0000	5.8376	5.7023	5.7294	0	47	25.3	26.0

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Standard sizes of the UNC series.

Table 10 Basic Dimensions for 6-Thread Series (6-UN/6-UNR)

Nominal S	Size, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
1 ³ / ₈ [Note (3)]		1.3750	1.2667	1.1766	1.1946	2	24	1.054	1.155
	$1^{7}/_{16}$	1.4375	1.3292	1.2391	1.2571	2	17	1.171	1.277
$1\frac{1}{2}$ [Note (3)]	• • •	1.5000	1.3917	1.3016	1.3196	2	11	1.294	1.405
	$1^{9}/_{16}$	1.5625	1.4542	1.3641	1.3821	2	5	1.423	1.54
15/8	44 .	1.6250	1.5167	1.4271	1.4446	2	0	1.56	1.68
• • •	$1^{11}/_{16}$	1.6875	1.5792	1.4891	1.5071	1	55	1.70	1.83
$1^{3}/_{4}$		1.7500	1.6417	1.5516	1.5696	1	51	1.85	1.98
	$1^{13}/_{16}$	1.8125	1.7042	1.6141	1.6321	1	47	2.00	2.14
$1^{7}/_{8}$		1.8750	1.7667	1.6766	1.6946	1	43	2.16	2.30
	$1^{15}/_{16}$	1.9375	1.8292	1.7391	1.7571	1	40	2.33	2.47
2		2.0000	1.8917	1.8016	1.8196	1	36	2.50	2.65
	2 ¹ / ₈	2.1250	2.0167	1.9266	1.9446	1	30	2.86	3.03
$2^{1}/_{4}$		2.2500	2.1417	2.0516	2.0696	1	25	3.25	3.42
•••	$2^{3}/_{8}$	2.3750	2.2667	2.1766	2.1946	1	20	3.66	3.85
$2^{1}/_{2}$		2.5000	2.3917	2.3016	2.3196	1	16	4.10	4.29
- / 2	2 ⁵ / ₈	2.6250	2.5167	2.4266	2.4446	1	12	4.56	4.76
2 ³ / ₄	- 78	2.7500	2.6417	2.5516	2.5696	1	9	5.04	5.26
	$\frac{1}{2^{7}/8}$	2.8750	2.7667	2.6766	2.6946	1	6	5.55	5.78
3		3.0000	2.8917	2.8016	2.8196	1	3	6.09	6.33
	3 ¹ / ₈	3.1250	3.0167	2.9266	2.9446	1	0	6.64	6.89
3 ¹ / ₄		3.2500	3.1417	3.0516	3.0696	0	58	7.23	7.49
	3 ³ / ₈	3.3750	3.2667	3.1766	3.1946	0	56	7.84	8.11
3 ¹ / ₂		3.5000	3.3917	3.3016	3.3196	0	54	8.47	8.75
	3 ⁵ / ₈	3.6250	3.5167	3.4266	3.4446	0	52	9.12	9.42
3 ³ / ₄		3.7500	3.6417	3.5516	3.5696	0	50	9.81	10.11
	 3 ⁷ / ₈	3.8750	3.7667	3.6766	3.6946	0	48	10.51	10.83
4		4.0000	3.8917	3.8016	3.8196	0	47	11.24	11.57
	4 ¹ / ₈	4.1250	4.0167	3.9266	3.9446	0	47	12.00	12.33
4 ¹ / ₄	4 /8	4.1250	4.0107	4.0516	4.0696	0	44	12.78	13.12
	4 ³ / ₈	4.2300	4.1417	4.0316	4.1946	0	43	13.58	13.94
41/2		4.5000	4.3917	4.3016	4.3196	0	42	14.41	14.78
4 /2	4 ⁵ / ₈	4.6250	4.5517		4.4446	0	40	15.3	
4 ³ / ₄				4.4266		0			15.6
4 /4	4 ⁷ / ₈	4.7500 4.8750	4.6417 4.7667	4.5516 4.6766	4.5696 4.6946	0	39 38	16.1 17.0	16.5 17.5
5	5 ¹ / ₈	5.0000	4.8917	4.8016	4.8196	0	37	18.0	18.4
···		5.1250	5.0167	4.9266	4.9446	0	36	18.9	19.3
5 ¹ / ₄	 _E 3/	5.2500	5.1417	5.0516	5.0696	0	35	19.9	20.3
•••	$5^{3}/_{8}$	5.3750	5.2667	5.1766	5.1946	0	35	20.9	21.3
$5^{1}/_{2}$	-5/	5.5000	5.3917	5.3016	5.3196	0	34	21.9	22.4
•••	5 ⁵ / ₈	5.6250	5.5167	5.4266	5.4446	0	33	23.0	23.4
$5^{3}/_{4}$	• • •	5.7500	5.6417	5.5516	5.5696	0	32	24.0	24.5
	5 ⁷ / ₈	5.8750	5.7667	5.6766	5.6946	0	32	25.1	25.6
6		6.0000	5.8917	5.8016	5.8196	0	31	26.3	26.8

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Standard sizes of the UNC series.

Table 11 Basic Dimensions for 8-Thread Series (8-UN/8-UNR)

Nominal	Size, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at B Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
1 [Note (3)]		1.0000	0.9188	0.8512	0.8647	2	29	0.551	0.606
	$1^{1}/_{16}$	1.0625	0.9813	0.9137	0.9272	2	19	0.636	0.695
11/8	•••	1.1250	1.0438	0.9792	0.9897	2	11	0.728	0.790
•••	$1^{3}/_{16}$	1.1875	1.1063	1.0387	1.0522	2	4	0.825	0.892
11/4		1.2500	1.1688	1.1012	1.1147	1	57	0.929	1.000
- 74	$1^{5}/_{16}$	1.3125	1.2313	1.1637	1.1772	1	51	1.039	1.114
13/8		1.3750	1.2938	1.2262	1.2397	1	46	1.155	1.233
	1 ⁷ / ₁₆	1.4375	1.3563	1.2887	1.3022	1	41	1.277	1.360
11/2		1.5000	1.4188	1.3512	1.3647	1	36	1.405	1.492
- /2	 1 ⁹ / ₁₆	1.5625	1.4100	1.4137	1.4272	1	32	1.405	1.492
15/8		1.6250		1.4137	1.4272			1.54 1.68	1.63
1 /8	1 ¹¹ / ₁₆		1.5438			1	29 25		
• • •	1 /16	1.6875	1.6063	1.5387	1.5522	1	25	1.83	1.93
13/4		1.7500	1.6688	1.6012	1.6147	1	22	1.98	2.08
	$1^{13}/_{16}$	1.8125	1.7313	1.6637	1.6772	1	19	2.14	2.25
17/8	• • •	1.8750	1.7938	1.7262	1.7397	1	16	2.30	2.41
•••	$1^{15}/_{16}$	1.9375	1.8563	1.7887	1.8022	1	14	2.47	2.59
2		2.0000	1.9188	1.8512	1.8647	1	11	2.65	2.77
_	2 ¹ / ₈	2.1250	2.0438	1.9762	1.9897	1	7	3.03	3.15
2 ¹ / ₄	2 /8	2.2500	2.1688	2.1012	2.1147	1	3	3.42	3.56
	$2^{3}/_{8}$	2.3750	2.2938	2.2262	2.2397	1	0	3.85	3.99
$2^{1}/_{2}$		2.5000	2.4188	2.3512	2.3647	0	F 7	4.29	4.44
2 /2	2 ⁵ / ₈			2.4762	2.4897		57 54	4.76	4.92
23/		2.6250	2.5438			0			
$2^{3}/_{4}$	27/	2.7500	2.6688	2.6012	2.6147	0	51	5.26	5.43
•••	2 ⁷ / ₈	2.8750	2.7938	2.7262	2.7397	0	49	5.78	5.95
3		3.0000	2.9188	2.8512	2.8647	0	47	6.32	6.51
	3 ¹ / ₈	3.1250	3.0438	2.9762	2.9897	0	45	6.89	7.08
3 ¹ / ₄	• • •	3.2500	3.1688	3.1012	3.1147	0	43	7.49	7.69
• • •	$3^{3}/_{8}$	3.3750	3.2938	3.2262	3.2397	0	42	8.11	8.31
3 ¹ / ₂		3.5000	3.4188	3.3512	3.3647	0	40	8.75	8.96
	3 ⁵ / ₈	3.6250	3.5438	3.4762	3.4897	0	39	9.42	9.64
3 ³ / ₄		3.7500	3.6688	3.6012	3.6147	0	37	10.11	10.34
• • •	$3^{7}/_{8}$	3.8750	3.7938	3.7262	3.7397	0	36	10.83	11.06
4		4.0000	3.9188	3.8512	3.8647	0	35	11.57	11.81
	4 ¹ / ₈	4.1250	4.0438	3.9762	3.9897	0	34	12.34	12.59
41/4		4.2500	4.1688	4.1012	4.1147	0	33	13.12	13.38
•••	$4^{3}/_{8}$	4.3750	4.2938	4.2262	4.2397	0	32	13.94	14.21
41/2		4.5000	4.4188	4.3512	4.3647	0	31	14.78	15.1
. / 2	4 ⁵ / ₈	4.6250	4.5438	4.4762	4.4897	0	30	15.6	15.9
4 ³ / ₄	4 /8	4.7500	4.6688	4.6012	4.6147	0	29	16.5	16.8
• • • • • • • • • • • • • • • • • • • •	$4^{7}/_{8}$	4.8750	4.7938	4.7262	4.7397	0	29	17.4	17.7
5		5.0000	4.9188	4.8512	4.8647	0	28	18.4	18.7
,	5 ¹ / ₈			4.9762			26 27	19.3	19.7
5 ¹ / ₄		5.1250	5.0438 5.1688	4.9762 5.1012	4.9897 5.1147	0	27 26	20.3	
	 г ³ /	5.2500			5.1147	0			20.7
• • •	5 ³ / ₈	5.3750	5.2938	5.2262	5.2397	0	26	21.3	21.7

Table 11 Basic Dimensions for 8-Thread Series (8-UN/8-UNR) (Cont'd)

Nominal Size, in.		Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at B Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sg in.
Primary	Secondary	D, in.	D ₂ , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
5 ¹ / ₂		5.5000	5.4188	5.3512	5.3647	0	25	22.4	22.7
	5 ⁵ / ₈	5.6250	5.5438	5.4762	5.4897	0	25	23.4	23.8
5 ³ / ₄		5.7500	5.6688	5.6012	5.6147	0	24	24.5	24.9
	5 ⁷ / ₈	5.8750	5.7938	5.7262	5.7397	0	24	25.6	26.0
6		6.0000	5.9188	5.8512	5.8647	0	23	26.8	27.1

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatoray Appendix B, para. B-1.

⁽³⁾ Standard size of the UNC series.

Table 12 Basic Dimensions for 12-Thread Series (12-UN/12-UNR)

Nominal Si	ze, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d_3 , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
9/ ₁₆ [Note (3)]		0.5625	0.5084	0.4633	0.4723	2	59	0.162	0.182
9/ ₁₆ [Note (3)] 5/ ₈		0.6250	0.5709	0.5258	0.5348	2	40	0.210	0.232
	¹¹ / ₁₆	0.6875	0.6334	0.5883	0.5973	2	24	0.264	0.289
3/4		0.7500	0.6959	0.6508	0.6598	2	11	0.323	0.351
	13/ ₁₆	0.8125	0.7584	0.7133	0.7223	2	0	0.390	0.420
7/ ₈	•••	0.8750	0.8209	0.7758	0.7848	1	51	0.462	0.495
	15/ ₁₆	0.9375	0.8834	0.8383	0.8473	1	43	0.540	0.576
1 [N-t- (2)]		1 0000	0.0750	0.0000	0.0000	4	26	0.625	0.662
1 [Note (3)]		1.0000	0.9459	0.9008	0.9098	1	36	0.625	0.663
11/ [Nats (2)]	$1^{1}/_{16}$	1.0625	1.0084	0.9633	0.9723	1	30	0.715	0.756
1½ [Note (3)]	13/	1.1250	1.0709	1.0258	1.0348	1	25	0.812	0.856
• • •	$1^{3}/_{16}$	1.1875	1.1334	1.0883	1.0973	1	20	0.915	0.961
1 ¹ / ₄ [Note (3)]		1.2500	1.1959	1.1508	1.1598	1	16	1.024	1.073
	$1^{5}/_{16}$	1.3125	1.2584	1.2133	1.2223	1	12	1.139	1.191
1 ³ / ₈ [Note (3)]		1.3750	1.3209	1.2758	1.2848	1	9	1.260	1.315
• • •	$1^{7}/_{16}$	1.4375	1.3834	1.3383	1.3473	1	6	1.388	1.445
$1^{1}/_{2}$ [Note (3)]		1.5000	1.4459	1.4008	1.4098	1	3	1.52	1.58
	$1^{9}/_{16}$	1.5625	1.5084	1.4633	1.4723	1	0	1.66	1.72
L ⁵ / ₈		1.6250	1.5709	1.5258	1.5348	0	58	1.81	1.87
	1 ¹¹ / ₁₆	1.6875	1.6334	1.5883	1.5973	0	56	1.96	2.03
13/4		1.7500	1.6959	1.6508	1.6598	0	54	2.12	2.19
	$1^{13}/_{16}$	1.8125	1.7584	1.7133	1.7223	0	52	2.28	2.35
1 ⁷ / ₈		1.8750	1.8209	1.7758	1.7848	0	50	2.45	2.53
• • • •	$1^{15}/_{16}$	1.9375	1.8834	1.8383	1.8473	0	48	2.63	2.71
2		2.0000	1.9459	1.9008	1.9098	0	47	2.81	2.89
	$2^{1}/_{8}$	2.1250	2.0709	2.0258	2.0348	0	44	3.19	3.28
$2^{1}/_{4}$	2 /8	2.2500	2.1959	2.1508	2.1598	0	42	3.60	3.69
	$\frac{2^{3}}{8}$	2.3750	2.3209	2.2758	2.2848	0	39	4.04	4.13
51 7		2.5000	2.4459	2 (000	2 (000	•	27		
$2^{1}/_{2}$	25/	2.5000		2.4008	2.4098	0	37	4.49	4.60
$2^{3}/_{4}$	$2^{5}/_{8}$	2.6250 2.7500	2.5709 2.6959	2.5258 2.6508	2.5348	0 0	35 34	4.97	5.08 5.59
	2 ⁷ / ₈	2.7500	2.8209	2.7758	2.6598 2.7848	0	32	5.48 6.01	6.13
3		3.0000	2.9459	2.9008	2.9098	0	31	6.57	6.69
	$3^{1}/_{8}$	3.1250	3.0709	3.0258	3.0348	0	30	7.15	7.28
31/4	-3/	3.2500	3.1959	3.1508	3.1598	0	29	7.75	7.89
• • •	33/8	3.3750	3.3209	3.2758	3.2848	0	27	8.38	8.52
$3^{1}/_{2}$		3.5000	3.4459	3.4008	3.4098	0	26	9.03	9.18
	3 ⁵ / ₈	3.6250	3.5709	3.5258	3.5348	0	26	9.71	9.86
3 ³ / ₄		3.7500	3.6959	3.6508	3.6598	0	25	10.42	10.57
•••	$3^{7}/_{8}$	3.8750	3.8209	3.7758	3.7848	0	24	11.14	11.30
4		4.0000	3.9459	3.9008	3.9098	0	23	11.90	12.06
	$4^{1}/_{8}$	4.1250	4.0709	4.0258	4.0348	0	22	12.67	12.84
4 ¹ / ₄	4 /8	4.1250	4.0709	4.1508	4.1598	0	22	13.47	13.65
4.									

Table 12 Basic Dimensions for 12-Thread Series (12-UN/12-UNR) (Cont'd)

Nominal	Nominal Size, in. Primary Secondary		Basic Pitch Diameter,	Pitch External, I	Basic Minor Diameter Internal,	Lead Angle at Basic Pitch Diameter, λ		Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	Diameter, <i>D</i> , in.	D_2 , in.	· · · · · · · · · · · · · · · · · · ·		deg	Min.	[Note (1)]	[Notes (1), (2)]
4 ¹ / ₂		4.5000	4.4459	4.4008	4.4098	0	21	15.1	15.3
•••	45/8	4.6250	4.5709	4.5258	4.5348	0	20	16.0	16.2
$4^{3}/_{4}$		4.7500	4.6959	4.6508	4.6598	0	19	16.9	17.1
•••	4 ⁷ / ₈	4.8750	4.8209	4.7758	4.7848	0	19	17.8	18.0
5		5.0000	4.9459	4.9008	4.9098	0	18	18.8	19.0
	5 ¹ / ₈	5.1250	5.0709	5.0258	5.0348	0	18	19.8	20.0
5 ¹ / ₄		5.2500	5.1959	5.1508	5.1598	0	18	20.8	21.0
	5 ³ / ₈	5.3750	5.3209	5.2758	5.2848	0	17	21.8	22.0
$5^{1}/_{2}$		5.5000	5.4459	5.4008	5.4098	0	17	22.8	23.1
	5 ⁵ / ₈	5.6250	5.5709	5.5258	5.5348	0	16	23.9	24.1
$5^{3}/_{4}$	•••	5.7500	5.6959	5.6508	5.6598	0	16	25.0	25.2
	5 ⁷ / ₈	5.8750	5.8209	5.7758	5.7848	0	16	26.1	26.4
6	•••	6.0000	5.9459	5.9008	5.9098	0	15	27.3	27.5

- (1) For information only.
- (2) See formulas in Nonmandatory Appendix B, para. B-1.
- (3) Standard sizes of the UNC or UNF series.

Table 13 Basic Dimensions for 16-Thread Series (16-UN/16-UNR)

Nominal S	Size, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d_3 , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)
³ / ₈ [Note (3)]		0.3750	0.3344	0.3005	0.3073	3	24	00678	0.0775
7/ ₁₆ 1/ ₂ 9/ ₁₆ 5/ ₈		0.4375	0.3969	0.3630	0.3698	2	52	0.0997	0.1114
1/2		0.5000	0.4594	0.4255	0.4323	2	29	0.1378	0.151
9/16		0.5625	0.5219	0.4880	0.4948	2	11	0.182	0.198
3/8		0.6250	0.5844	0.5505	0.5573	1	57	0.232	0.250
• • •	11/16	0.6875	0.6469	0.6130	0.6198	1	46	0.289	0.308
³ / ₄ [Note (3)]		0.7500	0.7094	0.6755	0.6823	1	36	0.351	0.373
	¹³ / ₁₆	0.8125	0.7719	0.7380	0.7448	1	29	0.420	0.444
⁷ / ₈	 15/ ₁₆	0.8750	0.8344	0.8005	0.8073	1	22	0.495	0.521
• • •	15/16	0.9375	0.8969	0.8630	0.8698	1	16	0.576	0.604
1		1.0000	0.9594	0.9255	0.9323	1	11	0.663	0.693
	$1^{1}/_{16}$	1.0625	1.0219	0.9880	0.9948	1	7	0.756	0.788
$1^{1}/_{8}$	$1^{3}/_{16}$	1.1250	1.0844	1.0505	1.0573	1	3	0.856	0.889
• • •	13/16	1.1875	1.1469	1.1130	1.1198	1	0	0.961	0.997
11/4		1.2500	1.2094	1.1755	1.1823	0	57	1.073	1.111
	$1^{5}/_{16}$	1.3125	1.2719	1.2380	1.2448	0	54	1.191	1.230
$1^{3}/_{8}$	•_••	1.3750	1.3344	1.3005	1.3073	0	51	1.315	1.356
• • •	$1^{7}/_{16}$	1.4375	1.3969	1.3630	1.3698	0	49	1.445	1.488
11/2		1.5000	1.4594	1.4255	1.4323	0	47	1.58	1.63
	$1^{9}/_{16}$	1.5625	1.5219	1.4880	1.4948	0	45	1.72	1.77
15/8	• • •	1.6250	1.5844	1.5505	1.5573	0	43	1.87	1.92
	$1^{11}/_{16}$	1.6875	1.6469	1.6130	1.6198	0	42	2.03	2.08
13/4		1.7500	1.7094	1.6755	1.6823	0	40	2.19	2.24
	$1^{13}/_{16}$	1.8125	1.7719	1.7380	1.7448	0	39	2.35	2.41
17/8		1.8750	1.8344	1.8005	1.8073	0	37	2.53	2.58
• • •	$1^{15}/_{16}$	1.9375	1.8969	1.8630	1.8698	0	36	2.71	2.77
2		2.0000	1.9594	1.9255	1.9323	0	35	2.89	2.95
	2 ¹ / ₈	2.1250	2.0844	2.0505	2.0573	0	33	3.28	3.35
$2^{1}/_{4}$	• • •	2.2500	2.2094	2.1755	2.1823	0	31	3.69	3.76
• • •	23/8	2.3750	2.3344	2.3005	2.3073	0	29	4.13	4.21
$2^{1}/_{2}$		2.5000	2.4594	2.4255	2.4323	0	28	4.60	4.67
	$2^{5}/_{8}$	2.6250	2.5844	2.5505	2.5573	0	26	5.08	5.16
$2^{3}/_{4}$		2.7500	2.7094	2.6755	2.6823	0	25	5.59	5.68
	$2^{7}/_{8}$	2.8750	2.8344	2.8005	2.8073	0	24	6.13	6.22
3		3.0000	2.9594	2.9255	2.9323	0	23	6.69	6.78
	$3^{1}/_{8}$	3.1250	3.0844	3.0505	3.0573	0	22	7.28	7.37
3 ¹ / ₄		3.2500	3.2094	3.1755	3.1823	0	21	7.89	7.99
• • •	$3^{3}/_{8}$	3.3750	3.3344	3.3005	3.3073	0	21	8.52	8.63
3 ¹ / ₂		3.5000	3.4594	3.4255	3.4323	0	20	9.18	9.29
	3 ⁵ / ₈	3.6250	3.5844	3.5505	3.5573	0	19	9.86	9.98
3 ³ / ₄	• • •	3.7500	3.7094	3.6755	3.6823	0	18	10.57	10.69
• • •	$3^{7}/_{8}$	3.8750	3.8344	3.8005	3.8073	0	18	11.30	11.43

Table 13 Basic Dimensions for 16-Thread Series (16-UN/16-UNR) (Cont'd)

Nominal	Size, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
4		4.0000	3.9594	3.9255	3.9323	0	17	12.06	12.19
	4 ¹ / ₈	4.1250	4.0844	4.0505	4.0573	0	17	12.84	12.97
41/4		4.2500	4.2094	4.1755	4.1823	0	16	13.65	13.78
• • •	$4^{3}/_{8}$	4.3750	4.3344	4.3005	4.3073	0	16	14.48	14.62
41/2		4.5000	4.4594	4.4255	4.4323	0	15	15.34	15.5
•••	4 ⁵ / ₈	4.6250	4.5844	4.5505	4.5573	0	15	16.2	16.4
$4^{3}/_{4}$	•••	4.7500	4.7094	4.6755	4.6823	0	15	17.1	17.3
•••	$4^{7}/_{8}$	4.8750	4.8344	4.8005	4.8073	0	14	18.0	18.2
5		5.0000	4.9594	4.9255	4.9323	0	14	19.0	19.2
	5 ¹ / ₈	5.1250	5.0844	5.0505	5.0573	0	13	20.0	20.1
$5^{1}/_{4}$		5.2500	5.2094	5.1755	5.1823	0	13	21.0	21.1
•••	5 ³ / ₈	5.3750	5.3344	5.3005	5.3073	0	13	22.0	22.2
5 ¹ / ₂		5.5000	5.4594	5.4255	5.4323	0	13	23.1	23.2
•••	5 ⁵ / ₈	5.6250	5.5844	5.5505	5.5573	0	12	24.1	24.3
$5^{3}/_{4}$		5.7500	5.7094	5.6755	5.6823	0	12	25.2	25.4
	5 ⁷ / ₈	5.8750	5.8344	5.8005	5.8073	0	12	26.4	26.5
6		6.0000	5.9594	5.9255	5.9323	0	11	27.5	27.7

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Standard sizes of the UNC or UNF series.

Table 14 Basic Dimensions for 20-Thread Series (20-UN/20-UNR)

Nominal	Size, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at E Pi	Angle Basic tch eter, λ	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
1/4 [Note (3)] 5/16 3/8 7/16 [Note (3)]		0.2500	0.2175	0.1905	0.1959	4	11	0.0269	0.0318
5/16		0.3125	0.2800	0.2530	0.2584	3	15	0.0481	0.0547
3/8		0.3750	0.3425	0.3155	0.3209	2	40	0.0755	0.0836
⁷ / ₁₆ [Note (3)]	• • •	0.4375	0.4050	0.3780	0.3834	2	15	0.1090	0.1187
¹ / ₂ [Note (3)]		0.5000	0.4675	0.4405	0.4459	1	57	0.1486	0.160
9/ ₁₆ 5/ ₈		0.5625	0.5300	0.5030	0.5084	1	43	0.194	0.207
5/8		0.6250	0.5925	0.5655	0.5709	1	32	0.246	0.261
	¹¹ / ₁₆	0.6875	0.6550	0.6280	0.6334	1	24	0.304	0.320
³ / ₄ [Note (3)]		0.7500	0.7175	0.6905	0.6959	1	16	0.369	0.386
,4 [¹³ / ₁₆	0.8125	0.7800	0.7530	0.7584	1	10	0.439	0.458
	[Note (3)]	0.0123	01, 000	0., 330	01, 50 1	-		0.155	0.150
⁷ / ₈ [Note (3)]		0.8750	0.8425	0.8155	0.8209	1	5	0.515	0.536
	¹⁵ / ₁₆	0.9375	0.9050	0.8780	0.8834	1	0	0.598	0.620
	[Note (3)]								
1 [Note (3)]		1.0000	0.9675	0.9405	0.9459	0	57	0.687	0.711
	$1^{1}/_{16}$	1.0625	1.0300	1.0030	1.0084	0	53	0.782	0.807
$1^{1}/_{8}$		1.1250	1.0925	1.0655	1.0709	0	50	0.882	0.910
• • •	$1^{3}/_{16}$	1.1875	1.1550	1.1280	1.1334	0	47	0.990	1.018
11/4		1.2500	1.2175	1.1905	1.1959	0	45	1.103	1.133
	$1^{5}/_{16}$	1.3125	1.2800	1.2530	1.2584	0	43	1.222	1.254
$1^{3}/_{8}$		1.3750	1.3425	1.3155	1.3209	0	41	1.348	1.382
• • •	⁷ / ₁₆	1.4375	1.4050	1.3780	1.3834	0	39	1.479	1.51
$1^{1}/_{2}$		1.5000	1.4675	1.4405	1.4459	0	37	1.62	1.65
,,,	$1^{9}/_{16}$	1.5625	1.5300	1.5030	1.5084	0	36	1.76	1.80
15/8	• • •	1.6250	1.5925	1.5655	1.5709	0	34	1.91	1.95
	$1^{11}/_{16}$	1.6875	1.6550	1.6280	1.6334	0	33	2.07	2.11
13/4		1.7500	1.7175	1.6905	1.6959	0	32	2.23	2.27
- / 4	$1^{13}/_{16}$	1.8125	1.7800	1.7530	1.7584	0	31	2.40	2.44
17/8		1.8750	1.8425	1.8155	1.8209	0	30	2.57	2.62
•••	$1^{15}/_{16}$	1.9375	1.9050	1.8780	1.8834	0	29	2.75	2.80
2		2.0000	1.9675	1.9405	1.9459	0	28	2.94	2.99
	2 ¹ / ₈	2.1250	2.0925	2.0655	2.0709	0	26	3.33	3.39
$2^{1}/_{4}$	- /8	2.2500	2.2175	2.1905	2.1959	0	25	3.75	3.81
•••	$2^{3}/_{8}$	2.3750	2.3425	2.3155	2.3209	0	23	4.19	4.25
$2^{1}/_{2}$		2.5000	2.4675	2.4405	2.4459	0	22	4.66	4.72
- / 2	2 ⁵ / ₈	2.6250	2.5925	2.5655	2.5709	0	21	5.15	5.21
23/4		2.7500	2.7175	2.6905	2.6959.	0	20	5.66	5.73
•••	$2^{7}/_{8}$	2.8750	2.8425	2.8155	2.8209	0	19	6.20	6.27
3	•••	3.0000	2.9675	2.9405	2.9459	0	18	6.77	6.84

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Standard sizes of the UNC, UNF, or UNEF series.

Table 15 Basic Dimensions for 28-Thread Series (28-UN/28-UNR)

Nomina	al Size, in.	Basic Major _ Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal	at E Pi Dian	Angle Basic tch neter, A	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	<i>D</i> , in.	D_2 , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
	12 (0.216) [Note (3)]	0.2160	0.1928	0.1734	0.1773	3	22	0.0226	0.0258
¹ / ₄ [Note (3)]		0.2500	0.2268	0.2074	0.2113	2	52	0.0326	0.0364
5/16 3/8		0.3125	0.2893	0.2699	0.2738	2	15	0.0556	0.0606
3/8		0.3750	0.3518	0.3324	0.3363	1	51	0.0848	0.0909
⁷ / ₁₆ [Note (3)]	• • •	0.4375	0.4143	0.3949	0.3988	1	34	0.1201	0.1274
¹ / ₂ [Note (3)]		0.5000	0.4768	0.4574	0.4613	1	22	0.162	0.170
9/16		0.5625	0.5393	0.5199	0.5238	1	12	0.209	0.219
9/16 5/8		0.6250	0.6018	0.5824	0.5863	1	5	0.263	0.274
• • •	11/16	0.6875	0.6643	0.6449	0.6488	0	59	0.323	0.335
3/4		0.7500	0.7268	0.7074	0.7113	0	54	0.389	0.402
	¹³ / ₁₆	0.8125	0.7893	0.7699	0.7738	0	50	0.461	0.475
7/8		0.8750	0.8518	0.8324	0.8363	0	46	0.539	0.554
	¹⁵ / ₁₆	0.9375	0.9143	0.8949	0.8988	0	43	0.624	0.640
1	.,.	1.0000	0.9768	0.9574	0.9613	0	40	0.714	0.732
	$1^{1}/_{16}$	1.0625	1.0393	1.0199	1.0238	0	38	0.811	0.830
$1^{1}/_{8}$		1.1250	1.1018	1.0824	1.0863	0	35	0.914	0.933
• • •	$1^{3}/_{16}$	1.1875	1.1643	1.1449	1.1488	0	34	1.023	1.044
11/4		1.2500	1.2268	1.2074	1.2113	0	32	1.138	1.160
	$1^{5}/_{16}$	1.3125	1.2893	1.2699	1.2738	0	30	1.259	1.282
$1^{3}/_{8}$		1.3750	1.3518	1.3324	1.3363	0	29	1.386	1.411
	1 ⁷ / ₁₆	1.4375	1.4143	1.3949	1.3988	0	28	1.52	1.55
$1^{1}/_{2}$		1.5000	1.4768	1.4574	1.4613	0	26	1.66	1.69

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Standard sizes of the UNF or UNEF series.

Table 16 Basic Dimensions for 32-Thread Series (32-UN/32-UNR)

Nominal Si	ize, in.	Basic Major Diameter,	Basic Pitch Diameter,	UNR Design Minor Diameter External, d ₃ , in.	Basic Minor Diameter Internal,	at E Pi Dian	Angle Basic tch neter,	Section at Minor Diameter at $D - 2h_b$, sq in.	Tensile Stress Area, sq in.
Primary	Secondary	D, in.	<i>D</i> ₂ , in.	(Ref.)	D_1 , in.	deg	Min.	[Note (1)]	[Notes (1), (2)]
6 (0.138) [Note (3)]		0.1380	0.1177	0.1008	0.1042	4	50	0.00745	0.00909
8 (0.164) [Note (3)]		0.1640	0.1437	0.1268	0.1302	3	58	0.01196	0.0140
10 (0.190) [Note (3)]		0.1900	0.1697	0.1528	0.1562	3	21	0.01750	0.0200
	12 (0.216) [Note (3)]	0.2160	0.1957	0.1788	0.1822	2	55	0.0242	0.0270
¹ / ₄ [Note (3)]		0.2500	0.2297	0.2128	0.2162	2	29	0.0344	0.0379
⁵ / ₁₆ [Note (3)]		0.3125	0.2922	0.2753	0.2787	1	57	0.0581	0.0625
³ / ₈ [Note (3)]		0.3750	0.3547	0.3378	0.3412	1	36	0.0878	0.0932
⁷ / ₁₆		0.4375	0.4172	0.4003	0.4037	1	22	0.1237	0.1301
1/2		0.5000	0.4797	0.4628	0.4662	1	11	0.166	0.173
9/16 5/8		0.5625	0.5422	0.5253	0.5287	1	3	0.214	0.222
5/8		0.6250	0.6047	0.5878	0.5912	0	57	0.268	0.278
•••	11/16	0.6875	0.6672	0.6503	0.6537	0	51	0.329	0.339
3/4		0.7500	0.7297	0.7128	0.7162	0	47	0.395	0.407
	¹³ / ₁₆	0.8125	0.7922	0.7753	0.7787	0	43	0.468	0.480
⁷ / ₈		0.8750	0.8547	0.8378	0.8412	0	40	0.547	0.560
	¹⁵ / ₁₆	0.9375	0.9172	0.9003	0.9037	0	37	0.632	0.646
1		1.0000	0.9797	0.9628	0.9662	0	35	0.723	0.738

⁽¹⁾ For information only.

⁽²⁾ See formulas in Nonmandatory Appendix B, para. B-1.

⁽³⁾ Standard sizes of the UNC, UNF, or UNEF series.

Table 17A Outline Guide for Determining Limits of Size of External Threads

Thread	Major Dia	ameter, d	Pitch Diam	eter, d ₂	
Class	Max.	Min.	Max.	Min.	Minor Diameter, d_1
1A	Nominal size minus allowance	Maximum, minus tolerance	Maximum major diameter minus h_b (Table 5, col. 13)	Maximum, minus tolerance	See paras. 8.3.1(e) and (f). Established by crest of new tool and minimum minor diameter of GO thread gage.
2A	Nominal size minus allowance	Maximum, minus tolerance	Maximum major diameter minus h_b (Table 5, col. 13)	Maximum, minus tolerance	See paras. 8.3.1(e) and (f). Established by crest of new tool and minimum minor diameter of GO thread gage.
3A	Nominal size	Maximum, minus tolerance	Maximum major diameter minus h_b (Table 5, col. 13)	Maximum, minus tolerance	See paras. 8.3.1(e) and (f). Established by crest of new tool and minimum minor diameter of GO thread gage.

Table 17B Outline Guide for Determining Limits of Size of Internal Threads

Thread	Minor Diamet	er, D ₁	Pitch Diamet	er, D ₂	
Class	Min.	Max.	Min.	Max.	Major Diameter, D
1B	Nominal size minus $2h_n$ (Table 5, col. 15)	Minimum, plus tolerance	Nominal size minus h_b (Table 5, col. 13)	Minimum, plus tolerance	See paras. 8.3.2(a) and (b). Established by crest of new tool and maximum major diameter of GO thread gage.
2B	Nominal size minus 2 <i>h</i> _n (Table 5, col. 15)	Minimum, plus tolerance	Nominal size minus h_b (Table 5, col. 13)	Minimum, plus tolerance	See paras. 8.3.2(a) and (b). Established by crest of new tool and maximum major diameter of GO thread gage.
3B	Nominal size minus 2 <i>h</i> _n (Table 5, col. 15)	Minimum, plus tolerance	Nominal size minus h_b (Table 5, col. 13)	Minimum, plus tolerance	See paras. 8.3.2(a) and (b). Established by crest of new tool and maximum major diameter of GO thread gage.

Table 18A Examples of External Screw Threads

	Thread Size = $\frac{1}{2}$ – 28 or 0.5000 – 28 UNEF-2A	
Characteristic Description	Example of Size Calculation	Additional Information
(1) Maximum external major diameter (d max.)= Basic major diameter (d bsc) – allowance (es)	$d \max = d \operatorname{bsc} - es$ $d \operatorname{bsc} = 0.5000$	This is the final value of the basic maior diameter which
		is rounded to four decimal places.
	$es = 0.300 (Td_2 \text{ for Class 2A})$	For the Class 2A pitch diameter tolerance, see Table
	es = 0.300 (0.003668)	The six decimal place value for Class 2A pitch diameter tolerance (7d ₂) is used in this calculation
	es = 0.001100	This figure is rounded to four decimal places to obtain the final value of es.
	es = 0.0011 d max. = 0.5000 - 0.0011 d max. = 0.4989	: : :
(2) Minimum external major diameter (<i>d</i> min.) = Maximum external major diameter (<i>d</i> max.) – major diameter tolerance (<i>Td</i>)	$d \min. = d \max Td$ $Td = 0.060 \sqrt[3]{p^2}$: :
	$7d = 0.060 \sqrt[3]{(0.03571429)^2}$	All thread calculations are to be performed using (<i>P</i>) rounded to eight decimal
	$Td = 0.060 \sqrt[3]{0.001276}$ $Td = 0.060 (0.108463)$ $Td = 0.006508$	places This figure is rounded to four decimal places to obtain the final value of <i>Td</i> .
	Td = 0.0065 d min. = 0.4989 - 0.0065 d min. = 0.4924	

Έ
₹
5
Ŭ
5
Ö
ğ
Ξ
/ Threads (Cont'd)
>
ē
๖
S
of External Screw
Ĕ
ē
×
ш
₹
Ś
نة
₫
Ξ
Examples
Ш
Table 18A
18
ď
₹
<u>ज</u>
-

Table 18A	A Examples of External Screw Threads (Cont'd)	
	Thread Size = $\frac{1}{2}$ - 28 or 0.5000 - 28 UNEF-2A	
Characteristic Description	Example of Size Calculation	Additional Information
(3) Maximum external pitch diameter (d_2 max.) = Maximum external major diameter (d max.) – twice the external thread addendum ($2h_{as}$)	d ₂ max. = d max. – 2h _{as} 2h _{as} = 0.64951905 <i>P</i> 2h _{as} = 0.64951905 (0.03571429)	All thread calculations are to be performed using (P) rounded to eight decimal
	$2h_{as} = 0.023197$ d_2 max. = 0.4989 - 0.023197 d_2 max. = 0.475703	places
	d_2 max. = 0.4757	:
(4) Minimum external pitch diameter (d_2 min.)	d_2 min. = d_2 max. – Td_2	:
= maximum external plich diameter (a_2 max.) – external pitch diameter tolerance (Ta_2)	$Id_2 = 0.0015 \sqrt[3]{d \operatorname{bsc}} + 0.0015 \sqrt{IE} + 0.015 \sqrt[3]{P^2}$	LE (length of engagement) required in this example, is
	$Id_2 = 0.0015\sqrt[3]{0.5000} + 0.0015\sqrt{9(0.03571429)} + 0.015\sqrt[3]{(0.03571429)^2}$	for LE applications for other thread series.
	$Td_2 = 0.0015\sqrt[3]{0.5000} + 0.0015\sqrt{0.321429} + 0.015\sqrt[3]{0.001276}$:
	$Td_2 = (0.0015) (0.793701) + (0.0015) (0.566947) + (0.015) (0.108463)$ $Td_2 = 0.001191 + 0.000850 + 0.001627$ $Td_2 = 0.003668$	This figure is rounded to six decimal places to obtain the final value of the external pitch diameter tolerance
	d_2 min. = $0.4757 - 0.003668$ d_2 min. = 0.472032	Td_2 . This figure is rounded to four decimal places to obtain the final value of d_2 min.

 d_2 min. = 0.4720

Table 18A Examples of External Inch Screw Threads, (Cont'd)

	Thread Size - 1/ - 28 or 0 5000 - 28 INFE.20	
Characteristic Description	Example of Size Calculation	Additional Information
(5) Maximum external UNR minor diameter (d_3 max.) = Maximum external major diameter (d max.) - double height of external UNR thread ($2h_3$)	$d_3 \max. = d \max 2h_s$ $2h_s = 1.19078493P$ $2h_s = 1.19078493 (0.03571429)$ $2h_s = 0.042528$ $d_3 \max. = 0.4989 - 0.042528$ $d_3 \max. = 0.456372$	All thread calculations are to be performed using (<i>P</i>) rounded to eight decimal places. This figure is rounded to four decimal places to obtain the final value of <i>d</i> ₃ max.
 (6) Maximum external UN minor diameter (d₁ max.) = Maximum external major diameter (d max.) – double height of external UN thread (2h₃) 	$d_1 \max. = d \max 2h_s$ $2h_s = 1.08253175P$ $2h_s = 0.03571429$ $2h_s = 0.038662$ $d_1 \max. = 0.460238$	For UN threads, $2h_s = 2h_n$ All thread calculations are to be performed using (P) rounded to eight decimal places. This figure is rounded to four decimal places to obtain the final value of d_1 max.

GENERAL NOTES: (a) All dimensions expressed in inches for calculations in this table. (b) P=1/n=1/28=0.03571429.

 D_1 max. = 0.470

Table 18B Examples of Internal Screw Threads

lable	lable 18B Examples of Internal Screw Infeads	
	Thread Size = 1/2 - 28 or 0.5000 - 28 UNEF-2B	
Characteristic Description	Example of Size Calculation	Additional Information
(1) Minimum internal minor diameter (D_1 min.) = Basic major diameter (D bsc) – double height of internal thread $(2h_n)$	D_1 min. = D bsc - $2h_n$ $2h_n = 1.08253175P$ $2h_n = 1.08253175$ (0.03571429)	 All thread calculations are to be performed
	$2h_n = 0.038662$ D_1 min. = 0.5000 - 0.038662 D_1 min. = 0.461338	
	<i>D</i> , min. = 0.461	places to obtain the final value of D_1 min. Other sizes and classes are expressed in a four place decimal. See para. 8.3.2(e).
(2) Maximum internal minor diameter (D_1 max.) = Minimum internal minor diameter (D_1 min.) rounded to six	D_1 max. = D_1 min. (to six decimal places) + TD_1 TD_1 = 0.25 P – 0.4 P ²	See para. 5.8.2(c) for limitations on use of this formula.
decimal places + internal minor diameter tolerance (D_1)	$TD_1 = 0.25 (0.03571429) - 0.4 (0.03571429)^2$	All thread calculations are to be performed
	$TD_1 = 0.25 (0.03571429) - 0.4 (0.001276)$ $TD_1 = 0.008929 - 0.000510$	using (r) rounded to eight decimal places.
	$T_{D1} = 0.008419$ $T_{D1} = 0.0084$	This figure is rounded to four decimal places
	D_1 max. = 0.461338 + 0.0084 D_1 max. = 0.469757	For the Class 2B thread used in this example, this figure is rounded to three decimal
		places to obtain the final value of D_1 max. Other sizes and classes are expressed in a four place decimal. See para. 8.3.2(e).

Table 18B Examples of Internal Screw Threads (Cont'd)

	דרייין דייין אין אין אין אין אין דרייין דריייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דריייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דריייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דריייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דריייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דרייין דריייייין דריייין דרייין דרייין דריייין דרייין דרייין דרייין דרייין ד	
E	Inread Size = $7/2 - 28$ or 0.5000 - 28 UNET-2B	
Characteristic Description	Example of Size Calculation	Additional Information
(3) Minimum internal pitch diameter (D_2 min.) = Basic major diameter (D bsc) – twice the external thread addendum (h_b)	D_2 min. = D bsc - h_b $h_b = 0.64951905P$ $h_b = 0.64951905$ (0.03571429) $h_b = 0.023197$ D_2 min. = $0.5000 - 0.023197$ D_2 min. = 0.476803	All thread calculations are to be performed using (P) rounded to eight decimal places This figure is rounded to four decimal places to obtain the final value of D_2 min.
(4) Maximum internal pitch diameter (D_2 max.) = Minimum internal pitch diameter (D_2 min.) + internal pitch diameter tolerance (TD_2)	D_2 max. = D_2 min. + TD_2 TD_2 = 1.300 (Td_2 for Class 2A) TD_2 = 0.004768 TD_2 = 0.0048 D_2 max. = 0.4768 + 0.0048 D_2 max. = 0.4768 + 0.0048	The constant 1.300 is for this Class 2B example and will be different for Classes 1B and 3B. See para. 5.8.2. For the Td_2 Class 2A pitch diameter tolerance, see Table 18A, (4). The six place decimal place value is used. This figure is rounded to four decimal places to obtain the final value of TD_2 .
(5) Minimum internal major diameter (<i>D</i> min.) = Basic major diameter (<i>D</i> bsc)	D min. = D bsc D bsc = 0.5000 D min. = 0.5000	: : :

GENERAL NOTES: (a) All dimensions expressed in inches for calculations in this table. (b) P=1/n=1/28=0.03571429.

Table 19 Allowable Variation in 30 deg Basic Half Angle of External and Internal Screw Threads

	in Hal	Variation f Angle nread	
Threads/in.	±deg	Min.	
80	3	00	
72	2	45	
64	2	30	
56	2	15	
48	2	00	
44	1	50	
40	1	45	
36	1	35	
32	1	30	
28	1	20	
27	1	20	
24	1	15	
20	1	10	
18	1	05	
16	1	00	
14	0	55	
13	0	55	
12	0	50	
111/2	0	50	
11	0	50	
10	0	50	
9	0	50	
8	0	45	
7	0	45	
6	0	40	
5	0	40	
4 ¹ / ₂	0	40	
4	0	40	

GENERAL NOTE: See paras. 9.1.3 through 9.1.6 for applicability.

Table 20 General Symbols (See Fig. 6)

Symbol Dimension Remarks d Major diameter, external thread D Major diameter, internal thread D_3 Major diameter, rounded root, internal thread d_2 Pitch diameter, external thread Pitch diameter, internal thread D_2 d_1 Minor diameter, external thread Minor diameter, rounded root, d_3 external thread D_1 Minor diameter, internal thread Pitch $n = {}^{1}/P$ Number of threads per unit of length (per inch) $N = {}^{1}/L$ Number of turns per unit of length (per inch) Height of fundamental triangle Н Thread height (or depth) h h_a Addendum h_d Dedendum h_e Depth of thread engagement h_s Height of UN or UNR external thread Height of UN internal thread h_n Addendum of external thread has H_b Twice the external thread addendum Half angle of symmetrical thread α Angle between leading flank α_1 of thread and normal to axis of thread Angle between following α_2 flank of thread and normal to axis of thread $\tan \lambda = \frac{L}{\pi (d_2 \text{ or } D_2)}$ λ Lead angle Radius of rounding at: crest of external thread r_{cs} root of external thread r_{rs} crest of internal thread R_{cn} root of internal thread R_{rn} Radial distance from apex of fundamental triangle to: rounded crest of external thread Scs rounded root of external thread $s_{\rm rs}$ rounded crest of internal thread S_{cn} rounded root of internal thread S_{rn} Distance from apex of fundamental triangle to: flat at crest of external thread f_{cs}

Table 20 General Symbols (See Fig. 6) (Cont'd)

	C 20 General Symbols (See	
Symbo	Dimension	Remarks
f_{rs} f_{cn} f_{m}	flat at root of external thread flat at crest of internal thread flat at root of internal thread	
F F C S F C T C T T T T T T T T T T T T T T T T	Width of: flat (general) flat at crest of external thread flat at root of external thread flat at crest of internal thread flat at root of internal thread	
es	Allowance at major, pitch, and minor diameters of external thread	
EI	Allowance at major, pitch, and minor diameters of internal thread	
L_{ts}	Length of complete external thread	
L_{tn}	Length of complete internal thread, including chamfer	
LE	Length of thread engagement	
W	Diameter of measuring wires	
M_w	Measurement over wires	
C	Correction to measurement over best size wires to give pitch diameter	$d_2 \text{ or } D_2 = M_w - C - c$ $C = W (1 + \csc \alpha) - (\cot \alpha)/2n$
λ' c	Wire angle Wire angle correction for large lead angles	See FED-STD-H28/6
Prefix Symbo with 2		Examples: Variation in pitch ΔPi variation in half angle, Δ α_1 or $\Delta \alpha_2$
$\Delta d_2 \alpha$, $\Delta D_2 \alpha$	Pitch diameter ε equivalent of variation in flank angles	
$\Delta d_2 \lambda$, $\Delta D_2 \lambda$	Pitch diameter equivalent of variation in pitch (lead)	

GENERAL NOTE: Refer to ASME B1.7 for latest symbol identification. Greek alphabet is below.

4		A I I	A.T		NI
A , α	=	Alpha	N , ν	=	NU
Β, β	=	Beta	Ξ, ξ	=	Xi
Γ , γ	=	Gamma	O, o	=	Omicron
Δ , δ	=	Delta	П, т	=	Pi
Ε, ε	=	Epsilon	P , ρ	=	Rho
Ζ, ζ	=	Zeta	Σ, σ	=	Sigma
Н, η	=	Eta	Τ, τ	=	Tau
Θ , θ	=	Theta	Υ, υ	=	Upsilon
Ι, ι	=	lota	Φ, φ	=	Phi
К, к	=	Карра	Χ, χ	=	Chi
Λ , λ	=	Lambda	Ψ, ψ	=	Psi
M , μ	=	Mu	Ω , ω	=	Omega

NONMANDATORY APPENDIX A TERMINOLOGY AND IDENTIFICATION OF UNIFIED INCH SCREW THREADS

A-1 TERMINOLOGY

A-2 IDENTIFICATION

All terms relating to screw threads used in this Standard are defined in ASME B1.7.

The various unified screw threads covered in B1 standards are compared in Fig. A-1 and Table A-1.

Fig. A-1 Identification of 60-deg Inch Screw Threads Within the Scope of ASME B1 Committee

ASME B1.1-2003 NONMANDATORY APPENDIX A

Table A-1 Identification of 60-deg Inch Screw Threads Within the Scope of ASME B1 Committee

Thread Identification	UN Threads, Internal and External	UNR Threads, External Only	UNJ Threads, Internal and External
ASME standards documents	B1.1, Unified Inch Screw Threads; B1.2, Gages and Gag- ing for Unified Inch Screw Threads	B1.1, Unified Inch Screw Threads; B1.2, Gages and Gag- ing for Unified Inch Screw Threads	B1.15, Unified Inch Screw Threads — UNJ Thread Form; draft of B1.2, Gages and Gaging for Unified Inch Screw Threads
External root	External thread root may be flat or rounded	Rounded root specified	Rounded root specified
External minor diameter	External thread minor diameter is not toleranced	External thread minor diameter is not toleranced	External thread minor diameter is toleranced
External threads	UN Classes 1A, 2A, and 3A	UNR Classes 1A, 2A, and 3A	UNJ Classes 2A and 3A mate only with UNJ internal threads
Internal threads	UN Classes 1B, 2B, and 3B	No internal threads designated UNR; UNR mates with UN internal threads	UNJ Classes 2B and 3B (no rounding required on internal thread root)

GENERAL NOTES:

- (a) The above cannot be used as a working sheet. Refer to the appropriate standards, as listed, for complete thread details and conformance data.
- (b) The appropriate current standard is the authoritative document for complete details and data and takes precedence over this sheet.
- (c) These standards may be purchased from the ASME Order Department, 22 Law Drive, Box 2300, Fairfield, NJ 07007-2300: telephone (201) 882-1167 or 1-800-THE-ASME.

NONMANDATORY APPENDIX B THREAD STRENGTH DESIGN FORMULAS

B-1 THREAD TENSILE STRESS AREA

The following thread tensile stress area formulas are used for the purpose of product acceptance computations. Tensile stress area:

$$A_s = 3.1416 \left[\frac{D_2}{2} - \frac{3H}{16} \right]^2$$

or

$$A_s = 0.7854 \left[D - \frac{0.9743}{1/P} \right]^2$$

where

D = basic major diameter

 D_2 = basic pitch diameter

1/P = number of threads per inch

For 3H/16, see Table 5.

B-2 THREAD SHEAR DATA

The following formulas for thread shear areas are geometric minimum values. Shear (thread stripping) strengths of screw threads under load are dependent, in addition, on mating component relative material strengths, nut geometry, and coefficient of friction between thread bearing surfaces. Effective shear areas are therefore somewhat less than the geometric values. Thread geometric shear areas:

$$AS_n = 3.1416 (1/P)(LE)(d \text{ min.})$$

 $\times \left[\frac{1}{2(1/P)} + 0.57735 (d \text{ min.} - D_2 \text{ max.}) \right]$

$$AS_s = 3.1416 (1/P)(LE)(D_1 \text{ max.})$$

 $\times \left[\frac{1}{2(1/P)} + 0.57735 (d_2 \text{ min.} - D_1 \text{ max.}) \right]$

where

 AS_n = minimum thread shear area for internal threads

 AS_s = minimum thread shear area for external threads

1/P = number of threads per inch

LE = length of engagement

d min. = minimum major diameter of external

 d_2 min. = minimum pitch diamter of external thread D_1 max. = maximum minor diameter of internal

thread

 D_2 max. = maximum pitch diameter of internal

thread

B-3 LENGTH OF THREAD ENGAGEMENT

In general, the length of engagement of mating threads is selected to utilize full tensile strength of a bolt prior to shearing of nut threads. Other applications may require internal thread shear prior to failure of the externally threaded part. For noncritical design, the following formulas are often used for approximation:

tensile strength of externally threaded part = $S_t A_s$

shear strength of threads = $0.5S_t$ (AS_n or AS_s)

where

 S_t = ultimate tensile strength of material, psi

An internationally accepted study on the subject was published in the 1977 Transactions of the Society of Automotive Engineers as paper number 770420, *Analysis and Design of Threaded Assemblies*, by E. M. Alexander.

NONMANDATORY APPENDIX C UNIFIED INCH SCREW THREADS — METRIC TRANSLATION

C-1 BACKGROUND

This Appendix presents a translation of unified inch screw threads into metric units of measurement. It is very important to recognize that this translation is not ISO metric screw threads. The tables of limiting dimensions of standard and UNS/UNRS series threads and the table of thread form data translated from inches to millimeters presented in this Appendix implement the decision of the B1 Committee that there should be official metric translations of inch screw thread standards to better fill communication needs in international exchange of technical data. This philosophy originated at the May 4, 1964, meeting of the Committee and was approved by a letter ballot of the Committee on November 2, 1966.

The tables in this Appendix were originally published as USAS B1.1a-1968 Supplement to USAS B1.1-1960, in the interest of meeting urgent needs of industry.

C-2 DIMENSIONS

All dimensions in this Appendix are given in millimeters unless otherwise specified. Metric values in the limiting dimension tables are translations of the inch values tabulated in ASME B1.1.

The values in Table C-1 are a direct soft conversion of Table 2 in this Standard. All inch values were multiplied by 25.4 and rounded to four decimal places, per the rounding policy stated in ASME B1.30. Similarly, Tables C-2 and C-3 are soft conversions of Tables D-1 and 5, respectively.

Where it is necessary to use metric values of threads for which the metric limiting dimensions are not tabulated herein, the inch values should be determined in accordance with para. 8 of ASME B1.1 before translating to metric values and rounding by the method prescribed in the foregoing paragraph.

C-3 DESIGNATIONS

Designation of unified inch screw threads expressed in metric dimensions shall be as prescribed in paras. C-3.1 and C-3.2.

C-3.1 Metric Drawings or Documents

On metric drawings or documents, the designation shall specify, in sequence, the nominal size (expressed in decimal inches), the number of threads per inch, thread series symbol, and thread class symbol. All supplemental dimensions shall be as shown in metric units. The equivalent inch dimensions, as indicated and enclosed in parentheses, may be included if desired.

EXAMPLE (on metric drawing or metric document): 0.250 – 28 UNF-2A (22) *PD* 5.7353 – 5.6515 (0.2258 – 0.2225 in.) (optional)

C-3.2 Inch Drawings or Documents

On inch drawings or documents, the designation and supplemental dimensions expressed in inches may be further supplemented by inclusion of the equivalent metric dimensions, so indicated and enclosed in parentheses.

EXAMPLE: 0.250 – 28 UNF-2A (22) PD 0.2258 – 0.2225 (5.7353 – 5.6515 mm) (optional)

C-4 TABLES

Tables C-1, C-2, and C-3 give limits of size for standard series and UNS/UNRS series threads and thread form data.

NONMANDATORY APPENDIX C ASME B1.1-2003

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm

																3	
								External [Note (1)]	te (1)]					_	Internal [Note (1)]	te (1)]	
						•	Moior Distance	ò	Pitch Function	Pitch Diameter and Functional Diameter [Notes	UNR and Minor r [Notes Diameter,	er,			Pitcl Func	Pitch Diameter and Functional Diameter	
Nominal Size	Series	Metric Ec	Metric Equivalents		Allow	Y W	Major Diair	Win	W	(4), (2)]	Tolor [Note (2)]	. 5	Mino	Minor Diameter	=	(4), (3	Tolor Diamotor
Threads/in.	nation		Pitch	Class		몬] Min.	MIII. [Note (3)]	Z	Min.	_	oyi Class	s Min.	Max.	Min.	Мах.	
0-80 or 0.060-80	UNF	1.5240	0.3175	2A 3A	0.0127	, 1.5113) 1.5240	1.4300	: :	1.3056	1.2598	0.0457 1.1328 0.0330 1.1455	2B 3B	1.1811	1.3056	1.3183	1.3767	0.0584 1.5240 0.0432 1.5240
1-64 or 0.073-64	UNC	1.8542	0.3969	2A 3A	0.0152	1.8390	1.7424	: :	1.5824	1.5316	0.0508 1.3665 0.0381 1.3818	2B 3B	1.4249	1.5799	1.5977	1.6637	0.0660 1.8542 0.0483 1.8542
1–72 or 0.073–72	UNF	1.8542	0.3528	2A 3A	0.0152	1.8390	1.7501	: :	1.6104	1.5621	0.0483 1.4199 0.0356 1.4351	2B 3B	1.4732	1.6104	1.6256	1.6891	0.0635 1.8542 0.0483 1.8542
2-56 or 0.086-56	ONC	2.1844	0.4536	2A 3A	0.0152	2.1692	2.0650	: :	1.8745	1.8212	0.0533 1.6281 0.0406 1.6434	2B 3B	1.6942	1.8720	1.8898	1.9609	0.0711 2.1844 0.0533 2.1844
2-64 or 0.086-64	UNF	2.1844	0.3969	2A 3A	0.0152	2.1692	2.0726	: :	1.9126	1.8618	0.0508 1.6967 0.0381 1.7120	2B 3B	1.7551	1.9101	1.9279	1.9964	0.0686 2.1844 0.0508 2.1844
3-48 or 0.099-48	ONC	2.5146	0.5292	2A 3A	0.0000	3 2.4968	2.3825	: :	2.1539	2.0955	0.0584 1.8669 0.0432 1.8847	2B 3B	1.9406	2.1463	2.1717	2.2479	0.0762 2.5146 0.0559 2.5146
3-56 or 0.099-56	UNF	2.5146	0.4536	2A 3A	0.0000	3 2.4968 2.5146	2.3927	: :	2.2022	2.1463 2.1793	0.0559 1.9558 0.0406 1.9736	2B 3B	2.0244	2.1971	2.2200	2.2911	0.0711 2.5146 0.0533 2.5146
4-40 or 0.112-40	ONC	2.8448	0.6350	2A 3A	0.0203	2.8245	2.6949	: :	2.4130 2.4333	2.3495	0.0635 2.0676 0.0483 2.0879	2B 3B	2.1565	2.3851	2.4333	2.5171 2.4943	0.0838 2.8448 0.0610 2.8448
4-48 or 0.112-48	UNF	2.8448	0.5292	2A 3A	0.0000	3 2.8270 2.8448	2.7127 2.7305	: :	2.4841	2.4232	0.0610 2.1971 0.0457 2.2149	2B 3B	2.2708	2.4587	2.5019	2.5806	0.0787 2.8448 0.0584 2.8448
5-40 or 0.125-40	UNC	3.1750	0.6350	2A 3A	0.0203	3.1547	3.0251	: :	2.7432	2.6772	0.0660 2.3978 0.0483 2.4181	2B 3B	2.4867	2.6975	2.7635 2.7635	2.8473	0.0838 3.1750 0.0635 3.1750
5-44 or 0.125-44	UNF	3.1750	0.5773	2A 3A	0.0000	3.1572	3.0353	: :	2.7813	2.7178 2.7508	0.0635 2.4689 0.0483 2.4867	2B 3B	2.5502	2.7407	2.7991	2.8804	0.0813 3.1750 0.0610 3.1750
6-32 or 0.138-32	ONC	3.5052	0.7938	2A 3A	0.0203	3.4849	3.3325	: :	2.9693	2.8981	0.0711 2.5400 0.0533 2.5603	2B 3B	2.6416	2.8956	2.9896	3.0836	0.0940 3.5052 0.0686 3.5052
6-40 or 0.138-40	UNF	3.5052	0.6350	2A 3A	0.0203	3.4849	3.3553	: :	3.0734	3.0074	0.0660 2.7280 0.0508 2.7483	2B 3B	2.8194 2.8194	3.0226	3.0937 3.0937	3.1801 3.1572	0.0864 3.5052 0.0635 3.5052
8–32 or 0.164–32	UNC	UNC 4.1656	0.7938	2A 3A	0.00229	4.1427 4.1656	3.9903	: :	3.6271	3.5535 3.5941	0.0737 3.1979 0.0559 3.2207	2B 3B	3.3020	3.5306	3.6500	3.7465	0.0965 4.1656 0.0711 4.1656

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							E	External [Note (1)]	te (1)]						lnt	Internal [Note (1)]	(1)]		
						:			Pitch Function	Pitch Diameter and Functional Diameter [Notes		UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter	and eter	
Nominal Size and	Series Desig-		Metric Equivalents	ī	-	Max.	Major Diameter	Min.		(4), (5)]	_	=	١.	Minor Diameter	iameter		[Notes (4), (5)]	Toler-	Major Diameter,
Threads/in.	nation	Dia.	Pitch	Class	ance	[Note (2)]	Min.	[Note (3)]	[Note (2)]	Min.	ance	(Ret.) C	Class	Min.	Max.	Min.	Max.	ance	Min.
8-36 or 0.164-36	UNF	4.1656	0.7056	2A 3A	0.0203	4.1453 4.1656	4.0056	: :	3.6881 3.7084	3.6170 3.6551	0.0711 3	3.3045 3.3249	2B 3.	3.4036 3.4036	3.6068 3.5966	3.7084 3.7084	3.7998	0.0914 4.1 0.0686 4.1	4.1656 4.1656
10–24 or 0.190–24	NNC	4.8260	1.0583	2A 3A	0.0254	4.8006	4.6177 4.6431	: :	4.1123 4.1377	4.0284 4.0742	0.0838 3.5408 0.0635 3.5662		2B 3.	3.6830	3.9370 3.9497	4.1377	4.2469 4.2189	0.1092 4.8 0.0813 4.8	4.8260
10–32 or 0.190–32	UNF	4.8260	0.7938	2A 3A	0.0229	4.8031	4.6507 4.6736	: :	4.2875 4.3104	4.2113 4.2520	0.0762 3.8583 0.0584 3.8811		2B 3.	3.9624 3.9624	4.1656 4.1681	4.3104 4.3104	4.4094	0.0991 4.8 0.0737 4.8	4.8260 4.8260
12-24 or 0.216-24	UNC	5.4864	1.0583	2A 3A	0.0254	5.4610 5.4864	5.2781	: :	4.7727 4.7981	4.6863 4.7320	0.0864 4.2012 0.0660 4.2266		2B 4 3B 4	4.3434 4.3434	4.5974 4.5898	4.7981 4.7981	4.9098 4.8819	0.1118 5.4 0.0838 5.4	5.4864
12–28 or 0.216–28	UNF	5.4864	0.9071	2A 3A	0.0254	5.4610 5.4864	5.2959	: :	4.8717 4.8971	4.7904	0.0813 4.3815 0.0610 4.4069		2B 4.	4.4958 4.4958	4.7244 4.7168	4.8971 4.8971	5.0038	0.1067 5.4 0.0787 5.4	5.4864
12-32 or0.216-32	UNEF	5.4864	0.7938	2A 3A	0.0254	5.4610 5.4864	5.3086	: :	4.9454 4.9708	4.8641 4.9098	0.0813 4.5161 0.0610 4.5415		2B 4. 3B 4.	4.6228 4.6228	4.8260 4.8133	4.9708	5.0749	0.1041 5.4 0.0787 5.4	5.4864
¹ / ₄ -20 or 0.2500-20	UNC	6.3500	1.2700	1A 2A 3A	0.0279 0.0279 0.0000	6.3221 6.3221 6.3500	6.0122 6.1163 6.1443	6.0122	5.4966 5.4966 5.5245	5.3543 5.4026 5.4534	0.1422 4.8108 0.0940 4.8108 0.0711 4.8387		1B 4. 2B 4. 3B 4.	4.9784 4.9784 4.9784	5.2578 5.2578 5.2502	5.5245 5.5245 5.5245	5.7099 5.6490 5.6159	0.1854 6.3 0.1245 6.3 0.0914 6.3	6.3500 6.3500 6.3500
¹ / ₄ -28 or 0.2500-28	UNF	6.3500	0.9071	14 24 34	0.0254 0.0254 0.0000	6.3246 6.3246 6.3500	6.0757 6.1595 6.1849	: : :	5.7353 5.7353 5.7607	5.6083 5.6515 5.6972	0.1270 0.0838 0.0635	5.2451 5.2451 5.2705	1B 5 2B 5 3B 5	5.3594 5.3594 5.3594	5.5880 5.5880 5.5626	5.7607 5.7607 5.7607	5.9258 5.8699 5.8420	0.1651 6.3 0.1092 6.3 0.0813 6.3	6.3500 6.3500 6.3500
$\frac{1}{4}$ -32 or 0.2500-32	UNEF	6.3500	0.7938	2A 3A	0.0254	6.3246	6.1722 6.1976	: :	5.8090	5.7277 5.7734	0.0813 5.3797 0.0610 5.4051		2B 5. 3B 5.	5.4864	5.6896	5.8344	5.9411 5.9131	0.1067 6.3500 0.0787 6.3500	6.3500
⁵ / ₁₆ -18 or 0.3125-18	UNC	7.9375	1.4111	1A 2A 3A	0.0305 0.0305 0.0000	7.9070 7.9070 7.9375	7.5743 7.6860 7.7165	7.5743	6.9901 6.9901 7.0206	6.8351 6.8885 6.9444	0.1549 6.2255 0.1016 6.2255 0.0762 6.2560		1B 6. 2B 6. 3B 6.	6.4008 6.4008 6.4008	6.7310 6.7310 6.6802	7.0206 7.0206 7.0206	7.2212 7.1552 7.1196	0.2007 7.9 0.1346 7.9 0.0991 7.9	7.9375 7.9375 7.9375
5 / $_{16}$ -20 or 0.3125-20	S	7.9375	1.2700	2A 3A	0.0305	7.9070	7.7013 7.7318	: :	7.0815 7.1120	6.9774 7.0358	0.1041 6.3957 0.0762 6.4262		2B 6. 3B 6.	6.5532 6.5532	6.8580 6.8072	7.1120 7.1120	7.2466 7.2136	0.1346 7.9375 0.1016 7.9375)375)375
⁵ / ₁₆ -24 or 0.3125-24	UNF	7.9375	1.0583	14 24 34	0.0279 0.0279 0.0000	7.9096 7.9096 7.9375	7.6352 7.7267 7.7546	: : :	7.2212 7.2212 7.2492	7.0815 7.1272 7.1806	0.1397 6.6497 0.0940 6.6497 0.0686 6.6777		1B 6 2B 6 3B 6	6.7818 6.7818 6.7818	7.0358 7.0358 6.9952	7.2492 7.2492 7.2492	7.4295 7.3711 7.3406	0.1803 7.9375 0.1219 7.9375 0.0914 7.9375	9375 9375 9375

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							3	External [Note (1)]	e (1)]						ü	Internal [Note (1)]	9 (1)]		
						2	,	3	Pitch Functiona	Pitch Diameter and Functional Diameter [Notes		UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter	nd :ter	
Nominal Size and	Series Desig-	Metric Eq	Metric Equivalents	,	-	Max.	ימוחום חומוווב	Min.	Max.	(4), (7)	, –	=		Minor Diameter	iameter		(t) (h) said	Toler- Di	jor eter,
Threads/in.	nation	Dia.	Pitch	Class	ance	[Note (2)]	Min.	[Note (3)]	[Note (2)]	Min.	ance	(Ref.) C	Class	Min.	Мах.	Min.	Мах.	ance Min.	ا نے
$^{5}/_{16}$ – 28 or 0.3125 – 28	N	7.9375	0.9071	2A 3A	0.0254	7.9121 7.9375	7.7470 7.7724	: :	7.3228 7.3482	7.2339 7.2822	0.0889 6.8 0.0660 6.8	6.8326 6.8580	2B 6 3B 6	6.9596 6.9596	7.1628 7.1298	7.3482 7.3482	7.4625 7.4346	0.1143 7.9375 0.0864 7.9375	75
$^{5}/_{16}$ – 32 or 0.3125 – 32	UNEF	7.9375	0.7938	2A 3A	0.0254	7.9121 7.9375	7.7597 7.7851	: :	7.3965 7.4219	7.3127 7.3584	0.0838 6.9 0.0635 6.9	6.9672	2B 7 3B 7	7.0866	7.2644 7.2288	7.4219 7.4219	7.5311 7.5032	0.1092 7.9375 0.0813 7.9375	75
³ / ₈ -16 or 0.3750-16	UNC	9.5250	1.5875	14 24 34	0.0330 0.0330 0.0000	9.4920 9.4920 9.5250	9.1313 9.2532 9.2862	9.1313	8.4607 8.4607 8.4938	8.2956 8.3490 8.4099	0.1651 7.6 0.1118 7.6 0.0838 7.6	7.6022 7.6022 7.6352	1B 7 2B 7 3B 7	7.7978 7.7978 7.7978	8.1534 8.1534 8.0823	8.4938 8.4938 8.4938	8.7097 8.6385 8.6030	0.2159 9.5250 0.1448 9.5250 0.1092 9.5250	000
$\frac{3}{8}$ – 20 or 0.3750 – 20	S	9.5250	1.2700	2A 3A	0.0305	9.4945 9.5250	9.2888	: :	8.6690	8.5649 8.6208	0.1041 7.9 0.0787 8.0	7.9832	2B 8 3B 8	8.1534	8.4328 8.3744	8.6995	8.8367	0.1372 9.5250 0.1016 9.5250	20
³ / ₈ –24 or 0.3750–24	UNF	9.5250	1.0583	14 24 34	0.0279 0.0279 0.0000	9.4971 9.4971 9.5250	9.2227 9.3142 9.3421	: : :	8.8087 8.8087 8.8367	8.6639 8.7122 8.7630	0.1448 8.2 0.0965 8.2 0.0737 8.2	8.2372 8.2372 8.2652	1B 8 2B 8 3B 8	8.3820 8.3820 8.3820	8.6360 8.6360 8.5649	8.8367 8.8367 8.8367	9.0246 8.9611 8.9306	0.1880 9.5250 0.1245 9.5250 0.0940 9.5250	000
³ / ₈ -28 or 0.3750-28	S	9.5250	0.9071	2A 3A	0.0279	9.4971 9.5250	9.3320	: :	8.9078	8.8163 8.8671	0.0914 8.4176 0.0686 8.4455		2B 8. 3B 8.	8.5344	8.7630 8.7020	8.9357	9.0526 9.0246	0.1168 9.5250 0.0889 9.5250	20
³ / ₈ -32 or 0.3750-32	UNEF	9.5250	0.7938	2A 3A	0.0254	9.4996 9.5250	9.3472 9.3726	: :	8.9840 9.0094	8.8976 8.9459	0.0864 8.5 0.0635 8.5	8.5547	2B 8 3B 8	8.6614	8.8646 8.8113	9.0094	9.1211 9.0932	0.1118 9.5250 0.0838 9.5250	20
⁷ / ₁₆ –14 or 0.4375–14	UNC	11.1125	1.8143	14 24 34	0.0356 0.0356 0.0000	11.0769 11.0769 11.1125	10.6832 10.8153 10.8509	10.6832	9.8984 9.8984 9.9339	9.7180 9.7790 9.8450	0.1803 8.5 0.1194 8.5 0.0889 8.5	8.9154 8.9154 8.9510	1B 9 2B 9 3B 9	9.1440 9.1440 9.1440	9.5504 9.5504 9.4412	9.9339 9.9339 9.9339	10.1676 10.0889 10.0508	0.2337 11.1125 0.1549 11.1125 0.1168 11.1125	125 125 125
$^{7}\!/_{16}$ – 16 or 0.4375 – 16	N	11.1125	1.5875	2A 3A	0.0356	11.0769	10.8382 10.8737	: :	10.0457 10.0813	9.9289 9.9924	0.1168 9.1 0.0889 9.2	9.1872	2B 9 3B 9	9.3980	9.7536 9.6520	10.0813 10.0813	10.2337 10.1956	0.1524 11.1125 0.1143 11.1125	125 125
⁷ / ₁₆ -20 or 0.4375-20	UNF	11.1125	1.2700	1A 2A 3A	0.0330 0.0330 0.0000	11.0795 11.0795 11.1125	10.7696 10.8737 10.9068	: : :	10.2540 10.2540 10.2870	10.0940 10.1473 10.2083	0.1600 9.5682 0.1067 9.5682 0.0787 9.6012		1B 9 2B 9 3B 9	9.7282 9.7282 9.7282	10.0330 10.0330 9.9466	10.2870 10.2870 10.2870	10.4927 10.4242 10.3911	0.2057 11.1125 0.1372 11.1125 0.1041 11.1125	125 125 125
7/16-28 or 0.4375-28	UNEF	UNEF 11.1125	0.9071	2A 3A	0.0279	11.0846 11.1125	10.9195 10.9474	: :	10.4953 10.5232	10.4038 10.4546	0.0914 10.0051 0.0686 10.0330		2B 1 3B 1	10.1346 10.1346	10.3378 10.2895	10.5232 10.5232	10.6426 10.6121	0.1194 11.1125 0.0889 11.1125	125 125
$^{7}/_{16}$ – 32 or 0.4375 – 32	N	11.1125	0.7938	2A 3A	0.0254	11.0871 11.1125	10.9347 10.9601	: :	10.5715 10.5969	10.4851 10.5308	0.0864 10.1422 0.0660 10.1676		2B 1 3B 1	10.2616 10.2616	10.4394 10.3988	10.5969 10.5969	10.7086 10.6807	0.1118 11.1125 0.0838 11.1125	125 125

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							-	External [Note (1)]	te (1)]						Inte	Internal [Note	(1)]		
Mominal Cita	O. r.o.						Major Diameter	iter	Pitch Function	Pitch Diameter and Functional Diameter [Notes (4), (5)]		UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter [Notes (4), (5)]	nd ter	M. icia
and Threads/in.	Desig- nation		Metric Equivalents Dia. Pitch	Class	Allow-	. Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [N ance	<u></u>	Class	Minor Diameter Min. Max	ameter Max.	Min.	Мах.	Toler- D ance	Diameter, Min.
¹ / ₂ -13 or 0.5000-13	UNC	12.7000	1.9538	14 24 34	0.0381	12.6619 12.6619 12.7000	12.2479 12.3850 12.4231	12.2479	11.3919 11.3919 11.4300	11.2039 11.2649 11.3360	0.1880 10.3353 0.1270 10.3353 0.0940 10.3734		1B 10 2B 10 3B 10	10.5918 1 10.5918 1 10.5918 1	11.0236 11.0236 11.0236 10.8814	11.4300 11.4300 11.4300	11.6764 11.5951 11.5519	0.2464 1: 0.1651 1: 0.1219 1:	12.7000 12.7000 12.7000
¹ / ₂ –16 or 0.5000–16	N	12.7000	12.7000 1.5875	2A 3A	0.00356	12.6644	12.4257 12.4612	: :	11.6332 11.6688	11.5138 11.5799	0.1194 10	10.7747 2 10.8102 3	2B 10.	10.9728 1 10.9728 1	11.3284	11.6688 11.6688	11.8237 11.7856	0.1549 13	12.7000 12.7000
$\frac{1}{2}$ 20 or 0.5000 – 20	UNF	12.7000 1.2700	1.2700	1A 2A 3A	0.0330	12.6670 12.6670 12.7000	12.3571 12.4612 12.4943	: : :	11.8415 11.8415 11.8745	11.6789 11.7323 11.7932	0.1626 11.1557 0.1092 11.1557 0.0813 11.1887		18 11. 28 11. 38 11.	11.3284 1 11.3284 1 11.3284 1	11.6078 11.6078 11.5240	11.8745 11.8745 11.8745	12.0879 12.01 <i>6</i> 7 11.9812	0.2134 1: 0.1422 1: 0.1067 1:	12.7000 12.7000 12.7000
¹ / ₂ -28 or 0.5000-28	UNEF	UNEF 12.7000 0.9071	0.9071	2A 3A	0.0079	12.6721	12.5070 12.5349	: :	12.0828 12.1107	11.9888 12.0396	0.0940 11.5926 0.0711 11.6205		2B 11. 3B 11.	11.7094 1 11.7094 1	11.9380	12.1107 12.1107	12.2326 12.2022	0.1219 13	12.7000 12.7000
¹ / ₂ -32 or 0.5000-32	N	12.7000	0.7938	2A 3A	0.0054	12.6746	12.5222 12.5476	: :	12.1590 12.1844	12.0701 12.1183	0.0889 11.7297 0.0660 11.7551		2B 11. 3B 11.	11.8364 1 11.8364 1	12.0396 11.9863	12.1844 12.1844	12.2987 12.2707	0.1143 12.7000 0.0864 12.7000	12.7000
$^9\!\!\!/_{16}$ –12 or 0.5625–12	UNC	14.2875	2.1167	1A 2A 3A	0.0406	14.2469 14.2469 14.2875	13.8100 13.9573 13.9979	13.8100	12.8727 12.8727 12.9134	12.6746 12.7406 12.8143	0.1981 11 0.1321 11 0.0991 11	11.7272 1 11.7272 2 11.7678 3	1B 11. 2B 11. 3B 11.	11.9888 1 11.9888 1 11.9888 1	12.4460 12.4460 12.3012	12.9134 12.9134 12.9134	13.1724 13.0861 13.0429	0.2591 1, 0.1727 1, 0.1295 1,	14.2875 14.2875 14.2875
9/16-16 or 0.5625-16	N	14.2875	1.5875	2A 3A	0.00356	14.2519	14.0132 14.0487	: :	13.2207 13.2563	13.1013 13.1674	0.1194 12 0.0889 12	12.3622 2 12.3977 3	2B 12 3B 12	12.5730 1 12.5730 1	12.9286	13.2563 13.2563	13.4112 13.3731	0.1549 14.287 0.1168 14.287	14.2875 14.2875
$^9\!$	UNF	14.2875 1.4111	1.4111	1A 2A 3A	0.0356	14.2519 14.2519 14.2875	13.9192 14.0310 14.0665	: : :	13.3350 13.3350 13.3706	13.1623 13.2207 13.2842	0.1727 12.5705 0.1143 12.5705 0.0864 12.6060		1B 12 2B 12 3B 12	12.7508 1 12.7508 1 12.7508 1	13.0810 3.13.0810 3.12.9692 3.12.9692	13.3706 13.3706 13.3706	13.5966 13.5204 13.4823	0.2261 14.2875 0.1499 14.2875 0.1118 14.2875	14.2875 14.2875 14.2875
9/16-20 or 0.5625-20	N	14.2875	14.2875 1.2700	2A 3A	0.00330	14.2545	14.0487 14.0818	: :	13.4290 13.4620	13.3198	0.1092 12.7432 0.0813 12.7762		2B 12. 3B 12.	12.9032 1 12.9032 1	13.2080	13.4620 13.4620	13.6042 13.5687	0.1422 14.2875 0.1067 14.2875	4.2875 4.2875
$^{9}/_{16}$ – 24 or 0.5625 – 24	UNEF	UNEF 14.2875	1.0583	2A 3A	0.0000	14.2570	14.0741 14.1046	: :	13.5687 13.5992	13.4671 13.5230	0.1016 12 0.0762 13	12.9972 2 13.0277 3	2B 13.	13.1318 1 13.1318 1	13.3858	13.5992 13.5992	13.7287 13.6982	0.1295 1,	14.2875 14.2875
$^{9}\!\!/_{16}$ – 28 or 0.5625 – 28	S	14.2875	0.9071	2A 3A	0.0079	14.2596	14.0945 14.1224	: :	13.6703 13.6982	13.5763 13.6271	0.0940 13.1801 0.0711 13.2080	_	2B 13.	13.3096 1 13.3096 1	13.5128	13.6982 13.6982	13.8201 13.7897	0.1219 14.2875 0.0914 14.2875	14.2875 14.2875
⁹ / ₁₆ -32 or 0.5625-32	N	14.2875 0.7938	0.7938	2A 3A	0.0000	14.2596	14.1072 14.1351	: :	13.7439	13.6550 13.7058	0.0889 13.3147 0.0660 13.3426		2B 13.	13.4366 1 13.4366 1	13.6144	13.7719	13.8887	0.1168 14.2875 0.0864 14.2875	4.2875 4.2875

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							E	External [Note (1)]	te (1)]						lnt	Internal [Note	(1)]		
									Pitch Function	Pitch Diameter and Functional Diameter (Notes		UNR				Pitch Functi	Pitch Diameter and ⁻ unctional Diameter	and eter	
Nominal Size	Series					2	Major Diameter	ter		(4), (5)]	- 1	Didilleter, Max.		;	,	oN]	[Notes (4), (5)]		Major
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	uivalents Pitch	Class	Allow-	- Max. [Note (2)]	Min	Min. [Note (3)]	Max. [Note (2)]	Min	Toler- [N	<u></u>	Class –	Minor Diameter Min. Max	ameter Max.	Min	Max.	Toler- Dia	Diameter, Min.
⁵ / ₈ -11 or 0.6250-11	ONC	15	2.3091	1	000		15,	15.3721	1 ,, ,, ,,	14.1224 14.1935 14.2723	1 00 1			13.3858 13.3858 13.3858	13.8684 13.8684 13.6931	14.3764 14.3764 14.3764	14.6482 14.5593 14.5136	1 80 80	15.8750 15.8750 15.8750
$\frac{5}{8}$ – 12 or 0.6250 – 12	N S	15.8750	2.1167	, 2A 3A	0.0000	15.8344	15.5448 15.5854	: :	14.4602 14.5009	14.3231 14.3967	0.1372 13.3147 0.1041 13.3553		2B 1 3B 1	13.5890 13.5890	14.0462 13.8760	14.5009 14.5009	14.6812 14.6355	0.1803 15.8750 0.1346 15.8750	8750 8750
$\frac{5}{8}$ - 16 or 0.6250 - 16	S	15.8750	1.5875	2A 3A	0.00356	15.8394	15.6007 15.6362	: :	14.8082 14.8438	14.6863 14.7523	0.1219 13.9497 0.0914 13.9852		2B 1, 3B 1,	14.1478 14.1478	14.5034 14.3815	14.8438 14.8438	15.0012 14.9606	0.1575 15.8750 0.1168 15.8750	15.8750 15.8750
⁵ / ₈ -18 or 0.6250-18	UNF	15.8750	1.4111	1A 2A 3A	0.0356	15.8394 15.8394 15.8750	15.5067 15.6185 15.6540	: : :	14.9225 14.9225 14.9581	14.7447 14.8031 14.8692	0.1778 14.1580 0.1194 14.1580 0.0889 14.1935		1B 1 2B 1 3B 1	14.3510 14.3510 14.3510	14.6812 14.6812 14.5542	14.9581 14.9581 14.9581	15.1892 15.1105 15.0724	0.2311 15.8750 0.1524 15.8750 0.1143 15.8750	15.8750 15.8750 15.8750
$\frac{5}{8}$ 20 or 0.6250–20	N	15.8750	1.2700	2A 3A	0.00330	15.8420	15.6362 15.6693	: :	15.0165 15.0495	14.9073 14.9682	0.1092 14.3307 0.0813 14.3637		2B 1, 3B 1,	14.5034 14.5034	14.7828 14.6964	15.0495 15.0495	15.1917 15.1562	0.1422 15.8750 0.1067 15.8750	8750 8750
$\frac{5}{8}$ 24 or 0.6250–24	UNEF	UNEF 15.8750	1.0583	2A 3A	0.0305	15.8445	15.6616 15.6921	: :	15.1562 15.1867	15.0546 15.1105	0.1016 14.5847 0.0762 14.6152		2B 1, 3B 1,	14.7320 14.7320	14.9860 14.9073	15.1867 15.1867	15.3187 15.2857	0.1321 15.8750 0.0991 15.8750	15.8750 15.8750
$\frac{5}{8}$ 28 or 0.6250–28	S	15.8750	0.9071	2A 3A	0.0079	15.8471	15.6820 15.7099	: :	15.2578 15.2857	15.1613 15.2146	0.0965 14.7676 0.0711 14.7955		2B 1, 3B 1,	14.8844 14.8844	15.1130 15.0520	15.2857 15.2857	15.4102 15.3797	0.1245 15.8750 0.0940 15.8750	8750 8750
$\frac{5}{8}$ or 0.6250–32	N D	15.8750	0.7938	2A 3A	0.0079	15.8471	15.6947 15.7226	: :	15.3314 15.3594	15.2400 15.2908	0.0914 14	14.9022 14.9301	2B 1 3B 1	15.0114 15.0114	15.2146 15.1613	15.3594 15.3594	15.4762 15.4483	0.1168 15.8750 0.0889 15.8750	15.8750 15.8750
$^{11}\!\!/_{16}$ –12 or 0.6875–12	S	17.4625	2.1167	. 2A 3A	0.0406	17.4219	17.1323 17.1729	: :	16.0477 16.0884	15.9080 15.9842	0.1397 14	14.9022 14.9428	2B 1 3B 1	15.1638 15.1638	15.6210 15.4559	16.0884 16.0884	16.2687 16.2230	0.1803 17.4625 0.1346 17.4625	4625 4625
$^{11}\!/_{16}$ – 16 or 0.6875 – 16	S	17.4625	1.5875	2A 3A	0.0356	17.4269	17.1882 17.2237	: :	16.3957 16.4313	16.2738 16.3398	0.1219 15.5372 0.0914 15.5727		2B 1 3B 1	15.7480 15.7480	16.1036 15.9614	16.4313 16.4313	16.5913 16.5506	0.1600 17.4625 0.1194 17.4625	4625 4625
$^{11}\!/_{16}$ – 20 or 0.6875 – 20	S	17.4625	1.2700	2A 3A	0.00330	17.4295	17.2237 17.2568	: :	16.6040 16.6370	16.4922 16.5532	0.1118 15.9182 0.0838 15.9512		2B 1	16.0782 16.0782	16.3830 16.2839	16.6370 16.6370	16.7818 16.7462	0.1448 17.4625 0.1092 17.4625	17.4625 17.4625
$^{11}\!/_{16}$ – 24 or 0.6875 – 24	UNEF	UNEF 17.4625	1.0583	2A 3A	0.0305	17.4320	17.2491 17.2796	: :	16.7437 16.7742	16.6421 16.6980	0.1016 16.1722 0.0762 16.2027		2B 1	16.3068 16.3068	16.5608 16.4948	16.7742 16.7742	16.9088 16.8732	0.1346 17.4625 0.0991 17.4625	4625
$^{11}\!/_{16}$ – 28 or 0.6875 – 28	N O	17.4625	0.9071	2A 3A	0.00279	17.4346	17.2695 17.2974	: :	16.8453 16.8732	16.7488 16.7996	0.0965 16.3551 0.0737 16.3830	_	2B 1	16.4846 16.4846	16.6878 16.6395	16.8732 16.8732	16.9977 16.9672	0.1245 17.4625 0.0940 17.4625	17.4625 17.4625

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

					<u> </u>	External [Note	te (1)]						Inte	Internal [Note	i (1)]		
Sprins				Š	Major Diameter	Je.	Pitch Functiona	Pitch Diameter and Functional Diameter [Notes (4), (5)]	_	UNR Minor Diameter, Max				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	ind eter]	Maior
Metric Equivalents Allow- Dia. Pitch Class ance	Allow- Class ance [Allow- ance	⁸	Max. Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [N ance	<u>_</u>	Class	Minor Dia Min.	Diameter Max.	Min.	Max.	Toler- I	Diameter, Min.
UN 17.4625 0.7938 2A 0.0279 17.4346 3A 0.0000 17.4625	2A 0.0279 3A 0.0000		17.43 17.46	346 525	17.2822	: :	16.9189 16.9469	16.8275 16.8783	0.0914 16	16.4897	2B 16 3B 16	16.6116 1 16.6116 1	16.7894	16.9469 16.9469	17.0663 17.0358	0.1194 1	17.4625 17.4625
UNC 19.0500 2.5400 1A 0.0457 19.0043 2A 0.0457 19.0043 3A 0.0000 19.0500	1A 0.0457 2A 0.0457 3A 0.0000		19.00 19.00 19.05	43 00	18.5115 18.6766 18.7223	18.5115	17.3533 17.3533 17.3990	17.1298 17.2034 17.2872	0.2235 15.9791 0.1499 15.9791 0.1118 16.0249		1B 16 2B 16 3B 16	16.3068 1 16.3068 1 16.3068 1	16.8402 16.8402 16.6243 1	17.3990 17.3990 17.3990	17.6911 17.5946 17.5438	0.2921 19.0500 0.1956 19.0500 0.1448 19.0500	19.0500 19.0500 19.0500
UN 19.0500 2.1167 2A 0.0432 19.0068 3A 0.0000 19.0500	2A 0.0432 3A 0.0000		19.006 19.050	8 O	18.7173 18.7604	: :	17.6327 17.6759	17.4930 17.5717	0.1397 16.4871 0.1041 16.5303		2B 16 3B 16	16.7640 1 16.7640 1	17.2212	17.6759 17.6759	17.8587 17.8130	0.1829 19.0500 0.1372 19.0500	19.0500 19.0500
UNF 19.0500 1.5875 1A 0.0381 19.0119 2A 0.0381 19.0119 3A 0.0000 19.0500	1A 0.0381 2A 0.0381 3A 0.0000		19.0119 19.0119 19.0500		18.6512 18.7731 18.8112	: : :	17.9807 17.9807 18.0188	17.7902 17.8537 17.9222	0.1905 17.1221 0.1270 17.1221 0.0965 17.1602		1B 17 2B 17 3B 17	17.3228 1 17.3228 1 17.3228 1	17.6784 17.6784 17.5489	18.0188 18.0188 18.0188	18.2677 18.1839 18.1432	0.2489 19.0500 0.1651 19.0500 0.1245 19.0500	19.0500 19.0500 19.0500
UNEF 19.0500 1.2700 2A 0.0330 19.0170 3A 0.0000 19.0500	2A 0.0330 3A 0.0000		19.0170 19.0500		18.8112 18.8443	: :	18.1915 18.2245	18.0797 18.1407	0.1118 17.5057 0.0838 17.5387		2B 17 3B 17	17.6784 1 17.6784 1	17.9578	18.2245 18.2245	18.3693 18.3337	0.1448 19.0500 0.1092 19.0500	9.0500
UN 19.0500 0.9071 2A 0.0305 19.0195 3A 0.0000 19.0500	2A 0.0305 3A 0.0000		19.0195 19.0500		18.8544 18.8849	: :	18.4302 18.4607	18.3337 18.3871	0.0965 17.9400 0.0737 17.9705		2B 18 3B 18	18.0594 1 18.0594 1	18.2880	18.4607 18.4607	18.5877 18.5547	0.1270 19.0500 0.0940 19.0500	9.0500
UN 19.0500 0.7938 2A 0.0279 19.0221 3A 0.0000 19.0500	2A 0.0279 3A 0.0000		19.0221 19.0500		18.8697 18.8976	: :	18.5064 18.5344	18.4150 18.4658	0.0914 18.0772 0.0686 18.1051		2B 18 3B 18	18.1864 1 18.1864 1	18.3896	18.5344 18.5344	18.6538 18.6258	0.1194 19.0500 0.0914 19.0500	19.0500 19.0500
UN 20.6375 2.1167 2A 0.0432 20.5943 3A 0.0000 20.6375	2A 0.0432 3A 0.0000		20.5943 20.6375		20.3048 20.3479	: :	19.2202 19.2634	19.0779 19.1567	0.1422 18.0746 0.1067 18.1178		2B 18 3B 18	18.3388 1 18.3388 1	18.7960	19.2634 19.2634	19.4462 19.4005	0.1829 20.6375 0.1372 20.6375	20.6375 20.6375
UN 20.6375 1.5875 2A 0.0381 20.5994 3A 0.0000 20.6375	2A 0.0381 3A 0.0000		20.5994 20.6375		20.3606 20.3987	: :	19.5682 19.6063	19.4437 19.5123	0.1245 18 0.0940 18	18.7096	2B 18 3B 18	18.9230 1 18.9230 1	19.2786	19.6063 19.6063	19.7688 19.7282	0.1626 2	20.6375 20.6375
UNEF 20.6375 1.2700 2A 0.0330 20.6045 3A 0.0000 20.6375	2A 0.0330 3A 0.0000		20.6045 20.6375		20.3987 20.4318	: :	19.7790 19.8120	19.6672 19.7282	0.1118 19.0932 0.0838 19.1262		2B 19 3B 19	19.2532 1 19.2532 1	19.5580	19.8120 19.8120	19.9593 19.9212	0.1473 20.6375 0.1092 20.6375	20.6375 20.6375
UN 20.6375 0.9071 2A 0.0305 20.6070 3A 0.0000 20.6375	2A 0.0305 3A 0.0000		20.6070 20.6375		20.4419 20.4724	: :	20.0177 20.0482	19.9187 19.9746	0.0991 19.5275 0.0737 19.5580		2B 19 3B 19	19.6596 1 19.6596 1	19.8628	20.0482 20.0482	20.1752 20.1447	0.1270 20.6375 0.0965 20.6375	20.6375 20.6375
UN 20.6375 0.7938 2A 0.0279 20.6096 3A 0.0000 20.6375	2A 0.0279 3A 0.0000		20.6096 20.6375		20.4572 20.4851	::	20.0939 20.1219	20.0000	0.0940 19.6647 0.0711 19.6926		2B 19 3B 19	19.7866 1 19.7866 1	19.9644	20.1219 20.1219	20.2438 20.2133	0.1219 20.6375 0.0914 20.6375	.0.6375 .0.6375

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							3	External [Note (1)]	te (1)]						Inte	Internal [Note	(1)]		
Nominal Size	Sorios					~	Major Diameter	iter	Pitch Function	Pitch Diameter and Functional Diameter [Notes (4), (5)]	_	UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	nd :ter	Major
and Threads/in.	Desig- nation		Metric Equivalents Dia. Pitch	- Class	Allow- s ance	- Max. [Note (2)]] Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [Name ance	<u>=</u>	Class I	Minor Diameter Min. Max	meter Max.	Min.	Max.	Toler- D ance	Diameter, Min.
⁷ / ₈ –9 or 0.8750–9	UNC	22.2250	2.8222	2 1A 2A 3A	0.0483 0.0483 0.0000	22.1767 22.1767 22.2250	21.6484 21.8237 21.8719	21.6484	20.3429 20.3429 20.3911	20.1016 20.1828 20.2717	0.2413 18.8163 0.1600 18.8163 0.1194 18.8646		1B 19. 2B 19. 3B 19.	19.1770 19.177	19.7612 19.7612 19.5097	20.3911 20.3911 20.3911	20.7035 20.5994 20.5461	0.3124 22 0.2083 22 0.1549 22	22.2250 22.2250 22.2250
$\frac{7}{8}$ -12 or 0.8750-12	N	22.2250	2.1167	7 2A 3A	0.0432	22.1818	21.8923 21.9354	: :	20.8077	20.6654 20.7442	0.1422 19.6621 0.1067 19.7053		2B 19. 3B 19.	19.9390 20 19.9390 20	20.3962	20.8509 20.8509	21.0363 20.9906	0.1854 22 0.1397 22	22.2250 22.2250
⁷ / ₈ -14 or 0.8750-14	UNF		22.2250 1.8143	3 1A 3 3 3 3 3 4	0.0406 0.0406 0.0000	22.1844 22.1844 22.2250	21.7907 21.9227 21.9634	: : :	21.0058 21.0058 21.0464	20.8001 20.8686 20.9423	0.2057 20.0228 0.1372 20.0228 0.1041 20.0635		1B 20. 2B 20. 3B 20.	20.2692 20.2692 20.2692 20.2692 20.2692 20.2692 20.2692 20.2692 20.2692 20.2692 20.2692	20.6502 20.6502 20.4902	21.0464 21.0464 21.0464	21.3157 21.2242 21.1811	0.2692 22.2250 0.1778 22.2250 0.1346 22.2250	22.2250 22.2250 22.2250
$\frac{7}{8}$ -16 or 0.8750-16	N	22.2250	1.5875	5 2A 3A	0.0381	22.1869	21.9481 21.9862	: :	21.1557 21.1938	21.0312 21.0998	0.1245 20.2971 0.0940 20.3352		2B 20. 3B 20.	20.4978 20 20.4978 20	20.8534	21.1938 21.1938	21.3563 21.3157	0.1626 22	22.2250 22.2250
$\frac{7}{8}$ 20 or 0.8750–20	UNEF	UNEF 22.2250	1.2700	2A 3A	0.0330	22.1920	21.9862 22.0193	: :	21.3665 21.3995	21.2522 21.3131	0.1143 20.6807 0.0864 20.7137		2B 20. 3B 20.	20.8534 2 20.8534 2	21.1328	21.3995 21.3995	21.5468 21.5113	0.1473 22.2250 0.1118 22.2250	2.2250
⁷ / ₈ –28 or 0.8750–28	N	22.2250	22.2250 0.9071	1 2A 3A	0.0305	; 22.1945) 22.2250	22.0294 22.0599	: :	21.6052 21.6357	21.5062 21.5621	0.0991 21.1150 0.0737 21.1455		2B 21. 3B 21.	21.2344 2 ² 21.2344 2 ²	21.4630	21.6357 21.6357	21.7653 21.7322	0.1295 22.2250 0.0965 22.2250	2.2250
$\frac{7}{8}$ or 0.8750–32	N	22.2250	0.7938	3 2A 3 A	0.0279	22.1971	22.0447 22.0726	: :	21.6814 21.7094	21.5875 21.6383	0.0940 21	21.2522 2 21.2801 3	2B 21. 3B 21.	21.3614 2 ² 21.3614 2 ²	21.5646	21.7094 21.7094	21.8313 21.8008	0.1219 22	22.2250 22.2250
$^{15}/_{16}$ –12 or 0.9375–12	N	23.8125	2.1167	7 2A 3A	0.0432	23.7693	23.4798 23.5229	: :	22.3952 22.4384	22.2529 22.3317	0.1422 21.	21.2496 2 21.2928 3	2B 21. 3B 21.	21.5138 2 ² 21.5138 2 ²	21.9710	22.4384 22.4384	22.6238 22.5781	0.1854 23	23.8125 23.8125
$^{15}/_{16}$ –16 or 0.9375–16	N	23.8125	1.5875	5 2A 3A	0.0381	23.7744	23.5356 23.5737	: :	22.7432 22.7813	22.6162 22.6873	0.1270 21.	21.8846 2 21.9227 3	2B 22. 3B 22.	22.0980 2: 22.0980 2:	22.4536	22.7813 22.7813	22.9438 22.9032	0.1626 23	23.8125 23.8125
$^{15}/_{16}$ – 20 or 0.9375 – 20	UNEF	: 23.8125	1.2700	2A 3A	0.0356	5 23.7769	23.5712 23.6068	: :	22.9514 22.9870	22.8371 22.9006	0.1143 22.2656 0.0864 22.3012		2B 22. 3B 22.	22.4282 2: 22.4282 2:	22.7330	22.9870 22.9870	23.1369 23.0988	0.1499 23.8125 0.1118 23.8125	23.8125 23.8125
$^{15}/_{16}$ – 28 or 0.9375 – 28	N	23.8125	0.9071	1 2A 3A	0.0305	; 23.7820) 23.8125	23.6169 23.6474	: :	23.1927 23.2232	23.0937 23.1470	0.0991 22.7025 0.0762 22.7330		2B 22. 3B 22.	22.8346 2. 22.8346 2:	23.0378	23.2232 23.2232	23.3528 23.3197	0.1295 23.8125 0.0965 23.8125	23.8125 23.8125
$^{15}/_{16}$ –32 or 0.9375–32	N	23.8125	0.7938	3 2A 3 A	0.0279	23.7846	23.6322 23.6601	: :	23.2689 23.2969	23.1724 23.2258	0.0965 22	22.8397 2 22.8676 3	2B 22. 3B 22.	22.9616 2. 22.9616 2.	23.1394	23.2969 23.2969	23.4213 23.3909	0.1245 23.8125 0.0940 23.8125	23.8125 23.8125

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							_	External [Note (1)]	te (1)]						Int	Internal [Note (1)]	e (1)]		
Nominal Size	Saries					~	Major Diameter	iter	Pitch Function:	Pitch Diameter and Functional Diameter [Notes (4), (5)]		UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	ind eter]	M ioi r
and Threads/in.	Desig- nation		Metric Equivalents Dia. Pitch	S Class	Allow- ance	Max. [Note (2)]] Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- ance	<u>=</u>	_ Class	Minor Diameter Min. Max	ameter Max.	Min.	Max.	Toler- D ance	Diameter, Min.
1-8 or 1.0000-8	UNC	25.4000	3.1750	2A 3A	0.0508 0.0508 0.0000	25.3492 25.3492 25.4000	24.7777 24.9682 25.0190	24.7777	23.2867 23.2867 23.3375	23.0302 23.1140 23.2080	0.2565 21.5697 0.1727 21.5697 0.1295 21.6205		1B 2 2B 2 3B 2	21.9710 21.9710 21.9710	22.6060 22.6060 22.3444	23.3375 23.3375 23.3375	23.6728 23.5610 23.5052	0.3353 25.4000 0.2235 25.4000 0.1676 25.4000	25.4000 25.4000 25.4000
1–12 or 1.0000–12	UNF	25.4000	2.1167	7 1A 2A 3A	0.0457 0.0457 0.0000	25.3543 25.3543 25.4000	24.9174 25.0647 25.1104	: : :	23.9801 23.9801 24.0259	23.7566 23.8303 23.9141	0.2235 22.8346 0.1499 22.8346 0.1118 22.8803		1B 2 2B 2 3B 2	23.1140 23.1140 23.1140	23.5712 23.5712 23.3629	24.0259 24.0259 24.0259	24.3154 24.2189 24.1706	0.2896 25.4000 0.1930 25.4000 0.1448 25.4000	5.4000 5.4000 5.4000
1–14 or 1.0000–14	UNS (7)	25.4000	1.8143	3 2A 3A	0.0406	25.3594 25.4000	25.0977 25.1384	: :	24.1808 24.2214	24.0462 24.1198	0.1346 23.1978 0.1016 23.2385		2B 2 3B 2	23.4442	23.8252	24.2214 24.2214	24.3967 24.3535	0.1753 2 0.1321 2	25.4000 25.4000
1–16 or 1.0000–16	N	25.4000	1.5875	5 2A 3A	0.0381	25.3619 25.4000	25.1231 25.1612	: :	24.3307 24.3688	24.2037 24.2748	0.1270 23.4721 0.0940 23.5102		2B 2 3B 2	23.6728	24.0284 23.8989	24.3688 24.3688	24.5339 24.4932	0.1651 2 0.1245 2	25.4000 25.4000
1–20 or 1.0000–20	UNEF	UNEF 25.4000	1.2700	2A 3A	0.0356	25.3644 25.4000	25.1587 25.1943	: :	24.5389 24.5745	24.4246 24.4881	0.1143 23.8531 0.0864 23.8887		2B 2 3B 2	24.0284 24.0284	24.3078	24.5745 24.5745	24.7244 24.6863	0.1499 25.4000 0.1118 25.4000	5.4000
1–28 or 1.0000–28	N S	25.4000	25.4000 0.9071	1 2A 3A	0.0305	25.3695 25.4000	25.2044 25.2349	: :	24.7802 24.8107	24.6786 24.7345	0.1016 24.2900 0.0762 24.3205		2B 2 3B 2	24.4094	24.6380	24.8107 24.8107	24.9428 24.9098	0.1321 25.4000 0.0991 25.4000	5.4000
1-32 or 1.0000-32	N S	25.4000	0.7938	3 2A 3A	0.0279	25.3721 25.4000	25.2197 25.2476	: :	24.8564 24.8844	24.7599 24.8133	0.0965 24.4272 0.0711 24.4551		2B 2 3B 2	24.5364	24.7396	24.8844 24.8844	25.0088 24.9784	0.1245 25.4000 0.0940 25.4000	25.4000 25.4000
$1_{/16}^{1}$ or 1.0625–8	N S	26.9875	3.1750	3A 3A	0.0508	26.9367 26.9875	26.5557 26.6065	: :	24.8742 24.9250	24.7015 24.7955	0.1727 23.1572 0.1295 23.2080		2B 2 3B 2	23.5458	24.1808	24.9250 24.9250	25.1511 25.0952	0.2261 26.9875 0.1702 26.9875	26.9875 26.9875
$1_{/16}^{1}$ or 1.0625–12	N S	26.9875	2.1167	7 2A 3A	0.0432	26.9443 26.9875	26.6548 26.6979	: :	25.5702 25.6134	25.4254 25.5041	0.1448 2	24.4246 24.4678	2B 2 3B 2	24.6888	25.1460	25.6134 25.6134	25.8013 25.7531	0.1880 2	26.9875 26.9875
$1_{1_6}^{1}$ -16 or 1.0625-16	N S	26.9875	1.5875	3 2 A	0.0381	26.9494 26.9875	26.7106 26.7487	: :	25.9182 25.9563	25.7912 25.8597	0.1270 25.0596 0.0965 25.0977		2B 2 3B 2	25.2730	25.6286	25.9563 25.9563	26.1214 26.0807	0.1651 26.9875 0.1245 26.9875	26.9875 26.9875
$1_{1/16}^{1}$ or 1.0625–18		UNEF 26.9875	1.4111	1 2A 3A	0.0356	26.9519 26.9875	26.7310 26.7665	: :	26.0350 26.0706	25.9131 25.9791	0.1219 25.2705 0.0914 25.3060		2B 2 3B 2	25.4508	25.7810	26.0706 26.0706	26.2280 26.1899	0.1575 26.9875 0.1194 26.9875	26.9875 26.9875
$1^{1}/_{16}$ – 20 or 1.0625 – 20	N	26.9875	1.2700	3A 3A	0.0356	26.9519 26.9875	26.7462 26.7818	: :	26.1264 26.1620	26.0096 26.0756	0.1168 25.4406 0.0864 25.4762		2B 2 3B 2	25.6032	25.9080	26.1620 26.1620	26.3119 26.2763	0.1499 26.9875 0.1143 26.9875	6.9875

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							_ w	External [Note (1)]	te (1)]						Internal [Internal [Note (1)]			
Nominal Siza	Saries					W.	Major Diameter	ter	Pitch Function:	Pitch Diameter and Functional Diameter [Notes (4), (5)]		UNR Minor Diameter,				Pitch Diameter and Functional Diameter [Notes (4), (5)]	eter and Diameter 4), (5)]		Major
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	luivalents Pitch	Class	Allow-	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [Note ance (Re	[Note (6)] (Ref.) Class		Minor Diameter Min. Max	er x. Min.		Tol Max. an	Toler- Dia	Diameter, Min.
1 ¹ / ₁₆ -28 or 1.0625-28	S	26.9875	0.9071	2A 3A	0.0305	26.9570 26.9875	26.7919 26.8224	: :	26.3677 26.3982	26.2661 26.3220	0.1016 25.8775 0.0762 25.9080	775 2B 080 3B	3 26.0096 3 26.0096	96 26.2128 96 26.1645	28 26.3982 45 26.3982	82 26.5303 82 26.4973		0.1321 26. 0.0991 26.	26.9875 26.9875
$1\frac{1}{8}$ -7 or 1.1250-7	UNC	28.5750	3.6286	1A 2A 3A	0.0559 0.0559 0.0000	28.5191 28.5191 28.5750	27.8943 28.1026 28.1584	27.8943	26.1620 26.1620 26.2179	25.8851 25.9766 26.0807	0.2769 24.1986 0.1854 24.1986 0.1372 24.2545	986 1B 986 2B 545 3B	3 24.6380 3 24.6380 3 24.6380	80 25.3492 80 25.3492 80 25.0825	92 26.2179 92 26.2179 25 26.2179	79 26.5760 79 26.4566 79 26.3982		0.3581 28. 0.2388 28. 0.1803 28.	28.5750 28.5750 28.5750
$1\frac{1}{8}$ -8 or 1.1250-8	S	28.5750	3.1750	2A 3A	0.00533	28.5217 28.5750	28.1407 28.1940	27.9502	26.4592 26.5125	26.2839 26.3804	0.1753 24.7421 0.1321 24.7955	421 2B 955 3B	3 25.1460 3 25.1460	60 25.7810 60 25.5194	10 26.5125 94 26.5125	25 26.7411 25 26.6827		0.2286 28.5750 0.1702 28.5750	28.5750 28.5750
1½-12 or 1.1250-12	UNF	28.5750	2.1167	1A 2A 3A	0.0457 0.0457 0.0000	28.5293 28.5293 28.5750	28.0924 28.2397 28.2854	: : :	27.1551 27.1551 27.2009	26.9265 27.0027 27.0866	0.2286 26.0096 0.1524 26.0096 0.1143 26.0553	096 1B 096 2B 553 3B	3 26.2890 3 26.2890 3 26.2890	90 26.7462 90 26.7462 90 26.5379	62 27.2009 62 27.2009 79 27.2009	09 27.4980 09 27.3990 09 27.3507		0.2972 28. 0.1981 28. 0.1499 28.	28.5750 28.5750 28.5750
$1\frac{1}{8}$ -16 or 1.1250-16	N	28.5750	28.5750 1.5875	2A 3A	0.0381	28.5369 28.5750	28.2981 28.3362	: :	27.5057 27.5438	27.3787 27.4472	0.1270 26.6471 0.0965 26.6852	471 2B 852 3B	3 26.8478 3 26.8478	78 27.2034 78 27.0739	34 27.5438 39 27.5438	38 27.7114 38 27.6682		0.1676 28.5750 0.1245 28.5750	28.5750 28.5750
$1\frac{1}{8}$ -18 or 1.1250–18	UNEF	UNEF 28.5750 1.4111	1.4111	2A 3A	0.0356	28.5394 28.5750	28.3185 28.3540	: :	27.6225 27.6581	27.5006 27.5666	0.1219 26.8580 0.0914 26.8935	580 2B 935 3B	3 27.0510 3 27.0510	10 27.3812 10 27.2542	12 27.6581 42 27.6581	81 27.8155 81 27.7774		0.1575 28.5750 0.1194 28.5750	28.5750 28.5750
$1\frac{1}{8}$ - 20 or 1.1250 - 20	N	28.5750	1.2700	2A 3A	0.0356	28.5394 28.5750	28.3337 28.3693	: :	27.7139 27.7495	27.5971 27.6606	0.1168 27.0281 0.0889 27.0637	281 2B 637 3B	3 27.2034 3 27.2034	34 27.4828 34 27.3964	28 27.7495 64 27.7495	95 27.9019 95 27.8638		0.1524 28. 0.1143 28.	28.5750 28.5750
1/8 - 28 or 1.1250 - 28	S	28.5750	0.9071	2A 3A	0.0305	28.5445 28.5750	28.3794 28.4099	: :	27.9552 27.9857	27.8536 27.9095	0.1016 27.4650 0.0762 27.4955	650 2B 955 3B	3 27.5844 3 27.5844	44 27.8130 44 27.7520	30 27.9857 20 27.9857	57 28.1178 57 28.0848		0.1321 28. 0.0991 28.	28.5750 28.5750
$1^{3}/_{16}$ -8 or 1.1875-8	N S	30.1625	3.1750	2A 3A	0.00533	30.1092 30.1625	29.7282 29.7815	: :	28.0467 28.1000	27.8689 27.9679	0.1778 26.3296 0.1321 26.3830	296 2B 830 3B	3 26.7208 3 26.7208	08 27.3558 08 27.1069	58 28.1000 69 28.1000	00 28.3312 00 28.2727		0.2311 30.1625 0.1727 30.1625	30.1625 30.1625
$1^{3}/_{16}$ –12 or 1.1875–12	N D	30.1625	2.1167	2A 3A	0.0432	30.1193 30.1625	29.8298 29.8729	: :	28.7452 28.7884	28.6004 28.6791	0.1448 27.5996 0.1092 27.6428	996 2B 428 3B	3 27.8638 3 27.8638	38 28.3210 38 28.1254	10 28.7884 54 28.7884	84 28.9789 84 28.9306		0.1905 30. 0.1422 30.	30.1625 30.1625
$1^{3/16}$ –16 or 1.1875–16	S	30.1625	1.5875	2A 3A	0.00381	30.1244 30.1625	29.8856 29.9237	: :	29.0932 29.1313	28.9636 29.0347	0.1295 28.2346 0.0965 28.2727	346 2B 727 3B	3 28.4480 3 28.4480	80 28.8036 80 28.6614	36 29.1313 14 29.1313	13 29.2989 13 29.2557		0.1676 30.1625 0.1245 30.1625	30.1625 30.1625
$1^{3/16}$ –18 or 1.1875–18	UNEF	UNEF 30.1625	1.4111	2A 3A	0.0356	30.1269 30.1625	29.9060 29.9415	: :	29.2100 29.2456	29.0881 29.1541	0.1219 28.4455 0.0914 28.4810	455 2B 810 3B	3 28.6258 3 28.6258	58 28.9560 58 28.8417	60 29.2456 17 29.2456	56 29.4056 56 29.3649		0.1600 30. 0.1194 30.	30.1625 30.1625
$1^{3/1_{6}}$ – 20 or 1.1875 – 20	N N	30.1625 1.2700	1.2700	2A 3A	0.0356	30.1269 30.1625	29.9212 29.9568	: :	29.3014 29.3370	29.1846 29.2481	0.1168 28.6156 0.0889 28.6512	156 2B 512 3B	3 28.7782 3 28.7782	82 29.0830 82 28.9839	30 29.3370 39 29.3370	70 29.4894 70 29.4513		0.1524 30.1625 0.1143 30.1625	30.1625 30.1625

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

								ON Icasets	(4)					. -	toll longt	(5)	
								External [Note (1)]	(L))			 		=	memai mole (1)	(T)	
i i	Č					Σ	Major Diameter	ter	Pitch Function	Pitch Diameter and Functional Diameter [Notes (4), (5)]	Ö	r :er,			Pitch Funct [N	Pitch Diameter and Functional Diameter [Notes (4), (5)]	
noninial Size and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	uivalents Pitch	Class	Allow-	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min	max. Toler- [Note (6)] ance (Ref.)		Minor Class Min.	Minor Diameter Min. Max.	Min.	Max.	Toler- Diameter, ance Min.
$1^{3}/_{16}$ – 28 or 1.1875 – 28	Nn s	30.1625	0.9071		0.0305	30.1320	29.9669		29.5427	29.4386	0.1041 29.0525 0.0787 29.0830	25 2B 30 3B	B 29.1846 B 29.1846	29.3878	29.5732	29.7078	0.1346 30.1625 0.1016 30.1625
$1^{1}/_{4}$ –7 or 1.2500–7	UNC	31.7500	3.6286	1A 2A 3A	0.0559	31.6941 31.6941 31.7500	31.0693 31.2776 31.3334	31.0693	29.3370 29.3370 29.3929	29.0551 29.1490 29.2532	0.2819 27.3736 0.1880 27.3736 0.1397 27.4295	16 18 16 28 15 38	B 27.8130 B 27.8130 B 27.8130	28.5242 28.5242 28.2575	29.3929 29.3929 29.3929	29.7586 29.6367 29.5758	0.3658 31.7500 0.2438 31.7500 0.1829 31.7500
$1^{1}/_{4}$ -8 or 1.2500-8	N	31.7500	3.1750	2A 3A	0.00533	31.6967 31.7500	31.3157 31.3690	31.1252	29.6342 29.6875	29.4564 29.5529	0.1778 27.9171 0.1346 27.9705	'1 2B)5 3B	B 28.3210 B 28.3210	28.9560 28.6944	29.6875 29.6875	29.9212 29.8628	0.2337 31.7500 0.1753 31.7500
1 ¹ / ₄ -12 or 1.2500-12	UNF	31.7500	2.1167	1A 2A 3A	0.0457 0.0457 0.0000	31.7043 31.7043 31.7500	31.2674 31.4147 31.4604	: : :	30.3301 30.3301 30.3759	30.0965 30.1727 30.2590	0.2337 29.1846 0.1575 29.1846 0.1168 29.2303	16 18 16 28 13 38	B 29.4640 B 29.4640 B 29.4640	29.9212 29.9212 29.7129	30.3759 30.3759 30.3759	30.6807 30.5791 30.5283	0.3048 31.7500 0.2032 31.7500 0.1524 31.7500
1/ ₄ -16 or 1.2500-16	N	31.7500	1.5875	2A 3A	0.00381	31.7119	31.4731 31.5112	: :	30.6807 30.7188	30.5511 30.6222	0.1295 29.8221 0.0965 29.8602	11 2B 12 3B	B 30.0228 B 30.0228	30.3784 30.2489	30.7188 30.7188	30.8864 30.8458	0.1676 31.7500 0.1270 31.7500
$1^{1}/_{4}$ – 18 or 1.2500 – 18	UNEF	F 31.7500	1.4111	2A 3A	0.00381	31.7119	31.4909	: :	30.7950 30.8331	30.6705 30.7416	0.1245 30.0304 0.0914 30.0685		2B 30.2260 3B 30.2260	30.5562 30.4292	30.8331	30.9931 30.9524	0.1600 31.7500 0.1194 31.7500
$1^{1}/_{4}$ – 20 or 1.2500 – 20	N	31.7500	1.2700	2A 3A	0.0356	31.7144	31.5087 31.5443	: :	30.8889	30.7696 30.8356	0.1194 30.2031 0.0889 30.2387		2B 30.3784 3B 30.3784	30.6578 30.5714	30.9245 30.9245	31.0794 31.0388	0.1549 31.7500 0.1143 31.7500
$1^{1}/_{4}$ – 28 or 1.2500 – 28	N D	31.7500	0.9071	2A 3A	0.0305	31.7195	31.5544 31.5849	: :	31.1302	31.0261 31.0820	0.1041 30.6400 0.0787 30.6705		2B 30.7594 3B 30.7594	30.9880	31.1607	31.2953 31.2623	0.1346 31.7500 0.1016 31.7500
$1^{5}/_{16}$ –8 or 1.3125–8	N D	33.3375	3.1750	2A 3A	0.00533	33.2842 33.3375	32.9032 32.9565	: :	31.2217	31.0413	0.1803 29.5046 0.1346 29.5580		2B 29.8958 3B 29.8958	30.5308	31.2750 31.2750	31.5087 31.4503	0.2337 33.3375 0.1753 33.3375
$1^{5}/_{16}$ – 12 or 1.3125 – 12	N O	33.3375	2.1167	2A 3A	0.00432	33.2943 33.3375	33.0048 33.0479	: :	31.9202	31.7729	0.1473 30.7746 0.1118 30.8178		2B 31.0388 3B 31.0388	31.4960	31.9634 31.9634	32.1539 32.1081	0.1905 33.3375 0.1448 33.3375
1 ⁵ / ₁₆ –16 or 1.3125–16	N N	33.3375	1.5875	2A 3A	0.00381	33.2994 33.3375	33.0606 33.0987	: :	32.2682 32.3063	32.1386 32.2097	0.1295 31.4096 0.0965 31.4477		2B 31.6230 3B 31.6230	31.9786	32.3063 32.3063	32.4764 32.4333	0.1702 33.3375 0.1270 33.3375
$1^{5}/_{16}$ – 18 or 1.3125 – 18	3 UNEF	F 33.3375	1.4111	2A 3A	0.0381	33.2994 33.3375	33.0784 33.1165	: :	32.3825 32.4206	32.2580 32.3266	0.1245 31.6179 0.0940 31.6560		2B 31.8008 3B 31.8008	32.1310 32.0167	32.4206 32.4206	32.5831 32.5425	0.1626 33.3375 0.1219 33.3375
$1^{5}/_{16}$ – 20 or 1.3125 – 20	N O	33.3375	1.2700	2A 3A	0.0356	33.3019 33.3375	33.0962 33.1318	: :	32.4764 32.5120	32.3571 32.4231	0.1194 31.7906 0.0889 31.8262		2B 31.9532 3B 31.9532	32.2580 32.1589	32.5120 32.5120	32.6669 32.6288	0.1549 33.3375 0.1168 33.3375

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							H	External [Note (1)]	te (1)]						Inte	Internal [Note (1)]	(1)]	
									Pitch	Pitch Diameter and		UNR Minor				Pitch	Pitch Diameter and	nd F
Nominal Size	Series					V	Major Diameteı	ter		(4), (5)]		Diameter, Max.				[No.	[Notes (4), (5)]	Maior
and	Desig-	ĕ∣	uivalents		_			Min.	Max.			=		Minor Diameter	meter			Toler- Diameter,
Threads/in.	nation	Dia.	Pitch	Class	ance	[Note (2)]	Min.	[Note (3)]	[Note (2)]	Min.	ance	(Ref.) Cl	Class	Min.	Мах.	Min.	Мах.	ance Min.
$1^{5}/_{16}$ – 28 or 1.3125 – 28	S	33.3375	0.9071	2A 3A	0.0305	33.3070 33.3375	33.1419 33.1724	: :	32.7177 32.7482	32.6136 32.6695	0.1041 32 0.0787 32	32.2275 2 32.2580 3	2B 32. 3B 32.	32.3596 3 32.3596 3	32.5628 32.5145	32.7482 32.7482	32.8854 32.8498	0.1372 33.3375 0.1016 33.3375
1 ³ / ₈ -6 or 1.3750-6	ONC	34.9250	4.2333	1A 2A 3A	0.0610 0.0610 0.0000	34.8640 34.8640 34.9250	34.1706 34.4018 34.4627	34.1706	32.1132 32.1132 32.1742	31.8084 31.9100 32.0218	0.3048 29 0.2032 29 0.1524 29	29.8221 1 29.8221 2 29.8831 3	1B 30. 2B 30. 3B 30.	30.3530 3 30.3530 3 30.3530 3	31.1150 31.1150 30.8508	32.1742 32.1742 32.1742	32.5679 32.4383 32.3723	0.3937 34.9250 0.2642 34.9250 0.1981 34.9250
$1\frac{3}{8}$ -8 or 1.3750-8	S	34.9250	3.1750	2A 3A	0.00559	34.8691 34.9250	34.4881 34.5440	34.2976	32.8066 32.8625	32.6238 32.7254	0.1829 31 0.1372 31	31.0896 2 31.1455 3	2B 31. 3B 31.	31.4960 3 31.4960 3	32.1310 31.8694	32.8625 32.8625	33.0987 33.0403	0.2362 34.9250 0.1778 34.9250
$1^{3}/_{8}$ – 12 or 1.3750 – 12	UNF	34.9250	2.1167	1A 2A 3A	0.0483 0.0083 0.0000	34.8767 34.8767 34.9250	34.4399 34.5872 34.6354	: : :	33.5026 33.5026 33.5509	33.2638 33.3426 33.4315	0.2388 32 0.1600 32 0.1194 32	32.3571 1 32.3571 2 32.4053 3	1B 32. 2B 32. 3B 32.	32.6390 3 32.6390 3 32.6390 3	33.0962 33.0962 32.8879	33.5509 33.5509 33.5509	33.8633 33.7591 33.7058	0.3124 34.9250 0.2083 34.9250 0.1549 34.9250
$1\frac{3}{8}-16 \text{ or } 1.3750-16$	S	34.9250	1.5875	2A 3A	0.0381	34.8869 34.9250	34.6481 34.6862	: :	33.8557 33.8938	33.7236 33.7947	0.1321 32 0.0991 33	32.9971 2 33.0352 3	2B 33. 3B 33.	33.1978 3 33.1978 3	33.5534 33.4239	33.8938 33.8938	34.0639 34.0208	0.1702 34.9250 0.1270 34.9250
$1\frac{3}{8}-18 \text{ or } 1.3750-18$	UNEF	UNEF 34.9250	1.4111	2A 3A	0.0381	34.8869 34.9250	34.6659 34.7040	: :	33.9700 34.0081	33.8455 33.9141	0.1245 33 0.0940 33	33.2054 2 33.2435 3	2B 33. 3B 33.	33.4010 3 33.4010 3	33.7312	34.0081 34.0081	34.1706 34.1300	0.1626 34.9250 0.1219 34.9250
$1\frac{3}{8}$ – 20 or 1.3750 – 20	N S	34.9250	1.2700	2A 3A	0.0356	34.8894 34.9250	34.6837 34.7193	: :	34.0639 34.0995	33.9446 34.0106	0.1194 33 0.0889 33	33.3781 2 33.4137 3	2B 33. 3B 33.	33.5534 3 33.5534 3	33.8328 33.7464	34.0995 34.0995	34.2544 34.2163	0.1549 34.9250 0.1168 34.9250
$1^{3/8}$ -28 or 1.3750-28	S	34.9250	0.9071	2A 3A	0.0305	34.8945 34.9250	34.7294 34.7599	: :	34.3052 34.3357	34.2011 34.2570	0.1041 33 0.0787 33	33.8150 2 33.8455 3	2B 33. 3B 33.	33.9344 3 33.9344 3	34.1630 34.1020	34.3357 34.3357	34.4729 34.4373	0.1372 34.9250 0.1016 34.9250
$1^{7}/_{16}$ -6 or 1.4375-6	S	36.5125	4.2333	2A 3A	0.0610	36.4515 36.5125	35.9893 36.0502	: :	33.7007 33.7617	33.4975 33.6093	0.2032 31 0.1524 31	31.4096 2 31.4706 3	2B 31. 3B 31.	31.9278 3 31.9278 3	32.7152 32.4383	33.7617 33.7617	34.0258 33.9598	0.2642 36.5125 0.1981 36.5125
$1^{7}/_{16}$ -8 or 1.4375-8	S	36.5125	3.1750	2A 3A	0.00559	36.4566 36.5125	36.0756 36.1315	: :	34.3941 34.4500	34.2113 34.3129	0.1829 32 0.1372 32	32.6771 2 32.7330 3	2B 33. 3B 33.	33.0708 3 33.0708 3	33.7058 33.4569	34.4500 34.4500	34.6888 34.6304	0.2388 36.5125 0.1803 36.5125
1^{7}_{16} –12 or 1.4375–12	S	36.5125	2.1167	2A 3A	0.0457	36.4668 36.5125	36.1772 36.2229	: :	35.0926 35.1384	34.9428 35.0266	0.1499 33.9471 0.1118 33.9928		2B 34. 3B 34.	34.2138 3 34.2138 3	34.6710 34.4754	35.1384 35.1384	35.3314 35.2831	0.1930 36.5125 0.1448 36.5125
$1^{7}\!/_{16}$ – 16 or 1.4375 – 16	S	36.5125	1.5875	2A 3A	0.0406	36.4719 36.5125	36.2331 36.2737	: :	35.4406 35.4813	35.3085 35.3822	0.1321 34 0.0991 34	34.5821 2 34.6227 3	2B 34. 3B 34.	34.7980 3 34.7980 3	35.1536 35.0114	35.4813 35.4813	35.6514 35.6108	0.1702 36.5125 0.1295 36.5125
$17/_{16} - 18$ or $1.4375 - 18$		UNEF 36.5125	1.4111	2A 3A	0.0381	36.4744 36.5125	36.2534 36.2915	: :	35.5575 35.5956	35.4330 35.5016	0.1245 34 0.0940 34	34.7929 2 34.8310 3	2B 34. 3B 34.	34.9758 3 34.9758 3	35.3060 35.1917	35.5956 35.5956	35.7581 35.7175	0.1626 36.5125 0.1219 36.5125

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

			<u> </u>	2	ָּבְּ			Commod (4)	(4)					2	3	[(1) otoll [Moto (4)]	(4)		
							<u>ا</u> ل	External [Note (1)]	(T)]							ernat įnote	[(1)]		
oria lonimoM						Σ	Major Diameter	ter	Pitch Function:	Pitch Diameter and Functional Diameter [Notes (4), (5)]		UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	and eter]	, , ,
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch		Class	Allow- s ance	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]		Toler- [<u> </u>	- Class	Minor Di Min.	Diameter Max.	Min.	Max.	Toler- ance	Major Diameter, Min.
$1^{7/16}$ - 20 or 1.4375 - 20	N D	36.5125	1.2700	2A 3A	0.0356	36.4769 36.5125	36.2712 36.3068	: :	35.6514 35.6870	35.5321 35.5956	0.1194 34.9656 0.0914 35.0012	34.9656 35.0012	2B 3 3B 3	35.1282 35.1282	35.4330 35.3339	35.6870 35.6870	35.8445 35.8038	0.1575 36.5125 0.1168 36.5125	36.5125 36.5125
$1^{7}/_{16}$ – 28 or 1.4375 – 28	N	36.5125	0.9071	2A 3A	0.0330	36.4795 36.5125	36.3144 36.3474	: :	35.8902 35.9232	35.7835 35.8445	0.1067 3 0.0787 3	35.4000 35.4330	2B 3 3B 3	35.5346 35.5346	35.7378 35.6895	35.9232 35.9232	36.0604 36.0274	0.1372 36.5125 0.1041 36.5125	36.5125 36.5125
1½-6 or 1.5000-6	UNC	38.1000	4.2333	1A 2A 3A	0.0610 0.0610 0.0000	38.0390 38.0390 38.1000	37.3456 37.5768 37.6377	37.3456	35.2882 35.2882 35.3492	34.9809 35.0825 35.1942	0.3073 32.9971 0.2057 32.9971 0.1549 33.0581	32.9971 32.9971 33.0581	11B 33	33.5280 33.5280 33.5280	34.2900 34.2900 34.0258	35.3492 35.3492 35.3492	35.7505 35.6159 35.5498	0.4013 3 0.2667 3 0.2007 3	38.1000 38.1000 38.1000
$1\frac{1}{2}$ -8 or 1.5000-8	N	38.1000	3.1750	2A 3A	0.00559	38.0441 38.1000	37.6631 37.7190	37.4726	35.9816 36.0375	35.7962 35.8978	0.1854 3 0.1397 3	34.2646 34.3205	2B 3	34.6710 34.6710	35.3060 35.0444	36.0375 36.0375	36.2788 36.2179	0.2413 38.1000 0.1803 38.1000	3.1000 3.1000
$1\frac{7}{2}-12$ or $1.5000-12$	UNF	38.1000	2.1167	1A 2A 3A	0.0483 0.0483 0.0000	38.0517 38.0517 38.1000	37.6149 37.7622 37.8104	: : :	36.6776 36.6776 36.7259	36.4338 36.5150 36.6039	0.2438 35.5321 0.1626 35.5321 0.1219 35.5803	35.5321 35.5321 35.5803	1B 3 2B 3 3B 3	35.8140 35.8140 35.8140	36.2712 36.2712 36.0629	36.7259 36.7259 36.7259	37.0434 36.9367 36.8859	0.3175 38.1000 0.2108 38.1000 0.1600 38.1000	38.1000 38.1000 38.1000
$1\frac{1}{2}-16 \text{ or } 1.5000-16$	N	38.1000	1.5875	2A 3A	0.0406	38.0594 38.1000	37.8206 37.8612	: :	37.0281 37.0688	36.8960 36.9697	0.1321 36.1696 0.0991 36.2102	36.1696 36.2102	2B 3	36.3728 36.3728	36.7284 36.5989	37.0688 37.0688	37.2415 37.1983	0.1727 3 0.1295 3	38.1000 38.1000
$1\frac{1}{2}-18$ or $1.5000-18$	UNEF	UNEF 38.1000	1.4111	2A 3A	0.0381	38.0619 38.1000	37.8409 37.8790	: :	37.1450 37.1831	37.0180 37.0891	0.1270 36.3804 0.0940 36.4185	6.4185	2B 3 3B 3	36.5760 36.5760	36.9062 36.7792	37.1831 37.1831	37.3482 37.3050	0.1651 38.1000 0.1219 38.1000	38.1000 38.1000
$1\frac{1}{2}$ 20 or 1.5000–20	N	38.1000	1.2700	2A 3A	0.0356	38.0644 38.1000	37.8587 37.8943	: :	37.2389 37.2745	37.1170 37.1831	0.1219 36.5531 0.0914 36.5887	16.5531 16.5887	2B 3 3B 3	36.7284 36.7284	37.0078 36.9214	37.2745 37.2745	37.4320 37.3913	0.1575 38.1000 0.1168 38.1000	3.1000 3.1000
$1\frac{1}{2}$ 28 or 1.5000–28	N	38.1000	0.9071	2A 3A	0.0330	38.0670 38.1000	37.9019 37.9349	: :	37.4777 37.5107	37.3710 37.4320	0.1067 36.9875 0.0787 37.0205	36.9875 37.0205	2B 3	37.1094 37.1094	37.3380 37.2770	37.5107 37.5107	37.6504 37.6149	0.1397 3 0.1041 3	38.1000 38.1000
$1^{9}/_{16}$ –6 or 1.5625–6	S	39.6875	4.2333	2A 3A	0.0610	39.6265 39.6875	39.1643 39.2252	: :	36.8757 36.9367	36.6674 36.7817	0.2083 34.5846 0.1549 34.6456	4.5846	2B 3 3B 3	35.1028 35.1028	35.8902 35.6133	36.9367 36.9367	37.2059 37.1399	0.2692 3	39.6875 39.6875
$1\%_{16}$ –8 or 1.5625–8	N	39.6875	3.1750	2A 3A	0.00559	39.6316 39.6875	39.2506 39.3065	: :	37.5691 37.6250	37.3812 37.4853	0.1880 35.8521 0.1397 35.9080	35.8521 35.9080	2B 3	36.2458 36.2458	36.8808 36.6319	37.6250 37.6250	37.8689 37.8079	0.2438 3 0.1829 3	39.6875 39.6875
$1\%_{16}-12$ or $1.5625-12$	N	39.6875	2.1167	2A 3A	0.00457	39.6418 39.6875	39.3522 39.3979	: :	38.2676 38.3134	38.1178 38.2016	0.1499 37.1221 0.1118 37.1678	37.1221 37.1678	2B 3	37.3888 37.3888	37.8460 37.6504	38.3134 38.3134	38.5089 38.4607	0.1956 39.6875 0.1473 39.6875	39.6875 39.6875
$1^{9}/_{16}$ – 16 or 1.5625–16	N S	39.6875 1.5875	1.5875	2A 3A	0.0000	39.6469 39.6875	39.4081 39.4487	: :	38.6156 38.6563	38.4835 38.5572	0.1321 37.7571 0.0991 37.7977	7.7571	2B 3	37.9730 37.9730	38.3286 38.1864	38.6563 38.6563	38.8290 38.7858	0.1727 39.6875 0.1295 39.6875	39.6875 39.6875

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

								- IN I come to	(4)1					- -	I I I I I I I I I I I I I I I I I I I	15		
							-	External [Note (1)]	(L)]					=	internal [Note (1)]	(T)		
Nominal Size	Sarias	U				Σ	Major Diameter	ter	Pitch Function	Pitch Diameter and Functional Diameter (Notes (4), (5)]	UNR and Minor [Notes Diameter, Max	ř.			Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	nd ster	M. roie
and Threads/in.	Desig- nation	Metric Eq n Dia.	Metric Equivalents Dia. Pitch	Class	Allow-	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [Note (6)] ance (Ref.))] Class		Minor Diameter Min. Max.	Min.	Max.	Toler- D ance	Diameter, Min.
1 ⁹ / ₁₆ –18 or 1.5625–18	8 UNEF	F 39.6875	1.4111	2A 3A	0.0381	39.6494 39.6875	39.4284 39.4665	: :	38.7325 38.7706	38.6055 38.6766	0.1270 37.9679 0.0940 38.0060) 2B	3 38.1508 3 38.1508	38.4810 38.3667	38.7706 38.7706	38.9357 38.8950	0.1651 39 0.1245 39	39.6875 39.6875
1^{9}_{16} –20 or 1.5625–20	ND O:	39.6875	1.2700	2A 3A	0.0356	39.6519 39.6875	39.4462 39.4818	: :	38.8264 38.8620	38.7045 38.7706	0.1219 38.1406 0.0914 38.1762	2 B 3 B	3 38.3032 3 38.3032	38.6080 38.5089	38.8620 38.8620	39.0195 38.9814	0.1575 39.6875 0.1194 39.6875	39.6875 39.6875
$1^{5}/_{8}-6$ or $1.6250-6$	N D	41.2750	4.2333	2A 3A	0.0635	41.2115	40.7492 40.8127	: :	38.4607 38.5242	38.2524 38.3667	0.2083 36.1696 0.1575 36.2331	5 2B 1 3B	3 36.7030 3 36.7030	37.4650 37.2008	38.5242 38.5242	38.7960 38.7274	0.2718 41.2750 0.2032 41.2750	1.2750
$1^{5}/_{8}$ -8 or 1.6250-8	N D	41.2750	3.1750	2A 3A	0.00559	41.2191	40.8381	40.6476	39.1566 39.2125	38.9687 39.0703	0.1880 37.4396 0.1422 37.4955	2B 3B	3 37.8460 3 37.8460	38.4810 38.2194	39.2125 39.2125	39.4589 39.3954	0.2464 42	41.2750 41.2750
1 ⁵ / ₈ -12 or 1.6250-12	N N	41.2750	2.1167	2A 3A	0.00457	41.2293 41.2750	40.9397 40.9854	: :	39.8551 39.9009	39.7053 39.7891	0.1499 38.7096 0.1118 38.7553	2B 3 3B	38.9890	39.4462 39.2379	39.9009 39.9009	40.0964	0.1956 42	41.2750 41.2750
1 ⁵ / ₈ -16 or 1.6250-16	N S	41.2750	1.5875	2A 3A	0.0406	41.2344 41.2750	40.9956 41.0362	: :	40.2031 40.2438	40.0685	0.1346 39.3446 0.0991 39.3852	2B 3B	3 39.5478 3 39.5478	39.9034 39.7739	40.2438 40.2438	40.4165 40.3733	0.1727 42	41.2750 41.2750
$1\frac{5}{8}$ –18 or 1.6250–18	3 UNEF	F 41.2750	1.4111	2A 3A	0.00381	41.2369 41.2750	41.0159 41.0540	: :	40.3200	40.1930	0.1270 39.5554 0.0965 39.5935	2B 3B	3 39.7510 3 39.7510	40.0812	40.3581 40.3581	40.5232 40.4825	0.1651 42	41.2750 41.2750
1 ⁵ / ₈ –20 or 1.6250–20	N C	41.2750	1.2700	2A 3A	0.0356	41.2394 41.2750	41.0337 41.0693	: :	40.4139	40.2920 40.3581	0.1219 39.7281 0.0914 39.7637	1 2B	3 39.9034 3 39.9034	40.1828	40.4495	40.5689	0.1575 41.2750 0.1194 41.2750	1.2750
$1^{11}/_{16}$ –6 or 1.6875–6	N D	42.8625	4.2333	2A 3A	0.0635	42.7990 42.8625	42.3367 42.4002	: :	40.0482	39.8374 39.9542	0.2108 37.7571 0.1575 37.8206	1 2B 5 3B	3 38.2778 3 38.2778	39.0652 38.7883	40.1117	40.3860	0.2743 42.8625 0.2057 42.8625	42.8625 42.8625
$1^{11}/_{16}$ – 8 or 1.6875 – 8	N D	42.8625	3.1750	2A 3A	0.00559	42.8066 42.8625	42.4256 42.4815	: :	40.7441	40.5536	0.1905 39.0271 0.1422 39.0830	1 2B) 3B	3 39.4208 3 39.4208	40.0558	40.8000	41.0464 40.9854	0.2464 42 0.1854 42	42.8625 42.8625
$1^{11}/_{16}$ – 12 or 1.6875 – 12	12 UN	42.8625	2.1167	2A 3A	0.00457	42.8168 42.8625	42.5272 42.5729	: :	41.4426 41.4884	41.2928 41.3741	0.1499 40.2971 0.1143 40.3428	1 2B 3 3B	3 40.5638 3 40.5638	41.0210 40.8254	41.4884 41.4884	41.6839	0.1956 42 0.1473 42	42.8625 42.8625
$1^{11}/_{16}$ – 16 or 1.6875 – 16	16 UN	42.8625	1.5875	2A 3A	0.0406	42.8219 42.8625	42.5831 42.6237	: :	41.7906	41.6560 41.7297	0.1346 40.9321 0.1016 40.9727	1 2B	3 41.1480 3 41.1480	41.5036 41.3614	41.8313 41.8313	42.0065 41.9608	0.1753 42 0.1295 42	42.8625 42.8625
$1^{11}/_{16}$ – 18 or 1.6875 – 18	18 UNEF	F 42.8625	1.4111	2A 3A	0.0381	42.8244 42.8625	42.6034 42.6415	: :	41.9075 41.9456	41.7805 41.8490	0.1270 41.1429 0.0965 41.1810) 2B) 3B	3 41.3258 3 41.3258	41.6560 41.5417	41.9456 41.9456	42.1107 42.0700	0.1651 42 0.1245 42	42.8625 42.8625
1 ¹¹ / ₁₆ -20 or 1.6875-20 UN	20 UN	42.8625	1.2700	2A 3A	0.0356	42.8269 42.8625	42.6212 42.6568	: :	42.0014 42.0370	41.8795 41.9456	0.1219 41.3156 0.0914 41.3512	5 2B 2 3B	3 41.4782 3 41.4782	41.7830 41.6839	42.0370 42.0370	42.1970 42.1564	0.1600 42.8625 0.1194 42.8625	2.8625

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

]	External [Note (1)]	te (1)]						Inte	Internal [Note	e (1)]	
Nominal Siza	Sorios						Major Diameter	iter	Pitch Function	Pitch Diameter and Functional Diameter [Notes (4), (5)]		UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	and eter] Maior
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	quivalents Pitch	Class	Allow-	. Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [No ance (<u> </u>	Class N	Minor Diameter Min. Max	meter Max.	Min.	Max.	Toler- Diameter, ance Min.
1 ³ / ₄ –5 or 1.7500–5	UNC	44.4500	5.0800	1A 2A 3A	0.0686	44.3814 44.3814 44.4500	43.5991 43.8607 43.9293	43.5991	41.0820 41.0820 41.1505	40.7416 40.8559 40.9804	0.3404 38. 0.2261 38. 0.1702 38.	38.3311 1 38.3311 2 38.3997 3	1B 38.9 2B 38.9 3B 38.9	38.9382 39 38.9382 39 38.9382 39	39.8018	41.1505 41.1505 41.1505	41.5925 41.4452 41.3715	0.4420 44.4500 0.2946 44.4500 0.2210 44.4500
$1\frac{3}{4}$ -6 or 1.7500-6	N	44.4500	4.2333	2A 3A	0.0635	44.3865	43.9242 43.9877	: :	41.6357	41.4249	0.2108 39. 0.1600 39.	39.3446 2 39.4081 3	2B 39.8 3B 39.8	39.8780 40 39.8780 40	40.6400 4	41.6992 41.6992	41.9735 41.9049	0.2743 44.4500 0.2057 44.4500
1 ³ / ₄ -8 or 1.7500-8	N	44.4500	3.1750	2A 3A	0.0584	44.3916	44.0106 44.0690	43.8201	42.3291 42.3875	42.1386 42.2427	0.1905 40. 0.1448 40.	40.6121 2 40.6705 3	2B 41.0 3B 41.0	41.0210 41 41.0210 41	41.6560 4	42.3875 42.3875	42.6364 42.5755	0.2489 44.4500 0.1880 44.4500
$1^{3}/_{4}$ – 12 or 1.7500 – 12	S	44.4500	2.1167	2A 3A	0.0057	44.4500	44.1147 44.1604	: :	43.0301 43.0759	42.8777 42.9616	0.1524 41. 0.1143 41.	41.8846 2 41.9303 3	2B 42.1 3B 42.1	42.1640 42 42.1640 42	42.6212 <i>4</i> 2.4129 <i>4</i>	43.0759	43.2740 43.2232	0.1981 44.4500 0.1473 44.4500
$1\frac{3}{4}$ -16 or 1.7500-16	N	44.4500	1.5875	2A 3A	0.0406	44.4094	44.1706 44.2112	: :	43.3781	43.2435	0.1346 42. 0.1016 42.	42.5196 2 42.5602 3	2B 42.7 3B 42.7	42.7228 43 42.7228 42	43.0784 <i>4</i> 2.9489 4	43.4188 43.4188	43.5940 43.5508	0.1753 44.4500 0.1321 44.4500
$1\frac{3}{4}$ – 20 or 1.7500 – 20	N	44.4500	1.2700	2A 3A	0.0381	44.4119	44.2062 44.2443	: :	43.5864	43.4619 43.5331	0.1245 42. 0.0914 42.	42.9006 2 42.9387 3	2B 43.0 3B 43.0	43.0784 43 43.0784 43	43.3578 4	43.6245	43.7845 43.7439	0.1600 44.4500 0.1194 44.4500
$1^{13}/_{16}$ -6 or 1.8125-6	S	46.0375	4.2333	2A 3A	0.0635	45.9740	45.5117 45.5752	: :	43.2232	43.0098 43.1267	0.2134 40. 0.1600 40.	40.9321 2 40.9956 3	2B 41.4 3B 41.4	41.4528 42 41.4528 41	42.2402 <i>4</i>	43.2867	43.5635	0.2769 46.0375 0.2083 46.0375
$1^{13}/_{16}$ -8 or 1.8125-8	N	46.0375	3.1750	2A 3A	0.0584	45.9791	45.5981 45.6565	: :	43.9166 43.9750	43.7236	0.1930 42. 0.1448 42.	42.1996 2 42.2580 3	2B 42.5 3B 42.5	42.5958 43 42.5958 42	43.2308 <i>4</i>	43.9750 43.9750	44.2265 44.1630	0.2515 46.0375 0.1880 46.0375
$1^{13}/_{16}$ – 12 or 1.8125 – 12	2 UN	46.0375	2.1167	2A 3A	0.0057	45.9918	45.7022 45.7479	: :	44.6176 44.6634	44.4652 44.5491	0.1524 43. 0.1143 43.	43.4721 2 43.5178 3	2B 43.7 3B 43.7	43.7388 44 43.7388 44	44.1960 4	44.6634 44.6634	44.8615 44.8107	0.1981 46.0375 0.1473 46.0375
$1^{13}/_{16}$ – 16 or 1.8125 – 16 UN	NN 9	46.0375	1.5875	2A 3A	0.0406	45.9969	45.7581 45.7987	: :	44.9656	44.8310 44.9047	0.1346 44.1071 0.1016 44.1477		2B 44.3 3B 44.3	44.3230 44 44.3230 44	44.5364 4	45.0063	45.1815 45.1383	0.1753 46.0375 0.1321 46.0375
1^{13} / ₁₆ -20 or 1.8125-20 UN	N 0	46.0375	1.2700	2A 3A	0.0381	45.9994	45.7937 45.8318	: :	45.1739 45.2120	45.0494 45.1180	0.1245 44. 0.0940 44.	44.4881 2 44.5262 3	2B 44.6 3B 44.6	44.6532 44 44.6532 44	44.8589 4	45.2120 45.2120	45.3720 45.3314	0.1600 46.0375 0.1194 46.0375
$1^{7}/_{8}$ -6 or 1.8750-6	N N	47.6250	4.2333	2A 3A	0.0635	47.5615	47.0992 47.1627	: :	44.8107 44.8742	44.5973 44.7142	0.2134 42. 0.1600 42.	42.5196 2 42.5831 3	2B 43.0 3B 43.0	43.0530 43 43.0530 43	43.8150 <i>4</i>	44.8742 44.8742	45.1536 45.0825	0.2794 47.6250 0.2083 47.6250
$1^{7}/_{8}$ -8 or 1.8750-8	S	47.6250	3.1750	2A 3A	0.0584	47.5666	47.1856 47.2440	46.9951	45.5041 45.5625	45.3085 45.4177	0.1956 43.7871 0.1448 43.8455		2B 44.1 3B 44.1	44.1960 44 44.1960 44	44.8310 4	45.5625 45.5625	45.8165 45.7530	0.2540 47.6250 0.1905 47.6250

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							E	External [Note (1)]	te (1)]						lnt	Internal [Note	(1)]		
Nominal Size	S ori o					2	Major Diameter	ter	Pitch Function	Pitch Diameter and Functional Diameter [Notes (4), (5)]	_	UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]		Maior
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	uivalents Pitch	Class	Allow-	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [N	<u>=</u>	- Class	Minor Di Min.	Diameter Max.	Min.	Max.	Toler- Dian ance N	Diameter, Min.
1 ⁷ / ₈ -12 or 1.8750-12	N S	47.6250	2.1167	2A 3A	0.00457	47.5793 47.6250	47.2897 47.3354	: :	46.2051 46.2509	46.0527 46.1366	0.1524 49	45.0596 45.1053	2B 4 3B 4	45.3390 45.3390	45.7962 45.5879	46.2509 46.2509	46.4490	0.1981 47.6	47.6250
1 ⁷ / ₈ –16 or 1.8750–16	S	47.6250	1.5875	2A 3A	0.0406	47.5844 47.6250	47.3456 47.3862	: :	46.5531 46.5938	46.4185 46.4922	0.1346 45.6946 0.1016 45.7352	5.6946	2B 4 3B 4	45.8978 45.8978	46.2534 46.1239	46.5938 46.5938	46.7690 46.7258	0.1753 47.6250 0.1321 47.6250	47.6250 47.6250
$1^{7}/8-20$ or $1.8750-20$	N	47.6250	1.2700	2A 3A	0.00381	47.5869 47.6250	47.3812 47.4193	: :	46.7614	46.6369	0.1245 46.0756 0.0940 46.1137	46.0756 46.1137	2B 4 3B 4	46.2534 46.2534	46.5328	46.7995 46.7995	46.9621 46.9214	0.1626 47.6250 0.1219 47.6250	47.6250 47.6250
$1^{15}/_{16}$ or 1.9375–6	N	49.2125	4.2333	2A 3A	0.0060	49.1465 49.2125	48.6842 48.7502	: :	46.3956 46.4617	46.1797 46.2991	0.2159 44 0.1626 44	44.1046 44.1706	2B 4 3B 4	44.6278 44.6278	45.4152 45.1383	46.4617 46.4617	46.7436 46.6725	0.2819 49.2125 0.2108 49.2125	2125
$1^{15}/_{16}$ or 1.9375 – 8	N	49.2125	3.1750	2A 3A	0.0584	49.1541 49.2125	48.7731 48.8315	: :	47.0916 47.1500	46.8960 47.0027	0.1956 4	45.3746 45.4330	2B 4 3B 4	45.7708 45.7708	46.4058 46.1569	47.1500 47.1500	47.4040 47.3405	0.2540 49.2125 0.1905 49.2125	49.2125 49.2125
$1^{15}/_{16}$ – 12 or 1.9375 – 12 UN	N S	49.2125	2.1167	2A 3A	0.0457	49.1668 49.2125	48.8772 48.9229	: :	47.7926 47.8384	47.6402 47.7241	0.1524 46 0.1143 46	46.6471 46.6928	2B 4 3B 4	46.9138 46.9138	47.3710 47.1754	47.8384 47.8384	48.0365 47.9882	0.1981 49.2125 0.1499 49.2125	49.2125 49.2125
$1^{15}\!$	N N	49.2125	1.5875	2A 3A	0.0406	49.1719 49.2125	48.9331 48.9737	: :	48.1406 48.1813	48.0035 48.0797	0.1372 47.2821 0.1016 47.3227	47.2821 47.3227	2B 4 3B 4	47.4980	47.8536 47.7114	48.1813 48.1813	48.3591 48.3133	0.1778 49.2125 0.1321 49.2125	49.2125 49.2125
$1^{15}/_{16}$ – 20 or 1.9375 – 20 UN	N O	49.2125	1.2700	2A 3A	0.0381	49.1744 49.2125	48.9687	: :	48.3489	48.2244 48.2930	0.1245 47 0.0940 47	47.6631 47.7012	2B 4 3B 4	47.8282 47.8282	48.1330 48.0339	48.3870 48.3870	48.5496 48.5089	0.1626 49.2 0.1219 49.2	49.2125 49.2125
2-4.5 or 2.0000-4.5	UNC	50.8000	5.6444	1A 2A 3A	0.0737 0.0737 0.0000	50.7263 50.7263 50.8000	49.8881 50.1675 50.2412	49.8881	47.0611 47.0611 47.1348	46.6979 46.8198 46.9544	0.3632 44 0.2413 44 0.1803 44	44.0055 44.0055 44.0792	1B 4 2B 4 3B 4	44.6786 44.6786 44.6786	45.5930 45.5930 45.3669	47.1348 47.1348 47.1348	47.6072 47.4497 47.3710	0.4724 50.8 0.3150 50.8 0.2362 50.8	50.8000 50.8000 50.8000
2–6 or 2.0000–6	S	50.8000	4.2333	2A 3A	0.00660	50.7340	50.2717 50.3377	: :	47.9831 48.0492	47.7647 47.8866	0.2184 4	45.6921 45.7581	2B 4 3B 4	46.2280 46.2280	46.9900	48.0492 48.0492	48.3311 48.2600	0.2819 50.8 0.2108 50.8	50.8000
2–8 or 2.0000–8	N S	50.8000	3.1750	2A 3A	0.0584	50.7416	50.3606	50.1701	48.6791 48.7375	48.4810 48.5902	0.1981 46 0.1473 47	46.9621 47.0205	2B 4 3B 4	47.3710 47.3710	48.0060	48.7375 48.7375	48.9941 48.9306	0.2565 50.8 0.1930 50.8	50.8000
2–12 or 2.0000–12	S	50.8000	2.1167	2A 3A	0.0457	50.7543	50.4647 50.5104	: :	49.3801 49.4259	49.2252 49.3116	0.1549 48 0.1143 48	48.2346 48.2803	2B 4 3B 4	48.5140 48.5140	48.9712 48.7629	49.4259 49.4259	49.6265 49.5757	0.2007 50.8 0.1499 50.8	50.8000
2–16 or 2.0000–16	S	50.8000 1.5875	1.5875	2A 3A	0.0406	50.7594	50.5206 50.5612	: :	49.7281 49.7688	49.5910 49.6672	0.1372 48.8696 0.1016 48.9102	8.8696	2B 4 3B 4	49.0728 49.0728	49.4284 49.2989	49.7688	49.9466	0.1778 50.8 0.1321 50.8	50.8000

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

								External [Note (1)]	te (1)]						Internal [Note	te (1)]	
									Pitch Function	Pitch Diameter and Functional Diameter (Notes		UNR Minor			Pitch Funct	Pitch Diameter and Functional Diameter	and eter
Nominal Size	Series					2	Major Diameter	eter		(4), (5)]	ğ W	Max.	;	;	<u> </u>	[Notes (4), (5)])] Major
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	uivalents Pitch	Class	Allow-	Max. [Note (2)]] Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- Note ance (Re	[Note (6)] (Ref.) Class		Minor Diameter Min. Max.	Min.	Max.	Toler- Diameter, ance Min.
2–20 or 2.0000–20	N	50.8000	1.2700	2A 3A	0.00381	50.7619	50.5562	: :	49.9364	49.8119	0.1245 49.2506 0.0940 49.2887	506 2B 887 3B	49.4284 49.4284	34 49.7078 34 49.6214	49.9745 49.9745	50.1371	0.1626 50.8000 0.1219 50.8000
2½8–6 or 2.1250–6	N	53.9750	4.2333	2A 3A	0.0060	53.9090	53.4467	: :	51.1581 51.2242	50.9372 51.0591	0.2210 48.8671 0.1651 48.9331	671 2B 331 3B	49.4030 49.4030	30 50.1650 30 49.9008) 51.2242 3 51.2242	51.5112 51.4375	0.2870 53.9750 0.2134 53.9750
$2\frac{1}{8}$ -8 or 2.1250-8	N	53.9750	3.1750	2A 3A	0.0610	53.9140 53.9750	53.5330 53.5940	53.3425	51.8516 51.9125	51.6509	0.2007 50.1345 0.1499 50.1955	345 2B 955 3B	3 50.5460 3 50.5460	50 51.1810 50 50.9194	51.9125 51.9125	52.1716 52.1081	0.2591 53.9750 0.1956 53.9750
$2\frac{1}{8}$ -12 or 2.1250-12	N	53.9750	2.1167	2A 3A	0.00457	53.9293 53.9750	53.6397	: :	52.5551 52.6009	52.4002 52.4840	0.1549 51.4096 0.1168 51.4553	096 2B 553 3B	\$ 51.6890 \$ 51.6890	90 52.1462 90 51.9379	52.6009	52.8015 52.7507	0.2007 53.9750 0.1499 53.9750
$2\frac{1}{8}$ -16 or 2.1250-16	N	53.9750	1.5875	2A 3A	0.0406	53.9344 53.9750	53.6956	: :	52.9031 52.9438	52.7660 52.8396	0.1372 52.0446 0.1041 52.0852	446 2B 852 3B	3 52.2478 3 52.2478	78 52.6034 78 52.4739	52.9438 52.9438	53.1216	0.1778 53.9750 0.1346 53.9750
$2\frac{1}{8}$ – 20 or 2.1250 – 20	N	53.9750	1.2700	2A 3A	0.0381	53.9369 53.9750	53.7312	: :	53.1114 53.1495	52.9844 53.0555	0.1270 52.4256 0.0940 52.4637	256 2B 637 3B	3 52.6034 3 52.6034	34 52.8828 34 52.7964	53.1495 53.1495	53.3146	0.1651 53.9750 0.1219 53.9750
2½,4–4.5 or 2.2500–4.5	UNC	57.1500	5.6444	1A 2A 3A	0.0737 0.0737 0.0000	57.0763 57.0763 57.1500	56.2381 56.5175 56.5912	56.2381	53.4111 53.4111 53.4848	53.0403 53.1647 53.2994	0.3708 50.3555 0.2464 50.3555 0.1854 50.4292	555 1B 555 2B 292 3B	3 51.0286 3 51.0286 3 51.0286	36 51.9430 36 51.9430 36 51.7169	53.4848 53.4848 53.4848	53.9674 53.8048 53.7261	0.4826 57.1500 0.3200 57.1500 0.2413 57.1500
$2^{1}/_{4}$ -6 or 2.2500-6	N	57.1500	4.2333	2A 3A	0.0060	57.0840 57.1500	56.6217	: :	54.3331 54.3992	54.1096 54.2315	0.2235 52.0421 0.1676 52.1081	421 2B 081 3B	3 52.5780 3 52.5780	30 53.3400 30 53.0758	54.3992 54.3992	54.6887 54.6151	0.2896 57.1500 0.2159 57.1500
$2^{1}/_{4}$ -8 or 2.2500-8	N	57.1500	3.1750	2A 3A	0.0610	57.0890 57.1500	56.7080	56.5175	55.0266 55.0875	54.8234 54.9351	0.2032 53.3095 0.1524 53.3705	095 2B 705 3B	\$ 53.7210 \$ 53.7210	10 54.3560 10 54.0944	55.0875 55.0875	55.3517 55.2856	0.2642 57.1500 0.1981 57.1500
$2^{1}/_{4}$ –12 or 2.2500–12	N	57.1500	2.1167	2A 3A	0.0457	57.1043 57.1500	56.8147 56.8604	: :	55.7301 55.7759	55.5752 55.6590	0.1549 54.5846 0.1168 54.6303	846 2B 303 3B	54.8640 54.8640	40 55.3212 40 55.1129	2 55.7759 3 55.7759	55.9791 55.9283	0.2032 57.1500 0.1524 57.1500
$2^{1/4}_{4}$ –16 or 2.2500–16	N	57.1500	1.5875	2A 3A	0.0406	57.1094 57.1500	56.8706 56.9112	: :	56.0781 56.1188	55.9384 56.0146	0.1397 55.2196 0.1041 55.2602	196 2B 602 3B	3 55.4228 3 55.4228	28 55.7784 28 55.6489	i 56.1188 56.1188	56.2991 56.2534	0.1803 57.1500 0.1346 57.1500
$2\frac{1}{4}$ – 20 or 2.2500 – 20	N	57.1500	1.2700	2A 3A	0.0381	57.1119 57.1500	56.9062 56.9443	: :	56.2864 56.3245	56.1594 56.2280	0.1270 55.6006 0.0965 55.6387	006 2B 387 3B	3 55.7784 3 55.7784	34 56.0578 34 55.9714	3 56.3245 i 56.3245	56.4896	0.1651 57.1500 0.1245 57.1500
2 ³ / ₈ -6 or 2.3750-6	N	60.3250	4.2333	2A 3A	0.0086	60.2564	59.7941 59.8627	: :	57.5056 57.5742	57.2795 57.4065	0.2261 55.2145 0.1676 55.2831	145 2B 831 3B	3 55.7530 3 55.7530	30 56.5150 30 56.2508) 57.5742 3 57.5742	57.8663 57.7926	0.2921 60.3250 0.2184 60.3250

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							3	External [Note (1)]	te (1)]						lut	Internal [Note	(1)]		
Nominal Size	Series					×	Major Diameter	ter	Pitch Function	Pitch Diameter and Functional Diameter (Notes (4), (5)]	_	UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	nd ter	Maior
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch		Class	Allow- ance	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [N ance	<u>[</u>	_ Class	Minor Di Min.	Diameter Max.	Min.	Max.	Toler- D ance	Diameter, Min.
2 ³ / ₈ -8 or 2.3750-8	N S	60.3250	3.1750	2A 3A	0.0610	60.2640	59.8830	: :	58.2016 58.2625	57.9958 58.1101	0.2057 56 0.1524 56	56.4845	2B 5 3B 5	56.8960	57.5310 57.2694	58.2625 58.2625	58.5292 58.4632	0.2667 6	60.3250
$2^{3}/8-12$ or $2.3750-12$	N S	60.3250	2.1167	2A 3A	0.00457	60.2793	59.9897 60.0354	: :	58.9051 58.9509	58.7477 58.8340	0.1575 57 0.1168 57	57.7596	2B 5 3B 5	58.0390	58.4962 58.2879	58.9509 58.9509	59.1541 59.1033	0.2032 60.3250 0.1524 60.3250	60.3250
2 ³ / ₈ –16 or 2.3750–16	N	60.3250	1.5875	2A 3A	0.0406	60.2844	60.0456	: :	59.2531 59.2938	59.1134 59.1896	0.1397 58 0.1041 58	58.3946	2B 5 3B 5	58.5978	58.9534 58.8239	59.2938 59.2938	59.4741 59.4309	0.1803 6 0.1372 6	60.3250
2 ³ / ₈ -20 or 2.3750-20	N	60.3250	1.2700	2A 3A	0.0381	60.2869	60.0812	: :	59.4614 59.4995	59.3344 59.4030	0.1270 58 0.0965 58	58.7756	2B 5 3B 5	58.9534	59.2328 59.1464	59.4995 59.4995	59.6671 59.6240	0.1676 6 0.1245 6	60.3250 60.3250
2 ¹ / ₂ -4 or 2.5000-4	ONC	63.5000	6.3500	1A 2A 3A	0.0787 0.0787 0.0000	63.4213 63.4213 63.5000	62.5145 62.8167 62.8955	62.5145	59.2963 59.2963 59.3750	58.9026 59.0321 59.1769	0.3937 55 0.2642 55 0.1981 55	55.8597 55.8597 55.9384	1B 5 2B 5 3B 5	56.6166 56.6166 56.6166	57.5818 57.5818 57.3888	59.3750 59.3750 59.3750	59.8881 59.7179 59.6316	0.5131 6 0.3429 6 0.2565 6	63.5000 63.5000 63.5000
2½-6 or 2.5000-6	N	63.5000	4.2333	2A 3A	0.0086	63.4314 63.5000	62.9691 63.0377	: :	60.6806	60.4520 60.5790	0.2286 58 0.1702 58	58.3895	2B 5 3B 5	58.9280	59.6900	60.7492 60.7492	61.0438 60.9702	0.2946 63.5000 0.2210 63.5000	3.5000
$2^{1}/_{2}$ -8 or 2.5000-8	N	63.5000	3.1750	2A 3A	0.0610	63.4390	63.0580 63.1190	62.8675	61.3766 61.4375	61.1683 61.2826	0.2083 59 0.1549 59	59.6595	2B 6 3B 6	60.0710 6	60.7060	61.4375 61.4375	61.7068 61.6407	0.2692 6	63.5000
$2^{1}/_{2}$ –12 or 2.5000–12	N	63.5000	2.1167	2A 3A	0.0483	63.4517 63.5000	63.1622 63.2104	: :	62.0776 62.1259	61.9201 62.0090	0.1575 60 0.1168 60	60.9321	2B 6 3B 6	61.2140 (61.2140 (61.6712	62.1259 62.1259	62.3316 62.2783	0.2057 6	63.5000
$2^{1}/_{2}$ –16 or 2.5000–16	N	63.5000	1.5875	2A 3A	0.0432	63.4568 63.5000	63.2181 63.2612	: :	62.4256 62.4688	62.2859 62.3646	0.1397 61 0.1041 61	61.5671	2B 6 3B 6	61.7728 (62.1284 61.9989	62.4688 62.4688	62.6516 62.6059	0.1829 6	63.5000
$2^{1}/_{2}$ – 20 or 2.5000 – 20	N	63.5000	1.2700	2A 3A	0.0381	63.4619 63.5000	63.2562 63.2943	: :	62.6364 62.6745	62.5069 62.5780	0.1295 61 0.0965 61	61.9506	2B 6 3B 6	62.1284 (62.1284 (62.4078	62.6745 62.6745	62.8421 62.8015	0.1676 63.5000 0.1270 63.5000	63.5000
2 ⁵ / ₈ –6 or 2.6250–6	N O	66.6750	4.2333	2A 3A	0.0000	66.6064	66.1441 66.2127	: :	63.8556 63.9242	63.6270 63.7515	0.2286 61 0.1727 61	61.5645	2B 6 3B 6	62.1030 62.1030 6	62.8650	63.9242 63.9242	64.2239 64.1477	0.2997 66.6750 0.2235 66.6750	66.6750
2 ⁵ / ₈ -8 or 2.6250-8	N S	66.6750	3.1750	2A 3A	0.0635	66.6115 66.6750	66.2305 66.2940	: :	64.5490 64.6125	64.3407 64.4550	0.2083 62 0.1575 62	62.8320	2B 6 3B 6	63.2460 63.2460	63.8810	64.6125 64.6125	64.8843 64.8157	0.2718 6	66.6750
$2^{5/8}$ –12 or 2.6250–12	N S	66.6750 2.1167	2.1167	2A 3A	0.00483	66.6267 66.6750	66.3372 66.3854	: :	65.2526 65.3009	65.0951 65.1815	0.1575 64.1071 0.1194 64.1553		2B 6 3B 6	64.3890 (64.8462 64.6379	65.3009	65.5066 65.4558	0.2057 66.6750 0.1549 66.6750	6.6750

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

								External [Note (1)]	te (1)]						<u>u</u>	Internal [Note (1)]	(1)]		
									Pitch	Pitch Diameter and Emrtional Diameter (Notes		UNR				Pitch	Pitch Diameter and Finctional Diameter	ind	
Nominal Size	Series					2	Major Diameter	eter		(4), (5)]		Diameter, Max.				oN]	[Notes (4), (5)]		Major
and	Desig-	ĕ	uivalents Ditch	5	-		Ş.	Min.	Max.		, —	=	1	Minor Diameter	iameter		, a		eter,
Inreaus/in.	uation							[(c) alou	_ `					MIII.	Max.	MIII.	Max.		<u> </u>
2%-16 or 2.6250-16	N D	66.6/50	1.58/5	3A	0.00432	66.6318	66.3931 66.4362	: :	65.6006 65.6438	65.4583 65.5371	0.1422 6 0.1067 6	64./421 64.7852	3B 6	64.94/8 64.9478	65.3034 65.1739	65.6438 65.6438	65.8266 65.7809	0.1829 66.6750 0.1372 66.6750	750
2 ⁵ / ₈ -20 or 2.6250-20	S	66.6750	1.2700	2A 3A	0.0381	66.6369 (6.6750	66.4312 66.4693	: :	65.8114 65.8495	65.6819 65.7530	0.1295 6 0.0965 6	65.1256 65.1637	2B 6 3B 6	65.3034 65.3034	65.5828 65.4964	65.8495 65.8495	66.0171 65.9765	0.1676 66.6750 0.1270 66.6750	750
2 ³ / ₄ –4 or 2.7500–4	UNC	69.8500	6.3500	1 1 2 2 A 3 A	0.0813 0.0813 0.0000	69.7687 69.7687 69.8500	68.8619 69.1642 69.2455	68.8619	65.6438 65.6438 65.7250	65.2424 65.3771 65.5244	0.4013 6 0.2667 6 0.2007 6	62.2071 62.2071 62.2884	1B 6 2B 6 3B 6	62.9666 62.9666 62.9666	63.9318 63.9318 63.7388	65.7250 65.7250 65.7250	66.2483 66.0730 65.9867	0.5232 69.8500 0.3480 69.8500 0.2616 69.8500	000
2 ³ / ₄ -6 or 2.7500-6	S	69.8500	4.2333	2A 3A	0.0000	69.7814 69.8500	69.3191 69.3877	: :	67.0306 67.0992	66.7995	0.2311 6 0.1727 6	64.7395	2B 6 3B 6	65.2780 65.2780	66.0400	67.0992 67.0992	67.4014 67.3252	0.3023 69.8500 0.2261 69.8500	009
2 ³ / ₄ -8 or 2.7500-8	S	69.8500	3.1750	2A 3A	0.0035	69.7865	69.4055 69.4690	69.2150	67.7240 67.7875	67.5132 67.6275	0.2108 66.0070 0.1600 66.0705		2B 6 3B 6	66.4210 66.4210	67.0560 66.7944	67.7875 67.7875	68.0618 67.9933	0.2743 69.8500 0.2057 69.8500	009
$2\frac{3}{4}$ – 12 or 2.7500 – 12	N O	69.8500	2.1167	. 2A 3A	0.00483	69.8017 69.8500	69.5122 69.5604	: :	68.4276 68.4759	68.2676 68.3565	0.1600 67.2821 0.1194 67.3303		2B 6 3B 6	67.5640 67.5640	68.0212 67.8129	68.4759 68.4759	68.6816 68.6308	0.2057 69.8500 0.1549 69.8500	000
$2^{3/4}$ –16 or 2.7500–16	N S	69.8500	1.5875	2A 3A	0.0432	69.8068 (69.8500	69.5681 69.6112	: :	68.7756 68.8188	68.6333 68.7121	0.1422 67.9171 0.1067 67.9602		2B 6 3B 6	68.1228 68.1228	68.4784 68.3489	68.8188 68.8188	69.0042 68.9559	0.1854 69.8500 0.1372 69.8500	000
2 ³ / ₄ -20 or 2.7500-20	N S	69.8500	1.2700	2A 3A	0.0381	69.8119 (69.8500	69.6062 69.6443	: :	68.9864 69.0245	68.8569 68.9254	0.1295 6 0.0991 6	68.3387	2B 6 3B 6	68.4784 68.4784	68.7578 68.6714	69.0245 69.0245	69.1947 69.1515	0.1702 69.8500 0.1270 69.8500	000
2 ⁷ / ₈ -6 or 2.8750-6	N S	73.0250	4.2333	2A 3A	0.0000	72.9539 73.0250	72.4916 72.5627	: :	70.2031 70.2742	69.9694 70.0989	0.2337 6 0.1753 6	67.9120 67.9831	2B 6 3B 6	68.4530 68.4530	69.2150 68.9508	70.2742 70.2742	70.5790 70.5028	0.3048 73.0250 0.2286 73.0250	250
2 ⁷ / ₈ -8 or 2.8750-8	N S	73.0250	3.1750	2A 3A	0.0635	72.9615 73.0250	72.5805 72.6440	: :	70.8990 70.9625	70.6857 70.8025	0.2134 69.1820 0.1600 69.2455		2B 6 3B 6	69.5960 69.5960	70.2310 69.9694	70.9625 70.9625	71.2419 71.1708	0.2794 73.0250 0.2083 73.0250	250
2 ⁷ / ₈ -12 or 2.8750-12	N S	73.0250	2.1167	, 2A 3A	0.0483	3 72.9767) 73.0250	72.6872 72.7354	: :	71.6026 71.6509	71.4426 71.5315	0.1600 70.4571 0.1194 70.5053		2B 7 3B 7	70.7390 70.7390	71.1962 70.9879	71.6509 71.6509	71.8591 71.8058	0.2083 73.0250 0.1549 73.0250	250
$2^{7/8}$ -16 or 2.8750-16	N S	73.0250	1.5875	2A 3A	0.0432	2 72.9818) 73.0250	72.7431 72.7862	: :	71.9506 71.9938	71.8083 71.8871	0.1422 7 0.1067 7	71.0921	2B 7 3B 7	71.2978 71.2978	71.6534 71.5239	71.9938 71.9938	72.1792 72.1335	0.1854 73.0250 0.1397 73.0250	250
2 ⁷ / ₈ -20 or 2.8750-20	N S	73.0250 1.2700	1.2700	2A 3A	0.0406	5 72.9844) 73.0250	72.7786 72.8193	: :	72.1589 72.1995	72.0268 72.1004	0.1321 71.4731 0.0991 71.5137		2B 7 3B 7	71.6534 71.6534	71.9328 71.8464	72.1995 72.1995	72.3697 72.3265	0.1702 73.0250 0.1270 73.0250	250

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							Li	External [Note (1)]	te (1)]						lnt	Internal [Note	(1)]		
Nominal Giza	Series					2	Major Diameter	ter	Pitch Function	Pitch Diameter and Functional Diameter [Notes (4), (5)]	_	UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]		Major
and Threads/in.	Desig- nation		Metric Equivalents Dia. Pitch	Class	Allow-	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [<u></u>	_ Class	Min.	Diameter Max.	Min.	Мах.	Toler- Dia	Diameter, Min.
3-4 or 3.0000-4	UNC	76.2000	6.3500	1A 2A 3A	0.0813 0.0813 0.0000	76.1187 76.1187 76.2000	75.2119 75.5142 75.5955	75.2119	71.9938 71.9938 72.0750	71.5848 71.7220 71.8718	0.4089 6 0.2718 6 0.2032 6	68.5571 68.5571 68.6384	1B 6 2B 6 3B 6	69.3166 7 69.3166 7 69.3166 7	70.2818 70.2818 70.0888	72.0750 72.0750 72.0750	72.6059 72.4281 72.3392	0.5309 76 0.3531 76 0.2642 76	76.2000 76.2000 76.2000
3–6 or 3.0000–6	N	76.2000	4.2333	2A 3A	0.00711	76.1289 76.2000	75.6666	: :	73.3781 73.4492	73.1418 73.2714	0.2362 7 0.1778 7	71.0870 71.1581	2B 7 3B 7	71.6280	72.3900 72.1258	73.4492 73.4492	73.7565 73.6803	0.3073 76.3	76.2000
3-8 or 3.0000-8	N	76.2000	3.1750	2A 3A	0.00660	76.1340 76.2000	75.7530 75.8190	75.5625	74.0715 74.1375	73.8556 73.9750	0.2159 72.3544 0.1626 72.4205		2B 7 3B 7	72.7710	73.4060 73.1444	74.1375 74.1375	74.4195 74.3483	0.2819 76.3 0.2108 76.3	76.2000 76.2000
3–12 or 3.0000–12	N	76.2000	2.1167	2A 3A	0.00483	76.1517 76.2000	75.8622 75.9104	: :	74.7776 74.8259	74.6176 74.7065	0.1600 73.6321 0.1194 73.6803		2B 7 3B 7	73.9140 73.9140	74.3712 74.1629	74.8259 74.8259	75.0341 74.9833	0.2083 76.3	76.2000 76.2000
3–16 or 3.0000–16	N	76.2000	1.5875	2A 3A	0.0432	76.1568 76.2000	75.9181 75.9612	: :	75.1256 75.1688	74.9808 75.0621	0.1448 74.2671 0.1067 74.3102		2B 7 3B 7	74.4728 7	74.8284 74.6989	75.1688 75.1688	75.3542 75.3085	0.1854 76.3 0.1397 76.3	76.2000 76.2000
3–20 or 3.0000–20	N	76.2000	1.2700	2A 3A	0.0406	76.1594 76.2000	75.9536 75.9943	: :	75.3339 75.3745	75.2018 75.2754	0.1321 7 0.0991 7	74.6481 74.6887	2B 7 3B 7	74.8284	75.1078 75.0214	75.3745 75.3745	75.5472 75.5040	0.1727 76.3 0.1295 76.3	76.2000
$3^{1}/_{8}-6$ or $3.1250-6$	N	79.3750	4.2333	2A 3A	0.00711	79.3039 79.3750	78.8416 78.9127	: :	76.5531 76.6242	76.3143 76.4464	0.2388 74.2620 0.1778 74.3331		2B 7 3B 7	74.8030	75.5650 75.3008	76.6242 76.6242	76.9341 76.8579	0.3099 79.3	79.3750 79.3750
$3^{1}/_{8}$ -8 or 3.1250-8	N	79.3750	3.1750	2A 3A	0.0060	79.3090	78.9280 78.9940	: :	77.2465 77.3125	77.0280 77.1500	0.2184 75.5294 0.1626 75.5955		2B 7 3B 7	75.9460	76.5810 76.3194	77.3125 77.3125	77.5970 77.5259	0.2845 79.3750 0.2134 79.3750	79.3750 79.3750
$3^{1}/_{8}$ -12 or 3.1250-12	N	79.3750	2.1167	2A 3A	0.0483	79.3267 79.3750	79.0372 79.0854	: :	77.9526 78.0009	77.7900 77.8789	0.1626 76.8071 0.1219 76.8553		2B 7 3B 7	77.0890	77.5462 77.3379	78.0009	78.2117 78.1583	0.2108 79.3	79.3750 79.3750
$3^{1/8}$ -16 or 3.1250-16	N	79.3750	1.5875	2A 3A	0.0432	79.3318 79.3750	79.0931 79.1362	: :	78.3006 78.3438	78.1558 78.2345	0.1448 7 0.1092 7	77.4421 77.4852	2B 7 3B 7	77.6478	78.0034 77.8739	78.3438 78.3438	78.5317 78.4835	0.1880 79.3	79.3750 79.3750
3½-4 or 3.2500-4	UNC	82.5500	6.3500	1A 2A 3A	0.0838 0.0838 0.0000	82.4662 82.4662 82.5500	81.5594 81.8617 81.9455	81.5594	78.3412 78.3412 78.4250	77.9272 78.0644 78.2168	0.4140 74.9046 0.2769 74.9046 0.2083 74.9884		1B 7 2B 7 3B 7	75.6666 75.6666 75.6666	76.6318 76.6318 76.4388	78.4250 78.4250 78.4250	78.9635 78.7832 78.6943	0.5385 82. 0.3581 82. 0.2692 82.	82.5500 82.5500 82.5500
$3^{1}/_{4}$ -6 or 3.2500-6	N	82.5500	4.2333	2A 3A	0.0011	82.4789 82.5500	82.0166 82.0877	: :	79.7281 79.7992	79.4868 79.6188	0.2413 7 0.1803 7	77.4370 77.5081	2B 7 3B 7	77.9780	78.7400 78.4758	79.7992 79.7992	80.1116 80.0329	0.3124 82. 0.2337 82.	82.5500 82.5500
$3^{1}/_{4}$ -8 or 3.2500-8	N	82.5500	3.1750	2A 3A	0.0060	82.4840 82.5500	82.1030 82.1690	81.9125	80.4215 80.4875	80.2005 80.3224	0.2210 78.7044 0.1651 78.7705		2B 7 3B 7	79.1210	79.7560 79.4944	80.4875	80.7745 80.7034	0.2870 82.5500 0.2159 82.5500	5500

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

								External [Note (1)]	te (1)]					_ -	Internal [Note	te (1)]	
									Pitch Functions	Pitch Diameter and Functional Diameter (Notes		UNR Minor			Pitch Funct	Pitch Diameter and Functional Diameter	ınd eter
Nominal Size	Series	;				<	Major Diameter	eter		(4), (5)]	Max.	1X.	;	;	Z	[Notes (4), (5)]	l Major
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	uivalents Pitch	Class	Allow- s ance	Max. [Note (2)]] Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [Note ance (Re	[Note (6)] (Ref.) Class		Minor Diameter Min. Max.	Min.	Max.	Toler- Diameter, ance Min.
$3\frac{1}{4}-12$ or $3.2500-12$	N N	82.5500	2.1167	2A 3A	0.00483	82.5017 82.5500	82.2122 82.2604	::	81.1276	80.9650	0.1626 79.9821 0.1219 80.0303	821 2B 303 3B	3 80.2640 3 80.2640	10 80.7212 10 80.5129	81.1759	81.3867 81.3333	0.2108 82.5500 0.1575 82.5500
$3\frac{1}{4}$ – 16 or 3.2500 – 16	N	82.5500	1.5875	2A 3A	0.0432	82.5068 82.5500	82.2681	: :	81.4756	81.3308	0.1448 80.6171 0.1092 80.6602	171 2B 602 3B	3 80.8228 3 80.8228	8 81.1784 8 81.0489	81.5188	81.7067	0.1880 82.5500 0.1422 82.5500
3½-6 or 3.3750-6	N	85.7250	4.2333	2A 3A	0.0037	85.6513 85.7250	85.1891 85.2627	: :	82.9005 82.9742	82.6592 82.7913	0.2413 80.6094 0.1829 80.6831	094 2B 831 3B	8 81.1530 8 81.1530	80 81.9150 80 81.6508	82.9742	83.2891	0.3150 85.7250 0.2362 85.7250
3 ⁷ / ₈ -8 or 3.3750-8	N	85.7250	3.1750	2A 3A	0.0060	85.6590 85.7250	85.2780 85.3440	: :	83.5965	83.3730 83.4949	0.2235 81.8794 0.1676 81.9455	794 2B 455 3B	3 82.2960 3 82.2960	50 82.9310 50 82.6694	83.6625	83.9521 83.8784	0.2896 85.7250 0.2159 85.7250
3 ⁸ -12 or 3.3750-12	N	85.7250	2.1167	2A 3A	0.0483	85.6767 85.7250	85.3872 85.4354	: :	84.3026 84.3509	84.1400 84.2289	0.1626 83.1571 0.1219 83.2053	571 2B 053 3B	83.4390 83.4390	00 83.8962 00 83.6879	84.3509	84.5617 84.5109	0.2108 85.7250 0.1600 85.7250
3 ⁸ -16 or 3.3750-16	N	85.7250	1.5875	2A 3A	0.0432	85.6818 85.7250	85.4431 85.4862	: :	84.6506 84.6938	84.5058 84.5845	0.1448 83.7921 0.1092 83.8352	921 2B 352 3B	83.9978 83.9978	'8 84.3534 '8 84.2239	84.6938	84.8843 84.8360	0.1905 85.7250 0.1422 85.7250
$3\frac{1}{2}-4$ or $3.5000-4$	UNC	88.9000	6.3500	1A 2A 3A	0.0838 0.0838 0.0000	88.8162 88.8162 88.9000	87.9094 88.2117 88.2955	87.9094	84.6912 84.6912 84.7750	84.2696 84.4118 84.5642	0.4216 81.2546 0.2794 81.2546 0.2108 81.3384	546 1B 546 2B 384 3B	3 82.0166 3 82.0166 3 82.0166	6 82.9818 6 82.9818 6 82.7888	84.7750 84.7750 84.7750	85.3211 85.1383 85.0494	0.5461 88.9000 0.3632 88.9000 0.2743 88.9000
3½-6 or 3.5000-6	N	88.9000	4.2333	2A 3A	0.0037	88.8263 88.9000	88.3641	: :	86.0755	85.8317 85.9663	0.2438 83.7844 0.1829 83.8581	844 2B 581 3B	3 84.3280 3 84.3280	\$0 85.0900 \$0 84.8258	86.1492	86.4667 86.3879	0.3175 88.9000 0.2388 88.9000
3½-8 or 3.5000-8	N	88.9000	3.1750	2A 3A	0.0060	88.8340 88.9000	88.4530 88.5190	88.2625	86.7715	86.5480 86.6699	0.2235 85.0544 0.1676 85.1205	544 2B 205 3B	85.4710 8 85.4710	.0 86.1060 .0 85.8444	86.8375	87.1296 87.0560	0.2921 88.9000 0.2184 88.9000
$3\frac{1}{2}-12$ or $3.5000-12$	N	88.9000	2.1167	2A 3A	0.0483	88.8517 88.9000	88.5622 88.6104	: :	87.4776 87.5259	87.3150 87.4039	0.1626 86.3321 0.1219 86.3803	321 2B 803 3B	3 86.6140 3 86.6140	10 87.0712 10 86.8629	87.5259	87.7392	0.2134 88.9000 0.1600 88.9000
$3\frac{1}{2}-16 \text{ or } 3.5000-16$	N	88.9000	1.5875	2A 3A	0.0432	88.8568	88.6181 88.6612	: :	87.8256 87.8688	87.6783 87.7595	0.1473 86.9671 0.1092 87.0102	671 2B 102 3B	8 87.1728 8 87.1728	8 87.5284 8 87.3989	87.8688	88.0593	0.1905 88.9000 0.1422 88.9000
3 ⁵ / ₈ -6 or 3.6250-6	N	92.0750	4.2333	2A 3A	0.0037	92.0013 92.0750	91.5391	: :	89.2505 89.3242	89.0041 89.1388	0.2464 86.9594 0.1854 87.0331	594 2B 331 3B	87.5030 87.5030	88.2650 80.88.0008	89.3242	89.6442 89.5655	0.3200 92.0750 0.2413 92.0750
3 ⁵ / ₈ -8 or 3.6250-8	N	92.0750	3.1750	2A 3A	0.0000	92.0064 92.0750	91.6254 91.6940	: :	89.9439 90.0125	89.7179 89.8423	0.2261 88.2269 0.1702 88.2955	269 2B 955 3B	3 88.6460 3 88.6460	60 89.2810 60 89.0194	90.0125	90.3072	0.2946 92.0750 0.2210 92.0750

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

							Ē	External [Note (1)]	te (1)]						<u> </u>	Internal [Note	e (1)]		
Nominal Size	Series					2	Major Diameter	ter	Pitch Function:	Pitch Diameter and Functional Diameter (Notes (4), (5)]	_	UNR Minor Diameter,				Pitch Functi [No	Pitch Diameter and Functional Diameter [Notes (4), (5)]	nd :ter 	Major
and Threads/in.	Desig- nation	Metric Eq	Metric Equivalents Dia. Pitch	Class	Allow- ance	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [No ance (<u>(6</u>	_ Class	Minor Di Min.	Diameter Max.	Min.	Max.	Toler- D	Diameter, Min.
3 ⁵ / ₈ –12 or 3.6250–12	N S	92.0750	2.1167	2A 3A	0.0483	92.0267 92.0750	91.7372	: :	90.6526	90.4875	0.1651 89. 0.1219 89.	89.5071	2B 8 3B 8	89.7890 89.7890	90.2462 90.0379	90.7009	90.9142 90.8609	0.2134 9	92.0750 92.0750
3 ⁵ / ₈ -16 or 3.6250-16	N	92.0750	1.5875	2A 3A	0.0432	92.0318 92.0750	91.7931 91.8362	: :	91.0006 91.0438	90.8533 90.9345	0.1473 90.1421 0.1092 90.1852		2B 9 3B 9	90.3478 90.3478	90.7034	91.0438 91.0438	91.2343 91.1860	0.1905 9 0.1422 9	92.0750 92.0750
3 ³ / ₄ -4 or 3.7500-4	ONC	95.2500	6.3500	1A 2A 3A	0.0864 0.0864 0.0000	95.1636 95.1636 95.2500	94.2569 94.5591 94.6455	94.2569	91.0387 91.0387 91.1250	90.6120 90.7542 90.9117	0.4267 87.6021 0.2845 87.6021 0.2134 87.6884		1B 8 2B 8 3B 8	88.3666 88.3666 88.3666	89.3318 89.3318 89.1388	91.1250 91.1250 91.1250	91.6788 91.4933 91.4019	0.5537 9 0.3683 9 0.2769 9	95.2500 95.2500 95.2500
3 ³ / ₄ –6 or 3.7500–6	N	95.2500	4.2333	2A 3A	0.0037	95.1763 95.2500	94.7141 94.7877	: :	92.4255 92.4992	92.1766 92.3138	0.2489 90. 0.1854 90.	90.1344	2B 9 3B 9	90.6780	91.4400 91.1758	92.4992 92.4992	92.8218 92.7405	0.3226 95.2500 0.2413 95.2500	95.2500 95.2500
3 ³ / ₄ -8 or 3.7500-8	N	95.2500	3.1750	2A 3A	0.0086	95.1814 95.2500	94.8004	94.6099	93.1189 93.1875	92.8903 93.0173	0.2286 91. 0.1702 91.	91.4019	2B 9 3B 9	91.8210 91.8210	92.4560 92.1944	93.1875 93.1875	93.4847 93.4110	0.2972 95.2500 0.2235 95.2500	95.2500 95.2500
$3\frac{3}{4}$ –12 or 3.7500–12	N S	95.2500	2.1167	2A 3A	0.0483	95.2017 95.2500	94.9122 94.9604	: :	93.8276 93.8759	93.6625 93.7514	0.1651 92. 0.1245 92.	92.6821	2B 9 3B 9	92.9640 92.9640	93.4212 93.2129	93.8759	94.0892 94.0359	0.2134 95.2500 0.1600 95.2500	95.2500 95.2500
3 ³ / ₄ –16 or 3.7500–16	S	95.2500	1.5875	2A 3A	0.0432	95.2068 95.2500	94.9681 95.0112	: :	94.1756 94.2188	94.0283 94.1070	0.1473 93. 0.1118 93.	93.3171	2B 9 3B 9	93.5228 93.5228	93.8784 93.7489	94.2188 94.2188	94.4118 94.3635	0.1930 95.2500 0.1448 95.2500	5.2500
3 ⁷ / ₈ –6 or 3.8750–6	N S	98.4250	4.2333	2A 3A	0.0762	98.3488 98.4250	97.8865 97.9627	: :	95.5980 95.6742	95.3465 95.4862	0.2515 93.3069 0.1880 93.3831		2B 9 3B 9	93.8530 93.8530	94.6150 94.3508	95.6742 95.6742	95.9993 95.9180	0.3251 98.4250 0.2438 98.4250	98.4250 98.4250
3 ⁷ / ₈ -8 or 3.8750-8	S	98.4250	3.1750	2A 3A	0.0086	98.3564 98.4250	97.9754 98.0440	: :	96.2939 96.3625	96.0628 96.1898	0.2311 94. 0.1727 94.	94.5769	2B 9 3B 9	94.9960 94.9960	95.6310 95.3694	96.3625 96.3625	96.6622 96.5860	0.2997 98.4250 0.2235 98.4250	98.4250 98.4250
$3\frac{7}{8}$ -12 or 3.8750-12	N S	98.4250	2.1167	2A 3A	0.0508	98.3742 98.4250	98.0846 98.1354	: :	97.0001 97.0509	96.8350 96.9264	0.1651 95. 0.1245 95.	95.8545	2B 9 3B 9	96.1390 96.1390	96.5962 96.3879	97.0509 97.0509	97.2668 97.2134	0.2159 98.4250 0.1626 98.4250	98.4250 98.4250
3^{7}_{8} -16 or 3.8750-16	N S	98.4250	1.5875	2A 3A	0.00457	98.3793 98.4250	98.1405 98.1862	: :	97.3480 97.3938	97.2007 97.2820	0.1473 96. 0.1118 96.	96.4895	2B 9 3B 9	96.6978 96.6978	97.0534 96.9239	97.3938 97.3938	97.5868 97.5385	0.1930 98.4250 0.1448 98.4250	8.4250 8.4250
4-4 or 4.0000-4	ONC		101.6000 6.3500	1A 2A 3A	0.0864 0.0864 0.0000		101.5136 100.6069 101.5136 100.9091 101.6000 100.9955	100.6069	97.3887 97.3887 97.4750	96.9569 97.1017 97.2591	0.4318 93.9521 0.2870 93.9521 0.2159 94.0384		1B 9 2B 9 3B 9	94.7166 94.7166 94.7166	95.6818 95.6818 95.4888	97.4750 97.4750 97.4750	98.0364 97.8484 97.7570	0.5613 101.6000 0.3734 101.6000 0.2819 101.6000	101.6000 101.6000 101.6000
4-6 or 4.0000-6	N S	101.600	101.6000 4.2333	2A 3A	0.0762		101.5238 101.0615 101.6000 101.1377	: :	98.7730 98.8492	98.5215 98.6612	0.2515 96.4819 0.1880 96.5581		2B 9 3B 9	97.0280 97.0280	97.7900 97.5258	98.8492 98.8492	99.1768 99.0956	0.3277 101.6000 0.2464 101.6000	01.6000

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

					Ü	External [Note (1)]	te (1)]						Intel	Internal [Note (1)]	(1)]		
							Pitch I	Pitch Diameter and		UNR Minor				Pitch D	Pitch Diameter and	-	
Nominal Size	Sprips				Major Diameter	ter		(4), (5)]		Diameter, Max				[Not	[Notes (4), (5)]		Major
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	Class	Allow-	. Max. [Note (2)] Min.	Min. [Note (3)]	Max. [Note (2)]	Min.	Toler- [No ance (<u>[</u>	Class 1	Minor Diameter Min. Max	neter Max.	Min.	Max.	Toler- Di ance	Diameter, Min.
4-8 or 4.0000-8	N S	101.6000 3.1750	2A 3A	0.00000	101.5314 101.1504 101.2190	100.9599	99.4689	99.2378 (0.2311 97.	97.7519 2 97.8205 3	2B 98.	98.1710 98 98.1710 98	98.8060 9 98.5444 9	99.5375 9	99.8398 0	0.3023 101.6000 0.2261 101.6000	101.6000
4-12 or 4.0000-12	S	101.6000 2.1167	, 2A 3A	0.0000	101.5492 101.2596 101.6000 101.3104	: :	100.1751	100.0100 (0.1651 99. 0.1245 99.	99.0295 2 99.0803 3	2B 99.	99.3140 99 99.3140 99	99.7712 1	100.2259 1 100.2259 1	100.4418 0 100.3884 0	0.2159 101.6000 0.1626 101.6000	101.6000
4-16 or 4.0000-16	S	101.6000 1.5875	2A 3A	0.00457	101.5543 101.3155 101.6000 101.3612	: :	100.5230	100.5230 100.3732 0.1499 99.6645 100.5688 100.4570 0.1118 99.7102	0.1499 99. 0.1118 99.		2B 99.	99.8728 10 99.8728 10	100.2284 1	100.5688 100.7618 100.5688 100.7135	100.2284 100.5688 100.7618 0.1930 101.6000 100.0989 100.5688 100.7135 0.1448 101.6000	0.1930 101.6000 0.1448 101.6000	1.6000
4½-6 or 4.1250-6	S	104.7750 4.2333	3 2 A	0.0762	104.6988 104.2365 104.7750 104.3127	: :	101.9480 101.6940 102.0242 101.8337		0.2540 99.6569 0.1905 99.7331		2B 100 3B 100	.2030 10 .2030 10	0.9650 1	100.2030 100.9650 102.0242 102.3544 100.2030 100.7008 102.0242 102.2706	102.3544 C 102.2706 0	0.3302 104.7750 0.2464 104.7750	04.7750
4½-8 or 4.1250-8	S	104.7750 3.1750	2A 3A	0.0000	104.7039 104.3229 104.7750 104.3940	: :	102.6414 102.4077 102.7125 102.5373		0.2337 100.9244 0.1753 100.9955		2B 101 3B 101	101.3460 101.9810 101.3460 101.7194	1.9810 1	101.3460 101.9810 102.7125 103.0173 101.3460 101.7194 102.7125 102.9411	103.0173 0 102.9411 0	0.3048 104.7750 0.2286 104.7750	104.7750 104.7750
$4\frac{1}{8}$ -12 or 4.1250–12	S	104.7750 2.1167	, 2A 3A	0.0000	104.7242 104.4346 104.7750 104.4854	: :	103.3501	103.1824 (0.1676 102.2045 0.1245 102.2553		2B 102 3B 102	102.4890 102.9462 102.4890 102.7379)2.9462 1)2.7379 1	102.4890 102.9462 103.4009 103.6168 102.4890 102.7379 103.4009 103.5634		0.2159 104.7750 0.1626 104.7750)4.7750)4.7750
$4\frac{1}{8}$ -16 or 4.1250–16	S	104.7750 1.5875	2A 3A	0.00457	104.7293 104.4905 104.7750 104.5362	: :	103.6980	103.5482 (0.1499 102.8395 0.1118 102.8852		2B 103 3B 103	103.0478 103.4034 103.0478 103.2739	103.4034 1 103.2739 1	103.7438 103.9393 103.7438 103.8885	103.9393 0 103.8885 0	0.1956 104.7750 0.1448 104.7750	104.7750 104.7750
$4^{1}/_{4}$ -4 or 4.2500-4	S	107.9500 6.3500	2A 3A	0.0864	107.8636 107.2591	: :	103.7387	103.7387 103.4466 0.2921 100.3021 103.8250 103.6066 0.2184 100.3884).2921 10 ¹).2184 10 ⁰		2B 101 3B 101	.0666 10)2.0318 1)1.8388 1	101.0666 102.0318 103.8250 104.2035 101.0666 101.8388 103.8250 104.1095	104.2035 C 104.1095 0	0.3785 107.9500 0.2845 107.9500	7.9500 7.9500
$4^{1}/_{4}$ -6 or 4.2500-6	S	107.9500 4.2333	3 2 A	0.0000	107.8738 107.4115 107.9500 107.4877	: :	105.1230 104.8664 105.1992 105.0087	104.8664 (105.0087 (0.2565 102.8319 0.1905 102.9081		2B 103 3B 103	3780 10)4.1400 1)3.8758 1	103.3780 104.1400 105.1992 105.5319 103.3780 103.8758 105.1992 105.4481		0.3327 107.9500 0.2489 107.9500	7.9500 7.9500
$4^{1}/_{4}$ -8 or 4.2500-8	S	107.9500 3.1750	2A 3A	0.0000	107.8789 107.4979 107.9500 107.5690	: :	105.8164 105.8875	105.5802 (105.7097 (0.2362 104.0994 0.1778 104.1705		2B 104 3B 104	104.5210 105.1560 104.5210 104.8944)5.1560 1)4.8944 1	104.5210 105.1560 105.8875 106.1949 104.5210 104.8944 105.8875 106.1161	106.1949 0 106.1161 0	0.3073 107.9500 0.2286 107.9500	107.9500 107.9500
$4^{1}/_{4}$ –12 or 4.2500–12	S	107.9500 2.1167	, 2A 3A	0.0000	107.8992 107.6096 107.9500 107.6604	: :	106.5251 106.5759	106.3574 (0.1676 105.3795 0.1245 105.4303		2B 105 3B 105	105.6640 106.1212 105.6640 105.9129)6.1212 1)5.9129 1	106.5759 106.7943 106.5759 106.7384		0.2184 107.9500 0.1626 107.9500	7.9500 7.9500
$4^{1}/_{4}$ –16 or 4.2500–16	S	107.9500 1.5875	2A 3A	0.00457	107.9043 107.6655 107.9500 107.7112	: :	106.8730	106.7232 (0.1499 106.0145 0.1118 106.0602		2B 106 3B 106	106.2228 106.5784 106.2228 106.4489		106.9188 107.1143 106.9188 107.0661		0.1956 107.9500 0.1473 107.9500	107.9500 107.9500
4 ³ / ₈ -6 or 4.3750-6	N S	111.1250 4.2333	3A 3A	0.0762	111.0488 110.5865 111.1250 110.6627	: :	108.2980 108.0414 108.3742 108.1811		0.2565 106.0069 0.1930 106.0831		2B 106 3B 106	3.5530 10 3.5530 10	7.3150 1 7.0508 1	106.5530 107.3150 108.3742 108.7095 106.5530 107.0508 108.3742 108.6256	106.5530 107.3150 108.3742 108.7095 0.3353 111.1250 106.5530 107.0508 108.3742 108.6256 0.2515 111.1250	0.3353 111.1250 0.2515 111.1250	1.1250
$4^{3/8}$ -8 or 4.3750-8	N S	111.1250 3.1750	2A 3A	0.0000	111.0539 110.6729 111.1250 110.7440	: :	108.9914	108.9914 108.7552 0.2362 107.2744 109.0625 108.8847 0.1778 107.3455).2362 10.).1778 10.		2B 107 3B 107	6960 10 6960 10	18.3310 1 18.0694 1	09.0625 1 09.0625 1	107.6960 108.3310 109.0625 109.3699 0.3073 111.1250 107.6960 108.0694 109.0625 109.2937 0.2311 111.1250	.3073 11 .2311 11	1.1250

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

					FX	External [Note (1)]	te (1)]				Internal [Note (1)]	
		ı			i ;		Pitch		UNR Minor Diameter,		Pitch Die Function	Pitch Diameter and Functional Diameter
Nominal Size and	Serie Desig	Metric Equivalents	9	Allow-	lajor	Min.	Max.		=		or Diameter	Toler- Di
Inreads/In.	nation	DIA. PIECH	class	auce	[Note (2)] MIN.	[NOTE (3)]	[Note (2)] MIN.	ance	(Ker.) CI	Class MIII.	In. Max. MIII.	Max. ance Min.
$4^{3/8}$ –12 or 4.3750–12	N	111.1250 2.1167	2A 3A	0.0508	111.0742 110.7846 111.1250 110.8354	: :	109.7001 109.5324 109.7509 109.6239	0.1676 108.5545 0.1270 108.6053		2B 108.8 3B 108.8	108.8390 109.2962 109.7509 10 108.8390 109.0879 109.7509 10	109.9693 0.2184 111.1250 109.9134 0.1626 111.1250
4 ³ / ₈ –16 or 4.3750–16	S	111.1250 1.5875	2A 3A	0.00457	111.0793 110.8405 111.1250 110.8862	: :	110.0480 109.8982 110.0938 109.9795	0.1499 109.1895 0.1143 109.2352		2B 109.3 3B 109.3	109.3978 109.7534 110.0938 11 109.3978 109.6239 110.0938 11	110.2893 0.1956 111.1250 110.2411 0.1473 111.1250
$4^{1/2}$ -4 or 4.5000-4	S	114.3000 6.3500	2A 3A	0.0889	114.2111 113.6066 114.3000 113.6955	: :	110.0861 109.7915 110.1750 109.9541	0.2946 106.6495 0.2210 106.7384		2B 107.4 3B 107.4	107.4166 108.3818 110.1750 110.5586 107.4166 108.1888 110.1750 110.4621	110.5586 0.3835 114.3000 110.4621 0.2870 114.3000
$4^{1/2}-6$ or $4.5000-6$	S	114.3000 4.2333	2A 3A	0.0000	114.2213 113.7590 114.3000 113.8377	: :	111.4704 111.2114 111.5492 111.3536	0.2591 109.1794 0.1956 109.2581		2B 109.7 3B 109.7	109.7280 110.4900 111.5492 11 109.7280 110.2258 111.5492 11	111.8870 0.3378 114.3000 111.8006 0.2515 114.3000
$4^{1/2}$ -8 or 4.5000-8	S	114.3000 3.1750	2A 3A	0.0011	114.2289 113.8479 114.3000 113.9190	: :	112.1664 111.9276 112.2375 112.0572	0.2388 110.4494 0.1803 110.5205		2B 110.8 3B 110.8	110.8710 111.5060 112.2375 11 110.8710 111.2444 112.2375 11	112.5474 0.3099 114.3000 112.4712 0.2337 114.3000
$4^{1}/_{2}$ –12 or 4.5000–12	N	114.3000 2.1167	2A 3A	0.0508	114.2492 113.9596 114.3000 114.0104	: :	112.8751 112.7074 112.9259 112.7989	0.1676 111.7295 0.1270 111.7803		2B 112.0 3B 112.0	112.0140 112.4712 112.9259 11 112.0140 112.2629 112.9259 11	113.1443 0.2184 114.3000 113.0910 0.1651 114.3000
$4^{1/2}$ –16 or 4.5000–16	N	114.3000 1.5875	2A 3A	0.00457	114.2543 114.0155 114.3000 114.0612	: :	113.2230 113.0706 113.2688 113.1545	0.1524 11: 0.1143 11:	112.3645 2 112.4102 3	2B 112.5 3B 112.5	112.5728 112.9284 113.2688 11 112.5728 112.7989 113.2688 11	113.4669 0.1981 114.3000 113.4161 0.1473 114.3000
4 ⁵ / ₈ -6 or 4.6250-6	N	117.4750 4.2333	2A 3A	0.0000	117.3963 116.9340 117.4750 117.0127	: :	114.6454 114.3838 114.7242 114.5286	0.2616 112.3544 0.1956 112.4331		2B 112.9 3B 112.9	112.9030 113.6650 114.7242 115.0620 0.3378 117.4750 112.9030 113.4008 114.7242 114.9782 0.2540 117.4750	115.0620 0.3378 117.4750 114.9782 0.2540 117.4750
$4^{5/8}$ -8 or 4.6250-8	N	117.4750 3.1750	2A 3A	0.00711	117.4039 117.0229 117.4750 117.0940	: :	115.3414 115.1001 115.4125 115.2322	0.2413 113.6244 0.1803 113.6955		2B 114.0 3B 114.0	114,0460 114.6810 115.4125 115.7249 0.3124 117.4750 114.0460 114.4194 115.4125 115.6462 0.2337 117.4750	115.7249 0.3124 117.4750 115.6462 0.2337 117.4750
4 ⁵ / ₈ –12 or 4.6250–12	S	117.4750 2.1167	2A 3A	0.0508	117.4242 117.1346 117.4750 117.1854	: :	116.0501 115.8799 116.1009 115.9739	0.1702 114.9045 0.1270 114.9553		2B 115.1 3B 115.1	115.1890 115.6462 116.1009 116.3218 0.2210 117.4750 115.1890 115.4379 116.1009 116.2660 0.1651 117.4750	116.3218 0.2210 117.4750 116.2660 0.1651 117.4750
4 ⁵ / ₈ –16 or 4.6250–16	N	117.4750 1.5875	2A 3A	0.0457	117.4293 117.1905 117.4750 117.2362	: :	116.3980 116.2456 116.4438 116.3295	0.1524 115.5395 0.1143 115.5852		2B 115.7 3B 115.7	115.7478 116.1034 116.4438 11 115.7478 115.9739 116.4438 11	116.6419 0.1981 117.4750 116.5911 0.1473 117.4750
$4^{3}/_{4}$ -4 or 4.7500-4	N	120.6500 6.3500	2A 3A	0.0889	120.5611 119.9566 120.6500 120.0455	: :	116.4361 116.1390 116.5250 116.3015	0.2972 11:	112.9995 2 113.0884 3	2B 113.7 3B 113.7	113.7666 114.7318 116.5250 11 113.7666 114.5388 116.5250 11	116.9137 0.3886 120.6500 116.8146 0.2896 120.6500
4 ³ / ₄ –6 or 4.7500–6	N	120.6500 4.2333	2A 3A	0.00787	120.5713 120.1090 120.6500 120.1877	: :	117.8204 117.5588 117.8992 117.7036	0.2616 11	115.5294 2 115.6081 3	2B 116.0 3B 116.0	116.0780 116.8400 117.8992 11 116.0780 116.5758 117.8992 11	118.2395 0.3404 120.6500 118.1557 0.2565 120.6500
$4^{3}/_{4}$ -8 or 4.7500-8	N	120.6500 3.1750	2A 3A	0.0037	120.5763 120.1953 120.6500 120.2690	: :	118.5139 118.2726 0.2413 116.7968 118.5875 118.4046 0.1829 116.8705	0.2413 116.7968 0.1829 116.8705		2B 117.3 3B 117.3	117.2210 117.8560 118.5875 11 117.2210 117.5944 118.5875 11	118.9025 0.3150 120.6500 118.8237 0.2362 120.6500

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

					ш	External [Note (1)]	ote (1)]					Int	Internal [Note (1)]	[()]	
							Pitch D Functional	Pitch Diameter and Functional Diameter Notes		æ			Pitch Di	Pitch Diameter and Functional Diameter	
Nominal Size	Series				Major Diameter	eter	•	(4), (5)]	Diameter,	rer,		,	[Note:	[Notes (4), (5)]	Maior
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	Class	Allow- s ance	Max. [Note (2)] Min.	Min. [Note (3)]	Max.] [Note (2)]	T Min.	Toler- [Note (6)] ance (Ref.)		Class M	Minor Diameter Min. Max.	Min.	Toler- Max. ance	Diameter, Min.
$4\frac{3}{4} - 12$ or $4.7500 - 12$	N	120.6500 2.1167	2A 3A	0.0000	120.5992 120.3096 120.6500 120.3604		119.2251 1 119.2759 1	119.0549 0. 119.1489 0.	119.2251 119.0549 0.1702 118.0795 119.2759 119.1489 0.1270 118.1303		2B 118. 3B 118.	118.3640 118.8212 119.2759 119.4968 0.2210 120.6500 118.3640 118.6129 119.2759 119.4410 0.1651 120.6500	119.2759 11 119.2759 11	119.4968 0.2210 119.4410 0.1651	120.6500 120.6500
4 ³ / ₄ –16 or 4.7500–16	N	120.6500 1.5875	2A 3A	0.00457	120.6043 120.3655 120.6500 120.4112	: :	119.5730 1 119.6188 1	119.4206 0. 119.5045 0.	0.1524 118.7145 0.1143 118.7602		2B 118. 3B 118.	118.9228 119.2784 118.9228 119.1489	119.6188 11 119.6188 11	119.8169 0.1981 119.7686 0.1499	120.6500 120.6500
4 ⁷ / ₈ –6 or 4.8750–6	N	123.8250 4.2333	2A 3A	0.0087	123.7463 123.2840 123.8250 123.3627	: :	120.9954 120.7313 121.0742 120.8761	20.7313 0.20.8761 0.	120.7313 0.2642 118.7044 120.8761 0.1981 118.7831		2B 119.3 3B 119.3	119.2530 120.0150 121.0742 121.4171 119.2530 119.7508 121.0742 121.3307	121.0742 12 121.0742 12		0.3429 123.8250 0.2565 123.8250
4 ⁷ / ₈ –8 or 4.8750–8	N	123.8250 3.1750	2A 3A	0.0037	123.7513 123.3703 123.8250 123.4440	: :	121.6889 121.4450 121.7625 121.5796	21.4450 0.	121.6889 121.4450 0.2438 119.9718 121.7625 121.5796 0.1829 120.0455		2B 120.3 3B 120.3	120.3960 121.0310 121.7625 122.0800 120.3960 120.7694 121.7625 122.0013	121.7625 12 121.7625 12	22.0800 0.3175 22.0013 0.2388	0.3175 123.8250 0.2388 123.8250
$4^{7}/_{8}$ –12 or 4.8750–12	N	123.8250 2.1167	2A 3A	0.0508	123.7742 123.4846 123.8250 123.5354		122.4001 1 122.4509 1	122.2299 0. 122.3239 0.	122.4001 122.2299 0.1702 121.2545 122.4509 122.3239 0.1270 121.3053		2B 121. 3B 121.	121.5390 121.9962 122.4509 122.6718 121.5390 121.7879 122.4509 122.6160	122.4509 12 122.4509 12		0.2210 123.8250 0.1651 123.8250
4 ⁷ / ₈ –16 or 4.8750–16	N	123.8250 1.5875	2A 3A	0.0457	123.7793 123.5405 123.8250 123.5862	: :	122.7480 122.5956 122.7938 122.6795	.22.5956 0 .22.6795 0.	0.1524 121.8895 0.1143 121.9352		2B 122.0 3B 122.0	122.0978 122.4534 122.7938 122.9919 0.1981 123.8250 122.0978 122.3239 122.7938 122.9436 0.1499 123.8250	122.7938 12 122.7938 12	122.9919 0.1981 122.9436 0.1499	0.1981 123.8250 0.1499 123.8250
5-4 or 5.0000-4	N	127.0000 6.3500	2A 3A	0.0914	126.9086 126.3040 127.0000 126.3955	: :	122.7836 1 122.8750 1	122.4813 0.3023 122.6490 0.2261	0.3023 119.3470 0.2261 119.4384		2B 120.33B 120.3	120.1166 121.0818 122.8750 123.2662 120.1166 120.8888 122.8750 123.1697	122.8750 12 122.8750 12		0.3912 127.0000 0.2946 127.0000
5-6 or 5.0000-6	N	127.0000 4.2333	2A 3A	0.0087	126.9213 126.4590 127.0000 126.5377	: :	124.1704 123.9037 124.2492 124.0511		0.2667 121.8794 0.1981 121.9581		2B 122. ⁴ 3B 122. ⁴	122.4280 123.1900 124.2492 124.5946 122.4280 122.9258 124.2492 124.5083	124.2492 12 124.2492 13		0.3454 127.0000 0.2591 127.0000
5-8 or 5.0000-8	N	127.0000 3.1750	2A 3A	0.0037	126.9263 126.5453 127.0000 126.6190	: :	124.8639 124.6175 124.9375 124.7521	24.7521 0.	124.8639 124.6175 0.2464 123.1468 124.9375 124.7521 0.1854 123.2205		2B 123. 3B 123.	123.5710 124.2060 124.9375 125.2576 0.3200 127.0000 123.5710 123.9444 124.9375 125.1763 0.2388 127.0000	124.9375 12 124.9375 12	25.2576 0.3200 25.1763 0.2388	0.3200 127.0000 0.2388 127.0000
5-12 or 5.0000-12	N	127.0000 2.1167	2A 3A	0.0508	126.9492 126.6596 127.0000 126.7104		125.5751 125.4049 125.6259 125.4989	125.4049 0. 125.4989 0.	0.1702 124.4295 0.1270 124.4803		2B 124 3B 124	124.7140 125.1712 125.6259 125.8468 124.7140 124.9629 125.6259 125.7935	125.6259 12 125.6259 12	125.8468 0.2210 125.7935 0.1676	0.2210 127.0000 0.1676 127.0000
5-16 or 5.0000-16	N	127.0000 1.5875	2A 3A	0.0457	126.9543 126.7155 127.0000 126.7612	: :	125.9230 125.7681 125.9688 125.8545	125.7681 0. 125.8545 0.	0.1549 125.0645 0.1143 125.1102		2B 125 3B 125	125.2728 125.6284 125.9688 126.1694 0.2007 127.0000 125.2728 125.4989 125.9688 126.1186 0.1499 127.0000	125.6284 125.9688 126.1694 125.4989 125.9688 126.1186	26.1694 0.2007 26.1186 0.1499	0.2007 127.0000 0.1499 127.0000
5½-6 or 5.1250-6	N	130.1750 4.2333	2A 3A	0.0813	130.0937 129.6314 130.1750 129.7127		127.3429 1 127.4242 1	127.0762 0. 127.2235 0.	0.2667 125.0518 0.2007 125.1331		2B 125.0 3B 125.0	125.6030 126.3650 127.4242 125.6030 126.1008 127.4242	127.4242 12 127.4242 12	127.7722 0.3480 127.6858 0.2616	0.3480 130.1750 0.2616 130.1750
$5\frac{1}{8}$ -8 or 5.1250-8	N	130.1750 3.1750	2A 3A	0.0037	130.1013 129.7203 130.1750 129.7940	: :	128.0389 127.7925 128.1125 127.9271	127.7925 0. 127.9271 0.	0.2464 126.3218 0.1854 126.3955		2B 126.7 3B 126.7	126.7460 127.3810 128.1125 128.4351 126.7460 127.1194 128.1125 128.3538	128.1125 12 128.1125 12	128.4351 0.3226 128.3538 0.2413	0.3226 130.1750 0.2413 130.1750
5½-12 or 5.1250-12	N	130.1750 2.1167	2A 3A	0.0508	130.1242 129.8346 130.1750 129.8854		128.7501 1 128.8009 1	28.5799 0. 28.6713 0.	128.7501 128.5799 0.1702 127.6045 128.8009 128.6713 0.1295 127.6553		2B 127.8 3B 127.8	127.8890 128.3462 128.8009 129.0244 0.2235 130.1750 127.8890 128.1379 128.8009 128.9685 0.1676 130.1750	128.8009 12 128.8009 12	29.0244 0.2235 28.9685 0.1676	130.1750 130.1750

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

						External [Note (1)]	lote (1)]						Internal [Note	te (1)]		
Nominal Size	Series				Major Diameter	neter	Pitch E Functional (Pitch Diameter and Functional Diameter [Notes (4), (5)]		UNR Minor Diameter,			Pitch Funct [N	Pitch Diameter and Functional Diameter [Notes (4), (5)]		Maior
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	Class	Allow- ance	Max. [Note (2)] Min.	Min. [Note (3)]	Max. 3)] [Note (2)]	To Min. ar	Toler- [Not ance (R	<u>6</u>	Class 1	Minor Diameter Min. Max	meter Min.	Max.	Toler- Dian ance M	Diameter, Min.
5½-16 or 5.1250-16	N	130.1750 1.5875 2 3	2A 0 3A 0	0.00457	130.1293 129.8905 130.1750 129.9362	05	129.0980 1 129.1438 1	128.9431 0.1 129.0269 0.1	0.1549 128 0.1168 128	128.2395 2 128.2852 3	2B 128 3B 128	128.4478 128.8034 128.4478 128.6739	128.8034 129.1438 128.6739 129.1438	129.3444 129.2936	0.2007 130. 0.1499 130.	130.1750 130.1750
$5^{1}/_{4}$ –4 or 5.2500–4	N	133.3500 6.3500 2	2A 0 3A 0	0.0914	133.2586 132.6540 133.3500 132.7455	40	129.1336 128.8288 129.2250 128.9964		0.3048 125.6970 0.2286 125.7884		2B 126 3B 126	126.4666 12 126.4666 12	126.4666 127.4318 129.2250 129.6213 126.4666 127.2388 129.2250 129.5222		0.3962 133. 0.2972 133.	133.3500 133.3500
$5^{1}/_{4}-6$ or $5.2500-6$	S	133.3500 4.2333 2 3	2A 0 3A 0	0.00813	133.2687 132.8064 133.3500 132.8877	64	130.5179 1 130.5992 1	130.2487 0.2 130.3985 0.2	0.2692 128.2268 0.2007 128.3081		2B 128 3B 128	3.7780 1. 3.7780 1.	128.7780 129.5400 130.5992 130.9497 0.3505 133.3500 128.7780 129.2758 130.5992 130.8608 0.2616 133.3500	130.9497 130.8608	0.3505 133.3500 0.2616 133.3500	.3500
$5^{1}/_{4}$ -8 or 5.2500 -8	N	133.3500 3.1750 2	2A 0 3A 0	0.0037	133.2763 132.8953 133.3500 132.9690	53	131.2139 1 131.2875 1	130.9649 0.2 131.1021 0.1	0.2489 129.4968 0.1854 129.5705		2B 129 3B 129	129.9210 130.5560 129.9210 130.2944	129.9210 130.5560 131.2875 129.9210 130.2944 131.2875	131.6101 131.5288	0.3226 133.3500 0.2413 133.3500	133.3500 133.3500
$5^{1}/_{4}$ –12 or 5.2500–12	N	133.3500 2.1167 2 3	2A 0 3A 0	0.0508	133.2992 133.0096 133.3500 133.0604	96	131.9251 1 131.9759 1	131.7523 0.1 131.8463 0.1	0.1727 130.7795 0.1295 130.8303		2B 131 3B 131	131.0640 131.5212 131.0640 131.3129	131.5212 131.9759 131.3129 131.9759	132.1994 132.1435	0.2235 133.3500 0.1676 133.3500	133.3500 133.3500
$5^{1}/_{4}$ –16 or 5.2500–16	S	133.3500 1.5875 2 3	2A 0 3A 0	0.00457	133.3043 133.0655 133.3500 133.1112	55	132.2730 1 132.3188 1	132.1181 0.1 132.2019 0.1	0.1549 131.	131.4145 2 131.4602 3	2B 131 3B 131	131.6228 13 131.6228 13	131.9784 132.3188 131.8489 132.3188	132.5194 132.4686	0.2007 133.3500 0.1499 133.3500	133.3500 133.3500
5 ³ / ₈ -6 or 5.3750-6	N	136.5250 4.2333 2 3	2A 0 3A 0	0.00813	136.4437 135.9814 136.5250 136.0627	14 27	133.6929 1 133.7742 1	133.4237 0.2 133.5710 0.2	0.2692 131.	131.4018 2 131.4831 3	2B 131 3B 131	131.9530 132.7150 131.9530 132.4508	132.7150 133.7742 132.4508 133.7742	134.1247 134.0383	0.3505 136. 0.2642 136.	136.5250 136.5250
5 ³ / ₈ -8 or 5.3750-8	S	136.5250 3.1750 2 3	2A 0 3A 0	0.0762	136.4488 136.0678 136.5250 136.1440	78	134.3863 134.1349 134.4625 134.2746	134.1349 0.2 134.2746 0.1	0.2515 132.6693 0.1880 132.7455		2B 133 3B 133	3.0960 13	133.0960 133.7310 134.4625 134.7876 0.3251 136.5250 133.0960 133.4694 134.4625 134.7064 0.2438 136.5250	5 134.7876 0. 5 134.7064 0.	.3251 136. .2438 136.	.5250
5 ³ / ₈ -12 or 5.3750-12	S	136.5250 2.1167 2 3	2A 0 3A 0	0.0508	136.4742 136.1846 136.5250 136.2354	46	135.1001 1 135.1509 1	134.9273 0.1 135.0213 0.1	0.1727 133.9545 0.1295 134.0053		2B 134 3B 134	4.2390 1: 4.2390 1:	134.2390 134.6962 135.1509 135.3744 0.2235 136.5250 134.2390 134.4879 135.1509 135.3185 0.1676 136.5250	9 135.3744 0. 9 135.3185 0.	0.2235 136.5250 0.1676 136.5250	.5250
5 ³ / ₈ –16 or 5.3750–16	S	136.5250 1.5875 2 3	2A 0 3A 0	0.00457	136.4793 136.2405 136.5250 136.2862	05	135.4480 135.2931 135.4938 135.3769		0.1549 134.5895 0.1168 134.6352		2B 134 3B 134	134.7978 135.1534 134.7978 135.0239	135.1534 135.4938 135.0239 135.4938	135.6944 135.6462	0.2007 136.5250 0.1524 136.5250	136.5250 136.5250
$5^{1}/_{2}$ -4 or 5.5000-4	N	139.7000 6.3500 2	2A 0 3A 0	0.0914	139.6086 139.0040 139.7000 139.0955	40	135.4836 1 135.5750 1	135.1763 0.3 135.3439 0.2	0.3073 132.0470 0.2311 132.1384		2B 132 3B 132	132.8166 13 132.8166 13	133.7818 135.5750 135.9764 133.5888 135.5750 135.8748	135.5750 135.9764 0. 135.5750 135.8748 0.	0.4013 139. 0.2997 139.	139.7000 139.7000
$5^{1}/_{2}-6$ or $5.5000-6$	N	139.7000 4.2333 2	2A 0 3A 0	0.00813	139.6187 139.1564 139.7000 139.2377	64	136.8679 1 136.9492 1	136.5961 0.2 136.7460 0.2	0.2718 134.5768 0.2032 134.6581		2B 135 3B 135	135.1280 13 135.1280 13	135.8900 136.9492 135.6258 136.9492	137.3022 137.2133	0.3531 139.7000 0.2642 139.7000	139.7000 139.7000
$5^{1}/_{2}$ -8 or 5.5000-8	N	139.7000 3.1750 2	2A 0 3A 0	0.0762	139.6238 139.2428 139.7000 139.3190	28	137.5613 1 137.6375 1	137.3099 0.2 137.4496 0.1	0.2515 135.8443 0.1880 135.9205		2B 136 3B 136	136.2710 13 136.2710 13	136.2710 136.9060 137.6375 136.2710 136.6444 137.6375	137.9652 137.8839	0.3277 139.7000 0.2464 139.7000	139.7000 139.7000
$5^{1}/_{2}$ – 12 or 5.5000 – 12	N	139.7000 2.1167 2	2A 0 3A 0	0.0508	139.6492 139.3596 139.7000 139.4104	96	138.2751 138.1023 138.3259 138.1963	138.1023 0.1 138.1963 0.1	0.1727 137.1295 0.1295 137.1803		2B 137 3B 137	7.4140 1; 7.4140 1;	137.4140 137.8712 138.3259 138.5519 0.2261 139.7000 137.4140 137.6629 138.3259 138.4935 0.1676 139.7000	9 138.5519 0. 9 138.4935 0.	.2261 139. .1676 139.	.7000

Table C-1 Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd)

						External [Note (1)]	te (1)]				u	Internal [Note (1)]]	
							Pitch Dia Functional D	Pitch Diameter and Functional Diameter (Notes				Pitch Dia Functiona	Pitch Diameter and Functional Diameter	
Nominal Size	Series				Major Diamete	eter	(4)	(4), (5)]	Diameter, Max.			[Notes	[Notes (4), (5)]	Major
and Threads/in.	Desig- nation	Metric Equivalents Dia. Pitch	Class	Allow-	- Max. [Note (2)] Min.	Min. [Note (3)]	Max. [Note (2)]	Tol Min. an	Toler- [Note (6)] ance (Ref.)	Class	Minor Diameter Min. Max.	Min.	Toler- I Max. ance	Diameter, Min.
5½-16 or 5.5000-16	S	139.7000 1.5875	2A 3A	0.00457	, 139.6543 139.4155) 139.7000 139.4612		138.6230 13 138.6688 13	138.4681 0.1549 138.5519 0.1168	0.1549 137.7645 0.1168 137.8102	2B 3B	137.9728 138.3284 138.6688 137.9728 138.1989 138.6688	138.6688 138 138.6688 138	138.8720 0.2032 1 138.8212 0.1524 1	0.2032 139.7000 0.1524 139.7000
5 [%] -6 or 5.6250-6	N	142.8750 4.2333	2A 3A	0.0813	142.7937 142.3314 142.8750 142.4127		140.0429 13 140.1242 13	139.7686 0.27 139.9184 0.20	0.2743 137.7518 0.2057 137.8331	2B 3B	138.3030 139.0650 140.1242 140.4798 138.3030 138.8008 140.1242 140.3909) 140.1242 14C 3 140.1242 14C	140.4798 0.3556 1 140.3909 0.2667 1	0.3556 142.8750 0.2667 142.8750
5 [%] -8 or 5.6250-8	N	142.8750 3.1750	2A 3A	0.0762	: 142.7988 142.4178 : 142.8750 142.4940	: :	140.7363 140.4823 140.8125 140.6220	40.4823 0.2 40.6220 0.1	140.7363 140.4823 0.2540 139.0193 140.8125 140.6220 0.1905 139.0955	2B 3B	139.4460 140.0810 140.8125 141.1427 0.3302 142.8750 139.4460 139.8194 140.8125 141.0589 0.2464 142.8750) 140.8125 14: : 140.8125 141	1.1427 0.3302 142.8750 1.0589 0.2464 142.8750	42.8750
5%-12 or 5.6250-12	N	142.8750 2.1167	2A 3A	0.0508	3 142.8242 142.5346 9 142.8750 142.5854		141.4501 141.2773 141.5009 141.3713	41.2773 0.1 11.3713 0.1	0.1727 140.3045 0.1295 140.3553	2B 3B	140.5890 141.0462 141.5009 141.7269 0.2261 142.8750 140.5890 140.8379 141.5009 141.6710 0.1702 142.8750	141.5009 14: 141.5009 141	1.7269 0.2261 142.8750 1.6710 0.1702 142.8750	42.8750
5%-16 or 5.6250-16	N	142.8750 1.5875	2A 3A	0.0057	, 142.8293 142.5905) 142.8750 142.6362	: : :	141.7980 141.6406 141.8438 141.7269	141.6406 0.1 141.7269 0.1	0.1575 140.9395 0.1168 140.9852	2B 3B	141.1478 141.5034 141.8438 142.0470 0.2032 142.8750 141.1478 141.3739 141.8438 141.9962 0.1524 142.8750	141.8438 142 141.8438 141	142.0470 0.2032 1 141.9962 0.1524 1	142.8750 142.8750
5 ³ / ₄ -4 or 5.7500-4	N	146.0500 6.3500	2A 3A	0.0940) 145.9560 145.3515) 146.0500 145.4455	: :	141.8311 141.5212 141.9250 141.6914	41.5212 0.3 11.6914 0.2	0.3099 138.3944 0.2337 138.4884	2B 3B	139.1666 140.1318 141.9250 142.3289 139.1666 139.9388 141.9250 142.2273	3 141.9250 14. 3 141.9250 142	2.3289 0.4039 146.0500 2.2273 0.3023 146.0500	46.0500
5 ³ / ₄ –6 or 5.7500–6	N	146.0500 4.2333	2A 3A	0.0813	145.9687 145.5064 146.0500 145.5877	: :	143.2179 14 143.2992 14	142.9436 0.27 143.0934 0.20	0.2743 140.9268 0.2057 141.0081	2B 3B	141.4780 142.2400 143.2992 143.6573 0.3581 146.0500 141.4780 141.9758 143.2992 143.5684 0.2692 146.0500	142.2400 143.2992 143 141.9758 143.2992 143	143.6573 0.3581 1 143.5684 0.2692 1	146.0500 146.0500
5 ³ / ₄ -8 or 5.7500-8	N	146.0500 3.1750	2A 3A	0.0762	: 145.9738 145.5928 : 146.0500 145.6690	: :	143.9113 143.6573 143.9875 143.7970	43.6573 0.2 13.7970 0.1!	143.9113 143.6573 0.2540 142.1943 143.9875 143.7970 0.1905 142.2705	2B 3B	142.6210 143.2560 143.9875 144.3177 0.3302 146.0500 142.6210 142.9944 143.9875 144.2364 0.2489 146.0500) 143.9875 14 ⁴ : 143.9875 14 ⁴	4.3177 0.3302 146.0500 4.2364 0.2489 146.0500	46.0500
5% - 12 or $5.7500 - 12$	N	146.0500 2.1167	2A 3A	0.0033	145.9967 145.7071 146.0500 145.7604	: :	144.6225 144.4498 144.6759 144.5463	14.4498 0.1 14.5463 0.1	144.6225 144.4498 0.1727 143.4770 144.6759 144.5463 0.1295 143.5303	2B 3B	143.7640 144.2212 144.6759 144.9019 0.2261 146.0500 143.7640 144.0129 144.6759 144.8460 0.1702 146.0500	144.6759 14 ² 144.6759 14 ²	4.9019 0.2261 1 4.8460 0.1702 1	46.0500
5¾-16 or 5.7500-16	N	146.0500 1.5875	2A 3A	0.0483	146.0017 145.7630 146.0500 145.8112	: :	144.9705 144.8130 145.0188 144.9019	144.8130 0.13 144.9019 0.13	0.1575 144.1120 0.1168 144.1602	2B 3B	144.3228 144.6784 145.0188 145.2220 0.2032 146.0500 144.3228 144.5489 145.0188 145.1712 0.1524 146.0500	145.0188 145 145.0188 145	145.2220 0.2032 1 145.1712 0.1524 1	146.0500 146.0500
5 ⁷ / ₈ -6 or 5.8750-6	S	149.2250 4.2333	2A 3A	0.0838	3 149.1412 148.6789 3 149.2250 148.7627		146.3904 146.1135 146.4742 146.2659	46.1135 0.2 46.2659 0.20	0.2769 144.0993 0.2083 144.1831	2B 3B	144.6530 145.4150 146.4742 146.8349 0.3607 149.2250 144.6530 145.1508 146.4742 146.7434 0.2692 149.2250) 146.4742 146 ; 146.4742 146	5.8349 0.3607 149.2250 5.7434 0.2692 149.2250	49.2250
5 ⁷ / ₈ -8 or 5.8750-8	S	149.2250 3.1750	2A 3A	0.0762	149.1488 148.7678 149.2250 148.8440	: :	147.0863 14 147.1625 14	146.8298 0.2 146.9695 0.19	0.2565 145.3693 0.1930 145.4455	2B 3B	145.7960 146.4310 147.1625 147.4953 0.3327 149.2250 145.7960 146.1694 147.1625 147.4114 0.2489 149.2250	146.4310 147.1625 147 146.1694 147.1625 147	147.4953 0.3327 1 147.4114 0.2489 1	0.3327 149.2250 0.2489 149.2250
$5^{7}_{/8}$ –12 or 5.8750–12	S	149.2250 2.1167	2A 3A	0.0033	149.1717 148.8821 149.2250 148.9354	: :	147.7975 147.6223 147.8509 147.7188	147.6223 0.13 147.7188 0.13	0.1753 146.6520 0.1321 146.7053	2B 3B	146.9390 147.3962 147.8509 148.0769 146.9390 147.1879 147.8509 148.0210	147.8509 148 147.8509 148	0.2261	149.2250 149.2250
5^{7}_{8} -16 or 5.8750-16	N	149.2250 1.5875	2A 3A	0.0483	149.1767 148.9380 149.2250 148.9862		148.1455 14 148.1938 14	17.9880 0.1 18.0769 0.1	148.1455 147.9880 0.1575 147.2870 148.1938 148.0769 0.1168 147.3352	2B 3B	147.4978 147.7239 148.1938 148.3995 0.2057 149.2250 147.4978 147.7239 148.1938 148.3462 0.1524 149.2250	148.1938 148 148.1938 148	3.3995 0.2057 1 3.3462 0.1524 1	49.2250

Limits of Size for Standard Series (UN/UNR) Threads, mm (Cont'd) Table C-1

							E	External [Note (1)]	te (1)]						Inte	Internal [Note (1)]	(1)]		
Nominal Size	Series	u.				Ma	Major Diameter	e	Pitch Diameter and Functional Diameter [Notes (4), (5)]	Pitch Diameter and :tional Diameter [No (4), (5)]		UNR Minor Diameter,				Pitch [Functio [Not	Pitch Diameter and Functional Diameter [Notes (4), (5)]		Major
and Threads/in.	Desig- nation	r Metric E n Dia.	Designation Dia. Pitch	Class	Allow- ance	Max. [Note (2)]	Min.	Min. [Note (3)]	Max. [Note (2)]	To Min. aı	Toler- [Not ance (R	[6	Class	Minor Diameter Min. Max.	ameter	Min.	Max.	Toler- Dia	Diameter, Min.
6-4 or 6.0000-4	N O	152.400	152.4000 6.3500 2A 0.0940 3A 0.0000	2A 3A	0.0940	152.3060 151.7015 152.4000 151.7955	151.7015 151.7955	: :	148.1811 147.8661 0.3150 144.7444 148.2750 148.0388 0.2362 144.8384	7.8661 0.3 8.0388 0.2	3150 144 362 144		2B 1, 3B 1,	45.5166 : 45.5166 1	146.4818 1	148.2750 1	2B 145.5166 146.4818 148.2750 148.6840 0.4089 152.4000 3B 145.5166 146.2888 148.2750 148.5798 0.3048 152.4000	4089 15	2.4000
6–6 or 6.0000–6	N	152.400	152.4000 4.2333 2A 0.0838 3A 0.0000	2A 3A	0.0838	152.3162 151.8539 152.4000 151.9377	151.8539 151.9377	: :	149.5654 149.2885 0.2769 147.2743 149.6492 149.4409 0.2083 147.3581	9.2885 0.2	2769 147 :083 147		2B 1, 3B 1,	47.8280 :	48.3258 1	149.6492 1	147.8280 148.5900 149.6492 150.0099 0.3607 152.4000 147.8280 148.3258 149.6492 149.9210 0.2718 152.4000	3607 15 2718 15	2.4000
6–8 or 6.0000–8	N	152.400	152.4000 3.1750 2A 0.0762 3A 0.0000	2A 3A	0.0762	152.3238 151.9428 152.4000 152.0190	151.9428 152.0190	::	150.2613 150.0022 0.2591 148.5443 150.3375 150.1445 0.1930 148.6205	0.0022 0.2	2591 148 .930 148		2B 1, 3B 1,	48.9710 : 48.9710 1	49.6060 1	150.3375 1	148.9710 149.6060 150.3375 150.6728 0.3353 152.4000 148.9710 149.3444 150.3375 150.5890 0.2515 152.4000	3353 15 2515 15	2.4000
6–12 or 6.0000–12	N	152.400	152.4000 2.1167 2A 0.0533 3A 0.0000	, 2A 3A	0.0000	152.3467 152.0571 152.4000 152.1104	152.0571 152.1104	::	150.9725 150.7973 0.1753 149.8270 151.0259 150.8938 0.1321 149.8803	.0.7973 0.1 0.8938 0.1	1753 149 .321 149		2B 11 3B 11	50.1140 ;	50.3629 1	151.0259 1	2B 150.1140 150.5712 151.0259 151.2545 0.2286 152.4000 3B 150.1140 150.3629 151.0259 151.1960 0.1702 152.4000	2286 15 1702 15	2.4000
6–16 or 6.0000–16	N N	152.40(152.4000 1.5875 2A 0.0483 3A 0.0000	2A 3A	0.0483	152.3517 152.1130 152.4000 152.1612	152.1130	: :	151.3205 151.1630 0.1575 150.4620 2B 150.6728 151.0284 151.3688 151.5745 0.2057 152.4000 151.3688 151.2494 0.1194 150.5102 3B 150.6728 150.8989 151.3688 151.5237 0.1549 152.4000	1.1630 0.1	1575 150	5102	2B 1 3B 1	50.6728 :	51.0284 1	151.3688 1	150.6728 151.0284 151.3688 151.5745 0.2057 152.4000 150.6728 150.8989 151.3688 151.5237 0.1549 152.4000	2057 15	2.4000

GENERAL NOTES:

- (a) Series designation shown indicates the UN thread form; however, the UNR thread form may be specified by substituting UNR in place of UN in all designations for external use only.
- (b) Metric values are the rounded, direct soft conversion of the inch values and may not mathematically compute.

- (1) Thread classes may be combined. See para. 4.2.
- (2) For Class 2A threads having an additive finish, the maximum major and pitch diameters, after coating, may equal the basic sizes, whose values are the same as maximum values shown for Class 3A in these columns. See para, 4.1.2.
- (3) For unfinished hot material, not including standard fasteners with rolled threads.
- See para. 5.2.1 for Functional Diameter.
- Since these tabulated tolerance values have been converted and then rounded, they may differ slightly from the difference between the tabulated maximum and minimum values. 4
- (6) These values are for reference only. UN series external thread maximum minor diameter is basic (01 in para. 11) for Class 3A and basic minus allowance for Classes 1A and 2A.
- Formerly NF. Not a recommended standard size. Tolerances and allowances are based on one diameter length of engagement. \subseteq

Table C-2 Limits of Size for Selected Combinations of UNS/UNRS Series Threads, mm

						Externa	External [Note (1)]						Inter	Internal [Note (1)]	1)]	
							Pitch Di	Pitch Diameter and		UNR Minor				Pitch D	Pitch Diameter and	
	Series	Metric			Major Diameter	ameter	[Note	lcuonat Diamete [Notes (3), (4)]		Diameter, Max.				[Note	[Notes (3), (4)]	Maior
Nominal Size and Threads/in.	Designa- tion	Equivalents Dia. Pite	nts Pitch Class	Allow-	Max. [Note (2)]	Min.	Max. [Note (2)]	Min.	Toler- [N ance	<u>-</u>	_ Class	Minor Diameter Min. Max.	meter Max.	Min.	Toler- Max. ance	Diameter, Min.
10 – 28 or 0.190 – 28	NNS	4.8260 0.9071	071 2A	A 0.0254	4.8006	4.6355	4.2113	4.1275 0.	0.0838	3.7211	2B	3.8354	4.0640	4.2367	4.3459 0.1092	4.8260
10 – 36 or 0.190 – 36	NNS	4.8260 0.7056	056 2A	4 0.0229	4.8031	4.6634	4.3459	4.2697 0.	0.0762	3.9624	2B	4.0640	4.2418	4.3688	4.4679 0.0991	4.8260
10 – 40 or 0.190 – 40	NNS	4.8260 0.6350	350 2A	٩ 0.0279	4.7981	4.6152	4.1097	4.0183 0.	0.0914	3.5382	2B	3.6830	3.9370	4.1377	4.2570 0.1194	4.8260
10 – 48 or 0.190 – 48	NNS	4.8260 0.5292	292 2A	٩ 0.0203	4.8057	4.6914	4.4628	4.3967 0.	0.0660	4.1758	2B	4.2418	4.3688	4.4831	4.5695 0.0864	4.8260
10 – 56 or 0.190 – 56	NNS	4.8260 0.4536	536 2A	A 0.0178	4.8082	4.7041	4.5136	4.4501 0.	0.0635	4.2672	2B	4.3434	4.4450	4.5314	4.6126 0.0813	4.8260
12 – 36 or 0.216 – 36	NNS	5.4864 0.7056	056 2A	٨ 0.0229	5.4635	5.3238	5.0063	4.9301 0.	0.0762	4.6228	2B	4.7244	4.9022	5.0292	5.1283 0.0991	5.4864
12 – 40 or 0.216 – 40	NNS	5.4864 0.6350	350 2A	٨ 0.0229	5.4635	5.3340	5.0521	4.9784 0.	0.0737	4.7066	2B	4.8006	4.9530	5.0749	5.1714 0.0965	5.4864
12 – 48 or 0.216 – 48	NNS	5.4864 0.5292	292 2A	A 0.0203	5.4661	5.3518	5.1232	5.0546 0.	0.0686	4.8362	2B	4.9022	5.0292	5.1435	5.2324 0.0889	5.4864
12 – 56 or 0.216 – 56	NNS	5.4864 0.4536	536 2A	٨ 0.0203	5.4661	5.3619	5.1714	5.1079 0.	0.0635	4.9251	2B	5.0038	5.1054	5.1918	5.2756 0.0838	5.4864
$\frac{1}{4} - 24$ or $0.250 - 24$	NNS	6.3500 1.0583	583 2A	A 0.0279	6.3221	6.1392	5.6337	5.5397 0.	0.0940	5.0622	2B	5.2070	5.4610	5.6617	5.7836 0.1219	6.3500
$\frac{1}{4} - 27$ or $0.250 - 27$	NNS	6.3500 0.9407	407 2A	A 0.0254	6.3246	6.1544	5.7125	5.6236 0.	0.0889	5.2045	2B	5.3340	5.5626	5.7379	5.8522 0.1143	6.3500
$\frac{1}{4} - 36$ or $0.250 - 36$	NNS	6.3500 0.7056	056 2A	٨ 0.0229	6.3271	6.1874	5.8699	5.7912 0.	0.0787	5.4864	2B	5.5880	5.7658	5.8928	5.9944 0.1016	6.3500
$\frac{1}{4}$ – 40 or 0.250 – 40	NNS	6.3500 0.6350	350 2A	٨ 0.0229	6.3271	6.1976	5.9157	5.8420 0.	0.0737	5.5702	2B	5.6642	5.8166	5.9385	6.0350 0.0965	6.3500
$\frac{1}{4} - 48$ or $0.250 - 48$	NNS	6.3500 0.5292	292 2A	A 0.0203	6.3297	6.2154	5.9868	5.9182 0.	0.0686	5.6998	2B	5.7658	5.8928	6.0071	6.0985 0.0914	6.3500
$\frac{1}{4}$ – 56 or 0.250 – 56	NNS	6.3500 0.4536	536 2A	A 0.0203	6.3297	6.2255	6.0350	5.9690 0.	0990.0	5.7887	2B	5.8674	5.9690	6.0554	6.1392 0.0838	6.3500
$\frac{5}{16}$ – 27 or 0.3125 – 27	NNS	7.9375 0.9407	407 2A	٨ 0.0279	7.9096	7.7394	7.2974	7.2060 0.	0.0914	6.7894	2B	6.9088	7.1374	7.3254	7.4422 0.1168	7.9375
$\frac{5}{16}$ – 36 or 0.3125 – 36	NNS	7.9375 0.7056	056 2A	٩ 0.0229	7.9146	7.7749	7.4574	7.3787 0.	0.0787	7.0739	2B	7.1628	7.3406	7.4803	7.5844 0.1041	7.9375
$\frac{5}{16}$ - 40 or 0.3125 - 40	NNS	7.9375 0.6350	350 2A	4 0.0229	7.9146	7.7851	7.5032	7.4270 0.	0.0762	7.1577	2B	7.2390	7.3914	7.5260	7.6251 0.0991	7.9375
$\frac{5}{16}$ – 48 or 0.3125 – 48	NNS	7.9375 0.5292	292 2A	4 0.0203	7.9172	7.8029	7.5743	7.5032 0.	0.0711	7.2873	2B	7.3660	7.4930	7.5946	7.6860 0.0914	7.9375
$\frac{3}{8} - 18$ or $0.375 - 18$	NNS	9.5250 1.4111	111 2A	4 0.0330	9.4920	9.2710	8.5750	8.4658 0.	0.1092	7.8105	2B	8.0010	8.3312	8.6081	8.7503 0.1422	9.5250
$\frac{3}{8}$ – 27 or 0.375 – 27	NNS	9.5250 0.9407	407 2A	٨ 0.0279	9.4971	9.3269	8.8849	8.7935 0.0914	.0914	8.3769	2B	8.5090	8.7376	8.9129	9.0322 0.1194	9.5250

Table C-2 Limits of Size for Selected Combinations of UNS/UNRS Series Threads, mm (Cont'd)

						Extern	External [Note (1)]					Inte	Internal [Note (1)]	(1)]	
	O	Metric			Major	Major Diameter	Pitch D Functio [Not	Pitch Diameter and Functional Diameter [Notes (3), (4)]	UNR Minor Diameter,				Pitch D Functio [Note	Pitch Diameter and Functional Diameter [Notes (3), (4)]	M 7
Nominal Size and Threads/in.	Designa-	Equivalents Dia. Pito	ج ا	Allow- Class ance	- Max. [Note (2)]	Min.	Max. [Note (2)]	Toler- Min. ance	[Note (5)] (Ref.)	Class	Minor Diameter Min. Max.	ameter Max.	Min.	Toler- Max. ance	Diameter, Min.
³ % – 36 or 0.375 – 36	NNS	9.5250 0.7056		2A 0.0254	4 9.4996	5 9.3599	9.0424	8.9611 0.0813	8.6589	2B	8.7630	8.9408	9.0678	9.1745 0.1067	9.5250
$\frac{3}{8}$ - 40 or 0.375 - 40	NNS	9.5250 0.6350		2A 0.0229	9 9.5021	1 9.3726	9.0907	9.0119 0.0787	8.7452	2B	8.8392	8.9916	9.1135	9.2151 0.1016	9.5250
0.390 - 27 or 0.390 - 27	NNS	9.9060 0.9407		2A 0.0279	9 9.8781	1 9.7079	9.2659	9.1745 0.0914	8.7579	2B	8.8900	9.1186	9.2939	9.4132 0.1194	9.9060
$\frac{7}{16} - 18 \text{ or } 0.4375 - 18$	NNS	11.1125 1.4111		2A 0.0330	0 11.0795	5 10.8585	10.1625	10.0508 0.1118	9.3980	2B	9.5758	9.9060	10.1956	10.3403 0.1448	11.1125
$\frac{7}{16}$ – 24 or 0.4375 – 24	NNS	11.1125 1.0583		2A 0.0305	5 11.0820	10.8991	10.3937	10.2946 0.0991	9.8222	2B	9.9568	10.2108	10.4242	10.5512 0.1270	11.1125
$\frac{7}{16} - 27$ or $0.4375 - 27$	NNS	11.1125 0.9407		2A 0.0279	9 11.0846	5 10.9144	10.4724	10.3784 0.0940	9.9644	2B	10.0838	10.3124	10.5004	10.6223 0.1219	11.1125
$\frac{1}{2}$ – 12 or 0.500 – 12	NNS	12.7000 2.1167		2A 0.0406 3A 0.0000	6 12.6594 0 12.7000	4 12.3698) 12.4104	11.2852	11.1481 0.1372 11.2243 0.1016	10.1397	2B 3B	10.4140 10.4140	10.8712 10.6299	11.3259 11.3259	11.5037 0.1778 11.4579 0.1321	12.7000
$\frac{1}{2} - 14$ or $0.500 - 14$	NNS	12.7000 1.8143		2A 0.0381	1 12.6619) 12.4003	11.4833	11.3563 0.1270	10.5004	2B	10.7442	11.1252	11.5214	11.6865 0.1651	12.7000
$\frac{1}{2} - 18$ or $0.500 - 18$	NNS	12.7000 1.4111		2A 0.0330	0 12.6670) 12.4460	11.7500	11.6383 0.1118	10.9855	2B	11.1760	11.5062	11.7831	11.9304 0.1473	12.7000
$\frac{1}{2} - 24$ or $0.500 - 24$	NNS	12.7000 1.0583		2A 0.0305	5 12.6695	12.4866	11.9812	11.8821 0.0991	11.4097	2B	11.5570	11.8110	12.0117	12.1412 0.1295	12.7000
$\frac{1}{2} - 27$ or $0.500 - 27$	NNS	12.7000 0.9407		2A 0.0279	9 12.6721	12.5019	12.0599	11.9659 0.0940	11.5519	2B	11.6840	11.9126	12.0879	12.2098 0.1219	12.7000
$\frac{9}{16}$ – 14 or 0.5625 – 14	NNS	14.2875 1.8143		2A 0.0381	1 14.2494	4 13.9878	13.0708	12.9438 0.1270	12.0879	2B	12.3190	12.7254	13.1089	13.2740 0.1651	14.2875
$^{9}/_{16} - 27$ or $0.5625 - 27$	NNS	14.2875 0.9407		2A 0.0279	9 14.2596	5 14.0894	13.6474	13.5509 0.0965	13.1394	2B	13.2588	13.4874	13.6754	13.7998 0.1245	14.2875
$\frac{5}{8}$ – 14 or 0.625 – 14	NNS	15.8750 1.8143		2A 0.0381	1 15.8369) 15.5753	14.6583	14.5288 0.1295	13.6754	2B	13.9192	14.3002	14.6964	14.8641 0.1676	15.8750
$\frac{5}{8}$ – 27 or 0.625 – 27	NNS	15.8750 0.9407		2A 0.0279	9 15.8471	15.6769	15.2349	15.1384 0.0965	14.7269	2B	14.8590	15.0876	15.2629	15.3899 0.1270	15.8750
$\frac{3}{4} - 14$ or $0.750 - 14$	NNS	19.0500 1.8143		2A 0.0381	1 19.0119) 18.7503	17.8333	17.7038 0.1295	16.8504	2B	17.0942	17.4752	17.8714	18.0416 0.1702	19.0500
$\frac{3}{4} - 18$ or $0.750 - 18$	NNS	19.0500 1.4111		2A 0.0356	6 19.0144	4 18.7935	18.0975	17.9807 0.1168	17.3330	2B	17.5260	17.8562	18.1331	18.2855 0.1524	19.0500
$\frac{3}{4}$ – 24 or 0.750 – 24	NNS	19.0500 1.0583		2A 0.0305	5 19.0195	18.8366	18.3312	18.2270 0.1041	17.7597	2B	17.9070	18.1610	18.3617	18.4963 0.1346	19.0500
$\frac{3}{4}$ – 27 or 0.750 – 27	NNS	19.0500 0.9407		2A 0.0305	5 19.0195	18.8493	18.4074	18.3083 0.0991	17.8994	2B	18.0340	18.2626	18.4379	18.5674 0.1295	19.0500
$\frac{7}{8} - 10$ or $0.875 - 10$	NNS	22.2250 2.5400		2A 0.0457	7 22.1793	3 21.8516	20.5283	20.3733 0.1549	19.1541	2B	19.4818	20.0152	20.5740	20.7747 0.2007	22.2250

Table C-2 Limits of Size for Selected Combinations of UNS/UNRS Series Threads, mm (Cont'd)

							Externa	External [Note (1)]						Infe	Internal [Note (1)]	[(1)]		
	Series	Metric	U			Major Diameter	ımeter	Pitch [Functio	Pitch Diameter and Functional Diameter [Notes (3), (4)]		UNR Minor Diameter,				Pitch C Functio	Pitch Diameter and Functional Diameter [Notes (3), (4)]	2	Major
Nominal Size and Threads/in.	Designa- tion	Equivalents Dia. Pite	ے ا	Class	Allow- ance [1	Max. [Note (2)]	Min.	Max. [Note (2)]	Min.	Toler- [l	- 2]	_ Class	Minor Diameter Min. Max.	ameter Max.	Min.	Toler- Max. ance		Diameter, Min.
$\frac{7}{8} - 18$ or $0.875 - 18$	NNS	22.2250 1.4111	1.4111	2A 0	0.0356	22.1894	21.9685	21.2725	21.1531 0	0.1194	20.5080	2B	20.7010	21.0312	21.3081	21.4630 0.1549		22.2250
$\frac{7}{8}$ – 24 or 0.875 – 24	NNS	22.2250 1.0583	1.0583	2A 0	0.0305	22.1945	22.0116	21.5062	21.3995 0	0.1067	20.9347	28	21.0820	21.3360	21.5367	21.6738 0.1372		22.2250
$\frac{7}{8}$ – 27 or 0.875 – 27	NNS	22.2250 0.9407	2.9407	2A 0	0.0305	22.1945	22.0243	21.5824	21.4808 0	0.1016	21.0744	28	21.2090	21.4376	21.6129	21.7449 0.1321		22.2250
1 – 10 or 1.000 – 10	NNS	25.4000 2.5400	2.5400	2A 0	0.0457	25.3543	25.0266	23.7033	23.5458 0	0.1575	22.3291	28	22.6568	23.1902	23.7490	23.9522 0.2032		25.4000
1 – 18 or 1.000 – 18	NNS	25.4000 1.4111	1.4111	2A 0	0.0356	25.3644	25.1435	24.4475	24.3281 0	0.1194	23.6830	28	23.8760	24.2062	24.4831	24.6405 0.1575		25.4000
1 – 24 or 1.000 – 24	NNS	25.4000 1.0583	1.0583	2A 0	0.0330	25.3670	25.1841	24.6786	24.5720 0	0.1067	24.1071	28	24.2570	24.5110	24.7117	24.8514 0.1397		25.4000
1 – 27 or 1.000 – 27	NNS	25.4000 0.9407	2.9407	2A 0	0.0305	25.3695	25.1993	24.7574	24.6558 0	0.1016	24.2494	2B	24.3840	24.6126	24.7879	24.9199 0.1321		25.4000
$1\frac{1}{8} - 10 \text{ or } 1.125 - 10$	NNS	28.5750 2.5400	2.5400	2A 0	0.0483	28.5267	28.1991	26.8757	26.7183 0	0.1575	25.5016	2B	25.8318	26.3652	26.9240	27.1297 0.2057		28.5750
$1\frac{1}{8} - 14 \text{ or } 1.125 - 14$	NNS	28.5750 1.8143	1.8143	2A 0	0.0406	28.5344	28.2727	27.3558	27.2212 0	0.1346	26.3728	2B	26.6192	27.0002	27.3964	27.5717 0.1753		28.5750
$1\frac{1}{8} - 24 \text{ or } 1.125 - 24$	NNS	28.5750 1.0583	1.0583	2A 0	0.0330	28.5420	28.3591	27.8536	27.7444 0.1092).1092	27.2821	2B	27.4320	27.6860	27.8867	28.0289 0.1422		28.5750
$1\frac{1}{4} - 10 \text{ or } 1.250 - 10$	NNS	31.7500 2.5400	2.5400	2A 0	0.0483	31.7017	31.3741	30.0507	29.8907 0	0.1600	28.6766	2B	29.0068	29.5402	30.0990	30.3073 0.2083		31.7500
$1^{1}\!/_{4} - 14$ or $1.250 - 14$	NNS	31.7500 1.8143	1.8143	2A 0	0.0406	31.7094	31.4477	30.5308	30.3936 0.1372	0.1372	29.5478	2B	29.7942	30.1752	30.5714	30.7492 0.1778		31.7500
$1\frac{1}{4} - 24$ or $1.250 - 24$	NNS	31.7500 1.0583	1.0583	2A 0	0.0330	31.7170	31.5341	31.0286	30.9194 0	0.1092	30.4571	2B	30.6070	30.8610	31.0617	31.2039 0.1422		31.7500
$1\frac{3}{8} - 10 \text{ or } 1.375 - 10$	NNS	34.9250 2.5400	2.5400	2A 0	0.0483	34.8767	34.5491	33.2257	33.0657 0.1600	0.1600	31.8516	28	32.1818	32.7152	33.2740	33.4823 0.2083		34.9250
$1\frac{3}{8} - 14 \text{ or } 1.375 - 14$	NNS	34.9250 1.8143	1.8143	2A 0	0.0406	34.8844	34.6227	33.7058	33.5661 0	0.1397	32.7228	28	32.9692	33.3502	33.7464	33.9268 0.1803		34.9250
$1\frac{3}{8} - 24 \text{ or } 1.375 - 24$	NNS	34.9250 1.0583	1.0583	2A 0	0.0330	34.8920	34.7091	34.2036	34.0919 0.1118).1118	33.6321	28	33.7820	34.0360	34.2367	34.3814 0.1448		34.9250
1^{1} / ₂ – 10 or 1.500 – 10	NNS	38.1000 2.5400	2.5400	2A 0	0.0483	38.0517	37.7241	36.4007	36.2382 0	0.1626	35.0266	2B	35.3568	35.8902	36.4490	36.6598 0.2108		38.1000
1^{1} / ₂ – 14 or 1.500 – 14	NNS	38.1000 1.8143	1.8143	2A 0	0.0432	38.0568	37.7952	36.8783	36.7386 0.1397	1.1397	35.8953	28	36.1442	36.5252	36.9214	37.1043 0.1829		38.1000
1^{1} / ₂ - 24 or 1.500 - 24	NNS	38.1000 1.0583	1.0583	2A 0	0.0330	38.0670	37.8841	37.3786	37.2669 0	0.1118	36.8071	28	36.9570	37.2110	37.4117	37.5590 0.1473		38.1000
$1\frac{5}{8} - 10 \text{ or } 1.625 - 10$	NNS	41.2750 2.5400	2.5400	2A 0	0.0483	41.2267	40.8991	39.5757	39.4132 0.1626).1626	38.2016	28	38.5318	39.0652	39.6240	39.8348 0.2108		41.2750
$1^{5}/_{8} - 14$ or $1.625 - 14$	NNS	41.2750 1.8143	1.8143	2A 0	0.0432	41.2318	40.9702	40.0533	39.9136 0.1397	1.1397	39.0703	2B	39.3192	39.7002	40.0964	40.2793 0.1829		41.2750

Table C-2 Limits of Size for Selected Combinations of UNS/UNRS Series Threads, mm (Cont'd)

						Externa	External [Note (1)]						Inte	Internal [Note (1)]	(1)]	
							Pitch D	Pitch Diameter and	Š	UNR Minor				Pitch D	Pitch Diameter and	
	Series	Metric			Major Diameter	ameter	runctio [Not	rctional Diameter [Notes (3), (4)]	Dia	Diameter, Max.				runctio [Not	nctional Diameter [Notes (3), (4)]	Major
Nominal Size and Threads/in.	Designa- tion	Equivalents Dia. Pite	nts Pitch Class	Allow-	Max. [Note (2)]	Min.	Max. [Note (2)]	Tol Min. ar	Toler- [No ance (Ξ	Class —	Minor Diameter Min. Max.	meter Max.	Min.	Toler- Max. ance	▔
1 ⁵ / ₈ – 24 or 1.625 – 24	NNS	41.2750 1.0583	583 2A	0.0330	41.2420	41.0591	40.5536	40.4393 0.1	0.1143 39	39.9821	2B 4	40.1320	40.3860	40.5867	40.7340 0.1473	3 41.2750
$1\frac{3}{4} - 10 \text{ or } 1.750 - 10$	NNS	44.4500 2.5400	400 2A	0.0483	44.4017	44.0741	42.7507	42.5856 0.1651		41.3766	2B 4	41.7068	42.2402	42.7990	43.0124 0.2134	4 44.4500
$1\frac{3}{4} - 14 \text{ or } 1.750 - 14$	NNS	44.4500 1.8143	143 2A	0.0432	44.4068	44.1452	43.2283	43.0860 0.1422	-	42.2453	2B 4	42.4942	42.8752	43.2714	43.4569 0.1854	4 44.4500
$1\frac{3}{4} - 18 \text{ or } 1.750 - 18$	NNS	44.4500 1.4111	111 2A	0.0381	44.4119	44.1909	43.4950	43.3654 0.1	0.1295 4	42.7304	2B 4	42.9260	43.2562	43.5331	43.7007 0.167	6 44.4500
$1\frac{7}{8} - 10 \text{ or } 1.875 - 10$	NNS	47.6250 2.5400	400 2A	0.0508	47.5742	47.2465	45.9232	45.7581 0.1	0.1651 4	44.5491	2B 4	44.8818	45.4152	45.9740	46.1899 0.2159	9 47.6250
$1\frac{7}{8} - 14 \text{ or } 1.875 - 14$	NNS	47.6250 1.8143	143 2A	0.0432	47.5818	47.3202	46.4033	46.2610 0.1422		45.4203	2B 4	45.6692	46.0502	46.4464	46.6319 0.1854	4 47.6250
$1\frac{7}{8} - 18 \text{ or } 1.875 - 18$	NNS	47.6250 1.4111	111 2A	0.0381	47.5869	47.3659	46.6700	46.5404 0.1	0.1295 4	45.9054	2B 4	46.1010	46.4312	46.7081	46.8757 0.1676	6 47.6250
2 – 10 or 2.000 – 10	NNS	50.8000 2.5400	400 2A	0.0508	50.7492	50.4215	49.0982	48.9331 0.1	0.1651 4	47.7241	2B 4	48.0568	48.5902	49.1490	49.3649 0.2159	9 50.8000
2 – 14 or 2.000 – 14	NNS	50.8000 1.8143	143 2A	0.0432	50.7568	50.4952	49.5783	49.4335 0.1	0.1448 4	48.5953	2B 4	48.8442	49.2252	49.6214	49.8094 0.1880	0 50.8000
2 – 18 or 2.000 – 18	NNS	50.8000 1.4111	111 2A	0.0381	50.7619	50.5409	49.8450	49.7154 0.1	0.1295 4	49.0804	2B 4	49.2760	49.6062	49.8831	50.0532 0.1702	2 50.8000
$2^{1}/_{16} - 16$ or $2.0625 - 16$	NNS	52.3875 1.5875	875 2A 3A	0.0000	52.3469 52.3875	52.1081 52.1487	51.3156 51.3563	51.1785 0.1 51.2547 0.1	0.1372 50 0.1016 50	50.4571	2B g	50.6730	51.0286 50.8864	51.3563 51.3563	51.5341 0.1778 51.4909 0.1346	8 52.3875 6 52.3875
$2^{3}/_{16} - 16$ or $2.1875 - 16$	NNS	55.5625 1.5875	875 2A 3A	0.0000	55.5219 55.5625	55.2831 55.3237	54.4906 54.5313	54.3535 0.1 54.4271 0.1	0.1372 5.	53.6321	2B g	53.8480	54.2036 54.0614	54.5313 54.5313	54.7116 0.1803 54.6659 0.1346	3 55.5625 6 55.5625
$2\frac{1}{4} - 10 \text{ or } 2.250 - 10$	NNS	57.1500 2.5400	400 2A	0.0508	57.0992	56.7715	55.4482	55.2806 0.1	0.1676 5	54.0741	2B 5	54.4068	54.9402	55.4990	55.7174 0.2184	4 57.1500
$2\frac{1}{4} - 14 \text{ or } 2.250 - 14$	NNS	57.1500 1.8143	143 2A	0.0432	57.1068	56.8452	55.9283	55.7809 0.1	0.1473 5	54.9453	2B 5	55.1942	55.5752	55.9714	56.1619 0.1905	5 57.1500
$2\frac{1}{4} - 18 \text{ or } 2.250 - 18$	NNS	57.1500 1.4111	111 2A	0.0406	57.1094	56.8884	56.1924	56.0603 0.1	0.1321 5	55.4279	2B 5	55.6260	55.9562	56.2331	56.4058 0.1727	7 57.1500
$2^{5}/_{16} - 16$ or $2.3125 - 16$	NNS	58.7375 1.5875	875 2A 3A	0.0000	58.6969 58.7375	58.4581 58.4987	57.6656 57.7063	57.5259 0.1 57.6021 0.1	0.1397 5 0.1041 5	56.8071 56.8477	2B 5	57.0230 57.0230	57.3786 57.2364	57.7063 57.7063	57.8866 0.1803 57.8409 0.1346	3 58.7375 6 58.7375
$2^{7}/_{16} - 16$ or $2.4375 - 16$	NNS	61.9125 1.5875	875 2A 3A	0.00432	61.8693 61.9125	61.6306 61.6737	60.8381 60.8813	60.6984 0.1 60.7771 0.1	0.1397 5. 0.1041 6	59.9796 60.0227	2B (60.1980 60.1980	60.5536 60.4114	60.8813 60.8813	61.0641 0.1829 61.0184 0.1372	9 61.9125 2 61.9125
$2\frac{1}{2} - 10 \text{ or } 2.500 - 10$	NNS	63.5000 2.5400	400 2A	0.0508	63.4492	63.1215	61.7982	61.6280 0.1	0.1702 6	60.4241	2B (60.7568	61.2902	61.8490	62.0700 0.2210	0 63.5000
$2\frac{1}{2} - 14 \text{ or } 2.500 - 14$	NNS	63.5000 1.8143	143 2A	0.0432	63.4568	63.1952	62.2783	62.1309 0.1473		61.2953	2B (61.5442	61.9252	62.3214	62.5145 0.1930	0 63.5000

Table C-2 Limits of Size for Selected Combinations of UNS/UNRS Series Threads, mm (Cont'd)

						Fxterna	External [Note (1)]						Inte	Internal [Note (1)]	(1)]		
	Oorio	Metric			Major Diameter	ameter	Pitch E Functio	Pitch Diameter and Functional Diameter [Notes (3), (4)]		UNR Minor Diameter,				Pitch I Functio	Pitch Diameter and Functional Diameter [Notes (3), (4)]	2	Major
Nominal Size and Threads/in.	Designa- tion	Equivalents Dia. Pitch	- Class	Allow- s ance	Max. [Note (2)]	Min.	Max. [Note (2)]	Min.	Toler- [[Note (5)] (Ref.)	- Class	Minor Diameter Min. Max.	ameter _ Max.	Min.	Toler- Max. ance		Diameter, Min.
$2\frac{1}{2} - 18 \text{ or } 2.500 - 18$	SNN	63.5000 1.4111	1 2A	0.0406	63.4594	63.2384	62.5424	62.4078 0	0.1346	61.7779	2B	61.9760	62.3062	62.5831	62.7583 0.1753		63.5000
2^{3} / ₄ – 10 or 2.750 – 10	NNS	69.8500 2.5400) 2A	0.0508	69.7992	69.4715	68.1482	67.9755 0	0.1727	66.7741	2B	67.1068	67.6402	68.1990	68.4225 0.2235		69.8500
$2^{3}/_{4} - 14 \text{ or } 2.750 - 14$	NNS	69.8500 1.8143	3 2A	0.0457	69.8043	69.5427	68.6257	68.4759 0	0.1499	67.6427	2B	67.8942	68.2752	68.6714	68.8670 0.1956		69.8500
$2^{3}/_{4} - 18 \text{ or } 2.750 - 18$	NNS	69.8500 1.4111	1 2A	0.0406	69.8094	69.5884	68.8924	68.7578 0	0.1346	68.1279	2B	68.3260	68.6562	68.9331	69.1109 0.1778		69.8500
3 – 10 or 3.000 – 10	NNS	76.2000 2.5400) 2A	0.0508	76.1492	75.8215	74.4982	74.3255 0	0.1727	73.1241	2B	73.4568	73.9902	74.5490	74.7751 0.2261		76.2000
3 – 14 or 3.000 – 14	NNS	76.2000 1.8143	3 2A	0.0457	76.1543	75.8927	74.9757	74.8259 0	0.1499	73.9927	2B	74.2442	74.6252	75.0214	75.2170 0.1956		76.2000
3 – 18 or 3.000 – 18	NNS	76.2000 1.4111	1 2A	0.0406	76.1594	75.9384	75.2424	75.1053 0	0.1372	74.4779	2B	74.6760	75.0062	75.2831	75.4609 0.1778		76.2000
$3\frac{1}{4} - 10 \text{ or } 3.250 - 10$	NNS	82.5500 2.5400) 2A	0.0533	82.4967	82.1690	80.8457	80.6704 0.1753	1.1753	79.4715	2B	79.8068	80.3402	80.8990	81.1251 0.2261		82.5500
$3^{1}/_{4} - 14$ or $3.250 - 14$	NNS	82.5500 1.8143	3 2A	0.0457	82.5043	82.2427	81.3257	81.1733 0	0.1524	80.3427	2B	80.5942	80.9752	81.3714	81.5696 0.1981		82.5500
$3\frac{1}{4} - 18 \text{ or } 3.250 - 18$	NNS	82.5500 1.4111	1 2A	0.0406	82.5094	82.2884	81.5924	81.4527 0	0.1397	80.8279	2B	81.0260	81.3562	81.6331	81.8134 0.1803		82.5500
$3^{1}/_{2} - 10 \text{ or } 3.500 - 10$	NNS	88.9000 2.5400) 2A	0.0533	88.8467	88.5190	87.1957	87.0204 0	0.1753	85.8215	2B	86.1568	86.6902	87.2490	87.4776 0.2286		88.9000
$3^{1}/_{2} - 14$ or $3.500 - 14$	NNS	88.9000 1.8143	3 2A	0.0457	88.8543	88.5927	87.6757	87.5208 0.1549	1.1549	86.6927	2B	86.9442	87.3252	87.7214	87.9221 0.2007		88.9000
$3^{1}/_{2} - 18 \text{ or } 3.500 - 18$	NNS	88.9000 1.4111	1 2A	0.0432	88.8568	88.6358	87.9399	87.8002 0	0.1397	87.1753	2B	87.3760	87.7062	87.9831	88.1659 0.1829		88.9000
$3\frac{3}{4} - 10 \text{ or } 3.750 - 10$	NNS	95.2500 2.5400) 2A	0.0533	95.1967	94.8690	93.5457	93.3679 0.1778).1778	92.1715	2B	92.5068	93.0402	93.5990	93.8301 0.2311		95.2500
$3\frac{3}{4} - 14 \text{ or } 3.750 - 14$	NNS	95.2500 1.8143	3 2A	0.0457	95.2043	94.9427	94.0257	93.8708 0.1549	1.1549	93.0427	2B	93.2942	93.6752	94.0714	94.2721 0.2007		95.2500
$3\frac{3}{4} - 18 \text{ or } 3.750 - 18$	NNS	95.2500 1.4111	1 2A	0.0432	95.2068	94.9858	94.2899	94.1476 0.1422	1.1422	93.5253	2B	93.7260	94.0562	94.3331	94.5159 0.1829		95.2500
4 – 10 or 4.000 – 10	NNS	101.6000 2.5400) 2A	0.0533	101.5467 101.2190	101.2190	7568.66	99.7179 0	0.1778	98.5215	2B	98.8568	99.3902	99.9490 100.1801		0.2311 101.6000	0009:1
4 – 14 or 4.000 – 14	NNS	101.6000 1.8143	3 2A	0.0457	101.5543 101.2927		100.3757 1	100.3757 100.2182 0.1575).1575	99.3927	2B	99.6442	99.6442 100.0252 100.4214 100.6246	100.4214	100.6246 0.2032	32 101	101.6000
$4^{1/4}_{4} - 10$ or $4.250 - 10$	NNS	107.9500 2.5400) 2A	0.0533	107.8967 107.5690 106.2457 106.0653	107.5690 1	106.2457 1		0.1803 1	104.8715	2B 1	105.2068	105.2068 105.7402 106.2990 106.5327	106.2990		0.2337 107.9500	.9500
$4^{1/4}_{4} - 14$ or $4.250 - 14$	NNS	107.9500 1.8143	3 2A	0.0483		107.6401 1	106.7232 1	107.9017 107.6401 106.7232 106.5657 0.1575		105.7402	2B 1	105.9942	105.9942 106.3752 106.7714 106.9772	106.7714		0.2057 107.9500	.9500
$4\frac{1}{2} - 10$ or $4.500 - 10$	NNS	114.3000 2.5400) 2A	0.0533	114.2467 113.9190 112.5957 112.4153	113.9190 1	112.5957 1	112.4153 0	0.1803 1	111.2215	2B 1	111.5568	111.5568 112.0902 112.6490 112.8852	112.6490	112.8852 0.23	0.2362 114.3000	i.3000

Table C-2 Limits of Size for Selected Combinations of UNS/UNRS Series Threads, mm (Cont'd)

							External	External [Note (1)]						Inte	Internal [Note (1)]	(1)]		
								Pitch D	Pitch Diameter and Functional Diameter	_	UNR Minor				Pitch D Functio	Pitch Diameter and Functional Diameter		
	Series	Metric			!	Major Diameter	meter	[Note	[Notes (3), (4)]		Diameter, Max.			•	[Not	[Notes (3), (4)]		Major
Nominal Size and	Designa-	Equivalents	ıts		Allow-	Max.		Max.		Toler-	[Note (5)]	·	Minor Diameter	ameter		ĭ	Toler- Dia	Diameter,
Threads/in.	tion	Dia.	Pitch	Class	ance [[Note (2)]	Min. [ľ	[Note (2)]	Min.	ance	(Ref.)	Class	Min.	Мах.	Min.	Мах. а	ance A	Min.
$4^{1}/_{2} - 14$ or $4.500 - 14$	NNS	114.3000 1.8143	.8143	2A (0.0483 1	0483 114.2517 113.9901 113.0732 112.9132 0.1600	13.9901	13.0732 1	12.9132 (112.0902	2B	12.3442	12.7252	113.1214 1	112.3442 112.7252 113.1214 113.3272 0.2057 114.3000	2057 114	.3000
$4\frac{3}{4} - 10 \text{ or } 4.750 - 10$	NNS	120.6500 2.5400	.5400	2A	0.0559 1	0559 120.5941 120.2665 118.9431 118.7602 0.1829	20.2665 1	18.9431 1	18.7602 0		117.5690	28	17.9068	18.4402	118.9990 1	117.9068 118.4402 118.9990 119.2352 0.2362 120.6500	2362 120	.6500
$4^{3}/_{4} - 14$ or $4.750 - 14$	SNN	120.6500 1.8143 2A	.8143		0.0483 1	.0483 120.6017 120.3401 119.4232 119.2632 0.1600 118.4402	20.3401 1	19.4232 1	19.2632 (0.1600	118.4402	2B	18.6942	19.0752	119.4714 1	118.6942 119.0752 119.4714 119.6797 0.2083 120.6500	2083 120	.6500
5 – 10 or 5.000 – 10	SNN	127.0000 2.5400 2A	.5400		0.0559 1	0559 126.9441 126.6165 125.2931 125.1102 0.1829	26.6165 1	25.2931 1	25.1102 0		123.9190	2B	24.2568	24.7902	125.3490 1	124.2568 124.7902 125.3490 125.5878 0.2388 127.0000	2388 127	0000.
5 – 14 or 5.000 – 14	SNN	127.0000 1.8143	.8143	2A (0.0483 1	0483 126.9517 126.6901 125.7732 125.6132 0.1626	26.6901 1	25.7732 1	25.6132 (1626	124.7902	2B	25.0442	.25.4252	125.8214 1	125.0442 125.4252 125.8214 126.0323 0.2108 127.0000	2108 127	0000.
$5\frac{1}{4} - 10 \text{ or } 5.250 - 10$	NNS	133.3500 2.5400	.5400	2A	0.0559 1	0559 133.2941 132.9665 131.6431 131.4577 0.1854 130.2690	32.9665 1	31.6431 1	31.4577 (.1854	130.2690	2B	30.6068	31.1402	131.6990 1	130.6068 131.1402 131.6990 131.9378 0.2388 133.3500	2388 133	.3500
$5\frac{1}{4} - 14$ or $5.250 - 14$	SNN	133.3500 1.8143	.8143	2A	0.0483 1	0483 133.3017 133.0401 132.1232 131.9606 0.1626 131.1402	33.0401 1	32.1232 1	31.9606 (1626	131.1402	2B	31.3942	31.7752	132.1714 1	131.3942 131.7752 132.1714 132.3823 0.2108 133.3500	2108 133	.3500
$5\frac{1}{2} - 10 \text{ or } 5.500 - 10$	NNS	139.7000 2.5400	.5400	2A	0.0559 1	0559 139.6441 139.3165 137.9931 137.8077 0.1854	39.3165 1	37.9931 1	37.8077 (136.6190	2B	36.9568	37.4902	138.0490 1	136.9568 137.4902 138.0490 138.2903 0.2413 139.7000	2413 139	.7000
$5\frac{1}{2} - 14$ or $5.500 - 14$	NNS	139.7000 1.8143	.8143	2A (0.0483 1	0483 139.6517 139.3901 138.4732 138.3106 0.1626	39.3901	38.4732 1	38.3106 (1626	137.4902	2B	37.7442	38.1252	138.5214 1	137.7442 138.1252 138.5214 138.7348 0.2134 139.7000	2134 139	.7000
5% - 10 or 5.750 - 10	NNS	146.0500 2.5400 2A	.5400		0.0559 1	0559 145.9941 145.6665 144.3431 144.1577 0.1854 142.9690	45.6665 1	44.3431 1	44.1577 (.1854	142.9690	2B	43.3068	43.8402	144.3990 1	143.3068 143.8402 144.3990 144.6403 0.2413 146.0500	2413 146	.0500
5% - 14 or 5.750 - 14	SNN	146.0500 1.8143	.8143	2A (0.0483 1	0483 146.0017 145.7401 144.8232 144.6581 0.1651 143.8402	45.7401 1	44.8232 1	44.6581 (.1651	143.8402	2B	44.0942	44.4752	144.8714 1	144.0942 144.4752 144.8714 145.0848 0.2134 146.0500	2134 146	.0500
6 – 10 or 6.000 – 10	NNS	152.4000 2.5400	.5400	2A	0.0559 1	0559 152.3441 152.0165 150.6931 150.5052 0.1880	52.0165 1	50.6931 1	50.5052 (149.3190	2B	49.6568	50.1902	150.7490 1	149.6568 150.1902 150.7490 150.9928 0.2438 152.4000	2438 152	.4000
6 – 14 or 6.000 – 14	NNS	152.4000 1.8143	.8143	2A (0.0508 1	.0508 152.3492 152.0876 151.1706 151.0055 0.1651 150.1877	52.0876 1	51.1706 1	51.0055 (1651	150.1877	28	50.4442	50.8252	151.2214 1	150.4442 150.8252 151.2214 151.4373 0.2159 152.4000	2159 152	.4000

GENERAL NOTE: Series designation shown indicates the UN thread form; however, the UNR thread form may be specified by substituting UNR in place of UN in all designations for external use only.

NOTES:

⁽¹⁾ Thread classes may be combined. See para. 4.2.

⁽²⁾ For Class 2A threads having an additive finish, the maximum major and pitch diameters, after coating, may equal the basic sizes, whose values are the same as maximum values shown for Class 3A in these columns. See para, 4.1.2.

⁽³⁾ See para. 5.2.1 for Functional Diameter.

Since these tabulated tolerance values have been converted and then rounded, they may differ slightly from the difference between the tabulated maximum and minimum values. 4

These values are for reference only. UN series external thread maximum minor diameter is basic (D_1 in para. 11) for Class 3A and basic minus allowance for Classes 1A and 2A. (5)

Table C-3 Thread Form Data, mm

Threads/	Pitch, P	Basic Flat at Internal Thread Crest, and External UN Thread Root, $F_{rs} = F_{cn} = P/4 = 0.25000000P$	Flat at Internal Thread Root and External Thread Crest, $F_m = F_{cs} = P/8 = 0.12500000P$	# [Note (1)] Height of Sharp V-Thread = 0.86602540P	0.1250 H [Note (1)] Truncation of Internal Thread Root and External Thread $f_m = f_{es} = 0.10825318P$ [Note (2)]	0.1667 <i>H</i> [Note (1)] External Thread Root Full Radius, Max., $r_{rs} =$ 0.14433757 <i>P</i>	0.1875H [Note (1)] Truncation of UNR Design Profile External Thread Root and Half Addendum of External Thread, $S_{rs} = 0.16237976P$	0.2500 H [Note (1)] External Thread Root and Truncation of Internal Thread Crest, $f_{rs} = f_{cn} =$ 0.21650635 P [Note (3)]
1	2	3	4	5	6	7	8	9
80	0.31750	0.0794	0.0397	0.2750	0.0344	0.0458	0.0516	0.0687
72	0.35278	0.0882	0.0441	0.3055	0.0382	0.0509	0.0573	0.0764
64	0.39688	0.0992	0.0496	0.3437	0.0430	0.0573	0.0644	0.0859
56	0.45357	0.1134	0.0567	0.3928	0.0491	0.0655	0.0737	0.0982
48	0.52917	0.1323	0.0661	0.4583	0.0573	0.0764	0.0859	0.1146
44	0.57727	0.1443	0.0722	0.4999	0.0625	0.0833	0.0937	0.1250
40	0.63500	0.1588	0.0794	0.5499	0.0687	0.0916	0.1031	0.1375
36	0.70556	0.1764	0.0882	0.6110	0.0764	0.1018	0.1146	0.1528
32	0.79375	0.1985	0.0992	0.6874	0.0859	0.1146	0.1289	0.1719
28	0.90714	0.2268	0.1134	0.7856	0.0982	0.1309	0.1473	0.1964
27	0.94074	0.2352	0.1176	0.8147	0.1018	0.1358	0.1528	0.2037
24	1.05833	0.2646	0.1323	0.9165	0.1146	0.1528	0.1719	0.2291
20	1.27000	0.3175	0.1588	1.0998	0.1375	0.1833	0.2062	0.2750
18	1.41111	0.3528	0.1764	1.2221	0.1528	0.2037	0.2291	0.3055
16	1.58750	0.3969	0.1985	1.3748	0.1719	0.2291	0.2578	0.3437
14	1.81429	0.4536	0.2268	1.5712	0.1964	0.2619	0.2946	0.3928
13	1.95385	0.4885	0.2442	1.6921	0.2115	0.2820	0.3173	0.4230
12	2.11667	0.5292	0.2646	1.8331	0.2291	0.3055	0.3437	0.4583
11.5	2.20870	0.5522	0.2761	1.9128	0.2391	0.3188	0.3586	0.4782
11	2.30909	0.5773	0.2886	1.9997	0.2500	0.3333	0.3750	0.4999
10	2.54000	0.6350	0.3175	2.1997	0.2750	0.3666	0.4124	0.5499
9	2.82222	0.7056	0.3528	2.4441	0.3055	0.4074	0.4583	0.6110
8	3.17500	0.7938	0.3969	2.7496	0.3437	0.4583	0.5155	0.6874
7	3.62857	0.9071	0.4536	3.1424	0.3928	0.5237	0.5892	0.7856
6	4.23333	1.0583	0.5292	3.6662	0.4583	0.6110	0.6874	0.9165
5	5.08000	1.2700	0.6350	4.3994	0.5499	0.7332	0.8249	1.0998
4.5	5.64444	1.4111	0.7056	4.8882	0.6110	0.8147	0.9165	1.2221
4	6.35000	1.5875	0.7938	5.4993	0.6874	0.9165	1.0311	1.3748

Table C-3 Thread Form Data, mm (Cont'd)

	0.375H	0.625H [Note (1)] Height of Internal Thread, UN External		0.7500Н	0.9167 <i>H</i> [Note (1)] Difference	1.2500 <i>H</i> [Note (1)] Double	1.3750H	
Threads/ in.	[Note (1)] Addendum of External Thread, $h_{as} =$ 0.32475953 P [Note (4)]	Thread, and Depth of Thread Engagement, $h_s = h_n = h_e = 0.54126588P$	$0.6875H$ [Note (1)] Height of UNR External Thread, $h_s =$ 0.59539247P	[Note (1)] Twice the External Thread Addendum, $h_b = 2h_{as} = 0.64951905P$	Between Max. Major and Pitch Diameters of Internal Thread = 0.79385662P	Height of Internal Thread and External UN Thread, $2h_n =$ 1.08253175 P	Double Height of External UNR Thread, $2h_s =$ 1.19078493P	0.5000 <i>H</i> [Note (1)] 0.43301270 <i>P</i>
1	10	11	12	13	14	15	16	17
80	0.1031	0.1719	0.1890	0.2062	0.2520	0.3437	0.3781	0.1375
72	0.1146	0.1910	0.2100	0.2291	0.2801	0.3819	0.4201	0.1528
64	0.1289	0.2148	0.2363	0.2578	0.3151	0.4296	0.4726	0.1719
56	0.1473	0.2455	0.2701	0.2946	0.3601	0.4910	0.5401	0.1964
48	0.1719	0.2864	0.3151	0.3437	0.4201	0.5728	0.6301	0.2291
44	0.1875	0.3124	0.3437	0.3750	0.4583	0.6249	0.6874	0.2500
40	0.2062	0.3437	0.3781	0.4124	0.5041	0.6874	0.7562	0.2750
36	0.2291	0.3819	0.4201	0.4583	0.5601	0.7638	0.8402	0.3055
32	0.2578	0.4296	0.4726	0.5155	0.6301	0.8593	0.9452	0.3437
28	0.2946	0.4910	0.5401	0.5892	0.7201	0.9820	1.0802	0.3928
27	0.3055	0.5092	0.5601	0.6110	0.7468	1.0184	1.1202	0.4074
24	0.3437	0.5728	0.6301	0.6874	0.8402	1.1457	1.2602	0.4583
20	0.4124	0.6874	0.7562	0.8249	1.0082	1.3748	1.5123	0.5499
18	0.4583	0.7638	0.8402	0.9165	1.1202	1.5276	1.6803	0.6110
16	0.5155	0.8593	0.9452	1.0311	1.2602	1.7185	1.8904	0.6874
14	0.5892	0.9820	1.0802	1.1784	1.4403	1.9640	2.1604	0.7856
13	0.6345	1.0576	1.1633	1.2691	1.5511	2.1151	2.3266	0.8460
12	0.6874	1.1457	1.2602	1.3748	1.6803	2.2914	2.5205	0.9165
11.5	0.7173	1.1955	1.3150	1.4346	1.7534	2.3910	2.6301	0.9564
11	0.7499	1.2498	1.3748	1.4998	1.8331	2.4997	2.7496	0.9999
10 9	0.8249 0.9165	1.3748 1.5276	1.5123 1.6803	1.6498 1.8331	2.0164	2.7496 3.0551	3.0246 3.3606	1.0998
8	1.0311	1.7185	1.8904	2.0622	2.5205	3.4370	3.7807	1.3748
7	1.1784	1.9640	2.1604	2.3568	2.8806	3.9280	4.3208	1.5712
7 6 5	1.1764 1.3748 1.6498	2.2914 2.7496	2.5205 3.0246	2.7496 3.2996	3.3606 4.0328	4.5827 5.4993	5.0410 6.0492	1.8331 2.1997
4.5	1.8331	3.0551	3.3606	3.6662	4.4809	6.1103	6.7213	2.4441
4	2.0622	3.4370	3.7807	4.1245	5.0410	6.8741	7.5615	2.7496

GENERAL NOTES:

- (a) All dimensions are in millimeters (except for threads per inch, col. 1).
- (b) Metric values are the rounded, direct soft conversion of the inch values and do not comply to ASME B1.30 and may not mathematically compute. They should be used for reference only.
- (c) All thread calculations are to be performed using a function of pitch (P); the use of thread height (H) is for reference only as stated in ASME B1.30.

NOTES

- (1) The thread values based on a function of height "H" are used for reference only.
- (2) The values tabulated in col. 6 also pertain to the minimum root radius of UNR screw threads. See paras. 2.3.1 and 2.3.1(a).
- (3) $h_{an} = f_{cn} = 0.25H = 0.21650635P$
- (4) $h_{dn} = h_{as} = 0.375H = 0.32475953P$

NONMANDATORY APPENDIX D SPECIAL THREADS

Newly created special thread dimensions shall be determined by use of the formulas in the body of this standard and the employment of the rounding rules set forth by ASME B1.30.

Existing special thread dimensions developed from previous editions of B1.1 and using rounding rules other than those contained in B1.30 may differ. Previously established special thread dimensions are acceptable for continued use.

This Appendix contains Table D-1 (formerly Table 3B in B1.1-1989) which contains tabulated values for many of the more commonly used nonstandard thread sizes. Also contained are Tables D-2 through D-11 (formerly Tables 31 through 40 in B1.1-1989). These tables were used in the past to calculate special thread sizes.

Table D-1 Limits of Size for Selected Combinations of UNS/UNRS Series Threads

					External	External [Note (1)]						=	Internal [Note (1)]	ote (1)]		
	Series			Major Diameter	meter	Pitch Functi	Pitch Diameter and Functional Diameter [Note (3)]	r and neter	UNR Minor Diameter,				Pitch Funct	Pitch Diameter and Functional Diameter	r and meter	Maior
Nominal Size and Threads/in.	Desig- nation	Class	Allowance	Max. [Note (2)]	Min.	Max. [Note (2)]	Min.	Tolerance [Note (4)]	[Note (5)] (Ref.)	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (3)] Max.	l Tolerance	Diameter, Min.
(6) 10 – 28 or 0.190 – 28	SNO	2A	0.0010	0.1890	0.1825	0.1658	0.1625	0.003339	0.1465	2B	0.151	0.160	0.1668	0.1711	0.0043	0.1900
(6) 10 – 36 or 0.190 – 36	NNS	2A	0.0009	0.1891	0.1836	0.1711	0.1681	0.002988	0.1560	2B	0.160	0.167	0.1720	0.1759	0.0039	0.1900
(6) 10 – 40 or 0.190 – 40	NNS	2A	0.0009	0.1891	0.1840	0.1729	0.1700	0.002856	0.1593	2B	0.163	0.169	0.1738	0.1775	0.0037	0.1900
10 – 48 or 0.190 – 48	NNS	2A	0.0008	0.1892	0.1847	0.1757	0.1731	0.002648	0.1644	2B	0.167	0.172	0.1765	0.1799	0.0034	0.1900
(6) 10 – 56 or 0.190 – 56	NNS	2A	0.0007	0.1893	0.1852	0.1777	0.1752	0.002488	0.1680	2B	0.171	0.175	0.1784	0.1816	0.0032	0.1900
(6) 12 – 36 or 0.216 – 36	NNS	2A	0.0009	0.2151	0.2096	0.1971	0.1941	0.003026	0.1820	2B	0.186	0.193	0.1980	0.2019	0.0039	0.2160
(6) 12 – 40 or 0.216 – 40	NNS	2A	0.0009	0.2151	0.2100	0.1989	0.1960	0.002894	0.1853	2B	0.189	0.195	0.1998	0.2036	0.0038	0.2160
(6) 12 – 48 or 0.216 – 48	NNS	2A	0.0008	0.2152	0.2107	0.2017	0.1990	0.002686	0.1904	2B	0.193	0.198	0.2025	0.2060	0.0035	0.2160
(6) 12 – 56 or 0.216 – 56	NNS	2A	0.0008	0.2152	0.2111	0.2036	0.2011	0.002526	0.1939	2B	0.197	0.201	0.2044	0.2077	0.0033	0.2160
$\frac{1}{4} - 24$ or $0.250 - 24$	NNS	2A	0.0011	0.2489	0.2417	0.2218	0.2181	0.003667	0.1993	2B	0.205	0.215	0.2229	0.2277	0.0048	0.2500
$\frac{1}{4} - 27$ or $0.250 - 27$	NNS	2A	0.0010	0.2490	0.2423	0.2249	0.2214	0.003478	0.2049	2B	0.210	0.219	0.2259	0.2304	0.0045	0.2500
(6) $\frac{1}{4}$ – 36 or 0.250 – 36	NNS	2A	0.0009	0.2491	0.2436	0.2311	0.2280	0.003071	0.2160	2B	0.220	0.227	0.2320	0.2360	0.0040	0.2500
$\frac{1}{4}$ – 40 or 0.250 – 40	SNO	2A	0.0000	0.2491	0.2440	0.2329	0.2300	0.002939	0.2193	2B	0.223	0.229	0.2338	0.2376	0.0038	0.2500
(6) $\frac{1}{4}$ – 48 or 0.250 – 48	SNO	2A	0.0008	0.2492	0.2447	0.2357	0.2330	0.002731	0.2244	2B	0.227	0.232	0.2365	0.2401	0.0036	0.2500
(6) $\frac{1}{4}$ – 56 or 0.250 – 56	SNO	2A	0.0008	0.2492	0.2451	0.2376	0.2350	0.002571	0.2279	2B	0.231	0.235	0.2384	0.2417	0.0033	0.2500
(6) $^{5}/_{16}$ –27 or 0.3125–27	SNO	2A	0.0011	0.3114	0.3047	0.2873	0.2837	0.003551	0.2673	2B	0.272	0.281	0.2884	0.2930	0.0046	0.3125
(6) $^{5}/_{16}$ –36 or 0.3125–36	SNO	2A	0.0009	0.3116	0.3061	0.2936	0.2905	0.003144	0.2785	2B	0.282	0.289	0.2945	0.2986	0.0041	0.3125
(6) $^{5}/_{16}$ -40 or 0.3125-40	SNO	2A	0.0009	0.3116	0.3065	0.2954	0.2924	0.003012	0.2818	2B	0.285	0.291	0.2963	0.3002	0.0039	0.3125
(6) $^{5}/_{16}$ –48 or 0.3125–48	SNN	2A	0.0008	0.3117	0.3072	0.2982	0.2954	0.002804	0.2869	2B	0.290	0.295	0.2990	0.3026	0.0036	0.3125

Table D-1 Limits of Size for Selected Combinations of UNS/UNRS Series Threads (Cont'd)

					External	External [Note (1)]						-	Internal [Note (1)]	Note (1)]		
	Series			Major Diameter	ımeter	Pitch Functi	Pitch Diameter and Functional Diameter [Note (3)]	r and meter	UNR Minor Diameter,				Pitc	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Desig- nation	Class	Allowance	Max. [Note (2)]	Min.	Max. [Note (2)]	Min.	Tolerance [Note (4)]	[Note (5)] (Ref.)	Class	Minor D Min.	Minor Diameter Min. Max.	Min.	[Note (3)] Max.] Tolerance	Diameter, Min.
(6) $\frac{3}{8}$ – 18 or 0.375 – 18	SNN	2A	0.0013	0.3737	0.3650	0.3376	0.3333	0.004327	0.3075	2B	0.315	0.328	0.3389	0.3445	0.0056	0.3750
$\frac{3}{8}$ – 27 or 0.375 – 27	NNS	2A	0.0011	0.3739	0.3672	0.3498	0.3462	0.003615	0.3298	2B	0.335	0.344	0.3509	0.3556	0.0047	0.3750
$\frac{3}{8}$ – 36 or 0.375 – 36	NNS	2A	0.0010	0.3740	0.3685	0.3560	0.3528	0.003208	0.3409	2B	0.345	0.352	0.3570	0.3612	0.0042	0.3750
$\frac{3}{8}$ - 40 or 0.375 - 40	NNS	2A	0.0009	0.3741	0.3690	0.3579	0.3548	0.003076	0.3443	2B	0.348	0.354	0.3588	0.3628	0.0040	0.3750
0.390 – 27 or 0.390 – 27	NNS	2A	0.0011	0.3889	0.3822	0.3648	0.3612	0.003629	0.3448	2B	0.350	0.359	0.3659	0.3706	0.0047	0.3900
(6) $^{7}/_{16}$ -18 or 0.4375-18	NNS	2A	0.0013	0.4362	0.4275	0.4001	0.3957	0.004384	0.3700	2B	0.377	0.390	0.4014	0.4071	0.0057	0.4375
(6) $^{7}/_{16}$ – 24 or 0.4375 – 24	NNS	2A	0.0012	0.4363	0.4291	0.4092	0.4053	0.003861	0.3867	2B	0.392	0.402	0.4104	0.4154	0.0050	0.4375
$(6)^{7/16}$ –27 or 0.4375–27	NNS	2A	0.0011	0.4364	0.4297	0.4123	0.4086	0.003672	0.3923	2B	0.397	0.406	0.4134	0.4182	0.0048	0.4375
(6) $\frac{1}{2} - 12$ or $0.500 - 12$ (6)	NNS	2A 3A	0.0016	0.4984	0.4870	0.4443	0.4389	0.005352	0.3992	2B 3B	0.410	0.428	0.4459	0.4529	0.0070	0.5000
(6) $\frac{1}{2} - 14$ or $0.500 - 14$	NNS	2A	0.0015	0.4985	0.4882	0.4521	0.4471	0.004976	0.4134	2B	0.423	0.438	0.4536	0.4601	0.0065	0.5000
(6) $\frac{1}{2} - 18$ or $0.500 - 18$	NNS	2A	0.0013	0.4987	0.4900	0.4626	0.4582	0.004436	0.4325	2B	0.440	0.453	0.4639	0.4697	0.0058	0.5000
$\frac{1}{2} - 24$ or $0.500 - 24$	NNS	2A	0.0012	0.4988	0.4916	0.4717	0.4678	0.003913	0.4492	2B	0.455	0.465	0.4729	0.4780	0.0051	0.5000
$\frac{1}{2} - 27$ or $0.500 - 27$	NNS	2A	0.0011	0.4989	0.4922	0.4748	0.4711	0.003724	0.4548	2B	0.460	0.469	0.4759	0.4807	0.0048	0.5000
(6) $\frac{9}{16} - 14$ or $0.5625 - 14$	NNS	2A	0.0015	0.5610	0.5507	0.5146	0.5096	0.005023	0.4759	2B	0.485	0.501	0.5161	0.5226	0.0065	0.5625
(6) $\frac{9}{16} - 27$ or $0.5625 - 27$	NNS	2A	0.0011	0.5614	0.5547	0.5373	0.5335	0.003771	0.5173	2B	0.522	0.531	0.5384	0.5433	0.0049	0.5625
(6) $\frac{5}{8}$ - 14 or 0.625 - 14	NNS	2A	0.0015	0.6235	0.6132	0.5771	0.5720	0.005067	0.5384	2B	0.548	0.563	0.5786	0.5852	9900.0	0.6250
$\frac{5}{8}$ – 27 or 0.625 – 27	NNS	2A	0.0011	0.6239	0.6172	0.5998	0.5960	0.003815	0.5798	2B	0.585	0.594	0.6009	0.6059	0.0050	0.6250
(6) $\frac{3}{4}$ – 14 or 0.750 – 14	NNS	2A	0.0015	0.7485	0.7382	0.7021	0.6970	0.005148	0.6634	2B	0.673	0.688	0.7036	0.7103	0.0067	0.7500

Table D-1 Limits of Size for Selected Combinations of UNS/UNRS Series Threads (Cont'd)

					Externa	External [Note (1)]						_	Internal [Note (1)]	lote (1)]		
				Major Diameter	ımeter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (3)]	r and meter	UNR Minor Diameter,				Pitch Func	Pitch Diameter and Functional Diameter	r and meter	, cic
Nominal Size and Threads/in	Desig-	Class	Allowance	Max.	Mi	Max.	M:	Tolerance [Note (4)]	Max. [Note (5)] (Ref.)	Class	Minor Diameter	Max	M.	[Note (3)]	J. Tolerance	Major Diameter, Min.
(6) ³ / ₄ – 18 or 0.750 – 18	SNN		0.0014	0.7486	0.7399	0.7125	0.7079	0.004608	0.6824	2B	0.690	0.703	0.7139	0.7199	090000	0.7500
$\frac{3}{4}$ – 24 or 0.750 – 24	NNS	2A	0.0012	0.7488	0.7416	0.7217	0.7176	0.004085	0.6992	2B	0.705	0.715	0.7229	0.7282	0.0053	0.7500
$\frac{3}{4}$ – 27 or 0.750 – 27	NNS	2A	0.0012	0.7488	0.7421	0.7247	0.7208	0.003896	0.7047	2B	0.710	0.719	0.7259	0.7310	0.0051	0.7500
(6) $\frac{7}{8} - 10$ or $0.875 - 10$	SNN	2A	0.0018	0.8732	0.8603	0.8082	0.8021	0.006090	0.7541	2B	0.767	0.788	0.8100	0.8179	0.0079	0.8750
(6) $\frac{7}{8} - 18$ or $0.875 - 18$	NNS	2A	0.0014	0.8736	0.8649	0.8375	0.8328	0.004680	0.8074	2B	0.815	0.828	0.8389	0.8450	0.0061	0.8750
(6) $\frac{7}{8}$ – 24 or 0.875 – 24	NNS	2A	0.0012	0.8738	0.8666	0.8467	0.8425	0.004157	0.8242	2B	0.830	0.840	0.8479	0.8533	0.0054	0.8750
(6) $\frac{7}{8}$ – 27 or 0.875 – 27	NNS	2A	0.0012	0.8738	0.8671	0.8497	0.8457	0.003968	0.8297	28	0.835	0.844	0.8509	0.8561	0.0052	0.8750
(6) $1 - 10$ or $1.000 - 10$	NNS	2A	0.0018	0.9982	0.9853	0.9332	0.9270	0.006155	0.8791	28	0.892	0.913	0.9350	0.9430	0.0080	1.0000
(6) $1 - 18$ or $1.000 - 18$	NNS	2A	0.0014	0.9986	0.9899	0.9625	0.9578	0.004745	0.9324	2B	0.940	0.953	0.9639	0.9701	0.0062	1.0000
1 – 24 or 1.000 – 24	NNS	2A	0.0013	0.9987	0.9915	0.9716	0.9674	0.004222	0.9491	2B	0.955	0.965	0.9729	0.9784	0.0055	1.0000
1 - 27 or $1.000 - 27$	NNS	2A	0.0012	0.9988	0.9921	0.9747	0.9707	0.004033	0.9547	2B	096.0	0.969	0.9759	0.9811	0.0052	1.0000
(6) $1\frac{1}{8} - 10$ or $1.125 - 10$	NNS	2A	0.0019	1.1231	1.1102	1.0581	1.0519	0.006215	1.0040	2B	1.017	1.038	1.0600	1.0681	0.0081	1.1250
(6) $1\frac{1}{8} - 14$ or $1.125 - 14$	NNS	2A	0.0016	1.1234	1.1131	1.0770	1.0717	0.005345	1.0383	2B	1.048	1.063	1.0786	1.0855	0.0069	1.1250
(6) $1\frac{1}{8} - 24$ or $1.125 - 24$	NNS	2A	0.0013	1.1237	1.1165	1.0966	1.0923	0.004282	1.0741	2B	1.080	1.090	1.0979	1.1035	0.0056	1.1250
(6) $1\frac{1}{4} - 10$ or $1.250 - 10$	NNS	2A	0.0019	1.2481	1.2352	1.1831	1.1768	0.006271	1.1290	2B	1.142	1.163	1.1850	1.1932	0.0082	1.2500
(6) $1\frac{1}{4} - 14$ or $1.250 - 14$	NNS	2A	0.0016	1.2484	1.2381	1.2020	1.1966	0.005401	1.1633	2B	1.173	1.188	1.2036	1.2106	0.0070	1.2500
$1^{1}/_{4} - 24$ or $1.250 - 24$	NNS	2A	0.0013	1.2487	1.2415	1.2216	1.2173	0.004338	1.1991	2B	1.205	1.215	1.2229	1.2285	0.0056	1.2500
(6) $1\frac{3}{8} - 10$ or $1.375 - 10$	SNN	2A	0.0019	1.3731	1.3602	1.3081	1.3018	0.006323	1.2540	2B	1.267	1.288	1.3100	1.3182	0.0082	1.3750
(6) $1\frac{3}{8} - 14$ or $1.375 - 14$	SNN	2A	0.0016	1.3734	1.3631	1.3270	1.3215	0.005453	1.2883	28	1.298	1.313	1.3286	1.3357	0.0071	1.3750

Table D-1 Limits of Size for Selected Combinations of UNS/UNRS Series Threads (Cont'd)

					External	External [Note (1)]						<u>In</u>	Internal [Note (1)]	ote (1)]		
	, , ,			Major Diameter	meter	Pitch Functi [Pitch Diameter and Functional Diameter [Note (3)]	r and meter	UNR Minor Diameter,				Pitch Functi	Pitch Diameter and Functional Diameter	and neter	M jir
Nominal Size and Threads/in.	Designation	Class	Allowance	Max. [Note (2)]	Min.	Max. [Note (2)]	Min.	Tolerance [Note (4)]	=	Class	Minor Diameter Min. Max.	ameter Max.	Min.	[Note (3)] Max.	Tolerance	Min.
(6) $1^3/_8 - 24$ or $1.375 - 24$	NNS	2A	0.0013	1.3737	1.3665	1.3466	1.3422	0.004390	1.3241	2B 1	1.330	1.340 1	1.3479	1.3536	0.0057	1.3750
(6) $1\frac{1}{2} - 10$ or $1.500 - 10$	NNS	2A	0.0019	1.4981	1.4852	1.4331	1.4267	0.006372	1.3790	2B 1	1.392	1.413 1	1.4350	1.4433	0.0083	1.5000
(6) $1\frac{1}{2} - 14$ or $1.500 - 14$	NNS	2A	0.0017	1.4983	1.4880	1.4519	1.4464	0.005502	1.4132	2B 1	1.423	1.438 1	1.4536	1.4608	0.0072	1.5000
$1^{1/_{2}} - 24$ or $1.500 - 24$	NNS	2A	0.0013	1.4987	1.4915	1.4716	1.4672	0.004439	1.4491	2B 1	1.455	1.465 1	1.4729	1.4787	0.0058	1.5000
(6) $1\frac{5}{8} - 10$ or $1.625 - 10$	NNS	2A	0.0019	1.6231	1.6102	1.5581	1.5517	0.006419	1.5040	2B 1	1.517	1.538 1	1.5600	1.5683	0.0083	1.6250
(6) $1^{5/8} - 14$ or $1.625 - 14$	NNS	2A	0.0017	1.6233	1.6130	1.5769	1.5714	0.005549	1.5382	2B 1	1.548	1.563 1	1.5786	1.5858	0.0072	1.6250
(6) $1\frac{5}{8} - 24$ or $1.625 - 24$	NNS	2A	0.0013	1.6237	1.6165	1.5966	1.5921	0.004486	1.5741	2B 1	1.580	1.590 1	1.5979	1.6037	0.0058	1.6250
(6) $1\frac{3}{4} - 10$ or $1.750 - 10$	NNS	2A	0.0019	1.7481	1.7352	1.6831	1.6766	0.006463	1.6290	2B 1	1.642	1.663 1	1.6850	1.6934	0.0084	1.7500
$1^{3}\!/_{4}-14$ or $1.750-14$	NNS	2A	0.0017	1.7483	1.7380	1.7019	1.6963	0.005593	1.6632	2B 1	1.673	1.688 1	1.7036	1.7109	0.0073	1.7500
(6) $1\frac{3}{4} - 18$ or $1.750 - 18$	NNS	2A	0.0015	1.7485	1.7398	1.7124	1.7073	0.005053	1.6823	2B 1	1.690	1.703 1	1.7139	1.7205	9900.0	1.7500
(6) $1\frac{7}{8} - 10$ or $1.875 - 10$	NNS	2A	0.0020	1.8730	1.8601	1.8080	1.8015	0.006505	1.7539	2B 1	1.767	1.788 1	1.8100	1.8185	0.0085	1.8750
(6) $1\frac{7}{8} - 14$ or $1.875 - 14$	NNS	2A	0.0017	1.8733	1.8630	1.8269	1.8213	0.005635	1.7882	2B 1	1.798	1.813 1	1.8286	1.8359	0.0073	1.8750
(6) $1\frac{7}{8} - 18$ or $1.875 - 18$	ONS	2A	0.0015	1.8735	1.8648	1.8374	1.8323	0.005095	1.8073	2B 1	1.815	1.828 1	1.8389	1.8455	9900.0	1.8750
(6) $2 - 10$ or $2.000 - 10$	NNS	2A	0.0020	1.9980	1.9851	1.9330	1.9265	0.006545	1.8789	2B 1	1.892	1.913 1	1.9350	1.9435	0.0085	2.0000
(6) $2 - 14$ or $2.000 - 14$	NNS	2A	0.0017	1.9983	1.9880	1.9519	1.9462	0.005675	1.9132	2B 1	1.923	1.938 1	1.9536	1.9610	0.0074	2.0000
(6) $2 - 18$ or $2.000 - 18$	NNS	2A	0.0015	1.9985	1.9898	1.9624	1.9573	0.005135	1.9323	2B 1	1.940	1.953 1	1.9639	1.9706	0.0067	2.0000
(6) $2^{1}/_{16} - 16$ or $2.063 - 16$ (6)	SNN	2A 3A	0.0016	2.0609	2.0515	2.0203	2.0149	0.005396	1.9865	2B 1 3B 1	1.995	2.009 2	2.0219	2.0289	0.0070	2.0625 2.0625
(6) $2^{3/1}_{16} - 16$ or $2.1875 - 16$ (6)	UNS	2A 3A	0.0016	2.1859	2.1765	2.1453	2.1399	0.005434	2.1115	2B 2 3B 2	2.120	2.134 2	2.1469	2.1540 2.1522	0.0071	2.1875 2.1875

Table D-1 Limits of Size for Selected Combinations of UNS/UNRS Series Threads (Cont'd)

					External	External [Note (1)]						=	Internal [Note (1)]	lote (1)]		
	20,700			Major Diameter	meter	Pitch Functi	Pitch Diameter and Functional Diameter [Note (3)]	r and meter	UNR Minor Diameter,				Pitch Funci	Pitch Diameter and Functional Diameter	r and neter	N Gir
Nominal Size and Threads/in.	Desig- nation	Class	Allowance	Max. [Note (2)]	Min.	Max. [Note (2)]	Min.	Tolerance [Note (4)]	(Ref.)	Class	Minor Diameter Min. Max.	iameter Max.	Min.	[Note (3)] Max.	Tolerance	Diameter, Min.
(6) $2\frac{1}{4} - 10$ or $2.250 - 10$	NNS	2A	0020	2.2480	2.2351	2.1830	2.1764	0.006621	2.1289	2B	2.142	2.163	2.1850	2.1936	0.0086	2.2500
(6) $2^{1}/_{4} - 14$ or $2.250 - 14$	NNS	2A	0.0017	2.2483	2.2380	2.2019	2.1961	0.005751	2.1632	2B	2.173	2.188	2.2036	2.2111	0.0075	2.2500
(6) $2\frac{1}{4} - 18$ or $2.250 - 18$	NNS	2A	0.0016	2.2484	2.2397	2.2123	2.2071	0.005211	2.1822	2B	2.190	2.203	2.2139	2.2207	0.0068	2.2500
(6) $2^{5}/_{16} - 16$ or $2.3125 - 16$ (6)	NNS	2A 3A	0.0016	2.3109	2.3015	2.2703	2.2648	0.005471	2.2365	2B 3B	2.245 2.2450	2.259	2.2719	2.2790	0.0071	2.3125 2.3125
(6) $2^{7}/_{16} - 16$ or $2.4375 - 16$ (6)	ONS	2A 3A	0.0017	2.4358	2.4264 2.4281	2.3952	2.3897	0.005506	2.3614	2B 3B	2.370	2.384	2.3969	2.4041	0.0072	2.4375 2.4375
(6) $2\frac{1}{2} - 10$ or $2.500 - 10$	NNS	2A	0.0020	2.4980	2.4851	2.4330	2.4263	0.006691	2.3789	2B	2.392	2.413	2.4350	2.4437	0.0087	2.5000
(6) $2\frac{1}{2}$ – 14 or 2.500 – 14	NNS	2A	0.0017	2.4983	2.4880	2.4519	2.4461	0.005821	2.4132	2B	2.423	2.438	2.4536	2.4612	0.0076	2.5000
(6) $2\frac{1}{2}$ – 18 or 2.500 – 18	SNN	2A	0.0016	2.4984	2.4897	2.4623	2.4570	0.005281	2.4322	2B	2.440	2.453	2.4639	2.4708	0.0069	2.5000
(6) $2\frac{3}{4} - 10$ or $2.750 - 10$	NNS	2A	0.0020	2.7480	2.7351	2.6830	2.6762	0.006757	2.6289	2B	2.642	2.663	2.6850	2.6938	0.0088	2.7500
(6) $2^{3}/_{4} - 14$ or $2.750 - 14$	SNN	2A	0.0018	2.7482	2.7379	2.7018	2.6959	0.005887	2.6631	2B	2.673	2.688	2.7036	2.7113	0.0077	2.7500
(6) $2\frac{3}{4} - 18$ or $2.750 - 18$	NNS	2A	0.0016	2.7484	2.7397	2.7123	2.7070	0.005347	2.6822	2B	2.690	2.703	2.7139	2.7209	0.0070	2.7500
(6) 3 – 10 or 3.000 – 10	NNS	2A	0.0020	2.9980	2.9851	2.9330	2.9262	0.006818	2.8789	2B	2.892	2.913	2.9350	2.9439	0.0089	3.0000
(6) 3 – 14 or 3.000 – 14	NNS	2A	0.0018	2.9982	2.9879	2.9518	2.9459	0.005948	2.9131	2B	2.923	2.938	2.9536	2.9613	0.0077	3.0000
(6) 3 – 18 or 3.000 – 18	NNS	2A	0.0016	2.9984	2.9897	2.9623	2.9569	0.005408	2.9322	2B	2.940	2.953	2.9639	2.9709	0.0070	3.0000
(6) $3\frac{1}{4} - 10$ or $3.250 - 10$	NNS	2A	0.0021	3.2479	3.2350	3.1829	3.1760	0.006877	3.1288	2B	3.142	3.163	3.1850	3.1939	0.0089	3.2500
(6) $3\frac{1}{4} - 14$ or $3.250 - 14$	ONS	2A	0.0018	3.2482	3.2379	3.2018	3.1958	0.006007	3.1631	2B	3.173	3.188	3.2036	3.2114	0.0078	3.2500
(6) $3\frac{1}{4} - 18$ or $3.250 - 18$	ONS	2A	0.0016	3.2484	3.2397	3.2123	3.2068	0.005467	3.1822	2B	3.190	3.203	3.2139	3.2210	0.0071	3.2500
(6) $3\frac{1}{2} - 10$ or $3.500 - 10$	NNS	2A	0.0021	3.4979	3.4850	3.4329	3.4260	0.006932	3.3788	2B	3.392	3.413	3.4350	3.4440	0.0000	3.5000

Table D-1 Limits of Size for Selected Combinations of UNS/UNRS Series Threads (Cont'd)

					Externa	External [Note (1)]							Internal [Note (1)]	Note (1)]		
	Series			Major Dia	ıjor Diameter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (3)]	er and emeter]	UNR Minor Diameter,				Pitcl	Pitch Diameter and Functional Diameter	er and Imeter	Major
Nominal Size and Threads/in	Desig-	Class	Allowance	Max.	M.	Max.	ž.	Tolerance [(4)]	[Note (5)] (Ref.)	Class	Minor D	Minor Diameter	M.	[Note (3)]	J Tolerance	Diameter,
						(4) 23211										
(6) $3\frac{1}{2} - 14$ or $3.500 - 14$	NNS	2A	0.0018	3.4982	3.4879	3.4518	3.4457	0.006062	3.4131	2B	3.423	3.438	3.4536	3.4615	0.0079	3.5000
(6) $3\frac{1}{2} - 18$ or $3.500 - 18$	SNN	2A	0.0017	3.4983	3.4896	3.4622	3.4567	0.005522	3.4321	2B	3.440	3.453	3.4639	3.4711	0.0072	3.5000
(6) $3\frac{3}{4} - 10$ or $3.750 - 10$	NNS	2A	0.0021	3.7479	3.7350	3.6829	3.6759	0.006985	3.6288	2B	3.642	3.663	3.6850	3.6941	0.0091	3.7500
(6) $3\frac{3}{4} - 14$ or $3.750 - 14$	NNS	2A	0.0018	3.7482	3.7379	3.7018	3.6957	0.006115	3.6631	2B	3.673	3.688	3.7036	3.7115	0.0079	3.7500
(6) $3\frac{3}{4} - 18$ or $3.750 - 18$	NNS	2A	0.0017	3.7483	3.7396	3.7122	3.7066	0.005575	3.6821	28	3.690	3.703	3.7139	3.7211	0.0072	3.7500
(6) $4 - 10$ or $4.000 - 10$	SNN	2A	0.0021	3.9979	3.9850	3.9329	3.9259	0.007036	3.8788	2B	3.892	3.913	3.9350	3.9441	0.0091	4.0000
(6) $4 - 14$ or $4.000 - 14$	SNN	2A	0.0018	3.9982	3.9879	3.9518	3.9456	0.006166	3.9131	2B	3.923	3.938	3.9536	3.9616	0.0080	4.0000
(6) $4\frac{1}{4} - 10$ or $4.250 - 10$	SNN	2A	0.0021	4.2479	4.2350	4.1829	4.1758	0.007085	4.1288	2B	4.142	4.163	4.1850	4.1942	0.0092	4.2500
(6) $4\frac{1}{4} - 14$ or $4.250 - 14$	NNS	2A	0.0019	4.2481	4.2378	4.2017	4.1955	0.006215	4.1630	2B	4.173	4.188	4.2036	4.2117	0.0081	4.2500
(6) $4\frac{1}{2} - 10$ or $4.500 - 10$	SNN	2A	0.0021	4.4979	4.4850	4.4329	4.4258	0.007131	4.3788	28	4.392	4.413	4.4350	4.4443	0.0093	4.5000
(6) $4^{1/2}_{2} - 14$ or $4.500 - 14$	NNS	2A	0.0019	4.4981	4.4878	4.4517	4.4454	0.006261	4.4130	2B	4.423	4.438	4.4536	4.4617	0.0081	4.5000
(6) $4\frac{3}{4} - 10$ or $4.750 - 10$	NNS	2A	0.0022	4.7478	4.7349	4.6828	4.6756	0.007176	4.6287	2B	4.642	4.663	4.6850	4.6943	0.0093	4.7500
(6) $4\frac{3}{4} - 14$ or $4.750 - 14$	NNS	2A	0.0019	4.7481	4.7378	4.7017	4.6954	0.006306	4.6630	2B	4.673	4.688	4.7036	4.7118	0.0082	4.7500
(6) 5 – 10 or 5.000 – 10	NNS	2A	0.0022	4.9978	4.9849	4.9328	4.9256	0.007220	4.8787	2B	4.892	4.913	4.9350	4.9444	0.0094	5.0000
(6) $5 - 14$ or $5.000 - 14$	NNS	2A	0.0019	4.9981	4.9878	4.9517	4.9454	0.006350	4.9130	2B	4.923	4.938	4.9536	4.9619	0.0083	5.0000
(6) $5\frac{1}{4} - 10$ or $5.250 - 10$	SNN	2A	0.0022	5.2478	5.2349	5.1828	5.1755	0.007262	5.1287	28	5.142	5.163	5.1850	5.1944	0.0094	5.2500
(6) $5\frac{1}{4} - 14$ or $5.250 - 14$	SNN	2A	0.0019	5.2481	5.2378	5.2017	5.1953	0.006392	5.1630	28	5.173	5.188	5.2036	5.2119	0.0083	5.2500
(6) $5\frac{1}{2} - 10$ or $5.500 - 10$	NNS	2A	0.0022	5.4978	5.4849	5.4328	5.4255	0.007303	5.3787	2B	5.392	5.413	5.4350	5.4445	0.0095	5.5000

Limits of Size for Selected Combinations of UNS/UNRS Series Threads (Cont'd) Table D-1

					Externa	External [Note (1)]						=	Internal [Note (1)]	Note (1)]		
	Series			Major Diameter	ımeter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (3)]	r and meter]	UNR Minor Diameter,				Pitcl Func	Pitch Diameter and Functional Diameter	er and Imeter	Major
Nominal Size and	Desig-			Max.		Max.		Tolerance	[Note (5)]		Minor D	Minor Diameter		[Note (3)]		Diameter.
Threads/in.	nation	Class	nation Class Allowance [Note (2)]	[Note (2)]	Min.	[Note (2)]	Min.	[Note (2)] Min. [Note (4)]	(Ref.)	Class	Min.	Max.	Min.	Max.	Max. Tolerance	Min.
(6) $5\frac{1}{2} - 14$ or $5.500 - 14$	NNS	2A	0.0019	5.4981	5.4878	5.4517	5.4453	0.006433	5.4130	2B	5.423	5.438	5.4536	5.4536 5.4620	0.0084	5.5000
(6) $5\frac{3}{4} - 10$ or $5.750 - 10$	NNS	2A	0.0022	5.7478	5.7349	5.6828	5.6755	0.007342	5.6287	2B	5.642	5.663	5.6850	5.6945	0.0095	5.7500
(6) $5\frac{3}{4} - 14$ or $5.750 - 14$	NNS	2A	0.0019	5.7481	5.7378	5.7017	5.6952	0.006472	5.6630	2B	5.673	5.688	5.7036	5.7120	0.0084	5.7500
(6) 6 – 10 or 6.000 – 10	SNN	2A	0.0022	5.9978	5.9849	5.9328	5.9254	0.007381	5.8787	2B	5.892	5.913	5.9350	5.9446	9600.0	000009
(6) 6 – 14 or 6.000 – 14	NNS	2A	0.0020	5.9980	5.9877	5.9516	5.9451	0.006511	5.9129	2B	5.923	5.938	5.9536	5.9621	0.0085	6.0000

GENERAL NOTES: Series designation shown indicates the UN thread form; however, the UNR thread form may be specified by substituting UNR in place of UN in all designations for external use only.

NOTES:

(1) Thread classes may be combined. See para. 4.2.

For Class 2A threads having an additive finish, the maximum major and pitch diameters, after coating, may equal the basic sizes, whose values are the same as the nominal major diameter and the minimum pitch diameter shown for Class 2B, respectively. See para. 4.1.2. \overline{C}

See para. 5.2.1 for Functional Diameter.

2A pitch diameter tolerance ($7d_2$) is listed and used to a six place decimal to calculate the listed Class 1A/1B, 2B, 3A/3B tolerances and Class 1A/2A allowances and all dimensional limits which depend upon them. \mathbb{G}

UN series external thread maximum minor diameter is basic (O_1 in para. 11) for Class 3A and basic minus allowance for One or more of the numbers listed in this row have been changed to correct for calculation errors and a change in (2)

rounding methods. The original numbers from past issues of ASME B1.1 are listed in Nonmandatory Appendix E and are for reference only. 9

Table D-2 Major Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Classes 1A, 2A, and 3A

	Major Diam	eter Tolerance
Threads/	Class 1A 0.090 $\sqrt[3]{P^2}$	Class 2A and Class 3A 0.060 $\sqrt[3]{P^2}$
80		0.0032
72		0.0035
64		0.0038
56	•••	0.0041
48	•••	0.0045
44		0.0048
40	0.0077	0.0051
36	0.0083	0.0055
32	0.0089	0.0060
28	0.0098	0.0065
27	0.0100	0.0067
24	0.0108	0.0072
20	0.0122	0.0081
18	0.0131	0.0087
16	0.0142	0.0094
14	0.0155	0.0103
12	0.0172	0.0114
10	0.0194	0.0129
8	0.0225	0.0150
6	0.0273	0.0182
4	0.0357	0.0238
	• • •	

Table D-3 Allowances for External Threads of Special Diameters and Pitches (UNS/UNRS) — Classes 1A and 2A

			(0145/0	inks) –	Classe	5 IA di	iu ZA					
Allowance based on basic major diameter of	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1	1.25	1.5
For diameter range above	0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125	1.375
To and including	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125	1.375	1.625
Threads/in.				Major, I	Pitch, and	Minor Di	iameter A	llowance	s, in.			
80	0.0006	0.0006	0.0006	0.0007	0.0007							
72	0.0006	0.0006	0.0006	0.0007	0.0007	0.0007						
64	0.0006	0.0007	0.0007	0.0007	0.0007	0.0008	0.0008					
56		0.0007	0.0007	0.0007	0.0008	0.0008	0.0008	0.0009	0.0009			
48		0.0007	0.0007	0.0007	0.0008	0.0009	0.0009	0.0009	0.0009		• • •	• • •
44		0.0007	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0009	0.0010	• • •	• • •
40	• • •		0.0008	0.0008	0.0009	0.0009	0.0009	0.0009	0.0010	0.0010	• • •	• • •
	• • •	• • •			0.0009	0.0009	0.0010				0.0011	0.0012
36	• • •	• • •	0.0009	0.0009				0.0010	0.0010	0.0011	0.0011	0.0012
32	• • •	• • •	0.0009	0.0009	0.0010	0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012
28	• • •	• • •	• • •	0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012		0.0013
27	• • •	• • •	• • •	0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0012	0.0013
24	• • •	• • •		0.0011	0.0011	0.0011	0.0012	0.0012	0.0012	0.0013	0.0013	0.0013
20		• • •			0.0012	0.0012	0.0013	0.0013	0.0013	0.0014	0.0014	0.0014
18						0.0013	0.0013	0.0014	0.0014	0.0014	0.0015	0.0015
16						0.0014	0.0014	0.0014	0.0015	0.0015	0.0015	0.0016
14							0.0015	0.0015	0.0015	0.0016	0.0016	0.0017
12							0.0016	0.0016	0.0017	0.0017	0.0017	0.0018
10									0.0018	0.0018	0.0019	0.0019
8										0.0021	0.0021	0.0021
6												0.0024
4												
Allowance based on basic major diameter of	1.75	2	2.5	3	3.5	4	5	6	8	10	1	.2
For diameter range above	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	1	.1
To and including	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	1	.3
Threads/in.				Major,	Pitch, and	l Minor D	iameter <i>F</i>	Allowance	s, in.			
90												
80 72	• • •	• • •	• • •	• • •		• • •			• • •			
72 64	• • •	• • •	• • •	• • •	• • •	• • •	• • • •		• •			• • •
	• • •	• • •	• • •	• • •	• • •	• • •	• • • •		• •			• • •
56	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •				• • •
48	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •		• • •	• • •
44	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •		• • •	• • •
40	• • •	• • •	• • •	• • •		• • •						
36												
32	0.0012	0.0013	0.0013	0.0013	• • •							• • •
28	0.0013	0.0013	0.0014	0.0014	0.0014	0.0015						
27	0.0013	0.0013	0.0014	0.0014	0.0014	0.0015	0.0015	0.001	6			
24	0.0014	0.0014	0.0014	0.0015	0.0015	0.0015	0.0016	0.001	6			
20	0.0015	0.0015	0.0015	0.0016	0.0016	0.0016	0.0017	0.001	7			
18	0.0015	0.0015	0.0016	0.0016	0.0017	0.0017	0.0017	0.001		4.0		
16	0.0016	0.0016	0.0017	0.0017	0.0017	0.0018	0.0018				0020	
14	0.0017	0.0017	0.0017	0.0018	0.0018	0.0018	0.0019				0021	0.0022
12	0.0017	0.0017	0.0019	0.0019	0.0019	0.0020	0.0020				0022	0.0023
10	0.0019	0.0020	0.0019	0.0019	0.0013	0.0021	0.0022				0024	0.0024
8	0.0019	0.0020	0.0020	0.0020	0.0021	0.0021	0.0024				0024	0.0024
	0.0021	0.0022	0.0022	0.0023	0.0023	0.0023	0.0027				0026	0.0026
6						0.0026						0.0029
4	• • •	0.0030	0.0031	0.0031	0.0031	0.0032	0.0032	0.003	3 0.00	0.0	0034	0.0035

GENERAL NOTE: Classes 1A and 2A allowances are determined by multiplying Class 2A pitch diameter tolerances (computed to six decimal places) by 0.3 and are based on lengths of engagement of nine pitches.

Table D-4 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 1A

Tolerance based on basic major diameter of	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter range above	0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and including	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125

	Length of En	gagement									
Threads/in.	Number of Pitches	in.			Pitch	Diameter	Tolerances	, in.			
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	 								
72	5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	 								
64	5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	 								
56	5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54	 								
48	5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62	 								
44	5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68	 0.0038 0.0048	0.0039 0.0049	0.0041 0.0051	0.0042 0.0053	0.0044 0.0056	0.0046 0.0058	0.0047 0.0059	0.0049 0.0061	0.0051 0.0063
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76	 	0.0041 0.0051	0.0043 0.0053	0.0044 0.0055	0.0046 0.0058	0.0048 0.0060	0.0049 0.0061	0.0050 0.0063	0.0052 0.0066
36	5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84	 	0.0043 0.0054	0.0045 0.0056	0.0046 0.0058	0.0048 0.0060	0.0050 0.0062	0.0051 0.0064	0.0052 0.0065	0.0054 0.0068
32	5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94	 	0.0045 0.0057	0.0047 0.0059	0.0048 0.0061	0.0050 0.0063	0.0052 0.0065	0.0053 0.0067	0.0055 0.0068	0.0057 0.0071
28	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08	 		0.0050 0.0063	0.0051 0.0064	0.0053 0.0067	0.0055 0.0069	0.0056 0.0070	0.0058 0.0072	0.0060 0.0075
27	5 to 15 16 to 30	0.19 to 0.56 0.561 to 1.12	 		0.0051 0.0064	0.0052	0.0056 0.0068	0.0056 0.0070	0.0057 0.0072	0.0058 0.0073	0.0060 0.0076
24	5 to 15 16 to 30	0.21 to 0.62 0.621 to 1.24	 		0.0054	0.0055	0.0057 0.0071	0.0070	0.0060 0.0075	0.0061 0.0077	0.0063 0.0079
20	5 to 15 16 to 30	0.25 to 0.75 0.751 to 1.50	 			0.0060 0.0075	0.0062 0.0077	0.0073 0.0063 0.0079	0.0065 0.0081	0.0066 0.0083	0.0068 0.0085
18	5 to 15 16 to 30	0.28 to 0.83 0.831 to 1.66	 				0.0065 0.0081	0.007 <i>3</i> 0.0067 0.0083	0.0068	0.0069	0.0083 0.0071 0.0089
16	5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88	 				0.0069	0.0083 0.0070 0.0088	0.0083 0.0072 0.0089	0.0030 0.0073 0.0091	0.0089 0.0075 0.0094
14	∫ 5 to 15	0.36 to 1.07	 					0.0075	0.0076	0.0077	0.0079
12	16 to 30 5 to 15	1.071 to 2.14 0.42 to 1.25	 					0.0093	0.0095	0.0097	0.0099
10	16 to 30	1.251 to 2.50 0.50 to 1.50	 					0.0100	0.0102	0.0104	0.0106 0.0092
8	16 to 30 ∫ 5 to 15	1.501 to 3.00 0.62 to 1.88	 							0.0113	0.0115
	16 to 30 5 to 15	1.881 to 3.76 0.83 to 2.50	 								0.0128
6	16 to 30 5 to 15	2.501 to 5.00 1.25 to 3.75	 								
4	16 to 30	3.751 to 7.50	 								

GENERAL NOTES:

- (a) These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 4-UN, 6-UN, and 8-UN thread series.
- (b) Class 1A tolerances in this Table for 5 to 15 pitches are based on 9 pitches and are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places (see Table 20) by a factor of 1.5.
- (c) Class 1A tolerances in this Table for 16 to 30 pitches are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.875 (obtained by multiplying the 1.5 factor by 1.25). For lengths of engagement not tabulated, see para. 5.

Table D-4 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 1A

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13

					Pitch Dia	meter Tole	rances, in.						Threads/in.
													} 80
)
													} 72
)
													64
)
													} 56
													} 48
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J 40
										• • •		• • •	} 44
	• • •	• • •	• • •	• • •		• • •	• • •		• • • •	• • • •			J
													40
0.0056	0.0058												J
0.0030	0.0038												36
0.0058	0.0060	0.0061	0.0063	0.0065	0.0067)
0.0073	0.0075	0.0077	0.0078	0.0081	0.0083								} 32
0.0061	0.0063	0.0064	0.0066	0.0068	0.0070	0.0071	0.0073						} 28
0.0077	0.0079	0.0080	0.0082	0.0085	0.0087	0.0089	0.0091		• • •	• • •		• • •	j 20
0.0061	0.0064	0.0065	0.0066	0.0069	0.0070	0.0072	0.0074	0.0076	0.0079				} 27
0.0078	0.0080	0.0081	0.0083	0.0086	0.0088	0.0090	0.0092	0.0096	0.0099	• • • •	• • • •	• • •	J
0.0065 0.0081	0.0067 0.0083	0.0068 0.0085	0.0069 0.0086	0.0071 0.0089	0.0073 0.0092	0.0075 0.0094	0.0077 0.0096	0.0079 0.0099	0.0082 0.0102				24
0.0070	0.0071	0.0073	0.0074	0.0076	0.0078	0.0080	0.0081	0.0084	0.0087)
0.0070	0.0071	0.0073	0.0074	0.0076	0.0078	0.0080	0.0081	0.0084	0.0087				20
0.0073	0.0074	0.0076	0.0077	0.0079	0.0081	0.0083	0.0084	0.0087	0.0090	0.0094			j
0.0091	0.0093	0.0095	0.0096	0.0099	0.0101	0.0104	0.0105	0.0109	0.0112	0.0117			} 18
0.0077	0.0078	0.0078	0.0081	0.0083	0.0085	0.0086	0.0088	0.0091	0.0093	0.0097	0.0101		} 16
0.0096	0.0098	0.0099	0.0101	0.0104	0.0106	0.0108	0.0110	0.0113	0.0116	0.0122	0.0126	• • •) 16
0.0081	0.0083	0.0084	0.0085	0.0087	0.0089	0.0091	0.0092	0.0095	0.0098	0.0102	0.0105	0.0108	14
0.0101	0.0103	0.0105	0.0106	0.0109	0.0112	0.0114	0.0116	0.0119	0.0122	0.0127	0.0132	0.0135	J - '
0.0087	0.0088	0.0090	0.0091	0.0093	0.0095	0.0097	0.0098	0.0101	0.0103	0.0107	0.0111	0.0114	} 12
0.0108	0.0110	0.0112	0.0113	0.0116	0.0119	0.0121	0.0123	0.0126	0.0129	0.0134	0.0139	0.0142	J
0.0094 0.0118	0.0096 0.0119	0.0097 0.0121	0.0098 0.0123	0.0100 0.0125	0.0102 0.0128	0.0104 0.0130	0.0106 0.0132	0.0108 0.0135	0.0111 0.0138	0.0115 0.0144	0.0118 0.0148	0.0121 0.0152	10
													J
0.0104 0.0130	0.0106 0.0132	0.0107 0.0134	0.0108 0.0136	0.0111 0.0138	0.0113 0.0141	0.0114 0.0143	0.0116 0.0145	0.0119 0.0148	0.0121 0.0151	0.0125 0.0156	0.0129 0.0161	0.0132 0.0165	8
	0.0121	0.0123	0.0124	0.0126	0.0128	0.0130	0.0131	0.0134	0.0137	0.0141	0.0144	0.0147)
	0.0121	0.0154	0.0124	0.0158	0.0128	0.0162	0.0164	0.0168	0.0171	0.0176	0.0144	0.0184	} 6
			0.0151	0.0154	0.0155	0.0157	0.0159	0.0162	0.0164	0.0168	0.0172	0.0175	j ,
			0.0189	0.0192	0.0194	0.0196	0.0198	0.0202	0.0205	0.0210	0.0214	0.0214	} 4

⁽d) Pitches listed are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in para. 5 should be applied.

⁽e) Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement that are considered to be generally used. For other combinations encountered, see para. 5.

Table D-5 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 2A

Tolerance based on basic major diameter of	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter range above	0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and including	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125

	Length of En	gagement	_									
Threads/in.	Number of Pitches	in.				Pitch	Diameter	Tolerances	s, in.			
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	0.0019 0.0024	0.0020 0.0025	0.0021 0.0026	0.0022 0.0027	0.0023 0.0028					
72	5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	0.0020 0.0025	0.0021 0.0026	0.0021 0.0027	0.0023 0.0028	0.0023 0.0029	0.0025 0.0031				
64	{ 5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	0.0021 0.0026	0.0022 0.0027	0.0022 0.0028	0.0024 0.0029	0.0024 0.0031	0.0026 0.0032	0.0027 0.0034			
56	5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		0.0023 0.0029	0.0024 0.0030	0.0025 0.0031	0.0026 0.0032	0.0027 0.0034	0.0028 0.0035	0.0029 0.0036	0.0030 0.0037	
48	5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62		0.0025 0.0031	0.0025 0.0032	0.0026 0.0033	0.0027 0.0034	0.0029 0.0036	0.0030 0.0037	0.0031 0.0038	0.0031 0.0039	
44	5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		0.0026 0.0032	0.0026 0.0033	0.0027 0.0034	0.0028 0.0035	0.0030 0.0037	0.0031 0.0038	0.0032 0.0040	0.0032 0.0041	0.0034 0.0042
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			0.0027 0.0034	0.0029 0.0036	0.0029 0.0037	0.0031 0.0038	0.0032 0.0040	0.0033 0.0041	0.0034 0.0042	0.0035 0.0044
36	5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84			0.0029 0.0036	0.0030 0.0037	0.0031 0.0038	0.0032 0.0040	0.0033 0.0041	0.0034 0.0043	0.0035 0.0044	0.0036 0.0045
32	5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			0.0030 0.0038	0.0031 0.0039	0.0032 0.0040	0.0034 0.0042	0.0035 0.0043	0.0036 0.0045	0.0036 0.0046	0.0038 0.0047
28	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08				0.0033 0.0042	0.0034 0.0043	0.0036 0.0044	0.0037 0.0046	0.0038 0.0047	0.0038 0.0048	0.0040 0.0050
27	5 to 15 16 to 30	0.19 to 0.56 0.561 to 1.12				0.0034 0.0042	0.0035 0.0043	0.0036 0.0045	0.0037 0.0047	0.0038 0.0048	0.0039 0.0049	0.0040 0.0050
24	5 to 15 16 to 30	0.21 to 0.62 0.621 to 1.24				0.0036 0.0045	0.0037 0.0046	0.0038 0.0048	0.0039 0.0049	0.0040 0.0050	0.0041 0.0051	0.0042 0.0053
20	5 to 15 16 to 30	0.25 to 0.75 0.751 to 1.50					0.0040 0.0050	0.0041 0.0052	0.0042 0.0053	0.0043 0.0054	0.0044 0.0055	0.0045 0.0057
18	5 to 15 16 to 30	0.28 to 0.83 0.831 to 1.66						0.0043 0.0054	0.0044 0.0055	0.0045 0.0057	0.0046 0.0058	0.0047 0.0059
16	5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						0.0046 0.0057	0.0047 0.0058	0.0048 0.0060	0.0049 0.0061	0.0050 0.0062
14	5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							0.0050 0.0062	0.0051 0.0063	0.0051 0.0064	0.0053 0.0066
12	5 to 15 16 to 30	0.42 to 1.25 1.251 to 2.50							0.0054 0.0067	0.0054 0.0068	0.0055 0.0069	0.0057 0.0071
10	5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									0.0060 0.0075	0.0062 0.0077
8	5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										0.0068 0.0086
6	5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	5 to 15 16 to 30	1.25 to 3.75 3.751 to 7.50										

GENERAL NOTES:

Formula: Class 2A tolerances = $0.0015 \sqrt[3]{D} + 0.0015 \sqrt{LE} + 0.015 \sqrt[3]{P^2}$, where

D = basic major diameter

LE = length of engagement

P = pitch

⁽a) These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 4-UN, 6-UN, and 8-UN thread series.

⁽b) Formula:

Table D-5 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 2A

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13

					Pitch Dia	meter Tole	rances, in.						Threads/in.
													} 80
• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
													} 72
• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • • •	• • •	j
													64
• • •	• • • •	• • •		• • • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •	• • •	J
													} 56
• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
													} 48
• • •	• • • •	• • •		• • • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •	• • •	J
													} 44
• • •	• • • •	• • •		• • • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •	• • •	J ··
													} 40
• • •	• • •	• • •		• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	J ···
0.0037	0.0038												36
0.0047	0.0048	• • •		• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • •	J
0.0039	0.0040	0.0041	0.0042	0.0043	0.0044								} 32
0.0049	0.0050	0.0051	0.0052	0.0054	0.0056	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J 32
0.0041	0.0042	0.0043	0.0044	0.0045	0.0046	0.0048	0.0049						} 28
0.0051	0.0052	0.0054	0.0055	0.0056	0.0058	0.0059	0.0061	• • •	• • •	• • •	• • •	• • •	J 20
0.0041	0.0042	0.0043	0.0044	0.0046	0.0047	0.0048	0.0049	0.0051	0.0053				} 27
0.0052	0.0053	0.0054	0.0055	0.0057	0.0059	0.0060	0.0061	0.0064	0.0066	• • •	• • •	• • •	J - '
0.0043	0.0044	0.0045	0.0046	0.0048	0.0049	0.0050	0.0051	0.0053	0.0054				} 24
0.0054	0.0055	0.0057	0.0058	0.0059	0.0061	0.0062	0.0064	0.0066	0.0068		• • •	• • •) 24
0.0047	0.0048	0.0048	0.0049	0.0051	0.0052	0.0053	0.0054	0.0056	0.0058				} 20
0.0058	0.0059	0.0061	0.0062	0.0063	0.0065	0.0066	0.0068	0.0070	0.0072		• • • •		<u> </u>
0.0049	0.0050	0.0051	0.0051	0.0053	0.0054	0.0055	0.0056	0.0058	0.0060	0.0062			} 18
0.0061	0.0062	0.0063	0.0064	0.0066	0.0068	0.0069	0.0070	0.0073	0.0075	0.0078	• • •	• • •	J 10
0.0051	0.0052	0.0053	0.0054	0.0055	0.0056	0.0058	0.0059	0.0061	0.0062	0.0065	0.0067		} 16
0.0064	0.0065	0.0066	0.0067	0.0069	0.0071	0.0072	0.0073	0.0076	0.0078	0.0081	0.0084	• • •) 10
0.0054	0.0055	0.0056	0.0057	0.0058	0.0059	0.0061	0.0062	0.0064	0.0065	0.0068	0.0070	0.0072	} 14
0.0068	0.0069	0.0070	0.0071	0.0073	0.0074	0.0076	0.0077	0.0079	0.0081	0.0085	0.0088	0.0090	J 14
0.0058	0.0059	0.0060	0.0061	0.0062	0.0063	0.0064	0.0065	0.0067	0.0069	0.0072	0.0074	0.0076] 12
0.0072	0.0073	0.0075	0.0076	0.0077	0.0079	0.0080	0.0082	0.0084	0.0086	0.0090	0.0092	0.0095	} 12
0.0063	0.0064	0.0065	0.0065	0.0067	0.0068	0.0069	0.0070	0.0072	0.0074	0.0077	0.0079	0.0081] 10
0.0078	0.0080	0.0081	0.0082	0.0084	0.0085	0.0087	0.0088	0.0090	0.0092	0.0096	0.0099	0.0101	} 10
0.0070	0.0071	0.0071	0.0072	0.0074	0.0075	0.0076	0.0077	0.0079	0.0081	0.0083	0.0086	0.0088) _
0.0087	0.0088	0.0089	0.0090	0.0092	0.0094	0.0095	0.0097	0.0099	0.0101	0.0104	0.0107	0.0110	} 8
	0.0081	0.0082	0.0083	0.0084	0.0085	0.0087	0.0088	0.0089	0.0091	0.0094	0.0096	0.0098) ,
	0.0101	0.0102	0.0103	0.0105	0.0107	0.0108	0.0110	0.0112	0.0114	0.0117	0.0120	0.0123	} 6
			0.0101	0.0102	0.0104	0.0105	0.0106	0.0108	0.0109	0.0112	0.0114	0.0116) .
			0.0126	0.0102	0.0130	0.0131	0.0132	0.0135	0.0137	0.0112	0.0114	0.0145	} 4

⁽c) Length of engagement increments included in the tabulated tolerances for length of engagement of from 5 to 15 pitches are based on lengths of 9 pitches; those for lengths of engagement of from 16 to 30 pitches are obtained by multiplying the 9 pitch values taken to six decimal places by 1.25. For lengths of engagement not tabulated, the formula in (b) above should be applied except as modified.

⁽d) Pitches listed are those used most commonly and are recommended. When intermediate pitches are specified, the formula in (b) above should be applied.

⁽e) Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement that are considered to be generally used. For other combinations encountered, see para. 5.

Table D-6 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 3A

Tolerance based on basic major diameter of	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter range above	0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and including	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125

io aliu iliciuu	ilig		0.0761	0.1094	0.1562	0.2166	0.5125	0.43/3	0.5625	0.06/5	0.675	1.125
	Length of En	gagement										
Threads/in.	Number of Pitches	in.	-			Pitch	Diameter	Tolerances	, in.			
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	0.0014 0.0018	0.0015 0.0019	0.0015 0.0019	0.0016 0.0020	0.0017 0.0021					
72	5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	0.0015 0.0019	0.0016 0.0019	0.0016 0.0020	0.0017 0.0021	0.0018 0.0022	0.0019 0.0023				
64	5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	0.0016 0.0020	0.0016 0.0020	0.0017 0.0021	0.0018 0.0022	0.0018 0.0023	0.0019 0.0024	0.0020 0.0025			
56	5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		0.0017 0.0022	0.0018 0.0022	0.0019 0.0023	0.0019 0.0024	0.0020 0.0025	0.0021 0.0026	0.0022 0.0027	0.0022 0.0028	
48	5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62		0.0019 0.0022	0.0019 0.0023	0.0019 0.0024	0.0020 0.0025	0.0020 0.0026	0.0022 0.0027	0.0023 0.0029	0.0024 0.0030	
44	5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		0.0019 0.0024	0.0020 0.0025	0.0021 0.0026	0.0021 0.0026	0.0022 0.0028	0.0023 0.0029	0.0024 0.0030	0.0024 0.0030	0.0025 0.0032
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			0.0021 0.0026	0.0021 0.0027	0.0022 0.0028	0.0023 0.0029	0.0024 0.0030	0.0025 0.0031	0.0025 0.0031	0.0026 0.0033
36	5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84			0.0022 0.0027	0.0022 0.0028	0.0023 0.0029	0.0024 0.0030	0.0025 0.0031	0.0026 0.0032	0.0026 0.0033	0.0027 0.0034
32	5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94		• • •	0.0023 0.0028	0.0024 0.0029	0.0024 0.0030	0.0025 0.0032	0.0026 0.0033	0.0027 0.0033	0.0027 0.0034	0.0028 0.0035
28	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08				0.0025 0.0031	0.0026 0.0032	0.0027 0.0033	0.0028 0.0034	0.0028 0.0035	0.0029 0.0036	0.0030 0.0037
27	5 to 15 16 to 30	0.19 to 0.56 0.561 to 1.12				0.0025 0.0032	0.0026 0.0033	0.0027 0.0034	0.0028 0.0035	0.0029 0.0036	0.0029 0.0037	0.0030 0.0038
24	5 to 15 16 to 30	0.21 to 0.62 0.621 to 1.24				0.0027 0.0034	0.0028 0.0034	0.0029 0.0036	0.0029 0.0037	0.0030 0.0038	0.0031 0.0038	0.0032 0.0040
20	5 to 15 16 to 30	0.25 to 0.75 0.751 to 1.50					0.0030 0.0037	0.0031 0.0039	0.0032	0.0032 0.0041	0.0033 0.0041	0.0034 0.0043
18	5 to 15 16 to 30	0.28 to 0.83 0.831 to 1.66						0.0032 0.0041	0.0033 0.0042	0.0034 0.0042	0.0035 0.0043	0.0036 0.0044
16	5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						0.0034	0.0035	0.0036	0.0036 0.0045	0.0037
14	∫ 5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							0.0037	0.0038	0.0039	0.0040 0.0050
12	5 to 15 16 to 30	0.42 to 1.25 1.251 to 2.50							0.0040	0.0041 0.0051	0.0041 0.0052	0.0042 0.0053
10	5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									0.0045 0.0056	0.0046 0.0058
8	5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										0.0051 0.0064
6	5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	5 to 15 16 to 30	1.25 to 3.75										
	[10 10 30	3.751 to 7.50	• • • •	• • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •

GENERAL NOTES:

- (a) These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 4-UN, 6-UN, and 8-UN thread series.
- (b) Class 3A tolerances in this Table for 5 to 15 pitches are based on 9 pitches and are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor 0f 0.75.
- (c) Class 3A tolerances in this Table for 16 to 30 pitches are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 0.9375 (obtained by multiplying the 0.75 factor by 1.25). For lengths of engagement not tabulated, see para. 5.

Table D-6 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 3A

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13

					Pitch Dia	meter Tole	rances, in.						Threads/in.
													} 80
	• • •	• • •			• • •	• • •	• • •		• • •	• • •		• • •] 00
													72
• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • •	J ' -
													64
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J °
													} 56
• • •	• • • •	• • • •		• • • •	• • • •	• • • •	• • •	• • •	• • • •	• • • •	• • •	• • •	J
													} 48
	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	j .s
													} 44
	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
													} 40
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
0.0028	0.0029												36
0.0035	0.0036	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	J
0.0029	0.0030	0.0031	0.0031	0.0032	0.0033								} 32
0.0037	0.0038	0.0038	0.0039	0.0040	0.0042	• • •	• • •	• • •	• • •	• • •	• • •	• • •) 32
0.0031	0.0031	0.0032	0.0033	0.0034	0.0035	0.0036	0.0036						} 28
0.0038	0.0039	0.0040	0.0041	0.0042	0.0044	0.0045	0.0046						J 20
0.0031	0.0032	0.0033	0.0033	0.0034	0.0035	0.0036	0.0037	0.0038	0.0039				} 27
0.0039	0.0040	0.0041	0.0041	0.0043	0.0044	0.0045	0.0046	0.0048	0.0049	• • •		• • •	J 27
0.0033	0.0033	0.0034	0.0035	0.0036	0.0037	0.0037	0.0038	0.0040	0.0041				} 24
0.0041	0.0042	0.0042	0.0043	0.0045	0.0046	0.0047	0.0048	0.0050	0.0051	• • •		• • •] 24
0.0035	0.0036	0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0042	0.0043				} 20
0.0044	0.0045	0.0045	0.0046	0.0048	0.0049	0.0050	0.0051	0.0053	0.0054) 20
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0041	0.0042	0.0044	0.0045	0.0047			} 18
0.0046	0.0047	0.0047	0.0048	0.0050	0.0051	0.0052	0.0053	0.0054	0.0056	0.0059			J 16
0.0038	0.0039	0.0040	0.0040	0.0041	0.0042	0.0043	0.0045	0.0045	0.0047	0.0049	0.0050		} 16
0.0048	0.0049	0.0050	0.0050	0.0052	0.0053	0.0054	0.0055	0.0057	0.0058	0.0061	0.0063) 10
0.0041	0.0041	0.0042	0.0043	0.0044	0.0045	0.0045	0.0046	0.0048	0.0049	0.0051	0.0053	0.0054	14
0.0051	0.0052	0.0052	0.0053	0.0055	0.0056	0.0057	0.0058	0.0060	0.0061	0.0064	0.0066	0.0068) 14
0.0043	0.0044	0.0045	0.0045	0.0046	0.0047	0.0048	0.0049	0.0050	0.0052	0.0054	0.0055	0.0057	} 12
0.0054	0.0055	0.0056	0.0057	0.0058	0.0059	0.0060	0.0061	0.0063	0.0065	0.0067	0.0069	0.0071	j 12
0.0047	0.0048	0.0048	0.0049	0.0050	0.0051	0.0052	0.0053	0.0054	0.0055	0.0057	0.0059	0.0061] 10
0.0059	0.0060	0.0061	0.0061	0.0063	0.0064	0.0065	0.0066	0.0068	0.0069	0.0072	0.0074	0.0076	} 10
0.0052	0.0053	0.0054	0.0054	0.0055	0.0056	0.0057	0.0058	0.0059	0.0061	0.0063	0.0064	0.0066) ,
0.0065	0.0066	0.0067	0.0068	0.0069	0.0070	0.0071	0.0072	0.0074	0.0076	0.0078	0.0080	0.0082	} 8
	0.0061	0.0061	0.0062	0.0063	0.0064	0.0065	0.0066	0.0067	0.0068	0.0070	0.0072	0.0074) ,
	0.0076	0.0077	0.0078	0.0079	0.0080	0.0081	0.0082	0.0084	0.0085	0.0088	0.0090	0.0092	} 6
			0.0076	0.0077	0.0078	0.0079	0.0079	0.0081	0.0082	0.0084	0.0086	0.0087) ,
			0.0095	0.0096	0.0097	0.0098	0.0099	0.0101	0.0102	0.0105	0.0107	0.0109	} 4

⁽d) Pitches listed are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in para. 5 should be applied.

⁽e) Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement that are considered to be generally used. For other combinations encountered, see para. 5.

Table D-7 Pitch Diameter Tolerances for Internal Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 1B

Tolerance based on basic major diameter of	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter range above	0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and including	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125

io aliu iliciuu	ilig		0.0761	0.1094	0.1562	0.2166	0.5125	0.43/5	0.5625	0.06/5	0.675	1.125
	Length of En	gagement										
Threads/in.	Number of Pitches	in.	-			Pitch	Diameter	Tolerances	s, in.			
	5 to 15	0.06 to 0.19										
80	16 to 30	0.191 to 0.38										
72	∫ 5 to 15	0.07 to 0.21										
7.2	16 to 30	0.211 to 0.42	• • •	• • •	• • • •	• • •	• • •		• • •	• • •	• • •	• • •
64	5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	• • • •		• • •	• • • •	• • •	• • • •	• • •	• • • •	• • •	• • •
	5 to 15	0.231 to 0.40 0.09 to 0.27	• • •	• • •	• • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • •
56	16 to 30	0.271 to 0.54										
48	5 to 15	0.10 to 0.31										
40	16 to 30	0.311 to 0.62										
44	5 to 15	0.11 to 0.34		0.0050	0.0051	0.0053	0.0055	0.0058	0.0060	0.0062	0.0063	0.0066
	16 to 30	0.341 to 0.68	• • • •	0.0062	0.0064	0.0067	0.0069	0.0072	0.0075	0.0077	0.0079	0.0082
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			0.0054 0.0067	0.0056 0.0070	0.0057 0.0072	0.0060 0.0075	0.0062 0.0078	0.0064 0.0080	0.0065 0.0082	0.0068 0.0085
	5 to 15	0.14 to 0.42			0.0056	0.0058	0.0060	0.0063	0.0065	0.0066	0.0068	0.0071
36	16 to 30	0.421 to 0.84			0.0070	0.0073	0.0075	0.0078	0.0081	0.0083	0.0085	0.0088
32	∫ 5 to 15	0.16 to 0.47			0.0059	0.0061	0.0063	0.0066	0.0068	0.0070	0.0071	0.0074
72	16 to 30	0.471 to 0.94	• • •	• • •	0.0074	0.0077	0.0079	0.0082	0.0085	0.0087	0.0089	0.0092
28	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08	• • •			0.0065 0.0081	0.0067 0.0083	0.0069 0.0087	0.0072 0.0089	0.0073 0.0092	0.0075 0.0094	0.0078 0.0097
	5 to 15	0.19 to 0.56	• • •	• • • •	• • • •	0.0066	0.0068	0.0007	0.0003	0.0074	0.0074	0.0077
27	16 to 30	0.561 to 1.12				0.0083	0.0085	0.0076	0.0073	0.0074	0.0076	0.0079
24	5 to 15	0.21 to 0.62				0.0070	0.0072	0.0074	0.0076	0.0078	0.0080	0.0082
24	16 to 30	0.621 to 1.24				0.0087	0.0089	0.0093	0.0095	0.0098	0.0100	0.0103
20	5 to 15	0.25 to 0.75					0.0078	0.0080	0.0083	0.0084	0.0086	0.0089
	16 to 30	0.751 to 1.50	• • • •	• • •	• • •		0.0097	0.0101	0.0103	0.0105	0.0107	0.0111
18	5 to 15 16 to 30	0.28 to 0.83 0.831 to 1.66						0.0084 0.0105	0.0087 0.0108	0.0088 0.0110	0.0090 0.0112	0.0093 0.0116
	5 to 15	0.31 to 0.94						0.0089	0.0091	0.0093	0.0095	0.0097
16	16 to 30	0.941 to 1.88						0.0111	0.0114	0.0116	0.0118	0.0122
14	∫ 5 to 15	0.36 to 1.07							0.0097	0.0099	0.0100	0.0103
	16 to 30	1.071 to 2.14	• • •	• • •	• • •				0.0121	0.0124	0.0125	0.0129
12	5 to 15 16 to 30	0.42 to 1.25 1.251 to 2.50							0.0104 0.0130	0.0106 0.0133	0.0108 0.0135	0.0109 0.0138
	5 to 15	0.50 to 1.50									0.0117	0.0120
10	16 to 30	1.501 to 3.00									0.0147	0.0150
8	∫ 5 to 15	0.62 to 1.88										0.0133
J	16 to 30	1.881 to 3.76	• • •	• • •	• • • •		• • •		• • •		• • •	0.0167
6	∫ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00	• • •			• • •		• • • •			• • • •	
			• • •	• • •	• • •	•••	• • • •	•••	• • • •	•••	• • •	• • •
4	5 to 15 16 to 30	1.25 to 3.75 3.751 to 7.50										

GENERAL NOTES:

- (a) These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 4-UN, 6-UN, and 8-UN thread series.
- (b) Class 1B (internal thread) tolerances in this Table for 5 to 15 pitches are based on 9 pitches and are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.95.
- (c) Class 1B tolerances in this Table for 16 to 30 pitches are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 2.437 (obtained by multiplying the 1.95 factor by 1.25). For lengths of engagement not tabulated, see para. 5.

Table D-7 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 1B

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13

					Pitch Dia	meter Tole	rances, in.						Threads/in.
													80
	• • •	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	• • •	J
• • •													72
) J
													64
) J
													56
) J
													48
) J
													44
•••	•••	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	•••	• • •	•••) J
													40
		• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	•••	• • •	•••	J
0.0073 0.0091	0.0075 0.0094		• • •	• • • •	• • • •	• • • •			• • • •	• • •	• • • •		36
						•••	•••	•••	•••	• • •	•••	•••	J
0.0076 0.0095	0.0078 0.0098	0.0080 0.0100	0.0081 0.0102	0.0084 0.0105	0.0087 0.0108		• • • •		• • • •		• • • •		32
							• • •	•••	• • •	•••	• • •	•••	J
0.0080 0.0100	0.0082 0.0102	0.0084 0.0104	0.0085 0.0106	0.0088 0.0110	0.0090 0.0113	0.0093 0.0116	0.0095 0.0118	• • •	• • •	• • •	• • •	• • •	28
								• • •	• • • •	•••	• • •	• • •	J
0.0080 0.0101	0.0083 0.0104	0.0085 0.0106	0.0085 0.0108	0.0089 0.0111	0.0092 0.0114	0.0094 0.0117	0.0096 0.0120	0.0099 0.0124	0.0103 0.0128	• • •	• • •	• • •	27
										• • • •	• • • •		J
0.0085 0.0106	0.0087	0.0088	0.0090 0.0112	0.0093	0.0095 0.0119	0.0097 0.0122	0.0100	0.0103 0.0129	0.0106				24
0.0106	0.0106	0.0110	0.0112	0.0116	0.0119	0.0122	0.0124	0.0129	0.0133	• • • •	• • • •		J
0.0091	0.0093	0.0095	0.0096	0.0099	0.0101	0.0104	0.0106	0.0109	0.0112	• • •			20
0.0114	0.0116	0.0118	0.0120	0.0124	0.0127	0.0130	0.0132	0.0137	0.0141	• • •	• • •	• • •	J
0.0095	0.0097	0.0099	0.0100	0.0103	0.0105	0.0108	0.0110	0.0113	0.0116	0.0122			} 18
0.0118	0.0121	0.0123	0.0125	0.0129	0.0132	0.0135	0.0137	0.0142	0.0146	0.0152	• • •	• • •	J
0.0100	0.0101	0.0103	0.0105	0.0108	0.0110	0.0112	0.0114	0.0118	0.0121	0.0126	0.0131		} 16
0.0124	0.0127	0.0129	0.0131	0.0135	0.0138	0.0140	0.0143	0.0148	0.0151	0.0158	0.0164	• • •	J
0.0105	0.0107	0.0109	0.0111	0.0114	0.0116	0.0118	0.0120	0.0124	0.0127	0.0132	0.0137	0.0141	} ₁₄
0.0132	0.0134	0.0136	0.0138	0.0142	0.0145	0.0148	0.0150	0.0155	0.0159	0.0165	0.0171	0.0176	J
0.0113	0.0115	0.0116	0.0118	0.0121	0.0123	0.0126	0.0128	0.0131	0.0134	0.0140	0.0144	0.0148	} 12
0.0141	0.0143	0.0145	0.0147	0.0151	0.0154	0.0157	0.0159	0.0164	0.0168	0.0175	0.0180	0.0185	J
0.0122	0.0124	0.0126	0.0128	0.0130	0.0133	0.0135	0.0137	0.0141	0.0144	0.0149	0.0154	0.0158	} 10
0.0153	0.0155	0.0158	0.0160	0.0163	0.0166	0.0169	0.0172	0.0176	0.0180	0.0187	0.0192	0.0197) 10
0.0136	0.0138	0.0139	0.0141	0.0144	0.0146	0.0149	0.0151	0.0154	0.0157	0.0163	0.0167	0.0171	} 8
0.0170	0.0172	0.0174	0.0176	0.0180	0.0183	0.0186	0.0188	0.0193	0.0197	0.0203	0.0209	0.0214	ſ°
	0.0158	0.0160	0.0161	0.0164	0.0167	0.0169	0.0171	0.0174	0.0178	0.0183	0.0187	0.0191] ,
	0.0197	0.0200	0.0202	0.0205	0.0208	0.0211	0.0214	0.0218	0.0222	0.0229	0.0234	0.0239	} 6
			0.0197	0.0200	0.0202	0.0204	0.0206	0.0210	0.0213	0.0218	0.0223	0.0227] ,
			0.0246	0.0250	0.0253	0.0255	0.0258	0.0262	0.0266	0.0273	0.0279	0.0284	} 4

⁽d) Pitches listed are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in para. 5 should be applied.

⁽e) Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement that are considered to be generally used. For other combinations encountered, see para. 5.

Table D-8 Pitch Diameter Tolerances for Internal Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 2B

Tolerance based on basic major diameter of	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter range above	0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and including	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125

	Length of En	gagement										
Threads/in.	Number of Pitches	in.				Pitch	Diameter	Tolerances	, in.			
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	0.0025 0.0031	0.0026 0.0032	0.0027 0.0033	0.0028 0.0035	0.0029 0.0037					
72	5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	0.0026 0.0032	0.0027 0.0034	0.0028 0.0035	0.0029 0.0037	0.0030 0.0038	0.0032 0.0040				
64	5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	0.0027 0.0034	0.0028 0.0035	0.0029 0.0037	0.0031 0.0038	0.0032 0.0040	0.0034 0.0042	0.0035 0.0044			
56	5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		0.0030 0.0037	0.0031 0.0039	0.0032 0.0040	0.0033 0.0042	0.0035 0.0044	0.0037 0.0046	0.0038 0.0047	0.0039 0.0049	
48	5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62		0.0032 0.0040	0.0033 0.0041	0.0034 0.0043	0.0036 0.0044	0.0037 0.0047	0.0039 0.0048	0.0040 0.0050	0.0041 0.0051	
44	5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		0.0033 0.0042	0.0034 0.0043	0.0036 0.0045	0.0037 0.0046	0.0039 0.0048	0.0040 0.0050	0.0041 0.0051	0.0042 0.0053	0.0044 0.0055
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			0.0036 0.0045	0.0037 0.0046	0.0038 0.0048	0.0041 0.0050	0.0041 0.0052	0.0043 0.0053	0.0044 0.0055	0.0045 0.0057
36	5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84			0.0037 0.0047	0.0039 0.0049	0.0040 0.0050	0.0042 0.0052	0.0043 0.0054	0.0044 0.0055	0.0045 0.0057	0.0047 0.0059
32	5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			0.0030 0.0049	0.0041 0.0051	0.0042 0.0052	0.0044 0.0055	0.0045 0.0056	0.0046 0.0058	0.0047 0.0059	0.0049 0.0061
28	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08				0.0043 0.0054	0.0044 0.0056	0.0046 0.0058	0.0048 0.0060	0.0049 0.0061	0.0050 0.0062	0.0052 0.0065
27	5 to 15 16 to 30	0.19 to 0.56 0.561 to 1.12				0.0044 0.0055	0.0045 0.0057	0.0047 0.0059	0.0048 0.0061	0.0050 0.0062	0.0051 0.0063	0.0052 0.0066
24	5 to 15 16 to 30	0.21 to 0.62 0.621 to 1.24				0.0047 0.0058	0.0048 0.0060	0.0049 0.0062	0.0051 0.0064	0.0052 0.0065	0.0053 0.0066	0.0055 0.0069
20	5 to 15 16 to 30	0.25 to 0.75 0.751 to 1.50					0.0052 0.0065	0.0055 0.0067	0.0056 0.0069	0.0057 0.0072	0.0057 0.0074	0.0059 0.0074
18	5 to 15 16 to 30	0.28 to 0.83 0.831 to 1.66						0.0056 0.0070	0.0059 0.0072	0.0060 0.0074	0.0060 0.0075	0.0062 0.0077
16	5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						0.0059 0.0074	0.0061 0.0076	0.0062 0.0077	0.0063 0.0079	0.0065 0.0081
14	5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							0.0065 0.0081	0.0066 0.0082	0.0067 0.0084	0.0069 0.0086
12	5 to 15 16 to 30	0.42 to 1.25 1.251 to 2.50							0.0070 0.0087	0.0071 0.0088	0.0072 0.0090	0.0074 0.0092
10	5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									0.0078 0.0098	0.0080 0.0100
8	5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										0.0089 0.0111
6	5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	5 to 15 16 to 30	1.25 to 3.75 3.751 to 7.50										

GENERAL NOTES:

- (a) These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 4-UN, 6-UN, and 8-UN thread series.
- (b) Class 2B (internal thread) tolerances in this Table for 5 to 15 pitches are based on 9 pitches and are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.3.
- (c) Class 2B tolerances in this Table for 16 to 30 pitches are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.625 (obtained by multiplying the 1.3 factor by 1.25). For lengths of engagement not tabulated, see para. 5.

Table D-8 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 2B

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13

					Pitch Dia	meter Tole	rances, in.						Threads/in.
													} 80
• • •	• • •	• • •		• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •) 00
													} 72
		• • • •			• • • •	• • • •				• • • •			J / -
													64
• • •	• • •	• • • •		• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • •		J ·
													} 56
• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
													} 48
• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
													} 44
• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
													} 40
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • •	J
0.0049	0.0050												} 36
0.0061	0.0062	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
0.0051	0.0052	0.0053	0.0054	0.0056	0.0058								} 32
0.0063	0.0065	0.0066	0.0068	0.0070	0.0072	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
0.0053	0.0055	0.0056	0.0057	0.0059	0.0060	0.0062	0.0063						} 28
0.0067	0.0068	0.0070	0.0071	0.0073	0.0075	0.0077	0.0079	• • •	• • •	• • •	• • •	• • •	J
0.0053	0.0055	0.0056	0.0057	0.0059	0.0061	0.0063	0.0064	0.0066	0.0068				} 27
0.0067	0.0069	0.0071	0.0072	0.0074	0.0076	0.0078	0.0080	0.0083	0.0085	• • •	• • •	• • •	J -
0.0056	0.0058	0.0059	0.0060	0.0062	0.0064	0.0065	0.0066	0.0069	0.0071				} 24
0.0070	0.0072	0.0074	0.0075	0.0077	0.0079	0.0081	0.0083	0.0086	0.0089	• • •	• • •	• • •	J - '
0.0061	0.0062	0.0063	0.0064	0.0066	0.0068	0.0069	0.0070	0.0073	0.0075				} 20
0.0076	0.0077	0.0079	0.0080	0.0083	0.0085	0.0086	0.0088	0.0091	0.0094	• • • •	• • •) = 0
0.0063	0.0065	0.0066	0.0067	0.0069	0.0070	0.0072	0.0073	0.0076	0.0078	0.0081			} 18
0.0079	0.0081	0.0082	0.0083	0.0086	0.0088	0.0090	0.0091	0.0094	0.0097	0.0101	• • •		J 10
0.0066	0.0068	0.0069	0.0070	0.0072	0.0073	0.0075	0.0076	0.0079	0.0081	0.0084	0.0087		} 16
0.0083	0.0085	0.0086	0.0087	0.0090	0.0092	0.0094	0.0095	0.0098	0.0101	0.0105	0.0109	• • •	J 10
0.0070	0.0072	0.0073	0.0074	0.0076	0.0077	0.0079	0.0080	0.0083	0.0085	0.0088	0.0091	0.0094	} 14
0.0088	0.0089	0.0091	0.0092	0.0095	0.0097	0.0099	0.0100	0.0103	0.0106	0.0110	0.0114	0.0117	J - 7
0.0075	0.0076	0.0078	0.0079	0.0081	0.0082	0.0084	0.0085	0.0087	0.0090	0.0093	0.0096	0.0099	} 12
0.0094	0.0096	0.0097	0.0098	0.0101	0.0103	0.0105	0.0106	0.0109	0.0112	0.0116	0.0120	0.0123	J 12
0.0082	0.0083	0.0084	0.0085	0.0087	0.0089	0.0090	0.0091	0.0094	0.0096	0.0100	0.0103	0.0105	} 10
0.0102	0.0104	0.0105	0.0106	0.0109	0.0111	0.0113	0.0114	0.0117	0.0120	0.0124	0.0128	0.0131	j 10
0.0090	0.0092	0.0093	0.0094	0.0096	0.0098	0.0099	0.0100	0.0103	0.0105	0.0108	0.0111	0.0114	} 8
0.0113	0.0115	0.0116	0.0118	0.0120	0.0122	0.0124	0.0125	0.0128	0.0131	0.0136	0.0139	0.0143	ſ°
	0.0105	0.0106	0.0108	0.0109	0.0111	0.0113	0.0114	0.0116	0.0118	0.0122	0.0125	0.0128] ,
	0.0132	0.0133	0.0134	0.0137	0.0139	0.0141	0.0142	0.0145	0.0148	0.0152	0.0156	0.0159	} 6
			0.0131	0.0133	0.0135	0.0136	0.0138	0.0140	0.0142	0.0146	0.0149	0.0151) ,
			0.0164	0.0166	0.0168	0.0170	0.0172	0.0175	0.0178	0.0182	0.0186	0.0189	} 4

⁽d) Pitches listed are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in para. 5 should be applied.

⁽e) Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement that are considered to be generally used. For other combinations encountered, see para. 5.

Table D-9 Pitch Diameter Tolerances for Internal Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 3B

Tolerance based on basic major diameter of	0.0625	0.09375	0.125	0.1875	0.25	0.375	0.5	0.625	0.75	1
For diameter range above	0.0470	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875
To and including	0.0781	0.1094	0.1562	0.2188	0.3125	0.4375	0.5625	0.6875	0.875	1.125

io aliu iliciuu	ilig		0.0761	0.1094	0.1562	0.2166	0.5125	0.43/3	0.5625	0.00/5	0.675	1.125
	Length of En	gagement										
Threads/in.	Number of Pitches	in.	-			Pitch	n Diameter	Tolerance	s, in.			
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	0.0019 0.0023	0.0019 0.0024	0.0020 0.0025	0.0021 0.0026	0.0022 0.0027					
72	5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	0.0019 0.0024	0.0020 0.0025	0.0021 0.0026	0.0022 0.0027	0.0023 0.0029	0.0024 0.0030				
64	5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	0.0020 0.0026	0.0021 0.0027	0.0022 0.0027	0.0023 0.0029	0.0024 0.0030	0.0025 0.0031	0.0026 0.0033			
56	5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		0.0023 0.0028	0.0023 0.0029	0.0024 0.0030	0.0025 0.0031	0.0026 0.0033	0.0027 0.0034	0.0028 0.0035	0.0029 0.0036	
48	5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62		0.0024 0.0030	0.0025 0.0031	0.0026 0.0032	0.0027 0.0033	0.0028 0.0035	0.0029 0.0036	0.0030 0.0037	0.0031 0.0038	
44	5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		0.0025 0.0031	0.0026 0.0032	0.0027 0.0033	0.0028 0.0034	0.0029 0.0036	0.0030 0.0037	0.0031 0.0039	0.0032 0.0040	0.0033 0.0041
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			0.0027 0.0033	0.0028 0.0035	0.0029 0.0036	0.0030 0.0037	0.0031 0.0039	0.0032 0.0040	0.0033 0.0041	0.0034 0.0043
36	5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84			0.0028 0.0035	0.0029 0.0036	0.0030 0.0037	0.0031 0.0039	0.0032 0.0040	0.0033 0.0042	0.0034 0.0043	0.0035 0.0044
32	5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			0.0030 0.0037	0.0031 0.0038	0.0031 0.0039	0.0033 0.0041	0.0034 0.0042	0.0035 0.0043	0.0036 0.0044	0.0037 0.0046
28	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08				0.0033 0.0041	0.0033 0.0042	0.0035 0.0043	0.0036 0.0045	0.0037 0.0046	0.0037 0.0047	0.0039 0.0048
27	∫ 5 to 15 16 to 30	0.19 to 0.56 0.561 to 1.12				0.0033 0.0041	0.0034 0.0042	0.0035 0.0044	0.0036 0.0045	0.0037 0.0046	0.0038 0.0047	0.0039 0.0049
24	∫ 5 to 15 16 to 30	0.21 to 0.62 0.621 to 1.24				0.0035 0.0044	0.0036 0.0045	0.0037 0.0046	0.0038 0.0048	0.0039 0.0049	0.0040 0.0050	0.0041 0.0051
20	∫ 5 to 15 16 to 30	0.25 to 0.75 0.751 to 1.50					0.0039 0.0049	0.0040 0.0050	0.0041 0.0052	0.0042 0.0053	0.0043 0.0054	0.0044 0.0055
18	∫ 5 to 15 16 to 30	0.28 to 0.83 0.831 to 1.66						0.0042 0.0053	0.0043 0.0054	0.0044 0.0055	0.0045 0.0056	0.0046 0.0058
16	∫ 5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						0.0045	0.0046 0.0057	0.0046 0.0058	0.0047	0.0049
14	∫ 5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							0.0049	0.0049	0.0050	0.0052 0.0064
12	∫ 5 to 15 ∫ 16 to 30	0.42 to 1.25 1.251 to 2.50							0.0052	0.0053	0.0054 0.0067	0.0055
10	∫ 5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									0.0059 0.0073	0.0060 0.0075
8	∫ 5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										0.0073 0.0067 0.0083
6	5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	∫ 5 to 15	1.25 to 3.75										
	16 to 30	3.751 to 7.50	•••	• • • •	• • • •	• • • •	• • • •	• • • •	• • •	• • • •	• • • •	• • • •

GENERAL NOTES:

- (a) These values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, and 4-UN, 6-UN, and 8-UN thread series.
- (b) Class 3B (internal thread) tolerances in this Table for 5 to 15 pitches are based on 9 pitches and are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 0.975.
- (c) Class 3B tolerances in this Table for 16 to 30 pitches are obtained by multiplying the Class 2A (external thread) tolerances for 9 pitches taken to six decimal places by a factor of 1.21875 (obtained by multiplying the 0.975 factor by 1.25). For lengths of engagement not tabulated, see para. 5.

Table D-9 Pitch Diameter Tolerances for External Threads of Special Diameters, Pitches, and Lengths of Engagement (UNS/UNRS) — Class 3B

1.25	1.5	1.75	2	2.5	3	3.5	4	5	6	8	10	12
1.125	1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11
1.375	1.625	1.875	2.25	2.75	3.25	3.75	4.5	5.5	7	9	11	13

					Pitch Dia	meter Tole	rances, in.						Threads/in.
													80
• • •	• • •	• • •	• • •	•••	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	J
• • •													72
•••	• • •	• • •	• • •	•••	•••	• • •	•••	• • •	•••	• • •	•••	•••	J
													64
•••	• • •	• • •	• • •	•••	•••	• • •	•••	• • •	•••	• • •	•••	•••	J
• • •													56
•••	• • •	• • •	• • •	•••	•••	• • •	•••	• • •	•••	• • •	•••	•••	J
													48
•••	• • •	• • •	• • •	•••	•••	• • •	•••	• • •	•••	•••	•••	•••) J
• • •	• • • •	• • •	• • •	• • •	• • •	• • • •	• • •		• • • •	• • • •	• • •	• • • •	44
• • •	• • • •	• • •	• • •		• • •	• • •	• • •		• • •	• • •	• • •		J
• • •			• • •		• • •	• • • •	• • •			• • • •	• • •		40
		•••	• • •	•••	• • •	• • •	• • •	• • •	•••	• • •	•••	•••	J
0.0036 0.0046	0.0037 0.0047	• • • •		• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • •	36
						• • •	• • •		• • •	• • •	• • • •	• • •	J
0.0038 0.0048	0.0039 0.0049	0.0040 0.0050	0.0041 0.0051	0.0042 0.0053	0.0043 0.0054	• • • •	• • •	• • •	• • •	• • • •	• • • •	• • •	32
						• • • •	• • •		• • •	• • •	•••	• • •	J
0.0040	0.0041	0.0042	0.0043	0.0044	0.0045	0.0046	0.0047		• • •	• • •	• • •	• • •	28
0.0050	0.0051	0.0052	0.0053	0.0055	0.0057	0.0058	0.0059	• • •	• • • •	• • •		• • •	J
0.0040	0.0041	0.0042	0.0043	0.0045	0.0046	0.0047	0.0048	0.0050	0.0051				27
0.0051	0.0052	0.0053	0.0054	0.0056	0.0057	0.0059	0.0060	0.0062	0.0064	• • • •	• • • •	• • •	J
0.0042	0.0043	0.0044	0.0045	0.0046	0.0048	0.0049	0.0050	0.0052	0.0053				24
0.0053	0.0054	0.0055	0.0056	0.0058	0.0060	0.0061	0.0062	0.0064	0.0066	• • •	• • •	• • •	J
0.0045	0.0046	0.0047	0.0048	0.0050	0.0051	0.0052	0.0053	0.0055	0.0056				} 20
0.0057	0.0058	0.0059	0.0060	0.0062	0.0063	0.0065	0.0066	0.0068	0.0070	• • •	• • •	• • •	J
0.0047	0.0048	0.0049	0.0050	0.0051	0.0053	0.0054	0.0055	0.0057	0.0058	0.0061			} 18
0.0059	0.0060	0.0062	0.0063	0.0064	0.0066	0.0067	0.0069	0.0071	0.0073	0.0076	• • •	• • •	J
0.0050	0.0051	0.0052	0.0052	0.0054	0.0055	0.0056	0.0057	0.0059	0.0061	0.0063	0.0066		} 16
0.0062	0.0063	0.0065	0.0066	0.0067	0.0069	0.0070	0.0072	0.0074	0.0076	0.0079	0.0082	• • •	J
0.0053	0.0054	0.0055	0.0055	0.0057	0.0058	0.0059	0.0060	0.0062	0.0063	0.0066	0.0068	0.0070	} 14
0.0066	0.0067	0.0068	0.0069	0.0071	0.0072	0.0074	0.0075	0.0077	0.0079	0.0083	0.0086	0.0088	J
0.0056	0.0057	0.0058	0.0059	0.0060	0.0062	0.0063	0.0064	0.0066	0.0067	0.0070	0.0072	0.0074	} 12
0.0070	0.0072	0.0073	0.0074	0.0076	0.0077	0.0078	0.0080	0.0082	0.0084	0.0087	0.0090	0.0093	J
0.0061	0.0062	0.0063	0.0064	0.0065	0.0066	0.0068	0.0069	0.0070	0.0072	0.0075	0.0077	0.0079	} 10
0.0076	0.0078	0.0079	0.0080	0.0082	0.0083	0.0084	0.0086	0.0088	0.0090	0.0093	0.0096	0.0099] 10
0.0068	0.0069	0.0070	0.0071	0.0072	0.0073	0.0074	0.0075	0.0077	0.0079	0.0081	0.0084	0.0086	} 8
0.0085	0.0086	0.0087	0.0088	0.0090	0.0091	0.0093	0.0094	0.0096	0.0098	0.0102	0.0104	0.0107	J
	0.0079	0.0080	0.0081	0.0082	0.0083	0.0084	0.0085	0.0087	0.0089	0.0091	0.0094	0.0096) 4
	0.0090	0.0100	0.0101	0.0103	0.0104	0.0106	0.0107	0.0109	0.0111	0.0114	0.0117	0.0120	} 6
			0.0098	0.0100	0.0101	0.0102	0.0103	0.0105	0.0107	0.0109	0.0111	0.0113) ,
			0.0123	0.0125	0.0126	0.0128	0.0129	0.0131	0.0133	0.0137	0.0139	0.0142	} 4

⁽d) Pitches listed are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in para. 5 should be applied.

⁽e) Tolerances are tabulated only for combinations of diameter, pitch, and length of engagement that are considered to be generally used. For other combinations encountered, see para. 5.

Table D-10 Minor Diameter Tolerances for Internal Special Screw Threads (UNS/UNRS) — Classes 1B and 2B

					(CNO)	- (CNNO/CNO)	Classes	ID alla 2	۵					
Tolerance	based on basic	Tolerance based on basic major diameter of	Je	090.0	0.073	0.086	0.099	0.112	0.125	0.138	0.164	0.190	0.216	
For diame	For diameter range above			0.053	990.0	0.079	0.092	0.105	0.118	0.131	0.151	0.177	0.203	All Larger
To and including	luding			990'0	0.079	0.092	0.105	0.118	0.131	0.151	0.177	0.203	0.233	Diameters
		Length of Eng. in Terms of Diam. [Note (1)]	in Terms of te (1)]											
Threads/ in.	Tolerance Ratios	Above	To and Incl.				1	Minor Diameter Tolerances, in. [Note (2)]	ter Toleran	ces, in. [Not	e (2)]			
80	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0035 0.0049 0.0049 0.0049	0.0029 0.0044 0.0049 0.0049	0.0025 0.0038 0.0049 0.0049	0.0022 0.0034 0.0045 0.0049	0.0020 0.0030 0.0040 0.0049	0.0018 0.0028 0.0037 0.0046	0.0017 0.0026 0.0034 0.0043	0.0016 0.0023 0.0031 0.0039	0.0016 0.0023 0.0031 0.0039	0.0016 0.0023 0.0031 0.0039	0.0016 0.0023 0.0031 0.0039
72	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0039 0.0055 0.0055 0.0055	0.0033 0.0049 0.0055 0.0055	0.0029 0.0043 0.0055 0.0055	0.0026 0.0040 0.0051 0.0055	0.0023 0.0035 0.0046 0.0055	0.0021 0.0032 0.0042 0.0053	0.0020 0.0029 0.0039 0.0049	0.0017 0.0026 0.0034 0.0043	0.0017 0.0026 0.0034 0.0042	0.0017 0.0026 0.0034 0.0042	0.0017 0.0026 0.0034 0.0042
64	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0045 0.0062 0.0062 0.0062	0.0038 0.0057 0.0062 0.0062	0.0033 0.0049 0.0062 0.0062	0.0029 0.0044 0.0059 0.0062	0.0027 0.0040 0.0053 0.0062	0.0024 0.0037 0.0049 0.0061	0.0023 0.0034 0.0045 0.0057	0.0020 0.0030 0.0040 0.0050	0.0019 0.0028 0.0038 0.0048	0.0019 0.0028 0.0038 0.0048	0.0019 0.0028 0.0038 0.0048
56	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	: : : :	0.0044 0.0066 0.0070 0.0070	0.0038 0.0057 0.0070 0.0070	0.0034 0.0051 0.0068 0.0070	0.0031 0.0046 0.0062 0.0070	0.0029 0.0043 0.0057 0.0070	0.0026 0.0040 0.0053 0.0066	0.0023 0.0035 0.0047 0.0059	0.0022 0.0032 0.0043 0.0054	0.0022 0.0032 0.0043 0.0054	0.0022 0.0032 0.0043 0.0054
48	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	: : : :	: : : :	0.0045 0.0068 0.0082 0.0082	0.0040 0.0061 0.0081 0.0082	0.0037 0.0055 0.0074 0.0082	0.0034 0.0051 0.0068 0.0082	0.0032 0.0047 0.0063 0.0079	0.0028 0.0042 0.0056 0.0070	0.0025 0.0038 0.0051 0.0063	0.0025 0.0038 0.0050 0.0062	0.0025 0.0038 0.0050 0.0062
44	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	: : : :	::::	0.0050 0.0075 0.0090 0.0090	0.0044 0.0067 0.0089 0.0090	0.0040 0.0061 0.0081 0.0090	0.0037 0.0056 0.0075 0.0090	0.0035 0.0052 0.0070 0.0087	0.0031 0.0046 0.0062 0.0077	0.0028 0.0042 0.0056 0.0070	0.0028 0.0041 0.0055 0.0069	0.0028 0.0041 0.0055 0.0069
40	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3D	: : : :	: : : :	: : : :	0.0049 0.0074 0.0098 0.0098	0.0045 0.0067 0.0090 0.0098	0.0041 0.0062 0.0083 0.0098	0.0039 0.0058 0.0077 0.0096	0.0034 0.0051 0.0068 0.0086	0.0031 0.0047 0.0062 0.0078	0.0030 0.0045 0.0060 0.0075	0.0030 0.0045 0.0060 0.0075

Table D-10 Minor Diameter Tolerances for Internal Special Screw Threads (UNS/UNRS) — Classes 1B and 2B (Cont'd)

				2	(CNNO/CNO)	ı	Classes ib alla 2b (Collt a)	ار مع الم	חוור מ)					
Tolerance	based on basic	Tolerance based on basic major diameter of		090.0	0.073	0.086	0.099	0.112	0.125	0.138	0.164	0.190	0.216	
For diame	For diameter range above	63		0.053	0.066	0.079	0.092	0.105	0.118	0.131	0.151	0.177	0.203	All Larger
To and including	luding			990.0	0.079	0.092	0.105	0.118	0.131	0.151	0.177	0.203	0.233	Diameters
		Length of Eng. in Terms of Diam. [Note (1)]	Terms of (1)]											
Threads/ in.	Tolerance Ratios	Above	To and Incl.				1	Minor Diame	Minor Diameter Tolerances, in. [Note (2)]	es, in. [Note	e (2)]			
36	0.5	0.33 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i>	: :	: :	: :	::	0.0050	0.0046	0.0043	0.0038	0.0035	0.0033	0.0033
	1.0 1.25	0.6/ <i>D</i> 1.5 <i>D</i>	1.5 <i>U</i> 3 <i>D</i>	: :	: :	: :	: :	0.0100	0.0093	0.0086	0.0096	0.0070	0.0082	0.0082
	0.5	0	0.33D	÷	:	:	:	:	÷	0.0049	0.0043	0.0039	0.0037	0.0037
32	0.75 1.0	0.33 <i>D</i> 0.67 <i>D</i>	$0.67D \\ 1.5D$: :	: :	: :	: :	: :	: :	0.0073	0.0065	0.0059	0.0056	0.0056
	1.25	1.5 <i>D</i>	3D	:	:	:	:	:	:	0.0122	0.0108	0.0099	0.0092	0.0092
	0.5	0.33 <i>D</i>	0.330	: :	: :	ŗ	Tolerances in this range	this range		: :	: :	0.0045	0.0042	0.0042
788	1.25	0.67 <i>D</i> 1.5 <i>D</i>	1.5 <i>D</i> 3 <i>D</i>	: :	: :	also	also apply to Class 38 Threads	ass 38 Thre	ads	: :	: :	0.0091	0.0084	0.0084
	0.5	0	0.33 <i>D</i>	÷	÷	÷	:	÷	÷	÷	:	0.0047	0.0044	0.0044
27	0.75 1.0	0.33 <i>D</i> 0.67 <i>D</i>	$0.67D \\ 1.5D$: :	: :	: :	: :	: :	: :	: :	: :	0.0071	0.0065	0.0065
	1.25	1.5 <i>D</i>	3D	÷	:	:	:	:	:	:	:	0.0118	0.0109	0.0109
	0.5	0	0.330	÷	:	:	:	:	÷	:	:	0.0053	0.0049	0.0048
24	0.75	0.33 <i>D</i>	0.67 <i>D</i> 1.5 <i>D</i>	:	:	:	:	:	:	:	:	0.0079	0.0073	0.0073
	1.25	1.5 <i>D</i>	3D	: :	: :	: :	: :	: :	: :	: :	: :	0.0132	0.0122	0.0121

Table D-10 Minor Diameter Tolerances for Internal Special Screw Threads (UNS/UNRS) — Classes 1B and 2B (Cont'd)

					כמפספים דם מוומ בם לכסוור מ	(2011)			
		Length of E of Diam.	Length of Eng. in Terms of Diam. [Note (1)]	Minor Dia. Tolerances. in.			Length of of Diam	Length of Eng. in Terms of Diam. [Note (1)]	Minor Dia. Tolerances. in.
Threads/ in.	Tolerance Ratios	Above	To and Including	(Not Applicable to Dia. Less Than 0.25 in.)	Threads/ in.	Tolerance Ratios	Above	To and Including	(Not Applicable to Dia. Less Than 0.25 in.)
20	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0058 0.0086 0.0015 0.0144	6	0.5 0.75 1.0	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0114 0.0171 0.0228 0.0286
18	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0064 0.0095 0.0127 0.0159	∞	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0125 0.0188 0.0250 0.0312
16	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0070 0.0106 0.0141 0.0176		0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0138 0.0207 0.0276 0.0344
14	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0079 0.0118 0.0158 0.0198	9	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0153 0.0230 0.0306 0.0382
13	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0085 0.0128 0.0170 0.0213	5	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0170 0.0255 0.0340 0.0425
12	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0090 0.0135 0.0180 0.0225	4.5	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0179 0.0268 0.0358 0.0448
11	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0097 0.0146 0.0194 0.0242	4	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0188 0.0281 0.0375 0.0469
10	0.5 0.75 101.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	0.0105 0.0158 0.0210 0.0262					

NOTES:

(1) Tolerances for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges.

(2) If the minor diameter tolerance as selected from this Table is less than the pitch diameter tolerance, use the latter.

Table D-11 Minor Diameter Tolerances for Internal Special Screw Threads (UNS/UNRS) — Class 3B

Tolerance based on basic major diameter of		0.161	0.190	0.216	0.250	0.3125	0.375	0.4375	0.500	0.5625	0.625	0.6875	
For diameter range above	0.053	0.151	0.177	0.203	0.233	0.281	0.344	0.406	0.469	0.531	0.594	0.656	-
To and including	0.151	0.177	0.203	0.233	0.281	0.344	0.406	0.469	0.531	0.594	0.656	0.719	All Larger Diameters

				(1)												Diameters
		-	Eng. in Terms ter [Note (2)]													
Threads/ in.	Tolerance Ratios	Above	To and Including					Min	or Diame	ter Toler	ances, ir	ı. [Note ((3)]			
80	0.5 0.75 1.0	0 0.33 <i>D</i> 0.67 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>			0.0020 0.0027	0.0020 0.0026	0.0020 0.0026	0.0020 0.0026							
72	1.25 0.5 0.75 1.0	1.5 <i>D</i> 0 0.33 <i>D</i> 0.67 <i>D</i>	3 <i>D</i> 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>		0.0017 0.0026	0.0033 0.0015 0.0023 0.0031	0.0015 0.0022	0.0015 0.0022	0.0015 0.0022	0.0022	0.0022					
64	1.25 0.5 0.75	1.5 <i>D</i> 0 0.33 <i>D</i>	3 <i>D</i> 0.33 <i>D</i> 0.67 <i>D</i>		0.0020 0.0030		0.0016 0.0025	0.0016 0.0024	0.0016 0.0024	0.0016 0.0024	0.0016 0.0024	0.0024	0.0024			
	1.0 1.25	0.67 <i>D</i> 1.5 <i>D</i> 0	1.5 <i>D</i> 3 <i>D</i> 0.33 <i>D</i>		0.0050 0.0023		0.0041 0.0019	0.0040 0.0018	0.0040 0.0018	0.0040 0.0018	0.0040 0.0018	0.0040 0.0018	0.0040 0.0018			
56	0.75 1.0 1.25	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i> 0.33 <i>D</i>		0.0047 0.0059	0.0042 0.0053	0.0039 0.0049	0.0036 0.0045	0.0036 0.0045	0.0036 0.0045	0.0036 0.0045	0.0036 0.0045	0.0027 0.0036 0.0045 0.0021	0.0036 0.0045	0.0036 0.0045	0.0036 0.0045
48	0.5 0.75 1.0 1.25	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.67D 1.5D 3D		0.0042 0.0056	0.0038 0.0051	0.0035 0.0047	0.0032 0.0043	0.0031 0.0041	0.0031 0.0041	0.0031 0.0041	0.0031 0.0041	0.0021 0.0031 0.0041 0.0052	0.0031 0.0041	0.0031 0.0041	0.0031 0.0041
44	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>		0.0046 0.0062	0.0042 0.0056	0.0039 0.0052	0.0036 0.0047	0.0033 0.0045	0.0033 0.0045	0.0033 0.0045	0.0033 0.0045	0.0022 0.0033 0.0045 0.0056	0.0033 0.0045	0.0033 0.0045	0.0033 0.0045
40	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>		0.0051 0.0068	0.0047 0.0062	0.0043 0.0057	0.0040 0.0053	0.0036 0.0048	0.0036 0.0048	0.0036 0.0048	0.0036 0.0048	0.0024 0.0036 0.0048 0.0060	0.0036 0.0048	0.0036 0.0048	0.0036 0.0048
36	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>		0.0058 0.0077	0.0052 0.0070	0.0048 0.0064	0.0044 0.0059	0.0039 0.0053	0.0039 0.0052	0.0039 0.0052	0.0039 0.0052	0.0026 0.0039 0.0052 0.0065	0.0039 0.0052	0.0039 0.0052	0.0039 0.0052
32	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>		0.0065 0.0087	0.0059 0.0079	0.0055 0.0073	0.0050 0.0067	0.0045 0.0060	0.0043 0.0057	0.0043 0.0057	0.0043 0.0057	0.0029 0.0043 0.0057 0.0072	0.0043 0.0057	0.0043 0.0057	0.0043 0.0057
28	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>			0.0068 0.0091	0.0063 0.0084	0.0058 0.0077	0.0051 0.0069	0.0047 0.0063	0.0047 0.0063	0.0047 0.0063	0.0032 0.0047 0.0063 0.0079	0.0047 0.0063	0.0047 0.0063	0.0047 0.0063
27	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>			0.0071 0.0094	0.0065 0.0087	0.0060 0.0080	0.0053 0.0071	0.0048 0.0065	0.0048 0.0065	0.0048 0.0065	0.0032 0.0048 0.0065 0.0081	0.0048 0.0065	0.0048 0.0065	0.0048 0.0065
24	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>			0.0079 0.0106	0.0073 0.0098	0.0068 0.0090	0.0060 0.0080	0.0055 0.0073	0.0052 0.0070	0.0052 0.0070	0.0035 0.0052 0.0070 0.0087	0.0052 0.0070	0.0052 0.0070	0.0052 0.0070
20	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>					0.0081 0.0108	0.0072 0.0096	0.0066 0.0088	0.0062 0.0082	0.0058 0.0078	0.0039 0.0058 0.0078 0.0097	0.0058 0.0078	0.0058 0.0078	0.0058 0.0078
18	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>						0.0080 0.0106	0.0073 0.0097	0.0068 0.0091	0.0065 0.0086	0.0041 0.0062 0.0082 0.0103	0.0061 0.0081	0.0061 0.0081	0.0061 0.0081
16	0.5 0.75 1.0 1.25	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>							0.0082 0.0109	0.0076 0.0102	0.0072 0.0096	0.0046 0.0069 0.0092 0.0115	0.0067 0.0089	0.0064 0.0086	0.0064 0.0085

Table D-11 Minor Diameter Tolerances for Internal Special Screw Threads (UNS/UNRS) — Class 3B (Cont'd)

Tolerance based on basic major diameter of	0.0375	0.4375	0.500	0.5625	0.625	0.6875	0.750	0.8125	0.875	0.9375	
For diameter range above	0.0344	0.406	0.469	0.531	0.594	0.656	0.719	0.781	0.844	0.906	All Larger
To and including	0.406	0.469	0.531	0.594	0.656	0.719	0.781	0.844	0.906	0.969	Diameters

		Length of English of Diam.	ng. in Terms [Note (2)]										
Threads/ in.	Tolerance Ratios	Above	To and Including			Min	or Diamet	er Toleran	ces, in. [N	ote (3)]			
14	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 0.0058 0.0086 0.0115 0.0144	0.0054 0.0082 0.0109 0.0136	0.0052 0.0078 0.0104 0.0130	0.0050 0.0075 0.0100 0.0125	0.0049 0.0073 0.0097 0.0122	0.0047 0.0071 0.0095 0.0118	0.0046 0.0069 0.0092 0.0116	0.0045 0.0068 0.0091 0.0113	0.0044 0.0067 0.0089 0.0111	0.0044 0.0066 0.0088 0.0110
13	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 	0.0058 0.0087 0.0117 0.0146	0.0056 0.0083 0.0111 0.0139	0.0054 0.0080 0.0107 0.0134	0.0052 0.0078 0.0104 0.0130	0.0050 0.0076 0.0101 0.0126	0.0050 0.0074 0.0099 0.0124	0.0049 0.0073 0.0097 0.0122	0.0048 0.0071 0.0095 0.0119	0.0047 0.0070 0.0094 0.0118
12	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 	0.0063 0.0094 0.0125 0.0157	0.0060 0.0090 0.0120 0.0150	0.0058 0.0087 0.0115 0.0144	0.0056 0.0084 0.0112 0.0140	0.0054 0.0082 0.0109 0.0136	0.0053 0.0080 0.0106 0.0133	0.0052 0.0078 0.0104 0.0130	0.0051 0.0077 0.0102 0.0128	0.0050 0.0075 0.0100 0.0125
11	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 		• • • • • • • • • • • • • • • • • • • •	0.0062 0.0094 0.0125 0.0156	0.0060 0.0091 0.0121 0.0151	0.0058 0.0088 0.0177 0.0146	0.0058 0.0086 0.0115 0.0144	0.0056 0.0084 0.0112 0.0140	0.0055 0.0082 0.0110 0.0138	0.0054 0.0082 0.0109 0.0136
10	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 				0.0066 0.0099 0.0131 0.0164	0.0064 0.0096 0.0128 0.0160	0.0062 0.0093 0.0125 0.0156	0.0061 0.0092 0.0122 0.0153	0.0060 0.0090 0.0120 0.0150	0.0060 0.0090 0.0120 0.0150
9	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 						0.0068 0.0103 0.0137 0.0171	0.0067 0.0100 0.0134 0.0168	0.0066 0.0100 0.0133 0.0166	0.0066 0.0100 0.0133 0.0166
8	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 						0.0075 0.0112 0.0150 0.0188	0.0075 0.0112 0.0150 0.0188	0.0075 0.0112 0.0150 0.0188	0.0075 0.0112 0.0150 0.0188
7	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 								0.0086 0.0129 0.0171 0.0214	0.0086 0.0129 0.0171 0.0214
6	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 									0.0100 0.0150 0.0200 0.0250
5	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 									0.0120 0.0180 0.0240 0.0300
4.5	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 									0.0133 0.0200 0.0267 0.0333
4	$\begin{cases} 0.5 \\ 0.75 \\ 1.0 \\ 1.25 \end{cases}$	0 0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i>	0.33 <i>D</i> 0.67 <i>D</i> 1.5 <i>D</i> 3 <i>D</i>	 									0.0150 0.0225 0.0300 0.0375

NOTES:

- (1) For 0.151 in. diameter sizes and smaller, tolerance values for all three classes are the same. For smaller sizes, tolerance values are given in Table D-10.
- (2) Tolerances for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges.
- (3) If the minor diameter tolerance as selected from this Table is less than the pitch diameter tolerance, use the latter.

NONMANDATORY APPENDIX E CHANGES TO ASME B1.1-1989 TABLES 3A AND 3B

This Appendix contains Tables E-1 and E-2, which show the thread sizes that were listed in the previous revisions of ASME B1.1, Tables 3A and 3B, respectively. Those areas in which no data is listed are identical to data in Tables 2 and D-1 in this Standard.

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition

						External	nal							Internal	nal		
Nominal Size and	Series			Maj	Major Diameter	iter	Pitc	Pitch Diameter and Functional Diameter [Note (1)]	er and ameter)]	UNR Minor		Mi	Minor Diameter	Pitch Fund	Pitch Diameter and Functional Diameter [Note (1)]	r and meter]	Major
Threads/in.	Designation	Class	Class Allowance	Мах.	Min.	Min.	Мах.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Min.
1 – 64 or 0.073 – 64	UNC	2A 3A	: :	: :	: :	: :	: :	: :	: :	::	2B 3B	: :	0.0623	: :	: :	: :	: :
1 – 72 or 0.073 – 72	UNF	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	0.0635	: :	: :	: :	: :
2 – 64 or 0.086 – 64	UNF	2A 3A	: :	: :	: :	: :	: :	: :	: :	::	2B 3B	: :	0.0753	: :	: :	: :	: :
6 – 32 or 0.138 – 32	UNC	3A	:	÷	:	÷	:	÷	:	÷	3B	÷	0.1140	:	÷	÷	:
8 – 32 or 0.164 – 32	ONC	3A	÷	÷	÷	:	÷	÷	÷	÷	38	:	0.1389	:	÷	:	÷
10 – 24 or 0.190 – 24	UNC	2A	÷	÷	÷	÷	÷	÷	÷	:	2B	÷	0.156	:	÷	:	:
12 – 32 or 0.216 – 32	UNEF	2A	0.0009	0.2151	0.2091	:	0.1948	3 0.1917	0.0031	÷	2B	:	÷	:	÷	÷	:
$^{5}/_{16} - 20$ or $0.3125 - 20$	N	2A 3A	: :	: :	: :	: :	: :	0.2748	0.0040	: :	2B 3B	: :	: :	: :	0.2852	0.0052	: :
$^{5}/_{16} - 28$ or $0.3125 - 28$	N	2A 3A	: :	: :	: :	: :	: :	0.2849	0.0034	: :	2B 3B	: :	: :	: :	0.2937	0.0044	: :
$^{5}/_{16}$ – 32 or 0.3125 – 32	UNEF	2A 3A	: :	: :	: :	: :	: :	0.2880	0.0032	: :	2B 3B	: :	0.2847	: :	0.2964	0.0042	÷
$\frac{7}{16} - 16$ or $0.4375 - 16$	N	2A 3A	: :	: :	: :	: :	: :	0.3935	0.0034	: :	2B 3B	: :	: :	: :	0.4028	0.0059	: :
$7_{16} - 20$ or $0.4375 - 20$	UNF	14	:	÷	÷	:	÷	0.3975	0.0062	÷	18	:	:	:	Ë	÷	:
$7_{16} - 28$ or $0.4375 - 28$	UNEF	2A	:	÷	÷	:	÷	:	:	÷	2B	:	÷	:	0.4189	0.0046	÷
$\frac{7}{16} - 32$ or $0.4375 - 32$	N O	3A	÷	÷	÷	:	÷	0.4147	0.0025	÷	38	:	:	:	÷	:	÷
$\frac{1}{2} - 16$ or $0.500 - 16$	N	3A	÷	÷	÷	:	÷	:	:	:	3B	:	0.4419	:	÷	:	:
$\frac{9}{16} - 16$ or $0.5625 - 16$	N	3A	:	÷	÷	:	÷	÷	÷	:	3B	:	0.5040	:	÷	:	:
$\frac{9}{16} - 20$ or $0.5625 - 20$	N	2A 3A	: :	: :	: :	: :	: :	0.5245	0.0042	: :	2B 3B	: :	0.5162	: :	0.5355	0.0055	: :

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

						.	•						.				
						External	lt							Internal	nal		
Nominal Gize and	Sories			Majo	Major Diameter	ter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]	er and Imeter]	UNR Minor Diameter		Mi Dian	Minor Diameter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]	er and Imeter]	Major
Threads/in.	Designation	Class	Class Allowance	Max.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Min.
9/16 - 24 or 0.5625 - 24	UNEF	2A 3A	: :	: :	: :	: :	: :	0.5303	0.0039	: :	2B 3B	: :	: :	: :	0.5392	0.0038	: :
$\%_{16} - 32$ or $0.5625 - 32$	N	2A	0.0010	0.5615	0.5555	:	0.5412	0.5377	:	:	2B	:	:	÷	0.5467	0.0045	:
$\frac{5}{8}$ – 11 or 0.625 – 11	UNC	1A 2A	0.0016	0.6234	0.6052 (0.5644	0.5561	0.5589	: :	: :	1B 2B	: :	: :	: :	: :	: :	: :
$\frac{5}{8}$ - 32 or 0.625 - 32	N	2A	÷	:	:	:	÷	:	:	:	2B	:	0.590	÷	:	:	:
$^{11}\!\!/_{16}$ – 12 or 0.6875 – 12	N	2A	÷	:	:	:	÷	0.6264	0.0054	:	2B	:	:	÷	:	:	:
$^{11}\!\!/_{16}$ – 16 or 0.6875 – 16	N	2A	÷	:	:	:	÷	:	:	:	2B	:	:	÷	0.6531	0.0062	:
$^{11}\!\!/_{16}$ – 20 or 0.6875 – 20	N	2A 3A	: :	: :	: :	: :	: :	0.6494	0.0043	: :	2B 3B	: :	0.6412	: :	0.6606	0.0056	: :
$^{11}\!/_{16}$ – 24 or 0.6875 – 24	UNEF	2A	÷	:	÷	:	÷	:	÷	:	2B	:	:	÷	0.6656	0.0052	:
$^{11}\!/_{16}$ – 28 or 0.6875 – 28	N	3A	÷	:	:	:	÷	0.6615	0.0028	:	3B	:	:	÷	:	:	:
$^{11}/_{16} - 32$ or $0.6875 - 32$	N	2A	÷	÷	÷	÷	÷	÷	÷	÷	2B	:	:	÷	0.6718	0.0046	:
$\frac{3}{4} - 16 \text{ or } 0.750 - 16$	UNF	3A	÷	:	:	:	÷	:	:	:	3B	:	0.6908	÷	:	:	:
$\frac{3}{4}$ – 20 or 0.750 – 20	UNEF	3A	÷	:	:	:	÷	:	:	:	3B	:	0.7037	÷	÷	:	:
³ / ₄ – 28 or 0.750 – 28	N	3A	÷	:	÷	:	÷	:	:	0.7074	3B	:	:	÷	÷	:	:
$^{13}\!\!/_{16} - 12$ or $0.8125 - 12$	N	2A 3A	: :	: :	: :	: :	: :	0.7512	0.0055	: :	2B 3B	: :	: :	: :	: :	: :	: :
$^{13}\!\!/_{16}$ – 16 or 0.8125 – 16	N	2A 3A	: :	: :	: :	: :	: :	0.7683	0.0036	: :	2B 3B	: :	0.7533	: :	0.7782	0.0063	: :
13 χ_6 – 20 or 0.8125 – 20	UNEF	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	0.7662	: :	0.7857	0.0057	: :
¹³ / ₁₆ – 28 or 0.8125 – 28	N	2A 3A	: :	: :	: :	: :	: :	0.7843	0.0038	: :	2B 3B	: :	: :	: :	0.7930	0.0037	: :

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

						External	al							Internal	nal		
Nominal Size and	Series			Maj	Major Diameter	ter	Pitcl Func	Pitch Diameter and Functional Diameter [Note (1)]	er and ameter)]	UNR Minor		Mi	Minor Diameter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]		Major
Threads/in.	Designation		Class Allowance	Max.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Мах. Л	Tolerance	Min.
13 16 – 32 or 0.8125 – 32	NN	2A 3A	: :	: :	: :	: :	: :	0.7875	0.0036	: :	2B 3B	: :	: :	: :	0.7969	0.0047	: :
$\frac{7}{8} - 12$ or $0.875 - 12$	N	2A 3A	: :	: :	: :	: :	: :	0.8137	0.0055	: :	2B 3B	: :	0.7948	: :	0.8281	0.0072	: :
$\frac{7}{8} - 14$ or $0.875 - 14$	UNF	1A 2A 3A	: : :	: : :	: : :	: : :	: : :	: : :	: : :	: : :	1B 2B 3B	: : :	0.814 0.814 0.8068	: : :	: : :	: : :	: : :
$\frac{7}{8}$ – 16 or 0.875 – 16	N	2A 3A	: :	: :	: :	: :	: :	0.8308	0.0036	: :	2B 3B	: :	0.8158	: :	0.8407	0.0063	: :
$\frac{7}{8}$ – 20 or 0.875 – 20	UNEF	2A 3A	: :	: :	: :	: :	: :	0.8368	0.0044	: :	2B 3B	: :	0.8287	: :	0.8482	0.0057	: :
7/8 – 28 or 0.875 – 28	N	2A 3A	: :	: :	: :	: :	: :	0.8468	0.0038	: :	2B 3B	: :	: :	: :	0.8568	0.0050	: :
7/8 – 32 or 0.875 – 32	N	2A 3A	: :	: :	: :	: :	: :	0.8500	0.0036	: :	2B 3B	: :	: :	: :	0.8594	0.0047	: :
$^{15}\!$	N	2A 3A	: :	: :	: :	: :	: :	0.8760	0.0057	: :	2B 3B	: :	: :	: :	0.8908	0.0074	: :
$^{15}\!$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	0.8783	: :	0.9034	0.0065	: :
$^{15}\!$	UNEF	3A	÷	:	÷	:	:	÷	÷	÷	3B	÷	0.8912	:	÷	:	:
$^{15}\!$	N	2A 3A	: :	: :	: :	: :	: :	0.9091	0.0040	: :	2B 3B	: :	: :	: :	0.9195	0.0052	: :
1 – 8 or 1.000 – 8	ONC	2A	÷	÷	:	:	:	0.9100	÷	÷	2B	÷	÷	:	÷	:	:
1 - 14 or $1.000 - 14$	NNS	2A 3A	0.0017	0.9983	0.9880	: :	0.9519	0.9463	0.0056	: :	2B 3B	: :	: :	: :	0.9609	0.0073	: :
$1_{1/16}^{1} - 12$ or $1.0625 - 12$	N	3A	÷	:	:	:	:	1.0042	0.0042	÷	3B	:	÷	:	÷	:	:
$1^{1}/_{16} - 16$ or $1.0625 - 16$	N	3A	÷	÷	÷	÷	÷	1.0182	0.0037	:	3B	:	1.0033	÷	÷	÷	÷

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

							•						.	.			
						External	1							Internal	al		
Nominal Size and	Series			Majo	Major Diameter	ter	Pitch Functi	Pitch Diameter and Functional Diameter [Note (1)]	r and meter]	UNR Minor		Minor Diameter	ior eter	Pitch Functi [Pitch Diameter and Functional Diameter [Note (1)]		Major
Threads/in.	Designation	Class	Class Allowance	Мах.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max. To	Tolerance	Min.
$1^{1}/_{16} - 18$ or $1.0625 - 18$	UNEF	2A 3A	: :	: :	: :	: :	: :	1.0203	0.0047	: :	2B 3B	: :	: :		1.0310	0.0046	: :
$1^{1}/_{16} - 20$ or $1.0625 - 20$	N	2A 3A	: :	: :	: :	: :	: :	1.0241	0.0045	: :	2B 3B	: :	1.0162	: :	1.0344	0.0044	: :
$1\frac{1}{8} - 7$ or $1.125 - 7$	ONC	2A	:	:	:	÷	:	÷	0.0072	÷	2B	÷	:	÷	:	:	÷
$1\frac{1}{8} - 16$ or $1.125 - 16$	N	2A 3A	: :	: :	: :	: :	: :		0.0037	: :	2B 3B	: :	1.0658	: :	1.0909	0.0065	: :
$1\frac{1}{8} - 18$ or $1.125 - 18$	UNEF	2A 3A	: :	: :	: :	: :	: :	1.0828	0.0047	: :	2B 3B	: :	: :	: :	1.0935	0.0046	: :
$1\frac{1}{8} - 20$ or $1.125 - 20$	N	2A 3A	: :	: :	: :	: :	: :	1.0866	0.0045	: :	2B 3B	: :	1.0787	: :	1.0984	0.0059	: :
$1\frac{3}{16} - 12$ or $1.1875 - 12$	N	2A	÷	÷	÷	÷	:	1.1259	0.0058	÷	2B	÷	:	:	:	÷	÷
$1^{3}/_{16} - 16$ or $1.1875 - 16$	N	3A	:	:	:	÷	:	:	÷	÷	3B	÷	1.1283	:	1.1519	0.0050	:
$1^{3}/_{16} - 18$ or $1.1875 - 18$	UNEF	2A	0.0015	1.1860 1.1773	1.1773	:	1.1499	1.1450	0.0049	÷	2B	:	÷	:	÷	÷	:
$1^3/_{16} - 20$ or $1.1875 - 20$	N	2A 3A	: :	: :	: :	: :	: :	1.1489	0.0047	: :	2B 3B	: :	1.1412	: :	1.1611	0.0061	: :
$1\frac{1}{4} - 16$ or $1.250 - 16$	N	3A	÷	÷	÷	÷	÷	÷	÷	÷	3B	:	1.1908	:	÷	÷	:
$1\frac{1}{4} - 20$ or $1.250 - 20$	N	3A	:	÷	÷	÷	÷	:	:	÷	38	÷	1.2037	:	÷	:	:
$1^{5}/_{16} - 12$ or $1.3125 - 12$	N	3A	÷	÷	:	:	:	1.2541	0.0045	÷	3B	÷	:	:	1.2640	0.0056	:
$1^{5}/_{16} - 16$ or $1.3125 - 16$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	1.2533	: :	1.2785	990000	: :
$1^{5}/_{16} - 18$ or 1.3125 – 18	UNEF	2A 3A	: :	: :	: :	: :	: :		0.0038	: :	2B 3B	: :	: :	: :	1.2827	0.0063	: :
15/16 - 20 or $1.3125 - 20$	N O	3A	:	:	÷	÷	:	÷	÷	÷	3B	÷	1.2662	:	1.2845	0.0045	:
15/16 - 28 or $1.3125 - 28$	N	2A	:	÷	:	÷	:	÷	÷	:	2B	÷	:	:	1.2946	0.0053	:

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

						External	al							Internal	nal		
Nominal Size and	Series			Maj	Major Diameter	ster	Pitcl Func	Pitch Diameter and Functional Diameter [Note (1)]	er and ameter)]	UNR Minor		M Diar	Minor Diameter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]		Major
Threads/in.	Designation		Class Allowance	Max.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Мах.	Tolerance	Min.
$1\frac{3}{8} - 16 \text{ or } 1.375 - 16$	Nn	2A 3A	: :	: :	: :	: :	: :	1.3278	0.0051	::	2B 3B	: :	1.3158	: :	1.3410	990000	: :
$1\frac{3}{8} - 18$ or $1.375 - 18$	UNEF	2A 3A	: :	: :	: :	: :	: :	1.3353	0.0036	: :	2B 3B	: :	: :	: :	1.3452 1.3436	0.0063	: :
$1\frac{3}{8} - 20$ or $1.375 - 20$	N	3A	÷	:	÷	:	÷	÷	÷	į	3B	:	1.3287	÷	1.3470	0.0045	:
$1\frac{3}{8} - 28$ or $1.375 - 28$	N	2A	÷	:	÷	÷	÷	÷	÷	:	2B	:	÷	÷	1.3571	0.0053	÷
$1_{16}^{7} - 16$ or $1.4375 - 16$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	1.3783	: :	1.4037	0.0068	: :
$17/1_6 - 18$ or $1.4375 - 18$	UNEF	2A	÷	:	÷	÷	÷	1.3949	0.0050	:	2B	:	÷	:	÷	÷	:
$1^{7}/_{16} - 20$ or $1.4375 - 20$	N	2A 3A	: :	: :	: :	: :	: :	1.3988	0.0048	: :	2B 3B	: :	1.3912	: :	: :	: :	: :
$17/1_6 - 28$ or $1.4375 - 28$	Nn	2A	÷	:	÷	÷	÷	÷	÷	:	2B	÷	:	÷	1.4198	0.0055	:
$1\frac{1}{2} - 16$ or $1.500 - 16$	N	3A	÷	÷	÷	÷	÷	÷	÷	:	3B	÷	1.4408	÷	÷	÷	:
$1\frac{1}{2} - 18$ or $1.500 - 18$ $1\frac{1}{2} - 20$ or $1.500 - 20$	UNEF	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	1.452 1.4537	: :	: :	: :	: :
$1^{9}/_{16} - 12$ or $1.5625 - 12$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	: :	: :	1.5160	0.0076	: :
$1^{9}/_{16} - 16$ or $1.5625 - 16$	N	3A	÷	:	÷	:	÷	÷	÷	÷	3B	:	1.5033	÷	÷	÷	:
$1^{9}/_{16} - 18$ or $1.5625 - 18$	UNEF	3A	÷	:	÷	:	÷	÷	÷	:	3B	:	÷	:	1.5312	0.0048	:
$1\%_{16} - 20$ or $1.5625 - 20$	N	3A	:	:	÷	:	÷	:	÷	:	3B	:	1.5162	:	1.5346	0.0046	:
$1\frac{5}{8} - 12$ or $1.625 - 12$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	: :	: :	1.5785	0.0076	: :
$1\frac{5}{8} - 16$ or $1.625 - 16$	N	2A	÷	÷	÷	÷	÷	1.5776	0.0052	:	2B	:	:	:	÷	÷	:
$1\frac{5}{8} - 18$ or $1.625 - 18$	N	3A	:	:	÷	:	÷	1.5852	0.0037	:	3B	:	:	:	1.5937	0.0048	:
$1\frac{5}{8} - 20$ or $1.625 - 20$	N	3A	:	:	÷	:	:	÷	÷	:	38	÷	1.5787	:	1.5971	0.0046	:

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

	·					External								Internal	al		
Nominal Size and	Series			Majoı	Major Diameter	,	Pitch Dia Functiona [No	Pitch Diameter and Functional Diameter [Note (1)]		UNR Minor Diameter		Minor Diameter	or xter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]		Major Diameter
Threads/in.	Designation		Class Allowance	Мах.	Min. 1	Min. N	Max. Mi	Min. Tolerance			Class	Min.	Мах.	Min.	Мах. Т	Tolerance	Min.
$1^{11}/_{16} - 12$ or $1.6875 - 12$	N	2A	÷	:	:	:	1.6.	1.6256 0.0060	090	:	2B	:	:	:	1.6412	9/00.0	:
$1^{11}/_{16} - 16$ or $1.6875 - 16$	N	3A	÷	÷	:	:	:	:	•	:	3B	:	1.6283	:	1.6521	0.0052	÷
$1^{11}/_{16} - 18$ or $1.6875 - 18$	UNEF	2A	÷	:	:	:	1.6	1.6448 0.0051)51	:	2B	:	:	:	1.6580	9900'0	:
$1^{11}/_{16} - 20$ or $1.6875 - 20$	N	2A 3A	0.0015	1.6860 1	1.6779	::	1.6535 1.6487	487		::	2B 3B	: :	1.6412	: :	: :	: :	: :
$1\frac{3}{4}$ – 5 or 1.750 – 5	UNC	1A 2A 3A	: : :	: : :	: : :	: : :		:::		: : :	1B 1 2B 1 3B 1	1.534 1 1.534 1 1.5340	1.568	: : :	: : :	: : :	: : :
$1^{3}/_{4} - 8 \text{ or } 1.750 - 8$	N	3A	÷	:	÷	:	1.6	1.6632 0.0056	950	:	3B	:	÷	:	÷	:	:
$1\frac{3}{4} - 16 \text{ or } 1.750 - 16$	N	3A	÷	:	÷	:	:	:		:	3B	:	1.6908	:	÷	:	:
$1\frac{3}{4} - 20$ or $1.750 - 20$	N	3A	÷	÷	÷	:	:	:		:	3B	:	1.7037	:	÷	÷	÷
$1^{13}/_{16} - 16$ or $1.8125 - 16$	N D	3A	÷	÷	÷	:	:	:		:	3B	:	1.7533	÷	÷	:	÷
$1^{13}/_{16} - 20$ or $1.8125 - 20$	N D	3A	:	:	:	:	1.7.	1.7764 0.0036	36	:	3B	:	1.7662	÷	÷	:	:
$1\frac{7}{8} - 12$ or $1.875 - 12$	N D	3A	÷	÷	:	:	:	:		:	3B	:	÷	:	1.8267	0.0058	÷
$1\frac{7}{8} - 16$ or $1.875 - 16$	N D	3A	÷	÷	:	:	:	:		:	3B	:	1.8158	:	÷	:	÷
$1\frac{7}{8} - 20$ or $1.875 - 20$	N	2A 3A	: :	: :	: :	: :	1.8	1.8362 0.0048 1.8389 0.0036)48)36	: :	2B 3B	: :	1.8287	: :	1.8488	0.0063	: :
$1^{15}/_{16} - 12$ or $1.9375 - 12$	N	2A	÷	:	:	:	1.8	1.8755 0.0061)61	:	2B	:	÷	:	1.8913	0.0079	÷
$1^{15}/_{16} - 16$ or $1.9375 - 16$	N	3A	÷	:	:	:	:	:		:	3B	:	1.8785	:	÷	:	÷
$1^{15}/_{16} - 20$ or $1.9375 - 20$	N	3A	÷	:	:	:	:	:		:	3B	:	1.8912	:	:	:	:
2 – 16 or 2.000 – 16	N	3A	÷	:	:	:	:	:		:	3B	:	1.9408	:	:	:	:
2 – 20 or 2.000 – 20	N	3A	÷	:	:	:	:	:		:	3B	: .	1.9537	:	÷	:	:
$2\frac{1}{8} - 12$ or $2.1250 - 12$	N	3A	÷	÷	:	:	2.0	2.0664 0.0045	745	:	3B	:	:	:	:	:	:

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

						External	ıal							Internal	nal		
Nominal Size and	Series			Ma	Major Diameter	iter	Pitc Func	Pitch Diameter and Functional Diameter [Note (1)]	er and ameter)]	UNR Minor		M Dia	Minor Diameter	Pitc Func	Pitch Diameter and Functional Diameter [Note (1)]	r and meter]	Major
Threads/in.	Designation	Class	Class Allowance	Max.	Min.	Min.	Мах.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Min.
$2^{1}/_{8} - 16$ or $2.1250 - 16$	NU	3A	:	:	:	:	:	:	:	÷	3B	:	2.0658	:	2.0896	0.0052	:
$2\frac{1}{8} - 20$ or $2.1250 - 20$	N	2A 3A	: :	: :	: :	: :	: :	2.0861	0.0049	: :	2B 3B	: :	2.0787	: :	2.0989	0.0064	: :
$2\frac{1}{4} - 12$ or $2.250 - 12$	N	2A 3A	: :	: :	: :	: :	: :	2.1914	0.0045	: :	2B 3B	: :	: :	: :	2.2038	0.0079	: :
$2\frac{1}{4} - 16$ or $2.250 - 16$	N	2A 3A	: :	: :	: :	: :	: :	2.2024	0.0054	: :	2B 3B	: :	2.1908	: :	2.2164 2.2146	0.0070	: :
$2\frac{1}{4} - 20$ or $2.250 - 20$	N	2A 3A	: :	: :	: :	: :	: :	2.2111	0.0049	: :	2B 3B	: :	2.2037	: :	2.2239	0.0064	: :
$2^{3}/8 - 6$ or $2.3750 - 6$	N	2A	÷	÷	÷	:	÷	÷	÷	÷	2B	÷	2.226	:	÷	:	÷
$2^{3}/8 - 12$ or $2.3750 - 12$	N D	2A	0.0019	2.3731	2.3617	÷	2.3190	2.3128	÷	÷	2B	÷	÷	:	2.3290	0.0081	:
2 ³ / ₈ – 16 or 2.3750 – 16	N	2A 3A	0.0017	2.3733	2.3639	: :	2.3327	2.3272	: :	: :	2B 3B	: :	2.3158	: :	2.3416	0.0072	: :
2 ³ / ₈ – 20 or 2.3750 – 20	N	2A 3A	: :	: :	: :	: :	: :	2.3359	0.0051	: :	2B 3B	: :	2.3287	: :	2.3475	0.0050	: :
$2^{1}/_{2} - 16$ or $2.500 - 16$	N	3A	÷	÷	÷	÷	÷	÷	÷	÷	3B	÷	2.4408	:	÷	:	:
$2^{1}/_{2} - 20$ or $2.500 - 20$	N	3A	÷	÷	÷	÷	÷	÷	÷	÷	3B	÷	2.4537	÷	÷	÷	÷
$2^{5}/_{8} - 12$ or $2.625 - 12$	N	3A	÷	÷	÷	÷	÷	2.5663	0.0046	÷	3B	÷	÷	:	2.5769	0900.0	:
$2^{5}/_{8} - 16$ or $2.625 - 16$	N	2A 3A	: :	: :	: :	: :	: :	2.5772 2.5803	0.0055	: :	2B 3B	: :	2.5658	: :	: :	: :	: :
$2^{5}/_{8} - 20$ or $2.625 - 20$	N	3A	÷	÷	:	:	÷	÷	÷	÷	3B	÷	2.5784	:	÷	:	:
$2\frac{3}{4} - 12$ or $2.750 - 12$	N	2A 3A	: :	: :	: :	: :	: :	2.6878	0.0062	: :	2B 3B	: :	: :	: :	2.7019	090000	: :
$2^{3}/_{4} - 16$ or $2.750 - 16$	N	2A 3A	: :	: :	: :	: :	: :	2.7022 2.7053	0.0055	: :	2B 3B	: :	2.6908	: :	2.7166	0.0072	: :

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

							•										
						External	al							Internal	ıal		
Nominal Size and	Series			Majc	Major Diameter	ter	Pitcl Func	Pitch Diameter and Functional Diameter [Note (1)]	ter and iameter :)]	UNR Minor Diameter		Minor Diameter	Minor iameter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]		Major Diameter
Threads/in.	Designation	Class	Class Allowance	Max.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	≥	Max.	Min.	Max.	Tolerance	Min.
$2\frac{3}{4}$ – 20 or 2.750 – 20	N	2A 3A	: :	: :	: :	: :	: :	2.7137	0.0038	::	2B 3B	: :	2.7037	: :	2.7241	9900.0	: :
$2\frac{7}{8} - 12$ or $2.875 - 12$	N	3A	÷	÷	÷	:	:	:	÷	÷	3B	÷	:	:	2.8271	0.0062	÷
$2\frac{7}{8} - 16$ or $2.875 - 16$	N	3A	:	:	÷	:	:	:	÷	÷	3B	÷	2.8158	:	:	÷	÷
$2^{7}/_{8} - 20$ or $2.875 - 20$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	2.8287	: :	2.8493 2.8476	0.0068	: :
3 – 16 or 3.000 – 16	N	2A 3A	: :	: :	: :	: :	: :	: :	0.0056	: :	2B 3B	: :	2.9408	: :	: :	: :	: :
3 – 20 or 3.000 – 20	N	3A	÷	÷	÷	:	:	:	÷	Ë	3B	:	2.9537	:	:	÷	÷
3½ – 12 or 3.125 – 12	N	2A 3A	: :	: :	: :	: :	: :	3.0627	0.0063	: :	2B 3B	: :	: :	: :	3.0791	0.0082	: :
$3\frac{1}{8} - 16$ or $3.125 - 16$	N D	2A 3A	: :	: :	: :	: :	: :	3.0771	0.0056	: :	2B 3B	: :	3.0658	: :	3.0917	0.0073	: :
$3\frac{1}{4} - 12$ or $3.250 - 12$	N	2A 3A	: :	: :	: :	: :	: :	3.1877	0.0063	: :	2B 3B	: :	: :	: :	3.2041	0.0082	: :
$3\frac{1}{4} - 16$ or $3.250 - 16$	N	2A 3A	: :	: :	: :	: :	: :	3.2021 3.2052	0.0056	: :	2B 3B	: :	3.1908	: :	3.2167 3.2149	0.0073	: :
$3\frac{3}{8} - 12$ or $3.375 - 12$	N	2A	÷	:	÷	:	:	:	÷	÷	2B	÷	:	:	3.3293	0.0084	÷
$3\frac{3}{8} - 16 \text{ or } 3.375 - 16$	N	2A 3A	: :	: :	: :	: :	: :	3.3269	0.0058	: :	2B 3B	: :	3.3158	: :	: :	: :	: :
$3\frac{1}{2} - 16$ or $3.500 - 16$	N	3A	÷	:	÷	÷	:	:	÷	÷	38	÷	3.4408	:	:	÷	÷
$3\frac{5}{8} - 12$ or $3.625 - 12$	N	2A	÷	÷	÷	:	÷	3.5626	0.0064	÷	2B	:	÷	÷	:	÷	÷
$3\frac{5}{8} - 16$ or $3.625 - 16$	N	3A	÷	÷	÷	:	÷	÷	÷	÷	3B	:	3.5658	:	÷	:	÷
$3\frac{3}{4} - 12$ or $3.750 - 12$	N	2A 3A	: :	: :	: :	: :	: :	3.6876 3.6911	0.0064	: :	2B 3B	: :	: :	: :	: :	: :	: :

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

						External	al							Internal	nal		
Nominal Size and	Series			Maj	Major Diameter	ter	Pitc	Pitch Diameter and Functional Diameter [Note (1)]	er and ameter)]	UNR Minor		Mi	Minor Diameter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]		Major
Threads/in.	Designation	Class	Allowance	Max.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Min.
$3\frac{3}{4} - 16$ or $3.750 - 16$	NN	2A 3A	: :	: :	: :	: :	: :	3.7051	0.0043	::	2B 3B	: :	3.6908	: :	3.7169 3.7150	0.0075	: :
$3\frac{7}{8} - 16$ or $3.875 - 16$	N	2A 3A	: :	: :	: :	: :	: :	3.8267	0.0059	: :	2B 3B	: :	3.8158	: :	: :	: :	: :
4 – 16 or 4.000 – 16	N	3A	÷	÷	÷	÷	÷	÷	÷	:	3B	:	3.9408	÷	÷	÷	÷
$4\frac{1}{8} - 12$ or $4.125 - 12$	N	2A	÷	÷	:	:	:	4.0624	0.0065	÷	2B	÷	÷	÷	:	:	:
$4^{1/8} - 16$ or $4.125 - 16$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	4.0658	: :	4.0920	0.0076	: :
$4^{1}/_{4} - 8$ or $4.250 - 8$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	: :	: :	4.1808	0.0120	: :
$4\frac{1}{4} - 12$ or $4.250 - 12$	N	2A	÷	÷	÷	:	:	4.1874	0.0065	÷	2B	:	÷	÷	4.2044	0.0085	÷
$4^{1}/_{4} - 16$ or $4.250 - 16$	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	4.1908	: :	4.2170 4.2151	0.0076	: :
$4\frac{3}{8} - 8$ or $4.375 - 8$	N	2A	÷	÷	:	:	:	÷	÷	÷	2B	:	÷	:	4.3058	0.0120	÷
$4\frac{3}{8} - 12$ or $4.375 - 12$	N	2A 3A	: :	: :	: :	: :	: :	4.3124	0.0065	: :	2B 3B	: :	: :	: :	4.3294	0.0085	: :
$4\frac{3}{8} - 16$ or $4.375 - 16$	N N	2A 3A	: :	: :	: :	: :	: :	4.3300	0.0044	: :	2B 3B	: :	4.3158	: :	4.3420 4.3401	0.0076	: :
$4^{1}/_{2} - 12$ or $4.500 - 12$	N	2A 3A	: :	: :	: :	: :	: :	4.4374 4.4410	0.0065	: :	2B 3B	: :	: :	: :	4.4544	0.0085	: :
$4^{1}/_{2} - 16$ or $4.500 - 16$	N	2A 3A	: :	: :	: :	: :	: :	4.4517 4.4550	0.0059	: :	2B 3B	: :	4.4408	: :	4.4670 4.4651	0.0076	: :
$4^{5}/_{8} - 8$ or $4.625 - 8$	N	2A 3A	0.0029	4.6221	4.6071	: :	4.5409	4.5314	: :	: :	2B 3B	: :	: :	: :	4.5562 4.5531	0.0124	: :
$4^{5}/_{8} - 16$ or $4.625 - 16$	N	2A 3A	: :	: :	: :	: :	: :	4.5765	0.0061	: :	2B 3B	: :	4.5658	: :	4.5923 4.5903	0.0079	: :
$4^{3}/_{4} - 8$ or $4.750 - 8$	N	3A	:	÷	÷	÷	÷	4.6617	0.0071	÷	38	÷	÷	÷	÷	:	:

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

						,	٠	.						.			
						External	ıal							Internal	ıal		
Nominal Size and	Series			Maje	Major Diameter	eter	Pitc Func	Pitch Diameter and Functional Diameter [Note (1)]	er and ameter)]	UNR Minor Diameter		Mi Dian	Minor Diameter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]		Major Diameter
Threads/in.	Designation		Class Allowance	Max.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max. 1	Tolerance	Min.
$4\frac{3}{4} - 12$ or $4.750 - 12$	N	3A	:	:	:	:	:	:	:	:	3B	:	:	:	4.7025	0.0066	:
$4\frac{3}{4} - 16$ or $4.750 - 16$	N	2A 3A	: :	: :	: :	: :	: :	4.7015	0.0059	: :	2B 3B	: :	4.6908	: :	4.7173	0.0079	: :
$4\frac{7}{8} - 12$ or $4.875 - 12$	N	3A	:	:	÷	÷	÷	÷	:	÷	3B	:	÷	÷	4.8275	9900.0	÷
$4^{7}/_{8} - 16$ or $4.875 - 16$	N	2A 3A	: :	: :	: :	: :	: :	4.8265	0.0061	: :	2B 3B	: :	4.8158	: :	4.8423	0.0079	: :
5 – 8 or 5.000 – 8	N	3A	:	:	÷	:	÷	:	÷	:	3B	:	÷	:	4.9283	0.0095	:
5 – 16 or 5.000 – 16	N	3A	:	:	÷	÷	÷	÷	÷	:	3B	÷	4.9408	:	:	:	:
$5\frac{1}{8} - 8$ or $5.125 - 8$	N	2A	:	:	÷	:	÷	÷	÷	:	2B	÷	:	:	5.0564	0.0126	:
$5\frac{1}{8} - 12$ or $5.125 - 12$	N	2A 3A	: :	: :	: :	: :	: :	5.0659	0.0050	<u>:</u> :	2B 3B	: :	: :	: :	5.0796	0.0087	: :
$5\frac{1}{8} - 16$ or $5.125 - 16$	N	3A	:	:	÷	:	:	5.0799	0.0045	÷	3B	÷	5.0658	:	:	÷	:
$5\frac{1}{4} - 8$ or $5.250 - 8$	N	3A	:	÷	÷	:	÷	5.1614	0.0074	:	3B	÷	:	:	5.1784	9600.0	÷
$5\frac{1}{4} - 12$ or $5.250 - 12$	N	2A 3A	: :	: :	: :	: :	: :	5.1872 5.1909	0.0067	: :	2B 3B	: :	: :	: :	5.2046	0.0087	: :
$5\frac{1}{4} - 16 \text{ or } 5.250 - 16$	N	3A	:	:	÷	:	÷	5.2049	0.0047	÷	3B	÷	:	:	:	÷	÷
5 ³ / ₈ – 8 or 5.375 – 8	N	2A 3A	: :	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	: :	: :	5.3067	0.0129	: :
$5\frac{3}{8} - 12$ or $5.375 - 12$	N	2A 3A	: :	: :	: :	: :	: :	5.3122	0.0067	: :	2B 3B	: :	: :	: :	5.3296	0.0087	: :
$5\frac{3}{8} - 16$ or $5.375 - 16$	N	3A	:	:	:	÷	:	5.3299	0.0045	÷	3B	:	5.3158	:	5.3403	0.0059	÷
$5\frac{1}{2} - 12$ or $5.500 - 12$	N	2A 3A	: :	: :	: :	: :	: :	5.4372	0.0067	: :	2B 3B	: :	: :	: :	5.4546	0.0087	: :
$5\frac{1}{2} - 16$ or $5.500 - 16$	N	2A 3A	: :	: :	: :	: :	: :	5.4549	0.0045	: :	2B 3B	: :	5.4408	: :	5.4673	0.0079	: :

Table E-1 Limits as Listed in Table 2 (Formerly 3A) Prior to ASME B1.1-2003 Edition (Cont'd)

						External	al							Internal	nal		
Nominal Size and	Series			Majc	Major Diameter	ër	Pitch Funci	Pitch Diameter and Functional Diameter [Note (1)]	er and ameter)]	UNR Minor Diameter		Minor Diameter	ior eter	Pitch Funct	Pitch Diameter and Functional Diameter [Note (1)]		Major
Threads/in.	Designation		Class Allowance	Max.	Min.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Min.
$5\frac{5}{8} - 8$ or $5.625 - 8$	NN	3A	÷	÷	÷	:	:	÷	÷	:	3B	÷	:	:	5.5536	0.0098	:
5% - 12 or 5.625 - 12	N	2A 3A	0.0021	5.6229	5.6115	: :	5.5688	5.5619	0.0069	: :	2B 3B	: :	: :	: :	5.5799	0.0090	: :
5% - 16 or 5.625 - 16	N	2A 3A	0.0019	5.6231	5.6137	: :	5.5825	5.5763	0.0047	: :	2B 3B	: :		: :	5.5925	0.0081	: :
$5\frac{3}{4} - 8 \text{ or } 5.750 - 8$	N	2A	÷	÷	5.7250	÷	:	÷	÷	÷	2B	÷	:	÷	÷	:	÷
5¾ – 12 or 5.750 – 12	N	2A 3A	: :	: :	: :	: :	: :	5.6869	0.0069	: :	2B 3B	: :	: :	: :	5.7049	0.0090	: :
5¾ - 16 or 5.750 - 16	N	2A 3A	: :	: :	: :	: :	: :	5.7047	0.0047	: :	2B 3B	: :	2.6908	: :	5.7175	0.0081	: :
$5\frac{7}{8} - 8$ or $5.875 - 8$	N	2A	0.0031	5.8719	5.8569	÷	5.7907	5.7806	÷	:	2B	÷	÷	:	÷	:	:
$5\frac{7}{8} - 12$ or $5.875 - 12$	N	2A	:	÷	:	:	:	÷	÷	÷	2B	÷	÷	:	5.8299	0.0090	:
$5\frac{7}{8} - 16$ or $5.875 - 16$	N	3A	:	:	:	÷	:	5.8297	0.0047	:	3B	÷	5.8158	:	5.8405	0.0061	:
6 – 8 or 6.000 – 8	N	2A 3A	0.0031	5.9969	5.9819	: :	5.9157	5.9055 5.9111	0.0077	: :	2B 3B	: :	: :	: :	5.9321 5.9287	0.0131	: :
6 – 16 or 6.000 – 16	NN	3A	÷	i i	:	\vdots	:	:	:	:	3B	\vdots	5.9408	:	:	:	:

GENERAL NOTES:

(a) The limits listed in this Table are no longer considered standard and are for information only. They have been replaced because of calculation errors and a change in rounding methods.

NOTE:

(1) See para. 5.2.1 for Functional Diameter.

⁽b) Product threads, gages, or tooling that conform or were generated using limits listed in this Table should be considered acceptable. When replacing, the new limits should be used.(c) It is recommended that all users prepare for the eventual adoption of only the values in Table 2.

Table E-2 Limits as Listed in Table D-1 (Formerly 3B) Prior to ASME B1.1-2003 Edition

					<u>X</u>	External							Internal	lal		
Nominal Size and	Series			Major Diameter	iameter	Pitcl Func	Pitch Diameter and Functional Diameter [Note (1)]	r and meter	UNR Minor		Minor Diameter	ameter	Pitcl Func	Pitch Diameter and Functional Diameter [Note (1)]		Major
Threads/in.	Designation	Class	Allowance	Мах.	Min.	Мах.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Мах.	Min.	Max.	Tolerance	Min.
10 – 28 or 0.190 – 28	SNN	2A	:	:	÷	:	÷	:	0.1464	2B	:	÷	:	:	:	÷
10 – 36 or 0.190 – 36	NNS	2A	:	÷	÷	÷	:	:	:	2B	:	0.166	:	÷	:	÷
10 – 40 or 0.190 – 40	SNN	2A	÷	÷	÷	÷	÷	•	0.1592	2B	÷	÷	÷	÷	÷	÷
10 – 48 or 0.190 – 48	SNN	2A	:	:	÷	÷	÷	:	:	2B	÷	÷	÷	÷	:	÷
10 – 56 or 0.190 – 56	NNS	2A	:	÷	÷	÷	:	÷	0.1681	2B	÷	÷	÷	÷	:	÷
12 – 36 or 0.216 – 36	SNN	2A	:	÷	÷	÷	÷	÷	0.1821	2B	÷	0.192	:	÷	:	÷
12 – 40 or 0.216 – 40	NNS	2A	:	÷	÷	÷	:	:	0.1835	2B	:	÷	:	0.2035	0.0037	÷
12 – 48 or 0.216 – 48	NNS	2A	:	÷	÷	÷	0.1991	0.0026	:	2B	:	÷	:	0.2059	0.0034	÷
12 – 56 or 0.216 – 56	NNS	2A	0.0007	0.2153	0.2112	0.2037	0.2012	:	0.1941	2B	:	÷	÷	0.2076	0.0032	÷
$\frac{1}{4} - 24$ or $0.250 - 24$	SNN	2A	:	÷	÷	÷	÷	÷	÷	2B	÷	÷	:	÷	:	÷
$\frac{1}{4} - 27$ or $0.250 - 27$	NNS	2A	:	:	÷	÷	÷	:	:	2B	:	÷	:	÷	:	÷
$\frac{1}{4}$ – 36 or 0.250 – 36	NNS	2A	:	÷	÷	:	:	:	0.2161	2B	:	0.226	÷	÷	:	÷
$\frac{1}{4}$ – 40 or 0.250 – 40	NNS	2A	:	÷	÷	÷	÷	:	:	2B	:	÷	:	÷	:	÷
$\frac{1}{4} - 48$ or $0.250 - 48$	NNS	2A	:	÷	÷	÷	÷	:	0.2243	2B	:	:	:	÷	:	÷
$\frac{1}{4}$ – 56 or 0.250 – 56	NNS	2A	:	:	÷	÷	÷	:	0.2280	2B	:	÷	:	÷	:	÷
$^{5}/_{16} - 27$ or $0.3125 - 27$	NNS	2A	0.0010	0.3115	0.3048	0.2874	0.2839	0.0035	0.2674	2B	:	:	:	0.2929	0.0045	÷
$^{5}/_{16} - 36$ or $0.3125 - 36$	NNS	2A	:	:	÷	÷	:	:	÷	2B	÷	÷	:	0.2985	0.0040	÷
$^{5}/_{16} - 40$ or $0.3125 - 40$	NNS	2A	:	:	÷	÷	0.2925	0.0029	÷	2B	÷	÷	:	0.3001	0.0038	÷
$^{5}/_{16}$ – 48 or 0.3125 – 48	NNS	2A	:	:	÷	÷	0.2955	0.0027	÷	2B	÷	÷	:	÷	:	÷
$\frac{3}{8}$ – 18 or 0.375 – 18	NNS	2A	:	:	÷	÷	:	:	0.3076	2B	÷	÷	:	÷	:	÷
$\frac{3}{8}$ – 27 or 0.375 – 27	NNS	2A	:	:	÷	:	:	:	:	2B	:	÷	:	÷	:	÷

Table E-2 Limits as Listed in Table D-1 (Formerly 3B) Prior to ASME B1.1-2003 Edition (Cont'd)

					Ex	External							Internal	nal		
;				Major Diameter	meter.	Pitch Func	Pitch Diameter and Functional Diameter	r and meter	UNR Minor		Minor Diameter	meter	Pitc Fun	Pitch Diameter and Functional Diameter		Major
Nominal Size and Threads/in.	Series Designation	Class	Allowance	Max.	Min.	Max.	Min.	Tolerance	Diameter, Max. (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Diameter, Min.
³ / ₈ – 36 or 0.375 – 36	SNO	2A	:	:	:	:	:	:	÷	2B	:	:	:	:	:	:
$\frac{3}{8}$ - 40 or 0.375 - 40	NNS	2A	÷	÷	:	÷	÷	÷	÷	2B	:	:	÷	÷	÷	÷
0.390 - 27 or 0.390 - 27	NNS	2A	÷	:	:	:	:	:	÷	2B	:	:	:	÷	÷	:
7/16 - 18 or $0.4375 - 18$	NNS	2A	÷	:	:	:	0.3958	0.0043	0.3701	2B	:	:	÷	0.4070	0.0056	:
7/16 - 24 or $0.4375 - 24$	NNS	2A	0.0011	0.4364	0.4292	0.4093	0.4055	0.0038	0.3868	2B	:	:	÷	0.4153	0.0049	:
$^{7}/_{16} - 27$ or $0.4375 - 27$	NNS	2A	:	:	:	:	0.4087	0.0036	÷	2B	:	:	:	0.4181	0.0047	:
$\frac{1}{2} - 12$ or $0.500 - 12$	NNS	2A 3A	: :	: :	: :	: :	: :	: :	: :	2B 3B	: :	0.422	: :	: :	: :	: :
$\frac{1}{2} - 14$ or $0.500 - 14$	NNS	2A	÷	:	:	:	:	:	0.4135	2B	:	:	÷	:	÷	:
$\frac{1}{2} - 18$ or $0.500 - 18$	NNS	2A	÷	÷	÷	÷	÷	:	0.4326	2B	:	:	:	÷	÷	÷
$\frac{1}{2}$ – 24 or 0.500 – 24	NNS	2A	÷	÷	÷	÷	÷	:	÷	2B	:	:	:	÷	÷	÷
$\frac{1}{2}$ – 27 or 0.500 – 27	SNN	2A	÷	÷	:	:	:	:	÷	2B	:	:	:	:	÷	÷
$\%_{16} - 14$ or $0.5625 - 14$	SNO	2A	÷	÷	:	:	:	:	0.4760	2B	÷	:	:	:	÷	÷
$\%_{16} - 27$ or $0.5625 - 27$	NNS	2A	÷	÷	÷	:	0.5336	0.0037	÷	2B	÷	:	:	0.5432	0.0048	÷
$\frac{5}{8}$ – 14 or 0.625 – 14	SNN	2A	÷	÷	:	:	:	:	0.5385	2B	:	0.564	:	:	÷	÷
$\frac{5}{8}$ – 27 or 0.625 – 27	SNO	2A	÷	÷	:	:	:	:	÷	2B	÷	:	:	:	÷	÷
$\frac{3}{4} - 14$ or $0.750 - 14$	SNO	2A	÷	÷	:	:	:	:	0.6635	2B	÷	:	:	:	÷	÷
$\frac{3}{4} - 18$ or $0.750 - 18$	SNO	2A	÷	÷	:	:	:	:	0.6825	2B	÷	:	:	:	÷	÷
$\frac{3}{4}$ – 24 or 0.750 – 24	NNS	2A	÷	÷	:	:	:	:	÷	2B	:	:	:	÷	÷	÷
$\frac{3}{4}$ – 27 or 0.750 – 27	NNS	2A	÷	÷	:	:	:	:	÷	2B	:	:	:	÷	÷	÷
$\frac{7}{8} - 10 \text{ or } 0.875 - 10$	NNS	2A	÷	÷	:	:	0.8022	090000	0.7542	2B	:	:	:	0.8178	0.0078	÷

Table E-2 Limits as Listed in Table D-1 (Formerly 3B) Prior to ASME B1.1-2003 Edition (Cont'd)

						. .	•									
					<u> </u>	External							Internal	ıal		
Nominal Size and	Series			Major Diameter	ameter	Pitc. Func	Pitch Diameter and Functional Diameter [Note (1)]	r and meter 	UNR Minor Diameter		Minor Diameter	iameter	Pitc. Func	Pitch Diameter and Functional Diameter [Note (1)]		Major Diameter
Threads/in.	Designation	Class	Allowance	Max.	Min.	Мах.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Мах.	Min.	Мах.	Tolerance	Min.
$\frac{7}{8} - 18$ or $0.875 - 18$	SNN	2A	÷	:	÷	:	0.8329	0.0046	0.8075	2B	÷	÷	:	0.8449	0900.0	:
$\frac{7}{8}$ – 24 or 0.875 – 24	SNN	2A	÷	:	÷	:	0.8426	0.0041	:	2B	÷	÷	:	0.8532	0.0052	:
$\frac{7}{8} - 27$ or $0.875 - 27$	SNN	2A	÷	:	÷	÷	0.8458	0.0039	:	2B	:	÷	•	0.8560	0.0051	÷
1 – 10 or 1.000 – 10	SNN	2A	÷	÷	÷	:	÷	÷	0.8792	2B	÷	÷	:	÷	÷	:
1 – 18 or 1.000 – 18	NNS	2A	÷	:	:	:	÷	÷	0.9325	2B	:	÷	÷	÷	:	:
1 – 24 or 1.000 – 24	SNN	2A	÷	:	:	÷	÷	÷	:	2B	:	÷	:	÷	÷	÷
1 – 27 or 1.000 – 27	SNN	2A	÷	:	÷	:	÷	:	:	2B	÷	÷	:	÷	÷	:
$1\frac{1}{8} - 10$ or $1.125 - 10$	NNS	2A	0.0018	1.1232	1.1103	1.0582	1.0520	÷	1.0042	2B	:	÷	÷	1.0680	0.0080	:
$1\frac{1}{8} - 14$ or $1.125 - 14$	NNS	2A	÷	:	:	:	÷	÷	1.0384	2B	÷	1.064	:	÷	÷	÷
$1\frac{1}{8} - 24$ or $1.125 - 24$	SNN	2A	÷	:	:	÷	1.0924	0.0042	1.0742	2B	:	÷	:	1.1034	0.0055	÷
$1^{1}\!/_{\!4}-10$ or $1.250-10$	SNN	2A	÷	÷	:	÷	÷	÷	1.1291	2B	÷	÷	:	÷	÷	÷
$1^{1}\!/_{\!4}-14$ or 1.250 -14	SNN	2A	÷	÷	:	:	÷	÷	1.1634	2B	÷	÷	:	÷	÷	÷
$1^{1}\!/_{4} - 24$ or $1.250 - 24$	SNN	2A	÷	÷	÷	:	÷	:	:	2B	÷	÷	:	÷	÷	:
$1\frac{3}{8} - 10$ or $1.375 - 10$	SNN	2A	÷	÷	:	÷	÷	÷	1.2541	2B	÷	÷	:	÷	÷	÷
$1\frac{3}{8} - 14$ or $1.375 - 14$	SNN	2A	÷	÷	:	:	1.3216	0.0054	1.2884	2B	÷	1.314	:	1.3356	0.0070	÷
$1\frac{3}{8} - 24$ or $1.375 - 24$	SNN	2A	÷	÷	:	:	1.3423	0.0043	:	2B	÷	÷	:	1.3535	0.0056	÷
$1^{1}\!/_{\!\!2}-10$ or $1.500-10$	SNN	2A	÷	÷	:	:	÷	÷	1.3791	2B	÷	÷	:	÷	÷	÷
$1^{1}\!/_{\!\!2}-14$ or $1.500-14$	SNN	2A	÷	÷	:	:	÷	÷	1.4133	2B	÷	÷	:	÷	÷	÷
$1^{1}\!/_{\!\!2} - 24$ or $1.500 - 24$	SNN	2A	÷	÷	:	:	÷	÷	:	2B	÷	÷	:	÷	÷	÷
$1\frac{5}{8} - 10$ or $1.625 - 10$	SNN	2A	÷	÷	:	:	÷	÷	1.5041	2B	÷	÷	:	÷	÷	÷
$1\frac{5}{8} - 14$ or $1.625 - 14$	NNS	2A	÷	:	:	:	÷	÷	1.5383	2B	÷	1.564	:	÷	:	÷

Table E-2 Limits as Listed in Table D-1 (Formerly 3B) Prior to ASME B1.1-2003 Edition (Cont'd)

					Ē	External							Internal	ıal		
						Pitc. Func	Pitch Diameter and Functional Diameter	r and meter	UNR Minor				Pitcl Func	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and	Series	Clace	Allowand	Major Diameter	ameter	> 0	[Note (1)]	Tolerance	Diameter,	Jacc	Minor Diameter	iameter	Ä	[Note (1)]	Tolerance	Diameter,
		- 1							(100)							
$1\frac{7}{8} - 24$ or $1.625 - 24$	ONS	ZA	:	:	:	•	1.5922	0.0044	:	28	:	:	:	:	:	:
$1\frac{3}{4} - 10 \text{ or } 1.750 - 10$	NNS	2A	:	:	÷	:	:	÷	1.6291	2B	:	÷	:	:	÷	÷
$1^{3}/_{4} - 14$ or $1.750 - 14$	SNN	2A	:	÷	÷	÷	÷	÷	÷	2B	:	÷	:	:	:	:
$1\frac{3}{4} - 18 \text{ or } 1.750 - 18$	SNN	2A	:	:	÷	÷	÷	÷	1.6824	2B	:	÷	÷	÷	÷	:
$1\frac{7}{8} - 10$ or $1.875 - 10$	NNS	2A	0.0019	1.8731	1.8602	1.8081	1.8016	÷	1.7534	2B	:	:	:	1.8184	0.0084	:
17/8 - 14 or $1.875 - 14$	NNS	2A	÷	:	:	:	÷	÷	1.7883	2B	:	1.814	:	÷	÷	:
$1\frac{7}{8} - 18$ or $1.875 - 18$	SNN	2A	:	:	:	÷	÷	÷	1.8074	2B	÷	÷	:	÷	÷	:
2 – 10 or 2.000 – 10	SNN	2A	:	÷	:	÷	÷	÷	1.8790	2B	÷	÷	:	÷	÷	:
2 – 14 or 2.000 – 14	SNN	2A	:	÷	÷	÷	÷	÷	1.9133	2B	:	÷	÷	÷	÷	:
2 – 18 or 2.000 – 18	NNS	2A	÷	:	:	:	÷	÷	1.9324	2B	:	:	:	:	:	÷
$2^{1/16}_{16} - 16$ or $2.0625 - 16$	NNS	2A 3A	: :	: :	: :	: :	: :	: :	1.9864	2B 3B	: :	2.003	: :	2.0271	0.0052	: :
$2^{3}/_{16} - 16$ or $2.1875 - 16$	NNS	2A 3A	: :	: :	: :	: :	: :	: :	2.1154 2.1130	2B 3B	: :	2.128	: :	2.1539	0.0070	: :
$2^{1}/_{4} - 10$ or $2.250 - 10$	SNN	2A	:	÷	÷	÷	2.1765	0.0065	2.1290	2B	:	÷	÷	2.1935	0.0085	:
$2^{1/4}_{4} - 14$ or $2.250 - 14$	SNN	2A	:	÷	÷	÷	2.1962	0.0057	2.1633	2B	÷	÷	÷	2.2110	0.0074	÷
$2^{1}/_{4} - 18$ or $2.250 - 18$	SNN	2A	0.0015	2.2485	2.2398	2.2124	2.2073	0.0051	2.1824	2B	÷	÷	÷	2.2206	0.0067	÷
$2\frac{5}{16} - 16$ or $2.3125 - 16$	NNS	2A 3A	0.0017	2.3108	2.3014	2.2702	2.2647	: :	2.2363	2B 3B	: :	2.253	: :	2.2791	0.0072	: :
$2^{7}/_{16} - 16$ or $2.4375 - 16$	NNS	2A 3A	: :	: :	: :	: :	: :	: :	2.3613	2B 3B	: :	2.378	: :	: :	: :	: :
$2^{1}/_{2} - 10$ or $2.500 - 10$	NNS	2A	:	÷	:	:	÷	÷	2.3790	2B	:	÷	:	:	÷	:
$2^{1}/_{2} - 14$ or $2.500 - 14$	SNN	2A	:	:	:	÷	÷	÷	2.4133	2B	÷	:	:	:	:	:

Table E-2 Limits as Listed in Table D-1 (Formerly 3B) Prior to ASME B1.1-2003 Edition (Cont'd)

					۵	External							Internal	nal		
Nominal Size and	Series			Major Diameter	ameter	Pitc Func	Pitch Diameter and Functional Diameter [Note (1)]	r and meter]	UNR Minor		Minor Diameter	ameter	Pitc Fun	Pitch Diameter and Functional Diameter [Note (1)]		Major
Threads/in.	Designation	Class	Allowance	Max.	Min.	Max.	Min.	Tolerance	Max. (Ref.)	Class	Min.	Max.	Min.	Max.	Tolerance	Min.
$2^{1}/_{2} - 18$ or $2.500 - 18$	SNN	2A	÷	:	:	:	÷	÷	2.4323	2B	:	÷	:	:	:	:
$2^{3}/_{4} - 10$ or $2.750 - 10$	NNS	2A	÷	÷	÷	:	2.6763	0.0067	2.6290	2B	÷	÷	÷	2.6837	0.0087	÷
$2^{3}/_{4} - 14$ or $2.750 - 14$	SNN	2A	0.0017	2.7483	2.7380	2.7019	2.6961	0.0058	2.6633	2B	÷	÷	÷	2.7112	0.0076	÷
$2^{3}/_{4} - 18$ or $2.750 - 18$	SNN	2A	÷	÷	÷	:	÷	÷	2.6823	2B	:	÷	:	2.7208	0.0069	÷
3 – 10 or 3.000 – 10	SNN	2A	÷	÷	:	:	÷	Ë	2.8790	2B	:	Ë	:	÷	:	÷
3 – 14 or 3.000 – 14	SNN	2A	÷	÷	:	:	÷	Ë	2.9132	2B	:	Ë	:	÷	:	÷
3 – 18 or 3.000 – 18	NNS	2A	÷	÷	÷	:	:	÷	2.9323	2B	÷	÷	÷	÷	:	÷
$3\frac{1}{4} - 10 \text{ or } 3.250 - 10$	NNS	2A	0.0020	3.2480	3.2351	3.1830	3.1762	0.0068	3.1290	2B	:	÷	:	÷	:	÷
$3\frac{1}{4} - 14$ or $3.250 - 14$	NNS	2A	:	÷	:	:	3.1959	0.0059	3.1632	2B	:	÷	:	3.2113	0.0077	:
$3\frac{1}{4} - 18 \text{ or } 3.250 - 18$	NNS	2A	:	÷	:	:	3.2069	0.0054	3.1823	2B	÷	÷	:	3.2209	0.0070	÷
$3\frac{1}{2} - 10$ or $3.500 - 10$	SNN	2A	÷	:	÷	÷	:	÷	3.3789	2B	:	÷	:	÷	:	÷
$3\frac{1}{2} - 14$ or $3.500 - 14$	NNS	2A	÷	÷	÷	:	:	÷	3.4132	2B	÷	÷	÷	÷	:	÷
$3\frac{1}{2} - 18$ or $3.500 - 18$	SNN	2A	÷	:	÷	÷	:	÷	3.4322	2B	:	÷	:	÷	:	÷
$3\frac{3}{4} - 10 \text{ or } 3.750 - 10$	NNS	2A	÷	÷	÷	:	3.6760	0.0069	3.6289	2B	÷	÷	÷	3.6940	0.0000	÷
$3\frac{3}{4} - 14$ or $3.750 - 14$	SNN	2A	÷	:	÷	÷	:	÷	3.6632	2B	:	÷	:	÷	:	÷
$3\frac{3}{4} - 18 \text{ or } 3.750 - 18$	SNN	2A	÷	:	÷	:	3.7067	0.0055	3.6822	2B	:	÷	:	÷	:	÷
4 – 10 or 4.000 – 10	SNN	2A	÷	:	÷	:	:	÷	3.8768	2B	:	÷	:	÷	:	÷
4 – 14 or 4.000 – 14	SNN	2A	:	:	:	:	÷	÷	3.9132	2B	:	÷	:	÷	:	÷
$4\frac{1}{4} - 10$ or $4.250 - 10$	SNN	2A	:	:	:	:	4.1759	0.0070	4.1289	2B	:	÷	:	4.1941	0.0091	÷
$4^{1}/_{4} - 14$ or $4.250 - 14$	SNN	2A	0.0018	4.2482	4.2379	4.2018	4.1956	÷	4.1632	2B	:	÷	:	4.2116	0.0080	÷
$4^{1}/_{2} - 10$ or $4.500 - 10$	SNN	2A	÷	÷	÷	÷	4.4259	0.0070	4.3789	2B	:	÷	÷	4.4441	0.0091	÷

Table E-2 Limits as Listed in Table D-1 (Formerly 3B) Prior to ASME B1.1-2003 Edition (Cont'd)

					E	External							Internal	ıal		Ī
						Pitch Func	Pitch Diameter and Functional Diameter	r and meter	UNR Minor				Pitc	Pitch Diameter and Functional Diameter	r and meter	Major
Nominal Size and Threads/in.	Series Designation	Class	Class Allowance	Major Diameter	iameter Min.	Max.	[Note (1)] Min.] Tolerance	Diameter, Max. (Ref.)	Class	Minor Diameter Min. Max.	ameter Max.	Min	[Note (1)]	Tolerance	Diameter, Min.
$4\frac{1}{2} - 14$ or $4.500 - 14$	SNN	2A	0.0018	4.4982	4.4879	4.4518	4.4456	0.0062	4.4132	2B	:	:	:	4.4616	0.0080	:
$4^3/_4 - 10$ or $4.750 - 10$	NNS	2A	÷	:	:	÷	÷	÷	4.6288	2B	÷	÷	÷	4.6944	0.0094	:
$4^{3}/_{4} - 14$ or $4.750 - 14$	SNO	2A	:	:	÷	÷	4.6953	0.0064	4.6631	2B	÷	÷	÷	4.7119	0.0083	:
5 – 10 or 5.000 – 10	NNS	2A	:	:	:	÷	÷	:	4.8788	2B	÷	÷	÷	÷	:	÷
5 – 14 or 5.000 – 14	NNS	2A	:	:	÷	÷	4.9453	:	4.9131	2B	÷	÷	÷	÷	:	÷
$5\frac{1}{4} - 10$ or $5.250 - 10$	NNS	2A	:	:	÷	÷	5.1756	0.0072	5.1288	2B	÷	÷	÷	÷	÷	:
$5\frac{1}{4} - 14$ or $5.250 - 14$	NNS	2A	:	:	÷	÷	÷	÷	5.1631	2B	÷	÷	:	÷	÷	÷
$5\frac{1}{2} - 10$ or $5.500 - 10$	NNS	2A	:	:	÷	÷	5.4256	0.0072	5.3788	2B	÷	÷	÷	5.4444	0.0094	:
$5\frac{1}{2} - 14$ or $5.500 - 14$	NNS	2A	:	:	÷	÷	÷	÷	5.4131	2B	÷	÷	:	5.4619	0.0083	:
$5\frac{3}{4} - 10 \text{ or } 5.750 - 10$	NNS	2A	:	:	÷	÷	5.6754	0.0074	5.6288	2B	÷	÷	:	5.6946	9600.0	:
$5\frac{3}{4} - 14$ or $5.750 - 14$	SNO	2A	0.0020	5.7480	5.7377	5.7016	5.6951	:	:	2B	÷	÷	÷	5.7121	0.0085	:
6 – 10 or 6.000 – 10	NNS	2A	:	:	:	÷	÷	÷	5.8788	2B	÷	÷	:	:	÷	÷
6 – 14 or 6.000 – 14	NNS	2A	:	:	i	÷	÷	÷	5.9130	2B	÷	÷	i	:	:	:
GENERAL NOTES.																

GENERAL NOTES:

⁽a) The limits listed in this Table are no longer considered standard and are for information only. They have been replaced because of calculation errors and a change in rounding methods.

⁽b) Product threads, gages, or tooling that conform or were generated using limits listed in this Table should be considered acceptable. When replacing, the new limits should be used.(c) It is recommended that all users prepare for the eventual adoption of only the values in Table D-1.

⁽¹⁾ See para. 5.2.1 for Functional Diameter.

OTHER STANDARDS FOR SCREW THREADS

Unified Inch Screw Threads (UN and UNR Thread Form)	B1.1-2003
Gages and Gaging for Unified Inch Screw Threads	
Screw Thread Gaging Systems for Dimensional Acceptability —	
Inch and Metric Screw Threads (UN, UNR, UNJ, M, and MJ)	B1.3M-1992 (R2001)
Acme Screw Threads	
Nomenclature, Definitions, and Letter Symbols for Screw Threads	B1.7M-1984 (R2001)
Stub Acme Screw Threads	B1.8-1988 (R2001)
Buttress Inch Screw Threads 7°/45° Form With 0.6 Pitch Basic Height of Thread Engagement	B1.9-1973 (R2001)
Unified Miniature Screw Threads	B1.10M-2004
Microscope Objective Thread	B1.11-1958 (R2001)
Class 5 Interference-Fit Thread	B1.12-1987t(R1998)
Metric Screw Threads — M Profile	B1.13M-2001
Unified Inch Screw Threads (UNJ Thread Form)	B1.15-1995
Gages and Gaging for Metric M Screw Threads	B1.16M-1984 (R2001)
Pipe Threads, General Purpose (Inch)	B1.20.1-1983 (R2001)
Dryseal Pipe Threads (Inch)	
Gaging for Dryseal Pipe Threads (Inch)	B1.20.5-1991 (R1998)
Hose Coupling Screw Threads (Inch)	B1.20.7-1991 (R1998)
Metric Screw Threads: MJ Profile	
Gages and Gaging for MJ Series Metric Screw Threads	B1.22M-1985 (R2001)
Screw Threads — Standard Practice for Calculating and Rounding Dimensions	B1.30-2002

The ASME Publications Catalog shows a complete list of all the Standards published by the Society. For a complimentary catalog, or the latest information about our publications, call 1-800-THE-ASME (1-800-843-2763).

ASME Services

ASME is committed to developing and delivering technical information. At ASME's Information Central, we make every effort to answer your questions and expedite your orders. Our representatives are ready to assist you in the following areas:

ASME Press
Codes & Standards
Credit Card Orders
IMechE Publications
Meetings & Conferences
Member Dues Status

Member Services & Benefits Other ASME Programs Payment Inquiries Professional Development Short Courses Publications Public Information
Self-Study Courses
Shipping Information
Subscriptions/Journals/Magazines
Symposia Volumes
Technical Papers

How can you reach us? It's easier than ever!

There are four options for making inquiries* or placing orders. Simply mail, phone, fax, or E-mail us and an Information Central representative will handle your request.

Mail
ASME
22 Law Drive, Box 2900
Fairfield, New Jersey
07007-2900

US & Canada: 800-THE-ASME (800-843-2763)
Mexico: 95-800-THE-ASME

(95-800-843-2763) Universal: 973-882-1167

Call Toll Free

^{*} Information Central staff are not permitted to answer inquiries about the technical content of this code or standard. Information as to whether or not technical inquiries are issued to this code or standard is shown on the copyright page. All technical inquiries must be submitted in writing to the staff secretary. Additional procedures for inquiries may be listed within.

ASME B1.1-2003

M02803