Greedy Algorithms: No fixed recipe-choice is very much foroblem dependent-unlike DFC/DP. Runtime analysis is typically easy. Prost of Correctnes- Highly Non-trivial! Example I: Maximum Non-overlapping Set of Intervals
1/p:
Given n itervals (S ₁ , f ₁), (S ₂ , f ₂), (S _n , f _n). O/P: Max cardinality subset of non-overlapping intervals.
Afferp I: Pick the interval with nin. Start time Afferp I: Pick the interval with nin. Start time Remove incompatible ones - continue till presible-
Bad Example: HIHHH
Attempt 2: Pick greedily by non-decreasing order of "length" of intervals.

end time (They are the same: the sets are compostible) Suppose: OPT = { j, j2, j3, , jm }; m>k $ALG = \{j'_1, j'_2, j'_3, ..., j'k\}$ Consider the first r jobe in both sets. Claim $f(j_r) \leq f(j_r)$. Pf:- by induction on r.

Base case: $\underline{r=1}$; $f(j'_1) \leq f(j_1)$ by greedy choice. Suppose hypothesies fine for r. $f(j'_{Y+1}), f(j_{Y+1})$ _____f(jr)_____ f(j')Suppose $f(j'_{r+1}) > f(j_{r+1})$. But the j_{r+1} is compatible with j'_{r} , since $f(j'_{r}) < f(j_{r}) < f(j_{r})$, by induction hypothesis. => Greedy should have ficked Jr+1 instead. [2] Proof of Theorem: By contradiction. Suppose m>k. => But greedy Stopped at j'k Consider jet the (k+1)th job in OPT.

We claim that jets is compatible with Alf. This is because $S(j_{k+1}) > f(j_k) > f(j_k)$ (by the above claim) => Ale should have ficked j'kt, as well. Example 1: Scheduling to Minimize Completion Time John: 12 13 Syppoe:-Completion time of job: $C(j_i) = 2$ $C(j_2) = 3$ C(13) = 6 $C(j_1) + C(j_2) + C(j_3) = 11$ for this schedule. 1/P: Set of n jobs $\{j_1, j_2, ..., j_n\}$ OSP: Schedule to Minimize Sum of Weighted Completion Times. procentes 2, 1, 5 1, 6 1 3, 15

procentes 2 2, 1, 5 1, 6 1 3, 15

in size 2, 1, 5 1, 6 1 3, 15

Pf: (Exchange Argument). Soyapose 7 an offinal schedule. Claim. Fa pair of & joke j' and j' in opt such that j' is scheduled before j'', but $\frac{\mathcal{W}_{j'}}{\frac{1}{2}} < \frac{\mathcal{W}_{j''}}{\frac{1}{2}}$