Bayesian occupancy modeling with acoustic data in spOccupancy

Jeff Doser
Michigan State University
Cornell Acoustic Methods
Working Group
July 19, 2022

Overview

Overview

- Occupancy modeling in passive acoustics
- Overview of spatial autocorrelation
- spOccupancy syntax and example
 - Single-species modeling
 - · Multi-species modeling

https://github.com/doserjef/acoustic-spOccupancy-22

Motivation

- Goal: understand occupancy patterns/dynamics across space and/or time of one (or more) species
 - More broadly: where do species occur in both space and how does this change over time?
 - Relevant for ecological theory, conservation, management, etc.
- Two important complexities:
 - 1. Imperfect detection
 - 2. Spatial autocorrelation

Imperfect detection in passive acoustics

More Resources

Data for occupancy modeling

Detection-nondetection matrix

Site	Survey 1	Survey 2	Survey 3	Survey 4
1	1	0	0	1
2	0	0	0	0
3	1	1	0	NA
4	1	NA	0	NA
5	0	1	1	1
6	0	0	0	1

- Basic idea: obtain repeated surveys at a given site to account for imperfect detection
- ARUs -> easy to obtain replicate surveys (i.e., multiple recordings per site)
- Assume no false positives

Occupancy model

Occupancy (ecological) sub-model

$$z_j \sim \text{Bernoulli}(\psi_j)$$

 $\text{logit}(\psi_j) = \beta_1 + \beta_2 \cdot X_{2,j} + \dots + \beta_r \cdot X_{r,j}$

Detection (observation) sub-model

$$y_{j,k} \sim \text{Bernoulli}(p_{j,k} \cdot z_j)$$

 $\text{logit}(p_{j,k}) = \alpha_1 + \alpha_2 \cdot V_{2,j,k} + \dots + \alpha_r \cdot V_{r,j,k}$

Spatial autocorrelation

- Things closer together in space tend to be more similar than things farther apart
- What leads to spatial autocorrelation in species distributions?
 - **Environmental drivers**
 - Biotic factors (e.g., dispersal, conspecific attraction)
- Residual spatial autocorrelation: spatial correlation in estimates after including spatial covariates
 - Account for using spatial random effects

Single-season spatial occupancy model

Occupancy (ecological) sub-model

$$z_j \sim \text{Bernoulli}(\psi_j)$$

 $\text{logit}(\psi_j) = \beta_1 + \beta_2 \cdot X_{2,j} + \dots + \beta_r \cdot X_{r,j} + w_j$
 $w_j \sim \text{Normal}(0, \Sigma)$

Detection (observation) sub-model

$$y_{k,j} \sim \text{Bernoulli}(p_{j,k} \cdot z_j)$$

 $\text{logit}(p_{j,k}) = \alpha_1 + \alpha_2 \cdot V_{2,j,k} + \dots + \beta_r \cdot V_{r,j,k}$

spOccupancy

- Designed to fit Bayesian single-species and multispecies occupancy models
- Options to accommodate spatial autocorrelation (efficiently!)
- Workflow completely in R (no Bayesian programming languages necessary)
- Additional functionality:
 - Data integration
 - Species correlations
 - Multi-season (spatio-temporal) models (hot off the press!)

Bayesian computation: MCMC

Overview

- Markov Chain Monte Carlo (MCMC) sampling
 - Produces a sequence of dependent, random numbers
 - Eventually converges towards the posterior distribution
 - Posterior distribution: what we use to get parameter estimates, get credible intervals, etc.

More Resources

Bayesian computation: MCMC

- What do you need to specify?
 - Priors
 - Initial values
 - Number of samples/iterations
 - Burn-in: initial part of the chain that we throw away
 - Thinning rate: how often do you want to save a sample?
- How to determine convergence?
 - Run multiple chains with different starting values
 - If the chains eventually look the same, you can assume convergence

Benefits of Bayesian analysis

- 1. Interpretation
- 2. More flexible to accommodate spatial autocorrelation
- 3. Easy to extend to multi-species frameworks/integrate multiple data sources
- 4. Uncertainty
- 5. Ideal for complex data (e.g., highly correlated, multivariate)
- 6. Readily accommodate false positives from automated algorithms
 - ∴ Chambert et al. 2018, Doser et al. 2021, Rhinehart et al. 2022

Example data set: tropical amphibians

Ecological Applications, 28(6), 2018, pp. 1554–1564 © 2018 by the Ecological Society of America

- Data from Ribeiro Jr. Et al (2018)
 Eco Apps
- 50 sites along a gradient of landscape characteristics
- 3 ARU recordings at each site (repeat surveys/visits)
- 36 amphibian species analyzed
- Focus on Crossodactylus caramaschii

Effects of agriculture and topography on tropical amphibian species and communities

José Wagner Ribeiro, Jr., ^{1,2,4} Tadeu Siqueira, ¹ Gabriel Lourenço Brejão, ³ and Elise F. Zipkin²

¹Institute of Biosciences, São Paulo State University (Unesp), Avenida 24A 1515, Rio Claro, São Paulo 13506-900 Brazil

²Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, East Lansing, Michigan 48824 USA

³Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto, São Paulo 15054-000 Brazil

Ribeiro Jr. et al. (2018) Eco Apps

spOccupancy workflow

- 1. Data simulation/prep
- 2. Model fitting
- 3. Model validation
- 4. Model comparison
- 5. Posterior summaries
- 6. Prediction

Switch to RStudio

spOccupancy resources

- Package Website
- GitHub development page
- MEE intro paper
- arXiv preprint
- 💟 @jeffdoser18
- Email: doserjef@msu.edu

Joint species distribution models with imperfect detection for high-dimensional spatial data

Jeffrey W. Doser^{1, 2}, Andrew O. Finley^{2, 3}, Sudipto Banerjee⁴

Overview

Andy Finley

Elise Zipkin

Marc Kéry

Sudipto Banerjee

Data: José Wagner Ribeiro Jr.

Thank you!