Real Analysis Qualifying Exam Fall 1992

In what follows (X, \mathcal{A}, μ) is an arbitrary measure space and λ is Lebesgue outer measure on \mathbb{R} .

- **1.** (a) Find a necessary and sufficient condition that $\alpha, \beta \in \mathbb{C}$ satisfy $|\alpha + \beta| = |\alpha| + |\beta|$.
 - (b) Find a necessary and sufficient condition that $f, g \in L_1(\mu)$ satisfy:

$$\int |f+g|d\mu = \int |f|d\mu + \int |g|d\mu.$$

2. Suppose

$$\sum_{n=1}^{\infty} \mu(A_n) < \infty.$$

Show that

$$A = \{x : x \in A_n \text{ for infinitely many } n\}$$

has
$$\mu(A) = 0$$
.

- **3.** Let F be a subset of [0,1] that is not Lebesgue measureable.
 - (a) Is it possible that $\lambda(F) = 0$? Why?
 - (b) It is possible that $\lambda(F) = 1$? Why?
- **4.** Suppose f is continuous on [0,1]. Show that

Riemann
$$\int_0^1 f dx$$
 = Lebesgue $\int_0^1 f dx$.

- 5. Let ν be a finite measure that is absolutely continuous with respect to a measure μ that is regular. Prove that ν is regular.
- **6.** (a) Fix $\alpha > 0$. Show that it is impossible to construct a bounded, Lebesgue measureable function f such that

$$\int_0^1 |f - g| d\lambda > \alpha$$

for every Riemann integrable function g.

- (b) Can such a f be found if we take $\alpha = 0$? Why?
- 7. Let X, Y be topological spaces, each having a countable base for its topology. Let

$$\mathcal{B}(X) \times \mathcal{B}(Y)$$

be the smallest σ -algebra of subsets of $X \times Y$ that contains every $R \times S$ where $R \in \mathcal{B}(X)$ and $S \in \mathcal{B}(Y)$. Prove that

$$\mathcal{B}(X) \times \mathcal{B}(Y) = \mathcal{B}(X \times Y).$$

- **8.** State which types of convergence imply which other types of convergence. Prove all of your assertions and prove counterexamples.
 - (A) Pointwise a.e. convergence
 - (B) Convergence in L^1
 - (C) Convergence in measure