

<p>94-160888/20 D25 E14 INST FRANCAIS DU PETROLE 92.10.28 92FR-013080 (94.04.29) C07C 15/107, 25/00 Prodn of phenyl=alkane(s) - by using catalyst based on modified zeolite Y C94-073641 Addnl. Data: JOLY J, BOITIAUX J</p> <p>The simultaneous prodn. of 2-, 3-, 4-, 5- and 6-phenyl alkanes is effected by the alkylation of benzene using a 9-16C linear olefin in the presence of a solid zeolite catalyst.</p> <p>The catalyst comprises a matrix and a de-aluminised HY zeolite contg. hardly any extra-cellular Al, and having a Na content less than 0.25%, a cell parameter less than 24.55×10^{-10} m; and a BET surface area greater than 300 m²/g.</p> <p>The process is carried out at 1-10 MPa and a temp. less than 300°C, spatial velocity of 0.5-50 and a benzene: olefin(s) molar ratio of 1-20.</p> <p><u>USE</u> The phenyl-alkanes obtained are used in the form-</p>	<p>INSF 92-10.28 *FR 2697246-A</p> <p>D(11-A1B1, 11-D6) E(10-J2B3) N(6-B)</p> <p>ulation (after sulphonation) of bio-degradable detergents.</p> <p><u>ADVANTAGES</u> The present invention overcomes safety and disposal problems which are incurred in the usual techniques using HF- and AlCl₃-based catalyst. The latter techniques also involve difficulties in sepn. of catalyst from the reaction prods.</p> <p>The new catalyst are very active and resistant to deactivation, and they give selectivities similar to those obtd. in classical processes.</p> <p><u>OLEFIN REACTANT</u> 10-14C linear olefins are pref'd.</p> <p><u>PREFERRED CATALYST</u> The matrix is chosen from a clay, alumina, silica, magnesia, zirconia, oxides of titanium and boron, or a combination.</p> <p>The Si:Al ratio is 8-70 (more pref. 15-25). The zeolite content of the catalyst is 20-98% (more pref. 40-98%).</p>
	FR2697246-A+

<p>The cell parameter is between 24.39×10^{-10} m to 24.21×10^{-10} m, and the surface area is more than 450 m²/g.</p> <p><u>PREFERRED CONDITIONS</u> The prod. obtd. from the alkylation zone is fractionated into: (a) a first fraction contg. unconverted benzene, (b) a second fraction contg. at least one un-converted linear olefin; (c) a third fraction contg. phenyl-alkanes; and (d) a fourth fraction contg. at least one poly-alkyl benzene, which is re-cycled to the alkylation reactor.</p> <p>Pref. at least part of the first and second fractions is recycled to the reactor zone.</p> <p><u>EXAMPLE</u> A catalyst was prepared using as prim. material a zeolite NaY of formula $\text{NaAlO}_2(\text{SiO}_2)_{2.5}$ which had the following characteristics: global Si:Al atomic ratio = 2.5; crystal parameter (a_0) = 24.69×10^{-10} m; water vapour adsorption capacity (25°C) = 26%; surface area 880 m²/g.</p> <p>This was subjected to 5 exchanges with 2M NH₄NO₃ soln. at 95°C for 1.5 hr, to give a zeolite NH₄Y contg. 0.95% Na. This was stabilised in an oven at 770°C for 4 hrs. and then subjected to an acid treatment with 3N.HNO₃</p>	<p>(8 cm³/g of solid) at 95°C for 3 hrs. followed by a similar treatment, but with 0.5N.HNO₃.</p> <p>The zeolite obtd. contain 0.2% Na, had an Si:Al global atomic ratio of 28, crystalline parameter (a_0) equal to 24.24×10^{-10} m, surface area 770 m²/g, and water absorption capacity of 5%. It was formed into extrudates with 20% of alumina and calcined at 550°C. This was designated catalyst (B).</p> <p>A similar catalyst (but not conforming to the invention) was prepared from mordenite zeolite (catalyst A).</p> <p>The 2 catalysts were tested in the alkylation of benzene by 1-dodecene at 50°C, 4 MPa, LHSV 3 x vol. of catalyst, and benzene to 1-dodecene ratio of 5.5. The results are as follows:</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding-bottom: 2px;">Charge compsn. (%wt)</th><th style="text-align: center; padding-bottom: 2px;">Catalyst A</th><th style="text-align: center; padding-bottom: 2px;">Catalyst B</th></tr> </thead> <tbody> <tr> <td style="padding-top: 2px;">Benzene</td><td style="text-align: center; padding-top: 2px;">71.7</td><td style="text-align: center; padding-top: 2px;">72.3</td></tr> <tr> <td style="padding-top: 2px;">1-dodecene</td><td style="text-align: center; padding-top: 2px;">28.3</td><td style="text-align: center; padding-top: 2px;">27.7</td></tr> <tr> <td style="padding-top: 2px;"><u>Prod. compsn. % wt.</u></td><td></td><td></td></tr> <tr> <td style="padding-top: 2px;">2-phenylalkane</td><td style="text-align: center; padding-top: 2px;">77.34</td><td style="text-align: center; padding-top: 2px;">26.92</td></tr> <tr> <td style="padding-top: 2px;">3-phenylalkane</td><td style="text-align: center; padding-top: 2px;">10.83</td><td style="text-align: center; padding-top: 2px;">20</td></tr> </tbody> </table>	Charge compsn. (%wt)	Catalyst A	Catalyst B	Benzene	71.7	72.3	1-dodecene	28.3	27.7	<u>Prod. compsn. % wt.</u>			2-phenylalkane	77.34	26.92	3-phenylalkane	10.83	20
Charge compsn. (%wt)	Catalyst A	Catalyst B																	
Benzene	71.7	72.3																	
1-dodecene	28.3	27.7																	
<u>Prod. compsn. % wt.</u>																			
2-phenylalkane	77.34	26.92																	
3-phenylalkane	10.83	20																	
	FR2697246-A+/1																		

<p>94-160888/20</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tbody> <tr> <td style="width: 33%;">4-phenylalkane</td><td style="width: 33%;">0.98</td><td style="width: 33%;">19</td></tr> <tr> <td>5-phenylalkane</td><td>0</td><td>11.5</td></tr> <tr> <td>6-phenylalkane</td><td>0</td><td>11.48</td></tr> <tr> <td>Di:dodecylbenzene</td><td>10.10</td><td>10</td></tr> <tr> <td>Heavy residue</td><td>0.75</td><td>1.1</td></tr> </tbody> </table> <p>From this it can be seen that only catalyst (B), contg. de-aluminised zeolite Y, gave a homogeneous distribution of phenyl-alkanes (similar to that generally obtd. with HF or AlCl₃ catalysts), whereas catalyst A gave mainly 2- and 3-phenylalkanes.(13pp2003EDDwgNo0/0)</p>	4-phenylalkane	0.98	19	5-phenylalkane	0	11.5	6-phenylalkane	0	11.48	Di:dodecylbenzene	10.10	10	Heavy residue	0.75	1.1	
4-phenylalkane	0.98	19														
5-phenylalkane	0	11.5														
6-phenylalkane	0	11.48														
Di:dodecylbenzene	10.10	10														
Heavy residue	0.75	1.1														

FR2697246-A/2