Real-time motion capture and animation generation in virtual character using Kinect for American Sign Language (ASL)

Affective Intelligent Agents (CAP 5627)

-Ahamed, Md Shakil

-Professor: Christine Lisetti, PhD

Outline

- □ Introduction
 - Motivation
 - Problem Statement
- □ Related Research
- Methodologies

Introduction

- Smooth gesture animation is very important for getting meaningful ASL translation in virtual character
- Kinect device controlled motion capture can play role for getting smooth animation

virtual character

Kinect Device

Introduction- ASL

American Sign Language statistics	
Region	North America, Canada, West & Central Africa
Native Speaker	250,000-500,000 in the US (1972)
Language Family	French sign language
Origin	19 th Century, Connecticut
Source	[Mitchell, et al, 2006].

Introduction- Kinect Motion Capture

Introduction- Smartbody character (ICT 2004)

Introduction- Virtual character in ASL

Introduction- Virtual character in ASL

Introduction-virtual character in daily life

Motivation

- □ Develop real-time gesture animation controller
- Develop direction of movement codes for ASL
 Translator for Affective Computing Lab
- Develop platform for motion corpus data extraction
- Smartbody opensource animation platform

Story Teller

Problem Statement

- Definition: Generate smooth direction of movement animation using motion capture data
- Why?
 - Hard to get many gesture with limited time
 - Generating smooth timebased animation is time consuming
- □ How?
 - Using Kinect motion capture

- ASL MoCap capture research by CUNY
 - Created motion capture corpus data
 - First released in 2012.
 - Equipment:
 - 3 HD video cameras, cyber gloves, head mounted eyetracker,
 - An intersense IS-900 acoustic tracker (for location and orientation of the signer's head)
 - Issues
 - Devices are expensive
 - Managing the equipment's are difficult

- Chinese Sign to Text translation using Kinect
 - 3D trajectory matching algorithm based on a set of gallery images
 - Find the best matching trajectory from the gallery
 - Used Kinect device!!
- Issues
 - Used manual (not automatic) animation for the words
 - They mainly focuses on sign recognition part pattern of signs

- Animation & Comprehensibility
 - Developed signle gloss based animation system
 - Focussed on animation understandibility
 - focused on quality in time of generation
 - Evaluation
 - Subjective-video remake quality testing & verification
 - Objective # of repeatiion asked by subjects
 - Used tools:
 - OpenMARY-TTS system
 - ◆ ANVIL annotation tool- for video segmentation
 - Behavior builder tool support single and sequence of glesses animation

Issues:

- Comprehensibility 58.6%
- Created #95 glosses
- Need manual intervention for sign correction
- Ignore grammatical flections, Misses each gloss related information

- Survey of English to ASL animation
 - M. huernauth studied ASL tranlators upto 2003
 - Studied 4 projects and showed comparative analysis:
 - Vicicast
 - Zardos
 - Team project
 - ASL workbench
 - Team system performed better animation;
 - All used manual animation (timeline based) techniques
 - Their main foucs were on English to ASL conversion, grammar generation, maintain semantic ordering

- Analysis of ASL motion capture data towards Identification of Verb Type
 - Built for sign recognition application
 - Captured the motion data and classify the data into 2 major categories telic and atelic based on captured motions velocity and acceleration
 - Telic words: send, happen, hit (has end point)
 - Atelic words: play, read, run
- Equipment : Many Mocap devices requires!!
 - Gypsy 3.0 wired motion capture suit
 - Pair of 18-sensor Cybergloves.
 - Six motion capture cameras.
 - Motion blender software
 - Elan software for data annotation

Methodology

Record ASCL ASC Translator's direction of movement parameter

Kinect skeleton tracking algorithm references are given at the end of the slides

Skeleton & Motion retargetting

Data mapping issues

- Kinect Dude character vs target virtual character
 - Joint names between two character may be different
 - Different initial pose
 - Different local rotation frame e.g. 10 unit change may differ between character
 - Recorded file format issues as character might be in different platform
 - Kinect data filtering before mapping
 - Different proportion and scale between two characters

Current limitations

- Target character: Smartbody
 - Have project build issues e.g. Time
 - Project size are not optimized
 - For character animation they depended on Maya (not open source)
 - Used many 3rd party softwares some of them are not open source
 - ****SB Forum discueses FbxToSbConverter.exe tool which onverts fbx file to .skm file format

Next plan of work

- Motion record using Smartbody character
 - Solve build issues of Smartbody (time, size)
 - Figure out how to record valid captured frame
 - Record the gestures data for ASCL ASL project
 - Make the performance evaluation how the animation data works

References

- X Chai, et al, "Sign Lanugage Recognition and Translation with kinect", IEEE Conf. on AFGR, 2013.
- Pengfei Lu, et al, "CUNY American Sign Language Motion-Capture Corpus: First Release." Proceedings of the 5th Workshop on the Representation and Processing of Sign Languages: Interactions between Corpus and Lexicon, The 8th International Conference on Language Resources and Evaluation, Istanbul, Turkey, 2012.
- Evguenia Malaia, et al, "Analysis of ASL motion capture data towards identification of verb type", Proceeding STEP '08 Proceedings of the 2008 Conference on Semantics in Text Processing Pages 155-164, Association for Computational Linguistics Stroudsburg, PA, USA, 2008
- Matt Huenerfauth. 2003. A Survey and Critique of American Sign Language Natural Language Generation and Machine Translation Systems. Technical Report MS-CIS-03-32, Computer and Information Science, University of Pennsylvania.
- K Mulrooney, "American Sign Language DeMystified", Book.
- Pengfei Lua, Matt Huenerfauth, "Collecting and evaluating the CUNY ASL corpus for research on American Sign Language animation", ScienceDirect, Computer Speech and Language 28 (2014) 812–831.
- □ Shotton, et al, "Real-Time Human Pose Recognition in Parts from Single Depth Images", Communications of the ACM, Volume 56 Issue 1, Pages 116-124, USA, 2013
- Michael Kipp, et al, "Sign Language Avatars: Animation and Comprehensibility", Intelligent Virtual Agents Lecture Notes in Computer Science Volume 6895, 2011, pp 113-126, 2011

Q & A