

Master of Science HES-SO in Engineering Av. de Provence 6 CH-1007 Lausanne

Master of Science HES-SO in Engineering

Orientation: Information and Communication Technologies (ICT)

NEW METHODS FOR TRANSACTIONS IN BLOCKCHAIN SYSTEMS

Joël Gugger

Under the direction of: Prof. Alexandre Karlov HEIG-VD

External expert: firstname lastname lab

Information about this report

Contact information

Author:	JoëlGugger	
	MSE Student	
	${\rm HES\text{-}SO//Master}$	
	Switzerland	
Email:	joel.gugger@master.l	hes- $so.ch$
Declaration of l	honor	
	mitted is the result of resorted to plagiaris	Gugger, hereby declare that the work sub- of a personal work. I certify that I have not sm or other forms of fraud. All sources of d the author quotes were clearly mentioned.
Place, date:		
Signature:		
Signature.		
Validation Accepted by the l	HES-SO//Master (Sw	ritzerland, Lausanne) on a proposal from:
	Karlov, Thesis project ne, lab, Main expert	t advisor
Place, date:		
Prof. Alexandre	Karlov	Prof. Fariba Moghaddam Bützberger
Advisor		Dean,HES-SO//Master

Acknowledgments

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Preface

A preface is not mandatory. It would typically be written by some other person (eg your thesis director).

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Lausanne, 12 Mars 2011

T. D.

Abstract

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Keywords: keyword1, keyword2, keyword3

Contents

A	ckno	wledgements	v
Pı	refac	e	vii
A۱	bstra	act	ix
1	Inti	roduction	1
2	Bit	coin, a peer-to-peer payment network	3
	2.1	Actors	4
	2.2	Blockchain	4
	2.3	Transaction	5
	2.4	Scalability of Bitcoin	5
3	Pay	ment channels, a micro-transaction network	7
	3.1	Types of payment channel	8
	3.2	Our one-way channel	8
	3.3	Optimizing channels	8
4	Thr	reshold optimal ECDSA scheme	11
	4.1	Elliptic Curve	12
	4.2	Threshold scheme	13
	4.3	Threshold Hierarchical Determinitic Wallets	16
	4.4	Threshold deterministic signature	18
5	Imp	plementation in Bitcoin-core secp256k1	19
	5.1	Configuration	20
	5.2	DER parser-serializer	22
	5.3	Paillier cryptosystem	25
	5.4	Zero-knowledge proofs	28
	5.5	Threshold module	29
6	Fur	ther research	31
	6.1	Hardware wallets	. 31
7	Cor	nclusions	33
\mathbf{A}	Doo	cker Configuration	35
Li	st of	Figures	37

${\bf Contents}$

List of Tables	39
List of Sources	41
Bibliography	43

1 | Introduction

What is Bitcoin? why do we need it? [1, 2, 3, 4, 5]

ECDSA is the signature scheme used by Bitcoin to sign transactions. A standard transaction is constituted of a single signature corresponding to the address where the Bitcoins come from. But sometimes we need more complex management for locking funds. To address the limitation of a single signature, Bitcoin introduced a new OP_CODE named CHECKMULTISIG with a new standard script. With this standard script, it is now possible to spend Bitcoin to an address that requires a minimum of m signatures in n authorised signatories and extend the capability of Bitcoin to lock funds in a more complex way.

However, some issues appear. The way the script works requires exposing all the public keys when an output is signed and this increases the transaction size enormously, which implies bigger fees. All the signatures are, obviously, present with the public keys in the transaction script, which implies that we can know which public keys signed the transaction. And there is some limitation, due to the script size limit, the maximum number of authorised signatories is 15. All these limitations mean that we cannot imagine a complex organization nor structure with the multi-signature script for the moment.

To address this limitation, a group of researchers published a first paper in 2015 and a second one in 2016 describing the way to achieve a threshold scheme with DSA and ECDSA. Today, there is no well-known implementation ready for production purposes even though industries need it. The principal purpose of this thesis is to provide a clear, well documented C library, based on the internal ECDSA library present in bitcoin-core.

The largest challenge in Bitcoin for the coming years is scalability. Currently, Bitcoin enforces a block-size limit which is equivalent to only some transactions per second on the network. This is not sufficient in comparison to big payment infrastructures such as VISA, which allows tens of thousands of transactions per second and even more in peak times such as Christmas. To address this, some proposals modifying the transaction structure (like SegWit), some proposals modifying the block-size limit (such as SegWit2x) and others creating a second layer based on top of the Bitcoin protocol (like Lightning Network) exist. In the same idea of the Lightning Network, Bity is working on an implementation of a one-way payment channel. A one-way payment channel allows two parties to transact over the blockchain while minimizing the number of transactions needed on the blockchain in a secure and trustless way. This kind of channel needs multi-signature addresses which might be improved with the threshold scheme. The second part of the thesis is to co-write the channel white paper and add a chapter of how to improve it with the threshold scheme (better privacy, cheaper transaction, less limitations).

2 | Bitcoin, a peer-to-peer payment network

Concepts Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Contents

2.1	Actor	s
	2.1.1	Users
	2.1.2	Miners
	2.1.3	Developpers
2.2	Block	chain 4
	2.2.1	Public ledger
	2.2.2	Speed
2.3	Trans	action
	2.3.1	Scripting language
	2.3.2	Transaction Fees
2.4	Scala	bility of Bitcoin
	2.4.1	On-chain improvments
	2.4.2	Layer-two applications

2.1 Actors

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

type of nodes in the peer-to-peer network https://github.com/bitcoinbook/bitcoinbook/blob/second_edition/ch08.asciidoc

2.1.1 Users

2.1.2 Miners

2.1.3 Developpers

2.2 Blockchain

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.2.1 Public ledger

2.2.2 Speed

Mining difficulty

2.3 Transaction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.3.1 Scripting language

Locking script, unlocking script

2.3.2 Transaction Fees

2.4 Scalability of Bitcoin

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa.

Chapter 2. Bitcoin, a peer-to-peer payment network

Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.4.1 On-chain improvments

2.4.2 Layer-two applications

3 | Payment channels, a micro-transaction network

Concept Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Contents

3.1	Types of payment channel	8
3.2	Our one-way channel	8
3.3	Optimizing channels	8

3.1 Types of payment channel

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

3.2 Our one-way channel

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

3.3 Optimizing channels

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus

vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

4 | Threshold optimal ECDSA scheme

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Contents

4.1	Ellipti	c Curve	12
	4.1.1	Secp256k1 curve	12
	4.1.2	Point addition	12
	4.1.3	Point doubling	12
	4.1.4	Point multiplication	12
4.2	Thres	hold scheme	13
	4.2.1	Adapting zero-knowledge proofs to ECDSA	13
4.3	Thres	hold Hierarchical Determinitic Wallets	16
	4.3.1	Private parent key to private child key	17
	4.3.2	Public parent key to public child key	17
	4.3.3	Child key share derivation	18
4.4	Thres	hold deterministic signature	18

4.1 Elliptic Curve

Bitcoin use elliptic curve cryptography for securing Bitcoin transaction. The curve secp256k1, proposed by the Standards for Efficient Cryptography (SEC), is used.

4.1.1 Secp256k1 curve

The curve E is define in \mathbb{F}_p with a Koblitz curve

$$y^2 = x^3 + ax + b$$
$$y^2 = x^3 + 7$$

4.1.2 Point addition

With two distinct point P and Q on the curve E, the resulting point of the addition is the inverse point, (x, -y), of the intersection point with a straight line between P and Q.

$$P + Q = R$$

$$(x_p, y_p) + (x_q, y_q) = (x_r, y_r)$$

$$x_r \equiv \lambda^2 - x_p - x_q \pmod{p}$$

$$y_r \equiv \lambda(x_p - x_r) - y_p \pmod{p}$$

$$\lambda = \frac{y_q - y_p}{x_q - x_p}$$

$$\equiv (y_q - y_p)(x_q - x_p)^{-1} \pmod{p}$$

4.1.3 Point doubling

For P and Q equal, the formula is similar, the tangent to the curve E at point P is used to determine R.

$$P + P = R$$

$$(x_p, y_p) + (x_p, y_p) = (x_r, y_r)$$

$$x_r \equiv \lambda^2 - 2x_p \pmod{p}$$

$$y_r \equiv \lambda(x_p - x_r) - y_p \pmod{p}$$

$$\lambda = \frac{3x_p^2 + a}{2y_p}$$

$$\equiv (3x_p^2 + a)(2y_p)^{-1} \pmod{p}$$

4.1.4 Point multiplication

A point P can be multiply by a scalar d. The straightforward way of computing a point multiplication is through repeated addition. However, this is a fully exponential approach to computing the multiplication. The simplest method is the double-and-add method. To compute dP, start with the binary representation for $d:d=d_0+2d_1+2^2d_2+\cdots+2^md_m$, where $[d_0\ldots d_m]\in 0,1$

$$dP = P_1 + P_2 + \cdots + P_d$$

4.2 Threshold scheme

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

4.2.1 Adapting zero-knowledge proofs to ECDSA

Initially the proofs have been designed for the DSA architecture, so the values tested in the proofs are values in \mathbb{Z}_q . These values are used to create a challenge e with two hash function (one different per proof.) For ECDSA some of these values are now points and some equation need to be adapted. Points are serialized in long form of 65 bytes, starting with 0x04 and two 32 bytes number for the coordinate x and y.

The first zero-knowledge proof Π is created by Alice to prove to Bob that she act correctly and have encrypted coherent data with Paillier encryption.

Figure 4.1 Adaptation of Π to ECDSA

$$\langle z_1, z_2, y, e, s_1, s_2, s_3, t_1, t_2, t_3, t_4 \rangle \leftarrow \Pi$$
 Verify $s_1, t_1 \in \mathbb{Z}_{n^3}$ $v_1 \leftarrow d \cdot (t_1 + t_2) + y \cdot (-e)$
$$u_1 \leftarrow c \cdot s_1 + w_1 \cdot (-e) \qquad v_2 \leftarrow w_2 \cdot s_1 + d \cdot t_2 + y \cdot (-e)$$

$$u_2 \leftarrow g^{s_1}(s_2)^N(m_1)^{-e} \mod N^2 \qquad v_3 \leftarrow g^{t_1}(t_3)^N(m_2)^{-e} \mod N^2$$

$$u_3 \leftarrow (h_1)^{s_1}(h_2)^{s_3}(z_1)^{-e} \mod \tilde{N} \qquad v_4 \leftarrow (h_1)^{t_1}(h_2)^{t_4}(z_2)^{-e} \mod \tilde{N}$$
 Verify $e = \mathsf{hash}(c, w_1, d, w_2, m_1, m_2, z_1, u_1, u_2, u_3, z_2, y, v_1, v_2, v_3, v_4)$

Figure 4.2 Adaptation of Π verification to ECDSA

Second zero-knowledge proof created by Bob to prove to Alice that he acted correctly according the protocol.

$$\begin{array}{lll} \alpha \overset{R}{\leftarrow} \mathbb{Z}_{n^3} & \delta \overset{R}{\leftarrow} \mathbb{Z}_{n^3} \\ \beta \overset{R}{\leftarrow} \mathbb{Z}_{N'}' & \mu \overset{R}{\leftarrow} \mathbb{Z}_{N}' \\ \gamma \overset{R}{\leftarrow} \mathbb{Z}_{n^3 \tilde{N}} & \nu \overset{R}{\leftarrow} \mathbb{Z}_{n^3 \tilde{N}} \\ \rho_1 \overset{R}{\leftarrow} \mathbb{Z}_{n^3 \tilde{N}} & \nu \overset{R}{\leftarrow} \mathbb{Z}_{n^3 \tilde{N}} \\ \rho_2 \overset{R}{\leftarrow} \mathbb{Z}_{n^5 \tilde{N}} & \rho_2 \overset{R}{\leftarrow} \mathbb{Z}_{n^5 \tilde{N}} \\ \rho_3 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_{n^5 \tilde{N}} & \epsilon \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_{n^7 \tilde{N}} & \epsilon \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_{n^7 \tilde{N}} & \epsilon \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_{n^7 \tilde{N}} & \epsilon \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_{n^7 \tilde{N}} & \epsilon \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_{n^7 \tilde{N}} & \epsilon \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_{n^7 \tilde{N}} & \epsilon \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_3 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_3 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_3 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho_4 \overset{R}{\leftarrow} \mathbb{Z}_n \\ \rho$$

Figure 4.3 Adaptation of Π' to ECDSA

$$\langle z_1, z_2, z_3, y, e, s_1, s_2, s_3, s_4, t_1, t_2, t_3, t_4, t_5, t_6, t_7 \rangle \leftarrow \Pi'$$
 Verify $s_1, t_1 \in \mathbb{Z}_{n^3}$
$$v_1 \leftarrow d \cdot (t_1 + t_2) + y \cdot (-e)$$
 Verify $t_5 \in \mathbb{Z}_{n^7}$
$$v_2 \leftarrow w_2 \cdot s_1 + d \cdot t_2 + y \cdot (-e)$$

$$u_1 \leftarrow c \cdot s_1 + w_1 \cdot (-e)$$

$$v_3 \leftarrow (m_3)^{s_4} (m_4)^{t_7} g^{nt_5} (t_3)^N (m_2)^{-e}$$

$$\mod N^2$$

$$u_2 \leftarrow (g')^{s_1} (s_2)^{N'} (m_1)^{-e} \mod (N')^2$$

$$v_4 \leftarrow (h_1)^{t_1} (h_2)^{t_4} (z_2)^{-e} \mod \tilde{N}$$

$$u_3 \leftarrow (h_1)^{s_1} (h_2)^{s_3} (z_1)^{-e} \mod \tilde{N}$$

$$v_5 \leftarrow (h_1)^{t_5} (h_2)^{t_6} (z_3)^{-e} \mod \tilde{N}$$
 Verify $e = \text{hash'}(c, w_1, d, w_2, m_1, m_2, z_1, u_1, u_2, u_3, z_2, z_3, y, v_1, v_2, v_3, v_4, v_5)$

Figure 4.4 Adaptation of Π' verification to ECDSA

If $x_1 = z_2$, $x_2 = x_2 z_2$, $x_3 = c$, and $m_2 = \mu$ with $\mu = (\alpha)^{m'x_1}(\zeta)^{r'x_2}g^{nx_3}(r_2)^N$, then the equation v_3 in the original paper doesn't work. The result in the verification process Π' need to match $v_3 \leftarrow (m_3)^{\alpha}(m_4)^{\delta}g^{n\sigma}\mu^N \mod N^2$. The original equation proposed $v_3 \leftarrow (m_3)^{s_1}(m_4)^{t_1}g^{nt_5}(t_3)^N(m_2)^{-e} \mod N^2$ doesn't include m' and r' present in μ , so m_2 cannot be used correctly as showed next.

$$v_{3} \equiv (m_{3})^{s_{1}}(m_{4})^{t_{1}}g^{nt_{5}}(t_{3})^{N}(m_{2})^{-e} \pmod{N^{2}}$$

$$\equiv (m_{3})^{ex_{1}+\alpha}(m_{4})^{ex_{2}+\beta}g^{n(ex_{3}+\sigma)}((r_{2})^{e}\mu)^{N}((m_{3})^{m'x_{1}}(m_{4})^{r'x_{2}}g^{nx_{3}}(r_{2})^{N})^{-e}$$

$$\equiv (m_{3})^{ex_{1}+\alpha}(m_{4})^{ex_{2}+\beta}g^{n(ex_{3}+\sigma)}(r_{2})^{eN}\mu^{N}(m_{3})^{-em'x_{1}}(m_{4})^{-er'x_{2}}g^{-enx_{3}}(r_{2})^{-eN}$$

$$\equiv (m_{3})^{ex_{1}+\alpha-em'x_{1}}(m_{4})^{ex_{2}+\beta-er'x_{2}}g^{enx_{3}+n\sigma-enx_{3}}(r_{2})^{eN-eN}\mu^{N}$$

$$\equiv (m_{3})^{ex_{1}+\alpha-em'x_{1}}(m_{4})^{ex_{2}+\beta-er'x_{2}}g^{n\sigma}\mu^{N}$$

The equation v_3 needs to be adapted to include $x_4 = m'$ and $x_5 = r'$ (m' and r' cannot be include directly in x_1 and x_2 without breaking other equations.) Two new parameters $s_4 \leftarrow ex_1x_4 + \alpha$ and $t_7 \leftarrow ex_2x_5 + \delta$ are added into the proof to correct the equation.

$$v_{3} \equiv (m_{3})^{s_{4}} (m_{4})^{t_{7}} g^{nt_{5}} (t_{3})^{N} (m_{2})^{-e} \pmod{N^{2}}$$

$$\equiv (m_{3})^{ex_{1}x_{4}+\alpha} (m_{4})^{ex_{2}x_{5}+\beta} g^{n(ex_{3}+\sigma)} ((r_{2})^{e} \mu)^{N} ((m_{3})^{x_{1}x_{4}} (m_{4})^{x_{2}x_{5}} g^{nx_{3}} (r_{2})^{N})^{-e}$$

$$\equiv (m_{3})^{ex_{1}x_{4}+\alpha} (m_{4})^{ex_{2}x_{5}+\beta} g^{n(ex_{3}+\sigma)} (r_{2})^{eN} \mu^{N} (m_{3})^{-ex_{1}x_{4}} (m_{4})^{-ex_{2}x_{5}} g^{-enx_{3}} (r_{2})^{-eN}$$

$$\equiv (m_{3})^{ex_{1}x_{4}+\alpha-ex_{1}x_{4}} (m_{4})^{ex_{2}x_{5}+\beta-ex_{2}x_{5}} g^{enx_{3}+n\sigma-enx_{3}} (r_{2})^{eN-eN} \mu^{N}$$

$$\equiv (m_{3})^{\alpha} (m_{4})^{\beta} g^{n\sigma} \mu^{N}$$

4.3 Threshold Hierarchical Determinitic Wallets

Hierarchical deterministic wallets are sophisticated wallets in wich fresh keys can be generated from a previous key. Adapting hierarchical deterministic wallets with a threshold scheme can be achieve by sharing the private key additively:

$$pk_i = sk_i \cdot G$$

$$sk_{mas} = \sum_{i=1}^{s} sk_i \bmod n$$

$$pk_{mas} = \left[\sum_{i=1}^{s} sk_i \bmod n\right] \cdot G$$

$$= \sum_{i=1}^{s} (sk_i \cdot G) = \sum_{i=1}^{s} pk_i$$

or multiplicatively:

$$sk_{mas} = \prod_{i=1}^{s} sk_i \bmod n$$

$$pk_{mas} = \left[\prod_{i=1}^{s} sk_i \bmod n\right] \cdot G$$

$$= (((G \cdot sk_1) \cdot sk_2) \dots) \cdot sk_i$$

In the additive case, the master public key pk_{mas} is also the sum of all the public points pk_i , which means that if each one publish his own public share point, every one can compute the master public key.

4.3.1 Private parent key to private child key

The function CKDpriv compute a child extended private key from the parent extended private key. The derivation can be *hardened*. This proposal differ from the BIP32 standard in the chain derivation process. The threshold scheme require the same chain on all participants, so the process cannot rely on the private key share of any participant.

$$f(l) = \begin{cases} \text{HMAC-SHA256}(c_{par}, 0x00 \mid | \sec_{256}(k_{par}) \mid | \sec_{32}(i)) & \text{if } i \ge 2^{31} \\ \text{HMAC-SHA256}(c_{par}, \sec_p(\text{point}(k_{par})) \mid | \sec_{32}(i)) & \text{if } i < 2^{31} \\ k_i \equiv l \cdot k_{par} \pmod{n} \end{cases}$$

4.3.2 Public parent key to public child key

The function CKDpub compute a child extend public key from the parent extended public key. It is worth noting than it is not possible to compute an *hardened* derivation without the parent private key.

$$f(l) = \begin{cases} \text{failure} & \text{if } i \geq 2^{31} \\ \text{HMAC-SHA256}(c_{par}, \text{ser}_p(K_{par}) \mid\mid \text{ser}_{32}(i)) & \text{if } i < 2^{31} \end{cases}$$

$$K_i = l \cdot K_{par}$$

$$= l \cdot (k_{par} \cdot G)$$

$$= (l \cdot k_{par} \mod n) \cdot G$$

4.3.3 Child key share derivation

It is assume that one of the participants P_j is designated as the leader L. The function CKSD compute a child extended key share from the parent extended key share.

$$f(T) = \begin{cases} \text{CKDpriv}(i) & \text{if } L = j \\ \text{CKDpub}(i) & \text{if } L \neq j \end{cases}$$

$$sk_i = \left[\prod_{s=1}^{j} sk_{par}^s \right] \cdot T$$

$$= sk_{par} \cdot T$$

$$pk_i = pk_{par} \cdot T$$

$$= sk_{par} \cdot G \cdot T$$

$$= \left[\prod_{s=1}^{j} sk_{par}^s \right] \cdot G$$

$$c_i = \text{HMAC-SHA256}(c_{par}, \text{ser}_{32}(i))$$

If the index is greather or equal than 2^{31} the public key share of the participants $P_j = L$ need to be revealed in order to compute the public child key, a round of communication is needed.

4.4 Threshold deterministic signature

How to use an HMAC function in threshold mode to have deterministic k for signature.

5 | Implementation in Bitcoin-core secp256k1

As mentionned before, Bitcoin use eliptic curve cryptography (ECC) for signing transactions. When the first release of Bitcoin core appeared in the early 2009, the cryptographic computations was performed with the OpenSSL library. Some years after a project started with the goal of replacing OpenSSL and creating a custom and minimalistic library for cryptography over the curve secp256k1. This library is now available on GitHub at bitcoin-core/secp256k1 project and it is one of the most optimized, if not the most optimized, library for the curve secp256k1. It is worth noting that this library is also used by other major crypto-currencies like Ethereum, so extending the capabilities of this library is a good choice to attract other cryptographer to have a look and increase the amount of reviews for this thesis.

The implementation is spread into four main components: (i) a DER parser-serializer, (ii) a textbook implementation of Paillier homomorphic cryptosystem, (iii) an implementation of the Zero-Knowledge Proofs adaptation, and (iv) the threshold public API. It is worth noting that the current implementation is NOT production ready and NOT side-channel attack resistant. Paillier and ZKP are not constant time computation and use libgmp for all arithmetic computations, even when secret values are used. This implementation is a textbook implementation of the scheme and need to be reviewed and more tested before been used in production.

This chapter refers to the implementation available on GitHub at https://github.com/GuggerJoel/secp256k1/tree/threshold at the time when this lines are wrote. Note that the implementation can evolve after that this report is written.

Contents

5.1	Confi	guration
	5.1.1	Add experimental module
	5.1.2	Configure compilation
5.2	DER p	parser-serializer
	5.2.1	Sequence
	5.2.2	Integer
	5.2.3	Octet string
5.3	Paillie	r cryptosystem 25
	5.3.1	Data structures
	5.3.2	Encrypt and decrypt
	5.3.3	Homomorphism
5.4	Zero-l	knowledge proofs $\dots \dots \dots$
5.5	Thres	hold module

5.1 Configuration

The library use autotools to manage the compilation, installation and uninstallation. A system of module is already present in the structure with an ECDH experimental module for shared secret computation and a recovery module for recover ECDSA public key. A module can be flag as experimental, then, at the configuration time, an explicit parameter enabling experimental modules must be passed and a warning is showed to warn that the build contains experimental code.

5.1.1 Add experimental module

In this structure, the threshold extension is all indicated to be an experimental module also. A new variable <code>module_recovery</code> is declared with a m4 macro defined by autoconf in the <code>configure.ac</code> file with the argument <code>--enable-module-threshold</code>. The default value is set to <code>no</code>.

```
137 AC_ARG_ENABLE(module_threshold,

138 AS_HELP_STRING([--enable-module-threshold],[enable Threshold ECDSA computation with

Paillier homomorphic encryption system and zero-knowledge proofs (experimental)]),

139 [enable_module_threshold=$enableval],

140 [enable_module_threshold=no])
```

Listing 5.1 Add argument into configure.ac to enable the module

If the variable **\$enable_module_recovery** is set to yes into configure.ac (lines 443 to 445) a compiler constant is declared, again with a m4 marco defined by autoconf, and set to 1 in libsecp256k1-config.h (lines 20 and 21.) This header file is generated when ./configure script is run and is included in the library.

Listing 5.2 Define constant ENABLE_MODULE_THRESHOLD if module enable

The main file secp256k1.c (lines 586 to 590) and the tests file tests.c include headers based on the compiler constant definition.

```
586  #ifdef ENABLE_MODULE_THRESHOLD
587  # include "modules/threshold/paillier_impl.h"
588  # include "modules/threshold/eczkp_impl.h"
589  # include "modules/threshold/threshold_impl.h"
590  #endif
```

Listing 5.3 Include implementation headers if ENABLE_MODULE_THRESHOLD is defined

The module is set to experimental to avoid enabling it without explicitly agree to build experimental code. If experimental is set to yes a warning is display during the configuration process, if experimental is not set and any experimental module is enable an error message is display and the process failed.

```
if test x"$enable_experimental" = x"yes"; then
465
       AC_MSG_NOTICE([*****])
466
        AC_MSG_NOTICE([WARNING: experimental build])
467
        AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be
468
        \hookrightarrow safe for production use.])
        AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
469
470
        AC_MSG_NOTICE([Building Threshold module: $enable_module_threshold])
        AC_MSG_NOTICE([*****])
471
472
     else
        if test x"$enable_module_ecdh" = x"yes"; then
473
         AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
474
        fi
475
        if test x"$enable_module_threshold" = x"yes"; then
476
         AC_MSG_ERROR([Threshold module is experimental. Use --enable-experimental to allow.])
477
478
        if test x"$set_asm" = x"arm"; then
479
          AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to
480
           \hookrightarrow allow.1)
       fi
481
482
     fi
```

Listing 5.4 Set threshold module to experimental into configure.ac

5.1.2 Configure compilation

A module is composed of one or many include/ headers that contain the public API with a small description of each functions, these headers are copied in the right folders when sudo make install command is run. The file Makefile.am define which headers need to be installed, which not and how to compile the project. This file is parsed by autoconf to generate the final Makefile with all the fonctionalities expected.

Each module has its own Makefile.am.include which describe what to do with all the files present into the module folder. This file is included in the main Makefile.am (lines 179 to 181) if the module is enable.

```
179 if ENABLE_MODULE_THRESHOLD
180 include src/modules/threshold/Makefile.am.include
181 endif
```

Listing 5.5 Include specialized Makefile if threshold module is enable

The specialized Makefile.am.include declare the header requisite to be include and declare the list of all the headers that must not be installed on the system when sudo make install command is run.

```
include_HEADERS += include/secp256k1_threshold.h
noinst_HEADERS += src/modules/threshold/der_impl.h
noinst_HEADERS += src/modules/threshold/paillier.h
noinst_HEADERS += src/modules/threshold/paillier_impl.h
noinst_HEADERS += src/modules/threshold/paillier_tests.h
noinst_HEADERS += src/modules/threshold/eczkp.h
noinst_HEADERS += src/modules/threshold/eczkp_impl.h
noinst_HEADERS += src/modules/threshold/eczkp_tests.h
noinst_HEADERS += src/modules/threshold/threshold_impl.h
noinst_HEADERS += src/modules/threshold/threshold_tests.h
```

Listing 5.6 Specialized Makefile for threshold module

It is possible to build the library and enable the threshold module with the command below.

./configure --enable-module-threshold --enable-experimental

5.2 DER parser-serializer

Transmit messages and retreive keys are an important part of the scheme. Because between all steps a communication on the network is necessary, a way to export and import data is required. Bitcoin private key are simple structures because of the fixed curve and their intrinsic nature, a single 2^{256} bits value. Threshold private key are composed of multiple parts like: (i) the private share, (ii) a Paillier private key, (iii) a Paillier public key, and (iv) Zero-Knowledge Proof parameters. To serialize these complex structures the DER standard has been choosed. Three simple data types are implemented in the library: (i) sequence, (ii) integer, and (iii) octet string.

5.2.1 Sequence

The sequence data structure holds a sequence of integers and/or octet strings. The sequence start with the constant 0x30 and is followed by the content length and the content itself. A length could be in the short form or the long form. If the content number of bytes is shorter to 0x80 the length byte indicate the length, if the content is equal or longer than 0x80 the seven lower bits 0 to 6 where byte = $\{b_7, \ldots, b_1, b_0\}$ indicate the number of followed bytes which are used for the length.

```
void secp256k1_der_parse_len(const unsigned char *data, unsigned long *pos, unsigned long
10
     → *lenght, unsigned long *offset) {
        unsigned long op, i;
11
12
        op = data[*pos] & 0x7F;
         if ((data[*pos] & 0x80) == 0x80) {
13
14
             for (i = 0; i < op; i++) {
                 *lenght += data[*pos+1+i]<<8*(op-i-1);
15
16
             *offset = op + 1;
17
        } else {
18
             *lenght = op;
19
             *offset = 1;
20
21
         *pos += *offset;
22
    }
23
```

Listing 5.7 Implementation of a DER length parser

The sequence parser check the first byte with the constant 0x30 and extract the content lenght. Position in the input array are holds in the *pos variable, extracted lenght is stored in *lenght, and the offset holds how many bytes in the data are used for the header and the lenght. A coherence check is performed to ensure that the current offset and the retreived lenght result to the same amount of bytes passed in argument.

When a sequence holds other sequence, retreive their total length (including header and content length bytes) is needed to recursively parse them. A specific function is created to retreive the total length of a struct given a pointer to its first byte.

The serialization of a sequence is implemented as a serialization of an octet string with the sequence header 0x30 without integrity check of the content. The content length is serialized first, then the header is added.

```
25
    int secp256k1_der_parse_struct(const unsigned char *data, size_t datalen, unsigned long *pos,
        unsigned long *lenght, unsigned long *offset) {
        unsigned long loffset;
26
27
        if (data[*pos] == 0x30) {
             *pos += 1;
28
             secp256k1_der_parse_len(data, pos, lenght, &loffset);
29
30
             *offset = 1 + loffset;
             if (*lenght + *offset != datalen) { return 0; }
31
32
             else { return 1; }
        }
33
        return 0:
34
    }
35
```

Listing 5.8 Implementation of a DER sequence parser

The result of a content length serialization can be ≥ 1 byte-s. If the content is shorter than 0x80, then one byte is enough to store the length. Else multiple bytes (≥ 2) are used. Because the number of byte is undefined before the computation a memory allocation is necessary and a pointer is returned with the length of the array.

```
155
     unsigned char* secp256k1_der_serialize_sequence(size_t *outlen, const unsigned char *op,
          const size_t datalen) {
         unsigned char *data = NULL, *len = NULL;
156
157
         size_t lensize = 0;
158
         len = secp256k1_der_serialize_len(&lensize, datalen);
         *outlen = 1 + lensize + datalen;
159
160
         data = malloc(*outlen * sizeof(unsigned char));
         data[0] = 0x30;
161
         memcpy(&data[1], len, lensize);
162
         memcpy(&data[1 + lensize], op, datalen);
163
         free(len);
164
165
         return data;
166
```

Listing 5.9 Implementation of a DER sequence serializer

If the content length is longer than 0x80, then mpz is used to serialize the length into a bytes array in big endian most significant byte first. The length of this serialization is stored into longsize and is used to create the first byte with the most significant bit set to 1 (line 93).

5.2.2 Integer

Integers are used to store the most values in the keys and Zero-Knowledge Proofs. An integer can be positive, negative or zero and are represented in the second complement form. The header start with 0x02, followed by the length of the data. Parsing and serializing integer are already implemented in libgmp, functions are juste wrapper to extract information from the header and start the mpz importation at the right offset.

5.2.3 Octet string

Octet strings are used to holds serialized data like points/public keys. An octet string is an arbitrary array of bytes. The header start with 0x04 followed by the size of the content. The serialization implementation retreive the length of the content,

Chapter 5. Implementation in Bitcoin-core secp256k1

```
81
     unsigned char* secp256k1_der_serialize_len(size_t *datalen, size_t lenght) {
82
         unsigned char *data = NULL; void *serialize; size_t longsize; mpz_t len;
         if (lenght >= 0x80) {
83
84
             mpz_init_set_ui(len, lenght);
             serialize = mpz_export(NULL, &longsize, 1, sizeof(unsigned char), 1, 0, len);
85
             mpz_clear(len);
86
87
             *datalen = longsize + 1;
         } else {
88
             *datalen = 1;
89
90
         data = malloc(*datalen * sizeof(unsigned char));
91
92
         if (lenght \geq 0x80) {
93
             data[0] = (uint8_t)longsize | 0x80;
             memcpy(&data[1], serialize, longsize);
94
             free(serialize);
95
         } else {
96
             data[0] = (uint8_t)lenght;
97
         return data:
99
100
     }
```

Listing 5.10 Implementation of a DER length serializer

copy the header and the octet string into a new memory space, and return the pointer with the total lenght. The parser implementation copy the content and set the conent lenght, the position index, and the offset.

5.3 Paillier cryptosystem

Homomorphic encryption is required in the scheme and Paillier is proposed in the white paper. Paillier homomorphic encryption is simple to implement in a textbook way, but this implementation is not optimized and need to be reviewed.

5.3.1 Data structures

Encrypted message, public and private keys are transmited. As mentionned before, the DER standard format is used to parse and serialize data. DER schema for all data structures are defined to ensure portability over different implementations.

Public keys

The public key is composed of a public modulus and a generator. The implementation data structure add a big modulus corresponding to the square of the modulus. A version number is added for futur compatibility purposes.

Listing 5.11 DER schema of a Paillier public key

libgmp is used for all the arithmetic in Paillier implementation, all numbers are stored in mpz_t type. The parser take in input an array of bytes with a lenght and the public key to fill.

```
typedef struct {
    mpz_t modulus;
    mpz_t generator;
    mpz_t bigModulus;
} secp256k1_paillier_pubkey;

int secp256k1_paillier_pubkey_parse(
    secp256k1_paillier_pubkey *pubkey,
    const unsigned char *input,
    size_t inputlen
);
```

Listing 5.12 DER parser of a Paillier public key

Private keys

The private key is composed of a public modulus, two primes, a generator, a private exponent $\lambda = \varphi(n) = (p-1)(q-1)$, and a private coefficient $\mu = \varphi(n)^{-1}$ mod n. Again, a version number is added for futur compatibility purposes.

The parser take in input an array of bytes with a length and the private key to fill. The big modulus is computed after the parsing to accelerate encryption and decryption.

Chapter 5. Implementation in Bitcoin-core secp256k1

```
{\tt HEPrivateKey} \ ::= \ {\tt SEQUENCE} \ \{
    version
    modullus
                        INTEGER.
                                   -- p * q
                                   -- p
    prime1
                        INTEGER,
    prime2
                        INTEGER,
    generator
                        INTEGER,
    privateExponent
                        INTEGER,
                                   -- (p - 1) * (q - 1)
                                   -- (inverse of privateExponent) mod (p * q)
    coefficient
                        INTEGER
}
```

Listing 5.13 DER schema of a Paillier private key

```
typedef struct {
    mpz_t modulus;
    mpz_t prime1;
    mpz_t prime2;
    mpz_t generator;
    mpz_t bigModulus;
    mpz_t privateExponent;
    mpz_t coefficient;
} secp256k1_paillier_privkey;

int secp256k1_paillier_privkey *privkey,
    secp256k1_paillier_privkey *privkey,
```

Listing 5.14 DER parser of a Paillier private key

Encrypted messages

An encrypted message with Paillier cryptosystem is a big number $c \in \mathbb{Z}_{n^2}^*$. No version number is added in this case. The implementation structure contain a nonce value that could be set to 0 to stores the nonce used during encryption.

Listing 5.15 DER schema of an encrypted message with Paillier cryptosystem

An encrypted message can be serialized and parsed and they are used in messages exchange during the signing protocol by both actors.

5.3.2 Encrypt and decrypt

Like all other encryption schemes in public key cryptography, the public key is used to encrypt and the private key to decrypt. To encrypt the message m where m < n, a random value r where r < n is selected with the fonction pointer noncefp and set into the nonce value res->nonce. This nonce is stored because his value is needed to create Zero-Knowledge Proofs. Then, the cipher $c = g^m \cdot r^n \mod n^2$ is putted into res->message to complete the encryption process. All intermediral states are wipe out before returning the result.

Listing 5.16 Implementation of encryption with Paillier cryptosystem

If the random value selection process failed the encryption fail also. The random function of type secp256k1_paillier_nonce_function must use a good CPRNG and his implementation is not part of the library.

```
typedef int (*secp256k1_paillier_nonce_function)(
    mpz_t nonce,
    const mpz_t max
);
```

Listing 5.17 Function signature for Paillier nonces generation

To decrypt the cipher $c \in \mathbb{Z}_{n^2}^*$ with the private key, the function compute $m = L(c^{\lambda} \mod n^2) \cdot \mu \mod n$ where L(x) = (x-1)/n. The cipher is raised to the lambda $c^{\lambda} \mod n^2$ in line 4 and the result is putted to an intermedirary state variable. Then the L(x) function is applied on the intermedirary state in lines 5-6. Finally, the multiplication with μ and the modulo of n are taken (lines 7-8) to lead to the result. It is worth noting that, in line 6, only the quotient of the division is recovered.

```
void secp256k1_paillier_decrypt(mpz_t res, const secp256k1_paillier_encrypted_message *c,

const secp256k1_paillier_privkey *privkey) {

mpz_t 11, 12;

mpz_inits(11, 12, NULL);

mpz_powm(11, c->message, privkey->privateExponent, privkey->bigModulus);

mpz_sub_ui(12, 11, 1);

mpz_cdiv_q(11, 12, privkey->modulus);

mpz_mul(12, 11, privkey->coefficient);

mpz_mod(res, 12, privkey->modulus);

mpz_clears(11, 12, NULL);

}
```

Listing 5.18 Implementation of decryption with Paillier cryptosystem

5.3.3 Homomorphism

The choice of this scheme is not hazardous, homomorphic addition and multiplication are used to construct the signature composant $s = D_{sk}(\mu) \mod q$: $\mu = (\alpha \times_{pk} m'z_2) +_{pk} (\zeta \times_{pk} r'x_2z_2) +_{pk} E_{pk}(cn)$ where $+_{pk}$ denotes homomorphic addition over the ciphertexts and \times_{pk} denotes homomorphic multiplication over the ciphertexts.

Addition

Addition $+_{pk}$ over ciphertexts is computed with $D_{sk}(E_{pk}(m_1, r_1) \cdot E_{pk}(m_2, r_2) \mod n^2) = m_1 + m_2 \mod n$ or $D_{sk}(E_{pk}(m_1, r_1) \cdot g^{m_2} \mod n^2) = m_1 + m_2 \mod n$ where D_{sk} denotes descryption with private key sk and E_{pk} denotes encryption with public key pk. Only the first variant is implemented, where two ciphertexts are added together to result in a third ciphertext.

Listing 5.19 Implementation of homomorphic addition with Paillier cryptosystem

Multiplication

Multiplication \times_{pk} over ciphertexts can be performed with $D_{sk}(E_{pk}(m_1, r_1)^{m_2} \mod n^2) = m_1 m_2 \mod n$, the implementation is straight forward in this case. The nonce value from the ciphertext is copied in the resulted encrypted message for not lose information after opperations.

Listing 5.20 Implementation of homomorphic multiplication with Paillier cryptosystem

5.4 Zero-knowledge proofs

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo

ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

5.5 Threshold module

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

6 | Further research

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

6.1 Hardware wallets

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

7 | Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

A | Docker Configuration

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

```
version: '2.1'
    services:
3
      levee:
        command: >
           bash -c "echo Container ready! Sleep 100000000... && sleep 100000000"
5
        privileged: true
        container_name: levee
        build: ./levee
8
        image: levee/levee
10
        volumes:
            - ./levee/shared:/shared
11
```

Listing A.1 caption

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

List of Figures

4.1	Adaptation of Π to ECDSA	1
4.2	Adaptation of Π verification to ECDSA	1
4.3	Adaptation of Π' to ECDSA	1!
4.4	Adaptation of Π' verification to ECDSA	16

List of Tables

List of sources

5.1	Add argument into configure.ac to enable the module	20
5.2	Define constant ENABLE_MODULE_THRESHOLD if module enable	20
5.3	Include implementation headers if ENABLE_MODULE_THRESHOLD is defined	20
5.4	Set threshold module to experimental into configure.ac	2
5.5	Include specialized Makefile if threshold module is enable	2
5.6	Specialized Makefile for threshold module	2
5.7	Implementation of a DER lenght parser	22
5.8	Implementation of a DER sequence parser	23
5.9	Implementation of a DER sequence serializer	23
5.10	Implementation of a DER lenght serializer	24
5.11	DER schema of a Paillier public key	25
5.12	DER parser of a Paillier public key	25
5.13	DER schema of a Paillier private key	26
5.14	DER parser of a Paillier private key	26
5.15	DER schema of an encrypted message with Paillier cryptosystem	26
5.16	Implementation of encryption with Paillier cryptosystem	27
5.17	Function signature for Paillier nonces generation	27
5.18	Implementation of decryption with Paillier cryptosystem	27
5.19	Implementation of homomorphic addition with Paillier cryptosystem	28
5.20	Implementation of homomorphic multiplication with Paillier cryptosystem	28
A.1	caption	35

Bibliography

- [1] Philip D. MacKenzie and Michael K. Reiter. "Two-Party Generation of DSA Signatures". In: Advances in Cryptology CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings. Vol. 2139. Lecture Notes in Computer Science. Springer, 2001, pp. 137–154. DOI: 10.1007/3-540-44647-8_8.
- [2] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. "Threshold-Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security". In: Applied Cryptography and Network Security 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings. 2016, pp. 156–174. DOI: 10.1007/978-3-319-39555-5_9. URL: https://doi.org/10.1007/978-3-319-39555-5_9.
- [3] Pascal Paillier. "Public-key Cryptosystems Based on Composite Degree Residuosity Classes". In: Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT'99. Prague, Czech Republic: Springer-Verlag, 1999, pp. 223–238. ISBN: 3-540-65889-0. URL: http://dl.acm.org/citation.cfm?id=1756123.1756146.
- [4] Steven Goldfeder et al. "Securing Bitcoin wallets via a new DSA/ECDSA threshold signature scheme". In: 2015.
- [5] Mihir Bellare and Phillip Rogaway. "Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols". In: Proceedings of the 1st ACM Conference on Computer and Communications Security. CCS '93. Fairfax, Virginia, USA: ACM, 1993, pp. 62–73. ISBN: 0-89791-629-8. DOI: 10.1145/168588.168596. URL: http://doi.acm.org/10.1145/168588.168596.