Newton's method. Cubic Regularized Newton Methods for Logistic Regression

Dmitrii Topchii

December 17, 2024

Motivation

- Logistic regression: widely used model for binary classification with convex loss.
- First-order methods (e.g., Gradient Descent) are simple but can be slow.
- Newton's method uses second-order info for faster local convergence, but can be costly.
- Cubic regularization: adds a third-order term to improve global convergence rates and potentially faster overall progress.

Dmitrii Topchii Newton's method December 17, 2024 2

Problem Statement

Minimize the logistic regression objective:

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) + \frac{\lambda}{2} ||w||^2.$$

- $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$, $\lambda > 0$.
- f(w) is convex in w.

Dmitrii Topchii Newton's method December 17, 2024

Methods Overview

Examined methods:

- **GD**: $w_{k+1} = w_k \eta \nabla f(w_k)$
- Nesterov: Accelerated gradient with momentum.
- Adam: Adaptive first-order method.
- **Newton**: $w_{k+1} = w_k [\nabla^2 f(w_k)]^{-1} \nabla f(w_k)$
- L-BFGS: Quasi-Newton approximation of Hessian inverse.
- Cubic Reg. Newton (CRN): Solve

$$m_k(h) = f(w_k) + \nabla f(w_k)^T h + \frac{1}{2} h^T \nabla^2 f(w_k) h + \frac{L}{6} ||h||^3.$$

Dmitrii Topchii Newton's method December 17, 2024

Cubic Regularized Newton

- Incorporates a third-order term to ensure global convergence.
- Step h_k chosen to approximately minimize $m_k(h)$.
- Potentially better theoretical complexity.

Experimental Setup

- Datasets: Iris (binary classification).
- Metrics: Loss f(w), accuracy, runtime per iteration.
- Sensitivity analysis for CRN parameter L.

Convergence Results: Loss

- CRN and Newton achieve very low loss.
- First-order methods require more steps or show initial fluctuations.

Dmitrii Topchii Newton's method December 17, 2024

Accuracy Comparison

- Most methods eventually reach perfect accuracy.
- Differences mainly in the speed of convergence.

Runtime and Sensitivity

- CRN is more expensive per iteration.
- Sensitivity to L: smaller L can yield smoother convergence.

Dmitrii Topchii Newton's method December 17, 2024 9,

Summary Table

Method	Final Loss	Acc.	Time/Iter	Total Time
CRN	0.0130	1.0	0.0118	5.4052
GD	0.2162	1.0	0.0006	0.0162
Newton	0.0129	1.0	0.0019	0.0426
L-BFGS	0.0129	1.0	0.0035	0.0751
Adam	0.0814	1.0	0.0010	0.0226
Nesterov	0.1464	1.0	0.0004	0.0086

Dmitrii Topchii Newton's method December 17, 2024 10 / 11

Conclusion

- Cubic Regularized Newton achieves low loss and perfect accuracy with fewer iterations.
- Higher per-iteration cost compared to simpler methods.
- Good for small-scale problems and where high precision is needed.
- Trade-off: choose method based on problem size and resource constraints.

Dmitrii Topchii Newton's method December 17, 2024 1