1 Тоон дараалал ба тоон цувааны үндсэн ойлголт, эерэг гишуудтэй цуваа, тэмдэг сөөлжих цуваа, цувааны нийлэх шинжүүд

Тодорхойлолт 1.1 Натурал тоо n бүхэнд x_n тоо харгалзуулбал $x_1, x_2, \ldots, x_n, \ldots$ тоон

олонлог үүснэ. Үүнийг тоон дараалал гэх ба x_n -г дарааллын ерөнхий гишүүн гэнэ. Жишээ 1.1 $x_n=\frac{n^2}{n^2+1}$ ерөнхий гишүүн бүхий дарааллыг бич.

Бодолт:
$$x_1 = \frac{1^2}{1^2 + 1} = \frac{1}{2}, \quad x_2 = \frac{2^2}{2^2 + 1} = \frac{2}{5}, \quad x_3 = \frac{3^2}{3^2 + 1} = \frac{9}{10}, \qquad x_4 = \frac{4^2}{4^2 + 1} = \frac{4^2}{10}$$

гэх мэтчилэн бичигдэх тул дарааллыг

$$\frac{1}{2}, \frac{2}{5}, \frac{9}{10}, \frac{16}{17}, \dots, \frac{n^2}{n^2+1}, \dots$$

гэж бичиж болно. Мөн дарааллын эхний гишүүд өгөгдсөнөөр тухайн дарааллын ерөнхий гишүүний томъёог бичиж болно.

Жишээ 1.2 $3 \cdot 2, 5 \cdot 2^2, 7 \cdot 2^3, 9 \cdot 2^4, 11 \cdot 2^5, \dots$ дарааллын ерөнхий гишүүний томъёог бич.

Бодолт: $x_1 = 3 \cdot 2^1$, $x_2 = (3+2) \cdot 2^2$, $x_3 = (3+2+2) \cdot 2^3$,

 $x_4 = (3+2+2+2) \cdot 2^4$ гэх мэтчилэн дарааллын эхний гишүүдийг бичвэл эндээс дарааллын ерөнхий гишүүн нь

$$x_n = (3 + 2(n-1)) \cdot 2^n = (2n+1)2^n$$

байхаар байна.

 $\{a_n\}$ гэсэн төгсгөлгүй тоон дараалал өгөгджээ. Тэгвэл Тодорхойлолт 1.2

$$a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$$
 (1.1)

илэрхийллийг **тоон цуваа** гэж нэрлэх ба $a_1, a_2, \dots, a_n, \dots$ тоонуудыг цувааны гишүүд гэнэ.

Өгөгдсөн цувааны гишүүдийг дэс дараалан нэмэх замаар тоон Тодорхойлолт 1.3 дараалал S_n -г байгуулъя.

$$S_n = a_1 + a_2 + \ldots + a_n \tag{1.2}$$

(1.2)-г цувааны n-р **хэсгийн нийлбэр** гэнэ.

Тодорхойлолт 1.4 Хэрвээ өгөгдсөн цувааны хэсгийн нийлбэрүүдийн дараалал S_n нь төгсгөлөг хязгаартай, өөрөөр хэлбэл

$$\lim_{n \to \infty} S_n = S \tag{1.3}$$

бол энэ хязгаарыг (1.1) цувааны нийлбэр гэж нэрлэх ба энэ үед цувааг нийлж байна гэнэ.

Хэрвээ $\lim_{n\to\infty} S_n$ хязгаар оршин байхгүй буюу төгсгөлөг биш байвал (1.1) цувааг сарниж байна гэнэ.

Жишээ 1.3 $\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \ldots + \frac{1}{(3n-2)\cdot (3n+1)} + \ldots$ цувааны нийлбэрийг ол. Бодолт: Энэ цувааны хэсгийн нийлбэрийг олохын тулд гишүүдийг нийлбэр ялгавар

болгон задалъя.

$$S_n = \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \ldots + \frac{1}{(3n-2) \cdot (3n+1)} =$$

$$= \frac{1}{3} \left(\left(1 - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \ldots + \left(\frac{1}{3n-2} - \frac{1}{3n+1} \right) \right) = \frac{1}{3} \left(1 - \frac{1}{3n+1} \right)$$

Ингээд $n \to \infty$ үеийн хязгаар авбал цувааны нийлбэр S олдоно.

$$S = \lim_{n \to \infty} S_n = \frac{1}{3}$$

Жишээ 1.4 $\sum_{n=0}^{\infty} aq^{n-1} = a + aq + \ldots + aq^{n-1} + \ldots$ цувааны нийлэлтийг судал.

Энэ цувааны n-р хэсгийн нийлбэр нь геометр прогрессын нийлбэрийг олдог томъёо ёсоор:

$$S_n = \frac{a(1-q^n)}{1-q} \quad (q \neq 1)$$
 буюу $S_n = \frac{a}{1-q} - \frac{aq^n}{1-q}$ болно.

Xэрвээ |q| < 1 байвал

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{a}{1-q} - \frac{aq^n}{1-q} \right) = \frac{a}{1-q}$$
 болно.

Иймээс хэрвээ |q| < 1 бол өгөгдсөн цуваа нийлэх бөгөөд нийлбэр нь

$$\sum_{n=1}^{\infty} aq^{n-1} = \frac{a}{1-q} \quad \text{байна.}$$

Хэрвээ |q| > 1 байвал

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a - aq^n}{1 - q} = a \cdot \lim_{n \to \infty} \frac{1 - q^n}{1 - q} = \pm \infty$$

байх тул өгөгдсөн цуваа сарнина.

Хэрвээ $q=\pm 1$ байвал өгөгдсөн цуваа бас сарнина. Учир нь q=1 байх үед

$$a+a+a+\ldots+a+\ldots$$
 ба $S_n=na$ байх бөгөөд

түүний нийлбэр нь $S=\lim_{n\to\infty}na=\infty$ болно. Хэрвээ q=-1 бол $a-a+a-\dots$ болох ба хэсгийн нийлбэр нь

$$S_n = \begin{cases} 0, & n = 2k \\ a, & n = 2k - 1 \end{cases}$$

болно. Иймд $\lim_{n \to \infty} S_n$ хязгаар оршин байхгүй.

Жишээ 1.5 $u_n = \frac{1}{(2n-1)\cdot(2n+1)}$ цувааны нийлбэрийг ол.

Бодолт: Цувааны ерөнхий гишүүнийг нийлбэр болгож задлая.

$$u_n = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

Хэсгийн нийлбэр нь

$$S_n = \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n + 1} \right)$$

байх тул цувааны нийлбэр $\lim_{n\to\infty}S_n=\frac{1}{2}$ болно. **Жишээ 1.6** $u_n=\frac{1}{n(n+1)(n+2)}$ цувааны нийлбэрийг ол. **Бодолт:** $u_n=\frac{1}{n(n+1)(n+2)}=\frac{A}{n}+\frac{B}{n+1}+\frac{C}{n+2}$ гэж задлаад тодорхой бус коэффициентийн аргаар $A,\ B,\ C$ -г олъё.

$$1 = A(n+1)(n+2) + Bn(n+2) + Cn(n+1)$$

гэдгээс

$$A = \frac{1}{2}, B = -1, C = \frac{1}{2}$$

болно. Ингээд өгсөн цувааны ерөнхий гишүүн нь

$$u_n = \frac{1}{2} \cdot \frac{1}{n} - \frac{1}{n+1} + \frac{1}{2} \cdot \frac{1}{n+2} = \frac{1}{2} \cdot \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}\right)$$

болно. Хэсгийн нийлбэрийг олохын тулд цувааны гишүүдийг дэс дараалан нэмж үзвэл

$$S_n = \frac{1}{2} \left(1 - \frac{2}{2} + \frac{1}{3} + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{3} - \frac{2}{4} + \frac{1}{5} + \frac{1}{4} - \frac{2}{5} + \frac{1}{8} + \dots \right)$$

$$\dots + \frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1} + \frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2} \right)$$

болох ба $n o \infty$ үеийн хязгаар авч нийлбэрийг олбол: $S = \lim_{n o \infty} S_n = \frac{1}{4}$ байна.

1.2. Нийлдэг цуваан дээрх үйлдлүүд. Цуваа нийлэх зайлшгүй нөхцөл

Теорем 1.1 Хэрвээ (1.1) цувааны эхний m ширхэг гишүүдийг хаявал

$$a_{m+1} + a_{m+2} + \ldots + a_{m+k} + \ldots = \sum_{k=m+1}^{\infty} a_k$$
 (1.4)

гэсэн цуваа үүснэ. Энэ цувааг (1.1) цувааны m- дүгээр гишүүнээс хойшхи үлдэгдэл гэнэ.

Хэрвээ (1.1) цуваа нийлж байвал түүний дурын үлдэгдэл нь бас нийлнэ.

Теорем 1.2 Хэрвээ (1.1) цуваа нийлдэг бөгөөд түүний нийлбэр нь S бол дурын төгсгөлөг C тооны хувьд

$$\sum_{n=1}^{\infty} C \cdot a_n \tag{1.5}$$

цуваа нийлэх ба нийлбэр нь $C \cdot S$ байна.

Теорем 1.3 Хэрвээ $\sum_{n=1}^{\infty} a_n$ ба $\sum_{n=1}^{\infty} b_n$ цуваанууд нийлдэг бөгөөд нийлбэр нь харгалзан S ба $ar{S}$ бол

$$\sum_{n=1}^{\infty} (a_n \pm b_n) \tag{1.6}$$

цуваа мөн нийлэх ба нийлбэр нь $S\pm \bar{S}$ байна.

Теорем 1.4 Хэрвээ (1.1) цуваа нийлж байвал

$$\lim_{n \to \infty} a_n = 0 \tag{1.7}$$

байна. Өөрөөр хэлбэл, нийлдэг цувааны ерөнхий гишүүн a_n нь $n \to \infty$ үед тэг рүү тэмүүлнэ. Энэ теоремоос $\lim_{n \to \infty} a_n = 0$ байхад $\sum_{n=1}^{\infty} a_n$ цуваа нийлнэ гэж хэлж болохгүй юм. Харин $\lim_{n \to \infty} a_n \neq 0$ бол анхны цуваа сарнина.

Жишээ 1.7 $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$ цуваа нийлэх эсэхийг судалъя.

Бодолт: $\lim_{n \to \infty} \ln \left(1 + \frac{1}{n} \right) = 0$ боловч $\ln \left(1 + \frac{1}{n} \right) = \ln \frac{n+1}{n} = \ln(n+1) - \ln n$ тул

$$S_n = (\ln 2 - \ln 1) + (\ln 3 - \ln 2) + \dots + [\ln(n+1) - \ln n]$$

байх ба

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \ln(n+1) = +\infty$$

болж уг цуваа сарниж байна.

Жишээ 1.8 $\sum_{n=1}^{\infty} \frac{1}{n}$ гармоник цувааны нийлэлтийг судал.

Бодолт: $\lim_{n \to \infty} \frac{1}{n} = 0$ боловч гармоник цуваа $\sum_{n=1}^{\infty} \frac{1}{n}$ нь сарнина.

Ерөнхий тохиолдолд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ цуваа p>1 үед нийлж, $p\leq 1$ үед сарнина.

(Баталгааг 2.4. Интеграл шинж хэсэгт үзнэ үү.)

Жишээ 1.9 $\sum_{n=1}^{\infty} \frac{2n-1}{3n+2} = \frac{1}{5} + \frac{3}{8} + \frac{5}{11} + \dots$ цувааны нийлэлтийг судал.

Бодолт: Зайлшгүй нөхцлийг хангаж байгаа эсэхийг шалгахад

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n - 1}{3n + 2} = \frac{2}{3} \neq 0$$

байгаа тул уг цуваа сарнина.

1.1 ЦУВААНЫ НИЙЛЭЛТИЙГ ШИНЖИХ ШИНЖҮҮД ТЭМДЭГ ХУВЬ-САХ ЦУВАА

Тодорхойлолт 2.1 Хэрвээ $\sum_{n=1}^{\infty} a_n$ цувааны бүх гишүүн нь сөрөг биш тоонууд бол, өөрөөр хэлбэл $\forall n \in \mathbb{N} : a_n > 0$ бол түүнийг **эерэг гишүүнтэй цуваа** гэнэ.

Эерэг гишүүнтэй цувааны хэсгийн нийлбэрүүд нь өсөх тоон дарааллыг үүсгэнэ.

Teopeм 2.1 $\sum_{n=1}^{\infty} a_n$ эерэг гишүүдтэй цуваа нийлэх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь түүний хэсгийн нийлбэрүүдийн дараалал S_n нь дээрээсээ зааглагдсан байх явдал юм.

Өөрөөр хэлбэл,

$$\exists M > 0, \ \forall n \in \mathbb{N}, \ S_n = \sum_{k=1}^n a_k < M$$

байна.

Эерэг гишүүнтэй цувааны хувьд биелдэг бүх чанар сөрөг гишүүнтэй цувааны хувьд мөн биелдэг. Эерэг гишүүнтэй цувааны нийлэлт, сарнилтын зарим чухал шинжүүдийг авч үзье.

2.2. Жиших шинж

Теорем 2.2(Жиших шинж 1) Эерэг гишүүдтэй

$$\sum_{n=1}^{\infty} a_n \tag{2.1}$$

$$\sum_{n=1}^{\infty} b_n \tag{2.2}$$

цуваанууд өгөгджээ. Хэрвээ (2.1) цувааны гишүүн бүр нь тодорхой нэг дугаар N-ээс эхлэн (2.2) цувааны ижил дугаартай гишүүн бүрээс ихгүй өөрөөр хэлбэл

$$a_n \le b_n \tag{2.3}$$

бол (2.2) цуваа нийлж байхад (2.1) нийлнэ, харин (2.1) цуваа сарниж байхад (2.2) сарнина.

 $oxed{Teopem 2.3}(\mathit{Жишиx\ шинж 2})$ Хэрвээ $\sum_{n=1}^{\infty}a_n$ ба $\sum_{n=1}^{\infty}b_n$ эерэг цувааны хувьд

$$\lim_{n \to \infty} \frac{a_n}{b_n} = C, \qquad (0 < C < +\infty)$$
(2.4)

хязгаар тэгээс ялгаатай төгсгөлөг оршин байдаг бол $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ цуваануудын нийлэх эсэх нь ижил байна.

Жишээ 2.1 $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ цувааны нийлэлтийг жиших шинж 1-ийг ашиглан бод.

Бодолт: $\frac{n}{\geq} 2$ натурал тооны хувьд $\frac{1}{\ln n} > \frac{1}{n}$ биелэх ба $\sum_{n=1}^{\infty} \frac{1}{n}$ гармоник цуваа сарнина

гэдгээс $\sum_{n=1}^{\infty} \frac{1}{\ln n}$ цуваа сарнина.

Жишээ 2.2 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n^2+1)}}$ цуваа нийлэхийг батал.

Бодолт: Уг цувааг ихэсгэе

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n^2+1)}} \le \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$$

Тэгвэл $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$ цувааны хувьд $p=\frac{3}{2}>1$ учир нийлнэ (жишээ 1.8-г үз) гэдгээс анхны өгөгдсөн цуваа мөн нийлнэ.

 $\mathbf{Жишээ} \ \mathbf{2.3} \qquad \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{4 \cdot 2^n - 3} \;\;$ цувааны нийлэлтийг Жиших шинж 2-ыг ашиглан

Бодолт: Уг цувааг $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$ цуваатай жишье. Энэ цуваа $q = \frac{1}{2} < 1$ хуваарьтай геометр прогресс тул нийлнэ.

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{2^n}{4 \cdot 2^n - 3} = \lim_{n \to \infty} \frac{1}{4 - \frac{3}{2^n}} = \frac{1}{4}$$

Энэ хязгаар төгсгөлөг тоо гарч байгаа учир $\sum_{n=1}^{\infty} u_n$ цуваа $\sum_{n=1}^{\infty} v_n$ цуваатай адил нийлнэ.

Жишээ 2.4 Θ гсөн $\frac{1}{2} + \frac{1}{5} + \frac{1}{8} + \frac{1}{11} + \dots$ цувааг сарнихыг батал.

Бодолт: $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{3n-1} = \frac{1}{2} + \frac{1}{5} + \frac{1}{8} + \frac{1}{11} + \dots$ цувааг $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ гармоник цуваатай жишье. Гармоник цуваа сарнидаг болохыг бид мэднэ.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{3n - 1} = \frac{1}{3}$$

Сарнидаг цуваатай жишихэд төгсгөлөг тоо гарч байгаа учир өгөгдсөн цуваа мөн сарнина.

2.3. Даламбер ба Кошийн шинж

 $egin{align*} extbf{Teopem 2.4} & \sum_{n=1}^{\infty} a_n \end{array}$ эерэг гишүүдтэй цувааны хувьд

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \tag{2.5}$$

ба L<1 бол цуваа нийлнэ, L>1 бол цуваа сарнина. Мөн $L=+\infty$ бол сарнина. Харин L=1 бол энэ шинжүүрээр уг цувааны нийлэх сарнихыг шинжиж болохгүй ба нэмэлт судалгаа хэрэгтэй.

 $egin{align*} extbf{Teopem 2.5} & ext{Хэрвээ} & \sum_{n=1}^{\infty} a_n \end{array}$ эерэг гишүүдтэй цувааны хувьд

$$\lim_{n \to \infty} \sqrt[n]{a_n} = L \tag{2.6}$$

ба L<1 бол цуваа нийлнэ, L>1 бол цуваа сарнина. Мөн $L=+\infty$ бол сарнина. Харин L=1 бол энэ шинжүүрээр уг цувааны нийлэх сарнихыг шинжиж болохгүй ба нэмэлт судалгаа хэрэгтэй.

Жишээ 2.5 $\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$ цувааны нийлэлтийг Даламберийн шинжээр шинж.

Бодолт:

$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^{n+1} \cdot (n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{2^n \cdot n!} = \lim_{n \to \infty} \frac{2n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{2}{\left(1 + \frac{1}{n}\right)^n} = \frac{2}{e}$$

Иймд $L=rac{2}{e}<1$ учир өгсөн цуваа нийлнэ.

Жишээ 2.6
$$\frac{1}{3} + \frac{3}{3^2} + \frac{5}{3^3} + \frac{7}{3^4} + \ldots + \frac{2n-1}{3^n} + \ldots$$
 цувааг нийлэхийг батал. Бодолт:

$$L = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left[\frac{2(n+1)-1}{3^{n+1}} : \frac{2n-1}{3^n} \right] =$$

$$= \lim_{n \to \infty} \frac{3^n (2n+1)}{3^{n+1} (2n-1)} = \frac{1}{3} \lim_{n \to \infty} \frac{2n+1}{2n-1} = \frac{1}{3} \lim_{n \to \infty} \frac{1+\frac{1}{n}}{1-\frac{1}{n}} = \frac{1}{3} < 1$$

Жишээ 2.7 $\sum_{n=1}^{\infty} \frac{1}{n^n}$ цувааны нийлэлтийг Кошийн шинжээр судал.

Бодолт:

$$L = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Иймд L=0<1 учир уг цуваа нийлнэ. Жишээ 2.8 $\sum_{n=1}^{\infty}\left(\frac{n+2}{n+3}\right)^{n^2}$ цувааны нийлэлтийг судал.

$$L = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n+2}{n+3}\right)^{n^2}} = \lim_{n \to \infty} \left(\frac{n+2}{n+3}\right)^n =$$

$$= \lim_{n \to \infty} \left[\left(1 - \frac{1}{n+3}\right)^{-(n+3)} \right]^{-\frac{n}{n+3}} = e^{\lim_{n \to \infty} -\frac{n}{n+3}} = e^{-1} < 1$$

L хязгаар төгсгөлөг, 1-ээс бага тоо гарч байгаа учир өгсөн цуваа нийлнэ.

2.4. Интеграл шинж

Теорем 2.6 Хэрвээ f(x) функц $x \geq 1$ байхад тасралтгүй, монотон буурдаг, эерэг утгатай бол $f(n) = a_n$ ерөнхий гишүүнтэй $\displaystyle \sum_{n=1}^{\infty} a_n$ цувааны хувьд

- а) өргөтгөсөн интеграл $\int_{0}^{+\infty} f(x)dx$ интеграл нийлж байвал уг цуваа нийлнэ.
- б) өргөтгөсөн интеграл $\int_{0}^{\infty} f(x)dx$ интеграл сарниж байвал цуваа мөн сарнина.

Жишээ 2.9 $\sum_{n=2}^{\infty} \frac{1}{n \ln^p n} \ p > 0$ цувааны нийлэлтийг судал.

Бодолт: $f(x) = \frac{1}{x \ln^p x}$ ба

$$\int_{0}^{n} \frac{1}{x \ln^{p} x} dx = \left. \frac{1}{1 - p} \cdot \frac{1}{\ln^{p-1} x} \right|_{0}^{n} = \frac{1}{p - 1} \cdot \left(\frac{1}{\ln^{p-1} 2} - \frac{1}{\ln^{p-1} n} \right)$$

$$\int_{2}^{+\infty} \frac{1}{x \ln^{p} x} dx = \lim_{n \to \infty} \int_{2}^{n} \frac{1}{x \ln^{p} x} dx = \begin{cases} \frac{1}{p-1} \cdot \frac{1}{\ln^{p-1} 2}, & p > 1\\ \infty, & p \le 1 \end{cases}$$

Иймд p>1 байхад өгсөн цуваа нийлнэ, $p\leq 1$ байхад өгсөн цуваа сарнина гэж гарч байна.

Жишээ 2.10 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ цувааны нийлэлт, сарнилтыг тогтоо. **Бодолт:** $p \neq 1$ байх үед

$$\int_{1}^{+\infty} \frac{1}{x^{p}} = \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x^{p}} = \lim_{b \to +\infty} \frac{x^{1-p}}{1-p} \bigg|_{1}^{b} = \lim_{b \to +\infty} \left(\frac{b^{1-p}}{1-p} - \frac{1}{1-p} \right) = \begin{cases} \frac{1}{p-1}, & p > 1 \\ \infty, & p < 1 \end{cases}$$

болно. Харин p=1 үед

$$\int_{1}^{+\infty} \frac{1}{x} = \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x} = \lim_{b \to +\infty} \ln x \Big|_{1}^{b} = \lim_{b \to +\infty} \ln b = +\infty$$

Иймээс уг цуваа p>1 байхад нийлж, $p\leq 1$ байхад сарнина.

2.5. Абсолют нийлдэг цуваа

Ерөнхий тохиолдолд цувааны гишүүдийн тэмдэг хувьсан өөрчлөгдөж байвал түүнийг тэмдэг хувьсах цуваа гэнэ.

Тодорхойлолт 2.2 $\sum_{n=0}^{\infty} a_n$ (2.7) гэсэн тэмдэг хувьсах цувааны хувьд

$$\sum_{n=1}^{\infty} |a_n| \tag{2.8}$$

сөрөг биш гишүүнтэй цуваа нийлдэг бол (2.7) цуваа нийлэх ба түүнийг **абсолют нийлдэг** цуваа гэнэ.

Хэрвээ (2.8) цуваа сарних боловч $\sum_{n=1}^{\infty} a_n$ өөрөө нийлдэг бол уг Тодорхойлолт 2.3 цувааг **нөхцөлт нийлдэг цуваа** гэнэ.

Тэмдэг хувьсах цувааны тухайн нэг тохиолдол бол тэмдэг ээлжлэх цуваа юм.

Тодорхойлолт 2.4 $a_1-a_2+a_3-a_4+\ldots+(-1)^na_n+\ldots$ хэлбэрийн цувааг **тэмдэг ээлжлэх цуваа** гэнэ. Энд $a_n\geq 0,\ \frac{n}{\in}N$ байна.

Теорем 2.7 (Лейбницийн шинж) Хэрвээ $\sum_{n=1}^{\infty} (-1)^n a_n$ тэмдэг ээлжлэх цувааны хувьд:

а) $a_1>a_2>\ldots>a_n>a_{n+1}>\ldots$ 6) $\lim_{n\to\infty}a_n=0$ нөхцлүүд биелж байвал уг цуваа нийлнэ.

Жишээ 2.11 $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2^k}$ цуваа нь абсолют нийлэхийг батал.

Бодолт: $\sum_{n=0}^{\infty} |a_n| = \sum_{n=0}^{\infty} \frac{1}{2^n}$ болно. Энэ нь $q = \frac{1}{2} < 1$ хуваарьтай геометр прогресс

учраас нийлнэ. Иймээс уг цуваа нь абсолют нийлдэг цуваа мөн. Жишээ $\mathbf{2.12}$ $\frac{1}{1\cdot 2^2} - \frac{1}{2\cdot 3^2} + \frac{1}{3\cdot 4^2} - \ldots + (-1)^{n-1} \frac{1}{n\cdot (n+1)^2} - \ldots$ цувааны нийлэлтийг судал.

- **Бодолт:** Энэ цуваа нь Лейбницийн шинжээр нийлнэ. Учир нь 1) $\frac{1}{1\cdot 2^2}>\frac{1}{2\cdot 3^2}>\frac{1}{3\cdot 4^2}>\ldots>\frac{1}{n\cdot (n+1)^2}>\ldots$
- 2) $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{1}{n(n+1)^2}=0$ нөхцлүүдийг хангаж байгаа учир теорем 2.7 ёсоор цуваа нийлнэ