Deep Reinforcement Learning

Overview of main articles
Part 2. Policy gradient algorithms

Sergey Ivanov

February 27, 2019

MSU

Table of contents i

Basic policy gradient methods

REINFORCE

Baselines introduction

Actor-Critic

Generalized Advantage Estimation (GAE) (2018)

Trust Region Policy Optimization (TRPO) (2017)

Proximal Policy Optimization (PPO) (2017)

Basic policy gradient methods

Recall RL goal:

$$\mathbb{E}_{\pi(\theta)}\mathbb{E}_{\mathcal{T}}R o \max_{\theta}$$

Recall RL goal:

$$\mathbb{E}_{\pi(heta)}\mathbb{E}_{\mathcal{T}}R o \max_{ heta}$$

Let's optimize our goal directly!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R - ?$$

Recall RL goal:

$$\mathbb{E}_{\pi(\theta)}\mathbb{E}_{\mathcal{T}}R o \max_{\theta}$$

Let's optimize our goal directly!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R - ?$$

Recall RL goal:

$$\mathbb{E}_{\pi(\theta)}\mathbb{E}_{\mathcal{T}}R o \max_{\theta}$$

Let's optimize our goal directly!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R - ?$$

Options:

- * Metaheurisics
- * Log-derivative trick¹.

¹aka REINFORCE

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx$$

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\} = \int \nabla_{\theta} \pi(x,\theta) f(x) dx$$

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\} = \int \nabla_{\theta} \pi(x,\theta) f(x) dx$$

Problem: and what?

$$\nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim \pi(\mathbf{x}, \theta)} f(\mathbf{x}) = \nabla_{\theta} \int \pi(\mathbf{x}, \theta) f(\mathbf{x}) d\mathbf{x} = \left\{ \begin{array}{c} \mathbf{x} \\ \mathbf{x} \end{array} \right\} = \int \nabla_{\theta} \pi(\mathbf{x}, \theta) f(\mathbf{x}) d\mathbf{x}$$

Problem: and what?

Log-derivative trick

$$\nabla_{\theta} \pi(\theta) = \pi(\theta) \nabla_{\theta} \log \pi(\theta)$$

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\} = \int \nabla_{\theta} \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\}$$

Problem: and what?

Log-derivative trick

$$\nabla_{\theta} \pi(\theta) = \pi(\theta) \nabla_{\theta} \log \pi(\theta)$$

$$= \int \pi(x,\theta) \nabla_{\theta} \log \pi(x,\theta) f(x) dx$$

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\} = \int \nabla_{\theta} \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\}$$

Problem: and what?

Log-derivative trick

$$\nabla_{\theta} \pi(\theta) = \pi(\theta) \nabla_{\theta} \log \pi(\theta)$$

$$= \int \pi(x,\theta) \nabla_{\theta} \log \pi(x,\theta) f(x) dx = \mathbb{E}_{x \sim \pi(x,\theta)} \nabla_{\theta} \log \pi(x,\theta) f(x)$$

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Let's set $\phi(x) \equiv \pi(x, \theta)$:

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Let's set $\phi(x) \equiv \pi(x, \theta)$:

$$\nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim \phi(\mathbf{x})} \frac{\pi(\mathbf{x}, \theta)}{\phi(\mathbf{x})} f(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \phi(\mathbf{x})} \frac{\nabla_{\theta} \pi(\mathbf{x}, \theta)}{\phi(\mathbf{x})} f(\mathbf{x})$$

Note: that is the same gradient as with log-derivative trick².

²really? Could it even happen otherwise?

REINFORCE

Let's apply log-derivative trick to our goal!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R = \mathbb{E}_{\pi(\theta)} \nabla_{\theta} \log \pi(\theta) \mathbb{E}_{\mathcal{T}} R$$

REINFORCE

Let's apply log-derivative trick to our goal!

$$abla_{ heta} \mathbb{E}_{\pi(heta)} \mathbb{E}_{\mathcal{T}} R = \mathbb{E}_{\pi(heta)}
abla_{ heta} \log \pi(heta) \mathbb{E}_{\mathcal{T}} R pprox$$

We can estimate this gradient using Monte-Carlo by playing, let's say, one game:

$$pprox \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) R$$

Problems of REINFORCE

 \times Doesn't work.

Problems of REINFORCE

- × Doesn't work.
 - Reason: high variance of Monte-Carlo gradient estimation.

Problems of REINFORCE

- × Doesn't work.
 - **Reason:** *high variance* of Monte-Carlo gradient estimation.
 - you can play more than one game for one gradient step, but that doesn't help much.

Baseline

Proposition

For arbitrary distribution $\pi(\theta)$:

$$\mathbb{E}
abla_{ heta} \log \pi(heta) = \int
abla_{ heta} \pi(heta) =
abla_{ heta} \int \pi(heta) =
abla_{ heta} 1 = 0$$

7

Baseline

Proposition

For arbitrary distribution $\pi(\theta)$:

$$\mathbb{E}
abla_{ heta} \log \pi(heta) = \int
abla_{ heta} \pi(heta) =
abla_{ heta} \int \pi(heta) =
abla_{ heta} 1 = 0$$

Adding $\mathbb{E}\nabla_{\theta}\log\pi(\theta)b$ for some b to gradient estimate will not lead to bias, but may change variance.

7

Lowest variance baseline

Theorem

$$b = \frac{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2} R}{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2}}$$

is the baseline which leads to the lowest variance.

Lowest variance baseline

Theorem

$$b = \frac{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2} R}{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2}}$$

is the baseline which leads to the lowest variance.

* similar to average reward, which is also a good baseline.

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³

³did we make any mistake?

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³ Let's untangle our goal:

$$\nabla_{\theta} \mathbb{E}_{\rho(s_1)} \left(r(s_1) + \mathbb{E}_{a_1 \sim \pi(s_1, \theta)} \mathbb{E}_{\rho(s_2 \mid s_1, a)} \left[r(s_2) + \dots \right] \right)$$

³did we make any mistake?

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³ Let's untangle our goal:

$$\nabla_{\theta} \mathbb{E}_{\rho(s_1)} \left(r(s_1) + \mathbb{E}_{a_1 \sim \pi(s_1, \theta)} \mathbb{E}_{\rho(s_2 \mid s_1, a)} \left[r(s_2) + \ldots \right] \right) =$$

After carefully applying log-derivative trick:

$$= \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) \right)$$

³did we make any mistake?

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³ Let's untangle our goal:

$$\nabla_{\theta} \mathbb{E}_{p(s_1)} \left(r(s_1) + \mathbb{E}_{a_1 \sim \pi(s_1, \theta)} \mathbb{E}_{p(s_2 \mid s_1, a)} \left[r(s_2) + \ldots \right] \right) =$$

After carefully applying log-derivative trick:

$$= \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) \right)$$

√ that's much better!

³did we make any mistake?

Note:
$$\sum_{t'=t+1}^{I} r(s_{t'})$$
 is estimation of $Q^{\pi}(s_t, a_t)!$

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'})
ight)$$

Note: $\sum_{t'=t+1}^{I} r(s_{t'})$ is estimation of $Q^{\pi}(s_t, a_t)!$

$$egin{aligned}
abla &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'})
ight) = \ &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) Q^{\pi}(s_{t}, a_{t}) \end{aligned}$$

Note:
$$\sum_{t'=t+1}^{T} r(s_{t'}) \text{ is estimation of } Q^{\pi}(s_t, a_t)!$$

$$egin{aligned}
abla &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'})
ight) = \ &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) Q^{\pi}(s_{t}, a_{t}) \end{aligned}$$

Better estimation of $Q^{\pi}(s, a)$ should lead to lower variance.

Note: $\sum_{t'=t+1}^{I} r(s_{t'})$ is estimation of $Q^{\pi}(s_t, a_t)!$

$$egin{aligned}
abla &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'})
ight) = \ &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) Q^{\pi}(s_{t}, a_{t}) \end{aligned}$$

Better estimation of $Q^{\pi}(s, a)$ should lead to lower variance.

- * π is an actor
- * estimate of $Q^{\pi}(s,a)$ is a *critic*

Advantage Actor Critic

Let's insert some baseline:

$$abla = \mathbb{E} \sum_t^T
abla_{ heta} \log \pi(a_t \mid s_t, heta) Q^{\pi}(s_t, a_t)$$

Advantage Actor Critic

Let's insert some baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - b
ight)$$

Let's insert some baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - b
ight)$$

* Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.

Let's insert some baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, \theta) \left(Q^{\pi}(s_t, a_t) - b \right)$$

- * Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.
- * Recall $\mathbb{E}Q^{\pi}(s_t,a_t)=V^{\pi}(s_t)$

Let's insert some baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(\mathsf{a}_{t} \mid \mathsf{s}_{t}, heta) \left(Q^{\pi}(\mathsf{s}_{t}, \mathsf{a}_{t}) - b
ight)$$

- * Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.
- * Recall $\mathbb{E}Q^{\pi}(s_t, a_t) = V^{\pi}(s_t)$
- * Recall definition $A^{\pi}(s_t,a_t) = Q^{\pi}(s_t,a_t) V^{\pi}(s_t)$

Let's insert some baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, \theta) A^{\pi}(s_t, a_t)$$

- * Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.
- * Recall $\mathbb{E}Q^{\pi}(s_t, a_t) = V^{\pi}(s_t)$
- * Recall definition $A^{\pi}(s_t,a_t) = Q^{\pi}(s_t,a_t) V^{\pi}(s_t)$

Critic can be a second neural net!

Critic can be a second neural net!

Options:

* approximate $A^{\pi}(s,a)$

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s,a)^4$

⁴can we just use Q-learning for this?

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s,a)^4$
- * approximate $V^{\pi}(s)$:

⁴can we just use Q-learning for this?

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s,a)^4$
- * approximate $V^{\pi}(s)$:

$$Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \approx r(s_{t+1}) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

 $^{^{4}} can$ we just use Q-learning for this?

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s, a)^4$
- * approximate $V^{\pi}(s)$:

$$Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \approx r(s_{t+1}) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

 \checkmark the least complex one! ⁵

⁴can we just use Q-learning for this?

⁵why?

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

* well, play more games.

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

- * well, play more games.
 - :(for one step of gradient descent, yeah...

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

- * well, play more games.
 - :(for one step of gradient descent, yeah...

Alternative: $y = V^{\pi}(s) \approx r(s') + V^{\pi}(s')$

Advantage Actor-Critic (A2C) Algorithm:

• get (s, a, r, s')

Advantage Actor-Critic (A2C) Algorithm:

- get (s, a, r, s')
- ullet update critic $\hat{V}(s)$ using target $r+\hat{V}(s')$

Advantage Actor-Critic (A2C) Algorithm:

- get (s, a, r, s')
- ullet update critic $\hat{V}(s)$ using target $r+\hat{V}(s')$
- ullet evaluate $\hat{A}(s,a)=r+\hat{V}(s')-\hat{V}(s)$

Advantage Actor-Critic (A2C) Algorithm:

- get (s, a, r, s')
- update critic $\hat{V}(s)$ using target $r + \hat{V}(s')$
- evaluate $\hat{A}(s,a) = r + \hat{V}(s') \hat{V}(s)$
- update policy using estimate of gradient $\nabla_{\theta} \log \pi(a \mid s, \theta) \hat{A}(s, a)$

Dealing with two networks

Option 1: just two neural nets

Option 2: shared feature extractor

Dealing with two networks

Option 1: just two neural nets \times obviously redundant

Option 2: shared feature extractor \times may be unstable

√ lower variance!

- √ lower variance!
- imes yet policy gradient estimates are not unbiased anymore! 6

⁶why?

- √ lower variance!
- imes yet policy gradient estimates are not unbiased anymore! 6
- \times batch_size = 1

⁶why?

- √ lower variance!
- × yet policy gradient estimates are not unbiased anymore!⁶
- \times batch_size = 1
 - \checkmark do gradient descent step every N game steps.

⁶why?

- √ lower variance!
- × yet policy gradient estimates are not unbiased anymore!⁶
- \times batch_size = 1
 - \checkmark do gradient descent step every N game steps.
 - \checkmark play several games in parallel.

⁶why?

- √ lower variance!
- \times yet policy gradient estimates are not unbiased anymore!
- \times batch_size = 1
 - \checkmark do gradient descent step every N game steps.
 - √ play several games in parallel.

Check out this comic about A2C!

Generalized Advantage

Estimation (GAE) (2018)

Playing with Q and V...

$$\nabla = \mathbb{E} \sum_{t}^{I} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \right)$$

In practice we may use separate approximations for $Q^{\pi}(s_t, a_t)$ and baseline $b = V^{\pi}(s_t)$ and play with different ways to do that:

Playing with Q and V...

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \right)$$

In practice we may use separate approximations for $Q^{\pi}(s_t, a_t)$ and baseline $b = V^{\pi}(s_t)$ and play with different ways to do that:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \Psi_{t}$$

Ψ_t	bias	variance
$\sum_{t}^{T} r(s_t)$	0	very high
$Q^{\pi}(s_t,a_t)$	tolerant	high
$A^{\pi}(s_t,a_t)$	tolerant	low enough
$\sum_{t}^{T} r(s_t) - V^{\pi}(s_t)$	0	low

We may use critic only for baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_t) \right)$$

We may use critic only for baseline:

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_t) \right)$$

√ unbiased gradient

We may use critic only for baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_t) \right)$$

- √ unbiased gradient
- × higher variance

We may use critic only for baseline:

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_{t}) \right)$$

- √ unbiased gradient
- × higher variance

Or use a compromise (for simplicity $\gamma = 1$):

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t) \right)$$

We may use critic only for baseline:

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_{t}) \right)$$

- √ unbiased gradient
- × higher variance

Or use a compromise (for simplicity $\gamma = 1$):

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t)
ight)$$

- × new hyperparameter N
- √ regulates trade-off between variance and bias

GAE

So, for different ${\it N}$ we have different advantage estimators.

GAE

So, for different ${\it N}$ we have different advantage estimators.

Generalized Advantage Estimaton (2018):

Create an ensemble out of them!

GAE

So, for different N we have different advantage estimators.

Generalized Advantage Estimaton (2018):

Create an ensemble out of them!

Let $A_{(N)}^{\pi}(s_t, a_t)$ be a N-step advantage estimator:

$$A_{(N)}^{\pi} = \sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t)$$

GAE

So, for different N we have different advantage estimators.

Generalized Advantage Estimaton (2018):

Create an ensemble out of them!

Let $A_{(N)}^{\pi}(s_t, a_t)$ be a N-step advantage estimator:

$$A_{(N)}^{\pi} = \sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t)$$

Let's take exponentially-weighted average:

$$A_{(\mathsf{GAE})}^{\pi}(s_t, a_t) = (1 - \lambda)(A_{(1)}^{\pi} + \lambda A_{(2)}^{\pi} + \lambda^2 A_{(3)}^{\pi} + \dots)$$

GAE in practice

Move convenient formula:

$$A_{(\mathsf{GAE})}^{\pi}(s_{t}, a_{t}) = \sum_{i=0}^{\infty} (\lambda \gamma)^{i} (r(s_{t+i}) + \gamma V^{\pi}(s_{t+i+1}) - V^{\pi}(s_{t+i}))$$

GAE in practice

Move convenient formula:

$$A_{(\mathsf{GAE})}^{\pi}(s_{t}, a_{t}) = \sum_{i=0}^{\infty} (\lambda \gamma)^{i} (r(s_{t+i}) + \gamma V^{\pi}(s_{t+i+1}) - V^{\pi}(s_{t+i}))$$

- * $\lambda = 0$: A2C algorithm
- * $\lambda=1$: infinite eligibility trace algorithm

GAE in practice

Move convenient formula:

$$A_{(\mathsf{GAE})}^{\pi}(s_{t}, a_{t}) = \sum_{i=0}^{\infty} (\lambda \gamma)^{i} (r(s_{t+i}) + \gamma V^{\pi}(s_{t+i+1}) - V^{\pi}(s_{t+i}))$$

- * $\lambda = 0$: A2C algorithm
- * $\lambda = 1$: infinite eligibility trace algorithm
- * the balance is in between...

Trust Region Policy Optimization (TDDO) (2017)

(TRPO) (2017)

Utilizing data

Problem: Actor-Critic algorithm is *on-policy*.

 \times we throw away obtained data after one optimization step.

Utilizing data

Problem: Actor-Critic algorithm is *on-policy*.

- × we throw away obtained data after one optimization step.
- ! but we have to do this!

$$abla(heta) = \mathbb{E}_{\mathcal{T} \sim \pi(heta)} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) A^{\pi}(s_{t}, a_{t})$$

Utilizing data

Problem: Actor-Critic algorithm is *on-policy*.

- × we throw away obtained data after one optimization step.
- ! but we have to do this!

$$abla(heta) = \mathbb{E}_{\mathcal{T} \sim \pi(heta)} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) A^{\pi}(s_{t}, a_{t})$$

Use importance sampling!

Off-policy Actor-Critic

Let denote $P(T \mid \pi)$ a probability of trajectory under policy π :

$$P(T \mid \pi) = p(s_0) \prod_{t=0} [\pi(a_t \mid s_t) p(s_{t+1} \mid s_t, a_t)]$$

Off-policy Actor-Critic

Let denote $P(T \mid \pi)$ a probability of trajectory under policy π :

$$P(T \mid \pi) = p(s_0) \prod_{t=0} [\pi(a_t \mid s_t) p(s_{t+1} \mid s_t, a_t)]$$

Then off-policy actor-critic gradient estimation can be obtained:

$$\nabla(\theta) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\frac{P(\mathcal{T} \mid \pi)}{P(\mathcal{T} \mid \tilde{\pi})} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) A^{\pi}(s_{t}, a_{t}) \right]$$

Off-policy Actor-Critic

Let denote $P(T \mid \pi)$ a probability of trajectory under policy π :

$$P(T \mid \pi) = p(s_0) \prod_{t=0} [\pi(a_t \mid s_t) p(s_{t+1} \mid s_t, a_t)]$$

Then off-policy actor-critic gradient estimation can be obtained:

$$\nabla(\theta) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\frac{P(\mathcal{T} \mid \pi)}{P(\mathcal{T} \mid \tilde{\pi})} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) A^{\pi}(s_{t}, a_{t}) \right]$$

× though transition probability reduce, this *importance sampling* weight tends to be very close to 0.

TRPO foundations

May be if π is close to $\tilde{\pi},$ this weight is practically acceptable

TRPO foundations

May be if π is close to $\tilde{\pi}$, this weight is practically acceptable

Trust-Region Policy Optimization (2017) hints:

- a lot of theory on relative performance of two close policies
- attempt to build policy optimization procedure with guarantees of optimizing the objective.⁶
- practical application of natural policy gradients.

⁶what is an obvious drawback of procedure with such property?

TRPO foundations

May be if π is close to $\tilde{\pi}$, this weight is practically acceptable

Trust-Region Policy Optimization (2017) hints:

- a lot of theory on relative performance of two close policies
- attempt to build policy optimization procedure with guarantees of optimizing the objective.⁶
- practical application of natural policy gradients.
- imes doesn't provide enthusiastic results on practice...

⁶what is an obvious drawback of procedure with such property?

Let's denote $J(\pi)$ a performance of policy π , i.e. our objective:

$$J(\pi) \stackrel{\mathrm{def}}{=} \mathbb{E}_{\mathcal{T} \sim \pi} \sum_{t=0} \gamma^t r(s_t) = \mathbb{E}_{s_0} V^{\pi}(s_0)$$

Let's denote $J(\pi)$ a performance of policy π , i.e. our objective:

$$J(\pi) \stackrel{\mathrm{def}}{=} \mathbb{E}_{\mathcal{T} \sim \pi} \sum_{t=0} \gamma^t r(s_t) = \mathbb{E}_{s_0} V^{\pi}(s_0)$$

Theorem (Kakade & Langford, 2002):

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t A^{\pi}(s_t, a_t)$$

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - J(\pi) =$$

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - J(\pi) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - \mathbb{E}_{s_0} V^{\pi}(s_0) =$$

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - J(\pi) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - \mathbb{E}_{s_0} V^{\pi}(s_0) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\sum_{t=0} \gamma^t r(s_t) - V^{\pi}(s_0) \right] =$$

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - J(\pi) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - \mathbb{E}_{s_0} V^{\pi}(s_0) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\sum_{t=0} \gamma^t r(s_t) - V^{\pi}(s_0) \right] =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\sum_{t=0} \gamma^t r(s_t) + \sum_{t=0} \left[\gamma^{t+1} V^{\pi}(s_{t+1}) - \gamma^t V^{\pi}(s_t) \right] \right] =$$

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - J(\pi) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - \mathbb{E}_{s_0} V^{\pi}(s_0) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\sum_{t=0} \gamma^t r(s_t) - V^{\pi}(s_0) \right] =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\sum_{t=0} \gamma^t r(s_t) + \sum_{t=0} \left[\gamma^{t+1} V^{\pi}(s_{t+1}) - \gamma^t V^{\pi}(s_t) \right] \right] =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t \left(r(s_t) + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \right) =$$

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - J(\pi) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t r(s_t) - \mathbb{E}_{s_0} V^{\pi}(s_0) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\sum_{t=0} \gamma^t r(s_t) - V^{\pi}(s_0) \right] =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \left[\sum_{t=0} \gamma^t r(s_t) + \sum_{t=0} \left[\gamma^{t+1} V^{\pi}(s_{t+1}) - \gamma^t V^{\pi}(s_t) \right] \right] =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t \left(r(s_t) + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \right) =$$

$$= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t A^{\pi}(s_t, a_t)$$

Denote $d_{\pi}(s)$ a discounted state-visitation probability for policy π :

$$d_{\pi}(s) = (1 - \gamma) \sum_{t=0} \gamma^t \mathcal{P}(s_t = s)$$

Denote $d_{\pi}(s)$ a discounted state-visitation probability for policy π :

$$d_{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathcal{P}(s_t = s)$$

Let's separate the expectation over trajectory to the expectation over policy choices and over state transitions:

$$J(\tilde{\pi}) - J(\pi) = \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t A^{\pi}(s_t, a_t) =$$

Denote $d_{\pi}(s)$ a discounted state-visitation probability for policy π :

$$d_{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathcal{P}(s_t = s)$$

Let's separate the expectation over trajectory to the expectation over policy choices and over state transitions:

$$egin{split} J(ilde{\pi}) - J(\pi) &= \mathbb{E}_{\mathcal{T} \sim ilde{\pi}} \sum_{t=0}^{\infty} \gamma^t \mathcal{A}^{\pi}(s_t, a_t) = \ &= rac{1}{1-\gamma} \mathbb{E}_{s \sim d_{ ilde{\pi}}} \mathbb{E}_{a \sim ilde{\pi}} \mathcal{A}^{\pi}(s_t, a_t) = \end{split}$$

Denote $d_{\pi}(s)$ a discounted state-visitation probability for policy π :

$$d_{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathcal{P}(s_t = s)$$

Let's separate the expectation over trajectory to the expectation over policy choices and over state transitions:

$$\begin{split} J(\tilde{\pi}) - J(\pi) &= \mathbb{E}_{\mathcal{T} \sim \tilde{\pi}} \sum_{t=0} \gamma^t A^\pi(s_t, a_t) = \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\tilde{\pi}}} \mathbb{E}_{a \sim \tilde{\pi}} A^\pi(s_t, a_t) = \\ \{\text{importance sampling}\} &= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\tilde{\pi}}} \mathbb{E}_{a \sim \pi} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} A^\pi(s_t, a_t) \end{split}$$

Suppose π is current policy and $\tilde{\pi}$ is a policy after one optimization step. To make this step, we can't sample from $d_{\tilde{\pi}}$.

Suppose π is current policy and $\tilde{\pi}$ is a policy after one optimization step. To make this step, we can't sample from $d_{\tilde{\pi}}$.

Available approximation:

$$egin{aligned} &rac{1}{1-\gamma}\mathbb{E}_{s\sim d_{\overline{\pi}}}\mathbb{E}_{a\sim\pi}rac{ ilde{\pi}(a_t\mid s_t)}{\pi(a_t\mid s_t)}A^{\pi}(s_t,a_t) pprox \ &pprox rac{1}{1-\gamma}\mathbb{E}_{s\sim d_{\overline{\pi}}}\mathbb{E}_{a\sim\pi}rac{ ilde{\pi}(a_t\mid s_t)}{\pi(a_t\mid s_t)}A^{\pi}(s_t,a_t) = \end{aligned}$$

Suppose π is current policy and $\tilde{\pi}$ is a policy after one optimization step. To make this step, we can't sample from $d_{\tilde{\pi}}$.

Available approximation:

$$\frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\tilde{\pi}}} \mathbb{E}_{a \sim \pi} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} A^{\pi}(s_t, a_t) \approx
\approx \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi}} \mathbb{E}_{a \sim \pi} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} A^{\pi}(s_t, a_t) =
= \mathbb{E}_{\mathcal{T} \sim \pi} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} A^{\pi}(s_t, a_t) \stackrel{\text{def}}{=} L(\tilde{\pi})$$

Suppose π is current policy and $\tilde{\pi}$ is a policy after one optimization step. To make this step, we can't sample from $d_{\tilde{\pi}}$.

Available approximation:

$$egin{aligned} &rac{1}{1-\gamma}\mathbb{E}_{s\sim d_{ ilde{\pi}}}\mathbb{E}_{a\sim\pi}rac{ ilde{\pi}(a_t\mid s_t)}{\pi(a_t\mid s_t)}A^{\pi}(s_t,a_t)pprox \ &pprox rac{1}{1-\gamma}\mathbb{E}_{s\sim d_{\pi}}\mathbb{E}_{a\sim\pi}rac{ ilde{\pi}(a_t\mid s_t)}{\pi(a_t\mid s_t)}A^{\pi}(s_t,a_t) = \ &= \mathbb{E}_{\mathcal{T}\sim\pi}rac{ ilde{\pi}(a_t\mid s_t)}{\pi(a_t\mid s_t)}A^{\pi}(s_t,a_t) \stackrel{ ext{def}}{=} L(ilde{\pi}) \end{aligned}$$

Theorem:

If ε is the approximation error:

$$|\varepsilon| \leq \mathsf{Const}\,\mathit{KL}^\mathsf{max}(\tilde{\pi} \parallel \pi)$$

$$\begin{split} \left. \nabla_{\theta} L(\tilde{\pi}(\theta)) \right|_{\theta_{k}} &= \left. \nabla_{\theta} \left[\mathbb{E}_{\mathcal{T} \sim \pi} \frac{\tilde{\pi}_{\theta}(a_{t} \mid s_{t})}{\pi(a_{t} \mid s_{t})} A^{\pi}(s_{t}, a_{t}) \right] \right|_{\theta_{k}} = \\ &= \mathbb{E}_{\mathcal{T} \sim \pi} \frac{\nabla_{\theta} \tilde{\pi}_{\theta}(a_{t} \mid s_{t}) |_{\theta_{k}}}{\pi(a_{t} \mid s_{t})} A^{\pi}(s_{t}, a_{t}) = \\ \left\{ \pi \equiv \tilde{\pi}(\theta_{k}) \right\} &= \mathbb{E}_{\mathcal{T} \sim \pi} \left. \nabla_{\theta} \log \tilde{\pi}_{\theta}(a_{t} \mid s_{t}) |_{\theta_{k}} A^{\pi}(s_{t}, a_{t}) \right. \end{split}$$

$$\begin{split} \left. \nabla_{\theta} L(\tilde{\pi}(\theta)) \right|_{\theta_{k}} &= \left. \nabla_{\theta} \left[\mathbb{E}_{\mathcal{T} \sim \pi} \frac{\tilde{\pi}_{\theta}(a_{t} \mid s_{t})}{\pi(a_{t} \mid s_{t})} A^{\pi}(s_{t}, a_{t}) \right] \right|_{\theta_{k}} = \\ &= \mathbb{E}_{\mathcal{T} \sim \pi} \frac{\nabla_{\theta} \tilde{\pi}_{\theta}(a_{t} \mid s_{t}) |_{\theta_{k}}}{\pi(a_{t} \mid s_{t})} A^{\pi}(s_{t}, a_{t}) = \\ \left\{ \pi \equiv \tilde{\pi}(\theta_{k}) \right\} &= \mathbb{E}_{\mathcal{T} \sim \pi} \left. \nabla_{\theta} \log \tilde{\pi}_{\theta}(a_{t} \mid s_{t}) |_{\theta_{k}} A^{\pi}(s_{t}, a_{t}) \right. \end{split}$$

From approximation error bound follows:

$$J(\tilde{\pi}) - J(\pi) \geq L(\tilde{\pi}) - C \ \mathit{KL}^{\mathsf{max}}(\tilde{\pi} \parallel \pi)$$

From approximation error bound follows:

$$J(\tilde{\pi}) - J(\pi) \geq L(\tilde{\pi}) - C \ KL^{\mathsf{max}}(\tilde{\pi} \parallel \pi)$$

Consider the lower bound optimization procedure:

$$\pi_{k+1} = \operatorname*{argmax}_{ ilde{\pi}} \left[L(ilde{\pi}) - C \ \mathit{KL}^{\mathsf{max}}(ilde{\pi} \parallel \pi_k) \right]$$

From approximation error bound follows:

$$J(\tilde{\pi}) - J(\pi) \geq L(\tilde{\pi}) - C \ \mathit{KL}^{\mathsf{max}}(\tilde{\pi} \parallel \pi)$$

Consider the lower bound optimization procedure:

$$\pi_{k+1} = \operatorname*{argmax}_{ ilde{\pi}} \left[L(ilde{\pi}) - C \ \mathit{KL}^{\mathsf{max}}(ilde{\pi} \parallel \pi_k)
ight]$$

Then:

$$J(\pi_{k+1}) - J(\pi_k) \ge L(\pi_{k+1}) - C KL^{\max}(\pi_{k+1} \parallel \pi_k) \ge L(\pi_k) - C KL^{\max}(\pi_k \parallel \pi_k) = 0 - 0 = 0$$

From approximation error bound follows:

$$J(\tilde{\pi}) - J(\pi) \geq L(\tilde{\pi}) - C KL^{\mathsf{max}}(\tilde{\pi} \parallel \pi)$$

Consider the lower bound optimization procedure:

$$\pi_{k+1} = \operatorname*{argmax}_{ ilde{\pi}} \left[\mathit{L}(ilde{\pi}) - \mathit{C} \; \mathit{KL}^{\mathsf{max}}(ilde{\pi} \parallel \pi_k)
ight]$$

Then:

$$J(\pi_{k+1}) - J(\pi_k) \ge L(\pi_{k+1}) - C KL^{\max}(\pi_{k+1} \parallel \pi_k) \ge L(\pi_k) - C KL^{\max}(\pi_k \parallel \pi_k) = 0 - 0 = 0$$

✓ procedure guarantees to improve $J(\pi)!$

$$\pi_{k+1} = \operatorname*{argmax}_{\tilde{\pi}} \left[\mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(\mathsf{a}_t \mid s_t)}{\pi_k(\mathsf{a}_t \mid s_t)} A^{\pi_k}(s_t, \mathsf{a}_t) - C \ \mathit{KL}^{\mathsf{max}}(\tilde{\pi} \parallel \pi_k) \right]$$

- \times A^{π} is never precise.
- \times expectations estimations are never precise.

$$\pi_{k+1} = \operatorname*{argmax}_{\tilde{\pi}} \left[\mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi_k(a_t \mid s_t)} A^{\pi_k}(s_t, a_t) - C \underbrace{\mathsf{KL}^{\mathsf{max}}(\tilde{\pi} \parallel \pi_k)}_{\text{fig. }} \right]$$

- \times A^{π} is never precise.
- \times expectations estimations are never precise.
- × we can't calculate maximal divergence between two policies over *all* states.

$$\pi_{k+1} = \operatorname*{argmax}_{\tilde{\pi}} \left[\mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi_k(a_t \mid s_t)} A^{\pi_k}(s_t, a_t) - C \ \textit{KL}^{\max}(\tilde{\pi} \parallel \pi_k) \right]$$

- \times A^{π} is never precise.
- \times expectations estimations are never precise.
- x we can't calculate maximal divergence between two policies over all states.

$$\pi_{k+1} = \operatorname*{argmax}_{\tilde{\pi}} \left[\mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(\mathsf{a}_t \mid \mathsf{s}_t)}{\pi_k(\mathsf{a}_t \mid \mathsf{s}_t)} A^{\pi_k}(\mathsf{s}_t, \mathsf{a}_t) - \frac{\mathsf{C}}{\mathsf{KL}} \mathsf{^{max}}(\tilde{\pi} \parallel \pi_k) \right]$$

- \times A^{π} is never precise.
- × expectations estimations are never precise.
- × we can't calculate maximal divergence between two policies over *all* states.

TRPO:
$$\mathit{KL}^{\max}(\tilde{\pi} \parallel \pi_k) \approx \mathbb{E}_{s \sim d_{\pi_k}} \mathit{KL}(\tilde{\pi} \parallel \pi_k)[s]$$

 \times the constant over here is huge when γ is close to 1 and depends on MDP characteristics.

$$\pi_{k+1} = \operatorname*{argmax}_{\tilde{\pi}} \left[\mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(\mathsf{a}_t \mid \mathsf{s}_t)}{\pi_k(\mathsf{a}_t \mid \mathsf{s}_t)} A^{\pi_k}(\mathsf{s}_t, \mathsf{a}_t) - C \ \mathsf{KL}^{\mathsf{max}}(\tilde{\pi} \parallel \pi_k) \right]$$

- \times A^{π} is never precise.
- × expectations estimations are never precise.
- × we can't calculate maximal divergence between two policies over all states.

TRPO:
$$\mathit{KL}^{\max}(\tilde{\pi} \parallel \pi_k) \approx \mathbb{E}_{s \sim d_{\pi_k}} \mathit{KL}(\tilde{\pi} \parallel \pi_k)[s]$$

imes the constant over here is huge when γ is close to 1 and depends on MDP characteristics.

TRPO: Trust-Region optimization scheme!

Trust-Region optimization

$$\begin{cases} \pi_{k+1} = \mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(a_t|s_t)}{\pi_k(a_t|s_t)} A^{\pi_k}(s_t, a_t) \rightarrow \max_{\tilde{\pi}} \\ \text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi_k}} \mathit{KL}(\tilde{\pi} \parallel \pi_k)[s] \leq \delta \end{cases}$$

Trust-Region optimization

$$\begin{cases} \pi_{k+1} = \mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi_k(a_t \mid s_t)} A^{\pi_k}(s_t, a_t) \to \max_{\tilde{\pi}} \\ \text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi_k}} \ \textit{KL}(\tilde{\pi} \parallel \pi_k)[s] \leq \delta \end{cases}$$

imes δ is a hyperparameter.

Trust-Region optimization

$$\begin{cases} \pi_{k+1} = \mathbb{E}_{\mathcal{T} \sim \pi_k} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi_k(a_t \mid s_t)} A^{\pi_k}(s_t, a_t) \to \max_{\tilde{\pi}} \\ \text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi_k}} \frac{\mathsf{KL}(\tilde{\pi} \parallel \pi_k)[s] \leq \delta}{\mathsf{KL}(\tilde{\pi} \parallel \pi_k)[s]} \end{cases}$$

imes δ is a hyperparameter.

- √ respects distance in policy space!
 - also known in theory as natural gradient. In previous policy gradient methods we implicitly used the constrain

$$\|\tilde{\theta} - \theta_k\|_2^2 \le \alpha$$

where α was learning rate of optimizer.

Natural Policy Gradient

Metric in most general form may depend from current coordinates:

$$\rho(x, x + d) = d^T G(x) d$$

• G(x) is called *metric tensor*.

Natural Policy Gradient

Metric in most general form may depend from current coordinates:

$$\rho(x, x + d) = d^T G(x) d$$

• G(x) is called *metric tensor*.

Theorem:

For space of policies, Fisher information matrix is metric tensor:

$$H(\theta) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) \log \pi_{\theta}(a \mid s)^{T} \right]$$

Natural Policy Gradient

Metric in most general form may depend from current coordinates:

$$\rho(x, x + d) = d^T G(x) d$$

• G(x) is called *metric tensor*.

Theorem:

For space of policies, Fisher information matrix is metric tensor:

$$H(\theta) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) \log \pi_{\theta}(a \mid s)^{T} \right]$$

Main natural gradient property (parametrization invariance)

For any parametrization π_{θ}

$$H^{-1}\nabla_{\theta}\pi_{\theta}$$

is the same vector in policies space.

Practical application

Recalling standard optimization methods to solve constraint task:

$$\begin{cases} \mathit{L}(\theta) \to \max_{\theta} \\ \text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi(\theta_k)}} \mathit{KL}(\pi(\theta) \parallel \pi(\theta_k))[s] \leq \delta \end{cases}$$

Practical application

Recalling standard optimization methods to solve constraint task:

$$\begin{cases} L(\theta) \to \max_{\theta} \\ \text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi(\theta_k)}} \ \textit{KL}(\pi(\theta) \parallel \pi(\theta_k))[s] \le \delta \end{cases}$$

Linear approximation of optimized objective:

$$L(\theta) pprox L(\theta_k) + g^T(\theta - \theta_k)$$
 where $g = \nabla_{\theta} L(\theta)|_{\theta_k}$

Practical application

Recalling standard optimization methods to solve constraint task:

$$\begin{cases} L(\theta) \to \max_{\theta} \\ \text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi(\theta_k)}} \ \textit{KL}(\pi(\theta) \parallel \pi(\theta_k))[s] \le \delta \end{cases}$$

Linear approximation of optimized objective:

$$L(\theta) pprox L(\theta_k) + g^T(\theta - \theta_k)$$
 where $g = \nabla_{\theta} L(\theta)|_{\theta_k}$

Quadratic approximation of constraint 7:

$$\begin{split} \mathbb{E}_{s} \ \textit{KL}(\pi(\theta) \parallel \pi(\theta_{k}))[s] &\approx (\theta - \theta_{k})^{T} \textit{H}(\theta - \theta_{k}) \\ \text{where} \quad \textit{H} &= \mathbb{E}_{s} \left. \nabla_{\theta}^{2} \ \textit{KL}(\pi(\theta) \parallel \pi(\theta_{k}))[s] \right|_{\theta_{k}} \end{split}$$

⁷where is linear term?

Theorem:

 $\nabla_{\theta}^2 \mathit{KL}(\pi(\theta) \parallel \pi(\theta_k))[s]|_{\theta_k}$ is Fisher information matrix.

√ that's why solving this task is equivalent to gradient ascent with natural policy gradient!

Theorem:

 $\nabla^2_{\theta} \operatorname{\mathit{KL}}(\pi(\theta) \parallel \pi(\theta_k))[s] \big|_{\theta_k}$ is Fisher information matrix.

√ that's why solving this task is equivalent to gradient ascent with natural policy gradient!

Solution (derived with K.K.T. theorem):

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{g_k^T H_k^{-1} g_k}} H_k^{-1} g_k$$

Theorem:

 $\nabla^2_{\theta} \mathit{KL}(\pi(\theta) \parallel \pi(\theta_k))[s]|_{\theta_k}$ is Fisher information matrix.

√ that's why solving this task is equivalent to gradient ascent with natural policy gradient!

Solution (derived with K.K.T. theorem):

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{g_k^T H_k^{-1} g_k}} H_k^{-1} g_k$$

 \checkmark δ substitutes learning rate.

 \times g_k, H_k can only be estimated via samples.

Theorem:

 $\nabla_{\theta}^2 \mathit{KL}(\pi(\theta) \parallel \pi(\theta_k))[s]|_{\theta_k}$ is Fisher information matrix.

✓ that's why solving this task is equivalent to gradient ascent with natural policy gradient!

Solution (derived with K.K.T. theorem):

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{g_k^T H_k^{-1} g_k}} H_k^{-1} g_k$$

- \checkmark δ substitutes learning rate.
- \times g_k, H_k can only be estimated via samples.

 \times **Problem:** how to compute H_{ν}^{-1} on practice? For neural networks with N parameters inversion complexity is $\mathcal{O}(N^3)!...$

Remembering CG algorithm:

• solves system of linear equations $H_k x = g_k$.

Remembering CG algorithm:

- solves system of linear equations $H_k x = g_k$.
- ✓ after j iterations returns sub-optimal solution (approximation of $H^{-1}g$, optimal in Krylov subspace, $\mathcal{L}(g, Hg, H^2g \dots H^{j-1}g)$)

Remembering CG algorithm:

- solves system of linear equations $H_k x = g_k$.
- ✓ after j iterations returns sub-optimal solution (approximation of $H^{-1}g$, optimal in Krylov subspace, $\mathcal{L}(g, Hg, H^2g \dots H^{j-1}g)$)
- \checkmark only $f(v) = H_k v$ is required.
 - $= \ \mathsf{can} \ \mathsf{be} \ \mathsf{implemented} \ \mathsf{on} \ \mathsf{PyTorch!}$

Remembering CG algorithm:

- solves system of linear equations $H_k x = g_k$.
- ✓ after j iterations returns sub-optimal solution (approximation of $H^{-1}g$, optimal in Krylov subspace, $\mathcal{L}(g, Hg, H^2g \dots H^{j-1}g)$)
- \checkmark only $f(v) = H_k v$ is required.
 - = can be implemented on PyTorch!

With all these approximations no theoretical guarantees remain, of course.

With all these approximations no theoretical guarantees remain, of course.

What is suggested in different papers?

- NPG (2005): just use $H^{-1}g$ as gradient, computed somehow, without looking for improvement guarantees.

With all these approximations no theoretical guarantees remain, of course.

What is suggested in different papers?

- NPG (2005): just use $H^{-1}g$ as gradient, computed somehow, without looking for improvement guarantees.
- TRPO (2017): use line search with basic backtracking to guarantee $L(\pi) \geq 0$ and $\mathit{KL}(\pi \parallel \pi_k) < \delta$.

With all these approximations no theoretical guarantees remain, of course.

What is suggested in different papers?

- NPG (2005): just use $H^{-1}g$ as gradient, computed somehow, without looking for improvement guarantees.
- TRPO (2017): use line search with basic backtracking to guarantee $L(\pi) \geq 0$ and $KL(\pi \parallel \pi_k) < \delta$.
- PPO (2017): see next.
- ACKTR (2017): coming soon.

Proximal Policy Optimization (PPO) (2017)

TRPO drawbacks

- imes relatively complicated
 - × requires hessian-involved computations
- \times is not compatible with noised architectures (like dropout)⁸

⁸why?

Recall TRPO was derived as optimization of *surrogate* objective (pessimistic bound):

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A^{\pi_{old}}(s_t, a_t) - C \, \mathit{KL}^{\mathsf{max}}\left(\pi_{\theta} \parallel \pi_{old}\right) \rightarrow \max_{\theta}$$

Recall TRPO was derived as optimization of *surrogate* objective (pessimistic bound):

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A^{\pi_{old}}(s_t, a_t) - C \, \mathit{KL}^{\mathsf{max}}\left(\pi_{\theta} \parallel \pi_{old}\right) \rightarrow \max_{\theta}$$

May be straightforward direct optimization of this surrogate will behave similar to TRPO?

Recall TRPO was derived as optimization of *surrogate* objective (pessimistic bound):

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A^{\pi_{old}}(s_t, a_t) - C \overset{\mathsf{KL}^{\mathsf{max}}}{\mathsf{KL}} (\pi_{\theta} \parallel \pi_{old}) \rightarrow \max_{\theta}$$

May be straightforward direct optimization of this surrogate will behave similar to TRPO?

× KL^{max} is hard to estimate

Recall TRPO was derived as optimization of *surrogate* objective (pessimistic bound):

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A^{\pi_{old}}(s_t, a_t) - C \ \textit{KL}(\pi_{\theta} \parallel \pi_{old})[s] \right] \rightarrow \max_{\theta}$$

May be straightforward direct optimization of this surrogate will behave similar to TRPO?

- × KL^{max} is hard to estimate
 - same as in TRPO: replace with average over states.

Simplifying TRPO...

Recall TRPO was derived as optimization of *surrogate* objective (pessimistic bound):

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A^{\pi_{old}}(s_t, a_t) - \frac{\mathsf{C}}{\mathsf{KL}} \mathsf{KL}(\pi_{\theta} \parallel \pi_{old})[s] \right] \to \max_{\theta}$$

May be straightforward direct optimization of this surrogate will behave similar to TRPO?

- \times KL^{max} is hard to estimate
 - same as in TRPO: replace with average over states.
- \times the constant is not known.

Simplifying TRPO...

Recall TRPO was derived as optimization of *surrogate* objective (pessimistic bound):

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A^{\pi_{old}}(s_t, a_t) - C \ \textit{KL}(\pi_{\theta} \parallel \pi_{old})[s] \right] \rightarrow \max_{\theta}$$

May be straightforward direct optimization of this surrogate will behave similar to TRPO?

- × KL^{max} is hard to estimate
 - same as in TRPO: replace with average over states.
- \times the constant is not known.
 - PPO: just another hyperparameter!

PPO

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \left[\frac{\pi_{\theta}(\mathsf{a}_t \mid \mathsf{s}_t)}{\pi_{old}(\mathsf{a}_t \mid \mathsf{s}_t)} A^{\pi_{old}}(\mathsf{s}_t, \mathsf{a}_t) - \beta \ \mathsf{KL}(\pi_{\theta} \parallel \pi_{old})[s] \right] \rightarrow \max_{\theta}$$

Empirically behaves poorly.

PPO

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \left[\frac{\pi_{\theta}(\mathsf{a}_t \mid \mathsf{s}_t)}{\pi_{old}(\mathsf{a}_t \mid \mathsf{s}_t)} A^{\pi_{old}}(\mathsf{s}_t, \mathsf{a}_t) - \beta \ \mathsf{KL}(\pi_{\theta} \parallel \pi_{old})[s] \right] \to \max_{\theta}$$

Empirically behaves poorly.

 \times reason: $\frac{\pi_{\theta}(a_t|s_t)}{\pi_{old}(a_t|s_t)}$ may be exceedingly huge.

PPO

$$\mathbb{E}_{\mathcal{T} \sim \pi_{old}} \left[\frac{\pi_{\theta}(\mathsf{a}_t \mid \mathsf{s}_t)}{\pi_{old}(\mathsf{a}_t \mid \mathsf{s}_t)} A^{\pi_{old}}(\mathsf{s}_t, \mathsf{a}_t) - \beta \ \mathsf{KL}(\pi_{\theta} \parallel \pi_{old})[\mathsf{s}] \right] \rightarrow \max_{\theta}$$

Empirically behaves poorly.

 \times reason: $\frac{\pi_{\theta}(a_t|s_t)}{\pi_{old}(a_t|s_t)}$ may be exceedingly huge.

Proximal Policy Optimization (2017) suggests:

JUST CLIP IT!

Clipping...

Denote

$$r(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)}$$

Clipped version:

$$r^{\textit{CLIP}}(\theta) = \textit{clip}(r(\theta), 1 - \epsilon, 1 + \epsilon)$$

where $\epsilon \approx 0.2$ — hyperparameter

Clipping...

Denote

$$r(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)}$$

Clipped version:

$$r^{\textit{CLIP}}(\theta) = \textit{clip}(r(\theta), 1 - \epsilon, 1 + \epsilon)$$

where $\epsilon \approx$ 0.2 — hyperparameter

Problem: this substitute leads to objective stops being a lower bound.

Clipping...

Denote

$$r(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)}$$

Clipped version:

$$r^{CLIP}(\theta) = clip(r(\theta), 1 - \epsilon, 1 + \epsilon)$$

where $\epsilon \approx$ 0.2 — hyperparameter

Problem: this substitute leads to objective stops being a lower bound. Solution:

$$\min \left(r(\theta)A, r^{CLIP}(\theta)A \right)$$

 \checkmark concerns A can have any sign!

$$\mathbb{E}_{\pi_{\textit{old}}}\left[\min\left(r(\theta)A^{\pi_{\textit{old}}}(s_t, a_t), r^{\textit{CLIP}}(\theta)A^{\pi_{\textit{old}}}(s_t, a_t)\right) \right. \\ \left. -\beta \, \textit{KL}(\pi_\theta \parallel \pi_{\textit{old}})[s]\right] \rightarrow \max_{\theta} \left[\left(\frac{1}{2} \left(\frac{1$$

Final objective:

$$\mathbb{E}_{\pi_{old}}\left[\min\left(r(\theta)A^{\pi_{old}}(s_t,a_t),r^{CLIP}(\theta)A^{\pi_{old}}(s_t,a_t)\right)\right. - \beta \left. \mathit{KL}(\pi_\theta \parallel \pi_{old})[s]\right] \to \max_{\theta}$$

√ allegedly similar or better results than TRPO despite being first-order method.

$$\mathbb{E}_{\pi_{old}}\left[\min\left(r(\theta)A^{\pi_{old}}(s_t,a_t),r^{CLIP}(\theta)A^{\pi_{old}}(s_t,a_t)\right)\right. \\ \left.-\beta \; \mathit{KL}(\pi_\theta \parallel \pi_{old})[s]\right] \to \max_{\theta}$$

- √ allegedly similar or better results than TRPO despite being first-order method.
 - several iterations of optimization are suggested after each data collecting.

$$\mathbb{E}_{\pi_{old}}\left[\min\left(r(\theta)A^{\pi_{old}}(s_t, a_t), r^{CLIP}(\theta)A^{\pi_{old}}(s_t, a_t)\right) - \frac{\beta \ KL(\pi_\theta \parallel \pi_{old})[s]}{\theta}\right] \to \max_{\theta}$$

- √ allegedly similar or better results than TRPO despite being first-order method.
 - several iterations of optimization are suggested after each data collecting.
- √ (empirical ablation study) second term can be thrown away!

$$\mathbb{E}_{\pi_{old}}\left[\min\left(r(\theta)A^{\pi_{old}}(s_t,a_t),r^{CLIP}(\theta)A^{\pi_{old}}(s_t,a_t)\right)\right] \to \max_{\theta}$$

- √ allegedly similar or better results than TRPO despite being first-order method.
 - several iterations of optimization are suggested after each data collecting.
- √ (empirical ablation study) second term can be thrown away!

NEXT: ACKTR