Electronics Program Library

Networks

Circuits

Filters

Electrostatics

Electrodynamics

Radiation & Propagation

CONTENTS

Electronics

4

CONTENTS

Introduction	6
Networks	8
Filters	
Tuned coupled circuits	
Linear circuit theory	40
Non-linear circuits	48
Electron dynamics	54
Radiation and propagation	60
Fourier analysis	65
Blank sheets for your own programs	75

How to use these programs

Each program is arranged as follows:

- On the left of the page, explanatory information and the 'execution sequence', the sequence of keystrokes necessary for running the program. Results displayed are printed in gold.
- 2. In the first column on the right hand side of the page, the sequence of keystrokes which make up the program.
- 3. In the second and third columns on the right hand side of the page, the program in check symbol and step number form (see section on checking the program).

Notes

1. Where a key has more than one function, the relevant function is printed as the keystroke in the first column

e.g. the keystroke 8 may appear as 8, cos or arccos.

- 2. The symbol ▼ within a program always refers to the key ·/EE/-
- 3. The symbol # refers to 3
- 4. The abbreviation gin is 'go if neg' and so refers to the key 1

Entering the program

To enter a program into the calculator:

- 1. Press av 2 0 0 Display shows step programmed at 00 in check symbol form as described below.
- 2. Press RUN No change in display.
- 3. Press the sequence of keys for the program as shown in the first column of the program page.

 At each stage the step about to be overwritten is displayed.

 When the machine is first switched on every step is zero.
- 4. Press C/CE Normal number display is resumed.
- 5. Press 🔊 🙎 0 0 The step programmed at 00 will be displayed.

Checking the program

Each of the programs in the library is shown in check symbol form in the second column on the right-hand side of the page.

C/CE repeatedly, and at each stage the check symbol will Press AV appear on the left of the display with the step number on the right. Ignore the four zeros in the display.

e.q.

check symbol

step number

After stepping through the program, press

before execution.

Finally, press C/CE and the program is ready for use.

If the check symbol for a particular step number is not as indicated in the last two columns of the program page:

1. Press

followed by the step number if the appropriate step number is not already displayed.

learn Press AV 2. RUN

- Enter the correct keystroke. The display will then show the next 3. step in the program. If this is also incorrect, enter the correct keystroke. At each stage, the step about to be overwritten will be displayed.
- When correction has been completed, press C/CE. Any step which has not been overwritten will not be affected.

5. Press AV

presentation
AT

go to

Note

To restore normal use of the calculator after entering or checking the program, press C/CE

Running the program

Press the sequence of keys as shown in the program library in the execution sequence. Results displayed are printed in gold.

REACTANCES AND IMPEDANCES

General note: conventions:

Voltage transfer ratios and current transfer ratios denoted by a_v and a_i are positive fractions $0 \leqslant a \leqslant 1$

Expressed in dB as gain, A = 20 log a is -ve

When expressed as an attenuation in dB, A is +ve and is given by $A = -20 \log a$

Power gain = $a_v a_i = a^2$, so A = 10 log (a^2) = 20 log a

Characteristic or design impedance = R_o

RESISTORS IN PARALLEL

(capacitors in series) (inductors in parallel) (conductors in series)

Pre-execution:

0 / AV / sto / C/CE / AV / AV / goto / 0 / 0 /

Execution:

 $R_1 / RUN / R_2 / RUN / \frac{R_1 R_2}{R_1 + R_2} / R_3 / \cdots / R_n /$

RUN / R_{parallel}

Alternative execution:

To find resistor R_2 required to make parallel combination of R_1 and $R_2 = R$:

 $R/RUN/R_1/AV/AV/T-/RUN/R_2$

(R₁ must be greater than R)

÷	G	00
+	Ε	01
rcl	5	02
		03
sto	2	04
÷	G	05
=	_	06
stop	0	07
o ▼ 01	Α	08
goto	2	09
0	0	10
0	0	11
W 837	1AS	12
Migra	N	13
	175	14
		15
		16
V 391		17
MAR	- PK	18
T TO	.in	19
18800	10	20
\$1.00C		21
pate	2	22
19	10	23
101	W	24
		25
		26
1. XV	41-15	27
77		28
8/11/	11-21	29
		30
		31
		32
-		33
		34
		35

REACTANCE - FREQUENCY CONVERSIONS

$$X_{\rm C} = \frac{1}{2\pi f C} = \frac{1}{\omega C}$$
 (i)

$$X_L = 2\pi f L = \omega L$$
 (ii)

$$C = \frac{1}{2\pi f X_C} = \frac{1}{\omega X_C}$$
 (iii)

$$L = \frac{X_L}{2\pi f} = \frac{X_L}{\omega}$$
 (iv)

$$f = \frac{1}{2\pi C X_C}$$
 (v)

$$f = \frac{X_L}{2\pi I}$$
 (vi)

Execution:

$$f/RUN / \begin{cases} \div / RUN / \omega \\ \text{or } C / \div / RUN / X_{C} \quad \text{(i)} \\ \text{or } L / RUN / X_{L} \quad \text{(ii)} \\ \text{or } X_{C} / \div / RUN / C \quad \text{(iii)} \\ \text{or } \div / X_{L} / RUN / L \quad \text{(iv)} \end{cases}$$

$$C/RUN/X_c/\div/RUN/f$$
 (v)

$$L/RUN/\div/X_L/RUN/f$$
 (vi)

X		00
#	3	01
6	6	02
	Α	03
2	2	04
8	8	05
3	3	06
. 1	1	07
8	8	80
5	5	09
3	3	10
**	G	11
÷	G	12
stop	0	13
÷	G	14
. √ 518 .	4.6	15
stop	0	16
•	Α	17
goto	2	18
0	0	19
0	0	20
exe exe		21
resistor		22
to neutr		23
V.BV		24
		25
ark an a		26
		27
		28
		29
		30
		31
		32
		33
		34
		35

MAGNITUDE AND PHASE OF IMPEDANCE

$$Z = R + jX = |Z|e^{j\phi}$$

 $|Z| = \sqrt{R^2 + X^2}$ $\phi = \arctan\left(\frac{X}{R}\right)$

Execution:

X / RUN / R / RUN / |Z | / RUN / |

For ϕ in degrees, insert $/ \triangledown / R \rightarrow D / after step 19.$

		0.5
sto	2	00
X	•	01
+	E	02
(6	03
stop	0	04
÷	G	05
V	A	06
MEx	5	07
÷	G	80
=	_	09
•	Α	10
arctan	9	11
•	Α	12
MEx	5	13
X	• 3	14
)	6	15
=	_	16
\sqrt{X}	1	17
stop	0	18
rcl	5	19
stop	0	20
•	Α	21
goto	2	22
0	0	23
0	0	24
goto	2	25
18/18/18	116	26
2		27
		28
		29
		30
		31
		32
		33
		34
		35

RESISTIVE VOLTAGE

To find R_1 , R_2 given $R = R_1 + R_2$ and a or A

where
$$a = \frac{e_2}{e_1}$$
 $A = 20 \log \frac{e_2}{e_1}$

$$A = 20 \log \frac{e_2}{e_1}$$

Execution:

R/RUN/a/RUN/R₂/RUN/R₁

If A rather than a is given, see program on page 13.

(6 01	-	F	00
stop 0 03 stop 0 05 = - 06 stop 0 07 ▼ A 08 goto 2 09 0 0 10 0 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34		6	01
) 6 04 stop 0 05 = - 06 stop 0 07 ▼ A 08 goto 2 09 0 0 10 0 0 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34	X	•	02
stop 0 05 = - 06 stop 0 07 ▼ A 08 goto 2 09 0 0 10 0 0 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34	stop	0	03
=)	6	04
stop 0 07 ▼ A 08 goto 2 09 0 0 10 0 0 11 12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	stop	0	05
▼ A 08 goto 2 09 0 0 10 0 0 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 24 25 25 26 27 28 29 30 31 31 32 33 34	=	-	06
goto 2 09 0 0 10 0 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34	stop	0	07
0 0 10 0 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33	•	Α	80
0 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	goto	2	09
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	0	0	10
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	0	0	11
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33			12
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33			13
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	e i i v		14
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33			15
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33		1	16
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	7		17
20 21 22 23 24 25 26 27 28 29 30 31 32 33	notes		18
21 22 23 24 25 26 27 28 29 30 31 32 33	1.81		19
22 23 24 25 26 27 28 29 30 31 32 33	0	10	20
23 24 25 26 27 28 29 30 31 32 33	d'eqrees	mi è	21
24 25 26 27 28 29 30 31 32 33			22
25 26 27 28 29 30 31 32 33 34			23
26 27 28 29 30 31 32 33 34			24
27 28 29 30 31 32 33 34			25
28 29 30 31 32 33 34			26
29 30 31 32 33 34			27
30 31 32 33 34			28
30 31 32 33 34			29
32 33 34			
33 34			31
34			32
34			
35			
			35

RESISTIVE VOLTAGE DIVIDER

Given total resistance and attenuation, to find resistor values:

$$R = R_1 + R_2$$

$$a = \frac{e_2}{e_1}$$
, $A = 20 \log \frac{e_2}{e_1} dB$

Execution:

R / RUN / A / RUN / a / RUN / R_2 / RUN / R_1 / RUN / A / RUN / a / RUN / R_2 / RUN / R_1 / RUN / A / \cdots

If a is given, execute as below, or see shorter program on page 12.

 $R/RUN/AV/goto/13/a/RUN/R_2/RUN/R_1/RUN/AV/aV/goto/13/a/RUN/R_2/...$

	0	00
sto	2	00
stop	0	01
÷	G	02
#	3	03
8	8	04
•	Α	05
6	6	06
8	8	07
5	5	08
8	8	09
9	9	10
	F	11
· =	_	12
•	Α	13
e×	4	14
stop	0	15
X		16
rcl	5	17
_	F	18
stop	0	19
rcl	5	20
_	F	21
. =	_	22
stop	0	23
•	A	24
goto	2	25
0	0	26
2	2	27
	ılqıı	28
		29
		30
		31
		32
		33
		34
		35
		-

RESISTIVE L—PAD MATCHING **IMPEDANCES**

$$R_1 = \sqrt{R_a(R_a - R_b)} \qquad R_2 = \frac{R_a R_b}{R_1}$$

$$R_2 = \frac{R_a R_b}{R_1}$$

$$a_v = \frac{R_a - R_1}{R_a}$$

$$A_v = 20 \log a_v$$

$$a_i = \frac{R_a}{R_a + R_1}$$

$$A_i = 20 \log a_i$$

$$g = a_v a_i$$

$$G = 10 \log a_v a_i$$

Pre-execution:

▲▼ / ▲▼ / goto / 0 / 0 / if previous run incomplete

sto	2	00
X	•	01
4 5 4 1	F	02
(6	03
stop	0	04
X	1	05
rcl	5	06
)	6	07
sto	2	08
o= to	-	09
\sqrt{X}	1	10
stop	0	11
*	G	12
X		13
rcl	5	14
X		15
stop	0	16
÷	G	17
X		18
rcl	5	19
+	E	20
sto	2	21
#	3	22
1	1	23
_	1	24
\sqrt{X}	1	25
oci - mev		26
oso(no	F 6	27
-	Α	28
MEx	5	29
\sqrt{X}	1	30
)	6	31
÷	G	32
stop	0	33
=	_	34
stop	0	35

ATTENUATOR SECTIONS TATVE

Execution:

 $R_a/RUN/R_b/RUN/R_1/RUN/R_2/RUN/\sqrt{g}$ / and continue as required with one of the following sequences:

- (i) To find a_v , A_v , A_i , G: $AV / AV / MEx / RUN / a_v / AV / In / X / 8.68589 / = /A_v$ $AV / AV / MEx / AV / In / X / 8.68589 / + /G

 <math>/ / AV / rcl / = /A_i$ or
- (ii) To find a_v:

 / ▲▼ / rcl / RUN /a_v or
- (iii) To find a_i:

 /1/X/ ▲▼ /rcl/RUN/a_i or
- (iv) To find g: /1/X/RUN/g or
- (v) To find a_v, g, a₁:

 / ▲▼ / ▲▼ / MEx / RUN /a_v

 / ▲▼ / ▲▼ / MEx / X / = /g

 / ÷ / ▲▼ / rcl / = /a_i

RESISTIVE ATTENUATOR SECTIONS, T-TYPE

Unbalanced T-network Balanced H-network

$$R_o = \sqrt{R_a R_b}$$
, $\rho = \frac{R_a}{R_o} = \frac{R_o}{R_b}$

Design attenuation = a (<1) = $\sqrt{a_v a_i}$

Power attenuation = $A = -20 \log a$

Forward voltage transfer ratio $a_v = \frac{a}{a}$

Forward current transfer ratio $a_i = a\rho$

$$R_1 = \left[\frac{\rho(1+a^2) - 2a}{1-a^2}\right] R_o = (\rho k_1 - k_2) R_o$$

$$R_{3} = \left[\frac{\frac{1}{\rho}(1+a^{2}) - 2a}{1-a^{2}}\right]R_{o} = \left(\frac{1}{\rho}k_{1} - k_{2}\right)R_{o}$$

$$R_2 = \left[\frac{2a}{1 - a^2}\right] R_o = k_2 R_o$$

X		00
(6	01
X		02
	F	03
+	E	03
#	3	05
1	1	06
=	1	07
	2	08
sto ÷	0.0	A STATE OF THE STA
)	G	09
+	6	10
	E	11
X		12
stop	0	13
	F	14
stop	0	15
+	E	16
(6	17
#	3	18
2	2	19
s broit	F	20
rcl	5	21
÷	G	22
rcl	5	23
X		24
stop	0	25
)	6	26
sto	2	27
·	-	28
stop	0	29
X	•	30
÷	G	31
X		32
rcl	5	33
_	F	34
stop	0	35

Pre-execution: use as required:

- (i) given R_a and R_b , find and note ρ and R_b $R_a/\Delta V$ /sto /÷/ $R_b/=/\Delta V$ / $\sqrt{x/\rho}$ / ÷/ \times / ΔV /rcl /=/ R_b
- (ii) given A, find and note a $A / -/ \div / 8.68589 / = / \blacktriangle \checkmark / \blacktriangle \checkmark / e^{\times} / a$ $\blacktriangle \checkmark / \blacktriangle \checkmark / goto / 0 / 0 /$

Execution:

a / RUN / k_2 / R_o / RUN / R_2 / RUN / k_1 / R_o / X / ρ / RUN / R_1 / ρ / RUN / R_2 / = / R_3

Special case, $\rho = 1$:

a / RUN $/k_2$ / R_o / RUN $/R_2$ / RUN $/k_1$ / R_o / RUN $/R_1 = R_3$

RESISTIVE ATTENUATOR SECTIONS, πTYPE

Unbalanced π section

Balanced O section

$$R_o = \sqrt{R_a R_b}$$

$$\rho = \frac{R_a}{R_o} = \frac{R_o}{R_b}$$

 $a_v = forward voltage transfer ratio = \frac{a}{\rho}$

 a_i = forward current transfer ratio = $a\rho$

 $a = design attenuation = \sqrt{a_v a_i}$

A = power attenuation = $-20 \log a$ (in dB)

$$R_1 = \left[\frac{1 - a^2}{\frac{1}{\rho} (1 + a^2) - 2a} \right] R_o$$

$$R_3 = \left[\frac{1 - a^2}{\rho (1 + a^2) - 2a}\right] R_o$$

$$R_2 = \left[\frac{1-a^2}{2a}\right] R_o$$

Pre-execution (as required):

- (i) calculate and note ρ : $R_a / \Delta \nabla / \text{sto} / \div / R_b / = / \Delta \nabla / \sqrt{X} / \rho$ and continue to find R_o : $/ \div / \times / \Delta \nabla / \text{rcl} / = / R_o$
- (ii) find and note a if given A:

 / A / / ÷ / 8.68589 / = / ▲▼ / ▲▼ / e[×] /a

 set program:

 ▲▼ / ▲▼ / goto / 0 / 0 /

/ \		00
(6	01
X		02
_	F	03
+	Е	04
#	3	05
1	1	06
=	-	07
sto	2	08
÷	G	09
)	6	10
+	E	11
7 A . 7	G	12
X		13
stop	0	14
÷	G	15
stop	0	16
1 / NO	F	17
+	Е	18
(6	19
#	3	20
2	2	21
_	F	22
rcl	5	23
· ·	G	24
rcl	5	25
÷	G	26
stop	0	27
)	6	28
sto	2	29
•	G	30
=	-	31
stop	0	32
=		33
=	_	34
	_	35

Execution:

a / RUN / R $_{\rm o}$ / RUN / R $_{\rm 2}$ / RUN / ρ / \div / R $_{\rm o}$ / RUN / R $_{\rm 1}$

Post-execution:

$$\begin{array}{l} \rho \ / \ \times \ / \ \times \ / \ \text{rcl} \ / \ - \ / \ \Delta \blacktriangledown \ \ / \ (\ / \ R_2 \ / \ \div \ / \ \Delta \blacktriangledown \ / \) \ / \\ \div \ / \ = \ / \ R_3 \end{array}$$

Special case : $\rho = 1$:

Execution:

a / RUN / R_o / RUN / R_2 / RUN / R_o / RUN /

R ZS

RESISTOR NETWORKS

 Π to T and T to Π transformations

$$R_o^2 = \frac{R_A R_B R_C}{R_A + R_B + R_C} = R_1 R_2 + R_2 R_3 + R_3 R_1$$

$$R_1 R_C = R_2 R_B = R_3 R_A = R_0^2$$

Execution:

(i) R_o known:

 $R_o / X / = / \Delta V / sto / \Delta V / \Delta V / goto / 0 / 0 /$

(ii) Π to T:

A▼ / A▼ / goto / 0 / 9 / R_A / RUN / R_B / RUN / R_C / RUN / RUN /

(ii) T to Π:

AV / **goto** / 0 / 9 / R₁ / ÷ / RUN / R₂ / ÷ / RUN / R₃ / ÷ / RUN / ÷ / RUN /

Follow any of (i), (ii) or (iii) with either:

 $R_A/RUN/R_3/R_B/RUN/R_2/R_C/RUN/R_1$ or:

 $R_1 / RUN / R_C / R_2 / RUN / R_B / R_3 / RUN / R_A$

	_	1 2 4
÷	G	00
X		01
rcl	5	02
=	_	03
stop	0	04
•	Α	05
goto	2	06
0	0	07
0	0	08
X		09
sto	2	10
(6	11
stop	0	12
+	E	13
rcl	5	14
_	F	15
▼ 00	Α	16
MEx	5	17
)	6	18
X		19
(6	20
stop	0	21
+	Е	22
rcl	5	23
_	F	24
•	Α	25
MEx	5	26
)	6	27
÷	G	28
rcl	5	29
stop	0	30
=	_	31
sto	2	32
stop	0	33
=	_	34
=	_	35
	-	

LATTICE ATTENUATOR

(must be balanced, constant impedance)

$$a_v = a_i = a$$

$$A = -20 \log a$$

Characteristic impedance = R_o

$$R_1 = \frac{1-a}{1+a} R_o$$
 $R_2 = \frac{1+a}{1-a} R_o$

$$R_2 = \frac{1+a}{1-a} R_0$$

Execution:

either

/ Av / Av / goto / 1 / 3 / a / RUN / Ro / RUN / R2/RUN/R1

or

/A/RUN/R_o/RUN/R₂/RUN/R₁

_	F	00
÷	G	01
#	3	02
8	8	03
	Α	04
6	6	05
8	8	06
5	5	07
8	8	08
9	9	09
=	_	10
•	Α	11
e×	4	12
+	Е	13
#	. 3	14
1	1	15
	G	16
(6	17
	F	18
#	3	19
	2	20
2	2 F 6	21
)	6	22
X		23
sto	2	24
stop	0	25
a ≥	<u> </u>	26
stop	0	27
÷	G	28
(6	28 29
rcl	5	30
X	M.Si	30 31
)	6	32
=	_	33
stop	0	34
=	_	35

Simple filters

Normalised to design impedance $R_{\rm o}$, $\omega_{\rm o}$ = cut-off angular frequency (low-pass or high pass)

 ω_0 = centre frequency (band-pass or band stop)

 ω_2 = upper cut-off frequency (band-pass or band stop)

 ω_1 = lower cut-off frequency (band-pass or band stop)

$$\omega_{\rm o} = \sqrt{\omega_1 \omega_2}$$

$$n = \frac{\omega_2 - \omega_1}{\omega_0}$$

Definitions:

x = normalised frequency parameter = $\frac{\omega}{\omega}$

 $v = deviation parameter = x (low pass) = -\frac{1}{x} (high pass)$

$$v = \frac{x - \frac{1}{x}}{n}$$
 (band pass) $= \frac{n}{\frac{1}{x} - x}$ (band stop)

Design:

Low-pass and high pass:

$$L = \frac{R_o}{\omega_o}$$

$$C = \frac{1}{\omega_0 R_0}$$

Use frequency-reactance conversion program (page 10)

Band-pass and band stop:

$$\omega_{o}\sqrt{L_{p}C_{p}} = \omega_{o}\sqrt{L_{s}C_{s}} = 1$$

$$L_s = \frac{L}{n}$$
, $C_s = nC$

$$L_s = \frac{L}{n}$$
, $C_s = nC$ $L_p = nL$, $C_p = \frac{C}{n}$

Use frequency-reactance conversion program (page 10)

Simple filters (contd.)

Performance:

A = attenuation (dB) = $-8.68589 \text{ In } \sqrt{1 + v^2}$ ϕ = phase = $-\arctan v$

Execution:

Band-pass:

x / RUN / n / RUN / v / RUN / A / RUN / ϕ

Band stop:

x / RUN / n / ÷ / – / RUN / v / RUN / A / RUN / o

Low pass:

/ Av / goto / 1 / 0 / x / RUN / A / RUN /
 (v = x)

High pass:

A▼ / **A▼** / goto / 0 / 8 / x / ÷ / − / RUN / v / RUN / A / RUN / φ

To obtain x, pre-execution could be:

 $f/\div/f_o/=/$ or $\omega/\div/\omega_o/=/$

sto	2	00
_	F	01
(6	02
rcl	5	03
	G	04
)	6	05
÷	G	06
stop	0	07
, , = 0 -	. —	80
stop	0	09
sto	2	10
X		11
+	Е	12
#	3	13
1	1	14
3 1 2 2 2	_	15
\sqrt{X}	1	16
In	4	17
_	F	18
X		19
#	3	20
8	8	21
t bris as	Α	22
6	6	23
8	8	24
5	5	25
8	8	26
9	9	27
== 0		28
stop	0	29
rcl	5	30
₩	Α	31
arctan	9	32
_	F	33
=	_	34
stop	0	35

The twin-T network

Design:

$$\omega_{\rm o}$$
 = null frequency $x = \frac{\omega}{\omega_{\rm o}}$

$$\omega_{o} C_{o} R_{o} = 1$$
 (use reactance frequency program)

$$b = a + \frac{1}{a}$$

$$v = -\frac{n}{x - \frac{1}{x}}$$

$$u = \frac{x - \frac{1}{x}}{b}$$
, where $n = \frac{2b}{a} = 2 + \frac{2}{a^2}$

$$G_o = \frac{1}{R_o}$$
 $a = \sqrt{\frac{2}{n-2}}$

The twin-T network (contd.)

Performance:

The Y-matrix is, in terms or normalised variables:

$$Y = \frac{G_{o}}{1 + jx} \begin{bmatrix} 2a + j & \frac{x - \frac{1}{x}}{b} & -j & \frac{x - \frac{1}{x}}{b} \\ \frac{x - \frac{1}{x}}{b} & \frac{2}{a} + j & \frac{x - \frac{1}{x}}{b} \end{bmatrix} \Delta Y = \frac{2G_{o}^{2}}{jx}$$

$$= \frac{G_{o}}{1 + jx} \begin{bmatrix} 2a + ju & -ju \\ -ju & \frac{2}{a} + ju \end{bmatrix}$$

with zero source impedance and load admittance (the usual conditions)

$$a_v = -\frac{y_{21}}{y_{22}} = \frac{ju}{\frac{2}{a} + ju} = \frac{1}{1 + jv} = -\frac{2b}{a(x - \frac{1}{x})}$$

Attenuation in dB = A = -8.68589 In $\sqrt{1 + v^2}$

Phase, $\phi = -\arctan v$

Use simple filters program with $n = \frac{2b}{a}$ (see page 24)

The twin-T network (contd.)

Design case:

Given:

Lower cut-off frequency = ω_1 , null frequency = ω_0 .

Find:

a, hence component values, hence frequency response curve.

$$x_1 = \frac{\omega_1}{\omega_0}$$

$$a = \sqrt{\frac{2}{\frac{1}{x} - x_1 - 2}}$$

$$b = a + \frac{1}{a}$$

Execution:

x₁ / RUN / n / RUN / a / RUN / b

sto	2	00
*	G	01
2 - 2015	F	02
rcl	5	03
32	F	04
stop	0	05
#	3	06
2	2	07
÷	G	08
+	E	09
=	_	10
\sqrt{X}	1	11
stop	0	12
sto	2	13
÷	G	14
+01	E	15
rcl	5	16
g= T	7.5	17
stop	0	18
•	Α	19
goto	2	20
0	0	21
0	0	22
	iem	23
		24
		25
		26
		27
		28
		29
70° of	QY	30
		31
		32
		33
		34
		35

Single tuned circuit with losses

$$\omega_{\rm o} = \frac{1}{\sqrt{LC}}$$

$$R_o = \omega_o L = \frac{1}{\omega_o C} = \sqrt{\frac{L}{C}}$$

$$d_s = \frac{r}{\omega_o L} = \frac{r}{R_o}$$
 $d_p = \frac{R_o}{R}$

$$d_p = \frac{R_o}{R}$$

$$d = d_s + d_p$$

$$Q = \frac{1}{d}$$

Normalised variables:

Normalised frequency = $x = \frac{\omega}{\omega}$

deviation =
$$v = Q\left(x - \frac{1}{x}\right)$$

Normalised admittance:

$$y = YQR_o = \frac{1}{d} \left[d_p + \frac{d_s}{x^2 + d_s^2} + jx \left(1 - \frac{1}{x^2 + d_s^2} \right) \right]$$

Normalised impedance:

$$Z = \frac{1}{y} = \frac{e}{iQR_o} = \frac{Z}{QR_o} = d\left[d_p + \frac{d_s}{x^2 + d_s^2} + jx\left(1 - \frac{1}{x^2 + d_s^2}\right)\right]^{-1}$$

Single tuned circuit with losses (contd.)

For $Q \gg 1$, (or Q > 10), the frequency response is closely approximated by

$$\frac{e}{iR_o} = Q (1 + v^2)^{-\frac{1}{2}}$$

and can be found using the simple filters program.

For exact calculation, where Q < 10:

series resonant frequency = ω_0

$$x_o = 1$$

in-phase resonant frequency = ω_r

$$x_r = \sqrt{1 - d_s^2}$$

parallel resonant frequency = ω_p $x_p = \left[(1 + 2d_sd_p + 2d_s^2)^{\frac{1}{2}} - d_s^2 \right]^{\frac{1}{2}}$

$$x_p = L(1 + 2d_sd_p + 2d_s^2)^{\frac{1}{2}} - d_s^2$$

impedance at $\omega_r = R_r = QR_o$

Resonant frequencies

Execution:

d_s/RUN/x_r/d_p/RUN/x_p

sto	2	00
X		01
no llo ens	F	02
+	E	03
#	3	04
1	1	05
=	-	06
\sqrt{x}	1	07
stop	0	80
+	E	09
rcl	5	10
X	ं	11 12
rcl	5	12
+	E	13
+ + #	E	14
#	E E 3	15
1	1	16
=	-	17
\sqrt{X}	1	18
si - enc	F	19
(6	20
rcl	5	21
X		22
)	6	23
=	(à	24
\sqrt{X}	1	25
stop	0	26
	Α	27
goto	2	28
0		29
0	0	30
		31
		32
stop	0.	33
		34
	.0	35

Single tuned circuit with losses (contd.)

Amplitude and phase response – Preliminary program

To find a and b:

$$a = 2 + d_s^2 - d_p^2$$

$$b = 1 + 2d_p d_s + 2d_s^2$$

Execution:

d_p / RUN / d_s / RUN / b / RUN / a

sto	2	00
X		01
io <u>be</u> m	F	02
+	Е	03
(6	04
stop	0	05
+	Е	06
	Α	07
MEx	5	08
X		09
rcl	5	10
+	Е	11
uo+sd	E	12
#	3	13
1	1	14
son a nt	87-0	15
stop	0	16
rcl	5	17
X		18
)	6	19
+	Е	20
#	3	21
2	2	22
o 3≅ sos	12-1-10	23
stop	0	24
	Α	25
goto	2	26
0	0	27
0	0	28
		29
		30
		31
		32
		33
		34
11		35

Single tuned circuit with losses (contd.)

Amplitude and phase response

$$|z| = d \left[u^2 - a + \frac{b}{u^2} \right]^{-\frac{1}{2}}$$

$$\phi = -\arctan \frac{x (u^2 - 1)}{u^2 d_p + d_s}$$

where
$$u^2 = x^2 + d_s^2$$
 $d = d_s + d_p$

$$d = d_s + d_p$$

Execution:

x/RUN/ds/RUN/b/RUN/a/RUN/ $d/|z|/X/iQR_o/=/e/d_p/RUN/d_s/$ RUN / X / RUN / AV / arctan / o

X		00
+	E	01
(6	02
stop	0	03
×	۰	04
)	6	05
+	E	06
sto	2	07
(6	08
•	G	09
X		10
stop	0	11
)	6	12
_	F	13
stop	0	14
•	G	15
าบ= ๐พ	30	16
\sqrt{X}	1	17
X	10 K	18
stop	0	19
X		20
rcl	5	21
+	E	22
stop ÷	0	23
x÷ co	G	24
X		25
# 5	6	26 27
	3	27
1	1	28
rcl	F	29
rcl	5	30
)0,0	6	31
X		32
stop	0	33
=	-	34
stop	0	35

TUNED COUPI CIRCUITS

Response of secondary circuit

Case of two tuned circuits having equal inductances and capacitances but unequal Q-factors

Normalised response in secondary (relative to output at ω_o when s = 1)

$$y_2 = \frac{2s}{1 + s^2 + jvb - v^2}$$
 where

$$v = \sqrt{\Omega_1 \Omega_2} \left(x - \frac{1}{x} \right) x = \frac{\omega}{\omega_o}$$

$$\omega_{\rm o} = \frac{1}{\sqrt{\rm LC}}$$

$$b = \left(\frac{Q_1}{Q_2} + \frac{Q_2}{Q_1}\right) \qquad Q_1 = \frac{\omega_o L}{R_1} \qquad Q_2 = \frac{\omega_o L}{R_2}$$

$$Q_1 = \frac{\omega_o L}{R_1}$$

$$Q_2 = \frac{\omega_o L}{R_2}$$

$$s = k \sqrt{Q_1 Q_2}$$

$$k = coupling factor = \frac{M}{\sqrt{L_1 L_2}} = \frac{M}{L}$$

$$a = \sqrt{b+2}$$

X	2	00
+	E	01
#	3	02
1	1	03
-	F	04
(6	05
stop	0	06
X		07
)	6	80
=	_	09
sto	2	10
stop	0	11
	F	12 13
X.	•	13
stop	0	14
÷	G	15
rcl	5	16
X		17
(6	18
•	Α	19
arctan	9	20
stop	0	21
rcl	5	22
1)	6	23
X	•	24
+	Е	25
949	6	26
rcl	5	27
X	0	28
)	6	29
= √X ÷ +	_	30
√X	1	31
÷	G	32
+	Е	33
X		34
stop	0	35

TUNED COUPLED CIRCUITS

Magnitude:

$$|y_2| = \frac{2s}{\left[(1+s^2-v^2)^2+b^2v^2\right]^{\frac{1}{2}}} = \frac{2s}{\left[(1+s^2)^2-2v^2\left(s^2-\frac{b}{2}\right)+v^4\right]^{\frac{1}{2}}}$$

Phase:

$$\phi = -\arctan \frac{v\sqrt{b+2}}{1+s^2-v^2}$$

Execution:

 $S/RUN/v/RUN/v/RUN/a/RUN/\phi/RUN/s/=/|y_2|$

Note: as |v| increases, ϕ changes sign. Correct value of ϕ when this happens is obtained by subtracting π if v is positive, adding π if v is negative.

To obtain ϕ in degrees, use / $\blacktriangle \blacktriangledown$ / $A \blacktriangledown$ / $R \rightarrow D$ / before final / RUN /. Correct sign change by subtracting 180°.

TUNED COUPLED CIRCUITS

Design for linear phase response

Theory:

$$\phi = -\arctan \frac{v\sqrt{b+2}}{1+s^2-v^2}$$

$$\frac{d\phi}{dv} = -\frac{\sqrt{b+2}(1+s^2+v^2)}{(1+s^2)-2v^2(s^2-\frac{b}{2})+v^4}$$

For maximally linear phase/frequency characteristic, the condition is:

$$s^2 = \frac{b-1}{3}$$

For maximum energy transfer the condition is s = 1 (critical coupling), hence to satisfy both conditions, b = 4 is optimum.

The frequency response is:

$$|y_2| = \frac{2s}{\left[\frac{(b+2)^2}{3} + v^2 \left(\frac{b+2}{3}\right) + v^4\right]^{\frac{1}{2}}}$$
$$= \frac{2}{(4+2v^2+v^4)^{\frac{1}{2}}} \text{ for } b = 4$$

. +	Е	00
#	3	01
2	2	02
÷ #	G	03
#	3	04
3	3	05
-S(-)	F 2	06
sto #	2	07
#	3	80
1	1	09
1 =	_	10
√x stop ÷	1	11
stop	0	12
• •	G	13 14
(6	14
X	•	15
, 6 <u>-1</u>	F	16
+ rcl	E 5	17
rcl		18
)	6	19
X		20
(6	21
#	3	22
3	3	23
X rcl		24
rcl	5	25
=	<u>0</u> 9	26
\sqrt{X}	1	27
)	6	28
=	_	29
•	Α	30
arctan	9 A	31
•	Α	32
goto	2	33
goto	2 1 2	32 33 34
2	2	35

E 00

$$\phi_2 = -\arctan \frac{v\sqrt{b+2}}{\frac{b+2}{3} - v^2} = -\arctan \frac{v\sqrt{6}}{2 - v^2}$$

Program computes s and ϕ_2 given b.

v₁ can be obtained by post-execution sequence.

Execution:

b / RUN /
$$s$$
 / v / RUN / ϕ_2 (repeat for any other values of v) / v / RUN / ϕ_2 · · ·

Bandwidth to 1% deviation from phase linearity: $v_p = .49601\sqrt{1 + s^2}$ $\phi_2 = 1.1394443$ for 1% deviation from phase linearity.

Attenuation at $v_p = -1.1608$ dB relative to centre frequency.

TUNED COUPLED CIRCUITS —

Bandwidth to given attenuation

Let $\alpha = \frac{y_{\alpha}}{y_{o}}$, the attenuation at v_{α}

relative to that at v = 0.

Then

$$v_{\alpha}^{2} = \left(s^{2} - \frac{b}{2}\right) \pm \sqrt{\left(s^{2} - \frac{b}{2}\right)^{2} + (1 + s^{2})^{2}\left(\frac{1}{\alpha^{2}} - 1\right)}$$

The + sign gives values outside the peaks.

The – sign gives values inside the peaks, but only for $s^2 > \frac{b}{2}$ and $\alpha > 1$ (see dashed line).

If $y_{\alpha} > y_{m}$ or these conditions are not observed an error will be indicated.

$$v_{\rm m}^2 = s^2 - \frac{b}{2}$$

X		00
÷	G	01
÷ _	F 3	02
#	3	03
1	1	04
X		05
(6	06
stop	0	07
X		08
+	Е	09
sto	2	10
#	3	11
1	1	12
×	1	13
)	6	14
+	E	15
(6	16
stop	0	17
-	F	18
÷ #	G	19
#	3	20
2 +	2	21
+	E	22
rcl	2 E 5	23
X	U·ne	24
sto	2	25
)	6	26
=	-	27
sto) = √x ■ MEx	1	28
•		29
MEx	A 5	30
stop	0	31
rcl	5	32
= √X	-	33
\sqrt{X}	1	34
stop	0	35

TUNED COUPLED CIRCUITS

To find α from A dB:

$$A/-/\div/8.68589/=/$$

Execution:

$$\alpha$$
 / RUN / s / RUN / b / RUN / + / RUN / v_{α} outside peaks α / RUN / s / RUN / b / RUN / - / RUN / v_{α} inside peaks

Error symbols:

If an error symbol occurs after / b / RUN / but before entering + or -, the value of α entered is too large (< ratio of peak to valley). If an error symbol occurs after / d / - / RUN /, either $s^2 \gg \frac{b}{2}$ or $\alpha < 1$.

Post execution:

To find x from v:

$$\mathbf{v} / \div / \mathbf{Q} / \mathbf{X} / \mathbf{Av} / \mathbf{sto} / - / \mathbf{1} / = / \mathbf{Av} / \sqrt{\mathbf{X}} / + / \mathbf{Av} / \mathbf{rcl} / = / \mathbf{X}_1 / \div / = / \mathbf{X}_2$$

(multiply x₁ or x₂ by f₀ to obtain f₁ or f₂)

TUNED COUPLED CIRCUITS

Design for given bandwidth and pass-band ripple

Peak to valley ratio:

$$a = 10^{0.1A} = e^{\frac{A}{4.34294}}$$

$$a = \frac{y_m}{y_o} = \frac{1 + s^2}{\left(1 + s^2(b+2) - \frac{b^2}{4}\right)^{\frac{y_2}{2}}}$$

where
$$s = k \sqrt{Q_1 Q_2}$$
, $b = \frac{Q_1}{Q_2} + \frac{Q_2}{Q_1}$

.. coupling for given peak to valley ratio:

$$s^2 = \frac{\frac{b}{2} + \sqrt{1 - a^{-2}}}{1 - \sqrt{1 - a^{-2}}}$$

Location of peaks:

$$v_{\rm m} = \sqrt{s^2 - \frac{b}{2}}$$

Location of pass-band edges:

$$v_1 = \sqrt{2s^2 - b} = \sqrt{2} v_m$$

X			
- F 02 + E 03 # 3 04 1 1 05 = - 06 √x 1 07 sto 2 08 - F 09 + E 10 # 3 11 1 1 12 ÷ G 13 (6 14 stop 0 15 ÷ G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 ÷ G 23 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √x 1 29 stop 0 30 ▼ A 31 MEx 5 32 √x 1 33 stop 0 34	X		
sto 2 08 - F 09 + E 10 # 3 11 1 1 12 - G 13 (6 14 stop 0 15 - G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	÷	G	01
sto 2 08 - F 09 + E 10 # 3 11 1 1 12 - G 13 (6 14 stop 0 15 - G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	_	F	02
sto 2 08 - F 09 + E 10 # 3 11 1 1 12 - G 13 (6 14 stop 0 15 - G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	+	Е	03
sto 2 08 - F 09 + E 10 # 3 11 1 1 12 - G 13 (6 14 stop 0 15 - G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	#	3	04
sto 2 08 - F 09 + E 10 # 3 11 1 1 12 - G 13 (6 14 stop 0 15 - G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	1	1	05
sto 2 08 - F 09 + E 10 # 3 11 1 1 12 - G 13 (6 14 stop 0 15 - G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	=	2	06
sto 2 08 - F 09 + E 10 # 3 11 1 1 12 - G 13 (6 14 stop 0 15 - G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	\sqrt{X}	1	
1 1 12	sto	2	
1 1 12	morri p	F	09
1 1 12	+	E	10
1 1 12	#	3	11
stop 0 15		1	12
stop 0 15	÷	G	13
÷ G 16 # 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 ÷ G 23 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34		6	
# 3 17 2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 ÷ G 23 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34			
2 2 18 + E 19 ▼ A 20 MEx 5 21) 6 22 ÷ G 23 - F 24 ▼ A 25 MEx 5 26 + E 27 = - 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34			
) 6 22 ÷ G 23 − F 24 ▼ A 25 MEx 5 26 + E 27 = − 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	#	3	17
) 6 22 ÷ G 23 − F 24 ▼ A 25 MEx 5 26 + E 27 = − 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	2	2	
) 6 22 ÷ G 23 − F 24 ▼ A 25 MEx 5 26 + E 27 = − 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	+	Ε	19
) 6 22 ÷ G 23 − F 24 ▼ A 25 MEx 5 26 + E 27 = − 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	•	Α	20
) 6 22 ÷ G 23 − F 24 ▼ A 25 MEx 5 26 + E 27 = − 28 √X 1 29 stop 0 30 ▼ A 31 MEx 5 32 √X 1 33 stop 0 34	MEx	5	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	6	22
MEx 5 26 + E 27 = - 28 \sqrt{X} 1 29 stop 0 30 \checkmark A 31 MEx 5 32 \sqrt{X} 1 33 stop 0 34	•	G	23
MEx 5 26 + E 27 = - 28 \sqrt{X} 1 29 stop 0 30 \checkmark A 31 MEx 5 32 \sqrt{X} 1 33 stop 0 34	πο -2 ×	F	24
MEx 5 26 + E 27 = - 28 \sqrt{X} 1 29 stop 0 30 \checkmark A 31 MEx 5 32 \sqrt{X} 1 33 stop 0 34	V (Α	25
+ E 27 = − 28 \sqrt{x} 1 29 stop 0 30 ▼ A 31 MEx 5 32 \sqrt{x} 1 33 stop 0 34	MEx	5	26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+	E	27
▼ A 31 MEx 5 32 √X 1 33 stop 0 34	=	_	28
▼ A 31 MEx 5 32 √X 1 33 stop 0 34	\sqrt{X}	1	29
▼ A 31 MEx 5 32 √X 1 33 stop 0 34	stop	0	30
$\begin{array}{c cccc} \sqrt{X} & 1 & 33 \\ \text{stop} & 0 & 34 \end{array}$	•	Α	31
$\begin{array}{c cccc} \sqrt{X} & 1 & 33 \\ \text{stop} & 0 & 34 \end{array}$		5	
stop 0 34		1	
= - 35	stop	0	
	9=0		35

Relation of Q to v, and band width:

$$Q = \sqrt{Q_1 Q_2} = \frac{v_1 f_0}{f_2 - f_1}$$

$$x = \frac{\omega}{\omega_0} = \frac{f}{f_0}$$

$$v = Q\left(x - \frac{1}{x}\right)$$

 f_2 = upper limit of pass-band f_1 = lower limit of pass-band f_0 = centre frequency = $\sqrt{f_1 f_2}$

To find a from A:

 $A / \div / 4.34294 / = / \text{ AV } / \text{ e}^{\times} / \text{ e}^{\times}$

Execution:

Either:

a / RUN / b / RUN / v_1 / \times / f_0 / \div / $\blacktriangle v$ / (/ f_2 / - / f_1 / $\blacktriangle v$ /) / = / O / RUN / s / \div / $\blacktriangle v$ / rcl / = / k

Or:

a/RUN/b/RUN/v₁/RUN/s

Simple L-R or C-R circuit

$$\tau = CR$$
 or $\tau = \frac{L}{R}$

Charge: $V_{c}(t) = V_{o}(1 - e^{-\frac{t}{\tau}})$

Discharge: $V_d(t) = V_o e^{-\frac{t}{\tau}}$

Pre-execution:

$$R / X / C / = / \Delta V / sto / or$$

 $L / \div / R / = / \Delta V / sto / or$
 $\tau / \Delta V / sto / \Delta V / goto / 0 / 0 /$

Execution:

 $t/RUN/V_o/RUN/V_d(t)$

rcl 5 01 - F 02 = - 03 ▼ A 04 e* 4 05 X : 06 stop 0 07 = - 08 stop 0 09 ▼ A 10 goto 2 11 0 0 12 0 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	•	G	00
=	rcl		01
▼ A 04 e ^x 4 05 X · 06 stop 0 07 = - 08 stop 0 09 ▼ A 10 goto 2 11 0 0 12 0 0 13 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	_	F	02
e [×] 4 05 X		=	03
 X		Α	04
stop 0 07 = - 08 stop 0 09 ▼ A 10 goto 2 11 0 0 12 0 0 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34	e×	4	05
=	X	dia	06
stop 0 09 ▼ A 10 goto 2 11 0 0 12 0 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	stop	0	07
▼ A 10 goto 2 11 0 0 12 0 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	= 0		80
goto 2 11 0 0 12 0 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34			09
0 0 12 0 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	W		
0 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33			
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33			
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	0	0	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33		8	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33			
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	11181 101		
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	De 15 e m		
20 21 22 23 24 25 26 27 28 29 30 31 31 32 33	mort a		
21 22 23 24 25 26 27 28 29 30 31 32 33	india.		
22 23 24 25 26 27 28 29 30 31 32 33	103910		
23 24 25 26 27 28 29 30 31 32 33 34	MEXan		
24 25 26 27 28 29 30 31 32 33 34			
25 26 27 28 29 30 31 32 33 34			
26 27 28 29 30 31 32 33 34	370/:		
27 28 29 30 31 32 33 34	5 - 198 - 1 V		25
28 29 30 31 32 33 34	MEx		
29 30 31 32 33 34	∃ \±d \ ;		27
30 31 32 33 34			28
31 32 33 34	- V/		29
32 33 34	10,00		
33 34	¥		
34	MES		_
	VX	1	33
35	step		
			35

Simple L-R or C-R circuit (contd.)

Pre-execution:

 $R / X / C / = / \Delta V / sto / or$ $L / \div / R / = / \Delta V / sto / or$ $\tau / \Delta V / sto / \Delta V / goto / 0 / 0 / or$

Execution:

t/RUN/Vo/RUN/Vo(t)

*	G	00
rcl	5	01
	F	02
=	_	03
•	Α	04
e ^x	4	05
\$ <u>10</u> 0	F	06
+	Е	07
#	3	08
1	1	09
X		10
stop	0	11
=	_	12
stop	0	13
	Α	14
goto	2	15
0		16
0	0	17
YA) 01		18
		19
		20
NeX)	VIV.	21
		22
1 46	3	23
	1	24
		25
		26
		27
		28
stop	1.13	29
		30
101	1.5	31
· Y	À	32
9010	12	33
1 0	10	34
1 3	- 3	35

Simple L-R or C-R circuit (contd.)

Pre-execution:

$$R / X / C / = / \Delta V / sto / or$$

 $L / \div / R / = / \Delta V / sto / or$
 $\tau / \Delta V / sto / \Delta V / \Delta V / goto / 0 / 0 / 0$

Execution:

 $t/RUN/V_o/RUN/V_d(t)/V_o/RUN/V_c(t)$

÷	G	00
rcl	5	01
79 <u>2</u>	F	02
=	_	03
•	Α	04
e×	4	05
X		06
stop	0	07
_	F	08
stop	0	09
- 8	F	10
0=0	_	11
stop	0	12
•	Α	13
goto	2	14
0	0	15
0	0	16
		17
78. \ O.		18
		19
		20
10/1		21
		22
		23
		24
		25
		26
		27
		28
		29
		30
		31
1,00		32
		33
		34
		35

Damping factor from transient response

overshoot (y) =
$$\left(\frac{E_{pk}}{E} - 1\right)$$
 $0 \le y \le 1$

$$0 \le y \le 1$$

$$K = \frac{X}{\sqrt{\pi^2 + X^2}} \text{ where } X = -ln\left(\frac{E_{pk}}{E} - 1\right)$$

Note: This formula applies to ideal 2nd-order systems of all kinds.

Pre-execution:

To enter first set of values

Execution:

Epk/RUN/E/RUN/y/RUN/k

E'nk / RUN / y' / RUN / k'

(continue for other values of E_{pk} at same E)

_	F	00
stop	0	01
sto	2	02
÷	G	03
rcl	5	04
=	_	05
stop	0	06
In	4	07
4	F	80
*	G	09
. #	3	10
3	3	11
	Α	12
1	1	13
4	4	14
1	1	15
5	5	16
9	9	17
3	3	18
•	G	19
(6	20
X		21
+	E	22
#	3	23
1	1	24
V= VII	-	25
\sqrt{X}	1	26
)	6	27
C=1 9	777	28
stop	0	29
st <u>o</u> e	F	30
rcl	5	31
•	Α	32
goto	2	33
0	0	34
3	3	35

Time taken to reach given voltage

Pre-execution:

$$-\tau$$
 / ΔV / sto / or L / + / R / = / ΔV / sto / or τ / ΔV / sto / ΔV / $goto$ / 0 / /

Execution:

 $v(t) / RUN / V_o / RUN / t_d / RUN / t_c$

Special case:

Rise-time -

Compute for $v(t) = 0.1V_o$ $t_r = t_d - t_c = 2.19714\tau$

	stop	0	01
	712	F	02
	(6	03
	In	4	04
	X	•	05
	rcl	5	06
	s= p	-	07
	stop	0	80
	#	3	09
	1	1	10
	=	_	11
)	6	12
	-	F	13
	= (=) =	043	14
	In	4	15
	X		16
	rcl	5	17
	=	_	18
	stop	0	19
	•	Α	20
	goto	2	21
	0	0	22
Service of the servic	0	0	23
			24
			25
			26
No.	12 / KIE		27
			28
1			29
			30
			31
			32
			33
			34
			35
-			

FULL-WAVE RECTIFIER WITH CAPACITOR SMOOTHING

The diode conducts from ϕ_1 to ϕ_2 in each input cycle where

$$\cos \phi_2 = -\frac{1}{\omega CE} = -x$$

 $\sin \phi_1 + x \phi_1 = \sin (\arccos x) - x \arccos x = k$

This program finds ϕ_2 and then calculates ϕ_1 using the Newton-Raphson iterative formula

$$\phi_1' = \frac{\phi_1 \cos \phi_1 - \sin \phi_1 + k}{\cos \phi_1 + x}$$

Pre-execution:

Execution:

$$3.14159 / - / \blacktriangle \lor / rcl / = / \phi_2$$

/ $\blacktriangle \blacktriangledown$ / rcl / $\pi - \phi_2$ (used as starting value ϕ_1) ϕ_1 / RUN / k / RUN / x / RUN / ϕ_1'

repeat until convergence obtained. $(\phi_1 \text{ is also in memory})$

Given ϕ_1 and ϕ_2 all the useful circuit parameters can be calculated. (see over)

sto	2	00
•	Α	01
arccos	8	02
X		03
•	Α	04
MEx	5	05
_0:	F	06
+	E	07
(6	08
rcl	5	09
sin	7	10
)	6	11
alana io	_	12
stop	0	13
sto	2	14
cos	8	15
X	8.9	16
rcl	5	17
D <u>B</u> RIJ	F	18
3(5)	6	19
rcl	5	20
sin	7	21
)	6	22
+	E	23
stop	0	24
÷	G	25
(6	26
rcl	5	27
cos	8	28
+	_	29
stop	0	30
•	A	31
goto	2	32
1	2	33
1	1	34
5100	U	35

RECTIFIER WITH CAPACITIVE SMOOTHING

Ripple voltage:

$$V_{r} pk pk = E (1 - \sin \phi_1)$$

Post execution:

Peak rectifier current:

$$i_{dPk} = I + \omega CE \cos \phi_1 = I \left(1 + \frac{\cos \phi_1}{x} \right)$$

Post execution:

$$\Delta V / rcl / \Delta V / cos / \div / x / + / 1 / X / I / = / i_dpk$$

RECTIFIER WITH CAPACITIVE SMOOTHING

Calculate ϕ_1 and ϕ_2 using program given (page 45).

Mean rectified voltage:

$$\overline{e_2} = \frac{2}{\pi} E \sin a (\cos b' + b' \sin b')$$

when
$$a = \frac{\phi_1 + \phi_2}{2}$$
 , $b' = \frac{\phi_1 + \pi - \phi_2}{2}$

$$b = \frac{\phi_1 - \phi_2}{2}$$

Pre-execution:

$$\phi_1/+/\phi_2/$$
 AV /sto/ \div /2/-/a/ **AV** / MEx/+/b

Execution:

$$/RUN/E/=/e_2$$

(6	00
	3	01
# 1	1	02
		03
5	A 5 7	04
7	7	05
7	0	06
8	8	07
=	_	08
•	Α	09
MEx	5	10
sin	5 7 G	11
÷	G	12
÷ rcl	5	13
=	_	14
•	Α	15
MEx	5	16
)	6	17
=	_	18
▼ .	— А	19
= ▼ MEx ×	5 6 5 7	20
X	n -	21
(rcl	6	22
rcl	5	23
sin	7	24
X	N.O	25 26 27
rcl		26
=	— А 5	27
•	Α	28
MEx	5	29
cos	8 E 5	30
	Е	31
rcl	5	32
)	6	33
X		34
stop	0	35

TRANSFER FUNCTION OF LONG—TAILED PAIR

$$\delta V = \frac{KT}{q} \ln \left(\frac{1 + \frac{\delta I}{I}}{1 - \frac{\delta I}{I}} \right)$$

$$\frac{\delta I}{I} = \frac{exp\left(\frac{q\delta V}{kT}\right) - 1}{exp\left(\frac{q\delta V}{kT}\right) + 1}$$

$$\delta V_o = Z_L \delta I$$

q = electronic charge = 1.602192×10^{-19} C

 $k = Boltzmann's constant = 1.380622 \times 10^{-23} JK^{-1}$

T = absolute temperature ($^{\circ}$ C + 273·15)

 $V_L = \frac{IR_L}{2}$ (if load is resistive)

X		00
#	3	01
8	8	02
•	А	03
6	6	04
1	1	05
7	7	06
1	1	07
1 7 1 ·	Α	08
	Α	09
	5	10
holitin	-	11
sto	1 7 1 A A 5 -	11 12
stop	0	13
÷	G	14
rcl	5	15
S=	_	16
rcl =	Α	17
e ^x	4	18
_	F	19
# 100	3	20
1	1	21
÷ (G	22
(6	23
+	Е	24
#	3	25
2 =	2	26
	_	27
)	6	28
X		29
stop	0	30
=	– А 2	31
•	Α	32
goto	2	33
= ▼ goto 1	1	34
3	3	35

(set temperature:)

Pre-execution:

AV / **AV** / goto / 0 / 0 / T / RUN

Execution:

$$\delta V / RUN / \frac{\delta I}{I} \left\{ \begin{array}{c} I / RUN / \delta I \\ I / X / Z_L / RUN / \delta V_o \\ V_L / + / RUN / \delta V_o \end{array} \right\}$$

Repeat for all required values of δV e.g. for sine wave, $\delta V = V \sin \omega t$, $/\omega/X/t/=/\Delta V/\sin/X/V/RUN/I/RUN/\delta$ etc.

OPERATING POINT OF DIODE— RESISTOR COMBINATION

$$V = IR + \frac{nkT}{q} \ln \left(1 + \frac{I}{I_s}\right)$$

Newton-Raphson method gives the iteration formula for I

$$I' = \frac{V + \frac{nkT}{q} \left(\frac{I}{I + I_s}\right) - \frac{nkT}{q} \ln \left(1 + \frac{I}{I_s}\right)}{R + \frac{nkT}{q} \left(\frac{I}{I + I_s}\right)}$$

For forward-biased diodes, $I \gg I_s$, so this simplifies to

$$I' \simeq \frac{V + \frac{nkT}{q} \left(1 - \ell n \frac{I}{I_s}\right)}{R + \frac{nkT}{qI}}$$

If I is mA and V_o = diode voltage at I_o = 1mA,

$$I' \triangleq \frac{V - V_o + \frac{nkT}{q} \left(1 - \ell n \frac{I}{I_o}\right)}{R + \frac{nkT}{qI}}$$

where
$$V_o = \frac{nkT}{q} \ln \frac{I_o}{I_s}$$

÷	G	00
X		01
(6	02
In	4	03
sto	2	04
#	3	05
	Α	06
0	0	07
8	8	08
6	6	09
1	1	10
7	7	11
1	1	12
X	•	13
stop	0	14
X		15
. ▼10	Α	16
MEx	5	17
+	Е	18
rcl	5	19
+	Е	20
stop	E 0	21
sw=nla	-	22
V	Α	23
MEx	5	24
)	6	25
+	Е	26
stop	0	27
÷	G	28
rcl	5	29
÷	G	30
=	_	31
=	_	32
=	2_	33
=	_	34
stop	0	35

Consistent units are:

V in mV, R in Ω , I in mA

n = 1 for germanium diodes or for transistor junctions

n = 1.5 for silicon p-n diodes

Find $\frac{nkT}{q}$ to use in program (in mV)

or use T each time in program execution if desired.

Execution:

$$I/RUN/{T/RUN/}$$
 ${V/-/V_o}/RUN/R/RUN/I'$

$$/RUN / {T \choose T/X/n} / RUN / {V/-/V_o \choose V-V_o} / RUN / R/RUN / I''$$

(repeat until values converge)

$$I/RUN / \left\{ \begin{array}{c} V - V_{o} \\ V / - / V_{o} \end{array} \right\} / RUN / R / RUN / I'$$

$$/ RUN / \left\{ \frac{V - V_o}{V / - / V_o} \right\} / RUN / R / RUN / I"$$

$$(\frac{nkT}{q} \text{ may be found from: } / n / \times / T / \times / 1.086171 / = / \frac{nkT}{q} \text{ mV};$$
 at 25°C $\frac{kT}{q} \simeq 25.6789 \text{ mV})$

OPERATING POINT OF TRANSISTOR IN BASE—POTENTIAL DIVIDER AND EMITTER RESISTOR BIAS

Preliminary equations:

$$V = \frac{V_{cc} R_2}{R_1 + R_2}$$

$$R = R_4 + \frac{R_1 R_2}{(R_1 + R_2) (h_{FF} + 1)}$$

 I_{E} is given by the diode-resistor program with $V_{\text{o}} = V_{\text{BE}}$ of transistor at 1 mA, R and V as given above, and n = 1.

Circuit equations:

$$V_{E} = I_{E} R_{4}$$

$$I_{C} = I_{E} \frac{h_{FE}}{1 + h_{FE}}$$

$$V_{BE} = \frac{k}{q} \ln I_E (mA) + V_o$$

$$V_B = V_E + V_{BE}$$

$$V_{c} = V_{cc} - I_{E} R_{3} \frac{h_{FE}}{1 + h_{EE}}$$

$$V_{CE} = V_C - V_E$$

Prelim. program

+	E	00
stop	0	01
sto	2	02
÷	G	03
(6	04
ni & .)	F	05
rcl	5	06
)	6	07
÷	G	80
X		09
•	Α	10
MEx	5	11
÷	G	12
stop	0	13
+	Е	14
stop	0	15
=	<u>S</u>	16
stop	0	17
X	•	18
rcl	5	19
sv 🎞 su	F	20
stop	0	21
=	J <u>on</u>	22
stop	0	23
•	A	24
goto	2	25
0	0	26
0	0	27
	8.5	28
t sid var		29
7-1-	1	30
	0-0	31
		32
		33
		34
stop	33	35

Final program

a. p	ı oğı	
sto	2	00
In	4	01
X	•3	02
#	3	03
	Α	04
0	0	05
8	8	06
6	6	07
1	1	80
7	7	09
1	1	10
X	•	11
stop	0	12
+	Е	13
stop	0	14
+	Ε	15
(6	16
stop	0	17
X		18
rcl	5	19
)	6	20
stop	0	21
=	_	22
stop	0	23
÷	G	24
10(2)	6	25
+	Е	26
#	3	27
1	1	28
=	_	29
)	6	30
1 1 011	F	31
X	.0	32
rcl	5	33
X	1.11	34
stop	0	35
ocop	-	-

1. Enter	preliminary	program				
----------	-------------	---------	--	--	--	--

Execution:

$$R_2$$
 / RUN / R_1 / RUN / h_{FE} + 1 / RUN / R_4 / RUN / R

$$V_{cc}$$
 / RUN / V / V_o / RUN / V – V_o

- 2. Next enter diode and resistor program (see page 50) and execute to find $I_{\rm E}$
- 3. Finally enter program in box and run:

Execution:

$$\begin{split} & \text{I/RUN/T/RUN/V}_{\text{o}}/\text{RUN/V}_{\text{BE}}/\text{R}_{\text{4}}/\\ & \text{RUN/V}_{\text{E}}/\text{RUN/V}_{\text{B}}/\text{h}_{\text{FE}}/\text{RUN/-I}_{\text{C}}/\text{R}_{\text{3}}/\\ & + /\text{V}_{\text{CC}}/-/\text{V}_{\text{C}}/\text{V}_{\text{E}}/=/\text{V}_{\text{CE}} \end{split}$$

ELECTRON DYNAMICS

(S.I. Units)

To find electrostatic deflection, velocity, sensitivity, deflection and angle of deflection in cathode ray tube. (non-relativistic)

$$v = \sqrt{\frac{2eV_a}{m}}$$

$$S = \frac{IL}{2dV_a}$$

$$D = \frac{ILV_d}{2dV_a} = SV_d$$

$$\theta = \arctan \frac{D}{L} = \arctan \frac{IV_d}{2dV_a}$$

 $e = electron charge = 1.6022 \times 10^{-19} C$

 $m = electron mass = 9.1096 \times 10^{-31} kg$

Execution:

 $V_a/RUN/v/d/RUN/I/RUN/L/RUN/S/V_d/RUN/D/RUN/<math>\theta$

sto	2	00
\sqrt{X}	1	01
X		02
#	3	03
5	5	04
	Α	05
9	9	06
3	3	07
0	0	80
9	9	09
milliosa	Α	10
5	5	11
=:nc	-	12
stop	0	13
+	Е	14
*	G	15
X		16
stop	0	17
00÷	G	18
rcl	5	19
X	lan.	20
stop	0	21
sto	2	22
X		23
stop	0	24
÷	G	25
stop	0	26
rcl	5	27
=	_	28
•	Α	29
arctan	9	30
stop	0	31
•	Α	32
goto	2	33
0	0	34
0	0	35
		-

DEFLECTION OF RELATIVISTIC ELECTRONS

Small transverse field as in cathode ray tube

$$\begin{split} \frac{D}{L} &= \tan \theta \triangleq \frac{eV_d}{mc^2} \frac{I}{d} \times \\ & \left[\left(1 + \frac{eV_a}{mc^2} \right) - \left(1 + \frac{eV_a}{mc^2} \right)^{-1} \right]^{-1} \end{split}$$

Execution:

for D or θ only — $V_a / RUN / V_d / RUN / d / RUN / I / RUN / <math>\tan \theta \begin{cases} / X / L / = / D \\ / RUN / \theta \end{cases}$

or, for S, D and θ $V_a / RUN / L / RUN / d / RUN / I / RUN / S / \\ X / V_d / \div / D / L / = / tan <math>\theta$ / RUN / θ

X		00
(6	01
#	3	02
1	1	03
	Α	04
9	9	05
5	5	06
6	6	07
9	9	80
•	Α	09
•	Α	10
6	6	11
=	- 10	12
sto	2	13
)	6	14
+	Ε	15
#	3	16
1	1	17
28 <u>a</u> b	F	18
(6	19
÷	G	20
)	6	21
÷	G	22
X	• 8	23
rcl	5	24
X	•	25
stop	0	26
ı i	G	27
stop	0	28
X	•	29
stop	0	30
=	-	31
stop	0	32
•	A 9	33
arctan		34
stop	0	35

MAGNETIC DEFLECTION IN CATHODE—RAY TUBE (non-relativistic)

$$\theta = \arcsin \frac{\text{leB}}{\text{mv}} = \arcsin \frac{\text{lB}}{\sqrt{\text{V}_a}} \sqrt{\frac{\text{e}}{2\text{m}}}$$

 $D = L \tan \theta$

$$S = \frac{D}{B} \simeq \frac{IL}{\sqrt{V_a}} \sqrt{\frac{e}{2m}}$$
 (magnetic deflection sensitivity for small θ)

Execution:

V/RUN/I/RUN/B/RUN/θ/RUN/L/ RUN/S/RUN/D

Notes:

- 1. In practical wide angle tubes the field will not be uniform.
- 2. If $\theta > \frac{\pi}{2}$ is computed, a value of 0 with no error symbol will be shown. This means the electron is reversed in direction by the field.

\sqrt{X}	1	00
÷	G	
X		02
#	3	03
2	2	04
9	9	05
6	6	06
5	5	07
4	4	08
6	6	09
X		10
stop	0	11
X		12
sto	2	13
stop	0	14
=	_	15
-	А	16
arcsin	7	17
stop	0	18
tan	9	19
X		20
(6	21
stop	0	22
X		23
₩	A	24
MEx	5	25
=	5	26
stop	0	27
rcl	5	28
)	6	29
	_	30
stop	0	31
▼	A	32
goto	2	33
0	0	34
0	0	35
U	U	55

VELOCITY OF ACCELERATED ION (non-relativistic)

M = mass of ion ne = charge on ion

V = accelerating potential (volts)

$$v = \sqrt{\frac{2neV}{M}}$$

Execution:

V/RUN/n/RUN/M/RUN/v

X		00
#	3	01
3	3	02
- 3	Α	03
2	2	04
0	0	05
4	4	06
4	4	07
4	Α	08
9 :	Α	09
m 1	1	10
9	9	11
X		12
stop	0	13
•	G	14
stop	0	15
22 = 11		16
\sqrt{X}	1	17
stop	0	18
W 83	Α	19
goto	2	20
0	0	21
0	0	22
		23
		24
		25
		26
		27
		28
		29
		30
		31
		32
		33
		34
		35

MASS AND VELOCITY OF ACCELERATED ELECTRON OR ION (relativistic)

V = accelerating potential (volts)

$$m_{r} = m \left(1 + \frac{eV}{mc^{2}} \right)$$

$$v_{r} = c \sqrt{1 - \left(1 + \frac{eV}{mc^{2}} \right)^{-2}}$$

For electron

$$e = 1.6022 \times 10^{-19} C$$

$$m = 9.1096 \times 10^{-31} \text{ kg}$$

$$c = 2.9979 \times 10^8 \,\text{ms}^{-1}$$

$$\frac{e}{mc^2} = 1.9569 \times 10^{-6} \,\mathrm{V}^{-1}$$

Execution:

V / RUN / v_r / ▲▼ / rcl / X / 9·1096 / · / · / 31 / = / m_r

For ion of mass M and charge ne:

$$n/X/V/X/m/\div/M/RUN/v_r/ \blacktriangle V/rcl/X/M/=/M_r$$

X	•	00
#	3	.01
1	1	02
	Α	03
9	9	04
5	5	05
6	6	06
9	9	07
	Α	80
•		09
6	A 6	10
+	Е	11
+ #	3	12
1	1	13
(8 = 919) -))	14
sto	2	15
÷	G	16
X		17
× - +	F	18
+	E 3	19
#	3	20
1 = \sqrt{X}	1	21
=	-	22
	1	23
X		24
#	3	25
2	2	26
31.0	Α	27
9	9	28
9	9	29
7	7	30
9	9	31
•	Α	32
8	8	33
=	_	34
stop	0	35

ELECTRON MOTION IN TRANSVERSE MAGNETIC FIELD

Radius and period of orbit, pitch of helical path.

Period T =
$$\frac{2\pi m}{eB}$$
 radius of circular path $r_c = \frac{vT}{2\pi}$

Radius of path r =

$$\frac{mv}{eB} \sin \theta = \frac{\sqrt{2m}}{e} \frac{\sqrt{V}}{B} \sin \theta = \frac{vT}{2\pi} \sin \theta$$

Pitch of path P =

$$\frac{2\pi mv}{eB}\cos\theta = 2\pi \frac{\sqrt{2m}\sqrt{V}}{e}\cos\theta = vT\cos\theta$$

 θ = angle of injection (relative to B)

$$\left(\frac{2\pi m}{e} = 3.5724 \times 10^{-11}\right)$$

Pre-execution (if desired):

$$V / \Delta V / \sqrt{x} / X / 5.9309.5 / = / V$$

Execution:

X		00
(6	01
# 3	3	02
3	3 A 5 7 2 4 A	03
	Α	04
5	5	05
7	7	06
2	2	07
5 7 2 4	4	80
•	Α	09
•	Α	10
1	1	11
1	1	12
÷	G 0	13 14
stop	0	14
)	6	15
•	G	16
sto	2	17
#	3	18
) ÷ sto # 6	2 3 6 A 2 8 3 2	17 18 19 20
	Α	20
2	2	21
8	8	22
3	3	23
8 3 2	2	24
X		25
(6	26
stop	6	27
sin	7	28
)	6	29
=	-	30
stop	0	222 233 244 255 266 277 288 299 300 311 322 333
cos	8	32
X		33
rcl	5	34
stop	0	35

CAPACITANCE OF SPHERE, CONCENTRIC SPHERES, CONCENTRIC CYLINDERS

(i) Sphere of radius a:

$$C = 4\pi\epsilon_0 \epsilon_r a$$

(ii) Concentric spheres of radii a and b (b > a)

$$C = 4\pi\epsilon_{o}\,\epsilon_{r}\,\frac{ab}{b-a}$$

(iii) Concentric cylinders of radii a and b (b > a), and length L:

$$C = \frac{4\pi \,\epsilon_o \,\epsilon_r \,L}{2 \, \ln \left(\frac{b}{a}\right)}$$

Pre-execution and execution:

(i) Sphere:

 $\Delta V / \Delta V / goto / 1/9/a / RUN / \epsilon_r / RUN / C$

(ii) Concentric spheres:

 $\triangle \bigvee / \triangle \bigvee / goto / 1 / 2 / a / RUN / b / RUN / e_r / RUN / C$

(iii) Concentric cylinders:

 Δ / Δ / goto / 0 / 0 / b / RUN / a / RUN / L / RUN / ϵ_r / RUN / C

 $(4\pi\epsilon_{\rm o} = 1.11265 \times 10^{-10} \,\rm F \, m^{-1})$

(S.I. units)

÷	G	00
stop	0	01
=	-	02
In	4	03
+	E	04
300:00	G	05
X	8	06
stop	0	07
	Α	08
goto	2	09
1	1	10
9	9	11
÷	G	12
-	F	13
(6	14
stop	0	15
89.	G	16
)	6	17
÷	G	18
X		19
#	3	20
1	1	21
9 0:50	Α	22
1	1	23
1	1	24
2	2	25
6	6	26
5	5	27
716.0	Α	28
•	Α	29
1	1	30
0	0	31
X		32
stop	0	33
\=\ \	141	34
stop	0	35

FIELD STRENGTH AND POYNTING VECTOR DUE TO ELECTRIC DIPOLE

$$H = \frac{Ids}{2\lambda r} \sin \theta \, \sin \left(\, \omega t - \frac{2\pi r}{\lambda} \, \right)$$

E = Z_iH where Z_i = $\sqrt{\frac{\mu_o}{\epsilon_o}}$ = μ_o c $\stackrel{\triangle}{=}$ 376·73Ω P = EH (power flow per unit area)

$$P_{av} = \frac{E_{pk} H_{pk}}{2}$$

$$\lambda = \frac{c}{f} \text{ where } c = 2.9979 \text{ x } 10^8 \text{ ms}^{-1}$$

Execution:

/ AV / AV / goto / 0 / 0 / f / RUN / λ or / AV / AV / goto / 1 / 3 / λ

 $/RUN/\theta/RUN/r/RUN/{ Ids$ $I/X/ds }$

/ RUN / H_{pk} / RUN / E_{pk} / X / ▲▼ / rcl / ÷ / P_{pk} / 2 / = / P_{av}

÷	G	00
#	3	01
2	2	02
	A	03
9	9	04
9	9	05
7	7	06
9	9	07
	Α	80
8	8	09
*	G	10
= stop	-	11
	0	12
+	E	13
•	G	14
X		15
(6	16
stop	0	17
sin	7	18
)	6	19
÷	G	20
stop	0	21
X		22
stop	0	23
X	•	24
stop	0	25
sto #	2	26
#	3	27
3 7	3	28
7	3 7	29
6	6	30
11:5	A	31
7	7	32
3	3	33
==	_	34
stop	0	35

RADIATION FROM LOOP (OR FERRITE) ANTENNA

$$H = NIA \frac{\pi}{\lambda^2 r} \sin \theta \sin \left(\omega t - \frac{2\pi r}{\lambda}\right)$$

$$E = Z_iH$$

$$P_{av} = \frac{E_{pk}H_{pk}}{2}$$

For ferrite, replace NIA by NIA $\mu_{\rm eff}$

Additional formulae:

Radiation resistance:

$$R_r = \frac{16\pi^3}{3} Z_i \left(\frac{NA}{\lambda^2}\right)^2 = 62298 \cdot 7 \left(\frac{NA}{\lambda^2}\right)^2$$

Total power radiated:

$$P_r = I_{rms}^2 R_r = \frac{V_{rms}^2}{R_r} = \frac{I^2 R_r}{2}$$

X		00
÷	G	01
X		02
stop	0	03
X		04
sto	2	05
#	3	06
3	3	07
	Α	08
1	1	09
4	4	10
1	4	11
6	6	12
X		13
(6	14
stop	0	15
sin	7	16
)	6	17
X		18
stop	0	19
X	•	20
stop	0	21
=	-	22
stop	0	23
rcl	5	24
X		25
X		26
#	3	27
6	6	28
2	2	29
2	2	30
9	9	31
9	9	32
=	_	33
=	104	34
stop	0	35

Execution:

 $\left(/ \times / \mu_{\rm eff} \right) * / {
m RUN} / \theta / {
m RUN} / {
m r} / {
m RUN} / {
m I} / {
m RUN} / {
m RUN} / {
m I} / {
m RUN} / {
m RUN$

$$\left\{ \begin{array}{l} / \times / 376.73 / = / E_{pk} \\ / \times / \times / 377 / = / P_{pk} \\ / \times / \times / 188.365 / = / P_{av} \end{array} \right\} / RUN / R_{r}$$

* omit these two terms for air-cored loop.

Note: Not applicable to near-field radiation pattern, r < 10R where R = radius of loop.

RADIATION FROM ALF-WAVE

$$H = \frac{1}{2\pi r} \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \sin\left(\omega t - \frac{2\pi r}{\lambda}\right)$$

$$E = Z_i H$$

$$P_{av} = \frac{H_{pk} E_{pk}}{2} \qquad Z_i \simeq 377\Omega$$

$$Z_i = 377\Omega$$

Additional formulae:

Radiation resistance:

$$R_r = \frac{\mu_o c}{4} \left(\text{in } 2\pi y + \int_{2\pi}^{\infty} \frac{\cos y}{y} \, dy \right) = 72.9\Omega$$

Power outputs:

$$P_r = \frac{V_{rms}}{R_r} = I_{rms}^2 R_r = \frac{I^2 R_r}{2}$$

(since I = peak current)

Execution:

$$\theta / RUN / r / RUN / I / X / H_{pk} /$$

$$\left\{ RUN / E_{pk} \right.$$

$$\left\{ X / RUN / P_{pk} / \div / 2 / = / P_{av} \right.$$

This also applies to 4-wave unipole above ground (radiation resistance 36.5Ω)

Range $0.16 < \theta \le 1.57$

sto	2	00
cos	8	01
X		02
#	3	03
1	1	04
Sto.	Α	05
5	5	06
7	7	07
0	0	80
8	8	09
=	_	10
cos	8	11
÷	G	12
(6	13
rcl	5	14
sin	7	15
)	6	16
÷	G	17
#	3	18
6	6	19
T 6814	Α	20
2	2	21
8	8	22
3	3	23
1	1	24
9	9	25
·	G	26
stop	0	27
X	8	28
stop	0	29
#	3	30
3	3	31
7	7	32
7	7	33
=	_	34
stop	0	35

FOURIER ANALYSIS

The Fourier series expansion of the function $f(\omega t)$ is:

$$f(\omega t) = \frac{a_o}{2} + \sum_{k=1}^{\infty} (a_k \cos k\omega t + b_k \sin k\omega t)$$

where
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\omega t) \cos k\omega t d(\omega t)$$
,

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\omega t) \sin \omega t d(\omega t)$$

If $e(\omega t)$ is a periodic voltage of amplitude E_{pk} , its Fourier series is:

$$e(\omega t) = E_o + \sum_{k=1}^{\infty} E_k \cos(k\omega t + \phi_k) = E_{pk} f(\omega t)$$

where
$$E_o = \frac{a_o}{2} E_{pk}$$
, $E_k = \sqrt{a_k^2 + b_k^2 E_{pk}}$

The coefficients can be formed by numerical integration for non-analysis waveforms.

FOURIER ANALYSIS =

Half-wave rectified and full-wave rectified sine wave

Half-wave:

$$e(\omega t) = \frac{1}{\pi} E_{pk} + \frac{E_{pk} \sin \omega t}{2} - \frac{E_{pk}}{\pi} \times$$

$$\sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)\pi} \cos 2n \ \omega t$$

Full-wave:

$$e(\omega t) = \frac{2}{\pi} E_{pk} - \frac{2}{\pi} E_{pk} \sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)\pi} \cos 2n \ \omega t$$

÷	G	00
#	3	01
2	2	02
=	_	03
stop	0	04
÷	G	05
÷ # 1 ·	3	06
1	1	07
inso hair	Α	08
5	A 5 7 0 7 9	09
7	7	10
7 0 7	0	11
7	7	12
9	9	13
6	6	14
3	3	15
=	2	16
sto		17
(6	18
stop	0	19
+	E	20
X		21
* X <u>-</u>	F	22
#	3	23
1 ÷	F 3	24
÷	G	25
)	6	26
X	•	27
rcl	5	28
= goto	5 — A 2 1	29
•	Α	30
goto	2	31
1	1	32
8	8	33
		34
		35

Half-wave:

$$E_o = \frac{1}{\pi} E_{pk}$$

$$E_1 = \frac{E_{pk}}{2}$$

$$E_{2n} = \frac{E_{pk}}{(4n^2 - 1)\pi}$$

$$E_{2n+1} = 0$$

Full-wave:

$$E_o = \frac{2}{\pi} E_{pk}$$

$$E_1 = 0$$

$$E_{2n} = \frac{2E_{pk}}{(4n^2 - 1)\pi}$$

$$E_{2n+1} = 0$$

Execution:

Half-wave:

 $\rm E_{pk}$ / RUN / $\rm E_{1}$ / RUN / $\rm E_{o}$ / 1 / RUN / $\rm E_{2}$ / 2 / RUN / $\rm E_{4}$ / \cdots

Before re-execution: ▲▼ / ▲▼ / goto / 0 / 0

Full-wave:

 $\Delta V / \Delta V / goto / 0 / 5 / E_{pk} / RUN / E_o / 1 / RUN / E₂ / 2 / RUN / E₄ / · · ·$

FOURIER ANALYSIS

Frequency modulated wave (iterative computation of Bessel functions)

Where m = modulation index $e(\omega t) = E_{pk} \cos (\omega_c + m \cos \omega_s)t$

$$= E_{pk} J_o(m) \cos \omega_c t +$$

$$= J_1(m) [\sin (\omega_c - \omega_s)t - \sin (\omega_c + \omega_s)t] -$$

$$J_2$$
 (m) $[\cos{(\omega_c - 2\omega_s)}t + \cos{(\omega_c + 2\omega_s)}t] -$

$$J_3$$
 (m) $[\sin(\omega_c - 3\omega_s)t - \sin(\omega_c + 3\omega_s)t] +$

$$J_4$$
 (m) $[\cos (\omega_c + 4\omega_s)t + \cos (\omega_c - 4\omega_s)t] + \cdots$

where
$$J_n(m) = \left(\frac{m}{2}\right)^n \sum_{r=0}^{\infty} \frac{(-1)^r}{r!(n+r)!} \left(\frac{m}{2}\right)^{2r}$$

$$= \frac{1}{n!} \left(\frac{m}{2} \right)^n \sum_{r=0}^{\infty} \frac{(-1)^r n!}{r! (n+r)!} \left(\frac{m}{2} \right)^{2r}$$

$$= \frac{1}{n!} \left(\frac{m}{2}\right)^n \lim_{k \to \infty} S_k$$

(where S_k is the sum of the series to k terms)

÷	G	00
#	3	01
2	2	02
=	-	03
In	4	04
X		05
stop	0	06
=		07
▼ :	Α	80
e×	4	09
sto	2	10
÷	G	11
stop	0	12
÷	G	13
(6	14
stop	0	15
+	E	16
+	Е	17
)	6	18
X		19
(6	20
stop	0	21
X	8 \$ M-	22
)	6	23
ing kare	F	24
+	Е	25
•	Α	26
MEx	5	27
=	-	28
stop	0	29
•	Α	30
MEx	5	31
-	Α	32
goto	2	33
1	1	34
1	1	35

Execution:

▲▼ / ▲▼ / goto / 0 / 0 / m / RUN / n / RUN / 1 / RUN / n / + / 1 / RUN / m / RUN / S₁ / RUN / 2 / RUN / n / + / 2 / RUN / m / RUN / S₂ · · ·

 \cdots / RUN / r / RUN / n / + / r / RUN / m / RUN / S_r

(Continue until S_r is sufficiently close to S_{r-1} to have converged to required accuracy.)

Post execution:

$$/\div/n!/=/J_n(m)$$

or

$$/\div/n/\div/n-1/\div/n-2/\div/\cdots/\div/2/=/J_{n}(m)$$

FOURIER ANALYSIS

Square wave

$$e(\omega t) = E_{pk} \sum_{n=1}^{\infty} \frac{4}{(2n-1)\pi} \sin(2n-1)\omega t$$

i.e.
$$E_k = 0$$
 if $k = 2n$

$$=\frac{4E_{pk}}{(2n-1)\pi}$$
 if $k = 2n-1$

Execution:

RUN / E_{pk} / RUN / E_1 / RUN / E_3 / RUN / \cdots / RUN / E_{2n-1} / \cdots

If E_{pk} is not entered, the relative amplitude will be given.

Check:

/ $\blacktriangle \blacktriangledown$ / rcl / recovers the current value of (2n-1). Clear before running again.

Before re-execution:

▲▼ / **△▼** / goto / 0 / 0

#	3	00
1	1	01
= sto	_	02
sto	2	03
stop	0	04
X		05
#	3	06
1	1	07
771.	Α	80
	2	09
7	7	10
3	3	11
2	A 2 7 3 2	12
3	3	13
9	9	14
5	5	15
=	_	16
stop	0	17
X		18
rcl	5	19
÷	G	20
(G 6	20 21 22
rcl	5	22
+	E	23
+ #	3	24
2	2	25
=	2	26
sto	2	27
)	6	28
=	_	29
•	Α	30
) = ▼ goto 1 7	2	31
1	2 1 7	32
7	7	33
		34
		35

FOURIER ANALYSIS

Triangular wave

$$e(\omega t) = E_{pk} \sum_{n=1}^{\infty} \frac{8}{(2n-1)^2 \pi^2} \cos (2n-1) \omega t$$

$$E_k = E_{pk} \frac{8}{(2n-1)^2 \pi^2}$$
 if $k = 2n-1$
= 0 if $k = 2n$

Execution:

 $RUN / E_{pk} / RUN / E_1 / RUN / E_3 / \cdots$

Post-execution at any stage:

$$AV / rcl / (2n - 1) / C/CE / (E2n-1)$$

Before execution:

#	3	00
1	1	01
=	2	02
sto	2	03
stop	0	04
÷	G	05
#	3	06
1	1	07
•	Α	08
2	A 2 3 3 7	09
3 3 7 = stop	3	10
3	3	11
7	7	12
=	_	13
stop	0	14
X		15 16
(6	16
rcl	5	17
X	8	17 18
÷	6	19
÷	G	19 20
(6	21
rcl + # 2 × sto	5	22
+	E 3	22 23 24 25 26 27 28
#	3	24
2	2	25
X	•	26
sto	2	27
)	6	28
000X0 c	_	29
) = •	Α	30
goto	2	30 31
1	2 1 4	32
4	4	33
		34
		35

FOURIER ANALYSIS

Sawtooth wave

$$e(\omega t) = E_{pk} \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin n\omega t$$

$$E_{o} = 0$$
 $E_{n} = \frac{2}{n\pi}$

Execution:

RUN / E_{pk} / RUN / E_{1} / RUN / E_{2} / RUN / \cdots / RUN / E_{n} · · · ·

At any stage, current harmonic order n can be recalled:

Before re-execution:

#	3	00
1	1	01
= 138	201	02
sto	2	03
stop	0	04
÷	G	05
#	3	06
1	1	07
-	A 5	08
5	5	09
7	7	10
7	0	11
7	7	12
9	9	13
6	6	14
3	3	15
=	-	16
stop	0	17
X		18
rcl	5	19
÷.,,,,	G	20
(6	21
rcl	5	22
notino	E	23
#	3	24
1	1	25
olit u oex	9.83	26
sto	2	27
)	6	28
=	_	29
•	Α	30
goto 1 7	A 2 1 7	30 31
1	1	32
7	7	33
		34
		35

FOURIER ANALYSIS

Rectangular pulse train of duty cycle d

$$e(\omega t) = d E_{pk} + E_{pk} \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin n\pi d \cos n\omega t$$

$$E_o = dE_{pk}$$
 $E_n = \frac{2}{n\pi} \sin n\pi d E_{pk}$

Pre-execution:

1.5707963 / A
$$\lor$$
 / sto / A \lor / goto / 0 / 0 / d / \lor / \lor / \lor / goto / 0 / 0 /

Execution:

$$n / RUN / d / RUN / E_{pk} / RUN / E_{n}$$

 $n = 1, 2, 3, \cdots$

Notes:

Ignore negative signs in results

If E appears after second / RUN / :

- (i) Note result r
- (ii) Press / 3 / C/CE /
- (iii) Enter r / X / Epk / RUN / En

X	•	00
rcl	5	01
سنخال	G	02
(6	03
+	Е	04
X		05
stop	0	06
+	E	07
rcl	5 F	08
_	F	09
+ ,	Ε	10
rcl	5	11
+	Е	12
rcl	5	13
_	F	14
•	F A	15
gin	1	16
0	0	17
9	9	18
100+ Y	E	19
rcl	5	20
= 1131	31.J.U.	21
sin	7	22
)	6	23
÷	G	24
×		25
stop	0	26
atta Toras	(ms	27
stop	0	28
▼	Α	29
goto	2	30
0	0	31
0	0	32
A PIUM		33
		34
		35

FOURIER ANALYSIS

Asymmetrical triangular wave

$$e(\omega t) = E_{pk} \sum_{n=1}^{\infty} \frac{2}{1 n^2 \pi^2 d(1-d)} \sin n\pi d \sin n\omega t$$

$$E_o = 0$$
 $E_n = \frac{2}{n^2 \pi^2 d(1 - d)} \sin n\pi d E_{pk}$

Pre-execution:

Execution:

Notes:

Ignore negative signs in results.

If E appears after first / RUN / :

- (i) Note the result r
- (ii) Press / 3 / C/CE /
- (iii) Enter r / X / ▲▼ / (/
- (iv) Continue with execution: $d / RUN / E_{pk} / = / E_{pk}$

 	X		00
√x 1 03 + E 04 + E 05 rcl 5 06 - F 07 + E 08 rcl 5 09 + E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34	÷	G	01
+ E 04 + E 05 rcl 5 06 - F 07 + E 08 rcl 5 09 + E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34		6	
+ E 05 rcl 5 06 - F 07 + E 08 rcl 5 09 + E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34		1	03
rcl 5 06 - F 07 + E 08 rcl 5 09 + E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34	+	Е	04
- F 07 + E 08 rcl 5 09 + E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 - G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 - G 32 X 33 stop 0 34	+	Е	05
+ E 08 rcl 5 09 + E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34			06
rcl 5 09 + E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34			
+ E 10 rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34			
rcl 5 11 - F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34			1
- F 12 ▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34			
▼ A 13 gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34	rcl		
gin 1 14 0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34	-	F	
0 0 15 7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34		Α	
7 7 16 + E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34			
+ E 17 rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34	77.7		
rcl 5 18 = - 19 sin 7 20) 6 21 + E 22 X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34			
= - 19 sin 7 20) 6 21 + E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34		Е	
sin 7 20) 6 21 + E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34			
) 6 21 + E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34		-	
+ E 22 X · 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34			
X 23 (6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34			
(6 24 stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34	1 1 1 1 1 1 1 1 1		
stop 0 25 ÷ G 26 - F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X · 33 stop 0 34			
÷ G 26 - F 27 # 3 28 1 1 29 - 30) 6 31 ÷ G 32 X 33 stop 0 34			
- F 27 # 3 28 1 1 29 = - 30) 6 31 ÷ G 32 X 33 stop 0 34			
# 3 28 1 1 29 = - 30) 6 31 - G 32 X 33 stop 0 34	÷	G	
# 3 28 1 1 29 = - 30) 6 31 - G 32 X 33 stop 0 34		F	
= - 30) 6 31 ÷ G 32 X · 33 stop 0 34		3	
) 6 31 ÷ G 32 X · 33 stop 0 34		1	
÷ G 32 X · 33 stop 0 34		-	
x · 33 stop 0 34)		
stop 0 34	U3 <mark>5</mark>) 331		
= - 35	stop	0	
	=		35

		00
		01
		02
		03
		04
		05
		06
		07
		08
		09
		10
		11
		12
		14
		15
		16
		17
		18
		19
		20
		21
		22
		23
-		24
1.		25
		26
		27
	_	28
		29
		30
		31
		32
		33
	-	34
1		35

© 1977 Sinclair Radionics Ltd London Rd St Ives Huntingdon Cambs PE17 4HJ part no. 48584 354

