- NLP - Paper Review -Sequence to Sequence Learning with Neural Networks

Ayoub Youssoufi, Yassin El Hajj Chehade

February 10^{th} , 2023

Introduction •OO

- 1. Introduction
- 2. Model description
- 3. Experimental results
- 4. Model analysis
- Conclusion

Introduction

Deep Neural Network (DNN) are extremely powerful models. However, they have some limitations:

- can only map vectors to vectors with fixed dimensionality
- cannot map sequences to sequences
- learning to map sequences to sequences is important
 - Machine Translation
 - Speech Recognition
 - Image caption generation
 - Many other interesting tasks

The goal of this paper: Solve the sequence to sequence problems

NLP 2 / 16

Can we use RNN?

Introduction 000

- Have a one-to-one correspondence between the input and the outputs
- have trouble learning "long-term dependencies"
 - Vanishing gradient problem: use of LSTM
 - Exploding gradient problem : Gradient clipping

Long-Short-Term-Memory (LSTM) is a certain RNN architecture that has no vanishing gradient $Pr(Y_1, ..., Y_T \mid X_1, ..., X_q) = \prod_{q=1} Pr(Y_q \mid v, Y_1, ..., Y_{q-1})$

> NLP 3 / 16

- 1 Introduction
- 2. Model description
- 3. Experimental results
- 4. Model analysis
- 5. Conclusion

Main idea:

- Have an LSTM first read the input sequence
- Produce the output sequence

Figure: model reads an input sentence "ABC" and produces "WXYZ" as the output sentence.

Big Dataset:

The architecture:

- WMT'14 English to French
- 340M french words
- 303M English words
- 160K input words and 80K output words
- 4 layers of LSTMs

The learning parameters :

- batch_size = 128
- initialized LSTM: uniform distribution between -0.08 and 0.08
- learning rate is halved every 0.5 epoch /5epochs
- using Parallelization with 8 GPUs ...

NLP 6 / 16

Objective function

An experiments involved training a large deep LSTM. Trained by maximizing the objective function :

$$1/|\mathcal{S}| \sum_{(T,S) \in \mathcal{S}} \log p(T|S) \qquad \qquad \hat{T} = \arg \max_{T} p(T|S)$$

- T: Target sentence
- S: Input sentence

Reverse the input of the input sentence when mapping to the output. (abc mapped to XYZ will be bca to XYZ)

NLP 7 / 16

- 1. Introduction
- 2. Model description
- 3. Experimental results
- 4. Model analysis
- Conclusion

Experimental results:

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

Figure: The performance of the LSTM on WMT'14 English to French test set (ntst14). Note that an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of size 12.

NLP 9 / 16

- 1 Introduction
- 2. Model description
- 3. Experimental results
- 4. Model analysis
- Conclusion

Model analysis 1

Figure: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that both clusters have similar internal structure

NLP 11 / 16

Model analysis 2

Figure: The left plot shows the performance of our system as a function of sentence length. The right plot shows the LSTM's performance on sentences with progressively more rare words.

NLP 12 / 16

- 1. Introduction
- 2. Model description
- 3. Experimental results
- 4. Model analysis
- 5. Conclusion

Conclusion

- Seq2Seq based on LSTM outperforms standard SMT.
- Reversing the order of words in the source sentence improves the performance.
- LSTM performs well in very long sentences.

Critic

Pros

Well structured, clear

Limits

- reliance to left-to-right beam search decoder which may not be optimal for all the languages.
- Focus only in the single language pair (English-French) and not cross-lingual translation.
- The lack of exploration of other NLP tasks to validate the robustness of the model.

NLP 15 / 16

Questions

Thank you for your attention!