Math. - ES 1

On rappelle que pour $x \in \mathbb{R}$,

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

EXERCICE 1

On considère l'équation différentielle suivante :

$$y'' - 2y' - 3y = \frac{e^{4x} - e^{2x}}{e^x + e^{-x}} \quad (L)$$

- 1. Donner les solutions de l'équation différentielle homogène associée à (L).
- $S_H = \{x \mapsto Ae^{3x} + Be^{-x}, (A, B) \in \mathbb{R}^2\}$
- 2. Montrer que y est solution de (L) si et seulement si la fonction z définie sur \mathbb{R} par $z(x) = e^{-3x}y(x)$ est solution de l'équation différentielle

$$y'' + 4y' = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \qquad (L_1)$$

et donc si et seulement si z' est solution de l'équation différentielle :

$$y' + 4y = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \qquad (L_2)$$

Soit $z: x \mapsto e^{-3x}y(x)$, où y est une fonction de classe C^2 sur \mathbb{R} . z est de classe C^2 sur \mathbb{R} par produit et pour tout réel x on a :

$$z'(x) = e^{-3x}(-3y(x) + y'(x))$$
 et $z''(x) = e^{-3x}(9y(x) - 6y'(x) + y''(x))$

Ainsi, z est solution de (L_1) si et seulement si pour tout réel x:

$$e^{-3x}(-3y(x) - 2y'(x) + y''(x)) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

ce qui équivaut à y solution de (L)

3. a. Déterminer les réels a, b et c tels que pour tout réel x on a :

$$e^{4x}\frac{e^{2x}-1}{e^{2x}+1} = e^{2x}\left(ae^{2x}+b+\frac{c}{1+e^{2x}}\right) = e^{2x}\left(e^{2x}-2+\frac{2}{1+e^{2x}}\right)$$

b. Résoudre (L_2) .

Les solutions de l'équation homogène associée sont de la forme $x \mapsto Ce^{-4x}$, avec $C \in \mathbb{R}$.

On cherche une solution particulière sous la forme $y_p = \lambda h$ où $h: x \mapsto e^{-4x}$

On obtient
$$\lambda'(x) = e^{4x} \frac{e^{2x} - 1}{e^{2x} + 1} = e^{2x} \left(e^{2x} - 2 + \frac{2}{1 + e^{2x}} \right) \operatorname{donc} y_p(x) = e^{-4x} \left(\frac{1}{4} e^{4x} - e^{2x} + \ln(1 + e^{2x}) + C \right)$$

où C est une constante réelle. Finalement, les solutions de (L_2) sont :

$$S_{L_2} = \left\{ Ce^{-4x} + \frac{1}{4} - e^{-2x} + e^{-4x} \ln \left(1 + e^{2x} \right), C \in \mathbb{R} \right\}$$

4. a. Déterminer les réels α, β et γ tels que pour tout réel u > 0 on a :

$$\frac{1}{u^2(1+u)} = \frac{\alpha}{u} + \frac{\beta}{u^2} + \frac{\gamma}{1+u} = -\frac{1}{u} + \frac{1}{u^2} + \frac{1}{1+u}$$

b. Déterminer $\int_{0}^{x} \frac{\ln(1+e^{2t})}{e^{4t}} dt$, à l'aide du changement de variable $u = e^{2t}$ et d'une intégration par parties.

Le changement de variable est de classe C^1 et strictement croissant. Le théorème de changement de variable donne :

$$\int_{0}^{x} \frac{\ln(1+e^{2t})}{e^{4t}} dt = \int_{0}^{e^{2x}} \frac{\ln(1+u)}{u^2} \times \frac{du}{2u} = \frac{1}{2} \int_{0}^{e^{2x}} \frac{\ln(1+u)}{u^3} du$$

On pose $f: u \mapsto \ln(1+u)$ et $g: u \mapsto -\frac{1}{2u^2}$; f et g sont de classe C^1 sur \mathbb{R}_+^* donc le théorème d'intégration par parties donne :

c. Résoudre (L_1) .

z est solution de L_1 si et seulement z' est solution de (L_2) on en déduit donc :

$$S_{L_1} = \left\{ x \mapsto C_1 + C_2 e^{-4x} - \frac{1}{4}x + \frac{1}{4}e^{-2x} + \frac{1}{4}\left(1 - e^{-4x}\right)\ln(1 + e^{2x}), (C_1, C_2) \in \mathbb{R}^2 \right\}$$

5. Déduire des questions précédentes l'ensemble des solutions de (L).

$$S_L = \left\{ x \mapsto C_1 e^{3x} + C_2 e^{-x} - \frac{1}{4} x e^{3x} + \frac{1}{4} e^x + \frac{1}{4} \left(e^{3x} - e^{-x} \right) \ln(1 + e^{2x}), (C_1, C_2) \in \mathbb{R}^2 \right\}$$

EXERCICE 2

1. Montrer que :

$$\operatorname{Arctan}\left(\frac{2x}{1-x^2}\right) = \begin{cases} 2\operatorname{Arctan}(x) & \text{si} \quad x \in]-1,1[\\ 2\operatorname{Arctan}(x) - \pi & \text{si} \quad x \in]1,+\infty[\\ 2\operatorname{Arctan}(x) + \pi & \text{si} \quad x \in]-\infty,-1[\end{cases}$$

La fonction $f\mapsto \operatorname{Arctan}\left(\frac{2x}{1-x^2}\right)$ est définie et dérivable sur $\mathbb{R}\setminus\{-1,1\}.$

Par ailleurs elle est impaire.

Pour
$$x \in [0, 1[\cup]1, +\infty[$$
, on $a : f'(x) = \frac{2}{1+x^2}$.

On en déduit l'existence de deux constantes C_1 et C_2 telles que $f(x) = \begin{cases} 2\operatorname{Arctan}(x) + C_1 & \text{si} \quad x \in [0, 1[\\ 2\operatorname{Arctan}(x) + C_2 & \text{si} \quad x \in]1, +\infty[\end{cases}$

$$f(0) = 0$$
 donne $C_1 = 0$ et $\lim_{x \to +\infty} f(x) = \lim_{X \to 0} \operatorname{Arctan}(X) = 0$ avec $\lim_{x \to +\infty} \operatorname{Arctan}(x) = \frac{\pi}{2}$ donne $C_2 = -\pi$.

Le fait que f soit impaire donne le résultat attendu.

2. En déduire les solutions de l'équation :

$$Arctan\left(\frac{2x}{1-x^2}\right) = Arcsin(x)$$

L'équation se résout dans]-1,1[compte tenu des deux domaines de définitions.

L'équation est donc équivalente à $2\operatorname{Arctan}(x) = \operatorname{Arcsin}(x)$;

 $2\operatorname{Arctan}(x) = \operatorname{Arcsin}(x) \Rightarrow \sin(2\operatorname{Arctan}(x)) = x \Rightarrow 2\sin(\operatorname{Arctan}(x))\cos(\operatorname{Arctan}(x)) = x$

$$\Rightarrow 2\frac{\sin\left(\operatorname{Arctan}(x)\right)}{\cos\left(\operatorname{Arctan}(x)\right)}\cos^{2}\left(\operatorname{Arctan}(x)\right) = x \Rightarrow \frac{2\tan\left(\operatorname{Arctan}(x)\right)}{1 + \tan\left(\operatorname{Arctan}(x)\right)^{2}} = x \Rightarrow \frac{2x}{1 + x^{2}} = x$$
$$\Rightarrow x \in \{0, -1, 1\}$$

Compte tenu du domaine de validité, la seule solution possible est x = 0.

Comme Arctan(0) = Arcsin(0) = 0, on en déduit que 0 est la seule solution de l'équation.

EXERCICE 3

L'objectif de cet exercice est de déterminer l'ensemble E des fonctions f définies sur $\mathbb R$ satisfaisant l'équation fonctionnelle :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)}$$

Déterminer les fonctions constantes appartenant à E.

$$C = \frac{2C}{1 + C^2} \Leftrightarrow C \in \{0, -1, 1\}; \text{ les fonctions constantes de } E \text{ sont donc } x \mapsto 0, \quad x \mapsto -1, \quad x \mapsto 1.$$

b. La fonction f appartenant à E, montrer que s'il existe $a \in \mathbb{R}$ tel que $f(a) = \pm 1$, alors f est constante.

S'il existe $a \in \mathbb{R}$, tel que $f(a) = \pm 1$ alors, pour tout réel x on a :

$$f(x+a) = \frac{\pm 1 + f(x)}{1 \pm f(x)} = \pm 1$$
 donc f est constante, égale à ± 1 .

- **2.** On suppose désormais qu'il existe dans E une fonction f non constante.
 - **a.** Calculer f(0) et montrer que f est impaire.

$$f(0) = \frac{2f(0)}{1+f(0)^2}$$
; comme f n'est pas constante, $f(0) \neq \pm 1$ donc $f(0) = 0$.

Pour $x \in \mathbb{R}$, $f(x-x) = \frac{f(x) + f(-x)}{1 + f(x)f(-x)} = 0$; on en déduit que f(x) + f(-x) = 0 donc que f est

b. En écrivant $x = \frac{x}{2} + \frac{x}{2}$, montrer que

$$\forall x \in \mathbb{R}, f(x) \in]-1,1[$$

Soit
$$x \in \mathbb{R}$$
. On a : $f\left(\frac{x}{2} + \frac{x}{2}\right) = \frac{2f\left(\frac{x}{2}\right)}{1 + \left(f\left(\frac{x}{2}\right)\right)^2}$.

Or pour tout réel $a, (1-|a|)^2 \ge 0 \Rightarrow 1+a^2 \ge 2|a| \Rightarrow \frac{2|a|}{1+a^2} \le 1.$

On en déduit que $|f(x)| \le 1$ donc que $f(x) \in [-1,1]$. Comme de plus f n'est pas constante, elle ne peut pas prendre les valeurs ± 1 d'où $f(x) \in]-1,1[$.

Montrer que pour tout $n \in \mathbb{N}$, et tout $x \in \mathbb{R}$,

$$\frac{1+f(nx)}{1-f(nx)} = \left(\frac{1+f(x)}{1-f(x)}\right)^n$$

Par principe de récurrence H_n est donc vraie pour tout entier n.

b. On pose $b = \frac{1+f(1)}{1-f(1)}$. Exprimer f(n) en fonction de b et de n, pour $n \in \mathbb{N}$.

Remarquons tout d'abord que d'après la question **2.b**, $f(1) \in]-1,1[$, donc b>0. Soit $n \in \mathbb{N}$. D'après la question précédente, $\frac{1+f(n)}{1-f(n)} = b^n$; $b^n \neq -1$, donc $f(n) = \frac{b^n-1}{b^n+1}$.

c. Montrer que

$$\forall n \in \mathbb{N}^*, \quad f\left(\frac{1}{n}\right) = \frac{b^{\frac{1}{n}} - 1}{b^{\frac{1}{n}} + 1}$$

D'après la question **3.a**, avec $x = \frac{1}{n}$, on obtient : $\frac{1+f(1)}{1-f(1)} = \left(\frac{1+f\left(\frac{1}{n}\right)}{1-f\left(\frac{1}{n}\right)}\right)^n$, d'où le résultat.

- **4.** On suppose que f est dérivable en 0 et on pose f'(0) = k.
 - En utilisant le taux d'accroissement de f en 0, montrer que $k = \frac{\ln(b)}{2}$.

On a :
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = k$$
; en particulier, $\lim_{n\to +\infty} nf\left(\frac{1}{n}\right) = k$.

Par ailleurs,
$$nf\left(\frac{1}{n}\right) = \frac{n\left(b^{\frac{1}{n}} - 1\right)}{b^{\frac{1}{n}} + 1} = \frac{n\left(e^{\frac{1}{n}\ln(b)} - 1\right)}{e^{\frac{1}{n}\ln(b)} + 1}$$

Par ailleurs,
$$nf\left(\frac{1}{n}\right) = \frac{n\left(b^{\frac{1}{n}} - 1\right)}{b^{\frac{1}{n}} + 1} = \frac{n\left(e^{\frac{1}{n}\ln(b)} - 1\right)}{e^{\frac{1}{n}\ln(b)} + 1}.$$
Comme $\lim_{n \to +\infty} n\left(e^{\frac{1}{n}\ln(b)} - 1\right) = \lim_{h \to 0} \frac{e^{h\ln(b)} - 1}{h} = \lim_{x = h\ln(b)} \ln(b) \times \lim_{x \to 0} \frac{e^x - 1}{x} = \ln(b),$

et
$$\lim_{n\to+\infty} \left(e^{\frac{1}{n}\ln(b)} + 1 \right) = 2$$
, on en déduit que $k = \frac{\ln(b)}{2}$.

En utilisant le taux d'accroissement de f en x, montrer que f est dérivable en x et que

$$f'(x) = k (1 - (f(x))^2)$$

$$\forall x \in \mathbb{R}, \forall h \neq 0, \frac{f(x+h) - f(x)}{h} = \frac{\frac{f(x) + f(h)}{1 + f(x)f(h)} - f(x)}{h} = \frac{f(h)\left(1 - (f(x))^2\right)}{h(1 + f(x)f(h))}.$$
 Comme f est dérivable en 0, elle y est continue et $\lim_{h \to 0} f(h) = f(0) = 0$; de plus,

$$\lim_{h \to 0} \frac{f(h)}{h} = f'(0) = k \text{ on a donc } f \text{ dérivable en } x \text{ et } f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = k \left(1 - (f(x))^2\right).$$

5. a. Déterminer les réels α et β tels que

$$\forall x \in]-1,1[, \quad \frac{1}{1-x^2} = \frac{\alpha}{1-x} + \frac{\beta}{1+x} \quad = \frac{\frac{1}{2}}{1-x} + \frac{\frac{1}{2}}{1+x}$$

Déduire de ce qui précède l'ensemble des éléments de E dérivables en 0.

On a pour tout réel
$$x : \frac{f'(x)}{1 - (f(x))^2} = \frac{\frac{1}{2}f'(x)}{1 - f(x)} + \frac{\frac{1}{2}f'(x)}{1 + f(x)} = k$$

On a pour tout réel $x: \frac{f'(x)}{1-(f(x))^2} = \frac{\frac{1}{2}f'(x)}{1-f(x)} + \frac{\frac{1}{2}f'(x)}{1+f(x)} = k$. On a montré que pour tout réel $x, f(x) \in]-1, 1[$, on en déduit qu'il existe une constante $C \in \mathbb{R}$ telle que pour tout réel x, $-\frac{1}{2} \ln (1 - f(x)) + \frac{1}{2} \ln (1 + f(x)) = kx + C$.

Comme f(0)=0, on en déduit que C=0 puis que $\ln\sqrt{\frac{1+f(x)}{1-f(x)}}=kx$ et par suite que

$$f(x) = \frac{e^{2kx} - 1}{e^{2kx} + 1}.$$

Réciproquement,
$$f$$
 ainsi définie sur \mathbb{R} est bien dérivable en 0, et pour $(x,y) \in \mathbb{R}^2$ on a :
$$\frac{f(x) + f(y)}{1 + f(x)f(y)} = \frac{\frac{e^{2kx} - 1}{e^{2kx} + 1} + \frac{e^{2ky} - 1}{e^{2ky} + 1}}{1 + \frac{e^{2ky} - 1}{e^{2kx} + 1} \frac{e^{2ky} - 1}{e^{2ky} + 1}} = \frac{\left(e^{2kx} - 1\right)\left(e^{2ky} + 1\right) + \left(e^{2ky} - 1\right)\left(e^{2kx} + 1\right)}{\left(e^{2kx} + 1\right)\left(e^{2ky} - 1\right)\left(e^{2kx} - 1\right)\left(e^{2ky} - 1\right)} = \frac{e^{2k(x+y)} - 1}{e^{2k(x+y)} + 1} = f(x+y)$$

Ainsi, une telle fonction est bien dans E.

EXERCICE 4

Soit n un entier naturel supérieur ou égal à 2. On note $\omega = e^{\frac{2i\pi}{n}}$

1. Montrer que

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0$$

 $\omega \neq 1$ donc $1 + \omega + \omega^2 + \ldots + \omega^{n-1} = \frac{1 - \omega^n}{1 - \omega} = 0$ puisque $\omega^n = e^{i2\pi} = 1$ (somme des termes consécutifs d'une suite géométrique de raison ω).

2. En déduire que

$$\sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = 0$$
On peut écrire
$$\sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = \operatorname{Re}\left(\sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}}\right) = \operatorname{Re}\left(\sum_{k=0}^{n-1} \left(e^{i\frac{2\pi}{n}}\right)^k\right) = \operatorname{Re}\left(\sum_{k=0}^{n-1} \omega^k\right) = 0.$$
On a donc bien
$$\sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = 0.$$

3. Montrer que

$$\omega^{k} - 1 = 2i \sin\left(\frac{k\pi}{n}\right) e^{\frac{ik\pi}{n}}$$

$$\omega^{k} - 1 = e^{\frac{2ik\pi}{n}} - 1 = e^{\frac{ik\pi}{n}} \left(e^{\frac{ik\pi}{n}} - e^{\frac{-ik\pi}{n}}\right) = 2i \sin\left(\frac{k\pi}{n}\right) e^{\frac{ik\pi}{n}}.$$
 (Formule d'Euler)

4. A l'aide des questions précédentes, démontrer que

$$\sum_{k=0}^{n-1} \left| \omega^k - 1 \right|^2 = 2n$$

$$\sum_{k=0}^{n-1} \left| \omega^k - 1 \right|^2 = \sum_{k=0}^{n-1} \left| 2\mathrm{i} \sin \left(\frac{k\pi}{n} \right) \mathrm{e}^{\frac{\mathrm{i} k\pi}{n}} \right|^2 = \sum_{k=0}^{n-1} 4 \left(\sin \left(\frac{k\pi}{n} \right) \right)^2, \quad \text{car } |\mathrm{i}| = \left| \mathrm{e}^{\frac{\mathrm{i} k\pi}{n}} \right| = 1.$$

De plus, $\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$, ce qui donne :

$$\left| \sum_{k=0}^{n-1} \left| \omega^k - 1 \right|^2 = \sum_{k=0}^{n-1} 2\left(1 - \cos\left(\frac{2k\pi}{n}\right) \right) = \sum_{k=0}^{n-1} 2 - 2\sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = 2n \right|.$$
 (D'après 3)

EXERCICE 5

Soient n un entier naturel non nul et a un réel de $\left]0,\frac{\pi}{2}\right[$. On souhaite résoudre l'équation

$$\left(\frac{1+\mathrm{i}z}{1-\mathrm{i}z}\right)^n = \frac{1+\mathrm{i}\tan a}{1-\mathrm{i}\tan a} \qquad (1)$$

1. Déterminer la forme exponentielle de

$$\frac{1+i\tan a}{1-i\tan a}$$

5

On a:
$$\frac{1+\mathrm{i}\tan a}{1-\mathrm{i}\tan a} = \frac{1+\mathrm{i}\frac{\sin a}{\cos a}}{1-\mathrm{i}\frac{\sin a}{\cos a}} = \frac{\cos a+\mathrm{i}\sin a}{\cos a-\mathrm{i}\sin a} = \frac{\mathrm{e}^{\mathrm{i}a}}{\mathrm{e}^{-\mathrm{i}a}} = \boxed{\mathrm{e}^{2\mathrm{i}a}}.$$

2. Résoudre dans \mathbb{C} l'équation d'inconnue $Z \in \mathbb{C}$,

$$Z^n = e^{2ia}$$

On a $Z^n = e^{2ia} \Longrightarrow |Z^n| = |Z|^n = 1$ donc |Z| = 1. En notant $Z = e^{i\theta}$, on obtient : $Z^n = e^{2ia} \Longrightarrow n\theta \equiv 2a \, [2\pi]$, car $\arg(Z^n) \equiv n \times \arg(Z) \, [2\pi]$.

Ainsi, les solutions de $Z^n = e^{2ia}$ sont de la forme $Z_k = e^{i\frac{2a+2k\pi}{n}}$, avec $k \in \mathbb{Z}$; réciproquement, ces nombres sont bien solutions de l'équation $Z^n = e^{2ia}$. De plus, les arguments étant

définis à 2π -près, les solutions de $Z^n=\mathrm{e}^{2\mathrm{i}a}$ sont $Z_k=\mathrm{e}^{2\mathrm{i}\frac{a+k\pi}{n}}=\mathrm{e}^{\mathrm{i}\theta_k},\,k\in[0,n-1]$

3. Démontrer que

$$\forall \theta \in]-\pi,\pi[,\quad \frac{e^{i\theta}-1}{i\left(e^{i\theta}+1\right)}=\tan\frac{\theta}{2}$$

On a:
$$\forall \theta \in]-\pi, \pi[$$
, $e^{i\theta}-1=e^{\frac{i\theta}{2}}\left(e^{\frac{i\theta}{2}}-e^{\frac{-i\theta}{2}}\right)=2i\sin\left(\frac{\theta}{2}\right)e^{\frac{i\theta}{2}}$ et

$$e^{i\theta} + 1 = e^{\frac{i\theta}{2}} \left(e^{\frac{i\theta}{2}} + e^{\frac{-i\theta}{2}} \right) = 2\cos\left(\frac{\theta}{2}\right) e^{\frac{i\theta}{2}}$$
. (Formules d'Euler)

Ainsi,
$$\forall \theta \in]-\pi,\pi[$$
, $\frac{\mathrm{e}^{\mathrm{i}\theta}-1}{\mathrm{i}\left(\mathrm{e}^{\mathrm{i}\theta}+1\right)}=\frac{2\mathrm{i}\sin\left(\frac{\theta}{2}\right)\mathrm{e}^{\frac{\mathrm{i}\theta}{2}}}{\mathrm{i}\times2\cos\left(\frac{\theta}{2}\right)\mathrm{e}^{\frac{\mathrm{i}\theta}{2}}}=\tan\frac{\theta}{2}$.

4. Résoudre l'équation (1). On exprimera les solutions à l'aide de la fonction tangente.

D'après 1, z est solution de (1) si, et seulement si $\frac{1+iz}{1-iz}$ est défini et est solution de $Z^n = e^{2ia}$, ce

qui équivaut à $z \neq -i$ et $\frac{1+iz}{1-iz}$ est solution de $Z^n = e^{2ia}$.

De plus, $\frac{1+\mathrm{i}z}{1-\mathrm{i}z}$ est solution de $(1) \iff \exists k \in [0, n-1], \quad \frac{1+\mathrm{i}z}{1-\mathrm{i}z} = Z_k$ (d'après 2) $\iff \exists k \in [0, n-1], \quad \mathrm{i}z(Z_k+1) = Z_k-1.$ On a : $Z_k = -1 \iff \theta_k \equiv \pi[2\pi] \iff 2\frac{a+k\pi}{n} \equiv \pi[2\pi]$; or $a \in \left]0, \frac{\pi}{2}\right[$ et $k \in [0, n-1]$ donc

 $0 \le 2 \frac{a + k\pi}{2} < \pi$ d'où $Z_k \ne -1$. On a donc :

 $\frac{1+\mathrm{i}z}{1-\mathrm{i}z} \text{ est solution de } (1) \Longleftrightarrow \exists k \in [0,n-1], \quad z = \frac{Z_k-1}{\mathrm{i}(Z_k+1)} = \frac{\mathrm{e}^{\mathrm{i}\theta_k}-1}{\mathrm{i}\left(\mathrm{e}^{\mathrm{i}\theta_k}+1\right)} \ .$

Enfin, comme $\theta_k \not\equiv \pi[2\pi]$, on peut appliquer le **3** pour cor

$$z$$
 est solution de $(1) \iff \exists k \in [0, n-1], z = \tan \frac{\theta_k}{2}$.

Les solutions de (1) sont
$$\left\{ \tan \left(\frac{a + k\pi}{n} \right), k \in [0, n - 1] \right\}$$
.

EXERCICE 6

On considère la fonction f définie sur [0,1] par

$$f(x) = 2xe^x$$

1. a. Dresser le tableau de variations de f sur [0,1] et montrer que f réalise une bijection de [0,1] sur un ensemble que l'on déterminera.

f est dérivable (donc continue) sur [0,1] et

$$\forall x \in [0,1], \ f'(x) = 2(x+1)e^x$$

On en déduit le tableau de variations suivant :

x	0		1
f'(x)	2	+	4e
f	0		2e

Le corollaire du théorème des valeurs intermédiaires nous permet de conclure que f réalise une bijection de [0,1] sur [0,2e].

On note f^{-1} la bijection réciproque de f.

b. Vérifier qu'il existe dans [0,1] un et un seul réel noté α tel que

$$\alpha e^{\alpha} = 1$$

Montrer que $\alpha \neq 0$.

 $2 \in [0, 2e]$, donc la question précédente permet d'écrire

$$\exists ! \alpha \in [0,1], \ f(\alpha) = 2$$

c'est à dire $\exists!\alpha\in[0,1],\ \alpha e^{\alpha}=1$

De plus, f(0) = 0 implique, toujours par la question précédente, que $\alpha \neq 0$.

c. Résoudre, pour $x \in [0,1]$:

$$f(x) = x$$

Soit $x \in [0, 1]$.

$$f(x) = x \iff 2xe^{x} = x$$

$$\iff (2e^{x} - 1)x = 0$$

$$\iff x = 0 \quad (\operatorname{car} - \ln(2) \notin [0, 1])$$

d. Résoudre, pour $x \in [0,1]$:

$$f(x) \ge x$$

Soit $x \in [0, 1]$.

$$\begin{split} f(x) & \geq x \Longleftrightarrow 2x \mathrm{e}^x \geq x \\ & \iff (2\mathrm{e}^x - 1)x \geq 0 \\ & \iff x \in [0, 1] \quad \big(\text{ car sur } [0, 1], \quad 2\mathrm{e}^x - 1 \geq 0 \quad \text{et} \quad x \geq 0 \, \big) \end{split}$$

Justifier que

$$f^{-1}([0,1]) \subset [0,1]$$

$$f^{-1} \text{ est strictement croissante sur } [0,1] \text{ donc}$$

$$f^{-1}([0,1]) \subset f^{-1}([0,2\mathrm{e}]) = \left[f^{-1}(0),f^{-1}(2\mathrm{e})\right] = [0,1]$$

2. On définit la suite (u_n) par

$$\begin{cases} u_0 = \alpha \\ \forall n \in \mathbb{N}, \ u_{n+1} = f^{-1}(u_n) \end{cases}$$

a. Montrer que pour tout $n \in \mathbb{N}$,

$$u_n \in [0, 1]$$

A l'aide de 1.e., comme $u_0 = \alpha \in [0, 1]$, une récurrence immédiate donne $\forall n \in \mathbb{N}, u_n \in [0, 1]$, ce qui justifie par là-même que (u_n) est bien définie.

b. Montrer que la suite (u_n) est monotone.

La question 1.d., nous donne

$$\forall x \in [0,1], \ f(x) \ge x$$

En composant par f^{-1} , qui est strictement croissante sur [0,1], on a l'équivalence

$$\forall x \in [0, 1], \ f(x) \ge x \iff \forall x \in [0, 1], \ x \ge f^{-1}(x)$$

[0,1] est stable par f^{-1} , $\forall n \in \mathbb{N}$, $u_n \in [0,1]$ et $\forall x \in [0,1]$, $f^{-1}(x) - x \leq 0$ donc (u_n) est une suite décroissante.

- c. Montrer que la suite (u_n) est convergente, et préciser sa limite. (u_n) est décroissante (d'après 2.b.) et minorée (car bornée d'après 2.a.) donc d'après le théorème de la limite monotone, (u_n) converge vers l. f^{-1} étant continue sur [0,1], l vérifie $l \in [0,1]$, et $f^{-1}(l) = l$ soit encore f(l) = l. La question 1.c. permet de conclure que $\lim u_n = 0$
- **3.** On se propose de préciser ce résultat en montrant que $(2^n u_n)$ a une limite finie non nulle. On pose pour tout $n \in \mathbb{N}$:

$$S_n = \sum_{k=0}^n u_k$$

a. Montrer que pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{2} u_n e^{-u_{n+1}}$$

 $\forall n \in \mathbb{N}.$

$$u_{n+1} = f^{-1}(u_n) \iff u_n = f(u_{n+1})$$

$$\iff u_n = 2u_{n+1}e^{u_{n+1}}$$

$$\iff u_{n+1} = \frac{1}{2}u_ne^{-u_{n+1}}$$

b. En déduire que pour tout $n \in \mathbb{N}$,

$$u_n = \frac{e^{-S_n}}{2^n}$$

On peut le démontrer par récurrence. On peut aussi écrire, puisque $\forall k \in \mathbb{N}, \ u_k \neq 0$:

$$\forall k \in \mathbb{N}, \ u_{k+1} = \frac{1}{2} u_k e^{-u_{k+1}} \iff \forall k \in \mathbb{N}, \ \frac{u_{k+1}}{u_k} = \frac{1}{2} e^{-u_{k+1}}$$

$$\implies \forall n \in \mathbb{N}^*, \ \prod_{k=0}^{n-1} \frac{u_{k+1}}{u_k} = \prod_{k=0}^{n-1} \frac{1}{2} e^{-u_{k+1}}$$

$$\iff \forall n \in \mathbb{N}^*, \ \frac{u_n}{u_0} = \left(\frac{1}{2}\right)^n \prod_{k=0}^{n-1} e^{-u_{k+1}} \quad (\text{ par t\'elescopage })$$

$$\iff \forall n \in \mathbb{N}^*, \ u_n = \left(\frac{1}{2}\right)^n u_0 e^{-S_n + u_0}$$

$$\iff \forall n \in \mathbb{N}^*, \ u_n = \left(\frac{1}{2}\right)^n e^{-S_n} \quad (\text{car } u_0 e^{u_0} = \alpha e^{\alpha} = 1)$$

On vérifie que cette égalité reste vraie pour n=0.

c. Montrer que pour tout $k \in \mathbb{N}$,

$$u_k \le \left(\frac{1}{2}\right)^k$$

et en déduire une majoration de S_n .

On sait que $\forall k \in \mathbb{N}, \ S_k \ge 0 \text{ donc } \forall k \in \mathbb{N}, \ \mathrm{e}^{-S_k} \le 1; \text{ ce qui implique que } \boxed{ \forall k \in \mathbb{N}, \ u_k = \frac{\mathrm{e}^{-S_k}}{2^k} \le \frac{1}{2^k} = \left(\frac{1}{2}\right)^k }$

On en déduit que
$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n u_k \le \sum_{k=0}^n \left(\frac{1}{2}\right)^k = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} \le \frac{1}{1 - \frac{1}{2}} = 2$$

d. En déduire que la suite (S_n) est convergente. En notant L sa limite, montrer que

$$\alpha \leq L \leq 2$$

 $\forall n \in \mathbb{N}, S_{n+1} - S_n = u_n \ge 0$ donc (S_n) est croissante. De plus, d'après **3.c**, (S_n) est majorée, donc d'après le théorème de la limite monotone, (S_n) est convergente.

En notant, L sa limite, comme pour $n \in \mathbb{N}$, $S_0 \leq S_n \leq 2$ (d'après **3.c**), par passage à la limite, on obtient $S_0 \leq L \leq 2$, ce qui signifie que $\alpha \leq L \leq 2$.

e. Déterminer la limite de $(2^n u_n)$.

 $\forall n \in \mathbb{N}, \ 2^n u_n = e^{-S_n} \text{ donc par composition des limites } \boxed{\lim 2^n u_n = e^{-L}}$

REMARQUE: On retrouve alors que

$$\lim u_n = 0$$

mais en ayant une information supplémentaire : (u_n) converge vers 0 "à la vitesse" d'une suite géométrique (voir chapitre sur l'analyse asymptotique).