$12a_{1148} (K12a_{1148})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{36} + u^{35} + \dots + 3u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{36} + u^{35} + \dots + 3u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{9} + 4u^{7} - 5u^{5} + 3u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} - 5u^{10} + 9u^{8} - 4u^{6} - 6u^{4} + 5u^{2} + 1 \\ u^{12} - 4u^{10} + 6u^{8} - 2u^{6} - 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{21} - 8u^{19} + \dots - 4u^{3} + 3u \\ -u^{23} + 9u^{21} + \dots + 4u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{31} - 12u^{29} + \dots + 32u^{5} + 16u^{3} \\ u^{31} - 11u^{29} + \dots + 4u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $4u^{33} - 48u^{31} + 4u^{30} + 260u^{29} - 44u^{28} - 804u^{27} + 216u^{26} + 1444u^{25} - 592u^{24} - 1136u^{23} + 892u^{22} - 948u^{21} - 420u^{20} + 3268u^{19} - 948u^{18} - 2672u^{17} + 1812u^{16} - 804u^{15} - 808u^{14} + 2816u^{13} - 896u^{12} - 1200u^{11} + 1080u^{10} - 816u^9 - 56u^8 + 680u^7 - 352u^6 + 80u^5 + 64u^4 - 112u^3 + 48u^2 - 12u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_{10}, c_{11}	$u^{36} - 3u^{35} + \dots - 12u + 1$
c_2, c_3, c_8	$u^{36} - u^{35} + \dots + 3u^2 + 1$
c_4, c_5, c_{12}	$u^{36} + u^{35} + \dots + 3u^2 + 1$
<i>c</i> ₉	$u^{36} + 3u^{35} + \dots - 106u - 187$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7 c_{10}, c_{11}	$y^{36} + 49y^{35} + \dots - 54y + 1$
c_2, c_3, c_8	$y^{36} - 35y^{35} + \dots + 6y + 1$
c_4, c_5, c_{12}	$y^{36} - 27y^{35} + \dots + 6y + 1$
<i>c</i> ₉	$y^{36} - 23y^{35} + \dots - 458166y + 34969$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.015238 + 0.941216I	-18.6813 - 5.7665I	5.67878 + 2.82103I
u = 0.015238 - 0.941216I	-18.6813 + 5.7665I	5.67878 - 2.82103I
u = -0.006373 + 0.933067I	14.2459 + 2.3310I	2.48067 - 2.82015I
u = -0.006373 - 0.933067I	14.2459 - 2.3310I	2.48067 + 2.82015I
u = 0.922444	3.24298	1.81830
u = -1.15188	-2.33631	-1.84880
u = 1.159790 + 0.356655I	6.79135 + 0.54642I	2.47249 + 0.25591I
u = 1.159790 - 0.356655I	6.79135 - 0.54642I	2.47249 - 0.25591I
u = -1.189470 + 0.302752I	0.62502 + 1.83607I	-1.241747 - 0.124519I
u = -1.189470 - 0.302752I	0.62502 - 1.83607I	-1.241747 + 0.124519I
u = 0.076636 + 0.760003I	10.05780 - 4.59251I	5.76656 + 3.95694I
u = 0.076636 - 0.760003I	10.05780 + 4.59251I	5.76656 - 3.95694I
u = 1.243450 + 0.096073I	-4.28530 - 2.08913I	-10.75982 + 5.46611I
u = 1.243450 - 0.096073I	-4.28530 + 2.08913I	-10.75982 - 5.46611I
u = -1.26918	-1.54627	-6.99460
u = -1.270690 + 0.154646I	0.15355 + 4.66558I	-3.82180 - 6.53875I
u = -1.270690 - 0.154646I	0.15355 - 4.66558I	-3.82180 + 6.53875I
u = 1.247480 + 0.302288I	0.14493 - 5.48066I	-3.17694 + 7.52248I
u = 1.247480 - 0.302288I	0.14493 + 5.48066I	-3.17694 - 7.52248I
u = -0.039504 + 0.709770I	4.09074 + 1.83671I	2.53145 - 4.21112I
u = -0.039504 - 0.709770I	4.09074 - 1.83671I	2.53145 + 4.21112I
u = -1.276970 + 0.326508I	5.86790 + 8.48401I	0.72483 - 6.94207I
u = -1.276970 - 0.326508I	5.86790 - 8.48401I	0.72483 + 6.94207I
u = 1.284000 + 0.467539I	16.8633 + 0.7482I	2.56178 + 0.I
u = 1.284000 - 0.467539I	16.8633 - 0.7482I	2.56178 + 0.I
u = -1.287770 + 0.457688I	10.26840 + 2.62753I	-6 - 0.715837 + 0.10I
u = -1.287770 - 0.457688I	10.26840 - 2.62753I	-6 - 0.715837 + 0.10I
u = 1.297400 + 0.453300I	10.19290 - 7.27614I	-0.92056 + 5.70911I
u = 1.297400 - 0.453300I	10.19290 + 7.27614I	-0.92056 - 5.70911I
u = -1.306430 + 0.456024I	16.6842 + 10.7492I	2.30008 - 5.64057I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.306430 - 0.456024I	16.6842 - 10.7492I	2.30008 + 5.64057I
u = 0.238535 + 0.469959I	4.68915 - 2.52273I	3.50908 + 6.03596I
u = 0.238535 - 0.469959I	4.68915 + 2.52273I	3.50908 - 6.03596I
u = 0.506828	3.35647	-1.00240
u = -0.189419 + 0.278541I	-0.110112 + 0.754221I	-3.37527 - 9.18102I
u = -0.189419 - 0.278541I	-0.110112 - 0.754221I	-3.37527 + 9.18102I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_{10}, c_{11}	$u^{36} - 3u^{35} + \dots - 12u + 1$
c_2, c_3, c_8	$u^{36} - u^{35} + \dots + 3u^2 + 1$
c_4, c_5, c_{12}	$u^{36} + u^{35} + \dots + 3u^2 + 1$
<i>C</i> 9	$u^{36} + 3u^{35} + \dots - 106u - 187$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7 c_{10}, c_{11}	$y^{36} + 49y^{35} + \dots - 54y + 1$
c_2, c_3, c_8	$y^{36} - 35y^{35} + \dots + 6y + 1$
c_4, c_5, c_{12}	$y^{36} - 27y^{35} + \dots + 6y + 1$
<i>c</i> 9	$y^{36} - 23y^{35} + \dots - 458166y + 34969$