SEQUENCE LISTING

- <110> ONCOTHERAPY SCIENCE, INC.
 THE UNIVERSITY OF TOKYO
- <120> METHODS OF DETECTING METHYL TRANSFERASE ACTIVITY AND METHODS OF SCREENING FOR METHYL TRANSFERASE ACTIVITY MODULATORS
- <130> ONC-A0310P
- <150> US 60/538,658
- <151> 2004-01-23
- <160> 55
- <170> PatentIn version 3.3
- ⟨210⟩ 1
- **<211>** 22
- <212> DNA
- <213≻ Artificial
- <220>
- (223) An artificially synthesized primer sequence for RT-PCR
- <400> 1

acaacagcct caagatcatc ag

22

⟨210⟩ 2

<211> 20

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 2

ggtccaccac tgacacgttg

20

⟨210⟩ 3 ...

<211> 23

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 3

ttcccgatat caacatctac cag

<210> 4

<211> 23

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 4

agtgtgtgac ctcaataagg cat

23

⟨210⟩ 5

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

⟨400⟩ 5

aatcatcgct acaagctgaa gcgtg

25

<210> 6

- <211> 25
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 6

gcataaaatc taactctggg gctgg

25

- <210> 7
- <211> 23
- <212> DNA
- <213≻ Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 7

acctcttcaa cagcaatcac aag

- ⟨210⟩ 8
- <211> 23
- <212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 8

gcatgctcag tcttttcctc tta

23

<210> 9

<211> 21

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 9

gtgctcttct cgcaggcgca g

21

<210> 10

<211> 22

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 10

ataccatgca gcgtggacac tc

22

<210> 11

<211> 21

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 11

gatacccaca accgcaattc t

21

<210> 12

<211> 23

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 12

caaacaggaa ccaagaacaa gtc

23

<210> 13

<211> 23

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 13

agttaaacag agccaaaggg aag

23

⟨210⟩ 14

<211> 23

<212> DNA

<213> Artificial

<220>

(223) An artificially synthesized primer sequence for RT-PCR

<400> 14

ctgtagtctt tccgaactgt gtg

23

<210> 15

<211> 24

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 15

gagaccatct tcgtcaaggt cacg

24

<210> 16

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 16

cgtgttcata gcaaatggtg cactc

<210> 17

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 17

ccctttggag aacagggaaa gcctg

25

<210> 18

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<**400>** 18

gctgatctca gggcatagcc aggag

25

<210> 19

- <211> 25
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 19

aaaggctgag tgcatcgtcc gtctc

25

- <210> 20
- <211> 25
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 20

ggtagccagc aggaggtgat tcgtg

- <210> 21
- <211> 21
- <212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 21

agagaatccc tgatccacgt c

21

<210> 22

<211> 23

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 22

cgggctagta gaaggagtac tgg

23

<210> 23

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 23

ggcaccactt tcgtgcagta ccagg

25

<210> 24

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 24

gtcaggcatc tctgcacagt ccagg

25

⟨210⟩ 25

<211> 26

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 25

tgcattattc cggactgaac aaatgc

26

<210> 26

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 26

gttgctaaat tgtagcgaag ggctc

25

<210> 27

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 27

14/3.6

acccaagtac agagcccttc gctac

25

<210> 28

<211> 24

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 28

tcactgcctg ggctttggtc tttg

24

(210) 29

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 29

gaccaaagcc caggcagtga gagtg

<210> 30

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 30

ctgaggaagg gctgggacaa cattc

25

<210> 31

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 31 .

tggctacaag cctcttctgt tttgc

25

<210> 32

- <211> 25
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 32

aggggtgggt ttattagcac ccagg

25

- ⟨210⟩ 33
- <211> 44
- <212> DNA
- <213> Artificial

<220>

(223) An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 33

ttacgccctc ctgaaacttg tcatcctgaa tcttagaggg gccc

- ⟨210⟩ 34
- <211> 44

- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 34

gggccctct aagattcagg atgacaagtt tcaggagggc gtaa

44

⟨210⟩ 35

<211> 15

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 35

ccctttgatc ttacc

15

<210> 36

⟨211⟩ 15

<212> DNA

<213> Artificial

<220>

(223) An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 36

ggtaagatca aaggg

15

<210> 37

<211> 15

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 37

ccctttggcc ttacc

15

<210> 38

<211> 15

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 38

ggtaaggcca aaggg

15

<210> 39

<211> 29

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing mutant-type ZNFN3A1.

<400> 39

cggaattctg gcgtcgtctg cgaccgctg

29

<210> 40

<211> 32

- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructiing
mutant-type ZNFN3A1.

<400> 40

ggggtacctt aggatgctct gatgttggcg tc

32

- <210> 41
- **<211> 32**
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing
mutant-type ZNFN3A1.

<400> 41

cggaattcag actccgttcg acttcttggc ag

- **<210> 42**
- <211> 33

- <212> DNA
- <213> Artificial

<220>

An artificially synthesized primer sequence for constructing
mutant-type ZNFN3A1.

<400> 42

cggaattccc ggaagcagct gagggaccag tac

33

- ⟨210⟩ 43
- ⟨211⟩ 33
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing
mutant-type ZNFN3A1.

<400> 43

cggaattcga tggagccgct gaaggtggaa aag

- <210> 44
- <211> 30

- <212> DNA
- <213> Artificial

<220>

An artificially synthesized primer sequence for constructiing
mutant-type ZNFN3A1.

<400> 44

ggggtacctt accggcgctc_ctcactggtc

30

- <210> 45
- ⟨211⟩ 33
- <212> DNA
- <213≻ Artificial

<220>

An artificially synthesized primer sequence for constructiing
mutant-type ZNFN3A1.

<400> 45

ggggtacctt agtctggagg atatctgggt ttg

- <210> 46
- <211> 24

<212> DNA

<213≻ Artificial

<220>

<223> An artificially synthesized primer sequence to amplyfy the fragment of Nkx2.8 promoter by PCR

<400> 46

agcgggcctg gtaccaaatt tgtg

24

<210> 47

<211> 24

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence to amplyfy the fragment of Nkx2.8 promoter by PCR

<400> 47

ccgggatgct agcgcattta cagc

24

<210> 48

<211> 55

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oliginucleotide sequence for plasmids expressing siRNA to ZNFN3A1

<400> 48

caccaacatc taccagctga aggtgttcaa gagacacctt cagctggtag atgtt

55

<210> 49

<211> 55

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oliginucleotide sequence for plasmids
 expressing siRNA to ZNFN3A1

<400> 49

aaaaaacatc taccagctga aggtgtctct tgaacacctt cagctggtag atgtt

55

<210> 50

<211> 1622

< 2	1!	2>	DNA	
\			ונונע	ı

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (96)..(1382)

25

<400> 50

gtgcgcgcag ggcgcaggcg cgcgggtccc ggcagcccgt gagacgcccg ctgctggacg 60

cgggtagccg tctgaggtgc cggagctgcg ggagg atg gag ccg ctg aag gtg 113

Met Glu Pro Leu Lys Val

35

gaa aag ttc gca acc gcc aac agg gga aac ggg ctg cgc gcc gtg acc
Glu Lys Phe Ala Thr Ala Asn Arg Gly Asn Gly Leu Arg Ala Val Thr

10 15 20

ccg ctg cgc ccc gga gag cta ctc ttc cgc tcg gat ccc ttg gcg tac 209
Pro Leu Arg Pro Gly Glu Leu Leu Phe Arg Ser Asp Pro Leu Ala Tyr

acg gtg tgc aag ggg agt cgt ggc gtc gtc tgc gac cgc tgc ctt ctc 257
Thr Val Cys Lys Gly Ser Arg Gly Val Val Cys Asp Arg Cys Leu Leu

40 45 50

	ggg :	aag	gaa	aag	ctg	atg	cga	tgc	tct	cag	tgc	cgc	gtc	gcc	aaa	tac	305	,
	Gly]	Lys	Glu	Lys	Leu	Met	Arg	Cys	Ser	Gln	Cys	Arg	Val	Ala	Lys	Tyr		
	55				٠	60					65			,		70		
																·		
	tgt	agt	gct	aag	tgt	cag	aaa	aaa	gct	tgg	cca	gac	cac	aag	cgg	gaa	353	. •
	Cys	Ser	Ala	Lys	Cys	Gln	Lys	Lys	Ala	Trp	Pro	Asp	His	Lys	Arg	Glu		
					7 5	-				80		• .			85	.•		
												•				•	,	
	tgc	aaa	tgc	ctt	aaa	agc	tgc	aaa	ccc	aga	tat	cct	cca	gac	tcc	gtt	401	
,	Cys	Lys	Cys	Leu	Lys	Ser	Cys	Lys	Pro	Arg	Tyr	Pro	Pro	Asp	Ser	Val		
				90					95		•			100		•		
																	•	
	cga	ctt	ctt	ggc	aga	gtt	gtc	ttc	aaa	ctt	atg	gat	gga	gca	cct	tca	449	
	Arg	Leu	Leu	Gly	Arg	Val	Val	Phe	Lys	Leu	Met	Asp	Gly	Ala	Pro	Ser		
			105					110			•		115	٠				
		-	•							-								
	gaa	tca	gag	aag	ctt	tac	tca	ttt	tat	gat	ctg	gag	tca	aat	att	aac	497	
	Glu	Ser	Glu	Lys	Leu	Tyr	Ser	Phe	Tyr	Asp	Leu	Glu	Ser	Asn	Ile	Asn		
		120					125				•	130						
				•									•					•
	aaa	ctg	act	gaa	gat	aag	aaa	gag	ggc	cto	age	caa	ctc	gta	ate	aca	545	
	Lys	Leu	Thr	· Glu	ı Asp	Lys	Lys	Glu	Gly	Leu	Arg	g Gln	Leu	ı Val	Met	Thr		
	135					140)	•			145	5				150	-	
	ttt	caa	cat	tto	c atg	g aga	ı gaa	a gaa	ata	cag	g gat	gcc	tct	cag	g ctg	g cca	593	

Phe	Gln	His	Phe	Met	Arg	Glu	Glu	Ile	Gln	Asp	Ala	Ser	Gln	Leu	Pro	
				155					160					165		
cct	gcc	ttt	gac	ctt	ttt	gaa	gcc	ttt	gca	aaa	gtg	atc	tgc	aac	tct	641
Pro	Ala	Phe	Asp	Leu	Phe	Glu	Ala	Phe	Ala	Lys	Val	Ile	Cys	Asn	Ser	
			170					175					180			
ttc	acc	atc	tgt	aat	gcg	gag	atg	cag	gaa	gtt	ggt	gtt	ggc	cta	tat	689
Phe	Thr	Ile	Cys	Asn	Ala	Glu	Met	Gln	Glu	Val	G1y	Val	G1y	Leu	Tyr	. **
		185					190					195				
ccc	agt	atc	tct	ttg	ctc	aat	cac	agc	tgt	gac	ccc	aac	tgt	tcg	att	737
Pro	Ser	Ile	Ser	Leu	Leu	Asn	His	Ser	Cys	Asp	Pro	Asn	.Cys	Ser	Ile	
	200					205					210					
						•									·	
gtg	ttc	aat	ggg	ccc	cac	ctc	tta	ctg	cga	gca	gtc	cga	gac	atc	gag	785
Val	Phe	Asn	G1y	Pro	His	Leu	Leu	Leu	Arg	Ala	Val	Arg	Asp	Ile	Glu	
215					220					225					230	
							-									
gtg	gga	gag	gag	ctc	acc	atc	tgc	tac	ctg	gat	atg	ctg	atg	acc	agt	833
Val	G1y	Glu	Glu	Leu	Thr	Ile	Cys	Tyr	Leu	Asp	Met	Leu	Met	Thr	Ser	
				235	.				240)				245	•	
gag	gag	cgc	cgg	g aag	cag	ctg	agg	gac	cag	tac	tgo	ttt	gaz	tgt	gac	881
Glu	Glu	Arg	Are	g Lys	Gln	Leu	Arg	Asp	Gln	Tyr	Cys	Phe	Glu	ı Cys	: Asp	
			250)			٠	255	•		-		260)		

tgt	ttc	cgt	tgc	caa	acc	cag	gac	aag	gat	gct	gat	atg	cta	act	ggt	929
Cys	Phe	Arg	Cys	Gln	Thr	Gln	Asp	Lys	Asp	Ala	Asp	Met	Leu	Thr	Gly	
		265		-			270					275				
gat	gag	caa	gta	tgg	aag	gaa	gtt	caa	gaa	tcc	ctg	aaa	aaa	att	gaa	977
Aşp	Glu	Gln	Val	Trp	Lys	Glu	Val	Gln	Glu	Ser	Leu	Lys	Lys	Île	Glu	
	280					285					290					
			•			•										
gaa	ctg	aag	gca	cac	tgg	aag	tgg	gag	cag	gtt	ctg	gcc	atg	tgc	cag	1025
			Ala						•	•						
295					300					305					310	
gcg	atc	ata	agc	agc	aat	tct	gaa	cgg	ctt	ccc	gat	atc	aac	atc	tac	1073
				,											Tyr	
,,,,	110			315					320					325		
				010	g.			-								
000	· oto		r ata	oto	о дас	t.gc	gc.c	. ate	gat	gcc	tgo	ato	aac	cto	ggc;	1121
															Gly	
GII	Let	Lys			ı nsp	oys	IITC	335					340		•	
			330					500	,				0 1 2			
_								L ~~~	.	+ 000	r 0.04	a ato	T CO	* CC2	a tac	1169
															a tac	1100
Lei				ı Ala	a Let	ı Phe			y in:	r Arg	g In			1 11(o Tyr	
		34	5				350	U				35	J			
												_		_	•	1017
ag	g at	t tt	t tto	cca	a gga	a ago	c ca	t cc	c gt	c aga	a gg	g gt	t caa	a gt	g atg	1217

405

395

425

29/36

Arg Ile Phe Pro Gly Ser His Pro Val Arg Gly Val Gln Val Met 360 365 370

aaa gtt ggc aaa ctg cag cta cat caa ggc atg ttt ccc caa gca atg 1265
Lys Val Gly Lys Leu Gln Leu His Gln Gly Met Phe Pro Gln Ala Met
375 380 385 390

aag aat ctg aga ctg gct ttt gat att atg aga gtg aca cat ggc aga 1313
Lys Asn Leu Arg Leu Ala Phe Asp Ile Met Arg Val Thr His Gly Arg

gaa cac agc ctg att gaa gat ttg att cta ctt tta gaa gaa tgc gac 1361 Glu His Ser Leu Ile Glu Asp Leu Ile Leu Leu Clu Glu Cys Asp 410 415 420

400

gcc aac atc aga gca tcc taa gggaacgcag tcagagggaa atacggcgtg

Ala Asn Ile Arg Ala Ser

tgtctttgtt gaatgcctta ttgaggtcac acactctatg ctttgttagc tgtgtgaacc 1472

tctcttattg gaaattctgt tccgtgtttg tgtaggtaaa taaaggcaga catggtttgc 1532

aaaccacaag aatcattagt tgtagagaag cacgattata ataaattcaa aacatttggt 1592

tgaggatgcc aaaaaaaaaa aaaaaaaaa 1622

<210> 51

<211> 428

<212> PRT

<213> Homo sapiens

<400> 51

Met Glu Pro Leu Lys Val Glu Lys Phe Ala Thr Ala Asn Arg Gly Asn 1 5

Gly Leu Arg Ala Val Thr Pro Leu Arg Pro Gly Glu Leu Leu Phe Arg

Ser Asp Pro Leu Ala Tyr Thr Val Cys Lys Gly Ser Arg Gly Val Val 35

Cys Asp Arg Cys Leu Leu Gly Lys Glu Lys Leu Met Arg Cys Ser Gln 50

Cys Arg Val Ala Lys Tyr Cys Ser Ala Lys Cys Gln Lys Lys Ala Trp

65

70

75

80

Pro Asp His Lys Arg Glu Cys Lys Cys Leu Lys Ser Cys Lys Pro Arg 85 90 95

Tyr Pro Pro Asp Ser Val Arg Leu Leu Gly Arg Val Val Phe Lys Leu
100 105 110

Met Asp Gly Ala Pro Ser Glu Ser Glu Lys Leu Tyr Ser Phe Tyr Asp
115 120 125

Leu Glu Ser Asn Ile Asn Lys Leu Thr Glu Asp Lys Lys Glu Gly Leu 130 135 140

Arg Gln Leu Val Met Thr Phe Gln His Phe Met Arg Glu Glu Ile Gln 145 150 155 160

Asp Ala Ser Gln Leu Pro Pro Ala Phe Asp Leu Phe Glu Ala Phe Ala 165 170 175

Lys Val Ile Cys Asn Ser Phe Thr Ile Cys Asn Ala Glu Met Gln Glu
180 185 190

Val Gly Val Gly Leu Tyr Pro Ser Ile Ser Leu Leu Asn His Ser Cys
195 200 205

Asp Pro Asn Cys Ser Ile Val Phe Asn Gly Pro His Leu Leu Leu Arg 210 215 220

Ala Val Arg Asp Ile Glu Val Gly Glu Glu Leu Thr Ile Cys Tyr Leu 225 230 235 240

Asp Met Leu Met Thr Ser Glu Glu Arg Arg Lys Gln Leu Arg Asp Gln
245
250
255

Tyr Cys Phe Glu Cys Asp Cys Phe Arg Cys Gln Thr Gln Asp Lys Asp
260 265 270

Ala Asp Met Leu Thr Gly Asp Glu Gln Val Trp Lys Glu Val Gln Glu

275 280 285

Ser Leu Lys Lys Ile Glu Glu Leu Lys Ala His Trp Lys Trp Glu Gln
290 295 300

Val Leu Ala Met Cys Gln Ala Ile Ile Ser Ser Asn Ser Glu Arg Leu 305 310 315 320

Pro Asp Ile Asn Ile Tyr Gln Leu Lys Val Leu Asp Cys Ala Met Asp 325 330 335

Ala Cys Ile Asn Leu Gly Leu Leu Glu Glu Ala Leu Phe Tyr Gly Thr

340 345 350

Arg Thr Met Glu Pro Tyr Arg Ile Phe Phe Pro Gly Ser His Pro Val

Arg Gly Val Gln Val Met Lys Val Gly Lys Leu Gln Leu His Gln Gly 370 375 380

Met Phe Pro Gln Ala Met Lys Asn Leu Arg Leu Ala Phe Asp Ile Met 385 390 395 400

Arg Val Thr His Gly Arg Glu His Ser Leu Ile Glu Asp Leu Ile Leu 405 410 415

Leu Leu Glu Glu Cys Asp Ala Asn Ile Arg Ala Ser
420 425

<210> 52

<211> 7

<212> PRT

<213> Homo sapiens

<400> 52

Asn His Ser Cys Asp Pro Asn

<210> 53

⟨211⟩ 8

<212> PRT

<213> Homo sapiens

<400> 53

Gly Glu Glu Leu Thr Ile Cys Tyr

<210> 54

⟨211⟩ 7

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (5)..(6)

<223> "Xaa" indicates any amino acid

<400> 54

Asn His Ser Cys Xaa Xaa Asn

1

<210> 55

<211> 8

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (5)..(7)

<223> "Xaa" indicates any amino acid

<400> 55

Gly Glu Glu Leu Xaa Xaa Xaa Tyr

1