

Data Wrangling

Ibnou Dieng Kayode Fowobaje Sam Ofodile Moshood Bakare Trushar Shah Margaret Karanja

IITA Biometrics Unit

01-02 & 07-09 November 2021

Course Overview

- 1. Short Introduction to R and RStudio
- 2. Preparation of Data for Statistical Analysis
- 3. Data wrangling
- 4. Experimental Designs for Plant Breeding
- 5. ANOVA and MET analysis
- 6. Multivariate analysis
- 7. Graphics in R with ggplot2

Recap

- **R** is a free software environment for **statistical** computing and graphics
 - We are not only learning R
 - We are not *only* learning **statistics**
- We want to
 - $\circ\;$ understand/solve statistical problems from the agricultural sector using R
 - interpret results generated by R
- What have we learned so far:
 - **R** is the engine and **RStudio** is the dashboard
 - RStudio interface divided into four quadrants: Q1 (scripts); Q2 (console); Q3 (environment); Q4 (help, plot)
 - What's a **Package**: like a third-party apps on your phone
 - What's a Project: "RStudio projects make it straightforward to divide your work into multiple contexts, each with their own working directory, workspace, history, and source documents"

Introduction

The Data Workflow (Hadley Wickham)

- A vector is a variable
- A factor is a categorical variable
- A data frame is a table composed with one or several vectors and/or factors all of the same length. It's a two-dimensional array in which each column contains values of one variable and each row contains one set of values from each column
- Following are the characteristics of a data frame:
 - The column names should be non-empty
 - The row names should be unique
 - The data stored in a data frame can be of numeric, factor or character type.
 - Each column should contain same number of data items

Data Frame: Example

env	loc	year	gen	yield	height	lodging	size	protein	oil
L70	Lawes	1970	G01	2.387	1.445	4.25	8.45	36.7	20.895
L70	Lawes	1970	G02	2.282	1.45	4.25	9.95	37.55	20.74
L70	Lawes	1970	G03	2.567	1.46	3.75	10.85	37.8	21.295
L70	Lawes	1970	G04	2.877	1.26	3.5	10.05	38.45	21.99
L70	Lawes	1970	G05	2.392	1.335	3.5	11	37.5	22.13
L70	Lawes	1970	G06	2.408	1.36	4	11.75	38.25	21.16
L70	Lawes	1970	G07	2.699	1.3	3	11.75	37.35	21.7
L70	Lawes	1970	G08	2.457	0.955	3.25	10	35.2	21.145
L70	Lawes	1970	G09	2.567	1.03	3	11.25	35.9	21.495
L70	Lawes	1970	G10	2.984	1.155	3.75	10.85	39.7	20.43
L70	Lawes	1970	G11	1.663	1.42	4.5	6.95	40.25	19.09
L70	Lawes	1970	G12	1.964	1.435	4.25	8.35	40.3	18.745
L70	Lawes	1970	G13	1.472	1.585	4.5	9.3	41.15	19.18
L70	Lawes	1970	G14	2.72	1.33	4	8.25	37.4	20.76
L70	Lawes	1970	G15	2.22	1.37	4.25	9.3	36.65	20.685
L70	Lawes	1970	G16	1.655	1.7	4.75	9.15	39.65	20.435
L70	Lawes	1970	G17	1.722	1.28	4.25	8.4	43.7	17.455
L70	Lawes	1970	G18	1.432	1.495	4.5	7.8	42.4	17.4

• A data frame is a matrix-like structure

mydata[1:nrow, 1:ncol]

• Let's create a data frame using the **RStudio** console with the command

- We have a data frame with 3 variables (variety, yield and height) and 5 observations. The data frame is stored under an object named **trial01**
- We can print the data frame

```
trial01
```


• We can extract the first three rows

```
trial01[1:3, ]

## variety yield height
## 1 G01-US234 6323.3 123.3
## 2 G05-BT456 2515.2 95.2
## 3 Ind01 5611.0 113.0
```

• We can extract the first two columns

```
trial01[, 1:2]

## variety yield
## 1 G01-US234 6323.30
## 2 G05-BT456 2515.20
```

```
## 3 Ind01 5611.00
## 4 G11-US244 7729.00
## 5 G11-DR234 7843.25
```


• We can extract "from 3rd to 5th row" with "2nd and 3rd column"

```
trial01[3:5, 2:3]

## yield height
## 3 5611.00 113.00
## 4 7729.00 89.45
## 5 7843.25 145.67
```

• We can extract specific column from a data frame using column name

```
trial01$yield
## [1] 6323.30 2515.20 5611.00 7729.00 7843.25
```


• We can add a column vector using a new column name

```
trial01$flowering <- c(87, 101, 88, 120, 90)
trial01
```

```
## variety yield height flowering
## 1 G01-US234 6323.30 123.30 87
## 2 G05-BT456 2515.20 95.20 101
## 3 Ind01 5611.00 113.00 88
## 4 G11-US244 7729.00 89.45 120
## 5 G11-DR234 7843.25 145.67 90
```


- Data can be entered from the console and stored in data frame
- Usually, you must import your data into **R**. This typically means that you take data stored in a file, database, etc., and load it into a data frame in **R**
- We'll work with **tibbles** instead of **R**'s traditional **data.frame**
- **R** is an old language, and what was useful 10 or 20 years ago can now get in your way
- We opt for the tidyverse package, an opinionated collection of R packages designed for data science, mainly data wrangling (import and transform)
 much more intuitive and easier
- All tidyverse packages share an underlying design philosophy, grammar, and data structures

• We can install the complete **tidyverse** with

```
install.packages("tidyverse")
```

- The core tidyverse includes these packages: ggplot2, tibble, tidyr, readr, purr, dplyr, stringr, forcats
- The 8 packages are launched togother via the same call

library(tidyverse)

- tidyverse also includes other packages with more specialized usage. They are not loaded automatically with library(tidyverse), need to load each one with its own call to library(package_name)
- **Tidy** data is a standard way of mapping the meaning of a dataset to its structure.
- Tibbles are Data Frames, but they make life a little easier

- In tidy data:
 - Each variable forms a column
 - Each observation forms a row

- There are two main differences in the usage of a **data frame** vs a **tibble**: printing, and subsetting
 - **Tibbles** show only the first 10 rows, and all the columns that fit on screen. This makes it much easier to work with large dataset
 - In addition to its name, each column reports its type, a nice feature borrowed from str()
- Let's display the trial01 created above

trial01

```
## variety yield height flowering
## 1 G01-US234 6323.30 123.30 87
## 2 G05-BT456 2515.20 95.20 101
## 3 Ind01 5611.00 113.00 88
## 4 G11-US244 7729.00 89.45 120
## 5 G11-DR234 7843.25 145.67 90
```


• Let's look at the structure of trial01

```
## 'data.frame': 5 obs. of 4 variables:
## $ variety : chr "G01-US234" "G05-BT456" "Ind01" "G11-US244" ...
## $ yield : num 6323 2515 5611 7729 7843
## $ height : num 123.3 95.2 113 89.5 145.7
## $ flowering: num 87 101 88 120 90
```

- trial01 is a data frame
- In **R**, we can convert a **data frame** object to a **tibble** object
- For that, we need the function as_tibble from the tidyverse package

- A **function** of a **package** is accessible only when the package is launched
- Then we can convert trial 01 to a tibble and save the new created object into trial 01. tibble

```
library(tidyverse)
trial01.tibble <- as_tibble(trial01)</pre>
```

• Let's display the data in **tibble** (left) and **data frame** (right) formats

```
## # A tibble: 5 x 3
                                          variety yield height
                                   ##
## variety yield height
                                   ## 1 G01-US234 6323.30 123.30
    <chr> <dbl> <dbl>
                                   ## 2 G05-BT456 2515.20 95.20
##
## 1 G01-US234 6323.
                     123.
                                            Ind01 5611.00 113.00
                                   ## 3
## 2 G05-BT456 2515. 95.2
                                   ## 4 G11-US244 7729.00 89.45
## 3 Ind01
                                   ## 5 G11-DR234 7843.25 145.67
              5611 113
## 4 G11-US244 7729 89.4
## 5 G11-DR234 7843.
                     146.
```


Data Import

- There are different ways to import data into **R**. We choose the readr and readxl packages, part of tidyverse
- readr is part of the core tidyverse and supports seven file formats with seven read_functions
- The common read_function is: read_csv() for comma delimited files
- To use read_csv(), supply the path to a file and you get the data into R

```
mydata <- read_csv("C:/Documents/R-basics/mydata.csv")</pre>
```

- ullet For path names with ${f R}$, use forward slashes / or put two backslashes \\
- If a project is created and we are working within the project, then

```
mydata <- read_csv("mydata.csv")</pre>
```


Data Import

- The readxl package makes it easy to get data out of Excel into R, easy to install for all operating systems
- readxl supports both the .xls and the .xlsx format
- readxl is not a core tidyverse package. To be loaded explicity by library(readxl)
- The main function of readxl is read_excel()
- To use read_excel(), supply the path of the Excel file along with the sheet name

```
mydata <- read_excel("mydata.xlsx", sheet = "Sheet1")</pre>
```


Data Import: Summary

• To import a **csv** file into **R**

```
library(tidyverse)
mydata <- read_csv("mydata.csv")</pre>
```

• To import a **xlsx** file into **R**

```
library(readxl)
mydata <- read_excel("mydata.xlsx", sheet = "Sheet1")</pre>
```


Data Import: Practical

- Import Example-01.csv to R and save it to an object (choose an appropriate object name)
- Display the data into R
- Extract and display:
 - the two first columns
 - the three last rows
 - from row 1 to 6 with all columns

Data Transformation

- When working with data, need to:
 - create new variables,
 - make summaries,
 - rename the variables,
 - reorder the observations, etc.
- This can be achieved with the package dplyr, a core package of tidyverse

Data Transformation

- There are five key **dplyr** functions in **tidyverse** to solve most of data manipulation challenges:
 - Pick observations by their values filter()
 - Reorder (sort) the rows arrange()
 - Pick variables by their names select()
 - Create new variables with functions of existing variables mutate()
 - Collapse many values down to a summary summarize()

• filter() allows to subset observations based on their values

filter(data, expressions)

- The first argument is the name of the data frame
- The second and subsequent arguments are the expressions that filter the data frame
- Let's import **Example-02.csv** to R
- First: we need to copy the **csv** file to the project working directory

• Second: we need to import the file into **R**. As this is a **csv** file, let's use the **readr** package, a core package of **tidyverse** to import the data

```
library(tidyverse)
example02 <- read_csv("Example-02.csv")
example02</pre>
```

```
# A tibble: 464 x 10
##
            loc
                                yield height lodging size protein
                                                                        oil
      env
                    year gen
      <chr> <chr> <dbl> <chr> <dbl>
                                       <dbl>
                                                <dbl> <dbl>
                                                               <dbl> <dbl>
##
    1 L70
            Lawes
                    1970 G01
                                 2.39
                                       1.44
                                                 4.25
                                                       8.45
                                                                36.7
                                                                      20.9
##
    2 L70
                    1970 G02
                                 2.28
                                                                      20.7
##
            Lawes
                                       1.45
                                                 4.25
                                                      9.95
                                                                37.6
##
    3 L70
           Lawes
                    1970 G03
                                 2.57
                                       1.46
                                                 3.75 10.8
                                                                37.8
                                                                      21.3
    4 L70
                    1970 G04
                                 2.88
                                                      10.0
                                                                      22.0
##
            Lawes
                                       1.26
                                                 3.5
                                                                38.4
    5 L70
                    1970 G05
                                 2.39
                                                      11
                                                                37.5
                                                                      22.1
##
            Lawes
                                       1.34
                                                 3.5
                    1970 G06
##
    6 L70
            Lawes
                                 2.41
                                       1.36
                                                 4
                                                      11.8
                                                                38.2
                                                                      21.2
    7 L70
                    1970 G07
                                 2.70
                                                                37.4
                                                                      21.7
##
            Lawes
                                       1.3
                                                      11.8
                                                 3
##
    8 L70
            Lawes
                    1970 G08
                                 2.46
                                       0.955
                                                 3.25 10
                                                                35.2
                                                                      21.1
    9 L70
                    1970 G09
                                 2.57
                                       1.03
                                                 3
                                                                      21.5
            Lawes
                                                      11.2
                                                                35.9
##
##
  10 L70
            Lawes
                    1970 G10
                                 2.98
                                       1.16
                                                 3.75 10.8
                                                                39.7
                                                                      20.4
## # ... with 454 more rows
```


• We can filter the data for 1970

```
library(tidyverse)
example02.70 <- filter(example02, year == 1970)
example02.70</pre>
```

```
## # A tibble: 232 x 10
##
            loc
                                yield height lodging size protein
                                                                       oil
      env
                    year gen
      <chr> <chr> <dbl> <chr> <dbl>
                                       <dbl>
                                                <dbl> <dbl>
                                                               <dbl> <dbl>
##
##
    1 L70
            Lawes
                    1970 G01
                                 2.39
                                      1.44
                                                 4.25
                                                      8.45
                                                                36.7
                                                                      20.9
    2 L70
                    1970 G02
                                                                      20.7
##
            Lawes
                                 2.28
                                       1.45
                                                 4.25
                                                       9.95
                                                                37.6
    3 L70
                    1970 G03
                                 2.57
                                                 3.75 10.8
                                                                37.8
                                                                      21.3
##
           Lawes
                                       1.46
    4 L70
                    1970 G04
                                 2.88
                                                                      22.0
##
            Lawes
                                       1.26
                                                 3.5
                                                      10.0
                                                                38.4
                                 2.39
                                                                      22.1
##
    5 L70
            Lawes
                    1970 G05
                                       1.34
                                                 3.5
                                                      11
                                                                37.5
##
    6 L70
            Lawes
                    1970 G06
                                 2.41
                                       1.36
                                                      11.8
                                                                38.2
                                                                      21.2
                                                 4
##
    7 L70
            Lawes
                    1970 G07
                                 2.70
                                       1.3
                                                 3
                                                      11.8
                                                                37.4
                                                                      21.7
                                                                      21.1
##
    8 L70
            Lawes
                    1970 G08
                                 2.46
                                       0.955
                                                 3.25 10
                                                                35.2
##
    9 L70
            Lawes
                    1970 G09
                                 2.57
                                       1.03
                                                 3
                                                      11.2
                                                                35.9
                                                                      21.5
   10 L70
                                                 3.75 10.8
##
            Lawes
                    1970 G10
                                 2.98
                                       1.16
                                                                39.7
                                                                      20.4
## # ... with 222 more rows
```


• We can filter the ata for one location :

```
filter(example02, loc == "Lawes")
## # A tibble: 116 x 10
           loc
                             yield height lodging size protein
                                                                  oil
##
     env
                  year gen
     <chr> <chr> <dbl> <chr> <dbl>
                                            <dbl> <dbl>
                                                          <dbl> <dbl>
                                    <dbl>
##
                  1970 G01
                                             4.25 8.45
                                                           36.7
                                                                 20.9
##
   1 L70
           Lawes
                              2.39 1.44
##
   2 L70
          Lawes
                 1970 G02
                              2.28 1.45
                                             4.25 9.95
                                                           37.6
                                                                 20.7
   3 L70
                  1970 G03
                              2.57
                                             3.75 10.8
                                                                 21.3
##
          Lawes
                                    1.46
                                                           37.8
   4 L70
                 1970 G04
                              2.88
                                   1.26
                                             3.5 10.0
                                                           38.4
                                                                 22.0
##
           Lawes
   5 L70
                  1970 G05
                                                                 22.1
##
          Lawes
                              2.39
                                    1.34
                                             3.5
                                                  11
                                                           37.5
```

2.41

2.70

2.46

2.57

2.98

1.36

1.3

0.955

1.03

1.16

4

3.25 10

3.75 10.8

3

3

11.8

11.8

11.2

... with 106 more rows

Lawes

Lawes

Lawes

Lawes

Lawes

1970 G06

1970 G07

1970 G08

1970 G09

1970 G10

library(tidyverse)

##

##

##

##

6 L70

7 L70

8 L70

9 L70

10 L70

21.2

21.7

21.1

21.5

20.4

38.2

37.4

35.2

35.9

39.7

• We can filter the data with multiple criteria

```
filter(example02, yield > 3.2, loc == "Lawes")
```

```
## # A tibble: 8 x 10
                            yield height lodging size protein
##
          loc
    env
                 year gen
                                                                oil
    <chr> <chr> <dbl> <chr>
                            <dbl>
                                   <dbl>
                                          <dbl> <dbl>
                                                        <dbl> <dbl>
##
## 1 L70
          Lawes
                 1970 G26
                             3.21
                                  1.18
                                                 9.55
                                                         39.8
                                                              20.1
                                                               23.7
## 2 L70
         Lawes
                1970 G45
                             3.26
                                 0.785
                                           2.75 23.2
                                                         37
## 3 L70
          Lawes
                1970 G48
                           4.38 0.76
                                           3.75 18.8
                                                         38.2 24.4
                1970 G50
                                 0.835
                                                         39.9 24.6
## 4 L70
          Lawes
                             3.38
                                           2.75 17.9
## 5 L71
                1971 G45
                             3.82
                                 0.56
                                           1.25 19.6
                                                         36.3 23.7
          Lawes
## 6 L71
          Lawes
                1971 G48
                             3.57 0.545
                                           1.25 17.0
                                                         39.1 24.1
                             3.44 0.66
                                           1.25 18.6
## 7 L71
          Lawes
                 1971 G49
                                                         37.5 23.1
## 8 L71
          Lawes
                 1971 G57
                             3.39
                                  0.685
                                           1.5 19.4
                                                         38.6
                                                               22.8
```


What does the following command do?

... with 222 more rows

```
filter(example02, loc == "Lawes" | loc == "Brookstead")
## # A tibble: 232 x 10
##
                              yield height lodging size protein
                                                                    oil
      env
            loc
                   year gen
      <chr> <chr> <dbl> <chr> <dbl>
                                     <dbl>
                                             <dbl> <dbl>
                                                            <dbl> <dbl>
##
    1 L70
            Lawes
                   1970 G01
                               2.39
                                     1.44
                                              4.25 8.45
                                                            36.7
                                                                   20.9
##
   2 L70
                   1970 G02
                                                                   20.7
##
           Lawes
                               2.28 1.45
                                              4.25 9.95
                                                            37.6
##
   3 L70
           Lawes 1970 G03
                               2.57 1.46
                                              3.75 10.8
                                                            37.8
                                                                   21.3
   4 L70
                   1970 G04
                               2.88
                                              3.5
                                                                   22.0
##
           Lawes
                                     1.26
                                                   10.0
                                                            38.4
   5 L70
                   1970 G05
                               2.39
                                    1.34
                                                   11
                                                            37.5
                                                                   22.1
##
           Lawes
                                              3.5
   6 L70
                   1970 G06
                               2.41
                                                                   21.2
##
           Lawes
                                     1.36
                                              4
                                                   11.8
                                                            38.2
                                                                   21.7
   7 L70
##
           Lawes
                   1970 G07
                               2.70
                                    1.3
                                              3
                                                   11.8
                                                            37.4
##
   8 L70
            Lawes
                   1970 G08
                               2.46
                                     0.955
                                              3.25 10
                                                            35.2
                                                                   21.1
##
   9 L70
           Lawes
                   1970 G09
                               2.57
                                     1.03
                                              3
                                                   11.2
                                                            35.9
                                                                   21.5
                                              3.75 10.8
## 10 L70
            Lawes
                   1970 G10
                               2.98
                                     1.16
                                                            39.7
                                                                   20.4
```


Data Transformation: Practical

- Import Example-02.csv to R and save it to an object named example02
- Display the **example02** object
- filter the data by considering:
 - locations Nambour and RedlandBay
 - genotypes G01, G57, and G58, location Brookstead for the year 1970
 - location Lawes yield between 2 and 3 inclusive, oil greater than 22

- **arrange()** changes the order of the rows (sorting): it takes a data frame and a set of column names (or more complicated expressions) to order by
- We can arrange example 02 by year, loc, gen

```
arrange(example02, year, loc, gen)
```

```
A tibble: 464 x 10
##
            loc
                                     yield height lodging
                                                             size protein
                                                                             oil
      env
                         year gen
                        <dbl> <chr>
                                     <dbl>
                                             <dbl>
                                                     <dbl> <dbl>
                                                                    <dbl> <dbl>
##
      <chr> <chr>
                                                      3.25
                                                                            18.8
    1 B70
            Brookstead
                         1970 G01
                                     1.25
                                              1.01
                                                             8.85
                                                                     39.5
##
##
    2 B70
            Brookstead
                         1970 G02
                                     1.17
                                              1.13
                                                      2.75
                                                             8.9
                                                                     38.6
                                                                            19.8
    3 B70
            Brookstead
                         1970 G03
                                     0.468
                                              1.16
                                                      2.25 10.8
                                                                     37.8
                                                                            20.4
##
    4 B70
            Brookstead
                         1970 G04
                                              1.24
                                                      1.5
                                                            10.6
                                                                            20.4
##
                                     1.44
                                                                     38.7
    5 B70
##
            Brookstead
                         1970 G05
                                     1.34
                                              1.12
                                                      2
                                                            12.0
                                                                     37.8
                                                                            20.8
    6 B70
            Brookstead
                         1970 G06
                                                      2.25 11
                                                                            19.9
##
                                     0.913
                                              1.10
                                                                     37.4
    7 B70
            Brookstead
                         1970 G07
                                     1.24
                                              1.13
                                                            10.2
                                                                            20.3
##
                                                      2
                                                                     37.8
                                                            6.15
            Brookstead
                         1970 G08
                                                      2.25
##
    8 B70
                                     0.385
                                              1.12
                                                                     38.5
                                                                            17.9
    9 B70
            Brookstead
                         1970 G09
                                              1.04
                                                      1.75
                                                                     37.9
                                                                            20.0
##
                                     1.11
                                                             8.3
   10 B70
            Brookstead
                         1970 G10
                                     1.80
                                              1.04
                                                      2
                                                            11.8
                                                                     38.4
                                                                            19.7
## # ... with 454 more rows
```


 We can use the function desc() to re-order by a column in descending order

arrange(example02, desc(yield))

```
A tibble: 464 x 10
##
            loc
                                     yield height lodging
                                                            size protein
                                                                            oil
      env
                         year gen
      <chr> <chr>
                        <dbl> <dbl>
                                            <dbl>
                                                     <dbl> <dbl>
                                                                   <dbl> <dbl>
##
                                                      3.75
    1 L70
            Lawes
                         1970 G48
                                      4.38
                                            0.76
                                                            18.8
                                                                    38.2
                                                                           24.4
##
    2 R70
            RedlandBay
                         1970 G56
                                      4.13
                                            0.56
                                                      2.25
                                                            19.0
                                                                    38
                                                                           24.0
##
    3 R71
            RedlandBay
                         1971 G49
                                      4.00
                                            0.905
                                                      1.75
                                                            17.2
                                                                    36.6
                                                                           22.6
##
            Brookstead
    4 B71
                         1971 G49
                                            1.00
                                                      2.25
                                                                           22.2
##
                                      3.90
                                                            21.6
                                                                    37.5
##
    5 L71
            Lawes
                         1971 G45
                                      3.82
                                            0.56
                                                      1.25
                                                            19.6
                                                                    36.3
                                                                           23.7
    6 B71
            Brookstead
                         1971 G53
                                      3.82
                                                      1.75
                                                            21.9
                                                                           22.1
##
                                            0.675
                                                                    39.0
    7 B71
            Brookstead
                         1971 G45
                                      3.75
                                            0.735
                                                      2.5
                                                            23.6
                                                                    37.9
                                                                           22.1
##
            RedlandBay
                         1970 G57
##
    8 R70
                                      3.67
                                            0.545
                                                      1.75
                                                            16.6
                                                                    38.2
                                                                           23.7
            RedlandBay
##
    9 R70
                         1970 G49
                                      3.62
                                                                    36.3
                                                                           23.4
                                            1.02
                                                      3.5
                                                            14.2
##
  10 B71
            Brookstead
                         1971 G50
                                      3.61
                                            0.75
                                                      3
                                                            19.3
                                                                    40.2
                                                                           23.3
## # ... with 454 more rows
```


• When working with many variables, it can be a good practice to narrow the dataset and consider only few variables for analysis. Let's only consider the location, year, genotype, yield and height

```
example02.short <- select(example02, loc, year, gen, yield, height)
example02.short</pre>
```

```
## # A tibble: 464 x 5
##
      loc
                        yield height
             year gen
      <chr> <dbl> <chr> <dbl>
##
                               <dbl>
##
    1 Lawes
            1970 G01
                         2.39
                              1.44
   2 Lawes 1970 G02
##
                         2.28 1.45
            1970 G03
##
   3 Lawes
                         2.57 1.46
##
            1970 G04
                              1.26
   4 Lawes
                         2.88
             1970 G05
##
   5 Lawes
                         2.39
                               1.34
##
   6 Lawes
             1970 G06
                         2.41
                              1.36
            1970 G07
##
   7 Lawes
                         2.70
                              1.3
             1970 G08
                               0.955
##
   8 Lawes
                         2.46
##
   9 Lawes
            1970 G09
                         2.57
                               1.03
             1970 G10
                               1.16
## 10 Lawes
                         2.98
## # ... with 454 more rows
```


• We can be interested to move one or more variables to the start of the data frame. For that, we can use **select()** and **everything()**

```
select(example02, year, everything())
```

```
A tibble: 464 \times 10
##
      vear env
                              yield height lodging size protein
                                                                    oil
                  loc
                        gen
      <dbl> <chr> <chr> <chr> <dbl>
                                     <dbl>
                                             <dbl> <dbl>
                                                           <dbl> <dbl>
##
      1970 L70
                  Lawes G01
                               2.39
                                     1.44
                                              4.25 8.45
                                                            36.7
                                                                   20.9
##
   2 1970 L70
                 Lawes G02
                               2.28 1.45
                                                                  20.7
##
                                              4.25
                                                   9.95
                                                            37.6
##
   3 1970 L70
                  Lawes G03
                               2.57
                                              3.75 10.8
                                                            37.8
                                                                   21.3
                                     1.46
                 Lawes G04
                               2.88
                                                   10.0
                                                                  22.0
##
   4 1970 L70
                                     1.26
                                              3.5
                                                            38.4
##
   5 1970 L70
                 Lawes G05
                               2.39
                                     1.34
                                              3.5
                                                   11
                                                            37.5
                                                                  22.1
##
      1970 L70
                 Lawes G06
                               2.41
                                                                   21.2
                                     1.36
                                              4
                                                   11.8
                                                            38.2
##
      1970 L70
                  Lawes G07
                               2.70
                                                            37.4
                                                                  21.7
                                     1.3
                                                   11.8
   7
##
   8 1970 L70
                 Lawes G08
                               2.46
                                     0.955
                                              3.25 10
                                                            35.2
                                                                  21.1
##
      1970 L70
                 Lawes G09
                               2.57
                                                                   21.5
   9
                                     1.03
                                                   11.2
                                                            35.9
##
  10
       1970 L70
                  Lawes G10
                               2.98
                                     1.16
                                              3.75 10.8
                                                            39.7
                                                                   20.4
## # ... with 454 more rows
```


Data Transformation: Add new variables

 We can add new columns that are functions of existing columns with mutate() which always adds new columns at the end of the dataset

```
mutate(example02.short, yield_kg_ha = yield * 1000)
```

```
# A tibble: 464 x 6
                         yield height yield_kg_ha
##
      loc
             year gen
##
      <chr> <dbl> <chr> <dbl>
                               <dbl>
                                             <dbl>
             1970 G01
                         2.39
                               1.44
                                              2387
##
    1 Lawes
             1970 G02
                         2.28
                               1.45
##
    2 Lawes
                                              2282
##
    3 Lawes
             1970 G03
                         2.57
                               1.46
                                              2567
             1970 G04
                               1.26
##
   4 Lawes
                         2.88
                                             2877
##
    5 Lawes
             1970 G05
                         2.39
                                1.34
                                              2392
             1970 G06
                                1.36
##
    6 Lawes
                         2.41
                                             2408
##
   7 Lawes
             1970 G07
                         2.70
                                1.3
                                              2699
##
   8 Lawes
             1970 G08
                         2.46
                                0.955
                                             2457
##
   9 Lawes
             1970 G09
                         2.57
                                1.03
                                             2567
             1970 G10
## 10 Lawes
                          2.98
                                1.16
                                             2984
## # ... with 454 more rows
```


Data Transformation: Summaries

• summarize() collapses a data frame to a single or few row(s)

2.09

1.72

```
summarize(example02, yield_all = mean(yield, na.rm = TRUE))
## # A tibble: 1 x 1
   yield_all
##
        <dbl>
##
## 1 2.05
 summarize() is useful with group_by()
by_treatment <- group_by(example02, loc)</pre>
summarise(by_treatment, yield_treatment = mean(yield, na.rm = TRUE))
## # A tibble: 4 x 2
##
  loc yield_treatment
                         <dbl>
## <chr>
## 1 Brookstead
                          2.01
                          2.37
## 2 Lawes
```


3 Nambour

4 RedlandBay

Data Transformation: The pipe %>%

• The following code:

```
by_treatment <- group_by(example02, loc)
summarise(by_treatment, yield_treatment = mean(yield, na.rm = TRUE))</pre>
```

• is equivalent to:

```
example02 %>%
  group_by(loc) %>%
  summarise(yield_treatment = mean(yield, na.rm = TRUE))
```


Data Transformation: Count

- When doing aggregation, it's a good idea to include a count
- It might be useful before analyzing our data to check how many datapoints we have for each location

4 RedlandBay 116

Data Transformation: Factors

- Factors are used to work with categorical variables, with a fixed and known set of possible values. The values of a factor are called the levels
- Let's display example02: env, loc and gen are **character** but should be considered categorical variables (**factors**)

```
example02
```

```
## # A tibble: 464 x 10
##
                              yield height lodging size protein
                                                                     oil
      env
            loc
                   year gen
      <chr> <chr> <dbl> <chr> <dbl>
                                      <dbl>
                                              <dbl> <dbl>
                                                             <dbl> <dbl>
##
    1 L70
                   1970 G01
                                2.39
                                                    8.45
                                                              36.7
                                                                    20.9
##
            Lawes
                                      1.44
                                               4.25
##
    2 L70
          Lawes
                   1970 G02
                                2.28
                                      1.45
                                               4.25 9.95
                                                              37.6
                                                                    20.7
    3 L70
                   1970 G03
                                2.57
                                                                    21.3
##
           Lawes
                                      1.46
                                               3.75 10.8
                                                              37.8
    4 L70
                   1970 G04
                                2.88
                                                    10.0
                                                              38.4
                                                                    22.0
##
           Lawes
                                      1.26
                                               3.5
    5 L70
                   1970 G05
##
           Lawes
                                2.39
                                      1.34
                                               3.5
                                                    11
                                                              37.5
                                                                    22.1
    6 L70
                   1970 G06
                                2.41
                                                                    21.2
##
           Lawes
                                      1.36
                                                    11.8
                                                              38.2
                                               4
##
   7 L70
            Lawes
                   1970 G07
                                2.70
                                      1.3
                                               3
                                                    11.8
                                                              37.4
                                                                    21.7
    8 L70
                   1970 G08
                                2.46
                                               3.25 10
                                                                    21.1
            Lawes
                                      0.955
                                                              35.2
##
                                2.57
##
    9 L70
            Lawes
                   1970 G09
                                      1.03
                                                    11.2
                                                              35.9
                                                                    21.5
  10 L70
            Lawes
                   1970 G10
                                2.98
                                      1.16
                                               3.75 10.8
                                                              39.7
                                                                    20.4
## # ... with 454 more rows
```

IITA

Data Transformation: Factors

• The function as.factor() convert a variable to a **factor**

```
example02$env <- as.factor(example02$env)
example02$loc <- as.factor(example02$loc)
example02$gen <- as.factor(example02$gen)</pre>
```

This is equivalent to the code below using mutate() and the pipe %>%

```
example02 %>%
  mutate(env = factor(env), loc = factor(loc), gen = factor(gen))
```

• or the same but in more clean code (my preference)

```
example02 %>%
  mutate(
    env=factor(env),
    loc=factor(loc),
    gen=factor(gen)
)
```


Data Transformation: Factors

• To display the levels of a factor

```
levels(example02$loc)
## [1] "Brookstead" "Lawes" "Nambour" "RedlandBay"
```

• To get the number of levels of a factor

```
nlevels(example02$loc)
```

[1] 4

Data Wrangling: Practical

- Import Example-03.xlsx to R and save to an object named example03
- How many observations do we have per location?
- What are the variables? What are the factors? -convert them to factors if any
- How many locations? genotypes? Display the list of locations and the list of genotypes respectively?
- Display the data where the yield was less than 150?
- Display the mean of earht per genotype, sorted in descending order
- Select loc, gen, yield, flower to be saved in a new object example03.short and create a new variable flower_new by subtracting 10 days to flower

Data Wrangling: Practical

- Import Example-02.csv to R and save to an object named example02
- How many locations do we have per year?
- Calculate the number of observations, min, max, mean, variance and standard deviation of size by location and year
- Select all the observations where oil is greater than 20, lodging less than 3, and yield greater than 3 in the location Brookstead and sort the height by descending order

