Московский физико-технический институт Физтех-школа прикладной математики и информатики

МАТ. ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ І СЕМЕСТР

Лекторы: Мусатов Даниил Владимирович

Авторы: Дамир Ачох Проект на Github

Содержание

1 Предел функции

2

1 Предел функции

Определение 1.1. Проколотой δ -окрестностью точки a называется $\overset{\circ}{U_{\delta}}(a)=U_{\varepsilon}(a)\setminus\{a\}=(a-\delta,a)\cup(a,a+\delta).$

Определение 1.2. (По Коши). $\lim_{x\to a} f(x) = A \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in U_{\delta}(a)) f(x) \in U_{\varepsilon}(A)$.

Определение 1.3. (По Гейне). $\lim_{x\to a} f(x) = A \Leftrightarrow (\forall \{x_n\} \subset X \setminus \{a\}, \lim_{n\to\infty} x_n = a) \lim_{n\to\infty} f(x_n) = A.$

Теорема 1.1. Определения предела функции по Коши и по Гейне эквивалентны.

Доказательство. Докажем, что из Коши следует Гейне. Возьмем произвольную $\{x_n\}: \lim_{n\to\infty} x_n = a \ (x_n\neq a)$. Значит, $(\forall \delta>0)(\exists N\in\mathbb{N})(\forall n>N)$

 $|x_n-a|<\delta$. Так как $x_n\neq a$, то $x_n\in \overset{\circ}{U_{\delta}}(a)$. Объединяя это и опр. Коши, получаем: $(\forall \varepsilon>0)(\exists \delta>0)(\exists N\in\mathbb{N})(\forall n>N)$ $f(x_n)\in U_{\varepsilon}(A)$. Значит, $(\forall \varepsilon>0)(\exists N\in\mathbb{N})(\forall n>N)$ $f(x_n)\in U_{\varepsilon}(A)$. Получается, что $\lim_{n\to\infty}f(x_n)=A$.

Докажем, что из Гейне следует Коши. Пусть опр. Гейне выполняется, а опр.

Коши - нет. Если Коши не выполняется, то $(\exists \varepsilon > 0)(\forall \delta > 0)(\exists x \in U_{\delta}(a))$ $f(x) \notin U_{\varepsilon}(A)$.

$$\delta := 1. \ (\exists x_1 \in \overset{\circ}{U_1} \ (a)) \ f(x_1) \notin U_{\varepsilon}(A)$$

$$\delta := \frac{1}{k} \cdot (\exists x_k \in \overset{\circ}{U_{\frac{1}{k}}}(a)) \ f(x_k) \notin U_{\varepsilon}(A).$$

Зададим последовательность x_n по тем x_i , которые нашли выше. Если $a \in \mathbb{R}$, то $(\forall n \in \mathbb{N})$ $0 < |x_n - a| < \frac{1}{n}$. По свойству о зажатой последовательности $\lim_{n \to \infty} x_n = a$. Следовательно, по опр. Гейне $\lim_{n \to \infty} f(x_n) = A$. Вспоминаем, что $f(x_n) \notin U_{\varepsilon}(A)$, что противоречит предыдущему утверждению. Аналогично при $a = \infty$.

Теорема 1.2. Свойства предела функции, связанные неравенствами.

- 1. (Ограниченность). Если $\lim_{x\to a} = A \in \mathbb{R}$, то f(x) ограничена в некоторой $\overset{\circ}{U_{\delta}}$ (a) (т. е. множество значений в этой окрестности ограничено).
- 2. (Отделимость от нуля и сохранение знака). Если $\lim_{x\to a} f(x) = A \in \overline{\mathbb{R}}$, то $\exists C>0$, такое что $(\exists \delta>0) \ (\forall x\in \overset{\circ}{U_{\delta}}\ (a)) \ |f(x)|>C$ и знак f(x) тот эксе, что и у A.

- 3. (Переход к предел. неравенству). Если ($\exists \delta > 0$) ($\forall x \in U_{\delta}(a)$) $f(x) \leqslant g(x)$ $u \lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$, mo $A \leqslant B$.
- 4. (Теорема о трёх функциях). Если ($\exists \delta > 0$) ($\forall x \in U_{\delta}(a)$) $g(x) \leqslant f(x) \leqslant h(x)$ $u \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = A$, то $\lim_{x \to a} f(x) = A$.

Доказательство. ТО-DO

Теорема 1.3. Свойства предела функции, связанные с арифметическими операциями. Пусть $\lim_{x\to a} f(x) = A$, $\lim_{x\to a} g(x) = B$, $A, B \in \mathbb{R}$. Тогда:

- 1. $\lim_{x \to a} (f(x) + g(x)) = A + B$.
- $2. \lim_{x \to a} (f(x)g(x)) = AB.$
- 3. Если $B \neq 0$, то $\lim_{x \to a} \frac{f}{g}(x) = \frac{A}{B}$.

Доказательство. ТО-DO

Теорема 1.4. Критерий Коши существования предела функции. $\exists \lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x_1, x_2 \in U_{\delta}(a)) |f(x_1) - f(x_2)| < \varepsilon.$

Доказательство. Необходимость. $\lim_{x\to a} f(x) \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in U_{\delta}(a))$

$$|f(x) - A| < \frac{\varepsilon}{2}$$
. $|f(x_1) - f(x_2)| \le |f(x_1) - A| + |f(x_2) - A| \le \varepsilon$. Достаточность. TO-DO.