|      | TP1 Aerotherm - Vasapolli Bichon                                                                                                                                                             | Pt |     | A B C D No   | ote                                                  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--------------|------------------------------------------------------|
| ı    | Préparation du travail                                                                                                                                                                       |    |     |              |                                                      |
|      | Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.                                                                        | 2  | Α   |              | 2                                                    |
| 2    | Quel est le nom de la grandeur réglée ?                                                                                                                                                      | 1  | Α   |              | 0,5                                                  |
| 3    | Quel est le principe utilisé pour mesurer la grandeur réglée ?                                                                                                                               | 1  | Α   |              | 0,5                                                  |
| 4    | Quelle est la grandeur réglante ?                                                                                                                                                            | 1  | Α   |              | 0,5                                                  |
| 5    | Donner une grandeur perturbatrice.                                                                                                                                                           | 1  | Α   |              | 0,5                                                  |
| 6    | Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités. | 1  | Α   |              | 1                                                    |
| II.  | Etude du procédé                                                                                                                                                                             |    |     |              |                                                      |
| 1    | Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.                                                                                            | 1  | В   | 0            | ,75                                                  |
| 2    | Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).                                                        | 1  | D   | 0            | ,05 Ce n'est pas une caractéristique statique        |
| 3    | En déduire le gain statique du procédé autour du point de fonctionnement.                                                                                                                    | 1  | В   | 0            | ,75 Vous n'êtes pas autour du pont de fonctionnement |
| 4    | En déduire le sens d'action à régler sur le régulateur.                                                                                                                                      | 1  | Α   |              | 1                                                    |
| 5    | Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.                                                                                   | 3  | В   | 2            | ,25                                                  |
| III. | Etude du régulateur                                                                                                                                                                          |    |     |              |                                                      |
| 1    | Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.                                                                                          | 2  | Χ   |              | 0                                                    |
| 2    | En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.                                                                                                 | 2  | В   | 1,1          | 125                                                  |
| IV.  | Performances et optimisation                                                                                                                                                                 |    |     |              |                                                      |
| 1    | Programmer votre régulateur pour assurer le fonctionnement de la régulation.                                                                                                                 | 1  | Χ   |              | 0                                                    |
| 2    | Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.   | 2  | Х   |              | 0                                                    |
| 3    | Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.                                                       | 1  | Х   |              | 0                                                    |
| 4    | Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.                                                                          | 2  | Χ   |              | 0                                                    |
|      |                                                                                                                                                                                              |    | Not | e sur : 20 1 | 0,9                                                  |

## TP1 Aero

## I. Préparation du travail

1,



- 2)La grandeur reglée est la température à la sortie de l'aerotherm
- 3)La sonde PT100 mesure la temperature. La PT100 utilise le principe de mesure à resistance, basé sur la vartiarion de resitance pour mesurer la temperature. 1000hm à 0°C.
- 4)La grandeur reglante est la puissanec de chauffe.
- 5)La grandeur perturbatrice est la temperarture de l'air exterieur arrivant par le ventilo.



## II. Etude du procédé

1)







$$Y = 0\% => X = 29,5$$
°c  
 $Y = 100\% => X = 75$ °c

- 3)  $K = \Delta S/\Delta E = 75-29,5/100-0 = 0,45=45\%$
- $4) \ Quand \ on \ augmente \ la \ commande \ , \ la \ mesure \ augmente \ , \ donc \ sens \ d'action \ direct \ , \ régulateur inverse.$



K = 0,45 40% de X = 18,22% T2=11:30 28% de X = 12,74% T1=11 T = 2,8 (11-08:00)-1,8(11:30-08:00) T=2,1 To=5,5(11:30-11) To=2,75  $H(p)=(0,45*e^{-2},1p)/(1+2,75p)$ 

## III. Etude du régulateur

1)

2) 
$$kr = T/t = 2,1/2,75 = 0,8 \text{ (On prend PID)}$$
 Pour A = 100/XP A=(0,83/0,45)\*((1/0,8)+0,4) = 2,7 XP=37% 
$$Ti = 2,75 + 0,4*2,1 = 3,59$$
 
$$Td = 2,1/(0,8+2,5) = 0,64$$