4. 識別 一統計的手法一

• 第3章(決定木):正解を表現する概念を得る

• 第4章 (統計) : 識別結果の確率を得る

説明性

意思決定

weatherデータ

表 3.3 weather.nominal.arff (カテゴリ特徴)

No.	outlook	temperature	humidity	windy	play
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	$_{ m normal}$	FALSE	yes
6	rainy	cool	$_{ m normal}$	TRUE	no
7	overcast	cool	$_{ m normal}$	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	$_{ m normal}$	FALSE	yes
10	rainy	mild	$_{ m normal}$	FALSE	yes
11	sunny	mild	$_{ m normal}$	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

- outlook (天候)
 - sunny, overcast, rainy
- temperature (気温)
 - hot, mild, cool
- humidity(湿度)
 - high, normal
- windy (風)
 - TRUE, FALSE
- play (=クラス)
 - yes, no

- 特徴ベクトルxが観測されていないとき
 - 事前確率 P(yes), P(no) だけから判断するしかない
- 特徴ベクトル x 観測後
 - 事後確率 P(yes | x), P(no | x) の大きい方に判定
- 多クラスに一般化
 - 最大事後確率則による識別(ベイズ識別)

$$C_{MAP} = rg \max_{i} P(\omega_{i} | \boldsymbol{x})$$
 \boldsymbol{x} :特徴ベクトル $\omega_{i} \ (1 \leq i \leq c)$: クラス

- 事後確率の求め方
 - 単純な方法としては、特徴ベクトルが完全に一致する事例を大量に 集めて、その正解の頻度を求める
 - 例) x = (晴, 高, 中, True) 100事例中 yes:70, no:30
 - 上記の推定が行えるようなデータセットが得られることはほとんどない
 - 事後確率に対して、式変形・近似を行って、現実の規模のデータ セットから確率を推定できるようにする

• ベイズの定理

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• 事後確率の式の変形

$$C_{MAP} = rg \max_{i} P(\omega_{i} | \boldsymbol{x})$$

$$= rg \max_{i} \frac{P(\boldsymbol{x} | \omega_{i}) P(\omega_{i})}{P(\boldsymbol{x})}$$

$$= rg \max_{i} \frac{P(\boldsymbol{x} | \omega_{i}) P(\omega_{i})}{\frac{1}{2}}$$
表度 事前確率

証明 P(A,B) = P(A|B)P(B) 同時確率 = P(B|A)P(A)

ベイズの定理

上式の分母は 判定に寄与しない

• 尤度:特定のクラスから、ある特徴ベクトルが出現する尤もらしさ

- ベイズ統計とは
 - 結果から原因を求める
 - 通常の統計学は原因から結果を予測する
 - ベイズ識別
 - $_{-}$ 観測結果 x から、それが生じた原因 ω_{i} を求める(事後確率)
 - 通常、確率が与えられるのは原因→結果(尤度)
 - ベイズ識別では、事前分布 $P(\omega_i)$ が、観測 x によって事後分布 $P(\omega_i|x)$ に変化したと考えることができる

4.2 カテゴリ特徴に対するベイズ識別

- 事前確率 $P(\omega_i)$
 - 特徴ベクトルを観測する前の各クラスの起きやすさ
- 事前確率の最尤推定

$$P(\omega_i) = \frac{n_i}{N}$$

 $P(\omega_i) = \frac{n_i}{N}$ N: 全データ数、 n_i :クラス ω_i のデータ数

4.2.1 学習データの対数尤度

- 尤度の導出
 - 特徴ベクトル x を生成する(各クラスごとの)モデルを考え、そのモデルがパラメータ θ に従ってデータを生成していると仮定

$$P(m{x}|\omega,m{ heta})$$
 以後、1クラス分のデータを全データとみなす σ のを省略

- 全データDは、各データが同じ分布から独立に生成されていると仮定
 - i.i.d (independent and identically distributed)

$$P(D|\boldsymbol{\theta}) = \prod_{i=1}^{N} P(\boldsymbol{x}_i|\boldsymbol{\theta})$$

4.2.1 学習データの対数尤度

- 対数尤度
 - 確率の積のアンダーフローを避けるため、対数尤度で計算

$$\mathcal{L}(D) = \log P(D|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log P(\boldsymbol{x}_i|\boldsymbol{\theta})$$

- 尤度関数の仮定
 - 特徴ベクトルが1次元、値0 or 1で、ベルヌーイ分布に従うと仮定
 - ベルヌーイ分布:確率 θ で値1、確率 $1-\theta$ で値0をとる分布

$$\mathcal{L}(D) = \sum_{i=1}^{N} \log \theta^{x_i} (1 - \theta)^{1 - x_i}$$

$$= \sum_{i=1}^{N} x_i \log \theta + (N - \sum_{i=1}^{N} x_i) \log(1 - \theta)$$

4.2.1 学習データの対数尤度

- $oldsymbol{\cdot}$ 対数尤度を最大にするパラメータ $\hat{ heta}$
 - $\frac{\partial \mathcal{L}(D)}{\partial \theta} = 0$ の解を求める

$$\frac{\partial \mathcal{L}(D)}{\partial \theta} = \sum_{i=1}^{N} x_i \frac{1}{\theta} - (N - \sum_{i=1}^{N} x_i) \frac{1}{1 - \theta}$$

$$= \frac{1}{\theta(1 - \theta)} \{ (1 - \theta) \sum_{i=1}^{N} x_i - \theta(N - \sum_{i=1}^{N} x_i) \} = 0$$

$$\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \boxed{\begin{array}{c} \text{値 } x_i \text{ & colong by a position of } \\ & \Rightarrow & \text{最尤推定法} \end{array}}$$

4.2.2 ナイーブベイス識別

- 多次元ベクトルの尤度関数を求める
 - 特徴値のすべての組合せが、データセット中に何度も出てくる必要があるが、これも非現実的
- ナイーブベイズの近似
 - ・すべての特徴が独立であると仮定

$$P(\boldsymbol{x}|\omega_i) = P(x_1, \dots, x_d|\omega_i)$$

$$\approx \prod_{j=1}^d P(x_j|\omega_i)$$

$$C_{NB} = \arg\max_i P(\omega_i) \prod_{j=1}^d P(x_j|\omega_i)$$

4.2.2 ナイーブベイス識別

尤度の最尤推定

$$P(x_j \mid \omega_i) = \frac{n_j}{n_i}$$

 $P(x_j \mid \omega_i) = \frac{n_j}{n_i}$ $\begin{bmatrix} n_i : クラス\omega_i \text{のデータ} \\ n_j : クラス\omega_i \text{のデータのうち}, j$ 次元目の値が x_j の個数

ゼロ頻度問題: n_i が0の場合、確率の推定値も0

- スムージング
 - 事前にその値が α 回生じていたと仮定する

$$P(x_j \mid \omega_i) = \frac{n_j + \alpha}{n_i + \alpha m}$$
 $\boxed{m:j$ 次元目の値の種類数

ラプラス推定: α=1のとき

scikit-learnのナイーブベイズ識別

- カテゴリ特徴は OrdinalEncoder で整数値に置き換える
 - 変換情報

```
[array(['overcast', 'rainy', 'sunny'], dtype=object),
array(['cool', 'hot', 'mild'], dtype=object),
array(['high', 'normal'], dtype=object),
array([False, True], dtype=object)]
```

 正解のラベルは LabelEncoder で整数値に置き換える yes → 1, no → 0

scikit-learnのナイーブベイズ識別

- カテゴリ特徴に対するナイーブベイズ識別は CategoricalNB を 用いる
 - 識別器のパラメータ
 - arpha: 事前に仮定するサンプル数。教科書の mp に対応
 - fit_prior:事前確率を学習の対象とするかどうか
 - class_prior:事前確率を別途与えるときに用いる

scikit-learnのナイーブベイズ識別

・典型的なコード

```
clf = CategoricalNB()
clf.fit(X, y)
clf.predict_proba(X_test[1])
```

インスタンスの作成

学習

識別

まとめ

- カテゴリ特徴の識別問題に対する統計的識別
 - ベイズ識別
 - 事後確率 $P(\omega_i | \mathbf{x})$ を最大とするクラス ω_i を求める
 - 事後確率をデータから推定するのは難しいので、ベイズの定理を用いて尤度 $P(\mathbf{x} \mid \omega_i)$ と事前確率 $P(\omega_i)$ の積に分解
 - ナイーブベイズ法
 - 特徴のすべての次元が独立であると仮定して、尤度をそれぞれの次元の確率の積に分解
 - 確率が0となることを避けるためにスムージングを行う