- 1. Sigui X un espai topològic i $A \subset X$. Considerem A amb la topologia subespai.
 - (a) Proveu que $K \subset A$ és tancat si i només si existeix $L \subset X$ tancat tal que $K = A \cap L$.
 - (b) Donat $D \subset A$, sigui $\operatorname{Cl}_A(D)$ la clausura com a subconjunt d' A i $\operatorname{Cl}_X(D)$ com a subconjunt d' X. Proveu que $\operatorname{Cl}_A(D) = \operatorname{Cl}_X(D) \cap A$.
 - (c) Sigui $D \subset A$ un subconjunt dens. Proveu que si A és dens a X, aleshores D també és dens a X.
- 2. Donats $a, b, c \in \mathbb{R}$, definim el següent subconjunt de \mathbb{R}^2

$$I_{a,b,c} = \{(c,y) \in \mathbb{R}^2 | a < y < b\}$$

i considerem la família de subconjunts $\mathcal{B} = \{I_{a,b,c} \subset \mathbb{R}^2 | a,b,c \in \mathbb{R}\}.$

- (a) Siguin $a_n = (\frac{1}{n}, 0)$ i $b_n = (0, \frac{1}{n})$ dues sucessions de punts a \mathbb{R}^2 . Decideix si tenen límit o no amb la topologia τ , i calcula tots els possibles punts límit en cas de tenir-ne.
- (b) Denotem per $X=\mathbb{R}^2$ amb la topologia τ . Considera les aplicacions $id_1:X\to\mathbb{R}^2$ i $id_2:\mathbb{R}^2\to X$ que són la identitat com a conjunts, on \mathbb{R}^2 té la topologia mètrica usual. Són contínues? Són tancades? Són obertes?
- (c) Prova que l'espai topològic X és homeomorf a l'espai topològic producte $\mathbb{R}_d \times \mathbb{R}$.
- 3. Sigui X un espai topològic i $K \subset X$ un subconjunt. Diem que $x \in X$ és un punt exterior a K si existeix un entorn $N \subset X$ que conté el punt X tal que $X \cap K = \emptyset$. Definim $\text{Ext}_X(K) \subset X$ com el subconjunt de punts exteriors.
 - (a) Prova que $K \subset X$ és dens si i només si $\operatorname{Ext}_X(K) = \emptyset$.
 - (b) Prova la següent igualtat: $\partial K = X \setminus (\operatorname{Int}_X(K) \cup \operatorname{Ext}_X(K))$.
 - (c) Sigui $f: X \to Y$ una aplicació contínua. Demostra que es compleix la següent inclusió $f^{-1}(\operatorname{Ext}_Y(K)) \subset \operatorname{Ext}_X(f^{-1}(K))$.
 - (d) Sigui $A \subset X$ amb la topologia subespai. Prova que si $K \subset X$ aleshores es compleix la inclusió $\operatorname{Ext}_X(K) \cap A \subset \operatorname{Ext}_A(K \cap A)$.
 - (e) Siguin X i Y espais topològics, i $A \subset X$, $B \subset Y$. Demostra la següent igualtat de subconjunts: $\operatorname{Ext}_{X \times Y}(A \times B) = (\operatorname{Ext}_X(A) \times Y) \cup (X \times \operatorname{Ext}_Y(B))$.
- 4. Direm que $f: X \to Y$ és una immersió topològica si és contínua, injectiva i la restricció a la imatge $X \to f(X)$ és un homemorfisme on $f(X) \subset Y$ té la topologia de subespai.
 - (a) Donada una aplicació contínua $f: X \to Y$ prova que si existeix $g: Y \to X$ contínua tal que $g \circ f = id_X$ aleshores f és una immersió topològica.
 - (b) Sigui $U \subset \mathbb{R}^n$ obert i $f \colon U \to \mathbb{R}^k$ una aplicació contínua, aleshores considerem l'aplicació graf $\Theta_f \colon U \to \mathbb{R}^{n+k}$ donada per $\Theta_f(x) = (x, f(x))$. Comprova que Θ_f és una immersió topològica.
 - (c) Demostra que $f:[0,1)\to\mathbb{R}^2$ definida per $f(t)=e^{2\pi it}$ no és una immersió topològica.
- 5. És cert que el producte d'espais amb topologies cofinites té la topologia cofinita?

- 6. Sigui $f: X \to Y$ una aplicació contínua. Proveu:
 - (a) Si $g: Y \to Z$ és contínua i $g \circ f$ és una aplicació quocient, aleshores g també ho és.
 - (b) Si existeix $A \subset X$ de manera que $f|_A \colon A \to Y$ és un aplicació quocient aleshores f també ho és.