Lecture 5 Converting Regular Expressions into Finite Automata

Assoc. Prof. Osama fathy

Overview

- Questions
- Kleene's Theorem
- Consequences
- Convert Regular Expressions to NFA-Λ
- Convert NFA-Λ to FA

Questions

- Can every language which is represented by a regular expression be described by a finite automaton?
- Can every language which is described by a finite automaton be represented by a regular expression?
- Can every language be represented by a regular expression or a finite automaton?

Kleene's Theorem

Any language which can be defined by

- Regular Expressions
- Finite Automaton
- Nondeterministic Finite Automaton (NFA)
- $-NFA-\Lambda$
- Transition Graphs
- Generalised Transistion Graphs
 can be defined by any of the other methods

The Complement of Regular Language is a Regular Language

Outline of Proof:

- Suppose we have a Regular Language.
- Therefore we have a regular expression that defines the language.
- So, by Kleene's Theorem, there is a FA that defines this language.
- We can convert this FA into one that defines the complement the language.
- So, by Kleene's Theorem, there is a regular expression that defines the complement.

Kleene's Theorem

How to convert a Regular Expression into a NFA-A

Converting Regular Expression to NFA-A

Start with the graph.

Apply the following rules until all edges are labeled with a letter or Λ .

- 1. Delete any edge labeled with ϕ .
- 2. Transform any edge like

into

3. Transform any edge like:

into

4. Transform any edge like:

$(a^* + aa^*b)^*$

How to convert a NFA-A into a FA

NFA ->DFA (EXAMPLE-1) a a a,b a,b b 3 b a **Start {1} {1,2}** {1,3} **{1,2} {1,2,4} {1,3} {1,3} {1,2} {1,3,4}** Final {1,2,4} **{1,2,4} {1,3,4}** Final {1,3,4} **{1,2,4} {1,3,4}**

NFA ->DFA (EXAMPLE-2)

NFA ->DFA (EXAMPLE-3)

		a	b
Start /I	$Final{1,2,3,4}$	{5,4,6,7,2,3}	ф
Final	{2,3,4,5,6,7}	{5,4,6,7,2,3}	{2,3,4}
Final	{2,3,4}	{5,4,6,7,2,3}	φ
	ф	ф	ф

NFA ->DFA (EXAMPLE-4)

» Equivalent DFA

» Transaction table

States/ input	a	b
q0	q0q1	q0
q1	ф	q2
q2	ф	ф
q0q1	q0q1	q0q2
q0q2	q1q2	q0

NFA ->DFA (EXAMPLE-5)

» Transaction table:

States/	0	1
input		
В	BAC	ф
Α	ф	AC
С	ф	ф
ABC	ABC	AC
AC	ф	AC