Задание 5 Отчёт Методы Монте-Карло Отчёт

Ши Хуэй shihuicollapsor@gmail.com

1. Постановка задачи

На отрезке [a, b] задана точка x, a < x < b; a, x, b - целые числа Задана вероятность p перехода точки вправо. В момент времени i точка совершает переход c шагом 1 направо или налево (c вероятностью p или 1 - p, соответственно).

Процесс останавливается, когда точка достигает точки а или точки b.

Рассмотрим N частиц, совершающих случайные блуждания, начиная с точки х.

Интересующие нас результаты модели случайных блужданий - частоты попадания в каждое из поглощающих состояний и среднее время блужданий частиц.

Подобный эксперимент относится к классу методов Монте-Карло

2. Формат командной строки

gcc -fopenmp -std=c99 random_walk.c -o ./random_walk ./random walk 0 100 0.5 50 1000 2

3. Спецификация системы

- Polus

4. Записи экспериментов и результаты

4.1 Тестирование 1

В рамках выполнения задания 1 была разработана параллельная программа, реализующая метод Монте-Карло для моделирования случайных блужданий. В процессе тестирования программы использовались различные значения N для трех наборов параметров, определяющих границы интервала и начальные позиции частиц.

4.2 Тестирование 2

В рамках выполнения задания 2 была проведена серия тестов, в которых фиксировалось значение N=10000, 100000 и изменялось количество потоков. Целью эксперимента было изучение производительности программы в зависимости от числа потоков, используемых для параллельной обработки.

В ходе тестирования были рассмотрены два набора параметров, определяющих границы интервала и начальные позиции частиц.

Results

a	b	p	x	N	P	T	S	P
0	100	0.5	50	100	2	0.024465	0.345172	0.172586
0	100	0.5	50	100	4	0.062133	0.135623	0.033906
0	100	0.5	50	100	8	0.155896	0.053793	0.006724
0	100	0.5	50	100	16	0.169987	0.049091	0.003068
0	100	0.5	50	1000	2	0.277481	0.353116	0.176558
0	100	0.5	50	1000	4	0.711025	0.139190	0.034797
0	100	0.5	50	1000	8	1.569158	0.063098	0.007887
0	100	0.5	50	1000	16	1.756998	0.055542	0.003471
0	100	0.5	50	10000	2	2.640986	0.379202	0.189601
0	100	0.5	50	10000	4	7.175237	0.139618	0.034904
0	100	0.5	50	10000	8	15.845443	0.062745	0.007843
0	100	0.5	50	10000	16	18.285941	0.054743	0.003421
0	100	0.5	50	100000	2	24.744083	0.402663	0.201332
0	100	0.5	50	100000	4	67.337496	0.146971	0.036743
0	100	0.5	50	100000	8	154.301773	0.064606	0.008076
0	100	0.5	50	100000	16	181.510400	0.054340	0.003396