

Improving forecasting with subseasonal time series patterns

The University of Manchester

XIXI LI
Joint work with Fotios Petropoulos and Yanfei Kang
xixi. li@manchester. ac. uk
https://aixili-2.wixsite.com/personal
The 40th International Symposium on Forecasting

26-10-2020

Manchester Statistics

Outline

- ► Introduction
- Methodology
- ► Empirical experiments
- Interpretative analysis
- Summary and discussion
- References

Big time series forecasting

- ▶ Big time series → difficulty in identifying reliable models
- ▶ Model selection: information criteria or cross-validation
 - based on past performance on a hold-out set of observations
 - however, data generation processes and time varying patterns
- Model combination
 - all models are wrong and selecting just one of these maybe not enough (Box et al.,1987)
 - there is never a best method that fits in all situations. (Wolpert, 1996)
 - reduce the variance of the forecasts. (Bates and Granger, 1969; Hibon and Evgeniou, 2005)

- Model uncertainty
 - ► ETS: error, trend and seasonality components
 - ARIMA: AR, MA and seasonality term
- Parameter uncertainty: smoothing parameters of ETS
- Data uncertainty: the variation of the inherent random component of the series

Manipulating the data

- Fiorucci et al. (2016) change the local curvatures of the seasonally-adjusted data →Theta: a first place in the M3-competition.
- Athanasopoulos et al. (2017): multiple temporal aggregation level of targeted series.
- ▶ Bergmeir et al. (2016) and Petropoulos et al. (2018): new time series generation with bootstrapping.

Multiple models	Model combination	Model combination
Single model	Model selection	Model selection/combination

Original series

Processed series

- Seasonal patterns: the data is influenced by seasonal factors (Hyndman, 2011).
- Seasonal methods: Seasonal Naive method, Holt-Winters' Exponential Smoothing, Damped Trend Seasonal Method, SARIMA
- One season of the historical data can be used to forecast the corresponding season.
- Our conjecture: several adjacent seasons also could be predicted by the respective past observations.
- ► What we do?
 - Construct sub-seasonal series → leveraging sub-seasonal patterns of the original time series.
 - Extrapolate these sub-seasonal series with ETS and ARIMA.
 - ightharpoonup Forecasts combination ightharpoonup tackling model and parameters uncertainty.

A graph example visualizing the methodology

Constructing multiple time series with sub-seasonal patterns

Taking Q520 from M3 competition as an example.

Making extrapolation forecasts for each sub-seasonal series

- ightharpoonup ETS ightharpoonup capture the level, trend and seasonality automatically.
- \blacktriangleright Automatic and optimal model and parameter selection \rightarrow local optimal predictions.
- ▶ Model-free: our framework can be plugged into any existing model.

Forecasting method	Description	${f R}$ implementation
ETS	The exponential smoothing state space model (Hyndman et al., 2002).	forecast::ets()
ARIMA	The autoregressive integrated moving average model automatically estimated in the R package fore-cast(Hyndman and Khandakar, 2008).	forecast::auto.arima()

Combined forecast

- ▶ ETS components of each sub-seasonal series.
- Capture different existing patterns and components effectively.

								ETS Con	ponents							
Sasson	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Components ror Trand Sa	A	A	٨	A	A	N	N	N	N	Α	Α	٨	A	A	A	A
Emar G	A	A		A	м	А	м	A	м	м	м	м	м	м	м	м
	on .	or or	G)	OH.	gr+ar	an-as	G3+G4	Sea	sons	02+03+04	09+00+01	01-01-01	01-02-02-01	GR-GR-GR-G1	G0+G4+G1+G0	04-01-02-03

75 thousand real time series from M1, M3 and M4 datasets

Frequency	Source	Number of series	h
	M1-Competition	203	8
Quarterly	M3-Competition	756	8
	M4-Competition	24000	8
Total		24959	
	M1-Competition	617	18
Monthly	M3-Competition	1428	18
	M4-Competition	48000	18
Total		50045	

Standard versus multiple forecasts

Mean result

		Quarterly						Monthly						
						MA	SE							
		h=1	1-3	4-6	7-8	1-8	h=1	1-6	7-12	13-18	1-18			
romo.	Standard	0.599	0.774	1.261	1.607	1.165	0.454	0.651	0.965	1.225	0.947			
ETS	Multiple	0.644	0.797	1.252	1.567	1.160	0.451	0.633	0.936	1.173	0.914			
	Standard	0.596	0.779	1.273	1.605	1.171	0.441	0.627	0.953	1.213	0.931			
ARIMA	Multiple	0.641	0.807	1.274	1.584	1.177	0.442	0.628	0.932	1.172	0.911			
						sMa	APE							
		h=1	1-3	4-6	7-8	1-8	h=1	1-6	7-12	13-18	1-18			
vamo.	Standard	5.985	7.469	11.070	13.515	10.331	6.872	10.001	13.650	17.031	13.560			
ETS	Multiple	6.265	7.558	10.859	13.058	10.171	6.812	9.550	13.098	15.996	12.881			
	Standard	5.987	7.602	11.250	13.578	10.464	6.790	9.703	13.627	17.364	13.565			
ARIMA	Multiple	6.326	7.768	11.170	13.315	10.431	6.763	9.506	13.129	16.161	12.932			
						M	SIS							
		h=1	1-3	4-6	7-8	1-8	h=1	1-6	7-12	13-18	1-18			
	Standard	4.729	6.154	10.354	13.585	9.587	3.698	5.137	8.493	11.143	8.258			
ETS	Multiple	5.046	6.253	10.004	12.908	9.323	3.645	5.023	8.109	10.409	7.847			
	Standard	5.543	7.221	12.230	15.787	11.241	4.045	5.470	9.132	11.640	8.747			
ARIMA	Multiple	5.480	7.159	11.848	15.176	10.921	3.936	5.458	8.909	11.119	8.495			

Standard versus multiple forecasts

Median result

		Quarterly						Monthly						
						M	ASE							
		h=1	1-3	4-6	7-8	1-8	h=1	1-6	7-12	13-18	1-18			
ETS	Standard	0.360	0.572	0.912	1.129	0.887	0.245	0.501	0.709	0.877	0.736			
EIS	Multiple	0.421	0.598	0.911	1.106	0.892	0.250	0.491	0.687	0.847	0.715			
I DD CI	Standard	0.363	0.578	0.920	1.126	0.895	0.235	0.481	0.699	0.877	0.728			
ARIMA	Multiple	0.421	0.609	0.927	1.114	0.907	0.244	0.485	0.683	0.846	0.711			
						sM	APE							
		h=1	1-3	4-6	7-8	1-8	h=1	1-6	7-12	13-18	1-18			
ETS	Standard	2.177	3.516	5.614	6.866	5.627	1.945	4.337	6.777	8.467	7.131			
EIS	Multiple	2.525	3.715	5.634	6.731	5.670	2.063	4.522	6.717	8.311	7.109			
ARIMA	Standard	2.186	3.572	5.690	6.848	5.646	1.877	4.230	6.827	8.471	7.177			
ARIMA	Multiple	2.523	3.748	5.762	6.798	5.722	2.055	4.478	6.694	8.260	7.096			
						N	ISIS							
		h=1	1-3	4-6	7-8	1-8	h=1	1-6	7-12	13-18	1-18			
rama	Standard	3.044	3.975	6.180	7.644	5.955	1.953	3.234	4.914	6.313	5.027			
ETS	Multiple	3.556	4.209	6.188	7.446	5.960	2.288	3.334	4.625	6.112	4.821			
	Standard	2.701	3.664	5.452	6.596	5.311	1.933	3.220	4.592	5.842	4.727			
ARIMA	Multiple	3.131	3.848	5.552	6.528	5.361	2.238	3.348	4.501	5.902	4.720			

MCB significance tests for Quarterly datasets

- MCB: Multiple Comparisons from the Best
- Comparisons of averaging ranking
- Not significantly better: Quarterly datasets

MCB tests for Monthly datasets

- ► MCB: Multiple Comparisons from the Best
- Comparisons of averaging ranking
- Significantly better: Monthly datasets

DM significance tests

- DM: Diebold-Mariano
- Comparisons of forecasts
- The entries: percentage of times the multiple forecasts are significantly better or worse than the standard forecasts.
- The test result is consistent with MCB test.

					Quarterly			Monthly					
			h=1	1-3	4-6	7-8	1-8	h=1	1-6	7-12	13-18	1-18	
TOTO	Multiple	better	15.313	11.007	6.754	7.913	8.639	33.276	20.786	17.605	10.599	16.330	
ETS	Multiple	worse	18.611	14.924	11.663	11.373	12.814	24.464	14.392	11.923	8.285	11.533	
I DD (I	Multiple	better	13.566	10.141	6.794	7.490	8.223	30.884	17.984	13.942	9.964	13.964	
ARIMA	Multiple	worse	17.749	14.122	11.007	11.034	12.182	24.886	14.030	11.618	9.037	11.561	

What kind of time series is our method more suitable for?

- X: 42 features (Montero-Manso et al., 2020).
- Y: method label: 0 is Standard and 1 is Multiple.

			MASE			
		decision tree	random forest	logistic regression		
	ETS	56.29%	62.06%	54.33%		
Quarterly	ARIMA	55.89%	61.66%	56.49%		
Monthly	ETS	57.59%	64.13%	56.79%		
Montnly	ARIMA	58.51%	65.85%	57.51%		
			$_{\mathrm{sMAPE}}$			
		decision tree	random forest	logistic regression		
Quarterly	ETS	56.41%	64.06%	57.61%		
Quarterly	ARIMA	58.09%	63.86%	58.41%		
36	ETS	56.83%	63.95%	57.67%		
Monthly	ARIMA	56.95%	64.17%	56.79%		
			MSIS			
		decision tree	random forest	logistic regression		
	ETS	62.02%	69.39%	63.46%		
Quarterly	ARIMA	60.66%	68.47%	63.06%		
	ETS	65.53%	73.96%	67.53%		
Monthly	ARIMA	61.89%	70.02%	63.69%		

What kind of time series is our method more suitable for?

- 8 important features selected based on Mean Decrease in Gini.
- Predicted responses vs actual responses for each features in point prediction over Monthly dataset.

What kind of time series is our method more suitable for?

- ▶ 8 important features selected based on Mean Decrease in Gini.
- Predicted responses vs actual responses for each features in point prediction over Quarterly dataset.

Why our method works?

- ▶ Manipulating the data \rightarrow sub-seasonal series \rightarrow amplifying the sub-seasonal patterns of the original series.
- Model combination→ mitigating the importance of single model selection when forecasting each sub-series.

- We zoom in on sub-seasonal patterns of the original series that are simpler to model.
- Mitigating the importance of model selection by combining forecasts across many sub-seasonal series.
- Simple, transparent, and model-free. Our proposed framework can be plugged into any existing model.

References I

Hyndman et al.

Automatic time series for forecasting: the forecast package for R. Monash University, 2007.

Petropoulos et al.

Horses for Courses' in demand forecasting. European Journal of Operational Research, 152–163, 2014.

Petropoulos et al.

Exploring the sources of uncertainty: Why does bagging for time series forecasting work?

European Journal of Operational Research, 2018.

Athanasopoulos et al.

Forecasting with temporal hierarchies.

European Journal of Operational Research, 60-74, 2017.

De Livera et al.

Forecasting time series with complex seasonal patterns using exponential smoothing.

Journal of the American statistical association, 1513–1527, 2011.

Thanks!

xixi.li@manchester.ac.uk
https://xixili-2.wixsite.com/personal