Chapter 13: More estimators for R_0

Anna and Michael

June 18, 2020

Overview

Estimators based on ...

- ... final size data.
- ... age-structured data.
- ... a transmission experiment.
- ... intrinsic growth rate.

Estimators based on age-structured data.

- + age-dependent estimation of force of infection and R_0
- indeterminacy of quantities, such as contact frequency matrix between age classes

Next-generation operator

$$(K\phi)(a) = \int_0^\infty k(a,\alpha)\phi(\alpha)d\alpha \tag{1}$$

$$k(a,\alpha) = \int_0^\infty h(\tau,\alpha)c(a,\alpha+\tau)N(a)\frac{\mathcal{F}_d(\alpha+\tau)}{\mathcal{F}_d(\alpha)}d\tau \qquad (2)$$

- \blacktriangleright $h(\tau, \alpha)$: measure of infectiousness
- $ightharpoonup c(a, \alpha + \tau)$: quantification of age-dependent contact structure
- \triangleright N(a): steady-state population size
- $ightharpoonup rac{\mathcal{F}_d(\alpha+\tau)}{\mathcal{F}_d(\alpha)}$: ratio of survival functions

Short-disease approximation

- combination of assumptions
- ▶ length of infectious period << average individual lifespan

$$egin{aligned} rac{\mathcal{F}_d(lpha+ au)}{\mathcal{F}_d(lpha)} &pprox 1 \ &c(a,lpha+ au) pprox c(a,lpha) \ &H(lpha) = \int h(au,lpha) d au \end{aligned}$$

Age-specific force of infection

$$\Lambda(a) = \int_0^\infty \int_0^\infty h(\tau, \alpha) c(a, \alpha + \tau) N(a) \Lambda(\alpha) \mathcal{F}_i(\alpha) \frac{\mathcal{F}_d(\alpha + \tau)}{\mathcal{F}_d(\alpha)} d\tau d\alpha$$
(3)

- \triangleright $N(\alpha)$: steady-state population
- $ightharpoonup \Lambda(\alpha)$: force of infection at age of infection α
- $ightharpoonup \mathcal{F}_i(\alpha)$: susceptibility survival function

Separable mixing

$$c(a, \alpha) = f(a)g(a)$$

- assumption
- eigenvalue problem for *K* becomes one-dimensional
- explicit expression for R₀ possible

Approximation of R_0

- assumptions:
- ▶ 1) separable mixing
- ▶ 2) only one age class
- ▶ 3) $\mathcal{F}_i(a) = e^{-Qa}$
- ▶ 4) g is constant
- ▶ 5) h is independent of α
- ▶ 6) $\mathcal{F}_d(a) = e^{-\mu a}$
- ightharpoonup 7) $r \approx 0$

$$\hat{R}_0 = 1 + \frac{Q}{\mu + r} = \frac{L}{\bar{a}}$$

- Q: force of infection
- ▶ ā: mean age of infection
- L: life expectancy

Estimator for age-specific R_0 : Part I

$$R_0 = \int_0^\infty \psi(\alpha) f(\alpha) N(\alpha) d\alpha$$

$$\psi(\alpha) = \int_0^\infty h(\tau, \alpha) g(\alpha + \tau) \frac{\mathcal{F}_d(\alpha + \tau)}{\mathcal{F}_d(\alpha)} d\tau$$

Estimator for age-specific R_0 : Part II

- assumptions:
- ▶ 1) all individuals are susceptible at birth
- ▶ 2) natural mortality is independent of the force of infection
- \triangleright G(a): fraction of individuals of age a who will have antibodies to infection

$$G(a) = 1 - \mathcal{F}_i(a) = 1 - e^{-\int_0^a \Lambda(\alpha) d\alpha}$$
 (4)

Estimator for age-specific R_0 : Part III

ightharpoonup another estimator for age-specific R_0 :

$$\hat{R}_0 = \frac{\int_0^\infty I(a)\Lambda(a)\mathcal{F}_d(a)da}{\int_0^\infty I(a)\Lambda(a)\mathcal{F}_i(a)\mathcal{F}_d(a)da}$$
(5)

Derivation of age-specific R_0

$$R_0I(\alpha) = \int_0^\infty I(a)k(a,\alpha)da \qquad (6)$$

$$R_0 \int_0^\infty \Lambda(\alpha) \mathcal{F}_i(\alpha) \mathcal{F}_d(\alpha) I(\alpha) d\alpha = \int_0^\infty \Lambda(\alpha) \mathcal{F}_i(\alpha) \mathcal{F}_d(\alpha)$$
 (7)

$$\int_0^\infty I(a)k(a,\alpha)dad\alpha \qquad (8)$$

(9)

- switch the order of integration on the RHS
- ▶ insert $\frac{N(\alpha)N(a)}{N(\alpha)N(a)}$
- ▶ use $\Lambda(a) = \int \Lambda(\alpha) \mathcal{F}_i(\alpha) \frac{N(\alpha)}{N(a)} k(a, \alpha) d\alpha$
- **population** of constant size: $\frac{N(\alpha)}{N(a)} = \frac{\mathcal{F}_d(\alpha)}{\mathcal{F}_d(a)}$
- ightharpoonup simplify RHS & substitute a for α on LHS

Estimator for age-specific R_0 : Part IV

- impose additional assumption: separable mixing
- ightharpoonup approximation for R_0

$$\hat{R}_0 = \frac{\int_0^\infty \Lambda^2(a)e^{-\mu a}da}{\int_0^\infty \Lambda^2(a)\mathcal{F}_i(a)e^{-\mu a}da}$$
(10)

- estimator of R_0 expressed by age-dependent force of infection $\Lambda(a)$
- \triangleright estimate $\Lambda(a)$ for example via maximum-likelihood estimation

Maximum likelihood estimation

- ▶ assumption: $\Lambda(a) = \Lambda_i$
- $ightharpoonup n_i$: # of seronegative individuals at age interval i
- $ightharpoonup m_i$: # of seropositive individuals at age interval i
- **b** binomial likelihood: $\binom{n_i}{m_i}$ $G_i^{m_i}(1-G_i)^{n_i-m_i}$
- $ightharpoonup G_i = 1 \exp(-\int_{a_i}^{a_{i+1}} \Lambda(a) da) = 1 \exp(-\Lambda_i(a_{i+1} a_i))$
- $L = \prod_{i=0}^{n-1} \binom{n_i}{m_i} G_i^{m_i} (1 G_i)^{n_i m_i}$
- lacktriangle estimate of force of infection: $\hat{\Lambda}_i = \frac{-\ln(\frac{n_i-m_i}{n_i})}{a_{i+1}-a_i}$

Back to Michael.