# 1 Numérique

#### 1.1 Circuits

Combinatoires Les sorties dépendent des entrées directement (porte logique par exemple)

Sequentiels synchrones Les sorties dépendent de l'état actuel et des états précédents

**Séquentiels asynchrones** Les sorties dépendent de l'état actuel, des états précédent et de l'état actuel des entrées et avec des délais non-contrôlés par l'horloge

# 1.2 Comportement transitoire

Rise time  $t_r$ : Temps de montée de 20% à 80%

Fall time  $t_f$ : Temps de descente de 80% à 20%

Edge rate :  $\frac{t_r+t_f}{2}$ 

Temps de contamination  $t_{\rm cd}$  ( $t_{\rm c}$ ) : Temps le plus court avant qu'un changement sur l'entrée (50 %) apparaisse sur la sortie (50 %)

Temps de propagation  $t_{\rm pd}$  ( $t_{\rm p}$ ) : Temps le plus long avant qu'un changement sur l'entrée (50 %) apparaisse sur la sortie (50 %)



Temps de setup  $t_{\mathbf{setup}}$  : Temps de stabilité avant le flanc d'horloge

**Temps de "hold"**  $t_{\mathbf{hold}}$  : Temps de stabilité après le flanc d'horloge (souvent 0)



## 1.3 Contraintes

## 1.3.1 Temps de setup





$$T_{\rm clk} \ge T_{\rm pcq} + t_{\rm pd} + t_{\rm setup} + t_{\rm skew}$$

 $t_{\rm pd} \le T_{\rm clk} - (t_{\rm pcq} + t_{\rm setup} + t_{\rm skew})$ 

# 1.3.2 Temps de hold

Ou



$$t_{\mathbf{c}cq} + t_{\mathbf{cd}} \ge t_{\mathrm{hold}} + t_{\mathrm{skew}}$$

OU

$$t_{\rm cd} \ge t_{\rm hold} + t_{\rm skew} - t_{\rm ccq}$$

### 1.3.3 Circuit combinatoire



# 1.4 Horloge

#### 1.4.1 Skew

Dans le cas des cascades de flip-flop

$$t_{ccq} \ge t_{skew}$$

# 1.5 FPGA

**Timing analysis** : Analyse des contraintes de timing du système complet et recherche des erreurs / définition de la fréquence max.

 $t_{\mathbf{pd}}$  pour chaque logic element et  $t_{\mathrm{wire}}$ entre chaque logic element

## 1.6 CMOS Transmission Gate



C=1: Le système agis comme un fil.

C=0: Le système agis comme un circuit ouvert

# 1.7 Optimisation

On va jouer sur : la micro-architecture, la logique, les circuits numériques, le layout (les deux derniers sont traités dans le cours)

# 1.8 Capacités parasites

Capacité de diffusion : Capacité entre le drain et la sortie et entre source et sortie

Capacité de gate : Capacité entre la gate et la masse (Canal N) et la gate et l'alimentation (canal P)

# 1.9 Comportement transitoire d'un inverseur









1. A commence à monter,  $P_1$  est allumé  $N_1$  est éteint et B reste inactif

2. A atteint  $V_{tn}$ ,  $P_1$  est allumé et  $N_1$  s'allume (B commence à diminuer)

3. A est presque à  $V_{DD},\,P_1$  s'éteint et B devient 0

## 1.10 Modèle RC



k est la "taille" du transistor (le nombre d'unités). Le Pmos a le double de résistance parce que les trous ont une moins bonne mobilité que les électrons. Pour avoir un circuit équilibré on utilise :



# 1.11 Exemples de portes logiques

Tous les exemples sont des portes "unitaires"

#### 1.11.1 NAND2



#### 1.11.2 NAND3



## 1.11.3 Inverseur



#### 1.11.4 NOR2



#### 1.11.5 NOR3



## 1.11.6 Exemple avec un inverseur

$$V_{out}(t) = V_{DD}e^{-t/\tau}$$
  $\tau = RC$  
$$\boxed{t_{pd} = RC \ln(2)}$$

## 1.12 Modèle de Elmore

Un seul nœud d'entrée, tous les condensateurs sont entre des noeuds et le GND, aucune boucle résistive



Délai sur le nœud i:

$$\tau_{Di} = R_1 C_1 + (R_1) C_2 + (R_1 + R_3) C_3 + (R_1 + R_3) C_4 + (R_1 + R_3 + R_i) C_i$$

Attention On ne considère que les résistances qui sont "sur notre chemin" (pour aller à  $C_i$  dans ce cas). Donc les condensateurs qui sont en périphérie sont multipliés uniquement par les résistances qui sont sur notre chemin et qui permettent d'y arriver.

# 1.13 Modèle de délai linéaire

$$\frac{\tau_{\mathbf{pd}}}{\tau} = d = (p+f)$$

**Délai parasite** p: Propre à la porte logique (en principe invariant)

**Délai** "d'effort" f: Dépend des charges

Effort électrique h: Rapport entre la capacité d'entrée et de sortie  $C_{out}/C_{in}$ 



### 1.13.1 Délais parasites

| Gate Type             | Number of Inputs |   |   |   |    |
|-----------------------|------------------|---|---|---|----|
|                       | 1                | 2 | 3 | 4 | n  |
| inverter              | 1                |   |   |   |    |
| NAND                  |                  | 2 | 3 | 4 | n  |
| NOR                   |                  | 2 | 3 | 4 | n  |
| tristate, multiplexer | 2                | 4 | 6 | 8 | 2n |

# 1.13.2 Efforts logiques

| Gate Type             | Number of Inputs |      |          |              |          |
|-----------------------|------------------|------|----------|--------------|----------|
|                       | 1                | 2    | 3        | 4            | п        |
| inverter              | 1                |      |          |              |          |
| NAND                  |                  | 4/3  | 5/3      | 6/3          | (n+2)/3  |
| NOR                   |                  | 5/3  | 7/3      | 9/3          | (2n+1)/3 |
| tristate, multiplexer | 2                | 2    | 2        | 2            | 2        |
| XOR, XNOR             |                  | 4, 4 | 6, 12, 6 | 8, 16, 16, 8 |          |

Des portes avec moins d'entrées sont mieux que des portes avec plus d'entrées

# 1.14 Système à plusieurs étages

effort logique du chemin G

$$G = \prod g_i$$

Effort électrique du chemin  ${\cal H}$ 

$$H = \frac{C_{out(path)}}{C_{in(path)}}$$

Effort du chemin F

$$F = \prod f_i = \prod g_i h_i$$

$$F \neq GH \quad \text{(avec plusieurs chemins)}$$

$$F = GBH$$

Effort "d'embranchement" B

$$b = \frac{C_{\text{sur le chemin}} + C_{\text{hors chemin}}}{C_{\text{sur le chemin}}}$$
$$B = \prod b_i$$





Network with two-way branch

Délai du chemin D

$$D = \sum d_i = D_F + P$$

Délai d'effort du chemin  $D_F$ 

$$D_F = \sum f_i$$

Délai parasite P

$$P = \sum p_i$$

#### 1.14.1 Autres

Effort pour chaque étage (N étages)

$$\hat{f} = g_i h_i = F^{1/N}$$

Délai minimal pour N étages avec effort F et délai parasite P

$$D = NF^{1/N} + P$$



The method of Logical Effort is applied with the following steps:

- **1.** Compute the path effort: F = GBH
- **2.** Estimate the best number of stages:  $\hat{N} = \log_4 F$
- **3.** Sketch a path using:  $\hat{N}$  stages
- **4.** Estimate the minimum delay:  $D = \hat{N}F^{1/\hat{N}} + P$
- **5.** Determine the best stage effort:  $\hat{f} = F^{1/\hat{N}}$
- **6.** Starting at the end, work backward to find sizes:  $C_{\text{in}_i} = \frac{C_{\text{out}_i} \times g_i}{\hat{f}}$

TABLE 4.5 Summary of Logical Effort notation

| Term              | Stage Expression                                              | Path Expression                                        |  |  |  |  |
|-------------------|---------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| number of stages  | 1                                                             | N                                                      |  |  |  |  |
| logical effort    | g (see Table 4.2)                                             | $G = \prod g_i$                                        |  |  |  |  |
| electrical effort | $b = \frac{C_{\text{out}}}{C_{\text{in}}}$                    | $H = \frac{C_{\text{out(path)}}}{C_{\text{in(path)}}}$ |  |  |  |  |
| branching effort  | $b = \frac{C_{\rm onpath} + C_{\rm offpath}}{C_{\rm onpath}}$ | $B = \prod b_i$                                        |  |  |  |  |
| effort            | f = gh                                                        | F = GBH                                                |  |  |  |  |
| effort delay      | f                                                             | $D_F = \sum f_i$                                       |  |  |  |  |
| parasitic delay   | p (see Table 4.3)                                             | $P = \sum p_i$                                         |  |  |  |  |
| delay             | d=f+p                                                         | $D = \sum d_i = D_F + P$                               |  |  |  |  |