

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

C05.570ℜ15ℜ01ℜ14ℜΕΞσ∈ 05.570 15 01 14 EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?
- Valor de cada pregunta:
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Activitat 1 (15+15%)

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Feu servir els àtoms que s'indica.
 - 1) El gat està content quan miola i no esgarrapa

$$M \land \neg E \rightarrow G$$

2) Perquè el gat estigui content és necessari que atrapi un ratolí.

$$G \rightarrow A$$
 -||- $\neg A \rightarrow \neg G$

3) Si el gat està content, esgarrapa i miola quan atrapa un ratolí

$$G \rightarrow (A \rightarrow E \wedge M)$$

Àtoms:

- E: El gat esgarrapa
- M: El gat miola
- G: El gat està content
- A: El gat atrapa un ratolí
- b) Formalitzeu utilitzant la lògica de predicats les frases següents. Feu servir els predicats que s'indica
 - 1) Totes les motos vermelles són noves

$$\forall x [M(x) {\scriptstyle \wedge} V(x) \to N(x)]$$

2) Les motos que són propietat d'un mecànic estan ben cuidades

$$\forall x \{M(x) \land \exists y [T(y) \land P(y,x)] \rightarrow B(x)\}$$

3) En Pere és un mecànic que no és propietari de totes les motos vermelles

$$T(a) \land \neg \forall x [M(x) \land V(x) \rightarrow P(a,x)]$$

Predicats:

- M(x): x és una moto
- V(x): x és vermella
- N(x): x és nou
- P(x,y): x és el propietari d' y (y és propietat de x)
- B(x): x està ben cuidat
- T(x): x és un mecànic

Constants:

- a: en Pere

Activitat 2 (15+15%)

Demostreu, utilitzant la deducció natural, que els següents raonaments són correctes. Només podeu fer servir les regles primitives.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

a) $A \rightarrow (\neg B \rightarrow C)$, $A \land \neg C$ \therefore B

1.	$A \rightarrow (\neg B \rightarrow C),$		Р
2.	A∧¬C		Р
3.		¬B	Н
4.		Α	E∧ 2
5.		¬B→C	E→ 1, 4
6.		С	$E \rightarrow 1, 4$ $E \rightarrow 3, 5$
7.		¬C	E∧ 2
8.	В		I¬ 3, 6, 7

b) $P\lor Q$, $P\to R$, $\neg T\to \neg Q$ \therefore $R\lor T$

1.	P√Q			Р
2.	P→R			Р
3.	$\neg T \rightarrow \neg Q$			Р
4.		Р		Н
5.		R		$E \rightarrow 2,4$
6.		R∨T		l∨ 5
7.		Q		Н
8.			$\neg T$	Н
9.			$\neg Q$	E→ 3,8
10.			Q	It 7
11.		$\neg \neg T$		I¬ 8, 9, 10
12.		Т		E¬ 11
13.		R∨T		l∨ 12
14.	R∨T			Ev 1, 6, 13

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Activitat 3 (15+15%)

 a) El raonament següent és vàlid, Utilitzeu el mètode de resolució lineal amb l'estratègia del conjunt de suport per a demostrar-ho. Si podeu aplicar la regla de subsumpció o la regla del literal pur, apliqueu-les i indiqueu-ho.

```
\begin{split} F \rightarrow & G, \\ G \rightarrow & H, \\ \neg & H \land (P \rightarrow H) \\ \therefore & P \lor F \rightarrow H \land \neg G \\ \\ FNC [F \rightarrow G] = \neg F \lor G \\ FNC [G \rightarrow H] = \neg G \lor H \\ FNC [\neg & H \land (P \rightarrow H)] = \neg & H \land (\neg P \lor H) \\ FNC \neg & [P \lor F \rightarrow H \land \neg G] = (P \lor F) \land (\neg & H \lor G) \end{split}
```

El conjunt de clàusules resultant és:

 $S = \{ \neg F \lor G, \ \neg G \lor H, \ \neg H, \ \neg P \lor H, \ \textbf{P} \lor \textbf{F}, \ \neg \textbf{H} \lor \textbf{G} \} \ \ \text{El conjunt de suport està format per les dues darreres clàusules (negreta)}$

La clàusula $\neg H$ subsumeix la clàusula $\neg H \lor G$ i amb això el conjunt de clàusules potencialment útils es redueix a :

$$S' = {\neg F \lor G, \neg G \lor H, \neg H, \neg P \lor H, \mathbf{P} \lor \mathbf{F}}$$

No és possible aplicar la regla del literal pur

Troncals	Laterals
P∨F	⊣F∨G
P∨G P∨H	¬G∨H
P∨H	⊣H
P	¬P∨H
H	⊣H

b) El següent raonament no és vàlid. Trobeu-ne el conjunt de clàusules corresponent i raoneu la impossibilitat d'obtenir la clàusula buida (□).

```
\begin{array}{c} \forall x[\mathsf{M}(\mathsf{x}){\to}\exists y\mathsf{N}(\mathsf{x},y)]\\ \neg \mathsf{N}(\mathsf{a},\mathsf{b})\\ \therefore \ \forall x{\to}\mathsf{M}(\mathsf{x}) \\ \\ \mathsf{La}\ \mathsf{FNS}\ \mathsf{de}\ \forall x[\mathsf{M}(\mathsf{x}){\to}\exists y\mathsf{N}(\mathsf{x},y)]\ \mathsf{\acute{e}s}\ \ \forall x[\neg \mathsf{M}(\mathsf{x}){\vee}\mathsf{N}(\mathsf{x},\mathsf{f}(\mathsf{x}))]\\ \mathsf{La}\ \mathsf{FNS}\ \mathsf{de}\ \neg \mathsf{N}(\mathsf{a},\mathsf{b})\ \mathsf{\acute{e}s}\ \neg \mathsf{N}(\mathsf{a},\mathsf{b}) \end{array}
```


Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

La FNS de $\neg \forall x \neg M(x)$ és M(c)

El conjunt de clàusules resultant és $S = \{ \neg M(x) \lor N(x,f(x)), \neg N(a,b), \neg M(c) \}$

Observem que el literal N(x,f(x)) de la primera clàusula mai no podrà ser eliminat perquè no pot resoldre's contra $\neg N(a,b)$ ja que la discrepància de la segona posició f(x)/a no es pot resoldre . Això redueix el conjunt de clàusules útils a S' = { $\neg N(a,b)$, $\neg M(c)$ } i és obvi que d'aquest conjunt no se'n pot obtenir \Box

Activitat 4 (10%)

Considereu el següent raonament (incorrecte)

 $\forall xM(x) \rightarrow \exists x\exists yN(x,y)$ $\exists x\exists y\neg N(x,y)$ $\therefore \exists x\neg M(x)$

Doneu una interpretació en el domini {1,2} que en sigui un contraexemple.

Un contraexemple ha de fer certes les premisses i falsa la conclusió.

En el domini {1,2} la conclusió és equivalent a

 $\neg M(1) \lor \neg M(2)$

Perquè aquest enunciat sigui fals ha de passar que M(1)=V i que M(2)=V

Amb M(1)=V i M(2) V es té que $\forall xM(x) = V$ ja que $\forall xM(x)$ és equivalent a M(1) \land M(2). Així, perquè $\forall xM(x) \rightarrow \exists x\exists yN(x,y)$ sigui cert ha de ser-ho $\exists x\exists yN(x,y)$

 $\exists x \exists y N(x,y)$ és equivalent a $N(1,1) \lor N(1,2) \lor N(2,1) \lor N(2,2)$. Perquè aquest enunciat sigui cert n'hi ha prou amb que ho sigui un dels dos disjuntands. Posem que sigui N(1,1) = V

Per a fer certa la segona premissa s'ha de fer cert l'enunciat $\neg N(1,1) \lor \neg N(1,2) \lor \neg N(2,1) \lor \neg N(2,2)$. Perquè aquest enunciat sigui cert n'hi ha prou amb que ho sigui algun dels seus disjuntands. Posem que sigui N(1,2) = F

Així, una interpretació que és un contraexemple és

 $<\{1,2\}, \{M(1)=V, M(2)=V, N(1,1)=V, N(1,2)=F, N(2,1)=V, N(2,2)=V\}, \varnothing>$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	12:00