Module 1 Quiz

1.	Select the option that correctly completes the sentence:	1 point
	Training a model using labeled data and using this model to predict the labels for new data is known as	
	Unsupervised Learning	
	Supervised Learning	
	Opensity Estimation	
	Clustering	
2.	Select the option that correctly completes the sentence:	1 point
	Modeling the features of an unlabeled dataset to find hidden structure is known as	
	Classification	
	Regression	
	Unsupervised Learning	
	Supervised Learning	
3.	Select the option that correctly completes the sentence:	1 point
	Training a model using categorically labelled data to predict labels for new data is known as	
	Regression	
	Feature Extraction	
	Clustering	
	Classification	
4	. Select the option that correctly completes the sentence:	1 point
	Training a model using labelled data where the labels are continuous quantities to predict labels for new data is known as	
	Clustering	
	Classification	
	Feature Extraction	
	Regression	

(\bigcirc	• k=1: Class 0	
		• k=3: Class 1	
(\bigcirc	• k=1: Class 1	
		• k=3: Class 0	
(\bigcirc	• k=1: Class 0	
		• k=3: Class 2	
(•	• k=1: Class 1	
		• k=3: Class 2	
(\bigcirc	• k=1: Class 2	
		• k=3: Class 1	
6.	Whi	ich of the following is true for the nearest neighbor classifier (Select all that apply):	1 point
0.		Partitions observations into k clusters where each observation belongs to the cluster with the nearest mean	Троше
	✓	Memorizes the entire training set	
		A higher value of k leads to a more complex decision boundary	
		Given a data instance to classify, computes the probability of each possible class using a statistical model of the	
		input features	
7.	Wh	y is it important to examine your dataset as a first step in applying machine learning? (Select all that apply):	1 point
	~	See what type of cleaning or preprocessing still needs to be done	
	✓	You might notice missing data	
	~	Gain insight on what machine learning model might be appropriate, if any	
	~	Get a sense for how difficult the problem might be	
		It is not important	

8.	Th	e key purpose of splitting the dataset into training and test sets is:	1 point
	0	To reduce the amount of labelled data needed for evaluating classifier accuracy	
	0	To reduce the number of features we need to consider as input to the learning algorithm	
	•	To estimate how well the learned model will generalize to new data	
		To speed up the training process	
		,	
9). T	The purpose of setting the random_state parameter in train_test_split is: (Select all that apply)	1 point
	[To avoid predictable splitting of the data	
	[To split the data into similar subsets so that bias is not introduced into the final results	
	[To avoid bias in data splitting	
		To make experiments easily reproducible by always using the same partitioning of the data	
		en a dataset with 10,000 observations and 50 features plus one label, what would be the dimensions of ain, y_train, X_test, and y_test? Assume a train/test split of 75%/25%.	
	_	• X_train: (7500, 50)	
		• y_train: (7500,) • X_test: (2500, 50)	
		• y_test: (2500,)	
	0	• X_train: (10000, 50)	
		• y_train: (10000,)	
		• X_test: (10000, 50) • y_test: (10000,)	
		• X_train: (2500, 50)	
		• y_train: (2500,)	
		• X_test: (7500, 50)	
		• y_test: (7500,)	
		• X_train: (2500,) • y_train: (2500, 50)	
		• X_test: (7500,)	
		• y_test: (7500, 50)	
	0	• X_train: (10000, 28)	
		• y_train: (10000,)	
		• X_test: (10000, 12)	
		• y_test: (10000,)	