Week 4 — Solutions October 12, 2020

Exercise 1.

- 1. Let f be a function mapping set X to set Y and let g be a function from set Y to set Z. For each statement below, prove it if it is true and give a counterexample otherwise.
 - (a) If f or g is injective, then $g \circ f$ is injective.

FALSE. Let $X = Y = \{0,1\}$ and $Z = \{0\}$. Let f(0) = 0 and f(1) = 1. The function f is injective. Let g(0) = g(1) = 0. Then $g \circ f(0) = g \circ f(1)$, therefore $g \circ f$ is not injective.

(b) If f or g is surjective, then $g \circ f$ is surjective.

FALSE. Let $X = Y = \{0\}$ and $Z = \{0,1\}$. Let f(0) = 0 and g(0) = 0. The function f is surjective, but $g \circ f$ is not. No element of X maps to $1 \in Z$.

(c) If f and g are injective, then $g \circ f$ is injective.

TRUE. Let $g \circ f(x) = g \circ f(y)$. Because g is injective, f(x) = f(y). Then x = y by injectivity of f.

(d) If f and g are surjective, then $g \circ f$ is surjective.

TRUE. Let $z \in Z$. Because g is surjective, there exists $y \in Y$ such that g(y) = z. Now by surjectivity of f there is $x \in X$ such that f(x) = y. Clearly $g \circ f(x) = g(y) = z$. We have shown that $g \circ f$ is surjective.

(e) If $g \circ f$ is injective, then f is injective.

TRUE. Let f(x) = f(y). Then g(f(x)) = g(f(y)) and injectivity of $g \circ f$ implies x = y. Therefore f is injective.

(f) If $g \circ f$ is injective, then g is injective.

FALSE. Let $X = Z = \{0\}$ and $Y = \{0,1\}$. Let f(0) = 0 and let g(0) = g(1) = 0. Then g is not injective, but $g \circ f$ is.

(g) If $g \circ f$ is surjective, then g is surjective.

TRUE. Let $z \in Z$. Because $g \circ f$ is surjective, there exists $x \in X$ such that $g \circ f(x) = z$. But then g(f(x)) = z, therefore g is surjective.

(h) If $g \circ f$ is surjective, then f is surjective.

FALSE. Let $X = Z = \{0\}$ and $Y = \{0,1\}$. Let f(0) = 0 and g(0) = g(1) = 0. The function $g \circ f$ is surjective, because $g \circ f(0) = 0$ and there are no other elements in Z. There is no $x \in X$ such that f(x) = 1, therefore f is not surjective.

(i) If $g \circ f$ is bijective, then f is bijective.

FALSE. Let $X = Z = \{0\}$ and $Y = \{0,1\}$. Let f(0) = 0 and g(0) = g(1) = 0. The function $g \circ f$ is a bijection, but f is not surjective. There is no $x \in X$ such that f(x) = 1. Therefore f is not bijective.

(j) If $g \circ f$ is bijective, then g is bijective.

FALSE. Let $X = Z = \{0\}$ and $Y = \{0, 1\}$. Let f(0) = 0 and g(0) = g(1) = 0. The function $g \circ f$ is a bijection, but g is not injective as g(0) = g(1) = 0. Therefore g is not bijective.

2. For each false implication above, determine if it is always false irrespective of the choices of f and g (in which case it would be called a contradiction) or if it may be true or false depending on the particular choices of f and g (in which case it would be called a contingency).

All the false statements are contingencies: they are all of the form $A \to B$, where A is not necessarily true.

Exercise 2. (From last year's midterm exam)

(français) Soit $f: \{x \mid x \in \mathbf{R}, -2 \le x \le 5\} \to \mathbf{R}$,

$$x \mapsto \begin{cases} 3 + \frac{3}{2}x & pour \quad -2 \le x \le 0 \\ \lfloor x \rfloor & pour \quad 0 \le x < 2 \\ x^2 & pour \quad 2 \le x \le 5. \end{cases}$$

(English) Let $f: \{x \mid x \in \mathbf{R}, -2 \le x \le 5\} \to \mathbf{R}$,

$$x \mapsto \begin{cases} 3 + \frac{3}{2}x & for \quad -2 \le x \le 0 \\ \lfloor x \rfloor & for \quad 0 \le x < 2 \\ x^2 & for \quad 2 \le x \le 5. \end{cases}$$

- $\bigcirc \ \left\{ \begin{array}{l} f \ \textit{est injective mais } f \ \textit{n'est pas surjective.} \\ f \ \textit{is injective but not surjective.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} f \ est \ surjective \ mais \ f \ n'est \ pas \ injective. \\ f \ is \ surjective \ but \ not \ injective. \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} f \ est \ bijective. \\ f \ is \ bijective. \end{array} \right.$
- $\checkmark \begin{cases} f \text{ n'est pas une fonction.} \\ f \text{ is not a function.} \end{cases}$

For $-2 \le x \le 0$ we have that x is mapped to $3 + \frac{3}{2}x$, which equals 3 for x = 0. But for $0 \le x < 2$ we have that x is mapped to $\lfloor x \rfloor$, which equals 0 for x = 0. Thus x = 0 is mapped by f to both 3 and to 0, which implies that the definition of f violates the definition of a function, namely that each value of the domain has a single function value.

It follows that the last circle must be ticked.

Exercise 3. Let $f : \{x \mid x \in \mathbf{R}, 0 < x < 1\} \to \mathbf{R},$

$$x \mapsto \begin{cases} 2 - \frac{1}{x} & \text{if } 0 < x < 1/2 \\ \\ \frac{1}{1 - x} - 2 & \text{if } \frac{1}{2} \le x < 1. \end{cases}$$

- \bigcirc f is not injective and not surjective.
- Of is injective but not surjective.
- f is surjective but not injective.
- \checkmark f is bijective.

Proving injectivity: $\forall x_1, x_2 \ f(x_1) = f(x_2) \to x_1 = x_2$. Assume $f(x_1) = f(x_2)$ and consider every possible combination of x_1, x_2 . • $0 < x_1, x_2 < 1/2$.

 $2 - \frac{1}{x_1} = 2 - \frac{1}{x_2}$ obviously implies $x_1 = x_2$.

• $0 < x_1 < 1/2$ and $1/2 \le x_2 < 1$ (or $1/2 \le x_1 < 1$ and $0 < x_2 < 1/2$).

In this case,

$$2 - \frac{1}{x_1} = \frac{1}{1 - x_2} - 2$$
$$\frac{1}{1 - x_2} + \frac{1}{x_1} = 4.$$

However, since $0 < x_1 < 1/2$ and $1/2 \le x_2 < 1$, we have

$$\begin{cases} \frac{1}{x_1} > 2 \\ \frac{1}{1 - x_2} \ge 2. \end{cases}$$

Hence, $\frac{1}{x_1} + \frac{1}{1-x_2} > 4$, so $f(x_1) \neq f(x_2)$ (which still makes the statement true).

• $1/2 \le x_1, x_2 < 1$.

$$\frac{1}{1-x_1} - 2 = \frac{1}{1-x_2} - 2$$
 obviously implies $x_1 = x_2$.

Therefore, f(x) is injective.

Proving surjectivity: $\forall y \, \exists x \, f(x) = y$.

Let $y \in \mathbf{R}$ and consider the two following cases.

• y < 0.

In this case, for 0 < x < 1/2, we have

$$2 - \frac{1}{x} = y$$

$$x(2 - y) = 1$$

$$x = \frac{1}{2 - y}$$

which respects the constraints on x and, hence, validates the statement.

• $y \ge 0$.

In this case, for $1/2 \le x < 1$, we have

$$\frac{1}{1-x} - 2 = y$$

$$1 - 2(1-x) = y(1-x)$$

$$x(y+2) = y+1$$

$$x = \frac{y+1}{y+2}$$

which respects the constraints on x and, hence, validates the statement.

Therefore, f(x) is surjective.

Exercise 4.

(français) Pour un $\delta \in \mathbf{R}$ arbitraire, soient f_{δ} et g_{δ} les deux fonctions de \mathbf{R} vers \mathbf{R} suivantes

$$f_{\delta}(x) = \begin{cases} x + \delta & \text{si } x \in \mathbf{Z} \\ -x + \delta & \text{si } x \notin \mathbf{Z}, \end{cases}$$
 $g_{\delta}(x) = \begin{cases} x + \delta & \text{si } x \in \mathbf{Z} \\ -x - \delta & \text{si } x \notin \mathbf{Z}. \end{cases}$

Considérez les deux propositions

 $\forall \delta \in \mathbf{R} \ f_{\delta} \text{ est une bijection} \quad \text{et} \quad \forall \delta \in \mathbf{R} \ g_{\delta} \text{ est une bijection.}$

(English) For any $\delta \in \mathbf{R}$ let f_{δ} and g_{δ} be the following two functions from \mathbf{R} to \mathbf{R}

$$f_{\delta}(x) = \begin{cases} x + \delta & \text{if } x \in \mathbf{Z} \\ -x + \delta & \text{if } x \notin \mathbf{Z}, \end{cases} \qquad g_{\delta}(x) = \begin{cases} x + \delta & \text{if } x \in \mathbf{Z} \\ -x - \delta & \text{if } x \notin \mathbf{Z}. \end{cases}$$

Consider the two statements

 $\forall \delta \in \mathbf{R} \ f_{\delta} \text{ is a bijection}$ and $\forall \delta \in \mathbf{R} \ g_{\delta} \text{ is a bijection.}$

- $\bigcirc \ \left\{ \begin{array}{l} \textit{Seule la seconde proposition est vraie.} \\ \textit{Only the second statement is true.} \end{array} \right.$
- $\checkmark \left\{ \begin{array}{l} \textit{Seule la première proposition est vraie.} \\ \textit{Only the first statement is true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont vraies toutes les deux.} \\ \textit{They are both true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont fausses toutes les deux.} \\ \textit{They are both false.} \end{array} \right.$

Proving injectivity: $\forall x_1, x_2 \ f(x_1) = f(x_2) \rightarrow x_1 = x_2$.

- Given any distinct $x_1, x_2 \in \mathbf{R}$, if $x_1 \in \mathbf{Z}$ and $x_2 \in \mathbf{Z}$, then $f_{\delta}(x_1) = x_1 + \delta \neq x_2 + \delta = f_{\delta}(x_2)$, otherwise if $x_1 \in \mathbf{Z}$ and $x_2 \notin \mathbf{Z}$, then also $-x_2 \notin \mathbf{Z}$ so that $x_1 \neq -x_2$ and $f_{\delta}(x_1) = x_1 + \delta \neq -x_2 + \delta = f_{\delta}(x_2)$, and otherwise if $x_1 \notin \mathbf{Z}$ and $x_2 \notin \mathbf{Z}$, then $f_{\delta}(x_1) = -x_1 + \delta \neq -x_2 + \delta = f_{\delta}(x_2)$. Because the remaining case $x_1 \notin \mathbf{Z}$ and $x_2 \in \mathbf{Z}$ is equivalent to the case $x_1 \in \mathbf{Z}$ and $x_2 \notin \mathbf{Z}$ that was treated already, we find that for any $x_1 \neq x_2$ we have that $f_{\delta}(x_1) \neq f_{\delta}(x_2)$. This argument works for any δ .
- Since $g_{(1/3)}(0) = \frac{1}{3} = \frac{2}{3} \frac{1}{3} = g_{(1/3)}(-\frac{2}{3})$ we find that there exists a $\delta \in \mathbf{R}$ such that g_{δ} is not injective and therefore not bijective.

Proving surjectivity: $\forall y \, \exists x \, f(x) = y$.

• Given an arbitrary $y \in \mathbf{R}$, if $y - \delta \in \mathbf{Z}$ then $f_{\delta}(y - \delta) = (y - \delta) + \delta = y$, and otherwise if $y - \delta \notin \mathbf{Z}$ then $-(y - \delta) \notin \mathbf{Z}$ and $f_{\delta}(-(y - \delta)) = -(-(y - \delta)) + \delta = (y - \delta) + \delta = y$. This argument works for any δ .

Based on the above, it follows that for any δ the function f_{δ} is bijective while the function g_{δ} is not bijective. The negation of the second statement (namely " $\exists \delta \in \mathbf{R} \ g_{\delta}$ is not a bijection") is correct, implying that the second statement must be ticked. (Note that there exists at least one value for δ such that g_{δ} is bijective, namely $\delta = 0$ because $f_0 = g_0$.)

Exercise 5.

(français) Soit $\mathcal{P}(X)$ l'ensemble des parties d'un ensemble X (c'est-à-dire le "power set" de X) et soit \emptyset l'ensemble vide. Soient les propositions ci-dessous

pour tous ensembles A et B, si $\mathcal{P}(A) = \mathcal{P}(B)$, alors A = B;

et

il existe un ensemble C tel que $\mathcal{P}(C) = \emptyset$.

(English) Let $\mathcal{P}(X)$ denote the power set of a set X and let \emptyset denote the empty set. Consider the two statements

for any sets A and B, if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B;

and

there exists a set C such that $\mathcal{P}(C) = \emptyset$.

- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont vraies toutes les deux.} \\ \textit{They are both true.} \end{array} \right.$
- $\checkmark \left\{ \begin{array}{l} \textit{Seulement la première est vraie.} \\ \textit{Only the first is true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Seulement la seconde est vraie.} \\ \textit{Only the second is true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont fausses toutes les deux.} \\ \textit{They are both false.} \end{array} \right.$

For any set C it is the case that $C = \bigcup_{c \in \mathcal{P}(C)} c$. It immediately follows that if $\mathcal{P}(A) = \mathcal{P}(B)$ for two sets A and B, then A = B. Thus the first statement is true.

For any set C it is the case that $\emptyset \subseteq C$ (because $\forall x \ x \in \emptyset \to x \in C$), so that $\emptyset \in \mathcal{P}(C)$ and thus $\mathcal{P}(C) \neq \emptyset$. Therefore there is no set C such that $\mathcal{P}(C) = \emptyset$ and the second statement is false.

It follows that the second circle must be ticked.

Exercise 6.

(français) Soient $X = \{1, 2, 3, 4, 5\}$ et $\mathcal{P}(X)$ l'ensemble des parties de X (c'est-à-dire le "power set" de X). Soient les propositions ci-dessous

(English) Let $X = \{1, 2, 3, 4, 5\}$ and let $\mathcal{P}(X)$ denote the power set of X. Given the statements

$$\emptyset \in \mathcal{P}(X)$$
 $\{\emptyset\} \in \mathcal{P}(X)$

- $\checkmark \left\{ \begin{array}{l} \textit{Seulement la première est vraie.} \\ \textit{Only the first is true.} \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} \textit{Elles sont vraies toutes les deux.} \\ \textit{They are both true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Seulement la seconde est vraie.} \\ \textit{Only the second is true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont fausses toutes les deux.} \\ \textit{They are both false.} \end{array} \right.$

The power set $\mathcal{P}(X)$ is defined as the set that has all subsets of X as its elements. Furthermore, the statement

$$\forall x \in \emptyset \ x \in X$$

consists of a universal quantifier that ranges over an empty set and is thus true. According to the definition of "subset" it follows that $\emptyset \subseteq X$ so that it follows, using the definition of $\mathcal{P}(X)$, that $\emptyset \in \mathcal{P}(X)$.

If $\{\emptyset\} \in \mathcal{P}(X)$, then (using the definition of $\mathcal{P}(X)$), the set $\{\emptyset\}$ must be a subset of X, implying (according to the definition of a subset) that all elements of the set $\{\emptyset\}$ must also be elements of X. The

set $\{\emptyset\}$ has just a single element, namely \emptyset , and \emptyset is not one of the elements of X, because X just consists of the elements 1, 2, 3, 4, and 5. Thus $\{\emptyset\} \notin \mathcal{P}(X)$ and only the first answer is correct.

Exercise 7. Find a bijection between $(0,1) \subset \mathbf{R}$ and $(0,1] \subset \mathbf{R}$ or show that it cannot exist.

$$f: x \mapsto \begin{cases} \frac{1}{2^n} & \text{if } x = \frac{1}{2^{n+1}} \text{ for } n \in \mathbf{N}, \\ x & \text{otherwise.} \end{cases}$$