5.1 Convergence in Probability

5.1.3. Let W_n denote a random variable with mean μ and variance b/n^p , where p > 0, μ , and b are constants (not functions of n). Prove that W_n converges in probability to μ .

Hint: Use Chebyshev's inequality.

5.1.5. Let X_1, \ldots, X_n be iid random variables with common pdf

$$f(x) = \begin{cases} e^{-(x-\theta)} & x > \theta - \infty < \theta < \infty \\ 0 & \text{elsewhere.} \end{cases}$$
 (5.1.3)

This pdf is called the **shifted exponential**. Let $Y_n = \min\{X_1, \dots, X_n\}$. Prove that $Y_n \to \theta$ in probability, by first obtaining the cdf of Y_n .

- **5.1.7.** For Exercise 5.1.5, obtain the mean of Y_n . Is Y_n an unbiased estimator of θ ? Obtain an unbiased estimator of θ based on Y_n .
 - 5.1.3 For all $\epsilon > 0$,

$$P(|W_n - \mu| \ge \epsilon) \le \frac{b}{n^p \epsilon^2} \to 0,$$

as $n \to \infty$.

5.1.5 Note that $Y_n \ge t \Leftrightarrow X_i \ge t$, for all i = 1, 2, ..., n. Hence, for $t > \theta$, the fact that $X_1, X_2, ..., X_n$ are iid implies

$$P(|Y_n - \theta| \le \epsilon) = P(Y \le \epsilon + \theta) = 1 - e^{-n(\epsilon + \theta - \theta)}$$

 $1 - e^{-n\epsilon} \to 1$.

as $n \to \infty$.

5.1.7 The density of Y_n is $f(y) = n \exp\{-n(y-\theta)\}$ for $y > \theta$. Hence,

$$\begin{split} E[Y_n] &= n \int_{\theta}^{\infty} y e^{-n(y-\theta)} \, dy \\ &= \int_{0}^{\infty} \left(\frac{z}{n} + \theta\right) e^{-z} \, dz \\ &= \frac{1}{n} \int_{0}^{\infty} z^{2-1} e^{-z} \, dz + \theta \int_{0}^{\infty} e^{-z} \, dz = \frac{1}{n} + \theta, \end{split}$$

where the integral on the second line results from the substitution $z = n(y - \theta)$. Based on this result $Y_n - \frac{1}{n}$ is an unbiased estimate of θ .

5.2 Convergence in Distribution

- **5.2.2.** Let Y_1 denote the minimum of a random sample of size n from a distribution that has pdf $f(x) = e^{-(x-\theta)}$, $\theta < x < \infty$, zero elsewhere. Let $Z_n = n(Y_1 \theta)$. Investigate the limiting distribution of Z_n .
- **5.2.4.** Let Y_2 denote the second smallest item of a random sample of size n from a distribution of the continuous type that has cdf F(x) and pdf f(x) = F'(x). Find the limiting distribution of $W_n = nF(Y_2)$.
- **5.2.5.** Let the pmf of Y_n be $p_n(y) = 1$, y = n, zero elsewhere. Show that Y_n does not have a limiting distribution. (In this case, the probability has "escaped" to infinity.)

5.2.2

$$\begin{array}{rcl} g_1(y_1) & = & ne^{-n(y_1-\theta)}, & 0 < y_1 < \infty \\ & z & = & n(y_1-\theta) \text{ and } \frac{dy_1}{dz} = \frac{1}{n}, \\ & h_n(z) & = & e^{-z} \text{ and } H_n(z) = 1 - e^{-z}, 0 < z < \infty \\ & \lim_{n \to \infty} H_n(z) & = & \left\{ \begin{array}{ll} 1 - e^{-z} & 0 < z < \infty \\ 0 & \text{elsewhere.} \end{array} \right. \end{array}$$

5.2.4

$$g_2(y_2) = n(n-1)F(y_2)[1 - F(y_2)]^{n-2}f(y_2), -\infty < y_2 < \infty$$

$$w = nF(y_2) \Rightarrow \frac{dy_2}{dw} = \frac{1}{nf(y_2)}.$$

$$h(w) = \frac{n-1}{n}w(1 - w/n)^{n-2}, 0 < w < n$$

$$\lim_{n \to \infty} H_n(w) = \lim_{n \to \infty} \int_0^w \frac{n-1}{n} z(1 - z/n)^{n-2} dz$$

$$= \int_0^w ze^{-z} dz,$$

which is a $\Gamma(2,1)$ cdf.

5.2.5

$$F_n(y) = \begin{cases} 0 & y < n \\ 1 & n \le y. \end{cases}$$

$$\lim_{n \to \infty} F_n(y) = 0, -\infty < y < \infty.$$

There is no cdf which equals this limit at every point of continuity.

- **5.2.11.** Let the random variable Z_n have a Poisson distribution with parameter $\mu = n$. Show that the limiting distribution of the random variable $Y_n = (Z_n n)/\sqrt{n}$ is normal with mean zero and variance 1.
- **5.2.18.** Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample (see Section 5.2) from a distribution with pdf $f(x) = e^{-x}$, $0 < x < \infty$, zero elsewhere. Determine the limiting distribution of $Z_n = (Y_n \log n)$.

$$\lim_{n \to \infty} E[e^{t(Z_n - n)/\sqrt{n}}] = \lim_{n \to \infty} \{e^{-tsqrtn} \exp[n(e^{t/\sqrt{n}} - 1)]\}$$

$$= \lim_{n \to \infty} \left\{ \exp\left[-t/\sqrt{n} + n\left(t/\sqrt{n} + \frac{t^2}{2n} + \frac{t^3}{6n^{3/2}} - \cdots\right)\right] \right\}.$$

$$= \lim_{n \to \infty} \left[\exp\left(\frac{t^2}{2} + \frac{t^3}{6n^{1/2}} \cdots\right) \right] = \exp(t^2/2),$$

which is the mgf of N(0,1).

5.2.18 Note that $Y_n \leq t \Leftrightarrow X_i \leq t$, for all i = 1, 2, ..., n. Hence, for 0 < t, the fact that $X_1, X_2, ..., X_n$ are iid implies

$$P(Y_n \le t + \log n) = (P(X_1 \le t + \log n))^n$$

$$= \left[1 - e^{-(t + \log n)}\right]^n$$

$$= \left[1 - e^{-t} \frac{1}{n}\right]^n \to \exp\{-e^{-t}\},$$

as $n \to \infty$.

5.3 Central Limit Theorem

- **5.3.2.** Let \overline{X} denote the mean of a random sample of size 128 from a gamma distribution with $\alpha = 2$ and $\beta = 4$. Approximate $P(7 < \overline{X} < 9)$.
- **5.3.3.** Let Y be $b(72, \frac{1}{3})$. Approximate $P(22 \le Y \le 28)$.

5.3.2 $\operatorname{var}(\overline{X}) = (2)(4^2)/128 = 1/4 \text{ and } E(\overline{X}) = (2)(4) = 8;$ $P\left(\frac{7-8}{1/2} < \frac{\overline{X}-8}{1/2} < \frac{9-8}{1/2}\right) \approx \Phi(2) - \Phi(-2).$

5.3.3 $P(21.5 < Y < 28.5) \approx \Phi\left(\frac{28.5 - 24}{4}\right) - \Phi\left(\frac{21.5 - 24}{4}\right),$

because E(Y) = 24 and var(Y) = 16.

5.3.5. Let Y denote the sum of the observations of a random sample of size 12 from a distribution having pmf $p(x) = \frac{1}{6}$, x = 1, 2, 3, 4, 5, 6, zero elsewhere. Compute an approximate value of $P(36 \le Y \le 48)$.

Hint: Since the event of interest is $Y = 36, 37, \ldots, 48$, rewrite the probability as P(35.5 < Y < 48.5).

5.3.5

$$E(X) = 3.5 \text{ and } var(X) = 35/12 \implies E(Y) = 42 \text{ and } var(Y) = 35.$$

Hence,

$$P(35.5 < Y < 48.5) \approx \Phi\left(\frac{48.5 - 42}{\sqrt{35}}\right) - \Phi\left(\frac{35.5 - 42}{\sqrt{35}}\right).$$

5.3.12. Let X_1, X_2, \ldots, X_n be a random sample from a Poisson distribution with mean μ . Thus, $Y = \sum_{i=1}^n X_i$ has a Poisson distribution with mean $n\mu$. Moreover, $\overline{X} = Y/n$ is approximately $N(\mu, \mu/n)$ for large n. Show that $u(Y/n) = \sqrt{Y/n}$ is a function of Y/n whose variance is essentially free of μ .

$$\begin{array}{rcl} u(\overline{X}) & \approx & v(\overline{X}) = u(\mu) + u'(\mu)(\overline{X}), \\ \mathrm{var}[v(\overline{X})] & = & [u'(\mu)]^2(\mu/n) = c, \\ u'(\mu) & = & c_1/\sqrt{\mu}, \text{ a solution is } u(\mu) = c_2\sqrt{\mu}. \end{array}$$

Taking $c_2 = 1$, we have $u(\overline{X}) = \sqrt{\overline{X}}$.