2022 한국수자원학회 학술발표대회

QGIS-GRM 모델 개발 및 적용사례

환경부 R&D: 골든타임 확보를 위한 유역 시공간 상세 홍수예보기술개발(4세부: 행정구역 홍수정보 생산 기술 개발)

DATE_ 2022. 05. 19.

발 표 자_최윤석, 김경탁, 최천규소 속_ 한국건설기술연구원

1. 개요 - 일반적인 홍수해석 모델의 범위

• 모의대상

- 강우의 토양 침투, 증발산, 융설
- 지표면 흐름, 지표하 흐름, 하천 흐름
 (유량, 수심, 유속 등)

• 계산방법

- 물리적, 경험적, 통계적 방정식 적용
- 1차원, 2차원 해석
- 모델링 S/W 개발 및 활용
- 활용분야
 - 홍수예보
 - 홍수 후 상황, 수문학적 거동 분석
 - 홍수대비·대응 계획 수립

1. 개요 - GRM 모델의 개략적 분류

○ 모의 대상

- 유역 유출 해석 모델(유역에서 하천으로 유입되는 유량 계산)
- 침투, 침누, 지표하 유출, 기저유출, 지표면 흐름, 하천 흐름, 저수지

○ 계산 방법

- 주요 방정식 : Kinematic wave eq., Green-Ampt eq.
- 격자 기반의 분포형 모형(→ 고해상도 홍수모의)
- 1차원 흐름 해석
- CPU 기반 병렬계산

O 주요 history

- 2008 : 최초 버전 릴리즈 (HyGIS-GRM)

- 2014 : Free S/W로 전환

- 2017 : GitHub 오픈소스로 전환 (https://github.com/floodmodel/GRM)
WMO 홍수모의 분야 대표 모형 중 하나로 채택
(https://www.floodmanagement.info/e2e-ews-ff-community-of-practice-area
/resources/inventory/)

- '17 ~ 현재 : 국가홍수예보시스템 구축 연구사업 진행 중 (골든타임 확보를 위한 유역 시공간 상세 홍수예보기술개빌

수문성분간 흐름 모식도

격자 단위 흐름 모식도

모델링 S/W(QGIS-GRM)

WMO inventory

지배방정식

- Overland flow : $\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = r f + \frac{q_r}{\Delta y}$
- Channel flow : $\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = r \Delta y + q_L + q_{ss} + q_b$
- Manning's eq. $u = \frac{R^{2/3} S_0^{1/2}}{n}$

- Subsurface flow : $q_{ss} = KD_s \sin(S_a)$
- Percolation : $p = K_{Bv} \times \Delta t$

$$q_{Bh} = K_{Bh}D_B \frac{dz_B}{dx} = K_{Bh}D_B \sin(S_a)$$

- Baseflow

$$q_b = K_{Bh} \frac{h_B - h_{ch}}{h_{ch}} b$$
 (for $h_B > h_{ch}$)
 $q_b = K_{Bh} (h_B - h_{ch})$ (for $h_B < h_{ch}$)

하천 횡단면 흐름 모식도

Overland flow

Channel flow

Channel and overland flows

검사체적 형식

f : 침투율, q_r : 복귀류, A : x 방향에 직각인 흐름 단면적 Q : 유량, h : 수심, q_L : 측방유입, q_{ss} : 지표하 유출, q_b : 기저유출, t : 시간 K_{Bv} : B 층에서의 연직 투수계수, p : 침누량

q : 단위 폭당 유량(q = uh), u : x 방향 유속, r : 강우강도,

 z_B : B 층의 수위, K_{Bh} : B 층의 횡방향 투수계수, D_B : B 층의 수심, q_{Bh} : B 층의 단위폭당 횡방향 유량, h_B : 비피압대수층의 수심, h_{ch} : 하도 수심, b : 하폭

🖸 입력자료

Original data	Input data	Format	Required
DEM	Watershed	ASCII raster	0
	Flow direction Flow accumulation	ASCII raster	0
	Slope	ASCII raster	0
	Stream	ASCII raster	Optional (recommended)
Channel width		ASCII raster	Optional
Initial soil saturation ratio		ASCII raster	Optional
Initial stream flow		ASCII raster	Optional
Land cover map	Land cover	ASCII raster	Optional (recommended)
Soil map	Soil texture	ASCII raster	Optional (recommended)
	Soil depth	ASCII raster	Optional (recommended)
Rainfall gauge, radar, satellite	Rainfall(distributed rainfall field or mean areal rainfall)	ASCII raster Text	0
Discharge	Observed discharge	Text	Optional

출력자료

- 모든 Watch point에서의 유량 계산결과, 유역 평균강우량,
- 소요된 계산시간 등
- Flow control 유량자료
- 저수지 저류량, 유입량
- 대상 watch point에서 출력되는 모든 계산결과 (유량, 기저유량 수심, 토양수분함량, 토양포화도, 격자 강우량, 상류 평균강우량, Flow control 자료, 저류량 등)
- 모의 결과 격자 분포도 ASCII, image raster file

QGIS-GRM

QGIS-GRM plug-in

Watershed setup

Setup land cover and soil data

GRM model project file (.gmp)

GRM Open source S/W (https://github.com/floodmodel/GRM)

G2D repository

소스코드

실행파일, 매뉴얼, 샘플데이터

활용절차

S/W 관점에서의 고찰 (모델 개발 → 보급 확대 → 실무 활용 확대)

2007-2012

- Visual Basic .NET, 2008년 첫번째 버전 릴리즈
- 상용 S/W로 배포, HyGIS plug-in 으로 실행
- GIS에 embedded된 모델 (tight coupling)로 개발

2013 ~ 2016

- Free S/W로 배포, Microsoft TFS 활용 팀 개발
- Open source S/W (OSS) MapWindow GIS의 plug-in 으로 실행

2017 ~ 현재

오픈소스 S/W로 전환 (Http://github.com/floodmodel/GRM)

- 모델에서 GIS와 GUI 분리, OSS QGIS(2.18.x, 3.x) 연계 (interface GUI 개발)
- CPU 병렬계산 기법 → 홍수예보 실무 적용을 위한 고해상도 고속 모델링
- 언어 변경 : VB .NET → ('17) C# (.NET Core, Linux)

→ ('20) C/C++ (Linux, 속토 향상)

<GRM.dll + HyGIS>

<GRM.dll + MapWindow> _

<GRM.exe + QGIS>

< Integration, tight coupling >

< Interface, loose coupling >

3. 적용사례

- 🖸 클라우드 서버와 연계한 실시간 홍수해석시스템
 - 대상 지역 : 낙동강 유역
 - 실시간 수문자료(자료 서버), 클라우드(계산서버), 웹(사용자)을 연계한 실시간 홍수해석시스템

3. 적용사례

🖸 전국 홍수유출 모의

구분	골든타임 연구단 4세부	골든타임 연구단 2세부
대상지역	전국	전국
공간해상도	500m × 500m	250m × 250m
강우자료	기상청 국지앙상블시스템(LENS, Local Ensemble Prediction System)	환경부 강우레이더
활용분야	전국 기초지자체별 확률적 홍수 위험전망	전국 하천 홍수 예보

3. 적용사례

🖸 북한 지역 홍수유출 모의

○ 북한 지역 전체에 대한 홍수유출 해석 모델 구축 → 북한 임의 지점 유량 산정

○ 공간자료 : 북한, 중국, 러시아 지역 자료 병합, 500m × 500m 해상도, (원시자료 : 국토지리정보원 DEM, SRTM DEM, 환경부 토지피복도, Global Map 토지피복도, 농업과학원 정밀토양도/한국농업기본도, HWSD 토양도)

○ 강우자료: 위성으로부터 유도된 강우

: 북한 영역 : 유역 경계 : 하천망

: 대하천 최하류 지점

< 2016년 태풍 라이언록, 두만강>

감사합니다.

○ 감사의 글 본 연구는 환경부의 재원으로 한국환경산업기술원의 물관리연구사업의 지원을 받아 연구되었습니다(2019002640014).

- 주요 관련 과제
 - 골든타임 확보를 위한 유역 시공간 상세 홍수예보기술 개발 (한국환경산업기술원, '17~'22)
 - 위성자료를 이용한 북한 홍수범람 분석기술 개발 (한국건설기술연구원, '18~'20)
 - 수문레이더 기반 홍수·폭설재해 예측 및 경보 플랫폼 개발 (한국건설기술연구원, '13~'17)
 - 수자원의 지속적 확보기술개발 사업 (교육과학기술부, '02~'11)