Vetores Aleatórios

Prof. Leandro Chaves Rêgo

Departamento de Estatística e Matemática Aplicada - UFC

Fortaleza, 24 de novembro de 2021

Vetores Aleatórios

Muitas vezes estamos interessados na descrição probabilística de mais de um característico numérico de um experimento aleatório. Por exemplo, podemos estar interessados na distribuição de alturas e pesos de indivíduos de uma certa classe. Para tanto precisamos estender a definição de variável aleatória para o caso multidimensional.

Definição

Seja (Ω, \mathcal{A}, P) um espaço de probabilidade. Uma função $\vec{X} : \Omega \to \mathbb{R}^n$ é chamada de um vetor aleatório se para todo evento B Boreliano de \mathbb{R}^n , $\vec{X}^{-1}(B) \in \mathcal{A}$.

Onde um evento é Boreliano em \mathbb{R}^n se pertence a menor σ -álgebra que contem todas regiões da seguinte forma: $C_{\vec{a}} = \{(X_1, X_2, \dots, X_n) : X_i \leq a_i, 1 \leq i \leq n\}.$

Probabilidade Induzida

Dado um vetor aleatório \vec{X} , pode-se definir uma probabilidade induzida $P_{\vec{X}}$ no espaço mensurável (R^n,\mathcal{B}^n) da seguinte maneira: para todo $A\in\mathcal{B}^n$, definimos $P_{\vec{X}}(A)=P(\vec{X}^{-1}(A))$. Por definição de vetor aleatório, tem-se que $\vec{X}^{-1}(A)\in\mathcal{A}$, então $P_{\vec{X}}$ está bem definida.

FDA Conjunta

Para um vetor aleatório \vec{X} , uma maneira simples e básica de descrever a probabilidade induzida $P_{\vec{X}}$ é utilizando sua função de distribuição acumulada conjunta.

Definição

A função de distribuição acumulada conjunta de um vetor aleatório \vec{X} , representada por $F_{\vec{X}}$ ou simplesmente por F, é definida por

$$F_{\vec{X}}(\vec{x}) = P(C_{\vec{x}}) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n), \forall \vec{x} \in \mathbb{R}^n.$$

Propriedades

A função de distribuição acumulada $F_{\vec{X}}$ satisfaz as seguintes propriedades:

F1. Se $x_i \leq y_i$, $\forall i \leq n$, então $F_{\vec{X}}(\vec{x}) \leq F_{\vec{X}}(\vec{y})$.

$$x_i \leq y_i \forall i \leq n \Rightarrow C_{\vec{x}} \subseteq C_{\vec{y}} \Rightarrow P(C_{\vec{x}}) \leq P(C_{\vec{y}}) \Rightarrow F_{\vec{x}}(\vec{x}) \leq F_{\vec{x}}(\vec{y}).$$

F2. Se para algum $i \leq n \ x_i \to -\infty$, então $C_{\vec{x}}$ decresce monotonicamente para o conjunto vazio \emptyset . Logo, pela continuidade monotônica de probabilidade, temos que

$$\lim_{x_i\to-\infty}F_{\vec{X}}(\vec{x})=0.$$

F3. Se $x_i \to \infty$, então $C_{\vec{x}}$ cresce monotonicamente para o conjunto $\{X_1 \le x_1, \dots X_{i-1} \le x_{i-1}, X_{i+1} \le x_{i+1}, \dots, X_n \le x_n\}$, ou seja a restrição em X_i é removida. Então, podemos escrever

$$\lim_{x_1,\dots,x_n} F_{\vec{X}}(\vec{x}) = F_{X_1,\dots,X_{i-1},X_{i+1},\dots,X_n}(x_1,\dots,x_{i-1},x_{i+1},\dots,x_n).$$

FDA Marginal

Portanto, a função de distribuição acumulada conjunta de X_1,\ldots,X_{n-1} pode ser facilmente determinada da função de distribuição acumulada conjunta de X_1,\ldots,X_n fazendo $x_n\to\infty$. Observe que funções de distribuição acumuladas conjuntas de ordem maiores determinam as de ordem menores, mas o contrário não é verdadeiro. Em particular, temos que

$$\lim_{\vec{x}\to\infty}F_{\vec{X}}(\vec{x})=1.$$

A função de distribuição acumulada de X_i que se obtém a partir da função acumulada conjunta de X_1,\ldots,X_n fazendo $x_j\to\infty$ para $j\neq i$ é conhecida como função de distribuição marginal de X_i .

O próximo exemplo mostra que para $n \geq 2$ as propriedades F1, F2, e F3 não são suficientes para que F seja uma função de distribuição.

Exemplo

Seja $F_0: \mathbb{R}^2 \to \mathbb{R}$ uma função definida no plano tal que $F_0(x,y)=1$ se $x \geq 0, y \geq 0, ex+y \geq 1, e F_0(x,y)=0$, caso contrário. É claro que F1, F2, e F3 são satisfeitas, mas F_0 não é função de distribuição de nenhum vetor aleatório (X,Y). Se fosse, teríamos uma contradição

$$\begin{split} 0 &\leq P(0 < X \leq 1, 0 < Y \leq 1) \\ &= F_0(1, 1) - F_0(1, 0) - F_0(0, 1) + F_0(0, 0) = 1 - 1 - 1 + 0 = -1 \end{split}$$

Tipos de Vetores Aleatórios

Os tipos discretos e contínuos de variáveis aleatórias têm os seguintes análogos no caso multivariado.

- (a) Se \vec{X} for um vetor aleatório discreto, ou seja assumir um número enumerável de valores $\{\vec{x_1}, \vec{x_2}, \dots, \}$, podemos definir uma função de probabilidade de massa conjunta, p tal que
 - $p(\vec{x_i}) \geq 0$
 - $\bullet \ \sum_{i=1}^{\infty} p(\vec{x_i}) = 1.$

Neste caso, pode-se definir a função probabilidade de massa marginal de X_i como sendo

$$p_{X_i}(x_i) = \sum_{x_1} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_n} p(x_1, \dots, x_n).$$

Tipos de Vetores Aleatórios

(b) Seja $\vec{X}=(X_1,\ldots,X_n)$ um vetor aleatório e F sua função de distribuição. Se existe uma função $f(x_1,\ldots,x_n)\geq 0$ tal que

$$F(x_1,\ldots,x_n)=\int_{-\infty}^{x_n}\cdots\int_{-\infty}^{x_1}f(t_1,\ldots,t_n)dt_1\ldots dt_n, \forall (x_1,\ldots,x_n)\in I\!\!R^n,$$

então f é chamada de densidade conjunta das variáveis aleatórias X_1, \ldots, X_n , e neste caso, dizemos que \vec{X} é (absolutamente) contínuo. Neste caso, define-se a densidade marginal de X_i como sendo

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n.$$

Exemplo

Duas linhas de produção fabricam um certo tipo de peça. Suponha que a capacidade em qualquer dia seja 4 peças na linha 1 e 3 peças na linha 2. Admita que o número de peças realmente produzida em uma dada linha em um dado dia seja uma variável aleatória. Sejam X e Y o número de peças produzido pela linha 1 e 2 em um dado dia, respectivamente. A tabela a seguir dá a distribuição conjunta de (X,Y):

			Y		
		0	1	2	3
	0	0	0	0,1	0,2
	1	0,2	0	0	0,1
Χ	2	0	0,1	0,1	0
	3	0	0,1	0	0
	4	0	0	0,1	0

- (a) Determine a probabilidade que mais peças sejam produzidas pela linha 2.
- (b) Determine as funções probabilidade de massa marginais de X e Y.

Distribuição condicional de X dada Y discreta

A seguir será visto como calcular probabilidades condicionais envolvendo variáveis aleatórias.

Definição

Sejam X e Y variáveis aleatórias com distribuição de probabilidade conjunta $P(X = x_i, Y = y_j) = p(x_i, y_j)$, (i, j) pertencente ao contradomínio de (X, Y). Então, a distribuição condicional de X dada $Y = y_j$, $P(X = x \mid Y = y_j)$, é

$$P(X = x_i \mid Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p(x_i, y_j)}{p_Y(y_j)} = p_{X|Y}(x_i|y_j), \ p_Y(y_j) > 0.$$
(1)

Axiomas

Facilmente observa-se que $P(X = x_i \mid Y = y_j)$ é uma probabilidade:

- (i) $P(X = x_i \mid Y = y_j) \ge 0$, porque é quociente de probabilidades.
- (ii)

$$P(X \in R \mid Y = y_j) = \frac{P(X \in R, Y = y_j)}{P(Y = y_j)}$$

= $\frac{P(Y = y_j)}{P(Y = y_j)} = 1.$

Axiomas

(iii)

$$P(\bigcup_{i=1}^{\infty} \{X = x_i\} \mid Y = y_j) = \frac{P((\bigcup_{i=1}^{\infty} \{X = x_i\}) \cap \{Y = y_j\})}{P(Y = y_j)}$$

$$= \frac{P(\bigcup_{i=1}^{\infty} \{\{X = x_i\} \cap \{Y = y_j\}))}{P(Y = y_j)}$$

$$= \frac{P(\bigcup_{i=1}^{\infty} \{X = x_i, Y = y_j\})}{P(Y = y_j)}$$

$$= \frac{\sum_{i=1}^{\infty} P(X = x_i, Y = y_j)}{P(Y = y_j)}$$

$$= \sum_{i=1}^{\infty} P(X = x_i \mid Y = y_j).$$

Analogamente,

$$P(Y = y_j \mid X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)}.$$

Exemplo

A Tabela a seguir contém a distribuição de probabilidade do sistema (X, Y), onde as variáveis aleatórias X e Y representam, respectivamente, o número de itens em $bom\ estado$ e o número de itens em $perfeito\ estado$. Encontre as distribuições marginais e as condicionais.

Tabela:
$$P(X = j, Y = i)$$
.

$j\downarrow,i\rightarrow$	0	1	2	3	4	5	6
0	0.202	0.174	0.113	0.062	0.049	0.023	0.004
1	0	0.099	0.064	0.040	0.031	0.020	0.006
2	0	0	0.031	0.025	0.018	0.013	0.008
3	0	0	0	0.001	0.002	0.004	0.011

Solução: A Tabela a seguir mostra as distribuições marginais, onde, usualmente, são exibidas.

Tabela: P(X = j, Y = i) com marginais.

$j\downarrow$, $i\rightarrow$	0	1	2	3	4	5	6	P(X=j)
0	0.202	0.174	0.113	0.062	0.049	0.023	0.004	0.627
1	0	0.099	0.064	0.040	0.031	0.020	0.006	0.260
2	0	0	0.031	0.025	0.018	0.013	0.008	0.095
3	0	0	0	0.001	0.002	0.004	0.011	0.018
P(Y=i)	0.202	0.273	0.208	0.128	0.100	0.06	0.029	1

Algumas marginais:

$$P(X = 0 \mid Y = 0) = \frac{0.202}{0.202} = 1,$$

$$P(X = 1 \mid Y = 3) = \frac{0.040}{0.128} = 0.312,$$

$$P(Y = 6 \mid X = 2) = \frac{0.008}{0.208} = 0.038,$$

$$P(Y = 6 \mid X = 1) = \frac{0.006}{0.260} = 0.023.$$

Exemplo

A tabela abaixo dá a distribuição conjunta de X e Y.

			Y	
		0	1	2
	0	0,1	0,1	0,1
Χ	1	0,2	0	0,3
	2	0	0,1	0,1

- (a) Determinar as distribuições marginais de X e Y.
- (b) Calcule P(X = 0 | Y = 1) e P(Y = 3 | X = 2).
- (c) Calcule $P(X \le 2)$ e $P(X \le 1, Y = 2)$.

Independência

Sejam X_1, X_2, \ldots, X_n variáveis aleatórias definidas no mesmo espaço de probabilidade (Ω, \mathcal{A}, P) . Informalmente, as variáveis aleatórias X_i 's são independentes se, e somente se, quaisquer eventos determinados por qualquer grupo de variáveis aleatórias distintas são independentes. Por exemplo, $[X_1 < 5], [X_2 > 9], e 0 < X_5 \le 3$ são independentes. Formalmente,

Definição

Dizemos que um conjunto de variáveis aleatórias $\{X_1, \ldots, X_n\}$ é mutuamente independente se, e somente se, para quaisquer eventos borelianos A_1, \ldots, A_n ,

$$P(X_1 \in A_1, ..., X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i).$$

Critérios

O próximo teorema estabelece três critérios para provar que um conjunto de variáveis aleatórias é mutuamente independente.

Teorema

As seguintes condições são necessárias e suficientes para testar se um conjunto $\{X_1, \ldots, X_n\}$ de variáveis aleatórias é mutuamente independente:

- (a) $F_{\vec{X}}(\vec{x}) = \prod_{i=1}^{n} F_{X_i}(x_i)$.
- (b) Se \vec{X} for um vetor aleatório discreto,

$$p_{\vec{X}}(\vec{x}) = \prod_{i=1}^n p_{X_i}(x_i).$$

(c) Se \vec{X} for um vetor aleatório contínuo,

$$f_{\vec{X}}(\vec{x}) = \prod_{i=1}^n f_{X_i}(x_i), \forall (x_1, \dots, x_n) \in \textbf{\textit{R}}^n.$$

Prova: Omitida, pois está fora do escopo deste curso.

Observação

É fácil observar que utilizando, a definição de probabilidade condicional que se X e Y são independentes, então para todo A e B boreliano tal que $P(Y \in B) > 0$:

$$P(X \in A | Y \in B) = P(X \in A),$$

ou seja, se X e Y são independentes o conhecimento do valor de Y não altera a descrição probabilística de X.

Exemplo

Verifique se as variáveis aleatórias X e Y do Exemplo 4.3 são independentes.

Exemplo

Suponha a seguinte distribuição de probabilidade conjunta do vetor (X, Y) onde somente as probabilidades abaixo são não-nulas,

$$P(X = 1, Y = 2) = P(X = 1, Y = 3) = P(X = 1, Y = 4) = 1/6,$$

 $P(X = 2, Y = 3) = P(X = 2, Y = 4) = 1/6,$
 $P(X = 3, Y = 4) = 1/6.$

- (a) Estabeleça a distribuição de probabilidade da variável X.
- (b) Verifique se X e Y são independentes.

Solução: Parte (a). $P(X = 1) = \frac{3}{6}$, $P(X = 2) = \frac{2}{6}$, $P(X = 3) = \frac{1}{6}$, $P(X = k) = 0, \forall k \neq 1, 2, 3$. Parte (b). $P(X = 2) = \frac{2}{6}$, $P(Y = 2) = \frac{1}{6}$, então, $\exists (i, j) = (2, 2)$ pertencente ao contradomínio de (X, Y) tal que $P(X = i, Y = j) \neq P(X = i)P(Y = j)$. Portanto X e Y não são independentes.

Exemplo

Um programa é composto de dois módulos cujos tempos de execução X e Y são variáveis aleatórias independentes uniformemente distribuídas sobre $\{1,2,\cdots,n\}$.

- (a) Encontre a distribuição conjunta do vetor (X, Y).
- (b) Calcule P(X = Y), $P(X \le Y)$ e $P(X + Y \ge 3)$.

Solução: Parte(a).

$$P(X = i, Y = j) = \frac{1}{n^2}, \forall i, j = 1, 2, ..., n.$$

Parte(b).

$$P(X = Y) = P(X = 1, Y = 1) + \dots + P(X = n, Y = n) = n \times \frac{1}{n^2} = \frac{1}{n}.$$

$$P(X \le Y) = \frac{n}{n^2} + \frac{n-1}{n^2} + \dots + \frac{1}{n^2} = \frac{n+1}{2n}.$$

$$P(X+Y \ge 3) = 1 - P(X+Y < 3) = 1 - P(X = 1, Y = 1) = 1 - \frac{1}{n^2} = \frac{n^2 - 1}{n^2}.$$

Exemplo

Sejam X e Y variáveis aleatórias discretas independentes tais que

$$P(X = k) = P(Y = K) = 2^{-k}$$
, para $k = 1, 2, \dots$,. Calcule

- (a) P(X = Y).
- (b) P(X > Y).

Solução: Parte (a).

$$P(X = Y) = P(X = 1, Y = 1) + P(X = 2, Y = 2) + \dots = 2^{-2} + 2^{-4} + \dots = \frac{1}{3}.$$

Parte(b). P(X > Y) + P(X < Y) + P(X = Y) = 1. Mas, P(X > Y) = P(X < Y). Logo.

$$2P(X > Y) + P(X = Y) = 2P(X > Y) + \frac{1}{3} = 1 \Rightarrow P(X > Y) = \frac{1}{3}.$$

Exemplo

Sejam X e Y variáveis aleatórias tendo distribuição de probabilidade conjunta dada por

$X\downarrow,Y\rightarrow$	-1	0	2	6
-2	1/9	1/27	1/27	1/9
1	2/9	0	1/9	1/9
3	0	0	1/9	4/27

Determine

- (a) a probabilidade de XY = 2;
- (b) as distribuições marginais;
- (c) X e Y são independentes?

Solução: Parte (a).

$$P(XY = 2) = P(X = -2, Y = -1) + P(X = 1, Y = 2) = 2/9.$$

Parte (b).

$X\downarrow,Y\rightarrow$	-1	0	2	6	P(X = i)
-2	1/9	1/27	1/27	1/9	8/27
1	2/9	0	1/9	1/9	4/9
3	0	0	1/9	4/27	7/27
P(Y = j)	3/9	1/27	7/27	10/27	1

Parte (c). Não porque $P(X = 3, Y = -1) = 0 \neq P(X = 3)(P(Y = -1))$.

Funções de Vetores

O objetivo nesta seção é, considerando o vetor aleatório (X,Y) onde X e Y são variáveis aleatórias definidas no mesmo espaço de probabilidade (Ω,\mathcal{A},P) , encontrar a distribuição de probabilidade de Z=H(X,Y) sendo H uma função real tal que seu domínio contém os contradomínios de X e Y, respectivamente, R_X e R_Y .

Quando necessário, os resultados serão mostrados para vetores n-dimensionais, quando não, para vetores bidimensionais. Já é um bom começo entender o procedimento para n=2.

Caso Discreto

Considere primeiro o caso em que \vec{X} é um vetor aleatório discreto. Se $\vec{Y} = H(\vec{X})$ e sendo $\vec{x}_{i1}, \vec{x}_{i2}, \vec{x}_{i3}, \ldots$ os valores de \vec{X} tal que $H(\vec{x}_{ij}) = \vec{y}_i$ para todo j. Então,

$$P(\vec{Y} = \vec{y_i}) = P(\vec{X} \in \{\vec{x}_{i1}, \vec{x}_{i2}, \vec{x}_{i3}, \ldots\}) = \sum_{j=1}^{\infty} P(\vec{X} = \vec{x}_{ij}) = \sum_{j=1}^{\infty} p_{\vec{X}}(\vec{x}_{ij}),$$

ou seja, para calcular a probabilidade do evento $\{\vec{Y}=\vec{y_i}\}$, acha-se o evento equivalente em termos de \vec{X} , isto é, todos os valores $\vec{x_{ij}}$ de \vec{X} tal que $H(\vec{x_{ij}})=\vec{y_i}$ e somam-se as probabilidades de \vec{X} assumir cada um desses valores.

Suponha que X assume os valores 1,2 e 3 com igual probabilidade e que Y assume os valores 1 e 2 com igual probabilidade e que X e Y sejam independentes. Vamos encontrar a distribuição de S = X + Y e de M = XY. **Solução:** Os possíveis valores que S pode assumir são $\{2,3,4,5\}$ e a distribuição de S é dada por:

$$P(S = 2) = P(X = 1, Y = 1) = (1/3)(1/2) = 1/6.$$

$$P(S = 3) = P(X = 1, Y = 2) + P(X = 2, Y = 1) = (1/3)(1/2) + (1/3)(1/2) = 1/3.$$

$$P(S = 4) = P(X = 2, Y = 2) + P(X = 3, Y = 1) = (1/3)(1/2) + (1/3)(1/2) = 1/3.$$

$$P(S = 5) = P(X = 3, Y = 2) = (1/3)(1/2) = 1/6.$$

Por sua vez, M assume os seguintes valores: $\{1,2,3,4,6\}$ e sua distribuição é dada por:

$$P(M = 1) = P(X = 1, Y = 1) = (1/3)(1/2) = 1/6.$$

$$P(M = 2) = P(X = 1, Y = 2) + P(X = 2, Y = 1) = (1/3)(1/2) + (1/3)(1/2) = 1/3.$$

$$P(M = 3) = P(X = 3, Y = 1) = (1/3)(1/2) = 1/6.$$

$$P(M = 4) = P(X = 2, Y = 2) = (1/3)(1/2) = 1/6.$$

$$P(M = 6) = P(X = 3, Y = 2) = (1/3)(1/2) = 1/6.$$

Estatísticas de Ordem

Suponha que X_1, X_2, \ldots, X_n sejam variáveis aleatórias contínuas, independentes e com a mesma distribuição acumulada F. A r-ésima estatística de ordem, $X_{(r)}$, é uma função de X_1, X_2, \ldots, X_n que assume o r-ésimo menor valor dentre os valores dessas variáveis aleatórias. Por exemplo, $X_{(1)}$ é o menor valor ou o mínimo entre as variáveis e $X_{(n)}$ é o maior valor ou o máximo entre as variáveis. Vamos determinar a distribuição acumulada de $X_{(r)}$ em função de F. Então, precisamos encontrar:

$$F_{X_{(r)}}(x)=P(X_{(r)}\leq x).$$

Agora observe que para o r-ésimo menor valor dentre as variáveis aleatórias X_1, X_2, \ldots, X_n ser menor ou igual a x, pelo menos r dessas variáveis devem ser menores ou iguais que x. Vamos particionar este evento dividindo na probabilidade de que exatamente k das variáveis X_1, X_2, \ldots, X_n sejam menores ou iguais a x, em que $r \leq k \leq n$. Como as variáveis são independentes e identicamente distribuídas, existem $\binom{n}{k}$ maneiras de que exatamente k das variáveis sejam menores ou iguais a x e todas elas terão a mesma probabilidade. Logo

Estatísticas de Ordem

$$F_{X_{(r)}}(x) = \sum_{k=r}^{n} \binom{n}{k} P(X_1 \le x, X_2 \le x, \dots, X_k \le x, X_{k+1} > x, \dots, X_n > x)$$

$$= \sum_{k=r}^{n} \frac{n!}{k!(n-k)!} (F(x))^k (1 - F(x))^{n-k}$$

Suponha que joga-se um dado honesto 20 vezes de forma independente. Calcule a probabilidade de que o quinto menor valor obtido seja menor ou igual a 2.

Solução:

Queremos determinar o valor da função de distribuição acumulada da quinta estatística de ordem calculada no ponto igual a 2. Logo

$$F_{X_{(5)}}(2) = \sum_{k=5}^{20} {20 \choose k} P(X_1 \le 2, X_2 \le 2, \dots, X_k \le 2, X_{k+1} > 2, \dots, X_{20} > 2)$$

$$= \sum_{k=5}^{20} \frac{20!}{k!(20-k)!} (F(2))^k (1-F(2))^{20-k}$$

$$= \sum_{k=5}^{20} \frac{20!}{k!(20-k)!} (\frac{1}{3})^k (\frac{2}{3})^{20-k}$$