NONPERIODIC CONTINUOUS-TIME

PERIODIC CONTINUOUS-TIME

NONPERIODIC DISCRETE-TIME

PERIODIC DISCRETE-TIME

$$F(k) = \sum_{n=0}^{N-1} f(n) e^{(-j\frac{2\pi}{N}nk)}$$

FIXED LENGTH DISCRETE-TIME

$$f(n) = \frac{1}{N} \sum_{k=0}^{N-1} F(k) e^{\left(j\frac{2\pi}{N}nk\right)}$$

Complex valued
$$V = \sum_{k=0}^{N-1} f(x) e^{\left(-j\frac{2\pi}{N}nk\right)}$$

Where $[\Omega:$ digital frequency] ($\omega:$ continuous frequency)

	Time domain	Frequency domain
Fourier Transform pair (FT)	$x(t) = \int_{f=-\infty}^{\infty} X(f) e^{j2\pi f t} df$	$X(f) = \int_{t=-\infty}^{\infty} x(t) e^{-j2\pi ft} dt$
Fourier Series pair (FS)	$x(t) = \sum_{n=-\infty}^{\infty} X_k e^{\frac{j2\pi kt}{T}}$	$X_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{\frac{j2\pi kt}{T}} dt$
Discrete time Fourier Transform (DTFT)	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega t} d\Omega$	$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$
Z transform only (ZT)		$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$
Discrete Fourier Series pair (DFS)	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\frac{j2\pi kn}{N}}$ $n = 0 \sim N - 1$	$X[k] = \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$ $k = 0 \sim N - 1$
Discrete Fourier Transform pair (DFT)		$X[k] = \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$
	$n = 0 \sim N - 1$	$k = 0 \sim N - 1$

Hearing test

CD sampling rate: 44100 samples/second DAT sampling rate: 48000 samples/second

```
clc;
clear all;

f = 200;% frequency that I want to hear.

fs = 44100; % sampling frequency
time_dur = 3; % totoal time that you want to hear.

n = 0:fs*time_dur; % total number of samples

x = sin(2*pi*f*n/fs);
plot(n,x)
sound(x,fs);
```

```
clc; clear all;

f = 2;
t = 0:0.01:1;
[X,Y] = meshgrid(t,t);
z = cos(2*pi*f*X);

surfc(X,Y,z)
% grid;
```

Ch 01 Digital signal processing.

What is DSP (digital signal processing)?

- The study of signals in a digital representation and the processing methods of these signals (*Wikipedia*)
- DSP includes subfields like: audio and speech signal processing, sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing, image processing, signal processing for communications, biomedical signal processing, etc (*Wikipedia*)

Definition: A **signal** is a function that conveys information, generally about the state or behavior of a physical system.

Definition: Signal Processing is an operation or transformation on a signal.

Definition: Digital Signal Processing (DSP) is an operation or transformation (done in software) of a signal on a computer or other special purpose digital hardware.

What are the advantages and disadvantages of DSP?

Advantages

- Flexibility: processing done in software
- Adaptability: possible time-varying (adaptive) systems systems that "learn" about their environment
- **Accuracy**: typical 16 bit precision can be used to specify very accurate system parameters
- Cost: digital signal processors continue to increase performance/price
- **New Possibilities**: complicated or impossible analog may now be simplified or even possible with DSP

Disadvantages

• Requires a powerful computer – computational horsepower proportional to sample rate and complexity of processing.

Applications of DSP

- Touch-ToneTM telephones
- Edge detection in images
- Digital signal and image filtering
- Seismic analysis
- Text recognition
- Speech recognition
- Magnetic resonance image (MRI) scans Companding
- Music synthesis
- Bar code readersSonar processing
- Satellite image analysis
- Digital mapping
- Cellular telephones
- Digital cameras
- Detection of narcotics and explosives

- Speech synthesis
- Echo cancellation
- Cochlear implants
- Antilock brakes
- Signal and image compression
- Noise reduction
- High definition television (HDTV)
- Digital audio
- Encryption
- Motor control
- Remote medical monitoring
- Smart appliances
- Home security
- High speed modems

Figure 1: Example with sound card

Prefilter (Anti-aliasing filter)

(a) Analog Signal Spectrum

(b) Filter Shape for Analog Antialiasing Filter

(c) Filtered Analog Signal Spectrum

Sample and hold

Quantization and digitization

Digital signal

D/A conversion

Zero order hold signal

Recovered analog signal after smoothing

10

Examples of digital signals and spectra

(a) Slowly changing signal

Spectrum of signal

(b) Quickly changing signal

Spectrum of signal