

Análise e Previsão de Séries Temporais

Aula – 1: Introdução às séries temporais

Eraylson Galdino egs@cin.ufpe.br

Agenda

- Séries Temporais:
 - Definições
 - Exemplos
- Modelos simples com média zero:
 - Ruído I.I.D
 - Processo Binário
 - Random Walk
- Modelos com tendência e sazonalidade:
 - Tendência
 - Sazonalidade
- Modelos Estacionários:
 - Estacionariedade
 - Função de Autocorrelação
 - Correlograma

George Box & Gwilym Jenkis

Peter J Brockwell

Uma série temporal é um conjunto de **observações ordenadas**, x_t , cada uma observada em um instante de tempo.

Uma série temporal é um conjunto de observações, x_t , cada uma registrada num tempo específico t.

Eraylson G. Silva

Uma série temporal é um conjunto de observações ordenadas, x_t , cada uma registrada num tempo específico t, resultante de um comportamento que pode ser representado por um **modelo matemático.**

- Séries temporais discretas: são séries em que o intervalo de observações (t)
 pertence a um conjunto discreto. Ou seja, as observações são feitas em intervalos
 de tempo fixos;
- Séries temporais contínuas: são séries em que as observações são obtidas continuamente através de algum intervalo no tempo, por exemplo, quando T = [0, 1];

Exemplo de uma série temporal discreta

Exemplo de uma série temporal contínua

Análise de Séries Temporais

- Objetivos:
 - Compreender as características de tal fenômeno temporal;
 - Selecionar e estimar um modelo estocástico que possivelmente tenha gerado o conjunto de dados;
- Aplicações:
 - Entendimento de um comportamento temporal;
 - Classificar um comportamento temporal;
 - Detecção de anomalias;
 - Previsão;

Análise de Séries Temporais

- Campos de Aplicação:
 - Mercado Financeiro;
 - Meteorologia;
 - Medicina;
 - Controle de Qualidade e Processos;
 - Governo;
 - Epidemiologia;
 - Transporte;

Análise de Séries Temporais

- No geral, Análise de Séries Temporais consiste em:
 - Analisar um conjunto de dados (ao longo do tempo);
 - Selecionar e estimar um modelo matemático que possivelmente tenha gerado o conjunto de dados;

Modelos de Séries Temporais

Todos os modelos estão errados, mas alguns são úteis.

Modelos Simples de Séries Temporais

- Selecionar um modelo probabilístico adequado para os dados é uma das partes mais importantes da análise de séries temporais.
- Geralmente, é suposto que cada observação x seja um valor resultante de uma determinada variável aleatória X;
- Um modelo de série temporal para um determinado dado observado x_t é a especificação da composição de distribuições da sequência da variável aleatória X_t em que x_t é uma observação;

Modelos Simples de Séries Temporais

- Modelos com média zero:
 - Ruído i.i.d. (independente e identicamente distribuído);
 - Processo binário;
 - Random Walk (Passeio Aleatório);
- Modelos com tendência e sazonalidade

Modelos Simples com média zero: Ruído i.i.d

- Modelo mais simples;
- Sem os componentes de **tendência** e **sazonalidade**;
- As observações são resultados de variáveis aleatórias i.i.d. com média zero;
- Uma sequência de variáveis aleatórias X_1 , X_2 , ..., são ruídos i.i.d;

$$P[X_1 \le x_1, \dots, X_n \le x_n] = P[X_1 \le x_1] \cdots P[X_n \le x_n] = F(x_1) \cdots F(x_n)$$

- F(.) é uma função de distribuição cumulativa;
- Não existe dependência entre as observações;
- Através do valor x_n não é possível prever o valor de x_{n+h} ;
- Apesar de não ser interessante para predição, é um modelo importante para construção e entendimento de modelos mais complexos;

Modelos Simples com média zero: Ruído i.i.d

• Um ruído i.i.d com distribuição normal com média zero e variância σ^2 é também chamado de **ruído branco** gaussiano;

Modelos Simples com média zero: Processo binário

• As observações só podem assumir dois valores possíveis;

$$P[X_t = 1] = p, \quad P[X_t = -1] = 1 - p,$$

- Ideia remete a "caminhada do bêbado". Tomada de vários passos consecutivos, cada qual em uma direção aleatória;
- É obtido através da soma cumulativa de variáveis i.i.d aleatórias:

$$S_t = X_1 + X_2 + \cdots + X_t$$
, for $t = 1, 2, \dots$

- é um ruído i.i.d;
- Se X_t é resultado de um processo binário, então é chamado de *Random Walk* simétrico simples;
 - Caso de Random Walk aplicado em jogo de baseball

• Problema na previsão de um Random Walk: Série Nasdaq

Eraylson Galdino

• Problema na previsão de um Random Walk: Série DJIA

Eraylson Galdino

• Problema na previsão de um *Random Walk: Série S&P 500*

Eraylson Galdino

• Problema na previsão de um *Random Walk: Série Petrobras*

Eraylson Galdino

• Problema na previsão de um *Random Walk: Série S&P 500*

Real	Previsão
0,685264	0,69427
0,690659	0,688232
0,681649	0,69365
0,685226	0,684601
0,691443	0,688193
0,700727	0,694438
0,707789	0,703763

- Algumas séries é perceptível que não podem ser modeladas por modelos simples de média zero;
- São geradas com componentes de tendência e sazonalidade;
- Tendência: mudança sistemática na série temporal que não aparenta ser periódico;
- Sazonalidade: comportamento que se repete durante um período de tempo;

• Série com tendência: Vendas de Shampoo

• Série com sazonalidade: Vendas de Passagens aéreas

Modelo com tendência:

$$X_t = m_t + Y_t$$

• m_t é o componente de tendência e pode ser estimado através do método de mínimo quadrado:

$$m_t = a_0 + a_1 t + a_2 t^2$$

• Valores de **a** são ajustados para minimizar a função:

$$\sum_{t=1}^n (x_t - m_t)^2$$

Modelo com Sazonalidade:

$$X_t = s_t + Y_t$$

• s_t é o componente de sazonalidade, resultado de uma função periódica que pode ser obtida através da soma de ondas senoidais:

$$s_t = \alpha_0 + \sum_{j=1}^k (a_j cos(\lambda_j t) + b_j sin(\lambda_j t))$$

• a e b são parâmetros desconhecidos e lambda λ são as frequências

Uma Abordagem Geral para Modelagem de Séries Temporais

- A abordagem consiste em plotar a série e analisar alguns aspectos:
 - Tendência
 - Sazonalidade
 - Alterações acentuadas no comportamento
 - Observações discrepantes com os dados
- Remover tendências e componentes sazonais para obter resíduos estacionários;
- Escolher um modelo para ajustar aos resíduos. Utilizando várias estatísticas amostrais como função de autocorrelação
- Alcançar a previsão original da série através da previsão dos resíduos junto com os valores estimados da tendência e sazonalidade;

Processo Estacionário

- É um processo que se mantém em equilíbrio estatístico com propriedades probabilísticas que não se alteram no tempo;
 - X_t uma série temporal com $E(x_t^2) < \infty$
 - A Média pode ser representada por: $\mu_x(t) = E(X_t)$
 - A covariância pode ser representada por: $\gamma_x(r,s) = Cov(X_r,X_s) = E[(X_r \mu_x(r))(X_s \mu_x(s))]$
- O processo é considerado fracamente estacionário se:
 - As características de x_t são iguais para todo t;
 - Média e variância constantes;
 - $\mu_x(t)$ é independente de **t** e $\gamma_x(t+h,t)$ é independente de **t** para cada **h**;

Modelos Estacionários: Função de Autocorrelação

• Seja X_t uma série estacionária, a Função de Autocovariância do lag \mathbf{h} é:

$$\gamma_x = Cov(X_{t+h}, X_t)$$

• A Função de Autocorrelação de X_t do lag \mathbf{h} é definida como:

$$\rho_x(h) = \frac{\gamma_x(h)}{\gamma_x(0)} = Cor(X_{t+h}, X_t)$$

• A autocorrelação é a correlação entre uma série e ela mesma defasada;

Analisando Estacionariedade: Exemplos

- Ruído i.i.d.:
 - Se X_t é um ruído i.i.d e $E(X_t^2) = \sigma^2 < \infty$ e $E(X_t) = 0$ para todo t, então a primeira condição para ser um modelo estacionário é satisfeita.
 - Assumindo a independência dos dados temos:

$$\gamma_X(t+h,t) = \left\{ egin{aligned} \sigma^2, & ext{if } h=0, \ 0, & ext{if } h
eq 0, \end{aligned}
ight. ext{N$ ilde{a}0 dependente de t}$$

• $\{X_t\}^{\sim}$ IID $(0, \sigma^2)$ é um modelo estacionário.

Analisando Estacionariedade: Exemplos

- Ruído Branco:
 - Se X_t é uma sequência de variáveis aleatórias descorrelacionadas, onde X_t ~WN(0, σ^2) então X_t é estacionário com características semelhantes ao ruído i.i.d (covariância);
 - Todo processo IID(0, σ^2) é um WN(0, σ^2), porém o inverso não é verdadeiro;
- Random Walk:
 - Se S_t é um random walk definida por:
 - $E(S_t) = 0$, $E(S_t^2) = t\sigma^2 < \infty$ para todo t, e para $h \ge 0$;
 - Será estacionária se $\gamma_s(t+h,t)$ não depender de **t**. Pois caso contrario à medida que **t** aumenta, a variância cresce indefinidamente, violando uma das condições de estacionariedade;

Função de Autocorrelação Amostral

- Utilizada para analisar o grau de dependência temporal na série;
- Auxilia na seleção de possíveis modelos de séries temporais estacionárias;
- Definição:
 - Seja $x_t, ..., x_n$ observações de uma série temporal. A média amostral é definida como:

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

• A função de autocovariância amostral é definida como:

$$\hat{\gamma}(h) = n^{-1} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \overline{x})(x_t - \overline{x}), -n < h < n$$

• A função de autocorrelação amostral:

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}, -n < h < n.$$

Função de Autocorrelação Parcial

- As autocorrelações para intervalos sucessivos são formalmente dependentes;
- A F.A.C parcial é utilizada para obter uma informação sobre autocorrelação na série sem esta influência em cascata;
- A autocorrelação parcial de atraso k corresponde a autocorrelação entre x_t e x_{t-k} que não é explicada pelos atrasos de 1 a k;
- Correlação x Causalidade:
 - Correlação: Uma variável **A** tem um comportamento semelhante à **B**;
 - Causalidade: Uma variável B influencia o comportamento da variável B;
 - http://www.tylervigen.com/spurious-correlations

Correlograma

- Forma gráfica de analisar a autocorrelação;
- O correlograma traça as autocorrelações em diversas defasagens;
- Através da análise utilizando o correlograma é possível entender se a série é aleatória ou possui alguma tendência ou sazonalidade;
- Frequentemente utilizado para analisar os resíduos de um modelo;

Correlograma

- O Gráfico é composto por valores exibidos em pontos/barra que representam o coeficiente de correlação amostral r. Esse coeficiente é uma medida de direção e grau entre duas variáveis quantitativas que se associam linearmente;
- Representando as variáveis por (x,y), o coeficiente é calculado através da seguinte fórmula:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} \text{ onde } \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \text{ e } \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

 O coeficiente r para o par de variáveis (x,y) é o quociente entre a covariância amostral das variáveis x e y e o produto dos respectivos desvios padrões:

$$r = \frac{Cov(x, y)}{s_x s_y}$$

Correlograma

- Para inferir se em um dado lag existe ou não correlação é utilizado intervalos de confiança;
- Para um intervalo de confiança de 95% os limites são ± 1.96/vn
- Os lag com coeficiente r fora do intervalo de confiança são considerados significantes.
- O coeficiente com valor 1 representa correlação máxima positiva;
- O coeficiente com valor -1 representa correlação máxima negativa;
- O coeficiente com valor O representa que não existe correlação;

- Série aleatória:
 - Através do correlograma é possível analisar se uma série é aleatória ou não;
 - Em uma série completamente aleatória os lags são não correlacionados, ou seja, espera-se que o coeficiente de autocorrelação amostral rk seja próximo à zero, k = 1,2,....

- Correlação de curto prazo:
 - É dita de curto prazo quando uma observação acima da média tende a ser seguida por uma ou mais observações acima da média. O mesmo ocorre para observações abaixo da média.
 - O correlograma desta série será composto por um valor relativamente grande para r1 seguido por valores que tendem a ficar sucessivamente menores;
 - A partir de uma certa defasagem k os valores de rk tendem a ser aproximadamente zero.

- Séries não estacionária:
 - Para uma série com tendência os valores do coeficiente r não decaem para zero a não ser em defasagens grandes. Isso ocorre pois uma observação de um lado da média tende a ser seguida por um grande número de observações da mesma média (mesmo lado) por conta da tendência;
 - Nesse caso, pouca ou nenhuma informação pode ser obtida do correlograma pois a tendência dominará outras características;

- Correlação negativa:
 - Quando os valores das observações tendem a se alternar acima e abaixo de uma média, o coeficiente de correlação também tende a se alternar;
 - O valor de r1 será negativo enquanto o valor de r2 será positivo já que as observações defasadas de 2 períodos (lags) tendem a estar do mesmo lado da média;

Resumo

- Conceitos:
 - Séries Temporais;
 - Modelos simples com média zero
 - Ruído I.I.D
 - Processo Binário
 - Random Walk
 - Modelos com tendência e sazonalidade
 - Tendência
 - Sazonalidade
 - Modelos Estacionários
 - Estacionariedade
 - Função de Autocorrelação
 - Correlograma

Extras

- Repositórios de séries temporais:
 - https://datamarket.com/data/list/?q=
 - https://research.cs.aalto.fi/aml/datasets.shtml
 - http://archive.ics.uci.edu/ml/index.php
 - https://www.kaggle.com/datasets
- Aula com código em Python:
 - https://github.com/EraylsonGaldino/timeseries/blob/master/TS%20-%20Aula%2001.ipynb

Referências

- BOX, G. E. P. and JENKINS, G. M. (2008). Time series analysis: forecasting and control, 4nd. ed., San Francisco: Holden-Day.
- Brockwell, Peter J. and Davis, Richard A. (2002). Introduction to Time Series and Forecasting, 2nd. ed., Springer-Verlag