ReportElectricPotential

Electrostatic Potentials

Lý thuyết

Thế năng điện từ $U(\mathbf{x})$ có thể được dẫn ra bằng mật độ điện tích $\rho(\mathbf{x})$ sao cho thỏa phương trình Poisson

$$abla^2 U(\mathbf{x}) = -\frac{1}{\epsilon_0} \rho(\mathbf{x}),$$
 (1)

trong đó $\rho(\mathbf{x})$ là mật độ điện tích. Trong vùng không có điện tích, $\rho(\mathbf{x})=0$, và thế năng ở phương trình (1) thỏa phương trình Laplace:

$$\nabla^2 U(\mathbf{x}) = 0. \tag{2}$$

Giả sử bài toán đang xét cho trường hợp 2-D, ta chia nhỏ không gian thành dạng của ô mạng tinh thể, và giải $U(\mathbf{x})$ cho từng điểm mạng.

Thuật toán

Numerical solutions to elliptic equations

Phương pháp ma trận

Ta xem "mạng" trên như là ma trận, với các điểm màu đỏ là điểm cần giải, mỗi điểm cách nhau một h=1/4. Tại y_{max} tất cả giá trị bằng điều kiện đầu, như vậy với n điểm màu đỏ, thì ứng với n điểm màu xanh là điều kiện đầu, và có tổng cộng n+2 điểm màu xanh.

Giả sử, ta xét ma trận V là ma trận có chỉ số i,j. Để tính được toàn bộ số điểm màu đỏ cần giải, ta cần phải chuyển đổi chỉ số từ ma trận V sang một ma trận một chiều U có chứa các thành phần ma trận tương ứng. Với một ma trận vuông $V_{N\times N}$, ta có

$$V_{i,j} = U_{i imes N+j}$$

(v)		(u)
(i)	(j)	(k = i * N + j)
0	0	0
0	1	1
0	2	2
1	0	3
1	1	4
1	2	5
2	0	6
2	1	7
2	2	8