형태보존암호 FF1에 대한 딥러닝 기반 신경망 구별자

김덕영*, 김현지*, 장경배*, 윤세영*, 서화정*[†]
* 한성대학교 대학원 융합보안학과

서 론

- 차분 분석이란 암호의 분석기법 중 하나로, 입력 차분에 따라 출력 차분을 분석하여 키를 유추할 수 있다면, 암호 알고리즘이 안전하지 않다고 볼 수 있다.
- 차분 특성을 활용하여 인공 신경망 기반의 구별자를 사용하면 랜덤 데이터로 암호 데이터를 구별 할 수 있으며, 차분 공격 시 데이터 복잡도가 줄어든다는 이점이 있다.
- 신경망 구별자 관련 연구는 현재도 활발하게 진행되고 있으며, 본 논문에서는 형태보존암호인 FF1 32/128에 대해 차분 특성을 고려하여 최초의 신경망구별자를 제안하였다.

단일 차분 모델의 데이터 셋, 모델 구성

- 임의의 랜덤 평문 P0, P1을 생성 후 입력차분을 만족하는 평문 쌍을 생성하기 위해 P0에 입력차분을 XOR하여 평문 P2를 구한다.
- 각 평문 P0, P1, P2를 암호화하여 암호문 C0, C1, C2를 구하고 이때, C0와 C1은 차분 관계가 아닌 랜덤 평문을 암호화한 결과이므로 두 값을 연접한 결과를 0으로 라벨링 한다.
- 이때 C0와 C2는 입력차분을 만족하는 평문의 암호문으로 특정 확률로 출력 차분을 만족하는 암호 데이터이므로 연접한 값을 1로 라벨링 한다.
- 암호화 과정에서 사용되는 평문 및 암호문은 숫자 (0 ~ 9) 또는 소문자 (a ~ z) 도메인에서 선택되고, 실제 데이터셋에는 C0, C1, C2의 비트 값이 저장된다.
- 모델의 구성은 랜덤 또는 차분 암호문 쌍의 각 비트는 입력 레이어의 각 뉴런에 할당되어 그후 히든 레이어를 거치고 출력 레이어에서 sigmoid 활성화 함수를 거쳐 0 ~ 1 사이의 값을 도출하여 해당 값과 실제 정답의 손실을 계산한다.

다중 차분 모델의 데이터 셋, 모델 구성

- 다중 차분 신경망 구별자의 데이터셋을 생성하는 과정으로 먼저, 평문 P0를 생성한다. 입력 차분들을 만족하는 평문 쌍들을 만들어야하므로 P0에 입력차분들을 XOR하여 평문 Pn을 구한다.
- 각 평문 Pn을 암호화하여 암호문 Cn을 구한다. 여기서 Cn들은 각기 다른 입력 차분을 갖는 랜덤 평문을 암호화한 암호문이다.
- 따라서 CO||Cn은 n-1 클래스로 라벨링한다. 다중 입력 차분을 사용하는 구별자에서도 암호화 과정에서는 숫자 도메인과 소문자 도메인을 사용하였으며 입력 차분으로 0x0||K는 0에서 F사이의 16진수를 사용하였다.
- 다중 차분 모델은 차분 특성을 만족하는 암호문 쌍을 입력 받아 사용된 입력 차분으로 분류한다.
- 모델 구성은 데이터 셋을 구성하는 암호문 쌍의 각 비트는 입력 레이어의 각 뉴런에 할당되고, 히든 레이어를 통과한다. 출력 레이어에서는 softmax 활성화 함수를 적용하여 여러 개의 클래스에 대한 확률 값을 도출한다.

실험 결과

< 단일 차분 정확도 표>

	Number (10-round)				Lowercase (2-round)			
	Tr	Val	Ts	Rel	Tr	Val	Ts	Rel
01	0.73	0.74	0.73	0.23	0.50	0.50	0.50	0.00
02	0.74	0.75	0.74	0.24	0.51	0.51	0.51	0.01
03	0.71	0.71	0.71	0.21	0.52	0.51	0.52	0.02
04	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
05	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
06	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
07	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
08	0.80	0.80	0.80	0.30	0.51	0.50	0.51	0.01
09	0.84	0.83	0.84	0.34	0.52	0.52	0.52	0.02
0A	0.84	0.84	0.84	0.34	0.50	0.50	0.50	0.00
0B	0.82	0.82	0.82	0.32	0.51	0.51	0.51	0.01
0C	0.85	0.84	0.85	0.35	0.5	0.5	0.5	0.00
0D	0.78	0.78	0.78	0.28	0.51	0.51	0.51	0.01
0E	0.81	0.81	0.81	0.31	0.52	0.52	0.52	0.02
0F	0.85	0.85	0.85	0.35	0.52	0.52	0.52	0.02

< 다중 차분 데이터 셋의 세부 사항>

Dataset	Data size	Input difference pair	Valid accuracy	
I1		01, 0F	> 0.500	
I2		01, 02, 0F	> 0.333	
13		01~03, 0F	> 0.250	
14		01~04, 0F	> 0.200	
I5		01~05, 0F	> 0.166	
16		01~06, 0F	> 0.142	
17	216.6341	01~07, 0F	> 0.125	
I8	per class	01~08, 0F	> 0.111	
19		01~09, 0F	> 0.100	
I10		01~0A, 0F	> 0.090	
I11		01~0B, 0F	> 0.083	
I12		01~0C, 0F	> 0.076	
I13		01~0D, 0F	> 0.071	
I14		01~0F	> 0.066	

< 다중 차분 정확도 표>

	Number (10-round)				Lowercase (2-round)			
	Tr	Val	Ts	Rel	Tr	Val	Ts	Rel
11	0.52	0.52	0.52	0.02	0.52	0.52	0.52	0.02
I2	0.34	0.33	0.34	0.007	0.36	0.36	0.36	0.027
I3	0.26	0.26	0.26	0.01	0.27	0.27	0.27	0.02
14	0.21	0.21	0.21	0.01	0.20	0.20	0.20	0.01
15	0.17	0.17	0.17	0.004	0.18	0.18	0.18	0.004
16	0.15	0.15	0.15	0.008	0.15	0.15	0.15	0.008
17	0.13	0.13	0.13	0.005	0.13	0.13	0.13	0.005
18	0.12	0.12	0.12	0.009	0.12	0.12	0.12	0.009
19	0.12	0.11	0.12	0.02	0.10	0.10	0.11	0.010
I10	0.10	0.10	0.10	0.01	0.10	0.10	0.10	0.010
I11	0.09	0.09	0.09	0.007	0.09	0.09	0.09	0.007
I12	0.08	0.08	0.08	0.004	0.08	0.08	0.08	0.004
I13	0.08	0.08	0.08	0.009	0.08	0.08	0.08	0.009
I14	0.07	0.07	0.07	0.004	0.07	0.07	0.07	0.004

● 본 논문에서 FF1에 대한 최초의 딥러닝 신경망 구별자를 제안하였다. 우리는 단일 차분 모델과 다중 차분 모델에 대한 실험을 진행하였으며 단일 차분모델에서는 0F 차분을 사용하였을 때 숫자 및 소문자 도메인 모두에서 가장 높은 정확도를 보였다. 다중 차분 모델에서는 모든 경우의 정확도가 유효 정확도를 초과하며 I2에서 가장 높은 정확도를 달성하였다. 본 실험을 통해 단일 차분에서는 공통적으로 0F 차분의 정확도 및 신뢰도가 높고, 다중 차분에서는 사용되는 차분 쌍에 따라 구별자의 성능이 달라질 수 있음을 확인하였다.