RDTR No. 105 January 1968

VOLUME II OF II

25 MILLION CANDLE CAST FLARE, DIAMETER AND BINDER STUDY (Summary Report June 66 to June 67)

BERNARD E. DOUDA

U. S. Naval Ammunition Depot Crane, Indiana 47522

Prepared under MIPR PG-6-58 for the Illumination Branch, Targets and Scorers Division, Air Force Armament Laboratory, Eglin Air Force Base, Florida

This document has been approved for public release and sole; its figure is unlimited.

Reproduced by the CTEARINGHOUSE for Federal Scientific & Technical Information Springfield Va 22151

U. S. Naval Ammunition Depot Grane, Indiana 47522

RDTR No. 105 January 1968

VOLUME II OF II

25 MILLION CANDLE CAST FLARE, DIAMETER AND BINDER STUDY (Summary Report June 66 to June 67)

BERNARD E. DOUDA

Prepared under MIPR PG-6-58 for the Illumination Branch, Targets and Scorers Division, Air Force Armament Laboratory, Eglin Air Force Base, Florida

This report was reviewed for adequacy and technical accuracy by Mr. W. S. Cronk, Mr. Larry Moran, and Captain Gene Holder, Eglin Air Force Base and Mr. Clarence Gilliam, NAD Crane.

Submitted by:

B. H. CALKINS, Director

Research and Development Department

	TAE	BLE	OF	' C	Ol	TE	NT	S	FO	R	VC)L(ME	E J	•					n
ABSTRACT					•		•	•		•	•	•	•			•	•		•	Page
INTRODUCT	CICE	Ι.			•			•	•	•		•	•	•	•	•	•		•	3
25 MILLIO	ON C	ANI	DLE	e F	TLA		RT	•		•		•				•	•		•	5
Purpo Chron Expen Discu Concl			cal	. A	pp		ec		•	•	•			•			•	•	•	5 11 11 18
DIAMETER	STU	JDI	ES	•	. F	AF	T	II			•	•	•	•		•	•	•	•	19
Purpo Chron Expen Discu Concl	nolo cime ussi	ogio enta Lon	al •		•	•	•	•	•	•	•	•	•	•		•	•	•	•	19 19 22 27 34
BINDER ST	נעטיו	ES	•	•	. F	`AF	T.	II.	II •	•	•	•	•	•		•	•		•	37
Purpo Appro Expen Ordno Thiol	oacl rime ance	n . enta e R	al ese	al		· 1]	Inc			mj			:i:	'n		•	•			37 37 39 40 44
FLAME OR	IEN	PAT:	IOI	Į Į		-	RT PLA			3I2	ZE	El	ep:	3C 1	!S	•	•		•	50
Purpo Appro Disco Expe	oacl uss: rim	n ion ent	al	Üı	no e	ert	ia:	'n	: tie	9.S	•	•	•	•		•	•	•	•	50 50 51 65 71
ACKNOWLE	DGE	MEN'	TS	•	•	•		•	٠	•	•	•	•	•	•	•	•	•	•	72
ਹਮਾੜ ਉਕਾਕਾਰ	בים																			71.

LIST OF FIGURES

Figure	IN VOLUME I	Pare
2.345.6.78.90.11	Sketch of single-star-cavity candle	9 10 12 16 17 21 25 56
	IN VOLUME II	
29 ti	oru 22. Diameter study graphs	:~0C
	LIST OF TABLES	
Table	IN VOLUME I	Page
I II III	16" Diameter Single Star Flare	13 14 48

ABSTRACT

The feasibility of making an illuminating candle which produces a luminous intensity of 25 million candles is demonstrated. The goal is achieved by igniting all surfaces of a star shaped cavity which is formed through the center of the candle. Two horzontally opposed flames are generated by this candle.

The relationship between candle diameter and the ability of that candle to generate light efficiently is reported. This study includes data for both pressed and cast candles and shows the effect of different binder types. A general degradation of efficiency is observed as the cast candle diameter increases from 4 inches to 24 inches. The pressed candle series shows a maximum near the 4 inch diameter with degradation to either side.

Silicone, epoxy-polyglycol, polyester, polysulfide, and various combinations of these binders are described as they are used to make candles for the diameter study and the 25 million candle flare. A study of flare compositions consisting of magnesium and sodium perchlorate, the latter being partially dissolved in various methacrylate monomers is reported. A limited environmental program for a 4.5 inch diameter candle cast in an aluminum candle case and the development of a liner system for that candle is described. A polyester-epoxy

binder is used successfully to make a cast candle whose luminous efficiency is comparable to a candle made by the conventional pressed method.

Flame orientation and flame size effects are described. Contrary to common opinion, it is shown that a small flame size rather than a large flame from a given candle diameter is associated with candles which produce light with high efficiency. The binder is shown to be a major factor in the generation of various flame sizes and thus strongly influences the candle efficiency.

INTRODUCTION

This exploratory development program was conducted between June 1966 and June 1967 for the Air Force Armament Laboratory, Eglin Air Force Base, Florida, under MIPR-PG-6-58. The main objectives of the program were twofold. One goal was to demonstrate the feasibility of making an illuminating candle which has a luminous intensity of 25 million candles. This is a five-fold increase over the intensity delivered by the BRITEYE candle. The second goal was to conduct a study of the relationships between the diameter of a candle and the efficiency of light production from that candle. Both goals were attained during the contract period.

To assist the reader, the report is divided into four parts. Part I deals with the 25 million candle flare, Part II with the diameter studies, Part III with binder studies, and Part IV with flame orientation and flame size effects. Although the report is divided for convenience, it is noteworthy that all phases of this work are interrelated; that is, information generated in any one part is also utilized in the other phases in

an effort to extract the maximum amount of data from a minimum amount of work and hardware expenditure. With these remarks, the reader is encouraged to view this work as an integrated program instead of four distinct tasks.

The report is bound in two volumes. The main body of the report is in Volume I. The Appendices are in Volume II. A Table of Contents, Abstract, and Introduction for the entire report has been inserted at the beginning of each volume for convenience.

APPENDIX I

FLARE FABRICATION PROCESS

Magnesium and sodium nitrate have been used extensively for making illuminating flare compositions. Their gramular size is often varied to cause changes in the burning rate of the composition. Also, the ratio of these ingredients causes changes in the burning rate as well as the efficiency (cd-sec/g). A third ingredient is normally added to the system. That ingredient, the binder, is normally a plastic in monomeric form which later can be polymerized to bond the composition to itself and to its container. In compositions prepared for casting, the binder content normally ranges from 9 - 15% by weight.

Generally, in preparing the composition, the binder and magnesium are preblended in a mixer. This preblending process desensitizes the magnesium, reduces the dust hazard, and inhibits surface oxidation of the magnesium particles. The sodium nitrate is later added to the preblend. This mass is then mixed until a homogeneous blend is obtained. When the binder content is about 12%, the composition has physical properties analogous to freshly ground hamburger. The material doesn't flow nor seek its own level. It can be molded, formed, and packed -under mild pressure.

The general procedure for making a candle consists of tamping the composition in place under pressure of about 50 - 60 psi. The star cavity is formed by means of a mold which is later removed.

After polymerization of the binder system, the composition is

rigid and strong. The composition must also adhere in some manner to the flare container. This is necessary to prevent premature burning in the composition-case interface. A good bond between these two surfaces can be achieved by various techniques. One technique is to bond the composition directly to the case. Another is to introduce a liner between the case and the composition. That liner is bonded to both the case and the composition. The case bond must usually be able to withstand severe changes of temperature such as -65°F to +160°F and be sufficiently strong to withstand the normal safety and durability tests. Accordingly, the bond system must be developed in conjunction with the candle hardware.

APPENDIX II

STAR CONFIGURATION COMPUTATIONS

by Ralph Chipman

The configuration of an internal burning cavity was investigated. The problem was to determine the configuration of a star shaped cavity put in the center of a 16 inch flare that would produce a constant burning as the flare burned internally from the center outward. Since the burning surface is the product of the length of the flare and the perimeter of the cross section of the burning area, the problem reduces to obtaining a configuration that produces a constant cavity perimeter during burning. Equations to compute the perimeter were developed assuming the burning rate perpendicular to the burning surface was constant in all directions. Using these equations, a computer program was written to compute perimeter versus linear displacement of the burning surface for various shaped stars. Since five inches of linear burning was desired, the diameter of the star was fixed at six inches.

Although the goal of constant perimeter was not achieved, the best results came from a six-pointed star with the dimensions shown in Figure 1. Figure 2 shows a cross section of the theoretical burning surface at various burning distances for this configuration and a graph of the perimeter versus diameter is shown in Figure 3. As can be seen from the graph, the perimeter is nearly constant for the first two inches of burning and then

Figure 1-Cross Section of Configuration Which Gave Best Results

Figure 2-Cross Section of Theoretical Burning Surface at Various Burning Distances for Best Configuration.

Figure 3-Perimeter Versus Diameter of Cross Section of Best Configuration.

approaches a straight line with a positive slope. The slope of this line, which is the graph one would obtain if the star shaped cavity were replaced by a cylindrical hole, is equal to pi.

Other shaped stars that were tried include various shaped four-, five-, and eight-pointed stars and six-pointed star with other combinations of star point widths and sizes of angle between the sides of the points. In all of the other cases of four-, five-, and six-pointed stars, the graph of perimeter versus diameter came closer to the line representing the case of the cylindrical hole. For the eight-pointed star, the perimeter first decreased to a minimum and then increased. The graph of a typical case of a few of these combinations are shown in Figure 4.

Figure 4-Perimeter Versus Diameter of Cross Section of Various Configurations.

Mathematical Derivation of Perimeter Equations

The following is the derivation of the equations for the perimeter of a burning star cavity assuming the burning rate perpendicular to the burning surface is constant in all directions. The final equations of the derivation are listed on page 151 of "Solid Propellant Rockets". (1) However, there is an error in the equation for initial perimeter given there.

Let N equal the number of star points. The star is then completely defined by the radius, R, and the angles A, B, and C. See Figure 5. The value of C is found by the expression

$$C = \frac{N}{SII}$$

and B is determined by the width of the end of the star points. A is free to vary over a range of values. The initial perimeter, P_0 , is equal to (see Figure 5)

$$P_{o}=2N (a+\chi). \tag{1}$$

The value of a is given by

$$e = R (C-B).$$
 (2)

From the law of sines we have

$$\frac{\chi}{\sin B} = \frac{R}{\sin (7, -A)}$$

By substituting $\sin A = \sin (\pi - A)$, we get

$$\frac{X}{\sin B} = \frac{R}{\sin A}$$

and solving for X we obtain

$$X = \frac{R \sin B}{\sin A} . \tag{3}$$

Figure 5A-Dimensions Used in Calculations of Perimeter

Figure 5B-Perimeter of One-half of a Star Point Before and After Straight Sides Disappear

THE THE PARTY AND THE PARTY OF THE PARTY OF

by substituting Eq (2) and Eq (3) in Eq (1) we get

$$P_0 = 2NR \left(C - B + \frac{\sin B}{\sin A} \right) \tag{4}$$

Let W equal the linear displacement of the burning surface from its original position. To find the perimeter during burning, two cases must be considered. One case is the period that the straight sides of the star points exist and the other is the period after the straight sides disappear. Let W' be the value of W at the point where the straight sides of the star points first disappear.

$$W' = X \tan A = R \frac{\sin B}{\sin A} \tan A = R \frac{\sin B}{\cos A}$$

Case 1

 $W < \frac{R \sin B}{\cos A}$, straight sides of star points exist.

From Figure 5 we see that for this case the perimeter is

$$P = 2N(b + s + y). \tag{5}$$

The value of b is

$$b = (R+W) (C-B) = R(C-B) + W(C-B)$$
 (6).

and

$$s = W (\pi/2 - A + B). \tag{7}$$

Since

$$y = X - Z$$
 and $Z = W$ cot A

We have by substitution

$$y = R \frac{\sin B}{\sin A} - W \cot A. \tag{8}$$

By substituting Eq. 6, 7, and 8 in Eq. 5 and simplifying we obtain

$$P = 2NR (C-B + \frac{\sin B}{\sin A}) + 2NW (\pi/2 + C - A - \cot A)$$

or
$$P = P_0 + 2NW (77/2 + C - A - cot A)$$
 (9)

 $W > \frac{R \sin B}{\cos A}$, after straight sides of star points disappear.

The perimeter for the second case in Figure 5 is

$$P = 2N (b' + s')$$
 (10)

where the value of b' is

$$b' = (R+W) (C-B) = R(C-B) + W(C-B).$$
 (11)

From the law of sines we have

$$\frac{R}{\sin E} = \frac{\pi}{\sin E}$$

therefore

$$\sin E = \frac{R \sin B}{W}$$

and

$$E = \sin^{-1} \frac{R \sin B}{W}.$$

Since

$$s' = WD$$
 and $D = B+E$

we have
$$s' = W(B + \sin^{-1} \frac{R \sin B}{W})$$
 (12)

By substituting Eq. 11 and Eq. 12 in Eq. 10 and simplifying, we

get

$$P = 2N \left[R \left(C - B \right) + W \left(C + \sin^{-1} \frac{R \sin B}{W} \right) \right]$$
 (13)

Equations 4, 9 and 13 are the necessary equations for finding the perimeter in all cases.

Reference

(1) Huggett, Bartley and Mills, "Solid Propellant Rockets", Princeton University Press, Princeton, New Jersey, 1960.

APPENDIX III

COMPUTER PRINTOUT OF TEST DATA

This appendix contains the computer printout of the test data for MAPI flares 300, 312, 313, 394, 426, 427, 463, 464, and 556.

For each of the test flares, the printout presents the data in both numerical and graphical forms. In the numerical printouts various values are tabulated against instantaneous time during the burning period. The second column is the average luminous intensity of the high 29 photocells. The third column is the integrated candle-seconds from time zero. The fourth column is the running mean luminous intensity in units of candles taken from time zero. The fifth column is the running mean luminous intensity taken from time ten seconds. The sixth column is the standard deviation of the high 29 photocells and the seventh column is a uniformity factor which is defined as the high 29 average photocell reading minus the low 29 average photocell reading divided by the average photocell reading of all cells where the average is equal to the high average plus the low average divided by two. Thus, the uniformity factor can range from zero to 2.0 and is a measure of the uniformity of the light distributed in a spherical pattern. For example, when the light is perfectly distributed, the uniformity factor is zero. Thus, the closer this number is to zero the more uniform is the light distribution.

One graph shows the photocell intensity data plotted as a function of time. In that graphical presentation the photocells

are not sorted. Each photocell is plotted against time to show the variation of intensity on that photocell. These plots frequently overlap because the cell may be high at one instant in time whereas it may be low at another instant in time depending upon smoke conditions and other factors. In contrast to this, another graphical presentation is presented wherein the photocell data is sorted and plotted against time. In that presentation, the uppermost plot, for example, is the plot of the highest reading vs. time regardless of which cell is sensing this value. The second highest plot is a graph of the second highest reading vs. time regardless of which cell is sensing that value, etc. In this presentation, the plots do not overlap.

Another graph is presented which is a plot of intensity against time of the high 29, the low 29, and the average of all 58 cells. Since more than 56 cells are never used and often times less than 56 cells are used, the average of the low 29 is biased in the low direction by the number of cells which are not in use. The cells not in use are read by the computer as having an intensity of zero. On the other hand, the high 29 which are selected by the computer are representative of the intensity of the unit in the direction which is the most free from smoke and other light interferences. The plot of the average candlepower of all of the photocells is also biased in the low direction depending once again upon the number of cells that are not in use.

Another graph is presented which shows the integral candleseconds against time. The linearity of this plot is a measure of the constancy of light output.

Another presentation is a plot of average luminous intensity against time starting with instantaneous time zero and time ten seconds. Graphical presentations are also included to show the standard deviation of the luminous intensity of the high 29 and low 29 photocells and to show the uniformity factor versus time.

MAPE FLARES RUN 309

INSTANTANEOUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CANDLEPOWER SECONDS FROM TIME ZERO, RUNNING MEAN CANDLEPOWER FROM TIME ZERO, RUNNING MEAN CANDLEPOWER FROM TIME ZO, STANDARD DEVIATION OF HIGH 29 PHOTOCELLS, UNIFORMITY FACTOR

TINE	H16H 29	CP-SEC	AVE CP	AVE CP	aTD DEY	U
(SEC)	AVE		O SEC	10 150	-	•
0. 1.0#	0. 6.	0. 3.97	D. 1.84	D. O.	0. 0.	0. 0.
2.16	7.36	13.57	4.20	o.	2.25	1.23
2.57	10.46	26.85	4.23	9.	3.35 2.98	1.70
4.31 5.39	29.19 14.20	42.50 58.30	7.89 8.05	o. o.	2.51	1.42
\$.46	:4.62	73.88	9.72	٥.	2.34	1.33
7.54 9.82	14.13 14.27	89.14 104.71	10.35 10.80	9. D.	2.57 2.08	1.33
9.69	14.66	120.49	11.18	o.	1.95	1.22
10.77	14.84	136.04	11.49	14.48	2.03	1.18
11.84	14.27 14.29	151.4 5 1 68.89	11.72 11.92	14.37 14.36	1.80 1.42	1.07
14.00	14.38	181.89	12.07	14.25	1.58	1.13
15.08	13.47 13.01	196.15 210.37	12.14 12.21	14.05 13.91	1.51	1.18
16.15	13.38	224.89	12.28	13.84	1.44	1.12
18.31	13.57	239.58	12.38	13.82	1.69	1.13
19.39	13.69 13.04	253.97 268.16	12.41 12.45	13.77 13.71	1.83 1.27	1.16
21.54	13.34	282.52	12.49	13.68	1.44	1.06
.55.61	13.36	296.73	12.53	13.64	1.53	1.09
23. 69 24.77	13.04 12.47	310.50 324.31	12.54 12.55	13.58 13.52	1.60	1.15
25.85	12.81	337.95	12.55	13.46	1.46	1.02
26.92 28.90	12.52 12.09	351.19 354.32	12.54 12.53	13.39 13.32	1.38	1.08
29.08	12.31	377.18	12.51	13.24	1.71	0.98
30.19	11.54	390.16	12.49	13.17	1.30	1.04
31.23 32.31	12.43 11.98	403.26 41 6 .27	12.48 12.47	13.13 13.08	1.65	1.04
33.39	12.16	429.11	12.45	13.02	1.43	1.13
34.47	11.65 12.80	442.28 455.85	12.44 12.45	12.93 12.97	1.67	1.15 9.97
35.54 36.62	12.39	468.83	12.44	12.94	1.73	1.09
37.70	11.72	481.55	12.42	12.89	1.42	1.09
3\$.77 39.85	11.91 12.04	484.42 507.07	12.41 12.39	12.86 12.82	1.62 1.41	1.12
40.92	11.40	519.48	12.37	12.77	1.95	1.09
42.00	11.50	531.59 543.34	12.34 12.31	12.72 12.67	1.48	1.12
43.59 44.15	10.93	555.00	12.27	12.61	1.10	1.11
45.23	10.74	366,77	12.24	12.56	1.31	1.00
46.30 47.38	11.14 10.95	576.63 990.33	12.21 12.18	12.51 12.47	1.43 1.21	1.04
48.45	10.02	6D1.79	12.15	12.42	1,15	1.02
49.52	10.51	613.12	12.12	12.37 18.32	1.07	1.02
50.60 51.68	10.59	624.44 6 35.73	12.05	12.27	1.50	1.00
52.75	10.55	84G.93	12.02	12.23	1.18	1.02
53.43 54.90	10.28	657.94 668.86	11.98	12.18 12.13	1.20	1.04
55.58	10.45	679.79	11.92	12.08	1.31	1.03
57.05	3.86	69D.24	11.88 11.83	12.03 11.97	1.16 1.19	1.00
\$0.12 59.20	9.58 9.07	700,27 709,23	11.77	11.89	1.10	0.91
60.27	7.65	716.87	11.69	11.79	0.98	0.86
61.35 62.42	5.53 5.79	723.48 729.12	11.59	11.67 11.54	0.72 0.39	0.81 0.85
\$3.49	4.72	733.72	11.36	11.40	0.69	0.84
64.57	3.84	737,23 739,91	11.09	11.24 11.07	0.68 0.22	C.90 O.74
65.64 66.72	2.70 2.20	742.03	10.95	10.90	0.21	0.85
67,79	1.68	743.78	10.80	10.73	0.15	0.87
69.94	1.4 6 0.68	744.87 745.3 9	10.65 10.50	10.55 10.37	0.36 0.16	1.07
71.01	0.30	745.62	10.34	10.19	0.07	1.06
72.05	0.12	745.69 745.70	10.19 10.04	10.02	0.03	1.02
73.1 6 74.24	0.00	745.70	9.90	9.69	0.00	2.00
75.32	0.00	745.70	9.76	9.53	0.01	2.00
76,39 77,47	0. 0.	745.70 U.	9.63 0.	9.37 D.	0. 0.	o. o.

MAPE PLARES RUN 342

INSTANTANEOUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CANDLEPOWER SECONDS FROM TIME ZERO. RUMHING MEAN CANDLEPOWER FROM TIME ZERO. RUMHING MEAN CANDLEPOWER FROM TIME 10. STANDARD DEVIATION OF HIGH 29 PHOTOCELLS, UNIFORMITY FACTOR

TIRE	416H 29 AYG	CF-SEC	AVG CP D SEC	AVG CF	STD DEV	U
0.	9.65	0.36	0.3	39 362	0.92	2 00
1.02	G. 6A	4.64	2.13	G.	1.24	: .94
2.15	7.12	11.49	3.51	o.	9.94	0.67
1.21	5.43	25.34	4.66	o.	D.4C	0.32
4.37	19.79	33.66	6.17	0.	1.21	6.46
5.46	13.60	41.35	7 23	0.	2.90	9.60
€.55	11.60	61.57	8.06	0	1.39	5.52
1.64	14.48	19.36	9.69	٥.	2.18	0.50
5.73	14.07	29.10	10.09	s.	1.87	0.56
3.82	17.96	119.19	:0.82	·	2.11	0.65
10.92	16.94	137.43	11.44	15.03	1.82	0.69
12.01	19.11	159.35	12.16	18.40	2.11	0.63
13.11 :4.20	20.94 20.94	203.53	12.77 13.30	19.21	2.46 3.22	0.65 9.12
15.30	20.51	726.39	:3.51	19.16	2.29	0.6:
16.39	21.25	249.08	14.24	19.92	2.63	0.62
17.49	20.23	2/9.93	14.58	14 93	2.42	5.70
14.55	19.27	292.21	14.95	19.87	3.30	9.61
19.68	19.28	3:2.84	15.06	13 76	2.71	0.13
29.77	13.48	332.55	;*.2 <u>1</u>	13.52	2.46	9.70
21.46	17.55	351.32	15.30	13.3€	≥.50	0.60
22.96	16.72	369.26	15.35	19.12	2.5?	0.75
24.05	16.10	366.56	15.28	15.98	2.69	9.65
25.15	:6.03	493.97	15.49	18.65	7.14	9.73
26.24	:4.25	420.30	15.28 15.15	18.46	2.65	0.68
27.33 28.43	14.57	436.48	25.34	19.13 17.99	1.55 2.06	9.56
29.52	14.69	460.76	15.31	17.30	1.76	6.53
30.62	14.53	484.39	15.27	17.61	1.03	0.54
31.71	14.00	429.84	15.24	17.44	1.07	0.50
12.80	14.56	515.63	15.22	17.31	1.66	0.59
33.AR	:4.55	231.33	15.19	17.17	:.69	0.64
34.98	14.54	346.:7	15.14	17.01	2.25	0.64
36.01	12 94	562.24	13.67	18.84	1.73	0.52
37.17	12.79	974.35	15.61	16,54	1.::	6.40
38.27	12.09	588.46	14,95	16.53	1.07	9.50
39.36	:2.82	600.74	:4.65	16.33	1.46	6.77
41.46	9.56	611.35 622.14	14 75	16.19 15.89	0.85	0.44 5.54
41.55 42.64	9.49	632.17	14.47	15.69	1 14 0.92	0.52
43.73	9.84	643 96	14.37	15.51	0.45	0.42
44.81	10.72	654.94	14.27	:5.34	0.74	0.44
45.51	9.38	664.63	14.14	15.14	0.45	0.49
47.00	9.30	613.33	14.00	14.93	1.11	0.47
45.10	1.59	680.92	13.64	14.70	1.04	G. 64
49.19	6.3:	687.64	13.67	14.47	0.4;	0.39
50.29	5.94	693.75	13.50	11.23	0.46	0.61
51 30	4.23	678.81	:3.32	13.97	0.60	0.51
52 47	4.50	702.41	13.11	13.70	0.44	C. 49
53.57	2.56	194.19	12.39	13.41	0.35	0.58
54.56 55.75	1.83	106.54 101.64	.2.67 12.45	13.12	0.19 0.34	0.49 0.68
56.84	0.61	101.01	12.22	12 55	0.13	0 13
51.94	0.18	708.28	11.79	12.00	0.03	1.20
60.10	0.03	798.29	11.58	11.74	0.03	2.50
61 19	0.01	108.30	11.37	11.49	0.01	2.00
62 28	0.01	103 32	11.18	11.25	0.03	2.00
63.38	0.02	768.34	10.99	11.02	9.03	2.90
64.47	0.02	708.35	10.80	10.80	0.02	S 00
65.56	0.00	0.	0.	Ο.	0.01	2,30

HATANTANEOUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CANDLEPCHER SECONDS FROM TIME ZERO, RUNNING MEAN CANDLEPOWER FROM TIME ZERO, RUNNING MEAN CANDLEPOWER PROM TIME 10, STANDARD DEVIATION OF HIGH 29 PHOTOCELLS, UNIFORMITY FACTOR

TIME	HIGH 29	CD-056				
ISECI	AVE	CP-SEC	AVG CP O SEC	AVG CP 10 SEC	\$10 0EY	U
0. 1.00	0.09	0.04	0.03	٥.	0.03	1.61
2.18	6.30	3.61	1.66 3.03	o. o.	50.0	2.00
3.26	5.06	16.87	3.88	٥.	0.45 0.71	0.58 0.46
ê.15 5.44	7.77 8.90	25.93 35.90	4.77	٥,	1.48	0.64
6.53	9.45	46.61	5.50 6.15	0. 0.	1.#7 D.#8	0.61 0.40
7.61 8.70	10.64	53.68	4,48	ο,	1.03	0.45
3.78	13.10	73.40 86.72	7.5D 7.93	o. o.	1.25	0.64
10.66	12.34	100.02	8.37	12.25	0.80	0.85 0.56
11.95 13.04	12.13 12.26	113.28 126.33	3.49	12.23	1.74	0.71
14.12	11.77	139.15	8.95 9.15	12.16 12.07	0.91 6.79	0.67 0.47
15.21	11.82	151.65	4.31	11.95	0.82	0.58
17.36	11.23 12.12	164.30 177.42	9.45 9.61	11.91 11.93	1.25	0.5;
18.47	12.02	190.18	7.73	11.91	6.85 0.86	0.52 0.38
19.55 20.44	11.43	202.70	9.82 9.81	11.46	0.73	0.55
21.73	11,41	227.87	3.59	11.83 11.82	0.73 0.30	0.41
22.81 23.90	11.93	240.20 252.02	10.05	12.73	1.23	0.67
24.98	:0,57	275.30	10.09 10.14	11.71 11.57	0.71 1.00	0.45
27.16 28.25	10.4:	286.82	10.15	11.51	2.71	0.4A 0.47
29.34	10.75	298.38 310.27	10.17	11.48 11.43	1.42	0.52
30.43	11.45	322.26	10.22	11.40	0.77	0.42 0.52
31.52 32.61	10.59 10.53	333.7 6 345.02	10.24 19.24	:1.36	6.70	0.59
33.70	10.12	356.48	10.25	11.28	1.29 9.91	0.62 0.53
34.79 35.88	10,94	368.14	10.26	11.75	1.23	0.59
36.96	9.81	373.16 389.02	10.2F 19.24	;1.20 11.15	1.05	C.54
38,75 39,14	9.62	400.67	10.24	11.10	6.70	5.84 3.31
40.22	10.15	411. 6 9 421.72	19.24	:1.0/	1.35	0.56
41.31	8,31	431.82	10.18	11.60 :0,44	0.44 1.26	0.60 0.45
42.40	9.94 9.81	453.02 463.68	10.17	10.87	0.85	0.53
45.65	9.65	474.12	19.16 10.15	10.84 10.80	G.94 1.52	0.57
46.73	9,49	484,18	10.:3	10.76	0.99	0.93 D.5:
49.29	9.06 9.70	493.61 503.36	10.10	10.71 10.65	0.60	9.46
49.98	6.84	513.CA	10.05	10.61	0.57 1.15	0.43 0.55
51.06 52.14	9.10 9.17	522.97 532.50	10.03 10.00	10.57	0.71	0.43
13.2E	9.44	561.64	9.97	10.52 10.47	D.94 O.83	6.47 9.52
54.30 55.39	8.50 8.80	551.00 559.66	9.95	10.43	0.68	0.40
36.47	7.78	568.27	9.92 9.87	10.32 10.31	0.44 0.58	0.45
37.35 38.84	7.43	578.72	9.84	10.26	0.68	0.39 0.49
59.72	8.07 8.94	585.43 594.01	9.77	10.21 10.16	0.45	C.44
60.00	7.84	602 35	9.73	10.11	0.82 0.44	0.46 9.40
61.8 \$ \$2.96	7.61 3.15	610.87 619.26	9.70 2.67	10.06	0.65	C.37
64.04	7.34	626.83	4.63	10.01	1.01	0.47 0.46
45.12 66.21	5.66 7.60	634.5 6 642.27	9.56	9.90	0.42	0.46
67.29	6.65	649.24	9.54 9.50	9.85 9.78	9.85 0.79	0.43 0.57
\$8.37 89.45	6.24 6.81	656.30	9.45	9.72	0.44	0.42
10.53	5.02	662.70 667.84	9.40	9.65 9.57	0.68 0.41	0.58
71.62 72.70	4.49	672.29	9.25	9.47	0.33	0.56 0.60
73.78	3.75 2.12	#75.80 678.40	9.16 9.06	9.36 9.24	0.38	0.60
74.87	2.08	660.38	8.96	9.12	0.28 0.15	0.62 0.50
75.95 77.03	1.58	681.76 682.65	8.85 6.74	8.49	0.13	0.64
78.12	0.60	663.41	8.63	8.96 8.73	0.15 0.12	0.61 5.83
79.20	0.79 0.34	684.02 684.29	8.52	8.60	0.27	0.80
81.37	0.15	884.42	8.41 8.30	8.45 8.35	0.06 0.06	0.90
82.45 83.53	0.10	664.50	8.19	8.23	0.04	1.52
84.62	0.05 0.01	684.54 8 84.54	8.09 7.99	8.11 7.99	0.03	1.99
85.71	0.00	684.55	7.69	7.67	0.02	2.00 2.00
86.79 87.87	0. 0.00	684.55 684.55	7.79 7.70	1.76	O.	0.
88.95	0.00	684.55	7.60	7.66 7.53	0.01 0.00	2.00 2.60
90.03 91.11	0.00 0.04	684.58 D.	7.51	7.45	0.01	2.00
	0.04	٥.	о.	0.	0.01	t no
			~~			

MAPI FLARES RUNT394

INSTANTANEOUS TIME, AVERAGE OF MIGH 28 FHOTOCELLS, INTEGRATED CANDLEPOWER SECONDS FROM TIME ZERO, RUMMING MEAN CANDLEPOWER FROM TIME ZERO, RUMMING MEAN CANDLEPOWER FROM TIME 10, STANDARD DEVIATION OF HIGH 29 PHOTOCELLS, UNIFORMITY FACTOR

TIME	48CH 80					
(SEC)	HEGH 21	CF-SEC	AVE CP	AVG CP	STD DEV	t
D.	0.00		O SEC	10 SEC		v
1.00	7.03	3.83	3.51	c.	0.01	2.00
2.18	12.06	14.24	6.53	0.	1.23	0.44
3.26	17.58	30.22	9.27	0.	1.68	0.63
4.34	18.54	49.82	21.47	٥.	2.48	0.67
5.45	18.49	70.23	12.89	ø,	2.62	0.36
6.56	19.30	91.1 8 112.84	13,90	o.	2.92	0.60
7.68	19.76	134.49	14,70	0.	2.79	2,58
8.79	19.11	159.73	15.30	a.	2.86	9.57
9.90	19.25	176.71	15.74	٥.	2.55	9.56
11.00	16.70	197.72	16.06 16.32	0.	2.73	0.57
12.11	19.19	218.20		18.94	2.75	0.54
13:22	17.87	238.69	16.51	28.74	2.76	0.26
14.33	18.63	259.17	16.65 18.78	18.61	2.68	0.56
15.45	17.95	279.42	16.87	18.55	2.98	0.60
16.57	18.25	299.36	18.94	18.46	2.79	9.59
17.67	17.77	3:8.63	16.96	19.39	3.48	0.62
18.79	1€.87	337.62	16.97	18.23	3.19	0.54
19.90	17,41	356.63	18.97	18.10	2.96	0.59
21.01	16.64	375.54	16.97	17.98	2.98	0.5€
22.13	17,24	394.40	16.97	17.57	3.04	0.53
23.24	16.66	412.20	16.93	17.79	3.58	0.57
24.35	15.29	429.05	16.64	17.64	3,40	9.56
25.47	14.81	445.53	16.76	17.44	2.67	0.55
26.59	14.74	481.79	16.67	17.25 17.06	2.49	0.52
27.71	14.28	477.31	18.56	16.88	2.75	0.53
20.83	13.40	492.17	16.43	18.65	2.63	0.54
29.95	13.08	506.42	16.30	16.43	2 52	0.53
31.0.	12.37	519.49	16,14	16.18	2.56	9.56
32.19	10.93	531.67	15.98	15.97	2.97	0.55
33.32	10.73	543.21	15.78	15.61	1.52	0.51
34.43	10.08	554.12	15.59	15.36	1.91	0.51
35,54	9.55	564.31	15.40	15.11	2.01	0.54
36.65	8.74	573.56	15.19	14.53	1.70	0.50
37.77	7.89	592.03	14.97	14,54	1.34	0.56
38.88	7.32	589.71	14.75	14.25	1.26	0.52
39.99 41.11	6.47	596.09	14.50	13.93	1.32	0.56
42.22	4.98	601.15	14.24	13.60	0.17	0.61
45.53	4.13	605.18	13.97	13.26	9.48	0.55
44.43	3.14	608,14	13.69	12.91	0.34	0.54 9.56
45.53	2.22	610.29	13.40	12.56	0.22	0.51
46.64	1.69	611.82	13.12	12.21	0.19	0.54
47.75	0.65	612.76	12.83	11.67	9.14	0.81
48.85	0.65	613.28	12.55	11.53	0.09	0.50
49.96	0.03	613.45	12.28	11.21	0.05	0.83
51.06	0.03	613.53	15.01	19.90	0.03	2.20
52.17	0.11	613.59	11.76	10.61	0.03	1.05
53.27	0.00	613.69	11.52	10.34	0.02	2.00
54.38	0.05	613.62	11.28	10.07	0.00	2.00
55.50	0.01	613.65	11.06	9.52	0.03	
56.60	0.01	613.66	10.84	9.58	0.02	1.95
57.71	0.01	613.66	10.63	9.36	30.0	2.00
-		σ.	0.	0.	0.02	2.00 2.00
						4.30

HAPI FLARES RUN 428

INSTANTAMEOUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CANDLEPOWER SECONDS FROM TIME ZERO, RUNNING MEAN CANDLEPOWER FROM TIME ZEPO, RUNNING MEAN CANDLEFOWER FROM TIME 10. STANDARD DEVIATION OF HIGH 29 PHOTOCELLS.UNIFORMITY FACTOR

7175	H16H 29	CF-SEC	AVG CP	AVG CF	STD DEV	U
(SEC)	AVG		O SEC	13 SEC		
0.	0.20	3.78	3.61	ο.	0.00	2.00
1.94	7.22	17.31	A.20	٥.	5.95	1.96
2.09	18.79	38.71	12.37	٥.	2.82	6.53
3.15	22.25	64.04	15.34	0.	4.50	0.57
4.17	26.16	98.62	17.74	e.	5.50	G.53
3.22	28.55	122.28	19.52	e.	6.37	0.59
6.26	26.23	151.99	20.79	٥.	6.72	3.63
7.31	26.54	102.48	21.86	0.	4.99	9.53
6.35	3G.17	213.76	22.76	s.	5.88	0 55
9.39	29.93	244.36	23.44	G.	5.92	0.55
.19.43	29.11	275.44	24.02	29.81	5.10	2.52
11.47	36.51	397.95	24.57	30.27	4.95	9.45
12.50	30.96	337.77	25.00	30.30	3.95	0.46
13.51	29 73	367.89	25.32	39.11	4.23	0.48
14.53	29.37	398.48	25.62	39.07	4.09	0.48
15.55	30.46	439.17	25.94	30.18	4.64	9.4€
16.58	30.97	461.53	56.50	36.21	4.83	C.47
17.52	29.84	491.59	26.37	36.69	3.94	5.46
14.64	24.62	521.75	26.52	34.01	3.15	0.43
19.67	30.16	551.76	26.66	29.94	2.77	9.41
29.70	28.49	530.78	26.74	29.78	3.47	9.41
21.72	27.96	608.95	26.76	29.57	3.54	9.44
22.76	26.54	636.55	26.76	29.35	3.03	9,30
23.19	26.36	664.66	26.77	29.19	3.54	6.38
24.82	27.50	692.53	26.78	29.04	3.31	0.44
25.86	26.39	719.58	26.76	28.06	2.48	0.16
26.89	25.91	746.17	26.72	23.66	2.90	C.46
27.92	25.79	172.20	26.68	24.51	2.56	9.36
28.94	25.22	797.34	26.61	28.35	2.45	9.38
29.97	23.35	821.14	26.50	28.55	: .44	9.33
30.99	22.72	844.08	26.37	21.78	1.79	0.34
32.91	21.89	865.37	26.19	27.45	1.77	0.3A
33.95	19.35	983.49	25.92	27.02	1.36	9.30
34.08	15.61	897.10	25.55	26.45	1.67	0.37
35.11	10.97	905.75	25.06	25.73	1.46	9.41
36.14	5.87	919.31	24.50	24.91	0.55	0.45
37.16	3.04	912.75	23.91	24.98	0.32	0.47
39.18	1.74	914.00	27,32	23.28	0.16	0.49
39.19	0.88	914.67	22.75	22.51	9.09	G.57
40.21	0.28	914.86	22.19	21.77	0.34	0.73
41.23	0.10	o.	0.	0.	0.04	1.27

HAPI FLARES RUN 421

INSTANTANEOUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CANDLEPOWER SECONDS FROM TIME ZERO, RUNNING MEAN CANDLEPOWER FROM TIME 10, STANDARD DEVIATION OF HIGH 29 PHOTOCELLS.UNIFORMITY FACTOR

TIME	H16H 59	CP-SEC	AYG CP	AVG CP	SID CEV	U
(SEC)	AYG		C SEC	10_555		
٥.	U.00	0.02	0.62	0.	0.01	2.00
1.07	0.03	4.73	2.22	e.	0.03	2.00
2.13	8.85	16.90	5.28	o.	4.41	2.00
3.20	14.03	22.04	7.75	9.	1.96	0.52
4.26	16.24	51.62	9.69	o.	2.16	0.45
5.33	18.69	72.74	11.37	9.	3.20	0.56
6.40	20.73	94.65	12.72	ο.	4.17	0.57
7.45	21.15	116.03	13.73	٥.	4.93	0.60
8.51	20.57	139.55	14.59	G.	4.26	9.61
3.57	22.53	162.61	15.32	٥.	3.81	3.59
10.63	21.36	185.97	15.92	21.92	4.24	0.56
11.68	22.48	209.:3	16.41	21.91	4.83	0.60
12.74	21.32	231.94	16.82	21.73	3.40	0.54
15.80	21.79	254.56	17.15	21.69	2,?7	0.53
14.85	26.9€	275.95	17.40	21.56	2.46	0.52
15.92	21.19	299.30	17.63	21.50	2.37	U.43
16.97	21.19	321.60	17.85	21.47	2.38	C.48
:8.02	21.37	344.08	18.05	21.49	2.41	0.46
19.05	21.79	366.35	18.22	21.47	3.10	0.52
20.11	20.99	388.48	18.37	21.44	2.45	3.47
21.15	21.45	410.96	18.51	21.44	2.46	0.45
22.20	21.37	432.98	18.62	21.40	2.38	0.45
23.25	20.55	454.10	18.58	21.30	2.28	9.43
24.30	19.60	474.95	18.73	2:.26	2.53	9.43
25.35	20.22	496.93	:8.79	21.12	2.02	0.43
26.40	19.98	516.68	18.82	21.93	2.11	G.44
27.45	19.28	537.15	10.85	20.94	1.59	8.40
28.50	19.67	557.23	18.85	20.84	1.80	9.36
29.55	18.55	577.28	18.86	20.75	2.03	6.43
30.50	19.61	597.77	18.83	20.68	2.36	5.44
31.66	19.40	618.18	18.90	20.62	2.13	9.38
32.71	19.33	638.60	12.91	23.56	2.14	0.45
33.76	19.35	658.24	18.91	20.48	3.30	G.47
34.82	17.89	677.09	18.68	29.37	1.92	0.42
35.87	17.96	696.05	18.25	20.28	2.17	9.43
36.92	17.96	7:5.17	18.93	20.20	2.29	0.42
37.98	18.45	733.95	18.81	20.11	2.39	9.42
39.03	17.39	751.74	18.76	20.60	1.70	0.39
49.98	16.36	769.31	18.79	19.83	1.24	0.37
41.13	16.95	786.71	18.65	19.77	2.23	0.43
42.19	16.11	6D3.4D	18.58	19.64	2.13	0.49
43.24	15.49	819.52	18.50	19.50	1.64	0.41
44 30	14.68	834.74	18.40	19.35	1.49	0.37
4. 7	14.54	849.57	10.31	19.19	1.75	0.41
46 11	13.65	863.44	18.19	19.02	1.89	0.41
47.46	12.67	875.38	18.04	19.80	2.35	0.48
48.52	9.93	884.83	17.85	18.54	1.73	9.50
49.56	7.97	892.23	17.62	16.23	9.83	0.50
50.63	6.04	897.81	17.37	17.90	0.77	0.54
51.69	4.51	901.75	17.09	17.54	0.66	0.53
52.75	2.93	904.37	16.81	17.17	0.34	0.44
53.81	2.03	905.98	16.51	16.80	0.24	0.53
14.86	1.00	906.74	16.21	16.42	9.15	0.59
55.93	0.43	907.05	15.92	16.05	0.09	0.59
56.99	0.15	907.15	15.63	15.70	0.95	1.09
58.04	0.04	907.18	15.35	15.36	0.03	2.90
59.10	0.00	907.22	15.09	15.04	0.00	2.00
60.14	0.08	907.30	14.83	14.73	0.93	1.97
61.19	0.07	907.37	14.58	14.43	0.03	1.97
62.23	0.07	907.44	14.34	14.14	G.G3	2.00
63.29	0.05	c.	٥.	٥.	9.03	2.00

MARI CLASES SUR 463

INSTANTANEOUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CAMDLEFONER MICONOS FROM TIME ZERO, RUMNING MEAN CANDLEFONER FROM TIME 20, STANDARD DEVIATION OF HIGH 28 PHOTOCELLS, UNIFORMITY FACTOR

114C	~1€H 29	CF-SEC	AVG CF	AYG CP	*** ***	
1256,	AYG		9 550	19 SEC	STO DEY	U
. 34	. 22	6.70	5.95	.00	.00	
5.11	11.61	22.30	9.61	.00	2.06	00
7.25	15.59	43.69	22.64	30.	2.13	.69
4.34	22.30	69.24	15.28	.00	2.67	.70 .65
5.51	22.92	95.33	16.83	.00	3,20	.63
6.44	25.11	121.13	17.86	-90	3.52	.71
7.75	22.97	147.76	12.65	.60	3.82	.67
8.47	24.18	174.25	19.37	. 22	4.27	.71
3.97	24.70	201.14	19.92	.36	3.85	.74
11.67 12.14	2:.16	228.15	27.30	.50	4.70	.69
15.27	24.51	253.35	20.76	24.69	4.05	.75
14.37	24:48	283.5:	21.14	25.03	3.78	.75
15.48	25.27	311.54	2:.51	25.33	4.26	. 77
16.57	25.49	349.99	21.93	25.69	*.93	.7€
17.57	27.34	379,73	22.21	24.36	1.81	.75
16.72	26.69 24.14	457.88	22.54	26.Zu	4.54	. 76
19.46	27.53	431.91	22.45	26.22	4.24	. 7-
21.99	27.35	462.42	23.12	₹€.60	3.36	. 74
22.11	27.35	493.50	23.37	26.75	4.27	. 42
23.22	28.1:	524.25	23.69	26.87	4.35	.46
24 33	?7.92	555.92 587.89	27.51	26.97	4.95	.81
25.44	23.72	620.64	24,04	27.13	4.16	.93
24.55	28.87	65%.C4	24,27	27.30	4.57	.4:
27.65	28.16	643.88	24.44	27.38	4.42	.84
28.76	29.17	216.48	24.62 24.85	27.48	3.97	.A1
29.87	29.16	749.07	24.07	27 53	1.62	.66
5-1.98	29.67	782.19	25.15	27.79	4.55	.83
22.37	30.79	815.39	25.13	27.8c 27.30	4.70	.63
35.17	30.07	949.88	25.51	28.12	4.32	.85
34.24	3:.55	412.70	25.64	23.24	5.62	. 12
15.25	37.14	916.02	25,41	28.32	5.25	-86
36.46	29.64	949.31	75, 75	28.4:	5.0:	.45
37.56	22,09	942.57	26 07	28.47	4.77	.82
34.67	29.00	1014,44	26.14	23.45	4.39	
19.75	25.24	1045.82	26.20	24.47	4.68	.^4 .^ 4
40.90	20.:5	1976.76	26.24	23.44	4.11	.73
42.02	27.18	1105.91	26.24	28.35	1.37	.78
43.13	25.09	1132.49	26.18	24.20	3.58	.77
44.21	22.75	1255.54	25.04	27.45	3.52	.81
45.35	18.7;	1173.77	25.62	27.59	2.35	. *9
46.45	14.85	1108.01	25.51	27.13	2.44	.78
47.55	19.96	1198.96	75.14	26.60	1.79	.78
46.64	7.40	1274.66	24.7;	26.00	1.32	.81
49.73	4.78	1209.76	24.25	25.38	.95	.86
30.82	2.74	1211.12	23.78	24.74	.5:	.80
11.91	1.57	1212.39	23.37	24.19	.23	.70
53.01	.76	1212.99	22.34	25.44	-12	.68
54.10 15.10	.34	1213.24	22.39	22.91	.06	.64
56.26	.12	1213.35	21.95	22.35	.04	1.38
57.35	.08	1213.49	21.52	21.41	-93	1.59
/	.92	.00	.03	.00	.93	9.00

MAPI FLARES BUR 484

INSTANTAMEDUS TIME. AYERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CANDLEPOWER SECONDS FROM TIME ZERO, RUNNING MEAN CANDLEPOWER FROM TIME ZERO, RUNNING MEAN CANDLEPOWER FROM TIME 1D. STANDARD DEVIATION OF HIGH 20 PHOTOCELLS, UNIFORMITY FACTOR

MINISTER IN MAINT OF REMANDED TO SELECTION OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE P

TIME (SEC)	HIGH 29	CP-SEC	AVE CP	AYE CF	STD DEV	U
.24	AVE		0 SE::	10 3EC		
1.28	-03	.02	.02	-00	.01	1.69
2.31	-65	.02	.01	.00	.01	2.00
3.34	-00	.02	.01	-00	.00	00
4.39	-01 5. 5 1	2.96	.71	.00	.01	2.90
5.44	7.80	19.00	1.92	-00	1.39	.82
6-50	8.25	18.4R	2.95	.09	1.27	.62
7.95	6.21	27.19	3.72	.00	1.45	.62
5.41	8.21	35.89 44.76	4.29	.00	1.32	.60
9.68	8.50		4.74	.00	1.31	.€0
10.74	8.68	53.91	5.13	.00	1.19	.58
11.61	9.06	83.42 73.69	5.48	6.87	1.72	.59
12.87	9.12	83.05	5.75	9.98	1.66	.57
13.93	9.72	93.58	6.06	9.13	1.65	. 57
14.59	10.23	164.51	6.34	9.34	1.53	.62
16.05	10.29	115.45	6.51	9.52	1.52	.62
17.12	10.16	126.61	6.84 7.05	9.64	2.38	.50
14.20	10.61	137.58	7.23	9.75	1.40	.55
19.26	9,93	148.57	7.39	9.82	1.43	.53
20.33	16.65	160.31	7.57	9.87	1.71	. 37
21.40	11.33	172.56	7.76	9.98	1.42	.63
22.47	11.66	185.26	7.95	10.12	5.03	.63
23.53	12.15	198.39	8.14	10.27 10.43	1.60	.57
24.60	12.55	211.49	8.32	10.45	2.19	. 59
25.46	12.12	224.68	6.48	10.56	2.14 2.14	.6:
26.72	12.62	238.47	8.66	10.63	1.99	.60
27.79	15.32	252.60	8.83	10.97	2.15	.69
28.45	13.30	265.84	8.29	11.11	2.22	.64
29.91	13.55	281.52	9.15	11.26	1.93	.65
30.97	14.29	296.81	9.34	11.41	2.17	.42
38.03	14.43	311.82	9.49	11.55	2.27	.57 .61
33.08	14.14	327.13	9.65	11.63	2.30	.62
34.13	15.09	343.25	9.82	11.84	2.84	.70
35.18	15.55	359.58	9.99	11.99	2.83	.69
36.23	15.49	375.86	10.15	12.13	2.99	.68
37.29	15.38	392.41	10.30	12.26	2.89	.69
3#.34	16.03	409.23	10.45	:2.40	3.50	.72
39.39	15.97	426.24	10.66	12.54	3.34	.69
40.44	16.44	443.33	19.75	12.67	2.90	. 73
41.42	16.34	460.41	16.89	12.79	2.37	.64
42.53	16.29	477.36	11.02	12.90	3.00	.65
43.57	16.20	494.06	11.15	12.99	2.92	.65
44.61	15.69	510.41	11.24	13.07	2.54	. 59
45.06 46.71	15.48	526.94	11.34	13.15	2.53	. 54
47.75	15.99	543.69	11.44	13.23	2.38	.64
48.80	15.99	560.30	11.54	13.31	2.64	.65
49.84	15.85	576.54	11.62	13.37	2.33	.55
50.49	15.22	593.14	11.71	13.43	2.41	. 52
91.94	16.48	610.70	11.81	13.51	2.20	. 56
71.74	17.03	628.90	11.92	13.61	2.50	.61

MAPI FLARES RUM 464

INSTANTAMENUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS, INTEGRATED CAMPLEFOWER SECONDS FROM TIME JERO, RUMNING MEAN CAMPLEFOWER FROM TIME ZERO, RUMNING MEAN CAMPLEFOWER FROM TIME 10, STANDARD DEVIATION OF HIGH 29 PHOTOCELLS, UNIFORMITY FACTOR

7114€	-16H 29	CF-SEC	AYG CP	AYS CP	STO DEV	U
(SEC)	AYE		O SEC	10 SEC	5.0 02.	U
51.94	17.03	₹28.9 9	11.92	13.01	2.50	.61
52.99 54.04	17.67	E46.48	12.01	13.68	3.17	.64
55.09	15.59	663,50	12.09	13.74	1.87	.47
56.15	16.38	481.02 698.35	12.18	13.81	1.08	.55
57.21	18.27	715.31	12.26 12.33	13.87 13.92	1.52	.54
58.27	15.81	731.98	12.39	13.96	2.05 1.92	.54
55.32	15.85	748.88	12,43	14.00	2.29	.52 .56
€0.37	16.35	766.35	12.53	14.06	2.40	.53
41.42	17.09	783,97	12.60	14.12	2.73	.54
62.4 6 62.50	16.75	801.34	12.67	14.17	2.75	.55
64.54	16.71 16.52	818.58 835.92	12.73	14.21	2.37	.55
43.58	16.76	853.49	12.79 12.86	14.26 14.31	2.38	.54
66.63	16	870.68	12.91	14.35	2.50 2.63	.53
67.67	16.03	867.95	12.97	:4.39	2.58	.58 .53
68.72	17.07	905.62	13.03	14.43	3.12	.55
69.76	16.91	923.00	13.08	14.47	2.83	.56
70.83 72.87	18.56	956.99	13.18	14.53	2.55	.52
73.92	16.16 :6.36	975.94 990.93	13.22	14.56	2.65	.55
74.46	13.24	1997.95	13.26 13.30	14.59 14.62	2.81	.56
76.00	16.50	1024.97	13.35	14.65	2.67 3.03	.55
77.04	16.29	1041.77	13.33	14.67	2.5e	.55 .56
78.33	15.94	1058.27	13.42	14.69	2.45	.54
79.12	15.79	1074.39	13.44	14.70	2.23	.59
80.15 81.19	15.30 15.68	1090.39 1106.28	13.47	14.71	2.53	.52
52.22	15.00	1121.75	13.49 13.51	14.72	2.89	.54
83.26	14.91	1137.33	13.53	14.73 14.73	1.9: 2.26	. 19
84.29	15.20	1152.63	13.55	14.73	2.43	.53 .56
\$5.32	14.45	1:57.46	:3.56	24.73	2.11	.50
66.35 87.37	14.41	181.82	15.56	14.72	1.69	.54
68.49	13.68 13.19	1195.66 1208.62	13.56	14.79	1.56	.49
89.45	12.57	1220.71	13.55 13.55	14.67 14.64	2,94	.49
90.4€	11.35	1231.82	13.50	14.59	:.79 1.26	.49 .50
91.49	10.19	1241.71	13.45	14.52	1.35	.49
92.53	8.46	1250.10	13.39	14.44	1.11	.50
93.57 94.61	7.30	1256.89	13.32	14.24	.71	.42
95.63	5.84 4.39	1262.14	13.23	14.23	.40	.43
96.85	3.35	1266.07 1269.01	13.13 13.03	14.11	.63	.44
97.66	2.45	1271.17	12.91	13.28 13.84	.34 -21	.40 .36
98.65	1.79	1272.74	12.80	13.70	.13	.36
29.70	3.50	1273.94	12.68	13.56	.12	.32
100.71	1.04	1274.84	12.56	13.42	.09	. 33
102.74	.73 .53	1275.47	:2.44	13.28	-08	.33
103.75	.42	1275.95 1276.30	12.33 12.21	13.14	.04	.40
104.75	.27	1276.52	12.21	13.00	.03	.35
105.78	.16	1276.62	11.98	12.87 12.73	.03 .03	.41
106.77	.04	1276.65	11.87	12.50	.03	.56 1.95
107.80	.03	1276.68	11.76	12.47	.02	1.84
109.83 109.86	.05	1276.70	11.65	12.34	.01	2.00
110.89	.03 .03	1276.73 1276.75	11.54	12.21	.02	1.78
111.91	.00	1276.75	11.43 11.33	12.09 11.96	.02	2.00
112.94	.01	1276.76	11.23	11.95	.01 .01	2.00 2.00
113.98	.00	1276.76	11.12	11.73	.00	00
115.00	.00	.00	.00	.00	.00	00

MAFT FLARES RUN 556

Instantaneous time, average of high 29 photocells, integrated candleforer seconds from time zero, running mean candleforer from time zero, running mean candleforer from time to, standard deviation of high 20 photocells, uniformity factor

المعاويات مياي والأرميسيمانها البادات المراومات والمياطية والمعاومة والإسمامة المسامك وللميشيان كالمعاملات

المعافية والماري والمراجين بالمراج والمراج المراج ا

TIME	11cm 29	CF-5EC	AVG CF	AVG CF	STD DEV	υ
י־32)	AYG		e sec	19 SEC		
. 36	.05	.es	.62	.69	.03	2.60
2.15	.90	- 06	.62	.60	.90	09
1.23	.05	1.67	.49	.90	.63	1.93
4.57	2.79	7.22	1.59	.09	1.25	: .44
2.51	6.93	14.75	2.59	.(4)	2.17	.74
6.65	5. 311	2:.7:	3.19	.69	1.22	.84
7.7^	6.:0	24.26	3.55	.00	1.77	-66
4.35	5.5B	34.13	2.76	.99	1.78	1.11
10.54	5.04	40.21	3.94	-99-	1.33	1.17
11.17	5.71	46.72	4.12	.63	1.26	1.14
12.36	5.70	53.11	4.26	5.64	1.27	1.11
15.43	5.48	59.00	4.34	5.40	.24	1,13
14,58	4.90	65.22	1.43	5.45	1.56	1.06
15.70	6.06	72.12	4.54	5.61	1.83	1.41
16.83	6.09	77.32	4.55	را>، ج	1.53	ڊڊ.
:7.46	3.07	8324	4.59	5.37	1.3%	1.04
\$9.19	7.56	91.49	4.75	5.64	1.65	1.05
29.24	7.16	<i>2</i> 9.73	4.38	5.84	1.56	. :•€
21.37	7.3	198.67	5.0:	6.01	1.53	.93
22.5:	7.35	116.56	5.14	5.15	1.52	.÷9
23.65	7.54	144.57	5.23	6.01	1.61	1.65
24.70	6.53	132.29	5.25	€.28	1.23	1.17
25.93	7.91	140.82	5.34	5.57	1.76	1.17
27 67	3.00	149.42	5.49	5.46	2.01	1.16
24 .20	7.17	155.66	5.50	6.45	3.02	1.17
29.34	₹.56	162.97	5.52	5.39	1.92	1.43
30.48	\$.47	169.55	5.53	6.16	2.02	1.45
31.63	6.07	:76.50	5.55	5.35	2.63	:.42
32?	6.23	184.74	5.50	6.16	1.30	1.45
32.31	7.21	152.71	2.65	6.42	≥.1,	1.82
15.05	7.63	211.54	4.10	€.:4	1.95	٠٠٠ :
35.18	7.99	215.92	4.40	۲.5ر	2.63	1.17
37.32	₹.5€	227.78	5.	6.61	1.92	1.67
34.47	a.72	229.95	5.32	6.71	2.62	1.31
39.61	7.33	737.71	5.34	6.71	2,25	1.08
49.74	6.14	244.82	5.94	6.70	2.19	:.23
41.60	6.18	53.135	6.16	6.71	1.84	1.25
43.70	11.45	266.42	6.17	6. 30	1.93	.66
44.13	9.34	276.79	6.25	6.38	2.57	.74
45.26	9.60	33.385	6.31	7.Ç4	2.25	1.00
48.33	4.37	295.50	6.35	7.56	2.25	1.12
47.53	7.24	303.49	6.36	7.06	2.29	1.28
49.67	6.87	311.38	6.37	∴.ι.€	2.24	1.32
49.00	7.04	320.55	6.40	7.07	2.25	1.41
50.95	8.09	329.13	6.44	7.19	2.39	1.27
52.08	7.36	330.35	6.47	7.13	2.23	1.25
53.22	₹.26	347.41	6.51	7.15	2.28	1.22
54.36	7.58	356.11	6.53	7.16	2.25	1.22
55.49	7.63	365.81	€.57	7.20	2.51	1.29
56.63	9.43	375.27	6.61	7.23	2.55	1.19

MAPE FLAFES AUM 556

INSTANTANEOUS TIME, AVERAGE OF HIGH 29 PHOTOCELLS. INTEGRATED CANDLEFOVER SECONDS FROM TIME ZERO, RUMING NEAM CANDLEFOVER FROM TIME ZERO, RUMING NEAM CANDLEFOVER FROM TIME 10. STANDARD DEVIATION OF HIGH 29 FHOTOCELLS, UNIFORMITY FACTOR

13€ 4164 59 CP-SEC 146 C 13€C1 446 CP-SEC 146 C	16 SEC 7.23 2.55 1.19
	7.23 7.55 1.19
26.61 9.43 375.27 6.61	
57.77 7.21 382.69 6.60	7.21 2.35 1.07
48.91 5.83 399.43 6.61	7.29 2.28 1.17
66.04 7.73 406.56 6.65	7.24 2.15 1.35
61.19 9.85 411.61 6.71	7.24 2.30 .81
62.33 3.60 422.47 6.76	7.34 2.37 .93
63.47 9.46 431.37 6.21	7.39 2.23 .91
64.61 9.51 444.27 E.86	7.43 2.23 .91
65.76 9.55 454.79 6.90) 7.47 2.25 1.86
C6.90 40.00 464.34 6.38	2.25 .84
(4,54 7.45 471.68 6.49	
89.15 3.99 475.33 6.89	7.30 1.75 1.29
79.32 3.42 400.34 6.40	2.14 1.75 1.42
71,47 6.49 488.43 6.68	
72.61	
73,74 5 99 502.69 6.89	
74.89 6.33 509.27 6.73	
76.03 5.34 515.44 6.76	
77.17 5.45 521.38 6.75	
78.32 5.97 528.62 6.73	
79.47 5.60 535.5: 6.77	
20.61 6.43 543.G9 6.7	
81.75 6.84 550.79 6.77	
62.9G 6.59 559.5P 6.7.	
84.05 7.86 567.97 6.74	
45 20 7.41 575.60 6.7	
86.34 6.58 582.7" 6.7	
87.49 6.47 589-05 6.73	
88.63 4.48 593.81 5.69	
89.76 3.35 593.25 5.69	
99.02 3.92 6UZ.3. E.F.	
92.1€ 3.22 605.90 6.5	
93.20 3.15 508.97 6.5	
94.35 2.31 611.32 6.4	
35.49 1.79 F12.36 C.4	
95.54 1.06 613.38 6.3	
97.79 .55 6:4.4: 6.2	
98.93 .37 614.71 6.2	
100.08 .15 614.85 6.1	
191.23 .08 614.91 6.9	
172.38 .02 614.95 5.0	
103.52 .05 .96 .9	G .CL .UP 1.72

APPENDIX IV

DIAMETER STUDY

Summary Sheets for Pressed Candles and Hybrid Series

	_
ON LONG	こことしている
Hacks	これらいてい
2000	440

611 616 621 641 642 58.5 58.5 58.5 58.5 58.5 37.5 37.5 37.5 37.5 4.0 4.0 4.0 4.0 4.0 4.0 183 159 185 170 171 37.5 7.35 7.35 7.35 7.35 11) 7.35 7.35 7.35 7.35 7.35 11.65 1.65 1.67 1.77 1.77 17.44 85.7 73.5 80.5 79.9	MAPI Test No. Megnesium % (gran 18) Sodium Nitrete % Binder* % Luminous intensity (x10 ⁶ cd) 2.9 Burning time (sec) Efficiency (x10 ³ cd-sec/g) 40. Composition diameter (in) 7.3 Composition weight (1b) 20 Pressing pressure (psi) 20 Pressing pressure (g/sec) 1.6 Burning rate (g/sec) 1.6
--	---

* Epoxy binder formula: 70% DER 321 plus 30% DER 732 plus 11 phr DER 24.

* Epoxy binder formula: '0% DER 321 plus 30% DER 732 plus 11 phr DER 84.

The second divisit Season of the extension of the Season

DIAMETER STUDY: PRESSED CANDLES (by Formula) 22 September 1967

Test No.	Formule*	Diameter (in)	Density (g/cm^3)	burning Reto-sec/in	Intopsity (x10 ⁵ od)	$(x_{10}^{\frac{2cd-sso}{2cd-sso}})$	Area Output (x10 ³ cd/in ²)
T-499	55/40/5	1.76	1.75	15.3	15.1	35.4	99
T-2624	55/40/5	1.76	1.80	15.7	1.54	6.02	67
7-5375	55/40/5	3.76	1.35	16.2	2.60	35.0	65
T-502	55/40/5	1.76	1.75	15.3	1.41	31.0	9
T-2625	55/40/5	1.76	1.78	ස. ස	1.55	33.3	63
T-3376	55/40/5	1.76	1.83	ر. و	7.66	g.*2	68
T-3377	55/40/5	1.76	1.85	15.3	1.66	34.4	88
T-3378	55/40/5	1.76	1.97	14.5	1.84	35.8	75
MAPI 484	55/40/5	5.66	1.80	7.6.3	3.20	29.8	57
MAPI 538	55/40/5	2.66	2.75	9.4.	3.90	34.9	70
MAPI 493	55/40/5	2.66	1.82	15.3	3.20	27.6	57
MAPI 547	55/40/5	99.6	1.76	14.7	3.60	80.08	64

• 55% granulation 18 magnesium, 40% 30-micron scdium nitrate, end 5% Laminac 4116 binder.

DIAMETER STUDY: PRESSED CANDLES (by Formula)

22 September 1967

					Luminous	Efficioney	Surface
MAPI No.	Formula* (in)	Ulemeter (in)	Density (g/cm^3)	Burning Rate-sec/in	Intensity	(x1030d-soa)	Area Output
485	55/40/5	4 25			יחס פדער		$(x \pm 0^{\circ} cd / in^{\circ})$
	2 (2) (3)	4.60	T.8.3	14.8	12.0	42.2	α
539	55/40/5	4.25	1.61	93.9	r 2		5
494	55/40/8	0	,			48.7	94
	C /C+ /C>	4. G	1.89	34.7	12.4	41.7	Ċ
548	55/40/5	4.25	1.58	13.4		! ;	õ
2				•	7 • 4, 7	51.9	66
ç 1 5	55/40/5	7.35	1.30	14.9	37.1	ر د دون	į
540	55/40/5	7.35	1.79	12.4	L 75	† (* E	
495	55/40/5	7 35	Š	1	· · · · · · · · · · · · · · · · · · ·	N	87
	2 (2)	20.	06.7	15.0	36.9	9.04	87
549	55/40/5	7.35	1.76	12.5	39.3	40.0	. a

^{55%} granulation 18 magnesium. 40% 30-micron sodium nitrate, and 5% Laminac 4116 binder.

ALL REPORT OF THE PARTY OF THE STATE OF THE

DIAMETER STUDY: PRESSED CANDLES (by Formula)

1 54	Test No.	Formula*	Diameter (in)	Density (g/cm^3)	Burning Rato-sec/in	Luminous Intensity (x10 ⁵ cd)	Efficiency (x103cd-sec)	Surface Area Output (x103cd/in2)
	T-500	62/33/5	1.76	1.74	10.6	2.67	40.9	109
	T-2696	62/33/5	1.76	1.76	18.1	2.57	43.3	105
	T-3379	62/33/5	1.76	1.83	10.0	86.2	40.7	188
	T-503	62/33/5	1.76	1.72	9.8	2.75	30.6	113
1.7	T-2627	62/33/5	1.76	1.76	11.8	2.57	41.1	105
	T-3380	62/33/5	1.76	1.33	e. 6	3.27	41.7	134
	T-3381	62/33/5	1.76	1.83	9.4	3.15	40.7	129
	T-3382	62/33/5	1.76	1.83	8.8	3.27	39.8	134
	MAPI 487	62/33/5	5.66	1.77	11.0	5.10	35.1	16
	MAPI 541	62/33/5	2.66	1.73	11.3	6.20	44.3	112
	MAPI 496	62/33/5	2.66	1.71	11.2	4.70	32.9	84
	MAPI 550	62/33/5	2.66	1.73	11.8	5.50	41.1	66

62% granulation 1% magnesium, 33% 30%micron sodium nitrate, and 5% Laminac 4116 binder.

A State Assessment of the Security of the Secu

DIAMETER STUDY: PRESSED CANDLES (by Formula)

Test No.	Test No. Formula*	Diametor (ii.)	Density (g/cm ³)	Burning Reto-sec/in	Luminous Intensity (x10 ⁵ od)	Efficiency (x10 ³ cd-sec)	Surface Area Cutput (x10 ³ ed/in ²)
623	55/40/5	2.66	1.80	15.1	4.4	41.1	49
624	55/40/5	2.66	1.74	15.1	. 4.4	42.0	79
625	55/40/5	2.66	1.80	15.1	4.7	43.0	84
626	55/40/5	2.66	1.80	15.3	4.4	41.1	79
\$ 5 0	55/40/5	2.66	1.80	14.4	4.7	41.7	- 80
646	55/40/5	2.66	1.80	14.3	4.6	40.5	. Q
647	55/40/5	2.66	1.80	14.8	4.7	41.7	. 8 48
648	55/40/5	2.66	3.80	14.7	4.2	37.9	. 75

^{* 55%} granulation 18 magnesium, 40% 30-micron sodium nitrate, and 5% Laminac 4116 binder.

and the second of the second s

The contract of the contract o

DIAMETER STUDY: PRESSED CANDLES: (by Formula) 27 September 1967

Test No.	No.	Formula*	Diemeter (in)	Density (g/cm^3)	Burning Rate-sec/in	Luminous Intensity (x105 od)	Efficiency (x10 ³ od-sec)	Surface Area Output (x10 ³ od/1n ²)
T11838	38	55/40/5	2.66	1.79	13.8	8.9	53.1	114
T11839	39	55/40/5	2.66	1.79	13.4	8.8	51.3	113
T11840	40	55/40/5	8.66	1.79	13.7	5.9	49.9	107
T11841	41	55/40/5	3.66	1.79	13.7	0.9	51.3	011
TI1842	42	55/40/5	3.66	1.79	13.8	5°.8	49.3	105
T11843	43	55/40/5	2.56	1.79	13.4	<i>ช</i>	51.3	113
T11844	44	55/40/5	3.66	1.79	13.4	6.1	50.3	110
T11845	45	55/40/5	2.66	1.79	13.9	6.0	51.3	109
T11846	46	55/40/5	2.66	1.79	13.8	5.9	50.8	108
T11847	47	55/40/5	2.66	1.79	13.7	6.1	51.3	112
T11848	48	55/40/5	2.66	1.79	13.7	6.0	51.3	011
T11849	49	55/40/5	2.66	1.79	13.8	6.1	52.1	τιι
T11850	20	55/40/5	3.66	1.79	13.8	6.0	51.6	011

^{* 55%} granulation 18 magnesium, 40% 30-micron sodium nitrate, and 5% Laminac 4116 binder.

MENDERSON STATES OF THE PROPERTY OF THE PROPER

DIAMETER STUDY: PRESSED CANDLES (by Formula) 22 September 1967

MAPT NO.	₩ormii] A.	Diameter (in)	Density (g/cm ³)	Burning Rate-sec/in	Luminous Intensity (xl0 ⁵ ed).	Efficiency (x103cd-sec)	Surface Area Output (x10 cd/in2
488	62/33/5	4.25	1.80	11.7	14.9	41.7	105
542	62/33/5	4.35	1.54	8.8	18.4	46.1	130
497	62/33/5	4.25	1.80	10.4	15.8	39.3	111
551	62/33/5	4.25	1.54	9.6	18.7	50.8	132
. 489	62/33/5	7.35	1.63	8.5	47.8	35.9	112
543	69/33/5	7.35	1.76	6.8	50.5	37.1	119
498	62/33/5	7.35	1.63	8.0	47.5	36.0	11.2
552	62/33/5	7.35	1.75	ю 6	49.6	38.1	117

 * 62% granulation 18 magnesium 33% 30-micron sodium nitrato, and 5% Laminuc 4116 binder.

DIAMETER STUDY: PRESSED CANDLES (by Formula)

Test No.	Formula*	Diameter (in)	Density (g/cm ³)	Burning Rate-sec/in	Luminous Intensity (x10 ⁵ cd)	Efficiency (x103cd-sec)	Surface Area Output (x10 ³ cd/in ²)
T-501	70/25/5	1.76	1.68	6.6	2.75	40.8	211
T-2628	70/25/5	1.76	1.69	13.5	1.97	39.5	81
T-3383	70/25/5	1.76	1.75	9.4	2.73	36.8	212
T-504	70/25/5	1.76	3.66	7.6	2.84	42.0	116
T-2629	70/25/5	1.76	1.69	18.5	2.07	38.4	85
T-3384	70/25/5	1.76	1.75	e. 6	2.76	36.8	113
T-3385	70/25/5	1.76	1.75	ຄ. ເ	2.94	39.1	120
T-3386	70/25/5	1.76	1.75	0.6	3.12	40.3	18.
MAPI 490	70/25/5	5.66	1.72	8.6	6.00	33.1	108
MAPI 544	70/25/5	9.66	1.76	7.6	8.80	42.0	159
MAPI 499	70/25/5	99.6	1.71	ຄ.	5.80	30.8	104
MAPI 553	70/25/5	99.6	1.76	7.7	7.90	38.4	142

* 70% granulation 18 magnesium, 25% 30-micron sodium nitrate, and 5% Laminac 4116 binder.

DIAMETER STUDY: PRESSED GANDLES (by Formula)

New Control of the Co

					Luminous	His Pictoner	
MAPI No.	Formula*	Diameter (in)	Density $(8/cm^3)$	Burning Rate-sec/in	Intensity	(x10 ^{3cd-sec})	Area Output
491	70/25/5	4.25	1.76	7.7	18.3	20 0	(x10°od/in~)
545	70/25/5	C	,		0	0.4.0	129
	0 102 101	4.63	20°	5.5	23,8	38.3	168
200	70/25/5	4.25	1.30	8°.6	16,9	34.9	סרנ
554	70/25/5	4.25	1.60	6.1	ත _් සහ	0 6) (i (
492	70/25/5	7	ŗ	!	•		691
,	0 (02 (0)		1.61	7.8	45.5	32.0	107
546	70/25/5	7.35	1.71	7.1	58.1	35,3	139
501	70/25/5	7.35	1.61	7.4	47.2	, 10 10	
555	70/25/5	7.35	1.69	7.0	53.1) a	317
						3	דעמ

• 70% granulation 18 magnesium, 25% 30-micron sodium nitrate, and 5% Laminac 4116 binder.

DIAMETER STUDY: PRESSED CANDLES (by Diameter)

22 September 1967

Test No.	A Lumina	Diameter (in)	Density (g/cm ³)	Burning Rate-sec/in	Luminous Intensity (x10 ⁵ cd)	Effigiency (x10 ^{3cd~seo})	Surface Area Output (x10 ³ cd/in ²)
T-499	55/40/5	1.76	1.75	1.5.3	1.61	35.4	99
T-2624	55/40/5	1.76	1.80	15.7	1.64	39.9	67
T-3375	55/40/5	1.76	1.85	16.1	1.60	35.0	65
T-502	55/40/5	1.76	1.75	15.3	1.47	31.0	58
T-2625	55/40/5	1.76	1.78	15.3	1.55	33.3	63
T-3376	55/40/5	1.76	1.83	15.2	1.66	34.5	68
T-3377	55/40/5	1.76	1.85	15.3	1.66	34.4	88
T-3378	55/40/5	1.76	1.87	14.5	1.84	35.8	75
T-500	62/33/5	1.76	1.74	10.6	2.67	40.9	109
T-2626	62/35/5	1.76	1.76	18.1	2.57	43.3	105
T-3379	62/33/5	, 1.76	1.83	10.0	86.2	40.7	122
T-503	62/33/5	1.76	1.78	8.6	2.75	39.6	113

DIAMETER STUDY: PRESSED CANDLES (by Diameter) 22 September 1967

Test No.	Formula	Diameter (in)	Density (g/cm ³)	Burning Rate-sec/in	Luminous Intepsity (x10°cd)	Efficiency (xl0 ³ cd-sec)	Surface Area Output (x10 ³ od/in ²)
T-2627	62/33/5	1.76	1.76	3.11	2.57	41.1	105
T-3380	62/33/5	1.76	1.83	9.3	3.27	41.7	134
T-3381	62/33/5	1.76	1.83	9.4	3.15	40.7	129
T-3382	62/33/5	1.76	1.83	8.	3.27	39.8	134
T-501	70/25/5	1.76	1.63	6.7	2.75	40.8	113
T-2628	70/25/5	1.76	1.69	13.5	1.97	39.5	8.1
T-3383	70/25/5	1.76	1.75	9.4	2.73	36.8	112
T-504	70/25/5	1.76	1.66	6.0	2.84	42.0	116
T~2629	70/25/5	1.76	1.69	12.5	2.07	38.4	85
T-3384	70/25/5	1.76	1.75	9.3	2.76	36.8	113
T-3385	70/25/5	1.76	1.75	9°3	2.94	39.1	120
T-3386	70/25/5	1.76	1.75	0.6	3.12	40.3	128

DIAMETER STUDY: PRESSED CANDLES (by Diameter)

22 Suptombor 1967

MAPT NO.	Rormil a	Diameter (in)	Density	Burning Rate-esc/in	Luminous Intensity	Efficiency (x103cd-sec)	Surface Area Output
484	55/40/5	2.66	1.80	15.3	3.20	89.62	57
538	55/40/5	2.66	1.75	14.8	3.90	34.9	70
493	55/40/5	2.66	1.82	15.3	3.20	29.6	57
547	55/40/5	2.66	1.76	14.7	3.60	32.8	64
51 51	62/33/5	2.66	1.77	11.0	5.10	35,1	16
541	62/33/5	2.66	1.73	11.3	6.20	44.3	112
496	62/33/5	2,66	1.71	11.2	4.70	32.9	84
550	62/33/5	2.66	1.73	11.8	5.50	41.1	66
490	70/25/5	2.66	1.72	8.6	6.00	33.1	108
544	70/25/5	2.66	1.76	7.6	8.80	42.0	1.59
499	70/25/5	2.66	1.71	8.3	5.80	30.8	104
553	70/25/5	3.66	1.76	7.7	7.90	38.4	142

DIAMETER STUDY: PRESSED CANDLES (by Diameter)

22 Soptember 1967

Surface Aroa Output	(_WI / DO OT X)	φ	4	84	66	105	130	נננ	132	129	168	119 169
Efficiency (x10 ^{3cd-sec})		7 2	ס ר	0	, c) · T#	40°1	0.80	50.8	0° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°		39.6
Luminous Intepsity (x10 ⁵ od)	12.0	13.4	12.4	14.1	14.9	18.4	ב א מ) q	0.86	83.9
Burning Rate-soc/in	14.8	13.2	14.7	13.4	11.7	8.8	10.4	9.6	7.7	ດ	8.6	6.1
Density (g/cm ⁵)	1.82	1.58	1.89	1.58	1.80	1.54	1.80	1.54	1.76	1.52	1.80	1.61
Diameter (in)	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25
Formula	55/40/5	55/40/5	55/40/5	55/40/5	62/33/5	62/33/5	62/33/5	62/33/5	70/25/5	70/25/5	70/25/5	70/25/5
MAPI No.) ;	539	494	548	488	ਮ 542	497	551	491	545	500	554

DIAMETER STUDY: PRESSED CANDLES (by Diameter)

MAPI No.	Formula	Diameter (in)	Density (g/cm ³)	Burning Rate-sec/in	Luminous Intonsity (x10 ⁵ 0d)	Efficiency (x10°00d-800)	Surface Area Output
486	55/40/5	7.35	1.90		37.1	48.1	87
540	55/40/5	7.35	1.79	12.4	37.1	3.7.5	. 68
495	55/40/5	7.35	1.90	15.0	36.9	4. 63 60	87
549	55/40/5	7.35	1.76	12.5	39.3	40.0	- a
489	62/33/5	7.35	1.63	8 .5	47.8	35,9	11.2
543	62/33/5	7.35	1.76	8.9	50.5	37.1	91.6
498	62/33/5	7.35	1.63	8.6	47.5	36.0	0 1 .r
552	62/33/5	7.35	1.75	e. 6	49.6	38.5 L.88.	9 6 F
492	70/25/5	7.35	1.61	7.8	45.5	K 0.00	777
546	70/25/5	7.35	1.71	7.1	58.	53 (5 5) 15 5) 15 7)	
501	70/25/5	7.35	1.61	7.4	47.2	8 9 5 5	לפן. פרר
555	70/25/5	7,35	1.69	7.0	53.1	2 cz	125

APPENDIX V

DIAMETER STUDY

Summary Sheets for Cast Candles from 4.25 inch diameter thru 24 inch diameter

	MAPI Test No.	506	521	589	590		650	נצט
	Magnesium &	54.4	54.4	61.0	0.19	2 85 C) u	
	(Sranutation) Sodium Nitrate %	(15)	(15)	(15)	(15)		(15)	(15)
	(particle size)	(150µ)	(150n)	30,0	80°.0		30.0	30.0
	binder" % Silicone	, , ,						
	Epoxy-Folyglycol	; ;	ਝ • ਜ	0.0	0.0			
	entinge.				•		12.0	12.0
	Luminous Intensity (x10 ⁶ cd)	0.9	71.0	6.0	[c	(
58		94	96 4	121	7,126		o . t	. 8 8 8
}	8	4.	₹55.4 4.05.4	35.1	₹30.8	22.3	83.9	22.2
	Burning Rate (in/sec)	0.14	, C	ć	,			
	Burning Rate (sec/in)	6.7	7 6.55	10.3	60°0 60°0 60°0 60°0	0 0 0 0	0.35	0.38
	Density (2/22)	43.2	~ 40.9	30.1	.~. 26.1	1.57	0,2	ν.
	Composition was ant (2003)	1.26	\sim 1.88	1.38	~ 1.34	, 1,43	1.45	בער ער ר
	(OTY) PIRTON WOTEN COMME	4.0	4 0	ა. ი	3.0	ຜ ູ	, to	

Silicone formula: Sylgard 182 mix plus curing agent. Epoxy-Polyglycol formula: 62% QX 3812, and 38% DER 782. Polysulfide formula: 11.2 perts Thickol LP-2 plus 0.8 parts PbOg.

	4.25"	4.25" DIAMETER SOLID CAST FLARES	SOLID CAST	FLARES		12 September 1967
MAPI Test No.	578	585	586	579	587	588
Magnesium % (granulation) Sodium Nitrate % (particle size)	60.0 (15)	60.0 (15)	0,000	61.0	61.0	61.0 (15) 30.0
Binder* / Polyester Epoxy	10.0	10.0	10.0	(30h)	(agn)	(30)
Luminous Intensity (x10 ⁶ od) Burning Time (seo) Efficiency (x10 ³ cd-sec)	1.4 76	1.8	4.0 8.0	9.0 11.0	9.0 0.8	9.0 1.0 11.1
Burning Rate (in/sec)	0.15	66.7	26.4 0,17	31.4	28.4 0.09	30.6 0.0
During rate (sec/in) Burning Pate (g/sec) Density (g/cm^3) Composition Weight ($x{10}^3g$)	6.4 4.4 3.36 5.3	6.1 6.3 48.5 48.5	5.7 40.5 1.23	3.7 31.9 3.5	10.0 30.8 1.33	3.6 3.6 3.31 3.5

Polyester formula: 98.5% Laminac 4116 und 1.5% Lupersol DDM. Epoxy formula: 30% DER 732, 70% DEH 325 and 11 phr DEH 24.

505. 469 470	54.4 56.0 56.0 (15) (17) (17) 31.2 28.0 26.0 (150µ) (150µ) (150µ)	14.4 15.0 15.0	2.5 ~ 1.0 ~ 1.0 88 ~ 175 ~ 165 19.1 ~ 12.8 ~ 12.1	0.15 \sim 0.08 \sim 0.08 6.4 \sim 12.5 \sim 11.8 133 \sim 77.9 \sim 82.7 1.85 \sim 1.36 13.6 13.6
465	54.4 (15) 31.2 (150µ)	14.4	2.6 97 18.5	0.16 6.0 144 1.25
MAPI Test No.	Wagnesium % (granulation) Sodium Nitrate % (particle size) Aluminum Chaff (.002 x .008 x ½) Binder**	Silioone Epoxy-Polyglycol	Luminous Intensity $(x10^6 cd)$ Burning Time (sec) Efficiency $(x10^3 \frac{cd-sec}{8})$	Burning Rate (in/sec) Burning Rate (sec/in) Burning Rate (g/sec) Density (g/cm ³) Composition Weight (x10 ³ g)

60

ماهام مواسط عامه به و معتمطط الاستدار والاعتدام الديال الكادي ...كادها 1900 بالديك ماهد بالعاملات المجادات فعطالات

Silicone formula: Sylgard 182 mix plus curing agent. Epoxy-Polyglycol formula: 62% QX 3812 and 38% DER 732.

	8.0"		DIAMETER SOLID CAST FLARES	ST FLARES		12 September 1967
MAPI Test No.	577	584	576	583	652	653
Magnesium % (granulation) Sodium Nitrate % (particle size) Binder* %	61.0 (15) 30.0 (30µ)	61.0 (15) 30.0 (30u)	60.0 (15) 30.0 (39µ)	60.0 (15) 30.0 (30µ)	58.0 (15) 30.0	58.0 (15) 30.0
Polyester Epoxy Polysulfide	0°6	9.0	10.0	10.0		
Limitaria Tatas					12.0	12.0
Burning Time (sec) Efficiency (x10 ³ cd-sec)	1.5 77 13.1	1.3 78 11.5	1.6 64 11.6	ည်း (၁၈၈ (၁၈၈)	2.8 65 20.3	2.4 68 18.5
Burning Rate (in/sec) Burning Rate (sec/in) Burning Rate (g/sec) Density (g/cm ⁵) Composition Weight (x10 ³ g)	0.10 9.2 11.7 1.31 9.0	0.10 9.4 114 1.31	0.13 7.3 1.41 1.26 9.0	0.13 7.4 1.29 0.0	0.12 7.2 139 2.76	.11 8.5 1.32 1.37 9.0

61

* Polyester formula: 98.5% Laminac 4116 and 1.5% Lupersol DDM. Epoxy formula: 30% DER 732, 70% DER 321 and 11 phr DEH 24. Polysulfide formula: 11.2 parts Thiokol LP-2 plus 0.8 parts PbOg.

		-			
909	61.0 (15)	0.6	, 4 %.	0.30 9.9	1.30
605	61.0 (15) 30.0	0.0	ក្នុង ស ុ ស្ត	0.10 9.9	1.30
523	54.4 (15) 31.2 (150µ)	14.4	5.9 85 16.0	0.15 ~6.54 ~374	\sim 1.32 31.8
504	54.4 (15) 31.2 (159u)	14.4	6.0 83 15.9	0.15 888 888	
466	54.4 (15) 31.2 (150µ)	14.4	4.0	0.28	31.3
507	56.0 (15) 31.2 (150µ)	12.8	7.3 64 14.9	0,20 4,88 493	31.8
MAPI Test No.	Magnesium % (granulation) Sodium Nitrate % (particle size) Binder* %	Silioone Epoxy	Luminous Intensity (x106od) Burning Time (sec) Sfliciency (x103 od-sec) R	Burning Rate (in/sec) Burning Rate (sec/in) Burning Rate (g/sec) Density (g/cm ³)	Composition Weight (x103g)

*Silicone formula: Sylgard 182 mix. Epoxy formula: 30% DER 732, 70% DER 321 and 11 phr DEH 24.

	16.0"	DIAMETER SOLID	SOLID	AST FLARE	ຜ	12 Septen	12 September 1967
MAPI Test No.	203	299	370	371		424	467
Magnesium % (granulation)	60.09	57.0	58.4	58.4	56.0	56.0	4.
Sodium Nitrate %	25.0	29.8	88.8	28.8		(12) 31:%	(15) 31.2
fartise size) Binder* %	(30g)	(150µ)	(ποςι)	(150 _µ)		(150m)	(150m)
Silicone	15.0	13.8	12.8	12.8		12.8**	14.4
Luminous Intensity (x10 ⁶ dd.)	4.7	3.7	8.8	છ જ		7.7	8 19
Afficience (+103cd-sec)	2 C	7.9.C	81	୧୧		43	81
8	4. •	7.01	6.5		11.1	11.8	11.9
Burning Rate (in/sec)	0.10	0.08	0.14	0.24	0.18	0.34	, r
Burning Rate (sec/in)	9. 3.0	12.4	9.6		5,3	7.0	* 2.9
Density (a/ond)	460	351	568		782	658	700
Composition Weight (21032)	L.00	1.33	ב. - 33	1.41	1.28	1.38	1.44
	7.00	26.7	56.7	26.7	56.7	28.4	56.7

* Silicone formula: Sylgard 188 mix or ** RTV 615.

16.0" DIAMETER SOLID CAST FLARES

12 September 1967

^{*} Polyester formula: 98.5% Laminac 4116 and 1.5% Lupersol DDM.

Epoxy formula: 30% DER 732, 70% DER 321 and 11 phr DEH 24.

Epoxy-Polyglycol formula: 62% QX 3812 and 38% DER 732.

Polysulfide formula: 14.9 parts Thiokol LP-2 and 1.1 parts PbO2.

	-	
604	61.4 (15) 30.0	5.95 75.95 8.1 8.8 1.78 56.7
503	54.4 (15) 31.2 (150 µ)	12.9 10.0 10.0 5.9 1.13
MAPI Test No.	Magnesium % (granulation) Sodium Nitrate % (perticle size) Binder* % Silicone Epoxy	Luminous Intensity (x106cd) Burning Time (sec) Efficiency (x10 ³ cd-sec) Burning Rete (in/sec) Burning Rate (sec/in) Burning Rate (x10 ³ g/sec) Density (g/cm ³) Composition Weight (x10 ³ g)

^{*} Silicone formula: Sylgard 182 mix. Epoxy formula: 30% DER 732, 70% DER 321 and 11 phr DEH 24.

603	61.0 (15) 30.0	~ 5.0 56 ~ 4.9	~0.11 8.6 ~1.0 1.18 56.7
502	54.4 (15) 31.2 (150 m) 14.4	16.3 34 9.8	0.16 6.0 1.6 1.35
MAFI Test No.	Magnesium % (granulation) Sodium Nitrate % (particle size) Binder* % Silicone Epoxy	Luminous Intensity (x10 ⁶ od) Burning Time (sec) Efficiency (x10 ³ cd-sec)	Burning Rate (i.1/sec) Burning Rate (sec/in) Burning Rate (x10 ³ g/sec) Density (g/cm ³) Composition Weight (x10 ³ g)

*Silicone formula: Sylgard 182 mix. Epoxy formula: 30% DER 732, 70% DER 321 and 11 phr DEH 24.

APPENDIX VI

DIAMETER STUDY GRAPHS

- Figure 17: Luminous efficiency vs candle diameter. Shows behavior for end burning solid cylindrical pressed candles with paper candle case all burned in vertical position on MAPI site with flame pointed downward.
- Figure 18: Luminous efficiency vs candle diameter. Shows behavior for end burning solid cylindrical cast candles with paper candle case all burned in vertical position on MAPI site with flame pointed downward.
- Figure 19: Luminous efficiency vs candle diameter. Shows degradation of efficiency for silicone cast candles as diameter increases. Numbers on data points are the candle MAPI test numbers.
- Figure 20: Luminous efficiency vs candle diameter. Shows degradation of efficiency for polysulfide cast candles as diameter increases. Numbers on data points are the candle MAPI test numbers.
- Figure 21: luminous efficiency vs candle diameter. Shows degradation of efficiency for polyester cast candles as diameter increases. Numbers on data points are the candle MAPI test numbers.
- Figure 22: Luminous efficiency vs candle diameter. Shows degradation of efficiency for epoxy cast candles as diameter increases. Numbers on data points are the candle MAPI test numbers

Figure 17: Luminous efficiency vs candle diameter. Shows behavior for end burning solid cylindrical pressed sandles with paper candle case all burned in vertical position on MAPI site with flame pointed downward.

Figure 18: Luminous efficiency vs candle diameter. Shows behavior for end burning solid cylindrical cast candles with paper candle case all burned in vertical position on MAPI site with flame pointed downward.

Figure 19: Luminous efficiency vs candle diameter. Shows degradation of efficiency for silicone cast candles as diameter increases. Numbers on data points are the candle MAPI test numbers.

Figure 20: Luminous efficiency vs candle diameter. Shows degradation of efficiency for polysulfide cast candles as diameter increases. Numbers on data points are the candle MAPI test numbers.

Figure 21: Luminous efficiency vs candle diameter. Shows degradation of efficiency for polyester cast candles as diameter increases. Numbers on data points are the candle MAPT test numbers.

Figure 22: Luminous efficiency vs candle diameter. Shows degradation of efficiency for epoxy cast candles as diameter increases. Numbers on data points are the candle MAPI test numbers.

APPENDIX VII

EFFECTIVE BRIGHTNESS CURVES (for pressed candles)

Figure 23: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with 5% polyester binder and 55% magnesium. Q group tested in January 67; L group in March 67. Numbers on data points are the candle MAPI test numbers.

Figure 24: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with 5% polyester binder and 62% magnesium. P group tested in January; M group in March 67. Numbers on data points are the candle MAPI test numbers.

Figure 25: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with 5% polyester binder and 70% magnesium. R group tested in January 67; N group in March 67. Numbers on data points are the candle MAPI test numbers.

Figure 26: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with silicone binders. Numbers on data points are the candle MAPI test numbers.

Figure 27: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with epoxy binder. Numbers on data points are the candle MAPI test numbers.

Figure 28: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for hybrid candles pressed with medium pressure with epoxy binder. Numbers on data points are the candle MAPI test numbers.

Figure 23: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with 5% polyester binder and 55% magnesium. Q group tested in January 67; L group in March 67. Numbers on data points are the candle MAPI test numbers.

Figure 24: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with 5% polyester binder and 62% magnesium. P group tested in January; M group in March 67. Numbers on data points are the candle MAPI test numbers.

Figure 25: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with 5% polyester binder and 70% magnesium. R group tested in January 67; N group in March 67. Numbers on data points are the candle MAPI test numbers.

LUMINOUS INTENSITY (x10⁶cd)
Figure 26: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with silicone binders. Numbers on data points are the candle MAPI test numbers.

LUMINOUS INTENSITY (x10⁶cd)
Figure 27: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles pressed with epoxy binder. Numbers on data points are the candle MAPI test numbers.

LUMINOUS INTENSITY (x10⁶od)
Figure 28: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for hybrid candles pressed with medium pressure with epoxy binder. Numbers on data points are the candle MAPI test numbers.

APPENDIX VIII

EFFECTIVE BRIGHTNESS CURVES (for cast candles)

Figure 29: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with silicone binder. Numbers on data points are the candle MAPI test numbers.

Figure 30: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with epoxy binder. Numbers on data points are the candle MAPI test numbers.

Figure 31: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with polyester binder. Numbers on data points are the candle MAPI test numbers.

Figure 32: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with polysulfide binder. Numbers on data points are the candle MAPI test numbers.

Figure 33: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast in an aluminum candle case with a polyester-epoxy birder. Numbers on data points are the cardle MAPI test numbers.

Figure 29: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with silicone binder. Numbers on data points are the candle MAPI test numbers.

Figure 30: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with epoxy binder. Numbers on data points are the candle MAPI test numbers.

Figure 31: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with polyester binder. Numbers on data points are the candle MAPI test numbers.

Figure 32: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast with polysulfide binder. Numbers on data points are the candle MAPI test numbers.

LUMINOUS INTENSITY (x10⁶cd)
Figure 33: Effective Brightness Curves. Projected surface area of the flame vs luminous intensity for candles cast in an aluminum candle case with a polyester-spoxy binder.
Numbers on data points are the candle MP.PI test numbers.

APPENDIX IX

Polar Plots of Light Distribution for Candles 426 and 394

Figure 15: Luminous intensity ($x10^6$ cd) by photocell at about the 12th second into the burn of double star cavity candle MAPI 426.

Figure 34: Luminous intensity ($x10^6$ cd) by photocell at about the 20th second into the burn of double star cavity candle MAPI 426.

Figure 35: Luminous intensity $(x10^6 cd)$ by photocell at about the 10th second into the burn of double star cavity candle MAPI 394.

Figure 36: Luminous intensity $(\times 10^6 \text{cd})$ by photocell at about 20th second into the burn of double star cavity candle MAPI 394.

Figure 37: Luminous intensity (x10⁶cd) by photocell at about 30th second into the burn of double star cavity candle MAPI 394.

Figure 15: Luminous intensity (xl06cd) by photocell at about the 12th second into the burn of double star cavity candle MAPI 426.

Figure 34: Luminous intensity (x106cd) by photocell at about the 20th second into the burn of double star cavity candle MAPI 426.

Figure 35: Luminous intensity (x10⁶cd) by photocell at about the 10th second into the burn of double star cavity candle MAPI 394.

Figure 36: Luminous intensity (x10°cd) by photocell at about 20th second into the burn of double star cavity candle MAPI 394.

Figure 37: Luminous intensity (xl0⁶cd) by photocell at about 30th second into the burn of double star cavity candle MAPI 394.

Security Classification										
DOCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overell report is classified)										
1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY C LASSIF										
U. S. Naval Ammunition Depot		. ប	NCLASSIFIED							
Grane, Indiana 47522		26. shout								
3. REPORT TITLE										
25 MILLION CANDLE CAST FLARE										
DIAMETER AND BINDER STUDY VOLUME II										
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)										
Summary Report June 66 to June 67										
S. AUTHOR(S) (Lest name, liret name, initial)										
DOUDA, Bernard E.										
6. REPORT DATE	76. TOTAL NO. OF P.	AGES	75. NO. OF REFS							
January 1968	۵									
BE, CONTRACT OR GRANT NO.	9# ORIGINATOR'S RE		BER(S)							
MIPR PG-6-58	RDTR No. 105									
b. PROJECT NO.	VOLUME I	Γ	į							
c.	3b. OTHER REPORT NO(5) (Any other numbers that may be sealgred this report)									
10. A VAIL ABILITY/LIMITATION NOTICES	L									
Distribution of this document	ia unlimito	3	j							
Distribution of ones document	TO MULTIME CO.	۱.								
\										
11- SUPPL EMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY									
	U. S. Air Force Armament Laboratory Eglin Air Force Base, Eglin, Florida									
duces a luminous intensity of making goal is achieved by igniting all	million cand surfaces of a	les is	demonstrated. The							
which is formed through the center of the candle.										
The relationship between candle diameter and the ability of that candle to generate light efficiently is reported. A general degrada-										
tion of efficiency is observed as the cast candle diameter increases from 4 inches to 24 inches.										
Silicone, epoxy-polyglycol, polyester, polysulfide, epoxy-poly-										
ester, sodium perchlorate-methyl methacrylate, and various combinations										
of these binders are described as they are used to make cendles for										
the diameter study, the binder study, and the 25 million candle flare.										
Flame orientation and flame	size effects	are d	escribed. Contrary							
to common opinion, it is shown that a small flame size rather than a										
large flame from a given candle diameter is associated with candles										
which produce light with high efficiency. The binder is shown to be a major factor in the generation of various flame sizes and thus										
strongly influences the candle efficiency.										
DD 1 FORM 1473 0101-807-8800	- 0									

98

Security Classification

Security Classification

14-	KEY WORDS	LIN	LINK A		LINK B		LINK C	
		ROLE	WT.	ROLE	WT	ROLE	AT.	
	Flares Illuminating Compositions Cast Flares Binder Study Epoxy Resins Methacrylates Perchlorates Sodium Nitrate Magnesium Polyester Resins		ī					

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Date" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the goup number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers. task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known-

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14 KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.