Álgebra Linear - Aula 02

Espaços Vetoriais Euclidianos

Profa Dra. Karla Lima

Sumário

- 1 Introdução
- 2 Vetores Geometria
- 3 Vetores em Sistemas de Coordenadas
- 4 Espaços Vetoriais Reais

- Álgebra Linear estuda funções lineares em espaços vetoriais de dimensão finita.
- Por exemplo, veremos que:

$$\mathbb{R}^2 = \{(x,y) \, | \, x,y \in \mathbb{R}\} \,$$
 é um espaço de dimensão finita;

 $\mathcal{C}(\mathbb{R})=\{f:\mathbb{R} o\mathbb{R}\,|\,f$ é contínua em $\mathbb{R}\}\;$ é um espaço de dimensão infinita;

 Nesta aula, definiremos os espaços vetoriais euclidianos e suas propriedades básicas.

Vamos começar com os exemplos conhecidos, como:

- Plano Euclidiano \mathbb{R}^2 ;
- Espaço Tridimensional Euclidiano \mathbb{R}^3 ;
- Espaços Euclidianos de dimensão n: \mathbb{R}^n .

Esses são os espaços vetoriais que vocês estudam em Geometria Analítica.

- Mas estes não são os únicos espaços vetoriais que existem!
- Depois desta introdução de algumas semanas, ampliaremos para o conceito abstrato de espaço vetorial.

Figura: Exemplo de um espaço vetorial (opcional)

- Escalares: quantidades descritas apenas por um valor numérico (ex: temperatura, comprimento).
- Vetores: quantidades que exigem valor, direção e sentido (ex: velocidade, força).
- Exemplo: Temperatura = 20°C → escalar Força = 100kqf para baixo → vetor
- Embora tenham origem na Física e Engenharia, vetores e escalares são úteis em diversas áreas: Genética, Computação, Economia, Telecomunicações, Ecologia.

Grandezas Escalares

- Qual a sua massa? R: 60 kg
- Que horas são? R: 8 hs
- Qual a sua temperatura corporal atual? R: 36°C

- Qual a sua massa? R: 60 kg
- Que horas são? R: 8 hs
- Qual a sua temperatura corporal atual? R: 36°C

Para responder a estas perguntas, basta apenas **um número**, sem que outras informações precisem ser adicionadas.

- Como localizar um carro a 100 km/h, na BR101?
- Como encontrar um barco perdido no oceano Atlântico?
- Como localizar um avião que está a uma velocidade de 800 km/h?

- Como localizar um carro a 100 km/h, na BR101?
- Como encontrar um barco perdido no oceano Atlântico?
- Como localizar um avião que está a uma velocidade de 800 km/h?

Para responder a estas perguntas, além do valor escalar, precisamos indicar uma direção e um sentido.

- Como encontrar um barco perdido no oceano Atlântico?
 →Precisamos saber a rapidez, a direção e o sentido em que este barco se deslocou. Só a velocidade escalar (rapidez) não é suficiente!
- Como localizar um avião que está a uma velocidade de 800 km/h?
 ∴Aqui, além da rapidez que já foi dada, precisamos saber a direção e o sentido em que este avião se deslocou.

Como nos deslocamos em cima dessas retas?

O sentido nos diz como estamos nos deslocando na direção dada.

Na mesma direção, mas com sentidos opostos, temos:

Um vetor é representado através de uma flecha (seta):

Um vetor é representado através de uma flecha (seta):

Com essa representação, conseguimos as seguintes informações sobre o vetor:

TAMANHO DIREÇÃO SENTIDO

- O tamanho (magnitude) é dado pelo comprimento da seta.
- A direção é dada pelo corpo da seta.
- O sentido é dado pela ponta da seta.

Figura: Força para puxar o carrinho

Figura: Velocidade: direção, sentido e magnitude (rapidez)

Figura: Velocidade: mesma direção, mesmo sentido e diferentes magnitudes (rapidez)

Dois vetores são **equivalentes** (ou **equipolentes**) se possuem o mesmo tamanho, a mesma direção e mesmo sentido:

Os vetores abaixo possuem a mesma direção e a mesma magnitude, porém, os sentidos não são equivalentes.

Portanto, os vetores são diferentes.

Os vetores abaixo possuem a mesma direção e a mesma magnitude, porém, os sentidos não são equivalentes.

Portanto, os vetores são diferentes.

Quando os vetores têm a mesma direção e a mesma magnitude, mas sentidos diferentes, dizemos que os vetores são **opostos**.

Os dois vetores abaixo são diferentes, pois todas as suas características são distintas.

- Em geral, vetores são indicados por letras minúsculas em negrito;
- Quando sabemos quem é o ponto inicial A e o ponto final B, também escrevemos:

$$\mathbf{v} = \overrightarrow{AB}.$$

Vetores Equivalentes

Exercício

Encontre os vetores equivalentes: Geogebra Vetores Equivalentes (Clique aqui!)

Definição

O vetor cujos pontos inicial e final coincidem tem **comprimento zero** e denominamos esse vetor de **vetor nulo**, e o denotamos por $\mathbf{0} = \overrightarrow{\mathbf{0}}$.

O Plano Cartesiano é composto por duas retas, perpendiculares¹ entre si:

Chama-se **origem** do plano cartesiano, o ponto O = (0, 0).

¹o ângulo entre as duas retas é de 90°

- i) Na horizontal, escolhe-se um ponto para representar o número 0, e os números positivos são colocados à direita, enquanto os negativos à esquerda do 0.
- ii) Na vertical, escolhe-se um ponto para representar o número 0 (coincidindo com o 0 da reta horizontal), e os números positivos são colocados acima, enquanto os negativos abaixo do 0.

A identificação de um ponto P do plano está em função da sua distância até a reta vertical (r_v) e sua distância até a reta horizontal (r_h) : P = (x, y).

- Se x estiver à direita da origem, temos $x = \text{distância à } r_v$; caso contrário, temos $x = (\text{distância à } r_v)$.
- Analogamente, se y estiver acima da origem, temos $y = \text{distância à } r_h$; caso contrário, temos $y = (\text{distância à } r_h)$.

Exemplo

Os pontos A = (-i, 0.5) e $B = (\sqrt{2}, -1)$ no plano cartesiano:

Representação Vetorial no Plano

Os pares ordenados (x, y) são usados tanto para representar pontos quanto vetores no plano. Portanto, deve ser enfatizado o ponto de vista geométrico desejado.

Os vetores $\mathbf{u} = (x, y)$ têm início na origem do sistema de coordenadas (0, 0) e final no ponto (x, y).

Exemplo

Em azul, o ponto A=(-i,0.5); em rosa, o vetor ${\bf u}$, que tem início na origem (0,0) e final em A.

Quando o vetor ${\bf v}$ não possui início na origem do sistema, devemos descrevê-lo através dos seus pontos inicial e final.

O vetor $\mathbf{w} = \overrightarrow{OE}$ é equivalente ao vetor \mathbf{v} , onde seu ponto inicial é a origem (0,0).

Na álgebra dos vetores, costumamos utilizar o vetor equivalente ao vetor dado, que tem seu ponto inicial na origem. Então, se queremos identificar o vetor \overrightarrow{CD} , o identificamos como sendo: $\overrightarrow{CD} = (-2, -2)$.

Denotamos por ${\bf 0}$ o vetor que tem comprimento igual a 0, não possui nem direção nem sentido. Em \mathbb{R}^2 , é representado por ${\bf 0}=(0,0)$.

Vamos considerar V um conjunto não vazio qualquer de objetos no qual estejam definidas duas operações:

- adição entre dois objetos do conjunto;
- multiplicação por escalares.

Do que já vimos até agora, V pode ser:

- · Conjunto de matrizes de mesma ordem;
- Conjunto de vetores de números reais com o mesmo número de coordenadas;
- Conjunto de números reais.

Todos estes conjuntos possuem a soma de seus elementos e a multiplicação por escalares bem difinidas.

Definição

Seja V um conjunto não vazio qualquer de objetos no qual estejam bem definidas as operações soma e multiplicação por escalares. Se os axiomas seguintes forem satisfeitos por todos os objetos **u**, **v** e **w** em V e quaisquer escalares a e b, diremos que V é um **espaço vetorial** e que os objetos de V são **vetores**.

Axiomas dos Espaços Vetoriais

- 1. Se $\mathbf{u}, \mathbf{v} \in V$, então $\mathbf{u} + \mathbf{v} \in V$.
- 2. u + v = v + u
- 3. u + (v + w) = (u + v) + w
- 4. Existe um objeto $\mathbf{0}$ em V, denominado **vetor nulo** de V, tal que $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$, com qualquer \mathbf{u} em V.
- 5. Dado qualquer \mathbf{u} em V, existe algum objeto $-\mathbf{u} \in V$, tal que $\mathbf{u} + -\mathbf{u} = -\mathbf{u} + \mathbf{u} = \mathbf{0}$.
- 6. Se a for qualquer escalar e $\mathbf{u} \in V$, então $a\mathbf{u} \in V$.
- 7. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- 8. $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$
- 9. $a(b{\bf u}) = (ab){\bf u}$
- 10. 1u = u

Se V consiste num único elemento, que denotamos por **0**, e estão definidas as operações

$$0 + 0 = 0$$
 e $a \cdot 0 = 0$

com escalares a quaisquer, $V=(V,+,\cdot)$ é um espaço vetorial denominado **espaço vetorial** nulo.

Seja $V=\mathbb{R}^n$. Usando as operações conhecidas de adição e multiplicação por escalar de n-uplas

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n)$$

= $(u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$

$$a \cdot \boldsymbol{u} = a(u_1, u_2, \dots, u_n) = (au_1, au_2, \dots, au_n),$$

 $V=(\mathbb{R}^n,+,\cdot)$ é um espaço vetorial.

$$\text{Seja } \mathbb{M}_{2\times 2} = \left\{ \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]_{2\times 2} \mid a_{ij} \in \mathbb{R}, \, i,j=1,2 \right\}, \text{o conjunto de todas as matrizes}$$

 2×2 com entradas reais.

Tomando as operações usuais de soma e multiplicação por escalar

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$
$$k \cdot \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{bmatrix},$$

 $(\mathbb{M}_{2\times 2},+,\cdot)$ é um espaço vetorial.

De modo geral, o conjunto $(\mathbb{M}_{m\times n},+,\cdot)$ de todas as matrizes de ordem $m\times n$ é um espaço vetorial com as operações usuais de matrizes.

Seja $\mathcal{F}(-\infty,\infty)=\{\mathbf{f}\,|\,\mathbf{f}:\mathbb{R}\to\mathbb{R}\}$ o conjunto de todas as funções definidas no intervalo $(-\infty,\infty)=\mathbb{R}$. Definimos as operações de adição e multiplicação por escalar por

$$(\mathbf{f} + \mathbf{g})(x) = f(x) + g(x)$$
$$(a \cdot \mathbf{f})(x) = a f(x),$$

e, com essas operações, o espaço $(\mathcal{F}(-\infty,\infty),+,\cdot)$ é um espaço vetorial.

Seja V = $\{x \in \mathbb{R} \mid x > 0\}$ e defina as operações de V por

$$u + v = uv$$

$$a * u = u^a$$
.

O conjunto V=(V,+,st) é um espaço vetorial!

Seja $V = \mathbb{R}^2$ com as operações definidas por:

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$$

 $a * \mathbf{u} = (au_1, 0).$

Com essas operações, $V=(\mathbb{R}^2,+,*)$ não é um espaço vetorial.

Teorema

Sejam V um espaço vetorial, **u** um vetor em V e a um escalar. Então

- a) $0 \cdot u = 0$
- b) $a \cdot \mathbf{0} = \mathbf{0}$
- c) $(-1) \cdot u = -u$
- d) Se $\mathbf{a} \cdot \mathbf{u} = \mathbf{0}$, então $\mathbf{a} = \mathbf{0}$ ou $\mathbf{u} = \mathbf{0}$.

Do item a) do Teorema 1, concluímos que o elemento nulo do espaço V $=\mathbb{R}^2$ com as operações definidas por

$$u + v = uv e a * u = u^a$$
,

é

$$\mathbf{0} = 0 * u = u^0 = 1.$$

Referências

