BKMS Assignment 4

■ 작성자

A. Data Pre-processing

- You should pre-process data for training the BigQuery ML model
- Pre-processing options:
 - Transform columns or filter rows using SQL
 - Create view for create the train set
 - One-hot encoding for a categorical column
 - etc.

Amongst public data available on public datasets, I chose "covid19_open_data" as the data to run machine learning model on.

```
select distinct cumulative_persons_fully_vaccinated, population, cumulative_deceased, case
when mod(population,10)<8 THEN 'training'
when mod(population,10)=8 THEN 'evaluation'
when mod(population,10)=9 THEN 'prediction'
end as dataframe
from `bigquery-public-data.covid19_open_data.covid19_open_data`
where date = '2022-01-05' and cumulative_deceased is not null and cumulative_persons_f
ully_vaccinated is not null and population is not null
```

To pre-process datasets, 1) excluding rows that contain null data and 2) split rows into training, evaluation, and prediction data were carried out. The result is as below.

B. BigQuery ML Model

- · Choose a BigQuery ML model for the data and scenario
- → A linear regression model that "cumulative person who are vaccinated" and "population" predicts "cumulative deceased"
 - Train/Evaluate the model
 - Training

CREATE OR REPLACE MODEL
`covid.model_real`

```
OPTIONS
( model_type='LINEAR_REG',
  input_label_cols=['cumulative_deceased'],
DATA_SPLIT_METHOD = 'NO_SPLIT',
LS_INIT_LEARN_RATE=.15,
L1_REG=1,
  max_iterations=10) AS
SELECT
* EXCEPT(dataframe)
FROM
`covid.input_view_real`
WHERE
dataframe = 'training'
```

Model Details / EDIT

Model ID credible-rex-349204:covid.model_real Description Labels Date created Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Model expiration Never Date modified Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Data location US Model type LINEAR_REGRESSION Loss type Mean squared loss		
Labels Date created Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Model expiration Never Date modified Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Data location US Model type LINEAR_REGRESSION	Model ID	credible-rex-349204:covid.model_real
Date created Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Model expiration Never Date modified Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Data location US Model type LINEAR_REGRESSION	Description	
Model expiration Never Date modified Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Data location US Model type LINEAR_REGRESSION	Labels	
Date modified Friday, May 6, 2022 at 11:00:46 PM GMT+09:00 Data location US Model type LINEAR_REGRESSION	Date created	Friday, May 6, 2022 at 11:00:46 PM GMT+09:00
Data location US Model type LINEAR_REGRESSION	Model expiration	Never
Model type LINEAR_REGRESSION	Date modified	Friday, May 6, 2022 at 11:00:46 PM GMT+09:00
	Data location	US
Loss type Mean squared loss	Model type	LINEAR_REGRESSION
	Loss type	Mean squared loss

Training Options

Training options are the optional parameters that were added in the script to create this model.

Max allowed iterations	10
Actual iterations	8
L1 regularization	1.00
L2 regularization	0.00
Early stop	true
Min relative progress	0.01
Learn rate strategy	Line search
Line search initial learn rate	0.15
Calculate P Values	false
Data split method	No Split

Mean absolute error	2,323.3977
Mean squared error	262,624,056.0195
Mean squared log error	10.8255
Median absolute error	1,197.0482
R squared	0.2661

Evaluate

```
SELECT

*
FROM
ML.EVALUATE (MODEL `covid.model_real`,
(
SELECT
 *
FROM
`covid.input_view_real`
WHERE
dataframe = 'evaluation'
)
)
```

Query results			₫ SA	▲ SAVE RESULTS ▼	
JOB INFORMATION	RESULTS J	SON EXECUTION DETAI	LS		
tow mean_absolute_error	mean_squared_erro	r mean_squared_log_error	median_absolute_error	r2_score	explained_variance
1 1714.3767593038706	24434590.0238992	265 10.457465510156053	1189.161541945504	0.21762288868787	905 0.22140393605194642

• Perform prediction using the trained model

```
SELECT
*
FROM
```

```
ML.PREDICT (MODEL `covid.model_real`,
  (
    SELECT
  *
FROM
  `covid.input_view_real`
WHERE
  dataframe = 'prediction'
)
)
```

Row	predicted_cumulative_deceased	cumulative_persons_fully_vaccinated	population	cumulative_deceased	dataframe
1	1357.0634714087694	436529	493559	484	prediction
2	1263.9265965909685	20958	38529	70	prediction
3	1262.5724602256064	20334	34179	109	prediction
4	1262.8010022003698	32027	39759	20	prediction
5	1315.9443381722153	126947	239929	656	prediction
6	1254.612276425539	671	1919	11	prediction
7	1254.2124030596756	115	479	1	prediction
8	1255.5395076627065	2082	5309	18	prediction
9	1258.6884949973114	6628	16719	44	prediction
10	1265.0140136394853	19658	41269	102	prediction
11	1256.2364213427461	5180	8709	24	prediction
12	1257.3602407633475	4478	11809	9	prediction
13	1268.5924762855907	26531	54949	116	prediction
14	1254.882061225363	2262	3399	0	prediction
15	1256.5236580461451	5545	9729	20	prediction
16	1258.3099094564734	10103	17029	80	prediction
17	1262.7553175305961	22194	35509	80	prediction
18	1267.0958842269338	15888	45979	162	prediction
19	1258.6784754845476	6796	16759	50	prediction
20	1274.2117360251762	39400	77299	262	prediction
21	1267.2522225925936	21359	48739	195	prediction

C. Analysis

- The analysis part must include an analysis of the following:
 - Reasons for applying the pre-processing method
 In part A, two pre-processing methods were applied.
 - 1) Deleting null → If there is a null value in the regression model, it is impossible to train the linear regression model. Initially, I tried to make an ML model which includes more predictors- population density, nurses per capita, doctors per capita et cetera. However, there were many null values in those columns and to gain 'big' data, only two predictors were available-population and vaccinated population.

2) Split datasets into training, evaluation, and test data \rightarrow validation-set approach provides an estimate of test error. By doing so, linear regression is fit on the training set, and performance is evaluated on the estimation set. To randomize, splitting was performed by the remainder of the population by 10.

Reasons for selecting the ML model

Linear regression is the most powerful and simple ML model to understand the dependence of the result on predictors. Intuitively, the total population and the cumulative persons fully vaccinated seem to have an effect on the number of deceased by COVID-19. To figure out such effects, linear regression of the population and vaccinated population predicts the casualty from COVID-19.

Model evaluation & prediction result analysis

R-squared, which shows the prediction accuracy of linear regression was too low in evaluation sets. It can be interpreted in both ways: (1) The assumption that the relationship between predictors and results does not exist. (2) linear dependence between predictors may hamper the model from predicting an accurate result.

As low R-squared implies, the gap between predicted deaths and real deaths was so high, which is can be found in the last picture in part B.

- How to improve the result
 - Add more predictors: The more predictors, the more it can interpret the variance.
 - Considering the interaction between predictors: If there's an interaction between predictors, adding an interaction term may increase the performance
 - Try the polynomial model: The actual relationship may be based on a more complex form. i.e. high order polynomials.