Aero Lab Milestone 2

Group 013-9:

Maklen Estrada, AJ Lauffer, Fabrizio Roberts, Nate Sanchez, Linus Schmitz, and Nathan Tonella

Design Overview

Initial Design Concept

Table 1: Summary of the model geometry

Model	Dihedral angle	Flat Plate Span, b [m]	Chord, c [m]	Total Surfaces area[m ²]	Characteristics length[m]	Reference Area, S[m²]
V-tail	35°	0.141	0.062	0.01829	0.244	0.01513
Tail-1	0°	0.116	0.062	0.01829	0.244	0.01513
Tail-2	0°	0.141	0.062	0.02703	0.295	0.01829

(a) (b) (c)
Figure 1: (a) V-tail Configuration; (b) Tail-1: Conventional tail with tail equal to projected dimensions of (a), (c) Tail-2: Conventional tail with equal surface dimensions but without dihedral

Initial Design Concept: Swept Wing

Sweep Angle	30 degrees
AR	7.837
Sref	.075 m ²
Swet	.4339182875 m ²
Weight	2.8253 N
Range	143.98 m
Endurance	12.46 s
Velocity	11.55 m/s
Wingspan	0.766 m

Final Design

Dimensions			
AR Wing	4		
AR Tail	2.5		
Chord	0.230		
Taper Ratio	1.00		
Weight	3.26 N		
Wingspan	0.932		

Aerodynamics Analysis

Lift Curve

Drag Polar

Performance Analysis vs Requirements

Sizing Aircraft: Endurance and Range

Sizing Aircraft: Velocity and Wingspan

Stability

Static Margin: 27.09%

Lateral Directional Stability: ~25 degrees

Glider Design Performance Requirements

System Requirements	Threshold	Objective	Min or Max	Our values
Glide Range	70 m	100 m	Max	77 m
Glide Range Velocity	12 m/s	7 m/s	Min	9.6 m/s
Glide Endurance	7 sec	10 sec	Max	7.9 sec
Elevator Pitch Control	+/- 8 deg	+/- 10 deg	Max	+/- 6.54 deg
Longitudinal Stability	0c < X _{cg} < 1.0c	$X_{cg} = 0.25c$	-	c = 0.23 X _{cg} = 0.0474

Glider Design Performance Requirements

System Requirements	Threshold	Objective	Min or Max	Our values
Longitudinal Stability	V _H = 0.3	V _H = 0.6	-	V _H = 0.4
Lateral Stability	V _V = 0.02 B ≥ 5	V _V = 0.05 B ≥ 5	-	V _V = 0.03 B = 7
Maximum Wingspan	1.0 m	N/A	Max	0.92 m
Payload Requirement				
Unit Cost No limit		Min	\$173.11	

Conclusion

Possible Further Iterations

<u>Stability</u>

- Develop better understanding of stability components
- Start analyzing their effects earlier in design process

<u>Tail</u>

- Simpler configurations
- More research on V tail before using it in the future

Wings

- Attempt other wing configurations
 - Sweep
 - Winglets

What We Learned

Multiple Pieces

- Many pieces to account for to meet requirements
- Small changes can make big differences

Difficulty Level

- Many considerations we couldn't account for
- Designing a glider is challenging overall
- It is easy to get set back by pieces that don't work out

<u>Flexibility</u>

- There is room for flexibility early on in design
- More changes result in more opportunities for mistake
- Must be able to roll with what works well enough in an initial iteration

