Tutorial 2

Question1

Let V be a vector space over **R**. Show that If $\{\mathbf{v}, \mathbf{u}, \mathbf{w}\} \subset V$ is linearly independent, $\{2\mathbf{v} - 3\mathbf{u}, -4\mathbf{v} + 5\mathbf{w}, 2\mathbf{u} - \mathbf{w}\}$ is also linearly independent.

Question 2

Let $V = C^1(\mathbf{R})$ with the standard vector addition and scalar multiplication.

- (a) Find a basis for Span($\{e^x, e^{2x}, e^{3x}\}$). What is the dimension of the span set?
- (b) Let $S = \{f \in \text{Span}(\{e^x, e^{2x}, e^{3x}\} | f(0) = f'(0) = 0\}$. Find a basis and the dimension of S.
 - (c) Let $h(x) = e^x 2e^{2x} + e^{3x}$. Define $T : \text{Span}(\{e^x, e^{2x}, e^{3x}\}) \longrightarrow S$ by $T(f(x)) = (c_1 + c_2 + c_3)h(x)$, where $f(x) = c_1e^x + c_2e^{2x} + c_3e^{3x}$. Is T well defined? Explain it.
 - (d) If T is well defined, is it a linear transformation?

Question 3

Let V be a real vector space and $\alpha = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be a basis for V.

Show that the function $[\cdot]_{\alpha}: V \longrightarrow \mathbf{R}^n$ defined by $[\mathbf{x}]_{\alpha} = (a_1, \dots, a_n)$, where $\mathbf{x} = a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n$, is a linear transformation. We call $[\mathbf{x}]_{\alpha}$ the coordinates of the vector \mathbf{x} with respect to the basis α .