Segona convocatòria, 6 de juliol de 2009

- 1.— Considereu la corba parametritzada $\alpha(t) = (3t t^3, 3t^2, 3t + t^3)$. Trobeu-ne la curvatura $\kappa(t)$, la torsió $\tau(t)$, i el seu triedre de Frenet $\mathbf{t}(t)$, $\mathbf{n}(t)$, $\mathbf{b}(t)$.
- 2.— Recordeu que una corba parametritzada regular $\alpha(t)$ és una hèlix si el seu vector tangent forma un angle constant amb una direcció fixada. A més, es pot demostrar que si la curvatura de $\alpha(t)$ és diferent de zero, el fet de ser hèlix és equivalent a que el quocient entre la torsió i la curvatura és constant.
 - a) Suposem que $\alpha(s)$ està parametritzada per l'arc i que té curvatura $\kappa(s) \neq 0$ i torsió $\tau(s)$. Proveu que la curvatura κ_{β} i la torsió τ_{β} de la seva indicatriu tangent $\beta(s) := \mathbf{t}(s)$ venen donades per les fórmules

$$\kappa_{\beta} = \sqrt{1 + \left(\frac{\tau}{\kappa}\right)^2} \quad i \quad \tau_{\beta} = \frac{\frac{d}{ds}\left(\frac{\tau}{\kappa}\right)}{\kappa \left(1 + \left(\frac{\tau}{\kappa}\right)^2\right)}.$$

- b) Demostreu que $\alpha(s)$ és hèlix si i només la imatge de la seva indicatriu tangent està continguda en una circumferència.
- c) Proveu que la corba parametritzada per $\alpha(t)=(2t,t^2,t^3/3)$ és una hèlix. És la imatge de la seva indicatriu tangent una circumferència complerta? Trobeu el seu radi
- ${\bf 3.-}$ Sigui $\alpha(u)$ una corba parametritzada per l'arc. Es considera la superfície S donada per la parametrització

$$\mathbf{x}(u,v) = \alpha(u) + v\alpha'(u), \qquad v > 0.$$

Demostreu que la curvatura de Gauss de S no depèn de la torsió de α .

- 4.— Sigui $\alpha(u)$ una corba regular continguda en un superfície Σ amb vector normal unitari \mathbf{N}_{Σ} .
 - a) Digueu quina condició ha de satisfer $\alpha'(u)$ per que α sigui una línia de curvatura de Σ .
 - b) Considerem la superfície S parametritzada per $\mathbf{x}(u,v) = \alpha(u) + v\mathbf{N}_{\Sigma}(\alpha(u))$. Proveu que α és línia de curvatura de Σ si i només si la curvatura de Gauss de S és zero.
- 5.— Sigui \mathcal{R} una regió del pla envoltada per una corba $\gamma(t)=(x(t),y(t))$ tancada i orientada positivament.
 - a) Proveu que l'àrea de \mathcal{R} ve donada per

$$A = \frac{1}{2} \int_{\gamma} x dy - y dx = \int_{\gamma} x dy = -\int_{\gamma} y dx.$$

- b) Dibuixeu \mathcal{R} i calculeu el seu centre de masses (si te una densitat de massa uniforme) en el cas en què $x(t) = 1 + \cos t$ i $y(t) = \sin t$ amb $0 \le t \le 2\pi$.
- **6.** Sigui A un obert de \mathbb{R}^3 i siguin g, h funcions C^{∞} a A.
 - a) Si $\mathbf{F} = g\nabla h$, comproveu que $\nabla\cdot\mathbf{F} = g\nabla^2 h + (\nabla g)\cdot(\nabla h)$, on $\nabla^2 = \Delta$ és l'operador laplacià.

7

b) Si $\Omega \subset A$ és un tancat amb frontera orientada positivament, demostreu que

$$\int_{\Omega} (g\Delta h + \nabla g \cdot \nabla h) \, dV = \int_{\partial \Omega} g \frac{\partial h}{\partial \mathbf{n}} \, dA,$$

on $\frac{\partial h}{\partial \mathbf{n}} = (\nabla h) \cdot \mathbf{n}$ i
 \mathbf{n} és el vector normal unitari exterior
a $\partial \Omega.$

c) Deduïu la fórmula

$$\int_{\Omega} (g\Delta h - h\Delta g) dV = \int_{\partial\Omega} \left(g \frac{\partial h}{\partial \mathbf{n}} - h \frac{\partial g}{\partial \mathbf{n}} \right) dA.$$

- d) Si h és harmònica en A, és a dir $\Delta h=0$, proveu que $\int_{\partial\Omega}\frac{\partial h}{\partial\mathbf{n}}\,dA=0$.
- 7.— Considereu la $(n-1)\text{-forma}\ \omega$ a $\mathbb{R}^n\setminus\{0\}$ definida per

$$\omega = \sum_{j=1}^{n} (-1)^j \frac{x_j}{\|x\|^n} dx_1 \wedge \dots \wedge \widehat{dx_j} \dots \wedge dx_n.$$

- a) Calculeu la derivada exterior de ω .
- b) Calculeu la integral de ω sobre l'el·lipsoide d'equació $\sum\limits_{j=1}^n \left(\frac{x_j-2}{j}\right)^2=1.$
- 8.— Proveu que la 2-forma de \mathbb{R}^3

$$\omega = (xz^2 - y) \, dy \wedge dz - yz^2 \, dz \wedge dx + x \, dx \wedge dy$$

és exacta i trobeu una 1-forma η a \mathbb{R}^3 tal que $\omega=d\eta.$