а

$$egin{aligned} S_{xy} &= rac{1}{n-1} \sum_{i=1}^n \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight) \ &= rac{1}{n-1} \sum_{i=1}^n \left(x_i y_i - ar{x} y_i - x_i ar{y} + ar{x} ar{y}
ight) \ &= rac{1}{n-1} \left(n \cdot rac{1}{n} \sum_{i=1}^n \left(x_i y_i
ight) - n \cdot rac{1}{n} \left(\sum_{i=1}^n y_i
ight) \cdot ar{x} - n \cdot rac{1}{n} \left(\sum_{i=1}^n x_i
ight) \cdot ar{y} + n \cdot ar{x} ar{y}
ight) \ &= rac{n}{n-1} (ar{x} ar{y} - ar{y} ar{x} - ar{x} ar{y} + ar{x} ar{y}) \ &= rac{n}{n-1} (ar{x} ar{y} - ar{x} ar{y}) \end{aligned}$$

b

Setzt man $ax_i + b$ für x_i ein, so folgt

$$S_{xy} = rac{1}{n-1} \sum_{i=1}^n \left(ax_i + b - ar{x}
ight) \left(y_i - ar{y}
ight)$$
 mit $ar{x} = rac{1}{n} \left(\sum_{i=1}^n \left(a \cdot x_i + b
ight)
ight) = rac{1}{n} \left(\sum_{i=1}^n \left(a \cdot x_i
ight) + nb
ight)$ $= a \cdot rac{1}{n} \left(\sum_{i=1}^n \left(x_i
ight) + nb
ight)$ $= a \cdot ar{x}' + b$ $\mid ar{x}' ext{ ist } ar{y} \mid ar{y}' = b$

 $\mid \bar{x}'$ ist hierbei das "alte" \bar{x}

Eingesetzt folgt dann

$$egin{aligned} &= rac{1}{n-1} \sum_{i=1}^n \left(a x_i + b - a \cdot ar{x}' - b
ight) \left(y_i - ar{y}
ight) \ &= rac{1}{n-1} \sum_{i=1}^n \left(a x_i - a \cdot ar{x}'
ight) \left(y_i - ar{y}
ight) \ &= rac{1}{n-1} \sum_{i=1}^n a \cdot \left(x_i - ar{x}'
ight) \left(y_i - ar{y}
ight) \ &= a \cdot rac{1}{n-1} \sum_{i=1}^n \left(x_i - ar{x}'
ight) \left(y_i - ar{y}
ight) \ &= a \cdot \left(S_{xy}
ight)' \end{aligned}$$