Алгебра и геометрия Лекция 3

Скалярное произведение векторов

$$\left(\vec{a},\vec{b}
ight) = egin{cases} |\vec{a}| & |\vec{b}| \cos \angle \left(\vec{a},\vec{b}
ight),$$
если $\vec{a}
eq \vec{0}$ и $\vec{b}
eq \vec{0}$ 0, если хотя бы один из \vec{a} или \vec{b} нулевой

Утверждение 3.1

$$1. \forall \vec{a} \ (\vec{a}, \vec{a}) = |\vec{a}|^2$$

$$2. \vec{a} \perp \vec{b} \iff (\vec{a}, \vec{b}) = 0$$

Доказательство

Обе части следуют непосредственно из определения (\vec{a}, \vec{b}) .

Проекция вектора на ненулевой вектор

Утверждение 3.2

Пусть
$$\vec{a}$$
, $\vec{b} \in V$, причем $\vec{b} \neq \vec{0}$. Тогда $pr_{\vec{b}}\vec{a} = \frac{(\vec{a},\vec{b})}{|\vec{b}|^2}\vec{b}$

Доказательство Отложим \vec{a} и \vec{b} от одной точки.

Число $\frac{(\vec{a},\vec{b})}{|\vec{b}|^2}$ называется алгебраической проекцией вектора \vec{a} на вектор $\vec{b} \neq \vec{0}$.

Теорема 3.1 $\forall \vec{a}, \vec{b}, \vec{c} \in V, \forall \lambda$

1.
$$(\vec{a}, \vec{a}) \geq 0$$
, причем $(\vec{a}, \vec{a}) = 0 \Leftrightarrow \vec{a} = \vec{0}$

$$2. \left(\vec{b}, \vec{a} \right) = \left(\vec{a}, \vec{b} \right)$$

$$3.\left(\vec{a}+\vec{b},\vec{c}\right)=(\vec{a},\vec{c})+(\vec{b},\vec{c})$$

$$4. \left(\lambda \vec{a}, \vec{b}\right) = \lambda \left(\vec{a}, \vec{b}\right)$$

Доказательство

1 и 2 следуют из определения $\left(ec{a}, ec{b}
ight)$

Доказательство (продолжение)

3. При $\vec{c}=\vec{0}$ равенство очевидно. При $\vec{c}\neq\vec{0}$ пусть $\vec{a}=\overrightarrow{AB}, \vec{b}=\overrightarrow{BC},\ A',B',C'-$ проекции A,B,C на прямую с базисом \vec{c} . Тогда

$$pr_{\vec{c}}\vec{a} = \overrightarrow{A'B'}, pr_{\vec{c}}\vec{b} = \overrightarrow{B'C'}, pr_{\vec{c}}\left(\vec{a} + \vec{b}\right) = \overrightarrow{A'C'} \Rightarrow$$

$$\Rightarrow pr_{\vec{c}}\left(\vec{a} + \vec{b}\right) = pr_{\vec{c}}\vec{a} + pr_{\vec{c}}\vec{b} \Leftrightarrow$$

$$\Leftrightarrow \frac{(\vec{a} + \vec{b}, \vec{c})}{|\vec{c}|^2}\vec{c} = \frac{(\vec{a}, \vec{c})}{|\vec{c}|^2}\vec{c} + \frac{(\vec{b}, \vec{c})}{|\vec{c}|^2}\vec{c} \Leftrightarrow \frac{(\vec{a} + \vec{b}, \vec{c})}{|\vec{c}|^2}\vec{c} = \frac{((\vec{a}, \vec{c}) + (\vec{b}, \vec{c}))}{|\vec{c}|^2}\vec{c} \Rightarrow$$

$$\Leftrightarrow \left(\vec{a} + \vec{b}, \vec{c}\right) = (\vec{a}, \vec{c}) + (\vec{b}, \vec{c})$$

Доказательство (продолжение)

$$4. pr_{\vec{b}}(\lambda \vec{a}) = \lambda pr_{\vec{b}}\vec{a} \Leftrightarrow$$

$$\Leftrightarrow \frac{(\lambda \vec{a}, \vec{b})}{\left|\vec{b}\right|^2} \vec{b} = \lambda \frac{(\vec{a}, \vec{b})}{\left|\vec{b}\right|^2} \vec{b} \Rightarrow (\lambda \vec{a}, \vec{b}) = \lambda (\vec{a}, \vec{b})$$

Замечание

Свойства 3 и 4 можно объединить в одно

$$\left(\lambda_{1}\overrightarrow{a_{1}} + \lambda_{2}\overrightarrow{a_{2}}, \overrightarrow{b}\right) = \lambda_{1}\left(\overrightarrow{a_{1}}, \overrightarrow{b}\right) + \lambda_{2}\left(\overrightarrow{a_{2}}, \overrightarrow{b}\right),$$

которое называют линейностью скалярного произведения по первому сомножителю; применяя свойство 2, получаем, что справедлива и линейность по второму сомножителю.

Теорема 3.2

Пусть
$$\vec{e}$$
 — ОНБ в V ; $\vec{a}=\vec{e}\alpha$, $\vec{b}=\vec{e}\beta$ Тогда $\left(\vec{a},\vec{b}\right)=\alpha^T\beta$

Доказательство

$$(\vec{a}, \vec{b}) = (\alpha_1 \vec{e_1} + \dots + \alpha_n \vec{e_n}, \beta_1 \vec{e_1} + \dots + \beta_n \vec{e_n})$$

Раскрывая скобки, пользуясь линейностью и, учитывая, что для ОНБ $(\overrightarrow{e_i}, \overrightarrow{e_i}) = 1, (\overrightarrow{e_i}, \overrightarrow{e_j}) = 0 \ (i \neq j)$, получаем

$$(\vec{a}, \vec{b}) = \alpha_1 \beta_1 + \dots + \alpha_n \beta_n = \alpha^T \beta$$

Замечание

Аналогично, в любом базисе
$$\left(\vec{a}, \vec{b}\right) = \alpha^T \Gamma \beta$$
, где $\Gamma = (\gamma_{ij})_{i,j=\overline{1,n}}$ $\gamma_{ij} = \left(\overrightarrow{e_i}, \overrightarrow{e_j}\right)$ $i,j=\overline{1,n}$

Матрица Γ называется матрицей Грама базиса \overrightarrow{e} . Очевидно, что для ОНБ $\Gamma=E$. Формула доказывается прямым раскрытием скобок.

Замечание

Теорема 3.2 дает возможность находить длины векторов и углы между ними в ОНБ

$$|\vec{a}| = \sqrt{(\vec{a}, \vec{a})} = \sqrt{\alpha^T \alpha}$$

$$\cos \angle \left(\vec{a}, \vec{b}\right) = \frac{\left(\vec{a}, \vec{b}\right)}{|\vec{a}| |\vec{b}|} = \frac{\alpha^T \beta}{\sqrt{\alpha^T \alpha} \sqrt{\beta^T \beta}}$$

Ориентация базисов

Ориентированные объемы и площади

Пусть \vec{a} , \vec{b} , \vec{c} — упорядоченная тройка векторов (возможно, компланарных).

Построим на них, как на ребрах, выходящих из одной вершины, параллелепипед $P(\vec{a}, \vec{b}, \vec{c})$ объема V (возможно, вырожденный)

Ориентированные объемы и площади

Ориентированным объемом параллелепипеда $P(\vec{a}, \vec{b}, \vec{c})$ называется число

$$V_{\pm}\left(\vec{a},\vec{b},\vec{c}
ight) = egin{cases} 0$$
, если \vec{a},\vec{b},\vec{c} компланарны, $V_{\pm}\left(\vec{a},\vec{b},\vec{c}
ight) = V$, если тройка \vec{a},\vec{b},\vec{c} правая, $-V$, если тройка \vec{a},\vec{b},\vec{c} левая.

Аналогично определяется ориентированная площадь $S_{\pm}(\vec{a},\vec{b})$ параллелограмма в V_2 .

Определение
$$\left(\vec{a},\vec{b},\vec{c}\right)=V_{\pm}(\vec{a},\vec{b},\vec{c})$$

Утверждение 4.1

Пусть
$$\vec{e}$$
 — ОНБ в V_i , $i=2,3$. Тогда $S_{\pm}(\overrightarrow{e_1},\overrightarrow{e_2})=\pm 1~(i=2)$ $V_{\pm}(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})=\pm 1~(i=3)$

Доказательство

 $P(\overrightarrow{e_1},\overrightarrow{e_2})$ и $P(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ — единичные квадрат и куб соответственно. Далее всё следует из определений S_\pm и V_\pm .

Утверждение 4.2

- 1. Векторы \vec{a} , \vec{b} , \vec{c} компланарны \Leftrightarrow $\left(\vec{a}$, \vec{b} , \vec{c}) = 0
- 2. Векторы \vec{a} , \vec{b} коллинеарны $\Leftrightarrow S_{\pm}\left(\vec{a},\vec{b}\right)=0$

Доказательство: обе части утверждения следуют из определений V_+ и S_+ .

Теорема 4.1 $\forall \vec{a}, \vec{b}, \vec{c}, \vec{d} \in V_3, \forall \lambda$

1.
$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{c}, \vec{a}, \vec{b}) = (\vec{b}, \vec{c}, \vec{a}) =$$

$$-\left(\vec{b},\vec{a},\vec{c}\right) = = -\left(\vec{c},\vec{b},\vec{a}\right) = -\left(\vec{a},\vec{c},\vec{b}\right)$$

$$2. \left(\vec{a}, \vec{b}, \overrightarrow{\lambda c} \right) = \lambda \left(\vec{a}, \vec{b}, \vec{c} \right)$$

3.
$$\left(\vec{a}, \vec{b}, \vec{c} + \vec{d}\right) = \left(\vec{a}, \vec{b}, \vec{c}\right) + \left(\vec{a}, \vec{b}, \vec{d}\right)$$

Доказательство

1. Если \vec{a} , \vec{b} , \vec{c} компланарны, то равенства очевидны. В противном случае заметим, что циклическая перестановка не меняет ориентацию тройки векторов, а нециклическая меняет ее ориентацию на противоположную.

Доказательство

2 и 3. Если $\vec{a} \parallel \vec{b}$, то равенства очевидны. В противном случае рассмотрим $\vec{e} \colon |\vec{e}| = 1, \vec{e} \perp \vec{a}, \vec{e} \perp \vec{b}$, причем тройка $\vec{a}, \vec{b}, \vec{e}$ правая.

Тогда $(\vec{a}, \vec{b}, \vec{c}) = \left| S_{\pm} \left(\vec{a}, \vec{b} \right) \right| \cdot (\pm h)$, где h — высота $P\left(\vec{a}, \vec{b}, \vec{c} \right)$, опущенная на плоскость, определяемую \vec{a} и \vec{b} Множитель $\pm h$ — алгебраическая проекция \vec{c} на $\vec{e} \Rightarrow \Rightarrow \left(\vec{a}, \vec{b}, \vec{c} \right) = \left| S_{\pm} \left(\vec{a}, \vec{b} \right) \right| \cdot (\vec{c}, \vec{e})$. Теперь всё следует из линейности скалярного произведения по первому сомножителю.

Следствие

Из 1 следует линейность $\left(\vec{a},\vec{b},\vec{c}\right)$ по первому и второму сомножителям.

Теорема 4.2 $\forall \vec{a}, \vec{b}, \vec{c} \in V_2, \forall \lambda$

$$1. S_{\pm} \left(\vec{a}, \vec{b} \right) = -S_{\pm} \left(\vec{b}, \vec{a} \right)$$

2.
$$S_{\pm}\left(\vec{a}, \overrightarrow{\lambda b}\right) = \lambda S_{\pm}\left(\vec{a}, \vec{b}\right)$$

3.
$$S_{\pm}(\vec{a}, \vec{b} + \vec{c}) = S_{\pm}(\vec{a}, \vec{b}) + S_{+}(\vec{a}, \vec{c})$$

Доказательство аналогично доказательству теоремы 4.1.

Теорема 4.3

Пусть
$$\vec{e}-\forall$$
 базис в V_3 , $\vec{a}=\vec{e}\alpha$, $\vec{b}=\vec{e}\beta$, $\vec{c}=\vec{e}\gamma$. Тогда

$$(\vec{a}, \vec{b}, \vec{c}) = \underbrace{\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{bmatrix}}_{\Delta} \cdot (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$$

Доказательство

$$(\vec{a}, \vec{b}, \vec{c}) = (\alpha_1 \vec{e_1} + \alpha_2 \vec{e_2} + \alpha_3 \vec{e_3}, \beta_1 \vec{e_1} + \beta_2 \vec{e_2} + \beta_3 \vec{e_3}, \beta_1 \vec{e_1} + \beta_2 \vec{e_2} + \beta_3 \vec{e_3}, \beta_1 \vec{e_1} + \beta_2 \vec{e_2} + \beta_3 \vec{e_3})$$

Раскроем скобки, пользуясь линейностью и тем, что $(\overrightarrow{e_i}, \overrightarrow{e_j}, \overrightarrow{e_k}) = 0$, если хотя бы два из чисел i, j, k равны:

$$\begin{split} \left(\vec{a}, \vec{b}, \vec{c}\right) &= \alpha_1 \beta_2 \gamma_3 (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}) + \alpha_1 \beta_3 \gamma_2 (\overrightarrow{e_1}, \overrightarrow{e_3}, \overrightarrow{e_2}) + \\ &+ \alpha_2 \beta_1 \gamma_3 (\overrightarrow{e_2}, \overrightarrow{e_1}, \overrightarrow{e_3}) + \alpha_2 \beta_3 \gamma_1 (\overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_1}) + \\ &+ \alpha_3 \beta_2 \gamma_1 (\overrightarrow{e_3}, \overrightarrow{e_2}, \overrightarrow{e_1}) + \alpha_3 \beta_1 \gamma_2 (\overrightarrow{e_3}, \overrightarrow{e_1}, \overrightarrow{e_2}) = \\ &= (\alpha_1 \beta_2 \gamma_3 - \alpha_1 \beta_3 \gamma_2 - \alpha_2 \beta_1 \gamma_3 + \alpha_2 \beta_3 \gamma_1 - \alpha_3 \beta_2 \gamma_1 + \\ &+ \alpha_3 \beta_1 \gamma_2) (\overrightarrow{e_1}, \overrightarrow{e_3}, \overrightarrow{e_2}) = \Delta (\overrightarrow{e_1}, \overrightarrow{e_3}, \overrightarrow{e_2}) \end{split}$$

Мы также использовали часть 1 теоремы 4.1 и определение детерминанта 3 порядка.

Следствие 1

Если
$$ec{e}$$
 — правый ОНБ, то $\left(ec{a}, ec{b}, ec{c}
ight) = \Delta$

Следствие 2

$$\left(\vec{a},\vec{b},\vec{c}\right)$$
 компланарны $\Leftrightarrow \Delta=0$

Теорема 4.4

Пусть
$$\vec{e}-\forall$$
 базис в V_2 , $\vec{a}=\vec{e}\alpha$, $\vec{b}=\vec{e}\beta$. Тогда

$$S_{\pm}(\vec{a}, \vec{b}) = \underbrace{\begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix}} \cdot S_{\pm}(\overrightarrow{e_1}, \overrightarrow{e_2})$$

Доказательство аналогично доказательству теоремы 4.3.

Следствие
$$\vec{a} \parallel \vec{b} \Leftrightarrow \delta = 0$$

Определение

Пусть $\vec{a}, \vec{b} \in V_3$. Их векторным произведением $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$ называется $\vec{c} \in V_3$ такой, что

1.
$$|\vec{c}| = \left| S_{\pm} \left(\vec{a}, \vec{b} \right) \right|$$

$$2. \vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$$

3. При $\vec{a} \not\parallel \vec{b} \vec{a}$, \vec{b} , \vec{c} — правая тройка

Утверждение 5.1

$$\overrightarrow{e}$$
 – правый ОНБ в $V_3 \Rightarrow [\overrightarrow{e_1}, \overrightarrow{e_2}] = \overrightarrow{e_3}, \ [\overrightarrow{e_2}, \overrightarrow{e_3}] = \overrightarrow{e_1}, \ [\overrightarrow{e_3}, \overrightarrow{e_1}] = \overrightarrow{e_2}.$

Доказательство

Сразу следует из определения $\left[\vec{a},\vec{b}\right]$. Достаточно рассмотреть единичный куб.

Утверждение 5.2

 $\forall \vec{a}, \vec{b} \in V_3$ следующие условия равносильны:

1.
$$\vec{a} \parallel \vec{b}$$

$$2. \left[\vec{a}, \vec{b} \right] = \vec{0}$$

3.
$$\vec{a}$$
, \vec{b} , $\left[\vec{a}$, $\vec{b}\right]$ компланарны

Доказательство

Из определения $\left[\vec{a},\vec{b}\right]\Rightarrow$ при $\vec{a}\parallel\vec{b}$ условия 2 и 3 выполнены, а при $\vec{a} \not\parallel \vec{b}$ оба условия нарушаются.

Теорема 5.1 $\forall \vec{a}, \vec{b}, \vec{c} \in V_3$

1.
$$(\vec{a}, \vec{b}, \vec{c}) = ([\vec{a}, \vec{b}], \vec{c})$$

2. $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a}, [\vec{b}, \vec{c}])$

2.
$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a}, [\vec{b}, \vec{c}])$$

Доказательство

1. Если $\vec{a} \parallel \vec{b}$, то обе части равенства равны 0. Если $\vec{a} \nparallel \vec{b}$, то из определения $\left[\vec{a}, \vec{b}\right]$ следует, что вектор \vec{e} , который использовался в доказательстве теоремы 4.1, равен $\frac{\vec{d}}{|\vec{d}|}$, где $\vec{d} = \left[\vec{a}, \vec{b}\right]$. Тогда

теоремы 4.1, равен
$$\frac{\vec{d}}{|\vec{d}|}$$
, где $\vec{d} = \left[\vec{a}, \vec{b}\right]$. Тогда $\left(\vec{a}, \vec{b}, \vec{c}\right) = \left|S_{\pm}\left(\vec{a}, \vec{b}\right)\right| (\vec{e}, \vec{c}) = \left|\left[\vec{a}, \vec{b}\right]\right| \left(\frac{\vec{d}}{|\vec{d}|}, \vec{c}\right) = \left|\vec{d}\right| \frac{\left(\vec{d}, \vec{c}\right)}{\left|\vec{d}\right|} = \left(\left[\vec{a}, \vec{b}\right], \vec{c}\right)$

$$2.\left(\vec{a}, \left[\vec{b}, \vec{c}\right]\right) = \left(\left[\vec{b}, \vec{c}\right], \vec{a}\right) = \left(\vec{b}, \vec{c}, \vec{a}\right) = \left(\vec{a}, \vec{b}, \vec{c}\right)$$

Теорема 5.2 $\forall \vec{a}, \vec{b}, \vec{c} \in V_3, \forall \lambda$

1.
$$\begin{bmatrix} \vec{b}, \vec{a} \end{bmatrix} = -\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$$

2. $\begin{bmatrix} \lambda \vec{a}, \vec{b} \end{bmatrix} = \lambda \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$
3. $\begin{bmatrix} \vec{a} + \vec{b}, \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{a}, \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{b}, \vec{c} \end{bmatrix}$

Доказательство

1. Если $\vec{a} \parallel \vec{b}$, то обе части равенства равны $\vec{0}$. Если $\vec{a} \not\parallel \vec{b}$, то тройка \vec{b} , \vec{a} , $-\left[\vec{a},\vec{b}\right]$ правая.

Доказательство (продолжение)

2 и 3. Проверим равенства покоординатно.

Пусть
$$\vec{e}$$
 — ОНБ в V_3 . Тогда $\forall i=1,2,3$

$$\begin{split} \left(\left[\lambda\vec{a},\vec{b}\right],\overrightarrow{e_i}\right) &= \left(\lambda\vec{a},\vec{b},\overrightarrow{e_i}\right) = \lambda\left(\vec{a},\vec{b},\overrightarrow{e_i}\right) = \\ \left(\lambda\left[\vec{a},\vec{b}\right],\overrightarrow{e_i}\right) & \text{v} \end{split}$$

$$(\left[\vec{a} + \vec{b}, \vec{c}\right], \overrightarrow{e_i}) = (\vec{a} + \vec{b}, \vec{c}, \overrightarrow{e_i}) = (\vec{a}, \vec{c}, \overrightarrow{e_i}) + (\vec{b}, \vec{c}, \overrightarrow{e_i}) = (\left[\vec{a}, \vec{c}\right] + \left[\vec{b}, \vec{c}\right]), \overrightarrow{e_i})$$

Теорема 5.3

$$ec{e}$$
 —правый ОНБ в V_3 , $ec{a}=ec{e}lpha$, $ec{b}=ec{e}eta$ \Rightarrow

$$\Rightarrow \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}$$

Доказательство

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{bmatrix} \alpha_1 \vec{e_1} + \alpha_2 \vec{e_2} + \alpha_3 \vec{e_3}, \beta_1 \vec{e_1} + \beta_2 \vec{e_2} + \beta_3 \vec{e_3} \end{bmatrix} =$$

$$= \alpha_1 \beta_2 [\vec{e_1}, \vec{e_2}] + \alpha_2 \beta_1 [\vec{e_2}, \vec{e_1}] + \alpha_1 \beta_3 [\vec{e_1}, \vec{e_3}] +$$

$$+ \alpha_3 \beta_1 [\vec{e_3}, \vec{e_1}] + \alpha_2 \beta_3 [\vec{e_2}, \vec{e_3}] + \alpha_3 \beta_2 [\vec{e_3}, \vec{e_2}] =$$

$$= (\alpha_3 \beta_1 - \alpha_1 \beta_3) [\vec{e_3}, \vec{e_1}] + (\alpha_2 \beta_3 - \alpha_3 \beta_2) [\vec{e_2}, \vec{e_3}] +$$

$$+ (\alpha_1 \beta_2 - \alpha_2 \beta_1) [\vec{e_1}, \vec{e_2}] =$$

$$= \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}$$

Замечание

Аналогично в ∀ базисе доказывается формула

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{bmatrix} \overrightarrow{e_2}, \overrightarrow{e_3} \end{bmatrix} & \begin{bmatrix} \overrightarrow{e_3}, \overrightarrow{e_1} \end{bmatrix} & \begin{bmatrix} \overrightarrow{e_1}, \overrightarrow{e_2} \end{bmatrix} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{bmatrix}$$

Двойное векторное произведение

Утверждение 5.3

$$\left[\vec{a}, \left[\vec{b}, \vec{c}\right]\right] = \vec{b}(\vec{a}, \vec{c}) - \vec{c}\left(\vec{a}, \vec{b}\right) \ \forall \vec{a}, \vec{b}, \vec{c} \in V_3$$

Доказательство

Выберем правый ОНБ \overrightarrow{e} так: $\overrightarrow{e_1} \parallel \overrightarrow{c}, \overrightarrow{e_1}$ и $\overrightarrow{e_2}$ компланарны с \overrightarrow{b} , $\overrightarrow{e_3} = [\overrightarrow{e_1}, \overrightarrow{e_2}]$. Тогда

$$\vec{a} = \vec{e} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \qquad \vec{b} = \vec{e} \begin{pmatrix} \beta_1 \\ \beta_2 \\ 0 \end{pmatrix} \qquad \vec{c} = \vec{e} \begin{pmatrix} \gamma_1 \\ 0 \\ 0 \end{pmatrix}$$

Двойное векторное произведение

Доказательство (продолжение)

$$\begin{bmatrix} \vec{b}, \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ \beta_1 & \beta_2 & 0 \\ \gamma_1 & 0 & 0 \end{vmatrix} = \vec{e} \begin{pmatrix} 0 \\ 0 \\ -\beta_2 \gamma_1 \end{pmatrix}$$
$$\begin{bmatrix} \vec{a}, \begin{bmatrix} \vec{b}, \vec{c} \end{bmatrix} \end{bmatrix} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ 0 & 0 & -\beta_2 \gamma_1 \end{vmatrix} = \vec{e} \begin{pmatrix} -\alpha_2 \beta_2 \gamma_1 \\ \alpha_1 \beta_2 \gamma_1 \\ 0 \end{pmatrix}$$
(1)

Двойное векторное произведение

Доказательство (продолжение)

$$(\vec{a}, \vec{c}) = \alpha_1 \gamma_1 \qquad (\vec{a}, \vec{b}) = \alpha_1 \beta_1 + \alpha_2 \beta_2$$

$$\vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b}) =$$

$$= \vec{e} \left(\begin{pmatrix} \alpha_1 \beta_1 \gamma_1 \\ \alpha_1 \beta_2 \gamma_1 \\ 0 \end{pmatrix} - \begin{pmatrix} (\alpha_1 \beta_1 + \alpha_2 \beta_2) \gamma_1 \\ 0 \\ 0 \end{pmatrix} \right) =$$

$$= \vec{e} \begin{pmatrix} -\alpha_2 \beta_2 \gamma_1 \\ \alpha_1 \beta_2 \gamma_1 \\ 0 \end{pmatrix} (2)$$

Сравнивая (1) и (2), получаем доказываемое равенство.

Утверждение 5.4

 \forall базиса $\{e_1, e_2, e_3\}$ векторы $[\overrightarrow{e_2}, \overrightarrow{e_3}], [\overrightarrow{e_3}, \overrightarrow{e_1}], [\overrightarrow{e_1}, \overrightarrow{e_2}]$ линейно независимы.

Доказательство

Пусть
$$\lambda[\overrightarrow{e_2},\overrightarrow{e_3}] + \mu[\overrightarrow{e_3},\overrightarrow{e_1}] + \nu[\overrightarrow{e_1},\overrightarrow{e_2}] = \overrightarrow{0}$$
 и НУО $\lambda \neq 0$.

Умножим это равенство слева скалярно на $\overrightarrow{e_1}$:

$$\lambda(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}) + \mu(\overrightarrow{e_1}, \overrightarrow{e_3}, \overrightarrow{e_1}) + \nu(\overrightarrow{e_1}, \overrightarrow{e_1}, \overrightarrow{e_2}) =$$

$$= \lambda(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}) = 0 \Rightarrow (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}) = 0,$$

что противоречит некомпланарности векторов базиса.

Определение

Базис
$$\overrightarrow{e_1}^* = \frac{[\overrightarrow{e_2}, \overrightarrow{e_3}]}{(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})}$$
 $\overrightarrow{e_2}^* = \frac{[\overrightarrow{e_3}, \overrightarrow{e_1}]}{(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})}$ $\overrightarrow{e_3}^* = \frac{[\overrightarrow{e_1}, \overrightarrow{e_3}]}{(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})}$

называется взаимным (или биортогональным) к базису \vec{e} в V_3 .

(Корректность определения следует из утверждения 5.4)

Следствие 1

∀ ОНБ совпадает со своим взаимным.

Следствие 2

$$\left(\overrightarrow{e_i}^*,\overrightarrow{e_j}
ight)=\delta_{ij}$$
, где $\delta_{ij}=egin{cases}1$ при $i=j\\0$ при $i
eq j$ — символ Кронекера

Утверждение 5.5

$$\vec{e}^*$$
 — базис, взаимный к $\vec{e} \Rightarrow \forall \vec{a} \in V_3$ $\vec{a} = (\vec{a}, \overrightarrow{e_1}^*) \overrightarrow{e_1} + (\vec{a}, \overrightarrow{e_2}^*) \overrightarrow{e_2} + (\vec{a}, \overrightarrow{e_3}^*) \overrightarrow{e_3}$ (1)

Доказательство

Равенство $\vec{a}=\alpha_1\overrightarrow{e_1}+\alpha_2\overrightarrow{e_2}+\alpha_3\overrightarrow{e_3}$ умножим скалярно справа на $\overrightarrow{e_i}^*$, i=1,2,3 .

(Например, для i=1

$$(\vec{a}, \overrightarrow{e_1}^*) = \alpha_1(\overrightarrow{e_1}, \overrightarrow{e_1}^*) + \alpha_2(\overrightarrow{e_2}, \overrightarrow{e_1}^*) + \alpha_3(\overrightarrow{e_3}, \overrightarrow{e_1}^*) = \alpha_1)$$

$$1 \qquad 0 \qquad 0$$

Тогда
$$\alpha_1 = \left(\vec{a}, \overrightarrow{e_1}^*\right) \ \alpha_2 = \left(\vec{a}, \overrightarrow{e_2}^*\right) \ \alpha_3 = \left(\vec{a}, \overrightarrow{e_3}^*\right).$$

Утверждение 5.6

Взаимным для базиса \vec{e}^* будет базис \vec{e} .

Доказательство

В (1) оба базиса входят симметрично.

Следствие

$$\forall \vec{a} \in V_3 \ \vec{a} = (\vec{a}, \overrightarrow{e_1}) \overrightarrow{e_1}^* + (\vec{a}, \overrightarrow{e_2}) \overrightarrow{e_2}^* + (\vec{a}, \overrightarrow{e_3}) \overrightarrow{e_3}^* \tag{2}$$

Определение

Пусть дан базис \vec{e} в V_3 . Числа $\alpha_i^* = (\vec{a}, \overrightarrow{e_i})$ (i=1,2,3) называются ковариантными координатами вектора \vec{a} в базисе \vec{e}

(они однозначно определяют \vec{a} из равенства (2)).

Обычные координаты \vec{a} в базисе \vec{e} называют контрвариантными координатами.

Упражнение

Докажите, что скалярное произведение векторов \vec{a} и $\vec{b} \in V_3$ равно сумме произведений координат \vec{a} на ковариантные координаты \vec{b} .