

Description

The VSM20P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-60V, I_{D} =-20A $R_{DS(ON)}$ <70m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM20P06-TC	VSM20P06	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	-20	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	-14	А	
Pulsed Drain Current	I _{DM}	-30	А	
Maximum Power Dissipation	P _D	60	W	
Derating factor		0.48	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	264	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case(Note 2)	R _{θJC}	2.1	°C/W	
--	------------------	-----	------	--

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.2	-1.9	-2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-10A	-	54	70	mΩ
Forward Transconductance	g Fs	V _{DS} =-10V,I _D =-10A	-	20	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}), 05), (), 0),	-	3430	-	PF
Output Capacitance	Coss	V _{DS} =-25V,V _{GS} =0V,	-	391	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	272	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	9	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, R_L =3 Ω , V_{GS} =-10V, R_G =2.5 Ω	-	10	-	nS
Turn-Off Delay Time	$t_{d(off)}$		-	70	-	nS
Turn-Off Fall Time	t _f		-	35	-	nS
Total Gate Charge	Qg	V 201 40A	-	30		nC
Gate-Source Charge	Q _{gs}	V_{DS} =-30, I_{D} =-10A, V_{GS} =-10V	-	5.5		nC
Gate-Drain Charge	Q _{gd}	V _{GS} 10V	-	6.5		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-20	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 10A	-	43		nS
Reverse Recovery Charge	Qrr	di/dt = -100A/µs(Note3)	-	41		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_{DD}=-20V,V_G=-10V,L=1mH,Rg=25 Ω ,I_{AS}=23A

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Rdson On-Resistance(m 🛭)

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

T_J-Junction Temperature(°C)

Figure 10 ID Current Derating vs Junction **Temperature**

Figure 11 Normalized Maximum Transient Thermal Impedance