Numerical Analysis Qualifier

prepared by
Jing Li & Lothar Reichel
Kent State University
August, 2007

INSTRUCTIONS: Do any (and only) 8 of the following 10 problems.

- 1. (Rounding-Error Analysis) Consider a computer with four digits precision where any real number $x=1.d_1d_2d_3d_4d_5d_6\cdots\times 10^E$ is represented by its floating point number $fl(x)=1.d_1d_2d_3d_4\times 10^E$.
 - (a) Determine the value $100.0 \oplus 0.001$, where \oplus represents the addition implemented on this computer.
 - (b) The exact solution of

$$\begin{bmatrix} 0.001 & 100.0 \\ 100.0 & 100.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 100.0 \\ 0.0 \end{bmatrix}$$
 (1)

is $[x_1, x_2] = [-1.0, 1.0]$ (up to the machine epsilon).

Solve (1) by implementing *Gaussian Elimination* without pivoting on the above mentioned computer. What is the error of the solution in Euclidean norm? What is its relative error?

Solve (1) by implementing Gaussian Elimination with pivoting.

- 2. (Singular Value Decomposition) Given a matrix $A \in \mathbb{R}^{n \times n}$,
 - (a) Describe the Singular Value Decomposition of A.
 - (b) Let σ_1 be the largest singular value of A. Prove that $||A||_2 = \sigma_1$, where $||A||_2$ is defined by

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}.$$

3. (Rayleigh Quotient) Let $A \in \mathbb{R}^{n \times n}$ be symmetric. The Rayleigh Quotient associated with A is the function defined by

$$r(x) := \frac{x^T A x}{x^T x}, \quad x \in \mathbb{R}^n.$$

(a) Prove that $||Ax - r(x)x||_2 = \min_{\mu \in \mathbb{R}} ||Ax - \mu x||_2$.

(b) Assume that A is positive definite. Denote its minimum and maximum eigenvalues by λ_{\min} and λ_{\max} . Prove that

$$\lambda_{\min} = \min_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max} = \max_{x \neq 0} \frac{x^T A x}{x^T x}.$$

- 4. (Arnoldi Iteration) Given a matrix $A \in \mathbb{R}^{m \times m}$ and a column vector $q_1 \in \mathbb{R}^m$ with $||q_1||_2 = 1$,
 - (a) Present an algorithm which generates a sequence of orthonormal vectors $q_1, q_2, ...$ and an upper Hessenberg matrix $\tilde{H}_n \in \mathbb{R}^{(n+1)\times n}$ (where n < m) such that

$$A \left[\begin{array}{c|c} q_1 & \dots & q_n \end{array} \right] = \left[\begin{array}{c|c} q_1 & \dots & q_{n+1} \end{array} \right] \left[\begin{array}{ccc} h_{11} & \dots & h_{1n} \\ h_{21} & & h_{2n} \\ & \ddots & \vdots \\ 0 & & h_{n+1,n} \end{array} \right].$$

- (b) Prove that $\langle q_1, Aq_1, \dots, A^n q_1 \rangle = \langle q_1, q_2, \dots, q_{n+1} \rangle$.
- 5. (GMRES Algorithm) Given a matrix $A \in \mathbb{R}^{m \times m}$ and a column vector $b \in \mathbb{R}^m$, using the result in Question 5, present an iteration which solves

$$\min_{x \in \langle b, Ab, \dots, A^{n-1}b \rangle} ||Ax - b||_2,$$

at the n-th iteration.

6. (Polynomial Interpolation) Given a set of points (x_i, f_i) , i = 0, 1, ..., n, where $x_0 < x_1 < ... < x_n$, and $f_i = f(x_i)$, let p(x) be the interpolation polynomial of degree less or equal than n, such that $p(x_i) = f_i$, i = 0, 1, ..., n. Assume that $f^{(n+1)}(x)$ is continuous. Prove that for any $x \in [x_0, x_n]$, there exists $\xi \in [x_0, x_n]$ such that

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)(x - x_1)...(x - x_n).$$

- 7. (Trigonometric Interpolation) Given a sequence of points (x_k, f_k) , k = 0, 1, ..., N-1, where $x_k = 2\pi k/N$,
 - (a) Prove that there exists a unique phase polynomial of the form

$$p(x) = \sum_{j=0}^{N-1} \beta_j e^{ijx},$$

where i denotes the imaginary unit, such that $p(x_k) = f_k$, for k = 0, 1, ..., N - 1.

(b) Prove that the coefficients β_j in (a) are determined by

$$\beta_j = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-2\pi i j k/N}, \quad j = 0, 1, ..., N-1.$$

8. (Peano Kernel Theorem) The Peano Kernel Theorem states that if a functional R(f) satisfies R(P) = 0 for all polynomials P of degree less or equal than n, then for all functions $f \in C^{n+1}[a,b]$,

$$R(f) = \int_a^b f^{(n+1)}(t)K(t)dt,$$

where $K(t) = R_x[(x-t)_+^n]/n!$ and $R_x[(x-t)_+^n]$ represents the application of R on $(x-t)_+^n$ considered as a function of x.

Using the Peano Kernel Theorem, prove that for any $f(x) \in C^2[a, b]$, there exists $\xi \in [a, b]$, such that

$$\frac{b-a}{2}(f(a)+f(b)) - \int_{a}^{b} f(x)dx = \frac{(b-a)^{3}}{12}f''(\xi).$$

(Hint: Take $R(f) = \frac{b-a}{2}(f(a) + f(b)) - \int_a^b f(x)dx$ in the proof.)

9. (Gauss Quadrature) Let $p_j(x) \in \{p \mid p(x) = x^j + a_1 x^{j-1} + \dots + a_j\}$, $j = 0, 1, \dots, n$, be a set of orthogonal polynomials with respect to the inner product

$$(f,g) = \int_a^b \omega(x) f(x) g(x) dx,$$

where $\omega(x)$ is a nonnegative smooth function. Let $x_1, x_2, ..., x_n$ be the distinct roots of $p_n(x)$, and $w_1, w_2, ..., w_n$ be determined by

$$\begin{bmatrix} p_0(x_1) & p_0(x_2) & \dots & p_0(x_n) \\ p_1(x_1) & p_1(x_2) & \dots & p_1(x_n) \\ & & & \dots & \\ p_{n-1}(x_1) & p_{n-1}(x_2) & \dots & p_{n-1}(x_n) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} (p_0, p_0) \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Prove that

$$\int_{a}^{b} \omega(x)p(x)dx = \sum_{i=1}^{n} w_{i}p(x_{i})$$

hold for all polynomials p(x) of degree less or equal than 2n-1.

10. (Nonlinear Equations) Describe the Newton's iteration for solving

$$e^{-x} - r$$

Prove that it is convergent starting from $x_0 = 1$, and determine its rate of convergence.