

Effects of Spent Cooling and Swirler Angle on a 9-Point Swirl-Venturi Injector

Zhuohui He, K. M. Tacina, Chi-Ming Lee

NASA Glenn Research Center

Robert R. Tacina

Retired, NASA Glenn Research Center

Fei Phil Lee

Woodward, FST

Outline

- ▶ Background
 - Nitrogen Oxides
 - Aircraft engine combustors
 - Lean Direct Injection (LDI)
 - Swirl–Venturi LDI
- Methods
 - Flametube measurements
 - Experimental hardware
- ▶ Results
- ▶ Conclusion

Background: Nitrogen Oxides

► Subsonic aircraft

- Targets landing-takeoff (LTO) NOx
- Reduce cruise NOx

Source: NASA

► Supersonic aircraft

- High altitude emissions
- Targets cruise
- Protect ozone layer
- Decreased by stratospheric NOx emissions

Supersonic cruise conditions are targeted here

Background: Low NO_x concepts

Avoid high-NO_x stoichiometric burning!

Lean burn concepts

- Lean, premixed, prevaporized (LPP)
- Lean partially premixed
- Lean direct injection (LDI)

Rich front end concepts

- Rich burn—quick quench—lean burn (RQL)
- Rich front end

Background: Aircraft Engine Combustors

Source: Lefebvre, Gas Turbine Combustion, 1st ed

Source: GE

Lean Direct Injection

- ▶ Fuel lean: no rich front end
 - All *combustion* air enters through the dome
- ▶ Fuel is injected directly into the flame zone
 - Reduces problems with autoignition, flashback.
- ▶ Fine atomization and rapid, uniform fuel/air mixing

9-Point-Swirl-Venturi Injector

High Speed Research(HSR) program

- 5-bladed, helical air swirler
- Converging-diverging venturi
- Simplex fuel injectors
- Fuel injector tip at venturi throat

Effects of Cooling air

Back View
(upstream looking downstream)

Straight through spent cooling (ST)

Section B-B

Back View
(upstream looking downstream)

Cooling at the venturi throat (AT)

Section B-B

- Combustor inlet conditions
- Prevent hardware damage.

Other comparing parameters

- ▶ Swirler angle
 - 45°
 - 60°
- ▶ Compare to similar 9-point SV injector(**no cooling**)
 - ultra-efficient engine technology (UEET) program

Method

Flametube

- No air cooling
- Capabilities
 - 840 K inlet temp
 - 1500 kPa
- 76.2-mm by 76.2-mm square cross section

Standard gas bench

- SAE 1533
- CO₂, CO, O₂
- UHC
- NOx:
Chemiluminescence

UEET correlation equations

► For the UEET configuration

(Source:ISABE-2005-1106)

- with 45° swirlers

$$(1) \quad EINOx = 0.11 * P_3^{0.59} * e^{\frac{T_3}{194}} * \Phi^{5.07} * \left(\frac{\Delta P}{P} \%\right)^{-0.56}$$

- with 60° swirlers:

$$(2) \quad EINOx = 0.013 * P_3^{0.59} * e^{\frac{T_3}{194}} * \Phi^{1.69} * \left(\frac{\Delta P}{P} \%\right)^{-0.56}$$

Results

Effective area (ACd) and Flow number

	HSR 45° /ST	HSR 45° /AT	HSR 60° /ST	HSR 60°/no cooling	UEET 45° (no cooling)	UEET 60° (no cooling)
ACd	1.745	1.644	1.477	1.37	1.48	1.35
FN(total)	17.9	17.16	18.49	18.24	26.1	26.1

- ▶ $ACd = \text{air mass flow rate} / \sqrt{\Delta P}$
 - ▶ NOx emission increase when air pressure drop decrease
 - ▶ ST > AT > no cooling
 - ▶ $45^\circ > 60^\circ$
 - ▶ HSR 60° similar ACd with UEET 60°
- ▶ $FN = \text{fuel mass flow rate} / \sqrt{\Delta P}$.
 - ▶ high ΔP , lower fuel drop size
 - ▶ FN=18 for HSR configurations
 - ▶ FN=26.1 for UEET configurations
 - ▶ 40% higher flow number will result about 30% higher fuel drop sizes

45° swirler ST vs AT

60° swirler, ST vs no cooling

ST, 45 vs 60

Cfd picture

Source: Ajmani, ASME GT2013-95669

Spent cooling at the Throat

60° Swirlers

45° Swirlers

Straight through Spent cooling

Conclusion

- ▶ Cooling air is unnecessary for the current designs, but might be important in future SV-LDI designs.
 - post-testing visual inspection showed no damage on the injector hardware.
 - spent cooling might be needed at the higher inlet pressures of next generation aircraft engines and when using Alt fuel with short ignition delay time
- ▶ The effects of spent cooling depend on spent cooling location, swirler angle, and test conditions.

Acknowledgements

- ▶ This work was supported by NASA's High Speed Research (HSR) and Fundamental Aeronautics/Aeronautical Sciences projects.
- ▶ Robert Tacina and Phil Lee collaborated on the SV-LDI designs
- ▶ Chi-Ming Lee and Robert Tacina ran the flametube tests
- ▶ Robert Tacina did preliminary data analysis

▶ Questions...