

Very low-dropout voltage regulator with inhibit function

Datasheet - production data

Features

- Very low-dropout voltage (0.2 V typ.)
- Very low quiescent current (typ. 50 μA in OFF mode, 0.5 mA in ON mode, no load)
- Output current up to 100 mA
- Output voltages: 3 V, 3.3 V, 4.5 V, 5 V, 8 V
- Internal current and thermal limit
- Small 2.2 μF capacitor for stability
- Available in ±1% (A) or ±2% (C) selection at 25 °C
- Supply voltage rejection: 80 dB (typ.)
- Temperature range: -40 to 125 °C

Description

The LEXX is a very low-dropout voltage regulator available in SO-8, TO-92 packages and over a wide range of output voltages.

The very low-dropout voltage (0.2 V) and low quiescent current make it particularly suitable for low-noise, low-power applications and in battery-powered systems.

This device is pin-to-pin compatible with the L78L series. Furthermore, in the 8-pin configuration (SO-8), it uses a shutdown logic control (pin 5, TTL compatible). This means that when the device is used as a local regulator, a part of the board can be put in standby, decreasing the total power consumption. In the three-terminal configuration (TO-92), the device is always in on-state. It requires a 2.2 μF capacitor for stability, reducing the component size and cost.

Table 1: Device summary

	Order code					
SO-8	TO-92 (Ammopack)	TO-92 (tape and reel)	Output voltage (V)			
LE30CD-TR			3			
LE33CD-TR	LE33CZ-AP	LE33CZ-TR	3.3			
LE45CD-TR			4.5			
LE50ABD-TR	LE33ABZ-AP		5			
LE50CD-TR			5			
LE80CD-TR			8			

Contents LEXX

Contents

1	Diagran	n	3
2	Pin con	figuration	4
3	Maximu	ım ratings	5
4	Electric	al characteristics	6
5	Typical	performance characteristics	13
6	Packag	e information	16
	6.1	SO-8 package information	16
	6.2	SO-8 packing information	18
	6.3	TO-92 packing information	19
	6.4	TO-92 Ammopak packing information	21
7	Revisio	n history	23

LEXX Diagram

1 Diagram

Figure 1: Block diagram

Pin configuration LEXX

2 Pin configuration

Figure 2: Pin connections (SO-8 top view, TO-92 bottom view)

LEXX Maximum ratings

3 Maximum ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vı	DC input voltage	20	V
lo	Output current	Internally limited (1)	
Ртот	Power dissipation	Internally limited	
Tstg	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Notes:

⁽¹⁾Our SO-8 package, used for voltage regulators, is modified internally to have pins 2, 3, 6 and 7 electrically fused to the die attach pad. This frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heatsinking. The external dimensions are the same as SO-8 standard.

Table 3: Thermal data

Symbol	Symbol Parameter		TO-92	Unit
R _{th} JC	Thermal resistance junction-case	20		°C/W
R_{thJA}	Thermal resistance junction-ambient	55	200	°C/W

Figure 3: Test circuit

If the INHIBIT pin is left floating, the regulator is in ON mode. However, when the inhibit function is not used, it should be grounded to avoid any noise.

Electrical characteristics LEXX

4 Electrical characteristics

Refer to test circuits, $T_J = 25$ °C, $C_I = 0.1~\mu F$, $C_O = 2.2~\mu F$ unless otherwise specified.

Table 4: LE30AB electrical characteristics

Symbol	Parameter	Test co	ndition	Min.	Тур.	Max.	Unit
		I _O = 10 mA V _I = 5 V		2.970	3	3.030	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ $V_1 = 5 \text{ V}$ $T_J = -25 \text{ to } 85 ^{\circ}$	С	2.940		3.060	V
Vı	Operating input voltage	Io = 100 mA				18	V
lo	Output current limit			150			mA
ΔVo	Line regulation	$V_1 = 3.7 \text{ to } 18 \text{ V}$ $I_0 = 0.5 \text{ mA}$			3	15	mV
ΔVo	Load regulation	$V_1 = 4 V$ $I_0 = 0.5 \text{ to } 100$	mA		3	15	mV
		V _I = 4 to 18 V I _O = 0 mA	$I_0 = 0 \text{ mA}$		0.5	1	mΛ
la	Quiescent current	V _I = 4 to 18 V I _O = 100 mA	ON mode		1.5	3	mA
		V _I = 6 V	OFF mode		50	100	μΑ
		I _O = 5 mA	f = 120 Hz		81		
SVR	Supply voltage rejection	$V_1 = 5 \pm 1 \text{ V}$	f = 1 kHz		76		dB
		B = 10 Hz to 100	f = 10 kHz		60		
eN	Output noise voltage		KIIZ		50		μV
		Io = 100 mA			0.2	0.4	
Vd	Dropout voltage	$I_0 = 100 \text{ mA}$ $T_J = -40 \text{ to } 125$	°C			0.5	V
VIL	Control input logic low	T _J = -40 to 125 °	С			0.8	V
VIH	Control input logic high	T _J = -40 to 125 °	T _J = -40 to 125 °C				V
lı	Control input current	V _I = 6 V V _C = 6 V			10		μА
Со	Output bypass capacitance	ESR = 0.1 to 10 lo = 0 to 100 m		2	10		μF

LEXX Electrical characteristics

Refer to test circuits, T_J = 25 °C, C_I = 0.1 μF , C_O = 2.2 μF unless otherwise specified.

Table 5: LE30C electrical characteristics

Symbol	Parameter	Test co	ndition	Min.	Тур.	Max.	Unit
		I _O = 10 mA V _I = 5 V			3	3.060	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ $V_1 = 5 \text{ V}$ $T_J = -25 \text{ to } 85 \text{ S}$	°C	2.880		3.120	V
Vı	Operating input voltage	I _O = 100 mA				18	V
lo	Output current limit			150			mA
ΔVo	Line regulation	$V_1 = 3.7 \text{ to } 18 \text{ V}$ $I_0 = 0.5 \text{ mA}$			3	20	mV
ΔVo	Load regulation	V _I = 4 V I _O = 0.5 to 100	mA		3	25	mV
		V _I = 4 to 18 V I _O = 0 mA	Io = 0 mA		0.5	1	A
ld	Quiescent current	V _I = 4 to 18 V I _O = 100 mA	ON mode		1.5	3	mA
		Vı = 6 V	OFF mode		50	100	μΑ
		I _O = 5 mA	f = 120 Hz		81		
SVR	Supply voltage rejection	$V_1 = 5 \pm 1 \text{ V}$	f = 1 kHz		76		dB
		D 40 H= 4- 400	f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100	J KHZ		50		μV
		Io = 100 mA			0.2	0.4	
V_{d}	Dropout voltage	$I_0 = 100 \text{ mA}$ $T_J = -40 \text{ to } 125$	5 °C			0.5	V
VIL	Control input logic low	T _J = -40 to 125 °	°C			0.8	V
ViH	Control input logic high	T _J = -40 to 125 °	T _J = -40 to 125 °C				V
lı	Control input current	V _I = 6 V V _C = 6 V			10		μA
Со	Output bypass capacitance	ESR = 0.1 to 10 lo = 0 to 100 m		2	10		μF

Electrical characteristics LEXX

Refer to test circuits, T_J = 25 °C, C_I = 0.1 μF , C_O = 2.2 μF unless otherwise specified.

Table 6: LE33C electrical characteristics

Symbol	Parameter	Test cond	dition	Min.	Тур.	Max.	Unit
		I _O = 10 mA V _I = 5.3 V			3.3	3.366	
Vo	Output voltage	Vı = 5.3 V				3.432	V
Vı	Operating input voltage	I _O = 100 mA				18	V
lo	Output current limit			150			mA
ΔVo	Line regulation	$V_1 = 4 \text{ to } 18 \text{ V}$ $I_0 = 0.5 \text{ mA}$			3	20	mV
ΔVo	Load regulation	V _I = 4.3 V I _O = 0.5 to 100 m.	A		3	25	mV
		V _I = 4.3 to 18 V I _O = 0 mA	$I_0 = 0 \text{ mA}$		0.5	1	mA
ld	Quiescent current	$V_I = 4.3 \text{ to } 18 \text{ V}$ $I_O = 100 \text{ mA}$	ON mode		1.5	3	mA
		Vı = 6 V	OFF mode		50	100	μΑ
		I _O = 5 mA	f = 120 Hz		80		
SVR	Supply voltage rejection	$V_1 = 5.3 \pm 1 \text{ V}$	f = 1 kHz		75		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz		50	0.4	μV
.,		I _O = 100 mA			0.2	0.4	.,
V_d	Dropout voltage	$T_J = -40 \text{ to } 125 \text{ °C}$	С			0.5	V
V _{IL}	Control input logic low	$T_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _J = -40 to 125 °C		2			V
Iı	Control input current	V ₁ = 6 V V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω I_0 = 0 to 100 mA		2	10		μF

LEXX Electrical characteristics

Refer to test circuits, $T_J = 25 \, ^{\circ}C$, $C_I = 0.1 \, \mu F$, $C_O = 2.2 \, \mu F$ unless otherwise specified.

Table 7: LE45C electrical characteristics

Symbol	Parameter	Test con	dition	Min.	Тур.	Max.	Unit
		I _O = 10 mA V _I = 6.5 V			4.5	4.59	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ $V_1 = 6.5 \text{ V}$ $T_J = -25 \text{ to } 85 \text{ °C}$		4.32		4.68	V
Vı	Operating input voltage	I _O = 100 mA				18	V
lo	Output current limit			150			mA
ΔVo	Line regulation	$V_1 = 5.2 \text{ to } 18 \text{ V}$ $I_0 = 0.5 \text{ mA}$			4	30	mV
ΔVo	Load regulation	V _I = 5.5 V I _O = 0.5 to 100 m _A	A		3	25	mV
		V _I = 5.5 to 18 V I _O = 0 mA			0.5	1	m ^
l _d	Quiescent current	V _I = 5.5 to 18 V I _O = 100 mA	ON mode		1.5	3	mA
		V _I = 6 V	OFF mode		50	100	μΑ
		I _O = 5 mA	f = 120 Hz		77		
SVR	Supply voltage rejection	$V_1 = 6.5 \pm 1 \text{ V}$	f = 1 kHz		72		dB
		-	f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz		50	0.4	μV
Vd	Dropout voltage	lo = 100 mA			0.2	0.4	V
Va	Bropodi voltage	$T_J = -40 \text{ to } 125 \text{ °C}$				0.5	V
VıL	Control input logic low	T _J = -40 to 125 °C				0.8	V
ViH	Control input logic high	T _J = -40 to 125 °C		2			V
l ₁	Control input current	V _I = 6 V V _C = 6 V			10		μА
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 100 mA		2	10		μF

Electrical characteristics LEXX

Refer to test circuits, $T_J = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified.

Table 8: LE50AB electrical characteristics

Symbol	Parameter	Test cor	ndition	Min.	Тур.	Max.	Unit
		Io = 10 mA V _I = 7 V		4.95	5	5.05	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ $V_1 = 7 \text{ V}$ $T_J = -25 \text{ to } 85 \text{ °C}$	C	4.9		5.1	V
Vı	Operating input voltage	I _O = 100 mA				18	V
lo	Output current limit			150	350	425	mA
ΔVo	Line regulation	$V_1 = 5.7 \text{ to } 18 \text{ V}$ $I_0 = 0.5 \text{ mA}$			4	20	mV
ΔVo	Load regulation	V _I = 6 V I _O = 0.5 to 100 r	mA		3	15	mV
		V _I = 6 to 18 V I _O = 0 mA			0.5	1	mΛ
ld	Quiescent current	$V_1 = 6 \text{ to } 18 \text{ V}$ $I_0 = 100 \text{ mA}$ ON mode	ON mode		1.5	3	mA
		Vı = 6 V	OFF mode		50	100	μΑ
		I _O = 5 mA	f = 120 Hz		76		
SVR	Supply voltage rejection $V_1 = 7 \pm 1 \text{ V}$ $f = 1 \text{ kHz}$		71		dB		
		B = 10 Hz to 100	f = 10 kHz		60		
eN	Output noise voltage		NI IZ		50		μV
V_d	Dropout voltage	I _O = 100 mA			0.2	0.4	V
Va	Dropout voltage	$I_0 = 100 \text{ mA}$ $T_J = -40 \text{ to } 125 \text{ °C}$				0.5	v
VIL	Control input logic low	T _J = -40 to 125 °C				0.8	V
ViH	Control input logic high	T _J = -40 to 125 °C	T _J = -40 to 125 °C				V
Iı	Control input current	V _I = 6 V V _C = 6 V			10		μA
Со	Output bypass capacitance	ESR = 0.1 to 10 s lo = 0 to 100 m/s		2	10		μF

LEXX Electrical characteristics

Refer to test circuits, $T_J = 25 \, ^{\circ}C$, $C_I = 0.1 \, \mu F$, $C_O = 2.2 \, \mu F$ unless otherwise specified.

Table 9: LE50C electrical characteristics

Symbol	Parameter	Test co	ondition	Min.	Тур.	Max.	Unit
		lo = 10 mA V _I = 7 V			5	5.1	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ $V_1 = 7 \text{ V}$ $T_J = -25 \text{ to } 85 \text{ M}$	°C	4.8		5.2	V
Vı	Operating input voltage	I _O = 100 mA				18	V
lo	Output current limit			150	350	425	mA
ΔVo	Line regulation	$V_1 = 5.7 \text{ to } 18 \text{ V}$ $I_0 = 0.5 \text{ mA}$			4	30	mV
ΔV_O	Load regulation	V _I = 6 V I _O = 0.5 to 100	mA		3	25	mV
		V _I = 6 to 18 V I _O = 0 mA	$I_0 = 0 \text{ mA}$		0.5	1	mA
ld	Quiescent current	V _I = 6 to 18 V I _O = 100 mA	ON mode		1.5	3	
		V _I = 6 V	OFF mode		50	100	μΑ
		I _O = 5 mA	f = 120 Hz		76		
SVR	Supply voltage rejection	R Supply voltage rejection $V_1 = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB
		D 40 H= 4- 40	f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100	J KHZ		50		μV
		Io = 100 mA			0.2	0.4	
V_d	Dropout voltage	$I_0 = 100 \text{ mA}$ $T_J = -40 \text{ to } 125$	5 °C			0.5	V
VIL	Control input logic low	T _J = -40 to 125 °	,C			0.8	V
VIH	Control input logic high	T _J = -40 to 125 °	T _J = -40 to 125 °C				V
lı	Control input current	V _I = 6 V V _C = 6 V			10		μA
Со	Output bypass capacitance	ESR = 0.1 to 10 lo = 0 to 100 m		2	10		μF

Electrical characteristics LEXX

Refer to test circuits, T_J = 25 °C, C_I = 0.1 μF , C_O = 2.2 μF unless otherwise specified.

Table 10: LE80C electrical characteristics

Symbol	Parameter	Test co	ndition	Min.	Тур.	Max.	Unit
		I _O = 10 mA V _I = 10 V		7.84	8	8.16	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ $V_1 = 10 \text{ V}$ $T_J = -25 \text{ to } 85 ^\circ$	С	7.68		8.32	V
Vı	Operating input voltage	I _O = 100 mA				18	V
lo	Output current limit			150			mA
ΔVo	Line regulation	$V_1 = 8.7 \text{ to } 18 \text{ V}$ $I_0 = 0.5 \text{ mA}$			5	35	mV
ΔVo	Load regulation	$V_1 = 9 V$ $I_0 = 0.5 \text{ to } 100 \text{ i}$	mA		3	25	mV
		V _I = 9 to 18 V I _O = 0 mA	$I_0 = 0 \text{ mA}$		0.7	1.6	mA
la	Quiescent current	$V_1 = 9 \text{ to } 18 \text{ V}$ $I_0 = 100 \text{ mA}$	ON mode		1.7	3.6	IIIA
		V _I = 9 V	OFF mode		70	140	μΑ
		I _O = 5 mA	f = 120 Hz		72		
SVR	Supply voltage rejection	$V_1 = 10 \pm 1 \text{ V}$	f = 1 kHz		66		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100	kHz		50	0.4	μV
.,		I _O = 100 mA			0.2	0.4	.,
V_d	Dropout voltage	$I_0 = 100 \text{ mA}$ $T_J = -40 \text{ to } 125$	°C			0.5	V
V_{IL}	Control input logic low	$T_J = -40 \text{ to } 125 ^\circ$	С			0.8	V
V _{IH}	Control input logic high	$T_{\rm J} = -40 \text{ to } 125 ^{\circ}$	T _J = -40 to 125 °C				V
II	Control input current	V _I = 9 V V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 I _O = 0 to 100 m.		2	10		μF

5 Typical performance characteristics

Unless otherwise specified, $V_{O(NOM)} = 3.3 \text{ V}$.

Figure 10: Logic-controlled precision 3.3/5.0 V selectable output

Figure 11: Sequential multi-output supply

Figure 12: Basic inhibit functions

Package information LEXX

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

6.1 SO-8 package information

Figure 13: SO-8 package outline

Table 11: SO-8 mechanical data

D!		mm	
Dim.	Min.	Тур.	Max.
A			1.75
A1	0.10		0.25
A2	1.25		
b	0.31		0.51
b1	0.28		0.48
С	0.10		0.25
c1	0.10		0.23
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
L2		0.25	
k	0°		8°
ccc			0.10

Figure 14: SO-8 recommended footprint (dimensions are in mm)

Package information LEXX

6.2 SO-8 packing information

Figure 15: SO-8 tape and reel dimensions

Table 12: SO-8 tape and reel mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А			330	
С	12.8		13.2	
D	20.2			
N	60			
Т			22.4	
Ao	8.1	-	8.5	
Во	5.5		5.9	
Ko	2.1		2.3	
Po	3.9		4.1	
Р	7.9		8.1	

LEXX Package information

6.3 TO-92 packing information

Figure 16: TO-92 tape and reel outline

Package information LEXX

Table 13: TO-92 tape and reel mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
A1			4.80	
Т			3.80	
T1			1.60	
T2			2.30	
d	0.45	0.47	0.48	
P0	12.50	12.70	12.90	
P2	5.65	6.35	7.05	
F1, F2	2.40	2.50	2.94	
F3	4.98	5.08	5.48	
delta H	-2.00		2.00	
W	17.50	18.00	19.00	
W0	5.5	6.00	6.5	
W1	8.50	9.00	9.25	
W2			0.50	
Н		18.50	21	
H3	0.5	1	2	
H0	15.50	16.00	18.8	
H1		25.0	27.0	
D0	3.80	4.00	4.20	
t			0.90	
L			11.00	
I1	3.00			
delta P	-1.00		1.00	
Ø1	352	355	358	
Ø2	28	30	32	
u	44	47	50	

LEXX Package information

6.4 TO-92 Ammopak packing information

Figure 17: TO-92 Ammopak tape and reel outline

Package information LEXX

Table 14: TO-92 Ammopak tape and reel mechanical data

D:	mm			
Dim.	Min.	Тур.	Max.	
A1			4.80	
Т			3.80	
T1			1.60	
T2			2.30	
d	0.45	0.47	0.48	
P0	12.50	12.70	12.90	
P2	5.65	6.35	7.05	
F1, F2	2.40	2.50	2.94	
F3	4.98	5.08	5.48	
delta H	-2.00		2.00	
W	17.50	18.00	19.00	
W0	5.5	6.00	6.5	
W1	8.50	9.00	9.25	
W2			0.50	
Н		18.50	21	
НЗ	0.5	1	2	
H0	15.50	16.00	18.8	
H1		25.0	27.0	
D0	3.80	4.00	4.20	
t			0.90	
L			11.00	
l1	3.00			
delta P	-1.00		1.00	

LEXX Revision history

7 Revision history

Table 15: Document revision history

Date	Revision	Changes
09-Jul-2004	6	lo typ. and max. are changed in tab. 24 and 25 - pag. 14.
16-Mar-2005	7	Add Tape & Reel for TO-92 - Note on Table 3.
12-Feb-2007	8	Change value T _{OP} on Table 2.
26-Jul-2007	9	Add Table 1 in cover page.
29-Nov-2007	10	Modified: Table 25.
12-Feb-2008	11	Modified: Table 25.
10-Jul-2008	12	Modified: Table 1 and Table 25.
22-May-2012	13	Updated: Table 1 on page 1. Changed: TA in TJ test conditions from table 4 to table 10.
14-Mar-2014	14	Changed the part numbers LExxAB and LExxC to LEXX. Updated the title. Added the ammopack package to the figure in cover page. Updated the Table 1: Device summary. Updated the Description. Updated Figure 3. Changed the title of Figure 6. Updated mechanical data.
03-May-2017	15	Updated <i>Table 1: "Device summary"</i> and <i>Section 6: "Package information"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

