

Análise Matemática II 2021/2022

Atividade 03 – Métodos Numéricos para Derivação e Integração

Pedro Emanuel Dinis Serrano n°2016017926 Inês Filipa dos Reis Moreira n° 2019120254

Índice

Introdução	3
Métodos Numéricos para Derivação	4
2.1 Fórmulas de Diferenças Finitas	4
2.1.1 Progressivas	4
2.1.2 Regressivas	6
2.2.1 Progressivas	8
2.2.2 Regressivas	10
2.2.3 Centradas	12
2.3 2ª Derivada	14
4. Métodos Numéricos para Integração	16
4.1 Regra dos Trapézios	16
4.2 Regra de Simpson	18
Conclusão	20
Bibliografia	21
	Introdução

1. Introdução

Este trabalho consiste na implementação em MATLAB de métodos de Derivação e Integração Numérica.

O principal objetivo é a implementação de funções, através do desenvolvimento de uma app de MATLAB para algumas fórmulas de Derivação e Integração Numérica, nomeadamente: diferenças finitas em 2 e 3 pontos (Progressivas, Regressivas e Centradas), 2ª derivada e também regra dos Trapézios e regra de Simpson.

2. Métodos Numéricos para Derivação

2.1 Fórmulas de Diferenças Finitas

2.1.1 Progressivas

Fórmula:

$$f'(x_k) := \frac{f(x_{k+1}) - f(x_k)}{h}$$

onde:

- $f'(x_k) \rightarrow$ Aproximação do valor da derivada no ponto de abcissa x_k ;
- $f(x_{k+1}) \rightarrow \text{Valor da função na próxima abcissa}$;
- $f(x_k) \rightarrow \text{Valor da função no ponto de abcissa atual;}$
- $h \rightarrow \text{Valor de cada sub-intervalo (passo)}$.

- 1. Alocar memória para x;
- 2. Definir o número de pontos (n);
- 3. Se forem recebidos 5 elementos, y recebe o valor de f(x);
- 4. Alocar memória para a derivada;
- 5. Para i de I a n-I, calcular a derivada (aproximada) de f no ponto atual, para a iésima iteração;
- 6. Calcular a derivada (aproximada) de f no ponto atual, em n.

```
function [x,y,dydx] = NDerivadaDFP(~,f,a,b,h,y) %progressivas em 2
    x = a:h:b;
    n = length(x);
    if nargin == 5
        y = f(x);
    end
    dydx = zeros(1,n);
    for i = 1:n-1
        dydx(i) = (y(i+1)-y(i))/h;
    end
    dydx(n) = dydx(n-1);
end
```

2.1.2 Regressivas

Fórmula:

$$f'(x_k) := \frac{f(x_k) - f(x_{k-1})}{h}$$

onde:

- $f'(x_k) \rightarrow$ Aproximação do valor da derivada no ponto de abcissa x_k ;
- $f(x_k) \rightarrow \text{Valor da função no ponto de abcissa atual;}$
- $f(x_{k-1}) \rightarrow \text{Valor da função na abcissa anterior};$
- $h \rightarrow \text{Valor de cada sub-intervalo (passo)}$.

- 1. Alocar memória para x;
- 2. Definir o número de pontos (*n*);
- 3. Se forem inseridos 5 elementos, y recebe o valor de f(x);
- 4. Alocar memória para a derivada;
- 5. Calcular a derivada (aproximada) de f no ponto atual, em 1;
- 6. Para *i* de 2 a *n*, calcular a derivada (aproximada) de f no ponto atual, para a iésima iteração.

```
function [x,y,dydx]=NDerivadaDFR(~,f,a,b,h,y) %regressivas
    x=a:h:b;
    n=length(x);

if nargin==5
        y=f(x);
end

dydx=zeros(1,n);
dydx(1)=(y(2)-y(1))/h;

for i=2:n
        dydx(i)=(y(i)-y(i-1))/h;
end
end
```

2.2 Fórmulas de Diferenças Finitas em 3 pontos

2.2.1 Progressivas

Fórmula:

$$f'(x_k) := \frac{-3f(x_k) + 4f(x_{k+1}) - f(x_{k+2})}{2h}$$

onde:

- $f'(x_k) \rightarrow$ Aproximação do valor da derivada no ponto de abcissa x_k ;
- $f(x_k) \rightarrow \text{Valor da função no ponto de abcissa atual;}$
- $f(x_{k+1}) \rightarrow \text{Valor da função na próxima abcissa}$;
- $f(x_{k+2}) \rightarrow \text{Valor da função 2 abcissas à frente}$;
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$.

- 1. Alocar memória para x;
- 2. Definir o número de pontos (n);
- 3. Se forem inseridos 5 elementos, y recebe o valor de f(x);
- 4. Alocar memória para a derivada;
- 5. Para *i* de *1* a *n*-2, calcular a derivada (aproximada) de f no ponto atual, para a iésima iteração;
- 6. Calcular a derivada (aproximada) de f no ponto atual, em *n-1*;
- 7. Calcular a derivada (aproximada) de f no ponto atual, em n.

```
function [x,y,dydx]=NDerivadaFPT(~,f,a,b,h,y) %progressiva 3 pontos
    x=a:h:b;
    n=length(x);

if nargin==5
        y=f(x);
end

dydx=zeros(1,n);

for i=1:n-2
        dydx(i)=(-3*y(i)+4*y(i+1)-y(i+2))/(2*h);
end

dydx(n-1)=(y(n-3)-4*y(n-2)+3*y(n-1))/(2*h);
dydx(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h);
end
```

2.2.2 Regressivas

Fórmula:

$$f'(x_k) := \frac{f(x_{k-2}) - 4f(x_{k-1}) + 3f(x_k)}{2h}$$

onde:

- $f'(x_k) \rightarrow$ Aproximação do valor da derivada no ponto de abcissa x_k ;
- $f(x_{k-2}) \rightarrow \text{Valor da função 2 abcissas atrás}$;
- $f(x_{k-1}) \rightarrow \text{Valor da função na abcissa anterior};$
- $f(x_k) \rightarrow \text{Valor da função no ponto de abcissa atual;}$
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$.

- 1. Alocar memória para x;
- 2. Definir o número de pontos (n);
- 3. Se forem inseridos 5 elementos, y recebe o valor de f(x);
- 4. Alocar memória para a derivada;
- 5. Calcular a derivada (aproximada) de f no ponto atual, em 1;
- 6. Calcular a derivada (aproximada) de f no ponto atual, em 2;
- 7. Para *i* de *3* a *n*, calcular a derivada (aproximada) de f no ponto atual, para a iésima iteração.

```
function [x,y,dydx]=NDerivadaFRT(~,f,a,b,h,y) %regressiva 3 pontos
    x=a:h:b;
    n=length(x);

if nargin==5
        y=f(x);
end

dydx=zeros(1,n);
dydx(1)=(-3*y(1)+4*y(2)-y(3))/(2*h);
dydx(2)=(-3*y(2)+4*y(3)-y(4))/(2*h);

for i=3:n
        dydx(i)=(y(i-2)-4*y(i-1)+3*y(i))/(2*h);
end
end
```

2.2.3 Centradas

Fórmula:

$$f'(x_k) := \frac{f(x_{k+1}) - f(x_{k-1})}{2h}$$

onde:

- $f'(x_k) \rightarrow$ Aproximação do valor da derivada no ponto de abcissa x_k ;
- $f(x_{k+1}) \rightarrow \text{Valor da função na próxima abcissa}$;
- $f(x_{k-1}) \rightarrow \text{Valor da função na abcissa anterior};$
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$.

- 1. Alocar memória para x;
- 2. Definir o número de pontos (n);
- 3. Se forem inseridos 5 elementos, y recebe o valor de f(x);
- 4. Alocar memória para a derivada;
- 5. Calcular a derivada (aproximada) de f no ponto atual, em 1.
- 6. Para *i* de 2 a *n-1*, calcular a derivada (aproximada) de f no ponto atual, para a iésima iteração;
- 7. Calcular a derivada (aproximada) de f no ponto atual, em n.

```
function [x,y,dydx]=NDerivadaFC(~,f,a,b,h,y) %centrada em 3 pontos
    x=a:h:b;
    n=length(x);

if nargin==5
        y=f(x);
end

dydx=zeros(1,n);

dydx(1)=(y(2)-y(1))/h;
for i=2:n-1
        dydx(i)=(y(i+1)-y(i-1))/(2*h);
end

dydx(n)=(y(n)-y(n-1))/h;
end
```

2.3 2ª Derivada

Fórmula:

$$f''(x_k) := \frac{f(x_{k+1}) - 2f(x_k) + f(x_{k-1})}{h^2}$$

onde:

- $f''(x_k) \rightarrow$ Aproximação do valor da 2ª derivada no ponto de abcissa x_k ;
- $f(x_{k+1}) \rightarrow \text{Valor da função na próxima abcissa}$;
- $f(x_k) \rightarrow \text{Valor da função no ponto de abcissa atual;}$
- $f(x_{k-1}) \rightarrow \text{Valor da função na abcissa anterior};$
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$.

- 1. Alocar memória para x;
- 2. Definir o número de pontos (n);
- 3. Se forem inseridos 5 elementos, y recebe o valor de f(x);
- 4. Alocar memória para a derivada;
- 5. Calcular a 1^a derivada no ponto: x = 1;
- 6. Para *i* de 2 a *n-1*, calcular a derivada (aproximada) de f no ponto atual, para a iésima iteração;
- 7. Calcular a 2ª derivada em n.

```
function [x,y,dydx]=NDerivadaF2D(~,f,a,b,h,y) %2 derivada
    x=a:h:b;
    n=length(x);

if nargin==5
        y=f(x);
end

dydx=zeros(1,n);

dydx(1)=(y(2)-y(1))/h;
for i=2:n-1
        dydx(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h);
end
dydx(n)=(y(n)-y(n-1))/h;
end
```

4. Métodos Numéricos para Integração

4.1 Regra dos Trapézios

A Regra dos Trapézios é um método de Integração Numérica utilizado para aproximar o integral definido e pode também ser visto como o resultado da média da parte esquerda e direita da soma de Riemann, e por vezes pode mesmo ser definido desta forma.

Fórmula:

$$I_{\mathrm{T}}(f) = rac{h}{2}[f(x_0) + 2f(x_1) + \cdots + 2f(x_{n-1}) + f(x_n)]$$

onde:

- $I_T(f) \rightarrow$ Cálculo da Regra dos Trapézios;
- $f(x_0) \rightarrow \text{Valor da função na abcissa } x_0$;
- $f(x_I) \rightarrow \text{Valor da função na abcissa } x_I$;
- $f(x_{n-1}) \rightarrow \text{Valor da função na abcisa } x_{n-1}$;
- $f(x_n) \rightarrow \text{Valor da função na abcissa } x_n$;
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$.

- 1. Calcular h;
- 2. Calcular x;
- 3. Inicializar s com o valor θ ;
- 4. Para *i* de *1* a *n-1*:
 - a. Somar o valor da função em x(f(x)) a s.
- 5. Cálculo da Regra dos Trapézios.

INPUT:

- f função integranda
- [a, b] intervalo de derivação
- n número de subintervalos

OUTPUT:

• area - Valor da área calculada pela Regra dos Trapézios

```
function T = RTrapezios(~,f,a,b,n)
h = (b-a)/n;
x = a:h:b;
s = 0;
for i = 1:n-1
    s = s+f(x(i));
end
T = h/2*(f(a)+2*s+f(b));
```

end

4.2 Regra de Simpson

A Regra de Simpson é um método de Integração Numérica utilizado para a aproximação de integrais definidos e baseia-se em aproximar o integral definido pela área sob arcos de parábola que interpolam a função.

Para conseguir uma melhor aproximação deve-se dividir o intervalo de integração em intervalos mais pequenos, aplicar a fórmula de Simpson para cada um deles e somar os resultados.

Fórmula:

$$I_{\mathrm{S}}(f) = rac{h}{3}[f(x_0) + 4f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$

onde:

- $I_S(f) \rightarrow$ Cálculo da Regra de Simpson;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(x_0) \rightarrow \text{Valor da função na abcissa } x_0$;
- $f(x_1) \rightarrow \text{Valor da função na abcissa } x_1$;
- $f(x_{n-1}) \rightarrow \text{Valor da função na abcissa } x_{n-1}$;
- $f(x_n) \rightarrow \text{Valor da função na abcissa } x_n$;
- $n \rightarrow$ Número de subintervalos.

Algoritmo:

- 1. Cálculo do passo (*h*);
- 2. Calcular x:
- 3. Inicializar s com o valor θ ;
- 4. Para *i* de *1* a *n-1*:
 - a. Se i for par, soma-se 2 vezes o valor de f(x) a s;
 - b. Se i for impar, soma-se 4 vezes o valor de f(x) a s;
- 5. Calcular a Regra de Simpson.

Função (MATLAB):

INPUT:

- f função integranda
- [a, b] intervalo de derivação
- n número de subintervalos

OUTPUT:

• area - Valor da área calculada pela Regra de Simpson

5. Conclusão

Com este trabalho podemos concluir que os métodos numéricos têm diversas aplicações, quer para derivadas, quer para integrais, o que facilita a resolução de problemas de várias áreas da ciência onde necessitamos de calcular integrais.

Como já visto anteriormente, verificamos que quanto maior for o número de subintervalos n, menor é o erro dos métodos / fórmulas. A introdução do tamanho de cada subintervalo h tem o efeito contrário: quanto menor o tamanho introduzido, menor o erro dos métodos / fórmulas.

Para valores elevados de *n* e grandes intervalos, a Regra de Simpson é melhor do que a Regra dos Trapézios, mas para valores pequenos de *n* e pequenos intervalos não se nota tanto essa diferença, sendo que por vezes a Regra dos Trapézios obtém erros menores.

Em relação às fórmulas da derivação numérica, a comparação encontrada foi que a melhor aproximação ao valor real se origina a partir das fórmulas que utilizam 3 pontos, comparativamente às que apenas utilizam 2 pontos.

6. Bibliografia

- https://en.wikipedia.org/wiki/Simpson%27s_rule
- https://en.wikipedia.org/wiki/Trapezoidal_rule
- https://pt.wikipedia.org/wiki/Diferencia%C3%A7%C3%A3o_num%C3%A9rica
- https://pt.wikipedia.org/wiki/Integra%C3%A7%C3%A3o_num%C3%A9rica
- https://www.ufsj.edu.br/portal2-repositorio/File/nepomuceno/mn/09MN Derivacao.pdf