INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = (c_1 + c_2 + c_4 + c_8)n + c_5 \sum_{j=2}^{n} t_j + (c_6 + c_7) \sum_{j=2}^{n} (t_j - 1)$$

 $- (c_2 + c_4 + c_8)$

$$T_b(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

$$T_w(n) = (\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2})n^2 + (c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8)n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

$$T_{avg}(n) = (\frac{c_5}{4} + \frac{c_6}{4} + \frac{c_7}{4})n^2 + (c_1 + c_2 + c_4 + \frac{c_5}{4} - \frac{c_6}{4} - \frac{c_7}{4} + c_8)n$$

$$- (c_2 + c_4 + \frac{c_5}{2} + c_8)$$

- ightharpoonup T(n) grows slower than something.
- ightharpoonup T(n) grows faster than something.
- ightharpoonup T(n) grows similarly to something.

We represent that f(n) grows slower (or equal) to g(n) by the notation $\mathcal{O}(g(n))$.

Definition

We say a function $f(n) = \mathcal{O}(g(n))$ if $\exists \text{ real } c > 0 \text{ and integer } n_0 \geq 0 \text{ such that:}$

$$f(n) \le cg(n)$$
 $\forall n \ge n_0$

 \triangleright g(n) is an asymptotic upper bound for f(n)

Set definition (CLRS):

Definition

The notation O(g(n)) represents the set of functions:

$$O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0 \text{ such that}$$

 $0 \le f(n) \le cg(n) \ \forall n \ge n_0\}$

$$f(n) = \frac{1}{2}n^2 + 3n$$

- f(n) = 100n + 5
- ▶ Is $f(n) = \mathcal{O}(n)$?
- ▶ Is $f(n) = O(n^2)$?

- $f(n) = 2n \lg(n+2)^2 + (n+2)^2 \lg \frac{n}{2}$
- ► *O*(?)

- $f(n) = 2n^3 8n^2 + n$
- ► *O*(?)

 $(3n^2+6)^5$

 $f(n) = n! + 5n^3 + 2^n$

 $f(n) = \lg(n!)$

Theorem

Suppose $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. Then, $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$.

Proof:

Limit-based definition of O:

Theorem

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & \text{then, } f(n) = O(g(n)) \\ c & \text{then, } f(n) = O(g(n)) \& g(n) = O(f(n)) \\ \infty & \text{then, } g(n) = O(f(n)) \end{cases}$$

- First two cases mean f(n) = O(g(n))
- ▶ Last two cases mean g(n) = O(f(n))

- ▶ lg(n) vs \sqrt{n}
- ► Two Proofs.

 \triangleright n! vs 2^n

We use the notation $\Omega(n)$ to say that f(n) grows faster (or equal) to g(n)

Definition

We say a function $f(n) = \Omega(g(n))$ if \exists real c > 0 and integer $n_0 \ge 0$ such that:

$$f(n) \ge cg(n)$$
 $\forall n \ge n_0$

ightharpoonup g(n) is an asymptotic lower bound for f(n).

$$f(n) = \frac{1}{2}n^2 + 3n$$

 $f(n) = 3n \, lgn + 2n$

 $f(n) = 3n \lg n - n$

 $f(n) = 4 \lg n - 8$

 $f(n) = 3n \lg n - 3n$

 $f(n) = 6n^4 - 3n^2 + 2n + 7$

 $f(n) = 6n^4 - 4n^2 - 3n + 2$

▶ Show that $n! = \Omega(2^n)$

▶ Show that $\lg(n!) = \Omega(n \lg n)$

- $f(n) = 2n^4 5n^2 + 15$
- $\blacktriangleright \text{ Is } f(n) = \Omega(n^2)?$
- ► Can we prove that?

If g(n) is both an upper and lower asymptotic bound for f(n), we say that $f(n) = \Theta(g(n))$

Definition

We say a function f(n) is in $\Theta(g(n))$ if :

- ightharpoonup real constants $c_1, c_2 > 0$
- ▶ and integer constant $n_0 \ge 0$.

$$c_1g(n)\leq f(n)\leq c_2g(n)$$

Theorem

$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

Proof should be trivial.

- ► Show that $f(n) = 3n^2 n + 4 = \Theta(n^2)$
- ▶ Is it also $\Theta(n^3)$?
- ▶ Is it also $\Theta(n)$?

Prove or disprove: $5 \lg(2n^2 - 4n + 2) = \Theta(\lg n)$

- ► Is $n^3 2n^2 + 5n = \Theta(n^4)$
- Prove it.

- ► Is $n^3 2n^2 + 5n = \Theta(n^2 \lg n)$
- ▶ Prove it.

▶ Show that $(n-4)^2 \lg(\lfloor \frac{n}{3} \rfloor) \neq \Theta(n \lg n)$

Limits, updated:

Theorem

$$lim_{n \to \infty} \frac{f(n)}{g(n)} = egin{cases} 0 & \textit{then, } f(n) = \mathcal{O}(g(n)) \\ c & \textit{then, } f(n) = \Theta(g(n)) \\ \infty & \textit{then, } f(n) = \Omega(g(n)) \end{cases}$$

- First two cases mean $f(n) = \mathcal{O}(g(n))$
- ▶ Last two cases mean $f(n) = \Omega(g(n))$