БГТУ, ФИТ, ПОИТ, 3 семестр, Языки программирования

Генерация кода. Интерпретаторы

Подходы к разработке трансляторов:

- часть операционной системы;
- для аппаратной платформы (ассемблер);
- реализации для одной программной платформы;
- реализация для одной программой платформы, но для разных процессоров;
- интерпретаторы;
- несколько реализаций для разных платформ;
- кроссплатформенные реализации (Java);
- компиляторы-интерпретаторы (компиляция + интерпретация);
- разработка стандарта и стандартизация (Java, C++,C#)

1. Схема работы компилятора:

2. Компиляторы могут транслировать исходный код в язык ассемблера для аппаратной платформы

Цель: упростить генерацию кода.

3. Интерпретаторы

Схема работы интерпретатора:

4. Процессор – это интерпретатор машинных команд

5. **Интерпретатор – программная реализация процессора**, поэтому часто интерпретаторы так и называют – процессоры.

6. Компиляторы-интерпретаторы: сначала генерируется промежуточный код, затем он интерпретируется (для ускорения работы).

7. Компиляторы-интерпретаторы

Јіt-трансляторы: сначала генерируется промежуточный код, затем он компилируется в объектный код аппаратной платформы. **Јіt-трансляторы могут** осуществлять частичную трансляцию по мере необходимости.

8. Частичная компиляция

После внесения изменений компилируются только те части программы, которые были модифицированы после предыдущей компиляции.

9. Объединение объектного кода с интерпретатором

Пример подхода к реализации генерации промежуточного кода для последующей интерпретации

10. Последовательность разработки:

- 1) построить план (модель) памяти;
- 2) определить перечень инструкций промежуточного кода;
- 3) разработать генератор кода;
- 4) разработать интерпретатор.

11. Построение плана памяти: плоская память.

Данные Код Стек для вычислений

12. Построение плана памяти: память данных (принцип лезвия Оккама) «Не следует множить сущее без необходимости»

13. Построение плана памяти: память данных – это ячейки памяти

тип	данные
тип	данные
тип	данные

Развернутый план памяти с мета-данными: ячейки памяти хранят тип переменной или литерала и непосредственно сами данные.

14. Построение плана памяти для целочисленных данных

Пример. Память данных – ячейки памяти для целочисленных данных (пустая ячейка и ячейка с литералом)

0x01	0x0000000
0x01	0x0000016

15. Построение плана памяти для строковых данных

Пример. Память данных – ячейки памяти для целочисленных данных (пустая ячейка и ячейка с литералом)

0x02	0x00	0x00 0x00 0x00
0x02	0x03	0x61 0x62 0x63 0x00

16. Сериализация памяти данных

0x01	0x00000000	0x01	0x00000016	0x02	0x00	0x02	0x03	0x61 0x62 0x63

17. Реализация в С++ ячейки памяти

```
struct TYPEINT // целочисленные данные {
  int data;
};

struct TYPESTR // строковые данные {
  unsigned char len;
  char data[255];
};
```

```
struct CELL // ячейка памяти
{
    enum CELLTYPE {INT=0x01, STR=0x02};
    CELLTYPE celltype;
    void* data;
    CELL (CELLTYPE celltype) // пустая ячейка
        this->celltype = celltype;
        switch (celltype)
        case CELLTYPE::INT: this->data = new TYPEINT; ((TYPEINT*) this->data)->data = 0;
        case CELLTYPE::STR: this->data = new TYPESTR; ((TYPESTR*)this->data )->len = 0x00; break;
    }
    CELL (int data)
                             // для литерала
        this->celltype = CELLTYPE::INT;
        this->data = new TYPEINT; ((TYPEINT*) this->data)->data = data;
    }
    CELL (char* data)
                          // для литерала
        this->celltype = CELLTYPE::STR;
        int 1 = strlen(data);
        this->data = new TYPEINT; ((TYPESTR*) this->data)->len = 1 = (1 < 256?1: 255);
        strcpy_s( (char*)this->data, 1, data);
     }
```

18. Менеджер памяти данных – программный код, обеспечивающий доступ к памяти.

19. Доступ к данным через смещения: при размещении десериализованных данных, менеджер памяти данных запоминает адрес первой ячейки, адрес любой ячейки может быть определен через смещение.

20. Инструкции промежуточного кода

Данные
инструкция 1
инструкция 2
инструкция 3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
инструкция N
Стек для вычислений

21. Инструкция (тетрада)

код инструкции	операнд 1	операнд 2	операнд 3
-------------------	-----------	-----------	-----------

22. Пример инструкции целочисленного сложения.

Код операции 0х01

Операнды: задействован только первый операнд.

Действие: инструкция извлекает из стека вычислений целочисленное число и складывает его с целым числом, смещение которого указывается первым операндом.

0x01 0x00000100	0x00000000	0x00000000
-----------------	------------	------------

Результат заносится в стек.

23. Пример инструкции пересылки строковых данных сложения.

Код операции 0х02.

Операнды: задействованы два операнда; первый – строка приемник, второй – строка источник.

Действие: инструкция побайтно пересылает данные строки, смещение которой указывается вторым операндам, в строку, смещение которой указывается первым операндом.

0x02	0x00000100	0x00003220	0x00000000

24. Пример инструкции безусловного перехода

Код операции 0х03.

Операнды: задействован один операнд.

Действие: управление передается инструкции, номер которой указан в операнде.

0x03	0x00000005	0x00000000	0x00000000

25. Пример инструкции условного перехода.

Код операции 0х04.

Операнды: задействованы два операнда; первый – операнд указывает номер инструкции, на которую следует передать управление, второй – смещение.

Действие: управление передается инструкции с указанным номером в случае, если значение, указанное смещением во втором операнде, указывает на 4 байта, содержащие только нулевые биты, в противном случае, если хотя бы один бит равен единице, то осуществляется переход на следующую по порядку инструкцию.

0x04	0x00000005	0x00000102	0x00000000

26. Стек для вычислений.

Стек состоит из ячеек для хранения смещений.

Поместить в стек данные – означает поместить в стек смещение данных.

Извлечь данные из стека – означает извлечь из стека данные по указанному смещению.

Доступ к самим данным осуществляется через смещения.

Стек для вычислений состоит из однородных ячеек, длиной 4 байта.