Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Московский государственный технический университет имени Н.Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Теоретическая информатика и компьютерные технологии

Лабораторная работа №5 по курсу «Численные методы» «Метод наименьших квадратов. Аппроксимация алгебраическими многочленами»

Выполнила:

студентка группы ИУ9-

62Б

Самохвалова П. С.

Проверила:

Домрачева А. Б.

Цель:

Анализ метода наименьших квадратов для решения задачи аппроксимации алгебраическими многочленами.

Постановка задачи:

Дано: Функция $y_i = f(x_i), i = \overline{0, n}$, значения y_i могут иметь случайные ошибки.

x_1	x_2	 x_{n-1}	x_n
y_1	y_2	 y_{n-1}	y_n

Найти: Гладкую аналитическую функцию z(x), доставляющую наименьшее значение величине

$$SKU = \sqrt{\sum_{i=0}^{n} (z(x_i) - y_i)^2}$$

Эту величину называют среднеквадратичным уклонением функции z(x) от системы узлов. Описанный подход к решению задачи приближения функции - методом наименьших квадратов.

Тестовый пример:

Вариант 21

$$f(x) = y$$

X	1	1.5	2	2.5	3	3.5	4	4.5	5
У	0.86	0.97	0.65	0.75	1.60	0.65	1.34	1.62	1.01

Задание:

- 1. Аппроксимировать данную функцию по методу наименьших квадратов многочленом третьей степени (m=4). Найти:
 - а) Матрицу А и столбец b;
 - б) Набор коэффициентов $\lambda_1, \lambda_2, \lambda_3, \lambda_4$;
 - в) Среднеквадратичное отклонение Δ и относительную ошибку δ ;
 - г) Значения аппроксимирующего многочлена z(x) в средних точках отрезков между узловыми точками.
- 2. То же для решения задачи Коши, полученного в предыдущей лабораторной работе.

Описание метода:

Как правило, z(x) отыскивают в виде линейной комбинации заданных функций

$$z(x) = \lambda_1 \varphi_1(x) + \dots + \lambda_m \varphi_m(x)$$

Параметры $\lambda_i, i = \overline{1,m}$ являются решениями линейной системы наименьших квадратов

$$A\lambda = b$$
,

где λ - столбец параметров λ_i . $A=(a_{ij})$ - симметричная положительно определенная матрица (матрица Грама) с коэффициентами $a_{ij}=\sum_{k=0}^n \varphi_i(x_i)\varphi_j(x_k);$ b - столбец правой части системы,

$$b_i = \sum_{k=0}^{n} \varphi_i(x_k) y_k, \quad i, j = \overline{1, m}$$

Если приближаемая функция достаточно глакая, хотя вид ее и неизвестен, аппроксимирующую функцию нередко ищут в виде алгебраического многочлена

$$z(x) = \lambda_1 + \lambda_2 x + \dots + \lambda_m x^{m-1}.$$

Тогда $\varphi_i = x^{i-1}$ и элементы матрица Грама получают по формулам

$$a_{ij} = \sum_{k=0}^{n} x_k^{i+j-2},$$

а свободные члены -

$$b_i = \sum_{k=0}^{n} y_k^{i-1}, \quad i, j = \overline{1, m}$$

Абсолютной погрешностью аппроксимации служит среднеквадратичное отклонение (СКО):

$$\Delta = \frac{SKU}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sqrt{\sum_{k=0}^{n} (y_k - \lambda_1 - \lambda_2 x_k - \dots - \lambda_m x_k^{m-1})^2},$$

относительная ошибка

$$\delta = \frac{\Delta}{||y||} = \frac{\Delta}{\sqrt{\sum_{k=0}^{n} y_k^2}}$$

Листинг 1. Метод наименьших квадратов. Аппроксимация алгебраическими многочленами

```
def mnk(n, x, y, m):
    a = []
    for i in range(m):
        a.append([0] * m)
    b = [0] * m

    for i in range(m):
        for j in range(m):
            for k in range(n + 1):
```

```
a[i][j] += x[k] ** (i + j)
for i in range(m):
    for k in range (n + 1):
        b[i] += y[k] * (x[k] ** i)
print("A =")
for i in range(m):
    for j in range(m):
        print("{:20} ".format(str(a[i][j])), end="")
    print()
print()
print("b =")
for i in range(m):
   print(b[i])
print()
t = []
for i in range(m):
    t.append([0] * m)
t_t = []
for i in range(m):
    t_tr.append([0] * m)
t[0][0] = a[0][0] ** 0.5
for j in range(1, m):
    t[0][j] = a[0][j] / t[0][0]
for i in range(1, m):
    for j in range(m):
        if i == j:
```

```
s = 0
            for k in range(i):
                s += t[k][i] ** 2
            t[i][i] = (a[i][i] - s) ** 0.5
        elif i < j:</pre>
            s = 0
            for k in range(i):
                s += t[k][i] * t[k][j]
            t[i][j] = (a[i][j] - s) / t[i][i]
for i in range(m):
    for j in range(m):
        t_tr[i][j] = t[j][i]
xr = [0] * m
yr = [0] * m
yr[0] = b[0] / t[0][0]
for i in range(1, m):
    s = 0
    for k in range(i):
        s += t[k][i] * yr[k]
    yr[i] = (b[i] - s) / t[i][i]
xr[m-1] = yr[m-1] / t[m-1][m-1]
for i in range(m -2, -1, -1):
    s = 0
    for k in range(i + 1, m):
        s += t[i][k] * xr[k]
    xr[i] = (yr[i] - s) / t[i][i]
la = xr[:]
print("lambda =")
for i in range(m):
    print(la[i])
```

```
print()
s = 0
for k in range(n + 1):
    s1 = 0
    for q in range(m):
        s1 += la[q] * (x[k] ** q)
    s += (y[k] - s1) ** 2
abs_delta = (1 / (n ** 0.5)) * (s ** 0.5)
s = 0
for k in range(n + 1):
    s += y[k] ** 2
otn_delta = abs_delta / (s ** 0.5)
print("abs_delta =")
print(abs_delta)
print()
print("otn_delta = ")
print(otn_delta)
print()
ym = [0] * n
for i in range(n):
    xm = (x[i] + x[i + 1]) / 2
    s = 0
    for k in range(m):
        s += (la[k] * (xm ** k))
    ym[i] = s
```

```
print("ym = ")
    for i in range(n):
        print(ym[i])
n = 8
x = [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]
y = [0.86, 0.97, 0.65, 0.75, 1.60, 0.65, 1.34, 1.62, 1.01]
m = 4
print("1.")
print()
mnk(n, x, y, m)
print()
n = 10
x = [0.0, 0.1, 0.2, 0.300000000000004, 0.4, 0.5, 0.60000000000001,
     0.7000000000000001, 0.8, 0.9, 1.0
y = [1.0, 1.205004334722476, 1.420072088955231, 1.6453790142373428,
     1.881243039949921, 2.128146809304331, 2.3867612737855444,
     2.6579703947081676, 2.9428970193919906, 3.242930020784433,
     3.5597528132669414]
m = 4
print("2.")
print()
mnk(n, x, y, m)
```

Результаты работы:

В результате работы программы на тестовом примере получаем:

$$A = \begin{pmatrix} 9.0 & 27.0 & 96.0 & 378.0 \\ 27.0 & 96.0 & 378.0 & 1583.25 \\ 96.0 & 378.0 & 1583.25 & 6900.75 \\ 378.0 & 1583.25 & 6900.75 & 30912.5625 \end{pmatrix}$$

$$b = \begin{pmatrix} 9.4500000000000001 \\ 30.265000000000004 \\ 112.1875 \end{pmatrix}$$

$$\lambda = \begin{pmatrix} 1.913730158729999 \\ -1.544129389129182 \\ 0.6322510822510062 \\ -0.07084175084174252 \end{pmatrix}$$

CKO $\Delta = 0.3179591701941208$

Относительная ошибка $\delta = 0.09548667876045708$

Таблица значений аппроксимирующего многочлена z(x) в средних точках отрезков между узловыми точками

x_n	$z(x_n)$
1.25	0.8330979437229404
1.75	0.7681051587301733
2.25	0.8332783189033353
2.75	0.9754861111111188
3.25	1.1415972222222188
3.75	1.278480339105326
4.25	1.3330041486291346
4.75	1.2520373376623395

Также программа была запущена на значениях, полученных при решении задачи Коши в предыдущей лабораторной работе. Было получено:

$$b = \begin{pmatrix} 24.07015680910638\\ 14.8400426642202\\ 11.28159240138787\\ 9.30124507302068 \end{pmatrix}$$

$$\lambda = \begin{pmatrix} 0.999382178223316 \\ 2.0203891611643496 \\ 0.40411000986154677 \\ 0.1352029501748844 \end{pmatrix}$$

CKO $\Delta = 0.0005739961457411783$

Относительная ошибка $\delta = 7.419259034640004e - 05$

Таблица значений аппроксимирующего многочлена z(x) в средних точках отрезков между узловыми точками

x_n	$z(x_n)$
0.05	1.101428811674959
0.1500000000000000000000000000000000000	1.3119893375766936
0.25	1.5318488902272327
0.350000000000000000	1.761818687327626
0.45	2.002709946578923
0.55	2.2553338856821727
0.65000000000000001	2.520501722338425
0.75	2.7990246742487277
0.85000000000000001	3.0917139591141316
0.95	3.3993807946356855

Выводы:

В результате выполнения лабораторной работы был изучен метод наименьших квадратов для решения задачи аппроксимации алгебраическими многочленами, была написала реализация данного метода на языке программирования Python. На тестовом примере среднеквадратичное отклонение составило $\Delta=0.3179591701941208$, относительная ошибка составила $\delta=0.09548667876045708$. Дальнейшее увеличение точности решения можно осуществить увеличением количества точек разбиения и повышением степени многочлена.