Colpier Clément Fornara Thibault Pellegrino Guillaume Renard Charles

Projet de Mathématiques appliquées PR3003 _

Table des matières

1	Détern	niner l'équation différentielle vérifiée par $M(t)=(x(t),y(t))$.
	1.1 Pr	ojection du Poids sur la composante tangentielle
	1.2 Pr	ojection de la tension du ressort su la composante tangentielle
	1.2	2.1 Methode de Guillaume, diff d'angle
	1.2	2.2 Methode de Charles, Al-Kashi
	1.3 D€	etermination de $\ T\ $
	1.4 D€	etermination de $\overset{\cdot\cdot}{a_t}$
	$1.5 \mathrm{D}\epsilon$	termination de l'équation différentielle
	1.5	5.1 Equa diff de Guillaume
	1.5	5.2 Equa diff de Charles
2	Détern	nination des points d'équilibre

1 Déterminer l'équation différentielle vérifiée par M(t)=(x(t),y(t)).

La masselotte M se déplace uniquement selon la composante tangentielle. Pour déterminer l'équation différentielle on va donc particulièrement s'intéresser à l'équation sur la composante tangentielle. Pour cela, on commence à faire la somme des forces s'exerçant sur la composante tangentielle $\vec{u_t}$ et normale $\vec{u_n}$ selon la seconde loi de Newton (PFD) :

$$\begin{cases} P_t + T_t = ma_t \\ P_n + R_n + T_n = 0 \end{cases}$$

On s'intéresse à l'équation :

$$P_t + T_t = ma_t$$

Pour déterminer l'équation différentielle, on doit alors projeter \vec{T} et \vec{mg} sur $\vec{u_t}$. On projette $\vec{mg} = -mg.\vec{u_y}$ sur $\vec{u_t}$

Projection du Poids sur la composante tangentielle 1.1

On remarque sur le graphique que $P_t = P.\cos(\alpha)$

On cherche à déterminer α . On calcule la pente a de la tige parabolique. $a = \frac{\partial y}{\partial x} = \frac{\partial x^2/2}{\partial x} = x$ En $M(x_0, y_0)$ la pente a de la tige parabolique vaut donc x_0 . Cette pente a nous permet de calculer l'angle α . En effet, on remarque graphiquement que $\tan(\alpha) = \frac{1}{a}$. On en déduit : $\alpha = \tan^{-1}(\frac{1}{x_0})$

Au final on trouve donc : $P_t = P \cdot \cos(\tan^{-1}(\frac{1}{x_0}))$ Or $\cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}}$ On en déduit donc : $P_t = P \cdot \frac{1}{\sqrt{1+1/x_0^2}}$ D'où :

$$P_t = P.\frac{x_0}{\sqrt{1+x_0^2}}$$

Projection de la tension du ressort su la composante tangentielle

On projette désormais \vec{T} sur $\vec{u_t}$.

1.2.1 Methode de Guillaume, diff d'angle

$$\cos(\phi) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{1 + x^2}}$$

$$\cos(\theta) = \frac{x}{\sqrt{(1-y)^2 + x^2}} = \frac{x}{\sqrt{1+x^4/4}}$$

$$\cos(\theta) = \frac{x}{\sqrt{(1-y)^2 + x^2}} = \frac{x}{\sqrt{1+x^4/4}}$$
Et: $T_t = T \cdot \cos(\alpha 2) = T \cdot \cos(\phi - \theta) = T[\cos(\phi) \cdot \cos(\theta) + \sin(\phi) \cdot \sin(\theta)]$
On en déduit:
$$T_t = T[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sin(\cos^{-1}(\frac{1}{\sqrt{1+x^2}})) \cdot \sin(\cos^{-1}(\frac{x}{\sqrt{1+x^4/4}}))]$$
Or: $\sin(\cos^{-1}(u)) = \sqrt{1-u^2}$

On trouve donc :

$$T_t = T \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}} \cdot \sqrt{1 - \frac{x^2}{1+x^4/4}} \right]$$

1.2.2Methode de Charles, Al-Kashi

On note x,y les coordonnées du point M.
$$a = \sqrt{(x_M - x_P)^2 + (y_M - y_P)^2} = \sqrt{x^2 + (\frac{x^2}{2} - 1)} = \sqrt{x^2 + \frac{x^4}{4} - x^2 + 1} = \sqrt{\frac{x^4}{4} + 1}$$

$$b = \sqrt{(x_M - x_P)^2 + (y_M - \Delta(0))^2} = \sqrt{x^2 + (\frac{x^2}{2} + \frac{x^2}{2})^2} = \sqrt{x^2 + x^4} = x\sqrt{1 + x^2}$$
 note : faut-il mettre plutôt $|x|\sqrt{1 + x^2}$?

$$c = \sqrt{(y_p - \Delta(0))^2} = \sqrt{(1 + \frac{x^2}{2})^2} = 1 + \frac{x^2}{2}$$

$$c^2 = a^2 + b^2 - 2ab \times \cos(\beta)$$

D'après le théorème d'Al-Kashi :
$$x_1 = \frac{5+\sqrt{25-4\times6}}{2} = 3$$

$$c^2 = a^2 + b^2 - 2ab \times \cos(\beta)$$

$$\cos(\beta) = \frac{a^2+b^2-c^2}{2ab} = \frac{x^4/4+1+x^2+x^4-1-x^2-x^4/4}{2x\sqrt{x^4/4+1}\sqrt{1+x^2}} = \frac{x^3}{2\sqrt{\frac{x^4}{4}+1}\sqrt{1+x^2}}$$

On trouve donc :

$$T_t = T \times \frac{x^3}{2\sqrt{\frac{x^4}{4} + 1}\sqrt{1 + x^2}}$$

1.3Determination de ||T||

On détermine la valeur de la tension du ressort.

T =
$$k(l - l_0) = k(\sqrt{(x_M - x_P)^2 + (y_M - y_P)^2} - l_0) = k(\sqrt{x^2 + (x^2/2 - 1)^2} - l_0)$$

T = $k(\sqrt{x^2 + x^4/4 - x^4 + 1} - l_0)$

$$T = k(\sqrt{1 + \frac{x^4}{4}} - l_0)$$

1.4 Détermination de a_t

On a vu dans la première équation que $a_n = 0$. On en déduit : $||\vec{a}|| = a_t$ Avec une accélération normale nulle, on peut écrire la formule de l'accélération dans le repère de Frenet ainsi : $a_t = ||\vec{a}||$

Or
$$||\vec{a}|| = \frac{\partial v}{\partial t} = \frac{\partial \pm \sqrt{x^2 + \dot{y}^2}}{\partial t}$$

 $\dot{y} = \frac{\partial y}{\partial t} = \frac{\partial y}{\partial x} \times \frac{\partial x}{\partial t} = x\dot{x}$
 $v = \sqrt{\dot{x}^2 + \dot{x}^2 x^2} = \dot{x}\sqrt{1 + x^2}$
 $\frac{\partial v}{\partial t} = \ddot{x}\sqrt{1 + x^2} + \frac{\dot{x}^2 x}{\sqrt{1 + x^2}}$
On trouve:

$$a_t = \ddot{x}.\sqrt{1+x^2} + \frac{\dot{x}^2.x}{\sqrt{1+x^2}}$$

(Equation de Charles)

1.5 Détermination de l'équation différentielle

A l'aide de ce qu'on a calculé précédemment on développe l'équation $mg_t + T_t = ma_t$ pour déterminer l'équation différentielle. On obtient alors :

1.5.1 Equa diff de Guillaume

En développant et en prenant k=m, g=1 et $a = l_0$ (données de l'énoncé), on obtient : $m.1.\frac{x}{\sqrt{1+x^2}} + m(\sqrt{x^4/4+1} - a).[\frac{1}{\sqrt{1+x^2}}.\frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}}.\sqrt{1 - \frac{x^2}{1+x^4/4}}] - m.\ddot{x}.\sqrt{1+x^2} - m.\frac{\dot{x}^2.x}{\sqrt{1+x^2}} = 0$ $\frac{x}{\sqrt{1+x^2}} + (\sqrt{x^4/4+1} - a) \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}} \cdot \sqrt{1 - \frac{x^2}{1+x^4/4}} \right] - \ddot{x} \cdot \sqrt{1+x^2} - \frac{\dot{x}^2 \cdot x}{\sqrt{1+x^2}} = 0$ $\frac{x}{\sqrt{1+x^2}} + \big(\sqrt{x^4/4+1} - a\big).\big[\frac{1}{\sqrt{1+x^2}}.\frac{x}{\sqrt{1+x^4/4}} + \frac{x}{\sqrt{1+x^2}}.\sqrt{\frac{x^4/4-x^2+1}{1+x^4/4}}\big] - \ddot{x}.\sqrt{1+x^2} - \frac{\dot{x}^2.x}{\sqrt{1+x^2}} = 0$ $\frac{x}{\sqrt{1+x^2}} + \left[\frac{x}{\sqrt{1+x^2}} + \frac{x \cdot \sqrt{x^4/4 - x^2 + 1}}{\sqrt{1+x^2}}\right] - a \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \frac{x}{\sqrt{1+x^2}} \cdot \sqrt{\frac{x^4/4 - x^2 + 1}{1+x^4/4}}\right] - \ddot{x} \cdot \sqrt{1+x^2} - \frac{\dot{x}^2 \cdot x}{\sqrt{1+x^2}} = 0$ $\frac{x}{1+x^2} + \left[\frac{x}{1+x^2} + \frac{x \cdot \sqrt{x^4/4 - x^2 + 1}}{1+x^2}\right] - a \cdot \left[\frac{x}{(1+x^2) \cdot \sqrt{1+x^4/4}} + \frac{x \cdot \sqrt{x^4/4 - x^2 + 1}}{(1+x^2) \cdot \sqrt{1+x^4/4}}\right] - \ddot{x} - \frac{\dot{x}^2 \cdot x}{1+x^2} = 0$ $\frac{2x + x \cdot \sqrt{x^4/4 - x^2 + 1} - \dot{x}^2 \cdot x}{1+x^2} - a \cdot \frac{x + x \cdot \sqrt{x^4/4 - x^2 + 1}}{(1+x^2) \cdot \sqrt{1+x^4/4}} - \ddot{x} = 0$ $-\frac{2x + x \cdot \sqrt{x^4/4 - x^2 + 1} - \dot{x}^2 \cdot x}{1+x^2} + a \cdot \frac{x + x \cdot \sqrt{x^4/4 - x^2 + 1}}{(1+x^2) \cdot \sqrt{1+x^4/4}} + \ddot{x} = 0$ $-\frac{2x + x \cdot \sqrt{(x^2/2 - 1)^2} - \dot{x}^2 \cdot x}{1+x^2} + a \cdot \frac{x + x \cdot \sqrt{(x^2/2 - 1)^2}}{(1+x^2) \cdot \sqrt{1+x^4/4}} + \ddot{x} = 0$ $\frac{-x^3/2 - x + \dot{x}^2 x}{1 + x^2} + \frac{a \cdot x^3}{2(1 + x^2) \cdot \sqrt{1 + x^4/4}} + \ddot{x} = 0$

1.5.2Equa diff de Charles

On calcule maintenant l'équatio ndifférentielle du système en s'aidant des résultats précédents.

On part de l'équation $P_t + T_t = ma_t$

avec
$$T_t = k(l - l_0)$$
 et $P_t = -mg$

avec
$$T_t = k(l - l_0)$$
 et $P_t = -mg$
En développant les expression on obtient :
$$k(\sqrt{x^4/4 + 1} - l_0) \times \frac{x^3}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} - mg\frac{x}{\sqrt{1 + x^2}} = m(\ddot{x}\sqrt{1 + x^2} + \frac{\ddot{x}^2x}{\sqrt{1 + x^2}})$$

$$\frac{k}{m}(\frac{x^3}{2\sqrt{1 + x^2}} - \frac{x^3 \times l_0}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}}) - \frac{xg}{\sqrt{1 + x^2}} - \ddot{x}\sqrt{1 + x^2} - \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$
En prenant $k = m$, $g = 1$ et $a = l_0$ (données de l'énoncé), on obtient :
$$-\frac{x^3}{2\sqrt{1 + x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} + \frac{x}{x}\sqrt{1 + x^2} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$(-\frac{x^3}{2} + x)\frac{1}{2\sqrt{1 + x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} + \ddot{x}\sqrt{1 + x^2} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$(-\frac{x^3}{2} + x)\frac{1}{2\sqrt{1 + x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} + \ddot{x}\sqrt{1 + x^2} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$(-\frac{x^3}{2} + x)\frac{1}{1 + x^2} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}(1 + x^2)} + \ddot{x} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$\left(-\frac{x^3}{2} + x\right) \frac{1}{2\sqrt{1+x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4+1}\sqrt{1+x^2}} + \ddot{x}\sqrt{1+x^2} + \frac{\dot{x}^2 x}{\sqrt{1+x^2}} = \frac{1}{2\sqrt{1+x^2}} + \frac{\dot{x}^2 x}{\sqrt{1+x^2}} = \frac{$$

$$\left(-\frac{x^3}{2} + x\right) \frac{1}{1+x^2} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}(1+x^2)} + \ddot{x} + \frac{\dot{x}^2 x}{\sqrt{1+x^2}} = 0$$

$$\ddot{x} + \frac{\dot{x}^2 x - x^3 / 2 - x}{1 + x^2} + \frac{x^3 \times a}{2\sqrt{x^4 / 4 + 1}(1 + x^2)} = 0$$

$\mathbf{2}$ Détermination des points d'équilibre

Les points d'équilibre sont les points où la vitesse du système et donc de la masselotte est nulle. Ainsi, les tèrmes lié à la vitesse et à l'accélération du système sont nuls.

On part donc de l'équation :
$$\ddot{x} + \frac{\dot{x}^2 x - x^3/2 - x}{2\sqrt{x^4/4 + 1}(1 + x^2)} = 0 \text{ où } \ddot{x} = \frac{\dot{x}^2 x - x^3/2 - x}{1 + x^2} = 0$$
 Ainsi on a :
$$\frac{x^3 \times a}{2\sqrt{x^4/4 + 1}(1 + x^2)} = 0$$
 En multipliant de part et d'autre de l'équation par
$$\frac{2(1 + x^2)}{x} : x^2 - \frac{\dot{x}^2 \times b_0}{\sqrt{1 + x^4/4}} + 2 = 0 \sqrt{1 + x^{\frac{3}{4}}}(x^2 + 2) = x^2 \times l_0$$

$$\sqrt{1 + y^2}(2y + 2) = 2yl_0$$

$$(1 + y^2)(y^2 + 2y + 1) = y^2 \times l_0^2$$

$$(1 + y^2)(y^2 + 2y + 1) = y^2 \times l_0^2$$

$$(1 + y^2)(y^2 + 2y + 1) = y^2 \times l_0^2$$

$$(1 + y^2)(y^2 + 2y + 1) = y^2 \times l_0^2$$
 On pose $X = y + \frac{1}{y} \ (y \neq 0) :$
$$X(X + 2) = l_0^2$$
 On pose $X = y + \frac{1}{y} \ (y \neq 0) :$
$$X(X + 2) = l_0^2$$
 On on calcule le déterminant :
$$\Delta_X = 4(1 + l_0^2)$$
 D'où les solutions intermédiaires :
$$X_1 = -1 - \sqrt{1 + l_0^2}$$

$$y + \frac{1}{y} = X$$

$$y^2 + 1 = Xy$$

$$y^2 + 1 = Xy$$

$$y^2 - Xy + 1 = 0$$
 Dont le déterminant est :
$$\Delta_y = X^2 - 4$$
 D'où les solutions :
$$y_1 = \frac{1}{2}(X - \sqrt{X^2 - 4})$$
 On peut alors trouver l'expression des points d'équilibre y_1, y_2, y_3, y_4 en fonction de $l_0 : y_1 = \frac{1}{2}(X_1 - \sqrt{X_1 - 4}) = \frac{-1 - \sqrt{1 + l_0^2}}{2} - \frac{1}{2}(\sqrt{(-1 - \sqrt{1 + l_0^2}) - 4})$
$$= \frac{1}{2}(-1 - \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{1 + 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$

$$= \frac{1}{2}(-1 - \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{1 + 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{1 - 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{1 - 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{2 - 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{2 - 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{2 - 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{2 - 2\sqrt{1 + l_0^2} + l_0^2 - 4}$$
 If reste à déterminer la nature de ces points d'équilibre du système.

- 3 Dans toute la suite on supposera que g=1, k=m et on notera $a=l_0$ et on s'intéressera particulièrement par l'équation vérifié par x(t).
- 3.1 Montrer que l'équation est de la forme : (E) $\ddot{x} + f(x, \dot{x}, a) = 0$.
- 3.2 Déterminer en fonction de a les points d'équilibres du système.
- 3.3 Quelle est en fonction de a, la nature des points d'équilibres.
- 4 On suppose que $a = \sqrt{15}$.
- 4.1 Déterminer la valeur exacte des points d'équilibres du système.
- 4.2 Déterminer l'intégrale première du système.
- 4.3 Représenter le portrait de phase.
- 4.4 Que peut-on en déduire sur le mouvement.
- 5 On suppose maintenant que $a = \sqrt{3}$ et $x(0) = x_0 > 0$ et $\dot{x}(0) = 0$.
- 5.1 Calculer et représenter à l'aide de Matlab la période T en fonction de x_0 pour $0 < x_0 < 10$.
- 6 On suppose maintenant que le système est soumis à une force de frottement $\gamma > 0$ et que l'équation devient : (E) $\ddot{x} + \gamma . \dot{x} + f(x, a) = 0$.
- 6.1 Représenter le diagramme de Matlab le diagramme de bifurcation en (a, γ) pour chacun des points d'équilibres.
- 6.2 On suppose que $a = \sqrt{15}$. Pour quelles valeurs (exactes) de γ les points d'équilibres attractifs changent-ils de nature.
- 6.3 Représenter le portrait de phase pour $\gamma = 1, \gamma = 2, \gamma = 3$.