MODELOS AVANZADOS DE COMPUTACIÓN I

30 de Junio de 2014 Cuestiones Teóricas

- 1. Explica qué son las máquinas de Turing multicinta y multipista dejando claro las diferencias entre las mismas. Explica brevemente si suponen una variación de la definición de MT básica con una cinta y qué relación tienen con estas Máquinas de Turing.
- 2. En los programas con variables que contienen palabras realizar una expansión de la macro $U \leftarrow V$ en instrucciones elementales.
- 3. Enuncia y explica el Teorema de Rice. Pon un ejemplo en el que se aplique el teorema de Rice para determinar si un lenguaje es recursivo.
- 4. Supongamos que tenemos 3 lenguajes L_1, L_2, L_3 de tal manera que existe una reducción de L_1 a L_2 , y de L_2 a L_3 . Para cada una de las siguientes frases indica si son CIERTAS, FALSAS o POSIBLES (podrían ser ciertas o falsas)
 - a) L_1 es recursivamente enumerable pero no recursivo, y L_3 es recursivo.
 - b) El complementario de L_1 no es recursivamente enumerable, pero el complementario de L_2 es recursivamente enumerable.
 - c) Siempre que sea L_3 recursivo, L_1 también lo será.
 - d) Siempre que L_1 no sea recursivamente enumerable, tampoco lo será L_3 .
 - e) L_1 es recursivo pero L_3 no lo es.
- 5. Enuncia las siguientes variantes de SAT especificando lo que conozcas sobre la complejidad de las mismas: 3-SAT, 2-SAT, NAESAT, SAT para cláusulas Horn, MAX2SAT.
- 6. Pinta en un diagrama las relaciones entre las clases **P**, **NP**, **coNP**, especificando también el conjunto de problemas **NP**-completos y el conjunto de problemas **CoNP**-completos. Describe como quedaría el diagrama si se demostrase que un problema **NP**-completo está en **CoNP**.
- 7. ¿Qué se entiende por que un problema de optimización tenga un algoritmo aproximado con razón de eficacia δ ? Da un ejemplo de un problema (cuyo problema de decisión des NP-completo) con un algoritmo aproximado polinómico con una razón de eficacia $\delta > 0$ para un valor concreto de δ . Especificar cómo funciona el algoritmo aproximado.
- 8. Como sabeis un problema está en la clase **FNP** si existe una relación R(x,y) equilibrada polinómicamente y verificable en tiempo polinómico tal que el problema se puede representar como:
 - Dada una entrada x encontrar un y tal que se verifique R(x,y) si existe algún y que verifique esta relación produciendo como salida ϵ (como indicador de no hay solución) si esta solución no existe.
 - Todo problema de **FNP** tiene un problema de **NP** asociado que consiste en dada una entrada x, determinar si existe un y tal que se verifica R(x, y) donde R(x, y) es la misma relación del problema **NP**.
 - Dar un ejemplo de un problema **FNP** cuyo problema de decisión asociado sea **NP**-completo y demostrar que si el problema de decisión se puediese resolver en tiempo polinómico, entonces el problema de **FNP** también se resolvería en tiempo polinómico.

Problemas de Prácticas

1. Demostrar que el siguiente problema es NP-completo:

Subgrafo común maximal Dados los grafos $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$, y un entero positivo K, ¿existen subconjuntos $E_1' \subseteq E_1$ y $E_2' \subseteq E_2$ tales que $|E_1'| = |E_2'| \ge K$ y tal que los dos subgrafos $G_1' = (V_1, E_1')$ y $G_2' = (V_2, E_2')$ son isomorfos?

- 2. Determinar si los siguientes lenguajes son recursivos, r.e. o no r.e.:
 - a) Determinar si el lenguaje de una MT contiene, al menos, dos palabras distintas.
 - b) Determinar si el lenguaje de una MT es finito o infinito.
 - c) Determinar is una MT con una cinta al comenzar con la cinta en blanco, en algún momento escribirán un símbolo no blanco en la cinta.
- 3. Construir un programa con cadenas sobre $\{0,1\}$ que dadas dos cadenas $u_1, u_2 \in \{a,b\}^*$ calcule la cadena u cuyo número $Z(u) = Z(u_1) + Z(u_2)$, donde Z(u) es la codificación de la cadena u según el procedimiento visto en clase.