Practical 4: Numerical Integration

(a) Programming for numerical integration using Trapezoidal rule.

Problem Statement: Write and execute Scilab code for the following:

Evaluate ¹₀∫ y dx ,Using Trapezoidal Rule and following data.

x	у
0	1
0.2	1.0857
0.4	1.1448
0.6	1.179
0.8	1.1891
1	1.1755

Scilab Code:

```
clc;
clear;
x=[0\ 0.2\ 0.4\ 0.6\ 0.8\ 1];
y=[1 1.0857 1.1448 1.1790 1.1891 1.1755];
h=x(2)-x(1);
n=length(x);
area=0;
for i=1:n
 if i==1 | i==n then
    area=area+y(i)
  else
    area=area+2*y(i)
end
end
area=area*(h/2);
printf("Value of integration by Trapezoidal Rule is=%f",area);
```

Output:

```
Value of integration by Trapezoidal Rule is=1.137270
--> |
```

(b) Programming for numerical integration using Simpson's 1/3 rule.

Problem Statement:

Evaluate ${}^{1}_{0}\int x^{2}/1+x^{3} dx$, Using Simpson's 1/3 Rule with h=0.25.

x		у
	0	0
	0.25	0.0615
	0.5	0.2222
	0.75	0.3956
	1	0.5

Scilab Code:

```
clc;
clear;
x=[0 \ 0.25 \ 0.50 \ 0.75 \ 1.00];
y=[0\ 0.0615\ 0.2222\ 0.3956\ 0.5];
h=x(2)-x(1);
n=length(x);
area=0;
for i=1:n
  if i==1 | i==n then
    area=area+y(i)
  elseif (modulo(i-1,2))==0 then
    area=area+2*y(i)
  elseif (modulo(i-1,2)) \sim = 0 then
    area=area+4*y(i)
end
end
area=area*(h/3);
printf("Value of integration by Simpsons 1/3 Rule is=%f",area);
```

Output:

```
Value of integration by Simpsons 1/3 Rule is=0.231067
```

(c) Programming for numerical integration using Simpson's 3/8 rule.

Problem Statement:

Evaluate 6 ₀ $\int dx/1+x^{2}$, Using Simpson's 3/8 Rule with h=1.

x	у
0	1
1	0.5
2	0.2
3	0.1
4	0.0588
5	0.0385
6	0.027

Scilab Code:

```
clc;
clear:
x=[0 123456];
y=[1 \ 0.5 \ 0.2 \ 0.1 \ 0.0588 \ 0.0385 \ 0.0270];
h=x(2)-x(1);
n=length(x);
area=0:
for i=1:n
  if i==1 | i==n then
    area=area+y(i)
  elseif (modulo(i-1,2))==0 then
    area=area+2*y(i)
  elseif (modulo(i-1,2)) \sim = 0 then
    area=area+3*y(i)
end
end
area=area*(3*h/8);
printf("Value of integration by Simpsons 3/8 Rule is=%f",area);
```

Output:

Value of integration by Simpsons 3/8 Rule is=1.297538

-->