Depression Detection in Social Media by Analyzing User's Sentiment (Naive Bayes)

DARREN VERNON RIOTA

00000032552

M. RIZKY AZZAKKY

00000033354

JERICHO CRISTOFEL SIAHAYA

00000032932

RICKY NG

00000032666

Latar Belakang Permasalahan

The **basis** of our research.

Depresi

- Sebuah penyakit gangguan mental yang dialami
 oleh 264 juta orang worldwide
- Berbagai macam faktor seperti faktor sosial,
 psikologis, biologis dan sebagainya
- Membunuh sekitar 800,000 orang annually (suicide)

Sentiment Analysis

- Penggunaan sosial media yang meningkat memudahkan pengguna untuk mengekspresikan perasaannya
- Unggahan pengguna mencerminkan perasaan atau emosi (sentiment)
- Sentimen dianalisis untuk mengklasifikasiperasaan pengguna

Objective

Membangun sebuah **NLP Tool** (bisa diimplementasikan dalam bentuk Web Application ataupun API) yang menggunakan machine learning untuk mengklasifikasi **kesehatan mental** seseorang berdasarkan **unggahan sosial media** (Twitter) ke dalam 2 kategori; **depressed** or **not depressed**.

Our approach

Naive Bayes (Algoritma)

Naive Bayes (Theorem)

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Merupakan teorema yang bekerja pada **conditional probability**.

Conditional Probability adalah suatu probabilitas atau kemungkinan bahwa sesuatu akan terjadi berdasarkan kejadian-kejadian yang sudah terjadi sebelumnya.

Keunggulan Naive Bayes terhadap klasifikasi teks:

- Algoritma yang paling populer untuk klasifikasi teks
- Lebih simpel dan mudah untuk diimplementasikan
- Memiliki performa yang cukup cepat
- Memiliki tingkat keberhasilan lebih tinggi daripada algoritma lainnya.

Input dataset (sentence/documents)

Term of frequency from both class This is our model

"I have a dog" — consider **positive** 😇

"My brother hates my dog" — consider negative 🙎

Word	Positive	Negative
i	0.11	0.00
have	0.11	0.00
а	0.11	0.00
dog	0.11	0.11
my	0.00	0.22
brother	0.00	0.11
hates	0.00	0.11

New input (sentence/documents)

"I love my dog"

Using conditional probability aka Naive Bayes

Probability of positive:

P(I love my dog | positive) = P(I | positive) x P(love | positive) x P(my | positive) x P(dog | positive)

Probability of negative:

P(I love my dog | negative) = P(I | negative) x P(love | negative) x P(my | negative) x P(dog | negative)

Remember our previous table?

Word	Positive	Negative
i	0.11	0.00
have	0.11	0.00
а	0.11	0.00
dog	0.11	0.11
my	0.00	0.22
brother	0.00	0.11
hates	0.00	0.11

Calculation from both probability

Probability of positive:

P(I love my dog | positive) = $0.11 \times 0 \times 0 \times 0.11$

Probability of negative:

P(I love my dog | negative) = $0 \times 0 \times 0.22 \times 0.11$

We can't have **zero** number, so we'll do the *smoothing*.

Laplace aka Additive Smoothing

Formula:

$$\hat{ heta}_i = rac{x_i + lpha}{N + lpha d} \qquad (i = 1, \ldots, d),$$

Word with zero number (or word from new sentence that doesn't occur in both class):

- **P(love | positive)** = 1.11
- P(i | negative) = 2.22
- **P(love | negative)** = 1.11
- **P(my | positive)** = 3.33

We can finally calculate our probability in peace.

Calculation from both probability, after smoothing

• Probability of positive:

P(I love my dog | positive) = 0.11 x 1.11 x 3.33 x 0.11

Probability of negative:

P(I love my dog | negative) = 2.22 x 1.11 x 0.22 x 0.11

Output

Since the result of **negative** probability is higher than positive probability, then we consider "I love my dog" is a negative sentence, based on bayes calculation.

It's weird, but that's how Naive Bayes works. That's why it's called "naive" because it assumes that each input variable is **independent**. In other words, it doesn't care about the context of a sentence but only the calculation through the data/term frequency.

Preparation

- 1. Dataset
 - Sentiment140 from Kaggle
 - 1,600,000 tweet with balanced negative and positive label/class
- 2. Programming Language
 - O Python 3
 - Jupyter Notebook for live code, equations and visualizations.
- 3. Library
 - Numpy
 - Pandas
 - scikit-learn
 - Matplotlib, Seaborn
 - Flask (for deployment)

Implementation (with steps)

- 1. Data preparation
- 2. Data cleansing
- 3. **Splitting**
- 4. Training (modelling) & Testing (validating)
- 5. Evaluation

Data Preparation

Dataset Sentiment140 dari Kaggle

berisi 1.600.000 *tweets*

Fields: Target, ID, Date, Flag, User, Text

Yang akan digunakan : **Target** dan **Text**

https://www.kaggle.com/kazanova/sentiment140

Data Cleansing

Tujuannya : Membuat data yang berupa teks menjadi lebih dapat dipahami oleh komputer.

- 1. Remove Punctuation
- 2. Remove Emoji
- 3. Remove Hyperlink
- 4. Convert into Lowercase
- 5. Tokenization
- 6. Remove Stopwords

Data Cleansing

target	text		
0	@switchfoot http://twitpic.com/2y1zl - Awww, that's a bummer. You should got David Carr of Third Day to do it.;D		
0	0 is upset that he can't update his Facebook by texting it and might cry as a result School today also. Blah!		
0	0 @Kenichan I dived many times for the ball. Managed to save 50% The rest go out of bounds		
0	my whole body feels itchy and like its on fire		
0	@nationwideclass no, it's not behaving at all. i'm mad. why am i here? because I can't see you all over there.		
0	0 @Kwesidei not the whole crew		
0	Need a hug		
0	@LOLTrish hey long time no see! Yes Rains a bit ,only a bit LOL , I'm fine thanks , how's you ?		
0	@Tatiana_K nope they didn't have it		
0	@twittera que me muera ?		

text	label
switchfoot awww thats bummer shoulda got david carr third day	
upset cant update facebook texting might cry result school today also blah	
kenichan dived many times ball managed save 50 rest go bounds	
whole body feels itchy like fire	
nationwideclass behaving im mad cant see	
kwesidei whole crew	
need hug	
loltrish hey long time see yes rains bit bit lol im fine thanks hows	
tatianak nope didnt	
twittera que muera	

Splitting

Untuk membuat model yang semakin **akurat**, dibutuhkan dataset yang lebih banyak pada fase training.

To train the model

To determine the accuracy of the model

Training and Testing

Training (Modelling)

- Pipeline
 - Term Frequency (TF-IDF)
 - \blacksquare n_gram range = (1,3)
 - Naive Bayes (Multinomial)
 - Laplace/Additive Smoothing with $\alpha = 10$
- Elapsed time: 0.23 s

n-gram is a contiguous sequence of n items from a given sample of text or speech.

Testing (Validating)

- 5% dari keseluruhan dataset
- Accuracy score: 0.80 (80%)

Evaluation

Recall pada class positive (yang tidak depresi) dipilih sebagai metrik acuan.

Classification Report:

	Precision	Recall	F1 Score
0	0.76	0.87	0.81
1	0.85	0.72	0.78
Accuracy	0.8		

Di sini, **False Negative** memiliki *cost* yang lebih tinggi dibanding False Positive. (FN > FP)

Confusion Matrix:

Let's check out the

Demo

Kesimpulan

- 1. **Naive Bayes** merupakan algoritma klasifikasi yang paling populer
- Naive Bayes menghitung probability tiap teks secara independent
- 3. **n_gram** digunakan untuk membuat training model semakin bervariatif
- Untuk membuat model yang akurat, maka diperlukan dataset training yang lebih banyak
- 5. Pada studi kasus depression detection ini False Negative memiliki cost yang lebih tinggi ketimbang False Positive

Demo: ddnb.herokuapp.com

Live code: gg.gg/ddnb-code

Jericho Cristofel Siahaya

- Training (modelling) & Testing (validating)
- Evaluation
- Deployment (demo)

Darren Vernon Riota

- Riset mengenai latar belakang permasalahan
- Riset mengenai algoritma Naive Bayes

Muhammad Rizky Azzakky

- Evaluation
- Riset mengenai perbandingan Naive Bayes dengan algoritma lain

Ricky Ng

- Data preparation
- Data cleansing

Pembagian Tugas

Thank you.