MATH 321 PRACTICE MIDTERM

KENAN INCE

- (1) Negate the following: given $\epsilon > 0$ there exists $y \in \mathbb{N}$ such that, for all $x \in \mathbb{R}$ such that $xy \leq \epsilon$, $x \in A$ or $y \in B$.
- (2) For each of the following statements, say whether it is true or false. If the statement is true, prove it. If it's false, give a counterexample.
 - (a) Every bounded set contains its supremum.
 - (b) A decreasing sequence is always bounded.
 - (c) Every sequence contains a convergent subsequence.
 - (d) Every bounded sequence converges.
 - (e) If A and B are sets, then $P(A) \cup P(B) \subseteq P(A \cup B)$. (Here P(S) denotes the power set of S for any set S.)
 - (f) If A and B are sets, then $P(A \cup B) \subseteq P(A) \cup P(B)$.
 - (g) If A and B are sets so that $P(A) \subseteq P(B)$, then $A \subseteq B$.
 - (h) If A and B are sets so that $A \subseteq B$, then $P(A) \subseteq P(B)$.
 - (i) If A, B, C are sets, then $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.
 - (j) If A, B, C are sets, then $(A \setminus B) \cup C = (A \cup C) \setminus (B \cup C)$
 - (k) If A and B are sets, $A \subseteq B \iff A \setminus B = \emptyset$.
 - (1) If A and B are sets, $A = B \iff A \setminus B = \emptyset$.
 - (m) $(-\infty, \infty) \sim (-\frac{\pi}{2}, \frac{\pi}{2})$.
 - (n) The set of irrational numbers I is countable.
 - (o) The set of rational numbers \mathbb{Q} is countable.
 - (p) If $(x_n) \to 0$, then $((-1)^n x_n) \to 0$ as well.
- (3) Define the sequence (x_n) recursively by setting

$$x_1 = \sqrt{2}$$

 $x_{n+1} = \sqrt{2 + x_n}$ for all $n \in \{1, 2, 3, \dots\}$

- (a) Show that the sequence (x_n) converges.
- (b) Let $\lambda = \lim x_n$. Show that $\lambda^2 \lambda 2 = 0$.
- (4) Does the sequence (²ⁿ⁻³/_{5n}) converge or diverge? Prove your answer.
 (5) Find the supremum and infimum of each of the following sets. No proofs are necessary.
 - (a) $A = \{x \in \mathbb{I} : x^2 < 2\}$
 - (b) $B = \{x \in \mathbb{Q} : x^2 < 2\}.$

 - (c) $C = \{1 \frac{1}{n} : n \in \mathbb{N}\}$ (d) $D = \{n + \frac{(-1)^n}{n} : n \in \mathbb{N}\}$ (e) $E = \{\frac{1}{n} : n \in \mathbb{N} \text{ and } n \text{ is prime}\}$
- (6) What can you say about a non-empty subset A of the real numbers for which sup $A = \inf A$? Prove your answer.
- (7) Using the definition of convergence of a sequence, prove that

$$\lim \left(\frac{n-1}{n+1}\right) = 1.$$

1