Agricultural Raw Material Analysis (ML - Classification & regression)

1s import numpy as np from sklearn.model selection import train test split from sklearn.ensemble import RandomForestClassifier, RandomForestRegres from sklearn.metrics import accuracy score, mean squared error [3] 0s # Sample data (replace with your dataset) [4] # X contains features, y_class contains labels for classification, y_reg contains target values for regressio X = np.random.rand(100, 5) # Example features y_class = np.random.randint(0, 3, size=100) # Example labels for classification y_reg = np.random.rand(100) # Example target values for regression [5] 0s # Split data into training and testing sets X_train, X_test, y_class_train, y_class_test = train_test_split(X, y_class, test_size=0.2, random_state=42) X_train, X_test, y_reg_train, y_reg_test = train_test_split(X, y_reg, test_size=0.2, random_state=42) [6] Ωs # Classification model clf = RandomForestClassifier() clf.fit(X_train, y_class_train) rrrry_class_pred = clf.predict(X_test) accuracy = accuracy_score(y_class_test, y_class_pred) print("Classification Accuracy:", accuracy) output Classification Accuracy: 0.45 [7] 0s# Regression model reg = RandomForestRegressor() reg.fit(X train, y reg train) y reg pred = reg.predict(X test) mse = mean squared error(y reg test, y reg pred) print("Mean Squared Error (Regression):", mse) Mean Squared Error (Regression): 0.07930491610659005