Algebra HW7

段奎元

SID: 201821130049 dkuei@outlook.com

October 31, 2018

1. Page 148,1 Determine the complete ring of quotients of the ring Z_n for each $n \geq 2$.

Solution: For any $r \in R$, $i, j \in J$, $k, l \in K$,

$$(ri)a = r(ia) = r0 = 0,$$

 $(i - j)a = ia - ja = 0 - 0 = 0;$
 $a(kr) = (ak)r = 0r = 0,$
 $a(k - l) = ak - al = 0 - 0 = 0.$

Thus $ri \in J, i-j \in J, J$ is a left ideal; $kr \in K, k-l \in K, K$ is a right ideal.

- 2. Page 133,3
 - (a) The set E of positive even integers is a multiplicative subset of Z such that E I(Z) is the field of rational numbers.
 - (b) State and prove condition(s) on a multiplicative subset S of Z which insure that S-IZ is the field of rationals.

SOLUTION:

(a) For any $a, b \in E$, ab is still positive and even. Then E is a multiplicative subset of Z.

3. Page 148,5 Let R be an integral domain with quotient field F. If T is an integral domain such that $R \subset T \subset F$, then F is (isomorphic to) the quotient field of T.

SOLUTION:

- 4. Page 148,8 Let R be a commutative ring with identity, I an ideal of R and $\pi: R \to R/I$ the canonical projection.
 - (a) If S is a multiplicative subset of R, then $\pi S = \pi(S)$ is a multiplicative subset of R/I.
 - (b) The mapping $\theta: S^{-1}R \to (\pi S)^{-1}(R/I)$ given by $r/sf \mapsto \pi(r)/\pi(s)$ is a well-defined function.
 - (c) θ is a ring epimorphism with kernel $S^{-1}I$ and hence induces a ring isomorphism $S^{-1}R/S^{-1}I\cong (\pi S)^{-1}(R/I)$.

SOLUTION:

1

5. Page 148,10 Let R be an integral domain and for each maximal ideal M (which is also prime, of course), consider R_M as a subring of the quotient field of R. Show that $\cap R_M = R$, where the intersection is taken over all maximal ideals M of R.

SOLUTION: