lineqGPR: an R package for Gaussian process modelling with inequality constraints

Andrés F. López-Lopera 1,2,3 , François Bachoc 2 , Nicolas Durrande 1,4 , and Olivier Roustant 1,2

¹ Mines Saint-Etienne, France.
² Toulouse Mathematics Institute (IMT), France.
³ French Geological Survey BRGM, Orléans, France.
⁴ PROWLER.io, Cambridge, UK.

This work was funded by the chair in applied mathematics OQUAIDO

OQUAIDO scientific meeting

November 26, 2019

Table of Contents

Motivation

- ② GP regression models under linear inequality constraints
 - 1D finite-dimensional Gaussian approximation
 - Extension to d dimensions
 - Additive GPs under inequality constraints

3 lineqGPR

Table of Contents

Motivation

- 2 GP regression models under linear inequality constraints
 - 1D finite-dimensional Gaussian approximation
 - Extension to d dimensions
 - Additive GPs under inequality constraints

3 lineqGPF

2D application: risk assessment in nuclear safety (IRSN)

2D models for interpolating the IRSN's dataset (López-Lopera et al., 2018).

 k_{eff} : effective neutron multiplication factor

- interpolation points (n=4)
- × test data

Some real-world applications satisfying inequality constraints

Other applications

- Regulation of gene expressions positivity constraints (Lawrence et al., 2007).
- Coastal flooding positivity & monotonicity (Rohmer and Idier, 2012).
- Econometrics positivity or monotonicity (Cousin et al., 2016).
- Nuclear physics monotonicity & convexity (Zhou et al., 2019).

https://nerc.ukri.org/

Cousin et al. (2016)

Gaussian process (GP) regression models: motivation

GPs form a flexible **prior over functions** (Rasmussen and Williams, 2005):

$$Y \sim \mathcal{GP} \bigg(\underbrace{\mu \left(x \right)}_{\text{mean}} = 0.5, \, \underbrace{k_{\theta} \left(x, x' \right)}_{\text{covariance}} = \sigma^2 \exp \Big\{ - \frac{(x - x')^2}{2\ell^2} \Big\} \bigg)$$

Gaussian process (GP) regression models: motivation

GPs form a flexible prior over functions (Rasmussen and Williams, 2005):

Prediction intervals ■ · · · ■ Samples

Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\boldsymbol{x}, \boldsymbol{y})$$

$$Y|\{Y(\mathbf{x}) = \mathbf{y}\} \sim \mathcal{GP}(\underbrace{m(x)}, \underbrace{c_{\theta}(x, x')})$$
 cond. mean cond. covariance

GPs form a flexible **prior over functions** (Rasmussen and Williams, 2005):

Mean function

Prediction intervals
Samples

• Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\boldsymbol{x}, \boldsymbol{y})$$

- - Boundedness condition

$$Y \in [0, 1]$$

GPs form a flexible **prior over functions** (Rasmussen and Williams, 2005):

$$Y|\{Y(\mathbf{x}) = \mathbf{y}, Y^{\uparrow}\} \sim$$
 ?

■ Mean function
■ Prediction intervals
■ ■ · · · ■ Samples

• Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\boldsymbol{x}, \boldsymbol{y})$$

- Boundedness condition

 $Y \in [0,1]$

↑ Monotonicity condition

$$Y(x) \le Y(x'), \quad \forall \ x \le x'.$$

GPs form a flexible **prior over functions** (Rasmussen and Williams, 2005):

 $Y | \{ Y(\mathbf{x}) = \mathbf{y}, Y \in [0, 1], Y^{\uparrow} \} \sim ?$

Mean function

■ Prediction intervals■ · · · ■ Samples

• Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\boldsymbol{x}, \boldsymbol{y})$$

- - Boundedness condition

$$Y \in [0, 1]$$

↑ Monotonicity condition

$$Y(x) \le Y(x'), \quad \forall \ x \le x'.$$

Main contributions

The main contributions in lineqGPR are threefold:

- The improvement of the applicability of GPs under constraints.
- The scalability of constrained GPs to high dimensions:
 - i.e. involving hundreds of input variables under additivity conditions.
- Parameter estimation under inequality constraints.

Table of Contents

1 Motivation

- 2 GP regression models under linear inequality constraints
 - 1D finite-dimensional Gaussian approximation
 - Extension to d dimensions
 - Additive GPs under inequality constraints

3 lineqGPF

GP regression models under linear inequality constraints

1D finite-dimensional Gaussian approximation

Finite-dimensional representation Y_m : also bounded & monotonic.

- true function
- \blacksquare finite approximation

Note that:

- If $\xi_i, \xi_{i+1} \in [0, 1]$, then $Y_m(0.5) \in [0, 1]$.
- Or if $\xi_i < \xi_{i+1}$, then $\xi_i < Y_m(0.5) < \xi_{i+1}$.

Imposing constraints on the knots is enough (Maatouk and Bay, 2017).

• Let the (constrained) finite-dimensional GP Y_m be defined as

$$Y_m(x) = \sum_{j=1}^m \xi_j \phi_j(x), \text{ s.t. } \begin{cases} Y_m(x_i) = y_i & \text{(interpolation conditions),} \\ l \le \Lambda \xi \le u & \text{(linear inequality conditions),} \end{cases}$$
(1)

where $x_i \in [0, 1], y_i \in \mathbb{R}$ for i = 1, ..., n; and

- $\boldsymbol{\xi} = [\xi_1, \dots, \xi_m]^{\top} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Gamma}_{\theta})$ with covariance matrix $\boldsymbol{\Gamma}_{\theta}$,
- ullet (Λ, l, u) defines the inequality conditions, and
- $\phi_j:[0,1]\mapsto\mathbb{R}$ are hat basis functions:

• Since the **Gaussianity** is preserved for *linear operations*:

$$\mathbf{\Lambda}\boldsymbol{\xi}|\{\boldsymbol{\Phi}\boldsymbol{\xi}=\boldsymbol{y}\}\sim\mathcal{N}\left(\mathbf{\Lambda}\boldsymbol{\mu},\mathbf{\Lambda}\boldsymbol{\Sigma}\mathbf{\Lambda}^{\top}\right),\quad\text{(conditional distribution)}\tag{2}$$

with conditional parameters μ and Σ given by

$$\mathbf{K} = \mathbf{\Phi} \mathbf{\Gamma} \mathbf{\Phi}^{\top}, \quad \boldsymbol{\mu} = \mathbf{\Gamma} \mathbf{\Phi}^{\top} \mathbf{K}^{-1} \boldsymbol{y}, \quad \boldsymbol{\Sigma} = \mathbf{\Gamma} - \mathbf{\Gamma} \mathbf{\Phi}^{\top} \mathbf{K}^{-1} \mathbf{\Phi} \mathbf{\Gamma}.$$

• Since the **Gaussianity** is preserved for *linear operations*:

$$\Lambda \boldsymbol{\xi} | \{ \Phi \boldsymbol{\xi} = \boldsymbol{y} \} \sim \mathcal{N} \left(\Lambda \boldsymbol{\mu}, \Lambda \boldsymbol{\Sigma} \boldsymbol{\Lambda}^{\top} \right), \quad \text{(conditional distribution)}$$
 (2)

with conditional parameters μ and Σ given by

$$\mathbf{K} = \mathbf{\Phi} \mathbf{\Gamma} \mathbf{\Phi}^{\mathsf{T}}, \quad \boldsymbol{\mu} = \mathbf{\Gamma} \mathbf{\Phi}^{\mathsf{T}} \mathbf{K}^{-1} \boldsymbol{y}, \quad \boldsymbol{\Sigma} = \mathbf{\Gamma} - \mathbf{\Gamma} \mathbf{\Phi}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{\Phi} \mathbf{\Gamma}.$$

• Then, quantifying uncertainty on $Y_m(x) = \sum_{j=1}^m \xi_j \phi_j(x)$ relies on simulating the **truncated Gaussian vector** $\boldsymbol{\xi}$:

$$\Lambda \boldsymbol{\xi} | \{ \boldsymbol{\Phi} \boldsymbol{\xi} = \boldsymbol{y}, \boldsymbol{l} \leq \Lambda \boldsymbol{\xi} \leq \boldsymbol{u} \} \sim \mathcal{T} \mathcal{N} (\Lambda \boldsymbol{\mu}, \Lambda \boldsymbol{\Sigma} \Lambda^{\top}, \boldsymbol{l}, \boldsymbol{u}).$$
 (3)

- (3) is computed via $Monte\ Carlo\ (MC)$ or $Markov\ Chain\ MC\ (MCMC)$:
 - e.g. Hamiltonian MC (HMC) (Pakman and Paninski, 2014).

1D finite-dimensional Gaussian approximation: numerical illustration

1D example with ${\bf boundedness}$ constraints via HMC

1D finite-dimensional Gaussian approximation: numerical illustration

1D example with ${\bf monotonicity}$ constraints via HMC

1D finite-dimensional Gaussian approximation: numerical illustration

1D example with boundedness & monotonicity constraints via HMC

1D example with boundedness & monotonicity constraints via HMC

or simply,

$$\underbrace{\begin{bmatrix} l_b \\ l_m \end{bmatrix}}_{l} \leq \underbrace{\begin{bmatrix} \mathbf{\Lambda}_b \\ \mathbf{\Lambda}_m \end{bmatrix}}_{\mathbf{\Lambda}} \boldsymbol{\xi} \leq \underbrace{\begin{bmatrix} \boldsymbol{u}_b \\ \boldsymbol{u}_m \end{bmatrix}}_{u}.$$

Considering noisy observations

$$Y_m(x) = \sum_{j=1}^m \xi_j \phi_j(x), \text{ s.t. } \begin{cases} Y_m(x_i) + \varepsilon_i = y_i & \text{(interpolation conditions),} \\ l \le \Lambda \xi \le u & \text{(linear inequality conditions),} \end{cases}$$
(4)

where $\varepsilon_i \sim \mathcal{N}\left(0, \tau^2\right)$ with noise variance τ^2 .

Modification:
$$\mathbf{K} = \mathbf{\Phi} \mathbf{\Gamma} \mathbf{\Phi}^{\top} \rightarrow \mathbf{K} = \mathbf{\Phi} \mathbf{\Gamma} \mathbf{\Phi}^{\top} + \mathbf{\tau}^{2} \mathbf{I}$$

boundedness

boundedness & monotonicity

Adding ε leads to more flexible GP models and less restrictive sample spaces for MC/MCMC algorithms (López-Lopera et al., 2019).

Finite-dimensional approximation in d dimensions

ullet The extension to d dimensions is obtained by **tensorisation**:

$$Y_{m}(\boldsymbol{x}) = \sum_{j_{1},\dots,j_{d}=1}^{m_{1},\dots,m_{d}} \left[\prod_{p=1,\dots,d} \phi_{j_{p}}^{(p)}(x_{p}) \right] \boldsymbol{\xi}_{j_{1},\dots,j_{d}}, \text{ s.t. } \begin{cases} Y_{m}(\boldsymbol{x}_{i}) + \boldsymbol{\varepsilon}_{i} = y_{i}, \\ \boldsymbol{\xi} \in \mathcal{C}, \end{cases}$$
 (5)

where $\boldsymbol{x}_i \in [0,1]^d$, $y_i \in \mathbb{R}$, $\boldsymbol{\varepsilon}_i \sim \mathcal{N}\left(0,\tau^2\right)$, for $i=1,\ldots,n$; and

- $\boldsymbol{\xi} = \left[\xi_{1,...,1}, \ldots, \xi_{m_{1},...,m_{d}}\right]^{\top} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Gamma}_{\theta}\right),$
- ullet C is a convex set of linear inequality constraints, and
- $\phi_{i_i}^{(i)}:[0,1]\mapsto\mathbb{R}$ are hat basis functions.

Finite-dimensional approximation in d dimensions

2D numerical illustration

Additive GPs under inequality constraints

Additive GPs

2D examples of additive GPs.

• Let Y be the additive process on \mathbb{R}^d given by

$$Y(\boldsymbol{x}) = \sum_{p=1}^{d} \frac{\mathbf{Y}_{p}}{\mathbf{Y}_{p}}(x_{p}), \text{ with } \frac{\mathbf{Y}_{p}}{\mathbf{Y}_{p}} \sim \mathcal{GP}(0, k_{p}).$$
 (6)

• Assume that Y_1, \ldots, Y_d are independent. Then, $Y \sim \mathcal{GP}(0, k)$ with:

$$k(\boldsymbol{x}, \boldsymbol{x}') = \sum_{p=1}^{d} k_p(x_p, x_p').$$

• Assume that Y exhibits certain constraints along Y_p , then Y_m is

$$Y_p \to Y_{p,m_p}$$

$$\underline{Y_m(x)} = \sum_{p=1}^d Y_{p,m_p}(x_p), \quad \text{s.t.} \quad \begin{cases} \underline{Y_m(x_i)} + \varepsilon_i = y_i, \\ \underline{\xi_\kappa} \in \mathcal{C}_\kappa, \end{cases}$$
 (7)

with $\boldsymbol{x}_i \in [0,1]^d$, $y_i \in \mathbb{R}$ and $\varepsilon_i \sim \mathcal{N}\left(0,\tau^2\right)$ for $i = 1,\ldots,n$.

Additive GPs under inequality constraints

• Assume that Y exhibits certain constraints along Y_p , then Y_m is

$$Y_p \to Y_{p,m_p}$$

$$\underline{Y_m(x)} = \sum_{p=1}^d Y_{p,m_p}(x_p), \text{ s.t. } \begin{cases} \underline{Y_m(x_i)} + \varepsilon_i = y_i, \\ \underline{\xi_\kappa} \in \mathcal{C}_\kappa, \end{cases}$$
(7)

with $\boldsymbol{x}_i \in [0,1]^d$, $y_i \in \mathbb{R}$ and $\varepsilon_i \sim \mathcal{N}\left(0,\tau^2\right)$ for $i=1,\ldots,n$.

2D toy example:

$$Y(x_1, x_2) = \underbrace{4(x_1 - 0.5)^2}_{\mathbf{Y_1}(x_1)} + \underbrace{2x_2}_{\mathbf{Y_2}(x_2)}$$

Predictive mean without constraints

Additive GPs under inequality constraints

• Assume that Y exhibits certain constraints along Y_p , then Y_m is

$$Y_p \to Y_{p,m_p}$$

$$\underline{Y_m}(\boldsymbol{x}) = \sum_{p=1}^d Y_{p,m_p}(x_p), \quad \text{s.t.} \quad \begin{cases} \underline{Y_m(\boldsymbol{x}_i) + \varepsilon_i = y_i,} \\ \boldsymbol{\xi}_{\kappa} \in \mathcal{C}_{\kappa}, \end{cases}$$
 (7)

with $\boldsymbol{x}_i \in [0,1]^d$, $y_i \in \mathbb{R}$ and $\varepsilon_i \sim \mathcal{N}\left(0,\tau^2\right)$ for $i=1,\ldots,n$.

2D toy example:

$$Y(x_1, x_2) = \underbrace{4(x_1 - 0.5)^2}_{Y_1(x_1)} + \underbrace{2x_2}_{Y_2(x_2)}$$

Predictive mean with constraints

Table of Contents

1 Motivation

- 2 GP regression models under linear inequality constraints
 - 1D finite-dimensional Gaussian approximation
 - Extension to d dimensions
 - Additive GPs under inequality constraints

3 lineqGPR

- lineqGPR is an R package for GP modelling under inequality constraints.
- It is based on multiple contributions:
 - L-L, A.F., Bachoc, F., Durrande, N., and Roustant, O. (2018). Finite-dimensional Gaussian approximation with linear inequality constraints. In SIAM/ASA Journal on Uncertainty Quantification.
 - Bachoc, F., Lagnoux, A., and L-L, A.F. (2019). Maximum likelihood estimation for Gaussian processes under inequality constraints. In *Electronic Journal of Statistics*.
 - L-L, A.F., Bachoc, F., Durrande, N., Rohmer, J., Idier, D., and Roustant, O (2019). Approximating Gaussian process emulators with linear inequality constraints and noisy observations via MC and MCMC. In MCQMC.

The main functionalities of lineqGPR are implemented as S3 methods.

Method Name	Description
create	Creation of GP models under inequality constraints.
lineqGPOptim	Parameter estimation under inequality constraints.
predict	Prediction of the objective function at new points.
simulate	Simulation of GP models under inequality constraints.
plot, ggplot	Plot for GP models.


```
Example
```

```
## Gaussian process regression modelling under boundedness constraints ##
library(linegGPR)
library(ggplot2)
#### generating synthetic data ####
sigfun <- function(x) return(1/(1+exp(-7*(x-0.5))))
x \leftarrow seq(0, 1, 0.001); y \leftarrow sigfun(x)
DoE \leftarrow splitDoE(x, y, DoE.idx = c(201, 501, 801))
#### GP with active boundedness constraints ####
# creating the "lineqGP" model
model <- create(class = "linegGP".
                x = DoE$xdesign, y = DoE$ydesign,
                constrType = "boundedness")
model$localParam$m <- 100 # nb of knots
model$bounds <- c(0,1) # defining the bounds
# sampling from the model
sim.model <- simulate(model, nsim = 1e4, seed = 1, xtest = DoE$xtest)
plot(sim.model, bounds = model$bounds, xlab = "x", ylab = "y(x)")
lines(x, y, lty = 2)
```

Note: see more example in the Jupyter Notebooks.

References I

- Bachoc, F., Lagnoux, A., and López-Lopera, A. F. (2019). Maximum likelihood estimation for Gaussian processes under inequality constraints. Electronic J. of Statistics, 13(2):2921–2969.
- Cousin, A., Maatouk, H., and Rullière, D. (2016). Kriging of financial term-structures. European Journal of Operational Research, 255(2):631-648.
- Durrande, N., Ginsbourger, D., and Roustant, O. (2012). Additive covariance kernels for high-dimensional Gaussian process modeling. Annales de la Faculté de Sciences de Toulouse, 21(3):481-499.
- Lawrence, N. D., Sanguinetti, G., and Rattray, M. (2007). Modelling transcriptional regulation using Gaussian processes. In *Neural Information Processing Systems*, pages 785–792.
- López-Lopera, A. F. (2018). lineqGPR: Gaussian process regression models with linear inequality constraints. https://cran.r-project.org/web/packages/lineqGPR/index.html.
- López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2018). Finite-dimensional Gaussian approximation with linear inequality constraints. SIAM/ASA Journal on Uncertainty Quantification, 6(3):1224-1255.
- López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2019). Approximating Gaussian process emulators with linear inequality constraints and noisy observations via MC and MCMC. To appear in Proceedings in Monte Carlo and Quasi-Monte Carlo Methods.
- López-Lopera, A. F., John, S., and Durrande, N. (2019). Gaussian process modulated Cox processes under linear inequality constraints. In AISTATS, pages 1997–2006.
- Maatouk, H. and Bay, X. (2017). Gaussian process emulators for computer experiments with inequality constraints. Mathematical Geosciences, 49(5):557-582.
- Pakman, A. and Paninski, L. (2014). Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. Journal of Computational and Graphical Statistics, 23(2):518-542.
- Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). MIT Press.
- Rohmer, J. and Idier, D. (2012). A meta-modelling strategy to identify the critical offshore conditions for coastal flooding. Natural Hazards and Earth System Sciences, 12(9):2943-2955.
- Zhou, S., Giulani, P., Piekarewicz, J., Bhattacharya, A., and Pati, D. (2019). Reexamining the proton-radius problem using constrained Gaussian processes. *Physical Review C*, 99:055202.

