Weekly Homework 2

Ava Chong CS 1675: Intro to Machine Learning

January 31, 2019

Problem 1. Mean estimates and the effect of the sample size

(1) Mean = 15.041, Standard deviation = 5.0279

The calculated mean and standard deviation are approximately the same to the true mean and standard deviation. This means that the subsets of data are approximately equivalent.

- (2) See code
- (3) Mean = 15.0094

- (4) The means are approximately the same. There is about a 0.03 difference between the two means.
- (5) Mean = 15.00231

All of the means are approximately the same. There is no more than a .03 difference between any mean.

(6) From the t-test, h returns 0 telling us to not reject the null at a 5% significance level. Yes, the mean = 15 falls within the .95 confidence interval.

Problem 2. k-fold cross-validation

- (1) See code
- (2)

m	Mean	Std
1	3.99	4.43
2	1.82	3.62
3	2.14	2.35
4	1.79	3.16
5	2.08	3.37
6	1.76	3.26
7	2.11	3.46
8	1.03	2.58
9	1.58	3.41
10	2.42	2.28

Problem 3. Probabilities

(a)

	D 1 1 111
Sum	Probability
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

(b)
$$2*(1/36) + 3*(2/36) + \dots 12*(1/36) = 7$$

(c) Probability we never see and outcome of the sum of $4 = (11/12)^5$ Probability we seen and even outcome in all 5 trials = $(18/36)^5$

Problem 4.

The probability of observing heads given the data in coin.txt is 65/100.

Problem 5. Practicing function derivatives

$$(a) \ \frac{d}{dx}(2x) = 2$$

(b)
$$\frac{d}{dx}(5x+2x^4)=5+8x^3$$

$$(c) \frac{d}{dx}(e^{2x^2}) = 4x(e^{2x^2})$$

$$(d) \frac{d}{dx}(sin(x^2)) = 2xcos(x^2)$$

(e)
$$\frac{d}{dx}(1/(5x)) = -(1/(5x^2))$$

$$(f) \frac{d}{dx}(1/(2x+x^2)) = -(2(x+1))/(x^2(x+2)^2)$$

$$(g) \frac{d}{dx}(\ln(x^5)) = 5/x$$

(h)
$$\frac{d}{dx} (\ln \prod_{i=1}^{n} x^i = x^{1/2n(n+1)})$$