UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA DE OCCIDENTE DEPARTAMENTO DE INGENIERIA.

GUIA DE EJERCICIOS Nº 2. (CÁLCULO DIFERENCIAL DE INGENIERIA)

A) Trace las gráficas de las siguientes funciones exponenciales f(x). Aplique rotaciones y traslaciones.

1)
$$f(x) = (\frac{1}{3})^x$$
 2) $f(x) = (\frac{3}{4})^x$ 3) $f(x) = -3^x$
4) $f(x) = -2^x$ 5) $f(x) = -2^{-x}$ 6) $f(x) = 2^{x+1}$
7) $f(x) = 2^{x-1}$ 8) $f(x) = 3 - 2^{-x}$

4)
$$f(x) = -2^x$$
 5) $f(x) = -2^{-x}$ 6) $f(x) = 2^{x+1}$

7)
$$f(x) = 2^{x-1}$$
 8) $f(x) = 3 - 2^{-x}$

7)
$$f(x) = 2^{x-1}$$
 8) $f(x) = 3 - 2^{-x}$
9) $f(x) = -5 + 3^x$ 10) $f(x) = 2 + 3^{-x}$ 11) $f(x) = e^{x-3}$

12)
$$f(x) = e^{|x|}$$
 13) $f(x) = 9 - e^x$

14)
$$f(x) = -1 + e^{x-3} 15$$
) $f(x) = -3 - e^{x+5} 16$) $f(x) = -e^{|x-3|}$

17)
$$f(x) =\begin{cases} -3^{x}, & x < 0 \\ -3^{-x}, & 0 \le x \end{cases}$$
 18) $f(x) =\begin{cases} -e^{x}, & x < 0 \\ -e^{-x}, & 0 \le x \end{cases}$

19)
$$f(x) = \begin{cases} e^{-x}, & x \le 0 \\ -e^{x}, & 0 < x \end{cases}$$

B) Grafique las siguientes funciones logarítmicas (aplique el Principio de Simetría). Además indique su dominio y rango.

1)
$$f(x) = \log_2 x$$
 2) $f(x) = -\log_2 x$

3)
$$f(x) = -\log_2(x+1)$$
 4) $f(x) = \log_2(-x)$
5) $f(x) = \log_{0.5}(2-x)$ 6) $f(x) = 1 - 2\log_4 x$

5)
$$f(x) = \log_{0.5} (2 - x)$$
 6) $f(x) = 1 - 2 \log_4 x$

7)
$$f(x) = \log(\frac{1}{x})$$
 8) $f(x) = \log_{0.2} x$

9)
$$f(x) = -1 + \ln x$$

10)
$$f(x) = 1 - 2 \log(x - 4)$$

11)
$$f(x) = \log_5(-x)$$

12)
$$f(x) = 1 + \ln(x - 2)$$

13)
$$f(x) = \ln |x|$$

14)
$$f(x) = |\ln x|$$

15)
$$f(x) = |\ln(x+1)|$$

16)
$$f(x) = \ln(x^2) - \ln(x)$$

C) Dados $\log_b 4 = 0.6021$ y $\log_b 5 = 0.6990$, evalúe los siguientes logaritmos (redondee a cuatro decimales).

5)
$$\log_b \sqrt{5}$$

$$\log_b 625$$
 5) $\log_b \sqrt{5}$ 6) $\log_b \frac{5}{4}$

7)
$$\log_b \sqrt[3]{4}$$
 8) $\log_b 80$ 9) $\log_b 0.8$

10)
$$\log_b 3.2$$
 11) $\log_4 b$ 12) $\log_5 (5b)$

D) Resuelva la ecuación exponencial dada.

1)
$$2^{2x-1} = 4$$

2)
$$5^{x-2} = 1$$

$$3) \qquad 10^{-2x} = \frac{1}{10000}$$

4)
$$27^{x} = \frac{9^{2x-1}}{3^{x}}$$

5)
$$\sqrt[3]{8^x} = 65536$$

6)
$$2^x 3^x = 36$$

7)
$$\frac{4^x}{3^x} = \frac{9}{16}$$

8)
$$3^x + 3^{x-1} + 3^{x+1} = 117$$

9)
$$2^{x^2} = 8^{2x-3}$$

10)
$$3^{2(x-1)} = 7^2$$

11)
$$\frac{1}{3} = (2^{|x|-2} - 1)^{-1}$$

12)
$$2-3^{-x}+3^{x+1}=0$$

13)
$$(\frac{1}{3})^x = 9^{1-2x}$$

14)
$$5^{|x|-1} = 25$$

15)
$$(e^2)^{x^2} - \frac{1}{e^{5x+3}} = 0$$

16)
$$\frac{7}{7^{2x+1}} - 50 \frac{7^{1-x}}{7} + 49 = 0$$

17)
$$5^x - 5^{-x} = 2$$

18)
$$2^{x} + 2^{-x} = 2$$

19)
$$5^{2x} - 26(5^x) + 25 = 0$$

19)
$$5^{2x} - 26(5^x) + 25 = 0$$
 20) $64^x - 10(8^x) + 16 = 0$

21)
$$5^{2x} - 2(5^x) - 1 = 0$$

21)
$$5^{2x} - 2(5^x) - 1 = 0$$
 22) $2^{2x} - 12(2^x) + 35 = 0$

23)
$$10^{2x} - 103(10^x) + 300 = 0$$

24)
$$\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1 + 2 + 2^2 + \dots + 2^x = \frac{127}{8}$$

E) Dadas las siguientes funciones, determine sus intersecciones con el eje x.

1)
$$f(x) = e^{x+4} - e^{x+4}$$

2)
$$f(x) = 1 - \frac{1}{5} (0.1)^x$$

3)
$$f(x) = 4^{x-1} - 3$$

4)
$$f(x) = -3^{2x} + 5$$

5)
$$f(x) = x^3 8^x + 5x^2 8^x + 6x 8^x$$

5)
$$f(x) = x^3 8^x + 5x^2 8^x + 6x 8^x$$
 6) $f(x) = \frac{2^x - 6 + 2^3 - x}{x + 2}$

F) Resuelva las siguientes ecuaciones logarítmicas.

$$1) \qquad \frac{1}{3}\log_2 x = -3$$

2)
$$\log_3 5x = \log_3 160$$

3)
$$\ln(10 + x) = \ln(3 + 4x)$$

4)
$$\ln x = \ln 5 + \ln 9$$

5)
$$2 \ln x + \ln (x^2 + 2) = \ln 3$$

6)
$$3 \log_8 x = \log_8 36 + \log_8 12$$

7)
$$\log_x 100 - \log_x 25 = 2$$

$$8) \qquad \log \frac{1}{x^2} = 2$$

9)
$$\log_3 \sqrt{x^2 + 17} = 2$$

10)
$$\log_2(\log_3 x) = 2$$

11)
$$\log_6(3x) - \log_6(x+1) = \log_6 1$$

12)
$$\log_5 |1 - x| = 1$$

13)
$$\log_3 81^x - \log_3 3^{2x} = 3$$

14)
$$\ln(2x-3) + \ln(5-x) = \ln 5$$

15)
$$\frac{\log_2 8^x}{\log_2 \frac{1}{4}} = \frac{1}{2}$$

$$16) \quad \log x = 1 + \log \sqrt{x}$$

17)
$$\log_2(x-3) - \log_2(2x+1) = -\log_2 4$$

18)
$$\log_2 x + \log_2 (10 - x) = 4$$
 19) $\log_8 x + \log_8 x^2 = 1$

20)
$$\log_6 2x - \log_6 (x+1) = 0$$

21)
$$\log 54 - \log 2 = 2 \log x - \log \sqrt{x}$$

22)
$$\log_9 \sqrt{10x+5} - \frac{1}{2} = \log_9 \sqrt{x+1}$$

23)
$$\log x^2 + \log x^3 + \log x^4 - \log x^5 = \log 16$$

24)
$$\ln 3 + \ln (2x - 1) = \ln 4 + \ln (x + 1)$$

25)
$$\ln(x+3) + \ln(x-4) - \ln x = \ln 3$$

26)
$$x^{\ln x} = e^9$$

$$27) \quad x^{\log x} = \frac{1000}{x^2}$$

G) Las siguientes funciones son conocidas como funciones

hiperbólicas:

$$senh(x) = \frac{e^x - e^{-x}}{2}$$
 -----> seno hiperbólico

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
 -----> coseno hiperbólico

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 -----> tangente hiperbólica

Pruebe las siguientes relaciones entre las funciones hiperbólicas.

1)
$$\cosh(x) - \sinh(x) = e^{-x}$$

2)
$$\cosh(x) + \sinh(x) = e^x$$

3)
$$\cosh^2(x) - \sinh^2(x) = 1$$

4)
$$\cosh^2(x) + \sinh^2(x) = \cosh(2x)$$

5)
$$\cosh^2(x) = \frac{\cosh(2x) + 1}{2}$$

6)
$$\operatorname{senh}^{2}(x) = \frac{\cosh(2x) - 1}{2}$$