

Palestine Technical University-Kadoorie High Level Digital Design 1214-0420

Term Project

Three 4-bit numbers adder

Prepared by:

Mohammad Saleh AbuSafat

Supervisor:

Dr. Mahmoud Moshref

Project submitted in VHDL Course Requirement for the Bachelor Degree 2021/2022

Objective: Design a three 4-bit numbers adder.

Details of the design: Ripple Carry Adder (RCA) performs addition of two *n*-bit numbers. Therefore, the adder shown in the figure below performs the addition in two stages as follows:

- 1- In the first stage, we need to reduce the problem of adding three numbers into adding two *n*-bit numbers. The 8-bits of S and C will be computed at the same time.
- 2- In the second stage, RCA is used to compute the summation and the carry.

• In the first stage, I will determine C and S vectors, so that each bit in the S vector represents the sum of one bit of each input vectors in the same order, and each bit in the C vector represents the carry of that sum.

This example shows the process:

If we consider that X="1010", Y="1110" and Z="0001" We find that S= "0101" and C= "1010".

X	1	0	1	0
Y	1	1	1	0
Z	0	0	0	1
S	0	1	0	1
C	1	0	1	0

For first bit at the right 0+0+1 this will equal 01 (s=1, c=0)

This stage can be done by Full Adder for each bit.

• In the second stage I will sum S vector with C vector but before do this I will add a bit with value zero at the right of C vector to achieve a correct result for sum, to clarify the process, we did the following:

We determined the S and C vectors from the first stage, suppose we get this result:

The calculation will be this

$$\begin{array}{c} 0 & 1 & 1 & 0 + \\ 1 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 0 \\ \hline carry & Sum & \\ \end{array}$$

This stage can be done by RCA.

• To implement this application on VHDL we will first create entity for Half and full Adder

```
Tibrary ieee;
     use ieee.std_logic_1164.all;
 2
 3
 4
    ⊟entity HA is
 5
    □port(a,b : in std_logic;
            sum,cout : out std_logic);
 6
 7
     end entity;
 8
 9
    □architecture HA_arch of HA is
10
    ⊟begin
11
     sum<= a xor b;
12
     cout<= a and b;
13
     end architecture;
14
```

```
library ieee;
 2
     use ieee.std_logic_1164.all;
 3
 4
    ⊟entity FA is
 5
    □port(a, b, cin : in std_logic;
 6
            sum, cout: out std_logic);
 7
     end entity;
 8
    ⊟architecture FA_arch of FA is
 9
10
11
    □component HA is
12
    □port(a,b: in std_logic;
           sum,cout: out std_logic);
13
14
     end component;
15
     signal sum1, cout1, cout2 :std_logic;
16
17
18
     begin
19
20
     HF1 : HA port map(a,b,sum1,cout1);
21
     HF2 : HA port map(sum1,cin,sum,cout2);
22
23
     cout<= cout1 or cout2;
24
25
     end architecture;
```

And then we create our application:

```
1
2
3
      library ieee;
      use ieee.std_logic_1164.all;
 4
5
6
    ⊟entity stage1 is
    □port(x, y, z : in std_logic_vector(3 downto 0);
              s, c : out std_logic_vector(3 downto 0));
 7
8
     end entity;
 9
    □architecture stage1_arch of stage1 is
10
11
    in component FA is
    12
13
14
     end component;
15
16
      begin
17
18
      FA1 : FA port map(x(0),y(0),z(0),s(0),c(0));
     FA2 : FA port map(x(1),y(1),z(1),s(1),c(1));
FA3 : FA port map(x(2),y(2),z(2),s(2),c(2));
19
20
21
      FA4 : FA port map(x(3),y(3),z(3),s(3),c(3));
22
23
     end architecture:
```

```
library ieee;
 2
       use ieee.std_logic_1164.all;
 3
     ⊟entity stage2 is
 4
5
6
7
     □port(s, c: in std_logic_vector(3 downto 0);
                sum: out std_logic_vector(4 downto 0);
             carry: out std_logic);
 8
       end entity;
 9
10
     □architecture stage2_arch of stage2 is
11
12
     ⊟component FA is
     □port(a, b, cin : in std_logic;

- sum, cout: out std_logic);
13
14
15
       end component;
16
17
       signal cout1, cout2, cout3: std_logic;
18
19
       begin
20
21
       sum(0) <= s(0);
       FA1 : FA port map(s(1),c(0) ,'0' ,sum(1),cout1);
FA2 : FA port map(s(2),c(1) ,cout1,sum(2),cout2);
FA3 : FA port map(s(3),c(2) ,cout2,sum(3),cout3);
FA4 : FA port map(c(3),cout3,'0' ,sum(4),carry);
22
23
24
25
26
27
28
       end architecture;
```

```
library ieee;
use ieee.std_logic_1164.all;
 2
 3
 4
    ⊟entity Three_Number_Adder is
 5
    □port(x, y, z : in std_logic_vector(3 downto 0);
| sum : out std_logic_vector(4 downto 0);
 6
              carry : out std_logic);
 8
     end entity;
 9
10

□architecture Three_Number_Adder_arch of Three_Number_Adder is
11
12
    in incomponent stage is
    □port(x, y, z : in std_logic_vector(3 downto 0);
13
               s, c : out std_logic_vector(3 downto 0));
14
15
     end component;
16
17
    ⊟component stage2 is
    □port(s, c: in std_logic_vector(3 downto 0);
18
            sum: out std_logic_vector(4 downto 0);
19
20
          carry: out std_logic);
21
     end component;
22
23
     signal s, c: std_logic_vector(3 downto 0);
24
25
26
      begin
27
28
      stage1_o: stage1 port map (x, y, z, s, c);
29
      stage2_o: stage2 port map (s, c, sum, carry);
30
31
      end architecture;
```

Test Bench: For simplicity, the Test bench can be conducted using three different tuples only (e.g., T1= (X= 1100, Y= 1101, Z=1110), T2= (X= 1111, Y= 1000, Z= 1001), T3= (X= 1110, Y= 0101, Z= 0111)).

• To test my solution:

```
library ieee;
use ieee.std_logic_1164.all;
 3
     ⊟entity Three_Number_Adder_TB is
 5
6
7
      end entity;
     is component Three_Number_Adder
     10
11
12
13
       end component;
14
15
       signal x_TB, y_TB, z_TB: std_logic_vector(3 downto 0);
signal sum_TB: std_logic_vector(4 downto 0);
signal carry_TB: std_logic;
16
17
18
19
20
       begin
21
22
23
24
25
26
27
28
29
       Three_Number_Adder_1: Three_Number_Adder port map(x_TB, y_TB, z_TB, sum_TB, carry_TB);
     ⊟STIMULUS : process
       begin
       x_TB \leftarrow "1100"; y_TB \leftarrow "1101"; z_TB \leftarrow "1110"; wait for 20 ns; x_TB \leftarrow "1111"; y_TB \leftarrow "1000"; z_TB \leftarrow "1001"; wait for 20 ns; x_TB \leftarrow "1110"; y_TB \leftarrow "0101"; z_TB \leftarrow "0111"; wait for 20 ns;
30
      Lend process;
       end architecture;
```

■ Wave - Default ::::::					
Msgs					
	1100	1111	1110	_	
	1101	1000	0101		
	1110	1001	0111		
	00111	00000	11010		
1					
	Msgs 1100 1101 1110 00111 1	1101 1101 1110 1110 00111 00111	Msgs 1100 1111 1101 1100 11110 1100 11110 1100 11110 10001 10011 10001 10000 11110 1000000	Msgs 1100 1111 1110 1110 1101 1110 1110 1	

done