L3_2 Two S Complement Project Exam Help https://powcoder.com/

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

- Represent signed and unsigned numbers in binary (base 2)
- Negate positive and negative signed values
- Assignment Project Exam Help

 Complete arithmetic operations (addition and subtraction) by hand using signed and unsigned by many numbers m

Add WeChat powcoder

- Before starting this video, get comfortable with representing numbers in binary
- Resources: Assignment Project Exam Help
 - Video reviews (EECS 370 website): https://www.eecs.umich.edu/courses/eecs370/eecs370.f20/video reviews/
 - Resource documents (EAGE 3 We coder https://www.eecs.umich.edu/courses/eecs370/eecs370.f20/resources/
 - Lecture 2 video on Binary numbers:
 https://drive.google.com/drive/folders/1RDqMynHaAMFW6hRLvky9XJZR2dh
 BD-bl or Media gallery on Canvas
 https://umich.instructure.com/courses/394380/external_tools/6329

We can already represent non-negative numbers in binary

6 (base 10) Assignment Project Exam Help (base 2)

• We can do arithmetic with binary har seem

$$3 + 2 = 5$$
 (base 10) dd WeChat powcoder $5 = 8$ (base 10)

We can already represent non-negative numbers in binary

• We can do arithmetic with binary hards earn

What about Negative Numbers?

• Thoughts: add another bit for sign, use one of the existing bits for sign

What about Negative Numbers?

- Design space preferences:
 - Representation of positive and negative values
 - Representation of signed and unsigned values
 Assignment Project Exam Help
 Single way to represent 0

 - Equal magnitude of positive and negative values (roughly)
 - Simple (not complex) to detect sign (positive or negative)
 - Simple negation of a numberWeChat powcoder
 - Simple storage for signed and unsigned
 - Simple, non-redundant hardware for operations
 - E.g., one hardware addition unit for signed and unsigned numbers

What about Negative Numbers?

- Design space preferences:
 - Representation of positive and negative values
 - Representation of signed and unsigned values
 Assignment Project Exam Help
 Single way to represent 0

 - Equal magnitude of positive and pagative values (roughly)
 - Simple (not complex) to detect sign (positive or negative)
 - Simple negation of a numberWeChat powcoder
 - Simple storage for signed and unsigned
 - Simple, non-redundant hardware for operations
 - E.g., one hardware addition unit for signed and unsigned numbers
- Thought: use existing bit of binary number for signed values

Two's Complement

Unsigned Binary Representation

• 1011 in binary is 13 in decimal

Two's Complement Binary Representation

1011 in binary is 13 in decimal

• Two's complement numbers were hary similared unsigned binary

EXCEPT the first (most significant) digit is negative in two's complement

What is 1010 (binary)

4 B175

- 1. Decimal unsigned value?
- 2. Decimal signed (two's complement) value?
 Assignment Project Exam Help

What is 1010 (binary)

- 1. Decimal unsigned value?
- 2. Decimal signed (two's complement) value?
 Assignment Project Exam Help

What is 1010 (binary)

- 1. Decimal unsigned value?
- 2. Decimal signed (two's complement) value?
 Assignment Project Exam Help

$$8 + 2 = 10$$

$$-8 + 2 = -6$$

Two's Complement Range

- What is the range of representation of a 4-bit 2's complement number?
 - [-8, 7] Assignment Project Exam Help
- What is the range of representation of an interpresentation of an interprese
 - [$-2^{(n-1)}$), $2^{(n-1)}Adq$ WeChatzpowgoder. [$-2^{3'}$) += $2^{3'}-1$

Negating Two's Complement

 Useful trick: You can negate a 2's complement number by inverting all the bits and adding 1.

5 (decimal) inspinanyPrisect Fram Help 0 1

Negate (invert) http://bivtsoder.com 0 1 0

Add WeChat powcoder 0 1 0

$$+ 0 0 0 1$$
 $-(2^3) 2^2 2^1 2^0$
 $-8 + 0 + 2 + 1 = -5$

How would you represent -3 (decimal) in 2's complement binary using 4 bits?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

How would you represent -3 (decimal) in 2's complement binary using 4 bits?

- 1. Convert 3 (decimal) to binary Project Exam Help
- 2. Negate binary
 - 1. Invert all bits https://powcoder.com
 - 2. Add one Add WeChat powcoder

How would you represent -3 (decimal) in 2's complement binary using 4 bits?

- 2. Negate binary
 - 1. Invert all bits
 - 2. Add one

```
https://poweoder.com / 60
```

Add WeChat Dowcoder / 0/

How would you represent -3 (decimal) in 2's complement binary using 4 bits?

- 1. Convert 3 (decimal) to binary Project Exam Help
- 2. Negate binary
 - 1. Invert all bits
 - 2. Add one

https://powcoder.comSigned – 2's complement

Add WeChat powcoder 0 1

- 1. Convert 3 to binary
 - 1.3 -> 0011
- 2. Convert to 2's complement
 - 1.0011 -> 1100
 - 2.1100 + 1 = 1101

$$-2^3$$
 2^2 2^1 2^0

$$-8 + 4 + 0 + 1 = -3$$

Sign Extension

• With two's compliment, it matters how many bits are used!

```
5 (decimal) in binary (4 bits) is 0101
Assignment Project Exam Help
5 (decimal) in binary (8 bits) is 0000 0101
https://powcoder.com
-5 (decimal) in binary (4 bits) is 1011
Add WeChat powcoder
-5 (decimal) in binary (8 bits) is 1111 1011
NOT 0000 1011
```

need to **extend the most significant (sign) bit** LC-2K: programmer (you) need to do this!

Two's Complement Arithmetic

Decimal	2's Complement Binary	Decimal	2's Complement Binary
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1101
3	Assignment Proj	ioct Evon	1100
4	Assignment Proj	jeci _s exan	
5	0101 0110 https://powo	1-6	1010
6	0110 https://powc	couer.com	1001
7	Add WeCha	at powcoo	ler 1000
7 - 6 = 7 + (-6)	= 1	6 - 7 =	6 + (-7) = -1

Two's Complement Arithmetic

Decimal	2's Complement Binary	Decimal	2's Complement Binary
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1101
3	Assignment Proj	ioct Evam	Hollo
4	Assignment Fro	jeci _s exam	
5	0101 0110 https://powo	oder com	1010
6	0110 https://powc	couer.com	1001
7	Add WeCha	at powcod	1000 ler
7 - 6 = 7 + (-6)	= 1	6 - 7 =	6 + (-7) = -1
1011		01	10
1010		Į c	50(
110001	-		

Logistics

- This is the second of 3 videos for lecture 3
 - L3 1 ISAs Instructions and Memory
 - L2_2 Two's Complexignment Project Exam Help
 - L2 3 LC-2K ISA

- https://powcoder.com
 There are two worksheets for lecture 3
 - 1. Addressing and 2's compter Men Chat powcoder
 - 2. LC-2K program encoding
- When ready, move on to L3 3