Zero probabilities and Laplace smoothing

Example: predicting whether to play or not

Outlook			Temperature			Humidity			Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

```
Test instance \overline{X} = (\text{Outlook} = \text{sunny}, \text{Temp} = \text{cool}, \text{Humidity} = \text{high}, \text{Windy} = \text{true}) P(\text{Play} = \text{no} \mid \overline{X}) \propto P(\overline{X} \mid \text{Play} = \text{no}) P(\text{Play} = \text{no}) = P(\text{Outlook} = \text{sunny} \mid \text{Play} = \text{no}) \times P(\text{Temp} = \text{cool} \mid \text{Play} = \text{no}) \times P(\text{Humidity} = \text{high} \mid \text{Play} = \text{no}) \times P(\text{Windy} = \text{true} \mid \text{Play} = \text{no}) \times P(\text{Play} = \text{no}) = 3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.020
```

Probability estimations

$$P(x_i = a \mid C = c) = \frac{n(a, c)}{N(c)},$$

where

n(a, c) is the number of training objects in class c with $x_i = a$,

N(c) is the total number of training objects in class c

Example: predicting whether to play or not (zero probabilities)

Outlook			Temperature			Humidity			Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Test instance $\overline{X} = (Outlook = overcast, Temp = cool, Humidity = high, Windy = true)$

```
P(\mathsf{Play} = \mathsf{no} \,|\, \overline{X}) \propto P(\overline{X} \,|\, \mathsf{Play} = \mathsf{no}) P(\mathsf{Play} = \mathsf{no})
= P(\mathsf{Outlook} = \mathsf{overcast} \,|\, \mathsf{Play} = \mathsf{no}) \times P(\mathsf{Temp} = \mathsf{cool} \,|\, \mathsf{Play} = \mathsf{no})
\times P(\mathsf{Humidity} = \mathsf{high} \,|\, \mathsf{Play} = \mathsf{no}) \times P(\mathsf{Windy} = \mathsf{true} \,|\, \mathsf{Play} = \mathsf{no}) \times P(\mathsf{Play} = \mathsf{no})
= 0 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0
```

Zero probabilities

- Issue: If the feature value a_i does not co-occur with a class value c, then the corresponding probability estimation will be 0.
- For example: Given Outlook = overcast, the probability of Play = no is 0/5. The other features will be ignored as the final result will be multiplied by 0.
- This is bad for our 4 feature dataset, but terrible for (say) a 1000 feature dataset.
- In text classification, we often encounter situations where a feature does not occur in a particular class.

Laplace smoothing

- We can "borrow" some probabilities from high probability features and distribute them among zero probability features to avoid having feature with zero probabilities
- This is called smoothing
- There are numerous smoothing techniques based on different policies. As long as the total probability mass remains unchanged any policy of probability reassignment is valid.
- A popular method is called **Laplace smoothing**. For feature x_i and class c the probability estimates will be updated as follows:

$$P(x_i = a \mid C = c) = \frac{n(a, c) + 1}{N(c) + m_i}$$
 for every value a of feature x_i ,

where n(a, c) is the number of training objects in class c with $x_i = a$,

N(c) is the total number of training objects in class c, and

 m_i is the number of possible values of feature x_i .

Laplace smoothing: before

$$P(x_i = a \mid C = c) = \frac{n(a,c) + 1}{N(c) + m_i}$$
 for every value a of feature x_i

Laplace smoothing: after

$$P(x_i = a \mid C = c) = \frac{n(a, c) + 1}{N(c) + m_i}$$
 for every value a of feature x_i

$$P(a_i | C = c): \frac{1+1}{9+5}$$

$$\frac{3+1}{9+5}$$

$$\frac{0+1}{9+5}$$

$$\frac{2+1}{9+5}$$

$$\frac{3+1}{9+5}$$

$$N(c) = 9 + 5 = 14$$