

Geschwister-Scholl-Straße 24, 70174 Stuttgart Postfach 10 60 37, 70049 Stuttgart Telefon (0711) 6858-3386, 6858-3201 Telefax (0711) 6858-3297

Examination Spring 2012 March 9, 2012

Geomatics Methodology

Module 2

Module Section **Signal Processing**Prof. Fritsch

Student ID	
Student's Surname	Other Names
Date	Student's Signature
Examination result Grading in percentage , // // // // // // // // // // // // //	
Date	Examiner's Signature

Geschwister-Scholl-Straße 24, 70174 Stuttgart Postfach 10 60 37, 70049 Stuttgart Telefon (0711) 6858-3386, 6858-3201 Telefax (0711) 6858-3297

Examination Signal Processing - Spring 2012

Question 1: (25%)

Given are five deterministic signals $x_1(t)$, $x_2(t)$, $x_3(t)$, $x_4(t) = x_1(t) + x_2(t)$ and $x_5(t) = x_1(t) + x_2(t) + x_3(t)$ (figures below).

- (a) Determine the periods T_1 , T_2 , T_3 , the frequencies f_1 , f_2 , f_3 , and angular frequencies ω_1 , ω_2 , ω_3 of the signals x_1 , x_2 and x_3 .
- (b) Write down the general formula for the Fourier Series.
- (c) Is it possible to fully express the signal x_5 by the Fourier Series? If yes how many coefficients are required?
- (d) Now the Fourier Series of the signal x₄ is developed by parameter estimation using

Geschwister-Scholl-Straße 24, 70174 Stuttgart Postfach 10 60 37, 70049 Stuttgart Telefon (0711) 6858-3386, 6858-3201 Telefax (0711) 6858-3297

the Gauss-Markov model.

- a. Write down the general formulation of the Gauss-Markov model, the observation equations and the normal equation system.
- b. Write down explicitly the design matrix A for K=2 and ω_0 = π .
- c. How many samples/observations are required to solve the system? Name two criteria for choosing the samples to derive A'A possessing band structure.
- d. Write down the coefficients A_0 , A_k and B_k for k=1,2.

Question 2: (25%)

Given is the rectangular function

$$x(t) = \begin{cases} 1 & for \quad t \in [-0.5, 0.5] \\ 0 & otherwise \end{cases}.$$

- (a) Write down the equations for the continuous Fourier transformation (FT) and the inverse Fourier transformation (IFT).
- (b) Calculate the Fourier transformation of x(t). What is the name of this function? Make a sketch of the function x(t).
- (c) As learned in the lecture the Fourier transform of the triangular function

$$y(t) = 1 - |t|$$

is defined by

$$Y(j\omega) = \frac{4}{\omega^2} \sin^2 \frac{\omega}{2}$$

Show that the result of the convolution x(t) * x(t) is given by y(t).

Question 3: (15%)

Random signal processing needs methods and algorithms of statistical inference. Let be given a $n \times 1$ random vector y represented by

$$y = Bx + s$$

Where **B** is a $n \times u$ matrix of fixed coefficients, **x** a $u \times 1$ random vector with dispersion matrix D(x) and **s** is a $n \times 1$ vector of constants. Derive the dispersion matrix D(y) simply by using E and D operators (E Expectation, D Dispersion).

Geschwister-Scholl-Straße 24, 70174 Stuttgart Postfach 10 60 37, 70049 Stuttgart Telefon (0711) 6858-3386, 6858-3201 Telefax (0711) 6858-3297

Question 4: (35%)

Let be given a discrete random signal

$$x(m) = y(m) + r(m) \quad \forall m = 0,1,2$$

with y(m) as true/unknown signal and r(m) as observation noise. Apply a Wiener Filter to derive an estimation $\hat{y}(m)$.

- (a) Write down the objective function of the Wiener filter.
- (b) Derive the filter equation in the time/signal domain.
- (c) Derive the filter equation in the frequency/Fourier domain
- (d) Sketch a typical frequency response of a Wiener filter. What about an interpretation reflecting pass- and stop bands, if any?

Exercise 1 (7 Pis) a) 1 = 2 1 = 1 1 = 1W = 2Tt T2 = 1 f1 = 1 (1 PDS) w = 0 T3= 00 fx=0 b) x(+) = Ao + 2 Ap cos pwo E + Bp Siz wo Et (PLA) c) No, not periodic april 1) lte=Ax 1 P2 F) 2 = (ATPA)-1 ATPR Sin Tito coo ZTI to sinz Tito cas IT to 0.5 Sin The cos 21T to sin 21T to 0.3 11 000 smilte costlite sinellite 8.5 cos 11 tz SINITES COSSITES GOUSTIES cos 17 Ez 6.5 scullty cosetter singlify 1 6.5 CO5 17 Eu N3 N+ NS (XBQ X) St last 5 samples (PRB) es equidistant sampling Lo neglect Sample at 4) B1 = 1 A2 = 1 ROF O (19P)

(249 F) Exercise 2 a) $\chi(j\omega)$: $\int_{-\infty}^{\infty} \chi(1) e^{-j\omega t} dt$ x(t) = / X(jw) · ejwt dw (ESPS) b) x (jw) =) 2-1wt at - 1 (2-jwt)0.5 -1/ (2-1w0.5 - 2·1w0.5) $= -1/\omega \left(\cos 0.5 \omega + j \sin 0.5 \omega \right) - \left(\cos 0.5 \omega + j \sin 0.5 \omega \right)$ $= \left(\cos 0.5 \omega + j \sin 0.5 \omega \right)$ $= \left(\cos 0.5 \omega + j \sin 0.5 \omega \right)$ $= \left(\cos 0.5 \omega + j \sin 0.5 \omega \right)$ 2 Ph) hame "sinc" + sketch (1 PB) (w) X · (wi) X = E(4) x x (+) x & T · (5 W. SNZ WZ = 4(jw) V bpb As staled F & y(iw)3 = 11-E) (1 PEt)

Frencise 3

usmy & = [x] y = Bx+2

 $D(y) = E \{ (y - E(y)) (y - E(y))^{\frac{1}{2}} \}$ $= E \{ (B \times - S - B + S - S) (B \times + S - S) (B$

B D(x) BT

Calculation 3 Pts

Resoult 1 PD)

· · txercice 4 (3 PG) Objectie ferton a) $\mathcal{E} = \mathbb{E} \left[\left(\varepsilon \left(\omega \right) - \mathbb{E} \left[\varepsilon \left(\omega \right) \right] \right]^2 \right] = uin (183)$ p) 5 = E I (2/m) - 5 v(5) × (m-6)] = mir Orthogonality pricipee 1 1 PE E[[y(m)- & h(b) x(m-P)] * (m-e)] = 0 Ely(m) ~ (m-e)) = & h(p) . E[~ (m-b) x(m-e)) Ryx = F[y(m) + (m-l)] Rxx = F[x(m-l) + (m-l)]=> Ryx (e) = & h(e) Rxx (e-e) x Ph.+) (3 Ph.+) WSING Ry x (2) = Ryy (2)

Rxx (2) = Ryy (2) + Prr (2)

1884 _ c) and the Fourer transform: 7 3 Ry 3 = Sy (1w) 7 3 Rx 3 = Sx (1w) (APR4) Pgx (e) = h(l) * Pxx (e) Syg (jw) + Sn (jw) $H(j\omega) = \frac{3y \times (j\omega)}{S \times (j\omega)} =$