Total	l No.	of Questions :4] SEAT No. :
P4		FE/Insem./APR-4 [Total No. of Pages : 2
		F.E (Semester - II)
		103004 : BASIC ELECTRICAL ENGINEERING
		(2019 Pattern)
		(2019 Fattern)
Time	: 1 I	Hour] [Max. Marks : 30
Instr	uctio	ns to the candidates:
	<i>1</i>) .	Answer Q1 or Q2, Q3 or Q4.
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.
		Figure to right indicate full marks.
		Use of Non-Programmable Scientific Calculators is allowed.
	<i>5</i>) .	Assume Suitable Data if necessary.
		6.
01)	a)	Define the terms
<i>Q1</i>)	a)	Define the terms:
		i) Reluctance ii) Magnetic Flux Density and iii) Mutual inductance[3]
	b)	Compare Electric circuit and Magnetic circuit, clearing stating similar
	<i>-</i>	and dissimilar points. [6]
	c)	Iron ring of mean diameter 25 cm & relative permeability of 1000 is
		uniformly wound with 500 turns. Find current required to produce a
		flux density of 1 Tesla in the ring. If an air gap of 1 mm is cut in the ring,
		calculate new value of current to maintain the same flux density in the
		ring.
		OR
		OR (S)
<i>Q</i> 2)	a)	Compare series & parallel magnetic circuits. [3]
	1 \	
	b)	Derive the expression for energy stored in an inductor. [6]
	c)	Two coils A & B have self inductances of 120 µH and 300 µH
	c)	
		respectively. A current of 2 Amp in coil A, produces flux linkage of 200

μWb - turns in coil B. Calculate -

Mutual inductance

i)

iii) Average emf induced in coil B, when the current in coil A is switched off in 0.05 sec. [6]

P.T.O.

ii) Coefficient of coupling k &

Q 3)	a)	Obtain the expression for capacitance of parallel plate capacitor.	[3]
	b)	Derive the expression for rms value of a sinusoidal alternating currinterms of its peak value.	rent [6]
	c)	Three capacitors 2 μ F, 4 μ F and 6 μ F, are connected in series across expanding the capacitant of the capacitant capacitance and voltage across expanding.	each
		OR	[6]
Q4)	a)	An alternating voltage is given is by v=141.4 sin 377 t. Find its	
		i) RMS value ii) average value iii) frequency	[3]
	b)	Derive the expression for average value of a sinusoidal alternating cur in terms of its peak value. Also write the formula for	rent
		i) Form Factor and ii) Amplitude Factor	[6]
	c) (The rms value of 50 Hz sinusoidal alternating current is 20A. At t=0 value becomes 10A. Write down the equation for current. Also find magnitude of current at t=6 ms.	the [6]
FE/	Inser	m4	