1. Q — Determine the explicit formula for t_n , the fewest moves in which you can solve the problem of **Towers of Hanoi**.

A — Let p_1, p_2, p_3 be the three pegs and t_n be the number of minimum moves required to move n disks (d_1, d_2, \ldots, d_n) from peg p_1 to p_3 , using p_2 as an intermediary.

To accomplish this, we first move n-1 disks from p1 to p_2 , using p_3 as an intermediary $(t_{n-1} \text{ moves})$; move the largest disk (d_n) from p_1 to p_3 (1 move); and finally move the n-1 disks from p_2 to p_3 , using p_1 as an intermediary $(t_{n-1} \text{ moves})$. Hence we see that $t_n = 2t_{n-1} + 1, t_1 = 1$. On simplifying:

$$t_n - 2t_{n-1} = 1 (1)$$

This is a non-homogeneous equation which can be written as an advancement operator equation (A-2)f=1, f(1)=1. For the homogeneous part (A-2)f=0 or Af=2f, the solution would be a function whose terms double with each progression, we can say that $f_1(n)=c_12^n$ is a solution.

For the non-homogeneous part let c_2 be a particular solution to the equation. On trying it out in the equation, $c_2 - 2c_2 = 1$ we get $c_2 = -1$. Therefore the solution to the original equation is: $t_n = c_1 2^n - 1$. However using the initial condition, $t_1 = 1$, we have $2c_1 - 1 = 1$ or $c_1 = 1$.

Hence the explicit formula that we desire is $t_n = 2^n - 1$