Math 3B: Lecture 3

Noah White

September 28, 2016

Last time, we spoke about

• Graphing using calculus

- Graphing using calculus
- Horizontal asymptotes

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes
- Role of the first/second derivative

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes
- Role of the first/second derivative

Last time, we spoke about

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes
- Role of the first/second derivative

Note: The quiz will start at the beginning of the discussion section next time.

Example time

... On the board.

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$

- \bullet An asymptote is a straight line which the function approaches as $x\to\pm\infty$
- If a function has a slanted asymptote its gradient must approach a constant

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

$$\lim_{x\to\pm\infty}f'(x)=m$$

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

$$\lim_{x\to\pm\infty}f'(x)=m$$

• We then know the function has a slanted asymptote y = mx + b.

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

$$\lim_{x\to\pm\infty}f'(x)=m$$

- We then know the function has a slanted asymptote y = mx + b.
- To find *b*:

$$b = \lim_{x \to \pm \infty} (f(x) - mx)$$

Example time

... On the board.

A function is three pieces of information

• A domain, $D \subset \mathbb{R}$

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

Example

The functions

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

Example

The functions

• $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule f: D → R that assigns to every element of D an element of R.

Example

The functions

- $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$
- $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}; x \mapsto x^2$

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

Example

The functions

- $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$
- $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}; x \mapsto x^2$
- $f: \mathbb{R} \longrightarrow \mathbb{R}_{>0}; x \mapsto x^2$

Global Maximums and minimums

Definition (Global maximum)

A function $f:D\longrightarrow R$ has a global maximum at a if

$$f(x) \le f(a)$$
 for all $x \in D$

Global Maximums and minimums

Definition (Global maximum)

A function $f: D \longrightarrow R$ has a global maximum at a if

$$f(x) \le f(a)$$
 for all $x \in D$

Definition (Global minimum)

A function $f: D \longrightarrow R$ has a global minimum at a if

$$f(x) \ge f(a)$$
 for all $x \in D$

Example of a global minimum

 $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$ has a min at x = 0

Example of a global maximum

$$f:(-\infty,0]\longrightarrow \mathbb{R}; f(x)=x^3$$
 has a max at $x=0$

Local Maximums and minimums

Definition (local maximum)

A function $f: D \longrightarrow R$ has a local maximum at a if

$$f(x) \le f(a)$$
 for all x near a

Local Maximums and minimums

Definition (local maximum)

A function $f:D\longrightarrow R$ has a local maximum at a if

$$f(x) \le f(a)$$
 for all x near a

Definition (local minimum)

A function $f: D \longrightarrow R$ has a local minimum at a if

$$f(x) \ge f(a)$$
 for all x near a

Example of a local minimum

 $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$ has a min at x = 0

Example of a local maximum

$$f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^3 - 4x^2 - 3x + 13$$
 has a local max at $x = -\frac{1}{3}$

Example of a local maximum

$$f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^3 - 4x^2 - 3x + 13$$
 has a local max at $x = -\frac{1}{3}$

Critical point

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Critical point

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Examples

Critical point

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Examples

• $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)

Critical point

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

- $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)
- $f(x) = \sin x$ has a critical point at $x = \frac{\pi}{2}$ (since $f'(x) = \cos x$)

Critical point

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

- $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)
- $f(x) = \sin x$ has a critical point at $x = \frac{\pi}{2}$ (since $f'(x) = \cos x$)
- $f(x) = e^x$ doesn't have any critical points since $f'(x) = e^x$ can never be zero

Local maximums and minimums (extrema) occur at

Local maximums and minimums (extrema) occur at

critical points

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Note: All extrema are critical points, but not all critical points are extrema!

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Note: All extrema are critical points, but not all critical points are extrema!

$$f:(-\infty,1]\longrightarrow \mathbb{R}; f(x)=x^3$$
 has critical points at $x=0$ and 1

$$f'(x) = 3x^2$$
 so $f'(0) = 0$ and $f'(1)$ is undefined.

Suppose x = a is a critical point for the function f(x).

Suppose x = a is a critical point for the function f(x).

First derivative test (minimums)

• If f'(x) < 0 for x less than and close to a, and

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

Suppose x = a is a critical point for the function f(x).

Suppose x = a is a critical point for the function f(x).

First derivative test (maximums)

• If f'(x) > 0 for x less than and close to a, and

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.


```
Suppose x = a is a critical point of the function f(x)
Second derivative test
If
```

Suppose x = a is a critical point of the function f(x)Second derivative test If

• f''(a) > 0 then f has a minimum at a

Suppose x = a is a critical point of the function f(x)

Second derivative test

lf

- f''(a) > 0 then f has a minimum at a
- f''(a) < 0 then f has a maximum at a

Suppose x = a is a critical point of the function f(x)

Second derivative test

lf

- f''(a) > 0 then f has a minimum at a
- f''(a) < 0 then f has a maximum at a

Suppose x = a is a critical point of the function f(x)

Second derivative test

lf

- f''(a) > 0 then f has a minimum at a
- f''(a) < 0 then f has a maximum at a

Note: If f''(a) = 0 then we cannot conclude anything! E.g x^3 or x^4 .

$$f(x) = -x^3 + 3x^2 - 2$$
 (domain: \mathbb{R}).

$$f(x) = -x^3 + 3x^2 - 2$$
 (domain: \mathbb{R}).
$$f'(x) = -3x^2 + 6x = -3x(x-2)$$

$$f''(x) = -6x + 6$$

$$f(x) = -x^3 + 3x^2 - 2$$
 (domain: \mathbb{R}).
$$f'(x) = -3x^2 + 6x = -3x(x - 2)$$

$$f''(x) = -6x + 6$$

The critical points are

а	f"(a)
0	6
2	-6

$$f(x) = -x^3 + 3x^2 - 2$$
 (domain: \mathbb{R}).
$$f'(x) = -3x^2 + 6x = -3x(x - 2)$$

$$f''(x) = -6x + 6$$

The critical points are

• Local minimum at x = 0

$$f(x) = -x^3 + 3x^2 - 2$$
 (domain: \mathbb{R}).
$$f'(x) = -3x^2 + 6x = -3x(x-2)$$

$$f''(x) = -6x + 6$$

The critical points are

- Local minimum at x = 0
- Local maximum at x = 2

• Local minimum at x = 0

- Local minimum at x = 0
- Local maximum at x = 2

- Local minimum at x = 0
- Local maximum at x = 2

- Local minimum at x = 0
- Local maximum at x = 2

$$f(x) = e^{-8x^2}$$
 (domain: \mathbb{R}).

$$f(x)=e^{-8x^2}$$
 (domain: \mathbb{R}).
$$f'(x)=-16xe^{-8x^2}$$

$$f''(x)=16(16x^2-1)e^{-8x^2}$$

$$f(x)=e^{-8x^2}$$
 (domain: $\mathbb R).$
$$f'(x)=-16xe^{-8x^2}$$

$$f''(x)=16(16x^2-1)e^{-8x^2}$$

The critical points are

$$\frac{a \ f''(a)}{0 \ -16}$$

$$f(x)=e^{-8x^2}$$
 (domain: \mathbb{R}).
$$f'(x)=-16xe^{-8x^2}$$

$$f''(x)=16(16x^2-1)e^{-8x^2}$$

The critical points are

• Local maximum at x = 0

• Local and global maximum at x = 0

• Local and global maximum at x = 0

• Local and global maximum at x = 0

$$f(x) = \begin{cases} -x & \text{if } x < -1\\ 3x + 4 & \text{if } x \ge -1 \end{cases}$$
 (domain: [-5,2])

$$f(x) = \begin{cases} -x & \text{if } x < -1\\ 3x + 4 & \text{if } x \ge -1 \end{cases}$$
 (domain: [-5,2])
$$f'(x) = \begin{cases} -1 & \text{if } x < -1\\ 3 & \text{if } x > -1\\ \text{undef.} & \text{if } x = -5, -1, 2 \end{cases}$$

The critical points are

а	f(a)
-5	5
-1	1
2	10

$$f(x) = \begin{cases} -x & \text{if } x < -1\\ 3x + 4 & \text{if } x \ge -1 \end{cases}$$
 (domain: [-5,2])
$$f'(x) = \begin{cases} -1 & \text{if } x < -1\\ 3 & \text{if } x > -1\\ \text{undef.} & \text{if } x = -5, -1, 2 \end{cases}$$

The critical points are

а	f(a)
-5	5
-1	1
2	10

• Local minimum at x = -1

$$f(x) = \begin{cases} -x & \text{if } x < -1\\ 3x + 4 & \text{if } x \ge -1 \end{cases}$$
 (domain: [-5,2])
$$f'(x) = \begin{cases} -1 & \text{if } x < -1\\ 3 & \text{if } x > -1\\ \text{undef.} & \text{if } x = -5, -1, 2 \end{cases}$$

The critical points are

f(a)
5
1
10

- Local minimum at x = -1
- Local maximums at x = -5, 2

• Local minimum at x = -1

- Local minimum at x = -1
- Local maximums at x = -5, 2

- Local minimum at x = -1
- Local maximums at x = -5, 2

- Local minimum at x = -1
- Local maximums at x = -5, 2

Question

Suppose you have M feet of fencing, what is the largest regangular area you can enclose?

Question

Suppose you have M feet of fencing, what is the largest regangular area you can enclose?

Solution

Suppose we create a rectangle with length \boldsymbol{x} feet and width \boldsymbol{y} feet. They must satisfy

$$2x + 2y = M$$
 i.e $y = \frac{1}{2}(M - 2x)$

and the area is given by A(x, y) = xy.

Question

Suppose you have M feet of fencing, what is the largest regangular area you can enclose?

Solution

Suppose we create a rectangle with length \boldsymbol{x} feet and width \boldsymbol{y} feet. They must satisfy

$$2x + 2y = M$$
 i.e $y = \frac{1}{2}(M - 2x)$

and the area is given by A(x, y) = xy.

Question

Suppose you have M feet of fencing, what is the largest regangular area you can enclose?

Solution

Suppose we create a rectangle with length \boldsymbol{x} feet and width \boldsymbol{y} feet. They must satisfy

$$2x + 2y = M$$
 i.e $y = \frac{1}{2}(M - 2x)$

and the area is given by A(x, y) = xy. So

$$A(x) = x\frac{1}{2}(M - 2x) = \frac{M}{2}x - x^2$$

Question

Suppose you have M feet of fencing, what is the largest regangular area you can enclose?

Solution

Suppose we create a rectangle with length x feet and width y feet. They must satisfy

$$2x + 2y = M$$
 i.e $y = \frac{1}{2}(M - 2x)$

and the area is given by A(x, y) = xy. So

$$A(x) = x\frac{1}{2}(M - 2x) = \frac{M}{2}x - x^2$$

We would like to find the value of x which maximises this function!

The derivative:

$$A'(x) = \frac{M}{2} - 2x$$

The derivative:

$$A'(x) = \frac{M}{2} - 2x$$

A critical point at $x = \frac{M}{4}$.

The derivative:

$$A'(x) = \frac{M}{2} - 2x$$

A critical point at $x = \frac{M}{4}$.

The second derivative A''(x) = -2 is always negative so this must be a maximum! Thus the dimensions for the rectangle with the largest area are

$$x = y = \frac{M}{4}$$

Question

Question

Question

Question

Question

Question

$$C(x) = 2x + 100\sqrt{49^2 + (23 - x)^2}$$
$$C'(x) = 2 + \frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$

$$C(x) = 2x + 100\sqrt{49^2 + (23 - x)^2}$$
$$C'(x) = 2 + \frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$

$$2 = -\frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$

$$C(x) = 2x + 100\sqrt{49^2 + (23 - x)^2}$$
$$C'(x) = 2 + \frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$

$$2 = -\frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$
$$2\sqrt{x^2 - 46x + 2378} = 460 - 20x$$

$$C(x) = 2x + 100\sqrt{49^2 + (23 - x)^2}$$
$$C'(x) = 2 + \frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$

$$2 = -\frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$
$$2\sqrt{x^2 - 46x + 2378} = 460 - 20x$$
$$4x^2 - 184x + 9512 = 211600 - 18400x + 400x^2$$

$$C(x) = 2x + 100\sqrt{49^2 + (23 - x)^2}$$
$$C'(x) = 2 + \frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$

$$2 = -\frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$
$$2\sqrt{x^2 - 46x + 2378} = 460 - 20x$$
$$4x^2 - 184x + 9512 = 211600 - 18400x + 400x^2$$
$$0 = 396x^2 - 18216x + 202088$$

$$C(x) = 2x + 100\sqrt{49^2 + (23 - x)^2}$$
$$C'(x) = 2 + \frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$

Setting the derivative equal to zero we obtain

$$2 = -\frac{20(x - 23)}{\sqrt{x^2 - 46x + 2378}}$$
$$2\sqrt{x^2 - 46x + 2378} = 460 - 20x$$
$$4x^2 - 184x + 9512 = 211600 - 18400x + 400x^2$$
$$0 = 396x^2 - 18216x + 202088$$

So the solutions are

$$x = 23 - \frac{43}{3\sqrt{11}}$$
 and $23 + \frac{43}{3\sqrt{11}}$