How much for the 'Dank Nuggs'?

AJ Davis Project Luther

Problem

- Can we predict cannabis flower prices at dispensaries?
- Why relevant?
 - O Are dispensaries pricing their flower products optimally?

Approach

- O Data
- Supervised Machine Learning

Pipeline

- Scrape the data
- O Identify apriori model specifications
- Check specification scores for various models
- Fit to test data and check for overfitting

Feature Space

- THC Content
- Cross-section of dispensaries
- O Dispensary ratings
- Dispensary license type
- Strain name
- Strain type
- Rare Strains

Final Model Specifications

Specification 1

Price=THC%+Rating_D+License_D+
$$\sum_{r=1}^{R}$$
D+ $\sum_{t=1}^{L}$ D

Specification 2

$$\log(Price) = THC \% + Rating_D + License_D + \sum_{r=1}^{R} D + \sum_{t=1}^{L} D$$

Specification 3

Price=THC%+THC%²+Rating_D+License_D+
$$\sum_{r=1}^{R}$$
D+ $\sum_{t=1}^{R}$ D

Results

Model (Training)	Specification 1 Score (R2)	Specification 2 Score (R2)	Specification 3 Score (R2)
Linear Regression	0.10	0.13	0.22
Ridge Regression	0.09	-1.44	-8.51
Lasso Regression	0.05	0.00	-0.19
Robust Regression	-0.14	-1.34	-0.86
Epsilon Insensitive Regression	-1.18	-1.42	-2.13
CART	0.30	0.21	0.34
Extra Trees	0.25	0.14	0.21
Random Forest Regression	0.41	0.30	0.48
ADA Boosted Trees Regression	-0.08	02	0.16
Gradient Boosted Trees Regression	0.39	0.27	0.40

How well is the best model predicting?

Discussion and Next Steps

- Critical omitted features
 - O "Nose"
 - O Density
 - O CBD\$
 - Quantity
 - O Demand
- Better string processing for strain data
- Look at other dispensary products
- Hyperparameter tuning

