Public CCA-Security

Login Problem Revisited

The login problem

Suppose that a server and a client share a secret PIN, I, that was chosen at random $0 \le I \le 10^4$ (13 bits)

They also share a secret key k

Protocol:

the client sends encrypted I

the server decrypts and checks if the PIN is correct

if PIN is incorrect the server aborts the communication

- Public key crypto does not solve problems with this protocol
- Moreover, even digital signatures do not quite solve it, as they still require to remember private and public keys

CCA Security

- Let (K, E, D) be an asymmetric encryption scheme and (T, ε) a superpolynomial pair. Consider the following game:
 - (1) K generates a pair of keys (e, d)
 - (2) Eve gets input e
 - (2) Eve gets access to the black box $D_d(\cdot)$
 - (3) Eve chooses P_1 and P_2
 - (4) Alice chooses $i \in \{0,1\}$ at random and gives Eve $C = E_e(P_i)$
 - (5) Eve gets more access to the black box $D'_d(\cdot)$

$$D'_d(C') = \begin{cases} D_d(C'), & \text{if } C' \neq C \\ \bot, & \text{if } C' = C \end{cases}$$

(6) Eve outputs $j \in \{0,1\}$

CCA Security (cntd)

- Eve wins if j = i
- Scheme (K, E, D) is (T, ε) -CCA-secure if for any Eve of time complexity at most T $\Pr[\text{Eve wins}] < \frac{1}{2} + \varepsilon$
- Example:

'Pure' Rabin or RSA schemes are not CCA-secure

A CPA-Secure Scheme

- We will not be able to define a CCA-secure scheme in this course, although one exists (it uses zero-knowledge)
- Instead we define such a scheme in the random oracle model. That is we assume that we have access to a public truly random function
- In practice we then use a PRF instead of a random oracle. However, our usual proofs for PRFs do not work in this case

A CPA-Secure Scheme (cntd)

Scheme:

- Let $G: \{0,1\}^n \to \{0,1\}^n$ be a random oracle, and $\{f,f^{-1}\}$ be a collection of trapdoor permutations.
 - The public key is f, the private key is f^{-1}
- To encrypt $P \in \{0,1\}^n$ choose random $r \in \{0,1\}^n$ and compute f(r) and $G(r) \oplus P$
- To decrypt C, C' compute $r = f^{-1}(C)$ and let $P = G(r) \oplus C'$

Theorem

This scheme is CPA-secure.

A CPA-Secure Scheme: Proof

Proof

Note that Eve has access to $G(\cdot)$

Let Eve as a challenge get C^* , C'^* where $C^* = f(r^*)$ and $G'^* = G(r^*) \oplus P_i$

Claim.

The probability that Eve queries r^* to G is negligible Indeed, $G(r^*)$ is just a random string, and if Eve guesses r^* using $f(r^*)$ she can invert a trapdoor permutation

Thus, for Eve $G(r^*) \oplus P_i$ and $u \oplus P_i$, u random, are indistinguishable. Moreover $u \oplus P_i$ is uniform

Therefore $Pr[Eve wins] < \frac{1}{2} + \varepsilon$

A CCA-Secure Scheme

- Along with G we need another random oracle
- Scheme
 - Let $G: \{0,1\}^n \to \{0,1\}^n$ and $H: \{0,1\}^{2n} \to \{0,1\}^n$ be two random oracles, and $\{f,f^{-1}\}$ be a collection of trapdoor permutations.
 - The public key is f, the private key is f^{-1}
 - To encrypt $P \in \{0,1\}^n$ choose random $r \in \{0,1\}^n$ and compute $f(r), G(r) \oplus P$ and H(P,r)
 - To decrypt C, C', C'' compute $r = f^{-1}(C)$ and let $P = G(r) \oplus C'$. If H(P, r) = C'' return P, otherwise \bot

A CCA-Secure Scheme: Theorem

Theorem

The above scheme is CCA-secure.

Proof

Let Eve as a challenge get C^*, C'^*, C''^* , where $C^* = f(r^*)$ $C'^* = G(r^*) \oplus P_i, C''^* = H(P_i, r^*)$

We are going to show that Eve cannot get advantage of decryption queries. Therefore, the scheme is CCA-secure if it is CPA-secure, and that we already know.

Since H is truly random, no one can guess (with only negligible probability) two pairs P, r and P', r' such that H(P,r) = H(P',r'), but $P,r \neq P',r'$

A CCA-Secure Scheme: Theorem (cntd)

• At each step j of the attack, and every string $w \in \{0,1\}^n$ we define $H_i^{-1}(w)$ as follows:

if H has been queried before about P, r such that H(P,r) = w then set $H_j^{-1}(w) = P, r$ otherwise $H_j^{-1}(w) = \bot$

Now we try to simulate the decryption box:

when queried C, C', C'' if $H_j^{-1}(C'') = P, r$ (that determines C, C' uniquely) output P, otherwise output \bot

A CCA-Secure Scheme: Theorem (cntd)

Claim

Eve is unable to tell apart the real and the modified protocols

Indeed, to detect the difference Eve must come up with C, C', C'' such that

- $C'' \neq C''^*$ since if $H_i^{-1}(C'') = P^*, r^*$ then Eve either breaks H, or both protocols return \bot , or she asked the disallowed query C^*, C'^*, C''^*
- C'' was not returned as the answer by a previous query; thus Eve breaks H
- If P,r are the values determined by C,C' then H(P,r)=C''. As P,r have not been asked before, the probability of that is 2^{-n}