CC3

Documents, calculatrices et portables interdits. Les réponses doivent être accompagnées d'une justification.

Durée: 1h

Exercice 1. En utilisant des intégrations par parties, calculer les intégrales $I = \int_0^{\pi} x \cos x \, dx$ et $J = \int_0^{\pi} x^2 \sin x \, dx$.

Exercice 2. Calculer l'intégrale $\int_1^4 \ln(t) dt$.

Exercice 3. On considère l'équation différentielle linéaire du premier ordre

$$y' - 2ty = t^2 e^{t^2} \,. (1)$$

- a) Ecrire l'équation différentielle homogène associée à (1) et la résoudre.
- b) Déterminer une solution particulière de (1). En déduire l'ensemble des solutions de (1).

Exercice 4. 1) a) Résoudre l'équation différentielle

$$y'' - y' - 2y = 0. (2)$$

- b) Déterminer l'unique solution de (2) qui vérifie les conditions initiales $\begin{cases} y(0) = 1 \\ y'(0) = 1 \end{cases}$
- 2) On considère à présent l'équation différentielle

$$y'' - y' - 2y = (t+1)e^t. (3)$$

- a) On pose $y_0(t) = (at + b)e^t$, où a et b sont des constantes réelles. Calculer $y_0'(t)$ et $y_0''(t)$.
- b) Déterminer les réels a et b pour que y_0 soit une solution particulière de (3).
- c) Déduire des questions précédentes l'ensemble des solutions de (3).