КЛАСТЕРНЫЙ АНАЛИЗ

Задача 1

Дано:

Таблица 1

№ объекта (<i>i</i>)	1	2	3	4	5	6
X _i (1)	5	6	5	10	11	10
X _i (2)	10	12	13	9	9	7

а) Провести классификацию, используя обычное евклидово расстояние и метод «ближайшего соседа»

Согласно обычной евклидовой метрике расстояние между наблюдениями равно

$$d_{ij} = \sqrt{\sum_{k=1}^{m} (x_{ik} - x_{jk})^2}$$

По формуле находим расстояния между всеми шестью наблюдениями и строим матрицу расстояний

		1	2	3	4	5	6
	1	0	2,236068	3	5,09902	6,082763	5,830952
	2	2,236068	0	1,414214	5	5,830952	6,403124
R1=	3	3	1,414214	0	6,403124	7,211103	7,81025
	4	5,09902	5	6,403124	0	1	2
	5	6,082763	5,830952	7,211103	1	0	2,236068
	6	5,830952	6,403124	7,81025	2	2,236068	0

Из матрицы расстояний следует, что объекты 4 и 5 наиболее близки $\rho_{4,5}$ =1 и поэтому объединим их в один кластер. После объединения объектов имеем пять кластеров: S_1 , S_2 , S_3 , $S_{(4.5)}$, S_6 .

Расстояние между кластерами будем находить по принципу "ближайшего соседа", воспользовавшись формулой пересчета. Так расстояние между кластером S_1 и кластером $S_{(4,5)}$ будет рассчитываться по формуле:

$$\rho_{1,(4,5)} = \rho(S_1, S_{(4,5)}) = \frac{1}{2}\rho_{1,4} + \frac{1}{2}\rho_{1,5} - \frac{1}{2}\left|\rho_{1,4} - \rho_{1,5}\right|$$

Проводя расчеты, получим новую матрицу расстояний.

		1	2	3	4,5	6
	1	0	2,236068	3	5,09902	5,830952
	2	2,236068	0	1,414214	5	6,403124
R2=	3	3	1,414214	0	6,403124	7,81025
	4,5	5,09902	5	6,403124	0	2
	6	5,830952	6,403124	7,81025	2	0

Объединим наблюдения 2 и 3, имеющие наименьшее расстояние $\rho_{2,3}$ =1,41. После объединения имеем три кластера S_1 , $S_{(2,3)}$, $S_{(4,5)}$ и $S_{6.}$

Вновь строим матрицу расстояний. Для этого необходимо рассчитать расстояние до кластера $S_{(2,3)}$. Воспользуемся матрицей расстояний R_2 . Проведя аналогичные расчеты, получим матрицу расстояний

		1	2,3	4,5	6
	1	0	2,236068	5,09902	5,830952
R3=	2,3	2,236068	0	5	6,403124
	4,5	5,09902	5	0	2
	6	5,830952	6,403124	2	0

Объединим кластеры $S_{(4,5)}$ и $S_{(6)}$, расстояние между которыми, согласно матрице \mathbf{R}_3 , минимально $\rho_{(4,5),6}$ =2. В результате этого получим три кластера: $S_{1,5}$ $S_{(2,3)}$ и $S_{(4,5,6)}$. Матрица расстояний будет иметь вид:

		1	2,3	4,5,6
	1	0	2,236068	5,09902
R4=	2,3	2,236068	0	5
	4,5,6	5,09902	5	0

Объединим наблюдения 1 и (2,3), имеющие наименьшее расстояние $\rho_{1,(2,3)}$ =2,23. После объединения имеем три кластера $S_{(1,2,3)}$, $S_{(4,5,6)}$. Получим последнюю

	1,2,3	4,5,6
1,2,3	0	5
4,5,6	5	0

R5=

Из матрицы \mathbf{R}_{5} следует, что на расстоянии $\rho_{(1,2,3),(4,5,6)}$ =5 все шесть наблюдений объединяются в один кластер. На основании результатов кластерного анализа, можно сделать вывод, что наилучшим является разбиение шести объектов на два кластера: $S_{(1,2,3)}$ и $S_{(4,5,6)}$, когда пороговое расстояние находится в интервале 2,23< ρ_{nop} <5.

б) Провести классификацию, используя обычное евклидово расстояние и метод «дальнего соседа»

Согласно обычной евклидовой метрике расстояние между наблюдениями равно

$$d_{ij} = \sqrt{\sum_{k=1}^{m} (x_{ik} - x_{jk})^2}$$

По формуле находим расстояния между всеми шестью наблюдениями и строим матрицу расстояний

		1	2	3	4	5	6
	1	0	2,236068	3	5,09902	6,082763	5,830952
	2	2,236068	0	1,414214	5	5,830952	6,403124
R1=	3	3	1,414214	0	6,403124	7,211103	7,81025
	4	5,09902	5	6,403124	0	1	2
	5	6,082763	5,830952	7,211103	1	0	2,236068
	6	5,830952	6,403124	7,81025	2	2,236068	0

Из матрицы расстояний следует, что объекты 4 и 5 наиболее близки $\rho_{4.5}$ =1 и

поэтому объединим их в один кластер. После объединения объектов имеем пять кластеров: S_1 , S_2 , S_3 , $S_{(4,5)}$, S_6 .

Расстояние между кластерами будем находить по принципу "дальнего соседа", воспользовавшись формулой пересчета. Так расстояние между кластером S_1 и кластером $S_{(4.5)}$ будет рассчитываться по формуле:

$$d_{1,(4,5)} = d(S_1, S_{(4,5)}) = \frac{1}{2}d_{1,4} + \frac{1}{2}d_{1,5} + \frac{1}{2}\left|d_{1,4} - d_{1,5}\right|$$

Проводя расчеты, получим новую матрицу расстояний.

		1	2	3	4,5	6
	1	0	2,236068	3	6,082763	5,830952
	2	2,236068	0	1,414214	5,830952	6,403124
R2=	3	3	1,414214	0	7,211103	7,81025
	4,5	6,082763	5,830952	7,211103	0	2,236068
	6	5,830952	6,403124	7,81025	2,236068	0

Объединим наблюдения 2 и 3, имеющие наименьшее расстояние $\rho_{2,3}$ =1,41. После объединения имеем три кластера S_1 , $S_{(2,3)}$, $S_{(4,5)}$ и $S_{6.}$

Вновь строим матрицу расстояний. Для этого необходимо рассчитать расстояние до кластера $S_{(2,3)}$. Воспользуемся матрицей расстояний R_2 . Проведя аналогичные расчеты, получим матрицу расстояний

		1	2,3	4,5	6
	1	0	3	6,082763	5,830952
R3=	2,3	3	0	7,211103	6,403124
	4,5	6,082763	7,211103	0	2,236068
	6	5,830952	6,403124	2,236068	0

Объединим кластеры $S_{(4,5)}$ и $S_{(6)}$, расстояние между которыми, согласно матрице \mathbf{R}_3 , минимально $\rho_{(4,5),6}$ =2,23. В результате этого получим три кластера: $S_{1,}$ $S_{(2,3)}$ и $S_{(4,5,6)}$. Матрица расстояний будет иметь вид:

	1	2,3	4,5,6
1	0	3	6,082763
2,3	3	0	7,211103

4,5,6 6,082763	7,211103	0
-----------------------	----------	---

Объединим наблюдения 1 и (2,3), имеющие наименьшее расстояние $\rho_{1,(2,3)}$ =3. После объединения имеем три кластера $S_{(1,2,3)}$, $S_{(4,5,6)}$. Получим последнюю матрицу расстояний R5.

	1,2,3	4,5,6
1,2,3	0	7,211103
4,5,6	7,211103	0

расстояние находится в интервале $3 < \rho_{nop} < 7,21$.

Из матрицы \mathbf{R}_5 следует, что на расстоянии $\rho_{(1,2,3),(4,5,6)}$ =7,21 все шесть наблюдений объединяются в один кластер. На основании результатов кластерного анализа, можно сделать вывод, что наилучшим является

в) Провести классификацию, используя обычное евклидово расстояние и метод «средней связи»

Согласно обычной евклидовой метрике расстояние между наблюдениями равно

разбиение шести объектов на два кластера: $S_{(1,2,3)}$ и $S_{(4,5,6)}$, когда пороговое

$$d_{ij} = \sqrt{\sum_{k=1}^{m} (x_{ik} - x_{jk})^2}$$

По формуле находим расстояния между всеми шестью наблюдениями и строим матрицу расстояний

		1	2	3	4	5	6
	1	0	2,236068	3	5,09902	6,082763	5,830952
	2	2,236068	0	1,414214	5	5,830952	6,403124
R1=	3	3	1,414214	0	6,403124	7,211103	7,81025
	4	5,09902	5	6,403124	0	1	2
	5	6,082763	5,830952	7,211103	1	0	2,236068
	6	5,830952	6,403124	7,81025	2	2,236068	0

R5=

поэтому объединим их в один кластер. После объединения объектов имеем пять кластеров: S_1 , S_2 , S_3 , $S_{(4.5)}$, S_6 .

Расстояние между кластерами будем находить по принципу "дальнего соседа", воспользовавшись формулой пересчета. Так расстояние между кластером S_1 и кластером $S_{(4,5)}$ будет рассчитываться по формуле:

$$\rho_{(4,5),1} = \frac{1}{2} (\rho_{4,1} + \rho_{5,1})$$

Проводя расчеты, получим новую матрицу расстояний.

		1	2	3	4,5	6
	1	0	2,236068	3	5,590891	5,830952
	2	2,236068	0	1,414214	5,415476	6,403124
R2=	3	3	1,414214	0	6,807113	7,81025
	4,5	5,590891	5,415476	6,807113	0	2,118034
	6	5,830952	6,403124	7,81025	2,118034	0

Объединим наблюдения 2 и 3, имеющие наименьшее расстояние $\rho_{2,3}$ =1,41. После объединения имеем три кластера S_1 , $S_{(2,3)}$, $S_{(4,5)}$ и S_6 .

Вновь строим матрицу расстояний. Для этого необходимо рассчитать расстояние до кластера $S_{(2,3)}$. Воспользуемся матрицей расстояний R_2 . Проведя аналогичные расчеты, получим матрицу расстояний

		1	2,3	4,5	6
	1	0	2,61803	5,590891	5,830952
R3=	2,3	2,61803	0	6,11129	7,10669
	4,5	6,082763	6,11129	0	2,118034
	6	5,830952	7,10669	2,118034	0

Объединим кластеры $S_{(4,5)}$ и $S_{(6)}$, расстояние между которыми, согласно матрице \mathbf{R}_3 , минимально $\rho_{(4,5),6}$ =2,11. В результате этого получим три кластера: $S_{1,}$ $S_{(2,3)}$ и $S_{(4,5,6)}$. Матрица расстояний будет иметь вид:

		1	2,3	4,5,6
	1	0	2,61803	5,71092
R4=	2,3	2,61803	0	6,60899

4,5,6 5,71092	6,60899	0
----------------------	---------	---

Объединим наблюдения 1 и (2,3), имеющие наименьшее расстояние $\rho_{1,(2,3)}$ =2,61. После объединения имеем три кластера $S_{(1,2,3)}$, $S_{(4,5,6)}$. Получим последнюю матрицу расстояний R5.

	1,2,3	4,5,6
1,2,3	0	6,15996
4,5,6	6,15996	0

R5=

Из матрицы \mathbf{R}_5 следует, что на расстоянии $\rho_{(1,2,3),(4,5,6)}$ = 6,16 все шесть наблюдений объединяются в один кластер. На основании результатов кластерного анализа, можно сделать вывод, что наилучшим является разбиение шести объектов на два кластера: $S_{(1,2,3)}$ и $S_{(4,5,6)}$, когда пороговое расстояние находится в интервале 2,61< $\rho_{\text{пор}}$ <6,16.

ВЫВОД: Таким образом, используя три алгоритма кластерного анализа, получился один вариант разбиения шести семей на две статистически однородные группы. Следовательно разбиении $S_{(1,2,3)}$ и $S_{(4,5,6)}$ является наиболее устойчивым.

Задача 2

Дано:

№ хозяйства 2 1 3 4 (*i*) 7 1 1 9 $X_i(1)$ 5 9 3 7 $X_i(2)$

Таблица 2

w1 = 0.1, w2 = 0.9

Классификация на основе "взвешенного евклидова расстояния" и принципа "ближайшего соседа".

Взвешенное евклидово расстояние между *i*-м и *l*-м наблюдениями определяется по формуле:

$$\rho_{\text{BE}}(x_i, x_i) = \sqrt{\sum_{j=1}^{p} (x_i^{(j)} - x_i^{(j)})^2 \cdot \omega_j}.$$

Находим все остальные расстояния и строим матрицу расстояний:

	1	0	4,242641	1,897367	3,162278
	2	4,242641	0	6	2
R1=	3	1,897367	6	0	4,560702
	4	3,162278	2	4,560702	0

Объединив S_1 и S_3 , имеющих минимальное расстояние $\rho_{1,3}$ =1,89 в кластер $S_{1,3}$, и применив принцип "ближайшего соседа" (формула та же, что и в задаче 1.б), получим матрицу расстояний:

		1,3	2	4
	1,3	0	6	4,560702
R2=	2	6	0	2
	4	4,560702	2	0

Образовав на расстоянии $\rho_{2,4}$ =2 кластер $S_{2,4}$ вновь построим матрицу расстояний:

		1,3	2,4
R3=	1,3	0	6
	2,4	6	0

Следовательно на расстояние $\rho_{(1,3),(2,4)}$ =6 объединяются кластеры $S_{(1,3)}$ и $S_{(2,4)}$ и все четыре объекта образуют один кластер.

Результаты классификации представлены графически на рис.1

Рис.1 Дендрограмма (взвешенное евклидово расстояние, принцип ближайшего соседа)

Из матрицы ${\bf R}_3$ следует, что на расстоянии ${\rho}_{(1,3),(2,4,)}$ = 6 все четыре наблюдения объединяются в один кластер. На основании результатов кластерного анализа, можно сделать вывод, что наилучшим является разбиение шести объектов на два кластера: ${\bf S}_{(1,3)}$ и ${\bf S}_{(2,4)}$, когда пороговое расстояние находится в интервале $2<\rho_{\text{nop}}<6$.