MATEMÁTICA DISCRETA

Tiago Rocha Garcia

tiago.rgarcia@ua.pt https://tiagorg.pt

2023/2024

Universidade de Aveiro

Índice

Capítulo 1	Lógica de Primeira Ordem e Demonstração Automática	2
Tópico 1	Interpretação	3
	1.1 Proposição	3
	1.2 Conectivos Lógicos	3
	1.3 Validade de Fórmulas	5
	1.4 Fórmulas Equivalentes	6
	1.5 Formas Normais	6
Capítulo 2	Princípios de Enumeração Combinatória	8
Capítulo 3	Agrupamentos e Identidades Combinatórias	9
Capítulo 4	Recorrência e Funções Geradoras	10
Capítulo 5	Elementos de Teoria dos Grafos	11

Capítulo 1

Lógica de Primeira Ordem e Demonstração Automática

Tópico 1

Interpretação

1.1 Proposição

1.1.1 Definição

São proposições as afirmações que podem ser classificadas como verdadeiras ou falsas mas não ambas.

1.1.2 Exemplos

- 1. O sol é uma estrela.
- 2. Deus existe.
- 3. D. Pedro I foi o primeiro imperador do Brasil.

Afirmações com o seu valor lógico:

- 1. Para todo o $n \in N$, 2n é múltiplo de $2. \to \mathsf{Proposiç\~{a}o}$ Verdadeira.
- 2. Para todo o $n \in Z$, $2n \ge n$. \to Afirmação **Ambígua**: **Verdadeira** para n > 0 e **Falsa** para $n \le 0$.
- 3. Para todo o $n \in N$, $3n \ge 4n$. \rightarrow Proposição **False**.

1.1.3 Tipos de Proposições

- Atómica: Não pode ser decomposta em proposições mais simples.
- Composta: É formada a partir da combinação de proposições atómicas usando conectivos lógicos.

1.2 Conectivos Lógicos

1.2.1 Negação

Símbolo

O símbolo da negação é ¬.

Tabela de Verdade

p	$\neg p$
1	0
0	1

1.2.2 Conjunção

Símbolo

O símbolo da conjunção é A.

Tabela de Verdade

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

1.2.3 Disjunção

Símbolo

O símbolo da conjunção é ∨.

Tabela de Verdade

p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

1.2.4 Implicação

Símbolo

O símbolo da conjunção é \rightarrow .

Tabela de Verdade

p	q	$p \rightarrow q$
1	1	1
1	0	1
0	1	0
0	0	1

1.2.5 Equivalência

Símbolo

O símbolo da conjunção é \leftrightarrow .

Tabela de Verdade

p	q	$p \leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

1.2.6 Exemplos

Exemplo 1

Ou o José foi ao supermercado ou está sem ovos em casa.

- ullet ϕ = "O José foi ao supermercado"
- $\psi =$ "O José está sem ovos em casa"

Resultado: $\phi \lor \psi$

Exemplo 2

A Beatriz decidiu emigrar e não tenciona regressar.

• $\phi =$ "A Beatriz decidiu emigrar"

• $\psi =$ "A Beatriz não tenciona regressar"

Resultado: $\phi \wedge \psi$

Exemplo 3

Ou o meu pai está em casa e a minha mãe não ou o meu pai não está em casa mas a minha mão está.

• $\phi =$ "O meu pai está em casa"

• $\psi =$ "A minha mão não está em casa"

Resultado: $(\psi \land \neg \phi) \lor (\neg \psi \land \phi)$

Exemplo 4

Ficarei milionário se ganhar o euromilhões

• $\phi =$ "Ficar milionário"

• $\psi = \text{"Ganhar o euromilhões"}$

Resultado: $\psi \rightarrow \phi$

1.3 Validade de Fórmulas

1.3.1 Tautologia

Definição

Uma fórmula diz-se **Tautologia** quando tem valor lógico ${\bf 1}$ para todas as suas interpretações. Representa-se com \top .

Exemplos

- 1. $\neg \psi \lor \psi$
- 2. $(\psi \wedge \phi) \rightarrow \psi$

p	q	$p \wedge q$	$(p \land q) \to q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

1.3.2 Consistente

Definição

Uma fórmula diz-se Consistente quando tem valor lógico 1 para alguma das suas interpretações.

1.3.3 Inconsistente ou Contradição

Definição

Uma fórmula diz-se **Inconsistente** ou **Contradição** quando tem valor lógico $\bf 0$ para todas as suas interpretações. Representa-se com \perp .

Exemplo

1. $\neg \psi \wedge \psi$

1.4 Fórmulas Equivalentes

1.4.1 Definição

As fórmulas ϕ e ψ dizem-se equivalentes quando a fórmula $\phi\leftrightarrow\psi$ é uma tautologia.

Demonstação

p	q	$p \rightarrow q$	$\neg p$	$\neg p \lor q$	$(p \to q) \leftrightarrow (\neg p \lor q)$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	1	0	1	1

1.4.2 Exemplos

Equivalências:

- 1. $p \wedge q \equiv q \wedge p$
- 2. $p \lor q \equiv q \lor p$
- 3. $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
- 4. $p \lor (q \lor r) \equiv (p \lor q) \lor r$
- 5. $p \wedge p \equiv p$
- 6. $p \lor p \equiv p$
- 7. $p \wedge \top \equiv p$
- 8. $p \lor \top \equiv \top$
- 9. $p \wedge \bot \equiv \bot$
- 10. $p \lor \bot \equiv p$

Distributividade:

- 1. $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- 2. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Leis de Morgan:

- 1. $\neg (p \land q) \equiv \neg p \lor \neg q$
- 2. $\neg (p \lor q) \equiv \neg p \land \neg q$

Contraposição e dupla negação:

- 1. $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- 2. $p \rightarrow q \equiv \neg p \lor q$
- 3. $\neg \neg p \equiv p$

1.5 Formas Normais

1.5.1 Literais

Definição

Um literal é uma proposição atómica ou a negação de uma proposição atómica.

Exemplos

- 1. p, q, $\neg r$ são literais.
- 2. $\neg \neg p$, $p \rightarrow q$ não são literais.

1.5.2 Forma Normal Conjuntiva (FNC)

Uma fórmula está na Forma Normal Conjuntiva se é uma conjunção de disjunção de literais.

1.5.3 Forma Normal Disjuntiva (FND)

Uma fórmula está na Forma Normal Disjuntiva se é uma disjunção de conjunções de literais.

1.5.4 Exemplos

- 1. $p \wedge q \wedge \neg r$ está na FNC e na FND.
- 2. $(p \lor \neg q) \land (q \lor r)$ está na FNC.
- 3. $(p \land \neg q) \lor (q \land r)$ está na FND.
- 4. $(p \wedge q) \vee (p \wedge \neg q) \vee (q \wedge r)$ não está na FNC nem na FND.

	/ı l	\circ
Ca	pítulo	2

Princípios de Enumeração Combinatória

Capítulo 3

Agrupamentos e Identidades Combinatórias

Capítulo 4

Recorrência e Funções Geradoras

Capítulo 5 Elementos de Teoria dos Grafos

Acrónimos