Problem 1. Two Sum

Given an array of integers <code>nums</code> and an integer <code>target</code>, return indices of the two numbers such that they add <code>up to target</code>. You may assume that each input would have exactly one solution, and you may not use the same element twice. You can return the answer in any order.

Example 1:

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
```

Example 2:

```
Input: nums = [3,2,4], target = 6
Output: [1,2]
```

Example 3:

```
Input: nums = [3,3], target = 6
Output: [0,1]
```

Constraints:

- $2 < \text{nums.length} < 10^4$
- $-10^9 \leq \text{nums[i]} \leq 10^9$
- $-10^9 \le target \le 10^9$
- Only one valid answer exists.

Follow-up:

Can you come up with an algorithm that is less than $O(n^2)$ time complexity?

Solution(s)

Solution 1: Brute Force

The brute force approach here is an $O(n^2)$ algorithm using nested for loops.

```
Data: A sequence (a_i)_{i \in [0,n)} of n integers Data: An integer N
Result: The unique unordered pair \{j,k\} of the indices j,k \in [0,n) of the two numbers from (a_i)_{i \in [0,n)} s.t. a_j + a_k = N

for j \in [0,n) do

| for k \in (j,n) do

| if a_j + a_k = N then

| return \{j,k\}
| end
| end
| end
```

The worst case scenario for this algorithm is when the numbers are the last two in the array, in which case the total number of iterations is

$$(n-1) + (n-2) + \dots + 2 + 1 = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} - n = \frac{1}{2}n^2 - \frac{3}{2}n.$$

Therefore, the algorithm has, as stated above, $O(n^2)$ time complexity.

The major benefit of this algorithm is that it is very easy to understand and to implement. A second benefit is that it has O(1) space complexity.

Solution 2

A more efficient approach is as follows:

```
Data: A sequence (a_i)_{i \in [0,n)} of n integers

Data: An integer N

Result: The unique unordered pair \{j,k\} of the indices j,k \in [0,n), j \neq k, of the two numbers from (a_i)_{i \in [0,n)} s.t. a_j + a_k = N

X \leftarrow \varnothing;

for i \in [0,n) do

\begin{array}{c|c} x \leftarrow N - a_i; \\ \text{if } x \in \pi_1(X) \text{ then} \\ | \text{ return } \{\pi_2 \circ \pi_1^{-1}(x), i\} \\ \text{else} \\ | X \leftarrow X \bigcup \{(a_i,i)\}; \\ \text{end} \end{array}
```

The idea behind the set X is to keep track of the elements of $(a_i)_{i \in [0,n)}$ that have been "visited" during the iteration process. At the end of the k^{th} iteration, $k \in [0,n)$, the elements of X are just the ordered pairs $(a_0,0),(a_1,1),\ldots,(a_k,k)$ of the elements $a_0,a_1,\ldots,a_k \in (a_i)_{i \in [0,n)}$ and their associated indices. The functions π_{α} are the projection functions on X which map each (a_k,k) to the α^{th} coordinate:

$$\pi_1: (x, i_x) \mapsto x$$

$$\pi_2: (x, i_x) \mapsto i_x.$$

There is a bit of a technical issue with the notion of the inverse π_1^{-1} of the first projection function π_1 in that it's possible for there to exist $j, k \in [0, n), j \neq k$, that satisfy $a_j = a_k$. This would mean that, if $x = a_j = a_k, \pi^{-1}$ would map x to both j and k, violating the definition of a function. However, the constraint that there is only one valid answer ensures that if an x exists that satisfies $x = N - a_i$ for some $i \in [0, n)$, it is unique. A restriction on the range of π_1 could be made to make the definition rigorous, however just allowing the abuse of notation with the above understanding seems like the simpler and clearer choice here.

At the k^{th} iteration, the idea is to search X for a the pair $(x, i_x) \in X$ that satisfies $x + a_k = N$, or, equivalently, $x = N - a_k$. If no such x exists, the set X gets expanded by adding (a_k, k) , which in essence marks a_k as having been "visited". The worst case scenario for this algorithm is when $N - a_{n-1}$ gives the first match, in which case n iterations are required. If the search operation can be performed in O(1) time, the time complexity of this algorithm is therefore O(n). Also in this worst case, the set x will contain n-1 elements, so the space complexity is O(n).

References

- $[1] \ \ https://leetcode.com/problems/two-sum/$
- $[2] \ \ https://www.code-recipe.com/post/two-sum$