الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقثي رياضي

المدة: 04 ساعات ونصف

اختبار في مادة: التكنولوجيا (هندسة كهربائية)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول: ملء ، سد و وضع قارورات في علب

I- ملف العرض

1-دفتر الشروط المبسط:

- 1-1 أهداف التألية: يجب على النظام أن يقوم بملء قارورات بمنتوج غذائي، ثم تحويل 8 قارورات على مرحلتين في علبة.
- -2-1 وصف الكيفية: تصل القارورات فارغة على سكك حديدية مركبة كمستو مائل تسمح الرافعتان R و بمرور قارورة واحدة فقط، ثم يحدث تعديلها بالرافعة F حتى تصبح هذه القارورة قائمة عموديا على البساط العلوي الذي تحركه الرافعة G بواسطة جريدة (crémaillère) وعجلة مسننة العجلة حرة عند دورانها إلى اليمين. هذه الطريقة تسمح بحركة البساط خطوة –خطوة بحيث أن كل قارورة تدفع القارورة التى تسبقها.

يبدأ الملء عندما تصبح القارورة تحت المكيال: ينفتح الصمام Ev_A وينغلق بعد مدة T_1 3s، ثم ينفتح الصمام الثاني Ev_B لمدة T_2 5s، لملء القارورة.

عندما تكون قارورة مملوءة تحت الملقط يتم سدها بواسطة الرافعة L (يتم جلب السدادات بالملقط وذلك عن طريق المحرك M2).

تحويل القارورات إلى العلبة: بعد وجود 4 قارورات على كفة ساق الرافعة H ، يحدث نزولها، ثم دفعها بالرافعة K إلى العلبة. يجب إعادة هذه العملية مرة أخرى (لتحويك 4 قارورات أخرى) لملء العلبة بـ 8 قارورات.

نهاية ملء العلبة يؤدي إلى حركة البساط السفلي لإخلاء العلبة المملوءة والإتيان بعلبة فارغة التي يكشف عنها بواسطة الخلية الكهروضوئية C.

- لا يدرس السير التحضيري، الذي يأخذ بعين الاعتبار عدم وجود القارورات فوق سلسلة الإنتاج عند وضع النظام في حالة التشغيل. هذا العمل يكافئ أن القارورة الأولى مسدودة وهي تحت جهاز السد (الغلق).
 - تحكم المحرك M₃ للإتيان بالسدادات غير موجود في تألية النظام.
 - لإنتاج نبضات تحكم هذا المحرك، نستغل الفعل على زر نهاية الشوط "g".
 - 2- التحليل الوظيفي: الوظيفة الشاملة للنظام هي: "ملء ووضع قارورات في علب"

II المناولة الزمنية: يمكن تجزئة تشغيل النظام إلى 6 أشغو لات وهي:

الأشغولة (1): الإتيان بعلبة .

الأشغولة (3): ملء القارورة.

الأشغولة (4): سد القارورة. الأشغولة (5) :تقديم البساط العلوي بخطوة. الأشغولة (6) : ملء العلبة.

1- متمن الأمن و متمن القيادة و التهيئة

الأشغولة (2) : الإتيان بقارورة على البساط العلوى .

F/GCI : ترغيم متمن القيادة و التهيئة

F/GPN : ترغيم متمن الإنتاج العادي

AU: إيقاف إستعجالي

خلل : Défaut

Réarmement : إعادة التسليح

INIT GPN: تهيئة متمن الإنتاج العادي

2- متمن تنسيق الأشغولات

ملاحظات:

- بعد إنجاز السير التحضيري (غير مدروس) القارورة الأولى مسدودة، هذا يكافئ نهاية عمل الأشغولات: X_3 , X_2 , و X_3 .
- الدخول في الإنتاج العادي يتطلب تنشيط الأشغولتين X_1 و X_5 (متمن القيادة و التهيئة هو الذي يضمن هاتين العمليتين).

3- متمن الأشغولتين الثانية والرابعة:

III المناولة المادية

1-عداد القارورات: N=4 و N=8

الضغط على زر نهاية الشوط "g" يؤدي إلى تقدم البساط العلوي بخطوة و إنتاج نبضة تحكم العداد. تستعمل مخارجه في متمن تنسيق الأشغولات.

صفحة 4 من 16

2-دارة الخلية الكهروضوئية C

E_{VA} المؤجل $T_1 = 3s$ المؤجل $T_1 = 3s$

4-ميدأ التحكم في المحرك M₃

IV- جدول الاختيار التكنولوجي:

الملتقطات	المنفذات المتصدرة	المنفذات	الأجهزة الأشغولات
C: خلية كهروضوئية تكشفعن وجود علبة	KM1 : ملامس کهرومغناطیسی ~ 24V	M1 محرك لا تزامني ثلاثي الطور 220V/380V,50Hz إقلاع مباشر - اتجاه واحد للدوران -	أشغولة (1):
	8.	يضمن حركة البساط السفني Cosφ=0,6 , Pu=1200W η=75%, عدد أزواج الأقطاب p=1	الإتيان بالطبة
	<u> </u>	الانزلاق %g=1,5	14.00
p :(ملتقط سعوي) لكشف	:dS ⁺ ,dS ⁻ , dR ⁺ , dR ⁻	S، R : رافعات مزدوجة المفعول .	أشغولة (2):
قارورة على السكك الحديدية	موزعات 5/2 ثنائية الاستقرار	F: رافعة بسيطة المفعول	# 1
\$1,50,71,70: تماسات نهاية الشوط .	كهروهوائية ~ 24V		الإتيان بالقارورة
f : وضع القارورة عموديا	dF : موزع 3/2 أحادي		
	الاستقرار كهروهوائي~ 24V		***
تماسات المؤجلات		EvA ، EvB: كهروصمامان	أشغولة (3):
نهاية ملء المكيال: T_1 =3s		A	ملء القارورة
$T_2=5s$: القارورة مملوءة	4		13332, 200
5 . 15th e i t.5t h. J	KMD : ملامس	M2 : محرك لا تزامني ثلاثي الطور	أشغولة (4):
d:الملقط فوق القارورة e:الملقط فوق السدادة	كهرومغناطيسي~ 24V (يمين)	إقلاع مباشر - اتجاهان للدوران -	
اعتالت کی استان او	KMG : ملامس	يضمن حركة الملقط	
	كهرومغناطيسي~ 24V (يسار)	$\begin{array}{c} 220\text{V}/380\text{V},\!50\text{Hz} \\ \text{Cos}\phi{=}0,\!6 , \text{Pu}{=}1200\text{W} \end{array}$	
		p=1 عدد أزواج الأقطاب, η=75%	سد القارورة
	* * *	g=1,5% الانزلاق	
a: الملقط في الأعلى	موزع $5/2$ ثنائي: $\mathrm{dL}^+,\mathrm{dL}^-$	L : رافعة مزدوجة المفعول	
b: الملقط في الأسفل	الاستقرار كهروهوائي ~24V		
thti n cetic	dG : موزع 3/2 أحادي	G: رافعة بسيطة المفعول	أشغولة (5) :
g: نهاية تقدم البساط العلوي	الاستقرار كهرو هوائي ~24V		تقدم البساط العلوي
7 . n . f	5/2 موزع : dH ⁺ , dH ⁻	H : رافعة مزدوجة المفعول	أشغولة (6) :
h ₀ : 4 قارورات أمام العلبة	ثنائي الاستقرار كهروهوائي	K : رافعة مزدوجة المفعول	**
h ₁ : نهاية تحويل القارورات k ₁ : القارورات في العلبة	24V~	annominants traditional SEST	ملء العلبة
10/22	5/2 موزع : dK ⁺ , dK	8	
ko: الرافعة K في حالة الراحة	ثنائي الاستقرار كهروهوائي ~24V		

صفحة 7 من 16

الأسئلة:

المناولة الوظيفية:

1. أكمل على ورقة الإجابة (الصفحة 16/9) التحليل الوظيفي التنازلي للنشاط البياني A-0

المناولة الزمنية:

- X_{21} ، X_{20} الأشغولة (2) "الإتيان بالقارورة" (الصفحة 16/4): اكتب معادلات التنشيط والتخميل للمراحل X_{21} ، X_{20} مع المخارج.
 - 3. الأشغولة (1) "الإتيان بعلبة": أنشئ متمن هذه الأشغولة من وجهة نظر جزء التحكم.
 - 4. الأشغولة (6) "ملء العلبة": أنشئ متمن هذه الأشغولة من وجهة نظر جزء التحكم.
 - 5. في متمن تنسيق الأشغولات: (الصفحة 16/3) ما هما القابليتان المرتبطتان بالانتقالين:
 - "القارورة على البساط العلوى" بعد الأشغولة (2) ؟
 - "القارورة مسدودة" بعد الأشغولة (4) ؟

إنجازات تكنولوجية:

- على ورقة الإجابة (الصفحة 9/16)
- أكمل المعقب الكهربائي للأشغولة (2) "إتيان بقارورة" مع الاتصالات اللازمة للتغذية والمرحلة X₂₀₁.
- 7. أكمل البيان الزمني لعداد القارورات (مع العلم أن هذا العداد يعد أربع قارورات، ثم يواصل عد أربع (4) قارورات أخرى، حيث أن العلبة تخلى بعد ملئها بثماني (4+4=8) قارورات.
 - دارة الخلية الكهروضوئية C (الصفحة 16/5).
 - 8. جد مجال ضبط المقاومة R (أصغر وأكبر قيمة لها) من أجل تشغيل عاد.
 - دارة المؤجل T₁=3s (الصفحة 5/16).
 - 9. احسب قيمة المكثفة C.
 - في دارة التحكم في المحرك M3 (الصفحة 16/5).
 - 10. مثل جدول الحقيقة للمخارج QD Qc QB QA في سجل الإزاحة المستعمل كعداد جونسن حتى تعود هذه المخارج إلى 0.

QD	Qc	Qв	QΑ	Ск
0	0	0	0	0
0	0	0	1	1
	-	-	-	1

الاستطاعة: شبكة التغنية: 50HZ: شبكة التغنية

11. أنقل رسم لوحة المرابط للمحرك M1 على ورقة إجابتك وبيّن نوع الإقران، علل.

- 12. احسب التيار المستهلك و سرعة دوران المحرك M1.
 - التكنولوجيا: (الصفحة 16/5)
- M_3 (مقاومة ومكثفة) في تركيب التحكم في المحرك M_3 (مقاومة ومكثفة) المحرك M_3
 - $T_1=3s$ في تركيبي الخلية الكهروضوئية والمؤجل $D_1=3s$ ؟
 - 15. ما هي وظيفة المضخم العملي في التركيبين السابقين ؟

ج6- المعقب الكهربائي للأشغولة (2) "الإتيان بالقارورة":

<u>E1</u>	E4 F2
A+	20
<u>C-</u>	F3

-	E1	E4	E1 E4	E1 E4	E1 - E4	E1 E4	E1 E4 F2
	Z+ A+	21	22	23	24	25	26
	C- F1	-			3.4		F3

ج7- البيان الزمني لعداد القارورات:

الموضوع الثاني: نظام تثقيب وتصحيح القطع

I. دفتر الشروط:

- 1. هدف النظام الآلي: يمكن هذا النظام الآلي من إحداث ثقب على قطع معدنية، ثم تصحيحها.
 - 2. الوصف: يحتوي هذا النظام على المراكز التالية:
 - المركز (1): تخزين القطع.
 - المركز (2): الإتيان وتثبيت القطع.
 - المركز (3): الثقب على القطع.
 - المركز (4): التصحيح.
 - المركز (5): الإخلاء.
- قطعة (الشيقة الاشتغال: تصل القطع الواحدة تلو الأخرى بواسطة البساط المتحرك، عند وصلول 12 قطعة (N=12) يتوقف البساط لتتم عملية التصنيع، حيث تدفع إلى مركز التصنيع بواسطة الرافعة لا، بعد دوران القطعة بواسطة المحرك M2 في اتجاه عقارب الساعة بربع دورة (90°+) تثبت بخروج ساق الرافعة W، بعدها تتم عملية التثقيب بخروج ساق الرافعة V ودوران المحرك M3، تليها عملية التصحيح بنزول الآلة بواسطة المحرك M4 (دوران أمام) ودوران الأداة (الكاشطة) بواسطة المحرك M5، عند نهاية النزول يتوقف المحرك M4 لمدة ودوران الأداة (الكاشطة) بعدها تصعد الأداة بالمحرك M4 (دوران خلف) دون دورانها. آخر عملية هي الإخلاء بدخول ساق الرافعة W لتحرير القطعة، ثم تدور القطعة بالمحرك M2 في الاتجاه المعاكس لعقارب الساعة (90°-) بعدها تخرج ساق الرافعة W لدفع القطعة وتعود الساق إلى غاية انتهاء القطع المخزنة وبذلك تتم الدورة.
 - 4. الاستغلان: تحتاج العملية لوجود شخصين:

- عامل تقنى للقيادة والمراقبة. - عامل غير مؤهل للتمويل والإخلاء.

II. التحليل الوظيفي التنازلي:

t : مدة التأجيل N : عدد القطع

ط.ك: طاقة كهربائية

ط.ه: طاقة هوائية

III. جدول الاختيارات التكنولوجية:

A CONTRACTOR			<u> ارات التكنولوجيه:</u>
الأشنويات الأجهنة	1 ***	المنقدان المنصدرة	
اشغولة التغزين	M1: محرك لاتزامني 380V/660V ~ ثلاثي الطور بدوار مقصور إقلاع نجمي/مثلثي يسمح بندوير البساط	14 V خهر و معناطيسي ~ 24 V خهر و معناطيسي ~ 24 V الباقر ان الباقر ان النجمي الملامس للباقر ان المثلثي	 ط: ملتقط الكشف عن مرور ط: ملتقط الكشف عن وجود القطعة في الخزان
اشغولة الإتيان و التلبيت	 القطع الى مركز العمل القطع الى مركز العمل العة مزدوجة المفعول تقوم بنثبيت القطعة محرك لتدوير القطعة بزاوية (+90°) 	" dL', dL' موزع كهروهوائي شائي الاستقرار 4/2 يتحكم في الرافعة L. شائي الاستقرار عكهر وهوائي الرافعة الاستقرار 4/2 يتحكم في الرافعة الاستقرار كهرومتناطيسي	11، 11 : ملتقطات نهایة الشوط لخشفان عن دخول و خروج الرافعة ١. يكشفان عن دخول و خروج الرافعة كشفان عن دخول و خروج الرافعة الله وضعية القطعة.
أشفولة التلقيب	 ٧: (افعة مزدوجة المفعول نقوم بتحريك أداة المتقب. ١٠٤: محرك لاتزامني ثلاثي الطور -2200/3800 بدوار مقصور إقلاع مباشر لتدوير أداة المتقب. 	' dv ' ' dv : موزع كهروهوائي ثنائي الاستقرار 4/2 يتحكم في الرافعة V كهرومغناطيسي ~ 42	۷۷ ، ۷۷: ملتقطات نهایة الشوط یکشفان عن دخول وخروج الرافعة ۷
أشغولة التصميح	M4: محرك لاتزامني ثلاثي الطور ~ 2200\/380\/380\/380\/380\/380\/380\/380\/3	امام (نزول) (المجل :KM41 المام (نزول) المام (نزول) 24 مرات 24 الشغيل 24 المسود) المام المام المام : المام المام المام : المام المام : المام المام :	m1،m0) الشوط يكشفان عن وضعية الكاشطة
أشغالة الإخلاء	W : رافعة مزدوجة المفعول تقوم بإخلاء القطعة القطعة محرك لتدوير القطعة بزاوية	- dw + dw عوزع كهرو هوائي ثنائي الإستقرار 4/2 يتحكم في الرافعة W كهرومغناطيسي ~247 دوران (°90°)	س ، ۳۵، ملتقطات نهایة الشوط یکشفان عن دخول وخروج الر افعة W الشاد ملتقط نهایة الشوط یکشف عن

ملاحظة: M2 محرك لاتزامني ذو اتجاهين للدوران مجهز بمخفض للسرعة ومزود بكهرومكبح لتدوير القطعة. شبكة التغذية ثلاثية الطور: 50 HZ , 50 HZ

IV. المناولة الهيكلية:

v. المناولة الزمنية:

 dL^{\dagger}

dL'

KM21(+90°)

 dW^{\dagger}

Vcc

Vcc=12V P=100KΩ Vz=7,5V

Vbe=0,7V c=100µF R=?

CLK1 K1

PR₁

Q1

Q1

Q2

GND

J1

العمل المطلوب:

س1: أكمل مخطط النشاط البياني على وثيقة الإجابة (الصفحة 16/16).

س2: ارسم متمن أشغولة الإخلاء من وجهة نظر جزء التحكم.

س3: اكتب معادلات التنشيط والتخميل لأشغولة التصحيح (الصفحة 16/14).

س4: أنجز تدرج مختلف متامن هذا النظام (GPN ،GCI ، GS).

س5: ارسم المعقب الكهربائي لأشغولة التصحيح موضحا دارة التغذية على وثيقة الإجابة (الصفحة 16/16).

دارة العد لــ 12 قطعة (الصفحة 14/14).

س6: أ− ما هو عدد الدارات المندمجة 74112 التي تلزمنا لإنجاز عداد لاتزامني يعد 12 قطعة؟
 ب− أنشئ جدول الحقيقة لهذا العداد.

ج- كيف يتم إرجاع العداد إلى الصفر؟

س7: أكمل على وثيقة الإجابة (الصفحة 16/16) دارة العداد الذي يعد 12 قطعة.

• دارة المؤجل t=20s (الصفحة 16/14).

س8: أ- انقل رسم المقحل Tr على ورقة إجابتك وحدّد نوعه، ثم بيّن الاتجاهات الاصطلاحية للتيارات والتوترات.

ب- احسب قيمة المقاومة R.

س9: انقل الرسم للوحة المرابط للمحرك M1 على ورقة إجابتك وبيّن نوع الإقران، ثم علّل.

• دارة الاستطاعة للمحرك M4:

- تم قياس الاستطاعة للمحرك M4 باستعمال طريقة الواط مترين فأعطت النتائج التالية : $P2 = PB = 980 \; W$ P1 = PA = 3260W

س10: احسب مختلف الإستطاعات لهذا المحرك (الممتصة، الارتكاسية والظاهرية).

س11: استنج معامل الاستطاعة Coso.

• المحول المستعمل لتغذية المنفذات المتصدرة له الخصائص التالية:

- أحادي الطور ~240 /24V، 50HZ، 220 /24V

- اختبار في الفراغ أعطى: P₁₀=5W ،U₂₀=24V ،U₁=220V

س12: أ- احسب كلا من نسبة التحويل وشدة التيار الاسمية في كل من الأولى والثانوي.

ب- استنتج الضياع في الحديد.

وثيقة الإجابة تسلم مع أوراق الإجابة

E1	E4	E1 E4	E1 E4	E1	E4
Z+ A+	41	42	43	44	F2
C- F1					F3

ج4/ المعقب الكهربائي:

الدارة المنطقية

ج7 / دارة العداد اللاتزامني لعد 12 قطعة:

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2012

الشعبة: تقنى رياضي هندسة كهربائية

المادة: تكنو لو جيا

ية	تابع الإجابة النموذجية المادة: تكنولوجيا الشعبة: تقني رياضي هندسة كهربائية						
لامة .		عناص الاحلية (المعضيع الأمال)					
المجموع	مجزأة	(00 60 7	الموضوع				
2.5	10×0.25	معادلات التنشيط و التخميل: المخارج التنشيط التخميل التخميل التنشيط التخميل التنشيط التخميل التحميل ا	2₹				
		0 0 X_{21} $X_{26}\bar{X}_2 + X_{201}$ X_{20}					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		1 0 $X_{26} + X_{201}$ $X_{24} \times S_1$ X_{25}					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		20 201					
1	4×0.25	متمن الأشغولة (1) "إتيان يطبة" متمن الأشغولة (6) "ملء العلبة"	45+35				
2	8×0.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	0.50	بعد الأشغولة (2) و حسب متمنها القابلية هي: X ₂₆					
1	0.50	بعد الأشغولة (4) و حسب متمنها القابلية هي: X47	55				
	0.50	عندما تكون الخلية تحت الضوء $\frac{Rc}{Rc+R}Vcc < \frac{R_2}{R_1+R_2}Vcc \Leftrightarrow \frac{R}{Rc} > \frac{R_1}{R_2} \Rightarrow R > \frac{R_1}{R_2}Rc \Rightarrow R > \frac{10}{20}6$ $R > 3k\Omega$					
1.5	0.50	عندما تكون الخلية في الظلام: $\frac{Rc}{Rc+R}Vcc > \frac{R_2}{R_2+R_1}Vcc \iff \frac{R}{Rc} < \frac{R_1}{R_2} \implies R < \frac{R_1}{R_2}Rc \implies R < \frac{10}{20}40$					
	$R<20$ لانن: Ω $R<20$ لاثن: Ω Ω Ω						
			70				
			. / 7				

للامة		عناصر الإجابة (الموضوع الأول)	تابع محاور
المجموع	مجزاة		محاور الموضوع
1.5	3x0.5	$T_1 = 3s \text{ llabel{eq:Uc} } $ $Uc = Vcc \left(1 - e^{-\frac{T_1}{R.C}}\right) = Vz \ e^{-\frac{T_1}{R.C}} = 1 - \frac{Vz}{Vcc} = 1 - \frac{6.3}{12} = 0.475 \qquad -\frac{T_1}{R.C} = ln0.475$ $-\frac{T_1}{R.C} = -0.744 \implies C = \frac{T_1}{0.744.R} = \frac{3}{0.744.47000}$	9₹
		C = $85,7\mu F$ جدول الحقيقة لسجل تحكم المحرك M_3	ج10
1	x0.25	QD QC QB QA CK 0 0 0 0 0 0 0 0 0 1 ↑ 0 0 1 1 ↑ 0 1 1 1 ↑ 1 1 1 0 ↑ 1 1 0 0 ↑	
1	2×0.5	1 0 0 0 1 0 0 0 0 1 نوع الإقران نجمي .	11 _č
1.5	0.5 0.5 0.5	$I = \frac{P}{\sqrt{3}U \cdot \cos \varphi}$ $P = \frac{Pu}{\eta} = \frac{1200}{0.75} = 1600W$ $I = \frac{1600}{\sqrt{3} \times 380 \times 0.6}$ $I = 4A$ $n = \frac{3000}{p} = \frac{3000}{1} = \frac{3000tr}{mn}$ $n' = (1-g)n = (1-0.015)3000$ $n' = 2955tr/mn$	12₹

ىي ھندسة كهربائية	تقنى رياض	الشعبة:	تكنولوجيا	المادة:	النموذجية	الإجابة	تابع

بلامة		الإنجابة التمودنجية المادة ، تكلولوجيا السعبة: تقني زياضي هندسة	محاور		
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
0.5	0.5	دور الخلية R-C هو: رجوع السجل إلى 0 بطريقة آلية عند وضع النظام في حالة التشغيل	الموضوع		
0.5	0.5	دور الثنائية D هو: حماية المقحل ضد التوترات المتحرضة الناتجة من وشيعة المرحل – تسمى أيضا عجلة حرة.	ج14		
0.5	0.5	يستعمل المضخم العملي كمقارن.	ج15		
		·			

181

1.5 0.1 x15	7.	de ti		
1.5 0.1 x15 1.5 0.1 x15 A-0 (1 x15) A-10 (1 x15) 1.5 0.1 x15 A-10 (1 x15) A-20 (1 x15) A-10 (1 x15) A-20 (1 x15) A-20 (1 x15) A-30 (عناصر الاجابة (الموضوع الثاني)	
1.5 0.1 x15 1.5 0	المبدي	مجراد		الموضوع
2 8 x 0.25	1.5	0.1 x15	عدالفطي معادلة التعامل التعامل معادلة التعامل معادلة التعامل معادلة التعامل معادلة التعامل التعامل معادلة التعامل ال	1₹
			x5.x103 x5.x103 x5.x103 w0 52 KM22(-90°)	2€

لمة المجموع	العاد مجزأة	الشعبة: تقني رياضي هندس وضوع الثاني)	عناصر الإجابة (الم		محاور لموضوع		
<u>,, , , , , , , , , , , , , , , , , , ,</u>	1,54	معادلات التنشيط والتخميل لأشغولة التصحيح:					
2	10x 0.2	ي. التخميل	التنشيط		35		
				المرحلة			
		X_{41}	$X_{200} + X_{44} \bar{X}_{4}$	X40			
		$X_{42} + X_{200}$	$X_{40}.\overline{X}_{4}.X_{103}$	X41			
		$X_{43} + X_{200}$	$X_{41}.m_1$	X42			
		$X_{44} + X_{200}$	$X_{42}.T$	X43			
		$X_{40} + X_{200}$	X ₄₃ .m ₀	X44			
			Init/Raz 2	ا يمكن إضافا	•		
				تدرج المتامن	ج4		
		ن الأمن	متمر				
		GS			2		
1.5	6 x0.25	F/GCI:(100)	E/CPV (10.00				
			F/GPN :(10 ,20),30,40,50)			
): I/GPN متمن القيادة و التهيئة	متمن الإنتاج العادي				
		GCI	GPN				
				-			
				11			
					do and U.W. and dra		
				18	2		

ئية	لة كهربا	الإجابة النموذجية المادة :تكنولوجيا الشعبة: تقني رياضي هندس	تابع
ثمة المجموع	العلا مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور موضوع
<u>.</u>	-10 0000ga/A		موسوح
	0.50	أ- مقحل ثنائي القطب من نوع NPN	ج8
		V _{CB} V _{IC}	
		TV _{CB} I _C	
	0.50	V _{CE}	
		\mathbf{V}_{BE} $\mathbf{V}_{I_{E}}$	
2		F.	
	0.25	$U_C = Vcc(1 - e^{-\frac{t}{(R+P)C}})$	
	0.25	$U_C = Vz + Vbe = 7,5 + 0,7 = 8,2V$	
	0.25	$\frac{Uc}{R} = 1 - e^{-\frac{t}{(R+P)C}} \implies R = -\frac{t}{R} = -\frac{P}{R}$	
		$\frac{Uc}{Vcc} = 1 - e^{-\frac{t}{(R+P)C}} \Rightarrow R = -\frac{t}{C \ln(1 - \frac{U_C}{Vcc})} - P$	
	0.25	$R = \frac{-20}{100 \times 10^3} = 73037300 \implies R = 74 \times 0$	
		$R = \frac{-20}{100 \times 10^{-6} \ln(1 - \frac{8,2}{12})} - 100 \times 10^{3} = 73927, 29\Omega \implies R \approx 74K\Omega$	
		` 12 ` نوع الإقران متاثي △.	ج9
		111 (V 1)W	
	0.50	3 3 3	
1			
	0.50		
		التوتر الذي يتحمله كل ملف هو: 380٧	
	0.75	حساب الاستطاعة الفعالة الممتصبة من طرف المحرك.	ج10
2	0.75	Pa = P1 + P2 = 3260 + 980 = 4240W	
	01.10	حساب الاستطاعة المفاعلة (الردية ، الإرتكاسية) (Q) للمحرك	
	0.5	$Q = (P1 - P2)\sqrt{3} = (3260 - 980)\sqrt{3} = 3949VAR$	
	0.5	$S = \sqrt{Pa^2 + O^2} = 5794 \text{ VA}$ دساب الاستطاعة الظاهرية (S) للمحرك $S = \sqrt{Pa^2 + O^2} = 5794 \text{ VA}$	
0.5	0.5	معامل الاستطاعة (Cos(φ)) للمحرك .	ج11
-	3.0	$Cos(\phi) = Pa/S = 4240/5794 = 0.73$	
		$m = \frac{U_{20}}{U_1} = \frac{24}{220} = 0.11$:	ج12
		As sometimes	120
2	4×0.5	$I_{1N} = \frac{Sn}{U1} = \frac{60}{220} = 0,27A$ شدة التيار الاسمية للأولي:	
		$I_{2N} = \frac{Sn}{U1} = \frac{60}{24} = 2,5A$ - شدة التيار الاسمية للثانوي:	
		رب- الضياع في الحديد: 10 24 P _{fer} =P ₁₀ =5W	

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04سا و 30د

اختبار في مادة:تكئولوجيا (هندسة ميكانيكية)

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول الموضوع الأول الموضوع: نظام آلي لنزع الدسم من الحليب الخام

يحتوي ملف الدراسة على جزنيين:

أ- الملف التقنى: الصفحات { 20/1، 20/2، 20/3، 20/4، 20/5، 20/5 } ب- ملف الأجوبة: الصفحات { 20/6، 20/7، 20/8، 20/9، 20/9 }

ملاحظة:

• لا يسمح باستعمال أي وثيقة خارجية عن الاختبار

 يسلم ملف الأجوبة بكامل صفحاته { 20/6، 20/7، 20/8، 20/9، 20/9، 20/10 } حتى ولو كانت فارغة داخل الورقة المزدوجة للإختبار.

أ- الملف التقني

1- وصف وتشغيل:

حفاظاً على صحة المستهلك ، يقوم النظام الممثل في الصفحة 2012 بنزع الدسم من الحليب الخام المستخرج من البقر.

تتم العملية حسب أربع مراحل:

- المرحلة الأولى: إفراغ الحليب من الخزان بواسطة الصمام (EV).

- المرحلة الثانية : خلط الحليب بواسطة المخلاط.

- المرحلة الثالثة : تفريغ الحليب بواسطة الدافعة (V2) (القمع مثبت مع الدافعة).

- المرحلة الرابعة: التصفية.

2- منتج محل الدراسة:

نقترح دراسة مخفض مخلاط الحليب الذي يشتغل بمحرك كهربائي " M_t" الممثل على الصفحة 300.

تنقل الحركة من المحرك الكهربائي "M₁" إلى أدوات الخلط بواسطة مخفض السرعة المتكون من مجموعة متسننات أسطوانية ذات أسنان قائمة {(6) ،(8)} لتحقيق الخروج (1) للمخلاط و{(6) ،(7)} لتحقيق الخروج (2) للمخلاط .

4 - معطيات تقنية:

- استطاعة المحرك: P=3 kw سرعة دوران المحرك: Nm=1000 tr/mn

(8) (6) ; [1] المتسننات الأسطوانية ذات أسنان قائمة (6) (8) $= \frac{1}{2}$ الموديول: m=2 mm منسبة النقل (6) (8) نسبة النقل (6) (9) نسبة النقل (6) (18) (6) (18

*خروج (2): المتسننات الأسطوانية ذات أسنان قائمة $\{(6), (7)\}$: التباعد المحوري: $a_{6-7} = 70 \text{ mm}$.

5 - العمل المطلوب:

5 - 1- دراسة الإنشاء (14 نقطة)

أ- تحليل وظيفى: أجب مباشرة على الصفحتين 20/6 و20/7.

ب- تحليل بنيوي:

ب، - دراسة تصميمية جزئية: أتمم الدراسة التصميمية الجزئية مباشرة على الصفحة 20/8. براسة تعريفية جزئية: أتمم الدراسة التعريفية الجزئية مباشرة على الصفحة 20/8.

5-2- دراسة التحضير: (6 نقاط).

أ - تكنولوجيا لوسائل و طرق الصنع:

أر -تكنولوجيا لوسائل الصنع: أجب مباشرة على الصفحة 20/9.

أ2 - تكنولوجيا لطرق الصنع: أجب مباشرة على الصفحة 20/9.

ب - آليات: أجب مباشرة على الصفحة 20/10.

نظام آلى لنزع الدسم من الحليب الخام

صفحة 3 من 20

مخفض المخلاط				الله Ar
الملاحظات	المادة	العبير نات	العدد	الرقم
	EN-GJL300	هیکل	1	1
	EN-GJL300	غطاء	1	2
	30 Cr Mo 4	عمود المحرك	1	3
	25 Cr Mo 4	عمود الخروج (1)	1	4
	25 Cr Mo 4	عمود الخروج (2)	1	5
	C 60	ترس	1	6
	C 60	عجلة مسننة	1	7
	C 60	عجلة مسننة	1	8
	Cu Sn8 P	وسادة بمسند	4	9
تجارة		برغي التجميع 15-HM6	1	10
تجارة		حلقة إسناد	1	11
تجارة		خابور متوازي شكل A(6x6x14)	1	12

ملف الموارد

مدحرجات ذات صف واحد من الكريات تلامس نصف قطري

d	D	В
12	28	8
15	35	11
17	40	12
20	47	14
25	52	15

الخوابير المتوازية

	Comment of the state of the state of			D 855 800-
	d	a	b	
1	通過與政治學	4	4	
1	2 à 17	5	5	
1	7 à 22	6	6	(14 (14)

فاصل الكتامة ذات شفتين باحتكاك نصف قطري طراز AS

0.0	
d D	В
Total Control (Section 18)	(2) (A)
17 47	14
20 42	12
20 47	14
20 52	15.7
25 47	12

حلقة مرنة للأجواف

	COLUMN BASE A	\$36000000000000000000000000000000000000	ACCESSIONER SECT.	ACCUPATION NAMED IN	SECTION SERVICES
transfer and	ZI STREET, ST	22 E			
		STATE OF THE PARTY		發展發展性	
11.5	1	100			
		BATTLE ST	A safe of texts	POSTATION C	A CONTRACTOR
PU School de mais	PERSONAL SPECIMENTS OF	A STATE OF THE PARTY OF	de programment franch.	Allego Francisco	Printer Mendology
	Maria Carlo	4470 10 10	ING. WAT		
	3	第二次	75	- 31	
250		SE-201	200	200	
AND VALUE OF		Street Labor.	C.V. California	A STATE OF THE STA	
				AND DESCRIPTIONS	THE REAL PROPERTY.
	0	100			
180	非多角 类型			36	
的可能的	學與學學學	3000			
With the same	potentieros	AL BOMBELLS	BROWN STATE	JAMES ON DARK	MANAGERS AND
110000			2.2	40	A STATE OF
C. 100 Co.	5	****	of the black	- 40	
		TERROR IN THE		15.0	
1997 S 1197 A 55 B 645	ASSOCIATION OF	STATE OF THE PARTY	No William Service	And the second of the second	A CONTRACTOR OF THE PARTY OF TH
A PARTY OF	T (1992)		The state of the state of the		
	0	P. 19545 7-25	A AFRICA	///1	
	ALMERICA.	Aug	CINCOL STATE	- 44	Per Edward
and the second s	AND DESCRIPTION OF THE	Lunia Asidi	Partition alerance	S. SANGLES OF PR	Petratrita
70.		12			evilous su
172.1	5	11.00			O
	100	2,	J	48	.0
Carlotte Harrist	ALPHARES.			V 100	12.14.9

حلقة مرنة للأعمدة

100	6 20 7		f f
u.	E .	٠.	1
-:17	1	25,6	1,1
20	1,2	29	1,3,
22	1,2	31,4	1,3
25	1,2	34,8	1,3

4- أتمم الرسم التخطيطي

الحركي لمخفض المخلاط:

دخول

ب- ملف الأجوبة

5-1- دراسة الإنشاء:

أ- تحليل وظيفي

1- أكمل مخطط الوظيفة الإجمالية للنظام الألي (علبة O-A)

2- أكمل المخطط التجميعي لمخفض المخلاط بوضع مختلف الوظائف ثم صياغتها داخل الجدول:

5 ـ التحديد الوظيفي للأبعاد: J_A 5-1 أنجز سلسلة الأبعاد الخاصة بالشرط على الرسم التالي:

خروج (2)

خروج (1)

أدوات الخلط	(معرك
	مخفض المخلاط	
الأمن	(المحيط

3- أتمم جدول الوصلات الحركية التالى:

الوسيلة	الرمز	اسم الوصلة	القطع
			(2)/(1)
			(3)/(6)
1,017			(4)/(1)و(2)
			(7)/(5)

2-5 سجل على الجدول التالي التوافقات المناسبة ϕ_1 و ϕ_2 الموجودة على الرسم التجميعي صفحة (20/3) :

النوع	تعيين التوافق	الأقطار
		Ø ₁
		Ø ₂

أ- أعط نوع التأثير على الخابور.							6- دراسة ا [(6)،(7)} 6-1- أتمم .
ب- تحقق من شرط المقاومة .				=			
							T
	а	df	da	Z	d	m	(0)
	70				40	2	(6)
ج ـ ما هو استنتاجك حول هذه النتيجة ؟				110		_	(7)
				₄ r ₆ .	النقل 7.	، نسبة	6-2 احسب
2-7 يتعرض العمود (3) لتأثير الالتواء البسيط . إذا علم أن عزم الالتواء يقدرب Mt = 30Nm ، المقاومة التطبيقية للإنزلاق Rpg = 50 N/mm ² . احسب القطر الأدنى للعمود (3) حتى يتحمل هذا التأث	وی	لی مست	- Cm	کة		 ب المزد ا) :	6-3 احسب 6-4 احسب الترس (6
	وی سن	لی مست	مۇثر ء	ي T ال	د المماس		6-5 احسد الترس(6)
	6) بواسط مماسية لاق	ترس (بيق قوة بنة للانز	3) و ال 6) بتط د المرو	ناومة : العمود (1×6× ناومة ح	كية للمة ة بين ا 12) (4 T=رمة	ميكاني الحرك از (! ا5001	7- در اسة 7-1 تنقل خابور متو مقدار ها N ملاسس ²

ب- تحليل بنيوي:

ب1 - دراسة تصميمية جزئية:

لتحسين المجموعة الجزئية على مستوى عمود الخروج (5) للمخفض لجعله أحسن وظيفيا مع تسهيل عملية التركيب و التفكيك :

- انجز وصلة متمحورة بين العمود (5) والهيكل (1) و الغطاء (2) بمدحرجتين ذات صف واحد من الكريات بتلامس نصف قطري (13) (BC)
 - اقترح حلا أخر لتحقيق الوصلة الاندماجية القابلة للفك بين العجلة (7) و العمود (5).
 - تحقيق كتامة الجهاز بتركيب فاصل AS (14) على الغطاء (2).

ب2 - دراسة تعريفية جزئية:

مستعينا بالرسم التجميعي الصفحة (2013) أتمم الرسم التعريفي لعمود الخروج(4) بمقياس 1:1 موضحا كل التفاصيل ،

* ضع السماحات الهندسية.

* ضع الخشونة على الأسطح الوظيفية AA المقطع AA

المقياس 1:1

2-5- دراسة التحضير:

أ- تكنولوجيا لوسائل الصنع:

نريد دراسة وسائل الصنع اللازمة من حيث الآلات و أدوات القطع والمراقبة للترس (6) في ورشة الصناعة الميكانيكية بسلسلة صغيرة.

1- ما هي طريقة الحصول على الخام؟

2- اشرح تعيين مادة صنع هذا الترس 60 C

3- باستعمال علامة (x) اختر الوحدات المناسبة للإنجاز هذه القطعة:

Γ	وحدة الخراطة
	وحدة التفريز

وحدة التثقيب

أو - تكنولوجيا لطرق الصنع:

- نقترح دراسة صنع الوسادة (9) طبقا للرسم التعريفي المقابل بسلسلة تصنيع أحادية.

- السير المنطقي للصنع:

منصب	عملیات	المرحلة
منصب المراقبة	مراقبة الخام	100
خراطة	{(4)}	200
خراطة	{(5)·(6)·(2)·(1)·(3)}	300
منصب المراقبة	مراقبة نهائية	400

1- أتمم على رسم المرحلة 300 المقابل ما يلي: أ- الوضعية السكونية (الوضعية الإيزوسطاتية) د - أدواد الصنع

ب- أبعاد الصنع. 2- احسب بعد الصنع Cf₂ بتحويل الأبعاد.

3ـ ما هي وسائل القياس المناسبة لقياس: Ø16H7:...... Ø26p6:.....

AΑ

1	
4	
2 3 Cf ₁	3 Cf ₂
مسلسلة الأبعاد	Cf. C 2

ب - الآليات:

وصف و تشغيل : النظام الآلي : أنظر شكل صفحة 20/2

عند الضغط على زر بداية التشغيل (m) ، يفتح الصمام (EV) فينزل الحليب الخام من الخزان إلى حوض الخلط عند الضغط على زر بداية التشغيل (m) ، يفتح الصمام (EV) فينزل الحليب المراد خلطها) يغلق الصمام (EV) و تخرج ساق عند ضغط حوض الخلط على الملتقط "a₁" (حسب كمية الحليب المراد خلطها) يغلق الصمام (V_1) و تخرج ساق الدافعة (V_1) حتى الضغط على الملتقط "a₁" لمن يؤدي إلى خروج بعدها يتوقف المحرك " V_1 " وترجع ساق الدافعة (V_1) حتى الضغط على الملتقط "b₁" ثم تفريغ الحوض لمدة 30 ثانية (وهي المدة الزمنية اللازمة لإفراغ حوض الخلط من الحليب)، بعد انتهاء هذه المدة ترجع ساق الدافعة (V_2) حتى الضغط على الملتقط "b₀" و تعاد الدورة . ملحظة : فصل الدسم عن الحليب يتم بواسطة شبكة للتصفية .

العمل المطلوب:

الموضوع الثاني الموضوع الموضوع: نظام آلي لإنجاز مجاري على قطع خشبية

يحتوي ملف الدراسة على جزءين

أ- الملّف التقني : الصفحات { 20/11، 20/13، 20/13، 20/14، 20/15، 20/15، 20/15، 20/15 } ب- ملف الأجوبة : الصفحات { 20/26، 20/17، 20/18، 20/19، 20/16 }

ملاحظة:

• لا يسمح باستعمال أي وتُيقة خارجية عن الاختبار

• يسلم ملّف الأجوبة بكامل صفحاته { 20/16، 20/17، 20/18، 20/19، 20/20 } حتى ولو كانت فارغة داخل الورقة المزدوجة للاختبار.

أ- الملف التقني

1- وصف و تشغيل:

نريد إنجاز بصفة آلية مجريين في نفس الوقت على قطعة خشبية بواسطة فريزتين، انظر الشكل على الصفحة (20/12).

تتم هذه العملية عبر مرحلتين:

- المرحلة الأولى: إنجاز ثقبين بعمق المجريين.

- المرحلة الثانية: إنجاز المجريين حسب الطول المطلوب

2-الجهاز محل الدراسة:

نقترح دراسة مضاعف السرعات الممثل على الصفحة (20/13) الذي يشتغل بمحرك كهربائي Mt₁ غير ممثل.

3- سير الجهاز:

تنقل الحركة من العمود المحرك (1) إلى عمود حامل الأداة (19) بواسطة متسننات أسطوانية (4) و (5) ذات أسنان قائمة.

4- معطيات تقنية:

- استطاعة المحرك: P=1,5 kw سرعة دوران المحرك: Nm=750 tr/mn

- المتسننات الأسطوانية ذات أسنان قائمة { (4) ، (5)}

m=2 mm ، d₅ =28 mm ، d₄ =54 mm

5 - العمل المطلوب:

5 - 1- دراسة الإنشاء (14 نقطة)

أ- تحليل وظيفي: أجب مباشرة على الصفحتين 16/20 و20/17.

ب- تحليل بنيوي:

ب₁ - دراسة تصميمية جزئية: أتمم الدراسة التصميمية الجزئية مباشرة على الصفحة 20/18. ب₂ - دراسة تعريفية جزئية: أتمم الدراسة التعريفية الجزئية مباشرة على الصفحة 20/18.

2-5- دراسة التحضير: (6 نقاط).

أ - تكنولوجيا لوسائل و طرق الصنع: أجب مباشرة على الصفحة 20/19.

ب - آليات : أجب مباشرة على الصفحة 20/20.

نظام آلى لإنجاز مجاري على قطع خشبية

صفحة 13 من 20

تجارة		برغي ذو رأس سداسي برغي ذو رأس سداسي		
	ENGJL200	غطاء	1 1	Ľ
تجارة		سدادة تفريغ		_
تجارة		فاصل مسطح	1	
تجارة		حلقة مرنة	2	,
تجارة		سدادة ملء	1	
ىجارە	FNO II 200			
				-
	ENGJL200	علبة	1	
	25CrMo4	ترس	1	T
				-
	25CrMo4			L
تجارة		فاصل الكتامة ذو شفتين	1	
				-
بجاره				-
	30CrMo4	عمود محرك	1_	
	30CrMo4	عمود محرك	1	
# 1 to 1 to 1				+
الملاحظات	المادة	التعييينات	العدد	٩
		عمود محرك	1	-
	30CrMo4			
تجارة		مدحرجة ذات كريات بتلامس نصف قطري	1	
				-
تجارة		فاصل الكتامة ذو شفتين	1	
2.1.2	25Crivi04	<u> </u>		+
	25CrMo4	عجلة مسننة	1	
				1
	 	تر س ،	1	T
	ENGJL200	علبة	1	L
				-
	ENGJL200	غلاف	1	0,13
تجارة		خابور متواز		
				L
				-
				-
				-
تجارة		سدادة تفريغ		
	ENGJL200	غطاء	1	
تجارة				+
			4	+-
<u>ىجارە</u> ئجارة			4	+-
<u> </u>		حلقة مرنة	2	
تجارة		مدحرجة ذات كريات بتلامس نصف قطري	2	
	ENGJL200	جسم	1	T
	35CrMo4	عمود الدوران	1	
	S235	لجاف	1	L
تجارة		برغي ذو رأس سداسي	1	'
تجارة		برغي ذو رأس سداسي	4	
» (»	ENGJL250	غطاء	1	:
تجارة	ENG II 250	فاصل الكتامة دو شفتين	1	:
- 1 -	ENGJL250	مزلاق	1	1
حجار ب	ENC II 250			+
<u> </u>		وصل مسطح برغي ذو رأس أسطواني ذو تجويف سداسي	4	
تجارة تجارة		حلقة استناد فاصل مسطح	1	
A 1 - 1	1	ا داده این تنا	1	1

مثف الموارد

مدحرجات ذات دحاريج مخروطية طراز KB

فاصل الكتامة ذات شفتين باحتكاك نصف قطري طراز AS

14.60		
d	υ,,,	В
17	47	14
20	47	12
20	27	144
AND STREET STREET		
20	52	15
25	47	12

حلقة مرنة للأجواف

100 400 100	* 110.22 and	
D	C	president of
		returnation (Art Control
A 7	4 1000	
45	1,75	31,6
4-9-15-17-16-1	THE PARTY OF THE P	
6.4		
.50		36
	"特别是我们的 "	
# #		
55	2	40,4
THE STREET		
60	2	44,4
	500	
,	2 -	
65	2,5	48,8
Service division in the		
(30)		

حلقة مرنة للأعمدة

d	÷e	C	f
17	1	25,6	1,1
20	1,2	29	1,3
22	1,2	31,4	1,3
25	1,2	34,8	1,3

ب- ملف الأجوبة

5-1- دراسة الإنشاء:

أ- تحليل وظيفي

1-أتمم العلبة O-A للنظام الألي.

2- أكمل المخطط التجميعي لمضاعف السرعات
 بوضع الوظائف ثم قم بصياغة الوظائف داخل الجدول.

صياغة الوظيفة	الوظيفة	

5- سجل التوافقات على الرسم التالي:

6- مادة العمود المحرك (1) هي 30CrMo4 - اشرح هذا التعدين مع ذكر اسم المادة

- اشرح هذا التعيين مع ذكر اسم المادة.	7 [
	A
9	
3	
	\$
	25
41 9	

حامل الآداة	ليطي الحركي:	3- أتمم الرسم التخم
حامل الاداه	I	5
		-
		الدخول
25		1

و عزوم الإنحناء ثم مثّل	- احسب الجهود القاطعة و تغيرات منحنياتها	- دراسة المتسننات الأسطوانية ذات أسنان قائمة : (4)،(4)} - أتمم جدول المميزات التالي مع الحسابات :
$:\overline{\mathbf{M}_{\mathbf{f}}}$	• حساب تغيرات عزوم الإنحناء	a d Z m العجلات 54 2 (4) 28 (5) 8- احسب سرعة خروج العمود (19) علما أن سرعة المحرك هي N _m =N ₁ =750 tr/mn
$A \stackrel{\overrightarrow{F_2}}{\downarrow}_B$	$\overrightarrow{F_3}$ C D $\overrightarrow{F_4}$	9- احسب مزدوجة المحرك C _m علما أن إستطاعة المحرك N _m = 750 tr/mn و P=1,5 Kw
35 TO O MF	85 35 X 20 X 17 X 1	11- در اسة ميكانيكية للمقاومة : در اسة العمود (19) : در اسة إنحناء العمود (19) : نفترض أن العمود (19) عبارة عن عارضة أفقية و محما بجهود حسب الشكل الموالي : $ \vec{F}_1 = 50 \text{ N}$ $ \vec{F}_2 = 50 \text{ N}$ $ \vec{F}_3 = 50 \text{ N}$ $ \vec{F}_4 = 50 \text{ N}$

ب- تطيل بنيوي:

ب، دراسة تصميمية جزئية:

لتحسين المجموعة على مستوي عمود الخروج (19) لمضاعف السرعات.

أنجز وصلة متمحورة بين العمود (19) و الهيكل (18) بمدحرجتين ذات دحاريج مخروطبة "KB" (17) التركيب على شكل "O" لإمتصاص الأحمال المحورية الموجودة على طرف العمود نتيجة تشغيل المجاري .

ب2 - دراسة تعريفية جزئية أنجز الرسم التعريفي للعمود (19) بمقياس 1:1 مستعينا بالرسم التجميعي الصفحة 20/13 - الصفحة 20/13 - ضع السماحات الهندسية و الخشونة بم أنجز المقطع AA

2-5- دراسة التحضير:

أ- تكنولوجيا لوسائل و طرق الصنع:

نقترح دراسة إنجاز العلبة (6) حسب الرسم التعريفي التالي:

- السطوح المرقمة هي السطوح المشغلة.
 - سلسلة التصنيع صغيرة.

1-أتمم الشكل الأولي للخام:

3- ضع القطعة في وضعية سكونية (الوضعية الإيزوسطانية) لإنجاز السطوح
 (6) (7) (9) مع تمثيل الأدوات المناسبة

في وضعية التشغيل و تسجيل ابعاد الصنع

2- نقترح التجميع التالي لإنجاز العلبة (6) {10} ؛ {6-7-9} ؛ {1-2-3-45} - اتمم جدول السير المنطقي للصنع:

منصب	عمليات	مرحلة
		100
		200
		300
		400
		500

ب- آليات:

وصف و تشغيل : النظام الآلي : أنظر شكل صفحة 20/12

يقوم العامل بوضع القطعة على الطاولة بشرط أن الملتقط (p) يكون مضغوط ثم يضغط على الزر (m) لبداية الدورة. حينئذ يتم خروج الدافعة (A)؛ عند التماسها بالملتقط a_1 ينطلق المحركان ($Mt_2=1$) و ($Mt_2=1$) التابعان لوحدتي التشغيل في الدوران و كذلك خروج الدافعة (B) بدفع المزلاق نحو القطعة الخشبية لإنجاز الثقبين الأولين للمجريين حسب عمق معين.

عند التماسها بالملتقط b_1 تقوم الدافعة (C)بدفع الطاولة بمسافة تساوي طول المجرى عند التماسها بالملتقط c_1 تعود الدافعة (B) إلى وضعيتها الأولى لتضغط على b_0 ، حينئذ يتوقف المحركان ($mat_2=0$) و $mat_2=0$) و تعود الدافعة (C) لوضعيتها الأولى لتضغط على $mat_2=0$ فتحرر القطعة برجوع الدافعة (A) لتضغط على $mat_2=0$ تكرر الدورة من جديد.

1- أتمم مخطط (م.ت.م.ن) الخاص بمركز التثقيب: (GRAFCET) (المستوى 2).

2. ركب الموزع 2/3 بالدافعة البسيطة المفعول "A"

سلم التنقيط

وزارة التربية الوطني الديوان الوطني للامتحانات و المسابقات

دورة : جوان 2012

امتحان: بكالوريا التعليم الثانوي

المادة: تكنولوجيا

الشعبة: تقني رياضي / هندسة ميكانيكية

الموضوع الأول: نظام آلي لنزع الدسم من الحليب الخام

14 /	دراسة الإنشاء
06 /	دراسة التحضير
20 /	المجموع

06	,ر	دراسة التحضر	14	شاء	دارسة الإن
01.25	الصنع	ا - تكنولوجيا لوسائل	10	ظيفي	ا- التحليل الو
	0.25	(1		7x0,1	(1
	0.5	(2		9x0,1	(2
	0.5	(3		12x0,1	(3
02.5	الصنع	ا2- تكنولوجيا لطرق		8x0,1	(4
	0.5	(1-1		0,4	(1-5
	2x0,25	(ب -1		4x0,2	(2-5
	4x0,25	1- ج)		7x0,2	(1-6
	2x0,25			2x0,2	(2-6
02.25		ب- الآلــــات		2x0,2	(3-6
	8x0,2	(1		2x0,2	(4-6
	0,35	(2		2x0,2	(5-6
	0,30	(3		0,2	(1-1-7
				3x0,25	7-1- ب)
	L			0,25	7-1- ج)
				4x0,25	(2-7
			1,48		AL & B. 481
			04	نيوي	ب- التحليل الب
			02.5	ية جزئية	ب1 - دراسة تصميه
				2	وصلة متمحورة
				0,25	وصلة إندماجية
				0.25	تحقيق الكتامة
		20 mg 1	01.5	ب2 - دراسة تعريفية جزئية 1.5	
				0,25+0,75	الرسم التعريفي+المقطع
1				2x0,25	السماحات+الخشونة

ب- ملف الأجوبة

5-1- دراسة الإنشاء:

4 أتمم الرسم التخطيطي

5 ـ التحديد الوظيفي للأبعاد:

على الرسم التالي:

دخول

الحركي لمخفض

المخلاط:

أ- تحليل وظيفي

1- أكمل مخطط الوظيفة الإجمالية للنظام الآلي (علبة A-0)

2- أكمل المخطط التجميعي لمخفض المخلاط بوضع مختلف الوظائف ثم صياغتها داخل الجدول:

صياغة الوظيفة	رمز الوظيفة
نقل حركة دورانية مع تخفيض السرعة	FP
مقاومة المحيط الخارجي	Fc ₁
مرعاة تطبيق شروط الأمن	Fc ₂

12 3 10 11 6

 $^{\circ}$ $^{\circ}$ $^{\circ}$ انجز سلسلة ألأبعاد الخاصة بالشرط $^{\circ}$

خروج (2)

خروج (1)

 $\frac{2-5}{2}$ سجل على الجدول التالي التوافقات المناسبة المروح ودة على الرسم التجميعي صفحة (20/3):

النوع	تعيين التوافق	الأقطار
توافق بخلوص (دوار)	Ø.H7f8	Ø ₁
توافق بالشد	Ø.H7p6	Ø ₂

3- أتمم جدول الوصلات الحركية التالي:

الوسيلة	الرمز	اسم الوصلة	القطع
المجابراغي التجميع	99/	إندماجية	(2)/(1)
الطبرغي +خابور		إندماجية	(3)/(6)
اليروساداتين بمسند	(متمحورة	(4)/(4)و(2)
المرا تركيب بالشد	1	إندماجية	(7)/(5)

$$\frac{T}{S} \le Rpg \Rightarrow Rpg \ge \frac{1500}{6 \times 14} = 17,85 \text{ N/mm}^2$$

$$Rpg = \frac{Reg}{s} \ge \frac{150}{3} = 50 \, N/mm^2$$

17,85 < 50

شرط المقاومة محقق

ج ـ ما هو استنتاجك حول هذه النتيجة ؟ الخابور يقاوم تأثير القص

7-2 يتعرض العمود (3) لتأثير الالتواء البسيط، إذا علمنا أن عزم الالتواء يقدرب Mt = 30Nm ،المقاومة التطبيقية للإنزلاق Rpg = 50 N/mm² أ ـ أحسب القطر الأدنى للعمود (3) حتى يتحمل هذا التأثير

$$R p g = \frac{M t}{\frac{I_0}{v}} = \frac{M t \times 16}{\pi \times d^3}$$

$$I_0 = \frac{\pi \times d^4}{32} = I_x + I_y = 2 \times \frac{\pi \times d^4}{64}$$

$$V = \frac{d}{2} = 10 = 9$$

$$d = \sqrt[3]{\frac{M t \times 16}{\pi \times R p g}}$$

$$= \sqrt[3]{3057,324} = 14,51 mm$$

6- دراسة المتسننات الأسطوانية ذات أسنان قائمة:

6-1- أتمم جدول المميزات التالي مع الحسابات:

$$da_{6} = d_{6} + 2m = 44mm$$

$$df_{6} = d_{6} - 2.5m = 35mm$$

$$da_{7} = d_{7} + 2m = 104mm$$

$$df_{7} = d_{7} - 2.5m = 95mm$$

$$a = \frac{d_{6} + d_{7}}{2} = 70mm$$

$$z_{6} = \frac{d_{6}}{m} = 20$$

$$z_{6} = \frac{d_{6}}{d_{7}} = \frac{2}{5}$$

$$z_{7} = \frac{d_{6}}{d_{7}} = 50$$

а	df	da	z	d	m	
70	35	44	20	40	2	(6)
70	95	104	50	100		(7)

6-2 أحسب نسبة النقل r₆₋₈.

$$r_{6-8}=r_{6-7}=2/5$$
 نفس التباعد المحوري و الترس (6) مشترك

6-3 أحسب سرعة الخروج للعمودين (4) و(5):

$$r_{6-8} = \frac{N_8}{N_6} \Rightarrow N_8 = r_{6-8} \times N_6 = 400 \, tr/mn$$

$$N_4 = N_5 = N_8 = 400 \text{tr/mn}$$

4-6 أحسب المزدوجة المحركة Cm على مستوى الترس (6):

$$Cm = \frac{P}{\omega} = \frac{30 \times P}{\pi \times N} = \frac{30 \times 3000}{3.14 \times 1000} = 28,66 \text{mN}$$

6-5 أحسب الجهد المماسي T المؤثر على مستوى سن الترس(6):

$$T = \frac{Cm}{r} = \frac{28.66}{20 \times 10^{-3}} = \frac{28.66 \times 1000}{20} = 1433N$$

7- در اسة ميكانيكية للمقاومة :

7-1 تنقل التحركة بين العمود (3) و الترس (6) بواسطة خابور متوازي (12) (14×6×6) بتطبيق قوة مماسية مقدار ها T=1500N ومقاومة حد المرونة للانز لاق Peg = 150 N/mm²

ب- تحليل بنيوي:

ب1 ـ دراسة تصميمية جزئية:

لتحسين المجموعة الجزئية على مستوى عمود الخروج (5) للمخفض لجعله أحسن وظيفيا مع تسهيل عملية التركيب و التفكيك :

- أنجز وصلة متمحورة بين العمود (5) والهيكل (1) و الغطاء (2) بمدحر جتين ذات صف واحد من الكريات بتلامس نصف قطري (13) . (13)

بلدمش تصف تصري (١٥) . (١٥) . - اقترح حل آخر لتحقيق الوصلة الإندماجية القابلة للفك بين العجلة (7) و العمود (5). كرا - تحقيق كتامة الجهاز بتركيب فاصل AS (14) على الغطاء (2).

ب2 - دراسة تعريفية جزئية:

مستعينا بالرسم التجميعي الصفحة (3\20) أتمم الرسم التعريفي لعمود الخروج(4) بمقياس 1:1 موضحا كل التفاصيل البيانية (قطاع موضعي لتوضيح التفاصيل الداخلية):

2-5- دراسة التحضير:

أ١- تكنولوجيا لوسائل الصنع:

نريد دراسة وسائل الصنع اللازمة من حيث الآلات و أدوات القطع والمراقبة للترس (6) في ورشة الصناعة الميكانيكية بسلسلة صغيرة.

1- ما هي طريقة الحصول على الخام؟

الدر فلة أو القولية

2- أشرح تعيين مادة صنع هذا الترس 60 C

صلب خاص للمعالجة الحرارية يحتوى على

0,6%من الكربون

3- باستعمال علامة (x) اختر الوحدات المناسبة للإنجاز

×	وحدة الخراطة
×	وحدة التفريز

وحدة التثقيب

- نقترح دراسة صنع الوسادة (8) طبقا للرسم التعريفي المقابل بسلسلة تصنيع أحادية.

- السير المنطقي للصنع:

منصب	عمليات	المرحلة
منصب المراقبة	مراقبة الخام	100
خراطة	{(4)}	200
خراطة	{(5):(6):(2):(1):(3)}	300
منصب المراقبة	مراقبة نهائية	400

1- أتمم على الرسم المقابل رسم المرحلة 300 ب:

أ-إتمام الوضعية السكونية.

ب-إتمام أبعاد الصنع.

ج- حساب بعد الصنع Cf2 بتحويل الأبعاد.

$$C_{2\text{Max}} = C f_{2\text{Max}} - C f_{4\text{Mini}} \Rightarrow C f_{2\text{Max}} = C_{2\text{Max}} + C f_{1\text{Mini}}$$

$$Cf_{2Max} = 15.4 + 4.75 = 20.15$$

$$\mathbf{C}_{_{2\text{Mini}}} = \mathbf{C}\,\mathbf{f}_{_{2\text{Mini}}} - \mathbf{C}\,\mathbf{f}_{_{1\text{Max}}} \Longrightarrow \mathbf{C}\,\mathbf{f}_{_{2\text{Mini}}} = \mathbf{C}_{_{2\text{Mini}}} + \mathbf{C}\,\mathbf{f}_{_{1\text{Max}}}$$

$$C f_{2Mini} = 14.6 + 5.25 = 19.85$$

$$Cf_2 = 20^{\pm 0.15}$$

1 0.05 1

1x45° (5)

معيار أو ميكرومتر

2- ما هي وسائل القياس المناسبة لقياس: 716H7 اسدادة أسطوانية مزدوجة (TLD) معيار أو ميكرومتر Ø26p6:معيار مزدوج الفكين (CMD)

ΑΑ

◎ 0.5 B

ب - الآليات:

وصف و تشغيل:

عند الضغط على زر بداية التشغيل (m) ، يفتح الصمام (EV) فينزل الحليب الخام من الخزان إلى حوض الخلط . عند ضغط حوض الخلط على الملتقط "c" (حسب كمية الحليب المراد خلطها) يغلق الصمام (EV) و تخرج ساق الدافعة (V_1) حتى الضغط على الملتقط " a_1 " الذي يؤدي إلى دوران المحرك " $M_t=1$ " لمدة زمنية تقدر بـ 10 دقائق. بعدها يتوقف المحرك " $M_t=0$ " وترجع ساق الدافعة (V_1) حتى تضغط على الملتقط " a_1 " وترجع ساق الدافعة (v_1) حتى الضغط على الملتقط " v_2 " أم تفريغ الحوض لمدة 30 ثانية (v_2) حتى المنقط على الملتقط " v_3 الملتقط " v_4 المائقط " v_5 الملتقط على الملتقط على الملتقط " v_5 و تعاد الدورة . ملحظة : فصل الدسم عن الحليب يتم بواسطة شبكة للتصفية .

العمل المطلوب:

1-أتمم المخطط الوظيفي للتحكم في المراحل و الانتقالات (GRAFCET)(المستوى 2) .

2- ما هو إسم الدافعة (V₂) ؟ دافعة مز دوجة المفعول

3- ما هو الموزع المناسب لهذه الدافعة (V₂) ؟ موزع 5.

171

سلم التنقيط

وزارة التربية الوطني الديوان الوطني للامتحانات و المسابقات

دورة : جوان 2012

امتحان: بكالوريا التعليم الثانوي

المادة: تكنولوجيا

الشعبة: تقني رياضي / هندسة ميكانيكية

الموضوع الثاني: نظام آلي لإنجاز مجاري على قطع خشبية

14 /	دراسة الإنشاء	
06 /	دراسة التحضير	
20 /	المجموع	

06	نىير	دراسة التحد	14	۶	دارسة الإنشا
03.5	طرق الصنع	ا - تكنولوجيا لوسائل و	10	ا- التحليل الوظيفي	
4	1	(1		7x0,1	(1
	5x0,2	(2		9x0,1	(2)
	3x0,5	(3)		5x0,1	(3)
02.5	ات ا	ب- الآلــيـــ		0,8	(4
	9x0,2	(1		3x0,3	(5)
2 1434	2x0,35	(2		4x0,2	(6
			-	3x0,2	(7)
				2x0,2	(8)
		h		2x0,2	(9)
				2x0,2	(10
				3x0,3	11)- حساب الجهود القطاطعة
		,		3x0,3	- حساب عزوم الإنحناء
				3x0,3	- تمثيل الجهود القطاعة
				3x0,3	- تمثيل عزوم الإنحناء
		12	04	ي	ب- التحليل البنيو
			02.5	جزئية	ب1 ـ دراسة تصميمية
95				2	وصلة متمحورة
		8		0.5	تحقيق الكتامة
.9		=	01.5	جزئي ة	ب2 - دراسة تعريفية .
				0,25+0,75	الرسم التعريفي+المقطع
			-	2X0,25	السماحات+الخشونة

ب- ملف الأجوبة

1-5-1- دراسة الإنشاء:

أ- تحليل وظيفي

2- أكمل المخطط التجميعي لمضاعف السرعات الم بوضع الوظائف ثم قم بصياعة الوظائف داخل الجدول.

صياغة الوظيفة	الوظيفة
نقل حركة دورانية للأداة مع مضاعفة السرعة	FP
مقاومة المحيط الخارجي	Fc ₁
تحقيق الإرشاد أو ربط المضاعف مع المزلاق	Fc ₂

صياغة الوظيفة	الوظيفة
نقل حركة دورانية للأداة مع مضاعفة السرعة	FP
مقاومة المحيط الخارجي	Fc ₁
تحقيق الإرشاد أو ربط المضاعف مع المزلاق	Fc ₂

3- أتمم الرسم التخطيطي الحركي:

4- أنجز سلسلة الأبعاد الخاصة بالشرط مرعلى الرسم

6- مادة العمود المحرك (1) هي 30CrMo4

أ- اشرح هذا التعيين مع ذكر اسم المادة. 30CrMo4 : صلب ضعيف المزج 0.3% من

Cr:الكروم 1% من الكروم.

Mo: الموليبدان.

7- دراسة المتسننات الأسطوانية ذات أسنان قائمة:
 (4)،(4)}

- أتمم جدول المميزات التالي مع الحسابات:

 $a=(d_4+d_5)/2=41$ mm

z₄=d₄/m=27

 $z_5 = d_5/m = 14$

а	d	Z	m	العجلات
41	54	27	2	(4)
41	28	14	2	(5)

8- أحسب سرعة خروج العمود (19) علما أن
 سرعة المحرك هي N_m=N₁=750 tr/mn.

 $r_{4-5}=d_4/d_5=N_5/N_4$ $N_5=N_{19}=N_4 \times d_4/d_5=750 \times 54/28$ $N_5=N_{19}=\underline{1446.42 \text{ tr/mn}}$

10- أحسب الجهد المماسي T للعجلة المسننة (4).

 $C_m = T \times d_4/2$ T=2 $C_m/d_4 = 2 \times 19100/54$

T=707.40N

11- در اسة ميكانيكية للمقاومة :

دراسة إنحناء العمود (19):

• معطیات:

نفترض أن العمود (19) عبارة عن عارضة أفقية و محملة بجهود حسب الشكل الموالى :

 $|F_{1}| = 50N|F_{2}| = 50N$ $|F_{3}| = 50N|F_{4}| = 50N$ $|T_{3}| = 50N|F_{4}| = 50N$ $|T_{4}| = 50N|F_{4}| = 50N$ $|T_{3}| = 50N|F_{4}| = 50N$ $|T_{4}| = 50N|F_{4}| = 50N$

 $\int x_{2}^{-0} \implies M f_{2}^{-1750Nmm}$

1- أحسب الجهود القاطعة و عزوم الإنحناء ثم مثل

 $0 \le x \le 35$

• حساب الجهود القاطعة T:

ات.

ب- تحليل بنيوي:

ب١ ـ دراسة تصميمية جزئية:

لتحسين المجموعة على مستوي عمود الخروج (19) لمضاعف السرعات.

أنجز وصلة متمحورة بين العمود (19) و الهيكل (18) بمدحرجتين ذات دحاريج مخروطبة "KB" (17) التركيب على شكل "O" لإمتصاص الأحمال الموجودة على طرف العمود نتيجة تشغيل المجاري

ب2 - دراسة تعريفية جزئية: انجز الرسم التعريفي المعمود (19) بمقياس 1:1 مستعينا بالرسم التجميعي الصفحة 20/13

5-2- دراسة التحضير:

نفترح دراسة إنجاز العلبة (6) حسب الرسم التعريفي التالي:

- السطوح المرقمة هي السطوح المشغلة.

- سلسلة التصنيع صغيرة.

1-اتمم الشكل الأولي للخام:

2- نقترح التجميع التالي لإنجاز العلبة (6) (10) ؛ (6-7-6) ؛ (10-3-4-5) - أتمم جدول السير المنطقي للصنع:

منصب	عمليات	مرحلة	
منصب المراقبة	مراقبة الخام	100	
خراطة	(5-4-3-2-1)	200	
خراطة	(9 -7-6)	300	
تثقيب	(10)	400	
منصب المراقبة	مراقبة نهائية	500	

 3- ضع القطعة في وضعية سكونية لإنجاز السطوح
 (7) (6) (9) مع تمثيل الأدوات المناسبة في وضعية التشغيل و تسجيل أبعاد الصنع بدون قيم.

ب- آليات: وصف و تشغیل :

يقوم العامل بوضع القطعة على الطاولة بشرط أن الملتقط (p) يكون مضغوط ثم يضغط على الزر (m) لبداية الدورة. حينتُذ يتم خروج الدافعة (A)؛ عند التماسها بالملتقط a1 ينطلق المحركان (Mt1=1) و (Mt2=1) التابعان لوحدتي التشغيل في الدوران و كذلك خروج الدافعة (B) بدفع المزلاق نحو القطعة الخشبية لإنجاز التقبين الأولين للمجريين حسب عمق معين.

عند التماسها بالملتقط b1 تقوم الدافعة (C)بدفع الطاولة بمسافة تساوي طول المجرى عند التماسها بالملتقط C1 تعود الدافعة (B) إلى وضعيتها الأولى لتضغط على bo ، حينئذ يتوقف المحركان (Mt1=0)و (Mt2=0) و تعود الدافعة (C) لوضعيتها الأولى لتضغط على co فتحرر القطعة برجوع الدافعة (A) لتضغط على ao. تكرر الدورة من جديد.

1- أتمم مخطط (م ت م ن) الخاص بمركز

2- ركب الموزع 2/3 بالدافعة البسيطة المفعول "A" التثقيب: (GRAFCET) (المستوى 2) . الر احة m . P A+ a_1 $M_{11}=1$ $Mt_2=1$ B+ C+ موزع 3/2 B- $Mt_1 = 0$ $Mt_2 = 0$

Co

 a_0

A -

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة : التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (05 نقاط)

I - لديك سلسلة التفاعلات الكيميائية التالية:

(1)
$$+ \text{Cl}_2 \xrightarrow{\text{AlCl}_3} \text{A + HCl}$$

(4)
$$C + H_2O \longrightarrow D + MgClOH$$

(5)
$$D = \frac{KMnO_4}{H_2SO_4} \rightarrow E$$

(6)
$$E + SOCl_2 \longrightarrow F + SO_2 + HCl$$

$$(7) F + \bigcirc \longrightarrow \bigcirc \bigcirc + HCI$$

F ، E ، D ، C ، B ، A المفصلة للمركبات -1

2- ما هي الشروط اللازمة لحدوث التفاعل (2)؟

-3 هو الوسيط المستخدم في التفاعل (7)?

II- يمكن الحصول على البولي إستر (polyester) من التفاعلات الكيميائية التالية:

(1)
$$CH_2=CH_2 + \frac{1}{2}O_2 \xrightarrow{Ag} G$$

(2)
$$G + H_2O \longrightarrow H^+ \rightarrow H$$

(3)
$$n \leftarrow Polyester + m H_2O$$

-1 ما نوع البلمرة في التفاعل -1

2- اكتب الصيغة نصف المفصلة لكل من المركبين G و H.

3- استنتج الصيغة العامة للبولي إستر (polyester).

التمرين الثاني: (05 نقاط)

لديك الجدول التالي:

ليزين Lys	لوسين Leu	سیستئین Cys	حمض أسبار تيك Asp	تیروزین Tyr	فنيل ألانين Phe	الحمض الأميني
H ₂ N - (CH ₂) ₄ -	H ₃ C CH-CH ₂ -	HS-CH ₂ -	HOOC-CH ₂ -	HO-CH ₂ -	CH ₂	الجذر R

1- اكتب الصيغة نصف المفصلة للحمضين الأمينيين Leu و Phe.

2- صنف الأحماض الأمينية التالية: Lys ، Leu ، Cys ، Asp ، Tyr.

3- مثّل المماكبات الضوئية للحمض الأميني Phe حسب إسقاط فيشر.

4- أ) احسب pHi لحمض الأسبار تيك Asp.

يعطى:

 $pKa_2 = 9.6$, $pKa_R = 3.66$, $pKa_1 = 1.88$

pH = 12 و pH = 2,77 ، pH = 1 عند: Asp عند الأسبار تيك و pH = 12 و pH = 12

5- اكتب الصيغة نصف المفصلة لرباعي الببتيد: Lys - Leu - Tyr - Asp

التمرين الثالث: (05 نقاط)

يحترق الإيثانول عند C°25 وفق المعادلة التالية:

$$C_2H_5OH_{(l)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(l)}$$

 $\Delta H_{comb} = -1368 kJ.mol^{-1}$:حيث أنطالبي احتراق الإيثانول السائل

1- وازن معادلة تفاعل احتراق الإيثانول السائل.

 $\Delta H_f^{\circ}(C_2H_5OH_{(l)})$ الإيثانول السائل الإيثانول المعياري لتشكل الإيثانول المعياري ال

بعطي:

$$\Delta H_f^{\circ}(CO_{2(g)}) = -393kJ. \ mol^{-1}$$

$$\Delta H_f^{\circ}(H_2O_{(l)}) = -286kJ. \ mol^{-1}$$

 $\Delta H_{Vap}^{\circ} = 42,63 kJ. \, mol^{-1}$: إذا علمت أن أنطالبي تبخر الإيثانول

 $\Delta H_f^{\circ}(C_2H_5OH_{(g)})$ الإيثانول الغازي المعياري لتشكل الإيثانول الغازي – احسب الأنطالبي المعياري المعيا

 ΔU عند ΔU المائل عند ΔU المائل عند ΔU يعطى:

 $R = 8,314 \text{ J.mol}^{-1}.\text{K}^{-1}$

5- احسب طاقة الرابطة (C-C) في الإيثانول الغازي.

يعطى:

$$\Delta H_{sub}^{0}(C_{(s)}) = 717kJ. \ mol^{-1}$$
 $\Delta H_{dis}^{0}(H-H) = 436 \ kJ. \ mol^{-1}$
 $\Delta H_{dis}^{0}(O=O) = 498 \ kJ. \ mol^{-1}$
 $E_{C-H} = -413 \ kJ. \ mol^{-1}$
 $E_{C-O} = -351 \ kJ. \ mol^{-1}$
 $E_{C-H} = -463 \ kJ. \ mol^{-1}$

التمرين الرابع: (05 نقاط)

يتم تحضير البار اسيتامول خلال مرحلتين هما:

مرحلة التحضير: استخدمنا في هذه المرحلة

- 3,5mL من حمض الإيثانويك المركز

- حمام مائي

مرحلة الفصل والتنقية: استعملنا فيها:

- جهاز الترشيح تحت الفراغ

- ماء جليدي

- ماء بارد

المطلوب:

1- اكتب معادلة التفاعل الحادث.

2- ما دور حمض الإيثانويك المركز؟

3 المرحلة الثانية (الفصل والتنقية) -3

4- احسب عدد المولات لكل من بلاماء الإيثانويك وبارا أمينو فينول.

5- احسب كتلة البار اسيتامول المتحصل عليها في نهاية التجربة إذا كان مردود التفاعل %52,5. يعطى:

$$C = 12 \text{ g/mol}$$
 , $H = 1 \text{ g/mol}$, $O = 16 \text{ g/mol}$, $N = 14 \text{ g/mol}$

ρ(بلاماء الإيثانويك) =1,08g/mL

الموضوع الثاني

التمرين الأول: (07 نقاط)

I- أكسدة المركب A بالأوزون O3 تعطى مركبا B.

- إماهة 1 مول من المركب B ينتج عنها 2 مول من المركب C.

- هدرجة المركب C بوجود النيكل تعطي المركب D.

- نزع الماء من المركب D في وسط حمضي (H_2SO_4) عند $D^{\circ}C$ يعطي المركب -

1- استنتج الصيغ نصف المفصلة للمركبات E ، D ، C ، B ، A - استنتج

2- ما نوع البلمرة ؟ ما اسم البوليمير P؟

II- انطلاقا من المركب D نجري سلسلة التفاعلات التالية:

(1) D +
$$PCl_5$$
 \longrightarrow F + $POCl_3$ + HCl

(3)
$$G + CO_2 \longrightarrow H$$

(4) H +
$$H_2O$$
 \longrightarrow I + MgClOH

(5) I + D
$$\longrightarrow$$
 CH₃-CH₂-C-O-CH₂-CH₃ + H₂O

1- اكتب الصيغ نصف المفصلة للمركبات I ، H ، G ، F - اكتب

2-1) ما هو الوسيط المستخدم في التفاعل (2)?

- ب) ما هي خصائص التفاعل (5)؟
- ج) ما هو مردود التفاعل (5) إذا كان المزيج التفاعلي متساوي المولات؟
- F اكتب التفاعلات التي تسمح بالحصول على حمض البنزويك COOH والبنزن ومواد كيميائية أخرى.

ليزين Lys

التمرين الثاني: (07 نقاط)

لديك الأحماض الأمينية التالية:

$$H_2N-CH-COOH$$
 $H_2N-CH-COOH$ CH_3 CH_4 CH_2 CH_4 CH_4 CH_5 CH_5

- 1- صنّف هذه الأحماض الأمينية.
- 2- مثِّل المماكبات الضوئية للحمض الأميني Val حسب إسقاط فيشر.

سيرين Ser

- $pKa_2 = 9,67$ ، $pKa_1 = 2,33$: حيث ، Ala للحمض الأميني pH_i للحمض الأميني
 - pH=6 و pH=12 ، pH=12 ، pH=12 عند: pH=12 و pH=12
- 5- نضع مزيجا من الأحماض الأمينية (Lys ، Ser ، Ala) في جهاز الهجرة الكهربائية عند 6-PH.
 - حدّد بالرسم مواقع هذه الأحماض الأمينية بعد الهجرة.

يعطى:

$$pH_i(Lys)=9,74$$
 $pH_i(Ser)=5,68$

- أ) اكتب الصيغة نصف المفصلة لهذا الببتيد، واذكر اسمه.
 - ب) استنتج صيغة هذا الببتيد عند pH=1
- ج) هل يعطي هذا الببتيد نتيجة إيجابية مع كاشف كزانتوبروتييك؟ علَّل إجابتك.

التمرين الثالث: (06 نقاط)

 $\Delta H_{comb} = -3268~kJ.~mol^{-1}$ هو: $25^{\circ}\mathrm{C}$ هو: البنزن السائل عند $^{\circ}\mathrm{C}$ هو: أ) اكتب معادلة احتراق البنزن السائل.

 $\Delta H_f^{\circ}(C_6H_{6(l)})$ البنزن السائل المعياري لتشكل البنزن السائل الأنطالبي المعياري المعياري المعياري

 $\Delta H_f^{\circ}(H_2O_{(l)}) = -286 \; kJ. \; mol^{-1}$ ، $\Delta H_f^{\circ}(CO_{2(g)}) = -393 \; kJ. \; mol^{-1}$ علما أن:

2- احسب أنطالبي احتراق البنزن السائل عند 60°C.

يعطى:

$$C_p(C_6H_{6(l)}) = 135,17 J. mol^{-1}. K^{-1}$$

$$C_p(O_{2(g)}) = 29,50 \text{ J. mol}^{-1}. K^{-1}$$

$$C_p(CO_{2(g)}) = 37,20 \text{ J. mol}^{-1}.K^{-1}$$

$$C_p(H_2O_{(l)}) = 75,30 \text{ J. mol}^{-1}.K^{-1}$$

 ΔH_{vap}° أحسب أنطالبي تبخر البنزن السائل أ-3

ب) استنتج الحرارة اللازمة لتبخر g 7,8 من البنزن السائل.

يعطى:

 $C = 12g.mol^{-1}$, $H = 1g.mol^{-1}$, $\Delta H_f^{\circ}(C_6H_{6(g)}) = 83 \text{ kJ. mol}^{-1}$

الإجابة النموذجية وسلم التنقيط لموضوع امتحان البكالوريا دورة: جوان 2012 المحتبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة:تقني رياضي المدة: 4 سا و 30 د

لامة مجموع		عناصر الإجابة (الموضوع الأول)
رسبم	مبررد	/t.s. 05\. 1 \$t1
03	6×0,5	التمرين الأول : (05 نقاط) التمرين الأول : (05 نقاط) التمرين الأول : (1 - I الصيغ نصف المفصلة للمركبات: CI MgCl B: CH ₂ -OMgCl
03	0^0,5	D: CH_2OH E: $COOH$ F: $C-CI$
0,5	0,5	2) الشروط اللازمة لحدوث التفاعل (2) هي: وجود الإيثر الجاف والغياب الكلي للماء.
0,25	0,25	3) الوسيط المستخدم في التفاعل (7) هو: AlCl ₃
0,25	0,25	1-II) نوع البلمرة في التفاعل (3): بلمرة بالتكاثف 2) الصيغة نصف المفصلة للمركبين G و H:
0,5	2×0,25	G: CH ₂ —CH ₂ H: HO-CH ₂ -CH ₂ -OH
0,5	0,5	3) الصيغة العامة للبولي إستر:
01	2×0,5	التمرين الثاني: (05 نقاط)

	00 5 0	احببار ماده. التحلولوجيا (مندسة طراق) - السعبة السنت (-). تقي رياطي - المده. 4 سا و 0
01,25	5×0,25	- تصنيف الأحماض الأمينية: Tyr : حمض أميني عطري Asp : حمض أميني حامضي Cys : حمض أميني كبريتي Leu : حمض أميني ذو سلسلة كربونية بسيطة Lys : حمض أميني فاعدي
0,50	2×0,25	: تمثیل المماکبات الضوئیة لـ Phe حسب إسقاط فیشر: COOH H₂N
01,25	2×0,25	Asp \rightarrow pHi \rightarrow الصيغة الأيونية لـ Asp \rightarrow asp \rightarrow 2 \rightarrow 1,88 \rightarrow 3,66 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 6 \rightarrow 6 \rightarrow 7 \rightarrow 9 \rightarrow 9 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 1
	3×0,25	pH=1 (pH=pHi=2,77) pH=12 $H_3N - CH - COOH$ $H_3N - CH - COO$ CH_2 CH_2 CH_2 CH_2 $COOH$ $COOH$
01	4×0,25	Lys – Leu – Tyr – Asp : كتابة صيغة رباعي الببتيد -5 $H_2N - CH - C - NH - CH - C - NH - CH - COOH$ $(CH_2)_4$ CH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 $COOH$
		196

تابع الإجابة النموذجية وسلم التنقيط لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: جوان 2012 اختبار مادة: التكنولوجيا (هندسة طرائق) الشعبة/السلك (*): تقني رياضي المدة: 4 سا و 30 د

		المرابع ويامي المعلوق بي (مسلم فرابق) المسلم ويامي ويامي ويامي المسلم ويامي ويامي ويامي ويامي ويامي
		التمرين الثالث: (05 نقاط)
0,5	0.5	1- موازنة المعادلة: 2 H OH + 3O > 2CO + 3H O
0,5	0,5	$C_2H_5OH_{(l)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(l)}$
		: $\Delta H_f^{\circ}(C_2H_5OH_{(1)})$ = -2
		$\Delta H = \sum \Delta H_f^{\circ} (Produits) - \sum \Delta H_f^{\circ} (Reactifs)$:Hess بتطبیق قانون
	0,5	$\Delta H = \left(2\Delta H_{f}^{\circ}(CO_{2(g)}) + 3\Delta H_{f}^{\circ}(H_{2}O_{(f)})\right) - \left(\Delta H_{f}^{\circ}(C_{2}H_{5}OH_{(f)}) + 3\Delta H_{f}^{\circ}(O_{2(g)})\right)$
0,75		$-1368 = 2(-393) + 3(-286) - \Delta H_f^{\circ} (C_2 H_5 OH_{(1)}) - 3(0)$
	0,25	$\Delta H_f^{\circ} (C_2 H_5 OH_{(l)}) = -1644 + 1368 = -276 \text{kJ.mol}^{-1}$
		: $\Delta H_f^{\circ}(C_2H_5OH_{(g)})$ حساب = -3
	0,25	$C_2H_5OH_{(1)} \xrightarrow{\Delta H_{vap}} C_2H_5OH_{(g)}$
01	0,5	$\Delta H_{\text{vap}}^{\circ} = \Delta H_{\text{f}}^{\circ} \left(C_2 H_5 O H_{(g)} \right) - \Delta H_{\text{f}}^{\circ} \left(C_2 H_5 O H_{(l)} \right)$
01		$\Delta H_f^{\circ} \left(C_2 H_5 O H_{(g)} \right) = \Delta H_f^{\circ} \left(C_2 H_5 O H_{(l)} \right) + \Delta H_{vap}^{\circ}$
	0,25	$\Delta H_f^{\circ} (C_2 H_5 O H_{(g)}) = -276 + 42,63 = -233,37 \text{kJ.mol}^{-1}$
		4- حساب التغير في الطاقة الداخلية ΔU عند 25°C:
	0,5	$\Delta H = \Delta U + \Delta nRT$
	0,25	$\Delta n = 2 - 3 = -1 \text{ mol}$
01,25	0,25	T= 25+273=298K
		$\Delta U = \Delta H - \Delta nRT$
		$\Delta U = -1368.10^3 - (-1) \times 8,314 \times 298$
		$\Delta U = -1365522,42 \text{J.mol}^{-1}$
	0.25	$\Delta U = -1365,52 \text{kJ.mol}^{-1}$
	1	97
	. 1	97

01,5	N N	5- طاقة الرابطة C - C في الإيثانول الغازي:
	0.5	$2C_{(s)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)}^{\Delta H_{r}^{\circ}(C_{2}H_{5}OH_{(g)})} C_{2}H_{5}OH_{(g)}$ $2\Delta H_{sub}^{\circ}(C_{(s)}) 3\Delta H_{dis}^{\circ}(H-H) \frac{1}{2}\Delta H_{dis}^{\circ}(O=O) + \frac{E_{C-O}}{5E_{C-H}}$
		$2C_{(g)} + 6H_{(g)} + O_{(g)}$
	0,5	$\Delta H_{f}^{\circ}(C_{2}H_{5}OH_{(g)}) = 2\Delta H_{sub}^{\circ}(C_{(s)}) + 3\Delta H_{dis}^{\circ}(H-H) + \frac{1}{2}\Delta H_{dis}^{\circ}(O=O)$
		$+E_{C-C} + 5E_{C-H} + E_{C-O} + E_{O-H}$
		$-233,37 = 2(717) + 3(436) + \frac{1}{2}(498) + E_{C-C} + 5(-413) - 351 - 463$
	0,5	$E_{C-C} = -345,37 \text{kJ.mol}^{-1}$
		التمرين الرابع: (05 نقاط) 1- معادلة التفاعل:
01	01	$HO \longrightarrow NH_2 + CH_3 + CH_3 + CH_3 + CH_3 + CH_3 + CH_3$
0,25 0,25	0,25 0,25	2- دور حمض الإيتانويك المركز: مذيب يساعد على انحلال البار اأمينوفينول. 3- يساعد الماء الجليدي على إعادة بلورة البار اسيتامول. 4- حساب عدد المو لات:
	0,25×2	$m = \rho \times v = 1,08 \times 7 = 7,56g$ - بالنسبة لبلاماء الإيثانويك: $m = \rho \times v = 1,08 \times 7 = 7,56g$
02	0,25	$M(C_4H_6O_3) = 4 \times 12 + 6 \times 1 + 3 \times 16 = 102g / mol$
	0,25×2	$n(C_4H_6O_3) = \frac{m}{M} = \frac{7,56}{102} = 7,41 \times 10^{-2} mol$ - بالنسبة لبارا أمينوفينول:
	0,25	$M(C_6H_7NO) = 6 \times 12 + 7 \times 1 + 14 + 16 = 109g/mol$
	0,25×2	$n(C_6H_7NO) = \frac{m}{M} = \frac{5.5}{109} = 5.05 \times 10^{-2} mol$
01,5	0,25	: (m_p) : $(m$
		100

- 30	احتبار ماده: التكنولوجيا (مندسه طرائق) الشعبة/السلك (١): تفني رياضي المده: 4 سا و
	- حساب الكتلة النظرية (m_T) : يتم ذلك بالنسبة للمُتفاعِل المُحِد الذي هو بار المينوفينول O NH_2 \longrightarrow $NH-C$ NH_2 \longrightarrow $NH-C$ CH_3
0,5	$109g \longrightarrow 151g$ $5,5g \longrightarrow m_T$ $m_T = \frac{5,5 \times 151}{109} = 7,62g$ ملحظة: يُقبِل الإجابة التالية:
	$HO \longrightarrow NH_2 \longrightarrow HO \longrightarrow NH - C \bigcirc CH_3$
	$1mol \longrightarrow 151g$ $5,05.10^{-2}mol \longrightarrow m_{T}$ $m_{T} = \frac{5,05.10^{-2} \times 151}{1} = 7,62g$
	- مردود التفاعل:
0,5	$rend = \frac{m_p}{m_T} \times 100$ $m_p = \frac{rend \times m_T}{100}$
0,25	$m_{p} = \frac{52, 5 \times 7, 62}{100}$ $m_{p} = 4g$
19	
17	7

العلامة		/ 252
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
2,5	5×0,5	التمرين الأول: (07 نقاط) التمرين الأول: (07 نقاط)
0,5	0,25 0,25	2- نوع البلمرة: بلمرة بالضم اسم البوليمير: بولي إيثلين PE II/ 1- الصيغ نصف المفصلة للمركبات:
02	4×0,5	F: CH ₃ -CH ₂ -CI G: CH ₃ -CH ₂ -MgCl H: CH ₃ -CH ₂ -C-OMgCl I: CH ₃ -CH ₂ -C-OH
01	0,25	2- أ) الوسيط المستخدم في التفاعل (2) هو: الإيثر الجاف. ب) خصائص التفاعل (5):
	0,5 0,25	بطيء، عكوس و محدود ، لا حراري. ج) مردود التفاعل (5) هو 67 % لأن الكحول المستعمل أولي. -3
01	0,5	+ CH ₃ -CH ₂ -CI AICI ₃ + HCI
	0,5	$\begin{array}{c c} CH_2-CH_3 \\ \hline \\ H_2SO_4 \end{array} \begin{array}{c} COOH \\ + CO_2 + 2 H_2O \end{array}$
01	4×0,25	التمرين الثاني: (07 نقاط) 1- تصنيف الأحماض الأمينية: Ala : حمض أميني ذو سلسلة كربونية بسيطة Val : حمض أميني ذو سلسلة كربونية بسيطة Lys : حمض أميني قاعدي Ser : حمض أميني هيدروكسيلي

صفحة 6 من 9 : خاص بالامتحانات المهنية

02		التمرين الثالث: (06 نقاط)
02	0,75	ا معادلة احتراق البنزن: $C_6H_{6(l)} + \frac{15}{2}O_{2(g)} \longrightarrow 6CO_{2(g)} + 3H_2O_{(l)}$
		$\Delta ext{H}^{\circ}_{ ext{f}}\left(ext{C}_{6} ext{H}_{6(I)} ight)$ جساب (ب
		$\Delta H_{comb} = \sum \Delta H_{f}^{\circ} (produits) - \sum \Delta H_{f}^{\circ} (reactifs)$: Hess بتطبیق قانون
	0,75	$\Delta \mathbf{H}_{\text{comb}} = \left(6\Delta \mathbf{H}_{\text{f}}^{\circ} \left(CO_{2(g)}\right) + 3\Delta \mathbf{H}_{\text{f}}^{\circ} \left(\mathbf{H}_{2}O_{(I)}\right)\right) - \left(\Delta \mathbf{H}_{\text{f}}^{\circ} \left(C_{6}\mathbf{H}_{6(I)}\right) + \frac{15}{2}\Delta \mathbf{H}_{\text{f}}^{\circ} \left(O_{2(g)}\right)\right)$
		$-3268 = 6(-393) + 3(-286) - \Delta H_f^{\circ} (C_6 H_{6(I)}) - \frac{15}{2} (0)$
		$-3268 = -3216 - \Delta H_f^{\circ} \left(C_6 H_{6(l)} \right)$
	0,5	$\Rightarrow \Delta H_f^{\circ} (C_6 H_{6(I)}) = 52 \text{kJ.mol}^{-1}$
		\sim البنزن السائل عند ΔH_{comb} حساب ΔH_{comb}
65		$\Delta H_{\mathrm{T}} = \Delta H_{\mathrm{T}_0} + \int\limits_{\mathrm{T}_0}^{\mathrm{T}} \Delta \mathrm{C_p.dT}$:Kirchhoff بتطبیق علاقة
	0,5	$\Delta H_{T} = \Delta H_{T_0} + \Delta C_{p} (T - T_0)$
02,5		$\Delta C_p = \sum C_p (produits) - \sum C_p (reactifs)$
	0,5	$\Delta C_{p} = 6C_{p}(CO_{2(g)}) + 3C_{p}(H_{2}O_{(l)}) - C_{p}(C_{6}H_{6(l)}) - \frac{15}{2}C_{p}(O_{2(g)})$
		$\Delta C_p = 6(37,20) + 3(75,3) - 135,17 - \frac{15}{2}(29,5)$
	0,5	$\Delta C_p = 92,68 \text{J.mol}^{-1}.\text{K}^{-1}$
	0,25	T = 60 + 273 = 333K
	0,25	$T_0 = 25 + 273 = 298K$
		$\Delta H_{333} = -3268 + 92,68.10^{-3}(333 - 298)$
	0,5	$\Delta H_{333} = -3264,75 \text{ kJ.mol}^{-1}$
		ΔH_{vap}° للبنزن السائل: ΔH_{vap}°
	0,25	$C_6H_{6(1)} \xrightarrow{\Delta H^{\circ}_{vap}} C_6H_{6(g)}$
01,5	2×0,25	$\Delta H_{\text{vap}}^{\circ} = \Delta H_{\text{f}}^{\circ} (C_6 H_{6(g)}) - \Delta H_{\text{f}}^{\circ} (C_6 H_{6(l)}) = 83 - 52 = 31 \text{ kJ.mol}^{-1}$

г	
	ب) استنتاج الحرارة اللازمة لتبخر 7,8g من البنزن السائل:
0,25	$M_{C_6H_6} = (6 \times 12) + 6(1) = 78g \cdot \text{mol}^{-1}$
0,25	$n = \frac{m}{M} = \frac{7.8}{78} = 0,1 \text{mol}$
	31kJ
	$x \longrightarrow 0,1$ mol
0,25	$x = \frac{0.1 \times 31}{1} = 3.1 \text{kJ}$
	ملاحظة: تُقبل الإجابة التالية:
	$31kJ \longrightarrow 78g$ من C_6H_6
	$x \longrightarrow 7.8g$
	$x = \frac{7.8 \times 31}{78} = 3.1 \text{kJ}$
_ 20	5
	<u> </u>

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعب: علوم تجريبية، رياضيات، تقني رياضي، تسيير واقتصاد

المدة: 2 سا و 30 د

اختبار في مادة : اللغة الفرنسية

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول:

Guillotine, le prix de la liberté

Elle a été utilisée, pour la première fois, le mardi 19 juin 1956, pour l'exécution des martyrs Mohamed Zabana et Abdelkader Ferradj, dans un intervalle de sept minutes.

Pendant la guerre d'indépendance, plus de 2300 condamnations à mort furent prononcées par la "justice" française. D'après le "registre des grâces", consulté en 2001, on dénombre 217 condamnés qui ont été guillotinés ou fusillés entre 1956 et 1962, dans un contexte où, en vertu des "pouvoirs spéciaux", la justice militaire prenait le pas sur la justice civile. Ce chiffre est de 350 selon l'historienne Sylvie Thénault. A ce sujet, Jean-Jacques de Felice, adversaire infatigable de la peine de mort, avocat des condamnés à mort algériens, affirme qu'en cinq ans, le nombre d'exécutions a été considérable. Ainsi, François Mitterrand a, en tant que ministre de la justice du gouvernement de Guy Mollet, entre 1956 et 1957, donné son accord pour l'exécution de pas moins de 45 nationalistes algériens. "Sous Mitterrand, la guillotine a fonctionné sans relâche", rapportent de nombreux témoignages sur les exécutions d'Algériens. Le 9 octobre 1981, François Mitterrand obtenait l'abolition de la peine de mort en France. Vingt-cinq ans plus tôt, il approuvait les premières exécutions d'Algériens. L'examen d'archives inédites de la chancellerie¹, qui ont pu être consultées, montre que Mitterrand, dans la majorité des cas, donna un avis défavorable à la grâce des condamnés. "Avis défavorable au recours" ou encore "Recours à rejeter".

Benjamin Stora, spécialiste de l'Algérie contemporaine, dit avoir découvert des documents inédits qui expliquent comment, pendant les 16 mois passés à la tête du département de la justice, Mitterrand a laissé sans broncher couper les têtes des nationalistes algériens, qu'ils aient ou non du sang sur les mains, à l'exemple de Fernand Yveton. Seul français parmi les exécutés, Yveton n'avait pas commis de crime de sang mais Mitterrand a quand même exigé sa décapitation.

Enfin, le temps n'est-il pas venu pour l'institution judiciaire française de reconnaître que des fautes très graves ont été commises en son nom et qu'il n'appartient pas aux historiens de rétablir seuls la vérité?

D'après Amar Mansouri dans la revue El Djeich N° 576, juillet 2011

¹Chancellerie: administration centrale de la justice.

OUESTIONS

I. COMPREHENSION: (14 points)

1) "Elle a été utilisée ..."

A quoi renvoie le pronom souligné?

2) Complétez le tableau ci-dessous à partir du texte (que s'est-il passé ?):

Dates	Faits d'histoire		
19 juin 1956			
Entre 1956 et 1962	60 - 60		
En 1981			

3) "La justice militaire prenait le pas sur la justice civile."

L'expression soulignée signifie : a) dominait.

- b) s'accordait.
- c) entraînait.

Recopiez la bonne réponse.

- 4) Relevez du texte un terme et une expression appartenant au champ lexical de la peine de mort.
- 5) "Sous Mitterrand, la guillotine a fonctionné sans relâche." Retrouvez dans le texte une phrase avant le même sens.
- 6) "François Mitterrand obtenait l'abolition de la peine de mort."

Le terme souligné signifie : a) la suppression.

- b) l'instauration.
- c) l'imposition.
- d) la préparation.

Recopiez la bonne réponse.

- 7) "... il n'appartient pas aux historiens de rétablir seuls la vérité?" Oui avec les historiens doit rétablir la vérité?
- 8) Complétez l'énoncé ci-après par les mots suivants :

Leurs recours – prônera – la guillotine – l'exécution.

Sous Mitterrand, de condamnés par était plus fréquente. Ces derniers ont, très souvent, vu rejetés par celui qui, vingt-cinq ans après, en France, l'abolition de la peine de mort.

9) Dans ce texte, l'auteur veut: a) rendre hommage.

- b) témoigner.
- c) rétablir la vérité.

II. PRODUCTION ECRITE: (06 points)

Traitez l'un des deux sujets suivants :

Sujet 1:

Un de vos camarades doit faire un exposé sur la torture. Vous estimez que ce texte pourrait l'intéresser et enrichir son travail. Pour l'aider, faites-lui le compte-rendu objectif du texte en une centaine de mots.

Sujet 2:

La guillotine n'a pas été le seul prix payé par les Algériens pour la liberté. D'autres pratiques de tortures et d'exécutions sommaires ont été pratiquées et se pratiquent partout dans le monde. Rédigez un texte d'une centaine de mots dans lequel vous dénoncerez ces agissements inhumains.

الموضوع الثاني

Cloner des plantes, personne n'y voit de mal. Le clonage des animaux nous dérange un peu plus, mais on cesse d'y penser dès qu'on parvient à dépasser son anthropomorphisme car c'est bien l'idée du clonage de l'homme qui fait peur. Pourquoi?

"Depuis plusieurs années, nous assistons à la naissance d'une nouvelle utopie²", dit Lucien Sfez, professeur de sciences politiques à la Sorbonne, celle d'une "santé parfaite", d'un corps à jamais purifié de ses mauvais gènes, vivant sur une planète aux équilibres parfaitement contrôlés, un corps immortel ou, du moins, vivant toujours plus vieux mais en pleine santé. Un corps qui retrouverait la pureté d'Adam avant la chute. Dans la logique de cette utopie, le clonage d'un individu génétiquement parfait serait une sorte d'aboutissement, l'achèvement de la maîtrise de l'homme sur la nature, but que la science et la technique se sont assigné depuis leur naissance. Pure fiction, certes, mais la communauté scientifique y travaille très concrètement. La fascination est grande, les enjeux économiques sont énormes. La sécurité sociale ne peut que souhaiter le triomphe de la médecine prédictive, qui empêcherait la naissance de trop d'individus à risque.

Qu'est-ce qui nous retient donc d'adhérer sans réserve à ce projet? Est-ce le sentiment confus d'être en présence d'une vision totalitaire de l'homme – et du monde – d'autant plus ambiguë qu'elle est "objectivement" bonne pour la santé? Pour Lucien Sfez, "l'interdit qui pèse sur le clonage de l'homme est avant tout religieux." Derrière toute position humaine se cache une position religieuse. Malgré les apparences, la religion est restée très forte. Seul Dieu peut créer la vie ou donner la mort. Qui s'aventure à usurper ce pouvoir s'expose à la colère divine.

Le clonage n'est pas seulement la transgression d'un interdit divin. Ses conséquences bouleversent les fondements de la société. "Au niveau anthropologique, on ne sait plus si le clone est le fils ou le frère de l'original, ce qui anéantit la notion même de filiation. C'est la fin de la famille engendrée, portant la fin de l'interdit de l'inceste et de la loi du père."

Le clonage signifierait-il la fin de la société humaine? "Oui, parce qu'il n'en resterait qu'un conglomérat³ d'individus identiques. Mais on peut tempérer ce pessimisme : le clone et l'original peuvent ne pas être semblables, puisque les êtres vivants sont malléables, influencés par l'environnement jusqu'au plus profond de leur corps."

Sciences et Vie Nº 956, mai 2007 p. 96

3Cong	omérat : ensemble d'éléments groupés.
	QUESTIONS
ı.	COMPREHENSION : (14 points)
1)	"Personne n' <u>v</u> voit de mal." "On cesse d' <u>v</u> penser" A quoi renvoie chacun des pronoms soulignés?
2)	Faites correspondre les expressions ci-dessous aux mots suivants : toléré – admis – effrayant. Le clonage des plantes

¹Anthropomorphisme: caractéristique de la forme humaine.

²Utopie: projet impossible à réaliser.

Le clonage des animaux Le clonage humain 3) "Un corps qui retrouverait la pureté d'Adam."

Relevez dans le 2^{ème} paragraphe deux expressions de même sens que le mot souligné.

4) "... <u>but</u> que la science et la technique se sont assigné ..."

De quel but s'agit-il?

- 5) Le clonage humain parfait reste, selon le texte, un projet irréel. Relevez du texte l'expression qui le montre.
- 6) "... la médecine prédictive qui <u>empêcherait</u> la naissance ..." Qu'exprime le conditionnel dans cette phrase?
 - a) Un souhait?
 - b) Une éventualité?
 - c) Une certitude?

Recopiez la bonne réponse.

7) Classez les expressions suivantes dans le tableau ci-dessous :

Les êtres vivants influencés par l'environnement – bouleversement des fondements de la société – moins de naissances d'individus à risque – la fin de la famille engendrée – transgression d'un interdit divin.

Arguments pour le clonage	Arguments contre le clonage

8) " qui s'aventure à usurper ce pouvoir ..."

Le mot souligné signifie :

- a) Donner généreusement
- b) Partager équitablement
- c) S'approprier illégalement

Recopiez la bonne réponse.

- 9) Le projet du clonage humain se heurte, selon Lucien Sfez, à un obstacle. Lequel?
- 10) Complétez l'énoncé ci-dessous à l'aide des mots suivants : anthropologues économique scientifique religieuse.

Sur le plan, le clonage humain serait une maîtrise de l'homme sur la nature. Sur le plan, ce serait un gain énorme d'argent. Cependant, selon la position, c'est une transgression d'un interdit divin. Enfin, pour les, le clonage anéantirait la notion de filiation.

II. PRODUCTION ECRITE: (06 points)

Traitez l'un des deux sujets suivants :

Sujet 1:

Dans le cadre d'une journée d'étude sur le clonage, votre professeur vous demande d'y contribuer. Vous jugez ce texte intéressant, faites-en, le compte-rendu objectif, en une centaine de mots.

Sujet 2:

Vous êtes membre d'une association pour la protection du consommateur. Vous avez entendu parler des O.G.M (Organismes Génétiquement Modifiés) et de leurs dangers potentiels sur la santé de l'homme.

Rédigez un texte d'une centaine de mots dans lequel vous sensibiliserez le consommateur sur les risques de ces produits.

الإجابة النموذجية وسلم التنقيط ... مادة: اللغة الفرنسية الشعب العلمية المشتركة بكالوريا دورة: جوان 2012

رة: جوال 2012 العلامة			1:-			
المجموع	مجزأة	الإجابة	عناصر			
01 01.5	01 0.5×3	Entre 1956 et 1962 217 condamnés ont				
		1981 François Mitterrand	obtenait l'abolition de la peine de mort.			
02 02	02 01×2	 3) " prenait le pas sur" = dominait. 4) Un terme : exécution, guillotine, (les) exécutés, décapitation. Une expression : martyrs de la guillotine, ont été guillotinés ou fusillés, condamnations à mort, des condamnés à mort, couper les têtes. 				
02	02	5) Une phrase de même sens: "Ainsi, François Mitterrand a, en tant que ministre de la justice du gouvernement de Guy Mollet, entre 1956 et 1957, donné son accord pour l'exécution de pas moins de 45 nationalistes algériens." « le nombre d'exécutés a été considérable ». Ou " Mitterrand, dans la majorité des cas, donna un avis défavorable à la grâce des				
01 01.5 02 01	01 01.5 0.5×4 01	condamnés." Ou " Mitterrand a laissé sans broncher couper les têtes des nationalistes algériens." 6) abolition = suppression. 7) C'est l'institution judiciaire française. 8) l'exécution - la guillotine - leurs recours - prônera. 9) Réponse : rétablir la vérité.				
01	0.5×2	Sujet 2: I. Compréhension. (14 points) 1) "Personne n'y voit de mal"; y = clon "On cesse d'y penser"; y = clonage des an				
01.5 02	0.5×3 01×2	2) a) admis b) toléré c) effrayant 3) "une santé parfaite", "un corps à jamais purifié de ses mauvais gènes.				
01	01	individu génétiquement parfait- en pleine santé. 4) le but : - le clonage d'un individu génétiquement parfait serait une sorte d'aboutissement				
01 01	01 01	- l'achèvement de la maîtrise de l'homme sur la nature. Accepter aussi la phrase en entier : Le clonage d'un individu sur la nature. 5) "pure fiction", "nouvelle utopie" 6) a) un souhait, éventualité.				
02.5	0.5×5	Pour le clonage - Les êtres vivants influencés par l'environnement. - Moins de naissances d'individus à risque.	Contre le clonage - Bouleversement des fondements de la société. - La fin de la famille engendrée. - Transgression d'un interdit divin.			
01 01 02	01 01 0.5×4	8) c) s'approprier illégalement 9) l'interdit religieux (divin) 10) scientifique – économique – religieus	se – anthropologues.			

العلامة		alayl valie		
المجموع	مجزأة	عناصر الإجابة		
		II/ PRODUCTION ECRITE (06 Pts)		
		Compte-rendu		
<u>06 Pts</u>	0,25	1- Organisation de la production - Présentation du texte (mise en page)		
00 1 13	0,25	- Présence de titre et de sous-titres		
	0,25 x 4	- Cohérence du texte :		
		- Progression des informations		
		- absence de répétitions		
		- absence de contre-sens		
		- emploi des connecteurs		
	0,5	- Structure adéquate (accroche – résumé – commentaire)		
		2- Planification de la production		
	01	- choix énonciatif (en relation avec la consigne)		
	01	- choix des informations (sélection des informations essentielles)		
	330024 d	3- Utilisation de la langue de manière appropriée		
	01	- correction des phrases au plan syntaxique		
	0,25	- adéquation du lexique à la thématique		
	0,25	- utilisation adéquate de signes de ponctuation		
	0,25	- emploi correct des temps et des modes		
	0,25	- orthographe (pas plus de 10 fautes pour un texte de 150 mots environ).		
		ESSAI		
0 (10		1-Organisation de la production		
<u>06 Pts</u>	0,25	- Présentation du texte (mise en page selon le type d'écrit demandé)		
		- Cohérence du texte :		
	0,25 x 4	- Progression des informations		
		- absence de répétitions		
		- absence de contre-sens - emploi des connecteurs		
	0,25 x 3	- Structure adéquate (introduction- développement- conclusion)		
	,	2- Planification de la production		
	1	- choix énonciatif (en relation avec la consigne)		
	1 1	- choix enonciair (en relation avec la consigne) - choix des informations (originalité et pertinence des idées)		
		3- <u>Utilisation de la langue de manière appropriée</u>		
	1	- correction des phrases au plan syntaxique		
	0,25	- adéquation du lexique à la thématique		
	0,25	- utilisation adéquate de signes de ponctuation		
¥	0,25	- emploi correct des temps et des modes		
	0,25	- orthographe (pas plus de 10 fautes pour un texte de 150 mots environ).		

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات و المسابقات

امتحان بكالوريا التعليم الثانوي دورة: جوان 2012

الشعب: علوم تجريبية، رياضيات، تقنى رياضي، تسيير واقتصاد.

اختبار في مادة : اللغة العربية و آدابها

وزارة التربية الوطنية

المدة : 02 سا و 30 د

على المترشِّح أن يختار أحد الموضوعين التّاليين:

الموضوع الأول

«عابرون في كلام عابر»

النّص:

أيها المارون بين الكلمات العابرة منكم السبّيفُ ، ومنَّا دَمُنَّا منكم الفولاذُ والنَّار ، ومنَّا لحمَّنا منكم دَبَّابِةً أخرى ، ومنَّا حَجَرٌ منكم قنبلة الغاز ، ومنا المطر أ وعلينا ما عليكم من سماء وهواء فخُذُوا حصَّتكم من دمنا، وانصرفوا والخلوا حفلَ عشاء راقص.. وانصرفوا فعلينا ، نحن ، أن نحرُسَ ورَد الشهداءُ وعلينا ، نحن ، أن نحيا كما نحن نشاءً!

أيها المارون بين الكلمات العابرة كالغبار المُرا، مروا أينما شئتم ولكن لا تمروا بيننا كالحشرات الطائرة فلنا في أرضنا ما (نعمل) ولنا قمح (نربيه) و (نسقيه) ندى أجسادنا ولنا ما ليس يرضيكم هنا:

حجرٌ.. أو خجل

فخذوا الماضي، إذا شئتم، إلى سوق التّحف

أيها المارون بين الكلمات العابرة كدّسوا أوهامكم في حفرة مهجورة، وانصرفوا وأعيدوا عقرب الوقت إلى شرعية العجل المقدَّس ،

أو إلى توقيت موسيقى المسدَّسُ فلنا ما ليس يرضيكم هنا، فاتصرفوا ولنا ما ليس فيكم ، وطنّ ينزفُ شعبًا ينزفُ وطنا يصلح للنسيان أو للذاكرة

أيها المارون بين الكلمات العابرة آن أن تنصر فوا وتقيموا أينما شئتم، ولكن لا تقيموا بيننا آن أن تنصرفوا وتموتوا أينما شئتم، ولكن لا تموتوا بيننا فلنا في أرضنا ما نعمل ولنا الماضى هنا ولنا صوت الحياة الأول ولنا الحاضر، والحاضر، والمستقبل ولنا الدَّنيا هنا والآخرَهُ فاخرُجُوا من أرضنا من بَرِيّا.. من بَحرنا من قَمحنا.. من مِلحنا.. من جُرحنا من كلُّ شيء، واخْرُجُوا من مفردات الذَّاكرَهُ

أيها المارون بين الكلمات العابرة!

محمود درويش - الأعمال الكاملة.

الأسئلة:

أولا _ البناء الفكريّ: (12 نقطة)

- 1. مَن المُخاطَبُ في النَّصِّ؟ وما مضمون ذلك الخطاب؟ وما الدَّافع إليه؟
- 2. في النّص حقلان دلاليّان: الأوّل يتعلّق بالجلاد، والثاني بالضّحية. مثّل لكلّ حقل منهما بأربعة ألفاظ من القصيدة.
 - 3. بم يوحى توظيف الشَّاعر الضمير «نحن » في النَّصَّ؟
- 4. في النّص نزعة بارزة، وضّحها مبيّنا علاقتها بظاهرة الالتزام، ومُستنبطًا مظهرين من مظاهر الالتزام من القصيدة.
- 5. واجه الشَّاعر أساليب القمع والاضطهاد المسلَّطة على شعبه بنبرة التّحدّي. وضمِّح ذلك من النّص.
 - 6. حدّد النّمط الغالب في النّص، ثم اذكر ثلاثة مؤشّرات له مع التّمثيل من القصيدة.

ثانيا _ البناء اللّغويّ: (08 نقاط)

- 1. تنوّعت أساليب الإنشاء في النّص"، استخرج أسلوبين مختلفين مبيّنا نوعيهما وغرضيهما.
 - 2. في النصِّ مظاهر للاتساق، اذكر اثنين منها مع التَّمثيل.
- 3. أعرب لفظة « منكم » الواردة في السلطر الثاني من المقطع الأول، وكلمة « شعبًا » الواردة في السلطر السادس من المقطع الثالث إعرابًا مفصلًا.
 - 4. بيّن المحلّ الإعرابيّ للجمل المحصورة بين قوسين في المقطع الثاني من النّصّ.
 - 5. في العبارتين الآتيتين صورتان بيانيتان، اشرحهما مبيّنا نوعيهما و وجه بلاغتهما:
 - « لا تمرُّوا بيننا كالحشرات الطائرَهُ »
 - « ولنا قمح نُربّیه »

الموضوع الثاني

النَّـصَّ :

«... ليس الابتكارُ في الأدب والفنّ أن تطرق موضوعًا لم يَسبقك إليه سابقٌ، ولا أن تعثر على فكرة لم تخطر على بال غيرك ... إنّما الابتكار الأدبيّ والفنّيّ، هو أن تتناول الفكرة التي قد تكون مألوفة للنّاس، فتُسكِبَ فيها من أدبك وفنك ما يجعلها تنقلب خَلْقًا جديدًا يُبْهرُ العين ويُدهش العقل... أو أن تعالج الموضوع الذي كاد يَبْلى بين أصابع السّابقين، فإذا هو يُضيءُ بين يديكَ، بروح من عندك..

وإذا تأمّلنا أغلب آيات الفنّ، فإنّنا نجد موضوعاتها منقولةً عن موضوعات سابقة موجودة، فالكثير من موضوعات «شكسبير» نُقل عن « بوكاشيو» وبعض « موليير» عن « سكارون»... فإذا عرّجنا على الأدب العربيّ القديم، فإننا نجد في الشعر معنى البيت الواحد وموضوعه، يتنقلان من شاعر إلى شاعر، ويلبسان في كل زمن حلة وصياغة، حتّى اختلف النقاد والباحثون والأدباء فيمن يفضلون: أهو أوّل من طرق الفكرة والموضوع أم من صاغهما وأجراهما على الألسن وأتاح لهما الذيوع؟... على أنّ أرجَحَ الرّأي هو أنّ الموضوع في الفنّ ليس بذي خطر، وليست الحوادت والوقائع في القصص والشعر والتمثيل بذات قيمة، ولكنّ القيمة والخطر في تلك الأشعة الجديدة التي يستطيع الفنّان أن يستخرجها من هيكل تلك الموضوعات والحوادث والوقائع.

إنّ الفنّ ليس في الهيكل، إنّه في الثّوب، والفنّ هو الثّوبُ الجديد الذي (يُلبسه الفنّان) للهيكل القديم...

فالابتكار إذن لا شأن له بفكرة جديدة أو قديمة، غريبة أو مألوفة، ولا بالموضوع الطّريف أو المطروق... وقد تسألني بعدئذ: ما هو الابتكار الفنّي؟ فأقول لك بسرعة وبساطة: (هو أن تكون أنت)، وهو أن تحقّق نفسك، هو أن تُسمعنا صوتك أنت، ونبرتك أنت...»

توفيق الحكيم « فن الأدب » [بتصرف].

الأسئلــة:

أولا _ البناء الفكريّ: (12 نقطة)

- 1. ما القضية التي يعالجها الكاتب في نصِّه؟ وما الغرض من ذلك؟
- 2. ما المفهومُ السّائد للابتكار في الأدب والفنّ ؟ وما رأيُ الكاتب فيه؟ وضِّح.
 - 3. هل تؤيد رأي الكاتب ؟ لماذا؟

- 4. وظَّف الكاتب _ للتفاع عن رأيه _ جملةً من وسائل الإقناع. أذكر ثلاثاً منها، ثم مثِّل لها من النَّص .
 - 5. ضمن أيِّ فنّ نثريّ تُصنِّفُ هذا النّص؟ عرِّفْه بإيجاز ثم اذكر خاصيتين له.
 - 6. لخص مضمون النّص.

ثانيا _ البناء اللّغوي: (08 نقاط)

- 1. تكرّرت « إذا » في النّص بمعنيين مختلفين، بيّن معنى وإعراب كلِّ منهما.
 - 2. أعرب كلمة « الأشعة » في قول الكاتب « في تلك الأشعة الجديدة ».
 - 3. بيّن المحلّ الإعرابيّ للجملتين المحصورتين بين قوسين.
- 4. في العبارتين الآتيتين صورتان بيانيتان، اشرحهما مبيّنا نوعيهما و وجه بلاغتهما:
 - « أن تعالج الموضوع الذي كاد يَبلى بين أصابع السابقين »
 - « الفنّ هو الثوبُ الجديدُ »
 - 5. ما النَّمط الغالبُ على النَّصِّ ؟ علَّل حكمك بمؤشَّرين اثنين.

العلامة		(1 St
المجموع	مجزأة	عناصر الإجابة (الموضوع الاختياري الأول)
		البناء الفكري: (12 نقطة)
	01	1. المخاطب في النّص هو العدو الصنهيوني .
	0.5	 مضمون ذلك الخطاب هو رفض المحتل ، وإصرار على إخراجه من أرض فلسطين.
	0.5	- الدافع إلى ذلك هو رغبة الشاعر في تطهير أرض فلسطين من المحتل الصهيوني
		ليعيش شعبه حرًا كريمًا فوق أرضه.
		2. الحقلان الدلاليان:
	4×0,25	أ . الجلاد: (السيف - الفو لاذ - النّار - الدبابة _ قنبلة الغاز).
	4×0,25	ب. الضحيّة: (دمنا - الشهداء - الجرح - أجساد).
		(للمترشح الحرية في اختيار أربع مفردات).
		3. يوحي توظيف الشاعر الضمير «نحن » في النص ب:
	2×01	- إثبات الذَّات والحضور، والتعبير عن انتماء الشاعر إلى شعبه، وإيمانه بقضيته الوطنية
12		العادلة باعتباره لسان قومه المعبّر عن حاله (التعبير عن الضمير الجمعيّ.)
		4. النزعة البارزة في النص هي النزعة الوطنية التحررية.
	2×0,5	علاقتها بالالتزام: هي علاقة ترابط وثيق، فمن شروط الالتزام المساهمة في تحرير
	2×0,5	البلاد من قبضة المحتل، وتسخير الأدب لهذه الغاية.
		من مظاهر الالتزام في النص: - تبني الشاعر قضية وطنه.
		 الوقوف إلى جانب شعبه للتعبير عن آلامه و آماله.
		- رفض الشاعر الصريح للمحتل.
2		- سعيه إلى تغيير الواقع السياسي لبلاده وتكريس شعره وسيلة لذلك .
8		- تعبير الشاعر عن الضمير الجمعي لشعبه (نا، نحن).
		ملحوظة: يكتفي المترشح باستخراج مظهرين.
		5. من أساليب القمع: استخدام كل أنواع الأسلحة (السيف، النار، الفولاذ)
	2×0,75	عبارات التحدي: - أن نحيا كما نحن نشاء.
		- منكم السيف ومنا دمنا
		- لنا الحاضر، والحاضر والمستقبل
	=	والدنيا والآخرة
	01	منحوظة: يكتفي المترشح بذكر ثلاث عبارات.
	01	6. النمط الغالب في النص أمري إيعازي. مؤشراته: - النداء: أيها المارون
	6×0,25	موسراته: - النداء: آیها المارون الأمر: انصرفوا، خذوا، ادخلوا
		- الامل. التصرفوا، كدوا، التحلوا - النهى: لا تموتوا، لا تمروا بيننا
		اللهي، د تمونوا، د تسرور بيت.

	T	//
		البناء اللغوي: (08 نقاط)
		1. الأساليب الإنشائية الواردة في النص:
		- أيّها المارون بين: نداء غرضه التهديد والوعيد
	2×0.75	- خذوا حصتتكم وانصرفوا: أمر غرضه التعبير عن الرفض
		- لا تقيموا بيننا: نهي غرضه التعبير عن التذمر والرفض
		ملحوظة: يكتفي المترشح بذكر أسلوبين.
		2. من مظاهر الأنساق في النص:
		- حروف العطف مثل: لنا في أرضنا ما نعمل ولنا قمح نربيه
		 الإحالة بالضمير: منكم السيف (يعود على الصهاينة).
	2×0.75	 حرف الاستدراك (لكن): وتموتوا أينما شئتم ولكن لا تموتوا بيننا
		- حرف التشبيه: كالغبار المرّ
		ملحوظة: يكتفي المترشح بذكر مظهرين فقط.
		3. الإعراب: منكم:
	0.25	- من: حرف جر مبني على السكون لا محل له من الإعراب.
08	0.25	- كم: ضمير متصل مبني على السكون في محل جر اسم مجرور.
	0.5	 وشبه الجملة في محل رفع خبر مقدم.
	0.5	 شعبًا: تمييز منصوب وعلامة نصبه الفتحة الظاهرة على آخره.
	-	4. المحل الإعرابي للجمل:
		- نعمل: جملة صلة الموصول لا محل لها من الإعراب.
	3×0.5	 نربیه: جملة فعلیة في محل رفع نعت.
		- نسقیه: جملة فعلیة معطوفة على جملة نربیه في محل رفع.
		5. الصورتان البيانيتان:
	ā.	«لا تمرّوا بيننا كالحشرات الطائرة »:
	0.25+0.5	 شبّه الصهاينة المحتلين بالحشرات الطائرة وهو تشبيه مرسل.
	0.25	 بلاغته: توضيح المعنى وتقريبه من ذهن المتلقي، لإظهار الاحتقار والسخرية.
111	·	«قمح نربیه »:
	0.5	 - شبّه القمح بالصبّي الّذي يربّى ، فذكر المشبه (القمح) ، وحذف المشبه به (الصبي)
	0.25	وذكر ما يدل عليه «نربيه» ، فهي استعارة مكنيّة.
	0.25	 بلاغتها: تقریب المعنی و إبراز مدی تمسك الشاعر بأرضه

	العلا المجموع	عناصر الإجابة (الموضوع الاختياري الثاني)		
29		البناء الفكري: (12 نقطة)		
		1. يعالج الكاتب قضية الإبداع والابتكار في الأدب والفنّ.		
	2×1	أمّا الغرض منها فهو إبراز حقيقة الإبداع في مجال الأدب والفنّ، وتصحيح بعض المفاهيم		
	95	السائدة لدى بعض الأدباء ورجال الفنّ.		
	01	2. المفهوم السائد للابتكار هو التطرق للمواضيع الجديدة أي التي لم يتناولها السابقون.		
		رأي الكاتب: لا يوافق ذلك حيث يرى أن الابتكار الحق هو الثوب الجديد الذي يُلبسه الفنان		
	2×0.5	الهيكل القديم. أو هو تناول لفكرة مألوفة بأسلوب مستمد من روح الكاتب « فتسكب فيها من		
		أدبك وفنك ما يجعلها تتقلب خلقا جديدا.»		
12	01.5	3. تترك للمترشح حرية إبداء الرأي على أن يُعلّل ما ذهب إليه.		
		4. من وسائل الإقناع في النص:		
	2	 التمثیل و الاستشهاد (شکسبیر و بوکاشیو). 		
	6×0.25	- أساليب التوكيد (فإنّنا نجد، أنّ أرجح الرأي إنّما الابتكار).		
		- توظيف النفي (ليس الابتكار، لم تخطر).		
		- الإحالة بضمير المخاطب (أن تكون أنت).		
		ملحوظة: يكتفي المترشح بذكر ثلاث وسائل فقط.		
	0.5	5. الفنّ النثريّ الذي ينتمي إليه النص هو المقال. وهو مقال نقديّ.		
	0.5	تعريفه: هو عبارة عن بحث قصير يتناول موضوعا ما في مجال من مجالات الحياة.		
		بعض خصائصه:		
	s di Beri	 المنهجية (المقدمة و العرض و الخاتمة). 		
	2×0.5	 وحدة الفكرة أو الموضوع. 		
		- اعتماد وسائل الإقناع.		
		- الأسلوب الواضح المركّز والمباشر.		
		ملحوظة: يكتفي المترشح بذكر خاصيتين فقط.		
	3×01	6. التلخيص: يُراعى فيه: - تقنية التلخيص دلالة المضمون سلامة اللغة.		
		البناء اللغوي: (08 نقاط)		
	0.25	1. وردت «إذا» بمعنى الظرفية الزمانية المتضمنة معنى الشرط في قول الكاتب:		
		« إذا تأملنا» ثم في قوله: « إذا عرجنا».		
	0.5	 إعرابها: مبنية على السكون في محل نصب مفعول فيه، وهي مضاف. 		
	0.25	وردت «إذا» بمعنى الفجائية في قوله: « فإذا هو يضيء بين يديك»		
	0.5	 إعرابها: فجائية، حرف مبني على السكون، لا محل لها من الإعراب. 		

		2. الإعراب:
7/20 = 10%	0.5	الأشعةِ: بدل من اسم الإشارة مجرور وعلامة جرّه الكسرة الظاهرة.
08		3. المحل الإعرابي للجمل:
	0.75	- « يلبسه الفنان»: جملة صلة الموصول لا محل لها من الإعراب.
	0.75	«هو أن تكون أنت»: جملة مقول القول في محل نصب مفعول به.
		4. الصورة البيانية:
	0.5	- « الموضوع الذي كاد يبلى»: شبّه الموضوع بشيء مادي يبلى كالثوب. ذكر المشبه
	0.5	وحذف المشبه به الثوب وكنى عنه بقرينة لفظية يبلى. فهي استعارة مكنية.
72	0.25	بلاغتها: تجسيد المعنى في قالب حسيّ.
	2×0.5	- «الفن هو الثوب الجديد»: شبّه الفنّ بالثّوب الجديد، فذكر المشبّه به وحذف الأداة فهو
		تشبيه بليغ .
	0.25	بلاغته: توضيح المعنى وتقريبه من ذهن المتلقي.
	0.5	5. النّمط الغالب على النّص هو النّمط التفسيريّ.
		مؤشراته:
		- نكر الموضوع المراد شرحه (الابتكار في الفن والأدب).
	• .	- تعريف الموضوع.
- 1	2×0.75	- الموضوعية والتدرج في عرض الأفكار.
×	10.00	– استعمال أدوات التوكيد والتفصيل والتفسير
	-	التمثيل.
		ملحوظة: يكتفي المترشح بذكر مؤشّرين فقط.
2 %		
2, 1		
	-	

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعب (ة): علوم تجريبية، رياضيات، تقني رياضي، تسيير واقتصاد

المدة: ساعتان ونصف

اختبار في مادة:اللغة الانجليزية

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

PART ONE: Reading

(15pts)

A/ Comprehension

(08pts)

Read the text carefully then do the activities.

There is a new phrase appearing in business language. It is the concept of Triple Bottom Line, a concept that recognises that there are three legs to the measurement of a company's performance - these being social, environmental and financial. Put in a more friendly way, it is about 'people, planet and profits'. This concept recognises that a company cannot be judged by financial performance alone.

Furthermore, it also recognises that the three legs are linked. It is not sufficient, however, just to talk about Triple Bottom Line as a 'fashionable' concept. For those of us who see this concept as the way of the future, it is also necessary to 'walk the talk' and translate this concept into the reality of running a

business such as ours.

In business, we have traditionally been taught to only present the Company in the best possible light, particularly to that important group of stakeholders - the customer. It's hard to be honest and self critical in a public way. It's easy to highlight your successes but hard to highlight your failures and your areas for improvement. In the case of a private company, it is also hard to publicly reveal <u>its</u> financial information.

Hubbard Foods Ltd. (New Zealand) 'Chief Executive Officer's Statement'

1. Circle the letter that corresponds to the right answer.

The text is a:

a. newspaper article

b. speech

c. letter

- 2. Are these statements true or false? Write T or F next to the letter corresponding to the statement.
 - a. The Triple Bottom Line is a new concept in today's business.
 - b. Financial profit is the only way to measure a company's performance.
 - c. The three legs of the Triple Bottom Line are inter-related.
 - d. It is not easy for a private company to present publicly its financial situation.
- 3. Answer the following questions according to the text.
 - a. Which aspects does the Triple Bottom Line concept refer to?
 - b. Does the speaker intend to apply the new concept in the management of his company? Justify.
 - c. Why is it easier to highlight successes than failures?
- 4. In which paragraph is it mentioned that:
 - a. The Triple Bottom Line concept should be applied in business management?
 - b. Managers generally show only the positive sides of their companies?
- 5. What or who do the underlined words refer to in the text?
 - a. it (§2)

b. <u>its</u> (§3)

B/Text Exploration

(07pts)

1. Find in the text words that are closest in meaning to the following.

a. idea (§1)

b. enough (§2)

c. client (§3)

2. Complete the chart as shown in the example.

5000-0-00000	Verb	Noun	Adjective
Example:	to perform	performance	performed
	***************************************		financial
		measurement	
	to translate		

3. Join each pair of sentences with one of the connectors from the list. Make any necessary changes.

in order to - therefore - provided that - because

a. -Some companies are unethical.

- It's hard for them to reveal their financial situation.

b. - A company will act responsibly.

-It will gain the confidence of its stakeholders.

4. Classify the following words according to the pronunciation of their final's'.

legs - profits - recognises - failures - groups - judges

/s/	/ z /	/iz/
e: ¥		

5. Reorder the following sentences to make a coherent paragraph.

a. It also contributes to the economic progress of its community.

b. to improve its business performance,

c. Responsible business conduct allows an enterprise

d. make profits, and meet its stakeholders expectations.

PART TWO: Written Expression

(05pts)

Choose **ONE** of the following topics:

Topic One: Using the notes below, write a composition of 120 -150 words on the following:

Social responsibility has become an important factor to judge a company's performance. Being socially responsible involves:

- be ethical/ comply with business regulations

- meet the expectations of the stakeholders (customers, employees, etc.)

- contribute to the general welfare of the community

- preserve the environment

Topic Two: Write a composition of 120-150 words on the following:

Food safety is a major issue in our life.

As a well-informed citizen, what daily precautions should you take to stay healthy and avoid the risk of contamination from the various products you consume?

الموضوع الثانسي

PART ONE: Reading A/ Comprehension

(15pts)

Read the text carefully and do the activities.

(08pts)

Quasars are extremely distant objects in our known universe. They are the furthest objects away from our galaxy that can be seen. Quasars are extremely bright masses of energy and light, but because they are so far away, they appear as faint red stars to us here on Earth. The name quasar is actually short for quasi-stellar object.

A quasar is believed to be a super massive black hole surrounded by an accretion disk, which is a flat, disk-like structure of gas that rapidly spirals around a larger object, like a black hole. A quasar gradually attracts this gas and sometimes other stars or even small galaxies with their super strong gravity. When these objects get sucked into the black hole, the result is a massive collision that causes a gigantic explosive output of radiation energy and light. This results in a flare, which is a distinct characteristic of quasars.

Once the light and radiation from these galaxies and stars are absorbed into a black hole, they travel billions of light years through space. When we look at quasars which are 10-15 billion light years away, we are looking 10-15 billion years into the past.

Astronomyforkids.com

1. Circle the letter that corresponds to the right answer. The text is: a. narrative

b. descriptive

c. argumentative

- 2. Write the letter which corresponds to the right answer.
 - A. Quasars are....
 - a. the nearest objects to our galaxy.
 - b. not very far from our galaxy.
 - c. the most distant objects from our galaxy.
 - B. A quasar..... disk-like structure of gas.
 - a. attracts
- b. releases

c. emits

- C. Quasars are....
 - a. 10 -15 billion miles away.
 - b. 10 -15 million light years away.
 - c. 10 15 billion light years away.
- 3. Answer the following questions according to the text.
 - a. Why do quasars appear to us as faint red stars?
 - b. What effect does the massive collision of matter have?
 - c. How is the distance in the outer space measured?
- 4. Choose the general idea of the text.
 - a. The formation of quasars.
 - b. The location of quasars.
 - c. General description of quasars.
- 5. What or who do the underlined words refer to in the text?
 - a. <u>they(§1)</u>
- b. these objects (§2)
- c. we (§3)

B/	T	ext	Exp	lora	ation

(07pts)

1. Find in	the text words	that are opp	osite to the	e following.
------------	----------------	--------------	--------------	--------------

a. close (§1)

b. weak (§2)

c. tiny (§2)

d. released (§3)

2. Divide the following words into roots and affixes.

disappearance - extremely - radiation - unidentified

prefix	root	suffix

3. Rewrite sentence (b) so that it means the same as sentence (a).

1. a. A quasar is believed to be a super massive black hole.

b. We.....

2. a. Quasars are the furthest objects from our galaxy.

b. No other object is....

4. Classify the words according to the number of their syllables.

structure - sucked - gravity - billion

One Syllable	Two Syllables	Three Syllables

5. Imagine what 'A' says and complete the following dialogue.

B: No, quasars are the farthest stars from our galaxy.

A:

B: They are 10-15 billion light years away.

A:

B: They are visible to us as faint red stars.

PART TWO: Written Expression

Choose **ONE** of the following topics:

(05pts)

Topic One: Using the notes below, write a composition of 120-150 words to describe the planet Mercury.

- Mercury: the Roman version of the god Hermes

- very small planet/ the closest to the sun/ the hottest planet
- diameter: 4876 km / orbits the sun: 87.969 days
- looks like the moon/ has craters and basins
- no air/ no water/ presence of hydrogen and helium gases

<u>Topic Two:</u> Young people who are addicted to fast foods are the most likely to become obese. Write a composition of 120-150 words stating the main causes of obesity, its dangers and how to control it.

المدة: ساعتان ونصف.

الشعبة/السلك (*): . ع ت/ريا/ ت ر/ ا ق....

المادة : اللغة الإنجليزية

نمة	العلا		/ h & h	
مجموع	مجزأة		ابة (الموضوع الأول)	عناصر الإج
•		PART ONE: Reading	(15pts) There is a	new phrase
08 pts 01 pt 02 pts 03 pts	01 0.5x4 01x3	3. a. It refers to social profits.b. Yes, because for him	c. True d. True, environmental and finan	ncial aspects/ people, planet and the talk and translate the concept
1 pt	0.5 x 2	c. Because it's hard to 4. a. in §2	o be honest and self critic	as ours.
01 pt	0.5x2	b. in §35. a. this concept (Tripleb. a private company		
07 pts	0.5x3	B/ Text Exploration 1. a. concept 2.		c. customer
01.5 pt	0.25x6	verb	noun	adjective
		to finance	finance / financier	
		to measure	***************************************	measurable/ measured
			translation/translator	translated/ translatable
01 pt	0.5 x2	financial situation/ reveal their financi	Because some companie al situation.	s hard for them to reveal their s are unethical, it's hard for them to will gain the confidence of its
01.5pts	0.25x6	4.		
		/s/ profits		/iz/
		groups	legs failures	recognises judges
01.5pts	0.5x3	5. 1. c 2. b 3. d		
05 pts		content: 02	pts. pts pts pts	

نمة	العلا		,	751 1 \ 7.1-N	1 15	1 N. S.
مجموع	مجزأة		(,	لإجابة (الموضوع الثاني	عداصر ا	
08 pts	7	PART ONE: Ro A/ Comprehens		ts) Quasars are	extremely	3
1 pt 1.5pts 3 pts	01 0.5x3 01x3	3. a. Because b. The mass energy an	B. a they are so f sive collision d light. The	C. c ar away/ the furthest ob a of matter causes a gig result is a massive coll	antic explosive or ision that causes a	utput of radiation,
1 pt 1.5 pt	01 0.5x3	c. The distart. 4. c 5. a. they: qua b. these obj	nce in the ou sars/distant e ects: gas, otl	diation energy and light ater space is measured in (furthest objects) her stars and small galactronomers, etc.	n light years.	
07 pts		B/ Text Explora	tion(07pts)			
1 pt 2 pts	0.25x4 0.5x4	 a. distant/far 2. 		ong c. gigantic/ ma		rbed
	(each	-	prefix	root	suffix	
	line)		dis	appear	ance	
				extreme	ly	
				radiate/ radiat	ion	
		NO 10 B)	un	identify/ identifi	ed	
1.5 pt	0.75x2	We beli	eve that a qu	r to be a super massive nasar is a super massive r/farther/more distant the	black hole.	galaxy.
1 pt	0.25x4	4. Sound system	- Two	yllable: sucked syllables: structure, bill syllables: gravity	ion	
1.5 pt	0.5x3		sars near /cl r/distant are	ose to our galaxy? they from us? to us?	ept any correct ar	nswer)
05 pts		PART TWO: W Topic 1: for				·
		Topic 2: for	m: 2.5 pt			

الإجابة النموذجية وسلم التنقيط ـ مادة: الفلسفة ـ شعبة: تسيير واقتصاد + نقني رياضي بكالوريا جوان 2012

محاو		عناصر الإجابة	العا	لامة
			مجزأة	المجموع
وض	ع الأ	الأول: هل ترى أن اليقين الرياضي ثابت بصورة مطلقة ؟	0.1	
	-	– الرياضيات علم الكم بنوعيه المتصل والمنفصل.	01	
4	-	- اعتماد الرياضيات على الصورية والنسق البرهاني يضمن لها يقينية النتائج.	01	
المشكلة	-	- ما قيمة هذا اليقين الرياضي؛ أهو ثابت مطلق أم متغير نسبي ؟	01.5	04
14	-	– سلامة اللغة.	0.5	
	-	– عرض الأطروحة التي مفادها أن اليقين الرياضي ثابت ومطلق.	01	
	-	- الحجة: الحقيقة الرياضية عقلية، استنتاجية، كلية، ضرورية، ونقضها مستحيل.	01	
	- 5	- نقد الحجة: لكن ذلك لا يفسر تعدد الأنساق الرياضية.	01	04
		– توظيف الأمثلة والأقوال.	0.5	
	-	 سلامة اللغة. 	0.5	
a tala	-	- عرض نقيض الأطروحة الذي يرى أن اليقين الرياضي نسبي رغم طابعه العقلي.	01	***************************************
199	- 3	- الحجة: ظهور أنساق جديدة ومفاهيم الاحتمال، ونسبية الانطباق مع الواقع.	01	
Alc. anti. t	- 121	 نقد الحجة: تطور الرياضيات تجاوز النسبية بوصفها صورة للخلافات المذهبية. 	01	04
15.20	-]	– توظيف الأمثلة والأقوال.	0.5	
1.4	_	سلامة اللغة.	0.5	
	الذ	التركيب: (يمكن للمترشح أن يوفّق، أو يغلّب، أو يتجاوز)		
	_ =	 الإشارة إلى الفرق بين طبيعة اليقين في الرياضيات الكلاسيكية والحديثة. 	01.5	£.
	-	- التأكيد على الطابع النسبي للحقيقة الرياضية بحجج شخصية.	01.5	04
	- 4	 الإشارة إلى الفرق بين طبيعة اليقين في الرياضيات الكلاسيكية والحديثة. التأكيد على الطابع النسبي للحقيقة الرياضية بحجج شخصية. توظيف الأمثلة والأقوال. 	0.5	
23/48/201		 سلامة اللغة. 	0.5	.00
	-	- إبراز فكرة تضاؤل الاهتمام بالمطلقية في ظل حقائق البحث العلمي المعاصر.	01	
4		- حل المشكلة بالاستناد إلى تطور الرياضيات الحديثة والمعاصرة.	01	
حل المشكلة	-	- انسجام النتيجة مع منطق التحليل.	01	04
14	-	- توظيف الأمثلة والأقوال.	0.5	
	-	- سلامة اللغة.	0.5	

العلامة		عناصر الإجابة	١,	المحاو
مجموع	مجزأة	The state of the s	-	
		الثاني: قال كلود برنارد:"على البيولوجيا أن تأخذ المنهج التجريبي من العلوم الفيزيائية – كن مع الاحتفاظ بظواهرها النوعية وقوانينها الخاصة." – دافع عن صحة هذه المقولة.	وع بة، د	لمو <u>ض</u> لكيميائ
	01	- الإشارة إلى ملابسات نشأة البيولوجيا.		
04	01	- بيان أهمية المنهج التجريبي في دراسة المادة الجامدة والحية.		J.
04	01.5	- كيف يمكن إثبات مشروعية اعتماد المنهج التجريبي في الدراسات البيولوجية ؟		طرح المشكلة
	0.5	 سلامة اللغة. 		. 4
	01	-عرض منطق أطروحة كلود برنارد وأنصاره لقابلية تطبيق المنهج في البيولوجيا.		
	01	_ عرض مسلمته: شروط المادة الجامدة والحية واحدة في الطبيعة مع الفوارق.		
04	01	- الحجة: التجارب العلمية المؤكدة لصدقها بمراعاة خصوصيات الكائن الحي.	a.	
	0.5	– توظيف الأمثلة والأقوال.	الأول	
	0.5	 سلامة اللغة. 		
	01.5	 الدفاع عن منطق الأطروحة بحجج شخصية تتعلق بتطور نتائج البيولوجيا. 		ام
	01.5	- الإشارة إلى تقدم التطبيقات الهامة في مجالي الطب والجراحة والهندسة الوراثية.	7.3	حاه لية حيل المشكلة
04	0.5	– توظيف الأمثلة والأقوال.	17	4
	0.5	- سلامة اللغة.		ALS.
	01	- عرض منطق الخصوم حول صعوبة تطبيق المنهج على دراسة الكائن الحي.		
Ī	01	- لوجود عوائق موضوعية (صعوبة الملاحظة، التكميم، التعميم، التتبؤإلخ).	13.3	
04	01	- نقد منطقهم باعتبار العوائق تم تجاوزها بفضل تطور أجهزة الرصد والملحظة.	م الثالث	
	0.5	– توظيف الأمثلة والأقوال.	٠J	
	0.5	- سلامة اللغة.		
	01.5	- تأكيد اعتماد المنهج في البيولوجيا وفق شروط وخصوصيات الكائن الحي.		
	01	- تبني الأطروحة مع الإلحاح على إمكانية حدوث صعوبات وعوائق طارئة.		4
04	0.5	- انسجام الخاتمة مع منطق التحليل.		حل المشكلة
- A - B - 1 1	0.5	- مدى تناسق الحل مع منطوق المشكلة.		7
	0.5	- سلامة اللغة.		
0/20		٤		مجم

تابع الإجابة النموذجية وسلم التنقيط ... مادة: الفلسفة ... شعبة: تسيير واقتصاد +تقني رياضي بكالوريا جوان 2012

لامة	العا	عناصر الإجابة	ر ا	المحاو
مجموع	مجزأة			
		الثالث: (النص) لـ وليام جيمس، من كتابه " العقل والدين " صـ 21.	يوع	<u>المو</u> ط
	01	- البحث في المعرفة وصدق أحكامها من أهم المباحث الفلسفية.		
	01	 اختلاف بين المذاهب الفلسفية حول هذه المشكلة.] .	4
04	01	- هل يتحدد صدق القضايا على أساس المبادئ العقلية أم النتائج الواقعية العملية ؟		طرح المشكلة
	0.5	– مراعاة الانسجام بين التمهيد والإشكال.	,	4
	0.5	 سلامة اللغة. 		
	1.5	- موقف صاحب النص: صدق القضايا قائم على أساس النتائج الواقعية العملية.		
,	01	- الاستشهاد بعبارات النص الدالة على الموقف.	7.	
04	01	 استثمار مضامین و أفكار النص للإحاطة بالموقف. 	الأفيل	
	0.5	- سلامة اللغة.		
	01	الحجج: - لأن الفرق بين العقليين والبراغمانيين يكمن في المنهج.		3
	01	 ولأن المذهب العقلي يعتمد على فروض عاطفية ناشئة عن المصادفة أحياناً. 	7 .	محاولة
04	01	- الاستشهاد بعبارات النص الدالة على الحجج.	14.3 17.5	حسل المشكلة
	0.5	- صياغة الحجة من حيث الشكل.	' '5	المشكا
	0.5	– سلامة اللغة.		14
	01	تقييم الموقف والحجج: صحيح أن الصدق المعرفي يستلزم الوقائع كمرجعية.	-	
04	01	 لكن لا يمكن التقايل من أهمية العقل ومبادئه (تقدم الرياضيات والمنطق). 	7.3	
	1.5	- الرأي الشخصى وتأسيسه.	17.	
	0.5	– سلامة اللغة.		
	1.5	- انسجام النتيجة مع منطق التحليل.		
04	1.5	- تجاوز موقف صاحب النص.		حل المشكلة
	0.5	– توظيف الأقوال والأمثلة.		4.21
	0.5	– سلامة اللغة.		
20/20	20/20	وع	_	المجه

الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: الرياضيات و التقني رياضي

سبب برياسي وياسي

اختبار في مادة: العلوم الفيزيائية

المدة: أربع ساعات ونصف

دورة: جوان 2012

الديوان الوطني للامتحانات والمسابقات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (03,5 نقاط)

اقترح أستاذ على تلامذته تعيين سعة مكثفة C بطريقتين مختلفتين : الطريقة الأولى: شحن المكثفة بتيار مستمر ثابت الشدة.

الطريقة الثانية: تفريغ المكثفة في ناقل أومي.

لهذا الغرض تمُّ تحقيق التركيب المقابل.

أولاً: المكثفة في البداية فارغة. نضع في اللحظة t=0 البادلة K في الوضع t=0 فتشحن المكثفة بالمولد t=0 الذي يعطي تيارا ثابتا شدته t=0,31 m تمكنًا من مشاهدة المنحنى البياني لتطور التوتر t=0 بين طرفي المكثفة بدلالة الزمن t=0 (الشكل t=0).

أ- أعط عبارة التوتر u_{AB} بدلالة شدة التيار i المار في الدارة ، وسعة المكثفة C و الزمن t .

- ب حد قيمة C سعة المكثفة

ثانياً: عندما يصبح التوتر بين طرفي المكثفة مساويا إلى القيمة $U_0 = 1,6V$ نضع البادلة K في الوضع (2) في لحظة نعتبرها من جديد t=0 ، فيتم تغريغ المكثفة في ناقل أومي مقاومته t=0 .

. u_{AB} التفاضلية التي يحققها -1

 $u_{AB} = U_0 e^{\frac{1}{\tau}}$: علماً أن حلها

- اثناء تغريغ المكثفة، سمح جهاز ExAO من متابعة تطور التوتر الكهربائي u_{AB} بين طرفي المكثفة بدلالة الزمن t. بواسطة برمجية مناسبة تمكنا من الحصول على المنحنى البياني (الشكل-1ب). جد بيانيا قيمة ثابت الزمن t للدارة ، ثم استنتج قيمة سعة المكثفة t.

التمرين الثاني: (03 نقاط)

1- التفاعل بين الدوتريوم و التريتيوم ينتج نواة ⁴He ونيترون وتحرير طاقة.

E, (MeV /nucléon)

 E_{ℓ} النواة الربط النووي E_{ℓ} للنواة E_{ℓ} النواة E_{ℓ}

ب- الطاقة المحررة
$$|\Delta E|$$
 بدلالة طاقات الربط النووى تعطى بالعبارة:

$$|\Delta E| = |E_{\ell}({}_{2}^{4}He) - E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{1}^{3}H)|$$

احسب قيمة هذه الطاقة المحررة مقدرة بـ MeV.

المعطيات:

النواة	² ₁ H	³ H	⁴ ₂ He
طاقة الربط (MeV)	2,22	8,48	28,29

التمرين الثالث: (03,5 نقطة)

تتكون دارة كهربائية (الشكل-3) مما يلي:

$$E=6.0V$$
 مولد توتر مستمر قوته المحركة الكهربائية

- قاطعة -
- $r=10~\Omega$ وشیعهٔ ذاتیتها L و مقاومتها
 - . $R=200~\Omega$ ناقل أومي مقاومته

ExAO في اللحظة t=0 نغلق القاطعة K ، فبو اسطة ال

 u_{BC} و u_{AB} يمكن معاينة التوتر الكهربائي

(الشكل-4) و (الشكل-5).

ExAO ما هو الجهاز الذي يمكن وضعه بدلا من -1

لتسجيل المنحنيات البيانية السابقة؟

.
$$\frac{di}{dt}$$
 و $i(t)$ بدلالة u_{AB} عبارة عبارة u_{AB}

. i(t) بدلالة u_{BC} عبارة عبارة -3

الشكل- 4

. برتر u_{BC} و u_{AB} له الموافق له u_{BC} و برتر u_{BC} برتر -4

5-اكتب المعادلة التفاضلية التي تحققها شدة التيار الكهربائي i(t) مع إعطاء حل لها.

 I_0 جد عبارة شدة التيار الكهربائي الأعظمي-6

الذي يجتاز الدارة عند الوصول الى النظام الدائم،

ثم احسب قيمته .

auجد قيمة ثابت الزمن au بطريقتين مختلفتين مع الشرح.

احسب L ذاتية الوشيعة.

التمرين الرابع: (03,75 نقطة)

في فبراير 2012، هبت عاصفة ثلجية على شمال شرق الجزائر، فاستعملت الطائرات المروحية للجيش الوطني الشعبي لإيصال المساعدات للمتضررين خاصة في المناطق الجبلية منها.

10 K:

 $v_0 = 50m \cdot s^{-1}$ تطير المروحية على ارتفاع ثابت h من سطح الأرض بسرعة أفقية ثابتة قيمتها يُترك صندوق مواد غذائية مركز عطالته G يسقط في اللحظة t=0 انطلاقا من النقطة O مبدأ الإحداثيات وبالسرعة الابتدائية الأفقية v_0 ليرتطم بسطح الأرض في النقطة M (الشكل-6).

> $(O; \vec{i}, \vec{j})$ ندرس حركة G في المعلم المتعامد و المتجانس المرتبط بسطح الأرض الذي نعتبره غاليليا، نهمل أبعاد الصندوق و تؤثر عليه قوة وحيدة هي قوة ثقله.

> > 1- بتطبيق القانون الثاني لنيوتن جد:

 $\cdot z(t)$ و x(t) و المعادلتين الزمنيتين

z(x) ب- معادلة المسار

ج- إحداثيتي نقطة السقوط M.

د- الزمن اللازم لوصول الصندوق إلى الأرض.

الشكل-6

ثانيا:

لكي لا تتلف المواد الغذائية عند الارتطام بسطح الأرض، تم ربط الصندوق بمظلة تمكنه من النزول شاقولياً ببطء. تبقى المروحية على نفس الارتفاع h السابق في النقطة O ، ليترك الصندوق يسقط شاقوليا دون سرعة $\vec{f} = -100 \times \vec{v}$ الشكل t = 0 . يخضع الصندوق لقوة احتكاك الهواء نعبر عنها بالعلاقة t = 0حيث: \vec{v} يمثّل شعاع سرعة الصندوق في اللحظة t مع إهمال دافعة أرخميدس خلال السقوط.

الشكل-7

1- جد المعادلة التفاضلية التي تحققها سرعة مركز عطالة الصندوق.

t سرعة مركز عطالة الصندوق بدلالة الزمن -2 سرعة مركز عطالة الصندوق بدلالة الزمن -2

أ- جد السرعة الحدية ٧.

t=10s و t=0s و التسارع في اللحظتين: t=0s و و t=0s

m=150~kg الصندوق و المظلة h=405~m ، $g=9.8~m\cdot s^{-2}$

التمرين الخامس: (02,75 نقطة)

 $\Theta Zn \left| Zn^{2+} \right| \left| Cu^{2+} \right| Cu \oplus :$ نحقق عمود دانيال

E = 1,10 V القوة المحركة الكهربائية:

R = 20 ارسم بشكل تخطيطي عمود دانيال موصو لا بناقل أومي مقاومته R = 20، موضحا عليه جهة التيار الكهربائي و اتجاه حركة الالكترونات و الشوارد.

2-اكتب المعادلتين النصفيتين للأكسدة و الإرجاع، ثم استنتج معادلة التفاعل المنمذج للتحول الذي يحدث أثناء اشتغال العمود.

3- ماذا يحدث للمسريين عند حالة التوازن ؟

4- احسب شدة التيار الذي يجتاز الدارة.

5- احسب Q كمية الكهرباء التي ينتجها العمود بC بعد ساعتين من الاشتغال.

التمرين التجريبي: (03,5 نقطة)

تؤخذ كل المحاليل في 25°C.

الإيبوبروفين حمض كربوكسيلي صيغته الجزيئية الإجمالية $C_{13}H_{18}O_2$ ، دواء يعتبر من المضادات للالتهابات، شبيه بالأسبرين، مسكن للآلام و مخفض للحرارة .تباع مستحضرات الإيبوبروفين في الصيدليات على شكل مسحوق في أكياس تحمل المقدار mg يذوب في الماء. في كل هذا النشاط نرمز لحمض الإيبوبروفين ب $M(RCOOH) = 206g \cdot mol^{-1}$. $RCOO^{-1}$

 S_0 في بيشر به ماء فنحصل على محلول مائي محلول مائي $V_0 = 0$ من الحمض في بيشر به ماء فنحصل على محلول مائي $V_0 = 0$ تركيزه المولى $v_0 = 0$ و حجمه $v_0 = 0$

. $c_0 \approx 0{,}002 \; mol \cdot L^{-1}$: تأكد من أن

pH = 3.5 القيمة S_0 المحلول المحلول أعطى قياس

أ- تحقق باستعانتك بجدول التقدم أن تفاعل حمض الإيبوبروفين مع الماء محدود.

ب-اكتب كسر التفاعل Q_r لهذا التحول.

$$Q_{r,eq} = rac{x_{max} \cdot { au_f}^2}{V_0 \cdot (1 - { au_f})}$$
 : الشكل على الشكل عند التوازن تكتب على الشكل Q_r عند التوازن تكتب على الشكل

 au_{max} عنه بـ عنه بـ مسبة التقدم النهائي للتفاعل و au_{max} : التقدم الأعظمي و يعبر عنه بـ au_f

د-استنتج قيمة ثابت التوازن K.

ثانياً: للتحقق من صحة المقدار المسجل على الكيس ، نأخذ S_b حجما $V_b = 100,0 \ mL$ من محلول مائي S_b من محلول مائي $V_b = 100,0 \ mL$ لهيدروكسيد الصوديوم $(aq) + HO^-(aq) + HO^-(aq)$ تركيزه المولي $C_b = 2,0 \times 10^{-2} \ mol \cdot L^{-1}$ و نذيب فيه كليا محتوى الكيس فنحصل على محلول مائي S (نعتبر أن حجم المحلول S هو S_b) . نأخذ S_b من المحلول S_b و ونضعه في بيشر ونعايره بمحلول حمض كلور الهيدروجين تركيزه المولي S_b بيشر ونعايره بمحلول حمض كلور الهيدروجين تركيزه المولي S_b المنحنى المولي S_b الشكل S_b معادلة تفاعل المعايرة هي :

$$H_3O^+(aq) + HO^-(aq) = 2H_3O(\ell)$$

1-ارسم بشكل تخطيطي عملية المعايرة.

2- عرّف نقطة التكافؤ، ثم حدّد إحداثيتي هذه النقطة E.

 $+ 0^{-}$ التي تمت معايرتها $+ 0^{-}$ التي تمت معايرتها $+ 0^{-}$

4-جد كمية المادة الأصلية لشوار د $HO^-(aq)$ ، ثم استنتج تلك التي تفاعلت مع الحمض RCOOHالمتواجد في الكيس. m كتلة حمض الإيبوبروفين المتواجدة في الكيس، ماذا تستنتج؟

الموضوع الثاتي

التمرين الأول: (03 نقاط)

نسكب في بيشر حجما $V_1=50mL$ من محلول يود البوتاسيوم $K^+(aq)+I^-(aq)$ تركيزه المولي $V_1=50mL$ تركيزه المولي بيشر حجما $V_1=50mL$ نم نضيف له حجما $V_2=50mL$ من محلول بيروكسوديكبريتات البوتاسيوم $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$ البوتاسيوم $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$ تركيزه المولي $C_2=0,20mol\cdot L^{-1}$ نركيزه المولي $C_2=0,20mol\cdot L^{-1}$ تركيزه المولي $C_2=0,20mol\cdot L^{-1}$ وأن الثنائيتين المشاركتين في التفاعل هما: $C_2=0,20mol\cdot L^{-1}$

- 1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث.
 - 2- أنشئ جدو لا لتقدم التفاعل، ثم عين المتفاعل المحد.
- $I_{2}\left(aq \right)$ بيّن أن التركيز المولى لثنائي اليود المتشكل $I_{2}\left(aq \right)$ في كل لحظة t يعطى بالعلاقة:

$$V = V_1 + V_2$$
 $= \frac{c_1 V_1}{2 V} - \frac{[I^-(aq)]}{2}$

 I^{-} سمحت إحدى طرق متابعة التحول الكيميائي بحساب التركيز المولي لشوارد اليود $I^{-}(aq)$ كل I^{-} في المزيج التفاعلي ودوّنت النتائج في الجدول التالي:

t (min)	0	5	10	15	20	-25
$[I^{-}(aq)](10^{-2} mol \cdot L^{-1})$	16,0	12,0	9,6	7,7	6,1	5,1
$[I_2(aq)](10^{-2} mol \cdot L^{-1})$	لط علي				4	

أ-أكمل الجدول، ثم ارسم المنحنى البياني f(t) = f(t) على ورقة ميليمترية ترفق مع ورقة الإجابة. $t_{1/2}$ عرق زمن نصف التفاعل $t_{1/2}$ ، ثم عين قيمته.

t = 20 min ، ثم استنتج سرعة اختفاء شوارد اليود في نفس اللحظة t = 20 min

التمرين الثاني: (03,25 نقطة)

1-النشاط الإشعاعي ظاهرة عفوية لتفاعل نووي.

- أ- البيكرال هي وحدة القياس المستعملة في النشاط الإشعاعي ، عرّف البيكرال.
- . γ عفكك نواة الإيريديوم $rac{192}{77}Ir$ يعطي نواة البلاتين $rac{192}{78}Pt$ المشعة أيضا. يصاحب هذا التفكك إصدار للإشعاع
 - اكتب معادلة تفكك نواة الإيريديوم، موضّحا النمط الإشعاعي الموافق لهذا التحول النووي.
 - فسر إصدار الإشعاع م خلال هذا التحول.
 - A=3, 4×10^{14} Bq من الإيريديوم هو Ig من الإيريديوم هو
 - جد عدد أنوية الإيريديوم N الموجودة في m = 1g من العينة.
 - احسب $t_{1/2}$ نصف العمر للإيريديوم.

2- إن الاندماج النووي هو مصدر الطاقة كما في الشمس و النجوم. تحدث تفاعلات متسلسلة في الشمس والتي $4^{1}_{1}H \rightarrow {}^{4}_{2}He + 2^{0}_{1}e$ يمكن نمذجتها بالمعادلة التالية:

MeV لهذا التفاعل بوحدة الكتل الذرية u وكذا الطاقة المحررة لتشكل نواة الهيليوم بـ Δm $c=3\times 10^8 m/s$: الفراغ: $u=1.66\times 10^{-27} kg$ ، سرعة الضوء في الفراغ: $u=1.66\times 10^{-27} kg$

 $1eV = 1.6 \times 10^{-19} J$ ، $N_A = 6.02 \times 10^{23} \, mol^{-1}$: ثابت أفو غادرو

النواة	⁴ He	$\frac{1}{1}p$	$\frac{1}{0}n$	0 1e
الكتلة بــ (u)	4,0015	1,0073	1,0087	0,0005

التمرين الثالث: (03,5 نقطة)

نحقق الدارة الكهربائية (الشكل-1) المكونة من:

- . $E=2\ V$ مولد توتر كهربائى ثابت قوته المحركة الكهربائية -
 - . R=100 Ω ناقل أومى مقاومته
 - وشيعة ذاتيتها L ومقاومتها r
 - قاطعة K

1- نغلق القاطعة X-1

أ- اكتب العلاقة التي تربط التوتر الكهربائي بين طرفي الوشيعة $u_b(t)$ والتوتر الكهربائي بين طرفي E و $u_R(t)$ المقاومة

 $u_{B}(t)$ به بدلالة شدة التيار الكهربائي i(t) ، ثم بدلالة $u_{b}(t)$ ب

 $u_{R}(t)$ المعادلة التفاضلية التي يحققها $u_{R}(t)$ للدارة.

2- يعطى حل المعادلة التفاضلية بالشكل التالي:

. و س توابت یطلب تعیینها $B \cdot A$ حیث $u_R(t) = A + Be^{-mt}$

3- يسمح تجهيز الـ ExAO بمتابعة التطور الزمنى لشدة التيار الكهربائى i(t) المار في الدارة فنحصل على

المنحنى البياني (الشكل-2).

لتكن 10 شدة التيار الكهربائي الأعظمي في النظام الدائم.

 I_0 أ-جد العبارة الحرفية للشدة

 $t\left(\mathbf{s}
ight)$. r جد بيانيا قيمة الشدة، I_{0} ، ثم استنتج مقاومة الوشيعة

 τ المنابعدي أن τ المناب مع الزمن المنابعدي أن τ متجانس مع الزمن.

د - جد بیانیا قیمهٔ τ ، ثم استنتج قیمهٔ ذاتیهٔ الوشیعهٔ L

التمرين الرابع: (03,5 نقطة)

نحضر محلولاً مائياً S_1 حجمه V=200~mL حجمه S_1 بتركيز مولي البنزويك $C_6H_5\,COOH$ ابتركيز مولي

 $pH_1=3.1$ هذا المحلول فنجده $c_1=1.00 imes 10^{-2}~mol \cdot L^{-1}$

أ- اكتب معادلة تفاعل حمض البنزويك مع الماء.

ب- أنشئ جدو لا لتقدم هذا التفاعل.

ج- احسب نسبة التقدم النهائي au_{If} لهذا التفاعل . ماذا تستنتج؟

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$ د - اكتب عبارة ثابت الحموضة K_{al}

هـ - أثبت أن $K_{al}=c_{l} imes rac{ au_{lf}^{2}}{1- au_{lf}}$: هـ العلاقة: $K_{al}=c_{l} imes K_{al}$ ما تبت أن يعطى بالعلاقة:

 S_1 على محلول S_1 لحمض البنزويك – S_2 و نمدّده S_3 مرات بالماء فنحصل على محلول S_1 لحمض البنزويك – $pH_1'=3,6$ هذا المحلول فنجده $pH_2'=3,6$

 $.c_{I}^{'}=1,00 \times 10^{-3} \ mol \cdot L^{-1}$:أبيت أن

 au_{-} احسب القيمة الجديدة لنسبة التقدم النهائي au_{2f} لتفاعل حمض البنزويك مع الماء.

ج- ما هو تأثير تخفيف المحاليل على نسبة التقدم النهائي؟

التمرين الخامس: (03,25 نقطة)

يتصور العلماء في الرحلات المستقبلية نحو كوكب المريخ M وضع محطة لأجهزة الاتصالات مع الأرض على أحد أقمار هذا الكوكب، مثلا على القمر فوبوس (P) Phobos.

 $\cdot G = 6,67 \times 10^{-11} \ N \cdot m^2 \cdot kg^{-2}$ المعطيات: - ثابت التجاذب الكوني:

- $r=9,38 imes10^3~km~:P$ و القمر $M=0,38 imes10^3~km$
 - $m_p: Phobos$ و كتلة المريخ $m_M=6,44 imes 10^{-23}~kg$ و كتلة المريخ $m_p: Phobos$
 - $T_M=24h$ 37 m in 22 s حول نفسه: M=24h 37 m in 22 s

نفرض أن هذه الأجسام كروية الشكل وكتلها موزعة بانتظام على حجومها وأن حركة هذا القمر دائرية وتنسب إلى مرجع غاليلي مبدؤه O مركز كوكب المريخ (الشكل-3).

الشكل -3

P القوة التي يطبقها الكوكب M على القمر فوبوس -1

2- أ- بتطبيق القانون الثاني لنيوتن، بين أن حركة مركز عطالة هذا القمر دائرية منتظمة.

P استنتج عبارة سرعة دوران القمر P حول المريخ.

 m_M و G ، r عبارة دور حركة القمر T_{p} حول المريخ بدلالة المقادير G ، G

4- اذكر نص القانون الثالث لكبلر و بيّن أن النسبة :

$$T_P$$
 مثم استنتج قیمهٔ $T_P^2 = 9,21 \times 10^{-13} \, \mathrm{s}^2 \cdot m^{-3}$

5-أين يجب وضع محطة الاتصالات S لتكون مستقرة بالنسبة للمريخ؟ ما قيمة T_S دور المحطة في مدارها حينئذ؟

التمرين التجريبي: (03,5 نقاط)

-1 لغرض حساب زاوية الميل α لمستو يميل عن الأفق. قام فوج من التلاميذ بقذف جسم صلب (S) كتلته

في اللحظة 0=1 من النقطة 0 بسرعة m=1~kg

نحو الأعلى وفق خط الميل الأعظم لمستو أملس (الشكل-4). ν_0

باستعمال تجهيز مناسب ، تمكن التلاميذ من دراسة حركة مركز عطالة (S) والحصول على أحد مخططات السرعة v = f(t) التالية :

أ- بتطبيق القانون الثاني لنيوتن، ادرس طبيعة حركة الجسم (S) بعد لحظة قذفه من O .

-من بين المخططات الأربعة (1)،(2) ،(3) و(4)، ما هو المخطط الموافق لحركة الجسم (S)؟ برر.

lpha جـ احسب قيمة الزاوية

t=2s و t=0 و المصافة المقطوعة بين اللحظتين: t=2s

f في الحقيقة يخضع الجسم أثناء انزلاقه على المستوي المائل إلى قوة احتكاك شدتها ثابتة -2

أ- أحص و مثل القوى الخارجية المؤثرة على الجسم (S).

ب-ادرس حركة مركز عطالة (S)، ثم استنتج العبارة الحرفية لتسارع حركته.

f=1,8N جاحسب قيمة التسارع من أجل ج

 $g=9.8 \text{ m}\cdot S^{-2}$

·		التمرين الأول (3,5 نقط من)
		ا <u>و لا :</u> أ- عبارة التوتر
	2x0,25	$q = i.t = C.u_{AB} \Rightarrow u_{AB} = \frac{i}{C}.t$
	0,25	$u_{AB}=a.t$: ب- معادلة المنحنى البياني
	0,25	$a=rac{i}{C}$: بمطابقة العلاقتين نجد: C حساب
	0,25	$a = \frac{i}{C} = \frac{1-0}{17.5-0} = 5.71 \times 10^{-2}$
	0,25	$C = \frac{i}{a} = \frac{0.31 \times 10^{-3}}{5.71 \times 10^{-2}} = 5.4 \times 10^{-3} F = 5.4 \text{ mF}$: each
		$\mathbf{q}_{\max} = \mathbf{i}.\mathbf{t} = \mathbf{C}.\mathbf{U}_0 \Rightarrow \mathbf{C} = \frac{\mathbf{i} \times \mathbf{t}}{\mathbf{U}_0} : \underline{\mathbf{j}}$
		و المان ال
}		$C = 5.4 \times 10^{-3} F$
		: لينك
		أ- المعادلة التفاضلية
	0,25	$u_{AB} + u_R = 0$:من قانون جمع التوترات
03,5	0,25	$u_{AB} + RC \cdot \frac{du_{AB}}{dt} = 0 \implies \frac{du_{AB}}{dt} + \frac{1}{RC}u_{AB} = 0$
		ب أقيمة ثابت الزمن 7 للدارة:
	0,25	$Lnrac{U_0}{u_{AB}}=a.t$:معادلة المنحنى البياني
		$u_{AB} = U_0.e^{-rac{t}{\tau}}$ الدينا:
	0,25	$\frac{U_0}{u_{AB}} = e^{\frac{t}{\tau}} \implies Ln \frac{U_0}{u_{AB}} = \frac{1}{\tau}.t$ و منه:
		قيمة سعة المكثفة C :
	0,25	$\mathbf{a}=rac{1}{ au}$ بمطابقة العلاقتين نجد: $\mathbf{a}=rac{1}{ au}$
	0,25	$a = \frac{1}{\tau} = \frac{2.8 - 0}{15 - 0} = 0.187 s^{-1} \implies \tau = 5.36 s \approx 5.4 s$
	0,25	$\tau = R.C = 5, 4 \text{ s}$
	0,25	$C = \frac{5,4}{1000} = 5,4 \times 10^{-3} \mathrm{F} = 5,4 \mathrm{mF}$

		التمرين الثانى: (03 نقط)
		التعريق التاتي: (30 تعد)
	0,2	1-أ- نوع التفاعل الحادث: تفاعل اندماج .
	0,2	· · · · · · · · · · · · · · · · · · ·
		و نیتر و نات
	0,5	${}^{2}_{1} H + {}^{3}_{1} H \rightarrow {}^{4}_{2} H e + {}^{1}_{0} n$
03		2- أ- منحنى أستون يمثل تغيرات طاقة الربط لكل نيكليون بدلالة العدد الكتلي A.
	0,5	11. 100 7
	0,5	A < A
	0,5	- الأنوية المستقرة A < 180
	0,25	3-أ ـ طاقة الربط النووي:
		$E_{\ell} = \left[\left(Z m_p + \left(A - Z \right) m_n - m \left({}_{Z}^{A} X \right) \right] . c^{2} $
		$ \Delta E = E_{\ell}({}_{2}^{4}He) - E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{1}^{3}H) $
	0,25	
	,,,,,,	
		التمرين الثالث: (03,5 نقطة)
	0,25	ExAO راسم الاهتزاز المهبطي ذي ذاكرة هو الجهاز الذي يمكن وضعه بدل -1
	0,25	$u_{AB} = ri + L \frac{di}{dt} - 2$
	0,25	$u_{BC} = Ri - 3$
	0,23	$u_{BC}=0V$ تكون $i=0A$ عندما $i=0$
	0,25	l l
	,	ومنه $u_{AB} = L \frac{di}{dt}$ اما
	0,25 0,25	u _{BC} ◄ (1) المنحنى البياني (1)
	0,25	u _{AB} (2) المنحنى البياني (2)
2,50	0.05	-5
	0,25	$u_{BC} = Ri$ و $u_{AB} = ri + L\frac{di}{dt}$ بما ان:
		$(R+r)i + L\frac{di}{dt} = E$: فإن
	0,25	$R_{i}i + L\frac{di}{dt} = E$:
	0,25	المعادلة التفاضلية
		$i + \frac{L}{R_t} \frac{di}{dt} = \frac{E}{R_t}$
		$R_t dt R_t$

0,2	المعادلة النفاضلية من الرتبة الأولى حلها أسي: $i=rac{E}{R_r}(1-e^{-rac{t}{r}})$
0,2	$I_0 = \frac{E}{R+r} = \frac{6.0}{210} = 28.6 \text{ mA} - 6$
0,2	7 من البيان (1) إما من النسبة 63% أو من المماس $\tau = 2.5 \mathrm{ms}$.
0,5	$\tau = \frac{L}{R+r} - 8$

	-	ثانيا: 1- تطبيق القانون الثاني لنيوتن:
		الهي مرجع عاليلي:
	0,25	$\vec{P} + \vec{f} = m\vec{a}_G \iff \sum \vec{F}_{ext} = m.\vec{a}_G$
	0,25	$mg - 100v = m \frac{dv_Z}{dt}$.
	0,25	$\frac{dv_z}{dt} = 9,8 - \frac{2}{3}v$ بالتعویض نجد؛ ۷
	0,25	$v_{\ell} = 15 \text{m/s}$. السرعة الحدية $v_{\ell} = 15 \text{m/s}$
	2x0,25	$t = 10s \begin{cases} v = v_{\ell} = 15m \cdot s^{-1} \\ a = 0; v = c^{te} \end{cases}$ $t = 0 \begin{cases} v = 0 \\ v = \frac{dv}{dt} = 9,8 \text{ m.s}^{-2} \end{cases}$
	·	
		التمرين الخامس: (02,75 نقاط) 1- شكل العمود:
	0,75	R CONTROL STANCE OF THE STANCE
02,75	0,25	$Cu^{2+} + 2e^- = Cu$:عند صفيحة النحاس
	0,25	$Zn = Zn^{2+} + 2e^{-}$ عند صفيحة الزنك:
	0,25	$Cu^{2+}(aq) + Zn(s) = Cu(s) + Zn^{2+}(aq)$
	0,25	3-تزداد كتلة مسرى النحاس وتقل كتلة مسرى الزنك و يتوقف العمود عن الإشتغال . 4
		$I = \frac{E}{R} = \frac{1,10}{20} = 0,055A = 55mA - 4$
	2x0,25	5-cmlp كمية الكهرباء Q:
	0,25 0,25	$Q = I \times \Delta t$ $Q = S \times 10^{-3} \times 3600 \times 2$ $Q = 55 \times 10^{-3} \times 3600 \times 2$
1		

	·
0,25	$C_0 = \frac{n}{V_0} = \frac{m}{M.V_0} \Rightarrow C_0 = \frac{0.2}{206 \times 0.5} \approx 0.002 \text{mol.L}^{-1}$ $C_0 = \frac{n}{V_0} = \frac{m}{M.V_0} \Rightarrow C_0 = \frac{0.2}{206 \times 0.5} \approx 0.002 \text{mol.L}^{-1}$
0,25	المائة الثاعل RCOOH (aq) + $H_2O(1)$ = $RCOO^-(aq)$ + $H_3O^+(aq)$
·	بما أن الماء يستعمل بوفرة فإن الحمض هو المتفاعل المحد
0,25	حساب النقدم الأعظمي x_{max} : $ c_0V_0 - x_{max=0} $ ومنه: $C_0V_0 - x_{max=0}$ ومنه: $C_0V_0 - x_{max=0}$
0,25	$x_f = n(H_3O^+) = [H_3O^+].V = 10^{-PH}.V = 10^{-3.5} \times 0,5 = 15,8 \times 10^{-5} \text{ mol}$
0,25	نسبة النقدم النهائي $\tau : \tau = \frac{x_f}{x_{max}} = \frac{15.8 \times 10^{-5}}{10^{-3}} = 15.8 \times 10^{-2}$ و منه: فنفاعل حمض الإيبوبروفين محدود في الماء.
0,25	: Q_r detail $Q_r = \frac{[H_3O^+][RCOO^-]_i}{[RCOOH]_i} = \frac{x^2/V^2_0}{C_0.V_0 - x/V_0} = \frac{x^2}{(C_0V_0 - x.)V_0}$ $Q_r = \frac{x^2}{(C_0V_0 - x.)V_0} \Rightarrow Q_{r,eq} = \frac{x_f^2}{(C_0V_0 - x_f)V_0}$ $Q_{r,eq} = \frac{x^2}{V_0(1-\tau)}$
F1	
	0,25 0,25 0,25

	0,25	د- قيمة ثابت التوازن K :
		$Q_{r,eq} = K = \frac{(15,8 \times 10^{-2})^2 10^{-3}}{0,5(1-15,8 \times 10^{-2})} = 5,9 \times 10^{-5}$
03,5	0,25	ثانياً: الشكل التخطيطي لعملية المعايرة:
	0,25	2- يناسب التكافؤ الحالة النهائية للجملة حيث كميتى المادة للمتفاعلين (معاير و معاير) تزامنيا منعدمين أي يكونا بنسب ستوكيومترية. E(10,3mL; 8,4)
		pH
	0,25 0,25 0,25	$n(HO^{-}) = C_a.V_{Ea} = 2 \times 10^{-2} \times 10,3 \times 10^{-3} = 20,6 \times 10^{-5} \text{ mol } -3$ $n(HO^{-}) = 20,6 \times 10^{-5} \times \frac{100}{20} = 103 \times 10^{-5} \text{ mol } :$ $0 \times 100 \text{ mL}$ $0 \times 10^{-5} \times 100 \times 10^{-3} = 200 \times 10^{-5} \text{ mol } -4$ $0 \times 10^{-5} \times $
	0,25	$m = 97 \times 10^{-5} \times 206$ ومنه: $n = \frac{m}{M} - 5$ $m = 0,199g \approx 200 \text{mg}$ وهذا يتوافق مع ماهو مكتوب على الكيس.

152

							ناط)	<u>ل : (03 ن</u>	التمرين الأو
					•	$2I^{-}_{(30)} =$	$= I_{2(a0)} + 2\epsilon$? -	-1
						$S_2O_{8~(aq)}^{(aq)}$	$+2e^{-\frac{1}{2}} = 25$	SO _{4 (aq)}	
	0,25		•			$S_2O_8^{2-}$ (aq)	$+2I^{-}_{(aq)} =$	$SO_{4 \text{ (aq)}}^{2^{-}} \dots$ $I_{2(\text{aq)}} + 2SO_{4}^{2^{-}}$	O _{4 (aq)}
		·						تقدم:	2- جدول ال
			المعادلة	S_2O_8	2- (aq) +	$2I_{(aq)}$	$=$ $I_{2(aq)}$	+ 2	2SO _{4 (aq)}
	0,5		ح.ابتدائية	1	10 ⁻²	1,6.10			0
			ح. إنتقالية	10	$^{2}-x$	1,6.10 ⁻² -			2x
			ح. نهائية	10-	$\frac{1}{x_{\text{max}}}$	1,6.10 ⁻² -	$-2x_{\text{max}} x_{\text{max}}$	nx	$2x_{\text{max}}$
						وض) mol			
	0,25		x_1	$_{\text{max}} = \frac{C}{}$	$\frac{1V_1}{2} = 0.8 \times$	(10 ⁻² mol ((مقبول		
·			b	,	_			حد شوارد ا	المتفاعل الم
					(Tm) GI		ن:	: من الجدوا	1- العلاقة
			e e		$(I^{-}) = C_1 V_1$		- -	_	بالقسمة ع
0,3	0,25		I_2	$\frac{c_1V_1}{2N}$	$\frac{I^{-}}{2}_{(t)}$:منه	$ [I_2]_{(t)} =$	$=\frac{c_1V_1}{V}-\frac{x}{V}$	$\frac{x}{v}$ وحيث:	$-=[I_2]_{(t)}$
	0,25	.	£ -2(t)	_ ,	_	$-\frac{1}{2}[I^{-}]_{(i)}$			i
,		[]	t(min)	0	5	10	15	20	25
	0,25	E. COLLEGE	I_2 I_2 I_2 I_3	0	2	3,2	4,15	4,95	5,45
		•	1	-			$[I_2]$	$= f(t)$ \dot{U}	رسم البب
		•				· · · · · · · · · · · · · · · · · · ·	end, wastendarth of the transfer of the	er	Section of Post
			,	4	,) 2/8				
			b			Till Jon			
	0,25	!							
	0,23								
			·						
	,						may Fr. 1930maka baharita (f. 1943)		•
1	5:	2		7 3	صفحة 1مر				
			à						
L									

الإجابة النموذجية للموضوع الثاني-مادة: العلوم الفيزيائية- شعبة: تقني رياضي+رياضيات.

	ب- زمن نصف التفاعل $(t_{1/2})$:
	هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الأعظمي،
0,25	$x_{t_{1/2}} = \frac{x_{\text{max}}}{2} : \underline{t} = t_{1/2}$
	$\frac{[I_2]_{\text{max}}}{2} = 4 \times 10^{-2}$ توافق $t_{1/2}$
0,25	($13.5 \le t_{1/2} \le 15 \text{min}$) $t_{1/2} = 14 \text{min}$) من البيان هي البيان على البيان
	: $t = 20 \min$
0,25	$v = \frac{dx}{dt} = \frac{d [I_2]V_s}{dt} = V_s \cdot \frac{d [I_2]}{dt} = 0,15 \times 10^{-3} mol / min$ يسرعة إختفاء شوارد I^- يسرعة إختفاء شوارد
0,25	$\frac{V_{I_2}}{1} = \frac{V_{I_2}}{2}$ $\Rightarrow V_{I_2} = 2V_{I_2} = 0.3 \times 10^{-3} \text{mol/min}$ من العلاقة:

L		
		التعرين الثاني: (3,25 نقطة)
	0,25	1-أ- تعريف: البيكريل يوافق تفكك واحد في الثانية.
	0,25	$^{192}_{77}$ المعادلة التفكك: $^{192}_{78}$ + $^{192}_{78}$ Pt + $^{0}_{-1}$ e + γ
	0,25	- النمط الإشعاعي الموافق لهذا التحول النووي هو: -β.
	· · · · · · · · · · · · · · · · · · ·	- تفسير اصدار اشعاع γ: خلال تفكك نواة الايريديوم ينتج نواة البلاتين في حالة مثارة * 192Pt
	0,25	و تفقد إثارتها عند عودتها الى حالتها الأساسية بإصدار γ (موجات كهرمغناطسية)
	0,25	ρ (a) ρ
		78 Pt" $\rightarrow 78$ Pt $+ \gamma$.
		The state of the s
03,25	5	ج- عدد أنوية الإيريديوم الموجودة في $1g$ من العينة:
	2x0,25	$N = \frac{m}{M} \cdot N_A = \frac{1}{192} \cdot 6,02 \times 10^{23} \approx 3,14 \times 10^{21} \text{ noyaux}.$
	240,23	
		$\int_{1}^{\infty} t_{\text{tot}} = \frac{\ln 2^{4}}{2}$
		$t_{1/2} = \frac{\ln 2^{4}}{\lambda}$ $\Rightarrow t_{1/2} = \frac{N \cdot \ln 2}{A} = 6.4 \times 10^{6} \text{ s} \approx 74 \text{ jours}$ خون نصف العمر $t_{1/2}$ للايريديوم: $t_{1/2} = \frac{N \cdot \ln 2}{A}$
	3x0,25	$\lambda = \frac{A}{\lambda}$
		N , Δm , Δm
		$\Delta m = m_i - m_f$
	0,25	$=4.m({}_{1}^{1}H)-m({}_{2}^{4}He)-2m({}_{1}^{0}e)$
		$\Delta m = 0.0267u = 4.4 \times 10^{-29} \text{kg}$
	0,25	
		- الطاقة المحررة:
	0,25	$E_{IIb} = \Delta m.c^2 = 0.0267u.c^2 \approx 24.87MeV$
ł		

		التمرين الثالث: (3,5 نقطة)
	0,25	$u_{R}(t)$ ، $u_{b}(t)$ ، $u_{b}(t)$ و $u_{c}(t)$. $u_{b}(t)$. $u_$
		$ (1) \cdots E = u_R(t) + u_b(t) \cdot -2 \cdot 2 \cdot $
		and the same of th
	0,25	-عبارة (u _b (t) بدلالة u _b (t): عبارة (t) ط بدلالة (t) بدلالة (t)
	0,25	$u_R(t) = R \cdot i(t) \Rightarrow i(t) = \frac{u_R(t)}{R} \Rightarrow \frac{di(t)}{dt} = \frac{1}{R} \frac{du_R(t)}{dt}$
		$u_b(t) = \frac{L}{R} \frac{du_R(t)}{dt} + r \cdot \frac{u_R(t)}{R}$ بالتعویض فی (2) نجد:
		جـ - المعادلة التفاضلية:
	0,25	$\frac{du_R(t)}{dt} + \frac{r+R}{l}u_R(t) = \frac{R}{l}E$ تصبح العلاقة (1):
		2- تعيين الثوابت B،A و m :
	0,25	$\frac{d u_R(t)}{dt} = -B.m.e^{-m.t} : u_R(t)$
		نعوض $u_R(t)$ و $\frac{d u_R(t)}{dt}$ في المعادلة التفاضلية:
*.		ut.
		$B.e^{-m.t}\left(\frac{r+R}{L}-m\right)+\frac{r+R}{L}A=\frac{R}{L}E$
03,5		حتى تتحقق هذه المساواة يجب أن يكون معامل $e^{-m.t}$ معدوما و منه :
	0,25	$A = \frac{R}{r + R} E \qquad m = \frac{r + R}{L}$
		من الشروط الإبتدائية:
	0,25	$A+B=0 \Rightarrow A=-B$
	0,23	$\Rightarrow B = -\frac{R}{r+R}E$
		I+K
-	0,25	$u_{R}(t') = \frac{R}{R/4} E (1 - e^{-\frac{R+r}{L}t})$
	0,23	$R/+ r$: (I_0) في النظام الدائم :
	0,25	$\frac{di(t)}{dt} = 0$ أي $i(t) = i_{max} = I_0 = C$ ste في النظام الدائم
	0,20	العلاقة (1):
	,	$I_0 = \frac{E}{R + r}$
	0,25	· · · · · · · · · · · · · · · · · · ·
	0,25	ب-الشدة (I _o) بيانيا: I _o = 18 mA بيانيا: E =
	0,23	$ angle$ - مقاومة الوشيعة: $ angle r = rac{E}{I_0} - R$ ،
	0,25	$\tau = \frac{L}{R+r}$ الزمن τ : $\frac{L}{R+r}$
	0,25	التحليل البعدي: $s = [T] = [T] = \frac{[U] \times [T] \times [I]}{[R_T]} = \frac{[U] \times [T] \times [I]}{[I] \times [U]} \Rightarrow [T] = [T]$
	,	, [R ¹] [i]×[n] , , ,

					
		ـ قيمة $_{T}$ بيانيا : من إحدى الطريقتين (طريقة المماس عند $_{t}=0$ أو طريقة 63%) نجد:			
		$ au \simeq 4 ext{m s}$. Example 2. But $ au \simeq 4 ext{m s}$. Example 2. But $ au \simeq 4 ext{m s}$			
	0,25	$L = 0,44H \Leftarrow L = \tau \cdot (R + r)$			
	1 .				
	,	تمرين الرابع: (03.5 نقطمة)			
		[-أ- معادلة تفاعل حمض البنزويك مع الماء			
	0,25	$C_6H_5COOH_{(aq)} + H_2O(l) = C_6H_5COO_{aq}^- + H_3O_{aq}^+$			
		ب- جدول تقدم النفاعل			
		معادلة الكاعل $C_6 H_5 COOH_{(eq)} + H_2 O(l) = H_3 O_{eq}^+ + C_6 H_5 COO_{eq}^-$			
	0,5	ريادة الابتدائية الابتدائية C ₁ V مريادة الابتدائية			
		بزيادة جـ بزيادة المسطنة عـ الحالة المسطنة			
		ألحالة النهائية $C_1 Y - x_2$ مريادة x_2 x_3 x_4			
	.	$x_{ m max}=C_1.V=2 imes10^{-3}mol:x_{ m max}$ بيمة التقدم الأعظمي			
	0,25	التقدم النهائي x و نسبة التقدم النهائي $ au_1$ لهذا التفاعل:			
		$x_f = 1,59 \times 10^{-4} mol $ ومنه $x_f = [H_3O^+]_f.V = 10^{-pH_1}.V$			
	0.25				
	0,25	$ \tau_1 = \frac{x_f}{x_{\text{max}}} = \frac{1,59 \times 10^{-4}}{2 \times 10^{-3}} \iff \tau_1 = 0,08 $			
		_			
03,5		$ au_1=8\%$ أي:			
	0,25	نستنتج أن حمض البنزويك ضعيف في الماء لأن نسبة تقدم تفاعله مع الماء أقل من 1 . $-$ ثابت الحموضة للثنائية $(C_6H_5COOH_{(aq)}/C_6H_5COO_{(aq)}^-)$ هو ثابت التوازن لتفاعل			
	-	حمض البنزويك مع الماء.			
٠.	0,25-	$K_{A1} = K = rac{[C_6 H_5 COO_{aq}^-]_{\ell q}.[H_3 O_{aq}^+]_{\ell q}}{[C_6 H_5 COOH_{aa}]_{\ell a}}$ عبارته:			
		- "3			
		$[C_6 H_5 COO^{aq}]_{\ell q} = [H_3 O^+_{aq}]_{\ell q} = rac{x_f}{V}$ ه- من جدول النقدم نجد: $^+$			
	0,25				
		$[C_6H_5COOH_{aq}]_{eq} = \frac{C_1.V - x_f}{V}$			
		$K_{A1}=rac{1}{V} imesrac{x_f^2}{C_1V-x_f}$: نعوض في عبارة ثابت الحموضة نجد			
	0,25				
		$x_f = au_1.x_{ ext{max}} = au_1.C_1.V$ من جهة آخرى لدينا:			
		$K_{A1}=C_1.rac{ au_1^2}{1- au_2}$: نعوض x بعبارتها نجد			
]	$1- au_1$			

	0,25	$K_{A1} = 1 \times 10^{-2} \cdot \frac{(0,08)^2}{1 - 0,08} = 6,96 \times 10^{-5} : K_{A1}$ قيمة -
	0,25	$C_1' = \frac{C_1}{10} = 1.0 \times 10^{-3} \text{ mol.} L^{-1} \iff \frac{C_1'}{C_1} = \frac{1}{10} : -10^{-1} = 1.0 \times 10^{-3} \text{ mol.} L^{-1}$
	0,25	$ au_2=rac{10^{-pH_2}}{C_1}$: $ au_{2f}$ النهائي $ au_{2f}$ النهائي : $ au_{2f}$
	0,25	$ \tau_2 = 25\% : \zeta_2 = \frac{10^{-3.6}}{10^{-3}} = 0.25 $
	0,25	ج- تزداد نسبة التقدم النهائي كلما كان المحلول مخفف.
	0,25 0,25 0,25 0,25	التمرين الخامس: $(3,25)$ نقطه التمرين الخامس: $(7,03,25)$ نقطه الكوكب على القمر $\overline{F}_{M/P}$ العماس . $\overline{F}_{M/P}$ العماس . $\overline{F}_{M/P}$ العماس القوة التي يطبقها الكوكب على القمر عطالة القمر بتطبيق القانون الثاني لنيوتن على مركز عطالة القمر $\overline{F}_{M/P} = m_{\rm p} \overline{a}_{\rm g}$ في المرجع الغاليلي: $\overline{F}_{M/P} = m_{\rm p} \overline{a}_{\rm g}$ بالإسقاط على الناظم: $F_{M/P} = m_{\rm p} a_{\rm n}$
	0,25	$G \cdot \frac{\mathbf{m}_{P} \cdot \mathbf{m}_{M}}{\mathbf{r}^{2}} = m_{P} \cdot a_{n} \Rightarrow a_{n} = G \cdot \frac{\mathbf{m}_{M}}{\mathbf{r}^{2}}$ (1) $a_{T} = 0 \Rightarrow \frac{dv}{dt} = 0 \Rightarrow v = Cste$ بالإسقاط على المماس: (2)
	0,25	بما أن المسار دائري و سرعتها ثابتة \Rightarrow الحركة الدائرية المنتظمة.
	2x0,25	$\begin{cases} a_n = G \cdot \frac{m_M}{r^2} \\ a_n = \frac{v^2}{r} \end{cases} \Rightarrow v = \sqrt{G \cdot \frac{m_M}{r}} : \exists v = 1$
03,25		3- عبارة دور الحركة:
	0,25	$T_{p} = \frac{2 \cdot \pi \cdot r}{v} \Rightarrow T_{p} = 2 \pi \sqrt{\frac{r^{3}}{G \cdot m_{M}}}$
		4- نص القانون الثالث لكبلر: « إن مربع الدور الكوكب عن الشمس » ،
1	0,25 57	$\frac{\frac{T_p^2}{r^3} = 9,21 \times 10^{-13} \text{s}^2 .m^{-3}}{\frac{T_p^2}{r^3} = \frac{4\pi^2}{6 \cdot m_M}} = 9,21 \times 10^{-13} \text{s}^2 .m^{-3}}$
		صفحة 5 من 7

A CONTRACTOR OF THE SECOND SEC	استنتاج قیمهٔ $T_{p}=2,76 imes10^{4}s\simeq7,66\mathrm{h}:\mathrm{T_{p}}$ ای $T_{p}=2,76 imes10^{4}s\simeq7,66\mathrm{h}$
0,25	 5- لكي يكون قمر إصطناعي (S) ثابتا بالنسبة لمحطّة في المريخ يجب أن يتواجد مركز
0,25	المريخ في مستوى المسارالذي يكون يعامد محور دوران المريخ و يكون القمر الإصطناعي في المستوي الاستواني للمريخ. وجهد حرر مهم دهميهم و الهميم المستوي الاستواني للمريخ. وجهد حرر مهم المستوي الاستواني للمريخ.
 0,25	المسنوي الاستواني للمريخ. وحرب $T_s = T_M = 24h$ 37 min

ئى رياضى+رياضيات.	م الفيزيائية - شعبة: تقدّ	سوع التاتي-مادة: العلود	لإجابه اسمودجيه للموغ
-------------------	---------------------------	-------------------------	-----------------------

	التمرين التجريبي: (03,5 نقطة)
0,25	ا- طبیعة حرکة الجسم (S) التطبیق القانون الثانی لنیوتن مرکز عطالة علی الجسم x
0,25	$\sum \overline{F}_{dxt} = m \cdot \overline{a}_G \Leftrightarrow \overline{P} + \overline{R} = m \overline{a}_G$: الذي نعتبره غاليليا $a_G = -g \sin \alpha$
0,25	x' $a_{c} = Cste(0)$
0,25	المسار مستقيم $=$ حركة مستقيمة متباطئة بانتظام $=$ حركة مستقيمة متباطئة بانتظام
	ب- المخطط الموافق لحركة الجسم (S) : هو المخطط الله المدالة ال
0,25	في المرحلة الأولى: $s = t = [0,1] = 1$ حركة متباطئة بانتظام (الصعود). في المرحلة الثانية: $t = [0,1] = 1$ يغير المتحرك اتجاهه و تصبح حركته متسارعة بانتظام (المرول).
0,25	عي الحرك المديد $(x = [0, 1] = 1)$ يغير المدعرت الجاها و تصبح عرفته مسارعه بالنظام (الرول). عن المجال $t \in [0,1]$: تسارع حركة (S):
0,25	$a_1 = \frac{\Delta V}{\Delta t} = \frac{0 - 3.5}{1 - 0} = -3.5 \text{m/s}^2$
	$a_1 = -g \sin \alpha \Rightarrow \sin \alpha = \frac{a_1}{-g} = +0,35$
0,25	$lpha \simeq 20,9^{\circ} \approx 21^{\circ}$ $\simeq 20,9^{\circ} \approx 21^{\circ}$ د- المسافة المقطوعة بين اللحظتين 0 و 25:
0,25	او باستعمال المعارية ثمر منية $d = \frac{1 \times 3.5}{2} + \frac{1 \times 3.5}{2} = 3.5 \text{ m}$ القوى الخارجية المؤثرة على الجسم (S):
0,25	P = # - P = #
0,25	- قوة التي يؤثر بها المستوى على (S) هي: ﴿ جَمَّ اللَّهِ عَلَى اللَّهُ اللّ
,,,,,	ب دراسة حركة مركز عطالة (S): بر استة حركة مركز عطالة (S) بر الثاني لنيوتن على مركز عطالة (S) في التطبيق القانون الثاني لنيوتن على مركز عطالة (S) في التطبيق التاني الثاني التوتن على مركز عطالة (S) في التحديد التاني التاني التوتن على مركز عطالة (S) في التحديد التاني ال
	المرجع الأرضي الذي نعتبره غاليليا $\overline{P} + \overline{R_N} + \overline{f} = m \cdot \overline{a_G}$ بالإسقاط على المحور $(x'x)$.
0,25	•
	$a'_{G} = -g \sin \alpha - \frac{f}{m}$
0,25	حـ قيمة التسارع:
	$a'_{G} = -5, 3m / s^{2}$

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب: جميع الشعب

المدة: ساعتان ونصف

اختبار في مادة: العلوم الإسلامية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

الجزء الأول: [14 نقطة]

قال الله تعالى:

وَتَعَاوَنُواْ عَلَى أَلِيرِ وَالنَّقَبُوىٌ وَلَا تَعَاوَنُواْ عَلَى أَلِاثِمْ وَالْعُدُوانِ وَتَعَاوَنُواْ عَلَى أَلِاثِمْ وَالْعُدُوانِ وَاللَّهُ اللَّهُ عَالِبٌ ۞

سورة المائدة / 02

المطلوب

1/ ورد في الآية أساس من أسس علاقة المسلمين بغيرهم.

استخرجه، ثم اذكر بقية الأسس، مما درست.

2/ قد يتعاون بعض النّاس على الإثم والعدوان فيشكلون مجموعات إجرامية.

أ _ عرّف الجريمة.

ب _ اذكر الوسائل التي شرعها الله تعالى لمكافحة الجريمة.

3/ من حقوق الإنسان في الإسلام الحق في الأمن.

بيّن أهميته في استقرار المجتمعات وازدهارها.

4/ استخرج من الآية ثلاث فوائد.

الجزء الثاني: [06 نقاط]

بعث الله تعالى الرسل برسالات لهداية عباده، ولكن بعض أُتْباع هذه الرسالات حرّفوها.

1/ اذكر عقائد اليهود والنصارى المحرَّفة.

2/ اذكر فِرق النصارى.

الموضوع الثاني

الجزء الأول: [14 نقطة]

قال الله تعالي:

يَّا أَيُّهَا الذِينَ اَمَنُواْ أَطِيعُواْ اللَّهَ وَأَطِيعُواْ الرَّسُولَ وَاثْفِلِ الْاَمْرِ مِنكُمِّ فَإِن اللَّهُ وَالرَّسُولِ إِن كُنتُمْ فَا فَهُوْهُ إِلَى أَللَّهِ وَالرَّسُولِ إِن كُنتُمْ فَا فَهُوهُ إِلَى أَللَّهِ وَالرَّسُولِ إِن كُنتُمْ فَا فَا فَا فَا فَا فَا لَهُ وَالْمَا فَا لَا فَا لَكُ خَيْرٌ وَالْحَسَنُ تَاوِيلًا ۞ تُومِنُونَ بِاللَّهِ وَالْمَيْوِرِ الْاَخِرِّ ذَا لِكَ خَيْرٌ وَالْحَسَنُ تَاوِيلًا ۞

سورة النساء / 59

المطلوب:

1/ دلّت الآية على قيمة قرآنية، اذكرها وصنّفها.

2/ اذكر بقية القيم التي تشترك مع هذه القيمة.

3/ شرع الله تعالى الحدود وجعل تنفيذها من صلاحيات الحاكم.

أ_عرف الحد.

ب _ عرّف التّعزير.

ج ـ بين الحكمة من تشريع الحدود.

4) استخرج من الآية أربع فوائد.

الجزء الثاني: [06 نقاط]

في الشريعة الإسلامية مصادر يعتمد عليها المجتهد لاستنباط الأحكام.

1/ اذكر المصادر الثلاثة التي درست.

2/عرّف مصدرًا واحدًا منها، لغة واصطلاحًا، مبيّنا دليل حجيته.

الإجابة النموذجية وسلم التنقيط لموضوع امتحان: البكالوريا اختبار مادة: العلوم الإسلامية الشعبة: جميع الشعب

العلامة		/ + Eu = - +1\ 1 + au	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		الجزء الأول:	
0.5	0.5	1 / علاقة المسلمين بغيرهم: - ذكر الأساس: النعاون.	
0.5	0.5	- ذكر بقية الأسس:	
	01	- التعارف. - التعارف.	
03	01	– التعايش.	
	01	 الروابط الاجتماعية. (رابطة: الإنسانية، القومية، العائلة، الإقامة) 	
	0.1	2 / الجريمة ووسائل مكافحتها:	
01	01	- تعريف الجريمة: هي فعل يُلحِق ضررا محضورا شرعا، زجر الله عنه بحد أو تعزير أو	
01		قِصاص.	
- 1		- الوسلَال التي شرعها الله تعالى لمكافحة الجريمة:	
** *******		أ- وسائل تشريعية قانونية وتشمل:	
	ent e se	- الحدود القصاص التعزير.	
V 14		ب- وسيلة الإيمان والعبادة:	
		- العبادات: تُهدف إلى إبعاد المؤمن عن الفحشاء والمنكر كالصلاة، والزكاة تُقلل من نسبة	
		الفقر الذي هو سبب الجرائم، والصيام الذي يكبح الشهوات التي هي سبب الجرائم.	
0.5	5×0.5	- الإيمان: يربي العبد على دوام مراقبة الله: فالإيمان باليوم الآخر يدفع المؤمن إلى الامتناع	
2.5		عن كل ما يُقرِبُ من النار ويبعد عن الجنة. أما الإيمان بالقدر فيدفع المؤمن إلى الرضا بقسة	
		الله ويكبح نوازع الطمع والجشع الذي يكون سبب الآفات.	
. 5		ملحظة: تحسب العلامة كاملة للتلميذ إذا اكتفى بذكر الوسائل دون شرح، أي:	
	a a a a a a	- الحدود - القصاص - التعزير - الإيمان - العبادات.	
		3 / بيان أهمية الأمن في استقرار المجتمعات وازدهارها:	
1 P	01	- الأمن على الدين والنفس والعرض والمال من مقاصد الشريعة الإسلامية المعتبرة.	
5 m i. j	01	 ممارسة الشعائر بكل أمان يدفع صاحبه إلى الشعور بالأمن والثقة. 	
04	01	 الأمن على العرض يجعل المجتمع تسوده العفة والطهارة ويحصنه من كل الآفات 	
. Y.	01	التي تهدّد أمن وصحّة الفرد والمجتمع.	
e-by-c-	01	 الأمن على المال يشجع الاستثمار ويزدهر فيه الاقتصاد. 	

 3. 33	
	4 / ثلاث فوائد:
01	 دعوة القرآن الكريم الأفراد إلى التعاون، ومد يد المساعدة إلى المحتاجين.
01	- فعل الخير والبر يؤدي إلى اطمئنان القلوب.
01	- تقوى الله تعالى من صفات المؤمنين المتعاونين.
	الجزء الثاني:
	1 / ذكر عقائد اليهود والنصارى وانحرافاتهم:
	أولا: أهم عقائد النصارى وانحرافاتهم:
	- عقيدة التَّتَايث.
	- عقيدة الخطيئة والفداء.
4×0.5	- محاسبة المسيح للنّاس.
	- غفران الذَّنوب.
	ثانيا : أهم عقائد اليهود وانحرافاتهم:
	- عقيدتهم في الإله وانحرافهم:
	1) ميل اليهود (بنو إسرائيل) وحبهم للوثنية جعلهم يبتعدون عن عبادة الله وحده.
	2) جعلوا لهم إلها خاصاً بهم يُطلق عليه اسم "يهْوَه" ثمّ وصفوه بصفات لا تليق به، وهو ليس
	معصوماً، بل يخطئ ويثور ويقع في النَّوم، وهو يأمر بالسَّرقة، وهو قاس، متعصب، مدمرٌ
5×0.5	اشعبه، إنه إله بني إسرائيل فقط، وهو بهذا عدو للآخرين.
3.0.5	3) قالوا إنّ عُزيرا ابن الله.
	4) عبدوا العجل والحَمل والكبش وقدّسوا الحية لدهائها.
	5) أنَّهم أبناء الله وأحباؤه
	- و من معتقداتهم وانحرافاتهم أيضا:
	1) عقيدتهم المحرفة لا تتكلم عن اليوم الآخر ولا البعث والحساب
	2) ديانة اليهود خاصة بهم، فلا يُنسب إليها من اعتنقها من غيرهم، بل و لا يُعترف بمن ولد
	من أمّ غير يهودية وإن كان أبوه يهودياً.
	3) يعتقد بنو إسرائيل في (تابوت العهد) الذي صنعه أسلافهم أن (موسى) وضع فيه
	اللوحين، ووضع فيه الذّهب والفضة وبعض المواثيق، وقال لبني إسرائيل: "إنّه في هذا
	الصندوق توجد روح الإله يهوه"، ولم يكن يُسمح الأحد أن يَمسَّه.
	ملاحظة: يذكر التلميذ خمسة من عقائد اليهود وإن كانت غير مرتبة.
3×0.5	2 / فرق النصارى: _ الأرثوذكس البرونستانت الكاثوليك

دمة	العا	/ 151 - 1 1 1 1 1 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الجزء الأول:
	01	1 / القيمة الواردة في الآية الكريمة هي: الطاعة.
	01	- تصنيفها: القيم السياسية.
04		2 / القيم السياسية الأخرى:
	01	- العدل.
	01	– الشورى.
01	01	8 /أ- تعريف الحدود: هي محظورات شرعية زجر الله عنها بعقوبة مقدرة تجب حقا لله
		تعالى.
01	01	ب- تعريف التعزير: هي عقوبة غير مقدّرة شرعا، يجتهد القاضي في تقديرها.
		أو هي التأديب على نَّنُوب لم تُشرع فيها الحدود.
		ج- الحكمة من تشريع الحدود:
		- تساهم في القضاء على الجرائم.
	4×1	- تُحافظ على مقاصد الشريعة .
		- تردع المجرمين.
n e		– تحفظ أمن المجتمع واستقراره.
		4 / أربع قوائد :
		- وجوب طاعة الله عزّ وجلّ.
	4 × 1	 وجوب طاعة الرسول صلى الله عليه وسلم.
		- وجوب طاعة أولي الأمر في غير معصية الله تعالى.
11		 في حال التنازع ترجع الأمور إلى كتاب الله وسنة نبيه صلى الله عليه وسلم.
		الجزء الثاني:
		1 / ذكر المصادر:
1.5	3×0.5	- الإجماع القياس المصالح المرسلة.
		2 / تعريف أحد المصادر:
		أولا: الإجماع:
=		1 - تعریفــه:
	0.5	أ ــ لغة: يأتي بمعنى العزم على الشّيء والتّصميم عليه، أو الاتفاق على شيء.
	01	ب _ اصطلاحا: هو اتفاق جميع المجتهدين من المسلمين، في عصر من العصور بعد وفاة
		الرسول صلى الله عليه وسلم، على حكم من الأحكام الشّرعية العملية.

		2 - أدلة حجية الإجماع الصريح:
	(6	
01	01	اتفق جمهور المسلمين على أن الإجماع حجة، وأنّه دليل من أدلة الشّريعة الإسلامية. وقد السندلوا لحجية الإجماع بأدلة كثيرة:
	-	
		* من القرآن الكريم: وردت آيات كثيرة تُفيد كلها وجوبَ احترام اتفاق المسلمين والمنع من
		مخالفتهم، ومن هذه الآيات الكريمة قوله تعالى:
		وَمَنْ يُشَاقِقِ أَلْرَسُولَ مِنْ بَعْدِ مَا تَبَتَيْنَ لَهُ الْهُذِي وَيَشَيِغَ غَيْرَ سَبِيلِ
=		الْلُومِنِينَ نُولِهِ عِمَا تَوَتِي وَنُصُمِلِهِ عَهَنَمٌ وَسَآءَتْ مَسِيرًا ۞ [النّساء/115]
01	01	ووجه الاستدلال بهذه الآية الكريمة: أن الله جمع بين مشاقة الرّسول صلى الله عليه وسلم
01	01	وإنباع غير سبيل المؤمنين في الوعيد، ولا شك أن سبيل المؤمنين هو ما اتفقوا عليه، فكان
		ما اتفقوا عليه واجب الإتباع لذلك.
		* من السَّنَّة المطهّرة: ثبتت عن النَّبي صلى الله عليه وسلم أحاديث تفيد بمجموعها عِصمة
01	01	هذه الأمة عن الخطأ والزّلل، واستحالة اجتماعها على غير الحق. ومن هذه الأحاديث: "لا
		تجتمع أمتي على ضلالة". [رواه ابن ماجه]، وعن عبد الله بن مسعود رضي الله عنه: "ما
		رآه المسلمون حسنا فهو عند الله حسن" [رواه أحمد]، وقوله صلى الله عليه وسلم: "فإنّ يد
		الله مع الجماعة" [رواه النّسائي]، وقوله صلى الله عليه وسلم: "من خالف الجماعة قدر شيبر
	12	فقد مات ميتة جاهلية". [رواه أحمد].
		ثانيا: القياس
		1 - تعريف القياس:
	01	أ- لْغَة: بمعنى التَّقدير والمساواة.
	01	ب- اصطلاحا: هو مساواة أمر لأمر آخر في الحكم الثّابت له لاشتراكهما في علمة الحكم.
		2 - حجية القياس:
		جمهور العلماء على أنّ القياس دليل من أدلة الأحكام وهو يفيد غَلبَة الظّن، فيكون حُجّة يجب
		العمل به، واستدلوا على حجيته بما يلي:
	01	أ- من القرآن الكريم: الكثير من الآيات التي تأمرنا بالتدبر والاعتبار وإعمال العقل ومنها:
=	01	قوله الله تعالى:
P 8 22		قوله الله تعالى: وقوله الله تعالى: وقوله الله تعالى: وقوله الله تعالى: وقوله الله تعالى أمر بالاعتبار، والقياس نوع من الاعتبار، وعليه فالقياس مأمور به.
	0.5	ب- من السنة: ثبت أنّ النبي صلى الله عليه وسلم استعمل القياس في استنباط الحكم
	114	والإجابة على تساؤلات الصحابة، ومن ذلك أن امرأة خثعمية جاءت إلى الرسول صلى الله
	01	عليه وسلم وقالت له: (إنّ أبي أدركته فريضة الحج، أفأحج عنه؟ فقال لها: "أرأيت لو كان
	UI	على أبيك دين فقضيته أكان ينفعه ذلك؟" قالت: نعم، قال: "فدَينُ الله أحق بالقضاء". [رواه
		الإمام مالك]. فإنّه صلى الله عليه وسلم قاس مشروعية قضاء دَين الله الّذي هو الحج على
		مشروعية قضاء دَين العباد.

جـ _ عمل الصّحابة رضى الله عنهم، والأمثلة على ذلك كثيرة، نذكر منها:

أو لا: ما روي عن أبي بكر الصديق رضي الله عنه أنه سئل عن معنى الكلالة، فتلمس الدليل على ذلك من القرآن الكريم والسنة فلم يجد، فقال: "أقول فيها برأيي، فإن يكن صوابا فمن الله، وإن يكن خطأ فمني ومن الشيطان، الكلالة: ما عدا الوالد والولد". ومعلوم أنّ الرّأي أصل القياس، والقياس فرع منه.

ثانيا: ما روي عن عمر بن الخطاب رضي الله عنه بعد أن أرسل أبا موسى الأشعري رضي الله عنه والياً على البصرة، وكتب إليه كتابا طويلاً فيه كثير من الحكم والأسس، جاء فيه قوله: "اعرف الأشباه والأمثال وقِس الأمور برأيك"، فهو دليل ظاهر على أمره له بالقياس.

ثالثا: ما روي عن ابن عباس رضي الله عنهما من إنزاله الجد منزلة الأب في حجب الإخوة من الميراث، ورده على زيد بن ثابت رضي الله عنه الذي يشرك الجد مع الإخوة ولا يحجبهم به خلافاً للأب، وقوله رضي الله عنه: "يجعل ابن الابن ابناً ولا يجعل أبا الأب أباً"، وهو يشير بذلك إلى أن ابن الابن يحجب كلّ من يحجب بالابن، سواء بسواء في مذهب زيد رضي الله عنه.

ملاحظة: يكتفي المترشح بدليل من القرآن وآخر من السنة، أما إذا نكر دليلا من الأثر عوض السنة فتحسب له علامة الدليل من السنة.

ثالثا: المصالح المرسلة:

1 - تعريف المصالح المرسلة:

هي استنباط الحكم في واقعة لا نصّ فيها ولا إجماع، بناء على مصلحة لا دليل من الشّارع على اعتبارها ولا على الغائها.

2 - حجية المصالح المرسلة وأدلة اعتبارها:

اتفق العلماء على العمل بالمصالح واستدلوا بأدلة منها:

أولا: شرع الله الأحكام لتحقيق مصالح العباد، ودفع المضار عنهم؛ ولأن الرسول صلى الله عليه وسلم أرسل رحمة للعالمين، وإنه لم يُخيَّر بين أمرين إلاّ اختار أيسرهما ما لم يكن إثما، وبيّن بأنّ الدّين يُسر ولا عسر فيه.

ثانيا: الحوادث تتجدّد، والمصالح تتغيّر بتجدّد الزّمان والظّروف، وتطرأ على المجتمعات ضرورات وحاجات جديدة تستدعي أحكاما معينة، لذلك من الضيّروري أخذ هذه الأمور بعين الاعتبار وفسح المجال أمام المجتهدين لاستنباط الأحكام وفق المصالح، وإلاّ ضاقت الشّريعة بمصالح العباد وقصرت.

ثالثا: روعيت المصلحة في اجتهادات الصتحابة والتابعين وأئمة الاجتهاد، بدليل جمع أبي بكر رضي الله عنه القرآن الكريم في مصحف واحد، قائلا: "إنّه والله خير ومصلحة للإسلام". ومحاربته مانعي الزّكاة، وتدوين عمر رضي الله عنه الدّواوين وصك النّقود واتخاذ السّجون. فلا سند لذلك إلا المصلحة.

1.5

01

01

01

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعبة: تقنى رياضى

اختبار في مادة: الرياضيات المدة: 04 ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (03 نقاط)

-1 ادرس، حسب قيم العدد الطبيعي n، بواقي قسمة 9^n على -1

 2011^{2012} على -2 على -2

 $4 \times 9^{15n+1} + 4 \times 2011^{10n} + 2011^{2012}$ العدد n العدد طبيعي n n العدد العدد

.11 مضاعفا للعدد ($2011^{2012} + 2n + 2$) مضاعفا للعدد n بحيث يكون العدد -4

التمرين الثاني: (06 نقاط)

$$\left\{ egin{align*} 2z_1 + 3z_2 &= 9 - 2i \\ 3z_1 - z_2 &= 8 + 8i \end{array}
ight.$$
 عيِّن العددين المركبين z_1 و z_2 بحيث:

 Ω و B ، A و B ، A و B ، A و B ، A و B ، A و B . B

$$\cdot Z_B - Z_\Omega = i (Z_A - Z_\Omega)$$
 أثبت أنّ: (أ

ب) عيّن طبيعة المثلث ΩAB.

. 2 هو التحاكي الذي مركزه النقطة A ونسبته A

أ) عيّن الكتابة المركبة للتحاكي h.

ب عين Z_c لاحقة النقطة C صورة النقطة Ω بالتحاكي D

 $\{(A,1),(B,-1),(C,1)\}$ عين D النقطة النقطة D النقطة النقطة عين D

د) بيّن أن ABCD مربع.

 $|\overline{MA} - \overline{MB} + \overline{MC}| = 4\sqrt{5}$: مجموعة النقط M من المستوي التي تحقق: (E) - 4

أ) تحقق أن النقطة B تنتمي إلى المجموعة (E)، ثم عيّن طبيعة (E) وعناصرها المميزة.

ب) أنشئ المجموعة (E).

التمرين الثالث: (07 نقاط)

$$g\left(x\right)=-4+\left(4-2x\right)e^{x}$$
 کما یلی: \mathbb{R} کما شعرفة علی g $-I$

$$-1,59 < \alpha < 1,60$$
: حيث أن المعادلة $g\left(x\right) = 0$ تقبل حلين أحدهما معدوم والأخر α حيث -2

$$g(x)$$
 استنتج إشارة -3

$$f(x) = \frac{2x-2}{e^x-2x}$$
 : كما يلي \mathbb{R} كما الدالة المعرفة على f

. (2cm وحدة الطول). (
$$O; \vec{i}, \vec{j}$$
) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

$$y=0$$
 و $y=-1$ و مستقیمین مقاربین معادلتاهما علی الترتیب $y=0$ و $y=-1$ و $y=-1$

$$f'(x) = \frac{g(x)}{(e^x - 2x)^2}$$
 : x عدد حقیقی عدد کل عدد أنه من أبه من أبه من أبه عدد حقیقی

ب) استنتج إشارة
$$f'(x)$$
، ثم شكِّل جدول تغيرات الدالة f .

$$f(x)$$
 أشارة x أشارة (1) أم استنتج، حسب قيم $f(x)$

.I من الجزء 2 من الجزء
$$\alpha$$
 هو العدد المعرف في السؤال 2 من الجزء α الجزء 1 مين أنّ α البيّ أنّ أنّ

ب) استنتج حصرا للعدد
$$f(\alpha)$$
 (ندور النتائج إلى $f(\alpha)$

$$\cdot(C_f)$$
 ارسم (ج

$$-2x-2=(e^x-2x)(m+1)$$
 : حسب قيم الوسيط الحقيقي m ، عدد و إشارة حلول المعادلة: -4

.
$$h(x) = \left\lceil f\left(x\right)\right\rceil^2$$
 : كما يلي $\mathbb R$ كما الدالة المعرفة على h -5

$$h'(x)$$
 أي احسب $h'(x)$ بدلالة كل من $f'(x)$ و $f'(x)$ ثم استنتج إشارة $h'(x)$

التمرين الرابع: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد والمتجانس (
$$O; \vec{i}, \vec{j}, \vec{k}$$
).

له. المستوي الذي يشمل النقطة
$$A(2;-5;2)$$
 و $A(2;-5;2)$ شعاع ناظمي له.

له. المستوي الذي:
$$x + 2y - 2 = 0$$
 معادلة له.

$$(P)$$
 عيِّن معادلة ديكارتية للمستوي (P) .

. بيِّن أنّ المستويين
$$(P)$$
 و (Q) متعامدان -2

$$(Q)$$
 و (P) و المستويين (Δ)، تقاطع المستويين (P) و (P).

$$(Q)$$
 و المسافة بين النقطة (R) و المستوي (R) و المستوي (R) و المستوي (R) و المستوي (Q)

$$(\Delta)$$
 استنتج M المسافة بين النقطة M والمستقيم

احسب المسافة
$$d$$
 بطريقة ثانية. -5

الموضوع الثاني

التمرين الأول: (05 نقاط)

 \mathbb{Z} المعادلة ذات المجهول \mathbb{Z} المعادلة ذات المجهول -1

$$(z^2 + 2z + 4)(z^2 - 2\sqrt{3}z + 4) = 0$$

 $\cdot \left(O\,;\, \overrightarrow{u},\overrightarrow{v}\,\right)$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس -2

نقط من المستوى لاحقاتها على الترتيب: D و C ، B ، A

$$.z_{D}=-1+i\sqrt{3}\text{ , }z_{C}=-1-i\sqrt{3}\text{ , }z_{B}=\sqrt{3}-i\text{ , }z_{A}=\sqrt{3}+i$$

أ) اكتب كلا من Z_A ، Z_B ، Z_B و ملى الشكل الأسى.

ب) تحقق أنّ:
$$\frac{Z_D-Z_B}{Z_A-Z_C}=i$$
 ، ثم استنتج أن المستقيمين (AC) و (BD) متعامدان.

. عدد المركب الذي طويلته $\frac{2\pi}{2^n}$ و $\frac{1}{2^n}$ عمدة له حيث n عدد طبيعي z_n عدد طبيعي z_n

 $L_n = Z_D \times Z_n$ العدد المركب المعرف بـــ L_n

أ) اكتب كلا من $L_{_1}$ ، $L_{_0}$ على الشكل الجبري.

$$U_n = ig| L_n ig|$$
 : ب $U_n = ig| L_n ig|$ هي المتتالية المعرفة من أجل كل عدد طبيعي $u_n = ig| L_n ig|$

الأول. مندسية يطلب تعيين أساسها وحدها الأول. (U_n)

. $+\infty$ إلى n عندما يؤول n الى -

التمرين الثاني: (03.5 نقاط)

$$(x\in\mathbb{Z})$$
 عدد صحیح x عدد صحیح x

-1 بيّن أنّ العدد 153 حل للجملة -1

$$\left\{ \begin{array}{l} \left\{ x - x_0 \equiv 0 \left[15 \right] \\ x - x_0 \equiv 0 \left[7 \right] \end{array} \right\} \text{ which } \left(\left(S \right) \right) \text{ which } \left(\left(S \right) \right) = 2$$

(S) -3 حل الجملة

4- يريد مكتبي وضع عدد من الكتب في علب، فإذا استعمل علبا تتسع لِـــ 15 كتابا بقي لديه 3 كتب، وإذا استعمل علبا تتسع لـــ 7 كتب بقى لديه 6 كتب.

إذا علمت أنّ عدد الكتب التي بحوزته محصور بين 500 و 600 كتابا، ما عدد هذه الكتب ؟

التمرين الثالث: (04.5 نقاط)

الفضاء منسوب إلى المعلم المتعامد والمتجانس (P) . $(O; \vec{i}, \vec{j}, \vec{k})$ المستوي الذي:

ه المستقيم الذي:
$$x=k$$
 $y=\frac{1}{3}-\frac{4}{3}k$ $x=k$ المستقيم الذي: $x=k$ $y=\frac{1}{3}-\frac{4}{3}k$ $y=\frac{1}{3}-\frac{4}{3}k$ $z=-\frac{3}{4}+\frac{3}{4}k$

- (P) محتوى في المستقيم (D) محتوى المستوي (P).
- كتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة (4;1;3) و (4;1;3) شعاع توجيه له.
 - $\cdot (\Delta)$ و (D) عيّن إحداثيات نقطة تقاطع المستقيمين
- (Δ) و (Δ) و (D) الذي يحوي المستقيمين (D) و (Δ) و (Δ) و (Δ) بيّن أنّ (D) بيّن أنّ (D) هي معادلة ديكارتية للمستوي
 - نقطة من الفضاء. M(x;y;z) -4
 - (Q) و (P) من من (P) و كل من (P)
- (P_1) أثبت أنَّ مجموعة النقط M من الفضاء المتساوية المسافة عن كل من (P) و (Q) هي اتحاد مستويين متعامدين (P_1) في المسافة عن كل من (P_2) و (P_2) يطلب تعيين معادلة ديكارتية لكل منهما.
 - $\begin{cases} 4x+3y-1=0 \\ 3x-4z-3=0 \end{cases}$ عين مجموعة النقط M(x;y;z) من الفضاء التي إحداثياتها حلول للجملة الآتية: -5

التمرين الرابع: (07 نقاط)

- و معددان حقيقيان. $g(x) = x^2 + a + b \ln(x)$ عددان حقيقيان. $g(x) = x^2 + a + b \ln(x)$ عددان حقيقيان.
 - .4 عيّن a و a علما أن التمثيل البياني للدالة a يقبل في النقطة a النقطة a مماسا معامل توجيهه a
 - .b = 2 و a = -2 نضع -2
 - أ) ادرس تغيرات الدالة ج، ثم شكّل جدول تغيراتها.
- .] $0;+\infty$ على g(x)=0 على g(x)=0 على أن المعادلة g(x)=0 على g(x)=0 على أن المعادلة وحيداً g(x)=0 على أن المعادلة المعادلة وحيداً على أن المعادلة المعادلة
 - $f(x) = x 2 \frac{2\ln(x)}{x}$:بِ] $0; +\infty$ [بیا الدالة المعرفة علی] $f(x) = x 2 \frac{2\ln(x)}{x}$ بالدالة المعرفة علی الدالة ا
 - . (2cm وحدة الطول) ($O; \vec{i}, \vec{j}$) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to 0} f(x)$ احسب (أ -1
 - $f'(x) = \frac{g(x)}{x^2}$: ثم تحقق أنّ f'(x) حسب (ب
 - . f'(x) استنتج إشارة f'(x)، ثم شكّل جدول تغيرات الدالة
 - \cdot (Δ) بيِّن أن المستقيم (Δ) ذا المعادلة: y=x-2 مقارب لِــ (C_f) ، ثم ادرس وضعية (Δ) بالنسبة إلى (Δ)
 - بيِّن أن $\left(C_{f}\right)$ يقبل مماسا $\left(T\right)$ يو از ي $\left(\Delta\right)$ ، ثم جِد معادلة له.
 - ج) نأخذ $\alpha=1,25$ عين أن المعادلة $\alpha=1,25$ عين (ج حيث: $\alpha=1,25$
 - . $\left(C_f\right)$ و $\left(T\right)$ ، $\left(\Delta\right)$ من ملا من $\left(2,7 < x_2 < 2,8\right)$ و $0,6 < x_1 < 0,7$
 - . $(m+2)x + 2\ln(x) = 0$: عدد حلول المعادلة: m عدد علول المعادلة: -3

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2012 المادة: الرياضيات الشعبة: تقني رياضي

بة	العلا	/ Land And And And And And And And And And A	محاور
المجموع	مجزاة	عناصر الإجابة (الموضوع الأول)	الموضوع
		التمرين الأول: (03 نقط)	
	0.25	$9^{5k+4} \equiv 5[11] \cdot 9^{5k+3} \equiv 3[11] \cdot 9^{5k+2} \equiv 4[11] \cdot 9^{5k+1} \equiv 9[11] \cdot 9^{5k} \equiv 1[11] (1$	
	0.25	البواقي هي على الترتيب: 1، 9، 4، 3، 5	· · · · · · · · · · · · · · · · · · ·
	0.25	$2011^{2012} \equiv 9^{2012}[11]$ و ينا $9 \equiv 9^{2012}[11]$ ومنه و 2011 دينا (2	
E-magazina	0.25	$9^{2012} \equiv 4[11]$ فإنّ $2012 = 5 \times 402 + 2$ ويما أن $9^{2012} = 4[11]$ فإنّ أ	B
03	3×0.25	$4 \times 9^{10n} \equiv 4[11]$ و $9^{15n+1} \equiv 3[11]$ و $9^{15n+1} \equiv 9[11]$ و $9^{5n} \equiv 1[11]$ لدينا (3	
	0.25	$4 \times 9^{15n+1} + 4 \times 2011^{10n} + 2011^{2012} \equiv 0[11]$ ومنه نجد	
	0.25	$2n+6\equiv 0$ [11] (4 تكافئ $2011^{2012}+2n+2\equiv 0$	ja
	0.50	$n \equiv 8[11]$ ومنه $n \equiv 8$	
	0.25	اِذن n = 11k +8 مع k عدد طبيعي	
	2×0.50	التمرين الثاني: (06 نقاط)	
	0.25+	z_2 و $z_1 = 3 + 2i$ (+الطريقة) $z_1 = 3 + 2i$ (1) تعيين z_1	1.6
	0.50	$i(z_A - z_\Omega) = (z_B - z_\Omega) = -4 + 2i$ (1 (2) المديقة أخرى	
	0.50	ب) المثلث ΩAB قائم في Ω ومتقايس الساقين	
	0.50	z' = 2z - 3 - 2i (1) (3)	
	0.50	$z_c = -1 - 6i$	
06	0.50	$z_D = 5 - 4i $	
	0.50	د) البرهان على أن ABCD مربع	
	0.50	$ \overline{BA} - \overline{BB} + \overline{BC} = \overline{BA} + \overline{BC} = \overline{BD} = z_D - z_B = 4\sqrt{5}$ المنيا (4)	
	0.25	ومنه B تتمي إلى المجموعة (E)	
SE .	0.50	ومنه (E) هي الدائرة ذات المركز D ونصف القطر $\sqrt{5}$	
	0.50	ب) الإنشاء: (E) الدَّائرة ذَات المركز D والتي تشمل B	
		التمرين الثالث:(07 نقاط)	
	2×0.25	$\lim_{x \to -\infty} g(x) = -4 \cdot \lim_{x \to +\infty} g(x) = -\infty (1 (I)$	
	2×0.25	$g'(x) = 2(1-x)e^x$ و إشارتها	
02,5	0.25	جُدول التغيرات	
02,3	1	2) الدالة g مستمرة وتغير إشارتها مرتين وبما أن $g\left(0 ight)=g\left(0 ight)$ فإن العدد صفر هو حل	
		$a=1,59 ومنه الحل الثاني هو lpha حيث g\left(1,60 ight) imes g\left(1,59 ight)<0 ومنه الحل الثاني هو$	
	0.25	3) إشارة g(x)	
4			
L)U		

عناصر الإجابة (الموضوع الأول) $\lim_{x \to -\infty} f(x) = -1$ ومنه المستقيم ذو المعادلة $f(x) = -1$ المنحني $\lim_{x \to -\infty} f(x) = 0$ ومنه المستقيم ذو المعادلة $\lim_{x \to -\infty} f(x) = 0$	محاور الموضوع
	102
	188 1
2) أ) البرهان على أنّ:	
$f'(x) = \frac{g(x)}{x}$	
$f'(x) = \frac{g(x)}{\left(e^x - 2x\right)^2}$	
ب) إشارة f'(x) وجدول تغيرات الدالة f	
$f\left(x ight)$ ، إشارة $f\left(t ight)$	
$f(\alpha) = \frac{2-\alpha}{\alpha-1} = \frac{1+1-\alpha}{\alpha-1} = -1 + \frac{1}{\alpha-1}$ (1)	
lpha-1 $lpha-1$ lp	
$:(C_{f})$ رسم المنحنى (ج	
f(x) = m+1 المعدلة تكافيء: (4	
ومنه لما: $m \in]-\infty; -3[$ $\cup \frac{3-2\alpha}{\alpha-1}; +\infty]$ لا توجد حلول	25
ولما: $m = -3$ للمعادلة حل مضاعف معدوم	
و لما: $[-3;-2]$ للمعادلة حلين من إشارتين مختلفتين	
و لما: $[-2;-1]$ للمعادلة حل وحيد موجب	88
و لما: $-1; \frac{3-2\alpha}{\alpha-1}$ للمعادلة حلين موجبين	
ولما: $m = \frac{3-2\alpha}{\alpha-1}$ المعادلة حل مضاعف موجب	
$h'(x) = 2f'(x) \times f(x)$ (1) (5) اشارة $h'(x) = 2f'(x)$	
ب) جدول تغیرات h	
e e e	
	No.
	$f\left(x\right)=m+1$ المعدلة تكافيء: $m \in]-\infty; -3[\cup]\frac{3-2\alpha}{\alpha-1}; +\infty[$ ومنه لما: $m \in]-\infty; -3[\cup]\frac{3-2\alpha}{\alpha-1}; +\infty[$ ولما: $m \in]-3; -2[\cup]$ المعادلة حلين من إشارتين مختلفتين و لما: $m \in]-3; -2[\cup]$ المعادلة حلين من إشارتين مختلفتين و لما: $m \in]-2; -1[\cup]$ المعادلة حل وحيد موجب و لما: $m \in]-1; \frac{3-2\alpha}{\alpha-1}[\cup]$ ولما: $m \in]-1; \frac{3-2\alpha}{\alpha-1}[\cup]$ المعادلة حل مضاعف موجب ولما: $m \in]-1; \frac{3-2\alpha}{\alpha-1}[\cup]$

رمه. المجموع	عناصر الإجابة (الموضوع الأول) مجزأة		محاور الموضوع	
	1	التمرين الرابع(04 نقط)	بموضوع	
	0.50	(P) معادلة للمستوي $(2x + y + 5z - 1 = 0 (1)$	e.	
3		(Q) هو شعاع ناظمي لـ (P) و (P) شعاع ناظمي لـ (Q)		
	0.50	بما أن $n = \overline{n}$ فإن $\overline{n} \pm \overline{n}$ وبالتالي \overline{n} و \overline{n} و \overline{n} متعامدان		
04	0.75	هو تمثیل وسیطی للمستقیم (Δ) (یقبل ای تمثیل وسیطی آخر) $x=2t$ هو تمثیل وسیطی $y=-t+1\;;\;t\in\mathbb{R}$ (3 $z=t$		
	2×0.5	$d_2 = \frac{7}{\sqrt{5}} \text{if } d_1 = \frac{11}{\sqrt{30}} \text{if } (4)$		
	0.50	$d = \sqrt{\frac{83}{6}} \text{ each } d^2 = d_1^2 + d_2^2 (4)$		
	0.75	ر 5 عساب d بطريقة ثانية (0.50 المحاولة + 0.50 النتيجة) (5 عساب d بطريقة ثانية		
		est ^{to} a _n ar of the second		
		r efter - e a		
16	(2)			

بلامة	منا	7 4 4 .	محاور
المجموع	مجزأة	عناصر الإجابــة	الموضوع
,		الموضوع الثاني	
		التمرين الأول: (05)	
	101	$z^2 + 2z + 4 = 0$ (1)	
ii.	0.25	$\Delta = \left(2i\sqrt{3}\right)^2$	
	0.50	$ z_1 = -1 + i\sqrt{3} $	1
		$z^2 - 2\sqrt{3}z + 4 = 0$	
	0.25	$\Delta = (2i)^2$	
	0.50	$z_4 = \sqrt{3} + i z_3 = \sqrt{3} - i$	
3 7	4×0.25		
	0.25	$\frac{Z_D - Z_B}{Z_A - Z_C} = i$:ب إثبات أن:	
05	0.25	$\left(\overline{CA}, \overline{BD}\right) = \arg\left(\frac{Z_D - Z_B}{Z_A - Z_C}\right) = \frac{\pi}{2}$ نستنج أن:	
	0.25	ومنه : المستقيمان (AC) و (BD) متعامدان	
	2×0.25	$L_1 = z_D \times z_1 = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$ $L_0 = z_D \times z_0 = z_D = -1 + i \sqrt{3}$ (1) (3)	
	0.25	$u_{n+1} = \frac{1}{2}u_n : n$ عدد طبیعی $u_{n+1} = \frac{1}{2}u_n$	
	2×0.25	$u_0=2$ هندسية أساسها $\frac{1}{2}$ وحدها الأول (u_n)	
		$S_n = \left\ \overrightarrow{OM}_0 \right\ + \left\ \overrightarrow{OM}_1 \right\ + \dots + \left\ \overrightarrow{OM}_n \right\ $	
		$= L_0 + L_1 ++ L_n $: ادینا	
		$= u_0 + u_1 + \dots + u_n$	
	0.25	$s_n = 4\left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$:	
	0.25	$\lim_{n \to \infty} s_n = 4$	
	5499997127	$n \to \infty$	500

لامة	العا		محاور
المجموع	مجزأة	عناصر الإجابــة	الموضوع
	1	$ \frac{(03.5)}{\text{التمرين الثاني: }} (03.5) $ $ \begin{cases} 153 \equiv 3[15] \\ 153 \equiv 6[7] \end{cases} $ $ \begin{cases} 153 = 150 + 3 \\ 153 = 147 + 6 \end{cases} $ $ \begin{cases} x_0 \equiv 3[15] \\ x_0 \equiv 6[7] \end{cases} $ $ \begin{cases} x_0 \equiv 6[7] \end{cases} $ $ \begin{cases} x_0 \equiv 6[7] \end{cases} $ $ \begin{cases} x_0 \equiv 6[7] \end{cases} $	
3.50	1	$\begin{cases} x \equiv 3[15] \\ x \equiv 6[7] \end{cases}$ و x حل للجملة (s) معناه $x \equiv 6[7]$ $\begin{cases} x - x_0 \equiv 0[15] \\ x - x_0 \equiv 0[7] \end{cases}$ بالتالي: x حل للجملة (s) يكافئ	
	œ	(أو إثبات صحة الالتزامين) $x - 153 = 0$ معناه (3)معناه (3)	
, es	1	بالتالي: x = 105k + 48 عدد صحیح	
	0.25	$k = 5$ معناه $(500 \le x \le 600)$ معناه $(4 + 1)$	
	0.25	إذن: عدد الكتب هو 573	
		(04.5)	
	0.5	التمرين الثالث: (04.5) (D) 1 محتوى في (P)	
	0.5	$\begin{cases} x = 1 + 4t \end{cases}$	
	0.5	$y = 1 + t$ ($t \in \mathbb{R}$) (1.2) $y = 3t$	
		ب) (D) و (Δ) يتقاطعان في النقطة ذات الإحداثيات	
	0.75	$(-\frac{5}{19}; \frac{13}{19}; -\frac{18}{19})$	
04.50	0.5	(Q) معادلة لـ (Q) معادلة لـ (Q)	
04.50	0.25	(4 أ أ المسافة بين M و (P)	
	0.25	المسافة بين M و (Q)	
	0.5	7x + 3y - 4z - 4 = 0 : (P ₁) هي نقط الفضاء M هي نقط الفضاء (P ₁) مجموعة النقط	
	0.5	x + 3y + 4z + 2 = 0 : (P ₂) أو نقط الفضاء	
	0.25	و (P_2) متعامدان (P_2) و (P_1) و (P_2) متعامدان (P_2) ، (P_2) ، (P_2) المستويات (P_2) ، (P_2) و (P_2) تثقاطع وفق المستقيم ((P_2)	
	l,		
The state of the s	State of the last		

المة		عناصر الإجابـــة	محاور
المجموع	مجزأة		الموضوع
		التمرين الرابع: (07)	
	0.50	g'(+1) = 4 $g(1) = -1$ (1 (I	
	0.50	$b=2 \cdot a=-2$	
	2×0.25	$\lim_{x \to +\infty} g(x) = +\infty : \lim_{x \to 0} g(x) = -\infty $ (1)	
	2×0.25	$g'(x) > 0$ $g'(x) = 2x + \frac{2}{x}$	
		م جدول التغيرات	
	0.25		
	0.25	ب) مبرهنة القيم المتوسطة	
	0.25	إشارة g(x)	
	2×0.25	ا) النهايات	
	0.50	$f'(x) = \frac{x^2 - 2 + 2\ln(x)}{x^2} $ (+	
		جدول التغيرات	
		$x = 0$ $\alpha + \infty$	
07		f'(x) - 0 +	
10,500		+∞ +∞	
	0.25	f(x)	
		$f(\alpha)$	
	0.25	(a) (b) مستقیم مقارب	
	0.50	دراسة الوضعية	
	0.25	x = e يكافئ $f'(x) = 1$	
	0.25	$y = x - 2 - \frac{2}{x}$	
	2×0.25	e	
	2.0.23	ج) مبر هنة القيم المتوسطة التمثيل البياني	
		التمثيل البياني	
	0.5		
0.000		┃	
		-4 -3 -2 -1 0 1 2 3 4 5 6 7 8	
	0.75	3) مناقشة حلول المعاداة المعطاة حسب قيم m	
	0.75	1	

الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

دورة: جوان 2012

الشعب: علوم تجريبية ، رياضيات ، تقني رياضي

المدة: 03 ساعات و نصف

اختبار في مادة: التاريخ و الجغرافيا

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

مادة التاريخ:

الجزء الأول: (06 نقاط)

"... أرى بالنسبة لمؤتمر طرابلس أنه كان قد عقد من أجل دراسة وضعية قائمة و على أساس هذه الوضعية يمكن الخروج بخطة مستقبلية ولذا نجده في أول نقطة يركز على قضية السيادة الوطنية، بطبيعة الحال أنه أشار إليها بأنها قد تحققت باتفاقية إيفيان، وإن كان ينقصها ما ينقصها ... المرجع: الدكتور الجنيدي خليفة /حوار حول الثورة / ج 347. ص 347.

المصطلحات التي تحتها خط. -1

2-عرتف بالشخصيات الآتية:

* جوزيف بروز تيتو

* مصطفى بن بولعيد

*هاري ترومان - أكول حدول الأوداث التال

3- أكمل جدول الأحداث التالية :

تاریخـــه	الحددث
1949-04-04	
	سلم الشجعان
1961-09-01	

الجزء الثاني: (04 نقاط)

إن السياسة التوسعية للولايات المتحدة الأمريكية تهدف إلى الهيمنة العسكرية والإستراتيجية والاقتصادية من خلال المساعدات التي تؤدي بالضرورة إلى تغيير الخط السياسي للبلد المستفيد من المساعدة.

المطلوب:

انطلاقًا من الفقرة واعتمادا على ما درست، اكتب مقالًا تاريخيا تبين فيه:

- 1- أسباب التوتر بين المعسكرين.
- 2- دور حركة عدم الانحياز في التخفيف من حدة الصراع.

مادة الجغرافيا:

الجزء الأول: (06 نقاط)

"... يشكلُ الخط الفاصل بين الدول المصنعة والدول النامية في الوقت الراهن شرخا كبيرا من حيث التفاوت في الدخل بالنسبة للدول الغنية والدول الفقيرة ... ويرتبط مستوى الناتج الداخلي الخام بالنسبة للفرد بمؤشرات مثل الاستفادة من المياه والتربية والصحة وتكنولوجيات الإعلام والاتصال كالهاتف و الانترنيت ... "

المرجع: كتاب الجغرافيا، السنة الثالثة ثانوي. ص 112

- 1- حدّد مفهوم المصطلحات التي تحتها خط.
- 2- الجدول الآتي يمثل أكبر البورصات في العالم:

الوحدة: مليار دو لار

فرانكفورت	باريس	لندن	طوكيو	وول ستريت	البورصة
630	750	1750	2600	7500	رأسمالها

المرجع: كتاب الجغرافيا، السنة الثالثة ثانوي. ص 60

المطلوب:

أ / مثل الجدول بأعمدة بيانية، بمقياس: 1 سم — → 1000 مليار دولار 1 سم — → بورصة

ب / على خريطة العالم المرفقة وقّع البورصات الواردة في الجدول.

الجزء الثاني: (04 نقاط)

تعتبر آسيا الشرقية والجنوبية الشرقية قوة ديمغرافية وفضاء قويا للنمو الاقتصادي وقطبا اقتصاديا ضمن الثالوث العالمي.

المطلوب:

انطلاقا من الفقرة واعتمادا على ما درست، اكتب موضوعا جغر افيا تبين فيه:

- 1- دور استثمار العنصر البشري في تحقيق التطور الاقتصادي.
 - 2- مكانة المنطقة في الاقتصاد العالمي.

الموضوع الثاني

* المنظمات غير الحكومية

* أحمد سوكار نو

مادة التاريخ:

الجزء الأول: (06 نقاط)

1-حدد مفهوم المصطلحات التالية:

* الستار الحديدي * القوة الثالثة

2-عرّف بالشخصيات الآتية:

* زيغود يوسف * ميخائيل غور باتشوف

3-أكمل جدول الأحداث:

تاریخه	الحدث
1955/05/14	
	توحيد الألمانيتين
1958/09/19	

الجزء الثاني: (04 نقاط)

إن إعادة بعث الدولة الجزائرية استلهمت أسسه من مواثيق الثورة التحريرية، وخاصة ميثاق طرابلس الذي تضمن برنامجا يرسم الخطوط العريضة للجزائر المستقلة.

المطلوب:

انطلاقًا من الفقرة واعتمادا على ما درست، اكتب مقالا تاريخيا تبين فيه:

- 1- ظروف قيام الدولة الجزائرية السياسية والاجتماعية.
 - 2- الاختيارات السياسية التي أقرَّها ميثاق طرابلس.

مادة الجغرافيا:

الجزء الأول: (06 نقاط)

1-حدد مفهوم المصطلحات التالية:

* التنينات الأربعة

* تبييض الأموال

* التكتل الاقتصادي

2-الجدول الآتي يمثل نسب إنتاج الأرز لبعض الدول في العالم:

الفيتنام	بنغلاديش	اندونيسيا	الهند	الصبين	الدولة
05.68	06.96	09.40	19.51	28.70	النسبة %

المصدر: منظمة الأغذية و الزراعة (F. A.O) 2009

المطلوب:

أ- مثل نسب الجدول بأعمدة بيانية، بمقياس: 1 سم → 5 % ، 1 سم → دولة ب- علق على الجدول.

الجزء الثاني: (04 نقاط)

إن تقسيم العالم إلى شمال وجنوب هو في الأساس تقسيم اقتصادي، يرتبط ارتباطا وثيقا بالنظام الاقتصادي العالمي الذي يتكون من دول المركز الرأسمالية الصناعية والتي تحقق تقدمها على حساب استغلال وتخلف الأطراف الأخرى.

المطلوب:

انطلاقا من الفقرة واعتمادا على ما درست، اكتب مقالا جغرافيا تبين فيه:

-1 عوامل التفاوت بين الشمال والجنوب.

2- مظاهر التخلف باعتماد مؤشرات اقتصادية.

الإجابة النموذجية وسلالم التنقيط لموضوع امتحان: البكــــالوريا لمادة: التاريخ و الجغرافيا لشعبة: العلوم تجريبية ، رياضيات ، تقني رباضي

العلامة		a lovi udie			
مجموع	مجزأة	عناصر الإجابة			
		رول	الموضوع الالتاريخ (06 نقاط)		
	0.75		1- مفاهيم المصطلحات: *- مؤتمر طرابلس: ثاني مؤتمر للثورة الجزائرية امن 27 ماي إلى 04 جوان 1962 حضره معظم قاد و حدد معالم الدولة الجزائرية المستقلة.		
	0.75	· السيادة الوطنية: هي السلطة الفعلية للدولة على إقليمها و ما فيه من سكان و موارد و رية في المواقف و الاختيارات .			
			و الفرنسي احتوت على العديد من النقاط أهمها وقف		
	0.75	2- التعريف بالشخصيات: *- هاري ترومان (1884 – 1972): رئيس و م أ من 1945 إلى 1952 صاحب الإذن بضرب اليابان بالقنبلة الذرية ، صاحب المبدأ الذي حمل اسمه ، مؤيد للحركة الصهيونية .			
ولعيد (1917 – 1956): مناصل في حزب الشعب ، المنظمة الخاصة ، في المنظمة الخاصة ، المنظمة الأولى . في الثورية للوحدة و العمل ، أحد مفجري الثورة و قائد المنطقة الأولى .			من مؤسسي اللجنة الثورية للوحدة و العمل ، أحد مف		
	0.75	140 4 1 4 4 1000 1000 1000 355 5 11			
			3 - جدول الأحداث :		
		تاريفـــه	الحدث		
	0.50	1949-04-04	تأسيس حلف شمال الأطلسي		
	0.50	1958 - 10 - 23	سلم الشجعان		
	0.50	1961-09-01	المؤتمر التأسيسي لحركة عدم الانحياز		

العلامة			
مجموع	مجزأة	عناصر الإجابة	
		الجزء الثاتى: (04 نقاط)	
	0.50	المقدمة : العالم في ظل القطبية الثنائية 1945 – 1989 و دور حركة عدم الانحياز	
		العرض:	
		1- أسباب التوتر بين المعسكرين:	
	0.50	*- الاختلاف الأيديولوجي بين الرأسمالية و الاشتراكية .	
	0.25	*- تصادم مصالح المعسكرين.	
	0.25	*- النظرة التوسعية للإتحاد السوفياتي و رغبته في نشر الشيوعية .	
	0.25	*- خروج و م أ من العزلة السياسية و تصميمها على تطويق الشيوعية	
04	0.50	2 - دور حركة عدم الانحياز في التخفيف من حدة الصراع:	
	0.50	*- محاربة سياسة الأحلاف العسكرية (حلف جنوب شرق آسيا و حلف بغداد)	
	0.25	*- محاربة القواعد العسكرية .	
	0.50	*- انتهاج سياسة الحياد الايجابي .	
	0.50	*- مساندة حركات التحرر في ألعالم الثالث .	
	0.50	الخاتمة : نهاية الحرب الباردة لا يعني انتهاء دور حركة عدم الانحياز .	
	0.50		
		الجغرافيا:	
		الجزء الأول: (06 نقاط)	
		1 – مفهوم المصطلحات:	
	0.75	*- الناتج الداخلي الخام : هو الثروة المنتجة في دولة ما داخليا خلال سنة واحدة .	
		*- مؤشرات: جمع مؤشر و هو رقم إحصائي يمثل ظاهرة معينة في فترة زمنية محددة	
	0.75	لقياس متغيرات كمية أو نوعية اقتصادية ، اجتماعية و ثقافية (ايجابي – سلبي)	
		*- الانترنيت: هي عبارة عن شبكة حاسوبية عملقة تتكون من شبكات أصغر بحيث يمكن	
	0.75	لأي شخص متصل بها أن يتجول في هذه الشبكة و أن يحصل على المعلومات	
06		 2− التمثيل البيائي: 	
	105	أ- رسم بياني:	
	1.25	• الانجاز	
	0.25 0.25	● المفتاح	
	0.25	• العنوان	
	0.23	• المقياس	
		ب- التعبين على الخريطة:	
	1.25	· الإنجاز • الإنجاز	
	0.25	• العنوان	
	0.25	37	
		• المفتاح	
		*	
	4		

العلامة			
مجموع	مجزأة	عناصر الإجابة	
	0.50	الجزء الثاني : (04 نقاط) المقدمة: الظاهرة الآسيوية بين القوة الديموغرافية و النطور الاقتصادي . العرض:	
	0.50 0.25	المريض. 1- دور استثمار العنصر البشري في تحقيق التطور الاقتصادي : *- وفرة اليد العاملة المؤهلة . *- سوق استهلاكية واسعة .	
04	0.50 0.25	سنوى المسهوني والمنت . *- حركة الهجرة و دورها في تدفق رؤوس الأموال . *- ارتفاع ميز انية التعليم و الاهتمام بالبحث العلمي و الباحثين الأجانب .	
	0.50	2- مكانة المنطقة في الاقتصاد العالمي: * *- ثالث قطب اقتصادي .	
	0.25 0.25	*- تعدد أقطابها الصناعية .	
	0.25 0.25	 *- قوة الأسطول التجاري (يساهم ب30 % من الأسطول العالمي) . *- انفتاح المنطقة على الاستثمارات الأجنبية . 	
	0.50	 *- قوة أسواقها المالية . الخاتمة: حسن استغلال العنصر البشري مكن دول شرق و جنوب شرق آسيا من بناء قوتها الاقتصادية . 	
		الموضوع الثاني	
	89	تاريخ : الجزء الأول : (06 نقاط)	
	0.75	1- مفهوم المصطلحات:	
	0.75	 الستار الحديدي: مفهوم استعمله ونستون تشرشل رئيس وزراء بريطانيا للتعبير عن أطماع الاتحاد السوفياتي التوسعية لعزل أوروبا الشرقية عن الغربية . 	
06	0.75	*- القوة الثالثة: قوة أنشأتها فرنسا من الموالين لها (العملاء ، القياد ، بعض المنتخبين) الهدف منها تظليل الرأي العام العالمي .	
		*- المنظمات غير الحكومية: هي منظمات خيرية تعرف بالمجتمع المدني موظفوها متطوعون تنشط في كافة الميادين كالبيئة، حقوق الإنسان، الإغاثة، الرعاية الصحية، الطفولة	
	0.75	2- التعريف بالشخصيات: *- زيغود يوسف (1921 - 1956): مناضل في حزب الشعب ثم المنظمة الخاصة ،	
	0.75	عضو في اللجنة الثورية للوحدة و العمل قائد المنطقة الثانية بعد استشهاد ديدوش مراد ، منظم و منفذ هجومات الشمال القسنطيني 20 أوت 1955 .	
	0.75	*- ميخائيل غورباتشوف (1931): آخر رؤساء الاتحاد السوفياتي 1985 – 1991 صاحب فكرتي البريسترويكا و الغلاسنوست ، و قع العديد من الاتفاقيات التي أدت إلى إنهاء الحرب الباردة .	
\$		 *- أحمد سوكارنو (1901 - 1970) : سياسي و زعيم اندونيسي تزعم حركة تحرير بلاده ضد الهولنديين رئيسا لاندونيسيا حتى عام 1967 من مؤسسي حركة عدم الانحياز 	

مة	ودجية الوصوح عاده المدريج والمعراب المسب عرم الربية المرب العالمة					
مجموع	مجزأة	عناصر الإجابة				
		تاریخــه	3- جدول الأحداث:			
	0.50	1955/05/14	حلف و ار سو			
	0.50	1990/10/03	توحيد الألمانيتين			
		1958/09/19	تأسيس الحكومة المؤقتة للجمهورية الجزائرية			
	0.50	دة بناء دولة ذات سيادة .	الجزء الثاني: (04 نقاط) المقدمة: الجزائر بين الموروث الاستعماري و إعاد			
			العرض:			
	0.25	'جتماعیه :	1 – ظروف قيام الدولة الجزائرية السياسية و الا أ – السياسية:			
	0.25	· (O.A.S	 السيسية. نشاط منظمة الجيش السري الإرهابية (
	0.25	a a	 قيود إتفاقيات إيفيان 1962/03/18. 			
	0.25	 مؤتمر طرابلس و قراراته . استفتاء تقرير المصير 1962/07/01. تكوين الجمعية التأسيسية سبتمبر 1962 التي أعلنت قيام الجمهورية الجزائرية 				
	0.25					
			الديمقر اطية الشعبية في 1962/09/26 الديمقر اطية الشعبية في 1962/09/26			
	0.25		ب - الاجتماعية:			
0.4	0.50		• ضحايا الثورة التحريرية و مخلفاتها .			
04	0.25	 ● الثالوث الأسود (فقر، جهل، مرض). 2 - الاختيارات السياسية التي أقرها ميثاق طرابلس: 				
	1.50		• تشييد دولة عصرية تعتمد ممارسة المس			
	0.25	طية في مؤسساتها .	الموضوعي ، و تتحقق الفكرة الديمقرا			
	0.25		• رفض كل أشكال النزعة الذاتية و الارت			
	0.50		 اتباع سياسة خارجية متحررة و رافضة العمل على تجسيد الوحدة المغاربية و ال 			
	0.50		الخاتمة: إعادة بناء الدولة الجزائرية تجسيد لمواثيق			
			الجغرافيا:			
			الجزء الأول: (06 نقاط) 1- مفهوم المصطلحات:			
	0.75	بة له هياكل عضوية تنظيمية موحدة يتمتع	- التكتل الاقتصادي: اتحاد مجموعة دول موثق في اتفاقر			
	0.75	جمركية بين الدول الأعضاء.	بالشخصية القانونية له مجال جغرافي تلغى فيه الحواجز ال			
	0.75	موال مشروعه عبر عمليات بسيد ولجاريد. علي أربع دول آسيوية: كوريا	*- تبييض الأموال: تحويل الأموال غير المشروعة إلى أه *- التنينات الأربعة: مصطلح جغرافي اقتصادي يطلق			
			الجنوبية، هونغ كونغ، سنغافورة ، تايوان ، تتميز بنمو			

2012	دورة: جوان	تابع الإجابة النموذجية لموضوع مادة:التاريخ والجغرافيا الشعبة علوم تجريبية ، رياضيات ، تقني رياضي
نمة	العلا	عناصر الإجابة
مجموع	مجزأة	
	01 0.25 0.25 0.25	2- التمثيل البياني: أ- الرسم البياني: - الانجاز - المقياس - المفتاح - العنوان
06	0.50 0.50 0.50 0.50	 ب- التعليق: *- هيمنة البلدان الأسيوية على إنتاج الأرز . *- احتلال الصين الشعبية للمرتبة الأولى عالميا في إنتاجه . *- اهتمام هذه الدول بهذا المحصول كونه الغذاء الرئيسي للسكان . *- ملاءمة الظروف الطبيعية لزراعته.
04	0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.25	الجزء الثاني: (04 نقاط) المقدمة: النظام الاقتصادي العالمي و انعكاساته . *- الاستعمار . *- الاستقرار السياسي في الشمال و انعدامه في الجنوب . *- بجحاف النظام الاقتصادي العالمي القائم . *- نجاح السياسات الاقتصادية في الشمال و فشلها في الجنوب . *- تشجيع العلم و البحث العلمي في الشمال عكس الجنوب . *- تحكم الشمال في التكنولوجيا عكس الجنوب . *- مظاهر التخلف باعتماد مؤشرات اقتصادية : *- ضعف نسبة المساهمة في الإنتاج الزراعي العالمي 35 % . *- ضعف نسبة المساهمة في الإنتاج الصناعي العالمي 10 % . *- ضعف نسبة المساهمة في التجارة الدولية 18 % . *- الاعتماد على تصدير المواد الأولية . *- المساهمة في الدخل الخام العالمي بـ 20 % . *- المساهمة في الدخل الخام العالمي بـ 20 % . *- المساهمة في الدخل الخام العالمي بـ 20 % .

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب: جميع الشعب

اختبار في مادة: اللغة الأمازيغية

المدة: ساعتان ونصف

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

أضريس:

تاجماعث ناث فلان

شفيغاسانتيد تتيدات، لتيغ د اماريان أم وفوس ن وماهراس ماشان سعيغ لأعقال د اماقتران؛ أمين د اهو د اماريان، ثيكوال ناتتغيما جار سأن ن بيمغران تتوثلايان ور تتوادراخش لواقت ن تغيميث نسان؛ رني ماشي د دالت نتيغ د سانت أي ناجًا، ناتش تتوثاوين ئنو نرار باش أنتروح أنتاسغاذ ئ يارقازان. أدبيلي دي لأعمار نتاغ 11 نتيغ 12 ألد 13 ن يساقتاسان. ثاماديث أي ثاتشتاراي ثاجماعث ف ثيشت ن لماراث. ألد ادوالان نفالاحان سي ثاجما. تتراقاند غار ثاجماعث تتغيمان. ألد ادياهوا وسالاس؛ تتاجان ثيدار ئ لخالاث تساوانت أمانسي. ستانفاوانت بغير أديوث بيض؛ داق بيض ن ثزيري سعادايان نض أل ثنازايث. أدلامداغ تاموستني ألد ادتوثلايان يارقازان.

ذ قيتش ن ثموستني اي ستناغ ذي ثيراكالت (جغرافيا) ئ ييجّين وّضاغ ألد ي دحاًوّساًغ ثامورث ن فرانسا أسّ ثالًا (ؤكّال)[...] تتمورا ن وروبا: لالمان، لاناقليزذ ... يوما أذيروح ويشت نذاس، ذ وين ئ ديأتّعاواذاًن أمّين؛ أذيروح نذاس غار لمارسا، غار لوزين.[...]

يوما أتروحاذ نذاس غار ثمورت ن يوذان، غار لڤاژارنا، غار وانتار ن ومسانغي، غار ولابتات......

يأتتباند لأبطال ن وانقال ور يألتي ور يأزمير أذييلي؛ لأبطال ئ تشاباهأن شرا ن ماس ذ امأقران، ئ سأمناعان سي يال ثاديانت؛ ماس ور يتاقاذان ثيووغا (الماصانب)، أ قوعران، نتيغ ذ اوأزغي (المستحيل).

ذ روس أ فْزَالْتِي وأوال غار تْغاوسيوين نتاغ، ثيبيًا سننان لأعباذ أسّ لآن، ماشا سَأَقْمايانت نماَرْيانان أك تَيتيذين.

ثاويا (الأهل) ن يماريانان تتاكلان ف يماقرانان ن وقاوار ذ وسالماذ ن يماريانان أمين ذي ثاجماعث. نارفاذ س غارسان ا قالان، ناستغاذ ئ وا قالان بلا يافران، ناتتامان أ غاندقاران، غار ثقارا نلامذاد س غار وامي ناسلا.

امًا ذيماً ريانان أفي نروزي س وخامام، ثيمورا ور غارسانتش نقميران. ناتخامام ف ثمادورين ناغ ن واذاتشا، أمين ذي نالا ذيرقازان نماقرانان سي زيك.

ك. بوعمارة اوسان ذي ثمورث 2006، س ب 30، 30

ئسأستانان:

- (06) نیفزی ن وضریس: (06)
- 1. ف ماتا يأتوثلاي ونالاس ذاق وضريس أيا؟
- 2. ماغاف يأتتاجاً ونالاس ذيمادوكتال نتاس نرار مي لان ذيماريانان؟
 - 3. مالمي ثاتشاراي ثاجماعت ن وقاوار ن ايث فلان ؟
 - 4. ماتاً لأمدان نماريانان سي ثوثلايث ن لأجماعث؟
 - 5. كساد ساق وضريس تكنيوان ن واوالأن أيا:
 - ضلّلم:
 - نأستحاستاي:....
 - نأتقاصار ئض:
 - 6. ماتا ذاناون وأضريس أيا؟

II) ئفاردىسان ن ئوئلايث: (06)

- 1. "شفيغاسانتيد تيدات، لتيغ ذ اماريان ماشان تغيميغ جار بيمغار أن سغاذيغ و لأمداغ و الأمداغ و الأمداغ
 - بذو ثینتاوث هامتا: "نآشفاسانتید تیدات"
 - 2. سلاص ثافييرث أيا: "شفيغاسانتيد".
- 3. "ماشي ذ دّالت نتيغ ذ سأنت أي ناجّا، نأتش تتوثاوين ننو نرار باش أنتروح أنتاسغاذ ئ يارڤازان." - سامّاد نسومار ن ثافيير ث أيا.

III) أسانفالي س ثيرا: (08)

ياً لا أوا يالان ياتاويد لفايات سي ثغيميث ئذن يماقرانان أم تموستني (المعرفه) ليغ توستنا (العلم).

أريد أضريس أتوثلاياد ذيس ف ثغاوسا ثاتعاً لأمذيت ساق ومأقران.

Adris

Tajmaet n at Flan

Cfiy-asent-id, d ayen i yellan. Lliy d acawrar, annect n ufus n umehraz, maca tæqqley mačči d kra; akken d aqcic, tikwal nettyimi gar sin n yijaddiwen n wawal mi ara ttemjadalen. Ur zeggley ara tiswicin n unejmuɛ; rnu, mačči d tikkelt ney d snat i neǧǧa, nekk d yimendideniw, turart iwakken ad d-nruḥ ad nesmuzget i yirgazen. Ad nesɛu 11, 12 alamma d 13 n yiseggasen deg læmur-nney. Tameddit i tettaččar Tejmaɛt, deg tegti. Mi ara d-rzun yifellaḥen seg lexlawi, tteffyen-d yer tejmaɛt, ttyimin alamma yeyli-d yid; ttaǧǧan ixxamen i tlawin, ttlawant imensi. Sgunfuyen alamma teyli-d tallast; deg yiḍ n tziri, ttæwazen alamma yettnay yiḍ d wass. Ayen i d-lemmdey d tamussni mi ara ttmeslayen akken yirgazen, d ayen ur tettamneḍ a wa. D cwiṭ n tmussni i ssney kan deg tirakalt i yi-yeǧǧan ssawḍey armi i d-kkiy akk tamiwin n Fransa [...] timura n Lurup am Lalman, Legniz ula d Marikan. Yewwi-d ad yeddu yiwen yid-s, d win i d-yettalsen akken; ad yeddu yid-s yer tyaza (lmina), yer lluzin [...] Ilaq ad tedduḍ yid-s yer tmura n medden, yer lkazirna, yer unnar n yimenyi, yer udmer¹... Yettban-d d asaḍ n kra n wungal werǧin nelli, ur nezmir ad yili; asaḍ yecban kra n Mass meqqren, Mass i yettselliken seg yal tinimert; Mass ur nettkukru igejduren, tikerkas, ney awezyi (ayen ur iqebbel leɛqel).

Ar deqqal ad d-yezzi wawal yer tyawsiwin-nney, ti i ssnen akk medden, d tidet, maca ttrebbint-d ilemziyen, ula d ti.

Imawlan tteklen yef yimeqqranen n taddart d uselmed i sselmaden akken arrac deg tejmaet. Nettaf yur-sen nezzeh, d ayen yellan. Nesmuzgut i yellan – ur nferru ara - nettamen kra i ay-d-qqaren, yer taggara nlemmed kra iwumi nesla. Akken d arrac ya, nettnadi-d s usugen, timura ur nesei tilisa; nettxemmim i tmeddurin-nney n uzekka, amzun akken d irgazen meqqrit ya.

K. Bouamara, Ussan di Tmurt, ENAG, 2006, asebter 30, 31.

Admer : lgirra.

Isestanen:

I) Tigzi n udris : (06)

- 1. Fef wacu i d-yettmeslay unallas deg udris-a?
- 2. I wacu i yettaǧǧa unallas d yimdukkal-is turart mi llan d arrac ?
- 3. Melmi i tettaččar tejmast n taddart n At Flan?
- 4. Dacu i d-lemmden warrac seg umeslay n tejmaet?
- 5. Kkes-d seg uḍris arwasen (iknawen) n wawalen-a :
 - țțlam =.....
 - Netthessis =.....
 - Sehhren =
- 6. Dacu-t wanaw n udris-a?

II) Iferdisen n tutlayt: (06)

- « Cfiγ-asent-id, d ayen i yellan. Lliγ d acawrar, annect n ufus n umehraz, maca tεeqqleγ mačči d kra; akken d aqcic, tikwal nettγimi gar sin n yijaddiwen n wawal mi ara ttemjadalen.»
 - Bdu tinawt-a akka : « Necfa-asent-id ... », tbeddled ayen i ilaqen ad ibeddel.
- 2. Sled tiwuriwin n wawalen n tafyirt-a:
 - « Cfiy-asent-id ».
- 3. « Mačči d tikkelt nev d snat i nešša, nekk d yimendiden-iw, turart iwakken ad d-nruḥ ad nesmuzget i yirgazen. »
 - Semmi-d isumar n tefyirt-a.

III) Asenfali s tira: (08)

Izga yella wayen ara d-nagem seg tγimit d yimeqqranen neγ wid i aγ-yugaren deg leεmer, ama d tamussni ama d tussna.

Aru-d adris ideg ara d-talsed kra n taluft i d-tlemded seg tyimit d yimdanen imeqranen.

·E020

+ · I C • * + 1 • + I C E • 1

EJESY-•0+17-2A, A •N+1 & N+UU-1, UUSY A •C•:0•0, •11+C7 1:JE:0 1:E+00•X, E•C• +*** REU.* Y C. 558 A RO. : • RR*1 A • RESE, + SR:• U 1*++ YELS X•O OSI I NSI• AAS: * 1 1:• :• U [8 .0. 44. [1. 40 X. XXXI. 44 .0. 450: 5.5] | 1:14. [1. 6. 6.5] | 1. 14. [1. 6.5] 01.4 & 14XX., 14KK V USC4IV8V41-8: 4:0.04 8:4KK41 .V V-10:V .V 140C:XX44 8 TISOX+X+1. • A 1+0+: 11, 12 • U• CC• A 13 1 TISO+XX•O+1 A+X U•• C:O-11+Y, +• C+AAS+ S +++JCJCY+1-1 Y+O ++IC++++ ++YECE1 +U+CC+ N+YUE-1 NEE: +++XX+1 EXX+C+1 E +U+E1. ++U•:21+ 20+102. 0x:1JC:n+1 •U•CC• ++YU2-1 +•UU•0+: 1+X n2E 1 +X202. ++*•:•X+1 ·U·CC. N+++1.4 USE V:00. ·U+1 & V-N+CCV+A V-C:0018 C8 ·O· ++C+01.01+1 ·KK+1 TEOX•X+1, A •T+1 :0 ++++• CI+E • :•. A 6:24 1 +C:0012 2 001+4 K+1 V+X +50 • K+11 2 L2-11+XX-1 00-:E+Y -OLS & A-KKSY -KK +-LS:81 1 JEO-10- [...] +8L:0-1 U:O:X U-UL-1, U+XISX :U• A C•OSK•1. N+::2-A •A N+AA: NS:+1 NSA-O, A :S1 S A-N+++•UO+1 •KK+1; •A Π÷ΛΛ: ΠεΛ-Θ Υ÷Ο +Υ•Χ• (UCSI•), Υ÷Ο UU: ΧΕΙ [...] ΕU•V •Λ +÷ΛΛ:Ε ΠεΛ-Θ Υ÷Ο +C:O• 1 :1X·U:+OX21 1+UU2, :O 1+XC2O · A NSU2: ·O·E N+CO·1 KO· 1 C·OO C+CCO+1, C·OO S N+++0+UU2K+1 O+X N•U +212C+O+; C•OO :0 1+++K:KO: EX+IA:O+1, +2K+OK•O, 1+Y •:**XYS (•П+1 :0 SV*QQ+U U+*V+U).

•O+AV•U •A A-N+XX8 :•:•U Y+O +Y•:08:81-11+Y, +8 8 001+1 •KK C+AA+1, A +8A++, C•C• ++O+0021+-A 8U+CX8N+1, :U• A +8.

> K. X:*L•O•, *00•1 12 +L*O+, ENAG, 2006, •0+0++O 30,31.

^{1 .}NE+0 : UX200.

20+0+01+1:

I) 75% 1 :EOSO : (06)

- 1- 447 :. 6: 8 V-U++++++01. 11. 11. 10. V+X :E080-. 5
- 2- 2 : · C: 2 N+++ · XX · : 1 · UU · O A N2EA: KK · U-20 +: 0 · O + E2 UU · 1 A · O O · C?
- 3- [+ UES & + + + + 55 0 + + IE + 1 + 1 0 0 + 1 + JEU 1 ?
- 4- 1 .C: 8 V-11+EEV+1: 00 .C O+X : E+O11-11++IE ++ 3
- 5- KK+0-1 0+X :E020 .O:.0+1 (2K1.+1) 1:... (1+1-.:
 - YYU•Z =.....
 - 14++740050 =.....
 - 0400041 =....
- 6- 1 · 6:-+ : · 1 · E O 20 ?

II) SJE40ASO4114:48.114: (06)

1- « ENEY-OFIT-EA, A •NT E NTUNI. UNEY A •C•:O•O, •NT I I INIO 1 : [+00•X, L•C• + + + ENUTY L•GGE A RO•; •RR+1 A • EGEG, +ER:•U |+++YELE X•O OEI 1 NEI•AAE:+11:•:•U LE •O• +++LI•A•U+1.»

- On: te10:t-0 ork0: « 14600-00+1t-en ... », to+nnu+e on+1 e euo+1 on eo+nn+u.

2-OUTE 75:05:511: ... UF117-JET1507- :

- « JEEY- • O+1+-EA ».

3-« L·GGE A YERRANT IAY A OIOT E IAXXO, IARR A MELAINEAAI-EI, TIOOTEIORIA.»

- 04EES-N 20:E.O 1 +4JEN2O+-.

(80): •O&F @ SI-JE-\$0 : (08)

2XX • N+UU • :•N+1 •O • 1-10 X+2 O+X +4828+ V USC+220 •1+1 1+4 :8V 8 •A-U:X•O+1 V+X N++250 •1+ V+05:0015 •2 • V +1001•

•O:-A •E020 2A+X •O• A-+•NO+E RO• 1 +•N:JE+ 2 A-+N+EA+E O+X +Y2E2+ A N2EA-1+1 2E+EO-1+1.

الموضوع الثاني نانا حدجيلا

نـّا حدجيلا ثازداَغ ئ ييمان ناس، ذاق وامّاس ن ثقاوّارث. سي بارّا أم وخـّام ناس، أم ييخـامان يـّيض، ألد اتـّاذفاذ، تـّغاوسا ثيشت. وأر عاذ رُار غيث جار ثيطـّاوين ننو، أخـّام نذين؛ قـّان ذيس نعاجماي. شفيغ ناتـّامسازّال ذين. مي هاذارُراَغ أسّا، قارغاس أثايان تـّارجيت ئ ثورجيغ نيغ هاتايان تـّيمـرُي ننين نالا ذ يمارُيانان ئ قسماغران أخّام نذين جار ن ثيطاوين ناغ.

تاي ذ نانا حدجيلا. كين (نكأن، أعابون) نأس ديما يأتشور ما ور يألي تاحلاويث نيغ تافلوست ن سآكار ذ يحابان ثاز ارث.

ثَاتَتَازُواراي ثازطي زّائس. وين ئ دثاملال ذيناغ، استسالاف (استماساً ح)، اتتارفاذ، استاتشار فوس ثرانتاس: "أ راتي سريث!".

ف وايا، وين يوضين، وين ئ ناعران، وين يانغا ؤسائان يوزال غار طارف ن نانا حدجيلا. ذين ذين، أستاسفاض نماطاوان، أتتهوز ثاتتغانا.

ؤسّان تـّازّالأن أم واضو، وا تقارا ن وا. نرائي، ناتّـقاً عمير، ناتّـاتّـو. ناسعا ئخامان نميرا، ناسعا ثاروا، ناسعا ننازقام. ثروست ن وا يالان وأرعاذ نتماكثيد ذ طارف ن نانا حدجيلا. كيس ناتش، أل نميرا مدا ول طاسّانش فالا يوذان، أساغليغ ذي طارف، أذيلاغ قيتش جار نفاسّان ناس باش أييثماسيّاح ئ وقالقول ننوغ. ريغ، غاروات أيّا ئ ييديسيّالان غار شيب ننو.

نا حدجيلا ألد نميرا ئ بيمان ناس، أم زيك. مدائ دثر أبّا أكر ار أن، أسّا ثاساًر عوفت ناس تاماقر انت، نمي ذ يرقاز أن أي ثر أبّا، أتّايان و آحذاًس.

أسًا و سياقيمش أتنابي ثاعجوجث (ثميط) ئ ويشت. يال ثاناز ايث، أتغاوال أتنارق ساق وانزا ناس، أتناروغار ناس غار ماني تغيمانت تامغارين.

ماتًا هاذيوعان أناحبوس غار لحابس ناس؟ ثاتتاقتاذ أ تتيناقتان، ولاش ن وا يالان ييذاس. ثاررا ثامادورث ثانتابدال، ولاش ن وا هادياسان أذيساقسا فالاس.

ناتا حدجيــــلا ,حسان حلوان دي تسغونث ثيموزغا، اوطون 19 H.C.A., 2008 الجزائر، س ب 119-116

ئسآستانان:

(I) ئيڤزي ن وضريس: (06)

- 1. لأغروز ن وقاو الشاتان أماك لأن نانا حدجيلا. تنيد ماغار؟
 - 2. أنالاس ذأق وضريس ذ المآنساي.

كساد سى نسادارث ثامازواروث ماتا ئ ثيديامالان (ئ ثيدياسانعاثان).

- 3. أنالاس بأستاتام (بأستارام) أذيتأكا ذي طأرف ن نا حدجيلا. وشد ستأبّأت ن وايا.
- 4. وثلاياد ماماك ثاتادار ناتا حدجيلا ذي ثوسارث (ذي ثماغري) ناس. ماغف هاما؟
 - أويد س غرآك سأتات ن تأفيار س واوالأن أيا: زيك، نراتي.

II) نفار دیسان ن توتلایت: (06)

- 1. بضا ثافييرث أيا تساميذاد نسومار ناس:
- " مدا ول طأستانش فألا يوذان، أسأغليغ ذي طأرف"
 - 2. سلاص تافييرت أيا: ثاتازواراي ثارضي زائس.

III) أسأنفالي س ثيرا: (08)

نانا حدجيلا ثاقيم ئ ييمان ناس (و أحذاس). أي ثر آبا ؤكال دجينيت و روحان.

ألساد شان ثاديانث ف لخير و ديتوالانش.

Adris

Nna Ḥğila.

Nna Ḥǧila tezdey iman-is, deg tlemmast n taddart. Γas akken seg berra, am uxxam-is, am yixxamen n wiyaḍ, mi ara tkecmeḍ, d ayen-nniḍen. Mazal ttwaliɣ-t gar wallen-iw [...]; γas qqen deg-s izgaren. Cfiɣ nettemsazzal dinna. Mi ara muqleɣ ass-a, qqareɣ-as ahat d targit i t-urgaɣ neɣ ahat d temzi-nni i nella mezziyit i yesmeɣren axxam-nni gar wallen-nneɣ.

D tayi i d Nna Ḥǧila. Iciwi-s yezga yeɛmer : Ma mačči d taḥlawat neɣ d taḥjurt n ssker, d iniɣman.

Tezwaray tizedt zdat-s. Win i d-temlal deg-ney, ad as-teslef, ad t-terfed, ad as-teččar afus-is ternu-as: "Rebbi hrez!".

Day netta ula d nekkni, win yeylin, win yennuynan, win iwumi i yedda usennan, yazzel s irebbi n Nna Ḥǧila. Din din, ad as-tesfeḍ imeṭṭawen, ad t-tezzuzen.

Ussan ttazzalen am waḍu, wa yettdeggir wa. Nettnerni, nettimyur, ntettu. Nesɛa ixxamen tura, nesɛa dderya, nesɛa iyeblan-nney. Xaṭi mexṭa n win mazal yettmekti-d irebbi n Nna Ḥǧila. Fas ma nekk, ar tura, lemmer ur ttaḍsan ara fell-i medden, ad as-yliy deg yirebbi, ad ruy cwiṭ gar yifassen-is, akken ad iyi-teslef i uqerruy-iw. Zriy, yurwet wi iyi-d-isellen yer ccibiw!

Nna Ḥǧila mazal-itt weḥd-s, am zik. Lemmer i d-trebba akraren, ass-a tajlibt-is meqqret, imi d irgazen i trebba, ha-tt-an iman-is.

Ass-a, ur mazal ad tegzem timiṭ i yiwen. Yal sbeḥ, ad tyiwel ad d-teffey seg "uzekka-s", ad tezzuyer iman-is yer wanida ttyimint temyarin.

D acu ara yerren ameḥbus yer lqefs-is? Tettaggad i tt-yettayen, ulac win yellan yid-s. Teẓra ddunit tbeddel, ulac anwa ara d-yasen ad yesteqsi fell-as.

Hacène Halouane, Nna Ḥǧila, deg tesyunt TIMMUZΓA, uṭṭun 19, H. C. A., 2008, Alger, sb. 116- 119.

Isestanen:

I) Tigzi n udris: (06)

- 1) Arrac n taddart ḥemmlen akken ma llan Nna Ḥǧila. Ini-d acuyer?
- 2) Anallas deg udris-a d agensay (d asad).
- -Kkes-d seg tseddart tamezwarut ayen i t-id-yemmalen.
- 3) Anallas yessaram ad as-yeyli i Nna Ḥǧila deg yirebbi-s. Efk-d ssebba n waya.
- 4) Mmeslay-d amek i tettidir Nna Hğila tewser-ines. Acuyer akken?
- 5) Awi-d syur-k snat n tefyar s wawalen-a: Zik, ttnerni.

II) Iferdisen n tutlayt: (06)

- 1) Semmi-d isumar n tefyirt-a: "Lemmer ur ttaḍsan ara medden, ad as-yliy deg yirebbi."
- 2) Sled tiwuriwin n wawalen n tafyirt-a: Tezwaray tizedt zdat-s.

III) Asenfali s tira: (08)

Nna Ḥǧila teqqim-d iman-is. Wid akk i d-trebba ǧǧan-tt, ruḥen.

Ales-d kra n tedyant, ama tesliḍ-as ama teḍra deg temnaḍt anida i tettidireḍ, ɣef lxir ur nettuɣal.

11. CXSI.

Λ ተ•Π2 2 Λ 11• ΛΧ2Ν•. 262:2-0 Π፥ЖΧ• Π፥•፫፥Ο : ፫• ፫•ፚ፩ Λ ተ•ΛΝ•፡•ት Ι፥Ψ Λ ተ•ΛΙ:Οት 1 ΘΘΚ÷Ο, Λ 212ΨΓ•1.

^ ·C፡ ·O· Π∻OO÷1 ·C÷ ΛΦ፡⊙ Ψ÷Ο ઘ∇÷ΙΣ⊙-2⊙ ? ተ∻ተተ•ΧΧ•Λ ይ ተተ-Π÷ተተ•Ψ÷1, :U·C ፡21
Π÷Ш•1 Π2Λ-⊙. ተ÷ΚΟ• ΛΛ:12ተ ተወ÷ΛΛ÷ሀ, :U·C •1:• ·O• Λ-Π•⊙÷1 •Λ Π÷⊙ተ÷Σ⊙ይ ፲፫÷ሀሀ-•⊙.

20+0+1+1:

I) +2XX21 :EO20 : (06)

- 1) .00.61 +. AM. O+ K+EEU+1 . KK+1 E. UU.1 11. KX2U. 212-A . 6:440 ?
- 2) •1• LLL O 1+X = EOSO • 1 X +10 11 (1 0 E).
- -KK+O-1 0+X +O+11-0+ + · [+X: · O: + · [] 2 +-21-[] +[[· U+].
- 3) •1•UU•0 11+000•0•C A •0-11+412 & 11• VX811• V+X USO+008-0. +7CK-V 00+000• 1 :•U•.
- 5) •: 2-1 04: 0-k 01. + 1 + 7 ETI 0 0 : •: 11 +1 : * EK, ++1+018.

II) SJE+OASO+11++#•11+: (06)

- 1) OFFE-1 80: [O 1 + FIFTSO+ : "UFFF O : O ++ E0 1 O FF111-1, 1 O YUSY 14X 1120+008."
- 2) OUZE 78:08:81 1:0:04:11 7:35(180+-0: +:**:00-17 +8**/1 **/0+-0.

11. KX21. +*KK21-1 21.1-20. :E1 .KK & 1-+0.00. XX.1-++, O:K+1.

•U+O-1 KO• 1 ++111-11, •C• ++0USE-•O •C• ++EO• 1+2 ++C1•E+ •121. 20++1+2120+E, 4+11-UXSO :0 1+++:4•U.

العلامة			
المجموع	مجزأة	عناصر الإجابة " ثأجماعث "	محاور الموضوع
<u> </u>	J.J.		7
	01	1" 1" 1 12 ·	ثيڤزي ن
	01	1. يأتوثلاي ونالاس ذاق وضريس ف ثاجماعث ن وقاوّار.	وضريس
	01	2. يأتتاجاً ونالاس ذ يمادوكال ناس نرار مي لان ذ يمار انان باش	0.5
	01	أذلامذان ثاموستني سي ثاجماعث.	7
	01	3. ثاتشاراي ثاجماعت ن وقاوار ن ايث فلان ذاق يط الد ادياهوا	
		وسالاس.	
06	01	وسعامن. 4. لأمتذآن نمآريانأن سي ثوثلايث ن لأجماعث ثموستني توستنا.	
	OI		
		5. نكنيوأن ن واوالأن:	
	0.5	- ضِتَلامٍ: سالاً سِ.	
	0.5	- نأستحاستاي: نأستغاذا.	-
	0.5	- ناتقاصتار ئض: ناستعادّاي نط.	
	0.5	6. أناو ن وأضريس ذ وليس.	
	0.5	ان الماق ال والمعطريات و المعطريات الماق	
		1. نأشفاسأنتيد تيدأت نألا ذيمأريانأن ماشان نأتعيما جارييمغارأن	п
	1.5	ناستغادا و نلامتاذ ول ناتتو آدارش.	ئفآرديسآن
		<u></u> و <u>-ر</u> و <u></u>	ن توتلايت
	0.5	غ: ذ اسآنتال	
06	0.5	شفیر: ذ اسآغرو	
	1 0.5	أسآنت: ذ اسآمـّاد أروسريد	
	0.5	د: تـّـاز آلغا ن ثنيلاً	
3	01	 ماشى ذ دالت نتيغ ذ سأنت أي ناجا، نأتش توثاوين ننو ئرار: 	
		أسومار افاجدان.	
	01	باش أنتروح أنتاسغاذ ئ يارڤازان: أسومارئمسانتال (ن ييسوي).	
		* أضريس أذييلي ذ ولتيس.	III
	01	* وُلْيس أَذْ يَبَأَدُ فَ كُرَادُ نَ يُمُورِ أَنْ.	أسأنفالي
		1- أذ بيلى وفاريس يأحلا؛ ما:	س ثیرا
	6.4		س بیر،
	01	- يأتواغراي س وأسهال أَــــُـــُـــُـــُـــُـــُـــُـــُـــُـ	
	0.5	- أسآبتآر يآزديق (ثالتونين، ثيسآدارين) ؛	
	0.5	- أسيڤآز ئواڤا ؟ شند أنشنا الثارية أنسا	.00
	0.5	- ثیفیار رسآنث ف یلوقان ن تجآر ومث ؟	
	0.5	- أماوال يوڤير ئذ ن وسأنتأل ؟	
	0.5	 نلوڤان ن ٹیرا تواضآفرآن. 	

دورة: 2012	الشعب	الشعب(ة): جميع	ة الأمازيغية	مادة: اللغة	اختبار	النموذجية	تابع الإجابة
------------	-------	----------------	--------------	-------------	--------	-----------	--------------

للامة المجموع	الع مجزأة	عناصر الإجابة " ثأجماعث "	محاور لموضوع			
08	0.5 0.5 0.5 0.5 0.5	2- يأزضا أماك ئلاق - ثوتسان وأضريس تساد رين ؛ - ثوقنا جار ثساد رين ثاتساهال ثيڤزي ؛ - ثيمار ران يامياڤان وڤيرانث ئذن ثيلاوث ؛ - أسامراس نينامالان ن واكوذ ذيا ن واذاق بانان يوڤير ئذن وسائتال ئ ديتواوشان - أضريس ذوليس يامدان ؛ - أضريس ياتوابنا ف ثغاسان ووليس ؛ - أضريس اذيوڤير ئذن وسائتال.				
		¥				
2						
		**	-			

ة: 2012 لامة		النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب عناصر الإجابة	تابع الإجابة
المجموع	مجزأة	*Tajmaɛt n at Flan*	محاور الموضوع
	01	1. Anallas deg udris-a yettmeslay-d yef tejmaet n at Flan d wazal i	
		tessa deg tudert-is. Akken i d-yemmeslay yef temzi-s.	Tigzi n
	01	2. Yettaǧǧa unallas d yimedukkal-is turart iwakken ad ruḥen ad	udris
	01	smuzegten i yirgazen.	,
06		3. Tettaččar tejmast n taddart n at Flan tameddit ney deg yiḍ.	
•	01	4. Arrac lemmden tamussni d wayen yelhan seg umeslay n tejmast.	
		5. arwasen n wawalen-a :	
	0,5	- ttlam = tallast	
	0,5	- netthessis = nesmuzgut	
	0,5	- sehhren = ttɛawazen	
	0,5	6. Anaw n uḍris-a d ullis.	
		1. « Necfa-asent-id, d ayen i yellan, nella d icawraren annect n	II
9	1,5	yifassen n umehraz, maca netteeqqel mačči d kra ; akken d	Tutlayt
	307	arrac, tikwal nettyimi gar sin n yijaddiwen n wawal mi ara	Tuttayt
		ttemjadalen. »	
	0,5	2. Tasledt n tefyirt : « cfiy-asent-id »	
	0,5	\Rightarrow -y: asentel (ameskar/amigaw)	
06	0,5	⇒ Cfi-: aseyru	
		⇒ -asent : amqim awsil asemmad arusrid	
	0,5	⇒ -id: tazelya n tnila	
	01	3. Asemmi n yisumar n tefyirt:	
	01	- Asumer agejdan : Mačči d tikkelt nev d snat i ne <u>š</u> ša,	
	01	nekk d yimendiden-iw, turart	
	••	 Asumer amsentel (n yiswi): iwakken ad d-nruḥ ad nesmuzget i yirgazen 	
		Aḍris ad yili d ullis. Aktazal ad ibedd yef yisefranen-a:	III
		- Taferkit:	
	0.5	-Asebter zeddig	Asenfali
1	0.5	-Tira tettwayar	s tira
	3.0	- Afares :	
	1,5		
	, in 19	- Asentel iban	
	1,5	-Aḍris d ullis (tayessa n wullis tefrez).	
		- Tutlayt :	
08	0.5	- Asemres n yinamalen n wakud / adeg.	
	0.5	- Asemres n yimyagen d tmezra	
1	0.5	- Asemres n umawal	
1	0.5	- Aqader n yilugan n tira	
İ	0.5	- Asigez n udris	
		- Taseddast / Tazḍawt	
1	0.5	- Lebni n tefyar tummidin	
1	0.5	- Tuqna gar tefyar d tseddarin	
	0.5	-Aqader n yilugan n tezḍawt taḍrisant	

2012 :	دورة	النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب	تابع الإجابة
لامة		عناصر الإجابة	محاور
المجموع	مجزاة	*Tajmaɛt n at Flan*	الموضوع
	01	1. •1•UU•0 A+X :E020-• N+++C+0U•N-A Y+IC ++IC•++ 1 •+ ICU•1 A :•X•U 2 ++0•• A+X +:A+0+-20. •KK+12 A-	I 12%%21
	01	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	:E020
06	01	3. ++++•55•0 ++II.•++ 1+• \(\Lambda\). \(\text{O}\) \(\text{II.•}\) \(II	
	01	4. •00•@ U+EE/+1 +•E:0018 A:•M+1 M+UØ•1 0+X:E+0U•M 1 ++IE•++.	
		5. •O•⊙∻l l ••ll∻l-• :	
	0,5	- AAN•E = 4.NN•€+	
	0,5	- 1*++ c*0020 = 1*0C:*X:+	
	0,5	- 0+000+1 = ++*•:• * * * 1	95
	0,5	6. •1•: 1 :E020-• A :UU20.	
	-	1. « 146II •-• 0414-20, 1 • 1141 2 114111 • 1, 1411 • 1 26 • : 0 • 041	II
	1.5	11284 1 11276-0041 1 :E+80. * . C. 1444-4 EVEL E-558 A	+:+॥•॥+
	10-10-70	KO.; •KK+1 1 •OO.6, +2K:•U 1+++Y2E2 X.•O 021 1	
		NSI. VV8:411:0:01 E8 00. 444EI. V	
	0,5	2. +•OU+E+ 1 ++JENSO+ : « GJESY-•O+1+-SA »	
06	0,5	⇒ -Y: •⊙+17+11 (•C+⊙K•O/•C2X•*)	
	0,5	⇒ CIE-: •0*YO:	
	0,5	→ -•0+17: • [RSE •:091 • 0+[[• ∧ •0:002]	
	-,-	⇒ -£Λ: +•Ж÷ШY• 1 +12U•	
		3. •0+EE2 N20=E•0 ++JEN20+ : •0=E+0 •X+IA+ : E•552 A +2KK+U+ !+4 A 0 •+ 2	
	01	1488. 1488 V LISE 41V5V41-8: 4:0.04	
		•0:240 • [0:17:48 (1 1120:2): 2:• KK*1 • 1 1-10: 1 • 1	
	01	140C:*X*+1 & 1180X**+1	
		• = 030 • \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	III
а		- + • II + O K 2 + :	31.1C+0.
	0.5	- •0÷0+÷0 %÷\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 120.
	0.5	- te0. titt: v.0	
	0.5	- • DE•O&O :	
		U. TORNAS (1977) 1999 (1977)	
	1.5	- · © * 1 * 1 * 2 * 0 * 1 * 1 * 1 * 2 * 0 * 1 * 1 * 1 * 2 * 0 * 1 * 1 * 1 * 2 * 0 * 1 * 1 * 1 * 2 * 0 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1	
	1.5	- • EO20 A : UU20 (+ • Y + OO • 1 : UU20 + + ICO + X). - + : + U • N + :	
08	0.5	- • 0 + L 0 + 0 1 11 21 • L • U + 1 1 : • K : 1 / • 1 + X.	
	0.5	- •0+E0+0 1 NSEN•X+1 1 7E+XO•	
	0.5	- • O * C O * O 1 : E • : • U	
	0.5	- · Z • A ÷ O 1 11211: X • 1 1 + 2 O •	
3.4	0.5	- •08X * X 1 :E080	
		- +•0+00.0+/+•XE•=+	
	0.5	- 4:012 1 +: 251 -0 +: 552 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	0.5	- +: Z1 · X · O + + DETI · O · A · O · D · A · O · D · D	
	0.5	- · E· A+O 1 TISU: X • 1 1 + * * E • : + + • E O 2 O • 1 +	AE

دورة: 2012	ع الشعب	الشعب (ة): جمي	الأمازيغية	مادة: اللغة	ذجية اختبار	الإجابة النمو	تابع
------------	---------	----------------	------------	-------------	-------------	---------------	------

العلامة		النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب	محاور
المجموع	مجزأة	عناصر الإجابة "نانا حدجيلا "	موضوع
06	0.5 0.5 0.5 0.5 0.5 0.5 0.5	1. لأغروز ن وقاوار شاتان أماك لأن ناتا حدجيلا جاماك: - كين(نكان، أعابون) ناس ديما ياتشور ما ؤر ياتي تاحلاويث نيغ تافلوست ن ستاكار ذيحابان ثازارث وين ع دثاملال ذيناغ، أستسالأف (استماستاح)، أتتارفاذ، استاتشار فوس ثرانياس: "أرابي سريث!". 2. ماتا ع ثيديامالأن(ع ثيدياستانعاثان): أ أسانتال: رُاراغ، شفيغ، نتامسازال، قارغ، ورجيغ ب) أمقيم أوصيل: ثيطاوين ينو، ثيطاوين ناغ بن أمس باش أسلماستاح (استاسلاف) ف ييخاف ناس باش أدياماكثي تامري باش أدياماكثي تامري. واحذاس) ولاش ن وا ئ فروزين فالاس ولاش ن وا ئ فروزين فالاس نرفازان ئ دشرابا دجينيت ئ بيمان ناس (واحذاس) درائين لأغروز.	بقري ن ضريس
06	01 0.5 01 01 0.5 0.5 01.5	1. " مدا ول طاستانش فالا يوذان، أساغليغ ذي طارف" مدا ول طاستانش فالا يوذان: أسومار أمسانتال ن ثورذا. أساغليغ ذي طارف: أسومار أقاجذان. 2. تاسلاط: ثاتتازواراي ثازضي زائس ث: د اماسكار (أسانتال، أميقاو) تازواراي: د اساغرو تازضي: د اساماد وسريد زاث: تانزاغت س: د امقيم أوصيل اساماد أروسريد (س تانزاغت)	II اردیسان ن وثلایث

ة: اللغة الأمازيغية الشعب (ة): جميع الشعب دورة: 2012	اختبار مادة	النموذجية	ابع الإجابة
--	-------------	-----------	-------------

العلامة		I devil alto	محاور
المجموع	مجزأة	عناصر الإجابة	الموضوع
a a	01	 * أضريس أذييلي ذ ولتيس. * وثيس أذ يبأد ف كراد ن يمور أن. 1- أذ يبلي وفاريس يأحلا؛ ما: 	III أسأنفالي س ثير ا
, P	01	- يأتتواغراي س وأسهال	
	0.5	- أسابتار يازديق (ثالتونين، ئيسادارين) ؟	
	0.5	- أسيقار تواثا ؟	
	0.5	 - ٹیفیار رسانٹ ف یلو قان ن تجار ومٹ ؛ 	
	0.5	 أماوال يوڤير ئذ ن وسأنتال ؛ 	
00	0.5	- نلوڤان ن ٹیرا تواضاًفر آن.	
08		2- يأزضا أماك ثلاق	25
	0.5 0.5	- ثودسان وأضريس تسادارين ؛	
	0.5	- ثوقتنا جار نسآذارين ثآتساقال ثيڤزي ؛ * مُنْ مُنْ مُنْ مُنْ مُنْ مُنْ مُنْ مُنْ	
	0.5	- ثیمآرران یآمیافآن وفیرآنت نذن ثیلاوث ؛	
		- أسأمرأس ن ينامّالأن ن واكوذ ذياً ن واذاق بانأن.	
	0.5	3- يوڤير ئذن وسآنتآل ئ ديتواوشآن أخريس ذياتس باردان	
	0.5	- أضريس ذولتيس يآمدان ؛ - أضريس يأتوابنا ف ثغاستان وولتيس ؛	
			V.
	0.5		
	0.5	- اصریس اذیو قیر نذن و سانتال.	
	0.5		,
	0.5		
	0.5		
	0.5		
	0.5		
9	0.5		
	0.5		
	0.5		
	0.5		
	0.5		
	0.5		
	0.5		
	0.5		
	0.5		

تابع الإجابة النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب دورة: 2012

ىلامة		عناصر الإجابـــة	محاور	
المجموع	مجزأة	(Nna Ḥǧila)	موضوع	
06	0.5 0.5 0.5 0.5 0.5 0.5	Tigzi 1) Arrac n taddart ḥemmlen Nna Ḥjila acku: - Iciw-is yezga yeččur d tiquqac, yeččur d tiḥluqin. - Win i d-temlal ad as-teslef, ad t-terfed, ad as-teččar afus-is ternu-as «Rebbi ḥerz». 2) Ayen i t-id-yemmalen: a) Asentel: ttwaliy, cfiy, nettemsazzal b) Amqim awsil: wallen-iw, wallen-nney. 3) - Akken ad as-teslef - Akken ad d-yemmekti temzi-ines.	I Tigzi i uḍris	
	0.5 0.5 01 01	4) - Nna Ḥǧila tegra-d iman-is Ulac anwa i irezzun fell-as Irgazen i d-trebba ǧǧan-tt iman-is. 5) - Zik ilemziyen ttqadaren imeqqranen Ttnernin warrac.		
	01 0,5	Iferdisen n tutlayt: 1) - Lemmer ur ttaḍsan ara medden fell-i: Asumer amsentel (n turda) Ad as-yliy deg yirebbi: Asumer agejdan.	II Tutlay t	
UU		2) Tasleḍt : Tezwaray tiẓedt zdat-s.		
	01	T : amatar udmawan, d ameskar (asentel, amigaw).		
	01	Zwaray : d amyag yefti yer wurmir ussid, d aseyru.		
	0,5	Tizedt: asemmad usrid.		
	0,5	Zdat : d tanzeyt.		
	01,5	-S : d amqim awsil n tenzeyt, d asemmad arusrid ney s tenzeyt.		
		Aḍris ad yili d ullis. Aktazal ad ibedd ɣef yisefranen-a :	III	
		- Taferkit :	Asenfa	
	0.5	-Asebter zeddig	i s tira	
	0.5	-Tira tettwayar		
	2.23	- Afares :		
	1,5	-Asentel iban		
	1,5	-Aḍris d ullis (taγessa n wullis tefrez).		
08		- Tutlayt:		
00	0.5	-Asemres n yinamalen n wakud / adeg. -Asemres n yimyagen d tmezra		
	0.5 0.5	-Asemres n ynnyagen u tmeżra -Asemres n umawal		
	0.5	-Agader n yilugan n tira		
	0.5	-Asigez n udris		
	3.0	- Taseddast / Tazḍawt		
	0.5	- Lebni n tefyar tummidin		
- 50	0.5	-Tuqna gar tefyar d tseddarin		
4	0.5	-Aqader n yilugan n tezdawt tadrisant		

تابع الإجابة النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب دورة: 2012

العلامة		عناصر الإجابــة	محاور الموضوع
المجموح	مجزأة		
		1)•00•61+•11•0+ K*EEU*111• KX8U• •CK::	I
	0.5	- 868:8-0 N+XX• N+65:0 A +22:2•6, N+65:0 A +2 AL:221.	42XX2
	0.5	- :21 2 A-++[U•U•A•O-++OU+]E, •A+-++O]E+A, •A•O-++55•O •JE:O-80	
		7+01:-0 « O+008 R+0#!».	:E086
et e		2) •N+1 & 7-8A-N+EC•U+1 :	
	0.5	a) • © ÷1 + ÷1 : + † • USY, CIEY, 1 ÷ † + † E © • ЖЖ • U	
	0.5	b) •EVSE •:OSU : :•UU+1-S:, :•UU+1-11+Y. 3) - •KK+1 •A •O-++OU+JE	
	0.5	- • K K + 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	
		4) - 11. KX211. ++XO1 2[.1-20.	
06	0.5	-:U•C•1:• & 80+XX:1 JL+UU-•O.	
	0.5	- 80X·X+1 8 1-40+000 XX-1-4+ 8E-1-80.	8
	01	5) - X2R 211+CX211+1 ++V•10+0+1 2C+VVO+1+1. - ++1+0121 :•00+6.	
Section 2015 10000 - 7		-1717-012100-6.	
	01 0.5	1) - U+EE+O :O +++EO+I +O + E+AA+I JE+UU-E: +O+E+O +EO+I++U (1++OA+).	
06	0.5	- • A • © OU E O A TE O & O O E : • O I E & O • X & I A • I.	
00		2) **••****	II
	01	t: • [* ○ [* ○ K • ○ (• ○ * 1 + * 11 , • [2 X • *) .	14774
	01	※:• ○•Π : Λ •Θ÷ΨΟ:.	+:+U•T
	0.5	₹2 % ÷Λ†: Λ •Θ÷Ε Γ •Λ •ΘΟΣΛ.	
	0.5	፠ Λ•ት: Λ ተ• ነ ፠÷የት.	
	1.5	0: A • EZZE •: 021 • 0+ EE • A • O : 002A, 1+4 1 ++ 1 X+4+.	
		•E020 •A TISUS A :UUSO. •K++X•U •A SO+AA Y+JE TISO+JEO•1+1-•:	
		- + · JC + O K 2 + :	***
08	0.5	- •0+0++0 X+AASX	·O+IJE·
1. The state of th	0.5	- 150. 141:00	0 750
*		- •JE•O+• :	
	01.5	- •O+17+1 20•1	
	01.5	- • EOSO A : ULSO (+ • Y + OO • 1 : ULSO + + ICO+X).	
		- +:+lent:	
	0.5	- • O + C O + O 1 1121 • C • U + 1 1 : • K • A / • A + X.	
	0.5	- •0+CO+0 1 N2CN•X+1 1 +C+XO•	
	0.5	- • • • • • • • • • • • • • • • • • • •	
	0.5	- • E • V • O 1 USE: X • 1 1 + 5 O •	
-	0.5	- •0803: 1 X*X80• -	
		- +.0+10.0+/+.XE.+	
	57555577754474	- U+O18 1 ++JE11 • O +: EE8A81	
	0.5	- 4:21. X.O 4.211.0 V 40.4VV.081	
	0.5		£
	0.5	- • E • V • V • O 1 USU: X • 1 1 + * * E • E • E • O • O • O • O • O • O • O •	