DILLAN MARROQUIN MATH 331.1001 SCRIBING WEEK 12

Due. 15 November 2021

Lecture 29

- *Prop 28.4.* 1. Want to show $1_S \in \text{im}\varphi$. By definition of φ , $\varphi(1_R) = 1_S$ which implies $1_S \in \text{im}\varphi$. (The rest of this proof is similar to the proof of Proposition 16.1 for groups.
 - 2. (\Longrightarrow) Suppose $\ker \varphi$ is a subring. By definition of subring, $1_R \in \ker \varphi$. Therefore $\varphi(1_R) = 0_S$. On the other hand, $\varphi(1_R) = 1_S$ by definition of ring homomorphism. Let $s \in S$. Then $s = s \cdot 1_S = s \cdot \varphi(1_R) = s \cdot 0_S$. Thus by Proposition 26.3, $s = 0_S$ and therefore $S = \{0_S\}$.
 - (\Leftarrow) Suppose $S = \{0_S\}$. Then $\forall r \in R$, $\varphi(r) = 0_S$. Therefore $\ker \varphi = R$. Every ring is a subring of itself.

Definition (29.1). Let *R* be a ring. A subset $I \subseteq R$ is an **ideal** iff

- 1. *I* is an additive subgroup of *R*, i.e. $(I, +, 0_R) \le (R, +, 0_R)$ and
- 2. $\forall a \in I \text{ and } \forall r \in R, ra \in I \text{ and } ar \in I.$

We write $I \subseteq R$.

Examples

- 1. Let *R* be a ring. Then $0 = \{0_R\}$ and *R* are both ideals of *R*.
- 2. Let $n \ge 1$. Then $n\mathbb{Z} \triangleleft \mathbb{Z}$ is an ideal.
- 3. Let $R = \mathbb{R}[x]$, let $g \in \mathbb{R}[x]$, and let $I := \{ f \in \mathbb{R}[x] : g | f \text{ i.e. } \exists h \in \mathbb{R}[x] \text{ such that } f = gh \}$. Then $I \subseteq \mathbb{R}[x]$.

Lecture 30

Non-Examples of Ideals

- 1. None of $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- 2. Let *R* be commutative. Then $R \le R[x]$ is not an ideal (Axiom 2 does not hold).
- 3. Let $R = \mathbb{Z}$, $C = 2\mathbb{Z} \cup 3\mathbb{Z}$. In this case, Axiom 2 holds, but Axiom 1 fails since $3(1) + 2(-1) = 1 \notin C$.

Proposition (30.1). Let *R* be commutative, $I, J \subseteq R$ be ideals.

- 1. $I \cup J$ is not, in general, an ideal of R. However, $I \cap J \subseteq R$.
- 2. The subset $I + J := \{a + b \in R | a \in I, b \in J\}$ is an ideal of R.
- 3. The subset $IJ := \{a_1b_1 + a_2b_2 + \cdots + a_nb_n | n \in \mathbb{N}, a_i \in I, b_i \in J\}$ is an ideal of R.

Kernels Revisited

Proposition (30.2). Let $\varphi : R \to S$ be a ring homomorphism. Then...

- 1. $\ker \varphi \leq R$
- 2. $\ker \varphi = 0$ iff φ is injective.
- *Proof.* 1. Since $\varphi(a+b) = \varphi(a) + \varphi(b) \ \forall a,b \in R$, φ is an additive group homomorphism. Therefore $\ker \varphi$ is an additive subgroup of $(R,+,0_R)$ by Proposition 16.2.
 - 2. This follows directly from Proposition 17.1.

Quotient Rings

Let $I \subseteq R$ be an ideal. Forgot about multiplication for a moment. We know $(I, +) \le (R, +)$ is a subgroup. Let $r \in R$. The left cosets of I are of the form $r + I := \{r + a | a \in I\}$. Recall that $R/I := \{r + I | r \} inR\}$ is the set of left cosets. This is a group with respect to addition since (R, +) is abelian.

Lecture 31

Generalize Construction of Z/nZ as a Ring

Theorem (31.1 PROVE ON EXAM!).

- 1. The binary operation $\overline{*}: R/I \times R/I \to R/I$, $(r_1 + I)\overline{*}(r_2 + I) := r_1r_2 + I$ is well-defined.
- 2. $(R/I, \overline{+}, 0_{R/I}, \overline{*}, 1_{R/I})$ is a ring, where $1_{R/I} := 1_R + I$.
- 3. The surjective function $\pi: R \to R/I$, $\pi(r) := r + I$ is a ring homomorphism.
- *Proof.* 1. Suppose $r_1 + I = r_1' + I$ and $r_2 + I = r_2' + I$ (1). Want to show $r_1 r_2 + I = r_1' r_2' + I$. Since $r_1 \in r_1 + I$, $r_2 \in r_2 + I$, (1) implies $\exists a_1, a_2 \in I$ such that $r_1 = r_1' + a_1$, $r_2 = r_2' + a_2$. Therefore $r_1 r_2 = (r_1' + a_1)(r_2' + a_2) = r_1' r_2' + r_1' a_2 + a_1 r_2' + a_1 a_2$. By Axiom 2 of Definition 29.1 of ideal, $r_1' a_2$, $a_1 r_2'$, $a_1 a_2 \in I$. Axiom 1 implies $r_1 r_2 r_1' r_2' \in I$. Therefore by PS5 #1, $r_1 r_2 + I = r_1' r_2' + I$.
 - 2. Straightforward. Skip because this is L O N G.
 - 3. Check the axioms of ring homomorphism:
 - (a) $\pi(r_1 + r_2) = (r_1 + r_2) + I = (r_1 + I) + (r_2 + I) = \pi(r_1) + \pi(r_2)$.
 - (b) $\pi(r_1r_2) = r_1r_2 + I = (r_1 + I)\overline{*}(r_2 + I) = \pi(r_1)\overline{*}\pi(r_2).$
 - (c) $\pi(1_R) = 1_R + I = 1_{R/I}$.

Example (Non-Example). (Replace ideal with a subring in R/I). Consider: $\mathbb{Z} \leq \mathbb{Q}$ and the quotient group \mathbb{Q}/\mathbb{Z} $(q_1+\mathbb{Z})\overline{+}(q_2+\mathbb{Z})=(q_1+q_2)+\mathbb{Z}$. Then $(\frac{1}{2}+\mathbb{Z})\overline{+}(\frac{1}{3}+\mathbb{Z})=\frac{1}{6}+\mathbb{Z}$. Note that $\frac{1}{2}+\mathbb{Z}=\frac{3}{2}+\mathbb{Z}$. Then $(\frac{3}{2}+\mathbb{Z})\overline{+}(\frac{1}{3}+\mathbb{Z})=\frac{1}{2}+\mathbb{Z}\neq\frac{1}{6}+\mathbb{Z}$.

1st Isomorphism Theorem for Rings

Theorem (31.2). let $\varphi : R \to S$ be a ring homomorphism. Then the function $\overline{\varphi} : R/\ker \varphi \to \operatorname{im} \varphi$, $\overline{\varphi}(r+\ker \varphi) := \varphi(r)$ is a well-defined ring isomorphism.