M328K: Homework 3

Katherine Ho

September 24, 2024

Definition. A complete residue system modulo n is a set of integers such that every integer is congruent modulo n to exactly one integer in the set. For example, the "canonical" complete residue system modulo n is the set of integers $\{0, 1, 2, \ldots, n-1\}$.

1. (a) Prove that any set of n incongruent integers modulo n forms a complete residue system modulo n.

Proof. Suppose a set of n integers does not form a complete residue system mod n. Then it contains at least one integer a that is not congreuent to another integer in the set. This means when a is divided by n, then none of the other elements are equal to its remainder. There are at most n-1 remainders in the set. By the pigeonhole principle, at least 2 integers in the set have the same remainder \pmod{n} . However this contradicts the supposition where a is incongruent with all of the other integers in the set. Hence any set of n incongruent integers modulo n forms a complete residue system modulo n.

(b) Suppose gcd(a, n) = 1. Prove that the integers

$$c, c + a, c + 2a, \dots, c + (n-1)a$$

form a complete residue system modulo m for any c.¹

2. Find a complete (up to congruence) set of solutions to the linear congruence $34x \equiv 60 \pmod{98}$.

Proof. We have that gcd(34, 98) = 2. Also, $2 \mid 60$, so there are 2 solutions (mod 98). First we can find a solution to

$$17x \equiv 30 \pmod{49}$$
$$17x - 49y = 30$$

Then, by the Euclidean Algorithm:

$$49 = 17(2) + 15$$

$$49 - 17(2) = 15$$

$$49(2) - 17(4) = 30$$

$$17(-4) - 49(-2) = 30$$

¹Note: With c=0, this is the fundamental fact we used in class to prove Fermat's Little Theorem.

$$x = -4, y = -2$$

So, x = -4 + 49 = 45 is a solution. The other solution (mod 98) is

$$x = 45 + 49 = 94$$

x = 45,94 is a complete set of solutions up to congruence (mod 98).

- 3. This exercise illustrates a neat inductive proof of Fermat's Little Theorem using the binomial theorem.
 - (a) Let p be prime. Show that p divides $\binom{p}{k}$ for $1 \le k \le p-1$, where

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)\cdots(p-k+1)}{1\cdot 2\cdot 3\cdots k}.$$

Hint: First show that p divides $k! \binom{p}{k}$.

Proof. Let $n = \binom{p}{k}$:

$$n = \binom{p}{k}$$

$$n = \frac{p!}{k!(p-k)!}$$

$$n \cdot k!(p-k)! = p!$$

p divides p!, so the left expression is also divisible by p.

This means that at least one factor of the expression is divisible by p.

- i. k! is not divisible by p since it is less than p and p is prime.
- ii. (p-k)! is not divisible by p since p-k is less than p and p is prime.

This leaves n, which must be divisible by p. Therefore, p divides $\binom{p}{k}$.

(b) Use induction on a together with the binomial theorem² to give another proof of Fermat's Little Theorem.

Proof. We aim to prove $a^{p-1} \equiv 1 \pmod{p}$ for a prime p and $p \nmid a$. It can be rewritten as $a^p \equiv a \pmod{p}$.

Base case (a = 1): $1^p \equiv 1 \pmod{p}$.

$$1^p - 1 = px$$
 for some $x \in \mathbb{Z}$

This is true for any prime p and x = 0.

Inductive Hypothesis: Assume $a^p \equiv a \pmod{p}$ for an integer $a \in \mathbb{Z}$ is true. Consider a+1:

$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \dots + \binom{p}{k}a^{p-k} + \dots + \binom{p}{p-1}a + 1$$

²Binomial theorem:
$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \dots + \binom{p}{k}a^{p-k} + \dots + \binom{p}{p-1}a + 1$$

By (a), each binomial coefficient $\binom{p}{k}$ is divisible by p since p is prime. So, if we take (mod p) of this sum, we are left with:

$$(a+1)^p \equiv a^p + 1 \pmod{p}$$

 $a^p \equiv a \pmod{p}$ is true for a+1, thus proving Fermat's Little Theorem.

- 4. A composite integer n > 1 is called a Fermat pseudoprime to base a if $a^{n-1} \equiv 1 \pmod{n}$.
 - (a) Prove the following: If $d, n \in \mathbb{N}$ with $d \mid n$, then $2^d 1 \mid 2^n 1$. Hint: Use the identity

$$x^{k} - 1 = (x - 1)(x^{k-1} + x^{k-2} + \dots + x + 1).$$

Proof. Let n = db for some $b \in \mathbb{Z}$.

$$2^{n} - 1 = 2^{db} - 1$$

$$2^{n} - 1 = (2^{d})^{b} - 1$$

$$2^{n} - 1 = (2^{d} - 1)((2^{d})^{b-1} + (2^{d})^{b-2} + \dots + (2^{d})^{1} + (2^{d})^{0})$$

Thus if $d, n \in \mathbb{N}$ with $d \mid n$, then $2^d - 1 \mid 2^n - 1$.

(b) Prove that if n is a Fermat pseudoprime to base 2, then $M_n = 2^n - 1$ is also a Fermat pseudoprime to base 2.

Proof. If
$$n \mid 2^{n-1} - 1$$
, then $2^{n-1} - 1 = nx$ for some $x \in \mathbb{Z}$.

(c) Conclude that there are infinitely many Fermat pseudoprimes to base 2.

- 5. A Carmichael number is an integer n > 1 that is a Fermat pseudoprime to base a for all a with gcd(a, n) = 1.
 - (a) Prove that if $n = p_1 p_2 \cdots p_r$ is a composite square-free integer such that $p_i 1 \mid n 1$ for $i = 1, 2, \dots, r$, then n is a Carmichael number.

$$\square$$

(b) Show that 6601 is a Carmichael number.

6. Prove the converse to Wilson's Theorem: If $(m-1)! \equiv -1 \pmod{m}$, then m is prime.

Proof. Let m be composite. That is, m = ab for some 1 < a < b < m. We can then say $a \mid (m-1)!$ since 1 < a < m. If Wilson's Theorem holds for m, then

$$(m-1)! \equiv -1 \pmod{m}$$

 $(m-1)! = mx - 1 \text{ for some } x \in \mathbb{Z}$

So, $m \mid (m-1)! + 1$. Since $a \mid m$, then $a \mid (m-1)! + 1$. We can conclude that $a \mid 1$ since we also have $a \mid (m-1)!$. If this is true, then a = 1. However, this is a contradiction to 1 < a < m. Thus m cannot be composite. Therefore if $(m-1)! \equiv -1 \pmod{m}$, then m is prime. \square