Unit 2: Logic Synthesis and Verification

Course contents

- Logic synthesis basics
- Logic optimization

Design of Integrated Systems

System Level

- Abstract algorithmic description of high-level behavior
 - e.g. C-Programming language

- Abstract because it does not contain any implementation details for timing or data
- Efficient to get a compact execution model as first design draft
- Difficult to maintain throughout project because no link to implementation

RTL Level

- Cycle accurate model "close" to the hardware implementation
 - Bit-vector data types and operations as abstraction from bitlevel implementation
 - Sequential constructs (e.g. if then else, while loops) to support modeling of complex control flow

```
module mark1;
reg [31:0] m[0:8192];
reg [12:0] pc;
reg [31:0] acc;
reg[15:0] ir;

always
  begin
    ir = m[pc];
    if(ir[15:13] == 3b'000)
        pc = m[ir[12:0]];
    else if (ir[15:13] == 3'b010)
        acc = -m[ir[12:0]];
    ...
  end
endmodule
```

Gate Level

- Model on finite-state machine level
 - Models function in Boolean logic using registers and gates
 - Various delay models for gates and wires

In this lecture we will mostly deal with gate level

ASIC Design Flow

• Incomplete picture:

What is Logic Synthesis?

Given: Finite-State Machine $F(X,Y,Z,\lambda,\delta)$ where:

X: Input alphabet

Y: Output alphabet

Z: Set of internal states

 $\lambda: X \times Z \to Y$ (output function)

 δ : X x Z \rightarrow Z (next state function)

These are Boolean Functions!!

Target: Circuit C(G, W) where:

G: set of circuit components $g \in \{Boolean \text{ gates}, flip-flops, etc}\}$

W: set of wires connecting G

so-called Netlist!

by courtesy of A. Kuehlmann

Boolean Functions

- $B = \{0,1\}, Y = \{0,1,D\}$
- A Boolean function $f: B^m \to Y^n$

$$= f = \overline{x_1} \, \overline{x_2} + \overline{x_1} \, \overline{x_3} + \overline{x_2} \, x_3 + x_1 \, x_2 + x_2 \, \overline{x_3} + x_1 \, x_3$$

- Input variables: x₁, x₂, ..., x_m
- The value of the output partitions B^m into three sets
 - the on-set (1)
 - the off-set (0)
 - the don't-care set (D)
 - f is an incompletely specified function if the don't care set is nonempty. Otherwise, f is a completely specified function.

Minterms and Cubes

- A literal is a Boolean variable x or its negation x' (or x̄,
 ¬x) in a Boolean formula
- A minterm is a product of all input variables or their negations.
 - A minterm corresponds to a single point in B^m
- A **cube** is a product of the input variables or their negations (product of literals).
 - The fewer the number of variables in the product, the bigger the space covered by the cube.

Implicant and Cover

- An implicant is a cube whose minterms are either in the on-set or the dc-set.
- A prime implicant is an implicant that is not included in any other implicant.
- A set of prime implicants that together cover all minterms in the on-set (and some or all minterms of the dc-set) is called a prime cover.
 - A prime cover is irredundant when none of its prime implicants can be removed from the cover.
 - An irredundant prime cover is minimal when the cover has the minimal number of prime implicants.

Cover Examples

$$\bullet \ f = \overline{\chi}_1 \, \overline{\chi}_3 + \overline{\chi}_2 \, \chi_3 + \chi_1 \, \chi_2$$

$$\bullet \ f = \overline{x_1} \, \overline{x_2} + x_2 \, \overline{x_3} + x_1 \, x_3$$

Two irredundant covers

Optimality of Covers

A local and a global minimum

Representation of Boolean Functions

- Some common representations:
 - Truth table
 - SOP: sum-of-products, a.k.a. DNF (disjunctive normal form)
 - POS: product-of-sums, a.k.a. CNF (conjunctive normal form)
 - BDD: binary decision diagram
 - Boolean network
 - Network of PLAs
 - Network of nodes with complex Boolean functions
 - And-Inv Graph (AIG)

Truth Table

• The truth table (function table) of a function $f : \mathbf{B}^n \to \mathbf{B}$ is a tabulation of its value at each of the 2^n vertices of \mathbf{B}^n .

```
abcd f
                                                          abcd f
i.e., the truth table lists all mintems
                                         0 0000 0
                                                        8 1000 0
                                         1 0001 1
                                                        9 1001 1
e.g.,
                                         2 0010 0
                                                       10 1010 0
  f = a'b'c'd + a'b'cd + a'bc'd +
                                                      11 1011 1
                                         3 0011 1
                                         4 0100 0
                                                      12 1100 0
      ab'c'd + ab'cd + abc'd +
                                         5 0101 1
      abcd' + abcd
                                         6 0110 0
                                         7 0111 0
```

- The truth table representation is
 - Intractable for large n
 - Canonical
 - A canonical form of a Boolean function is a unique representation of the function

SOP

 A function can be represented by a sum of products (or sum of cubes, disjunctive normal form):

```
- f = ab + ac + bc
```

- Since each cube is a product of literals, this is a sum of products (SOP) representation
- A SOP can be thought of as a set of cubes F

```
_ F = {ab, ac, bc}
```

- A set of cubes that represents f is called a cover of f
 - F_1 ={ab, ac, bc} and F_2 ={abc, abc', ab'c, a'bc} are covers of f = ab + ac + bc.

POS

 Dual to SOP representation, a function can be represented by a product of sums (or conjunctive normal form):

```
= f = (a+b'+c) (a'+b+c) (a+b'+c') (a+b+c)
```

 A Boolean function in a POS representation can be derived from an SOP representation with De Morgan's law and the distributive law

Binary Decision Diagram (BDD)

Graph representation of a Boolean function f

Vertices represent decision nodes for variables

Two children represent the two subfunctions

• f(x = 0) and f(x = 1) (cofactors)

 Restrictions on ordering and reduction rules can make a BDD representation canonical

Reduced Ordered BDD (ROBDD)

f = ab+a'c+a'bd

by courtesy of A. Kuehlmann

Boolean Network

- A Boolean circuit is a directed graph C(G,N) where G
 are the gates and N are the directed edges (nets)
 connecting the gates.
- Some of the vertices are designated:

Inputs: $I \subseteq G$

Outputs: $O \subseteq G$, $I \cap O = \emptyset$

• Each gate g is assigned a Boolean function f_g which computes the output of the gate in terms of its inputs.

Boolean Network (cont'd)

 The fanin FI(g) of a gate g are all predecessor vertices of g:

```
- FI(g) = \{g' \mid (g',g) \in N\}
```

 The fanout FO(g) of a gate g are all successor vertices of g:

```
- FO(g) = \{g' \mid (g,g') \in N\}
```

- The cone CONE(g) of a gate g is the transitive fanin of g and g itself.
- The support SUPPORT(g) of a gate g are all inputs in its cone:
 - SUPPORT(g) = CONE(g) \cap I

Example Boolean Network

by courtesy of A. Kuehlmann Unit 10

And/Inverter Graph (AIG)

- Base data structure uses two-input AND function for vertices and INVERTER attributes at the edges (individual bit)
 - Use De'Morgan's law to convert OR operation etc.

Canonical Forms

- A canonical form of a Boolean function is a unique representation of the function.
 - It can be used for verification purposes.
- The truth table or the sum of minterms are canonical forms
 - They grow exponentially with the number of input variables.
- An irredundant prime cover is not a canonical form.
- Reduced ordered binary decision diagram (ROBDD):

 a canonical form that is interesting from a practical point of view.

Comparisons of Different Representations

- Truth table
 - Canonical
 - Useful in representing small functions
- SOP
 - Useful in two-level logic optimization
- POS
 - Useful in SAT solving and Boolean reasoning
- ROBDD
 - Canonical
 - Useful in formal verification and Boolean reasoning
- Boolean network
 - Useful in multi-level logic optimization

Combinational Optimization

Two-Level Logic Minimization

 Any Boolean function can be realized using PLAs in two levels: AND-OR (SOP), NAND-NAND, etc.

- Classic problem solved by the Quine-McClusky algorithm [1956].
 - Basic idea: Boolean law x + x' = 1
 - Cost function: #cubes and #literals in an SOP expression
 - #cubes: #rows in PLAs
 - #literals: #transistors in PLAs

Unit 10 — Objective: to find a minimum irredundant prime cover

Two-Level Logic Minimization

- Exact algorithm
 - The Quine-McClusky algorithm
- Heuristic algorithm
 - Espresso

The Quine-McClusky Algorithm (Exact)

 Given G and D (covers for ℑ= (f,d,r) and d, respectively), find a minimum cover G* of primes where:

$$f \subseteq G^* \subseteq f+d$$

- G*: prime cover of $\mathfrak T$
- f: onset, d: don't-care set, r: offset
- Q-M Procedure
 - 1. Generate all the primes of \Im , $\{P_i\}$ (i.e., primes of (f+d)=G+D)
 - 2. Find a minimum cover:
 - 2.1 Generate all the minterms $\{m_i\}$ of $f=G \land D'$
 - 2.2 Build the covering matrix B where

$$B_{ij} = 1 \text{ if } m_i \in P_j$$

= 0 otherwise

2.3 Solve the minimum(-cost) column covering problem for B

Example: The Quine-McClusky Algorithm

- $F(a, b, c, d) = \sum_{m} (2, 3, 7, 9, 11, 13) + \sum_{d} (1, 10, 15)$
- Calculate all prime implicants (of the union of the onset and dc-set) by grouping minterms using xy + xy ' = x
- Find the minimum cover of all minterms in the on-set by prime implicants.
 - Construct the covering matrix
 - Simplify the covering matrix by detecting essential columns, row and column dominance.
 - What is left is the cyclic core of the covering matrix solved by a branch-and-bound algorithm

Example Simplification Rules in Covering

Difficulty of Q-M

- Thus $O(2^n)$ rows and $O(3^n \sqrt{n})$ columns in covering matrix AND minimum covering problem is NP-complete.
- Q-M is exact but intractable

From Exact to Heuristic

- Exact: Q-M
 - Generate cover of all primes
 - Make G irredundant (in optimum way)
- Heuristic: Espresso
 - 1. Generate (somehow) a cover of 3 using some of the primes
 - Make G irredundant (maybe not optimally)
 - 3. Keep best result try again (i.e. go to 1)

ESPRESSO

- REDUCE
 - Reduce size of each implicant while preserving cover
- EXPAND
 - Make implicants *prime*
 - Remove covered implicants
- IRREDUNDANT_COVER
 - Make cover *irredundant*
- Repeat REDUCE / EXPAND / IRREDUNDANT_COVER to find alternative covers

ESPRESSO Illustrated

by courtesy of A. Kuehlmann Unit 10

Multi-Level Logic Minimization

- Basic techniques in Boolean network manipulation:
 - Structural operations/transformations (change topology)
 - Algebraic
 - Algorithmic and rule-based
 - Node simplification/Boolean methods (change node functions)
 - Don't cares
 - Node minimization (two-level logic minimization!)
- In commercial use for years: Synopsys, MIS

$$tl = a + b \ c;$$
 logic $t2 = d + e;$ optimization $tl = d + e;$ $t3 = a \ b + d;$ $t4 = tl \ t2 + fg;$ $t5 = t4 \ h + t2 \ t3;$ $t4 = tl \ t3 + fg \ h;$ $t7 = t5;$

subject graph for the optimized equations

Multi-Level Circuits Implementation: Standard Cells

by courtesy of J.-H. Jiang Unit 10

Structural Operations

- Decomposition (single function)
- Extraction (multiple functions)

```
= f = (az+bz')cd+e g = (az+bz')e' h = cde
= f = xy+e g = xe' h = ye x = az+bz' y = cd
```

- Factoring (series-parallel decomposition)
 - f = ac+ad+bc+bd+e- f = (a+b)(c+d)+e
- Substitution
 - $g = a+b \quad f = a+bc$ f = g(a+c)
- Collapsing (also called elimination)
 - f = ga+g'b g = c+df = ac+ad+bc'd' g = c+d
- Note: "division" plays a key role in all of these (algebraic models)

Node Simplification

- Goal: For any node of a given Boolean network, find a least-cost sum-of-products expression among the implementable functions at the node
 - Don't care computation + two-level logic minimization

Combinational Boolean network

Two-Level (PLA) vs. Multi-Level

PLA

control logic
constrained layout
highly automatic
technology independent
multi-valued logic
input, output, state encoding
Very predictable

E.g. Standard Cell Layout

Multi-level Logic

all logic
general (e.g. standard cell, regular blocks,..)
automatic
partially technology independent
some ideas
part of multi-level logic
Very hard to predict

Combinational Optimization Revisited

by courtesy of J.-H. Jiang

Example: Technology Independent Optimization

 An unoptimized set of logic equations consists of 17 literals

```
t_1 = a + bc;
            t_2 = d + e;
            t_3 = ab + d;
            t_4 = t_1 t_2 + fg;
            t_5 = t_4 h + t_2 t_3;
            F = t_5';
                             t_4h + t_2t_3
   t_1 t_2 + fg
                           d+e
                                        ab+d
            a+bc
by countersy of A. Kuehlmann
```

 After technology independent optimization, these equations are optimized using only 13 literals

Technology Mapping/Library Binding

- Implement the optimized network using a set of gates which form a library. Each gate has a cost (i.e. its area, delay, power, etc.)
 - Algorithmic approaches: DAGON, MISII
- Represent each function of a network using a set of base functions. This representation is called the subject graph.
 - Typically the base is 2-input NANDs and inverters [MISII].
- Each gate of the library is likewise represented using the base set. This generates pattern graphs
 - Represent each gate in all possible ways
- Technology Mapping: The optimization problem of finding a minimum cost covering of the subject graph by choosing from the collection of pattern graphs for all gates in the library.

Subject Graph

The optimized network:

$$t_1 = d + e;$$

 $t_2 = b + h;$
 $t_3 = at_2 + c;$
 $t_4 = t_1t_3 + fgh;$
 $F = t_4';$

 Subject graph of 2-input NANDs and inverters:

by countersy of A. Kuehlmann

Pattern Graphs for the IWLS Library

Trivial Covering

Best Covering

Optimal Tree Covering by Dynamic Programming

- If the subject DAG and primitive DAG's are trees, then an efficient algorithm to find the best cover exists
 - Based on dynamic programming: optimal substructure? overlapping subproblems?
- Given

Unit 10

- Subject trees (networks to be mapped)
- Library cells
- Consider a node *N* of a subject tree:
 - Recursive Assumption: for all children of N, a best cost match (which implements the node) is known
 - Cost of a leaf of the tree is 0.
 - Compute cost of each pattern tree which matches at N,
 Cost = SUM of best costs of implementing each input of pattern plus the cost of the pattern
 - Choose least cost matching pattern for implementing N

Dynamic Programming (DP): A Brief Review

- Typically apply to optimization problem.
- Generic approach
 - Calculate the solutions to all subproblems.
 - Proceed computation from the small subproblems to the larger subproblems.
 - Compute a subproblem based on previously computed results for smaller subproblems.
 - Store the solution to a subproblem in a table and never recompute.
- Development of a DP
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - 3. Compute the value of an optimal solution bottom-up.
 - 4. Construct an optimal solution from computed information (omitted if only the optimal value is required).

Matrix-Chain Multiplication

• If A is a $p \times q$ matrix and B a $q \times r$ matrix, then C = AB is a $p \times r$ matrix

 $C[i, j] = \sum_{k=1}^{q} A[i, k] B[k, j]$

time complexity: O(pqr).

- The matrix-chain multiplication problem: Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, matrix A_i has dimension $p_{i-1} \times p_i$, parenthesize the product $A_1 A_2 ... A_n$ to minimize the number of scalar multiplications.
- Exp: dimensions: A_1 : 4 x 2; A_2 : 2 x 5; A_3 : 5 x 1 $(A_1A_2)A_3$: total multiplications =4 x 2 x 5 + 4 x 5 x 1 = 60. $A_1(A_2A_3)$: total multiplications =2 x 5 x 1 + 4 x 2 x 1 = 18.
- So the order of multiplications can make a big difference!

Matrix-Chain Multiplication: Brute Force

- $A = A_1 A_2 ... A_n$: How to evaluate A using the minimum number of multiplications?
- Brute force: check all possible orders?
 - -P(n): number of ways to multiply n matrices.

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

- $P(n) = \Omega\left(\frac{4^n}{n^{3/2}}\right)$, exponential in n.
- Any efficient solution? Dynamic programming!

Matrix-Chain Multiplication

- Step 1: the structure of an optimal parenthesization
 - Suppose that an optimal parenthesization of $A_iA_{i+1} \dots A_j$ splits the product between A_k and A_{k+1} . Then the parenthesization of the prefix $A_iA_{i+1} \dots A_k$ subchain within this optimal parenthesization of $A_iA_{i+1} \dots A_j$ must be an optimal parenthesization of $A_iA_{i+1} \dots A_k$. (proof by contradition)
- Step 2: recursive solution
 - = m[i, j]: minimum number of multiplications to compute matrix $A_{i...j}$ = $A_i A_{i+1} ... A_j$, 1 ≤ i ≤ j ≤ n.
 - m[1, n]: the cheapest cost to compute $A_{1..n}$.

$$m[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = j, \\ \min_{i \leq k < j} \left\{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \right\} & \text{if } i < j. \end{array} \right.$$

Bottom-Up DP Matrix-Chain Order

```
Matrix-Chain-Order(p)
1. n \leftarrow length[p]-1
2. for i \leftarrow 1 to n do
     m[i, i] \leftarrow 0
4. for l \leftarrow 2 to n do
    for i \leftarrow 1 to n - l + 1 do
    j ← i + l -1
    m[i,j] \leftarrow \infty
    for k \leftarrow i to j-1 do
9. q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
10. if q < m[i, j] then
11.
      m[i,j] \leftarrow q
12.
       s[i, i] ← k
13. return m and s
```

$p = \langle p_0, p_1,, p_n \rangle$

matrix	dimension
A_I	30 * 35
A_2	35 * 15
A_3	15 * 5
A_{4}	5 * 10
A_{5}	10 * 20
A_6	20 * 25

$$m[2,4] = \min \left\{ \begin{array}{l} m[2,2] + m[3,4] + p_1 p_2 p_4 = 0 + 750 + 35 \times 15 \times 10 = 6000. \\ m[2,3] + m[4,4] + p_1 p_3 p_4 = 2625 + 0 + 35 \times 5 \times 10 = 4375. \end{array} \right.$$

Tree Covering in Action

Step 1. Find all candidate matches Step 2. Find the optimal match

by сощете у of A. Kuehlmann

Tree-Covering by Dynamic Programming (DAGON)

- If the subject DAG is not a tree
 - Partition the subject graph into forest of trees
 - Cut the graph at all multiple fanout points
 - Cover each tree optimally using the dynamic programming
 - Overall solution is only an approximation

Typical Synthesis Scenario

- read Verilog
- control/data flow analysis
- basic logic restructuring
- crude measures for goals
- use logic gates from target cell library
- timing optimization
- physically driven optimizations
- improve testability
- test logic insertion

by courtesy of A. Kuehlmann

Optimization Criteria for Synthesis

- The optimization criteria for multi-level logic is to minimize some function of:
 - Area occupied by the logic gates and interconnect (approximated by literals = transistors in technology independent optimization)
 - 2. Critical path delay of the longest path through the logic
 - Degree of testability of the circuit, measured in terms of the percentage of faults covered by a specified set of test vectors for an approximate fault model (e.g. single or multiple stuck-at faults)
 - 4. Power consumed by the logic gates
 - 5. Noise Immunity
 - 6. Place-ability, Wire-ability

while simultaneously satisfying upper or lower bound constraints placed on these physical quantities

Binary-Decision Diagram (BDD) Revisited

 BDD is a Directed Acyclic Graph (DAG) used to represent a Boolean function f: B^m → Bⁿ

Binary-Decision Diagram (BDD) Principles

 Restriction resulting in the positive and negative cofactors (two restrictions) of a Boolean function:

$$f_{x_{i}} = f(x_{1}, ..., x_{i-1}, '1', x_{i+1}, ..., x_{m})$$

$$f_{\overline{x_{i}}} = f(x_{1}, ..., x_{i-1}, '0', x_{i+1}, ..., x_{m})$$

$$- f = \overline{x_{1}} \, \overline{x_{2}} \, \overline{x_{3}} + \overline{x_{1}} \, x_{2} \, \overline{x_{3}} + \overline{x_{1}} \, \overline{x_{2}} \, x_{3} + x_{1} \, \overline{x_{2}} \, x_{3} + x_{1} \, x_{2} \, \overline{x_{3}} + x_{1} \, x_{2} \, x_{3}$$

$$f_{x_{1}} = \overline{x_{2}} \, x_{3} + x_{2} \, \overline{x_{3}} + x_{2} \, x_{3}$$

$$f_{\overline{x_{1}}} = \overline{x_{2}} \, \overline{x_{3}} + x_{2} \, \overline{x_{3}} + \overline{x_{2}} \, x_{3}$$

Shannon expansion (already known to Boole) states:

$$f = x_i \cdot f_{x_i} + \overline{x_i} \cdot f_{\overline{x_i}}$$

 A complete expansion can be obtained by successively applying Shannon expansion on all variables of a function until either of the constant function '0' or '1' is reached.

Example: Ordered Binary-Decision Diagram (OBDD)

 The complete Shannon expansion can be visualized as a tree (solid lines correspond to the positive cofactors and dashed lines to negative cofactors).

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_3 + \overline{x}_1 x_2 \overline{x}_3 + \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3 + x_1 x_2 x_3$$

Reduced Ordered BDD (ROBDD)

- ROBDD was proposed by R.E. Bryant in 1986
 - "Graph-Based Algorithms for Boolean Function Manipulation,"
 IEEE Trans. on Computers, C-35-8, pp. 677—691, Aug. 1986.
- An ROBDD is a Shannon co-factoring tree, except reduced and ordered
 - Reduced
 - Rule 1: Any node with identical children is removed.
 - Rule 2: Two nodes with isomorphic BDD's are merged.
 - Ordered
 - Co-factoring variables (splitting variables) always follow the same order $x_{i1} < x_{i2} < ... < x_{in}$.
 - Canonical
 - Two functions are the same iff their ROBDD's are equivalent graphs (isomorphic) using the same variable ordering.
 - This feature makes ROBDD widely used in logic synthesis and verification

Example ROBDD

• Two different orderings, same function.

Unit 10

Creating a ROBDD

- An OBDD is a directed tree G(V,E).
- Each vertex $v \in V$ is characterized by an associated variable $\phi(v)$, a high subtree $\eta(v)$ (high(v)) and a low subtree $\lambda(v)$ (low(v)).
- Procedure to reduce an OBDD:
 - Merge all identical leaf vertices and appropriately redirect their incoming edges; (Rule 2)
 - Proceed from bottom to top, process all vertices: if two vertices u and v are found for which $\phi(u) = \phi(v)$, $\eta(u) = \eta(v)$, and $\lambda(u) = \lambda(v)$, merge u and v and redirect incoming edges; (Rule 2)
 - For vertices v for which $\eta(v) = \lambda(v)$, remove v and redirect its incoming edges to $\eta(v)$. (Rule 1)

Example: Rule 1

Rule 1: Any node with identical children is removed

Example: Rule 2

Rule 2: Two nodes with isomorphic BDD's are merged.

Reduction Example

ROBDD Properties

- The ROBDD is a canonical representation, given a fixed ordering of the variables.
- The ROBDD is a compact representation for many Boolean functions used in practice.
- Variable ordering can greatly affect the size of an ROBDD.

$$= \operatorname{E.g.}, \quad f = \prod_{j=1}^{\kappa} x_{2j-1} \oplus x_{2j}$$

Unit 10

A BDD Package

- A BDD package refers to a software program that can manipulate ROBDDs. It has the following properties:
 - Interaction with BDDs takes place through an abstract data type (functionality is independent from the internal representation used).
 - It supports the conversion of some external representation of a Boolean function to the internal ROBDD representation.
 - It can store multiple Boolean functions, sharing all vertices that can be shared.
 - It can create new functions by combining existing ones (composition) e.g., $h = f \cdot g$.
 - It can convert the internal representation back to an external one.

BDD Data Structures

• A triple (ϕ, η, λ) uniquely identifies an ROBDD vertex.

```
struct vertex {
  char *φ;
  struct vertex *η, *λ;
  ...
}
```

A unique table
 (implemented by a hash table) that stores all triples already processed.

```
struct vertex *old_or_new(char *\phi, struct vertex *\eta, *\lambda) {

if ("a vertex v = (\phi, \eta, \lambda) exists")

return v;

else {

v \leftarrow "new vertex pointing at (\phi, \eta, \lambda)";

return v;
}
```

Building an ROBDD

```
struct vertex *robdd_build(struct expr f, int i)
  struct vertex *\eta, *\lambda;
  struct char *\phi;
               Terminal case
  if (equal(f, '0'))
     return v_0;
  else if (equal(f, '1'))
     return v_1;
  else {
    \phi \leftarrow \pi(i);
    \eta \leftarrow \text{robdd\_build}(f_{\phi}, i + 1);
    \lambda \leftarrow \text{robdd\_build}(f_{\overline{\phi}}, i + 1);
    if (\eta = \lambda)
        return \eta;
    else
       return old_or_new(\phi, \eta, \lambda);
```

- The procedure directly builds the compact ROBDD structure.
- A simple symbolic computation system is assumed for the derivation of the cofactors.
- $\pi(i)$ gives the i^{th} variable from the top

Example robdd_build

robdd_build($\overline{x_1} \cdot \overline{x_3} + \overline{x_2} \cdot x_3 + x_1 \cdot x_2, 1$) $\stackrel{\eta}{\rightharpoonup} \text{ robdd_build}(\overline{x_2} \cdot x_3 + x_2, 2)$ $\stackrel{\eta}{\rightharpoonup} \text{ robdd_build}("1", 3)$ $\stackrel{\imath_1}{\rightharpoonup} \text{ robdd_build}(x_3, 3)$ $\stackrel{\eta}{\rightharpoonup} \text{ robdd_build}("1", 4)$ $\stackrel{\imath_1}{\rightharpoonup} \text{ robdd_build}("0", 4)$ $\stackrel{\imath_1}{\rightharpoonup} \text{ robdd_build}("0", 4)$ $\stackrel{\imath_2}{\rightharpoonup} \text{ robdd_build}("0", 4)$ $\stackrel{\imath_3}{\rightharpoonup} \text{ robdd_build}("0", 4)$

 $v_3 = (x_2, v_1, v_2)$

ROBDD Manipulation

- We can create new functions from existing functions
- Separate algorithms could be designed for each separate operator on ROBDDs, such as AND, NOR, etc.
- However, the universal **if-then-else** operator '*ite*' is sufficient. z = ite(f,g,h), z equals g when f is true and equals h otherwise: $z = ite(f,g,h) = f \cdot g + \bar{f} \cdot h$
- Examples: $z = f \cdot g = ite(f, g, '0')$ z = f + g = ite(f, '1', g)
- The *ite* operator is well-suited for a recursive algorithm based on ROBDDs ($\phi(v) = x$):

$$v = ite(F, G, H) = (x, ite(F_x, G_x, H_x), ite(F_{\overline{x}}, G_{\overline{x}}, H_{\overline{x}}))$$

The ite Algorithm

```
struct vertex *apply_ite(struct vertex *F, *G, *H, int i)
  char x:
  struct vertex *\eta, *\lambda;
  if (F=v_1)
     return G;
                                           z = ite(f, g, h) = f \cdot g + \overline{f} \cdot h
  else if (F = v_0)
    return H;
  else if (G = v_1 \&\& H = v_0)
     return F;
  else {
    x \leftarrow \pi(i);
    \eta \leftarrow \text{apply\_ite}(F_x, G_x, H_x, i+1);
    \lambda \leftarrow \text{apply\_ite}(F_{\overline{x}}, G_{\overline{x}}, H_{\overline{x}}, i+1);
    if (\eta = \lambda)
       return \eta;
    else
       return old_or_new(x, \eta, \lambda);
```

Unit 10

Comments on the ite Algorithm

- The algorithm processes the variables in the order used in the BDD package.
 - $-\pi(i)$ gives the i^{th} variable from the top; $\pi^{-1}(x)$ gives the index position of variable x from the top.
- Computation of the restrictions: suppose that F is the root vertex of the function for which F_x should be computed:

$$F_{\times} = \eta(F) \text{ if } \pi^{-1}(\phi(F)) = i$$

- The calculation of $F_{\overline{x}}$ is done in an analogous way.
- The time complexity of the algorithm is $O(|F|^*|G|^*|H|)$.
 - Each call of apply ite will create at most one ROBDD vertex

ite Operators

Operator	Equivalent ite form
0	0
$f^{ullet}g$	<i>ite</i> (<i>f</i> , <i>g</i> , 0)
$f^ullet g$ '	ite (f, g', 0)
f	f
f '• g	ite(f, 0, g)
g	g
$f \oplus g$	ite (f, g', g)
f+g	<i>ite</i> (<i>f</i> , 1, <i>g</i>)
(f+g),	ite $(f, 0, g')$
$(f \oplus g)$,	ite (f, g, g')
g'	<i>ite</i> (<i>g</i> , 0, 1)
f+g,	ite $(f, 1, g')$
f,	ite(f, 0, 1)
f'+ g	ite (f, g, 1)
$(f \bullet g)$,	ite (f, g', 1)
1	1

ROBDD Example: Computing/Obtaining \overline{G} from G

 $\stackrel{\lambda}{\rightarrow}$ apply_ite $(v_0, v_0, v_1, 2)$

 $v_{10} = (x_1, v_9, v_1)$

 v_1

ROBDD Example: Computing H from F, G, \overline{G}

$$H = F \oplus G$$

= $ite(F, \overline{G}, G)$

apply_ite(
$$v_6$$
, v_{10} , v_8 , 1)
$$\stackrel{\eta}{\rightarrow} \text{apply_ite}(v_3, v_9, v_7, 2)$$

$$\stackrel{\eta}{\rightarrow} \text{apply_ite}(v_1, v_1, v_0, 3)$$

$$v_1$$

$$\stackrel{v_{11}}{\rightarrow} \text{apply_ite}(v_2, v_0, v_1, 3)$$

$$\stackrel{\eta}{\rightarrow} \text{apply_ite}(v_1, v_0, v_1, 4)$$

$$\stackrel{v_0}{\rightarrow} \text{apply_ite}(v_0, v_0, v_1, 4)$$

$$v_1$$

$$v_4 = (x_3, v_0, v_1)$$

$$v_{11} = (x_2, v_1, v_4)$$

$$\stackrel{\lambda}{\rightarrow} \text{apply_ite}(v_5, v_1, v_0, 2)$$

$$v_5$$

$$v_{12} = (x_1, v_{11}, v_5)$$

Composition

- The composite problem is
 - the ROBDDs of two functions f and g are known/precomputed
 - the output of g is connected to an input of f
 - compute the ROBDD of the composed function h,
 where

$$h = f(x_1, ..., x_{i-1}, g, x_{i+1}, ..., x_n).$$

Using Shannon expansion, one finds that

$$h = g \cdot f_{x_i} + \overline{g} \cdot f_{\overline{x_i}} = ite(g, f_{x_i}, f_{\overline{x_i}})$$

 Now, the restrictions/cofactors have to be calculated by dedicated algorithms.

Restriction: Positive Cofactor

```
struct vertex *positive_cofactor(struct vertex *F, int r, i)
  char x;
  struct vertex *\eta, *\lambda;
  if (F=v_1)
     return v_1;
  else if (F = v_0)
    return v_0;
  else if (r = i)
    return \eta(F);
  else {
    x \leftarrow \pi(i);
    \eta \leftarrow \text{positive\_cofactor}(F_x, r, i + 1);
    \lambda \leftarrow \text{positive\_cofactor}(F_{\overline{x}}, r, i + 1);
    if (\eta = \lambda)
       return \eta;
    else
       return old_or_new(x, \eta, \lambda);
```

Positive Cofactor Example: Computing F_{x3}

positive_cofactor(v_6 , 3, 1) $\stackrel{\eta}{\rightarrow} \text{positive_cofactor}(v_3, 3, 2)$ $\stackrel{\eta}{\rightarrow} \text{positive_cofactor}(v_1, 3, 3)$ $\stackrel{v_1}{\rightarrow} \text{positive_cofactor}(v_2, 3, 3)$ $\stackrel{v_1}{\rightarrow} v_1$ v_1

 $\stackrel{\lambda}{\rightarrow} \text{ positive_cofactor}(v_5, 3, 2)$ $\stackrel{\eta}{\rightarrow} \text{ positive_cofactor}(v_4, 3, 3)$ v_0 $\stackrel{\lambda}{\rightarrow} \text{ positive_cofactor}(v_1, 3, 3)$ v_1 v_1 $v_1 = (x_2, v_0, v_1)$ $v_{13} = (x_1, v_1, v_7)$

Unit 10

Variable Ordering

 Reorder adjacent variables only has a local effect on the ROBDD.

The Influence of Variable Ordering

- Size of BDD
 - Can vary from linear to exponential in the number of the variables, depending on the ordering
- Hard-to-build BDD
 - Data path components (e.g., multipliers) cannot be represented in polynomial space, regardless of the variable ordering
- Finding the ordering that minimizes the ROBDD size for some function is intractable (co-NPC)
 - The optimal ordering may change as ROBDDs are being manipulated.

Example on Variable Ordering

$$z = (a \oplus b) \cdot (c \oplus d) \cdot (e \oplus f)$$

Heuristic of Variable Ordering

- Heuristics of ordering
 - Put variables that influence most on the top of BDD.
 - Minimize the distance between strongly related variables.
 - e.g., x1x2 + x2x3 + x3x4x1 > x2 > x3 > x4 is better than x1 > x4 > x2 > x3
- An ROBDD package will try to reorder the variables at distinct moments.
 - It could move one variable to the top and back to the bottom and remember the best position. It could then repeat the procedure for the other variables.
- Another "invisible" feature of an ROBDD package is garbage collection.
 - Automatically remove vertices that are no longer required

Summary: From Boolean Expression to BDD

BDD Features

Strengths

- BDD is a compact representation for Boolean functions
- Canonical, given a fixed variable ordering
- Polynomial time in BDD size for many Boolean operations

Weaknesses

 In the worst case, the size of a BDD is O(2ⁿ) for n-input Boolean functions

ROBDDs and Satisfiability

- A Boolean function is satisfiable if an assignment to its variables exists for which the function becomes '1'
- Any Boolean function whose ROBDD is unequal to '0' is satisfiable.
- Suppose that choosing a Boolean variable x_i to be '1' costs c_i . Then, the **minimum-cost satisfiability** problem asks to minimize: $\sum_{i=1}^{n} c_i \mu(x_i)$

where $\mu(x_i) = 1$ when $x_i = 1$ and $\mu(x_i) = 0$ when $x_i = 0$.

- Solving minimum-cost satisfiability amounts to computing the shortest path in an ROBDD, which can be solved in linear time (since an ROBDD is a DAG).
 - Weights: $w(v, \eta(v)) = c_i$, $w(v, \lambda(v)) = 0$, variable $x_i = \phi(v)$.

ROBDD Application: Functional Verification

- Design creation process can be viewed as a series of transformation, from abstract specification all the way to layout.
- Functional verification is to compare a specification f to an implementation g.
 - They can both be represented by ROBDDs (F resp. G).
 - Can be performed on the same level or different levels
- In case of a fully specified function, verification is trivial (pointer comparison) because of the strong canonicity of the ROBDD data structure.
 - Strong canonicity: the representations to identical functions are the same.
- If there is a dc-set, use two functions f and d. The implementation g is correct when $d + f \cdot g + \overline{f} \cdot \overline{g}$ is a **tautology** (the expression evaluates to '1').

The Roles of Functional Verification

LVS: layout vs. schematic check, DRC: design rule check

Application of EC in ASIC Designs

Verification

- Design Verification
 - Functional Verification
 - Property checking in system level
 - PSPACE-complete (P⊆NP⊆PSPACE)
 - The hardest problems in PSPACE are the PSPACEcomplete problems
 - Equivalence checking in RTL and gate level
 - PSPACE-complete
 - Physical Verification
 - DRC (design rule check) and LVS (layout vs. schematic check) in layout level
 - Tractable
- Manufacture Verification
 - Testing
 - NP-complete
- "Verification" often refers to functional verification

Informal vs. Formal Verification

- Informal verification
 - Functional simulation aiming at locating bugs
 - Incomplete
 - Show existence of bugs, but not absence of bugs
 - Low complexity

- Formal verification
 - Mathematical proof of design correctness
 - Complete
 - Show both existence and absence of bugs
 - High complexity

Functional Verification Comparison

Simulation (software)

- Input stimuli derived manually or automatically by constraints solvers
- Incomplete (i.e., may fail to catch bugs)
- Very time-consuming, especially when at lower abstraction level such as the gate or transistor level
- Still the most popular way for design validation

Emulation (hardware)

- e.g. FPGA-based emulation system, or emulation system based on a massively parallel machine (e.g., with 8 boards, each having 128 processors)
- 2 to 3 orders of magnitude faster than software simulation
- Costly and might not be very easy-to-use

Formal verification

- A relatively new paradigm for property checking and equivalence checking
- Requires no input stimuli
- Performs exhaustive proof through rigorous logical reasoning

Unit 10