Training language models to follow instructions with human feedback

Presented by Kenan Alkiek

Table of contents

01

Motivation

You can describe the topic of the section here

03

Methods and Experiments 02

Related Work

You can describe the topic of the section here

04

Discussion and Limitations

01

Motivation

The Need For Alignment

Challenges with Large Language Models: Despite their size, large language models (LMs) like GPT-3 often fail in following user intent, leading to issues like untruthfulness, toxicity, and unhelpful responses.

Misalignment with User Intent: Traditional language modeling objectives differ from the desired goal of "following the user's instructions helpfully and safely".

Importance in Applications: Aligning LMs with user intent is crucial as they are increasingly used in various applications.

Fine-tuning with Human Feedback

Approach to Alignment: Utilizing human feedback to fine-tune language models to better align with user intentions.

InstructGPT Development: Collection of human-written demonstrations and labeler preferences to train models, specifically focusing on helpfulness, honesty, and harmlessness.

Reinforcement Learning from Human Feedback (RLHF): Using human preferences as a reward signal in training, and employing a team of contractors for data labeling and model assessment.

Outcomes and Evaluations of InstructGPT

Performance Comparison: InstructGPT, with significantly fewer parameters, is preferred over GPT-3 for its alignment with user intent and task performance.

Enhancements in Truthfulness and Reduced Toxicity: Demonstrated improvements in generating truthful responses and reducing toxic outputs.

Automatic and Human Evaluations: Consistent positive results across various public NLP datasets and human labeler ratings, with minor limitations in bias improvement.

02

Related Work

Reinforcement Learning From Human Feedback

Evolution of RLHF: Originally developed for training robots and Atari games, RLHF has been applied to language models for tasks like text summarization and dialogue generation.

Adoption in Language Tasks: Usage in various language domains, including translation, semantic parsing, story and review generation, and evidence extraction.

Human Feedback in NLP: Expanding the use of written human feedback in fine-tuning LMs, exemplified by Madaan et al. (2022) improving GPT-3 performance with augmented prompts.

Instruction Following and Crosstask Generalization

Generalizing Across Tasks: Prior work shows fine-tuning LMs on a broad range of NLP tasks with instructions improves performance on different tasks, both in zero-shot and few-shot settings.

Instruction Following: Studies involving models trained to follow natural language instructions for navigation in simulated environments.

Variations in Training and Evaluation: Differences in training data, instruction formatting, model sizes, and other experimental details across various studies.

Addressing Harms of Language Models

Mitigating Real-World Risks: Efforts to reduce biases, data leaks, misinformation, and malicious use of LMs, as well as challenges in deploying LMs in specific domains.

Developing Benchmarks for Harm Evaluation: Creation of benchmarks to concretely evaluate harms like toxicity, stereotypes, and social bias.

Interventions and Side-Effects: Addressing challenges where interventions to modify LM behavior can inadvertently affect representation of under-represented groups or reduce model performance.

03

Methods and Experiments

Methodology Overview

Step 1: Collect demonstration data and train a supervised policy with labeler-provided demonstrations

Step 2: Gather comparison data to train a reward model predicting human-preferred outputs

Step 3: Optimize policy against the reward model using Proximal Policy Optimization (PPO)

Rinse and Repeat

*Builds upon Zieglet et al. 2019 and Stiennon et al. 2020 fine-tuning process

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

This data is used to train our reward model.

A labeler ranks

the outputs from best to worst.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

Write a story

about frogs

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

The datasets

Sources: Primarily text prompts from OpenAl API and labeler-written prompts

Filtering: Deduplication of prompts, limitation by user ID, removal of PII

The 3 dataset types

- SFT Dataset: 13k training prompts for supervised fine-tuning
- 2. RM Dataset: 33k prompts for training the reward model
- 3. PPO Dataset: 31k prompts from API for RLHF fine-tuning

The tasks and training

Task Diversity: Includes generation, QA, dialogue, summarization, extractions, and other NLP tasks.

Language and Task Specification: Over 96% English content, with tasks often defined by natural language instructions, few-shot examples, or implicit continuation.

Labeler Responsibilities: Inferring user intent, considering truthfulness and avoiding harmful outputs such as bias or toxicity.

Models Overview

Base Model: Starting with GPT-3 pretrained language models.

Three Techniques for Training:

- Supervised Fine-Tuning (SFT): Fine-tuning GPT-3 with labeler demonstrations.
- Reward Modeling (RM): Training a model to output a scalar reward based on prompt-response pairs.
- Reinforcement Learning (RL): Fine-tuning the SFT model using Proximal Policy Optimization (PPO) in a bandit environment.

Supervised Fine-Tuning (SFT)

Training Method: 16 epochs, cosine learning rate decay, residual dropout of 0.2.

Model Selection: Based on RM score on the validation set.

Overfitting and Performance:
Despite overfitting on validation
loss, extended training improves
RM score and human preferences

Reward Modeling (RM)

Model Configuration: Starting with the final unembedding layer removed from the SFT model.

Dataset for RM: Comparisons between two model outputs, training with cross-entropy loss.

Efficiency in Training: Training on all comparisons from each prompt as a single batch element, leading to improved validation accuracy and log loss.

$$\log\left(\theta\right) = -\frac{1}{\binom{K}{2}} E_{(x,y_w,y_l)\sim D} \left[\log\left(\sigma\left(r_\theta\left(x,y_w\right) - r_\theta\left(x,y_l\right)\right)\right)\right] \tag{1}$$

Reinforcement Learning with PPO

Training Environment: A bandit environment presenting random customer prompts.

Objective Function: Maximizing a combined objective of rewards and KL penalty, with adjustments for pretraining gradients (PPO-ptx models).

KL Penalty and Pretraining Loss: Adjusted using coefficients to mitigate overoptimization.

objective
$$(\phi) = E_{(x,y) \sim D_{\pi_{\phi}^{\text{RL}}}} \left[r_{\theta}(x,y) - \beta \log \left(\pi_{\phi}^{\text{RL}}(y \mid x) / \pi^{\text{SFT}}(y \mid x) \right) \right] + \gamma E_{x \sim D_{\text{pretrain}}} \left[\log(\pi_{\phi}^{\text{RL}}(x)) \right]$$
 (2)

Measuring Model Efficacy

Baselines: SFT models, GPT-3, GPT-3 with few-shot prefix, and fine-tuned 175B GPT-3 on FLAN and T0 datasets.

Comparison Metrics: Reward model score and human preference ratings.

Definition of Alignment: Following Leike et al. (2018) - models should act in accordance with user intentions.

Three Dimensions of Alignment: Helpful, honest, and harmless.

Evaluations on API Distribution: Main metric is human preference ratings on a held-out set of prompts.

Evaluations on Public NLP Datasets: Focus on language model safety (truthfulness, toxicity, bias) and zero-shot performance on traditional NLP tasks.

Challenges in Measuring Alignment

Difficulty in Measuring Honesty: Comparing model outputs to inferred beliefs about correct responses.

Proxy Criteria for Harm: Using specific criteria like inappropriateness, denigration, and content nature.

Benchmarking on Bias and Toxicity: Utilizing datasets like RealToxicityPrompts and CrowS-Pairs.

Results

Labelers Prefer InstructGPT

Improvement Steps: Enhanced performance from GPT-3 to few-shot GPT-3, SFT, and finally PPO.

Comparative Performance: InstructGPT outputs preferred 85% over GPT-3, 71% over few-shot GPT-3.

Reliability and Control: InstructGPT rated higher in appropriateness, adherence to constraints, correct instruction following, and reduced fact fabrication

Generalizes to Held Out Labelers

Consistency in Preferences: Held-out labelers exhibit similar ranking preferences to training labelers.

Evidence Against Overfitting: InstructGPT models don't overfit to training labelers' preferences.

Cross-Validation with Reward Models: Reduced, but still high, accuracy in predicting preferences of held-out labelers, indicating good generalization.

Improvements in Truthfulness

TruthfulQA Dataset Evaluation: Small but significant improvements in truthfulness and informativeness over GPT-3.

Default Behavior: Enhanced truthfulness without specific instructions.

Exception in Smaller Models: 1.3B PPO-ptx model slightly underperforms compared to a similar sized GPT-3 model.

"Instruction+QA" Prompt: InstructGPT prefers being uninformative over confidently stating falsehoods, unlike GPT-3.

Reduction in Hallucinations and Toxicity

Closed-Domain Tasks: Lower rates of fabricating information (hallucinating) in InstructGPT.

RealToxicityPrompts Dataset Evaluation:

- Automatic Toxicity Scoring: Less toxic outputs from InstructGPT under "respectful" instructions.
- Human Evaluations: Similar performance in "no prompt" setting, but less toxicity with "respectful" instructions.

Negative Scores: All models rated less toxic than expected given the prompt, with SFT baseline being the least toxic.

Bias does not improve

Bias in InstructGPT: Not less biased than GPT-3, as measured by Winogender and CrowS-Pairs datasets.

Performance Regressions on Public NLP Datasets:

- "Alignment Tax": Performance decrease on public NLP datasets when aligning models.
- Mitigating Regressions with PPO-ptx: Adding pretraining updates reduces performance regressions and surpasses GPT-3 in some cases.

Public NLP datasets are not the real world

Comparative Analysis: InstructGPT outperforms FLAN and T0 models, indicating limitations in public NLP datasets.

Diversity and Real-World Relevance: Public NLP datasets lack diversity and do not fully represent the wide range of real-world user inputs.

Task Distribution Mismatch:

Classification and QA tasks in public NLP datasets only form a small part of real-world usage, as opposed to open-ended generation and brainstorming.

InstructGPT Qualitative Takeaways

Generalization: Effective in non-English languages and code-related tasks.

Comparison with GPT-3: Requires less specific prompting than GPT-3; often responds in English to non-English prompts.

Common Errors: Accepts false premises, overly hedges responses, struggles with complex or multiple constraints.

Improvement Strategy: Potential use of adversarial data collection to address these issues.

04

Discussion and Limitations

Who are we aligning to?

Influence Factors: Labelers' preferences, researchers' instructions, API customer inputs.

Diverse Stakeholders: Researchers, labelers, API customers, end-users, broader population.

Challenge: Impossible to align a model to everyone's preferences simultaneously.

Prospective Solutions: Developing models conditionable on specific group preferences or adaptable via fine-tuning.

What are the limitations?

Labelers' Influence: Reliance on a small, primarily English-speaking group of labelers, limiting diversity of perspectives.

Methodological Shortcomings: Potential improvements in data collection setup, such as multiple label evaluations.

Model Limitations: Generation of harmful content, following harmful instructions, and occasional failure in reasonable output generation.

Open Questions That Remain

Reducing Harmful Outputs: Exploring adversarial setups, pretraining data filtering, and improving truthfulness.

Training for Harmlessness: Addressing the challenge of training models to be harmless irrespective of user instructions.

Steerability and Controllability: Combining RLHF with steerability methods for improved model control.

Algorithmic Improvements: Investigating alternative algorithms for better policy training.

The broader impacts

Positive Potential: Making language models more helpful, truthful, and harmless.

Risks of Misuse: Easier generation of misinformation or abusive content.

Deployment Considerations: Cautious use in high-stakes domains and potential for centralized control with API access.

Ethical and Social Implications: Balancing transparency, representation, and consensus in model alignment, considering the diverse impact on society.

05

Quiz Questions

Question 1

In the fine-tuning process of InstructGPT, what role does Proximal Policy Optimization (PPO) play?

Answer 1

PPO is used to optimize the policy against the reward model, refining the model's alignment with human preferences.

Question 2

Name one key limitation of the InstructGPT models identified in the paper?

Answer 2

They can still generate toxic or biased outputs and sometimes follow harmful user instructions.

Thank You!