Correction

1.a $0 \in E_0$ et $\forall \lambda, \mu \in \mathbb{R}, \forall f, g \in E_0$.

$$\int_{0}^{2\pi} (\lambda f + \mu g)(t) dt = \lambda \int_{0}^{2\pi} f(t) dt + \mu \int_{0}^{2\pi} g(t) dt = 0 \text{ donc } \lambda f + \mu g \in E_{0}.$$

Par suite E_0 est un sous-espace vectoriel de E.

D'autre part, la fonction nulle est une fonction constante et toute combinaison linéaire de fonctions constantes est une fonction constante.

Par suite Const est un sous-espace vectoriel de E.

1.b Soit $f \in E_0 \cap Const$.

D'une part, f est une fonction constante, posons C sa valeur.

D'autre part,
$$\int_0^{2\pi} f(t) dt = 0$$
 donc $\int_0^{2\pi} C dt = 2\pi C = 0$ puis $C = 0$.

On conclut $E_0 \cap Const = \{0\}$.

Soit
$$f \in F$$
 . Posons $C = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt$. Considérons :

h la fonction constante égale à C et g la fonction définie par g = f - h.

Pour ces fonctions on a:

$$f = g + h$$
 : clair

$$h \in Const$$
 : clair

et
$$g \in E_0$$
 car $\int_0^{2\pi} g(t) dt = \int_0^{2\pi} f(t) dt - 2\pi C = 0$.

Ainsi
$$E_0 + Const = E$$
.

Finalement $E_0 \oplus Const = E$.

1.c $0 \in P$ et $\forall \lambda, \mu \in \mathbb{R}$, $\forall f, g \in P$ on a, pour tout $x \in \mathbb{R}$:

$$(\lambda f + \mu g)(x + 2\pi) = \lambda . f(x + 2\pi) + \mu . g(x + 2\pi) = \lambda . f(x) + \mu . g(x) = (\lambda . f + \mu . g)(x)$$

Donc $\lambda f + \mu g \in P$ et ainsi P est un sous-espace vectoriel de E.

- 1.d $P_0 = P \cap E_0$ (on peut guère faire plus rapide)
- 2.a Existence:

Soit F une primitive de f.

Comme $F \in E = E_0 \oplus Const$, on peut écrire $F = F_0 + C$ avec $C \in \mathbb{R}$.

 F_0 est alors primitive de f et $F_0 \in E_0$.

Unicité:

Soit F_0 et F_1 deux primitives solutions.

$$\exists C \in \mathbb{R}$$
 tel que $F_0 = F_1 + C$.

Mais alors
$$C = F_0 - F_1 \in E_0$$
 d'où $C = 0$ puisque $Const \cap E_0 = \{0\}$.

Ainsi
$$F_0 = F_1$$
.

2.b Soit $f, g \in E$. Si L(f) = L(g) alors L(f)' = L(g)' d'où f = g.

Ainsi L est injective.

En revanche, toute valeur prise par $\,L\,$ appartient par définition à $\,E_0 \neq E\,$.

Par suite L n'est pas surjective, ni a fortiori bijective.

3.a
$$\int_{a}^{a+2\pi} f(t)dt = \int_{a}^{0} f(t)dt + \int_{0}^{2\pi} f(t)dt + \int_{2\pi}^{a+2\pi} f(t)dt .$$

Or
$$\int_{2\pi}^{a+2\pi} f(t) dt = \int_{a=t-2\pi}^{a} \int_{0}^{a} f(x+2\pi) dx = \int_{0}^{a} f(t) dt$$

d'où
$$\int_{a}^{a+2\pi} f(t) dt = \int_{0}^{2\pi} f(t) dt$$
.

3.b Si f possède une primitive F 2π périodique alors

$$\int_0^{2\pi} f(t) dt = F(2\pi) - F(0) = 0 \text{ donc } f \in P_0.$$

Inversement, si $f \in P_0$ alors considérons $F: x \mapsto \int_0^x f(t) dt$.

F est une primitive de f et pour tout $x \in \mathbb{R}$:

$$F(x+2\pi) = \int_0^{x+2\pi} f(t) dt = \int_0^x f(t) dt + \int_x^{x+2\pi} f(t) dt = F(x)$$

$$\operatorname{car} \int_x^{x+2\pi} f(t) dt = \int_0^{2\pi} f(t) dt = 0.$$

- 3.c L(f) est une primitive de $f \in P_0$, donc L(f) se déduit d'une fonction 2π périodique par l'addition d'une constante, c'est donc une fonction 2π périodique. De plus, par définition $L(f) \in E_0$ donc $L(f) \in P_0$.
- 4.a B_1 est primitive de $B_0: t \mapsto 1$ donc B_1 de la forme $B_1: t \mapsto t + C$.

De plus
$$\int_0^{2\pi} B_{\rm l}(t) \, dt = 0$$
 donc $C = -\pi$ puis $B_{\rm l}(t) = t - \pi$.

 B_2 est primitive de B_1 donc B_2 de la forme $B_2: t \mapsto \frac{1}{2}t^2 - \pi t + C$.

De plus
$$\int_0^{2\pi} B_2(t) = \frac{(2\pi)^3}{6} - \frac{\pi (2\pi)^2}{2} + 2\pi C$$
 donc $C = \frac{\pi^2}{3}$.

Ainsi
$$B_2(t) = \frac{1}{2}t^2 - \pi t + \frac{\pi^2}{3}$$
.

4.b $\forall n \ge 1 \text{ on a } B_n \in E_0 \text{ donc } \int_0^{2\pi} B_n(t) dt = \left[B_{n+1}(t) \right]_0^{2\pi} = 0.$

Ainsi $\forall n \geq 1, B_{n+1}(2\pi) = B_{n+1}(0)$ puis la propriété demandée.

5.a
$$\varphi_n(f)(x+2\pi) = \frac{(-1)^{n-1}}{2\pi} \int_0^{2\pi} B_n(t) f(x+2\pi+t) dt = \frac{(-1)^{n-1}}{2\pi} \int_0^{2\pi} B_n(t) f(x+t) dt = \varphi_n(f)(x)$$

Donc $\varphi_n(f)$ est 2π périodique.

5.b On observe que $t \mapsto \mathcal{L}(f)(x+t)$ est primitive de $t \mapsto f(x+t)$

Par intégration par parties :

$$\varphi_{1}(f)(x) = \frac{1}{2\pi} \int_{0}^{2\pi} (t - \pi)f(x + t) dt$$

$$= \frac{1}{2\pi} [(t - \pi)\mathcal{L}(f)(x + t)]_{0}^{2\pi} - \frac{1}{2\pi} \int_{0}^{2\pi} \mathcal{L}(f)(x + t) dt$$

$$= \frac{\pi \mathcal{L}(f)(x + 2\pi) + \pi \mathcal{L}(f)(x)}{2\pi} - \frac{1}{2\pi} \int_{x}^{x + 2\pi} \mathcal{L}(f)(u) du$$

$$= \mathcal{L}(f)(x) - \frac{1}{2\pi} \int_{0}^{2\pi} \mathcal{L}(f)(u) du = \mathcal{L}(f)(x)$$

(en exploitant pleinement $\mathcal{L}(f) \in P_0$)

5.c Par intégration par parties :

$$\begin{split} & \varphi_{n+1}(f)(x) = \frac{(-1)^n}{2\pi} \int_0^{2\pi} B_{n+1}(t) f(x+t) dt \\ & = \frac{(-1)^n}{2\pi} \Big[B_{n+1}(t) \mathcal{L}(f)(x+t) \Big]_0^{2\pi} - \frac{(-1)^n}{2\pi} \int_0^{2\pi} B'_{n+1}(t) \mathcal{L}(f)(x+t) dt \\ & = 0 + \frac{(-1)^{n-1}}{2\pi} \int_0^{2\pi} B_n(t) \mathcal{L}(f)(x+t) dt = \varphi_n(\mathcal{L}(f))(x) \end{split}$$

5.d Par récurrence sur $n \in \mathbb{N}^*$ ou de la manière suivante :

$$\varphi_n(f) = \varphi_{n-1}(\mathcal{L}(f)) = \dots = \varphi_1(\mathcal{L}^{n-1}(f)) = \mathcal{L}^n(f)$$
.