ELEMENTY JĘZYKA C++: utrwalenie wiadomości o funkcjach i tablicach, struktury.

1. Wyszukiwanie binarne

Napisz program sprawdzający, czy posortowana tablica $\{x_0 \dots x_{n-1}\}$ zawiera element docelowy t. Wiemy, że $n \geq 0$ oraz $x_0 \leq \dots \leq x_{n-1}$. Odpowiedź jest przechowywana w zmiennej całkowitej p. Gdy p = -1, wartości docelowej t nie ma w tablicy $\{x_0 \dots x_{n-1}\}$. W przeciwnym razie $0 \leq p \leq n-1$, a $t = x_p$.

Szukanie binarne rozwiązuje problem przez pamiętanie zakresu w tablicy, która zawiera t (jeśli tylko t znajduje się gdziekolwiek w tablicy). Początkowo zakres obejmuje cała tablicę. Zakres jest pomniejszany przez porównanie jego elementu środkowego z t i pozbycie się zbędnej połowy. Proces ten jest kontynuowany aż do odszukania elementu t w tablicy albo do chwili, kiedy zakres – w którym powinien znajdować się element – jest pusty.

2. Kontrola poprawności za pomocą sumy kontrolnej Luhna

Algorytm Luhna jest powszechnie używanym systemem służącym do przeprowadzania kontroli poprawności numerów identyfikacyjnych. W numerze źródłowym weź pod uwagę co drugą cyfrę (licząc od prawej) i pomnóż ją przez dwa. Następnie dodaj wartości wszystkich cyfr (jeśli podwojona wartość składa się z dwóch cyfr, potraktuj je oddzielnie). Numer identyfikacyjny jest poprawny, jeśli suma dzieli się przez 10.

Napisz program, który odczytuje numer identyfikacyjny o dowolnej długości i przy użyciu algorytmu Luhna ustala, czy jest on poprawny. Program musi przetworzyć dany znak przed odczytaniem następnego.

3. Brzozowy gaj pana Antoniego

Pan Antoni jest właścicielem brzozowego gaju. Znajduje się w nim n drzew o współrzędnych (x_i, y_i) . Aby nikt niepowołany nie mógł dostać się na teren gaju, zamierza ogrodzić go prostokątnym płotem. Ze względu na oszczędności płot powinien mieć możliwie najmniejszy obwód, jednocześnie obejmując wszystkie n brzóz. Napisz program, który wyznaczy długość płotu według planu pana Antoniego. Plan zagospodarowania przestrzennego wymaga, żeby boki prostokąta były równoległe do osi OX oraz OY kartezjańskiego układu współrzędnych.

4. Diagram fazowy

Diagram fazowy ukazuje fazę substancji w danych warunkach zewnętrznych. Typowo zawiera linie podziału, wyznaczające miejsca współistnienia różnych faz w warunkach równowagi termodynamicznej. Rozważmy prosty model diagramu fazowego.

Niech tablica $n \geq 2$ par liczb rzeczywistych (a_i, b_i) definiuje n prostych $y_i = a_i x + b_i$. Proste zostały uporządkowane w przedziale [0,1] w taki sposób, że $y_i < y_{i+1}$ dla wszystkich wartości $i = \{0 \dots n-2\}$ i wszystkich $x \in [0,1]$. Ujmując to mniej formalnie, proste te nie stykają się ani nie przecinają w pionowym pasie. Napisz program, który mając punkt $(0 \leq x_0 \leq 1, y_0)$ znajduje dwie proste, które z dołu i od góry ograniczają ten punkt.

5. 13-znakowy standard ISBN

Jeśli podoba Ci się algorytm Luhna, napisz odpowiedni program dla innego systemu sprawdzającego poprawność cyfr,takiego jak 13-znakowy standard ISBN. Aplikacja mogłaby wczytywać cały numer identyfikacyjny i weryfikować go lub pobierać numer bez cyfry kontrolnej, a następnie ją generować.

6. Pracownia Elektroniczna

Student dostał na Pracowni Elektronicznej komplet specjalnych kabli. Każdy kabel składa się z drutu oraz baterii. i-ty drut może wytrzymać napięcie d_i woltów, a i-ta bateria wytwarza napięcie b_i woltów. Student buduje z kabli obwód elektryczny: wybiera druty, skręca je razem tworząc grubszy drut i robi z niego pętlę. W pętli napięcie jest sumą napięć wszystkich baterii (tzw. II prawo Kirchoffa), a skręcony drut może wytrzymać napięcie będące sumą napięć, które mogą wytrzymać poszczególne druty. Napisz program pozwalający studentowi stwierdzić, z ilu maksymalnie kabli może składać się obwód, aby zrobiona pętla nie przepaliła się.

Pytania, a także rozwiązania zadań, można wysyłać na adres: MDABROWSKI@FUW.EDU.PL.