ToothGrowth Inferential Data Analysis

Charles Yoo
June 19, 2016

Overview

This project investigages the correlation that various dosages and supplements have on tooth length using the ToothGrowth dataset. The null hypothesis is that OJ has a stronger efficacy on tooth growth than Vitamin \mathcal{C}

Load Data

```
data(ToothGrowth)
```

Summary of Data

```
##
         len
                    supp
                                  dose
           : 4.20
                    OJ:30
##
   Min.
                             Min.
                                    :0.500
##
   1st Qu.:13.07
                    VC:30
                             1st Qu.:0.500
## Median :19.25
                             Median :1.000
           :18.81
                                    :1.167
##
  Mean
                             Mean
##
    3rd Qu.:25.27
                             3rd Qu.:2.000
   Max.
           :33.90
                             Max.
                                    :2.000
```

```
# look at first 6 rows
head(ToothGrowth)
```

```
## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
## 5 6.4 VC 0.5
## 6 10.0 VC 0.5
```

```
# count number of rows
nrow(ToothGrowth)
## [1] 60
dim(ToothGrowth)
## [1] 60 3
# exploration of data
unique(ToothGrowth$dose)
## [1] 0.5 1.0 2.0
unique(ToothGrowth$supp)
## [1] VC OJ
## Levels: OJ VC
# table comparing dose to supp
table(ToothGrowth$dose, ToothGrowth$supp)
##
        OJ VC
##
##
    0.5 10 10
## 1 10 10
##
     2 10 10
```

Comparison of dose to supp

Toothgrowth length vs supplement by dose

We see a visual correlation between dose size and tooth length. The higher the dosage of the supplement affects a longer tooth length. We also see that the type of supplement may have an effect on tooth length as well at the lower dosages.

Confidence intervals

Null-hypotheis

OJ supplement has a more impact than Vitamin C.

T-test supplment as factor

Assign variables

```
length <- ToothGrowth$len
supplement <- ToothGrowth$supp
dosage <- ToothGrowth$dose</pre>
```

T-test on supplement

```
t.test(length[supplement == "OJ"], length[supplement == "VC"], paired = FALSE, var.equal = FALSE)
##
## Welch Two Sample t-test
```

data: length[supplement == "OJ"] and length[supplement == "VC"]

```
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
```

The confidence interval [-0.1710156, 7.5710156] and the p value 0.06063 shows a significance. The difference in mean is not significant enough to support the null hypothesis.

T-test dosages as factor

Assign variables

```
dose0510 <- subset(ToothGrowth, dose %in% c(0.5, 1.0))
dose0520 <- subset(ToothGrowth, dose %in% c(0.5, 2.0))
dose1020 <- subset(ToothGrowth, dose %in% c(1.0, 2.0))</pre>
```

T-test on doses 0.5 & 1.0

```
t.test(len ~ dose, paired = FALSE, var.equal = FALSE, data = dose0510)
```

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5 mean in group 1
## 10.605 19.735
```

The confidence interval [-11.983781, -6.276219] and the p-value 1.268e-07, essentially 0, shows a significant correlation between tooth length and dose levels. There is a significant difference between the dosages that the null hypothesis is true.

0.5 & 2.0

```
t.test(len ~ dose, paired = FALSE, var.equal = FALSE, data = dose0520)
```

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean in group 0.5 mean in group 2
## 10.605 26.100
```

The confidence interval [-18.15617, -12.83383] and the p-value 4.398e-14, essentially 0, shows a significant correlation between tooth length and dose levels. There is a significant difference between the dosages that the null hypothesis is true.

1.0 & 2.0

##

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
```

The confidence interval [-8.996481, -3.733519] and the p-value 1.906e-05, essentially 0, shows a significant correlation between tooth length and dose levels. There is a significant difference between the dosages that the null hypothesis is true.

T-test supplement as factor within dosage levels

26.100

Assign variables

```
dose05 <- subset(ToothGrowth, dose == 0.5)
dose10 <- subset(ToothGrowth, dose == 1.0)
dose20 <- subset(ToothGrowth, dose = 2.0)</pre>
```

T-test on supplement with doses 0.5

mean in group 1 mean in group 2

19.735

```
t.test(len ~ supp, paired = FALSE, var.equal = FALSE, data = dose05)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean in group OJ mean in group VC
## 13.23 7.98
```

The confidence interval [1.719057, 8.780943] and the p-value 0.006359, essentially 0, shows a significant correlation between tooth length and dose levels. There is a significant difference between the dosages that the null hypothesis is true.

1.0

```
t.test(len ~ supp, paired = FALSE, var.equal = FALSE, data = dose10)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 4.0328, df = 15.358, p-value = 0.001038
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.802148 9.057852
## sample estimates:
## mean in group OJ mean in group VC
## 22.70 16.77
```

The confidence interval [2.802148, 9.057852] and the p-value 0.001038, essentially 0, shows a significant correlation between tooth length and dose levels. There is a significant difference between the dosages that the null hypothesis is true.

2.0

```
t.test(len ~ supp, paired = FALSE, var.equal = FALSE, data = dose20)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
```

The confidence interval [-0.1710156 7.5710156] and the p-value 0.06063, essentially 0, shows a significant correlation between tooth length and dose levels. The difference in mean is not significant enough to support the null hypothesis.

Conclusions

- There is no significance difference in tooth lengths when looking at supplements only.
- There is a significance difference in tooth lengths when looking at dosages only.

References

```
http://rstudio-pubs-static.s3.amazonaws.com/56907\_9a9016c4f4df4d10aa7afaed5eed1d77.html \\ https://rpubs.com/YevgenyY/si\_cp2 \\ http://rstudio-pubs-static.s3.amazonaws.com/26135\_b10068633b5948848d2c28fc0a752d78.html
```