Inferência Estatística Intervalo de confiança

Profa Ana Amélia Benedito Silva aamelia@usp,br

Etapas da Analise Estatística

Análise Descritiva

- conjunto de técnicas que tem como objetivo descrever uma amostra extraída de uma população.
 - Tabelas
 - Gráficos
 - Medidas-resumo
 - medidas de tendência central
 - média, mediana, moda
 - medidas de dispersão
 - Variância, desvio-padrão
 - medidas separatrizes
 - percentis, quartis, decis

Inferência Estatística

- Conjunto de técnicas que tem como objetivo estudar uma população através de evidências fornecidas por uma amostra.
 - Teste de hipóteses
 - Estimação por parâmetros ou por intervalo de confiança
- Permite ao pesquisador ir além da descrição dos dados

Inferência estatística

Estimação

- Qual é a probabilidade de "cara" no lançamento de uma moeda?
- Qual é a media da altura dos brasileiros?
- Qual é a porcentagem de votos que o candidato A vai receber nas eleições?
- Qual é a porcentagem de adultos que já tomaram as 4 doses de vacina pra COVID-19 no Brasil?

Teste de hipóteses

• A moeda é honesta?

- Será que a média da altura dos brasileiros é maior que 1,65m?
- O candidato A vencerá as eleições?
- Será que pelo menos 50% dos adultos já tomou as 4 doses de vacina para COVID-19?

População, Amostra e Estimativa Pontual

- Queremos adquirir informação sobre populações a partir de nossas amostras
- Suponha que a população total de pandas na Terra seja formada por 50 indivíduos e que medimos o quociente de inteligência (QI) de cada um deles e obtivemos a **média 100.**
- Nesse caso, por termos acesso a todos os indivíduos da população, sabemos informar com exatidão qual é a média da população.
- Contudo, dificilmente encontraremos uma situação assim na vida real. Não sabemos ao certo o tamanho da população de pessoas com depressão, ou de adolescentes que abusam de drogas, ou de pacientes com ansiedade etc.
- No entanto, podemos adquirir informação sobre essas populações (fazer inferências) a partir de amostras.

Estimativa pontual de um parâmetro populacional

 QI de todos os 50 pandas (população) existentes na Terra

• Média = 100

Panda	QI								
1	75	11	100	21	88	31	77	41	94
2	100	12	107	22	94	32	102	42	99
3	78	13	89	23	126	33	117	43	102
4	102	14	116	24	100	34	96	44	87
5	127	15	99	25	75	35	100	45	96
6	73	16	129	26	89	36	106	46	100
7	81	17	117	27	118	37	121	47	86
8	137	18	93	28	121	38	91	48	114
9	101	19	109	29	103	39	112	49	100
10	95	20	84	30	79	40	88	50	107

Estimativa pontual de um parâmetro populacional

QI de 45 pandas (90% da população)

Média da amostra = 99,2 - boa estimativa da média populacional

Com tantos pandas, temos uma boa probabilidade de selecionarmos elementos dos dois extremos da distribuição, como o panda 3 e o 5.

panda	QI								
1	107	11	89	21	121	31	91	41	99
2	121	12	116	22	103	32	112	42	117
3	129	13	102	23	75	33	88	43	89
4	127	14	81	24	77	34	100	44	94
5	73	15	93	25	75	35	102	45	96
6	102	16	109	26	117	36	87		
7	101	17	84	27	95	37	100		
8	100	18	88	28	100	38	86		
9	107	19	100	29	106	39	114		
10	118	20	79	30	94	40	100		

Média = 99,2

Estimativa pontual de um parâmetro populacional

10 amostras com 2 indivíduos

	Amostras											
	1	2	3	4	5	6	7	8				
Panda	QI	QI	QI	QI	QI	QI	QI	QI				
1	118	81	95	81	75	96	73	117				
2	109	79	102	100	102	75	87	103				
Média	113.5	80.0	98.5	90.5	88.5	85.5	80.0	110.0				

- $\overline{x_1}$ =113,5 -> sobrestimativa da média populacional
- $\bar{x_2} = \bar{x_7} = 80,0$ -> subestimativa da média populacional.
- Ao selecionar uma amostra, haverá incerteza sobre a sua representatividade
- Assim, ao calcularmos uma estatística amostral, como a média, nunca estaremos seguros sobre o quanto ela irá diferir do parâmetro populacional.
- O grau com que a estatística amostral difere do parâmetro populacional é denominado erro amostral.

Estimativa pontual de um parâmetro populacional 10 amostras com 10 pandas

					Amo	stras				
	1	2	3	4	5	6	7	8	9	10
Panda	QI	QI	QI	QI	QI	QI	QI	QI	QI	QI
1	94	102	126	99	99	100	94	109	109	107
2	109	88	103	96	87	137	114	86	101	88
3	100	100	116	93	101	101	100	95	102	102
4	88	75	103	112	114	102	99	96	93	96
5	117	91	100	100	100	106	127	109	78	112
6	88	88	93	94	100	100	116	129	107	78
7	107	93	100	102	94	103	121	73	75	100
8	94	100	89	118	93	87	107	102	89	94
9	107	84	100	88	107	101	103	100	96	88
10	137	121	102	114	129	118	102	75	86	127
Média	104.1	94.2	103.2	101.6	102.4	105.5	108.3	97.4	93.6	99.2

- Quanto maior o tamanho da amostra, mais próxima sua média será da média da população.
- média das médias = 101,0.
- Logo, a média da distribuição amostral é uma melhor estimativa da média da população do que as médias individuais.

A incerteza da Estimativa pontual

 A média da amostra é um valor conhecido como estimativa pontual da média da população.

- Sabe-se que a média da amostra é uma aproximação da média da população
- Porém não se sabe realmente qual a proximidade dela com a da população, mas deseja-se adquirir informação sobre populações a partir das amostras.
- Seria útil ter-se alguma maneira de saber aproximadamente onde está a média da população – os intervalos de confiança podem nos ajudar nessa dúvida.

Estimativa de parâmetro populacional pelo Intervalos de confiança

- são estimativas para a média populacional
- Correspondem a um intervalo de valores, em torno da média amostral, dentro do qual pode-se encontrar, com determinada confiança, o valor da média da população.
- Por que o termo "intervalo de confiança"?
- por estarmos trabalhando com estimativas, não temos garantia de que o intervalo, de fato, envolva a média da população, daí o termo.
- Em geral, fixamos *intervalos de confiança em 95%*

Estimativa de parâmetro populacional pelo Intervalo de confiança

Como obter o Intervalo de confiança?

Relembrando:

- a distribuição normal de um conjunto de dados é função de sua média e de seu desvio padrão;
- a distribuição das médias amostrais é sempre, aproximadamente, uma distribuição normal;
- a média da distribuição amostral é uma boa aproximação da média da população.

Portanto, se a distribuição das médias é *normal*, ela deve, também, ser uma função de sua média e desvio padrão.

Relembrando a DISTRIBUIÇÃO NORMAL

curva em forma de sino comum em muitos tipos de observações biológicas, econômicas, psicológicas e sociais

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty.$$

 μ é o valor esperado (média) de X, com $-\infty < \mu < \infty$; σ^2 é a variância de X, com $\sigma^2 > 0$.

INTERVALOS DE CONFIANÇA

- Sabe-se que 95% da área sob a curva Normal está entre –1,96 e +1,96 desvios-padrão.
- Então, 95% das médias de uma distribuição amostral estarão entre -1,96 e +1,96 errospadrão da média da população
 - erro-padrão = desvio-padrão da distribuição das amostras.
- Fórmula do intervalo de confiança (IC) de 95%:
 IC 95% = média ± 1,96*erro-padrão.

Estimativa de parâmetros populacionais por intervalo

Exemplos de intervalo de confiança

IMC médio, desvio padrão (dp) e IC de 95% segundo sexo e idade (anos). Duas escolas públicas de São Paulo. 2004.

Sexo ⁽¹⁾		Idade (ar	nos) ⁽²⁾	
	7	8	9	10
	IMC (kg/m²) médio e desvi	o padrão (dp) (IC 9	5%)
Masculino	16,8 (2,5)	17,9 (4,0)	17,3 (3,1)	18,9 (4,0)
	(16,2 – 17,4)	(17,0 – 18,9)	(16,5 – 18,1)	(17,9 – 19,8)
Feminino	16,4 (2,30)	16,9 (2,9)	17,4 (3,3)	18,7 (3,1)
	(15,9 – 17,0)	(16,2 – 17,6)	(16,6 – 18,2)	(17,9 – 19,5)
Total	16,6 (2,4)	17,4 (3,5)	18,7 (3,2)	18,8 (3,7)
	(16,2-17,0)	(16,8-18,0)	(17,9 - 19,5)	(18,2-19,4)

⁽¹⁾ Masculino (n=281), Feminino (n=275);

Fonte: Claudia Regina Koga. Dissertação de Mestrado (dados preliminares)

^{(2) 7} anos (n=151); 8 anos (n=138); 9 anos (n=126); 10 anos (n=141)

Estatística: média populacional - μ

$$IC(\mu) = \overline{x} - z_{\alpha/2} \cdot \frac{\sigma_x}{\sqrt{n}}; \overline{x} + z_{\alpha/2} \cdot \frac{\sigma_x}{\sqrt{n}}$$

No caso dos 45 pandas:

média amostral = 99,2; desvio-padrão populacional = 15,3

IC =
$$[99,2-1,96*(15,3/\sqrt{45})]$$
; $[99,2+1,96*(15,3/\sqrt{45})]$

IC _{95%} = 94,7
$$\leq \mu \leq 103,7$$

- O IC 95% indica que se tivéssemos 100 amostras aleatórias com 45 pandas, poderíamos obter 100 IC em torno da média amostral, sendo que 95 conteriam a média populacional e 5 não conteriam a média populacional.
- Na prática, obtém-se apenas um IC a partir de uma única amostra.

Exercícios

- Em uma amostra de 16 gestantes com diagnóstico clínico de pré-eclampsia, a taxa média de ácido úrico no plasma foi de 5,3 mg sabendo que a variabilidade na população é igual à 0,6 mg.
- Estime com 95% de confiança, a taxa média de ácido úrico no plasma da população de gestantes com diagnóstico de pré-eclampsia.

Exercício

 Construa um intervalo de 95% de confiança para estimar a pressão diastólica média populacional (μ), sabendo que em uma amostra de 36 adultos a pressão média amostral (x) foi igual a 85 mm e o desvio-padrão populacional (σ) foi de 9 mm de Hg. Interprete o significado desse intervalo.

Neste caso usa-se a distribuição t

$$IC(\mu): \overline{x} - t_{n-1,\alpha/2} \cdot \frac{S_x}{\sqrt{n}}; \overline{x} + t_{n-1,\alpha/2} \cdot \frac{S_x}{\sqrt{n}}$$

Distribuição normal e distribuição t de Student

Neste caso usa-se a distribuição t

O formato da distribuição t muda para diferentes tamanhos de amostra – há uma distribuição t para cada n

Quando n cresce, a distribuição t fica mais estreita e mais alta

Exercício

 Queremos estimar um intervalo de confiança ao nível de significância de 5% para a altura média dos indivíduos de Campina Grande. A princípio sabemos que a distribuição das alturas é uma V.A. com distribuição Normal. Para tanto, selecionamos uma amostra de 25 pessoas e obtivemos média de 170 cm e desvio padrão de 10 cm.

Solução

IC
$$_{95\%}$$
 = 170 ± t $_{(25-1):\ 0.05}$ × 10/ $\sqrt{25}$ = 170 ± 2,064*(10/5) = 170 ± 4,128 = 165,872

$$IC_{95\%} = [165,872; 174,128] cm$$

Testes de Significância - Teste t de Student

ius de liberdade	TÁBUA I	П				DE ST			P(-t _c	< t < t _C)	≐ 1 — p		p/2	ρ μ/2		us de liberdade
Graus	ρ = 90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%	2%	1%	0,2%	0,1%	Graus
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	15,894	31,821	63,657	318,309	636,619	1
2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	4,303	4.849	6,965	9,925	22,327	31,598	2
3	0,137	0,277	0.424	0,584	0,765	0,978	1,250	1,638	2,353	3,182	3.482	4,541	5,841	10,214	12,924	3
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,776	2,998	3,747	4,604	7,173	8,610	4
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2.015	2,5/1	2,766	3,365	4.032	5,893	6,869	5
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	2,612	3,143	3,707	5,208	5,959	6
7	0,130	0.263	0,402	0,549	0,711	0.896	1,119	1,415	1,895	2,365	2,517	2,998	3,499	4,785	5,408	1
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	2,449	2.896	3,355	4,501	5.041	8
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,398	2,821	3,250	4,297	4,781	9
10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2.228	2,359	2,764	3,169	4,144	4,587	10
11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,328	2,718	3,106	3.025	4,437	111
12	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	2,179	2,303	2,681	3,055	3,930	4,318	12
13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	2,160	2,282	2,650	3,012	3,852	4,221	13
14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	2,145	2,264	2,624	2,977	3,787	4,140	14
15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,248	2,602	2,947	3,733	4,073	15
16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,235	2,583	2,921	3,686	4.015	16
17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,224	2,567	2,898	3,646	3,965	17
18	0.127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,214	2,552	2,878	3,610	3,922	18
19	0,127	0,257	0,391	0.533	0,688	0,861	1,066	1,328	1,729	2.093	2,205	2,539	2,861	3,579	3,883	19
20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,197	2,528	2,845	3,552	3,850	20
21	0,127	0.257	0,391	0,532	0,686	0.859	1,063	1,323	1,721	2,080	2.189	2,518	2,831	3,527	3,819	21
22	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	2,074	2.183	2,508	2,819	3,505	3,792	22
23	0,127	0,256	0,390	0,532	0.685	0.858	1,060	1,319	1,714	2.063	2,177	2,500	2,807	3,485	3,768	23
24	0,127	0,256	0,390	0,531	0.685	0.857	1,059	1,318	1,711	2.064	2,172	2,492	2,797	3,467	3,745	24
25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	2,000	2,165	2,485	2,787	3,450	3,725	25
26	0,127	0,256	0.390	0,531	0,684	0,856	1,058	1,315	1,706	2,056	2,162.	2,479	2,119	3,435	3,707	26
27	0,127	0.256	0,389	0,531	0,684	0,855	1.057	1.314	1,703	2,052	2,158	2,473	2,771	3,421	3,690	27
28 29	0,127	0.256	0,389	0,530	0,684	0,855	1,056	1,313	1,701	2,048	2,154	2,467	2,763	3,408	3,674	28
30	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,311	1,699	2,045	2,150	2,462 2,457	2,756 2,750	3,396	3,659	29
	0.484			Enternance	110000000000000000000000000000000000000				***************************************	1	2,147	2,437	2,750	3,385	3,646	30
35	0,126	0,255	0,388	0,529	0.682	0,852	1,052	1,306	1,690	2,030	2,133	2,438	2,124	3,340	3,591	35
40	0,126	0,255	0,388	0,529	0,681	0,851	1,050	1,303	1.684	2,021	2,123 -	2,423	2,704	3,307	3,551	40
50 60	0,126	0,254	0,387	0,528	0,679	0,849	1,047	1,299	1.676	2,009	2,109	2,403	2,678	3,261	3,496	50
120	0,126	0,254	0,387	0,527	0,679	0,848	1,045	1.296	1,671	2,000	2,099	2,390	2,660	3,232	3,460	60
				SWESSONS	0,077	0,845	1,041	1,289	1,658	1,980	2,076	2,358	2,617	3,160	3,373	120
un	0,126	0,253	0,385	0,524	0,674	0,842	1,036	1,282	1,645	1,960	2,054	2,326	2,576	3,090	3,291	00
	p = 90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%.	2%	1%	0,2%	0,1%	

Graus de liberdade = 24

Intervalo de confiança aproximado para a proporção populacional

- Suponha que tem-se uma população dicotômica, constituída apenas por elementos de 2 tipos, isto é, cada elemento pode ser classificado com sucesso ou fracasso.
- Suponha que a probabilidade de sucesso seja de $\bf p$ e de fracasso $\bf q=1-\bf p$, e desta população se retira uma amostra aleatória $\bf x_1, \bf x_2, \bf x_n$ de $\bf n$ observações.

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

• Para um nível de confiança fixando em $100(1-\alpha)\%$ um intervalo para ${m p}$ para uma amostra suficientemente grande seria

$$IC(p, 1-\alpha) = \left(\hat{p} - z_{1-\alpha/2} \times \sqrt{\frac{p(1-p)}{n}}; \hat{p} + z_{1-\alpha/2} \times \sqrt{\frac{p(1-p)}{n}}\right)$$

Intervalo de confiança aproximado para a proporção populacional

Exemplo: Um estudo foi feito para determinar a proporção de famílias em uma comunidade que tem telefone (p). Uma amostra de 200 famílias é selecionada, ao acaso, e 160 afirmam ter telefone. Que dizer de p com 95% de confiança?

Uma estimativa pontual de
$$p \not e \hat{p} = \frac{160}{200} = 0.8 (80\%)$$

Já que 1- α =0,95, temos da tabela normal padrão z₀₉₇₅.=1,96.

$$IC(p,0.95) = \left(0.8 - 1.96 \times \sqrt{\frac{0.8(1 - 0.8)}{200}}; 0.8 + 1.96 \times \sqrt{\frac{0.8(1 - 0.8)}{200}}\right) = \left(0.745; 0.855\right)$$

