Задача 9.

По кругу сидят п человек. Каждый из них независимо от остальных бросает игральную кость. Пусть случайная величина X равна количеству людей, у которых у хотя бы одного соседа выпало то же число, что и у него самого. Найдите EX.

Решение.

Рассматриваем i-го человека в круге. С вероятностью $5/_6$ у i+1 человека выпало другое значение при броске, и с той же вероятностью у i-1. Так как кость бросается независимо, то с вероятностью $25/_{36}$ значения у i и i+1, а также у i и i-1 различны. Тогда событие, дополнительное к этому имеет вероятность $1-\frac{25}{36}=\frac{11}{36}$, то есть хотя бы одно совпадение с i-1 или с i+1. $X=X_1+\cdots+X_n \Rightarrow \mathbb{E}X_i=P(X_i=1)=\frac{11}{36} \Rightarrow \mathbb{E}X=\mathbb{E}X_1+\cdots+\mathbb{E}X_n=\frac{11n}{36}$.

Задача 10.

Пусть задана последовательность независимых одинаково распределенных случайных величин X_n , имеющих геометрическое распределение, m. е. $P(X_n=k)=p(1-p)^{k-1}$. Найдите распределение случайных величин $\tau=\min\{n\geq 1: X_n>1\}$ и X_{τ} , вычислите $\mathbb{E}\tau$, $\mathbb{E}X_{\tau}$.

Решение.

$$\tau = n: \ X_1 = \dots = X_{n-1} = 1, \qquad X_n \neq 1 \ \Rightarrow \ P(\tau = n) = P(X_1 = 1, \dots, X_{n-1} = 1, \quad X_n > 1) = p^{n-1} \cdot (1-p).$$

То есть τ имеет геометрическое распределение с параметром q = 1 - p.

Значит
$$\mathbb{E}\tau = \frac{1}{1-p}$$
.

Известно, что $X_{\tau} > 1$. Тогда найдем вероятность $X_{\tau} = k+1, k \geq 1$. Тогда при $\tau = 1, \tau = 2, ..., :$

$$P(X_{\tau} = k+1) = P(X_{\tau} = k+1, \tau = 1) + P(X_{\tau} = k+1, \tau = 2) + \dots = P(X_{1} = k+1) + P(X_{1} = 1, X_{2} = k+1) + P(X_{1} = 1, X_{2} = 1, X_{3} = k+1) + \dots = p \cdot (1-p)^{k} + p^{2} \cdot (1-p)^{k} + p^{3} \cdot (1-p)^{k} = \frac{p \cdot (1-p)^{k}}{(1-p)} = p \cdot (1-p)^{k-1}.$$

То есть $X_{\tau} = 1 + Y$. Y имеет геометрическое распрделение с параметром p.

Значит
$$\mathbb{E}X_{\tau} = 1 + \frac{1}{p}$$
.