Overview of RDF Data Model

Jose Emilio Labra Gayo

WESO Research group University of Oviedo, Spain

Eric Prud'hommeaux

World Wide Web Consortium MIT, Cambridge, MA, USA

Harold Solbrig

Mayo Clinic, USA

Iovka Boneva
LINKS, INRIA & CNRS
University of Lille, France

Short history of RDF

- Around 1997 PICS, Dublin core, Meta Content Framework
- 1997 1st Working draft https://www.w3.org/TR/WD-rdf-syntax-971002
 RDF/XML
- 1999 1st W3c Rec https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
 First applications RSS, EARL
- 2004 RDF Revised https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ Emergence of SPARQL, Turtle, Linked Data
- 2014 RDF 1.1 https://www.w3.org/TR/rdf11-concepts/

RDF Data Model

RDF Graph = set of triples

A triple = (subject, predicate, object)

Example:

```
http://example.org/alice

http://schema.org/knows

http://example.org/bob

subject predicate object
```

N-Triples representation

RDF Graph

RDF Graph = set of triples

RDF Graph

N-triples representation

Turtle Syntax

Some simplifications prefix declarations ; when triples share the subject , when triples share subject and object

```
prefix :
               <http://example.org/>
prefix schema: <http://schema.org/>
prefix dbo:
               <http://dbpedia.org/ontology/>
               <http://dbpedia.org/resource/>
prefix dbr:
:alice
        schema:birthPlace
                            dbr:Oviedo;
        schema: knows
                           :bob .
        schema: knows
: bob
                           :carol .
        schema:birthPlace
:carol
                           dbr:Oviedo ;
        schema: knows
                           :alice ,
                           :bob .
```

Literals

Objects can also be literals

Literals contain a lexical form and a datatype

Typical datatypes: XML Schema primitive datatypes

If not specified, a literal has type xsd:string

```
cobert
xsd:string
schema:name

:bob

foaf:age

25
xsd:integer
```

```
:bob schema:name "Robert" ;
  foaf:age 25 .
```



```
:bob schema:name "Robert"^^<xsd:string> ;
   foaf:age 25^^<xsd:integer> .
```

Blank nodes

Subjects and objects can also be Blank nodes
Blank nodes can have local identifiers


```
:bob foaf:knows _:1 .
_:1 foaf:age 23 .
```

or

Language tagged strings

String literals can be qualified by a language tag

They have datatype rdfs:langString


```
:spain rdfs:label "Spain"@en ;
    rdfs:label "España"@es .
```

...and that's all?

Yes, the RDF Data model is simple

Exercise

Define the following information in RDF

Try it: http://goo.gl/Ve66q1

Continue with RDF Validation tutorial

