Seminar 9

In this seminar you will study:

- Complex numbers
- Solving quadratic equations with negative discriminant ($\Delta < 0$)
- Algebra of complex numbers and their cartesian form: z = x + iy
- Properties of modulus
- Polar form of a complex number: $z = r(\cos \theta + i \sin \theta)$

Complex numbers

Complex number: Cartesian Form

$$z = x + iy$$

where $x, y \in \mathbb{R}$, and the imaginary number $i = \sqrt{-1} \implies i^2 = -1$.

Real part of z: Re(z) = x

Imaginary part of z: Im(z) = y

Conjugate of a Complex number: Cartesian Form

If $z=x+i\,y$ is a complex number then its conjugate is defined and denoted by: $\overline{z}=x-i\,y$

Real part of \overline{z} : $Re(\overline{z}) = x$

Imaginary part of \overline{z} : $\operatorname{Im}(\overline{z}) = -y$

Complex numbers

Example: Solve the quadratic equation $2x^2 - 10x + 17 = 0$.

Solution: On comparing $2x^2 - 10x + 17 = 0$ with $ax^2 + bx + c = 0$

$$a = 2$$
, $b = -10$, $c = 17$

$$\Delta = b^2 - 4ac = (-10)^2 - 4(2)(17) = -36 < 0 \implies \Delta = 36i^2$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-10) \pm \sqrt{36i^2}}{2(2)} = \frac{10 \pm 6i}{4} = \frac{5 \pm 3i}{2}$$

$$x = \left(\frac{5}{2}\right) + i\left(\frac{3}{2}\right) \quad \text{or} \quad x = \left(\frac{5}{2}\right) - i\left(\frac{3}{2}\right)$$

Solving quadratic equations with negative discriminant

Solve the quadratic equation:

$$4x^2 + 5x + 3 = 0$$

Answer:
$$x = \frac{-5 \pm i\sqrt{23}}{8}$$

3. Solve the quadratic equation:

$$9x^2 - 8x + 5 = 0$$

Answer: $x = \frac{4 \pm i\sqrt{29}}{9}$

Solve the quadratic equation:

$$3x^2 - 4x + 9 = 0$$

Answer:
$$x = \frac{2 \pm i\sqrt{23}}{3}$$

Solve the quadratic equation:

$$5x^2 + 7x + 4 = 0$$

Answer:
$$x = \frac{-7 \pm i\sqrt{31}}{10}$$

Simplification of expressions involving *i*

$$i = \sqrt{-1}$$
 $i^2 = -1$ $i^3 = -i$ $i^4 = -i^2 = 1$ $i^5 = i$

Example: Simplify: $(i^2 + i + 2)^{10} + (i^2 - i + 2)^{10}$.

Solution:
$$(i^2 + i + 2)^{10} + (i^2 - i + 2)^{10}$$
 $\therefore (1 + i)^{10} = [2i]^{\frac{1}{2}}$
 $= (-1 + i + 2)^{10} + (-1 - i + 2)^{10}$ Similarly,
 $= (1 + i)^{10} + (1 - i)^{10}$ $(1 - i)^{10} = [-2i]$
 $(1 + i)^{10} = [(1 + i)^2]^5$ $\therefore (i^2 + i + 2)^{10} = [1 + 2i + i^2]^5 = [1 + 2i - 1]^5$ $= 32i - 32i = 0$

Simplification of expressions involving i

$$i = \sqrt{-1}$$
 $i^2 = -1$ $i^3 = -i$ $i^4 = -i^2 = 1$ $i^5 = i$

1. Simplify: $(1+i^4)^6 + (i+i^5)^6$

2. Simplify: $(i^2 + i + 2)^3 + (i^2 - i + 2)^3$

Answer: 0

Answer: -4

3. Simplify: $(i^3 + i - 1)^4 - (i^3 + i^2 + i)^5$

4. Simplify: $(i^4 + i^3 + 2i)^3 + (i-1)^2$

Answer: 2

Answer: -2

Algebra of Complex numbers (Equality)

1. Find the constants p and q if the complex numbers $z_1 = (p+q) - 2i$ and $z_2 = 4 + iq$ are equal.

Answer: p = 6, q = -2

2. Find the constants p and q if the complex numbers $z_1 = (p - q) + 3i$ and $z_2 = 4 + i(p + q)$ are equal.

Answer: p = 3.5, q = -0.5

3. Find the constants p and q if the complex numbers $z_1 = p + 5i$ and $z_2 = (2 - p) + iq$ are equal.

Answer: p = 1, q = 5

4. Find the constants p and q if the complex numbers $z_1 = (p - 2q) - i$ and $z_2 = 8 + i(p + q)$ are equal.

Answer: p=2, q=-3

Algebra of Complex numbers

1. Given $z_1 = 3 + 5i$ and $z_2 = 4 - i$, find:

$$\bullet \ z_1 + z_2 = 7 + 4i$$

$$\bullet \ z_1 - z_2 = -1 + 6i$$

$$\bullet \ z_1 \cdot z_2 = 17 + 17 i$$

$$\bullet \ \frac{z_1}{z_2} = \frac{7}{17} + \frac{23i}{17}$$

2. Given $z_1 = 4 - 3i$ and $z_2 = 7 + 5i$, find:

$$\bullet \ z_1 + z_2 = 11 + 2i$$

$$\bullet \ z_1 - z_2 = -3 - 8i$$

$$\bullet \ z_1 \cdot z_2 = 43 - i$$

$$\bullet \ \frac{z_1}{z_2} = \frac{13}{74} - \frac{41 \, i}{74}$$

Algebra of Complex numbers

1. Given $z_1 = 3 + 5i$, $z_2 = 2 - i$, and $z_3 = 5 + 4i$, express $z = \frac{\overline{z_1} \cdot z_2}{z_3}$ in the Cartesian form a + ib, where $a, b \in \mathbb{R}$, and $i = \sqrt{-1}$.

Answer: $z = -\frac{47}{41} - \frac{69 i}{41}$

2. Given $z_1 = 4 - 3i$, $z_2 = 1 + 2i$, and $z_3 = 5 - i$, express $z = \frac{z_1 \cdot \overline{z_2}}{z_3}$ in the Cartesian form a + ib, where $a, b \in \mathbb{R}$, and $i = \sqrt{-1}$.

Answer: $z = \frac{1}{26} - \frac{57i}{26}$

Properties of Modulus

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
 $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ $|\overline{z}| = |z|$

1. Given
$$z_1 = 2 - 7i$$
 and $z_2 = 3 + 8i$,
find $|z_1 \cdot z_2|$ and $\left|\frac{z_1}{z_2}\right|$.

2. Given
$$z_1 = 7 + 3i$$
 and $z_2 = 2 - i$, find $|z_1 \cdot z_2|$ and $\left| \frac{z_1}{z_2} \right|$.

Answer:
$$|z_1 \cdot z_2| = \sqrt{3869}$$
, $\left| \frac{z_1}{z_2} \right| = \sqrt{\frac{53}{73}}$

Answer:
$$|z_1 \cdot z_2| = \sqrt{290}$$
, $\left| \frac{z_1}{z_2} \right| = \sqrt{\frac{58}{5}}$

3. Given
$$z_1 = 1 + 4i$$
 and $z_2 = -3 - 2i$, find $|z_1 \cdot z_2|$ and $\left| \frac{z_1}{z_2} \right|$.

4. Given
$$z_1 = 1 - 8i$$
 and $z_2 = -4 - i$, find $|z_1 \cdot z_2|$ and $\left| \frac{z_1}{z_2} \right|$.

Answer:
$$|z_1 \cdot z_2| = \sqrt{221}$$
, $\left| \frac{z_1}{z_2} \right| = \sqrt{\frac{17}{13}}$

Answer:
$$|z_1 \cdot z_2| = \sqrt{1105}$$
, $\left| \frac{z_1}{z_2} \right| = \sqrt{\frac{65}{17}}$

Properties of Modulus

$$\left| |z_1 \cdot z_2| = |z_1| \cdot |z_2| \qquad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \qquad |\overline{z}| = |z|$$

1. Given
$$z_1 = 4 - 7i$$
, $z_2 = 9 + 2i$, and $z_3 = 3 - 8i$, find $\left| \frac{\overline{z_1} \cdot z_2}{z_3} \right|$.

Answer:
$$\sqrt{\frac{5525}{73}}$$

3. Given
$$z_1 = 7 - i$$
, $z_2 = 9 + 2i$, and $z_3 = 5 - 2i$, find $\left| \frac{\overline{z_1 \cdot z_2}}{z_3} \right|$.

Answer:
$$\sqrt{\frac{4250}{29}}$$

2. Given
$$z_1 = 3 - 5i$$
, $z_2 = 2 + i$, and $z_3 = 9 - 5i$, find $\left| \frac{z_1 \cdot \overline{z_2}}{z_3} \right|$.

Answer:
$$\sqrt{\frac{85}{53}}$$

4. Given
$$z_1 = 6 + 3i$$
, $z_2 = 2 + 3i$, and $z_3 = 3 - i$, find $\left| \frac{z_1^2 \cdot z_3}{z_2} \right|$.

Answer:
$$45 \cdot \sqrt{\frac{10}{13}}$$

Polar form of Complex numbers

Cartesian form

$$z = x + i y$$

where $x, y \in \mathbb{R}$ and $i = \sqrt{-1}$.

Polar form

$$z = r(\cos\theta + i\sin\theta)$$

where r > 0 and $-\pi < \theta \le \pi$.

$$x < 0$$
 and $y > 0$

$$\theta = \pi - \tan^{-1} \left| \frac{y}{x} \right|$$

$$x > 0$$
 and $y > 0$

$$\theta = \tan^{-1} \left| \frac{y}{x} \right|$$

$$x < 0$$
 and $y < 0$

$$\theta = -\pi + \tan^{-1} \left| \frac{y}{x} \right|$$

$$x > 0$$
 and $y < 0$

$$\theta = -\tan^{-1}\left|\frac{y}{x}\right|$$

$$r = |z| = \sqrt{x^2 + y^2}$$

and $\theta = \arg(z)$ is

obtained from

Polar form of Complex numbers

Example: Express the complex number $z = 1 + \sqrt{3} i$ in the polar form $r(\cos \theta + i \sin \theta)$, where r > 0 and $\theta \in (-\pi, \pi]$.

$$\therefore x = 1 \quad \text{and} \quad y = \sqrt{3}$$

$$\Rightarrow r = \sqrt{x^2 + y^2} = 2$$

and
$$\theta = \tan^{-1} \left| \frac{\sqrt{3}}{1} \right|$$

$$= \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

$$\therefore z = 2 \left[\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right]$$

Polar form of a Complex number

1. Express the complex number

$$z = -2 - 3i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta < \pi$.

2. Express the complex number

$$z = 2 + 3i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta < \pi$.

 $\sqrt{13} \left[\cos(-2.1588) + i\sin(-2.1588)\right]$

Answer: $\sqrt{13} \left[\cos(0.9828) + i \sin(0.9828) \right]$

3. Express the complex number

$$z = 2 - 3i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta \le \pi$.

4. Express the complex number

$$z = -2 + 3i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta \le \pi$.

 $\sqrt{13} \left[\cos(-0.9828) + i\sin(-0.9828)\right]$ | Answer: $\sqrt{13} \left[\cos(2.1588) + i\sin(2.1588)\right]$

Polar form of a Complex number

1. Express the complex number

$$z = 7 - 9i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta < \pi$.

2. Express the complex number

$$z = -5 + 2i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta < \pi$.

 $\sqrt{130} \left[\cos(-0.9097) + i\sin(-0.9097)\right]$ Answer: $\sqrt{29} \left[\cos(2.7611) + i\sin(2.7611)\right]$

3. Express the complex number

$$z = 9 + 7i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta \le \pi$.

4. Express the complex number

$$z = -3 - 4i$$
 in polar form $z = r(\cos \theta + i \sin \theta)$
where $r > 0$ and $-\pi < \theta \le \pi$.

 $\sqrt{130} \left[\cos(0.6610) + i\sin(0.6610)\right]$ Answer:

Answer: $5 \left[\cos(-2.2143) + i\sin(-2.2143)\right]$

Algebraic operations with Polar form of Complex numbers

Given
$$z_1 = r_1(\cos \theta_1 + \sin \theta_1)$$
 and $z_2 = r_2(\cos \theta_2 + \sin \theta_2)$, $z_1 \cdot z_2 = r_1 \cdot r_2 \left[\cos(\theta_1 + \theta_2) + \sin(\theta_1 + \theta_2) \right]$.
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + \sin(\theta_1 - \theta_2) \right]$$

Note: In the above results, $(\theta_1 \pm \theta_2)$ only represent the

arguments of $z_1 \cdot z_2$ and $\frac{z_1}{z_2}$ respectively.

The principal argument can be obtained by using $(\theta_1 \pm \theta_2) \pm 2\pi$

Algebraic operations with Polar form of Complex numbers

Example: Given $z_1 = 1 + \sqrt{3} i$ and $z_2 = \sqrt{3} + i$. Find the polar form of

$$z_1 \cdot z_2$$
 and $\frac{z_1}{z_2}$.

Solution:
$$z_1 = 1 + \sqrt{3} i = 2 \left| \left(\frac{1}{2} \right) + i \left(\frac{\sqrt{3}}{2} \right) \right| = 2 \left[\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right]$$

$$z_2 = \sqrt{3} + i = 2\left[\left(\frac{\sqrt{3}}{2}\right) + i\left(\frac{1}{2}\right)\right] = 2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right]$$

$$z_1 \cdot z_2 = 2 \times 2 \left[\cos \left(\frac{\pi}{3} + \frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{3} + \frac{\pi}{6} \right) \right] = 4 \left[\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right]$$

$$\frac{Z_1}{Z_2} = \frac{2}{2} \left[\cos \left(\frac{\pi}{3} - \frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{3} - \frac{\pi}{6} \right) \right] = \cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right)$$

Algebraic operations with polar form of Complex numbers

1. Given $z_1 = -2$ and $z_2 = 1 + \sqrt{3}i$. Find the polar forms of $z_1 \cdot z_2$ and

$$\frac{z_1}{z_2} \cdot z_1 \cdot z_2 = 4 \left[\cos \left(-\frac{2\pi}{3} \right) + i \sin \left(-\frac{2\pi}{3} \right) \right]$$

$$\frac{z_1}{z_2} = \cos \left(\frac{2\pi}{3} \right) + i \sin \left(\frac{2\pi}{3} \right)$$

3. Given $z_1 = 1 + \sqrt{3} i$ and $z_2 = 1 - \sqrt{3} i$. Find the polar form of $z_1 \cdot z_2$.

Hence, verify that $z_1 \cdot z_2 = 4$.

$$z_1 \cdot z_2 = 4[\cos 0 + i \sin 0]$$

2. Given $z_1 = i$ and $z_2 = -2 + 2i$. Find the polar forms of $z_1 \cdot z_2$ and

$$\frac{z_1}{z_2} \cdot z_1 \cdot z_2 = 2\sqrt{2} \left[\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right) \right]$$

$$\frac{z_1}{z_2} = \frac{1}{2\sqrt{2}} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$$

4. Given $z_1 = i$ and $z_2 = 1 - \sqrt{3}i$ and $z_3 = \sqrt{3} + i$.

Find the polar form of $z_1 \cdot z_2$.

Hence, verify that $z_1 \cdot z_2 = z_3$.

$$z_1 \cdot z_2 = 2 \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right]$$

THANKS FOR YOUR ATTENTION