# **Ejercicios**

# Ejercicio 1

Dados los autómatas de la figura:



(a) Obtener un AFD para el lenguaje  $\overline{L(A_1)}$ 

## Solución:



(b) Obtener un AFD para el lenguaje  $\overline{L(A_3)}$ 

# Solución:



(c) Obtener un AFD para el lenguaje  $L(A_1) \cup L(A_2)$ 

## Solución:

La construcción para la operación da como resultado un AFD completo con todos los estados finales, por lo tanto equivalente al siguiente autómata:



(d) Obtener un AFD para el lenguaje  $L(A_1) \cap L(A_2)$ 

### Solución:

La construcción resulta en un AFD completo con ningún estado final, por lo tanto equivalente al siguiente autómata:



(e) Obtener un AFD para el lenguaje  $L(A_2) \cup L(A_3)$ 



(f) Obtener un AFD para el lenguaje  $L(A_2) \cap L(A_3)$ 



(g) Obtener un AFD para el lenguaje  ${\cal L}(A_2) - {\cal L}(A_3)$ 



(h) Obtener un autómata para el lenguaje  $(abba)^{-1}{\cal L}(A_4)$ 



(i) Obtener un autómata para el lenguaje  $(bbbab)^{-1}{\cal L}(A_5)$ 



# Ejercicio 2

Dados los siguientes autómatas:



y los homomorfismos:

$$\begin{aligned} h: & \{a,b,c\} \to \{0,1,2\}^* & g: \{0,1,2\} \to \{a,b,c\}^* & f: \{0,1,2\} \to \{a,b\}^* \\ & \begin{cases} h(a) = 00 \\ h(b) = 1 \\ h(c) = \lambda \end{cases} & \begin{cases} g(0) = ab \\ g(1) = bbb \\ g(2) = a \end{cases} & \begin{cases} f(0) = ab \\ f(1) = bab \\ f(2) = \lambda \end{cases} \end{aligned}$$

(a) Obtener un autómata para el lenguaje  $g^{-1}(L(A_1))$ 

## Solución:

Notese que el autómata  $A_1$  es no determinista y que la construcción vista en teoría considera un DFA.



(b) Obtener un autómata para el lenguaje  $f^{-1}(L(A_2))$ 

## Solución:

(c) Obtener un autómata para el lenguaje  $h^{-1}(f^{-1}(L(A_2)))$ 

### Solución:

Partimos del autómata que reconoce  $f^{-1}(L(A_2))$  (apartado b de este ejercicio)

el siguiente autómata acepta  $h^{-1}(f^{-1}(L(A_2)))$ :



### Ejercicio 3

Obtenga un AFD mínimo equivalente a cada uno de los siguientes autómatas:

(a)



## Solución:

La primera partición de estados distingue entre estados finales y no finales:

$$\pi_0 = \{\{q_1, q_2, q_5, q_7\}, \{q_3, q_4, q_6\}\}$$

Teniendo en cuenta esta primera partición:

Para cada uno de los bloques de la partición, se observa que el comportamiento de todos los estados es el mismo y por lo tanto la partición no se refina. El autómata mínimo equivalente es el siguiente:



(b)

**ETSINF** 



# Solución:

La primera partición de estados distingue entre estados finales y no finales:

$$\pi_0 = \{\{q_1, q_2, q_4, q_5, q_7\}, \{q_3, q_6\}\}\$$

Teniendo en cuenta esta primera partición:

|       |       | a                           | b             |
|-------|-------|-----------------------------|---------------|
|       | $q_1$ | $q_2 \in B_1$ $q_5 \in B_1$ | $q_3 \in B_3$ |
| $B_1$ | $q_2$ | $q_5 \in B_1$               | $q_4 \in B_1$ |
|       | $q_4$ | $B_1$                       | $B_3$         |
|       | $q_5$ | $B_1$                       | $B_3$         |
|       | $q_7$ | $B_1$                       | $B_3$         |
| $B_3$ | $q_3$ | $B_1$                       | $B_3$         |
|       | $q_6$ | $B_1$                       | $B_3$         |

Puede verse que el estado  $q_2$  se comporta de forma diferente al resto de estados en su bloque, por lo tanto la partición se refina quedando:

$$\pi_1 = \{\{q_1, q_4, q_5, q_7\}, \{q_2\}, \{q_3, q_6\}\}\$$

$$B_{1} \begin{vmatrix} a & b \\ q_{1} & q_{2} \in B_{2} & q_{3} \in B_{3} \\ q_{4} & q_{2} \in B_{2} & q_{6} \in B_{3} \\ q_{5} & B_{2} & B_{3} \\ q_{7} & B_{1} & B_{3} \end{vmatrix}$$

$$B_{2} \begin{vmatrix} q_{2} & -- & -- \\ q_{3} & B_{2} & B_{3} \\ q_{6} & B_{1} & B_{3} \end{vmatrix}$$

Las entradas correspondientes al bloque  $B_2$  de la partición no son necesarias porque este bloque contiene un único estado, y por lo tanto no va a refinarse. En esta iteración, el estado  $q_7$  se comporta de forma diferente al resto de estados en su bloque, y lo mismo sucede con el estado  $q_3$ . El refinamiento de la partición queda:

$$\pi_2 = \{\{q_1, q_4, q_5\}, \{q_2\}, \{q_3\}, \{q_6\}, \{q_7\}\}$$

En esta iteración es el estado  $q_4$  el que se distingue. El refinamiento de la partición queda:

$$\pi_3 = \{\{q_1, q_5\}, \{q_2\}, \{q_3\}, \{q_4\}, \{q_6\}, \{q_7\}\}\}$$

En esta iteración la partición no se refina. El autómata mínimo equivalente es el siguiente:



(c)



### Solución:

La primera partición de estados distingue entre estados finales y no finales:

$$\pi_0 = \{\{q_1, q_3, q_4, q_5\}, \{q_2, q_6\}\}\$$

Teniendo en cuenta esta primera partición:

$$\begin{array}{c|ccccc}
 & a & b \\
\hline
q_1 & B_2 & B_1 \\
 & q_3 & B_1 & B_1 \\
q_4 & B_1 & B_1 \\
q_5 & B_2 & B_1 \\
B_2 & q_6 & B_1 & B_1
\end{array}$$

Puede verse que, dentro del mismo bloque, los estados  $q_1$  y  $q_5$  se comportan de forma diferente a los estados  $q_3$  y  $q_4$ , por lo que la partición queda:

$$\pi_1 = \{\{q_1, q_5\}, \{q_3, q_4\}, \{q_2, q_6\}\}\$$

$$B_{1} \begin{array}{c|ccc} & a & b \\ \hline q_{1} & B_{2} & B_{3} \\ q_{5} & B_{2} & B_{1} \\ B_{2} & q_{2} & B_{1} & B_{3} \\ q_{6} & B_{3} & B_{3} \\ B_{3} & q_{4} & B_{1} & B_{1} \\ \end{array}$$

Todos los bloques se refinan, resultando en la partición:

$$\pi_1 = \{\{q_1\}, \{q_2\}, \{q_3\}, \{q_4\}, \{q_5\}, \{q_6\}\}\$$

que no puede refinarse más. Por lo tanto el autómata ya era mínimo.

(d)



# Solución:

El autómata no es completo, después de completarlo queda:



La primera partición de estados distingue entre estados finales y no finales:

$$\pi_0 = \{\{q_1, q_2, q_3, q_4, q_6\}, \{q_5\}\}\$$

Teniendo en cuenta esta primera partición:

Creamos un bloque con el estado  $q_2$  con lo que la partición queda:

$$\pi_1 = \{\{q_1, q_3, q_4, q_6\}, \{q_2\}, \{q_5\}\}$$

$$B_{1} = \begin{bmatrix} a & b \\ q_{1} & B_{2} & B_{1} \\ q_{3} & B_{2} & B_{1} \\ q_{4} & B_{2} & B_{1} \\ q_{6} & B_{1} & B_{1} \end{bmatrix}$$

$$B_{2} = \begin{bmatrix} q_{2} & --- & --- \\ q_{5} & q_{5} & --- & --- \end{bmatrix}$$

El estado  $q_6$  y la partición queda:

$$\pi_2 = \{\{q_1, q_3, q_4\}, \{q_2\}, \{q_5\}, \{q_6\}\}$$

En esta iteración la partición no se refina. El autómata mínimo equivalente es el siguiente:

