CLAIMS

1	1. A printer comprising:
2	at least one laser driver;
3	a print control engine; and
4	a video controller, bidirectionally connected to the print control engine and the at
5	least one laser driver via a system bus, having a video block that includes,
6	a direct memory access (DMA) controller,
7	a video processor,
8	a first data bus and control bus electrically connecting the DMA controller
9	to the video processor,
10	a video signal generator, connected to the video processor,
11	a second data bus and control bus connecting the video processor to the
12	video signal generator,
13	a frequency synthesizer connected to the video signal generator,
14	configuration registers bidirectionally connected to the DMA controller,
15	video processor, the video signal generator and the frequency synthesizer, and
16	a data bus and control bus electrically connecting the DMA controller and
17	the configuration registers to the system bus.
1	2. A printer, as defined in claim 1, the data bus and control bus including:
2	a third data bus and control bus electrically connecting the configuration registers
3	to the system bus; and
4	a fourth data bus and control bus, electrically connecting the DMA controller to
5	the system bus.
1	3. A printer, as defined in claim 1, wherein the video controller generates one
2	pass of the one laser driver, the image generated being monochromatic.
1	4. A printer, as defined in claim 1, wherein the video controller generates
2	multiple passes of the laser driver, the image generated containing four color planes

1	5. A printer, as defined in claim 1, further comprising three color laser drivers,
2	each connected to the video controller which has four video blocks, the image generated
3	being an in-line color image.
1	6. A printer, as defined in claim 1, wherein:
2	the video controller further includes a second video block; and
3	a second laser driver connected to the video controller.
1	7. A printer, as defined in claim 6, wherein the video controller controls sharing
2	the pass of the two laser drivers, the image generated being monochromatic.
1	8. A printer, as defined in claim 6, wherein the video controller generates
2	multiple passes for each laser driver, the image generated containing four color planes.
1	9. A printer, as defined in claim 6, further comprising seven laser drivers, each
2	connected to the video controller which has eight video blocks, the image generated
3	being in-line color image.
1	10. A scanning control circuit comprising:
2	a direct memory access (DMA) controller;
3	a video processor;
4	a first data bus and control bus electrically connecting the DMA controller to the
5	video processor;
6	a video signal generator, connected to the video processor;
7	a second data bus and control bus connecting the video processor to the video
8	signal generator;
9	a frequency synthesizer connected to the video signal generator;
10	configuration registers bidirectionally connected to the DMA controller, video
11	processor, the video signal generator and the frequency synthesizer; and
12	a data bus and control bus electrically connecting the DMA controller and the
13	configuration registers to a system bus.

1	11. A scanning control circuit, as defined in claim 10, the data bus and control
2	bus including:
3	a third data bus and control bus electrically connecting the configuration registers
4	to the system bus; and
5	a fourth data bus and control bus, electrically connecting the DMA controller to
6	the system bus.
7	
1	12. A method for geomeing a memory commission of
2	12. A method for scanning a memory comprising:
	determining a vertical direction for scanning the memory;
3	determining a horizontal direction for scanning the memory;
4	initializing the DMA address;
5	reading the data line;
6	updating the DMA address; and
7	repeating the steps of reading and updating.
1	13. A method, as defined in claim 12, wherein initializing comprises:
2	when the memory scan is top-to-bottom and left-to-right, the DMA Address is
3	initialized to the Start Address;
4	when the memory scan is top-to-bottom and right-to-left, the DMA Address is
5	initialized to the Start Address + data_per_line -1;
6	when the memory scan is bottom-to-top and left-to-right, the DMA Address is
7	initialized to the Start Address -data_per_line*(linecount-1); and
8	when the memory scan is bottom-to-top and right-to-left, the DMA Address is
9	initialized to the Start Address + (data_per_line*linecount) -1.
1	14. A method, as defined in claim 12, wherein updating comprises:
2	when the memory scan is top-to-bottom and left-to-right, the DMA Address is
3	incremented to the DMA Address + (skips*data_per_line);
4	when the memory scan is top-to-bottom and right-to-left, the DMA Address is
5	incremented to the DMA Address + ((2+skips) * data_per_line);

6	when the memory scan is bottom-to-top and left-to-right, the DMA Address is
7	incremented to the DMA Address - ((2+skips)*data_per_line); and
8	when the memory scan is bottom-to-top and right-to-left, the DMA Address is
9	incremented to the DMA Address - (skips*data_per_line).
1	15. A method, as defined in claim 12, wherein reading the data line includes,
2	setting a repeat counter to the number of desired repeats,
3	reading data at the DMA address,
4	horizontally updating the DMA address according to the direction of the
5	horizontal read; and
6	when there is more data to be read, setting the DMA address to the line
7	start address;
8	when there is more data to be read, repeating the steps of reading and
9	horizontally updating.
1	16. A method, as defined in claim 15, wherein horizontally updating comprises
2	incrementing the DMA address when the read is from left to right.
1	17. A method, as defined in claim 15, wherein horizontally updating comprises
2	decrementing the DMA address when the read is from right to left.