Logout

My Workspace

CS-6475-001

TESTS & QUIZZES

Engineering

Home
Announcements
Resources
Assignments
Gradebook
Email Archive
Roster
Site Info
Tests & Quizzes
Piazza 6475
Udacity login
Help

CS 6475 Final Exam (Fall 2017)

Part 1 of 33 - Prelim

Question 1 of 36

I certify that

- A. I am talking this exam solely and entirely on my own, without any help from
- B. I am aware of the Georgia Tech Honor Code (link) and I affirm to here, as I
- C. I am the student who is enrolled in this class
- D. I will NOT print or save any part of this exam, for any purpose whatsoever.

Feedback: Thanks.

Part 2 of 33 - 1

Question 2 of 36

[CP02a3] Consider an RGB Image where each channel is 8 bits. The resolution of

- A.52488 Kilobytes
- B.8192 Megabytes
- C.4299816960 bits
- D.69984 Kilo Bytes

Feedback: REMEMBER

W x H x BitsPerPixelPerChannel x Number of Channels / 8192

How many channels in an RGB image?

8 BitsPerPixel

8192 is the number of bits in a kilobyte. (Confirm this using your Interet Search S

Part 3 of 33 - 2

Question 3 of 36

[CP02b2] Which of the following is an accurate description of an Image Histogram

- A. This is less useful when using a camera raw image format, as the dynamic
- B. By looking at the histogram for a specific image, one is able to judge the er
- C. Can be separate for each channel.
- D. Photographers can use them as an aid to show the distribution of intensity
- E. It plots the number of pixels at each intensity value.
- F. Should not ever be applied to subregions of images separately.

G. It plots the number of intensities for each pixel value.

Feedback: Please review the material in lecture 02-1 and 03-4. Also see the Wik

Part 4 of 33 - 3

Question 4 of 36

[CP02c1] The attached image is the equation of the blend mode "Overlay." Which

$$f_{blend}(a,b) =$$

- A. It combines the "Lighten" and the "Darken" blend modes depending on the
- B. It is the reason we see the green effect in the lecture videos.
- C. The parts of the top layer where the base layer is light become brighter, an
- D. It models the Dodge blend mode, well-known by dark room photographers.
- E. It combines the "Multiply" and the "Screen" blend modes depending on the

Feedback: Review Lecture "Digital Images" or Lecture 02-3

Part 5 of 33 - 5

Question 5 of 36

[CP02d2] Given Image₁, which is simply a background, and Image₂, which is exact

By "separates", we mean creates an image with white pixels where the subject is

- A.
 - 1. Multiply Image₂ by Image_{1:} (Out = Image₂ X Image₁)
 - 2. Scale output to range 0-255
 - 3. Convert output image to binary, with a threshold: Mask = Binary(Out, thres
- О В.
 - 1. Add Image₂ to Image₁: (Out = Image₂ + Image₁)
 - 2. Scale output to range 0-255
 - 3. Convert output image to binary, with a threshold: Mask = Binary (Out, thre
- C.
 - 1. Subtract Image₂ from Image_{1:} (Out = Image₂ Image₁)
 - 2. Convert output image to binary, with a threshold: Mask = Binary (Out, thres
- D.

T-Square: CS-6475-O01: Tests & Quizzes

- -

- 1. Subtract Image₂ from Image₁: (Out = Image₂ Image₁)
- 2. Multiply output image by Image₂, Mask = Out X Image₂

Feedback: Lecture "Digital Images" and Lecture 02-2 explains this.

Part 6 of 33 - 2d1

Question 6 of 36

[CP02d11] Arithmetic overflow and underflow can be avoided by increasing the d

- True
- False

Feedback: Correct! Changing precision before calculations can address overflow

Part 7 of 33 - 6

Question 7 of 36

[CP02e1] Convolution is ... (select the correct statements)

- A. Commutative: F * G = G * F
- B. a measure of similarity of two waveforms
- C. an operation that calculates the area of overlap between two functions
- D. a sliding dot product or sliding inner-product
- E. Associative: (F * G) * H = F * (G * H)
- F. equivalent to cross-correlation when the kernel is symmetric in both x and y

Feedback: Lectures 02-5/6

Part 8 of 33 - 6

Question 8 of 36

[CP02f1] See the attached equation. Select the choices below which are correct,

$$G[i,j] = \frac{1}{2k}$$

A. This is the equation for cross-correlation with uniform weights over a neight

B. This is the general form of an equation for convolution over a neighborhood

C. This equation only applies Gaussian kernels, as weights are distributed acr

D. This is the equation for convolution with uniform weights over a neighborhood

E. This equation only applies to square or average smoothing, as weights are

Feedback: See Lectures 02-4/5/6

Part 9 of 33 - 9

Question 9 of 36

[CP03a1] A photograph from a pinhole camera (select statements that are co

A. Usually suffers from low light due to the size of the opening / aperture. Fee

B. Usually suffers from geometric and diffraction blur.

Fee

C. Ideally, has a finite depth of field.

D. Ideally, has virtually no distortion. Straight lines remain straight.

Fee

Feedback: See Lecture "Cameras" or Lecture 03-1 on Udacity

Part 10 of 33 - 10

Question 10 of 36

[CP3b1] Consider the following statements about aperture and select the correct

$$Area = \pi \left(\frac{f}{2\Lambda}\right)$$

A. Doubling N reduces Area by 4 times, and therefore reduces light by 4 times

B. The aperture number, the f-number (N) usually marked on all lenses, is des

C. A low f-number (N) on a lens usually means it has a BIG lens. This is espe-800mm lens of f-number 4, will have 100mm aperture radius

D. The amount of light that falls on a sensor or film in a camera is proportiona is measured in amount of light on a unit area of sensor per second.

E. The diameter of the opening is simply f/2N (from the above equation of Are

Feedback: Lecture 03-3

Part 11 of 33 - 11

Question 11 of 36

[CP03c1] Select the the following correct statements about lenses.

- A. The Combined Focal length of a combination of lenses can vary and deper
- B. Focal length is a variable parameter for a lens and can be changed.
- ☑ C. A focused image for a lens forms only on a screen placed focal length distage.
- D. The field of view (FOV) of a lens depends on Focal Length and Sensor Size

Part 12 of 33 - 12

Question 12 of 36

[CP04a12] Factors to consider for optimal window size for image blending are ...

- A. Image frequency content should occupy two pyramid levels
- Feedt
- B. Largest frequency ≤ 2 × size of smallest frequency
- Feedt
- C. To avoid seams: Window = size of largest prominent "feature"
- Feedt
- Ø D. To avoid ghosting: Window ≤ 2× size of smallest prominent "feature" Feedt

Feedback: Lecture 04-2.

Part 13 of 33 - 13

Question 13 of 36

[CP04a21] Choose the statement that are CORRECT about a Laplacian Pyramid

- A. A Laplacian is simply computed using
- $L_k = REDUCE(g_{k-1})$
- B. Each Laplacian Image in the Pyramid is a combination of two consecutive I
- C. A Laplacian Pyramid is a series of "error" images, L₀, L₁, L₂, ...
- D. Each Laplacian is computed using
- $L_l = g_l EXPAND(g_{l+1})$

Feedback: Please review Lecture "Image Processing" or Lecture 04-3 on Udacity

Part 14 of 33 - 13

Question 14 of 36

[CP04a31] Which of the following statements are TRUE for using Cuts vs. Blending

- A. Using Cuts is better when there are too many objects in the image and regi
- B. Seam Carving is not similar in terms of computation to Cuts. Cuts are used completely different.

2017	T-Square : CS-6475-O01 : Tests & Quizzes
	C. Cuts are like median filtering, as they give you an actual pixel value, where
	D. Using Cuts is better when there is motion that causes ghosting, as the same
	Feedback: See Lecture 04-4
	Part 15 of 33 - 4a4
	Question 15 of 36
	[CP04a43] Subsampling in the spatial domain is essentially the same as truncating
	True
	False
	Feedback: Review assignment 6 and lecture 04-03
	Question 16 of 36
	The layers below the peak of a Laplacian pyramid approximate a collection of ba
	True
	False
	Feedback: Correct! Blurring is a low-pass filter, so the difference between layer
	Part 16 of 33 - 4a5
	Question 17 of 36
	In Laplacian pyramid blending, pixel intensity $G(i, j)$ near the image borders is af
	A.G(i, j) = k (an arbitrary constant value)
	B.G(-i, j) = G(i-1, j)
	C.G(-i, j) = G(i, j)
	D.G(-i, j) = $2G(0, j) - G(i, j)$
	E.None of the Above
	Feedback: Correct!
	Part 17 of 33 - 15
	Question 18 of 36 [CP04b11] Please select from the following characteristics of Good Features.
	A. Dominant Give a strong response to x-correlation
	B. Locality Relatively small area of the image; robust to clutter and occlusion
	C. Repeatability/Precision Find the same feature despite geometric and pho
	D. Saliency/Matchability Distinctive description

E. Variability - Variety of metrics that define a feature.

Feedback: Review Lecture "Corners and Features" or Lecture 04-5 on Udacity

Part 18 of 33 - 16

Question 19 of 36

[CP04b21] Which of the following is CORRECT about the Harris Detector?

- A. Harris detectors are NOT Invariant to Image Scale changes. One needs to
- B. Harris detectors are Invariant to Rotation.
- C. Harris detectors are NOT Invariant to Image Scale changes. One needs to
- D. Harris detectors are Invariant to Image Scale changes
- E. Harris detectors are Invariant to Image Intensity Variations.
- F. Harris detectors are Invariant to Translation.

Feedback: See Lecture "Corners and Features" or Lecture 04-6 on Udacity

Part 19 of 33 - 19

Question 20 of 36

[CP05b21] Determine which of the following statements are CORRECT about a Ste

- A. The Epipolar constraint for computing disparity makes searching for corres
- B. A simple stereo system used to compute 3D scene geometry assumes that
- C. The disparity computed from a stereo pair is usually larger for closer surfact
- D. The Epipolar constraint does not provide any computational efficiency in the

Feedback: See Lecture "Stereo Vision" or Lecture 05-5 on Udacity.

Part 20 of 33 - 5b3

Question 21 of 36

[CP05b31] Planar projection can NOT be used to make panoramas from images ta

- True
- False

Feedback: Correct!

Part 21 of 33 - 5b4

Question 22 of 36

[CP05b41] Planar projection panoramas use a parametric motion model consisting

- A.Simple 2D transforms
- B.Perspective transforms

T-Square : CS-6475-O01 : Tests & Quizzes
C.Nonlinear surface mappings
D.All of the Above
E.None of the Above

Feedback: Correct!

Part 22 of 33 - 22

Question 23 of 36 [CP06c11] Which of the following statements is true about the Video Stabilization A. Cropping is used to crop the view, which avoids problems with a rolling shu B. Cropping is used to crop the view, which avoids dealing with hole filling. Wh C. Rolling shutter adds unwanted non-rigid motion in the video due to a delay D. It is a 2D camera path stabilization method, where only estimates of 2D mc E. It is a 2D camera path stabilization method, where only estimates of 2D mc F. It is a 3D camera path stabilization method, where a 3D path is computed a G. Rolling shutter can be removed by adding median filtering in time. Feedback: See Lecture 06-3

Question 24 of 36

[CP05a11] Which of the follow are true statements about Affine Transformation?

A. The leftmost two columns of the transformation matrix need to be computed

B. 2 Point Correspondences Needed

C. 6 Degrees of Freedom

D. 3 Point Correspondences Needed for computation.

E. 4 Degrees of Freedom

Feedback: See Lecture "Image Transformations and Warping" or Lecture 05-1 on

F. The top two rows of the transformation matrix need to be computed to mode

Part 24 of 33 - 18

Question 25 of 36

[CP05b11] Camera Calibration: Select the statements that are correct about Cam

A. In Radiometric/Photometric Camera Calibration, the goal is to extract how

B. In lieu of accurate radiometric camera calibration, we can get good estimate camera, and using data/curve fitting to estimate the response curve of a camera for

C. To forgo accurate modeling of geometric camera calibration, we can get go solve for an overdetermined linear system.

T-Square : CS-6475-O01 : Tests & Quizzes	
D. In Radiometric/Photometric Camera Calibration, the goal is extract how sell	
☐ E. In Geometric Camera Calibration, we only need to extract the location and	
F. In Geometric Camera Calibration, the goal is to extract extrinsic (location, o captured in photographs.	
G. Homography calculation in support of Camera Calibration can work well wi	
Feedback: See Lecture "Panoramas" and "Image Processing and Warping" OR Lect	
Part 25 of 33 - 5b5	
Question 26 of 36 [CP05b51] How many terms of the response curve g and the irradiance E does the	
A.255	
○ B.256	
C.NP + Zmax - Zmin + 1	
○ D.N(P-1) + Zmax - Zmin	
E.None of the Above	
Feedback: Review "Recovering High Dynamic Range Radiance Maps from Photog	
Part 26 of 33 - 5b6	
Question 27 of 36 Digital camera sensors typically respond linearly to irradiance E.	
True	
False	
Feedback: Correct! Nonlinearities in the response curve (such as those that occi	
Part 27 of 33 - 8	
Question 28 of 36 [CP02g1] Image Gradients (select the correct statements)	
☐ A. Gradient vectors point in the direction of most rapid increase in the intensity	
B. Gradient Magnitude at any point in the image provides edge strength.	
\Box C. Image Gradient is a change in the image function in x , y and t	
D. Image Gradient is the change in the image function in x and y	
E. An edge in an image is usually aligned with the Gradient direction (rememb	
Foodbooks Coo locatives "Croupe of Divole" and Locative 02.6 on Udocity	

Feedback: See lecture "Groups of Pixels" and Lecture 02-6 on Udacity

Question 29 of 36

[CP6a1] What is the resolution of a video clip that has a frame rate of 15 fps, a w

- A.262,144 pixels
- B.12,000 pixels
- C.409,600 pixels
- D.6,144,000 pixels

Part 29 of 33 - 21

Question 30 of 36

[CP6b1] Select the statements from the following which are correct for the conce

- A. Video textures only work well when there is repetition in the video, hence the
- B. Video textures require the entire image to compute similarity, and it is not p
- C. Crossfading, blending and cutting can be used with video textures to create
- D. The primary concept supporting Video Texture analysis is that similar object
- E. Only L1 and L2 similarity metrics can be used to generate video textures.

Feedback: See lecture 06-02

Part 30 of 33 - 23

Question 31 of 36

[CP7b11] Which of the following statements are correct about Epsilon or Coded P

- A. Coded photography uses a "code" to encode variations in an image (or vide
- B. Epsilon Photography assumes that multiple images are taken and then con
- C. Low light and image resolution are not artifacts of adding coding to aperture
- D. Coded Photography is akin to Bayer Patterns. It encodes a code with an in
- E. A coded aperture essentially changes the aperture to provide variations in
- F. Coded Photography cannot be used to take a 'standard' picture

Part 31 of 33 - 24

Question 32 of 36

[CP7b21] Which of the following statements are CORRECT about a Light field Can

- A. Typical examples of light-field cameras use an array of cameras to capture
- B. A plenoptic or light field camera attempts to capture a light field, rather than
- C. A hologram does not have anything to do with a Light Field.
- D. One can build a light field camera, capable of depth from defocus estimatic

Feedback: See 07-2

Part 32 of 33 - 25

Question 33 of 36

[84] Which of the following applies the "Seam Carving" approach from Module 8-4

- A. A key insight is use of an Image Energy Measure and removing seams with
- B. Image retargeting to new aspect ratios is achieved by repeatedly carving or
- C. A key insight is the use of an Image Energy Measure and removing seams
- D. Seam carving strikes the best balance between the demands for energy pr

Feedback: See module 08-4

Question 34 of 36

- [85] Consider the paper on "Poisson Image Editing" in module 08-4. Which of the 1
- A. Using this approach, the color, texture, or illumination of an object, for the till
- B. A system is introduced to edit an image via a sparse set of its edge elemen
- C. Spots and blemishes are removed from fur images by separating out the bibrightness at the selection boundary.
- D. The mathematical tool at the heart of the approach is the Poisson partial differential equation with Dirichlet boundary conditions which speci

Feedback: See module 08-5

Question 35 of 36

- [81] Select the statements that are correct for the "Interactive Photomontage" ar
- A. It works on a stack of images, along the lines of Epsilon Photography
- B. Cuts are used to merge and generate a new image
- C. Gradient-domain image fusion in the color space is used to align the colors
- D. Alignment of images if NOT required for the processing of images.
- E. Images are blended to generate a new image

Feedback: See module 08-1

Part 33 of 33 - 26

Question 36 of 36

[Closing] Reminder and recertification on closing:

I certify that

- A. I took this exam solely and entirely on my own, without any help from any c
- ☑ B. I am aware of the Georgia Tech Honor Code (link) and I affirm it here as I ta

T-Square: CS-6475-O01: Tests & Quizzes

C. I am the student who is enrolled in this class.

D. I will not copy or print this exam for any reason!

Feedback: Thanks.

Copyright 2003-2011 The Sakai Foundation. All rights reserved. Portions of Sakai are copyrighted by other parties as described in the Acknowledgments screen. T-Square - gatech-sakai-2-9-x-2 - Sakai 2.8.x (Kernel 1.2.5)- Server pinch17.lms.gatech.edu