!

✓ In a band structure of a substance, the highest occupied energy level in 2/2 valence band is called as and its energy is*
Fermi level; Band energy
Lower level; Fermi energy
Fermi level; Fermi energy
None of the above
✓ When a solid contains 18 atomic orbitals, predict the number of molecular orbitals along with presence of bonding and antibonding molecular orbitals *
8 molecular orbitals; 4 bonding and 4 antibonding molecular orbitals
18 molecular orbitals; 8 bonding, 1 non-bonding and 9 antibonding molecular orbitals
18 molecular orbitals; 9 bonding and 9 antibonding molecular orbitals
9 molecular orbitals; 4 bonding, 1 non-bonding and 4 antibonding molecular orbitals
✓ With respect to band theory of substances, the difference in their electrical conductivity is predicted by*
their band structure

!

 the difference in band gap energy among the substances All of the above Metals exhibit high electrical conductivity due to * 	✓
	~
X Metals exhibit high electrical conductivity due to *	
	/2
presence of zero band gap energy	×
absence of free electrons	
O lowered valence band energy	
increase in conduction band energy	
No correct answers	
✓ The valence band of the sodium is constituted by the atomic orbitals of sodium *	2/2
○ 3d	
○ 3p	
	/
3s	
3s2s	
	2/2
O 2s	2/2

discontinuity of 3s and 3p orbitals

	ovelaping of 3s and 3p orbitals	•
×	Give the nature of Carbon atom in the diamond crystal structure *	/2
	sp3 hybridized orbitals	×
	sp2 hybridized orbitals	
	spd2 hybridized orbitals	
	None of the above	
No coi	rrect answers	
. / . 7	The trend in electrical conductivity of sodium, magnesium and aluminiu	ım2/3
	The trend in electrical conductivity of sodium, magnesium and aluminiushows *	ım2/2
S		ım2/2
	shows *	um2/2
	decrease in electrical conductivity	ım2/2
	decrease in electrical conductivity increase in electrical conductivity	um2/2
	decrease in electrical conductivity increase in electrical conductivity same electrical conductivity	✓
SSOXH	decrease in electrical conductivity increase in electrical conductivity same electrical conductivity equal electrical conductivity	✓

4 bonding and 4 antibonding orbitals

No correct answers

This form was created inside of PSG College of Technology.

Google Forms