#### Functional Polynomial Algorithms

Thomas Meek

May 13, 2023

#### Linguistics

#### Linguistics

Declarative sentences

#### Linguistics

- Declarative sentences
- Imperative sentences

#### Linguistics

- Declarative sentences
- Imperative sentences
- Interrogative sentences

Declarative sentences

#### Declarative sentences

Steve has twelve eggs.

#### Declarative sentences

- Steve has twelve eggs.
- $f(x) = x^2$ .

Imperative sentences

#### Imperative sentences

Make me an omelette.

#### Imperative sentences

- Make me an omelette.
- print("Hello world.")

Interrogative sentences

#### Interrogative sentences

• Where are my eggs?

#### Interrogative sentences

- Where are my eggs?
- Why is this guy talking about linguistics in a thesis defense for a mathematics degree?

#### Haskell

Procedural



- Procedural
- Object-oriented

- Procedural
- Object-oriented
- Functional

- Procedural ← Imperative
- ullet Object-oriented  $\leftarrow$  Imperative
- Functional

- Procedural ← Imperative
- $\bullet \ \, \mathsf{Object}\text{-}\mathsf{oriented} \ \, \leftarrow \ \, \mathsf{Imperative} \\$
- Functional ← Declarative

- Procedural ← Imperative (C)
- Object-oriented ← Imperative
- Functional ← Declarative

- Procedural  $\leftarrow$  Imperative (C)
- Object-oriented ← Imperative (Java)
- Functional ← Declarative

- Procedural ← Imperative (C)
- Object-oriented ← Imperative (Java)
- Functional ← Declarative (Haskell)

- Procedural ← Imperative (C)
- Object-oriented ← Imperative (Java)
- Functional ← Declarative (Haskell)

Math

- Procedural ← Imperative (C)
- Object-oriented ← Imperative (Java)
- Functional ← Declarative (Haskell)
- Math ← Declarative

**Polynomials** 

$$(x+a)^2$$

$$(x+a)^2 =_{\mathbb{F}_2} x^2 + a^2$$

#### **Definition**

A **monomial** in  $x_1, \ldots, x_n$  is a product of the form

$$x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot \cdot \cdot x_n^{\alpha_n},$$

where all of the exponents  $\alpha_1, \ldots, \alpha_n$  are nonnegative integers.

#### Definition

Let  $\alpha = (\alpha_1, \dots, \alpha_n)$  be an *n*-tuple of nonnegative integers. Then we set

$$x^{\alpha} = x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_n^{\alpha_n}.$$

#### Definition

A **polynomial** f in the variables  $x_1, \ldots, x_n$  over a field k is a finite linear combination (with coefficients in k) of monomials in  $x_1, \ldots, x_n$ . We will write a polynomial f in the form

$$f = \sum_{\alpha} a_{\alpha} x^{\alpha}, \quad a_{\alpha} \in k,$$

where the sum is over a finite number of n-tuples  $\alpha = (\alpha_1, \dots, \alpha_n)$ . The set of all polynomials in  $x_1, \dots, x_n$  with coefficients in k is denoted  $k[x_1, \dots, x_n]$ .

#### Definition

Let 
$$f = \sum_{\alpha} a_{\alpha} x^{\alpha}$$
 be a polynomial in  $k[x_1, \dots, x_n]$ .

#### Definition

Let  $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$  be a polynomial in  $k[x_1, \dots, x_n]$ .

• We call  $a_{\alpha}$  the **coefficient** of the monomial  $x^{\alpha}$ .

#### Definition

Let  $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$  be a polynomial in  $k[x_1, \dots, x_n]$ .

- We call  $a_{\alpha}$  the **coefficient** of the monomial  $x^{\alpha}$ .
- If  $a_{\alpha} \neq 0$ , then we call  $a_{\alpha}x^{\alpha}$  a **term** of f.

#### **Definition**

Let  $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$  be a polynomial in  $k[x_1, \dots, x_n]$ .

- We call  $a_{\alpha}$  the **coefficient** of the monomial  $x^{\alpha}$ .
- If  $a_{\alpha} \neq 0$ , then we call  $a_{\alpha}x^{\alpha}$  a **term** of f.
- The **total degree** of  $f \neq 0$ , denoted  $\deg(f)$ , is the maximum  $|\alpha|$  such that the coefficient  $a_{\alpha}$  is nonzero. The total degree of the zero polynomial is undefined.

Leading term

#### Leading term

$$g = x^3 y z^2 + x^5 + x^2 y^3 z$$

#### Definition

A **monomial ordering** on  $k[x_1, ..., x_n]$  is a relation > on the set of monomials  $x^{\alpha}$ ,  $\alpha \in \mathbb{Z}_{>0}^n$  satisfying:

#### Definition

A **monomial ordering** on  $k[x_1, ..., x_n]$  is a relation > on the set of monomials  $x^{\alpha}$ ,  $\alpha \in \mathbb{Z}_{>0}^n$  satisfying:

> is a total ordering.

#### Definition

A **monomial ordering** on  $k[x_1, ..., x_n]$  is a relation > on the set of monomials  $x^{\alpha}$ ,  $\alpha \in \mathbb{Z}_{>0}^n$  satisfying:

- > is a total ordering.
- If  $x^{\alpha} > x^{\beta}$  and  $\gamma \in \mathbb{Z}^n_{>0}$ , then  $x^{\alpha}x^{\gamma} > x^{\beta}x^{\gamma}$ .

#### Definition

A monomial ordering on  $k[x_1, ..., x_n]$  is a relation > on the set of monomials  $x^{\alpha}$ ,  $\alpha \in \mathbb{Z}_{>0}^n$  satisfying:

- > is a total ordering.
- If  $x^{\alpha} > x^{\beta}$  and  $\gamma \in \mathbb{Z}_{\geq 0}^n$ , then  $x^{\alpha}x^{\gamma} > x^{\beta}x^{\gamma}$ .
- > is a well-ordering.

#### Theorem

Let X be a commutative free monoid and suppose the first two conditions in the definition above are satisfied. Then the following are equivalent:

#### **Theorem**

Let X be a commutative free monoid and suppose the first two conditions in the definition above are satisfied. Then the following are equivalent:

> is a well-ordering on X.

#### **Theorem**

Let X be a commutative free monoid and suppose the first two conditions in the definition above are satisfied. Then the following are equivalent:

- > is a well-ordering on X.
- Every strictly decreasing sequence in X eventually terminates.

#### **Theorem**

Let X be a commutative free monoid and suppose the first two conditions in the definition above are satisfied. Then the following are equivalent:

- $\bullet$  > is a well-ordering on X.
- Every strictly decreasing sequence in X eventually terminates.
- $x^{\alpha} \geq 1$  for all  $\alpha \in \mathbb{Z}_{\geq 0}^{n}$ .



#### Definition (Lexicographic Order)

Let  $\alpha = (\alpha_1, \dots, \alpha_n)$  and  $\beta = (\beta_1, \dots, \beta_n)$  be in  $\mathbb{Z}_{\geq 0}^n$ . We say  $x^{\alpha} >_{Lex} x^{\beta}$  if the leftmost nonzero entry of the vector difference  $\alpha - \beta \in \mathbb{Z}^n$  is positive.

#### Definition (Lexicographic Order)

Let  $\alpha=(\alpha_1,\ldots,\alpha_n)$  and  $\beta=(\beta_1,\ldots,\beta_n)$  be in  $\mathbb{Z}_{\geq 0}^n$ . We say  $x^{\alpha}>_{Lex}x^{\beta}$  if the leftmost nonzero entry of the vector difference  $\alpha-\beta\in\mathbb{Z}^n$  is positive.

$$g = x^3 y z^2 + x^5 + x^2 y^3 z$$

#### Definition (Graded Lex Order)

Let  $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$ . We say  $x^{\alpha} >_{GLex} x^{\beta}$  if  $|\alpha| > |\beta|$  or  $|\alpha| = |\beta|$  and  $x^{\alpha} >_{Lex} x^{\beta}$ .

#### Definition (Graded Lex Order)

Let  $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$ . We say  $x^{\alpha} >_{GLex} x^{\beta}$  if  $|\alpha| > |\beta|$  or  $|\alpha| = |\beta|$  and  $x^{\alpha} >_{Lex} x^{\beta}$ .

$$g = x^3 y z^2 + x^5 + x^2 y^3 z$$

#### Definition (Graded Reverse Lex Order)

Let  $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$ . We say  $x^{\alpha} >_{GRevLex} x^{\beta}$  if  $|\alpha| > |\beta|$  or  $|\alpha| = |\beta|$  and the rightmost nonzero entry of  $\alpha - \beta \in \mathbb{Z}^n$  is negative.

#### Definition (Graded Reverse Lex Order)

Let  $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$ . We say  $x^{\alpha} >_{GRevLex} x^{\beta}$  if  $|\alpha| > |\beta|$  or  $|\alpha| = |\beta|$  and the rightmost nonzero entry of  $\alpha - \beta \in \mathbb{Z}^n$  is negative.

$$g = x^3 y z^2 + x^5 + x^2 y^3 z$$

#### Ideals

#### Definition

A subset  $I \subseteq k[x_1, ..., x_n]$  is an **ideal** if it satisfies:

#### Definition

A subset  $I \subseteq k[x_1, ..., x_n]$  is an **ideal** if it satisfies:

0 ∈ I.

#### Definition

A subset  $I \subseteq k[x_1, ..., x_n]$  is an **ideal** if it satisfies:

- 0 ∈ I.
- If  $f, g \in I$ , then  $f + g \in I$ .

#### **Definition**

A subset  $I \subseteq k[x_1, ..., x_n]$  is an **ideal** if it satisfies:

- 0 ∈ I.
- If  $f, g \in I$ , then  $f + g \in I$ .
- If  $f \in I$  and  $h \in k[x_1, ..., x_n]$ , then  $hf \in I$ .

#### Definition

Let  $I \subseteq k[x_1, ..., x_n]$  be an ideal other than  $\{0\}$ , and fix a monomial ordering on  $k[x_1, ..., x_n]$ . Then:

#### Definition

Let  $I \subseteq k[x_1, ..., x_n]$  be an ideal other than  $\{0\}$ , and fix a monomial ordering on  $k[x_1, ..., x_n]$ . Then:

 We denote by LT(I) the set of leading terms of nonzero elements of I.

#### **Definition**

Let  $I \subseteq k[x_1, ..., x_n]$  be an ideal other than  $\{0\}$ , and fix a monomial ordering on  $k[x_1, ..., x_n]$ . Then:

- We denote by LT(I) the set of leading terms of nonzero elements of I.
- We denote by  $\langle LT(I) \rangle$  the ideal generated by the elements of LT(I).

Let 
$$I = \langle f_1, \dots, f_t \rangle \subseteq k[x_1, \dots, x_n]$$
.

Let 
$$I = \langle f_1, \dots, f_t \rangle \subseteq k[x_1, \dots, x_n].$$
 
$$\langle \text{LT}(f_1), \dots, \text{LT}(f_t) \rangle \subseteq \langle \text{LT}(I) \rangle.$$

### Polynomials<sup>®</sup>

• 
$$f_1 = x^3 - 2xy$$
.

- $f_1 = x^3 2xy$ .
- $f_2 = x^2y 2y^2 + x$ .

- $f_1 = x^3 2xy$ .
- $f_2 = x^2y 2y^2 + x$ .
- $I = \langle f_1, f_2 \rangle \subseteq \mathbb{Q}[x, y]$  with GRevLex.

- $f_1 = x^3 2xy$ .
- $f_2 = x^2y 2y^2 + x$ .
- $I = \langle f_1, f_2 \rangle \subseteq \mathbb{Q}[x, y]$  with GRevLex.
- $x \cdot f_2 y \cdot f_1 = x^2 \text{ so } x^2 \in I$ .

- $f_1 = x^3 2xy$ .
- $f_2 = x^2y 2y^2 + x$ .
- $I = \langle f_1, f_2 \rangle \subseteq \mathbb{Q}[x, y]$  with GRevLex.
- $x \cdot f_2 y \cdot f_1 = x^2$  so  $x^2 \in I$ .
- $x^2 \in \langle LT(I) \rangle$ .

- $f_1 = x^3 2xy$ .
- $f_2 = x^2y 2y^2 + x$ .
- $I = \langle f_1, f_2 \rangle \subseteq \mathbb{Q}[x, y]$  with GRevLex.
- $x \cdot f_2 y \cdot f_1 = x^2$  so  $x^2 \in I$ .
- $x^2 \in \langle LT(I) \rangle$ .
- LT $(f_1) \nmid x^2$  and LT $(f_2) \nmid x^2$  so  $x^2 \notin \langle LT(f_1), LT(f_2) \rangle$ .

- $f_1 = x^3 2xy$ .
- $f_2 = x^2y 2y^2 + x$ .
- $I = \langle f_1, f_2 \rangle \subseteq \mathbb{Q}[x, y]$  with GRevLex.
- $x \cdot f_2 y \cdot f_1 = x^2 \text{ so } x^2 \in I$ .
- $x^2 \in \langle LT(I) \rangle$ .
- $LT(f_1) \nmid x^2$  and  $LT(f_2) \nmid x^2$  so  $x^2 \notin \langle LT(f_1), LT(f_2) \rangle$ .
- $\langle LT(I) \rangle \not\subseteq \langle LT(f_1), LT(f_2) \rangle$ .



Gröbner bases

#### Definition

Fix a monomial order on the polynomial ring  $k[x_1, \ldots, x_n]$ . A finite subset  $G = \{g_1, \ldots, g_t\}$  of an ideal  $I \subseteq k[x_1, \ldots, x_n]$  different from  $\{0\}$  is said to be a **Gröbner basis** if

$$\langle \operatorname{LT}(g_1), \ldots, \operatorname{LT}(g_t) \rangle = \langle \operatorname{LT}(I) \rangle.$$

#### **Theorem**

Let  $G = \{g_1, \ldots, g_t\}$  be a Gröbner basis for an ideal  $I \subseteq k[x_1, \ldots, x_n]$  and let  $f \in k[x_1, \ldots, x_n]$ . Then  $f \in I$  if and only if the remainder on division of f by G is zero.

#### Definition

We will write  $\overline{f}^F$  for the remainder on division of f by the ordered s-tuple  $F = (f_1, \ldots, f_s)$ . If F is a Gröbner basis for  $\langle f_1, \ldots, f_s \rangle$ , then we can regard F as a set (without any particular order).

#### Definition

Let  $f,g \in k[x_1,\ldots,x_n]$  be nonzero polynomials.

#### Definition

Let  $f, g \in k[x_1, ..., x_n]$  be nonzero polynomials.

• If  $\operatorname{multideg}(f) = \alpha$  and  $\operatorname{multideg}(g) = \beta$ , then let  $\gamma = (\gamma_1, \ldots, \gamma_n)$ , where  $\gamma_i = \max(\alpha_i, \beta_i)$  for each i. We call  $x^{\gamma}$  the **least common multiple** of  $\operatorname{LM}(f)$  and  $\operatorname{LM}(g)$ , written  $x^{\gamma} = \operatorname{lcm}(\operatorname{LM}(f), \operatorname{LM}(g))$ .

#### **Definition**

Let  $f, g \in k[x_1, ..., x_n]$  be nonzero polynomials.

- If  $\operatorname{multideg}(f) = \alpha$  and  $\operatorname{multideg}(g) = \beta$ , then let  $\gamma = (\gamma_1, \ldots, \gamma_n)$ , where  $\gamma_i = \max(\alpha_i, \beta_i)$  for each i. We call  $x^{\gamma}$  the **least common multiple** of  $\operatorname{LM}(f)$  and  $\operatorname{LM}(g)$ , written  $x^{\gamma} = \operatorname{lcm}(\operatorname{LM}(f), \operatorname{LM}(g))$ .
- The **S-polynomial** of f and g is the combination

$$S(f,g) = \frac{x^{\gamma}}{\operatorname{LT}(f)} \cdot f - \frac{x^{\gamma}}{\operatorname{LT}(g)} \cdot g.$$

#### Theorem (Buchberger's Criterion)

Let I be a polynomial ideal. Then a basis  $G = \{g_1, \ldots, g_t\}$  of I is a Gröbner basis of I if and only if for all pairs  $i \neq j$ , the remainder on division of  $S(g_i, g_j)$  by G (listed in some order) is zero.

Objects and morphisms

- Objects and morphisms
- Identity morphisms

- Objects and morphisms
- Identity morphisms
- Associative composition law

• Let  $(S, \leq)$  be a poset.

- Let  $(S, \leq)$  be a poset.
- Define the category S whose objects are the elements of S.

- Let  $(S, \leq)$  be a poset.
- Define the category S whose objects are the elements of S.
- $Hom(a, b) = \{(a, b)\}\ if\ a \le b.$

- Let  $(S, \leq)$  be a poset.
- Define the category S whose objects are the elements of S.
- $Hom(a, b) = \{(a, b)\}\ if\ a \leq b.$
- Hom $(a, b) = \emptyset$  if a > b.

- Let  $(S, \leq)$  be a poset.
- Define the category S whose objects are the elements of S.
- $Hom(a, b) = \{(a, b)\}\ if\ a \le b.$
- Hom $(a, b) = \emptyset$  if a > b.
- (a,b)(b,c) = (a,c).

#### **Definition**

A functor  $\mathcal{F}: C \to D$  is:

- An object  $\mathcal{F}x \in D$  for each object  $x \in C$ .
- A morphism  $\mathcal{F}f \in \mathsf{Hom}(\mathcal{F}a, \mathcal{F}b)$  for each morphism  $f \in \mathsf{Hom}(a,b)$ .
- For any composable pair of morphisms  $f, g \in C$ ,  $(\mathcal{F}f)(\mathcal{F}g) = \mathcal{F}(gf)$ .
- For each object  $x \in C$ ,  $\mathcal{F}(1_x) = 1_{\mathcal{F}_X}$ .



#### Definition

Given functors  $\mathcal{F}, \mathcal{G}: \mathsf{C} \to \mathsf{D}$ , a **natural transformation**  $\tau: \mathcal{F} \Rightarrow \mathcal{G}$  maps objects in C to morphisms in D.

- If x is in C, then  $\tau_x$  is in  $\text{Hom}(\mathcal{F}x,\mathcal{G}x)$ .
- The following diagram commutes for all  $a, b \in C$ .



#### **Definition**

For a natural transformation  $\beta$  and functors  $\mathcal F$  and  $\mathcal L$ ,



define a transformation  $\mathcal{L}\beta\mathcal{F}: \mathcal{LHF} \Rightarrow \mathcal{LKF}$  by  $(\mathcal{L}\beta\mathcal{F})_x = \mathcal{L}\beta_{\mathcal{F}_x}$ . This is the **whiskered composite** of  $\beta$  with  $\mathcal{L}$  and  $\mathcal{F}$ .

#### Definition (Monad)

- an endofunctor  $\mathcal{T}:\mathsf{C}\to\mathsf{C}$ ,
- ullet a natural transformation  $\eta:1_{\mathsf{C}}\Rightarrow\mathcal{T}$ , and
- ullet a natural transformation  $\mu:\mathcal{T}^2\Rightarrow\mathcal{T}$  ,





# Functional Programming

Functional Programming

# Algorithms

```
Algorithm 1 The Division Algorithm in k[x_1, \ldots, x_n]
```

```
p := f
r := 0
while (p \neq 0) do
    i := 1
    division occurred := false
    while (i \le s \text{ and division\_occurred} == \text{false}) do
         if (LT(g_i) divides LT(p)) then
             p := p - \frac{\operatorname{LT}(p)}{\operatorname{LT}(q_i)} g_i
             division\_occurred := true
         else
             i := i + 1
    if (division\_occurred == false) then
         r := r + \operatorname{LT}(p)
         p := p - LT(p)
return r
```

Given a set T, denote the set of finite ordered lists of elements of T as [T]. Let  $\emptyset \in [T]$  denote the empty list.

$$\varphi : [k[\mathbf{x}]] \times (k[\mathbf{x}] \times k[\mathbf{x}]) \to k[\mathbf{x}] \times k[\mathbf{x}]$$

$$\varphi(G,(p,r)) = \begin{cases} (p - \text{LT}(p), r + \text{LT}(p)) & \text{if } G = \emptyset, \\ (p - \frac{\text{LT}(p)}{\text{LT}(g_1)} g_1, r) & \text{if } G \neq \emptyset \text{ and } \text{LT}(g_1) | \text{LT}(p), \\ \varphi(G \setminus g_1, (p, r)) & \text{if } G \neq \emptyset \text{ and } \text{LT}(g_1) | \text{LT}(p). \end{cases}$$

$$\psi : [k[\mathbf{x}]] \times (k[\mathbf{x}] \times k[\mathbf{x}]) \to k[\mathbf{x}]$$

$$\psi(G,(p,r)) = \begin{cases} r & \text{if } p = 0, \\ \psi(G,\varphi(G,(p,r))) & \text{if } p \neq 0. \end{cases}$$

$$\overline{f}^G = \psi(G,(f,0)).$$

#### Algorithm 2 Buchberger's Algorithm

```
G := F
repeat
    G' := G
    for each pair \{p,q\} \in G' do
       r := \overline{S(p,q)}^{G'}
       if (r \neq 0) then
           G := G \cup \{r\}
until (G == G')
return G
```

#### Notation

 $\bullet$  X + t

- X + t X + Y

- $\bullet X + t$
- $\bullet$  X + Y
- y × X

- $\bullet X + t$
- $\bullet$  X + Y
- y × X
- $\bullet X \times Y$

- $\bullet X + t$
- $\bullet$  X + Y
- y × X
- $\bullet$   $X \times Y$
- For  $x = (f, g) \in k[\mathbf{x}] \times k[\mathbf{x}]$ , Sx = S(f, g).

$$\varphi:[k[\mathbf{x}] \times k[\mathbf{x}]] \times [k[\mathbf{x}]] \to [k[\mathbf{x}]]$$

$$\varphi(X,G) = \begin{cases} G & \text{if } X = \emptyset, \\ \varphi(X \setminus x_1, G) & \text{if } X \neq \emptyset \text{ and } \overline{Sx_1}^G = 0, \\ \varphi\left(X \setminus x_1 + (\overline{Sx_1}^G \times G), G + \overline{Sx_1}^G\right) & \text{if } X \neq \emptyset \text{ and } \overline{Sx_1}^G \neq 0. \end{cases}$$

$$\mathsf{gb}:[k[\mathbf{x}]] \to [k[\mathbf{x}]]$$

$$\mathsf{gb}(F) = \varphi(F \times F, F)$$

# Why?

Why should we care?



#### End

Questions?

