CONTADORES

- Entender o funcionamento dos contadores digitais
- Trabalhar com contadores assíncronos e síncronos
- Conhecer os principais circuitos comerciais MSI
- Projetar divisores de frequência
- Projetar temporizadores, freqüencímetros, relógios e alarmes
- Trabalhar com circuitos comparadores
- Trabalhar com osciladores, monoestáveis e estáveis

Estado: Uma combinação binária presente nas saídas do contador. Ex.: Contador com 16 estados (0 à 15).

Módulo: Número total de estados diferentes que o

contador pode assumir. Módulo =

 $2^{\rm N}$, onde:

N = número de FFs.

<u>Contador Assíncrono</u>: Quando as linhas "clock"dos flip-flops são diferentes.

Contador Síncrono: Quando as linhas "clock"dos flip-flops internos são comuns.

Sequência de contagem:

- crescente (0,1,2,3,4,5...)
- decrescente (...5,4,3,2,1,0)
- qualquer (3,6,4,8,3,4...)

CONTADOR ASSÍNCRONO CRESCENTE ("UP")

Número de transições	Saídas		5		
negativas no "Clock"	D	C	В	Α	
0	0	0	0	0	← Estado
1	0	0	0	1	inicial
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

(**b**)

Divisor natural por 2ⁿ

Contador assíncrono Decrescente ("Down")

Exercício: Desenhar a forma de onda.

Contador Assíncrono Reversível ("Up/Down")

CONTADORES SÍNCRONOS

As entradas *clock* de todos os *flip-flops* são interligadas ao sinal sinal externo *clock*. Desta forma, todos os *flip-flops* são gatilhados ao mesmo tempo, garantindo uma operação mais rápida que o equivalente assíncrono.

CONTADORES SÍNCRONOS

Projeto de síncronos com seqüência natural

CONTADORES SÍNCRONOS

Projeto de síncronos com seqüência natural

Desenhar o Diagrama de tempo e a tabela de combinações de um projeto de contador síncrono com sequência natural.

Projeto de síncronos com seqüência não-natural

Número de transições ocorridas	Saídas			
em "Clock"	D	C	В	A
0	0	0	0	0
1	0	1	0	1
2	1	1	0	0
3	0	1	1	1
4	0	1	0	0
4 5 6	0	0	0	1
6	0	1	1	0
7	0	0	1	1
8	0	0	1	0
9	1	0	0	1
10	1	1	1	0
11	1	1	1	1
12	1	0	0	0
13	1	1	0	1
14	1	0	1	0
15	1	0	1	1

Variação desejada na saída		Condições nas entradas para garantir a saída desejada		
Qn-	→ Qn+1	Jn	Kπ	
0	0	0	Χ	
0	1	1	Χ	
1	0	Χ	1	
1	1	Χ	0	

Seqüencia	DCBA	J _D K _D	J _c K _c	J _B K _B	J _A K _A
0	0000	0 X	1 X	0 X	1 X
5	0 1 0 1	1 X	X O	0 X	X 1
12	1 1 0 0	X 1	X O	1 X	1 X
7	0 1 1 1	0 X	X O	X 1	X 1
4	0 1 0 0	0 X	X 1	0 X	1 X
1	0001	0 X	1 X	1 X	X 1
6	0 1 1 0	0 X	X 1	X O	1 X
3	0 0 1 1	0 X	0 X	X O	X 1
2	0010	1 X	0 X	X 1	1 X
9	1001	X O	1 X	1 X	X 1
14	1 1 1 0	X O	X O	X O	1 X
15	1 1 1 1	X O	X 1	X 1	X 1
8	1000	X O	1 X	0 X	1 X
13	1 1 0 1	X O	X 1	1 X	X 1
10	1 0 1 0	X O	0 X	X O	1 X
11	1 0 1 1	X 1	0 X	X 1	X 1

(a)

Variação desejada na saída		Condições nas entradas para garantir a saída desejada		
Qn-	→ Qn+1	Jn	Kn	
0	0	0	χ	
0	1	1	χ	
1	0	Χ	1	
1	1	Χ	0	

$$J_{D} = C\overline{B}A + \overline{C}B\overline{A}$$

$$K_{D} = C\overline{B}\overline{A} + \overline{C}BA$$

$$J_{C} = \overline{B}$$

$$K_{C} = \overline{D}\overline{A} + DA$$

$$J_{B} = DC + \overline{C}\overline{B}$$

$$K_{B} = CA + DA + \overline{D}\overline{C}\overline{A}$$

$$J_{A} = K_{A} = 1$$

