General Prediction Strength Methods for Estimating the Number of Clusters in a Dataset

Qiao Yu April 15, 2018

Motivation

• k-means (medoids)
clustering will happily
divide any dataset into
k clusters, regardless
of whether that's
appropriate or not.

Overview

- Review of previous methods
- Re-formulation and extension of Tibshirani's prediction strength method
- Contrast results for different cluster configurations
- Application to gene co-expression network

Different Methods for Deciding Number of Clusters

- Methods based on internal indices
 - Depend on between- and within- sum of squared error (BSS and WSS)
- Methods based on external indices
 - Depends on comparison between different partitionings
- Evaluate indices for different values of *k* and decide which is "best"

Internal Index Methods

Internal Indices

- Calinski & Harabasz
- Hartigan
- Krzanowski & Lai

- n = Number of samples
- p = Dimension of samples

Calinski and Harabasz (1974)

• For each number of clusters $k \ge 2$, define the index

$$I_k = \frac{\operatorname{trace}(BSS_k)/(k-1)}{\operatorname{trace}(WSS_k)/(n-k)}$$

 The estimated number of clusters is the k which maximizes the above.

Hartigan

• For each number of clusters $k \ge 1$, define the index

$$I_{k} = \left(\frac{\operatorname{trace}(WSS_{k})}{\operatorname{trace}(WSS_{k+1})} - 1\right)(n-k-1)$$

• The estimated number of clusters is the smallest $k \ge 1$ such that $I_k \le 10$.

Krzanowski and Lai (1985)

• For each number of clusters $k \ge 2$, define the indices

$$d_k = (k-1)^{2/p} \operatorname{trace}(WSS_{k-1}) \operatorname{trace}(WSS_k), \text{ and}$$

$$I_k = |d_k| |d_{k+1}|$$

 The estimated number of clusters is the k which maximizes I_k.

The silhouette width method (Kaufman and Rousseeuw, 1990)

- Silhouettes use average dissimilarity between observation i and other observations in the same cluster.
- Silhouette width of the observation is

$$I_{ik} = (b_i - a_i) / \max(a_i, b_i)$$

- a_i = average dissimilarity of observation i
- b_i = minimum dissimilarity within the cluster

The silhouette width method (cont.)

 Overall silhouette width is the average over all observations:

$$I_{k} = \frac{\sum_{i} I_{ik}}{n}$$

 The estimated number of clusters is the k for which I_k is maximized.

Gap (uniform) or Gap(pc) (Tibshirani et al., 2000)

For each number of clusters k,

$$I_{k} = \frac{1}{B} \sum_{b} \log(\operatorname{trace}(WSS_{k}^{b}) - \log(\operatorname{trace}(WSS_{k}))$$

 B reference datasets generated under null distribution.

Gap statistic (cont.)

Estimated number of clusters is smallest k >
 1 that maximizes I_k and satisfies

$$gap_k \ge gap_{k+1} - s_{k+1}$$

- s_k = standard deviation over reference datasets.
- Uniform gap statistic samples from a uniform distribution
- "pc" (principal component) statistic samples from a uniform box aligned with the principal components of the dataset (Sarle, 1983).

External Index Methods

External Indices/Approaches

- Comparing Partitionings
- Rand Index
- Tibshirani
- Clest
- General Prediction Strength

Comparing Partitionings: The Contingency Table

• Partitionings $U = \{u_1, ..., u_R\}$ and $V = \{v_1, ..., v_S\}$ of n objects into R and S clusters

U/V	v_I	v_2	•••	v_S
u_1	n_{11}	n_{12}	•••	n_{IS}
u_2	n_{21}	n_{22}	•••	•••
	•••	•••	•••	•••
u_R	n_{R1}	n_{R1}	•••	n_{RS}

Comparing Partitionings: The Contingency Table

• n_{rs} = number of objects in both u_r and v_s .

U/V	v_1	v_2	•••	v_S
u_1	n_{11}	n_{12}	•••	n_{IS}
u_2	n_{21}	n_{22}	•••	•••
•••	•••	•••	•••	•••
u_R	n_{R1}	n_{R1}	•••	n_{RS}

Comparing Partitionings: The Contingency Table

•
$$n_{r.} = \sum_{s=1}^{S} n_{rs} = \text{total points in cluster } u_r$$

•
$$n_{.s} = \sum_{r=1}^{R} n_{rs} = \text{total points in cluster } v_s$$

67 V	VI	V 2	•••	VS
u_1	n_{11}	n_{12}	•••	n_{1S}
u_2	n_{21}	n_{22}		•••
•••	•••	•••	•••	•••
u_R	n_{R1}	n_{RI}	•••	n_{RS}

Rand Index (Rand, 1971, Hubert and Arabie, 1985)

• Rand index and adjusted Rand index (m=2)

$$Rand = \frac{\binom{n}{m} - \sum_{s} \binom{n_{.s}}{m} - \sum_{r} \binom{n_{r.}}{m} + 2\sum_{r,s} \binom{n_{rs}}{m}}{\binom{n}{m}}$$

$$Adj.Rand = \frac{\sum_{r,s} \binom{n_{rs}}{m} - \sum_{s} \binom{n_{.s}}{m} \sum_{r} \binom{n_{r.}}{m} / \binom{n}{m}}{\frac{1}{2} \left(\sum_{s} \binom{n_{.s}}{m} + \sum_{r} \binom{n_{r.}}{m}\right) - \sum_{s} \binom{n_{.s}}{m} \sum_{r} \binom{n_{r.}}{m} / \binom{n}{m}}{\frac{n_{r.}}{m}}$$

Clustering as a supervised classification problem

- Input data split repeatedly into a training and a test set for a given choice of *k* (number of clusters)
- Clustering method applied to the two sets to arrive at *k* "observed" training and test set clusters.
- Use the training data to construct a classifier for predicting the training set cluster labels.
- Apply classifier to test set data -> predicted test set clusters.
- Measure of agreement calculated based on the comparison of predicted to observed test set clusters (external index).

Predicting the number of clusters

- Use cluster reproducibility measures for different *k* to estimate the true number of clusters in the data set.
- Assumes that choosing the correct number of clusters -> less random assignment of samples to clusters and to greater cluster reproducibility.

Clest

(Dudoit and Fridlyand, 2002)

- Step "A" identical to steps 1-6 of Tibshirani PS. Denote external indices computed in step A.6. by $(s_{k,1}, s_{k,2}, ..., s_{k,B})$. Then
 - B. Let $t_k = \text{median}(s_{k,l}, ..., s_{k,B})$ denote observed similarity statistic for the k-cluster partition of the data.
 - C. Generate B_0 datasets under null hypothesis of k=1. Briefly, for each reference dataset, repeat the procedure described in steps A and B above, to obtain B_0 similarity statistics $t_{k,1}$, ..., $t_{k,Bo}$.
- Let t_k^0 denote average of the B_0 statistics
- Let $d_k = t_k$ t_k^0 denote the difference between the observed similarity statistic and estimated expected value under null hypothesis of k = 1.

General Prediction Strength

- Re-formulation of Clest
- Extension to m-tuplets

Tests on Simulated Data

Simulations

- 1. A single cluster containing 200 points uniformly distributed from (-1,1) in 10-d.
- 2. Three normally distributed clusters in 2-d with centers at (0,0). (0,5), and (5,-3) and 25, 25, and 50 observations in each respective cluster.
- 3. Four normally distributed clusters in 3-d with centers randomly chosen from N(0, 5*I) and cluster size randomly chosen from {25, 50}.
- 4. Four normally distributed clusters in 10-d with centers randomly chosen from N(0, 1.9*I) and cluster size randomly chosen from {25, 50}.
- In 3 & 4, simulations with clusters with minimum distance less than one unit were discarded.

Simulations

- 5. Two elongated clusters in 3-d. Generated by choosing equally spaced points between (-0.5, 0.5) and adding normal noise with sd 0.1 to each feature. Then add 10 to each feature of the points in the second cluster.
 - (a) 100 points per cluster
 - (b) 200 points per cluster (to illustrate effects of an increased number of observations)

Predicted # Clusters											
Method	No Pred	1	2	3	4	5	6	7	8	9	10
sim1 (1 cluster, 10	d)										
Hartigan			7	27	12	4					
Calinski		NA				3 7	7	8	12	12	10
Kraznowski-Lai		NA	8	8	5	7	5	3		7	2
Silhouette		NA	33	4	1	1	1	1	3	6	12
Gap (uniform)		50									
Gap (pc)		50									
Clest*		48	2								
sim2 (3 clusters, 20	d)										
Hartigan	4				5	4	9	8	8	7	5
Calinski		NA		50							
Kraznowski-Lai		NA		29	3	4	2	1	1	5	5
Silhouette		NA	6	44							
Gap (uniform)			11								
Gap (pc)			12	-							
Clest*			1	49							
sim3 (4 clusters, 3	d)										
Hartigan	11				2	10	10	4	4	4	5
Calinski		NA	1	6	43						
Kraznowski-Lai		NA	2		37	1	1			1	2
Silhouette		NA			29						
Gap (uniform)		5	I			2					
Gap (pc)		12	6	15							
Clest*			1	20	29						

Predicted # Clusters

	1100	Tremeted // Crusters											
Method	No Pred	1	2	3	4	5	6	7	8	9	10		
sim4 (4 clusters, 10	d)												
Hartigan					50								
Calinski		NA	2	9	39								
Kraznowski-Lai		NA			42	1	2	1		2	2		
Silhouette		NA	5	11	34								
Gap (uniform)		1	2	20	27								
Gap (pc)		5	6	7	32								
Clest*				1	49								
sim5a (2 clusters, 3	8d, 100p	ts/cl	us)										
Hartigan	35									1	14		
Calinski		NA			15		29	4	2				
Kraznowski-Lai		NA	49						1				
Silhouette		NA	50										
Gap (uniform)				31	9	4	6						
Gap (pc)			50										

Clest*

Results of Simulations

- Clest performs consistently well
- Not all values of *m* perform equally well in all the simulations (*m*=3 and *m*=5 do best overall)
- Performance especially noticeable on elongated cluster simulation.
- Of internal index methods, **Hartigan** seems least robust
- Calinski and Kraznowski-Lai indices and the silhouette width method cannot predict a single cluster.

Application to Gene Co-Expression Networks

DNA Microarrays

- Expression level of thousands of genes at once
- Lots of processing and normalization

Use of Microarrays

- Within an experiment use "normal" and "diseased" cell types (e.g.).
- Generally examined for differences in expression levels between cell types.
- Look for genes that characteristically vary with disease.

Classical Multi-Dimensional Scaling

- Used to visualize abstract TOM dissimilarity
- "Principal component analysis"

Inspection of Heatmap

- Red for highly expressed genes
- Green for low expression
- Consistent expression across genes (rows) in clusters
- => Either 4 or 5 clusters justified

Conclusion

- There are several indices for evaluating clusterings
 - External compare different partitionings, internal do not
- Indices can be used to predict number of clusters
- Prediction Strength index method works across different cluster configurations
- Fairly simple and intuitive
- Effective on elongated clusters
- Results of varying *m* reflect hierarchical structure in data

Acknowledgements

- Steve Horvath
- Meghna Kamath
- Fred Fox and Tumor Cell Biology Training Grant (USHHS Institutional National Research Service Award #T32 CA09056)
- Stan Nelson and the UCLA Microarray Core Facility
- NIH Program Project grant #1U19AI063603-01.

References

- http://www.genetics.ucla.edu/labs/horvath/GeneralPredictionStrength.
- CALINSKI, R. & HARABASZ, J. (1974). A dendrite method for cluster analysis. *Commun Statistics*, 1-27.
- DUDOIT, S. & FRIDLYAND, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. *Genome Biol* **3**, RESEARCH0036.
- EISEN, M. B., SPELLMAN, P. T., BROWN, P. O. & BOTSTEIN, D. (1998). Cluster analysis and display of genome-wide expression patterns. *Proc Natl Acad Sci U S A* **95**, 14863-8.
- FREIJE, W. A., CASTRO-VARGAS, F. E., FANG, Z., HORVATH, S., HARTIGAN, J. A. (1985). Statistical theory in clustering. *J. Classification*, 63-76.
- HUBERT, L. & ARABIE, P. (1985). Comparing Partitions. Journal of Classification 2, 193-218.
- KAUFMAN, L. & ROUSSEEUW, P. J. (1990). Finding groups in data: an introduction to cluster analysis. New York: Wiley.
- KRZANOWSKI, W. & LAI, Y. (1985). A criterion for determining the number of groups in a dataset using sum of squares clustering. *Biometrics*, 23-34.
- MISCHEL, P., ZHANG, B., CARLSON, M., FANG, Z., FREIJE, W., CASTRO, E., SCHECK, A., LIAU, L., KORNBLUM, H., GESCHWIND, D., CLOUGHESY, T., HORVATH, S. & NELSON, S. (2005). Hub Genes Predict Survival for Brain Cancer Patients.
- RAND, W. M. (1971). Objective criteria for the evaluation of clustering methods. *Journal of the American Statistical Association*, 846-850.
- RAVASZ, E., SOMERA, A. L., MONGRU, D. A., OLTVAI, Z. N. & BARABASI, A. L. (2002). Hierarchical organization of modularity in metabolic networks. *Science* **297**, 1551-5.
- SARLE, W. (1983). Cubic Clustering Criterion. SAS Institute, Inc.
- TAMAYO, P., SLONIM, D., MESIROV, J., ZHU, Q., KITAREEWAN, S., DMITROVSKY, E., LANDER, E. S. & GOLUB, T. R. (1999).
 Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. *Proc Natl Acad Sci U S A* 96, 2907-12.
- TIBSHIRANI, R., WALTHER, G., BOTSTEIN, D. & BROWN, P. (2001). Cluster validation by prediction strength. Stanford.
- TIBSHIRANI, R., WALTHER, G. & HASTIE, T. (2000). Estimating the number of clusters in a dataset via the gap statistic. Department of Biostatistics, Stanford.
- YEUNG, K. Y., HAYNOR, D. R. & RUZZO, W. L. (2001). Validating clustering for gene expression data. *Bioinformatics* 17, 309-18.
- ZHANG, B. & HORVATH, S. (2005). A General Framework for Weighted Gene Co-Expression Network Analysis. *Statistical Applications in Genetics and Molecular Biology*.

Extra Slides

WSS and BSS

$$TSS_{ij} = \sum_{s=1}^{n} (x_{is} - \bar{x}_{i})(x_{js} - \bar{x}_{j})$$
$$= \sum_{g} WSS_{ij}^{g} + BSS_{ij}^{g}$$

$$BSS_{ij}^{g} = n_g(\overline{x_i}^g - \overline{x_i})(\overline{x_j}^g - \overline{x_j})$$