

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor

1/4-Inch System-On-A-Chip (SOC) CMOS Digital Image Sensor

MT9D112

Features

- DigitalClarityTM CMOS imaging technology
- Superior low-light performance
- Ultra-low-power, low-cost
- Internal master clock generated by on-chip phaselocked loop oscillator (PLL)
- Electronic rolling shutter (ERS), progressive scan
- Integrated image flow processor (IFP) for single-die camera module
- Automatic image correction and enhancement, including 4-channel lens shading correction with independent corner correction
- · Arbitrary image scaling with anti-aliasing
- Integrated microcontroller for flexibility
- Two-wire serial interface providing access to registers and microcontroller memory
- Selectable output data format: ITU-R BT.601 (YCbCr), 565RGB, 555RGB, 444RGB, processed bayer, RAW8, and RAW10-bit
- Output FIFO for data rate equalization
- Programmable I/O slew rate
- Parallel and serial mobile industry processor interface (MIPI) data output
- Xenon and LED flash support with fast exposure adaptation
- Flexible support for external auto focus, optical zoom, and mechanical shutter
- Independently configurable gamma correction

Applications

- Čellular phones
- PC cameras
- PDAs

Table 1: Key Performance Parameters

Parameter		Value
Optical format		1/4-inch (4:3)
Full resolution		1,600 x 1,200 pixels (UXGA)
Pixel size		2.2μm x 2.2μm
Chief ray angle		22.1 deg maximum at 75% image
		height
Color filter arra	у	RGB Bayer pattern
Active pixel arra	ay area	3.56mm x 2.68mm
Shutter type		Electronic rolling shutter (ERS)
		with global reset
Input clock free		6–54 MHz
Maximum fram	e rate	15 fps at full resolution,
		24 fps in preview mode,
		30 fps in video mode
Maximum data	rate/	80 MB/s
master clock		6 MHz to 80 MHz
	Analog	2.5V-3.1V
	Digital	1.7V-1.95V
Supply voltage	I/O	1.7V-3.1V
	PLL	2.5V-3.1V
	AF	1.7V-3.1V
ADC resolution		10-bit, on-die
Responsivity		0.53 V/lux-sec (preliminary)
Dynamic range		59.5dB (preliminary)
SNRMAX		37.7dB (preliminary)
		245mW at 15 fps, full resolution
Power		230mW at 30 fps, video mode
consumption		168mW at 24 fps, preview mode
		30μW, standby/shutdown
Operating temperature		-30°C to +70°C (at junction)
Package		Bare die

Table 2: Ordering Information

Part Number	Description	
MT9D112D00STCK15AC1	Bare die	

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Table of Contents

Table of Contents

Features	
Applications	
General Description	
MT9D112 Overview	
Signal Description	
Typical Connections	
Architecture Overview	
Sensor Core Description	11
Pixel Array	12
Pixel Array Structure	12
Default Readout Order	13
Analog Processing	14
Analog Readout Channel	14
Timing and Control	
Gain Options	
Integration Time	
PLL	
PLL Generated Master Clock	
PLL Setup	
Readout Options	
Window Size	
Readout Modes	
Horizontal Mirror	
Vertical Flip	
Column and Row Skip	
Programming Restrictions when Skipping	
Binning	
Binning Limitations	
Raw Data Format	
Raw Data Timing	
SOC Description	
Image Flow Processor	
Test Patterns	
First Black Level Subtraction and Digital Gain	
Lens Shading Correction	
Lens Correction Zones	
Defect Correction and Noise Reduction	
Color Interpolation and Edge Detection	
Second Black Level Correction	
Color Correction and Aperture Correction	
Image Cropping	28
Contrast and Gamma Correction	
S-Curve	
RGB to YUV Conversion	
Color Kill	
YUV Color Filter	
Image Scaling	
YUV-to-RGB/YUV Conversion and Output Formatting	
Color Conversion Formulas	
Y'U'V'	
Y'Cb'Cr' Using sRGB Formulas	31

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Table of Contents

Y'U'V' Using sRGB Formulas	
Output Interface	
Parallel and MIPI Output	
Output Format and Timing	
YUV/RGB Uncompressed Output	
Uncompressed YUV/RGB Data Ordering	
Uncompressed 10-Bit Bypass Output	
FIFO	
Watermark	
Camera Control	
General Purpose I/Os	
Output Enable Control	
Trigger Control	
Streaming/Standby Control	
Firmware Architecture	
Sequencer	
Context and Operational Modes	
Preview Mode	
Still Capture and Video Modes	
Snapshot and Flash	
Video	
Auto Exposure	
Preview Mode	
Evaluative Algorithm	
Accelerated Settling During Overexposure	
Exposure Control	
AE MDR Mode	
Auto White Balance	
Flicker Detection	
Auto Focus	
Algorithm	
Modes	
Lens Actuator Interface	
Two-Wire Serial Interface	
Protocol	
Start Condition	
Stop Condition	
Data Transfer	
Slave Address/Data Direction Byte	
Message Byte	
Acknowledge Bit	
No-Acknowledge Bit	
Typical Serial Transfer	
Single Read from Random Location	
Single Read from Current Location	
Sequential Read, Start from Random Location	
Sequential Read, Start from Current Location	
Single Write to Random Location	
Sequential Write, Start at Random Location	
Registers and Variables	
How to Access Registers and Variables	
Registers	
Variables	49

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Table of Contents

Special Function Registers and MCU SRAM	50
Core Registers	
Double-buffered Registers	
Bad Frames	
Changes to Integration Time	
Changes to Gain Settings	
Register List and Default Value	
Register Description	
Timing Specifications	
Power-up	
Reset	193
Hard Reset	193
Soft Reset	194
Standby Modes	
Hard Standby	
Soft Standby	195
Shutdown Mode	
Spectral Characteristics	198
Electrical Specifications	199
Revision History	

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor List of Figures

List of Figures

Figure 1:	Typical Configuration (connection)	
Figure 2:	SOC Block Diagram	11
Figure 3:	Sensor Core Block Diagram	12
Figure 4:	Pixel Array	12
Figure 5:	Pixel Color Pattern Detail (Top Right Corner)	13
Figure 6:	Imaging a Scene	13
Figure 7:	6 Pixels in Normal and Column Mirror Readout Modes	
Figure 8:	6 Rows in Normal and Row Mirror Readout Modes	
Figure 9:	8 Pixels in Normal and Column Skip 2x Readout Modes	17
Figure 10:	Pixel Readout (no skipping)	
Figure 11:	Pixel Readout (x_odd_inc=3, y_odd_inc=1)	18
Figure 12:	Pixel Readout (x_odd_inc=1, y_odd_inc=3)	
Figure 13:	Pixel Readout (x_odd_inc=3, y_odd_inc=3)	19
Figure 14:	Pixel Readout (x_odd_inc=3, y_odd_inc=1, x_bin=1)	20
Figure 15:	Pixel Readout (x_odd_inc=3, y_odd_inc=3, x_ybin=1)	21
Figure 16:	Pixel Data Timing Example	22
Figure 17:	Pixel Data Timing Example	
Figure 18:	Row Timing and FRAME_VALID/LINE_VALID Signals	22
Figure 19:	Color Pipeline	24
Figure 20:	Test Patterns	25
Figure 21:	Lens Correction Zones	27
Figure 22:	Gamma Correction Curve	29
Figure 23:	Contrast "S" Curve	30
Figure 24:	Timing of Uncompressed Full Frame Output or Decimated Output Passing Through the FIFO	33
Figure 25:	Example of Timing for Non-Decimated Uncompressed Output Bypassing Output FIFO	34
Figure 26:	Software Architecture	36
Figure 27:	Gain vs. Exposure	
Figure 28:	Single Read from Random Location	46
Figure 29:	Single Read from Current Location	
Figure 30:	Sequential Read, Start from Random Location	46
Figure 31:	Sequential Read, Start from Current Location	47
Figure 32:	Single Write to Random Location	47
Figure 33:	Sequential Write, Start at Random Location	48
Figure 34:	Hard Reset	93
Figure 35:	Hard Standby	95
Figure 36:	Soft Standby	96
Figure 37:	CRA versus İmage Height	
Figure 38:	I/O Timing Diagram	99
Figure 39:	Internal Power-on Reset	02
Figure 40:	Two-Wire Serial Bus Timing Parameters	04

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor List of Tables

List of Tables

Table 1:	Key Performance Parameters	1
Table 2:	Ordering Information	1
Table 3:	Signal Description	9
Table 4:	Frequency Parameters	16
Table 5:	Row Address Sequencing	21
Table 6:	Row Timing Parameters	
Table 7:	Gamma Settings	29
Table 8:	Contrast Values	30
Table 9:	YCrCb Output Data Ordering	33
Table 10:	RGB Ordering in Default Mode	33
Table 11:	2-Byte RGB Format	34
Table 12:	Output Enable Control	35
Table 13:	Trigger Control	36
Table 14:	Streaming/STANDBY	36
Table 12:	0: Core Registers	52
Table 13:	1: SOC	55
Table 14:	2: SOC2	58
Table 15:	0: Monitor Variables	64
Table 16:	1: Sequencer Variables	64
Table 17:	2: AE Variables	66
Table 18:	3: AWB Variables	67
Table 19:	4: Flicker Varialbes	69
Table 20:	5: Auto Focus Variables	71
Table 21:	6: AFM Variables	71
Table 22:	7: Mode Variables	72
Table 23:	11: HG Variables	75
Table 24:	0: GPIO	75
Table 25:	0: Core Registers	78
Table 26:	1: SOC1	91
Table 27:	2: SOC2	
Table 28:	0: Monitor Variables	129
Table 29:	1: Sequencer Variables	130
Table 30:	2: AE Variables	
Table 31:	3: AWB Variables	145
Table 32:	4: Flicker Variables	
Table 33:	5: Auto Focus Variables	
Table 34:	6: AFM Variables	
Table 35:	7: Mode Variables	168
Table 36:	11: HG Variables	
Table 37:	0: GPIO	
Table 38:	Hard Reset	
Table 39:	Hard Standby	
Table 40:	Soft Standby	
Table 41:	Pin States During Conditions	
Table 42:	AC Electrical Characteristics	
Table 43:	I/O Parameters	
Table 44:	DC Electrical Definitions and Characteristics	
Table 45:	Absolute Maximum Ratings	
Table 46:	POR Parameters	
Tahla 17.	Two-wire Serial Rue Characteristics	205

General Description

The Micron[®] Imaging MT9D112 is a 1/4-inch 2-megapixel CMOS image sensor with an integrated advanced camera system. This camera system features a microcontroller (MCU), a sophisticated image flow processor (IFP), and both parallel and serial mobile industry processor interface (MIPI) interfaces. It also includes a programmable general purpose I/O module (GPIO), which can be used to control external auto focus (AF), optical zoom, or mechanical shutter. The microcontroller manages all components of the camera system and sets key operation parameters for the sensor core to optimize the quality of raw image data entering the IFP. The sensor core consists of an active pixel array of 1,616 x 1,216 pixels, programmable timing and control circuitry including a PLL and external flash support, analog signal chain with automatic offset correction and programmable gain, and two 10-bit analog-to-digital converters (ADC). The entire system-on-a-chip (SOC) has ultra-low power requirements and superior low light performance that is particularly suitable for mobile applications. The MT9D112 is based on DigitalClarity™ Technology—Micron's breakthrough low-noise CMOS imaging technology that achieves near-CCD image quality (based on signal-to-noise ratio and lowlight sensitivity) while maintaining the inherent size, cost, power consumption, and integration advantages of CMOS.

MT9D112 Overview

The MT9D112 has a color image sensor with a Bayer color filter arrangement and a 2-megapixel active-pixel array with electronic rolling shutter and global reset. The sensor core readout is 10-bit and supports skipping, binning and can be flipped and/or mirrored. The sensor core also supports separate analog and digital gain for all four color channels (R, Gr, Gb, B).

The MT9D112 also has an embedded phase-locked loop oscillator (PLL) that can generate the internal sensor clock from the common wireless system clock. When in use, the PLL adjusts the incoming clock frequency up, allowing the MT9D112 to run at almost any desired resolution and frame rate within the sensor's capabilities. The PLL can be bypassed and powered down to reduce power consumption.

Low power consumption is a very important requirement for all components of wireless devices. The MT9D112 has numerous power-conserving features, including internal soft standby modes, hard, and an external SHUTDOWN that allows the internal power bus to be disabled.

Another important consideration for wireless devices is their electromagnetic interface (EMI). The MT9D112 can be used with either a serial MIPI interface or the parallel data output interface, which has a programmable I/O slew rate to minimize EMI and an output FIFO to eliminate output data bursts.

The advanced image flow processor and flexible programmability of the MT9D112 provide a variety of ways to enhance and optimize the image sensor performance. Built-in optimization algorithms enable the MT9D112 to operate at factory settings as a fully automatic, highly adaptable camera; however, most of its settings are user-programmable.

These algorithms include black level conditioning, lens shading correction (LC), defect correction, noise reduction, color interpolation, edge detection, color correction, aperture correction, and image formatting such as cropping and scaling.

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor MT9D112 Overview

The MT9D112 also includes a sequencer that coordinates all events triggered by the user. The sequencer manages auto focus, auto white balance, flicker detection, and auto exposure for the different operating modes, which include preview, still capture, video, and snapshot with flash.

A two-wire serial register interface bus enables read/write access to control registers, variables, and special function registers within the MT9D112. The hardware registers are grouped internally by pages and include sensor core controls, color pipeline controls, and output controls. Variables are located in the microcontroller's RAM memory and are used for drivers such as the auto exposure (AE), auto white balance (AWB), and auto focus (AF). Special function registers are registers connected to the local bus of the microcontroller and include GPIO and the waveform generator.

The general purpose I/O can be configured to allow the user to output a flash or shutter pulse or to achieve 10-bit parallel output, or they can be configured as inputs to enable the user to use features such as an external trigger.

Signal Description

Table 3 provides the signal descriptions for the MT9D112.

Table 3: Signal Description

Name	Туре	Description	
SHUTDOWN	Input	Power down VDD, active HIGH.	
TEST_EN	Input	Reserved for factory test. Tie to digital ground during normal operation (can be left floating if not used).	
STANDBY	Input	Controls sensors standby mode, active HIGH.	
SCLK	Input	Two-wire serial interface clock.	
SADDR	Input	Selects device address for the two-wire serial interface. The address is 0x78 when SADDR is tied LOW, 0x7A if tied HIGH.	
RESET_BAR	Input	Master reset signal, active LOW (can be left floating if not used).	
EXTCLK	Input	Input clock signal 6–54 MHz.	
Sdata	I/O	Two-wire serial interface data.	
GPIO[3:0]	I/O	General purpose digital I/O, could be configured for Flash/Shutter/Dout_LSB0/Dout_LSB1/Module_ID/OE_BAR/Trigger.	
GPIO_AF[7:0]	I/O	General purpose digital I/O. Used for auto focus function (can be left floating if not used).	
Dout[7:0]	Output	Eight-bit image data output or most significant bits (MSB) of 10-bit sensor bypass mode.	
DATA_OUT_N	Output	Differential MIPI data (sub-LVDS, negative) (must leave floating if not used).	
DATA_OUT_P	Output	Differential MIPI data (sub-LVDS, positive) (must leave floating if not used).	
CLK_OUT_N	Output	Differential MIPI clock (sub-LVDS, negative) (must leave floating if not used).	
CLK_OUT_P	Output	Differential MIPI clock (sub-LVDS, positive) (must leave floating if not used).	
VDD	Supply	Digital power (1.8V).	
VAA_PIX	Supply	Pixel array power (2.8V).	
VAA	Supply	Analog power (2.8V).	
VDD_PLL	Supply	PLL power (2.8V).	
VDD_IO	Supply	I/O power supply (1.8V to 2.8V).	
GND_IO	Supply	I/O ground.	
DGND	Supply	Digital, I/O, and PLL ground.	
AGND	Supply	Analog ground.	
VDD_AF	Supply	I/O power supply for GPIO_AF[7:0] pads (can be left floating if not used).	
GND_AF	Supply	IO ground for GPIO_AF[7:0].	

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Typical Connections

Typical Connections

Figure 1 shows typical MT9D112 device connections. For low-noise operation, the MT9D112 requires separate power supplies for analog and digital. Incoming digital and analog ground conductors can be tied together next to the die. Both power supply rails should be decoupled to ground using capacitors as close as possible to the die. The use of inductance filters is not recommended on the power supplies or output signals.

The MT9D112 also supports different digital core (VDD/DGND) and I/O power (VDDIO/DGND) power domains that can be at different voltages. PLL requires a clean power source (VDDPLL).

Figure 1: Typical Configuration (connection)

It is recommended that $0.1\mu F$ and $1\mu F$ decoupling capacitors for each power supply are mounted as close as possible to the pad. Actual values and results may vary depending on layout and design considerations.

Notes:1.Typical connection shows only one scenario out of multiple possible variations for this sensor.

- 2.If auto focus is not required the following pads can be left floating: VDDAF, GNDAF, and GPIO_AF.
- 3.The GPIO pads can serve multiple features that can be reconfigured. The function and direction will vary by applications
- 4. Only one of the output modes (serial or parallel) can be used at any time.
- $5.1.5k\Omega$ resistor value is recommended for the two-wire serial interface RPULL-UP, however, greater value may be used for slower transmission speed.
- 6.All inputs must be configured with VDDIO.
- 7.VAA and VAAPIX must be tied together.

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Architecture Overview

Architecture Overview

The MT9D112 combines a 2-Mp sensor core together with an image processor (image flow processor) to form a stand-alone solution that includes both image acquisition and processing. Both the sensor core and the image flow processor have internal registers that can be controlled by the user. In normal operation though, an integrated microcontroller controls most aspects of operation autonomously. The processed image data is transmitted to the host-system either via a parallel bus or a serial data interface through the output interface.

Figure 2: SOC Block Diagram

Sensor Core Description

The sensor core of the MT9D112 is a progressive-scan sensor that generates a stream of pixel data at a constant frame rate, qualified by LINE_VALID and FRAME_VALID. The maximum pixel rate is 80 megapixels/second, corresponding to a pixel clock rate of 80 MHz. Figure 3 on page 12 shows a block diagram of the sensor core. It includes a 2-megapixel active-pixel array. The timing and control circuitry sequences through the rows of the array, resetting and then reading each row in turn. In the time interval between resetting a row and reading that row the pixels in the row integrate incident light. The exposure is controlled by varying the time interval between reset and readout. Once a row has been read, the data from the columns is sequenced through an analog signal chain (providing offset correction and gain), and then through an ADC. The output from the ADC is a 10-bit value for each pixel in the array.

The pixel array contains optically active and light-shielded (dark) pixels. The dark pixels are used to provide data for the offset-correction algorithms (black level control).

The sensor core contains a set of control and status registers that can be used to control many aspects of the sensor behavior including the frame size, exposure and gain setting. These registers are controlled by the SOC firmware and can be accessed through a two-wire serial interface. Register values written to the sensor core may be overwritten by firmware.

The output from the core is a Bayer pattern; alternate rows are a sequence of either green/red pixels or blue/green pixels. The offset and gain stages of the analog signal chain provide per-color control of the pixel data.

A flash strobe output signal is provided to allow an external Xenon or LED light source to synchronize with the sensor exposure time. Additional I/O signals support the provision of an external mechanical shutter.

Figure 3: Sensor Core Block Diagram

Pixel Array

Pixel Array Structure

The sensor core pixel array is configured as 1,722 columns by 1,262 rows (shown in Figure 4). The first 100 columns and the first 39 rows of pixels are optically black and are used for the automatic black level adjustment; the last 6 columns are also optically black.

The optically active pixels are used as follows: In default mode a UXGA image (1,616 columns by 1,216 rows) is generated, starting at row 40, column 101. An 8-pixel boundary of active pixels is enabled around the image to avoid boundary effects during color interpolation and correction.

Figure 4: Pixel Array

The sensor core uses a Bayer color pattern, as shown in Figure 5. The even-numbered rows contain green and red color pixels; odd-numbered rows contain blue and green color pixels. Even-numbered columns contain green and blue color pixels; odd-numbered columns contain red and green color pixels.

Figure 5: Pixel Color Pattern Detail (Top Right Corner)

Default Readout Order

By convention, the sensor core pixel array is shown with pixel (0,0) in the top right-hand corner (see Figure 4 on page 12). This reflects the actual layout of the array on the die. When the sensor is imaging in a system, the active surface of the sensor faces the scene as shown in Figure 6.

When the image is read out of the sensor, it is read one row at a time, with the rows and columns sequenced. By convention, data from the sensor is shown with the first pixel read out-pixel (99,38) in the case of the sensor core-in the top lefthand corner.

Figure 6: Imaging a Scene

Analog Processing

Analog Readout Channel

The sensor core features two identical analog readout channels as shown in Figure 3 on page 12. The readout channel consists of two gain stages, a sample-and-hold stage with black level calibration capability, and a 10-bit ADC.

Timing and Control

Gain Options

The MT9D112 provides per-color gain control as well as the option of global gain control. Per-color and global gain control can be used interchangeably. A write to a global gain register is aliased as a write of the same data to the four associated color-dependent gain registers.

Integer digital gains in the range 0–7 can be programmed. A digital gain of 0 sets all pixel values to 0 (the pixel data will simply represent the value applied by the pedestal block). Usually, when the gain settings are changed, the gain is updated on the next frame start.

Integration Time

The integration (exposure) time of the MT9D112 is controlled by the fine_integration_time and coarse_integration_time registers. While coarse integration time controls the integration duration steps of lines, the fine time allows for sub-line accuracy. To make manual adjustments to integration time, the MCU auto features must be disabled.

The limits for the fine integration time are defined by:

 $sensor_fine_IT_min_A/B \ge fine_integration_time \ge (sensor_lineLengthPck_A/B-sensor_fine_IT_max_margin_A/B)$

Course integration time is < frame_length_lines_margin.

The actual integration time is given by:

$$integration_time = \frac{((coarse_integration_time \ x \ line_length_pck) + fine_integration_time)}{vt_pix_clk_freq_mhz/1x10}$$
 (EQ 1)

line_length_pck = ((x_addr_end - x_addr_start +1)/xskip) +min_line_blanking_pck

coarse_integration_time is value of R0x3012

fine_integration_time is value of R0x3014

x_addr_end is a value of R0x3008

x_addr_start is a value of R0x3004

xskip is a value of R0x3016[7:5]

vt_pix_clk_freq_mhz is MCLK/2

It is fundamental to the operation of an electronic rolling shutter (ERS) that it is not possible to set an integration time that is greater than the frame time. Unlike earlier Micron Imaging parts, setting an integration time that is greater than the frame time does not affect the frame time; the behavior is undefined. On the MT9D112, it is necessary to reprogram the frame time (frame_length_lines) in order to make longer exposure times available. Long integration times increase the likelihood of image degradation due to increased accumulation of dark current.

If the integration time is changed while FRAME_VALID is asserted for frame n, the first-frame output using the new integration time is frame (n + 2). The sequence is as follows:

- 1. During frame *n*, the new integration time is held in the pending register.
- 2. At the start of frame (n + 1), the new integration time is transferred to the live register. Integration for each row of frame (n + 1) has been completed using the old integration time.
- 3. The earliest time that a row can start integrating using the new integration time is immediately after that row has been read for frame (n + 1). The actual time that rows start integrating using the new integration time is dependent upon the new value of the integration time.
- 4. When frame (n + 1) is read out, it will have been integrated using the new integration time.

If the integration time is changed on successive frames, each value written will be applied for a single frame; the latency between writing a value and it affecting the frame readout remains at two frames.

When the integration time and the gain are changed at the same time, the gain update is held off by one frame so that the first frame output with the new integration time also has the new gain applied.

PLL

PLL Generated Master Clock

The PLL can generate a master clock signal whose frequency is up to 80 MHz (input clock from 6 MHz through 54 MHz). R0x341C controls the frequency of the PLL-generated clock. It is possible to bypass the PLL and use CLKIN as master clock. In order to do so, one must set R0x341E[0] to "1." If power consumption is a concern, R0x341E[1] should be also set to "1" a short time later, to put the bypassed PLL in power down mode. To enable the PLL again, the two bits must be set to "0" in the reverse order. By default, the PLL is bypassed and powered down.

PLL Setup

Because the input clock frequency is unknown, the part starts with the PLL disabled. The PLL takes time to power up. During this time, the behavior of its output clock signal is not guaranteed. The PLL output frequency is determined by two constants, M and N, and the input clock frequency.

PLL programming and power-up sequence is as follows:

- 1. Program PLL frequency settings, R0x341C (pll_m, pll_n) (master clock frequency is equal to fVCO_pll/8). With default settings master clock frequency of 80 MHz is obtained with ^fCLKIN = 16 MHz.
- 2. Power up PLL, R0x341E[1] = 0.
- 3. Wait for PLL settling time > 1ms.
- 4. Turn off PLL bypass, R0x341E[0] = 0.

Allow one complete frame to effect the correct integration time after enabling PLL.

Note:

Before enabling PLL, ensure the slew rate is optimized for pads.

The default M and N values are for 16 MHz.

Table 4: Frequency Parameters

Frequency	Equation	Min (MHz)	Max (MHz)
[†] IN	-	6	54
^f PFD	^f clkin /(pll_n+1)	2	20
†VCO	[†] clkin * pll_m/(pll_n+1)	320	640

Readout Options

The sensor core supports different readout options to modify the image before it is sent to the IFP. The readout can be limited to a specific window of the original pixel array.

For preview modes the sensor core supports both skipping and pixel averaging in x and y direction.

By changing the readout direction the image can be flipped in the vertical and/or mirrored in the horizontal.

Window Size

The image output size is set with registers x_addr_start , x_addr_end , y_addr_start , and y_addr_end . The edge pixels in the 1,616 x 1,216 array are present to avoid edge defects and should not be included in the visible window. Binning will change the image output size.

Readout Modes

Horizontal Mirror

When the horizontal_mirror bit (R0x3040[0]) is set in the read mode register, the order of pixel readout within a row is reversed, so that readout starts from x_addr_end and ends at x_addr_start. Figure 7 shows a sequence of 6 pixels being read out with horizontal_mirror=0 and horizontal_mirror=1. Changing horizontal_mirror causes the Bayer order of the output image to change; the new Bayer order is reflected in the value of the pixel order register. This change in sensor core output is corrected for by the SOC.

Figure 7: 6 Pixels in Normal and Column Mirror Readout Modes

Vertical Flip

When the vertical flip bit (R0x3040[1]) is set in the read mode register, the order in which pixel rows are read out is reversed, so that row readout starts from y_addr_end and ends at y_addr_start. Figure 8 shows a sequence of 6 rows being read out with row mirror = 0 and row mirror = 1. Changing vertical_flip causes the bayer order of the output image to change; the new bayer order is reflected in the value of the pixel_order register. This change in sensor core output is corrected for by the SOC.

Figure 8: 6 Rows in Normal and Row Mirror Readout Modes

Column and Row Skip

The sensor core supports subsampling. Subsampling reduces the amount of data processed by the analogue signal chain in the sensor and thereby allows the frame rate to be increased. Subsampling is enabled by setting x_odd_inc=3 and/or y_odd_inc=3. This reduces the amount of row and column data processed and is equivalent to the skip2 readout mode provided by earlier Micron Imaging sensors. When enabling skipping, the proper image output and crop sizes must be updated beforehand.

Figure 9: 8 Pixels in Normal and Column Skip 2x Readout Modes

The following waveform shows a sequence of data being read out with x_odd_inc=3 and y_odd_inc=1. The effect of the different subsampling settings on the pixel array readout is shown in Figures 10 through 13.

Figure 10: Pixel Readout (no skipping)

Figure 11: Pixel Readout (x_odd_inc=3, y_odd_inc=1)

Figure 12: Pixel Readout (x_odd_inc=1, y_odd_inc=3)

Figure 13: Pixel Readout (x_odd_inc=3, y_odd_inc=3)

Programming Restrictions when Skipping

When skipping is enabled as a viewfinder mode, and the sensor is switched back and forth between full resolution and skipping, it is recommended that line_length_pck be kept constant between the two modes. This allows the same integration times to be used in each mode.

When subsampling is enabled, it may be necessary to adjust the x_addr_end and y_addr_end settings. The values for these registers are required to correspond with rows/columns that form part of the subsampling sequence. The adjustment should be made in accordance with the following rule:

remainder = (addr_end - addr_start + 1) AND 4;

if (remainder == 0) addr_end = addr_end - 2;

Table 5 on page 21 shows the row address sequencing for normal and subsampled (with y_odd_inc=3) readout. The same sequencing applies to column addresses for subsampled readout. There are two possible subsampling sequences (because the subsampling sequence only read half of the rows and columns) depending upon the alignment of the start address.

Binning

The MT9D112 sensor core supports 2x1 and 2x2 analogue binning (column binning, also called x-binning and row/column binning, also called xy-binning). Binning has many of the same characteristics as subsampling but because it gathers image data from all pixels in the active window (rather than a subset of them), it achieves superior image quality and avoids the aliasing artifacts that can be a characteristic side effect of subsampling.

Binning is enabled by selecting the appropriate subsampling settings (x_odd_inc=3 and y_odd_inc=1 for x-binning, x_odd_inc=3 and y_odd_inc=3 for xy-binning) and setting the appropriate binning bit in read_mode (Reg0x3040-1). As for subsampling, x_addr_end and y_addr_end may require adjustment when binning is enabled.

The effect of the different subsampling settings is shown in Figure 14 and Figure 15.

Figure 14: Pixel Readout (x_odd_inc=3, y_odd_inc=1, x_bin=1)

Figure 15: Pixel Readout (x_odd_inc=3, y_odd_inc=3, x_ybin=1)

Binning Limitations

Binning requires different sequencing of the pixel array and imposes different timing limits on the operation of the sensor. In particular, xy-binning requires two read operations from the pixel array for each line of output data, which has the effect of increasing the minimum line blanking time.

As a result, when xy-binning is enabled, some of the programming limits declared in the parameter limit registers are no longer valid. In addition, the default values for some of the manufacturer-specific registers need to be reprogrammed. None of these adjustments are required for x-binning. The sensor must be taken out of streaming mode before switching between binned and nonbinned operation.

Table 5: Row Address Sequencing

Normal	Skipping	Skipping	Binned	Binned
0	0		0, 2	
1	1		1, 3	
2		2		2, 4
3		3		3, 5
4	4		4, 6	
5	5		5, 7	
6		6		6, 8
7		7		7, 9

Raw Data Format

The sensor core image data is read out in a progressive scan. Valid image data is surrounded by horizontal blanking and vertical blanking as shown in Figure 16 on page 22. The amount of horizontal blanking and vertical blanking is programmable. LINE_VALID is HIGH during the shaded region of the figure. FRAME_VALID timing is described in the next section.

Figure 16: Pixel Data Timing Example

P _{0,0} P _{0,1} P _{0,2}	00 00 00 00 00 00 00 00 00 00 00
VALID IMAGE	HORIZONTAL BLANKING
P _{m-1,0} P _{m-1,1} P _{m-1,n-1} P _{m-1,n} P _{m,0} P _{m,1} P _{m,n-1} P _{m,n}	00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00	00 00 0000 00 00
00 00 00 00 00 00	00 00 00 00 00 00
VERTICAL BLANKING	VERTICAL/HORIZONTAL BLANKING
00 00 0000 00 00	00 00 00 00 00 00
00 00 00 00 00 00	00 00 00 00 00 00

Raw Data Timing

The sensor core output data is synchronized with the PIXCLK output. When LINE_VALID is HIGH, one pixel data is output on the 10-bit DOUT output every PIXCLK period. By default, the PIXCLK signal runs at the same frequency as the master clock, and its rising edges occur one-half of a master clock period after transitions on LINE_VALID, FRAME_VALID, and DOUT (Figure 17). This allows PIXCLK to be used as a clock to sample the data. PIXCLK is continuously enabled, even during the blanking period.

Figure 17: Pixel Data Timing Example

Figure 18: Row Timing and FRAME_VALID/LINE_VALID Signals

The sensor timing is shown in terms of pixel clock and master clock cycles (Figure 17 on page 22 and Figure 18 on page 22). Increasing the integration time to more than one frame causes the frame time to be extended.

Table 6: Row Timing Parameters

Parameter	Name	Default @ 54 MHz
PIXCLK_PERIOD	Pixel Clock Period	1 pixel clock = 18.52ns
S	Skip (Subsampling) Factor	1
Α	Active Data Time	1600 pixel clocks = 29.63μs
Р	Frame Start/End Blanking	6 pixel clocks = 111.11ns
Q	Horizontal Blanking	2284 - 1600 pixel clocks = 12.667μs
A + Q	Row Time	2284 pixel clocks = 42.296µs
N	Number of rows	1200 rows
V	Vertical Blanking	(1253 - 1200) * 2284 + 684 - 12 pixel clocks = 2253.481µs
Tfv Frame Valid Time (1200 * 2284) - 684 + 12 pixel clocks = 2740128 pixel clocks = 50.743ms		
F	Total Frame Time	2284 pixel clocks/row * 1253 rows = 2861852 pixel clocks = 52.997ms

SOC Description

Image Flow Processor

Image and color processing in the MT9D112 is implemented as an image flow processor coded in hardware logic. The IFP can be controlled by registers from the outside but during normal operation the embedded microcontroller will automatically adjust the operation parameters. The IFP is broken down into different sections outlined in Figure 19.

Figure 19: Color Pipeline

Test Patterns

During normal operation of the MT9D112, a stream of raw image data from the sensor core is continuously fed into the color pipeline. For test purposes, this stream can be replaced with a fixed image generated by a special test module in the pipeline. The module provides a selection of test patterns sufficient for basic testing of the pipeline.

Test patterns are accessible using R0x3290 and are shown in Figure 20. Disabling MCU is recommended before enabling test patterns.

Figure 20: Test Patterns

Test Pattern	Register Value	Example
Flat Field	R0x3290 = 1	
Vertical Ramp	R0x3290 = 2	
Color Bar	R0x3290 = 3	
Vertical Stripes	R0x3290 = 4	
Pseudo-Random	R0x3290 = 5	

First Black Level Subtraction and Digital Gain

Image stream processing starts with black level subtraction (R0x3278) and multiplication of all pixel values by a programmable digital gain (R0x32DC). Both operations can be independently set to separate values for each color channel (R, Gr, Gb, B). Independent color channel digital gain is adjusted with registers R0x32D4 through R0x32DA. Independent color channel black level adjustments can be made with R0x327A through R0x3280. If the black level subtraction produces a negative result for a particular pixel, the value of this pixel is set to "1."

Lens Shading Correction

Lenses tend to produce images whose brightness is significantly attenuated near the edges. There are also other factors causing fixed pattern signal gradients in images captured by image sensors. The cumulative result of all these factors is known as lens shading. The MT9D112 has an embedded lens shading correction module that can be programmed to counter the shading effect of a lens on each individual R, Gb, Gr, and B color signal. The LC module multiplies R, Gb, Gr, and B signals by a 2-dimensional correction function F (x,y), whose profile in both x and y direction is a piecewise quadratic polynomial with coefficients independently programmable for each direction and color. LC can be enabled and disabled with R0x3210[2].

The MT9D112 also includes 16 independent corner parameters, K, for each of the color channels. The K factors are independently adjustable at each corner and are not dependent on the vertical and horizontal spatial dimension. They can be adjusted with R0x3546 through R0x3562.

LC can be enabled and disabled with R0x3210[2].

Lens Correction Zones

In order to increase the precision of the correction function, the image plane is divided into 8 zones in each dimension. The coordinates of zone boundaries are referenced with respect to the lens center, C. Each boundary as well as C (Cx, Cy) coordinate is stored as a byte, which represents the coordinate value divided by 4. There always three boundaries to the left (top) of the center and three to the right (bottom) of the center. These boundaries apply uniformly for all color channels. However, the correction functions are programmable independently for each color component. Boundary and lens center positions are also valid for the preview mode. Figure 21 illustrates the lens correction zones which are accessible through registers R0x34CE through R0x34DC.

Figure 21: Lens Correction Zones

Defect Correction and Noise Reduction

The IFP performs on-the-fly defect correction that can mask pixel array defects such as high dark current (hot) pixels and pixels that are darker or brighter than their neighbors due to photoresponse nonuniformity. Each pixel is compared with its 8 nearest neighbors having the same filter color. Suppose the value of the compared pixel is P and the values of the 8 neighbors range from PMIN to PMAX. If P > PMAX, P is replaced with PMAX. Likewise, if P < PMIN, P is replaced with PMIN. Otherwise, the pixel is not considered defective and its value P is not changed. Defect correction can be enabled and disabled with R0x3210[3].

The image data for each color channel can be passed through an adaptive noise suppression module which averages over flat field areas while preserving edge information. The module is edge aware with exposure that is based on configurable thresholds. The thresholds are changed on-the-fly based on the brightness of the current scene. Noise reduction can be enabled and disabled with R0x33F4[3] and thresholds are set by R0x33F6 through R0x33FC.

Color Interpolation and Edge Detection

In the raw data stream fed by the sensor core to the IFP, each pixel is represented by a 10-bit integer number, which can be considered proportional to the pixel's response to a one-color light stimulus, red, green or blue, depending on the pixel's position under the color filter array. Initial data processing steps, up to and including the defect correction, preserve the 1-color-per-pixel nature of the data stream, but after the defect correction it must be converted to a 3-colors-per-pixel stream appropriate for standard color processing. The conversion is done by an edge-sensitive color interpolation module. The module pads the incomplete color information available for each pixel with information extracted from an appropriate set of neighboring pixels. The algorithm used to select this set and extract the information seeks the best compromise between preserving edges and filtering out high frequency noise in flat field areas. The edge threshold can be set with R0x328E.

Second Black Level Correction

After interpolation it might be necessary to recalibrate the black level. A second global black level substraction is possible at this stage in the pipeline, which is controlled via R0x3276. If the subtraction produces a negative result for a particular pixel, the value of this pixel is set to 0."

Color Correction and Aperture Correction

In order to achieve good color fidelity of IFP output, interpolated RGB values of all pixels are subjected to color correction. The IFP multiplies each vector of three pixel colors by a 3 x 3 color correction matrix. The three components of the resulting color vector are all sums of three 10-bit numbers. Since such sums can have up to 12 significant bits, the bit width of the image data stream is widened to 12-bits per color (36-bits per pixel). The color correction matrix can be either programmed by the user or automatically selected by the auto white balance algorithm implemented in the IFP. Color correction should ideally produce output colors that are independent of the spectral sensitivity and color crosstalk characteristics of the image sensor. The optimal values of color correction matrix elements depend on those sensor characteristics and on the spectrum of light incident on the sensor. The color correction variables can be adjusted with R0x006 through R0x042.

To increase image sharpness, a programmable 1D or 2D aperture correction (sharpening filter) is applied to color corrected image data. Aperture correction is enabled using R0x3210. The gain and threshold for 1D and 2D correction can be defined via R0x326A and R0x326C.

Image Cropping

Image cropping takes place when the sensor core is programmed to output pixel values from a rectangular portion of its pixel array-a window-smaller than the default 1,600 x 1,200 window. Pixels outside the selected cropping window are not read out, which results in narrower field of view than at the default sensor settings. Irrespective of the size and position of the cropping window, the MT9D112 sensor core can also decimate outgoing images by skipping columns and/or rows of the pixel array, and/or by binning 2 x 2 groups of pixels of the same color. Since scaling by skipping (deletion) can cause aliasing (even if pixel binning is simultaneously enabled), it is generally better to change image size only by cropping and pixel binning.

In context A, the cropped window is defined by variables 0x051 through 0x057. In context B, it is defined by 0x05F and 0x065. In context A and B, the height and width definitions for the output window must be equal to or smaller than the cropped image.

Output width will always be as with no scaling; crop will still be in effect.

Contrast and Gamma Correction

Gamma correction is independently applied and independently configurable for each of the 12-bit R, G, and B color channels. The gamma correction curve is implemented as a piecewise linear function with 19 knee points, taking 12-bit arguments and mapping them to 8-bit output. The abscissas of the knee points are fixed at 0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4095. The 8-bit ordinates are programmable via IFP registers.

The MT9D112 IFP includes a block for gamma and contrast correction. A custom gamma/contrast correction table may be uploaded, or pre-set gamma and contrast settings may be selected.

The gamma and contrast correction block uses the following 12-bit input data points to form a piecewise linear transformation curve: 0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4095. These input points have been selected to provide more detail to the low end of the curve where gamma correction changes are typically the greatest. These points correspond to 8-bit output values that can be uploaded to the appropriate registers.

Figure 22: Gamma Correction Curve

For simplicity, predefined gamma and contrast tables may be selected, and the MT9D112 automatically combines these tables and upload them to the appropriate gamma correction registers.

The gamma and contrast tables may be selected at mode driver (ID = 7) offsets 67 and 68 (decimal) for mode A and mode B, respectively. The gamma settings are established at bits 0-2, and the contrast settings are established at bits 4-6.

The gamma setting values are shown in Table 7.

Table 7: Gamma Settings

Gamma Setting	Definition	
0	Gamma = 1.0 (no gamma correction)	
1	Gamma = 0.56	
2	Gamma = 0.45	
3	Use user-defined gamma table	

S-Curve

The predefined contrast table values have been established by creating an "S" curve with highlight and shadow regions that blend smoothly with a linear midtone region. The slope and value of the highlight and shadow regions match the linear region at these transitions. In addition, the slope of the "S" curve is zero at the top (white) and bottom (black) points. The slope of the linear region determines how much contrast is applied; more contrast corresponds to a higher, midtone linear slope.

Figure 23: Contrast "S" Curve

Table 8: Contrast Values

Contrast Setting	Definition
0	No contrast correction
1	Contrast slope = 1.25
2	Contrast slope = 1.50
3	Contrast slope = 1.75
4	Noise reduction contrast

The contrast curve function is applied to the gamma curve points used (whether the gamma curve points are predefined or user-uploaded).

S-curve is a function to correct image pixel values. When applied to pixel values, it typically compresses dark and bright tones, while stretching the midtones.

Special effects like negative image, sepia, or B/W can be applied to the data stream at this point. Special effects are enabled with R0x3348.

RGB to YUV Conversion

For further processing the data is converted from RGB color space to YUV color space.

Color Kill

To remove high light or low light color artifacts, a color kill circuit is included. It affects only pixels whose luminance exceeds a certain preprogrammed threshold. The U and V values of those pixels are attenuated proportionally to the difference between their luminance and the threshold.

YUV Color Filter

As an optional processing step noise suppression by 1-dimensional low-pass filtering of Y and/or UV signals is possible. A 3- or 5-tap filter can be selected for each signal.

Image Scaling

To ensure that the size of images output by the MT9D112 can be tailored to the needs of all users, the IFP includes a scaler module. When enabled, this module performs rescaling of incoming images-shrinks them to arbitrarily selected width and height without reducing the field of view and without discarding any pixel values.

The scaler performs pixel binning-divides each input image into rectangular bins corresponding to individual pixels of the desired output image, averages pixel values in these bins, and assembles the output image from the bin averages. Pixels lying on bin boundaries contribute to more than one bin average: their values are added to bin-wide sums of pixel values with fractional weights. The entire procedure preserves all image information that can be included in the downsized output image and filters out high frequency features that could cause aliasing.

The image cropping and scaler module can be used together to implement a digital zoom and pan. If the scaler is programmed to output images smaller than images coming from the sensor core, zoom effect can be produced by cropping the latter from their maximum size down to the size of the output images. The ratio of these two sizes determines the maximum attainable zoom factor. For example, a 1,600 x 1,200 image rendered on a 160 x 120 display can be zoomed up to 10 times, since 1,600/160 = 1,200/120 = 10. Panning effect can be achieved by fixing the size of the cropping window and moving it around the pixel array.

Due to the loss of sharpness due to pixel binning during image scaling, 1D aperture correction may be applied to increase image sharpness lost due to pixel binning during image scaling.

YUV-to-RGB/YUV Conversion and Output Formatting

The YUV data stream emerging from the scaler module can either exit the color pipeline as-is or be converted before exit to an alternative YUV or RGB data format as selected by R0x332E.

Color Conversion Formulas

Y'U'V'

This conversion is BT 601 scaled to make YUV range from 0 through 255. This setting is recommended for JPEG encoding and is the most popular, although it is not well defined and often misused in Windows.

$$Y' = 0.299 R' + 0.587 G' + 0.114 B'$$
 $U' = 0.564 (B' - Y') + 128$
 $V' = 0.713 (R' - Y') + 128$

There is an option where 128 is not added to U'V'.

Y'Cb'Cr' Using sRGB Formulas

The MT9D112 implements the sRGB standard. This option provides YCbCr coefficients for a correct 4:2:2 transmission. Note that $16 < Y60 \le 1 < 235$, 16 < Cb, Cr < 240 and 0 < 1 < 235.

```
Y' = (0.2126*R' + 0.7152*G' + 0.0722*B')*219/256 + 16 Cb' = 0.5389*(B' - Y')*224/256 + 128 Cr' = 0.635*(R' - Y')*224/256 + 128
```

Y'U'V' Using sRGB Formulas

Similar to the previous set of formulas, but has YUV spanning a range of 0 through 255.

Y' = 0.2126*R' + 0.7152*G' + 0.0722*B'

U' = 0.5389*(B' - Y') + 128 = -0.1146*R - 0.3854*G + 0.5*B

V' = 0.635*(R' - Y') + 128 = 0.5*R - 0.4542*G - 0.0458*B

There is an option to disable adding 128 to U'V'. The reverse transform is as follows:

R' = Y + 1.5748*V

G' = Y - 0.1873*(U - 128) - 0.4681*(V - 128)

B' = Y + 1.8556*(U - 128)

Output Interface

Parallel and MIPI Output

The user can select to either use the serial MIPI output or the 8-bit parallel output to transmit the data. Only one of the output modes can be used at any time.

The parallel output, enabled by R0x301A[7], can be used with an output FIFO whose memory is shared with the MIPI output FIFO to retain a constant pixel output clock independent from the scaling factor.

When scaling the image or skipping lines, the data would be generated in bursts and the pixel clock would turn on and off in intervals, which might lead to EMI problems. The output FIFO will group all active pixel data together so the pixel clock can be run at a constant speed. The output FIFO is enabled by setting R0x3212[1:0] to 10. There are two registers to configure the output FIFO, watermark and line length.

The MIPI output transmitter implements a fully configurable serial differential subLVDS transmitter capable of up to 640 Mb/s. It supports multiple formats, error checking, and custom short packets.

Output Format and Timing

YUV/RGB Uncompressed Output

Uncompressed YUV or RGB data can be output either directly from the output formatting block or via a FIFO buffer with a capacity of 800 bytes, enough to hold one-fourth uncompressed line at full resolution. Buffering of data is a way to equalize the data output rate when image scaling is used. Scaling produces an intermittent data stream consisting of short high-rate bursts separated by idle periods. High pixel clock frequency during bursts may be undesirable due to EMI concerns.

Figure 24 depicts the output timing of uncompressed YUV/RGB when a decimated data stream is equalized by buffering or when no scaling takes place. The pixel clock frequency remains constant during each LINE_VALID HIGH period. Decimated data are output at a lower frequency than full size frames, which helps to reduce EMI.

Figure 24: Timing of Uncompressed Full Frame Output or Decimated Output
Passing Through the FIFO

Uncompressed YUV/RGB Data Ordering

The MT9D112 supports swapping YCrCb mode, as illustrated in Table 9.

Table 9: YCrCb Output Data Ordering

Mode				
Default (no swap)	Cb _i	Yi	Cr _i	Y _{i+1}
Swapped CrCb	Cr _i	Yi	Cb _i	Y _{i+1}
Swapped YC	Yi	Cb _i	Y _{i+1}	Cr _i
Swapped CrCb, YC	Yi	Cr _i	Y _{i+1}	Cb _i

The RGB output data ordering in default mode is shown in Table 10. The odd and even bytes are swapped when luma/chroma swap is enabled. R and B channels are bit-wise swapped when chroma swap is enabled.

Table 10: RGB Ordering in Default Mode

Mode (Swap Disabled)	Byte	$D_7D_6D_5D_4D_3D_2D_1D_0$
RGB 565	Odd	$R_7R_6R_5R_4R_3G_7G_6G_5$
	Even	$G_4G_3G_2B_7B_6B_5B_4B_3$
RGB 555	Odd	$0 R_7 R_6 R_5 R_4 R_3 G_7 G_6$
	Even	$G_4G_3G_2B_7B_6B_5B_4B_3$
RGB 444x	Odd	$R_7R_6R_5R_4G_7G_6G_5G_4$
	Even	B ₇ B ₆ B ₅ B ₄ 0 0 0 0
RGB x444	Odd	0 0 0 0 R ₇ R6 ₆ R ₅ R ₄
	Even	$G_7G_6G_5G_4B_7B_6B_5B_4$

Uncompressed 10-Bit Bypass Output

Raw 10-bit Bayer data from the sensor core can be output in bypass mode in two ways:

- 1. Using 8 data output pads (DOUT0-DOUT7), and GPIO[0:1].
- 2. Using only 8 pads (DOUT0-DOUT7) and a special 8 + 2 data format, shown in Table 11.

The timing of 10-bit or 8-bit data stream output in the bypass mode is qualitatively the same as that depicted in Figure 25 on page 34.

Table 11: 2-Byte RGB Format

Odd bytes	8 data bits	$D_9D_8D_7D_6D_5D_4D_3D_2$
Even bytes	2 data bits + 6 unused bits	0 0 0 0 0 0 D ₁ D ₀

Figure 25: Example of Timing for Non-Decimated Uncompressed Output Bypassing
Output FIFO

FIFO

During normal pipeline operation output data rate is determined by number of factors, for instance, input image size, degree of scaling, and sensor operation mode. As these parameters change during normal sensor operation, output frequency changes. This output frequency may generate RF noise, interfering with the mobile device. By using an output FIFO to maintain a constant output clock frequency, noise is easily filtered out.

The FIFO accumulates data and after certain number of bite is stored it will yield them in a single burst making sure that data rate within the burst remains constant. This approach may utilize a free running clock thus making possible RF interference to minimal.

In the default operation mode user must provide two values for proper FIFO operation:

- 1. the expected line length (R0x3220)
- 2. watermark (R0x321E)

Value for both has to be specified in bytes. Calculation of line byte count is straightforward; multiply the number of pixels by the number of bytes per pixel. Number of bytes per pixel is 2 for all output modes except processed Bayer in which it equals one byte per pixel.

Watermark

Calculation of the watermark should be done based on maximum number of bytes that pipeline could output in the given mode (with activated clip and no scaling) and number of bites it will yield with account of scaling. Also, account for the horizontal sensor binning mode if such is activated. In this mode, the number of pixels that pipeline can output should be doubled.

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Camera Control

Camera Control

General Purpose I/Os

The four general purpose I/Os of the MT9D112 can be configured in multiple ways. Each of the I/Os can be used as a simple input/output that can be programmed from the host. The status of the GPIO is read at power up and can be used as a module ID to separate different module suppliers.

If 10-bit RAW output is required, GPIO[1:0] can be configured as bit 0 and bit 1 of a 10-bit data bus.

GPIO[3:2] can be configured to output a flash pulse to trigger an external Xenon or LED flash or a shutter pulse to control an external shutter.

To configure GPIO[3:0] pins:

- Set GPIO[1:0] to output DOUT_LSB[1:0]: R0x09:1[1:0]= "00"
- Set GPIO[2] to output Shutter: R0x51:1[0] = "1"
- Set GPIO[3] to output Flash: R0x09:1[4:3] = "01"

The general purpose inputs are enabled by setting reset_register[8]. Once enabled, all four inputs must be driven to valid logic levels by external signals. The state of the general purpose inputs can be read through gpi_status[3:0].

In addition, each of the following functions can be associated with none, one, or more of the general purpose inputs so that the function can be directly controlled by a hardware input:

- Output enable
- Trigger
- · Standby functions

The gpi_status register is used to associate a function with a general purpose input.

Output Enable Control

When the parallel pixel data interface is enabled, its signals can be switched asynchronously between the driven and High-Z under pin or register control, as shown in Table 12.

Table 12: Output Enable Control

OE_N Pin	Drive Signals Reg0x301A-B[6]	Description
disabled	0	Interface High-Z
disabled	1	Interface driven
1	0	Interface High-Z
X	1	Interface driven
0	X	Interface driven

Trigger Control

When the global reset feature is in use, the trigger for the sequence can be initiated either under pin or register control, as shown in Table 13 on page 36.

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Camera Control

Table 13: Trigger Control

TRIGGER	Global Trigger Reg0x3060-1[0]	Description
Disabled	0	Idle
Disabled	1	Trigger
0	0	Idle
X	1	Trigger
1	X	Trigger

Streaming/Standby Control

The MT9D112 can be switched between its soft standby and streaming states under pin or register control, as shown in Table 14.

Table 14: Streaming/STANDBY

STANDBY	Streaming Reg0x301A-B[2]	Description
Disabled	0	Soft Standby
Disabled	1	Streaming
X	0	Soft Standby
0	1	Streaming
1	X	Soft Standby

Firmware Architecture

The firmware for the MT9D112 is implemented in multiple drivers that are responsible for different parts of operation. All drivers are executed on the 68H11 microcontroller from the 32kB ROM and use the 2kB RAM to store variables, firmware updates, and code. The firmware can access registers in the senor core and the IFP independently from the user through a ring-bus. The GPIO interface is accessible via special function registers (SFRs) in memory space.

Figure 26: Software Architecture

Sequencer

The sequencer is responsible for coordinating all events triggered by the user. It is implemented as a state machine. For example, sending a capture command to the sequencer will change the resolution from preview to full resolution, settle the AWB/AE, turn on or off an external LED and switch back to preview after capturing the frame. The setup of the sensor can be defined by the user for the following states:

- on entering preview
- · in preview
- when leaving preview
- · when entering capture

Context and Operational Modes

The MT9D112 can operate in several modes including preview, still capture (snapshot), and video. All modes of operation are individually configurable and are organized as two contexts-context A and context B. A context is defined by sensor image size, frame rate, resolution and other associated parameters. The user can switch between the two contexts by sending a command via the two-wire serial interface.

Preview Mode

Context A is primarily intended for use in the preview mode. During preview, the sensor usually outputs low resolution images at a relatively high frame rate, and its power consumption is kept to a minimum.

Still Capture and Video Modes

Context B can be configured for the still capture or video mode, as required by the user. For still capture configuration, the user typically specifies the desired output image size, if flash should be enabled, how many frames to capture, etc. For video, the user might select a different image size and a fixed frame rate.

Snapshot and Flash

To take a snapshot, the user must send a command that changes the context from A to B. Typical sequence of events after this command are:

- First, the camera may turn on its LED flash, if it has one and is required to use it. With the flash on, the camera exposure and white balance is automatically adjusted to the changed illumination of the scene.
- Next, the camera performs auto focusing. Once in focus, it captures one or more frames of desired size. A camera equipped with a Xenon flash strobes it during the capture. Completing the sequence, the camera automatically returns to context A and resume running preview.

Video

To start video capture, the user must change relevant context B settings, such as capture mode, image size and frame rate, and again send a context change command. Upon receiving it, the MT9D112 switches to the modified context B settings, while continuing to output YUV-encoded image data. Auto exposure and auto focus automatically switches smooth continuous operation. To exit the video capture mode, the user has to send another context change command causing the sensor to switch back to context A.

Auto Exposure

The auto exposure algorithm performs automatic adjustments of the image brightness by controlling exposure time and analog gains of the sensor core as well as digital gains applied to the image.

Auto exposure is implemented by a firmware driver that analyzes image statistics collected by the exposure measurement engine, makes a decision and programs the sensor core and color pipeline to achieve the desired exposure. The measurement engine subdivides the image into 16 windows organized as a 4 x 4 grid.

Two auto exposure algorithm modes are available:

- 1. preview (luminance-based)
- 2. evaluative (histogram-based)

Preview Mode

This exposure mode is activated during preview or video capture. It relies on the statistics engine that tracks speed and amplitude of the change of the overall luminance in the selected windows of the image.

The backlight compensation is achieved by weighting the luminance in the center of the image higher than the luminance on the periphery. Other algorithm features include the rejection of fast fluctuations in illumination (time averaging), control of speed of response, and control of the sensitivity to the small changes. While the default settings are adequate in most situations, the user can program target brightness, measurement window, and other parameters described above.

In preview AE, the driver calculates image brightness based on average luma values received from 16 programmable equal-size rectangular windows forming a 4 x 4 grid. In preview mode, 16 windows are combined in 2 segments: central and peripheral. Central segment includes four central windows. All remaining windows belong to peripheral segment. Scene brightness is calculated as average luma in each segment taken with certain weights. Variable ae.weights[3:0] specifies central zone weight, ae.weights[7:4] - peripheral zone weight.

The driver changes AE parameters (IT, Gains, and so on) to drive brightness (ae.CurrentY) to programmable target (ae.Target). Value of one step approach to target is defined by ae.JumpDivisor variable.

Expected brightness is:

Ynew = ae.CurrentY+(ae.Target-ae.CurrentY)/ ae.JumpDivisor

To avoid unwanted reaction of AE on small fluctuations of scene brightness or momentary scene changes, the AE driver uses temporal filter for luma and gate around AE luma target. The driver changes AE parameters only if buffered luma outsteps AE target gates.

Variable ae.lumaBufferSpeed defines buffering level.

32*Ybuf1=Ybuf0*(32-ae.lumaBufferSpeed)+Ycurr* ae.lumaBufferSpeed;

Values ae.lumaBufferSpeed=32 and ae.JumpDivisor=1 specify maximal AE speed.

Evaluative Algorithm

A scene evaluative AE algorithm is available for use in snapshot mode. The algorithm performs scene analysis and classification with respect to its brightness, contrast, and composure and then decides to increase, decrease, or keep original exposure target. It is the most effective for backlight and bright outdoor conditions.

Accelerated Settling During Overexposure

The AE speed is direction-dependent. Transitioning from over saturation to target can take more time than transitioning from under-saturation. The AE driver has a mode which speeds up AE for over exposed scenes (ae.status[7]).

The AE driver counts the number of AE windows (driver variable ae.numOE) which have average brightness equal to or greater than some value, 250 by default. For a scene having saturated regions, the average luma is underestimated due to signal clipping. The driver compensates underestimation by a factor defined by ae.numOE variable.

currentY = ae.CurrentY * coeffOE[ae.numOE] / 16;

where:

const BYTE coeffOE[17] = {16,17, 18, 19, 20, 21, 22, 24, 26, 28, 30, 32, 36, 40, 48, 54, 64};

Exposure Control

To achieve the required amount of exposure, the AE driver adjusts the sensor integration time R9:0, R12:0, gains, ADC reference, and IFP digital gains. To reject flicker, integration time is typically adjusted in increments of ae.R9_step. ae.R9_step specifies duration in row times equal to one flicker period. Thus, flicker is rejected if integration time is kept a natural factor of the flicker period.

Exposure is adjusted differently depending on illumination situation.

• In extremely bright conditions, the exposure is set using R12:0, R9:0 and analog gains. R12:0 is used to achieve very short integration times.

In this situation:

- R9:0<ae.R9 step and flicker are not rejected.
- In bright conditions where R9:0>=ae., R9_step R9:0 is set as a natural factor of ae.R9_step. Analog gains are also used, but the green gain, also called virtual gain, does not exceed 2x. ae.minVirtGain limits minimal integration time and is expressed in flicker periods. ae.Index indicates the current integration time expressed in the same form.
- Under medium-intensity illumination, the integration time can increase further. For any given exposure, the best signal-to-noise ratio can be typically obtained by using the longest exposure and the smallest gain setting. However, a long exposure time can slow down the output frame rate if the former exceeds the default frame rate, R9:0 >R3:0 + R6:0 + 1. Integration ae.IndexTH23 specifies the breakpoint where AE scheme, giving preference to increasing the shutter width, is replaced with another scheme giving preference to increase in gain. ae.maxGain23 specifies maximum allowed gain in this situation. ae.VirtGain indicates current green channel gain.
- In darker situations, the gain achieves ae.maxGain23 and the integration time is allowed to increase again up to ae.maxIndex.
- In yet darker situations, once the integration time achieves ae.maxIndex, the analog gain is allowed to increase up to ae.maxVirtGain.
- In very dark conditions, the digital IFP gains are allowed to increase up to ae.maxDGainAE1 and ae.maxDGainAE2.

ADC is used as an additional gain stage by adjusting reference levels. See Table 30, "2: AE Variables," on page 140 for the ae.ADC* variables.

Figure 27: Gain vs. Exposure

AE MDR Mode

The MT9D112 also has an AE MDR mode to extend the dynamic range of a scene after AE has settled brightness. This mode can only be selected in PreviewEnter, PreviewLeave, and CaptureEnter states.

To set this mode, the following registers must be set:

seq.previewParEnter.ae = 4

seq.previewParLeave.ae = 4

seq.capParEnter.ae = 4

Auto White Balance

The MT9D112 has a built-in auto white balance algorithm designed to compensate for the effects of changing spectra of the scene illumination on the quality of the color rendition. The algorithm consists of two major parts: a measurement engine performing statistical analysis of the image and a driver performing the selection of the optimal color correction matrix, digital, and sensor core analog gains. While default settings of these algorithms are adequate in most situations, the user can reprogram base color correction matrices, place limits on color channel gains, and control the speed of both matrix and gain adjustments.

The MT9D112 AWB does not require the presence of gray or white elements in the image for good color rendition. The AWB does not attempt to locate brightest or grayest element of the image but instead performs statistical image analysis to differentiate between changes in predominant spectra of illumination and changes in predominant colors of the scene.

The MT9D112 also includes a module to detect edges based on hue variation which allows the high frequency patterns of the same color to be excluded from the AWB calculation.

Flicker Detection

Flicker occurs when the integration time is not an integer multiple of the period of the light intensity. The automatic flicker detection block does not compensate for the flicker, but rather avoids it by detecting the flicker frequency and adjusting the integration time. For integration times below the light intensity period (10ms for 50Hz environment), flicker cannot be avoided.

Flicker shows as horizontal bars rolling up or down. MCU looks for these rolling bars using a thin horizontal window, which outputs luma average and is applied to 48 points in the upper half of the image. MCU repeats same sampling on the next frame and subtracts 48 samples from previous frame from corresponding samples from the current frame. fd.skipFrame allows skipping more frames between subtraction. MCU then smooths the 48 sampling points, see fd.smooth_cnt, applies an amplitude threshold

fl.minAmplitude to avoid false detection and looks at the resulting waveform. If flicker is present, the waveform should have a frequency within the search range, see fd.search_f1/2_50/60. Assuming the flicker power is a sine wave, subtracting two frames results in

 $\sin(wt)$ - $\sin(wt+a) = 2\sin(a/2)\cos(wt+a/2)$

which is a cosine wave of the original frequency.

Auto Focus

Algorithm

The auto focus algorithm implemented in the MT9D112 firmware seeks to maximize sharpness of vertical lines in images output by the sensor, by guiding an external lens actuator to the position of best lens focus. The algorithm is actuator-independent, providing guidance by means of an abstract 1-dimensional position variable, leaving the translation of its changes into physical lens movements to a separate AF mechanics (AFM) driver.

For measuring line sharpness, the AF algorithm relies on focus measurement engine in the color pipeline, which is a programmable vertical-edge-filtering module. The module convolves two preprogrammed 1-dimensional digital filters with luminance (Y) data it receives row by row from the color interpolation module. In every interpolated image, the pixels whose Y values are used in the convolution form a rectangular block that can be arbitrarily positioned and sized, and in addition divided into up to 16 equal-size subblocks, referred to as AF windows or zones. The absolute values of convolution results are summed separately for each filter over each of the AF windows, yielding up to 32 sums per frame.

There are several motion sequences through which the MT9D112 AF algorithm can bring a lens to best focus position. All these sequences begin with a jump to a preselected start position, for example, the infinity focus position. This jump is referred to as

the first flyback. It is followed by a unidirectional series of steps that puts the lens at up to 19 preselected positions different from the start position. This series of steps is called the first scan.

During the scan, the AF algorithm stops the lens at each preselected position long enough to obtain valid sharpness scores. The normalized score for each AF window is stored along with information on how many zones had a high sharpness score and the position with the maximum sharpness score is determined taking into account the zone information. This way the algorithm can handle scenes with objects at different distances.

After the first scan, the AF algorithm provides a number of ways to proceed with final lens positioning. The user should select a way that best fits the magnitude of lens actuator hysteresis and desired lens proximity to the truly optimal position. Actuators with large, unknown or variable hysteresis should do a second flyback and either jump or retrace the steps of the first scan to the best scanned position. Actuators with constant hysteresis (like stepper motors) can be moved to that position directly from the end position of the scan-the AF algorithm offers an option to automatically increase the length of this move by a preprogrammed backlash-compensating step. Finally, if the first scan is coarse relative to the positioning precision of the lens actuator and depth of field of the lens, an optional second fine scan can be performed around the lens position voted best after the first scan. This second scan is done in the same way as the first, except that the positions it covers are not preselected. Instead, the AF algorithm user must set step size and number of steps for the second scan. The second scan must be followed by the same hysteresis-matching motion sequence as the first scan, for example, a third flyback and jump to the best position.

The AF driver is disabled on power-up. If AF is desired, it must be explicitly enabled after every power up or reset before it can be used. This can be accomplished by:

Establish AF motor type

- set afm.type (0x002) = 129 (for helimorph AF) afm.type (0x002) = 130 (for stepper motor AF) afm.type (0x002) = 131 (for AD5398)
- turn on AF in preview mode seq.previewPar.af=1
- call "refresh" sequencer command seq.cmd=5

Modes

There are four AF camera modes that the MT9D112 can fully support if it controls the position of the camera lens.

1. Snapshot mode

In this mode, a camera performs auto focusing upon a user command to do so. When the auto focusing is finished, a snapshot is normally taken and there is no further AF activity until the next appropriate user command. The MT9D112 can do the auto focusing using its own AF algorithm described above or a substitute algorithm loaded into RAM. It can then wait or automatically proceed with other operations required to take a snapshot.

2. Locked mode

The MT9D112 can be commanded to lock the lens in its current position. Between the command to lock the lens and another to release it, the lens does not respond to other commands or scene changes.

3. Focus-free mode

In many situations, such as under low light or during video recording, it may be impossible or undesirable to focus the lens prior to every image capture. Instead, the

lens can be locked in a position most likely to produce satisfactory images (the hyperfocal position). This position can be programmed into the MT9D112, and it can move and hold the lens there on command.

4. Manual mode

In this mode there is no AF activity— focusing the camera is left to the user. The user typically can move the camera lens in steps, by manually issuing commands to the lens actuator, and observe the effect of his actions on a preview display. The MT9D112 can provide 30 fps image input for the display and simultaneously translate user commands received via two-wire serial interface into digital waveforms driving the lens actuator.

Lens Actuator Interface

Actuators used to move lenses in AF cameras can be classified into several broad categories that differ significantly in their requirements for driving signals. These requirements also vary from one device to another within each category. To ensure its compatibility with many different actuators, the MT9D112 includes a general purpose input/output module (GPIO_AF).

The GPIO is a programmable rectangular waveform generator, with 8 individually controllable output pads (GPIO0 through GPIO7), a separate power supply pad (VDD_AF), and a separate clock domain that can be disconnected from the master clock to save power when the GPIO is not in use. The GPIO can toggle its output pads as fast as half the master clock frequency.

An external host processor or the embedded microcontroller of the MT9D112 have two ways to control the voltages on the GPIO output pads:

- 1. Setting or clearing bits in a control register
 The state of the GPIO pads is updated immediately after writing to the register. Since writing via the two-wire serial interface takes some time, this way does not give the host processor a very precise control over GPIO output timing.
- 2. Waveform programming

The second way to obtain a desired output from the GPIO is to program a set of periodic waveforms to the control registers and initialize their generation. The GPIO then generates the programmed waveforms on its own, without waiting for any further input, and therefore with the best attainable timing precision. If necessary, the GPIO can notify the MCU and the host processor about reaching certain points in the waveforms generation, for example, the end of a particular waveform. Every GPIO notification has two components: the GPIO sends a wakeup signal to the MCU and sets a bit in its status register that can be polled by the MCU and/or the host processor. The wakeup signals have an effect only when the MCU is in sleep mode.

The MT9D112 can be set up not only to output digital signals to a lens actuator and/or other similar devices, but also to receive their digital feedback. All GPIO output pads are reconfigurable as high-impedance digital inputs. The logical state of each GPIO pad is mirrored by the state of a bit in a dedicated register, which allows the MCU and host processor to sample digital input signals at intervals equal to their respective register read times.

Two-Wire Serial Interface

The two-wire serial interface bus enables read/write access to control and status registers within the MT9D112. The interface protocol uses a master/slave model in which a master controls one or more slave devices. The sensor acts as a slave device. The master generates a clock (SCLK) that is an input to the sensor and used to synchronize transfers.

Data is transferred between the master and the slave on a bidirectional signal (SDATA). SDATA is pulled up to VDDIO off-chip by a $1.5 \mathrm{K}\Omega$ resistor. Either the slave or master device can drive SDATA LOW-the interface protocol determines which device is allowed to drive SDATA at any given time.

Protocol

Data transfers on the two-wire serial interface bus are performed by a sequence of low-level protocol elements, as follows:

- · a (repeated) start condition
- · a slave address/data direction byte
- a 16-bit register address
- a(an) (no) acknowledge bit
- two data bytes
- a stop condition

The bus is idle when both SCLK and SDATA are HIGH. Control of the bus is initiated with a start condition, and the bus is released with a stop condition. Only the master can generate the start and stop conditions.

Start Condition

A start condition is defined as a HIGH-to-LOW transition on SDATA while SCLK is HIGH. At the end of a transfer, the master can generate a start condition without previously generating a stop condition, and this is known as a "repeated start" or "restart" condition.

Stop Condition

A stop condition is defined as a LOW -to-HIGH transition on SDATA while SCLK is HIGH.

Data Transfer

Data is transferred serially, 8 bits at a time, with the MSB transmitted first. Each byte of data is followed by an acknowledge bit or a no-acknowledge bit. This data transfer mechanism is used for the slave address/data direction byte and for message bytes.

One data bit is transferred during each SCLK clock period. SDATA can change when SCLK is low and must be stable while SCLK is HIGH.

Slave Address/Data Direction Byte

Bits [7:1] of this byte represent the device slave address and bit [0] indicates the data transfer direction. A "0" in bit [0] indicates a write, and a "1" indicates a read. The default slave addresses used by the MT9D112 are 0x20 (write address) and 0x21 (read address). Alternate slave addresses of 0x30 (write address) and 0x31 (read address) can be selected by asserting the SADDR input signal.

Message Byte

Message bytes are used for sending register addresses and register write data to the slave device and for retrieving register read data. The protocol used is outside the scope of the two-wire serial interface specification.

Acknowledge Bit

Each 8-bit data transfer is followed by an acknowledge bit or a no-acknowledge bit in the SCLK clock period following the data transfer. The transmitter (which is the master when writing, or the slave when reading) releases SDATA. The receiver indicates an acknowledge bit by driving SDATA LOW. As for data transfers, SDATA can change when SCLK is LOW and must be stable while SCLK is HIGH.

No-Acknowledge Bit

The no-acknowledge bit is generated when the receiver does not drive SDATA low during the SCLK clock period following a data transfer. A no-acknowledge bit is used to terminate a read sequence.

Typical Serial Transfer

A typical read or write sequence begins by the master generating a start condition on the bus. After the start condition, the master sends the 8-bit slave address/data direction byte. The last bit indicates whether the request is for a read or a write, where a "0" indicates a write and a "1" indicates a read. If the address matches the address of the slave device, the slave device acknowledges receipt of the address by generating an acknowledge bit on the bus.

If the request was a write, the master then transfers the 16-bit register address to which a write should take place. This transfers takes place as two 8-bit sequences and the slave sends an acknowledge bit after each sequence to indicate that the byte has been received. The master then transfers the data as an 8-bit sequence; the slave sends acknowledge bit at the end of the sequence. After 8 bits have been transferred, the slave's internal register address is incremented automatically, so that the next 8 bits are written to the next register address. The master stops writing by generating a (re)start or stop condition.

If the request was a read, the master sends the 8-bit write slave address/data direction byte and 16-bit register address, just as in the write request. The master then generates a (re)start condition and the 8-bit read slave address/data direction byte, and clocks out the register data, eight bits at a time. The master generates an acknowledge bit after each 8-bit transfer. The slave's internal register address is auto-incremented after every 8 bits are transferred. The data transfer is stopped when the master sends a no-acknowledge bit.

Single Read from Random Location

This sequence (see Figure 28 on page 46) starts with a dummy write to the 16-bit address that is to be used for the read. The master terminates the write by generating a restart condition. The master then sends the 8-bit read slave address/data direction byte and clocks out one byte of register data. The master terminates the read by generating a no-acknowledge bit followed by a stop condition. Figure 28 shows how the internal register address maintained by the MT9D112 is loaded and incremented as the sequence proceeds.

Figure 28: Single Read from Random Location

Single Read from Current Location

This sequence (Figure 29) performs a read using the current value of the MT9D112 internal register address. The master terminates the read by generating a no-acknowledge bit followed by a stop condition. The figure shows two independent read sequences.

Figure 29: Single Read from Current Location

Sequential Read, Start from Random Location

This sequence (Figure 30) starts in the same way as the single read from random location (Figure 28). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit, and continues to perform byte reads until L bytes have been read.

Figure 30: Sequential Read, Start from Random Location

Sequential Read, Start from Current Location

This sequence (Figure 31) starts in the same way as the single read from current location (Figure 29). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit, and continues to perform byte reads until L bytes have been read.

Figure 31: Sequential Read, Start from Current Location

Single Write to Random Location

This sequence (Figure 32) begins with the master generating a start condition. The slave address/data direction byte signals a write and is followed by the high then low bytes of the register address that is to be written. The master follows this with the byte of write data. The write is terminated by the master generating a stop condition.

Figure 32: Single Write to Random Location

Sequential Write, Start at Random Location

This sequence (Figure 33) starts in the same way as the single write to random location (Figure 32). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit, and continues to perform byte writes until L bytes have been written. The write is terminated by the master generating a stop condition.

Figure 33: Sequential Write, Start at Random Location

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Registers and Variables

Registers and Variables

Four types of configuration controls are available:

- 1. Hardware registers
- 2. Driver variables
- 3. Special function registers
- 4. MCU SRAM

The following convention is used in the text below to designate registers and variables:

R0x3012, R0x3012[3:0] or R12306, R12306[3:0]

These refer to two-wire accessible register number 12306. [3:0] indicate bits. Registers numbers range 0..65535 and bits range 15..0. Not all register numbers are used.

- ae.Target
 This refers to variable 'Target" in the AE driver.
- SFR 0x1080 or SRAM 0x0400
 This refers to special function register or SRAM located at address 0x1080 in MCU memory space.

How to Access Registers and Variables

Registers, variables, and SFRs are accessed in different ways.

Registers

Hardware registers grouped internally by pages.

R0x3000 - R0x31FE = Senor Core Page 0

R0x3200 - R0x33FE = SoC Page 1

R0X3400 - R0x35BE = SoC Page 2

- Page 0 contains sensor controls.
- Page 1 contains color pipeline controls.
- Page 2 contains MIPI, output FIFO and more color pipeline controls.

Not all the registers in each page are used, not all the bits in each register might be used. Registers are accessed by serial interface READ and WRITE consisting of a 16-bit address and 16-bit data.

Variables

Variables are located in the microcontroller RAM memory. Each driver, such as auto exposure, white balance, auto focus, etc., has a unique driver ID (0..31) and a set of public variables organized as a structure. Each variable in this structure is uniquely identified by its offset from the top of the structure and its size. The size can be 1 or 2 bytes, while the offset is 1 byte.

All driver variables (public and private) can be accessed via R0x338C and R0x3390. While two access modes are available-access by physical address and by logical address, the public variables are typically accessed by the logical method. The logical address, which is set in R0x338C, consists of a 5-bit driver ID number and a variable offset. Examples are provided below.

To set the variable ae. Target=50:

• The variable has a driver ID of 2. Therefore, set R0x338C[12:8] = 2.

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor How to Access Registers and Variables

- The variable has an offset of 6. Therefore, set R0x338C[7:0] = 6.
- This is a logical access. Therefore, set R0x338C[14:13] = 01.
- The size of the variable is 8 bits. Therefore, set R0x338C[15] = 1.
- By combining these bits, R0x338C = 0xA206.
- Set R0x3390 = 50 for the value of the variable.

To read the variable ae. Target:

- Since this is the same variable as the above example, R0x338C = 0xA206.
- Read R0x3390 for the current variable value.

To set the variable mon.arg1=0x1234:

- The variable has a driver ID of 0. Therefore, set R338C[12:8] = 0.
- The variable has an offset of 3. Therefore, set R0x3390[7:0] = 3.
- This is a logical access. Therefore, set R0x338C[14:13] = 01.
- The size of the variable is 16 bits. Therefore, set R0x338C[15] = 0.
- By combining these bits, R0x338C = 0x2003.
- Set R0x3390 = 0x1234 for the value of the variable.

To read the variable mon.arg1:

- Since this is the same variable as the above example, R0x338C = 0x2003.
- Read R0x3390 for the current variable value.

Special Function Registers and MCU SRAM

Special function registers are registers connected to the local bus of the microcontroller. These registers include GPIO, waveform generator, and those important for firmware operation. SFR are accessed by physical address. MCU SRAM consists of 1K system memory and 1K user memory. Examples of access:

- Write into user SRAM. Use to upload code
 - a. R0x338C = 0x400 // address
 - b. R0x3390 = 0x1234 // write 16-bit value
- · Read from user SRAM
 - c. R0x338C = 0x400 // address
 - d. Read R0x3390 // read 16-bit value
- Write to 8-bit GPIO register
 - e. R0x338C = 0x9079 // GPIO DIR L at 0x1079
 - f. R0x3390 = 0x00FE // Configure GPIO[0] as output
- Read from 8-bit GPIO register
 - g. $R0x3 38C = 0x9079 // GPIO_DIR_L at 0x1079$
 - h. Read R0x3390 //Check GPIO[7:0] pad state

Core Registers

Double-buffered Registers

Some sensor settings cannot be changed during frame readout. For example, changing x_addr_end R0x3008 part way through frame readout results in inconsistent LINE_VALID behavior. To avoid this, the sensor core double buffers many registers by implementing a pending and a live version. READs and WRITEs access the pending register. The live register controls the sensor operation.

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor How to Access Registers and Variables

The value in the pending register is transferred to a live register at a fixed point in the frame timing, called frame start. Frame start is defined as the point at which the first dark row is read out. By default, this occurs 10 row times before FRAME_VALID goes HIGH.

R0x0248[15] can be used to inhibit transfers from the pending to the live registers. This control should be used when making many register changes that must take effect simultaneously.

Bad Frames

A bad frame is a frame where all rows do not have the same integration time, or where offsets to the pixel values changed during the frame.

Many changes to the sensor register settings can cause a bad frame. For example, when $x_{addr} = R0x3008$ is changed, the new register value does not affect sensor behavior until the next frame start. However, the frame that would be read out at that frame-start has been integrated using the old row width. Consequently, reading it out using the new row width results in a frame with an incorrect integration time.

By default, most bad frames are masked: LINE_VALID and FRAME_VALID are inhibited for these frames so that the vertical blanking time between frames is extended by the frame time. This feature can be disabled with R0x0248[10].

Changes to Integration Time

If the integration time is changed while FRAME_VALID is asserted for frame n; the first frame output using the new integration time is frame (n + 2). The sequence is as follows:

- 1. During frame n, the new integration time is held in the pending register.
- 2. At the start of frame (n+1), the new integration time is transferred to the live register. Integration for each row of frame (n+1) has been completed using the old integration time. The earliest time that a row can start integrating using the new integration time is immediately after that row has been read for frame (n+1). The actual time that rows start integrating using the new integration time is dependent on the new value of the integration time.
- 3. When frame (n + 1) is read out, it is integrated using the new integration time. If the integration time is changed on successive frames, each value written is applied to a single frame; the latency between writing a value and it affecting the frame readout remains at two frames.

Changes to Gain Settings

When the gain settings are changed, the gain is usually updated on the next frame start. When the integration time and the gain are changed simultaneously, the gain update is held off by one frame so that the first frame output with the new integration time also has the new gain applied.

If the gain and integration time are both changed on successive frames, some gain value is overwritten without being applied, while each integration time is used for one single frame.

Register List and Default Value

Table 12: 0: Core Registers

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
12288(0x3000)	model_id_	dddd dddd dddd	5504 (0x1580)
12290(0x3002)	y_addr_start_	0000 0ddd dddd dddd	4 (0x0004)
12292(0x3004)	x_addr_start_	0000 dddd dddd dddd	4 (0x0004)
12294(0x3006)	y_addr_end_	0000 0ddd dddd dddd	1211 (0x04BB)
12296(0x3008)	x_addr_end_	0000 dddd dddd dddd	1611 (0x064B)
12298(0x300A)	frame_length_lines_	dddd dddd dddd	1261 (0x04ED)
12300(0x300C)	line_length_pck_	0000 dddd dddd dddd	2084 (0x0824)
12302(0x300E)	sample_time_pck	0000 dddd dddd dddd	288 (0x0120)
12304(0x3010)	fine_correction	0ddd dddd dddd dddd	133 (0x0085)
12306(0x3012)	coarse_integration_time_	dddd dddd dddd	16 (0x0010)
12308(0x3014)	fine_integration_time_	dddd dddd dddd	330 (0x014A)
12310(0x3016)	row_speed	ddd0 00dd dddd 0ddd	8465 (0x2111)
12312(0x3018)	extra_delay	0000 dddd dddd dddd	0 (0x0000)
12314(0x301A)	reset_register	d00d dddd dddd dddd	584 (0x0248)
12316(0x301C)	image_orientation_mode_select_	0000 000d 0000 00dd	0 (0x0000)
12318(0x301E)	data_pedestal_	0000 00dd dddd dddd	42 (0x002A)
12320(0x3020)	software_reset_	0000 000d 0000 0000	0 (0x0000)
12322(0x3022)	mask_corrupted_frames_grouped_parameter_ hold_	0000 000d 0000 000d	1 (0x0001)
12324(0x3024)	pixel_order_	0000 00?? 0000 00dd	0 (0x0000)
12326(0x3026)	gpi_status	dddd dddd d000 ????	65423 (0xFF8F)
12328(0x3028)	analogue_gain_code_global_	0000 0000 0ddd dddd	8 (0x0008)
12330(0x302A)	analogue_gain_code_greenR_	0000 0000 0ddd dddd	8 (0x0008)
12332(0x302C)	analogue_gain_code_red_	0000 0000 0ddd dddd	8 (0x0008)
12334(0x302E)	analogue_gain_code_blue_	0000 0000 0ddd dddd	8 (0x0008)
12336(0x3030)	analogue_gain_code_greenB_	0000 0000 0ddd dddd	8 (0x0008)
12338(0x3032)	digital_gain_greenR_	dddd dddd dddd ddd0	256 (0x0100)
12340(0x3034)	digital_gain_red_	dddd dddd dddd ddd0	256 (0x0100)
12342(0x3036)	digital_gain_blue_	dddd dddd ddd0	256 (0x0100)
12344(0x3038)	digital_gain_greenB_	dddd dddd dddd ddd0	256 (0x0100)
12348(0x303C)	standby_status	0000 0000 000dd	0 (0x0000)
12352(0x3040)	read_mode	dd00 dd0d dddd dddd	36 (0x0024)
12356(0x3044)	Reserved	_	1344 (0x0540)
12358(0x3046)	flash	??dd dddd 0000 0000	1536 (0x0600)
12360(0x3048)	flash_count	0000 00dd dddd dddd	8 (0x0008)
12374(0x3056)	green1_gain	0000 0ddd dddd dddd	272 (0x0110)
12376(0x3058)	blue_gain	0000 0ddd dddd dddd	272 (0x0110)
12378(0x305A)	red_gain	0000 0ddd dddd dddd	272 (0x0110)
12380(0x305C)	green2_gain	0000 0ddd dddd dddd	272 (0x0110)
12382(0x305E)	global_gain	0000 0ddd dddd dddd	272 (0x0110)
12400(0x3070)	test_pattern_mode_	0000 0000 0000 dddd	0 (0x0000)
12402(0x3072)	test_data_red_	0000 00dd dddd dddd	0 (0x0000)

Table 12: 0: Core Registers (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
12404(0x3074)	test_data_greenR_	0000 00dd dddd dddd	0 (0x0000)
12406(0x3076)	test_data_blue_	0000 00dd dddd dddd	0 (0x0000)
12408(0x3078)	test_data_greenB_	0000 00dd dddd dddd	0 (0x0000)
12416(0x3080)	Reserved	-	32 (0x0020)
12418(0x3082)	Reserved	_	8224 (0x2020)
12420(0x3084)	Reserved	-	8224 (0x2020)
12422(0x3086)	Reserved	-	8224 (0x2020)
12424(0x3088)	Reserved	_	4128 (0x1020)
12426(0x308A)	Reserved	-	8199 (0x2007)
12428(0x308C)	Reserved	-	1284 (0x0504)
12430(0x308E)	Reserved	-	1805 (0x070D)
12432(0x3090)	Reserved	-	1543 (0x0607)
12434(0x3092)	Reserved	-	0 (0x0000)
12436(0x3094)	Reserved	-	0 (0x0000)
12438(0x3096)	Reserved	-	0 (0x0000)
12440(0x3098)	Reserved	-	24 (0x0018)
12442(0x309A)	Reserved	-	256 (0x0100)
12444(0x309C)	Reserved	-	51 (0x0033)
12446(0x309E)	Reserved	-	5137 (0x1411)
12448(0x30A0)	x_even_inc_	???? ???? ???? ????	1 (0x0001)
12450(0x30A2)	x_odd_inc_	0000 0000 0000 0ddd	1 (0x0001)
12452(0x30A4)	y_even_inc_	???? ???? ???? ????	1 (0x0001)
12454(0x30A6)	y_odd_inc_	0000 0000 0000 0ddd	1 (0x0001)
12464(0x30B0)	Reserved	-	0 (0x0000)
12470(0x30B6)	Green1 Frame Average	0000 0000 0??? ????	0 (0x0000)
12472(0x30B8)	Blue Frame Average	0000 0000 0??? ????	0 (0x0000)
12474(0x30BA)	Red Frame Average	0000 0000 0??? ????	0 (0x0000)
12476(0x30BC)	Green2 Frame Average	0000 0000 0??? ????	0 (0x0000)
12478(0x30BE)	calib_threshold	0ddd dddd 0ddd dddd	8989 (0x231D)
12480(0x30C0)	calib_control	dd0d 0000 dddd 0ddd	16512 (0x4080)
12482(0x30C2)	calib_green1	0000 000d dddd dddd	0 (0x0000)
12484(0x30C4)	calib_blue	0000 000d dddd dddd	0 (0x0000)
12486(0x30C6)	calib_red	0000 000d dddd dddd	0 (0x0000)
12488(0x30C8)	calib_green2	0000 000d dddd dddd	0 (0x0000)
12490(0x30CA)	Reserved	_	4 (0x0004)
12492(0x30CC)	Reserved	-	0 (0x0000)
12494(0x30CE)	Reserved	-	0 (0x0000)
12496(0x30D0)	Reserved	-	0 (0x0000)
12498(0x30D2)	Reserved	-	0 (0x0000)
12500(0x30D4)	Reserved	-	32800 (0x8020)
12502(0x30D6)	Reserved	-	512 (0x0200)
12504(0x30D8)	Reserved	-	0 (0x0000)
12506(0x30DA)	Reserved	-	1 (0x0001)
12508(0x30DC)	Reserved	-	0 (0x0000)

Table 12: 0: Core Registers (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
12510(0x30DE)	Reserved		0 (0x0000)
12512(0x30E0)	Reserved	_	38408 (0x9608)
12514(0x30E2)	Reserved	-	31050 (0x794A)
12516(0x30E4)	Reserved	-	38521 (0x9679)
12518(0x30E6)	Reserved	-	30800 (0x7850)
12520(0x30E8)	Reserved	-	38523 (0x967B)
12522(0x30EA)	Reserved	-	11528 (0x2D08)
12524(0x30EC)	Reserved	-	18989 (0x4A2D)
12526(0x30EE)	Reserved	_	11540 (0x2D14)
12528(0x30F0)	Reserved	_	18995 (0x4A33)
12530(0x30F2)	Reserved	_	38405 (0x9605)
12532(0x30F4)	Reserved	_	38403 (0x9603)
12534(0x30F6)	Reserved	-	38421 (0x9615)
12536(0x30F8)	Reserved	-	38438 (0x9626)
12538(0x30FA)	Reserved	-	19208 (0x4B08)
12540(0x30FC)	Reserved	_	159 (0x009F)
12542(0x30FE)	Reserved	-	24394 (0x5F4A)
12544(0x3100)	Reserved	_	25422 (0x634E)
12546(0x3102)	Reserved	_	30819 (0x7863)
12548(0x3104)	Reserved	_	38272 (0x9580)
12550(0x3106)	Reserved	_	11272 (0x2C08)
12552(0x3108)	Reserved	_	18736 (0x4930)
12554(0x310A)	Reserved	_	38401 (0x9601)
12556(0x310C)	Reserved	_	38401 (0x9601)
12558(0x310E)	Reserved	_	38408 (0x9608)
12560(0x3110)	Reserved	_	38145 (0x9501)
12566(0x3116)	Reserved	-	38400 (0x9600)
12568(0x3118)	Reserved	_	4486 (0x1186)
12570(0x311A)	Reserved	_	38400 (0x9600)
12572(0x311C)	Reserved	_	16774 (0x4186)
12574(0x311E)	Reserved	_	38400 (0x9600)
12576(0x3120)	Reserved	_	16774 (0x4186)
12578(0x3122)	Reserved	-	11415 (0x2C97)
12592(0x3130)	Reserved	-	11264 (0x2C00)
12594(0x3132)	Reserved	-	10509 (0x290D)
12596(0x3134)	Reserved	-	9473 (0x2501)
12598(0x3136)	Reserved	_	10512 (0x2910)
12600(0x3138)	Reserved	_	11265 (0x2C01)
12602(0x313A)	Reserved	_	17094 (0x42C6)
12604(0x313C)	Reserved	_	11265 (0x2C01)
12606(0x313E)	Reserved	_	16902 (0x4206)
12608(0x3140)	Reserved		4459 (0x116B)
12610(0x3142)	Reserved		6252 (0x186C)
12612(0x3144)	Reserved		17489 (0x4451)

Table 12: 0: Core Registers (continued)

1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
12614(0x3146)	Reserved		17489 (0x4451)
12640(0x3160)	global_seq_trigger	0000 0000 00ddd	0 (0x0000)
12642(0x3162)	global_rst_end	dddd dddd dddd	0 (0x0000)
12644(0x3164)	global_shutter_start	dddd dddd dddd	0 (0x0000)
12646(0x3166)	global_read_start	dddd dddd dddd	0 (0x0000)
12672(0x3180)	Reserved	_	32768 (0x8000)
12674(0x3182)	Reserved	_	0 (0x0000)
12676(0x3184)	Reserved	_	0 (0x0000)
12678(0x3186)	Reserved	_	0 (0x0000)
12680(0x3188)	Reserved	_	0 (0x0000)
12776(0x31E8)	horizontal_cursor_position_	0000 0ddd dddd dddd	0 (0x0000)
12778(0x31EA)	vertical_cursor_position_	0000 dddd dddd dddd	0 (0x0000)
12780(0x31EC)	horizontal_cursor_width_	0000 0ddd dddd dddd	0 (0x0000)
12782(0x31EE)	vertical_cursor_width_	0000 dddd dddd dddd	0 (0x0000)
12788(0x31F4)	Reserved	_	291 (0x0123)
12790(0x31F6)	Reserved	_	17767 (0x4567)
12792(0x31F8)	Reserved	_	35243 (0x89AB)
12794(0x31FA)	Reserved	-	52719 (0xCDEF)
12796(0x31FC)	I2C IDS	dddd dddd dddd	31352 (0x7A78)
15872(0x3E00)	Reserved	-	0 (0x0000)
16128(0x3F00)	Reserved	_	0 (0x0000)

Table 13: 1: SOC

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
12802(0x3202)	Standby Control	?000 0000 00dd dddd	9 (0x0009)
12804(0x3204)	Standby Done Status Bit	0000 0000 0000 0ddd	1 (0x0001)
12816(0x3210)	Color Pipeline Control	0000 0ddd dddd dddd	504 (0x01F8)
12818(0x3212)	Factory Bypass	dddd dddd dddd	1 (0x0001)
12820(0x3214)	Pad Slew	0000 dddd dddd dddd	3200 (0x0C80)
12822(0x3216)	Internal clock control	0000 00dd dddd dddd	0 (0x0000)
12828(0x321C)	Output FIFO control and status	dddd d??? dddd dddd	2 (0x0002)
12830(0x321E)	Output FIFO watermark	0000 00dd dddd dddd	400 (0x0190)
12832(0x3220)	Output FIFO Line byte count	0000 dddd dddd dddd	1600 (0x0640)
12834(0x3222)	Lower X Boundary for Zoom Window	0000 0ddd dddd dddd	0 (0x0000)
12836(0x3224)	Upper X Boundary for Zoom Window	0000 0ddd dddd dddd	1600 (0x0640)
12838(0x3226)	Lower Y Boundary for Zoom Window	0000 0ddd dddd dddd	0 (0x0000)
12840(0x3228)	Upper Y Boundary for Zoom Window	0000 0ddd dddd dddd	1200 (0x04B0)
12842(0x322A)	Scaler Control	dddd dddd dddd	0 (0x0000)
12844(0x322C)	Weight for Horizontal Scaling	0000 dddd dddd dddd	2048 (0x0800)
12846(0x322E)	Weight for Vertical Scaling	0000 dddd dddd dddd	2048 (0x0800)
12862(0x323E)	Edge Threshold for WB Statistic	dddd dddd dddd	784 (0x0310)

Table 13: 1: SOC (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
12864(0x3240)	Luminance Range of Pixels Considered in WB Statistics	dddd dddd dddd	51220 (0xC814)
12888(0x3258)	Reserved	_	0 (0x0000)
12890(0x325A)	Right/Left Coordinates of AWB Measurement Window	dddd dddd dddd	20480 (0x5000)
12892(0x325C)	Bottom/Top Coordinates of AWB Measurement Window	dddd dddd dddd	15360 (0x3C00)
12896(0x3260)	Red Chrominance Measure Calculated by AWB	???? ???? ???? ????	0 (0x0000)
12898(0x3262)	Luminance Measure Calculated by AWB	???? ???? ???? ????	0 (0x0000)
12900(0x3264)	Blue Chrominance Measure Calculated by AWB	???? ???? ???? ????	0 (0x0000)
12902(0x3266)	Reserved	_	0 (0x0000)
12906(0x326A)	1D Aperture Parameters	00dd dddd dddd dddd	4616 (0x1208)
12908(0x326C)	Aperture Parameters	0ddd dddd dddd dddd	4616 (0x1208)
12910(0x326E)	Low pass YUV filters	0000 0000 dddd dddd	128 (0x0080)
12912(0x3270)	Threshold for Y Filter. R Channel	0000 dddd dddd dddd	1962 (0x07AA)
12914(0x3272)	Threshold for Y filter.G channel	0000 dddd dddd dddd	2020 (0x07E4)
12916(0x3274)	Threshold for Y filter. B channel	0000 0000 0ddd dddd	42 (0x002A)
12918(0x3276)	Second Black Level	0000 00dd dddd dddd	0 (0x0000)
12920(0x3278)	First Black Level	0000 00dd dddd dddd	42 (0x002A)
12922(0x327A)	First Black Level. Red	0000 00dd dddd dddd	42 (0x002A)
12924(0x327C)	First Black Level. Green_1	0000 00dd dddd dddd	42 (0x002A)
12926(0x327E)	First Black Level. Green_2	0000 00dd dddd dddd	42 (0x002A)
12928(0x3280)	First Black Level. Blue	0000 00dd dddd dddd	42 (0x002A)
12942(0x328E)	Edge Threshold for Interpolation	0000 0000 dddd dddd	8 (0x0008)
12944(0x3290)	Test Pattern	0000 0000 0ddd dddd	0 (0x0000)
12946(0x3292)	Test Pattern R Value	0000 00dd dddd dddd	256 (0x0100)
12948(0x3294)	Test Pattern G Value	0000 00dd dddd dddd	256 (0x0100)
12950(0x3296)	Test Pattern B Value	0000 00dd dddd dddd	256 (0x0100)
12956(0x329C)	Digital Gain 2	0000 0000 dddd dddd	32 (0x0020)
12958(0x329E)	Reserved	_	0 (0x0000)
12960(0x32A0)	Factory Test - CRC Data	???? ???? ???? ????	0 (0x0000)
12962(0x32A2)	Reserved	_	5696 (0x1640)
12964(0x32A4)	Reserved	_	32640 (0x7F80)
12992(0x32C0)	Color Correction Matrix Exponents for C11C22	0ddd dddd dddd dddd	10531 (0x2923)
12994(0x32C2)	Color Correction Matrix Exponents for C22C33	0000 dddd dddd dddd	1316 (0x0524)
12996(0x32C4)	Color Correction Matrix Elements 1 and 2	dddd dddd dddd	48072 (0xBBC8)
12998(0x32C6)	Color Correction Matrix Elements 3 and 4	dddd dddd dddd	51770 (0xCA3A)
13000(0x32C8)	Color Correction Matrix Elements 5 and 6	dddd dddd dddd dddd	15237 (0x3B85)
13002(0x32CA)	Color Correction Matrix Elements 7 and 8	dddd dddd dddd dddd	62063 (0xF26F)
13004(0x32CC)	Color Correction Matrix Element 9 and Signs	00dd dddd dddd dddd	15772 (0x3D9C)
13012(0x32D4)	Digital Gain 1 for Red Pixels	0000 00dd dddd dddd	128 (0x0080)
13014(0x32D6)	Digital Gain 1 for Green1 Pixels	0000 00dd dddd dddd	128 (0x0080)
13016(0x32D8)	Digital Gain 1 for Green2 Pixels	0000 00dd dddd dddd	128 (0x0080)
13018(0x32DA)	Digital Gain 1 for Blue Pixels	0000 00dd dddd dddd	128 (0x0080)

Table 13: 1: SOC (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13020(0x32DC)	Digital Gain 1 for All Colors	0000 00dd dddd dddd	128 (0x0080)
13044(0x32F4)	Boundaries of Flicker Measurement Window [Left/ Width]	dddd dddd dddd dddd	80 (0x0050)
13046(0x32F6)	Boundaries of Flicker Measurement Window [Top/ Height]	dddd dddd dddd dddd	136 (0x0088)
13048(0x32F8)	Flicker Measurement Window Size	dddd dddd dddd	5120 (0x1400)
13050(0x32FA)	Measure of the Average Luminance in Flicker Measurement Window	0000 0000 ???? ????	0 (0x0000)
13100(0x332C)	Blank Frames	0000 0000 0000 000d	0 (0x0000)
13102(0x332E)	Output format configuration	0000 000d dddd dddd	0 (0x0000)
13104(0x3330)	Output Format Test	0000 dddd dddd dddd	0 (0x0000)
13106(0x3332)	Line Count	0000 ???? ???? ????	0 (0x0000)
13108(0x3334)	Frame Count	???? ???? ???? ????	0 (0x0000)
13110(0x3336)	Reserved	-	0 (0x0000)
13112(0x3338)	Reserved	-	0 (0x0000)
13114(0x333A)	Reserved	_	0 (0x0000)
13116(0x333C)	Reserved	_	0 (0x0000)
13118(0x333E)	Reserved	_	0 (0x0000)
13120(0x3340)	Reserved	_	0 (0x0000)
13122(0x3342)	Reserved	_	0 (0x0000)
13124(0x3344)	Reserved	_	0 (0x0000)
13126(0x3346)	Reserved	_	514 (0x0202)
13128(0x3348)	Special Effects	dddd dddd dddd	25664 (0x6440)
13130(0x334A)	Sepia Constants	dddd dddd dddd	45091 (0xB023)
13136(0x3350)	Reserved	_	0 (0x0000)
13138(0x3352)	Reserved	_	0 (0x0000)
13140(0x3354)	Reserved	_	0 (0x0000)
13142(0x3356)	Reserved	_	0 (0x0000)
13144(0x3358)	Reserved	_	0 (0x0000)
13146(0x335A)	Reserved	_	0 (0x0000)
13148(0x335C)	Reserved	_	0 (0x0000)
13150(0x335E)	Reserved	_	0 (0x0000)
13152(0x3360)	Reserved	_	0 (0x0000)
13154(0x3362)	Reserved	_	0 (0x0000)
13156(0x3364)	Gamma Curve Knees 0 and 1	dddd dddd dddd	9984 (0x2700)
13158(0x3366)	Gamma Curve Knees 2 and 3	dddd dddd dddd	18742 (0x4936)
13160(0x3368)	Gamma Curve Knees 4 and 5	dddd dddd dddd dddd	30820 (0x7864)
13162(0x336A)	Gamma Curve Knees 6 and 7	dddd dddd dddd dddd	38793 (0x9789)
13164(0x336C)	Gamma Curve Knees 8 and 9	dddd dddd dddd dddd	45220 (0xB0A4)
13166(0x336E)	Gamma Curve Knees 10 and 11	dddd dddd dddd dddd	50619 (0xC5BB)
13168(0x3370)	Gamma Curve Knees 12 and 13	dddd dddd dddd dddd	55246 (0xD7CE)
13170(0x3372)	Gamma Curve Knees 14 and 15	dddd dddd dddd dddd	59616 (0xE8E0)
13172(0x3374)	Gamma Curve Knees 16 and 17	dddd dddd dddd dddd	63728 (0xF8F0)
13174(0x3374)	Gamma Curve Knee 18	0000 0000 dddd dddd	255 (0x00FF)

Table 13: 1: SOC (continued)

1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13176(0x3378)	Reserved	-	0 (0x0000)
13180(0x337C)	YUV/YCbCr Control	0000 0000 0000 dddd	6 (0x0006)
13182(0x337E)	Y/RGB Offset	dddd dddd dddd	0 (0x0000)
13188(0x3384)	Reserved	_	0 (0x0000)
13190(0x3386)	Microcontroller Boot Mode	???? ???? dddd dddd	Х
13196(0x338C)	Microcontroller variable/RAM address	dddd dddd dddd	0 (0x0000)
13200(0x3390)	MCU variable/RAM data (burst 0)	dddd dddd dddd	Х
13202(0x3392)	Variable data burst SHIP access 1	dddd dddd dddd	0 (0x0000)
13204(0x3394)	Variable data burst SHIP access 2	dddd dddd dddd	0 (0x0000)
13206(0x3396)	Variable data burst SHIP access 3	dddd dddd dddd	0 (0x0000)
13208(0x3398)	Variable data burst SHIP access 4	dddd dddd dddd	0 (0x0000)
13210(0x339A)	Variable data burst SHIP access 5	dddd dddd dddd	0 (0x0000)
13212(0x339C)	Variable data burst SHIP access 6	dddd dddd dddd	0 (0x0000)
13214(0x339E)	Variable data burst SHIP access 7	dddd dddd dddd	0 (0x0000)
13260(0x33CC)	Reserved	_	0 (0x0000)
13262(0x33CE)	Reserved	_	0 (0x0000)
13264(0x33D0)	Reserved	-	0 (0x0000)
13266(0x33D2)	Reserved	-	0 (0x0000)
13288(0x33E8)	Reserved	-	16385 (0x4001)
13290(0x33EA)	Reserved	_	0 (0x0000)
13292(0x33EC)	Reserved	_	0 (0x0000)
13294(0x33EE)	Reserved	_	0 (0x0000)
13300(0x33F4)	Reserved	_	788 (0x0314)
13302(0x33F6)	Threshold for noise reduction - Red	0000 0000 dddd dddd	32 (0x0020)
13304(0x33F8)	Threshold for noise reduction - Green	0000 0000 dddd dddd	32 (0x0020)
13306(0x33FA)	Threshold for noise reduction - Blue	0000 0000 dddd dddd	32 (0x0020)
13308(0x33FC)	Threshold for noise reduction - Min./ Max.	0000 0000 dddd dddd	255 (0x00FF)

Table 14: 2: SOC2

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13312(0x3400)	MIPI Control	0000 0000 000d dddd	12 (0x000C)
13314(0x3402)	MIPI Status	0000 000d dddd dddd	273 (0x0111)
13316(0x3404)	MIPI Data Type	000d dddd 00dd dddd	43 (0x002B)
13318(0x3406)	MIPI Frame Line Count	dddd dddd dddd	1200 (0x04B0)
13320(0x3408)	Reserved	_	2000 (0x07D0)
13322(0x340A)	MIPI FIFO Watermark	00dd 00dd dddd dddd	750 (0x02EE)
13324(0x340C)	custom_short_pkt_wc	dddd dddd dddd	0 (0x0000)
13326(0x340E)	MIPI Test	000d 0ddd 000d dddd	0 (0x0000)
13328(0x3410)	MIPI Pre HS Tx	0000 dddd 0000 dddd	2818 (0x0B02)
13330(0x3412)	MIPI Post HS Tx	00dd dddd 0000 dddd	2565 (0x0A05)
13332(0x3414)	MIPI Clock Overlap	00dd dddd 00dd dddd	2570 (0x0A0A)
13334(0x3416)	Clock Timing	0000 dddd 00dd dddd	1548 (0x060C)

Table 14: 2: SOC2 (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13336(0x3418)	Misc Timing	0000 0000 00dd dddd	8 (0x0008)
13338(0x341A)	Reserved	_	2128 (0x0850)
13340(0x341C)	PLL Dividers1	00dd dddd dddd dddd	336 (0x0150)
13342(0x341E)	PLL/ Clk_in control	dddd dddd 000d dddd	36619 (0x8F0B)
13440(0x3480)	Boundaries of First AF Measurement Window [Top/Left]	dddd dddd dddd	3860 (0x0F14)
13442(0x3482)	Boundaries of First AF Measurement Window [Height/ Width]	dddd dddd dddd dddd	7720 (0x1E28)
13444(0x3484)	AF Measurement Window Size	dddd dddd dddd	4800 (0x12C0)
13446(0x3486)	Average Luminance in AF Windows W12 and W11	7777 7777 7777 7777	0 (0x0000)
13448(0x3488)	Average Luminance in AF Windows W14 and W13	???? ???? ???? ????	0 (0x0000)
13450(0x348A)	Average Luminance in AF Windows W22 and W21	???? ???? ???? ????	0 (0x0000)
13452(0x348C)	Average Luminance in AF Windows W24 and W23	???? ???? ???? ????	0 (0x0000)
13454(0x348E)	Average Luminance in AF Windows W32 and W31	7777 7777 7777 7777	0 (0x0000)
13456(0x3490)	Average Luminance in AF Windows W34 and W33	7777 7777 7777 7777	0 (0x0000)
13458(0x3492)	Average Luminance in AF Windows W42 and W41	7777 7777 7777 7777	0 (0x0000)
13460(0x3494)	Average Luminance in AF Windows W44 and W43	7777 7777 7777 7777	0 (0x0000)
13462(0x3496)	AF Filter 1	dddd dddd dddd	40 (0x0028)
13464(0x3498)	AF Filter 1 Configuration	dddd dddd dddd	49328 (0xC0B0)
13466(0x349A)	AF Filter 1 Average Sharpness Measure for AF Windows W12 and W11	????? ????? ????? ?????	0 (0x0000)
13468(0x349C)	AF Filter 1 Average Sharpness Measure for AF Windows W14 and W13	????? ????? ?????	0 (0x0000)
13470(0x349E)	AF Filter 1 Average Sharpness Measure for AF Windows W22 and W21	7777 7777 7777 7777	0 (0x0000)
13472(0x34A0)	AF Filter 1 Average Sharpness Measure for AF Windows W24 and W23	7777 7777 7777 7777	0 (0x0000)
13474(0x34A2)	AF Filter 1 Average Sharpness Measure for AF Windows W32 and W31	7777 7777 7777 7777	0 (0x0000)
13476(0x34A4)	AF Filter 1 Average Sharpness Measure for AF Windows W34 and W33	7777 7777 7777 7777	0 (0x0000)
13478(0x34A6)	AF Filter 1 Average Sharpness Measure for AF Windows W42 and W41	7777 7777 7777 7777	0 (0x0000)

Table 14: 2: SOC2 (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13480(0x34A8)	AF Filter 1 Average Sharpness Measure for AF Windows W44 and W43	???? ???? ???? ????	0 (0x0000)
13482(0x34AA)	AF Filter 2	dddd dddd dddd	8320 (0x2080)
13484(0x34AC)	AF Filter 2 Configuration	dddd dddd dddd	49456 (0xC130)
13486(0x34AE)	AF Filter 2 Average Sharpness Measure for AF Window W12 and W11	???? ???? ???? ????	0 (0x0000)
13488(0x34B0)	AF Filter 2 Average Sharpness Measure for AF Windows W14 and W13	7777 7777 7777 7777	0 (0x0000)
13490(0x34B2)	AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21	7777 7777 7777 7777	0 (0x0000)
13492(0x34B4)	AF Filter 2 Average Sharpness Measure for AF Windows W24 and W23	7777 7777 7777 7777	0 (0x0000)
13494(0x34B6)	AF Filter 2 Average Sharpness Measure for AF Windows W32 and W31	7777 7777 7777 7777	0 (0x0000)
13496(0x34B8)	AF Filter 2 Average Sharpness Measure for AF Windows W34 and W33	7777 7777 7777 7777	0 (0x0000)
13498(0x34BA)	AF Filter 2 Average Sharpness Measure for AF Windows W42 and W41	7777 7777 7777 7777	0 (0x0000)
13500(0x34BC)	AF Filter 2 Average Sharpness Measure for AE Windows W44 and W43	????? ????? ?????	0 (0x0000)
13502(0x34BE)	Reserved	-	0 (0x0000)
13518(0x34CE)	Lens Correction Control	0000 0ddd dddd ddd0	352 (0x0160)
13520(0x34D0)	Zone Boundaries X1 and X2	dddd dddd dddd	25650 (0x6432)
13522(0x34D2)	Zone Boundaries X0 and X3	dddd dddd dddd	12950 (0x3296)
13524(0x34D4)	Zone Boundaries X4 and X5	dddd dddd dddd	38500 (0x9664)
13526(0x34D6)	Zone Boundaries Y1 and Y2	dddd dddd dddd	20520 (0x5028)
13528(0x34D8)	Zone Boundaries Y0 and Y3	dddd dddd dddd	10360 (0x2878)
13530(0x34DA)	Zone Boundaries Y4 and Y5	dddd dddd dddd	30800 (0x7850)
13532(0x34DC)	Center Offset	dddd dddd dddd	0 (0x0000)
13534(0x34DE)	F[x] for Red Color at the First Pixel of the Array	0000 dddd dddd dddd	350 (0x015E)
13536(0x34E0)	F[x] for Green Color at the First Pixel of the Array	0000 dddd dddd dddd	323 (0x0143)
13538(0x34E2)	F[x] for Green2 Color at the First Pixel of the Array	0000 dddd dddd dddd	323 (0x0143)
13540(0x34E4)	F[x] for Blue Color at the First Pixel of the Array	0000 dddd dddd dddd	295 (0x0127)
13542(0x34E6)	F[y] for Red Color at the First Pixel of the Array	0000 dddd dddd dddd	300 (0x012C)

Table 14: 2: SOC2 (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13544(0x34E8)	F[y] for Green Color at the First Pixel of the Array	0000 dddd dddd dddd	259 (0x0103)
13546(0x34EA)	F[y] for Green2 Color at the First Pixel of the Array	0000 dddd dddd dddd	259 (0x0103)
13548(0x34EC)	F[y] for Blue Color at the First Pixel of the Array	0000 dddd dddd dddd	253 (0x00FD)
13550(0x34EE)	dF/dx for Red Color at the First Pixel of the Array	0000 dddd dddd dddd	3311 (0x0CEF)
13552(0x34F0)	dF/dx for Green Color at the First Pixel of the Array	0000 dddd dddd dddd	3384 (0x0D38)
13554(0x34F2)	dF/dx for Green2 Color at the First Pixel of the Array	0000 dddd dddd dddd	3384 (0x0D38)
13556(0x34F4)	dF/dx for Blue Color at the First Pixel of the Array	0000 dddd dddd dddd	3474 (0x0D92)
13558(0x34F6)	dF/dy for Red Color at the First Pixel of the Array	0000 dddd dddd dddd	3096 (0x0C18)
13560(0x34F8)	dF/dy for Green Color at the First Pixel of the Array	0000 dddd dddd dddd	3313 (0x0CF1)
13562(0x34FA)	dF/dy for Green2 Color at the First Pixel of the Array	0000 dddd dddd dddd	3313 (0x0CF1)
13564(0x34FC)	dF/dy for Blue Color at the First Pixel of the Array	0000 dddd dddd dddd	3333 (0x0D05)
13566(0x34FE)	Reserved	_	0 (0x0000)
13568(0x3500)	Second deriv. for Zone 0 Red Color	dddd dddd dddd	2819 (0x0B03)
13570(0x3502)	Second deriv. for Zone 0 Green Color	dddd dddd dddd	0 (0x0000)
13572(0x3504)	Second deriv. for Zone 0 Green2 Color	dddd dddd dddd	0 (0x0000)
13574(0x3506)	Second deriv. for Zone 0 Blue Color	dddd dddd dddd	256 (0x0100)
13576(0x3508)	Second deriv. for Zone 1 Red Color	dddd dddd dddd	9524 (0x2534)
13578(0x350A)	Second deriv. for Zone 1 Green Color	dddd dddd dddd	7219 (0x1C33)
13580(0x350C)	Second deriv. for Zone 1 Green2 Color	dddd dddd dddd	7219 (0x1C33)
13582(0x350E)	Second deriv. for Zone 1 Blue Color	dddd dddd dddd	6702 (0x1A2E)
13584(0x3510)	Second deriv. for Zone 2 Red color	dddd dddd dddd	10810 (0x2A3A)
13586(0x3512)	Second deriv. for Zone 2 Green Color	dddd dddd dddd	9517 (0x252D)
13588(0x3514)	Second deriv. for Zone 2 Green2 Color	dddd dddd dddd	9517 (0x252D)
13590(0x3516)	Second deriv. for Zone 2 Blue Color	dddd dddd dddd	10275 (0x2823)
13592(0x3518)	Second deriv. for Zone 3 Red Color	dddd dddd dddd dddd	3860 (0x0F14)
13594(0x351A)	Second deriv. for Zone 3 Green Color	dddd dddd dddd	3360 (0x0D20)
13596(0x351C)	Second deriv. for Zone 3 Green2 Color	dddd dddd dddd	3360 (0x0D20)
13598(0x351E)	Second deriv. for Zone 3 Blue Color	dddd dddd dddd	1057 (0x0421)
13600(0x3520)	Second deriv. for Zone 4 Red Color	dddd dddd dddd dddd	3370 (0x0D2A)

Table 14: 2: SOC2 (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13602(0x3522)	Second deriv. for Zone 4 Green Color	dddd dddd dddd	4119 (0x1017)
13604(0x3524)	Second deriv. for Zone 4 Green2 Color	dddd dddd dddd	4119 (0x1017)
13606(0x3526)	Second deriv. for Zone 4 Blue Color	dddd dddd dddd	5655 (0x1617)
13608(0x3528)	Second deriv. for Zone 5 Red Color	dddd dddd dddd	5698 (0x1642)
13610(0x352A)	Second deriv. for Zone 5 Green Color	dddd dddd dddd	5192 (0x1448)
13612(0x352C)	Second deriv. for Zone 5 Green2 Color	dddd dddd dddd	5192 (0x1448)
13614(0x352E)	Second deriv. for Zone 5 Blue Color	dddd dddd dddd	3918 (0x0F4E)
13616(0x3530)	Second deriv. for Zone 6 Red Color	dddd dddd dddd	7975 (0x1F27)
13618(0x3532)	Second deriv. for Zone 6 Green Color	dddd dddd dddd	6674 (0x1A12)
13620(0x3534)	Second deriv. for Zone 6 Green2 Color	dddd dddd dddd	6674 (0x1A12)
13622(0x3536)	Second deriv. for Zone 6 Blue Color	dddd dddd dddd	7702 (0x1E16)
13624(0x3538)	Second deriv. for Zone 7 Red Color	dddd dddd dddd	5831 (0x16C7)
13626(0x353A)	Second deriv. for Zone 7 Green Color	dddd dddd dddd	12741 (0x31C5)
13628(0x353C)	Second deriv. for Zone 7 Green2 Color	dddd dddd dddd	12741 (0x31C5)
13630(0x353E)	Second deriv. for Zone 7 Blue Color	dddd dddd dddd dddd	10934 (0x2AB6)
13632(0x3540)	X2 Factors	dddd dddd dddd dddd	0 (0x0000)
13634(0x3542)	Global Offset of F[x y] Function	0000 0000 dddd dddd	2 (0x0002)
13636(0x3544)	K Factor in K F[x] F[y] red - Top right	0000 0ddd dddd dddd	398 (0x018E)
13638(0x3546)	K Factor in K F[x] F[y] green1 - Top right	0000 0ddd dddd dddd	398 (0x018E)
13640(0x3548)	K Factor in K F[x] F[y] green2 - Top right	0000 0ddd dddd dddd	398 (0x018E)
13642(0x354A)	K Factor in K F[x] F[y] blue - Top right	0000 0ddd dddd dddd	398 (0x018E)
13644(0x354C)	K Factor in K F[x] F[y] red - Top left	0000 0ddd dddd dddd	398 (0x018E)
13646(0x354E)	K Factor in K F[x] F[y] green1 - Top left	0000 0ddd dddd dddd	398 (0x018E)
13648(0x3550)	K Factor in K F[x] F[y] green2 - Top left	0000 0ddd dddd dddd	398 (0x018E)
13650(0x3552)	K Factor in K F[x] F[y] blue - Top left	0000 0ddd dddd dddd	398 (0x018E)
13652(0x3554)	K Factor in K F[x] F[y] red - Bottom right	0000 0ddd dddd dddd	398 (0x018E)
13654(0x3556)	K Factor in K F[x] F[y] green1 - Bottom right	0000 0ddd dddd dddd	398 (0x018E)
13656(0x3558)	K Factor in K F[x] F[y] green2 - Bottom right	0000 0ddd dddd dddd	398 (0x018E)
13658(0x355A)	K Factor in K F[x] F[y] blue - Bottom right	0000 0ddd dddd dddd	398 (0x018E)

Table 14: 2: SOC2 (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13660(0x355C)	K Factor in K F[x] F[y] red - Bottom left	0000 0ddd dddd dddd	398 (0x018E)
13662(0x355E)	K Factor in K F[x] F[y] green1 - Bottom left	0000 0ddd dddd dddd	398 (0x018E)
13664(0x3560)	K Factor in K F[x] F[y] green2 - Bottom left	0000 0ddd dddd dddd	398 (0x018E)
13666(0x3562)	K Factor in K F[x] F[y] blue - Bottom left	0000 0ddd dddd dddd	398 (0x018E)
13696(0x3580)	Boundaries of First AE Measurement Window [Top/Left]	dddd dddd dddd dddd	0 (0x0000)
13698(0x3582)	Boundaries of First AE Measurement Window [Height/ Width]	dddd dddd dddd dddd	15440 (0x3C50)
13700(0x3584)	AE Measurement Window Size[LSW]	dddd dddd dddd	19200 (0x4B00)
13702(0x3586)	AE/AF Measurement Enable	0000 0000 0000 0ddd	6 (0x0006)
13704(0x3588)	Measure of the Average Luminance in AE windows W12 and W11	????? ????? ?????	0 (0x0000)
13706(0x358A)	Measure of the Average Luminance in AE windows W14 and W13	???? ???? ???? ????	0 (0x0000)
13708(0x358C)	Measure of the Average Luminance in AE windows W22 and W21	????? ????? ?????	0 (0x0000)
13710(0x358E)	Measure of the Average Luminance in AE windows W24 and W23	????? ????? ?????	0 (0x0000)
13712(0x3590)	Measure of the Average Luminance in AE windows W32 and W31	????? ????? ?????	0 (0x0000)
13714(0x3592)	Measure of the Average Luminance in AE windows W34 and W33	????? ????? ?????	0 (0x0000)
13716(0x3594)	Measure of the Average Luminance in AE windows W42 and W41	????? ????? ?????	0 (0x0000)
13718(0x3596)	Measure of the Average Luminance in AE windows W44 and W43	????? ????? ?????	0 (0x0000)
13730(0x35A2)	Dark Color Kill Controls	0000 0000 dddd dddd	20 (0x0014)
13732(0x35A4)	Bright Color Kill Controls	0000 0ddd dddd dddd	1428 (0x0594)
13734(0x35A6)	Histogram Window Lower Boundaries	dddd dddd dddd	0 (0x0000)
13736(0x35A8)	Histogram Window Upper Boundaries	dddd dddd dddd	38343 (0x95C7)
13738(0x35AA)	First Set of Bin Definitions	000d dddd dddd dddd	778 (0x030A)
13740(0x35AC)	Second Set of Bin Definitions	000d dddd dddd dddd	778 (0x030A)
13742(0x35AE)	Prescaler for the Historgram	0ddd dddd dddd dddd	10 (0x000A)
13744(0x35B0)	Pixel Counts for Bin 0 and Bin 1	???? ???? ???? ????	0 (0x0000)
13746(0x35B2)	Pixel Counts for Bin 2 and Bin 3	???? ???? ???? ????	0 (0x0000)
13748(0x35B4)	Pixel Counts for Bin 4 and Bin 5	???? ???? ???? ????	0 (0x0000)
13750(0x35B6)	Pixel Counts for Bin 6 and Bin 7	???? ???? ???? ????	0 (0x0000)
13752(0x35B8)	Definition of outlier counters	000d dddd dddd dddd	0 (0x0000)
13754(0x35BA)	Range for U and L counters	dddd dddd dddd	64005 (0xFA05)

Table 14: 2: SOC2 (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
13756(0x35BC)	Value for U_counter	???? ???? ???? ????	0 (0x0000)
13758(0x35BE)	Value for L_counter	???? ???? ???? ????	0 (0x0000)

Table 15: 0: Monitor Variables

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
0(0x000)	Reserved	-	59597 (0xE8CD)
2(0x002)	cmd	0000 0000 dddd dddd	0 (0x0000)
3(0x003)	arg1	dddd dddd dddd	0 (0x0000)
5(0x005)	arg2	dddd dddd dddd	0 (0x0000)
7(0x007)	msgCount	0000 0000 dddd dddd	0 (0x0000)
8(0x008)	msg [HI]	dddd dddd dddd	0 (0x0000)
10(0x00A)	msg [LO]	dddd dddd dddd	0 (0x0000)
12(0x00C)	ver	0000 0000 dddd dddd	26 (0x001A)
13(0x00D)	modul ID	0000 0000 dddd dddd	0 (0x0000)

Table 16: 1: Sequencer Variables

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
0(0x000)	vmt	dddd dddd dddd	59073 (0xE6C1)
2(0x002)	mode	0000 0000 dddd dddd	15 (0x000F)
3(0x003)	cmd	0000 0000 dddd dddd	0 (0x0000)
4(0x004)	state	0000 0000 dddd dddd	0 (0x0000)
5(0x005)	stepMode	0000 0000 dddd dddd	0 (0x0000)
6(0x006)	shared Params. flash Type	0000 0000 dddd dddd	0 (0x0000)
7(0x007)	shared Params.ae Cont Buff	0000 0000 dddd dddd	8 (0x0008)
8(0x008)	sharedParams.aeContStep	0000 0000 dddd dddd	2 (0x0002)
9(0x009)	shared Params.ae Fast Buff	0000 0000 dddd dddd	32 (0x0020)
10(0x00A)	shared Params.ae Fast Step	0000 0000 dddd dddd	1 (0x0001)
11(0x00B)	shared Params.awb Cont Buff	0000 0000 dddd dddd	8 (0x0008)
12(0x00C)	shared Params.awb Cont Step	0000 0000 dddd dddd	2 (0x0002)
13(0x00D)	shared Params.awb Fast Buff	0000 0000 dddd dddd	32 (0x0020)
14(0x00E)	shared Params.awb Fast Step	0000 0000 dddd dddd	1 (0x0001)
15(0x00F)	Reserved	_	0 (0x0000)
16(0x010)	Reserved	_	0 (0x0000)
17(0x011)	shared Params. options	0000 0000 dddd dddd	168 (0x00A8)
18(0x012)	sharedParams.totMaxFrames	0000 0000 dddd dddd	16 (0x0010)
19(0x013)	shared Params. flash TH	0000 0000 dddd dddd	0 (0x0000)
20(0x014)	shared Params_outdoor TH	0000 0000 dddd dddd	10 (0x000A)
21(0x015)	sharedParams.LLmode	0000 0000 dddd dddd	96 (0x0060)
22(0x016)	shared Params. LL virt Gain 1	0000 0000 dddd dddd	81 (0x0051)
23(0x017)	shared Params. LL virt Gain 2	0000 0000 dddd dddd	90 (0x005A)

Table 16: 1: Sequencer Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
24(0x018)	shared Params. LLS at 1	0000 0000 dddd dddd	128 (0x0080)
25(0x019)	sharedParams.LLSat2	0000 0000 dddd dddd	0 (0x0000)
26(0x01A)	sharedParams.LLInterpThresh1	0000 0000 dddd dddd	16 (0x0010)
27(0x01B)	sharedParams.LLInterpThresh2	0000 0000 dddd dddd	64 (0x0040)
28(0x01C)	shared Params. LLAp Corr 1	0000 0000 dddd dddd	2 (0x0002)
29(0x01D)	shared Params. LLAp Corr 2	0000 0000 dddd dddd	0 (0x0000)
30(0x01E)	sharedParams.LLApThresh1	0000 0000 dddd dddd	8 (0x0008)
31(0x01F)	sharedParams.LLApThresh2	0000 0000 dddd dddd	64 (0x0040)
32(0x020)	capture Params. mode	0000 0000 dddd dddd	0 (0x0000)
33(0x021)	captureParams.numFrames	0000 0000 dddd dddd	3 (0x0003)
34(0x022)	previewParEnter.ae	0000 0000 dddd dddd	0 (0x0000)
35(0x023)	previewParEnter.fd	0000 0000 dddd dddd	0 (0x0000)
36(0x024)	previewParEnter.awb	0000 0000 dddd dddd	0 (0x0000)
37(0x025)	previewParEnter.af	0000 0000 dddd dddd	0 (0x0000)
38(0x026)	previewParEnter.hg	0000 0000 dddd dddd	0 (0x0000)
39(0x027)	preview Par Enter. flash	0000 0000 dddd dddd	0 (0x0000)
40(0x028)	preview Par Enter. skip frame	0000 0000 dddd dddd	64 (0x0040)
41(0x029)	previewPar.ae	0000 0000 dddd dddd	3 (0x0003)
42(0x02A)	previewPar.fd	0000 0000 dddd dddd	2 (0x0002)
43(0x02B)	previewPar.awb	0000 0000 dddd dddd	3 (0x0003)
44(0x02C)	previewPar.af	0000 0000 dddd dddd	0 (0x0000)
45(0x02D)	previewPar.hg	0000 0000 dddd dddd	3 (0x0003)
46(0x02E)	preview Par. flash	0000 0000 dddd dddd	0 (0x0000)
47(0x02F)	preview Par.skip frame	0000 0000 dddd dddd	0 (0x0000)
48(0x030)	previewParLeave.ae	0000 0000 dddd dddd	1 (0x0001)
49(0x031)	previewParLeave.fd	0000 0000 dddd dddd	0 (0x0000)
50(0x032)	previewParLeave.awb	0000 0000 dddd dddd	1 (0x0001)
51(0x033)	previewParLeave.af	0000 0000 dddd dddd	0 (0x0000)
52(0x034)	previewParLeave.hg	0000 0000 dddd dddd	1 (0x0001)
53(0x035)	previewParLeave.flash	0000 0000 dddd dddd	0 (0x0000)
54(0x036)	previewParLeave.skipframe	0000 0000 dddd dddd	16 (0x0010)
55(0x037)	capParEnter.ae	0000 0000 dddd dddd	0 (0x0000)
56(0x038)	capParEnter.fd	0000 0000 dddd dddd	0 (0x0000)
57(0x039)	capParEnter.awb	0000 0000 dddd dddd	0 (0x0000)
58(0x03A)	capParEnter.af	0000 0000 dddd dddd	0 (0x0000)
59(0x03B)	capParEnter.hg	0000 0000 dddd dddd	0 (0x0000)
60(0x03C)	capParEnter.flash	0000 0000 dddd dddd	0 (0x0000)
61(0x03D)	capParEnter.skipframe	0000 0000 dddd dddd	64 (0x0040)
62(0x03E)	NR_minTH	0000 0000 dddd dddd	16 (0x0010)
63(0x03F)	NR_maxTH	0000 0000 dddd dddd	32 (0x0020)
64(0x040)	NR_GainTH	0000 0000 dddd dddd	0 (0x0000)
65(0x041)	NR_Slope	0000 0000 dddd dddd	16 (0x0010)
66(0x042)	standByStatus	0000 0000 dddd dddd	0 (0x0000)
67(0x043)	standByMode	dddd dddd dddd dddd	0 (0x0000)
69(0x045)	Reserved	-	68 (0x0044)

Table 16: 1: Sequencer Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
70(0x046)	Reserved	-	6 (0x0006)
71(0x047)	Reserved	_	38 (0x0026)
72(0x048)	Reserved	_	4 (0x0004)
73(0x049)	Reserved	_	0 (0x0000)
74(0x04A)	Reserved	_	7 (0x0007)
75(0x04B)	padClkFreq	dddd dddd dddd	824 (0x0338)

Table 17: 2: AE Variables

2(0x002) windowPos 0000 0000 dddd dddd 0 (0x0000) 3(0x003) windowSize 0000 0000 dddd dddd 239 (0x00EF) 4(0x004) wakeUpLine dddd dddd dddd dddd 570 (0x023A) 6(0x006) Target 0000 0000 dddd dddd 60 (0x003C) 7(0x007) Gate. 0000 0000 dddd dddd 10 (0x000A) 8(0x008) SkipFrames 0000 0000 dddd dddd 0 (0x0000) 9(0x009) JumpDivisor 0000 0000 dddd dddd 2 (0x0002) 10(0x00A) IumaBufferSpeed 0000 0000 dddd dddd 3 (0x0008) 11(0x00B) minIndex 0000 0000 dddd dddd 2 (0x0002) 12(0x00C) maxIndex 0000 0000 dddd dddd 24 (0x0018) 13(0x00D) minVirtGain 0000 0000 dddd dddd 16 (0x0010) 14(0x00E) maxVirtGain 0000 0000 dddd dddd 12 (0x008) 15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADClo 0000 0000 dddd ddd 10 (0x00A) 17(0x011) minADClo 0000 0000 dddd ddd <	Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
3(0x003) windowSize 0000 0000 dddd dddd 239 (0x00FF)	0(0x000)	Vmt	dddd dddd dddd	59133 (0xE6FD)
4(0x004) wakeUpLine dddd dddd dddd dddd 570 (0x023A) 6(0x006) Target 0000 0000 dddd dddd 60 (0x003C) 7(0x007) Gate. 0000 0000 dddd dddd 10 (0x000A) 8(0x008) SkipFrames 0000 0000 dddd dddd 0 (0x0000) 9(0x009) JumpDivisor 0000 0000 dddd dddd 2 (0x0002) 10(0x00A) lumaBufferSpeed 0000 0000 dddd dddd 8 (0x0008) 11(0x00B) minIndex 0000 0000 dddd dddd 24 (0x0018) 13(0x00C) maxlndex 0000 0000 dddd dddd 16 (0x0010) 14(0x00E) maxVirtGain 0000 0000 dddd dddd 128 (0x0080) 15(0x00F) maxADChi 0000 0000 dddd ddd 10 (0x0008) 17(0x011) minADChi 0000 0000 dddd dddd 10 (0x0008) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 18(0x012) maxDGainAE2 0000 0000 dddd dddd 128 (0x0080) 18(0x015) IndexTH23 0000 0000 dddd dddd 32 (0x0020) 18(0x016) maxGain23 0000 0000 dddd dddd <td>2(0x002)</td> <td>windowPos</td> <td>0000 0000 dddd dddd</td> <td>0 (0x0000)</td>	2(0x002)	windowPos	0000 0000 dddd dddd	0 (0x0000)
Target	3(0x003)	windowSize	0000 0000 dddd dddd	239 (0x00EF)
7(0x007) Gate. 0000 0000 dddd dddd 10 (0x000A) 8(0x008) SkipFrames 0000 0000 dddd dddd 0 (0x0000) 9(0x009) JumpDivisor 0000 0000 dddd dddd 2 (0x0002) 10(0x00A) IumaBufferSpeed 0000 0000 dddd dddd 8 (0x0008) 11(0x00B) minIndex 0000 0000 dddd dddd 0 (0x0000) 12(0x00C) maxIndex 0000 0000 dddd dddd 24 (0x0018) 13(0x00D) minVirtGain 0000 0000 dddd dddd 16 (0x0010) 14(0x00E) maxVirtGain 0000 0000 dddd dddd 11 (0x000B) 15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 128 (0x0080) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 120 (0x0078) 22(0x016) maxGain23 0000 0000 dddd ddd<	4(0x004)	wakeUpLine	dddd dddd dddd	570 (0x023A)
SkipFrames 0000 0000 dddd dddd 0 (0x0000) 9(0x009)	6(0x006)	Target	0000 0000 dddd dddd	60 (0x003C)
9(0x009) JumpDivisor 0000 0000 dddd dddd 2 (0x0002) 10(0x00A) lumaBufferSpeed 0000 0000 dddd dddd 8 (0x0008) 11(0x00B) minIndex 0000 0000 dddd dddd 24 (0x0018) 12(0x00C) maxIndex 0000 0000 dddd dddd 24 (0x0018) 13(0x00D) minVirtGain 0000 0000 dddd dddd 16 (0x0010) 14(0x00E) maxVirtGain 0000 0000 dddd dddd 128 (0x0080) 15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 128 (0x0080) 18(0x012) maxDGainAE1 dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 32 (0x0020) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 122 (0x0078) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 132 (0x0084) 26(0x01A) R12 dddd dddd dddd 10 (0x0000) 26(0x01A) R12 dddd dddd dddd 10 (0x0000) 26(0x01D) VirtGain 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 128 (0x008) 32(0x020) DGainAE1 dddd dddd dddd 128 (0x0080) 32(0x020) DGainAE2 0000 0000 dddd dddd 2315 (0x0080) 33(0x025) R65 dddd dddd dddd dddd 2315 (0x0090B) 39(0x027) Reserved - 0 (0x0000)	7(0x007)	Gate.	0000 0000 dddd dddd	10 (0x000A)
10(0x00A) IumaBufferSpeed 0000 0000 dddd dddd 8 (0x0008)	8(0x008)	SkipFrames	0000 0000 dddd dddd	0 (0x0000)
11(0x00B) minIndex 0000 0000 dddd dddd 0 (0x0000) 12(0x00C) maxIndex 0000 0000 dddd dddd 24 (0x0018) 13(0x00D) minVirtGain 0000 0000 dddd dddd 16 (0x0010) 14(0x00E) maxVirtGain 0000 0000 dddd dddd 128 (0x0080) 15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 9 (0x0009) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 132 (0x0084) 25(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 10 (0x0000) 26(0x01A) R12 ddddd dddd dddd dddddddddddd	9(0x009)	JumpDivisor	0000 0000 dddd dddd	2 (0x0002)
12(0x00C) maxIndex 0000 0000 dddd dddd 24 (0x0018) 13(0x00D) minVirtGain 0000 0000 dddd dddd 16 (0x0010) 14(0x00E) maxVirtGain 0000 0000 dddd dddd 128 (0x0080) 15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 9 (0x0009) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd	10(0x00A)	lumaBufferSpeed	0000 0000 dddd dddd	8 (0x0008)
13(0x00D) minVirtGain 0000 0000 dddd dddd 16 (0x0010) 14(0x00E) maxVirtGain 0000 0000 dddd dddd 128 (0x0080) 15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 9 (0x0009) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 132 (0x0084) 25(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 1032 (0x0088) 28(0x01A) R12 dddd dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd	11(0x00B)	minIndex	0000 0000 dddd dddd	0 (0x0000)
14(0x00E) maxVirtGain 0000 0000 dddd dddd 128 (0x0080) 15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 9 (0x0009) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 132 (0x0084) 26(0x01A) R12 dddd dddd dddd ddddddddddddd	12(0x00C)	maxIndex	0000 0000 dddd dddd	24 (0x0018)
15(0x00F) maxADChi 0000 0000 dddd dddd 11 (0x000B) 16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 9 (0x0009) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 132 (0x0084) 26(0x01A) R12 dddd dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 128 (0x0080) 32(0x020) DGainAE1 dddd dddd dddd dddd dddd	13(0x00D)	minVirtGain	0000 0000 dddd dddd	16 (0x0010)
16(0x010) minADChi 0000 0000 dddd dddd 10 (0x000A) 17(0x011) minADClo 0000 0000 dddd dddd 9 (0x0009) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 255 (0x00FF) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 128 (0x0080) 34(0x022) DGainAE1 dddd dddd dddd dddd	14(0x00E)	maxVirtGain	0000 0000 dddd dddd	128 (0x0080)
17(0x011) minADClo 0000 0000 dddd dddd 9 (0x0009) 18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 255 (0x00FF) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 128 (0x0080) 34(0x022) DGainAE1 dddd dddd dddd dddd dddd ddd	15(0x00F)	maxADChi	0000 0000 dddd dddd	11 (0x000B)
18(0x012) maxDGainAE1 dddd dddd dddd dddd 128 (0x0080) 20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 255 (0x00FF) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 128 (0x0080) 34(0x022) DGainAE1 dddd dddd dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	16(0x010)	minADChi	0000 0000 dddd dddd	10 (0x000A)
20(0x014) maxDGainAE2 0000 0000 dddd dddd 32 (0x0020) 21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 255 (0x00FF) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 128 (0x0080) 32(0x020) DGainAE1 dddd dddd dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	17(0x011)	minADClo	0000 0000 dddd dddd	9 (0x0009)
21(0x015) IndexTH23 0000 0000 dddd dddd 8 (0x0008) 22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 255 (0x00FF) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	18(0x012)	maxDGainAE1	dddd dddd dddd	128 (0x0080)
22(0x016) maxGain23 0000 0000 dddd dddd 120 (0x0078) 23(0x017) weights 0000 0000 dddd dddd 255 (0x00FF) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	20(0x014)	maxDGainAE2	0000 0000 dddd dddd	32 (0x0020)
23(0x017) weights 0000 0000 dddd dddd 255 (0x00FF) 24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	21(0x015)	IndexTH23	0000 0000 dddd dddd	8 (0x0008)
24(0x018) status 0000 0000 dddd dddd 132 (0x0084) 25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 2315 (0x090B) 37(0x025) R65 dddd dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	22(0x016)	maxGain23	0000 0000 dddd dddd	120 (0x0078)
25(0x019) CurrentY 0000 0000 dddd dddd 0 (0x0000) 26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	23(0x017)	weights	0000 0000 dddd dddd	255 (0x00FF)
26(0x01A) R12 dddd dddd dddd dddd 1032 (0x0408) 28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	24(0x018)	status	0000 0000 dddd dddd	132 (0x0084)
28(0x01C) Index 0000 0000 dddd dddd 4 (0x0004) 29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	25(0x019)	CurrentY	0000 0000 dddd dddd	0 (0x0000)
29(0x01D) VirtGain 0000 0000 dddd dddd 16 (0x0010) 30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	26(0x01A)	R12	dddd dddd dddd	1032 (0x0408)
30(0x01E) ADC_hi 0000 0000 dddd dddd 11 (0x000B) 31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	28(0x01C)	Index	0000 0000 dddd dddd	4 (0x0004)
31(0x01F) ADC_lo 0000 0000 dddd dddd 9 (0x0009) 32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	29(0x01D)	VirtGain	0000 0000 dddd dddd	16 (0x0010)
32(0x020) DGainAE1 dddd dddd dddd dddd 128 (0x0080) 34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved — 0 (0x0000)	30(0x01E)	ADC_hi	0000 0000 dddd dddd	11 (0x000B)
34(0x022) DGainAE2 0000 0000 dddd dddd 32 (0x0020) 35(0x023) R9 dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	31(0x01F)	ADC_lo	0000 0000 dddd dddd	9 (0x0009)
35(0x023) R9 dddd dddd dddd dddd dddd 0 (0x0000) 37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	32(0x020)	DGainAE1	dddd dddd dddd	128 (0x0080)
37(0x025) R65 dddd dddd dddd dddd 2315 (0x090B) 39(0x027) Reserved - 0 (0x0000)	34(0x022)	DGainAE2	0000 0000 dddd dddd	32 (0x0020)
39(0x027) Reserved – 0 (0x0000)	35(0x023)	R9	dddd dddd dddd	0 (0x0000)
	37(0x025)	R65	dddd dddd dddd	2315 (0x090B)
41(0x029) gainR12 0000 0000 dddd dddd 128 (0x0080)	39(0x027)	Reserved	-	0 (0x0000)
	41(0x029)	gainR12	0000 0000 dddd dddd	128 (0x0080)

Table 17: 2: AE Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
42(0x02A)	SkipFrames_cnt	0000 0000 dddd dddd	0 (0x0000)
43(0x02B)	BufferedLuma	dddd dddd dddd	0 (0x0000)
45(0x02D)	dirAE_prev	0000 0000 dddd dddd	0 (0x0000)
46(0x02E)	R9_step	dddd dddd dddd	157 (0x009D)
48(0x030)	Reserved	-	2 (0x0002)
49(0x031)	maxADClo	0000 0000 dddd dddd	10 (0x000A)
50(0x032)	physGainR	dddd dddd dddd	16 (0x0010)
52(0x034)	physGainG	dddd dddd dddd	16 (0x0010)
54(0x036)	physGainB	dddd dddd dddd	16 (0x0010)
56(0x038)	Reserved	-	128 (0x0080)
58(0x03A)	Reserved	_	960 (0x03C0)
60(0x03C)	Reserved	_	3072 (0x0C00)
62(0x03E)	Reserved	-	8 (0x0008)
63(0x03F)	Reserved	_	10 (0x000A)
64(0x040)	Reserved	_	0 (0x0000)
65(0x041)	mmMeanEV	0000 0000 dddd dddd	0 (0x0000)
66(0x042)	mmShiftEV	0000 0000 dddd dddd	13 (0x000D)
67(0x043)	numOE	0000 0000 dddd dddd	0 (0x0000)
68(0x044)	TargetD	dddd dddd dddd	61 (0x003D)
69(0x045)	maxNu	dddd dddd dddd	100 (0x0064)
71(0x047)	Reserved	_	0 (0x0000)
73(0x049)	minTargetD	0000 0000 dddd dddd	40 (0x0028)
74(0x04A)	maxTargetD	0000 0000 dddd dddd	180 (0x00B4)
75(0x04B)	Reserved	_	40 (0x0028)
76(0x04C)	Reserved	_	180 (0x00B4)
77(0x04D)	Reserved	_	0 (0x0000)
78(0x04E)	Reserved	_	3 (0x0003)
79(0x04F)	coefG2	0000 0000 dddd dddd	128 (0x0080)
80(0x050)	EV_HiLo	0000 0000 dddd dddd	166 (0x00A6)
81(0x051)	target Delta.	0000 0000 dddd dddd	168 (0x00A8)
82(0x052)	minTargetDelta	0000 0000 dddd dddd	134 (0x0086)
83(0x053)	maxNuDelta	0000 0000 dddd dddd	25 (0x0019)
84(0x054)	outliersSlope	0000 000d dddd dddd	16 (0x0010)

Table 18: 3: AWB Variables

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
0(0x000)	vmt	dddd dddd dddd	59299 (0xE7A3)
2(0x002)	windowPos	0000 0000 dddd dddd	0 (0x0000)
3(0x003)	windowSize	0000 0000 dddd dddd	239 (0x00EF)
4(0x004)	wakeUpLine	dddd dddd dddd	572 (0x023C)
6(0x006)	ccmL[0]	dddd dddd dddd	645 (0x0285)
8(0x008)	ccmL[1]	dddd dddd dddd	65176 (0xFE98)
10(0x00A)	ccmL[2]	dddd dddd dddd	16 (0x0010)
12(0x00C)	ccmL[3]	dddd dddd dddd	65365 (0xFF55)

Table 18: 3: AWB Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
14(0x00E)	ccmL[4]	dddd dddd dddd	553 (0x0229)
16(0x010)	ccmL[5]	dddd dddd dddd dddd	65487 (0xFFCF)
18(0x012)	ccmL[6]	dddd dddd dddd dddd	65381 (0xFF65)
20(0x014)	ccmL[7]	dddd dddd dddd	65017 (0xFDF9)
22(0x016)	ccmL[8]	dddd dddd dddd	1035 (0x040B)
24(0x018)	ccmL[9]	dddd dddd dddd dddd	32 (0x0020)
26(0x01A)	ccmL[10]	dddd dddd dddd dddd	56 (0x0038)
28(0x01C)	ccmRL[0]	dddd dddd dddd dddd	65456 (0xFFB0)
30(0x01E)	ccmRL[1]	dddd dddd dddd dddd	101 (0x0065)
32(0x020)	ccmRL[2]	dddd dddd dddd dddd	65519 (0xFFEF)
34(0x022)	ccmRL[3]	dddd dddd dddd dddd	31 (0x001F)
36(0x024)	ccmRL[4]	dddd dddd dddd dddd	20 (0x0014)
38(0x026)	ccmRL[5]	dddd dddd dddd	65494 (0xFFD6)
40(0x028)	ccmRL[6]	dddd dddd dddd dddd	95 (0x005F)
42(0x02A)	ccmRL[7]	dddd dddd dddd dddd	258 (0x0102)
44(0x02C)	ccmRL[8]	dddd dddd dddd dddd	65124 (0xFE64)
46(0x02E)	ccmRL[9]	dddd dddd dddd dddd	16 (0x0010)
48(0x030)	ccmRL[10]	dddd dddd dddd dddd	65517 (0xFFED)
50(0x032)	ccm[0]	dddd dddd dddd dddd	513 (0x0201)
52(0x034)	ccm[1]	dddd dddd dddd	65274 (0xFEFA)
54(0x036)	ccm[2]	dddd dddd dddd dddd	6 (0x0006)
56(0x038)	ccm[3]	dddd dddd dddd dddd	65418 (0xFF8A)
58(0x03A)	ccm[4]	dddd dddd dddd dddd	429 (0x01AD)
60(0x03C)	ccm[5]	dddd dddd dddd dddd	65483 (0xFFCB)
62(0x03E)	ccm[6]	dddd dddd dddd dddd	65453 (0xFFAD)
64(0x040)	ccm[7]	dddd dddd dddd dddd	65234 (0xFED2)
66(0x042)	ccm[8]	dddd dddd dddd dddd	642 (0x0282)
68(0x044)	ccm[9]	dddd dddd dddd	40 (0x0028)
70(0x046)	ccm[10]	dddd dddd dddd	47 (0x002F)
72(0x048)	GainBufferSpeed	0000 0000 dddd dddd	8 (0x0008)
73(0x049)	JumpDivisor	0000 0000 dddd dddd	2 (0x0002)
74(0x04A)	GainMin	0000 0000 dddd dddd	102 (0x0066)
75(0x04B)	GainMax	0000 0000 dddd dddd	153 (0x0099)
76(0x04C)	GainR	0000 0000 dddd dddd	128 (0x0080)
77(0x04D)	GainG	0000 0000 dddd dddd	128 (0x0080)
78(0x04E)	GainB	0000 0000 dddd dddd	128 (0x0080)
79(0x04F)	CCMpositionMin	0000 0000 dddd dddd	0 (0x0000)
80(0x050)	CCMpositionMax	0000 0000 dddd dddd	127 (0x007F)
81(0x051)	CCMposition	0000 0000 dddd dddd	64 (0x0040)
82(0x052)	saturation	0000 0000 dddd dddd	128 (0x0080)
83(0x053)	mode	0000 0000 dddd dddd	0 (0x0000)
84(0x054)	GainR_buf	dddd dddd dddd	0 (0x0000)
86(0x056)	GainB_buf	dddd dddd dddd	0 (0x0000)
88(0x058)	sumR	0000 0000 dddd dddd	0 (0x0000)
89(0x059)	sumY	0000 0000 dddd dddd	0 (0x0000)

Table 18: 3: AWB Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
90(0x05A)	sumB	0000 0000 dddd dddd	0 (0x0000)
91(0x05B)	steadyBGainOutMin	0000 0000 dddd dddd	120 (0x0078)
92(0x05C)	steadyBGainOutMax	0000 0000 dddd dddd	134 (0x0086)
93(0x05D)	steadyBGainInMin	0000 0000 dddd dddd	126 (0x007E)
94(0x05E)	steadyBGainInMax	0000 0000 dddd dddd	130 (0x0082)
95(0x05F)	cntPxlTH	dddd dddd dddd	100 (0x0064)
97(0x061)	TG_min0	0000 0000 dddd dddd	231 (0x00E7)
98(0x062)	TG_max0	0000 0000 dddd dddd	246 (0x00F6)
99(0x063)	X0	0000 0000 dddd dddd	16 (0x0010)
100(0x064)	kR_L	0000 0000 dddd dddd	170 (0x00AA)
101(0x065)	kG_L	0000 0000 dddd dddd	150 (0x0096)
102(0x066)	kB_L	0000 0000 dddd dddd	128 (0x0080)
103(0x067)	kR_R	0000 0000 dddd dddd	128 (0x0080)
104(0x068)	kG_R	0000 0000 dddd dddd	128 (0x0080)
105(0x069)	kB_R	0000 0000 dddd dddd	128 (0x0080)
106(0x06A)	EdgeTH	0000 0000 dddd dddd	128 (0x0080)
107(0x06B)	EdgeTH_min	0000 0000 dddd dddd	128 (0x0080)
108(0x06C)	EdgeTH_max	0000 0000 dddd dddd	128 (0x0080)

Table 19: 4: Flicker Varialbes

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
0(0x000)	vmt	dddd dddd dddd dddd	59428 (0xE824)
2(0x002)	windowPosH	0000 0000 dddd dddd	29 (0x001D)
3(0x003)	windowHeight	0000 0000 dddd dddd	4 (0x0004)
4(0x004)	mode	0000 0000 dd?d ????	0 (0x0000)
5(0x005)	wakeUpLine	dddd dddd dddd	64 (0x0040)
7(0x007)	smooth_cnt	0000 0000 dddd dddd	5 (0x0005)
8(0x008)	search_f1_50	0000 0000 dddd dddd	30 (0x001E)
9(0x009)	search_f2_50	0000 0000 dddd dddd	32 (0x0020)
10(0x00A)	search_f1_60	0000 0000 dddd dddd	37 (0x0025)
11(0x00B)	search_f2_60	0000 0000 dddd dddd	39 (0x0027)
12(0x00C)	skipFrame	0000 0000 dddd dddd	0 (0x0000)
13(0x00D)	stat_min	0000 0000 dddd dddd	3 (0x0003)
14(0x00E)	stat_max	0000 0000 dddd dddd	5 (0x0005)
15(0x00F)	stat	0000 0000 dddd dddd	0 (0x0000)
16(0x010)	minAmplitude	0000 0000 dddd dddd	5 (0x0005)
17(0x011)	R9_step_0_f60	dddd dddd dddd	157 (0x009D)
19(0x013)	R9_step_0_f50	dddd dddd dddd	188 (0x00BC)
21(0x015)	R9_step_1_f60	dddd dddd dddd	0 (0x0000)
23(0x017)	R9_step_1_f50	dddd dddd dddd	224 (0x00E0)
25(0x019)	Buffer[0]	0000 0000 dddd dddd	0 (0x0000)
26(0x01A)	Buffer[1]	0000 0000 dddd dddd	0 (0x0000)
27(0x01B)	Buffer[2]	0000 0000 dddd dddd	0 (0x0000)
28(0x01C)	Buffer[3]	0000 0000 dddd dddd	0 (0x0000)

Table 19: 4: Flicker Varialbes (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
29(0x01D)	Buffer[4]	0000 0000 dddd dddd	0 (0x0000)
30(0x01E)	Buffer[5]	0000 0000 dddd dddd	0 (0x0000)
31(0x01F)	Buffer[6]	0000 0000 dddd dddd	0 (0x0000)
32(0x020)	Buffer[7]	0000 0000 dddd dddd	0 (0x0000)
33(0x021)	Buffer[8]	0000 0000 dddd dddd	0 (0x0000)
34(0x022)	Buffer[9]	0000 0000 dddd dddd	0 (0x0000)
35(0x023)	Buffer[10]	0000 0000 dddd dddd	0 (0x0000)
36(0x024)	Buffer[11]	0000 0000 dddd dddd	0 (0x0000)
37(0x025)	Buffer[12]	0000 0000 dddd dddd	0 (0x0000)
38(0x026)	Buffer[13]	0000 0000 dddd dddd	0 (0x0000)
39(0x027)	Buffer[14]	0000 0000 dddd dddd	0 (0x0000)
40(0x028)	Buffer[15]	0000 0000 dddd dddd	0 (0x0000)
41(0x029)	Buffer[16]	0000 0000 dddd dddd	0 (0x0000)
42(0x02A)	Buffer[17]	0000 0000 dddd dddd	0 (0x0000)
43(0x02B)	Buffer[18]	0000 0000 dddd dddd	0 (0x0000)
44(0x02C)	Buffer[19]	0000 0000 dddd dddd	0 (0x0000)
45(0x02D)	Buffer[20]	0000 0000 dddd dddd	0 (0x0000)
46(0x02E)	Buffer[21]	0000 0000 dddd dddd	0 (0x0000)
47(0x02F)	Buffer[22]	0000 0000 dddd dddd	0 (0x0000)
48(0x030)	Buffer[23]	0000 0000 dddd dddd	0 (0x0000)
49(0x031)	Buffer[24]	0000 0000 dddd dddd	0 (0x0000)
50(0x032)	Buffer[25]	0000 0000 dddd dddd	0 (0x0000)
51(0x033)	Buffer[26]	0000 0000 dddd dddd	0 (0x0000)
52(0x034)	Buffer[27]	0000 0000 dddd dddd	0 (0x0000)
53(0x035)	Buffer[28]	0000 0000 dddd dddd	0 (0x0000)
54(0x036)	Buffer[29]	0000 0000 dddd dddd	0 (0x0000)
55(0x037)	Buffer[30]	0000 0000 dddd dddd	0 (0x0000)
56(0x038)	Buffer[31]	0000 0000 dddd dddd	0 (0x0000)
57(0x039)	Buffer[32]	0000 0000 dddd dddd	0 (0x0000)
58(0x03A)	Buffer[33]	0000 0000 dddd dddd	0 (0x0000)
59(0x03B)	Buffer[34]	0000 0000 dddd dddd	0 (0x0000)
60(0x03C)	Buffer[35]	0000 0000 dddd dddd	0 (0x0000)
61(0x03D)	Buffer[36]	0000 0000 dddd dddd	0 (0x0000)
62(0x03E)	Buffer[37]	0000 0000 dddd dddd	0 (0x0000)
63(0x03F)	Buffer[38]	0000 0000 dddd dddd	0 (0x0000)
64(0x040)	Buffer[39]	0000 0000 dddd dddd	0 (0x0000)
65(0x041)	Buffer[40]	0000 0000 dddd dddd	0 (0x0000)
66(0x042)	Buffer[41]	0000 0000 dddd dddd	0 (0x0000)
67(0x043)	Buffer[42]	0000 0000 dddd dddd	0 (0x0000)
68(0x044)	Buffer[43]	0000 0000 dddd dddd	0 (0x0000)
69(0x045)	Buffer[44]	0000 0000 dddd dddd	0 (0x0000)
70(0x046)	Buffer[45]	0000 0000 dddd dddd	0 (0x0000)
71(0x047)	Buffer[46]	0000 0000 dddd dddd	0 (0x0000)
72(0x048)	Buffer[47]	0000 0000 dddd dddd	0 (0x0000)

Table 20: 5: Auto Focus Variables

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
0(0x000)	vmt	dddd dddd dddd dddd	59438 (0xE82E)
2(0x002)	windowPos	0000 0000 dddd dddd	68 (0x0044)
3(0x003)	windowSize	0000 0000 dddd dddd	119 (0x0077)
4(0x004)	mode	0000 0000 dddd dddd	0 (0x0000)
5(0x005)	modeEx	0000 0000 dddd dddd	128 (0x0080)
6(0x006)	numSteps	0000 0000 dddd dddd	10 (0x000A)
7(0x007)	initPos	0000 0000 dddd dddd	0 (0x0000)
8(0x008)	numSteps2	0000 0000 dddd dddd	6 (0x0006)
9(0x009)	stepSize	0000 0000 dddd dddd	6 (0x0006)
10(0x00A)	wakeUpLine	dddd dddd dddd	448 (0x01C0)
12(0x00C)	zoneWeights [HI]	dddd dddd dddd dddd	65535 (0xFFFF)
14(0x00E)	zoneWeights [LO]	dddd dddd dddd dddd	65535 (0xFFFF)
16(0x010)	distanceWeight	0000 0000 dddd dddd	255 (0x00FF)
17(0x011)	bestPosition	0000 0000 dddd dddd	0 (0x0000)
18(0x012)	shaTH	0000 0000 dddd dddd	10 (0x000A)
19(0x013)	modeEx2	0000 0000 dddd dddd	0 (0x0000)
20(0x014)	Position 0	0000 0000 dddd dddd	0 (0x0000)
21(0x015)	Position 1	0000 0000 dddd dddd	28 (0x001C)
22(0x016)	Position 2	0000 0000 dddd dddd	56 (0x0038)
23(0x017)	Position 3	0000 0000 dddd dddd	85 (0x0055)
24(0x018)	Position 4	0000 0000 dddd dddd	113 (0x0071)
25(0x019)	Position 5	0000 0000 dddd dddd	141 (0x008D)
26(0x01A)	Position 6	0000 0000 dddd dddd	170 (0x00AA)
27(0x01B)	Position 7	0000 0000 dddd dddd	198 (0x00C6)
28(0x01C)	Position 8	0000 0000 dddd dddd	226 (0x00E2)
29(0x01D)	Position 9	0000 0000 dddd dddd	255 (0x00FF)
30(0x01E)	Position 10	0000 0000 dddd dddd	27 (0x001B)
31(0x01F)	Position 11	0000 0000 dddd dddd	55 (0x0037)
32(0x020)	Position 12	0000 0000 dddd dddd	84 (0x0054)
33(0x021)	Position 13	0000 0000 dddd dddd	112 (0x0070)
34(0x022)	Position 14	0000 0000 dddd dddd	140 (0x008C)
35(0x023)	Position 15	0000 0000 dddd dddd	169 (0x00A9)
36(0x024)	Position 16	0000 0000 dddd dddd	197 (0x00C5)
37(0x025)	Position 17	0000 0000 dddd dddd	225 (0x00E1)
38(0x026)	Position 18	0000 0000 dddd dddd	254 (0x00FE)
39(0x027)	Position 19	0000 0000 dddd dddd	26 (0x001A)

Table 21: 6: AFM Variables

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec(Hex)
0(0x000)	vmt	dddd dddd dddd	59454 (0xE83E)
2(0x002)	type	0000 0000 dddd dddd	0 (0x0000)
3(0x003)	curPos	0000 0000 dddd dddd	0 (0x0000)
4(0x004)	prePos	0000 0000 dddd dddd	0 (0x0000)
5(0x005)	status	0000 0000 dddd dddd	0 (0x0000)

Table 21: 6: AFM Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec(Hex)
6(0x006)	posMin	0000 0000 dddd dddd	0 (0x0000)
7(0x007)	posMax	0000 0000 dddd dddd	0 (0x0000)
8(0x008)	posMacro	0000 0000 dddd dddd	0 (0x0000)
9(0x009)	backlash	0000 0000 dddd dddd	0 (0x0000)
10(0x00A)	custCtrl	0000 0000 dddd dddd	0 (0x0000)
11(0x00B)	timer_vmt	dddd dddd dddd	59627 (0xE8EB)
13(0x00D)	timer_startTime	dddd dddd dddd	0 (0x0000)
15(0x00F)	timer_stopTime	dddd dddd dddd	0 (0x0000)
17(0x011)	timer_hiWordMclkFreq	dddd dddd dddd	0 (0x0000)
19(0x013)	timer_maxShortDelay	dddd dddd dddd	0 (0x0000)
21(0x015)	timer_maxLongDelay	dddd dddd dddd	0 (0x0000)
23(0x017)	timer_maxQuickMove	0000 0000 dddd dddd	0 (0x0000)
24(0x018)	timer_config	0000 0000 dddd dddd	0 (0x0000)
25(0x019)	si_vmt	dddd dddd dddd	59635 (0xE8F3)
27(0x01B)	si_clkMask	dddd dddd dddd	0 (0x0000)
29(0x01D)	si_dataMask	dddd dddd dddd	0 (0x0000)
31(0x01F)	si_clkQtrPrd	dddd dddd dddd	0 (0x0000)
33(0x021)	si_needsAck	0000 0000 dddd dddd	0 (0x0000)
34(0x022)	si_slaveAddr	0000 0000 dddd dddd	0 (0x0000)
35(0x023)	sm_enabMask	dddd dddd dddd	0 (0x0000)
37(0x025)	sm_drv0Mask	0000 0000 dddd dddd	0 (0x0000)
38(0x026)	sm_drv1Mask	0000 0000 dddd dddd	0 (0x0000)
39(0x027)	sm_drv2Mask	0000 0000 dddd dddd	0 (0x0000)
40(0x028)	sm_drv3Mask	0000 0000 dddd dddd	0 (0x0000)
41(0x029)	sm_drvsQtrPrd	dddd dddd dddd	0 (0x0000)
43(0x02B)	sm_drvsGenMode	0000 0000 dddd dddd	0 (0x0000)
44(0x02C)	sm_piEnabMask	dddd dddd dddd	0 (0x0000)
46(0x02E)	sm_piOutMask	dddd dddd dddd	0 (0x0000)
48(0x030)	sm_piEdgeOffset	0000 0000 dddd dddd	0 (0x0000)
49(0x031)	sm_piConfig	0000 0000 dddd dddd	0 (0x0000)

Table 22: 7: Mode Variables

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
0(0x000)	vmt	dddd dddd dddd dddd	59502 (0xE86E)
2(0x002)	context	0000 0000 dddd dddd	0 (0x0000)
3(0x003)	Output Width A	dddd dddd dddd dddd	800 (0x0320)
5(0x005)	Output Height A	dddd dddd dddd dddd	600 (0x0258)
7(0x007)	Output Width B	dddd dddd dddd	1600 (0x0640)
9(0x009)	Output Height B	dddd dddd dddd	1200 (0x04B0)
11(0x00B)	PLL_Lock_Delay	dddd dddd dddd	200 (0x00C8)
13(0x00D)	sensor_row_start_A	dddd dddd dddd	0 (0x0000)
15(0x00F)	sensor_col_start_A	dddd dddd dddd	0 (0x0000)
17(0x011)	sensor_row_end_A	dddd dddd dddd	1213 (0x04BD)
19(0x013)	sensor_col_end_A	dddd dddd dddd	1613 (0x064D)

Table 22: 7: Mode Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
21(0x015)	sensor_x_delay_A	dddd dddd dddd	0 (0x0000)
23(0x017)	sensor_row_speed_A	dddd dddd dddd	8466 (0x2112)
25(0x019)	Read Mode A	dddd dddd dddd	1132 (0x046C)
27(0x01B)	sensor_sample_time_pck_A	dddd dddd dddd	984 (0x03D8)
29(0x01D)	sensor_fine_correction_A	dddd dddd dddd	341 (0x0155)
31(0x01F)	sensor_fine_IT_min_A	dddd dddd dddd	633 (0x0279)
33(0x021)	sensor_fine_IT_max_margin_A	dddd dddd dddd	341 (0x0155)
35(0x023)	sensor_frameLengthLines_A	dddd dddd dddd	659 (0x0293)
37(0x025)	sensor_lineLengthPck:_A	dddd dddd dddd	2732 (0x0AAC)
39(0x027)	sensor_dac_id_4_5_A	dddd dddd dddd	4112 (0x1010)
41(0x029)	sensor_dac_id_6_7_A	dddd dddd dddd	8208 (0x2010)
43(0x02B)	sensor_dac_id_8_9_A	dddd dddd dddd	4112 (0x1010)
45(0x02D)	sensor_dac_id_10_11_A	dddd dddd dddd	4102 (0x1006)
47(0x02F)	sensor_row_start_B	dddd dddd dddd	4 (0x0004)
49(0x031)	sensor_col_start_B	dddd dddd dddd	4 (0x0004)
51(0x033)	sensor_row_end_B	dddd dddd dddd	1211 (0x04BB)
53(0x035)	sensor_col_end_B	dddd dddd dddd	1611 (0x064B)
55(0x037)	sensor_x_delay_B	dddd dddd dddd	0 (0x0000)
57(0x039)	sensor_row_speed_B	dddd dddd dddd	8465 (0x2111)
59(0x03B)	Read Mode B	dddd dddd dddd	36 (0x0024)
61(0x03D)	sensor_sample_time_pck_B	dddd dddd dddd	492 (0x01EC)
63(0x03F)	sensor_fine_correction_B	dddd dddd dddd	164 (0x00A4)
65(0x041)	sensor_fine_IT_min_B	dddd dddd dddd	330 (0x014A)
67(0x043)	sensor_fine_IT_max_margin_B	dddd dddd dddd	164 (0x00A4)
69(0x045)	sensor_frameLengthLines_B	dddd dddd dddd	1261 (0x04ED)
71(0x047)	sensor_lineLengthPck:_B	dddd dddd dddd	2732 (0x0AAC)
73(0x049)	sensor_dac_id_4_5_B	dddd dddd dddd	8224 (0x2020)
75(0x04B)	sensor_dac_id_6_7_B	dddd dddd dddd	8224 (0x2020)
77(0x04D)	sensor_dac_id_8_9_B	dddd dddd dddd	4128 (0x1020)
79(0x04F)	sensor_dac_id_10_11_B	dddd dddd dddd	8198 (0x2006)
81(0x051)	crop_X0_A	dddd dddd dddd	0 (0x0000)
83(0x053)	crop_X1_A	dddd dddd dddd	800 (0x0320)
85(0x055)	crop_Y0_A	dddd dddd dddd dddd	0 (0x0000)
87(0x057)	crop_Y1_A	dddd dddd dddd	600 (0x0258)
89(0x059)	dec_ctrl_A	dddd dddd dddd	0 (0x0000)
91(0x05B)	width_ratio_A	dddd dddd dddd	2048 (0x0800)
93(0x05D)	height_ratio_A	dddd dddd dddd	2048 (0x0800)
95(0x05F)	crop_X0_B	dddd dddd dddd	0 (0x0000)
97(0x061)	crop_X1_B	dddd dddd dddd	1600 (0x0640)
99(0x063)	crop_Y0_B	dddd dddd dddd	0 (0x0000)
101(0x065)	crop_Y1_B	dddd dddd dddd	1200 (0x04B0)
103(0x067)	dec_ctrl_B	dddd dddd dddd	0 (0x0000)
105(0x069)	width_ratio_B	dddd dddd dddd	2048 (0x0800)
107(0x06B)	height_ratio_B	dddd dddd dddd	2048 (0x0800)
109(0x06D)	gam_cont_A	0000 0000 dddd dddd	66 (0x0042)

Table 22: 7: Mode Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
110(0x06E)	gam_cont_B	0000 0000 dddd dddd	66 (0x0042)
111(0x06F)	gam_table_A_0	0000 0000 dddd dddd	0 (0x0000)
112(0x070)	gam_table_A_1	0000 0000 dddd dddd	39 (0x0027)
113(0x071)	gam_table_A_2	0000 0000 dddd dddd	53 (0x0035)
114(0x072)	gam_table_A_3	0000 0000 dddd dddd	72 (0x0048)
115(0x073)	gam_table_A_4	0000 0000 dddd dddd	99 (0x0063)
116(0x074)	gam_table_A_5	0000 0000 dddd dddd	119 (0x0077)
117(0x075)	gam_table_A_6	0000 0000 dddd dddd	136 (0x0088)
118(0x076)	gam_table_A_7	0000 0000 dddd dddd	150 (0x0096)
119(0x077)	gam_table_A_8	0000 0000 dddd dddd	163 (0x00A3)
120(0x078)	gam_table_A_9	0000 0000 dddd dddd	175 (0x00AF)
121(0x079)	gam_table_A_10	0000 0000 dddd dddd	186 (0x00BA)
122(0x07A)	gam_table_A_11	0000 0000 dddd dddd	196 (0x00C4)
123(0x07B)	gam_table_A_12	0000 0000 dddd dddd	206 (0x00CE)
124(0x07C)	gam_table_A_13	0000 0000 dddd dddd	215 (0x00D7)
125(0x07D)	gam_table_A_14	0000 0000 dddd dddd	224 (0x00E0)
126(0x07E)	gam_table_A_15	0000 0000 dddd dddd	232 (0x00E8)
127(0x07F)	gam_table_A_16	0000 0000 dddd dddd	240 (0x00F0)
128(0x080)	gam_table_A_17	0000 0000 dddd dddd	248 (0x00F8)
129(0x081)	gam_table_A_18	0000 0000 dddd dddd	255 (0x00FF)
130(0x082)	gam_table_B_0	0000 0000 dddd dddd	0 (0x0000)
131(0x083)	gam_table_B_1	0000 0000 dddd dddd	39 (0x0027)
132(0x084)	gam_table_B_2	0000 0000 dddd dddd	53 (0x0035)
133(0x085)	gam_table_B_3	0000 0000 dddd dddd	72 (0x0048)
134(0x086)	gam_table_B_4	0000 0000 dddd dddd	99 (0x0063)
135(0x087)	gam_table_B_5	0000 0000 dddd dddd	119 (0x0077)
136(0x088)	gam_table_B_6	0000 0000 dddd dddd	136 (0x0088)
137(0x089)	gam_table_B_7	0000 0000 dddd dddd	150 (0x0096)
138(0x08A)	gam_table_B_8	0000 0000 dddd dddd	163 (0x00A3)
139(0x08B)	gam_table_B_9	0000 0000 dddd dddd	175 (0x00AF)
140(0x08C)	gam_table_B_10	0000 0000 dddd dddd	186 (0x00BA)
141(0x08D)	gam_table_B_11	0000 0000 dddd dddd	196 (0x00C4)
142(0x08E)	gam_table_B_12	0000 0000 dddd dddd	206 (0x00CE)
143(0x08F)	gam_table_B_13	0000 0000 dddd dddd	215 (0x00D7)
144(0x090)	gam_table_B_14	0000 0000 dddd dddd	224 (0x00E0)
145(0x091)	gam_table_B_15	0000 0000 dddd dddd	232 (0x00E8)
146(0x092)	gam_table_B_16	0000 0000 dddd dddd	240 (0x00F0)
147(0x093)	gam_table_B_17	0000 0000 dddd dddd	248 (0x00F8)
148(0x094)	gam_table_B_18	0000 0000 dddd dddd	255 (0x00FF)
149(0x095)	output_format_A	dddd dddd dddd	0 (0x0000)
151(0x097)	output_format_B	dddd dddd dddd	0 (0x0000)
153(0x099)	spec_effects_A	dddd dddd dddd	25664 (0x6440)
155(0x09B)	spec_effects_B	dddd dddd dddd	25664 (0x6440)
157(0x09D)	y_rgb_offset_A	0000 0000 dddd dddd	0 (0x0000)
158(0x09E)	y_rgb_offset_B	0000 0000 dddd dddd	0 (0x0000)

Table 22: 7: Mode Variables (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
159(0x09F)	gam_shadow_0	0000 0000 dddd dddd	0 (0x0000)
160(0x0A0)	gam_shadow_1	0000 0000 dddd dddd	20 (0x0014)
161(0x0A1)	gam_shadow_2	0000 0000 dddd dddd	34 (0x0022)
162(0x0A2)	gam_shadow_3	0000 0000 dddd dddd	58 (0x003A)
163(0x0A3)	gam_shadow_4	0000 0000 dddd dddd	93 (0x005D)
164(0x0A4)	gam_shadow_5	0000 0000 dddd dddd	118 (0x0076)
165(0x0A5)	gam_shadow_6	0000 0000 dddd dddd	136 (0x0088)
166(0x0A6)	gam_shadow_7	0000 0000 dddd dddd	150 (0x0096)
167(0x0A7)	gam_shadow_8	0000 0000 dddd dddd	163 (0x00A3)
168(0x0A8)	gam_shadow_9	0000 0000 dddd dddd	175 (0x00AF)
169(0x0A9)	gam_shadow_10	0000 0000 dddd dddd	186 (0x00BA)
170(0x0AA)	gam_shadow_11	0000 0000 dddd dddd	196 (0x00C4)
171(0x0AB)	gam_shadow_12	0000 0000 dddd dddd	206 (0x00CE)
172(0x0AC)	gam_shadow_13	0000 0000 dddd dddd	215 (0x00D7)
173(0x0AD)	gam_shadow_14	0000 0000 dddd dddd	224 (0x00E0)
174(0x0AE)	gam_shadow_15	0000 0000 dddd dddd	232 (0x00E8)
175(0x0AF)	gam_shadow_16	0000 0000 dddd dddd	240 (0x00F0)
176(0x0B0)	gam_shadow_17	0000 0000 dddd dddd	248 (0x00F8)
177(0x0B1)	gam_shadow_18	0000 0000 dddd dddd	255 (0x00FF)

Table 23: 11: HG Variables

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
0(0x000)	vmt	dddd dddd dddd	59667 (0xE913)
2(0x002)	DLevelBufferSpeed	0000 0000 dddd dddd	8 (0x0008)
3(0x003)	scaleGFactor	0000 0000 dddd dddd	1 (0x0001)
4(0x004)	maxDLevel	0000 0000 dddd dddd	64 (0x0040)
5(0x005)	percent	0000 0000 dddd dddd	0 (0x0000)
6(0x006)	lowerLimit1	0000 0000 dddd dddd	0 (0x0000)
7(0x007)	binSize1	0000 0000 dddd dddd	2 (0x0002)
8(0x008)	lowerLimit2	0000 0000 dddd dddd	192 (0x00C0)
9(0x009)	binSize2	0000 0000 dddd dddd	4 (0x0004)
10(0x00A)	DLevel	0000 0000 dddd dddd	0 (0x0000)
11(0x00B)	DLevel_buf	dddd dddd dddd	0 (0x0000)
13(0x00D)	factorHI	0000 0000 dddd dddd	10 (0x000A)
14(0x00E)	percentHI	0000 0000 dddd dddd	0 (0x0000)
15(0x00F)	positionHI	???? ???? ????	0 (0x0000)
17(0x011)	NI	dddd dddd dddd	0 (0x0000)
19(0x013)	Nu	dddd dddd dddd	0 (0x0000)

Table 24: 0: GPIO

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
4208(0x1070)	GPIO Data	0000 dddd dddd dddd	0 (0x0000)
4210(0x1072)	GPIO Output Toggle	0000 dddd dddd dddd	0 (0x0000)
4212(0x1074)	GPIO Output Set	0000 dddd dddd dddd	0 (0x0000)

Table 24: 0: GPIO (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
4214(0x1076)	GPIO Output Clear	0000 dddd dddd dddd	0 (0x0000)
4216(0x1078)	GPIO Direction	0000 dddd dddd dddd	4095 (0x0FFF)
4218(0x107A)	GPIO Dir. Reverse	0000 dddd dddd dddd	0 (0x0000)
4220(0x107C)	GPIO Dir. In	0000 dddd dddd dddd	0 (0x0000)
4222(0x107E)	GPIO Dir. Out	0000 dddd dddd dddd	0 (0x0000)
4224(0x1080)	1st Subperiod at AF_GPIO-1	0000 0000 dddd dddd	0 (0x0000)
4225(0x1081)	1st Subperiod at AF_GPIO-0	0000 0000 dddd dddd	0 (0x0000)
4226(0x1082)	2nd Subperiod at AF_GPIO-1	0000 0000 dddd dddd	0 (0x0000)
4227(0x1083)	2nd Subperiod at AF_GPIO-0	0000 0000 dddd dddd	0 (0x0000)
4228(0x1084)	3rd Subperiod at AF_GPIO-1	0000 0000 dddd dddd	0 (0x0000)
4229(0x1085)	3rd Subperiod at AF_GPIO-0	0000 0000 dddd dddd	0 (0x0000)
4230(0x1086)	4th Subperiod at AF_GPIO-1	0000 0000 dddd dddd	0 (0x0000)
4231(0x1087)	4th Subperiod at AF_GPIO-0	0000 0000 dddd dddd	0 (0x0000)
4232(0x1088)	5th Subperiod at AF_GPIO-1	0000 0000 dddd dddd	0 (0x0000)
4233(0x1089)	5th Subperiod at AF_GPIO-0	0000 0000 dddd dddd	0 (0x0000)
4234(0x108A)	Duration at AF_GPIO-1	0000 0000 dddd dddd	0 (0x0000)
4235(0x108B)	Duration at AF_GPIO-0	0000 0000 dddd dddd	0 (0x0000)
4236(0x108C)	1st Subperiod at AF_GPIO-3	0000 0000 dddd dddd	0 (0x0000)
4237(0x108D)	1st Subperiod at AF_GPIO-2	0000 0000 dddd dddd	0 (0x0000)
4238(0x108E)	2nd Subperiod at AF_GPIO-3	0000 0000 dddd dddd	0 (0x0000)
4239(0x108F)	2nd Subperiod at AF_GPIO-2	0000 0000 dddd dddd	0 (0x0000)
4240(0x1090)	3rd Subperiod at AF_GPIO-3	0000 0000 dddd dddd	0 (0x0000)
4241(0x1091)	3rd Subperiod at AF_GPIO-2	0000 0000 dddd dddd	0 (0x0000)
4242(0x1092)	4th Subperiod at AF_GPIO-3	0000 0000 dddd dddd	0 (0x0000)
4243(0x1093)	4th Subperiod at AF_GPIO-2	0000 0000 dddd dddd	0 (0x0000)
4244(0x1094)	5th Subperiod at AF_GPIO-3	0000 0000 dddd dddd	0 (0x0000)
4245(0x1095)	5th Subperiod at AF_GPIO-2	0000 0000 dddd dddd	0 (0x0000)
4246(0x1096)	Duration at AF_GPIO-3	0000 0000 dddd dddd	0 (0x0000)
4247(0x1097)	Duration at AF_GPIO-2	0000 0000 dddd dddd	0 (0x0000)
4248(0x1098)	1st Subperiod at AF_GPIO-5	0000 0000 dddd dddd	0 (0x0000)
4249(0x1099)	1st Subperiod at AF_GPIO-4	0000 0000 dddd dddd	0 (0x0000)
4250(0x109A)	2nd Subperiod at AF_GPIO-5	0000 0000 dddd dddd	0 (0x0000)
4251(0x109B)	2nd Subperiod at AF_GPIO-4	0000 0000 dddd dddd	0 (0x0000)
4252(0x109C)	3rd Subperiod at AF_GPIO-5	0000 0000 dddd dddd	0 (0x0000)
4253(0x109D)	3rd Subperiod at AF_GPIO-4	0000 0000 dddd dddd	0 (0x0000)
4254(0x109E)	4th Subperiod at AF_GPIO-5	0000 0000 dddd dddd	0 (0x0000)
4255(0x109F)	4th Subperiod at AF_GPIO-4	0000 0000 dddd dddd	0 (0x0000)
4256(0x10A0)	5th Subperiod at AF_GPIO-5	0000 0000 dddd dddd	0 (0x0000)
4257(0x10A1)	5th Subperiod at AF_GPIO-4	0000 0000 dddd dddd	0 (0x0000)
4258(0x10A2)	Duration at AF_GPIO-5	0000 0000 dddd dddd	0 (0x0000)
4259(0x10A3)	Duration at AF_GPIO-4	0000 0000 dddd dddd	0 (0x0000)
4260(0x10A4)	1st Subperiod at AF_GPIO-7	0000 0000 dddd dddd	0 (0x0000)
4261(0x10A5)	1st Subperiod at AF_GPIO-6	0000 0000 dddd dddd	0 (0x0000)
4262(0x10A6)	2nd Subperiod at AF_GPIO-7	0000 0000 dddd dddd	0 (0x0000)
4263(0x10A7)	2nd Subperiod at AF_GPIO-6	0000 0000 dddd dddd	0 (0x0000)

Table 24: 0: GPIO (continued)

Register #Dec (Hex)	Register Description	Data Format (Binary)	Default Value Dec (Hex)
4264(0x10A8)	3rd Subperiod at AF_GPIO-7	0000 0000 dddd dddd	0 (0x0000)
4265(0x10A9)	3rd Subperiod at AF_GPIO-6	0000 0000 dddd dddd	0 (0x0000)
4266(0x10AA)	4th Subperiod at AF_GPIO-7	0000 0000 dddd dddd	0 (0x0000)
4267(0x10AB)	4th Subperiod at AF_GPIO-6	0000 0000 dddd dddd	0 (0x0000)
4268(0x10AC)	5th Subperiod at AF_GPIO-7	0000 0000 dddd dddd	0 (0x0000)
4269(0x10AD)	5th Subperiod at AF_GPIO-6	0000 0000 dddd dddd	0 (0x0000)
4270(0x10AE)	Duration at AF_GPIO-7	0000 0000 dddd dddd	0 (0x0000)
4271(0x10AF)	Duration at AF_GPIO-6	0000 0000 dddd dddd	0 (0x0000)
4272(0x10B0)	Waveform Generator Config.	0000 0000 dddd dddd	0 (0x0000)
4273(0x10B1)	Chain Waveforms	0000 0000 0ddd dddd	0 (0x0000)
4274(0x10B2)	Waveform Clock Dividers	0000 0000 dddd dddd	0 (0x0000)
4275(0x10B3)	Clock Divider Selects	0000 0000 dddd dddd	0 (0x0000)
4276(0x10B4)	Sync Waveform to Frame	0000 0000 dddd dddd	0 (0x0000)
4277(0x10B5)	Waveform Resets	0000 0000 dddd dddd	0 (0x0000)
4278(0x10B6)	Waveform Suspends	0000 0000 dddd dddd	0 (0x0000)
4280(0x10B8)	Enable Notification Signals	0000 0000 dddd dddd	0 (0x0000)
4281(0x10B9)	Trigger Edge Selects	0000 dddd dddd dddd	0 (0x0000)
4283(0x10BB)	Trigger Mask	0000 dddd dddd dddd	4095 (0x0FFF)
4285(0x10BD)	Sync Waveform to STROBE	0000 0000 dddd dddd	0 (0x0000)
4286(0x10BE)	Signals Pending	0000 dddd dddd dddd	0 (0x0000)

Register Description

Table 25: 0: Core Registers

Bits	Default	Name	
15:0	0x1580	model_id_ (RW)	
Chip ve	rsion. Read	-only. Can be made read/write by clearing Reg0x301A-B[3].	
15:0 0x0004 y_addr_start_ (RW)			
		ible pixels to be read out (not counting any dark rows that may be read). To move the image egister to the starting "Y" value. Must be an even value.	
15:0	0x0004	x_addr_start_ (RW)	
		visible pixels to be read out (not counting any dark columns that may be read). To move the this register to the starting "X" value. Must be an even value.	
15:0	0x04BB	y_addr_end_ (RW)	
The last	row of visi	ible pixels to be read out. Must be an odd value.	
15:0	0x064B	x_addr_end_ (RW)	
The last	t column of	visible pixels to be read out. Must be an odd value.	
15:0	0x04ED	frame_length_lines_ (RW)	
The number of complete lines (rows) in the output frame. This includes visible lines and vertical blanking lines.			
15:0	0x0824	line_length_pck_ (RW)	
The nui	mber of pix	el clock periods in one line (row) time. This includes visible pixels and horizontal blanking	
15:0	0x0120	sample_time_pck (RW)	
Number of pixel clocks from the start of the row time count (which goes from 0 to line_length_pck) to the start of the CB warm-up phase. The independent control provided by sample_time_pck allows the CB warm-up phase to overlap the row read sequence.			
15:0	0x0085	fine_correction (RW)	
Offset that is added/subtracted from the fine_integration_time when controlling the position of the shutter operations in the row sequence.			
15:0	0x0010	coarse_integration_time_ (RW)	
Integra	tion time sp	pecified in multiples of line_length_pck	
15:0	0x014A	fine_integration_time_ (RW)	
Integra	tion time sp	pecified as a number of pixel clocks.	
	15:0 Chip ve 15:0 The firs window 15:0 The firs image v 15:0 The last 15:0 The nur 15:0 The nur time. 15:0 Offset toperati 15:0 Integral	15:0 0x0004 The first row of vis window, set this reserved in the first column of image window, set 15:0 0x004B The last row of vis 15:0 0x04BB The last row of vis 15:0 0x064B The last column of 15:0 0x04ED The number of cor 15:0 0x0824 The number of pixel cloof the CB warm-up phase to overlap to 15:0 0x0085 Offset that is added operations in the reserved in the set 15:0 0x0010 Integration time set 15:0 0x014A	

Reg. #	Bits	Default	Name
	15:0	0x2111	row_speed (RW)
	15:13	0x0001	Reserved
	12:10	Х	Reserved
	9:8	0x0001	Reserved
	7:4	0x0001	Pixel Clock Delay Number of half-system-clock-cycle increments to delay the rising edge of PIXCLK relative to transitions on FRAME_VALID, LINE_VALID, and DOUT.
	3	Х	Reserved
12310 0x3016	2:0	0x0001	Pixel Clock Speed A programmed value of N gives a pixel clock period of N system clocks. A value of 0 is illegal: it causes the clock to stop.
	15:0	0x0000	extra_delay (RW)
12312 0x3018	pixel cl	ock periods	erted between frames. A programmed value of N increases the vertical blanking time by N s. Can be used to get a more exact frame rate. May affect the integration times of parts of the integration time is less than 1 frame.
12314 0x301A	15:0	0x0248	reset_register (RW)
	15	0x0000	grouped parameter hold 0 = update of many of the registers is synchronized to frame start. 1 = inhibit register updates; register changes will remain pending until this bit is returned to 0. When this bit is returned to 0, all pending register updates will be made on the next frame start.
	14:11	Х	Reserved
	10	0x0000	Restart Bad Frames 1 = a restart is forced any time a bad frame is detected. This can shorten the delay when waiting for a good frame, since the delay for masking out a bad frame will be the integration time rather than the full-frame time.
	9	0x0001	Mask Bad Frames 0 = the sensor will produce bad (corrupted) frames as a result of some register changes 1 = bad (corrupted) frames are masked within the sensor by extending the vertical blanking time for the duration of the bad frame.
	8	0x0000	GPI Enable 0 = the primary input buffers associated with the GPI0, GPI1, GPI2, GPI3 inputs are powered down and the GPI cannot be used. 1 = the input buffers are enabled and can be read through Reg0x3026-7.
	7	0x0000	Parallel Enable 0 = the parallel data interface (DOUT[9:0], LINE_VALID, FRAME_VALID, and PIXCLK) is disabled and the outputs are placed in a high-impedance state. 1 = the parallel data interface is enabled. The output signals can be switched between a driven and a high-impedance state using output-enable control See "Streaming/Standby Control" on page 79.

Reg. #	Bits	Default	Name		
	6	0x0001	Drive Pins		
			0 = the parallel data interface (DOUT[9:0], LINE_VALID, FRAME_VALID, and PIXCLK) may		
			enter a high-impedance state (depending upon the configuration of Reg0x3026). See		
			"Output-Enable Control" on page 76.		
	5	0x0000	1 = the parallel data interface is driven.		
	4	0x0000	Reserved		
	4	00000	Standby EOF 0 = Transition to standby is synchronized to the end of a sensor row readout (held-off until LINE_VALID has fallen) 1 = Transition to standby is synchronized to the end of a frame.		
	3	0x0001	Lock/Unlock Registers		
			Many registers that are specified as read-only are actually implemented as read/write registers. Clearing this bit allows such registers to be written.		
	2	0x0000	Start/Stop Streaming Setting this bit places the sensor in streaming mode. Clearing this bit places the sensor in a low-power mode. The result of clearing this bit depends upon the operating mode of the sensor.		
	1	0x0000	Restart		
			This bit always reads as 0. Setting this bit causes the sensor to truncate the current frame and start resetting the first row. The delay before the first valid frame is read out equals the integration time.		
	0	0x0000	Reset		
			This bit always reads as 0. Setting this bit initiates a reset sequence: the frame being generated will be truncated.		
	15:0	0x0000	image_orientation_mode_select_ (RW)		
	15:9	Х	Reserved		
	8	0x0000	Alias of stream mode Reg 0x301A[2]		
	7:2	Х	Reserved		
	1	0x0000	Vertical Flip This bit is an alias of Reg0x3040[1]		
12316	0	0x0000	Horizontal Mirror This bit is an alias of Reg0x3040[0]		
0x301C	This bit is an alias of Reg0x301A-B[2]				
	15:0	0x002A	data_pedestal_ (RW)		
12318 0x301E			at is added to the ADC output for all visible pixels in order to set the black level to a value ad-only. Can be made read/write by clearing Reg0x301A-B[3].		
12320	15:0	0x0000	software_reset_ (RW)		
0x3020	This bit	is an alias	of Reg0x301A-B[0]		
•					

Reg. #	Bits	Default	Name
	15:0	0x0001	mask_corrupted_frames_grouped_parameter_hold_ (RW)
	15:9	Х	Reserved
	8	0x0000	Alias of grouped_parameter_hold
	7:1	Х	Reserved
12322	0	0x0001	Alias of mask_bad_frames
0x3022	This bit	is an alias	of Reg0x301A-B[15]
	15:0	0x0000	pixel_order_ (RO)
	15:2	Х	Reserved
	1:0	0x0000	pixel_order
			00 = First row is GreenR/Red, first pixel is GreenR
			01 = First row is GreenR/Red, first pixel is Red
			02 = First row is Blue/GreenB, first pixel is Blue
			03 = First row is Blue/GreenB, first pixel is GreenB
12324			The value in this register changes as a function of Reg0x3040[1:0] xor'ed with
0x3024			readout_order.

Reg. #	Bits	Default	Name
	15:0	0xFF8F	gpi_status (RW)
	15:13	0x0007	Standby Pin Select Associate the standby function with an active-high input pin 0 = associate with GPI0 1 = associate with GPI1 2 = associate with GPI2 3 = associate with GPI3 4-6 = RESERVED 7 = standby function cannot be controlled by any pin Must be set to 7 if reset[8]=0. OE_N Pin Select Associate the output-enable function with an active_low
			input pin 0 = associate with GPI0 1 = associate with GPI2 2 = associate with GPI3 4-6 = RESERVED 7 = output-enable function is not controlled by any pin Must be set to 7 if reset[8]=0.
	9:7	0x0007	Trigger Pin Select Associate the trigger function with an active-high input pin 0 = associate with GPI0 1 = associate with GPI1 2 = associate with GPI2 3 = associate with GPI3 4-6 = RESERVED 7 = trigger function is not controlled by any pin Must be set to 7 if Reg0x301A-B[8]=0.
	6:4	Х	Reserved
	3	RO	GPI3 Read-only. Return the current state of the GPI3 input pin. Invalid if Reg0x301A-B[8]=0.
	2	RO	GPI2 Read-only. Return the current state of the GPI2 input pin. Invalid if Reg0x301A-B[8]=0.
	1	RO	GPI1 Read-only. Return the current state of the GPI1 input pin. Invalid if Reg0x301A-B[8]=0.
12326 0x3026	0	RO	GPI0 Read-only. Return the current state of the GPI0 input pin. Invalid if Reg0x301A-B[8]=0. See "General-Purpose Inputs" on page 79
	15:0	0x0008	analogue_gain_code_global_ (RW)
12328 0x3028	register	rs. Reading	le to this register is equivalent to writing that code to each of the 4 color-specific gain code from this register returns the value most recently written to the de_greenR register.
12330	15:0	0x0008	analogue_gain_code_greenR_ (RW)
0x302A	The gai	n code wri	tten to this register sets the gain for green pixels on red/green rows of the pixel array.

Reg. #	Bits	Default	Name			
12332	15:0	0x0008	analogue_gain_code_red_ (RW)			
0x302C	The gain code written to this register sets the gain for red pixels.					
12334	15:0	0x0008	analogue_gain_code_blue_ (RW)			
0x302E	The gai	n code writ	tten to this register sets the gain for blue pixels.			
12336	15:0	0x0008	analogue_gain_code_greenB_ (RW)			
0x3030	Writing	ı a gain cod	le to this register sets the gain for green pixels on blue/green rows of the pixel array.			
	15:0	0x0100	digital_gain_greenR_ (RW)			
12338 0x3032			to d to green pixels on red/green rows of the pixel array. The value is an unsigned 8.8 fixed-[10:] are significant and are an alias of Reg0x3056[10:8].			
	15:0	0x0100	digital_gain_red_ (RW)			
12340 0x3034			d to red pixels of the pixel array. The value is an unsigned 8.8 fixed-point format. Bits [10:8] are an alias of Reg0x305A[10:8].			
	15:0	0x0100	digital_gain_blue_ (RW)			
12342 0x3036			d to blue pixels of the pixel array. The value is an unsigned 8.8 fixed-point format. Bits [10:8] I are an alias of Reg0x3058[10:8].			
	15:0	0x0100	digital_gain_greenB_ (RW)			
12344 0x3038			to d to green pixels on blue/green rows of the pixel array. The value is an unsigned 8.8 fixed-[10:8] are significant and are an alias of Reg0x305C[10:8].			
	15:0	0x0000	standby_status (RW)			
	15:2	Х	Reserved			
	1	0x0000	standby_status_303c This bit tells you whether the sensor is in standby state. Can be polled after standby is entered to see when the real low-power state is entered, which can happen at the end of row or frame, depending on bit 0x301a[4]. The bit actually reflects the internal signal standby_gated.			
12348 0x303C	0	0x0000	framesync_status This bit is reset each framesync and set every time there is a register write. Its intended function is to act as a debug flag to tell the SOC whether all writes for next frame "made it". If read at the start of frame, it will be 1 if there has been a write since framesync. This is then an error condition.			
12352 0x3040	15:0	0x0024	read_mode (RW)			

Reg. #	Bits	Default	Name
	15:14	0x0000	Special LINE_VALID 00 = Normal behavior of LINE_VALID
			01 = LINE_VALID is driven continuously (continue generating LINE_VALID during vertical
			blanking) 10 = LINE_VALID is driven continuously as LINE_VALID XOR FRAME_VALID
	13:12	Х	Reserved
	11	0x0000	x bin enable
			Enable analogue binning in X (column) direction. When set, x_odd_inc must be set to 3 and y_odd_inc must be set to 1.
	10	0x0000	xy bin enable Enable analogue binning in X and Y (column and row) directions. When set, x_odd_inc and y_odd_inc must be set to 3.
	9:8	Х	Reserved
	7:5	0x0001	X odd increment Increment applied to odd addresses in X (column) direction. 1= Normal readout
	4:2	0x0001	3 = Read out alternate pixel pairs to halve the amount of horizontal data in a frame.
	4.2	0x0001	Y odd increment Increment applied to odd addresses in Y (row) direction. 1= Normal readout
	1	0x0000	3 = Read out alternate pixel pairs to halve the amount of vertical data in a frame.
	'	0.0000	Vertical Flip 0 = Normal readout 1 = Readout is flipped (mirrored) vertically so that the row specified by y_addr_end_ is read out of the sensor first. Setting this bit will change the bayer pixel order (see Reg0x3024). The bit-order of bits [1:0] match the order in Reg0x301D but is reversed relative to earlier Micron Imaging sensors.
	0	0x0000	Horizontal Mirror 0 = Normal readout 1 = Readout is mirrored horizontally so that the column specified by x_addr_end_ is read out of the sensor first. Setting this bit will change the bayer pixel order (see Reg0x3024).

Reg. #	Bits	Default	Name
	15:0	0x0600	flash (RW)
	15	RO	Strobe Reflects the current state of the FLASH output signal.
	14	RO	Triggered Indicates that the FLASH output signal was asserted for the current frame.
	13	0x0000	Xenon Flash Enable Xenon flash. When set, the FLASH output signal will assert for the programmed period (bits [7:0]) during vertical blanking. This is achieved by keeping the integration time equal to one frame, and the pulse width less than the vertical blanking time.
	12:11	0x0000	Frame Delay Flash pulse delay measured in frames.
	10	0x0001	End of Reset 1 = In Xenon mode, the flash is triggered after resetting a frame. 0 = In Xenon mode, the flash is triggered after a frame readout.
	9	0x0001	Every Frame 1 = Flash should be enabled every frame. 0 = Flash should be enabled for 1 frame only.
12358	8	0x0000	LED Flash Enable LED flash. When set, the FLASH output signal will assert prior to the start of the resetting of a frame and will remain asserted until the end of the frame readout.
0x3046	7:0	Х	Reserved
		•	
	15:0	0x0008	flash_count (RW)
12360 0x3048	Length	of flash pu ents (by det ulse will au	flash_count (RW) Ilse when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse
	Length increments	of flash pu ents (by det ulse will au	alse when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse
	Length increme flash pu possible	of flash pu ents (by def ulse will au e.	llse when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the
	Length increme flash pupossible	of flash puents (by defulse will aute.	lse when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse green1_gain (RW) Reserved Digital Gain
	Length increme flash pupossible 15:0 15:11 10:8	of flash puents (by defulse will aute. Ox0110 X 0x0001	lise when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse green1_gain (RW) Reserved
	Length increme flash pu possible 15:0 15:11 10:8	of flash puents (by detulse will aude. Ox0110 X 0x0001	Ise when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse green1_gain (RW) Reserved Digital Gain Digital Gain. Legal values 1-7. Analog Gain
0x3048 12374	Length increme flash pupossible 15:0 15:11 10:8	of flash puents (by defulse will aute. Ox0110 X 0x0001	Ise when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse green1_gain (RW) Reserved Digital Gain Digital Gain. Legal values 1-7. Analog Gain Analog gain = (bit [7] + 1) * initial gain. Initial Gain
0x3048 12374	Length increme flash pupossible 15:0 15:11 10:8 7	of flash puents (by detailse will auree. Ox0110 X 0x0001 0x0000	Ise when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse green1_gain (RW) Reserved Digital Gain Digital Gain. Legal values 1-7. Analog Gain Analog gain = (bit [7] + 1) * initial gain. Initial Gain Initial Gain Initial gain = bits [6:0] * 1/16.
0x3048 12374	Length increme flash pupossible 15:0 15:11 10:8 7 6:0	of flash puents (by defulse will aure. Ox0110 X Ox0001 Ox0000 Ox0010	Is when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse green1_gain (RW) Reserved Digital Gain Digital Gain. Legal values 1-7. Analog Gain Analog gain = (bit [7] + 1) * initial gain. Initial Gain Initial Gain Initial gain = bits [6:0] * 1/16.
0x3048 12374	Length increme flash pupossible 15:0 15:11 10:8 7 6:0 15:11	of flash puents (by details will aure. Ox0110 X 0x0001 0x0000 0x0010 X	lse when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK cycle fault, PIXCLK = system_clock). When the Xenon count is set to its maximum value (0x3FF), the tomatically be truncated prior to the readout of the first row, giving the longest pulse green1_gain (RW) Reserved Digital Gain Digital Gain. Legal values 1-7. Analog Gain Analog gain = (bit [7] + 1) * initial gain. Initial Gain Initial Gain Initial gain = bits [6:0] * 1/16. blue_gain (RW) Reserved Digital Gain

Reg. #	Bits	Default	Name
	15:0	0x0110	red_gain (RW)
	15:11	Х	Reserved
	10:8	0x0001	Digital Gain
		0.000	Digital Gain. Legal values 1-7.
	7	0x0000	Analog Gain Analog gain = (bit [7] + 1) * initial gain.
12378	6:0	0x0010	Initial Gain
0x305A			Initial gain = bits [6:0] * 1/16.
	15:0	0x0110	green2_gain (RW)
	15:11	X	Reserved
	10:8	0x0001	Digital Gain
			Digital Gain. Legal values 1-7.
	7	0x0000	Analog Gain
		0.0040	Analog gain = (bit [7] + 1) * initial gain.
12380 0x305C	6:0	0x0010	Initial Gain Initial gain = bits [6:0] * 1/16.
	<u> </u>	<u> </u>	initial gain = bits [6.0] * 1/16.
	15:0	0x0110	global_gain (RW)
	15:11	Х	Reserved
	10:8	0x0001	Digital Gain
	7	0x0000	Analog Gain
	6:0	0x0010	Initial Gain
12382 0x305E			this register is equivalent to writing that code to each of the 4 color-specific gain registers. register returns the value most recently written to the green2_gain register.
	15:0	0x0000	test_pattern_mode_ (RW)
	0 = Nor	mal operat	ion: generate output data from pixel array
		d colour te	
			ar test pattern olour bar test pattern
12400			rity test pattern
0x3070	5-7 = R	eserved.	
12402	15:0	0x0000	test_data_red_ (RW)
0x3072	The val	ue for red	pixels in the bayer data used for the solid colour test pattern and the test cursors.
	15:0	0x0000	test_data_greenR_ (RW)
12404 0x3074	The val	•	en pixels in read/green rows of the bayer data used for the solid colour test pattern and the
12406	15:0	0x0000	test_data_blue_ (RW)
0x3076	The val	ue for blue	pixels in the bayer data used for the solid colour test pattern and the test cursors.

Reg. #	Bits	Default	Name			
	15:0	0x0000	test_data_greenB_ (RW)			
12408 0x3078		The value for green pixels in blue/green rows of the bayer data used for the solid colour test pattern and the test cursors.				
12448	15:0	0x0001	x_even_inc_ (RO)			
0x30A0	Read-o	nly.				
12450	15:0	0x0001	x_odd_inc_ (RW)			
0x30A2	This reg	gister field i	s an alias of Reg0x3040[7:5]			
12452	15:0	0x0001	y_even_inc_ (RO)			
0x30A4	Read-o	nly.				
12454	15:0	0x0001	y_odd_inc_ (RW)			
0x30A6	This reg	gister field i	s an alias of Reg0x3040[4:2]			
12470	15:0	0x0000	Green1 Frame Average (RO)			
0x30B6	The fra	me average	ed Green1 black level that is used in the black level calibration algorithm.			
12472	15:0	0x0000	Blue Frame Average (RO)			
0x30B8	The fra	me average	ed blue black level that is used in the black level calibration algorithm.			
12474	15:0	0x0000	Red Frame Average (RO)			
0x30BA	The frame averaged red black level that is used in the black level calibration algorithm.					
12476	15:0	0x0000	Green2 Frame Average (RO)			
0x30BC	The fra	me average	ed green2 black level that is used in the black level calibration algorithm.			
	15:0	0x231D	calib_threshold (RW)			
	15	Х	Reserved			
	14:8	0x0023	Upper Threshold Upper threshold for targeted black level in ADC LSBs.			
	7	X	Reserved			
12478 0x30BE	6:0	0x001D	Lower Threshold Lower threshold for targeted black level in ADC LSBs.			

Reg. #	Bits	Default	Name
	15:0	0x4080	calib_control (RW)
	15	0x0000	Disable Rapid Sweep Mode Disables the rapid sweep mode in the black level algorithm. The averaging mode will still be enabled.
	14	0x0001	Rapid_sweep_only When set Calib slow algorithm is off, i.e. only rapid sweep occurs.
	13	Х	Reserved
	12	0x0000	Recalculate When set, the rapid-sweep mode will be triggered if enabled, and the running frame average will be reset to the current frame average. This bit is write - 1 but always reads back as 0.
	11:8	Х	Reserved
	7:5	0x0004	Frames to Average Over Two to the power of this value decide how many frames to average over when the black level algorithm is in the averaging mode. In this mode, the running frame average will be calculated from the following formula: Running frame average = Old running frame average - (old running frame average)/2n + (new frame average)/2n.
	4	0x0000	Step Size Forced to One When set, the step size will be forced to "1" for the rapidsweep algorithm. Default operation (0) is to start at a higher step size when in rapid-sweep mode, to converge to the correct value faster.
	3	Х	Reserved
	2	0x0000	Same Red/Blue When this bit is set, the same calibration value will be used for red and blue pixels: Calib blue = calib red.
	1	0x0000	Same Green When this bit is set, the same calibration value will be used for all green pixels: Calib green2 = calib green1.
12480 0x30C0	0	0x0000	Manual Override 0 = Normal operation 1 = Override automatic black level values with values programmed into Reg0x30C2, Reg0x30C4, Reg0x30C6, Reg0x30C8
	15:0	0x0000	calib_green1 (RW)
12482 0x30C2	the offs is given by the	set is positiv by not([7:0 black level	offset for green1 pixels, represented as a two's complement signed 8-bit value (if [8] is clear, we and the magnitude is given by [7:0]. If [8] is set, the offset is negative and the magnitude [1] of the computed calibration algorithm. If Reg0x30C0[0] = 1, this register is read/write, and can be used to set manually. Green1 pixels share rows with red pixels.
	15:0	0x0000	calib_blue (RW)
12484 0x30C4	the offs is given by the	set is positiv by not([7:0 black level	offset for blue pixels, represented as a two's complement signed 8-bit value (if [8] is clear, we and the magnitude is given by [7:0]. If [8] is set, the offset is negative and the magnitude [9]) + 1). If Reg0x30C0[0] = 0, this register is read-only and returns the current value computed calibration algorithm. If Reg0x30C0[0] = 1, this register is read/write and can be used to set set manually.

Reg. #	Bits	Default	Name
	15:0	0x0000	calib_red (RW)
12486 0x30C6	the offs is given by the	set is positiv by not([7:0 black level o	offset for red pixels, represented as a two's complement signed 8-bit value (if [8] is clear, we and the magnitude is given by [7:0]. If [8] is set, the offset is negative and the magnitude [9] + 1). If Reg0x30C0[0] = 0, this register is read-only and returns the current value computed calibration algorithm. If Reg0x30C0[0] = 1, this register is read/write and can be used to set manually.
	15:0	0x0000	calib_green2 (RW)
12488 0x30C8	the offs is given by the	set is positiv by not([7:0 black level o	offset for green2 pixels, represented as a two's complement signed 8-bit value (if [8] is clear, we and the magnitude is given by [7:0]. If [8] is set, the offset is negative and the magnitude $(0) + 1$. If Reg0x30C0[0] = 0, this register is read-only and returns the current value computed calibration algorithm. If Reg0x30C0[0] = 1, this register is read/write and can be used to set manually. Green2 pixels share rows with blue pixels.
	15:0	0x0000	global_seq_trigger (RW)
	15:3	Х	Reserved
	2	0x0000	Global Flash TBD
	1	0x0000	Global Bulb 0 = Shutter open is triggered from bit[0] and shutter close is timed from the trigger point 1 = Shutter open and close are triggered from bit[0]. This corresponds to the shutter 'B' setting on a traditional camera, where 'B' originally stood for 'Bulb' (the shutter setting used for synchronisation with a magnesium foil flash bulb) and was later considered to stand for 'Brief' (an exposure that was longer than the shutter could automatically accommodate).
12640 0x3160	0	0x0000	Global Trigger When bit[1]=0, a 0-to-1 transition of this bit initiates (triggers) a global reset sequence. When bit[1]=1, a 0-to-1 transition of this bit initiates a global reset sequence, and leaves the shutter open; a 1-to-0 transition of this bit closes the shutter. These operations can also be controlled from the signal interface by enabling one of the GPI[3:0] signals as a trigger input.
12642 0x3162	15:0	0x0000	global_rst_end (RW)
12644 0x3164	15:0	0x0000	global_shutter_start (RW)
12646 0x3166	15:0	0x0000	global_read_start (RW)
12776	15:0	0x0000	horizontal_cursor_position_ (RW)
0x31E8	Specify	the start co	olumn for the test cursor.
12778	15:0	0x0000	vertical_cursor_position_ (RW)
0x31EA	Specify	the start co	olumn for the test cursor. See "Test Cursors" on page 102

Reg. #	Bits	Default	Name		
	15:0	0x0000	horizontal_cursor_width_ (RW)		
12780 0x31EC	Specify page 10		in rows, of the horizontal test cursor. A width of 0 disables the cursor. See "Test Cursors" on		
	15:0	15:0 0x0000 vertical_cursor_width_ (RW)			
12782 0x31EE	Specify the width, in columns, of the vertical test cursor. A width of 0 disables the cursor. See "Test Cursors" on page 102				
	15:0	0x7A78	I2C IDS (RW)		
12796 0x31FC	I2C Slave address. SADDR = '1', I2C base address = reg[15:8] SADDR = '0', I2C base address = reg[7:0]				

Table 26: 1: SOC1

Reg. #	Bits	Default	Name
	15:0	0x0009	Standby Control (RW)
	15	RO	SOC standby pin is mapped to this bit
	14:6	Х	Reserved
	5	0x0000	Reserved
	4	0x0000	Synchronize standby entry with the end of the frame If bit is set than standby entry is postponed until the end of current frame. If standby request comes between frames standby will be entery will have 1 frame latency.
	3	0x0001	Enable IRQ. When this bit is set IRQ is used to enter standby procedure 2020SOC enters standby mode by means of IRQ. If this bit is set standby functionality is enabled. If this bit is cleared both pin and I2C means of standby entry are disabled. 2020SOC can only enter standby through MCU command in this case.
	2	0x0000	Stop MCU on power up This bit stops MCU and allows host to upload configuration settings
	1	0x0000	Do not initialize variables after standby. If this bit is set most of the memory content will be preserved on power up.
12802 0x3202	0	0x0001	Standby SHiP Standby request through SHiP interface. Set High to request Standby Mode.
	15:0	0x0001	Standby Done Status Bit (RW)
	15:3	Х	Reserved
	2	0x0000	Reserved
	1	0x0000	This bit is set to '1' when initial initializateon is done. This bit is set to '1' when initial initializateon is done. Only works if 0x3202[2] is set.
12804	0	0x0001	This bit will be set upon standby entry Set to '1' one when chip is in a standby. Should be used for host to indicate that it is safe to gate clock.
0x3204	This bit	indicates tl	hat standby procedure has been completed.

Reg. #	Bits	Default	Name	
	15:0	0x01F8	Color Pipeline Control (RW)	
	15:11	Х	Reserved	
	10	0x0000	Enable 1D aperture correction	
			1=1D aperture correction	
	9	0x0000	0=Bypass 1D aperture correction	
	8	0x0000	Reserved	
	0	000001	Scaler 1=Enable scaler	
			0=Bypass scaler	
	7	0x0001	Enable gamma correction	
			1=Enable gamma correction	
		0.0004	0=Bypass gamma correction	
	6	0x0001	Invert output pixel clock	
			1=invert output pixel clock (in all modes, except 10- bit bypass) 0=Do not invert output pixel clock	
	5	0x0001	Enable color correction	
			1=enable color correction	
			0=bypass color correction (unity color matrix)	
	4	0x0001	Enable 2D aperture correction	
			1=Enable 2D aperture correction 0=Bypass 2D aperture correction	
	3	0x0001	Enable on-the-fly defect correction	
			1=Enable on-the-fly defect correction	
			0=Bypass on-the-fly defect correction	
	2	0x0000	Enable lens shading	
			1=Enable lens shading 0=Bypass lens shading	
	1	0x0000	Toggles the assumption about Bayer CFA (horizontal shift)	
			Toggles the assumption about Bayer CFA (nonzontal shirt) Toggles the assumption about Bayer CFA (column shift).	
			0—column with Blue comes first.	
		0.0000	1—column with Red comes first.	
	0	0x0000	Toggles the assumption about Bayer CFA (vertical shift)	
12816			Toggles the assumption about Bayer CFA (vertical shift) '0' – column with Blue comes first	
0x3210			'1' – column with Red comes first	
	15:0	0x0001	Factory Bypass (RW)	
	15:5	Х	Reserved	
	4:3	0x0000	GPIO output bypass. (Confidential)	
	2	0x0000	Set DOUT[7:0] FRAME_VALID LINE_VALID and PIXCLK to a known state	
			0 = set DOUT[7:0], FRAME_VALID, LINE_VALID and PIXCLK to zero.	
			1 = set those outputs to 1.	
	1:0	0x0001	Data output bypass.	
			00=10-bit sensor 01=SOC no FIFO	
12818			10=SOC with constant rate FIFO	
0x3212			11=output a constant value	

Reg. #	Bits	Default	Name
	15:0	0x0C80	Pad Slew (RW)
	15:12	Х	Reserved
	11	0x0001	Enables power down of VDD GPIO
	10:8	0x0004	Slew rate for PIXCLK 7=fastest slew; 0=slowest. Actual slew depends on load, temperature and I/O voltage. See pad datasheet for details.
	7	0x0001	Input pad power down enable Reserved
	6:4	0x0000	Slew rate for GPIO 7=fastest slew; 0=slowest. Actual slew depends on load, temperature and I/O voltage. See pad datasheet for details.
	3	Х	Reserved
	2:0	0x0000	Slew rate for DOUT[7:0] PIXCLK FRAME_VALID and LINE_VALID. 7=fastest slew rate; 0=slowest slew rate. Actual slew rate depends on load, temperature and I/O voltage. See pad datasheet for details.
12820 0x3214		st slew; 0=s eet for deta	lowest. ёActual slew depends on load, temperature and I/O voltage. See pad ils.
	15:0	0x0000	Internal clock control (RW)
	15:10	Х	Reserved
	9	0x0000	This signal OR'ed with external CLK_EN provides master clock for the chip This signal OR'ed with external CLK_EN provides master clock for the chip 1=enable clock. WARNING: If Standby enabled and this bit=1 then clock to chip is gated and can only be re-enabled by releasing STANDBY!
	8	0x0000	Reserved
	7	0x0000	Reserved
	6	0x0000	Reserved
	5	0x0000	Reserved
	4	0x0000	Reserved
	3	0x0000	Reserved
	2	0x0000	Reserved
12822	1	0x0000	Reserved
0x3216	0	0x0000	Reserved

Reg. #	Bits	Default	Name
	15:0	0x0002	Output FIFO control and status (RW)
	15:11	Х	Reserved
	10	RO	FIFO empty FIFO empty
	9	RO	FIFO underflow
	8	RO	FIFO overflow Indicates overflow for output FIFO
	7	Х	Reserved
	6:1	0x0001	Reserved
	0:3	Х	Reserved
	2	0x0000	Half rate mode Enables half speed mode for constant rate fifo
	1	Х	Reserved
12828	0	0x0000	Keep flags. If this bit is set bits 9 and 8 will keep high value if set, otherwise reset will occur at the beginning of each line
0x321C	This reg	gister contai	in control (7:0) and status (15:8) bits for FIFO operation
12830	15:0	0x0190	Output FIFO watermark (RW)
0x321E	FIFO wa	atermark is	a number of bytes that has to be stored in the FIFO prior to initiating read operation.
	15:0	0x0640	Output FIFO Line byte count (RW)
12832 0x3220			nt in the line. Should be calculated as number of bits per pixel x number of pixels. Used for valid signal.
	15:0	0x0000	Lower X Boundary for Zoom Window (RW)
12834 0x3222	Lower 2	X Boundary	for Zoom Window. In preview mode the value loaded to the register is divided by X skip
	15:0	0x0640	Upper X Boundary for Zoom Window (RW)
12836 0x3224			for Zoom Window. In preview mode the value loaded to the register is divided by X skip
	15:0	0x0000	Lower Y Boundary for Zoom Window (RW)
12838 0x3226	Lower `factor	Y Boundary	for Zoom Window. In preview mode the value loaded to the register is divided by Y skip
	15:0	0x04B0	Upper Y Boundary for Zoom Window (RW)
12840 0x3228	Upper `factor	Y Boundary	for Zoom Window.In preview mode the value loaded to the register is divided by Y skip

Reg. #	Bits	Default	Name
	15:0	0x0000	Scaler Control (RW)
	15:7	Х	Reserved
	6	0x0000	Reserved
	5	0x0000	Reserved
	4	0x0000	Reserved
	3	0x0000	Reserved
	2	0x0000	High precision mode Additional bits for scaling result are stored. Only for scaling >2
	1	0x0000	Reserved
12842	0	0x0000	Reserved
0x322A	This reg	gister contro	ols operation of the scaler
12844	15:0	0x0800	Weight for Horizontal Scaling (RW)
0x322C	Weight	for Horizo	ntal Scaling Xsize =int(XInputSize/2048*Value)
	15:0	0x0800	Weight for Vertical Scaling (RW)
12846 0x322E	_		l Scaling Ysize=int(YInputSize/2048*Value) d by R0x3222-0x3228
	15:0	0x0310	Edge Threshold for WB Statistic (RW)
	15	Х	Reserved
	14	0x0000	This bit enables mode when AWB considers pixels by hue edges only.
	13	0x0000	this bit enables mode when AWB considers pixels by luma and hue edges
12862	12:8	0x0003	Hue edge threshold value for WB
0x323E	7:0	0x0010	Luma edge threshold
	15:0	0xC814	Luminance Range of Pixels Considered in WB Statistics (RW)
	15:8	0x00C8	Upper limit of luminance for WB statistics
	7:0	0x0014	Lower limit of luminance for WB statistics
12864 0x3240			kewing WB statistics by very dark or very bright values this register allows programming the of pixels to be used for WB computation.
	15:0	0x5000	Right/Left Coordinates of AWB Measurement Window (RW)
	15:8	0x0050	Right window boundary
	7:0	0x0000	Left window boundary
12890 0x325A			ies the Right/Left coordinates of the window used by AWB measurement engine. The values e registers are desired boundaries divided by 8.
	15:0	0x3C00	Bottom/Top Coordinates of AWB Measurement Window (RW)
	15:8	0x003C	Bottom window boundary
	7:0	0x0000	Top window boundary
12892 0x325C			ies the Bottom/Top coordinates of the window used by AWB measurement engine. The d in the registers are desired boundaries divided by 8.

Reg. #	Bits	Default	Name
	15:0	0x0000	Red Chrominance Measure Calculated by AWB (RO)
12896 0x3260	measur	e is normali	ins a measure of red chrominance obtained using AWB measurement algorithm. The zed to an arbitrary max. value, the same for R0x3260, R0x3262 and R0x3264. Because of this y the ratios of values of registers R0x3260, R0x3262 and R0x3264 are meaningful.
	15:0	0x0000	Luminance Measure Calculated by AWB (RO)
12898 0x3262	measur	e is normali	ins a measure of image luminance obtained using AWB measurement algorithm. The zed to an arbitrary max. value, the same for R0x3260, R0x3262 and R0x3264. Because of this y the ratios of values of registers R0x3260, R0x3262 and R0x3264 are meaningful.
	15:0	0x0000	Blue Chrominance Measure Calculated by AWB (RO)
12900 0x3264	measur	e is normali	ins a measure of blue chrominance obtained using AWB measurement algorithm. The zed to an arbitrary max. value, the same for R0x3260, R0x3262 and R0x3264. Because of this y the ratios of values of registers R0x3260, R0x3262 and R0x3264 are meaningful.
	15:0	0x1208	1D Aperture Parameters (RW)
	15:14	Х	Reserved
	13:11	0x0002	Ap_exp Exponent for gain for aperture signal
	10:8	0x0002	Ap_gain Gain for aperture signal
	7:0	0x0008	Ap_knee Threshold for aperture signal to lower noise
12906 0x326A			rection is applied after scaler and only can improve sharpness of the vertical lines (1D). Work ure correcion (see description in 0x326C)
	15:0	0x1208	Aperture Parameters (RW)
	15	Х	Reserved
	14	0x0000	Ap_abs
	13:11	0x0002	Ap_exp Exponent for gain for aperture signal
	10:8	0x0002	Ap_gain Gain for aperture signal
	7:0	0x0008	Ap_knee threshold for aperture signal to lower noise
12908 0x326C		•	re gain and threshold. If ap_in is aperture signal from interpolation and ap_out is resulting os(ap_in)-threshold)>0, ap_out = sgn(ap_in) * gain * (abs(ap_in) - threshold) * 2^(ap_exp-3).

Reg. #	Bits	Default	Name
	15:0	0x0080	Low pass YUV filters (RW)
	15:8	Х	Reserved
	7	0x0001	B/W filter enable switch When "1" Y filter can be switched off for B/W areas as controlled by U/V thresholds specified in registers 0x3270(11:7) and 0x3272(11:7).
	6	0x0000	Switch for adaptive Y filter threshold Switch for adaptive Y filter threshold. If it is "0," control signals are combined by AND function if "1" they are combined by OR (see description 0x3270, 0x3272, and 3274)
	5	0x0000	Permanently enable Y filter
	4:3	0x0000	Y filter mode 00 - no filter 01 - median 3 10 - median 5
	2:0	0x0000	UV filter 000 - no filter 001 - 11110 010 - 01100 011 - 01210 100 - 12221 101 - median 3 110 - median 5
12910 0x326E	Average	e and media	be processed by low pass averaging or midian filters. an option is avalable for UV and madian option is avalable for Y signals. th coution since can reduce resolution.
	15:0	0x07AA	Threshold for Y Filter. R Channel (RW)
	15:12	Х	Reserved
	11:7	0x000F	U Threshold
	6	0x0000	Invert control signal
	5	0x0001	Enable control signal for R Channel
	4:0	0x000A	Threshold value Works in 8 wide bit space.
	compar of pixel is "1." Bit thresho and G] Y filter	ison value (in 2! 6 inverts co ld. If bit 5 is (0) or [R or	ix3274 control operation of adaptive Y filter. Control signal for each channel is created by 56 bit scale) with threshold (bits 4:0 x 8). If pixel value is larger than threshold, control value ontrol value if set to "1" and such control signal would indicate that the pixel is below s "0," the control bit is always "0." Three control bits for R,G, and B channels can be [(R or B) B or G] depending on value of bit 6 in Register 0x326e. The result of this operation enables Enable signal can be inhibited for gray areas by specifying U and V threshold in registers
12912 0x3270	0x3270- 0x3272.	-	

_ "		oci (cont	
Reg. #	Bits	Default	
	15:0	0x07E4	Threshold for Y filter.G channel (RW)
	15:12	Х	Reserved
	11:7	0x000F	V Threshold
	6	0x0001	Invert control signal
	5	0x0001	Enable control signal for G channel
	4:0	0x0004	Threshold value
			Works in 8 wide bit space.
			x3274 control operation of adaptive Y filter. Control signal for each channel is created by
	compar		
	of pixel	value (in 25	56 bit scale) with threshold (bits 4:0 x 8). If pixel value is larger than threshold, control value
		6 inverts co	ontrol value if set to "1" and such control signal would indicate that the pixel is below
	thresho	ld. If bit 5 is	"0," the control bit is always "0." Three control bits for R,G, and B channels can be [(R or B)
		(0) or [R or	B or G] depending on value of bit 6 in Register 0x326e. The result of this operation enables
	Y filter	luzad pival	Enable signal can be inhibited for gray areas by specifying U and V threshold in registers
12914	0x3270-		Enable signal can be inhibited for gray areas by specifying 0 and v threshold in registers
0x3272	0x3272.		
	15.0	0002.4	Thursday I de a V Cita a Dalaman I (Dist)
	15:0	0x002A	Threshold for Y filter. B channel (RW)
	15:7	X	Reserved
	6	0x0000	Invert control signal
	5	0x0001	Enable control signal for B channel
	4:0	0x000A	Threshold value
			Works in 8 wide bit space.
	_		x3274 control operation of adaptive Y filter. Control signal for each channel is created by
	compar		56 bit scale) with threshold (bits 4:0 x 8). If pixel value is larger than threshold, control value
	is	value (III 2.	of bit scale, with the short (bits 4.0 x o). If pixel value is larger than threshold, control value
	"1." Bit	6 inverts co	ontrol value if set to "1" and such control signal would indicate that the pixel is below
			6 "0," the control bit is always "0." Three control bits for R,G, and B channels can be [(R or B)
	and GJ Y filter	(0) or [R or	B or G] depending on value of bit 6 in Register 0x326e. The result of this operation enables
		lyzed nixel	Enable signal can be inhibited for gray areas by specifying U and V threshold in registers
12916	0x3270-		Enable signal can be immored for gray areas by specifying 6 and 7 an eshold in registers
0x3274	0x3272.	i	
	15:0	0x0000	Second Black Level (RW)
40045			
12918 0x3276			ns the value subtracted by IFP from pixel values prior to CCM. If the subtraction produces a a particular pixel, the value of this pixel is set to 0.
	negativ	e result for	a particular pixer, the value of this pixer is set to 0.
	15:0	0x002A	First Black Level (RW)
	This rec	jister contai	ns the value subtracted by IFP from raw pixel values before applying lens shading
	correcti	on and digi	tal gains. If the subtraction produces a negative result for a particular pixel, the value of
12920 0x3278			Typically, the subtracted value should be equal to the black level targeted by the sensor.
UAJ2/0	This val	ue is subtra	cted from all test patterns as well.

Reg. #	Bits	Default	Name
	15:0	0x002A	First Black Level. Red (RW)
12922 0x327A	shading value o	correction f this pixel i	ins the value (for red pixels) subtracted by IFP from raw pixel values before applying lens and digital gains. If the subtraction produces a negative result for a particular pixel, the set to 0. Typically, the subtracted value should be equal to the black level targeted by the subtracted from all test patterns as well.
	15:0	0x002A	First Black Level. Green_1 (RW)
12924 0x327C	lens sha the valu	ding corrective of this pi	ins the value (for green_1 pixels) subtracted by IFP from raw pixel values before applying ction and digital gains. If the subtraction produces a negative result for a particular pixel, xel is set to 0. Typically, the subtracted value should be equal to the black level targeted by ue is subtracted from all test patterns as well.
	15:0	0x002A	First Black Level. Green_2 (RW)
12926 0x327E	lens sha the valu	ding corrections of this pi	ins the value (for green_2 pixels) subtracted by IFP from raw pixel values before applying ction and digital gains. If the subtraction produces a negative result for a particular pixel, xel is set to 0. Typically, the subtracted value should be equal to the black level targeted by ue is subtracted from all test patterns as well.
	15:0	0x002A	First Black Level. Blue (RW)
12928 0x3280	shading value o	correction f this pixel i	ins the value (for blue pixels) subtracted by IFP from raw pixel values before applying lens and digital gains. If the subtraction produces a negative result for a particular pixel, the set to 0. Typically, the subtracted value should be equal to the black level targeted by the subtracted from all test patterns as well.
	15:0	0x0008	Edge Threshold for Interpolation (RW)
12942 0x328E			tifying pixel neighborhood as having an edge. A neighborhood without edge receives more nterpolation for noise reduction purposes.

Reg. #	Bits	Default	Name
	15:0	0x0000	Test Pattern (RW)
	15:7	Х	Reserved
	6:5	0x0000	Running '1' test pattern "01" enables 8 bit running '1' test pattern. "11" enables 10 bit running '1' test pattern. To use this test pattern chip has to be configured in 10 bit bypass mode. Sequence for 8 bit running one pattern is following: 00-01-02-0480-FF. For 10 bit sequence is similar.
	4	0x0000	Switch row Switches row interpretation for the test pattern.
	3	0x0000	Switch column Switches column interpretation for the test pattern.
	2:0	0x0000	Test mode 001- flat field values for RGB from R0x3292-0x3296 010-vertical ramp 011-regular color test pattern 100-vertical strips. Intensities are in R0x3292 and R0x3294 101-Linear shift feedback register test mode (Noise)
12944 0x3290	010-vei 011-rec 100-vei	at field valu rtical ramp gular color t rtical strips.	es for RGB from R0x3292-0x3296 Test pattern Intensities are in R0x3292 and R0x3294 Edback register test mode (psudo random pattern)
12946	15:0	0x0100	Test Pattern R Value (RW)
0x3292	Value f	or the red o	component on the flat field test pattern
	15:0	0x0100	Test Pattern G Value (RW)
12948 0x3294			n component on the flat field test pattern
	15:0	0x0100	Test Pattern B Value (RW)
12950 0x3296			component on the flat field test pattern
12956	15:0	0x0020	Digital Gain 2 (RW)
0x329C	Defaul	t setting 32	corresponds to gain value of 1. Gain scales linearly with value
12960 0x32A0	15:0	0x0000	Factory Test – CRC Data (RO)
	15:0	0x2923	Color Correction Matrix Exponents for C11C22 (RW)
12992 0x32C0	5:3—m 8:6—m 11:9—r	atrix eleme atrix eleme natrix elem	nt 1 (C11) exponent nt 2 (C12) exponent nt 3 (C13) exponent ent 4 (C21) exponent nent 5 (C22) exponent

Reg. #	Bits	Default	Name
	15:0	0x0524	Color Correction Matrix Exponents for C22C33 (RW)
	Color C	orrection M	latrix Exponents for C22C33
	2:0—ma	atrix elemei	nt 6 (C23) exponent
			nt 7(C31) exponent
			nt 8(C32) exponent
			ent 9(C33) exponent
			rix coefficient is calculated
12994 0x32C2			$2^{-}(Eij + 4), 0 < = Eij < = 4$
OXDECE	Here Sij	is coefficie	nt's sign, Mij is the mantissa and Eij is the exponent.
	15:0	0xBBC8	Color Correction Matrix Elements 1 and 2 (RW)
12996	15:8	0x00BB	Color correction matrix element 2(C12)
0x32C4	7:0	0x00C8	Color correction matrix element 1(C11)
	15:0	0xCA3A	Color Correction Matrix Elements 3 and 4 (RW)
12998	15:8	0x00CA	Color correction matrix element 4(C21)
0x32C6	7:0	0x003A	Color correction matrix element 3(C13)
	15:0	0x3B85	Color Correction Matrix Elements 5 and 6 (RW)
13000	15:8	0x003B	Color correction matrix element 6(C23)
0x32C8	7:0	0x0085	Color correction matrix element 5(C22)
	15:0	0xF26F	Color Correction Matrix Elements 7 and 8 (RW)
13002	15:8	0x00F2	Color correction matrix element 8(C32)
0x32CA	7:0	0x006F	Color correction matrix element 7(C31)
	15:0	0x3D9C	Color Correction Matrix Element 9 and Signs (RW)
	15:14	Х	Reserved
	13:8	0x003D	Signs for off-diagonal CCM elements
			Signs for off-diagonal CCM elements.
			Bit 8—sign for C12
			Bit 9—sign for C13
			Bit 10—sign for C21
			Bit 11—sign for C23
			Bit 12—sign for C31
			Bit 13—sign for C32
			1— indicates negative 0—indicates positive
42004			Signs for C11, C22, and C33 are assumed always positive.
13004 0x32CC	7:0	0x009C	Color Correction Matrix Element 9 (C33)
	15:0	0x0080	Digital Gain 1 for Red Pixels (RW)
13012 0x32D4			3 corresponds to gain value of 1. Gain scales linearly with value
	15:0	0x0080	
13014 0x32D6			Digital Gain 1 for Green1 Pixels (RW)
	Deidult	security 128	3 corresponds to gain value of 1. Gain scales linearly with value

Bits	Default	Name
15:0	0x0080	Digital Gain 1 for Green2 Pixels (RW)
Default	setting 128	3 corresponds to gain value of 1. Gain scales linearly with value
15:0	0x0080	Digital Gain 1 for Blue Pixels (RW)
Default	setting 128	3 corresponds to gain value of 1. Gain scales linearly with value
15:0	0x0080	Digital Gain 1 for All Colors (RW)
Write 1	28 to set all	I gains [R0x32D4-R0x32DA] to 1. When read, this register returns the value of R0x32D6.
15:0	0x0050	Boundaries of Flicker Measurement Window [Left/Width] (RW)
15:8	0x0000	Left window boundary
7:0	0x0050	Window width
		ies the boundaries of the window used by the flicker measurement engine. Values e registers are the desired boundaries divided by 8.
15:0	0x0088	Boundaries of Flicker Measurement Window [Top/Height] (RW)
15:6	0x0002	Top window boundary
5:0	0x0008	Window height
This reg	gister specif	ies the boundaries of the window used by the flicker measurement engine.
15:0	0x1400	Flicker Measurement Window Size (RW)
This reg	gister specif	ies the number of pixels in the window used by the flicker measurement engine.
15:0	0x0000	Measure of the Average Luminance in Flicker Measurement Window (RO)
Averag	e Luminanc	e value in Window
15:0	0x0000	Blank Frames (RW)
1- blan	k outgoing	frames. The bit is synchronized with frame enable. See freeze bit R0x3330 [7]
	15:0 Default 15:0 Default 15:0 This receptor of the receptor o	15:0 0x0080 Default setting 128 15:0 0x0080 Default setting 128 15:0 0x0080 Write 128 to set all 15:0 0x0050 This Register specific programmed in the set of

g. #	Bits	Default	Name
	15:0	0x0000	Output format configuration (RW)
	15:9	Х	Reserved
	8	0x0000	Turn on processed Bayer mode Chip output data in Bayer fomat. As a result datarate decreses in two times.
	7:6	0x0000	RGB output format RGB output format: 00 = 16-bit RGB565 01 = 15-bit RGB555 10 = 12-bit RGB444x 11 = 12-bit RGBx444
	5	0x0000	RGB/YUV output RGB/YUV output 1=output RGB (see R0x332E [7:6]) 0=output YUV
	4	0x0000	Use CCIR656 codes when bypassing FIFO 1=use CCIR656 codes when bypassing FIFO 0xAB = frame start 0x80 = line start 0x9D = line end 0xB6 = frame end
	3	0x0000	Monochrome output Monochrome output.
	2	0x0000	Reserved
	1	0x0000	Swaps chrominance byte with luminance byte in YUV output. In RGB mode, swaps odd and even bytes. This bit is subject to synchronous update.
2	0	0x0000	Swap Channels In YUV output mode, swaps Cb and Cr channels. In RGB mode, swaps R and B. This bit is subject to synchronous update.
E	Output	format cor	figuration

Reg. #	Bits	Default	Name
	15:0	0x0000	Output Format Test (RW)
	15:12	Х	Reserved
	11	0x0000	Enables output test ramp
			Enables output test ramp
	10	0x0000	Reserved
	9	0x0000	Reserved
	8	0x0000	Enable Lens Correction Bypass
			Bypass 8+2, after lens correction. Used for calibrating lens correction. 8+2 bypass needs to be enabled to use this mode.
	7	0x0000	Freeze update of R0x332E and SOC size registers 1=freeze update of R0x332E and SOC size registers
	6	0x0000	Enable 8+2 bypass 1=enable 8+2 bypass
	5:3	0x0000	Test ramp output 00 – off
			01 – 611 01 – by column
			10 – by row
			11 – by frame
	2	0x0000	Disable Cb channel 1=disable Cb channel (B in RGB mode)
	1	0x0000	Disable Y channel
			1=disable Y channel (G in RGB mode)
13104 0x3330	0	0x0000	Disable Cr channel
0x3330			1=disable Cr channel (R in RGB mode)
13106	15:0	0x0000	Line Count (RO)
0x3332	Line nu	mber inside	e frame
13108	15:0	0x0000	Frame Count (RO)
0x3334	Numbe	r of frames	sent since reset. Counter wraps around at 16-bit boundary.
	15:0	0x6440	Special Effects (RW)
	15:8	0x0064	Solarization threshhold
	7	Х	Reserved
	6	0x0001	Dither Luma only
			1= dither only in luma channel
			0 = dither in all color channels
	5:3	0x0000	Bit width of dither
	2:0	0x0000	Bit width of dither (valid values 1, 2, 3, and 4; no dither if value = 0, 5, 6, or 7)
	2.0	0,0000	Special effect selection bits 0 - disabled
			1 - monochrome
			2 - sepia
			3 - negative
13128			4 - solarization with unmodified UV
0x3348			5 - solarization with -UV

Reg. #	Bits	Default	Name
	15:0	0xB023	Sepia Constants (RW)
13130	15:8	0x00B0	Sepia constant for Cb
0x334A	7:0	0x0023	Sepia constant for Cr
	15:0	0x2700	Gamma Curve Knees 0 and 1 (RW)
	15:8	0x0027	
	7:0	0x0000	Gamma curve knee point 1 Gamma curve knee point 0
13156 0x3364	gamma	re 19 point correction.	s on the Gamma curve corresponding to values of the values of the RGB data inputs to The knee points are at input data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2816, 3072, 3328, 3584, 3840, and 4096).
	15:0	0x4936	Gamma Curve Knees 2 and 3 (RW)
	15:8	0x0049	Gamma curve knee point 3
	7:0	0x0036	Gamma curve knee point 2
13158 0x3366	gamma	correction.	s on the Gamma curve corresponding to values of the values of the RGB data inputs to The knee points are at input data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2816, 3072, 3328, 3584, 3840, and 4096).
	15:0	0x7864	Gamma Curve Knees 4 and 5 (RW)
	15:8	0x0078	Gamma curve knee point 5
	7:0	0x0064	Gamma curve knee point 4
13160 0x3368	gamma	correction.	s on the Gamma curve corresponding to values of the values of the RGB data inputs to The knee points are at input data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2816, 3072, 3328, 3584, 3840, and 4096).
	15:0	0x9789	Gamma Curve Knees 6 and 7 (RW)
	15:8	0x0097	Gamma curve knee point 7
	7:0	0x0089	Gamma curve knee point 6
13162 0x336A	gamma	correction.	s on the Gamma curve corresponding to values of the values of the RGB data inputs to The knee points are at input data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2816, 3072, 3328, 3584, 3840, and 4096).
	15:0	0xB0A4	Gamma Curve Knees 8 and 9 (RW)
	15:8	0x00B0	Gamma curve knee point 9
	7:0	0x00A4	Gamma curve knee point 8
13164 0x336C	gamma	correction.	s on the Gamma curve corresponding to values of the values of the RGB data inputs to The knee points are at input data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2816, 3072, 3328, 3584, 3840, and 4096).
	15:0	0xC5BB	Gamma Curve Knees 10 and 11 (RW)
	15:8	0x00C5	Gamma curve knee point 11
	7:0	0x00BB	Gamma curve knee point 10
13166 0x336E	gamma	correction.	s on the Gamma curve corresponding to values of the values of the RGB data inputs to The knee points are at input data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2816, 3072, 3328, 3584, 3840, and 4096).

onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792,	
data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096). ad 15 (RW) onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	7:0 0x00CE There are 19 point gamma correction.
data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096). ad 15 (RW) onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	There are 19 point gamma correction.
data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096). ad 15 (RW) onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	gamma correction
onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	
data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	15:0 0xE8E0
data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	15:8 0x00E8
data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	7:0 0x00E0
nd 17 (RW)	
	15:0 0xF8F0
	15:8 0x00F8
	7:0 0x00F0
onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	
v)	15:0 0x00FF
onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, nd 4096).	
	15:0 0x0006
	15:4 X
	3 0x0000
	2 0x0001
	1 0x0001
s UV values to 16–240. s UV values to 16–240.	1 0x0001 0 0x0000
	0 0x0000
data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536, nd 4096). V) onding to values of the values of the RGB data inputs to data values (0, 64, 128, 256, 512, 768, 1024, 1280, 1536,	7:0 0x00F0 There are 19 point gamma correction. 2048, 2304, 2560, 2 15:0 0x00FF There are 19 point gamma correction.

Reg. #	Bits	Default	Name		
	15:0	х	Microcontroller Boot Mode (RW)		
	15	RO	Illegal opcode restart occurred		
			1=Illegal opcode restart occurred		
	14	RO	Watchdog restart occurred		
	4.5	20	1=watchdog restart occurred		
	13	RO	Warm restart occurred		
	12	RO	1=warm restart occurred		
	12	I NO	Reserved Reserved		
	11:8	RO	Step number in MCU initialization sequence		
			Step number in MCU initialization sequence		
	7	0x0000	MCU Debug Indicator		
	6:5	0x0000	Reserved		
			Reserved		
	4	0x0000	Do not initialize driver tables		
			Do not initialize driver tables		
	3	0x0000	Boot in safe mode		
	2	0x0000	Boot in safe mode (do not run drivers)		
		UXUUUU	Factory memory test select Factory memory test select		
			1=test MCU SRAM		
			0=test MCU R		
	1	0x0000	Perform factory memory test		
	0	0x0000	Reset MCU		
13190			1=Put MCU into reset		
0x3386			0=Release reset to MCU		
	15:0	0x0000	Microcontroller variable/RAM address (RW)		
	15	0x0000	8-bit access		
			1=8-bit access; 0=16-bit		
	14:13	0x0000	Select Logical Access		
			Bits 14:13 of address for physical access; R0x338C [14:13]=01 select logical access		
	12:8	0x0000	Driver ID		
	7:0	0x0000	Bits 12:8 of address for physical access; driver ID for logical access		
	7.0	000000	Driver variable Bits 7:0 of address for physical access; driver variable offset for logical access		
	Micross	ntroller va	riables are similar to SHIP registers, except that they are located in MCU memory. Variables		
	are accessed by specifying their address in and reading/writing the value to . Variables can be a				
	(byte) and 16-bit (word) at a time. Variable address can be specified as physical or logical. Physical address is				
45465			of the variable in the micro-controller's 64K address space. Use physical address to upload		
13196 0x338C			e to a known memory location. Use logical address to configure driver variables. A logical a driver ID (0=monitor, 1=sequencer, etc) and an offset into the driver data structure.		
	address consists of a driver ib (b=monitor, 1=sequencer, etc) and an offset into the driver data structure.				

Reg. #	Bits	Default	Name			
	15:0	0x0000	MCU variable/RAM data (burst 0) (RW)			
13200 0x3390	To read a variable from MCU memory, set address in R0x338C and read data from Rox3390. To write to a variable, set address in R0x338C and write to R0x3390. 16-bit and 8-bit variables can be accessed, see R0x3390. When reading an 8-bit variable (R0x338C [15]=0) R0x3390 [15:8] are set to 0. When writing to an 8-bit variable, R0x3390 [15:8] are ignored					
	15:0	0x0000	Variable data burst SHIP access 1 (RW)			
13202 0x3392	Use these registers to read or write up to 16 bytes of variable data using the burst SHIP access mode. The variables must have consecutive addresses					
	15:0	0x0000	Variable data burst SHIP access 2 (RW)			
13204 0x3394	Use these registers to read or write up to 16 bytes of variable data using the burst SHI variables must have consecutive addresses		to read or write up to 16 bytes of variable data using the burst SHIP access mode. The e consecutive addresses			
	15:0	0x0000	Variable data burst SHIP access 3 (RW)			
13206 0x3396		Use these registers to read or write up to 16 bytes of variable data using the burst SHIP access mode. The ariables must have consecutive addresses				
	15:0	0x0000	Variable data burst SHIP access 4 (RW)			
13208 0x3398						
	15:0	0x0000	Variable data burst SHIP access 5 (RW)			
13210 0x339A	Use these registers to read or write up to 16 bytes of variable data using the burst two-wire serial interface access mode. The variables must have consecutive addresses.					
	15:0	0x0000	Variable data burst SHIP access 6 (RW)			
13212 0x339C	Use these registers to read or write up to 16 bytes of variable data using the burst two-wire serial interface access mode. The variables must have consecutive addresses.					
	15:0	0x0000	Variable data burst SHIP access 7 (RW)			
13214 0x339E	Use these registers to read or write up to 16 bytes of variable data using the burst two-wire serial interface access mode. The variables must have consecutive addresses.					
13302 0x33F6	15:0	0x0020	Threshold for noise reduction - Red (RW)			
13304 0x33F8	15:0	0x0020	Threshold for noise reduction - Green (RW)			
13306 0x33FA	15:0	0x0020	Threshold for noise reduction - Blue (RW)			
13308 0x33FC	15:0	0x00FF	Threshold for noise reduction - Min./ Max. (RW)			

Table 27: 2: SOC2

Reg. #	Bits	Default	Name
	15:0	0x000C	MIPI Control (RW)
	15:5	Х	Reserved
	4	0x0000	Update Sync'd Registers
	_		Forces the update of registers that are normally updated at the start of a frame
	3	0x0001	Continuous MIPI Clock
			When asserted the high speed clock continues to be output on the clock lane between packets
			NOTE: this must only be toggled whilst Enable MIPI is de-asserted
	2	0x0001	Standby Enable
			Asserted when chip is preparing to enter low power standby mode. Reset to 1 and must be
		00000	de-asserted to exit ultra low power mode
	1	0x0000	Reset MIPI
13312	0	0x0000	Immediately reset MIPI interface Enable MIPI
0x3400		OXCCCC	Asserted by host or MCU to enable the MIPI interface
	l		
	15:0	0x0111	MIPI Status (RO)
	15:9	X	Reserved
	8	0x0001	FIFO_empty
	7	0x0000	Asserted when the FIFO memory is empty. Read only
	,	OXCCCC	FIFO_underflow Asserted if an attempt is made to read from an empty FIFO memory. Write 1 to clear
	6	0x0000	FIFO_overflow
			Asserted if an attempt is made to write to a full FIFO memory. Write 1 to clear
	5	0x0000	MIPI_rdy_for_data
			Asserted once the wake-up and initialization periods (see D-PHY spec) are complete. Any
			frame presented to the MIPI interface prior to this bit being asserted will be 'ignored'. Read only
	4	0x0001	MIPI_idle
			Asserted if MIPI interface is not cu0rrently transmitting packet data. Read only
	3	0x0000	line_size_mismatch
			Asserted if the size of a line from the SOC colour-pipeline differs from the size specified by
	2	0x0000	the line_byte_count register. Write 1 to clear
	_	0,0000	frame_size_mismatch Asserted if the number of lines in a frame from the SOC colour-pipeline differs from the
			number specified by the frame_line_count register. Write 1 to clear
	1	0x0000	frame_truncated
			Asserted if a frame is terminated by standby before the programmed number of lines have
	0	0x0001	been transmitted. Write 1 to clear
	0	UXUUUT	MIPI_stby Asserted once the MIPI interface has completed its transition to ultra low power mode in
13314			response to a standby request and it is safe to stop clocks, disconnect
0x3402			power etc. Read only.

Reg. #	Bits	Default	Name	
	15:0	0x002B	MIPI Data Type (RW)	
	15:13	Х	Reserved	
	12	0x0000	custom_sp_frame_sync Insert the requested custom short packet between frames (otherwise will insert after the current packet)	
	11	0x0000	custom_sp_req Asserted to request the transmission of a short packet with data type defined by 'custom_sp_data_type'. Automatically reset to 0 once the packet has been transmitted. No further request should be issued until the transition to 0 has been detected.	
	10:8	0x0000	custom_sp_data_type The least significant 3 bits (the ms 3 bits are fixed to 'b001) of the data type code to insert in the requested short packet.	
	7:6	Х	Reserved	
13316 0x3404	5:0	0x002B	Ip_data type Data type code as used in the long packet header - 0x1e - yuv422 - 0x20 - rgb444 - 0x21 - rgb555 - 0x22 - rgb565 - 0x2a - raw8 (processed bayer) - 0x2b - raw10	
	15:0	0x04B0	MIPI Frame Line Count (RW)	
13318 0x3406	15:0	0x04B0	frame_line_count Number of lines in the frame (and hence the expected number of long packets)	
	15:0	0x02EE	MIPI FIFO Watermark (RW)	
	15:14	Х	Reserved	
	13	0x0000	frame_count_reset Resets the 8-bit frame counter to 1. This bit is reset once the counter reset is complete	
	12	0x0000	frame_count_insert_disable When asserted the automatic insertion of the frame count value into the WC field of the frame start/frame end short packets is disabled, and a value of 0 is inserted instead	
	11:10	Х	Reserved	
13322 0x340A	9:0	0x02EE	fifo_watermark Number of bytes that must be stored in the FIFO before the packet transmission can begin to ensure a contiguous output data stream. The watermark is capped to line_byte_count ie. if a full line gets buffered then the FIFO will start to be emptied, regardless of the programmed watermark value	
13324	15:0	0x0000	custom_short_pkt_wc (RW)	
0x340C	Value t	o insert in t	he WC field of a custom short packet	
1				

Reg. #	Bits	Default	Name
	15:0	0x0000	MIPI Test (RW)
	15:13	Х	Reserved
	12	0x0000	io_tst
			Forces the MIPI IO lanes to go tristate for test purposes
	11	Х	Reserved
	10	0x0000	bist_pass Asserted if the completed BIST sequence has detected no errors. Read only
	9	0x0000	bist_end Asserted on completion of the BIST sequence. Write 1 to clear
	8	0x0000	bist_en Trigger to start the BIST sequence for the FIFO memory
	7:5	Х	Reserved
	4	0x0000	test_en When asserted the output is driven with test data as dtermined by the test_mode field
13326 0x340E	3:0	0x0000	Test mode (valid for as long as test_en is asserted): 0x0 - force data and clock lane outputs to LP-00 0x1 - force data and clock lane outputs to LP-11 0x2 - force data lane output to HS-0 0x3 - force data lane output to HS-1 0x4 - enables a constant HS value to be output on the clock lane (to force a constant HS state on the clock lane the pll output should be bypassed allowing CP/CN to be driven directly from the CLOCK_IN pad)) 0x5- drive a fixed frequency HS square wave out on the data lane 0x6- replace pixel data from the SOC with data generated by an 8-bit fast parallel PRBS, sequence starting from a known value at the start of a frame. Data transmitted as long packets with data type code 0x30 0x7- replace pixel data from the SOC with data generated by an 8-bit incrementer starting from zero at the start of a frame. Data transmitted as long packets with data type code 0x30 (The frame/line based data sequences (modes 6 and 7) are inserted before the FIFO - all other test values are inserted after the FIFO)
	15:0	0x0B02	MIPI Pre HS Tx (RW)
	15:12	Х	Reserved
	11:8	0x000B	t_hs_zero Time to drive HS-0 before the sync sequence (NOTE: programmed value must = 4n-1 where n is an integer)
	7:4	Х	Reserved
13328 0x3410	3:0	0x0002	t_hs_prepare Time to drive LP-00 to prepare for HS transmission (NOTE: programmed value must = 4n-2 where n is an integer)

Reg. #	Bits	Default	Name
	15:0	0x0A05	MIPI Post HS Tx (RW)
	15:14	Х	Reserved
	13:8	0x000A	t_hs_exit
			Time to drive LP-11 after HS burst
	7:4	Х	Reserved
13330 0x3412	3:0	0x0005	t_hs_trail Time to drive flipped differential state after last payload data bit of a HS transmission burst
	15:0	0x0A0A	MIPI Clock Overlap (RW)
	15:14	Х	Reserved
	13:8	0x000A	t_clk_post Time to drive the HS clock after the data lane has gone into low power mode
	7:6	Х	Reserved
13332 0x3414	5:0	0x000A	t_clk_pre Time to drive the HS clock signal before any data lane might start up
	15:0	0x060C	Clock Timing (RW)
	15:12	Х	Reserved
	11:8	0x0006	t clk trail
			Time to drive HS differential state after last payload clock bit of a HS transmission burst
	7:6	Х	Reserved
13334 0x3416	5:0	0x000C	t_clk_zero Minimum lead HS-0 clock lane drive period before starting clock
	15:0	0x0008	Misc Timing (RW)
	15:6	Х	Reserved
13336	5:0	0x0008	t_lpx
0x3418			Length of any low power state period
	15:0	0x0150	PLL Dividers1 (RW)
	15:14	Х	Reserved
	13:8	0x0001	pll_n_div
			PLL n-divider value NOTE: pll vco frequency = clkin frequency * pll_m/(pll_n+1)
	l .	1	NOTE. pii voo irequericy = cikin irequericy " pii_m/(pii_n+1)
13340	7:0	0x0050	pll_m_div

Reg. #	Bits	Default	Name		
	15:0	0x8F0B	PLL/ Clk_in control (RW)		
	15:12	0x0008	pll_pfd PLL phase detector gain		
	11:8	0x000F	pll_div8_en Independent enables for each of the four identical clock feeds		
	7:5	Х	Reserved		
	4	0x0000	ip_pd Asserted to disable the clock input receiver		
	3	0x0001	hyst_en Asserted to enable hysteresis on the clock pin		
	2	0x0000	phy_test Asserted to power down PLL and assume normal full chip operation using the external clock as source		
	1	0x0001	pll_pd PLL power down		
13342 0x341E	0	0x0001	pll_bypass Asserted to bypass the PLL (for test and low power modes)		
	15:0	0x0F14	Boundaries of First AF Measurement Window [Top/Left] (RW)		
	15:8	0x000F	Top window boundary Top window boundary		
	7:0	0x0014	Left window boundary		
13440 0x3480	This register specifies top and left boundaries of the first from 16 (left-top) window used by AF measurement engine. The values programmed in the registers are desired boundaries divided by 8.				
	15:0	0x1E28	Boundaries of First AF Measurement Window [Height/Width] (RW)		
	15:8	0x001E	Window height		
	7:0	0x0028	Window width		
13442 0x3482			ries height and width of the first from 16 window used by AF measurement engine. The ed in the registers are desired boundaries divided by 2.		
13444	15:0	0x12C0	AF Measurement Window Size (RW)		
0x3484	This reg	gister specif	fies number of pixels in the window used by AF measurement engine.		
	15:0	0x0000	Average Luminance in AF Windows W12 and W11 (R0)		
13446	15:8	RO	Average Y in W12		
0x3486	7:0	RO	Average Y in W11		
	15:0	0x0000	Average Luminance in AF Windows W14 and W13 (RO)		
42446	15:8	RO	Average Y in W14		
13448 0x3488	7:0	RO	Average Y in W13		
	15:0	0x0000	Average Luminance in AF Windows W22 and W21 (RO)		
45.5-5	15:8	RO			
13450 0x348A	7:0	RO	Average V in W21		
UNJTUM	7.0		Average Y in W21		

Reg. #	Bits	Default	Name
	15:0	0x0000	Average Luminance in AF Windows W24 and W23 (RO)
13452	15:8	RO	Average Y in W24
0x348C	7:0	RO	Average Y in W23
	15:0	0x0000	Average Luminance in AF Windows W32 and W31 (RO)
	15:8	RO	Average Y in W32
13454 0x348E	7:0	RO	Average Y in W31
		1	
	15:0	0x0000	Average Luminance in AF Windows W34 and W33 (RO)
13456	15:8	RO	Average Y in W34
0x3490	7:0	RO	Average Y in W33
	15:0	0x0000	Average Luminance in AF Windows W42 and W41 (RO)
13458	15:8	RO	Average Y in W42
0x3492	7:0	RO	Average Y in W41
	15:0	0x0000	Average Luminance in AF Windows W44 and W43 (RO)
42460	15:8	RO	Average Y in W44
13460 0x3494	7:0	RO	Average Y in W43
		1	
	15:0	0x0028	AF Filter 1 (RW)
	15:12	0x0000	C4
	11:8	0x0000	C3
13462	7:4	0x0002	C2
0x3496	3:0	0x0008	C1
	15:0	0xC0B0	AF Filter 1 Configuration (RW)
	15:12	0x000C	C0 coefficient For the center tap in odd-sized filter. If filter coefficients larger then 1 the user has to use appropriate scale factor to avoid overflow. For example, use scale factor /2 for filter 0 0 0 2 - 2 0 0 0.
	11	Х	Reserved
	10	0x0000	Sign for C4
	9	0x0000	Sign for C3
	8	0x0000	Sign for C2
	7	0x0001	Sign for C1
	6	0x0000	Sign for C0
	5	0x0001	Symmetric filter If '1' filter is symmetric else anti-symmetric
	4	0x0001	Odd/even [9/8] filter size 1=odd length (9 taps); 0=even length (8 taps, C0 ignored)
13464 0x3498	3:0	0x0000	Scale factor 0- 1; 1- /2; 2- /4; 3- /8; 4- /16; 5- /32; 6- /64; 7- /128; 8- /256; 9- /512; 11- *2; 12- *4; 13- *8; 14- *16; 15- *32

Reg. #	Bits	Default	Name
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W12 and W11 (RO)
13466	15:8	RO	Average Sharpness in W12
0x349A	7:0	RO	Average Sharpness in W11
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W14 and W13 (RO)
13468	15:8	RO	Average Sharpness in W14
0x349C	7:0	RO	Average Sharpness in W13
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W22 and W21 (RO)
13470	15:8	RO	Average Sharpness in W22
0x349E	7:0	RO	Average Sharpness in W21
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W24 and W23 (RO)
13472	15:8	RO	Average Sharpness in W24
0x34A0	7:0	RO	Average Sharpness in W23
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W32 and W31 (RO)
13474	15:8	RO	Average Sharpness in W32
0x34A2	7:0	RO	Average Sharpness in W31
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W34 and W33 (RO)
13476	15:8	RO	Average Sharpness in W34
0x34A4	7:0	RO	Average Sharpness in W33
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W42 and W41 (RO)
13478	15:8	RO	Average Sharpness in W42
0x34A6	7:0	RO	Average Sharpness in W41
	15:0	0x0000	AF Filter 1 Average Sharpness Measure for AF Windows W44 and W43 (RO)
13480	15:8	RO	Average Sharpness in W44
0x34A8	7:0	RO	Average Sharpness in W43
	15:0	0x2080	AF Filter 2 (RW)
	15:12	0x0002	C4
	11:8	0x0000	СЗ
13482	7:4	0x0008	C2
0x34AA	3:0	0x0000	C1

Reg. #	Bits	Default	Name
	15:0	0xC130	AF Filter 2 Configuration (RW)
	15:12	0x000C	C0 coefficient For the center tap in odd-sized filter. If filter coefficients larger then 1 then the user has to use appropriate scale factor to avoid overflow. For example, use scale factor /2 for filter 0 0 0 2 -2 0 0 0.
	11	Х	Reserved
	10	0x0000	Sign for C4
	9	0x0000	Sign for C3
	8	0x0001	Sign for C2
	7	0x0000	Sign for C1
	6	0x0000	Sign for C0
	5	0x0001	Symmetric filter If '1' filter is symmetric else anti-symmetric
	4	0x0001	Odd/even [9/8] filter size 1=odd length (9 taps); 0=even length (8 taps, C0 ignored)
13484 0x34AC	3:0	0x0000	Scale factor 0- 1; 1- /2; 2- /4; 3- /8; 4- /16; 5- /32; 6- /64; 7- /128; 8- /256; 9- /512; 11- *2; 12- *4; 13- *8; 14- *16; 15- *32
	15:0	0x0000	AF Filter 2 Average Sharpness Measure for AF Window W12 and W11 (RO)
13486	15:8	RO	Average Sharpness in W12
0x34AE	7:0	RO	Average Sharpness in W11
	15:0	0x0000	AF Filter 2 Average Sharpness Measure for AF Windows W14 and W13 (RO)
	15:8	RO	Average Sharpness in W14
13488		I.O	
13488 0x34B0	7:0	RO	Average Sharpness in W13
			Average Sharpness in W13
0x34B0	7:0	RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO)
	7:0 15:0	RO 0x0000	Average Sharpness in W13
0x34B0 13490	7:0 15:0 15:8	RO 0x0000 RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21
0x34B0 13490 0x34B2	7:0 15:0 15:8 7:0	RO RO RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21 AF Filter 2 Average Sharpness Measure for AF Windows W24 and W23 (RO)
0x34B0 13490	7:0 15:0 15:8 7:0 15:0	RO RO RO 0x0000	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21
0x34B0 13490 0x34B2 13492	7:0 15:0 15:8 7:0 15:8	RO RO RO RO RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21 AF Filter 2 Average Sharpness Measure for AF Windows W24 and W23 (RO) Average Sharpness in W24
13490 0x34B2 13492 0x34B4	7:0 15:0 15:8 7:0 15:0 15:8 7:0	RO RO RO RO RO RO RO RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21 AF Filter 2 Average Sharpness Measure for AF Windows W24 and W23 (RO) Average Sharpness in W24 Average Sharpness in W23
0x34B0 13490 0x34B2 13492	7:0 15:0 15:8 7:0 15:0 15:8 7:0 15:8	RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21 AF Filter 2 Average Sharpness Measure for AF Windows W24 and W23 (RO) Average Sharpness in W24 Average Sharpness in W23 AF Filter 2 Average Sharpness Measure for AF Windows W32 and W31 (RO)
13490 0x34B2 13492 0x34B4	7:0 15:0 15:8 7:0 15:8 7:0 15:8 7:0	RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21 AF Filter 2 Average Sharpness Measure for AF Windows W24 and W23 (RO) Average Sharpness in W24 Average Sharpness in W23 AF Filter 2 Average Sharpness Measure for AF Windows W32 and W31 (RO) Average Sharpness in W32
13490 0x34B2 13492 0x34B4	7:0 15:0 15:8 7:0 15:8 7:0 15:8 7:0 15:8 7:0	RO 0x0000 RO RO RO RO RO RO RO RO RO	Average Sharpness in W13 AF Filter 2 Average Sharpness Measure for AF Windows W22 and W21 (RO) Average Sharpness in W22 Average Sharpness in W21 AF Filter 2 Average Sharpness Measure for AF Windows W24 and W23 (RO) Average Sharpness in W24 Average Sharpness in W23 AF Filter 2 Average Sharpness Measure for AF Windows W32 and W31 (RO) Average Sharpness in W32 Average Sharpness in W32 Average Sharpness in W31

Reg. #	Bits	Default	Name		
	15:0	0x0000	AF Filter 2 Average Sharpness Measure for AF Windows W42 and W41 (RO)		
13498	15:8	RO	Average Sharpness in W42		
0x34BA	7:0	RO	Average Sharpness in W41		
	15:0	0x0000	AF Filter 2 Average Sharpness Measure for AE Windows W44 and W43 (RO)		
13500	15:8	RO	Average Sharpness in W44		
0x34BC	7:0	RO	Average Sharpness in W43		
	15:0	0x0160	Lens Correction Control (RW)		
	15:11	Х	Reserved		
	10	0x0000	Shift row LC specific		
	9	0x0000	Shift column LC specific		
	8:6	0x0005	Divisor for the first Derivative Y Direction 000-/1, 001-/2, 010-/4, 111-/128.		
	5:3	0x0004	Divisor for the first derivative X direction 000-/1, 001-/2, 010-/4, 111-/128.		
	2	0x0000	If 1 all the second Y derivatives are doubled		
	1	0x0000	If 1 all the second X derivatives are doubled		
13518	0	Х	Reserved		
0x34CE	This register controls behavior of lens correction.				
	15:0	0x6432	Zone Boundaries X1 and X2 (RW)		
	15:8	0x0064	Zone 1 boundary [/4]. X direction		
13520	7:0	0x0032	Zone 2 boundary [/4]. X direction		
0x34D0	Boundaries for zone 1 and 2.				
	15:0	0x3296	Zone Boundaries X0 and X3 (RW)		
	15:8	0x0032	Zone 3 boundary [/4]. X direction		
	7:0	0x0096	Zone 0 boundary [/4]. X direction		
13522			Zone 0 boundary [/4]. X direction		
0x34D2	Bounda	aries for zor	ne 3 and 0.		
	15:0	0x9664	Zone Boundaries X4 and X5 (RW)		
	15:8	0x0096	Zone 5 boundary [/4]. X direction		
13524	7:0	0x0064	Zone 4 boundary [/4]. X direction		
0x34D4	Bounda	aries for zor	ne 4 and 5.		
	15:0	0x5028	Zone Boundaries Y1 and Y2 (RW)		
	15:8	0x0050	Zone 1 boundary [/4]. Y direction		
13526	7:0	0x0028	Zone 2 boundary [/4]. Y direction		
0x34D6	D	aries for zor			

Reg. #	Bits	Default	Name			
	15:0	0x2878	Zone Boundaries Y0 and Y3 (RW)			
	15:8	0x0028	Zone 3 boundary [/4]. Y direction			
13528	7:0	0x0078	Zone 0 boundary [/4]. Y direction			
0x34D8	Boundaries for zone 0 and 3.					
	15:0	0x7850	Zone Boundaries Y4 and Y5 (RW)			
	15:8	0x0078	Zone 5 boundary [/4]. Y direction			
13530	7:0	0x0050	Zone 4 boundary [/4]. Y direction			
0x34DA	Bounda	ries for zor	ne 4 and 5.			
	15:0	0x0000	Center Offset (RW)			
	15:8	0x0000	Center offset Y [/4]			
13532	7:0	0x0000	Center offset X [/4]			
0x34DC	Offset i	s the centra	al point for the lens correction (relative to the center of imaging array)			
13534 0x34DE	15:0	0x015E	F[x] for Red Color at the First Pixel of the Array (RW)			
13536 0x34E0	15:0	0x0143	F[x] for Green Color at the First Pixel of the Array (RW)			
13538 0x34E2	15:0	0x0143	F[x] for Green2 Color at the First Pixel of the Array (RW)			
13540 0x34E4	15:0	0x0127	F[x] for Blue Color at the First Pixel of the Array (RW)			
13542 0x34E6	15:0	0x012C	F[y] for Red Color at the First Pixel of the Array (RW)			
13544 0x34E8	15:0	0x0103	F[y] for Green Color at the First Pixel of the Array (RW)			
13546 0x34EA	15:0	0x0103	F[y] for Green2 Color at the First Pixel of the Array (RW)			
13548 0x34EC	15:0	0x00FD	F[y] for Blue Color at the First Pixel of the Array (RW)			
13550 0x34EE	15:0	0x0CEF	dF/dx for Red Color at the First Pixel of the Array (RW)			
13552 0x34F0	15:0	0x0D38	dF/dx for Green Color at the First Pixel of the Array (RW)			
13554 0x34F2	15:0	0x0D38	dF/dx for Green2 Color at the First Pixel of the Array (RW)			
13556 0x34F4	15:0	0x0D92	dF/dx for Blue Color at the First Pixel of the Array (RW)			

Reg. #	Bits	Default	Name		
13558 0x34F6	15:0	0x0C18	dF/dy for Red Color at the First Pixel of the Array (RW)		
13560 0x34F8	15:0	0x0CF1	dF/dy for Green Color at the First Pixel of the Array (RW)		
13562 0x34FA	15:0	0x0CF1	dF/dy for Green2 Color at the First Pixel of the Array (RW)		
13564 0x34FC	15:0	0x0D05	dF/dy for Blue Color at the First Pixel of the Array (RW)		
	15:0	0x0B03	Second deriv. for Zone 0 Red Color (RW)		
	15:8	0x000B	d2F/dy2 for zone 0 red color		
13568	7:0	0x0003	d2F/dx2 for zone 0 red color		
0x3500	Second	derivative [.]	for red color in zone 0.		
	15:0	0x0000	Second deriv. for Zone 0 Green Color (RW)		
	15:8	0x0000	d2F/dy2 for zone 0 green color		
13570	7:0	0x0000	d2F/dx2 for zone 0 green color		
0x3502	Second	derivative ·	for green color in zone 0.		
	15:0	0x0000	Second deriv. for Zone 0 Green2 Color (RW)		
	15:8	0x0000	d2F/dy2 for zone 0 green2 color		
13572	7:0	0x0000	d2F/dx2 for zone 0 green2 color		
0x3504	Second derivative for green2 color in zone 0.				
	15:0	0x0100	Second deriv. for Zone 0 Blue Color (RW)		
	15:8	0x0001	d2F/dy2 for zone 0 blue color		
13574	7:0	0x0000	d2F/dx2 for zone 0 blue color		
0x3506	Second	derivative ·	for blue color in zone 0.		
	15:0	0x2534	Second deriv. for Zone 1 Red Color (RW)		
	15:8	0x0025	d2F/dy2 for zone 1 red color		
13576	7:0	0x0034	d2F/dx2 for zone 1 red color		
0x3508	Second	derivative ·	for red color in zone 1.		
	15:0	0x1C33	Second deriv. for Zone 1 Green Color (RW)		
	15:8	0x001C	d2F/dy2 for zone 1 green color		
13578	7:0	0x0033	d2F/dx2 for zone 1 green color		
0x350A	Second	derivative ·	for green color in zone 1.		
	15:0	0x1C33	Second deriv. for Zone 1 Green2 Color (RW)		
	15:8	0x001C	d2F/dy2 for zone 1 green2 color		
	7:0	0x0033	d2F/dx2 for zone 1 green2 color		
13580	,		delivate for zone i greenz color		

Reg. #	Bits	Default	Name			
	15:0	0x1A2E	Second deriv. for Zone 1 Blue Color (RW)			
	15:8	0x001A	d2F/dy2 for zone 1 blue color			
13582	7:0	0x002E	d2F/dx2 for zone 1 blue color			
0x350E	Second derivative for blue color in zone 1.					
	15:0	0x2A3A	Second deriv. for Zone 2 Red color (RW)			
	15:8	0x002A	d2F/dy2 for zone 2 red color			
13584	7:0	0x003A	d2F/dx2 for zone 2 red color			
0x3510	Second	derivative [.]	for red color in zone 2.			
	15:0	0x252D	Second deriv. for Zone 2 Green Color (RW)			
	15:8	0x0025	d2F/dy2 for zone 2 green color			
13586	7:0	0x002D	d2F/dx2 for zone 2 green color			
0x3512	Second	derivative [.]	for green color in zone 2.			
	15:0	0x252D	Second deriv. for Zone 2 Green2 Color (RW)			
	15:8	0x0025	d2F/dy2 for zone 2 green2 color			
13588	7:0	0x002D	d2F/dx2 for zone 2 green2 color			
0x3514	Second	derivative [.]	for green2 color in zone 2.			
	15:0	0x2823	Second deriv. for Zone 2 Blue Color (RW)			
	15:8	0x0028	d2F/dy2 for zone 2 blue color			
13590	7:0	0x0023	d2F/dx2 for zone 2 blue color			
0x3516	Second derivative for blue color in zone 2.					
	15:0	0x0F14	Second deriv. for Zone 3 Red Color (RW)			
	15:8	0x000F	d2F/dy2 for zone 3 red color			
13592	7:0	0x0014	d2F/dx2 for zone 3 red color			
0x3518	Second	derivative ⁻	for red color in zone 3.			
	15:0	0x0D20	Second deriv. for Zone 3 Green Color (RW)			
	15:8	0x000D	d2F/dy2 for zone 3 green color			
13594	7:0	0x0020	d2F/dx2 for zone 3 green color			
0x351A	Second	derivative ·	for green color in zone 3.			
	15:0	0x0D20	Second deriv. for Zone 3 Green2 Color (RW)			
	15:8	0x000D	d2F/dy2 for zone 3 green2 color			
13596	7:0	0x0020	d2F/dx2 for zone 3 green2 color			
0x351C	Second	derivative [.]	for green2 color in zone 3.			
	15:0	0x0421	Second deriv. for Zone 3 Blue Color (RW)			
	15:8	0x0004	d2F/dy2 for zone 3 blue color			
13598	7:0	0x0021	d2F/dx2 for zone 3 blue color			
0x351E	Second	derivative ·	for blue color in zone 3.			

Reg. #	Bits	Default	Name		
	15:0	0x0D2A	Second deriv. for Zone 4 Red Color (RW)		
	15:8	0x000D	d2F/dy2 for zone 4 red color		
13600	7:0	0x002A	d2F/dx2 for zone 4 red color		
0x3520	Second	derivative	for red color in zone 4.		
	15:0	0x1017	Second deriv. for Zone 4 Green Color (RW)		
	15:8	0x0010	d2F/dy2 for zone 4 green color		
13602	7:0	0x0017	d2F/dx2 for zone 4 green color		
0x3522	Second	derivative	for green color in zone 4.		
	15:0	0x1017	Second deriv. for Zone 4 Green2 Color (RW)		
	15:8	0x0010	d2F/dy2 for zone 4 green2 color		
13604	7:0	0x0017	d2F/dx2 for zone 4 green2 color		
0x3524	Second	derivative	for green2 color in zone 4		
	15:0	0x1617	Second deriv. for Zone 4 Blue Color (RW)		
	15:8	0x0016	d2F/dy2 for zone 4 blue color		
13606	7:0	0x0017	d2F/dx2 for zone 4 blue color		
0x3526	Second derivative for blue color in zone 4.				
	15:0	0x1642	Second deriv. for Zone 5 Red Color (RW)		
	15:8	0x0016	d2F/dy2 for zone 5 red color		
13608	7:0	0x0042	d2F/dx2 for zone 5 red color		
0x3528	Second derivative for red color in zone 5.				
	15:0	0x1448	Second deriv. for Zone 5 Green Color (RW)		
	15:8	0x0014	d2F/dy2 for zone 5 green color		
13610	7:0	0x0048	d2F/dx2 for zone 5 green color		
0x352A	Second	derivative	for green color in zone 5.		
	15:0	0x1448	Second deriv. for Zone 5 Green2 Color (RW)		
	15:8	0x0014	d2F/dy2 for zone 5 green2 color		
13612	7:0	0x0048	d2F/dx2 for zone 5 green2 color		
0x352C	Second	derivative	for green2 color in zone 5.		
	15:0	0x0F4E	Second deriv. for Zone 5 Blue Color (RW)		
	15:8	0x000F	d2F/dy2 for zone 5 blue color		
13614	7:0	0x004E	d2F/dx2 for zone 5 blue color		
0x352E	Second	derivative	for blue color in zone 5.		

Reg. #	Bits	Default	Name				
	15:0	0x1F27	Second deriv. for Zone 6 Red Color (RW)				
	15:8	0x001F	d2F/dy2 for zone 6 red color				
13616	7:0	0x0027	d2F/dx2 for zone 6 red color				
0x3530	Second derivative for red color in zone 6.						
	15:0	0x1A12	Second deriv. for Zone 6 Green Color (RW)				
	15:8	0x001A	d2F/dy2 for zone 6 green color				
13618	7:0	0x0012	d2F/dx2 for zone 6 green color				
0x3532	Second	derivative ·	for green color in zone 6.				
	15:0	0x1A12	Second deriv. for Zone 6 Green2 Color (RW)				
	15:8	0x001A	d2F/dy2 for zone 6 green2 color				
	7:0	0x0012	d2F/dx2 for zone 6 green2 color				
13620			d2F/dx2 for zone 6 green2 color				
0x3534	Second	derivative ⁻	for green2 color in zone 6.				
	15:0	0x1E16	Second deriv. for Zone 6 Blue Color (RW)				
	15:8	0x001E	d2F/dy2 for zone 6 blue color				
13622	7:0	0x0016	d2F/dx2 for zone 6 blue color				
0x3536	Second derivative for blue color in zone 6.						
	15:0	0x16C7	Second deriv. for Zone 7 Red Color (RW)				
	15:8	0x0016	d2F/dy2 for zone 7 red color				
13624	7:0	0x00C7	d2F/dx2 for zone 7 red color				
0x3538	Second derivative for red color in zone 7.						
	15:0	0x31C5	Second deriv. for Zone 7 Green Color (RW)				
	15:8	0x0031	d2F/dy2 for zone 7 green color				
13626	7:0	0x00C5	d2F/dx2 for zone 7 green color				
0x353A	Second	derivative ·	for green color in zone 7.				
	15:0	0x31C5	Second deriv. for Zone 7 Green2 Color (RW)				
	15:8	0x0031	d2F/dy2 for zone 7 green2 color				
13628	7:0	0x00C5	d2F/dx2 for zone 7 green2 color				
0x353C	Second	derivative ⁻	for green2 color in zone 7.				
	15:0	0x2AB6	Second deriv. for Zone 7 Blue Color (RW)				
	15:8	0x002A	d2F/dy2 for zone 7 blue color				
13630	7:0	0x00B6	d2F/dx2 for zone 7 blue color				
0x353E	Second	derivative	for blue color in zone 7.				

Reg. #	Bits	Default	Name
	15:0	0x0000	X2 Factors (RW)
	15:8	0x0000	X2 factors for Y zones
	7.0	0.000	If 1 value of the value of d2F/dy2 is multiplied by 2
13632 0x3540	7:0	0x0000	X2 factors for X zones If 1 value of the value of d2F/dx2 is multiplied by 2
13634	15:0	0x0002	Global Offset of F[x y] Function (RW)
0x3542	Offset 1	for F(y) and	F(x) LC functions. Effect is analogous to gain. Only effective if LC is enabled.
	15:0	0x018E	K Factor in K F[x] F[y] red - Top right (RW)
	15:11	Х	Reserved
13636	10	0x0000	Sign for K factor
0x3544	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green1 - Top right (RW)
	15:11	Х	Reserved
13638	10	0x0000	Sign for K factor
0x3546	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green2 - Top right (RW)
	15:11	Х	Reserved
13640	10	0x0000	Sign for K factor
0x3548	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] blue - Top right (RW)
	15:11	Х	Reserved
13642	10	0x0000	Sign for K factor
0x354A	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] red - Top left (RW)
	15:11	Х	Reserved
13644	10	0x0000	Sign for K factor
0x354C	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green1 - Top left (RW)
	15:11	Х	Reserved
13646	10	0x0000	Sign for K factor
0x354E	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green2 - Top left (RW)
	15:11	Х	Reserved
13648	10	0x0000	Sign for K factor
0x3550	9:0	0x018E	Absolute Value

Reg. #	Bits	Default	Name
	15:0	0x018E	K Factor in K F[x] F[y] blue - Top left (RW)
	15:11	Х	Reserved
13650	10	0x0000	Sign for K factor
0x3552	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] red - Bottom right (RW)
	15:11	Х	Reserved
13652	10	0x0000	Sign for K factor
0x3554	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green1 - Bottom right (RW)
	15:11	Х	Reserved
13654	10	0x0000	Sign for K factor
0x3556	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green2 - Bottom right (RW)
	15:11	Х	Reserved
13656	10	0x0000	Sign for K factor
0x3558	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] blue - Bottom right (RW)
	15:11	Х	Reserved
13658	10	0x0000	Sign for K factor
0x355A	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] red - Bottom left (RW)
	15:11	Х	Reserved
13660	10	0x0000	Sign for K factor
0x355C	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green1 - Bottom left (RW)
	15:11	Х	Reserved
13662	10	0x0000	Sign for K factor
0x355E	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] green2 - Bottom left (RW)
	15:11	Х	Reserved
13664	10	0x0000	Sign for K factor
0x3560	9:0	0x018E	Absolute Value
	15:0	0x018E	K Factor in K F[x] F[y] blue - Bottom left (RW)
	15:11	Х	Reserved
13666	10	0x0000	Sign for K factor
0x3562	9:0	0x018E	Absolute Value

Reg. #	Bits	Default	Name	
	15:0	0x0000	Boundaries of First AE Measurement Window [Top/Left] (RW)	
	15:8	0x0000	Top window boundary	
	7:0	0x0000	Left window boundary	
13696 0x3580			ies top and left boundaries of the first from 16 (left-top) window used by AE measurement programmed in the registers are desired boundaries divided by 8.	
	15:0	0x3C50	Boundaries of First AE Measurement Window [Height/Width] (RW)	
	15:8	0x003C	Window Height	
	7:0	0x0050	Window Width	
13698 0x3582		•	ies height and width of the first from 16 window used by AE measurment engine. The values e registers are desired boundaries divided by 2.	
13700	15:0	0x4B00	AE Measurement Window Size[LSW] (RW)	
0x3584	This reg	gister numb	er of pixels in the window used by AE measurement engine.	
	15:0	0x0006	AE/AF Measurement Enable (RW)	
	15:3	Х	Reserved	
	2	0x0001	AF Statistic Enable	
	1	0x0001	AE Statistic Enable	
13702	0	0x0000	MS bit of the AE Measurement Window Size	
0x3586	This register specifies number of pixels in the window used by AE measurement engine.			
	15:0	0x0000	Measure of the Average Luminance in AE windows W12 and W11 (RO)	
13704	15:8	RO	Average Y in W12	
0x3588	7:0	RO	Average Y in W11	
	15:0	0x0000	Measure of the Average Luminance in AE windows W14 and W13 (RO)	
13706	15:8	RO	Average Y in W14	
0x358A	7:0	RO	Average Y in W13	
	15:0	0x0000	Measure of the Average Luminance in AE windows W22 and W21 (RO)	
13708	15:8	RO	Average Y in W22	
0x358C	7:0	RO	Average Y in W21	
	15:0	0x0000	Measure of the Average Luminance in AE windows W24 and W23 (RO)	
13710	15:8	RO	Average Y in W24	
0x358E	7:0	RO	Average Y in W23	
	15:0	0x0000	Measure of the Average Luminance in AE windows W32 and W31 (RO)	
	15:8	RO	Average Y in W32	
13712			1	

Reg. #	Bits	Default	Name
	15:0	0x0000	Measure of the Average Luminance in AE windows W34 and W33 (RO)
13714	15:8	RO	Average Y in W34
0x3592	7:0	RO	Average Y in W33
	15:0	0x0000	Measure of the Average Luminance in AE windows W42 and W41 (RO)
13716	15:8	RO	Average Y in W42
0x3594	7:0	RO	Average Y in W41
	15:0	0x0000	Measure of the Average Luminance in AE windows W44 and W43 (RO)
13718	15:8	RO	Average Y in W44
0x3596	7:0	RO	Average Y in W43
	15:0	0x0014	Dark Color Kill Controls (RW)
	15:8	Х	Reserved
	7	0x0000	Enables dark color kill operation Enables dark color kill operation
	6	0x0000	Reserved
13730	5:3	0x0002	Reserved
0x35A2	2:0	0x0004	Reserved
	15:0	0x0594	Bright Color Kill Controls (RW)
	15:11	Х	Reserved
	10	0x0001	Enables bright color kill Enables bright color kill
	9	0x0000	Reserved
	8:6	0x0006	Color kill threshold Color kill effects only pixels with value larger then 128*value.
	5:3	0x0002	Color kill gain Determines rate of gain decrease above threshold. If pixel value is above threshold the difference is multiplied by 2^ value-1 (for 0 factor is "0") and subtracted from the base gain.
	2:0	0x0004	Color kill saturation point
13732 0x35A4			Saturation; 100 = 100 percent. Scales linearly with value.
13732 0x35A4	15:0	0x0000	Saturation; 100 = 100 percent.
0x35A4		0x0000 0x0000	Saturation; 100 = 100 percent. Scales linearly with value.
13732 0x35A4 13734 0x35A6	15:0		Saturation; 100 = 100 percent. Scales linearly with value. Histogram Window Lower Boundaries (RW)
0x35A4 13734	15:0 15:8	0x0000	Saturation; 100 = 100 percent. Scales linearly with value. Histogram Window Lower Boundaries (RW) Y0/8
0x35A4 13734	15:0 15:8 7:0	0x0000 0x0000	Saturation; 100 = 100 percent. Scales linearly with value. Histogram Window Lower Boundaries (RW) Y0/8 X0/8

Reg. #	Bits	Default	Name
	15:0	0x030A	First Set of Bin Definitions (RW)
	15:13	Х	Reserved
	12:11	0x0000	Histogram statistics criteria
	10:8	0x0003	Bin width 0-4LSB,1-8LSB,2-16LSB,7-512LSB on a 10-bit scale
13738 0x35AA	7:0	0x000A	Offset for bin 0 Divided by 4 on 10-bit scale
	15:0	0x030A	Second Set of Bin Definitions (RW)
	15:13	Х	Reserved
	12:11	0x0000	Histogram statistics criteria
	10:8	0x0003	Bin width 0-4LSB,1-8LSB,2-16LSB,7-512LSB on a 10-bit scale
13740 0x35AC	7:0	0x000A	Offset for bin 0 Divided by 4 on 10-bit scale
	15:0	0x000A	Prescaler for the Historgram (RW)
	15	Х	Reserved
	14	0x0000	Selects where statistics for histogram and outlier modules is taken. Two options are before (0) and after (1) color correction matrix. Selects where statistics for histogram and outlier modules is taken. Two options are before (0) and after (1) color correction matrix. In case statistics is taken from after color correction it is influenced by the second black level.
13742	13	0x0000	Select bin set to read '0'- bin set 1, '1'-bin set 2
0x35AE	12:0	0x000A	Reserved
	15:0	0x0000	Pixel Counts for Bin 0 and Bin 1 (RO)
	15:8	RO	Reserved
13744	7:0	RO	Reserved
0x35B0	through	h 0x35B6, b	ased on value of bit 13 in reg 0x35AE[2].
	15:0	0x0000	Pixel Counts for Bin 2 and Bin 3 (RO)
	15:8	RO	Bin 3; Pixel count divided by G prescaler
13746	7:0	RO	Bin 2; Pixel count divided by G prescaler
0x35B2	See 0x0	x35B0	
	15:0	0x0000	Pixel Counts for Bin 4 and Bin 5 (RO)
	15:8	RO	Bin 5; Pixel count divided by G prescaler
13748	7:0	RO	Bin 4; Pixel count divided by G prescaler
0x35B4	See 0x0	x35B0	
	15:0	0x0000	Pixel Counts for Bin 6 and Bin 7 (RO)
12750	15:8	RO	Bin 7; Pixel count divided by G prescaler
13750 0x35B6	7:0	RO	Bin 6; Pixel count divided by G prescaler
	l	1	Sin of time count divided by a present

Reg. #	Bits	Default	Name		
	15:0	0x0000	Definition of outlier counters (RW)		
1	15:13	Х	Reserved		
	12:9	0x0000	Specifies Zone number from which outline counters have to be read Zone definitions for the outlier counters match zone definition for the autoexposure zones.		
	8:7	0x0000	Select criteria for U statistics. 00-Y 01-RGB_min 10-RGB_max		
	6:5	0x0000	Select criteria for L statistics.		
	4:0	0x0000	Divisor of outliers counts (GO prescaler) The number of pixels that satisfy the selection criteria are divided by the number specified in this register +1 (0-1,1-2). For example, if the window size is 100x100 the maximum count for the window will be 1e4 if the divisor is 0. If the devisor is 1, the maximum count will be 5E3		
13752 0x35B8	Outlier counters can count the number of pixels for 16 zones. Zone definitions coincide with that for auto exposure zones. For each zone two counters exist. The first counts pixels above specified value(H_counter) and the second counts pixels below specified value(L_counter). Bits 6:5 and 8:7 select criteria for statistics selection. Could be the value of Y, RGB_min, and RGB_max				
	15:0	0xFA05	Range for U and L counters (RW)		
	15:8	0x00FA	U range Statistics collected if (Pixel_val>U_range)		
	7:0	0x0005	L range Statistics collected if (Pixel_val <l_range)< td=""></l_range)<>		
13754 0x35BA			in the lower outlier counter when their value is less than L_range. Pixels are counted in the ster when their value is more than U_range. Both U_range and L_range are specified in 8-bit		
	15:0	0x0000	Value for U_counter (RO)		
13756 0x35BC			This register contains the number of outlier pixels for the selected zone (divided by GO rs are not double buffered, thus readout has to occur between frames.		
	15:0	0x0000	Value for L_counter (RO)		
13758 0x35BE			This register contain number of outlier pixels for the selected zone (divided by GO prescaler). double buffered, thus readout has to occur between frames.		

Table 28: 0: Monitor Variables

Reg. #	Bits	Default	Name			
	15:0	0x0000	cmd (RW)			
	Monitor command					
	Setting this variable to 1 causes the monitor to call a firmware					
			ress equals mon.arg1. If the function needs an the value of mon.arg2. If the function returns			
	a 1- or 2-byte value, it is put in mon.arg2.					
	Setting mon.cmd to 2 causes the monitor to calculate CRC for a					
	_		ed by a starting address in mon.arg1 and			
			The CRC is returned in mon.arg2.			
			executing each received command at the			
			Before starting, it sets bit 7 of mon.cmd to 1.			
		remains set i	until the command execution is finished.			
	Usage:	ara1 and m	non.arg2 and write command number to			
2			I mon.cmd=0. Retrieve numerical result, if any,			
0x002		on.arg2.	,			
	15:0	0x0000	arg1 (RW)			
3 0x003	First arc	ument for n	nonitor command			
	15:0	0x0000				
5 0x005			arg2 (RW)			
UXUUS	Second argument for monitor command					
	15:0	0x0000	msgCount (RW)			
	Numbe	r of posted n	nessages			
	Usage:					
7 0x007			detect messages. When mon.msgCount > 0,			
	read mo	on.msg. 18D-	—clear counter.			
8	15:0	0x0000	msg [HI] (RW)			
0x008	First me	ssage (Hi)				
10	15:0	0x0000	msg [LO] (RW)			
0x00A	First me	ssage (Lo)				
	15:0	0x001A	ver (RW)			
12	Bits [6:0] = firmware	e version			
0x00C	Bit 7 = r	eserved				
13	15:0	0x0000	modul ID (DW)			
0x00D	13.0	UAUUUU	modul ID (RW)			

1: Sequencer Variables

Table 29: 1: Sequencer Variables

Reg. #	Bits	Default	Name
0	15:0	0xE6C1	vmt (RW)
0x000	Pointer	to virtual i	method table
	15:0	0x000F	mode (RW)
	15:8	Х	Reserved
	7:6	0x0000	TBD TBD
	5	0x0000	6500K outdoor WB If this bit is set then sequencer automatically forces outdoor white balance settings if average for given scene exposure value (ae.mmMeanEV) exceeds seq.sharedParams.outdoorTH threshold.
	4	0x0000	Auto Focus Auto focus driver. 1 - enable, 0 - disable
	3	0x0001	Histogram Histogram driver. 1 - enable, 0 - disable
	2	0x0001	Auto White Balance Auto white balance driver. 1 - enable, 0 - disable
	1	0x0001	Flicker Detection Flicker detection driver. 1 - enable, 0 - disable
	0	0x0001	AutoExposure Auto exposure driver. 1 - enable, 0 - disable
2 0x002			es enabling various drivers and outdoor white balance option. Writing 1 to a particular switch ponding driver or option. Changes take effect immediately.
	15:0	0x0000	cmd (RW)
	0—Run 1—Go	to Preview	·
	3—Go 1	to Capture to Standby	
		resh ; resh mode ;	; value to this variable commands the sequencer to execute the corresponding program. The
3 0x003	sequen		md to 0, executes the program, and then resumes running in its current state. Changes take

Reg. #	Bits	Default	Name		
	15:0	0x0000	state (RW)		
	0—Initi	uu			
		de Change er Preview	to Preview		
	3—Prev				
		ve Preview			
	5—Mode Change to Capture				
	6—Enter Capture				
	7—Cap				
4		ve Capture			
0x004	9—Star	ndby			
	15:0	0x0000	stepMode (RW)		
	15:2	Х	Reserved		
	1	0x0000	Force seg next step		
			1 forces the sequencer to do next step		
	0	0x0000	step mode On/Off		
			Step mode On/Off (1 = On)		
	Step-by	r-step mode	e for sequencer		
5			On/Off (1 = On)		
0x005		•	sequencer to do next step. Changes take effect immediately.		
	15:0	0x0000	sharedParams.flashType (RW)		
	15:8	Х	Reserved		
	7	0x0000	flash On in Lock mode Bit 7—1 means the flash was on in LOCK mode		
	6:0	0x0000	FlashType 0—None		
	6:0	0x0000	0—None 1—LED		
	6:0	0x0000	0—None 1—LED 2—Xenon		
6 0x006			0—None 1—LED 2—Xenon 3—Xenon burst		
	Type of	flash to be	0—None 1—LED 2—Xenon 3—Xenon burst		
			0—None 1—LED 2—Xenon 3—Xenon burst		
	Type of 15:0 Weight	0x0008 ing factor of 32 disab	0—None 1—LED 2—Xenon 3—Xenon burst e used		
7 0x007	Type of 15:0 Weight Setting	0x0008 ing factor of 32 disab	0—None 1—LED 2—Xenon 3—Xenon burst e used sharedParams.aeContBuff (RW) determining to what extent AE driver averages luma over time in continuous AE mode.		
0x006	Type of 15:0 Weight Setting averagi 15:0	ox0008 ing factor of 32 disaking. 0x0002	0—None 1—LED 2—Xenon 3—Xenon burst e used sharedParams.aeContBuff (RW) determining to what extent AE driver averages luma over time in continuous AE mode. ples luma averaging—only current luma values are used. Lower settings enable luma		
7 0x007	Type of 15:0 Weight Setting averagi 15:0	ox0008 ing factor of 32 disaking. 0x0002	0—None 1—LED 2—Xenon 3—Xenon burst e used sharedParams.aeContBuff (RW) determining to what extent AE driver averages luma over time in continuous AE mode. coles luma averaging—only current luma values are used. Lower settings enable luma sharedParams.aeContStep (RW)		

Reg. #	Bits	Default	Name		
10	15:0	0x0001	sharedParams.aeFastStep (RW)		
0x00A	Numbe	r of steps i	n which AE driver is expected to reach target brightness in fast AE mode		
	15:0	0x0008	sharedParams.awbContBuff (RW)		
11 0x00B		of 32 disal	determining to what extent AWB driver averages luma over time in continuous AWB mode. oles luma averaging—only current luma values are used. Lower settings enable luma		
12	15:0	0x0002	sharedParams.awbContStep (RW)		
0x00C	Number of steps in which AWB driver is expected to reach target color balance in continuous AWB mode				
	15:0	0x0020	sharedParams.awbFastBuff (RW)		
13 0x00D			determining to what extent AWB driver averages luma over time in fast mode. Setting of 32 raging—only current luma values are used. Lower settings enable luma averaging.		
14	15:0	0x0001	sharedParams.awbFastStep (RW)		
0x00E	Numbe	r of steps i	n which AWB driver is expected to reach target color balance in fast AWB mode		
	15:0	0x00A8	sharedParams.options (RW)		
	15:8	Х	Reserved		
	7	0x0001	Powerup done This bit indicates that powerup sequence was done		
	6	Х	Reserved		
	5	0x0001	use crop window for AF statistic		
	4	0x0000	use crop window for AWB statistic		
	3	0x0001	use crop window for AE statistic		
	2	0x0000	Skip_ModeChenge_states Skip ModeChanange states		
	1	0x0000	Sync_EOF Synchronize sensor StandBy with EOF		
17 0x011	0	0x0000	Highlight_On Highlight number of frames taken in PreviewEnter, Preview, PreviewLeave and CaptureEnter states using debug boxes (see regs 0x019B - 0x01A2)		
18	15:0	0x0010	sharedParams.totMaxFrames (RW)		
0x012	Maxima	al number	of frames allowed in states 2,4,6. Changes take effect immediately.		
	15:0	0x0000	sharedParams.flashTH (RW)		
19 0x013			v) threshold. If current EV is below this threshold, flash will be used in autoevaluate flash ke effect immediately.		
	15:0	0x000A	sharedParams_outdoorTH (RW)		
20 0x014	Exposure value (EV) threshold. If current EV is above this threshold and bit 5 of seq.mode equals 1, AWB driver is forced to choose color correction settings suitable for daylight color temperature of 6500 K. Changes take effect immediately.				

Reg. #	Bits	Default	Name
	15:0	0x0060	sharedParams.LLmode (RW)
	15:8	Х	Reserved
	7	0x0000	ClusterDC vs. Gain On/Off
	6	0x0001	Reset Clip Level
	5	0x0001	Tx_boost vs. Gains On/Off
	4	0x0000	Y Filter On
	3	0x0000	Reduce ap threshold
	2	0x0000	Reduce ap correction
	1	0x0000	Reduce color saturation
21	0	0x0000	Change Interp threshold
0x015	Low Lig	jht mode p	arameters. Changes take effect immediately.
	15:0	0x0051	sharedParams.LLvirtGain1 (RW)
22 0x016			gain in Low Light mode. Defined as (ae.VirtGain/2 + ae.DGainAE1/16 + ae.DGainAE2/4). ct immediately.
	15:0	0x005A	sharedParams.LLvirtGain2 (RW)
23 0x017		x. LL virtua	gain in Low Light mode. Defined as (ae.VirtGain/2 + ae.DGainAE1/16 + ae.DGainAE2/4). Min. Il gains define when low-light parameters start and stop changing. Changes take effect
	15:0	0x0080	sharedParams.LLSat1 (RW)
24 0x018			ituration for color correction matrix (128 means 100%) applied if LL virtual gain less then . Changes take effect immediately.
	15:0	0x0000	sharedParams.LLSat2 (RW)
25 0x019			turation for color correction matrix (128 means 100%) applied if LL virtual gain larger then . Changes take effect immediately.
	15:0	0x0010	sharedParams.LLInterpThresh1 (RW)
26 0x01A		ım thresho mmediately	ld for interpolation (applied if LL virtual gain less then SEQ_LLVIRTGAIN1). Changes take y.
	15:0	0x0040	sharedParams.LLInterpThresh2 (RW)
27 0x01B		um thresho	old for interpolation (applied if LL virtual gain larger then SEQ_LLVIRTGAIN2). Changes take y.
	15:0	0x0002	sharedParams.LLApCorr1 (RW)
28 0x01C	Maximu immedi	-	e correction value (applied if LL virtual gain less then SEQ_LLVIRTGAIN1). Changes take effect
	15:0	0x0000	sharedParams.LLApCorr2 (RW)
29 0x01D		ım apertur mmediatel	e correction value (applied if LL virtual gain larger then SEQ_LLVIRTGAIN2). Changes take

15:0 0x0008 sharedParams.LLApThresh1 (RW)						
Dx01E effect immediately.						
Maximum aperture correction threshold (applied if LL virtual gain larger then SEQ_LLVIRTGAIN2). Cheffect immediately. 15:0	anges take					
15:0 0x0000 captureParams.mode (RW) 15:7 X Reserved 6 0x0000 HG On in Video mode 5 0x0000 AWB On in Video mode 4 0x0000 AF On in Video mode 3 0x0000 AF On in Video mode 2 0x0000 turn flash off before last frame in capture state 1 0x0000 Capture Video 0 0x0000 Capture W/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 33 0x021 T5:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle	anges take					
15:7 X Reserved 6 0x0000 HG On in Video mode 5 0x0000 AWB On in Video mode 4 0x0000 AE On in Video mode 3 0x0000 AF On in Video mode 2 0x0000 turn flash off before last frame in capture state 1 0x0000 Capture Video 0 0x0000 Capture w/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
6 0x0000 HG On in Video mode 5 0x0000 AWB On in Video mode 4 0x0000 AE On in Video mode 3 0x0000 AF On in Video mode 2 0x0000 turn flash off before last frame in capture state 1 0x0000 Capture Video 0 0x0000 Capture W/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
5 0x0000 AWB On in Video mode 4 0x0000 AE On in Video mode 3 0x0000 AF On in Video mode 2 0x0000 turn flash off before last frame in capture state 1 0x0000 Capture Video 0 0x0000 Capture w/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
4 0x0000 AE On in Video mode 3 0x0000 AF On in Video mode 2 0x0000 turn flash off before last frame in capture state 1 0x0000 Capture Video 0 0x0000 Capture w/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
3 0x0000 AF On in Video mode 2 0x0000 turn flash off before last frame in capture state 1 0x0000 Capture Video 0 0x0000 Capture w/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
2 0x0000 turn flash off before last frame in capture state 1 0x0000 Capture Video 0 0x0000 Capture w/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
1 0x0000 Capture Video 0 0x0000 Capture w/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
1 0x0000 Capture Video 0 0x0000 Capture w/ Xenon Flash Capture mode parameters. Take effect in Capture state only. 15:0 0x0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
Capture mode parameters. Take effect in Capture state only. 15:0						
Ox020 Capture mode parameters. Take effect in Capture state only. 15:0 Ox0003 captureParams.numFrames (RW) Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 Ox0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
Number of frames captured in still capture mode. Changes take effect in Capture state only. 15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
15:0 0x0000 previewParEnter.ae (RW) Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
Auto exposure configuration in PreviewEnter state 0 - Off 1 - Fast settle						
0 - Off 1 - Fast settle						
1 - Fast settle						
2 - Manual						
34 3 - Continuous						
0x022 4 - Fast settle + MDR						
15:0 0x0000 previewParEnter.fd (RW)						
Flicker detection configuration in PreviewEnter state						
0—Off						
35 1—Continuous 0x023 2—Manual						
0x023 2—Manual						
15:0 0x0000 previewParEnter.awb (RW)						
Auto white balance configuration in PreviewEnter state						
0—Off 1—Fast settling						
36 2—Manual						
0x024 3—Continuous						

Reg. #	Bits	Default	Name	
	15:0	0x0000	previewParEnter.af (RW)	
37 0x025	0—Off 1—Fast 2—Mar			
	15:0	0x0000	previewParEnter.hg (RW)	
38 0x026	0—Off 1—Fast 2—Mar	Histogram configuration in PreviewEnter state 0—Off 1—Fast 2—Manual 3—Continuous		
	15:0	0x0000	previewParEnter.flash (RW)	
	15:8	Х	Reserved	
	7	0x0000	Load user defined settings Load user defined settings 0 —Off 1—On 2—Locked 3—AutoEvaluate Bit 7—Load user defined settings	
	6:0	Х	Reserved	
39 0x027			n in PreviewEnter state	
	15:0	0x0040	previewParEnter.skipframe (RW)	
	15:8	Х	Reserved	
	7	0x0000	Turn off fen 1 - turn off Frame Enable output	
	6	0x0001	Skip State 1 - skip state	
	5	0x0000	Skip 1st when LED On 1 - skip first frame when LED On	
40	4:0	Х	Reserved	
0x028	Bit 7—	l - turn off	fen ёBit 6—1 means skip state ёBit 5—1 means skip first frame when LED On	
	15:0	0x0003	previewPar.ae (RW)	
41 0x029		xposure cor ;3—Contin	nfiguration in Preview state ё0—Off ё1—Fast settling ё2—Manual Juous	
	15:0	0x0002	previewPar.fd (RW)	
42 0x02A	0—Off	tinuous	configuration in Preview state	

Reg. #	Bits	Default	Name	
	15:0	0x0003	previewPar.awb (RW)	
43 0x02B	0—Off 1—Fast 2—Mar	Auto white balance configuration in Preview state O—Off I—Fast settling C—Manual B—Continuous		
	15:0	0x0000	previewPar.af (RW)	
44 0x02C	0—Off 1—Fast 2—Mar		uration in Preview state	
	15:0	0x0003	previewPar.hg (RW)	
45 0x02D	Histogr 0—Off 1—Fast 2—Mar 3—Con	nual	ıration in Preview state	
	15:0	0x0000	previewPar.flash (RW)	
	15:8	Х	Reserved	
	7	0x0000	Load user defined settings Load user defined settings	
	6:0	Х	Reserved	
46 0x02E	0—Off 1—On 2—Lock 3—Aut	ked oEvaluate	n in Preview state	
	15:0	0x0000	previewPar.skipframe (RW)	
	15:8	Х	Reserved	
	7	0x0000	Turn off fen 1 means turn off fen	
	6	0x0000	Skip State 1 means skip state	
	5	0x0000	Skip 1st when LED On 1 means skip first frame when LED On	
	4:0	Х	Reserved	
47 0x02F	Bit 6—1	Imeans tur Imeans skip Imeans skip		

Reg. #	Bits	Default	Name
	15:0	0x0001	previewParLeave.ae (RW)
48 0x030			nfiguration in PreviewLeave state ё0 - Off ё1 - Fast settle ё2 - Manual uous4 - Fast settle + MDR
	15:0	0x0000	previewParLeave.fd (RW)
49 0x031	0—Off	tinuous	onfiguration in PreviewLeave state
	15:0	0x0001	previewParLeave.awb (RW)
50 0x032	state 0—Off	settling nual	e configuration in PreviewLeave
	15:0	0x0000	previewParLeave.af (RW)
51 0x033	Auto focus configuration in PreviewLeave state 0—Off 1—Fast 2—Manual 5—Creep compensation		
	15:0	0x0001	previewParLeave.hg (RW)
52 0x034	Histogram configuration in PreviewLeave state 0—Off 1—Fast 2 —Manual 3—Continuous		iration in PreviewLeave state
	15:0	0x0000	previewParLeave.flash (RW)
	15:8	Х	Reserved
	7	0x0000	Load user defined settings Load user defined settings
	6:0	Х	Reserved
	Flash co 0—Off 1—On 2—Lock	_	n in PreviewLeave state
53 0x035		oEvaluate .oad user d	efined settings.

Reg. #	Bits	Default	Name			
	15:0	0x0010	previewParLeave.skipframe (RW)			
	15:8	Х	Reserved			
	7	0x0000	Turn off fen			
	6	0x0000	1 means turn off fen			
	0	00000	Skip State 1 means skip state			
	5	0x0000	Skip 1st when LED On			
			1 means skip first frame when LED On			
	4	0x0001	skip PreviewLeave state if all auto functions were settled in preview state			
	3:0	Х	Reserved			
54 0x036			rn off fen ёBit 6—1 means skip state ёBit 5—1 means skip first frame when LED te if all auto functions were settled.			
	15:0	0x0000	capParEnter.ae (RW)			
55 0x037			nfiguration in CaptureEnter state ё0 - Off ё1 - Fast settle ё2 - Manual uous4 - Fast settle + MDR			
	15:0	0x0000	capParEnter.fd (RW)			
56 0x038	0—Off	tinuous	onfiguration in CaptureEnter state			
	15:0	0x0000	capParEnter.awb (RW)			
57 0x039	state 0—Off 1—Fast 2—Mar	Auto white balance configuration in CaptureEnter state				
	15:0	0x0000	capParEnter.af (RW)			
58 0x03A	Auto focus configuration in CaptureEnter state 0—Off 1—Fast 2—Manual 5—Creep compensation					
	15:0	0x0000	capParEnter.hg (RW)			
59 0x03B	0—Off 1—Fast 2—Mar	1—Fast 2—Manual				
	J CO11	—Continuous				

Bits	Default	Name		
15:0	0x0000	capParEnter.flash (RW)		
15:8	Х	Reserved		
7	0x0000	Load user defined settings		
6:0	X	Load user defined settings Reserved		
0—Off	miguratio	in in CaptureLiner state		
1—On				
		efined settings		
	ı			
		capParEnter.skipframe (RW)		
		Reserved		
'	000000	Turn off fen 1 means turn off fen		
6	0x0001	Skip State		
		1 means skip state		
5	0x0000	Skip 1st when LED On 1 means skip first frame when LED On		
4:0	Х	Reserved		
Bit 7—1 On	l means tur	rn off fen ёBit 6—1 means skip state ёBit 5—1 means skip first frame when LED		
15:0	0x0010	NR_minTH (RW)		
Minima	l noise red	uction threshold (See description of register 251 :1). Changes take effect immediately.		
15:0	0x0020	NR_maxTH (RW)		
Maxima	al noise red	uction threshold (See description of register 251 :1)		
15:0	0x0000	NR_GainTH (RW)		
Virtual gain threshold above that mcu starts changing noise reduction threshold. Changes take effect immediately.				
15:0	0x0010	NR_Slope (RW)		
Slope o	f the noise	reduction threshold		
	15:0 15:8 7 6:0 Flash cc 0—Off 1—On 2—Lock 3—Autt Bit 7—L 15:0 15:8 7 6 5 4:0 Bit 7—1 On 15:0 Minima 15:0 Maxima 15:0 Virtual immedi	15:0 0x0000 15:8 X 7 0x0000 6:0 X Flash configuration 0—Off 1—On 2—Locked 3—AutoEvaluate Bit 7—Load user decelor 15:0 0x0040 15:8 X 7 0x0000 6 0x0001 5 0x0000 4:0 X Bit 7—1 means turn On 15:0 0x0010 Minimal noise red 15:0 0x0020 Maximal noise red 15:0 0x0000 Virtual gain thresh immediately.		

Table 29: 1: Sequencer Variables (continued)

Reg. #	Bits	Default	Name		
	15:0	0x0000	standByStatus (RW)		
	15:8	Х	Reserved		
	7	0x0000	This bit indicates PLL bypass state		
	6	0x0000	This bit indicates PLL down state.		
	5	0x0000	reserved		
	4	0x0000	If this bit is set f/w go to standby right from IRQ function otherwise chip go to soft standby by DO_STANDBY command		
	3	0x0000	allow interrupt during MCU slip only		
	2	0x0000	This bit indicates MIPI was used		
	1	0x0000	This bit indicates standby interrupt occurred		
66	0	0x0000	This bit indicates modul ID was set		
0x042	Standby status				
	15:0	0x0000	standByMode (RW)		
67 0x043	Default to all "0". Has the same definition as R3216. This variable will be copy over to register R3216 during standby procedure. Host could over write this to control what clock get gated off during standby.				
75	15:0	0x0338	padClkFreq (RW)		
0x04B	HIWORD of pad clock frequency (0x0338 – 54MHz). Changes take effect immediately.				

Table 30: 2: AE Variables

Reg. #	Bits	Default	Name		
0	15:0	0xE6FD	Vmt (RW)		
0x000	Pointer to virtual method table				
	15:0	0x0000	windowPos (RW)		
	15:8	Х	Reserved		
	7:4	0x0000	Y0 Y0 in units 1/16th of frame height		
	3:0	0x0000	X0 X0 in units of 1/16th of frame width		
2 0x002	New po	sition writt	oper left) AE window ten to this variable takes effect only after REFRESH_MODE or REFRESH command is given to p.cmd = 5 or 6).		

Reg. #	Bits	Default	Name		
	15:0	0x00EF	windowSize (RW)		
	15:8	Х	Reserved		
	7:4	0x000E	height height (in units of 1/16th of frame height) decremented by 1		
	3:0	0x000F	width width (in units of 1/16th of frame width) decremented by 1		
3 0x003	Size of 4 x 4 array of AE windows New data written to this variable take effect only after REFRESH_MODE or REFRESH command is given to sequencer (seq.cmd = 5 or 6).				
	15:0	0x023A	wakeUpLine (RW)		
4 0x004			nich MCU wakes up to do AE calculations. This number is automatically set after REFRESH command (seq.cmd = 5 or 6)		
6	15:0	0x003C	Target (RW)		
0x006	Target l	orightness.	Changes take effect immediately.		
7	15:0	0x000A	Gate. (RW)		
0x007	AE sens	itivity. Char	nges take effort immediately		
8	15:0	0x0000	SkipFrames (RW)		
800x0	Freque	ncy of AE u	pdates. Changes take effect immediately.		
9	15:0	0x0002	JumpDivisor (RW)		
0x009	Factor r	educing ex	posure jumps (1 = fastest jumps). Changes take effect immediately.		
10	15:0	0x0008	lumaBufferSpeed (RW)		
0x00A	Speed of buffering (32 = fastest, 1= slowest)				
	15:0	0x0000	minIndex (RW)		
	intend [.]	to use to lir	nit the min integration time.		
11 0x00B	but it is	not workir	ng, and there is not intention to fix it. (20060124)		
	15:0	0x0018	maxIndex (RW)		
12 0x00C	Maximum allowed zone number (i.e. maximum integration time). Changes take effect on		zone number (i.e. maximum integration time). Changes take effect only after REFRESH		
12	15:0	0x0010	minVirtGain (RW)		
13 0x00D			minVirtGain (RW) virtual gain		
0x00D					
	Minimu	m allowed	virtual gain		
0x00D 14	Minimu	m allowed	virtual gain maxVirtGain (RW)		

	. Z. AL Variables (Continued)				
Reg. #	Bits	Default	Name		
16	15:0	0x000A	minADChi (RW)		
0x010	Minimum ADC Vre		f_hi setting. Changes take effect only after REFRESH command.		
17	15:0	0x0009	minADClo (RW)		
0x011	Minimu	ım ADC Vre	f_lo setting		
18	15:0	0x0080	maxDGainAE1 (RW)		
0x012	Maximum digital g		ain pre-LC. Changes take effect only after REFRESH command.		
20	15:0	0x0020	maxDGainAE2 (RW)		
0x014	Maxim	um digital g	ain post-LC. Changes take effect only after REFRESH command.		
21	15:0	0x0008	IndexTH23 (RW)		
0x015	Zone n	umber to st	art gain increase in low-light. Sets frame rate at normal illumination.		
	15:0	0x0078	maxGain23 (RW)		
22	Maxim	um gain to	increase in low-light before dropping frame rate. Sets frame rate at low-light. Changes take		
0x016	effect o	only after RI	EFRESH command.		
	15:0	0x00FF	weights (RW)		
	15:8	Х	Reserved		
	7:4	0x000F	background weight		
	2.0	0.0005	background weight		
	3:0	0x000F	center zone weight		
23 0x017	ΛΕννίη	dows weigh	center zone weight nts. Changes take effect immediately.		
	AL WIII	dows weigi	rts. Changes take effect infinediately.		
	15:0	0x0084	status (RW)		
	15:8	Х	Reserved		
	7	0x0001	On/Off OverExpose compensation		
	6	0x0000	Exclude outliers exceeding 16EV from statistic		
	5	0x0000	do one step MDR mode in ModeChange state		
	4	0x0000	MDR Mode is Done		
	3	0x0000	do MDR mode		
	2	0x0001	Ready		
	1	0x0000	1-R9 is changed (need to skip frame)		
24	0	0x0000	1-AE reached the limit		
0x018	AE Stat	us			
25	15:0	0x0000	CurrentY (RW)		
0x019	Last me	easured lum	inance		
26	15:0	0x0408	R12 (RW)		
0x01A	Curren	t shutter de	lay value		

Reg. #	Bits	Default	Name		
28	15:0	0x0004	Index (RW)		
0x01C	Current zone (integration time)				
29	15:0	0x0010	VirtGain (RW)		
0x01D	Current	virtual gai	n		
30	15:0	0x000B	ADC_hi (RW)		
0x01E	Current	ADC VREF	_HI value		
31	15:0	0x0009	ADC_lo (RW)		
0x01F	Current	ADC VREF	_LO value		
32	15:0	0x0080	DGainAE1 (RW)		
0x020	Current	digital gai	n pre-LC		
34	15:0	0x0020	DGainAE2 (RW)		
0x022	Current	digital gai	n post-LC		
35	15:0	0x0000	R9 (RW)		
0x023	Current	R9:0 value	(integration time)		
37	15:0	0x090B	R65 (RW)		
0x025	Current	ADC VREF	values		
41	15:0	0x0080	gainR12 (RW)		
0x029	Gain co	mpensating	g too low maxR12 (128 = unit gain)		
42	15:0	0x0000	SkipFrames_cnt (RW)		
0x02A	Counter of skipped frames				
43	15:0	0x0000	BufferedLuma (RW)		
0x02B	Current	time-buffe	red measured luma		
45	15:0	0x0000	dirAE_prev (RW)		
0x02D	Previou	s state of A	E		
46	15:0	0x009D	R9_step (RW)		
0x02E	Integra	tion time o	f one zone		
49	15:0	0x000A	maxADClo (RW)		
0x031	Maximu	ım ADC Vre	rf_lo setting		
50	15:0	0x0010	physGainR (RW)		
0x032	Physical	l (analog) R	gain		
52	15:0	0x0010	physGainG (RW)		
52 0x034	Physical	l (analog) G			

Reg. #	Bits	Default	Name
54 0x036	15:0	0x0010	physGainB (RW)
	Physical (analog) B gain		
65 0x041	15:0	0x0000	mmMeanEV (RW)
	Mean EV (Exposure Value)		
66 0x042	15:0	0x000D	mmShiftEV (RW)
	Exposure Value shift. Adjust this value for given lens. Changes take effect immediately.		
67 0x043	15:0	0x0000	numOE (RW)
	Number of overexposed zones		
68 0x044	15:0	0x003D	TargetD (RW)
	Current AE target in MDR mode. Changes take effect immediately.		
69 0x045	15:0	0x0064	maxNu (RW)
	Maximal allowed number of upper outliers		
73 0x049	15:0	0x0028	minTargetD (RW)
	Minimal AE target in MDR mode. Changes take effect immediately.		
74 0x04A	15:0	0x00B4	maxTargetD (RW)
	Maximal AE target in MDR mode. Changes take effect immediately.		
79	15:0	0x0080	coefG2 (RW)
0x04F	Green2 / Green1* 128 ratio		
	15:0	0x00A6	EV_HiLo (RW)
	15:8	Х	Reserved
	7:4	0x000A	EV_Hi Hi EV threshold for AE parameters. For bright scenes when average scene brightness (ae.mmMeanEV) above then threshold defined by EV_Hi, AE driver (in MDR mode only) increace AE target (ae.Target) and minimal AE target (ae.minTargetD) by values defined in ae,targetDelta[7:4] and ae.minTargetDelta[7:4]
	3:0	0x0006	EV_Low Low EV threshold for AE parameters. For dark scenes when average scene brightness (ae.mmMeanEV) below then threshold defined by EV_Low, AE driver (in MDR mode only) reduces AE target (ae.Target) and minimal AE target (ae.minTargetD) by values defined in ae,targetDelta[3:0] and ae.minTargetDelta[3:0]
80 0x050	Low and Hi EV threshold for AE parameters defining dark and bright scenes. For MDR mode only. Changes take effect immediately.		

Table 30: 2: AE Variables (continued)

Reg. #	Bits	Default	Name
	15:0	0x00A8	targetDelta. (RW)
	15:8	Х	Reserved
	7:4	0x000A	HiTargetDelta AE tareget shift divided by 2 for bright scenes if ae.meanEV >= ae.EV_HiLo[7:4] then AE target increaced by HI_TARGET_DELTA/2 value. (MDR mode only)
81	3:0	0x0008	LoTargetDelta AE target shift (divided by 2) for dark scenes if ae.meanEV < ae.EV_HiLo[3:0] then AE target reduced by LO_TARGET_DELTA/2 value. (MDR mode only)
0x051	Change	es take effe	t immediately.
	15:0	0x0086	minTargetDelta (RW)
	15:8	Х	Reserved
	7:4	0x0008	Hi_minTargetDelta this value (divided by 2) added to minTarget for bright scenes.if ae.meanEV >= ae.EV_HiLo[7:4] ёthen AE minTarget increaced by LO_MINTARGET_DELTA/2 value
	3:0	0x0006	Lo_minTargetDelta this value (divided by 2) subtracted from minTarget for dark scenes. if ae.meanEV < ae.EV_HiLo[3:0] ёthen AE minTarget reduced by LO_MINTARGET_DELTA/2 value
82 0x052			ies shift of minimal value of the AE target for dark and bright scenes. (MDR mode only).
	15:0	0x0019	maxNuDelta (RW)
83 0x053	Addition (divided by 4) to maximal allowed top outliers. if ae.meanEV >= ae.EV_HiLo[7:4] ёthen value of ae.maxNu is increaced by maxNuDe mode only). Changes take effect immediately.		e.EV_HiLo[7:4] ёthen value of ae.maxNu is increaced by maxNuDelta/4 value. (for MDR
	15:0	0x0010	outliersSlope (RW)
84 0x054		•	ries scale factor for outliers. It is used in ONE STEP MDR mode only. Shift of ae.Target is or hg.NI value divided by ae.outliersSlope. Changes take effect immediately.

Table 31: 3: AWB Variables

Reg. #	Bits	Default	Name
0	15:0	0xE7A3	vmt (RW)
0x000	Pointer	to virtual m	ethod table

Reg. #	Bits	Default	Name		
	15:0	0x0000	windowPos (RW)		
	15:8	Х	Reserved		
	7:4	0x0000	Y0		
	2.0	0.0000	Y0 in units 1/16th of frame height		
	3:0	0x0000	X0 X0 in units of 1/16th of frame width		
2	Position	l of unner le	ft corner of AWB window. New position written to this variable takes effect only after		
0x002			REFRESH command is given to the sequencer (seq.cmd = 5 or 6)		
	15:0	0x00EF	windowSize (RW)		
	15:8	Х	Reserved		
	7:4	0x000E	Height		
			Height (in units of 1/16th of frame height) decremented by 1		
	3:0	0x000F	Width		
	c. (A)A/D : I	Width (in units of 1/16th of frame width) decremented by 1		
3 0x003			w. New size written to this variable takes effect only after REFRESH_MODE or REFRESH of the sequencer (seq.cmd = 5 or 6)		
	15:0	0x023C	wakeUpLine (RW)		
	Number	r of image ro	ow at which MCU wakes up to perform AWB calculations. This number is automatically		
4 0x004			change of the position and dimensions of the AWB window. Changes take effect		
0.004	immediately.				
	15:0	0x0285	ccmL[0] (RW)		
6 0x006			n matrix element K11. Value is encoded in signed two's complement form; 256 means 1.0. timmediately.		
8	15:0	0xFE98	ccmL[1] (RW)		
0x008	Left col	or correction	n matrix element K12. Changes take effect immediately.		
10	15:0	0x0010	ccmL[2] (RW)		
0x00A	Left col	or correction	n matrix element K13. Changes take effect immediately.		
12	15:0	0xFF55	ccmL[3] (RW)		
0x00C	Left col	or correction	n matrix element K21. Changes take effect immediately.		
14	15:0	0x0229	ccmL[4] (RW)		
0x00E	Left col	or correction	n matrix element K22. Changes take effect immediately.		
16	15:0	0xFFCF	ccmL[5] (RW)		
0x010	Left col	or correction	n matrix element K23. Changes take effect immediately.		
18	15:0	0xFF65	ccmL[6] (RW)		
0x012	Left col	or correction	n matrix element K31. Changes take effect immediately.		

Reg. #	Bits	Default	Name		
20	15:0	0xFDF9	ccmL[7] (RW)		
0x014	Left color correction matrix element K32. Changes take effect immediately.				
22	15:0	0x040B	ccmL[8] (RW)		
0x016	Left col	or correction	n matrix element K33. Changes take effect immediately.		
	15:0	0x0020	ccmL[9] (RW)		
24 0x018		or correction mmediately.	n matrix red/green gain ratio. Value is interpreted as unsigned; 32 means 1.0. Changes take		
	15:0	0x0038	ccmL[10] (RW)		
26 0x01A		or correction fect immedia	n matrix blue/green gain ratio. Value is interpreted as unsigned; 32 means 1.0. Changes ately.		
	15:0	0xFFB0	ccmRL[0] (RW)		
28 0x01C			on matrix element D11. Value is encoded in signed two's complement form; 256 means 1.0. t immediately.		
30	15:0	0x0065	ccmRL[1] (RW)		
0x01E	Delta co	olor correcti	on matrix element D12. Changes take effect immediately.		
32	15:0	0xFFEF	ccmRL[2] (RW)		
0x020	Delta co	olor correcti	on matrix element D13. Changes take effect immediately.		
34	15:0	0x001F	ccmRL[3] (RW)		
0x022	Delta co	olor correcti	on matrix element D21. Changes take effect immediately.		
36	15:0	0x0014	ccmRL[4] (RW)		
0x024	Delta color correction matrix element D22. Changes take effect immediately.				
38	15:0	0xFFD6	ccmRL[5] (RW)		
0x026	Delta co	olor correcti	on matrix element D23. Changes take effect immediately.		
40	15:0	0x005F	ccmRL[6] (RW)		
0x028	Delta co	olor correcti	on matrix element D31. Changes take effect immediately.		
42	15:0	0x0102	ccmRL[7] (RW)		
0x02A	Delta co	olor correcti	on matrix element D32. Changes take effect immediately.		
44	15:0	0xFE64	ccmRL[8] (RW)		
0x02C	Delta co	olor correcti	on matrix element D33. Changes take effect immediately.		
	15:0	0x0010	ccmRL[9] (RW)		
46 0x02E		olor correcti fect immedia	on matrix red/green gain ratio. Value is interpreted as unsigned; 32 means 1.0. Changes ately.		

Reg. #	Bits	Default	Name		
	15:0	0xFFED	ccmRL[10] (RW)		
48 0x030	Delta color correction matrix blue/green gain ratio. Value is interpreted as unsigned; 32 means 1.0. Changes take effect immediately.				
50	15:0	0x0201	ccm[0] (RW)		
0x032	Current	color corre	ction matrix element C11. Value is stored in signed two's complement form; 256 means 1.0.		
52	15:0	0xFEFA	ccm[1] (RW)		
0x034	Current	color corre	ction matrix element C12		
54	15:0	0x0006	ccm[2] (RW)		
0x036	Current	color corre	ction matrix element C13		
56	15:0	0xFF8A	ccm[3] (RW)		
0x038	Current	color corre	ction matrix element C21		
58	15:0	0x01AD	ccm[4] (RW)		
0x03A	Current	color corre	ction matrix element C22		
60	15:0	0xFFCB	ccm[5] (RW)		
0x03C	Current	color corre	ction matrix element C23		
62	15:0	0xFFAD	ccm[6] (RW)		
0x03E	Current color correction matrix element C31				
64	15:0	0xFED2	ccm[7] (RW)		
0x040	Current	color corre	ction matrix element C32		
66	15:0	0x0282	ccm[8] (RW)		
0x042	Current color correction matrix element C33				
68	15:0	0x0028	ccm[9] (RW)		
0x044	Current	color corre	ction matrix red/green gain ratio. Value is interpreted as unsigned; 32 means 1.0.		
70	15:0	0x002F	ccm[10] (RW)		
0x046	Current	color corre	ction matrix blue/green gain ratio. Value is interpreted as unsigned; 32 means 1.0.		
72	15:0	0x0008	GainBufferSpeed (RW)		
0x048	Speed c	of time-buff	ering (32 = fastest, 1= slowest). Changes take effect immediately.		
73	15:0	0x0002	JumpDivisor (RW)		
0x049	Deratin	g factor for	WB change (1= fastest). Changes take effect immediately.		
74	15:0	0x0066	GainMin (RW)		
0x04A	Minimu	ım allowed <i>i</i>	AWB digital gain (128 means 1.0) Changes take effect immediately.		

Reg. #	Bits	Default	Name			
75	15:0	0x0099	GainMax (RW)			
0x04B	Maximum allowed AWB digital gain (128 means 1.0). Changes take effect immediately.					
76	15:0	0x0080	GainR (RW)			
0x04C	Current	R digital ga	ain (128 means1.0)			
77	15:0	0x0080	GainG (RW)			
0x04D	Current	: G digital ga	ain (128 means1.0)			
	15:0	0x0080	GainB (RW)			
78 0x04E	Current	: B digital ga	ain (128 means1.0)			
	15:0	0x0000	CCMpositionMin (RW)			
79 0x04F		st position c	of color correction matrix (corresponding to incandescent light). Changes effect			
80	15:0	0x007F	CCMpositionMax (RW)			
0x050	Rightm	ost position	of color correction matrix (corresponding to daylight). Changes take effect immediately.			
	15:0	0x0040	CCMposition (RW)			
81 0x051	Current position of color correction matrix (0 corresponds to incandescent light, 127 to daylight). Changes take effect immediately.					
	1					
82	15:0	0x0080	saturation (RW)			
82 0x052		0x0080				
		0x0080	saturation (RW)			
	Saturat	0x0080	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately.			
	Saturat	0x0080 ion of color 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW)			
	Saturat 15:0 15:8	0x0080 ion of color 0x0000 X	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved			
	Saturat 15:0 15:8	0x0080 ion of color 0x0000 X	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF			
	15:0 15:8 7	0x0080 ion of color 0x0000 X 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer			
	15:0 15:8	0x0080 ion of color 0x0000 X 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS			
	15:0 15:8 7	0x0080 ion of color 0x0000 X 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set			
	15:0 15:8 7 6	0x0080 ion of color 0x0000 X 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position			
	15:0 15:8 7	0x0080 ion of color 0x0000 X 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT			
	15:0 15:8 7 6	0x0080 ion of color 0x0000 X 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT 1 = no awb statistic			
	15:0 15:8 7 6 5	0x0080 ion of color 0x0000 X 0x0000 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT			
	15:0 15:8 7 6 5	0x0080 ion of color 0x0000 X 0x0000 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT 1 = no awb statistic RESERVED			
	15:0 15:8 7 6 5	0x0080 ion of color 0x0000 X 0x0000 0x0000 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT 1 = no awb statistic RESERVED 1 = debug			
	15:0 15:8 7 6 5	0x0080 ion of color 0x0000 X 0x0000 0x0000 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT 1 = no awb statistic RESERVED 1 = debug AWB_TG			
	Saturat 15:0 15:8 7 6 5 4 3 2 1	0x0080 ion of color 0x0000 X 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT 1 = no awb statistic RESERVED 1 = debug AWB_TG 1 = reserved			
	Saturat 15:0 15:8 7 6 5 4 3 2	0x0080 ion of color 0x0000 X 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	saturation (RW) correction matrix (128 means 100%). Changes take effect immediately. mode (RW) Reserved AWB_OUTDOOR 1 = force outdoor settings, set by the sequencer AWB_CCMNORMOFF 1 = disable CCM normalization AWB_UNITYGAINS 1 = force AWB Digital Gains to unit; program value into awb.CCMPosition to manually set matrix position AWB_NO_STAT 1 = no awb statistic RESERVED 1 = debug AWB_TG 1 = reserved AWB_LIMITS			

Reg. #	Bits	Default	Name		
84	15:0	0x0000	GainR_buf (RW)		
0x054	Time-buffered R gain (0x1000 means 1.0)				
86	15:0	0x0000	GainB_buf (RW)		
0x056	Time-bu	ıffered B gai	in (0x1000 means 1.0)		
88	15:0	0x0000	sumR (RW)		
0x058	AWB sta	atistics. Scale	e normalized to an arbitrary number.		
89	15:0	0x0000	sumY (RW)		
0x059	AWB sta	atistics. Scale	e normalized to an arbitrary number.		
90	15:0	0x0000	sumB (RW)		
0x05A	AWB sta	atistics. Scale	e normalized to an arbitrary number.		
	15:0	0x0078	steadyBGainOutMin (RW)		
91 0x05B	driver st	tarts searchin	shold to start search. When AWB blue digital gain falls below this threshold, the AWB ng for new color correction matrix position. Threshold setting of 128 corresponds to gain of means higher gain. Changes take effect immediately.		
	15:0	0x0086	steadyBGainOutMax (RW)		
92 0x05C	Blue gain max. threshold to start search. When AWB blue digital gain goes above this threshold, the AWB driver starts searching for new color correction matrix position. Threshold setting of 128 corresponds to gain of 1.0; higher setting means higher gain. Changes take effect immediately.				
	15:0	0x007E	steadyBGainInMin (RW)		
93 0x05D	awb.ste position	adyBGainInI	shold to end search. When AWB blue digital gain is between awb.steadyBGainInMin and Max, the AWB driver maintains current color correction matrix setting of 128 corresponds to gain of 1.0; higher setting means higher gain. Changes take		
94	15:0	0x0082	steadyBGainInMax (RW)		
94 0x05E	Blue ga	in max. thre	shold to end search. See awb.steadyBGainInMin above. Changes take effect immediately.		
95	15:0	0x0064	cntPxITH (RW)		
0x05F	Reserved				
97	15:0	0x00E7	TG_min0 (RW)		
0x061	Reserve	d			
98	15:0	0x00F6	TG_max0 (RW)		
0x062	Reserve	d			
	15:0	0x0010	X0 (RW)		
99 0x063	CCM po		nold between Day and Incandescent normalization coefficients. Changes take effect		

Table 31: 3: AWB Variables (continued)

Reg. #	Bits	Default	Name		
	15:0	0x00AA	kR_L (RW)		
100 0x064	CCM red row normalization coefficient for left matrix position (128 - minimal number). Changes take effect immediately.				
	15:0	0x0096	kG_L (RW)		
101 0x065	CCM gr immedi		malization coefficient for left matrix position (128 - minimal number). Changes take effect		
	15:0	0x0080	kB_L (RW)		
102 0x066	CCM bl		nalization coefficient for left matrix position (128 - minimal number). Changes take effect		
	15:0	0x0080	kR_R (RW)		
103 0x067	CCM red row normalization coefficient for right matrix position (128 - minimal number). Changes take effect immediately.				
	15:0	0x0080	kG_R (RW)		
104 0x068	CCM green row normalization coefficient for right matrix position (128 - minimal number). Changes take effect immediately.				
	15:0	0x0080	kB_R (RW)		
105 0x069	CCM bl		nalization coefficient for right matrix position (128 - minimal number). Changes take effect		
106	15:0	0x0080	EdgeTH (RW)		
0x06A	current edge threshold for WB statistic				
107	15:0	0x0080	EdgeTH_min (RW)		
0x06B	minimu	m edge thre	eshold for WB statistic. Changes take effect only after REFRESH command.		
108	15:0	0x0080	EdgeTH_max (RW)		
0x06C	maximum edge threshold for WB statistic.Changes take effect only after REFRESH command.				

Table 32: 4: Flicker Variables

Reg. #	Bits	Default	Name
0	15:0	0xE824	vmt (RW)
0x000	Pointer	to virtual m	ethod table

Reg. #	Bits	Default	Name		
	15:0	0x001D	windowPosH (RW)		
	15:8	X	Reserved		
	7:4	0x0001	x0		
		0,0001	Left boundary of the flicker mesurement window (in units of 1/16th of frame width)		
	3:0	0x000D	width		
			width (in units of 1/16th of frame width) decremented by 1		
2 0x002	of fram flicker r luminar increme	e width) denneasuremenn nce in the wented by fd.	rasurement window and position of its left boundary X0; Bits [3:0]—width (in units of 1/16th cremented by 1; Bits [7:4]—X0 (in units of 1/16th of frame width); At the beginning of each of the top boundary (Y0) of the flicker measurement window is set at row 64. Average indow is measured by the IFP measurement engine and stored in fd.Buffer[0]. Then Y0 is windowHeight and the buffer index by 1. By repeating these steps 47 times, the entire ith average luminance values from a vertical array of 48 equal-size windows.		
	15:0	0x0004	windowHeight (RW)		
	15:6	Х	Reserved		
3	5:0	0x0004	flicker measurement window height in rows flicker measurement window height in rows		
0x003	Bits [5:0]—flicker measurement window height in rows				
	15:0	0x0000	mode (RW)		
	15:8	Х	Reserved		
	7	0x0000	Manual Mode 1 enables manual mode, 0 disables it		
	6	0x0000	Manual Flicker Mode Setting 0 selects 60Hz settings for manual mode, 1 selects 50Hz settings		
	5	RO	Current Flicker State read-only, indicates current settings (0–60Hz, 1– 50Hz)		
	4	0x0000	Debug Mode 1 enables debug mode, 0 disables it		
4	3:0	RO	Reserved read-only, reserved for auto FD		
0x004	Flicked	detection sv	vitches and indicators.		
	15:0	0x0040	wakeUpLine (RW)		
5 0x005	Number of image row at which MCU wakes up to perform flicker detection. Changing the va fd.wakeUpLine has no effect on the functioning of the FD driver, because it does not use this sets it to 64 at initialization, to indicate the top of the flicker measurement area. See fd.wind		no effect on the functioning of the FD driver, because it does not use this variable. It simply		
7	15:0	0x0005	smooth_cnt (RW)		
0x007	Reserve	d			
	15:0	0x001E	search_f1_50 (RW)		
8 0x008	Lower limit of period range of interest in 50 Hz flicker detection. If the FD driver is searching for 50 Hz flicker and detects in a frame a flicker-like signal whose period in rows is between fl.search_f1_50 and fl.search_f2_50, it counts the frame as one containing flicker.				

Reg. #	Bits	Default	Name	
9	15:0	0x0020	search_f2_50 (RW)	
0x009	Upper limit of period range of interest in 50 Hz flicker detection. See fd.search_f1_50 above.			
	15:0	0x0025	search_f1_60 (RW)	
10 0x00A	and det	ects in a fra	od range of interest in 60 Hz flicker detection. If the FD driver is searching for 60 Hz flicker me a flicker-like signal whose period in rows is between fl.search_f1_60 and fl.search_f2_60, as one containing flicker.	
11	15:0	0x0027	search_f2_60 (RW)	
0x00B	Upper l	imit of perio	od range of interest in 60 Hz flicker detection. See fd.search_f1_60 above.	
12	15:0	0x0000	skipFrame (RW)	
0x00C	Skip fra	me before s	ubtracting two frames.	
	15:0	0x0003	stat_min (RW)	
13 0x00D		s considered of sought fre	detected if fd.stat_min out of fd.stat_max consecutive frames contain flicker (periodic quency).	
14	15:0	0x0005	stat_max (RW)	
0x00E	See fd.s	tat_min.		
15	15:0	0x0000	stat (RW)	
0x00F	Shift re	gister, whos	e every bit corresponds to a frame. Bits equal to 1 indicate frames containing flicker.	
16	15:0	0x0005	minAmplitude (RW)	
0x010	Reserve	d		
17	15:0	0x009D	R9_step_0_f60 (RW)	
0x011	Minima	l shutter wid	dth step for 60Hz AC in context A.	
19	15:0	0x00BC	R9_step_0_f50 (RW)	
0x013	Minima	l shutter wid	dth step for 50Hz AC in context A	
21	15:0	0x0000	R9_step_1_f60 (RW)	
0x015	Minima	l shutter wid	dth step for 60Hz AC in context B.	
23	15:0	0x00E0	R9_step_1_f50 (RW)	
0x017	Minima	l shutter wid	dth step for 50Hz AC in context B	
25	15:0	0x0000	Buffer[0] (RW)	
0x019	Tempor	ary buffer fo	or flicker.	
26	15:0	0x0000	Buffer[1] (RW)	
0x01A	Tempor	ary buffer fo	or flicker.	
27	15:0	0x0000	Buffer[2] (RW)	
0x01B	Tempor	ary buffer fo	or flicker.	

Reg. #	Bits	Default	Name		
	15:0	0x0000	Buffer[3] (RW)		
28 0x01C		ary buffer fo			
	15:0	0x0000	Buffer[4] (RW)		
29 0x01D	Tempora	ı ary buffer fo	7-7-7-1		
30	15:0	0x0000	Buffer[5] (RW)		
0x01E	Tempora	ary buffer fo	or flicker.		
31	15:0	0x0000	Buffer[6] (RW)		
0x01F	Tempora	ary buffer fo	or flicker.		
32	15:0	0x0000	Buffer[7] (RW)		
0x020	Tempora	ary buffer fo	or flicker.		
33	15:0	0x0000	Buffer[8] (RW)		
0x021	Tempora	ary buffer fo	or flicker.		
34	15:0	0x0000	Buffer[9] (RW)		
0x022	Tempora	ary buffer fo	or flicker.		
35	15:0	0x0000	Buffer[10] (RW)		
0x023	Temporary buffer for flicker.				
36	15:0	0x0000	Buffer[11] (RW)		
0x024	Tempora	ary buffer fo	or flicker.		
37	15:0	0x0000	Buffer[12] (RW)		
0x025	Tempora	ary buffer fo	or flicker.		
38	15:0	0x0000	Buffer[13] (RW)		
0x026	Tempora	ary buffer fo	or flicker.		
39	15:0	0x0000	Buffer[14] (RW)		
0x027	Tempora	ary buffer fo	or flicker.		
40	15:0	0x0000	Buffer[15] (RW)		
0x028		ary buffer fo	or flicker.		
41	15:0	0x0000	Buffer[16] (RW)		
0x029	Tempora	ary buffer fo	or flicker.		
42	15:0	0x0000	Buffer[17] (RW)		
0x02A	Tempora	ary buffer fo	or flicker.		

Reg. #	Bits	Default	Name			
43	15:0	0x0000	Buffer[18] (RW)			
0x02B	Temporary buffer for flicker.					
44	15:0	0x0000	Buffer[19] (RW)			
0x02C	Tempor	ary buffer fo	or flicker.			
45	15:0	0x0000	Buffer[20] (RW)			
0x02D	Tempor	ary buffer fo	or flicker.			
46	15:0	0x0000	Buffer[21] (RW)			
0x02E	Tempor	ary buffer fo	or flicker.			
47	15:0	0x0000	Buffer[22] (RW)			
0x02F	Tempor	ary buffer fo	or flicker.			
48	15:0	0x0000	Buffer[23] (RW)			
0x030	Tempor	ary buffer fo	or flicker.			
49	15:0	0x0000	Buffer[24] (RW)			
0x031	Tempor	ary buffer fo	or flicker.			
50	15:0	0x0000	Buffer[25] (RW)			
0x032	Temporary buffer for flicker.					
51	15:0	0x0000	Buffer[26] (RW)			
0x033	Tempor	ary buffer fo	or flicker.			
52	15:0	0x0000	Buffer[27] (RW)			
0x034	Temporary buffer for flicker.					
53	15:0	0x0000	Buffer[28] (RW)			
0x035	Tempor	ary buffer fo	or flicker.			
54	15:0	0x0000	Buffer[29] (RW)			
0x036	Tempor	ary buffer fo	or flicker.			
55	15:0	0x0000	Buffer[30] (RW)			
0x037	Tempor	ary buffer fo	or flicker.			
56	15:0	0x0000	Buffer[31] (RW)			
0x038	Tempor	ary buffer fo	or flicker.			
57	15:0	0x0000	Buffer[32] (RW)			
0x039	Tempor	ary buffer fo	or flicker.			
58	15:0	0x0000	Buffer[33] (RW)			
0x03A	Tempor	ary buffer fo	or flicker.			

Reg. #	Bits	Default	Name		
59	15:0	0x0000	Buffer[34] (RW)		
0x03B	Tempor	ary buffer fo	or flicker.		
60	15:0	0x0000	Buffer[35] (RW)		
0x03C	Tempor	ary buffer fo	or flicker.		
61	15:0	0x0000	Buffer[36] (RW)		
0x03D	Tempor	ary buffer fo	or flicker.		
62	15:0	0x0000	Buffer[37] (RW)		
0x03E	Tempora	ary buffer fo	or flicker.		
63	15:0	0x0000	Buffer[38] (RW)		
0x03F	Tempora	ary buffer fo	or flicker.		
64	15:0	0x0000	Buffer[39] (RW)		
0x040	Tempora	ary buffer fo	or flicker.		
65	15:0	0x0000	Buffer[40] (RW)		
0x041	Temporary buffer for flicker.				
66	15:0	0x0000	Buffer[41] (RW)		
0x042	Temporary buffer for flicker.				
67	15:0	0x0000	Buffer[42] (RW)		
0x043	Temporary buffer for flicker.				
68	15:0	0x0000	Buffer[43] (RW)		
0x044	Temporary buffer for flicker.				
69	15:0	0x0000	Buffer[44] (RW)		
0x045	Tempor	ary buffer fo	or flicker.		
70	15:0	0x0000	Buffer[45] (RW)		
0x046	Tempor	ary buffer fo	or flicker.		
71	15:0	0x0000	Buffer[46] (RW)		
0x047	Tempor	ary buffer fo	or flicker.		
72	15:0	0x0000	Buffer[47] (RW)		
0x048	Tempora	ary buffer fo	or flicker.		

Table 33: 5: Auto Focus Variables

Reg. #	Bits	Default	Name		
0	15:0	0xE82E	vmt (RW)		
0x000	Pointer	to virtual r	nethod table (VMT)		
	15:0	0x0044	windowPos (RW)		
	15:8	Х	Reserved		
	7:4	0x0004	y coordinate y coordinate (vertical offset from the upper left corner of the frame) in units of 1/16th of frame height.		
	3:0	0x0004	x coordinate x coordinate (horizontal offset from the upper left corner of the frame) in units of 1/16th of frame width,		
2 0x002	Bits [3:0 width, Bits [7:4 height. New po	0] - x coordi 1] - y coordi	of upper left corner of first AF window (W11): nate (horizontal offset from the upper left corner of the frame) in units of 1/16th of frame nate (vertical offset from the upper left corner of the frame) in units of 1/16th of frame ten to this variable takes effect after REFRESH_MODE command is given to Sequencer driver .		
	15:0	0x0077	windowSize (RW)		
	15:8	Х	Reserved		
	7:4	0x0007	height height (in units of 1/16th of frame height) decremented by 1.		
	3:0	0x0007	width width (in units of 1/16th of frame width) decremented by 1,		
	Encoded dimensions of the 4 x 4 array of AF windows: Bits [3:0] - width (in units of 1/16th of frame width) decremented by 1, Bits [7:4]-height (in units of 1/16th of frame height) decremented by 1.				
3 0x003			ritten to this variable take effect only after REFRESH_MODE command is given to the lis set to 6).		

Reg. #	Bits	Default	Name
	15:0	0x0000	mode (RW)
	15:8	Х	Reserved
	7	0x0000	Manual mode
			Manual mode switch (0 - manual mode disabled, 1 - enabled)
	6	0x0000	Creep compensation mode
			Creep compensation mode switch (0 - creep compensation mode disabled, 1 - enabled).
	5:1	Х	Reserved
	0	0x0000	Auto focus trigger If AF is enabled in the Sequencer (sq.mode bit 4 = 1) and manual mode is disabled (af.mode
			bit $7 = 0$), a snapshot AF sequence can be triggered at any time by setting af.mode bit 0 to 1.
			s and 5 bits reserved for use in default snapshot AF mode:
			de switch (0 - manual mode disabled, 1 - enabled), ensation mode switch (0 - creep compensation mode disabled, 1 - enabled),
			I for use in snapshot AF mode.
			the Sequencer (sq.mode bit $4 = 1$) and manual mode is disabled (af.mode bit $7 = 0$), a snapshot
4 0x004			e triggered at any time by setting af.mode bit 0 to 1. Bits [4:0] are used in the sequence and
0,004	automa	atically clear	red at its end.
	15:0	0x0080	modeEx (RW)
	15:8	Х	Reserved
	7	0x0001	Second flyback
			Switch enabling the second flyback (jump to the start position of the first scan) and then jump to best focus position.
	6	0x0000	Stepping to best position
			Switch enabling the second flyback and retracing of scan steps to best focus position (0 -
			option disabled, 1 - enabled).
	5	0x0000	Fine scan
	4	0x0000	Switch enabling the second scan (0 - disabled, 1 - enabled).
	4	000000	AF error AF algorithm status indicator, set to 1if an algorithm failure has occurred or has been
			anticipated and avoided by ignoring a request to refocus.
			The AF algorithm is likely to fail if sensor exposure settings are not stable during the search
			for best focus position. Hence, all attempts to use the AF algorithm simultaneously with auto
			exposure algorithm are thwarted by Sequencer driver. It signals preventing an anticipated
			failure of the AF algorithm by setting bit 4 of af.modeEx to 1. If the Sequencer allows auto focusing to proceed, the AF driver clears bit 4 of af.modeEx at the start of the first flyback.
			At the end of the first scan, the AF driver checks how much normalized sharpness scores
			from all relevant AF windows varied during the scan. If the variation for all the windows was
			lower than the minimum specified by af.shaTH, the AF driver sets bit 4 of af.modeEx to 1 to
			signal that it has no data to select best lens position. This is the only situation recognized by the AF driver as a failure of the AF algorithm.
	3	0x0000	Extra wait after AFM stops moving
			If bit 7 of af.mode equals 0, this bit enables skipping 1 extra frame after detecting that bit 1
			of afm.status has been cleared (i.e. after the end of every lens movement).
5	2	0x0000	Extra wait is in progress
0x005			Status indicator, set to 1 when an extra frame is being skipped.

Table 33: 5: Auto Focus Variables (continued)

Reg. #	Bits	Default	Name
	1	0x0000	Fine scan is in progress
			Status indicator, set to 1 when the second scan is in progress.
	0	0x0000	Sharpness scores are ready
			Status indicator, set to 1 when sharpness scores are ready.

Four option switches and 4 status indicators:

Bit 7 - switch enabling the second flyback (jump to the start position of the first scan) and then jump to best focus position,

Bit 6 - switch enabling the second flyback and retracing of scan steps to best focus position (0 - option disabled, 1 - enabled),

Bit 5 - switch enabling the second scan (0 - disabled, 1 - enabled),

Bit 4 - AF algorithm status indicator, set to 1if an algorithm failure has occurred or has been anticipated and avoided by ignoring a request to refocus (see more below),

Bit 3 - if bit 7 of af.mode equals 0, this bit enables skipping 1 extra frame after detecting that bit 1 of afm.status has been cleared (i.e. after the end of every lens movement),

Bit 2 - status indicator, set to 1 when an extra frame is being skipped,

Bit 1 - status indicator, set to 1 when the second scan is in progress,

Bit 0- status indicator, set to 1 when sharpness scores are ready.

The AF algorithm is likely to fail if sensor exposure settings are not stable during the search for best focus position. Hence, all attempts to use the AF algorithm simultaneously with auto exposure algorithm are thwarted by Sequencer driver. It signals preventing an anticipated failure of the AF algorithm by setting bit 4 of af.modeEx to 1. If the Sequencer allows auto focusing to proceed, the AF driver clears bit 4 of af.modeEx at the start of the first flyback. At the end of the first scan, the AF driver checks how much normalized sharpness scores from all relevant AF windows varied during the scan. If the variation for all the windows was lower than the minimum specified by af.shaTH, the AF driver sets bit 4 of af.modeEx to 1 to signal that it has no data to select best lens position. This is the only situation recognized by the AF driver as a failure of the AF algorithm.

0x005

6	15:0	0x000A	numSteps (RW)
0x006	Number	r of steps (l	ens positions tried) in the first scan.

15:0	0x0000	initPos	(RW)
------	--------	---------	------

7 0x007

Number (index) of start position, af.positions[af.initPos], used in the first scan and optional second scan. Must be 0 at the beginning of the first scan if the second is enabled. Otherwise, can be set before the first scan to any value below 20- af.numSteps. The AF driver makes af.initPos equal to af.numSteps at the beginning of the second scan and equal to 0 at the end of last scan (first or second, whichever is last).

	15:0	0x0006	numSteps2 (RW)
	15:8	Х	Reserved
	7:4	0x0000	Actual num. of steps in 2nd scan Actual number of steps in the second scan (calculated by the AF driver at the beginning of the scan).
	3:0	0x0006	Des. num. of steps in 2nd scan Desired number of steps in second scan (max. allowed number is 14).
8 0x008	Bits [3:0] - desired number of steps in second scan (max. allowed number is 14) Bits [7:4] - actual number of steps in the second scan (calculated by the AF driver at the beginning of the scan).		

Reg. #	Bits	Default	Name			
	15:0	0x0006	stepSize (RW)			
	Logical	step size fo	or the second scan.			
9 0x009	Because the logical range of motion is from 0 to 255, af.stepSize=6 means that during the second scan the AF driver will try to move then lens in increments equal to 6/255 of the length of its entire motion range. However, the lens actuator may or may not be able to move the lens in steps of precisely that size. It is important to ascertain that lens movements requested by the AF driver during the second scan can be at least reasonably approximated by the lens actuator. The quality of the approximation may depend on how well the physical limitations of the actuator are accounted for in the source code and /or configuration of the AFM driver.					
	15:0	0x01C0	wakeUpLine (RW)			
10 0x00A	Number of image row at which the MCU wakes up to execute AF driver code. When the function AF_SetSize resizes the 4 x 4 array of AF windows according to new values of af.windowPos and af.windowSize, it automatically makes af.wakeUpLine equal to the number of the second row below the bottom of the array. If af.windowPos and af.windowSize are such that the bottom of the array is outside the frame, the value given to af.wakeUpLine by AF_SetSize is greater than frame height, i.e. invalid. It must be changed to something less than the frame height, otherwise AF will not work.					
	15:0	0xFFFF	zoneWeights [HI] (RW)			
	Upper word of double-word (64-bit) variable af.zoneWeights holding the weights of all 16 AF windows or zones.					
12 0x00C	Bits [1:0] of this variable represent the weight of window W11, bits [3:2] the weight of W12, and so on to bits [31:30] that represent the weight of W44. Since each weight is represented by just 2 bits, it is allowed to have only 4 values, 0, 1/3, 2/3 or 1. Value stored in each 2 bits equals window weight times 3, so the value of 1 signifies the weight of 1/3, 2 stands for 2/3, and 3 for 1.					
	15:0	0xFFFF	zoneWeights [LO] (RW)			
	Lower word of double-word (64-bit) variable af.zoneWeights holding the weights of all 16 AF windows or zones.					
, ,						
14 0x00E	[31:30] only 4 v	that repres alues, 0, 1/3	riable represent the weight of window W11, bits [3:2] the weight of W12, and so on to bits ent the weight of W44. Since each weight is represented by just 2 bits, it is allowed to have 3, 2/3 or 1. Value stored in each 2 bits equals window weight times 3, so the value of 1 signifies 2 stands for 2/3, and 3 for 1.			
	[31:30] only 4 v	that repres alues, 0, 1/3	ent the weight of W44. Since each weight is represented by just 2 bits, it is allowed to have 3, 2/3 or 1. Value stored in each 2 bits equals window weight times 3, so the value of 1 signifies			

Reg. #	Bits	Default	Name		
	15:0	0x0000	bestPosition (RW)		
	This var	iable is use	d in 3 different ways depending on values of bits 6 and 7 of af.mode.		
	When bit 7 equals 1 (in manual lens control mode), the position of AF lens can be changed by changing value of af.bestPosition, which is interpreted by the AF driver as logical lens position desired by its user. driver reads af.bestPosition once every frame, and if it differs from current logical lens position (afm.curP AF driver gives the AFM driver a command to make these variables equal by moving the lens. Physical moof the lens corre-sponding to the change of afm.curPos to af.bestPosition always takes some time, durin it is best not to change the value of af.bestPosition to avoid possible errors.				
	After b	oth first and -sition foun	s [7:6] are both 0, af.bestPosition serves to store AF algo-rithm output rather than user input. d second scan, the AF algorithm outputs to this variable the offset of programmable logical d to be best relative to the start position of the scan. In other words, after each scan, the best d is af.positions[af.initPos+af.bestPosition].		
17 0x011	re-posit	tioning trig ned to be th	7 is 0 and bit 6 is 1 (creep compensation mode is enabled) af.bestPosition is used during lens gered by setting bit 1 of af.mode to 1. It is used to store the desired final lens position, which he same as afm.curPos before the re-positioning. As a result, after every succesfull re-tPosition equals afm.curPos.		
	15:0	0x000A	shaTH (RW)		
18 0x012			riability threshold. Only AF windows whose min. and max. normalized sharpness scores satisfy in.score/max.score)? af.shaTH/256 are used to select best focus position.		
	15:0	0x0000	modeEx2 (RW)		
19	15:1	Х	Reserved		
0x013	0	0x0000	automatic zone weighting mode		
20	15:0	0x0000	Position 0 (RW)		
0x014	Program	nmable log	ical lens position 0		
21	15:0	0x001C	Position 1 (RW)		
0x015	Progran	nmable log	ical lens position 1		
22	15:0	0x0038	Position 2 (RW)		
0x016	Progran	nmable log	ical lens position 2		
23	15:0	0x0055	Position 3 (RW)		
0x017	Progran	nmable log	ical lens position 3		
24	15:0	0x0071	Position 4 (RW)		
0x018	Progran	nmable log	ical lens position 4		
25	15:0	0x008D	Position 5 (RW)		
0x019	Progran	nmable log	ical lens position 5		
26	15:0	0x00AA	Position 6 (RW)		

Reg. #	Bits	Default	Name	
27	15:0	0x00C6	Position 7 (RW)	
0x01B	Progran	nmable log	ical lens position 7	
28	15:0	0x00E2	Position 8 (RW)	
0x01C	Progran	nmable log	ical lens position 8	
29	15:0	0x00FF	Position 9 (RW)	
0x01D	Progran	nmable log	ical lens position 9	
30	15:0	0x001B	Position 10 (RW)	
0x01E	Progran	nmable log	ical lens position 10	
31	15:0	0x0037	Position 11 (RW)	
0x01F	Progran	nmable log	ical lens position 11	
32	15:0	0x0054	Position 12 (RW)	
0x020	Programmable logical lens position 12			
33	15:0	0x0070	Position 13 (RW)	
0x021	Programmable logical lens position 13			
34	15:0	0x008C	Position 14 (RW)	
0x022	Programmable logical le		ical lens position 14	
35	15:0	0x00A9	Position 15 (RW)	
0x023	Progran	nmable log	ical lens position 15	
36	15:0	0x00C5	Position 16 (RW)	
0x024	Progran	nmable log	ical lens position 16	
37	15:0	0x00E1	Position 17 (RW)	
0x025	Programmable logical lens position 17			
38	15:0	0x00FE	Position 18 (RW)	
0x026	Progran	nmable log	ical lens position 18	
39	15:0	0x001A	Position 19 (RW)	
0x027	Progran	nmable log	ical lens position 19	

Table 34: 6: AFM Variables

Reg. #	Bits	Default	Name			
	15:0	0xE83E	vmt (RW)			
0 0x000	Pointer to the driver's virtual method table (VMT). The AFM driver includes a separate set of control methods for each supported type of auto focus mechanism (see afm.type below). Each set of methods is acessible via a separate VMT. Pointing afm.vmt to one of those VMTs either enables the AF driver to control the corresponding type of AF mechanism via the GPIO or takes away the control of the GPIO from the AF driver.					
	15:0	0x0000	type (RW)			
2 0x002	by an A default control Second, afm.typ equal to	Type of AF mechanism (lens actuator) used: 0–none, 1–helimorph, 2–stepper motor, 3–any actuator controlled by an AD5398 DAC IC. At sequencer initialization, this variable is set to 0 and the afm.vmt is pointed to the default VMT of the AFM driver, which makes the GPIO inaccessible to the AF driver. Enabling the AF driver to control a lens actuator via the GPIO involves 2 steps. First, afm.type must be set to t+128, where t is 1, 2 or 3. Second, the sequencer must be given REFRESH command by setting seq.cmd to 5. The nonzero 7th bit in afm.type forces the sequencer to call AFM_Init function upon that command. The function makes afm.type equal to t and points afm.vmt to the VMT through which the AFM driver methods for controlling actuator type t can be called.				
3	15:0	0x0000	curPos (RW)			
0x003	Current	logical posi	tion of AF lens.			
4	15:0	0x0000	prePos (RW)			
0x004	Previous	s logical pos	ition of AF lens			
	15:0	0x0000	status (RW)			
ı	15:5	Х	Reserved			
	4:3	0x0000	Physical position modulo 4 Physical position modulo 4. Used only when type = 2			
	2	0x0000	Direction of last physical move 0: forward (+); 1: backward (-)			
	1	0x0000	Motion indicator 0: AF lens actuator is stationary; 1: AF lens actuator is moving			
1	0	0x0000	Error indicator			
5	Bit 0 — Bit 1 — Bit 2 — Bits [4:3 Bits [7:5 bit 1 of moving all time:	0 if the lens 0 if directio] — number] — unused afm.status t (either has s when the	s: (, 1 if the actuator reported an error, (s) is stationary, 1 if it is moving, (n) of last lens movement was forward (+), 1 if the direction was backward (-), (n) of current stepper motor position if afm.type=2; otherwise unused, (n). After sending a command to change lens position to the lens actuator, the AFM driver sets (n) 1. The value of the bit remains 1 until the AFM driver gets information that the lens is not stopped at the desired new position or has failed to reach it). The AF driver waits through lens is moving by having afm.status updated once every frame, reading its bit 1 and back to sleep if it equals 1.			
0x005	mmean	ately going				
0x005 6	15:0	0x0000	posMin (RW)			

Table 34: 6: AFM Variables (continued)

Reg. #	Bits	Default	Name
	15:0	0x0000	posMax (RW)
7 0x007			ical motion range of AF lens. Can be set below afm.posMin to swap forward (+) and ions of lens motion.
8	15:0	0x0000	posMacro (RW)
0x008	Logical	macro posit	ion of AF lens
	15:0	0x0000	backlash (RW)
9	position af.posit therefo logical driver s the AFN	n of the scar ions[af.initP re the move ength is adj ubtracts afn Il driver as tl	of af.mode are set to 0, this positioning is done by moving the lens directly from the end h, af.positions[af.initPos+af.numSteps-1] to the logical position found best, Pos+af.bestPosition]. The direction of this move is opposite to the direction of the scan, and a may not bring the lens to its intended physical destination, unless its justed upward to compensate for lens actuator backlash. To make this adjustment, the AF h.backlash from the value of af.positions[af.initPos+af.bestPosition] and gives the result to the logical position to move the lens to. Negative results of the subtraction are replaced with cting afm.backlash makes sense only when af.positions[af.initPos+af.numSteps-1] >

15:0 0x0000 custCtrl (RW)

Custom controls: 1-bit option switches and fine-tuning parameters for actuator control methods. The function of different bits of this variable depends on the current value of afm.type.

If afm.type = 1, then:

Bit 0 — selects the length of commands sent to HD80 helimorph driver by function AFM_SetPosHelimorph (0 – 2 bytes, 1 – 3 bytes including enable byte),

Bit 1 — selects one of 2 possible relations between the argument of the function AFM_SetPosHelimorph, bPos, and position byte sent to HD80 helimorph driver (0 means send bPos, 1 – send 255-bPos, to reverse the direction of lens movement),

Bit 2 — selects one of 2 positions that helimorph can assume upon command to exit standby (0 – afm.posMin, 1 – afm.posMax),

Bits [7:3] — unused.

If afm.type = 2, then:

Bit 0 — selects direction of lens motion if bit 1 is set to 1,

Bit 1 — determines how function AFM_SetPosStMotor interprets its 1-byte argument (0 – as desired logical lens position, 1 – as number of physical steps to make in the direction indicated by bit 0),

Bit 2 — enables periodic forcing of stepper-motor-driving outputs into calculated logical states (0 – forcing disabled, outputs are only toggled as needed, 1 – forcing enabled),

Bit 3 — when set to 1, enables powering stepper motor down after every movement (the motor is always powered up before movements, but powering down is optional),

Bit 4 — enables repositioning of stepper motor by function AFM_ResetStMotor upon command to enter standby (1 – enable, 0 – disable),

Bit 5 — enables repositioning of stepper motor by function AFM_ResetStMotor upon command to exit standby (1 – enable, 0 – disable),

Bits [7:6] — allow one to slow down initial portions of stepper-motor-driving waveforms that cannot be entirely generated by MT9D111 waveform generator (higher value = slower waveforms).

If afm.type = 0, afm.custCtrl is unused.

10 0x00A

Table 34: 6: AFM Variables (continued)

Reg. #	Bits	Default	Name
	15:0	0xE8EB	timer_vmt (RW)
11 0x00B	Pointer to timer VMT. Default timer VMT located in ROM contains pointers to the following public functions: AFM_Wait, AFM_TimerSetDelay, AFM_TimerSetTimeToMove, AFM_TimerIsStopped. The pointers are all of type void* and have the following names: pWait, pSetDelay, pSetTimeToMove, pTimerIsStopped.		located in ROM contains pointers to the following public functions: y, AFM_TimerSetTimeToMove, AFM_TimerIsStopped.
13	15:0	0x0000	timer_startTime (RW)
0x00D	Timer s	tart time.	,
15	15:0	0x0000	timer_stopTime (RW)
0x00F	Timer s	top time	
	15:0	0x0000	timer_hiWordMclkFreq (RW)
17 0x011	values	of afm.timer	ency in Hz divided by 65536. Used to convert delay times in milliseconds (for example, the r.maxShortDelay and afm.timer.maxLongDelay) to corresponding counts of master clock programmed into the timer.
	15:0	0x0000	timer_maxShortDelay (RW)
19 0x013			d duration of a short lens move. Should be given in milliseconds. Used by the AFM driver erSetTimeToMove to compute lens travel time estimates.
	15:0	0x0000	timer_maxLongDelay (RW)
21 0x015	Maximum expected duration of a long lens move. Should be given in milliseconds. Used by t function AFM_TimerSetTimeToMove to compute lens travel time estimates.		
	15:0	0x0000	timer_maxQuickMove (RW)
23 0x017			f short lens move (or threshold between short and long moves). Used by the AFM driver erSetTimeToMove to compute lens travel time estimates.

Table 34: 6: AFM Variables (continued)

Reg. #	Bits	Default	Name
	15:0	0x0000	timer_config (RW)
	15:2	Х	Reserved
	1	0x0000	Delay used when curPos = prePos
	0	0x0000	Motion time estimation method
Bits [1:0] of this variable determine how afm.timer.maxShortDelay, afm.timer.maxLongDelay, and afm.timer.maxQuickMove are used to estimate duration of lens movements. Bits [7:2] are unused. If a command-driven lens actual not provide any feedback about its status after receiving a command to move an AF lens, the AFM drivents somehow predict how long the lens will be moving, to prevent the AF driver from collecting sharpness and issuing new commands during its movement. The need for predictions of lens travel time is satisfied inexpensively by the AFM driver function AFM_TimerSetTimeToMove, which takes as arguments 2 logic positions and estimates the time required to move the lens between them. The function can use 2 different estimation methods, both of which rely user-set parameters, afm.timer.maxShortDelay, afm.timer.maxLongDelay, and afm.timer.maxQuickMov sole source of information about how fast the lens actuator moves the lens. The default method of pictures are used to estimate the def			QuickMove the duration of lens movements. Bits [7:2] are unused. If a command-driven lens actuator does adback about its status after receiving a command to move an AF lens, the AFM driver must now long the lens will be moving, to prevent the AF driver from collecting sharpness scores immands during its movement. The need for predictions of lens travel time is satisfied rather the AFM driver function AFM_TimerSetTimeToMove, which takes as arguments 2 logical lens that the time required to ween them. The function can use 2 different estimation methods, both of which rely on 3 s, afm.timer.maxShortDelay, afm.timer.maxLongDelay, and afm.timer.maxQuickMove, as a
24 0x018	AFM_Ti selected estimate is 0 if bi function	merSetTime I as the pro e equals afr t 1 of afm.t n AFM_Time	the bipolar method is very simple: if the distance between the 2 logical positions given to eToMove as arguments exceeds afm.timer.maxQuickMove, then afm.timer.maxLongDelay is per lens travel time estimate. Otherwise, unless the 2 logical positions are the same, the in.timer.maxShortDelay. If the 2 positions are the same, the estimate should be 0, and indeed dimer.config is cleared. However, if this bit is set to 1 and the positions are the same, the erSetTimeToMove outputs afm.timer.maxShortDelay instead of 0.Please see page 37 for a
UAUIO	aescript	ion of the p	piecewise linear estimation method.
UAU IO	15:0	0xE8F3	si_vmt (RW)
25 0x019	Pointer Default AFM_Si: AFM_Si: AFM_Si: AFM_Si	oxE8F3 to serial interserial inter SendCmd, SetActvFlag SendByte,	si_vmt (RW) terface VMT. face VMT located in ROM contains pointers to the following public functions: , ne pointers are all of type void* and have the following names: pSendCmd, pSetActvFlag,
25	Pointer Default AFM_Si: AFM_Si: AFM_Si AFM_Si pSendB	to serial interserial interserial interserial condemd, SetActvFlagsendByte, RecvByte.Th	si_vmt (RW) terface VMT. face VMT located in ROM contains pointers to the following public functions: , ne pointers are all of type void* and have the following names: pSendCmd, pSetActvFlag, yte.
25	Pointer Default AFM_Si: AFM_Si: AFM_Si: AFM_Si: pSendB	to serial interserial interser	si_vmt (RW) terface VMT. face VMT located in ROM contains pointers to the following public functions: , ne pointers are all of type void* and have the following names: pSendCmd, pSetActvFlag,
25 0x019 27 0x01B	Pointer Default AFM_Si: AFM_Si: AFM_Si: AFM_Si: pSendB	to serial interserial interser	si_vmt (RW) terface VMT. face VMT located in ROM contains pointers to the following public functions: , ne pointers are all of type void* and have the following names: pSendCmd, pSetActvFlag, yte. si_clkMask (RW) of GPIO pads as the clock line of dedicated two-wire serial interface between the MT9D111
25 0x019 27 0x01B	Pointer Default AFM_Si: AFM_Si: AFM_Si pSendB 15:0 Mask se and a le	to serial interserial interser	si_vmt (RW) terface VMT. face VMT located in ROM contains pointers to the following public functions: , ne pointers are all of type void* and have the following names: pSendCmd, pSetActvFlag, yte. si_clkMask (RW) of GPIO pads as the clock line of dedicated two-wire serial interface between the MT9D111 · (for example, helimorph).
25 0x019 27 0x01B	Pointer Default AFM_Si: AFM_Si: AFM_Si pSendB 15:0 Mask se and a le	to serial interserial interser	si_vmt (RW) terface VMT. face VMT located in ROM contains pointers to the following public functions: the pointers are all of type void* and have the following names: pSendCmd, pSetActvFlag, yte. si_clkMask (RW) of GPIO pads as the clock line of dedicated two-wire serial interface between the MT9D111 (for example, helimorph). si_dataMask (RW)
25 0x019 27 0x01B	Pointer Default AFM_Si: AFM_Si: AFM_Si pSendB 15:0 Mask se and a le 15:0 Mask se Delay fo	to serial interserial interserial intersendCmd, SetActvFlag SendByte, RecvByte.Thyte, pRecvB Ox0000 electing one ens actuator Ox0000	si_vmt (RW) derface VMT. face VMT located in ROM contains pointers to the following public functions: depointers are all of type void* and have the following names: pSendCmd, pSetActvFlag, yte. si_clkMask (RW) of GPIO pads as the clock line of dedicated two-wire serial interface between the MT9D111 (for example, helimorph). si_dataMask (RW) of GPIO pads as the data line of the dedicated two-wire serial interface to a lens actuator. si_clkQtrPrd (RW) down serial interface transmissions. The period of serial interface clock is asymptotically
25 0x019 27 0x01B 29 0x01D	Pointer Default AFM_Si: AFM_Si: AFM_Si pSendB 15:0 Mask se and a le 15:0 Mask se Delay fo	to serial interserial interser	si_vmt (RW) derface VMT. face VMT located in ROM contains pointers to the following public functions: depointers are all of type void* and have the following names: pSendCmd, pSetActvFlag, yte. si_clkMask (RW) of GPIO pads as the clock line of dedicated two-wire serial interface between the MT9D111 (for example, helimorph). si_dataMask (RW) of GPIO pads as the data line of the dedicated two-wire serial interface to a lens actuator. si_clkQtrPrd (RW) down serial interface transmissions. The period of serial interface clock is asymptotically
25 0x019 27 0x01B 29 0x01D	Pointer Default AFM_Si: AFM_Si: AFM_Si: pSendB 15:0 Mask se and a le 15:0 Mask se and a le	to serial interserial interser	si_vmt (RW) terface VMT. face VMT located in ROM contains pointers to the following public functions: , the pointers are all of type void* and have the following names: pSendCmd, pSetActvFlagger. si_clkMask (RW) of GPIO pads as the clock line of dedicated two-wire serial interface between the MT9E (for example, helimorph). si_dataMask (RW) of GPIO pads as the data line of the dedicated two-wire serial interface to a lens actual si_clkQtrPrd (RW) down serial interface transmissions. The period of serial interface clock is asymptotically lkQtrPrd.

Table 34: 6: AFM Variables (continued)

Don #	Bits	Dofoult			
Reg. #			Name		
34	15:0	0x0000	si_slaveAddr (RW)		
0x022	Lens actuator address used in serial interface transmissions.				
35	15:0	0x0000	sm_enabMask (RW)		
0x023	Mask se	lecting one	of the GPIO pads as stepper-motor-enabling output.		
37	15:0	0x0000	sm_drv0Mask (RW)		
0x025	Mask se	lecting one	of the GPIO pads as first stepper-motor-driving output.		
38	15:0	0x0000	sm_drv1Mask (RW)		
0x026	Mask se	lecting one	of the GPIO pads as second stepper-motor-driving output.		
39	15:0	0x0000	sm_drv2Mask (RW)		
0x027	Mask se	lecting one	of the GPIO pads as third stepper-motor-driving output.		
40	15:0	0x0000	sm_drv3Mask (RW)		
0x028	Mask se	lecting one	of the GPIO pads as fourth stepper-motor-driving output.		
	15:0	0x0000	sm_drvsQtrPrd (RW)		
41 0x029			ng the period of stepper motor driving waveforms. The number of master/GPIO clock cycles ototically approaches 8 times the sm.drvsQtrPrd.		
	15:0	0x0000	sm_drvsGenMode (RW)		
	15:8	Х	Reserved		
	7:4	0x0000	Minimum GPIO clock divider setting		
	3	0x0000	GPIO clock divider		
	2	0x0000	GPIO counter mode		
	1	0x0000	Fine stepper motor positioning		
	0	0x0000	Finest stepper motor positioning		
43 0x02B	Bits [1:0 2 – 2 ste Bit 2 — Bit 3 —] — size of seps), if 0, use the if 0, use cloo	ne AFM driver how to program the GPIO to generate stepper motor driving waveforms. Smallest stepper motor move (0 – 4 steps, 1 – 1 step, e waveform generator in 8-bit counter mode, if 1, use it in 16-bit counter mode, ck divider 1, if 1, use clock divider 2,Bits [7:4] — clock divider setting (used by the AFM driver than the setting the driver has automatically calculated).		
44	15:0	0x0000	sm_piEnabMask (RW)		
0x02C	Mask se	lecting one	of GPIO pads as photointerrupter-enabling output.		
46	15:0	0x0000	sm_piOutMask (RW)		
0x02E	Mask se	lecting one	of GPIO pads as photointerrupter-sensing input.		
	15:0	0x0000	sm_piEdgeOffset (RW)		
48 0x030			f smallest stepper motor move) between the position of photointerrupter signal edge and ion of stepper motor.		

Table 34: 6: AFM Variables (continued)

Reg. #	Bits	Default	Name
	15:0	0x0000	sm_piConfig (RW)
	15:8	Х	Reserved
	7:6	0x0000	Expected PI settling time Expected PI settling time
	5	0x0000	Max. step size forcing Max. step size forcing: 0: disabled - PI edge is approached in 1-, 2-, or 4-step jumps, depending on bits 0 and 1 of afm.sm.drvsGenMode. 1: enabled - PI edge is approached in 4-step jumps, irrespective of the value of bits 0 and 1 of afm.sm.drvsGenMode.
	4	0x0000	Logical value assigned to initial pos. Logical value assigned to initial position (0: 0; 1: 255)
	3	0x0000	PI state at initial stepper position PI state at initial stepper position (0: PI inactive state; 1: PI active state)
	2	0x0000	PI active state PI active state (0: logical low; 1: logical high)
	1	0x0000	Location of PI signal edge Location of PI signal edge (0: near logical position 0; 1: near logical position 255)
	0	0x0000	PI use in stepper motor positioning PI use in stepper motor positioning(1: use PI; 0: do not use PI move motor to logical position indicated by bit 1)
			PI) configuration:
	Bit 0 — if 0, do not use PI, if 1, use it for initial stepper positioning, Bit 1 — if 0, PI signal edge is near logical position 0, if 1 – near 255, Bit2 — PI active state (0–low, 1–high),		
			the active state at initial stepper position, if 0 – it is not,
			ogical stepper position is 0, if 1 – 255,
49 0x031	if 1, PI e	edge is appr	is approached in 1-, 2-, or 4-step jumps, depending on bits 0 and 1 of afm.sm.drvsGenMode, oached in 4-step jumps, irrespective of the value of afm.sm.drvsGenMode, etween powering up the PI and sensing its output the first time.

7: Mode Variables

Table 35: 7: Mode Variables

Reg. #	Bits	Default	Name
0	15:0	0xE86E	vmt (RW)
0x000	Pointer	to virtual n	nethod table.
2	15:0	0x0000	context (RW)
0x002	Current	context (0	= A, 1 = B).
	15:0	0x0320	Output Width A (RW)
3 0x003			l image for context A. Must be equal to or smaller than crop dimension. Changes take effect command.

Reg. # B	Bits	Default	Name
15	5:0	0x0258	Output Height A (RW)
			l image for context A. Must be equal to or smaller than crop dimension. Changes take effect command.
15	5:0	0x0640	Output Width B (RW)
	-		l image for context B. Must be equal to or smaller than crop dimension. Changes take effect command.
15	5:0	0x04B0	Output Height B (RW)
			l image for context B. Must be equal to or smaller than crop dimension. Changes take effect command.
11 0x00B 15	5:0	0x00C8	PLL_Lock_Delay (RW)
13	5:0	0x0000	sensor_row_start_A (RW)
	ntext	A shadow i	register R0x3002. Changes take effect only after REFRESH_MODE command.
15	5:0	0x0000	sensor_col_start_A (RW)
0 00=	ntext	A shadow i	register R0x3004. Changes take effect only after REFRESH_MODE command.
17 15	5:0	0x04BD	sensor_row_end_A (RW)
0x011 _{COI}	ntext	A shadow i	register R0x3006. Changes take effect only after REFRESH_MODE command.
19	5:0	0x064D	sensor_col_end_A (RW)
	ntext	A shadow i	register R0x3008. Changes take effect only after REFRESH_MODE command.
21 15	5:0	0x0000	sensor_x_delay_A (RW)
	ntext	A shadow i	register R0x3018. Changes take effect only after REFRESH_MODE command.
15	5:0	0x2112	sensor_row_speed_A (RW)
15	5:13	0x0001	CB Delay Reserved. Do not change from default value.
12	2:10	Х	Reserved
S	9:8	0x0001	Row Seq Scale Reserved. Do not change from default value.
7	7:4	0x0001	Pixel clock delay Number of half-system-clock-cycle increments to delay the rising edge of PIXCLK relative to transitions on FRAME_VALID, LINE_VALID, and DOUT.
	3	0x0000	Reserved Reserved
2	2:0	0x0002	Pixel clock speed in mclk periods A programmed value of N gives a pixel clock period of N system clocks. A value of 0 is
23			illegal: it causes the clock to stop.

Reg. #	Bits	Default	Name
	15:0	0x046C	Read Mode A (RW)
	15:14	0x0000	Special LINE_VALID 00 = Normal behavior of LINE_VALID 01 = LINE_VALID is driven continuously (continue generating LINE_VALID during vertical blanking) 10 = LINE_VALID is driven continuously as LINE_VALID XOR FRAME_VALID
	13:12	Х	Reserved
	11	0x0000	x bin enable Enable analogue binning in X (column) direction. When set, x_odd_inc must be set to 3 and y_odd_inc must be set to 1.
	10	0x0001	xy bin enable Enable analogue binning in X and Y (column and row) directions. When set, x_odd_inc and y_odd_inc must be set to 3.
	9:8	Х	Reserved
	7:5	0x0003	X odd increment Increment applied to odd addresses in X (column) direction. 1= Normal readout 3 = Read out alternate pixel pairs to halve the amount of horizontal data in a frame.
	4:2	0x0003	Y odd increment Increment applied to odd addresses in Y (row) direction. 1= Normal readout 3 = Read out alternate pixel pairs to halve the amount of vertical data in a frame.
	1	0x0000	Vertical Flip 0 = Normal readout 1 = Readout is flipped (mirrored) vertically so that the row specified by y_addr_end_ is read out of the sensor first. Setting this bit will change the bayer pixel order (see Reg0x3024). The bit-order of bits [1:0] match the order in Reg0x301C but is reversed relative to earlier Micron Imaging sensors.
25 0x019	0 context	0x0000	Horizontal Mirror 0 = Normal readout 1 = Readout is mirrored horizontally so that the column specified by x_addr_end_ is read out of the sensor first. Setting this bit will change the bayer pixel order (see Reg0x3024). register R0x20:0. Changes take effect only after REFRESH_MODE command.
		1	
27 0x01B	15:0	0x03D8 A shadow	sensor_sample_time_pck_A (RW) register R07:0. Changes take effect only after REFRESH_MODE command.
29	15:0	0x0155	sensor_fine_correction_A (RW)
0x01D	context	A shadow	register R08:0. Changes take effect only after REFRESH_MODE command.
31	15:0	0x0279	sensor_fine_IT_min_A (RW)
		. ^	fine integration time. Changes take effect only after REFRESH_MODE command.
0x01F	context	A minimai	The integration time. Changes take effect only after KErKESH_MODE command.
	15:0	0x0155	sensor_fine_IT_max_margin_A (RW)

Bits	Default	Name
15:0	0x0293	sensor_frameLengthLines_A (RW)
context	A shadow	register R05:0. Changes take effect only after REFRESH_MODE command.
15:0	0x0AAC	sensor_lineLengthPck:_A (RW)
context	A shadow	register R06:0. Changes take effect only after REFRESH_MODE command.
15:0	0x1010	sensor_dac_id_4_5_A (RW)
context	A shadow	register R0x42:0. Changes take effect only after REFRESH_MODE command.
15:0	0x2010	sensor_dac_id_6_7_A (RW)
context	A shadow	register R0x43:0. Changes take effect only after REFRESH_MODE command.
15:0	0x1010	sensor_dac_id_8_9_A (RW)
context	A shadow	register R0x44:0. Changes take effect only after REFRESH_MODE command.
15:0	0x1006	sensor_dac_id_10_11_A (RW)
context	A shadow	register R0x45:0. Changes take effect only after REFRESH_MODE command.
15:0	0x0004	sensor_row_start_B (RW)
context	B shadow i	register R01:0. Changes take effect only after REFRESH_MODE command.
15:0	0x0004	sensor_col_start_B (RW)
context	B shadow i	register R02:0. Changes take effect only after REFRESH_MODE command.
15:0	0x04BB	sensor_row_end_B (RW)
context	B shadow i	register R03:0. Changes take effect only after REFRESH_MODE command.
15:0	0x064B	sensor_col_end_B (RW)
context	B shadow i	register R04:0. Changes take effect only after REFRESH_MODE command.
15:0	0x0000	sensor_x_delay_B (RW)
context	B shadow	register R0x0C:0. Changes take effect only after REFRESH_MODE command.
	15:0 context	15:0 0x0293 context A shadow 15:0 0x0AAC context A shadow 15:0 0x1010 context A shadow 15:0 0x2010 context A shadow 15:0 0x1010 context A shadow 15:0 0x1006 context A shadow 15:0 0x0004 context B shadow 15:0 0x0004 context B shadow 15:0 0x04BB context B shadow 15:0 0x064B context B shadow 15:0 0x064B context B shadow

Reg. #	Bits	Default	Name
	15:0	0x2111	sensor_row_speed_B (RW)
	15:13	0x0001	CB Delay
			Reserved. Do not change from default value.
	12:10	Х	Reserved
	9:8	0x0001	Row Seq Scale
			Reserved. Do not change from default value.
	7:4	0x0001	Pixel clock delay
			Number of half-system-clock-cycle increments to delay the rising edge of PIXCLK relative to
			transitions on FRAME_VALID, and DOUT.
	3	0x0000	Reserved
	2:0	0x0001	Pixel clock speed in mclk periods
			A programmed value of N gives a pixel clock period of N system clocks. A value of 0 is
57			illegal: it causes the clock to stop.
0x039	context	B shadow	register R0x0B:0. Changes take effect only after REFRESH_MODE command.
	15:0	0x0024	Read Mode B (RW)
	15:14	0x0000	Special LINE_VALID
			00 = Normal behavior of LINE_VALID
			01 = LINE_VALID is driven continuously (continue generating LINE_VALID during vertical
			blanking) 10 = LINE_VALID is driven continuously as LINE_VALID XOR FRAME_VALID
	13:12	Х	Reserved
	11	0x0000	x bin enable
			Enable analogue binning in X (column) direction.
			When set, x_odd_inc must be set to 3 and y_odd_inc must be set to 1.
	10	0x0000	xy bin enable
			Enable analogue binning in X and Y (column and row) directions.
			When set, x_odd_inc and y_odd_inc must be set to 3.
	9:8	X	Reserved
	7:5	0x0001	X odd increment
			Increment applied to odd addresses in X (column) direction. 1= Normal readout
			3 = Read out alternate pixel pairs to halve the amount of horizontal data in a frame.
	4:2	0x0001	Y odd increment
			Increment applied to odd addresses in Y (row) direction.
			1= Normal readout
			3 = Read out alternate pixel pairs to halve the amount of vertical data in a frame.
	1	0x0000	Vertical Flip
			0 = Normal readout
			1 = Readout is flipped (mirrored) vertically so that the row specified by y_addr_end_ is read out of the sensor first. Setting this bit will change the bayer pixel order (see
59			Reg0x3024). The bit-order of bits [1:0] match the order in Reg0x301C but is reversed relative
0x03B			to earlier Micron Imaging sensors.

Reg. #	Bits	Default	Name
	0	0x0000	Horizontal Mirror 0 = Normal readout 1 = Readout is mirrored horizontally so that the column specified by x_addr_end_ is read out of the sensor first. Setting this bit will change the bayer pixel order (see Reg0x3024).
	context	B shadow	register R0x20:0. Changes take effect only after REFRESH_MODE command.
61	15:0	0x01EC	sensor_sample_time_pck_B (RW)
0x03D	context	B shadow	register R07:0. Changes take effect only after REFRESH_MODE command.
63	15:0	0x00A4	sensor_fine_correction_B (RW)
0x03F	context	B shadow	register R08:0. Changes take effect only after REFRESH_MODE command.
65	15:0	0x014A	sensor_fine_IT_min_B (RW)
0x041	context	B minimal	fine integration time. Changes take effect only after REFRESH_MODE command.
67	15:0	0x00A4	sensor_fine_IT_max_margin_B (RW)
0x043	context	B maximal	fine integration time margin. Changes take effect only after REFRESH_MODE command.
69	15:0	0x04ED	sensor_frameLengthLines_B (RW)
0x045	context	B shadow	register R05:0. Changes take effect only after REFRESH_MODE command.
71	15:0	0x0AAC	sensor_lineLengthPck:_B (RW)
0x047	context	B shadow	register R06:0. Changes take effect only after REFRESH_MODE command.
73	15:0	0x2020	sensor_dac_id_4_5_B (RW)
0x049	context	B shadow	register R0x42:0. Changes take effect only after REFRESH_MODE command.
75	15:0	0x2020	sensor_dac_id_6_7_B (RW)
0x04B	context	B shadow	register R0x43:0. Changes take effect only after REFRESH_MODE command.
77	15:0	0x1020	sensor_dac_id_8_9_B (RW)
0x04D	context	B shadow	register R0x44:0. Changes take effect only after REFRESH_MODE command.
79	15:0	0x2006	sensor_dac_id_10_11_B (RW)
0x04F	context	B shadow	register R0x45:0. Changes take effect only after REFRESH_MODE command.
81	15:0	0x0000	crop_X0_A (RW)
0x051	Lower-x	scaler zoo	m window (context A shadow register). Changes take effect only after REFRESH command.
83	15:0	0x0320	crop_X1_A (RW)
0x053	Upper-x	scaler zoo	m window (context A shadow register). Changes take effect only after REFRESH command.
85	15:0	0x0000	crop_Y0_A (RW)
0x055	Lower-y	/ scaler zoo	m window (context A shadow register). Changes take effect only after REFRESH command.

Bits	Default	Name
15:0	0x0258	crop_Y1_A (RW)
Upper-y	y scaler zoo	m window (context A shadow register). Changes take effect only after REFRESH command.
15:0	0x0000	dec_ctrl_A (RW)
15:7	Х	Reserved
_	0x0000	Completion for row
5	0x0000	Completion for column Completion for column
4	0x0000	Reserved(not used)
3	0x0000	Output Width has no scaling Pixel enable is always "1". Output width will always be as with no scaling. Crop will still be in effect.
2	0x0000	High precision mode Additional bits for scaling result are stored. Only for scaling >2
1	0x0000	U_first U_first. Color signal stored in memory first [U or V] [for 4:2:2 internal format]
0	0x0000	Reserved (not used) Reserved (not used)
Scaler c	ontrol regis	ster (context A shadow register). Changes take effect only after REFRESH command.
15:0	0x0800	width_ratio_A (RW)
15:0 0x0800 width_ratio_A (RW)		(context A shadow register). Temporary storage for calculated value.
15:0	0x0800	height_ratio_A (RW)
Scaler h	neight ratio	(context A shadow register). Temporary storage for calculated value.
15:0	0x0000	crop_X0_B (RW)
Lower-	scaler zoo	m window (context B shadow register). Changes take effect only after REFRESH command.
15:0	0x0640	crop_X1_B (RW)
Upper-	x scaler zoo	m window (context B shadow register). Changes take effect only after REFRESH command.
15:0	0x0000	crop_Y0_B (RW)
Lower-y	scaler zoo	m window (context B shadow register). Changes take effect only after REFRESH command.
15:0	0x04B0	crop_Y1_B (RW)
Upper-y	y scaler zoo	m window (context B shadow register). Changes take effect only after REFRESH command.
	15:0 Upper-y 15:0 15:7 6 5 4 3 2 1 1 0 Scaler of 15:0 Scaler of 15:0 Lower-y 15:0 Lower-y 15:0 Lower-y 15:0	15:0 0x0000 15:7 X 6 0x0000 5 0x0000 1 0x0800 15:0 0x0800

Reg. #	Bits	Default	Name	
	15:0	0x0000	dec_ctrl_B (RW)	
	15:7	Х	Reserved	
	6	0x0000	Completion for row	
			Completion for row	
	5	0x0000	Completion for column	
	4	0x0000	Completion for column	
	3	0x0000	Reserved(not used)	
	3	000000	Output Width has no scaling Pixel enable is always "1". Output width will always be as with no scaling. Crop will still be	
	2	0x0000	in effect.	
	2	0,0000	High precision mode Additional bits for scaling result are stored. Only for scaling >2	
	1	0x0000	U_first	
			U_first.	
			Color signal stored in memory first [U or V] [for 4:2:2 internal format]	
	0	0x0000	Reserved (not used)	
103			Reserved (not used)	
0x067	Scaler c	ontrol regis	ster (context B shadow register). Changes take effect only after REFRESH command.	
105	15:0	0x0800	width_ratio_B (RW)	
0x069	Scaler width ratio (context B shadow register). Temporary storage for calculated value.			
107	15:0	0x0800	height_ratio_B (RW)	
0x06B			(context B shadow register). Temporary storage for calculated value.	
	15:0	0x0042	gam_cont_A (RW)	
	15:7	Х	Reserved	
	6:4	0x0004	Contrast Setting	
			Contrast Setting:	
			0—no contrast increase (slope = 100%)	
			1—some contrast increase (slope = 125%) 2—more contrast increase (slope = 150%)	
			3—most contrast increase (slope = 130%)	
			4—noise-reduction contrast	
	3	Х	Reserved	
	2:0	0x0002	Gamma Setting	
			Gamma Setting:	
			0—gamma = 1.0	
			1—gamma = 0.56	
			2—gamma = 0.45	
109			3—use user-defined gamma table	
0x06D	Gamma and contrast settings (context A). Changes take effect only after REFRESH command.			

e = 175%) 4—
•

Reg. #	Bits	Default	Name	
121	15:0	0x00BA	gam_table_A_10 (RW)	
0x079	User-defined gamma table values (context A shadow register).			
122 0x07A	15:0	0x00C4	gam_table_A_11 (RW)	
	User-de	fined gamn	na table values (context A shadow register).	
123 0x07B	15:0	0x00CE	gam_table_A_12 (RW)	
	User-de	fined gamn	na table values (context A shadow register).	
124	15:0	0x00D7	gam_table_A_13 (RW)	
0x07C	User-de	fined gamn	na table values (context A shadow register).	
125	15:0	0x00E0	gam_table_A_14 (RW)	
0x07D	User-de	fined gamn	na table values (context A shadow register).	
126	15:0	0x00E8	gam_table_A_15 (RW)	
0x07E	User-de	fined gamn	na table values (context A shadow register).	
127	15:0	0x00F0	gam_table_A_16 (RW)	
0x07F	User-de	fined gamn	na table values (context A shadow register).	
128	15:0	0x00F8	gam_table_A_17 (RW)	
0x080	User-de	fined gamn	na table values (context A shadow register).	
129	15:0	0x00FF	gam_table_A_18 (RW)	
0x081	User-de	fined gamn	na table values (context A shadow register).	
130	15:0	0x0000	gam_table_B_0 (RW)	
0x082	User-de	fined gamn	na table values (context B shadow register).	
131	15:0	0x0027	gam_table_B_1 (RW)	
0x083	User-de	fined gamn	na table values (context B shadow register).	
132	15:0	0x0035	gam_table_B_2 (RW)	
0x084	User-de	fined gamn	na table values (context B shadow register).	
133	15:0	0x0048	gam_table_B_3 (RW)	
0x085	User-de	fined gamn	na table values (context B shadow register).	
134	15:0	0x0063	gam_table_B_4 (RW)	
0x086	User-de	fined gamn	na table values (context B shadow register).	
135	15:0	0x0077	gam_table_B_5 (RW)	
0x087	User-de	fined gamn	na table values (context B shadow register).	
136	15:0	0x0088	gam_table_B_6 (RW)	
0x088	User-de	fined gamn	na table values (context B shadow register).	

Reg. #	Bits	Default	Name	
137	15:0	0x0096	gam_table_B_7 (RW)	
0x089	User-de	fined gamn	na table values (context B shadow register).	
138 0x08A	15:0	0x00A3	gam_table_B_8 (RW)	
	User-de	fined gamn	na table values (context B shadow register).	
139	15:0	0x00AF	gam_table_B_9 (RW)	
0x08B	User-de	fined gamn	na table values (context B shadow register).	
140	15:0	0x00BA	gam_table_B_10 (RW)	
0x08C	User-de	fined gamn	na table values (context B shadow register).	
141	15:0	0x00C4	gam_table_B_11 (RW)	
0x08D	User-de	fined gamn	na table values (context B shadow register).	
142	15:0	0x00CE	gam_table_B_12 (RW)	
0x08E	User-defined gamma table values (context B shadow register).			
143	15:0	0x00D7	gam_table_B_13 (RW)	
0x08F	User-defined gamma table values (context B shadow register).			
144	15:0	0x00E0	gam_table_B_14 (RW)	
0x090	User-defined gamma table values (context B shadow register).			
145	15:0	0x00E8	gam_table_B_15 (RW)	
0x091	User-defined gamma table values (context B shadow register).			
146	15:0	0x00F0	gam_table_B_16 (RW)	
0x092	User-de	fined gamn	na table values (context B shadow register).	
147	15:0	0x00F8	gam_table_B_17 (RW)	
0x093	User-defined gamma table values (context B shadow register).			
148	15:0	0x00FF	gam_table_B_18 (RW)	
0x094	User-defined gamma table values (context B shadow register).			

Reg. #	Bits	Default	Name
	15:0	0x0000	output_format_A (RW)
	15:9	Х	Reserved
	8	0x0000	Turn on processed Bayer mode Chip output data in Bayer fomat. As a result datarate decreses in two times.
	7:6	0x0000	RGB output format RGB output format: 00 = 16-bit RGB565 01 = 15-bit RGB555 10 = 12-bit RGB444x 11 = 12-bit RGBx444
	5	0x0000	RGB/YUV output RGB/YUV output 1=output RGB (see R0x332E [7:6]) 0=output YUV
	4	0x0000	Use CCIR656 codes when bypassing FIFO 1=use CCIR656 codes when bypassing FIFO 0xAB = frame start 0x80 = line start 0x9D = line end 0xB6 = frame end
	3	0x0000	Monochrome output Monochrome output.
	2	0x0000	Progressive Bayer Progressive Bayer
	1	0x0000	Swaps chrominance byte with luminance byte in YUV output. In RGB mode, swaps odd and even bytes. This bit is subject to synchronous update.
149	0	0x0000	Swap Channels In YUV output mode, swaps Cb and Cr channels. In RGB mode, swaps R and B. This bit is subject to synchronous update.
0x095	Output	Format Cor	nfig. (context A shadow register). Changes take effect only after REFRESH command.

Reg. #	Bits	Default	Name
	15:0	0x0000	output_format_B (RW)
	15:9	Х	Reserved
	8	0x0000	Turn on processed Bayer mode
			Chip output data in Bayer fomat. As a result datarate decreses in two times.
	7:6	0x0000	RGB output format
			RGB output format:
			00 = 16-bit RGB565
			01 = 15-bit RGB555 10 = 12-bit RGB444x
			11 = 12-bit RGBx444x
	5	0x0000	RGB/YUV output
			RGB/YUV output
			1=output RGB (see R0x332E [7:6])
			0=output YUV
	4	0x0000	Use CCIR656 codes when bypassing FIFO
			1=use CCIR656 codes when bypassing FIFO
			0xAB = frame start
			0x80 = line start
			0x9D = line end 0xB6 = frame end
	3	0x0000	
		OXOGGG	Monochrome output Monochrome output.
	2	0x0000	Progressive Bayer
			Progressive Bayer
	1	0x0000	Swaps chrominance byte with luminance byte in YUV output.
			In RGB mode, swaps odd and even bytes. This bit is subject to synchronous update.
	0	0x0000	Swap Channels
			In YUV output mode, swaps Cb and Cr channels. In RGB mode, swaps R and B. This bit is
151			subject to synchronous update.
0x097	Output	Format Co	nfig. (context B shadow register). Changes take effect only after REFRESH command.
	15:0	0x6440	spec_effects_A (RW)
	15:8	0x0064	Solarization threshhold
	7	Х	Reserved
	6	0x0001	Dither Luma only
			1= dither only in luma channel
			0 = dither in all color channels
	5:3	0x0000	Bit width of dither
			Bit width of dither (valid values 1, 2, 3, and 4; no dither if value = 0, 5, 6, or 7)
	2:0	0x0000	Special effect selection bits
			0 - disabled
			1 - monochrome 2 - sepia
			2 - sepia 3 - negative
			4 - solarization with unmodified UV
153			5 - solarization with -UV
0x099	Special	effects sele	ection (context A shadow register). Changes take effect only after REFRESH command.
	phecigi	e116Cf2 2616	ction (context A shadow register). Changes take effect only after nernesh command.

Table 35: 7: Mode Variables (continued)

Reg. #	Bits	Default	Name		
	15:0	0x6440	spec_effects_B (RW)		
	15:8	0x0064	Solarization threshhold		
	7	Х	Reserved		
	6	0x0001	Dither Luma only		
			1= dither only in luma channel		
	5:3	0x0000	0 = dither in all color channels		
	5:5	000000	Bit width of dither Bit width of dither (valid values 1, 2, 3, and 4; no dither if value = 0, 5, 6, or 7)		
	2:0	0x0000	Special effect selection bits		
			0 - disabled		
			1 - monochrome		
			2 - sepia		
			3 - negative 4 - solarization with unmodified UV		
155			5 - solarization with -UV		
0x09B	Special	effects sele	ction (context B shadow register). Changes take effect only after REFRESH command.		
157	15:0	0x0000	y_rgb_offset_A (RW)		
0x09D	Y/RGB	Offset settir	ng (context A shadow register). Changes take effect only after REFRESH command.		
158	15:0	0x0000	y_rgb_offset_B (RW)		
0x09E	Y/RGB	Offset settir	ng (context B shadow register). Changes take effect only after REFRESH command.		
159	15:0	0x0000	gam_shadow_0 (RW)		
0x09F	Contra	st of the ga	mma table values for next frame readout. Value is calculated and temporary.		
160	15:0	0x0014	gam_shadow_1 (RW)		
0x0A0	See gam_shadow_0.				
161	15:0	0x0022	gam_shadow_2 (RW)		
0x0A1	See gam_shadow_0.				
162	15:0	0x003A	gam_shadow_3 (RW)		
0x0A2	See gar	m_shadow_	0.		
163	15:0	0x005D	gam_shadow_4 (RW)		
0x0A3	See gar	m_shadow_	0.		
164	15:0	0x0076	gam_shadow_5 (RW)		
0x0A4	See gar	m_shadow_	0.		
165	15:0	0x0088	gam_shadow_6 (RW)		
0x0A5	See gar	m_shadow_	0.		
166	15:0	0x0096	gam_shadow_7 (RW)		
0x0A6	See gar	m_shadow_	0.		

Table 35: 7: Mode Variables (continued)

Reg. #	Bits	Default	Name		
167	15:0	0x00A3	gam_shadow_8 (RW)		
0x0A7	See gan	n_shadow_().		
168	15:0	0x00AF	gam_shadow_9 (RW)		
0x0A8	See gan	n_shadow_().		
169	15:0	0x00BA	gam_shadow_10 (RW)		
0x0A9	See gan	n_shadow_(D.		
170	15:0	0x00C4	gam_shadow_11 (RW)		
0x0AA	See gan	n_shadow_(D.		
171	15:0	0x00CE	gam_shadow_12 (RW)		
0x0AB	See gam_shadow_0.				
172	15:0	0x00D7	gam_shadow_13 (RW)		
0x0AC	See gam_shadow_0.				
173	15:0	0x00E0	gam_shadow_14 (RW)		
0x0AD	See gam_shadow_0.				
174	15:0	0x00E8	gam_shadow_15 (RW)		
0x0AE	See gam_shadow_0.				
175	15:0	0x00F0	gam_shadow_16 (RW)		
0x0AF	See gam_shadow_0.				
176	15:0	0x00F8	gam_shadow_17 (RW)		
0x0B0	See gam_shadow_0.				
177	15:0	0x00FF	gam_shadow_18 (RW)		
0x0B1	See gan	n_shadow_(D.		

Table 36: 11: HG Variables

Reg. #	Bits	Default	Name		
0	15:0	0xE913	vmt (RW)		
0x000	Reserved.				
2 0x002	15:0	0x0008	DLevelBufferSpeed (RW)		
	Response speed, 1–32; 32-maximum speed.				
3	15:0	0x0001	scaleGFactor (RW)		
0x003	Scale factor for histogram window size.				

Table 36: 11: HG Variables (continued)

Reg. #	Bits	Default	Name		
4	15:0	0x0040	maxDLevel (RW)		
0x004	Maxim	um subtract	ted offset. Set to "0" to disable subtraction.		
5	15:0	0x0000	percent (RW)		
0x005	Percent	of pixels to	o keep black; 10-bits data / 4. Setting >0 clips black.		
6	15:0	0x0000	lowerLimit1 (RW)		
0x006	Offset	for bin 0, di	vided by 4 on 10-bit scale.		
7	15:0	0x0002	binSize1 (RW)		
0x007	Bin wic	th, 0–4LSB,	1–8LSB, 2–16LSB, 7–512LSB on a 10-bit scale.		
8	15:0	0x00C0	lowerLimit2 (RW)		
0x008	Offset	for bin 0, di	vided by 4 on 10-bit scale.		
9	15:0	0x0004	binSize2 (RW)		
0x009	Bin wic	lth, 0–4LSB,	1–8LSB, 2–16LSB, 7–512LSB on a 10-bit scale.		
10	15:0	0x0000	DLevel (RW)		
0x00A	Current subtracted offset.				
11	15:0	0x0000	DLevel_buf (RW)		
0x00B	Buffered current offset.				
13	15:0	0x000A	factorHI (RW)		
0x00D	Reserved				
14	15:0	0x0000	percentHI (RW)		
0x00E	Reserved				
15	15:0	0x0000	positionHI (RO)		
0x00F	Reserved				
17	15:0	0x0000	NI (RW)		
0x011	Outlier	pixel count	t for L counter		
19	15:0	0x0000	Nu (RW)		
0x013	Outlier	pixel count	t for U counter		

Table 37: 0: GPIO

Reg. #	Bits	Default	Name			
	15:0	0x0000	GPIO Data (RW)			
	15:12	Х	Reserved			
	11:8	0x0000	GPIO Data			
			Shows the state of GPIO pads 3:0 and controls those configured as outputs. Bit b (b = 8,,11) shows/controls the state of the pad GPIO(b - 8). If certain GPIO pads are floating during STANDBY, the corresponding bits should be tied to "0" converting the pads to output to reduce standby current. See technical note TN0934 "Standby Sequence" for more details.			
4208	7:0	0x0000	AF_GPIO_DATA Shows the state of AF_GPIO pads 7:0 and controls those configured as outputs. Bit b (b = 0,,7) shows/controls the state of the pad AF_GPIO(b). If certain AF_GPIO pads are floating during STANDBY, the corresponding bits should be tied to "0" converting the pads to output to reduce standby current. See technical note TN0934 "Standby Sequence" for more details.			
0x1070	Shows	the state of	f the GPIO pads and controls those configured as outputs.			
	15:0	0x0000	GPIO Output Toggle (RW)			
	15:12	Х	Reserved			
	11:8	0x0000	GPIO Output Toggle Writing "1" to bit b (b = 8,,11) toggles the GPIO(b-8) output.			
4210	7:0	0x0000	AF GPIO Output Toggle Writing "1" to bit b (b = 0,,7) toggles the AF_GPIO(b) output.			
0x1072	GPIO Output Toggle					
	15:0	0x0000	GPIO Output Set (RW)			
	15:12	Х	Reserved			
	11:8	0x0000	GPIO Output Set Writing "1" to bit b (b=8,,11) sets the GPIO(b - 8) output HIGH.			
4212	7:0	0x0000	AF_GPIO Output Set Writing "1" to bit b (b = 0,,7) sets the AF_GPIO(b) output HIGH.			
0x1074	This register sets the desired output GPIO/AF_GPIO to HIGH.					
	15:0	0x0000	GPIO Output Clear (RW)			
	15:12	Х	Reserved			
	11:8	0x0000	GPIO Output Clear Writing "1" to bit b (b = 8,,11) sets the GPIO(b - 8) output LOW.			
4214	7:0	0x0000	AF_GPIO Output Clear Writing "1" to bit b (b = 0,,7) sets the AF_GPIO(b) output LOW.			
0x1076	This reg	gister sets t	he desired output GPIO/AF_GPIO to LOW.			

Reg. #	Bits	Default	Name			
	15:0	0x0FFF	GPIO Direction (RW)			
	15:12	Х	Reserved			
	11:8	0x000F	GPIO Direction Controls the direction of GPIO pads 11:8. If bit b (b = 8,,11) is set to "1," the pad GPIO(b - 8) is an input; otherwise it is an output. Upon power-up or reset all GPIO pads become inputs. If certain GPIO pads are floating during STANDBY, the corresponding bits should be tied to "0" converting the pads to output to reduce standby current. See technical note TN0934 "Standby Sequence" for more details.			
4216 0x1078	7:0	0x00FF	AF_GPIO Direction Controls the direction of AF_GPIO pads 7:0. If bit b (b = 0,,7) is set to "1," the pad AF_GPIO(b) is an input; otherwise it is an output. Upon power-up or reset all AF_GPIO pads become inputs. If certain AF_GPIO pads are floating during STANDBY, the corresponding bits should be tied to "0" converting the pads to output to reduce standby current. See technical note TN0934 "Standby Sequence" for more details.			
UX 1076	1	1	tion of GPIO/AF_GPIO pads.			
	15:0	0x0000	GPIO Dir. Reverse (RW)			
	15:12	X	Reserved			
	11:8	0x0000	GPIO Direction Reverse Writing "1" to bit b (b = 8,,11) reverses the direction of GPIO(b - 8).			
4218	7:0	0x0000	AF_GPIO Direction Reverse Writing "1" to bit b (b = 0,,7) reverses the direction of AF_GPIO(b).			
0x107A	This register changes the direction of the desired GPIO/AF_GPIO from input to output or vice versa.					
	15:0	0x0000	GPIO Dir. In (RW)			
	15:12	Х	Reserved			
	11:8	0x0000	GPIO Direction Input Writing "1" to bit b (b = 8,,11) configures the pad GPIO(b - 8) as an input.			
4220	7:0	0x0000	AF_GPIO Direction Input Writing "1" to bit b (b = 0,,7) configures the pad AF_GPIO(b) as an input.			
0x107C	This rec	ister confi	gures the desired GPIO/AF_GPIO pads to inputs.			
	15:0	0x0000	GPIO Dir. Out (RW)			
	15:12	Х	Reserved			
	11:8	0x0000	GPIO Direction Output Writing "1" to bit b (b = 8,,11) configures the pad GPIO(b - 8) as an output.			
4222	7:0	0x0000	AF_GPIO Direction Output Writing "1" to bit b (b = 0,,7) configures the pad AF_GPIO(b) as an output.			
0x107E	This reg	jister confi	gures the desired GPIO/AF_GPIO pads to outputs.			
	15:0	0x0000	1st Subperiod at AF_GPIO-1 (RW)			
4224 0x1080		•	vaveform output at AF_GPIO1 (in 8-bit counter mode) or bits 15:8 of first subperiod of at AF_GPIO0 (in 16-bit counter mode).			

Reg. #	Bits	Default	Name		
	15:0	0x0000	1st Subperiod at AF_GPIO-0 (RW)		
4225 0x1081		bperiod of r mode).	waveform generated at AF_GPIO0 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit		
	15:0	0x0000	2nd Subperiod at AF_GPIO-1 (RW)		
4226 0x1082			of waveform output at AF_GPIO1 (in 8-bit counter mode) or bits 15:8 of second subperiod output at AF_GPIO0 (in 16-bit counter mode).		
	15:0	0x0000	2nd Subperiod at AF_GPIO-0 (RW)		
4227 0x1083		subperiod nter mode)	of waveform generated at AF_GPIO0 (in 8-bit counter mode) or bits 7:0 of the same (in 16-		
	15:0	0x0000	3rd Subperiod at AF_GPIO-1 (RW)		
4228 0x1084		•	f waveform output at AF_GPIO1 (in 8-bit counter mode) or bits 15:8 of third subperiod of at AF_GPIO0 (in 16-bit counter mode).		
	15:0	0x0000	3rd Subperiod at AF_GPIO-0 (RW)		
4229 0x1085		ubperiod of r mode).	f waveform generated at AF_GPIO0 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit		
	15:0	0x0000	4th Subperiod at AF_GPIO-1 (RW)		
4230 0x1086	Fourth subperiod of waveform output at AF_GPIO1 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO0 (in 16-bit counter mode).				
	15:0	0x0000	4th Subperiod at AF_GPIO-0 (RW)		
4231 0x1087		subperiod (nter mode)	of waveform generated at AF_GPIO0 (in 8-bit counter mode) or bits 7:0 of the same (in 16-		
	15:0	0x0000	5th Subperiod at AF_GPIO-1 (RW)		
4232 0x1088	Fifth subperiod of waveform generated at AF_GPIO1 (in 8-bit counter mode) or bits 15:8 of 5th subperiod of waveform output at AF_GPIO0 (in 16-bit counter mode).				
	15:0	0x0000	5th Subperiod at AF_GPIO-0 (RW)		
4233 0x1089	Fifth subperiod of waveform generated at AF_GPIO0 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit counter mode).				
	15:0	0x0000	Duration at AF_GPIO-1 (RW)		
4234 0x108A	15:8 of by writ When r counte	the duration the destend this read, this read, mode) or	pister sets the duration of waveform generated at AF_GPIO1 (in 8-bit counter mode) or bits on of waveform generated at AF_GPIO0 (in 16-bit counter mode). Finite duration is selected ired number of periods in the waveform. Writing "0"makes the duration infinite. Egisters returns the number of waveform periods left to be generated at AF_GPIO1 (in 8-bit bits 15:8 of the number remaining at AF_GPIO0 (in 16-bit counter mode). To get all 16 bits per correct, one must read this register before AF_GPIO_WG_NO.		

Reg. #	Bits	Default	Name
	15:0	0x0000	Duration at AF_GPIO-0 (RW)
4235 0x108B			
	15:0	0x0000	1st Subperiod at AF_GPIO-3 (RW)
4236 0x108C			waveform generated at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of first subperiod of at AF_GPIO2 (in 16-bit counter mode).
	15:0	0x0000	1st Subperiod at AF_GPIO-2 (RW)
4237 0x108D	First sub counter		waveform generated at AF_GPIO2 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit
	15:0	0x0000	2nd Subperiod at AF_GPIO-3 (RW)
4238 0x108E		•	of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of second subperiod ut at AF_GPIO2 (in 16-bit counter mode).
	15:0	0x0000	2nd Subperiod at AF_GPIO-2 (RW)
4239 0x108F		subperiod nter mode)	of waveform generated at AF_GPIO2 (in 8-bit counter mode) or bits 7:0 of the same (in 16-
	15:0	0x0000	3rd Subperiod at AF_GPIO-3 (RW)
4240 0x1090			waveform generated at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of third subperiod of at AF_GPIO2 (in 16-bit counter mode).
	15:0	0x0000	3rd Subperiod at AF_GPIO-2 (RW)
4241 0x1091		bperiod of mode).	waveform generated at AF_GPIO2 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit
	15:0	0x0000	4th Subperiod at AF_GPIO-3 (RW)
4242 0x1092	Fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fourth subperiod outpu		
	15:0	0x0000	4th Subperiod at AF_GPIO-2 (RW)
4243 0x1093	Fourth subperiod of waveform generated at AF_GPIO2 (in 8-bit counter mode) or bits 7:0 of the same (in 16 bit counter mode).		
	15:0	0x0000	5th Subperiod at AF_GPIO-3 (RW)
4244 0x1094		•	waveform generated at AF_GPIO3 (in 8-bit counter mode) or bits 15:8 of fifth subperiod of at AF_GPIO2 (in 16-bit counter mode).
	15:0	0x0000	5th Subperiod at AF_GPIO-2 (RW)
4245 0x1095		bperiod of mode).	waveform generated at AF_GPIO2 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit

Reg. #	Bits	Default	Name	
	15:0	0x0000	Duration at AF_GPIO-3 (RW)	
4246 0x1096				
	15:0	0x0000	Duration at AF_GPIO-2 (RW)	
4247 0x1097	7:0 of the way. When r	he same (in vaveform. \ ead, this re	ister sets the duration of waveform generated at AF_GPIO2 (in 8-bit counter mode) or bits 16-bit counter mode). Finite duration is selected by writing the desired number of periods Writing "0" makes the duration infinite. gister returns the number of waveform periods left to be generated at AF_GPIO2 (in 8-bit bits 7:0 of the same (in 16-bit counter mode).	
	15:0	0x0000	1st Subperiod at AF_GPIO-5 (RW)	
4248 0x1098			waveform generated at AF_GPIO5 (in 8-bit counter mode) or bits 15:8 of first subperiod of at AF_GPIO4 (in 16-bit counter mode).	
	15:0	0x0000	1st Subperiod at AF_GPIO-4 (RW)	
4249 0x1099	First sub		waveform generated at AF_GPIO4 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit	
	15:0	0x0000	2nd Subperiod at AF_GPIO-5 (RW)	
4250 0x109A			of waveform output at AF_GPIO5 (in 8-bit counter mode) or bits 15:8 of second subperiod ut at AF_GPIO4 (in 16-bit counter mode).	
	15:0	0x0000	2nd Subperiod at AF_GPIO-4 (RW)	
4251 0x109B		subperiod nter mode).	of waveform generated at AF_GPIO4 (in 8-bit counter mode) or bits 7:0 of the same (in 16-	
	15:0	0x0000	3rd Subperiod at AF_GPIO-5 (RW)	
4252 0x109C	Third subperiod of waveform output at AF_GPIO5 (in 8-bit counter mode) or bits 15:8 of third subperiod			
	15:0	0x0000	3rd Subperiod at AF_GPIO-4 (RW)	
4253 0x109D	Third subperiod of waveform generated at AF_GPIO4 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit counter mode).			
	15:0	0x0000	4th Subperiod at AF_GPIO-5 (RW)	
4254 0x109E	Fourth subperiod of waveform output at AF_GPIO5 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO4 (in 16-bit counter mode).			
	15:0	0x0000	4th Subperiod at AF_GPIO-4 (RW)	
4255 0x109F		subperiod onter mode).	of waveform generated at AF_GPIO4 (in 8-bit counter mode) or bits 7:0 of the same (in 16-	

Reg. #	Bits	Default	Name	
	15:0	0x0000	5th Subperiod at AF_GPIO-5 (RW)	
4256 0x10A0				
	15:0	0x0000	5th Subperiod at AF_GPIO-4 (RW)	
4257 0x10A1		bperiod of mode).	waveform generated at AF_GPIO4 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit	
	15:0	0x0000	Duration at AF_GPIO-5 (RW)	
4258 0x10A2	15:8 of by writi When r counter	the duration the design the design contract th	ister sets the duration of waveform generated at AF_GPIO5 (in 8-bit counter mode) or bits on of waveform generated at AF_GPIO4 (in 16-bit counter mode). Finite duration is selected ired number of periods in the waveform. Writing "0" makes the duration infinite. gisters returns the number of waveform periods left to be generated at AF_GPIO5 (in 8-bit bits 15:8 of the number remaining at AF_GPIO4 (in 16-bit counter mode). To get all 16 bits per right, one must read this register before AF_GPIO_WG_N4.	
	15:0	0x0000	Duration at AF_GPIO-4 (RW)	
4259 0x10A3	Writing to this register sets the duration of waveform generated at AF_GPIO4 (in 8-bit counter 7:0 of the same (in 16-bit counter mode). Finite duration is selected by writing the desired nut in the waveform. Writing "0" makes the duration infinite. When read, this registers returns the number of waveform periods left to be generated at AF			
	15:0	0x0000	1st Subperiod at AF_GPIO-7 (RW)	
4260 0x10A4			waveform generated at AF_GPIO7 (in 8-bit counter mode) or bits 15:8 of first subperiod of at AF_GPIO6 (in 16-bit counter mode).	
	15:0	0x0000	1st Subperiod at AF_GPIO-6 (RW)	
4261 0x10A5		operiod of mode).	waveform generated at AF_GPIO6 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit	
	15:0	0x0000	2nd Subperiod at AF_GPIO-7 (RW)	
4262 0x10A6			of waveform output at AF_GPIO7 (in 8-bit counter mode) or bits 15:8 of second subperiod ut at AF_GPIO6 (in 16-bit counter mode).	
	15:0	0x0000	2nd Subperiod at AF_GPIO-6 (RW)	
4263 0x10A7	Second subperiod of waveform generated at AF_GPIO6 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit counter mode).			
	15:0	0x0000	3rd Subperiod at AF_GPIO-7 (RW)	
4264 0x10A8		-	waveform output at AF_GPIO7 (in 8-bit counter mode) or bits 15:8 of third subperiod of at AF_GPIO6 (in 16-bit counter mode).	
	15:0	0x0000	3rd Subperiod at AF_GPIO-6 (RW)	
4265 0x10A9		ubperiod of mode).	waveform generated at AF_GPIO6 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit	

Reg. #	Bits	Default	Name		
	15:0	0x0000	4th Subperiod at AF_GPIO-7 (RW)		
4266 0x10AA	Fourth subperiod of waveform output at AF_GPIO7 (in 8-bit counter mode) or bits 15:8 of fourth subperiod of waveform output at AF_GPIO6 (in 16-bit counter mode).				
	15:0	0x0000	4th Subperiod at AF_GPIO-6 (RW)		
4267 0x10AB		subperiod (nter mode)	of waveform generated at AF_GPIO6 (in 8-bit counter mode) or bits 7:0 of the same (in 16-		
	15:0	0x0000	5th Subperiod at AF_GPIO-7 (RW)		
4268 0x10AC		•	waveform generated at AF_GPIO7 (in 8-bit counter mode) or bits 15:8 of fifth subperiod of at AF_GPIO6 (in 16-bit counter mode).		
	15:0	0x0000	5th Subperiod at AF_GPIO-6 (RW)		
4269 0x10AD		bperiod of r mode).	waveform generated at AF_GPIO6 (in 8-bit counter mode) or bits 7:0 of the same (in 16-bit		
	15:0	0x0000	Duration at AF_GPIO-7 (RW)		
4270 0x10AE	15:8 of by writi When r counter	the duration the destend the destending the destend	ister sets the duration of waveform generated at AF_GPIO7 (in 8-bit counter mode) or bits on of waveform generated at AF_GPIO6 (in 16-bit counter mode). Finite duration is selected ired number of periods in the waveform. Writing "0" makes the duration infinite. gisters returns the number of waveform periods left to be generated at AF_GPIO7 (in 8-bit bits 15:8 of the number remaining at AF_GPIO6 (in 16-bit counter mode). To get all 16 bits per right, one must read this register before AF_GPIO_WG_N6.		
	15:0	0x0000	Duration at AF_GPIO-6 (RW)		
4271 0x10AF	7:0 of t in the v When r	he same (in vaveform. \ ead, this re	ister sets the duration of waveform generated at AF_GPIO6 (in 8-bit counter mode) or bits 16-bit counter mode). Finite duration is selected by writing the desired number of periods Writing "0" makes the duration infinite. gister returns the number of waveform periods left to be generated at AF_GPIO6 (in 8-bit bits 7:0 of the same (in 16-bit counter mode).		
	15:0	0x0000	Waveform Generator Config. (RW)		
	15:8	Х	Reserved		
	7:4	0x0000	Enable in 16-bit Counter Mode Clearing bit b (b = 4,,7) enables the waveform generator to drive the pads AF_GPIO(2b - 8) and AF_GPIO(2b - 7) simultaneously. Counters needed to generate waveforms at these pads are put in the 8-bit mode. Setting bit b disconnects the waveform generator from the pad AF_GPIO(2b - 7) and allows it to generate a waveform at the pad AF_GPIO(2b - 8) using the 16-bit counter		
	2.0	00000	mode.		
4272	3:0	0x0000	Enable in 8-bit Counter Mode Setting/clearing bit b (b = 0,,3) enables/disables waveform generation at the pads AF_GPIO(2b) and AF_GPIO(2b + 1).		
4272	AF_GPIO(2b) and AF_GPIO(2b + 1). Configures the GPIO Waveform Generator.				

Reg. #	Bits	Default	Name
	15:0	0x0000	Chain Waveforms (RW)
4273 0x10B1	By setting bits 6:0 in this register, one can link waveforms generated at different pads into a chain. The end of the first waveform in the chain coincides with the start of the second waveform, and so on. Specifically, for b = 0, 2, 4, the following is true: Setting bit b forces the waveform generator to start driving AF_GPIO(b) when it is done with AF_GPIO(b + 1) (in 8-bit counter mode) or AF_GPIO(b + 2) (in 16-bit counter mode). Setting bit (b + 1) forces the waveform generator in to start driving AF_GPIO(b + 1) when done with AF_GPIO(b + 2) (in 8-bit counter mode; the bit is ignored in 16-bit mode). In addition, setting bit 6 forces the waveforms generator to start driving AF_GPIO6 when done with AF_GPIO(in 8-bit counter mode; the bit is ignored in 16-bit mode).		
	15:0	0x0000	Waveform Clock Dividers (RW)
	15:8	Х	Reserved
	7:4	0x0000	Divider 2 Holds d for divider 2.
	3:0	0x0000	Divider 1 Holds d for divider 1.
4274 0x10B2	Each div unsigne Bits 3:0	vider divide ed integer p of this regi	serator has two clock dividers that enable it to generate waveforms at vastly different paces. It is the frequency of the AF_GPIO clock (typically 80 MHz) by a factor 2d + 1, where d is a 4-bit programmed into register AF_GPIO_WG_CLKDIV. In this is ter hold d for divider 1. It is terminal to the formula of the formula
	15:0	0x0000	Clock Divider Selects (RW)
4275 0x10B3			0,,7) tells the waveform generator to use clock divider 1 when generating waveforms at b). Set bits select clock divider 2 for the corresponding pads.
	15:0	0x0000	Sync Waveform to Frame (RW)
4276 0x10B4	If bit b (b=0,,7) in AF_GPIO_WG_FRAME_SYNC is cleared, waveform generation at the AF_GPIO(b) starts/resumes when bit b in AF_GPIO_WG_SUSPEND is cleared. Setting bit b in AF_GPIO_WG_FRAME_SYNC changes the conditions that must be met for waveform generation at AF_GPIO(b) can start/ resume. The clearing of bit b in AF_GPIO_WG_SUSPEND is still but no longer sufficient. After that bit is cleared, the waveform generator restarts on each falling of the conditions of the clear in the c		
	15:0	0x0000	Waveform Resets (RW)
4277 0x10B5			
4278	15:0	0x0000	Waveform Suspends (RW)
0x10B6	Setting	bit b (b = 0	,,7) suspends waveform generation at the pad AF_GPIO(b). Clearing the bit restarts it.
	15:0	0x0000	Enable Notification Signals (RW)
4280 0x10B8	Clearing b in AF	g the bit b _GPIO_NS_I	o),,7) enables a notification signal (NS) at the end of waveform generation at AF_GPIO(b). enables a NS on next transition at AF_GPIO(b) whose sign matches the sign indicated by bit EDGE. The pad may be configured as an output or input and the transition may be caused generator, writing to AF_GPIO_DATA or external forcing.

Reg. #	Bits	Default	Name
	15:0	0x0000	Trigger Edge Selects (RW)
	15:12	Х	Reserved
	11:8	0x0000	GPIO NS Edge Select Bit b (b = 8,,11) selects the sign of transitions on pad GPIO(b - 8) that triggers notification signals. Setting the bit selects rising edges, clearing it, the falling edges.
	7:0	0x0000	AF_GPIO NS Edge Select Bit b (b = 0,,7) selects the sign of transitions on pad AF_GPIO(b) that triggers notification signals. Setting the bit selects rising edges, clearing it, the falling edges.
4281 0x10B9			transitions on GPIO pads that triggers notification signals. Setting the bit selects rising the falling edges.
	15:0	0x0FFF	Trigger Mask (RW)
	15:12	Х	Reserved
	11:8	0x000F	Trigger Mask Setting bit b (b = 8,,11) masks all notification signals caused by events on pad GPIO(b - 8). Masked signals do not cause the microcontroller to wake up. Clearing the bit enables waking up.
4283	7:0	0x00FF	Trigger Mask Setting bit b (b = 0,,7) masks all notification signals caused by events on pad AF_GPIO(b). Masked signals do not cause microcontroller to wake up. Clearing the bit enables waking up.
0x10BB	Trigger	mask on ne	otification signals.
	15:0	0x0000	Sync Waveform to STROBE (RW)
4285 0x10BD	starts/re Setting genera	esumes whe bit b in AF tion on AF_ longer suff	in AF_GPIO_WG_STROBE_SYNC is cleared, waveform generation at AF_GPIO(b) output en bit b in AF_GPIO_WG_SUSPEND is clearedGPIO_WG_STROBE_SYNC changes the conditions that must be met for waveform _GPIO(b) can start/ resume. The clearing of bit b in AF_GPIO_WG_SUSPEND is still necessary, icient. After that bit is cleared, the waveform generator restarts on each rising edge of
	15:0	0x0000	Signals Pending (RW)
	15:12	Х	Reserved
	11:8	0x0000	GPIO notification signal status When bit b (b = 8,,11) is set, it signals that some event on pad GPIO(b - 8) caused a notification signal. Writing "1" to the bit to clears it.
4286	7:0	0x0000	AF_GPIO notification signal status When bit b (b = 0,,7) is set, it signals that some event on pad AF_GPIO(b) caused a notification signal. Writing "1" to the bit to clears it.
0x10BE	GPIO no	otification s	signal (NS) status

Timing Specifications

Power-up

It is recommended to simultaneously apply VDD, VDDIO, and VDDPLL first, followed by VAA and VAAPIX. The maximum time allowed between the first and last voltage applied is 500ms. The sensor includes a power-on reset feature that initiates a reset upon VDD power up. Even though this feature is included on the device, it is advised that the user still manually assert a hard reset upon power up.

Reset

Two types of reset are available:

- A hard reset is issued by toggling RESET_BAR.
- A soft reset is issues by writing commands via the serial interface.

Hard Reset

Figure 34: Hard Reset

Table 38: Hard Reset

Definition	Condition	Symbol	Min	Тур	Max	Units
RESET_BAR Pulse Width		^t 1	30	-	_	
Active EXTCLK after RESET_BAR asserted		^t 2	10	_	_	EXTCLK Cycles
Active EXTCLK before RESET_BAR de-asserted		^t 3	10	_	_	
Max ROM read time		^t 4	_	_	6000	

A hard reset sequence to the camera can be activated by the following steps:

- 1. Wait for all supplies to be stable.
- 2. Assert RESET BAR for at least 30 EXTCLK cycles.
- 3. De-assert RESET_BAR (input clock must be running for at least 10 EXTCLK cycles)
- 4. Wait 6000 clock cycles before using the two-wire serial interface.

After hard reset, the output FIFO is configured for operation but disabled and all outputs are tri-stated. To enable outputs, user must assert R0x301A[6] via the serial interface.

Soft Reset

A soft reset sequence to the camera has the same affect as the hard reset and can be activated by the following steps:

- 1. Enable soft reset by setting R0x301A[0].
- 2. Wait 6000 clock cycles before using the two-wire serial interface.

Standby Modes

The MT9D112 supports three different standby modes:

- · Hard standby mode
- · Soft standby mode
- · Shutdown mode

For both hard and soft standby, entry can be inhibited by setting R0x3202[3] = 0.

Hard Standby

Hard standby disables all digital logic; the sensor can only be woken up by de-asserting STANDBY. All registers and RAM content will be preserved. Hard standby can be performed in any sequencer state after all AE, AWB, AF, HG, and flicker calculations are finished and the chip is in sleep mode.

During standby, the sequencer does the following:

- · Configures MIPI, PLL, sensor core, and AFM driver
- · Save clock control registers
- · Set standby done bit
- · Disable internal clocks
- MCU goes to sleep mode

After leaving standby, the sequencer wakes up the MCU and performs the following sequence:

- · Restore internal clocks
- Clear standby done bit
- Leave standby for MIPI, PLL, sensor core, and AFM driver

To enter standby:

- a. Assert pin STANDBY=1
 - MCU will run standby routine and will set bit R0x3204[0]= 1 when standby entry is completed. By default clock is gated off when standby state is entered; therefore, the status of R0x3204[0] cannot be polled, during which time, no registers or variables are accessible.
- b. To ensure Standby mode is entered, wait until the two-wire serial interface becomes non-responsive.
- c. Optionally, stop the EXTCLK to minimize the standby current.

To leave standby:

- a. Provide EXTCLK 10 clock cycles before de-asserting STANDBY
- b. De-assert STANDBY

Figure 35: Hard Standby

Table 39: Hard Standby

Definition	Condition	Symbol	Min	Тур	Max	Units
STANDBY asserted to Standby mode		^t 1	TBD	-	-	
Active EXTCLK after STANDBY asserted		^t 2	TBD	_	-	EXTCLK
Active EXTCLK before STANDBY de-asserted		t3	TBD	-	-	Cycles
STANDBY Pulse Width		^t 4	TBD	ı	1	

Soft Standby

Soft standby can be enabled by register access and disables the sensor core and most of the digital logic. The serial interface is still active and the sensor can be woken up via commands. All register settings and RAM content will be preserved. Soft Standby can be performed in any sequencer state after all AE, AWB, AF, HG, and flicker calculations are finished and the chip is in sleep mode. The sequencer follows the same steps for soft standby that are performed for hard standby.

To enter standby:

- a. Set R0x3202[3] = 1
- b. Set R0x3202[0] = 1
- c. To ensure Standby mode is entered, poll R0x3204[0] until it equals 1, which indicates that the standby entry is completed.
- d. Stop the EXTCLK to minimize the standby current (this will disable the serial interface).

To leave standby:

- a. Provide EXTCLK 10 clock cycles before b)
- b. Set R0x3202[0] = 0

Figure 36: Soft Standby

Table 40: Soft Standby

Definition	Condition	Symbol	Min	Тур	Max	Units
Stdby entry complete		^t 1	-	-	TBD	
Active EXTCLK after soft stdby activates		^t 2	TBD	_	_	EXTCLK
Active EXTCLK before soft stdby de-activates		t ₃	TBD	_	_	Cycles
Minimum Stdby time		^t 4	TBD	-	_	

The execution of standby will take place after the completion of the current line by default. In order to synchronize the execution of standby with the end of frame, set R0x3204[4] = 1.

Shutdown Mode

Low power standby mode uses the SHUTDOWN pin to shut down digital power (VDD) and ensure the lowest power consumption. All the two-wire serial interface settings and firmware variables including patches will be lost in this mode. Waking up from this mode is equivalent to power up.

To enter standby:

- a. Follow Hard Standby or Soft Standby procedure to enter into standby and check for standby entry
- b. Assert SHUTDOWN pin HIGH

To leave standby:

- a. Assert SHUTDOWN pin LOW
- b. De-assert STANDBY pin if hard standby is used
- c. Follow power up procedure

Table 41: Pin States During Conditions

Pin	Reset	Post-reset	Standby	Standby w/ SHUTDOWN	Power Down
Dоит[7:0]	Z	Z	Z by default (configurable via OE_BAR or two-wire serial interface reg)	Z by default	Х
PIXCLK	Z	Z	Z by default (configurable)	Z by default	Х
LV	Z	Z	Z by default (configurable	Z by default	Х
FV	Z	Z	Z by default (configurable	Z by default	Х

Table 41: Pin States During Conditions (Continued)

Pin	Reset	Post-reset	Standby	Standby w/ SHUTDOWN	Power Down
DATA_OUT_N	0	0	0	0	Х
DATA_OUT_P	0	0	0	0	Х
CLK_OUT_N	0	0	0	0	Х
CLK_OUT_P	0	0	0	0	Х
GPIO[3:0]	Z	Z	Depending on how system use them as DOUTPSB/Shutter/Flash/Module ID/Trigger/OE_BAR	Depending on how system use them as DOUTPSB/Shutter/ Flash/Module ID/ Trigger/OE_BAR	X
AF_GPIO[7:0]	Z	Z			Х
SADDR	Input	Input	Input	Input	
Sdata	Input	I/O	Input	Input	
SCLK	Input	Input	Input	Input	
ATEST	I/O (Analog pad)	I/O (Analog pad)	I/O (Analog pad)	I/O (Analog pad)	Х

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Spectral Characteristics

Spectral Characteristics

Figure 37: CRA versus Image Height

Electrical Specifications

Figure 38: I/O Timing Diagram

Note: PLL disabled for ^tCP.

Table 42: AC Electrical Characteristics

Setup Conditions: f EXTCLK = 6–54 MHz; VDD = 1.8V; VDDIO = 2.8V; VAA = 2.8V; VAAPIX = 2.8V; VDDPLL = 2.8V; VDDP

Symbol	Definition	Conditions	Min	Тур	Max	Units	Notes
^f EXTCLK	External clock frequency	PLL enabled/disabled	6	-	54	MHz	
fINTCLK	Internal master clock frequency	PLL disabled	6	-	54	MHz	
fINTCLK	Internal master clock frequency	PLL enabled	6	-	80	MHz	
^f PIXCLK	PIXCLK frequency	Default	6	_	80	MHz	
^t R	Input clock rise time	From 10% to 90% Vp-p	-	2	_	ns	
^t F	Input clock fall time	From 90% to 10% Vp-p	_	2	_	ns	
	Clock duty cycle		45	50	55	%	
^t JITTER	Input clock jitter		-	0.5	_	ns	1
^t CP	EXTCLK rising to PIXCLK falling propagation delay	PLL disabled	_	15	_	ns	
Output pin slew	Programmable slew = 7; VDD = 1.8V Temp = 25°C	VDDIO = 2.8V, C_LOAD = 30	_	TBD	_	ns	
		VDDIO = 2.8V, C_LOAD = 15	_	TBD	_	ns	
	Programmable slew condition 1	VDDIO = 2.8V,C_LOAD = 30	_	TBD	_	ns	
		VDDIO = 2.8V, C_LOAD = 15	-	TBD	_	ns	
	Programmable slew condition 2	VDDIO = 2.8V, C_LOAD = 30	_	TBD	_	ns	
		VDDIO = 2.8V, C_LOAD = 15	_	TBD	_	ns	
	Programmable slew condition n	VDDIO = 2.8V, C_LOAD = 30	_	TBD	_	ns	
		VDDIO = 2.8V, C_LOAD = 15	_	TBD	_	ns	
^t PD	PIXCLK to data valid	Default	_	5	_	ns	
^t PFH	PIXCLK to FV HIGH	Default	_	6	_	ns	
^t PLH	PIXCLK to LV HIGH	Default	-	6	_	ns	
^t PFL	PIXCLK to FV LOW	Default	-	4	_	ns	
^t PLL	PIXCLK to LV LOW	Default	_	4	-	ns	
CIN	Input pin capacitance		_	3.5	_	pF	

Note: 1. Value equal to jitter on tester.

Table 43: I/O Parameters

Symbol	Definition	Conditions	Min	Тур	Max	Units
VIH	Input HIGH voltage	VDDIO = 2.8V	2.4		VDDIO+0.3	V
		VDDIO = 1.8V	1.4		VDDIO+0.3	
VIL	Input LOW voltage	VDDIO = 2.8V	GND-0.3		0.8	V
		VDDIO = 1.8V	GND-0.3		0.4	
lin	Input leakage current	No pull-up resistor; VIN = VDD or DGND	-15	<u>+</u> 0.5	15	μΑ
Voн	Output HIGH voltage	At specified IOH	VDDIO-0.4	-		V
Vol	Output LOW voltage	At specified IOL	_	-	0.4	V
Іон	Output HIGH current	At specified Voн	_	-	_	mA
IOL	Output HIGH current	At specified Vol	_	-	_	mA
loz	Tri-state output leakage current	VIN = VDDIO or GND	-10	<u>+</u> 0.5	10	μΑ

Table 44: DC Electrical Definitions and Characteristics

Setup Conditions: f EXTCLK = 6–54 MHz; VDD = 1.8V; VDDIO = 2.8V; VAA = 2.8V; VAAPIX = 2.8V; VDDPLL = 2.8V; T_Junction = 25°C; Dark lighting conditions

Symbol	Definition	Conditions	Min	Тур	Max	Units	Note
VDD	Core digital voltage		1.7	1.8	1.95	V	
VDDIO	I/O digital voltage		1.7	1.8	1.95	V	
VDDIO	I/O digital voltage		2.5	2.8	3.1	V	
VAA	Analog voltage		2.5	2.8	3.1	V	
VAAPIX	Pixel supply voltage		2.5	2.8	3.1	V	
VDDPLL	PLL supply voltage		2.5	2.8	3.1	V	
VDD_AF	AF supply voltage		1.7	1.8	1.95	V	
VDD_AF	AF supply voltage		2.5	2.8	3.1	V	
IDD_1	Digital operating current	Low power preview	_	24	_	mA	
IAA_1	Analog operating current	Low power preview	-	21	-	mA	
IAA_PIX_1	Pixel supply current	Low power preview	_	0.5	_	mA	
IDD_PLL_1	PLL supply current	Low power preview with PLL enabled	-	9	-	mA	
	Total power consumption	Low power preview	-	200	-	mW	
IDD_2	Digital operating current	Full resolution	_	38	_	mA	
IAA_2	Analog operating current	Full resolution	_	36	_	mA	
IAA_PIX_2	Pixel supply current	Full resolution	_	0.3	_	mA	
IDD_PLL_2	PLL supply current	Full resolution with PLL enabled	-	9	_	mA	
	Total power consumption	Full resolution	-	350	-	mW	
STDBY_1	Standby current 1	Standby/EXTCLK Dis/ SHUTDOWN	_	10	_	μΑ	
STDBY_2	Standby current 2	Standby/EXTCLK Dis	_	100	_	μΑ	
STDBY_3	Standby current 3	Soft standby/EXTCLK Dis/SHUTDOWN	_	10	-	μΑ	

Table 45: Absolute Maximum Ratings

		F	Rating	
Symbol	Parameter	Min	Max	Unit
VDD_MAX	Core digital voltage	-0.3	2.4	V
VDD_IO_MAX	I/O digital voltage	-0.3	4.0	V
VAA_MAX	Analog voltage	-0.3	4.0	V
VAA_PIX_MAX	Pixel supply voltage	-0.3	4.0	V
VDD_PLL MAX	PLL supply voltage	-0.3	4.0	V
VIH_MAX	Input HIGH voltage	-0.3	VDDIO-0.3	V
VIL_MAX	Input LOW voltage	-0.3	VDDIO-0.3	V
VFSIO_MAX	Input HIGH voltage	TBD	TBD	
IDD_MAX	Digital operating current	TBD	TBD	mA
IDD_IO_MAX	I/O digital operating current	TBD	TBD	mA
IAA_MAX	Analog operating current	TBD	TBD	mA
IAA_PIX_MAX	Pixel supply current	TBD	TBD	mA
IDD_PLL_MAX	PLL supply current	TBD	TBD	mA
			_	
T_OP	Operating temperature (measure at junction)	-30	75	°C
T_STG ¹	Storage temperature	-40	85	°C

Note:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the product specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 39: Internal Power-on Reset

Table 46: POR Parameters

Definition	Condition	Symbol	Min	Тур	Max	Units
VDD ramp time		^t 0	50	-	500	μs
VDD rising, crossing VTRIG_RISING Internal reset being released		^t 1	7	10	15	μs
VDD falling, crossing VTRIG_FALLING; Internal reset active		^t 2	-	0.5	1	μs
Minimum VDD spike width below VTRIG_FALLING; considered to be a reset when POR cell output is HIGH		[†] 3	-	0.5	-	μs
Minimum VDD spike width below VTRIG_FALLING considered to be a reset when POR cell output is LOW		^t 4	-	1	-	μs
Minimum VDD spike width above VTRIG_RISING considered to be a stable supply when POR cell output is LOW		^t 5	-	50	-	ns
VDD rising trigger voltage		VTRIG_RISING	1.12	-	1.55	V
VDD falling trigger voltage		VTRIG_FALLING	1.0	-	1.45	V

Note: The hard reset and POR signals are gated, therefore, M3 ROM read will begin after both

have been de-asserted.

Figure 40: Two-Wire Serial Bus Timing Parameters

Read Sequence – read waveforms start after the slave address of the device has been written.

Table 47: Two-wire Serial Bus Characteristics

Symbol	Definition	Conditions	Min	Тур	Max	Units
^f SCLK	Serial interface input clock		100	-	400	kHz
	frequency					
	SCLK duty cycle		40	_	60	%
^t SRTH	Start hold time	WRITE/READ	4	_	^t EXTCLK	ns
^t SDH	SDATA hold	WRITE	4	_	^t EXTCLK	ns
^t SDS	SDATA setup	WRITE	4	_	^t EXTCLK	ns
^t SHAW	SDATA hold to ACK	WRITE	4	_	^t EXTCLK	ns
^t AHSW	ACK hold to SDATA	WRITE	4	_	^t EXTCLK	ns
^t STPS	Stop setup time	WRITE/READ	4	_	^t EXTCLK	ns
^t STPH	Stop hold time	WRITE/READ	4	_	^t EXTCLK	ns
^t SHAR	SDATA hold to ACK	READ	4	_	^t EXTCLK	ns
^t AHSR	ACK hold to SDATA	READ	4	_	^t EXTCLK	ns
^t SDHR	SDATA hold	READ	4	_	^t EXTCLK	ns
^t SDSR	SDATA setup	READ	4	-	^t EXTCLK	ns
SDATA Slew Rate	No programmable slew	Max VDD_IO C_LOAD = ?	_	_	_	
		Max VDD_IO C_LOAD = ?	_	_	_	
		Max VDD_IO C_LOAD = ?	_	_	_	
	Programmable slew condition 1	Max VDD_IO C_LOAD = ?	_	_	_	
		Max VDD_IO C_LOAD = ?	-	-	_	
		Max VDD_IO C_LOAD = ?	-	-	_	
	Programmable slew condition 2	Max VDD_IO C_LOAD = ?	-	-	_	
		Max VDD_IO C_LOAD = ?	-	-	_	
		Max VDD_IO C_LOAD = ?	-	-	_	
C_IN_SI	Serial interface input pin capacitance		-	_	6	pF
C_LOAD_SD	SDATA max load capacitance		_	_	15	pF
R_sd	SDATA pull-up resistor		_	1.5	-	ΚΩ

Note: Either the slave or master device can drive the SCLK line low—the interface protocol determines which device is allowed to drive the SCLK line at any given time.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Preliminary: This data sheet contains initial characterization limits that are subject to change upon full characterization of production devices.

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Revision History

Revision History

- "Features" on page 1
- Table 1, "Key Performance Parameters," on page 1
- "General Description" on page 7
- "MT9D112 Overview" on page 7
- Table 3, "Signal Description," on page 9
- Figure 1: "Typical Configuration (connection)," on page 10
- "Sensor Core Description" on page 11
- "Pixel Array Structure" on page 12
- Figure 4: "Pixel Array," on page 12
- Figure 5: "Pixel Color Pattern Detail (Top Right Corner)," on page 13
- "Default Readout Order" on page 13
- "Integration Time" on page 14
- "PLL Setup" on page 15
- "Horizontal Mirror" on page 16
- Table 4, "Frequency Parameters," on page 16
- "Window Size" on page 16
- "Raw Data Timing" on page 22
- Table 6, "Row Timing Parameters," on page 23
- Figure 20: "Test Patterns," on page 25
- "Test Patterns" on page 25
- "First Black Level Subtraction and Digital Gain" on page 26
- "Contrast and Gamma Correction" on page 28
- "Color Kill" on page 30
- "Parallel and MIPI Output" on page 32
- "YUV/RGB Uncompressed Output" on page 32
- "Uncompressed 10-Bit Bypass Output" on page 33
- "Firmware Architecture" on page 36
- "Slave Address/Data Direction Byte" on page 44
- "Message Byte" on page 44
- "Protocol" on page 44
- "Data Transfer" on page 44
- "Typical Serial Transfer" on page 45
- Figure 28: "Single Read from Random Location," on page 46
- Figure 29: "Single Read from Current Location," on page 46
- Figure 30: "Sequential Read, Start from Random Location," on page 46
- Figure 31: "Sequential Read, Start from Current Location," on page 47
- "Registers" on page 49
- "Variables" on page 49
- "Double-buffered Registers" on page 50
- "Bad Frames" on page 51
- "Changes to Integration Time" on page 51
- "Changes to Gain Settings" on page 51
- Table 12, "0: Core Registers," on page 52
- Table 14, "2: SOC2," on page 58

MT9D112: 1/4-Inch 2-Mp SOC Digital Image Sensor Revision History

- Table 15, "0: Monitor Variables," on page 64
- Table 16, "1: Sequencer Variables," on page 64
- Table 17, "2: AE Variables," on page 66
- Table 18, "3: AWB Variables," on page 67
- Table 19, "4: Flicker Varialbes," on page 69
- Table 20, "5: Auto Focus Variables," on page 71
- Table 21, "6: AFM Variables," on page 71
- Table 22, "7: Mode Variables," on page 72
- Table 23, "11: HG Variables," on page 75
- Table 24, "0: GPIO," on page 75
- Table 25, "0: Core Registers," on page 78
- Table 26, "1: SOC1," on page 91
- Table 28, "0: Monitor Variables," on page 129
- Table 28, "0: Monitor Variables," on page 129
- Table 29, "1: Sequencer Variables," on page 130
- Table 30, "2: AE Variables," on page 140
- Table 31, "3: AWB Variables," on page 145
- Table 32, "4: Flicker Variables," on page 151
- Table 33, "5: Auto Focus Variables," on page 157
- Table 34, "6: AFM Variables," on page 163
- Table 35, "7: Mode Variables," on page 168
- Table 36, "11: HG Variables," on page 182
- Table 37, "0: GPIO," on page 184
- "Power-up" on page 193
- "Reset" on page 193
- "Hard Reset" on page 193
- "Standby Modes" on page 194
- "Soft Reset" on page 194
- "Hard Standby" on page 194
- "Soft Standby" on page 195
- Figure 35: "Hard Standby," on page 195
- Table 39, "Hard Standby," on page 195
- Figure 36: "Soft Standby," on page 196
- "Shutdown Mode" on page 196
- Table 41, "Pin States During Conditions," on page 196
- Figure 37: "CRA versus Image Height," on page 198
- Figure 38: "I/O Timing Diagram," on page 199
- Table 42, "AC Electrical Characteristics," on page 200
- Table 43, "I/O Parameters," on page 201
- Table 44, "DC Electrical Definitions and Characteristics," on page 201
- Table 45, "Absolute Maximum Ratings," on page 202
- Table 46, "POR Parameters," on page 203
- Table 47, "Two-wire Serial Bus Characteristics," on page 205

Initial release