



Física Aplicada - Lic. Eng. Informática

# Leis de Kirchhoff e Lei de Ohm

Lic. Eng. Informática - Física Aplicada

DFI-FSIAP- 02 Versão: 01 Data: 06/10/2020



# **Objetivos**

Análise de circuitos elétricos através das leis de Kirchhoff. Aplicação da Lei de Ohm. Verificação da lei das malhas.

#### Introdução Teórica

Define-se intensidade de corrente elétrica (I), em regime estacionário como a taxa de fluxo de carga  $\Delta Q$ , através de uma secção reta de um condutor por unidade de tempo:

$$I = \frac{\Delta Q}{\Delta t} \tag{Eq.1}$$

Quando se liga um gerador de corrente às extremidades de um condutor metálico vai-se estabelecer uma *d.d.p.* constante nos extremos do condutor, gerando-se assim, uma corrente elétrica, criando assim uma tendência natural para que se crie uma corrente elétrica desde o ponto de maior potencial para o de menor potencial. A proporcionalidade entre a *d.d.p* (ou tensão) e a intensidade da corrente elétrica resulta da resistência que o material oferece à passagem dos eletrões, a qual foi definida a partir da Lei de Ohm:

$$V = RI$$
 (Eq.2)

As leis de Kirchhoff, formuladas por Gustav Kirchhoff, constituem as bases para a análise de circuitos elétricos. As duas leis de Kirchhoff são conhecidas pelas **Lei dos nós** e **Lei das malhas**.

Lei dos nós: A soma algébrica das correntes em qualquer nó do circuito é igual a zero.

$$\sum I_{entrada} = \sum I_{saida}$$
 (Eq.3)

<u>Lei das malhas:</u> A soma algébrica das tensões numa malha é igual a zero (a soma algébrica das f.e.m. numa malha é igual à soma algébrica das tensões nas resistências dessa malha).

$$\sum V = 0$$
  $\Rightarrow$   $\sum E_i = \sum R_i I_i$  (Eq.4)

Departamento de Física Página 2/6

Lic. Eng. Informática - Física Aplicada

DFI-FSIAP- 02 Versão: 01 Data: 06/10/2020



#### Material necessário

- 1 multímetro;
- 1 fonte de alimentação;
- 1 placa de montagem;
- Conjunto de resistências;
- Fios de ligação.

#### **Procedimento**

# Verificação da Lei das malhas

1 - Monte o circuito da Figura 1, na placa de teste, com os seguintes elementos: (<u>dependendo da disponibilidade na vossa bancada de trabalho</u>)

 $R_1 = 10 \Omega$ , se disponível (ou 47  $\Omega$ , ou 33  $\Omega$ ),

 $R_2 = 470 \Omega$ 

 $R_3$  = 330  $\Omega$ , se disponível (ou 310  $\Omega$ , ou 220  $\Omega$ ) (ou 100  $\Omega$  + 150  $\Omega$ ) (ou 470  $\Omega$ ),

 $R_4$ = 10 K $\Omega$ ,

 $R_5 = 1 \text{ K}\Omega$ ,

E = 6V.

Voltímetro digital,  $[R_i = 10 \text{ M}\Omega] R_i$  – Resistência interna do voltímetro digital.

#### MAS NÃO LIGUE AINDA À FONTE

<u>ATENÇÃO</u>: Quando se desconhece a ordem de grandeza do valor a medir, deve-se utilizar sempre a maior escala do aparelho, ou seja, a escala menos sensível.

- 2 Meça, o valor de cada uma das resistências, fora do circuito, com o multímetro na função de ohmímetro. <u>Registe os valores lidos (das resistências que utilizou na montagem)</u>. (se visível, registe o código de cores que estas possuem ou inscrições no elemento).
- 3 Meça a queda tensão aos terminais da fonte. Registe o valor lido.

Departamento de Física Página 3/6

Lic. Eng. Informática - Física Aplicada

DFI-FSIAP- 02 Versão: 01 Data: 06/10/2020





Figura 1 – Esquema do circuito.

# 4 - COMPLETE AGORA A LIGAÇÃO À FONTE.

<u>Meça a queda de tensão</u> aos terminais de todas as resistências. Ligando o voltímetro em paralelo com as resistências a medir. <u>Registe os valores lidos</u>.

- 5 No esquema do circuito da Figura 1, remova as resistências  $R_3$ ,  $R_4$  e  $R_5$ , e coloque uma resistência de 10 M $\Omega$  a completar o circuito entre  $R_1$  e  $R_2$ . Meça <u>a queda de tensão</u> aos terminais das resistências do circuito montado.
- 6 Ainda no circuito anterior, montado no ponto 5, coloque em paralelo com a resistência de 10 M $\Omega$  uma resistência de 1 K $\Omega$ . Meça a queda de tensão aos terminais do paralelo montado.
- 7 Mantendo o esquema do circuito da Figura 1, e com recurso às mesmas resistências que utilizou no ponto 4, **remonte o circuito**, mas agora <u>de forma a que a corrente que alimenta a posição da resistência  $R_3$  seja metade da corrente que atravessa a resistência  $R_5$ . Registe o valor de todas as resistências usadas e as respetivas posições no circuito.</u>

# Análise e tratamento de dados e QUESTÕES sobre a experiência

8 - Analise o circuito montado no ponto 4, prove a Lei das Malhas.

Faça uma comparação dos resultados experimentais obtidos, com os valores teóricos previstos. Apresente o erro percentual para as diferentes diferenças de tensão encontradas.

Departamento de Física Página 4/6

Lic. Eng. Informática - Física Aplicada

DFI-FSIAP- 02 Versão: 01 Data: 06/10/2020



9 – Faça a mesma análise, do ponto anterior, utilizando a Lei das Malhas e a Lei de Ohm, mas agora para o circuito montado no ponto 5.

- 10 Faça o mesmo procedimento (do ponto anterior) mas agora para o circuito montado no ponto 6.
- 11- Da análise feita nos pontos anteriores, 9 e 10, justifique as diferenças verificadas.
- 12 De acordo com os valores usados nas resistências no ponto 4 dos procedimentos, apresente os valores das correntes indicadas na Figura 2.



Figura 2 – Correntes nos ramos.

**Questão 1** – Quando no circuito do ponto 5 dos procedimentos, realizou a medição da queda de tensão aos terminais da resistência de 10  $M\Omega$ , o valor da corrente elétrica no circuito foi alterado, pelo facto de ter efetuado a medição da queda de tensão com o voltímetro? Justifique.

**Questão 2** – Relativamente à montagem efetuada no ponto 6 dos procedimentos, as leis de Kirchhoff verificam-se? Justifique. E quanto à corrente entregue pela fonte ao circuito, ela sofre alterações pelo facto de colocarmos o voltímetro a ler a queda de tensão. Justifique.

**Questão 3** – Compare a potência fornecida ao circuito pela fonte com a potência dissipada pelos elementos passivos. Justifique. Considere o circuito montado no ponto 4 dos procedimentos.

## **Bibliografia**

Paul A. Tipler, Gene Mosca, *PHYSICS FOR SCIENTISTS AND ENGINEERS*, W. H. Freeman and Company, 2008.

Departamento de Física Página 5/6

Lic. Eng. Informática - Física Aplicada

DFI-FSIAP- 02 Versão: 01 Data: 06/10/2020



## Anexo I

# Funções principais de um multimetro



## Código de Cores

Cada cor tem um valor numérico equivalente

# Fonte de tensão em CC





A resistência tem o valor de 47000 Ohms +/- 10 % = 47 K $\Omega$  +/- 10 %

| Cor      | 1ª e 2ª Faixa  | 3ª Faixa      | 4ª Faixa   |
|----------|----------------|---------------|------------|
|          | 1° e 2° Número | Fator         | Tolerância |
|          | direto         | multiplicador | %          |
| Preto    | 0              | x 1           |            |
| Castanho | 1              | x 10          | +/- 1      |
| Vermelho | 2              | × 100         | +/- 2      |
| Laranja  | 3              | x 1,000       | +/-3       |
| Amarelo  | 4              | x 10,000      | +/- 4      |
| Verde    | 5              | x 100,000     |            |
| Azul     | 6              | x 1,000,000   |            |
| Violeta  | 7              |               |            |
| Cinzento | 8              |               |            |
| Branco   | 9              |               |            |
| Prata    |                | 0.01          | +/- 10     |
| Ouro     |                | 0.1           | +/- 5      |

Departamento de Física Página 6/6