NeSS Tutorial-2

(ECA) 18[14,20]

- 14. State whether the following exhibit odd symmetry, even symmetry, and/or half-wave symmetry: (a) $4 \sin 100t$; (b) $4 \cos 100t$; (c) $4 \cos (4t + 70^\circ)$; (d) $4 \cos 100t + 4$; (e) each waveform in Fig. 18.4.
 - 20. Make use of symmetry as much as possible to obtain numerical values for a_0 , a_n , and b_n , $1 \le n \le 10$, for the waveform shown in Fig. 18.32.

(SAS) 1.32, 3.3, 3.5

1.32. Let x(t) be a continuous-time signal, and let

$$y_1(t) = x(2t)$$
 and $y_2(t) = x(t/2)$.

The signal $y_1(t)$ represents a speeded up version of x(t) in the sense that the duration of the signal is cut in half. Similarly, $y_2(t)$ represents a slowed down version of x(t) in the sense that the duration of the signal is doubled. Consider the following statements:

- (1) If x(t) is periodic, then $y_1(t)$ is periodic.
- (2) If $y_1(t)$ is periodic, then x(t) is periodic.
- (3) If x(t) is periodic, then $y_2(t)$ is periodic.
- (4) If $y_2(t)$ is periodic, then x(t) is periodic.

For each of these statements, determine whether it is true, and if so, determine the relationship between the fundamental periods of the two signals considered in the statement. If the statement is not true, produce a counterexample to it.

3.3. For the continuous-time periodic signal

$$x(t) = 2 + \cos\left(\frac{2\pi}{3}t\right) + 4\sin\left(\frac{5\pi}{3}t\right),\,$$

determine the fundamental frequency ω_0 and the Fourier series coefficients a_k such that

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}.$$

3.5. Let $x_1(t)$ be a continuous-time periodic signal with fundamental frequency ω_1 and Fourier coefficients a_k . Given that

$$x_2(t) = x_1(1-t) + x_1(t-1),$$

how is the fundamental frequency ω_2 of $x_2(t)$ related to ω_1 ? Also, find a relationship between the Fourier series coefficients b_k of $x_2(t)$ and the coefficients a_k . You may use the properties listed in Table 3.1.

(SAS) 3.4, 3.21, 3.22(b,c), 3.23(c,d)

3.4. Use the Fourier series analysis equation (3.39) to calculate the coefficients a_k for the continuous-time periodic signal

$$x(t) = \begin{cases} 1.5, & 0 \le t < 1 \\ -1.5, & 1 \le t < 2 \end{cases}$$

with fundamental frequency $\omega_0 = \pi$.

3.21. A continuous-time periodic signal x(t) is real valued and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) are specified as

$$a_1 = a_{-1}^* = j, a_5 = a_{-5} = 2.$$

Express x(t) in the form

$$x(t) = \sum_{k=0}^{\infty} A_k \cos(w_k t + \phi_k).$$

3.22. Determine the Fourier series representations for the following signals:

(b) x(t) periodic with period 2 and

$$x(t) = e^{-t}$$
 for $-1 < t < 1$

(c) x(t) periodic with period 4 and

$$x(t) = \begin{cases} \sin \pi t, & 0 \le t \le 2\\ 0, & 2 < t \le 4 \end{cases}$$

3.23. In each of the following, we specify the Fourier series coefficients of a continuous-time signal that is periodic with period 4. Determine the signal x(t) in each case.

(c)
$$a_k = \begin{cases} jk, & |k| < 3 \\ 0, & \text{otherwise} \end{cases}$$

(d)
$$a_k = \begin{cases} 1, & k \text{ even} \\ 2, & k \text{ odd} \end{cases}$$