Electric Energy Conversion

3. Diode rectifiers

Vinícius Lacerda
Electrical Engineering Department
CITCEA-UPC

Outline

- Half-wave rectifiers
- Full-wave rectifiers
- Simulation

Introduction to rectifiers

- A rectifier is a circuit that converts an AC signal into a DC signal (AC/DC converter).
- They can be single-phase/three-phase and half/full wave.
- Ideally we would like to have a perfect DC wave, but in practice the rectifiers provide a DC wave with harmonics or ripple.

Half-wave rectifier

- The half-wave diode rectifier is the simplest rectifier configuration.
- The diode does not conduct when its reverse biased, "holding" 'the negative voltage

Half-wave rectifier

• The DC component of vo can be calculated as the average value during the complete period:

$$V_o = V_{avg} = \frac{1}{2\pi} \int_0^{\pi} V_m \sin(\omega t) d\omega t = \frac{V_m}{\pi}$$

• The DC component of the current of a purely resistive load:

$$I_o = \frac{V_o}{R} = \frac{V_m}{\pi R}$$

• The power absorbed by the load can be computed from the rms values:

$$P = I_{rms}^2 R = V_{rms}^2 / R$$

Example

• From D. Hart page 67:

For the half-wave rectifier of Fig. 3-1a, the source is a sinusoid of 120 V rms at a frequency of 60 Hz. The load resistor is 5 Ω . Determine (a) the average load current, (b) the average power absorbed by the load and (c) the power factor of the circuit.

Example

Solution

(a) The voltage across the resistor is a half-wave rectified sine wave with peak value $V_m = 120 \sqrt{2} = 169.7 \text{ V}$. From Eq. (3-2), the average voltage is V_m/π , and average current is

$$I_o = \frac{V_o}{R} = \frac{V_m}{\pi R} = \frac{\sqrt{2}(120)}{5\pi} = 10.8 \text{ A}$$

(b) From Eq. (3-3), the rms voltage across the resistor for a half-wave rectified sinusoid is

$$V_{\rm rms} = \frac{V_m}{2} = \frac{\sqrt{2}(120)}{2} = 84.9 \text{ V}$$

The power absorbed by the resistor is

$$P = \frac{V_{\rm rms}^2}{R} = \frac{84.9^2}{4} = 1440 \text{ W}$$

The rms current in the resistor is $V_m/(2R) = 17.0$ A, and the power could also be calculated from $I_{\text{rms}}^2 R = (17.0)^2 (5) = 1440$ W.

(c) The power factor is

$$pf = \frac{P}{S} = \frac{P}{V_{s, \text{rms}} I_{s, \text{rms}}} = \frac{1440}{(120)(17)} = 0.707$$

Half-wave rectifier with RL load

• When the load has an inductive element, the current has a phase with respect to the voltage, so the diode keeps forward-biased even after the voltage has drop to zero.

Half-wave rectifier with RL load

• The inductor introduces new dynamics to the circuit. When the diode is forward-biased the KVL becomes:

$$V_m \sin(\omega t) = Ri(t) + L \frac{di(t)}{dt}$$

• The current is expressed by the sum of the transient response (i_t) and the steady-state (i_{SS}) response:

$$v(t) = Ri(t) + L\frac{di(t)}{dt} \longrightarrow i(t) = i_t(t) + i_{ss}(t)$$

• We can calcualte the steady-state current using phasor analysis:

$$i_{ss}(t) = \frac{V_m}{Z}\sin(\omega t - \theta)$$
 where $Z = \sqrt{R^2 + (\omega L)^2}$ and $\theta = \tan^{-1}\left(\frac{\omega L}{R}\right)$

And the transient current is calculated by solving the ODE from the KVL:

$$i_t(t) = \frac{V_m}{Z}\sin(\theta) e^{-t/\tau}$$
 where $\tau = L/R$

Half-wave rectifier with RL load

• From the previous equations we can find the **extinction angle** ($\beta = \omega t$) that represents the moment where the current crosses zero and the diode gets reverse-biased.

$$i(\beta) = \frac{V_m}{Z} \left[\sin(\beta - \theta) + \sin(\theta) e^{-\beta/\omega \tau} \right] = 0$$

Which reduces to:

$$\sin(\beta - \theta) + \sin(\theta) e^{-\beta/\omega \tau} = 0$$

• The previous equation is solved numerically to find β .

Half-wave rectifier with freewheeling diode

- In the previous circuit, the current goes to zero every cycle because the load voltage goes negative after half-cycle.
- But if we add a freewheeling diode, we can block the negative voltage.

Vinícius Lacerda Electric Energy Conversion UPC 11/25

Half-wave rectifier with freewheeling diode

• The Fourier series of the half-wave rectified voltage across the load is:

The steady-state (phasor) current is

$$I_n = \frac{V_n}{Z_n}$$
 where $Z_n = |R + jn\omega_1 L|$

• Conclusion: the bigger the *L*, the more DC-like (less harmonics) the current will be.

Half-wave rectifier with capacitor filter

- If a capacitor is added in parallel with the load, it helps to keep the voltage more like DC.
- During the charging, the diode is forward-biased. When the source voltage becomes lower than the capacitor voltage, the diode blocks and the voltage at the load decreases with a time constant RC.

Half-wave rectifier with capacitor filter

The output voltage (load voltage) of this rectifier can be defined by these two moments:

$$v_o = egin{cases} V_m \sin \omega t & {
m Diode \ ON} \ V_m \sin(\theta) e^{-\dfrac{\omega t - heta}{\omega RC}} & {
m Diode \ OFF} \end{cases}$$
 where $\theta = an^{-1}(\omega RC) pprox \dfrac{\pi}{2}$

- When the source voltage exceeds the capacitor voltage, the diode starts conducting again.
- This angle α can be found numerically by solving

$$\sin \alpha = \sin(\theta) e^{-(2\pi + \alpha - \theta)/\omega RC}$$

• The ripple on the DC voltage (ΔV_o) is calculated as

$$\Delta V_o = V_m (1 - \sin \alpha)$$

• ΔV_o can be approximated as

$$\Delta V_o \approx V_m \left(\frac{2\pi}{\omega RC}\right) = \frac{V_m}{fRC}$$
 ripple decreases with C

Outline

- Half-wave rectifiers
- Full-wave rectifiers
- Simulation

Single-phase full-wave rectifier

• The full-wave rectifier offers more advantages compared to the half-wave rectifier, such as symmetry for the currents and less ripple.

Single-phase full-wave rectifier with RL-source load

- DC motor drives and battery chargers are examples of RL-source loads.
- In continuous mode, the current does not drop to zero:

$$I_o = \frac{V_o - V_{dc}}{R} = \frac{\frac{2V_m}{\pi} - V_{dc}}{R}$$

 In discontinuos mode, the load current can be analysed like the half-wave rectifier.

Single-phase full-wave rectifier with RL-source load - example

• For the full-wave bridge rectifier circuit of figure below, the AC source is 120 V rms at 60 Hz, $R=2~\Omega, L=10~\mathrm{mH}, \mathrm{and}~V_{dc}=80~V$. Determine the power absorbed by the DC voltage source and the power absorbed by the load resistor.

• Equations

$$v_o(t) = V_o + \sum_{n=2,4...}^{\infty} V_n \cos(n\omega_0 t + \pi)$$

where

$$V_o = \frac{2V_m}{\pi}$$
 and $V_n = \frac{2V_m}{\pi} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$

and

$$I_o = \frac{V_o - V_{dc}}{R} = \frac{\frac{2V_m}{\pi} - V_{dc}}{R}$$

Single-phase full-wave rectifier with RL-source load - example

Solution

For continuous current, the voltage across the load is a full-wave rectified sine wave which has the Fourier series given by Eq. (4-4). Equation (4-7) is used to compute the average current, which is used to compute power absorbed by the dc source,

$$I_0 = \frac{\frac{2V_m}{\pi} - V_{dc}}{R} = \frac{2\sqrt{2}(120)}{\pi} - 80$$

$$P_{dc} = I_0 V_{dc} = (14)(80) = 1120 \text{ W}$$

The first few terms of the Fourier series using Eqs. (4-4) and (4-5) are shown in Table 4-1.

Table 4-1 Fourier series components

n	V_n	Z_n	I_n
0	108	2.0	14.0
2	72.0	7.80	9.23
4	14.4	15.2	0.90

$$I_{\text{rms}} = \sqrt{14^2 + \left(\frac{9.23}{\sqrt{2}}\right)^2 + \left(\frac{0.90}{\sqrt{2}}\right)^2 + \cdots} \approx 15.46 \text{ A}$$

$$Power absorbed by the resistor is
$$P_R = I_{\text{rms}}^2 R = (15.46)^2 (2) = 478 \text{ W}$$$$

Power absorbed by the resistor is

$$P_R = I_{\text{rms}}^2 R = (15.46)^2 (2) = 478 \text{ W}$$

Three-phase rectifier

• A three-phase rectifier is commonly found in industry. It is used to create a DC voltage for large loads.

Source: HVDC Concepts, TranspowerNZ https://www.youtube.com/user/TranspowerNZ

Three-phase rectifier

• A three-phase rectifier is commonly found in industry. It is used to create a DC voltage for large loads.

Load current and source current

AC current has harmonics

Vinícius Lacerda Electric Energy Conversion UPC 21/25

Three-phase rectifier

 Since each diode conducts one-third of the time (6-pairs conducting), the load current can be calculated from the source current as:

$$I_{D,\text{avg}} = \frac{1}{3}I_{o,\text{avg}} \longrightarrow I_{D,\text{rms}} = \frac{1}{\sqrt{3}}I_{o,\text{rms}} \longrightarrow I_{s,\text{rms}} = \sqrt{\frac{2}{3}}I_{o,\text{rms}} \qquad \begin{array}{c} - \\ \hline i_a \\ + \end{array} \longrightarrow \begin{array}{c} - \\ \hline D_1 \end{array}$$

• The voltage at the load is:

$$v_o(t) = V_o + \sum_{n=6,12,18,...}^{\infty} V_n \cos(n\omega_0 t + \pi)$$

Where
$$V_o = \frac{3V_{m,L-L}}{\pi}$$
 $V_n = \frac{6V_{m,L-L}}{\pi(n^2 - 1)}$

The average voltage at the load is $V_0 = \frac{1}{\pi/3} \int_{\pi/3}^{2\pi/3} V_{m,L-L} \sin(\omega t) d(\omega t) = \frac{3V_{m,L-L}}{\pi} = 0.955 V_{m,L-L}$

peak line-to-line voltage of the source

Outline

- Half-wave rectifiers
- Full-wave rectifiers
- Simulation

Three-phase rectifier - Simulation

- 1) Simulate the following circuit.
- 2) Calculate the RMS value of source and load currents, and the ripple of the load voltage. Plot the load and source currents.
- 3) Plot the harmonics of the source current and load voltage
- 4) Design a capacitor to connect in parallel to the load to reduce DC voltage ripple to 5%.

THREE-PHASE RECTIFIER

Electric Energy Conversion

3. Diode rectifiers

Vinícius Lacerda
Electrical Engineering Department
CITCEA-UPC

