ATLab Documentation

Turbulence and Boundary Layers Group | University of Hamburg July 3, 2025

Contents

Pı	refac	e																	V
Ι	$\mathbf{U}\mathbf{s}$	er Gui	de																1
1	Gov	erning	g equations																3
	1.1	Evolu	tion equations																3
		1.1.1	Boussinesq .			 					 								3
		1.1.2	Anelastic			 													4
			Compressible																
	1.2	Thern	nodynamics																5
		1.2.1	Compressible								 								5
		1.2.2	Anelastic								 								5
		1.2.3	Mixtures			 													6

Preface

ATLab—an acronym for Atmospheric Turbulence Laboratory—is a set of tools whose aim is to efficiently solve and analyze a particular set of governing equations with a controlled accuracy. The accuracy can be controlled in different ways: comparing with analytical solutions, including linear stability analysis; grid convergence studies; balance of transport equations, like integral turbulent kinetic energy or local values at specific relevant locations (e.g., at the wall). Resolution can be measured by the ratio between the grid spacing Δx and the relevant small scales, like the Kolmogorov scale η or the thickness of the diffusion sub-layers next to the wall. For the compact schemes used here, typical values are $\Delta x/\eta \simeq 1-2$; larger values can lead to numerical instability because of the aliasing generated by the non-linear terms. Note that these schemes are non-monotone, but typical out-of-bounds deviations of conserved scalars are below $10^{-6}-10^{-8}$ relative to the mean variations, and this error is therefore negligibly small compared to the typical error associated with the statistical convergence, of the order of 1-5%. The statistical convergence can be estimated by varying the sample size of the data set, e.g. varying the domain size along the statistically homogeneous directions.

The efficiency can be measured in different ways but, ultimate, it should be related with the computational time needed to understand a particular problem with a given accuracy, and so the importance of the controlled accuracy.

Making the code user-friendly comes after the previous two main priorities: controlled accuracy and efficiency.

Last, the main documentation is the code itself and the examples. This document is only a short introduction to the equations and the tools. The code is continuously under development, so this document is continuously incomplete.

Part I User Guide

Chapter 1

Governing equations

The code is build to solve the sets of equations described in this section as efficiently as possible. These sets of equations aim to be general enough to cover several problems. The consequence is that one needs to map the particular problem to one of these generic cases, and identify the appropriate values of the parameters and defining functions (for instance, Re or b^e). Certain knowledge of the equations is therefore advantageous.

1.1 Evolution equations

1.1.1 Boussinesq

Dynamics and thermodynamics are at most coupled by the buoyancy field, and thermodynamics is not necessary (but can still be used). We consider the momentum equation and the evolution equations for an arbitrary number of scalar fields in the following form:

$$\partial_t v_i = -v_k \partial_k v_i + \partial_k \left(\operatorname{Re}^{-1} \nu \partial_k v_i \right) - \partial_i p' + \operatorname{Fr}^{-1} g_i \, b + \operatorname{Ro}^{-1} \epsilon_{ijk} f_k \, v_k \,, \qquad i = 1, 2, 3$$

$$\partial_t s_i = -v_k \partial_k s_i + \partial_k \left[(\operatorname{ReSc}_i)^{-1} \nu \partial_k s_i - \partial_k (\mathbf{j}_i)_k \right] + \omega_i \,, \qquad i = 1, \dots, n$$
(1.1a)

The dynamic variables in these equations are nondimensionalized by ρ_0 , U_0 and L_0 . The pa-

- The scalar field ν represents the kinematic viscosity. In the simplest case, it is equal to 1.
- The scalar field b represents the buoyancy, if any. The vector (g_i) gives the direction of the buoyancy force and it is constant.
- The vector fields \mathbf{j}_i represent flux terms, if any.

rameters Re, Sc, Fr and Ro need to be provided.

• The scalar fields ω_i represent source terms, if any.

These fields are defined in terms of the scalars s_k by functions $\nu^e(s_k)$, $b^e(s_k)$, $\mathbf{j}_i^e(s_k)$ and $\omega_i^e(s_k)$, to be given.

• The vector (f_i) gives the direction of the angular velocity of the frame of reference, if any. It is assumed constant.

Mass conservation,

$$\partial_k v_k = 0 \,, \tag{1.2}$$

is imposed in terms of the pressure-Poisson equation

$$\nabla^2 p' = \partial_k(\dots) \tag{1.3}$$

with the boundary conditions that result from particularizing the momentum equation at the top and bottom boundaries. Details can be found in Mellado and Ansorge [2012].

Dimensional Formulation

A dimensional formulation can be considered by substituting the parameters Reynolds, Froude and Rossby the input file (by default, tlab.ini) with Viscosity, Gravity and Coriolis. The boundary and initial conditions defined in the input file should then be given in dimensional form.

1.1.2 Anelastic

Dynamics and thermodynamics are coupled by the density. The momentum equation is formulated in terms of the dynamic pressure and the density:

$$\partial_t v_i = -v_k \partial_k v_i + \rho_{\text{bg}}^{-1} \partial_k \left(\text{Re}^{-1} \mu \partial_k v_i \right) - \rho_{\text{bg}}^{-1} \partial_i p' + \text{Fr}^{-1} g_i (1 - \rho/\rho_{\text{bg}}) + \text{Ro}^{-1} \epsilon_{ijk} f_k v_k . \quad (1.4)$$

The evolution equations for the scalars read:

$$\partial_t s_i = -v_k \partial_k s_i + \rho_{\text{bg}}^{-1} \partial_k \left[(\text{ReSc}_i)^{-1} \mu \partial_k s_i - \partial_k (\mathbf{j}_i)_k \right] + \omega_i , \qquad i = 1, \dots n$$
 (1.5)

Symbols are as explained in the Boussinesq case. The scalar field μ represents the dynamic viscosity. In the simplest case, it is equal to 1.

Mass conservation,

$$\partial_k(\rho_{\mathsf{b}\sigma}v_k) = 0 \;, \tag{1.6}$$

is imposed in terms of the pressure-Poisson equation

$$\nabla^2 p' = \partial_k(\rho_{\text{bg}} \dots) \tag{1.7}$$

with the boundary conditions that result from particularizing the momentum equation at the top and bottom boundaries

1.1.3 Compressible

Dynamics and thermodynamics are fully coupled. The pressure in the momentum equation is the thermodynamic pressure. Mass conservation is expressed in terms of the evolution equation

$$\partial_t \rho = -\partial_k (\rho v_k) \tag{1.8}$$

instead of a solenoidal constraint.

The variables in these equations are normalized by the reference scales L₀, U₀, ρ_0 and T₀, which represent a length, a velocity, a density, and a temperature, respectively. The pressure is normalized by $\rho_0 U_0^2$.

TBD

1.2 Thermodynamics

We consider n_c components (or species) with mass fractions ζ_i .

1.2.1 Compressible

The thermal equation of state is implemented as

$$p = \rho RT . (1.9)$$

The scalar field

$$R = \sum_{i=1}^{n_c} R_i \zeta_i \tag{1.10}$$

is the specific gas constant of the mixture.

The caloric equation of state is implemented as

$$h = \sum_{1}^{n_c} h_i \zeta_i , \qquad h_i = \Delta h_i^0 + \int_{T_0}^T c_{pi}(T) dT .$$
 (1.11)

Each species has a specific heat capacity c_{pi} and a specific gas constant $R_i = \mathcal{R}/W_i$, where \mathcal{R} is the universal gas constant and W_i the molar mass of the species. They are nondimensionalized by the reference values c_{p0} and $R_0 = \mathcal{R}/W_0$, respectively, which are the values of one of the species.

The thermodynamic variables are nondimensionalized as in evolution equations, i.e., the reference scales L_0 , U_0 , ρ_0 and T_0 , which represent a length, a velocity, a density, and a temperature, respectively. The pressure is normalized by $\rho_0 U_0^2$. Thermal energy variables are normalized with $c_{p0}T_0$, where c_{p0} is a reference specific heat capacity at constant pressure.

TBD

Dimensional Formulation

In this case of a multi-species, a dimensional formulation can be considered by setting the input parameter nondimensional equal to .false. in the block [Thermodynamics] of the input file (by default, tlab.ini).

1.2.2 Anelastic

The thermal equation of state is implemented as

$$p_{\rm bg} = \rho RT \ . \tag{1.12}$$

The thermodynamic variables are nondimensionalized by ρ_0 , T_0 and R_0 , such that $p_0 = \rho_0 R_0 T_0$. The default reference values are $p_0 = 10^5$ Pa and $T_0 = 298$ K. Thermal energy variables are normalized with $c_{p0}T_0$, where c_{p0} is a reference specific heat capacity at constant pressure.

The caloric equation of state is formulated in terms of the static energy

$$h = \sum_{1}^{n_c} h_i \zeta_i + \frac{\gamma_0 - 1}{\gamma_0} H^{-1}(x_3 - x_{3,0}) . \tag{1.13}$$

The scalar field c is the specific heat capacity, a function of the scalars s_i . The parameter

$$H = \frac{R_0 T_0}{g L_0} \tag{1.14}$$

is a nondimensional scale height, or the inverse of a nondimensional gravity, to be provided. The parameter

$$R_0/c_{p0} = (\gamma_0 - 1)/\gamma_0$$
, (1.15)

a conversion factor between gas constants and heat capacities (thermal equation of state and caloric equation of state). We refer to it in the code as GRATIO.

The background profiles $\{\rho_{\text{bg}}, p_{\text{bg}}, T_{\text{bg}}, \zeta_{i,\text{ref}}\}$ correspond to a state of thermodynamic and hydrostatic equilibrium. The code solves the system of equations

$$\partial_3 p_{\text{bg}} = -H^{-1} g_3 \rho_{\text{bg}} , \qquad p_{\text{bg}}|_{x_3 = x_{3,0}} = p_{\text{bg},0} ,$$
 (1.16a)

$$p_{\rm bg} = \rho_{\rm bg} R_{\rm bg} T_{\rm bg} . \tag{1.16b}$$

g is defined opposite to the gravitational acceleration (the problem is formulated in terms of the buoyancy). The two equations above relate 4 thermodynamic variables and we need two additional constraints. Typically, we impose the background profile of static energy (enthalpy plus potential energy) and the composition. If there is only one species, then $R_{\rm bg}=1$ and we only need one additional constraint.

Currently implemented only for air-water mixtures. In this case, the first scalar is the energy variable and the remaining scalars are the composition (e.g., total water specific humidity and liquid water specific humidity).

Dimensional Formulation

A dimensional formulation can be considered by setting the parameter nondimensional equal to .false., which sets GRATIO equal to 1

1.2.3 Mixtures

We consider n_c components (or species) with mass fractions ζ_i . These need not be equal to the prognostic scalar variables s_k , and the relationship between them $\zeta_i = \zeta_i^e(s_k)$ needs to be given.

In the generic case, we choose

$$\zeta_i = s_i \;, \quad i = 1, \dots, n_c - 1 \;, \tag{1.17}$$

and the last component has a mass fraction

$$\zeta_{n_c} = 1 - \sum_{i=1}^{n_c - 1} \zeta_i \ . \tag{1.18}$$

The gas constant can then be written as

$$R = \sum_{1}^{n_c} \zeta_i R_i = \sum_{1}^{n_c - 1} (R_i - R_N) , \qquad (1.19)$$

and similarly for other thermodynamic variables.

Particular cases different from this one occur for instance when we consider chemical equilibrium or phase equilibrium, or when different combinations of mass fractions might be preferable to better represent conservation properties.

Air-water mixtures in anelastic formulations

We consider the total water specific humidity as prognostic variable. If necessary, we also consider the liquid water specific humidity, which can be diagnostic in the case of phase equilibrium, or prognostic otherwise.

Bibliography

Juan Pedro Mellado and Cedrick Ansorge. Factorization of the fourier transform of the pressure-poisson equation using finite differences in colocated grids. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 92(5):380–392, 2012.