Существует **шесть** различных видов линий тренда (аппроксимация и сглаживание). Способ следует выбирать в зависимости от типа данных.

В программе ФАНЗ доступны для выбора: линейная, логарифмическая, степенная и экспоненциальная аппроксимации.

Ниже приведены практические примеры применения по каждому виду тренда, а так же предоставлены графики, по используемым в программе видам.

1. Линейная аппроксимация — это прямая линия, наилучшим образом описывающая набор данных. Она применяется в самых простых случаях, когда точки данных расположены близко к прямой. Говоря другими словами, линейная аппроксимация хороша для величины, которая увеличивается или убывает с постоянной скоростью.

Пример: прямая линия описывает стабильный рост продаж холодильников на протяжении 13 лет.

2. Логарифмическая аппроксимация полезна для описания величины, которая вначале быстро растет или убывает, а затем постепенно стабилизируется. Логарифмическая аппроксимация использует как отрицательные, так и положительные величины.

Пример: логарифмическая кривая описывает прогнозируемый рост популяции животных, обитающих в ареале с фиксированными границами. Скорость роста популяции падает из-за ограниченности их жизненного пространства.

Логарифмический тренд

3. Полиномиальная аппроксимация используется для описания величин, попеременно возрастающих и убывающих. Она полезна, например, для анализа большого набора данных о нестабильной величине. Степень полинома определяется количеством экстремумов (максимумов и минимумов) кривой. Полином второй степени может описать только один максимум или минимум. Полином третьей степени имеет один или два экстремума. Полином четвертой степени может иметь не более трех экстремумов.

Пример: полином второй степени (один максимум) описывает зависимость расхода бензина от скорости автомобиля.

4. Степенная аппроксимация полезна для описания монотонно возрастающей либо монотонно убывающей величины, например расстояния, пройденного разгоняющимся автомобилем. Использование степенной аппроксимации невозможно, если данные содержат нулевые или отрицательные значения.

Пример: зависимость пройденного разгоняющимся автомобилем расстояния от времени. Расстояние выражено в метрах, время — в секундах. Эти данные точно описываются степенной зависимостью.

5. Экспоненциальная аппроксимация полезна в том случае, если скорость изменения данных непрерывно возрастает. Однако для данных, которые содержат нулевые или отрицательные значения, этот вид приближения неприменим.

Пример: экспоненциальная линия тренда описывает содержание радиоактивного углерода — 14 в зависимости от возраста органического объекта. Значение R-

квадрат равно 1, что означает полное совпадение кривой с аппроксимируемыми данными.

6. Скользящее Использование приближения среднее. В качестве скользящего среднего позволяет сгладить колебания данных и таким образом более наглядно показать характер зависимости. Такая линия тренда строится по определенному числу точек (оно задается параметром Элементы данных усредняются, полученный результат И используется в качестве среднего значения для приближения. Так, если Шаг равен 2, первая точка сглаживающей кривой определяется как среднее значение первых двух элементов данных, вторая точка - как среднее следующих двух элементов и так далее.

Пример: зависимость числа продаж на протяжении 26 недель, полученная путем расчета скользящего среднего.