Banco de dados II

05B - Ordenação Externa

Marcos Roberto Ribeiro

Quando Ordenar Dados?

- O usuário pode precisar do resultado em alguma ordem (ex.: data de nascimento)
- Carregamento em massa para criação de índices
- Eliminação de duplicadas
- Alguns algoritmos de junção

Ordenação Externa

Ordenação de dados que não cabem na memória principal

- Nesta versão, o algoritmo usa apenas 3 páginas
- Os sub-arquivos são chamados de série
- Se o arquivo de entrada possui 2^N páginas:
 - A passagem 0 produz 2^N séries ordenadas de 1 página
 - A passagem 1 produz 2^{N-1} séries ordenadas de 2 páginas
 - A passagem 2 produz 2^{N-2} séries ordenadas de 4 páginas
 - •
 - A passagem N produz uma série ordenadas de 2^N páginas
- Em cada passagem, as páginas são lidas, ordenadas e gravadas (2 E/S por página por passagem)
- Se o arquivo possui N páginas, são feitas $\lceil \log_2 N \rceil + 1$ passagens
- O custo total será de $2N(\lceil \log_2 N \rceil + 1)$ E/S

Merge-Sort Externo

- O algoritmo anterior não aproveita todo o espaço em memória disponível
- Considerando um arquivo de N páginas e B páginas disponíveis em memória, o merge-sort externo funciona da seguinte maneira

Passagem 0: Leia B páginas por vez, ordene-as internamente e grave $\lceil N/B \rceil$ séries de B páginas

Demais Passagens: Use B-1 páginas de de entrada e uma de saída. Ordene as entradas por intercalação e grave na saída

Merge-Sort Externo

- Com a intercalação em B-1 vias o número de passagens cai para $\lceil \log_{B-1} N \rceil + 1$ (contra $\lceil \log_2 N \rceil + 1$ do algoritmo anterior)
- Normalmente B é grande e o desempenho aumenta consideravelmente

Exemplo: Arquivo de 108 páginas com 5 em memória

Passagem 0: $\lceil 108/5 \rceil = 22$ séries ordenadas de 5 páginas

Passagem 1: $\lceil 108/5 \rceil = 6$ séries ordenadas de 20 páginas

Passagem 2: $\lceil 6/4 \rceil = 2$ séries ordenadas de 80 páginas

Passagem 3: Arquivo ordenado

Redução do Número de Passagem com o Aumento de B

N	B=3	B=5	B=9	B=17	B=129	B=257
100	7	4	3	2	1	1
1.000	10	5	4	3	2	2
10.000	13	7	5	4	2	2
100.000	17	9	6	5	3	3
1.000.000	20	10	7	5	3	3
10.000.000	23	12	8	6	4	3
100.000.000	26	14	9	7	4	4
1.000.000.000	30	15	10	8	5	4

Custo de $E/S \times N$ úmero de E/S

- É importante reduzir o número de E/S
- Porém, existe o problema da E/S bloqueada (operações de E/S independentes são mais caras do que E/S em bloco)
- Podemos reduzir a E/S bloqueada com operações sobre grupos de b páginas de uma vez
- O número de passagens aumenta, mas há um equilíbrio entre o número de passagens e o custo da E/S bloqueada

Número de Passagens Considerando b = 32

N	B=1.000	B=5.000	B=10.000	B=50.000
100	1	1	1	1
1.000	1	1	1	1
10.000	2	2	1	1
100.000	3	2	2	2
1.000.000	3	2	2	2
10.000.000	4	3	3	2
100.000.000	5	3	3	2
1.000.000.000	5	4	3	3

Bufferização Dupla

- No caso da ordenação, o custo de CPU também é importante
- Seria interessante manter a CPU ocupada enquanto realizados operações de E/S

Usando Árvores B+ para Ordenação - Índice Agrupado

• Muito eficiente, os dados já estão ordenadas pelas folhas da árvore

Usando Árvores B+ para Ordenação - Índice Não Agrupado

- Pode ser menos eficiente do que varrer as páginas de dados dos arquivos
- Por quê?

Referências I

- Date, C. J. (2004). *Introdução a sistemas de bancos de dados.* Elsevier, Rio de Janeiro.
- Elmasri, R. and Navathe, S. B. (2011).

 Sistemas de banco de dados.

 Pearson Addison Wesley, São Paulo, 6 edition.
- Ramakrishnan, R. and Gehrke, J. (2008).

 Sistemas de gerenciamento de banco de dados.

 McGrawHill, São Paulo, 3 edition.
- Silberschatz, A., Korth, H. F., and Sudarshan, S. (2007). Sistema de bancos de dados.