ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

05 июня 2010г.

ФИО	№ группы

ВАРИАНТ А

1	2	3	4	5	чисто решено	оценка

1А. Параллельный пучок света от натриевой лампы проходит сквозь пару поляризатор — анализатор, у которых разрешённые направления колебаний прошедшей волны параллельны. Между ними помещена двояколучепреломляющая пластина из кальцита, вырезанная параллельно оптической оси. Жёлтый дублет натрия состоит из двух близких линий: $\lambda_1 = 589.0 \, нm$ и $\lambda_2 = 589.6 \, нm$. Показатели преломления кальцита зависят от длины волны, так что в жёлтой области спектра $n_o = 1,4860, n_e = 1,6595, \frac{dn_o}{d\lambda} = -3,53 \cdot 10^{-5} \, нm^{-1}, \frac{dn_e}{d\lambda} = -5,88 \cdot 10^{-5} \, нm^{-1}$. Определить, при какой минимальной толщине пластинки через анализатор пройдёт только одна из линий дублета натрия, причём с максимальной интенсивностью. Как в этом случае должна быть ориентирована оптическая ось?

2A. На высокодобротный интерферометр Фабри-Перо, образованный двумя плоскими зеркалами, находящимися на расстоянии $L=5\,cM$ друг от друга, падают монохроматические волны длиной $\lambda=0,6\,M$ км. Для пространственных частот падающих волн $\overrightarrow{\Omega}=(k_x,k_y)$ выполнено условие $|\overrightarrow{\Omega}| \leq \Omega_0 \, [pa\partial/cM]$. Оценить минимальное значение Ω_0 , при котором появится первое светлое кольцо в угловом распределении излучения за интерферометром. В центре дифракционной картины наблюдается светлое пятно.

3A. Протяжённый круглый монохроматический ($\lambda = 5461\,\text{Å}$) источник света в интерферометре Майкельсона (рис.) расположен в фокальной плоскости линзы \mathcal{J}_1 . Центр источника совпадает с фокусом этой линзы, а его плоскость перпендикулярна главной оптической оси. Определить минимальный диаметр D источника, если в фокальной плоскости линзы \mathcal{J}_2 наблюдается интерференционная картина из двух светлых колец, а в центре — максимум интенсивности. Линзы \mathcal{J}_1 и \mathcal{J}_2 имеют фокусное расстояние $f=1\,\text{M}$. Разность длин плеч интерферометра $l=1\,\text{CM}$.

4A. В Фурье-плоскости Φ оптической системы, изображённой на рисунке, помещена решётка с периодом $d_0 = 0.05 \, c_M$ и шириной щелей $b = 0.01 \, c_M$. Фокусное расстояние линз $f = 50 \, c_M$. При этом мультиплицированное (размноженное) и сфокусированное изображение объекта, расположенного в

передней фокальной плоскости линзы \mathcal{J}_1 и освещённого монохроматическим параллельным пучком света (длина волны $\lambda = 5\cdot 10^{-5}\,c_M$), наблюдается на экране Э, расположенном в задней фокальной плоскости линзы \mathcal{J}_2 .

- 1) Определить период мультипликации d.
- 2) Оценить число элементов размноженного изображения.
- 3) При каких смещениях экрана Э вправо на нём можно вновь наблюдать сфокусированное (и размноженное) изображение?
- 4) Каков допустимый размер объекта?

5A. Полная энергия ионизации атома лития $\mathsf{E}_{\mathrm{Li}}^{3+}$ (т.е. работа по удалению всех трёх электронов из нормального состояния в бесконечность) составляет 203,4 эB. Найти энергию $\mathsf{E}_{\mathrm{Li}}^{2+}$ ионизации атома лития до состояния Li^{2+} , т.е. работу по удалению только двух наружных электронов из нормального состояния в бесконечность, если энергия ионизации атома водорода E_{H} равна 13,6 эB.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

05 июня 2010г.

ФИО	№ группы
	- i p j 111121

ВАРИАНТ Б

1	2	3	4	5	чисто решено	оценка

1Б. Кварцевая пластинка, вырезанная параллельно главной оптической оси, помещена между двумя скрещенными поляроидами P_1 и P_2 так, что её оптические оси составляют угол 45° с плоскостями пропускания поляроидов. Через эту систему пропускают излучение, в спектре которого содержится дублет $\lambda_1 = 456,0\,\text{нм}$ и $\lambda_2 = 452,2\,\text{нм}$. Пренебрегая дисперсией показателей преломления $n_o = 1,552$ и $n_e = 1,561$ в этой области спектра, определить, при какой минимальной толщине пластинки свет с длиной волны λ_1 будет проходить через эту систему с максимальной интенсивностью, а свет с λ_2 будет сильно ослаблен.

2Б. Протяжённый круглый источник квазимонохроматического света излучает на длине волны $\lambda=0.5\,\text{мкм}$. Центр источника совпадает с фокусом линзы \mathcal{J}_1 (рис.). Оптическая система включает в себя также высокодобротный интерферометр Фабри-Перо (расстояние между зеркалами $L=5\,\text{см}$), линзу \mathcal{J}_2 , соосную с линзой \mathcal{J}_1 , и экран, расположенный в фокальной плоскости линзы \mathcal{J}_2 . Оценить, при каком

максимальном диаметре d источника на экране не будет наблюдаться ни одного кольца. Фокусное расстояние линз $f = 50 \, cm$.

3Б. На параллельно расположенные стеклянную и кремниевую пластинки, образующие низкодобротный интерферометр Фабри-Перо, падает плоская монохроматическая волна. После многократных отражений кремниевая пластинка полностью поглощает проникающий в неё свет. Найти отношение I_{max}/I_{min} — максимальной к минимальной интенсивности света, прошедшего через стеклянную пластинку и поглощённого кремнием, если изменять расстояние d между ними. Коэффициенты преломления стекла и кремния равны соответственно $n_{max} = 1.5$ и $n_{max} = 3.5$ Лостаточно (но не обязательно)

соответственно $n_{cm} = 1,5$ и $n_{\kappa p} = 3,5$. Достаточно (но не обязательно) ограничиться двумя интерферирующими волнами, падающими на кремний (двулучевое приближение).

4Б. В оптической схеме, показанной на рисунке, предмет-транспарант расположен в передней фокальной плоскости линзы \mathcal{J}_1 и освещён параллельным пучком монохроматического света (длина волны $\lambda = 5 \cdot 10^{-5} \, cm$). В Фурье-плоскости Φ помещают решётку с узкими щелями. При этом на экране Э, расположенном в задней фокальной плоскости линзы \mathcal{J}_2 , возникает мультиплицированное (размноженное) изображение объекта. При смещении экрана вправо

(размноженное) изображение объекта. При смещении экрана вправо изображение становится размытым (расфокусированным), однако при смещении на $l_1 = 4\, M$ изображение вновь становится резким (сфокусированным). Фокусное расстояние линз $f = 50\, cM$.

- 1) Определить период решётки d_0 .
- 2) Определить период мультипликации d (т.е. расстояние между элементами наблюдаемой периодической структуры).
- 3) Каков при этом допустимый размер предмета а?

5Б. В рамках боровской модели атома водорода, в которой электрон вращается вокруг ядра по круговым орбитам, определить величину индукции магнитного поля B в центре второй боровской орбиты, где находится ядро (протон). Как относятся величины поля B, когда электрон находится на первой и третьей орбитах?