AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

SPECIALIZED ENGINEERING PROGRAMS
JUNIOR COMMUNICATION ENGINEERING PROGRAM

SPRING 2022 Assignment #5 Total: 5 marks

PHM212s: Special Functions, Complex Analysis & Numerical Analysis

Instructor Name: Dr. Makram Roshdy, Dr. Betty Nagy

Name: ID: Deadline: Week 14

Please, Solve each problem in its assigned place ONLY (the empty space below it)

Numericl solution of Ordinary Differential Equations

Use at least 4 decimal places in your calculations

- 1) y' = x + y, y(0) = 0. Find y(0.4) using the following:
 - a) Exact Method

b) Euler Method with h = 0.1

PHM212s: Spec	cial Functions, Complex Analysis & Numerical Analysis	
Name:	ID:	2/8

c) Euler Method with 10 steps

PHM212s: Special Functions, Complex Analysis & Numerical Analysis		
Name:	ID:	3/8

d) Runge-Kutta Method with h = 0.4

e) Runge-Kutta method with 2 steps.

	PHM212s: Special	Functions,	Complex	Analysis	& Nu	merical	Analys	is
--	------------------	------------	---------	----------------------------	------	---------	--------	----

Name: ID: 4/8

2) y' = x - y , y(1) = 2. Find y(0.5) using Runge-Kutta method with 2 steps.

Name: ID: 5/8

3) x' = x - y - t, y' = 4x - 2y, x(0) = 1 & y(0) = 0Find x(0.2)& y(0.2) using Runge-Kutta method with h=0.1

PHM212s: Special Functions, Complex Analysis & Numerical Analysis

Name: ID: 6/8

4) $x'' + t^2x' + 3x = t$, x(0) = 1 & x'(0) = 2Find x(0.2) using Runge-Kutta method with h=0.1

PHM212s: Special Functions, Complex Analysis & Numerical Analysis			
Name:	ID:	7/8	

Numericl solution of Partial Differential Equations

5) Find U (x, y) such that $\nabla^2 U(x,y) = 0$ over a rectangle 20 x 15 cm using a grid with step size h = 5, and the boundary conditions: U (x, 0) = 0, U (x, 15) = 0, U (0, y) = 0, U (20, y) = 100. Use Gauss-Seidel method to solve the resulting linear system. **Accurate to 2D**

Name: ID: 8/8

6) Solve (using **h = 1/3**) the Dirichlet problem

$$\nabla^2 u(x, y) = 3(x^2 + y^2) \quad in \quad R$$
and $u(x, y) = y - x \quad on \quad \partial R$

Here ∂R is the boundary of R and R is the region in the unit square $0 \le x \le 1$ and $0 \le y \le 1$. Perform 5 steps of Gauss-Seidel method with the initial approximation $u_{11}^{(0)} = u_{12}^{(0)} = u_{21}^{(0)} = u_{22}^{(0)} = 0$.