Algoritmos em Grafos

Rômulo César Silva

Unioeste

Agosto de 2021

Sumário

- Buscas
- Ordenação Topológica
- Componentes Conexas
- 4 Componentes Fortemente Conexas
- Menor Caminho
- 6 Fecho Transitivo em Grafos Orientados
- Árvore Geradora Mínima
- 8 Fluxo em Redes
- 9 Emparelhamento Máximo em Grafos Bipartidos
- Bibliografia

Estruturas de dados:

- cor[u]: usado para indicar em que etapa se econtra a exploração do vértice u:
 - branco: não explorado
 - cinza: explorado, mas ainda sem explorar os adjacentes
 - preto: explorado e vértices adjacentes também explorados
- $\pi[v] = u$ indica que u precede v no grafo de busca
- d[u]: timestamp de descoberta de u
- f[u]: timestamp de término da exploração de u e vértices adjacentes a u
- Adj[u]: vértices adjacentes a u


```
procedure DFS(G)
        for each u \in V[G] do
 3:
            cor[u] \leftarrow branco
 4:
            \pi[u] \leftarrow NIL
 5:
        end for
 6:
        timestamp \leftarrow 0
                                                                        7:
        for each u \in V[G] do
 8:
            if cor[u] = branco then
 9:
                DFS_visit(u)
10:
            end if
11:
        end for
12: end procedure
```



```
procedure DFS_VISIT(u)
 2:
         cor[u] \leftarrow cinza
 3:
         timestamp \leftarrow timestamp + 1
 4:
         d[u] \leftarrow timpestamp
 5:
        for each v \in Adj[u] do
 6:
            if cor[v] = branco then
 7:
                \pi[v] \leftarrow u
 8:
                DFS_visit(v)
                                                             9:
            end if
10:
         end for
11:
         cor[u] \leftarrow preto
                                                               terminou adjacências de u
12:
         timestamp \leftarrow timestamp + 1
13:
         f[u] \leftarrow timestamp
14:
    end procedure
```


Complexidade:

- procedimento DFS:
 - linhas 02 a 05:Θ(V)
 - linhas 07 a 11, excluindo a chamada de DFS_visit: $\Theta(V)$
- procedimento DFS_visit:
 - executado exatamente uma vez para cada vértice
 - linhas 05 a 10: $\Theta(E)$, pois corresponde às adjacências de cada vértice (número de arestas)
- procedimento DFS incluindo chamada DFS_visit: $\Theta(V+E)$

Observações:

- caso o grafo seja conexo, as arestas escolhidas fazem parte da árvore de busca em profundidade
- caso o grafo seja desconexo, as arestas escolhidas fazem parte da floresta de busca em profundidade: nesse caso DFS_visit é chamada mais de uma vez

Considere o grafo abaixo tal que seja usada a representação de listas de adjacência em que os vértices estão inseridos nas listas em ordem crescente, conforme a figura abaixo.

Após a execução das linhas 02-06 de DFS, teremos os seguintes valores nas variáveis:

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	В	NIL		
1	В	NIL		
2	В	NIL		
3	В	NIL		
4	В	NIL		
5	В	NIL		
6	В	NIL		
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	R	NIII		

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	С	NIL	1	
1	С	0	2	
2	В	NIL		
3	В	NIL		
4	В	NIL		
5	В	NIL		
6	В	NIL		
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NIL		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	В	NIL		
4	В	NIL		
5	В	NIL		
6	В	NIL		
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	B	NII		

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	В	NIL		
4	В	NIL		
5	В	NIL		
6	С	2	4	
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	B	NII		

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	С	6	5	
4	В	NIL		
5	В	NIL		
6	С	2	4	
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NII		

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	С	6	5	
4	С	3	6	
5	В	NIL		
6	С	2	4	
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NII		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	С	6	5	
4	Р	3	6	7
5	В	NIL		
6	С	2	4	
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	B	NII		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	С	6	5	
4	Р	3	6	7
5	С	3	8	
6	С	2	4	
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NIL		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	С	6	5	
4	Р	3	6	7
5	Р	3	8	9
6	С	2	4	
7	В	NIL		
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	B	NII		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	С	6	5	
4	Р	3	6	7
5	Р	3	8	9
6	С	2	4	
7	С	3	10	
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NII		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	С	6	5	
4	Р	3	6	7
5	Р	3	8	9
6	С	2	4	
7	Р	3	10	11
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	B	NII		

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	С	2	4	
7	Р	3	10	11
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NIL		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	С	1	3	
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NIL		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	С	0	2	
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	B	NII		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	С	NIL	1	
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	В	NIL		

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	В	NIL		
9	В	NIL		
10	В	NIL		
11	B	NII		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	С	NIL	17	
9	В	NIL		
10	В	NIL		
11	В	NIL		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	С	NIL	17	
9	С	8	18	
10	В	NIL		
11	В	NIL		

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	С	NIL	17	
9	С	8	18	
10	В	NIL		
11	С	9	19	

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	С	NIL	17	
9	С	8	18	
10	С	11	20	
11	C	9	19	

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	С	NIL	17	
9	С	8	18	
10	Р	11	20	21
11	С	9	19	

и	cor[u]	$\pi[u]$	d[u]	f[u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	С	NIL	17	
9	С	8	18	
10	Р	11	20	21
11	Р	9	19	22

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	С	NIL	17	
9	Р	8	18	23
10	Р	11	20	21
11	Р	9	19	22

и	cor[u]	$\pi[u]$	d[u]	f [u]
0	Р	NIL	1	16
1	Р	0	2	15
2	Р	1	3	14
3	Р	6	5	12
4	Р	3	6	7
5	Р	3	8	9
6	Р	2	4	13
7	Р	3	10	11
8	Р	NIL	17	24
9	Р	8	18	23
10	Р	11	20	21
11	Р	9	19	22

Propriedades:

Para quaisquer 2 vértices u e v, alguma das seguinte situações ocorre:

- os intervalos [d[u], f[u]] e [d[v], f[v]] são inteiramente disjuntos
- o intervalo [d[u], f[u]] está inteiramente dentro do intervalo [d[v], f[v]]. Nesse caso, u é descendente de v na árvore de busca em profundidade
- o intervalo [d[v], f[v]] está inteiramente dentro do intervalo [d[u], f[u]]. Nesse caso, v é descendente de u na árvore de busca em profundidade

A Busca em Profundidade pode ser usada para classificar as arestas em:

- tree edge (aresta da árvore): aresta escolhida durante o processo de busca. (u, v) é aresta da árvore de busca se v foi descoberto pela exploração da aresta (u, v)
- **back edge** (aresta de retorno): são aquelas arestas (u, v) tal que v é ancestral de u na árvore de busca
- forward edge: são aquelas arestas (u, v) tal que v é descendente de u na árvore de busca
- cross edge: todas as outras arestas

(u, v) pode ser classificada de acordo com a cor do vértice v, atingido quando a aresta é explorada pela primeira vez:

branco: aresta da árvore

cinza: aresta de retorno

• preto: forward ou cross

Observações:

- em grafo não-orientado, cada aresta é aresta da ávore ou aresta de retorno.
- (u, v):
 - é aresta da árvore ou *forward* se e somente d[u] < d[v] < f[v] < f[u]
 - é aresta de retorno se e somente se d[v] < d[u] < f[u] < f[v]
 - é cross se e somente se d[v] < f[v] < d[u] < f[u]

Estruturas de dados:

- cor[u]: usado para indicar em que etapa se econtra a exploração do vértice u:
 - branco: não explorado
 - cinza: explorado, mas ainda sem explorar os adjacentes
 - preto: explorado e vértices adjacentes também explorados
- $\pi[v] = u$ indica que u precede v no grafo de busca
- d[u]: distância do vértice inicial s até o vértice u
- Q: fila que gerencia os nós de cor cinza
- Adj[u]: vértices adjacentes a u


```
procedure BFS_VISIT(G, s)
            ▷ s é vertice inicial da busca
            for each u \in V[G] - \{s\} do
  4:
                cor[u] \leftarrow branco
 5:
6:
7:
8:
9:
                d[u] \leftarrow \infty
                \pi[u] \leftarrow NIL
            end for
            cor[s] \leftarrow cinza
            \pi[s] \leftarrow NIL
10:
            d[s] \leftarrow 0
11:
            Q \leftarrow \{s\}
12:
            while Q \neq \emptyset do
13:
                u \leftarrow head[Q]
14:
                for each v \in Adj[u] do
15:
                     if cor[v] = branco then
16:
                         cor[v] ← cinza
17:
                         d[v] \leftarrow d[u] + 1
18:
                         \pi[v] \leftarrow u
19:
                         enqueue(Q, v)
20:
21:
22:
23:
                     end if
                end for
                dequeue(Q)
                cor[u] \leftarrow preto
24:
            end while
       end procedure
```

Dotém a cabeca da fila

▷ insere v na fila

▷ remove a cabeça da fila

Complexidade:

- linhas 03 a 07:Θ(V)
- as operações de fila (enqueue e dequeue) tomam tempo O(1) cada. Como cada vértice é enfileirado/desenfileirado uma única vez, o total é O(V)
- como a lista de adjacência de cada vértice é varrida uma única vez, o total é O(E)
- tempo total de BFS: O(V + E)

Observações:

- o procedimento BFS constrói uma árvore de busca em largura
- as arestas u, v) escolhidas fazem parte do menor caminho enre o vértice inicial s e os demais vértices
- se o grafo for desconexo, os vértices v que não estão na mesma componente conexa do vértice inicial s terão $d[v] = \infty$

Considere o grafo abaixo tal que seja usada a representação de listas de adjacência em que os vértices estão inseridos nas listas em ordem crescente, conforme a figura abaixo, e que a busca se inicie pelo vértice 0 (zero).

Após a execução de BFS até a linha 11:

и	cor[u]	$\pi[u]$	d[u]
0	С	NIL	0
1	В	NIL	∞
2	В	NIL	∞
3	В	NIL	∞
4	В	NIL	∞
5	В	NIL	∞
6	В	NIL	∞
7	В	NIL	∞
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	R	NIII	\sim

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	С	0	1
2	В	NIL	∞
3	С	0	1
4	С	0	1
5	В	NIL	∞
6	В	NIL	∞
7	В	NIL	∞
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	Р	0	1
2	С	1	2
3	С	0	1
4	С	0	1
5	В	NIL	∞
6	В	NIL	∞
7	В	NIL	∞
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	Р	0	1
2	С	1	2
3	Р	0	1
4	С	0	1
5	С	3	2
6	С	3	2
7	С	3	2
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	Р	0	1
2	С	1	2
3	Р	0	1
4	Р	0	1
5	С	3	2
6	С	3	2
7	С	3	2
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	Р	0	1
2	Р	1	2
3	Р	0	1
4	Р	0	1
5	С	3	2
6	С	3	2
7	С	3	2
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	Р	0	1
2	Р	1	2
3	Р	0	1
4	Р	0	1
5	Р	3	2
6	С	3	2
7	С	3	2
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	Р	0	1
2	Р	1	2
3	Р	0	1
4	Р	0	1
5	Р	3	2
6	Р	3	2
7	С	3	2
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

и	cor[u]	$\pi[u]$	d[u]
0	Р	NIL	0
1	Р	0	1
2	Р	1	2
3	Р	0	1
4	Р	0	1
5	Р	3	2
6	Р	3	2
7	Р	3	2
8	В	NIL	∞
9	В	NIL	∞
10	В	NIL	∞
11	В	NIL	∞

Assumindo que o procedimento BFS já tenha sido executado, o procedimento abaixo imprime os vértices que compõem o menor caminho entre o vértice inicial s e o vértice v:

```
procedure ImprimeCaminho(G, s, v)
 2:
        if v = s then
 3:
            print(s)
 4:
        else
 5:
            if \pi[v] = NIL then
 6:
               print não existe caminho de s para v
 7:
            else
 8:
               ImprimeCaminho(G,s,\pi[v])
 9.
               print(v)
10:
            end if
11:
        end if
12: end procedure
```

Ordenação Topológica

Ordenação Topológica

Dado um grafo orientado acíclico G = (V, E) com n vértices, uma **ordenação topológica** em G consiste em rotular os vértices de 1 até n tal que, se o vértice v possui número k, então todos os vértices que podem ser atingidos a partir de v por um caminho orientado possuem numeros maior que k.

Esquema:

Ordenação Topológica

Observação:

- se G = (V, E) é grafo orientado acíclico, então existe pelo menos um vértice cujo grau de entrada é zero (**fonte**)
- se G = (V, E) é grafo orientado acíclico, então existe pelo menos um vértice cujo grau de saída é zero (ralo)

ldeia usando busca em profundidade: após calcular f[v], inserir o vértice v na cabeça de uma lista.

Ordenação Topológica

- 1: function OrdenacaoTopologica(G)
- 2: \triangleright entrada: grafo G
- 3: \triangleright saída: lista L com os nós na ordem topológica
- 4: $L \leftarrow \emptyset$ ightharpoonup lista de vértices
- 5: DFS(G) \triangleright para calcular f[v] e logo após inserir v na cabeça de L
- 6: **return** *L*
- 7: end function

Complexidade:

- inserção na lista: O(1)
- DFS modificada: O(V + E)
- ordenação topológica (total): O(V + E)

Estruturas de dados:

- g_{in}: vetor com grau de entrada de todos os vértices
- Q: fila
- ordem: variável global para controlar a ordem de vértices
- v.ordem: ordem do vértice v na ordenação topológica

```
1: procedure OrdTopologica(G)
         ⊳ entrada: grafo G
 3:
         ordem \leftarrow 1
 4:
         Q \leftarrow \emptyset

⊳ fila vazia

 5:
         calcular g_{in} \forall v \in V[G]
 6:
         for i \leftarrow 1, ..., n do
 7:
             if g_{in}[i] = 0 then
 8:
                 enqueue(Q, v_i)
 9:
             end if
10:
         end for
11:
         while Q \neq \emptyset do
12:
             v \leftarrow dequeue(Q)
13:
             v.ordem \leftarrow ordem
14:
             ordem \leftarrow ordem + 1
15:
             for each (v, w) \in E do
                                                            16:
                  g_{in}[w] \leftarrow g_{in}[w] - 1
17:
                 if g_{in}[w] = 0 then
18:
                     enqueue(Q, w)
19:
                 end if
20:
             end for
21:
         end while
     end procedure
```

Considere o grafo abaixo, já exibindo os valores das variáveis após a execução das linhas 03-10:

- como todo grafo orientado acíclico tem pelo menos um vértice cujo grau de entrada é zero, este vértice deve ser o primeiro na ordem topológica
- a fila controla a ordem de exploração dos vértices
- ao se explorar a aresta (u, v) decrementa-se o grau de entrada do vértice v

Complexidade: O(V + E)

Componentes Conexas

- somente para grafos não-orientados
- usar DFS modificada: criar variável para contar quantas árvores são obtidas pela busca

Componentes Conexas

```
1: procedure ComponentesConexas(G)
       ⊳ entrada: grafo G
 3:
       nroComp \leftarrow 0
                                                                 ▷ variável global
 4:
       DFS_cc(G)
    end procedure
    procedure DFS_{-CC}(G)
 2:
       DFS modificada
 3:
       for each u \in V[G] do
 4:
           cor[u] \leftarrow branco
 5:
       end for
 6:
       for each u \in G[G] do
 7:
           if cor[u] = branco then
 8:
              DFS_visit(u)
9.
              nroComp \leftarrow nroComp + 1
                                                 10:
           end if
11:
       end for
12: end procedure
```

Componentes Fortemente Conexas

Grafo Transposto

Seja G = (V, E) grafo orientado. O grafo transposto de G, denotado por G^T , é dado por $G^T = (V, E^T)$, em que $E^T = \{(u, v) | (v, u) \in E\}$.

- o grafo transporto G^T tem as mesmas componentes fortemente conexas do grafo G
- fazer uma modificação na DFS para encontrar as componentes fortemente conexas

Componentes Fortemente Conexas

- 1: procedure CFC(G)
- 2: usar DFS(G) para calcular $f[u] \forall u \in V$
- 3: calcular \hat{G}^T
- 4: usar DFS(G^T), mas no *loop* principal considerar os vértices em ordem decrescente de f[u]
- 5: imprimir os vertices de cada árvore DFS da linha 04 como uma componente fortemente conexa separada
- 6: end procedure

Complexidade:

- DFS(G): $\Theta(V+E)$
- DFS(G^T): $\Theta(V + E)$
- tempo total: $\Theta(V+E)$

Variantes:

- único destino: de todos os vértices para um único vértice
- entre vértice-origem e vértice-destino
- única origem para todos os vértices
- entre todos os pares de vértices

Problema de Menor Caminho

Seja G=(V,E) grafo orientado com pesos (custos) associados às arestas através de função $w:E\to\mathbb{R}$

O peso (custo) do caminho $p = \langle v_0, v_1, ..., v_k \rangle$ é dado por:

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$

O menor caminho entre u e v é dado por:

$$\delta(u, v) = \begin{cases} \min\{ w(p) : p \text{ \'e caminho de } u \text{ para } v \} \\ \infty \text{ se n\~ao existe caminho de } u \text{ para } v \end{cases}$$

Observações:

- se há arestas de peso negativo, então se elas participam de um ciclo, o peso do ciclo não pode ser negativo, pois $\delta(u,v)$ seria $-\infty$
- Propriedade básica do menor caminho:
 - se $p = \langle v_1, v_2, ..., v_k \rangle$ é o menor caminho de v_1 para v_k , então $\forall i, j$ com $1 \leq i \leq j \leq k$, o subcaminho $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ é o menor caminho de v_i para v_j
 - resumindo: subcaminhos de menor caminho também são caminhos mínimos
 - problema apresenta o princípio da subestrutura ótima em problemas de otimização

- Estruturas de dados:
 - d[v]: custo estimado do menor caminho até v
 - $\pi[v]$: predecessor de v no menor caminho
 - w(u, v): peso da aresta (u, v)
- relaxação: método que repetidamente diminui o limite superior do peso do menor caminho, usado em vários algoritmos

Relaxação:

```
1: procedure RELAX(u, v)

2: 
ightharpoonup Relaxação

3: if d[v] > d[u] + w(u, v) then

4: d[v] \leftarrow d[u] + w(u, v)

5: \pi[v] \leftarrow u

6: end if

7: end procedure
```

▷ custo pode ser diminuído
 ▷ atualiza o custo
 ▷ armazena o predecessor

variante escolhida: único vértice inicial (origem)

```
1: procedure INICIALIZAORIGEM(G, s)
2: \triangleright s é vertice de origem
3: for each v \in V[G] do
4: d[v] \leftarrow \infty
5: \pi[v] \leftarrow NIL
6: end for
7: d[s] \leftarrow 0 \triangleright distância da origem para ela mesma é zero
8: end procedure
```

- Pré-requisitos:
 - único vértice de origem
 - apenas arestas com pesos não-negativos (i.e, $w(u, v) \ge 0$)
- estruturas de dados:
 - Q: fila de prioridade usando d[v]
 - S: conjunto de vértices destino com menores caminhos já calculados

```
procedure DIJKSTA(G, s)
 2:
          ▷ s é vertice de origem
 3:
          InicializaOrigem(G, s)
 4:
          S \leftarrow \emptyset
 5:
          Q \leftarrow V[G]
 6:
          while Q \neq \emptyset do
 7:
              u \leftarrow extraiMinimo(Q)
 8:
              S \leftarrow S \cup \{u\}
 9:
              for each v \in Adj[u] do
10:
                   Relax(u, v)
11:
              end for
12:
          end while
     end procedure
```

 \triangleright fila de prioridade usando d[v]

- utiliza uma **estratégia gulosa**: sempre escolhe o vértice mais próximo (menor peso) em V-S para ser incluído em S
- no fim do algoritmo: $d[u] = \delta(s, u)$
- complexidade:
 - $O(V^2)$: se a fila Q é implementada como um vetor
 - $O(E \lg V)$: se a fila Q é implementada como um heap binário
 - $O(V \lg V + E)$: se a fila Q é implementada como um heap de Fibonacci

Considere o grafo abaixo tal que seja usada a representação de matriz adjacência:

Considerando o vértice a como origem, após a execução das linhas 03-05, antes de entrar no *loop*, as estruturas de dados serão:

и	$\pi[u]$	d[u]
а	NIL	0
b	NIL	∞
С	NIL	∞
d	NIL	∞
е	NIL	∞
f	NIL	∞
g	NIL	∞
h	NIL	∞
i	NIL	∞
j	NIL	∞
k	NIL	∞
-	NIL	∞

и	$\pi[u]$	d[u]
а	NIL	0
b	а	8
С	NIL	∞
d	а	6
е	а	3
f	NIL	∞
g	NIL	∞
h	NIL	∞
i	NIL	∞
j	NIL	∞
k	NIL	∞
\top	NIL	∞

 $S:\{a,e\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	NIL	∞
d	е	4
е	а	3
f	NIL	∞
g	NIL	∞
h	NIL	∞
i	NIL	∞
j	NIL	∞
k	NIL	∞
\top	NIL	∞

 $S : \{a, e, b\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	b	14
d	е	4
е	а	3
f	NIL	∞
g	NIL	∞
h	NIL	∞
i	NIL	∞
j	NIL	∞
k	NIL	∞
	NIL	∞

 $S:\{a,e,b,d\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	b	14
d	е	4
е	а	3
f	d	21
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
\neg	NIL	000

 $S:\{a,e,b,d,h\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	а	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
	NIL	∞

 $S:\{a,e,b,d,h,g\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	а	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
	NIL	∞

 $S:\{a,e,b,d,h,g,c\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	а	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
	NIL	∞

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	а	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
	NIL	∞

 $S:\{a,e,b,d,h,g,c,f,i\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	а	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
\top	NIL	∞

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	а	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
\Box	NIL	∞

 $S:\{a,e,b,d,h,g,c,f,i,j,k\}$

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	а	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
	NIL	∞

и	$\pi[u]$	d[u]
а	NIL	0
b	е	3
С	h	9
d	е	4
е	a	3
f	h	11
g	d	9
h	d	6
i	NIL	∞
j	NIL	∞
k	NIL	∞
\Box	NIL	∞

- pré-requisito: único vértice de origem
- grafo orientado
- arestas podem ter peso negativo
- caso exista ciclo de peso negativo, o algoritmo retorna false
- complexidade: O(VE)

```
function BellmanFord(G, s)
       ▷ s é vertice de origem
 3:
       InicializaOrigem(G, s)
 4:
       for i \leftarrow 1, ..., |V| - 1 do
 5:
           for each (u, v) \in E do
 6:
               Relax(u, v)
 7:
           end for
 8:
        end for
 9:
        for each (u, v) \in E do
10:
           if d[v] > d[u] + w(u, v) then
11:
              return false
                                                     12:
           end if
13:
        end for
14:
                                                      > cálculo efetuado com êxito
        return true
15: end function
```

Considere o grafo abaixo tal que o vértice de origem seja a e seja usada a representação de listas de adjacência:

Após a execução da linha 03, as estruturas de dados terão:

и	$\pi[u]$	d[u]
а	NIL	0
b	NIL	∞
С	NIL	∞
d	NIL	∞
е	NIL	∞
f	NIL	∞
g	NIL	∞
h	NIII	\sim

Considerando que as arestas serão varridas na ordem lexicográfica:

$$\{(a,b),(a,d),(a,e),(b,c),(c,b),(c,h),(d,a),(d,f),(d,g),(e,b),(e,d),(f,h),(h,d)\}$$

$$i = 1$$
:

L	ı	$\pi[u]$	d[u]
a	1	NIL	0
b)	JHL a∕ e	∞ 11 8
-	:	J¥HĽ b	∞ 8
C	ł	JHL a∕ e	∞ ø 2
-	9	∭ a	∞ 3
f	•	J\H∑ d	∞6
	5	∭ d	∞ 11
	1	NH d f	V 11 4

i = 2:

и	$\pi[u]$	d[u]
а	NIL	0
b	е	8
С	þb	8 5
d	е	2
е	a	3
f	øld	ø 2
g	ødd	<i>1</i> 17
h	f f	4 0

A partir de i = 3, não há mais alterações, ficando os seguintes valores:

и	$\pi[u]$	d[u]
а	NIL	0
b	е	8
С	b	5
d	е	2
е	а	3
f	d	2
g	d	7
h	f	0

Observações:

- o número de repetições do *loop* externo é V-1 porque o tamanho máximo de um caminho mínimo é V-1 arestas
- como em muitos grafos o número máximo de arestas em qualquer caminho mínimo é substancialmente menor que V – 1, algumas poucas rodadas de atualizações são necessárias. Portanto, faz sentido adicionar uma verificação extra no algoritmo para terminá-lo imediatamente depois de qualquer rodada em que nenhuma atualização ocorreu.
- as linhas 09-13 fazem uma rodada adicional para detectar a presença de ciclo negativo, detectado pela possiblidade de melhorar o caminho mínimo mais que V-1 vezes

- pré-requisito: único vértice origem
- o problema de menores caminhos em grafos orientados acíclicos está sempre bem definido, pois não existem ciclos. Logo não há ciclos negativos
- se existe caminho de u para v, então u precede v na ordem topológica, e também no menor caminho
- Complexidade: O(V + E)


```
procedure MenorCaminhoGrafoOrientadoAcicLico(G, s)
2:
      ▷ s é vertice de origem
3:
      InicializaOrigem(G, s)
4:
      for each u tomado em ordem topológica do
5:
          for each v \in Adj[u] do
6:
             Relax(u, v)
7:
          end for
8:
      end for
   end procedure
```

Considere o grafo da figura abaixo. Uma ordem topológica válida é c, d, b, a, e, f.

Considere o vértice d como origem. Os valores nas estruturas de dados após a execução da linha 03:

и	$\pi[u]$	d[u]
а	NIL	∞
b	NIL	∞
С	NIL	∞
d	NIL	0
е	NIL	∞
f	NII	\sim

и	$\pi[u]$	d[u]
а	J¥K d	∞ 6
b	J¥K d	∞ 2
С	NIL	∞
d	NIL	0
е	JHL b a	∞ ø 5
f	NHT be	∞ 4 3

Observação: o algoritmo anterior pode ser usado para calcular o caminho mais longo em grafo orientados acíclicos. Basta que se troquem os sinais dos pesos das arestas. Assim, o menor caminho no grafo com os pesos modificados corresponderá ao caminho mais longo no grafo original.

- pré-requisito: ausência de ciclos negativos
- calcula o menor caminho entre todos os pares de vértices
- estrutura de dados: matriz adjacência modificada $W=w_{ij}$, onde:

$$w_{ij} = \begin{cases} 0 & \text{se} \quad i = j \\ w(i,j) & \text{se} \quad i \neq j \text{ e } (i,j) \in E \\ \infty & \text{se} \quad i \neq j \text{ e } (i,j) \notin E \end{cases}$$

- usa a técnica de Programação Dinâmica
- estrutura de dados: matriz $D^{(k)}$, que armazena o custo do menor caminho com até k vértices intermediários
- complexidade: $O(V^3)$

```
function FloydWarshall(W)
 2:
        ⊳ entrada:W é matriz adjacência modificada
 3:
        4:
        D^{(0)} \leftarrow W
                                                                 atribuição de matrizes
 5:
        for k \leftarrow 1, ..., |V| do
 6:
            for i \leftarrow 1, ..., |V| do
 7:
                for i \leftarrow 1, ..., |V| do
                    d_{ii}^{(k)} \leftarrow min\{d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\}
 8:
 9:
                end for
10:
            end for
11:
        end for
12:
        return D
13: end function
```

Considere o grafo abaixo. Aplicando o algoritmo, a matriz não sofre mais alterações a partir de $D^{(4)}$

$$D^{(1)} = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix} \quad D^{(2)} = \begin{bmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{bmatrix}$$

$$D^{(3)} = \begin{bmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{bmatrix} \qquad D^{(4)} = \begin{bmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

$$D^{(4)} = \begin{bmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \end{bmatrix}$$

Fecho Transitivo

Fecho Transitivo

Dado grafo orientado G = (V, E), o **fecho transitivo** de G é definido como sendo o grafo $G^* = (V, E^*)$ onde:

$$E^* = \{(i, j) : \text{ existe caminho de } i \text{ para } j \text{ em } G\}$$

Basicamente correponde a determinar se existe caminho entre todos os pares de vértices.

Fecho Transitivo

- ideia do algoritmo: atribuir peso 1 a cada aresta e executar o algoritmo de Floyd-Warshall
- estrutura de dados: matriz booleana $t_{ij}^{(k)}$, que indica se existe caminho em G de i para j com no máximo k arestas.
- complexidade: $O(V^3)$

Fecho Transitivo de Grafos Orientados

```
function FechoTransitivo(G)

⊳ saída: matriz T contendo o fecho transitivo

 3:
          for k \leftarrow 1, ..., |V| do

⊳ inicialização da matriz T

               for i \leftarrow 1, ..., |V| do
 5:
                    if i = j or (i, j) \in E then
 6:
 7:
                   else
 8:
 9.
                   end if
10:
               end for
11:
          end for
12:
          for k \leftarrow 1, ..., |V| do
13:
               for i \leftarrow 1, ..., |V| do
                   for j \leftarrow 1, ..., |V| do
14:
                        t_{ii}^{(k)} \leftarrow t_{ii}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)})
15:
16:
                   end for
17:
               end for
18:
          end for
19.
          return T^{(|V|)}
20:
     end function
```

Árvore Geradora

Dado um grafo G = (V, E), uma **árvore geradora** é um subgrafo $T = (V, E^T)$ tal que $E^T \subseteq E$ e T é árvore.

Árvore Geradora Mínima

Seja G = (V, E) grafo não orientado conexo tal que esteja associado pesos (custos) não negativos às arestas de G. A **árvore geradora mínima** é a árvore geradora de peso total mínimo, isto é:

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$
 é mínimo

Definições auxiliares

- Um corte [S, V S] de um grafo G = (V, E) é uma partição de V
- uma aresta (u, v) cruza o corte [S, V S] se um extremo está em S e o outro extremo está em V S
- um corte [S, V S] respeita um conjunto A de arestas, se nenhuma aresta em A cruza o corte

- aresta (c, d) cruza o corte
- o conjunto $A = \{(a, b), (c, i), (c, f), (f, g), (g, h)\}$ respeita o corte

Árvore Geradora Mínima - algoritmo de Kruskal

Algoritmo de Kruskal

- definir um conjunto de aresta A
- adicionar arestas "seguras" ao conjunto A até formar a árvore geradora mínima
- as arestas candidatas são arestas de peso mínimo que cruzam algum corte que respeita o conjunto A
- complexidade: O(E lg E)

Árvore Geradora Mínima - algoritmo de Kruskal

```
function Kruskall(G, w)
 2:
        ▷ entrada: grafo G e pesos das arestas w
 3:
        ⊳ saída: conjunto A contendo as arestas da árvore geradora mínima
 4:
        A \leftarrow \emptyset
 5:
        for each v \in V[G] do
 6:
            criaConjunto(v)
                                              ▷ conjunto contendo somente o vértice v
 7:
        end for
 8:
        ordene as arestas de F em ordem não decrescente de w
 9.
        for each (u, v) \in E em ordem de peso w do
10:
            if conj(u) \neq conj(v) then
                                                                     subárvores distintas
11:
                A \leftarrow A \cup \{(u, v)\}
12:
                Uniao(conj(u), conj(v))
13:
            end if
14:
        end for
15:
        return A
16: end function
```


- valores das estruturas de dados após execução das linhas 04-08:
 - conjuntos de vértices: {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}
 - arestas em ordem não decrescente:

A = ∅

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a}, {b}, {c}, {d}, {e}, {f}, {g, h}, {i}
 - arestas em ordem não decrescente:

• $A = \{(g, h)\}$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a}, {b}, {c}, {d}, {e}, {f, g, h}, {i}
 - arestas em ordem não decrescente:

•
$$A = \{(g, h), (f, g)\}$$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a}, {b}, {c, i}, {d}, {e}, {f, g, h}
 - arestas em ordem não decrescente:

•
$$A = \{(g, h), (f, g), (c, i)\}$$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b}, {c, i}, {d}, {e}, {f, g, h}
 - arestas em ordem não decrescente:

•
$$A = \{(g, h), (f, g), (c, i), (a, b)\}$$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b}, {c, f, g, h, i}, {d}, {e}
 - arestas em ordem não decrescente:

•
$$A = \{(g,h), (f,g), (c,i), (a,b), (c,f)\}$$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b}, {c, f, g, h, i}, {d}, {e}
 - arestas em ordem não decrescente: 7 7 8 8 9 10 11 14 (c, d) (h, i) (a, h) (b, c) (d, e) (e, f) (b, h) (d, f)
 - $A = \{(g,h), (f,g), (c,i), (a,b), (c,f)\}$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: $\{a,b\},\{c,d,f,g,h,i\},\{e\}$
 - arestas em ordem não decrescente:

•
$$A = \{(g, h), (f, g), (c, i), (a, b), (c, f), (c, d)\}$$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b}, {c, d, f, g, h, i}, {e}
 - arestas em ordem não decrescente:

$$8 8 9 10 11 14
(a, h) (b, c) (d, e) (e, f) (b, h) (d, f)$$

•
$$A = \{(g,h), (f,g), (c,i), (a,b), (c,f), (c,d)\}$$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b, c, d, f, g, h, i}, {e}
 - arestas em ordem não decrescente:

• $A = \{(g,h), (f,g), (c,i), (a,b), (c,f), (c,d), (a,h)\}$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b, c, d, f, g, h, i}, {e}
 - arestas em ordem não decrescente:

$$9 10 11 14$$
 $(d, e) (e, f) (b, h) (d, f)$

• $A = \{(g,h), (f,g), (c,i), (a,b), (c,f), (c,d), (a,h)\}$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b, c, d, e, f, g, h, i}
 - arestas em ordem não decrescente:
 - $\begin{array}{cccc}
 10 & 11 & 14 \\
 (e, f) & (b, h) & (d, f)
 \end{array}$
 - $A = \{(g,h), (f,g), (c,i), (a,b), (c,f), (c,d), (a,h), (d,e)\}$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b, c, d, e, f, g, h, i}
 - arestas em ordem não decrescente:
 - $A = \{(g,h),(f,g),(c,i),(a,b),(c,f),(c,d),(a,h),(d,e)\}$

- valores das estruturas de dados a cada iteração do loop das linhas 09-14:
 - conjuntos de vértices: {a, b, c, d, e, f, g, h, i}
 - arestas em ordem não decrescente:
 - $A = \{(g,h), (f,g), (c,i), (a,b), (c,f), (c,d), (a,h), (d,e)\}$

resultado final:

$$A = \{(g,h), (f,g), (c,i), (a,b), (c,f), (c,d), (a,h), (d,e)\}$$

• peso mínimo total: 1+2+2+4+4+7+8+9=37

Algoritmo de Prim

- semelhante ao algoritmo de Dijkstra para menor caminho
- uso de fila de prioridade Q para armazenar vértices que ainda não fazem parte da árvore: baseada no campo key[v] que contém peso mínimo de cada aresta conectando v a um vértice da árvore
- fornecido vértice inicial (raiz da árvore)
- complexidade: O(E lg V)


```
procedure Prim(G, w, r)
 2:
         \triangleright entrada: grafo G, pesos das arestas w e vértice origem r
 3:
         > saída: árvore geradora mínima
 4:
         Q \leftarrow V[G]
 5:
         for each u \in V[G] do
 6:
              key[u] \leftarrow \infty
 7:
         end for
 8:
         key[r] \leftarrow 0
 9:
         \pi[r] \leftarrow NIL
                                                                                 raiz da árvore
10:
         while Q \neq \emptyset do
11:
              u \leftarrow extraiMinimo(Q)
12:
             for each v \in Adj[u] do
13:
                  if v \in Q and w(u, v) < key[v] then
14:
                      \pi[v] \leftarrow u

▷ u precede v na árvore geradora mínima

                      kev[v] \leftarrow w(u,v)
15:
16:
                  end if
17:
             end for
18:
         end while
19: end procedure
```

Seja o grafo abaixo. Considere o vértice c como origem.

- valores das estruturas após a execução das linhas 04-09:
 - Q: c, a, b, d, e, f, g, h, i

vértice	π	key
a		∞
b		∞
С	NIL	0
d		∞
е		∞
f		∞
g		∞
h		∞
i		∞

- valores das estruturas ao fim de cada iteração do laço while:
 - Q: i, f, d, b, a, e, g, h

vértice	π	key
a		∞
b	С	8
С С	NIL	0
d	С	7
e		∞
f	С	4
g		∞
h		∞
i	С	2

- valores das estruturas ao fim de cada iteração do laço while:
 - Q: f, g, d, h, b, a, e

vértice	π	key
а		∞
b	С	8
С	NIL	0
d	С	7
е		∞
f	С	4
g	i	6
h	i	7
i	С	2

- valores das estruturas ao fim de cada iteração do laço while:
 - Q: g, d, h, b, e, a

vértice	π	key
а		∞
b	С	8
С	NIL	0
d	С	7
е	f	10
f	С	4
g	f	2
h	i	7
i	С	2

- valores das estruturas ao fim de cada iteração do laço while:
 - Q: h, d, b, e, a

vértice	π	key
а		∞
b	С	8
С	NIL	0
d	С	7
е	f	10
f	С	4
g	f	2
h	g	1
i	С	2

- valores das estruturas ao fim de cada iteração do laço while:
 - Q: d, b, a, e

vértice	π	key
а	h	8
b	С	8
С	NIL	0
d	С	7
е	f	10
f	С	4
g	f	2
h	g	1
i	С	2

<u>Árvore Geradora</u> Mínima - algoritmo de Prim

- valores das estruturas ao fim de cada iteração do laço while:
 - Q: b, a, e

vértice	π	key
a	h	8
b	С	8
С	NIL	0
d	С	7
e	d	9
f	С	4
g	f	2
h	g	1
i	С	2

Árvore Geradora Mínima - algoritmo de Prim

- valores das estruturas ao fim de cada iteração do laço while:
 - Q: a, e

vértice	π	key
a	Ь	4
b	С	8
С	NIL	0
d	С	7
e	d	9
f	С	4
g	f	2
h	g	1
i	С	2

Árvore Geradora Mínima - algoritmo de Prim

- valores das estruturas ao fim de cada iteração do laço while:
 - Q:e

vértice	π	key
vertice		Key
a	b	4
ь	С	8
С	NIL	0
d	С	7
e	d	9
f	С	4
g	f	2
h	g	1
i	С	2

Árvore Geradora Mínima - algoritmo de Prim

resultado final:

- peso total mínimo: 4 + 8 + 7 + 9 + 4 + 2 + 1 + 2 = 37
- arestas da árvore: $\{(a,b),(b,c),(d,c),(e,d),(f,c),(g,f),(h,g),(i,c)\}$ ew

vértice	π	key
a	Ь	4
b	С	8
С	NIL	0
d	С	7
e	d	9
f	С	4
g	f	2
h	g	1
i	С	2

 exemplo de aplicação: dado um conjunto de manilhas (ou canos) interligados, pretende-se determinar o fluxo máximo de água que pode passar por cada ponto

Definições

Seja G = (V, E) grafo orientado com 2 vértices distintos s (**fonte**) e t (**ralo**), isto é, $g_{in}(s) = 0$ e $g_{out}(t) = 0$, e cada aresta em E está associada uma capacidade c não-negativa.

- a capacidade c de uma aresta é a quantidade máxima de fluxo que pode passar por ela
- fluxo é uma função f nas arestas tal que:
 - $0 \le f(e) \le c(e) \ \forall e \in E$, isto é, o fluxo não excede a capacidade da aresta
 - $\forall u, v, w \in V \{s, t\}$: $\sum f(u, v) = \sum (v, w)$, ou seja, o fluxo total que entra em v também sai dele, exceto para $s \in t$
- consequência: $\forall u, v \in V$: $\sum f(s, v) = \sum f(v, t)$, isto é, tudo o que sai da fonte chega ao ralo

A solução do problema corresponde a maximizar o fluxo.

Fluxo

 $f: V \times V \to \mathbb{R}$ tal que :

- $f(u, v) \leq c(u, v) \ \forall u, v \in V$
- $f(u, v) = -f(v, u) \forall u, v \in V$

- fluxo saindo de *s*: 11 + 8 = 19
- capacidade de s: 16 + 13 = 29
- fluxo passando na aresta $(v_1, v_2) = 0$
- capacidade da aresta (v_1, v_2) : 10
- fluxo chegando em t: 15 + 4 = 19
- capacidade de t: 20 + 4 = 24

Capacidade Residual

Consiste de aresta que admitem mais fluxo, ou seja: dado um par de vértices u e v, a quantidade de fluxo adicional que podemos empurrar de u para v sem exceder a capacidade c(u,v) é a capacidade residual da aresta (u,v) dado por:

$$c_f(u,v)=c(u,v)-f(u,v)$$

Observação: se $(u, v) \notin E$ então c(u, v) = 0

- $c_f(s, v_1) = 16 11 = 5$
- $c_f(v_1, s) = 0 (-11) = 11$

Rede Residual

A **rede residual** de um grafo G, induzida pelo fluxo f é $G_f = (V, E_f)$ onde $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$

Observação: pode acontecer que $E_f \nsubseteq E$

Caminho Aumentante

Um caminho aumentante é um caminho simmples de s para t na rede residual. Sua capacidade é:

$$c_f(p) = min\{c_f(u, v) : (u, v) \text{ está em } p\}$$

Um fluxo é máximo se não há caminho aumentante.

- \bullet exemplo de rede G e rede residual G_f correspondente
- arestas mais espessas indicam um caminho aumentante em G_f da fonte ao ralo, cuja capacidade residual é 4, o que significa que ainda é possível empurrar 4 unidades de fluxo usando esse caminho

- seja um corte [S, T] em uma rede de fluxos G = (V, E) tal que T = V S e $s \in S$ e $t \in T$
- definimos c([S, T]) a capacidade do corte [S, T] dado por: $\sum c(e)$, tal que $e \in [S, T]$

Teorema

Para qualquer fluxo f e corte [S, T] tem-se que $val\ f \le c([S, T])$ onde:

val
$$f = \sum \sum f(u, v) \le \sum \sum c(u, v) \ \forall u \in S, \ \forall v \in T$$

- o fluxo que cruza o corte f[S, T] = 19
- capacidade do corte c([S, T]) = 26

Teorema do Fluxo Máximo-Corte Mínimo

Se f é fluxo máximo e [S, T] é corte tal que $val\ f = c([S, T])$ então c([S, T]) é mínimo.

- G_f não contém caminho aumentante
- |f| = c([S, T]) para algum corte [S, T] de G

- inicializar fluxo com zero
- enquanto existir caminho aumentante, aumentar o fluxo *f* usando o caminho aumentante

```
procedure FORDFULKERSON(G, s, t)
         \triangleright entrada: grafo G, fonte s e ralo t
 3:
         ⊳ saída: fluxo máximo
         for each (u, v) \in E do
 5:
             f[u, v] \leftarrow 0
             f[v, u] \leftarrow 0
 6:
 7:
         end for
 8:
         while \exists caminho aumentante p na rede residual G_f do
 9:
             calcular c_f(p)
10:
             for each (u, v) \in E do
11:
                 f[u,v] \leftarrow f[u,v] + c_f(p)
12:
                 f[v, u] = -f[u, v]
13:
             end for
14:
         end while
15:
     end procedure
```

Sequência de execução do algoritmo mostrando a rede residual e o fluxo resultante do caminho aumentante:

Sequência de execução do algoritmo mostrando a rede residual e o fluxo resultante do caminho aumentante:

Não há mais caminho aumentante na residual, logo o fluxo já é máximo f(s,t)=23.

- capacidades devem ser inteiras
- se capacidades forem racionais, é possível fazer uma transformação de escala para utilizar somente inteiros, aplicar o algoritmo e depois transformar o resultado para a escala anterior
- se existirem capacidades irracionais, o algoritmo pode não terminar, pois pode não convergir para um fluxo máximo
- complexidade: $O(E|f^*|)$, onde f^* é o fluxo máximo

- Redes com múltiplas fontes e múltiplos ralos:
 - seja X o conjunto das fontes e Y o conjunto dos ralos
 - criar superfonte (s') e superralo (t') com capacidade ∞ conforme esquema abaixo

Emparelhamento em Grafos

Dado um grafo G = (V, E), um **emparelhamento** $M \in E$ é tal que quaisquer 2 arestas em M não são adjacentes.

Emparelhamento Máximo em Grafos Bipartidos

Dado um grafo G=(V,E) bipartido, um emparelhamento $M\in E$ é máximo se qualquer outro emparelhamento M', tem-se que $|M'|\leq |M|$.

• pode ser reduzido ao problema do fluxo máximo em redes

- (a): emparelhamento de tamanho 2
- (b): emparelhamento de tamanho 3 (máximo)

- Seja G = (V, E) um grafo bipartido com partições L e R:
 - acrescentar vértice fonte s e criar arestas ligando s a todos os vértices de L
 - acrescentar vértice falo t e criar arestas ligando todos os vértice R a t
 - atribuir capacidade unitária a todas as arestas
 - aplicar algoritmo de Ford-Fulkerson para obtenção do fluxo máximo, que irá definir o emparelhamento máximo de maneira subjacente

Bibliografia I

[Bondy 1982] Bondy, J. A.; Murty, U.S.R. Graph Theory with Applications. Elsivier, 1982.

[Netto 1996] P.O. Boaventura Netto.
Grafos: Teoria, Modelos, Algoritmos. Edgard Blucher, São Paulo, 1996.

[Diestel 1997] R. Diestel.

Graph Theory. Springer, New York, 1997.

[Cormen 1997] Cormen, T.; Leiserson, C.; Rivest, R. Introduction to Algorithms. McGrawHill, New York, 1997.

