

Universidad EAFIT

ST0263: Tópicos Especiales en Telemática, 2017-1 Profesor: Edwin Montoya – emontoya@eafit.edu.co

Laboratorio Hadoop

Instalación de un cluster Hadoop (HDFS+YARN)

Ver guía de instalación (montajedehadoop2.7.2.pdf)

Monitoreo del cluster hadoop: http://10.131.137.x:8088

Gestión de archivos en HDFS

Una vez montado el cluster propio, o utilizando el cluster de producción del DIS (10.131.137.188), con su user y pass de la VPN, realizar:

1. Obtener un subconjunto de datos de prueba, de Gutenberg Digital Library

Puede descargar datos directamente del sitio:

Comando:

\$ wget -w 2 -m -H "http://www.gutenberg.org/robot/harvest?filetypes[]=txt&langs[]=es" asi, los descarga en formato .zip, uds los deben descomprimir antes de enviarlos al HDFS

Puede utilizar datos previamente descargados:

Link (https://drive.google.com/open?id=0B_4oKjh0Qca5UGxTU3VBNmtxYms)

Listar archivos HDFS

\$ hdfs dfs -ls /

\$ hdfs dfs -ls /user

\$ hdfs dfs -ls /datasets

Crear tu propio directorio de usuario en HDFS

\$ hdfs dfs -mkdir /user/st0263/username

\$ hdfs dfs -mkdir /user/st0263/username/data_in

\$ hdfs dfs -mkdir /user/st0263/username/data out

reemplace "username" por su usuario asignado.

Copiar archivos locales hacia HDFS

Se asume que tiene los datos de gutenberg en: ~username/datasets/gutenberg-txt-es o donde los haya descargado.

\$ hdfs dfs -copyFromLocal ~username/datasets/gutenberg-txt-es/*.txt

/user/st0263/username/data_in otro commando para copier:

\$ hdfs dfs -put ~username/datasets/gutenberg-txt-es/*.txt /user/st0263/username/data_in

\$ hdfs dfs -ls /user/st0263/username/data_in

Copiar archivos de HDFS hacia local

\$ hdfs dfs -copyToLocal /user/st0263/username/data_out/out1/* ~username/data_out otro comando para traer:

\$ hdfs dfs -get /user/st0263/username/data out/out1/* ~username/data out

\$ ls -l data_out/out1

Probar otros commandos

Se aplica los siguientes comandos a:

\$ hdfs dfs -<command>

comandos:

du <path>uso de disco en bytesmv <src> <dest>mover archive(s)cp <src> <dest>copiar archivo(s)rm <path>borrar archive(s)

put <localSrc> <dest-hdfs> copiar local a hdfs
cat <file-name> mostrar contenido de archivo
chmod [-R] mode cambiar los permisos de un archivo
chown ... cambiar el dueño de un archivo
chgrp cambiar el grupo de un archivo

PROGRAMACIÓN EN YARN-MAP/REDUCE

WordCount en Java

Tomado de: https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Nativamente, los clusters hadoop corren programas escritos en java.

• Contador de palabras en archivos texto en Java

Se tiene el programa ejemplo: WordCount.java, el cual despues de compilarse en la version hadoop 2.7.3, genera un jar wc.jar, el cual será el que finalmente se ejecute.

El código fuente de WordCount.java, script de generación de jar e instrucciones esta en:

https://drive.google.com/open?id=0B_4oKjh0Qca5ZHI0WEJGenRZZnM

Descargarlo, compilarlo y generar el jar (wc.jar)

Para ejecutar:

\$ hadoop jar wc.jar WordCount /datasets/gutenberg/es/10814.txt /user/st0263/username/data_out/out1

el comando hadoop se este abandonando por yarn:

\$ yarn jar wc.jar WordCount /datasets/gutenberg/es/10814.txt /user/st0263/username/data out/out2

WordCount en Python

Para correr programas python en Yarn-Hadoop, se require una libreria que facilite dicho acceso, para estos ejemplos se empleará mrjob (https://pythonhosted.org/mrjob/)

Sino esta instalada la libreria a nivel global o local, debe instalarla:

// global como root o sudo

yum install python-pip # pip install mrjob

// python local

```
$ wget -0 virtualenv.py http://bit.ly/virtualenv
```

- \$ python virtualenv.py mypython
- \$ mypython/bin/easy_install pip
- \$ mypython/bin/pip install mrjob

wc-mrjob.py

```
from mrjob.job import MRJob

class MRWordFrequencyCount(MRJob):
    def mapper(self, _, line):
        for w in line.decode('utf-8','ignore').split():
             yield w,1

    def reducer(self, key, values):
        yield key, sum(values)

if __name__ == '__main__':
    MRWordFrequencyCount.run()
```


EJECURARLO:

\$ python wordcount.py hdfs:///datasets/gutenberg/es/1*.txt -r hadoop --outputdir hdfs:///user/st0263/username/data_out/out1

(el directorio /user/st0263/username/data_out/out1 no debe existir)

ADMINISTRACIÓN DEL CLUSTER y YARN

Se puede ver mediante web:

http://10.131.137.x:8088

o mediante comandos de consola:

\$ yarn [comando] [sub-comando] [opciones]

por ejemplo, para listar las aplicaciones ejecutando:

\$ yarn application -list

esto lista los app_id

si quiere eliminar una aplicación:

\$ yarn application -kill app_id

APACHE SPARK

Spark es una alternativa de mucho mejor rendimiento que Yarn-MapReduce de hadoop

Word count en spark:

wc-spark.py

```
from pyspark import SparkContext import sys
```

```
sc = SparkContext("local", "Simple WC")
```

```
inputdir = sys.argv[1]
outputdir = sys.argv[2]
```

counts.saveAsTextFile(outputdir)

EJECUTARLO:

\$ spark-submit wc-spark.py hdfs:///datasets/gutenberg/es/1*.txt hdfs://user/st0263/username/data_out/out1

(el directorio out1 no debe existir, pero data_out si)