Lecture 8

Michael Brodskiy

Professor: M. Onabajo

September 30, 2024

• PN-Junction Diodes

- Shockley Equation ("Diode Equation")
 - * More realistic model for the I-V characteristics (for FB and RB regions)
 - * Based on semiconductor physics

$$i_D = I_s e^{V_D/(nV_T)} + 1$$

- I_s is the saturation current $(10^{-6} \text{ to } 10^{-18} [\text{A}])$
- n= diode ideality factor, also called emissions coefficient, and can range from 1 to 2
- $-V_T = (kT)/q$ is the thermal voltage ($\approx 26 [\text{mV}]$ at T = 300 [K] room temperature)
 - * k= Boltzmann's constant (1.38 · 10⁻²³[J/K]), q= electron charge (1.6 · 10⁻¹⁹[C])
- Temperature Dependence
 - At a constant current, the voltage drop decreases approximately 2[mV] for every $1[^{\circ}C]$ increase in temperature
- Solving Circuits using the Junction Diode Model
 - Iterative Approach
 - * Pro: accurate hand calculations
 - * Con: tedious (time-consuming)
 - Graphical Approach
 - * Pro: fast
 - * Con: inaccurate (unless done numerically with a computer program)
 - Simulation

- * Pro: most accurate
- * Con: limited insights into the trade-offs
- Constant Voltage Drop (CVD) Model
 - Diode approximation with an open-circuit (RB) or with a DC voltage source of $V_{dc} \approx .7[V]$ to model the forward voltage drop (FB)
 - With the Resistance Model
 - * The diode is modeled with an open-circuit (RB), or with a DC voltage source and series resistance (FB), where $V_{do} \approx .7[V]$
 - * Dynamic resistance: $r_d = (nV_T)/I_{DQ}$
 - \cdot Approximated around the operating point Q (quiescent point)
 - \cdot A small-signal parameter (represents the diode's resistance associated with small changes of i_d and V_d)
- Zener Diode Modeling
 - Forward Bias (FB): $I_D > 0$
 - Reverse Bias (RB): $-V_{zo} < V_d < V_{do}$
 - Breakdown (BD): $I_z = -I_D > 0$, $V_D = -V_{zo} I_z r_z$
 - Voltage Regulation:
 - * Voltage regulator quality indicators:

 - $\begin{array}{l} \cdot \text{ Source regulation: } \frac{\Delta V_{load}}{\Delta V_{SS}} \cdot 100\% \\ \cdot \text{ Load regulation: } \frac{V_{NOload} V_{FULLload}}{V_{FULLload}} \cdot 100\% \end{array}$