IN4344 Advanced Algorithms

Lecture 6:

Multiple optimal solutions, Duality, Complementary Slackness

Yuki Murakami

Delft University of Technology

September 25, 2023

Simplex so far

We have learned how to recognize:

- A bounded optimal solution:
 - ▶ The reduced costs $\bar{c}_j \leq 0$ for all j (maximization)
 - ▶ The reduced costs $\bar{c}_j \ge 0$ for all j (minimization)
- An unbounded solution:
 - If there is a candidate entering basic variable $x_{j'}$ that has $\bar{a}_{ij'} \leq 0$ for all i.
- The problem is infeasible: The Simplex Phase 1 objective function is greater than zero in the Phase 1 optimal solution $(w^* > 0)$.

Multiple optimal solutions

Suppose we maximize and that we have reached an optimal bfs, i.e.,

$$\bar{c}_j \leq 0$$
 for all j .

Notice: $\bar{c}_j = 0$ for all j such that x_j is basic.

If one or more **non-basic variables** have $\bar{c}_j = 0$, then we can let one of them enter the basis to reach another optimal bfs.

Suppose $x^1, x^2, ..., x^k$ are optimal basic feasible solutions. Then the following is an expression of all optimal solutions:

$$x^* = \lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_k x^k, \quad \sum_{j=1}^k \lambda_j = 1, \ \lambda_1, \dots, \lambda_k \ge 0.$$

So, x^* is expressed as a **convex combination** of all the optimal basic feasible solutions.

Multiple optimal solutions

Duality

Each LP has a corresponding dual LP.

Primal (original) LP	Dual LP
min	max
max	min
n variables	n constraints
m constraints	m variables

Duality is used to compute **bounds** on the optimal objective function value and to verify **optimality**.

These bounds are also useful if we approximate.

Diet problem

- Different **food types** contain different amounts of certain **nutrients**.
- You want to take in enough of each nutrient.
- For as little money as possible.
- How much should you eat from each food type?

Example

	chips	muesli	sausage	required (RDI)
costs	3	3	4	
carbohydrates	2	1	0	3
protein	0	1	4	2
fat	4	0	8	9

Diet problem

Example (1)

	chips	muesli	sausage	required (RDI)
costs	3	3	4	
carbohydrates	2	1	0	3
protein	0	1	4	2
fat	4	0	8	9

LP formulation:

min
$$3x_1 + 3x_2 + 4x_3$$

s.t. $2x_1 + x_2 \ge 3$ (1)
 $x_2 + 4x_3 \ge 2$ (2)
 $4x_1 + 8x_3 \ge 9$ (3)
 $x_1, x_2, x_3 \ge 0$

Can you determine a **lower bound** on how much you will need to spend on your diet?

min
$$3x_1 + 3x_2 + 4x_3$$

s.t. $2x_1 + x_2 \ge 3$ (1)
 $x_2 + 4x_3 \ge 2$ (2)
 $4x_1 + 8x_3 \ge 9$ (3)
 $x_1, x_2, x_3 \ge 0$
 $\Rightarrow 2x_1 + 2x_2 + 4x_3 \ge 5$ (1) + (2)
 $\Rightarrow 3x_1 + 3x_2 + 4x_3 \ge 5$ (lhs=objective function!)

So an optimal diet costs at least 5.

Can you find a better lower bound?

min
$$3x_1 + 3x_2 + 4x_3$$

s.t. $2x_1 + x_2 \ge 3$ (1)
 $x_2 + 4x_3 \ge 2$ (2)
 $4x_1 + 8x_3 \ge 9$ (3)
 $x_1, x_2, x_3 \ge 0$

$$\Rightarrow 3x_1 + 2\frac{1}{2}x_2 + 4x_3 \ge 6\frac{1}{2}$$
 $1\frac{1}{2} \times (1) + (2)$

$$\Rightarrow 3x_1 + 3x_2 + 4x_3 \ge 6\frac{1}{2}$$

So an optimal diet costs at least $6\frac{1}{2}$.

Can you find an even better lower bound?

min
$$3x_1 + 3x_2 + 4x_3$$

s.t. $2x_1 + x_2 \ge 3$ (1)
 $x_2 + 4x_3 \ge 2$ (2)
 $4x_1 + 8x_3 \ge 9$ (3)
 $x_1, x_2, x_3 > 0$

For all $\pi_1, \pi_2, \pi_3 \geq 0$ we have:

$$\begin{array}{ll}
\pi_{1} (2 x_{1} + x_{2}) & \pi_{1} \times (1) \\
+ \pi_{2} (x_{2} + 4 x_{3}) & \pi_{2} \times (2) \\
+ \pi_{3} (4 x_{1} + 8 x_{3}) & \pi_{3} \times (3) \\
\geq 3\pi_{1} + 2\pi_{2} + 9\pi_{3}
\end{array}$$

So $3\pi_1 + 2\pi_2 + 9\pi_3$ is a lower bound on the optimal value when

$$\pi_1 (2 x_1 + x_2)$$
 $\pi_1 \times (1)$
+ $\pi_2 (x_2 + 4 x_3)$ $\pi_2 \times (2)$
+ $\pi_3 (4 x_1 + 8 x_3)$ $\pi_3 \times (3)$
 $\leq 3 x_1 + 3 x_2 + 4 x_3$ \leftarrow Primal objective function

So $3\pi_1+2\pi_2+9\pi_3$ is a lower bound on the optimal value for all $\pi_1,\pi_2,\pi_3\geq 0$ with

$$\begin{array}{lll} \pi_1 \left(2 \, x_1 + \, x_2 \right) & \pi_1 \times (1) \\ + \, \pi_2 \left(& x_2 + 4 \, x_3 \right) & \pi_2 \times (2) \\ + \, \pi_3 \left(4 \, x_1 & + 8 \, x_3 \right) & \pi_3 \times (3) \\ \leq & 3 \, x_1 + 3 \, x_2 + 4 \, x_3 \end{array}$$

Rewrite $\pi_1 \times (1) + \pi_2 \times (2) + \pi_3 \times (3)$ in x-variables:

$$x_1 (2 \pi_1 + 4 \pi_3)$$

+ $x_2 (\pi_1 + \pi_2)$
+ $x_3 (4\pi_2 + 8 \pi_3)$
 $\leq 3 x_1 + 3x_2 + 4 x_3$

We can find the best lower bound by

maximizing $3\pi_1 + 2\pi_2 + 9\pi_3$.

The dual LP (finding the best lower bound):

$$\max 3\pi_1 + 2\pi_2 + 9\pi_3$$

for all π that satisfies:

$$x_1 (2 \pi_1 + 4 \pi_3)$$

+ $x_2 (\pi_1 + \pi_2)$
+ $x_3 (4\pi_2 + 8 \pi_3)$
 $\leq 3 x_1 + 3x_2 + 4 x_3$

$$\begin{array}{lll} \max & 3\,\pi_1 + 2\,\pi_2 + 9\,\pi_3 \\ \text{s.t.} & 2\,\pi_1 & + 4\,\pi_3 \leq 3 & (D1) \\ & \pi_1 + & \pi_2 & \leq 3 & (D2) \\ & 4\,\pi_2 + 8\,\pi_3 \leq 4 & (D3) \\ & \pi_1, \pi_2, \pi_3 \geq 0 \end{array}$$

Primal:

min
$$3x_1 + 3x_2 + 4x_3$$

s.t. $2x_1 + x_2 \ge 3$ (1)
 $x_2 + 4x_3 \ge 2$ (2)
 $4x_1 + 8x_3 \ge 9$ (3)
 $x_1, x_2, x_3 \ge 0$

Dual:

$$\begin{array}{lll} \max & 3\,\pi_1 + 2\,\pi_2 + 9\,\pi_3 \\ \text{s.t.} & 2\,\pi_1 & + 4\,\pi_3 \leq 3 & (D1) \\ & \pi_1 + \,\pi_2 & \leq 3 & (D2) \\ & 4\,\pi_2 + 8\,\pi_3 \leq 4 & (D3) \\ & \pi_1, \pi_2, \pi_3 \geq 0 \end{array}$$

Notice: The objective function coefficients of the dual are the right-hand side coefficients of the primal (and vice versa).

The constraint matrix in the dual is the transpose of the constraint matrix in the primal (and vice versa).

The **primal** (We call the original problem "the primal problem"):

min
$$3x_1 + 3x_2 + 4x_3$$

s.t. $2x_1 + x_2 \ge 3$ (1)
 $x_2 + 4x_3 \ge 2$ (2)
 $4x_1 + 8x_3 \ge 9$ (3)
 $x_1, x_2, x_3 \ge 0$

The **dual** (finding the best lower bound):

$$\begin{array}{llll} \max & 3\,\pi_1 + 2\,\pi_2 + 9\,\pi_3 \\ \text{s.t.} & 2\,\pi_1 & + 4\,\pi_3 \leq 3 & (D1) \\ & \pi_1 + & \pi_2 & \leq 3 & (D2) \\ & 4\,\pi_2 + 8\,\pi_3 \leq 4 & (D3) \\ & \pi_1, \pi_2, \pi_3 \geq 0 \end{array}$$

How can we **interpret** the dual of the diet problem?

Dual of the diet problem (interpretation)

- A pill maker produces pills for each nutrient.
- For each food type, it should be cheaper to buy the corresponding pills than the food.
- The pill maker wants to maximize the price of the pills necessary to get enough intake from each nutrient.
- What are the optimal prices (π_1, π_2, π_3) of the pills?

	chips	muesli	sausage	required (RDI)
costs	3	3	4	
carbohydrates	2	1	0	3
protein	0	1	4	2
fat	4	0	8	9

- For each food type, it should be cheaper to buy the corresponding pills than the food.
- The pill maker wants to maximize the price of the pills necessary to get enough intake from each nutrient.

The **primal** LP:

The dual LP:

min
$$3x_1 + 3x_2 + 4x_3$$

s.t. $2x_1 + x_2 \ge 3$
 $x_2 + 4x_3 \ge 2$
 $4x_1 + 8x_3 \ge 9$
 $x_1, x_2, x_3 \ge 0$

$$\begin{array}{lll} \max & 3\,\pi_1 + 2\,\pi_2 + 9\,\pi_3 \\ \text{s.t.} & 2\,\pi_1 & + 4\,\pi_3 \leq 3 \\ & \pi_1 + \,\,\pi_2 & \leq 3 \\ & 4\,\pi_2 + 8\,\pi_3 \leq 4 \\ & \pi_1, \pi_2, \pi_3 \geq 0 \end{array}$$

We have seen that solution $(\pi_1, \pi_2, \pi_3) = (1\frac{1}{2}, 1, 0)$ for the **dual** gives a lower bound of **6.5** on the optimal value of the primal.

Is there an even better lower bound?

No! Since $(x_1, x_2, x_3) = (1\frac{1}{2}, 0, \frac{1}{2})$ is a solution of the **primal** with value **6.5**.

So both solutions are optimal!

Example (2)

Formulate the dual of the following problem:

(P) max
$$3x_1 - 5x_2 + 2x_3$$

s.t. $x_1 + 2x_3 \le 3$
 $-2x_1 + x_2 - 3x_3 = 2$
 $3x_1 + 3x_2 - 7x_3 = -3$
 $4x_1 + 5x_2 - 4x_3 \ge 4$
 $x_1 < 0, x_2 > 0, x_3 \in \mathbb{R}$

We have 3 variables and 4 constraints, so the dual has 4 variables and 3 constraints.

- 1. Primal is a max-problem, so dual becomes a min-problem.
- 2. The right-hand side coefficients in the primal are the objective coefficients in the dual.

(D) min
$$3\pi_1 + 2\pi_2 - 3\pi_3 + 4\pi_4$$

- 1. Primal is a max-problem, so dual becomes a min-problem.
- The right-hand side coefficients in the primal are the objective coefficients in the dual.
- 3. The objective coefficients in the primal are the right-hand side coefficients in the dual

(D) min
$$3\pi_1 + 2\pi_2 - 3\pi_3 + 4\pi_4$$
 s.t.

4. The constraint matrix becomes transposed.

(D) min
$$3\pi_1 + 2\pi_2 - 3\pi_3 + 4\pi_4$$

s.t. $\pi_1 - 2\pi_2 + 3\pi_3 + 4\pi_4$ 3
 $+ \pi_2 + 3\pi_3 + 5\pi_4$ -5
 $2\pi_1 - 3\pi_2 - 7\pi_3 - 4\pi_4$ 2

- 4. The constraint matrix becomes transposed.
- 5. The signs of the variables in the dual depend on the constraint signs in the primal.

(D) min
$$3\pi_1 + 2\pi_2 - 3\pi_3 + 4\pi_4$$

s.t. $\pi_1 - 2\pi_2 + 3\pi_3 + 4\pi_4$ 3
 $+ \pi_2 + 3\pi_3 + 5\pi_4$ -5
 $2\pi_1 - 3\pi_2 - 7\pi_3 - 4\pi_4$ 2
 $\pi_1 > 0, \ \pi_2, \pi_3 \in \mathbb{R}, \ \pi_4 < 0$

- 4. The constraint matrix becomes transposed.
- 5. The signs of the variables in the dual depend on the constraint signs in the primal.
- 6. The constraint signs in the dual depend on the variable signs in the primal.

(D) min
$$3\pi_1 + 2\pi_2 - 3\pi_3 + 4\pi_4$$

s.t. $\pi_1 - 2\pi_2 + 3\pi_3 + 4\pi_4 \le 3$
 $+ \pi_2 + 3\pi_3 + 5\pi_4 \ge -5$
 $2\pi_1 - 3\pi_2 - 7\pi_3 - 4\pi_4 = 2$
 $\pi_1 \ge 0, \pi_2, \pi_3 \in \mathbb{R}, \ \pi_4 \le 0$

Duality for general LPs

Assuming the primal is a **min** problem.

The **primal** (P): The **dual** (D):

Theorem

The dual of the dual is the primal.

So to find the dual of a max problem, you go from right to left.

Theorem (weak duality theorem)

Suppose we are given a primal and corresponding dual in the following form:

The **primal** (P): The **dual** (D):

min
$$z = c^{\mathsf{T}} x$$
 max $w = b^{\mathsf{T}} \pi$
s.t. $Ax \ge b$ (1) s.t. $A^{\mathsf{T}} \pi \le c$ (2) $\pi \ge 0$

If \hat{x} is a feasible solution of (P) and $\hat{\pi}$ of (D), then $z(\hat{x}) \geq w(\hat{\pi})$.

Proof

Multiply (1) by $\hat{\pi}^T$: $\hat{\pi}^T A \hat{x} \geq \hat{\pi}^T b$. This holds since $\hat{\pi} \geq 0$.

Multiply (2) by \hat{x}^T : $\hat{x}^T A^T \hat{\pi} \leq \hat{x}^T c$. This holds since $\hat{x} \geq 0$.

We now have $z(\hat{x}) = c^{\mathsf{T}} \hat{x} = \hat{x}^{\mathsf{T}} c \ge \hat{x}^{\mathsf{T}} A^{\mathsf{T}} \hat{\pi} = (\hat{\pi}^{\mathsf{T}} A \hat{x})^{\mathsf{T}} \ge (\hat{\pi}^{\mathsf{T}} b)^{\mathsf{T}} = b^{\mathsf{T}} \hat{\pi} = w(\hat{\pi}).$

Before strong duality (page 67 of lecture notes)

Suppose now we have a primal problem of the form:

min
$$z = c^{\mathsf{T}} x$$

s.t. $Ax \le b$
 $x \ge 0$

To solve this using simplex, we introduce slack variables:

min
$$z = c^{\mathsf{T}} x$$

s.t. $Ax + Is = b$
 $x, s \ge 0$

Suppose we know that some optimal solution x^* has a basis B. For this basis, let x_B be the basic variables and let x_N denote the other variables. Assume that $A = \begin{bmatrix} B & N \end{bmatrix}$ and that $c^T = \begin{bmatrix} c_B^T & c_N^T \end{bmatrix}$.

An example from Lecture 4

Example (2)

Yuki Murakami (TUD)

min
$$z = -x_1 - 2x_2 - x_3$$

s.t. $x_1 + 2x_2 + s_1 = 2$
 $x_1 + x_2 + x_3 + s_2 = 2$
 $x_1, x_2, x_3, s_1, s_2 \ge 0$

We rewrite the objective function to

$$-z - x_1 - 2x_2 - x_3 = 0$$

and make a **Simplex tableau** (we just write the coefficients):

basis	$ \bar{b} $	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₁	s_1	<i>s</i> ₂
<i>s</i> ₁	2	2	0	1	1	0
s ₁	2	1	1	1	0	1
-z	0	-2	-1	-1	0	0

Before strong duality ctd.

General:

Example:

basis	Б	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₁	s_1	<i>s</i> ₂
<i>s</i> ₁	2	2	0	1	1	0
s ₁	2	1	1	1	0	1
-z	0	-2	-1	-1	0	0

Before strong duality ctd.

General:

basis	\bar{b}	x _B	×N	S
XB	$B^{-1}b$	I	$B^{-1}N$	B^{-1}
-z	$-c_B^T B^{-1} b$	0	$c_N^T - c_B^T B^{-1} N$	$-c_B^T B^{-1}$

Example:

Pick $\pi^T = c_B^T B^{-1}$. Then this gives an optimal solution to the dual problem, since

$$\pi^T b = c_B^T B^{-1} b = c_B^T x_B = c_B^T x_B + c_N^T x_N = c^T x^*.$$

Strong duality

$$\begin{aligned} & \min \quad z = c^\mathsf{T} x \\ & \text{s.t.} & & Ax \geq b \\ & & x \geq 0 \end{aligned}$$

max
$$w = b^{\mathsf{T}} \pi$$

s.t. $A^{\mathsf{T}} \pi \le c$
 $\pi \ge 0$

Theorem (strong duality theorem)

If (P) has an optimal solution x^* , then (D) has an optimal solution π^* and

$$z(x^*)=w(\pi^*).$$

Possible primal-dual combinations

			Dual		
		Bounded	Unbounded	Infeasible	
		optimum			
	Bounded optimum	√	X	Х	
Primal	Unbounded	X	×	✓	
	Infeasible	Х	\checkmark	✓	

Combinations with an x are **not possible!**

THE DUAL SIMPLEX METHOD

Very useful when re-optimizing an LP after adding a constraint

This will be done when we solve (M)ILPs

Suppose we have solved the following problem to optimality:

The optimal Simplex-tableau is:

basis	$ \bar{b}$	<i>x</i> ₁	<i>X</i> ₂	s_1	s ₂
<i>X</i> ₂	1	1	1	-1	
<i>s</i> ₂	4	1		2	1
-z	-1	1		1	

Suppose we now add an extra constraint $x_2 \le 1/2$.

basis	\bar{b}	<i>x</i> ₁	<i>X</i> ₂	s_1	<i>s</i> ₂
<i>x</i> ₂	1	1	1	-1	
<i>s</i> ₂	4	1		2	1
-z	-1	1		1	

Suppose we now add an extra constraint $x_2 \le 1/2$.

Add a slack variable: $x_2 + s_3 = 1/2$, and express x_2 in non-basic variables:

$$x_1 + x_2 - s_1 = 1 \Rightarrow x_2 = 1 - x_1 + s_1$$
.

The new constraint is:

$$-x_1+s_1+s_3=-1/2$$
.

Add it to the Simplex tableau:

basis	\bar{b}	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂
<i>x</i> ₂	1	1	1	-1	
<i>s</i> ₂	4	1		2	1
-z	-1	1		1	

The new constraint is:

$$-x_1+s_1+s_3=-1/2$$
.

Add it to the Simplex tableau:

basis	$ $ \bar{b}	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃
<i>x</i> ₂	1	1	1	-1		
<i>s</i> ₂	4	1		2	1	
<i>5</i> ₃	-1/2	-1		1		1
-z	-1	1		1		

basis	$ \bar{b} $	x_1	<i>X</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃
<i>x</i> ₂	1	1	1	-1		
<i>s</i> ₂	4	1		2	1	
<i>s</i> ₃	-1/2	-1		1		1
-z	-1	1		1		

This solution is infeasible in the primal problem!

But, all $\bar{c}_j \geq 0$, which we can interpret as dual feasibility.

We will pivot to maintain dual feasibility, and obtain primal feasibility.

We choose a basic variable i' with $\bar{b}_i < 0$ as a leaving basic variable. Here, s_3 .

If $\bar{a}_{i'j} \geq 0$ for all j, then no feasible solution exists since $\sum_j \bar{a}_{i'j} x_j \geq 0$ in all feasible solutions, and $\bar{b}_{i'} < 0$.

basis	Б	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃
<i>x</i> ₂	1	1	1	-1		
<i>s</i> ₂	4	1		2	1	
<i>s</i> ₃	-1/2	-1		1		1
-z	-1	1		1		

We choose a basic variable i' with $\bar{b}_i < 0$ as a leaving basic variable. Here, s_3 .

If $\bar{a}_{i'j} \geq 0$ for all j, then no feasible solution exists since $\sum_j \bar{a}_{i'j} x_j \geq 0$ in all feasible solutions, and $\bar{b}_{i'} < 0$.

So, we **pivot only on elements** $\bar{a}_{i'j} < 0!$ Here we only have one choice: $\bar{a}_{31} = -1$. x_1 becomes entering basis variable.

basis	$ \bar{b} $	<i>x</i> ₁	<i>X</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃
<i>x</i> ₂	1	1	1	-1		
<i>s</i> ₂	4	1		2	1	
<i>s</i> ₃	-1/2	-1		1		1
-z	-1	1		1		

basis	\bar{b}	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
<i>X</i> ₂	1/2		1			1	$r_1 + r_3$
<i>s</i> ₂	1/2 7/2			3	1	1	$r_2 + r_3$
x_1	1/2	1		-1		-1	$-1 \cdot r_3$
-z	-3/2			2		1	$r_0 + r_3$

Now, $\bar{b}_i \geq 0$ for all i, and $\bar{c}_j \geq 0$ for all j, so we have a new optimal solution!

$$\left(\begin{array}{c} x_1^* \\ x_2^* \end{array} \right) = \left(\begin{array}{c} 1/2 \\ 1/2 \end{array} \right), \quad \text{with } z^* = 3/2.$$

Graphically

Problem after adding $x_2 \le 1/2$

(Primal) Simplex method

- ▶ Go from **primal feasible** basic solution (bfs) to a next (not worse) bfs.
- ▶ Stop when $\bar{c}_j \ge 0$ for all j (for a min problem), so when a solution is found that is **dual feasible**.

Dual Simplex method

- ▶ Go from **dual feasible** basic solution (a solution with correct values of the \bar{c}_j s) to a next (not worse) dual feasible basic solution.
- Stop when $\bar{b}_i \ge 0$ for all i, so when a solution is found that is **primal feasible**.
- ► You use the **primal** tableau.

Dual Simplex Algorithm for **min**imization problems:

Given is a basic solution, not necessary feasible, with $\bar{c}_j \geq 0$ for all j.

- If $\bar{b}_i \geq 0$ for all i then the current solution is **feasible** and **optimal**. Stop!
- **②** Choose **leaving** basic variable corresponding to a **row** i' **with** $\bar{b}_{i'} < 0$.
- **3** If $\bar{a}_{i'j} \geq 0$ for all j then there is **no feasible solution**. Stop!
- **1** Choose **entering** variable $x_{j'}$ such that

$$\frac{\bar{c}_{j'}}{\bar{a}_{i'j'}} = \min_{j} \left\{ \quad \left| \frac{\bar{c}_{j}}{\bar{a}_{i'j}} \right| \quad | \quad \bar{a}_{i'j} < 0 \right\}.$$

Why do we divide the objective function instead of the b column?

3 Apply elementary row operations such that column j' gets a 1 in row i' and 0s elsewhere. Go to (1).

Dual Simplex Algorithm for maximization problems:

Given is a basic solution, not necessary feasible, with $\bar{c}_j \leq 0$ for all j.

- If $\bar{b}_i \geq 0$ for all i then the current solution is **feasible** and **optimal**. Stop!
- ② Choose **leaving** basic variable corresponding to a **row** i' **with** $\bar{b}_{i'} < 0$.
- **3** If $\bar{a}_{i'j} \geq 0$ for all j then there is **no feasible solution**. Stop!
- **4** Choose **entering** variable $x_{j'}$ such that

$$\frac{\bar{c}_{j'}}{\bar{a}_{i'j'}} = \min_{j} \left\{ \quad \left| \frac{\bar{c}_{j}}{\bar{a}_{i'j}} \right| \quad | \quad \bar{a}_{i'j} < 0 \right\}.$$

3 Apply elementary row operations such that column j' gets a 1 in row i' and 0s elsewhere. Go to (1).

Complementary Slackness

$$\begin{array}{llll} & \mathbf{min} & c^{\mathsf{T}}x & \mathbf{max} & b^{\mathsf{T}}\pi \\ & \mathbf{s.t.} & a_{i}x = b_{i} & i \in M \\ & a_{i}x \geq b_{i} & i \in \bar{M} \\ & x_{j} \geq 0 & j \in N \\ & x_{j} \in \mathbb{R} & j \in \bar{N} \end{array} \qquad \begin{array}{ll} & \mathbf{max} & b^{\mathsf{T}}\pi \\ & \mathbf{s.t.} & \pi_{i} \in \mathbb{R} & i \in M \\ & \pi_{i} \geq 0 & i \in \bar{M} \\ & \pi^{\mathsf{T}}A_{j} \leq c_{j} & j \in N \\ & \pi^{\mathsf{T}}A_{j} = c_{j} & j \in \bar{N} \end{array}$$

Theorem (Complementary Slackness)

Let \hat{x} be a feasible solution of (P) and $\hat{\pi}$ a feasible solution of (D). Solutions \hat{x} and $\hat{\pi}$ are both **optimal if and only if**:

$$\hat{\pi}_i(a_i\hat{x}-b_i)=0 \qquad i=1,\ldots,m \qquad (1)$$

$$\hat{x}_i(c_i - \hat{\pi}^T A_i) = 0$$
 $j = 1, ..., n$ (2)

Example (1. Diet Problem)

Suppose we know an optimal solution $\pi^* = (1\frac{1}{2}, 1, 0)$ of the dual (D). Use CS to find an optimal solution of the primal (P).

Formulate the CS conditions:

$$x_1^*(3 - 2\pi_1^* - 4\pi_3^*) = 0$$
 (4)
 $x_2^*(3 - \pi_1^* - \pi_2^*) = 0$ (5)
 $x_3^*(4 - 4\pi_2^* - 8\pi_3^*) = 0$ (6)

Suppose we know an optimal solution $\pi^* = (1\frac{1}{2}, 1, 0)$ of the dual (D). Use CS to find an optimal solution of the primal (P). Formulate the CS conditions:

Since we know that $\pi_1^*, \pi_2^* \neq 0$, we know from (1) & (2) that

$$2x_1^* + x_2^* = 3$$
 (7)
 $x_2^* + 4x_3^* = 2$ (8)

Insert the dual solution in the dual constraints. In (5), we see that $3-1.5-1=0.5\neq 0$, so $\mathbf{x_2^*}=\mathbf{0}$.

Set $x_2^* = 0$ in (7) & (8), and we obtain $x_1^* = 3/2$, $x_3^* = 1/2$.

Check the objective values

$$(P): \min \quad z = 3x_1 + 3x_2 + 4x_3 \qquad (D): \max \quad w = 3\pi_1 + 2\pi_2 + 9\pi_3 \\ \text{s.t.} \quad 2x_1 + x_2 \geq 3 \qquad \text{s.t.} \quad s.t. \quad 2\pi_1 + 4\pi_3 \leq 3 \\ x_2 + 4x_3 \geq 2 \qquad \qquad \pi_1 + \pi_2 \leq 3 \\ 4x_1 + 8x_3 \geq 9 \qquad \qquad 4\pi_2 + 8\pi_3 \leq 4 \\ x_1, x_2, x_3 \geq 0 \qquad \qquad \pi_1, \pi_2, \pi_3 \geq 0$$

$$\begin{pmatrix} x_1^* \\ x_2^* \\ x_3^* \end{pmatrix} = \begin{pmatrix} 3/2 \\ 0 \\ 1/2 \end{pmatrix}, \quad \mathbf{z}^* = \mathbf{6.5}, \quad \begin{pmatrix} \pi_1^* \\ \pi_2^* \\ \pi_3^* \end{pmatrix} = \begin{pmatrix} 3/2 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{w}^* = \mathbf{6.5}.$$

Example (2. Now the other way round)

Suppose we know an optimal solution $x^* = (1\frac{1}{2}, 0, \frac{1}{2})$ of the **primal (P)**. Use CS to find an optimal solution of the **dual (D)**.

Practice at home!

To Do

Solve Exercises 5.1, 5.2, 5.5 (a), 6.1, 8.1