Criptografia para Segurança de Dados Gabarito da Lista 1

Thales Paiva

thale spaiva@gmail.com

29/04/2014

Sumário

1	Exercício 1	2
2	Exercício 2	2
3	Exercício 3	3
4	Exercício 4	3

1 Exercício 1

Escrever todos os valores de i, u_i , v_i , a_i e b_i quando o Algoritmo de Euclides Estendido é aplicado com entrada (3540, 714).

Resolução: A tabela abaixo mostra a execução do algoritmo com os parâmetros pedidos. Note que os valores de a_i e b_i estão relacionados aos de x_{i-2} e x_{i-1} .

i	x_{i-2}	x_{i-1}	q_i	$x_i \leftarrow x_{i-2} \bmod x_{i-1}$	u_i	v_i
-2					1	0
-1					0	1
0	3540	714	4	684	1	-4
1	714	684	1	30	-1	5
2	684	30	22	24	23	-114
3	30	24	1	6	-24	119
4	24	6	4	0	119	-590
5	6	0				

2 Exercício 2

Utilizando o Algoritmo de Euclides estendido (pg. 244 do livro) calcular $3541^{-1} \mod 119$.

Resolução: Note que 3541^{-1} mod 119 existe se e somente se mdc(3541, 119) = 1. Ainda, se este for o caso, o Algoritmo de Euclides Estendido aplicado a (3541, 119) calculará $u, v \in \mathbb{Z}$ tais que:

$$3541u + 119v = 1 \Rightarrow 3541u = 1 \mod 119 \Rightarrow u = 3541^{-1} \mod 119$$

A tabela abaixo mostra a aplicação do Algoritmo de Euclides Estendido aplicado a (3541, 119):

Como $3541 \times 41 + 119 \times (-1220) = 1$, temos que $3541^{-1} \mod 119 = 41$.

i	x_{i-2}	x_{i-1}	q_i	$x_i \leftarrow x_{i-2} \bmod x_{i-1}$	u_i	v_i
-2					1	0
-1					0	1
0	3541	119	29	90	1	-29
1	119	90	1	29	-1	30
2	90	29	3	3	4	-119
3	29	3	9	2	-37	1101
4	3	2	1	1	41	-1220
5	2	1	2	0		

3 Exercício 3

Dado que $N=8 \bmod 17$ e $N=4 \bmod 31$, utilizando o Teorema Chinês do Resto (pg. 247 do livro) calcular $N \bmod (17 \times 31)$.

Resolução: Pela aplicação do Algoritmo de Euclides Estendido, temos que:

$$1 = mdc(17, 31) = 11 \times 17 + (-6) \times 31$$

Pelo Teorema Chinês do Resto, temos que:

$$N = 4 \times 11 \times 17 + 8 \times (-6) \times 31 = -740 \mod (17 \times 31)$$

Fazendo a redução a $\mathbb{Z}_{17\times 31} = \mathbb{Z}_{527}, temos$:

$$N = -740 = -213 = 314 \mod (17 \times 31)$$

4 Exercício 4

Relacionado ao Algoritmo RSA, dadas a fatoração de $n=qr=17\times31$ e a chave pública p = 433, calcular a chave particular s utilizando as fórmulas $\Phi(qr)=(q-1)(r-1)$ e $s=p^{-1}$ mod $\Phi(qr)$ (pg. 128 do livro).

Resolução: Do enunciado:

$$s = 433^{-1} \mod \Phi(17 \times 31) = 433^{-1} \mod (16 \times 30) = 433^{-1} \mod 480$$

Pelo algoritmo de Euclides Estendido aplicado a (433, 480), temos que:

$$(-143) \times 433 + 129 \times 480 = 1 \Rightarrow -143 = 433^{-1} \mod 480$$

Reduzindo -143 a \mathbb{Z}_{480} , temos:

$$-143 = 337 \mod 480$$