Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Индивидуальное домашнее задание №1

Вариант 3

по дисциплине Дифференциальные уравнения

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Бойцев Антон Александрович

Трудность решения в какой-то мере входит в само понятие задачи: там, где нет трудности, нет и задачи.

Д. Пойа

1

Привести заменой $x=z^m$ уравнение

$$(xy^2 + 1)yx' + 2x = 0, x > 0, y > 0$$

к однородному и решить его. Записать ответ в виде F(x,y) = C.

Решение:

Пусть $x=z^m,\,y=z,\,$ тогда $x'=mz'z^{m-1},\,$ запишем получившееся уравнение:

$$\begin{split} (z^m z^2 + 1)zmz'z^{m-1} + 2z^m &= 0, \ z^m > 0, \ z > 0 \\ mz'z^{2m+2} + mz'z^m + 2z^m &= 0 \\ mz'z^{2m+2} &= -(mz' + 2)z^m \\ 2m + 2 &= m \to m = -2 \end{split}$$

Таким образом, $x=z^{-2},\,x'=-2z'z^{-3},\,$ подставим в исходное уравнение, получим:

$$-2z'z^{-3}(z^{-2}y^2+1)y+2z^{-2}=0 \mid :-2z^{-2} \neq 0$$
$$z'z^{-1}(z^{-2}y^2+1)y-1=0$$
$$z'z^{-3}y^3+z'z^{-1}y-1=0$$

Полученное уравнение является однородным, убедимся, подставив $z=\lambda z,\ y=\lambda y$:

$$F(\lambda z, \, \lambda y) = z' \lambda^{-3} z^{-3} \lambda^3 y^3 + z' \lambda^{-1} z^{-1} \lambda y - 1 = \lambda^0 F(z, \, y)$$

Решаем уравнение:

$$z'z^{-1}y(z^{-2}y^2+1)-1=0$$

Подстановка: z = ty, z' = t'y + t

$$(t'y+t)(ty)^{-1}y((ty)^{-2}y^2+1)-1=0$$

$$(t'y+t)t^{-1}(t^{-2}+1)-1=0$$

$$t'y+t=\frac{t}{t^{-2}+1},\ t^{-2}+1\neq 0\ (us\ ycловия\ всегда\ выполнено)$$

$$t'y=\frac{t}{t^{-2}+1}-t$$

$$\frac{dt}{dy}y=\frac{t}{t^{-2}+1}-t$$

$$\frac{dt}{dy}y=\frac{t-t^{-1}-t}{t^{-2}+1}$$

$$\frac{dt}{dy}y=\frac{-t^{-1}}{t^{-2}+1}$$

$$-t(t^{-2}+1)\ dt=\frac{dy}{y}$$

$$-\int (t^{-1}+t)\ dt=\int \frac{dy}{y}$$

$$-\ln t-\frac{t^2}{2}=\ln y+C$$

$$-\ln \frac{z}{y}-\frac{z^2}{2y^2}=\ln y+C$$

$$-\ln z+\ln y-\frac{z^2}{2y^2}=\ln y+C$$

$$-\ln z-\frac{z^2}{2y^2}=C$$
 Обратная замена: $x=z^{-2}\to z=\frac{1}{\sqrt{x}}$
$$-\ln\frac{1}{\sqrt{x}}-\frac{1}{2xy^2}=C$$

$$\ln\sqrt{x}-\frac{1}{2xy^2}=C$$

$$Omeem: \ln\sqrt{x}-\frac{1}{2xy^2}=C$$

Решить линейное уравнение методом вариации произвольных постоянных (методом Лагранжа). Пользуясь формулой общего решения линейного уравнения, проверьте полученный ответ. Записать ответ в виде y = f(x, C).

$$y' = \frac{2y}{x \ln x} + \frac{1}{x}, x > 1$$

Решение:

Решим уравнение:

$$y' = \frac{2y}{x \ln x}, \ x > 1$$
$$\frac{dy}{dx} = \frac{2y}{x \ln x}, \ x > 1$$
$$\frac{dy}{2y} = \frac{dx}{x \ln x}, \ y \neq 0$$

Заметим, что y = 0 также является решение уравнения $y' = \frac{2y}{x \ln x}$.

$$\int \frac{dy}{2y} = \int \frac{dx}{x \ln x}$$

$$\frac{1}{2} \ln |y| = \int \frac{d \ln x}{\ln x}$$

$$\frac{1}{2} \ln |y| = \ln \ln x + \ln C$$

$$\ln |y| = 2 \ln C \ln x$$

$$y = C e^{\ln^2 x}$$

$$y = C \ln^2 x$$

Метод вариации произвольной постоянной – примим C=C(x) и подставим в исходное уравнение:

$$C' \ln^2 x + 2C \ln x \frac{1}{x} = \frac{2C \ln^2 x}{x \ln x} + \frac{1}{x}$$

 $C' \ln^2 x = \frac{1}{x}$

$$\int dC = \int \ln^{-2} x \, \frac{dx}{x}$$
$$\int dC = \int \ln^{-2} x \, d \ln x$$
$$C = -\ln^{-1} x + A, A = const$$

В итоге получим:

$$y = (A - \ln^{-1} x) \ln^2 x, A = const$$

 $y = A \ln^2 x - \ln x, A = const$

Omsem: $y = A \ln^2 x - \ln x$, A = const

Привести уравнение Риккати к линейному. решить полученное линейное уравнение, используя метод интегрирующего множителя. Записать ответ в виде F(x,y)=C.

$$xy' = x^3 + (1 - 2x^2)y + xy^2$$

Решение:

Om em:

Решить уравнение в дифференциалах, подобрав интегрирующий множитель в виде $\mu(x,y)=(x+y^2)^{\alpha}.$ Записать ответ в виде F(x,y)=C.

$$2y(x+y^2-1)dy + (x^2y^2 + x^3 - 1)dx = 0$$

Решение:

Om em:

Решить уравнение методом введения параметра.

Записать ответ в виде x = f(y, C).

Исследовать на наличие особых решений. Построить на одной координатной плоскости графики нескольких интегральных кривых и, при наличии, особых решений.

$$2x = \frac{y}{y'} + \ln(yy'), \ y > 0$$

Решение:

Omeem:

$$\frac{\partial F}{\partial x} = 2x - \frac{1}{x^2 y}$$