

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019

Introduction to the command line and R Introduction to the command line

Learning Objectives

- To give a background on Unix and the fundamentals of the OS
- To introduce the shell
- To give a breakdown of command usage and some of the most important commands
- To give an intro to command line editors
- To give an intro to a compute cluster and resources manager
- To give an intro to workflow tools
- To give an intro to software containerisation

Learning Outcomes

- To understand the background of the Unix environment
- To understand the need for using the command line for scientific computing
- To be comfortable with navigating the environment, doing file and directory manipulations, and working with pipes and filters
- To understand a cluster environment basics and be able to submit an interactive job
- To be familiar with workflow tools
- To be familiar with software containerisation

What is Unix

- A stable, multi-user, multitasking operating system for servers, desktops and laptops that exists in many variants
- Unix systems are characterised by a modular design:
 - a set of simple tools that each perform a limited, well-defined function
 - with a unified filesystem as the main means of communication and
 - a shell scripting and command language to combine the tools to perform complex workflows.
- Unix flavours
 - Sun Solaris, Mac OS X, GNU/Linux, UnixWare, FreeBSD, OpenBSD, IBM IAX, HP
 UX
- GNU/Linux distributions
 - Difference is in package managers, directory structure, file naming, suitability (servers vs desktops)
 - Debian, Ubuntu, Fedora, openSUSE, SUSE Linux Enterprise, Scientific Linux,
 Redhat, CentOS

Trainer name

Timeline

Int BT 2019 **Trainer name**

From: From: http://commons.wikimedia.org/wiki/File:Unix timeline.en.svg , license:

released in Public domain

Fundamentals

- Different Unix flavours but fundamentally the same
 - Kernel
 - Allocates time and memory to programs, handles storage and communication
 - Shell
 - Interface between user and kernel. Command line interpreter (CLI)
 - Terminal / Console
 - Interface to the shell
- Comply to POSIX standards
- Username, password, home directory, group, permissions, default shell
- Processes (PID)
- Directory structure and files

Ubuntu files structure

Permissions

- In multi-user systems, access and access restrictions are key
- Typically, you are the owner of every file/directory you create or bring into a system
- What other files and directories you can read, write or execute will depend on how the system is set up

```
[gerrit@headhode001 filter-vcf]$ ls -la /global5/datasets/
total 204
drwxr-xr-x 15 ayton root
                    root
                             4096 Nov 17 2017 ...
drwxr-xr-x 7 root
           3 ayton ayton
                                         2016 afmap
                            20480 Aug 23 2016 ashk
drwxr-s--- 4 ayton root
                             4096 Feb 8 14:34 baylor
drwxrwx--- 10 gerrit h3a
drwxr-xr-x 4 gerrit gerrit
                               70 Oct 19 2018 giab
                               52 Mar 7 16:51 hapmap3
drwxr-xr-x 3 ayton root
                    root
                               88 Nov 10 2015 other chipdesign
drwxr-x--- 27 gerrit saals
                             4096 Oct 23 2018 saals
drwxr-s--- 6 gerrit sahgp
                              171 Feb 8 13:33 sahgp
drwxrws--- 2 ayton root 126976 Oct 6 2015 simons
drwxr-xr-x 6 root
                              101 Feb 8 14:05 trypanogen
                    root
 permissions
              user / group
                                    time of last
                                                file name
              ownership
                                    change
```


Shell

- Command line interface to the operating system (browsing file system and issuing commands)
- All in all a programming language
- Shell scripts provide a way to automate repetitive tasks
- Different shells with different features

Command anatomy

command -options/flags

[input]

[output]

- Depending on the command the **input** can be read from the *stdin* stream, the output from a previous command or from a file
- Depending on command the output can be send to the stdout stream, to the input of the next command or to a file
- Error messages are normally send to the stderr stream
- Do get more detail information about command flags and usage make use of the man pages. e.g. man ls

List of important commands

File management		
ls	List files	
cd	Change directory	
pwd	Print working directory	
mkdir	Make a new, empty directory	
rmdir	Remove an empty directory	
ср	Copy files	
scp / ssh	Do a secure copy from or to a remote machine / login to remote machine	
rm	Remove files	
mv	Move files or directories (rename)	
find	Find files or folders based on name, date, size, ownership or other parameters	
tar	Build an archive of files	
gzip / bzip2	Compression tools	
Permissions		
chown	Change ownership of files/directories	
chgrp	Change group ownership of files/directories	
chmod	Change permissions (mode) of files/directories	
groups	Report the group(s) you belong to	
id	Report your username, userid, group(s) and group id(s)	
newgrp	Set you default group for the current shell	

List of important commands

Resource monitorin	g	
top	See the top resource-hungry processes	
df	See how much disk space is free	
du	Report numbers and sizes of files on disk	
free	Show available and cached memory	
Job control		
which	Display full path of command	
ps	View active processes	
<cntrl>-c</cntrl>	Kill current job	
<cntrl>-z</cntrl>	Suspend current job	
bg	Put suspended job in background	
fg	Bring a suspended job into the foreground	
Filtering/Reporting		
grep	Search for substrings in a file or pipeline	
awk / sed	Pattern scanning and text processing / stream editor for transforming text	
sort	Sort lines alphabetically or numerically	
WC	Count lines, words, characters	
cat	Print file or files to standard output	
more / less	Text viewing programs	
head / tail	View start or end of a file or pipeline	

Redirection and piping

Piping and redirection summary			
> file	Output redirection, overwrite		
>> file	Output redirection, append		
< file	Input redirection		
commandA commandB	Pipe output from commandA to commandB		

Things to be aware of

- File and directory naming is case sensitive.
- Keep away from using strange characters in file names otherwise it needs to be escaped.
- Bash shell features
 - Command and filename completion with tab key
 - Browse through history with up and down keys
 - Search for previous commands with cntrl-r
- Many ways to accomplish the same thing using various combinations of piping together commands.
- In the shell deleting files is forever.

Editors

- Learn to use a shell editor and the shortcut keys
- Command line options for editors: vi, emacs, nano, pico
- nano is a easy editor to start with

Compute cluster

- A compute cluster consist of single machines that work together so that in many respects they can be viewed as a single system.
- A resource and scheduler monitors job resources and assigns jobs to nodes.
- A job scheduler operates efficiently if resources are fairly distributed across users of the system.
- A job scheduler uses certain criteria to decide if jobs should run e.g.
 - Job priority
 - Compute resource availability (memory/cpu)
 - Execution time allocated to user
 - Number of simultaneous jobs allowed for a user
 - Estimated execution time
 - Elapsed execution time
 - Job dependency

PBS and SLURM

- PBS and SLURM are popular job scheduling systems
- Both have different ways in defining submissions scripts. See https://github.com/grbot/batch-system-comp

PBS

```
#!/bin/bash
#PBS -1 nodes=1:ppn=1
#PBS -1 walltime=01:00:00
#PBS -N ech_count
#PBS -d .
#PBS -M gerrit.botha@uct.ac.za
#PBS -m abe
#PBS -q UCTlong
##### Running commands
ceho "Date is ";date
echo "hostname is ";hostname
exe="echo_count.sh count.txt 100"

$exe
```

SLURM

```
#!/bin/bash
    #SBATCH -N 1
    #SBATCH --ntasks-per-node=1
    #SBATCH -t 01:00:00
    #SBATCH -J echo_count
    #SBATCH -o echo count.o%j
    #SBATCH -e echo count.e%j
    #SBATCH --mail-user=gerrit.botha@uct.ac.za
    #SBATCH --mail-type=begin
    #SBATCH --mail-type=end
    ##SBATCH -p Main
12
    ##### Running commands
    echo "Date is ";date
14
    echo "hostname is ";hostname
    exe="./echo_count.sh count.txt 100"
    Sexe:
```


PBS and SLURM interactive sessions

- PBS doing an interactive submission (getting onto a compute node, requesting 1 node and 1 core and reserve for 2 hours)
 - \$ qsub -I -l nodes=1:ppn=1 -l walltime=02:00:00
- SLURM doing an interactive submission (getting onto a compute node, requesting 1 node and 1 core and reserve for 2 hours)
 - \$ srun --nodes=1 --ntasks=1 --time=120 --pty bash

Workflow tools

Nextflow

- Provides a language and engine
- Language are based on Groovy
- Relative easy to learn and can easily be applied to simple and large workflows
- Not modular at moment but will be in DSL 2.0
- Nextflow example code on Ilifu are <u>here</u> with demo <u>here</u>
- <u>CWL</u> (Common Workflow Language)
 - Language only, tools such as cwltool an Toil provides the engine
 - Modular and very structured
 - Large community support similar to what is found for Nextflow.
- WDL (Workflow Descriptive Language)
 - Language only, Cromwell provides the engine
 - Used by Broad Institute and supported in GA4GH workflows.

Software containers

- A container is a standard unit of software that packages up code and all its dependencies so the application runs quickly and reliably from one computing environment to another.
- Use operating-system-level virtualization to deliver software in packages called containers
- Most popular technologies are Docker and Singularity
- Depending on what is available at you facility it is sometimes a less administrative hassle to package your software or software suite in a container.
- Before building a container have a look at https://quay.io/organization/biocontainers to see if an image of the tool does not exist already.
- Singularity images can be build from Docker images
- Due to Docker security issues it is most likely that only Singularity is supported on your cluster environment.

