What is claimed is:

1	1. A method of selecting input vectors for extraction of
2	representative data for training of an adaptive model, comprising:
3	receiving signals as input from a plurality of sensors as a set of
4	training vectors;
5	ordering the set of training vectors according to a
6	corresponding value in each vector of a particular sensor;
7	dividing the set of training vectors according to equally spaced
8	ranges according to the ordering; and
9	selecting at least one vector from each of the equally spaced
10	ranges for training the adaptive model.
	2 A worth and a constituent and along 1 fourth on a communicion at the
1	2. A method according to claim 1, further comprising the
2	step of including for training the adaptive model each vector that contains a
3	maximum or a minimum value for any given sensor across the set of
4	training vectors.
1	3. A method according to claim 1, further comprising
2	carrying out the ordering, dividing and selecting steps for each sensor
3	represented in the set of training vectors.
1	1 A mathed according to daim 1 who wain said ardaring
1	4. A method according to claim 1, wherein said ordering
2	step comprises ordering the set of training vectors according to the
3	magnitude of the particular sensor.
1	5. A method according to claim 4, wherein a vector is
2	selected from one of the equally spaced ranges through the ordering by
3	magnitude such that the selected vector is the vector with a sensor value
4	highest within the range.
1	6. A method according to claim 1, wherein said ordering
2	step comprises ordering the set of training vectors so as to provide a

cumulative density function for the particular sensor.

1	7. A method according to claim 6, wherein a vector is
2	selected from one of the equally spaced ranges through the cumulative
3	density function such that the selected vector is the vector with a sensor
4	value highest within the range.
1	8. An adaptive apparatus for monitoring a system
2	instrumented with sensors, comprising:
3	data acquisition means for acquiring signals from sensors
4	representative of operational states of the system;
5	an empirical modeling module responsive to the data
6	acquisition means for providing indications about the operational states of
7	the system;
8	a data store for storing modeling parameters for use by the
9	empirical modeling module; and
10	a training module disposed to distill characteristic operational
11	sensor data acquired from the system to a representative set of sensor data
12	for storing in the data store, by selecting from the characteristic operational
13	sensor data time-correlated observations representative of regularly spaced
14	intervals along an ordering of the observations according to values in the
15	observations of a particular sensor.
1	9. An apparatus according to claim 8, wherein the training
2	module includes in the representative set of sensor data observations having
3	a maximum or a minimum value for a particular sensor across all the
4	characteristic operational sensor data.
1	10. An apparatus according to claim 8, wherein selection of
2	observations representative of regularly shaped intervals is performed for
3	an ordering for each sensor in the system.

is according to the magnitude of the particular sensor.

An apparatus according to claim 8, wherein said ordering

1	12. An apparatus according to claim 8, wherein said ordering
2	is according to the cumulative density function for the particular sensor.
1	13. A method of selecting a set of training vectors
2	representative of an adaptive system, said training set forming an empirical
3	model of said system, said method comprising the steps of
4	a) collecting historical data, said historical data including a
5	plurality of system vectors each indicating an operating state of said system;
6	b) selecting a system parameter in said system vector space;
7	c) ordering plurality of system vectors;
8	d) binning vector space for said selected parameter; and
9	e) selecting a vector from each bin;
10	f) selected said vectors forming a training set said training set
11	forming said empirical model for monitoring system operation.
1	14. A method as in claim 13 wherein the step b) of selecting a
2	system parameter comprises identifying dominant driver parameters.
1	15. A method as in claim 13 wherein the step b) of selecting
2	system parameters further comprises selecting a bin number, said bin
3	number being used in step d) of binning vector space, said bin number
4	determining the number of bins in which the vector space is divided.
1	16. A method as in claim 15 wherein the bin number is
2	provided only for dominant driver parameters and a bin number of two is
3	used for all other parameters.
1	17. A method as in claim 15 wherein said system vectors are
2	ordered in step b) in ascending magnitude order for said selected parameter.
1	18. A method as in claim 15 wherein said system vectors are
2	ordered in step b) in descending magnitude order for said system selected
3	parameter.

3 4

5

1

2

1

2

1

2

3

1

2

1	19. A method as in claim 15 wherein in the step e) of
2	selecting a vector from each bin, one of the plurality of system vectors is
3	identified as having a value for said selected parameter closest to a bin
4	magnitude of each bin, identified ones being selected for initial inclusion in
5	said training set.
1	20. A method as in claim 15 wherein in the step e) of
2	selecting a vector from each bin, one of the plurality of system vectors is
3	identified as having a value for said selected parameter closest to but not
4	exceeding a bin magnitude of each bin, identified ones being selected for
5	initial inclusion in said training set.

- 21. A method as in claim 15 wherein in the step e) of selecting a vector from each bin, one of the plurality of system vectors is identified as having a value for said selected parameter closest to but not less than a bin magnitude of each bin, identified ones being selected for initial inclusion in said training set.
- 22. A method as in claim 15 wherein the step d) of binning vector space comprises dividing the vector space logarithmically.
- 23. A method as in claim 15 wherein in step d) of binning the vector space comprises dividing the vector space geometrically.
- 24. A method as in claim 15 wherein the step d) of binning vector space comprises selecting every nth vector, *n* being a positive whole number less than or equal to half the number of said plurality of system vectors.
 - 25. A method as in claim 15, after the step e) of selecting vectors from each bin further comprising the steps of:
- f) checking system parameters to determine if other parameters remain unselected; if other parameters are determined to remain unselected,

6	g) selecting an unselected parameter, said unselected
7	parameter being identified as the selected parameter;
8	h) returning to step c) and repeating steps c) through h)
9	until all system parameters have been selected; otherwise,
0	i) eliminating redundant selected vectors; and
1	j) storing said selected vectors as a training set for
12	modeling and monitoring system operation.
I	26. A system for monitoring activity of another system, said
2	system comprising:
3	a control unit controlling a monitored system;
4	a data acquisition unit receiving information from said
5	control unit and from said monitored system and providing system
6	snapshots therefrom, system snapshots representing the state of said
7	monitored system relative to the time the snapshot is taken;
8	a memory storing said system snapshots;
9	a sorter sorting collected system snapshots responsive to
0	a selected system parameter; and
11	a vector selector binning sorted snapshots and selecting
12	vector from each bin and, said selected vector being a system snapshot
13	provided for initial inclusion in a training set.
1	27. A system as in claim 26 further comprising:
2	means for eliminating redundant collected vectors, remaining
3	said vectors forming said training set; and
4	a memory storing said training set.
1	28. A system as in claim 27, wherein the vector selector
2	divides vector space into a plurality of evenly spaced bins and selects a
3	vector from each bin, each said selected vector being identified as having a
4	parameter value closest to a corresponding bin value.
1	29. A system as in claim 27, wherein the vector selector
2	divides vector space into a plurality of logarithmically spaced bins and

3	selects a vector from each bin, each said selected vector being identified as
4	having a parameter value closest to a corresponding bin value.
1	30. A system as in claim 27, wherein the vector selector
2	divides vector space into a plurality of geometrically spaced bins and selects
3	a vector from each bin, each said selected vector being identified as having a
4	parameter value closest to a corresponding bin value.
1	31. A system as in claim 26 wherein the vector selector
2	divides the vector space into equal numbers of system snapshots.
1	32. A computer program product for selecting input vectors
2	for extraction of representative data for training of an adaptive model, said
3	computer program product comprising a computer usable medium having
4	computer readable program code thereon, said computer readable program
5	code comprising:
6	computer readable program code means for receiving signals
7	as input from a plurality of sensors as a set of training vectors;
8	computer readable program code means for ordering the set of
9	training vectors according to a corresponding value in each vector of a
10	particular sensor;
11	computer readable program code means for dividing the set of
12	training vectors according to equally spaced ranges according to the
13	ordering; and
14	computer readable program code means for selecting at least
15	one vector from each of the equally spaced ranges for training the adaptive
16	model.
1	33. A computer program product for selecting input vectors
2	according to claim 1, further comprising computer readable program code
3	means for selecting for inclusion in training the adaptive model each vector
4	that contains a maximum or a minimum value for any given sensor across
5	the set of training vectors.

1	34. A computer program product for selecting input vectors
2	according to claim 32, wherein the computer readable program code means
3	for ordering orders the set of training vectors according to the magnitude of
4	the particular sensor.
1	35. A computer program product for selecting input vectors
2	according to claim 34, wherein a vector is selected from one of the equally
3	spaced ranges through the ordering by magnitude such that the selected
4	vector is the vector with a sensor value highest within the range.
1	36. A computer program product for selecting input vectors
2	according to claim 32, wherein the computer readable program code means
3	for ordering orders the set of training vectors so as to provide a cumulative
4	density function for the particular sensor.
1	37. A computer program product for selecting input vectors
2	according to claim 34, wherein a vector is selected from one of the equally
3	spaced ranges through the cumulative density function such that the
4	selected vector is the vector with a sensor value highest within the range.
1	38. A computer program product for selecting a set of
2	training vectors representative of an adaptive system, said computer
3	program product comprising a computer usable medium having computer
4	readable program code thereon, said computer readable program code
5	comprising:
6	computer readable program code means for collecting
7	historical data, said historical data including a plurality of system vectors
8	each indicating an operating state of said system;
9	computer readable program code means for selecting a system
10	parameter in said system vector space;
11	computer readable program code means for ordering plurality
12	of system vectors;
13	computer readable program code means for binning vector
13	computer readable program code means for binning vector

space for said selected parameter; and

14

2

15	computer readable program code means for selecting a vector
16	from each bin according to a selected criteria, such that selected said vectors
17	form a training set, said training set forming said empirical model for
18	monitoring system operation.
1	39. A computer program product for selecting a set of
2	training vectors as in claim 38 wherein the computer readable program code
3	means for selecting a system parameter identifies dominant driver
4	parameters.
1	40. A computer program product for selecting a set of
2	training vectors as in claim 38 wherein the computer readable program code
3	means for selecting system parameters further comprises computer readable
4	program code means for selecting a bin number, said bin number being used
5	to bin vector space, said bin number determining the number of bins in
6	which the vector space is divided.
1	41. A computer program product for selecting a set of
2	training vectors as in claim 40 wherein the bin number is provided only for
3	dominant driver parameters and a bin number of two is used for all other
4	parameters.
1	42. A computer program product for selecting a set of
2	training vectors as in claim 40 wherein said system vectors are ordered in
3	magnitude order for said selected parameter.
1	43. A computer program product for selecting a set of
2	training vectors as in claim 40 wherein said selected criteria identifies system
3	vectors having a value for said selected parameter closest to a bin magnitude
4	of each bin.

training vectors as in claim 40 wherein said selected criteria identifies system

A computer program product for selecting a set of

operation.

7

3	vectors having a value for said selected parameter closest to but not
4	exceeding a bin magnitude of each bin.
1	45. A computer program product for selecting a set of
2	training vectors as in claim 40 wherein said selected criteria identifies system
3	vectors having a value for said selected parameter closest to but not less
4	than a bin magnitude of each bin.
1	46. A computer program product for selecting a set of
2	training vectors as in claim 40 wherein the computer readable program code
3	means for binning vector space divides the vector space logarithmically.
1	47. A computer program product for selecting a set of
2	training vectors as in claim 40 wherein the computer readable program code
3	means for binning the vector space divides the vector space geometrically.
1	48. A computer program product for selecting a set of
2	training vectors as in claim 40 wherein the computer readable program code
3	means for binning vector space selects every nth vector, <i>n</i> being a positive
4	whole number less than or equal to half the number of said plurality of
5	system vectors.
1	49. A computer program product for selecting a set of
2	training vectors as in claim 40, further comprising:
3	computer readable program code means for eliminating
4	redundant selected vectors; and
5	computer readable program code means for storing said
6	selected vectors as a training set for modeling and monitoring system