数字逻辑设计

Digital Logic Design

张春慨

School of Computer Science ckzhang@hit.edu.cn

Unit 3-2——

布尔代数的应用及最大项最小项表达式

- → 布尔代数的应用
 - ■最大项、最小项表达式
 - 不完全给定函数

组合逻辑电路的设计方法

组合逻辑电路的设计目标

- 实现逻辑功能
- 满足性能指标
- 综合考虑各项因素:

规模、功耗、价格、可靠性、

速度、易实现、易维修、美观等

设计不唯一,最佳设计方案应随新技术的不断推出而变化

怎样设计组合逻辑电路?

☞ □方法1: 直接转换(简单情况下)

将文字描述的功能直接转换为逻辑表达式

■方法2: 真值表转换

由真值表可以直接写出两种标准形式的逻辑表达式

方法1. 将文字描述的功能直接转换为表达式

Example

逻辑关系

Mary watches TV if it is Monday night and she has finished her homework

Define:

F = 1: 看电视: F = 0: 没看电视.

A = 1: 周一晚上; A = 0: 不是周一晚上.

 $F = A \cdot B$

B=1: 完成作业; B=0: 没完成作业

方法1. 将文字描述的功能直接转换为表达式

Example

The alarm will ring if the alarm switch is turned on and the door is not closed, or it is after 6 P.M. and the window is not closed.

$$Z = AB' + CD'$$

The alarm will ring if the alarm switch is on and Z A the door is not closed C it is after 6 P.M. and C

the window is not closed

怎样设计组合逻辑电路?

■方法1: 直接转换(简单情况下)

将文字描述的功能直接转换为真值表或表达式

☞■方法2: 真值表转换

由真值表可以直接写出两种标准形式的逻辑表达式

- 标准与或式(最小项表达式: and-or)
- 标准或与式(最大项表达式: or-and)

逻辑函数的表示方法

使用真值表设计组合逻辑电路

真值表 —— 表达式

Truth table

AB C	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

① 写出标准与或式(乘积之和) 关注表中输出值为1的所有输入取值组合

使用真值表设计组合逻辑电路

真值表 —— 表达式

Truth table

AB C	F
000	0
001	0
010	0
011	1 √
100	0
101	1 √
110	1 √
111	1 √

① 写出标准与或式(乘积之和) 关注表中输出值为1的所有输入取值组合

 $F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

输入取值组合中

1——原变量

0——反变量

使用真值表设计组合逻辑电路

真值表 —— 表达式

Truth table

②写出标准或与式(和之积)

关注表中输出值为0的所有输入取值组合

输入取值组合中

0——原变量

1——反变量

AB C	F
0 0 0	0 🗸
001	0 🇸
010	0 √
011	1
100	0 √
101	1
110	1
111	1

$$F = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C)$$

逻辑函数的表示方法——逻辑图

F = AB + AB

■ 每个表达式都直接对应一个逻辑电路图

逻辑函数的表示方法——真值表

3. 真值表

真值表

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

■ n 个输入变量有 2ⁿ 种取值组合

Example

某电路有三个输入端A, B, C, 当ABC ≥011时,输出 f=1,否则 f = 0.

步骤:

- 1. 根据设计要求确定 —— 真值表
- 2. 根据真值表 —— 卡诺图(表达式)
- 3. 化简
- 4. 按设计要求,变换逻辑表达式
- 5. 画出逻辑图

Example

某电路有三个输入端A, B, C, 当ABC ≥011时,输出 f=1,否则 f = 0.

1 True Table

穷举法

ABC	f
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
100	1
1 0 1	1
1 1 0	1
1 1 1	1

Algebraic Expression

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

A	В	C	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Simplification

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

$$= A'BC + AB' + AB$$

$$= A'BC + A = BC + A$$

Logic Circuit

$$C \xrightarrow{B} f$$

Unit 3——

布尔代数的应用及最大项最小项表达式

- 布尔代数的应用
- ■最大项、最小项表达式
- 不完全给定函数

1. Minterm and Maxterm的定义

Row No.	ABC	Minterms	Maxterms
0	0 0 0	$A'B'C' = m_0$	$A+B+C = M_0$
1	0 0 1	$A'B'C = m_1$	$A+B+C'=M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	100	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$

- \mathbf{n} 个变量组成的最小项 \mathbf{m}_i : 是一个与项(包含 \mathbf{n} 个变量)
- n个变量组成的最大项M_i: 是一个或项(包含n个变量)
- ■每个变量或者以原变量的形式、或者以反变量的形式出现,并且只出现一次。因子:原变量或反变量
- n个变量能组成的最小(大)项的个数是2n
- **■** $M_{i} = m_{i}'$

2、最小项和最大项的性质

1. 最小项的反是最大项, 最大项的反是最小项;

$$\overline{\overline{A}\overline{B}\overline{C}} = \overline{m_0} = A + B + C = M_0$$

$$\overline{A + \overline{B} + \overline{C}} = \overline{M_3} = \overline{A}BC = m_3$$

2. 全部最小项之和恒等于"1";

$$m_0 + m_1 + m_2 + m_3 = 1$$

3.全部最大项之积恒等于"0";

$$M_0 M_1 M_2 M_3 = 0$$

4. 一部分 最小项之和的反等于其余所有最小项之和;

$$m_1 + m_2 = m_0 + m_3$$
 $m_0 = m_1 + m_2 + m_3$

2、最小项和最大项的性质

5. 两个不同的最小项之积恒等于"0";

例如: $ABC \cdot AB\overline{C} = 0$

6. 两个不同的最大项之和恒等于"1";

例如: $(A+B+C)+(A+B+\overline{C})=1$

7. 与或标准型

$$Y=\Sigma m_i = \Sigma m(0,1,4,6,7) = m_0 + m_1 + m_4 + m_6 + m_7$$

8. 或与标准型

$$Y = \prod M_i = \prod M(0,1,4,6,7) = M_0 M_1 M_4 M_6 M_7$$

最小项性质

ABC ABC ABC ABC **ABC ABC ABC** $\mathbf{m_i} \cdot \mathbf{m_i} = 0$ For any input combinations, there is only one minterm will be 1 $(m_i = 1)$;

最大项性质

	A+B+C	 A+B+C	A+B+C	- A+B+C	A+B+C	A+B+C	A+B+C	A+B+C	
000	1	1	1	1	1	1	1	0	
001	1	1	1	1	1	1	0	1	
010	1	1	1	1	1	0	1	1	
011	1	1	1	1	0	1	1	1	
100	1	1	1	0	1	1	1	1	F
101	1	1	0	1	1	1	1	1	C
110	1	0	1	1	1	1	1	1	
111	0	1	1	1	1	1	1	1	k

$$\prod_{i=0}^{2^{n}-1} M_{i} = 0$$

$$\mathbf{M_i} + \mathbf{M_j} = 1$$

For any input combinations, there is only one maxterm will be $0 \, (M_i = 0)$

最大项表达式、最小项表达式

3、最小项表达式

Example 011 101 110 111 $F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ $= m_3 + m_5 + m_6 + m_7$ $= \sum m (3, 5, 6, 7)$

最小项表达式:标准与或式

Minterm list: list of "1"

4、最大项表达式

Example

000 001 010 100 $F = (A+B+C) \cdot (A+B+C) \cdot (A+B+C) \cdot (A+B+C)$ $= M_0 \cdot M_1 \cdot M_2 \cdot M_4$ $= \Pi M(0, 1, 2, 4)$

最大项表达式: 标准或与式.

Maxterm list: list of 0

	Minterm Expansion of f	sion Expansion Exp		Maxterm Expansion of f'
$f = \Sigma m(3, 4, 5, 6, 7)$		III <i>M</i> ((0, 1, 2)	S m/0 1 2)	П <i>М</i> (3, 4, 5, 6, 7)
$f = \frac{2 \text{II}(3, 4, 5, 6, 7)}{f}$		11 101(0, 1, 2)	2111(0, 1, 2)	11 ///(3, 4, 3, 6, 7)
П M(0, 1, 2)	$\sum m(3, 4, 5, 6, 7)$	<u> </u>	$\sum m(0, 1, 2)$	П M(3, 4, 5, 6, 7)

Unit 3——

布尔代数的应用及最大项最小项表达式

- ■布尔代数的应用
- ■最大项、最小项表达式

■ 不完全给定函数

Incompletely Specified Functions

1. 无关项(Don't care terms)——

- 1)不可能存在的输入取值组合
- 2) 所有的输入取值组合都存在,但是对于某些输入 取值,我们并不关心它们导致的输出结果是0还是1, 因为没有意义。

Example

将输入的 8421BCD码转 换为余3码

W	X	Υ	Z	Α	В	С	D
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
-							
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
.							
1	1	1	1	X	X	X	Х

Incompletely Specified Functions

2. 不完全给定函数

$$F = \sum m(0, 3, 7) + \sum d(1, 6)$$

$$F = \prod M(2, 4, 5) \cdot \prod D(1, 6)$$

ABC	F
000	1
001	X
010	0
0 1 1	1
100	0
101	0
110	X
111	1

Unit 3-2——

布尔代数的应用及最大项最小项表达式

- 布尔代数的应用
- ■最大项、最小项表达式
- 不完全给定函数

