

UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę
		πα πακτέγκε

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

DATA: 21 sierpnia 2018 r. GODZINA ROZPOCZECIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ **NADZORUJĄCY** Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę dostosowania w zw. z dyskalkulią

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamknietych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj **p**ola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1 **1**P-184

NOWA FORMUŁA

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0–1)

Cena pewnego towaru w wyniku obniżki o 10% zmniejszyła się o 2 018 zł. Ten towar po tej obniżce kosztował

- **A.** 20 180 zł
- **B.** 18 162 zł
- **C.** 2 108 zł
- **D.** 2 028 zł

Zadanie 2. (0-1)

Liczba $\sqrt[3]{2}$ jest równa

- **A.** $2^{\frac{1}{6}}$ **B.** $2^{\frac{1}{5}}$
- **C.** $2^{\frac{1}{3}}$
- **D.** $2^{\frac{2}{3}}$

Zadanie 3. (0-1)

Dane są liczby $x = 4.5 \cdot 10^{-8}$ oraz $y = 1.5 \cdot 10^{2}$. Wtedy iloraz $\frac{x}{v}$ jest równy

- **A.** $3 \cdot 10^{-10}$
- **B.** $3 \cdot 10^{-6}$ **C.** $6,75 \cdot 10^{-10}$ **D.** $6,75 \cdot 10^{-6}$

Zadanie 4. (0–1)

Liczba $\log_4 96 - \log_4 6$ jest równa

- **A.** $\log_4 90$ **B.** $\log_6 96$
- **C.** 4
- **D.** 2

Zadanie 5. (0-1)

Równość $(a+2\sqrt{3})^2 = 13+4\sqrt{3}$ jest prawdziwa dla

- **A.** $a = \sqrt{13}$ **B.** a = 1
- **C.** a = 0 **D.** $a = \sqrt{13} + 1$

Zadanie 6. (0-1)

Na rysunku jest przedstawiona graficzna ilustracja układu dwóch równań stopnia pierwszego z dwiema niewiadomymi x i y.

Wskaż ten układ.

A.
$$\begin{cases} y = -2x + 8 \\ y = -\frac{3}{2}x + \frac{13}{2} \end{cases}$$
 B.
$$\begin{cases} y = 2x - 4 \\ y = -\frac{1}{2}x + \frac{7}{2} \end{cases}$$
 C.
$$\begin{cases} y = x - 1 \\ y = \frac{1}{2}x + \frac{1}{2} \end{cases}$$
 D.
$$\begin{cases} y = 3x - 7 \\ y = -\frac{2}{3}x + 4 \end{cases}$$

B.
$$\begin{cases} y = 2x - 4 \\ y = -\frac{1}{2}x + \frac{7}{2} \end{cases}$$

C.
$$\begin{cases} y = x - 1 \\ y = \frac{1}{2}x + \frac{1}{2} \end{cases}$$

D.
$$\begin{cases} y = 3x - 7 \\ y = -\frac{2}{3}x + 4 \end{cases}$$

Zadanie 7. (0-1)

Rozwiązaniem równania $\frac{x-2}{3(x+2)} = \frac{1}{9}$ jest liczba

Zadanie 8. (0–1)

Dane są funkcje $f(x) = 3^x$ oraz g(x) = f(-x), określone dla wszystkich liczb rzeczywistych x. Punkt wspólny wykresów funkcji f i g

A. nie istnieje.

B. ma współrzędne (1,0).

 \mathbf{C} . ma współrzędne (0,1).

D. ma współrzędne (0,0).

Zadanie 9. (0-1)

Punkt $(1,\sqrt{3})$ należy do wykresu funkcji $y = 2\sqrt{3}x + b$. Wtedy współczynnik b jest równy

A. 7

B.
$$3\sqrt{3}$$
 C. -5 **D.** $-\sqrt{3}$

D.
$$-\sqrt{3}$$

Zadanie 10. (0-1)

Wykresem funkcji kwadratowej $f(x) = x^2 - 2x - 11$ jest parabola, której wierzchołkiem jest punkt o współrzędnych

A. (-2, -3) **B.** (-2, -12) **C.** (1, -8) **D.** (1, -12)

Zadanie 11. (0-1)

Funkcja kwadratowa jest określona wzorem f(x) = -3(x-2)(x-9). Liczby x_1, x_2 są różnymi miejscami zerowymi funkcji f. Zatem

A. $x_1 + x_2 = 11$ **B.** $x_1 + x_2 = -11$ **C.** $x_1 + x_2 = 33$ **D.** $x_1 + x_2 = -33$

Zadanie 12. (0-1)

Największą wartością funkcji $y = -(x-2)^2 + 4$ w przedziale $\langle 3, 5 \rangle$ jest

A. 0

B. 5

C. 4

D. 3

Zadanie 13. (0–1)

Ciąg arytmetyczny (a_n) , określony dla $n \ge 1$, spełnia warunek $a_3 + a_4 + a_5 = 15$. Wtedy

A. $a_4 = 5$

B. $a_4 = 6$ **C.** $a_4 = 3$ **D.** $a_4 = 4$

Zadanie 14. (0-1)

Dla pewnej liczby x ciąg (x, x+4, 16) jest geometryczny. Liczba x jest równa

A. 8

B. 4

C. 2

D. 0

Zadanie 15. (0–1)

W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kata α jest równa $\sqrt{3}$. Zatem

A. $\alpha = 60^{\circ}$

B. $\alpha \in (40^{\circ}, 60^{\circ})$ **C.** $\alpha \in (30^{\circ}, 40^{\circ})$ **D.** $\alpha = 30^{\circ}$

Zadanie 16. (0-1)

Kąt α jest ostry i $\cos \alpha = \frac{3}{5}$. Wtedy

A.
$$\sin \alpha \cdot \lg \alpha = \frac{16}{15}$$

B.
$$\sin \alpha \cdot \lg \alpha = \frac{15}{16}$$

C.
$$\sin \alpha \cdot \tan \alpha = \frac{8}{15}$$

D.
$$\sin \alpha \cdot \tan \alpha = \frac{6}{20}$$

Zadanie 17. (0-1)

Dany jest okrąg o środku S. Punkty K, L i M leżą na tym okręgu. Na łuku KL tego okręgu są oparte kąty KSL i KML (zobacz rysunek), których miary α i β spełniają warunek $\alpha + \beta = 114^{\circ}$. Wynika stąd, że

$$\mathbf{A.} \quad \beta = 19^{\circ}$$

B.
$$\beta = 38^{\circ}$$

C.
$$\beta = 57^{\circ}$$

$$\mathbf{D.} \quad \beta = 76^{\circ}$$

Zadanie 18. (0-1)

Różnica miar dwóch sąsiednich katów wewnętrznych równoległoboku jest równa 80°. Kat rozwarty tego równoległoboku ma miarę

A. 120°

B. 125°

C. 130°

D. 135°

Zadanie 19. (0-1)

Pole trójkata o bokach długości 4 oraz 9 i kacie między nimi o mierze 60° jest równe

A. 18

B. 9

C. $18\sqrt{3}$ **D.** $9\sqrt{3}$

Zadanie 20. (0-1)

Proste o równaniach y = (3m-4)x+2 oraz y = (12-m)x+3m są równoległe, gdy

A. m = 4

B. m = 3

C. m = -4 **D.** m = -3

Zadanie 21. (0-1)

Punkt A = (-3, 2) jest końcem odcinka AB, a punkt M = (4, 1) jest środkiem tego odcinka. Długość odcinka AB jest równa

A. $2\sqrt{5}$

B. $4\sqrt{5}$ **C.** $5\sqrt{2}$ **D.** $10\sqrt{2}$

Zadanie 22. (0-1)

Jeżeli α oznacza miarę kąta między przekątną sześcianu a przekątną ściany bocznej tego sześcianu (zobacz rysunek), to

A. $\sin \alpha = \frac{\sqrt{6}}{2}$

B. $\sin \alpha = \frac{\sqrt{2}}{2}$ **C.** $\sin \alpha = \frac{\sqrt{3}}{2}$ **D.** $\sin \alpha = \frac{\sqrt{3}}{2}$

Zadanie 23. (0-1)

Przekrój osiowy walca jest kwadratem o przekatnej $10\sqrt{2}$. Pole powierzchni bocznej tego walca jest równe

A. 50π

B. 100π

C. 200π

D. 250π

Zadanie 24. (0-1)

Abiturient jednego z liceów zestawił w tabeli oceny ze swojego świadectwa ukończenia szkoły.

Ocena	6	5	4	3	2
Liczba ocen	2	3	5	5	1

Mediana przedstawionego zestawu danych jest równa

A. 3

B. 3.5

C. 4

D. 4.5

Zadanie 25. (0–1)

W grupie liczącej 29 uczniów (dziewcząt i chłopców) jest 15 chłopców. Z tej grupy trzeba wylosować jedną osobę. Prawdopodobieństwo zdarzenia polegającego na tym, że zostanie wylosowana dziewczyna, jest równe

B. $\frac{1}{14}$ **C.** $\frac{14}{29}$

Zadanie 26. (0-2)

Rozwiąż nierówność $x^2 + 6x - 16 < 0$.

Zadanie 27. (0-2)

Rozwiąż równanie $(x^3 + 27)(x^2 - 16) = 0$.

_	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. (0-2)

W równoległoboku ABCD punkt E jest środkiem boku BC. Z wierzchołka D poprowadzono prostą przecinającą bok BC w punkcie E. Proste AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że punkt B jest środkiem odcinka AF.

Zadanie 29. (0–2)

Wykaż, że jeżeli a i b są liczbami rzeczywistymi dodatnimi, to $(a+b)\left(\frac{1}{a}+\frac{1}{b}\right) \ge 4$.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. (0–2)

Dziewiąty wyraz ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest równy 34, a suma jego ośmiu początkowych wyrazów jest równa 110. Oblicz pierwszy wyraz i różnicę tego ciągu.

Zadanie 31. (0–2)

Punkty A = (2, 4), B = (0, 0), C = (4, -2) są wierzchołkami trójkąta ABC. Punkt D jest środkiem boku AC tego trójkąta. Wyznacz równanie prostej BD.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (0–5)

W ostrosłupie prawidłowym trójkątnym *ABCS* krawędź podstawy ma długość *a*. Pole powierzchni bocznej tego ostrosłupa jest dwa razy większe od pola jego podstawy. Oblicz cosinus kąta nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny jego podstawy.

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (0–4)

Ze zbioru $A = \{-3, -2, -1, 1, 2, 3\}$ losujemy liczbę a, natomiast ze zbioru $B = \{-1, 0, 1, 2\}$ losujemy liczbę b. Te liczby są – odpowiednio – współczynnikiem kierunkowym i wyrazem wolnym funkcji liniowej f(x) = ax + b. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymana funkcja f jest rosnąca i ma dodatnie miejsce zerowe.

Wypełnia egzaminator	Nr zadania	33.
	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 34. (0–4)

W trójkącie prostokątnym *ACB* przyprostokątna *AC* ma długość 5, a promień okręgu wpisanego w ten trójkąt jest równy 2. Oblicz pole trójkąta *ACB*.

Wypełnia egzaminator	Nr zadania	34.
	Maks. liczba pkt	4
	Uzyskana liczba pkt	