A Study of Jeffrey's Rule With Imprecise Probability Models

Enrique Miranda & Arthur Van Camp

13 July 2023

Oviedo & Bristol

Ignacio Montes

Arthur Van Camp

Jason Konek

Kevin Blackwell

Zhenhua Li

Department of Statistics and Operations Research

Epistemic Utility for Imprecise Probability

P on Ω	ω ₁₁	ω ₁₂	ω_{13}	ω_{14}	ω_{15}	ω_{16}
	ω_{21}	ω_{22}	ω_{23}	ω_{24}	ω_{25}	ω_{26}
	ω ₃₁	ω_{32}	ω_{33}	ω_{34}	ω_{35}	ω_{36}

 $P_{\text{info}}(A) = P(A|B_2)$ using Bayes' Rule

 $P_{\text{info}}(B) = \check{P}(B)$ for all $B \in \mathcal{B}$ [agreeing on \mathcal{B}] $P_{\text{info}}(A|B) = P(A|B)$ for all $B \in \mathcal{B}, A \subseteq \Omega$ [rigidity]

$$P_{\rm info}(B) = \check{P}(B)$$
 for all $B \in \mathscr{B}$ [agreeing on \mathscr{B}] $P_{\rm info}(A|B) = P(A|B)$ for all $B \in \mathscr{B}, A \subseteq \Omega$ [rigidity]

$$\Rightarrow P_{\text{info}}(A) = \sum_{B \in \mathscr{B}} P_{\text{info}}(A|B) P_{\text{info}}(B)$$

$$P_{\mathrm{info}}(B) = \widecheck{P}(B)$$
 for all $B \in \mathscr{B}$ [agreeing on \mathscr{B}] $P_{\mathrm{info}}(A|B) = P(A|B)$ for all $B \in \mathscr{B}, A \subseteq \Omega$ [rigidity]

$$\Rightarrow P_{\text{info}}(A) = \sum_{B \in \mathscr{B}} P(A|B)\check{P}(B)$$

Bayes' Rule as Jeffrey's Rule

$$P_{\text{info}}(A) = \sum_{B \in \mathscr{B}} P(A|B)\widecheck{P}(B)$$

Bayes' Rule as Jeffrey's Rule

$$P_{\text{info}}(A) = \sum_{B \in \mathscr{B}} P(A|B)\widecheck{P}(B)$$

Bayes' Rule as Jeffrey's Rule

$$P_{\text{info}}(A) = \sum_{B \in \mathscr{B}} P(A|B) \check{P}(B) = P(A|B_1)0 + P(A|B_2)1 + P(A|B_3)0 + \dots + P(A|B_6)0$$

= $P(A|B_2)$

Find the smallest coherent D_{info} such that

$$D_{\text{info}} \supseteq \check{D}$$
 [agreeing on \mathscr{B}]

 $D_{info} \rfloor B \supseteq D \rfloor B$ for all $B \in \mathcal{B}$ [rigidity]

$$D_{\text{info}} \supseteq \check{D}$$
 [agreeing on \mathscr{B}]

$$D_{info} \rfloor B \supseteq D \rfloor B$$
 for all $B \in \mathcal{B}$ [rigidity]

Find the smallest coherent D_{info} such that \Rightarrow it follows from [De Cooman & Hermans 2008]

$$D_{\text{info}} = \text{posi}(\check{D} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_B(D \rfloor B))$$

is the unique smallest coherent D_{info} that satisfies agreeing on \mathcal{B} and rigidity.

Find the smallest coherent K_{info} such that

$$K_{\text{info}} \supseteq \check{K}$$
 [agreeing on \mathscr{B}] $K_{\text{info}} \rfloor B \supseteq K \rfloor B$ for all $B \in \mathscr{B}$ [rigidity]

Find the smallest coherent K_{info} such that Theorem:

$$K_{\mathrm{info}} \supseteq \widecheck{K}$$
 [agreeing on \mathscr{B}] $K_{\mathrm{info}} \rfloor B \supseteq K \rfloor B$ for all $B \in \mathscr{B}$ [rigidity]

$$\operatorname{Rs}\left(\operatorname{Posi}\left(\check{K}\cup\bigcup_{B\in\mathscr{B}}\mathbb{I}_{B}(K\rfloor B)\right)\right)$$

is the unique smallest coherent K_{info} that satisfies agreeing on \mathcal{B} and rigidity.

Jeffrey's Rule for non-additive measures

Is there a version of Jeffrey's Rule for non-additive measures?

Jeffrey's Rule for non-additive measures

Is there a version of Jeffrey's Rule for non-additive measures? Given:

a class % of lower probabilities

a lower probability $\underline{P} \in \mathscr{C}$ on Ω

info: a lower probability $P \in \mathscr{C}$ on \mathscr{B}

Question: Is there a smallest $P_{info} \in \mathscr{C}$ such that

$$\underline{P}_{info}(B) \geq \underline{\check{P}}(B)$$
 for all $B \in \mathscr{B}$

$$\underline{P}_{info}(A|B) \geq \underline{P}(A|B)$$
 for all $B \in \mathcal{B}, A \subseteq \Omega$

[agreeing on \mathscr{B}] ?

Jeffrey's Rule for non-additive measures

Is there a version of Jeffrey's Rule for non-additive measures? Given:

```
a class \mathscr C of lower probabilities a lower probability \underline{P} \in \mathscr C on \Omega
```

info: a lower probability
$$\underline{\check{P}} \in \mathscr{C}$$
 on \mathscr{B}

Question: Is there a smallest
$$P_{info} \in \mathscr{C}$$
 such that

$$\underline{P}_{info}(B) \geq \underline{\check{P}}(B)$$
 for all $B \in \mathscr{B}$

$$\underline{P}_{\mathrm{info}}(A|B) \geq \underline{P}(A|B)$$
 for all $B \in \mathscr{B}, A \subseteq \Omega$

[agreeing on
$$\mathscr{B}$$
] ?

We study this question for minitive measures, linear-vacuous models, pari-mutuel models and total variation models.

Come and see our poster for answers!

A Study of Jeffrey's Rule With Imprecise Probability Models

(?) Is there a version of Jethey's Rule for non-additive measures?

Consider a special class Y of coherent lower probabilities P. We lift the domain of P to gambles ; $E(f) := \min\{E(f) : (\forall A \subseteq \Omega)E(\mathbf{I}_4) \ge E(A)\}.$ You have a lower probability $P \in \mathbb{X}'$ on Ω , and observe a new lower probability $P \in \mathbb{X}'$ on \mathbb{X}' . You are looking for the least informative lower probability $P \in \mathbb{X}'$ such that

 $*\hat{E}(B) \ge \tilde{E}(B)$, [agreeing on \mathscr{E}] $*\hat{E}(A|B) \ge E(A|B)$, for every $A \subseteq \Omega$ and B in \mathcal{B} . Proposition. Consider $\hat{\underline{P}} \in \mathbb{R}^r$. Then $\hat{\underline{P}}$ satisfies agreeing on \mathcal{H} and highlity if $\hat{\underline{P}}(f) \geq \hat{\underline{P}}(\underline{P}(f|\mathcal{H}))$ So in order to answer the question, equivalently: $(\nabla \cdot \operatorname{check} \operatorname{whether} P(P(*|\mathscr{X})))$ belongs to V.

Minitive measures Assume that If is the class of minitive $P(A \cap B) = \min\{P(A), P(B)\}$ $\underline{P}(\min\{f,g\}) = \min\{\underline{P}(f),\underline{P}(g)\}$ b) If E or E is minitive on gambles, then $E(E(\cdot|\mathscr{X}))$ is minitive on events. c) If P nor P is minitive on gambles, then $P(P(\cdot | \mathcal{H}))$ may not be minitive on events. Distortion models Assume that Y is either one of the classes of P that satisfy, for all $A \neq \Omega$: $P(A) = \min\{1, (1 + \delta)P(A)\}\ P(A) = \max\{P(A) - \delta, 0\}$

Proposition. For any of the three classes \forall' of lower probabilities mentioned above: if P and \tilde{P} belong to W, then $P(P(\cdot | \mathcal{B}))$ may not belong to W.

Enrique Miranda University of Oviedo, Spain

