Collective oscillations in the rat barrel-thalamus network

Benedetta Mariani*, Ramon Guevara Erra, Giorgio Nicoletti, Stefano Vassanelli, Samir Suweis *contact: benedetta.mariani@studenti.unipd.it

Context

Neural oscillations are often found in mammalian cortical networks, in a task dependent way, suggesting their functional role. We here study the rat thalamus-barrel cortex sensory path and its response to whisker stimulation, whose oscillatory behavior is poorly studied in the literature.

Experimental paradigm

LFPs and MUAs recordings from barrel cortex and thalamus in urethane anesthetized rats after whisker stimulation and during spontaneous activity.

Stimulation paradigm: single whisker stimulations is performed with a piezoelectric actuator.

Data analysis

MUAs

Average firing rate across trials: collective oscillations are present in the barrel cortex (NOT in the thalamus) after whisker stimulation.

LPFs

Thalamus is dominated by δ band oscillations both at rest and after stimulation. The cortex instead displays also long lasting oscillations in 6-10 Hz band after stimulation, while only δ at resting.

Activity propagates from thalamus to cortex

The model

Two nodes (thalamus and cortex) directed chain. Each node is a **damped oscillator** (stochastic Wilson Cowan type). Whisker stimulation simulation: facilitation of thalamus-cortex synapses, i. e. increase in coupling D.

First, the nodes are set to oscillate at 3 Hz spontaneously, and weakly coupled. If the stimulation is introduced as an increase of the coupling with the first inhibitory sub-population only, a frequency at 6 Hz is analytically predicted to appear in the second node!

Conclusions

Our data analysis shows that **evoked collective oscillations** are present in the barrel after whisker stimulation, whose response propagates from thalamus to cortex. Our modelling framework highlights an alleged important effect played by **effective inhibitory coupling** for the birth of 6-10 Hz frequency band, that coexists with the δ one.

