Industrielles de

l'Ingénieur

Sciences

Révision 1 – Résolution des problèmes de statique – Statique 3D

TD 02

Quille pendulaire

Concours Commun Mines Ponts 2014

Savoirs et compétences :

- Res1.C2.SF1: Proposer une méthode permettant la détermination d'une inconnue de liaison.
- Res1.C3.SF1 : Choisir une méthode pour déterminer la valeur des paramètres conduisant à des positions d'équilibre.
- Res2.C18: Principe fondamental de la statique.
- Res2.C19: Équilibre d'un solide, d'un ensemble de solides.
- Res2.C20 : Théorème des actions réciproques.

Mise en situation

Objectif L'objectif de cette partie est de valider la solution technologique de réalisation de la liaison pivot entre la quille et la coque.

Travail à réaliser

Question 1 En isolant le bon système, montrer que l'action de 2 sur 1 en A₂ est représentable par le glisseur dont la forme sera notée : $\left\{\begin{array}{c} F_{21} \overrightarrow{x}_{2} \\ \overrightarrow{0} \end{array}\right\}_{A_{2}} ou \left\{\begin{array}{c} F_{21} \overrightarrow{x}_{N} \\ \overrightarrow{0} \end{array}\right\}_{A_{2}} puisque \mathcal{B}_{N} = \mathcal{B}_{2}.$

Correction Le graphe de structure associé au modèle cinématique est donné dans la figure suivante.

On isole l'ensemble {4+2}. Cet ensemble est soumis à 2 glisseurs. D'après le PFS les deux actions mécaniques ont donc même direction (la droite $(A_2 C)$, vecteur \overrightarrow{x}_2 = \overrightarrow{x}_N), la même norme ($|F_{21}|$) et le sens opposé. On a donc: $\{\mathcal{T}(0 \to 4)\} + \{\mathcal{T}(1 \to 2)\} = \{0\} \Leftrightarrow \overline{\{\mathcal{T}(0 \to 4)\}} = \{0\}$ $\{\mathcal{T}(2 \to 1)\}\ \text{et donc}\ \{\mathcal{T}(2 \to 1)\} = \left\{\begin{array}{c} F_{21} \overrightarrow{x}_N \\ \overrightarrow{0} \end{array}\right\}_A.$

Question 2 Déterminer l'effort F_{21} nécessaire au déplacement de la quille.

Correction On isole la quille 1.

On réalise le BAME :

- action de 2 sur 1 : $\{\mathcal{T}(2 \to 1)\} = \left\{\begin{array}{c} F_{21} \overrightarrow{x_N} \\ \overrightarrow{0} \end{array}\right\}_{A_2}$;
- action de 3 sur 1 : $\{\mathcal{T}(3 \to 1)\} = \{0\}$ (pas d'action mécanique dans le vérin); action de N sur 1 : $\{\mathcal{T}(N \to 1)\}_{\text{pivot}} = \left\{\begin{array}{c} X_{N1p}\overrightarrow{x_N} + Y_{N1p}\overrightarrow{y_N} + Z_{N1p}\overrightarrow{z_N} \\ L_{N1p}\overrightarrow{x_N} + M_{N1p}\overrightarrow{y_N} \end{array}\right\}_O$; action de la pesanteur sur 1 : $\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -M_1g\overrightarrow{y_N} \\ \overrightarrow{0} \end{array}\right\}_{G_1}$.

La quille étant en pivot d'axe $(O, \overrightarrow{z_N})$ par rapport à **0**, réalisons le théorème du moment statique en O en projection sur $\overrightarrow{z_N}$:

1

$$(\overrightarrow{OA_2} \wedge F_{21} \overrightarrow{x_N} + \overrightarrow{OG_1} \wedge -M_1 g \overrightarrow{y_N}) \overrightarrow{z_N} = 0$$

$$\Leftrightarrow ((R \overrightarrow{y_1} - d \overrightarrow{z_N}) \wedge F_{21} \overrightarrow{x_N} + L_1 \overrightarrow{y_1} \wedge M_1 g \overrightarrow{y_N}) \overrightarrow{z_N} = 0$$

$$\Leftrightarrow -F_{21} \overrightarrow{y_N} (R \overrightarrow{y_1} - d \overrightarrow{z_N}) + L_1 M_1 g (\overrightarrow{x_N} \cdot \overrightarrow{y_1}) = 0$$

$$\Leftrightarrow -R F_{21} \cos \theta_1 - L_1 M_1 g \sin \theta_1 = 0$$

$$\Leftrightarrow F_{21} = -\frac{L_1}{R} M_1 g \tan \theta_1.$$

Question 3 Exprimer, en fonction de d, g, M_1 , et F_{21} , par ses éléments de réduction en O, dans la base $(\overrightarrow{x_N}, \overrightarrow{y_N}, \overrightarrow{z_N})$, le torseur d'action mécanique de N sur 1, $\{\mathcal{T}(N \to 1)\}_{pivot}$.

Correction

On a:

En conservant le même isolement et le même bilan des actions mécaniques, on réalise le PFS en O et on a :

$$\begin{cases} F_{2}1\overrightarrow{x_{N}} + X_{N1p}\overrightarrow{x_{N}} + Y_{N1p}\overrightarrow{y_{N}} + Z_{N1p}\overrightarrow{z_{N}} - M_{1}g\overrightarrow{y_{N}} = \overrightarrow{0} \\ \overrightarrow{OA_{2}} \wedge F_{21}\overrightarrow{x_{N}} + \overrightarrow{OG_{1}} \wedge -M_{1}g\overrightarrow{y_{N}} + L_{N1p}\overrightarrow{x_{N}} + M_{N1p}\overrightarrow{y_{N}} = \overrightarrow{0} \end{cases}$$

$$\Leftrightarrow \begin{cases} F_{21}\overrightarrow{x_{N}} + X_{N1p}\overrightarrow{x_{N}} + Y_{N1p}\overrightarrow{y_{N}} + Z_{N1p}\overrightarrow{z_{N}} - M_{1}g\overrightarrow{y_{N}} = \overrightarrow{0} \\ F_{21}\left(R\overrightarrow{y_{1}} \wedge \overrightarrow{x_{N}} - d\overrightarrow{z_{N}} \wedge \overrightarrow{x_{N}}\right) - L_{1}M_{1}g\sin\theta\overrightarrow{z_{N}} + L_{N1p}\overrightarrow{x_{N}} + M_{N1p}\overrightarrow{y_{N}} = \overrightarrow{0} \end{cases}$$

$$\Leftrightarrow \begin{cases} F_{21}\overrightarrow{x_{N}} + X_{N1p}\overrightarrow{x_{N}} + Y_{N1p}\overrightarrow{y_{N}} + Z_{N1p}\overrightarrow{z_{N}} - M_{1}g\overrightarrow{y_{N}} = \overrightarrow{0} \\ F_{21}\left(-R\cos\theta_{1}\overrightarrow{z_{N}} - d\overrightarrow{y_{N}}\right) - L_{1}M_{1}g\sin\theta\overrightarrow{z_{N}} + L_{N1p}\overrightarrow{x_{N}} + M_{N1p}\overrightarrow{y_{N}} = \overrightarrow{0} \end{cases}$$

$$\begin{cases} F_{21} + X_{N1p} = 0 \\ Y_{N1p} - M_{1}g = 0 \end{cases}$$

$$\begin{cases} L_{N1p} = 0 \\ -dF_{21} + M_{N1p} = 0 \\ -F_{21}R\cos\theta_{1} - L_{1}M_{1}g\sin\theta = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{N1p} = -F_{21} \\ Y_{N1p} = M_{1}g \\ Z_{N1p} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{N1p} = -F_{21} \\ Y_{N1p} = 0 \\ 0 = 0 \end{cases}$$

Question 4 Écrire la relation liant les torseurs d'action mécanique $\{\mathcal{T}(N \to 1)\}_{sphère-cylindre}, \{\mathcal{T}(N \to 1)\}_{sphérique}$ et $\{\mathcal{T}(N \to 1)\}_{pivot}$. En déduire, par ses éléments de réduction en O_1 , dans la base $\mathcal{B}_N = (\overrightarrow{x_N}, \overrightarrow{y_N}, \overrightarrow{z_N})$, en fonction de d, g, M_1 , et F_{21} , le torseur d'action mécanique de N sur 1 en O_1 , $\{\mathcal{T}(N \to 1)\}_{sphère-cylindre}$.

$\begin{aligned} & \text{Correction} \\ & \text{On a } \{\mathcal{T}(N \to 1)\}_{\text{sphère-cylindre}} + \{\mathcal{T}(N \to 1)\}_{\text{sphérique}} = \{\mathcal{T}(N \to 1)\}_{\text{pivot}}. \\ & \text{En conséquences} : \{\mathcal{T}(N \to 1)\}_{\text{sphère-cylindre}} = \left\{\begin{array}{l} \underbrace{X_{N1sc}}_{XN1sc} \overrightarrow{x_N} + Y_{N1sc} \overrightarrow{y_N} \\ 0 \end{array}\right\}_{O_1} = \left\{\begin{array}{l} \underbrace{X_{N1sc}}_{XN1sc} \overrightarrow{x_N} + Y_{N1sc} \overrightarrow{y_N} \\ -eX_{N1sc} \overrightarrow{y_N} + eY_{N1sc} \overrightarrow{y_N} \end{array}\right\}_{O} \\ & \text{et } \{\mathcal{T}(N \to 1)\}_{\text{sphérique}} = \left\{\begin{array}{l} \underbrace{X_{N1s}}_{XN} \overrightarrow{x_N} + Y_{N1s} \overrightarrow{y_N} + Z_{N1s} \overrightarrow{z_N} \\ 0 \end{array}\right\}_{O_2} = \left\{\begin{array}{l} \underbrace{X_{N1s}}_{XN1sc} \overrightarrow{x_N} + Y_{N1s} \overrightarrow{y_N} + Z_{N1s} \overrightarrow{z_N} \\ eX_{N1s} \overrightarrow{y_N} - eY_{N1s} \overrightarrow{y_N} + Z_{N1s} \overrightarrow{z_N} \end{array}\right\}_{O}. \\ & \text{Au final, on a :} \\ & \left\{\begin{array}{l} X_{N1p} = X_{N1sc} + X_{N1s} \\ Y_{N1p} = Y_{N1sc} + Y_{N1s} \end{array}\right. \\ & \text{et} \left\{\begin{array}{l} L_{N1p} = eY_{N1sc} - eY_{N1s} \\ M_{N1p} = -eX_{N1sc} - eY_{N1s} \\ 0 = 0 \end{array}\right.. \end{aligned}$

$$\begin{cases} X_{N1p} = X_{N1sc} + X_{N1s} \\ Y_{N1p} = Y_{N1sc} + Y_{N1s} \\ Z_{N1p} = Z_{N1s} \end{cases} & \text{et } \begin{cases} L_{N1p} = e \, Y_{N1sc} - e \, Y_{N1s} \\ M_{N1p} = -e \, X_{N1sc} - e \, Y_{N1s} \end{cases} & \Rightarrow \begin{cases} -F_{21} = X_{N1sc} + X_{N1s} \\ M_{1}g = Y_{N1sc} + Y_{N1s} \end{cases} & \text{et } \begin{cases} 0 = e \, Y_{N1sc} - e \, Y_{N1s} \\ d \, F_{21} = -e \, X_{N1sc} - e \, Y_{N1s} \end{cases} \\ \Rightarrow \begin{cases} -F_{21} = X_{N1sc} + X_{N1s} \\ M_{1}g = 2 \, Y_{N1sc} \end{cases} & \text{et } \begin{cases} Y_{N1sc} = Y_{N1s} \\ d \, F_{21} = -e \, X_{N1sc} - e \, Y_{N1sc} \end{cases} & \Rightarrow \begin{cases} X_{N1sc} = -\frac{d}{e} \, F_{21} - \frac{M_{1}g}{2} \\ Y_{N1sc} = \frac{d_{1}g}{2} \end{cases} \end{cases} .$$

Retour sur le cahier des charges

Question 5 Dans ces conditions, calculer la valeur de l'effort radial (perpendiculaire à l'axe géométrique du coussinet) qui sollicite ce coussinet en O_1 . Valider ensuite l'usage de ce coussinet de nylon.

Correction On a
$$F = \sqrt{X_{N1sc}^2 + Y_{N1sc}^2} = \sqrt{\left(-\frac{d}{e}F_{21} - \frac{M_1g}{2}\right)^2 + \left(\frac{M_1g}{2}\right)^2}$$

$$= \sqrt{\left(-\frac{200}{350}200000 - \frac{41000}{2}\right)^2 + \left(\frac{41000}{2}\right)^2} = 136336 \text{ N}.$$
Et donc, $p_{21} = \frac{136336}{80 \cdot 50} \simeq 34 \text{ MPa} < p_{\text{adm}}.$