Tangent Planes

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

SOLUTION Let $f(x, y) = 2x^2 + y^2$. Then

$$f_x(x, y) = 4x \qquad f_y(x, y) = 2y$$

$$f_x(1, 1) = 4$$
 $f_y(1, 1) = 2$

Then 2 gives the equation of the tangent plane at (1, 1, 3) as

$$z - 3 = 4(x - 1) + 2(y - 1)$$

or
$$z = 4x + 2y - 3$$

Differentials

$$dy = f'(x) dx$$

$$dz = f_x(x, y) dx + f_y(x, y) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

(Compare with Equation 9.) Sometimes the notation df is used in place of dz.

If we take $dx = \Delta x = x - a$ and $dy = \Delta y = y - b$ in Equation 10, then the differential of z is

$$dz = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

So, in the notation of differentials, the linear approximation 4 can be written as

$$f(x, y) \approx f(a, b) + dz$$

V EXAMPLE 4

(a) If $z = f(x, y) = x^2 + 3xy - y^2$, find the differential dz.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Δz and dz.

SOLUTION

(a) Definition 10 gives

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = (2x + 3y) dx + (3x - 2y) dy$$

(b) Putting
$$x = 2$$
, $dx = \Delta x = 0.05$, $y = 3$, and $dy = \Delta y = -0.04$, we get $dz = [2(2) + 3(3)]0.05 + [3(2) - 2(3)](-0.04) = 0.65$

The increment of z is

$$\Delta z = f(2.05, 2.96) - f(2, 3)$$

$$= [(2.05)^2 + 3(2.05)(2.96) - (2.96)^2] - [2^2 + 3(2)(3) - 3^2]$$

$$= 0.6449$$

Notice that $\Delta z \approx dz$ but dz is easier to compute.

Definition

The **Jacobian** of the transformation $x=g\left(u,v
ight)$, $y=h\left(u,v
ight)$ is

$$rac{\partial \left(x,y
ight) }{\partial \left(u,v
ight) }=egin{bmatrix} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} \ \end{pmatrix}$$

Screen clipping taken: 07/04/2025 12:58 am

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\frac{\partial \left(x,y\right)}{\partial \left(u,v\right)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Example 3 Show that when changing to polar coordinates we have $dA = r\,dr\,d heta$

$$x = r \cos \theta$$
 $y = r \sin \theta$

$$\begin{aligned} \frac{\partial \left(x,y\right)}{\partial \left(r,\theta\right)} &= \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} \\ &= \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} \\ &= r \cos^2 \theta - \left(-r \sin^2 \theta\right) \\ &= r \left(\cos^2 \theta + \sin^2 \theta\right) \\ &= r \end{aligned}$$

$$dA = \left| rac{\partial \left(x,y
ight)}{\partial \left(r, heta
ight)}
ight| \, dr \, d heta = \left| r
ight| dr \, d heta = r \, dr \, d heta$$

Taylor and Maclaurin Series

Theorem If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n \quad |x-a| < R$$

then its coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f'''(a)}{3!} (x - a)^3 + \cdots$$

The series in Equation 6 is called the **Taylor series of the function** f at a (or about a or centered at a). For the special case a=0 the Taylor series becomes

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

EXAMPLE 4 Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x. SOLUTION We arrange our computation in two columns as follows:

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as follows:

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

EXAMPLE 5 Find the Maclaurin series for cos x.

SOLUTION We could proceed directly as in Example 4, but it's easier to differentiate the Maclaurin series for sin *x* given by Equation 15:

$$\cos x = \frac{d}{dx} \left(\sin x \right) = \frac{d}{dx} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right)$$
$$= 1 - \frac{3x^2}{3!} + \frac{5x^4}{5!} - \frac{7x^6}{7!} + \cdots = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

EXAMPLE 6 Find the Maclaurin series for the function $f(x) = x \cos x$.

See solution from the book.

EXAMPLE 7 Represent $f(x) = \sin x$ as the sum of its Taylor series centered at $\pi/3$.

EXAMPLE 7 Represent $f(x) = \sin x$ as the sum of its Taylor series centered at $\pi/3$.

SOLUTION Arranging our work in columns, we have

$$f(x) = \sin x \qquad \qquad f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$f'(x) = \cos x \qquad \qquad f'\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

$$f''(x) = -\sin x \qquad \qquad f''\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$f'''(x) = -\cos x \qquad \qquad f'''\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

and this pattern repeats indefinitely. Therefore the Taylor series at $\pi/3$ is

$$f\left(\frac{\pi}{3}\right) + \frac{f'\left(\frac{\pi}{3}\right)}{1!} \left(x - \frac{\pi}{3}\right) + \frac{f''\left(\frac{\pi}{3}\right)}{2!} \left(x - \frac{\pi}{3}\right)^2 + \frac{f'''\left(\frac{\pi}{3}\right)}{3!} \left(x - \frac{\pi}{3}\right)^3 + \cdots$$
$$= \frac{\sqrt{3}}{2} + \frac{1}{2 \cdot 1!} \left(x - \frac{\pi}{3}\right) - \frac{\sqrt{3}}{2 \cdot 2!} \left(x - \frac{\pi}{3}\right)^2 - \frac{1}{2 \cdot 3!} \left(x - \frac{\pi}{3}\right)^3 + \cdots$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$R = 1$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$R = \infty$$

$$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$R = 1$$

$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots \qquad R = 1$$