MATH-449 - Biostatistics EPFL, Spring 2021 Problem Set 1

- 1. A survival time T is exponentially distributed with rate parameter $\beta > 0$ if its survival function, S(t) = P(T > t), takes the form $S(t) = e^{-\beta t}$ for $t \ge 0$.
 - a) Find the density function $f(t) = -\frac{d}{dt}S(t)$.
 - b) Find the hazard function and the cumulative hazard function.
 - c) A waiting time T is memoryless if P(T > t + s | T > t) = P(T > s) for all $t, s \ge 0$, i.e. if the waiting time distribution does not depend on how much time has already elapsed. Show that an exponentially distributed waiting time is memoryless.

Solution

- a) $f(t) = -\frac{d}{dt}S(t) = \beta e^{-\beta t}$.
- b) Let $\alpha(t)$ denote the hazard function. From the relation $f(t) = \alpha(t)e^{-\int_0^t \alpha(s)ds}$ we see that $\alpha(t) = \beta$. The cumulative hazard function is $\int_0^t \alpha(s)ds = \beta t$.
- c) By Bayes' theorem we have

$$\begin{split} P(T>t+s|T>t) &= \frac{P(T>t+s,T>t)}{P(T>t)} \\ &= \frac{P(T>t+s)}{P(T>t)}, \end{split}$$

where we used that the event $\{T > t + s, T > t\}$ is identical to the event $\{T > t + s\}$ to obtain the last line. Writing out the survival function of an exponentially distributed variable we get that the last line equals $e^{-\beta(t+s)}/e^{-\beta t} = e^{-\beta s} = P(T > s)$.

- 2. a) Find E[T] when T is a Weibull distributed variable, i.e. when the hazard function of T is $\alpha(t)=\lambda kt^{k-1}$ for $\lambda,k>0^{\ddagger}$
 - b) (Exercise 1.3 in ABG 2008) Suppose T is a survival time with finite expectation. Show that †

$$E[T] = \int_0^\infty P(T > s) ds.$$

Solution

a) The density function is $\lambda k t^{k-1} e^{-\lambda t^k}$, which gives

$$E[T] = \int_0^\infty t \cdot \lambda k t^{k-1} e^{-\lambda t^k} dt.$$

Performing the substitution $u = \lambda t^k$, $dt = \frac{du}{ku} \left(\frac{u}{\lambda}\right)^{1/k}$, gives

$$\begin{split} E[T] &= \int_0^\infty k \cdot u e^{-u} \cdot \frac{du}{ku} (\frac{u}{\lambda})^{1/k} \\ &= \lambda^{-1/k} \int_0^\infty u^{1/k} e^{-u} du \\ &= \lambda^{-1/k} \Gamma \big(1 - \frac{1}{k} \big). \end{split}$$

[‡]Hint: Express the solution using the gamma function, which is given by $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$.

[†]Hint: Write $T = \int_0^\infty I(T > u) du$.

b) Using the identity $T = \int_0^\infty I(T > s) ds$, the result follows from

$$\begin{split} E[T] &= E\Big[\int_0^\infty I(T>s)ds\Big] \\ &= \int_0^\infty E[I(T>s)]ds \\ &= \int_0^\infty P(T>s)ds, \end{split}$$

where we used that $E[T] < \infty$ to exchange integration and expectation.

3. (Exercise 2.1 in ABG 2008) Let M_n be a discrete time martingale with respect to the filtration \mathcal{F}_n , for $n \in \{0, 1, 2, \dots\}$. By definition of M being a martingale we have that $E[M_n | \mathcal{F}_{n-1}] = M_{n-1}$ for all $n \ge 1$. Show that this is equivalent to $E[M_n | \mathcal{F}_m] = M_m$ whenever $n \ge m \ge 0$.

Solution For n = m the result follows from the fact that M_n is adapted (i.e. measurable with respect to \mathcal{F}_n), and thus that $E[M_n|\mathcal{F}_n] = M_n$. For n > m we have by the law of total expectation and the definition of a martingale that

$$E[M_n|\mathcal{F}_m] = E[E[M_n|\mathcal{F}_{n-1}]|\mathcal{F}_m]$$
$$= E[M_{n-1}|\mathcal{F}_m].$$

The last step can repeated until we are left with $E[M_m|\mathcal{F}_m]$.

4. (Exercise 2.4 in ABG 2008) Let M be as in the previous problem, and suppose $M_0 = 0$. Prove that $M^2 - \langle M \rangle$ is a martingale with respect to the filtration \mathcal{F} , that is, that $M_0^2 - \langle M \rangle_0 = 0$ and that $E[M_n^2 - \langle M \rangle_n | \mathcal{F}_{n-1}] = M_{n-1}^2 - \langle M \rangle_{n-1}$

Solution We have $\langle M \rangle_n = \sum_{i=1}^n E[(M_i - M_{i-1})^2 | \mathcal{F}_{i-1}]$ and $\langle M \rangle_0 = 0$ by definition, which means that $M_0^2 - \langle M \rangle_0 = 0$. For n > 0,

$$\begin{split} E\big[M_{n}^{2} - \langle M \rangle_{n} | \mathcal{F}_{n-1}\big] &= E\Big[(M_{n} - M_{n-1} + M_{n-1})^{2} - E[(M_{n} - M_{n-1})^{2} | \mathcal{F}_{n-1}] - \langle M \rangle_{n-1} | \mathcal{F}_{n-1}\Big] \\ &= E\Big[(M_{n} - M_{n-1})^{2} + M_{n-1}^{2} - E[(M_{n} - M_{n-1})^{2} | \mathcal{F}_{n-1}] | \mathcal{F}_{n-1}\Big] - \langle M \rangle_{n-1} \\ &= E\Big[(M_{n} - M_{n-1})^{2} - E[(M_{n} - M_{n-1})^{2} | \mathcal{F}_{n-1}] | \mathcal{F}_{n-1}\Big] + M_{n-1}^{2} - \langle M \rangle_{n-1} \\ &= M_{n-1}^{2} - \langle M \rangle_{n-1} \end{split}$$

where we used that $E[(M_n - M_{n-1})M_{n-1}] = 0$, and that $\langle M \rangle_{n-1}$ and M_{n-1}^2 are \mathcal{F}_{n-1} -measurable.

5. Suppose we have n independent survival times $\{T_i\}_{i=1}^n$, where T_i corresponds to the time of death of individual i. Suppose we somehow could observe each individual from t=0 up to his/her time of death.

In the lectures you learned that a counting process $\{N(t)\}_{t\geq 0}$ is an increasing right-continuous integer-valued stochastic process such that N(0)=0. Write down the counting process N_i^c (that "counts" the death of individual i) in terms of T_i .

Solution N_i^c has at most one jump, at time T_i . As $N_i^c(t)$ is right-continuous it must take the form $N_i^c(t) = I(T_i \le t)$

You will also learn about the *intensity process* λ of a counting process N with respect to a filtration \mathcal{F} . It is informally defined through the relationship $\lambda(t)dt = E[dN(t)|\mathcal{F}_t]$.

In general, if the intensity $\lambda(t)$ of a counting process N(t) with respect to \mathcal{F}_t can be written on the form

$$\lambda(t) = \alpha(t) \cdot Y(t),$$

where α is an unknown deterministic function and Y is an \mathcal{F}_t -predictable[§] function that does not depend on α , N(t) is said to satisfy the *multiplicative intensity model**.

- 6. (Exercise 1.10 in ABG 2008) Consider the scenario in Exercise 5, and let \mathcal{F}_t^c be the filtration generated by $\{N_i^c(s), s \leq t, i = 1, \cdots, n\}$. In the lectures we will see that the intensity of N_i^c with respect to \mathcal{F}^c in this case is $\lambda_i^c(t) = E[dN_i^c(t)|\mathcal{F}_t^c] = \alpha_i(t)Y_i(t)$, where $\alpha_i(t)$ is the hazard function of individual i and $Y_i(t) = I(T_i \geq t)$. Consider the aggregated counting process $N^c(t) = \sum_{i=1}^n N_i^c(t)$.
 - i) Let $\{\eta_i(t)\}_{i=1}^n$ be known, positive, continuous functions. Find the intensity process of N^c with respect to \mathcal{F}_t^c when α_i take the following forms:
 - a) $\alpha_i(t) = \alpha(t)$
 - b) $\alpha_i(t) = \eta_i(t)\alpha(t)$
 - c) $\alpha_i(t) = \alpha(t) + \eta_i(t)$
 - ii) For which of the three cases in i) does N^c satisfy the multiplicative intensity model?

Solution We have

$$\lambda^{c}(t)dt = E[dN^{c}(t)|\mathcal{F}_{t}^{c}]$$

$$= \sum_{i=1}^{n} E[dN_{i}^{c}(t)|\mathcal{F}_{t}^{c}]$$

$$= \sum_{i=1}^{n} \alpha_{i}(t)Y_{i}(t)dt.$$

Define $Y(t) = \sum_{i=1}^{n} Y_i(t)$ and $Y_{\eta}(t) = \sum_{i=1}^{n} \eta_i(t)Y_i(t)$. Note first that Y_i is left-continuous. Also, all the information needed to determine whether T_i have happened at t is contained in \mathcal{F}_t^c . We thus have

- i) a) $\lambda^c(t) = \alpha(t)Y(t)$
 - b) $\lambda^c(t) = \alpha(t)Y_n(t)$
 - c) $\lambda^c(t) = \alpha(t)Y(t) + Y_n(t)$.
- ii) a) Yes
 - b) Yes
 - c) No. For any representation $\lambda^c(t) = \tilde{\alpha}(t)\tilde{Y}(t)$, either $\tilde{\alpha}$ will not be deterministic or \tilde{Y} will be a function of α .

[§]Recall that this holds when Y is left-continuous and adapted to \mathcal{F} , i.e. that all the information needed to know the value of Y at time t is contained in \mathcal{F}_t .

^{*}We will later derive estimators for the unknown function α under the multiplicative intensity model.