ADVANCED DBMS ASSIGNMENT

Submitted By,
Ronika Paul
S2 MCA | Roll No.30

MONGODB

- MongoDB is a document-oriented NoSQL database used for high volume data storage.
- Instead of using tables and rows as in the traditional relational databases, MongoDB makes use of collections and documents.
- Documents consist of key-value pairs which are the basic unit of data in MongoDB.
- Collections contain sets of documents and function which is the equivalent of relational database tables.

MongoDB Features:-

- Scalability The MongoDB environments are very scalable.
 Companies across the world have defined clusters with some of them running 100+ nodes with around millions of documents within the database.
- Each database contains collections which in turn contains documents.
 Each document can be different with a varying number of fields. The size and content of each document can be different from each other.
- The rows in Mongodb doesn't need to have a schema defined beforehand. Instead, the fields can be created on the fly.
- The data model available within MongoDB allows you to represent hierarchical relationships, to store arrays, and other more complex structures more easily.
- The document structure is more in line with how developers construct their classes and objects in their respective programming languages.
 Developers will often say that their classes are not rows and columns but have a clear structure with key-value pairs.

MongoDB Example:-

```
CustomerName : Guru99 ,
Order:

{
    OrderID: 111
    Product: ProductA
    Quantity: 5
}
Example of
how data can
be embedded
in a document
```

Key Components of MongoDB Architecture:-

- 1. _id This is a field required in every MongoDB document. The _id field represents a unique value in the MongoDB document. The _id field is like the document's primary key. If you create a new document without an _id field, MongoDB will automatically create the field.
- 2. **Collection** This is a grouping of MongoDB documents. A collection is the equivalent of a table which is created in any other RDMS such as Oracle or MS SQL. A collection exists within a single database. As seen from the introduction collections don't enforce any sort of structure.
- 3. **Cursor** This is a pointer to the result set of a query. Clients can iterate through a cursor to retrieve results.
- 4. **Database** This is a container for collections like in RDMS wherein it is a container for tables. Each database gets its own set of files on the file system. A MongoDB server can store multiple databases.
- 5. **Document** A record in a MongoDB collection is basically called a document. The document, in turn, will consist of field name and values.
- 6. **Field** A name-value pair in a document. A document has zero or more fields. Fields are analogous to columns in relational databases. The following diagram shows an example of Fields with Key value pairs. So in the example below Customer ID and 11 is one of the key value pair's defined in the document.

Difference between MongoDB & RDBMS:-

RDBMS	MongoDB	Difference
Table	Collection	In RDBMS, the table contains the columns and rows which are used to store the data whereas, in MongoDB, this same structure is known as a collection. The collection contains documents which in turn contains Fields, which in turn are key-value pairs.
Row	Document	In RDBMS, the row represents a single, implicitly structured data item in a table. In MongoDB, the data is stored in documents.
Column	Field	In RDBMS, the column denotes a set of data values. These in MongoDB are known as Fields.
Joins	Embedded documents	In RDBMS, data is sometimes spread across various tables and in order to show a complete view of all data, a join is sometimes formed across tables to get the data. In MongoDB, the data is normally stored in a single collection, but separated by using Embedded documents. So there is no concept of joins in MongoDB.

Why Use MongoDB?

- 1. Document-oriented Since MongoDB is a NoSQL type database, instead of having data in a relational type format, it stores the data in documents. This makes MongoDB very flexible and adaptable to real business world situation and requirements.
- 2. Ad hoc queries MongoDB supports searching by field, range queries, and regular expression searches. Queries can be made to return specific fields within documents.

- 3. Indexing Indexes can be created to improve the performance of searches within MongoDB. Any field in a MongoDB document can be indexed.
- 4. Replication MongoDB can provide high availability with replica sets. A replica set consists of two or more mongo DB instances. Each replica set member may act in the role of the primary or secondary replica at any time. The primary replica is the main server which interacts with the client and performs all the read/write operations. The Secondary replicas maintain a copy of the data of the primary using built-in replication. When a primary replica fails, the replica set automatically switches over to the secondary and then it becomes the primary server.
- 5. Load balancing MongoDB uses the concept of sharding to scale horizontally by splitting data across multiple MongoDB instances. MongoDB can run over multiple servers, balancing the load and/or duplicating data to keep the system up and running in case of hardware failure.
