#### Type-directed search with dependent types

Ben Sherman

August 12, 2014

#### Overview

- Type systems
- Code & type search
- Equality and isomorphism
- :search in Idris

### Usefulness of type systems



## Python

- Untyped: can't determine anything important statically
- There are
  - ► Objects: \*
  - ▶ *n*-ary functions on objects:  $*^n \rightarrow *$

Ċ

"What's the worst a function can do that takes a **void** \* and returns a **void** \*?"

#### C

```
"What's the worst a function can do that takes a void * and returns a
void *?"

void * id(void * x) {

strcpy((char *) x, "Bye, bye, data!");

strcpy((char *) &x, "Bye, bye, stack!");

return (void *) rand();
```

#### ML

"With parametric polymorphism, id can only be one thing!"

#### ML

"With parametric polymorphism, id can only be one thing!"

```
val id = (fn x => (
print "Starting evil ...";

**Moving evil ... *)

**Print "Finishing evil ...";

**X) : ('a -> 'a);
```

#### Haskell

"In a pure language (with typed effects), id can only be one thing!"

$$_1$$
 id ::  $a \rightarrow a$ 

$$_2 \ \mathrm{id} = \mathrm{id}$$

#### **Idris**

In a total language, we finally win!

- 1 total
- $_2$  id : (a : Type) -> a -> a
- $_{\text{3}}$  id  $_{\text{-}}$  x=x

# Programming language power



## Programming language power



# Programming language semantics

| Operational semantics     | Denotational semantics |
|---------------------------|------------------------|
|                           |                        |
| sequential                | compositional          |
| pretend you're a computer | pretend you're a human |
| test-driven development   |                        |

# Programming language semantics

| Operational semantics     | Denotational semantics  |
|---------------------------|-------------------------|
|                           |                         |
| sequential                | compositional           |
| pretend you're a computer | pretend you're a human  |
| test-driven development   | type-driven development |

#### Test-driven development

 $http://math.stackexchange.com/questions/111440/examples-of-apparent-patterns-that-eventually-fail?lq{=}1$ 

## Termination checking with tests?

#### The busy beaver function

| 0 | 0              |
|---|----------------|
| 1 | 1              |
| 2 | 6              |
| 3 | 21             |
| 4 | 107            |
| 5 | > 47, 176, 870 |
| 6 | $> 10^{36534}$ |

# Proving map fusion

| Haskell                    | Logic                     |
|----------------------------|---------------------------|
| type variables : ${\bf a}$ | proposition variables : p |

| Haskell            | Logic                              |
|--------------------|------------------------------------|
| type variables : a | proposition variables : p          |
| types : Bool       | propositions : "Socrates is a man" |

| Haskell                            | Logic                              |
|------------------------------------|------------------------------------|
| type variables : ${\bf a}$         | proposition variables : $p$        |
| types : Bool                       | propositions : "Socrates is a man" |
| function types : $a \rightarrow b$ | implications (implies) : $p 	o q$  |

| Haskell                            | Logic                              |
|------------------------------------|------------------------------------|
| type variables : a                 | proposition variables : p          |
| types : Bool                       | propositions : "Socrates is a man" |
| function types : $a \rightarrow b$ | implications (implies) : $p 	o q$  |
| tuples : (a, b)                    | conjunctions (and) : $p \wedge q$  |

| Haskell                            | Logic                              |
|------------------------------------|------------------------------------|
| type variables : a                 | proposition variables : p          |
| types : Bool                       | propositions : "Socrates is a man" |
| function types : $a \rightarrow b$ | implications (implies) : $p	o q$   |
| tuples : (a, b)                    | conjunctions (and) : $p \wedge q$  |
| either : Either a b                | disjunctions (or) : $p \lor q$     |

| Haskell                            | Logic                              |
|------------------------------------|------------------------------------|
| type variables : a                 | proposition variables : p          |
| types : Bool                       | propositions : "Socrates is a man" |
| function types : $a \rightarrow b$ | implications (implies) : $p	o q$   |
| tuples : (a, b)                    | conjunctions (and) : $p \wedge q$  |
| either: Either a b                 | disjunctions (or) : $p \lor q$     |
| type inhabitation : $id :: a -> a$ | truth : $\models p \rightarrow p$  |

| Haskell                            | Logic                              |
|------------------------------------|------------------------------------|
| type variables : a                 | proposition variables : p          |
| types : Bool                       | propositions : "Socrates is a man" |
| function types : $a \rightarrow b$ | implications (implies) : $p 	o q$  |
| tuples : (a, b)                    | conjunctions (and) : $p \wedge q$  |
| either: Either a b                 | disjunctions (or) : $p \lor q$     |
| type inhabitation : $id :: a -> a$ | truth $: \models p \rightarrow p$  |

The type is the *what*. The value is the *why*.

For any positive integers n, x, y and z where n is greater than 2,  $x^n + y^n \neq z^n$ .

$$\forall n, x, y, z \in \mathbb{N}.$$
  
 $n > 2, x > 0, y > 0, z > 0$   $\rightarrow$   $x^n + y^n \neq z^n$ 

## Sorting a list

```
Haskell:
```

```
1 sort :: Ord a \Rightarrow [a] \rightarrow [a]

Idris (my example, > 150 LOC):

1 quickSort : \{a : Type\} \rightarrow \{less : a \rightarrow a \rightarrow Type\}

2 \rightarrow \{eq : a \rightarrow a \rightarrow Type\}

3 \rightarrow TotalOrder \ less \ eq

4 \rightarrow (xs : List \ a)

5 \rightarrow Exists \ (List \ a) \ (\ys \Rightarrow (IsSorted \ less \ ys, \ Permutation \ xs \ ys))
```

#### Type-driven development

#### Types

- Prove properties stronger than any test can show
- Are documentation that is never wrong or outdated
- Provide an exact specification

# Type-driven development



## Why code search matters

- Stand on the shoulders of giants
  - Modern software development heavily depends on library re-use
- Number of libraries increasing drastically
- Code size of projects increasing drastically
- (Purely) functional programming is the modular solution for scaling to large systems

#### Search difficulties

- "Haskell stack overflow", "Go tree", "Go map"
- Ord (Haskell) vs. Comparable (Java)
  - ▶ (In Java, all identifiers must have at least 8 characters?)

#### Search

What's in a name? that which we call a rose By any other name would smell as sweet;

William Shakespeare, Romeo and Juliet

#### Type-directed search

- Can choose your name; can't choose your type!
- Semantics instead of names
- Tool of choice for type-driven developers

### Hoogle

- Type-directed search for Haskell
- 2000 searches per day (2011)
- Based on a notion of edit distance

### Hoogle mutations

| Aliases | String $\longleftrightarrow$ | [Char] |  |
|---------|------------------------------|--------|--|
|---------|------------------------------|--------|--|

Subtyping 
$$Num \ a \Rightarrow a \longleftrightarrow Int$$

"Boxing" 
$$a \longleftrightarrow Applicative f \Rightarrow f a$$

Free variable duplication 
$$(a, b) \longleftrightarrow (a,a)$$

Restriction 
$$m \ a \longleftrightarrow [a]$$

Argument deletion 
$$a \to b \to c \longleftrightarrow b \to c$$

#### Distinction without a difference

- Even though  $a\to b\to c$  and  $(a,\ b)\to c$  are distinct types, they "mean the same thing."
- When we search one type, we'd like to match both!
- What can we use to capture this notion?

### Type isomorphism

#### Definition

Types A and B are isomorphic if there are functions  $f: A \rightarrow B$  and

$$g:B o A$$
 such that  $(x:A) o (g\circ f)(x)=x$  and

$$(y:B) \rightarrow (f \circ g)(y) = y$$
, and we write  $A \cong B$ .

#### Proposition

Isomorphism ( $\cong$ ) is an equivalence relation.

(Type equivalence in HoTT)

What does = mean?

# Notions of equality

- In Haskell, not all types allow their terms to be compared for equality (e.g., IO ())
- In Idris, in order to perform type checking, for any arbitrary type, we must be able to compare terms of that type for equality!

# Equality in Idris

- ullet Definitional equality,  $\equiv$ , for when terms are "obviously" equal
  - Used for type checking
- Propositional equality
  - $(=): (x:A) \rightarrow (y:B) \rightarrow Type where$
  - refl:  $\{A : Type\} \rightarrow \{x : A\} \rightarrow x = x$
- Transport
  - ightharpoonup replace :  $a = b \rightarrow P \ a \rightarrow P \ b$

### Equality of functions

Axiom of function extensionality:

<sup>1</sup> funext: (f, g: a 
$$\rightarrow$$
 b)  $->$  ((x:a)  $\rightarrow$  fx = gx)  $\rightarrow$  f = g

# Type isomorphism

#### Proposition

If types  $A \cong B$ , and t: Type  $\vdash M$ : Type, then  $[A/t]M \cong [B/t]M$ .

#### Proof.

Suppose we have p: [A/t]M and want q: [B/t]M. Intuitively, when we need to produce a B in q, we use code from p to make an A and then map it to B. When we must use a B in a, we map it to A and then use code from p to use that value.

#### Type isomorphism

Type isomorphism is similar to set bijection:

#### Proposition

If there is some  $n \in \mathbb{N}$  such that A and B each have n elements, then A and B are isomorphic.

#### Proof.

Construct isomorphisms from A to  $\operatorname{Fin} n$  and B to  $\operatorname{Fin} n$ . Since  $\cong$  is an equivalence relation,  $A \cong \operatorname{Fin} n \cong B$ .

# Type isomorphism in Haskell

$$_1~A=X\to Y\to Z$$

$$_{2}~\mathrm{B}=\left( \mathrm{X,~Y}\right) \rightarrow \mathrm{Z}$$

- $_3$  f = uncurry
- $_{4}$  g = curry

# Decidability of isomorphism

#### Proposition

Type isomorphism is undecidable in System F (Haskell) and intuitionistic type theory (Idris).

#### Proof.

- Claim: A type is isomorphic to  $\bot$  if and only if it is uninhabited.
- Type inhabitation is undecidable in System F and intuitionistic type theory.



# Another notion of isomorphism

$$\frac{x=y}{x\cong y}$$

$$f: A \to B$$

$$g: B \to A$$

$$: (x:A) \to (g \circ f)(x) \cong x$$

$$: (y:B) \to (f \circ g)(y) \cong y$$

$$A \cong B$$

# Isomorphism is not enough!

Suppose we want to compare two values whose type has instance Ord for equality. We search

$$1 \text{ Ord } a \Rightarrow a \rightarrow a \rightarrow Bool$$

We'd like to find

$$_{1}$$
 (==) :: Eq  $a \Rightarrow a \rightarrow a \rightarrow Bool$ 

Its type is strictly more general than what we asked for.

# Isomorphism is not enough!

$$1 \text{ Ord } a \Rightarrow a \rightarrow a \rightarrow Bool$$

If we take this too far, though, results may not be useful:

1 const (const True) :: 
$$a \rightarrow a \rightarrow Bool$$

Too general!

## Type containment

We want a partial order  $\succeq$  that defines isomorphism: that is, If  $A \succeq B$  and  $B \succeq A$ , then  $A \cong B$ .

#### A first pass at type containment

#### Definition

Type A covers B if there is a subset  $A' \subseteq A$  and functions  $f : A' \to B$  and  $g : B \to A'$  such that  $g \circ f = \mathrm{id}_{A'}$  and  $f \circ g = \mathrm{id}_{B}$ , and we write  $A \succeq B$ .

#### Proposition

If  $A \succeq B$  and  $B \succeq A$ , then  $A \cong B$ .

#### Proof.

Myhill isomorphism theorem?



# Strategy for defining type containment

- Define a partial order 

   on types such that the resulting equivalence relation 

   is sound with respect to isomorphism
  - sound: If  $A \cong B$ , then A is isomorphic to B
  - But if A is isomorphic to B, no guarantee of any relation between A and B

# A definition of type containment in Haskell

- Type instantiation (with a concrete type)
  - ightharpoonup Maybe Int
  - ► Show  $a \Rightarrow a \rightarrow String$   $\succ$  Bool  $\rightarrow String$

# A definition of type containment in Haskell

- Type instantiation (with a concrete type)
  - ightharpoonup Maybe Int
  - ► Show  $a \Rightarrow a \rightarrow String$   $\succ$  Bool  $\rightarrow String$
- Swapping argument order
  - $A \to B \to C \cong B \to A \to C$

# A definition of type containment in Haskell

- Type instantiation (with a concrete type)
  - ightharpoonup Maybe Int
  - ▶ Show  $a \Rightarrow a \rightarrow String$   $\succ$  Bool  $\rightarrow String$
- Swapping argument order
  - $ightharpoonup A o B o C \cong B o A o C$
- "Inlining" non-recursive types which have a single constructor
  - ▶ data (,) a b where (,) ::  $a \rightarrow b \rightarrow (a, b)$
  - $(a, b) \to c \cong a \to b \to c$

#### Canonical forms

- Take advantage of structural properties
  - ▶  $A_1 \to \cdots \to A_n \to B$  becomes  $\{A_1, \ldots, A_n\} \to B$ , where  $\{\cdot\}$  represents a multiset.
  - Reduce complexity of comparing arguments from n! to  $\sum_{i=1}^{n} i = \frac{1}{2} n(n+1)$
  - ► Similar for products (i.e. *n*-tuples) and sums (e.g., nested Eithers)

- Type isomorphism-based searched is most valuable in a language like Idris; the types are so informative!
- Closely tied to automated theorem proving, automatic program synthesis

#### Possible issues:

- Distinct type variables may be dependent on one another!
  - (a : Type)  $\rightarrow$  (x : a)  $\rightarrow$  x = x
  - Can't always swap argument order!
    - \*  $(n : Nat) \rightarrow (\_: Fin n) \rightarrow Fin (S n)$

#### Possible issues:

- Distinct type variables may be dependent on one another!
  - (a : Type)  $\rightarrow$  (x : a)  $\rightarrow$  x = x
  - Can't always swap argument order!

$$\star$$
 (n : Nat)  $\rightarrow$  ( $\_$  : Fin n)  $\rightarrow$  Fin (S n)

- Functions in type signatures not always bijective
  - from List:  $(1 : List a) \rightarrow Vect (length l) a$
  - ▶ (1 : List a)  $\rightarrow$  Vect (length l) a  $\succ$ ? Vect 10 a

#### Possible issues:

- Distinct type variables may be dependent on one another!
  - (a : Type)  $\rightarrow$  (x : a)  $\rightarrow$  x = x
  - Can't always swap argument order!

$$\star$$
 (n : Nat)  $\rightarrow$  ( $\_$  : Fin n)  $\rightarrow$  Fin (S n)

- Functions in type signatures not always bijective
  - ▶ fromList :  $(1 : List a) \rightarrow Vect (length l) a$
  - ▶ (l : List a)  $\rightarrow$  Vect (length l) a  $\succeq$ ? Vect 10 a
- Pervasive use of implicit arguments

# Matching types

- **2** 120 = 100

No results!

# Matching types

- $\bullet$  fact 5 = 120
- 2120 = 120
- $oldsymbol{0}$  (n : Nat)  $\rightarrow$  n = n
- $_1$  refl : x = x

# Matching types

- **5** Eq ((a, b), c)  $\Rightarrow$  ((a, b), c)  $\rightarrow$  ((a, b), c)  $\rightarrow$  Bool

#### Demo

Instant is off | Manual | haskell.org

Hooghe 
$$(Ord a, Ord b) => (a, b) -> (a, b) -> Bc$$
 Search

(Ord a, Ord b) => (a, b) -> (a, b) -> Bool

#### **Packages**

- → fql 
  →
- OpenGL +

#### equal :: (Eq a, Eq b, Graph gr) => gr a b -> gr a b -> Bool

fgl Data.Graph.Inductive.Graph

WeightedProperties :: (GLfloat, v) -> (GLfloat, v) -> (GLfloat, v) -> (GLfloat, v) -> WeightedProperties v

OpenGL Graphics.Rendering.OpenGL.GLU.Tessellation

Triangle :: (TriangleVertex v) -> (TriangleVertex v) -> (TriangleVertex v) -> Triangle v

OpenGL Graphics.Rendering.OpenGL.GLU.Tessellation

#### "Kind" search for free

Instant is off | Manual | haskell.org







Parse error: (line 1, column 2): unexpected " " expecting letter

For information on what queries should look like, see the user manual.

#### The algorithm

#### Roughly 4 stages:

- Match the return type
- Match the argument types
- Introduce (eliminate) a subset of the typeclasses
- Match the typeclasses

#### The state

#### Current (possibly altered) forms of:

- Arguments yet to be resolved for the left type and right type
- Typeclass constraints yet to be resolved for the left type and right type
- A record of the types of transformations which have been done so far (for keeping score)

#### The state transition machine

- For each type,  $nextSteps :: State \rightarrow [State]$
- isFinal :: State  $\rightarrow$  Bool tells us when we are done
- "two-level" Dijkstra's algorithm:
  - Which type should I be working on right now?
  - Which state should I call nextSteps on?

# Matching arguments

- Construct a directed acyclic graph representing the argument dependencies
- Try matching one argument from each type (with unification), only considering arguments which don't appear in the types of other arguments
- $\bullet$  Make sense of the unification result (a  $\sim f$  b), remove variables which are completely determined, and convert the types in the appropriate places
- Repeat until all arguments are matched

#### Matching typeclasses

- Try to match a typeclass constraint from one type with a constraint from the other
- If there are no such matches, then try replacing a typeclass constraint with an instance, as long as the instance doesn't introduce new variables

#### Possible improvements

- Produce the corresponding "data" for the search results
- Inlining non-recursive datatypes
- Find isomorphic datatypes
- Bake in usage of the Iso typeclass
  - A safe way to make :search automatically user-extensible!
- Find an admissible heuristic for type matching scores and use A\*
- Be less hacky with typeclasses

#### Pi in the sky

- Big database of libraries (with code that feels like programs and code that feels like proofs)
- Type-driven development
- Search the types you must implement; if there's a result, use the library with confidence that it meets the specification