EMAIL: giangdayit@gmail.com || website: www.huna.group

CÁC DẠNG CHUẨN HÓA (NORMALIZATION FORM)

Mục đích: Loại bỏ các bất thường của 1 quan hệ để có được các quan hệ có cấu trúc tốt hơn, nhỏ hơn đảm bảo đầy đủ

Lý thuyết liên quan

□ X→A là phụ thuộc hàm đầy đủ nếu không tồn tại Y ⊂ X để cho Y→A
□ Sơ đồ mô tả
R (A1, A2, A3, A4, A5, A6)

Tức là xét phụ thuộc hàm $(A1,A2) \rightarrow A3$, nếu không tồn tại tập con nào được tạo ra từ (A1,A2) mà sinh ra được A3 thì ta nói **phụ thuộc hàm trên là đầy đủ**, ngược lại là **phụ thuộc hàm không đầy đủ** (như hình minh họa bên dưới)

□ Phụ thuộc hàm riêng phần (partial FD) X→A, tồn tại Y ⊂ X sao cho Y→A

EMAIL: giangdayit@gmail.com || website: www.huna.group

(*) Nhận xét

- Nếu đạt dạng chuẩn 2NF thì là 1NF
- Nếu đạt dạng chuẩn 3NF thì là 2NF
- Nếu đat chuẩn BCNF thì là 3NF
- Đạt dạng chuẩn càng cao thì thiết kế quan hệ sẽ chặt chẽ và sẽ ít bị tình trạng dư thừa.
 - (*) Lưu ý khi xét các điều kiện để đạt chuẩn thì không xét luật tầm thường (trival)

1. Dạng chuẩn 1NF (First Normal Form)

"Lược đồ quan hệ R ở dạng chuẩn 1 (1NF) nếu thỏa:

- Mọi thuộc tính của R đều chứa các giá trị nguyên tố (atomic value).
- Có khóa chính mỗi bộ là duy nhất
- Tất cả thuộc tính còn lại phải phụ thuộc vào khóa chính"

Ví dụ 1:

Cho quan hệ Nvien_DuAn không là 1NF

NVien_DuAn		Các thuộc tính vị phạm chuẩn 1			
MaNV	TenNV	MaDuAn	Sogio	TenDuAn	Diadiem
NV01	Tuấn	1 2	32 7	Dự án A Dự án B	Bình Thạnh Gò Vấp
NV02	Hoàng	3	40	Dự án C	Thủ Đức
NV03	Phong	1 2	30 20	Dự án A Dự án B	Bình Thạnh Gò Vấp

Tiến hành chuẩn hóa thành 1NF:

- Loai bỏ thuộc tính đa tri
- Xác đinh khóa chính
- Xác định tất cả các phụ thuộc hàm

EMAIL: giangdayit@gmail.com || website: www.huna.group

NVien_DuAn

1	MaNV	TenNV	MaDuAn	Sogio	TenDuAn	Diadiem
	NV01	Tuấn	1	32	Dự án A	Bình Thạnh
	NV01	Tuấn	2	7	Dự án B	Gò Vấp
	NV02	Hoàng	3	40	Dự án C	Thủ Đức
	NV03	Phong	1	30	Dự án A	Bình Thạnh
	NV03	Phong	2	20	Dự án B	Gò Vấp

2. Dạng chuẩn 2NF (Second Normal Form)

- "Lược đồ quan hệ R đạt dạng chuẩn 2 (2NF) đối với tập phụ thuộc hàm F nếu thỏa hai điều kiện sau:
- R đạt dạng chuẩn 1
- Mọi thuộc tính không phải là khóa đều phụ thuộc hàm đầy đủ vào mọi khóa của R"

 $\emph{Vi dụ 1:}$ Cho quan hệ R = (ABCD), tập phụ thuộc hàm S = {AB -> C, AB -> D}. Hỏi quan hệ R có đạt chuẩn 2NF hay không?

Bài giải

Bước 1: Chuyển về dạng singleton RHS: $S = \{AB \rightarrow C, AB \rightarrow D\}$

Bước 2: Kiểm tra phụ thuộc hàm

- Ta thấy AB là khoá, do $\{AB\}$ + = $\{ABCD\}$
- Ta thấy trong đây các thuộc tính bên vế phải không là khóa là {C}, {D} (để chứng minh C, D không là khóa ta tính {C}+ và {D}+)
- Ta thấy các tập con không là khóa có thể có trong {AB} là {A} hoặc {B} không dẫn ra bất kì thuộc tính không khóa
 - Ta có thể chứng minh điều này khi tính {A}+ và {B}+. Sau đó, kiểm tra xem các closure có chứa {C} hay {D} không.

Kết luận: R là quan hệ đạt chuẩn 2NF.

 $\emph{V\'i}$ dụ 2: Cho quan hệ R = (ABCD), tập phụ thuộc hàm S = {AB -> C, AB -> D, B -> DC}. Hỏi đây có phải là dạng 2NF hay không

Bước 1: Chuyển về dạng singleton RHS: $S = \{AB \rightarrow C, AB \rightarrow D, B \rightarrow D, B \rightarrow C\}$

Bước 2: Kiểm tra

- Ta thấy khoá là AB
- Ta thấy B không là khóa và là bộ phận của khóa AB, bên cạnh đó D và C không là khóa, cho nên các phụ thuộc hàm B -> D và B -> C là phụ thuộc hàm bộ phận (phụ thuộc hàm không đầy đủ) vào khoá => dẫn đến vị phạm 2NF.

EMAIL: giangdayit@gmail.com || website: www.huna.group

Kết luận: R là quan hệ không đạt chuẩn 2NF.

Giải pháp: Khi đó ta đưa về dạng chuẩn 2NF như sau: Tính $\{B\}$ + = $\{B, D, C\}$

Ví dụ 3: Cho quan hệ NVien_DuAn với S = {MaNV -> TenNV, MaDuAn -> (TenDuAn, Diadiem), (MaNV, MaDuAn) -> Sogio}.

MaNV	MaDuAn	Sogio	TenNV	TenDuAn	Diadiem
NV01	1	32	Tuấn	Dự án A	Bình Thạnh
NV01	2	7	Tuấn	Dự án B	Gò Vấp
NV02	3	40	Hoàng	Dự án C	Thủ Đức
NV03	1	30	Phong	Dự án A	Bình Thạnh
NV03	2	20	Phong	Dự án B	Gò Vấp

- a. Hỏi Nvien_DuAn có phải dạng chuẩn 2NF
- b. Hãy chuẩn hóa quan hệ trên thành 2NF

Bài giải

- a. Chuyển S về singleton RHS: S = {MaNV -> TenNV, MaDuAn -> TenDuAn, MaDuAn -> Diadiem, (MaNV, MaDuAn) -> Sogio}. Ta thấy Nvien_DuAn không là dạng chuẩn 2NF vì khi kiểm tra ta thấy (MaNV, MaDuAn) là khóa, tuy nhiên MaNV -> TenNV, MaDuAn -> TenDuAn và MaDuAn -> Diadiem) là các phụ thuộc hàm bộ phận (phụ thuộc hàm không đầu đủ) vào khóa.
- b. Ta chuẩn hóa như sau: Loại bỏ phụ thuộc hàm từng phần {MaDuAn}+ = {MaDuAn, TenDuAn, Diadiem} {MaNV}+ = {MaNV, TenNV}

EMAIL: giangdayit@gmail.com || website: www.huna.group

NVien(MaNV, TenNV)

DuAn(MaDuAn, TenDuAn, Diadiem)

NV DA(MaNV, MaDuAn, Sogio)

DuAn

TenDuAn

Dư án A

Dự án B

Dư án C

Diadiem

Bình Thanh

Gò Vấp

Thủ Đức

MaDuAn

1

2

NhanVien

MaNV	TenNV
NV01	Tuấn
NV02	Hoàng
NV03	Phong

NV_DA				
MaNV	MaDuAn	Sogio		
NV01	1	32		
NV01	2	7		
NV02	3	40		
NV03	1	30		
NV03	2	20		

3. Dang chuẩn 3NF (Third Normal Form)

"Một lược đồ quan hệ R đạt dạng chuẩn 3 nếu

- R đat dang chuẩn 2NF
- Không có thuộc tính không khóa phu thuộc bắc cầu vào khóa chính"

Ví dụ 1: Cho quan hệ R = (ABCDGH) và tập phụ thuộc hàm S = {AB -> C, AB -> D, AB -> GH}. Kiểm tra R có là 3NF hay không

Bài giải

Bước 1: Chuyển về singleton RHS: $S = \{AB \rightarrow C, AB \rightarrow D, AB \rightarrow G, AB \rightarrow H\}$

Bước 2: Ta kiểm tra tất cả các về trái của FD trong S, sau đó tính closure cho các vế trái. Ở đây chúng ta chỉ có vế trái là $\{AB\}$, như vây ta tính $\{AB\}+$. Ta thấy $\{AB\}+=\{ABCDGH\}$.

Bước 3: Kiểm tra các vế phải trong các luật mà không là khóa bằng cách tính closure của các về phải. Ở đây ta thấy {C}, {D}, {G}, {H} không là khóa

Bước 4: Nhân thấy ta có khoá là AB nên là quan hệ đạt chuẩn 3NF.

Vi du 2: Cho quan hê R = (ABCDGH) và tập phu thuộc hàm S = {AB -> C, AB -> D, AB -> GH, $G \rightarrow DH$.

Bước 1: Chuyển về singleton RHS: $S = \{AB \rightarrow C, AB \rightarrow D, AB \rightarrow G, AB \rightarrow H, G \rightarrow D, G \rightarrow H\}$

Bước 2: Ta kiểm tra tất cả các vế trái của các FD trong S, sau đó tính closure của chúng

 ${AB}+={ABCDGH}$

 ${G}+={G,D,H}$

EMAIL: giangdayit@gmail.com || website: www.huna.group

Bước 3: Kiểm tra và tính closure cho tất cả các vế phải của các FD trong S

Bước 4: Nhận thấy khoá là AB, tuy nhiên tại vị trí phụ thuộc hàm $G \to D$, $G \to H$ là phụ thuộc hàm gián tiếp vào khoá. Bởi vì AB -> G mà $G \to D$ và $G \to H$, nên R là quan hệ không đạt chuẩn 3NF.

Giải pháp chuyển về 3NF bằng phân rã:

Bước 1: Tìm tối tiểu của S về dạng tối tiểu (minimal basis). Ta có S' = {AB -> C, AB -> D, AB -> G, G -> D, G->H}

Bước 2: Xác định vị trí xảy ra vi phạm 3NF: Do D và H không là khóa nên vi phạm xảy ra ở G - D và G - D Và G - D H. Ta tính G + G

 $Vi \ d\mu \ 3$: Cho quan hệ R = (ABCDGH) và tập phụ thuộc hàm S = {AB -> C, AB -> D, AB -> GH, G -> D, C -> H}.

- a. Kiểm tra 3NF
- b. Phân rã thành các 3NF

Bài giải

- a. Ta thấy $\{AB\}$ là khóa nên có các vi phạm 3NF tại G -> D và C ->H (luật gián tiếp), do đó R không là 3NF
- b. Chuyển về 3NF
 - a. Tìm tập tối tiểu S' của S: S' = {AB->C, AB -> G, G->D, C->H}
 - b. Các vi trí luât xảy ra vi pham 3NF là G->D và C->H, ta tính
 - i. $\{G\} + = \{G, D\}$
 - ii. $\{C\} += \{C, H\}$
 - c. Phân rã như sau
 - i. $R1 = \{G, D\}, G là khóa$
 - ii. $R2 = \{C, H\}, C là khóa$
 - iii. $R3 = \{A, B, G, C\}$, AB là khóa