Operating System Fundamentals

Module 4:

Files Systems

- Description
- Functions
- General Operation
- Utilities
- Common File Systems
- Files and Directories (Folders) in Windows

Agenda

- Mechanism in an OS to store, update and retrieve data in an organized way
- Efficient and reliable, often tuned specifically for the OS
- Generally uses permanent storage
 - Exception is a RAM disk
 - Common media: floppy, hard drive, optical drive, flash (memory stick), tape, cloud

- Local generally block oriented
- Network generally stream oriented
 - UNC names widely used (\\servername\share\filepath)
 - Could be abstracted to look like Local
- Cloud transparent with little folder navigation
 - Could be abstracted to look like Network or Local

- Files accessed using a pathname or fully qualified file name
- Folder hierarchy used to organize files
- Information tracked (usually in directory)
 - Filename
 - Date of modification (and creation)
 - File attributes

- Formatting
 - Puts important data structures on the volume related to the file system
 - Master Boot Record
 - Starts the boot process; transfers control to Boot Sector
 - Partition table
 - Information about the file system
 - File Allocation Table
 - Optionally initialize all data in sectors

General Hierarchy

- Good references:
 - Wikipedia (Technical Detail):
 http://en.wikipedia.org/wiki/File_Allocation_Table
 - Microsoft Technet
 http://technet.microsoft.com/en-us/library/cc776720(v=WS.10).aspx

File Allocation Table (FAT): General Operation

Boot	Reserved	FAT 1	FAT 2	Root	Other Folders and All Files
Sector	Sectors		(Duplicate)	Folder	

Source: Technet

FAT Volume

- Sector is physical unit of storage on a disk (512 bytes)
- Cluster is smallest amount of disk space allocated to a file
 - Also known as Allocation Unit
- FAT16 16-bit
 - Total of 2¹⁶ clusters in the FAT
- FAT32 32-bit
 - Total of 2^{28} clusters (theoretically)
- Number of clusters determine the minimum space a file can occupy
 - FAT32 allows more efficient use of disk space

FAT: Clusters

Volume Size	FAT16 Cluster Size	FAT32 Cluster Size
7 megabytes (MB)–16 MB	2 KB	Not supported
17 MB-32 MB	512 bytes	Not supported
33 MB-64 MB	1 KB	512 bytes
65 MB–128 MB	2 KB	1 KB
129 MB–256 MB	4 KB	2 KB
257 MB-512 MB	8 KB	4 KB
513 MB-1,024 MB	16 KB	4 KB
1,025 MB–2 gigabytes (GB)	32 KB	4 KB
2 GB-4 GB	64 KB	4 KB
4 GB-8 GB	Not supported	4 KB
8 GB–16 GB	Not supported	8 KB
16 GB-32 GB	Not supported	16 KB
32 GB–2 terabytes	Not supported	Not supported

Source: Technet

FAT Cluster Sizes

- File Directory has file/folder information
- Root Directory indicates starting cluster of file
- File allocation table is a map of clusters, indicating where a file is stored
- Each block in the table below represents a cluster on the volume:

Source: Technet

FAT File Processing

- Directory
 - Create
 - Delete
 - Rename
 - List Directory
- File
 - Create
 - Update
 - Delete

Functions

- Create/Delete/Rename/List directory
- Create/Move/Copy/Delete/Undelete/Purge files
- Disk Integrity Check
- Defragmentation
- Backup/Restore

Utilities

- Apple (OS X)
 - HFS and HFS Plus
 - Forked files
- Linux
 - ext2, ext3, ext4 amongst many others
- Windows
 - FAT32, NTFS amongst many other proprietary ones
 - Drive letter oriented
- See list:

http://en.wikipedia.org/wiki/List_of_file_systems

Common File Systems

- Files organized in directories/folders in a hierarchy
- Path defines the location of a folder (e.g. C:\temp or \mycomputer\sharedfolder\anothertemp)
- "Under the covers", file names are added to the path to create pathname (e.g. C:\temp\file.txt)
 - Enables the use of the same file name in different directories, effectively creating a unique name for each
 - e.g. C:\temp\file.txt and C:\nm\file.txt are different pathnames, allowing the repeated use of file.txt, even though they may be different files altogether)

- Universal Naming Convention (UNC)
 - Standardized approach to accessing resources on a network
 - Platform independent (not just Windows)
 - Format: \\ServerName\ShareName\pathname
 - ServerName is the shared network computer
 - ShareName is shared computer's reference to a shared folder
 - Does not need to be the same name as the actual shared folder
 - "Hides" the actual location of the shared folder
 - *pathname* is directory structure/file name based on the shared folder as the root
 - Highly recommended instead of using drive letters
 - If desired, can map drive letter to the UNC

- Useful commands in Command Prompt:
 - Change drive letter: d: where d is the desired drive
 - Make Directory: mkdir or md
 - Change Directory: chdir or cd
 - Remove Directory: rmdir *or* rd
 - Copy File(s): copy *or* xcopy
 - Move File(s): move
 - Delete File(s): erase *or* del
 - Rename Directory or File: rename or ren

- Fully qualified paths and pathnames (starting with the drive letter) leave no ambiguity
 - When moved between computers, could cause problems if the directories do not exist
- Relative paths and pathnames start without the drive letter
 - Generally concatenated to the current path
 - (e.g. If you are in $C:\langle temp \rangle$, reference $dir I \backslash test.txt$, the system references $C:\langle temp \rangle dir I \backslash test.txt$.)
 - Good for portability and reduced typing
- Shortcuts:
 - The "double dot" (..) moves you up a level in the directory structure
 - The "single dot" (.) refers to the current directory

- Use relative references in your code/applications to allow portability (if appropriate)
- UNC names instead of drive letters
 - Particularly useful in Virtual Private Networks (VPN)
- Encrypt folders or drives on laptops
- Compress folders/files to save disk space
 - Very useful for less frequently use files
 - Not effective on already compressed formats (e.g. video, audio, "zipped" folders

Some considerations