MATH1131/1141 Revision

Calculus

Abdellah Islam

UNSW MathSoc

29 Apr 2019

Introduction

Content reviewed today:

- Limits
- Continuity
- Differentiation
- Inverse Functions
- Curve Sketching
- Integration
- Hyperbolic Functions
- Exam Preparation Focus on exam-style questions!
- Looking at exam tricks and common mistakes by students.

Definition of Limit

Limit at a point (Not Assessed!!)

 $\lim_{\substack{x \to a \\ 0 < |x-a| < \delta \text{ then } |f(x)-L| < \epsilon.}} f(x) = L \text{ if for each } \epsilon > 0 \text{, there exists } \delta > 0 \text{ such that if } \delta < 0 \text{ such that } \delta$

Limit to infinity

 $\lim_{\substack{x\to\infty\\x>M}}f(x)=L$ if for each $\epsilon>0$ we have some M>0 such that when x>M, $|f(x)-L|<\epsilon$

Proving Limits to Infinity

Example

Prove by definition that

$$\lim_{x \to \infty} \frac{x^2 - 2}{x^2 + 3} = 1$$

(1131 2012 S1 Q4.iii)

Techniques for Computations

To evaluate any limit to infinity:

Form of Limit	Technique	Sample
$\frac{f(x)}{g(x)}$	Divide top and bottom	$\frac{x^2+x-1}{2x^2-3x-100}$
3()	by highest power on x	
$\sqrt{f(x)} - \sqrt{g(x)}$	Multiply top and bottom	$\sqrt{x^2+x}-x$
	by $\sqrt{f(x)} + \sqrt{g(x)}$	
$f(x)\sin x$ or $f(x)\cos x$	Pinching theorem	COS X X

Pinching Theorem

Theorem

If $f(x) \leq g(x) \leq h(x)$ as $x \to \infty$, and

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} h(x) = L,$$

then

$$\lim_{x\to\infty}g(x)=L$$

- Also works for limits to a point.
- Extremely flexible theorem, but usually reserved for limits involving sin x and cos x.

Definition

Let f and g be differentiable functions such that as $x \to a$, either

- $f(x) \to \infty$ and $g(x) \to \infty$, or
- $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$.

If
$$\lim_{x\to a} \frac{f'(x)}{g'(x)} \to L$$
 then $\lim_{x\to a} \frac{f(x)}{g(x)} \to L$.

Notes & Requirements

- $x \to a$ can be replaced with $x \to \pm \infty$ as well
- ullet For the sake of L'Hopital's rule, L can be $\pm\infty$
- If $\frac{f'(x)}{g'(x)}$ does not approach a real number or infinity, then we CANNOT apply L'Hopital's Rule.

Example

Evaluate

$$\lim_{x \to \pi} \frac{x - \pi}{\sin 3x}$$

(1131 2015 S2 Q1.i.c)

Example

Evaluate

$$\lim_{x\to 0^+} x^x$$

Shows a useful technique: Other indeterminate forms include

$$0 \times \infty$$
, $\infty - \infty$, 1^{∞} , 0^0 ∞^0

but they can potentially be *transformed* into $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

WARNING

Do not always state that you can apply L'Hopital's Rule if you're not sure the limit of the derivatives exist!! For example,

$$\lim_{x \to \infty} \frac{x + \sin x}{x - \sin x}$$

Definition of Continuity

At a Point

We say that a function f is continuous at a point x = a if

- f(a) is defined,
- $\lim_{x \to a} f(x)$ exists, and
- $\bullet \lim_{x \to a} f(x) = f(a)$

On an Interval

We say a function f is continuous on an interval if f is continuous at each point in that interval.

Intermediate Value Theorem

Theorem

Suppose we have a **continuous** function f on the **closed** interval [a, b]. If $f(a) \le L \le f(b)$ then there is at least one $c \in [a, b]$ such that f(c) = L.

NOTES

- Common Mistake: You MUST state that the interval is closed, and the function is continuous on the interval!!
- Very useful when finding zeros of a function.

Intermediate Value Theorem

Example

Show that the equation

$$e^{x} = x + 2$$

has a solution in the interval [0,2].

(1131 2014 S2 Q1.v.b)

Max-Min Theorem

Theorem

If f is **continuous** on a **closed** interval [a,b] then f attains its maximum and minimum values on this interval. Hence, there exists $c, d \in [a,b]$ such that $f(c) \le f(x) \le f(d)$ for all $x \in [a,b]$.

NOTE

If the interval is not closed, or f is not continuous on the interval (or both) then f may or may not attain its maximum and minimum values on the interval.

Differentiability

Definition of Differentiability

If a function f is defined at a point a, then we say f is differentiable at a if $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists. We call this limit f'(a), which is the derivative of f at a.

NOTE

 $\mathsf{Differentiability} \Rightarrow \mathsf{Continuity}$

i.e. If f is differentiable at a, then f is continuous at a. However the converse is not always true!

Piece-wise Differentiability

Example

Find a and b such that the function

$$f(x) = \begin{cases} x^2 + ax + b & x < 0\\ \cos 2x & x \ge 0 \end{cases}$$

is differentiable.

(1131 2015 S2 Q2.i)

Mean Value Theorem

Theorem

Suppose a function f is **continuous** on the **closed** interval [a,b] and **differentiable** on the **open** interval (a,b). Then there is at least one $c \in (a,b)$ such that $\frac{f(b)-f(a)}{b-a}=f'(c)$.

NOTE

Again, you MUST state that the function is continuous on the closed interval and differentiable on the open interval before using the theorem!

Mean Value Theorem

Example

Suppose that -1 < x < y < 1. Prove that

$$\sin^{-1} y - \sin^{-1} x \ge y - x$$

by applying the Mean Value Theorem on the function $f(t) = \sin^{-1} t$ on the interval [x, y].

(1131 2014 S1 Q4.v.b)

Mean Value Theorem

Example

Suppose $f:[0,2] \rightarrow [0,8]$ is continuous and differentiable on its domain.

- (a) By considering the function $g(x) = f(x) x^3$, prove that there is a real number $\xi \in [0,2]$ such that $f(\xi) = \xi^3$, stating any theorems you use.
- (b) Now suppose that f(0) = 0 and f(2) = 8. Explain why $f'(\eta) = 4$ for some real $\eta \in (0,2)$, stating any theorems you use.

(1141 2013 S1 Q4.iv)

Inverse Function Theorem

Theorem

Suppose that a function $f: I \to \mathbb{R}$ is differentiable on an open interval I and $f'(x) \neq 0$ for all $x \in I$. Then by the Inverse Function Theorem:

- f is one-to-one and has an inverse function $g: Range(f) \rightarrow I$,
- g is differentiable on all points in its domain,
- $g'(x) = \frac{1}{f'(g(x))}$ for all x in Range(f).

Inverse Functions

Example

Let $g(x) = 3x - \cos 2x - 1$ for all $x \in \mathbb{R}$. Explain why g has a differentiable inverse function $h = g^{-1}$, and calculate h'(-2).

(1141 2014 S1 Q3.i)

Polar Curves

Polar Coordinates

- $x = r \cos \theta$, $y = r \sin \theta$
- $r = \sqrt{x^2 + y^2}$
- $\tan \theta = \frac{y}{x}, \ x \neq 0$

Example

Sketch the polar curve $r = 1 - \cos \theta$ for $0 \le \theta < 2\pi$.

(1131 2016 S1 Q2.ii)

Symmetry

Example

Consider the polar curve $r = 1 + \cos 2\theta$.

- (a) Prove that the curve is symmetric about the x-axis and also about the y-axis.
- (b) Sketch the curve (Not required to find derivative).

(1141 2012 S1 Q4.i)

10 minute Break

Let f be continuous and differentiable on \mathbb{R} , and

$$|f'(x)| \le \sqrt{x}$$

for all x. Find the limit

$$\lim_{x\to\infty}\frac{f(x+1)-f(x)}{x}$$

Riemann Sums

Upper & Lower Sums

Let f be a function continuous on the interval [a,b] with maximum value \overline{f}_k and minimum value \underline{f}_k on the subinterval $[a_{k-1},a_k]$. Suppose we have a partition P_n of [a,b] such that $P_n=\{a_0,a_1,...,a_n\}$, where $a_0=a$ and $a_n=b$. Then the Upper Riemann Sum $\overline{S}_{P_n}(f)$ and Lower Riemann Sum $\underline{S}_{P_n}(f)$ are given by:

$$\bullet \ \overline{S}_{P_n}(f) = \sum_{k=1}^n (a_k - a_{k-1}) \overline{f}_k$$

•
$$\underline{S}_{P_n}(f) = \sum_{k=1}^n (a_k - a_{k-1})\underline{f}_k$$

REMEMBER

 $\overline{S}_{P_n}(f)$ is the sum of largest rectangles in each subinterval, and $\underline{S}_{P_n}(f)$ is the sum of smallest rectangles in each subinterval.

Graphical interpretation of Riemann sums

Definite Integral

Definition

If a function f has upper Riemann sum $\overline{S}_{P_n}(f)$ and lower Riemann sum $\underline{S}_{P_n}(f)$ on an interval [a,b], and there exists unique real number I such that

$$\underline{S}_{P_n}(f) \leq I \leq \overline{S}_{P_n}(f)$$

for all n. Then we call I the definite integral of f from a to b,

$$I = \int_{a}^{b} f(x) dx$$

Limit of Riemann sums

If
$$\lim_{n\to\infty} \underline{S}_{P_n}(f) = \lim_{n\to\infty} \overline{S}_{P_n}(f) = L$$
 then $I = L$.

Application of Riemann sum

Example

- (a) Calculate the upper Riemann sum of the function $f(x) = x^2$ for the partition $P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, ..., 1\right\}$ of the interval [0,1], where n is a positive integer.
- (b) Find the value of the definite integral

$$\int_0^1 x^2 dx$$

(1131 2015 S2 Q2.vi)

First Fundamental Theorem of Calculus

Let the function $f:[a,b]\to\mathbb{R}$ be continuous on its domain. Then the function $F:[a,b]\to\mathbb{R}$ defined by

$$F(x) = \int_{a}^{x} f(t)dt$$

is continuous on [a, b], differentiable on (a, b), and has derivative given by

$$F'(x) = f(x)$$

for all $x \in (a, b)$.

First Fundamental Theorem of Calculus

Example

Use the First Fundamental Theorem of Calculus to find

$$\frac{d}{dx} \left(\int_{\cos x}^{\sin x} e^{1-t^2} dt \right)$$

(1131 2015 S2 Q2.iv)

Second Fundamental Theorem of Calculus

Let the function $f:[a,b]\to\mathbb{R}$ be continuous on its domain. If the function F is an antiderivative of f on [a,b], then

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

This theorem is extremely powerful when it comes to calculating definite integrals compared to Riemann sums. This is literally how we evaluated definite integrals in high school!

Integration>Riemann Sum

If the integral is not possible via basic integration, then use a substitution! Remember to include the derivative of substitution as well.

Substitution

Let x = g(u). Then

$$\int f(x)dx = \int f(g(u))g'(u)du$$

If the integral is made up of two different functions, one of which has an easily found anti-derivative, try integrating by parts!

By Parts

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g'(x)dx$$

Example

Find:

(a)

$$\int x^2 \sqrt{3 + x^3} dx$$

(b)

$$\int xe^{3x}dx$$

(1131 2016 S1 Q3.i)

Example

Find using integration by substitution:

$$\int x\sqrt{x+1}dx$$

Find using integration by substitution:

$$\int \frac{1}{(1+x^2)^{\frac{3}{2}}} dx$$

Find using integration by parts:

$$\int e^x \cos(x) dx$$

(Important techniques for 1131/1141)

WARNING

Don't always go straight to integration by parts simply because it requires less thinking. Many integrals become much harder when tackled with integration by parts. For example,

$$\int xe^{x^2}dx$$

Improper Integrals

Improper Integral

$$\int_{a}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{a}^{R} f(x)dx$$

Common Mistakes

- You MUST take the limit as $R \to \infty$
- If we have an integral of the form $\int_{-\infty}^{\infty} f(x)dx$ then we must separate the interval:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx$$

 Do not always start integrating immediately. Check to see if the integral converges or diverges.

p-test

The integral

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

converges if p > 1 and diverges if $p \le 1$.

Not so useful by itself, but can be used along with the next test...

Comparison Test

Suppose that, for continuous functions f and g, $0 \le f(x) \le g(x)$ whenever x > a. Then:

- If $\int_a^\infty g(x)dx$ converges then $\int_a^\infty f(x)dx$ converges
- If $\int_{a}^{\infty} f(x)dx$ diverges then $\int_{a}^{\infty} g(x)dx$ diverges

NOTE

- Easy to compare functions to $\frac{1}{\sqrt{p}}$, so combine this test with p-test.
- Easy to remember: If the bigger function converges, smaller functions should converge too. If the smaller function diverges, larger functions should diverge too.

Example

Does the following improper integral converge? If so, find its value. If not, show that it diverges.

$$\int_{e}^{\infty} \frac{dx}{x + \ln x}$$

(1131 2014 S2 Q1.ii)

Limit Comparison Test

Let f and g be non-negative continuous functions on $[a, \infty)$ such that

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=L$$

where L > 0. Then either:

- $\int_a^\infty f(x)dx$ and $\int_a^\infty g(x)dx$ both converge, or
- $\int_{a}^{\infty} f(x)dx$ and $\int_{a}^{\infty} g(x)dx$ both diverge

Example

Determine whether or not the following improper integral converges. Give reasons for your answer.

$$\int_{2}^{\infty} \frac{x^2 + \sqrt{x}}{x^{\frac{8}{3}} - x^2 - 1} dx$$

(1131 2015 S2 Q1.v)

$\cosh x$

$$\cosh x = \frac{e^x + e^{-x}}{2}, x \in \mathbb{R}$$

$\sinh x$

$$\sinh x = \frac{e^x - e^{-x}}{2}, x \in \mathbb{R}$$

tanh x

$$\tanh x = \frac{\sinh x}{\cosh x}, x \in \mathbb{R}$$

Graphs

Identities

$$\cosh^2 x - \sinh^2 x = 1$$

Other results can be deduced from here by dividing by either $\cosh^2 x$ or $\sinh^2 x$.

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

Convenient Mnemonic

Consider the classic trigonometric identities involving $\cos x$ and $\sin x$. By replacing $\cos x$ with $\cosh x$ and $\sin x$ with $i \sinh x$, we arrive at the hyperbolic trig identities.

Derivatives

$$\frac{d}{dx}\cosh x = \sinh x$$

$$\frac{d}{dx}\sinh x = \cosh x$$

$$\frac{d}{dx}\tanh x = \operatorname{sech}^2 x$$

Example

- (a) Give the definitions of $\sinh x$ and $\cosh x$ in terms of the exponential function.
- (b) Use your definitions to prove that sinh(2x) = 2 sinh x cosh x

(1131 2014 S1 Q2.ii)

Example

- (a) Express tanh x in terms of exponentials.
- (b) Sketch the graph $y = \tanh x$.
- (c) Find

$$\lim_{x \to \infty} \frac{1 - \tanh x}{e^{-2x}}$$

(d) Explain why the improper integral converges.

$$\int_0^\infty (1 - \tanh x) dx$$

(e) Compute

$$\int_0^\infty (1 - \tanh x) dx$$

(1141 2012 S1 Q4.ii)

Inverse Hyperbolic Trig

$sinh^{-1}x$

$$\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right), x \in \mathbb{R}$$

$\cosh^{-1} x$

$$\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), x \in [1, \infty)$$

$tanh^{-1}x$

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), x \in (-1,1)$$

Inverse Hyperbolic Trig

Derivatives

$$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{x^2 + 1}}$$
$$\frac{d}{dx}\cosh^{-1}x = \frac{1}{\sqrt{x^2 - 1}}$$
$$\frac{d}{dx}\tanh^{-1}x = \frac{1}{1 - x^2}$$

Inverse Hyperbolic Trig

Example

Sketch, on one set of axes, the graphs of $y = \cosh x$ and $y = \cosh^{-1} x$

(1131 2016 S1 Q3.i)

Questions involving several topics

Example

- (a) Carefully state the first fundamental theorem of calculus.
- (b) For $\alpha > 0$ and n > 0, determine whether the improper integral

$$\int_0^\infty u e^{\alpha u^n} du$$

converges or diverges. Give reasons for your answer.

(1141 2016 S1 Q3.iv)

Questions involving several topics

Example

(c) Using L'Hopital's Rule, find, without integration, $\lim_{x\to\infty} f(x)$, where

$$f(x) = \frac{\left(\int_0^x u e^{3u^2} du\right)^2}{\int_0^x u e^{6u^2} du}$$

(d) Show that the function f is an even function, that is, f(-x) = f(x).

(1141 2016 S1 Q3.iv)

Questions involving several topics

Example

Use the ϵ -M definition of the limit to prove that

$$\lim_{x \to \infty} \frac{e^x}{\cosh x} = 2$$

(1141 2014 S1 Q3.iii)

