LING 410X: Language as Data

Semester: Spring '18

Instructor: Sowmya Vajjala

Iowa State University, USA

20 March 2018

Class Outline

- Assignment 4 brief discussion
- Introduction to topic modeling
- Assignment 5 description
- ► This week and next week: discussion about topic modeling, and how to make our own models

Announcement

▶ Thursday: No class, as I am at a conference and our talk is scheduled at the same time. But, there is an optional exercise, based on Chapter 13 in the textbook.

Rest of the semester

Macro Analysis of Texts:

- 1. Classification (Chapter 12) This is what we discussed before the break
- 2. Topic modeling (Chapter 13) this week and next
- 3. Clustering (Chapter 11) When talking about visualization, after topic modeling

Assignment 4 Grading

► First question: frequent words in the training and testing csv files - straight forward steps (everyone did this part well)

Assignment 4 Grading

- ► First question: frequent words in the training and testing csv files straight forward steps (everyone did this part well)
- Second question:
 - More like a exploratory assignment. The tutorial works, I wanted you to try changing somethings in that procedure and see what happens.
 - My take on your submissions: I liked the ones which documented their experiences -e.g., what worked, what failed? did they manage to get better results? etc.
 - ► The errors some of you saw when you tried to change the SVM algorithm to something else: Are they only in Windows? (some of you did not see this). One other possibility: memory limits.
 - ▶ I did not deduct any points for these errors they are a part of the assignment!
- ▶ Where to go from there: Look for some publicly available classification dataset (there are many, I gave some links last time) and try to do classification.

Introduction to Topic Modeling

What is topic modeling?

- ► Topic Models are a group of algorithms which attempt to discover latent themes in large collections of documents.
- ▶ They use statistical methods to analyze word usage in the texts to discover what "themes" run through them, how these themes connect to each other etc.

What is topic modeling?

- ► Topic Models are a group of algorithms which attempt to discover latent themes in large collections of documents.
- ▶ They use statistical methods to analyze word usage in the texts to discover what "themes" run through them, how these themes connect to each other etc.
- Good thing about them: they do not expect us to provide any prior annotations/categories for texts. Topics will "emerge" from the analysis.
- ▶ Bad thing: Lot of math behind it (but we do not have to understand the math to apply topic models)

What is topic modeling?

- ► Topic Models are a group of algorithms which attempt to discover latent themes in large collections of documents.
- ▶ They use statistical methods to analyze word usage in the texts to discover what "themes" run through them, how these themes connect to each other etc.
- Good thing about them: they do not expect us to provide any prior annotations/categories for texts. Topics will "emerge" from the analysis.
- ▶ Bad thing: Lot of math behind it (but we do not have to understand the math to apply topic models)
- One of the most popular methods of analyzing unstructured text data.

Latent Dirichlet Allocation (LDA)

- ▶ LDA is the simplest topic modeling algorithm
- Intuitions:
 - each document is a mixture of multiple topics
 - each topic can be characterized by some set of keywords related to that topic.
 - a keyword can exist in multiple topics with different degrees of importance.

What does a Topic Model do?-1

source: https://goo.gl/azc7Gc

What does a Topic Model do? -2

Real inference with LDA - topic model built using 17000 articles from Science journal.

source: https://goo.gl/azc7Gc

What does a Topic Model do? -3

source: http://tidytextmining.com/topicmodeling.html

The bestseller code

- ▶ One application comes from the textbook author.
- ▶ He and his team analyzed best selling novels using topic models and concluded that best seller novels focus on a small number of topics instead of discussing 1000 things in one story:)
- Okay, it is more detailed than that, I am just telling a micro-summary of what they concluded.

Analysing topics over time

Analyzing topics by author

TOPIC 10		TOPIC 209			TOPIC 87			TOPIC 20	
WORD	PROB.	WORD	PROB.		WORD	PROB.		WORD	PROB.
SPEECH	0.1134	PROBABILISTIC	0.0778		USER	0.2541		STARS	0.0164
RECOGNITION	0.0349	BAYESIAN	0.0671		INTERFACE	0.1080		OBSERVATIONS	0.0150
WORD	0.0295	PROBABILITY	0.0532		USERS	0.0788		SOLAR	0.0150
SPEAKER	0.0227	CARLO	0.0309		INTERFACES	0.0433		MAGNETIC	0.0145
ACOUSTIC	0.0205	MONTE	0.0308		GRAPHICAL	0.0392		RAY	0.0144
RATE	0.0134	DISTRIBUTION	0.0257		INTERACTIVE	0.0354		EMISSION	0.0134
SPOKEN	0.0132	INFERENCE	0.0253		INTERACTION	0.0261		GALAXIES	0.0124
SOUND	0.0127	PROBABILITIES	0.0253		VISUAL	0.0203		OBSERVED	0.0108
TRAINING	0.0104	CONDITIONAL	0.0229		DISPLAY	0.0128		SUBJECT	0.0101
MUSIC	0.0102	PRIOR	0.0219		MANIPULATION	0.0099		STAR	0.0087
AUTHOR	PROB.	AUTHOR	PROB.		AUTHOR	PROB.		AUTHOR	PROB.
Waibel_A	0.0156	Friedman_N	0.0094		Shneiderman_B	0.0060		Linsky_J	0.0143
Gauvain_J	0.0133	Heckerman_D	0.0067		Rauterberg_M	0.0031		Falcke_H	0.0131
Lamel_L	0.0128	Ghahramani_Z	0.0062		Lavana_H	0.0024		Mursula_K	0.0089
Woodland_P	0.0124	Koller_D	0.0062		Pentland_A	0.0021		Butler_R	0.0083
Ney_H	0.0080	Jordan_M	0.0059		Myers_B	0.0021		Bjorkman_K	0.0078
Hansen_J	0.0078	Neal_R	0.0055		Minas_M	0.0021		Knapp_G	0.0067
Renals_S	0.0072	Raftery_A	0.0054		Burnett_M	0.0021		Kundu_M	0.0063
Noth_E	0.0071	Lukasiewicz_T	0.0053		Winiwarter_W	0.0020		Christensen-J	0.0059
Boves_L	0.0070	Halpern_J	0.0052		Chang_S	0.0019		Cranmer_S	0.0055
Young_S	0.0069	Muller_P	0.0048		Korvernaker_B	0.0019		Nagar_N	0.0050

Figure 3: An illustration of 4 topics from a 300-topic solution for the CiteSeer collection. Each topic is shown with the 10 words and authors that have the highest probability conditioned on that topic.

source:

Picking up similar documents

FIGURE 4. The analysis of a document from *Science*. Document similarity was computed using Eq. (4); topic words were computed using Eq. (3).

source:

http://www.cs.columbia.edu/~blei/papers/BleiLafferty2009.pdf

Topic Graphs

source:

http://www.cs.columbia.edu/~blei/papers/BleiLafferty2009.pdf

Fun with topic models

```
https://gist.github.com/inkhorn/9044779#file-recipe-analysis-r
```

A small exercise

- ► Think for 5-10 minutes and try to list some (up to 5) applications of topic modeling in your discipline/topics of your interest
- Now, discuss with our neighbor and compare your and their ideas
- After about 15 minutes, let us discuss what you think are potential applications of topic models.

Another small exercise

Interpreting Topic Models

What do you think of these topics (and their 5 most frequent keywords)? If you are asked to evaluate this topic model now, what will you look for? Think and discuss with your classmates for 5 minutes and we will later collect all answers.

- ► Topic 1 : Onion, Cream, Black pepper, Milk, Cinnamon
- ► Topic 2: Cumin, Coriander, Turmeric, Fenugreek, Lemongrass
- ► Topic 3: Vanilla, Cream, Almond, Coconut, Oat
- ▶ Topic 4: Olive oil, tomato, parmesan cheese, lemon juice, garlic
- Topic 5: soy sauce, scallion, sesame oil, cane molasses, roasted sesame seed
- ► Topic 6: Milk, pepper, yeast, potato, lemon juice
- ► Topic 7: Scallion, garlic, ginger, soy bean, pepper
- Topic 8: Pepper, vinegar, onion, tomato, milk

Some questions to ponder on:

- Coherence among the keywords for a topic (Is some word looking out of place?)
- Are there two topics that perhaps should be one?
- Can we name the topics with what we think is the group?
- ▶ Do you think the topic model learnt something about ingredients in this example?

Topic Models in R

- different libraries: mallet, topicmodels, LDA etc.
- Textbook follows mallet
- ▶ Your Assignment 5 will use tm and topicmodels.

Assignment 5 description

▶ Deadline: 31st March

▶ grade: 15%

▶ Num. questions: 1

- What to do?: Build a topic model with the given data, following given instructions, and answer questions about what you did.
- Difficulty level: moderate, but the program takes a few minutes to complete running.
- ▶ R libraries needed: tm, topicmodels

Topic Models - The Textbook Way

- ▶ The author used mallet library to develop topic models for a corpus of novels and authors (same one he used in Chapters 11-12).
- ▶ I will follow a different method (using tm, which we used before), but I recommend you to also go through this.
- Note: You won't be an expert in text mining with one undergrad course. It is okay if you don't have a 100% understanding of this.
- ► The goal is to introduce you to different possible ways, give some ideas, and make you think.

For Thursday

- ▶ I uploaded a Zip file, start with that. It contains all you need to follow Chapter 13's example.
- ► Attendance question: Try to follow the textbook example (materials provided in a zip file), and write your notes in the forum for 22nd March.

Next Week

- ► Read this before coming to class: https://goo.gl/L8MFfG
- Or this: http:
 //www.scottbot.net/HIAL/index.html@p=19113.html
- Optional, additional reading (for next week): https://goo.gl/azc7Gc (Has some math)
- Other references: http://tidytextmining.com/topicmodeling.html
- Attendance question for today: What are four things you need to build a topic model? - Answer can be found by reading first url.