Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2017-09-17

Raymond Smullyan posed many puzzles about an island that has two kinds of inhabitants:

- knights, who always tell the truth, and
- knaves, who always lie.

You encounter two people *A* and *B*.

What are *A* and *B* if

- A says "We are both knaves."?
- A says "At least one of us is a knave."?
- A says "If I am a knight, then so is B."?
- *A* says "We are of the same type."?
- A says "B is a knight" and B says "The two of us are opposite types."?

Plan for Today

- A Theorem of the Integers brief outlook using LADM Chapter 15
- Boolean Expressions picking up pieces of LADM Chapter 2

Proving Zero of Multiplication

- (1.2) **Axiom, Reflexivity of =:** a = a
- (15.3) Axiom, Additive identity: a + 0 = a
- (15.5) **Axiom, Distributivity:** $a \cdot (b+c) = a \cdot b + a \cdot c$
- (15.8) Cancellation of +: $a+b=a+c \equiv b=c$

Proving (15.9) $a \cdot 0 = 0$:

$$a \cdot 0 = 0$$

 \equiv \langle Cancellation of + (15.8), with $a, b, c := a \cdot d, a \cdot 0, 0 \rangle$

$$a \cdot d + a \cdot 0 = a \cdot d + 0$$

 \equiv (Distributivity of · over + (15.5))

$$a \cdot (d+0) = a \cdot d + 0$$

- \equiv \(\) Identity of + (15.3), twice \(\)
 - $a \cdot d = a \cdot d$ This is Reflexivity of = (1.2)

Proving Zero of Multiplication

- (1.2) **Axiom, Reflexivity of =:** a = a
- (15.3) **Axiom, Additive identity:** a + 0 = a
- (15.5) **Axiom, Distributivity:** $a \cdot (b+c) = a \cdot b + a \cdot c$
- (15.8) Cancellation of +: $a+b=a+c \equiv b=c$

Proving (15.9) $a \cdot 0 = 0$:

$$a \cdot 0 = 0$$

 \equiv \langle Cancellation of + (15.8), with $a, b, c := a \cdot 42, a \cdot 0, 0 \rangle$

$$a \cdot 42 + a \cdot 0 = a \cdot 42 + 0$$

 \equiv \(\rm \text{ Distributivity of } \cdot \text{ over } + (15.5) \)

$$a \cdot (42 + 0) = a \cdot 42 + 0$$

- \equiv \left\{ Identity of + (15.3), twice \rangle
 - $a \cdot 42 = a \cdot 42$ This is "Reflexivity of =" (1.2)

LADM Theory of Integers — (15.20)

(15.5) Distributivity	(15.3) Identity of +	(15.4) Identity of ·
$a \cdot (b+c) = a \cdot b + a \cdot c$	0 + a = a	$1 \cdot a = a$
(15.8) Cancellation of +	(15.13) Unary minus	(15.14) Subtraction
$a+b=a+c \equiv b=c$	a + (-a) = 0	a - b = a + (-b)

 $(15.20) \quad -a = -1 \cdot a$

— Prove this here!

Truth Values and Equivalence — Remember

Boolean constants/values: false, true

The set/type of Boolean values: \mathbb{B}

or:

Equality of boolean values is also called equivalence and written =

 $p \equiv q$ can be read as: p is equivalent to q

p exactly when q or:

p if-and-only-if q or: p iff q

In many current notebooks, the following is added as as an axiom:

 $a + b = a + c \equiv b = c$ (15.8) Cancellation of +:

Remember: Equivalence is just equality of truth values!

- but written with a different symbol
- with different notational conventions

Existential Quantification Examples

 $(\exists k : \mathbb{N} \bullet k > 9999)$

- "There exists a natural number *k* such that *k* > 9999 (holds)"
- "For some natural number k, we have k > 9999"
- "Some natural number is greater than 9999"

 $(\exists x : \mathbb{R} \mid x > 0 \bullet x \cdot x = x + 1)$

- "There exists a real number x with x > 0 such that $x \cdot x = x + 1$ (holds)"
- "For some positive real number x, we have $x \cdot x = x + 1$ "

 $(\exists r, s : \mathbb{Q} \mid r < s < r + 1/1000 \bullet r < \pi < s)$

- "There exist rational numbers r and s with r < s < r + 1/1000 such that $r < \pi < s$ (holds)"
- "For some rational numbers r and s with r < s and s r < 1/1000, we have $r < \pi < s$ "
- " π can be enclosed within rational bounds that are less than 1/1000 apart"

Universal Quantification Examples

 $(\forall k : \mathbb{N} \bullet 2 \cdot k \ge k)$

• "For all natural numbers k, we have $2 \cdot k \ge k$ "

 $(\forall x, y : \mathbb{R} \bullet x \cdot y = y \cdot x)$

- "For all real numbers x and y, we have $x \cdot y = y \cdot x$ "
- "Multiplication of real numbers is symmetric (commutative)"

 $(\forall x : \mathbb{R} \mid x > 5 \bullet x \cdot x > 10)$

- "For all real numbers x with x > 5, we have $x \cdot x > 10$ "
- "The square of a real number greater than 5 is greater than 10."

 $(\forall m, n : \mathbb{N} \mid m \neq n \bullet m \cdot m \neq n \cdot n)$

- "For all natural numbers m and n with $m \neq n$, we have $m \cdot m \neq n \cdot n$ "
- "Different natural numbers have different squares."

Combined Quantification Examples

- "Every integer has an additive inverse."
- "For every integer k, there exists an integer n such that k + n = 0 (holds)."

```
(\forall k : \mathbb{Z} \bullet (\exists n : \mathbb{Z} \bullet k + n = 0))
```

- "There is a least natural number."
- "There exists a natural number b such that every natural number n is at least b".
- "There exists a natural number b such that for every natural number n, we have $b \le n$ ".

```
(\exists b : \mathbb{N} \bullet (\forall n : \mathbb{N} \bullet b \leq n))
```

Combined Quantification Examples (ctd.)

- "There is a least integer."
- "There exists an integer b such that every integer n is at least b".
- "There exists an integer b such that for every integer n, we have $b \le n$ ".

```
(\exists b : \mathbb{Z} \bullet (\forall n : \mathbb{Z} \bullet b \leq n))
```

- " π can be enclosed within rational bounds that are less than any ε apart"
- "For every positive real number ε , there are rational numbers r and s with $r < s < r + \varepsilon$, such that $r < \pi < s$ "

```
 (\forall \varepsilon : \mathbb{R} \mid 0 < \varepsilon   \bullet (\exists r, s : \mathbb{Q} \mid r < s < r + \varepsilon \bullet r < \pi < s))
```

Truth Values and Equivalence — Remember

Boolean constants/values: false, true

The set/type of Boolean values: \mathbb{B}

Equality of boolean values is also called **equivalence** and written ≡

```
p \equiv q can be read as: p is equivalent to q or: p exactly when q or: p if-and-only-if q or: p iff q
```

For now, treat the following as an axiom:

```
(15.8) Cancellation of +: a+b=a+c \equiv b=c
```

Remember: Equivalence is just equality of truth values!

- but written with a different symbol
- with different notational conventions

Boolean Expressions

- Boolean constants: false, true
- Proposition symbols p, q variables of type \mathbb{B}
- Applications of Boolean-valued operators to expressions of their argument types: Number types \mathbb{N} , \mathbb{Z} :
 - 1 = 2
 - 42 ≤ 56
 - a + b = a + c

String: "Hello" \leq "Hello World!" Set: $\{1,2,3\} \cap \{2,3,4\} = \{2,3\}$ \mathbb{B} :

- $(a+b=a+c) \equiv (b=c)$
- $(a \le b) \Rightarrow (c b \le c a)$
- The inscription on the gold casket is true | # The portrait is in the gold casket
- G ≠ gc
- $(p \land q) \Rightarrow p$

Truth Values & Unary Boolean Operators

Boolean constants/values: false, true

Unary Boolean operators:

Arg.	Resu	lt (one			
		id	\neg		
false					¬false = true
true	false	true	false	true	$\neg true = false$

This table shows all four possible functions that map one Boolean argument to a Boolean result.

Unary Boolean Operators — f_1

Unary Boolean operators:

Unary Boolean Operators — *id*

Unary Boolean operators:

Unary Boolean Operators — f_4

Unary Boolean operators:

Arg. Result (one column per operator)
$$f_1 \quad id \quad \neg \quad f_4$$

$$false \quad false \quad false \quad true \quad true \quad f_4(false) = true$$

$$true \quad false \quad true \quad false \quad true \quad f_4(true) = true$$

How Many Binary Boolean Operators Are There?

- How many arguments does a binary Boolean operator take?
- How many different argument value (B) combinations are there?
- How many ways are there to map all argument value combinations to B?

Ar	gs.		Result (one column per operator)														
			٨	≠		#		≢ ≠	V	nor	=		(\Rightarrow	nand	
F	F	F	F	F	F	F	F	F	F	Т	Т	Т	T	Т	T	Т	Т
F	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	T F	Т	Т	Т	Т
Т	F	F	F	Т	Т	F	F	Τ	Τ	F	F	Τ	Т	F	F	Т	Т
Т	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т

Binary Boolean Operators

			^	*		#		≢ ≠	V	nor	= =		=		\Rightarrow	nand	
															Т		
															Т		
Т	F	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т
Т	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т

For example:
$$true \land false = false$$

$$true \neq false = true$$

 $false \Leftarrow true = false$

Names of Binary Boolean Operators & their Arguments

- b = c reads "b equals c" conventional **equality**
- $b \neq c$ reads "b differs from c" conventional **inequality**
- $b \lor c$ reads "b or c" **disjunction**; b and c are **disjuncts**
- $b \wedge c$ reads "b and c" **conjunction**; b and c are **conjuncts**
- $b \Rightarrow c$ reads "b implies c" or "if b then c" implication; b is the **antecedent**; c is the **consequent**
- $b \leftarrow c$ reads "b follows from c" or "b if c" **consequence**; *b* is the **consequent**; *c* is the **antecedent**

Table of Precedences

- [x := e] (textual substitution)
- . (function application)
- unary prefix operators +, −, ¬, #, ~, ₱
- / ÷ mod gcd
- ∪ ∩ x ∘

- < > € ⊂ ⊆ ⊃ ⊇ |

(conjunctional)

(highest precedence)

(lowest precedence)

All non-associative binary infix operators associate to the left, except $**, \triangleleft, \rightarrow, \rightarrow$, which associate to the right.

Modeling English Propositions — Recipe

- Transform into shape with clear subpropositions
- Introduce Boolean variables to denote subpropositions
- Replace these subpropositions by their corresponding Boolean variables
- Translate the result into a Boolean expression, using (no perfect translation rules are possible!) **for example**:

and, but	becomes	\wedge
or	becomes	V
not	becomes	\neg
it is not the case that	becomes	¬
if p then q	becomes	$p \Rightarrow q$

Binary Boolean Operators: "but"

Ar	gs.		
		٨	
F	F	F	The moon is green, but $2 + 2 = 7$.
F	Т	F	The moon is green, but $1 + 1 = 2$.
Т	F	F	1 + 1 = 2, but the moon is green.
Т	F T F T	Т	1 + 1 = 2, but the sun is a star.

Binary Boolean Operators: "if"

Ar	gs.		
		#	
F	F	Т	The moon is green if $2 + 2 = 7$.
F	Т	F	The moon is green if $1 + 1 = 2$.
Т	T F	Т	1 + 1 = 2 if the moon is green.
Т	Т	Т	1 + 1 = 2 if the sun is a star.

See also textbook p. 36:

To stay dry, it's **sufficient** to wear a raincoat.

$$= \begin{bmatrix} \text{You will stay dry if you wear a raincoat.} \\ & = \left(\begin{bmatrix} \text{You will} \\ \text{stay dry.} \end{bmatrix} \Leftarrow \begin{bmatrix} \text{You wear a raincoat.} \\ \text{raincoat.} \end{bmatrix} \right)$$

$$"p \text{ if } q." = "If } q \text{ then } p."$$

```
Binary Boolean Operators: "only if"
                Args.
                        \Rightarrow
                              The moon is green only if 2 + 2 = 7.
                F F
                        Т
                   Τ
                       Т
                              The moon is green only if the sun is a star.
                Т
                  F
                        F
                              The sun is a star only if the moon is green.
                T T T
                              1 + 1 = 2 only if the sun is a star.
See also textbook p. 36:
   To stay dry, it's neccessary to wear a
                                                  You will stay dry only if you wear
   raincoat.
                                                  a raincoat.
                                                     You
                                                            will
                                                                      You wear a
                                                     stay dry.
                                                                      raincoat.
                                                       "If p then q."
                    "p only if q."
```

Necessary and Sufficient Conditions

(Textbook p. 36)

Binary Boolean Operators: "even if"

Aı	gs.		
p	q	p	
F	F	F	The moon is green, even if $2 + 2 = 7$.
F	Т	F	The moon is green, even if $1 + 1 = 2$.
	F		1 + 1 = 2, even if the moon is green.
Т	Т	Т	1 + 1 = 2, even if the sun is a star.

Args. $p \neq q \neq p$ F F F The moon is green, even if 2+2=7. F T F The moon is green, even if 1+1=2. T F T 1+1=2, even if the moon is green. T T T 1+1=2, even if the sun is a star.

1 + 1 = 2, and, if the sun is a star, we still have 1 + 1 = 2.

Declarations:

$$t := 1 + 1 = 2$$

s := The sun is a star

Formalisation:

$$t \land (s \Rightarrow t)$$