作業名稱: Image processing HW5

班級:電機三B

學號:409415008

姓名:張力升

HW5.1

實驗目的:

分別利用 midpoint-filter 和 wiener filter 來處理被高斯雜訊干擾的圖片,並用未經高斯雜訊干擾的原圖片和去雜訊處理過後圖片比較 PSNR值。

原理:

Midpoit-filter:

原理公式:

$$g(x,y) = \frac{1}{2} \left(\max_{(x,y) \in B} f(x,y) + \min_{(x,y) \in B} f(x,y) \right)$$

利用 rank-order filter(此題大小為 7x7),選取大小內最大的 pixel 值和最小的 pixel 值相加除二並對每點作此運算並填入,最後輸出結果圖。
Wiener-filter:

原理公式:

$$X(i,j) \approx \left[\frac{1}{F(i,j)} \frac{|F(i,j)|^2}{|F(i,j)|^2 + K}\right] Y(i,j)$$
 K:constant

實驗結果/觀察:

圖 1.無雜訊原圖 (左 buffalo.png,右 cameraman.png)

圖 2.高斯雜訊圖 (左 buffalo.png,右 cameraman.png)

圖 3.經 midpoint-filter 處理雜訊後圖 (左 buffalo.png,右 cameraman.png)

圖 4.經 wiener-filter 處理雜訊後圖 (左 buffalo.png,右 cameraman.png)

buffalo.png PNSR 比較:

原圖與高斯雜訊圖	20.344
原圖與 midpoint-filter 處理雜訊後圖	14.8044
原圖與 wiener-filter 處理雜訊後圖	23.3131

cameraman.png PNSR 比較:

原圖與高斯雜訊圖	20.3735
原圖與 midpoint-filter 處理雜訊後圖	15.7189
原圖與 wiener-filter 處理雜訊後圖	25.4256

若用肉眼直接觀察的話,會覺得 wiener-filter 處理過後的圖片會有種平滑感,相較於 midpoint-filter 會感覺處理較佳,圖片較清晰還原度高。但實際用 PSNR 來比較的話,會發現 midpoint-filter 的輸出圖會跟原圖較相近,反而 wiener-filter 跟原圖相差較遠,甚至 PSNR 值比原圖跟高斯雜訊圖比較出來的 PSNR 值還要高(PSNR 值越高跟原圖比較相差較多)。

HW5.2

實驗目的:

利用 low pass filter 和 constrained division 來處理經模糊的圖片,觀察輸出結果並和未模糊的原圖比較。

原理:

low pass filter:

原理公式:

$$X(i,j) = \frac{Y(i,j)}{F(i,j)}L(i,j)$$

constrained division:

原理公式:

$$X(i,j) = \begin{cases} \frac{Y(i,j)}{F(i,j)}, & if |F(i,j)| \ge d, \\ Y(i,j), & if |F(i,j)| < d \end{cases}$$

實驗結果/觀察:

圖 5.未經模糊原圖 (左 buffalo.png,右 cameraman.png)

圖 6.模糊後輸出圖 (左 buffalo.png,右 cameraman.png)

圖 7. 經 low pass filter 後輸出圖 (左 buffalo.png,右 cameraman.png)

圖 8. 經 constrained division 後輸出圖 (左 buffalo.png,右 cameraman.png)

Different threshold for solution 2:

圖 9. 左 threshold=0.001, 右 threshold=0.00001

輸出圖和未模糊原圖 PSNR 比較:

	模糊圖	low pass filter	constrained division
buffalo.png	21.6509	20.1349	19.0690
cameraman.png	21.9516	21.8630	14.7152

經肉眼直接觀察,感覺兩種方法和模糊後圖片差不多,甚至更加的模糊,但實際用 PSNR 值去做客觀比較的話,可以發現模糊後的圖片在經過兩種還原方法後確實達到些許的還原,輸出的圖片和原圖相似度較高。而若拿兩種方法處理後的圖片結果來比較的話,以 PSNR 為依據可以看出 constrained division 在兩張圖片處理完後效果都是比 low pass filter 好。

HW5.3

實驗目的:

	-3	-2	-1	0	1	2	3
-3	0	0	0	0	0	1	0
-2	0	0	0	0	0	0	0
-1	0	1	0	1	0	1	0
0	0	0	1	0	0	0	0
1	0	0	0	0	0	1	0
2	1	0	0	0	0	1	0
3	0	0	0	0	0	0	0

上表為欲處理的二值影像,利用上表資訊找出影像中最明顯的直線

原理:

對於線段上的每一個點(x, y),都滿足以下方程式:

$$x\cos\theta + y\sin\theta = r$$

對於每一條直線都有固定的 θ (線的傾斜度)跟 r(與線的距離)。像下圖所示,我們對每個點(x,y)試不同的角度 θ ,就可以算出 r 值,我們最後要找到在哪個 θ 和 r 值下,有最多的點經過。

實驗結果/觀察:

X	Y	-45°	o°	45°	90°
2	-3	3.535	2	-0.707	-3
-2	-1	-0,707	-2	-2.121	-1_
0	-1	0.707	0	-0.707	-1
2	-1	2.121	2	0.707	-1_
-1	0	-0.707	-1	-0.707	0_
2	1	0.707	2	2.121	1
-3	2	-3.535	-3	-0.707	2
2	2	0	2	2.828	2

圖 10. 針對影像每個值為 1 的點用不同角度算出的 r 值之表格

- V V-	, , ,							ſ			,	,	A Ballion
9	3.535	33 -	2.12	-2	-1	-0.707	0	0.707	1	2	2.121	2.828	-3.535
-45°	1	0	0	0	0	2	1	2	0	0	1	0	1
O°	0	1	0	1	1	0	1	0	0	4	0	0	0
45°	0	0	1	0	0	4	0	1	0	0	1	*	0
90	0	1.	0	0	3	0	1	0	1	2	0.	0	Ô

圖 11.透過圖 10 的前置作業,繪出不同 r, θ 下出現的點數量之表格

上表就是 Hough transform 的 accumulator array。可以觀察到在 r=-0.707, $\theta=45$ 。還有 r=2, $\theta=0$ 。這兩條線上都有四個點經過,他們同 時也是影像上最強勢的兩條線。