PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-315404

(43)Date of publication of application: 29.11.1996

(51)Int.CI.

G11B 7/135

(21)Application number: 07-119947

(71)Applicant:

SONY CORP

(22)Date of filing:

18.05.1995

(72)Inventor:

YAMAMOTO KENJI

ICHIMURA ISAO MAEDA FUMISADA

WATANABE TOSHIO OSATO KIYOSHI

(54) OPTICAL PICKUP DEVICE

(57)Abstract:

PURPOSE: To relax fitting accuracy of an objective lens and a hemispherical lens respectively by suppressing increase in aberations with respect to inclination of optical axis, inclination of the objective lens and eccentricity of the hemispherical lens, respectively.

CONSTITUTION: This device has the hemispherical lens (emersion lens) 7 with its flat surface 7b facing the side of an optical recording medium 20 between the objective lens 6 and the optical recording medium 20. The thickness of the hemispherical lens 7 is increased by 20% to 50% of a radius of curvature of a spheroidal surface 7a as compared with condition of light to be vertically incident on the spheroidal surface 7a from the objective lens 6.

LEGAL STATUS

[Date of request for examination]

13.05.2002

[Date of sending the examiner's decision of rejection]

06.01.2004

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-315404

(43)公開日 平成8年(1996)11月29日

(51) Int.Cl.6

識別記号

庁内整理番号 FΙ 技術表示箇所

G11B 7/135

G 1 1 B 7/135

Z

審査請求 未請求 請求項の数2 OL (全 14 頁)

(21)出願番号

特願平7-119947

(22)出願日

平成7年(1995)5月18日

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 山本 健二

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72) 発明者 市村 功

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 前田 史貞

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 小池 晃 (外2名)

最終頁に続く

(54) 【発明の名称】 光学ピックアップ装置

(57)【要約】

【構成】 対物レンズ6と光学記録媒体20との間に平 坦面7bを光学記録媒体20側に向けた半球状レンズ (イマージョンレンズ) 7を有する。半球状レンズ7 は、球状面7aに対物レンズ6より垂直入射される条件 に比して、球状面7aの曲率半径の20%乃至50%だ け厚みが増加されている。

【効果】 光軸の傾き、対物レンズ6の傾き及び半球状 レンズ7の偏心に対して各収差の増大が抑えられ、各レ ンズ6,7の取付け精度を緩和できる。

【特許請求の範囲】

【請求項1】 光学記録媒体の信号記録面に光源からの 光を集光させる光学ピックアップ装置であって、

上記光源からの光を上記光学記録媒体に向けて集束させ て射出する対物レンズと、

上記光学記録媒体と上記対物レンズとの間に位置され、 該対物レンズより射出された光束が入射される面が曲率 半径が所定値である凸球面となされ、該光学記録媒体の 表面部に近接されて対向する面が平面となされた凸レン ズとを備え、

上記凸レンズは、上記信号記録面上にこの凸レンズを経 た光が集光されている状態において、上記対物レンズよ り射出された光束が上記凸球面に対して垂直に入射され ることとなる厚さを基準厚さとしたとき、この基準厚さ よりも厚くなされており、該基準厚さに対する厚さの増 加量が、該凸球面の曲率半径の60%以下となされてい る光学ピックアップ装置。

【請求項2】 光学記録媒体の信号記録面に光源からの 光を集光させる光学ピックアップ装置であって、

上記光源からの光を上記光学記録媒体に向けて集束させ 20 て射出する対物レンズと、

上記光学記録媒体と上記対物レンズとの間に位置され、 該対物レンズより射出された光束が入射される面が曲率 半径が所定値である凸球面となされ、該光学記録媒体の 表面部に近接されて対向する面が平面となされた凸レン ズとを備え、

上記凸レンズは、上記信号記録面上にこの凸レンズを経 た光が集光されている状態において、上記対物レンズよ り射出された光束が上記凸球面に対して垂直に入射され ることとなる厚さを基準厚さとしたとき、この基準厚さ よりも厚くなされており、該基準厚さに対する厚さの増 加量が、該凸球面の曲率半径の20%乃至50%となさ れている光学ピックアップ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、いわゆる光ディスク、 光カード、あるいは、光テープの如き光学記録媒体上に 光源よりの光を集光させるための光学ピックアップ装置 に関する。

[0002]

【従来の技術】従来、情報信号の記録媒体として、いわ ゆる光ディスク、光カード、あるいは、光テープの如き 種々の光学記録媒体が提案されている。そして、この光 学記録媒体上に光源よりの光を集光させてこの光学記録 媒体に対する情報信号の書き込みや読み出しを行う光学 ピックアップ装置が提案されている。

【0003】上記光学ピックアップ装置においては、上 記光学記録媒体上に上記光源よりの光を集光させる対物 レンズの開口数 (N. A.) を大きくすることによっ

ムスポットの径を小さくすることができ、該光学記録媒 体の情報記録密度を向上させることができる。

【0004】上記対物レンズの開口数を大きくする手段 として、この対物レンズと上記光学記録媒体との間に略 々半球状の凸レンズを配置することが提案されている。 この場合においては、上記対物レンズ及び上記凸レンズ を合成した光学系の開口数が該対物レンズそのものの開 口数よりも大きいため、該対物レンズそのものの開口数 を変えることなく、上記ピームスポットの径を小さくす 10 ることができる。

【0005】上記凸レンズは、いわゆるソリッド・イマ ージョン・レンズ (Solid Immersion Lens; SIL) で あり、上記対物レンズより射出された光束が入射される 面が凸球面となされ、上記光学記録媒体に対向する面が 平面となされている。

【0006】上記凸レンズの上記光学記録媒体に対向す る平面は、上記光学記録媒体の信号記録面に対して、極 力近接されるようになされている。そして、この凸レン ズの凸球面には、上記対物レンズより射出された光束が 垂直に入射される。すなわち、上記対物レンズより射出 された光束は、集束光束であり、上記凸球面の曲率中心 に向かって集束する光束となっている。

【0007】上記対物レンズと上記凸レンズとを合成し た開口数は、該対物レンズの開口数に該凸レンズの屈折 率を乗じた値となっている。

[0008]

【発明が解決しようとする課題】ところで、上述のよう な平凸の凸レンズを有する光学ピックアップ装置におい ては、この凸レンズと上記対物レンズとを合成した開口 数が大きいため、収差の発生量を一定値以下に抑えるこ とを条件とした場合、該対物レンズに対する軸外入射、 該対物レンズの光軸に対する傾き、及び、該凸レンズの 光軸に対する偏心についての許容値が極めて小さい。

【0009】顕微鏡のように各レンズを鏡筒に対して固 定して使用できる光学系においては、該各レンズを髙精 度に位置決めすることが可能であるが、光学ピックアッ プ装置においては、上記対物レンズ及び上記凸レンズを 光学記録媒体に追従させて高速で移動操作する必要があ るため、該各レンズの位置精度を常に充分な精度に維持 40 することは困難である。

【0010】すなわち、上記対物レンズ及び上記凸レン ズを光軸方向に移動操作して上記光学記録媒体上におけ る合焦状態を維持するいわゆるフォーカスサーボを作動 させた場合においては、該対物レンズ及び該凸レンズ は、光軸に対して、0.2°程度の傾きを生ずる虞れが ある。

【0011】また、上記対物レンズは、鏡筒に対する取 付け時に、光軸に対して、0.2°程度の傾きを生ずる 虞れがある。また、上記凸レンズは、光学ピックアップ て、該光学記録媒体上に光が集光されて形成されるビー50 装置の作動中において、光軸に対して、 30μ m程度の

-26-

偏心を生ずる虞れがある。

【0012】さらに、上記凸レンズの平面と上記光学記 録媒体との間隔は、該光学記録媒体上の塵挨の該凸レン ズへの衝突を回避し、また、この間隔を一定の間隔に維 持するためには、広いほど良い。しかし、この間隔を広 くすると、上述のような対物レンズの光軸に対する傾き 等により発生する収差量が大きくなってしまう。

【0013】したがって、上述の光学ピックアップ装置 においては、発生する収差量が充分に抑えられる程度に 上記各レンズの位置精度を維持することが困難であり、 収差の発生を充分に抑えることができない。収差の発生 を充分に抑えることができないと、上記光学記録媒体よ りの情報信号の読み取りを正確に行うことができなくな

【0014】そこで、本発明は、上述の実情に鑑みて提 案されるものであって、対物レンズと光学記録媒体との 間に凸レンズ(ソリッド・イマージョン・レンズ)を有 する光学ピックアップ装置であって、軸外入射、該対物 レンズの光軸に対する傾き、該凸レンズの光軸に対する 偏心についての許容度が高くなされ、該各レンズの位置 20 ックアップ装置である。 精度を高めることなく、発生する収差量を充分に抑える ことができるようになされた光学ピックアップ装置を提 供することを目的とする。

[0015]

【課題を解決するための手段】上述の課題を解決し上記 目的を達成するため、本発明に係る光学ピックアップ装 置は、光学記録媒体の信号記録面に光源からの光を集光 させる光学ピックアップ装置であって、該光源からの光 を該光学記録媒体に向けて集束させて射出する対物レン 該対物レンズより射出された光束が入射される面が曲率 半径が所定値である凸球面となされ該光学記録媒体の表 面部に近接されて対向する面が平面となされた凸レンズ とを備え、この凸レンズは、上記信号記録面上にこの凸 レンズを経た光が集光されている状態において、上記対 物レンズより射出された光束が上記凸球面に対して垂直 に入射されることとなる厚さを基準厚さとしたとき、こ の基準厚さよりも厚くなされており、該基準厚さに対す る厚さの増加量が、該凸球面の曲率半径の60%以下と なっていることとしたものである。

【0016】また、本発明は、上述の光学ピックアップ 装置において、上記凸レンズの厚さの上記基準厚さに対 する増加量を、上記凸球面の曲率半径の20%乃至50 %としたものである。

[0017]

【作用】本発明に係る光学ピックアップ装置において は、光学記録媒体と対物レンズとの間に位置され該対物 レンズより射出された光束が入射される面が曲率半径が 所定値である凸球面となされ該光学記録媒体の表面部に 近接されて対向する面が平面となされた凸レンズは、該 50 り、上記平面7 b と上記光入射面20 a との間隔が、常

対物レンズより射出された光束が該凸球面に対して垂直 に入射されたときに該光学記録媒体の信号記録面上にこ の凸レンズを経た光が集光されることとなる厚さである 基準厚さよりも該凸球面の曲率半径の60%以下にあた る増加量だけ厚くなされているので、軸外入射光線、上 記対物レンズの光軸に対する傾き、及び、上記凸レンズ の光軸に対する偏心に対する許容度がそれぞれ大きくな り、収差の発生が抑えられる。

【0018】また、上記凸レンズの厚さの上記基準厚さ 10 に対する増加量を上記凸球面の曲率半径の20%乃至5 0%とすると、軸外入射、上記対物レンズの光軸に対す る傾き、及び、上記凸レンズの光軸に対する偏心が合算 されて発生する収差が抑えられる。

[0019]

【実施例】以下、本発明の具体的な実施例を図面を参照 しながら説明する。

【0020】本発明に係る光学ピックアップ装置は、図 4に示すように、光ディスクの如き光学記録媒体20の 信号記録面20bに光源1からの光を集光させる光学ピ

【0021】上記光学記録媒体20は、図1及び図3に 示すように、表面部である光入射面20aより信号記録 面20bの間が、平行平面の透明層となされている。こ の透明層は、例えばディスク基板の一部であり、0.1 mm乃至0.2mmの厚さを有している。上記光入射面 20 aより上記光学ピックアップ装置により入射された 光束は、上記透明層を透過して、上記信号記録面20a 上に集光される。

【0022】上記光源1としては、例えば、半導体レー ズと、該光学記録媒体と該対物レンズとの間に位置され 30 ザが使用される。この光源1より発した光束は、コリメ ータレンズ2により平行光束となされ、回折格子(グレ ーティング)3により回折され、偏光ピームスプリッタ 4、及び、λ/4 (4分の1波長) 板5を経て、円偏光 の平行光束として、対物レンズ6に入射される。

> 【0023】上記対物レンズ6は、図1に示すように、 入射された光束を、上記光学記録媒体20に向けて、集 東光東として射出する。

【0024】そして、この光学ピックアップ装置におい ては、上記光学記録媒体20と上記対物レンズ6との間 40 に位置されて、凸レンズ (ソリッド・イマージョン・レ ンズ (Solid Immersion Lens; SIL)) 7が配設され ている。

【0025】上記凸レンズ7は、図1及び図2に示すよ うに、上記対物レンズ6より射出された光束が入射され る面が、曲率半径が所定値rである凸球面7aとなさ れ、上記光学記録媒体20の表面部である光入射面20 aに近接されて対向する面が平面7bとなされている。

【0026】上記凸レンズ7は、図3及び図4に示すよ うに、凸レンズ駆動機構(アクチュエータ)31によ

に一定の微小間隔となるように、移動操作される。すなわち、上記平面7bと上記光入射面20aとの間には、薄い空気層(エアギャップ;AG)が形成されている。また、上記対物レンズ6は、図3及び図4に示すように、対物レンズ駆動機構(アクチュエータ)12により、上記凸レンズ7を経た光束が形成するビームスポットが上記信号記録面20b上の記録トラック上に常に形成されるように、光軸方向(フォーカス方向)、及び、該光軸と該記録トラックとに直交する方向(トラッキング方向)に移動操作される。すなわち、上記光束は、常10に、上記記録トラック上に集光される。

【0027】上記凸レンズ駆動機構31及び上記対物レンズ駆動機構12の動作は、上記信号記録面20bよりの反射光に基づいて生成される検出信号(エラー信号)に基づいて行われる。

【0028】すなわち、上記凸レンズ7を経て上記信号記録面20b上に集光された光束は、この信号記録面20bにより反射された反射光束として、該凸レンズ7、上記対物レンズ6を経て、上記入/4板5に至る。この反射光束は、上記入/4板5により、上記光源1よりの20光束の偏光方向に対して直交する方向の直線偏光光束となっている。この反射光束は、上記偏光ピームスプリッタ4により反射され、第1のハーフミラー8に入射する。

【0029】上記第1のハーフミラー8に入射した反射 光束の一部は、集束レンズ9及びマルチレンズ10を経 て、フォトダイオード等よりなる第1の光検出器11の 受光面上に集光される。上記マルチレンズ10は、シリ ンドリカルレンズと凹レンズとが一体化されたレンズで あり、上記反射光束に非点収差を生じさせるとともに、 該反射光束を上記第1の光検出器11の受光面上に集光 させる。

【0030】上記第1の光検出器11は、複数の部分 (例えば6面) に分割された受光面を有しており、これら各受光面よりの光検出出力に基づく演算処理により、上記光学記録媒体20よりの読み取り信号であるRF信号、及び、フォーカスエラー、トラッキングエラーの各エラー信号が生成されるようになされている。

【0031】上記対物レンズ駆動機構12は、上記フォーカスエラー信号に基づいて、上記対物レンズ6を上記 40フォーカス方向に移動操作し、上記信号記録面20b上における光束の合焦状態を維持する。

【0032】また、上記対物レンズ駆動機構12は、上記トラッキングエラー信号に基づいて、上記対物レンズ6を上記トラッキング方向に移動操作し、上記光束を上記記録トラック上に照射させる。

【0033】そして、上記第1のハーフミラー8を透過した反射光束は、第2のハーフミラー12に入射される。この第1のハーフミラー12は、上記反射光束を2分割し、一方の光束R2を、集束レンズ13、マルチレ 50

ンズ14を介して、第2の光検出器15に導き、他方の 光束R3を、ミラー16、集束レンズ17、マルチレン ズ18を介して、第3の光検出器19に導く。

【0034】上記第2の光検出器15は、光軸方向の位置を調整されることにより、上記光束の上記光入射面20aよりの反射光束を検出するようになされている。また、上記第3の光検出器19は、光軸方向の位置を調整されることにより、上記光束の上記平面7bよりの反射光束を検出するようになされている。

[0035] 上記第2及び第3の光検出器15,19よりの光検出出力P_b,P_cは、減算器21により、互いに減算処理される。この減算器21の出力は、アクチュエータドライバ22に供給される。

【0036】このアクチュエータドライバ22は、供給される上記減算器21よりの出力に応じて上記凸レンズ駆動機構31を駆動することにより、上記平面7bと上記光入射面20aとの間の空気層の厚さを一定に保たせる。

【0037】そして、この光学ピックアップ装置においては、上記凸レンズ7は、上記信号記録面20a上にこの凸レンズ7を経た光が集光されている状態において、上記対物レンズ6より射出された光束が上記凸球面7aに対して垂直に入射されることとなる厚さを基準厚さt。としたとき、この基準厚さt。よりも厚くなされている。

[0038] なお、上記対物レンズ6より射出された光 束が上記凸球面7aに対して垂直に入射される状態と は、該光束が該凸球面7aの曲率中心に向かって集束し ている状態であり、該光束が該凸球面7aにおいて屈折 30 することがない状態である。

【0039】すなわち、上記凸レンズ7は、厚さが上記基準厚さt。である状態よりも、上記平面7bが上記凸球面7aより離間する側に変移した状態に形成されている。したがって、上記信号記録面20b上に上記凸レンズ7を経た光束が集光されている状態において、この凸レンズ7の上記凸球面7aに入射された光束は、光軸側に集束する方向に屈折される。

【0040】そして、上記凸レンズ7の上記基準厚さt。に対する厚さの増加量は、上記凸球面7aの曲率半径rの60%以下となっている。

【0041】この光学ピックアップ装置においては、軸外入射光線、上記対物レンズ6の光軸に対する傾き、及び、上記凸レンズ7の光軸に対する偏心に対する許容度がそれぞれ大きくなり、収差の発生が抑えられる。

【0042】ここで、以下の表1及び表2に示すレンズデータを有する光学ピックアップ装置について、上配凸レンズ7の厚さを上記基準厚さtoとした場合との比較を行う。

[0043]

60 【表1】

RDY(曲率半径) TH(厚さ) GLA(ガラス名) OBJ: INFINITY INFINITY STO: 2.81940 2.600000 FCD1_HOYA A:-0.235476×10⁻² B:-0.655445×10⁻³ C:-0.682554×10⁻⁴ 2: -6.578781.163402 $B:-0.581075\times10^{-2}$ C:0.970059×10⁻³ A:0.139038×10⁻¹ 3: 1.25000 1.400000 **BK7_SCHOTT** 4: INFINITY 0.075000 5: INFINITY 0.100000 'PC' IMG: INFINITY 0.000000

[0044]

* *【表2】

EPD(入射瞳径(mm))	3.95710
WL(波長(nm))	680.00
PEFRACTIVE INDICES(屈折率)	
GLASS CODE	680.00
BK7_SCHOTT	1.513615
FCD1_HOYA	1.494611
'PC'	1.576900
EFL(全径の焦点距離(mm))	3.9000

【0045】上記表1においては、OBJが無限遠方の物点を示し、STOより第2面が上記対物レンズ6に対応している。

【0046】STOのA, B, Cは、それぞれ4次、6次、8次の非球面係数を示している。なお、このSTOの10次の飛球面係数Dは、-0.123316×10である。第2面のA, B, Cは、それぞれ4次、6次、8次の非球面係数を示している。なお、この第2面の10次の飛球面係数Dは、-0.677027×10である。

【0047】そして、第3面より第4面は、上記凸レンズ7に対応している。また、第5面は、上記光入射面20aに、IMGは、上記信号記録面20bに、それぞれ対応している。

【0048】したがって、この光学ピックアップ装置においては、上記凸レンズ7の厚みが1.4mmであり、上記凸球面7aの曲率半径が1.25mmであり、上記 40平面7bと上記光入射面20aとの間隔(AG)が75 μ mであり、上記透明層の厚みが0.1mmである。なお、上記透明層の厚みを変えた場合には、その変化分だけ、上記凸レンズ7の厚みを逆方向に変化させることにより、相殺することができる。

【0049】また、入射瞳径 (EPD)、光束の波長

(WL)、全系の焦点距離(EFL)は、上記表2に示すように、それぞれ、3.95710mm、680.00nm、3.9000mmである。また、各ガラス材の屈折率は、上記表2に示すように、BK7(凸レンズ7)が1.513615、FCD1(対物レンズ6)が1.494611、PC(ポリカーボネイト)(光学記30 録媒体20の透明層)が1.576900である。

【0050】上記凸レンズ7の上記基準厚さ t_0 は、0.995mmであるので、

(1. 4-0. 995) /1. 25=0. 324 より、この光学ピックアップ装置の上記凸レンズ7の厚 さ上記基準厚さ t₀よりの増加量は、上記曲率半径 rの 32. 4%である。なお、閉口数 (N. A.) は、0. 8である。

【0051】この光学ピックアップ装置において、軸外入射(0.3°)、上記対物レンズ6の光軸に対する傾き(0.5°)及び上記凸レンズ7の光軸に対する偏心(30μ m)についての波面収差は、以下の表3に示すように、それぞれ、0.026rms(λ)、0.030rms(λ)、0.03

[0052]

【表3】

3ケース	波面収差rms(λ)
1)軸外入射0.3°	0.026
2)対物レンズの光軸に対する傾き0.5゚	0.030
3)SILの光軸に対する偏心30μm	0.010

【0053】そして、上記凸レンズ7の厚さを上記基準 厚さ t_0 (0.995mm) としたときの軸外入射 (0.3°)、上記対物レンズ6の光軸に対する傾き

[0054]

(0.5°) 及び上記凸レンズ7の光軸に対する偏心 10

10 【表4】

(30 µm) についての波面収差は、以下の表4に示す*

3ケース	波面収差rms(λ)
1)軸外入射0.3	0.050
2)対物レンズの光軸に対する傾き0.5	0.049
3)SILの光軸に対する偏心30 μ m	0.050

【0056】なお、軸外入射は、図5において θ で示すように、上記対物レンズ6に対する入射光束が光軸に対して傾いた状態に相当する。また、上記対物レンズ6の光軸に対する傾きは、図6において θ で示すように、該30対物レンズ6のみが、光軸に対して傾斜した状態である。そして、上記凸レンズ7の光軸に対する偏心は、図7において θ で示すように、該凸レンズ7のみが、光軸に対して偏心した状態である。

【0057】そして、軸外入射(0.3°)について、上記凸レンズ7の厚さを基準厚さ t_0 より厚くした場合における波面収差($rms(\lambda)$)の変化は、図9に示すように、厚み増加量が上記曲率半径rの60%以下の範囲において、該凸レンズ7の厚みが基準厚さ t_0 であるときに比して、向上している。

【0058】また、上記対物レンズ6の光軸に対する傾き (0.5°) について、上記凸レンズ7の厚さを基準厚さ t。より厚くした場合における波面収差(r m s (λ))の変化は、図10に示すように、厚み増加量が上記曲率半径r m s

【0059】 さらに、上記凸レンズ7の光軸に対する偏心 (30μ m) について、上記凸レンズ7の厚さを基準厚さ t_0 より厚くした場合における波面収差 (rms

(A))の変化は、図11に示すように、厚み増加量が上記曲率半径rの60%以下の範囲において、該凸レンズ7の厚みが基準厚さtoであるときに比して、向上している。

10

*ように、それぞれ、0.050 rms (λ)、0.04 9 rms (λ)、0.050 rms (λ) である。

【0060】そして、軸外入射角度を変化させた場合については、上記凸レンズ7の厚さを基準厚さ t_0 (t=0. 995 mm)より上記曲率半径t mm)における波面収差(t mm)における波面収差(t mm)の変化は、図t 2に示すように、該凸レンズt の厚みが基準厚さ t_0 であるときに比して、向上している。

【0061】また、上記対物レンズ6の光軸に対する傾き角度を変化させた場合については、上記凸レンズ7の厚さを基準厚さ t_0 (t=0.995mm)より上記曲率半径 t_0 032.4%厚くした場合(t=1.4mm)における波面収差(t=1.4mm)の変化は、図13に示すように、該凸レンズ7の厚みが基準厚さ t_0 であるときに比して、向上している。

【0062】さらに、上記凸レンズ7の光軸に対する偏心量を変化させた場合については、上記凸レンズ7の厚さを基準厚さ t。(t=0.995mm)より上記曲率半径rの32.4%厚くした場合(<math>t=1.4mm)における波面収差(rms(λ))の変化は、図14に示すように、該凸レンズ7の厚みが基準厚さ t。であるときに比して、向上している。

【0063】そして、軸外入射を0.225°とし、上記対物レンズ6の光軸に対する傾き角度を0.200°とし、上記凸レンズ7の光軸に対する偏心量を 15μ mとしたときについて、上記凸レンズ7の厚さを基準厚さt。より厚くした場合における波面収差(rms

50 (λ))の変化は、図8に示すように、厚み増加量が上

記曲率半径 r の 2 0 % 乃至 5 0 % の範囲において、軸外入射、上記対物レンズ 6 の光軸に対する傾き、及び、上記凸レンズ 7 の光軸に対する偏心が合算されて発生する収差が総体的に抑えられている。

【0064】なお、上記凸レンズ7の厚さの上記基準厚さ toよりの増加量は、上記曲率半径 r の32%乃至33%が最適値である。

【0065】そして、軸外入射(0.225°)について、上記凸レンズ7の厚さを基準厚さ t_0 より上記曲率半径r032.4%厚くした場合における球面収差は、図17に示すように、図36に示す該凸レンズ7の厚さが基準厚さ t_0 である場合の球面収差に比して、改善されている。

【0066】軸外入射(0.225°)について、上記 凸レンズ7の厚さを基準厚さ t_0 より上記曲率半径 r の 32.4%厚くした場合における非点収差は、図16に 示すように、図35に示す該凸レンズ7の厚さが基準厚 さ t_0 である場合の非点収差に比して、改善されてい

【0067】軸外入射(0.225°)について、上記 20 凸レンズ7の厚さを基準厚さ to より上記曲率半径 r の 32.4%厚くした場合における歪曲収差は、図15に 示すように、図34に示す該凸レンズ7の厚さが基準厚 さtoである場合の球面収差とともに、測定範囲に達す る程度には発生していない。

【0068】軸外入射(0.225°)について、上記 凸レンズ7の厚さを基準厚さtoより上記曲率半径rの32.4%厚くした場合におけるコマ収差は、図18及び図19に示すように、像高1.00のタンジェンシャル方向及びサジタル方向について、また、図20及び図3021に示すように、像高0.00のタンジェンシャル方向及びサジタル方向について、図37乃至図40に示す該凸レンズ7の厚さが基準厚さtoである場合のコマ収差に比して、それぞれ改善されている。

【0069】そして、上記対物レンズ6の光軸に対する傾き(0.2°)について、上記凸レンズ7の厚さを基準厚さ t。より上記曲率半径r032.4%厚くした場合における球面収差は、図23に示すように、図42に示す該凸レンズ7の厚さが基準厚さ t。である場合の球面収差に比して、改善されている。

【0070】上記対物レンズ6の光軸に対する傾き (0.2°)について、上記凸レンズ7の厚さを基準厚さ t_0 より上記曲率半径 t_0 32.4%厚くした場合における非点収差は、図22に示すように、図41に示す該凸レンズ7の厚さが基準厚さ t_0 である場合の非点収差に比して、改善されている。

【0071】上記対物レンズ6の光軸に対する傾き (0. 2°)について、上記凸レンズ7の厚さを基準厚 さt₀より上記曲率半径r032.4%厚くした場合に おけるコマ収差は、図24及び図25に示すように、像 50 12

高1.00のタンジェンシャル(Y)方向及びサジタル(X)方向について、また、図26及び図27に示すように、像高0.00のタンジェンシャル(Y)方向及びサジタル(X)方向について、図43乃至図46に示す該凸レンズ7の厚さが基準厚さt。である場合のコマ収差に比して、それぞれ改善されている。

【0072】そして、上記凸レンズ7の光軸に対する偏心 (30μ m) について、上記凸レンズ7の厚さを基準厚さ t_0 より上記曲率半径 t_0 32.4%厚くした場合における球面収差は、図 t_0 29に示すように、図 t_0 48に示す眩凸レンズ t_0 7の厚さが基準厚さ t_0 7の球面収差に比して、改善されている。

【0073】上記凸レンズ7の光軸に対する偏心(30 μ m)について、上記凸レンズ7の厚さを基準厚さt0より上記曲率半径t032、4%厚くした場合における非点収差は、図28に示すように、図47に示す該凸レンズ7の厚さが基準厚さt0である場合の非点収差に比して、改善されている。

【0074】上記凸レンズ7の光軸に対する偏心(30 μm)について、上記凸レンズ7の厚さを基準厚さtoより上記曲率半径rの32.4%厚くした場合におけるコマ収差は、図30及び図31に示すように、像高1.00のタンジェンシャル(Y)方向及びサジタル(X)方向について、また、図32及び図33に示すように、像高0.00のタンジェンシャル(Y)方向及びサジタル(X)方向について、図49乃至図52に示す該凸レンズ7の厚さが基準厚さtoである場合のコマ収差に比して、それぞれ改善されている。

【0075】なお、本発明に係る光学ピックアップ装置においては、上記凸レンズ7は、上記対物レンズ6とともに、一体的に同一の駆動機構により移動操作されるように構成してもよい。

[0076]

【発明の効果】上述のように、本発明に係る光学ピックアップ装置においては、光学記録媒体と対物レンズとの間に位置され該対物レンズより射出された光束が入射される面が曲率半径が所定値である凸球面となされ該光学記録媒体の表面部に近接されて対向する面が平面となされた凸レンズは、該対物レンズより射出された光束が該凸球面に対して垂直に入射されたときに該光学記録媒体の信号記録面上にこの凸レンズを経た光が集光されることとなる厚さである基準厚さよりも該凸球面の曲率半径の60%以下にあたる増加量だけ厚くなされている。

【0077】そのため、この光学ピックアップ装置においては、軸外入射光線、上記対物レンズの光軸に対する傾き、及び、上記凸レンズの光軸に対する偏心に対する許容度が、上記凸レンズの厚さが上記基準厚さであるときに比してそれぞれ大きくなり、収差の発生が抑えられる

50 【0078】また、上記凸レンズの厚さの上記基準厚さ

ある。

14

に対する増加量を上記凸球面の曲率半径の20%乃至5 0%とすると、軸外入射、上記対物レンズの光軸に対す る傾き、及び、上記凸レンズの光軸に対する偏心が合算 されて発生する収差を抑えることができる。

13

【0079】すなわち、本発明は、対物レンズと光学記 録媒体との間に凸レンズ(ソリッド・イマージョン・レ ンズ)を有する光学ピックアップ装置であって、軸外入 射、該対物レンズの光軸に対する傾き、該凸レンズの光 軸に対する偏心についての許容度が高くなされ、該各レ ンズの位置精度を高めることなく、発生する収差量を充 10 分に抑えることができるようになされた光学ピックアッ プ装置を提供することができるものである。

【図面の簡単な説明】

【図1】本発明に係る光学ピックアップ装置の要部の構 成を示す側面図である。

【図2】上記光学ピックアップ装置の凸レンズ (ソリッ ド・イマージョン・レンズ) の構成を示す側面図であ る。

【図3】上記光学ピックアップ装置の対物レンズ駆動機 構の構成を一部を破断して模式的に示す側面図である。

【図4】上記光学ピックアップ装置の全体の構成を模式 的に示す側面図である。

【図5】上記光学ピックアップ装置において生ずる軸外 入射の状態を示す側面図である。

【図6】上記光学ピックアップ装置において生ずる対物 レンズの光軸に対する傾きを示す側面図である。

【図7】上記光学ピックアップ装置において生ずる凸レ ンズ(ソリッド・イマージョン・レンズ)の光軸に対す る偏心を示す側面図である。

【図8】上記光学ピックアップ装置において、軸外入 射、対物レンズの光軸に対する傾き、及び、凸レンズ (ソリッド・イマージョン・レンズ) の光軸に対する偏 心により生ずる波面収差の量を凸レンズ(ソリッド・イ マージョン・レンズ) の厚みの増加に対比して示すグラ フである。

【図9】上記光学ピックアップ装置において、軸外入射 (0.3°)により生ずる波面収差の量を凸レンズ(ソ リッド・イマージョン・レンズ) の厚みの増加に対比し て示すグラフである。

【図10】上記光学ピックアップ装置において、対物レ 40 ンズの光軸に対する傾き(0.5°)により生ずる波面 収差の量を凸レンズ(ソリッド・イマージョン・レン ズ) の厚みの増加に対比して示すグラフである。

【図11】上記光学ピックアップ装置において、凸レン ズ(ソリッド・イマージョン・レンズ)の光軸に対する 偏心 (30μm) により生ずる波面収差の量を凸レンズ (ソリッド・イマージョン・レンズ) の厚みの増加に対 比して示すグラフである。

【図12】上記光学ピックアップ装置において発生する

【図13】上記光学ピックアップ装置において発生する 波面収差の量を、対物レンズの光軸に対する傾きに対比 して示すグラフである。

【図14】上記光学ピックアップ装置において発生する 波面収差の量を、凸レンズ(ソリッド・イマージョン・ レンズ)の光軸に対する偏心に対比して示すグラフであ

【図15】上記光学ピックアップ装置において軸外入射 により発生する歪曲収差の量を示すグラフである。

【図16】上記光学ピックアップ装置において軸外入射 により発生する非点収差の量を示すグラフである。

【図17】上記光学ピックアップ装置において軸外入射 により発生する球面収差の量を示すグラフである。

【図18】上記光学ピックアップ装置において軸外入射 により発生するタンジェンシャル方向のコマ収差の量を 示すグラフである。

【図19】上記光学ピックアップ装置において軸外入射 により発生するサジタル方向のコマ収差の量を示すグラ 20 フである。

【図20】上記光学ピックアップ装置において軸上入射 により発生するタンジェンシャル方向のコマ収差の量を 示すグラフである。

【図21】上記光学ピックアップ装置において軸上入射 により発生するサジタル方向のコマ収差の量を示すグラ フである。

【図22】上記光学ピックアップ装置において対物レン ズの光軸に対する傾きにより発生する非点収差の量を示 すグラフである。

【図23】上記光学ピックアップ装置において対物レン ズの光軸に対する傾きにより発生する球面収差の量を示 すグラフである。

【図24】上記光学ピックアップ装置において対物レン ズの光軸に対する傾きにより発生するタンジェンシャル 方向のコマ収差の量を示すグラフである。

【図25】上記光学ピックアップ装置において対物レン ズの光軸に対する傾きにより発生するサジタル方向のコ マ収差の量を示すグラフである。

【図26】上記光学ピックアップ装置において対物レン ズの光軸に対する傾きにより発生するタンジェンシャル 方向のコマ収差の量を示すグラフである。

【図27】上記光学ピックアップ装置において対物レン ズの光軸に対する傾きにより発生するサジタル方向のコ マ収差の量を示すグラフである。

【図28】上記光学ピックアップ装置において凸レンズ (ソリッド・イマージョン・レンズ) の光軸に対する偏 心により発生する非点収差の量を示すグラフである。

【図29】上記光学ピックアップ装置において凸レンズ (ソリッド・イマージョン・レンズ) の光軸に対する偏 波面収差の量を、軸外入射角度に対比して示すグラフで 50 心により発生する球面収差の量を示すグラフである。

【図30】上記光学ピックアップ装置において凸レンズ (ソリッド・イマージョン・レンズ)の光軸に対する偏 心により発生するタンジェンシャル方向のコマ収差の量 を示すグラフである。

【図31】上記光学ピックアップ装置において凸レンズ (ソリッド・イマージョン・レンズ)の光軸に対する偏 心により発生するサジタル方向のコマ収差の量を示すグ ラフである。

【図32】上記光学ピックアップ装置において凸レンズ (ソリッド・イマージョン・レンズ) の光軸に対する偏 *10* 心により発生するタンジェンシャル方向のコマ収差の量 を示すグラフである。

【図33】上記光学ピックアップ装置において凸レンズ (ソリッド・イマージョン・レンズ)の光軸に対する偏 心により発生するサジタル方向のコマ収差の量を示すグ ラフである。

【図34】凸レンズ(ソリッド・イマージョン・レンズ)を有する従来の光学ピックアップ装置において軸外入射により発生する歪曲収差の量を示すグラフである。

【図35】上記従来の光学ピックアップ装置において軸 20 外入射により発生する非点収差の量を示すグラフであ る。

【図36】上記従来の光学ピックアップ装置において軸外入射により発生する球面収差の量を示すグラフである。

【図37】上記従来の光学ピックアップ装置において軸 外入射により発生するタンジェンシャル方向のコマ収差 の量を示すグラフである。

【図38】上記従来の光学ピックアップ装置において軸外入射により発生するサジタル方向のコマ収差の量を示 30 すグラフである。

【図39】上記従来の光学ピックアップ装置において軸 上入射により発生するタンジェンシャル方向のコマ収差 の量を示すグラフである。

【図40】上記従来の光学ピックアップ装置において軸上入射により発生するサジタル方向のコマ収差の量を示すグラフである。

【図41】上記従来の光学ピックアップ装置において対物レンズの光軸に対する傾きにより発生する非点収差の量を示すグラフである。

【図42】上記従来の光学ピックアップ装置において対物レンズの光軸に対する傾きにより発生する球面収差の量を示すグラフである。

16

【図43】上記従来の光学ピックアップ装置において対物レンズの光軸に対する傾きにより発生するタンジェンシャル方向のコマ収差の量を示すグラフである。

【図44】上記従来の光学ピックアップ装置において対物レンズの光軸に対する傾きにより発生するサジタル方向のコマ収差の量を示すグラフである。

【図45】上記従来の光学ピックアップ装置において対物レンズの光軸に対する傾きにより発生するタンジェンシャル方向のコマ収差の量を示すグラフである。

【図46】上記従来の光学ピックアップ装置において対物レンズの光軸に対する傾きにより発生するサジタル方向のコマ収差の量を示すグラフである。

【図47】上記従来の光学ピックアップ装置において凸 レンズ(ソリッド・イマージョン・レンズ)の光軸に対 する偏心により発生する非点収差の量を示すグラフであ ス

【図48】上記従来の光学ピックアップ装置において凸レンズ(ソリッド・イマージョン・レンズ)の光軸に対する偏心により発生する球面収差の量を示すグラフである

【図49】上記従来の光学ピックアップ装置において凸レンズ(ソリッド・イマージョン・レンズ)の光軸に対する偏心により発生するタンジェンシャル方向のコマ収差の量を示すグラフである。

【図50】上記従来の光学ピックアップ装置において凸レンズ(ソリッド・イマージョン・レンズ)の光軸に対する偏心により発生するサジタル方向のコマ収差の量を示すグラフである。

【図51】上記従来の光学ピックアップ装置において凸 の レンズ (ソリッド・イマージョン・レンズ) の光軸に対 する偏心により発生するタンジェンシャル方向のコマ収 差の最を示すグラフである。

【図52】上記従来の光学ピックアップ装置において凸レンズ (ソリッド・イマージョン・レンズ) の光軸に対する偏心により発生するサジタル方向のコマ収差の量を示すグラフである。

【符号の説明】

- 1 光源
- 6 対物レンズ
- 40 7 凸レンズ
 - 7 a 凸球面
 - 7 b 平面
 - 20 光学記録媒体

-34-

- 0.0010

-4.0E-5 0.0 4.0E-5

FOCUS (MILLIMETERS)

8.DE-5-2.DE-4 -1.DE-4 0.D 1.DE-4 2.DE-4

FOCUS (MILLIMETERS)

フロントページの続き

(72)発明者 渡辺 俊夫

東京都品川区北品川6丁目7番35号 ソニー株式会社内

(72)発明者 大里 潔

東京都品川区北品川6丁目7番35号 ソニ 一株式会社内