Задачи для подготовки к квизу #2

7 октября 2020 г.

Задача 1.

Найдите дивергенцию Кульбака-Лейблера

- а) из экспоненциального с $\lambda = 2$ в нормальное $\mathcal{N}(0,1)$.
- b) из нормального $\mathcal{N}(0,1)$ в экспоненциальное с $\lambda = 2$.
- с) из равновероятного на 0, 1, 2 в Пуассона с $\lambda = 1$.
- d) из Пуассона с $\lambda = 1$ в равновероятное на 0, 1, 2.
- е) из нормального $\mathcal{N}(0, a)$ в нормальное $\mathcal{N}(0, \sigma^2)$.
- f) из равномерного $\mathcal{U}[0,a]$ в экспоненциальное с $\lambda=4$.
- g) из экспоненциального с $\lambda = 4$ в равномерное $\mathcal{U}[0, a]$.
- h) из биномиального Bin(n = 1, p = 1/2) в Бернулли Bern(p = 1/3).
- і) из биномиального Bin(n=2,p=1/10) в равновероятное на 0,1,2.
- ј) из равновероятного на 0, 1, 2 в биномиальное Bin(n=2, p=1/10).
- k) из биномиального Bin(n=2, p=1/10) в биномиальное Bin(n=2, p=1/5).

Задача 2.

Пусть X_1, \ldots, X_n – выборка независимых случайных величин, каждая из которых принадлежит к одному из двух кластеров. В k-ом кластере наблюдения распределены с функцией вероятности или функцией плотности $p_k(x|\theta_k)$, где θ_k – вектор неизвестных параметров. Пусть вероятность того, что наблюдение принадлежит первому кластеру, равна γ .

Обозначим за θ вектор, в который последовательно собраны неизвестные параметры для каждого из кластеров, а также γ :

$$\theta := \begin{pmatrix} -\theta_1 - & -\theta_2 - & \gamma \end{pmatrix}$$

Введите подходящие латентные переменные и выведите формулы для шагов ЕМ-алгоритма, если

- а) p_k функция плотности нормального распределения $\mathcal{N}(\mu_k, \sigma_k^2)$.
- b) p_k функция вероятности распределения Бернулли $\mathrm{Bern}(\alpha_k).$
- c) p_k функция плотности распределения Рэлея Ray (σ_k^2)
- d) p_k функция вероятности биномиального распределения $Bin(3, \alpha_k)$.
- e) p_k функция плотности экспоненциального распределения $\exp(\lambda_k)$.

- f) p_k функция плотности распределения Коши $\mathrm{C}(\alpha_k,\beta_k).$
- g) p_k функция вероятности распределения Пуассона $\mathrm{Pois}(\lambda_k).$
- h) p_k функция вероятности геометрического распределения $\operatorname{Geom}(\alpha_k)$.