SIE 606 Advanced Quality Engineering Homework 1

Due: Feb 15 (9:15AM), 2018

1. A morning newspaper lists the following used-car prices for a foreign compact with age x_1 measured in years and selling price x_2 measured in thousands of dollars:

x_1	3	5	5	7	7	7	8	9	10	11
x_2	2.30	1.90	1.00	0.70	0.30	1.00	1.05	0.45	0.70	0.30

- (a). Construct a scatter plot of the data and marginal dot diagrams.
- (b). Infer the sign of the sample covariance s_{12} from the scatter plot.
- (c). Compute the sample means \bar{x}_1 and \bar{x}_2 and the sample variances s_{11} and s_{22} . Compute the sample covariance s_{12} and the sample correlation coefficient r_{12} . Interpret these quantities.
- (d). Calculate the sample mean array $\bar{\mathbf{x}}$, the sample variance-covariance array \mathbf{S}_n , and the sample correlation array \mathbf{R} .
- 2. Let

$$\mathbf{A} = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$$

- (a). Is A symmetric?
- (b). Show that **A** is positive definite.
- 3. Verify the following properties of the transpose when

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 & 4 & 2 \\ 5 & 0 & 3 \end{bmatrix}, \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

- (a). $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
- (b). $(\mathbf{C}^{\mathrm{T}})^{-1} = (\mathbf{C}^{-1})^{\mathrm{T}}$
- (c). $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$
- (d). For general $\mathbf{A}_{m \times k}$ and $\mathbf{B}_{k \times l}$, $(\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}'$
- 4. Check that

$$\mathbf{Q} = \begin{bmatrix} \frac{5}{13} & \frac{12}{13} \\ -\frac{12}{13} & \frac{5}{13} \end{bmatrix}$$

1

is an orthogonal matrix.

5. Using the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & -2 \\ 2 & 2 \end{bmatrix}$$

- (a). Calculate $\mathbf{A}^{T}\mathbf{A}$ and obtain its eigenvalues and eigenvectors.
- (b). Calculate $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ and obtain its eigenvalues and eigenvectors. Check that the nonzero eigenvalues are the same as those in part (a).
- 6. You are given the random vector $\mathbf{X}^{T} = [X_1, X_2, X_3, X_4]$ with mean vector $\boldsymbol{\mu}_{\mathbf{X}}^{T} = [4, 3, 2, 1]$ and variance-covariance matrix

$$\Sigma_{\mathbf{X}} = \begin{bmatrix} 3 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 9 & -2 \\ 2 & 0 & -2 & 4 \end{bmatrix}$$

Partition X as

$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}$$

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix}$$

and consider the linear combinations $\mathbf{A}\mathbf{X}^{(1)}$ and $\mathbf{B}\mathbf{X}^{(2)}$. Find

- (a). $E(\mathbf{X}^{(1)})$
- (b). $E\left(\mathbf{AX}^{(1)}\right)$
- (c). $Cov(\mathbf{X}^{(1)})$
- (d). $Cov(\mathbf{AX}^{(1)})$
- (e). $E\left(\mathbf{X}^{(2)}\right)$
- (f). $E(\mathbf{BX}^{(2)})$
- (g). $Cov(\mathbf{X}^{(2)})$
- (h). $Cov(\mathbf{BX}^{(2)})$
- (i). $Cov(\mathbf{X}^{(1)}, \mathbf{X}^{(2)})$
- (j). $Cov(\mathbf{AX}^{(1)}, \mathbf{BX}^{(2)})$

7. Let **X** be distributed as $N_3(\mu, \Sigma)$, where $\mu^T = [1, -1, 2]$ and

$$\Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Which of the following random variables are independent? Explain.

- (a). X_1 and X_2
- (b). X_1 and X_3
- (c). X_2 and X_3
- (d). (X_1, X_3) and X_2
- (e). X_1 and $X_1 + 3X_2 2X_3$