Controlli Automatici - T

Progetto Tipologia b - Traccia 1

Controllo trattamento farmacologico contro il cancro

Il progetto riguarda l'utilizzo di tecniche di controlli automatici per il trattamento farmacologico di cellule cancerogene in ambiente di laboratorio.

Descrizione del problema

Si consideri un gruppo di cellule cancerogene in cui sono presenti un numero di cellule $n_s(t)$ suscettibili al trattamento farmacologico ed un numero di cellule $n_r(t)$ resistenti. Si supponga che la loro evoluzione sia descritta dalle seguenti equazioni differenziali

$$\dot{n}_s = -r_s \ln \left(\frac{n_s + n_r}{K} \right) n_s - m_s c_f n_s - \beta n_s + \gamma n_r - \alpha c_f n_s$$
 (1a)

$$\dot{n}_r = -r_r \ln\left(\frac{n_s + n_r}{K}\right) n_r - m_r c_f n_r + \beta n_s - \gamma n_r + \alpha c_f n_s, \tag{1b}$$

dove $\ln(\cdot)$ indica il logaritmo naturale, i parametri $r_s, r_r \in \mathbb{R}$ rappresentano i tassi di riproduzione delle due tipologie e il parametro $K \in \mathbb{R}$ rappresenta il numero massimo di cellule che l'ambiente può contenere. La variabile d'ingresso $c_f(t)$ indica la concentrazione del farmaco. In particolare, i parametri $m_s, m_r \in \mathbb{R}$ determinano, rispettivamente, la mortalità delle cellule suscettibili e quella delle cellule resistenti, con $m_s > m_r$. Tipicamente, le cellule possono mutare da una tipologia all'altra. Ad esempio, le cellule suscettibili possono diventare resistenti come tenuto in conto dai termini $-\beta n_s$ nella prima equazione e βn_s nella seconda equazione, con $\beta \in \mathbb{R}$. Analogamente accade per le cellule resistenti attraverso il termine γn_r , con $\gamma \in \mathbb{R}$. Infine, il termine $\alpha c_f n_r$ tiene conto delle cellule suscettibili che mutano in resistenti a seguito del trattamento farmacologico. Uno schema esplicativo è riportato in Figura 1.

Figura 1: Schema del modello (1) in cui sono rappresentati i flussi delle cellule.

Si supponga di poter misurare in ogni istante il numero di cellule resistenti $n_r(t)$.

Punto 1

Si riporti il sistema (1) nella forma di stato

$$\dot{x} = f(x, u) \tag{2a}$$

$$y = h(x, u). (2b)$$

In particolare, si dettagli la variabile di stato, la variabile d'ingresso, la variabile d'uscita e la forma delle funzioni f e h. A partire dai valori di equilibrio $n_{s,e}$ e $n_{r,e}$ (forniti in tabella), si trovi l'intera coppia di equilibrio (x_e, u_e) e si linearizzi il sistema non lineare (2) nell'equilibrio, così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{3a}$$

$$\delta y = C\delta x + D\delta u,\tag{3b}$$

con opportune matrici $A, B, C \in D$.

Figura 2: Schema di controllo.

Punto 2

Si calcoli la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che $\delta Y(s) = G(s)\delta U(s)$.

Punto 3

Si progetti un regolatore (fisicamente realizzabile) considerando le seguenti specifiche:

- 1) Errore a regime nullo con riferimento a gradino.
- 2) Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \ge 40^{\circ}$.
- 3) Il sistema può accettare una sovraelongazione percentuale al massimo dell'7%: $S\% \leq 7\%$.
- 4) Il tempo di assestamento all' $\epsilon\%=5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon}=1s$.
- 5) Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0, 0.05], deve essere abbattutto di almeno 60 dB.
- 6) Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[10^4, 10^6]$, deve essere abbattutto di almeno 90 dB.

Punto 4

Testare il sistema di controllo sul sistema linearizzato con $w(t) = -2 \cdot 1(t)$, $d(t) = \sum_{k=1}^4 0.3 \cdot \sin(0.0125kt)$ e $n(t) = \sum_{k=1}^4 0.2 \sin(10^4 kt)$.

Punto 5

Testare il sistema di controllo sul modello non lineare (ed in presenza di d(t) ed n(t)).

Punti opzionali

- Sviluppare (in Matlab) un'interfaccia grafica di animazione in cui si mostri l'evoluzione del numero di cellule cancerogene per entrambe le tipologie.
- Supponendo un riferimento $w(t) \equiv 0$, esplorare il range di condizioni iniziali dello stato del sistema non lineare (nell'intorno del punto di equilibrio) tali per cui l'uscita del sistema in anello chiuso converga a $h(x_e, u_e)$.
- Esplorare il range di ampiezza di riferimenti a gradino tali per cui il controllore rimane efficace sul sistema non lineare.

r_s	1.5
r_r	1.3
K	200
γ	0.3
β	0.3
α	0.2
m_s	0.7
m_r	0.15
$n_{s,e}$	100
$n_{r,e}$	100

Tabella 1: Parametri progetto.