Global Solution of Economic Dispatch with Valve Point Effects and Transmission Constraints

Loïc Van Hoorebeeck Anthony Papavasiliou Pierre-Antoine Absil

PSCC 2020

On the place of gas energy in tomorrow's power mix

European targets for 2030 and 2050

"Natural gas will continue to play a key role in the EU's energy mix in the coming years and gas can gain importance as the *back-up fuel* for variable electricity generation." (European Commission's Communication Energy 2020)

- 1. Problem statement Economic Dispatch with Valve Point Effect.
- 2. Methods Adaptive piecewise linearization.

Exact method Heuristic

- 3. Convergence Analysis Optimality gap and other bounds.
- 4. Study Cases modified IEEE-57 and IEEE-118 bus case.
- 5. Conclusion

Problem Statement

2. Problem statement - Economic Dispatch with Valve Point Effect.

Data

Set of bus nodes: N

Set of lines: K

Load demand: D_{nt}

Set of producers with cost function f_g

Ramp constraint: R_g^+ , R_g^- Max flow constraint: TC_k

 $R_{g}^{+},\,R_{g}^{-}$ t: $TC_{
u}$

 $n \in N$, $t \in T$

 $g \in G$

 $g \in G$

 $k \in K$

Decision variables

Production: p_{gt} $g \in G, t \in T$ Flow: e_{kt} $k \in K, t \in T$

Problem

How to optimally dispatch the power between producers ?

$$\min_{\boldsymbol{p},\,\mathbf{e}} \sum_{g=1,\,t=1} f_g(p_{gt})$$

Fuel cost minimization

s.t.
$$p_{gt} \leq P_g^+$$
,

$$P_g^- \leq p_{gt}$$
,

$$-\sum_{g \in G_n} p_{gt} - \sum_{k=(\cdot,n)} e_{kt} + D_{nt} + \sum_{k=(n,\cdot)} e_{kt} = 0,$$

$$-R_{g}^{-} \leq p_{gt} - p_{g(t-1)} \leq R_{g}^{+}$$
,

$$-TC_k \leq e_{kt} \leq TC_k$$
.

Nomenclature

Bus nodes: N

Lost: f_g Flow: e_{kt}

oad: *D{nt}* Max flow: *TC*...

Production: p_{gt} Ramp: R_g^+ , R_g^-

$$\min_{\boldsymbol{p},\,\boldsymbol{e}} \sum_{g=1,\,t=1} f_g(p_{gt})$$

s.t.
$$p_{gt} \leq P_g^+,$$
 Restri range $P_g^- \leq p_{gt},$

Restricted power

$$-\sum_{g\in G_n} p_{gt} - \sum_{k=(\cdot,n)} e_{kt} + D_{nt} + \sum_{k=(n,\cdot)} e_{kt} = 0,$$

$$-R_{g}^{-} \leq p_{gt} - p_{g(t-1)} \leq R_{g}^{+}$$
,

$$-TC_k \leq e_{kt} \leq TC_k$$
.

Nomenclature
Bus nodes: N
Cost: f_g Flow: e_{kt} Lines: K
Load: D_{nt} Max flow: TC_k Production: p_{gt} Ramp: R_g^+ , R_g^-

$$\min_{\boldsymbol{p},\,\boldsymbol{e}} \sum_{g=1,\,t=1} f_g(p_{gt})$$

s.t.
$$p_{gt} \leq P_g^+$$
,

$$P_g^- \leq p_{gt}$$
,

Flow conservation

$$-\sum_{g \in G_n} p_{gt} - \sum_{k=(\cdot,n)} e_{kt} + D_{nt} + \sum_{k=(n,\cdot)} e_{kt} = 0,$$

$$-\,R_g^- \le p_{gt} - p_{g(t-1)} \le R_g^+\,,$$

$$- TC_k \le e_{kt} \le TC_k$$
.

$$\min_{\boldsymbol{p},\,\boldsymbol{e}} \sum_{g=1,\,t=1} f_g(p_{gt})$$

s.t.
$$p_{gt} \leq P_g^+$$
,

$$P_g^- \leq p_{gt}$$
,

$$-\sum_{g \in G_n} p_{gt} - \sum_{k=(\cdot,n)} e_{kt} + D_{nt} + \sum_{k=(n,\cdot)} e_{kt} = 0,$$

$$-R_g^- \le p_{gt} - p_{g(t-1)} \le R_g^+$$
,

Ramp constraints

$$-TC_k \leq e_{kt} \leq TC_k$$
.

Nomenclature

Bus nodes: N

Flow: e_{kt}

Load: *D_{nt}* Max flow: *TC*_k

Production: p_{gi} Ramp: R_g^+ , R_g^-

$$\min_{\boldsymbol{p},\,\boldsymbol{e}} \sum_{g=1,\,t=1} f_g(p_{gt})$$

s.t.
$$p_{gt} \leq P_g^+$$
,

$$P_g^- \leq p_{gt}$$
,

$$-\sum_{g\in G_n} p_{gt} - \sum_{k=(\cdot,n)} e_{kt} + D_{nt} + \sum_{k=(n,\cdot)} e_{kt} = 0,$$

$$-R_g^- \le p_{gt} - p_{g(t-1)} \le R_g^+$$
,

 $-TC_k \leq e_{kt} \leq TC_k$.

Flow can not exceed the limit

Nomenclature
Bus nodes: N
Cost: f_g Flow: e_{kt} Lines: K
Load: D_{nt} Max flow: TC_k Production: p_{gt} Ramp: R_g^+ , R_g^-

$$\min_{\boldsymbol{p},\,\boldsymbol{e}} \sum_{g=1,\,t=1} f_g(p_{gt})$$

$$\text{s.t.} \quad p_{gt} \leq P_g^+ \,,$$

$$P_g^- \leq p_{gt}$$
,

$$-\sum_{g \in G_n} p_{gt} - \sum_{k=(\cdot,n)} e_{kt} + D_{nt} + \sum_{k=(n,\cdot)} e_{kt} = 0,$$

$$-R_g^- \le p_{gt} - p_{g(t-1)} \le R_g^+$$
,

$$-TC_k \leq e_{kt} \leq TC_k$$
.

Nomenclature

Bus nodes: N

Cost: f_g Flow: e_{kt}

Load: *D_{nt}* Max flow: *TC*,

Max flow: IC_k Production: p_{gt} Ramp: R_g^+ , R_g^-

Valve-Point Effect

The VPE is a natural characteristic of a gas turbine. Operating off a valve point increases the throttling losses, therefore rising the heat rate.

$$f_g(p_{gt}) = \underbrace{A_g p_{gt}^2 + B_g p_{gt} + C_g}_{:=f_g^{\mathbb{Q}}(p_{gt})} + \underbrace{D_g \left| \sin E_g (p_{gt} - P_g^-) \right|}_{:=f_g^{\mathbb{Q}}(p_{gt})}.$$

Methods

Exact Method

3. Methods - Adaptive piecewise linearization

Original problem

$$(P) \quad \min_{\mathbf{x} \in \Omega} f(\mathbf{x}) = \sum_{i} f_{i}(x_{i})$$

- Feasible set is a polyhedron
- Objective function is non-convex and non-smooth
- ▶ Optimal solution $(x^*, f(x^*))$

Surrogate problem

$$(S)^k \quad \min_{\mathbf{x} \in \Omega} h^k(\mathbf{x}) = \sum_i h^k_i(x_i)$$

- Feasible set is unchanged
- Objective function is piecewise linear defined with knots X^k
- ▶ Optimal solution $(x_k^{**}, h^k(x_k^{**}))$

An algorithm for the global solution

Bounds evolution

Theorem

For Lipshitz continuous cost function f, the sequence of iterations provided by APLA satisfies

$$\lim_{k\to\infty}\delta^k=0\,.$$

Methods

Heuristic

Heuristic flowchart

- Optimization run on the whole domain Ω to improve γ^k , $k \in 1 \dots n_{\text{iter}}$.
- Local improvement of each candidate $\tilde{\mathbf{x}}^i \in \mathcal{L}_{\mathrm{I}}$ obtained in previous step. Only δ can be improved.

Domain restriction

Let $\tilde{\mathbf{x}}^i = \arg\min f(\mathcal{L}_{\mathrm{I}})$, $\Omega_{\tilde{\mathbf{x}}^i}$ is the local restriction of the domain around $\tilde{\mathbf{x}}^i$. The power generation range becomes

$$X_{gtj}^i \leq p_{gt} \leq X_{gtj'}^i$$

for j < j'.

Domain restriction

The surrogate problem $(S)^{i,\tilde{k}}$ becomes

$$(S)^{i,\tilde{k}}$$
 min $h^{i,\tilde{k}}(x)$ subject to $x \in \Omega_{\tilde{x}^i}$

- Easier as the number of integer variables decreases drastically $(j = j' 1 \Rightarrow (S)^{i,0}$ is a (LP)
- ▶ Global optimal solution may lie outside $\Omega_{\tilde{\mathbf{x}}^i}$
- Any lower bound is not a valid lower bound for (P)

Domain restriction

Local heuristic - H-local

"Full" heuristic - H-full

$$(S)^{i,\tilde{k}} \quad \min_{\boldsymbol{x} \in \Omega_{\tilde{\boldsymbol{x}}^i}} h^{i,\tilde{k}}(\boldsymbol{x})$$

- ► Single intervalle support
- ▶ j' = j + 1.

- Multi intervalles support
- ► j' = j + 3.

Convergence Analysis

Optimality gap of the heuristic solution (i)

ightharpoonup Objective value at iteration \tilde{k} of subproblem i

- \triangleright Surrogate value at iteration n_{iter} on whole domain
- Solver tolerance (

Optimality gap of the heuristic solution (i)

ightharpoonup Objective value at iteration \tilde{k} of subproblem i

- \triangleright Surrogate value at iteration n_{iter} on whole domain
- Solver tolerance

No convergence guarantee

Once we reach the inner loop, the lower bound remains unchanged.

A practical visualization (i)

$$f(\boldsymbol{x}^{i,\tilde{k}}) - f(\boldsymbol{x}^*) \leq f(\boldsymbol{x}^{i,\tilde{k}}) - h^{n_{\text{iter}}}(\boldsymbol{x}^{n_{\text{iter}}}) + \gamma^{n_{\text{iter}}} = f(\boldsymbol{x}^{i,\tilde{k}}) - \underline{h}^{n_{\text{iter}}}$$

A practical visualization (i)

$$f(\boldsymbol{x}^{i,\tilde{k}}) - f(\boldsymbol{x}^*) \leq f(\boldsymbol{x}^{i,\tilde{k}}) - h^{n_{\text{iter}}}(\boldsymbol{x}^{n_{\text{iter}}}) + \gamma^{n_{\text{iter}}} = f(\boldsymbol{x}^{i,\tilde{k}}) - \underline{h}^{n_{\text{iter}}}$$

A practical visualization (i)

$$f(\mathbf{x}^{i,\tilde{k}}) - f(\mathbf{x}^*) \leq f(\mathbf{x}^{i,\tilde{k}}) - h^{n_{\text{iter}}}(\mathbf{x}^{n_{\text{iter}}}) + \gamma^{n_{\text{iter}}} = f(\mathbf{x}^{i,\tilde{k}}) - \underline{h}^{n_{\text{iter}}}$$

Optimality gap of the heuristic solution (ii)

Could we obtain an expression in term of δ ?

$$f(\mathbf{x}^{i,\tilde{k}}) - f(\mathbf{x}^*) = f(\mathbf{x}^{i,\tilde{k}}) - f(\mathbf{x}^{*,i}) + \underbrace{f(\mathbf{x}^{*,i}) - f(\mathbf{x}^*)}_{:=\zeta^i}$$

$$\leq \delta^{i,\tilde{k}} + \gamma^{i,\tilde{k}} + \zeta^i \qquad (1)$$

$$\approx \delta^{i,\tilde{k}} + \zeta^i \qquad (2)$$
Nomenclature
$$\mathbf{x}^* := \arg\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

$$\mathbf{x}^{*,i} := \arg\min_{\mathbf{x} \in \Omega_{\tilde{k}^i}} f(\mathbf{x})$$

- (1) APLA applied to the restricted domain $\Omega_{\tilde{x}}$ is a valid instance.
- (2) $(S)^{i,\tilde{k}}$ solved to optimality.

Comparison between APLA and the heuristic

APLA

$$(S)^k \min_{\mathbf{x} \in \Omega} h^k(\mathbf{x})$$

- $ightharpoonup f(\mathbf{x}^k) f(\mathbf{x}^*) \le \delta^k + \gamma^k$
- $\blacktriangleright \lim_{k\to\infty} f(\mathbf{x}^k) f(\mathbf{x}^*) \le \gamma$
- Global optimal solution obtained up to the solver accuracy

Heuristic

$$(S)^{i,\tilde{k}} \quad \min_{\boldsymbol{x} \in \Omega_{\tilde{x}^i}} h^{i,\tilde{k}}(\boldsymbol{x})$$

- $f(\mathbf{x}^{i,\tilde{k}}) f(\mathbf{x}^*) \leq \delta^{i,\tilde{k}} + \zeta^i$
- ▶ Best solution bounded by $\zeta^i \ge 0$

Study Cases

IEEE-57 bus system

- ▶ 57 nodes
- 7 generators
- ▶ 80 lines
- ▶ 24 time steps

IEEE-118 bus system

- ▶ 118 nodes
- ▶ 54 generators
- ▶ 186 lines
- ▶ 24 time steps

Modified IEEE-57 bus system

- ▶ 57 nodes
- ➤ 7 generators + 10 generators with VPE
- ▶ 80 lines
- ▶ 24 time steps

Modified IEEE-118 bus system

- ▶ 118 nodes
- ► 54 generators + 10 generators with VPE
- ▶ 186 lines
- 24 time steps

? Where to add the VPE generators ?

Modified IEEE-57 bus system

- ▶ 57 nodes
- ➤ 7 generators + 10 generators with VPE
- ▶ 80 lines
- ▶ 24 time steps

Modified IEEE-118 bus system

- ▶ 118 nodes
- ► 54 generators + 10 generators with VPE
- 186 lines
- 24 time steps

? Where to add the VPE generators ? 100 randomly independent trials

Execution time and optimality gap

100 independent runs with $n_{\rm iter}=1,~\gamma=0.1\%$ and time limitation of 10 iterations of maximum 60 seconds

Execution time and optimality gap

100 independent runs with $n_{\rm iter}=1$, $\gamma=0.1\%$ and time limitation of 10 iterations of maximum 60 seconds

The heuristics run *significantly* faster for comparable finale optimality gap.

QP - Solve (P) while ignoring the VPE: a simple \mathbf{Q} uadratic \mathbf{P} rogramming (convex) problem

Table: Objective mean of each method.

	H-full	H-local	APLA	QP
Case57	621622	621634	621547	654535
Case118	2447475	2447540	2447383	2471132

$$f_g(p_{gt}) = \underbrace{A_g p_{gt}^2 + B_g p_{gt} + C_g}_{:=f_g^{Q}(p_{gt})} + \underbrace{D_g \left| \sin E_g(p_{gt} - P_g^{-}) \right|}_{:=f_g^{VPE}(p_{gt})}$$

QP - Solve (P) while ignoring the VPE: a simple \mathbf{Q} uadratic \mathbf{P} rogramming (convex) problem

Table: Objective mean of each method.

	H-full	H-local	APLA	QP
Case57	621622		621547	654535
Case118	2447475	2447540	2447383	2471132

Best objectives

QP - Solve (P) while ignoring the VPE: a simple \mathbf{Q} uadratic \mathbf{P} rogramming (convex) problem

Table: Objective mean of each method.

	H-full	H-local	APLA	QP
Case57	621622	621634	621547	654535
Case118	2447475	2447540	2447383	2471132

Nearly as good

▲ APLA reaches a 10% better optimality gap but comparable objective

QP - Solve (P) while ignoring the VPE: a simple \mathbf{Q} uadratic \mathbf{P} rogramming (convex) problem

Table: Objective mean of each method.

	H-full	H-local	APLA	QP
Case57	621622	621634	621547	654535
Case118	2447475	2447540	2447383	2471132

Poorer results (5% and 1%)

Conclusion

Conclusion

- ► APLA and both heuristics manage to find a good candidate along with a lower bound.
- \blacktriangleright The heuristics take significantly less time and reach \sim same objective.
- ▶ The VPE *matters* in the studied instances.

Conclusion

- ▶ APLA and both heuristics manage to find a good candidate ...
 ... along with a lower bound.
- \blacktriangleright The heuristics take significantly less time and reach \sim same objective.
- ▶ The VPE *matters* in the studied instances.

Contact

- https://perso.uclouvain.be/loic.vanhoorebeeck