Sheet 5

Solutions to be handed in before class on Wednesday May 8

Problem 23. Let \mathfrak{g} be a semisimple complex Lie algebra.

- 1. Show that every finite-dimensional $U(\mathfrak{g})$ -module is semisimple. (0.5 point)
- 2. Give an example of a U(g)-module which is not semisimple. (0.5 point)

Problem 24. Give an example of a Lie algebra \mathfrak{g} and a finite-dimensional representation of \mathfrak{g} that is not semisimple. (2 points)

Problem 25. In the universal enveloping algebra $U(\mathfrak{sl}_2(k))$, express the elements ehf, $e^2h^2f^2$, hf^3 and h^3f in the standard Poincaré–Birkhoff–Witt basis given by $\{f^lh^me^n\}_{l,m,n\in\mathbb{N}}$. (3 points)

Problem 26 (Clebsch–Gordan). Let k be algebraically closed of characteristic not 2. Decompose the $\mathfrak{sl}_2(k)$ -representation

$$V(n) \otimes_k V(m) \tag{36}$$

into irreducible representations, where V(n) is the (n + 1)-dimensional irreducible representation of $\mathfrak{sl}_2(k)$. (4 points)

Hint If V is a representation, use the formal character of V

$$\operatorname{ch}(V) := \sum_{n \in \mathbb{Z}} \dim_k V_n t^n, \tag{37}$$

where V_n denotes the weight space of weight n, and notice that $\operatorname{ch}(V \oplus W) = \operatorname{ch}(V) \oplus \operatorname{ch}(W)$, and that the formal character determines the representation up to isomorphism. Then show that $\operatorname{ch}(V \otimes_k W) = \operatorname{ch}(V) \operatorname{ch}(W)$.

Problem 27. Show that if A is a filtered algebra such that the associated graded is a domain, then A is itself a domain. From this one can conclude that $U(\mathfrak{g})$ is a domain. (1 point)

Problem 28. Show that if A is a filtered algebra such that the associated graded is left (resp. right) noetherian, then A is itself left (resp. right) noetherian. From this conclude that $U(\mathfrak{g})$ is left (resp. right) noetherian, provided that \mathfrak{g} is finite-dimensional. (2 points)

Hint You can define left (resp. right) noetherian as every left (resp. right) ideal being finitely generated. Consider the homogeneous left (resp. right) ideal generated by the leading term of a given left (resp. right) ideal of A.

Problem 29. Let $\mathfrak g$ be a Lie algebra. Show that there are unique algebra homomorphisms

- 1. $\Delta : \mathrm{U}(\mathfrak{g}) \to \mathrm{U}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g})$
- 2. $\eta \colon \mathrm{U}(\mathfrak{g}) \to k$

3.
$$S \colon \mathrm{U}(\mathfrak{g}) \to \mathrm{U}(\mathfrak{g})^{\mathrm{op}}$$

for which

1.
$$\Delta(X) = X \otimes 1 + 1 \otimes X$$

2.
$$\eta(X) = 0$$

3.
$$S(X) = -X$$

for all
$$X \in \mathfrak{g} \subseteq U(\mathfrak{g})$$
.

(3 points)