حل المعادلات فی ح

حل معادلتين من الدرجة الأولى جبرياً وبيانياً وتطبيقات عليها

أولاً : حل معادلتين من الدرجة الأولى في متغيرين بيانياً

لحل معادلتين من الدرجة الأولى بيانياً:

أولاً : نرسم المستقيم ل، الذي يمثل المعادلة الأولى بيانياً .

ثانياً: نرسم المستقيم ل، الذي يمثل المعادلة الثانية بيانياً.

ثالثاً: نقطة تقاطع المستقيم ل، ، ل، هي الحل المشترك للمعادلتين

ملحوظة هامة:

*بفرض أن : ١ س + ب ص = ج يمثلها المستقيم ل١ ، ١ س + ٦ ص = ٤ يمثلها المستقيم ل٢

فإن : ل، ، ل، لهما ثلاثة أوضاع تعبر عن حل المعادلتين معاً :

- (١) إذا تقاطع ل، ، ل، في نقطة واحدة : فإن المعادلتين لهما حل مشترك وحيد يمثله نقطة التقاطع .
- (٢) إذا انطبق ل، ، ل، : فإن المعادلتين لهما عدد غير منته من الحلول يمثله نقاط أى من المستقيمين .
 - $\emptyset = -.$ إذا توازى ل، ، ل، فإن المعادلتين ليس لهما حل مشترك م . ح

مثال []: أوجد مجموعة الحل للمعادلتين الآتيتين بيانياً

 $Y = \omega - \omega Y$, $\xi = \omega + \omega$

الحل:

فى المعادلة الأولى

بوضع س = ٠ ∴ ص = ٤ ∴ (٠ ، ٤) حل للمعادلة الأولى

، بوضع س = ۱ \therefore ۱ + ص = \mathfrak{Z} \dots ص = \mathfrak{Z} \dots ص = ۱ \dots ۱ ، ۳) حل للمعادلة الأولى

في المعادلة الثانية:

بوضع س = • .:
$$Y \times • - ص = Y$$
 .: $- ص = Y$.: $- ص = - Y$.: (• ، - Y) حل للمعادلة الثانية بوضع س = • .: (1 ، •) حل للمعادلة الثانية

من الشكل ل ∩ ل٢ هو النقطة (٢ ، ٢)

.: مجموعة الحل للمعادلتين هي {(٢ ، ٢)}

مثال ٢ أوجد مجموعة الحل للمعادلتين : ص = ٢س – ١ ، ص = ٢س + ٣

في المعادلة الأولى:

في المعادلة الثانية:

بوضع
$$m = \bullet$$
 .. $m = \Upsilon \times \bullet + \Upsilon$.. $m = \Upsilon$

ن ل ما
$$\mathbb{Q} = \mathbb{Q}$$
 نه لا يوجد حل للمعادلتين $\mathbb{Q} = \mathbb{Q}$

فى المعادلة الأولى :

بوضع س = ٠ ٪ ص = ٣ ٪ (٠ ، ٣) حل للمعادلة الأولى بوضع س = ١ ٪ ص = ٢ ٪ (١ ، ٢) حل للمعادلة الأولى

في المعادلة الثانية :

بوضع $m = \cdot$.. $m = \infty$.. (\cdot) حل للمعادلة الثانية بوضع m = 1 .. m = 1 .. m = 1 .. m = 1

نلاحظ من الشكل أن المستقيان منطبقان

-1 = -1 = -1 المعادلتين لهم عدد لانهائي من الحلول . ومجموعة الحل هي : (m - m = m - m)

ملحوظة هامة : لمعرفة عدد حلول المعادلتين نجد الميل لكل مستقيم على حدة

١) إذا كان م، خ م، فإن المستقيان متقاطعان ولهما حل واحد فقط

إذا كان م، = م، والجزء المقطوع من ص فى المعادلة الأولى = الجزء المقطوع من ص فى المعادلة الثانية فإن
 المستقيان منطبقان ولهما عدد لا نهائى من الحلول

٣) إذا كان م، = م، والجزء المقطوع من ص فى المعادلة الأولى ≠ الجزء المقطوع من ص فى المعادلة الثانية فإن المستقيان متوازيان ليس لهما حل مشترك عدد الحلول = صفر

تمارين

(١) اختر الإجابة الصحيحة مما بين القوسين :ـ

۱) التمثیل البیانی للمعادلتین س + ص = π ، س + ص = σ عبارة عن مستقیمین (متقاطعان ، متعامدان ، متوازیان ، متطابقان)

۳) التمثیل البیانی للمعادلتین :
$$m + V = 0$$
 ، $V = 0$ ، $V = 0$ عبارة عن مستقیان (متقاطعان ، متعامدان ، متوازیان ، متطابقان)

(٢) أوجد بيانياً مجموعة الحل لكل زوج من المعادلات الآتية :ـ

ثانياً: حل معادلتين من الدرجة الأولى في متغيرين جبرياً:

يتم حل المعادلتين من الدرجة الأولى فى متغيرين بالتخلص من أحد المتغيرين فنحصل على معادلة من الدرجة الأولى فى متغير واحد ، وبحلها نحصل على قيمة هذا المتغير ثم بالتعويض فى إحدى المعادلتين نحصل على قيمة المتغير الذى سبق التخلص منه ويتم ذلك بإحدى الطريقتين :

١) طريقة التعويض

<u>أولاً : طريقة التعويض :</u>

نفرض أن لدينا المعادلتين : س - ص = ۱ ، ۲س + ص = ٥ نقوم بتعديل شكل إحدى المعادلتين بحيث تكونعلى صورة س = أو ص =

(۲) أس = 1 + 0 بالتعويض عن قيمة س في المعادلة (۲)

ثانياً: طريقة الحذف:

كيفية الحل بطريقة الحذف:

- ١) نكتب كلاً من المعادلتين على الصورة : ٩س + ب ص = ج
- ٢) نجعل معامل أحد المتغيرين س أو ص فى المعادلتين معكوس جمعى للأخر .

٤

٣) بجمع المعادلتين نحصل على معادلة من الدرجة الأولى فى متغير واحد س أو ص ومنها نحصل على س أو ص
 ٤) بالتعويض عن قيمة المتغير الذى حصلنا عليه فى إحدى المعادلتين نحصل على معادلة من الدرجة الأولى فى المتغير الثانى

فی المعادلتین السابقتین س - ص = ، ۲س + ص = \circ

نجد أن المعادلتين على الصورة العامة لهماكما أن المتغير – ص هو معكوس جمعي للمتغير ص ٪. نجمع مباشرةً

مثال ۱ : حل المعادلتين ٢س – ٣ص = ١ ، س + ص = ٣

الحل: (١) طريقة التعويض:

المتغیرین س ، ص معاملاتها أگبر من ۱ ن یصعب تعدیلها علی صورة س = أو ص = ن نعدل المعادلة الثانیة من المعادلة (۲) ن س = Υ – ص بالتعویض عن قیمة س فی المعادلة (۱)

$$\{(1, Y)\} = 7 \cdot \alpha \cdot C = \{(1, Y)\}$$

٢) طريقة الحذف : نجعل أحد المتغيرين معكوس جمعى للآخر .. نضرب المعادلة الثانية × ٣ ونجمع المعادلتين معاً

٥

$$1=+\cdots$$
 $1=+\cdots$ بجمع المعادلة (7) $1++\cdots=+\cdots$ بالتعويض في المعادلة (7)

(١) اختر الإجابة الصحيحة مما بين القوسين ــ

عدد حلول المعادلتين س + ۲ ص = ۲ ، س + ۲ ص = ۳ هو
 حلن فقط)

۲) جموعة الحل للمعادلتين : ص = ۲ ، س = ۳ في ح × ح هي
 ۲) جموعة الحل للمعادلتين : ص = ۲ ، س = ۳ في ح × ح هي
 ۲) جموعة الحل للمعادلتين : ص = ۲ ، س = ۳ في ح × ح هي
 ۲) جموعة الحل للمعادلتين : ص = ۲ ، س = ۳ في ح × ح هي

٣) نقطة تقاطع المستقيمين ص = س ، س + ٢ = ٠ هما ((٢ ، ٢) ، (٢ ، ٢) ، (٢ ، ٢) ، (٢ ، ٢) ، (٢ ، ٢)

ع) المستقیمان m + m + m - m - m - m - m - m الربع الأول ، الربع الثانى ، الربع الرابع) (نقطة الأصل ، الربع الأول ، الربع الثانى ، الربع الرابع)

٥) إذا كان للمعادلتين س + ٤ص = ٧ ، ٣س + ك ص = ٢١ عدد لا نهائى من الحلول فإن ك =
 ٢١ ، ١٢ ، ٧ ، ٤)

(٢) أوجد جبرياً مجموعة الحل لكل زوج من المعادلات الآتية :

$$1 - = w - w = 0$$
 $+ w = 0$ $+ w = 0$ $+ w = 0$ $+ w = 0$ $+ w = 0$

٦

$$\frac{\pi}{\gamma} = \omega - \frac{\omega}{\gamma}$$
, $\frac{\sigma}{\gamma} = \frac{\omega}{\gamma} + \omega (\gamma)$ $\gamma = \gamma + \omega (\gamma)$

تطبيقات حل على حل معادلتين من الدرجة الأولى في متغيرين (مسائل لفظية)

مثال 1 عدد مكون من رقمين مجموعها ٥ وإذا تغير وضع الرقمين فإن العدد الناتج ينقص عن العدد الأصلى بمقدار ٩ مما هو العدد الأصلى ؟

الحل:

نفرض أن رقم الآحاد س ، ورقم العشرات ص ∴ س + ص = ٥ ← (١)

العدد = س + ۱۰ ص ، العدد بعد تغيير وضعى الرقمين = ص + ۱۰س

$$(m + * 1 m) - (m + * 1 m) = 9 - m \therefore \quad 9 = (m + * 1 m) - (m + * 1 m) \therefore$$

$$\Upsilon$$
 : Υ : Υ

مثال ٢]: منذ ٦ سنوات كان عمر رجل ستة أمثال عمر ابنه وبعد عشر سنوات يكون عمر الرجل ضعف عمر ابنه فما عمر كلاً منها الآن ؟

الحل:

نفرض أن عمر الرجل الآن س وعمر الأبن الآن ص سنة

عمر الرجل منذ Γ سنوات = $m-\Gamma$ ، وعمر الأبن منذ Γ سنوات = $m-\Gamma$.. $m-\Gamma=\Gamma(m-\Gamma)$ = $m-\Gamma=\Gamma$.. $m-\Gamma=0$ - $m-\Gamma=0$

، عمر الرجل بعد عشر سنوات = س + ١٠ ، عمر الأبن بعد عشر سنوات = ص + ١٠

∴ س + ۱۰ = ۲(ص + ۱۰) ∴ س + ۱۰ = ۲ص + ۲۰ ∴ س — ۲ص = ۱۰ → ۲) بضرب المعادلة الثانية × - ۳ والجمع

 Υ^{\bullet} = - ۲ س - ...

-٣س + ٦ص = -٣٠ ∴ ٦٠٠ = ٠٠٠ ∴ س = ٣٠ ∴ عمر الرجل ٣٠ سنة

بالتعويض في (٢) ∴ ٣٠ – ٢ص = ١٠ ∴ -٢ص = ٢٠٠ ∴ ص = ١٠ ∴ عمر الأبن = ١٠ سنوات

تمارين

(١) اختر الإجابة الصحيحة مما بين القوسين :ـ

١) مستطيل طوله س سم ، وعرضه ص سم فإن محيطه =

 $(m - m) \cdot (m + m) \cdot (m + m)$

٢) إذا كان عمر رجل الآن س سنة فإن عمره منذ ٣ سنوات يكون

 $(w + w \cdot w + w \cdot w + w \cdot w + w)$

(٢) مستطيل طوله يزيد عن عرضه بمقدار ٣سم ، فإذا كان ضعف طوله مضاف إليه خمسة أمثال عرضه يساوى ٧٥ سم أوجد كلاً من بعدى المستطيل .

(٣) الفرق بين عمر رجل وابنه ٢٨ سنة وبعد ٣ سنوات يكون مجموع عمريها ٤٠ سنة . أوجد عمر كل منها الآن

حل معادلة من الدرجة الثانية في مجهول واحد بيانياً

*فثلاً المعادلة m' - m - Y = * هي معادلة من الدرجة الثانية في مجهول واحد هو س

لحل هذه المعادلة: س['] – س – ۲ = صفر نحلل الطرف الأيمن فتأخذ المعادلة الصورة

ويسمى كل من ٢ ، -١ بجذرا المعادلة ، ويسمى هذا الحل بالحل الجبرى

*ولحل هذه المعادلة بيانياً نعين نقط تقاطع الشكل الممثل لهذه الدالة مع محور السينات فتكون الإحداثيات السينية لهذه النقط هو مجموعة حل المعادلة: د(س) = ٠

مثال [: ارسم منحنى الدالة د(س) = س -3س + -3فى الفترة [- ۱ ، ٥] ومن الرسم أوجد مجموعة حل

المعادلة س ٢ – ٤س + ٣ = ٠

L	+++	+	₩	+	Н	+	Н	Н,	Н	+	Н	+	Н	+	+	Н	Ţ	+	Н	Н	+														
		Ŧ		F		+		\\ -	1			+		+	+			+					(ص)	۰ ، ((س		ص	٣+	(-ځس		س		س
								\	5							/								()		۱-)		٨	٣+		٤		١		1-
						+		7				+			9									(1	، ۳	•)		٣	٣+		•		•		•
		+		Ė		+		7	1			+		+	$/\!\!/$			+						(٠,	١)		•	٣+		٤-		١		١
	u -					+		<u> </u>												س				(1	- ,	۲)		۱-	٣+		۸ -		٤		۲
		٤		۲ -				1	9	1			/	*	+	1								(• 6	٣)		•	٣+		17-		٩		٣
								۲.	-															(1	، ۳	٤)		٣	٣+		۱٦-		١٦		٤
								٣																(/	، ۱	٥)		٨	٣+		۲		70		٥
	\vdash	+	₩	+	Н	+	₩	- 1′4	صر	+	Н	+	Н	+	+	Н	+	+	Н	+	+	4		A 3			- 111		 1	٢	art 1	1 1	1	*	_

مجموعة حل المعادلة س' – ٤س + ٣ = • هي {١ ، ٣}

مثال ۲]: ارسم الشكل البيانى للدالة د(س) = س ٔ – ٣س فى الفترة [-١ ، ٤] ومن الرسم أوجد مجموعة حل المعادلة س ٔ – ٣س = ٠

(س ، ص)	ص	-٣س	س	س
(٤, ١-)	٤	٣	١	1-
(• • •)	*	•	*	•
(۲-, ۱)	۲-	٣-	١	١
(۲-, ۲)	۲-	٦-	٤	۲
(٠,٣)	٠	٩_	٩	٣
(٤,٤)	٤	17-	١٦	٤

مجموعة حل المعادلة س ٚ – ٣س = ٠ هي {٠، ٣}

الجبر للثالث الإعدادي ترم ثاني

- (۱)ارسم الشكل البيانى للدالة د(س) = س ٔ ۲س + ۱ فى الفترة [-۱ ، ۳] ومن الرسم أوجد جذرى المعادلة : س ٔ ۲س + ۱ = ۰
- (٢) ارسم الشكل للبيانى للدالة د(س) = $m^{7} 7$ س على الفترة [-۲ ، ٤] ومن الرسم أوجد مجموعة حل المعادلة : $m^{7} 7$ س = •
- ارسم الشكل للبيانى للدالة د(س) = ξ س على الفترة [- Υ ، Υ] ومن الرسم أوجد مجموعة حل المعادلة : س ξ ξ = •

القانون العام لحل معادلة الدرجة الثانية في متغير واحد جبرياً

لحل معادلة الدرجة الثانية على الصورة ٢س٠ + ب س + ج = ٠ نستخدم القانون

حیث ۲ معامل س۲ ، ب معامل س ، ج الحد المطلق

قيمة موجبة: المعادلة لها حلان حقيقيان مختلفان

قيمة سالبة: المعادلة ليس لها حل م . ح $\emptyset=\emptyset$

صفر: المعادلة لها حلان حقيقيان متساويان أو حل وحيد

المميز = ب٬ – ٤ ۶ ج

 $\Sigma = -3$ ، $\Sigma = -3$ ، بہ $\Sigma = -3$ ، بہ کا نام کا

١.

$$V = \frac{0}{m} - m$$
 مثال Y : أوجد مجموعة حل المعادلة : m

الحل على المعادلة على صورتها العامة نضرب المعادلة
$$\sim m^2 - o = \gamma$$
س نكون المعادلة على صورتها العامة العامة العادلة $\sim m^2 - o = \gamma$

$$\circ - = -$$
 مفر $\circ - = -$ ، $\circ - = -$. $\circ - = -$

$$79 = 7 \cdot + 89 = 0 - \times 1 \times 8 - (V -) = 9 + 7 \times 9 = 7$$
 الميز = ب

$$\frac{\overline{79} + \frac{1}{7}}{7} = \frac{\overline{9} + \frac{1}{7}}{7} = \frac{\overline{9} + \frac{1}{7}}{7} = \cdots$$

$$\{\bullet, 70 - \bullet, 7, 70\} = 0.$$
 $(\bullet, 70 - \bullet)$
 $(\bullet$

حل المعادلات الآتية باستخدام القانون العام مقرباً الناتج لرقمين عشريين:

$$\Upsilon = 1 + \omega^{2} - \Upsilon$$
 $\Upsilon = \Upsilon$ $\Upsilon = \Upsilon$ $\Upsilon = \Upsilon$ $\Upsilon = \Upsilon$ $\Upsilon = \Upsilon$

حل معادلتين في متغيرين إحداهما من الدرجة الأولى والأخرى من الدرجة الثانية جبرياً

قبل البدء في هذا الجزء سوف نقوم بمراجعة سريعة على تحليل المقادير الجبرية:

(۱) إذا كان المقدار ثلاثى فإن يتحلل كما يلى : مثلاً :
$$m' + Vm + 17 = (m + 7) (m + 3)$$
 ، $m' - Nm + 17 = (m - 7) (m - 7)$

$$(m + m)^{1} + 0$$
 م $(m + m)^{2} + 0$ ه خلل عن طریق المقص وتساوی = $(m + m)^{2}$

$$(m^{2}-m^{2})$$
 مثلاً : $m^{2}-m^{2}=(m-2)$ ($m+3$) ، $m^{2}-m^{2}=(m-2)$

$$("" - "" - "" - "" - "" + "" - "" + "" - "" + "" - "" + "" - "" + "" - "" + ""$$

$$(3)$$
 جموع مکعبین : س + ص + ص + ص) (س + ص + ص) (عبین : س + ص + ص) (عبین : س + ص + ص) (عبین : ۸س + ۲۵) فمثلاً : ۸س + ۲۶ = (۲س + ۶) (۶س - ۸س + ۲۱)

والعكس عند فك قوس المربع الكامل المكون من حدين يعطينا مقدار مكون من ثلاثة حدود وهو عبارة عن : (الحد الأول) \pm (الحد الأول × الثانى × ۲) + (الحد الثالث) أ

 $9 + \omega \Upsilon = \Upsilon = 1 - \Upsilon = 1 - \Upsilon = 1 - \Upsilon = \Upsilon = 1 - \Upsilon = 1$

$$(7-1)$$
 ($7-1$) $(7-1)$ $(7-1)$ $(7-1)$ $(7-1)$ $(7-1)$ $(7-1)$ $(7-1)$

، -1 ، -1

أما المعادلات : ٣س + ص = ٨ ، س + ص = ١ معادلات من الدرجة الأولى في متغيرين

وسوف نقوم بحل معادلتين من الدرجة الأولى والأخرى من الدرجة الثانية فى مجهولين والأمثلة التالية توضح :

في هذه المسائل نعوض عن س أو ص بدلالة الأخر ثم نعوض عنه في معادلة الدرجة الثانية

$$1 \cdot = {}^{1} \bigcirc + {}^{2} \bigcirc + \bigcirc + 2 \bigcirc + 2 \bigcirc + {}^{2} \bigcirc$$

ن. ۲ص
$$^{1}+3$$
 ص $^{-}$ ۳ = ۰ بالقسمة على ۲ ن. ص 1 + ۲ ص $^{-}$ ۳ = ۰ وبالتحلیل

∴
$$(m + 7)$$
 $(m - 1) = ↑ ∴ $m + 7 = ↑$ أو $m - 1 = ↑$$

$$\bullet = 0 - m^{2} + m + m^{2} + m^{2$$

$$00 = 7 - 07 - 00 \div 00 = 00 \div 00 + 007 - 007 = 00$$

$$\{(\Upsilon - \Lambda)\} = \Lambda - (\Upsilon - \Upsilon) - (\Upsilon - \Upsilon) = \Lambda$$

من المعادلة الأولى
$$m=m-m$$
 بالتعويض عن قيمة س فى المعادلة الثانية

$$(-7) \times (-7) \times$$

$$\cdot = (1 - m)(T - T)$$
 ومنها $(m - T)(m - T) = \cdot$

مثال ٥ : عددان حقيقيان مجموعها ٧ والفرق بين مربعيها ٧ أوجد العددين .

. نفرض أن العدد الأكبر س والعدد الأصغر ص

من المعادلة الأولى $w = v - \omega$ بالتعويض عن قيمة س فى المعادلة الثانية

$$\xi 9 - Y = \omega 1 \xi - \omega Y = U - \omega Y =$$

$$\sim -31$$
 ومنها $\sim = 7$ نس $= 7 - 7 = 3$ نالعددان هما $\approx 7 - 3$

نذكر أن عصل المستطيل = ٢ × (الطول + العرض) ، مساحة المستطيل = الطول × العرض

، مساحة المربع = طول الضلع × نفسه

مثال ٥: مستطيل مساحته ٤٥سم ، ومحيطه ٣٠سم أوجد بعديه .

الحل

نفرض أن بعدى المستطيل هما س سم ، ص سم

، مساحة المستطيل هي س $\omega = 30 \longrightarrow (\Upsilon)$

من المعادلة الأولى س = ١٥ – ص بالتعويض عن قيمة س في المعادلة الثانية

$$\cdot = 0$$
 + 01 ص $- 30 = 0$ بالضرب $\times (-1)$ ن ص $- 0$ ص $+ 30 = 0$

$$\gamma = 0$$
 أو $\gamma = 0$ اأو $\gamma = 0$ اأو $\gamma = 0$

تمارين

(١) اختر الإجابة الصحيحة مما بين القوسين:

۲) س — ۲ص = ۰ ، س ص = ۲

 $\Upsilon = {}^{Y} - {}^{Y}$

(٢) حل المعادلات الآتية في ح :

(٣) مستطيل مساحته ٨٠سم فإذا نقص طوله بمقدار ١سم وزاد عرضه بمقدار ١سم أصبح مربعاً أوجد طول وعرض المستطيل .

(٤) عددان صحيحان موجبان يزيد أحدهما عن ثلاثة أمثال الآخر بمقدار ١ فإذا كان مجموع مربعيهما ١٧ أوجد العددين .

اختبار الوحدة الأولى

(١) اختر الإجابة الصحيحة مما بين القوسين :ـ

(٢) أوجد مجموعة حلكل زوج من المعادلات الآتية:

(٣) حل المعادلات الآتية باستخدام القانون العام:

۱)
$$m^7 + 7m = 7$$
 مقرباً الناتج لرقم عشری واحد $m^7 + m = 0$ مقرباً الناتج لرقم عشری واحد $m^7 = 0$ $m^7 = 0$ مقرباً الجواب لرقمین عشریین .

الوحدة الثانية : دوال الكسور الجبرية

أولاً: مجموعة أصفار الدالة كثيرة الحدود:

تذكر أن : د(س) = $m^7 - Nm^7 + 1$ س هي دالة كثيرة حدود من الدرجة الثالثة ونلاحظ أن

أى أن : مجموعة قيم س التي تجعل د(س) = ٠ هي {٠ ، ٢ ، ٦} وتسمى أصفار الدالة ونرمز لها بالرمز ص (د) والأمثلة التالية توضح ذلك :

مثال (: أوجد مجموعة أصفار دوال كثيرات الحدود الآتية :ـ

٢) ك (س) = س٢ – ٧س + ١٢

الحلن

١) لإيجاد مجموعة أصفار الدالة د(س) = ٣س – ١٥ نحلل المقدار بإخراج العامل المشترك

(u - 0) = 0 شاوی المقدار س (u - 0) = 0 بالصفر (u - 0) = 0 (u - 0) = 0

 $(m) = V \cdot (m) = V \cdot (m)$ دالة ثابتة أي أن صورة أي عدد بالدالة تساوى $(m) = V \cdot (m)$ يوجد عددس يجعل $(m) = V \cdot (m)$

$$\emptyset = (n)$$
 $\rightarrow \bullet$

= (ن) = -1 ن (w) = -1 ص (v) = -1 ن (w) = -1

$$\emptyset=($$
ق $)=0$ بوضع س $^{\prime}+9=9$ ن س $^{\prime}=9$ ومنها س $^{\prime}=1$ ومنها س $^{\prime}=1$ بوضع س $^{\prime}=1$ للرح ن $^{\prime}=1$

الجبر للثالث الإعدادي ترم ثاني

مثال ۲ : إذا كانت مجموعة أصفار الدالة د(س) = ۴ س ۲ + ب س + ۱۵ هي ۲ ، ۵} فأوجد قيمة كلاً من ۴ ،ب الحل :

تمارين

(١) اختر الإجابة الصحيحة مما بين القوسين :ـ

(٢) أوجد مجموعة أصفار كل من الدوال الآتية :

$$^{\text{T}}(\text{T}-\text{m})=(\text{m})$$
ن (T

$$Y = (m) = m^{2} - m^{2} + m - 1$$
 $Y = (m) = 0$
 $Y = (m) = 0$

ثانياً : دالة الكسر الجبرى

ق (س) m+7 الدالة الكسرية الجبرية على الصورة : $\frac{(m)}{(m)}$ مثلاً $\frac{m+7}{m-1}$ تسمى دالة كسرية لأنها تتكون من بسط ومقام

مثال ١ : عين أصفار كلاً من الدوال الآتية :

$$\frac{m+1}{\sqrt{m}} = \frac{m+1}{m}$$

$$\frac{\Upsilon_{\infty}}{\Gamma - \omega} = (\omega)$$

 $\{\bullet\} = \{T\} - \{\bullet\} = \frac{\tau}{m - T}$ أصفار البسط = $\{\bullet\}$ ، أصفار المقام = $\{T\}$ ن أصفار الدالة = $\{\bullet\} - \{T\} = \{\bullet\}$

$$(-1) = \frac{\omega}{1 + 1}$$
 أصفار البسط = (-1) ، أصفار المقام = (-7) . أصفار الدالة = (-7)

مثال ٢ : عين مجال كل من الدوال الكسرية الجبرية الآتية :

$$\frac{\gamma - \omega}{\gamma} = \frac{\gamma}{\omega}$$
 (س) = $\frac{\gamma - \omega}{\gamma - \gamma} = \frac{\gamma}{\omega}$ (۲) ن(س) = $\frac{\gamma}{\omega}$

الحل:

$$\gamma = \frac{\gamma + \omega}{\gamma} = \gamma$$
) د(س)= $\frac{\gamma + \omega}{\gamma} = \gamma$ د(س)= $\frac{\gamma + \omega}{\gamma} = \gamma$

$$\frac{\gamma + \omega}{\gamma - \gamma} = (\omega) \cdot (\omega) = \frac{\omega + \gamma}{\omega + \gamma} = (\omega) \cdot (\omega) = \frac{\omega + \gamma}{\omega - \gamma} = (\omega) \cdot (\omega) \cdot (\omega) = \frac{\omega + \gamma}{\omega - \gamma} = (\omega) \cdot (\omega) \cdot (\omega) \cdot (\omega) = (\omega) \cdot (\omega) \cdot (\omega) = (\omega) \cdot (\omega) \cdot (\omega) \cdot (\omega) = (\omega) \cdot (\omega) \cdot (\omega) \cdot (\omega) \cdot (\omega) = (\omega) \cdot (\omega) \cdot (\omega) \cdot (\omega) \cdot (\omega) \cdot (\omega) = (\omega) \cdot (\omega)$$

$\{Y\} = -1$ ص (د) = $\{Y\} = -1$ صفار المقام $: \{Y\} = -1$

$$\{\xi - , \xi\} - = (س - \xi)$$
 (ن $\{\xi - , \xi\} = (\xi)$ ص $\{\xi - , \xi\} = (\xi)$ $\{\xi$

$$\{\xi, \Upsilon, \Upsilon\} = (ن)$$
 ن س Υ - Υ س Υ - Υ س Υ (ξ + Υ س Υ - Υ س Υ (ξ + Υ ، Υ - Υ المجال ξ - ξ ، Υ ، Υ - Υ المجال ξ - ξ ، Υ ، Υ .

$$\emptyset = (a)$$
 ن (س) $= \frac{\gamma \omega + \omega \gamma}{\gamma} = (b)$ ن (٦

ثال Υ : إذا كان مجال الدالة المعطاه بالقاعدة ن (س) = $\frac{w+\mu}{w+q}$ هو ح $-\{\Upsilon\}$ ، ن (۰) = - Υ أوجد قيمتى Υ ، Ψ

$$\Upsilon= P-\cdots \{\Upsilon\}-\cdots$$
 عندما س $= P-\cdots$ بجال الدالة هو ح $= P-\cdots \{\Upsilon\}-\cdots \{\Upsilon\}-\cdots = P-\cdots \}$ والمجال المعطى ح $= P-\cdots \{\Upsilon\}-\cdots = P-\cdots \}$

$$\frac{\dot{\varphi}}{\varphi} = \varphi - \therefore \qquad \frac{\dot{\varphi}}{\rho} = \frac{\dot{\varphi} + \dot{\varphi}}{\rho + \dot{\varphi}} = (\dot{\varphi}) \dot{\varphi} \dot{\varphi}$$

تمارين

(١) عين مجال كل من الدوال الآتية:

$$\frac{\gamma_{\omega}}{\zeta(\omega)} = \frac{\gamma_{\omega}}{\gamma_{\omega} - \gamma_{\omega}} = (1 - 1) c(\omega)$$

$$\frac{m + m}{17 - m} = (m)$$
ن (۱)

$$(\Upsilon)$$
 إذا كان ن(س) = $\frac{(\Upsilon)}{(W)} + \frac{(W)}{(W)} = \frac{(W)}{(W)} = \frac{(W)}{(W)}$ اإذا كان ن(س) = $\frac{(W)}{(W)} + \frac{(W)}{(W)}$ الإذا كان ن(W) = $\frac{(W)}{(W)} + \frac{(W)}{(W)}$

ثالثاً: المجال المشترك لكسرين جبريين أو أكثر

المجال المشترك لعدد من الكسور = ح – مجموعة أصفار مقامات هذه الكسور

مثال [: أوجد المجال المشترك للكسور الجبرية الآتية :

$$\frac{1+\frac{w}{10-w}}{\frac{1+w}{10-w}} = (w)^{2} \cdot \frac{1}{1+w} = (w)^{2} \cdot \frac{1}{1+w} = (w)^{2} \cdot \frac{1}{1+w} = (w)^{2} \cdot \frac{1+w}{1+w} = (w$$

$$(w + 1) (w + 1) (w + 1)$$

$$\therefore$$
 ص (د γ) = {۲ ، - ۲}

$$\{\frac{7}{\pi} - , \frac{7}{\pi}\} = (70)$$

$$-\cdot\cdot\frac{1}{\pi}$$
 = (ن۲) \rightarrow \cdots (۳ +

$$\{0, \frac{1}{\pi} -\} = (0) :$$

$$(0 + \omega) (\omega - \omega) = (\omega + \omega) (\omega + \omega)$$

$$(\Upsilon + \Upsilon) (\Upsilon - \Upsilon) = (\Upsilon - \Upsilon) (\Upsilon + \Upsilon)$$

$$\{\circ, \frac{\Upsilon}{\Psi}, -\} = (\Upsilon \cup \Upsilon)$$
 $(\circ - \Psi)$ $(\circ$

مرين : عين المجال المشترك للكسور الجبرية الآتية:

$$\frac{\Upsilon - \Upsilon \omega}{\Lambda - \omega \Upsilon + \Upsilon \omega} \qquad \qquad \frac{\xi + \omega \xi}{\xi + \omega \xi + \Upsilon \omega}$$

رابعاً : اختزال الكسر الجبرى إلى أبسط صورة

اختزال الكسر الجبرى هو تحليل كلاً من البسط والمقام ثم تعيين المجال وهو ح – أصفار المقام ثم حذف المتشابه بين البسط والمقام

هاااااام جداااااً : يجب تعيين المجال قبل الحذف (الاختصار)

$$\{\Upsilon - , \Upsilon\} - \gamma = \frac{(\Upsilon - \psi)(\Upsilon - \psi)}{(\Upsilon - \psi)(\Upsilon - \psi)} = \frac{\xi - \psi}{1 \Upsilon - \psi} = (\psi) :$$

وحيث أن (س + ٢) عامل مشترك بين كل من البسط والمقام إذن نقوم بحذفها

$$\frac{\mathsf{Y}-\mathsf{w}}{\mathsf{V}-\mathsf{w}}=(\mathsf{w})\; :\; :$$

خامساً : تساوی کسرین جبریین

$$(m)$$
 ۽ مجال ج $_{\gamma}$ (m)

يقال أن : P = (س) إذا كان _{_}

$$(w) =$$
قيمة \mathcal{C}_{γ} (w)

الحل:

$$\{1, \cdot\} - z = (m) \wedge U = \frac{\sqrt{m}}{(m-1)} = \frac{\sqrt{m}}{\sqrt{m}} = \frac{\sqrt{m}}{\sqrt{m}} = (m) \wedge U = \sqrt{m}$$

$$\frac{1}{\sqrt{m}} = (m) \wedge U = \sqrt{m}$$

$$\frac{(1+w+v)(w+v)(w+v)}{(1+w+v)(w+v)} = \frac{(1+w+v)(w+v)(w+v)}{(1-v)(w+v)} = \frac{(1+w+v)(w+v)(w+v)}{(1-v)(w+v)} = \frac{(w+v)(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+w)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+v)} = \frac{(w+v)(w+v)}{(w+w)(w+w)} = \frac{(w+v)(w+v)}{(w+w)(w+w)} = \frac{(w+v)(w+v)}{(w+w)(w+w)} = \frac{(w+v)(w+v)}{(w+w)(w+w)} = \frac{(w+v)(w+v)}{(w+w)} = \frac{(w+v)(w+v)}{(w+w)} = \frac{(w+v)(w+w)}{(w+w)$$

$$\mathcal{N} = \mathcal{N} : (\mathcal{M}) = (\mathcal{M}$$

الحل:

$$\{1, \Upsilon\} - Z = (m) \wedge \sqrt{\frac{1 - m}{(1 - m)}} = \frac{1 - m}{(m - m)} = \frac{1 - m}{(m - m)} = (m) \wedge \sqrt{\frac{1 - m}{m}} = (m) \wedge \sqrt$$

$$\frac{1}{m-m}=(m) \sim :$$

$$\{\mathbb{T}, \mathbb{T}\} - \mathbb{T} = (\mathbb{T}) \wedge \mathbb{T} = \frac{\mathbb{T} - \mathbb{T}}{(\mathbb{T} - \mathbb{T})} = \frac{\mathbb{T} - \mathbb{T}}{(\mathbb{T} - \mathbb{T})} = \mathbb{T} = (\mathbb{T} - \mathbb{T}) \wedge \mathbb{T}$$

$$\frac{1}{m-m}=(m) \sim ...$$

$$(m) = (m) \neq 4$$
 $(m) \neq 4$ $(m) \neq 4$

العمليات على الكسور الجبرية :

أى عملية تجرى على الكسور الجبرية تمر بالخطوات الأربعة التالية:

تحليل - مجال - اختزال - عملية من العمليات الأربعة (جمع – طرح – ضرب – قسمة)

أولاً: جمع الكسور الجبرية:

ملحوظة هااااامة العمليات على الكسور الجبرية تخضع لنفس العمليات على الأعداد النسبية:

$$\frac{\rho}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} \qquad \text{or} \qquad \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} \frac{\lambda}{V} = \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} = \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} = \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} = \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} = \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} = \frac{\lambda}{V} = \frac{\lambda}{V} = \frac{\lambda}{V} + \frac{\lambda}{V} = \frac{\lambda}{V$$

$$\frac{1\pi}{10} = \frac{\pi + 1.}{10} = \frac{1}{0} + \frac{7}{\pi}$$

$$\frac{1\pi}{10} = \frac{\pi + 1.}{10} = \frac{\pi}{10} + \frac{\pi}{10} = \frac{\pi}{10} = \frac{\pi}{10} + \frac{\pi}{10} = \frac{\pi}{10} =$$

$$\frac{\xi - \sqrt{m}}{\gamma - m} + \frac{m - m}{m + m + m} = (m)$$
 اُوجد ن (س) في أبسط صورة مبينناً المجال : ن (س) المجال عن المجال : أوجد ن (س) المجال المجال عن المجال الم

$$\{Y - (Y - W) = \frac{(Y + W)(Y - W)}{(Y - W)} + \frac{(Y - W)(W - W)}{(Y - W)(W - W)} = (W - W)\}$$

$$Y = \frac{Y - W}{(W - W)} = \frac{Y - W}{(W - W)} + \frac{Y}{(W - W)} = \frac{Y - W}{(W - W)} = \frac{Y - W}{(W$$

مثال
$$Y$$
: أوجد ن (س) في أبسط صورة موضحاً المجال : ن(س) = $\frac{Y - Y - Y - Y}{Y + W - Y - W} + \frac{Y - Y - Y - Y}{Y - W - Y - W}$

$$\frac{\Upsilon+\omega^{m}}{(\Upsilon+\omega)(\Upsilon-\omega)}=\frac{\Upsilon-\omega+\xi+\omega^{m}}{(\Upsilon+\omega)(\Upsilon-\omega)}=\frac{1}{\Upsilon+\omega}+\frac{\Upsilon}{\Upsilon-\omega}=(\omega)$$
ن

أوجد ن في أبسط صورة مبينناً المجال:

$$\frac{1-\sqrt{m}}{1-m+\sqrt{m}}+\frac{\xi+m\chi-\sqrt{m}}{\chi+\sqrt{m}}=(m)$$
 is (1)

$$\frac{w^{\lambda} + w^{2} - w^{2} - w^{2}}{w^{2} - w^{2}} + \frac{w^{2} - w^{2} - w^{2}}{w^{2} - w^{2}} = (w^{2})$$
 ن (۲)

$$(7)$$
 إذا كان مجال الدالة ن حيث ن $(m) = \frac{1}{m} + \frac{9}{m+q}$ هو ح (7) ، ن (7) ، ن (7) أوجد قيمة كل من (7) ، ب

ثانياً: طرح الكسور الجبرية

طرح الكسور له نفس خطوات وطريقة حل جمع الكسور من حيث إذا كانت المقامات متحدة أو مختلفة

$$\frac{V}{10} = \frac{V - 1}{10} = \frac{1}{0} - \frac{V}{V} \quad \text{and} \quad \frac{V}{V} = \frac{V}{V} - \frac{V}{V} - \frac{V}{V} = \frac{V}{V} - \frac{V}{V} = \frac{V}{V} - \frac{V}{V} = \frac{V}{V} -$$

$$\frac{m + m^{2}}{m - m^{2}} - \frac{m^{2} + m^{2}}{m^{2} - m^{2}} = \frac{m^{2} + m^{2}}{m^{2} - m^{2}} - \frac{m^{2} + m^{2}}{m^{2} - m^{2}}$$
 مثال ۱ : أوجد ن (س) في أبسط صورة مبينناً الحجال : ن (س)

$$(w-1)^{2} = \frac{(w-1)^{2}}{(w-1)^{2}} = \frac{(w-1)^{2}}{(w-1)^{2}} = -(w-1)^{2}$$

$$(w-1)^{2} = \frac{(w-1)^{2}}{(w-1)^{2}} = -(w-1)^{2}$$

$$1 = \frac{m - w}{m - w} = \frac{m}{m - w} - \frac{w}{m - w} = (w)$$

خواص عمليتي جمع وطرح الكسور الجبرية

*عملية جمع الكسور الجبرية لها الخواص الآتية:

٣) الصفر هو العدد المحايد الجمعي لأي كسر جبري

ع) توافر المعكوسات الجمعية : المعكوس الجمعي للكسر الجبرى
$$\frac{v(\omega)}{v(\omega)}$$
 هو $\frac{v(\omega)}{v(\omega)}$ أو $\frac{v(\omega)}{v(\omega)}$ أو $\frac{v(\omega)}{v(\omega)}$ أو $\frac{v(\omega)}{v(\omega)}$

فثلاً المعكوس الجمعى للكسر الجبرى
$$\frac{7}{m-o}$$
 هو $-\frac{7}{m-o}$ أو $\frac{7}{m-o}$ أو $\frac{7}{m-o}$ أو $\frac{7}{m-o}$

*عملية طرح الكسور الجبرية لا يتحقق فيها أى من الخواص السابقة

مجال الكسر الجبرى = مجال معكوسه الجمعى

مثال ۲ : أوجد ن (س) =
$$\frac{7w}{w} + \frac{\xi + w}{1} + \frac{w}{1}$$
 في أبسط صورة مبينناً الحجال ثم أوجد ن (۱) ،ن(-۲) الحل :

$$\frac{\sqrt{(w)^{2}}}{(v)^{2}} - \frac{(v)^{2}}{(v)^{2}} = \frac{w}{(w)^{2}} - \frac{(v)^{2}}{(v)^{2}} - \frac$$

$$\frac{1}{\Upsilon-\omega}=\frac{1-\Upsilon}{\Upsilon-\omega}=\frac{1}{\Upsilon-\omega}-\frac{\Upsilon}{\Upsilon-\omega}=(\omega)$$
ن

ن (۱) =
$$\frac{1}{1-1} = \frac{1}{1-1} = \frac{1}{1-1}$$
 ن (- ۲) غیر معرفة لأن – ۲ لي لجال ن

تمارين

(۱) أوجد ن (س) =
$$\frac{1-\frac{w-1}{v-w}-\frac{1}{v-w}}{w-1-\frac{v}{w}}$$
 في أبسط صورة مبيناً المجال

$$\frac{7}{7}$$
 (۲) أوجد ن (س) فی أبسط صورة مبینناً مجال ن حیث : ن (س) = $\frac{7}{7}$ + $\frac{7}{7}$ + $\frac{7}{7}$ $\frac{$

ثالثاً: ضرب الكسور الجبرية

 $\frac{\Lambda}{10} = \frac{\xi}{0} \times \frac{7}{7}$ ضرب الأعداد النسبية . مثلاً مثل ضرب الأعداد النسبية . مثلاً

وأيضاً عند ضرب كسرين جبريين نضرب البسط × البسط ، المقام × المقام ويكون مجال حاصل الضرب هو المجال المشترك قبل الاختزال مثل الجمع والطرح

مثال ا: أوجد ن (س) فى أبسط صورة مبينناً المجال : ن (س) =
$$\frac{m^{7} - N}{m + 2} \times \frac{N - m}{m + 2}$$
 مثال الحل :

$$\zeta(\omega) = \frac{(\omega + \gamma)(\omega + \gamma)(\omega + \gamma)}{(\omega + \gamma)(\omega + \gamma)} \times \frac{(\xi + \omega)(\gamma + \gamma)(\omega + \gamma)}{(\omega + \gamma)(\omega + \gamma)} = -(-6)$$

$$\zeta(\omega) = (\omega - \gamma) \times \gamma = \gamma \times (\gamma - \omega)$$

$$\zeta(\omega) = (\omega - \gamma) \times \gamma = \gamma \times (\gamma - \omega)$$

$$\frac{1 \cdot + w \cdot - w}{70 - w} \times \frac{w^{7} + 0w}{7 - w} \times \frac{w^{7} - w \cdot w}{7 - w} \times \frac{w^{7} - w}{7 - w} \times \frac{w^{7} - w \cdot w}{7 - w} \times \frac{w^{7} - w}{7 - w} \times \frac{$$

$$(w) = \frac{w(w + 0)}{(w + 1)(w + 1)} \times \frac{(w + 0)(w + 1)}{(w + 0)(w + 0)(w + 1)} = (-7, 7, 7, 0, -0)$$

$$(w) = \frac{w}{w + w}$$

$$(w) = \frac{w}{w + w}$$

تمارين

أوجد ن (س) في أبسط صورة مبينناً المجال:

$$\frac{7 + w + w}{\xi + w + w} \times \frac{\lambda - w}{7 - w + w} (1)$$

$$\frac{w + w + w}{w + w} \times \frac{10 - w + w}{4 + w} (1)$$

$$\frac{w + w + w}{w + w} \times \frac{10 - w + w}{4 + w} (1)$$

خواص عملية ضرب الكسور الجبرية:

عملية الضرب لها الخواص الآتية: الإبدال ، الدمج ، الواحد هو المحايد الضربي ، المعكوس الضربي

المعكوس الضربى للكسر الجبرى :

إذا كان : ن كسراً جبرياً حيث ن (س) = $\frac{\mathfrak{o}(w)}{2(w)}$ فإن ن يكون له معكوس ضربي هو الكسر الجبرى ن الخبرى ن حيث ن (س) = $\frac{2(w)}{\mathfrak{o}(w)}$ و يكون المجال الذى يجعله معكوساً ضربياً هو ح – أصفار البسط والمقام

مثال ۱ : إذا كان : ن (س) =
$$\frac{m^{'}-7m}{(m-7)(m^{'}+7)}$$
 فأوجد : ن (س) في أبسط صورة مبينناً مجال \dot{v} وإذا كان : \dot{v} (س) = \dot{v} فما قيمة س

 $\{Y, \cdot\} - Z = \frac{(Y - w)(w)}{(W - Y)(w)}$ بن (س) = $\frac{(Y - w)(w)}{(Y - Y)(w)}$ بن (س) = $\frac{(Y - w)(w)}{(Y - W)(w)}$

$$\frac{\Upsilon + \Upsilon \omega}{\omega} = (\omega)^{-1} \dot{\omega}$$

 $^{\prime\prime}$ ن $^{\prime\prime}$ (س) = $^{\prime\prime}$ $^{\prime\prime$

· (س – ۲) (س – ۱) = ٠ ومنها س = ۲ أو س = ۱

رابعاً : قسمة الكسور الجبرية :

 $\frac{1}{7} = \frac{0}{7} \times \frac{7}{7} = \frac{7}{9} \div \frac{7}{7} \div \frac{7}{7} \div \frac{7}{7} \div \frac{7}{7} = \frac{1}{7} \times \frac{7}{7} = \frac{1$

فإذا كان : $\frac{7m}{m+7} \div \frac{m}{m} \div \frac{7m}{m+7} \times \frac{m+7}{m} \times \frac{m+7}{m} \times \frac{m+7}{m}$ و يكون الحجال هو ح – أصفار مقام الكسر الأول وبسط ومقام الكسر الثانى = ح – {- ۲ ، ۰}

مثال ۱ : أوجد ن (س) =
$$\frac{m^{-1} - 100}{m^{-1} - 100} \div \frac{m^{-1} - 100}{m^{-1} - 100} \div \frac{m^{-1} - 100}{m^{-1} - 100}$$
 في أبسط صورة مبينناً المجال

$$\{Y, 1-, 0\} - = \frac{(\xi + \psi + \psi)(\psi - \psi)(\psi - \psi)}{(\psi - \psi)} \div \frac{(\psi - \psi)(\psi - \psi)}{(\psi - \psi)(\psi - \psi)} = (\psi - \psi)$$
ن (س) = $(\psi - \psi)(\psi - \psi)(\psi - \psi)$

$$\frac{1}{1+\omega} = (\omega)\dot{\omega} : \frac{\xi + \omega + \omega}{(\xi + \omega)(\tau - \omega)} \times \frac{(\omega - \omega)(\tau - \omega)}{(1+\omega)(\omega - \omega)} = (\omega)\dot{\omega}$$

۱) أوجد ن (س) =
$$\frac{m^{7} - 9}{7m^{7} + 7m} \div \frac{7m^{7} + 7m - 23}{2m^{7} - 9}$$

$$(w) = \frac{w^{7} - w^{7} - w^{7} + w^{7}}{w^{7} - w^{7} + w^{7}} \div \frac{w^{7} + w^{7} + w^{7}}{w^{7} - w^{7}} = \frac{w^{7} + w^{7} + w^{7}}{w^{7} + w^{7} + w^{7}}$$
 أوجد: ن (س) في أبسط

(س) في أبسط صورة مبينناً مجال ن ،
$$\frac{v+w}{w-7} \div \frac{\varepsilon q-\frac{v}{w}}{w-7} \div \frac{\varepsilon q-\frac{v}{w}}{w-7}$$
 فأوجد: ن (س) في أبسط صورة مبينناً مجال ن ، واحسب قيمة ن (۱)

الوحدة الثالثة: الاحصاء

العمليات على الأحداث

الاحتمال	الحدث	العملية
(1 ○ ト) = (1) + (ト) − (1 ○ ト)	ا ک ب	(وقوع الحدثين ۴ ، ب معاً)
ل (۱ ا ∪ ب) = ل (۱) + ل (ب) − ل (۱ ∩ ب)	م ں ب	وقوع الحدثين ۴ أو ب ،
		(أحدهما على الأقل)
(P) J – N = (P) J	[/] P	(عدم وقوع الحدث ٢)
ل (ب /) = ۱ – ل (ب)	ب/	(عدم وقوع الحدث ب)
ل (۱ − ب) = ل (۱) - ل (۱ ∩ ب)	۹ _ ب	(حدث وقوع ۹ فقط)
		أو أحد الحدث ٢ دون ب
ل (ب ۲) = ل (ب) - ل (ا	ب ٩	(حدث وقوع ب فقط)
		أو الحدث ب دون ۴
ل (۲ ∩ ب) = صفر	۵ = ب N	الحدثان المتنافيان

مثال ۱ : إذا كان ۲ ، ب حدثين من فضاء عينة لتجربة عشوائية ، وكان ل (۲) = ۰٫۰ ، ل (ب) = ۰٫۰

، ّل (۲ ∩ ب) = ۶٫۰ أوجد:

ب) احتمال وقوع الحدث ب وعدم وقوع الحدث ٢

٩) احتمال وقوع أحد الحدثين على الأقل

ج) احتمال عدم وقوع الحدث ٩

ب) احتمال وقوع الحدث ب وعدم وقوع الحدث ٢ = ل (ب − ٢) = ل (ب) - ل (٢ ∩ ب)

$$-,0=0$$
 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

(۱)كيس به ۱۲ كرة متماثلة ومرقمة من ۱ إلى ۱۲ ، سحبت منه كرة واحدة عشوائياً . فإذاكان ۴ هو حدث الحصول على عدد أولى فأوجد

(۲) إذا كان ۲ ، ب حدثين من فضاء عينة لتجربة عشوائية ، وكان : ل (۲) = ۲,۰ ، ل (۲ ∪ ب) = ۲,۰ ،
 ل (ب) = س فأوجد : قيمة س إذا كان :

۱) ل (
$$\gamma = (\gamma - \gamma) = \gamma, \gamma = (\gamma - \gamma)$$
 ، $\gamma = (\gamma - \gamma)$

(٣) إذا كان ٢ ، - حدثين من فضاء عينة لتجربة عشوائية ، وكان : ل (١) = ٠,٧ ، ل (-) = ٠,٠ ، ل (٣) إذا كان ٢ ، - . + .

 $\frac{1}{\mu} = (-1)$ ، $\frac{1}{\mu} =$

أولاً : أوجد ل(٢ ل ب) إذا كان ٢ ، بـ حدثين متنافيين

(٥)) إذا كان ٢ ، ب حدثين من فضاء عينة لتجربة عشوائية وكان : ل (٢) = ٠,٨ ، ل (ب) = ٠,٧ .

، ل (γ γ γ) = γ ، أوجد : ١) احتمال عدم وقوع الحدثين γ ، γ

٣) احتمال وقوع أحد الحدثين على الأقل ٤) احتمال وقوع أحد الحدثين دون وقوع الأخر