

INTRO TO QUANTUM COMPUTING

Week 8 Lab

MATHEMATICS FOR QUANTUM

<insert TA
 name>
<insert date>

PROGRAM FOR TODAY

Attendance quiz

Pre-lab zoom feedback

Questions from last week

Lab content

Post-lab zoom feedback

CANVAS ATTENDANCE QUIZ

- Please log into Canvas and answer your lab section's quiz (using the password posted below and in the chat).
 - This is lab number:
 - Passcode:

- How useful is your lab section?
- In general, how is the pacing of the lectures?
- This quiz not graded, but counts for your lab attendance!

PRE-LAB ZOOM FEEDBACK

On a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content

QUESTIONS FROM PAST WEEK

Why are we learning Python? Does a quantum computer understand Python?

Python is widely used to code, and IBM provides an interpreter for python code to run quantum computers

© 2020 The Coding School

QUESTIONS FROM PAST WEEK

There are more layers in the stack!

More discussion in semester 2 😊

LEARNING OBJECTIVES FOR LAB 8

- Using bra-ket notation to express qubits and inner products
 - Superposition states: Review
 - Normalization
 - Inner products: Review
- Understanding how to apply quantum gates to qubits: Review
- Develop intuition for measurements of qubit states
 - Measuring superposition qubit states
 - Expressing measurements with bra-ket notation*

UNDERSTANDING A CLASSICAL COMPUTER

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=168473

CLASSICAL COMPUTER -SIMPLIFIED

computer

Using a classical computer \square send input bits \square measure output bits

UNDERSTANDING A QUANTUM COMPUTER

By Self - Created in LaTeX using Q-circuit. Source code below., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14545830

QUANTUM COMPUTER-SIMPLIFIED

$$|\psi
angle$$
 –

$$|0\rangle$$
 -

input

computer

Using a quantum computer \square send input qubits \square measure output qubits

EXPRESSING QUBITS

BRA-KET NOTATION: REVIEW

ket column

: vector
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

bra row

: vector
$$|0\rangle^{\dagger} = \langle 0| = (1 \ 0)$$

$$|1\rangle^{\dagger} = \langle 1| = (0 \quad 1)$$

INNER PRODUCT NOTATION: REVIEW

inner product:

$$\langle \psi | \psi \rangle$$

What is $\langle 0|0\rangle$?

$$\langle 0|0\rangle = |0\rangle^{\dagger}|0\rangle$$

= $(1 \quad 0)\begin{pmatrix} 1\\0 \end{pmatrix} = 1$

INNER PRODUCT MEANING: REVIEW

inner product corresponds to the angle between vectors

PRACTICE WITH INNER PRODUCTS

What is $\langle 0|1\rangle$?

$$\langle 0|1\rangle = |0\rangle^{\dagger}|1\rangle$$
$$= (1 \quad 0) \begin{pmatrix} 0\\1 \end{pmatrix} = 0$$

SUPERPOSITION QUBIT STATES

Superposition state: a combination of $|0\rangle$ and $|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Example:

$$|\psi\rangle = i|0\rangle + 2|1\rangle = {i \choose 2}$$

 $|\psi\rangle$ has to be **normalized!**

STATE NORMALIZATION

Example:

$$|\psi\rangle = i|0\rangle + 2|1\rangle = {i \choose 2}$$

What is the normalized form of $|\psi\rangle$?

To ensure that the answers we get from the math are correct, qubit states **must** be normalized!

INNER PRODUCT WITH SUPERPOSITION STATES

$$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle = \frac{1}{\sqrt{2}} {1 \choose 1}$$

$$|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle = \frac{1}{\sqrt{2}} {1 \choose -1}$$

What is $\langle +|-\rangle$?

EXPRESSING QUBITS

EXPRESSING QUANTUM GATES

EXAMPLES OF QUANTUM GATES

You don't need to memorize these! Just look them up

Find the resulting state from applying a Z gate followed by an H gate to the initial state

$$|\psi\rangle = \frac{i}{\sqrt{5}}|0\rangle + \frac{2}{\sqrt{5}}|1\rangle$$

Step 1: Find the column vector form $|\psi\rangle$

Find the resulting state from applying a Z gate followed by an H gate to the initial state

$$|\psi\rangle = \frac{i}{\sqrt{5}}|0\rangle + \frac{2}{\sqrt{5}}|1\rangle$$

Step 2: Multiply the matrices of the H gate and Z gate

Find the resulting state from applying a Z gate followed by an H gate to the initial state

$$|\psi\rangle = \frac{i}{\sqrt{5}}|0\rangle + \frac{2}{\sqrt{5}}|1\rangle$$

Step 3: Multiply the resulting matrix with column vector

Find the resulting state from applying a Z gate followed by an H gate to the initial state

$$|\psi\rangle = \frac{i}{\sqrt{5}}|0\rangle + \frac{2}{\sqrt{5}}|1\rangle$$

QUESTIONS

Questions on content so far?

EXPRESSING QUANTUM GATES

quantum computer

EXPRESSING QUANTUM GATES

quantum computer

MEASURING CLASSICAL BITS

Classical computing

MEASURING QUANTUM BITS

Quantum computing

Quantum computing

Quantum computing

Probability of the result of measurement being $|0\rangle$: $|\alpha|^2$

Probability of the result of measurement being $|1\rangle$: $|\beta|^2$

UNANSWERED QUESTIONS ABOUT MEASUREMENT

• Why do we only measure for a 0 or 1?

Can we do a different kind of measurement?

What is the state of the qubit right after the measurement?

What would we get if we measured the qubit twice?

Coming up next semester!

IMPORTANT TAKEAWAYS

- Bra-ket notation
 - **Ket:** column vector
 - Bra: row vector
 - Inner product: Bra-ket

- Quantum gates are represented by matrices
 - Applying quantum gates to qubits → Multiplying the gate matrix by the qubit column vector

- The result of measuring a qubit state is probabilistic
 - $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, we get $|0\rangle$ with probability $|\alpha|^2$ and $|1\rangle$ with probability $|\beta|^2$

QUESTIONS

Questions on content so far?

POST-LAB ZOOM FEEDBACK

After this lab, on a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content

OPTIONAL CONTENT

INNER PRODUCT OF SUPERPOSITION STATE

Calculate the inner product $\langle 0|\psi\rangle$, for $|\psi\rangle = \frac{3i}{5}|0\rangle - \frac{4}{5}|1\rangle$

RELATING INNER PRODUCTS WITH MEASUREMENTS

Calculate the inner product $\langle 0|\psi\rangle$, for $|\psi\rangle = \frac{3i}{5}|0\rangle - \frac{4}{5}|1\rangle$

$$\langle 0|\psi\rangle = \frac{3\mathrm{i}}{5}$$

Prob. of measuring
$$|0\rangle = \left|\frac{3i}{5}\right|^2 = |\langle 0|\psi\rangle|^2$$

MEASUREMENTS AND BRA-KET NOTATION

For
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Prob. of measuring
$$|0\rangle = |\alpha|^2 = |\langle 0|\psi\rangle|^2$$

Prob. of measuring
$$|1\rangle = |\beta|^2 = |\langle 1|\psi\rangle|^2$$

