

FILE 'EMBASE, BIOSIS, MEDLINE, SCISEARCH, CAPLUS' ENTERED AT 10:59:56 ON
13 JAN 2005

L1 11 S (MESSENGER RNA ANTISENSE DNA)
L2 12 S (D-RNAI) OR (DRNAI) OR (D (1W) RNAI)
L3 5 S (MRNA-CDNA INTERFER?)
L4 4990 S CHIMERIC AND OLIGONUCLEOTIDE
L5 0 S RNA/DNA AND OLIGONUCLEOTIDE
L6 4285 S RNA(1W)DNA AND OLIGONUCLEOTIDE
L7 0 S L3 AND L4
L8 0 S L3 AND L6
L9 3 S (CDNA-ARNA)
L10 1 S RNA (W) HYBRID (W) CONSTRUCT

=> s 11 and 12
L11 9 L1 AND L2

=> dup rem 111
PROCESSING COMPLETED FOR L11
L12 4 DUP REM L11 (5 DUPLICATES REMOVED)

=> d iall 112

L12 ANSWER 1 OF 4 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN
ACCESSION NUMBER: 2003195139 EMBASE
TITLE: Erratum: D-RNAi (**messenger**
RNA-antisense DNA interference)
as a novel defense system against cancer and viral
infections (Current Cancer Drug Targets (2001) 1
(241-247)).
AUTHOR: Lin S.-L.; Ying S.-Y.
SOURCE: Current Cancer Drug Targets, (2003) 3/3 (237).
ISSN: 1568-0096 CODEN: CCDTB
COUNTRY: Netherlands
DOCUMENT TYPE: Journal; Errata
FILE SEGMENT: 016 Cancer
LANGUAGE: English
CONTROLLED TERM: Medical Descriptors:
*error
erratum

=> d iall 112 2-4

L12 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 2003:383764 CAPLUS
DOCUMENT NUMBER: 140:156350
ENTRY DATE: Entered STN: 20 May 2003
TITLE: D-RNAi (**messenger**
RNA-antisense DNA
interference) as a novel defense system against cancer
and viral infections. [Erratum to document cited in
CA136:128434]
AUTHOR(S): Lin, Shi-Lung; Suksaweang, Sanong; Chuong, Cheng-Ming;
Rasheed Suraiya; Ying, Shao-Yao
CORPORATE SOURCE: Epiclone, Inc., Alhambra, CA, 91801, USA
SOURCE: Current Cancer Drug Targets (2003), 3(3), 237
CODEN: CCDTB9; ISSN: 1568-0096
PUBLISHER: Bentham Science Publishers Ltd.
DOCUMENT TYPE: Journal; General Review
LANGUAGE: English

CLASSIFICATION: 1-0 (Pharmacology)
Section cross-reference(s): 13

ABSTRACT:

A review. On page 241, line 3, the names of Sanong Suksaweang, Cheng-Ming Chuong, and Suraiya Rasheed are added as the second, third, and fourth authors and the corrected affiliations (page 241, lines 4-6) are given. Shi-Lung Lin is the only author affiliated with Epiclone Inc., San Diego, CA, USA 92130. Shi-Lung Lin, Sanong Suksaweang, and Cheng-Ming Chuong are affiliated with the Department of Pathol., Keck School of Medicine, University of Southern California, HMR-209, 2011 Zonal Avenue, Los Angeles, CA USA 90033. Suraiya Rasheed is affiliated with the Laboratory of Viral Oncol. and AIDS Research, Department of Pathol., Keck School of Medicine, University of Southern California, Los Angeles CA 90032-3626. Shao-Yao Ying is affiliated with the Department of Cell and Neurobiol., Keck School of Medicine, BMT-401, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033. In Figure 3A on page 244, the albumin should be GAPDH.

SUPPL. TERM: erratum review RNA antisense DNA hybrid gene knockout;
cancer treatment mRNA antisense DNA hybrid review erratum;
viral infection mRNA antisense DNA hybrid review erratum

INDEX TERM: Antitumor agents
Antiviral agents
(D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

INDEX TERM: Gene
ROLE: BSU (Biological study, unclassified); BIOL (Biological study)
(expression; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

INDEX TERM: Gene targeting
(gene knock-out; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

INDEX TERM: mRNA
ROLE: BSU (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(hybrids with antisense DNA; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

INDEX TERM: Antisense DNA
ROLE: BSU (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(hybrids with mRNA; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

L12 ANSWER 3 OF 4 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN DUPLICATE 1

ACCESSION NUMBER: 2002338876 EMBASE

TITLE: Regulation of cell proliferation, apoptosis, and carcinogenesis by activin.

AUTHOR: Chen Y.-G.; Lui H.M.; Lin S.-L.; Lee J.M.; Ying S.-Y.

CORPORATE SOURCE: S.-Y. Ying, Department of Neurobiology, Keck School of

SOURCE: Medicine, University of Southern California, 1333 San Pablo Street (BMT-401), Los Angeles, CA 90089-9112, United States. sying@hsc.usc.edu
Experimental Biology and Medicine, (2002) 227/2 (75-87).
Refs: 180
ISSN: 0037-9727 CODEN: EBMMBE

COUNTRY: United States
DOCUMENT TYPE: Journal; (Short Survey)
FILE SEGMENT: 016 Cancer
029 Clinical Biochemistry
LANGUAGE: English
SUMMARY LANGUAGE: English

ABSTRACT:
The aim of this review is to provide insight into the molecular mechanisms by which activin A modulates cell proliferation, apoptosis, and carcinogenesis in vitro and in vivo. Activin A, a member of the TGF β superfamily, has various effects on diverse biological systems, including cell growth inhibition in many cell types. However, the mechanism(s) by which activin exerts its inhibitory effects are not yet understood. This review highlights activin's effects on activin receptors and signaling pathway, modulation of activin signaling, and regulation of cell proliferation and apoptosis by activin. Based on the experiences of all the authors, we emphasized cell cycle inhibitors such as p16 and p21 and regulators of apoptosis such as p53 and members of the bcl-2 family. Aside from activin's inhibition of cell proliferation and enhancement of apoptosis, other newly developed methods for molecular studies of apoptosis by activin were briefly presented that support the role of activin as an inhibitor of carcinogenesis and cancer progression. These methods include subtractive hybridization based on covalent bonding, a simple and accurate means to determine molecular profile of as few as 20 cells based on an RNA-PCR approach, and a messenger RNA-antisense ***DNA*** interference phenomenon (D-RNAi), resulting in a long-term gene knockout effects.

CONTROLLED TERM: Medical Descriptors:
*cell proliferation
*apoptosis
*carcinogenesis
cell growth
cancer growth
covalent bond
polymerase chain reaction
protein function
signal transduction
knockout gene
human
nonhuman
short survey
Drug Descriptors:
*activin A: EC, endogenous compound
*transforming growth factor beta
*activin receptor: EC, endogenous compound
protein p16
protein p21
protein p53
protein bcl 2

CAS REGISTRY NO.: (activin A) 104625-48-1; (protein p21) 85306-28-1; (protein bcl 2) 219306-68-0

L12 ANSWER 4 OF 4 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on STN
DUPLICATE 2

ACCESSION NUMBER: 2003:44652 BIOSIS
DOCUMENT NUMBER: PREV200300044652

TITLE: D-RNAi (Messenger RNA
-antisense DNA interference) as a novel defense system against cancer and viral infections.

AUTHOR(S): Lin, Shi-Lung; Ying, Shao-Yao [Reprint Author]

CORPORATE SOURCE: Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT-401, Los Angeles, CA, 90033, USA
sying@hsc.usc.edu

SOURCE: Current Cancer Drug Targets, (November 2001) Vol. 1, No. 3, pp. 241-247. print.
ISSN: 1568-0096 (ISSN print).

DOCUMENT TYPE: Article
General Review; (Literature Review)

LANGUAGE: English

ENTRY DATE: Entered STN: 15 Jan 2003
Last Updated on STN: 15 Jan 2003

CONCEPT CODE: Genetics - General 03502
Genetics - Animal 03506
Genetics - Human 03508
Biochemistry studies - General 10060
Biochemistry studies - Nucleic acids, purines and pyrimidines 10062
Biochemistry studies - Proteins, peptides and amino acids 10064
Neoplasms - Pathology, clinical aspects and systemic effects 24004
Development and Embryology - General and descriptive 25502
Genetics of bacteria and viruses 31500
Virology - General and methods 33502
Medical and clinical microbiology - Virology 36006
Major Concepts
Infection; Molecular Genetics (Biochemistry and Molecular Biophysics); Tumor Biology

INDEX TERMS: Diseases
cancer: neoplastic disease
Neoplasms (MeSH)

INDEX TERMS: Diseases
viral infections: viral disease
Virus Diseases (MeSH)

INDEX TERMS: Chemicals & Biochemicals
antisense DNA; bcl-2; messenger RNA; phorbol ester

INDEX TERMS: Miscellaneous Descriptors
apoptosis; gene silencing; messenger RNA-antisense DNA interference

ORGANISM: Classifier
Galliformes 85536
Super Taxa
Aves; Vertebrata; Chordata; Animalia
Organism Name
chicken (common): embryo, animal model
Taxa Notes
Animals, Birds, Chordates, Nonhuman Vertebrates,
Vertebrates
Classifier
Hominidae 86215
Super Taxa
Primates; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
H9 cell line (cell line): human CD4-positive T cell
LNCaP cell line (cell line): human prostate cancer cell

ORGANISM:

Taxa Notes
Animals, Chordates, Humans, Mammals, Primates,
Vertebrates

Classifier
Retroviridae 03305

Super Taxa
DNA and RNA Reverse Transcribing Viruses; Viruses;
Microorganisms

Organism Name
HIV-1 (miscellaneous) [Human immunodeficiency virus 1
(species)]: pathogen

Taxa Notes
DNA and RNA Reverse Transcribing Viruses,
Microorganisms, Viruses

GENE NAME:
beta-catenin gene

=> FIL STNGUIDE	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	76.44	77.70
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
CA SUBSCRIBER PRICE	ENTRY	SESSION
	-0.73	-0.73

FILE 'STNGUIDE' ENTERED AT 11:12:34 ON 13 JAN 2005
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE
AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Jan 7, 2005 (20050107/UP).

```
=> dup rem 12
COST IN U.S. DOLLARS          SINCE FILE      TOTAL
                                ENTRY        SESSION
FULL ESTIMATED COST          0.12           77.82

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE      TOTAL
                                                ENTRY        SESSION
CA SUBSCRIBER PRICE           0.00           -0.73
```

FILE 'EMBASE' ENTERED AT 11:13:42 ON 13 JAN 2005
COPYRIGHT (C) 2005 Elsevier Inc. All rights reserved.

FILE 'BIOSIS' ENTERED AT 11:13:42 ON 13 JAN 2005
Copyright (c) 2005 The Thomson Corporation.

FILE 'MEDLINE' ENTERED AT 11:13:42 ON 13 JAN 2005

FILE 'SCISEARCH' ENTERED AT 11:13:42 ON 13 JAN 20

FILE 'CAPLUS' ENTERED AT 11:13:42 ON 13 JAN 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)
PROCESSING COMPLETED FOR L2
L13 5 DUP REM L2 (7 DUPLICATES REMOVED)

=> d i all 113 1-5

L13 ANSWER 1 OF 5 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.

on STN

ACCESSION NUMBER: 2003195139 EMBASE

TITLE: Erratum: D-RNAi (messenger

RNA-antisense DNA interference) as a novel defense system
against cancer and viral infections (Current Cancer Drug
Targets (2001) 1 (241-247)).

AUTHOR: Lin S.-L.; Ying S.-Y.

SOURCE: Current Cancer Drug Targets, (2003) 3/3 (237).

ISSN: 1568-0096 CODEN: CCDTB

COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Errata

FILE SEGMENT: 016 Cancer

LANGUAGE: English

CONTROLLED TERM: Medical Descriptors:

*error

erratum

L13 ANSWER 2 OF 5 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2003:383764 CAPLUS

DOCUMENT NUMBER: 140:156350

ENTRY DATE: Entered STN: 20 May 2003

TITLE: D-RNAi (messenger RNA-antisense

DNA interference) as a novel defense system against
cancer and viral infections. [Erratum to document
cited in CA136:128434]

AUTHOR(S): Lin, Shi-Lung; Suksaweang, Sanong; Chuong, Cheng-Ming;
Rasheed Suraiya; Ying, Shao-Yao

CORPORATE SOURCE: Epiclone, Inc., Alhambra, CA, 91801, USA

SOURCE: Current Cancer Drug Targets (2003), 3(3), 237

CODEN: CCDTB9; ISSN: 1568-0096

PUBLISHER: Bentham Science Publishers Ltd.

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

CLASSIFICATION: 1-0 (Pharmacology)

Section cross-reference(s): 13

ABSTRACT:

A review. On page 241, line 3, the names of Sanong Suksaweang, Cheng-Ming Chuong, and Suraiya Rasheed are added as the second, third, and fourth authors and the corrected affiliations (page 241, lines 4-6) are given. Shi-Lung Lin is the only author affiliated with Epiclone Inc., San Diego, CA, USA 92130. Shi-Lung Lin, Sanong Suksaweang, and Cheng-Ming Chuong are affiliated with the Department of Pathol., Keck School of Medicine, University of Southern California, HMR-209, 2011 Zonal Avenue, Los Angeles, CA USA 90033. Suraiya Rasheed is affiliated with the Laboratory of Viral Oncol. and AIDS Research, Department of Pathol., Keck School of Medicine, University of Southern California, Los Angeles CA 90032-3626. Shao-Yao Ying is affiliated with the Department of Cell and Neurobiol., Keck School of Medicine, BMT-401, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033. In Figure 3A on page 244, the albumin should be GAPDH.

SUPPL. TERM: erratum review RNA antisense DNA hybrid gene knockout;
cancer treatment mRNA antisense DNA hybrid review erratum;
viral infection mRNA antisense DNA hybrid review erratum

INDEX TERM: Antitumor agents

Antiviral agents

(D-RNAi (mRNA-antisense DNA
interference) for posttranscriptional gene knockout as
novel defense system against cancer and viral infections
(Erratum))

INDEX TERM: Gene
ROLE: BSU (Biological study, unclassified); BIOL (Biological study)
(expression; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

INDEX TERM: Gene targeting
(gene knock-out; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

INDEX TERM: mRNA
ROLE: BSU (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(hybrids with antisense DNA; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

INDEX TERM: Antisense DNA
ROLE: BSU (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(hybrids with mRNA; D-RNAi (mRNA-antisense DNA interference) for posttranscriptional gene knockout as novel defense system against cancer and viral infections (Erratum))

L13 ANSWER 3 OF 5 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN DUPLICATE 1

ACCESSION NUMBER: 2002338876 EMBASE

TITLE: Regulation of cell proliferation, apoptosis, and carcinogenesis by activin.

AUTHOR: Chen Y.-G.; Lui H.M.; Lin S.-L.; Lee J.M.; Ying S.-Y.

CORPORATE SOURCE: S.-Y. Ying, Department of Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street (BMT-401), Los Angeles, CA 90089-9112, United States. sying@hsc.usc.edu

SOURCE: Experimental Biology and Medicine, (2002) 227/2 (75-87).
Refs: 180
ISSN: 0037-9727 CODEN: EBMMBE

COUNTRY: United States

DOCUMENT TYPE: Journal; (Short Survey)

FILE SEGMENT: 016 Cancer
029 Clinical Biochemistry

LANGUAGE: English

SUMMARY LANGUAGE: English

ABSTRACT:
The aim of this review is to provide insight into the molecular mechanisms by which activin A modulates cell proliferation, apoptosis, and carcinogenesis in vitro and in vivo. Activin A, a member of the TGF β superfamily, has various effects on diverse biological systems, including cell growth inhibition in many cell types. However, the mechanism(s) by which activin exerts its inhibitory effects are not yet understood. This review highlights activin's effects on activin receptors and signaling pathway, modulation of activin signaling, and regulation of cell proliferation and apoptosis by activin. Based on the experiences of all the authors, we emphasized cell cycle inhibitors such as p16 and p21 and regulators of apoptosis such as p53 and members of the bcl-2 family. Aside from activin's inhibition of cell proliferation and enhancement of apoptosis, other newly developed methods for molecular studies of apoptosis by activin were briefly presented that support the role of activin as an

inhibitor of carcinogenesis and cancer progression. These methods include subtractive hybridization based on covalent bonding, a simple and accurate means to determine molecular profile of as few as 20 cells based on an RNA-PCR approach, and a messenger RNA-antisense DNA interference phenomenon (**D-RNAi**), resulting in a long-term gene knockout effects.

CONTROLLED TERM: Medical Descriptors:
*cell proliferation
*apoptosis
*carcinogenesis
cell growth
cancer growth
covalent bond
polymerase chain reaction
protein function
signal transduction
knockout gene
human
nonhuman
short survey
Drug Descriptors:
*activin A: EC, endogenous compound
*transforming growth factor beta
*activin receptor: EC, endogenous compound
protein p16
protein p21
protein p53
protein bcl 2
CAS REGISTRY NO.: (activin A) 104625-48-1; (protein p21) 85306-28-1; (protein bcl 2) 219306-68-0

L13 ANSWER 4 OF 5 SCISEARCH COPYRIGHT (c) 2005 The Thomson Corporation. on
STN DUPLICATE 2

ACCESSION NUMBER: 2001:234339 SCISEARCH
THE GENUINE ARTICLE: 409XJ
TITLE: A novel mRNA-cDNA interference phenomenon for silencing
bcl-2 expression in human LNCaP cells
AUTHOR: Lin S L; Chuong C M (Reprint); Ying S Y
CORPORATE SOURCE: Univ So Calif, Keck Sch Med, Dept Pathol, HMR 209, 2011
Zonal Ave, Los Angeles, CA 90033 USA (Reprint); Univ So
Calif, Keck Sch Med, Dept Pathol, Los Angeles, CA 90033
USA; Univ So Calif, Keck Sch Med, Dept Cell & Neurobiol,
Los Angeles, CA 90033 USA; Epiclone Inc, Alhambra, CA
91801 USA
COUNTRY OF AUTHOR: USA
SOURCE: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (2
MAR 2001) Vol. 281, No. 3, pp. 639-644.
Publisher: ACADEMIC PRESS INC, 525 B ST, STE 1900, SAN
DIEGO, CA 92101-4495 USA.
ISSN: 0006-291X.

DOCUMENT TYPE: Article; Journal

LANGUAGE: English

REFERENCE COUNT: 26

ABSTRACT:

The templates required for inducing posttranscriptional gene silencing (PTGS) effects have been investigated in human prostate cancer LNCaP cells. Transfection of a mRNA-cDNA hybrid construct was found to result in a relatively long-term interference of specific gene expression. Androgen-stimulated expression of bcl-2 has been reported to increase the tumorigenic and metastatic potentials of human prostate cancer LNCaP cells, as well as their resistance to many apoptotic stimuli. The addition of bcl-2 antisense oligonucleotides, however, restored apoptosis. Our studies

demonstrate gene silencing effects of the mRNA-cDNA transfection that is similar to those of PTGS/RNAi in this in vitro prostate cancer cell model. A potential RNA-directed RNA polymerase activity was also detected which is alpha-amanitin-sensitive. These findings indicate that a novel gene silencing system may exist in mammalian cells. (C) 2001 Academic Press.

CATEGORY: BIOCHEMISTRY & MOLECULAR BIOLOGY; BIOPHYSICS
 SUPPLEMENTARY TERM: mRNA-cDNA interference phenomenon; (D-RNAi); posttranscriptional gene silencing (PTGS); RNA-directed RNA polymerase (RaRp); prostate cancer cells; bcl-2
 SUPPL. TERM PLUS: DOUBLE-STRANDED-RNA; PROSTATE-CANCER CELLS; C-ELEGANS; IN-VIVO; MESSENGER-RNA; GENE-FUNCTION; APOPTOSIS; RESISTANCE; POLYMERASE; DROSOPHILA

REFERENCE(S):

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	ARN PG (R PG)	Referenced Work (RWK)
BAULCOMBE D C	2000	1290	1108	SCIENCE
BERCHEM G J	1995	155	735	CANCER RES
BOSHER J M	2000	12	31	NAT CELL BIOL
COGONI C	1999	399	166	NATURE
COLOMBEL M	1993	143	390	AM J PATHOL
FILIPOVSKA J	2000	6	41	RNA
FIRE A	1998	391	806	NATURE
GRANT S R	1999	96	303	CELL
GRISHOK A	2000	287	2494	SCIENCE
HSIAO M	1997	233	359	BIOCHEM BIOPH RES CO
KETTING R F	1999	99	133	CELL
LIN S L	1999	27	4585	NUCLEIC ACIDS RES
LIN S L	1999	257	187	BIOCHEM BIOPH RES CO
MCCONKEY D J	1996	156	5594	CANCER RES
MISQUITTA L	1999	196	1451	P NATL ACAD SCI USA
MODAHL L E	2000	120	6030	MOL CELL BIOL
PALBHADRA M	1999	199	35	CELL
RAFFO A J	1995	155	4438	CANCER RES
REED J C	1990	150	6565	CANCER RES
SAMBROOK J	1989			MOL CLONING LAB MANU
SMARDON A	2000	110	169	CURR BIOL
TABARA H	1999	199	123	CELL
WARGELIUS A	1999	1263	156	BIOCHEM BIOPH RES CO
WIANNY F	2000	12	70	NAT CELL BIOL
YANG D	2000	110	1191	CURR BIOL
ZAMORE P D	2000	101	25	CELL

L13 ANSWER 5 OF 5 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on STN
 DUPLICATE 3

ACCESSION NUMBER: 2003:44652 BIOSIS
 DOCUMENT NUMBER: PREV200300044652
 TITLE: D-RNAi (Messenger RNA-antisense DNA interference) as a novel defense system against cancer and viral infections.
 AUTHOR(S): Lin, Shi-Lung; Ying, Shao-Yao [Reprint Author]
 CORPORATE SOURCE: Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT-401, Los Angeles, CA, 90033, USA
 sying@hsc.usc.edu
 SOURCE: Current Cancer Drug Targets, (November 2001) Vol. 1, No. 3, pp. 241-247. print.
 ISSN: 1568-0096 (ISSN print).
 DOCUMENT TYPE: Article
 General Review; (Literature Review)

LANGUAGE: English
ENTRY DATE: Entered STN: 15 Jan 2003
Last Updated on STN: 15 Jan 2003
CONCEPT CODE: Genetics - General 03502
Genetics - Animal 03506
Genetics - Human 03508
Biochemistry studies - General 10060
Biochemistry studies - Nucleic acids, purines and pyrimidines 10062
Biochemistry studies - Proteins, peptides and amino acids 10064
Neoplasms - Pathology, clinical aspects and systemic effects 24004
Development and Embryology - General and descriptive 25502
Genetics of bacteria and viruses 31500
Virology - General and methods 33502
Medical and clinical microbiology - Virology 36006
INDEX TERMS: Major Concepts
Infection; Molecular Genetics (Biochemistry and Molecular Biophysics); Tumor Biology
INDEX TERMS: Diseases
cancer: neoplastic disease
Neoplasms (MeSH)
INDEX TERMS: Diseases
viral infections: viral disease
Virus Diseases (MeSH)
INDEX TERMS: Chemicals & Biochemicals
antisense DNA; bcl-2; messenger RNA; phorbol ester
INDEX TERMS: Miscellaneous Descriptors
apoptosis; gene silencing; messenger RNA-antisense DNA interference
ORGANISM: Classifier
Galliformes 85536
Super Taxa
Aves; Vertebrata; Chordata; Animalia
Organism Name
chicken (common): embryo, animal model
Taxa Notes
Animals, Birds, Chordates, Nonhuman Vertebrates, Vertebrates
ORGANISM: Classifier
Hominidae 86215
Super Taxa
Primates; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
H9 cell line (cell line): human CD4-positive T cell
LNCaP cell line (cell line): human prostate cancer cell
Taxa Notes
Animals, Chordates, Humans, Mammals, Primates, Vertebrates
ORGANISM: Classifier
Retroviridae 03305
Super Taxa
DNA and RNA Reverse Transcribing Viruses; Viruses; Microorganisms
Organism Name
HIV-1 (miscellaneous) [Human immunodeficiency virus 1 (species)]: pathogen
Taxa Notes
DNA and RNA Reverse Transcribing Viruses, Microorganisms, Viruses

GENE NAME: beta-catenin gene

=> d iall 13 1-5

L3 ANSWER 1 OF 5 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN

ACCESSION NUMBER: 2001347960 EMBASE

TITLE: A novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells.

AUTHOR: Lin S.L.; Chuong C.M.; Ying S.Y.

CORPORATE SOURCE: C.M. Chuong, Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, United States.
chuong@pathfinder.hsc.usc.edu

SOURCE: Biochemical and Biophysical Research Communications, (2001) 281/3 (639-644).

Refs: 27

ISSN: 0006-291X CODEN: BBRCA

COUNTRY: United States

DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 016 Cancer
029 Clinical Biochemistry

LANGUAGE: English

SUMMARY LANGUAGE: English

ABSTRACT:
The templates required for inducing posttranscriptional gene silencing (PTGS) effects have been investigated in human prostate cancer LNCaP cells. Transfection of a mRNA-cDNA hybrid construct was found to result in a relatively long-term interference of specific gene expression. Androgen-stimulated expression of bcl-2 has been reported to increase the tumorigenic and metastatic potentials of human prostate cancer LNCaP cells, as well as their resistance to many apoptotic stimuli. The addition of bcl-2 antisense oligonucleotides, however, restored apoptosis. Our studies demonstrate gene silencing effects of the mRNA-cDNA transfection that is similar to those of PTGS/RNAi in this in vitro prostate cancer cell model. A potential RNA-directed RNA polymerase activity was also detected which is α -amanitin-sensitive. These findings indicate that a novel gene silencing system may exist in mammalian cells. .COPYRGT. 2001 Academic Press.

CONTROLLED TERM: Medical Descriptors:
*gene silencing
DNA template
prostate cancer
cancer cell culture
genetic transfection
gene expression
carcinogenesis
mutagenesis
apoptosis
enzyme activity
human
controlled study
human cell
article
priority journal
Drug Descriptors:
*messenger RNA
*complementary DNA
*protein bcl 2: EC, endogenous compound
antisense oligonucleotide

CAS REGISTRY NO.: RNA directed RNA polymerase
amanitin
(protein bcl 2) 219306-68-0; (RNA directed RNA polymerase)
9026-28-2; (amanitin) 11030-71-0

L3 ANSWER 2 OF 5 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on STN
ACCESSION NUMBER: 2001:207415 BIOSIS
DOCUMENT NUMBER: PREV200100207415
TITLE: A novel mRNA-cDNA interference
phenomenon for silencing bcl-2 expression in human LNCaP
cells.

AUTHOR(S): Lin, Shi-Lung; Chuong, Cheng-Ming [Reprint author]; Ying,
Shao-Yao

CORPORATE SOURCE: Department of Pathology, Keck School of Medicine,
University of Southern California, 2011 Zonal Avenue,
HMR-209, Los Angeles, CA, 90033, USA
chuong@pathfinder.hsc.usc.edu; sying@usc.edu

SOURCE: Biochemical and Biophysical Research Communications, (March
2, 2001) Vol. 281, No. 3, pp. 639-644. print.
CODEN: BBRCA9. ISSN: 0006-291X.

DOCUMENT TYPE: Article
LANGUAGE: English
ENTRY DATE: Entered STN: 25 Apr 2001
Last Updated on STN: 18 Feb 2002

ABSTRACT: The templates required for inducing posttranscriptional gene silencing (PTGS) effects have been investigated in human prostate cancer LNCaP cells. Transfection of a mRNA-cDNA hybrid construct was found to result in a relatively long-term interference of specific gene expression. Androgen-stimulated expression of bcl-2 has been reported to increase the tumorigenic and metastatic potentials of human prostate cancer LNCaP cells, as well as their resistance to many apoptotic stimuli. The addition of bcl-2 antisense oligonucleotides, however, restored apoptosis. Our studies demonstrate gene silencing effects of the mRNA-cDNA transfection that is similar to those of PTGS/RNAi in this in vitro prostate cancer cell model. A potential RNA-directed RNA polymerase activity was also detected which is alpha-amanitin-sensitive. These findings indicate that a novel gene silencing system may exist in mammalian cells.

CONCEPT CODE: Biochemistry studies - Proteins, peptides and amino acids
10064
Cytology - General 02502
Cytology - Animal 02506
Cytology - Human 02508
Genetics - General 03502
Genetics - Animal 03506
Genetics - Human 03508
Biochemistry studies - General 10060
Biochemistry studies - Nucleic acids, purines and
pyrimidines 10062
Enzymes - General and comparative studies: coenzymes
10802
Neoplasms - Pathology, clinical aspects and systemic
effects 24004

INDEX TERMS: Major Concepts
Biochemistry and Molecular Biophysics; Molecular
Genetics (Biochemistry and Molecular Biophysics); Cell
Biology; Tumor Biology

INDEX TERMS: Chemicals & Biochemicals
RNA polymerase: RNA directed; bcl-2: androgen-stimulated
expression, expression; cDNA [complementary DNA]; mRNA
[messenger RNA]

INDEX TERMS: Miscellaneous Descriptors
posttranscriptional gene silencing: effect

ORGANISM: Classifier
Hominidae 86215
Super Taxa
Primates; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
LNCaP cell line: human prostate cancer cells, model
Taxa Notes
Animals, Chordates, Humans, Mammals, Primates,
Vertebrates

ORGANISM: Classifier
Mammalia 85700
Super Taxa
Vertebrata; Chordata; Animalia
Organism Name
mammal
Taxa Notes
Animals, Chordates, Mammals, Nonhuman Vertebrates,
Nonhuman Mammals, Vertebrates

REGISTRY NUMBER: 9014-24-8 (RNA polymerase)

L3 ANSWER 3 OF 5 MEDLINE on STN
ACCESSION NUMBER: 2001216119 MEDLINE
DOCUMENT NUMBER: PubMed ID: 11237705
TITLE: A Novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells.
AUTHOR: Lin S L; Chuong C M; Ying S Y
CORPORATE SOURCE: Department of Pathology, Keck School of Medicine,
University of Southern California, HMR-209, 2011 Zonal Avenue, Los Angeles, California, 90033, USA.
SOURCE: Biochemical and biophysical research communications, (2001 Mar 2) 281 (3) 639-44.
Journal code: 0372516. ISSN: 0006-291X.
PUB. COUNTRY: United States
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200104
ENTRY DATE: Entered STN: 20010425
Last Updated on STN: 20010425
Entered Medline: 20010419

ABSTRACT:
The templates required for inducing posttranscriptional gene silencing (PTGS) effects have been investigated in human prostate cancer LNCaP cells. Transfection of a mRNA-cDNA hybrid construct was found to result in a relatively long-term interference of specific gene expression. Androgen-stimulated expression of bcl-2 has been reported to increase the tumorigenic and metastatic potentials of human prostate cancer LNCaP cells, as well as their resistance to many apoptotic stimuli. The addition of bcl-2 antisense oligonucleotides, however, restored apoptosis. Our studies demonstrate gene silencing effects of the mRNA-cDNA transfection that is similar to those of PTGS/RNAi in this *in vitro* prostate cancer cell model. A potential RNA-directed RNA polymerase activity was also detected which is alpha-amanitin-sensitive. These findings indicate that a novel gene silencing system may exist in mammalian cells.
Copyright 2001 Academic Press.

CONTROLLED TERM: Check Tags: Human
Base Sequence
Cell Line
DNA Primers
DNA, Complementary: GE, genetics
*DNA, Complementary: ME, metabolism

*Gene Silencing
*Genes, bcl-2
RNA, Messenger: GE, genetics
*RNA, Messenger: ME, metabolism
Transcription, Genetic
Tumor Cells, Cultured

CHEMICAL NAME: O (DNA Primers); O (DNA, Complementary); O (RNA, Messenger)

L3 ANSWER 4 OF 5 SCISEARCH COPYRIGHT (c) 2005 The Thomson Corporation. on
STN

ACCESSION NUMBER: 2001:234339 SCISEARCH

THE GENUINE ARTICLE: 409XJ

TITLE: A novel mRNA-cDNA interference
phenomenon for silencing bcl-2 expression in human LNCaP
cells

AUTHOR: Lin S L; Chuong C M (Reprint); Ying S Y

CORPORATE SOURCE: Univ So Calif, Keck Sch Med, Dept Pathol, HMR 209, 2011
Zonal Ave, Los Angeles, CA 90033 USA (Reprint); Univ So
Calif, Keck Sch Med, Dept Pathol, Los Angeles, CA 90033
USA; Univ So Calif, Keck Sch Med, Dept Cell & Neurobiol,
Los Angeles, CA 90033 USA; Epiclone Inc, Alhambra, CA
91801 USA

COUNTRY OF AUTHOR: USA

SOURCE: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (2
MAR 2001) Vol. 281, No. 3, pp. 639-644.

Publisher: ACADEMIC PRESS INC, 525 B ST, STE 1900, SAN
DIEGO, CA 92101-4495 USA.

ISSN: 0006-291X.

DOCUMENT TYPE: Article; Journal

LANGUAGE: English

REFERENCE COUNT: 26

ABSTRACT:

The templates required for inducing posttranscriptional gene silencing (PTGS) effects have been investigated in human prostate cancer LNCaP cells. Transfection of a mRNA-cDNA hybrid construct was found to result in a relatively long-term interference of specific gene expression. Androgen-stimulated expression of bcl-2 has been reported to increase the tumorigenic and metastatic potentials of human prostate cancer LNCaP cells, as well as their resistance to many apoptotic stimuli. The addition of bcl-2 antisense oligonucleotides, however, restored apoptosis. Our studies demonstrate gene silencing effects of the mRNA-cDNA transfection that is similar to those of PTGS/RNAi in this in vitro prostate cancer cell model. A potential RNA-directed RNA polymerase activity was also detected which is alpha-amanitin-sensitive. These findings indicate that a novel gene silencing system may exist in mammalian cells. (C) 2001 Academic Press.

CATEGORY: BIOCHEMISTRY & MOLECULAR BIOLOGY; BIOPHYSICS

SUPPLEMENTARY TERM: mRNA-cDNA interference
phenomenon; (D-RNAi); posttranscriptional gene silencing
(PTGS); RNA-directed RNA polymerase (RaRp); prostate
cancer cells; bcl-2

SUPPL. TERM PLUS: DOUBLE-STRANDED-RNA; PROSTATE-CANCER CELLS; C-ELEGANS;
IN-VIVO; MESSENGER-RNA; GENE-FUNCTION; APOPTOSIS;
RESISTANCE; POLYMERASE; DROSOPHILA

REFERENCE(S):

Referenced Author (RAU)		Year VOL ARN PG Referenced Work (R PY) (R VL) (R PG) (R WK)
BAULCOMBE D C		2000 290 1108 SCIENCE
BERCHEM G J		1995 55 735 CANCER RES
BOSHER J M		2000 2 31 NAT CELL BIOL
COGONI C		1999 399 166 NATURE

COLOMBEL M	1993 143	390	AM J PATHOL
FILIPOVSKA J	2000 6	41	RNA
FIRE A	1998 391	806	NATURE
GRANT S R	1999 96	303	CELL
GRISHOK A	2000 287	2494	SCIENCE
HSIAO M	1997 233	359	BIOCHEM BIOPH RES CO
KETTING R F	1999 99	133	CELL
LIN S L	1999 27	4585	NUCLEIC ACIDS RES
LIN S L	1999 257	187	BIOCHEM BIOPH RES CO
MCCONKEY D J	1996 56	5594	CANCER RES
MISQUITTA L	1999 96	1451	P NATL ACAD SCI USA
MODAHL L E	2000 20	6030	MOL CELL BIOL
PALBHADRA M	1999 99	35	CELL
RAFFO A J	1995 55	4438	CANCER RES
REED J C	1990 50	6565	CANCER RES
SAMBROOK J	1989		MOL CLONING LAB MANU
SMARDON A	2000 10	169	CURR BIOL
TABARA H	1999 99	123	CELL
WARGELIUS A	1999 263	156	BIOCHEM BIOPH RES CO
WIANNY F	2000 2	70	NAT CELL BIOL
YANG D	2000 10	1191	CURR BIOL
ZAMORE P D	2000 101	25	CELL

L3 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2001:157362 CAPLUS
 DOCUMENT NUMBER: 135:283853
 ENTRY DATE: Entered STN: 06 Mar 2001
 TITLE: A novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells
 AUTHOR(S): Lin, Shi-Lung; Chuong, Cheng-Ming; Ying, Shao-Yao
 CORPORATE SOURCE: Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
 SOURCE: Biochemical and Biophysical Research Communications (2001), 281(3), 639-644
 CODEN: BBRCA9; ISSN: 0006-291X
 PUBLISHER: Academic Press
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CLASSIFICATION: 3-4 (Biochemical Genetics)
 Section cross-reference(s): 1

ABSTRACT:
 The templates required for inducing posttranscriptional gene silencing (PTGS) effects have been investigated in human prostate cancer LNCaP cells. Transfection of a mRNA-cDNA hybrid construct was found to result in a relatively long-term interference of specific gene expression. Androgen-stimulated expression of bcl-2 has been reported to increase the tumorigenic and metastatic potentials of human prostate cancer LNCaP cells, as well as their resistance to many apoptotic stimuli. The addition of bcl-2 antisense oligonucleotides, however, restored apoptosis. Our studies demonstrate gene silencing effects of the mRNA-cDNA transfection that is similar to those of PTGS/RNAi in this *in vitro* prostate cancer cell model. A potential RNA-directed RNA polymerase activity was also detected which is α -amanitin-sensitive. These findings indicate that a novel gene silencing system may exist in mammalian cells. (c) 2001 Academic Press.

SUPPL. TERM: mRNA cDNA interference
 silencing bcl2 human LNCaP; prostate cancer cell silencing
 bcl2 D RNAi
 INDEX TERM: Animal cell line
 (LNCaP, *in vitro* prostate cancer model; novel

mRNA-cDNA interference
(D-RNAi) phenomenon for silencing bcl-2 expression in human LNCaP cells)

INDEX TERM: Gene, animal
ROLE: ADV (Adverse effect, including toxicity); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(bcl-2, silencing, by D-RNAi; novel mRNA-cDNA interference (D-RNAi) phenomenon for silencing bcl-2 expression in human LNCaP cells)

INDEX TERM: Prostate gland
(neoplasm, cells; novel mRNA-cDNA interference (D-RNAi) phenomenon for silencing bcl-2 expression in human LNCaP cells)

INDEX TERM: Antitumor agents
(potential; novel mRNA-cDNA interference (D-RNAi) phenomenon for silencing bcl-2 expression in human LNCaP cells)

INDEX TERM: Gene
(processes, similar to PTGS/RNAi, DNA-RNA interference, (D-RNAi), cDNA-mRNA hybrid; novel mRNA-cDNA interference (D-RNAi) phenomenon for silencing bcl-2 expression in human LNCaP cells)

INDEX TERM: 9026-28-2, RNA-directed RNA polymerase
ROLE: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence)
(RdRp-like enzyme for D-RNAi, α -amanitin-sensitive activity of; novel mRNA-cDNA interference (D-RNAi) phenomenon for silencing bcl-2 expression in human LNCaP cells)

REFERENCE COUNT: 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD.

REFERENCE(S):

- (1) Baulcombe, D; Science 2000, V290, P1108 CAPLUS
- (2) Berchem, G; Cancer Res 1995, V55, P735 CAPLUS
- (3) Bosher, J; Nat Cell Biol 2000, V2, P31
- (4) Cogoni, C; Nature 1999, V399, P166 CAPLUS
- (5) Colombel, M; Am J Pathol 1993, V143, P390 MEDLINE
- (6) Filipovska, J; RNA 2000, V6, P41 CAPLUS
- (7) Fire, A; Nature 1998, V391, P806 CAPLUS
- (8) Grant, S; Cell 1999, V96, P303 CAPLUS
- (9) Grishok, A; Science 2000, V287, P2494 CAPLUS
- (10) Hsiao, M; Biochem Biophys Res Commun 1997, V233, P359 CAPLUS
- (11) Kennerdell, J; Cell 1998, V95, P1017 CAPLUS
- (12) Ketting, R; Cell 1999, V99, P133 CAPLUS
- (13) Lin, S; Biochem Biophys Res Commun 1999, V257, P187 CAPLUS
- (14) Lin, S; Nucleic Acid Res 1999, V27, P4585 CAPLUS
- (15) McConkey, D; Cancer Res 1996, V56, P5594 CAPLUS
- (16) Misquitta, L; Proc Natl Acad Sci USA 1999, V96, P1451 CAPLUS
- (17) Modahl, L; Mol Cell Biol 2000, V20, P6030 CAPLUS
- (18) Pal-Bhadra, M; Cell 1999, V99, P35 CAPLUS
- (19) Raffo, A; Cancer Res 1995, V55, P4438 CAPLUS
- (20) Reed, J; Cancer Res 1990, V50, P6565 CAPLUS
- (21) Sambrook, J; Molecular Cloning: A Laboratory Manual 1989
- (22) Smardon, A; Curr Biol 2000, V10, P169 CAPLUS
- (23) Tabara, H; Cell 1999, V99, P123 CAPLUS
- (24) Wargelius, A; Biochem Biophys Res Commun 1999, V263, P156 CAPLUS

- (25) Wianny, F; Nat Cell Biol 2000, V2, P70 CAPLUS
- (26) Yang, D; Curr Biol 2000, V10, P1191 CAPLUS
- (27) Zamore, P; Cell 2000, V101, P25 CAPLUS