Logique, raisonnements

QCOP LGQ.1

- Expliquer le principe du raisonnement par contraposée.
- Montrer que

 $\forall n \in \mathbb{N}, \quad n \text{ est pair } \iff n^2 \text{ est pair.}$

% Montrer que

$$\forall n \in \mathbb{N}, \quad \frac{n(n^2+1)}{2} \in \mathbb{N}.$$

QCOP LGQ.2

- Expliquer le principe du raisonnement par l'absurde.
- Montrer que $\sqrt{2}$ est irrationnel.
- (a) Montrer que

$$\forall a, b \in \mathbb{Q}, \quad a + b\sqrt{2} = 0 \implies a = b = 0.$$

(b) Montrer que

$$\forall a, b, \alpha, \beta \in \mathbb{Q}, \quad a + b\sqrt{2} = c + d\sqrt{2} \implies \begin{cases} a = c \\ b = d. \end{cases}$$

1

QCOP LGQ.3

- \blacksquare Donner la définition de « la fonction f est strictement croissante sur le domaine D ».
- Montrer que la fonction racine carrée est strictement croissante sur son ensemble de définition.
- On admet que

$$\forall x \in]-1, +\infty[, \ln(1+x) \leqslant x.$$

Comparer les nombres

$$\frac{1}{\sqrt{\ln(2)}}$$
 et $\frac{1}{\sqrt{2}}$.

QCOP LGQ.4

- Comment peut-on montrer une inégalité?
- Montrer que

$$\forall x \in \mathbb{R}_+^*, \quad x + \frac{1}{x} \geqslant 2.$$

Soit $n \in \mathbb{N}^*$. Soient $x_1, \dots, x_n \in \mathbb{R}_+^*$. Minorer la somme

$$\sum_{i=1}^n \frac{{x_i}^2+1}{x_i}.$$

QCOP LGQ.5

- Enoncer le principe de récurrence simple.
- $holdsymbol{Soit}$ Soit $a\in\mathbb{R}\setminus\{1\}.$ Soit $m\in\mathbb{N}.$ Montrer que

$$\forall n \in \mathbb{N}, \quad n \geqslant m \implies \sum_{k=m}^{n} a^k = \frac{a^m - a^{n+1}}{1 - a}.$$

 \aleph Soit $n \in \mathbb{N}^*$. Calculer la somme

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{2^n}$$

et faire tendre n vers $+\infty$.

QCOP LGQ.6

- Expliquer le principe du raisonnement par analyse-synthèse.
- Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Montrer qu'il existe $f_p: \mathbb{R} \to \mathbb{R}$ paire et $f_i: \mathbb{R} \to \mathbb{R}$ impaire telles que

$$f = f_p + f_i$$
.

On considère

$$f: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \exp(x). \end{array} \right|$$

Déterminer les fonctions f_p et f_i .

QCOP LGQ.7

- Comment montrer l'unicité d'un objet dont on a établi l'existence?
- ightharpoonup Montrer l'unicité dans le théorème de division euclidienne dans \mathbb{Z} .
- Soit $n \in \mathbb{N}^*$. Soient $a, b \in \mathbb{Z}$. Montrer que

$$a \equiv b \ [n]$$
 \updownarrow

a et b ont le même reste dans la division euclidienne par n.

QCOP LGQ.8

Comment montrer un « ∀ » ?
Comment utiliser un « ∀ » ?

Soit $a \in \mathbb{R}$. On note les assertions suivantes :

$$(M_a)$$
 $\forall \varepsilon > 0, |a| \leqslant \varepsilon$
 (Z_a) $a = 0.$

Montrer que

$$(M_a) \iff (Z_a).$$

- \mathcal{Z} On considère « $(M_a) \implies (Z_a)$ ».
 - (a) Écrire la négation de cette implication.
 - (b) Écrire cette implication comme un « OU ».

QCOP LGQ.9

- Comment montrer l'existence d'un objet?
- **%** Soient $x, y \in \mathbb{R}$.
 - (a) Montrer qu'il existe $t \in \mathbb{R}$ tel que

$$x < t < y$$
.

(b) Montrer qu'il existe $t_1, t_2 \in \mathbb{R}$ tels que

$$x < t_1 < t_2 < y$$
.