NASA CR-

141564

SHUTTLE ENVIRONMENTAL AND THERMAL CONTROL/LIFE SUPPORT SYSTEM COMPUTER PROGRAM

INTERIM REPORT

BY FREDERICK A. ELFERS AND WILLIAM J. AYOTTE

PREPARED UNDER CONTRACT NAS 9-12411

By

HAMILTON STANDARD
DIVISION OF UNITED AIRCRAFT CORPORATION
WINDSOR LOCKS, CONN.

For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS 77058

FEB 1975

RECEIVED

MOST STI PROBLETT

INVEST STRANGE

DECEMBER 1974

(NASA-CR-141564) SHUTTLE ENVIRONMENTAL AND THERMAL CONTROL/LIFE SUPPORT SYSTEM COMPUTE PROGRAM Interim Report (Hamilton Standard CSCL 22

nnclas

ABSTRACT

SHUTTLE ENVIRONMENTAL AND THERMAL CONTROL/LIFE SUPPORT SYSTEM COMPUTER

PROGRAM

by

FREDERICK A. ELFERS &

WILLIAM J. AYOTTE

CONTRACT NAS 9-12411

DECEMBER 1974

This user's guide describes the computer programs developed to simulate the RSECS (Representative Shuttle Environmental Control System). These programs have been prepared to provide pretest predictions, post-test analysis and real-time problem analysis for RSECS test planning and evaluation. Hamilton Standard has provided these programs to the NASA on a magnetic tape cassette and on a disk device that is part of Crew Systems Division's WANG-2200 series computer system.

SHUTTLE ENVIRONMENTAL AND THERMAL CONTROL/LIFE SUPPORT SYSTEM COMPUTER PROGRAM

INTERIM REPORT

BY FREDERICK A. ELFERS AND WILLIAM J. AYOTTE

PREPARED UNDER CONTRACT NAS 9-12411

Ву

HAMILTON STANDARD
DIVISION OF UNITED AIRCRAFT CORPORATION
WINDSOR LOCKS, CONN.

For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS 77058

DECEMBER 1974

Hamilton OVISION DE UNITED AIRCRAFT CORPORATION Standard P®

FOREWORD

This report has been prepared by the Hamilton Standard Division of United Aircraft Corporation for the National Aeronautics and Space Administration's Lyndon B. Johnson Space Center in accordance with the requirements of Contract NAS9-12411, Space Shuttle ECS Computer Program. This interim report covers the work accomplished during calendar year 1974. A previous report SPOZT73, "Users Manual, Space Shuttle Atmospheric Revitalization Subsystem/Active Thermal Control Subsystem Computer Program" covered the work performed under this contract during calendar year 1973.

Appreciation is expressed to the NASA JSC Technical Monitor, Mr. James Jaaxs, for his support during the conduct of this program.

The Hamilton Standard technical personnel responsible for the work described herein are Mr. Frederick A. Elfers and Mr. William J. Ayotte. The program manager is Mr. Fred H. Greenwood.

It is expected that this contract will be continued during calendar year 1975. Another report covering this additional work will be published in December, 1975.

TABLE OF CONTENTS.

	Page No.
INTRODUCTION	1
RSECS STEADY STATE COMPUTER PROGRAM	2
RSECS FLOW CHART ROUTINE	33
350-M HEAT EXCHANGER TEST DATA ANALYSIS PROGRAM	38
350-M HEAT EXCHANGER PERFORMANCE PREDICTION PROGRAM	45
RSECS ARS GAS LOOP AP ROUTINE	48
GENERALIZED PLOT PROGRAM	50

Hamilton U Standard P®

LIST OF FIGURES

Figure No.	Title	Page No.
1	RSECS Steady State Computed Program Sample Case	3
2	RSECS ARS Gas Loop Schematic	5
3	RSECS Water Loop Schematic	6
4	RS-11 Fan Performance Map	12
5	RSECS 350-M Heat Exchanger Performance	13
6	RSECS 350-M Heat Exchanger Performance	14
7	RSECS 261 Heat Exchanger Performance	15
8	RSECS 261 Heat Exchanger Performance	1 6
9	RSECS 261 Heat Exchanger Performance	17
10	RSECS ARS Gas Loop Schematic	34
11	RSECS Water Loop Schematic	35
12	RSECS 350-M Heat Exchanger Performance/Hot Side	
	Balance Sample Cases	39
13	RSECS 350-M Heat Exchanger Performance/Cold Side	,
	Balance Sample Cases	40
14	RSECS 350-M Heat Exchanger Prediction Sample	
	Results	45
15	Sample Plot 1	55
16	Sample Plot 2	56
17	Sample Plot 3	57

Hamilton U Standard A®

LIST OF TABLES

Table No.	Title	Page No.
I	Input Data Baldadda	
ī	Input Data Definition	7
II	Output Data Definition	10
III	Internal Data Summary	18
. IV	Data Array	19
v	Input Data Array	22
AI	Logic Key Array	22
VII	Scalar Variables Summary List	22
VIII	Subroutine Description	23
IX	Program Listing (RSECS)	26
X	Program Listing (RSECS 2)	36
XI	Program Listing (350-M HX)	41
XII	Program Listing (COND HX)	46
XIII	Program Listing (ARS DP)	49
XIV	Plotter Setup and Program Inputs	51
xv	Program Listing (Plot)	58

INTRODUCTION

To fulfill the requirements of Contract NAS 9-12411, for calendar year 1974, Hamilton Standard has developed the computer programs listed below. These programs were written to support the RSECS (Representative Shuttle Environmental Control System) test program presently being conducted.

- "RSECS" Calculates a steady state heat balance for a combined RSECS ARS (Air Revitalization Subsystem) gas and water coolant loop system. Required input data consists of RSECS heat loads, flow rates and controller settings, and GSE (Ground Support Equipment) flow rate and inlet temperature.
- "RSECS2"- Draws flow charts of RSECS air loop and water loop. This program is used in conjunction with program "RSECS".
- "350-M Hx" Analyzes 350-M heat exchanger test data. Calculates heat loads and heat transfer coefficients for the heat exchanger. Required input consists of operating temperatures and flow rates at the heat exchanger.
- "CONDEX" -Calculates 350-M RSECS cabin heat exchanger performance using measured inlet air conditions of temperature and dew point, and inlet coolant conditions of temperature and flow. Used to predict results of heat exchanger tests.
- "ARS DP" Calculates the corrected pressure drop of the Hamilton Standard supplied RSECS ARS gas loop equipment. The calculations are detailed to the package level. Required input data includes the total air flow rate, and the number of RS-11 fans operating.
- "PLOT" Generalized plot program used to produce plots of results of RSECS analysis or any other desired data, using a WANG 2200 flat bed plotter.

Hamilton Standard has provided these programs to the NASA on a magnetic tape cassette and on a disk device that is part of the Crew Systems Division's WANG 2200 - series computer system. This user's guide is written for the person who has an understanding of the BASIC computer language and is acquainted with the WANG 2200 system.

RSECS STEADY STATE COMPUTER PROGRAM

File Name "RSECS"

Abstract "RSECS" calculates the steady state operating point, for a given set of input data, for the combined RSECS gas and water coolant loops. The program is designed for use with a WANG 2200 - series computer system. A sample case is shown in figure 1.

Program Description

This user's guide is written for the person who has an understanding of the BASIC computer language and is acquainted with the WANG 2200 - series computer system. The program models the functional gas, figure 2, and water loop, figure 3, schematics enclosed.

Rotating equipment characteristics are supplied as input data. However, performance maps for the 350-m and RS-261 heat exchangers are stored in the program as internal data, in addition to Freon-21 and water vapor properties. These data tables are interpolated by using an adaptation of the Hamilton Standard Division's "UNBAR" routine.

As written, the program uses Freon-21 as the RS-261 heat exchanger's cold side fluid. Minor changes to the data tables are required if another fluid is to be considered. The Freon enthalpy table must be revised to reflect the new fluid. A revised RS-261 heat exchanger performance map must be generated and incorporated.

The "Input Data Definition", Table I, provides the user with the information required to supply the program with the appropriate input data. The input data for all the cases is loaded into its storage array prior to the execution of the first case. At the completion of the first case, the results will be printed, the data array cleared and up-dated for the second case, and the second case started. The user has the option of matching the RS-261 heat exchanger's heat load or hot side operating temperatures to Shuttle conditions. When the Shuttle temperatures are duplicated, the NASA-supplied heat sink will compensate for the heat not rejected through the RS-261 heat exchanger.

RSECS STEADY STATE COMPUTER PROGRAM

INPUT DATA -

RIIN #: SAMPLE CASE 1 - MIN LOAD 29000 P/L SYS DATE: 7/3/74

T RS-20 SETPT Q CHAM AVIONICS RS-11 POWER	=	70.00 0.00 970.00	Q CHAMBER-S CO2 INLET FLOW RS-51 FLOW	= =	0.00 0.00 10.00	Q CHAMBER-L RS-11 FLOW RS-51 POWER	=	1268.00 317.00 185.00
RS-251 FLOW	=	779.00	RS-251 POWER	=	73.00	H2O BYPASS FLOW	=	281.00
Q H2O AVIONICS	= :	11109.00	T RS-261 F21 IN	=	35.50	W RS-261 F21	=	2587.00
GAS LOOP OUTPUT	DAT	A -						
T CHAMBER	=	70.00	TOTAL AIR FLOW	=	1418.04	Q RS-11	=	3311.58
T DEMPOINT	= '	50.06	WCP RS-11	=	345.21	0 RS-50 -S	=	0.00
T RS-11 IN	==	70.00	WCP 350-M	=	90.68	0 RS-50 -L	==	0.00
T RS-50 IN	=	79.59	V 350-M	=	73.27	Q RS-51	=	631.59
T 350-11 III	=	79.59	V RYPASS	=	233.72	0 350-M -S	=	3943.17
T 350-M OUT	=	36.10	N CONDENSATE	=	1,19	Q 350-M -L	=	1360.00
T RS-51 OUT	=	94.10	на 350-м	=	799.27	0 350-м -тот	=	5211.17
COOLANT LOOP OUT	ישיות	DATA -						
T RS-261 H20 OUT	=	35.99	T 350-H H20 IN	=	35.99	T 350-M H20 OUT	=	46.46
T RS-251 H20 IN		54.68	T AVION H20 IN	=	55.00	T RS-261 H20 IN	=	69.27
T RS-261 F21 OUT	=	61,47	W RS-261/350-M	=	498,00	Q H2O HTSINK	==	0.00
Q RS-251	=	249.22	Q RS-261	=	16569.39			

FIGURE 1 RSECS STEADY STATE COMPUTER PROGRAM SAMPLE CASE

RSECS STEADY STATE COMPUTER PROCRAM

DATE: 7/3/74

RUH #: SAMPLE CASE 2 - PRELAURCH 21500 P/L SYS

```
INPUT DATA -
T RS-20 SETPT
                      73.00 O CHAMBER-S
                                                  6352.00 O CHAMBER-L
                                                                                2769.00
O CHAM AVIONICS
                   4190.00 CO2 IMLET FLOW
                                                     0.00 RS-11 FLOW
                                                                                 317.00
RS-11 POWER
                      970.00 RS-51 FLOW
                                                    10.00 RS-51 POWER
                                                                                135.00
RS-251 FLOW
                     697.00 RS-251 POWER
                                                    69.00 H20 BYPASS FLOW
                                                                                  0.00
O H2O AVIONICS
                 = 26051.00 \text{ T RS}-261 \text{ F21 III} =
                                                    36.20 W RS-261 F21
                                                                               2843.00
GAS LOOP OUTPUT DATA -
T CHAMBER
                      73.00 TOTAL AIR FLOW
                                                 1376.47 O RS-11
                                                                               3311.58
T DEMPORE
                      55.25 VCP RS-11
                                                   336.10 9 RS-50 -S
                                                                                  0.00
T RS-11 IN
                      85.46 UCP 350-M
                                                   309.97 O RS-50 -L
                                                                                  0.00
T RS-50 IN
                      95.31 V 350-M
                                                   282.35 0 RS-51
                                                                                631.59
T 350-M IN
                      95.31 V BYPASS
                                                    24.64 0 350-M -S
                                                                            = 14435.17
Т 350-и опт
                      48.58 W COMDENSATE
                                                     2.60 0 350-M -L
                                                                            = 2769.00
T RS-51 OUT
                     108.15 UA 350-M
                                               = 1309.38 0 350-M -TOT
                                                                            = 17254.17
COOLANT LOOP OUTPUT DATA -
T RS-261 H20 OUT =
                      42.58
                             T 350-M H20 IN
                                                   42.80 \text{ T } 350\text{-M H2O OUT} =
                                                                                 67.55
T RS-251 H20 IN =
                      67.55
                            T AVION H20 IN
                                                   67.89 T RS-261 H20 IM =
                                                                                105.20
T RS-261 F21 OUT =
                      97.24 W RS-261/350-M
                                                  697.00 Q H20 HTSINE
                                                                               -146.99
Q RS-251
                     235.56 Q RS-261
                                              = 43639.79
```

FIGURE 1 RSECS STEADY STATE COMPUTER PROGRAM SAMPLE CASE (CONCLUDED)

FIGURE 2 RSECS ARS GAS LOOP SCHEMATIC

FIGURE 3 RSECS WATER LOOP SCHEMATIC

Hamilton U Standard A®

Table I

INPUT DATA DEFINITION

CRT	PRINTED	
SYMBOL	SYMBOL	DESCRIPTION
# of cases	not printed	number of cases to be run (1 - 10)
date	date	Time identification (16 characters, max)
are flow charts de- sired	not printed	1 if yes 2 if no
is printout desired	not printed	1 if yes 2 if no
run desig- nation	run #	identifying notation for individual case (64 characters, max)
T RS-20 SETPT	T RS-20 SETPT	RS-20 temperature controller setting for chamber; program will try to balance system at this point (OF)
Q cham-S	Q chamber-S	sum total of all non-RSECS sensible heat added to the chamber (Btu/Hr)
Q cham-L	Q chamber-L	sum total of all non-RSECS latent heat added to the chamber (Btu/Hr)
Q avionics	Q cham avionics	sensible heat supplied by the cabin avionics simulator (Btu/Hr)
CO ₂ flow	CO ₂ inlet flow	CO ₂ injection rate into the chamber (Lb/Hr)
RS-11 flow	RS-11 flow	total air flow generated by the RS-11 fans (cfm)
RS-11 power	RS-11 power	RS-11 fans input power (watts)
RS-51 flow	RS-51 flow	RS-51 separator air flow rate (cfm)
RS-51 power	RS-51 power	RS-51 separator input power (watts)
RS-251 flow	RS-251 flow	RS-251 pump flow rate (Lb/Hr)

Hamilton U Standard He

Table I
INPUT DATA DEFINITION (CONCLUDED)

CRT SYMBOL	PRINTED SYMBOL	DESCRIPTION
RS-251 power	RS-251 power	RS-251 pump input power (watts)
bypass flow	H ₂ O bypass flow	RS-251 pump package bypass flow rate (Lb/Hr)
Q simulator	Q H ₂ O avionics	sensible heat supplied by the H ₂ O loop avionics simulator (Btu/Hr)
т 350M H ₂ O in	not printed	desired 350-M HX H ₂ O inlet temp. If > 0 the heat req'd to compensate for the difference between this temp. and the RS-261 HX outlet will be calculated. If = 0 the H ₂ O heat sink Q will be set at 0 and the RS-261 HX outlet temp. will be used (°F)
T 261 H ₂ O in	not printed	desired RS-261 HX $\rm H_2O$ inlet temp. must be > 0 if T 350M $\rm H_2O$ in is > 0 / or must = 0 if T 350M $\rm H_2O$ in = 0 ($^{\rm O}$ F)
T 261 F21 in	T RS-261 F21 IN	RS-261 HX cold side inlet temperature ($^{ m O}$ F)
261 F21 flow	W RS-261 F21	RS-261 HX cold side flow rate (Lb/Hr)

Hamilton OVISION OF UNITED AIRCHAFT CORPORATION Standard .

The "Output Data Definition", Table II, provides the user with a description of the output data's printed symbols. Two sample cases are provided to assist the user in understanding the data tables and the program operation.

For user reference, the following information is enclosed:

- 1. RS-11 Fan Performance Map, figure 4
- 2. 350-M Heat Exchanger Performance Curves

Hot Side Film Coefficient vs. Air Velocity, figure 5

Cold Side Film Coefficient vs. Water Flow Rate Per Start, figure 6

 RS-261 Heat Exchanger Performance Maps, Effectiveness vs. Hot and Cold Side Flow Rates.

Uses Cold Side Fluid of - Freon-21, figure 7

- Water/Glycol, figure 8
- Water, figure 9
- 4. Internal Data Summary, Table III
- 5. Data Array, Table IV
- 6. Input Data Array, Table V
- 7. Logic Key Array, Table VI
- 8. Scalar Variable Summary List, Table VII
- 9. Subroutine Descriptions, Table VIII
- 10. Program Listing, Table IX

Hamilton U Standard ARCHAFT CORPORATION ARCHAFT CORPORATION

Table II
OUTPUT DATA DEFINITION

PRINTED SYMBOL	DESCRIPTION
T chamber	steady state chamber temperature (^O F)
total air flow	air weight flow at the RS-11 fans (Lb/Hr)
Q RS-11	sensible heat generated by the RS-11 fans (Btu/Hr)
T dewpoint	chamber dewpoint temperature (^O F)
WCP RS-11	air weight flow X specific heat at the RS-11 fans (Btu/Hr - ^O F)
Q RS-50-S	sensible heat generated by the LiOH/CO ₂ reaction (Btu/Hr)
T RS-11 in	RS-11 fans inlet temperature (^O F)
WCP 350-M	air weight flow X specific heat through the 350-M HX (Btu/Hr - ^O F)
Q RS-50-L	latent heat generated by the LiOH/CO ₂ reaction (Btu/Hr)
T RS-50 in	RS-50 LiOH assembly inlet temperature (^O F)
V 350-м	air flow rate exiting the 350-M HX (cfm)
Q RS-51	sensible heat generated by the RS-51 separator (Btu/Hr)
T 350-M in	350-M HX air inlet temperature (^O F)
V bypass	air flow rate through the 350-M HX bypass (cfm)
Q 350-M-S	350-M HX sensible heat load (Btu/Hr)
T 350-M out	350-M HX air outlet temperature (°F)
W condensate	condensate flow rate exiting the RS-51 separator (Lb/Hr)
Q 350-M-L	350-M HX latent heat load (Btu/Hr)

Hamilton U Standard ARCHART CORRESPONDED AND ARCHART CORRESPONDED ARCHART CORRESPONDED AND ARCHART CORRESPONDED ARCHART CORRESPONDED ARCHART CORRESPONDED ARCHART CORRESPONDED ARCHART CORRESPONDED

Table II
OUTPUT DATA DEFINITION (CONCLUDED)

PRINTED SYMBOL	DESCRIPTION
T RS-51 out	RS-51 separator air outlet temperature (^O F)
UA 350-M	350-M HX UA (Btu/Hr - °F)
Q 350-M -TOT	350-M HX total heat load (Btu/Hr)
T RS-261 H ₂ O out	RS-261 HX H ₂ O outlet temperature (°F)
T 350-M H ₂ O in	350-M HX H ₂ O inlet temperature (^O F)
T 350-M H ₂ O out	350-M H ₂ O outlet temperature (°F)
T RS-251 H ₂ O in	RS-251 pump inlet temperature (°F)
T avion H ₂ O in	H ₂ O loop avionics simulator inlet temperature (°F)
T RS-261 H ₂ O in	RS-261 HX H ₂ O inlet temperature (°F)
T RS-261 F21 out	RS-261 HX cold side outlet temperature
W RS-261/350-M	RS-261/350-M HX H ₂ O flow rate (Lb/Hr)
Q H ₂ O HTSINK	H ₂ O loop heat sink load (Btu/Hr)
Q RS-251	heat generated by the RS-251 pump
Q RS-261	RS-261 HX heat load (Btu/Hr)

FIGURE 4 RS-11 FAN PERFORMANCE MAP

FIGURE 5 RSECS 350-M HEAT EXCHANGER PERFORMANCE

FIGURE 6 RSECS 350-M HEAT EXCHANGER PERFORMANCE

FIGURE 7 RSECS 261 HEAT EXCHANGER PERFORMANCE

Hamilton Standard

FIGURE 8 RSECS 261 HEAT EXCHANGER PERFORMANCE

FIGURE 9 RSECS 261 HEAT EXCHANGER PERFORMANCE

Table III

INTERNAL DATA SUMMARY

STORAGE	
LOCATION	DATA DESCRIPTION
1-25	Freon temperatures, 0-240°F in 10° increments
26–50	Freon enthalpy, Btu/Lb, corresponding to tempera- tures in locations 1-25
51-70	Water vapor temperatures, 32-70°F in 2° increments
71–90	Water vapor pressure, PSIA, corresponding to tempera- tures in locations 51-70
91-118	350-M HX air side film coefficient curve, $\eta_{oh_{0}}$ vs. velocity 91: # of X values (13) 92: # of Y values (0) 93-103: air velocity, 100-1300 ft/min in 100 ft/min increments 104-118: $\eta_{oh_{0}}$, Btu/Hr-Ft ² - o F, corresponding to air velocities in locations 93-103
119-138	350-M HX H ₂ O side film coefficient curve, h _c vs. flow/start 119: # of X values (9) 120: # of Y values (0) 121-129: flow/start, 100-500 Lb/Hr in 50 Lb/Hr increments 130-138: h _c , Btu/Hr-Ft ² o _F , corresponding to flow/ start in locations 121-129
139-211	RS-261 HX effectiveness map; H ₂ 0/F21, T F21 - in = 40°F 139: # of X values (8) 140: # of Y values (7) 141-148: H ₂ 0 flow, 200-900 Lb/Hr in 100 Lb/Hr increments 149-155: F21 flow, 1500-4500 Lb/Hr in 500 Lb/Hr increments 156-211: HX effectiveness in following order: X ₁ , Y ₁ , X ₁ , Y ₂ ,X ₁ Y ₇ ,X ₂ Y ₁ X ₂ Y ₇ ,X ₈ Y ₇

Table IV DATA ARRAY

Provides storage for individual case calculations

ARRAY	
LOCATION	DATA DESCRIPTION
1	RS-20 temperature controller set point
2	Non-RSECS sensible heat added to the chamber
3	Non-RSECS latent heat added to the chamber
4	Cabin avionics simulator heat load
5	CO ₂ injection flow rate to chamber
6	RS-11 fans total volumetric flow rate
7	RS-11 fans power requirement
. 8	RS-51 separator volumetric flow rate
9	RS-51 separator power requirement
10	RS-251 pump total mass flow rate
11	RS-251 pump power requirement
12	H ₂ O bypass mass flow rate
13	H ₂ O loop avionics simulator heat load
14	350-M HX H ₂ O inlet temperature
15	RS-261 HX H ₂ O inlet temperature
16	RS-261 HX F21 inlet temperature
17	RS-261 HX F21 mass flow rate
18	Chamber temperature
19	RS-11 fan heat load
20	Sensible heat generated by the CO ₂ /LiOH reaction

Table IV DATA ARRAY (CONTINUED)

- Provides storage for individual case calculations

	Carcaractons
ARRAY LOCATION	DATA DESCRIPTION
21	Latent heat generated by the CO ₂ /LiOH reaction
22	RS-51 separator heat load
23	Sensible heat at the 350-M HX inlet - air side
24	350-M HX total sensible heat
25	350-M HX total latent heat
26	350-M HX total heat load
27	RS-251 pump heat load
28	H ₂ O loop sink heat load
29	RS-261 HX heat load
30	RS-261/350-M HX's H ₂ O mass flow rate
31	RS-261 HX H ₂ O outlet temperature
32	RS-261 HX F21 outlet temperature
33	350-M HX H ₂ O outlet temperature
34	RS-251 pump H ₂ O inlet temperature
35	H ₂ O loop avionics simulator inlet temperature
36	RS-11 fan air mass flow rate X specific heat
37	350-M HX air mass flow rate X specific heat
38	RS-11 fan inlet temperature
39	RS-11 fan air mass flow rate
40	Chamber temperature from previous iteration

Hamilton
Standard

Hamilton
Standard

He

Hamilton
He

Hamilton

Table IV
DATA ARRAY (CONCLUDED)

ARRAY LOCATION	DATA DESCRIPTION
41	350-M HX UA req'd from previous iteration
42	Chamber dewpoint
43	350-M HX minimum air flow rate - decimal fraction of total flow
44	350-M HX air inlet temperature
45	350-M HX air outlet temperature
46	350-м нх иа
47	350-M HX volumetric air flow rate
48	350-M HX bypass volumetric air flow rate
49	RS-50 LiOH assembly inlet temperature
50	RS-51 separator air outlet temperature
51	RS-51 separator condensate mass flow rate
101 - 200	Reserved for internal data storage for table interpolation

Table V
INPUT DATA ARRAY

- Provides input data storage for a maximum of 10 cases

ARRAY LOCATION	DATA DESCRIPTION
1,1 - 1,17	Case #1 input data: corresponds to X-array locations 1-17
2,1 - 2,17	Case #2 input data
10,1 - 10,17	Case #10 input data

Table VI

LOGIC KEY ARRAY

- Provides storage for program keys

ARRAY LOCATION	DATA DESCRIPTION
1	Case # being run
2	Max # of cases to be run
3	Flow chart key
4	Print-out key

Table VII
SCALAR VARIABLES SUMMARY LIST

В\$	M2	U2
E1	` Q1	
		U3
E2	Q2	W1
н	T1	Z
н1	Т2	Z1
Н2	U	
К	U	
M1	U1	·

Table VIII

SUBROUTINE DESCRIPTIONS

SUBROUTINE	
NUMBER	SUMMARY
01	Interpolates data curves that have been transferred to the X-array in locations 101-200 Array must be set-up in following order: X(101): # of X-values (N) X(102): # of Y-values (M) X(103) - X (102 + N): X-values in ascending order X(102 + N + 1) - X(102 + N + M): Y-values in ascending
	order, omit if $M = 0$ X(102 + N + M + 1) - X(200): Z-values in following order - $Z(N_1, M_1)$, $Z(N_1, M_2)$, $Z(N_1, M)$, $Z(N_2, M_1)$, $Z(N_2, M)$,
	Array and scalar variables used: Al(6)
	X1(6) Y1(6) C1
	C2 C3 C4
	D D1
	D2 I I1
	J J1
	J2 J7 J8
	J9 K1
į	K8 L
	L7 L8 M
	N N1
	N2 N8

Hamilton U Standard ARCHAET CORPORATION ARCHAET CORPORATION

Table VIII
SUBROUTINE DESCRIPTIONS (CONTINUED)

SUBROUTINE	
NUMBER	SUMMARY
	N9 Z1
02	Calculates air flow rate X Cp by iterating 350-M HX air outlet temperature and chamber dewpoint Scalar variables:
03	Calculates air dewpoint at 350-M HX inlet Scalar variables: A2 C P2 Z1
04	Calculates 350-M HX hA _{hot} and UA Scalar variables: E H1 H2 V1 Z1
05	Calculates 350-M HX NTU's Scalar variables: E3 K M3
06	Calculates chamber dewpoint Scalar variables: A2 F P2 Z1

Hamilton U AIRCHAET CORPORATION Standard A®

Table VIII
SUBROUTINE DESCRIPTIONS (CONCLUDED)

SUBROUTINE NUMBER	SUMMARY
07	Calculates air weight flow and Cp by iterating RS-11 fan inlet temperature Scalar variables: C3 G P1 P2 R1 R2 R3 Z1
08	Calculates density of dry air and water vapor Scalar variables: P4 R3 R4
10	Calculates RS-11 fan, RS-50 LiOH assembly and 350-M HX air inlet temperatures
11	Calculates 350-M HX air outlet temperature

PROGRAM LISTING

```
10 REM REECS ARS/H20 LOOP PERFORMANCE
 20 COM X(200), A(10,17), A$(10)64, B$, Y(4)
 30 IF Y(1)]1 THEN 250: Y(1)=1
40 REM FREON PROPERTIES - TEMPERATURE (1):
     DATA 0 ,10 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90 ;100,110,120,
          130,140,150,160,170,180,190,200,210,220,230,240
 50 REM FREON PROPERTIES - ENTHALPY (26):
     DATA 9.44 ,11.81,14.21,16.61,19.04,21.49,23.98,26.49,29.03,
          31.59, 34.18, 36.79, 39.46, 42.13, 44.86, 47.62, 50.43, 53.2
              ,59 ,62 ,65 ,68 ,71
 60 DATA 56
 70 REM WATER VAPOR PROPERTIES - TEMPERATURE (51):
  DATA 32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,
          68,70
80 REM WATER VAPOR PROPERTIES - PRESSURE (71):
    DATA .08854, .09603, .10401, .11256, .1217 , .1315 , .14199,
         15323, 16525, 17811, 19182, 20642, 222
90 DATA .2563 ,.2751 ,.2951 ,.3164 ,.339 ,.3631
100 REM 350-M HX AIR SIDE FILM COFFEIGHENT (91):
    DATA 13 ,0 ,100 ,200 ,300 ,400 ,500 ,600 ,700 ,800
          900 ,1000,1100,1200,1300
110 DATA 9.6 ,13.2,15.6,17.7,19.5,21.2,22.6,24 ,25.3,26.4
          27.5,28,5,29.6
120 REN 350-M HX H20 SIDE FILM COEFFICIENT (119):
    DATA 9 , n ,100,150,200,250,300,350,400,450,500,134,198,
          282,370,463,560,655,765,860
130 REM 261 HY EFFECTIVENESS MAP - F21/H20, T-F21=40F (139):
               ,700 ,200 ,300 ,400 ,500 ,600 ,700 ,800
          900
               ,1500 ,2000 ,2500 ,3000 ,3500 ,4000 ,4500 ,1
                     ,1.
140 DATA 1
                                        , I
                                              ,.9376,.9995.1
                            , 1
                                  , ].
                           , 1
                                  ,.884 ,.9836,.998 ,.9997,.9999
                     ,.736 ,.9113,.9793,.9952,.9987,.9996,.9999
150 DATA .618 ,.8023,.9232,.9743,.9913,.9968,.9987,.5308,.7003,
          .8405,.9274,.9689,.9864,.9937,.4649,.6169,.7556,.862,
          .9282,.9635,.981 ,.4132,.5496,.6797,.7914,.8739,.9268
160 DATA .9577
170 IMPUT "# OF CASES "
                                             (1-10): ", Y(2):
    INPUT "DATE
                                                      B$:
    IMPHE "ARE FLOW CHARTS DESIRED, (YES=1/HO=2): "
                                                      Y(3)
180 IMPUT "IS PRIMEOUT DESIRUD,
                                      (VES=1/MO=2): ".Y(4):
    FOR Z=1 TO Y(2): SELECT PRIME 005: PRINT "CASE # = ";Z:
    IMPUT "RUN DESIGNATION
                                  : ",A$(Z)
                         (ETU/HR) = {}^{11}_{,A}(Z,1):
(ETU/HR) = {}^{11}_{,A}(Z,2):
(ETU/HR) = {}^{11}_{,A}(Z,2):
190 IMPUT "T RS-20 SETPT (DEC F) = "
    IMPHE "Q CHAM+S
    INPIT "O CHAM-L
200 IMPUT "O AVIONICS
                         (BTU/HP) = ",A(Z,A):
    DIPUT "CO2 FLOU
                          (LB/HR) = ",A(Z,5):

(CFM) = ",A(Z,6)
    INPUT "RS-11 FLOW .
```

PROGRAM LISTING (CONTINUED)

```
(WATTS) = ",A(\mathbb{Z}_{9}7):
 210 INPUT "RS-11 POWER
                             (CFM) = "
    INPUT "RS-51 FLOW
                                      .A(7.8):
    INPUT "RS-51 POWER
                           (WATTS) = ^{n} A(Z,9)
                          (LB/HR) = H
220 INPUT "RS-251 FLOW
                                      ,\Lambda(Z,10):
    INPUT "RS-251 POWER
                          (WATTS) = ".A(Z.11):
    INPUT "BYPASS FLOW
                          (LE/HR) = ".A(Z,12)
    INPUT "T 350M H20 IN (DEG F) = ",A(Z,13):
INPUT "T 261 B00 TH
230 IMPUT "O SIMULATOR"
    INPUT "T 261 H20 IN (DEG F) = ",A(Z,15)
240 IMPUT I'T 261 F21 III (DEC F) = ",A(Z,16):
    IMPUT "261 F21 FLOW (LB/HR) = ",A(Z,17):
    NEXT Z
250 IF Y(1)[=Y(2) THEN 260: Y(1)=0: REWLID : COTO 840
260 FOR Z=1 TO 17: X(Z)=A(Y(1),Z): MEXT Z: X(18)=X(1):
    X(19)=3.414*X(7): X(20)=875*X(5): X(21)=427.5*X(5):
    X(22)=3.414*X(9); X(23)=X(4)+X(19)+X(20)
270 \times (24) = X(2) + X(22) + X(23) : X(25) = X(3) + X(21) :
    X(26)=X(24)+X(25): X(27)=3.414*X(11): X(30)=X(10)-X(12):
    RESTORE 139: FOR Z=101 TO 173: READ X(Z): HEXT Z
280 GOSÉB 101(X(30),X(17)): E1=Z1: IF X(15)=0 THEN 290:
    X(31)=X(15)-E1*(X(15)-X(16)): X(29)=X(30)*(X(15)-X(31)):
    X(28)=X(30)*(X(31)-X(14)): @0TO 300
290 X(28)=0: X(29)=X(26)+X(27)+X(13):
    X(31)=X(16)+X(29)/X(30)*(1/E1-1): X(15)=X(31)+X(29)/X(30):
    X(14)=X(31)
300 X(101)=25: X(102)=0: RESTORE 1: FOR Z=103 TO 152: READ X(Z):
    NEXT Z: GOSUB '01(X(16),0): H1=Z1: H2=H1+X(29)/X(17):
    RESTORE 26: FOR Z=103 TO 127: READ X(Z): MEXT Z
310 RESTORE 1: FOR Z=128 TO 152: READ X(Z): NEXT Z:
    GOSUR ^{1}01(H2,0): X(32)=71: X(33)=X(14)+X(26)/X(30):
    X(34)=(X(33)*X(30)+X(15)*X(12))/X(10)
320 X(35)=X(34)+X(27)/X(10): X(40)=0: X(41)=0: X(42)=50:
    X(43) = .1271676: X(39) = 2380.656 * X(6) / (X(18) + 459.6):
    X(36)=.24*X(39): X(37)=X(36): W1=X(30)/2: RESTORE 119
330 FOR Z=101 TO 120: READ X(Z): NEXT Z: GOSUB '01(W1.0):
     H1=7.3008*Z1: GOSUB '02: COSUB '10: GOSUB '11:
    IF X(45) = X(14) THEN 360
340 X(45)=X(45)+1; X(44)=X(45)+X(24)/X(37);
    X(18)=X(44)-X(23)/X(36): COSUB '02: GOSUB '10: GOSUB '11
350 IF X(45) [X(14) THEM 340
360 GOSUB '03: GOSUB '04: H=H2/H1:
    T1=(X(37)*X(44)+X(30)*(H*X(42)+X(42)-X(33)))/
       (H*X(30)+X(37))
370 Q1=X(37)*(T1-X(45)): Q2=Q1+X(25): IF Q2[X(26)] THEN 380:
    U1=0: T2=X(33): T1=X(44): 01=X(24): 02=X(26): GOTO 390
380 T2=X(42)-H*(T1-X(42)): IF T2]=T1 THEN 510:
    El=(X(44)-T1)/(X(44)-T2): Ml=X(30)/X(37): GOSUB '05(E1,M1):
    UL=K*X(37)
```

ORIGINAL PAGE IS OF POOR QUALITY

PROGRAM LISTING (CONTINUED)

```
390[E2=(T1-X(45))/(T1-X(14)): M2=X(30)*01/X(37)/02:
    GOSUB *05(E2,M2): U2=K*X(37)*Q2/Q1:
    U3=((1/H)/(1+1/H))*Q1/Q2+(1/(1+1/H)): U=U1+U2*U3
400 IF U=X(46) THEN 550: IF U]X(46) THEN 510: IF X(14)]=X(45)
    THEN 550: IF X(18) | X(1) THEN 430: IF X(37) | X(43) * X(36)
    THEN 430: X(45)=X(14): X(37)=X(43)*X(36)
410 X(44) +X(45) +X(24)/X(37): X(18) =X(44) -X(23)/X(36): GOSUB '06:
    GOSUB '07: X(37)=X(43)*X(36): GOSUB '10:
    T1=X(44)-X(24)/X(37)
420 E1=(ABS(T1-X(45)))/X(45): IF E1]=.5E-4 THEN 410: GOTO 550
430 IF X(18)=X(1) THEN 440: X(40)=X(18): X(41)=U:
   X(18) +X(18) -.1: GOSUE '02: GOTO 460
440:E1=(ABS(U-X(46)))/X(46): IF E1[.5E-2 THEN 550:
    *X(45)*X(14)+(%(45)*X(14))*U/X(46);
    X(37)\pm X(24)/(X(44)-X(45)): GOSUB '06: GOSUB '07: GOSUB '10
450'X(37) + X(24) / (X(44) - X(45)): IF X(37)] = X(43) * X(36) THEN 460:
    X(37)+X(43)*X(36)
A60 GOSUB 10: GOSUB 11: IF X(45)]=X(14) THEN 360:
    IF X(18)]X(1) THEN 490:
   4 \times (37) + \times (24) / (\times (23) / \times (36) + \times (18) - \times (14)) : \times (45) = \times (14)
470 GOSUB: 106: GOSUB 107: GOSUE 110: X(37)=X(24)/(X(44)-X(45)):
    IF X(37)]=X(43)*X(36) THEN 360: X(37)=X(43)*X(36):
    GOSTB 111: GOSTB 106: GOSTB 107: GOSTB 110
480 X(37) ± X(43) ± X(36) : GOSUB '11: GOTO 360
490 X(45)+X(14): X(18)=X(45)+(X(24)-X(23))/X(36): GOSUB 102:
    GOSUB: 10: T1=X(44)-X(24)/X(37)
500 El=(AES(T1-X(45)))/X(45): LF El]=.5E-4 THEN 490: GOTO 550
510 IF X(45)=X(44) THEN 530: E1=(ABS(U-X(46)))/X(46):
    IF E1[.5E-2 THEN 550: X(37)=X(24)/(X(44)-X(45)-.1):
    IF X(37)[=X(36)] THEN 520: X(37)=X(36)
520 GOSUB '10: GOSUB '11: GOSUB '06: GOSUB '07: GOSUB '10:
    X(37)=X(24)/(X(44)-X(45)): IF X(37) [=X(36) THEN 360:
    X(37)=X(36): GOSUB '11: GOTO 360
530 IF (X(40)-X(18))[].1 THEN 540:
    X(18)=X(18)+.1*((U-X(46))/(U-X(41))): GOSUB '02: GOSUE '10:
   GOSUR '11: GOTO 550
560 X(18)=X(18)+1: GOSUB '02: GOSUB '10: GOSUB '11: GOTO 360
550 GOSUB '06: GOSUB '07: GOSUB '10: GOSUB '11:
    X(48)=X(6)+(X(36)-X(37))/X(36): X(47)=X(6)-X(48)-X(8):
    X(50)=X(45)+X(22)+X(6)/X(36)/X(8): X(51)=X(25)/1065
560 IF Y(4)=1 THEN 570: GOTO 660
570 SELECT PRINT 211(156): PRINT HEX(ODOE):
    PRINT "RSECS STEADY STATE COMPUTER PROGRAM":
   PRINT HEX (OAOAOA)
580 PRINT "RID! #: ";A$(Y(1)):
                   ";B$: PRINT HEX(OAOA):
    PRINE "DATE :
    PRINT "INPUT DATA -"
590 PRINTUSING 680,X(1),X(2),X(3):.
   PRINTUSING 690,X(6),X(5),X(6):
    PRIMTUSING 700,X(7),X(8),X(9)
```

PROGRAM LISTING (CONTINUED)

		-
the state of the s	Age of the second	
600 PRINTUSING 710,X(10),X(11),X(12):		
PRINTUSING 720, $X(13)$, $X(16)$, $X(17)$:	•	
PRINT HEX (OAOA)		
610 PRINT "GAS LOOP QUEPUT DATA -":		
PRINTUSING 730,X(18),X(39),X(19):	4	
PRINTUSING 740, X(42), X(36), X(20)		
,620 PRINTUSING 750,X(38),X(37),X(21):		
PRINCHISING 760, X(49), X(47), X(22):		
PRINTUSING 770, X (44), X (48), X (24)		
630 PRINTUSING 780, X(45), X(51), X(25):		
PRINTUSING 790,X(50),X(46),X(26):		
PRINT HEX (OA)		
640 PRINT "COOLANT LOOP OUTPUT DATA -":		
PRINTUSING 800,X(31),X(14),X(33):		
PRINTUSING 810,X(34),X(35),X(15)		
650 PRINTUSING 820,X(32),X(30),X(28):		
PRINTUSING 830,X(27),X(29):		
PRINT HEX (OAOAOAOAOAOAOAOAOAOA)		
660 IF Y(3)=2 THIN 670: LOAD "RSECS2"		
670 Y(1)=Y(1)+1: GOTO 250	* .	
680 %T RS-20 SETPT =-#####。## O CHAMBER-S	=-######.##	Ú
CHAIBER-L =-#####.##	* *	
690 %Q CHAM AVIONICS =-######,## CO2 INLET FLOW	##########	R
S-11- FLOW =-#####.##		
700 ZRS-11 POWER =-#####.## RS-51 FLOW	=_#########	R
S-51 POWER =-#####.##		
710 %RS-251 FLOW ==#####.## RS-251 POWER	=-#####.##.	Π
20 BYPASS FLOW =-#####.##	1	
720 %0 H20 AVIONICS =-##### T RS-261 F21 IN	=-#####################################	\mathbf{K}
RS-261 F21 =-#####.##		
730 %T CHAMBER =-##### TOTAL AIR FLOW	=-##########	Ō.
RS-11 =-#####.##		
740 %T DEWPOINT =-#####.## WCP RS-11	=-#########	Ú
RS-50 -S =-##精雅#.##		
750 ZT RS-11 III =-#####.## WCP 350-M	=-#########	O,
RS-50 -I. =-#########		
760 %T RS-50 IN =-#####.## V 350-M	=-44########	Ú
RS-51 =-#####.##		
770 %T 350-M IN =-#####.## V BYPASS 350-M -S =-#####.##	=-########	Ģ
780 %T 350-M OUT =-####### W CONDENSATE	=-#####	n
350-M -I. ==-\$####.##		
790 %T RS-51 OUT =-#####.## UA 350-M	=-########	Q
350-M -TOT =-#####.##	, , , , , , , , , , , , , , , , , , , ,	
800 %T RS-261 H20 OUT =-###### T 350-M H20 IN	=-###### . 77 #	T
350-N H20 OUT =-#####.##		_
810 TT RS-251 H20 IN =-非常非非。非非 T AVIO IN PO IN PO IN TO IN TO IN THE TRANSPORT TO IN	=-#####################################	Ţ
RS-261 H2O IN =-#####.##		

Table IX

PROGRAM LISTING (CONTINUED)

```
=-###### O
820 %T RS-261 F21 OUT =-##### · ## U RS-261/350-M
=-#####. ##
                     ==####### O RS-261
830 %0 RS-251
840 END
850 DEFFN'01(C1,D1)
860 DITCAL(6), X1(6), Y1(6)
870 I1=101: N=3: N2=2
880 IF X(I1)=3 THEM 920: IF X(I1)]3 THEN 930:
   IF X(I1) [O THEN 950: IF X(I1)=0 THEN 920:
   IF X(I1)=2 THEN 900: IF X(I1)]2 THEN 920
890 N=1: GOTO 910
900 N=2
910 N2=1 · ·
920 II=II+1
930 N1=N+1"
940 L=11: IF X(L)]0 THEN 960
950 K1=-1: Z1=0: GOTO 1230
960~N9=X(L):
- IF X(L+1)[0 THEN 950: IF X(L+1)]0 THEN 980
970 N8=0': GOTO 990
980 N8=X(L+1)
990 K1=0: K8=0: C2=C1: J1=I1+2: J2=N9+I1+1:
   IF G2(X(J1) THEN 1030: IF C2=X(J1) THEN 1040
1000 FOR J=J1 TO J2: IF C2[=X(J) THEN 1050: NEXT J
1010 K1=2: C2=X(J2)
1020 J9=J2-M: GOTO 1060
1030 K1=1: C2=X(J1)
1040 J9=J1: GOTO 1060
1050 IF J-J1[1 THEN 1030: IF J-J1=1 THEN 1040:
    IF J=J2 THEN 1020: IF J]J2 THEN 1010:
    J9=J-N2
1060 C3=C2: IF N8]O THEN 1070: FOR L=1 TO N1: X1(L)=X(J9):
    L3=J9+HP: Y1(L)=X(L8): J9=J9+1: NEXT L: I=1: GOTO 1150
1070 J1=J1+H9: J2=J2+H8: D2=D1: IF D2[X(J1) THEN 1100:
     IF D2=X(J1) THEN 1110: FOR J=J1 TO J2:
     IF p2[=X(J) TPEN 1120: MEXT J
1080 K8=6: D2=X(J2)
1000 JS=J2-N: GOTO 1130
1100 K8=3: D2=X(J1)
1110 J8=J1: GOTO 1130
1120 IF J-J1[1 THEN 1100: IF J-J1=1 THEN 1110:
TITE J=J2 THEN 1090: IF J]J2 THEN 1090: J8=J-M2
1130 J7=J9: L8=J9+M8*(J7-I1-1): L7=L8: FOR L=1 TO N1:
     XL(L)=X(J7): YL(L)=X(L7): L7=L7+18: J7=J7+1: NEXT L:
     I=0: GOTO 1150
1140 Y1(1)=Z1: FOR I=1 TO N: L7=L8+I: Y1(I+1)=0: FOR M=1 TO M1:
     Y1(I+1)=Y1(I+1)+X(L7)*X1(H): L7=L7+N8: NEXT M: NEXT I:
     FOR L=1 TO N1: XI(L)=X(J8): J8=J8+1: NEXT L: C3=D2: L=1
```

Table IX

PROGRAM LISTING (CONTINUED)

```
1150 D=1: X1(N+2)=X1(1): X1(N+3)=X1(2): FOR J=1 TO N1:
     A1(J+1)=X1(J+1)-X1(J): C4=C3-X1(J): IF C4[]0 THEN 1170:
     Z1=Y1(T): X1(1)=0: X1(2)=0: X1(3)=0: X1(4)=0
1160 X1(J)=1: GOTO 1220
1170 D=D*C4: OH H GOTO 1180,1190,1200
1180 X1(J)=C4/A1(J+1): GOTO 1210
1190 X1(J)=-C4: GOTO 1210
1200 \times 1(J) = (X1(J+2)-X1(J))*C4
1210 NEXT J: A1(1)=A1(N+2): Z1=0: FOR J=1 TO N1:
     X1(J)=D/(A1(J)*A1(J+1)*X1(J)): Z1=Z1+Y1(J)*X1(J):
     NEXT J
1220 IF I =0 THEN 1140
1230 K1=K1+K8: SMLECT PRINT 005:
     PRINT "OFF TABLE INDICATOR =";K1
1240 RETURN
1250 DEFFN 02
1260 FOR B=1 TO 4: GOSUE ^{1}07: X(37)=X(36):
     X(45)=X(18)-(X(24)-X(23))/X(36): GOSUB 106: GOSUB 107:
     NEXT B: X(37) = X(36)
1270 RETURN
1280 DEFFN. 03
1290 X(101)=20: X(102)=0: RESTORE 51: FOR C=103 TO 142:
     READ X(C): NEXT C: GOSUB '01(X(45).0): P2=Z1:
     A2 = .622 \times P2/(14.696 - P2) + x(25) *x(36)/1065/x(39)/x(37)
1300 FOR C=1 TO 3: P2=A2*(14.696-P2)/.622: NEXT C:
     RESTORE 71: FOR C=103 TO 122: PEAD X(C): MEXT C:
     RESTORE 51: FOR C=123 TO 142: READ X(C): MEXT C
1310 GOSUB '01(P2.0): X(42)=Z1:
     RETURN
1320 DEFEN 04
1330 V1=X(6)*X(37)/.8815/X(36): RESTORE 91: FOR E=191 TO 128:
     READ X(E): MEXT E: GOSUB '01(V1.0): H2=118.48928*Z1:
     X(46)=1/(1/H1+1/H2)
1340 RETURN
1350 DEFFN'05(E3 M3)
1360 IF M3=1 THEN 1370: IF M311 THEN 1380:
     K=M3/(1-M3)*LOG((1-E3)/(1-E3/M3)): GOTO 1390
1370 K=E3/(1-E3): GOTO 1390
1380 K=M3/(H3-1)*LOG((1-E3/H3)/(1-E3))
1390 RETURN
LACO DEFERMACE
1410 GOSUB 103: A2=A2-X(21)/1065/X(39): FOR F=1 TO 3:
     P2=A2*(14.696-P2)/.622: NEXT F: GOSUB *101(P2,0): X(42)=Z1:
     RETURN!
1420 DEFFN'07
1430 X(101)=20: X(102)=0: RESTORE 51: FOR G=103 TO 142:
     READ X(G): NEXT G: GOSUB '01(X(42),0): P1=Z1:
     GOSTB '08(P1,85.76): R1=R3: P2=14.696-P1
```

OF POOR QUALITY

Table IX

PROGRAM LISTING (CONCLUDED)

1440 GOSUB '08(P2,53.35): R2=R3: R3=(85.76*R1+53.35*R2)/(R1+R2): C3=.24+.2799*P1/P2: FOR G=1 TO 6 X(36)=C3*X(39): NEXT G: RETURN 1460 DEFFN'08 (P4,R4): R3=144*P4/R4/(X(18)+459.6): RETURN 1470 DEFEN'10: X(38)=X(18)+X(4)/X(36): x(49)=x(18)+(x(4)+x(19))/x(36) $13480 \times (44) = \times (18) + \times (23) / \times (36) :$ RETURN 1490 DEFFN'11: X(45)=X(44)-X(24)/X(37):

Hamilton Division of United AIRCHAFT COMPONATION Standard Page

RSECS FLOW CHART ROUTINE

File Name "RSECS2"

Abstract "RSECS2" automatically produces flow chart output (on previously prepared schematic drawings) of the case currently being analized by the program "RSECS". The flow

charts are produced using the WANG 2200 plot bed plotter.

Program Description

A data block containing values generated by "RSECS" is transferred through use of a common block to program "RSECS2". This program then sorts the data and prints out the values in the appropriate location on the schematic. Two separate schematics are used, one for the air loop and one for the water loop. Samples of program output are given in figures 10 and 11 followed by a program listing Table X included for reference.

The only user action required for this program is the loading of the appropriate schematic on the plotter as required.

FIGURE 10 RSECS ARS GAS LOOP SCHEMATIC

DATE: 10/17/74 CASE: MIN ON ORBIT B/P 500

Q = HEAT BTU/HR T = TEMP DEG F

W = FLOW LB/HR

FIGURE 11 RSECS WATER LOOP SCHEMATIC

Table X

PROGRAM LISTING

```
10 REM RSECS2 PROGRAM LABELS DIAGRAM
20 COM X(200), A(10,17), A$(10)64, B$, Y(4)
30 DIM, X$(100)8, B(100)
40 SELECT PRINT 005: PRINT HEX(03):
PRINT "RSECS FLOW CHART ROUTINE": PRINT
                50 FOR I=1 TO 51
60 IF ABS(X(I))]=100000 THEN 80:
IF ABS(X(I))]=10000 THEN 90:
: :
                                              IF ABS(X(I))]=1000 THEN 100
                  70 IF ABS(X(I))]=100 THEN 110:

IF ABS(X(I))]=10 THEN 120:

IF ABS(X(I))]=1 THEN 130:GOTO 140
            THEN 130:GOTO 140

80 CONVERT X(I) TO X$(I), (-#####):B(I)=0:GOTO 150

90 CONVERT X(I) TO X$(I), (-####*):B(I)=0:GOTO 150

100 CONVERT X(I) TO X$(I), (-###*#):B(I)=0:GOTO 150

110 CONVERT X(I) TO X$(I), (-###*#):B(I)=1:GOTO 150

120 CONVERT X(I) TO X$(I), (-####):B(I)=1:GOTO 150

130 CONVERT X(I) TO X$(I), (-#*##):B(I)=2:GOTO 150

140 CONVERT X(I) TO X$(I), (-#*##):B(I)=2:GOTO 150

150 NEXT I
                       150 NEXT 1
                   160 SELECT PLOT 414
170 STOP "LOAD GAS LOOP SCHEMATIC ON PLOTTER THEN KEY CONTINUE"
            170 STOP "LOAD GAS LOOP SCHEMATIC ON PLOTTER THEN KEY CONTINUE"

180 PLOT [1,,C],[13,0,S],[,R]

190 PLOT [19.50*13,29.50*20,U],[,,X$(18)],[B(18)*13,0,U]

200 PLOT [-7*13,-20,U],[,,X$(42)],[B(42)*13,0,U]

210 PLOT [-7*13,-20,U],[,,X$(2)],[B(2)*13,0,U]

220 PLOT [-7*13,-20,U],[,,X$(3)],[B(3)*13,0,U]

230 PLOT [-7*13,-20,U],[,,X$(5)],[B(5)*13,0,U]

240 PLOT [-17*13,-7.25*20,U],[,,X$(18)],[B(18)*13,0,U]

250 PLOT [3*13,-20,U],[,,X$(4)],[B(4)*13,0,U]

260 PLOT [-7*13,-20,U],[,,X$(4)],[B(4)*13,0,U]

270 PLOT [5*13,0,U],[,,X$(6)],[B(6)*13,0,U]

280 PLOT [-7*13,-20,U],[,,X$(49)],[B(49)*13,0,U]

390 PLOT [-7*13,-20,U],[,,X$(49)],[B(49)*13,0,U]

310 PLOT [-7*13,-20,U],[,,X$(20)],[B(20)*13,0,U]

310 PLOT [-7*13,-20,U],[,,X$(44)],[B(4)*13,0,U]

320 PLOT [-7*13,-20,U],[,,X$(44)],[B(4)*13,0,U]

330 T=(X(44)*X(48)+X(45)*X(47))/X(6)

340 IF ABS(T)]=100 THEN 350:IF ABS(T)]=10 THEN 360:IF ABS(T)]=

1 THEN 370:IF ABS(T)]=0 THEN 380
                       340 IF ABS(T)]=100 THEN 350:IF ABS(T)]=10 THEN 360:IF ABS(T)]=10 THEN 370:IF ABS(T)]=0 THEN 380

350 CONVERT T TO T$, (-##*#):T2=0:GOTO 390

360 CONVERT T TO T$, (-#*#):T2=2: GOTO 390

370 CONVERT T TO T$, (-###):T2=2: GOTO 390

380 CONVERT T TO T$, (-###):T2=2: GOTO 390

390 PLOT [-2*13,18.25*20,U],[,,T$],[T2*13,0,U]

400 PLOT [11*13,-10.25*20,U],[,,X$(47)],[B(47)*13,0,U]

410 PLOT [-7*13,-20,U],[,,X$(24)],[B(24)*13,0,U]

420 PLOT [-7*13,-20,U],[,,X$(25)],[B(25)*13,0,U]

430 PLOT [-7*13,-20,U],[,,X$(45)],[B(45)*13,0,U]

440 PLOT [-10*13,-3*20,U],[,,X$(45)],[B(14)*13,0,U]

450 PLOT [-7*13,-4*20,U],[,,X$(33)],[B(33)*13,0,U]

460 PLOT [-7*13,-20,U],[,,X$(30)],[B(30)*13,0,U]

470 PLOT [-7*13,-20,U],[,,X$(26)],[B(26)*13,0,U]

480 PLOT [-29*13,-2*20,U],[,,X$(3)],[B(3)*13,0,U]
```

					* * * * * * * * * * * * * * * * * * *				1
		· · · · ·				militar in the first to	1		
			.			Table X			
				P	ROGRAM L	ISTING (CON	CLUDED)		
	ن مسال				· · · · · · · · · · · · · · · · · · ·				
					The second	,			
• •			. 4		39				
	<u> </u>	(490) 500	PLOT [-7*13,-20,U], -21*13,-3.5*2	[,,X\$(2	2)],[B(22))*13,0,U]		
٠.		510	PLOT [25*13,-3.0*20	, U],[,,	X\$(51)],[1]	(50)*13, $(51)*13.0$. U] . ;	
	<u>l</u>	520 530	PLOT [K≈Y(1)	25*13,-3.0*20 ,,R],[23*13,3: :PLOT [,,"CAS	4 * 20 Û]	5 AC(V)1.			
~			PLOT	PLOT [,, "CAS [3*13,0,0],[, PRINT 005:PR	, DATE:	[,,A,(K)]; [,,3:	\$],[,R]		C C COMMANDO DE C
		540 TIC.	SELECT AND LO	PRINT 005:PR AD WATER LOOP	INT :PR	INT :STOP	REMOVE	GAS LOOP SCI THEN KEY CO	LEMA
		NUE"		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			المستبحد متن محاصد والأراد والمحاوم والأراد	the transfer was being a particular to	JULI
		550 560	PLOT [PLOT [21*13,33*20,U 4*13,50*20,1 -14*13,-6.25*3 -7*13,-20,U],],[,,X\$	(34)],[B(3 \$(35)] [B(34)*13,0,U (35)*13.0 i]	· -
		570	PLOT [-14*13,-6.25*;	20,0],[,,x\$(10)],	(B(10)*13)	,0,U]	
		580 590	PLOT [-/*13,-20,0], -14*1320.50:	L,,X\$(2 *20.Ul.	/)],[B(27) [)*13,0,U] [B(30)*1	3 O III	
		600	PLOT [-14*13, -20, 01, -20,],[,,x\$	(33)[,[3(3	33)*13,0,0		
	•	610 620	PLOT (-9*13,-2*20.U	20,01,1 1.1.1T	, X\$(13)], ="].[X\$(, [B(13)*13 (15)], [B(1)	,0,U] 5)*13 0 111	
		630 1 640 1	PLOT [-9*13,-4*20,U	, [, , X\$	(12)],[B()	(2) *13,0,U		
		650							* * ** *** ** * * * * * * * * * * * *
	. :	660 1 670 1	PLOT [PLOT [-16*13,-11.25; 3*13,-20,U],[*20,U],	$[, \hat{X} \hat{S} (14)]$	$\begin{bmatrix} B(14) * 1 \end{bmatrix}$	3,0,U]	
		680	L TOT . [*"		1 _ (15 (1 i) 18 (A Second of the Continue and the Continue of t	
		690 1 7 00 1	PLOT [PLOT [5*13,26.5*20,1 -5*13,-8*20,U]]],[,,X	\$ (32)],[B((32)*13,0,t]]	
		710 1	P 1. () 1	☆/~ \ ~/[[Y S 1 7	431 1877 6 3	****		e camba
		720] 730]	PLOT [-9*13,-11.5*2(- R1.130*13 31),U],[, } 75*20	,	[B(16)*13,(),U]	
			[3*1	-9*13,-11.5/20 ,,R},[30*13,30 3,0,U],[,"DAT	E: "]	, [, B\$],[,	, R]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		740 -8 750 -3	SELECT Y(1)=Y	THIRD CODILLY	INT - HE	X(03)			
	. !	760 1 770 1	LOAD D	Ĉ Ŕ "RSECS"	· · · · · · · · · · · · · · · · · · ·	1 - 1 - 1 - 1 - 1			
	·†	7 7 0 1	EN D	ديون وين يومد أدير و دود مصعد له الله الله الله و الله الله الله الله					
						:			

VORIGINAL PAGE IS OF POOR QUALITY

350-M HEAT EXCHANGER TEST DATA ANALYSIS PROGRAM

File Name "350-M HX"

Abstract "350-M HX" analyzes test data and provides revised performance curves for the 350-M heat exchanger. The pro-

gram is designed to be used with a WANG 2200 - series

computer system.

Program Description

For a maximum of 50 data points, the program will iterate the hot or cold side hA to obtain a UA balance. Curves of hot side film coefficient verses air velocity and cold side film coefficient versus water flow per start are stored in the program as internal data. These curves and water vapor property tables are interpolated by using an adaptation of the Hamilton Standard Division's "UNBAR" routine.

Expected program operation is as follows.

- 1. Run all data points for a hot side UA balance.
- 2. Use calculation results to revise curve of hot side film coefficient versus air velocity.
- 3. Run data points again for a cold side UA balance.
- Use calculation results to revise curve of cold side film coefficient versus H₂O flow/start.
- 5. Repeat steps 1 through 4 until film coefficient curves no longer need revision.

For user reference, sample cases, figure 12, and a program listing, Table XI, are enclosed. The CRT prints the requested input data requirements with notations for the required units. If one of the dewpoint measurements is not available, or the secondary water circuit was not used, zero's should be entered in the appropriate locations. The output data provides all information necessary to revise the performance curves. In addition, a heat balance value is printed to give the user an indication of the data point validity. The heat balance calculation is the air side sensible and latent heat divided by the water side total heat. The program listing will provide the user with the calculation procedures used in the program.

Hamilton United Aircraft corporation Standard Air

RSECS 350-M HX PERFORMANCE / HOT SIDE BALANCE

CASE #: 1

DATE : 7/8/74

INPUT DATA -						•		
T RS-11 IHLET	=	70.00	T RS-11 DEWPT	=	50.06	T 350-M INLET	=	79.59
T 350-M DEWPT	=	50.06		=		ARS OUTLET FLOW		73.27
RS-51 FLOW	=	10.00	CHAMBER PRESSURE		29.92			•
T SEC H20 INLET	=	0.00	T PRI H20 OUTLET			T SEC H20 OUTLET		35.99
PRI H20 FLOW	=	498.00		=	0.00	I BEG EZO OCILET	=	0.09
7		- 3 , 1 (3 6 1 1 1 9	One reserve		(1.1)13			
OUTPUT DATA -								
TOTAL H20 FLOW	=	498.00	H20 FLOW/START	=	249.00	TOTAL AIR FLOW	=	93.27
AIR WEIGHT FLOW	=	369.68	AIR VELOCITY	=	94.46	TOTAL HX UA		-
COLD SIDE HA	=	2688.11			. • , .		==	773.42
·			COLD FILM COFFF		368.19	HOT SIDE HA	=	1086.01
HOT FILM COEFF	755	9.16	Q SENSIBLE	=	3858.63	Q LATENT	=	1258.50
Q TOTAL	=	5214.06	HEAT BALATOR	=	0.981			ALCOHOLD STATE
					•			

RSECS 350-M HX PERFORMANCE / HOT SIDE BALANCE

CASE #: 2

DATE : 7/8/74

INPUT DATA - T RS-11 IMLET T 350-M DEWPT RS-51 FLOW T SEC H20 INLET PRI H20 FLOW	CHAMBER PRESSURF T PRI 1120 OUTLET	= 29.92	V , 1,2,2 ,	
OUTPUT DATA - TOTAL H20 FLOW AIR UFIGHT FLOW COLD SIDE HA HOT FILM COEFF Q TOTAL	H20 FLOW/START AIR VELOCITY COLD FILM COEFF O SENSIBLE HEAT BALANCE	= 348.50 = 331.65 = 557.08 = 14106.96 = 0.976	TOTAL AIP FLOW = TOTAL HX UA = HOT SIDE HA = Q LATENT =	292.35 1283.10 1874.60 2744.46

FIGURE 12 RSECS 350-M HEAT EXCHANGER PERFORMANCE/HOT SIDE BALANCE SAMPLE CASES

Hamilton UNIVERNITE AIRCRAFT COMPORATION Standard

RSECS 350-M HX PERFORMANCE / COLD SIDE BALANCE

CASE #: 1 DATE : 7/8/74

INPUT DATA - T RS-11 IMLET T 350-M DEWPT RS-51 FLOW T SEC H20 IMLET PRI H20 FLOW	= = =	70.00 50.06 10.00 0.00 498.00	T 350-M OUTLET CHAMBER PRESSURE		36.10 29.92	T 350-M IMLET ARS OUTLET FLOU T PRI H20 INLET T SEC H20 OUTLET	==	79.59 73.27 35.99 0.00
OUTPUT DATA - TOTAL H2O FLOW AIR WEIGHT FLOW COLD SIDE HA HOT FILM COEFF Q TOTAL	= = =	369.68 2541.08 9.60	H20 FLOW/START AIR VELOCITY COLD FILM COEFF Q SENSIBLE HEAT BALANCE	= = =	249.00 94.46 348.05 3858.63 0.981	TOTAL AIR FLOW TOTAL HM UA HOT SIDE HA Q LATENT	=======================================	83.27 785.66 1137.49 1258.59

RSECS 350-M HX PERFORMANCE / COLD SIDE BALANCE

CASE #: 2 DATE : 7/8/74

```
INPUT DATA -
T RS-11 INLET
                   85.46 T RS-11 DEMPT
                                              55.25 T 350-M INLTT
                                                                       95,31
T 350-M DEMPT
                    55.25 T 350-M OUTLET =
                                              48.58 ARS OUTLET FLOW =
                                                                       282.35
RS-51 FLOW
                   10.00 CHANDER PRESSURE =
                                              29.92 T PRI H20 INLET
                                                                        42.80
T SEC H2O INLET =
                   0.00 T PRI H20 OUTLET =
                                              67.55 T SEC H20 OUTLET =
                                                                        0.00
PRI H2O FLOW
                   697.00 SEC H20 FLOW
                                              0.00
OUTPIT DATA -
TOTAL H20 FLOW. = 697.00 H20 FLOW/START
                                             348.50 TOTAL AIR FLOW =
                                                                      202.35
AIR UMIGHT FLOW = 1.257.04
                         AIR VELOCITY
                                             331.65 TOTAL PICTA
                                         æ
                                                                   = 1293.36
COLD SI E FA
                  3006.37 COLD FILM COEFF =
                                             535.13 FOR SIDE HA
                                                                   = 1031.03
HOP FILM COPPE
             %= 16.29
                         O SEMSIBLE = 1/106.96 O LATERT
                                                                  = 2744.46
O TOTAL
              = 1.7250.75 HEAT BALANCE
                                             0.976
```

FIGURE 13 RSECS 350-M HEAT EXCHANGER PERFORMANCE/COLD SIDE BALANCE SAMPLE CASES

```
10 REM - 350-M HX PERFORMANCE:
    DIM A(50.14) \times (200) \times (3):
     IF Y(1)]1 THEN 150: Y(1)=1
 20 REM - WATER VAPOR PROPERTIES - TEMPERATURE (1):
    DATA 32,34,36,38,40,42,44,46,43,50,52,54,56,58,60,62,64,66
      68,70
    REM - WATER VAPOR PROPERTIES - PRESSURE (21):
    DATA .03854,.09603,.10401,.11256,.1217 ,.1315 ,.14199,
          .15323,.16525,.17811,.19182,.20642,.222 ,.2386
    DATA . 2563 , .2751 , .3951 , .3164 , .339 , .3631:
    REM - WATER VAPOR PROPERTIES - LEITHALPY (41):
    DATA 1075.8,1074.7,1073.6,1072.4,1071.3,1070.1,1068.9
50 DATA 1067.8, 1066.7, 1065.6, 1064.4, 1063.3, 1062.2, 1061
         1059.2,4058.8,1057.6,1056.5,1055.5,1054.3:
    REM - MATTE SIDE FILL CORFFICIENT (61)
60 DATA 9 ,0 ,100,150,200,250,300,350,400,450,500,134,108
         282,370,463,560,655,765,860:
    REM - AIR SIDE FILM COEFFICIENT (81)
70 DATA 13 ,0 ,100 ,200 ,300 ,400 ,500 ,600 ,700 ,800 ,
        900,1000,1100,1200,1300,9.6,13.2,15.6,17.7,19.5,
         21,2,22,6,26, ,25,3,26,4,27,5;28,5,39,6
80 IMPUT "" OF CASES
                           (1-50) = ".y(2):
    IMPUT " ATE
    IMPHT "IT BAL (HOT=1/COLD=2) = ".Y(3)
90 FOR Z=1 TO Y (2): SELECT PRENT-005:
    PRINT "CASE #
100 INPUT "T RS-11 IN
                          (DEG F) = "
                                     A(Z,1):
    IMPUT "T RS-11 DEMPT (DEG F) = "
                                     A(7,2):
                          (DEG F) = ^{11}
    INPUT "T 350-M IN
                                     A(7,3)
110 [IPUT "T 350-M DESIGN (DEC F) = "
    IMPUT "T 350-H OUT
                          (DEC F) = "
                                     A(2,5):
    LIPUT "ARS OUTLET FLOW (CFM) = "
                                     A(2,6)
120 INPUT "RS-51 FLOW
                            (CFH) = "
                                     (3, 1):
    IMPUT "P CHAMBER
                          (IM HG) = 0
                                     ,A(Z,8):
                          (DEG F) = H
    INPUT "T PRI 1120 IN
                                     A(2,9)
130 MMPUT "T SEC H20 IN
                          (DEG F) = "
                                     A(Z,10):
    INPUT "I PRI H20 OUT (DEC F) = "
                                     \Lambda(Z,11):
    IMPUT "T SEC H20 OUT (DEC F) = "
                                     A(2,12)
140 INPUT "PPI H20 FLOW
                          (L5/FE) = "
                                     A(Z,13):
    IMPUT "SEC H20 FLOU
                          (LD/HR) = ",A(Z,IA):
    NEXT Z
150 IF Y(1)[=Y(2) THEN 160: Y(1)=0: GOTO 610
160 FOR Z=1 TO 14: X(Z)=A(Y(1),Z): NEXT Z: X(17)=X(13)+X(14):
    X(15)=(X(9)*X(13)+X(10)*X(14))/(X(13)+X(14)):
    X(16) = (X(11) + X(13) + X(12) + X(14)) / (X(13) + X(14))
170 Y(18)=X(17)*(X(16)-X(15)): IF X(13)=0 THEN 180:
    IF X(14)=0 THEN 180: X(30)=X(17)/4: COTO 190
180 \text{ X}(30)=\text{X}(17)/2
190 RESTORE 61: FOR Z=101 TO 120: READ X(Z): MEXT Z:
   GOSUB '02(X(30),0): X(31)=Z1: IF X(13)=0 THEN 200:
    IF X(14)=0 THEN 200: X(10)=27*.5408*X(31): GOTO 210
```

 $200 \times (19) = 27 * .5408 * \times (31) / 2$

230 X(21)=(X(2)+X(4))/2

PROGRAM LISTING (CONTINUED)

210 X(20)=X(6)+X(7): IF X(2)]0 THEN 220: X(21)=X(4): GOTO 240

240 X(101)=20: X(102)=0: RESTORE 1: FOR Z=103 TO 142: READ X(Z):

220 IE X(4) 10 THEN 230: X(21)=X(2): GOTO 240

```
NEXT Z: GOSUB '02(X(5),0): P1=Z1: GOSUB '02(X(21),0): P2=Z1:
      X(22)=144*60*(X(8)*.4912-P2)*X(20)/53.35/(X(1)+459.6)
   250 X(23)=.24*X(22)*(X(3)-X(5)): A3=.622*P1/(X(8)*.4912-P1):
      A2 = .622*P2/(X(8)*.4912-P2): X(24) = 1065*X(22)*(A2-A3):
      X(25)=(X(23)+X(24))/X(18); X(26)=X(20)/.8815
   260 RESTORF 81: FOR Z=101 TO 128: READ X(Z): HEXT Z:
      GOSHB *02(X(26),0): X(29)=Z1: X(27)=313*.5403*X(29)
  270 IF X(13)=0 THEY 280: IF X(14)=0 THEY 280:
      X(27)=.8*X(27): GOTO 290
  280 X(27)=.75X(27)
  290 H1=X(19): II2=X(27)
  300 OM Y(3) COTO 310,320
  310 X(27)=112: GOTO 330
  320 X(19)=H1
  330 H#X(27)/X(19):
      T1=(.24*x(22)*x(3)+y(17)*(H*x(21)+x(21)-x(16)))/
          (E*X(17)士,24*X(22))
 340 Q1=.24*X(22)*(T1-X(5)): Q2=Q1+X(24): IF Q2[X(18) THEN 350:
    U1=0: T2=X(16): T1=X(3): Q1=X(23): Q2=X(18): GOTO 360
 350 T2=X(21)-H*(T1-X(21)): E1=(X(3)-T1)/(X(3)-T2):
      M1=X(17)/(.24*X(22)): GOSUB *01(N1,M1):
    U1=.24*X(22)*K
 360 E2=(T1+X(5))/(T1-X(15)): M2=X(17)*01/(.24*X(22))/Q2:
      GOSHUB '01(E2,M2): U2=, 2/4X(22)*K*02/01:
      U3=((1/H)/(1+1/H))*OL/Q2+(1/(1+1/H)): X(28)=H2+H2*H3
  370 ON Y(3) GOTO 319.400
  390 \text{H2=1/(1/X(28)-1/X(19))}: IF ARS((X(27)4H2)/X(27))]=.5E-3
     THEN 300: X(29)=X(27)/313/.5408: IF X(13)=0 THEN 390:
     IF X(14)=0 THEN 390: X(29)=X(29)/.3: GOTO 420
  390 X(20)=X(29)/.7: GOTO 420
 400 \mu_1=1/(1/\pi(28)-1/\pi(27)): IF APS((\pi(19)+H1)/\pi(19))]=.5E-3
     THEN 300: IF X(13)=0 THYP 410: IF X(14)=0 THEN 410:
     X(31)=X(10)/27/.5403: GOTO 420
 410 F(31)=2*F(19)/27/.5408
 420 SELECT PRINT 211(156): PRINT HEX(ODOE):
     ON Y (3) GOTO 430, AAA
A30 PRINT "RSECS 350-M MY PERFORMANCE / MOT SIDE PALANCE":
     PRIME HENY(OA):
     GOTO 450
 440 PRINT "RSECS 350-M EX PERFORMANCE / COLD SIDE BALANCE":
     PRINT HEX (OA)
 450 PRIME "CASE #: ";Y(1):
     PRINT DATE :
                     ";AS: PRINT HFX(OA):
     PRINT "INPUT DATA -"
 460 PRINTHSING 510,X(1),X(2),X(3):
```

ORIGINAL PAGE IS OF POOR QUALITY

PRINTUSING 520, X(A), X(5), X(6) : PRINTUSING 530, X(7), X(8), X(9)

PROGRAM LISTING (CONTINUED)

```
470 PRINTUSING 540,X(10),X(11),X(12):
    PRINTUSING 550, X(13), X(14):
    PRIME HEX (OA) :
-480 PRIME "OUTPUT DAMA =":
    PRINTUSING 560,X(17),X(30),X(20):
    PRIMEUSLING 570, X(22), X(26), X(28)
490 PRIMUSING 530,X(19),X(31),X(27):
    PRINTUSING 599,X(29),X(23),X(24):
    PRINTUSING 600, X(18), X(25)
-500~PRIIT-用其(OAOAOAOA):
    X(1)=X(1)+1: GOTO 150 -
510 77 RS-11 INLET
                    ==######### T RS-11 DENPT
350-11 INLET ==###########
-520 %# 350-M DEWP#
                    =-#####.## T 350-M OUTLET
                                              ==######.##
RS OUTLET FLOW =-#########
530 ZRS-51 FLOW = -####### CMANDER PPESSURE =-######.##
。PRI H2O INDET = ##############
T PRI H2O OUTLET ==######. **
 SEC_H2O_OHTLET = ######. ##
550 %PRI H20 FLOW
                    560 %TOTAL H20 FLOW ===########## H20 FLOW/START
                                              OTAL AIR FLOW ===#########
570 ZAIR WEIGHT FLOW ==######## AIR VELOCITY
                                              =-##########
OTAL ICUUA ==###########
590 ZHOT FILL COPPE =-###### O SETSIBLE
LATENT = - 111111.
               =-####### HEAT BALANCE
600 % TOTAL
                                            ==##########
610 END
620 DEFFN 01(E3,M3)
630 IF M3=1 THEN 640: IF M3]1 THEN 650:
   K=M3/(1-M3)*LOG((1-E3)/(1-E3/M3)): GOTO 660
640 K=E3/(1-E3): GOTO 660
650 K=M3/(M3-1)*LOG((1-E3/M3)/(1-E3))
660 RETURN
670 DEFFN'02(CL.DL)
680 DIM A1(6), X1(6), Y1(6)
690 II=101: N=3: N2=2
700 IF X(II)=3 THUE 740: IF X(II)]3 THEN 750:
   IF X(II)[0 THEN 770: IF X(II)=0 THEN 740:
   IF X(II)=2 THEN 720: IF X(II)]2 THEN 740.
710 N=1: GOTO 730
720 \text{ N}=2
730 N2=1
740 II=II+1
750 N1=N+1
760 L=II: IF X(L) ]0 THEN 780 :
770 Kl=-1: ZI=0: Gome 1050
780 M9=X(L):
   IF X(L+1)[0 THEN 770: IF X(L+1)]0 THEN 800
```

ORIGINALI PAGE IS OF POOR QUALITY

Table XI

PROGRAM LISTING (CONCLUDED)

```
790 N8≠0: GOTO 810
800 H3\(\text{X(L+1)}\)
810 K1=0: K8=0: C2=C1: J1=I1+2: J2=M9+I1+1:
     IF C2[X(J1) THEN 850: IF C2=X(J1) THEN 860
820 FOR J=J1 TO J2: IF C2[=X(J) THEM 870: NEXT J
830 Kl=2: C2=X(J2)
840 J9=J2-N: GOTO 880
850 K1=1: C2=X(J1)
860 J9#JI: GOTO 880
870 IF J-J1[1 THEN 850: IF J-J1=1 THEN 860:
    IF J=J2 THEN 840: IF J]J2 THEN 830:
    J9=J-M2
880 C3=C2: IF N8]O THEN 890: FOR L=1 TO N1: X1(L)=X(J9):
    L8=J9+N9: Y1(L)=X(L8): J9=J9+1: NEXT L: I=1: GOTO 970
890 J1=J1+N9: J2=J2+N8: D2=D1: IF D2[X(J1) THEN 920:
    IF D2=X(J1) THEN 930: FOR J=J1 TO J2:
    IF D2[=X(J) THEN 940: NEXT J
900 K8=6: D2=X(J2)
910 J8=J2-N: COTO 950
920 K8=3: D2=X(J1)
930 J8±J1: GOTO 950
940 IF J-J1[1 THEN 920: IF J-J1=1 THEN 930:
    IF J=J2 THEN 910: IF J]J2 THEN 900: J8+J-M2
950 J7#J9: L8=J8+H8*(J7-H1-1): L7=L8: FOR L=1 TO H1:
    X1(L)=X(J7): Y1(b)=X(L7): L7=L7+N8: J7=J7+1: MEXT L:
    I=0: GOTO 970
960 Y1(1)=Z1: FOR I=1 TO N: L7=L8+I: Y1(I+1)=0: FOR M=1 TO M1:
    Y1 (I+1)=Y1 (I+1)+X (L7)*X1 (M): L7=L7+N8: NEXT M: NEXT I:
    FOR L=1 TO N1: X1(L)=X(J8): J8=J8+1: NEXT L: C3=D2: I=1
970 D=1: X1(N+2)=X1(1): X1(N+3)=X1(2): FOR J=1 TO N1:
    Al(J+1)=X1(J+1)-X1(J): C4=C3-X1(J): IF C4[]O THEM 990:
    Z1=Y1(J): X1(1)=0: X1(2)=0: X1(3)=0: X1(4)=0
980 X1(J)=1: COTO 1040
990 D=D*C4: OM H GOTO 1000,1010,1020
1000 \times 1(J) = C4/A1(J+1): GOTO 1030
1010 \text{ X1}(1) = -04: \text{ GOTO } 1030
1020 \times 1(J) = (\times 1(J+2) - \times 1(J)) *C4
1030 NEXT J: A1(1)=A1(N+2): Z1=C: FOR J=1 TO M1:
     X1(J)=D/(A1(J)*A1(J+1)*X1(J)): Z1=Z1+Y1(J)*X1(J):
     NEXT J
1040 IF I[=0 THEN 960
1050 K1=K1+K8:
     RETURN
```

Hamilton DIVISION OF UNITED AIRCRAFT CORPORATION Standard Pa

350-M HEAT EXCHANGER PERFORMANCE PREDICTION PROGRAM

File Name "CONDHX"

Abstract "CONDHX" uses inlet temperature and flow data to pre-

dict performance of the RSECS 350-M condensing heat exchanger. This program runs on the WANG 2200 minicompu-

ter system.

Program Description

This program uses predicted curves of air and water side hA's versus flow combined with a "pinch point" analysis to predict performance of a condensing heat exchanger.

The user supplies input temperatures and flow rates as requested and the program generates values for outlet temperatures and total heat exchanger heat load.

Sample output, Figure 14, and a program listing, Table XII, are enclosed for reference.

CONDHX was used to predict performance for test points of the RSECS cabin heat exchanger test.

```
**** RESULTS ****
 PRI COOLANT FLOW (LB/HR)
                                375
PRI TIN = 45 PRI TOUT = 59.37423365213
SEC COOLANT FLOW (LB/HR) 375
SEC TIN = 45 PRI TOUT = 59.37423365213
 AIR FLOW RATE (CFM)
                                317
 TIN = 75 TDP = 53 TOUT = 48.59069824218
Q LATENT =
              1932.525554251
              3848.149684856
Q SENS
          =
Q TOTAL
          ***
              10780.6752391
HAC =
          3760.11
                      HAH =
                                2262.78 UA =
                                                   1412.66
```

FIGURE 14 RSECS 350-M HEAT EXCHANGER PREDICTION SAMPLE RESULTS

Table XII

PROGRAM LISTING

```
10 REM - 350-M HX PERFORMANCE PREDICTION PROGRAM - GIVEN TIN FOR GAS AND COOLANT FIND TOUT AND Q
20 DIM X(50)
30 DEFFN1(X)=3.10719762E-02+2.71331473E-04*X+4.56164060E-05*X!2
    -7.17044935E-08*X!3+4.01962080E-09*X!4+1.04575064E-11*X!5
40 DEFFN2(X)=106.7019036671-.7925628830407*X+1.42137844E-02*X!2
     -4.08702990E-05*X!3+6.35142232E-08*X!4-4.04697326E-11*X!5
    DEFFN3(X)=7.304894511852+3.19172743E-02*X-1.83198194E-05*X!2
    +6.78877862E-09*X!3-1.19293620E-12*X!4+7.52444916E-17*X!5
   FOR I=1 TO 50:X(I)=0:NEXT I
70 PRINT HEX(03):PRINT "INPUT AIR SIDE CONDITIONS"
80 INPUT "AIR FLOW RATE (CFM) = ",X(20):
INPUT "AIR TEMP IN (F) = ",X(3):
            "AIR TEMP IN (F) = ",X(3):
"AIR DEW POINT IN (F)= ",X(2):PRINT
"INPUT PRI COOLANT LOOP CONDITIONS"
    INPUT
90 PRINT
100 FRINT THEOR FRI COULANT LOOF CONDITIONS
100 ENPUT "PRI LOOP FLOW (LB/HR) = ",X(13):
    INPUT "PRI LOOP TEMP IN (F) = ",X(9):PRI
110 PRINT "INPUT SEC COOLANT LOOP CONDITIONS"
120 INPUT "SEC LOOP FLOW (LB/HR) = ",X(14):
    INPUT "SEC LOOP TEMP IN (F) = ",X(10):PR
                                                     X(9):PRINT
                                                      X(10):PRINT
130 PRINT HEX(03):PRINT :PRINT :PRINT
                      **** COND HX PROGRAM IS RUNNING
140 PRINT PRINT "
                                                      T CALC -
                                                                       T GUESS
150
     X(17) = X(13) + X(14)
     X(15) = (X(9) \times X(13) + X(10) \times X(14)) / (X(13) + X(14))
170 K9=(X(3)-X(15))/2:X(5)=X(15)+K9

180 IF X(13)=0 THEN 200:X(30)=X(17)/4:GOTO 210
200
     X(30) = X(17)/2
     X(8) = 30: X(1) = X(3)
210
     X(31)=FN2(X(30)):
IF X(13)=0 THEN 230:
220
       IF X(14)=0 THEN 230: X(19)=27*.5408*X(31): GOTO 240
230 X(19) = 27* \cdot 5408 \times X(31) / 2
240 \times (21) = \times (2) : \times (26) = \times (20) / .8815
250 X(29) = FN3(X(26)): X(27) = 313 * \cdot 5408 * X(29)
     IF X(13)=0 THEN 270: IF X(14)=0 THEN 270:
260
     X(27) = .8 * X(27): GOTO 280
     X(27) = .7 \times X(27)
280 H1=X(19): H2=X(27)
290 U=H1*H2/(H1+H2)
300
     P1=FN1(X(5)):P2=FN1(X(21)):
     X(22)=144*60*(X(8)*.4912-P2)*X(20)/53.35/(X(1)+459.6)
310
     I = 1
320 IF X(2)]X(15)THEN 330:X(24)=0:L=0:GOTO 620
330 X(23) = .24 \times X(22) \times (X(3) - X(5))
340 \Lambda \hat{3} = .622 * P1/(X(8) * \cdot 4912 - P1):

A2 = .622 * P2/(X(8) * \cdot 4912 - P2): X(24) = 1065 * X(22) * (A2 - A3)
     IF X(24)]0 THEN 360:X(18)=X(23):X(24)=0:GOTO 370 X(18)=X(23)+X(24)
350
360
370 X(16) = (X(23) + X(24)) / X(17) + X(15)
330 H=X(27)/X(19)
390 M1=X(17)/(\cdot 24*X(22))
400 IF X(2)[X(3) THEN 410:T1=X(3):T2=X(16):U1=0:GOTO 480
```

Table XII PROGRAM LISTING (CONCLUDED)

```
410 T1=(-24*X(22)*X(3)+X(17)*(H*X(21)+X(21)-X(16)))/
                     (H*X(17)+\cdot 24*X(22))
  420 \text{ T2=X(21)-H*(T1-X(21))}
  430 IF T2]X(15) THEN 440:GOTO 620

440 E1=(X(3)-T1)/(X(3)-T2)

450 IF E1[1.0 THEN 460:E1=.99

460 GOSUB '01(E1, M1):U1=.24*X(22)*K

470 IF U1[U THEN 480:GOTO 620
   480 U2=U-U1
  4 90 Q7=X(18)-X(17)*(X(16)-T2)
  500 08=07-X(24)
510 M2=M1*Q8/Q7
  570 Q1=X(18):Q2=X(24)+·24*X(22)*(X(3)-T0)
580 IF ABS(Q1-Q2)[·20 THEN 720:PRINT ,T0,X(5)
590 IF Q1]Q2 THEN 610
 600 X(5)=X(5)-K9:K9=K9/2:X(5)=X(5)+K9:GOTO 300
610 X(5)=X(5)+K9:K9=K9/2:X(5)=X(5)-K9:GOTO 300
620 M2=X(17)/(X(22)*•24)
630 K2=U/(X(22)*•24)
640 GOSUB O2(M2,K2)
650 IF L=1 THEN 660: X(5)=X(3)-E1*(X(3)-X(15)):GOTO 680
660 T0=X(3)-E1*(X(3)-X(15))
670 IF T0]=X(2) THEN 690:GOTO 570
680 IF X(5)]=X(2) THEN 690:GOTO 570
690 IF L=0 THEN 700:X(5)=T0
700 X(18)=X(22)*•24*(X(3)-X(5)):X(28)=X(18):X(24)=0
710 X(16)=X(18)/X(17)+X(15)
720 PRINT :PRINT :
 6.20 \text{ M2}=X(17)/(X(22)**24)
710 X(16)=X(18)/X(17)+X(15)

720 PRINT :PRINT :PRINT :

INPUT "LOCATION OF OUTPUT (1=CRT,2=PRINTER)", B

730 SELECT PRINT 005:IF B=1 THEN 740:SELECT PRINT 211(64)

740 PRINT HEX(03)," **** RESULTS ****"

750 PRINT " PRI COOLANT FLOW (LB/HR) ";X(13):
PRINT " PRI TIN = ";X(9);" PRI TOUT = ";X(16)

760 PRINT " SEC COOLANT FLOW (LB/HR) ";X(14):
PRINT " SEC TIN = ";X(10);" PRI TOUT = ";X(16)

770 PRINT " AIR FLOW RATE (CFM) ";X(20):
PRINT " TIN = ";X(3);" TDP = ";X(2);" TOUT = ";X(5):PRINT
780 PRINT "Q LATENT = "; X(24):
PRINT "Q SENS = "; X(23):
PRINT "Q TOTAL = "; X(18)

790 PRINTUSING 800, X(19), X(27), U

800% HAC = -#####*## HAH = -#####*##

810 SELECT PRINT 005

820 GOTO 960
 830 DEFFN'01(E1,M1)
 840 IF E1[ Mì THEN 850:E1=M1-.01
 850 IF M1]1 THEN 860: IF M1[1 THEN 870:GOTO 880
860 K=M1/(M1-1)*LOG((1-E1/M1)/(1-E1)):GOTO 890
870 K=M1/(1-M1)*LOG((1-E1)/(1-E1/M1)):GOTO 890
 880 K=E1/(1-E1)
 390 RETURN
 900 DEFFN'02(M2,K2)
900 DEFFN UZ (MZ, KZ)

910 IF M2]1 THEN 920:IF M2[ 1 THEN 930:GOTO 940

920 Cl=EXP(K2*(M2-1)/M2):El=(1-C1)/(1/M2-C1):GOTO 950

930 Cl=EXP(K2*(1-M2)/M2):El=(1-C1)/(1-C1/M2):GOTO 950
 940 E1=K2/(1+K2)
 950 RETURN
 960 PRINT :STOP "FOR NEXT CASE KEY CONTINUE": COTO 60
```

Hamilton U Standard P®

RSECS ARS GAS LOOP AP ROUTINE

File Name "ARS DP"

Abstract "ARS DP" calculates the corrected (59°F, 29.92 in Hg)

pressure drop through the Hamilton Standard supplied RSECS hardware. The program is designed to be used with

a WANG 2200 - series computer system.

Program Description

By inputting total RSECS air flow and the number of RS-11 fans operating, the program will calculate the corrected pressure drop through the RS-193 Filter Package, the RS-191 ARS Fan Package, the RS-190 CO₂/Temperature/Humidity Control Package, the 350-M heat exchanger, and the ARS outlet duct. The results are displayed on the CRT.

A program listing, Table XIII, is enclosed for reference.

Table XIII

PROGRAM LISTING

```
10 RFM -
              RSECS GAS LOOP PRESSURE DROP
  20 - INPUT "# RS-11 FANS OPERATING = ",FL
 30 INTIT "TOTAL AIR FLOW (CFM) = ",OI
  40 REM - RS-193
 - 50
     P1+(.0765/.0709)*(.0235*0112/17312+.3*01/167)
 .60 REM - RS-191
  70 P2+(.0765/.070$)+(.00366*01!2/173!2+.61+.11*(01/F1)!2/500!2
  - -- +.02055*0112/17312)
  80 REM - RS-190
 190 P3=(.0765/.0709)*(.0685*0112/17312+.9166+.0125*0112/17312)
  100 REM - OUTLET DUCT
 :110 P4=(.0765/.0709)*(.00473*01!2/17312+1.0*01!2/200!2)
  120 REM - 350-M HX
  130 C1++.9129611236E-4 : C2=+.80635958064E-4:
   C3+1.119613327498E-5: C4=-.1175465209E+7:
      C5++.70368566031F-10: C6=-.236225582938F-12
  140 C7++.41057121725E-15: C8=-.287081073658E-18
 150 P5±(.0765/.0702)*9.9*(C1+C2*(Q1/.815)+C3*(Q1/.815)!2+
        C4*(01/.815) 13+C5*(01/.815) 14+C6*(01/.815) 15+
         C7*(01/.815)!6+C8*(01/.815)!7)
 160 P6+4*(144*01*SOR(.0765)/28.26/1096)12+R5
170 P7#P1+P2+P3+P4+P6
  180 PRINE
 190 PRINT
  200 PRINT "RS-193 DP
                          (I) H20) = ";PI
                          (IH H20) = "; P2
  210 PRIME "RS-191 DP
 220 PRINT "RS-190 DP (IN H20) = ";P3
230 PRINT "350-M HX DP (IN H20) = ";P6
  240 PRIME "OUTLET BUCK DR (IN H20) = ";P4
  250 PRINT "-----
  260 PRINT "TOTAL DE (IN H20) = ":P7
  270 Emp
```

Hamilton U Standard Pe

GENERALIZED PLOT PROGRAM

File Name "Plot"

Abstract "Plot" uses the WANG 2200 flat bed plotter to automate production of plotting of any desired set of data. This program can plot point by point or plot a desired func-

tion in equation form, and in addition, completely label

the resulting plot in any desired format.

Program Description

"Plot" uses the WANG 2200 flat bed plotter and the WANG 2200 minicomputer system commands to produce plots of data or equations. As supplied, the WANG had no software to run the plotter; program "Plot" provides this function.

Required inputs are requested on the CRT and responses are keyed in followed by keying "execute".

Available options of this program are:

- 1. Point by point plotting.
- 2. Equation plotting.
- 3. Matrix point plotting.
- 4. Regression analysis plotting.

For user reference the following items are included:

Table XIV Description of input requirements for program and plotter

set up procedure

Figures Samples of results of program use in different modes 15 - 17

Table XV Program listing.

Hamilton U Standard A.

Table XIV

PLOTTER SETUP AND PROGRAM INPUTS

Plotter Setup and Program Inputs

This example is for operation where the user has generated a set of data points in some other program (RSECS), stored them in an array and a plot of the points is desired.

Initially the user must do two things; 1) set up the plotter and 2) decide what type of plot is wanted.

1. Plotter Set up

- · set plotter power switch in "on" position
- · set pen switch in "down" position
- · set chart switch in "release" position
- insert paper line it up with bottom ridge and ridge on left of plotting surface
- · set chart switch in "hold" position
- using control knobs set pen at 0,0 zero reference position and press check button. Press scale adjust check button and set pen at 10,10 using control knobs, then press scale adjust check button again.

2. Type of Plot

- · Determine desired location of axis intersection point on page
- ' Pick X axis's increment for major divisions (units/in)
- · Pick Y axis increment for major divisions
- * Pick X and Y axis ranges
- ' Pick X and Y axis labels

Hamilton U Standard A

Table XIV

Example:		
	2.5	
Position 2,2	1 2.0	
X axis unit/in 2	1.5	
Y axis unit/in .5	1.0	,
X axis range 0,8	.5	1''
Y axis range 0,2.5	1 0	
3 - 7	0 2	4 6 8

Hamilton U Standard Re

Table XIV

PLOTTER SETUP AND PROGRAM INPUTS (CONTINUED)

QUESTION ON CRT	TYPED IN RESPONSE	DECONTRATON
51. GH	REDI ONDE	DESCRIPTION
X axis increment	2	Delta between major
units/in?		divisions on X axis
Y axis increment	•5	Delta between major
units/in?	, ,	divisions on Y axis
Location of axis intersection	2,2	Location of 0,0
(position on page in		point on plot is 2" over and 2" up from
inches - X, Y)?		pen reference point
		, and a second part of the secon
Limits of X axis (min value, max value)	0,8	
(min value, max value)		
Limits of Y axis	0,2.5	
(min value, max value)		
Y V values et	0.0) :
X, Y values at intersection	0,0	
2		
X axis label	Delta dew	
	point (F)	
Y axis label	H ₂ O flow	
, — — — — — — — — — — — — — — — — — — —	Lb/Hr	
Location of X axis	2	
(1=above, 2=below)		
(= ====,		i
Location of Y axis	1	
labels		1
(1=left, 2=right)		
Plot points or curve	1	Purpose is to plot
(1=point, 2=curve)		points generated by
		previous program
Desired plot symbol		Entering nothing
		causes centered dot
		to be used as plot
·		symbol

Hamilton U AIRCRAFT CORPICIATION Standard A®

Table XIV

PLOTTER SETUP AND PROGRAM INPUTS (CONCLUDED)

	AND THOUGHT INTO (COL	000000
QUESTION ON CRT	TYPED IN RESPONSE	DESCRIPTION
Are data points to be loaded from array	1	Array was loaded for previous program
First and last points to be plotted	1,15	15 points were gen- erated and are to be plotted
Key continue to plot points	Continue	Starts plotting of points
Do you wish to connect points with line segments	1	Connects data points to form desired curve
	Reset	End of plot routine
Do you wish to add labels to plot (0=no, l=yes)	.	Activates portion of program that makes plotter act like a typewriter
Desired character s iz e	1	Selects size of characters for la-bels (smallest=1, largest=10)
Do you wish to continue plotting	0	Ends program

Hamilton U Standard Re

FIGURE 15 SAMPLE PLOT 1

Hamilton U Standard ABCHAPT COMPONIES OF DATE OF DATE

FIGURE 16 SAMPLE PLOT 2

FIGURE 17 SAMPLE PLOT 3

```
REM SUBROUTINE "PLOT"
20 COM X9(100), Y9(100), C(10), X$25, Y$25, P$1
30 DEFFN'00"PLOT["
    DEFFN'01"CONVERT"
40
50 SELECT PRINT 005:PRINT HEX(03)
60 PRINT :PRINT "
                                 WANG 2200 GENERAL PLOT ROUTINE ":PRINT
            DEVELOPED BY 'WILD' BILL AYOTTE (9/74)":PRINT :PRINT
70 INPUT "X AXIS INCREMENT (UNITS/IN)"
   INPUT "Y AXIS INCREMENT (UNITS/IN)", XO
PRINT "LOCATION OF AVIO
90 PRINT "LOCATION OF AXIS INTERSECTION": INPUT "(POSITION ON PAG
E IN INCHES- X, Y)",X1,Y1
100 INPUT "LIMITS OF X AXIS (MIN VALUE, MAX VALUE)",S1,S2
110 INPUT "LIMITS OF Y AXIS (MIN VALUE, MAX VALUE)",T1,T2
120 INPUT "X,Y VALUES OF AXIS INTERSECTION",C1,C2
130 INPUT "X AXIS LABEL",X$
140 INPUT "Y AXIS LABEL",Y$
150 F1=100./X0:F2=100./Y0
160 GOSUB 500
170 PLOT [1,,C],[,,S]
180 INPUT "PLOT POINTS OR CURVE (1=POINT, 2=CURVE)",U1
190 TF U1=1 THEN 310
200 PLOT [,,R], [100*X1,100*Y1,U]
210 X4, Y4, E, E3, E4, E6, E8, E7=0: X$=" "
220 INPUT "DESIRED PLOT RANGE (MIN AND MAX VALUES)", W1, W2: INPUT
"DESTRED PLOT INCREMENT", D
230 STOP "INPUT EQUATION TO BE PLOTTED ON LINE 250 THEN KEY RUN
240"
240 FOR X=W1 TO W2 STEP D
250 Y=C(1)+C(2)*X+C(3)*X!2+C(4)*X!3+C(5)*X!4+C(6)*X!5+C(7)*X!6
260 X5 = X - C1 : Y5 = Y - C2
270 IF X[]W1 THEN 280:U1=1:GOSUB '02(X5, Y5, X4, Y4):U1=2:GOTO 290
280 GOSUB '02(X5,Y5,X4,Y4)
290 NEXT X
300 PLOT [,,U]:PLOT [,,R]: GOTO 1350
310 X$=" ":PRINT :PRINT :INPUT "DESIRED PLOT SYMBOL",X$:K=1:X4,Y
4=0: INPUT "ARE DATA POINTS TO BE LOADED FROM ARRAY (NO=0, YES=1)"
      D: IF D=1 THEN
                        340
320 PRINT : PRINT "INPUT DATA POINTS (STOP PLOTTING BY SETTING X.
Y = N, N)^{11}: PRINT
330 INPUT "X,Y = ",X9$,Y9$:IF X9$="N"THEN 410:CONVERT X9$ TO X9(K):CONVERT Y9$ TO Y9(K) :GOTO 360
340 PRINT : INPUT "FIRST AND LAST DATA POINTS TO BE PLOTTED", K, K5
350 STOP "KEY CONTINUE TO START PLOTTING POINTS IN ARRAY"
360 X=X9(K)-C1:Y=Y9(K)-C2:X4,Y4=0
370 IF K]1 THEN 380:PLOT [,,R],[100*X1,100*Y1,U],[F1*X,F2*Y,U],
[,,5],[,,X$]:GOTO 390
380 GOSUB '02(X,Y,X4,Y4)
390 PLOT [-X*F1,-Y*F2,U]
400 K=K+1: TF D=0 THEN 330: IF K]=K5+1 THEN 410: GOTO 369
410 INPUT "DO YOU WISH TO CONNECT PLOTTED POINTS WITH LINE SEGME
                      (YES=1,NO=0)"
420 IF Q=0 THEN 1350:INPUT "FIRST AND LAST POINTS TO BE CONNECTE
D", L8, L9
430 X4,Y4,E,E3,E4,E6,E8,E7=0:U1=2:PLOT [,,R],[100*X1,100*Y1,U]
440 FOR I=L8 TO L9
450 X=X9(I)-C1:Y=Y9(I)-C2
460 IF I[]L8 THEN 470:U1=1:GOSUB '02(X,Y,X4,Y4):U1=2:GOTO 480 470 GOSUB '02(X,Y,X4,Y4)
    NEXT I
430
    PLOT [,,U]:PLOT [,,R]:GOTO 1350 SELECT PLOT 414
490 PLOT
500
    RET THIS SUBROUTINE DRAWS AND LABELS AXIS
510
    PLOT [1,,C],[12,,S]
INPUT "LOCATION OF X AXIS LABELS (1=ABOVE, 2=BELOW)",L1
520
530
    INPUT "LOCATION OF Y AXIS LABELS (1=LEFT, 2=RIGHT)", L2
```

Table XV PROGRAM LISTING (CONTINUED)

```
550 A1=F1*ABS(S1-C1):A2=F1*ABS(S2-C1):B1=F2*ABS(T1+C2):B2=F2*ABS
(T2-C2)
560 PLOT [,,R],[100*X1,100*Y1,U],[-A1,0,U],[A1+A2,0,D],[-A2,-B1,U],[0,B1+B2,D]
570 M5=(ABS(S1-C1)+ABS(S2-C1))/X0:N5=(ABS(T1-C2)+ABS(T2-C2))/Y0
580 K=0
590
     S3=S1-X0
600 PLOT [-3, -(B1+B2), U]
610 FOR 13=1 TO N5+1
620 PLOT [6,0,D],[,,U]
630 IF I3=N5+1 THEN 640:PLOT [-6,F2*Y0,U]
640
     NEXT 13
650 PLOT [-(A1+3),-(B2+6),U]
660 FOR I4=1 TO M5+1
670 PLOT [0,12,D],[,,U]
680 IF I4=M5+1 THEN 690:PLOT [F1*X0,-12,U]
690 NEXT 14
     IF L1=2 THEN 710:PLOT [-(A1+A2+24),20,U]:GOTO 720
700
710 PLOT [-(A1+A2+24), -36, \bar{U}]
720 FOR I=1 TO M5+1
730
     IF I]M5+1 THEN 840
740
     S3 = S3 + X0
750 IF ABS(S3)]=1000.THEN 770:IF ABS(S3)]=160.THEN 730:IF ABS(S
3) ]=10. THEN 790:IF ABS(S3) ]=1. THEN 800
760 CONVERT S3 TO S3$, (-.###):GOTO 810
770 CONVERT S3 TO S3$, (-####):GOTO 810
780
     CONVERT
                S3
                   TO S3$, (-###-):GOTO 810
                   TO S3$, (-##.#):GOTO 810
               S3
790
     CONVERT
008
     CONVERT S3 TO S3$, (-# • ##): GOTO 810
     IF K[]O THEN 820: PLOT [,,S3$]:GOTO 840
IF S3[]C1 THEN 330:PLOT [F1*X0,0,U]:GOTO 840
820
     PLOT [(F1*X0)-60,0,U],[,,S3$]
830
840
     K=K+1:NEXT I
850
     IF L2=1 THEN 860:PLOT [-(A2+20),0,U]:GOTO 370
860 PLOT [-(A2+100),0,U]
870
     IF L1=1 THEN 880:PLOT [ 0,-(B1-31),U]:GOTO 390
880 PLOT [0,-(B1+24),U]
890 K=0
900 T3 = T1 - Y0
910 FOR I2=1 TO N5+1
920 IF I2]N5+1 THEN 1030
930 T3=T3+Y0
940 IF ABS(T3)]=1000.THEN 960:IF ABS(T3)]=100.THEN 970:IF ABS(T3)
)]=10.THEN 980:IF ABS(T3)]=1.THEN 990
                   TO T3$, (-.###):GOTO 1000
TO T3$, (-####):GOTO 1000
950 CONVERT T3
    CONVERT
               T 3
    CONVERT T3
970
                   TO
                       T3\$, (-\#\#\#*):GOTO 1000
                   TO T3$, (-##·#):GOTO 1000
980 CONVERT T3
990 CONVERT T3 TO T3$, (-#.##):GOTO 1000
1000 IF K[]0 THEN 1010:PLOT [,,T3$]:GOTO 1030 1010 IF T3[]C2 THEN 1020:PLOT [0,F2*Y0,U]:GOTO 1030
1020 PLOT [-60,F2*Y0,U],[,,T3$]
1030 K = K + 1 : NEXT I2
1040 PLOT [,,R]
1050 IF X$="" THEN 1110: PLOT [100*X1,100*Y1,U],[-A1,0,U]
1060 IF L1=2 THEN 1070:PLOT [0,50,U]:GOTO 1080
1070 PLOT [0,-60,U]
```

Table XV PROGRAM LISTING (CONCLUDED)

```
1080 IF A2[]O THEN 1090:PLOT [A1/5,0,U]:GOTO 1100
1090 PLOT [A1+A2/5,0,U]
1100 PLOT [,X$]
1110 IF Y$="" THEN 1180
1120 PLOT [,,R],[100*X1,100*Y1,U],[0,-B1,U]
1130 IF L2=1 THEN 1140:PLOT [90,0,U]:GOTO 1150
1140 PLOT [-90,0,U]
1150 IF B2[]0 THEN 1160:PLOT [0,2*B1/3,U]:GOTO 1170
1160 PLOT [0,B1+B2*2/3,U]
1170 PLOT [0,-20,S],[,,Y$],[12,,S],[,,R]
1180 RETURN
1190 DEFFN '02 (U, V, X4, Y4)
1200 X3=U:Y3=V
1210 D1=X3-X4:D2=Y3-Y4:X4=X4+D1:Y4=Y4+D2
1220 IF U1=2 THEN 1230: PLOT [F1*D1,F2*D2,U],[,,D],[,,X$],[,,U]
:E3=INT(F2*D2):E7=INT(F1*D1):GOTO 1340
1230 E1=F2*Y3-INT(F2*Y3)
1240 E = E + E1 + E4
1250 P8=F2*D2+E:P9=INT(P8)
1260 E5=F1*X3-INT(F1*X3)
1270 E6=E6+E5+E8
1280 S8 = F1 * D1 + E6 : S9 = INT(S3)
1290 PLOT [S9,P9,D]
1300 E3=E3+P9
1310 E4=F2*Y3-E3
1320 E7=S9+E7
1330 E8=F1*X3-E7
1340 RETURN
1350 INPUT "DO YOU WISH TO ADD LABELS OR COMMENTS TO PLOT (0=NO,
1=YES)"
1360 IF G=0 THEN 1480
1370 INPUT "DESIRED CHARACTER SIZE (NUMBER FROM 1 TO 5)", K
1380 PLOT [K,,C],[,,S]
1390 KEYIN P$,1410,1420
1400 GOTO 1390
1430 PLOT [0,-20*K,U],[-999,0,U]:GOTO 1390
1440 PLOT [13*K,0,Ú]:GOTO 1390
          [-13*K,0,V]:GOTO 1390
1450 PLOT
           [0,20*K,Ú]:GOTO 1390
1460 PLOT
1470 PLOT [0,-20*K, U]:GOTO 1390
1480 INPUT "DO YOU WISH TO CONTINUE PLOTTING (0=N0,1=YES)",G:
      IF G=1 THEN 180
1490 END
```