EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Departement Informatik

Theoretische Informatik

Prof. Dr. J. Hromkovič Prof. Dr. M. Bläser

1. Klausur Gruppe A

Zürich, 16. Dezember 2004

Aufgabe 1

a) Es sei $(w_j)_{j=0}^{\infty}$ die durch

$$w_j := b^{j^3}$$

gegebene (unendliche) Folge von Wörtern. Zeigen Sie, dass es eine Konstante c gibt, so dass für alle j gilt:

 $K(w_j) \le \frac{1}{3} \log |w_j| + c.$

Hinweis: Vergessen Sie nicht, dass diese Aufgabe auch das Aufschreiben von Programmen, die die w_j generieren, fordert.

b) Beweisen Sie mit Hilfe des Konzeptes der Kolmogorov-Komplexität, dass es unendlich viele Primzahlen gibt.

Hinweis: Beweise, die sich nicht auf ein die Kolmogorov-Komplexität nutzendes Argument beziehen, werden nicht akzeptiert.

2 × 5 Punkte

Aufgabe 2

a) Entwerfen Sie einen endlichen Automaten für die reguläre Sprache

 $L = \{x \in \{a,b\}^* \mid |x|_a \text{ ist gerade und es gibt } u,v \in \{a,b\}^* \text{ mit } x = uabbv\}.$

(Die Angabe eines Diagramms genügt hier.)

b) Geben Sie zu allen Zuständen q Ihres Automaten die zugehörigen Klassen $\mathrm{Kl}[q]$ explizit an.

4 + 6 Punkte

Aufgabe 3

In der Vorlesung haben wir drei Methoden vorgestellt, mit Hilfe derer man beweisen kann, dass eine Sprache nicht regulär ist. Suchen Sie sich für diese Aufgabe eine davon aus.

- a) Erklären Sie mit wenigen Sätzen die Idee der Methode.
- b) Formulieren Sie eine Behauptung, auf der die Methode beruht.
- c) Beweisen Sie diese Behauptung.
- d) Wenden Sie Ihre Methode an, um zu zeigen, dass die Sprache

$$L = \{xcy \mid x, y \in \{a, b\}^*, |x|_a = |y|_b\}$$

über $\Sigma = \{a, b, c\}$ nicht regulär ist.

$$2+3+5+5$$
 Punkte

Aufgabe 4

Definieren Sie die aus der Vorlesung bekannten Sprachen L_U und L_H . Beweisen Sie:

$$L_U \leq_R L_H$$
.

Hinweise:

- Womöglich fällt es Ihnen leichter, einen anderen Reduktionstyp zu verwenden. Dies ist erlaubt, wenn Sie zunächst beschreiben, welchen Reduktionstyp Sie verwenden, und wenn Sie (kurz) beschreiben, an welcher Stelle die zu zeigende Aussage folgt.
- Eine Reduktion besteht immer aus der Beschreibung eines geeigneten Mechanismus und aus dem Beweis, warum dadurch das Gewünschte geleistet wird.

10 Punkte