# COMP 680 Statistics for Computing and Data Science Week 7: Hypothesis Testing II

Su Chen, Assistant Teaching Professor, Rice D2K Lab

Week 7 COMP 680 1 / 36

#### Outline

- Common Parametric Tests One Sample
- Common Parametric Tests Two Sample
- Common Non-Parametric Tests
- Multiple Testing
- Code Demo

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - り Q (C)

Week 7 COMP 680 2 / 36

•  $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ ,  $\sigma^2$  known, and test on  $H_0: \mu = \mu_0$ 

Week 7 COMP 680 3 / 36

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ ,  $\sigma^2$  known, and test on  $H_0: \mu = \mu_0$
- Do Rice students have higher IQ than general population?
  - IQ in general population  $\sim N(\mu = 100, \sigma^2 = 15^2)$
  - test a sample of n Rice students

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト - 夏 - からで

Week 7 COMP 680 3 / 36

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2), \sigma^2$  **known**, and test on  $H_0: \mu = \mu_0$
- Do Rice students have higher IQ than general population?
  - IQ in general population  $\sim N(\mu = 100, \sigma^2 = 15^2)$
  - test a sample of n Rice students
- test statistic under the null follows standard normal distribution

$$z=rac{ar{X}_n-\mu_0}{\sigma/\sqrt{n}}\sim \mathsf{N}(0,1)$$

Week 7 **COMP 680** 3 / 36

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ ,  $\sigma^2$  known, and test on  $H_0: \mu = \mu_0$
- Do Rice students have higher IQ than general population?
  - IQ in general population  $\sim N(\mu=100,\sigma^2=15^2)$
  - test a sample of n Rice students
- test statistic under the null follows standard normal distribution

$$z=rac{ar{X}_n-\mu_0}{\sigma/\sqrt{n}}\sim \mathsf{N}(0,1)$$

- p-value =  $\mathbb{P}(Z \ge z) = 1 \Phi(z)$  one-sided, why?
- reject if p < 5%, equivalent to reject when  $z > Z_{0.95}$ , why?

(P) (B) (B) (B) (B) (B) (C)

•  $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ ,  $\sigma^2$  unknown, and test on  $H_0: \mu = \mu_0$ 

4□ > 4□ > 4 = > 4 = > = 4)Q(3

Week 7 COMP 680 4 / 36

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ ,  $\sigma^2$  unknown, and test on  $H_0: \mu = \mu_0$
- Do Rice students have an average IQ score of 100?
  - H<sub>1</sub> is two-sided this time
  - n Rice students with sample mean  $\bar{X}_n$  and sample variance  $s^2$

Week 7 COMP 680 4 / 36

- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ ,  $\sigma^2$  unknown, and test on  $H_0: \mu = \mu_0$
- Do Rice students have an average IQ score of 100?
  - $H_1$  is two-sided this time
  - n Rice students with sample mean  $\bar{X}_n$  and sample variance  $s^2$
- test statistic under the null follows t distribution

$$t = rac{ar{X}_n - \mu_0}{s/\sqrt{n}} \sim \mathsf{t}_{df=n-1}$$

Week 7 COMP 680 4 / 36

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ ,  $\sigma^2$  unknown, and test on  $H_0: \mu = \mu_0$
- Do Rice students have an average IQ score of 100?
  - H<sub>1</sub> is two-sided this time
  - n Rice students with sample mean  $\bar{X}_n$  and sample variance  $s^2$
- test statistic under the null follows t distribution

$$t = rac{ar{X}_n - \mu_0}{s/\sqrt{n}} \sim \mathsf{t}_{df=n-1}$$

• p-value =  $\mathbb{P}(T \le -|t| \text{ or } T \ge |t|)$  two-sided, why?

4 □ ▶ 4 Ē ▶ 4 Ē ▶ 1 Ē → 9 Q ○

#### The Wald Test

Both z-test and t-test require population distribution to be normal.

Week 7 COMP 680 5 / 36

Common Parametric Tests - One Sample Common Parametric Tests - Two Sample Common Non-Parametric Tests Multiple Testi

#### The Wald Test

- Both z-test and t-test require population distribution to be normal.
- You flip a coin 100 times and get 65 heads, is the coin fair?

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q ()

Week 7 COMP 680 5 / 36

Common Parametric Tests - One Sample Common Parametric Tests - Two Sample Common Non-Parametric Tests Multiple Testi

#### The Wald Test

Both z-test and t-test require population distribution to be normal.

**COMP 680** 

You flip a coin 100 times and get 65 heads, is the coin fair?

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ≡ √)⟨♡

5 / 36

#### The Wald Test

- Both z-test and t-test require population distribution to be normal.
- You flip a coin 100 times and get 65 heads, is the coin fair?
- Wald test applies to any test statistic that is asymptotically normal:
  - $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$
  - $H_0: \theta = \theta_0, H_1: \theta \neq \theta_0$
  - let  $\hat{\theta}$  be a statistic to estimate  $\theta$ , and under  $H_0$ :

$$rac{\hat{ heta}- heta_0}{\mathsf{se}(\hat{ heta})} o \mathsf{N}(0,1)$$

Week 7 **COMP 680** 5 / 36 Common Parametric Tests - One Sample Common Parametric Tests - Two Sample Common Non-Parametric Tests Multiple Testi

## $\chi^2$ Test of Goodness of Fit

- Data from multinomial distribution
- Example: jury selection Harris county demographics: 70% white, 20% black, 7% asian, 3% others.

Week 7 COMP 680 6 / 36

## $\chi^2$ Test of Goodness of Fit

- Data from multinomial distribution
- Example: jury selection Harris county demographics: 70% white, 20% black, 7% asian, 3% others.
  - $\chi^2$  test statistic:

$$T = \sum_{j=1}^k \frac{(X_j - E_j)^2}{E_j}$$

- X<sub>i</sub>: observed count in each category
- $E_i$ : expected count in each category under  $H_0$

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

### Outline

- Common Parametric Tests One Sample
- ② Common Parametric Tests Two Sample
- Common Non-Parametric Tests
- Multiple Testing
- Gode Demo

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q C・

Week 7 COMP 680 7 / 36

## Two Sample T Test - Paired

•  $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \text{N}(\mu_1, \sigma^2)$ , and  $Y_1, Y_2, \cdots Y_n \overset{\text{i.i.d.}}{\sim} \text{N}(\mu_2, \sigma^2)$ , with  $\sigma^2$  unknown, and test on  $H_0: \mu_1 - \mu_2 = 0$ 

- 4 ロ M 4 個 M 4 差 M 4 差 M 9 CP

Week 7 COMP 680 8 / 36

## Two Sample T Test - Paired

- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_1, \sigma^2)$ , and  $Y_1, Y_2, \cdots Y_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_2, \sigma^2)$ , with  $\sigma^2$  **unknown**, and test on  $H_0: \mu_1 \mu_2 = 0$
- Can meditation change your Serotonin level?
  - H<sub>1</sub> is two-sided this time
  - n pair of measurements: often repeated measure
  - Serontonin level before and after meditation for the same individual

4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ・ り 9 ○

Week 7 COMP 680 8 / 36

## Two Sample T Test - Paired

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} \text{N}(\mu_1, \sigma^2)$ , and  $Y_1, Y_2, \cdots Y_n \stackrel{\text{i.i.d.}}{\sim} \text{N}(\mu_2, \sigma^2)$ , with  $\sigma^2$  **unknown**, and test on  $H_0: \mu_1 \mu_2 = 0$
- Can meditation change your Serotonin level?
  - H<sub>1</sub> is two-sided this time
  - n pair of measurements: often repeated measure
  - Serontonin level before and after meditation for the same individual
- take difference of measurement  $d_i = X_i Y_i$ ,
- treat d<sub>i</sub> as the new data and apply one-sample t-test
- test statistic under the null follows t distribution

$$t = \frac{\bar{d}_n}{s_d/\sqrt{n}} \sim t_{df=n-1}$$

Week 7 COMP 680 8 / 36

## Two Sample T Test - Independent and Equal Variance

•  $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_1, \sigma^2)$ , and  $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_2, \sigma^2)$  with  $\sigma^2$  **unknown**, and test on  $H_0: \mu_1 = \mu_2$ 

Week 7 COMP 680 9 / 36

- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_1, \sigma^2)$ , and  $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_2, \sigma^2)$  with  $\sigma^2$  unknown, and test on  $H_0: \mu_1 = \mu_2$
- Do men and women have the same Serotonin level?
  - $H_1$  is two-sided this time
  - two groups of independent measurements

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Week 7 COMP 680 9 / 36

## Two Sample T Test - Independent and Equal Variance

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu_1, \sigma^2)$ , and  $Y_1, Y_2, \cdots Y_m \stackrel{\text{i.i.d.}}{\sim} N(\mu_2, \sigma^2)$  with  $\sigma^2$ **unknown**, and test on  $H_0$ :  $\mu_1 = \mu_2$
- Do men and women have the same Serotonin level?
  - H<sub>1</sub> is two-sided this time
  - two groups of independent measurements
- test statistic under the null follows t distribution

$$t = \frac{\bar{X}_n - \bar{Y}_m}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{df=n+m-2}$$

Week 7 **COMP 680** 9 / 36

## Two Sample T Test - Independent and Equal Variance

- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_1, \sigma^2)$ , and  $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_2, \sigma^2)$  with  $\sigma^2$  **unknown**, and test on  $H_0: \mu_1 = \mu_2$
- Do men and women have the same Serotonin level?
  - *H*<sub>1</sub> is two-sided this time
  - two groups of independent measurements
- test statistic under the null follows t distribution

$$t = \frac{\bar{X}_n - \bar{Y}_m}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{df=n+m-2}$$

pooled variance formula

$$s_p^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

Week 7 COMP 680 9 / 36

## Two Sample T Test - Independent

•  $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_1, \sigma_1^2)$ , and  $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_2, \sigma_2^2)$  with  $\sigma_1^2$  and  $\sigma_2^2$  unknown, and test on  $H_0: \mu_1 = \mu_2$ 

Week 7 COMP 680 10 / 36

- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_1, \sigma_1^2)$ , and  $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_2, \sigma_2^2)$  with  $\sigma_1^2$  and  $\sigma_2^2$  unknown, and test on  $H_0: \mu_1 = \mu_2$
- equal variances not assumed

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト 1 種 1 からの

Week 7 COMP 680 10 / 36

## Two Sample T Test - Independent

- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_1, \sigma_1^2)$ , and  $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} \mathsf{N}(\mu_2, \sigma_2^2)$  with  $\sigma_1^2$  and  $\sigma_2^2$  unknown, and test on  $H_0: \mu_1 = \mu_2$
- equal variances not assumed
- test statistic under the null follows t distribution

$$t = rac{ar{X}_n - ar{Y}_m}{\sqrt{rac{s_X^2}{n} + rac{s_Y^2}{m}}} \sim t_{df}$$

4 L 7 1 L 7 4 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7 1 E 7

Week 7 COMP 680 10 / 36

## Two Sample T Test - Independent

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu_1, \sigma_1^2)$ , and  $Y_1, Y_2, \cdots Y_m \stackrel{\text{i.i.d.}}{\sim} N(\mu_2, \sigma_2^2)$  with  $\sigma_1^2$ and  $\sigma_2^2$  **unknown**, and test on  $H_0$ :  $\mu_1 = \mu_2$
- equal variances not assumed
- test statistic under the null follows t distribution

$$t = rac{ar{X}_n - ar{Y}_m}{\sqrt{rac{s_X^2}{n} + rac{s_Y^2}{m}}} \sim t_{df}$$

degree of freedom formula

$$df = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{1}{n-1}\left(\frac{s_X^2}{n}\right)^2 + \frac{1}{m-1}\left(\frac{s_Y^2}{m}\right)^2}$$

Week 7 **COMP 680** 10 / 36

# $\chi^2$ Test of Independence

Data from contingency tables of two categorical variables

|   | Type of Movie | Snacks | No Snacks |
|---|---------------|--------|-----------|
|   | Action        | 50     | 75        |
| : | Comedy        | 125    | 175       |
|   | Family        | 90     | 30        |
|   | Horror        | 45     | 10        |

Example:

4□ > 4□ > 4 = > 4 = > = 90

Week 7 COMP 680 11 / 36

# $\chi^2$ Test of Independence

Data from contingency tables of two categorical variables

|   | Type of Movie | Snacks | No Snacks |
|---|---------------|--------|-----------|
|   | Action        | 50     | 75        |
| : | Comedy        | 125    | 175       |
|   | Family        | 90     | 30        |
|   | Horror        | 45     | 10        |

Example:

•  $\chi^2$  test statistic:

$$\chi^2 = \sum_{i=1}^r \sum_{i=1}^c \frac{(X_{i,j} - E_{i,j})^2}{E_{i,j}}$$

X<sub>i,j</sub>: observed count in each category

•  $E_{i,j}$ : expected count in each category under  $H_0$ 

Week 7 COMP 680 11 / 36

# $\chi^2$ Test of Independence

Data from contingency tables of two categorical variables

|   | Type of Movie | Snacks | No Snacks |
|---|---------------|--------|-----------|
|   | Action        | 50     | 75        |
| : | Comedy        | 125    | 175       |
|   | Family        | 90     | 30        |
|   | Horror        | 45     | 10        |

Example:

•  $\chi^2$  test statistic:

$$\chi^2 = \sum_{i=1}^r \sum_{i=1}^c \frac{(X_{i,j} - E_{i,j})^2}{E_{i,j}}$$

X<sub>i,j</sub>: observed count in each category

•  $E_{i,j}$ : expected count in each category under  $H_0$ 

Week 7 COMP 680 11 / 36

## More than Two Samples - ANOVA

 Data from one numerical measure and one categorical variable with more than two categories.

◄□▶◀圖▶◀불▶◀불▶ 불 씻으♡

Week 7 COMP 680 12 / 36

- Data from one numerical measure and one categorical variable with more than two categories.
- Do Rice students from 11 residential colleges have the same average GPA?
  - numerical variable: GPA
  - categorical variable: residential college

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

- Data from one numerical measure and one categorical variable with more than two categories.
- Do Rice students from 11 residential colleges have the same average GPA?
  - numerical variable: GPA
  - categorical variable: residential college
- $X_{k1}, X_{k2}, \cdots X_{n_k} \stackrel{\text{i.i.d.}}{\sim} N(\mu_k, \sigma^2)$ , where  $k = 1, 2, \cdots K$  of total Kgroups, with  $\sigma^2$  unknown but assumed equal

Week 7 **COMP 680** 12 / 36

## More than Two Samples - ANOVA

- Data from one numerical measure and one categorical variable with more than two categories.
- Do Rice students from 11 residential colleges have the same average GPA?
  - numerical variable: GPA
  - categorical variable: residential college
- $X_{k1}, X_{k2}, \cdots X_{n_k} \stackrel{\text{i.i.d.}}{\sim} N(\mu_k, \sigma^2)$ , where  $k = 1, 2, \cdots K$  of total Kgroups, with  $\sigma^2$  unknown but assumed equal
  - $H_0$ : all the  $\mu_k$  are the same
  - H<sub>1</sub>: at least one group mean is different
  - you do not know which group is different even if  $H_0$  is rejected

Week 7 **COMP 680** 

12 / 36

| Source of Variation | SS  | df    | $MS = SS \; / \; df$      |
|---------------------|-----|-------|---------------------------|
| Between Groups      | SSB | K-1   | $MSB = SSB \; / \; (K-1)$ |
| Within Groups       | SSE | N-K   | $MSE = SSE \ / \ (N - K)$ |
| Total               | SST | N - 1 |                           |

Week 7 COMP 680 13 / 36

### ANOVA Table

| Source of Variation | SS  | df    | MS = SS / df              |
|---------------------|-----|-------|---------------------------|
| Between Groups      | SSB | K-1   | $MSB = SSB \; / \; (K-1)$ |
| Within Groups       | SSE | N – K | $MSE = SSE \ / \ (N - K)$ |
| Total               | SST | N - 1 |                           |

• SSB = 
$$\sum_{k=1}^{K} n_k (\bar{X}_k - \bar{X})^2$$

• SSE = 
$$\sum_{k=1}^{K} \sum_{i=1}^{n_k} (X_{ki} - \bar{X}_k)^2$$

• 
$$SST = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (X_{ki} - \bar{X})^2 = SSB + SSE$$

Week 7 **COMP 680** 13 / 36

### ANOVA Table

| Source of Variation | SS  | df    | $MS = SS \; / \; df$      |
|---------------------|-----|-------|---------------------------|
| Between Groups      | SSB | K-1   | $MSB = SSB \; / \; (K-1)$ |
| Within Groups       | SSE | N-K   | $MSE = SSE \ / \ (N - K)$ |
| Total               | SST | N - 1 |                           |

• SSB = 
$$\sum_{k=1}^{K} n_k (\bar{X}_k - \bar{X})^2$$

• SSE = 
$$\sum_{k=1}^{K} \sum_{i=1}^{n_k} (X_{ki} - \bar{X}_k)^2$$

• 
$$SST = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (X_{ki} - \bar{X})^2 = SSB + SSE$$

$$F = \frac{\mathsf{MSB}}{\mathsf{MSF}} \sim F_{df_1 = K-1, df_2 = N-K}$$

Week 7 **COMP 680** 13 / 36

### Outline

- Common Parametric Tests One Sample
- Common Parametric Tests Two Sample
- Common Non-Parametric Tests
- Multiple Testing
- Code Demo

Week 7 COMP 680 14 / 36

# Parametric v.s Nonparametric Tests

| Parametric Test | Nonparametric Counterpart       |
|-----------------|---------------------------------|
| 1-sample t-test | Wilcoxon signed-rank test       |
| 2-sample t-test | Wilcoxon 2-sample rank-sum test |
| k-sample ANOVA  | Kruskal-Wallis test             |

### When to use nonparametric tests

 With correct assumptions (e.g., normal distribution), parametric methods will be more efficient than nonparametric ones but not so much more.

# When to use nonparametric tests

- With correct assumptions (e.g., normal distribution), parametric methods will be more efficient than nonparametric ones but not so much more.
  - large-sample efficiency of Wilcoxon test compared to t-test  $\approx 0.95$

- 4 ロ ト 4 @ ト 4 度 ト 4 度 ト 9 Q CC

Week 7 COMP 680 16 / 36

- With correct assumptions (e.g., normal distribution), parametric methods will be more efficient than nonparametric ones but not so much more.
  - large-sample efficiency of Wilcoxon test compared to t-test  $\approx 0.95$
- If the normality assumption grossly violated, nonparametric tests can be much more efficient and powerful.

Week 7 COMP 680 16 / 36

### When to use nonparametric tests

- With correct assumptions (e.g., normal distribution), parametric methods will be more efficient than nonparametric ones but not so much more.
  - large-sample efficiency of Wilcoxon test compared to t-test  $\approx 0.95$
- If the normality assumption grossly violated, nonparametric tests can be much more efficient and powerful.
- Circumstances in which parametric methods perform poorly.
  - extreme outliers

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 4 0 0

Week 7 COMP 680 16 / 36

## Wilcoxon signed-rank test

- Nonparametric analogue to the 1-sample t-test
- Almost always used on paired data to test for the median difference being 0 or not

- 4 B M 4 B M 4 B M 9 C 연

Week 7 COMP 680 17 / 36

### Wilcoxon signed-rank test

- Nonparametric analogue to the 1-sample t-test
- Almost always used on paired data to test for the median difference being 0 or not
  - $D = Y_{post} Y_{pre}$
  - $H_0: P(D>0) = \frac{1}{2} \text{ v.s } H_a: P(D>0) \neq \frac{1}{2}$
  - discard all D=0, work with signed-rank SR
  - $SR = Sign of D \times Rank of |D|$

Week 7 **COMP 680** 

17 / 36

### Wilcoxon signed-rank test

- Nonparametric analogue to the 1-sample t-test
- Almost always used on paired data to test for the median difference being 0 or not
  - $D = Y_{post} Y_{pre}$
  - $H_0: P(D>0) = \frac{1}{2} \text{ v.s } H_a: P(D>0) \neq \frac{1}{2}$
  - discard all D = 0, work with signed-rank  $\overline{SR}$
  - $SR = Sign of D \times Rank of |D|$
- Approx z-score

$$z = \frac{\sum SR_i}{\sqrt{\sum SR_i^2}}$$

Week 7 COMP 680 17 / 36

### Wilcoxon signed-rank test: Example

| Subject | Drug 1 | Drug 2 | Diff (2-1) | Sign | Rank |
|---------|--------|--------|------------|------|------|
| 1       | 1.9    | 0.7    | -1.2       | -    | 3    |
| 2       | -1.6   | 8.0    | 2.4        | +    | 8    |
| 3       | -0.2   | 1.1    | 1.3        | +    | 4.5  |
| 4       | -1.2   | 0.1    | 1.3        | +    | 4.5  |
| 5       | -0.1   | -0.1   | 0.0        | NA   | NA   |
| 6       | 3.4    | 4.4    | 1.0        | +    | 2    |
| 7       | 3.7    | 5.5    | 1.8        | +    | 7    |
| 8       | 8.0    | 1.6    | 0.8        | +    | 1    |
| 9       | 0.0    | 4.6    | 4.6        | +    | 9    |
| 10      | 2.0    | 3.4    | 1.4        | +    | 6    |

Table: Hours of extra sleep on drugs 1 and 2, differences, signs and ranks of sleep study data

Week 7 **COMP 680** 18 / 36

## Wilcoxon signed-rank test: Example

| Subject | Drug 1 | Drug 2 | Diff (2-1) | Sign | Rank |
|---------|--------|--------|------------|------|------|
| 1       | 1.9    | 0.7    | -1.2       | -    | 3    |
| 2       | -1.6   | 8.0    | 2.4        | +    | 8    |
| 3       | -0.2   | 1.1    | 1.3        | +    | 4.5  |
| 4       | -1.2   | 0.1    | 1.3        | +    | 4.5  |
| 5       | -0.1   | -0.1   | 0.0        | NA   | NA   |
| 6       | 3.4    | 4.4    | 1.0        | +    | 2    |
| 7       | 3.7    | 5.5    | 1.8        | +    | 7    |
| 8       | 8.0    | 1.6    | 0.8        | +    | 1    |
| 9       | 0.0    | 4.6    | 4.6        | +    | 9    |
| 10      | 2.0    | 3.4    | 1.4        | +    | 6    |

Table: Hours of extra sleep on drugs 1 and 2, differences, signs and ranks of sleep study data

$$z = \frac{\sum SR_i}{\sqrt{\sum SR_i^2}} = 2.31$$
, two-tailed p-value = 0.021

Week 7 COMP 680 18 / 36

- Testing for equality of central tendency of two distributions with unpaired data
- Ranking is done by combining two samples and ignoring group labels

Week 7 **COMP 680** 19 / 36

## Wilcoxon (WMW) 2-sample rank-sum test

- Testing for equality of central tendency of two distributions with unpaired data
- Ranking is done by combining two samples and ignoring group labels
  - Wilcoxon rank sum test statistic

$$W = \sum_{i \in n_1} R_i - \frac{n_1(n_1 + 1)}{2}$$

- where  $R_i$  is sum of ranks in Group 1 with sample size  $n_1$
- Under  $H_0$ ,  $\mu_W = \frac{n_1 n_2}{2}$  and  $\sigma_W = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$

$$z = \frac{W - \mu_W}{\sigma_W}$$

Week 7 **COMP 680** 

19 / 36

### WMW test: Example

| Female           | 120 | 118 | 121 | 119 |
|------------------|-----|-----|-----|-----|
| Male             | 124 | 120 | 133 |     |
| Ranks for Female | 3.5 | 1   | 5   | 2   |
| Ranks for Male   | 6   | 3.5 | 7   |     |

Week 7 COMP 680 20 / 36

### WMW test: Example

| Female           | 120 | 118 | 121 | 119 |
|------------------|-----|-----|-----|-----|
| Male             | 124 | 120 | 133 |     |
| Ranks for Female | 3.5 | 1   | 5   | 2   |
| Ranks for Male   | 6   | 3.5 | 7   |     |

- W = 1.5, z = -1.59, p-value = 0.056
- The concordance probability (C index)  $C = \frac{\bar{R} \frac{n_1 + 1}{2}}{n_2} = 0.125$

4 D > 4 D > 4 E > 4 E > 9 Q (4)

Week 7 COMP 680 20 / 36

### WMW test: Example

| Female           | 120 | 118 | 121 | 119 |
|------------------|-----|-----|-----|-----|
| Male             | 124 | 120 | 133 |     |
| Ranks for Female | 3.5 | 1   | 5   | 2   |
| Ranks for Male   | 6   | 3.5 | 7   |     |

- W = 1.5, z = -1.59, p-value = 0.056
- The concordance probability (C index)  $C = \frac{\bar{R} \frac{n_1 + 1}{2}}{n_2} = 0.125$
- Interpretation of C index:
  - probability that a randomly chosen female has a value greater than a randomly chosen male is 0.125

Week 7 **COMP 680** 20 / 36

# • Compare medians among k groups (k > 2) (like ANOVA with data replaced by their ranks)

- 4 B M 4 B M 4 B M 9 C 연

Week 7 COMP 680 21 / 36

- Compare medians among k groups (k > 2) (like ANOVA with data replaced by their ranks)
- Combine  $\sum_{i=1}^{G} n_i = N$  samples from  $i = 1, \dots G$  groups and rank them.

- 4 ロ ト 4 @ ト 4 度 ト 4 度 ト 9 Q CC

Week 7 COMP 680 21 / 36,

### Kruskal-Wallies test

- Compare medians among k groups (k > 2) (like ANOVA with data replaced by their ranks)
- Combine  $\sum_{i=1}^{G} n_i = N$  samples from  $i = 1, \dots G$  groups and rank them.
- Test statistic

$$H = (N-1) \frac{\sum_{i=1}^{G} n_i (\bar{R}_i - \bar{R})^2}{\sum_{i=1}^{G} \sum_{i=1}^{n_i} (R_{ij} - \bar{R})^2}$$

4 D > 4 B > 4 Z > 4 Z > 2 Z > 9Q(C)

replaced by their ranks)

# • Compare medians among k groups (k > 2) (like ANOVA with data

- Combine  $\sum_{i=1}^{G} n_i = N$  samples from  $i = 1, \dots G$  groups and rank them.
- Test statistic

$$H = (N-1) \frac{\sum_{i=1}^{G} n_i (\bar{R}_i - \bar{R})^2}{\sum_{i=1}^{G} \sum_{j=1}^{n_i} (R_{ij} - \bar{R})^2}$$

Look up critical value of H and p-value approx by  $\chi^2$  with d.f.=G-1

Week 7 **COMP 680** 21 / 36

### Permutation test

- Compare 2-samples with simulation and re-sampling technique
- Also known as A/B testing

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q G

Week 7 COMP 680 22 / 36

### Permutation test

- Compare 2-samples with simulation and re-sampling technique
- Also known as A/B testing
  - a measure collected for Group A and B
  - test whether this measure is different for the two Groups
- Rational: under the null the two groups are the same, therefore the group labels should not matter
- Implement: repeatedly permute the group labels (or the measures), calculate difference between two "group" means

Week 7 **COMP 680** 22 / 36

### Kolmogorov - Smirnov test

- A nonparametric test of the equality one-dimensional probability distributions.
- Testing the entire sample, not just mean or median!
- Compare a sample with a reference probability distribution: one-sample KS test.
- Compare two samples: two-sample KS test.

4日ト 4個ト 4 国ト 4 国ト 国 り900

Week 7 COMP 680 23 / 36

### One-sample K-S test



◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○○

Week 7 COMP 680 24 / 36

## Two-sample K-S test



Smirnov statistic. Red and blue lines each correspond to an empirical distribution function, and the black arrow is the two-sample KS statistic.

Week 7 25 / 36

### Outline

- Common Parametric Tests One Sample
- Common Parametric Tests Two Sample
- Common Non-Parametric Tests
- Multiple Testing
- Code Demo

# Motivating Example

- "I tested how quickly different monkeys can complete a certain task. I
  have trial scores for 267 species, and I want to see if there is a
  statistically significant species effect on average trial scores."
- What test do you run here?

4日ト 4個ト 4 差ト 4 差ト 差 めなべ

Week 7 COMP 680 27 / 36

# Motivating Example

- "I tested how quickly different monkeys can complete a certain task. I
  have trial scores for 267 species, and I want to see if there is a
  statistically significant species effect on average trial scores."
- What test do you run here?
- ANOVA.
- Assume ANOVA test determines significant.

4□ > 4□ > 4 = > 4 = > 9 < ○</p>

Week 7 COMP 680 27 / 36

## Motivating Example

- "I tested how quickly different monkeys can complete a certain task. I
  have trial scores for 267 species, and I want to see if there is a
  statistically significant species effect on average trial scores."
- What test do you run here?
- ANOVA.
- Assume ANOVA test determines significant.
- Post-hoc test: which pairwise differences are statistically significant?

Week 7 COMP 680 27 / 36

## **Hypothetical**

We want run a bunch of hypothesis tests on the same data set.

4□ > 4□ > 4 = > 4 = > = 4)Q(3

Week 7 COMP 680 28 / 36

# Hypothetical

- We want run a bunch of hypothesis tests **on the same data set**.
  - Significance of individual features.
  - Pairwise testing between categories.
  - Testing multiple different research questions.

Week 7 COMP 680 28 / 36,

# **Hypothetical**

- We want run a bunch of hypothesis tests **on the same data set**.
  - Significance of individual features.
  - Pairwise testing between categories.
  - Testing multiple different research questions.
- What if we use the typical procedure with  $\alpha = 0.05$ ?

**COMP 680** 

28 / 36

## Inflated Type I Error

- Each individual hypothesis test has a Type I error rate of 0.05.
- On average, expect to make a Type I for every 20 null hypothesis rejections.

- 4 B M 4 B M 4 B M 9 C 연

Week 7 COMP 680 29 / 36

### Inflated Type I Error

- Each individual hypothesis test has a Type I error rate of 0.05.
- On average, expect to make a Type I for every 20 null hypothesis rejections.
- $1 0.95^n$  chance to make a Type I error in n null hypothesis rejections.
  - when n = 10, about 40% "Type I" error rate

◆ロト ◆個ト ◆意ト ◆意ト · 意 · からぐ

Week 7 COMP 680 29 / 36,

# Inflated Type I Error

- Each individual hypothesis test has a Type I error rate of 0.05.
- On average, expect to make a Type I for every 20 null hypothesis rejections.
- $1 0.95^n$  chance to make a Type I error in n null hypothesis rejections.
  - when n = 10, about 40% "Type I" error rate
- We might want to adjust our procedure due to running multiple tests.

Week 7 COMP 680 29 / 36

### Other Error Rate

Familywise Error Rate (FWER): probability of making at least one type I error out of all of our hypothesis tests, i.e.

$$FWER = P(\# \text{ of Type I errors} > 0).$$

Week 7 **COMP 680** 30 / 36

## Other Error Rate

• Familywise Error Rate (FWER): probability of making at least one type I error out of all of our hypothesis tests, i.e.

$$FWER = P(\# \text{ of Type I errors} > 0).$$

• False Discovery Rate (FDR): experted proportion of false positives out of all tests that are declared significant, i.e.

$$FDR = E\left[\frac{\#(H_0 \text{ rejected } \cap H_0 \text{ is true})}{\#(H_0 \text{ rejected })}\right].$$

Week 7 COMP 680 30 / 36

Common Parametric Tests - One Sample Common Parametric Tests - Two Sample Common Non-Parametric Tests Multiple Testi

## Bonferroni Correction

- *n* tests, FWER of  $\alpha \rightarrow$  critical value of  $\alpha/n$  for all individual tests.
- Simplest and most widely-known correction.

Week 7 COMP 680 31 / 36

## Bonferroni Correction

- *n* tests, FWER of  $\alpha \rightarrow$  critical value of  $\alpha/n$  for all individual tests.
- Simplest and most widely-known correction.
- Mathematically guaranteed to work for any set of valid hypothesis tests.
  - why?

Week 7 COMP 680 31 / 36

## Bonferroni Correction

- *n* tests, FWER of  $\alpha \rightarrow$  critical value of  $\alpha/n$  for all individual tests.
- Simplest and most widely-known correction.
- Mathematically guaranteed to work for any set of valid hypothesis tests.
  - why?
- Downsides?

Week 7 **COMP 680** 

31 / 36

Common Parametric Tests - One Sample Common Parametric Tests - Two Sample Common Non-Parametric Tests Multiple Testi

# Benjamini-Hochberg Procedure

- Idea: order p-values and compare to different threshold
- Reject all smaller p-values once one falls below its specified threshold

4 ロ ト 4 個 ト 4 種 ト 4 種 ト 2 例 9 0 0 0

Week 7 COMP 680 32 / 36

- Idea: order p-values and compare to different threshold
- Reject all smaller p-values once one falls below its specified threshold
- Controls FDR.
- Assumes independent test statistics.

Week 7 COMP 680 32 / 36,

#### For a desired FDR level $\alpha$ :

- Order p-values of all tests from smallest to largest (i.e.,  $p_{(1)}, p_{(2)}, p_{(n)}$ .
- ② Calculate  $\alpha_k^* = \frac{\alpha k}{n}$  for  $k \in 1, ..., n$ .
- Find the largest k such that  $p_{(k)} \leq \alpha_k^*$ .
- Reject all the null hypotheses corresponding to  $p_{(1)}, p_{(2)}, \dots, p_{(k)}$ .

Week 7 **COMP 680** 

33 / 36

Adjusted critical values for  $\alpha = 0.05$ :

Week 7

| Test   | P-Value   | $\alpha_{k}^{*}$ |
|--------|-----------|------------------|
| Test 1 | 0.0028857 | 0.01             |
| Test 2 | 0.0096879 | 0.02             |
| Test 3 | 0.0233847 | 0.03             |
| Test 4 | 0.0241055 | 0.04             |
| Test 5 | 0.0609072 | 0.05             |

COMP 680 34 / 36

Adjusted critical values for  $\alpha = 0.05$ :

| Test   | P-Value   | $\alpha_{k}^{*}$ |
|--------|-----------|------------------|
| Test 1 | 0.0028857 | 0.01             |
| Test 2 | 0.0096879 | 0.02             |
| Test 3 | 0.0233847 | 0.03             |
| Test 4 | 0.0241055 | 0.04             |
| Test 5 | 0.0609072 | 0.05             |

Test 4 is the first from the bottom such that  $p_{(k)} < \alpha_k^*$ . Thus, reject  $H_0$  for Tests 1, 2, 3, and 4.

Week 7 COMP 680 34 / 36

## Note

Understand the framework of Hypothesis Testing is key!

4□ > 4□ > 4 = > 4 = > = 4)Q(3

Week 7 COMP 680 35 / 36

Common Parametric Tests - One Sample Common Parametric Tests - Two Sample Common Non-Parametric Tests Multiple Testi

### Note

- Understand the framework of Hypothesis Testing is key!
- Which test to use?
  - example of some general guideline and implementation in Python
  - always check assumptions

(ロ) (部) (注) (注) 注 り(で)

Week 7 COMP 680 35 / 36

### Note

- Understand the framework of Hypothesis Testing is key!
- Which test to use?
  - example of some general guideline and implementation in Python
  - always check assumptions
- 0.05 is not a magic number....
  - everything is significant with infinite many data
  - effect SIZE matters

Week 7 COMP 680 35 / 36

## Note

- Understand the framework of Hypothesis Testing is key!
- Which test to use?
  - example of some general guideline and implementation in Python
  - always check assumptions
- 0.05 is not a magic number....
  - everything is significant with infinite many data
  - effect SIZE matters
- No p-hacking! Peeking is cheating!!
  - provide evidence and leave decision to domain experts

Week 7 **COMP 680** 

35 / 36

## Outline

- Common Parametric Tests One Sample
- 2 Common Parametric Tests Two Sample
- Common Non-Parametric Tests
- Multiple Testing
- G Code Demo

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ト り へ ○・

Week 7 COMP 680 36 / 36