C^* -Extreme Points of the Generalized State Space of a Commutative C^* -Algebra

Martha C. Gregg Augustana College Iowa-Nebraska Functional Analysis Seminar 25 April, 2009 ${\mathcal H}$ - Hilbert Space, ${\mathcal B}({\mathcal H})$ - bounded linear operators on ${\mathcal H}$

X - compact, Hausdorff

 $C(X) = \{ f : X \to \mathbb{C} \mid f \text{ is continuous} \}$

Definition 1. The **state space** of C(X) is $S_{\mathbb{C}}(C(X)) = \{\phi : C(X) \to \mathbb{C} \mid \phi(1) = 1, \phi \text{ a positive linear map}\}$

Definition 2. The generalized state space of C(X) is $S_{\mathcal{H}}(C(X)) = \{\phi : C(X) \to \mathcal{B}(\mathcal{H}) \mid \phi(1) = I, \phi \text{ a positive linear map} \}$

Definition 3. If $s, y_1, \ldots, y_n \in S$ and $t_1, \ldots, t_n \in (0, 1)$ with $t_1 + \cdots + t_n = 1$ then

$$s = t_1 y_1 + \dots + t_n y_n$$

expresses x as a **convex combination** of $y_1, \ldots y_n$

Definition 4. If $\phi, \psi_1, \dots, \psi_n \in S_{\mathcal{H}}(C(X))$ and t_1, \dots, t_n are invertible operators in $\mathcal{B}(\mathcal{H})$ with $t_1^*t_1 + \dots + t_n^*t_n = I$ then

$$\phi(\cdot) = t_1^* \psi_1(\cdot) t_1 + \dots + t_n^* \psi_n(\cdot) t_n$$

expresses ϕ as a C^* -convex combination of ψ_1, \ldots, ψ_n .

Definition 5. $s \in S$ is **extreme** if whenever

$$s = t_1 y_1 + \dots + t_n y_n$$

where $t_j \in (0,1)$ and $y_j \in S$, then

$$s = y_j \quad \forall j$$

Definition 6. $\phi \in S_{\mathcal{H}}(C(X))$ is C^* -extreme if whenever

$$\phi = t_1^* \psi_1 t_1 + \dots + t_n^* \psi_n t_n$$

where $\psi_j \in S_{\mathcal{H}}(C(X))$ and $t_j \in \mathcal{B}(\mathcal{H})$ are invertible with $t_1^*t_1 + \cdots + t_n^*t_n = I$, then

$$\psi_j \sim \phi \quad \forall j$$

Other non-commutative convexity

matrix convexity
 (Wittstock, Effros-Winkler, Winkler-Webster)

• *CP*-convexity (Fujimoto)

CP-states:

 $Q_{\mathcal{H}}(\mathcal{A}) = \{\phi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) \mid \phi \text{ is completely positive and } \|\phi\|_{cb} \leq 1\}$ CP-convex combination

$$\phi = \sum t_i^* \psi_i t_i,$$

 $t_i \in \mathcal{B}(\mathcal{H})$ (need not be invertible), $\sum t_i^* t_i \leq I$ sum converges in BS-topology

CP-extreme states of $Q_{\mathcal{H}}(\mathcal{A}) \subsetneq C^*$ -extreme states of $Q_{\mathcal{H}}(\mathcal{A})$

Definition 7. matrix convex set (Wittstock, 1983) $K = \{K_n\}_{n \in \mathbb{N}}, K_n \subseteq M_n(V) \text{ convex satisfying:}$

- 1. $\alpha \in M_{r,n}$ with $\alpha^* \alpha = 1 \Rightarrow \alpha^* K_r \alpha \subseteq K_n$
- 2. for $m, n \in \mathbb{N}$, $K_m \oplus K_n \subseteq K_{m+n}$.

Definition 8. (Webster-Winkler, 1999) $v \in K_n$ matrix extreme point if whenever

$$v = \sum_{i=1}^{k} \gamma_i^* v_i \gamma_i$$

 $v_i \in K_{n_i}$, $\gamma_i \in M_{n_i,n}$ right invertible, and $\sum \gamma_i^* \gamma_i = I$, then each $n_i = n$ and $v_i \sim v$

matrix extreme points of $S_{\mathbb{C}^n}(\mathcal{A}) \subsetneq C^*$ -extreme

Example 9. (Webster, Winkler, 1999)

• $\{S_{\mathbb{C}^n}(\mathcal{A})\}_{n\in\mathbb{N}}$ is a matrix convex set

• (Example 2.3) matrix extreme points of $S_{\mathcal{C}^n}(\mathcal{A})=$ pure maps in $S_{\mathbb{C}^n}(\mathcal{A})$

 $S_{\mathbb{C}^n}(C(X))$ contains no matrix extreme points for n>1

(Farenick, Morenz, 1997)

 $S_{\mathbb{C}^n}(\mathcal{A})$ is the closed C^* -convex hull of its C^* -extreme points (closure w.r.t. the bounded weak topology)

- In $S_{\mathbb{C}}(C(X))$ extreme points are multiplicative
- (1969) Arveson characterized extreme points of $S_{\mathcal{H}}(\mathcal{A})$
- ullet structure theorem for extreme points of $S_{\mathbb{C}^n}(C(X))$
- there are non-multiplicative extreme points in $S_{\mathbb{C}^n}(C(X))$

Some known results when $\mathcal{H}=\mathbb{C}^n$ finite dimensional (D. Farenick, P. Morenz, 1997):

- $\phi \in S_{\mathbb{C}^n}(\mathcal{A})$ C^* -extreme $\Leftrightarrow \phi \sim \phi_1 \oplus \cdots \oplus \phi_n$, ϕ_j pure maps
- $\phi \in S_{\mathbb{C}^n}(\mathcal{A})$ C^* -extreme $\Rightarrow \phi$ extreme
- $\phi \in S_{\mathbb{C}^n}(C(X))$ C^* -extreme $\Leftrightarrow \phi$ multiplicative

$S_{\mathbb{C}}(C(X))$	extreme	=	C^* -extreme	=	pure	=	mult.
$S_{\mathbb{C}}(\mathcal{A})$	extreme	=	C^* -extreme	=	pure	\supseteq	mult.
$S_{\mathbb{C}^n}(C(X))$	extreme	\Rightarrow	C^* -extreme	=	mult.		
$S_{\mathbb{C}^n}(\mathcal{A})$	extreme	\supseteq	C^* -extreme C^* -extreme	\Rightarrow	pure mult.		
$\phi: C(X) \to \mathcal{K}^+$	extreme	\supseteq	C^* -extreme	=	mult.		
$S_{\mathcal{H}}(C(X))$	extreme	?	C^* -extreme	\supseteq	mult.		
$S_{\mathcal{H}}(\mathcal{A})$	extreme	?	C^* -extreme	\supseteq	pure		
			C^* -extreme	\supseteq	mult.		

Recall:

 $\phi \in S_{\mathbb{C}}(C(X))$ positive, linear $\Rightarrow \exists$ a unique positive Borel measure μ s.t.

$$\phi(f) = \int_X f d\mu$$

 $\forall f \in C(X)$

Compare: (Paulsen)

 $\phi \in S_{\mathcal{H}}(C(X))$ a positive linear map $\Rightarrow \exists$ a positive operator-valued measure

$$\mu$$
: Borel sets of $X \to \mathcal{B}(\mathcal{H})$

s.t

$$\int_{X} f d\mu_{\phi} = \phi(f)$$

Fix
$$\phi \in S_{\mathcal{H}}(C(X))$$

for each pair of vectors $x, y \in \mathcal{H}$; the map

$$C(X) \to (C)$$

$$f \mapsto \langle \phi(f)x, y \rangle$$

corresponds to $\mu_{x,y}$ on X

$$\int_X f d\mu_{x,y} := \langle \phi(f)x, y \rangle \text{ for any } f \in C(X)$$

B a Borel set of X

$$(x,y)\mapsto \mu_{x,y}(B)$$

is a sesquilinear form

let x, y range over \mathcal{H} determines an operator $\mu(B)$

define operator-valued measure

$$\mu$$
: Borel sets $\longrightarrow \mathcal{B}(\mathcal{H})$

 μ_{ϕ} is

1. weakly countably additive, i.e. $\{B_i\}_{i=1}^{\infty}$ prwise disjt Borel sets,

$$\left\langle \mu \left(\bigcup_{i=1}^{\infty} B_i \right) x, y \right\rangle = \sum_{i=1}^{\infty} \left\langle \mu(B_i) x, y \right\rangle$$

for every $x, y \in \mathcal{H}$.

- 2. bounded, i.e. $\|\mu\| := \sup\{\|\mu(B)\| : B \in \mathcal{S}\} < \infty$
- 3. regular, i.e. $\forall x, y \in \mathcal{H}$, $\mu_{x,y}$ is regular, where

$$\mu_{x,y}(B) = \langle \mu_{\phi}(B)x, y \rangle$$

Proposition 10. (Paulsen, *Completely Bounded Maps*) Given an operator valued measure μ and its associated linear map ϕ ,

- 1. ϕ is self-adjoint if and only if μ is self-adjoint,
- 2. ϕ is positive if and only if μ is positive,
- 3. ϕ is a homomorphism if and only if $\mu(B_1 \cap B_2) = \mu(B_1)\mu(B_2)$ for all Borel sets B_1, B_2 ,
- 4. ϕ is a *-homomorphism if and only if μ is spectral (i.e., projection-valued).

Moreover,

•
$$\mu_1 \sim \mu_2 \Leftrightarrow \phi_1 \sim \phi_2$$

• μ is C^* -extreme $\Leftrightarrow \phi$ is C^* -extreme

ullet range $\mu_\phi\subseteq \mathrm{WOT} ext{-cl}$ range ϕ

• $\mu_{\phi}(F)$ is a projection $\Rightarrow \mu_{\phi}(F) \in \phi(C(X))'$

Theorem 11. $\phi: C(X) \longrightarrow \mathcal{B}(\mathcal{H})$ a unital, positive map. If ϕ is C^* -extreme, then for every Borel set $F \subset X$, either

- (1) $\sigma(\mu_{\phi}(F)) \subseteq \{0, 1\}$ (i.e. $\mu_{\phi}(F)$ is a projection), or
- (2) $\sigma(\mu_{\phi}(F)) = [0, 1].$

Assume $\exists F \subseteq X$ with

$$\sigma(\mu_{\phi}(F)) \subsetneq [0,1]$$

and $\mu_{\phi}(F)$ not a projection.

Choose an interval (a, b) with

$$(a,b) \cap \sigma(\mu_{\phi}(F)) = \emptyset$$

Let
$$Q_k = \frac{1}{2}\mu_{\phi}(F) + s_k \mu_{\phi}(F^C)$$
,

where
$$\max\left\{\frac{1}{4}, \frac{1}{2}\left(\frac{a-ab}{b-ab}\right)\right\} < s_1 < \frac{1}{2} \text{ and } s_2 = 1 - s_1$$

Construct μ_1, μ_2 from μ_{ϕ} by:

$$\mu_k(B) = Q_k^{-\frac{1}{2}} \left(\frac{1}{2} \mu_\phi(B \cap F) + s_k \mu_\phi(B \cap F^C) \right) Q_k^{-\frac{1}{2}}$$

 μ_k are unital and positive, and

$$\mu_{\phi} = Q_1^{\frac{1}{2}} \mu_1 Q_1^{\frac{1}{2}} + Q_2^{\frac{1}{2}} \mu_2 Q_2^{\frac{1}{2}}$$

show μ_k and μ_ϕ not unitarily equivalent:

Compute

$$\mu_k(F) = Q_k^{-1/2} \left(\frac{1}{2} \mu_{\phi}(F) \right) Q_k^{-1/2}$$

$$= \frac{1}{2} \mu_{\phi}(F) \left(s_k I + \left(\frac{1}{2} - s_k \right) \mu_{\phi}(F) \right)^{-1}$$

$$= f_k(\mu_{\phi}(F)),$$

 f_1 continuous, increasing, concave down on (0,1)

$$\sigma(\mu_{\phi}(F))$$
:

$$\sigma(\mu_1(F))$$
:

Theorem 11 also shows:

$$\lambda \in (0,1)$$
 an eigenvalue of $\mu_{\phi}(F) \Rightarrow (0,1) \subseteq \sigma_{pt}(\mu_{\phi}(F))$

Note: \mathcal{H} separable ϕ C^* -extreme $\Rightarrow \mu_{\phi}(F)$ has no eigenvalues in (0,1)

Corollary 12. (Farenick, Morenz)

 $\phi \in S_{\mathcal{H}}(C(X))$ is C^* -extreme \Leftrightarrow it is a *-homomorphism.

Corollary 13. $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ a von Neumann algebra, $\phi \in S_{\mathcal{H}}(C(X))$, range of ϕ in \mathcal{M}

If ϕ fails to meet the spectral condition described in Theorem 11, then

$$\phi = t_1^* \psi_1 t_1 + t_2^* \psi_2 t_2,$$

where each $t_k \in \mathcal{M}$, each $\psi_k : C(X) \longrightarrow \mathcal{M}$, and, for at least one choice of k, ψ_k is not unitarily equivalent to ϕ in $\mathcal{B}(\mathcal{H})$.

 \mathcal{K} - the ideal of compact operators in $\mathcal{B}(\mathcal{H})$

 \mathcal{K}^+ - the C^* -algebra generated by \mathcal{K}, I

Theorem 11 implies:

Theorem 14. $\phi: C(X) \to \mathcal{K}^+$ unital, positive ϕ is C^* -extreme $\Leftrightarrow \phi$ is a *-homomorphism.

 $q:\mathcal{B}(\mathcal{H})\to\mathcal{B}(\mathcal{H})/\mathcal{K}$ the usual quotient map

Lemma 15. $\phi: C(X) \to \mathcal{K}^+$ unital, positive, C^* -extreme. Then $\tau = q \circ \phi$ is multiplicative.

$$C(X) \xrightarrow{\phi} \mathcal{K}^+$$

$$\uparrow \qquad \qquad \downarrow q$$

$$\mathbb{C}$$

 ϕ multiplicative $\Rightarrow \phi$ C^* -extreme (Farenick-Morenz, 1993)

$$\phi \ C^*$$
-extreme $\Rightarrow \tau(f) = f(x_0)$

Choose $x_1 \neq x_0$, $g \in C(X)$ as shown:

Then $\phi(g)$ is compact, and so is $\phi(\chi_{NC})$.

Theorem 11 $\Rightarrow \phi(\chi_{NC})$ is a f.r. projection.

 $B \not\ni x_0$ any Borel set, use the regularity of the measures $\mu_{x,x}$ to show $\mu_{\phi}(B)$ a projection

 $\Rightarrow \mu_{\phi}$ projection valued

Theorem 14 yields:

If
$$\phi: C(X) \to \mathcal{K}^+$$
 is C^* -extreme \Rightarrow

• supp $\mu_{\phi} =$ discrete set + one accumulation point x_0

ullet ϕ has the form

$$\phi(f) = \sum_{x \in \text{supp}(\mu_{\phi})} f(x) P_x$$

where $P_x = \mu_{\phi}(\{x\})$ is a f.r. projection for all $x \neq x_0$

Non-multiplicative C^* -extreme maps exist:

Example 16. (Arveson, 1969, Farenick-Morenz, 1993)

Consider the representation

$$\pi: C(\mathbb{T}) \to \mathcal{B}(L^2(\mathbb{T}, m))$$

$$f \mapsto M_f$$

Define

$$\phi: C(\mathbb{T}) \to \mathcal{B}(H^2)$$
$$f \mapsto PM_f P = T_f$$

P is the projection of $L^2(\mathbb{T},m)$ onto the Hardy space H^2 .

$$\mu_{\pi}(B) = M_{\chi_B}$$
, so $\mu_{\phi}(B) = PM_{\chi_B}P = T_{\chi_B}$

B a nontrivial Borel subset of X $\sigma(\mu_{\phi}(B)) = [0,1]$ (Hartman, Wintner, 1954)

So ϕ satisfies the conditions of Theorem 11.

Example 17. Define

$$\psi: C([0,2\pi]) \to \mathcal{B}(H^2)$$
$$g \mapsto \phi(f)$$

where $g(t) = f(e^{it})$

The End