Step-1

4764-1.6-9P AID: 124

RID: 232

$$A = \begin{bmatrix} 2 & 1 & 4 & 6 \\ 0 & 3 & 8 & 5 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 9 \end{bmatrix}$$

Given matrices

We have to show that *A* is not invertible.

Step-2

 $\frac{9}{7}$ Subtracting $\frac{9}{7}$ times row 3 from row 4, we get

$$A = \begin{bmatrix} 2 & 1 & 4 & 6 \\ 0 & 3 & 8 & 5 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the last row consists all zeros.

Hence the matrix *A* has no inverse.

Step-3

Given that the third row of A^{-1} , multiplying A should give the third row $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$ of $A^{-1}A = I$

We have to explain why this is impossible.

Step-4

Let the third row of A^{-1} is $\begin{bmatrix} a & b & c & d \end{bmatrix}$

Then $A^{-1}A = I$

$$\begin{bmatrix} a & b & c & d \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 6 \\ 0 & 3 & 8 & 5 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2a & a+3b & 4a+8b & 6a+5b+7c+9d \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$$

Equating the corresponding elements gives

$$2a = 0$$
, $a + 3b = 0$, $4a + 8b = 1$, $6a + 5b + 7c + 9d = 0$

This has no solution.

Hence *A* is not invertible.