STAT 3690 Lecture Note

Week Four (Jan 30, Feb 1, & 3, 2023)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2023/Jan/29 16:58:40

Multivariate normal (MVN) distribution (con'd, J&W Sec 4.2)

Definition

• Standard MVN

tandard MVN
$$- \mathbf{Z} = [Z_1, \dots, Z_p]^{\top} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \Leftrightarrow Z_1, \dots, Z_p \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$

$$- \text{pdf}$$

$$f_{\mathbf{Z}}(\mathbf{z}) = (2\pi)^{-p/2} \exp(-\mathbf{z}^{\top}\mathbf{z}/2) \cdot \mathbf{1}_{\mathbb{R}^p}(\mathbf{z})$$

• General MVN

$$-\boldsymbol{X} = [X_1, \dots, X_p]^{\top} \sim \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \text{there exists } \boldsymbol{\mu} \in \mathbb{R}^p, \ \mathbf{A} \in \mathbb{R}^{p \times p} \text{ and } \boldsymbol{Z} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \text{ such that } \boldsymbol{X} = \mathbf{A}\boldsymbol{Z} + \boldsymbol{\mu} \text{ and } \boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$$

* Limited to non-degenerate cases, i.e., invertible **A** ($\Leftrightarrow \Sigma > 0$)

- pdf

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = (2\pi)^{-p/2} (\text{det}\boldsymbol{\Sigma})^{-1/2} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2\} \cdot \boldsymbol{1}_{\mathbb{R}^p}(\boldsymbol{x})$$

• Exercise: Density of $MVN_2(\mu, \Sigma)$ evaluated at (4,7), where

$$\boldsymbol{\mu} = [3, 6]^{\top}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} 10 & 2 \\ 2 & 5 \end{bmatrix}.$$

Properties of MVN

- X is of MVN $\Leftrightarrow a^{\top}X$ is normally distributed for ALL non-zero $a \in \mathbb{R}^p$.
 - Warning: marginal normals do not imply the joint normal.
- If $X \sim \text{MVN}_p(\mu, \Sigma)$, then $AX + b \sim \text{MVN}_q(A\mu + b, A\Sigma A^\top)$ for $A \in \mathbb{R}^{q \times p}$ of full-row-rank. Hence,
 - (Stochastic representation of MVN) if $X \sim \text{MVN}_p(\mu, \Sigma)$, then there is $Z \sim \text{MVN}_p(0, I)$ such that $X = \Sigma^{1/2} Z + \mu$. Actually, $Z = \Sigma^{-1/2} (X - \mu)$.
- $(X \mu)^{\top} \Sigma^{-1} (X \mu) \sim \chi^{2}(p)$ if $X \sim \text{MVN}_{p}(\mu, \Sigma)$.

• Exercise: Generate six iid samples following bivariate normal $MVN_2(\mu, \Sigma)$ with

$$\boldsymbol{\mu} = [3, 6]^{\top}, \quad \boldsymbol{\Sigma} = \left[egin{array}{cc} 10 & 2 \\ 2 & 5 \end{array} \right].$$

1

- Exercise: Suppose $X_1 \sim \mathcal{N}(0,1)$. In the following two cases, verify that $X_2 \sim \mathcal{N}(0,1)$ as well. Does $X = [X_1, X_2]^{\top}$ follow an MVN in both cases?
 - a. $X_2 = -X_1$;
 - b. $X_2 = (2Y 1)X_1$, where $Y \sim \text{Ber}(p)$ and $Y \perp X$. (Hint: $Y \perp X \Leftrightarrow f_Z(z) = f_X(x)f_Y(y)$, where $\boldsymbol{Z} = [\boldsymbol{X}^{\top}, \boldsymbol{Y}^{\top}]^{\top}$.)

Marginal and conditional MVN

• If $X \sim \text{MVN}_p(\mu, \Sigma)$, where

$$m{X} = \left[egin{array}{c} m{X}_1 \ m{X}_2 \end{array}
ight], \quad m{\mu} = \left[egin{array}{c} m{\mu}_1 \ m{\mu}_2 \end{array}
ight] \quad ext{and} \quad m{\Sigma} = \left[egin{array}{cc} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{array}
ight]$$

with

- random p_i -vector \mathbf{X}_i , i = 1, 2,
- p_i -vector $\boldsymbol{\mu}_i$, i = 1, 2,
- $-p_i \times p_i \text{ matrix } \Sigma_{ii} > 0, i = 1, 2,$
- - (Marginals of MVN are still MVN) $X_i \sim \text{MVN}_{p_i}(\mu_i, \Sigma_{ii})$
 - $\boldsymbol{X}_i \mid \boldsymbol{X}_j = \boldsymbol{x}_j \sim \text{MVN}_{p_i}(\boldsymbol{\mu}_{i|j}, \boldsymbol{\Sigma}_{i|j})$
 - $*oldsymbol{\mu}_{i|j} = oldsymbol{\mu}_i + oldsymbol{\Sigma}_{ij} oldsymbol{\Sigma}_{jj}^{-1} (oldsymbol{x}_j oldsymbol{\mu}_j)$
 - $* \ oldsymbol{\Sigma}_{i|j} = oldsymbol{\Sigma}_{ii} oldsymbol{\Sigma}_{ij} oldsymbol{\Sigma}_{jj}^{-1} oldsymbol{\Sigma}_{ji} \ \ oldsymbol{X}_1 \perp \!\!\! \perp oldsymbol{X}_2 \Leftrightarrow oldsymbol{\Sigma}_{12} = oldsymbol{0}$
 - - * Warning: the prerequisite for this equivalence is the joint normal of X_1 and X_2 .
- Exercise: The argument $X_1 \perp \!\!\! \perp X_2 \Leftrightarrow \Sigma_{12} = 0$ is based on $[X_1^\top, X_2^\top]^\top \sim \text{MVN}$. That is, if X_1 and X_2 are both MVN BUT they are not jointly normal, the zero Σ_{12} doesn't suffice for the independence between X_1 and X_2 . Recall the instance in the previous exercise: $X_1 \sim \mathcal{N}(0,1)$ and $X_2 = (2Y-1)X_1$. Verify that X_1 and X_2 are not independent of each other.

Checking normality (J&W Sec 4.6)

- Checking the univariate marginal distributions
 - Normal Q-Q plot
 - * qqnorm(); car::qqPlot()
 - Univariate normality test
 - * shapiro.test(); nortest::ad.test()
- Testing the multivariate normality
 - MVN::mvn()
- Checking the quadratic form
 - $-\chi^2$ Q-Q plot
 - * $D_i^2 = (\boldsymbol{X}_i \bar{\boldsymbol{X}})^{\top} \mathbf{S}^{-1} (\boldsymbol{X}_i \bar{\boldsymbol{X}}) \approx \chi^2(p) \text{ if } \boldsymbol{X}_i \stackrel{\text{iid}}{\sim} \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - * qqplot(); car::qqPlot()

Detecting outliers (J&W Sec 4.7)

- Scatter plot of standardized values
- Check the points farthest from the origin in χ^2 Q-Q plot

Improving normality (J&W Sec 4.8)

• (Original) Box-Cox (power) transformation: transform positive x into

$$x^* = \begin{cases} (x^{\lambda} - 1)/\lambda & \lambda \neq 0\\ \ln(x) & \lambda = 0 \end{cases}$$

with λ selected with certain criterion

- If $x \leq 0$, change it to be positive first.
- See J. Tukey (1977). Exploratory Data Analysis. Boston: Addison-Wesley.
- Multivariate Box-Cox transformation

Maximum likelihood (ML) estimation of μ and Σ (J&W Sec 4.3)

- Sample: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mu, \Sigma), n > p$
- Parameter space: $\Theta = \{(\mu, \Sigma) \mid \mu \in \mathbb{R}^p, \Sigma \in \mathbb{R}^{p \times p}, \Sigma > 0\}$
- Likelihood function

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{(2\pi)^{p} \det(\boldsymbol{\Sigma})}} \exp\left\{ -\frac{1}{2} (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) \right\} \right]$$
$$= \frac{1}{\sqrt{(2\pi)^{np} \{\det(\boldsymbol{\Sigma})\}^{n}}} \exp\left\{ -\frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) \right\}$$

· Log likelihood

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln\{L(\boldsymbol{\mu}, \boldsymbol{\Sigma})\} = -\frac{np}{2}\ln(2\pi) - \frac{n}{2}\ln\{\det(\boldsymbol{\Sigma})\} - \frac{1}{2}\sum_{i=1}^{n}(\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{X}_{i} - \boldsymbol{\mu})$$

• ML estimator

$$(\hat{\boldsymbol{\mu}}_{\mathrm{ML}}, \widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}}) = \arg\max_{(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \in \boldsymbol{\Theta}} \ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\bar{\boldsymbol{X}}, \frac{n-1}{n} \mathbf{S})$$

- Consistency: $(\hat{\mu}_{\mathrm{ML}}, \widehat{\Sigma}_{\mathrm{ML}})$ approaches (μ, Σ) (in certain sense) as $n \to \infty$
- Efficiency: the covariance matrix of $(\hat{\boldsymbol{\mu}}_{\text{ML}}, \hat{\boldsymbol{\Sigma}}_{\text{ML}})$ is approximately optimal (in certain sense) as $n \to \infty$
- Invariance: For any function g, the ML estimator of $g(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is $g(\hat{\boldsymbol{\mu}}_{\mathrm{ML}}, \widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}})$.

Sampling distributions of \bar{X} and S (J&W Sec 4.4)

• Recall the univariate case

ecan the univariate case
$$-X_1, \dots, X_n \overset{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$-S^2 \perp \!\!\! \perp \bar{X}$$

$$* \text{ Sample variance } S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$-\sqrt{n}(\bar{X} - \mu)/\sigma \sim \mathcal{N}(0, 1)$$

$$-(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$$

$$-\sqrt{n}(\bar{X} - \mu)/S \sim t(n-1)$$

• The multivariate case

$$\begin{array}{l} \text{ id multivariate case} \\ -\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n \sim \overset{\text{iid}}{\text{MVN}}_p \ (\boldsymbol{\mu},\boldsymbol{\Sigma}), \ n>p \\ -\mathbf{S} \perp \!\!\! \perp \! \bar{\boldsymbol{X}}, \text{ i.e., } \widehat{\boldsymbol{\Sigma}}_{\text{ML}} \perp \!\!\! \perp \! \hat{\boldsymbol{\mu}}_{\text{ML}} \\ -\sqrt{n}\boldsymbol{\Sigma}^{-1/2}(\bar{\boldsymbol{X}}-\boldsymbol{\mu}) \sim \overset{\text{MVN}}{\text{N}}_p(\mathbf{0},\mathbf{I}) \end{array}$$

$$\begin{array}{l} -\ (n-1)\mathbf{S} = n\widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}} \sim W_p(\boldsymbol{\Sigma}, n-1) \\ -\ n(\bar{\boldsymbol{X}} - \boldsymbol{\mu})^{\top}\mathbf{S}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \sim \ \mathrm{Hotelling's} \ T^2(p, n-1) \end{array}$$

- Wishart distribution
 - Def: $W_p(\mathbf{\Sigma}, n)$ is the distribution of $\sum_{i=1}^n \mathbf{Y}_i \mathbf{Y}_i^{\top}$ with $\mathbf{Y}_1, \dots, \mathbf{Y}_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mathbf{0}, \mathbf{\Sigma})$ * A generalization of χ^2 -distribution: $W_p(\mathbf{\Sigma}, n) = \chi^2(n)$ if $p = \mathbf{\Sigma} = 1$
 - - * $\mathbf{A}\mathbf{A}^{\top} > 0$ and $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n) \Rightarrow \mathbf{A}\mathbf{W}\mathbf{A}^{\top} \sim W_p(\mathbf{A}\mathbf{\Sigma}\mathbf{A}^{\top}, n)$
 - * $\mathbf{W}_i \stackrel{\text{iid}}{\sim} W_p(\mathbf{\Sigma}, n_i) \Rightarrow \mathbf{W}_1 + \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n_1 + n_2)$
 - * $\mathbf{W}_1 \perp \!\!\! \perp \mathbf{W}_2$, $\mathbf{W}_1 + \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n)$ and $\mathbf{W}_1 \sim W_p(\mathbf{\Sigma}, n_1) \Rightarrow \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n n_1)$ * $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n)$ and $\mathbf{a} \in \mathbb{R}^p \Rightarrow$

$$\frac{\boldsymbol{a}^{\top} \mathbf{W} \boldsymbol{a}}{\boldsymbol{a}^{\top} \boldsymbol{\Sigma} \boldsymbol{a}} \sim \chi^{2}(n)$$

* $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n), \ \boldsymbol{a} \in \mathbb{R}^p \text{ and } n \geq p \Rightarrow$

$$\frac{\boldsymbol{a}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{a}}{\boldsymbol{a}^{\top} \mathbf{W}^{-1} \boldsymbol{a}} \sim \chi^{2} (n - p + 1)$$

* $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n) \Rightarrow$

$$\operatorname{tr}(\mathbf{\Sigma}^{-1}\mathbf{W}) \sim \chi^2(np)$$

- Hotelling's T^2 distribution
 - A generalization of (Student's) t-distribution
 - If $X \sim \text{MVN}_p(\mathbf{0}, \mathbf{I})$ and $\mathbf{W} \sim W_p(\mathbf{I}, n)$, then

$$\boldsymbol{X}^{\top} \mathbf{W}^{-1} \boldsymbol{X} \sim T^2(p, n)$$

$$-Y \sim T^2(p,n) \Leftrightarrow \frac{n-p+1}{np}Y \sim F(p,n-p+1)$$

- Wilk's lambda distribution
 - Wilks's lambda is to Hotelling's T^2 as F distribution is to Student's t in univariate statistics.
 - Given independent $\mathbf{W}_1 \sim W_p(\Sigma, n_1)$ and $\mathbf{W}_2 \sim W_p(\Sigma, n_2)$ with $n_1 \geq p$,

$$\Lambda = \frac{\det(\mathbf{W}_1)}{\det(\mathbf{W}_1 + \mathbf{W}_2)} = \frac{1}{\det(\mathbf{I} + \mathbf{W}_1^{-1}\mathbf{W}_2)} \sim \Lambda(p, n_1, n_2)$$

* Resort to an approximation in computation: $\{(p-n_2+1)/2-n_1\}\ln\Lambda(p,n_1,n_2)\approx\chi^2(n_2p)$

Inference on μ

Hypothesis testing

• Is it a squirrel?

Figure 1: Squirrel (Photograph by the Lacoste Garden Centre)

Figure 2: Flying Squirrel (Photograph by Joel Sartore)

Figure 3: Flying Squirrel (Photograph by Alex Badyaev)

- Model: $X \sim f_{\theta^*} \in \{f_{\theta} : \theta \in \Theta\}$
 - $-\theta^*$: parameters of interest, fixed and unknown
 - $-\Theta$: the parameter space
- Hypotheses $H_0: \boldsymbol{\theta}^* \in \boldsymbol{\Theta}_0$ v.s. $H_1: \boldsymbol{\theta}^* \in \boldsymbol{\Theta}_1$

 - $\begin{array}{ll}
 & \mathbf{\Theta}_0 \cap \mathbf{\Theta}_1 = \emptyset \\
 & \mathbf{\Theta}_0 \cup \mathbf{\Theta}_1 = \mathbf{\Theta}
 \end{array}$
- Rejection/critical region R

- Reject H_0 if $X \in R$
- Level α : $\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \beta(\boldsymbol{\theta}) \leq \alpha$
 - Power function: $\beta(\boldsymbol{\theta}) = \Pr_{\boldsymbol{\theta}}(\boldsymbol{X} \in R)$
 - When $\theta^* \in \Theta_0$, Pr(type I error) = $\beta(\theta^*) \leq \sup_{\theta \in \Theta_0} \beta(\theta) \leq \alpha$
 - * Type I error: H_0 is incorrectly rejected
 - When $\theta^* \in \Theta_1$, Pr(type II error) = $1 \beta(\theta^*)$
 - * Type II error: H_0 is incorrectly accepted
- p-value: alternative to rejection region
 - Impossible to be well-defined in some cases
 - -p = p(x) is defined such that $\sup_{\theta \in \Theta_0} \Pr_{\theta} \{ p(x) \in [0, \alpha) \} \le \alpha$ for all $\alpha \in [0, 1]$
 - * $R = \{ x : p(x) \in [0, \alpha) \}$
- Necessary components in reporting a testing result
 - 1. Hypotheses
 - 2. Name of approach
 - 3. Value of test statistic
 - 4. Rejection region/p-value
 - 5. Conclusion: e.g., at the α level, we reject/do not reject H_0 , i.e., we believe...

Likelihood ratio test (LRT)

- Minimize the type II error rate subject to a capped type I error rate (under certain classical circumstances)
- Test statistic

$$\lambda(\boldsymbol{X}) = \frac{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} L(\boldsymbol{\theta}; \boldsymbol{X})}{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{X})} = \frac{L(\hat{\boldsymbol{\theta}}_0; \boldsymbol{X})}{L(\hat{\boldsymbol{\theta}}; \boldsymbol{X})}$$

- $-\hat{\boldsymbol{\theta}}_0$: ML estimator for $\boldsymbol{\theta} \in \boldsymbol{\Theta}_0$
- $-\hat{\boldsymbol{\theta}}$: ML estimator for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$
- Rejection region $R = \{x : \lambda(x) < c\}$
 - -x is the realization of X
 - $-c \in \mathbb{R}$ is chosen such that

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \Pr_{\boldsymbol{\theta}}(\lambda(\boldsymbol{X}) \le c) = \alpha.$$

- * Have to know the null distribution of $\lambda(X)$, i.e., the distribution of $\lambda(X)$ with $\theta \in \Theta_0$
- p-value

$$p(\boldsymbol{x}) = \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \Pr_{\boldsymbol{\theta}} \{ \lambda(\boldsymbol{X}) \le \lambda(\boldsymbol{x}) \}$$

- Null distribution of $\lambda(X)$
 - Use the accurate distribution of $\lambda(X)$ if it is known; otherwise see below for an approximation.
 - As $n \to \infty$,

$$-2\ln\lambda(\boldsymbol{X})\sim\chi^2(\nu)$$

- * ν : the difference in numbers of free parameters between H_0 and H_1
- * Leading to an (asymptotic) rejection region $\{x: -2 \ln \lambda(x) \geq \chi^2_{\nu,1-\alpha}\}$
 - $\chi^2_{\nu,1-\alpha}$ is the $(1-\alpha)$ quantile of $\chi^2(\nu)$.