DING, Ke (kd120)

Imperial College London

Department of Computing Academic Year 2020-2021

Page created Tue Nov 3 23:15:02 GMT 2020

70051 rac101 2 t5 kd120 v1

 $\underline{ Electronic \ \underline{ s} ubmission }$

Tue - 03 Nov 2020 18:41:26

kd120

Exercise Information

Module: 70051 Introduction to Symbolic

Artificial Intelligence (MŠc AI)

Exercise: 2 (CW)

Title: Logic FAO: Craven, Robert (rac101)

Issued: Tue - 20 Oct 2020

Due: Tue - 03 Nov 2020
Assessment: Individual
Submission: Electronic

Student Declaration - Version 1

• I acknowledge the following people for help through our original discussions:

Ding Ke (kd120)

Signed: (electronic signature) Date: 2020-11-03 15:18:38

For Markers only: (circle appropriate grade)

DING, Ke (kd120)	01328574	t5	2020-11-03 15:18:38	A*	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	${f E}$	\mathbf{F}
------------------	----------	----	---------------------	-----------	--------------	--------------	--------------	--------------	---------	--------------

Q1(i)

p: Michel is fulfilled

q: Michel is rich

r: Michel will live another five years

$$\left(\left(\neg (p \lor q) \right) \longrightarrow (\neg r) \right)$$

Q1(ii)

p: The snowstorm arrives

q: Raheem will wear his boots

r: I am sure that the snowstorm will arrive

$$\left(\left(\left(\neg(\neg p)\right) \to q\right) \land r\right)$$

Q1(iii)

p: Akira is on set

q: Toshiro is on set

r: Filming will begin

s: Caterers have cleared out

$$((p \lor q) \to (r \leftrightarrow s))$$

Q1(iv)

p: Irad arrived

q: Sarah arrived

$$\Big(\big(p \lor (\neg q) \big) \land \big(\neg (p \land q) \big) \Big)$$

Q1(v)

p: Herbert heard the performance

q: Anne-Sophie heard the performance

r: Anne-Sophie answered her phone calls

$$\Big((\neg r) \longrightarrow \big(\neg (p \land q)\big)\Big)$$

Q2(i)

If there exist some propositional evaluation function v such that $h_v(A) = t$, propositional formula A is be said to be satisfiable.

Q2(ii)

If $h_v(A) = h_v(B)$ holds for every evaluation v, then A and B are logically equivalent.

Q2(iii)

The statement to prove contains the "if and only if" term which indicates that the statement should be proved in two-ways, to demonstrate the symmetry(i.e. vice-versa):

$$\{(1)if \neg \neg A \not\equiv \top, then \neg A \text{ is satisfiable } \{(2)if \neg A \text{ is satisfiable, then } \neg \neg A \not\equiv \top \}$$

To prove (1):

First assume that $\neg\neg A \not\equiv \top$, then find the evaluation v such that the evaluation allows the antecedent to be true: thus $h_v(A) = f$, since if $h_v(A) = f$, then $h_v(\neg\neg A) = f$, given it is always the case that $h_v(\top) = t$, thus we have a case in which $h_v(\neg\neg A) \neq h_v(\top)$, therefore $\neg\neg A \not\equiv \top$ by definition of logical equivalence in Q2(ii).

Now for the v that $h_v(A) = f$, $h_v(\neg A) = t$, then this case also makes $\neg A$ satisfiable, by definition of satisfiability in Q2(i). So (1) is proved given all above.

To prove (2):

First assume that $\neg A$ is satisfiable, find the evaluation v such that $h_v(\neg A) = t$ (if $h_v(\neg A) = t$ then $\neg A$ is satisfiable). Thus we have the case where $h_v(A) = f$, and then $h_v(\neg \neg A) = f$. Now given that it is always the case that $h_v(\top) = t$, this means for this evaluation $h_v(\neg \neg A) \neq h_v(\top)$, which then leads to $\neg \neg A \not\equiv \top$. Thus (2) is also proved.

Now that the two ways have all been proved, the statement is proved.

Let the given formula be A. 3 unique atoms appear in A, thus 8 different valuation functions are required. Note in the below truth table for every single negated atom only one truth value is written down. The resulting truth-table is attached below as a picture:

	(A	$(\neg \neg \neg (\neg r \lor \neg p)) \longrightarrow (\neg \neg $	9-7r)
$P \begin{vmatrix} 9 \\ t \end{vmatrix} t$	$(p \land \neg q)$	f t f f f f	f t t
$\begin{array}{c c} t & t \\ t & t \end{array}$	t + f	t f t t f f t-	
t + t	t + t		tt
$f \mid t \mid t$	fff		ftt
t f f	ttt		ttf
ftf	fff	,	fff
$f \mid f \mid t$	f f t		ttt
f f f	fft	t fttt tf	t t f

It can be observed that the pinpointed column is the final valuation result for the given formula A. There are two rows with false, which means not all valuation v leads to $h_v(A)=t$, thus the given formula is not valid.

Q4(i)

CNF: a, b, d, e, g, h

DNF: b, d, e, g

Q4(ii)

Let S be in CNF, there exists a derivation of \emptyset from S if and only if $S \models \bot$ (which means S is never satisfiable). This is important as it allows one to check the satisfiability: S is satisfiable when it is impossible to derive \emptyset from S by a resolution derivation.

Q4(iii)(a)

$$\{ \{p, s\}, \{q, r\}, \{\neg s, q\}, \{\neg p, \neg r, \neg s\} \}$$

$$= \{ \{p, s\}, \{\neg p, \neg r, \neg s\} \} \quad (pure \, rule \, on \, q)$$

$$= \{ \{p, s\} \} \quad (pure \, rule \, on \, \neg r)$$

Q4(iii)(b)

$$\left\{ \{\neg p, q, r\}, \{\neg q\}, \{p, r, q\}, \{\neg r, q\} \right\}$$

$$= \left\{ \{\neg p, r\}, \{p, r\}, \{\neg r\} \right\} \quad (unit \ propagation \ by \ \neg q)$$

$$= \left\{ \{\neg p\}, \{p\} \right\} \quad (unit \ propagation \ by \ \neg r)$$

$$= \left\{ \{\emptyset \} \right\} \quad (unit \ propagation \ by \ p)$$

p: I am going

q: You are going

r: Tara is going

Then the argument can be written in PL forms:

$$p \rightarrow \neg q, \neg q \rightarrow \neg r, r \lor \neg p, r \lor p \models q$$

For this kind of argument $A_1 \dots A_n \models B$ if and only if $A_1 \land \dots \land A_n \land \neg B$ is unsatisfiable. Therefore rewrite the given argument into the below desired form and check if it is satisfiable:

$$(\neg p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (r \lor p) \land (\neg q)$$

Transform the above into clausal-form CNF:

$$\{\{\neg p, \neg q\}, \{q, \neg r\}, \{r, \neg p\}, \{r, p\}, \{\neg q\}\}$$

Apply DP:

$$\left\{ \{\neg p, \neg q\}, \{q, \neg r\}, \{r, \neg p\}, \{r, p\}, \{\neg q\} \right\}$$

$$= \left\{ \{\neg r\}, \{r, \neg p\}, \{r, p\} \right\} \quad (unit \ propagation \ by \ \neg q)$$

$$= \left\{ \{\neg p\}, \{p\} \right\} \quad (unit \ propagation \ by \ \neg r)$$

$$= \left\{ \{\emptyset\} \right\} \quad (unit \ propagation \ by \ p)$$

Since \emptyset is in the set, which means it is unsatisfiable, thus the argument is valid.

$$C = \{Andrea, cupcake\}$$

$$P_1 = \{human\}$$

$$P_3 = \{gave\} \quad (gave(X, Y, Z): X \ was \ given \ by \ Y \ to \ Z)$$

$$F_1 = \{aunt\}$$

Then in first order logic:

 $\forall X(human(X) \land (X = aunt(aunt(Andrea))) \rightarrow \exists Y(human(Y) \land \neg (Y = Andrea) \land gave(cupcake, X, Y)))$

Q6(ii)

$$P_1 = \{computer\}$$

 $P_2 = \{connect\} \ (connect(X, Y): X \text{ is connected to } Y)$

Then in first order logic:

$$\forall X (computer(X) \land \neg connect(X, X) \rightarrow \exists Y connect(Y, X))$$

Q6(iii)

$$P_1 = \{painting\}$$

 $P_2 = \{belong, hang\} \ (belong(X, Y): X belongs to Y; hang(X, Y): X is hung in Y)$

Then in first order logic:

$$\forall X \exists Y (painting(X) \land belong(X, Kandinsky) \land hang(X, room) \land hang(X, British Gallery)$$

 $\longrightarrow painting(Y) \land belong(Y, Paul Klee) \land hang(Y, room) \land hang(Y, British Gallery))$

Q6(iv)

$$P_2 = \{love\} \quad (love(X, Y): X loves Y)$$

Then in first order logic:

$$\forall Y \exists X (\neg love(X,Y) \land \neg (X=Y) \rightarrow \neg love(Y,X) \land \neg (X=Y))$$

Q7(i)

Let σ be such that $(\varphi(k), \sigma(X)) \in \varphi(a)$, then according to the structure and the meaning of binary relation symbol α : $\sigma(X) = \varphi(j)$, which means X can only be j (as from the diagram k only connects to j). Since $\sigma(X) = \varphi(j)$, so $\neg(X = j)$ is false, and when the antecedent is true and the consequent is false, the material conditional is false. Thus the whole thing is false.

Q7(ii)

From the diagram, c(l) is always true, so the antecedent is always true. Now let $\sigma(X) = \varphi(j)$, then in this case $b(X) \wedge c(X) \wedge a(l,X)$ is also true according to the structure, thus there exists an X to enable the $\exists X(...)$ to be true under the structure, thus the whole thing is true.

Q7(iii)

Let there be a σ such that $\sigma(X) = \varphi(l)$ and $\sigma(Y) = \varphi(k)$, then $\neg(X = Y) \land \alpha(X, Y)$ is true under the structure and σ , thus the $\neg \exists Y (...)$ is false, the whole is false.

Q7(iv)

Let σ be such that $\sigma_1(X) = \varphi(k)$; $\sigma_2(X) = \varphi(j)$; $\sigma_3(X) = \varphi(l)$ to make the antecedent true. Among the three cases, consider $\sigma_2(X) = \varphi(j)$, for this $\sigma_2(X)$, it is impossible for σ_2 to assign Y to an object that makes $c(Y) \wedge b(Y) \wedge a(X,Y)$ true, i.e. there is no $\sigma_2(Y)$ that can refer to an object that itself is circular and black and to be connected to by object j which is what $\sigma_2(X)$ refers to. Thus the whole thing is false.

Q7(v)

List all possible $\sigma(X)$ that can make the antecedent true: $\sigma_1(X) = \varphi(k)$; $\sigma_2(X) = \varphi(j)$; $\sigma_3(X) = \varphi(l)$. Consider $\sigma_1(X) = \varphi(k)$: it is impossible for $\sigma_1(Y)$ to map Y to an object that makes $a(X,Y) \land a(Y,X)$ true, i.e. there is no object that connects to k while k connects back to itself. This makes the $\exists Y(...)$ in the consequent false, thus the whole is false.

Q7(vi)

Find all possible σ that must make the antecedent true: $\begin{cases} \sigma_1(X) = \varphi(k) \\ \sigma_1(Y) = \varphi(l) \end{cases}, \begin{cases} \sigma_2(X) = \varphi(l) \\ \sigma_2(Y) = \varphi(k) \end{cases}$ $\begin{cases} \sigma_3(X) = \varphi(k) \\ \sigma_3(Y) = \varphi(k) \end{cases}$ $\begin{cases} \sigma_4(X) = \varphi(l) \\ \sigma_4(Y) = \varphi(l) \end{cases}$. Now consider both the σ_3 case and the σ_4 case, in both cases the consequent $a(X,Y) \land a(Y,X)$ cannot be true as for both objects k and l, they do not connect to themselves. Thus the whole is false.