

SOLUTION SPRINT

MBA ENGENHARIA DE DADOS – FASE 4

Equipe: Marcelo Canabrava Marina Coutinho

Descrição completa do projeto no github

https://github.com/mcanabrava/airbnb-zap-scrapping-ml-mba-fiap

Diagrama da Solução

Scrapping sugerido + proprietário

□ zap_bs4.csv	fix scrapper area
zap_imoveis_rj.csv	add scrapper code

In [8]:	zap_bs4.head(100)											
Out[8]:	r	neighborhood	city	description	price	condominio	iptu	area	bedrooms	suite	bathrooms	gara
	0	Centro	Rio de Janeiro	UM CHARMOSO EDIFÍCIO HISTÓRICO, COMPLETAMENTE	367000	0	0	28	1	0	1	
	1	Centro	Rio de Janeiro	O CENTRO DO RIO ESTÁ SEREQUALIFICANDO. MORAR N	290000	0	0	32	1	0	1	
	2	Centro	Rio de Janeiro	Economia criativa e inovação. Esses são os pil	490000	0	0	33	1	0	1	
	3	Copacabana	Rio de Janeiro	CONJUGADÃO REFORMADO EM RUA NOBRE DE COPACABAN	450000	590	900	30	1	0	1	
	4	Ipanema	Rio de Janeiro	Tenho o prazer de apresentar a você este belís	2850000	2700	650	80	2	1	3	

Armazenamento com upload via boto3 para o S3

zap

🗋 zap_bs4.csv	fix scrapper area
zap_imoveis_rj.csv	add scrapper code


```
Calendar.zip dataset files

Listings.csv etl completed

Listings_sample.csv dataset files

reviews_sample.csv dataset files
```

```
In [12]: ## CREATING THE BUCKETS

bucket_names = ['airbnb-data-landing-fiap', 'zap-data-landing-fiap']

for bucket_name in bucket_names:
    try:
        s3.create_bucket(Bucket=bucket_name)
        print(f"Bucket '{bucket_name}' created successfully.")
    except Exception as e:
        print(f"Error creating bucket '{bucket_name}': {str(e)}")

Bucket 'airbnb-data-landing-fiap' created successfully.
Bucket 'zap-data-landing-fiap' created successfully.
```

```
## UPLOADING ZAP DATA TO THE BUCKET
  bucket name = 'zap-data-landing-fiap'
  file path = 'dataset/zap/zap bs4.csv'
  s3_file_name = 'zap_bs4.csv'
  if s3.Bucket(bucket name) in s3.buckets.all():
      bucket = s3.Bucket(bucket_name)
      existing_objects = list(bucket.objects.filter(Prefix='zap/'))
      if any(obj['Key'] == s3 file name for obj in existing objects):
          print(f"A file with the name '{s3 file name}' already exists in the '{bucket name}' bucket.")
      else:
          try:
              s3.meta.client.upload_file(file_path, bucket_name, s3_file_name)
              print(f"File '{s3_file_name}' uploaded to '{bucket_name}' bucket successfully.")
          except Exception as e:
              print(f"Error uploading file '{s3_file_name}' to '{bucket_name}' bucket: {str(e)}")
File 'zap_bs4.csv' uploaded to 'zap-data-landing-fiap' bucket successfully.
```

Airbyte para transferência entre S3 e Redshift

Conferido a disponibilidade de dados no Redshift

Conferido a disponibilidade de dados no Redshift

Modelagem de dados via DBT

Análise de Dados Airbnb + Visualização no Metabase

Quantas acomodações existem num bairro e onde ficam?

a) How many accommodations are there in a neighborhood and where are they located?

There are 371 different neighbourhood values - including the null values, and Copacabana, Barra da Tijuca, and Ipanema lead the ranking.

Quantas acomodações existem num bairro e onde ficam?

Quantas casas e apartamentos estão sendo alugados com frequência para turistas e não para residentes de longa duração?

b) How many houses and apartments are frequently being rented to tourists and not for long-term residents?

The great majority of the listings are for super short term rentals, with over 90% of the properties being available for rental with the number of minimum nights between 1-5 and almost 99% available for less than 30 nights.

minimum_nights_tier	num_properties
1-5	27390.0
6-29	2494.0
30-60	389.0
60+	203.0

Quantas casas e apartamentos estão sendo alugados com frequência para turistas e não para residentes de longa duração?

Quanto os hosts ganham alugando para turistas?

c) How much do hosts earn from renting to tourists?

Hosts earnings can vary based on multiple factors. However, considering the following assumptions:

- median price of \$350/night/person
- average number of reviews/month of 1.01
- average "acommodates" of 4, but likely to fill only half of that
- trend previous identified of short stays pointing to weekend stays (2 days)
- review ratio of 25% (1 out of 4 people that rent an airbnb leave a review)

We could calculate the average monthly income of a host by:

- Calculating the average rental: 350\$ x 2 people x 2 days = \$ 1.400
- Calculating the number of rentals/month: $1/0,25 \times 3.924 = \sim 6.400$

This number seems feasible, but can drastically vary based on the assumptions above and specific airbnb variables.

Quais hosts estão administrando uma empresa com várias listagens e onde estão?

16.0

50+

Investigating the hosts with highest number of listings, it is possible to identify that all of them concentrate properties in the same or few neighbourhoods inside noble city areas.

1.57s Returned 124 rows.	Change row display		
host_id		neighbourhood_cleansed	num_listings
341887136.0		Ipanema	99.0
341887136.0		Leblon	62.0
341887136.0		Copacabana	28.0
331210726.0		Jacarepaguá	15.0
325956962.0		Centro	83.0
321818201.0		Copacabana	12.0

Quais hosts estão administrando uma empresa com várias listagens e onde estão?

Que tipo de acomodação é mais comum no Airbnb numa localidade?

e) What type of accommodation is most common on Airbnb in a specific location?

For Copacabana, entire rental unit is by far the most common property type, followed by private room in rental unit.

6.80s Returned 42 rows. Change row display		
neighbourhood_cleansed	property_type	num_listings
Copacabana	Entire rental unit	6678.0
Copacabana	Private room in rental unit	1047.0
Copacabana	Entire condo	363.0
Copacabana	Entire loft	308.0
Copacabana	Entire serviced apartment	110.0
Copacabana	Private room in home	61.0

Que tipo de acomodação é mais comum no Airbnb numa localidade?

Qual é a diferença de preço entre os diferentes tipos de acomodações?

f) What is the price difference between different types of accommodations?

As it can be observed in the image below, for the neighbourhood of Copacabana there is a high variation between the price of different types of accommodations. Going from \$53 in a "Shared room in shipping container" and \$78 in a "Shared room in hostel" to \$6.250 for a boat. Entire rental unit, the most common property type has an average price of \$1.081.

neighbourhood_cleansed	property_type	avg_price	num_listings
Copacabana	Boat	6250.0	2.0
Copacabana	Private room in serviced apartment	4588.0	12.0
Copacabana	Earthen home	3203.0	1.0
Copacabana	Room in aparthotel	3072.0	18.0
Copacabana	Shared room in rental unit	2228.0	50.0
Copacabana	Shared room in vacation home	1800.0	2.0
Copacabana	Campsite	1600.0	1.0
Copacabana	Room in hotel	1342.0	33.0
Copacabana	Entire home	1198.0	54.0
Copacabana	Private room in villa	1185.0	8.0
Copacabana	Entire vacation home	1165.0	20.0

Qual é a diferença de preço entre os diferentes tipos de acomodações?

Analisando os dados do Airbnb...

g) What are the most expensive regions to stay in?

Using the median price instead of average to avoid outliers and filtering for neighbourhoods with more than 10 listings, Joá is by far the most expensive region followed by São Conrado, Alto da Boa Vista, Lagoa and Leblon.

neighbourhood_cleansed	median_price	num_listings
Joá	3992.0	135.0
São Conrado	900.0	258.0
Alto da Boa Vista	732.0	44.0
Lagoa	627.5	262.0
Leblon	575.0	1505.0
Itanhangá	558.5	152.0

Quais são as regiões mais caras para ficar?

Catálogo de Dados com AWS Glue

Crawler do AWS
Glue para pegar as
tabelas do Redshift
e criar o catálogo
de dados

Catálogo de Dados com AWS Glue

Tabelas de dados criadas a partir do Redshift pelo Crawler.

Schema com os dados catalogados (exemplo de Uma tabela)

Machine Learning

Datasets criados a partir dos CSVs armazenados no Amazon S3

3 recipes 5 datasets 2 models

reviews_sample

Listing_samples foi o dataset escolhido para rodar o ML para predição de texto, usando algoritmo de regressão do próprio Datalku

Aqui, o algoritmo rankou os atributos mais influentes no preço

Baseado no treinamento do algoritmo, conseguimos escolher as variáveis e ver como as combinações podem influenciar no preço da hospedagem, aqui, como seria por exemplo um Airbnb em Copacabana recém avaliado pode ajudar na valorização do preço de locação

Obrigado!

Marcelo Canabrava Marina Medeiros

