Trabalho II

Pablo Felipe Leonhart

Universidade Federal do Rio Grande do Sul

23 de Junho, 2017

Implementação

- Python
- Orientação a objetos

- Dicionário dos arquivos PDB com a chave correspondendo à abreviação do aminoácido
 - ► "A": "files/alanine.pdb", "R": "files/arginine.pdb", ...
- Dada uma sequência de aminoácidos, conteúdo de cada PDB é salvo em um outro dicionário
- ▶ O primeiro aminoácido da sequência é transladado de modo que o átomo CA fique na posição (0,0,0)

- De acordo com a sequência, são identificados átomos de interesse:
 - OXIGEN_CARBOXYL = "OC"
 - HYDROGEN_CARBOXYL = ("HC", "HOC", "HO")
 - ► HYDROGEN_AMINO = ("H", "1H")
 - ► NITROGEN = "N"
- Para cada aminoácido:
 - São removidos OC e HC (exceto no último aminoácido)
 - É removido o H (exceto no primeiro aminoácido)
 - ▶ O átomo N do aminoácido i é movido para a posição do OC do aminoácido i-1, quando i ≥ 1
- A lista dos átomos de cada aminoácido e suas novas posições é salva em um dicionário cuja chave é o indíce do aminoácido na sequência
- Por fim, é gerado o arquivo PDB

Resultado da ligação peptídica VSCEDCPEHCSTQKAQAKCDNDKCVCEPI:

Figure 1: Sequência de aminoácidos vista no PyMOL

- ▶ Inicia-se com a leitura da proteína em arquivo PDB
- Para cada aminoácido é criado um objeto da classe "Backbone" que salva o identificador e as posições dos átomos N, CA e C de cada um deles
- Cada objeto é salvo em um dicionário cujas chaves representam a sequência dos aminoácidos

- Átomos utilizados no cálculo dos ângulos:
 - ▶ Phi: (C*i*-1, N*i*, CA*i*, C*i*)
 - ▶ Psi: (Ni, CAi, Ci, Ni+1)
 - Onde o Phi do primeiro aminoácido e o Psi do último não são calculados e assumem o valor 360°
- A1, A2, A3 e A4 representam os vetores de posições de cada átomo
- V1 (A2-A1), V2 (A3-A2) e V3 (A4-A3) representam os vetores de diferença dos anteriores
- ▶ N1 (A1*A2) e N2 (A2*A3) são os vetores normais calculados
- M1 é obtido por N1*N2
- x = N1.N2
- ▶ y = M1.V2
- angulo = atan2(y, x)

Trecho do arquivo com os ângulos calculados para a proteína 1ENY:

1	Amino	Phi	Psi
	ALA	360.00	-112.08
	GLY	121.15	89.96
	LEU	-52.87	-30.57
	LEU	-116.76	28.04
	ASP	-50.50	122.54
	GLY	62.56	31.90
	LYS	-104.61	161.35
	ARG	-121.79	108.41
	ILE	-117.51	139.94
11	LEU	-103.11	142.15
12	VAL	-131.87	125.37
13	SER	-118.69	167.21
14	GLY	88.85	26.31
15	ILE	-88.61	125.11
16	ILE	-120.71	-66.95
17	THR	-108.27	-174.61
18	ASP	-90.12	13.53
19	SER	-116.40	1.58
20	SER	-62.84	147.16
21	ILE	-68.13	-36.81
22	ALA	-59.30	-35.67
23	PHE	-56.59	-47.68
24	HIS	-70.47	-33.94
25	ILE	-62.81	-46.12
26	ALA	-55.14	
27	ARG	-57.62	-56.43
28	VAL	-56.05	-38.97
29	ALA	-56.45	-51.64
30	GLN	-55.94	-44.08
		,	

Figure 2: Sequência de aminoácidos com os ângulos Phi e Psi

Mapa de Ramachandran dos ângulos calculados para 1ENY:

Figure 3: Mapa de Ramachandran da proteína 1ENY

- ► Realizadas rotações nos aminoácidos em função dos átomos envolvidos no cálculo de Phi, Psi e Ômega
- Ângulo necessário para rotação é obtido pela diferença entre o ângulo corrente e o ângulo objetivo
- ➤ O ângulo formado pela ligação do Ci, Ni+1 e CAi+1 foi ajustado em 120°
- Com essas rotinas foi gerado o arquivo 1PLX-P.pdb

Resultado da ligação peptídica YGGFM já com os ângulos Phi, Psi e Ômega alinhados em 180°:

Figure 4: Sequência de aminoácidos vista no PyMOL

ACOr

Parâmetros utilizados:

- Dimensões do problema = ('psi1', 'phi2', 'psi2', 'phi3', 'psi3', 'phi4', 'psi4', 'phi5')
- Intervalo para valores de rotação = [-Pi:Pi]
- k = 200
- Número de formigas = 150
- q = 0.0001
- e = 0.85
- ► Máximo de iterações = 1000

Resultados

Comparativo entre as sequências: 1PLX(verde), 1PLX-P(azul), 1PLX-F(vermelho)

Figure 5: Sequência de aminoácidos vista no PyMOL

Resultados

Análise do RMSD obtido a cada geração pelo algoritmo:

Figure 6: ACOr: RMSD x Gerações

Resultados

RMSDs obtidos:

► Todos os átomos: 3.27

▶ Backbone: 2.56

► Carbono alpha: 1.11

Table 1: Ângulos: 1PLX-F / 1PLX

Amino Ácido	Phi	Psi	Ômega
TYR	360.00 / 360.00	103.00 / 176.63	180.00 / 179.86
GLY	180.00 / 148.48	180.00 / -21.96	179.98 / 179.81
GLY	4.35 / 114.02	179.97 / 29.89	/
PHE	94.96 / -88.00	-179.99 / -38.16	-179.98 / -179.95
MET	45.48 / -74.24	360.00 / 360.00	360.00 / 360.00