The SmallCancellation Package

Metric and nonmetric small cancellation conditions

Version 1.0.2

Iván Sadofschi Costa

Iván Sadofschi Costa Email: isadofschi@dm.uba.ar Homepage: http://mate.dm.uba.ar/~isadofschi

Copyright

© 2018 Iván Sadofschi Costa.

Contents

1	Inst	alling and Loading the SmallCancellation Package		
	1.1	Compiling Binaries of the SmallCancellation Package		
		Loading the SmallCancellation Package		
2	Small Cancellation Theory			
	2.1	Introduction		
	2.2	Pieces		
	2.3	Metric small cancellation conditions		
	2.4	Non-metric small cancellation conditions		
	2.5	Additional functions		
Re	eferen	ces		
In	dex		1	

Chapter 1

Installing and Loading the **SmallCancellation** Package

1.1 Compiling Binaries of the SmallCancellation Package

After unpacking the archive, go to the newly created smallcancellation directory and call ./configure to use the default ../.. path to the GAP home directory or ./configure path where path is the path to the GAP home directory, if the package is being installed in a non-default location. So for example if you install the package in the ~/.gap/pkg directory and the GAP home directory is ~/gap4r5 then you have to call

```
./configure ../../gap4r5/
```

This will fetch the architecture type for which GAP has been compiled last and create a Makefile. Now simply call

```
make Example
```

to compile the binary and to install it in the appropriate place.

If GAP cannot find a working binary, some computations may take more time (specially for large presentations).

1.2 Loading the SmallCancellation Package

To use the SmallCancellation Package you have to request it explicitly. This is done by calling LoadPackage (Reference: LoadPackage):

```
gap> LoadPackage("smallcancellation");

Loading SmallCancellation 1.0.2
by Iván Sadofschi Costa (http://mate.dm.uba.ar/~isadofschi)
For help, type: ?SmallCancellation

true
```

The SmallCancellation requires the Grape Package (version >=4.7).

If you want to load the SmallCancellation package by default, you can put the LoadPackage command into your gaprc file (see Section (Reference: The gap.ini and gaprc files)).

Chapter 2

Small Cancellation Theory

2.1 Introduction

A standard reference for Small Cancellation Theory is Lyndon-Schupp [LS01, Chapter V]. We review here some definitions and results.

A subset R of a free group F is called *symmetrized* if all elements of R are cyclically reduced and for each r in R all cyclically reduced conjugates of r and r^{-1} are also in R. If the set R is not symmetrized we may work instead with the *symmetrization* R^* of R (the smallest symmetrized set containing R).

A *piece* of R is a word that is a common prefix of two different words in the symmetrized set R^* . We say that a presentation $P = \langle X \mid R \rangle$ satisfies the small cancellation condition C(p) if no relator r in R^* is a product of fewer than p pieces.

We say that *P* satisfies the small cancellation condition $C'(\lambda)$ if for all r in R^* , if r = bc and b is a piece then $|b| < \lambda |r|$.

We say that P satisfies the small cancellation condition T(q) if for all h such that $3 \le h < q$ and for all elements r_1, \ldots, r_h in R^* , if no succesive elements r_i, r_{i+1} is an inverse pair, then at least one of the products $r_1 r_2, \ldots r_{h-1} r_h, r_h r_1$ is reduced without cancellation. Condition T(q) may be rephrased in terms of the Whitehead graph of the presentation P.

If a group $G = \langle X \mid R \rangle$ satisfies C'(1/6) then Dehn's algorithm (see [LS01, Chapter V, Section 4]) solves the word problem for G.

If a group $G = \langle X \mid R \rangle$ satisfies C(6) or $C(4)^{\sim}T(4)$ or $C(3)^{\sim}T(6)$ then G has solvable word problem and solvable conjugacy problem (see [LS01, Chapter V, Sections 5 and 6]).

If a presentation $P = \langle X \mid R \rangle$ satisfies C(6) and no relator of P is a proper power then the presentation complex of P is aspherical.

2.2 Pieces

2.2.1 PiecesOfGroup

▷ PiecesOfGroup(G)

(function)

Returns the set of pieces of the FpGroup G.

```
gap> F:=FreeGroup(["a","b"]);;
gap> AssignGeneratorVariables(F);;
```

(function)

2.2.2 PiecesOfPresentation

```
▷ PiecesOfPresentation(P)
```

Returns the set of pieces of the presentation P.

2.3 Metric small cancellation conditions

2.3.1 GroupSatisfiesCPrime

```
▷ GroupSatisfiesCPrime(G, lambda[, explain]) (function)
```

Returns true if the FpGroup G satisfies the small cancellation condition C'(lambda), false otherwise. If the optional argument explain is true instead of returning false returns an explanation of this result.

2.3.2 PresentationSatisfiesCPrime

```
▷ PresentationSatisfiesCPrime(P, lambda[, explain]) (function)
```

Returns true if the presentation P satisfies the small cancellation condition C'(lambda), false otherwise. If the optional argument explain is true instead of returning false returns an explanation of this result.

2.4 Non-metric small cancellation conditions

2.4.1 GroupSatisfiesC

```
▷ GroupSatisfiesC(G, p[, explain]) (function)
```

Returns true if the FpGroup G satisfies the small cancellation condition C(p), false otherwise. If the optional argument explain is true instead of returning false returns an explanation of this result

```
gap> GroupSatisfiesC(G,12);
true
gap> GroupSatisfiesC(G,13);
false
gap> GroupSatisfiesC(G,13,true);
[ false, a1^-1*b1^-1*a1*b1*a2^-1*b2^-1*a2*b2*a3^-1*b3^-1*a3*b3,
    " is the product of pieces of the following lengths: ",
    [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ]
```

2.4.2 PresentationSatisfiesC

```
▷ PresentationSatisfiesC(P, p[, explain]) (function)
```

Returns true if the presentation P satisfies the small cancellation condition C(p), false otherwise. If the optional argument explain is true instead of returning false returns an explanation of this result.

2.4.3 GroupSatisfiesT

```
\triangleright GroupSatisfiesT(G, q) (function)
```

Returns true if the FpGroup G satisfies the small cancellation condition T(q), false otherwise.

```
gap> GroupSatisfiesT(G,12);
true
gap> GroupSatisfiesT(G,13);
false
```

2.4.4 PresentationSatisfiesT

```
\triangleright PresentationSatisfiesT(P, q) (function)
```

Returns true if the presentation P satisfies the small cancellation condition T(q), false otherwise.

2.5 Additional functions

2.5.1 GraphFromAdjacencyMatrix

▷ GraphFromAdjacencyMatrix(A)

(function)

If A is the adjacency matrix of a simple and directed graph, returns a Grape graph representing the graph with adjacency matrix A.

2.5.2 WhiteheadGraphAdjacencyMatrix

(function)

Returns the adjacency matrix of the Whitehead graph of the FpGroup *G*. Note that the Whitehead graph may not be simple.

2.5.3 ExponentMatrixOfGroup

▷ ExponentMatrixOfGroup(G)

(function)

If G is a group with m relators and n generators, it returns the m by n matrix A such that $A_{i,j}$ is the total exponent of the generator g_j in the relator r_i . Returns the adjacency matrix of the Whitehead graph of the FpGroup G. Note that the Whitehead graph may not be simple.

2.5.4 ExponentMatrixOfPresentation

▷ ExponentMatrixOfPresentation(P)

(function)

If P is a presentation with m relators and n generators, it returns the m by n matrix A such that $A_{i,j}$ is the total exponent of the generator g_j in the relator r_i . Returns the adjacency matrix of the Whitehead graph of the FpGroup G. Note that the Whitehead graph may not be simple.

References

[LS01] Roger C. Lyndon and Paul E. Schupp. *Combinatorial group theory*. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. 6

Index

```
ExponentMatrixOfGroup, 9
ExponentMatrixOfPresentation, 9
GraphFromAdjacencyMatrix, 9
GroupSatisfiesC, 8
GroupSatisfiesCPrime, 7
GroupSatisfiesT, 8
PiecesOfGroup, 6
PiecesOfPresentation, 7
PresentationSatisfiesC, 8
PresentationSatisfiesCPrime, 7
PresentationSatisfiesT, 8
WhiteheadGraphAdjacencyMatrix, 9
```