# Motor Accident Analysis in New York City with Predictive Modelling

- Kaushik Mellacheruvu
- Deepjyot Singh Kapoor
- Mehran Ali Banka

# **Background, Problem and Data**

- The problem at hand involves the high rate of traffic accidents in New York City, jeopardizing public safety and incurring significant economic costs. We aim to address this issue through geospatial analysis, time series modeling and predictive modeling to help with resource planning, resource allocation and policy making
- Target variables: Monthly accident rate/Borough, Risk Severity, Geospatial Maps
- Dataset:- Spatial Dimensions: (2034305, 30), Temporal Dimensions: (2012,2023), Source: <u>Dataset</u>
- Preprocessing: Geopy API to impute missing values, Openmeteo API to integrate weather data
- Preprocessing: One hot encoding for feature processing, Scipy.spatial.distance for closest location

| Feature                                                                                                                                                                                                                                                  | Туре                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Crash Date, Crash Time                                                                                                                                                                                                                                   | Datetime             |
| Zip Code, Number of persons injured, Number of persons killed, Number of pedestrians injured, Number of pedestrians killed, Number of cyclists killed, Number of cyclists injured, Number of motorists injured, Number of motorists killed, Collision Id | Numerical/Discrete   |
| Borough, On Street Name, Cross Street Name, Off Street Name, Contributing Factor(Of each vehicle involved), Vehicle type(Of each vehicle involved)                                                                                                       | Text/Nominal         |
| Latitude, Longitude, Location                                                                                                                                                                                                                            | Numerical/Continuous |

|       | BOROUGH WISE ACCIDENT COUNT PER MONTH (2012-2023) |          |         |         |               |  |  |
|-------|---------------------------------------------------|----------|---------|---------|---------------|--|--|
|       | Manhattan                                         | Brooklyn | Queens  | Bronx   | Staten Island |  |  |
| Count | 136                                               | 136      | 136     | 136     | 136           |  |  |
| Mean  | 2909.9                                            | 4136.16  | 3786.94 | 2020.49 | 656.39        |  |  |
| std   | 1169.9                                            | 1151.76  | 1259.87 | 622.79  | 258.04        |  |  |
| min   | 511                                               | 1092     | 874     | 391     | 184           |  |  |
| 25%   | 1496.25                                           | 2970.75  | 2443    | 1592.25 | 423           |  |  |
| 50%   | 3423                                              | 4326.5   | 4065    | 1822    | 625.5         |  |  |
| 75%   | 3852.5                                            | 5037     | 4876.75 | 2619.5  | 911.25        |  |  |
| max   | 4468                                              | 6147     | 5661    | 3231    | 1127          |  |  |

# **Model and Evaluation**

| Approach                    | Model/Tool                                             | Reason                                                   | Evaluation             | Reason                                                        |
|-----------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------|---------------------------------------------------------------|
| Geospatial Analysis         | Folium                                                 | Interactive, Ease of Use                                 | Visualization          | N/A                                                           |
| Time Series                 | SARIMA,<br>pyramid-arima,<br>pcf/acf,<br>Adfuller test | Seasonality, Stationary, Model<br>Complexity, auto_arima | Visualization,<br>RMSE | Identify seasonal pattern, comparison with mean of train data |
| Risk Severity<br>Classifier | Random Forests                                         | Non Linearity, Large Feature<br>Space                    | Confusion Matrix       | Multi Class Evaluation, model behaviour                       |

## **Time Series**



|                             | Manhattan | Brooklyn | Queens | Bronx     | Staten Island |
|-----------------------------|-----------|----------|--------|-----------|---------------|
| RMSE(SARIMA)                | 410       | 798.84   | 205.56 | 472       | 69            |
| RMSE(mean of training data) | 1965.17   | 1887.72  | 892.25 | 2109.6623 | 336.56        |

## **Model and Evaluation**

## **Risk Severity Classifier (Random Forests**





#### Classification Report:

|          |      | precision | recall | f1-score | support |
|----------|------|-----------|--------|----------|---------|
| H        | HIGH | 0.85      | 0.46   | 0.60     | 62209   |
|          | LOW  | 0.79      | 0.96   | 0.87     | 75837   |
| MEC      | MUIC | 0.78      | 0.89   | 0.83     | 85275   |
| accur    | racy |           |        | 0.79     | 223321  |
| macro    | avg  | 0.81      | 0.77   | 0.76     | 223321  |
| weighted | avg  | 0.80      | 0.79   | 0.78     | 223321  |
|          |      |           |        |          |         |

# **Assumptions, Limitations and Next Steps**

## Assumptions:

- Latitude and Longitude coordinates accuracy
- Data from Geopy and Openmeteo APIs for location-specific variables like weather conditions is justifiable due to their reliability
- Identifying accident hotspots based on geographic proximity is established. The dataset ensures ample data for pinpointing these hotspots.
- Usage of historical data for predicting future trends is standard practice, as is the reliance on 'NUMBER OF PERSONS INJURED/KILLED' to gauge accident severity
- Dropped columns such as 'OFF STREET ADDRESS', 'CROSS STREET ADDRESS' as we already have the address

#### Limitations:

- Under-reporting bias of accidents
- Weather data is w.r.t nearest crash hour time
- Contributing factors has missing values
- Variables influencing accidents may not all be there
- Changing Urban Landscapes affect traffic patterns and accidents

## Next Steps:

- Low level neighbourhood modelling
- Improve accuracy of models
- Include more features
- Improve imputations accuracy (Eg. Weather)
- Continuous modelling to adapt to changing patterns