Artificial Neural Networks

Artificial Neural Network

ANN is a computing system made up of a number of simple, *highly interconnected processing elements*, which process information by their dynamic state response to external *inputs*.

Dr. Robert Hecht-Nielson as quoted in "Neural Network Primer: Part I" by Maureen Caudill, Ai Expert, Feb. 1989

- ANNs are modeled on the *parallel architecture of animal / human brains*.
- The network is based on a simple form of *inputs* and *outputs*.

Why Artificial Neural Networks?

Massive parallelism, Low energy consumption

ANN modeled (inspired by biological neurons)

 Create Intelligence to solve complex problems Learning ability, Fault tolerance

Characteristics of a human brain

Adaptivity (self-organization)

Modern Machine

not present in the modern

Generalization ability,
Contextual information processing

Three periods of development for ANN

1940's

McCulloch and Pitts – Simple Neural Network Model

In 1960's

Rosenblatt - Perceptron Model

In 1980's

Hopfield and Rumelhart - Hopfield's and Back-propagation Models

History of Artificial Neural Networks

Biological Neural Networks

- In biology, a neuron is a cell that can transmit and process chemical or electrical signals.
- A neuron is connected with other neurons to create a network.
- Tens of billions of interconnected neuron structures in human brain.
- Every neuron has an
 - Input called the dendrite
 - Cell body called Soma
 - Output called the axon

Artificial Neural Network

Artificial Neural Network

- Pool of simple processing units
- Communication to each other over a large number of weighted connections.

Biological Vs Artificial Neural Networks

Biological neurons or nerve cells	Silicon transistors
200 billion neurons, 32 trillion interconnections.	1 billion bytes RAM, trillion of bytes on disk.
Neuron size: 10-6 m.	Single transistor size: 10-9m.
Energy consumption: 6-10 joules per operation per sec.	Energy consumption: 10-16 joules per operation per second.
Learning capability	Programming capability

Applications of ANN

- Inspired by biological neural networks
 - Numerous advances have been made in developing intelligent systems.
- ANNs developed to solve a variety of problems in
 - pattern recognition
 - prediction
 - optimization
 - associative memory

Example: ANN in medical Applications

Computational Model of ANNs

- ANN is an information processing system
 - Consists of many nodes called neurons (processing units)
 - Signals are transmitted by connection links
 - Links possess an associated weight, which is multiplied with input signal (net input)
 - Output is obtained by applying activations to net input.

ANN Models

- ANN Models Classified
 - Single Layer ANN
 - Multi-layer ANN

Single Layer ANN

- Only one layer of weighted interconnections
- Weighted input(s) are processed by only one layer and provide output(s)

ANN Models

• Single Layer ANN - Example

 $X_{1,} x_{2} \dots$ are input b – bias weight $w_{1}, w_{2} \dots$ are interconnecting weights

Multilayer ANN

 Multilayer ANN are called layered networks

- Input layer
- Hidden layer(s)
- Output layer

Basic building blocks of ANN

- Network Architecture
- Setting weights
- Activation function

- Network Architecture
 - Arrangement of neurons into layers
 - Connection pattern between neurons

Feed Forward Neural Networks

- The information is propagated from the inputs to the outputs
- Time has no role (NO cycle between outputs and inputs)

Feedback/ Recurrent Neural Networks

- All nodes are connected to all other nodes
- Every node is both input/ output node
- Delays are associated
- Training is more difficult
- Performance may be problematic
 - Stable Outputs may be more difficult

Setting weights

Setting the values for weights – enable learning/ training

- Training
 - Process of modifying the weights in the network to achieve the expected output

- Learning
 - Internal process when the network is trained

Artificial Neural Network (ANN) Terminologies 1. Weights

- Weight is an information used by the neural net to solve the problem
- Weights can set to zero or can be calculated by some methods

- x₁ activation of neuron-1 (input signal)
- x_2 activation of neuron-2 (input signal)
- y output neuron
- w₁ weight connecting neuron-1 to output
- w₂ —weight connecting neuron-2 to output

Net input = Net =
$$x_1 w_1 + x_2 w_2$$

Net input = Net = $\sum_{i=1}^{n} x_i w_i$

Artificial Neural Network (ANN) Terminologies 2. Activation Functions/ Transfer Function

- Used to calculate the output response of a neuron.
- Sum of the weighted input signal is applied with an activation to obtain the response.
- For neurons in the same layer same activation functions are used.
- Activation function
 - Linear
 - Non-linear (used in multilayer net)

Artificial Neural Network (ANN) Terminologies

2. Activation functions

Identity (Linear) Function:

$$f(x) = x$$
, for all x

Binary Step Function

$$f(x) = \begin{cases} 1; & \text{if } f(x) \ge \theta \\ 0; & \text{if } f(x) < \theta \end{cases}$$

- where θ is threshold
- Single layer nets uses binary step (threshold) function.

Artificial Neural Network (ANN) Terminologies 2. Activation functions

Sigmoidal function

- S-shaped curves
- Hyperbolic & logistic functions
- Used in multi layer nets
- Example: back propagation net
- Types
 - Binary Sigmoidal Function
 - Bipolar Sigmoidal Function

Binary Sigmoidal (Logistic) Function

It ranges between 0 to 1.

$$f(x) = \frac{1}{1 + \exp(-\sigma x)}$$

0.5 -0.5 -1 -1.5 -2 -10 -8 -6 -4 -2 0 2 4 6 8 10

- Where σ steepness parameter.
- Since range is between 0 and 1
- This is especially used for models where we have to predict probability

f(x)

Artificial Neural Network (ANN) Terminologies

2. Activation functions

Bipolar Sigmoidal Function

- Range: +1 and -1
- Called tanh/ hyperbolic tangent function

$$b(x) = 2f(x) - 1$$

$$b(x) = 2 \times \frac{1}{1 + \exp(-\sigma x)} - 1$$

$$b(x) = \frac{2 - 1 - \exp(-\sigma x)}{1 + \exp(-\sigma x)}$$

$$b(x) = \frac{1 - \exp(-\sigma x)}{1 + \exp(-\sigma x)}$$

Where σ – steepness parameter.

Bipolar Activation Function

Used for classification
Used in feed-forward nets.

Artificial Neural Network (ANN) Terminologies 2. Activation functions

Rectified linear unit (ReLU):

$$f(x) = \sum_{i=1}^{\inf} \sigma(x-i+0.5) pprox log(1+e^x)$$

we refer

- $m{\cdot} \sum_{i=1}^{\inf} \sigma(x-i+0.5)$ as **stepped sigmoid**
- $oldsymbol{\cdot} log(1+e^x)$ as **softplus function**

The softplus function can be approximated by \max function (or hard \max) $\max(0,x+N(0,1))$. The max function is commonly known as **Rectified** Linear Function (ReL).

max(0, x)

Artificial Neural Network (ANN) Terminologies 3. Calculation of Net Input using matrix multiplication method

 If the weights are given as W = (w_{ij}) in a matrix form

• The net input to output $y_{inj} = x_i * w_{ij}$

$$y_{inj} = \sum_{i=1}^{n} x_i w_{ij}$$

Output layer

Inputs

Artificial Neural Network (ANN) Terminologies 4. Bias

- Weight on a connection from a unit whose activation is always 1.
- Increasing bias increase net input.

$$Net = b + \sum_{i=1}^{n} x_i w_i$$

Artificial Neural Network (ANN) Terminologies 5. Threshold

- Used in calculating the activations of the given net
- Based on the threshold, output is calculated.
- Activation function is based on the value of θ

$$y = f(Net) = \begin{cases} +1; & if \ Net \ge \theta \\ -1; & if \ Net < \theta \end{cases}$$

where θ and θ_j are thresholds

McCulloch-Pitts Neuron Model

- Here, y is McCulloch-Pitts neuron
- Receives signal from any number of neurons
- Connection weights from x₁ .. x_n are excitatory, denoted by w.
- Connection weights from $x_{n+1} ... X_{n+m}$ are inhibitory, denoted by -p.
- McCulloch-Pitts neuron y has the activation function

$$f(y_{in}) = \begin{cases} 1; & \text{if } f(y_{in}) \ge \theta \\ 0; & \text{if } f(y_{in}) < \theta \end{cases}$$

• Where, θ – threshold and y_{in} - net input to y

Examples

- Generate the output of logic AND function by McCulloch-Pitts neuron model.
- Generate the output of logic OR function by McCulloch-Pitts neuron model.
- Generate the output of logic NOT function by McCulloch-Pitts neuron model.
- Generate the output of logic XOR function by McCulloch-Pitts neuron model.

Perceptron Networks

- Frank Rosenblatt
- Minsky and Papert limitations
- Learning rule:
 - Iterative weight adjustment (powerful technique)
- Training in perceptron
 - Continue until no error (minimum) occurs.
- Perceptron Net
 - Solve classification problem

Perceptron Networks

- Types of perceptron:
 - Single Layer perceptron
 - Multilayer perceptron

Single Layer Perceptron

- Used for classification of patterns that are linearly separable.
- It consists of single neuron, that adjust the weights and bias.
- Rosenblatt found
 - If the patterns used to train the perceptron are drawn from the linearly separable class, the perceptron algorithm converges
 - Positions the decision surface in the form of a hyper plane between two classes.

Single Layer Perceptron

Algorithm

- 1. Initialize weights and bias (set to ZERO) and set the learning rate α (0 to 1)
- 2. While stopping condition is not TRUE, repeat steps 3 to 7
- For each training pair S: t do steps 4 to
- 4. Input $x_i = s_i$ for all i = 1 to n

Single Layer Perceptron Architecture

5. Compute output response

$$y_{in} = b + \sum_{i=1}^{n} x_i wi$$

Activation function

$$Y = f(y_{\text{in}}) = \begin{cases} +1 & if \ y_{\text{in}} > \theta \\ 0 & if \ -\theta \le y_{\text{in}} \le \theta \\ -1 & if \ y_{\text{in}} < -\theta \end{cases}$$

6. If the output response is not equal to target, then update the weights and bias

If
$$t \neq y$$

$$w_{i(new)} = w_{i(_{old})} + \alpha t x_{i}$$

$$b_{(new)} = b_{(_{old})} + \alpha t$$
else
$$w_{i(new)} = w_{i(_{old})}$$

$$b_{(new)} = b_{(_{old})}$$

7. Test for stopping condition

Single Layer Perceptron Limitation

• This model is limited to perform the classification with only two classes.

Gradient Descent

- It is a technique that update the weights in every iteration to minimize the error of a model on our training data.
 - Input: Training instances <0, 0>, <0, 1>, <1, 0>, <1, 1> one at a time.
 - Model make a prediction for the training instances
 - Calculate the error = $\alpha t x_i$
 - Update weights to reduce the error for next prediction

$$\mathbf{w}_{i(new)} = \mathbf{w}_{i(old)} + \alpha t \mathbf{x}_{i}$$

Example

- Develop a perceptron for AND function with bipolar inputs and targets.
- Develop a perceptron for OR function with bipolar inputs and targets.

XOR Problem

Training Data

x_1	x_2	t
0	0	0
1	0	1
0	1	1
1	1	0

Multiple layers of perceptrons solve the XOR problem, but Rosenblatt did not have an learning algorithm to set the weights

threshold = -1.5

Single layer NN

- Linear classification
- Linearly separable
- Multilayer NN
 - Non-linear classification
 - All Boolean fun can be represented by the two layer (single hidden layer)
 - Any function can be classifiable with minimum error using Artificial Neural Network with two hidden layers.

Multilayer Networks

- Feed forward Networks
 - Output is calculated for every input to the network
 - No feedback
 - Example: Back Propagation Network
- Back Propagation Network (BPN)
 - Multilayer ANN
 - Using gradient descent based delta learning rule known as back propagation (for errors)
 - Efficiently changing the weights with differentiable activation function units to learn a training set of input-output examples.

Back Propagation Network (BPN)

Architecture

- These are the commonest type of neural network in practical applications.
 - The first layer is the input and the last layer is the output.
 - If there is more than one hidden layer, we call them "deep" neural networks.
- They compute a series of transformations that change the similarities between cases.
 - The activities of the neurons in each layer are a non-linear function of the activities in the layer below.

During back propagation learning

- Signals sent in reverse direction also. Increase in number of hidden layer
- Minimize error
- Increase computational complexity
- Increase time taken for convergence.

Back Propagation Network (BPN)

Parameters

• The various parameters used in the training algorithm are

```
x: Input training vector
 x = (x_1, ..., x_i, ..., x_n)
 t: Output target vector
 t = (t_1, ..., t_k, ..., t_m)
 \delta_k = error at output unit y_k
\delta_i = error at hidden unit z_j
\alpha = learning rate
V_{oj} = bias on hidden unit j
z_i = hidden unit j
w_{ok} = bias on output unit k
y_k = \text{output unit } k.
```

Step 1: Initialize weight to small random values.

Step 2: While stopping condition is false, do steps 3 - 10

Step 3: For each training pair do steps 4 - 9

Feed Forward

Step 4: Each input unit receives the input signal x_i and transmits this signals to all units in the layer above i.e. hidden units

Step 5: Each hidden unit $(z_j, j = 1, ..., p)$ sums its weighted input signals

$$z_{-inj} = v_{oj} + \sum_{i=1}^{n} x_i v_{ij}$$

applying activation function

$$Z_j = f(z_{inj})$$

and sends this signal to all units in the layer above i.e output units.

Step 6: Each output unit $(y_k, k=1, ..., m)$ sums its weighted input signals

$$y_{-ink} = w_{ok} + \sum_{j=1}^{p} z_j w_{jk}$$

and applies its activation function to calculate the output signals.

$$Y_k = f(y_{-ink})$$

Back Propagation of Errors

Step 7: Each output unit $(y_k, k = 1, ..., m)$ receives a target pattern corresponding to an input pattern,

$$\delta_k = (t_k - y_k) f(y_{-ink})$$

Step 8: Each hidden unit $(z_j, j = 1, ..., n)$ sums its delta inputs from units in the layer above

$$\delta_{-\mathrm{in}j} = \sum_{k=1}^{m} \delta_{k} \mathbf{w}_{jk}$$

The error information term is calculated as

$$\delta_j = \delta_{-\mathrm{in}j} \, \mathrm{f}(\mathrm{z}_{-\mathrm{in}j})$$

Updation of weights and biases

Step 9: Each output unit $(y_k, k = 1, ..., m)$ updates its bias and weights (j = 0, ..., p) $\Delta W_{ik} = \alpha \delta_k Z_i$ and the bias correction term is given by $\Delta W_{ok} = \alpha \delta_{\nu}$ Therefore, W_{jk} (new) = W_{jk} (old) + ΔW_{jk} , W_{ok} (new) = W_{ok} (old) + ΔW_{ok} Each hidden unit $(z_j, j = 1, ..., p)$ updates its bias and weights (i = 0, ..., n)The weight correction term $\Delta V_{ii} = \alpha \delta_i x_i$ The bias correction term $\Delta V_{oi} = \alpha \delta_i$ Therefore, $V_{ij}(\text{new}) = V_{ij}(\text{old}) + \Delta V_{ij}$, $V_{oj}(\text{new}) = V_{oj}(\text{old}) + \Delta V_{oj}$

Step 10: Test for stopping condition:

The stopping condition may be the minimization of errors, number of epochs etc.

Example

• Find the new weights when the network given in the figure is presented the input pattern [0.6 0.8 0] and the target output is 0.9. use the learning rate α = 0.3 and use binary sigmoid activation function.

Thank you