One Hundred Probability/Statistics Inequalities

NP Slagle

February 15, 2012

1 Basic Probability and Measure Theory Inequalities

Given events (sets) A, B, and countable $\{A_n\}_{n=1}^{\infty}$,

- $\mathbf{Prob}[A] \geq 0$
- **Prob**[*A*] ≤ 1
- If $A \subset B$, then $\mathbf{Prob}[A] \leq \mathbf{Prob}[B]$
- If $A \subset B$, then $\mathbf{Prob}[B] \leq \mathbf{Prob}[A^c]$
- (Boole) $\operatorname{Prob}[\bigcup_{n=1}^{\infty} A_n] \leq \sum_{n=1}^{\infty} \operatorname{Prob}[A_n] 5 p.11$
- $\operatorname{Prob}[\bigcup_{n=1}^{\infty} A_n] \ge \sup{\left(\operatorname{Prob}[A_n]|n=1,2,\dots\right)}$
- $\operatorname{Prob}[\bigcap_{n=1}^{\infty} A_n] \leq \inf \{ \operatorname{Prob}[A_n] | n = 1, 2, \dots \}$
- $\operatorname{Prob}[A \cap B] \leq \min{\{\operatorname{Prob}[A], \operatorname{Prob}[B]\}}$
- (Bonferroni) $\operatorname{Prob}[A \cap B] \ge \operatorname{Prob}[A] + \operatorname{Prob}[B] 15 \text{ p.11}$
- (Bonferroni General) $\operatorname{Prob}[\cap_{i=1}^n] \geq \sum_{i=1}^n \operatorname{Prob}[A_i] (n-1) \times 0.13$
- $\mathbf{Prob}[A|B] \ge \mathbf{Prob}[A \cap B]$
- (Karlin Ost) Define $P_1 = \sum_{i=1}^n \mathbf{Prob}[A_i], P_2 = \sum_{1 \leq i < j \leq n} \mathbf{Prob}[A_i \cap A_j], P_3 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_3 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_4 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_5 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_6 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_7 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < j < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n} \mathbf{Prob}[A_i \cap A_j], P_8 = \sum_{1 \leq i < k \leq n}$

$$P_1 - P_2 + P_3 - \dots \pm P_{i-1} \ge \mathbf{Prob} \left[\bigcup_{i=1}^n A_i \right] \ge P_1 - P_2 + P_3 - \dots \mp P_i. 5 \text{ p.45}$$

2 Means

Define the pth power mean of a finite set of positive numbers S to be

$$PM(S,p) = \sqrt[p]{\sum_{s \in S} \frac{s^p}{|S|}} \tag{1}$$

Notice that the arithmetic mean and harmonic mean of the set S are simply $A_M(S) = PM(S,1)$ and $H_M(S) = PM(S,-1)$, respectively. Less clear is that the geometric mean $G_M(S) = \bigvee_{s \in S} \prod_{s \in S} s = \lim_{p \to 0} PM(S,p)$, the maximum $\max(S) = \lim_{p \to \infty} PM(S,p)$, and the minimum $\min(S) = \lim_{p \to -\infty} PM(S,p)$. So, we have

- $PM(S, p_0) \le PM(S, p_1)$ for $p_0 \le p_1$ 5 p.204
- $H_M(S) \le G_M(S) \le A_M(S)$ 5 p.204

3 Expectations and Variances

Let X and Y be random variables. If an inequality includes a function f of a random variable X, assume that the expectation $\mathbb{E}f(X)$ exists.

- If $g(X) \le h(X)$, then $\mathbb{E}g(X) \le \mathbb{E}h(X)$. 5 p.57
- If $a \leq g(X) \leq b$, then $a \leq \mathbb{E}g(X) \leq b$. 5 p.57
- (Hölder) If p,q satisfy $\frac{1}{p} + \frac{1}{q} = 1$, then $|\mathbb{E}XY| \leq \mathbb{E}|XY| \leq (\mathbb{E}|X|^p)^{\frac{1}{p}} (\mathbb{E}|Y|^q)^{\frac{1}{q}}$ 5 p.187
- (Jensen) For a convex function g, If $X \geq Y$, then $\mathbb{E}g(X) \geq g(\mathbb{E}X)$. 5 p.190
- (Cauchy-Schwartz) $|\mathbb{E}XY| \leq \mathbb{E}|XY| \leq \sqrt{(\mathbb{E}|X|^2)(\mathbb{E}|Y|^2)}$ 5 p.187
- $Var(X) \ge 0$
- $\operatorname{Cov}^2(X, Y) \le \operatorname{Var}(X)\operatorname{Var}(Y)$ 5 p.188
- (Hölder Special Case) For p > 1, $\mathbb{E}|X| \leq \sqrt[p]{\mathbb{E}|X|^p}$ 5 p.188
- (Liapounov) For s > r > 1, $\sqrt[r]{\mathbb{E}|X|^r} \le \sqrt[s]{\mathbb{E}|X|^s}$ 5 p.188
- (Minkowski) For $p \ge 1$, $\sqrt[p]{\mathbb{E}|X+Y|^p} \le \sqrt[p]{\mathbb{E}|X|^p} + \sqrt[p]{\mathbb{E}|Y|^p}$ 5 p. 188
- (Triangle) As a special case of Minkowski's inequality, $\mathbb{E}|X+Y| \leq \mathbb{E}|X| + \mathbb{E}|Y|$. 5 p.203
- If g is nondecreasing and h is nonincreasing, then $\mathbb{E}(g(X)h(X)) \leq (\mathbb{E}g(X))(\mathbb{E}h(X))$. 5 p.192
- If g and h are both nondecreasing or both nonincreasing, then $\mathbb{E}(g(X)h(X)) \geq (\mathbb{E}g(X))(\mathbb{E}h(X))$. 5 p.192
- (Cramér-Rao) Suppose X_1, \ldots, X_n is a sample with joint pdf $f(\mathbf{x}|\theta)$ and $W(\mathbf{X})$ is any estimator of θ such that $\frac{d}{d\theta} \mathbb{E}_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} [W(\mathbf{x})] f(\mathbf{x}|\theta) d\mathbf{x}$ and $\operatorname{Var}_{\theta}(W(\mathbf{X})) < \infty$. Then

$$\operatorname{Var}_{\theta}(W(\mathbf{X})) \ge \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta} W(\mathbf{X})\right)^{2}}{\mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log(f(\mathbf{x}|\theta))\right)^{2}\right]}.5 \text{ p.335}$$

• (Cramér-Rao IID) Suppose X_1, \ldots, X_n is a sample iid with marginal pdf $f(x|\theta)$ and $W(\mathbf{X})$ is any estimator of θ such that $\frac{d}{d\theta}\mathbb{E}_{\theta}W(\mathbf{X}) = \int_{\chi} \frac{\partial}{\partial \theta}[W(\mathbf{x})]f(\mathbf{x}|\theta)d\mathbf{x}$ and $\operatorname{Var}_{\theta}(W(\mathbf{X})) < \infty$. Then

$$\operatorname{Var}_{\theta}(W(\mathbf{X})) \ge \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta} W(\mathbf{X})\right)^{2}}{n E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log(f(x|\theta))\right)^{2}\right]}.5 \text{ p.337}$$

• (Rao-Blackwell) Let U be an unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = \mathbb{E}(U|T)$. Then $\mathbb{E}\phi(T) = \tau(\theta)$, and

$$\operatorname{Var}_{\theta}\phi(T) < \operatorname{Var}_{\theta}W$$
 for all θ . 5 p.342

• (Han) Let X_1, \ldots, X_n be independent discrete random variables. Let $H(X_{\pi_1}, \ldots, X_{\pi_k})$ be the joint entropy of a subset of the $\{X_i\}$. Then

$$H(X_1, \dots, X_n) \le \sum_{i=1}^n H(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n).$$
 4 p.230

• Let X_1, \ldots, X_n be independent random variables. Let $g:Domain(X_1, \ldots, X_n) \to \mathbb{R}$ be Lesbegue measurable, and $Z = g(X_1, \ldots, X_n)$. Then

$$\operatorname{Var}(Z) \le \sum_{i=1}^{n} \mathbb{E}[(Z - \mathbb{E}(Z|X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)^2]. \text{ 4 p.219}$$

• (Efron-Stein) Let X_1, \ldots, X_n be independent random variables. Let $g: Domain(X_1, \ldots, X_n) \to \mathbb{R}$ be Lesbegue measurable, and $Z = g(X_1, \ldots, X_n)$. Let Y_1, \ldots, Y_n be an independent copy of X_1, \ldots, X_n , and let $Z_i = g(X_1, \ldots, Y_i, \ldots, X_n)$. Then

$$Var(Z) \le \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i)^2]. \text{ 4 p.220}$$

• (Logarithmic Sobolev) Let X_1, \ldots, X_n be independent random variables. Let $g_i : Domain(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n) \to \mathbb{R}$ be Lesbegue measurable, $Z_i = g_i(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n)$, $g : Domain(X_1, \ldots, X_n) \to \mathbb{R}$ be Lesbegue measurable, and $Z = g(X_1, \ldots, X_n)$. Let $\psi(t) = e^t - t - 1$ and s > 0. Then

$$sE(Ze^{sZ}) - \mathbb{E}(e^{sZ}) \log[\mathbb{E}(e^{sZ})] \le \sum_{i=1}^{n} \mathbb{E}[e^{sZ}\psi(-s(Z-Z_i))]. \text{ 4 p.233}$$

• (Symmetrized Logarithmic Sobolev) Let X_1, \ldots, X_n be independent random variables. Let $g: Domain(X_1, \ldots, X_n) \to \mathbb{R}$ be Lesbegue measurable, and $Z = g(X_1, \ldots, X_n)$. Let Y_1, \ldots, Y_n be an independent copy of X_1, \ldots, X_n , and let $Z_i = g(X_1, \ldots, Y_i, \ldots, X_n)$. Let $\psi(t) = e^t - t - 1$ and s > 0. Then

$$sE(Ze^{sZ}) - \mathbb{E}(e^{sZ}) \log[\mathbb{E}(e^{sZ})]] \le \sum_{i=1}^{n} \mathbb{E}[e^{sZ}\psi(-s(Z-Z_i))]. \text{ 4 p.234}$$

• Suppose $\{X_n\}$ is a sequence of random variables such that for all $n, X_n \geq 0$, and for all $\epsilon > 0$, there exist $c_1 > 0$ and $c_2 > e^{-1}$ such that $\mathbf{Prob}[X_n > \epsilon] \leq c_1 e^{-c_2 n \epsilon^2}$. Then

$$\mathbb{E}X_n \le \sqrt{\frac{1 + \log(c_1)}{nc_2}}. \ 25$$

• (Kannan Strong Negative Correlation) Suppose m is an even positive integer, and X_1, \ldots, X_n are real-valued random observations satisfying the strong negative correlation principle. That is, for all i, $\mathbb{E}X_i(X_1 + \cdots + X_{i-1})^l < 0$ when l < m is odd and $\mathbb{E}(X_i^l | X_1 + \cdots + X_{i-1}) \leq \left(\frac{n}{m}\right)^{\frac{l-2}{2}} l!$ for $l \leq m$ even. Then

$$\mathbb{E}\left(\sum_{i=1}^{n} X_i\right)^m \leq (24mn)^{\frac{m}{2}}. \ 13 \ \text{p.2}$$

• (Kannan Hamiltonian Tour) Suppose Y_1, \ldots, Y_n are sets of points generated independently and respectively from n subsquares of size $\frac{1}{\sqrt{n}} \times \frac{1}{\sqrt{n}}$ of the unit square, and there exists a constant $c \in (0,1)$ such that $\mathbf{Prob}[|Y_i|] \leq c$ for all i. Suppose further that for $\epsilon > 0$, and $l \in \{1, \ldots, \frac{m}{2}\}$, $\mathbb{E}|Y_i|^l \leq [O(l)]^{(2-\epsilon)l}$. Finally, suppose $f(Y_1, \ldots, Y_n)$ is the length of the shortest Hamiltonian tour through $Y_1 \cup \cdots \cup Y_n$. Then

$$\mathbb{E}[f(Y_1,\ldots,Y_n) - \mathbb{E}f(Y_1,\ldots,Y_n)]^m \le (cm)^{\frac{m}{2}}.$$
 13 p.4

• (Kannan MST) Suppose Y_1, \ldots, Y_n are sets of points generated independently and respectively from n subsquares of size $\frac{1}{\sqrt{n}} \times \frac{1}{\sqrt{n}}$ of the unit square, and there exists a constant $c \in (0,1)$ such that $\mathbf{Prob}[|Y_i|] \leq c$ for all i. Suppose further that for $\epsilon > 0$, and $l \in \{1, \ldots, \frac{m}{2}\}$, $\mathbb{E}|Y_i|^l \leq [O(l)]^{(2-\epsilon)l}$. Finally, suppose $f(Y_1, \ldots, Y_n)$ is the length of a minimum spanning tree of $Y_1 \cup \cdots \cup Y_n$. Then

$$\mathbb{E}[f(Y_1,\ldots,Y_n) - \mathbb{E}f(Y_1,\ldots,Y_n)]^m \le (cm)^{\frac{m}{2}}.$$
 13 p.5

• (Kannan Random Vector) Suppose $\mathbf{Y} = (Y_1, \dots, Y_n)$ is a random vector such that for a fixed $k \leq n$, $\mathbb{E}(Y_i^2|Y_1^2,\dots,Y_i^2)$ is a nondecreasing function of $Y_1^2+\dots+Y_{i-1}^2$ for $i=1,\dots,k$ and for even $l\leq k$, there exists a c>0 such that $\mathbb{E}(Y_i^l|Y_1^2,\dots,Y_{i-1}^2)\leq \left(\frac{cl}{n}\right)^{\frac{l}{2}}$. Then for any even $m\leq k$,

$$\mathbb{E}\left(\sum_{i=1}^k Y_i^2 - \mathbb{E}Y_i^2\right)^m \le \left(\frac{\sqrt{cmk}}{n}\right)^m. 13 \text{ p.5}$$

• (Ledoux-Talagrand Contraction) Suppose X_i, \ldots, X_n are iid Rademacher variables ($\mathbf{Prob}[X_i = 1] = \mathbf{Prob}[X_i = -1] = \frac{1}{2}$). Suppose $f : \mathbb{R}^+ \to \mathbb{R}^+$ be convex and increasing, and $\phi_i : \mathbb{R} \to \mathbb{R}$ be Lipschitz with constant L for $i = 1, \ldots, n$. Then for $T \subset \mathbb{R}^n$,

$$\mathbb{E}f\left(\frac{1}{2}\sup_{\mathbf{t}\in T}\left|\sum_{i=1}^{n}X_{i}\phi_{i}(t_{i})\right|\right)\leq \mathbb{E}f\left(L\sup_{\mathbf{t}\in T}\left|\sum_{i=1}^{n}X_{i}t_{i}\right|\right)9p.9$$

- (Bhatia-Davis) If a univariate probability distribution F has minimum m, maximum M, and mean μ , then for any X following F, $Var(X) \leq (M \mu)(\mu m)$. 2 p.353–357
- (Popoviciu) If a univariate probability distribution F has minimum m and maximum M, then for any X following F, $Var(X) \leq \frac{1}{4}(M-m)^2$. 23 p.313–318
- (Chapman-Robbins) Suppose **X** is a random variable in \mathbb{R}^k with an unknown parameter θ . If $\delta(\mathbf{X})$ is an unbiased estimator for $\tau(\theta)$, then

$$\operatorname{Var}(\delta(\mathbf{X})) \ge \sup_{\Delta} \frac{[\tau(\theta + \Delta) - \tau(\theta)]^2}{\mathbb{E}_{\theta} \left[\frac{p(\mathbf{X}.\theta + \Delta)}{p(\mathbf{X}.\theta)} - 1\right]^2}. \text{ 6 p.581-586}$$

- (Entropy Power) Define the entropy of X to be $h(X) = -\mathbb{E} \log f_X(X)$, where $f_X(x)$ is the pdf or pmf of X. Define the entropy of X to be $N(X) = \frac{1}{2\pi e} e^{\frac{2}{n}h(X)}$. Then for random variables X and Y, we have $N(X+Y) \geq N(X) + N(Y)$. 8 p.1501–1518
- (Marcinkiewicz Zygmund) Let X_1, \ldots, X_n be independent random variables with common support such that $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^p < \infty$ for all $p \geq 1$. Then there exist constants A(p) and B(p), dependent only on p, such that

$$A(p)\mathbb{E}\left(\sum_{i=1}^{n}|X_{i}|^{2}\right)^{\frac{p}{2}} \leq \mathbb{E}\left(\sum_{i=1}^{n}|X_{i}|\right)^{p} \leq B(p)\mathbb{E}\left(\sum_{i=1}^{n}|X_{i}|^{2}\right)^{\frac{p}{2}}.$$
 15 p.233–259

• (Khintchine) Let X_1, \ldots, X_n be iid Rademacher random variables. Then for any $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and p > 0, there exist constants A(p) and B(p), dependent only on p, such that

$$A(p) \left(\sum_{i=1}^{n} |\lambda_i|^2 \right)^{\frac{1}{2}} \le \left(\mathbb{E} \left(\sum_{i=1}^{n} |\lambda_i X_i| \right)^p \right)^{\frac{1}{p}} \le B(p) \left(\sum_{i=1}^{n} |\lambda_i|^2 \right)^{\frac{1}{2}}. 26$$

• (Rosenthal I) Let X_1, \ldots, X_n be independent nonnegative random variables such that $\mathbb{E}X_i^p < \infty$ for a fixed $p \geq 1$, $i = 1, \ldots, n$. Then there exist constants A(p) and B(p) dependent only on p such that

$$A(p)\max\left\{\sum_{i=1}^n\mathbb{E}X_i^p,\left(\sum_{i=1}^n\mathbb{E}X_i\right)^p\right\}\leq \left(\sum_{i=1}^n\mathbb{E}X_i\right)^p\leq B(p)\max\left\{\sum_{i=1}^n\mathbb{E}X_i^p,\left(\sum_{i=1}^n\mathbb{E}X_i\right)^p\right\}. \ 19 \text{ p.273–303}$$

• (Rosenthal II) Let X_1, \ldots, X_n be independent random variables such that $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^p < \infty$ for a fixed $p \ge 1$, $i = 1, \ldots, n$. Then there exist constants A(p) and B(p) dependent only on p such that

$$A(p) \max \left\{ \sum_{i=1}^{n} \mathbb{E}|X_{i}|^{p}, \left(\sum_{i=1}^{n} \mathbb{E}X_{i}^{2}\right)^{\frac{p}{2}} \right\} \leq \left| \sum_{i=1}^{n} \mathbb{E}X_{i} \right|^{p} \leq B(p) \max \left\{ \sum_{i=1}^{n} \mathbb{E}|X_{i}|^{p}, \left(\sum_{i=1}^{n} \mathbb{E}X_{i}^{2}\right)^{\frac{p}{2}} \right\}. 19 \text{ p.273-303}$$

• (Papadatos) Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of iid random variables X_1, \ldots, X_n with variance σ^2 . Define $G(x) = I_x(k, n+1-k)$ and $\sigma_n^2(k) = \sup_{0 < x < 1} \left[\frac{G(x)(1-G(x))}{x(1-x)} \right]$. Then

$$Var(X_{(k)}) \le \sigma_n^2(k)\sigma^2$$
. 17 p.5

• (Hürlimann Upper n-r) Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of iid random variables X_1, \ldots, X_n . Define $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and the biased observed variance $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$. Then for $r = 0, \ldots, n-1$, the average of the upper n-r order statistics satisfies

$$\frac{1}{n-r} \sum_{i=r+1}^{n} X_{(i)} \le \bar{X} + S\sqrt{\frac{r}{n-r}}$$
. 12 p.4

• (Hürlimann Average Excess) Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of iid random variables X_1, \ldots, X_n . Define $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and the biased observed variance $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$. Then for $r = 0, \ldots, n-1$, the average excess of the upper n-r order statistics conditioned on the rth order statistic satisfies

$$\frac{1}{n-r} \sum_{i=r+1}^{n} (X_{(i)} - X_{(r)}) \le S \frac{n}{\sqrt{r(n-r)}}. 12 \text{ p.7}$$

• (Hürlimann Stop-Loss Excess) Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of iid random variables X_1, \ldots, X_n . Define $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and the biased observed variance $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$. Define the rth stop-loss statistics to be $SL(d_r) = \sum_{i=1}^n (X_{(i)} - (n-r)d_r)$ for $d_r \in [X_{(r)}, X_{(r+1)}]$. Then for $r = 0, \ldots, n-1$,

$$SL(d_r) \le (n-r) \left[\bar{X} - d_r + S\sqrt{\frac{r}{n-r}} \right]$$
. 12 p.4

4 Concentration Inequalities

Let X be a random variable.

- (Chebychev General) For r > 0, g a nonnegative function, $\operatorname{\mathbf{Prob}}[g(X) \ge r] \le \frac{\mathbb{E}g(X)}{r}$. 5 p.122
- (Chebychev) For t > 0, $\operatorname{Prob}[|X \mathbb{E}X| \ge t] \le \frac{\operatorname{Var}(X)}{t^2}$. 5 p.122
- (Normal I, Mill) For Z a standard normal, $\operatorname{\mathbf{Prob}}[|Z| \geq t] \leq \sqrt{\frac{2}{\pi}} \frac{e^{-t^2/2}}{t}$. 5 p.122 24 p.65
- (Normal II) For Z a standard normal, $\operatorname{\mathbf{Prob}}[|Z| \ge t] \ge \sqrt{\frac{2}{\pi}} e^{-t^2/2} \frac{t}{1+t^2}$. 5 p.135
- (Chernoff I) Let $M_X(t), -h \le t \le h$ be the moment-generating function of X. Then $\operatorname{Prob}[X > a] \le e^{-at}M_X(t), -h \le t \le h$. 5 p.134 16 p.65
- (Chernoff II) Let $M_X(t), -h \le t \le h$ be the moment-generating function of X. Then $\operatorname{Prob}[X \le a] \le e^{-at}M_X(t), -h \le t \le 0.5$ p.134 16 p.65
- (Chernoff Sum I) Let X_1, \ldots, X_n be iid, $X = \sum_{i=1}^n X_i$, and $M_X(t), -h \le t \le h$ be the moment-generating function of X_1 . Then $\mathbf{Prob}[S > a] \le e^{-at}[M_X(t)]^n$ for $0 \le t \le h$. 5 p.262
- (Chernoff Sum II) Let X_1, \ldots, X_n be iid, $X = \sum_{i=1}^n X_i$, and $M_X(t), -h \le t \le h$ be the moment-generating function of X_1 . Then $\mathbf{Prob}[S \le a] \le e^{-at}[M_X(t)]^n$ for $-h \le t \le 0$. 5 p.262
- (Chernoff Mean) Let X_1, \ldots, X_n be iid, $\epsilon > 0$, $\bar{X}_n = \sum_{i=1}^n X_i$, $M_U(t)$, $-h_U \leq t \leq h_U$ be the moment-generating function of $U = X_1 \mathbb{E}X_1 \epsilon$, and $M_V(t)$, $-h_V \leq t \leq h_V$ be the moment-generating function of $V = -X_1 + \mathbb{E}X_1 \epsilon$. Then there exist for some $0 < t_U \leq h_U$ and $-h_V \leq t_V < 0$ such that

$$\mathbf{Prob}[|\bar{X}_n - \mathbb{E}X_1| > \epsilon] \le 2c^n$$
, where $c = \max\{M_U(t_U), M_V(t_V)\} \in (0, 1)$. 5 p.262

¹Such a t_U and t_V exist since $\mathbb{E}U < 0$ and $\mathbb{E}V < 0$, guaranteeing that M_U and M_V are decreasing in a neighborhood of zero.

• (Chernoff Poisson Trials I) Let X_i be n independent Poisson trials ². Let $X = \sum_{i=1}^n X_i$. Then for $\delta > 0$,

$$\mathbf{Prob}[X \ge (1+\delta)\mathbb{E}X] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathbb{E}X}. 16 \text{ p.64}$$

• (Chernoff Poisson Trials II) Let X_i be n independent Poisson trials. Let $X = \sum_{i=1}^n X_i$. Then for $0 < \delta \le 1$,

$$\mathbf{Prob}[X \ge (1+\delta)\mathbb{E}X] < e^{-(\mathbb{E}X)\delta^2/3}$$
. 16 p.64

• (Chernoff Poisson Trials III) Let X_i be n independent Poisson trials. Let $X = \sum_{i=1}^n X_i$. Then for $R \ge gEX$,

$$Prob[X \ge R] < 2^{-R}$$
. 16 p.64

• (Chernoff Poisson Trials IV) Let X_i be n independent Poisson trials. Let $X = \sum_{i=1}^n X_i$. Then for $0 < \delta < 1$,

$$\mathbf{Prob}[X \le (1 - \delta)\mathbb{E}X] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^{\mathbb{E}X}. 16 \text{ p.65}$$

• (Chernoff Poisson Trials V) Let X_i be n independent Poisson trials. Let $X = \sum_{i=1}^n X_i$. Then for $0 < \delta < 1$,

Prob
$$[X \le (1 - \delta)\mathbb{E}X] < e^{-\delta^2 \mathbb{E}X/2}$$
. 16 p.65

- (Chernoff Rademacher I) Suppose X_1, \ldots, X_n be iid such that $\operatorname{Prob}[X_i = 1] = \operatorname{Prob}[X_i = -1] = \frac{1}{2}$. If $X = \sum_{i=1}^n X_i$ and a > 0, then $\operatorname{Prob}[X \ge a] \le e^{\frac{-a^2}{2n}}$. 16 p.69
- (Chernoff Rademacher II) Suppose X_1, \ldots, X_n be iid such that $\operatorname{Prob}[X_i = 1] = \operatorname{Prob}[X_i = -1] = \frac{1}{2}$. If $X = \sum_{i=1}^n X_i$ and a > 0, then $\operatorname{Prob}[|X| \ge a] \le 2e^{\frac{-a^2}{2n}}$. 16 p.70
- (Chernoff Bernoulli I) Suppose X_1, \ldots, X_n be iid Bernoulli $\left(\frac{1}{2}\right)$. If $X = \sum_{i=1}^n X_i$ and $0 < a < \frac{n}{2}$, then $\operatorname{Prob}\left[X \leq \frac{n}{2} a\right] \leq 2e^{\frac{-2a^2}{n}}$. 16 p.71
- (Chernoff Bernoulli II) Suppose X_1, \ldots, X_n be iid Bernoulli $\left(\frac{1}{2}\right)$. If $X = \sum_{i=1}^n X_i$ and $0 < \delta < 1$, then $\operatorname{Prob}\left[X \leq \frac{n}{2}(1-\delta)\right] \leq 2e^{\frac{-n\delta^2}{2}}$. 16 p.71
- (Chernoff Bernoulli III) Suppose X_1, \ldots, X_n be iid Bernoulli $\left(\frac{1}{2}\right)$. If $X = \sum_{i=1}^n X_i$ and a > 0, then $\operatorname{Prob}\left[X \geq \frac{n}{2} + a\right] \leq 2e^{\frac{-2a^2}{n}}$. 16 p.70
- (Chernoff Bernoulli IV) Suppose X_1, \ldots, X_n be iid Bernoulli $\left(\frac{1}{2}\right)$. If $X = \sum_{i=1}^n X_i$ and $\delta > 0$, then $\operatorname{Prob}\left[X \leq \frac{n}{2}(1+\delta)\right] \leq 2e^{\frac{-n\delta^2}{2}}$. 16 p.70
- (Markov) If $X \ge 0$ and $\mathbf{Prob}[X = 0] < 1$, then for r > 0, $\mathbf{Prob}[X \ge r] \le \frac{\mathbb{E}X}{r}$. 5 p.136
- (Gauss) Suppose X follows a unimodal distribution with mode ν , and define $\tau^2 = \mathbb{E}(X \nu)^2$. Then

$$\mathbf{Prob}[|X - \nu| > \epsilon] \le \begin{cases} \frac{4\tau^2}{9\epsilon^2}, & \epsilon \ge \sqrt{\frac{4}{3}}\tau\\ 1 - \frac{\epsilon}{\tau\sqrt{3}}, & \epsilon \le \sqrt{\frac{4}{3}}\tau \text{ 5 p.137} \end{cases}$$

• (Vysochanskii-Petunin) Suppose X follows a unimodal distribution, and define $\xi^2 = \mathbb{E}(X - \alpha)^2$ for arbitrary α . Then

$$\mathbf{Prob}\left[|X - \alpha| > \epsilon\right] \le \begin{cases} \frac{4\xi^2}{9\epsilon^2}, & \epsilon \ge \sqrt{\frac{8}{3}}\xi\\ \frac{4\xi^2}{9\epsilon^2} - \frac{1}{3}, & \epsilon \le \sqrt{\frac{8}{3}}\xi \text{ 5 p.137} \end{cases}$$

²Each X_i is a Bernoulli (p_i) .

• (Hoeffding I) Let Y_1, \ldots, Y_n be independent observations such that $\mathbb{E}Y_i = 0$ and $a_i \leq Y_i \leq b_i$ for all i. If $\epsilon > 0$ and t > 0, then

Prob
$$\left[\sum_{i=1}^{n} Y_i \ge \epsilon \right] \le e^{-t\epsilon} \prod_{i=1}^{n} e^{t^2(b_i - a_i)^2/8} 24 \text{ p.64}$$

• (Hoeffding II) Let X_1, \ldots, X_n be independent Bernoulli(p). If $\epsilon > 0$, then

$$\mathbf{Prob}\left[\left|\sum_{i=1}^{n} X_i - np\right| \ge \epsilon\right] \le 2e^{-2n\epsilon^2} 24 \text{ p.65}$$

• (Saw) Suppose X_1, \ldots, X_n are iid with finite first and second order moments. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$. Let k > 0, $\nu(t) = \max \left\{ m \in \mathbb{N} \middle| m < \frac{n+1}{t} \right\}$, $\alpha(t) = \frac{(n+1)(n+1-\nu(t))}{1+\nu(t)(n+1-\nu(t))}$, and $\beta = \frac{n(n+1)k^2}{n-1+(n+1)k^2}$. Then

$$\mathbf{Prob}[|X - \bar{X}| \ge kS] \le \begin{cases} \frac{1}{n+1}(\nu(\beta) - 1) & \text{if } \nu \text{ is odd and } \beta > \alpha(\beta) \\ \frac{1}{n+1}\nu(\beta) & \text{otherwise. 5 p.268} \end{cases}$$

- (Talagrand) Let **X** be chosen randomly uniformly from $\{-1,1\}^n$, let A be a convex subset of \mathbb{R}^n , $A_t = \{\mathbf{p} \in \mathbb{R}^n | dist(\mathbf{p}, A) \leq t\}$. Then there exists c > 0 such that $\mathbf{Prob}[\mathbf{X} \in A]\mathbf{Prob}[\mathbf{X} \notin A_t] \leq e^{-ct^2}$ for all t > 0.
- (Talagrand Large Deviation) Let X be chosen randomly uniformly from $\{-1,1\}^n$, V be a d-dimensional subspace of \mathbb{R}^n . Then there exist constants c, C > 0 such that $\mathbf{Prob}[|dist(X,V) \sqrt{n-d}| \ge t] \le Ce^{-ct^2}$ for all t > 0. 22
- (Gaussian for Lipschitz) Let **X** be an *n*-dimensional random vector such that each X_i is an independent n(0,1) variable. If $f: \mathbb{R}^d \to \mathbb{R}$ is a Lipschitz function with scale constant 1^3 , then there exists a constant c > 0 such that $\operatorname{\mathbf{Prob}}[|f(\mathbf{X}) \mathbb{E}f(\mathbf{X})| \ge t] \le e^{-ct^2}$ for all t > 0. 22
- (Azuma) Suppose X_0, \ldots, X_n is a martingale ($\mathbb{E}(X_i|X_1, \ldots, X_{i-1}) = X_{i-1}$ for $i = 1, \ldots, n$); suppose further that X is **c**-Lipschitz ($|X_i X_{i-1}| \le c_i$ for $i = 1, \ldots, n, c \in \mathbb{R}^n$ positive); then

$$\mathbf{Prob}[X_n - X_0 \ge \lambda] \le 2e^{\frac{-\lambda^2}{2\sum_{i=1}^n c_i^2}}$$
. 7 p. 37-38

• (Bennett) Let X_1, \ldots, X_n be independent random variables of zero mean such that $\operatorname{Prob}[X_i \leq 1] = 1$. Let $h(u) = (1+u)\log(1+u) - u$ for $u \geq 0$ and $\sigma^2 = \frac{1}{n}\sum_{i=1}^n \operatorname{Var}(X_i)$. Then for t > 0,

$$\mathbf{Prob}\left[\sum_{i=1}^{n} X_i > t\right] \le e^{-n\sigma^2 h\left(\frac{t}{n\sigma^2}\right)}. \text{ 4 p.218}$$

• (Bernstein) Let X_1, \ldots, X_n be independent random variables of zero mean such that $\operatorname{Prob}[X_i \leq 1] = 1$. Let $\sigma^2 = \frac{1}{n} \sum_{i=1}^n \operatorname{Var}(X_i)$. Then for $\epsilon > 0$,

$$\mathbf{Prob}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} > \epsilon\right] \leq e^{\frac{-n\epsilon^{2}}{2(\sigma^{2}+\epsilon/3)}}. \text{ 4 p.219}$$

• (McDiarmid Bounded Differences I) Let X_1, \ldots, X_n be independent random variables each whose domain is χ . If $f: \chi^n \to \mathbb{R}^n$ is a function such that for all $\mathbf{x} \in \chi^n$, $y \in \chi$, and $i \in \{1, \ldots, n\}$, there exists a constant $c_i > 0$ such that $|f(\mathbf{x}) - f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n)| \le c_i$, then

$$\mathbf{Prob}[f(\mathbf{X}) - \mathbb{E}f(\mathbf{X}) \ge t] \ge e^{\frac{-t^2}{\sum_{i=1}^n c_i^2}} \text{ for all } t > 0. 1$$

³A Lipschitz function f satisfies $|f(x) - f(y)| \le M||x - y||$ for all $x, y \in domain(f)$.

• (McDiarmid Bounded Differences II) Let X_1, \ldots, X_n be independent random variables each whose domain is χ . If $f: \chi^n \to \mathbb{R}^n$ is a function such that for all $\mathbf{x} \in \chi^n$, $y \in \chi$, and $i \in \{1, \ldots, n\}$, there exists a constant $c_i > 0$ such that $|f(\mathbf{x}) - f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n)| \le c_i$, then

$$\mathbf{Prob}[f(\mathbf{X}) - \mathbb{E}f(\mathbf{X}) \le -t] \ge e^{\frac{-t^2}{\sum_{i=1}^n c_i^2}} \text{ for all } t > 0. 1$$

• (Kannan Chromatic Number) Let $G(\{1,\ldots,n\},P)$ be a random graph with edge probabilities $P=(p_{ij})$. The chromatic number $\chi=\chi(G)$ is the least number of colors necessary to color G such that no two vertices sharing an edge receive the same color. Let $p=\frac{\sum_{i,j}p_{ij}}{\binom{n}{2}}$. Then there exists a constant c>0 such that for $t\in(0,n\sqrt{p})$,

$$\mathbf{Prob}[|\chi(G) - \mathbb{E}\chi(G)| \ge t] \le e^{\frac{-ct^2}{n\sqrt{p}\log n}}. \ 13 \ \text{p.5}$$

• (Johnson-Lindenstrauss Random Projection) Suppose $k \leq n$, and we pick V_1, \ldots, V_k uniformly randomly from the surface of the unit ball in \mathbb{R}^n . Then for $\epsilon \in (0,1)$, there exist constants $c_1, c_2 > 0$ such that

$$\mathbf{Prob}\left[\left|\sum_{i=1}^{k} v_i^2 - \frac{k}{n}\right| \ge \frac{\epsilon k}{n}\right] \le c_1 e^{-c_2 \epsilon^2 k} \ 13 \ \text{p.5}$$

• (Kannan Random Projection) Suppose m is an even positive integer and X_1, \ldots, X_n are real-valued random observations satisfying the strong negative correlation principle. That is, for all i, $\mathbb{E}X_i(X_1 + \cdots + X_{i-1})^l < 0$ when l < m is odd and $\mathbb{E}(X_i^l|X_1 + \cdots + X_{i-1}) \leq \left(\frac{n}{m}\right)^{\frac{l-2}{2}}l!$ for $l \leq m$ even. Define constants $\{M_{i,l}\}, \{K_{i,l}\},$ and $\{L_{i,l}\}$ such that $\mathbb{E}(X_i^l|X_1 + \cdots + X_{i-1}) \leq M_{i,l}$, each $K_{i,l}$ is an indicator variable on the typical case of the conditional expectation where $\mathbf{Prob}[K_{i,l}] = 1 - \delta_{i,l}$, and $\mathbb{E}(X_i^l|X_1 + \cdots + X_{i-1}, K_{i,l}) \leq L_{i,l}$ for $l = 2, 4, \ldots, m$ and $i = 1, \ldots, n$. Finally, let $X = \sum_{i=1}^n X_i$. Then

$$\mathbb{E}X^{m} \leq (cm)^{\frac{m}{2}+1} \left(\sum_{l=1}^{m/2} \frac{m^{1-\frac{1}{l}}}{l^{2}} \left(\sum_{i=1}^{n} L_{i,2l} \right)^{\frac{1}{l}} \right)^{\frac{m}{2}} + (cm)^{m+2} \sum_{l=1}^{m/2} \frac{1}{nl^{2}} \sum_{i=1}^{n} \left(nM_{i,2l} \delta_{i,2l}^{2/(m-2l+2)} \right)^{\frac{2}{ml}}. 13 \text{ p.5}$$

• (Kannan Bin Packing) Suppose Y_1, \ldots, Y_n are iid from a discrete distribution of r atoms each with probability at least $\frac{1}{\log n}$ and $\mathbb{E}Y_1 \leq \frac{1}{r^2 \log n}$. Let $f(Y_1, \ldots, Y_n)$ be the minimum number of unit capacity bins necessary to pack the Y_1, \ldots, Y_n items. Then there exist constants $c_1, c_2 > 0$ such that if $t \in (0, n[(\mathbb{E}Y_i)^3 + \text{Var}(Y_i)])$, then

$$\mathbf{Prob}[|f - \mathbb{E}f| \ge t + r] \le c_1 e^{\frac{-c_2 t^2}{n[(\mathbb{E}Y_i)^3 + Var(Y_i)]}}. 13 \text{ p.8}$$

• (Dvoretzky Kiefer Wolfowitz I) Suppose X_1, \ldots, X_n are iid univariate random variables following cdf F. Let $F_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{X_i \le x}$ be the empirical distribution. Then for $\epsilon > \sqrt{\frac{1}{2n} \log 2}$,

Prob
$$\left[\sup_{x \in \mathbb{R}} (F_n(x) - F(x)) > \epsilon \right] \le e^{-2n\epsilon^2}$$
. 10 p.642–669

• (Dvoretzky Kiefer Wolfowitz II) Suppose X_1, \ldots, X_n are iid univariate random variables following cdf F. Let $F_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{X_i \leq x}$ be the empirical distribution. Then for $\epsilon > 0$,

Prob
$$\left[\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| > \epsilon \right] \le 2e^{-2n\epsilon^2}$$
. 10 p.642-669

• (Etemadi Differing Means) Let $X_1, ..., X_n$ be random variables with common support. Let $S_k = \sum_{i=1}^k X_k$ be the kth partial sum. Then for $\epsilon > 0$,

$$\mathbf{Prob}\left[\max_{1\leq k\leq n}|S_k|\geq 3\epsilon\right]\leq 3\max_{1\leq k\leq n}\mathbf{Prob}\left[|S_k|\geq \epsilon\right].\ 11\ \mathrm{p.215-221}$$

• (Etemadi Shared Means) Let $X_1, ..., X_n$ be random variables with common support and equal means. Let $S_k = \sum_{i=1}^k X_k$ be the kth partial sum. Then for $\epsilon > 0$,

$$\mathbf{Prob}\left[\max_{1\leq k\leq n}|S_k|\geq \epsilon\right]\leq \frac{27}{\epsilon^2}\mathrm{Var}(S_n).\ 11\ \mathrm{p.215-221}$$

• (Kolmogorov) Let X_1, \ldots, X_n be independent random variables with common support such that $\mathbb{E}X_i = 0$ and $\operatorname{Var}(X_i) < \infty$ for $i = 1, \ldots, n$. Let $S_k = \sum_{i=1}^k X_i$ be the kth partial sum. Then for $\epsilon > 0$,

$$\mathbf{Prob}\left[\max_{1\leq k\leq n}|S_k|\geq\epsilon\right]\leq\frac{1}{\epsilon^2}\sum_{i=1}^n\mathrm{Var}(X_i).\ 3\ \mathrm{Theorem}\ 22.4$$

• (Chebychev Multidimensional) Let $\mathbf{X} \in \mathbb{R}^n$ be a random vector with covariance matrix $V = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}\mathbf{X})(\mathbf{X} - \mathbb{E}\mathbf{X})^T \right]$. Then for t > 0,

$$\mathbf{Prob}\left[\sqrt{(\mathbf{X} - \mathbb{E}\mathbf{X})^T V^{-1}(\mathbf{X} - \mathbb{E}\mathbf{X})}\right] \le \frac{n}{t^2}. 27$$

• (Leguerre Samuelson) Let X_1, \ldots, X_n be random variables with common support, and define $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$. Then for $i = 1, \ldots, n$ with probability one,

$$\bar{X} - S\sqrt{n-1} \le X_i \le \bar{X} + S\sqrt{n-1}$$
. 21 p.1522–1525

• (LeCam) Suppose X_1, \ldots, X_n are independent binomial random variables with respective success parameters p_1, \ldots, p_n . Letting $\lambda_n = \sum_{i=1}^n p_i$, we have

$$\sum_{k=0}^{\infty} \left| \mathbf{Prob} \left[\sum_{i=1}^{n} X_i = k \right] - \frac{\lambda_n^k e^{-\lambda_n}}{k!} \right| \le 2 \sum_{i=1}^{n} p_i^2. \ 14 \text{ p.1181-1197}$$

• (Doob Martingale) Let $\mathbf{X} \in \mathbb{R}^n$ be a martingale $(\mathbb{E}(X_i|X_1,\ldots,X_{i-1})=X_{i-1} \text{ for } i=2,\ldots,n)$. Then for $C>0,\ p\geq 1$,

Prob
$$\left[\sup_{1 \le i \le n} X_i \ge C\right] \le \frac{\mathbb{E}X_n^p}{C^p}$$
. 18 (Theorem II.1.7)

5 References

- 1. P. Bartlett. Lecture on Concentration Inequalities. URL: www.cs.berkeley.edu/ bartlett/courses/281b-sp08/13.pdf, 2008.
- 2. R. Bhatia and C. Davis. A Better Bound on the Variance. American Mathematical Monthly (Mathematical Association of America) 107 (4), 2000.
- 3. P. Billingsley. Probability and Measure. New York: John Wiley, 1995.
- 4. S. Boucheron, O. Bousquet, G. Lugosi. Concentration inequalities, Advanced Lectures in Machine Learning. Springer, 2004.
- 5. G. Casella, R.L. Berger. Statistical Inference, Duxbury, 2002.
- 6. D.G. Chapman and H. Robbins. Minimum variance estimation without regularity assumptions, *Annals of Mathematical Statistics* 22 (4), 1951.
- 7. F. Chung, L. Lu. Complex Graphs and Networks, AMS, 2006.
- 8. A.Dembo, T.M. Cover, and J.A. Cover. Information-theoretic inequalities, *IEEE Trans. Inform. Theory* 37 (6), 1991.
- 9. J. Duchi. Probability Bounds. URL: http://www.cs.berkeley.edu/jduchi/projects/probability_bounds.pdf.
- A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Annals of Mathematical Statistics 27 (3), 1956.
- 11. N. Etemadi. On some classical results in probability theory, Sankhy Ser A 47 (2), 1985.

- 12. W. Hürlimann. Generalized Algebraic Bounds on Order Statistics Functions, with Application to Reinsurance and Catastrophe. URL: www.actuaries.org/ASTIN/Colloquia/Porto_Cervo/Huerlimann.pdf, 1970?.
- 13. R. Kannan. A New Probability Inequality Using Typical Moments and Concentration Results. URL: www.crm.umontreal.ca/CARP09/pdf/kannan.pdf, 2009.
- 14. L. LeCam. An Approximation Theorem for the Poisson Binomial Distribution. Pacific Journal of Mathematics 10 (4), 1960.
- 15. J. Marcinkiewicz and A. Zygmund. Sur les foncions independantes. *Fund. Math.*, 1937. Reprinted in Jzef Marcinkiewicz, *Collected papers*, edited by Antoni Zygmund, Panstwowe Wydawnictwo Naukowe, Warsaw, 1964.
- 16. M. Mitzenmacher, E. Upfal. Probability and Computing, Cambridge, 2005.
- 17. N. Papadatos. Maximum Variance of Order Statistics. URL: www.ism.ac.jp/editsec/aism/pdf/047_1_0185.pdf, 1994.
- 18. D. Revuz and M. Yor. Continuous martingales and Brownian motion (Third ed.) Berlin: Springer, 1999.
- 19. H.P. Rosenthal. On the subspaces of L_p 2 spanned by sequences of independent random variables. Israel J. Math, 1970.
- 20. B.W. Silverman. Density Estimation for Statistics and Data Analysis, Chapman and Hall/CRC, 1986.
- 21. P. Samuelson. How Deviant Can You Be?, Journal of the American Statistical Association, volume 63, number 324, 1968.
- 22. T. Tao. Talagrand's Concentration Inequality. URL: http://terrytao.wordpress.com/2009/06/09/talagrands-concentration-inequality, 2009.
- 23. C. Vasile. Two Generalizations of Popovicius Inequality, Crux Mathematicorum 5, 2001.
- 24. L. Wasserman. All of Statistics, Springer, 2004.
- 25. L. Wasserman. Lecture on Probability Inequalities, www.stat.cmu.edu/larry/=stat705/Lecture2.pdf, 2008.
- 26. T. Wolff. Lectures on Harmonic Analysis, American Mathematical Society, University Lecture Series, 2003.
- 27. Wikipedia. Multidimensional Chebychev's Inequality, URL: http://en.wikipedia.org/wiki/Multidimensional_Chebyshev%27s_inequality, 2012.