H.T.No.	i		 	 	 	
	H.T.No.					

Code No: CT3546 SRGEC-R20

III B.Tech II Semester Regular Examinations, May 2023

MACHINE LEARNING

(Artificial Intelligence and Data Science)

Time: 3 Hours Max. Marks: 70

Note: Answer one question from each unit.

All questions carry equal marks.

 $5 \times 14 = 70M$

UNIT-I

- 1. a) How does the central nervous system helps in creating the intelligent machines? (6M)
 - b) What is machine learning? Explain any three business applications of machine learning.

(8M)

(OR)

- 2. a) What is a well posed learning problem? Specify task, performance measure and training experience for the following learning problems. (7M)
 - (i) A checkers learning problem.
 - (ii) A handwritten recognition learning problem.
 - (iii) A robot driving learning problem
 - b) With a neat diagram explain the block diagram of machine learning.

(7M)

UNIT-II

- 3. a) How Bayes' theorem supports the classification task? Explain with an example. (7M)
 - b) Explain the concept of linear regression with least square error criterion.

(7M)

(OR)

4. a) Consider the dataset *D*, calculate probability for unseen pattern (x:{M,1.85}) using Naïve Bayes Classifier. (7M)

	Gender	Height	Class	у
	x_1	x_2	Class	
s(1)	F	1.6 m	Short	<i>y</i> ₁
s(2)	M	2 m	Tall	у3
s(3)	F	1.9 m	Medium	<i>y</i> ₂
s(4)	F	1.88 m	Medium	<i>y</i> ₂
_S (5)	F	1.7 m	Short	<i>y</i> ₁
s(6)	M	1.85 m	Medium	<i>y</i> ₂
_s (7)	F	1.6 m	Short	<i>y</i> ₁
s(8)	M	1.7 m	Short	<i>y</i> ₁
s(9)	M	2.2 m	Tall	у3
s(10)	M	2.1 m	Tall	у3
s(11)	F	1.8 m	Medium	<i>y</i> ₂
s(12)	M	1.95 m	Medium	<i>y</i> ₂
s(13)	F	1.9 m	Medium	<i>y</i> ₂
s(14)	F	1.8 m	Medium	<i>y</i> ₂
s(15)	F	1.75 m	Medium	<i>y</i> ₂

b) In a particular pain clinic, 10% of patients are prescribed narcotic pain killers. Overall, five percent of the clinic's patients are addicted to narcotics (including pain killers and illegal substances).Out of all the people prescribed pain pills, 8% are addicts. If a patient is an addict, what is the probability that they will be prescribed pain pills? (use Baye's theorem) (7M)

UNIT-III

5. Consider the following positively and negatively labeled data points.

Positively labeled data points: (3,1), (3,-1), (6,1), (6,-1)

Negatively labeled data points: (1,0), (0,1), (0,-1), (-1,0)

(i) Does these points linearly separable? (ii) Determine the hyper plane that classifies these points. (14M)

(OR)

6. a) Suppose that we have trained a classifier to classify medical data tuples, where the class label attribute is *cancer* and the possible class values are *true* and *false*. The confusion matrix of model is as given below. Compute the following. (8M)

	Predicted +ve	Predicted -ve
Actual +ve	4	7
Actual -ve	4	185

- (i) Success rate
- (ii) Miss classification rate (iii) Sensitivity
- (iv) Specificity
- b) In support vector machines fixing the maximum margin sometimes leads to miss classification of some of the samples. How to overcome this problem? (6M)

UNIT-IV

- 7. a) Given the two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8); Compute (i) Euclidean distance between the two objects. (ii) Manhattan distance between the two objects. (iii) Murkowski distance between the two objects, usingq=3. (7M)
 - b) State the strengths and weaknesses of k-means clustering algorithm.

(7M)

(OR)

- 8. Suppose that the data mining task is to cluster the following eight points (with (x, y) representing location) into three clusters: (14M)
 - A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8), B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9). The distance function is Manhattan distance. Suppose initially we assign A1, B1, and C1 as the center of each cluster, respectively. Use the k-means algorithm to show only
 - (i) The three cluster centers after the first round execution.
 - (ii) The final three clusters.

UNIT-V

- 9. a) Design a neural network that implements Boolean AND gate.
- (8M)
- b) What is ANN? Briefly explain the problem characteristics for which ANN is most commonly used. (6M)

(OR)

- 10. a) Write the Back-propagation algorithm. How the error is minimized in the Backpropagation algorithm. (7M)
 - b) Draw the structure of a biological neuron and explain the functionality of axons and dendrites of the neuron. (7M)****