Cutting Boards

Chinese Version Russian Version

Alice gives Bob a board composed of \$m \times n\$ wooden squares and asks him to find the minimum cost of breaking the board back down into individual \$1 \times 1\$ pieces. To break the board down, Bob must make cuts along its horizontal and vertical lines.

To reduce the board to squares, x_{n-1} vertical cuts must be made at locations x_1 , x_2 , x_{n-2} , x_{n-1} and y_{m-1} horizontal cuts must be made at locations y_1 , y_2 , y_2 , y_4 . Each cut along some x_i (or y_j) has a cost, x_1 (or x_1). If a cut of cost x_2 passes through x_1 already-cut segments, the total cost of the cut is x_1 .

The cost of cutting the whole board down into \$1 \times 1\$ squares is the sum of the cost of each successive cut. Recall that the cost of a cut is multiplied by the number of already-cut segments it crosses through, so each cut is increasingly expensive.

Can you help Bob find the minimum cost?

Input Format

The first line contains a single integer, \$T\$, denoting the number of test cases. The subsequent \$3T\$ lines describe each test case in \$3\$ lines.

For each test case, the first line has two positive space-separated integers, m and n, detailing the respective height (y) and width (x) of the board.

The second line has m-1 space-separated integers listing the cost, c_{y_j} , of cutting a segment of the board at each respective location from y_1 , y_2 , dots, y_{m-2} , y_{m-1} .

The third line has n-1 space-separated integers listing the cost, c_{x_i} , of cutting a segment of the board at each respective location from x_1 , x_2 , \dots, x_{n-2} , x_{n-1} .

Note: If we were to superimpose the \$m \times n\$ board on a 2D graph, \$x_0\$, \$x_n\$, \$y_0\$, and \$y_n\$ would all be edges of the board and thus not valid cut lines.

Constraints

\$1 \le T \le 20\$ \$2 \le m,n \le 1000000\$ \$0 \le c_{x_i}, c_{y_j} \le 10^9\$

Output Format

For each of the \$T\$ test cases, find the minimum cost (\$MinimumCost\$) of cutting the board into \$1 \times 1\$ squares and print the value of $$MinimumCost \ \% \ (10^9+7)$$.

Sample Input

Input 00

```
1
2 2
2
1
```

Input 01

```
1
64
21314
412
```

Sample Output

Output 00

4

Output 01

42

Explanation

Sample 00: We have a \$2 \times 2\$ board, with cut costs $c_{y_1} = 2$ and $c_{x_1} = 1$. Our first cut is horizontal at y_1 , because that is the line with the highest cost (\$2\$). Our second cut is vertical, at x_1 . Our first cut has a \$TotalCost\$ of \$2\$, because we are making a cut with cost $c_{y_1} = 2$ across \$1\$ segment (the uncut board). The second cut also has a \$TotalCost\$ of \$2\$, because we are making a cut of cost $c_{x_1} = 1$ across \$2\$ segments. Thus, our answer is \$MinimumCost = ((2 \times 1) + (1 \times 2)) \ \% \ (10^9+7) = 4\$.

Sample 01: Our sequence of cuts is: $\$y_5\$$, $\$x_1\$$, $\$y_3\$$, $\$y_1\$$, $\$x_3\$$, $\$y_2\$$, $\$y_4\$$ and $\$x_2\$$. Cut 1: Horizontal with cost $\$c_{y_5} = 4\$$ across \$1\$ segment. $\$TotalCost = 4 \times 2 = 4\$$. Cut 2: Vertical with cost $\$c_{x_1} = 4\$$ across \$2\$ segments. $\$TotalCost = 4 \times 2 = 8\$$. Cut 3: Horizontal with cost $\$c_{y_3} = 3\$$ across \$2\$ segments. $\$TotalCost = 3 \times 2 = 6\$$. Cut 4: Horizontal with cost $\$c_{y_1} = 2\$$ across \$2\$ segments. $\$TotalCost = 2 \times 2 = 4\$$. Cut 5: Vertical with cost $\$c_{x_3} = 2\$$ across \$4\$ segments. $\$TotalCost = 2 \times 4 = 8\$$. Cut 6: Horizontal with cost $\$c_{y_2} = 1\$$ across \$3\$ segments. $\$TotalCost = 1 \times 3 = 3\$$. Cut 7: Horizontal with cost $\$c_{y_4} = 1\$$ across \$3\$ segments. $\$TotalCost = 1 \times 3 = 3\$$. Cut 8: Vertical with cost $\$c_{x_3} = 1\$$ across \$6\$ segments. $\$TotalCost = 1 \times 3 = 3\$$.

When we sum the TotalCost for all minimum cuts, we get 4+8+6+4+8+3+3+6=42. We then print the value of $42 \ (10^9 + 7)$.