Importing Libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scikitplot.cluster import plot_elbow_curve
from scikitplot.decomposition import plot_pca_component_variance
from scikitplot.metrics import plot_silhouette
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import plotly.express as px
from plotly.offline import init_notebook_mode,iplot
init_notebook_mode(connected=True)
```

Parsing Data and Getting Metrics of Features

[2]:	<pre>data = pd.read_csv("data.csv",index_col='id') data</pre>											
2]:		f_00	f_01	f_02	f_03	f_04	f_05	f_06	f_07	f_08	f_09	 f_19
	id											
	0	-0.389420	-0.912791	0.648951	0.589045	-0.830817	0.733624	2.258560	2	13	14	 -0.478412
	1	-0.689249	-0.453954	0.654175	0.995248	-1.653020	0.863810	-0.090651	2	3	6	 -0.428791
	2	0.809079	0.324568	-1.170602	-0.624491	0.105448	0.783948	1.988301	5	11	5	 -0.413534
	3	-0.500923	0.229049	0.264109	0.231520	0.415012	-1.221269	0.138850	6	2	13	 0.619283
	4	-0.671268	-1.039533	-0.270155	-1.830264	-0.290108	-1.852809	0.781898	8	7	5	 -1.628830
	97995	0.237591	1.657034	-0.689282	0.313710	-0.299039	0.329139	1.607378	5	7	8	 -0.290116
	97996	0.322696	0.710411	0.562625	-1.321713	-0.357708	0.182024	0.178558	3	9	2	 0.117687
	97997	-0.249364	-0.459545	1.886122	-1.340310	0.195029	-0.559520	-0.379767	8	9	10	 -0.850223
	97998	0.311408	2.185237	0.761367	0.436723	0.464967	0.062321	-0.334025	1	8	11	 -0.010839
	97999	0.755170	0.567483	1.456767	-0.579071	-0.048474	-1.206240	0.784305	0	11	3	 1.180805
	08000	rows x 29 c	columns									

98000 rows × 29 columns

	data.describe()									
Out[3]:		f_00	f_01	f_02	f_03	f_04	f_05	f_06		
	count	98000.000000	98000.000000	98000.000000	98000.000000	98000.000000	98000.000000	98000.000000	98000.	
	mean	0.001220	0.005580	-0.001042	-0.000700	-0.003522	-0.001612	-0.003042	5.	
	std	1.002801	1.000742	1.001373	1.000422	1.003061	1.000532	0.997434	3.0	
	min	-4.732235	-4.202795	-4.377021	-4.010826	-4.535903	-4.300767	-4.894525	0.0	
	25%	-0.675226	-0.670985	-0.672779	-0.672540	-0.682510	-0.675066	-0.680421	3.0	

	f_00	f_01	f_02	f_03	f_04	f_05	f_06	
50%	0.002022	0.006650	-0.000324	-0.003185	-0.003307	0.001024	-0.002053	5.0
75%	0.677271	0.677746	0.677086	0.672097	0.677589	0.673344	0.668112	8.0
max	4.490521	4.324974	4.560247	4.399373	4.050549	4.710316	3.998595	32.0

8 rows × 29 columns

Heatmap to show correlations between features

```
In [4]:
    plt.figure(figsize=(40,30))
    X=data[['f_00','f_01','f_02','f_03','f_04','f_05','f_06','f_07','f_08','f_09','f_10','f_11'
    sns.heatmap(X.corr(),annot=True)
```

Out[4]: <AxesSubplot:>

Values are standardized to simplify clustering process

```
In [5]:
    scaler = StandardScaler()
    X_std = scaler.fit_transform(X)
    X_std
```

```
array([[-0.3895505 , -0.91769495,
                                            0.649105 , ...,
                                                              0.96048158,
Out[5]:
                 1.04529612, 0.68332274],
               [-0.6885438 , -0.45919476,
                                           0.65432122, ..., -0.55294213,
                 0.3554352 , -1.60267076],
               [ 0.80560694, 0.31875345, -1.16796258, ..., 0.97917134,
                -0.92625017, -2.22432704],
               [-0.24988501, -0.46478181,
                                            1.88458578, ..., 1.54422962,
                 1.1855134 , 0.57075203],
               [ 0.30932332, 2.17805293,
                                           0.7613671 , ..., -1.08428749,
                -0.5474945 , 0.10775421],
                                           1.45581708, ..., -0.63608329,
               [ 0.75184799, 0.56149
                 1.00085474, -0.31416284]])
```

Initial KMeans Model

```
In [6]: model = KMeans(n_clusters=5)
```

Scikitplot module is used to plot SSE values and clustering durations from 1 to 11 clusters

```
In [7]: plot_elbow_curve(model, X_std)

Out[7]: <a href="AxesSubplot:title={'center':'Elbow Plot'}">AxesSubplot:title={'center':'Elbow Plot'}</a>, xlabel='Number of clusters', ylabel='Sum of Sq uared Errors'>
```


SSE values are shown based on number of clusters in dataframe

```
In [8]:
    sse = []
    for n in range(1, 12):
        kmeans = KMeans(n_clusters=n)
        kmeans.fit(X_std)
        sse.append(kmeans.inertia_)

sse_data = pd.DataFrame()
    sse_data['Number of Clusters'] = range(1,12)
    sse_data['SSE'] = sse
    sse_data
```

Out[8]:		Number of Clusters	SSE
	0	1	2.842000e+06
	1	2	2.727188e+06
	2	3	2.650155e+06
	3	4	2.591869e+06
	4	5	2.546540e+06
	5	6	2.515479e+06
	6	7	2.490155e+06
	7	8	2.467124e+06
	8	9	2.448185e+06
	9	10	2.431116e+06
	10	11	2.415682e+06

PCA is used with six components to create silhouette plot through cluster labels

```
In [9]:
          pca = PCA(n\_components=6)
          pca.fit(X)
          X_pca=pca.transform(X)
          X_pca
         array([[ 1.55615749, -5.55761901, -3.27033444, -8.10451241, 0.07160189,
 Out[9]:
                 -1.38545715],
                [-4.56847689, 0.73947323, 10.15778924, -2.02184815, 2.6929648 ,
                 -0.60118678],
                [-4.35162356, -1.55351235, -3.40598442, -0.57164416, -5.90081356,
                  1.27071841],
                [ 3.22977612, -0.46293048, -2.8466608 , 1.53698353, -1.34452581,
                 -4.53622615],
                [ 3.00420965, 5.38436588, 1.90883229, -4.45553122, -1.48407363,
                 -2.2999682],
                [-8.76284074, 0.40598569, -1.99838805, -7.08410411, 6.23535882,
                  1.76794389]])
In [10]:
          cluster_labels = model.fit_predict(X_std)
          cluster_labels
         array([2, 1, 2, ..., 3, 4, 2])
Out[10]:
In [11]:
          plot_silhouette(X_pca, cluster_labels)
         <AxesSubplot:title={'center':'Silhouette Analysis'}, xlabel='Silhouette coefficient value</pre>
Out[11]:
         s', ylabel='Cluster label'>
```


Features 13 and 12 have the greatest correlation before standardization, and correlation between feature 8 and 11 had the second greatest correlation before standardization

Testing is done through 3D scatter plot showing all three features catagorized by number of clusters in fitted and predicted model

