

TA201P

INTRODUCTION TO MANUFACTURING PROCESSES-I, SUMMER TERM 2021

ROTATING BRIDGE

PROJECT REPORT

GROUP 7 SECTION S7

Instructor: Dr. Anish Upadhyaya

Tutor: Dr. Shashank Shekhar

Teaching Assistants: Mr. Abhishek Kumar & Mr. Albert Linda

Lab In-charge: Mr. IP Singh

GROUP MEMBERS

Anupam Kumar Yadav (190166)

Anjali Rai (190146)

Arpit Verma (190178)

Aritra Banerjee (190174)

Jayanth Reddy (190156)

Arpit Maheshwari (190176)

Anshuman Singh (190162)

Anirudh Meena (190141)

Arvendra Singh Kushwaha (190183)

Aparna Nagdeve (190171)

Anshumann(190162)

Table of Contents

PREFACE	,
ABSTRACT	
WORK DISTRIBUTION	
ISOMETRIC DRAWING	
PART 1	
THE ROTATING BRIGDE+ CIRCULAR BASE+ ROTATING PILLAR SECTION	
PART 2	
GEARS(SPOKES+PILLARS)	
PART 3	·
HOLLOW BOX & HANDLE	
Part 4	
CONVEYOR BELT	
CONVEYOR PULLEY (Central & Side)	
PART 5	·
Ship	
Material List and Cost Analysis	·
Timeline of Workflow	
ACKNOWLEDGEMENT	

PREFACE

While we took three weeks to design the project, but we needed the accumulated knowledge, experience, and study of a lifetime during that time.

We are third-year students of IITK's electrical engineering department. We always wanted to do our own metallurgical project, and the college provided us with the opportunity under the course TA201A, currently taught by Prof. Anish Upadhyaya.

The design of every part has been given great detail as well as trying to satisfy its purpose so that it can be manufactured efficiently and effectively.

ABSTRACT

We picked up the idea of rotating bridge for our project because we wished to construct a dynamic project that had some real-life applications. So, in our project we have displayed the problem that is faced by a stationary bridge and have presented a solution to it.

The model consists of two rotating bridge halves each supported by a rotating pillar. The rotation mechanism is brought into action by bevel gear mechanism which are in turn rotated manually by a handle attached. Also, it consists of a conveyor belt with a ship to display how upon arrival of a ship with a sufficiently larger height the rotating bridge comes into action. To show the working of the project conveniently we have used a single axle which upon rotation causes both, the movement of the ship and rotation of bridges.

WORK DISTRIBUTION

WORK	NAME
Complete Isometric	Anupam Kumar Yadav
Railing + Bridge(including circular base and supporting pillars)	Anjali Rai, Arpit Verma
Rotating pillars+spokes	Aritra Banerjee ,Anshumann
Hollow covering +handle	Jayanth Reddy
Conveyor + 3Pulley+supporting rods of pulley	Arpit Maheshwari, Anshuman Singh
Abstract, Motivation, Acknowledgement	Anirudh Meena
Ship	Arvendra Singh Kushwaha
Compilation of work into final report	Aparna Nagdev

ISOMETRIC DRAWING

Dimensions are in cm.

PART 1

THE ROTATING BRIGDE+ CIRCULAR BASE+ ROTATING PILLAR SECTION

<u>Design</u>

Orthographic: Bridge + Circular base + supporting pillars

Materials used for the part

Mild steel rods, Mild steel sheets

Manufacturing

Casting, Welding, Cutting

PART 2

GEARS(SPOKES+PILLARS)

<u>Design</u>

Orthographic: Spokes + Pillars

Dimensions are in mm

Materials used for the part

Mild Steel Round rod (5 mm dia) x 16 Mild Steel Round Pipe (20mm dia) x2

Manufacturing

Welding, Casting, polishing

PART 3

HOLLOW BOX & HANDLE

Design

Dimensions are in cms

Materials used for the part

Iron rods, mild steel sheets

Manufacturing

Bending, welding, cutting

Part 4

CONVEYOR BELT

<u>Design</u>

Dimensions are in mm

Manufacturing

This conveyor belt consists of solid woven fabric dipped in PVC paste and adding PVC or Nitrile covers which are combined by a process called vulcanising

CONVEYOR PULLEY (Central & Side)

Materials used for the part

Cast iron, wooden pattern of pulley, Metal discs

Manufacturing

Sand moulding, casting, welding

Orthographic: Central Pulley

Orthographic: Side Pulley

Dimensions are in mm

PART 5

Ship <u>Design</u>

Orthographic: Central Pulley 1 6 5 4 3 2 Н H 38.005 mm G G 1 118.399 mm 130.000 mm F F E E 70.000 mm 52.507 mm D D 52.865 mm 41.659 mm C C 15.000 mm 20.000 mm 40.000 mm В В 18.137 mm 50.000 mm 60.000 mm 7 6 5 4 3 2 1 8

Materials used for the part

GI Sheet (0.5mm)

Manufacturing

Sheet Metal Bending, Soldering, Sheet metal cutting

Material List and Cost Analysis

Part No.	Part Name	Material	Cost(Approx.)
1	Bridge & Pillar	Mild steel sheet(0.16ftx1.10ftx1mm) Mild steel rod(25mm diax 30mm length) Mild steel rod(3mm dia x 1700mm length)	Rs. 39
2	Gear with spokes	Mild Steel Round Rod (5mm dia x 30mm) Mild Steel Round Rod (20mm dia x 110mm)	Rs. 24
3	Hollow box & handle	Mild steel sheet (2 mm thickness) Mild steel round rod(20mm dia x571	Rs. 415
4	Conveyor pulley and belt	Mild steel round rod (20 mm dia x 95mm) Mild steel round rod (10 mm dia x 95mm) Mild steel discs(80 mm dia, 5 mm thickness) Cast iron ingots PVC belt- 1080mm(l)x50mm(w)x2mm(thick)	Rs. 613
5	Ship	GI Sheet(300mmx360mmx0.5mm)	Rs. 40
Total			Rs. 1131

Timeline of Workflow

Week number	Work done
Week 1	Discussion for project proposal
Week 2	Finalisation of idea and work distribution
Week 3	Complete isometric and abstract
Week 4	Engineering drawing of all components
Week 5	Compilation
Week 6	Final report and Video presentation

ACKNOWLEDGEMENT

As we went through this project, we had an opportunity to demonstrate our creativity. We encountered many difficulties. We were inspired by Prof. Anish Upadhyaya as we went through the project and provided us with an outlet for expressing ourselves.

Thank you to tutor Dr. Shashank Shekhar, teaching assistants Abhishek Kumar and Albert Linda, and the technical staff Mr Indra Pal Singh really helped us to handle our project properly and thoroughly.

Afterward, we were assigned the final task of completing the project, and we are very appreciative of all the TAs, Lab Assistants, Helpers, who made sure that our project was done.

Thank you again to everyone who helped us with this project.

Besides earning points, Our team is working on this project also to gain knowledge and experience the process of designing and implementing our ideas on our own. Thanks to all who assisted along the way.