Chapter 6 Exercises

A) Mailing Letter to Pen Pal

B) Expense Form

C)

The answers to this exercise should essentially mirror those we show in the following example E, F, G, and H. Note also that the scope of this problem is really quite large and you might want to consider this exercise for a major semester project.

D)

The answers to this exercise should essentially similar to those we show in the example E, F, G, and H.

E1) Sequence diagrams for use cases

AVS Sequence Diagram, for collecting overdue videos prior to new rentals

AVS Sequence Diagram, paying overdue late fees

AVS Sequence Diagram, part 3

E2) Communication diagrams for AVS

Communication Diagram for AVS

Communication Diagram for AVS

Communication Diagram for AVS

E3) Behavioral state machine

Video Rental. the state machine might be different since different students may define different symbolic states for this class.

E4) CRUD Diagram for AVS

	Client	Clerk	Mgr	Video Rental DB	Video DB	Customer DB	Bill	Payment DB
Client								C
Clerk				R,U	U	C,R	C	
Manager				R				

Video Rental DB			R	
Rental DB				
Video DB				
Customer				
DB				
Bill				
Payment DB				

E5) walkthrough

- 1, every actor and object included on a sequence diagram must be included as an actor and an object on a communication diagram, and vice versa.
- 2, if there is a message on the sequence diagram, there must be an association on the communications diagram, and vice versa.
- 3, every message that is included on a sequence diagram must appear as a message on an association in the corresponding communication diagram, and vice versa.
- 4, if a guard condition appears on a message in the sequence diagram, there must be an equivalent guard condition on the corresponding communication diagram, and vice versa.
- 5, the sequence number included as part of a message label in a communications diagram implies the sequential order in which the message will be sent. As such, it must correspond to the top-down ordering of the messages being sent on the sequence diagram.
- 6, all transitions contained in a behavior state machine must be associated with a message being sent on a sequence and communication diagram, and it must be classified as a (C)reate, (U)pdate, or (D)elete message in a CRUDE matrix.
- 7, all entries in a CRUDE matrix imply a message being sent from an actor or object to another actor or object. If the entry is a (C)reate, (U)pdate, or (D)elete, then there must be an associated transition in a behavioral state machine that represents the instances of the receiving class.
- 8, there are many representation specific rules that have been proposed.

F1)1. Sequence Diagram of Expired Member Renewal Process

2. Sequence Diagram for Entering Club

1. Communication Diagram for F1.1

2. Communication Diagram for F1.2

F3) Behavioral state machine

membership, the state machine might be different since different students may define different symbolic states for this class.

F4) CRUD analysis of Health Club Membership System (from exercise D)

	Client	Attendant	Expiration Checker	Membership	Survey Processor	Payment
Client					U	C
Attendant				R		C,R
Expiration				R		
Checker						
Membership						
Survey						
Processor						
Payment				U		

F5) Walkthrough

- 1, every actor and object included on a sequence diagram must be included as an actor and an object on a communication diagram, and vice versa.
- 2, if there is a message on the sequence diagram, there must be an association on the communications diagram, and vice versa.
- 3, every message that is included on a sequence diagram must appear as a message on an association in the corresponding communication diagram, and vice versa.

- 4, if a guard condition appears on a message in the sequence diagram, there must be an equivalent guard condition on the corresponding communication diagram, and vice versa. 5, the sequence number included as part of a message label in a communications diagram implies the sequential order in which the message will be sent. As such, it must correspond to the top-down ordering of the messages being sent on the sequence diagram. 6, all transitions contained in a behavior state machine must be associated with a message being sent on a sequence and communication diagram, and it must be classified as a (C)reate, (U)pdate, or (D)elete message in a CRUDE matrix.
- 7, all entries in a CRUDE matrix imply a message being sent from an actor or object to another actor or object. If the entry is a (C)reate, (U)pdate, or (D)elete, then there must be an associated transition in a behavioral state machine that represents the instances of the receiving class.
- 8, there are many representation specific rules that have been proposed.

G1) Sequence Diagram for Order Supplies Use Case

G2) Communication Diagram PRU Supplies

G3) Behavioral state machine Diagram for PRU Weekly Report class

G4) CRUD Analysis for PRU

	Customer	Receptionist	Owner	Report	Menu	Ingredient	Catalog	Purchase Order
Customer								
Receptionist					C,R			
Owner				R			R	C
Report					R			
Menu						R		
Ingredient								
Catalog						R		
Purchase						R		
Order						K		

G5) Walkthrough

- 1, every actor and object included on a sequence diagram must be included as an actor and an object on a communication diagram, and vice versa.
- 2, if there is a message on the sequence diagram, there must be an association on the communications diagram, and vice versa.
- 3, every message that is included on a sequence diagram must appear as a message on an association in the corresponding communication diagram, and vice versa.
- 4, if a guard condition appears on a message in the sequence diagram, there must be an equivalent guard condition on the corresponding communication diagram, and vice versa.
- 5, the sequence number included as part of a message label in a communications diagram implies the sequential order in which the message will be sent. As such, it must correspond to the top-down ordering of the messages being sent on the sequence diagram.

 6. all transitions contained in a behavior state machine must be associated with a message.
- 6, all transitions contained in a behavior state machine must be associated with a message being sent on a sequence and communication diagram, and it must be classified as a (C)reate, (U)pdate, or (D)elete message in a CRUDE matrix.
- 7, all entries in a CRUDE matrix imply a message being sent from an actor or object to another actor or object. If the entry is a (C)reate, (U)pdate, or (D)elete, then there must be an associated transition in a behavioral state machine that represents the instances of the receiving class.
- 8, there are many representation specific rules that have been proposed.

H1) Sequence Diagram for OTMC Enroll Member Use Case

H2) Communication Diagram for OTMC Enroll Member Use Case

H3) Behavior State Machine for OMTC

H4) CRUD analysis for OTMC system

	Operator	Member	Membership	ComputerGameClub
Operator		CU	C	C
Member			C	
Membership				
MembershipDB		C		
ComputerGameClub				

H5) Walkthrough

- 1, every actor and object included on a sequence diagram must be included as an actor and an object on a communication diagram, and vice versa.
- 2, if there is a message on the sequence diagram, there must be an association on the communications diagram, and vice versa.
- 3, every message that is included on a sequence diagram must appear as a message on an association in the corresponding communication diagram, and vice versa.

- 4, if a guard condition appears on a message in the sequence diagram, there must be an equivalent guard condition on the corresponding communication diagram, and vice versa. 5, the sequence number included as part of a message label in a communications diagram implies the sequential order in which the message will be sent. As such, it must correspond to the top-down ordering of the messages being sent on the sequence diagram. 6, all transitions contained in a behavior state machine must be associated with a message being sent on a sequence and communication diagram, and it must be classified as a (C)reate, (U)pdate, or (D)elete message in a CRUDE matrix.
- 7, all entries in a CRUDE matrix imply a message being sent from an actor or object to another actor or object. If the entry is a (C)reate, (U)pdate, or (D)elete, then there must be an associated transition in a behavioral state machine that represents the instances of the receiving class.
- 8, there are many representation specific rules that have been proposed.