Second and Highen Order in Perturbation Theory

In general, we need to compute metry elements of the fram

 $\langle f | T [\mathcal{H}(x_1) \dots \mathcal{H}(x_n)] | i \rangle$

We will moke use of Jule's Theorem.

Wisk's Theren tells us host to conject time- ordered gurducts of yearters.

Consider run scalar field questos

 $\phi(x) = \phi^{(+)}(x) + \phi^{(-)}(x)$

where

 $\phi^{(+)}(\chi) = \int \frac{d^3k}{(2\pi)^3} e^{-ik \cdot \chi} \hat{a}(k)$

 $\phi^{(-)}(x) = \int \frac{d^3k}{(2\pi)^3} e^{ik \cdot x} \hat{a}^{\dagger}(\vec{k})$

Lot xo > yo. Then

 $T[\phi(x)\phi(y)] = \phi(x)\phi(y)$

= [\(\psi^{(+)}(x) + \(\psi^{(-)}(x) \) [\(\psi^{(+)}(y) + \(\psi^{(-)}(y) \)]

$$= \phi^{(+)}(x) \phi^{(+)}(y) + \phi^{(+)}(x) \phi^{(-)}(y)$$

$$+ \phi^{(-)}(x) \phi^{(+)}(y) + \phi^{(+)}(x) \phi^{(-)}(y)$$

$$+ \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(y) \phi^{(+)}(y) + \phi^{(-)}(y) \phi^{(-)}(y)$$

$$= \phi^{(+)}(x) \phi^{(+)}(y) + \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(x) \phi^{(+)}(y) + \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(x) \phi^{(+)}(y) + \phi^{(-)}(x) \phi^{(-)}(y)$$

$$+ [\phi^{(+)}(x), \phi^{(-)}(y)]$$

$$= \phi(x) \phi(y) : + [\phi^{(+)}(x), \phi^{(-)}(y)]$$

But

$$\left[\frac{1}{4} (x), \frac{1}{4} (y) \right] = \left[\frac{\sqrt{3}k}{(2\pi)^3} \frac{\sqrt{3}k'}{(2\pi)^3} \frac{\sqrt{3}k'$$

=
$$\int \frac{L^3k}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{z_E(\vec{k})}} \frac{1}{\sqrt{z_E(\vec{k}')}} e^{-ik\cdot \eta} e^{ik\cdot \eta} (ik\cdot \eta)$$

$$= \sqrt{\frac{d^3k}{(z_{11})^3}} \frac{1}{z_{11}} \frac{1}{z_{11}} e^{-ik\cdot(x-y)}$$

That is

 $T[\phi(x)\phi(y)] = :\phi(x)\phi(y): + b(x-y)$

For you'x we get

 $T[\phi(x)\phi(y)] = :\phi(x)\phi(y):+b(y-x)$

All of this can be succently written

T[f(x)f(y)] = :f(x)f(y): +) = (x-y)

Now let's generalize this Is 4 fields (to see how the gettern goes)

T[d(x)d(x)d(x))d(x)]

= : \(\frac{1}{1}\)\delta_2(\frac{1}{2})\delta_3(\frac{1}{2})\delta_1(\f

+ \$ (x) \$ (x) \$ (x) \$ (x) \$ (x) + \$ (x) \$ (x) \$ (x) \$ (x) \$

+ + (4) 92(2) 9(2) 9(44) + ...

+ d(x) d(x2) d(x3) d(x4) + d(x) d(x2) d(x3) d(x4) + ...

= $: \{ d_1 d_2 d_3 + b_1 (x_1 - x_2) : d_3 d_4 : + \dots \}$

+ D(x-x2)D(x-x1) + D(x-x3)D(x-x4)

+ 1 (x - x) = (x-x3)

When taking

<0/T[qdq30,]10>

only the fully contracted terms survive

in scalar Yukawa theory.

(1) 44 -> 44

1i> = \(\frac{1}{2E(\vec{q}_{2})}\) \(\frac{1}{2E(\vec{q}_{2})}\) \(\frac{1}{2}\) \(\frac{1}{2

15> = (ZE(\$\frac{7}{2})) (ZE(\$\frac{7}{2})) (\$\frac{7}{2}) (\$\frac

The first order that contributes to scattering is second order,

< 51 (-13) 2] 1/2 1/4 T [4(x) + (x) d(x) + (y) + (y) + (y) d(y)] 1 i >

3

LI's me Wik's Theorem to evaluate the time - ordered probat. - [4+(x)+(x)+(x)+(y)+(y)+(y)+(y)] : + 1x) + (x) + (x) + (y) + (y) + (y) 14+(x)+(x)+(x)+(y)+(y)+(y)+(y) + 4+ (x) 4 (x) + (x) + (y) + (y) + (y) + + + (x) + (x) + (y) + (y) + (y) : =: + t(x) f(x) f(x) + t(y) f(y) f(y) : + D (y-x) :4(x) 4(x) 4 (y) 4 (y): all O because there is no ion in the intel or final state + b (x-y): 4+(x) d (x) 4 (y) d (y): 1 (x-y): + (x) + (x) + (y) + (y): At, we are left to conjuste (-is) Jd4xd4, Dt (x-y) <51: 4 (x) 4(x) 4 (y) 4(y): 1i>

= (-15) dtxdty) (x-y) (ZE(=)) ZE(=) (ZE(=)) (ZE(=)) X) (211)3 (211) <01ê(q) (c(q)): [cikin st(q) + eikin â(k)] *[e'kz') &+ (k) + e'kz') 2 (k)] x[eik3.7 2+ (Te3) + eik3.7 & (Te3)] x[ei4,] at () + ei4,] + ()]: a() ()) ist (i) and ist (i) will annihilate to the left. They commute with $\hat{a}(\frac{1}{f_1})$ and $\hat{a}(\frac{1}{f_2})$. Then (0) a(\$) a(\$) & t(\$) = 0 and in turn (0 | a(q) a(q) b+ (1/2) = 0 Limberly is (to) and is (to) annihilate to the right and and commute with $\hat{a}(\vec{\xi})$ and $\hat{a}(\vec{\chi})$. Then b(h) a(x) a(x) a (x=) 10>=0

and in turn

k(k) at(z) a(z) 10) =0

Therefore the only turn that survey in the wound-ordered

<0 | â(q) â(q) : â(k) â(k) â(k) â(k) â(k) â(q) â(q)

< 0 | â(\$) â(\$\frac{1}{2}) â(\$

<0 | â(\$\frac{1}{6}) â(\$\frac{

< 0 | â(\$\frac{1}{2}) â(\$\frac{1}{2}) â(\$\frac{1}{2}) â(\$\frac{1}{2}) â^{\frac{1}{2}}(\$\frac{1}{2}) â^{\frac{1}{2}}(\$\frac{1}{

70-6)

The end result is:

 $(2\pi)^{12} \left[5^{(3)} (\frac{1}{7} - \frac{1}{k_3}) 5^{(3)} (\frac{1}{7} - \frac{1}{k_4}) + 5^{(3)} (\frac{1}{7} - \frac{1}{k_4}) 5^{(3)} (\frac{1}{7} - \frac{1}{k_3}) \right]$

 $\times \left[S^{(3)} \left(\vec{r} - \vec{k} \right) S^{(3)} \left(\vec{r} - \vec{k} \right) + S^{(3)} \left(\vec{r} - \vec{k} \right) S^{(3)} \left(\vec{r} - \vec{k} \right) \right]$

Then, we have

1-ig)2 | dy dy dy (x-y) | ZE(3) | ZE(3) | ZE(3) | ZE(3)

x e-ik.x e-ikz.y eikz. J eikz. J

= <0 | a (=) + <0 | 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 3 (1) 2 (1) 3 (1) 3 (1) + <0 | 2+(1/2) 2(1/2) 2(1/2) 2(1/2) 2(1/2) 2(1/3) 2(+ <0 | â(1/2) â(1/2) â(1/2) â(1/2) 10) (211) \$ (1/3) (1/2) (211) \$ (1/2) = <0/2 () 2 + <0/2(1/2)2(1/2)2(1/2)2(1/2)2(1/3)2(1/2)35(3)(1/2)35(3)(1/2)2110(3)(1/2)2110(3)(1/ = $\langle 0 | \hat{a}(\vec{k}) \hat{a}(\vec{x}) \hat{a}(\vec{k}) \hat{a}(\vec{k}) \hat{a}(\vec{k}) \hat{a}(\vec{x}) \hat$ + (0 | 2(12) 2 | (12) 10 > (211) 3 5 (13) (14 - 12) (211) 5 (14 - 12) (0 | 2 (\$\frac{1}{2},) 2 (\$\frac{1}{2},) 2 (\$\frac{1}{2},) 2 (\$\frac{1}{2},) 10 \rangle (\$\frac{1}{2},) 3 \rangle (\$\frac{1}{2}, -\frac{1}{2},) (\$\frac{1}{2}, -\frac{1}{2},) 2 (\$\frac{1}{2}, + <0 | â(1/2) â + (1/2) | 0>(211) (1/2-3) (211) \$ (1/2-1/3) (1/2-1/3) (1/2-1/3) + (0) 2+ (82) 2 (12) 10 > (211) 5 (12) 5 (12) 5 (12) 5 (12) 5 (12) 5 (12) 5 (12) $+ \frac{(2\pi)^{3}}{3} \left(\frac{1}{4} - \frac{1}{3} \right) \left(\frac{1}{2\pi} \right)^{3} \left(\frac{3}{4} - \frac{1}{7} \right) \left(\frac{2\pi}{4} \right)^{3} \left(\frac{3}{4} - \frac{1}{7} \right) \left(\frac{2\pi}{4} \right)^{3} \left(\frac{3}{4} - \frac{1}{7} \right)$ = <0 | 2+(\$\frac{1}{5}) 2(\$\frac{1}{5}) 0 > (\$\frac{1}{5}] \(\frac{1}{6} - \frac{1}{5}) \(\frac{1}{6} - \frac{1}{5}) \(\frac{1}{6} - \frac{1}{5}) \(\frac{1}{6} - \frac{1}{5}) \) $+ (2 \pi)^{3} S^{(3)} (\overline{k}_{2} - \overline{k}_{2}) (2 \pi)^{3} S^{(3)} (\overline{k}_{3} - \overline{k}_{1}) (2 \pi)^{3} S^{(3)} (\overline{k}_{3} - \overline{k}_{1}) (2 \pi)^{3} S^{(3)} (\overline{k}_{3} - \overline{k}_{1})$ $+ (\overline{z_{1}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{1}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{2}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{1}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{1}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{2})$ A x C = (2T) 3 (3) (1 - 1) A xD + (211)35(3) (12-1)35(3) (12-1)35(3) (12-1)35(3) (12-1)25(3) (12-1)25(3)

	< 0 \(\ha(\ha)\ha(\frac{1}{2})\ha(\frac{1}{2})\ha(\frac{1}{2})\ha(\frac{1}{2})\lo)(\frac{21}{3}\hat{5})\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
+	< 0 â(k) â (\$\frac{7}{2}) 0) (211) \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
7	(0 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 5 (1 - 1) (2 1) 5 (1 - 1)
	(0 â(1/2) â + (3/2) 0 > (211) 3 5 (3) (1/2) (211) 3 5 (3) (1/2) (211) 3 5 (3) (1/2)
	$\langle 0 \hat{c}^{\dagger} (\vec{\gamma}_{2}) \hat{c} (\vec{k}) 0 \rangle (z_{11})^{3} S^{(3)} (\vec{k}_{2} - \vec{\gamma}_{2}) (z_{11})^{3} S^{(3)} (\vec{k}_{2} - \vec{\gamma}_{2}) (z_{11})^{3} S^{(3)} (\vec{k}_{2} - \vec{\gamma}_{2}) (z_{11})^{3} S^{(3)} (\vec{k}_{2} - \vec{\gamma}_{2})^{3} S^{(3)} S^{(3)} (\vec{k}_{2} - \vec{\gamma}_{2})^{3} S^{(3)} S^{(3)} S^{(3)} S^{(3)} S^{(3)} S^{(3)} $
+	$ (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k} - \overline{\zeta_{2}}) $
=	<0 2 + (2) 2 (6) 10) (
+	$(z_{11})^{3}$ $S^{(3)}$ $(\frac{1}{h} - \frac{1}{h^{2}})(z_{11})^{3}$ $S^{(3)}$ $(\frac{1}{h} - \frac{1}{h^{2}})(z_{11})^{3}$ $S^{(3)}$ $(\frac{1}{h} - \frac{1}{h^{2}})(z_{11})^{3}$ $S^{(3)}$
	(211) 3 S(3) (1 - 52) (211) S(3) (1 - 52) (211) S(3) (1 - 71) (211) 3 S(3) (1 - 71)
@x (C) =	$(z_{11})^{3} S^{(3)}(\overline{k} - \overline{\zeta}^{2})(z_{11})^{3} S^{(3)}(\overline{k} - \overline{\chi}^{2})(z_{11})^{3} S^{(3)}(\overline{k} - \overline{\zeta}^{2})(z_{11})^{3} S^{(3)}(z_{11})^{3} S^{(3)}(z_{11})^{$
3 x 3 +	5 (3)
0	

+6-1(25-31). 16-1(26-25). 2 }

The last equality is due to the fact that

$$\sum_{F}^{4}(x-y)=\sum_{F}^{4}(y-x)$$

Insuting

we mad have

= ---

 $i(-ig)^{2}$ $\left\{ \frac{1}{(x_{1}-y_{1})^{2}-m^{2}} + \frac{1}{(x_{1}-y_{2})^{2}-m^{2}} \right\} (2\pi)^{4} S(x_{1}+x_{2}-y_{1}-y_{2})$ We can write boon 2 Feynman Diograms associated with δ_1 δ_1 δ_1 δ_1 δ_1 δ_1 δ_1 δ_2 δ_2 δ_2 δ_2 δ_2 δ_2 t - channel While Wisk's Theren belied in reducing the number of terms in our calculations of S-metric clements the number of terms remained dannting (imagine even higher orders in perturbation theory), Faynman Diegrams glimmate all of this intermediate work. What one the rules? From our calculation of sin decay and maleon - muclams postering in scalar Virgenta throng we see that the final result for the 5-metric element can be obtained from the Feynman diagram (a) for the interestion using the following rules: 1) For each vertex, assign a factor of -ig. 3 For each internal line, assign a factor of 12-m (3) Multiply by III SH) (...), consequending to conservation of annuage.