COMPS TE B

ROLL NO.: 50

SUBJECT: ML

EXAM: IAT-1

PAGE NO.: 1/6

Q.6 A) i)
Activation Functions used in Peural Network
Linear Function:
We start off with the simplest function; the
increases
proportionally with the value of Z. The input
value is the weighted sum of the weights
and orders of the neurons in a layer The
inear tanetton solver the issue of a binary
Step function where it reports only a value of
32719
Sigmoid Function (o):
- The signoid function takes a value as input
and outputs another value between 0 and 1
It is non-linear and easy to work with
This non-linear and easy to work with when constructing a neural network model
The good part about this function is that
it is continuously differentiable over different
values of 72. and has a fixed output range
Tanh Function:
- The Tanh function is a modified or grated
version of the sigmoid function What
up version of the sigmoid function what we saw in sigmoid was that the value of
f(z) is bounded between 0 and 1.
However, in the case of tanh the values are
bounded between -1 and 1.

COMPS TE B

ROLL NO.: 50

SUBJECT: ML

EXAM: IAT-1

PAGE NO.: 2/6

100111)
Rectified Linear Unit Function (RPLU):
- The Rectified Linear Unit or Relative
would be considered the most commonly used
activation function. In deep learning models.
The function simply outputs the value of O
îf it receives any negative input, but los
any positive value & it returns that
value back like a linear function.
So it can be written as-
f(z) = man (0,z)

COMPS TE B

ROLL NO.: 50

SUBJECT: ML

EXAM: IAT-1

PAGE NO.: 3 /6

966
Q.6 (B) ;)
Logistic Regression with an example
- It is a constitution with an example
rariables to predict the dependent
That like linear mes and
that the dependent variable and difference
that the dependent variable should be categorical
Independent in
Independent variables can be numeric or Categorical variables
Categorical variables but the dependent Variable upill alway. 1.
variable will always be categorical logistic
regression is a statistical model that uses
probability the conditional
- hor binary regression
probability regression we calculate the conditional probability of the dependent variable of given independent variable X. It can be written
independent variable X. It can be written
as P(4=1/2) . It can be written
P(YIX) is sometiments
function applied to a linear combination of
input features. Combination of
- An example of logistic regression can be to
find if a person will default their credit
ochanit their credit
Derson defaults. In probability of a
their credit cand payment
balance and income pending credit card
250
Hence we can write P (default = yes balance).
Jer Barance),

COMPS TE B

ROLL NO.: 50

SUBJECT: ML

EXAM: IAT-1

PAGE NO.: 4/6

When the P (default = yes) > 0.5 then we say the person will default their payment. When the P (default = yes) < 0.4 then we say the person will NOT default their payment. In the case of binary classification

TU3F1819127

SIGNATURE: A Mey

COMPS TE B

ROLL NO.: 50

SUBJECT: ML

EXAM: IAT-1

PAGE NO.: 5/6

Q6B)	71)						
So1":							
,,		2.1		(x-x) (Y-Y')			
*	1	(x-x')	(1-41)	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
340	500	-400	- 200	200000			
1080	1700	340	700	238000			
640	1100	-100	100	-10000			
880	800	-140	- 200	- 28000			
990	1400	2 50	400	100000			
510	500	-230	- 200	115000			
			we .				
x1=740	7'=1000			612000			
	•			organia.			
	_						
$(\times - \times')^2$							
		$b_1 = \mathbb{E}(X_1 - \overline{X})(Y_1 - \overline{Y})$					
160000		E (x; - x)2					
175600							
10000		= f. 462197					
1960	0						
625	00						
52900 bo		60	bo = 1 (\(\S \) - \(\sigma \)				
			n 1	(
420	600						
			= 7 - 6;	· ×			
			The second second				
			= -82,	02548			

COMPS TE B

ROLL NO.: 50

SUBJECT: ML

EXAM: IAT-1

PAGE NO.: 6/6

Y (850)	73	7;				
	*	Ro +	B, X;			
		1.46				
		1,46	(850)		82	
	=	1159			-	
		7-2				
-						
			75 E	-		
		8.7				
					1983	