Christian B. Mendl, Pedro Hack, Keefe Huang, Irene López Gutiérrez

Exercise 2.1 (Bloch sphere and single qubit rotation gates)

Recall from the lecture that an arbitrary single qubit quantum state can be parametrized as

$$|\psi\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle\right)$$

where θ , φ and γ are real numbers, which can be chosen such that $0 \leq \theta \leq \pi$ and $0 \leq \varphi \leq 2\pi$. The angles θ and φ define the Bloch sphere representation of $|\psi\rangle$, as shown on the right.

(a) Find the Bloch angles θ and φ of $|\psi\rangle=\frac{i}{2}\,|0\rangle-\frac{\sqrt{3}}{2}\,|1\rangle$, and the corresponding Bloch vector

$$\vec{r} = (\cos(\varphi)\sin(\theta), \sin(\varphi)\sin(\theta), \cos(\theta)).$$

https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg

For a real unit vector $\vec{v} \in \mathbb{R}^3$, the rotation by an angle ω about the \vec{v} axis is defined as

$$R_{\vec{v}}(\omega) = \exp(-i\omega \, \vec{v} \cdot \vec{\sigma}/2) = \cos(\omega/2)I - i\sin(\omega/2)(\vec{v} \cdot \vec{\sigma}),$$

where $\vec{\sigma}=(\sigma_1,\sigma_2,\sigma_3)$ is the Pauli vector. The rotations R_x , R_y , R_z about the standard axes correspond to the special cases $\vec{v}=(1,0,0)$, $\vec{v}=(0,1,0)$ and $\vec{v}=(0,0,1)$, respectively.

- (b) Compute $R_x(\frac{2\pi}{3}) |\psi\rangle$ for the state $|\psi\rangle$ defined in (a), and visualize this operation on the Bloch sphere. Hint: $\cos(\frac{\pi}{3}) = \frac{1}{2}$ and $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$.
- (c) The Z-Y decomposition theorem states the following: given any unitary 2×2 matrix U, there exist real numbers $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$U = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta).$$

Find the Z-Y decomposition of the Hadamard gate $H=\frac{1}{\sqrt{2}}\left(\begin{smallmatrix}1&1\\1&-1\end{smallmatrix}\right)$.

Hint: There exists a solution with $\beta = 0$.

Solution

(a)
$$|\psi\rangle = \frac{i}{2}|0\rangle - \frac{\sqrt{3}}{2}|1\rangle = i\left(\frac{1}{2}|0\rangle + i\frac{\sqrt{3}}{2}|1\rangle\right) \stackrel{!}{=} e^{i\gamma}\left(\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle\right)$$

for $\theta=\frac{2\pi}{3}$, $\varphi=\frac{\pi}{2}$ and $\gamma=\frac{\pi}{2}$ (since $e^{i\pi/2}=i$). Inserted into the Bloch vector results in

$$\vec{r} = (\cos(\varphi)\sin(\theta), \sin(\varphi)\sin(\theta), \cos(\theta)) = \left(0, \frac{\sqrt{3}}{2}, -\frac{1}{2}\right).$$

We observe that the Bloch vector lies in the y-z-plane.

(b) We first evaluate the rotation operator:

$$R_x(\frac{2\pi}{3}) = \cos(\frac{\pi}{3})I - i\sin(\frac{\pi}{3})X = \begin{pmatrix} \frac{1}{2} & -i\frac{\sqrt{3}}{2} \\ -i\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Applying $R_x(\frac{2\pi}{3})$ to $|\psi\rangle$ gives

$$R_x(\frac{2\pi}{3})|\psi\rangle = \begin{pmatrix} \frac{1}{2} & -i\frac{\sqrt{3}}{2} \\ -i\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{i}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} i \\ 0 \end{pmatrix} = i|0\rangle.$$

On the Bloch sphere, R_x is a rotation about the x-axis; here $|\psi\rangle$ is rotated within the y-z-plane to the north pole. (The prefactor i in i $|0\rangle$ does not affect the Bloch vector representation.)

(c)
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}}_{R_y(\frac{\pi}{2})} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{iR_z(\pi)} = e^{i\pi/2} R_y(\frac{\pi}{2}) R_z(\pi),$$

thus the parameters of the Z-Y decomposition are $\alpha=\frac{\pi}{2}$, $\beta=0$, $\gamma=\frac{\pi}{2}$ and $\delta=\pi.$