MCA Assignment - 2

Arushi Chauhan 2016019

Spectrogram Features

Results

Accuracy: 40.25% (with noise augmentation), 48.11% (without noise augmentation)

Confusion Matrices

With Noise Augmentation

MFCC Features

Results

Accuracy: 70.28%(with noise augmentation), 80.67% (without noise augmentation)

Confusion Matrices

Without Noise Augmentation

With Noise Augmentation

Spectrogram vs MFCC Comparison

Noise Augmentation Process

Noise was added to 30% of the training and validation samples randomly. Since there were six noise samples, one of them was chosen randomly for a given training/validation sample. The resultant wave was a 60:40 combination of original sound and chosen noise sample.

Observations:

- MFCC consistently outperforms spectrogram in terms of higher accuracy, precision and recall for all classes. Hence, it can be considered as a better feature in comparison to spectrogram.
- 2. Models performed better without noise augmentation in terms of higher accuracy, precision and recall reported in original models as compared to models trained on noise augmented data.

Spectrogram Plots

