OneDigit Schema

January 20, 2016

1 Notation

Let \mathcal{A} be the set of alphabet. We assume that $|\mathcal{A}| = N$. For the case of passowrd generation, $\mathcal{A} = \{A, B, \dots, Z\}$ and N = 26. We denote the set of digits by \mathcal{D} , i.e., $\mathcal{D} = \{0, \dots, 9\}$. Let's \mathcal{C} denotes the set of possible challenges. For the sake of simplicity, we assume that each challenge $c \in \mathcal{C}$ does not contain more than four repeated letters. We denote the i^{th} coordinate of a vector \vec{u} by u_i .

2 OneDigit Schema

2.1 Preprocessing step

- · Memorize a a random map $f: \mathcal{A} \to \mathcal{D}$
- · Memorize a random string $s = s_1 \dots s_{d-1} \in \mathcal{D}^{d-1}$

2.2 Processing step

Algorithm 1 OneDigit schema

Input: Challenge $c = c_1 \dots c_l$ $g \stackrel{10}{\equiv} f(c_1) + \dots + f(c_l)$

Output: Response sg

Before stating the main theorem of this note, we define the notion of strong linearly independence.

Definition 1. We say that set of challenges $\{c_1, \ldots, c_p\}$ is strong linearly independent (mod 10) if $\{c_1, \ldots, c_p\}$ is linearly independent (mod 5) and (mod 2). Note that a direct consequence of strong linear independence is linear independence.

Theorem 2. Denote the output of OneDigit schema on a challenge c, by p(c). We define $\mathcal{R} = \{p(c) \mid c \in \mathcal{C}\}$. For any challenge $c \in \mathcal{C}$ and any response $r \in \mathcal{R}$

(a)
$$\Pr[p(c) = r] = \frac{1}{10^d}$$

Furthermore, assume that we have made k observations $(c_1, p(c_1)), \ldots, (c_k, p(c_k))$. Then, $\forall g_{k+1} \in \mathcal{D}$ and $\forall c_{k+1} \in \mathcal{C}$ s.t. $\{c_1, \ldots, c_k, c_{k+1}\}$ is strong linearly independent (mod 10)

(b)
$$\Pr[p(c_{k+1}) = sg_{k+1} \mid (p(c_1) = sg_1), \dots, (p(c_k) = sg_k)] = 1/10$$

Part (a) is saying that without having any prior information, the probability of guessing the correct response to any single challenge is $1/10^d$. In other words, for any two responses r_1 and r_2

$$\Pr[p(c) = r_1] = \Pr[p(c) = r_2]$$

Now assume that the adversary has observed k (input, output) pairs and she is trying to guess the response to a new challenge c_{k+1} . After seeing the first (input, output) pair, she will know the value of s. So the only unknown part of $p(c_{k+1})$ is the single digit g_{k+1} . Part (b) is saying that for any new challenge c_{k+1} which forms a strong linearly independent set with k observed challenges, the adversary can't do better than guessing g_{k+1} randomly.

Proof. (a) For any $c \in \mathcal{C}, r \in \mathcal{R}$. Let $r = r_1 \dots r_d$

$$\Pr[p(c) = r] = \Pr[p(c)_{1} \dots p(c)_{d-1} = r_{1} \dots r_{d-1}] \Pr[p(c)_{d} = r_{d}]$$

=
$$\Pr[s = r_{1} \dots r_{d-1}] \Pr[p(c)_{d} = r_{d}]$$

Since each digit of string s is chosen independently at random, the above formula is equal to

$$\Pr[s_1 = r_1] \dots \Pr[s_{d-1} = r_{d-1}] \Pr[r(c)_d = r_d]$$

The first d-1 probabilities appearing above are each equal to 1/10. Thus we only need to compute $\Pr[r(c)_d = r_d] = \Pr[f(c_1) + \ldots + f(c_l) \equiv r_d \pmod{10}]$. One way to compute this probability is to count the number of maps f that satisfy

$$f(c_1) + \ldots + f(c_l) \equiv r_d \pmod{10} \tag{1}$$

and divide it by the total number of maps $f: \mathcal{A} \to \mathcal{D}$. What is the number of maps f that satisfy Eq. 2? One can choose $f(c_1), \ldots, f(c_{l-1})$ arbitrarily, then $f(c_l)$ will be chosen uniquely by $f(c_l) \equiv r_d - \sum_{i=1}^{l-1} f(c_i) \pmod{10}$. So the total number of choices of f will be 10^{N-l} for the letters that are not present in c, 10^{l-1} for the first l-1 letters in c and 1 for the last letter in c. So the total number of choices is $10^{N-l}10^{l-1} = 10^{N-1}$. Note that the total number of maps $f: \mathcal{A} \to \mathcal{D}$ is 10^N . This leads to

$$\Pr[r(c)_d = r_d] = \Pr[f(c_1) + \dots + f(c_l) = r_d] = \frac{10^{N-1}}{10^N} = \frac{1}{10}$$

Consequently, accounting for the fixed string s

$$\Pr[r(c) = r] = \frac{1}{10^{d-1}} \frac{1}{10} = \frac{1}{10^d}$$

(b) Now assume that the adversary have observed k (challenge, response) pairs $(c_1, p(c_1) = sg_1)$,

 $...,(c_k,p(c_k)=sg_k)$, and we want to compute

$$\Pr[(p(c_{k+1}) = sq_{k+1}) | (p(c_1) = sq_1), \dots, (p(c_k) = sq_k)]$$

This is equal to

$$\Pr[(p(c_{k+1})_d = g_{k+1}) \mid (p(c_1)_d = g_1), \dots, (p(c_k)_d = g_k)]$$

which is equal to

$$\frac{\Pr[(p(c_{k+1})_d = g_{k+1}), (p(c_1)_d = g_1), \dots, (p(c_k)_d = g_k)]}{\Pr[(p(c_1)_d = g_1), \dots, (p(c_k)_d = g_k)]}$$
(2)

We start by computing the value of denominator. The nominator value can be achieved similarly. In order to compute $\Pr[(p(c_1)_d = g_1), \dots, (p(c_k)_d = g_k)]$, we should count the number of mappings f that satisfy

$$\begin{cases}
 f(c_{11}) + \dots + f(c_{1l}) \equiv g_1 \pmod{10} \\
 \vdots \\
 f(c_{k1}) + \dots + f(c_{kl}) \equiv g_k \pmod{10}
\end{cases}$$
(3)

In the next lemma, we show that the number of solutions to above k linear equations is 10^{N-k} . Therefore, the value of the ratio (2) is equal to

$$\frac{10^{n-k+1}}{10^{n-k}} = \frac{1}{10}$$

Lemma 3. Given a function $f: A \to \mathcal{D}$ and set $\{c_1, \ldots, c_k\} \subseteq \mathcal{C}$ strong linearly independent and $g_1, \ldots, g_{k+1} \in \mathcal{D}$, the system of linear equations 3, has 10^{N-k} solutions.

Proof. Assume there is an ordering a_1, \ldots, a_N on elements of \mathcal{A} . Let's define the N-dimensional column vector \vec{f} such that $\vec{f_i} = f(a_i)$ s.t. a_i is the i^{th} element of \mathcal{A} . Similarly, for every challenge $c \in \mathcal{C}$, we define the N-dimensional row vector \vec{c} as follows. The i^{th} coordinate of \vec{c} , $\vec{c_i}$, is the number of occurrence of the a_i in c. In this vector setting, the last system of equations will be equivalent to

$$\begin{cases}
\vec{c_1} \cdot \vec{f} \stackrel{10}{\equiv} g_1 \\
\vdots \\
\vec{c_k} \cdot \vec{f} \stackrel{10}{\equiv} g_k
\end{cases}
\Rightarrow
\begin{bmatrix}
\vec{c_1} \\
\vdots \\
\vec{c_k}
\end{bmatrix} \cdot \vec{f} \stackrel{10}{\equiv} \begin{bmatrix}g_1 \\
\vdots \\
g_k
\end{bmatrix}$$
(4)

Let's define

$$C = \left[egin{array}{c} ec{c}_1 \ dots \ ec{c}_k \end{array}
ight], \;\; ec{g} = \left[egin{array}{c} g_1 \ dots \ g_k \end{array}
ight]$$

By assumption, rows of matrix C are linearly independent (mod 2), thus there must be k columns $\{C^{j_1}, \ldots, C^{j_k}\}$ that are linearly independent (mod 2). Using Prop. 5, $\{C^{j_1}, \ldots, C^{j_k}\}$ are linearly independent (mod 5) as well.

We claim that for any set $\mathcal{F}_{N-k} = \{\vec{f}_j \in \mathcal{D} : j \in \{j_1, \dots, j_k\}^c\}$, there will be a unique set $\mathcal{F}_k = \{\vec{f}_j \in \mathcal{D}: j \in \{j_1, \dots, j_k\}\}$ such that $\mathcal{F}_k \cup \mathcal{F}_{N-k}$ is a solution for system 4. Given a set \mathcal{F}_{N-k} , let's substitute arbitrary values of f_j for $j \notin \{j_1, \dots, j_k\}$ in Eq. 3. So

the matrix equation will be simplified as follows

$$\begin{bmatrix} C^{j_1}, \dots, C^{j_k} \end{bmatrix} \begin{bmatrix} f_{j_1} \\ \vdots \\ f_{j_k} \end{bmatrix} \stackrel{10}{\equiv} \begin{bmatrix} g'_{j_1} \\ \vdots \\ g'_{j_k} \end{bmatrix}$$

Therefore

$$[C^{j_1}, \dots, C^{j_k}] \begin{bmatrix} f_{j_1} \\ \vdots \\ f_{j_k} \end{bmatrix} \stackrel{5}{=} \begin{bmatrix} g'_{j_1} \\ \vdots \\ g'_{j_k} \end{bmatrix}, [C^{j_1}, \dots, C^{j_k}] \begin{bmatrix} f_{j_1} \\ \vdots \\ f_{j_k} \end{bmatrix} \stackrel{2}{=} \begin{bmatrix} g'_{j_1} \\ \vdots \\ g'_{j_k} \end{bmatrix}$$
(5)

Since matrix $[C^{j_1}, \ldots, C^{j_k}]$ is full rank (mod 5) and (mod 2), the above linear equations respectively has unique solution $\vec{x} \pmod{5}$ and $\vec{y} \pmod{2}$. We claim that, there exists a vector \vec{z} such that $\vec{z} \equiv \vec{x} \pmod{5}$ and $\vec{z} \equiv \vec{y} \pmod{2}$. To prove our claim, we first need to briefly remind Chinese Remainder Theorem.

Theorem 4. (Chinese Remainder Theorem) Suppose $n_1, ..., n_k$ are positive integers that are pairwise coprime. Then, for any given sequence of integers a_1, \dots, a_k , there exists an integer x solving the following system of simultaneous congruences.

$$\begin{cases} x \equiv a_1 & \pmod{n_1} \\ \vdots \\ x \equiv a_k & \pmod{n_k} \end{cases}$$

Furthermore, any two solutions of this system are congruent modulo the product $N = n_1 \dots n_k$. Hence, there is a unique (non-negative) solution less than N.

We want to prove that there exists a vector \vec{z} such that $\vec{z} \equiv \vec{x} \pmod{5}$ and $\vec{z} \equiv \vec{y} \pmod{2}$. Consider the following k systems of simultaneous congruences:

$$z_1 \stackrel{5}{=} x_1 \qquad z_k \stackrel{5}{=} x_k$$

$$z_1 \stackrel{2}{=} y_1 \qquad z_k \stackrel{2}{=} y_k$$

Using Chinese Remainder Theorem, there exist z_1, \ldots, z_k satisfying the above congruences. Furthermore, for all $i \in [k]$, $z_k \pmod{10}$ is unique. Therefore $z = [z_1, \ldots, z_k]^T$ will be the unique solution to Eq. 5.

So far we have shown that every set $\mathcal{F}_{N-k} = \{\vec{f}_j \in \mathcal{D} : j \notin \{j_1, \dots, j_k\}\}$, there is a unique set $\mathcal{F}_k = \{\vec{f}_j \in \mathcal{D}: j \in \{j_1, \dots, j_k\}\}$ such that $\mathcal{F}_k \cup \mathcal{F}_{N-k}$ is a solution for system 4. Therefore, the number of solutions to system of linear equations 4 is number of sets $\mathcal{F}_{N-k} = \{\vec{f}_j \in \mathcal{D} : j \notin \{j_1, \dots, j_k\}\}$ which is equal to 10^{N-k} .

Proposition 5. Given a set of challenges $C = \{c_1, \ldots, c_k\}$ s.t. $\forall i \in [k]$, the challenge c_i does not contain more than four repeated letters. If C is linearly independent (mod 2), this implies that it is linearly independent (mod 5) as well.

 \square

2.3 HUM

In order to calculate the HUM, we first need to write the steps of Alg. 2.2 in more details

Algorithm 2 OneDigit schema

```
Input: Challenge c = c_1 \dots c_l

Set i = 1, SUM= 0

While not EndOfChallenge:

Compute f(c_i) (Applying the map)

SUM \stackrel{10}{\equiv} SUM + f(c_i) (Add to the running sum)

i = i + 1 (shift pointer)

Print fixed string s

Print SUM
```

 $\mathrm{HUM} = 2 \times (\mathrm{initialization}) + l \times (\mathrm{while\ loop\ condition}) + l \times (\mathrm{map}) + l \times (\mathrm{add}) + l \times (\mathrm{shift\ pointer}) + (\mathrm{end\ while}) + 2 \times (\mathrm{print}) = 4l + 5$

2.4 Security: Q value

Theorem. 2 is saying that as long as a new challenge forms a strong linearly independent set with already observed challenges, the adversary can not predict the response to this new challenge. In order to compute the value of Q for OneDigit schema we should answer the following question:

 \diamond Given a set of challenges \mathcal{C} , at each round, a new challenge $c \in \mathcal{C}$ is chosen uniformly at random. Let \mathcal{C}_i be the set of challenges chosen till round i. What is the maximum i such that \mathcal{C}_i is a strong linearly independent set?

To answer the above question, we ran the following experiment. We chose the challenge set \mathcal{C} to be the set of all the valid website names. At each iteration, our program choses a challenge c uniformly at random from \mathcal{C} and checks if c along with challenges chosen so far, forms a strong linearly independent set. If yes, it saves the number of iterations as the Q value. Otherwise, it will continue. We repeated this procedure for 1000 times and took the average of all the saved Q values. The following table shows the result:

$$\begin{array}{c|c} \text{Number of trials} & Q \\ \hline 1000 & \sim 18 \end{array}$$