

Lecture 11: Fisher Information, Asymptotic Normality of MLE;

课程 □ Unit 3 Methods of Estimation □ Method of Moments

2. Quick Review of Covariance Matrices and the Log-Likelihood

□ Function

2. Quick Review of Covariance Matrices and the Log-Likelihood Function

Let **X** be a random vector of dimension $d \times 1$ with expectation $\mu_{\mathbf{X}}$. Recall from Lecture 10 that the covariance matrix Σ is defined as the following matrix outer product:

$$\Sigma = \mathbb{E}\left[\left(\mathbf{X} - \mathbf{\mu_X}
ight)\left(\mathbf{X} - \mathbf{\mu_X}
ight)^T
ight].$$

It can be shown (similar to the covariance of random variables X,Y in Lecture 10) that

$$egin{aligned} \Sigma &= \mathbb{E}\left[\mathbf{X}\mathbf{X}^T
ight] - \mathbb{E}\left[\mathbf{X}
ight]\mathbb{E}\left[\mathbf{X}
ight]^T \ &= \mathbb{E}\left[\mathbf{X}\mathbf{X}^T
ight] - \mu_{\mathbf{X}}\mu_{\mathbf{X}}^T. \end{aligned}$$

Review of Covariance Matrices

3/3 points (graded)

Consider the following random vector of dimension $d \times 1$: $\mathbf{X} = \begin{bmatrix} X^{(1)}, X^{(2)}, \dots, X^{(d)} \end{bmatrix}^T$ is equally likely to be one of $\begin{bmatrix} 1, 0, \dots, 0 \end{bmatrix}^T$, $[0,1,\ldots,0]^T,\ldots,[0,0,\ldots,1]^T$. That is, **X** is equal to any of the unit vectors along the coordinate axes with probability $\frac{1}{d}$.

Let us compute the entries of the covariance matrix $\Sigma_{ij} = \mathsf{Cov}\left(X^{(i)}, X^{(j)}
ight)$.

Is Σ a singluar covariance matrix? **Note:** A matrix Σ is singular if $\det(\Sigma) = 0$.

● Yes □			

STANDARD NOTATION

Solution:

No

For any $i \in \{1,2,\ldots,d\}$,

$$\mathsf{Cov}\left(X^{(i)},X^{(i)}
ight) \ = \mathsf{Var}\left(X^{(i)}
ight) \ = rac{1}{d} - rac{1}{d^2},$$

as each $X^{(i)}$ is equal to 1 with probability $\frac{1}{d}$ and equal to 0 with probability $1-\frac{1}{d}$.

For any i
eq j, $\mathbb{E}\left[X^{(i)}X^{(j)}
ight] = 0$ as $X^{(i)}$ and $X^{(j)}$ are never both equal to 1 at the same time. Therefore,

$$egin{align} \mathsf{Cov}\left(X^{(i)},X^{(j)}
ight) &= \mathbb{E}\left[X^{(i)}X^{(j)}
ight] - \mathbb{E}\left[X^{(i)}
ight] \mathbb{E}\left[X^{(j)}
ight] \ &= -rac{1}{d^2}. \end{split}$$

The covariance matrix looks as follows:

$$\Sigma = egin{bmatrix} rac{1}{d} - rac{1}{d^2} & -rac{1}{d^2} & \cdots & -rac{1}{d^2} \ -rac{1}{d^2} & rac{1}{d} - rac{1}{d^2} & \cdots & -rac{1}{d^2} \ dots & dots & \ddots & dots \ -rac{1}{d^2} & -rac{1}{d^2} & \cdots & rac{1}{d} -rac{1}{d^2} \end{bmatrix}.$$

Adding all the rows and replacing row $oldsymbol{1}$ with the result yields

$$\widehat{\Sigma} = egin{bmatrix} 0 & 0 & \cdots & 0 \ -rac{1}{d^2} & rac{1}{d} - rac{1}{d^2} & \cdots & -rac{1}{d^2} \ dots & dots & \ddots & dots \ -rac{1}{d^2} & -rac{1}{d^2} & \cdots & rac{1}{d} -rac{1}{d^2} \end{bmatrix}.$$

From the above, we can see that the determinant of $\widehat{\Sigma}$ is equal to 0. This means that Σ , which is row-equivalent to $\widehat{\Sigma}$, is a singular covariance matrix.

提交

你已经尝试了2次(总共可以尝试2次)

☐ Answers are displayed within the problem

Dimensions of Gradient of Log-Likelihood Function

1/2 points (graded)

Let $(E, (\mathbf{P}_{\theta})_{\theta \in \Theta})$ be a statistical model associated with a random vector \mathbf{X} of dimension $k \times 1$. Let $f_{\theta}(\mathbf{x})$ be the joint pdf of \mathbf{X} and let $\theta \in \mathbb{R}^d$.

Let the log-likelihood function associated with one observation of \mathbf{X} be denoted $\ell_1(\mathbf{x}, \theta)$. For simplicity, let $\ell_1(\mathbf{x}, \theta)$ be denoted $\ell(\theta)$, where it is assumed that \mathbf{x} is fixed.

Assuming that $\ell(\theta)$ is differentiable with respect to θ for almost all \mathbf{x} , what are the dimensions of the gradient $\nabla \ell(\theta)$?

Solution:

 $\ell\left(heta
ight)$, at any given \mathbf{x} , is a real-valued function of d variables in the parameter $heta\in\mathbb{R}^{d}$.

Therefore, the gradient vector $\nabla \ell \left(\theta \right)$ is of size $d \times 1$.

提交 你已经尝试了1次(总共可以尝试1次)

☐ Answers are displayed within the problem

Log-Likelihood Function of a Bernoulli-like Random Variable

0/1 point (graded)

Consider the following experiment: You take a coin that lands a head (H) with probability 0 and you toss it twice. Define <math>X as the following random variable:

$$X = egin{cases} 1 & ext{if outcome is HH} \ 0 & ext{otherwise} \end{cases}$$

Let $\ell(p)$ be the log-likelihood function of X when written as a random function, i.e. all of the x in the function written as X. What is $\ell(p)$?

 ${\it Hint:}$ Write the pmf of ${\it X}$ as a one-line formula.

(Enter **X** for X, and $\ln(y)$ for $\ln(y)$. Do not enter "log".)

$$\ell(p) = \ln(p^{2*X})^{(1-p)^{2-2*X}}$$

 \square **Answer:** 2*X*ln(p) + (1-X)*ln(1-p^2)

STANDARD NOTATION

我这个是两次都是T才是O的概率

Solution:

First, X takes on 1 with probability p^2 and 0 with probability $1-p^2$.

Finding the log-likelihood function involves writing down the pmf of X as a one-line equation:

$$\left(p^2\right)^x\cdot \left(1-p^2\right)^{1-x}, \ \ x\in\{0,1\}.$$

Taking logarithm and replacing all x with X yields the desired log-likelihood function written as a random function.

提交

你已经尝试了3次(总共可以尝试3次)

☐ Answers are displayed within the problem

显示讨论

主题: Unit 3 Methods of Estimation:Lecture 11: Fisher Information, Asymptotic Normality of MLE; Method of Moments / 2. Quick Review of Covariance Matrices and the Log-Likelihood Function