1. [punti 6] **1.** [punti 6] Il seguente circuito elettrico definisca un sistema dinamico Σ orientato da u (tensione di ingresso) ad y (tensione d'uscita).

Si assuma l'amplificatore differenziale come ideale:

- 1. Determinare la funzione di trasferimento G(s) del sistema Σ .
- 2. Determinare poli, zeri e modi di Σ .
- 3. Scrivere l'equazione differenziale che descrive il comportamento di Σ .
- **2.** [punti 6] Due parti meccaniche di massa m siano collegate come in figura.

Si definisca un sistema dinamico Σ orientato da f (forza applicata alla massa di destra) ad \mathcal{X}_1 (posizione della massa di sinistra). Si trascurino gli attriti nel movimento delle parti meccaniche e nelle condizioni iniziali di quiete con la molla a riposo si abbia $\mathcal{X}_1=0$ e $\mathcal{X}_2=0$.

- a. Determinare l'equazione differenziale che descrive il comportamento di Σ .
- **b.** Determinare la funzione di trasferimento G(s) del sistema Σ .
- **c.** Dimostrare che Σ è semplicemente stabile.
- **3.** [punti 6] Sia dato un generico sistema dinamico orientato da u (ingresso) ad y (uscita) e descritto dall'equazione differenziale $\sum_{i=0}^{n} a_i D^i y(t) = \sum_{i=0}^{m} b_i D^i u(t)$.

Note le condizioni iniziali al tempo 0- come $y_-, Dy_-, ..., D^{n-1}y_-$ e $u_-, Du_-, ..., D^{m-1}u_-$ e l'azione forzante u(t), $t \ge 0$, determinare la trasformata di Laplace della risposta y(t), $t \ge 0$. Interpretare e commentare il risultato ottenuto.

Nota: riportare i ragionamenti e i passaggi che permettono l'individuazione dell'espressione di Y(s) cercata.

- **4.** [punti 6] Dato un sistema dinamico Σ descritto dalla funzione di trasferimento $G(s) = \frac{3s^2 + s + 7}{s^3 + 4s^2 + 8s + 9}$, introdurre e definire l'insieme \mathcal{B} dei behaviours di Σ . Dedurre inoltre le relazioni fra le condizioni iniziali in un istante di discontinuità dei segnali dell'ingresso e dell'uscita.
- **5.** [punti 6] Determinare la risposta forzata in uscita y(t) all'ingresso $u(t) = 3t \cdot 1(t)$ di un sistema con funzione di trasferimento $G(s) = \frac{4s^2 + 2s + 1}{s^2 + 3s + 2}$. Determinare inoltre il grado massimo di continuità di y(t) su \mathbb{R} .
- 6. [punti 6] Dato il sistema in retroazione di figura

dove $P(s) = \frac{(s-1)(s-2)}{s(s+1)^2(s+2)}$ determinare i valori di $K \in \mathbb{R}$ per i quali il sistema retroazionato è asintoticamente stabile.