CS-Club, осенний семестр 2014, курс алгоритмов Правила получения зачета

1. Что нужно сделать?

Выбрать оценку, на которую вы претендуете и сделать *любое одно* из заданий на эту оценку. Во всех заданиях нужно реализовать предложенный алгоритм или структуру данных и сделать для него тесты. В качестве результата нужно предоставить исходный код и краткий отчет с результатами тестов.

Список задач будет пополняться по ходу курса.

2. Как сдать?

Прислать на почту архив с файлами. В адресе указать Павла Маврина pavel.mavrin@gmail. com и Сергея Копелиовича burunduk30@gmail.com. Обязательно указать обоих. В теме письма добавить префикс [cs-club].

3. Пример готового задания

Тема: реализовать бинарную кучу.

Ссылка: http://acm.math.spbu.ru/~sk1/mm/cs-club/sample-report-2014.7z.

4. Задания на 3

- 1. Любое функциональное сбалансированное дерево поиска (path cloning)
- 2. Orthogonal Range Query: статическая задача в 2D с $\mathcal{O}(\log^2 n)$ на запрос
- 3. Fractional Cascading: фреймворк для Fractional Cascading на списке
- 4. External Memory: стек и очередь
- 5. Cache oblivious: транспонирование матрицы
- 6. In place stable sort за $\mathcal{O}(n\log^2 n)$
- 7. Pairing Heap
- 8. Dynamic 2-Edge-Connectivity в offline, ребра только добавляются за $\mathcal{O}((n+m)\log(n+m))$

5. Задания на 4

- 1. Частично сбалансированный связный список с $\mathcal{O}(1)$ на операцию (fat nodes + cloning)
- 2. Orthogonal Range Query: статическая задача в 2D с $\mathcal{O}(\log n)$ на запрос
- 3. Orthogonal Range Query: статическая задача в R^d с $O(\log^d n)$ на запрос
- 4. Fractional Cascading: фреймворк для Fractional Cascading на дереве
- 5. External Memory: сортировка (k-блочный merge sort)
- 6. External Memory: В-дерево
- 7. Cache oblivious: дерево интервалов
- 8. Inplace stable merge за $\mathcal{O}(n+m^{1+\varepsilon})$
- 9. Мег
ge за $\mathcal{O}(n)$ (не обязательно стабильный)
- 10. Weak Неар (слабая куча)
- 11. MinMax Heap (inplace куча, умеющая доставить и минимум, и максимум)
- 12. Dynamic Connectivity в offline за $\mathcal{O}((n+m)\log m)$ или $\mathcal{O}((n+m)\sqrt{n})$

6. Задания на 5

- 1. Частично сбалансированное красно-черное дерево с $\mathcal{O}(1)$ памяти на операцию (fat nodes + cloning)
- 2. Orthogonal Range Query: статическая задача в R^d с $\mathcal{O}(\log^{d-1} n)$ на запрос
- 3. Orthogonal Range Query: динамическая задача в 2D с $\mathcal{O}(\log^2 n)$ на запрос
- 4. Fractional Cascading: фреймворк для Fractional Cascading на ациклическом графе с ограничениями на ребрах
- 5. External Memory: разворачивание списка за $\mathcal{O}(n)$
- 6. External Memory: куча
- 7. Leftist Heap, Skew Heap. K обеим кучам добавить insert за $\mathcal{O}(1)$ и merge за $\mathcal{O}(1)$ (bootstrapping).
- 8. Binomial Heap (биномиальная куча), Fibonacci Heap (куча фибоначчи)
- 9. Дейкстра с Radix Heap за $\mathcal{O}(m + n \log C)$.
- 10. Dynamic 2-Edge-Connectivity в offline за $\mathcal{O}((n+m)\log m)$

7. Задания на 5+

- 1. Orthogonal Range Query: динамическая задача в 3D с $\mathcal{O}(\log n)$ на запрос
- 2. Inplace stable sort 3a $\mathcal{O}(n)$.
- 3. Дейкстра с двухуровенвой Radix Heap с Fibonacci Heap за $\mathcal{O}(m + n \sqrt{\log C})$

8. Теорзачет

Последняя пара состояится 14-го декабря. 20-го декабря (суббота) у вас будет возможность прийти к ??:?? в ПОМИ и поучаствовать в «теорзачете». Смысл мероприятия – освежить знания теории.