Intercambio de calor nun tanque

Método Numérico

Solución dunha ecuación diferenciais ordinarias (ODE).

Tema tratado

Balances de enerxía en estado non estacionario, resposta dinámica de unha serie de tanques axitados de mestura perfecta.

Enunciado

Un tanque quenta unha mestura multicompoñente de disolventes antes de metela coma alimentación duna columna de destilación. O tanque contén, inicialmente, 1000 kg da mestura a 20 °C. No serpentín condensa un vapor saturado á temperatura de 250 °C. A mestura entra no tanque a razón de 100 kg/min. A temperatura á que a mestura entra no tanque é de 20 °C. O tanque é de mestura perfecta, polo que a temperatura dentro del pódese considerar constante e á súa vez igual á temperatura de saída da mestura do tanque en cuestión.

A capacidade calorífica da mestura, C_P , é de 2,0 kJ·kg-1. A velocidade á que o calor é transferido do vapor á mestura de disolventes ven dada pola expresión:

$$Q = UA\left(T_{vapor} - T\right) \tag{1}$$

onde:

UA = 10 kJ·min-1·°C-1 é o produto do coeficiente de transmisión de calor e o área do serpentín de cada tanque

T = temperatura da mestura de disolventes no tanque, en $^{\circ}$ C

Q = velocidade de transmisión de calor en kJ·min-1.

Pódese realizar un balance individual de materia e enerxía para cada tanque. Nestes balances, o fluxo másico permanece constante. A masa do tanque pódese supor constante así coma o volume do tanque e a densidade da mestura de disolventes. Para cada tanque, o balance de enerxía xenérico pódese representar por:

$$ACUMULACION = ENTRADA - SAIDA$$
 (2)

polo que:

$$MC_{P}\frac{dT}{dt} = WC_{P}T_{0} + UA\left(T_{vapor} - T\right) - WC_{P}T\tag{3}$$

Obsérvese que o balance de materia en estado non estacionario non é necesario para ningún dos tanques xa que a masa neles non cambia co tempo. A ecuación anterior se pode arranxar e resolver explicitamente e expresala no xeito habitual das ecuacións diferenciais ordinarias:

Primeiro tanque:

$$\frac{dT}{dt} = \frac{WC_P \left(T_0 - T\right) + UA \left(T_{vapor} - T\right)}{MC_P} \tag{4}$$

- 1. Determina-la temperatura do tanque en réxime estacionario.
- 2. Que tempo descorre para que a temperatura do tanque acade un valor do 99% da estacionaria durante o quecemento?.