Decomposition of Permutations by Cost-Constrained Transpositions

Farzad Hassanzadeh

11/11/11

Permutations

Permutations are ubiquitous combinatorial objects.

A permutation is an arrangement of a set of objects.

Example: [2431] : A permutation over the set $\{1, 2, 3, 4\}$

Large number of applications:

- Coding and information theory
- Computer science
- Biology and bioinformatics
- Recommendation systems
- Social sciences: competitions, voting
- Management and decision making

Rank Aggregation I

Rank Aggregation: Combining a set of rankings such that the resulting ranking is representative of the whole set.

Title	IMDB	FilmCrave	Aggregate
The Shawshank Redemption	1	1	?
The Godfather	2	3	?
Fight Club	10	2	?
The Godfather: Part II	3	11	?
Pulp Fiction	4	4	?
Schindler's List	5	8	?
The Dark Knight	7	5	?
One Flew Over the Cuckoo's Nest	6	13	?
LoR: The Fellowship of the Ring	13	6	?
LoR: The Return of the King	8	7	?
SWV: The Empire Strikes Back	9	10	?
Goodfellas	11	9	?
Star Wars	12	12	?

Rank Aggregation I

Rank Aggregation: Combining a set of rankings such that the resulting ranking is representative of the whole set.

Title	IMDB	FilmCrave	Aggregate
The Shawshank Redemption	1	1	1
The Godfather	2	3	?
Fight Club	10	2	?
The Godfather: Part II	3	11	?
Pulp Fiction	4	4	4
Schindler's List	5	8	?
The Dark Knight	7	5	5/6/7?
One Flew Over the Cuckoo's Nest	6	13	?
LoR: The Fellowship of the Ring	13	6	?
LoR: The Return of the King	8	7	?
SWV: The Empire Strikes Back	9	10	?
Goodfellas	11	9	?
Star Wars	12	12	?

Rank Aggregation II

Requires a distance measure that:

- Meaningfully handles difference between rankings
 - Top versus bottom

Similar items versus dissimilar items

2 Can be efficiently calculated or approximated

Problem Statement

We are interested in a distance over permutations based on swaps. Swap of two elements is called Transposition.

Transposition of a and b denoted by (ab).

Suppose that each transposition (ab) has cost $\varphi(a, b)$.

Distance between two permutations π and σ is the minimum cost of transforming π to σ using transpositions.

Problem Statement: For arbitrary non-negative cost function φ and permutations π and σ , find distance between π and σ .

Cost Functions and Distance

 $M_{\varphi}(\pi, \sigma)$ = distance between π and σ based on φ .

Fact: For permutations π, σ, η , M_{φ} satisfies

- $M_{\varphi}(\pi,\sigma) = M_{\varphi}(\sigma,\pi) \geq 0$
- $M_{\varphi}(\pi,\sigma) \leq M_{\varphi}(\pi,\eta) + M_{\varphi}(\eta,\sigma) \text{ (triangle inequality)}$

Decomposition is a sequence transposition that transforms identity permutation e to a permutation π .

Because of right invariance, it suffices to consider decompositions only: $M_{\omega}(\pi, \sigma) = M_{\omega}(e, \sigma\pi^{-1}) =: M_{\omega}(\sigma\pi^{-1})$

Permutations and Cycles

- Permutation as a bijection from $\{1,2,\cdots,n\}$ to $\{1,2,\cdots,n\}$. Example: $\pi=\begin{bmatrix}123456789\\685749231\end{bmatrix}$. That is, $\pi(1)=6,\pi(2)=8$, etc. Composition of permutations is a permutation.
- **2** Functional digraph of permutation: Graph with vertex set $\{1, 2, \dots, n\}$ and edges $(i, \pi(i))$.

The functional digraph of a permutation is a set of disjoint directed cycles: $\pi = (354728)(169)$.

An Example

MCD: Minimum Cost Decomposition

MLD: Minimum Length Decomposition: Cayley (1860) shows for a permutation with k cycles MLD has length n - k.

Consider
$$\sigma = (12345)$$
 with $\varphi(i,j) = \begin{cases} 3, & |i-j| = 1 \pmod{5} \\ 1, & \text{else} \end{cases}$

MLD has cost at least eight

MCD has cost six

Decompositions and Multigraphs I

A decompositions can be represented by a multigraph.

The vertices of the multigraph are the symbols $\{1, ..., n\}$, while the edges are specified by the decomposition in a natural manner.

For example, the decomposition (ac)(bc)(ac) of (ab)e induces the following multigraph on vertices $\{a,b,c\}$.

Decompositions and Multigraphs II

Consider transforming $\pi=3142$ to $\sigma=2341$ via (23), (13). Edges of functional digraph are black, edges of multigraph are red.

- Transposition (ab) switches the predecessors of a and b.
- Each arrow follows the path indicated by the edges of the multigraph.

Decompositions and Multigraphs II

Consider transforming $\pi=3142$ to $\sigma=2341$ via (23), (13). Edges of functional digraph are black, edges of multigraph are red.

- Transposition (ab) switches the predecessors of a and b.
- Each arrow follows the path indicated by the edges of the multigraph.

Decompositions and Multigraphs II

Consider transforming $\pi=3142$ to $\sigma=2341$ via (23), (13). Edges of functional digraph are black, edges of multigraph are red.

- Transposition (ab) switches the predecessors of a and b.
- Each arrow follows the path indicated by the edges of the multigraph.

Outline of the Algorithm

- MCD of $\pi = (ab)e$.
 - Key idea: use decompositions of length three only.
 - Show recursive use of decompositions of length three is sufficient.
- Find min cost MLD of a cycle and connect it to MCD.
 - Key idea: connection between planar trees and MLDs of cycles. Search over planar trees instead of MLDs.
 - Approximate MCD using min cost MLD by lower bounding cost of MCD.
- Bound MCD of arbitrary permutations.
 - Direct bound using cycle decompositions
 - Merging cycles

Characterizing decompositions of $\pi = (ab)e = bacd$: only odd lengths possible.

- Trivial: $abcd \xrightarrow{(ab)} bacd$
- Easy: triple-optimization:

$$abcd \xrightarrow{(ac)} cbad \xrightarrow{(bc)} bcad \xrightarrow{(ac)} bacd$$

$$(ab) = (ac)(bc)(ac)$$

Has smaller cost if $\varphi(a,b) > 2\varphi(a,c) + \varphi(b,c)$.

• Hard: Decompositions of lengths 5, 7, etc.

Triple-optimization algorithm: Perform triple-optimization as many times as possible and update costs

$$(ab) = (ac)(bc)(ac)$$

 $\varphi(a,b) \leftarrow 2\varphi(a,c) + \varphi(b,c)$

• Let φ^* be the resulting cost function. For all a, b, c we have

$$\varphi^*(a,b) \leq 2\varphi^*(a,c) + \varphi^*(b,c)$$

- φ^* is obtained in time $O(n^4)$
- Will show $\varphi^*(a,b) = M_{\varphi}(\pi)$ for $\pi = (ab)e$.

MCD of Transpositions III

Theorem

For $a, b \in [n]$ and the output φ^* of triple-optimization algorithm, $\varphi^*(a, b) = M_{\varphi}(\pi)$ where $\pi = (ab)e$.

Proof: Consider decomposition τ of $\pi = (ab)e$.

- Multigraph of τ has at most one a, b—cut-edge.
- 2 Minimum cost graph with at most one a, b-cut-edge is of form

$$2 \times (a \text{ path between } a \text{ and } b) - (one edge).$$

lacksquare Cost $\Big(2 imes (ext{a path between } a ext{ and } b) - (ext{one edge})\Big) \geq arphi^*(a,b)$

Lemma 1

Multigraph of decomposition of (ab)e has \leq one a, b—cut-edge.

Successive application of transpositions transforms e to $\pi = (ab)e$.

- e(a) = a, e(b) = b
- $\pi(a) = b, \pi(b) = a$

Suppose (uv) is an a, b—cut-edge

Lemma 1

Multigraph of decomposition of (ab)e has \leq one a, b—cut-edge.

Successive application of transpositions transforms e to $\pi = (ab)e$.

- e(a) = a, e(b) = b
- $\pi(a) = b, \pi(b) = a$

Suppose (uv) is an a, b—cut-edge

Lemma 1

Multigraph of decomposition of (ab)e has \leq one a, b—cut-edge.

Successive application of transpositions transforms e to $\pi = (ab)e$.

- e(a) = a, e(b) = b
- $\pi(a) = b, \pi(b) = a$

Suppose (uv) is an a, b—cut-edge

• Before applying (uv), must have $a \rightarrow u$ and $b \rightarrow v$.

Lemma 1

Multigraph of decomposition of (ab)e has \leq one a, b—cut-edge.

Successive application of transpositions transforms e to $\pi = (ab)e$.

- e(a) = a, e(b) = b
- $\pi(a) = b, \pi(b) = a$

Suppose (uv) is an a, b—cut-edge

- Before applying (uv), must have $a \rightarrow u$ and $b \rightarrow v$.
- After applying (uv), must have $b \to u$ and $a \to v$.

Lemma 1

Multigraph of decomposition of (ab)e has \leq one a, b—cut-edge.

Successive application of transpositions transforms e to $\pi = (ab)e$.

- e(a) = a, e(b) = b
- $\pi(a) = b, \pi(b) = a$

Suppose (uv) is an a, b—cut-edge

- Before applying (uv), must have $a \rightarrow u$ and $b \rightarrow v$.
- After applying (uv), must have $b \to u$ and $a \to v$.

Lemma 1

Multigraph of decomposition of (ab)e has \leq one a, b—cut-edge.

Suppose (uv) and (xy) are both a, b—cut-edges.

- Before applying (uv), must have $a \rightarrow u$ and $b \rightarrow v$.
- Before applying (xy), must have $a \to x$ and $b \to y$.

Cannot satisfy both conditions simultaneously.

 The multigraph of any decomposition of (ab) has at most one a, b—cut-edge!

Lemma 2

Minimum cost graph with at most one a, b—cut-edge is of form $2 \times (a \text{ path between } a \text{ and } b)$ — (one edge).

• Can assume exactly one a, b—cut-edge. Suppose it is (uv).

Min Cost Decompositions of Permutations

Lemma 2

Minimum cost graph with at most one a, b—cut-edge is of form $2 \times (a \text{ path between } a \text{ and } b)$ — (one edge).

- Can assume exactly one a, b—cut-edge. Suppose it is (uv).
- No a, u—cut-edge \Rightarrow there exist two edge-disjoint a, u paths.
- No b, v-cut-edge \Rightarrow there exist two edge-disjoint b, v paths.

Lemma 2

Minimum cost graph with at most one a, b—cut-edge is of form $2 \times (a \text{ path between } a \text{ and } b)$ — (one edge).

- Can assume exactly one a, b—cut-edge. Suppose it is (uv).
- No a, u—cut-edge \Rightarrow there exist two edge-disjoint a, u paths.
- No b, v—cut-edge \Rightarrow there exist two edge-disjoint b, v paths.
- From each pair pick path with smaller cost and duplicate it.

Lemma 3

$$2\varphi^*(a,t) + 2\varphi^*(t,u) + \varphi^*(u,v) + 2\varphi^*(v,b)$$

Lemma 3

$$2\varphi^*(a,t) + 2\varphi^*(t,u) + \varphi^*(u,v) + 2\varphi^*(v,b)$$

Lemma 3

$$2\varphi^*(a,t) + 2\varphi^*(t,u) + \varphi^*(u,v) + 2\varphi^*(v,b)$$

$$\geq 2\varphi^*(a,t) + \varphi^*(t,v) + 2\varphi^*(v,b)$$

Lemma 3

$$2\varphi^*(a,t) + 2\varphi^*(t,u) + \varphi^*(u,v) + 2\varphi^*(v,b)$$

$$\geq 2\varphi^*(a,t) + \varphi^*(t,v) + 2\varphi^*(v,b)$$

Lemma 3

$$2\varphi^*(a,t) + 2\varphi^*(t,u) + \varphi^*(u,v) + 2\varphi^*(v,b)$$

$$\geq 2\varphi^*(a,t) + \varphi^*(t,v) + 2\varphi^*(v,b)$$

$$\geq \varphi^*(a,v) + 2\varphi^*(v,b)$$

Lemma 3

$$2\varphi^*(a,t) + 2\varphi^*(t,u) + \varphi^*(u,v) + 2\varphi^*(v,b)$$

$$\geq 2\varphi^*(a,t) + \varphi^*(t,v) + 2\varphi^*(v,b)$$

$$\geq \varphi^*(a,v) + 2\varphi^*(v,b)$$

Lemma 3

$$2\varphi^*(a,t) + 2\varphi^*(t,u) + \varphi^*(u,v) + 2\varphi^*(v,b)$$

$$\geq 2\varphi^*(a,t) + \varphi^*(t,v) + 2\varphi^*(v,b)$$

$$\geq \varphi^*(a,v) + 2\varphi^*(v,b)$$

$$\geq \varphi^*(a,b)$$

Lemma

Minimum cost G with $G = 2 \times (a \text{ path between a and b}) - (one edge)$ is the multigraph of some MCD of $\pi = (ab)e$.

a t u v b

Lemma

Minimum cost G with $G = 2 \times (a \text{ path between a and b}) - (one edge)$ is the multigraph of some MCD of $\pi = (ab)e$.

a t u v b t a u v b u a t v b u a t b v

Lemma

Minimum cost G with $G = 2 \times (a \text{ path between a and b}) - (one edge)$ is the multigraph of some MCD of $\pi = (ab)e$.

a t u v b
t a u v b
u a t v b
u a t b v
v a t b u

MCD of Transpositions VI

Lemma

Minimum cost G with $G=2\times (a \ path \ between \ a \ and \ b)-(one \ edge)$ is the multigraph of some MCD of $\pi=(ab)e$.

a t u v b
t a u v b
u a t v b
u a t b v
v a t b u
b a t v u
b a u v t
b t u v a

MCD of Transpositions VI

Lemma

Minimum cost G with $G=2\times (a \ path \ between \ a \ and \ b)-(one \ edge)$ is the multigraph of some MCD of $\pi=(ab)e$.

a t u v b
t a u v b
u a t v b
u a t b v
v a t b u
b a t v u
b t u v a

Corollary

 $\varphi^*(a,b) \leq 2 \times ($ cost of shortest path between a and b).

MCDs and MLDs of Cycles

Problem: Find min cost MLD of a given cycle with respect to optimized transposition costs φ^* .

- Can min cost MLD be found efficiently?
- Can min cost MLD be used to approximate MCD?

MLDs of Cycles

Is there a simple characterization of MLDs of cycles? Given a cycle σ , arrange its vertices on a circle c.

Theorem

The multigraph of an MLD of σ is a planar (spanning) tree inside the circle c. Conversely, any such tree is the multigraph of at least one MLD.

We can find minimum cost planar tree in time $O(k^4)$, where k is the length of the cycle.

MCDs of Cycles: Approximation

We need:

- a lower-bound for cost of MCD
- an upper-bound for min cost of MLD

Key idea: Divide a transposition to two components: each an h-transposition (half-transposition).

Example: h-transposition $2 \rightsquigarrow 5$: takes the predecessor of 2 to 5.

H-decomposition of a permutation is a sequence of h-transpositions equal to that permutation.

To an h-transposition assign half the cost of corresponding transposition. Thus

cost of MCD \geq min cost of h-decomposition

To an h-transposition assign half the cost of corresponding transposition. Thus

cost of $MCD \ge min cost$ of h-decomposition

What is cost of h-decomposition of cycle σ ?

To an h-transposition assign half the cost of corresponding transposition. Thus

cost of $MCD \ge min cost of h-decomposition$

What is cost of h-decomposition of cycle σ ?

$$\frac{1}{2}\sum_{i}\mathsf{Cost}\Big(p^*(i,\sigma(i))\Big)$$

 $p^*(a, b) = \text{shortest path from } a \text{ to } b$. Proof Idea: Consider the cost needed to transform e(i) = i to $\sigma(i) = j$ using h-transpositions.

To an h-transposition assign half the cost of corresponding transposition. Thus

cost of MCD ≥ min cost of h-decomposition

What is cost of h-decomposition of cycle σ ?

$$\frac{1}{2}\sum_{i}\mathsf{Cost}\Big(p^*(i,\sigma(i))\Big)$$

 $p^*(a,b) = \text{shortest path from } a \text{ to } b.$

Proof Idea: Consider the cost needed to transform e(i) = i to $\sigma(i) = j$ using h-transpositions.

cost of MCD
$$\geq \frac{1}{2} \sum_{i} \mathsf{Cost} \Big(p^*(i, \sigma(i)) \Big)$$

Min cost MLD: an upper-bound

For
$$\sigma=(12\cdots k)$$
, consider the MLD $(12)(23)\cdots (k-1\ k)$ with cost
$$\sum_{i=1}^{k-1}\varphi^*\left(i,\sigma\left(i\right)\right)$$

Min cost MLD: an upper-bound

For $\sigma = (12 \cdots k)$, consider the MLD $(12)(23)\cdots(k-1 \ k)$ with cost

$$\sum_{i=1}^{k-1} \varphi^* \left(i, \sigma \left(i \right) \right)$$

For each i, $\varphi^*(i, \sigma(i)) \le 2 \operatorname{Cost}(p^*(i, \sigma(i)))$.

Min cost MLD: an upper-bound

For $\sigma = (12 \cdots k)$, consider the MLD $(12)(23)\cdots(k-1 \ k)$ with cost

$$\sum_{i=1}^{k-1} \varphi^* \left(i, \sigma \left(i \right) \right)$$

For each
$$i$$
, $\varphi^*(i, \sigma(i)) \leq 2 \operatorname{Cost}(p^*(i, \sigma(i)))$.

min cost MLD
$$\leq 2\sum_{i} \mathsf{Cost}\Big(p^*(i,\sigma(i))\Big).$$

Constant-factor approximation

Theorem

The cost of MCD is at most 4 times the minimum cost of an MLD.

Proof:

min cost MLD
$$\leq 2\sum_{i} \mathsf{Cost}(p^*(i, \sigma(i))),$$

cost of MCD
$$\geq \frac{1}{2} \sum_{i} \mathsf{Cost} \Big(p^*(i, \sigma(i)) \Big).$$

Lemma

If the cost function is a metric, then the cost of MCD is at most 2 times the minimum cost of an MLD.

Proof Idea:

$$\mathsf{min} \; \mathsf{cost} \; \mathsf{MLD} \leq \sum_i \; \mathsf{Cost} \Big(p^*(i, \sigma(i)) \Big).$$

MCDs of Permutations

Simple consequence of the cycle decomposition result:

Theorem

Results stated for individual cycles also hold for permutations.

An alternative approach— merging cycles and optimizing over one cycle.

May give better answer than above theorem

Rank Aggregation I

Formally, given $\sigma_1, \dots, \sigma_m$ and a distance function d, find

$$\arg\min_{\pi}\sum_{i=1}^{m}d(\pi,\sigma_{i})$$

Several distance functions can be used [8]:

- Kendall's τ : $K(\pi, \sigma) = \#$ of transpositions of adjacent ranks. Equivalent to $\varphi_K(i, i+1) = 1$.
- Spearman's Footrule: $F(\pi, \sigma) = \sum_i |\pi(i) \sigma(i)|$. Equivalent to the path cost function $\varphi_F(i,j) = |i-j|$.
- Cayley's distance: $T(\pi, \sigma) = \#$ of transpositions. Equivalent to $\varphi_T(i,j) = 1$.
- Spearman's rank correlation: $S^2(\pi, \sigma) = \sum_i (\pi(i) \sigma(i))^2$

Rank Aggregation II

Cost-constrained transposition distance generalizes

• Kendall's τ to model the significance of top vs bottom of a ranking, e.g.,

$$\varphi(1,2) > \varphi(9,10)$$

 Cayley's distance to model similarities and dissimilarities of elements, e.g.,

```
\varphi(\mathsf{God}\;\mathsf{Father}\;\mathsf{I},\mathsf{God}\;\mathsf{Father}\;\mathsf{I})\\ < \varphi(\mathsf{God}\;\mathsf{Father}\;\mathsf{I},\mathsf{Goodfellas})\\ < \varphi(\mathsf{God}\;\mathsf{Father}\;\mathsf{I},\mathsf{Star}\;\mathsf{Wars})
```

Rank Aggregation III

To find

$$\pi^* = \arg\min_{\pi} \sum_{i=1}^m M_{\varphi}(\pi, \sigma_i)$$

we approximate M_{φ} by D where

$$D(\pi,\sigma) = \sum_{i=1}^{n} \cot \left(p^*(\pi(i),\sigma(i)) \right).$$

We can find

$$\pi' = \arg\min_{\pi} \sum_{i=1}^{m} D(\pi, \sigma_i)$$

and can show that

$$\sum_{i=1}^m M_{\varphi}(\pi',\sigma_i) \leq 4 \sum_{i=1}^m M_{\varphi}(\pi^*,\sigma_i).$$

Future Work: Rank Aggregation

We intend to study the application of cost-constrained distance to rank aggregation and rank prediction.

- Application of cost-constrained distance to rank predictions (rank collaborative filters)
- Extension of costs-constrained distance when cost depends both on location and object: $\varphi(i,j,\pi^{-1}(i),\sigma^{-1}(j))$.
- Extension of costs-constrained distance to partial rankings.

Thank you!