

Введение в экономико-математическое моделирование

Лекция 2. Графы и сети

Анализ и оптимизация сетевой модели

канд. физ.-матем. наук, доцент Д. В. Чупраков

usr10381@vyatsu.ru

A (2 20/42) A (2) A (2)

Д.В. Чупраков Графы и сети 1/4

Структура лекции

- 1 Исследование сетевой модели
 - Временные параметры
 - Календарный график
 - Коэффициент напряженности работ
- 2 Оптимизация сетевой модели
 - Оптимизация типа «время затраты»
 - Оптимизация числа сотрудников
 - Неопределенность времени выполнения работ
 - Резюме лекции и домашнее задание

Д. В. Чупраков Графы и сети 2 / 41

Временные параметры событий

 $t_{\rm p}(i)$ — ранний (ожидаемый) срок свершения i-го события:

$$t_{p}(i) = \max_{j} \left(t_{p}(j) + t(j, i) \right)$$

 $t_{\Pi}(i)$ — поздний (предельный) срок:

$$t_{\mathsf{n}}(i) = \min_{j} \left(t_{\mathsf{n}}(j) - t(i,j) \right)$$

R(i) — резерв времени і-го события:

$$R(i) = t_{\rm n}(i) - t_{\rm p}(i)$$

Д.В. Чипраков Графы и сети 3 / 41

Временные параметры работ


```
t_{
m pH}(i,j) — ранний срок начала работы: t_{
m pH}(i,j)=t_{
m p}(i) t_{
m po}(i,j) — ранний срок окончания работы: t_{
m po}(i,j)=t_{
m p}(i)+t(i,j) t_{
m nH}(i,j) — поздний срок начала работы: t_{
m nH}(i,j)=t_{
m n}(i)-t(i,j) t_{
m no}(i,j) — поздний срок окончания работы: t_{
m no}(i,j)=t_{
m no}(i,j)=t_{
m no}(i,j)
```

Д. В. Чупраков Графы и сети 4 / 41

Резервы времени

- ightharpoonup Полный резерв времени: $R_{\rm n}(i,j) = t_{\rm n}(j) t_{\rm p}(i) t(i,j)$
- lacktriangle Частный резерв первого вида: $R_1(i,j) = t_n(j) t_n(i) t(i,j)$
- ightharpoonup Свободный резерв времени: $R_{\rm c}(i,j) = t_{\rm p}(j) t_{\rm p}(i) t(i,j)$
- ightharpoonup Независимый резерв времени: $R_{H}(i,j) = t_{p}(j) t_{n}(i) t(i,j)$

Д. В. Чупраков Графы и сети 5 / 41

Резервы времени. Пример

i, j	t(i, j)	$t_{\rm ph}(i,j)$	$t_{po}(i,j)$	$t_{\Pi H}(i,j)$	$t_{\text{no}}(i,j)$	$R_{\Pi}(i,j)$	$R_1(i,j)$	$R_{c}(i,j)$	$R_{\scriptscriptstyle H}(i,j)$
(1,2)	4	0	4	0	4	0	0	0	0
(1,3)	3	0	3	5	8	5	5	0	0
(1,6)	12	0	12	5	17	5	5	5	5
(2,4)	5	4	9	4	9	0	0	0	0
(3,5)	2	3	5	8	10	5	0	0	-5
(4,6)	8	9	17	9	17	0	0	0	0
(5,6)	7	5	12	10	17	5	0	5	0
(5,7)	3	5	8	20	23	15	10	15	10
(6,7)	6	17	23	17	23	0	0	0	0
(7,8)	5	23	28	23	28	0	0	0	0

Д. В. Чупраков Графы и сети 6 / 41

Календарный график

Календарный график отображает взаимосвязь выполняемых работ во времени.

По вертикальной оси графика привязки откладываются коды работ, по горизонтальной оси — раннее начало и раннее окончание работ.

Для построения календарного графика достаточно рассчитать временные параметры событий.

Дополнительно указываются:

- величины полных и свободных резервов работ;
- число занятых сотрудников;
- стоимости работ.

Д. В. Чупраков Графы и сети 7 / 41

Календарный график. Пример

Д. В. Чупраков Графы и сети 8 / 41

Коэффициент напряженности работ

Определение

Коэффициентом напряженности работы — отношение продолжительности не совпадающих отрезков пути максимальной продолжительности, проходящий через данную работу, и критического пути.

$$K_{H}(i,j) = \frac{t(L_{\text{max}}) - t'_{\text{Kp}}}{t_{\text{Kp}} - t'_{\text{Kp}}}$$

- t(L_{max}) продолжительность максимального пути, проходящего через работу
- ▶ t_{кр} длина критического пути
- t'_{кр} длина общей части критического и рассматриваемого путей работу

Д. В. Чупраков Графы и сети 9 / 41

Свойства коэффициента напряженности

- $\blacktriangleright K_{\mathsf{H}}(i,j) = 1 \frac{R_{\mathsf{n}}(i,j)}{t_{\mathsf{kp}} t_{\mathsf{kp}}'}$
- ► $K_H(i,j) \in [0,1]$
- $ightharpoonup K_{H}(i,j) = 1$ для работ, лежащих на критическом пути.
- К_н(i, j) = 0 для работ, у которых отрезки максимального из путей, не совпадающие с критическим путем, состоят из фиктивных работ.
- Работы, для которых максимальным является один и тот же путь имеют одинаковый коэффициент напряженности.

Для расчета коэффициента напряженности целесообразно выписать все полные пути сети.

Д. В. Чупраков Графы и сети 10 / 41

Расчет коэффициента напряженности

Полные пути:

$$(\Pi 1) \ 1 \xrightarrow{(4)} 2 \xrightarrow{(5)} 4 \xrightarrow{(8)} 6 \xrightarrow{(6)} 7 \xrightarrow{(5)} 8$$

длина 28

$$(\Pi 2) \ 1 \xrightarrow{(12)} 6 \xrightarrow{(6)} 7 \xrightarrow{(5)} 8$$

длина 23

$$(\Pi3) \ 1 \xrightarrow{(3)} 3 \xrightarrow{(2)} 5 \xrightarrow{(7)} 6 \xrightarrow{(6)} 7 \xrightarrow{(5)} 8$$

длина 23

(
$$\Pi 4$$
) 1 $\xrightarrow{(3)}$ 3 $\xrightarrow{(2)}$ 5 $\xrightarrow{(3)}$ 7 $\xrightarrow{(5)}$ 8

длина 13

Д. В. Чупраков Графы и сети 11 / 41

Расчет коэффициента напряженности

Полные пути:

$$(\Pi 1)$$
 1 $\xrightarrow{(4)}$ 2 $\xrightarrow{(5)}$ 4 $\xrightarrow{(8)}$ 6 $\xrightarrow{(6)}$ 7 $\xrightarrow{(5)}$ 8 длина 28 $(\Pi 2)$ 1 $\xrightarrow{(12)}$ 6 $\xrightarrow{(6)}$ 7 $\xrightarrow{(5)}$ 8 длина 23 $(\Pi 3)$ 1 $\xrightarrow{(3)}$ 3 $\xrightarrow{(2)}$ 5 $\xrightarrow{(7)}$ 6 $\xrightarrow{(6)}$ 7 $\xrightarrow{(5)}$ 8 длина 23 $(\Pi 4)$ 1 $\xrightarrow{(3)}$ 3 $\xrightarrow{(2)}$ 5 $\xrightarrow{(3)}$ 7 $\xrightarrow{(5)}$ 8 длина 13

▶ Работы, лежащие на критическом пути П1:

$$K_{H}(1,2)=K_{H}(2,4)=K_{H}(4,6)=K_{H}(6,7)=K_{H}(7,8)=1$$

Работы, для которых П2 — максимальный путь:

$$K_{\rm H}(1,6) = \frac{t(1.6) - t(6.7.8)}{t(1.2.4.6) - t(6.7.8)} = \frac{12 - 11}{17 - 11} \approx 0.17$$

Работы, для которых П3 — максимальный путь:

$$K_{H}(1,3) = K_{H}(3,5) = \frac{t(1,3,5,6)-t(6,7,8)}{t(1,2,4,6)-t(6,7,8)} = \frac{12-11}{17-11} \approx 0.17$$

Работы, для которых П4 — максимальный путь:

$$K_{H}(5,7) = \frac{t(1,3,5,7)-t(7,8)}{t(1,2,4,6,7)-t(7,8)} = \frac{8-5}{23-5} \approx 0.17$$

Д. В. Чупраков Графы и сети 12 / 41

Оптимизация типа «время — затраты»

Оптимизация типа «время — затраты»

Цель: сокращение времени выполнения проекта в целом. Методы:

- задействование дополнительных ресурсов;
- повышение затрат на выполнение работ.

Исходные данные:

- нормальная длительность работы
- ускоренная длительность работы
- затраты на выполнение работы в нормальный срок;
- затраты на выполнение работы в ускоренный срок;

Для оценки величины дополнительных затрат, и минимальных сроков работ используются либо нормативы, либо данные о выполнении аналогичных работ в прошлом.

Коэффициент роста затрат

Экономический смысл коэффициента роста затрат k(i,j)

Коэффициент роста затрат равен затратам ресурсов для сокращения длительности выполнения работы (i,j) на одну единицу времени.

Д. В. Чупраков Графы и сети 15 / 41

Алгоритм оптимизации

- 1. Расчет сети исходя из нормальных длительностей работ.
- 2. Определяется сумма затрат на выполнение всего проекта при нормальной продолжительности работ.
- 3. Выбирается критическая работа (или работы) с наименьшим коэффициентом затрат и запасом сокращения времени.
- 4. Определяется в какие полные пути входит выбранная работа.
- 5. Вычисляется величина, на которую может быть сокращена продолжительность работ.
- 6. Определяется время, на которое необходимо сократить длительность работы.
- 7. Вычисляется новая стоимость проекта
- 8. Корректируются критические пути.
- 9. Переход на шаг 3, пока позволяет бюджет.

Д. В. Чупраков Графы и сети 16 / 41

Пример: формулировка

Работа	Нормал	тьный режим	Ускоренный режим		
(i,j)	$t_{H}(i,j)$	$C_{\scriptscriptstyle \rm H}(i,j)$	$t_{y}(i,j)$	$C_{y}(i,j)$	
	нед.	тыс. руб.	нед.	тыс. руб.	
(1,2)	4	15	2	17	
(1,3)	3	8	2	10	
(1,6)	12	18	6	25	
(2,4)	5	13	1	14	
(3,5)	2	9	1	10	
(4,6)	8	14	3	18	
(5,6)	7	14	4	15	
(5,7)	3	5	1	7	
(6,7)	6	16	1	29	
(7,8)	5	11	2	13	

Задача: Достичь минимально возможного срока выполнения проекта при бюджете 130 тыс. руб.

Д. В. Чупраков Графы и сети 17 / 41

Пример: вычисления

Вычислим коэффициент роста затрат:

(i,j)	$t_{H}(i,j)$	$C_{\rm H}(i,j)$	$t_{y}(i,j)$	$C_{y}(i,j)$	Z(i,j)	k(i, j)
(1,2)	4	15	2	17	2	1.00
(1,3)	3	8	2	10	1	2.00
(1,6)	12	18	6	25	6	1.17
(2,4)	5	13	1	14	4	0.25
(3,5)	2	9	1	10	1	1.00
(4,6)	8	14	3	18	5	0.80
(5,6)	7	14	4	15	3	0.33
(5,7)	3	5	1	7	2	1.00
(6,7)	6	16	1	29	5	2.60
(7,8)	5	11	2	13	3	0.67

Минимальная стоимость работ:

$$15 + 8 + 18 + 13 + 9 + 14 + 14 + 5 + 16 + 11 = 123$$

Д. В. Чупраков Графы и сети 18 / 41

Пример: расчет сети

Полные пити:

Над стрелкой k(i,j), под стрелкой Z(i,j)

(П1)
$$1 \xrightarrow{1.00}_{2} 2 \xrightarrow{0.25}_{4} 4 \xrightarrow{0.80}_{5} 6 \xrightarrow{2.60}_{5} 7 \xrightarrow{0.67}_{3} 8$$
 длина 28

$$(\Pi 2) \ 1 \ \frac{1.17}{6} \ 6 \ \frac{2.60}{5} \ 7 \ \frac{0.67}{3} \ 8$$
 длина 23

$$(\Pi 3) \ 1 \xrightarrow{2.00} 3 \xrightarrow{1.00} 5 \xrightarrow{0.33} 6 \xrightarrow{2.60} 7 \xrightarrow{0.67} 8$$
 длина 23

$$(\Pi 4) \ 1 \xrightarrow{2.00} 3 \xrightarrow{1.00} 5 \xrightarrow{1.00} 7 \xrightarrow{0.67} 8$$
 длина 13

Д. В. Чупраков Графы и сети 19 / 41

Критический путь 1
$$\xrightarrow{1.00}$$
 2 $\xrightarrow{0.25}$ 4 $\xrightarrow{0.80}$ 6 $\xrightarrow{2.60}$ 7 $\xrightarrow{0.67}$ 8

- Критическая работа с минимальным коэффициентом роста затрат: $2 \to 4$. Входит только в путь $\Pi1$.
- ightharpoonup Ее можно сократить на min $\{4, (28-23)\}=4$ единицы.
- Критический пцть: П1.
- Стоимость проекта составит 123 + 4 · 0.25 = 124 < 130
- Продолжительность проекта составит 28 4 = 24 дня.

Новые полные пути:

$$(\Pi 1)$$
 1 $\xrightarrow{1.00}$ 2 $\xrightarrow{0.80}$ 6 $\xrightarrow{0.80}$ 6 $\xrightarrow{2.60}$ 7 $\xrightarrow{0.67}$ 8 длина 24 $(\Pi 2)$ 1 $\xrightarrow{1.17}$ 6 $\xrightarrow{0.67}$ 7 $\xrightarrow{0.67}$ 8 длина 23 $(\Pi 3)$ 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{0.33}$ 6 $\xrightarrow{2.60}$ 7 $\xrightarrow{0.67}$ 8 длина 23 $(\Pi 4)$ 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{1.00}$ 7 $\xrightarrow{0.67}$ 8 длина 13

 Д. В. Чупраков
 Графы и сети
 20 / 41

Критический путь 1
$$\xrightarrow{1.00}$$
 2 $\xrightarrow{0}$ 4 $\xrightarrow{0.80}$ 6 $\xrightarrow{2.60}$ 7 $\xrightarrow{0.67}$ 8

- ► Критическая работа с минимальным коэффициентом роста затрат: $7 \to 8$. Входит в пути Π 1, Π 2, Π 3, Π 4.
- Ее можно сократить на 3 единицы.
- Критический путь: П1.
- ightharpoonup Стоимость проекта составит $124 + 3 \cdot 0.67 = 126.1 < 130$
- ▶ Продолжительность проекта составит 24 3 = 21 нед.

Новые полные пути:

$$(\Pi 1)$$
 1 $\xrightarrow{1.00}$ 2 \longrightarrow 4 $\xrightarrow{0.80}$ 6 $\xrightarrow{2.60}$ 7 \longrightarrow 8 длина 21 $(\Pi 2)$ 1 $\xrightarrow{1.17}$ 6 6 $\xrightarrow{2.60}$ 7 \longrightarrow 8 длина 20 $(\Pi 3)$ 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{0.33}$ 6 $\xrightarrow{2.60}$ 7 \longrightarrow 8 длина 20 $(\Pi 4)$ 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{1.00}$ 7 \longrightarrow 8 длина 10

Критический путь
$$1 \xrightarrow{1.00} 2 \longrightarrow 4 \xrightarrow{0.80} 6 \xrightarrow{2.60} 7 \longrightarrow 8$$

- ► Критическая работа с минимальным коэффициентом роста затрат: $4 \to 6$. Входит в пути $\Pi 1$.
- ightharpoonup Ее можно сократить на min $\{5, (21-20)\}=1$ единицу.
- ▶ Критический путь: П1, П2, П3.
- ightharpoonup Стоимость проекта составит $126.1 + 1 \cdot 0.80 = 126.9 < 130$
- ightharpoonup Продолжительность проекта составит 21-1=20 день.

Новые полные пути:

$$(\Pi 1)$$
 1 $\xrightarrow{1.00}$ 2 \longrightarrow 4 $\xrightarrow{0.80}$ 6 $\xrightarrow{2.60}$ 7 \longrightarrow 8 длина 20 $(\Pi 2)$ 1 $\xrightarrow{1.17}$ 6 $\xrightarrow{2.60}$ 7 \longrightarrow 8 длина 20 $(\Pi 3)$ 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{0.33}$ 6 $\xrightarrow{2.60}$ 7 \longrightarrow 8 длина 20 $(\Pi 4)$ 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{1.00}$ 7 \longrightarrow 8 длина 10

Д. В. Чупраков Графы и сети 22 / 41

$$(\Pi 1) \ 1 \xrightarrow{1.00} 2 \longrightarrow 4 \xrightarrow{0.80} 6 \xrightarrow{2.60} 7 \longrightarrow 8$$

$$(\Pi 2) \ 1 \xrightarrow{1.17} 6 \xrightarrow{2.60} 7 \longrightarrow 8$$

$$(\Pi 3)$$
 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{0.33}$ 6 $\xrightarrow{2.60}$ 7 \longrightarrow 8

- Одновременное сокращение трех критических путей можно провести ускорив по одной работе в каждом пути. Выберем работу с наименьшей стоимостью в каждом пути. Следует учитывать, что работа, входящая в два пути или более путей, может оказаться более выгодной.
 - lacktriangle 4 ightarrow 6, 1 ightarrow 6, 5 ightarrow 6. Стоимость 0.80 + 1.17 + 0.33 = 2.30
 - ► 6 \rightarrow 7. Стоимость 2.60
- ightharpoonup Проект можно сократить на min $\{4, 6, 3, (20 10)\} = 3$ дня.
- ightharpoonup Стоимость проекта составит $124 + 3 \cdot 2.30 = 130.9 > 130$
- Будем уменьшать число сокращаемых дней, пока не впишемся в бюджет: 124 + 2 ⋅ 2.30 = 128.6 < 130</p>
- ▶ Продолжительность проекта составит 20 2 = 18 дней.

Д. В. Чупраков Графы и сети 23 / 41

Пример: итог

Полные пути:

$$(\Pi 1) \ 1 \xrightarrow{1.00}{2} 2 \longrightarrow 4 \xrightarrow{0.80}{2} 6 \xrightarrow{2.60}{5} 7 \longrightarrow 8$$

$$(\Pi 2) \ 1 \xrightarrow{1.17} 6 \xrightarrow{2.60} 7 \longrightarrow 8$$

$$(\Pi 3) \ 1 \xrightarrow{2.00} 3 \xrightarrow{1.00} 5 \xrightarrow{0.33} 6 \xrightarrow{2.60} 7 \longrightarrow 8$$

$$(\Pi 4)$$
 1 $\xrightarrow{2.00}$ 3 $\xrightarrow{1.00}$ 5 $\xrightarrow{1.00}$ 7 \longrightarrow 8

Отметим на дугах графа минимальные продолжительности работ и прибавим к ним оставшиеся значения запаса времени.

Сетевой план:

Д. В. Чупраков Графы и сети 24 / 41

Пример: график сокращения времени

Зависимость расходов на проект от времени реализации:

 Д. В. Чупраков
 Графы и сети
 25 / 41

Оптимизация числа сотрудников

Оптимизация числа сотрудников

При оптимизации использования ресурса рабочей силы сетевые работы чаще всего стремятся организовать таким образом, чтобы:

- количество одновременно занятых исполнителей было минимальным;
- выровнять потребность в людских ресурсах на протяжении срока выполнения проекта.

Для оптимизации используют временные резервы, смещая работы так, чтобы в каждый момент времени число занятых сотрудников не превышало заданной величины.

Манипуляции удобно проводить с помощью календарного графика и графика загрузки.

Д. В. Чупраков Графы и сети 27 / 41

График загрузки строится на основе календарного графика с указанным числом исполнителей.

- ▶ По горизонтальной оси откладывается время
- По вертикальной количество человек, занятых работой в каждый конкретный день;
- ► Календарный график и график загрузки располагают один над другим.

Пример. Задача оптимизации загрузки

Код работ	Продолжительность работ	Количество исполнителей
(1,2)	4	4
(1,3)	3	4
(1,6)	12	6
(2,4)	5	4
(3,5)	2	2
(4,6)	8	1
(5,6)	7	3
(6,7)	3	4
(6,7)	6	6
(7,8)	5	5

Д.В. Чупраков

Пример. График загрузки

 Д. В. Чупраков
 Графы и сети
 30 / 41

Пример. Оптимизация

Проблема:

Предположим, в проекте задействовано всего 10 сотрудников А нам требуется 17 сотрудников.

Возможный путь решения:

смещение работ во времени за счет свободных резервов работ. Сдвиг работы в пределах ее свободного резерва времени не меняет моменты начала последующих за ней работ.

Свободные резервы работ

Д. В. Чупраков Графы и сети 31 / 41

Пример. Оптимизация–2

 Д. В. Чупраков
 Графы и сети
 32 / 41

Пример. Оптимизация–3

Пример. Оптимизация–4

 Д. В. Чупраков
 Графы и сети
 34 / 41

Пример. Итог

Итоговый календарный график работ имеет вид:

 Д. В. Чупраков
 Графы и сети
 35 / 41

Модели с неопределенным сроком работ

На практике сроки выполнения работ сложно определить точно. Для построения сетевой модели используют экспертные оценки продолжительности работы:

- $t_{\min}(i,j)$ минимальная продолжительность работы;
- $t_{\max}(i,j)$ максимальная продолжительность работы;

Тогда ожидаемая продолжительность работы определяется по формуле

$$t(i,j) = \frac{2t_{\min}(i,j) + 3t_{\max}(i,j)}{5}$$

А среднее квадратичное отклонение

$$\sigma(i,j) = \frac{t_{\max}(i,j) - t_{\min}(i,j)}{6}$$

Далее можно строить сетевую модель.

 Д. В. Чупраков
 Графы и сети
 36 / 41

Модели с неопределенным сроком работ

Опираясь на свойства случайных величин и используя методы статистической проверки гипотез можно оценивать:

- вероятности наступления событий в пределах их ранних и поздних сроков,
- вероятность завершения проекта к заранее установленной дате
- срок к которому будет завершен проект с заданной надежностью.

Эти задачи мы нацчимся решать после нового года.

После проработки лекции вы должны цметь:

- рассчитывать временные характеристики сетевого графика
- вычислять коэффициент напряженности, делать выводы о важности работы для проекта;
- оптимизировать время и бюджет проекта
- оптимизировать распределение работ с целью задействования минимального числа сотрудников.

Для завершения лекции вам необходимо подготовить конспект, в который должны войти:

- 1. понятия и формулы, прозвучавшие в лекции;
- 2. краткие алгоритмы решения задач оптимизации (в Кремере есть еще один пример, но сети там очень большие);
- 3. примеры решения задач оптимизации на небольших сетях.

Источники информации

- Исследование и оптимизация моделей: Кремер Н. Ш.
 Исследование операций в экономике параграф 14.8, с. 320–330.
- ▶ Все материалы по курсу здесь: https://cloud.mail.ru/public/48BX/47oESuaQQ
- ► Каренов К.М. Теоретические и методические основы оптимизации сетевых моделей по времени // Вестник КарГУ, 2012 URL: https://articlekz.com/article/5878

Д. В. Чупраков Графы и сети 40 / 41

Анонс:

На следующей лекции мы поймем:

- что такое матрицы и как их вычислять.
- как решать системы линейных уравнений;
- как решать системы линейных уравнений;
- почему матрицы удобно использовать в экономических моделях.