Section G

Regression: Interpretation and Confounds

Lectures 15 and 16

Michael F. Seese

Department of Political Science University of California San Diego

Political Science 30, Week 8

Outline

Interpreting OLS Output

Dummy Variables

Confounds

- Let's return to the "auto" dataset from Stata
- ▶ We have a theory that bigger cars are more expensive than smaller cars
- ▶ We test this theory by looking at two variables:
 - 1. Price
 - 2. Weight
- ▶ So we model price as a function of weight: Price = $\alpha + \beta$ (Weight)
- And we state our hypotheses:

$$H_0$$
 $\beta = 0$

$$H_1$$
 $\beta > 0$

reg price we	eight					
Source	ss	df	MS	Number of o	obs =	74
				F(1, 72)	=	29.42
Model	184233937	1	184233937	Prob > F	=	0.0000
Residual	450831459	72	6261548.04	R-squared	=	0.2901
				Adj R-squar	ed =	0.2802
Total	635065396	73	8699525.97	Root MSE	=	2502.3
price	Coef.	Std. Err.	t	P> t [95%	6 Conf.	Interval]
weight	2.044063	.3768341	5.42	0.000 1.29	2857	2.795268
_cons	-6.707353	1174.43	-0.01	0.995 -234	17.89	2334.475

. reg price we	eight						
Source	ss	df	MS	Numbe	r of ob	s =	74
				- F(1,	72)	=	29.42
Model	184233937	1	184233937	P rob	> F	=	0.0000
Residual	450831459	72	6261548.04	R-squ	ared	=	0.2901
				- Adj R	-square	ed =	0.2802
Total	635065396	73	8699525.97	Root	MSE	=	2502.3
price	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
weight _cons	2.044063 -6.707353	.3768341 1174.43	5.42 -0.01	0.000 0.995	1.292 -2347		2.795268 2334.475

$$\widehat{\mathsf{Price}} = -6.707353 + (2.044063)(\mathsf{Weight})$$

- Our y intercept, or constant, is -6.707
 - ▶ This tells us the price of a car when the weight of the car is 0
 - Is the intercept informative in this particular case?
- ► The slope, or coefficient, is 2.044
 - ► This tells us how much (in \$) the price increases for each additional lb of weight
 - A car weighs 3,000 lbs. How much more will a car that weighs 3,100 lbs cost?

$$$2.04 \times 100 = $204$$

$$\widehat{\mathsf{Price}} = -6.707353 + (2.044063)(\mathsf{Weight})$$

- Our y intercept, or constant, is -6.707
 - ▶ This tells us the price of a car when the weight of the car is 0
 - Is the intercept informative in this particular case?
- ► The slope, or coefficient, is 2.044
 - ▶ This tells us how much (in \$) the price increases for each additional lb of weight
 - ▶ A car weighs 3,000 lbs. How much more will a car that weighs 3,100 lbs cost?

$$$2.04 \times 100 = $204$$

► Recall our hypotheses:

$$H_0$$
 $\beta = 0$ H_1 $\beta > 0$

▶ Can we reject the null, based on the 95% CI Stata calculated for us?

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight	2.044063	.3768341	5.42	0.000	1.292857	2.795268
_cons	-6.707353	1174.43	-0.01	0.995	-2347.89	2334.475

► Recall our hypotheses:

$$H_0$$
 $\beta = 0$ H_1 $\beta > 0$

▶ Can we reject the null, based on the 95% CI Stata calculated for us?

- We have a theory that bigger cars are more expensive than smaller cars
- But we think that shipping costs and tariffs may also influence price
- ▶ We test this updated theory by looking at three variables:
 - 1. Price
 - 2. Weight
 - 3. Import Status ← Dummy Variable
- So we model price as a function of both weight *and* import status: Price = $\alpha + \beta_1(Weight) + \beta_2(Import Status)$
- And we state our hypotheses:
 - H_0 $\beta_1 = 0$ H_1 $\beta_1 > 0$

. reg price weight foreign

foreign	3637.001	668.583	5.44	0.000	2303.8		4970.118
weight	3.320737	.3958784	8.39	0.000	2.5313	378	4.110096
price	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval:
Total	635065396	73	8699525.97	•	•	=	2117
Residual	318206123	71	4481776.38		ared -squared	= = t	0.4989
Model	316859273	2	15842963		> F	=	0.000
				- F(2,	71)	=	35.3
Source	SS	df	MS	Numbe	r of obs	5 =	74

$$\widehat{\mathsf{Price}} = -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(\mathsf{Import\ Status})$$

- Our y intercept, or constant, is -4942.844
 - ► This tells us the price of a car when the weight of the car is 0 and when the car is built domestically (i.e., foreign = 0)
- ► The coefficient for Weight (β_1) is 3.320
 - ► This tells us how much (in \$) the price increases for each additional lb of weight, holding import status constant
- ► The coefficient for Import Status (β_2) is 3637.001
 - This tells us how much (in \$) the price increases when you move from a domestic car (foreign = 0) to a foreign car (foreign = 1), holding weight constant

$$\widehat{\mathsf{Price}} = -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(\mathsf{Import\ Status})$$

- Our y intercept, or constant, is -4942.844
 - This tells us the price of a car when the weight of the car is 0 and when the car is built domestically (i.e., foreign = 0)
- ▶ The coefficient for Weight (β_1) is 3.320
 - This tells us how much (in \$) the price increases for each additional lb of weight, holding import status constant
- ► The coefficient for Import Status (β_2) is 3637.001
 - This tells us how much (in \$) the price increases when you move from a domestic car (foreign = 0) to a foreign car (foreign = 1), holding weight constant

$$\widehat{\mathsf{Price}} = -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(\mathsf{Import\ Status})$$

- Our y intercept, or constant, is -4942.844
 - ► This tells us the price of a car when the weight of the car is 0 and when the car is built domestically (i.e., foreign = 0)
- ▶ The coefficient for Weight (β_1) is 3.320
 - This tells us how much (in \$) the price increases for each additional lb of weight, holding import status constant
- ▶ The coefficient for Import Status (β_2) is 3637.001
 - ▶ This tells us how much (in \$) the price increases when you move from a domestic car (foreign = 0) to a foreign car (foreign = 1), holding weight constant

Why does the line move based on import status?

$$\begin{split} \widehat{\mathsf{Price}} &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(\mathsf{Import\ Status}) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(0) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) \end{split}$$

But...

$$\begin{split} \widehat{\mathsf{Price}} &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(\mathsf{Import Status}) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(1) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) + 3637.001 \\ &= (-4942.844 + 3637.001) + (3.320737)(\mathsf{Weight}) \\ &= -1305.843 + (3.320737)(\mathsf{Weight}) \end{split}$$

Why does the line move based on import status?

$$\begin{split} \widehat{\mathsf{Price}} &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(\mathsf{Import\ Status}) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(0) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) \end{split}$$

But...

$$\begin{split} \widehat{\mathsf{Price}} &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(\mathsf{Import Status}) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) + (3637.001)(1) \\ &= -4942.844 + (3.320737)(\mathsf{Weight}) + 3637.001 \\ &= (-4942.844 + 3637.001) + (3.320737)(\mathsf{Weight}) \\ &= -1305.843 + (3.320737)(\mathsf{Weight}) \end{split}$$

- Let's return to the labor market data we saw last week
- ▶ We have a theory that more work experience (in years) will tend to correlate with a higher hourly wage (in \$)
- But education may be a confounding factor
 - More years of education may increase wages (high skilled labor)
 - May also imply less work experience, as individuals may delay labor force entry while completing education

So we model wage as a function of experience and education:

$$\mathsf{Wage} = \alpha + \beta_1(\mathsf{Experience}) + \beta_2(\mathsf{Education})$$

reg wage exp	erience educa	tion					
Source	ss	df	MS	Numbe	er of ob	s =	2,244
				- F(2,	2241)	=	194.77
Model	11010.6	2	5505.3	B Prob	> F	=	0.0000
Residual	63343.7305	2,241	28.2658325	5 R-squ	uared	=	0.1481
				– Adj I	R-square	d =	0.1473
Total	74354.3305	2,243	33.1495009	Root	MSE	=	5.3166
wage	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
experience	.2616056	.0248373	10.53	0.000	.2128	992	.310312
education	.6483343	.045426	14.27	0.000	.5592	528	.7374158
_cons	-4.002059	.6245962	-6.41	0.000	-5.226	906	-2.777211

Here's our regression equation:

$$\widehat{\mathsf{Wage}} = -4.002 + (0.261)(\mathsf{Experience}) + (0.648)(\mathsf{Education})$$

What does it mean to hold a variable constant?

$$\widehat{\text{Wage}} = -4.002 + (0.261)(\{0, 1, 2, \dots, 30\}) + (0.648)(6)$$

