

## ND-1

## Bis (2-ethylhexyl) phtalate MW 390.6



FIG. 2A



IND-1 (concentration)

FIG. 2B



B-galactosidase activity (U)







FIG. 5B





inducibility (X-fold)



Fold induction

FIG. 7



FIG. 8



nolA-lacZ fusion

FIG. 9



FIG. 10



FIG. 11A



Cell density (A<sub>600</sub>)

FIG. 11B



FIG. 11C



## Inoculant

A. Inhibitor resistant B. japonicum (e.g., NolA mutant)



Indigenous B. japonicum (sensitive to inhibitor)

## FIG. 13



Figure 14A



Figure 14B

| RATIO OF<br>NWSB:110 | % OCCUPANCY BY<br>NWSB MUTANT |      |
|----------------------|-------------------------------|------|
|                      | Untreated                     | ВЕНР |
| 1:10 (A)             | 0                             | 11   |
| (B)                  | 2                             | 0    |
| 10:1 (A)             | 83                            | 95   |
| (B)                  | 93                            | 92   |
| 1:1 (A)              | 57                            | 78   |
| 1:1 (B)              | 40                            | 74   |

Figure 15



Figure 16



Figure 17

| STRAIN                                          | NolA-lacZ expression (fold induction) | +/- induction |
|-------------------------------------------------|---------------------------------------|---------------|
| Bradyrhizobium japonicum USDA 110               | 8.0                                   | +++++         |
| Rhizobium Loti NZP2037                          | 3.0                                   | ++            |
| Rhizobium lupini                                | 2.8                                   | ++            |
| Sinorhizobium meliloti AK631                    | 3.5                                   | ++            |
| Sinorhizobium meliloti 1021                     | 2.4                                   | +             |
| Rhizobium leguminosarum                         | 3.0                                   | ++            |
| Sinorhizobium sp. NGR234                        | 3.0                                   | ++            |
| Pseudomonas fluorescens 5R                      | 0.9                                   | -             |
| Pseudomonas fluorescens DFC50                   | 0.8                                   | ~_            |
| Pseudomonas aeruginosa PAO1                     | 1.0                                   | -             |
| Pseudomonas syringae B3A                        | 1.1                                   | -             |
| Pseudomonas syringae B457                       | 1.2                                   | -             |
| Pseudomonas aureofaciens Q2A7                   | 1.0                                   | -             |
| Agrobacterium GV101                             | 2.7                                   | ++            |
| Agrobacterium LB4404                            | 2.4                                   | +             |
| Marine isolate, gamma proteobacterium (Uwo.Ps)  | 1.2                                   | -             |
| Marine isolate, gamma proteobacterium (uwo.stk) | 1.1                                   |               |
| Marine isolate, gamma proteobacterium (uwo.mor) | 0.9                                   | -             |
| Aeromonas caviae                                | 1.8                                   | -             |
| Vibrio harveyii                                 | 2.4                                   | -             |
| Vibrio natriegens                               | 1.3                                   | -             |
| Vibrio splendidus                               | 2.5                                   | -             |
| Rhodopseudomonas palustris                      | 2.7                                   | ++            |
| Salmonella typhi                                | 1.1                                   | -             |
| Salmonella enterditis                           | 1.0                                   | _             |
| Salmonella typhi 284                            | 1.0                                   |               |
| M. smeraglitis                                  | 1.0                                   | -             |

FIG. 18