#### Welcome to Physics 212 - Fall 2025!



#### Instructor

Prof. Chao Qian chaoq@intl.zju.edu.cn



Prof. Ruisheng Diao ruishengdiao@intl.zju.edu.cn



#### Course Structure

#### There are several parts, all are important:

- Online Prelectures (animated textbook, <u>before lecture</u>)
- Online CheckPoints (check knowledge, before lecture)
- Lectures interactive, address issues found by checkpoints.
- Online Homework (first deadline next week)
- Discussion Sections (start this week)
- Exams (don't worry about that yet!)









# Syllabus...



#### PHYS 212 Fall 2025

#### University Physics: Electricity & Magnetism

Instructor: Prof. Chao Qian & Prof. Ruisheng Diao

Contact Information

Email: chaoq@intl.zju.edu.cn Email: ruishengdiao@intl.zju.edu.cn

TAs: Yizhe Shen, Simeng Yan, Yucong Gao, Jinru Cai, Yurong Wang, Jing

Weng, Kai Wang, Yaxing Zhang

Login the online system to find your pre-lectures and homework:

https://byteshelf.physics.illinois.edu/

#### **PHYS 212 Class Schedule**

#### Fall 2025

| Week | Date                   | Event                                        | Reading                    | Notes                   |
|------|------------------------|----------------------------------------------|----------------------------|-------------------------|
| 1    | Monday<br>9/15/2025    | Lecture 1: Introduction and<br>Coulomb's Law | OpenStax<br>Vol. 2 5.1-5.3 |                         |
|      | Monday<br>9/15/2024    | Discussion 1-8                               |                            |                         |
|      | Wednesday<br>9/17/2024 | Lecture 2: Electric Fields                   | 5.4-5.5                    |                         |
| 2    | Monday<br>9/22/2024    | Lecture 3: Electric Fields and Electric Flux | 5.6, 5.7, 6.1              |                         |
|      | Monday<br>9/22/2024    | Discussion 1-8                               |                            | Quiz 1                  |
|      | Wednesday<br>9/24/2024 | Lecture 4: Gauss's Law                       | 6.2-6.4                    |                         |
| 3    | Monday<br>9/29/2024    | Lecture 5: Electric Potential                | 7.1                        |                         |
|      | Monday<br>9/29/2024    | Discussion 1-8                               |                            | Quiz 2                  |
|      | Wednesday<br>10/1/2024 | No class                                     |                            | National Day<br>Holiday |

# Grading...

#### 14 weeks in this semester (except holiday)

Your final grade for Physics 212 will be based upon your total score on all the components of the course. The total possible score is 1000 points.

| Course component           | Number of assignments | Number dropped per<br>semester | Maximum points per<br>semester |
|----------------------------|-----------------------|--------------------------------|--------------------------------|
| Prelectures                | 28                    | 3                              | 25                             |
| Checkpoints                | 28                    | 3                              | 25                             |
| Lecture<br>(Participation) | 28                    | 3                              | 50                             |
| Homework                   | 14                    | 1                              | 130                            |
| Discussion quizzes         | 10                    | 1                              | 130                            |
| Labs                       | 9                     | 1                              | 120                            |
| Hour exams                 | 3                     | 0                              | 3 X 80= 240                    |
| Final exam                 | 1                     | 0                              | 280                            |

#### **Bonus Points: 25 points**

You will have an opportunity to earn up to 25 bonus points via the following activities.

- answering Online Quiz correctly in lecture (15 points)
- participating in activity correctly in discussion (10 points)

The bonus points will be distributed among any assignment scores except exam scores when calculating your final score at the end of the semester.

| Final Grade | Minimum Points |
|-------------|----------------|
| A+          | 970            |
| A           | 930            |
| A-          | 900            |
| B+          | 870            |
| В           | 830            |
| B-          | 800            |
| C+          | 770            |
| C           | 730            |
| C-          | 700            |
| D+          | 670            |
| D           | 630            |
| D-          | 600            |
| F           | <600           |

# Smart Physics



https://byteshelf.physics.illinois.edu/

#### Prelectures: Just Do It





#### Time Spent Viewing Item (N = 522)



#### iClicker Cloud!







For 15:00-15:50, select PHYS 212 (class 1)

For 16:00-16:50, select PHYS 212 (class 2)

https://www.iclicker.com/students/

## Pop Quiz



- Can you make it to the breakout room and back?
- A) Yes
- B) No
- C) I'm trying to use my old physical iClicker and the vote's not registering!
- D) Can I vote by mail?

# About me...

# Electricity & Magnetism Lecture 1

#### Today's Concepts:

- A) Coulomb's Law
- B) Superposition

#### Coulomb's Law:

The force on a charge due to another charge is proportional to the product of the charges and inversely proportional to the separation squared.



The force is always parallel to a line connecting the charges, but the direction depends on the signs of the charges:



#### **Balloons**



Take two balloons and rub them both with a piece of cloth.
After you rub them they will:



- A) Attract each-other
- B) Repel each-other
- C) Either it depends on the material of the cloth



#### **Balloons**

If the same thing is done to both balloons they will acquire the same sign charge.

#### They will repel!



#### Coulomb's Law

#### Our notation:

 $\vec{F}_{1,2}$  is the force by 1 on 2 (think "by-on")  $\hat{r}_{1,2}$  is the unit vector that points from 1 to 2.

$$\vec{F}_{1,2} = \frac{kq_1q_2}{r_{1,2}^2} \hat{r}_{1,2}$$

what is 'k'?

#### Examples:

If the charges have the same sign, the force **by** charge 1 on charge 2 would be in the direction of  $r_{12}$  (to the right).

$$\vec{r}_{1,2}$$
  $\vec{r}_{1,2}$ 

If the charges have opposite sign, the force **by** charge 1 on charge 2 would be opposite the direction of  $r_{12}$  (left).

$$\vec{r}_{1,2}$$
  $\vec{r}_{1,2}$ 

# Example: Coulomb Force

Two iron paperclips are separated by 3 meters. Then you remove 1 electron from each atom on the first paperclip and place it on the second one.

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

$$k = 9 \times 10^9 \text{ N m}^2 / \text{C}^2$$

electron charge =  $1.6 \times 10^{-19}$  Coulombs

$$N_A = 6.02 \times 10^{23}$$

Iron molar mass ∼ 56 grams/mol

mass of paper clip  $\sim$  1 grams

What will the direction of the force be?

- A) Attractive
- B) Repulsive

## Example: Coulomb Force

Two iron paperclips are separated by 3 meters. Then you remove 1 electron from each atom on the first paperclip and place it on the second one.

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

$$k = 9 \times 10^9 \text{ N m}^2 / \text{C}^2$$

electron charge =  $1.6 \times 10^{-19}$  Coulombs

$$N_A = 6.02 \times 10^{23}$$

Iron molar mass ∼ 56 grams/mol

mass of paper clip  $\sim$  1 grams

Which weight is closest to the approximate force between those paperclips (recall that weight = mg,  $g = 9.8 \text{ m/s}^2$ )?

- A) Paperclip (1 grams x g)
- B) Text book (1 kg x g)
- C) Truck  $(10^4 \text{ kg x } g)$
- D) Aircraft carrier  $(10^8 \text{ kg x } g)$
- E) Mt. Everest  $(10^{14} \text{ kg x } g)$

$$F = 9e9 \times (1.6e-19 * 1e22)^2 / 10 = 2 e 15$$
 Newtons

#### Check Point 1

1) Two charges  $q = \pm 1 \mu C$  and  $Q = \pm 10 \mu C$  are placed near each other as shown in the figure. Which of the following diagrams depicts the forces acting on the charges:



- A) bigger charge experiences a bigger force
- B) Newton's 3rd law says the forces must be equal and opposite.
- C) Bigger charge creates a bigger force

## Superposition:

If there are more than two charges present, the total force on any given charge is just the vector sum of the forces due to each of the other charges:



 $\vec{F}_1 = \vec{F}_{2.1} + \vec{F}_{3.1} + \vec{F}_{4.1} + \dots$ 

#### Check Point 2



What happens to the magnitude of the Force on  $q_1$  if its sign is changed from negative to positive?

- A)  $|F_1|$  increases
- B)  $|F_1|$  remains the same
- C)  $|F_1|$  decreases
- D) Need more information to determine



The direction of all forces changes by 180° – the magnitudes stay the same:



$$\vec{F}_1 = \vec{F}_{2,1} + \vec{F}_{3,1} + \vec{F}_{4,1} + \dots$$



$$-\vec{F}_1 = -\vec{F}_{2,1} - \vec{F}_{3,1} - \vec{F}_{4,1} - \dots$$

#### Check Point 3

Four positively charged particles are placed on a circular ring with radius 3 m as shown below. A particle with positive charge Q is placed in the center of the ring

What is vertical force on Q?

A) 
$$F_{v} > 0$$
 B)  $F_{v} = 0$  C)  $F_{v} < 0$ 



- A) Part of the charges of the 3 q objects go towards a force in the x direction so the total force of the 3 in the y direction will be less than 3q leaving the net force of Q to point in the direction of the 3q object which is positive.
- B) The magnitude of the charge on top is equal to the 3 charges on bottom so they cancel each other out.
- C) The 3q charge exerts a downward force on the Q charge. The bottom three q charges exert a upward force on the Q charge. Because those bottom two q charges are exerting a diagonal force, the force in the y-direction is less than the actual force exerted. The magnitude of the downward force would be greater than the sum of the upward forces.

#### Takeaways!

**Course logistics** 

Should be able to apply Coulomb's law

Determine direction and magnitude of electric force

Should be able to apply superposition of forces

Determine direction and magnetic of net electric force

Wedding: electric fields!

## See you Thursday!

Discussion Sections meet this week!

Be sure to complete prelecture 1 and checkpoint 1.

Start on Homework 1 now!

will involve you in smart physics today!