

Paramétrage du robot

D.1 Définition des axes

D.2 Paramétrage et caractéristiques d'inertie

Dans toute l'étude, la liaison pivot d'axe (O, \vec{z}_0) est bloquée. Les bases \mathcal{B}_0 et \mathcal{B}_1 sont confondues;

Paramètres géométriques : $\overrightarrow{AB} = L_2 . \overrightarrow{z}_2$ $\overrightarrow{BE} = L_3 . \overrightarrow{z}_3$ $\overrightarrow{AH} = -R . \overrightarrow{x}_2$ $\overrightarrow{AK} = -c . \overrightarrow{x}_1$ $\overrightarrow{KH} = \lambda(t) . \overrightarrow{x}_7$

 $\theta_2 = (\overrightarrow{z_1}, \overrightarrow{z_2}) = (\overrightarrow{x_1}, \overrightarrow{x_2}) \quad \text{avec} \quad \overrightarrow{y_1} = \overrightarrow{y_2}$ Paramètres angulaires : $\theta_3 = (\overrightarrow{z_2}, \overrightarrow{z_3}) = (\overrightarrow{x_2}, \overrightarrow{x_3}) \quad \text{avec} \quad \overrightarrow{y_2} = \overrightarrow{y_3}$

 $\theta_7 = (\widehat{\vec{z}_1}, \widehat{\vec{z}_7}) = (\widehat{\vec{x}_1}, \widehat{\vec{x}_7})$ avec $\vec{y}_7 = \vec{y}_1$

Élément	Repère associé	Centre d'inertie	Masse	Matrice d'inertie
0	$\mathcal{R}_0 = (O, \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0)$	_	_	
1	$\mathcal{R}_1 = (A, \overrightarrow{x}_1, \overrightarrow{y}_1, \overrightarrow{z}_1)$			
2	$\mathcal{R}_2 = (A, \overrightarrow{x}_2, \overrightarrow{y}_2, \overrightarrow{z}_2)$	$\overrightarrow{AG_2} = a_2 . \overrightarrow{Z}_2$	m_2	$\mathbb{I}(A,2) = \begin{bmatrix} A_2 & 0 & -E_2 \\ 0 & B_2 & 0 \\ -E_2 & 0 & C_2 \end{bmatrix}_{\mathcal{B}_2}$
3	$\mathcal{R}_3 = (B, \overrightarrow{x}_3, \overrightarrow{y}_3, \overrightarrow{z}_3)$	$\overrightarrow{BG_3} = a_3. \overrightarrow{Z}_3 - b_3. \overrightarrow{X}_3$	m_3	$\mathbb{I}(B,3) = \begin{bmatrix} A_3 & 0 & -E_3 \\ 0 & B_3 & 0 \\ -E_3 & 0 & C_3 \end{bmatrix}_{\mathcal{B}_3}$
Е	_	Е	m_E	
7	$\mathcal{R}_7 = (K, \overrightarrow{X}_7, \overrightarrow{y}_7, \overrightarrow{Z}_7)$			
8	$\mathcal{R}_8 = (H, \overrightarrow{x}_7, \overrightarrow{y}_7, \overrightarrow{z}_7)$			

On note \mathcal{B}_i , la base $(\overrightarrow{x}_i, \overrightarrow{y}_i, \overrightarrow{z}_i)$.