Diagnóstico de Problemas en los Modelos

TC3006C

Dataset division (splitting)

Problems?

 Data selected usually has noise or randomness

- Randomness can be:
 - Explicit in the algorithm
 - Explicit in the selection of training data
 - Implicit in data

 Randomness produces variance (stochastic)

• **Model Variance**: every time we split a dataset, we usually get different accuracy results

Solution A - Repeat several times

Procedure

- Split dataset several times
- Register accuracy each time
- Record the average accuracy and standard deviation

Problems

- Some data instances may have not been selected
 - Either for training or testing
- Some other instances may have been selected several times
- May skew results

Solution B - Cross validation

- Create **folds**: split data into k subsets
- Each instance is used an equal number of times for testing and for training

- Train *k* times
 - Each time a different fold is used for testing
 - The other *k-1* folds are used for training
- Useful when data is not large
 - With large data a "normal" split is enough

Example cross validation k=5

Solution B - Cross validation...

Advantages

- Gives an unbiased estimation of an algorithm's performance
- Helps to understand how the model is generalizing
- Helps in Hyperparameter Tuning

Disadvantages

- Increases training time
- Needs expensive computation
- Cross validation itself uses randomness

Solution C - Multiple Cross Validation

Procedure

 Run Cross Validation several times

Record mean and standard deviation

Disadvantages

Computationally expensive

Cross validation is for checking

- Cross validation allows us to check how good is our model for learning on a given dataset
- Based on the result of cross validation, we can select the best model

- It helps to compare several models (for instance, kNN vs linear regression)
- When building the final model, we use all our data for training

Bias, variance and fitting

Prediction Errors

Bias

- Difference between the real value to predict and the value being predicted
- · Bias can be seen as error in test data
- Error introduced due to wrong assumptions made on nature of data
 - Assuming is linear when is quadratic
- High bias models:
 - Oversimplifies model
 - Not accurate with real data (misses data points)
 - Misses relations between target and features
 - Usually means underfitting

Variance

- Variability of a model prediction for a data point
- Shows how similar bias error is from sample to sample
- Can be seen as error in training data
- A very complex and sensitive to minor variations model usually has high variance
 - Example: high degree polynomial model
- High variance models:
 - Perform very well on training data
 - Performs poorly on unseen data (test data)
 - Focuses on noise (irrelevant relations)
 - Usually means overfitting

Bias vs Variance

Fortmann-Roe's Analogy

$Err(x) = Bias^2 + Variance + Irreducible Error$

http://scott.fortmann-roe.com/docs/BiasVariance.html

High variance High bias

Low variance Low bias

Low variance High bias

Overfitting and Underfitting

Overfitting

 Model learns every detail of a dataset (rote learning)

 Usually a model has low bias and high variance

Underfitting

Model does not generalize

 Model unable to capture underlying pattern in data

Usually, high bias and low variance

Overfitting and Underfitting

$Err(x) = Bias^2 + Variance + Irreducible Error$

Balancing Variance and Bias

Select best algorithm for data

Use regularization techniques

 Reduce features (dimensions) Tune hyperparameters

Reduce error

Use cross validation

Model Evaluation

Confusion Matrix

- N x N matrix
 - N = number of classes
- Evaluates performance of a classification model

 Compares actual target values with predicted values

Actual Values

https://www.python-course.eu/images/confusion.matrix_image.png

Predicted values

Binary confusion matrix

https://cdn. analytics vid hya.com/wp-content/uploads/2020/04/Basic-Confusion-matrix.png

- True Positive (TP)
 - Predicted value matches actual
 - Both were positive
- True Negative (TN)
 - Predicted value matches actual
 - Both are negative
- False Positive (FP)
 - Type I error
 - Predicted value falsely predicted
 - Actual value Negative
- False Negative (FN)
 - Type II error
 - Predicted value falsely predicted
 - Actual value Positive

Confusion matrix metrics

- Accuracy
 - Fraction of predictions model correctly classified

•
$$Accuracy = \frac{Correct\ predictions}{Total\ number\ predictions}$$

- For binary classification
 - $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$
- Very simple, but does not take into consideration class imbalances and data unevenly distributed

Confusion matrix metrics...

- Precision
 - Proportion predicted positives identified correctly
 - $Precision = \frac{TP}{TP+FP}$
- Recall (Sensitivity)
 - Proportion actual positives identified correctly
 - $Recall = \frac{TP}{TP + FN}$
- Specificity
 - Proportion **actual negatives** identified correctly
 - Specificity = $\frac{TN}{TN+FP}$

- Precision used when FP is a higher concern than FN
 - From the positives, how many are really positive?
- Recall used when there is a high cost associated with FN
 - How many positive were correctly classified?
 - A higher recall ensures more actual positive values are being identified

Confusion matrix metrics...

- F1 Score
 - Helps understand balance between Precision and Recall

•
$$F1 = \frac{2}{\frac{1}{recall}x\frac{1}{precision}} = 2x \frac{precision \times recall}{precision + recall} = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

- Values range from 0 to 1
 - A value close to 1 means it is a better model
- Used when
 - there is a need to balance this two metrics
 - Not easy to decide if Type I or Type II errors is preferred

ROC & AUC

- When a classifier is not reporting the values we desire, we can move the threshold for classification
- Moving threshold can increase/decrease recall, precision and specificity values
- ROC and AUC can help us determine the best threshold
 - Receiver Operator Characteristic (ROC)
 - Area Under the Curve (AUC)

ROC

- Summarizes all confusion matrices produced with different thresholds
- Diagonal line is where TP rate is equal to FP rate
- Points above the diagonal represent a good classifier
- The best classifier would be (1,0)

AUC

- Helps to compare different ROC graphs
- The greater the value of the AUC, the better the model is for classifing that data

References

- Alpaydin, Ethem (2004). *Introduction to Machine Learning*. The MIT Press.
- Mitchell, Tom (1997). Machine Learning. WCB McGraw-Hill.
- Edwards, Gavin (2018). Machine Learning, an introduction. Towards Data Science (https://towardsdatascience.com/machinelearning-an-introduction-23b84d51e6d0)
- Josh Starmer (2019). ROC and AUC clearly explained! StatQuest with Josh Starmer, YouTube Channel