

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM: Al2002 Artificial Intelligence (AI)

COURSE DESCRIPTION FORM

FAST School of Computing, National University of Computer INSTITUTION and Emerging Sciences, Karachi

PROGRAM TO BE **EVALUATED**

BS-CS- Spring 2023

Course Description	on										
Course Code	Al2002 / AL2002										
Course Title	Artificial Intelligence	ficial Intelligence									
Credit Hours	3+1										
Prerequisites by Course(s) and Topics											
Grading Policy	Absolute grading	plute grading									
Policy about missed assessment items in the course	For a missed midterm/ final ex evidence are required to be	Retake of missed assessment items (other than midterm/ final exam) will not be held. For a missed midterm/ final exam, an exam re-take/ pre-take application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee will decide the exam re-take/ pre-take cases.									
Course Plagiarism Policy		Plagiarism in project or midterm/ final exam may result in F grade in the course. Plagiarism in an assignment will result in zero marks in the whole assignments category.									
Assessment Instruments with	75% Theory 25% Practical Assessment Items										
Weights (homework,	Assessment Item	Number	Weight (%)								
quizzes, midterms,	Assignments + Quizzes	3+3 (best 2)	10 + 5								
final, programming	Midterm Exam	2	15 each								
assignments, lab work, etc.)	Project (Theory / Lab)	1	10								
, etc./	Final Exam	1	50								
Course Instructors											
Lab Instructors (if any)											
Course Coordinator	Dr. Muhammad Farrukh Shah	id									
URL (if any)											
Current Catalog Description			nowledge representation, problem solving, and completion, students should be able to develop								

Textbook (or Laboratory Manual	the role of knowledge representation, problem solving, and learning in intelligent-system engineering; and appreciate the role of problem solving, vision, and language in understanding human intelligence from a computational perspective. 1. Stuart Russell and Peter Norvig, Artificial Intelligence. A Modern Approach, 3rd edition, Prentice Hall, Inc., 2010.
for Laboratory Courses)	
Reference Material	

NCEAC.FORM.001-D

Course Learning Outcomes

A. Course Learning Outcomes (CLOs)

(On successful	completion	of this cours	e students will	have to	know how of:

CLO	Name	Domain	Taxonomy Level	PLO	Tools
01	To recognize the notions of rational behavior and intelligent agents.	Cognitive	C2 (Understanding)	2	Α, Μ
02	To identify and relate of methods of blind as well as informed search and ability to practically apply the corresponding techniques.	Cognitive	C2 (Understanding)	2	A, M, F
03	To demonstrate understanding and ability to implement the major concepts, approaches and research in evolutionary algorithms, constraint satisfaction problems, probabilistic reasoning, supervised and unsupervised learning and other Al areas.	Cognitive	C2 (Understanding) C3 (Applying)	3	A, M, F

Tool: A = Assignment, Q = Quiz, M = Midterm, F=Final

or not. Leave the	te below, indicate whether this attribute is covered in this e cell blank if the enablement is little or non-existent.	cours
1. Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	
2. Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.	~
3. Design/ Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	~
4. Investigation & Experimentation	Conduct investigation of complex computing problems using research-based knowledge and research-based methods.	
5. Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modeling for complex computing problems.	
6. Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.	
7. Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems.	
8. Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	

9. Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
10. Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
11. Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
12. Lifelong Learning	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Mapping of CLOs on PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)													
PLOs													
		1	2	3	4	5	6	7	8	9	10	11	12
	1		>										
CLOs	2		>										
	3			~									

Topics covered in							
the course with							
number of							
lectures on each							
topic (Assume 15							
weeks of instruction							
and 1 hour lecture							
duration)							

Topics to be covered								
List of Topics	Week	No. of Weeks	Contact Hours	CLO(s)				
Introduction: Introduction to AI, Foundations of AI, History of AI, AI in industry, the concept of neurons and neural networks, Basic components of AI (1 Lecture) Identifying AI systems, Branches of AI, (1 Lecture)	1	1	3	1				
Intelligent Agents Agents and Environments, sensors, actuators, (1 Lecture)								
The Concept of Rationality, Performance measures, Rationality, Rationality V/S Omniscience (1 Lecture)								
The Nature of Environment, Performance, Environment, Actuators and Sensors (PEAS), Agent Types, Properties of environments, The structure of Agents (1 Lecture)	2	1	3	1,2,3				
Problem Representation: Introduction to Trees and Graphs (1 Lecture) Assignment no 1 Release								
(Start of Week 2)								
Problem Solving by Searching: Problem Solving agents, Components of Problem, formulating problems, Searching for Solutions (2 Lecture)	3	1	3	1,2,3				
Measuring problem-solving performance, Uniformed Searching, (1 Lecture) Assignment no 1 Submission (End of Week 2)								
Informed Heuristic search strategies		1	3	1,2,3				

(1 Lecture)				
Local searching:				
(1 Lecture)				
Constraint Satisfaction Problems (1 Lecture)				
Assignment no 2 Release (Start of Week 4)				
Constraint Satisfaction Problems Backtracking search for CSPs, Local search constraint satisfaction problems (2 Lectures)	5	1	3	
The structure of problems (1 Lecture)		'	3	
Assignment no 2 Submission (End of Week 5)				
WEEK 6	MID -	1 Exam		
Adversarial Search, Games, Optimal decisions in Games, The minimax algorithm, Alpha beta pruning (2 Lectures)	7			
Logical Agents, First Order Logic, Inference in First-Order Logic (1 Lecture)		1	3	2,3
Assignment no 3 Release (Start of Week 7)				
Uncertainty, acting under uncertainty, Uncertainty in AI, Fuzzy Logic Basic Probability, Conditional Probability, Bayes Rule, Probabilistic Reasoning, representing Knowledge in an Uncertain Domain (2 Lecture)	8	1	3	2,3
Bayesian Networks,				
(1 Lecture)				

Т					1
	Dynamic Bayesian Network (1 Lecture)				
	Introduction to Model-driven and Dadriven approach and Review on Probability and Linear Algebra, Performance evaluation [ROC, Confusion Matrix]. Supervised Learning methods: Linear Regression Logistic Regression (2 Lectures)	9	1	3	2,3
	Non-parametric Methods, Decision Trees (1 Lectures)				
	Neural Networks, Units in NN, Single Layer Feed-forward and Mult Layer Feed-Forward NN. (1 Lecture)	10	1	3	
	Unsupervised Learning methods				
	Clustering (K-mean) (1 Lecture)				
	Assignment no 3 Submission (End of Week 10)				
	Week 11	MID -	2 Exam		
	Reinforcement Learning	12			
	Agent, environment, reward, state, policy, Q value, model of the environment.				
	Reinforcement learning algorithms, (3 Lectures)		1	3	2,3
	Assignment no 4 Release (Start of Week 12)				
	Reinforcement Learning	13			
	Type of Reinforcement learning Popular models of RL (Q and Marko decision process	v	1	3	2,3

	(3 Lectures)						
	Assignment no 4 Submission (End of Week 13)						
	Recent trends in of Al algorithms Trends, Case study of Al s Detection], (3 Lectures)	14	1	3	1,2		
	Revision			1	3		
	Week 16	Final Exam					
	Review		1	3	1,2,3		
	Total			16	48		
Laboratory Projects/Experime nts Done in the Course	Lab content is me	entioned on the page	number	11 of this docu	ment.		
Programming Assignments Done in the Course	All the assignment	s would be programm	ing based	l (e.g., C++, Java	, Python)		
Class Time Spent	Theory (%)	Problem Analysi (%)	s So	olution Design (%)	Social and Ethica		
(in percentage)	50	25		20		5	
Oral and Written Communications		equired to submit at lea mat. Students will also nere necessary.					

NCEAC.FORM.001-D

Al Lab Learning Outcomes

A. LAB Course Learning Outcomes (CLOs)

On successful completion of this course lab students will have to know how of:

CLO	Name	Domain	Taxonomy Level	PLO	Tools
01	To identify and implement the methods of blind as well as informed search and ability to practically apply the corresponding techniques.	Cogilitive,	C2 (Understanding) C3 (Applying)	3	A, M, F
02	To demonstrate understanding and ability to implement the major concepts, approaches and research in evolutionary algorithms, constraint satisfaction problems, probabilistic reasoning, supervised and unsupervised learning and other Al areas.	Cognitive, Psychomotor	C2 (Understanding) C3 (Applying)	3	A, M, F

Tool: A = Assignment, Q = Quiz, M = Midterm, F=Final

B. Program Learning Outcomes

For each attribute below, indicate whether this attribute is covered in this course or not. Leave the cell blank if the enablement is little or non-existent.

1. Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.
2. Problem	Identify, formulate, research literature, and analyze

Analysis		complex	computing	problems,	reaching
		substantiate	d conclusions	using first p	rinciples of
		mathematics	s, natural sci	iences, and	computing
		sciences.			
3 Do	sian/	Docian colu	tions for comm	nlay computir	a probleme

3. Design/	Design solutions for complex computing problems						
Develop	and design systems, components, and processes						
Solutions	that meet specified needs with appropriate						
	consideration for public health and safety, cultural,						
	societal, and environmental considerations.						

cooletai, and environmental conclusione.						
4. Investigation &	Conduct investigation of complex computing					
Experimentation	problems using research-based knowledge and					
	research-based methods.					
5. Modern Tool	Create, select, and apply appropriate techniques,					

Usage	resources and modern computing tools, including prediction and modeling for complex computing problems.
6. Society	Apply reasoning informed by contextual knowledge
Responsibility	to assess societal, health, safety, legal, and cultural

issues relevant to context of complex computing

	problems.
7. Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems.

	The state of the s
8. Ethics	Apply ethical principles and commit to professional
	ethics and responsibilities and norms of computing
	practice.

9. Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
10. Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
11. Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
12. Lifelong Learning	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Mapping of CLOs on PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)													
							PLC)s					
		1	2	3	4	5	6	7	8	9	10	11	12
LOs	1			~									
CL	2			>									

NCEAC.FORM.001-D

Lab/ Practical Component of the course

Weeks	Contents/Topics	Assessment Items (Case Study/ Exercise Assignment/ Quiz etc.)
	Getting familiarization to the Python- It's famous IDE and,	
	Introduction to the AI with Practical Examples	
Week 01		
Week-02	Types of Agents and Environments to Implement and Revision of Python concepts and relevant Libraries	Task-1
	Searching Problem Solving by Searching – Uninformed/Blind Search Algorithms Searching Problem Solving by Searching – Informed/Heuristic Based Search	
Week-03		Task 2
Week-04	Demonstration on Raspberry <i>Pi</i> and <i>Arduino board</i> (HARDWARE) <i>Project Announcement</i>	Task 3
	Constraint Satisfaction Problem	
Week-05	Project Proposal Submission	Task 4,
Week-06	Theory MID-1 Exam	,
Week-07	Adversarial Search Evolutionary Search Algorithms	Task 5
Week-08	LAB MID	
Week-09	Dynamic Bayesian Networks, HMM, KF	Task 6
Week-10	Supervised Learning	
Week-11	Theory MID-2 Exam	T
Week-12	Un-Supervised Learning	Task 7,8
Week-13	Reinforcement Learning	Task 9
Week-14	Project Evaluation / Case Study	Task 10
Week-15	Lab Final Exam	Term Project

Practical/ Programming Work/ Tools:
1) Python / Google Colab / Jupyter Notebook

Assessment Instruments with Weights (Homework, quizzes, midterms, final, programming assignments, lab work, etc.)

Assessment Item	Number	Weight (%)
Project	1	10
Lab Tasks	10	20

NCEAC.FORM.001-D

Lab Mid Term	1	20
Final Exam	1	50

Grading Policy: Absolute