

شبكههاي عصبي مصنوعي

جلسه نهم:

پرسپترون چند لایه (۵) (Multi-Layer Perceptron = MLP)

یافتن ساختار بهینه برای MLP:

یافتن ساختار بهینه برای MLP:

- به دو روش می توان این کار را انجام داد:

یافتن ساختار بهینه برای MLP:

- به دو روش می توان این کار را انجام داد:
- ۱ رشددادن شبکه (Network Growing):

با تعداد کمی سلول در لایه(های) پنهان شروع کرده و به تدریج سلول یا لایه پنهان به آن اضافه می کنیم.

یافتن ساختار بهینه برای MLP:

- به دو روش می توان این کار را انجام داد:
- ۱– رشددادن شبکه (Network Growing):

با تعداد کمی سلول در لایه(های) پنهان شروع کرده و به تدریج سلول یا لایه پنهان به آن اضافه می کنیم.

۲- هرس کردن شبکه (Network Pruning):

با یک شبکه بزرگ شروع کرده و سپس وزنهای معینی را تضعیف یا قطع میکنیم.

یافتن ساختار بهینه برای MLP:

- به دو روش می توان این کار را انجام داد:
- ۱- رشددادن شبکه (Network Growing):

با تعداد کمی سلول در لایه(های) پنهان شروع کرده و به تدریج سلول یا لایه پنهان به آن اضافه می کنیم.

۲- هرس کردن شبکه (Network Pruning):

با یک شبکه بزرگ شروع کرده و سپس وزنهای معینی را تضعیف یا قطع میکنیم.

یافتن ساختار بهینه برای MLP:

- به دو روش می توان این کار را انجام داد:
- ۱- رشددادن شبکه (Network Growing):

با تعداد کمی سلول در لایه(های) پنهان شروع کرده و به تدریج سلول یا لایه پنهان به آن اضافه می کنیم.

۲- هرس کردن شبکه (Network Pruning):

با یک شبکه بزرگ شروع کرده و سپس وزنهای معینی را تضعیف یا قطع میکنیم.

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

 $E(\mathbf{w})$ سطح خطا، تابعی است از وزنهای شبکه •

یافتن ساختار بهینه برای MLP:

- به دو روش می توان این کار را انجام داد:
- ۱- رشددادن شبکه (Network Growing):

با تعداد کمی سلول در لایه(های) پنهان شروع کرده و به تدریج سلول یا لایه پنهان به آن اضافه می کنیم.

۲- هرس کردن شبکه (Network Pruning):

با یک شبکه بزرگ شروع کرده و سپس وزنهای معینی را تضعیف یا قطع میکنیم.

- $E(\mathbf{w})$ سطح خطا، تابعی است از وزنهای شبکه •
- استفاده از گرادیان دوم سطح خطا نسبت به وزنها برای حذف وزنهای «کمترموثر»

یافتن ساختار بهینه برای MLP:

- به دو روش می توان این کار را انجام داد:
- ۱– رشددادن شبکه (Network Growing):

با تعداد کمی سلول در لایه(های) پنهان شروع کرده و به تدریج سلول یا لایه پنهان به آن اضافه می کنیم.

۲- هرس کردن شبکه (Network Pruning):

با یک شبکه بزرگ شروع کرده و سپس وزنهای معینی را تضعیف یا قطع میکنیم.

- $E(\mathbf{w})$ سطح خطا، تابعی است از وزنهای شبکه •
- استفاده از گرادیان دوم سطح خطا نسبت به وزنها برای حذف وزنهای «کمترموثر»
- استفاده از روش اختلال (Perturbation Method) برای یافتن وزنهای «کمتر موثر»

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرسکردن شبکه:

– فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
 - \mathbf{W}_{0} بسط تيلور تابع غيرخطى خطا حول -

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
- $oldsymbol{w_0}$ بسط تیلور تابع غیرخطی خطا حول $oldsymbol{w_0}$

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
 - $\mathbf{W_{0}}$ بسط تيلور تابع غيرخطى خطا حول -

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$E(\mathbf{w}_o) + \delta E = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
 - \mathbf{w}_{o} بسط تیلور تابع غیرخطی خطا حول –

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$E(\mathbf{w}_o) + \delta E = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
 - \mathbf{w}_{0} بسط تیلور تابع غیرخطی خطا حول \mathbf{w}_{0}

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$E(\mathbf{w}_o) + \delta E = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$\delta E = (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
 - \mathbf{W}_{0} بسط تيلور تابع غيرخطى خطا حول -

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$E(\mathbf{w}_o) + \delta E = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$\delta E = (\nabla_{\mathbf{w}} E \Big|_{\mathbf{w} = \mathbf{w}_o})^T \, \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T \, (\nabla_{\mathbf{w}}^2 E \Big|_{\mathbf{w} = \mathbf{w}_o}) \, \delta \mathbf{w} + \text{H.O.T.}$$

- با صرفنظرکردن از جملات درجه بالا (.H.O.T) (یعنی فرض میشود که معادله سطح خطا در اطراف نقطه کمینه از درجه ۲ است) و صرفنظرکردن از مشتق مرتبه اول (برای سادهشدن محاسبات):

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
 - \mathbf{W}_{0} بسط تيلور تابع غيرخطى خطا حول -

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$E(\mathbf{w}_o) + \delta E = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$\delta E = (\nabla_{\mathbf{w}} E \Big|_{\mathbf{w} = \mathbf{w}_o})^T \, \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T \, (\nabla_{\mathbf{w}}^2 E \Big|_{\mathbf{w} = \mathbf{w}_o}) \, \delta \mathbf{w} + \text{H.O.T.}$$

- با صرفنظر کردن از جملات درجه بالا (.H.O.T) (یعنی فرض میشود که معادله سطح خطا در اطراف نقطه کمینه از درجه ۲ است) و صرفنظر کردن از مشتق مرتبه اول (برای سادهشدن محاسبات):

$$\delta E \simeq \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w}$$

H: ماتریس مشتق دوم سطح خطا (ماتریس هس)

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

- فرض کنید وزنها همگرا شده باشند (\mathbf{w}_0) و این وزنها را بهمقدار اند کی (\mathbf{w}) تغییر (اختلال) می دهیم.
 - \mathbf{W}_{0} بسط تيلور تابع غيرخطى خطا حول -

$$E(\mathbf{w}_o + \delta \mathbf{w}) = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$E(\mathbf{w}_o) + \delta E = E(\mathbf{w}_o) + (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

$$\delta E = (\nabla_{\mathbf{w}} E \Big|_{\mathbf{w} = \mathbf{w}_o})^T \, \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T \, (\nabla_{\mathbf{w}}^2 E \Big|_{\mathbf{w} = \mathbf{w}_o}) \, \delta \mathbf{w} + \text{H.O.T.}$$

- با صرفنظر کردن از جملات درجه بالا (H.O.T.) (یعنی فرض میشود که معادله سطح خطا در اطراف نقطه کمینه از درجه ۲ است) و صرفنظر کردن از مشتق مرتبه اول (برای سادهشدن محاسبات):

$$\delta E \simeq rac{1}{2} \delta {f w}^T {f H} \, \delta {f w}$$
 اماتریس مشتق دوم سطح خطا (ماتریس هس)

- نتیجه: هدف، کمینه کردن این رابطه است؛ در شرایطی که یکی از وزنها (مثلا w_i) حذف شود.

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w}$$

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w}$$
$$\delta w_i + w_i = 0$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w}$$
$$\delta w_i + w_i = 0$$

$$\mathbf{1}_i^T \, \delta \mathbf{w} + w_i = 0$$

– بهصورت برداری

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w}$$
$$\delta w_i + w_i = 0$$

 $\mathbf{1}_{i}^{T} \delta \mathbf{w} + w_{i} = 0$

$$\mathbf{1}_i^T \, \delta \mathbf{w} = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \vdots \\ \delta w_i \\ \vdots \\ \delta w_N \end{bmatrix}$$

- بهصورت برداری

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} \quad (\mathbf{1})$$

$$\delta w_i + w_i = 0$$

$$\mathbf{1}_{i}^{T} \delta \mathbf{w} + w_{i} = 0 \quad (\Upsilon)$$

- بهصورت برداری

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرسکردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} \quad (\mathbf{1})$$

$$\delta w_i + w_i = 0$$

$$\mathbf{1}_i^T \, \delta \mathbf{w} + w_i = 0$$
 (۲)

- مساله بهینه سازی: کمینه کردن (۱) با درنظر گرفتن (۲)

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرسکردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} \quad \text{(1)}$$

$$\delta w_i + w_i = 0$$

$$\mathbf{1}_i^T \delta \mathbf{w} + w_i = 0$$
 (Y)

- مساله بهینه سازی: کمینه کردن (۱) با درنظر گرفتن (۲)

– بهصورت برداری

- تابع هزینه بهینهسازی با استفاده از ضریب لاگرانژ برابر است با:

$$S = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} + \lambda (\mathbf{1}_i^T \, \delta \mathbf{w} + w_i)$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} \quad (\mathbf{1})$$

$$\delta w_i + w_i = 0$$

$$\mathbf{1}_{i}^{T} \delta \mathbf{w} + w_{i} = 0 \quad (Y)$$

- مساله بهینهسازی: کمینه کردن (۱) با درنظر گرفتن (۲)

– به صورت برداری

- تابع هزینه بهینهسازی با استفاده از ضریب لاگرانژ برابر است با:

$$S = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} + \lambda (\mathbf{1}_i^T \, \delta \mathbf{w} + w_i)$$

برای حل مساله بهینهسازی، باید نسبت به متغیرها ($\delta \mathbf{w}$ و δ) مشتق گرفت و برابر صفر قرارداد:

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} \quad (\mathbf{1})$$

$$\delta w_i + w_i = 0$$

$$\mathbf{1}_i^T \, \delta \mathbf{w} + w_i = 0 \quad (\Upsilon)$$

– بهصورت برداری

- مساله بهینهسازی: کمینه کردن (۱) با درنظر گرفتن (۲)
- تابع هزینه بهینهسازی با استفاده از ضریب لاگرانژ برابر است با:

$$S = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} + \lambda (\mathbf{1}_i^T \, \delta \mathbf{w} + w_i)$$

برای حل مساله بهینهسازی، باید نسبت به متغیرها ($\delta \mathbf{w}$ و δ) مشتق گرفت و برابر صفر قرارداد:

$$\frac{\partial S}{\partial \delta \mathbf{w}} = \mathbf{H} \, \delta \mathbf{w} + \lambda \mathbf{1}_i^T = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\lambda \, \mathbf{H}^{-1} \mathbf{1}_i$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} \quad (\mathbf{1})$$

$$\delta w_i + w_i = 0$$

$$\mathbf{1}_{i}^{T} \delta \mathbf{w} + w_{i} = 0 \quad (Y)$$

- مساله بهینه سازی: کمینه کردن (۱) با درنظر گرفتن (۲)

– بهصورت برداری

- تابع هزینه بهینهسازی با استفاده از ضریب لاگرانژ برابر است با:

$$S = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \, \delta \mathbf{w} + \lambda (\mathbf{1}_i^T \, \delta \mathbf{w} + w_i)$$

برای حل مساله بهینهسازی، باید نسبت به متغیرها ($\delta \mathbf{w}$ و δ) مشتق گرفت و برابر صفر قرارداد:

$$\frac{\partial S}{\partial \delta \mathbf{w}} = \mathbf{H} \, \delta \mathbf{w} + \lambda \mathbf{1}_i^T = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\lambda \, \mathbf{H}^{-1} \mathbf{1}_i$$
$$\frac{\partial S}{\partial \lambda} = \mathbf{1}_i^T \delta \mathbf{w} + w_i = 0$$

$$\frac{\partial S}{\partial \delta \mathbf{w}} = \mathbf{H} \, \delta \mathbf{w} + \lambda \mathbf{1}_i^T = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\lambda \, \mathbf{H}^{-1} \mathbf{1}_i \quad \text{(1)}$$

$$\frac{\partial S}{\partial \lambda} = \mathbf{1}_i^T \, \delta \mathbf{w} + w_i = 0 \quad \text{(Y)}$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$\frac{\partial S}{\partial \delta \mathbf{w}} = \mathbf{H} \, \delta \mathbf{w} + \lambda \mathbf{1}_i^T = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\lambda \, \mathbf{H}^{-1} \mathbf{1}_i \quad \text{(1)}$$

$$\frac{\partial S}{\partial \lambda} = \mathbf{1}_i^T \delta \mathbf{w} + w_i = 0 \quad \text{(Y)}$$

- (۱) در (۲) نتیجه میدهد:

$$\mathbf{1}_{i}^{T} \lambda \, \mathbf{H}^{-1} \mathbf{1}_{i} \, = w_{i} \quad \Rightarrow \quad \lambda \, [\mathbf{H}^{-1}]_{ii} \, = w_{i} \quad \Rightarrow \quad \lambda \, = \frac{w_{i}}{[\mathbf{H}^{-1}]_{ii}} \quad (\Upsilon)$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرسکردن شبکه:

$$\frac{\partial S}{\partial \delta \mathbf{w}} = \mathbf{H} \, \delta \mathbf{w} + \lambda \mathbf{1}_i^T = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\lambda \, \mathbf{H}^{-1} \mathbf{1}_i \quad \text{(1)}$$

$$\frac{\partial S}{\partial \lambda} = \mathbf{1}_i^T \delta \mathbf{w} + w_i = 0 \quad \text{(Y)}$$

- (۱) در (۲) نتیجه میدهد:

$$\mathbf{1}_{i}^{T} \lambda \mathbf{H}^{-1} \mathbf{1}_{i} = w_{i} \Rightarrow \lambda \left[\mathbf{H}^{-1} \right]_{ii} = w_{i} \Rightarrow \lambda = \frac{w_{i}}{\left[\mathbf{H}^{-1} \right]_{ii}}$$
 (۲)
$$\delta \mathbf{w} = -\frac{w_{i}}{\left[\mathbf{H}^{-1} \right]_{ii}} \mathbf{H}^{-1} \mathbf{1}_{i} \qquad (4)$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرسکردن شبکه:

$$\frac{\partial S}{\partial \delta \mathbf{w}} = \mathbf{H} \, \delta \mathbf{w} + \lambda \mathbf{1}_i^T = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\lambda \, \mathbf{H}^{-1} \mathbf{1}_i \quad \text{(1)}$$

$$\frac{\partial S}{\partial \lambda} = \mathbf{1}_i^T \delta \mathbf{w} + w_i = 0 \quad \text{(Y)}$$

- (۱) در (۲) نتیجه میدهد:

$$\mathbf{1}_{i}^{T} \lambda \mathbf{H}^{-1} \mathbf{1}_{i} = w_{i} \quad \Rightarrow \quad \lambda \left[\mathbf{H}^{-1} \right]_{ii} = w_{i} \quad \Rightarrow \quad \lambda = \frac{w_{i}}{\left[\mathbf{H}^{-1} \right]_{ii}} \quad (\Upsilon)$$

- (۳) در (۱):

$$\delta \mathbf{w} = -\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \qquad (\mathbf{f})$$

S - در نهایت با استفاده از (۳) و (۴) درتابع هزینه -

$$S_i = \frac{1}{2} \bigg(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \hspace{0.1cm} \bigg)^T \hspace{0.1cm} (\mathbf{H}) \bigg(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \hspace{0.1cm} \bigg) - \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \bigg(\mathbf{1}_i^T \hspace{0.1cm} \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \hspace{0.1cm} - w_i \hspace{0.1cm} \bigg)$$

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$S_i = \frac{1}{2} \left(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \right)^T (\mathbf{H}) \left(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \right) - \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \left(\mathbf{1}_i^T \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \right) - \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{1}_i^T \mathbf{1}_i - w_i \right)$$

- بعد از خلاصهسازی (تمرین کنید):

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$S_i = \frac{1}{2} \left(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \right)^T (\mathbf{H}) \left(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \right) - \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \left(\mathbf{1}_i^T \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \right) - \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{1}_i^T \mathbf{1}_i - w_i \right)$$

- بعد از خلاصهسازی (تمرین کنید):

این رابطه بیان می کند که در اثر حذف وزن w_i مقدار خطای مدلسازی چقدر افزایش می یابد.

استفاده از ماتریس هِس (Hessian Matrix) سطح خطا برای هرس کردن شبکه:

$$S_i = \frac{1}{2} \bigg(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \hspace{0.1cm} \bigg)^T \hspace{0.1cm} (\mathbf{H}) \bigg(\frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \hspace{0.1cm} \bigg) - \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \bigg(\mathbf{1}_i^T \frac{w_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{1}_i \hspace{0.1cm} - w_i \hspace{0.1cm} \bigg)$$

- بعد از خلاصهسازی (تمرین کنید):

این رابطه بیان می کند که در اثر حذف وزن w_i مقدار خطای مدلسازی چقدر افزایش می یابد.

٢- عيب عمده اين روش، محاسبه ماتريس هِس و بهدست آوردن وارون آن است.

روش نیوتن برای تنظیم وزنهای شبکه:

- رابطه قبلی در روش هرسکردن درنظر بگیرید:

$$\delta E = (\nabla_{\mathbf{w}} E \Big|_{\mathbf{w} = \mathbf{w}_o})^T \, \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T \, (\nabla_{\mathbf{w}}^2 E \Big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

روش نیوتن برای تنظیم وزنهای شبکه:

- رابطه قبلی در روش هرسکردن درنظر بگیرید:

$$\delta E = (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \, \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T \, (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

- با صرفنظر کردن از H.O.T:

$$\delta E \simeq \mathbf{g}^T \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w}$$

روش نیوتن برای تنظیم وزنهای شبکه:

- رابطه قبلی در روش هرسکردن درنظر بگیرید:

$$\delta E = (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

- با صرفنظر کردن از H.O.T:

$$\delta E \simeq \mathbf{g}^T \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w}$$

- برای کمینه کردن این تابع هزینه باید از آن نسبت به متغیر آن مشتق گرفته و برابر صفر قرارداد

$$\frac{\partial(\delta E)}{\partial(\delta \mathbf{w})} = \mathbf{g} + \mathbf{H}\delta \mathbf{w} = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\mathbf{H}^{-1}\mathbf{g}$$

روش نیوتن برای تنظیم وزنهای شبکه:

- رابطه قبلی در روش هرسکردن درنظر بگیرید:

$$\delta E = (\nabla_{\mathbf{w}} E \big|_{\mathbf{w} = \mathbf{w}_o})^T \delta \mathbf{w} + \frac{1}{2!} \delta \mathbf{w}^T (\nabla_{\mathbf{w}}^2 E \big|_{\mathbf{w} = \mathbf{w}_o}) \delta \mathbf{w} + \text{H.O.T.}$$

- با صرفنظر کردن از H.O.T:

$$\delta E \simeq \mathbf{g}^T \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w}$$

- برای کمینه کردن این تابع هزینه باید از آن نسبت به متغیر آن مشتق گرفته و برابر صفر قرارداد

$$\frac{\partial(\delta E)}{\partial(\delta \mathbf{w})} = \mathbf{g} + \mathbf{H}\delta \mathbf{w} = 0 \quad \Rightarrow \quad \delta \mathbf{w} = -\mathbf{H}^{-1}\mathbf{g}$$

– و یا

$$\Delta \mathbf{w} = -\mathbf{H}^{-1}\mathbf{g}$$

روش نیوتن برای تنظیم وزنهای شبکه:

- رابطه تنظیم وزنها بهصورت تکراری

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \Delta \mathbf{w}(n)$$

روش نیوتن برای تنظیم وزنهای شبکه:

- رابطه تنظیم وزنها بهصورت تکراری

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \Delta \mathbf{w}(n)$$

- در نهایت

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mathbf{H}^{-1}(n)\mathbf{g}(n)$$

روش نیوتن برای تنظیم وزنهای شبکه:

– رابطه تنظیم وزنها بهصورت تکراری

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \Delta \mathbf{w}(n)$$

- در نهایت

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mathbf{H}^{-1}(n)\mathbf{g}(n)$$

- این معادله تنظیم وزنها نیز همانند الگوریتم پسانتشار خطا بهصورت تکراری ادامه یافته تا خطا همگرا شود.

روش نیوتن برای تنظیم وزنهای شبکه:

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:
 - نیاز به محاسبه وارون ماتریس هس دارد که

روش نیوتن برای تنظیم وزنهای شبکه:

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:

• نیاز به محاسبه وارون ماتریس هس دارد که

۱- هزینه محاسباتی دارد

روش نیوتن برای تنظیم وزنهای شبکه:

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:

• نیاز به محاسبه وارون ماتریس هس دارد که

۱- هزینه محاسباتی دارد

۲ – ممکن است تکین باشد.

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:
 - نیاز به محاسبه وارون ماتریس هس دارد که
 - ۱- هزینه محاسباتی دارد
 - ۲ ممکن است تکین باشد.
 - هنگامی که تابع هزینه نسبت به وزنهای شبکه از مرتبه ۲ نباشد، همگرایی روش نیوتن با مشکل مواجه می شود.

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:
 - نیاز به محاسبه وارون ماتریس هس دارد که
 - ۱- هزینه محاسباتی دارد
 - ۲- ممکن است تکین باشد.
 - هنگامی که تابع هزینه نسبت به وزنهای شبکه از مرتبه ۲ نباشد، همگرایی روش نیوتن با مشکل مواجه می شود.
 - بنابراین، از این روش در آموزش شبکههای عصبی استفاده نمیشود.

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:
 - نیاز به محاسبه وارون ماتریس هس دارد که
 - ۱- هزینه محاسباتی دارد
 - ۲ ممکن است تکین باشد.
 - هنگامی که تابع هزینه نسبت به وزنهای شبکه از مرتبه ۲ نباشد، همگرایی روش نیوتن با مشکل مواجه می شود.
 - بنابراین، از این روش در آموزش شبکههای عصبی استفاده نمیشود.
 - روشهای شبه نیوتن (quasi-Newton) و کاذب نیوتن (pseudo-Newton) مناسب تر هستند.

- اگرچه روش نیوتن، روشی بسیار سریع برای حل مسالههای بهینهسازی است، معایبی نیز دارد:
 - نیاز به محاسبه وارون ماتریس هس دارد که
 - ۱- هزینه محاسباتی دارد
 - ۲- ممکن است تکین باشد.
 - هنگامی که تابع هزینه نسبت به وزنهای شبکه از مرتبه ۲ نباشد، همگرایی روش نیوتن با مشکل مواجه می شود.
 - بنابراین، از این روش در آموزش شبکههای عصبی استفاده نمیشود.
 - روشهای شبه نیوتن (quasi-Newton) و کاذب نیوتن (pseudo-Newton) مناسب تر هستند.
 - مناسب ترین روش مرتبه ۲، روش لونبرگ مارکارت (Levenberg-Marquardt) است.

روش لونبرگ – مارکارت (Levenberg-Marquardt):

روش لونبرگ – مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:

روش لونبرگ – مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را بهخاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}$$

$$\Delta \mathbf{w} = -\mathbf{H}^{-1}\mathbf{g}$$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را به خاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}
\Delta \mathbf{w} = -\mathbf{H}^{-1} \mathbf{g}$$

$$\Delta \mathbf{w} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}$$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- **این روش، مصالحهای است بین:**
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را بهخاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}
\Delta \mathbf{w} = -\mathbf{H}^{-1} \mathbf{g}$$

$$\Delta \mathbf{w} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}$$

- نتيجهگيري:

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین میشود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را بهخاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}
\Delta \mathbf{w} = -\mathbf{H}^{-1} \mathbf{g}$$

$$\Delta \mathbf{w} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}$$

- نتيجهگيري:

ا انتخاب مناسب ضریب λ ، وارون ماتریس H همواره وجود خواهدداشت (روش تنظیم کننده).

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را به خاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}
\Delta \mathbf{w} = -\mathbf{H}^{-1} \mathbf{g}$$

$$\Delta \mathbf{w} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}$$

- نتيجهگيري:

ا انتخاب مناسب ضریب λ ، وارون ماتریس H همواره وجود خواهدداشت (روش تنظیم کننده).

 Υ - برای $1 \gg \lambda \ll 1$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را به خاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}
\Delta \mathbf{w} = -\mathbf{H}^{-1} \mathbf{g}$$

$$\Delta \mathbf{w} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}$$

- نتيجهگيري:

ا انتخاب مناسب ضریب λ ، وارون ماتریس H همواره وجود خواهدداشت (روش تنظیم کننده).

روش نيوتن $\lambda \ll 1$ برای $\lambda \ll 1$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را بهخاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}
\Delta \mathbf{w} = -\mathbf{H}^{-1} \mathbf{g}$$

$$\Delta \mathbf{w} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}$$

- نتيجهگيري:

ا - با انتخاب مناسب ضریب λ ، وارون ماتریس H همواره وجود خواهدداشت (روش تنظیم کننده).

روش نیوتن
$$\lambda \ll 1$$
 برای $\lambda \ll 1$

$$? \Leftarrow \lambda \gg 1$$
 برای -۳

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- این روش، مصالحهای است بین:
- روش نیوتن که روشی بسیار سریع است ولی ممکن است واگرا شود.
- روش گرادیان نزولی که همگرایی آن با انتخاب مناسب ضریب آموزش تضمین می شود ولی به آهستگی همگرا می شود.
 - دو روش آموزش گرادیان نزولی (پسانتشار خطا) و نیوتن را بهخاطر بیاورید:

$$\Delta \mathbf{w} = -\eta \mathbf{g}
\Delta \mathbf{w} = -\mathbf{H}^{-1} \mathbf{g}$$

$$\Delta \mathbf{w} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}$$

- نتيجهگيري:

ا انتخاب مناسب ضریب λ ، وارون ماتریس H همواره وجود خواهدداشت (روش تنظیم کننده).

روش نیوتن
$$\star = \lambda \ll 1$$
 برای ۲

روش گرادیان نزولی $+\infty$ برای $+\infty$ برای ا

روش لونبرگ – مارکارت (Levenberg-Marquardt):

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- جزییات بیشتر در مورد این روش:

روش لونبرگ – مارکارت (Levenberg-Marquardt):

- جزییات بیشتر در مورد این روش:
- ا نشان داده شود. $F(\mathbf{w})$ نشان داده شود. فرض کنید خروجی شبکه \mathbf{MLP}

- جزییات بیشتر در مورد این روش:
- انشان داده شود. $F(\mathbf{w})$ فرض کنید خروجی شبکه \mathbf{MLP} توسط تابع
 - در این صورت خطای مدل سازی برای شبکهای با یک خروجی:

$$E(n) = \frac{1}{2} [d(n) - F(\mathbf{w}(n))]^2$$

روش لونبرگ – مارکارت (Levenberg-Marquardt):

- جزییات بیشتر در مورد این روش:
- انشان داده شود. $F(\mathbf{w})$ فرض کنید خروجی شبکه \mathbf{MLP} توسط تابع
 - در این صورت خطای مدل سازی برای شبکهای با یک خروجی:

$$E(n) = \frac{1}{2} [d(n) - F(\mathbf{w}(n))]^2$$

- بردار گرادیان (مشتق مرتبه اول) و ماتریس هِس (مشتق مرتبه دوم) این خطا:

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- جزییات بیشتر در مورد این روش:
- فرض کنید خروجی شبکه \mathbf{MLP} توسط تابع $F(\mathbf{w})$ نشان داده شود.
 - در این صورت خطای مدل سازی برای شبکهای با یک خروجی:

$$E(n) = \frac{1}{2} [d(n) - F(\mathbf{w}(n))]^2$$

- بردار گرادیان (مشتق مرتبه اول) و ماتریس هِس (مشتق مرتبه دوم) این خطا:

$$\mathbf{g}(\mathbf{w}(n)) = \frac{\partial E(n)}{\partial \mathbf{w}(n)} = -\left[d(n) - F(\mathbf{w}(n))\right] \frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}(n)}$$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- جزییات بیشتر در مورد این روش:
- فرض کنید خروجی شبکه \mathbf{MLP} توسط تابع $F(\mathbf{w})$ نشان داده شود.
 - در این صورت خطای مدل سازی برای شبکهای با یک خروجی:

$$E(n) = \frac{1}{2} [d(n) - F(\mathbf{w}(n))]^2$$

- بردار گرادیان (مشتق مرتبه اول) و ماتریس هِس (مشتق مرتبه دوم) این خطا:

$$\mathbf{g}(\mathbf{w}(n)) = \frac{\partial E(n)}{\partial \mathbf{w}(n)} = -\left[d(n) - F(\mathbf{w}(n))\right] \frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}(n)}$$

$$\mathbf{H}(\mathbf{w}(n)) = \frac{\partial^2 E(n)}{\partial \mathbf{w}^2(n)} = \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right] \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right]^T - \left[d(n) - F(\mathbf{w}(n)) \right] \frac{\partial^2 F(\mathbf{w}(n))}{\partial \mathbf{w}^2}$$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- جزییات بیشتر در مورد این روش:
- انشان داده شود. $F(\mathbf{w})$ فرض کنید خروجی شبکه \mathbf{MLP} توسط تابع
 - در این صورت خطای مدل سازی برای شبکهای با یک خروجی:

$$E(n) = \frac{1}{2} [d(n) - F(\mathbf{w}(n))]^2$$

- بردار گرادیان (مشتق مرتبه اول) و ماتریس هِس (مشتق مرتبه دوم) این خطا:

$$\mathbf{g}(\mathbf{w}(n)) = \frac{\partial E(n)}{\partial \mathbf{w}(n)} = -\left[d(n) - F(\mathbf{w}(n))\right] \frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}(n)}$$

$$\mathbf{H}(\mathbf{w}(n)) = \frac{\partial^2 E(n)}{\partial \mathbf{w}^2(n)} = \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right] \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right]^T - \left[d(n) - F(\mathbf{w}(n)) \right] \frac{\partial^2 F(\mathbf{w}(n))}{\partial \mathbf{w}^2}$$

- توجه کنید که محاسبه ماتریس ${f H}$ بسیار زمانبر است، مخصوصا هنگامی که تعداد وزنها زیاد باشد.

$$\mathbf{H}(\mathbf{w}(n)) = \frac{\partial^2 E(n)}{\partial \mathbf{w}^2(n)} = \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right] \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right]^T - \left[d(n) - F(\mathbf{w}(n)) \right] \frac{\partial^2 F(\mathbf{w}(n))}{\partial \mathbf{w}^2}$$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

$$\mathbf{H}(\mathbf{w}(n)) = \frac{\partial^2 E(n)}{\partial \mathbf{w}^2(n)} = \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right] \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right]^T - \left[d(n) - F(\mathbf{w}(n)) \right] \frac{\partial^2 F(\mathbf{w}(n))}{\partial \mathbf{w}^2}$$

- برای ساده ترشدن محاسبات، می توان از جمله دوم صرفنظر کرد. البته در حوالی نقطه کمینه، این کار توجیه پذیر است زیرا خطا مقدار بسیار کوچکی دارد.

$$\mathbf{H}(\mathbf{w}(n)) = \frac{\partial^2 E(n)}{\partial \mathbf{w}^2(n)} = \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right] \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right]^T - \left[d(n) - F(\mathbf{w}(n)) \right] \frac{\partial^2 F(\mathbf{w}(n))}{\partial \mathbf{w}^2}$$

- برای ساده ترشدن محاسبات، می توان از جمله دوم صرفنظر کرد. البته در حوالی نقطه کمینه، این کار توجیه پذیر است زیرا خطا مقدار بسیار کوچکی دارد.
- البته باید توجه داشت که این کار همان بهینهسازی مرتبه اول است که در آن از بردار گرادیان و ضرب خارجی آن در تنظیم وزنها استفاده شده است.

$$\mathbf{H}(\mathbf{w}(n)) = \frac{\partial^2 E(n)}{\partial \mathbf{w}^2(n)} = \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right] \left[\frac{\partial F(\mathbf{w}(n))}{\partial \mathbf{w}} \right]^T - \left[d(n) - F(\mathbf{w}(n)) \right] \frac{\partial^2 F(\mathbf{w}(n))}{\partial \mathbf{w}^2}$$

- برای ساده ترشدن محاسبات، می توان از جمله دوم صرفنظر کرد. البته در حوالی نقطه کمینه، این کار توجیه پذیر است زیرا خطا مقدار بسیار کوچکی دارد.
- البته باید توجه داشت که این کار همان بهینهسازی مرتبه اول است که در آن از بردار گرادیان و ضرب خارجی آن در تنظیم وزنها استفاده شده است.
 - چنانچه تعداد وزنها زیاد نباشد، مناسب است که جمله دوم در رابطه بالا حذف نشود.

روش لونبرگ – مارکارت (Levenberg-Marquardt):

- الگوريتم لونبرگ-ماركارت:

روش لونبرگ – مارکارت (Levenberg-Marquardt):

- الگوریتم لونبرگ-مارکارت: $E(\mathbf{w}(n-1))$ از مرحله قبلی -1

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- الگوریتم لونبرگ-مارکارت:
$$E(\mathbf{w}(n-1))$$
 از مرحله قبلی -1

 $(\lambda = 10^{-3})$ انتخاب مقداری نسبتا کم برای λ

از مرحله قبلی
$$E(\mathbf{w}(n-1))$$
 از مرحله قبلی -۱

$$(\lambda = 10^{-3})$$
 انتخاب مقداری نسبتا کم برای λ

$$\Delta \mathbf{w}(n) = -(\mathbf{H}(n) + \lambda \mathbf{I})^{-1} \mathbf{g}(n)$$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

از مرحله قبلی
$$E(\mathbf{w}(n-1))$$
 از مرحله قبلی -۱

$$(\lambda = 10^{-3})$$
 انتخاب مقداری نسبتا کم برای λ

٣- محاسبه بردار گرادیان، ماتریس هِس، و تنطیم وزنها

$$\Delta \mathbf{w}(n) = -(\mathbf{H}(n) + \lambda \mathbf{I})^{-1} \mathbf{g}(n)$$

$$E\left(\mathbf{w}(n) + \Delta\mathbf{w}(n)
ight)$$
 محاسبه -۴

روش لونبرگ –مارکارت (Levenberg-Marquardt):

از مرحله قبلی
$$E(\mathbf{w}(n-1))$$
 از مرحله قبلی -1

$$(\lambda = 10^{-3})$$
 انتخاب مقداری نسبتا کم برای λ

٣- محاسبه بردار گرادیان، ماتریس هِس، و تنطیم وزنها

$$\Delta \mathbf{w}(n) = -(\mathbf{H}(n) + \lambda \mathbf{I})^{-1} \mathbf{g}(n)$$

$$: Eig(\mathbf{w}(n) + \Delta \mathbf{w}(n)ig)$$
 محاسبه -۴

آ- چنانچه $E(\mathbf{w}(n-1)) \geq E(\mathbf{w}(n-1))$ ده برابر شود. بازگشت به گام ۳. $E(\mathbf{w}(n) + \Delta \mathbf{w}(n)) \geq E(\mathbf{w}(n-1))$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

از مرحله قبلی
$$E(\mathbf{w}(n-1))$$
 از مرحله قبلی -1

$$(\lambda = 10^{-3})$$
 انتخاب مقداری نسبتا کم برای λ

٣- محاسبه بردار گرادیان، ماتریس هِس، و تنطیم وزنها

$$\Delta \mathbf{w}(n) = -(\mathbf{H}(n) + \lambda \mathbf{I})^{-1} \mathbf{g}(n)$$

$$E\left(\mathbf{w}(n) + \Delta\mathbf{w}(n)
ight)$$
 محاسبه -۴

آ- چنانچه
$$E(\mathbf{w}(n-1)) \geq E(\mathbf{w}(n-1))$$
 ده برابر شود. بازگشت به گام ۳. $E(\mathbf{w}(n) + \Delta \mathbf{w}(n)) \geq E(\mathbf{w}(n-1))$

.۳ ب
$$E(\mathbf{w}(n) + \Delta \mathbf{w}(n)) < E(\mathbf{w}(n-1))$$
ب چنانچه $\mathbf{w}(n-1) < \mathbf{w}(n)$

روش لونبرگ –مارکارت (Levenberg-Marquardt):

- الگوريتم لونبرگ-ماركارت:

از مرحله قبلی
$$E(\mathbf{w}(n-1))$$
 از مرحله قبلی -۱

$$(\lambda=10^{-3})$$
 انتخاب مقداری نسبتا کم برای λ (مثلا $-$ ۲ $-$

٣- محاسبه بردار گرادیان، ماتریس هِس، و تنطیم وزنها

$$\Delta \mathbf{w}(n) = -(\mathbf{H}(n) + \lambda \mathbf{I})^{-1} \mathbf{g}(n)$$

$$: Eig(\mathbf{w}(n) + \Delta \mathbf{w}(n)ig)$$
 محاسبه -۴

آ- چنانچه
$$E(\mathbf{w}(n-1)) \geq E(\mathbf{w}(n-1))$$
 ده برابر شود. بازگشت به گام ۳. $E(\mathbf{w}(n) + \Delta \mathbf{w}(n)) \geq E(\mathbf{w}(n-1))$

.۳ ب
$$E(\mathbf{w}(n) + \Delta \mathbf{w}(n)) < E(\mathbf{w}(n-1))$$
ب چنانچه $\mathbf{w}(n-1) < \mathbf{w}(n)$

- این الگوریتم را می توان به روش دستهای (Batch Mode) نیز اجرا کرد.

مثال كلاسه بندى:

Classification using MLP with distance = -4, radius = 10, and width = 6

- تعداد ورودی ها: ۲
- تعداد سلولهای یک لایه پنهان: ۲۰
 - تعداد خروجی: ۱
 - تابع غيرخطي سلولها

$$\varphi(v) = \frac{1 - \exp(-2v)}{1 + \exp(-2v)}$$

-ضریب آموزش (η) از η تا η -۱۰-۵ کاهش می یابد.

مثال كلاسه بندى:

مثال كلاسه بندي:

Classification using MLP with distance = -5, radius = 10, and width = 6

مثال كلاسه بندى:

