Operations research with Julia/JuMP

Pedro Belin Castellucci

November, 2016

Mathematical programming

Figure 1: Information from this link.

Which can JuMP handle?

Figure 2: For JuMP documentation click on this link.

What we will do?

Figure 3: For JuMP documentation click on this link.

Min
$$c^T x$$
,

subject to:

$$Ax + By = D$$
,

$$x \in \mathbb{R}$$
,

$$y \in \mathbb{Z}$$
.

$$\begin{array}{c}
\text{Optimization} \\
\text{Min } c^T x, \\
\end{array}$$

subject to:

$$Ax + By = D$$
,

$$x \in \mathbb{R}$$
,

$$y \in \mathbb{Z}$$
.

An example

Min
$$2x + 3y$$
,

subject to:

$$x + y \leq 4$$
,

$$3x - y \le 14$$
,

$$x \in \mathbb{R}_+$$
,

$$y \in \mathbb{Z}_+$$
.

An example

Domain-specific modeling language.

Domain-specific modeling language.

User friendliness.

Domain-specific modeling language.

User friendliness.

Speed:

Creates problems at similar speed of other modeling languages (e. g. AMPL).

Communicates with solver in memory.

Domain-specific modeling language.

User friendliness.

Speed:

Creates problems at similar speed of other modeling languages (e. g. AMPL).

Communicates with solver in memory.

Solver independence:

Current supports Artelys Knitro, Bonmin, Cbc, Clp, Couenne, CPLEX, ECOS, FICO Xpress, GLPK, Gurobi, Ipopt, MOSEK, NLopt, and SCS.