Fuzzy Set Theory

Introduction

- The word "fuzzy" means "vaguness (ambiguity)".
- Fuzziness occurs when the boundary of a piece of information is not clear-cut.
- Fuzzy sets 1965 Lotfi Zadeh as an extension of classical notation set.
- Classical set theory allows the membership of the elements in the set in binary terms.
- Fuzzy set theory permits membership function valued in the interval [0,1].

Introduction

Example:

Words like young, tall, good or high are fuzzy.

- There is no single quantitative value which defines the term young.
- For some people, age 25 is young, and for others, age 35 is young.
- The concept young has no clean boundary.

Fuzzy set theory is an extension of classical set theory where elements have degree of membership.

Introduction

Classical set theory	Fuzzy set theory
Classes of objects with sharp boundaries.	• Classes of objects with unsharp boundaries.
crisp(exact) boundaries, i.e., there is no uncertainty about	 A fuzzy set is defined by its ambiguous boundaries, i.e., there exists uncertainty about the location of the set boundaries.
Widely used in digital system design	Used in fuzzy controllers.

Introduction (Continue)

Example

Operations on classical set theory

<u>Union:</u> the union of two sets A and B is given as $A \cup B = \{x \mid x \in A \text{ or } x \in B \}$

<u>Intersection</u>: the intersection of two sets A and B is given as $A \cap B = \{x \mid x \in A \text{ and } x \in B \}$

Complement: It is denoted by \tilde{A} and is defined as $\tilde{A} = \{ x \mid x \text{ does not belongs } A \text{ and } x \in X \}$

Fuzzy Sets

- Fuzzy sets theory is an extension of classical set theory.
- Elements have varying degree of membership. A logic based on two truth values,
- *True* and *False* is sometimes insufficient when describing human reasoning.
- Fuzzy Logic uses the whole interval between 0 (false) and 1 (true) to describe human reasoning.
- A Fuzzy Set is any set that allows its members to have different degree of membership, called **membership function**, having interval [0,1].

Fuzzy Sets

- Fuzzy Logic is derived from fuzzy set theory
- Many degree of membership (between 0 to 1) are allowed.
- Thus a membership function $\mu_A^{(x)}$ is associated with a fuzzy sets \tilde{A} such that the function maps every element of universe of discourse X to the interval [0,1].
- The mapping is written as: $\mu_{\tilde{A}}(x)$: X \rightarrow [0,1].

• Fuzzy Logic is capable of handing inherently imprecise (vague or inexact or rough or inaccurate) concepts

Fuzzy Sets

• Fuzzy set is defined as follows:

• If X is an universe of discourse and x is a particular element of X, then a fuzzy set A defined on X and can be written as a collection of ordered pairs

$$A = \{(x, \mu_{\tilde{a}}(x)), x \in X \}$$

Fuzzy Sets (Continue)

Example

- Let $X = \{g_1, g_2, g_3, g_4, g_5\}$ be the reference set of students.
- Let à be the fuzzy set of "smart" students, where "smart" is fuzzy term.

$$\tilde{A} = \{(g_1, 0.4)(g_2, 0.5)(g_3, 1)(g_4, 0.9)(g_5, 0.8)\}$$

Here \tilde{A} indicates that the smartness of g_1 is 0.4 and so on

Fuzzy Sets (Continue)

Membership Function

- The membership function fully defines the fuzzy set
- A membership function provides a measure of the degree of similarity of an element to a fuzzy set

Membership functions can

- either be chosen by the user arbitrarily, based on the user's experience (MF chosen by two users could be different depending upon their experiences, perspectives, etc.)
- Or be designed using machine learning methods (e.g., artificial neural networks, genetic algorithms, etc.)

Fuzzy Sets (Continue)

There are different shapes of membership functions;

- Triangular,
- Trapezoidal,
- Gaussian, etc

Fuzzy Set Operation

Given X to be the universe of discourse and \tilde{A} and \dot{B} to be fuzzy sets with $\mu_A(x)$ and $\mu_B(x)$ are their respective membership function, the fuzzy set operations are as follows:

Union:

$$\mu_{A \cup B}(x) = \max (\mu_{A}(x), \mu_{B}(x))$$

Intersection:

$$\mu_{A \cap B}(x) = \min (\mu_{A}(x), \mu_{B}(x))$$

Complement:

$$\mu_{A}(x) = 1 - \mu_{A}(x)$$

Fuzzy Set Operation (Continue)

Example:

$$A = \{(x_1,0.5),(x_2,0.7),(x_3,0)\}\ B = \{(x_1,0.8),(x_2,0.2),(x_3,1)\}$$

Union:

A U B =
$$\{(x_1,0.8),(x_2,0.7),(x_3,1)\}$$

Because

$$\mu_{A \cup B}(x_1) = \max (\mu_A(x_1), \mu_B(x_1))$$

$$= \max(0.5, 0.8)$$

$$= 0.8$$

$$\mu_{A \cup B}(x_2) = 0.7 \text{ and } \mu_{A \cup B}(x_3) = 1$$

Fuzzy Set Operation (Continue)

Example:

$$A = \{(x_1,0.5),(x_2,0.7),(x_3,0)\}\ B = \{(x_1,0.8),(x_2,0.2),(x_3,1)\}$$

Intersection:

$$A \cap B = \{(x_1,0.5),(x_2,0.2),(x_3,0)\}$$

Because

$$\mu_{A \cap B}(x_1) = \min (\mu_A(x_1), \mu_B(x_1))$$

$$= \min(0.5, 0.8)$$

$$= 0.5$$

$$\mu_{A \cap B}(x_2) = 0.2 \text{ and } \mu_{A \cap B}(x_3) = 0$$

Fuzzy Set Operation (Continue)

Example:

$$A = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0)\}$$

Complement:

$$A^{c} = \{(x_{1}, 0.5), (x_{2}, 0.3), (x_{3}, 1)\}$$

Because

$$\mu_{A}(x_{1}) = 1 - \mu_{A}(x_{1})$$

$$= 1 - 0.5$$

$$= 0.5$$

$$\mu_{A}(x_{2}) = 0.3 \text{ and } \mu_{A}(x_{3}) = 1$$

• Support(A) is set of all points x in X such that $\{(x | \mu_{\Delta}(x) > 0 \}$

- core(A) is set of all points x in X such that $\{(x | \ \mu_A(x) = 1 \ \}$
- Fuzzy set whose support is a single point in X with $\mu_{\Delta}(x)=1$ is called fuzzy singleton