# Chapter 4 Quadratic Functions (2)

#### 1. Graphing Quadratic Functions by table of values

Let us start with the basic graph  $y = x^2$ . As with other functions, you can graph a quadratic function by plotting points with coordinates that make the equation true. Let us graph it using table of values.

| X  | y |  |
|----|---|--|
| -2 | 4 |  |
| -1 | 1 |  |
| 0  | 0 |  |
| 1  | 1 |  |
| 2  | 4 |  |



Let us try another one.

**Example:** Graph  $y = x^2 - 6x + 8$ 

| X | y                    |  |
|---|----------------------|--|
| 1 | $1^2 - 6(1) + 8 = 3$ |  |
| 2 | 0                    |  |
| 3 | -1                   |  |
| 4 | 0                    |  |
| 5 | 3                    |  |



# 2. Graphing Quadratic Functions by transformation

You can also graph quadratic functions by applying transformations to the parent function  $y = x^2$ .

How do we do that?

**Investigation -** Sketch the graphs of these three quadratic relations on the same set of axes. a)  $y = x^2$  b)  $y = x^2 + 3$  c)  $y = x^2 - 2$  d)  $y = (x + 3)^2$  e)  $y = (x - 3)^2$ 

a) 
$$y = x^2$$

b) 
$$y = x^2 + 3$$

c) 
$$y = x^2 - 2$$

d) 
$$y = (x + 3)^2$$

e) 
$$y = (x - 3)^2$$

What did you notice?







| Translations of Quadratic Functions |                                                                                        |                             |                                                                                   |  |
|-------------------------------------|----------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------|--|
| Horizontal Translations             |                                                                                        | Vertical Translations       |                                                                                   |  |
| Horizontal Shift of  h  Units       |                                                                                        | Vertical Shift of  k  Units |                                                                                   |  |
|                                     | $f(x) = x^{2}$ $f(x - h) = (x - h)^{2}$ Moves left for $h < 0$ Moves right for $h > 0$ |                             | $f(x) = x^{2}$ $f(x) + k = x^{2} + k$ Moves down for $k < 0$ Moves up for $k > 0$ |  |

**Example 1:** Sketch the graph of  $y = (x - 4)^2 - 5$  with the description of the transformations.

# Descriptions:

- We start with the graph of y = x².
   h = 4 → Horizontal shift 4 units right → y = (x 4)².
   k = -5 → Vertical shift 5 units down. → y = (x 4)² 5.



**Investigation -** Sketch the graphs of these three quadratic relations on the same set of axes.

a) 
$$y = x^2$$

b) 
$$y = \frac{1}{2}x^2$$

c) 
$$y = 3x^2$$

d) 
$$y = -x^2$$





What did you notice?

# Vertical Stretch/Compression by a Factor of |a| Output values change. $f(x) = x^2$ $a \cdot f(x) = ax^2$ |a| > 1 stretches away from the x-axis. 0 < |a| < 1 compresses toward the x-axis.



**Example 2:** Graph the following quadratics <u>using transformations</u> from the parent  $y = x^2$ :  $y = -2(x-3)^2 - 2$ 

$$y = \frac{1}{2}(x+4)^2$$

- 1. Blue: Start with the parent function  $y = x^2$
- 2. Red: Vertical compression by a factor of ½ (multiply all y-values by  $\frac{1}{2}$ )
- 3. Green: Horizontal shift 4 units left.



- 1. Blue: Start with the parent function  $y = x^2$
- 2. Red: Vertical stretch by a factor of 2.
- 3. Green: Vertical reflection over x-axis. (Step 2 and 3 can be done together by multiply all y-values by -2)
- 4. Pink: Horizontal shift 3 units right and vertical shift 2 units down.



### 3. Vertex Form of a Quadratic Relation

The Vertex Form of a Quadratic Relation:  $y = a(x - h)^2 + k$  with vertex (h, k).



**Example 3:** Find the vertex of the quadratic relation  $y = \frac{2}{3}(x+3)^2 - 7$ . Then describe the transformations compared to  $y = x^2$ 

$$h = -3, k = -7$$
  
Vertex  $(h, k) = (-3, -7)$ 

Transformations:

- 1) vertical compressed by a factor of 2/3.
- 2) no reflection
- 3) vertical shift down by 7 units and horizontal shift left by 3 units.

**Example 4:** Use the description to write the quadratic function in vertex form.

The parent function  $y = x^2$  is reflected across the x-axis, vertically stretched by a factor of 6, and translated 3 units left.

Step 1 Identify how each transformation affects the constants in vertex form.

Reflection across x-axis: a is negative

Vertical stretch by 6: |a| = 6

$$\rightarrow a = -6$$

Translation left 3 units: h = -3

Step 2 Write the transformed function.

 $y = a(x - h)^2 + k Vertex form of a quadratic function$ 

 $= -6 (x - (-3))^2 + 0$  Substitute -6 for a, -3 for h, and 0 for k.

 $= -6 (x + 3)^2$  Simplify.

**Example 5:** Write an equation for the quadratic relation based on the descriptions:

- a) Horizontal translated 7 units to the right.  $\rightarrow$  y =  $(x 7)^2$
- b) Compressed vertically by a factor of 1/8.  $\rightarrow$   $y = 1/8 x^2$

- c) Horizontal shift 1 units to the left.  $\rightarrow$  y =  $(x + 1)^2$
- d) Vertical shift 10 units downward.  $\rightarrow$  y =  $x^2 10$
- e) Vertical reflected, vertical translated 3 units up.  $\rightarrow$  y = -x<sup>2</sup> + 3
- f) A stretch by a factor of 4, shift left 5, and up 2.  $\rightarrow$  y =  $4(x + 5)^2 + 2$