Föreläsning 9 -Associationsanalys

Josef Wilzén

Agenda

- Introduktion
- Associationsanalys
- Algoritmer
- Intressemått

Introduktion

Introduktion

- Målet med associationsanalys:
 - Utvinna intressanta samband (el. mönster) som finns i stora datamängder
- Exempel: Shoppingtransaktioner
 - En återförsäljare är intresserad av att veta sina kunders köpbeteende och vill använda det i marknadsföringen.

 $\{Diapers\} \rightarrow \{Beer\}$

Table 6.1. An example of market basket transactions.

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Introduktion

- Andra tillämpningsområden:
 - Bioinformatik
 - Medicinsk diagnos
 - Web mining
 - Vetenskaplig dataanalys

Representation av data

TI D	Item
1	Bread
1	Milk
2	Bread
2	Diapers
2	Beer
2	Eggs
3	Milk
	•••

Table 6.2. A binary 0/1 representation of market basket data.

TID	Bread	Milk	Diapers	Beer	Eggs	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

Definitioner

- Supportnivå (σ):
 - Låt:

 $I = \{i_1, i_2, ..., i_d\}$ är attributmängden (enheter i materialet),

 $T = \{t_1, t_2, ..., t_N\}$ är objektmängden (transaktioner),

X är en godtycklig delmängd av I

$$\sigma(X) = |\{t_i | X \subseteq t_i, t_i \subseteq T\}|$$

- Kan beskrivas som antalet transaktioner (t_i) i objektmängden (T) som innehåller X.

Definitioner

- Associationsregel (R) är ett uttryck som har följande form:
 X → Y
 där X och Y är disjunkta enhetsmängder enligt X ∩ Y = Ø
- Två mått på styrkan av en regel är support och konfidens

Definitioner

• Support (*s*)

$$s(X \to Y) = p(X, Y) = \frac{\sigma(X \cup Y)}{N}$$

• Konfidens (*c*)

$$c(X \to Y) = p(Y|X) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

Utvinning av regler

- Givet en transaktionsmängd, hitta regler som har support $\geq minsup$ och konfidens $\geq minkonf$
 - Dessa trösklar finns till för att ge en "objektiv" bedömning av intressanta mått
- Problemet: Att använda sig av Brute-Force är inte genomförbart då komplexiteten ökar exponentiellt med antalet enheter enligt:

$$|R| = 3^d - 2^{d+1} + 1$$

 $d\ddot{a}r d = antalet enheter$

Utvinning av regler

- Många av dessa regler är också icke-intressanta då även för små datamängder uppfyller ungefär 80% inte vanliga konfidens- och supportgränser
- Notera att reglerna $\{A, B\} \to \{C\}, \{A\} \to \{B, C\}$ och $\{A, C\} \to \{B\}$ har samma support. Detta medför att problemet kan delas upp i:
 - 1. Framkalla frekventa enhetsmängder
 - Hitta alla möjliga X som uppfyller $s(X) \ge minsup$
 - 2. Framkalla intressanta regler
 - Utvinna regler ur alla X från steg 1 enligt $X_1 \to X_2$ där $X_1 \cup X_2 = X$ och $X_1 \cap X_2 = \emptyset$ samt uppfyller $c(X_1 \to X_2) \ge minconf$

Exempel

Transaktioner från en stormarknad

```
items
                                       transactionID
    {rice,tomato souce,tunny,water}
                                       460202000107
    {tomato souce}
                                       460202000213
    {brioches}
                                       460202000312
    {brioches,tunny,water,yoghurt}
                                       460202000404
    {biscuits}
[5]
                                       460202000671
    {frozen fish}
                                       460202000893
    {brioches,tunny,yoghurt}
                                       460202001036
    {coffee,coke,frozen fish,tunny}
                                       460202001067
    {biscuits}
                                       460202001098
[10] {biscuits,frozen vegetables,rice} 460202001142
```


Exempel

Associationsregler:

```
> inspect(head(rules, n = 5))
    1hs
                    rhs
                                                  confidence lift
                                        support
                                                                      count
[1] {crackers} => {biscuits}
                                       0.05549024 0.5989848 1.381498 236
[2] {crackers} => {water}
                                       0.05219845 0.5634518 1.207234 222
[3] {frozen fish} => {frozen vegetables} 0.05619563 0.5759036 1.866858 239
[4] {frozen fish} => {water}
                                       0.05478486 0.5614458 1.202936 233
                 => {brioches}
[5] {juices}
                                       0.10463202 0.5604534 1.650698 445
```

• Tolkning: Om en kund köper crackers, köper denne också biscuits i ca. 59.8 procent av fallen.

Algoritmer

Frekventa enhetsmängder

• Aprioriprincipen:

Om en enhetsmängd är frekvent, då kommer alla dess delmängder vara frekventa.

alternativt:

Om enhetsmängd inte är frekvent, då kommer alla dess supermängder inte heller vara frekventa

• Den senare formuleringen är grunden till att stora delar av enhetsmängderna kan hoppas över

Frekventa enhetsmängder

Figure 6.4. An illustration of support-based pruning. If $\{a,b\}$ is infrequent, then all supersets of $\{a,b\}$ are infrequent.

Frekventa enhetsmängder

• Låt oss utnyttja Aprioriprincipen med en supporttröskel på 60%.

Table 6.2. A binary 0/1 representation of market basket data.

TID	Bread	Milk	Diapers	Beer	Eggs	Cola
1	1	1	0	0	0	0
2	1	0	1	1.	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

Apriorialgoritmen

```
Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: F_k = \{ i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup \}. {Find all frequent 1-itemsets}
 3: repeat
 4: k = k + 1.
     C_k = \operatorname{apriori-gen}(F_{k-1}). {Generate candidate itemsets}
     for each transaction t \in T do
         C_t = \operatorname{subset}(C_k, t). {Identify all candidates that belong to t}
         for each candidate itemset c \in C_t do
         \sigma(c) = \sigma(c) + 1. {Increment support count}
      end for
10:
    end for
    F_k = \{ c \mid c \in C_k \land \sigma(c) \geq N \times minsup \}. {Extract the frequent k-itemsets}
13: until F_k = \emptyset
14: Result = \bigcup F_k.
```


Beräkningskomplexitet

- Följande faktorer påverkar komplexiteten:
 - Support (lägre $minsup \rightarrow fler$ frekventa enhetsmängder)
 - Antalet enheter (dimensionalitet)
 - Antalet transaktioner
 - Genomsnittliga transaktionsvidden (sparsity i binär framställning)

Regelframkallning

- Låt Y vara en frekvent enhetsmängd från L_k .
 - Alla möjliga regler som kan utvinnas följer formen:

$$X_i \to (Y - X_i) \operatorname{där} X_i \subset Y$$
.

- Eftersom Y är frekvent, så är X och (Y X) frekventa. Det betyder att vi vet dess support från tidigare L_n .
- Sålunda, vi kan beräkna konfidensen:

$$c(X_i \to (Y - X_i)) = \frac{\sigma(Y)}{\sigma(X_i)}$$

Regelframkallning

- Aprioriprincipen tillämpad på konfidens kan beskrivas som:
 - Om $X \to (Y X)$ inte uppfyller konfidenströskeln, då kommer $X' \to (Y X')$ inte heller göra det om $(X' \subset X)$

Regelframkallning

- Pseudokod för algoritmen:
- 1. Låt Y vara en frekvent enhetsmängd
- 2. Utvinn enhetsmängder av storlek 1 ur Y. Låt oss nämna dem som E_{i1} .
- 3. Beräkna konfidensen av reglerna som ser ut $(Y E_{i1}) \to E_{i1}$. Kasta dem som har låg konfidens. Nu innehåller E_{i1} endast högkonfidenta regler.
- 4. Utvinn enhetsmängder av storlek 1 ur Y och slå de samman till E_{i1} vilket leder till E_{i2} .
- 5. Repetera steg 3 med E_{i2} .
- 6. osv.

Utvärdering av regler

Intressanta och ointressanta regler

- Regler som uppfyller trösklarna kan vara av två sorter
 - Ex. $\{Bread\} \rightarrow \{Butter\} \text{ och } \{Diapers\} \rightarrow \{Beer\}$
- De verkliga kommersiella databaser är väldigt stora och kan sluta med tusentals eller miljontals associationsregler, även med väldigt höga support- och konfidenströsklar.
- Att utforska dem alla är inte möjligt. Istället används:
 - Subjektiva intressemått
 - Objektiva intressemått

- Ett statistiskt resonemang man kan utgå ifrån är att "Mönster som innehåller oberoende mängder är ointressanta."
- Mått som vi redan har använt är:
 - Support
 - Konfidens
- Nu vill vi bygga vidare med fler mått

• Förväxlingsmatris (Confusion matrix)

Table 6.7. A 2-way contingency table for variables A and B.

	B	\overline{B}	
A	f_{11}	f_{10}	f_{1+}
\overline{A}	f_{01}	f_{00}	f_{0+}
	f_{+1}	f_{+0}	N

• Lift:

$$Lift(A \to B) = \frac{c(A \to B)}{s(B)} = \frac{s(A, B)}{s(A) * s(B)} = \frac{P(A, B)}{P(A) * P(B)}$$

• För binära variabler används Intressefaktor:

$$I(A,B) = \frac{Nf_{11}}{f_{1+}f_{+1}}$$

$$I(A, B)$$
 $\begin{cases} = 1, & \text{if } A \text{ and } B \text{ are independent;} \\ > 1, & \text{if } A \text{ and } B \text{ are positively correlated;} \\ < 1, & \text{if } A \text{ and } B \text{ are negatively correlated.} \end{cases}$

Exempel

Intressanta regler med avseende på Lift:

Andra intressemått:

Table 6.11. Examples of symmetric objective measures for the itemset $\{A, B\}$.

Measure (Symbol)	Definition
Correlation (ϕ)	$\frac{Nf_{11} - f_{1+} f_{+1}}{\sqrt{f_{1+} f_{+1} f_{0+} f_{+0}}}$
Odds ratio (α)	$(f_{11}f_{00})/(f_{10}f_{01})$
Kappa (κ)	$\frac{Nf_{11} + Nf_{00} - f_{1+}f_{+1} - f_{0+}f_{+0}}{N^2 - f_{1+}f_{+1} - f_{0+}f_{+0}}$
Interest (I)	$(Nf_{11})/(f_{1+}f_{+1})$
Cosine (IS)	$(f_{11})/(\sqrt{f_{1+}f_{+1}})$
Piatetsky-Shapiro (PS)	$\frac{f_{11}}{N} = \frac{f_{1+}f_{+1}}{N^2}$
Collective strength (S)	$\frac{f_{11}+f_{00}}{f_{1+}f_{+1}+f_{0+}f_{+0}} \times \frac{N-f_{1+}f_{+1}-f_{0+}f_{+0}}{N-f_{11}-f_{00}}$
Jaccard (ζ)	$f_{11}/(f_{1+}+f_{+1}-f_{11})$
All-confidence (h)	$\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$

Länkar

- http://r-statistics.co/Association-Mining-With-R.html
- https://datascienceplus.com/visualize-market-basket-analysis-in-r/
 - Network plots

www.liu.se

