- -Denoising Autoencoder (DAE)
- -Variational Autoencoder (VAE)
- -Denoising Convolutional Neural Network (DnCNN)

Dataset 1

Generation parameters:

- Signal = 1000
- Sigma = 700
- Image Size = 512x512
- Blobsize = 10.
- Nseeds = 3

First analysis

	PSNR (dB)	Dice coefficient
Noised Images	5.863 ± 0.332	0.334 ± 0.008
Denoising autoencoder	17.039 ± 1.433	0.959 ± 0.010
Variational autoencoder	13.989 ± 1.101	0.905 ± 0.018
Wiener filter	16.701 ± 0.875	0.973 ± 0.006

	PSNR (dB)	Dice coefficient
Noised Images	5.863 ± 0.332	0.334 ± 0.008
Denoising autoencoder	17.039 ± 1.433	0.959 ± 0.010
Variational autoencoder	13.989 ± 1.101	0.905 ± 0.018
Wiener filter	16.701 ± 0.875	0.973 ± 0.006

Dataset 2

- Fixed shape and Rician noise
- Can DAE denoise it? Like a Wiener filter?
- Can a generative model (VAE) do the "same" task?

Generation parameters:

- Signal = 1000
- Sigma = 700
- Image Size = 256x256
- Blobsize = 1
- Nseeds = 1
- Gaussian Filter

Using the <u>same architectures</u> used for dataset 1

10000 images:

- 7200 train set
- 1800 validation set
- 1000 test set

Denoising autoencoder results

Denoising autoencoder results with an offset

Variational autoencoder results

Variational autoencoder results with an offset

	PSNR (dB)	Dice Coeff.
VAE	26.985 ± 3.637	0.810 ± 0.040
VAE with offset	14.619 ± 1.576	0.768 ± 0.066

Using Wiener filter+offset+median filter

TEST

WIENER FILTER

MEDIAN FILTER

	PSNR (dB)	Dice Coeff.
Wiener filter	17.433 ± 1.405	0.828 ± 0.064

	PSNR (dB)	Dice coefficient	
Noised Images	5.863 ± 0.332	0.334 ± 0.008	
DAE	35.920 ± 2.283	0.829 ± 0.020	
DAE with offset	21.507 ± 1.305	0.878 ± 0.016	
VAE	26.985 ± 3.637	0.810 ± 0.040	
VAE with offset	14.619 ± 1.576	0.768 ± 0.066	
Wiener filter with offset	17.433 ± 1.405	0.828 ± 0.064	

- The denoise is good as a Wiener filter √
- For a generative model performance are lower as expected √

Dataset 3

• Test the reconstruction: do DAE and VAE generalize the reconstruction of signals with different shapes?

Generation parameters:

- Signal = 1500
- Sigma = 900
- Image Size = 64x64
- Blobsize = 0.3
- Nseeds = 1

10003 images:

- 7000 train set
- 3000 validation set
- 3 test set

- DAE/VAE don't generalize in reconstruction X
- Two possible strategies:
 - a) DAE/VAE trained with deformed signals shapes.
 - b) try with a different network DnCNN.

Dataset 4

Generation parameters:

- Signal = 1500
- Sigma = 900
- Image Size = 64x64
- Blobsize = 0.2/0.5
- Nseeds = 1
- Gaussian filter
- Elastic deformation

10003 images:

- 7000 train set
- 3000 validation set
- 3 test set

Denoising autoencoder results

	Shannon Entropy	
MRI 1	11.996	
MRI 2	11.995	
MRI 3	11.997	

Variational autoencoder results

	Shannon Entropy	
MRI 1	11.982	
MRI 2	11.981	
MRI 3	11. 988	

Results dataset 4: A plan

- Reconstructions are a little bit better then before √
- But not so good, I need greater dataset for an appropriate generalization X

Dataset 4: B plan

- Try with a different network, DnCNN.
- DnCNN needs fewer data then AE to generalize.
- Used as denoiser with residual learning configuration.

Input Layer (64, 64, 1)

Conv2D(64)

Results of DnCNN

- DnCNN results are good as the best DAE (the one with infinite power generalization) and of the Wiener filter √
- DnCNN generalizes better with different shapes √

	Shannon Entropy	
MRI 1	11.996	
MRI 2	11.995	
MRI 3	11.999	

Shannon Entropy	MRI 1	MRI 2	MRI 3
DAE	11.996	11.995	11.997
VAE	11.982	11.981	11. 988
DnCNN	11.996	11.995	11.999
Wiener	11.999	11.999	11.999

Conclusions...

- Denoising is good, but DnCNN and Wiener work better then DAE/VAE.
- Wiener eliminates the noise, but produces artifacts. Maybe others non-Rician noise sources.
- DnCNN produces really good results in 2/3 MRI. Statistic is too low, but could be different acquisition conditions or problematics.
- Tested three different deep neural network architectures for denoising:
 - DAE: works well in recognizing and removing the noise, needs large dataaugmented samples in order to not learn shapes in the training set.
 - VAE: as expected underperform with the DAE but can be used to produce large samples for training of the DAE/DnCNN.
 - DnCNN: best results, same level as Wiener filter, in terms of noise removal and good generalization to different shape (need to be quantitatively assessed).