

Licenciatura em Engenharia Informática

1° Ano, 1° Semestre

Eletrónica (2022/2023)

Ficha Prática N.º 4

Todos os cálculos matemáticos, decorrentes das questões que se apresentam em seguida, devem ser realizados através do ambiente de desenvolvimento integrado *IDLE*.

12. Considere o circuito da figura seguinte:

$$R_1 = 4 k\Omega$$
 e $R_2 = 6 k\Omega$

$$R_3 = 10 k\Omega e R_4 = 10 k\Omega$$

$$I_1 = 5 \text{ mA e } V_1 = 5 \text{ V}$$

- a) Calcule o circuito equivalente de *Thevenin* aos terminais *A* e *B*. Considere que a resistência de carga não se encontra representada.
- b) Calcule o circuito equivalente de *Thevenin* aos terminais A e B. Considere que R_4 representa a resistência de carga.
- c) Calcule a corrente na resistência R_4 com recurso ao circuito equivalente de *Thevenin*.
- d) Calcule o contributo de I₁ para a corrente que atravessa R₄.
- e) Calcule o contributo de V₁ para a corrente que atravessa R₄.
- f) Calcule a corrente na resistência R₄ com recurso ao teorema da sobreposição.
- g) Calcule a potência dissipada na resistência R_4 , assim como, a energia (*Joules*) consumida em 10 horas $(1 J = 1 W.s)^1$
- h) Suponha que a resistência R_4 possui uma tolerância de 10%, indique qual o maior valor de corrente que a poderia atravessar.
- i) Efetue a simulação do circuito recorrendo ao programa de simulação *PSpice Student* (em alternativa pode utilizar o programa de simulação *Ltspice*).

¹calculadora on-line: https://www.rapidtables.org/pt/calc/electric/Watt_to_Joule_Calculator.html

13. Considere o circuito da figura seguinte.

- a) Determine o circuito equivalente de *Thevenin* aos terminais A e B (considere que R_2 é a resistência de carga).
- b) Efetue a simulação do circuito original com carga (R_2) , assim como do circuito simplificado (equivalente de *Thevenin*) com carga (R_2) , recorrendo ao programa de simulação *PSpice Student* (em alternativa pode utilizar o programa de simulação *Ltspice*). Altere sucessivamente o valor da resistência de carga, o que conclui da análise dos resultados?
- c) Que valor deveria assumir R_2 para que a corrente I_{R2} passasse a ser metade do valor original.
- d) Determine o valor da corrente que atravessa a resistência R_2 com recurso ao teorema da sobreposição.
- e) Suponha que o circuito se encontra a operar continuamente durante 1 mês (30 dias). Determine a energia consumida pela resistência R4 em *Joules* $(1 J = 1 W.s)^2$.
- f) Determine quanto tempo seria necessário para que a resistência consumisse 1 *KJ* (*KiloJoule*). Indique a resposta em dias e meses².
- g) Determine o circuito equivalente de *Thevenin* aos terminais A e B (considere que a resistência de carga não está representada).
- h) Efetue a simulação do circuito original com uma carga (R_{load} = 2 k Ω), assim como do circuito simplificado (equivalente de *Thevenin*) com carga (R_{load} = 2 k Ω), recorrendo ao programa de simulação *PSpice Student* (em alternativa pode utilizar o programa de simulação *Ltspice*).

² calculadora on-line: https://www.rapidtables.org/pt/calc/electric/Watt_to_Joule_Calculator.html

14. Considere o circuito da figura seguinte.

- a) Determine o circuito equivalente de *Thevenin* aos terminais A e B.
- b) Determine o valor da corrente na resistência R_3 com recurso ao teorema de Thevenin.
- c) Determine o valor da corrente na resistência R₃ com recurso ao teorema da sobreposição.
- d) Efetue a simulação do circuito original recorrendo ao programa de simulação *PSpice Student*.

15. Considere o circuito da figura seguinte.

- a) Calcule o equivalente de *Thevenin* aos terminais da resistência R₄, considerando R₄ a resistência de carga.
- b) Determine o valor da corrente que atravessa a resistência R₄ com recurso ao teorema de Thevenin.
- c) Determine o valor da corrente que atravessa a resistência R₄ com recurso ao teorema da sobreposição
- d) Determine o valor que a resistência R_4 deve assumir para que a corrente que a atravessa seja $\frac{1}{4}$ do valor inicial.

Bibliografia:

- [1] Amaral, Acácio (2021), Eletrónica Aplicada, Edições Silabo, Lisboa, Portugal.
- [2] Amaral, Acácio (2017), Electrónica Analógica: Princípios, Análise e Projectos, Edições Silabo, Lisboa, Portugal.
- [3] Amaral, Acácio (2015), Análise de Circuitos e Dispositivos Eletrónicos, Publindústria, Porto (2ª edição).