

VÍTOR SARAIVA RAMOS

Defesa do Relatório de Estágio Curricular Obrigatório

Engenharia & Qualidade

Sumário

- Introdução
- Normas Técnicas
- Subestação Planalto 69/13.8 kV
 - Medida de Resistividade do Solo e Análise da Malha de Terra;
 - Projeto de Modificações da Malha de Terra e Análise em Novo Solo.
- Conclusão

A Empresa

- Atua no mercado desde 1995 prestando serviço nas áreas de Cabeamento Estruturado, Instalações Elétricas, Tecnologia da Informação e Aeroespacial;
- Equipe qualificada com projetos executados juntamente a clientes como o supermercado Nordestão, COSERN e o Centro de Lançamento da Barreira do Inferno (CLBI).

Estágio

- 6 meses de duração 10/11/2017- 09/05/2018;
- 6 horas diárias;
- Orientação do professor Jose Luiz da Silva Junior, do Departamento de Engenharia Elétrica da Universidade Federal do Rio Grande do Norte;
- Atividades desenvolvidas nas seguintes áreas: Instalações Elétricas, Subestações de Energia Elétrica e Cabeamento Estruturado.

Supervisor do Estágio

- Fábio José Vieira de Sousa;
- Engenheiro Eletricista;
- Sócio Gerente da Gomes & Vieira Ltda;
- Responsável pela orientação nas atividades desenvolvidas e mentoria ao longo do período de realização do estágio.

Normas Técnicas

- NBR-7117: Medição da resistividade e determinação da estratificação do solo;
- NBR-14565: Procedimento básico para elaboração de projetos de cabeamento de telecomunicações para rede interna estruturada;
- NBR-15751: Sistemas de aterramento de subestações;
- NBR-15749: Medição de resistência de aterramento e de potenciais na superfície do solo em sistemas de aterramento.

Subestação Planalto 69/13.8 kV

- Principal atividade realizada durante o estágio;
- Medida de resistividade do solo e análise da malha de terra;
- Medida de resistência e resistividade de terreno adjacente (não será detalhado);
- Projeto de modificações da malha de terra e análise em novo solo.

Estratificação do Solo Análise de Malha de Terra SE Planalto 69/13,8 kV

Engenharia & Qualidade

Planta de Situação e Linhas de Medição

Resultado da Estratificação do Solo

Modelo: Wenner Fórmula: Completa Prof. med.: 0,3 Esp. mín.: 0,55

Aparelho: Fluke 1625

Medições:

9						
espaça [m]	amento		linhas de	medição: [Ohm]		
a	A	В	C	D	E	F
1,00	1814,00	1690,00	333,00	396,00	491,00	497,00
2,00	549,00	622,00	190,30	149,10	359,00	261,80
4,00	141,20	122,00	88,30	80,30	149,90	108,00
8,00	40,30		39,00	15,20	46,20	28,20
14,00	14,60				16,10	
16,00		12,60				9,80

Resultado da Estratificação do Solo

Gráfico Resultante da Estratificação

Estudo da Malha de Terra

Considerações:

- 1. Malha em cabo de cobre nu 70 mm²;
- Camada de aterro sobre a malha de 60 cm (previsão);
- 3. Camada de pó de brita (aplicada sobre o aterro) de 5 cm;
- 4. Camada de brita (aplicada sobre o pó de brita) de 10 cm;
- Execução da malha de aterramento através de solda exotérmica;

- 6. Hastes tipo Copperweld 16×2400 mm;
- 7. Instalação de hastes de aterramento conforme apresentada em projeto;
- 8. Tempo de atuação da proteção 1 s;
- 9. Valor de falta 15 kA.

Estudo da Malha de Terra

Abrangência:

- 1. Resistência da malha;
- 2. Máximo potencial da malha;
- 3. Potencial de toque;
- 4. Potencial de passo;
- 5. Potencial de superfície.

Malha de Terra a 0,1 m

Layout e Linhas de Plotagem

P1 (azul): perfil diagonal da malha

P2 (verde): região com alta densidade de hastes

P3 (preto): região com baixa densidade de hastes

Potencial de Toque

Potencial de Passo

Potencial de Superfície

SE Planalto 69/13,8 kV Modificação da Malha de Terra Análise da Malha de Terra

Engenharia & Qualidade

Estudo da Malha de Terra

Considerações:

- Malha em cabo de cobre nu 70 mm² a
 0,6 m do nível do solo segundo layout;
- 2. Camada de piçarra de 70 cm;
- 3. Camada de pó de brita (aplicada sobre o aterro) de 5 cm;
- 4. Camada de brita (aplicada sobre o pó de brita) de 10 cm;
- Execução da malha de aterramento através de solda exotérmica;

- 6. Hastes tipo Copperweld 16×2400 mm;
- 7. Instalação de hastes de aterramento conforme apresentada em projeto;
- Tempo de atuação da proteção 1 s;
- 9. Valor de falta 15 kA;
- 10. Utilizada a estratificação do solo obtida na primeira medição, com exclusão de pontos fora da média de modo a compatibilizar com os resultados da segunda medição.

Estudo da Malha de Terra

Abrangência:

- 1. Resistência da malha;
- 2. Máximo potencial da malha;
- 3. Potencial de toque;
- 4. Potencial de passo;
- 5. Potencial de superfície.

Estudo 1: Malha de Terra a 0,6 m

Estudo 1: Potencial de Toque

Estudo 1: Potencial de Passo

Estudo 1: Potencial de Superfície

Conclusão

- Mesmo com a melhoria dos resultados, a E&Q alerta para os potenciais perigosos altos no que concerne os limites externos da malha (além da mesma) em que se encontram edificações residenciais e passeio público;
- A análise proposta corresponde a uma situação de pior caso em que a estratificação do solo se mantém (camada de 70 cm de barro). Aconselha-se fortemente quando da instalação das modificações à malha o acréscimo de valas que contenham solo com excelente condutividade (maior camada e tratamento com compostos químicos e.g. Terra Gel);
- Recomenda-se ainda a instalação de uma malha satélite auxiliar para diminuição da resistência da malha de terra para maior conformidade. A instalação de uma malha secundária auxilia igualmente na diminuição dos perfis dos potenciais perigosos de modo geral;
- Sugere-se a remediação imediata dos potenciais perigosos seguida de uma nova avaliação da resistência de malha para mensuração do impacto da modificação na malha antes do projeto de uma possível malha satélite.

Conclusão

- O estágio acarretou em um aprofundamento dos conhecimentos teóricos obtidos em sala de aula;
- Atividades multidisciplinares;
- A Engenharia & Qualidade oferece ao estagiário uma experiência completa para o preparar para atuar com segurança no mercado de trabalho.