2007~2008 学年第一学期 《复变函数与积分变换》课程考试试卷(A卷)

院(系)专:		专业班	·业班级		_学号_					
			2007年	007年11月26日		考试时间: 晚上 7:00~9:30				9:30
	题号		11	Ш	四	五	六	七	八	总分
	得分									
			_							
得分 一、填空题 (每空 2 分, 共 22 分)										
	评卷人									
	· — \//	-2 <i>i</i>	/ L I++	\r	<i>i</i>	· /- \ /-	- V			

- 1. 复数 $\frac{-2i}{1+i}$ 的模为______,辐角主值为______.
- 3. $\operatorname{Ln}(\sqrt{3}+i)^2$ 的值为______.
- 4. 函数 $f(z) = \frac{1}{z^2 (1+i)z + i}$ 在 z = 0 点展开成泰勒(Taylor)级数的收敛半径为_____.
- 5. z = 0 为函数 $f(z) = e^{\frac{1-\cos z}{z^2}}$ 的何种类型的奇点? _____.
- 6. 积分 $\oint_{|z|=1} \frac{1-\sin z}{z(z-2)} dz$ 的值为_____.
- 7. 映射 $f(z) = z^2 + 2z$ 在 z = -i 处的伸缩率为______, 旋转角为______.

8. 函数 $f(t) = 1 + 2\cos 2t$ 的 Fourier 变换为_____.

得 分	
评卷人	

二、计算题(每题 5分, 共 20分)

1.
$$\oint_{|z|=2} \frac{\mathrm{e}^z - 1}{z(z-1)^2} \, \mathrm{d}z$$

$$2. \oint_{|z|=2} z^2 e^{\frac{1}{z}} \sin \frac{1}{z} dz$$

$$3. \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\cos\theta - \sqrt{5}}$$

$$4. \int_0^{+\infty} \frac{x \sin 2x}{x^2 + 1} \, \mathrm{d}x$$

得 分	
评卷人	

三、(10 分)已知 $u(x,y) = 4xy^3 + ax^3y$, 求常数 a 以及二元函数 v(x,y) , 使得 f(z) = u + iv 为

解析函数且满足条件 f(1)=0.

得 分	
评卷人	

四、(12 分)将函数 $f(z) = \frac{1-i}{z^2 - (1+i)z + i}$ 分别在 z = 0 和 z = 1 处展开为洛朗(Laurent)级数.

得 分	
评卷人	

五、
$$(8 \, f)$$
求区域 $D = \{z : -\frac{\pi}{2} < \text{Im } z < \frac{\pi}{2}, \text{ Re } z < 0\}$
在映射 $w = \frac{e^z - i}{e^z + i}$ 下的像.

得 分	
评卷人	

六、(10 分)求把区域 $D = \{z: |z-1| > 1, \text{Re } z > 0\}$ 映射到单位圆内部的保形映射.

得 分	
评卷人	

七、(12 分)利用 Laplace 变换求解微分方程组:
$$\begin{cases} x''(t) - y''(t) - y(t) = t e^t, & x(0) = y(0) = 0, \\ x'(t) - y'(t) - x(t) = -\sin t, & x'(0) = y'(0) = 1. \end{cases}$$

得分	
评卷人	

 $\int_{|z|=1}^{\infty} |f(z)-2| < 2 \text{ 内解析, 且满足}$ |f(z)-2| < 2 证明: $\int_{|z|=1}^{\infty} \frac{f''(z)-4f'(z)}{f^2(z)-4f(z)} \, \mathrm{d}z = 0 \, .$

$$|f(z)-2|<2$$
, 证明:

$$\oint_{|z|=1} \frac{f''(z) - 4f'(z)}{f^2(z) - 4f(z)} dz = 0.$$