DOS APROXIMACIONES EQUIVALENTES A LA NOCIÓN DE HAZ

Juan Camilo Lozano Suárez ¹

RESUMEN. Introducimos la noción de haz de dos maneras en principio independientes; primero como un funtor contravariante con buenas propiedades de pegado y luego como espacio fibrado o étalé. Posteriormente probaremos que las categorías que cada una produce son equivalentes.

PALABRAS CLAVE. Haz; espacio étalé; homeomorfismo local; manojo; hacificación; equivalencia de categorías; local vs global.

1 Haz como funtor

1.1 Un ejemplo como motivación

Una constante en el quehacer matemático es el tránsito entre aspectos locales y aspectos globales. Consideremos un ejemplo enmarcado en el área de la topología. Sean X un espacio topológico y U un subconjunto abierto de X, al cual dotamos con un cubrimiento $\{U_i\}_{i\in I}$ de subconjuntos abiertos de U. Una función continua $f:U\to\mathbb{R}$ se presenta como una herramienta para entender globalmente el conjunto U, y fácilmente nos permite pasar al conocimiento local de U en el siguiente sentido:

(P1) Si $V \subseteq U$ entonces $f|_V : V \to \mathbb{R}$ es también una función continua.

De forma recíproca, gracias al lema de pegado (Teorema 2.0.1), f nos permite pasar de un apropiado conocimiento local de U a un conocimiento global, en la siguiente forma:

Email: jclozanos@unal.edu.co

¹Estudiante de pregrado en matemáticas, Universidad Nacional de Colombia.

(**P2**) Sea $\{U_i\}_{i\in I}$ un cubrimiento abierto de U, y para cada $i\in I$ definamos $f_i:=f|_{U_i}^U$ (la restricción de f a U_i). Si f_i es continua para todo $i\in I$, entonces $f:U\to\mathbb{R}$ es continua.

Las propiedades (**P1**) y (**P2**) pueden ser capturadas en lenguaje categórico. Para esto, consideremos la categoría $\mathcal{O}(X)$ que tiene como objetos los subconjuntos abiertos de X, y en la cual, dados $U, V \in \mathcal{O}(X)$, hay una flecha de V en U si y solo si $V \subseteq U$; dicha flecha en $\mathcal{O}(X)$ (que será la única de V en U) la representamos igualmente mediante " $V \subseteq U$ ". Ahora, para cada $U \in \mathcal{O}(X)$ definimos el conjunto CU de todas las funciones reales continuas sobre U:

$$CU := \{ f : U \to \mathbb{R} \mid f \text{ es continua} \},$$

y para cualquier flecha $V \subseteq U$ en $\mathcal{O}(X)$, definimos la función de conjuntos

$$C(V \subseteq U): CU \to CV$$

 $f \mapsto f|_V^U$

que a cada función continua de U en \mathbb{R} le asigna su respectiva función restricción al subconjunto V, que a su vez es una función continua de V en \mathbb{R} . Tendremos entonces la siguiente propiedad:

Proposición 1.1.1. La regla C que a cada $U \in \mathcal{O}(X)$ le asigna el conjunto CU y a cada flecha $V \subseteq U$ en $\mathcal{O}(X)$ le asigna la función restricción de V en U, $C(V \subseteq U) : CU \to CV$, es un funtor contravariante de $\mathcal{O}(X)$ en **Set**.

Prueba. • Trivialmente se tiene que C respeta identidades, pues para cualquier $U \in \mathcal{O}(X)$ tenemos

$$C(1_U): CU \longrightarrow CU$$

 $f \longmapsto f|_U^U = f$

es decir, $C(1_U) = 1_{C(U)}$.

• Supongamos que en $\mathcal{O}(X)$ tenemos $W \subseteq V \subseteq U$. Entonces $W \subseteq U$ y en **Set** tenemos la función restricción de U en W, $C(W \subseteq U) : CU \to CW$. Tenemos ademas en **Set** la composición $C(W \subseteq V) \circ C(V \subseteq U) : CU \to CW$. Para cada $f \in CU$ se tiene

$$(C(W \subseteq V) \circ C(V \subseteq U))(f) = C(W \subseteq V)(C(V \subseteq U)(f))$$

$$= C(W \subseteq V)(f|_V^U)$$

$$= (f|_V^U)|_W^V$$

$$= f|_W^U$$

$$= C(W \subseteq U)(f),$$

con lo cual $C(W \subseteq V) \circ C(V \subseteq U) = C(W \subseteq U)$ y C respeta composiciones.

Con lo anterior, podemos decir que C es un **prehaz** (de conjuntos):

Definición 1.1.2 (Prehaz). Un prehaz (de conjuntos) sobre un espacio topológico X es un funtor contravariante de $\mathcal{O}(X)$ en **Set**.

La Proposición 1.1.1 permite capturar de manera categórica la propiedad (**P1**). Para lograr hacer lo mismo con la propiedad (**P2**) introducimos el concepto de *iqualadores*.

1.2 Igualadores

Definición 1.2.1. En una categoría arbitraria C, sean $f, g: A \to B$ flechas paralelas. Un igualador de f y g es una pareja $\langle E, e \rangle$, con $E \in C$ y $e: E \to A$ en C, tal que $f \circ e = g \circ e$, y que es universal con esta propiedad, en el sentido de que si hay otra pareja $\langle U, u \rangle$ con $U \in C$ y $u: U \to A$ en C, tal que $f \circ u = g \circ u$, entonces existe una única flecha $v: U \to E$ en C tal que $e \circ v = u$.

El siguiente diagrama conmutativo, que denominamos como "diagrama igualador", se resume la anterior definición:

$$E \xrightarrow{e} A \xrightarrow{f} B$$

$$V \downarrow u$$

$$U$$

Los ejemplos de igualadores que más estaremos trabajando son aquellos que aparecen en la categoría **Set**:

Ejemplo 1.2.2. Sean A y B conjuntos y f, g funciones de A en B. Verifiquemos que un igualador de f y g está dado por $\langle E, e \rangle$, donde $E = \{a \in A \mid f(a) = g(a)\}$ y e es la función inclusión de E en A:

- Dado $x \in E$ se tiene $(f \circ e)(x) = f(e(x)) = f(x) = g(x) = g(e(x)) = (g \circ e)(x)$, es decir, $f \circ e = g \circ e$.
- Supongamos que existe $\langle U, u \rangle$ con $U \in \mathbf{Set}$ y $u : U \to A$ en \mathbf{Set} , tal que $f \circ u = g \circ u$. Podemos definir $v : U \to E$ vía v(x) = u(x) para todo $x \in U$, e inmediatamente se tendrá $e \circ v = u$; igualmente, si v' es una fleca de $U \to E$ en \mathbf{Set} tal que $e \circ v' = u$ entonces para cada $x \in U$ se tiene v'(x) = e(v'(x)) = u(x) = e(v(x)) = v(x), de modo que v = v'.

 \Diamond

En la práctica, si no hay lugar a confusiones, nos referimos indistintamente por "igualador" tanto al par $\langle E, e \rangle$ como simplemente a la flecha e. Directamente de la definición de igualadores, podemos derivar algunas propiedades que serán útiles más adelante:

Proposición 1.2.3. En cualquier categoría, todo igualador es un monomorfismo.

Prueba. Sean **C** una categoría, $f, g: A \to B$ flechas paralelas en **C** y $\langle E, e \rangle$ un igualador de f y g. Supongamos que existen flechas $i, j: F \to E$ en **C** tales que $e \circ i = e \circ j$. Tenemos $(f \circ e) \circ j = (g \circ e) \circ j$, es decir, $f \circ (e \circ j) = g \circ (e \circ j)$. Como e es un igualador de f y g, existe una única flecha $k: F \to E$ en **C** tal que $e \circ k = e \circ j$; trivialmente j cumple esta propiedad, pero también lo hace i, pues por hipótesis $e \circ i = e \circ j$. Se sigue que i = j y por tanto e es un monomorfismo en **C**.

Como en **Set**, para una flecha es lo mismo ser monomorfismo que ser una función inyectiva, como corolario de lo anterior obtenemos que cualquier igualador en **Set** es una función inyectiva.

Proposición 1.2.4. Supongamos que en Set el siguiente es un diagrama igualador:

$$E \xrightarrow{e} A \xrightarrow{f} B$$

Entonces, para todo $a \in A$ tal que f(a) = g(a), existe $\alpha \in E$ tal que $e(\alpha) = a$.

Prueba. Definimos $F := \{x \in A \mid f(x) = g(x)\} \ (\subseteq A)$. Por la Proposición 1.2.3, sabemos que $\langle F, in_{F,A} \rangle$ (donde $in_{F,A}$ es la función inclusión de F en A), es un igualador de f y g, con lo cual, existe una única flecha $v : F \to E$ tal que $e \circ v = in_{F,A}$. Como $a \in F$, tenemos $\alpha := v(a) \in E$ y $e(\alpha) = e(v(a)) = in_{F,A}(a) = a$.

1.3 Un ejemplo como motivación (continuación)

Continuando con nuestro "ejemplo como motivación" (Sección 1.1), resaltamos la importancia, para la validez de la propiedad (P2), de la existencia de una buena "condición de pegado", en el sentido de que las funciones f_i $(i \in I)$ se respetan dondequiera que se solapen: para cualesquiera $i, j \in I$ y cualquier $x \in U_i \cap U_j$, se tiene $f_i(x) = f_j(x)$; es este buen comportamiento local en subconjuntos de U lo que nos permite el paso a un conocimiento global de U mediante la función continua f que se reconstruye al pegar los elementos de la familia $\{f_i\}_{i \in I}$. Notemos que $\{f_i\}_{i \in I}$ es un elemento del producto cartesiano $\prod_{i \in I} CU_i$. Como, para cualesquiera $i, j \in I$ se tiene $f_i \in CU_i$ y $f_j \in CU_j$, y como $U_i \cap U_j \subseteq U_i$ y $U_i \cap U_j \subseteq U_j$, obtenemos, fruto de restringir adecuadamente a intersecciones, las funciones $f_i|_{U_i \cap U_j}^{U_i}$, $f_j|_{U_i \cap U_j}^{U_j} \in C(U_i \cap U_j)$, con las cuales formamos las familia $\{f_i|_{U_i \cap U_j}^{U_i}\}_{(i,j) \in I \times I}$ y $\{f_j|_{U_i \cap U_j}^{U_j}\}_{(i,j) \in I \times I}$, que a su vez son elementos del producto cartesiano $\prod_{(i,j) \in I \times I} C(U_i \cap U_j)$. Estas construcciones nos sugieren la definición de las siguientes funciones:

- $e: CU \to \prod_{i \in I} CU_i$ que a cada $f \in CU$ le asigna la familia $\{f|_{U_i}^U\}_{i \in I}$.
- $\pi_1: \prod_{i\in I} CU_i \to \prod_{(i,j)\in I\times I} C(U_i\cap U_j)$ que a cada $\{f_i\}_{i\in I}$ le asigna la familia $\{f_i|_{U_i\cap U_j}^{U_i}\}_{(i,j)\in I\times I}$.
- $\pi_2: \prod_{i \in I} CU_i \to \prod_{(i,j) \in I \times I} C(U_i \cap U_j)$ que a cada $\{f_i\}_{i \in I}$ le asigna la familia $\{f_j|_{U_i \cap U_j}^{U_j}\}_{(i,j) \in I \times I}$.

2 Anexos

Teorema 2.0.1 (Lema de pegado). Sean X y Y espacios topológicos. Sean $U \subseteq X$, $\{U_i\}_{i \in I}$ un cubrimiento abierto de U y $\{f_i\}_{i \in I}$ una familia de funciones, de modo que para cada $i \in I$, $f_i : U_i \to Y$ es una función continua. Además suponemos la siguiente "condición de pegado": para cualesquiera $i, j \in I$ se tiene $f_i(x) = f_j(x)$ para todo $x \in U_i \cap U_j$. Entonces, $f := \bigcup_{i \in I} f_i$ es una función continua de U en Y.

- **Prueba.** Veamos que f es en efecto una función de U en Y. Sea $x \in U = \bigcup_{i \in I} U_i$. Existe $j \in I$ tal que $x \in U_j$, luego $\langle x, f_j(x) \rangle \in f_j \subseteq \bigcup_{i \in I} f_i = f$. Como $f_j(x) \in Y$, obtenemos que f relaciona a x con un elemento de Y. Supongamos que para $y, y' \in Y$ se tiene $\langle x, y \rangle, \langle x, y' \rangle \in f = \bigcup_{i \in I} f_i$. Existen $j, k \in I$ tales que $\langle x, y \rangle \in f_j$ y $\langle x, y' \rangle \in f_k$, es decir $x \in I_j$ y $y = f_j(x)$, y, $x \in U_k$ y $y' \in f_k(x)$; entonces $x \in U_j \cap U_k$ y por la condición de pegado se tiene $y = f_j(x) = f_k(x) = y'$, con lo cual $\langle x, y \rangle = \langle x, y' \rangle$. Lo anterior nos muestra que f relaciona cada elemento de f con un único elemento de f, es decir, f es una función de f.
 - Probemos que $f:U\to Y$ es continua mostrando que devuelve abiertos de Y en abiertos de U por la imagen recíproca . Sea $V\stackrel{ab}\subseteq Y$. Notemos que $f^{-1}(V)=\bigcup_{i\in I}f_i^{-1}(V)$:
 - \subseteq : Sea $x \in f^{-1}(V) \subseteq U$, es decir, $f(x) \in V$. Existe $j \in I$ tal que $x \in U_j$, luego $f_j(x) = f(x) \in V$, y $x \in f_j^{-1}(V) \subseteq \bigcup_{i \in I} f_i^{-1}(V)$.
 - \supseteq : Sea $x \in \bigcup_{i \in I} f_i^{-1}(V)$, es decir $x \in f_j^{-1}(V)$ para algún $j \in I$. Entonces $f(x) = f_j(x) \in V$ y $x \in f^{-1}(V)$.

Ahora bien, para cada $i \in I$ tenemos $f_i^{-1}(U) \stackrel{ab}{\subseteq} U_i$, luego $f_i^{-1}(V) = W_i \cap U_i$ con $W_i \stackrel{ab}{\subseteq} U$. Como $U_i \stackrel{ab}{\subseteq} U$ entonces $f_i^{-1}(V) \stackrel{ab}{\subseteq} U$, de modo que

$$f^{-1}(V) = \bigcup_{i \in I} f_i^{-1}(V) \stackrel{ab}{\subseteq} U.$$

Con esto, concluimos que $f = \bigcup_{i \in I} f_i : U \to Y$ es continua.