Equivalences

$a \wedge \top$	=	a	Id_{\wedge}
$a \lor \bot$	=	a	Id_{\vee}
$a \wedge b$	=	$b \wedge a$	Com_{\wedge}
$a \vee b$	=	$b \vee a$	Com_{\vee}
$a \wedge (b \vee c)$	=	$(a \wedge b) \vee (a \wedge c)$	Dis_{\wedge}
$a \vee (b \wedge c)$	=	$(a \lor b) \land (a \lor c)$	Dis_{\vee}
$a \wedge a$	=	$\stackrel{\circ}{a}$	$Item_{\wedge}$
$a \vee a$	=	a	$Item_{\vee}$
$a \vee \top$	=	T	$Anul_{\vee}$
$a \wedge \bot$	=	\perp	$Anul_{\wedge}$
a	=	$\neg \neg a$	¬¬ ′′
$\neg(a \land b)$	=	$\neg a \lor \neg b$	DM_{\wedge}
$\neg(a \lor b)$	=	$\neg a \land \neg b$	DM_{\vee}
$a \rightarrow b$	=	$\neg a \lor b$	Imp
$a \vee \neg a$	=	Τ	LEM
$a \land \neg a$	=	<u></u>	CTR
$(\forall x.a) \wedge b$	=	$\forall x.(a \land b)$	$\forall \land$
$(\exists x.a) \wedge b$	=	$\exists x.(a \land b)$	$\exists \land$
$(\forall x.a) \lor b$	=	$\forall x.(a \lor b)$	$\forall \lor$
$(\exists x.a) \lor b$	=	$\exists x.(a \lor b)$	$\exists \lor$
$a \to (\forall x.b)$	=	$\forall x.(a \to b)$	Cov_{\forall}
$a \to (\exists x.b)$	=	$\exists x.(a \to b)$	Cov_{\exists}
$(\forall x.a) \to b$	=	$\exists x.(a \to b)$	$Cont_{\forall}$
$(\exists x.a) \to b$	=	$\forall x.(a \to b)$	$Cont_{\exists}$
$\forall xy.a$	=	$\forall yx.a$	Com_{\forall}
$\exists xy.a$	=	$\exists yx.a$	Com_\exists
$\neg(\forall x.a)$	=	$(\exists x. \neg a)$	DM_{\forall}
$\neg(\exists x.a)$	=	$(\forall x. \neg a)$	DM_{\exists}
$\forall x.a$	=	$a \text{ if } x \notin a$	$Item_{\forall}$
$\exists x.a$	=	$a \text{ if } x \notin a$	$Item_{\exists}$
$\forall x.a$	=	$\forall z. a[x \mapsto z]$	Rep_{\forall}
$\exists x.a$	=	$\exists z. a[x \mapsto z]$	Rep_{\exists}

Inference Rules

$$a = x$$
 $Refl$ $a = b$ $P(a)$ $P(b)$ $a = E1$ $a = b$ $P(b)$ $P(a)$ $P(a)$