Math 118C HW4

Zih-Yu Hsieh

May 16, 2025

1

Question 1 Rudin Pg. 242 Problem 27:

Put f(0,0) = 0, and

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

if $(x,y) \neq (0,0)$. Prove that

- (a) f, $D_1 f$, $D_2 f$ are continuous in \mathbb{R}^2 .
- (b) $D_{12}f$ and $D_{21}f$ exist at every point of \mathbb{R}^2 , and are continuous except at (0,0).
- (c) $D_{12}f(0,0) = 1$, and $D_{21}f(0,0) = -1$.

2

Question 2 Rudin Pg. 242 Problem 28:

For $t \geq 0$, put

$$\varphi(x,t) = \begin{cases} x & 0 \le x \le \sqrt{t} \\ -x + 2\sqrt{t} & \sqrt{t} \le x \le 2\sqrt{t} \\ 0 & otherwise \end{cases}$$

and put $\varphi(x,t) = -\varphi(x,|t|)$ if t < 0.

Show that φ is continuous on \mathbb{R}^2 , and $D_2\varphi(x,0)=0$ for all x. Define

$$f(t) = \int_{-1}^{1} \varphi(x, t) dx$$

Show that f(t) = t if $|t| < \frac{1}{4}$. Hence

$$f'(0) \neq \int_{-1}^{1} D_2 \varphi(x,0) dx$$

Question 3 Rudin Pg. 243 Problem 30:

Let $f \in \mathcal{C}^{(m)}(E)$, where E is an open subset of \mathbb{R}^n . Fix $a \in E$, and suppose $x \in \mathbb{R}^n$ is so close to 0 that the points p(t) = a + tx lie in E whenever $0 \le t \le 1$. Define h(t) = f(p(t)) for all $t \in \mathbb{R}$ for which $p(t) \in E$.

(a) For $1 \le k \le m$, show (by repeated application of the chain rule) that

$$h^{(k)}(t) = \sum (D_{l_1...l_k} f)(p(t)) x_{l_1}...x_{l_k}$$

The sum extends over all order k-tuples $(l_1,...,l_k)$ in which each l_i is one of the integers 1,...,n.

(b) By Taylor's Theorem:

$$h(1) = \sum_{k=0}^{m-1} \frac{h^{(k)}(0)}{k!} + \frac{h^{(m)}(t)}{m!}$$

for some $t \in (0,1)$. Use this to prove Taylor's Theorem in n variables by showing that the formula

$$f(a+x) = \sum_{k=0}^{m-1} \frac{1}{k!} \left(\sum (D_{l_1...l_k} f)(a) x_{l_1}...x_{l_k} \right) + r(x)$$

represents f(a + x) as the sum of its so-called "Taylor polynomial of degree m - 1" plus a remainder that satisfies

$$\lim_{x \to 0} \frac{r(x)}{|x|^{m-1}} = 0$$

Each of the inner sums extends over all ordered k-tuples $(l_1, ..., l_k)$, as in part (a); as usual, the zero-order derivative of f is simply f, so that the constant term of the Taylor polynomial of f at a is f(a).

(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as written in part (b). For instance, D_{113} occurs three times, as D_{113} , D_{131} , D_{311} . The sum of the corresponding three terms can be written in the form

$$3(D_1^2 D_3 f)(a) x_1^2 x_3$$

Prove (by calculating how often each derivative occurs) that the Taylor polynomial in (b) can be written in the form

$$\sum \frac{(D_1^{s_1}...D_n^{s_n}f)(a)}{s_1!...s_n!} x_1^{s_1}...x_n^{s_n}$$

Here the summation extends over all ordered n-tuples $(s_1, ..., s_n)$ such that each s_i is a nonnegative integer and $s_1 + ... + s_n \leq m - 1$.

4

Question 4 Rudin Pg. 288 Problem 2:

For i=1,2,3,..., let $\varphi_i\in\mathcal{C}(\mathbb{R})$ have support in $(2^{-i},2^{1-i})$, such that $\int \varphi_i=1$. Put

$$f(x,y) = \sum_{i=1}^{\infty} (\varphi_i(x) - \varphi_{i+1}(x))\varphi_i(y)$$

Then f has compact support in \mathbb{R}^2 , f is cotinuous except at (0,0), and

$$\int dy \int f(x,y)dx = 0, \quad but \int dx \int f(x,y)dy = 1$$

Observe that f is unbounded in every neighborhood of (0,0).