CLAIMS

What is claimed is:

1	1.	A spring device comprising:		
2		a first section, a second section and a third section;		
3		said first section having an elongated first leg, said first leg dimensioned and		
4	configu	configured to exert a first force against a first surface;		
5		said first section fixed to said second section, said second section having a		
6	pluralit	ty of coils, each said coil having an inside diameter dimensioned and configured to		
7	sliding	ly fit around an object;		
8		said coils spaced apart and coupled by an intermediate member fixed to each of		
9	said co	said coils and dimensioned and configured to exert a second force against a second		
10	surface	surface; and		
11		said third section fixed to said second section, said third section having an		
12	elongat	elongated second leg, said second leg dimensioned and configured to exert a third force		
13	against	the first surface.		
1	2.	The device of claim 1, wherein said spring comprises a unitary structure.		
1	3.	The device of claim 1, wherein each said coil being formed of a wire of about		
2		0.09 inch diameter 304 stainless steel.		
1	4.	The device of claim 1, wherein said second force being about 40 inch-pounds.		
1	5.	The device of claim 1, wherein said spring includes a torsion spring.		
1 2		The device of claim 1, wherein said first leg being positioned at a static angle to said intermediate member.		
1	7.	The device of claim 6 wherein said static angle being about 145 degrees.		

1

8.

2	a spring mounted on the safety brace;		
3	said safety brace comprising a plurality of linkages hingedly coupled to one		
4	another;		
5	said spring having a first section, a second section and a third section;		
6	said first section having an elongated first leg, said first leg dimensioned and		
7	configured to exert a first force against said scuttle lid;		
8	said first section fixed to said second section, said second section having a		
9	plurality of coil(s), each said coil having an inside diameter dimensioned and configured		
10	to slidingly fit upon a hinge means operably coupling said safety brace to said scuttle lid;		
11	said coil(s) spaced apart and coupled by an intermediate member fixed to each		
12	said coil(s) and dimensioned and configured to exert a second force against said safety		
13	brace linkage(s);		
14	said second section fixed to said third section, said third section having an		
15	elongated second leg, said second leg dimensioned and configured to exert a third force		
16	against said scuttle lid; and		
17	said legs and said intermediate member applying each said force to rotatively bia		
18	said linkage(s) of said safety brace against said scuttle lid, wherein said linkage(s) are biased		
19	to remain folded in the direction preventing said scuttle lid from closing.		
1	9. The device of claim 8, wherein said spring comprises a unitary structure.		
1	10. The device of claim 8, wherein said coil being formed of a wire of about 0.09 in		
2	diameter 304 stainless steel.		
1	11. The device of claim 8, wherein said second force being about 40 inch-pounds.		
1	12. The device of claim 8, wherein said spring includes a torsion spring.		
1	13. The device of claim 8, wherein said first leg being positioned at a static angle		
2	relative to said intermediate member.		

A biasing device for a scuttle lid safety brace assembly comprising:

1

14.

15.	A method for rotatively biasing a safety brace on a scuttle lid thereby preventing
the lid	from closing comprising:
	providing said scuttle lid having said safety brace operably coupled by a hinge
pin;	
	providing a biasing device comprising:
	a spring mounted on said safety brace;
	said safety brace comprising a plurality of linkages hingedly coupled to
	one another;
	said spring having a first section, a second section and a third section;
	said first section having an elongated first leg, said first leg dimensioned
	and configured to exert a first force against said scuttle lid;
	said first section fixed to said second section, said second section having a
	plurality of coils, each said coil(s) having an inside diameter dimensioned and
	configured to slidingly fit upon a hinge means operably coupling said safety brace
	to said scuttle lid;
	said coil(s) spaced apart and coupled by an intermediate member fixed to
	each said coil(s) and dimensioned and configured to exert a second force against
	said safety brace linkage(s);
	said second section fixed to said third section, said third section having an
	elongated second leg, said second leg dimensioned and configured to exert a third
	force against said scuttle lid;
	said legs and said intermediate member applying each said force to
	rotatively bias said linkage(s) of said safety brace relative to said scuttle lid,
	whereby said linkage(s) are biased to remain folded in the direction preventing
	said scuttle lid from closing;
	removing said hinge pin coupling said safety brace to said scuttle lid;
	the lid

The device of claim 13 wherein said static angle being about 145 degrees.

27		providing a hinging means dimensioned and configured to slide within said coils		
28	of said spring dimensioned and configured to rotatively bias said safety brace against said			
29	scuttle	scuttle lid;		
30		replacing said hinge pin with said hinging means; and		
31		positioning said hinging means within said coil(s) in that said spring is operably		
32	couple	ed to said brace and said scuttle lid to prevent said lid from closing.		
1	16.	The device of claim 15, wherein said spring comprises a unitary structure.		
1	17.	The device of claim 15, wherein said coil being formed of a wire of about 0.09		
2	inch d	iameter 304 stainless steel.		
1	18.	The device of claim 15, wherein said second force being about 40 inch-pounds.		
1	19.	The device of claim 15, wherein said spring includes a torsion spring.		
1	20.	The device of claim 15, wherein said first leg being positioned at a static angle		
2	relative	e to said intermediate member.		
1	21.	The device of claim 20, wherein said static angle being about 145 degrees.		