

Class-Incremental Learning with Cross-Space Clustering and Controlled Transfer = CCV

TEL AVIV 2022

Arjun Ashok, K J Joseph, Vineeth N Balasubramanian Indian Institute of Technology Hyderabad, India

Objectives

Class-Incremental Learning (CIL):

- learning new classes continually
- while maintaining knowledge on previous classes
- Two knowledge-distillation based objectives that leverage the **feature** space structure for effective CIL

Motivation and Contributions

- Cross-Space Clustering (CSC):
 - Distillation is flawed:
 - Preserves features of individual instances independently
 - Does not characterize the **holistic** properties of each class
 - o Fix:
 - Distill shared class-level semantics

Controlled Transfer (CT):

- Controlling inter-class transfer is critical for class-incremental learning:
 - Negative backward transfer decreases stability
 - Positive forward transfer increases plasticity

Implementation:

Explicitly regularize inter-class transfer by conditioning learning on inter-class similarities

Cross-Space Clustering (CSC)

- Identifies
 - class-specific regions
 - all instances of a class are optimized to stay within these regions
 - harmful regions
 - all instances of a class are prevented from drifting towards these regions

$$L_{Cross-Cluster} = \frac{1}{k^2} \sum_{i=1}^k \sum_{j=1}^k \left(1 - \cos(\mathcal{F}_{\phi}^{\mathcal{T}_t}(x_i), \mathcal{F}_{\phi}^{\mathcal{T}_{t-1}}(x_j)) \right)$$

Applied on batches of size k

 $*ind(y_i == y_i)$

- Sample is optimized to be
- close to previous positions of all samples of the class
- far from previous positions of other samples
- Applies the exact same constraint on all samples of a class
 - Instances of a class unite and jointly preserve the class from forgetting

Controlled Transfer (CT)

- Given a new class, when a previous class is
- dissimilar: treat that class distinctively; prevent its forgetting
- similar: maximally transfer features from it; enable plasticity

- Previous feature space contains dark knowledge on inter-class similarities
- Cosine similarity between two instances in the same feature space $\mathcal{F}_{\perp}^{\gamma_k}$

$$z_{x_i,x_j}^{\mathcal{T}_k} = \cos(\mathcal{F}_{\phi}^{\mathcal{T}_k}(x_i), \mathcal{F}_{\phi}^{\mathcal{T}_k}(x_j))$$

 Softmax-normalized similarity distribution of x_i in $\mathcal{F}_{\phi}^{\mathcal{T}_k}$ over D_t

$$H_{x_i, D_k, T}^{\mathcal{T}_k} = \left\{ \frac{(z_{x_i, x_j}^{\mathcal{T}_k} / T)}{\sum_{g=1}^{|D_k|} (z_{x_i, x_g}^{\mathcal{T}_k} / T)} \right\}_{j=1}^{|D_k|}$$

$$L_{Transfer} = \frac{1}{p} \sum_{i=1}^{p} KL(H_{x_i,Q,T}^{\tau_t} || H_{x_i,Q,T}^{\tau_{t-1}})$$

• Similarity Regularization: Constrain similarity in current space using estimated similarities from previous space

Objective Function

where L_{method} refers to the objective of a base method

$$L_{CSCCT} = L_{method} + \alpha * L_{Cross-Cluster} + \beta * L_{Transfer}$$

Experimental Results

- Experiments on two protocols
- training with 50% of classes in the first task
- training with equal classes in all tasks
- Evaluated as an add-on on top of existing methods

Dataset	CIFAR100							
Settings	B = 50			$\mathcal{B} = \mathcal{C}$				
Methods	C = 1	C = 2	C = 5	C = 1	C = 2	C = 5		
iCaRL [36]	43.39	48.31	54.42	30.92	36.80	44.19		
iCaRL + CSCCT	46.15+2.76	$51.62_{+3.31}$	$56.75_{+2.33}$	34.02+3.1	$39.60_{+2.8}$	46.45+2.26		
LUCIR [18]	50.26	55.38	59.40	25.40	31.93	42.28		
LUCIR + CSCCT	52.95+2.69	56.49+1.13	62.01+2.61	28.12+2.72	34.96+3.03	44.03+1.55		
PODNet [13]	56.88	59.98	62.66	33.58	36.68	45.27		
PODNet + CSCCT	$58.80_{+1.92}$	$61.10_{+1.12}$	$63.72_{\pm 1.06}$	36.23+2.65	39.3+2.62	47.8+2.53		

Dataset	ImageNet-Subset							
Settings		$\mathcal{B} = 50$			$\mathcal{B} = \mathcal{C}$			
Methods	C = 2	C = 5	C = 10	C = 2	C = 5	C = 10		
iCaRL [36]	55.81	57.34	65.97	40.75	55.92	60.93		
iCaRL + CSCCT	57.01 _{+1.2}	$58.37_{+1.03}$	$66.82_{+0.8}$	42.46+1.71	$57.45_{+1.53}$	$62.60_{+1.67}$		
LUCIR [18]	60.44	66.55	70.18	36.84	46.40	56.78		
LUCIR + CSCCT	61.52+1.08	$67.91_{+1.36}$	71.33+1.15	37.86 _{+1.02}	$47.55_{+1.15}$	$58.07_{+1.29}$		
PODNet [13]	67.27	73.01	75.32	44.94	58.23	66.24		
PODNet + CSCCT	$68.91_{+1.64}$	$74.35_{+1.34}$	$76.41_{+1.09}$	46.06+1.12	$59.43_{+1.2}$	$67.49_{+1.25}$		

Ablation Studies

Average Accuracy on **Previous Tasks**

Average Accuracy on **Current Task**

CSC mainly affects **stability** CT mainly affects plasticity