

Lie Neurons: Adjoint Equivariant Neural Networks for Semi

-simple Lie Algebras

Tzu-Yuan Lin*, Minghan Zhu*, and Maani Ghaffari
University of Michigan

* Equal Contribution

Scan for code!

TL;DR: An MLP framework that takes Lie algebraic data as inputs and is equivariant to the adjoint representation of the group

by construction.

A Lie Algebraic Network

Equivariant to adjoint actions!

Each neurons is an element in the Lie algebra

$$f(gXg^{-1}) = gf(X)g^{-1}$$

Generalize Vector Neurons (Deng et al., 2021) from SO(n) to any finite dimensional semi-simple Lie algebra

Preliminaries

Lie Group & Lie Algebra

Lie group acts naturally on the Lie algebra via the **adjoint representation**.

$$Ad_g(X) = gXg^{-1}$$

Killing Form

$$B(X,Y): \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}, \quad (X,Y) \mapsto Tr(ad_X \circ ad_Y)$$

Invariant to the adjoint action

Lie Bracket

$$[X,Y] = ad_X(Y)$$

= $XY - YX$ (For matrix Lie algebras)

Equivariant to the adjoint action

Two Novel Nonlinearities

Generalized ReLU

Linear

$$\begin{cases} x, & \text{if } B(x, xU) \le 0 \\ x + B(x, xU)xU, & \text{otherwise.} \end{cases}$$

Lie Bracket

$$x + [xU, xV]$$

Geometric Channel Mixing

Improve expressiveness of the network

$$Mx$$

$$M = x_1 x_2^{\mathsf{T}}$$

$$x_1, x_2 = f_{\mathsf{LN-ReLU}}(xW_i)$$

Pooling Layer

Reduce feature dimension

$$\operatorname{arg\,max}_n B(x_n^c W, x_n^c)$$

Invariant Layer

Obtain invariant features

Dynamic Modeling

$$I\dot{\omega}(t) + \omega(t) \times I\omega(t) = 0$$

Estimation Error			Id					SO(3)		
Time (Sec)	5	10	15	20	25	5	10	15	20	25
MLP	0.428	0.656	0.717	0.763	0.799	0.474	0.689	0.733	0.768	0.805
EMLP (Finzi et al., 2021)	0.429	0.642	0.775	0.909	1.027	0.415	0.633	0.771	0.907	1.025
Lie Neurons (No Mixing)	0.739	0.842	0.791	0.805	0.809	0.739	0.842	0.791	0.805	0.809
Lie Neurons	0.005	0.011	0.014	0.016	0.018	0.005	0.011	0.014	0.016	0.018

Platonic Solid Classification

Input: $\mathfrak{sl}(3)$ transformation between projected faces

Output: Platonic solid class

	Num Params	Accu	ıracy	Accuracy (Rotated)		
		AVG	STD	AVG	STD	
MLP	206,339	95.76%	0.65%	36.54%	0.99%	
MLP Aug	206,339	81.47%	0.77%	81.20%	2.34%	
LN-LR	134,664	99.56%	0.23%	99.51%	0.28%	
LN-LB	200,200	99.14%	0.21%	98.78%	0.49%	
LN-LR + LN-LB	331,272	99.62%	0.25%	99.61%	0.14%	

