Matrix Multiplication

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 11

- A matrix is a two dimensional table
 - $r \times c$ matrix r rows, c columns

- A matrix is a two dimensional table
 - $r \times c$ matrix r rows, c columns
 - Assume rows are numbered $\{0,1,\ldots,r-1\}$, columns are numbered $\{0,1,\ldots,c-1\}$

- A matrix is a two dimensional table
 - $r \times c$ matrix r rows, c columns
 - Assume rows are numbered $\{0,1,\ldots,r-1\}$, columns are numbered $\{0,1,\ldots,c-1\}$
 - Graph with n nodes, $n \times n$ adjacency matrix, entries are from $\{0,1\}$

- A matrix is a two dimensional table
 - $r \times c$ matrix r rows, c columns
 - Assume rows are numbered $\{0,1,\ldots,r-1\}$, columns are numbered $\{0,1,\ldots,c-1\}$
 - Graph with *n* nodes, $n \times n$ adjacency matrix, entries are from $\{0,1\}$
- Example: Freight traffic by rail between major cities: Bangalore, Chennai, Delhi, Hyderabad, Kolkata, Mumbai

- A matrix is a two dimensional table
 - $r \times c$ matrix r rows, c columns
 - Assume rows are numbered $\{0,1,\ldots,r-1\}$, columns are numbered $\{0,1,\ldots,c-1\}$
 - Graph with *n* nodes, $n \times n$ adjacency matrix, entries are from $\{0,1\}$
- Example: Freight traffic by rail between major cities: Bangalore, Chennai, Delhi, Hyderabad, Kolkata, Mumbai
 - Number the cities:
 - 0-Bangalore, 1-Chennai, 2-Delhi,
 - 3-Hyderabad, 4-Kolkata,
 - 5-Mumbai

- A matrix is a two dimensional table
 - $r \times c$ matrix r rows, c columns
 - Assume rows are numbered $\{0,1,\ldots,r-1\}$, columns are numbered $\{0,1,\ldots,c-1\}$
 - Graph with n nodes, $n \times n$ adjacency matrix, entries are from $\{0,1\}$
- Example: Freight traffic by rail between major cities: Bangalore, Chennai, Delhi,
 Hyderabad, Kolkata, Mumbai
 - Number the cities: 0-Bangalore, 1-Chennai, 2-Delhi, 3-Hyderabad, 4-Kolkata, 5-Mumbai Represent freight volume for a month as a 6×6 matrix

2/9

■ Suppose we have freight volumes for first and second half of financial year.

		Apr	il–Sept	ember					Oct	ober–l	March							
	0	1	2	3	4	5		0	1	2	3	4	5					
0	0	694	828	384	247	479	0	0	851	626	280	399	365					
1	642	0	919	575	402	673	1	544	0	479	269	432	933					
2	768	734	0	231	595	540	2	867	804	0	681	326	398					
3	731	606	156	0	351	804	3	727	976	418	0	667	294					
4	825	607	316	490	0	998	4	894	390	247	547	0	314					
5	196	580	339	588	394	0	5	914	147	574	859	524	0					

■ Suppose we have freight volumes for first and second half of financial year.

		Apri	il–Sept	ember					Oct	ober–l	March		
	0	1	2	3	4	5		0	1	2	3	4	5
0	0	694	828	384	247	479	0	0	851	626	280	399	365
1	642	0	919	575	402	673	1	544	0	479	269	432	933
2	768	734	0	231	595	540	2	867	804	0	681	326	398
3	731	606	156	0	351	804	3	727	976	418	0	667	294
4	825	607	316	490	0	998	4	894	390	247	547	0	314
5	196	580	339	588	394	0	5	914	147	574	859	524	0

■ How do we compute the freight volumes for the entire financial year?

Suppose we have freight volumes for first and second half of financial year.

		Apri	il–Sept	ember					Oct	ober–l	March						
	0	1	2	3	4	5		0	1	2	3	4	5				
0	0	694	828	384	247	479	0	0	851	626	280	399	365				
1	642	0	919	575	402	673	1	544	0	479	269	432	933				
2	768	734	0	231	595	540	2	867	804	0	681	326	398				
3	731	606	156	0	351	804	3	727	976	418	0	667	294				
4	825	607	316	490	0	998	4	894	390	247	547	0	314				
5	196	580	339	588	394	0	5	914	147	574	859	524	0				

- How do we compute the freight volumes for the entire financial year?
- Add the corresponding entries in the two tables
 - Total freight volume from 2 (Delhi) to 4 (Kolkata) is 595 + 326 = 921

Mathematics for Data Science 1. Week 11

■ For a matrix M, M[i,j] is the entry in row i, column j

- For a matrix M, M[i,j] is the entry in row i, column j
- Let *A* and *B* represent the volumes in the two half-years

		0	1	2	3	4	5
	0	0	694	828	384	247	479
	1	642	0	919	575	402	673
A	2	768	734	0	231	595	540
	3	731	606	156	0	351	804
	4	825	607	316	490	0	998
	5	196	580	339	588	394	0
		0	1	2	3	4	5
	0	0	851	626	280	399	365
	1	544	0	479	269	432	933
В	2	867	804	0	681	326	398
	3	727	976	418	0	667	294
	4	894	390	247	547	0	314
	5	914	147	574	859	524	0

- For a matrix M, M[i,j] is the entry in row i, column j
- Let *A* and *B* represent the volumes in the two half-years
- Let C represent the annual volume

		0	1	2	3	4	5
	0	0	694	828	384	247	479
	1	642	0	919	575	402	673
Α	2	768	734	0	231	595	540
	3	731	606	156	0	351	804
	4	825	607	316	490	0	998
	5	196	580	339	588	394	0
		0	1	2	3	4	5
	0	0	851	626	280	399	365
	1	544	0	479	269	432	933
В	2	867	804	0	681	326	398
	3	727	976	418	0	667	294
	4	894	390	247	547	0	314
	5	914	147	574	859	524	0

- For a matrix M, M[i,j] is the entry in row i, column j
- Let *A* and *B* represent the volumes in the two half-years
- Let C represent the annual volume
- For each i,j, C[i,j] = A[i,j] + B[i,j]

		0	1	2	3	4	5	
	0	0	694	828	384	247	479	
	1	642	0	919	575	402	673	
\boldsymbol{A}	2	768	734	0	231	595	540	
	3	731	606	156	0	351	804	
	4	825	607	316	490	0	998	
	5	196	580	339	588	394	0	
		0	1	2	3	4	5	
	0	0	851	626	280	399	365	
	1	544		479	269	432	933	
B	2	867	804	0	681	326	398	
	3	727	976	418	0	667	294	
	4	894	390	247	547	0	314	
	5	914	147	574	859	524	0	
		0	1	2	3	4	5	
0		0	1545	1454	664	646	844	
1	11	86	0	1398	844	834	1606	
2	16	35	1538	0	912	921	938	
3	14	58	1582	574	0	1018	1098	
4	17	19	997	563	1037	0	1312	
5	11	10	727	913	1447	918	0	
			- 4		l → 4 를 1	< ± > <	∌ 900	

- For a matrix M, M[i,j] is the entry in row i, column j
- Let *A* and *B* represent the volumes in the two half-years
- Let C represent the annual volume
- For each i,j, C[i,j] = A[i,j] + B[i,j]
- More concisely, C = A + B matrix addition

		0	1	2	3	4	5	
	0	0	694	828	384	247	479	
	1	642	0	919	575	402	673	
\boldsymbol{A}	2	768	734	0	231	595	540	
	3	731	606	156	0	351	804	
	4	825	607	316	490	0	998	
	5	196	580	339	588	394	0	
		0	1	2	3	4	5	
	0	0	851	626	280	399	365	
	1	544	0	479	269	432	933	
В	2	867	804	0	681	326	398	
	3	727	976	418	0	667	294	
	4	894	390	247	547	0	314	
	5	914	147	574	859	524	0	
		0	1	2	3	4	5	
0		0	1545	1454	664	646	844	
1	11	.86	0	1398	844	834	1606	
2	16	35	1538	0	912	921	938	
3	14	58	1582	574	0	1018	1098	
4	17	19	997	563	1037	0	1312	
5	11	10	727	913	1447	918	0	
			- 4	□ ▶ ∢ ₫	 	< ≣ >	≣ •⊘ •	. (

C

■ Can we multiply matrices the same way?

- Can we multiply matrices the same way?
- For each i,j, $C[i,j] = A[i,j] \times B[i,j]$

```
0 0 1 2 8
1 5 0 4 2
2 6 0 0 1
3 2 6 4 0
                  3
    0 6 16 24
1 20 0 36 14
   36 0 0 1
    2
            20
                  0
```

- Can we multiply matrices the same way?
- For each i,j, $C[i,j] = A[i,j] \times B[i,j]$
- This turns out to be not very useful

```
0 0 1 2 8
1 5 0 4 2
2 6 0 0 1
3 2 6 4 0
                     3
                    24
1 20 0 36 14
    36 0 0
              20
```

- Can we multiply matrices the same way?
- For each i,j, $C[i,j] = A[i,j] \times B[i,j]$
- This turns out to be not very useful
- Instead, we compute C[i,j] in a more complicated way

```
0 1 2 3
0 0 6 8 3
A 1 4 0 9 7
2 6 3 0 1
3 1 0 5 0

0 1 2 3
0 0 1 2 3
0 0 1 2 8
B 1 5 0 4 2
2 6 0 0 1
3 2 6 4 0
```

- Can we multiply matrices the same way?
- For each i,j, $C[i,j] = A[i,j] \times B[i,j]$
- This turns out to be not very useful
- Instead, we compute C[i,j] in a more complicated way
- Assume r = c = n. Let

$$C[i,j] = A[i,0] \cdot B[0,j] + A[i,1] \cdot B[1,j] + \cdots + A[i,n-1] \cdot B[n-1,j]$$

```
0 0 6 8 3
A 1 4 0 9 7
2 6 3 0 1

    0
    0
    1
    2
    8

    B
    1
    5
    0
    4
    2

         2 6 0 0 1
3 2 6 4 0
```

- Can we multiply matrices the same way?
- For each i,j, $C[i,j] = A[i,j] \times B[i,j]$
- This turns out to be not very useful
- Instead, we compute C[i,j] in a more complicated way
- Assume r = c = n. Let

$$C[i,j] = A[i,0] \cdot B[0,j] + A[i,1] \cdot B[1,j] + \cdots + A[i,n-1] \cdot B[n-1,j]$$

■ For instance, $C[1,3] = 4 \cdot 8 + 0 \cdot 2 + 9 \cdot 1 + 7 \cdot 0 = 41$

```
0 1 2 3
0 0 6 8 3
A 1 4 0 9 7
2 6 3 0 1
3 1 0 5 0
0 1 2 3
0 0 1 2 8
B 1 5 0 4 2
```

2 6 0 0 1 3 2 6 4 0

- Can we multiply matrices the same way?
- For each i,j, $C[i,j] = A[i,j] \times B[i,j]$
- This turns out to be not very useful
- Instead, we compute *C*[*i*, *j*] in a more complicated way
- Assume r = c = n. Let

$$C[i,j] = A[i,0] \cdot B[0,j] + A[i,1] \cdot B[1,j] + \cdots + A[i,n-1] \cdot B[n-1,j]$$

■ For instance, $C[1,3] = 4 \cdot 8 + 0 \cdot 2 + 9 \cdot 1 + 7 \cdot 0 = 41$

```
0 0 6 8 3
A 1 4 0 9 7
2 6 3 0 1

    0
    0
    1
    2
    8

    B
    1
    5
    0
    4
    2

     2 6 0 0 1
  0 84 18 36 20
1 68 46 36 41
   2 17 12 28 54
       30 1 2 13
```

■ Matrix product: $C = A \times B$

```
6
     0
         9
 6
     3
         5
             0
               3
84
         36
              20
68
         36
              41
17
         28
              54
              13
30
```

- Matrix product: $C = A \times B$
- For r = c = n, $C[i,j] = A[i,0] \cdot B[0,j] + A[i,1] \cdot B[1,j] +$

$$\cdots$$
 + $A[i, n-1] \cdot B[n-1, j]$

```
84
          36
             20
1 68 46 36 41
2 17 12
          28 54
   30
             13
```

- Matrix product: $C = A \times B$
- For r = c = n, $C[i,j] = A[i,0] \cdot B[0,j] + A[i,1] \cdot B[1,j] + \cdots + A[i,n-1] \cdot B[n-1,i]$
- More concisely, $C[i,j] = \sum_{k=0}^{n-1} A[i,k] \cdot B[k,j]$

```
84 18
      36 20
```

13

1 68 46 36 41 2 17 12 28 54

30

- Matrix product: $C = A \times B$
- For r = c = n,

$$C[i,j] = A[i,0] \cdot B[0,j] + A[i,1] \cdot B[1,j] + \cdots + A[i,n-1] \cdot B[n-1,j]$$

- More concisely, $C[i,j] = \sum_{k=0}^{n-1} A[i,k] \cdot B[k,j]$
- Don't require both A and B to be $n \times n$
 - Each row entry of *A* must have a matching column entry in *B*
 - If A is $m \times n$ and B is $n \times p$, $A \times B$ is $m \times p$

```
0 1 2 3
0 84 18 36 20
C 1 68 46 36 41
2 17 12 28 54
3 30 1 2 13
```

- Matrix product: $C = A \times B$
- For r = c = n,

$$C[i,j] = A[i,0] \cdot B[0,j] + A[i,1] \cdot B[1,j] + \cdots + A[i,n-1] \cdot B[n-1,j]$$

- More concisely, $C[i,j] = \sum_{k=0}^{n-1} A[i,k] \cdot B[k,j]$
- Don't require both A and B to be $n \times n$
 - Each row entry of *A* must have a matching column entry in *B*
 - If A is $m \times n$ and B is $n \times p$, $A \times B$ is $m \times p$

```
0 1 2 3
0 0 6 8 3
A 1 4 0 9 7
2 6 3 0 1
```

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j
- A² represents paths of length 2
 - $A^2[i,j] = 1$ if, for some k, A[i,k] = 1 and A[k,j] = 1

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j
- A² represents paths of length 2
 - $A^2[i,j] = 1$ if, for some k, A[i,k] = 1 and A[k,j] = 1
- Algebra of boolean values

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j
- A² represents paths of length 2
 - $A^{2}[i,j] = 1$ if, for some k, A[i,k] = 1 and A[k,j] = 1
- Algebra of boolean values
 - True is 1, False is 0

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j
- A² represents paths of length 2
 - $A^2[i,j] = 1$ if, for some k, A[i,k] = 1 and A[k,j] = 1
- Algebra of boolean values
 - True is 1, False is 0
 - Logical or is represented by +: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j
- A² represents paths of length 2
 - $A^{2}[i,j] = 1$ if, for some k, A[i,k] = 1 and A[k,j] = 1
- Algebra of boolean values
 - True is 1, False is 0
 - Logical or is represented by +: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1
 - Logical and is represented by \times : $1 \times 1 = 1$, $0 \times 0 = 0 \times 1 = 1 \times 0 = 0$

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j
- A² represents paths of length 2
 - $A^2[i,j] = 1$ if, for some k, A[i,k] = 1 and A[k,j] = 1
- Algebra of boolean values
 - True is 1, False is 0
 - Logical or is represented by +: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1
 - Logical and is represented by \times : $1 \times 1 = 1$, $0 \times 0 = 0 \times 1 = 1 \times 0 = 0$

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ...$$

$$(A[i,n-1] \text{ and } A[n-1,j])$$

- A is an adjacency matrix
 - A[i,j] = 1 if and only if there is a direct edge (path of length 1) from i to j
- A² represents paths of length 2
 - $A^2[i,j] = 1$ if, for some k, A[i,k] = 1 and A[k,j] = 1
- Algebra of boolean values
 - True is 1, False is 0
 - Logical or is represented by +: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1
 - Logical and is represented by \times : $1 \times 1 = 1$, $0 \times 0 = 0 \times 1 = 1 \times 0 = 0$

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	0	0	1	0	0

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } \cdots$$

$$(A[i, n-1] \text{ and } A[n-1, j])$$

$$A^{2}[i, j] = A[i, 0] \times A[0, j] + A[i, 1] \times A[1, j] +$$

$$\cdots + A[i, n-1] \times A[n-1, j] = 0$$

■
$$A^{2}[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ...$$

$$(A[i,n-1] \text{ and } A[n-1,j])$$
■ $A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + ... + A[i,n-1] \times A[n-1,j]$

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ... (A[i,n-1] \text{ and } A[n-1,j])$$

■
$$A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + \cdots + A[i,n-1] \times A[n-1,j]$$

• So
$$A^2[i,j] = \sum_{k=0}^{n-1} A[i,k] \times A[k,j]$$

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ... (A[i,n-1] \text{ and } A[n-1,j])$$

■
$$A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + \cdots + A[i,n-1] \times A[n-1,j]$$

• So
$$A^2[i,j] = \sum_{k=0}^{n-1} A[i,k] \times A[k,j]$$

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ... (A[i,n-1] \text{ and } A[n-1,j])$$

$$A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + \cdots + A[i,n-1] \times A[n-1,j]$$

• So
$$A^2[i,j] = \sum_{k=0}^{n-1} A[i,k] \times A[k,j]$$

- Likewise, $A^3[i,j] = 1$ if, for some k, $A^2[i,k] = 1$ and A[k,j] = 1
 - Paths of length 3

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ... (A[i,n-1] \text{ and } A[n-1,j])$$

■
$$A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + \cdots + A[i,n-1] \times A[n-1,j]$$

• So
$$A^2[i,j] = \sum_{k=0}^{n-1} A[i,k] \times A[k,j]$$

- Likewise, $A^3[i,j] = 1$ if, for some k, $A^2[i,k] = 1$ and A[k,j] = 1
- Paths of length 3
- $A^3 = A^2 \times A$

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ... (A[i,n-1] \text{ and } A[n-1,j])$$

$$A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + \cdots + A[i,n-1] \times A[n-1,j]$$

• So
$$A^2[i,j] = \sum_{k=0}^{n-1} A[i,k] \times A[k,j]$$

- Likewise, $A^3[i,j] = 1$ if, for some k, $A^2[i,k] = 1$ and A[k,j] = 1
- Paths of length 3
- $A^3 = A^2 \times A = A \times A^2$

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ... (A[i,n-1] \text{ and } A[n-1,j])$$

■
$$A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + \cdots + A[i,n-1] \times A[n-1,j]$$

• So
$$A^2[i,j] = \sum_{k=0}^{n-1} A[i,k] \times A[k,j]$$

- Likewise, $A^3[i,j] = 1$ if, for some k, $A^2[i,k] = 1$ and A[k,j] = 1
- Paths of length 3
- $A^3 = A^2 \times A = A \times A^2$
- In general, $A^{\ell+1} = A^{\ell} \times A = A \times A^{\ell}$
 - Paths of length $\ell+1$

■
$$A^2[i,j] = (A[i,0] \text{ and } A[0,j]) \text{ or } (A[i,1] \text{ and } A[1,j]) \text{ or } ... (A[i,n-1] \text{ and } A[n-1,j])$$

■
$$A^{2}[i,j] = A[i,0] \times A[0,j] + A[i,1] \times A[1,j] + \cdots + A[i,n-1] \times A[n-1,j]$$

• So
$$A^2[i,j] = \sum_{k=0}^{n-1} A[i,k] \times A[k,j]$$

■ In other words, $A^2 = A \times A$

- Likewise, $A^3[i,j] = 1$ if, for some k, $A^2[i,k] = 1$ and A[k,j] = 1
 - Paths of length 3

$$A^3 = A^2 \times A = A \times A^2$$

- In general, $A^{\ell+1} = A^{\ell} \times A = A \times A^{\ell}$
 - lacksquare Paths of length $\ell+1$
- Finally, $A^+ = A + A^2 + \cdots + A^{n-1}$
 - A⁺[i,j] = 1 if i,j connected by path of length 1 or path of length 2 or ... or
 - · · · O

path of length n-1

Summary

- Matrix addition is defined elementwise
 - C[i,j] = A[i,j] + B[i,j]
 - \blacksquare A, B, C have same dimensions $r \times c$

Summary

■ Matrix addition is defined elementwise

$$C[i,j] = A[i,j] + B[i,j]$$

- \blacksquare A, B, C have same dimensions $r \times c$
- Matrix multiplication is a more complicated operation
 - Let A be $m \times n$ and B be $n \times p$

 \blacksquare C has dimensions $m \times p$

Summary

Matrix addition is defined elementwise

$$C[i,j] = A[i,j] + B[i,j]$$

- \blacksquare A, B, C have same dimensions $r \times c$
- Matrix multiplication is a more complicated operation
 - Let A be $m \times n$ and B be $n \times p$

- \blacksquare C has dimensions $m \times p$
- Using Boolean algebra, describe transitive closure using matrix multiplication
 - A, adjacency matrix, paths of length 1
 - $A^{\ell+1} = A^{\ell} \times A$, paths of length ℓ
 - Transitive closure, $A^+ = A + A^2 + \cdots + A^{n-1}$

