Resumo de aula 14

1 A integral definida

Definição 1.1. (Integral Definida) Se f(x) é uma função contínua definida no intervalo [a,b]. Dividimos o intervalo [a,b] em n subintervalos de comprimentos iguais $\triangle x = \frac{b-a}{n}$. Sejam $x_o(=a), x_1, x_2, ..., x_n(=b)$ os extremos desses subintervalos e vamos esclher os pontos $x_1^*, x_2^*, ..., x_n^*$ nesses subintervalos de forma que x_i^* está no i- ésimo subintervalo $[x_{i-1}, x_i]$. Então a integral definida de f(x) no intervalo de a até b é representada pelo símbolo

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \triangle x$$

Uma vez que assumimos f como contínua, pode ser provado que o limite acima na Definição sempre existe e fornece o mesmo valr, não importando como escolhemos os pontos x_i^* .

Significado Geométrico de integral definida

Seja f(x) uma função contínua e não negativa definida num intervalo [a, b]. A integral definida $\int_a^b f(x)dx$ representa a área da região compreendida entre o gráfico de f(x), o eixo x e as retas verticais x = a e x = b.

Vamos dividir o intervalo [a, b] em n subintervalos $[x_0, x_1], [x_1, x_2], [x_3, x_4], ..., [x_{n-1}, x_n],$ onde $x_0 = a$ e $x_n = b$ de mesmo tamanho

$$\triangle x = \frac{b-a}{n}$$

No primeiro subintervalo, escolhemos um ponto qualquer x_1^* e construímos um retângulo de base Δx e a altura $f(x_1^*)$ e no segundo subintervalo, escolhemos um ponto qualquer x_2^* e construímos um retângulo de base Δx e a altura $f(x_2^*)$, e assim, de maneira análoga, construímos o terceiro, o quarto, ..., até o n- ésimo retângulo. A soma das áreas dos n retângulos é

$$S_n = f(x_1^*) \triangle x + f(x_2^*) \triangle x + \dots + f(x_n^*) \triangle x = \sum_{i=1}^n f(x_i^*) \triangle x$$

Essa soma S_n é chamada de **soma de Riemann** da função f(x) no intervalo [a, b], que é uma estimativa da área da região dada. Quando o intervalo [a, b] for mais dividido, ou seja, quando n for maior, a estimativa será melhor.

É razoável portanto, definir a área da região dada como o limite de S_n quando $n \longrightarrow \infty$. Isto é:

$$A_R = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \triangle x = \int_a^b f(x) dx$$

Se $f(x) \leq 0$ e é contínua no intervalo [a, b], a área da região compreendida entre o eixo x e o gráfico de f, e as retas verticais x = a e x = b dado por

$$A = -\int_{a}^{b} f(x)dx$$

Proposition 1.2. Se f e g são funções contínuas no intervalo [a,b], então

$$\int_a^b [f(x) + g(x)]dx = \int_a^b f(x)dx + \int_a^b g(x)dx$$

Proposition 1.3. Se k é uma constante e f é uma função contínua no intervalo [a,b], ento $\int_a^b k \cdot f(x) dx = k \cdot \int_a^b f(x) dx$

Teorema 1.4. (Teorema Fundamental do Cálculo) Se a função é contínua no intervalo [a,b], então

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

onde F(x) é uma primitiva de f(x).

Proposition 1.5. Se f é contínua no intervalo [a,b], então $\int_a^b f(x)dx = -\int_b^a f(x)dx$

Exemplo 1.6. Calcule $\int_1^4 x^2 dx$ Solução:

Exemplo 1.7. Calcule $\int_1^2 2x^3 dx$ Solução:

Exemplo 1.8. Calcule $\int_1^2 (2x-1)dx$ Solução:

Exemplo 1.9. Determine a área da região limitada pela curva $y=x^2$ e pelas retas x=1 e y=0 Solução:

Exemplo 1.10. Determine a área da região limitada pela curva $y=e^x$ e pelas retas $x=1,\ x=2$ e y=0 Solução:

Exemplo 1.11. Determine a área destacada.

Exemplo 1.12. Calcule $\int_1^2 \left(\frac{x^3-x^2+2}{x^2}\right) dx$ Solução:

Exemplo 1.13. Calcule $\int_0^\pi cosxdx$ Solução:

Exemplo 1.14. Calcule $\int_0^{\frac{\pi}{4}} sec\Theta tg\Theta d\Theta$ Solução:

Exemplo 1.15. Calcule $\int_1^2 (x-2)^5 dx$ Solução: Exemplo 1.16. Calcule $\int_0^1 \sqrt{3x+1} dx$ Solução:

Exemplo 1.17. Calcule $\int_0^1 \frac{x}{x^2+1} dx$ Solução:

Exemplo 1.18. Calcule $\int_0^{\frac{\pi}{3}} senx \cos^2 x \, dx$ Solução:

Exemplo 1.19. Calcule $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} sen^3x \, dx$ Solução:

Exemplo 1.20. Calcule $\int_1^2 \ln x dx$ Solução: Temos $\int_a^b u dv = [uv]_a^b - \int_a^b v du$

Exemplo 1.21. Calcule $\int_1^2 x \ln x dx$ Solução: Temos $\int_a^b u dv = [uv]_a^b - \int_a^b v du$