	If you get the right strategy, your algorithm will complete the prove below
4)	PROOF of correctness for algorithm X (that sorts the activities in the way answered in question 3)
	Assume that the optimal set of activities is a_1^* , a_2^* , a_3^* ,, a_m^* , and so the maximum number of activities possible is m . And this list of activities is already sorted in the increasing order of finish time.
	Let the output of the algorithm X be a_1^x , a_2^x , a_3^x , And also assume that this list of activities is sorted in the increasing order of finish time.
	Then, assume further that $a_i^x=a_i^*$, for $i=1,2,\ldots,j$. And then, $a_{j+1}^x<>a_{j+1}^*$
	If a_{j+1}^x finishes later than a_{j+1}^* , would algorithm X picks a_{j+1}^x for its answer?
	It would have picked* instead!
	So, either a_{j+1}^x finishes earlier or at the same time as a_{j+1}^* .
	Thus, we can replace a_{j+1}^* with a_{j+1}^x and the number of possible activities will remain to be \underline{M} .
	If we repeat the same consideration on the next activity of the two lists, a_{j+2}^* and a_{j+2}^{χ} , we will find that we can replace a_{j+2}^* with a_{j+2}^{χ} and the number of possible activities will remain to be
	Is it possible that there is a $k < m$ such that a_{k+1}^{χ} does not exist ?
	Because a_k^x will finish than a_k^* , it will not conflict with a_{k+1}^* .
	Therefore, at least algorithm X can at least pick $\underbrace{0}_{k+1}^{*}$ for a_{k+1}^{x} , and thus $\underbrace{a_{k+1}^{x}}$ definitely exists.
	By repeating the same consideration for the next value of k , it is clear that the number of activities produced by algorithm X must be at least
	But from assumption, the maximum number of activities possible is k , therefore, the number of activities produced by algorithm X must be at most
	Therefore, we can conclude that the number of activities produced by algorithm X is exactly $\underline{\hspace{1em} M}$.
	And thus, the algorithm X gives the maximum number of activities possible PROVED!
	A GREEDY ALGORITHM IS MOSTLY VERY EFFICIENT, BUT IT NEEDS TO BE

PROVED FOR CORRECTNESS.

```
Problem A: Activity Selection
 A 1 2 3 4 5 6 7 8 9 10
start 19932 2591 9791 3849 2648 17034 29372 14826 15539 28279
finish 29111 18991 26235 13410 21288 19493 29791 25852 18867 2912
                                                                                               28277
                                                                                               29129
 - sort Activity by finish time
 - Go through all Activities

if next start > previous thish:
                                                                            29000

    4
    6
    9
    2
    5
    8
    3
    1
    10
    7
    11

    3849
    17034
    15537
    2591
    2648
    14826
    9791
    19932
    28277
    29372
    30000

   1<mark>34</mark>10 19<mark>49</mark>3 18867 18991 21288 25852 28235 2<mark>91</mark>11 29129 29791 30001
                                                 m=4
  ) = 2
                                                   k=3
. There is no way that a'z. finish later than at
 Same Thing for \alpha_4^{\times}
 Is it possible that ax does not exist? (k<m)
              a_k^x finish \leq a_k^* \leq a_{k+1}^*
        Then at - ak+1
```