

Subject : Thermodynamics-I (CHEN-2102)

TOPIC : Mid exam

Submitted by : <u>Usman Naseer</u>

Submitted To : Dr. Amir Alaud Din

Roll No : CHEN 19111031

Class : BS Chemical Engineering

Submission Date : 27 Nov 2020

Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan

USMAN NASEER CHEN 1911/031
Q NO: 01
System:-
A system is the set of substance
that being studied i.e Chemical reaction or physical
reactions occur in a reactor. All things in the
seacher is system.
Surroundings:-
Everything in the universe around the
System is kalled survounding
Adiabatic:
Adiabatic is that process in which
no heat and mass is release and enter between
System and survounding.
Size of the system as size change its properties
Usman Naseer
Isolated System: Isolated System is that which cut off the connection between system and suspending Isolation may be Physical or Chemical. like a example of thermose. Extensive: Extensive: Extensive property depend on the size of the system as size change its property, Change and denoted by capital letter like yolume is "V" in m".

USMAN NASEER	CHEN 19/11031
	QNO:-02
	essure is give 07 bar
	find dyness faction because at
	not at 7 barr.
So from Steam	
Specific Chares:	enthalpy of liquid - hig = 697 KJ/Ks
Lairen s	specificenthalpy = Ahr = 2067 KJ/kg penfix enthalpy = h' = 2600 KJ/kg
	Vy = 0.2718
Dryness fract	$y_{0n} = y_{1} = h' - h'_{1} = 2600 - 697$
	hg 2067
	x = 0.921
specific volume	
	V = NVg
	$\ddot{U} = (6.921)(0.2728)$ $\ddot{U} = 6.2515 m^2/19$
3	
Internal energy Uf.	= 696 KJ/M . Ug = 2573 KJ/M
	U = (1-x)Ug + x)Ug
	- (1-0.921)69t + (0.921)(2573)
	= (55+2365) KJ/y
	1 1 1 T1
	u = 2420 KJ/M
Isman Naseer	

Q.NO:-03

Consider a piston cylinder assembly containing
10 kg of water. Initially the gas has a pressure
of 20 bar and occupies volume of 1m3. The
system undersoes a seversible process in
which it is compressed to pober
The pv's const

catallete work done and heat transfer during prong

Solution !-

mass of water = 10 kg - m

Presure initially = P = 20 bar = 2 MPa

V, = 1.0 m3

Pr = 100 bar. = 10MPa

 $\rho \hat{v}''^5 = const$

work - û=?

Hest = 9 = ?

For work

w = - SPEdû

 $P_{1}V_{1}^{2} = P_{2}V_{1}^{2}V_{2}^{2}$ $\frac{1}{V_{2}} = \left(\frac{P_{1}V_{1}^{2}V_{2}^{2}}{P_{2}}\right)^{1.5}$

Usman Nascer CHEN 199111031 USMAN NASEER CHEN 19111031 = (0.2 x (0.1) 1.5) m/kg $= (0.2 \times 0.0516)^{0.667}$ = 0.0342 m/kg 0.0342 0.0342 Now - 2 mpg / (0.1 m3) Non Put the value of P in car O 0,0342

Usman Naseer CHEN 199111031

4

11cann Manna
USMAN NASEER CHENIGIII03)
0.0392
W = -0.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- 0.0632 [1 - 1]
0.5 (0.0342)0.5
$= (6.1264) (2.245) MP_q \frac{m^3}{kg} = 6.2830 MP_q \frac{m^3}{kg}$
= 0.2830 MP4 m3 1000 KP4 KN ::NM=J
W = 284 KJ/kg
Now Heat,
qi - 7
we know that aid = gi + w
$\hat{y} = \lambda \hat{u} - \hat{u} - \hat{a}$
$\Delta \hat{u} = \hat{u}_{1} - \hat{u}_{1}$
At Stat 1.
$P_{r} = 2MP_{q}$
Find Temperature of Ti is by linear interpolation
At 2Mg V 0.00/2m/kg, V_= 0-0996 m3/kg
7 c (m²/15)
212.4 0.0996
T 0.1
225 0.1038
Usman Naseer CHEN 19111031

By linear interpolation	1 22 - 212 - 12 - 12 - 1	
	225-212.4 = 12.6 specific velocity of #	
T = 213.6c		
	0.1038-0.0996 = 4.2x10 ⁻³	
Now at stat 1:- P= 2MPa		
T, - 213.62		
11 - 2		
U, (KJ/M) Ti		
2600.3 212.4		
U1 213.6		
2628.3 225		
By linear Interpolation		
Ū, = 2602.97 K.	1/19	
	- 010342 m3	
	169	
Un KJ/kg	Vi m/kg	
3045.8		
un 0.0342		
3144.5	3.0356	
By finear interpolation b/w		
û = 3095.		
U ₁ - 5075	13/19	

DÚ = 429.18 KJ/KS

Put the values of sû & w in eq (2)

9 = DÛ - W

V = (492.18-283.8) KJ/Kg

9 = 208.38 KJ

Usman Naseer CHEN 19111031