qwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyui Compiladores e Intérpretes

opasdfg sdfghjkl

ghjklzx

klzxcvb

Compiladores e Intérpretes. San José

Grupo: 40. Apuntes del 17 de mayo del 2017.

> Profesor: Dr. Francisco Torres Rojas. Apuntador: Dylan Rodríguez Barboza. 2015057714.

> > I Semestre, 2017

tyuiopa lopasdf asdfghj fghjklz

xcvbnmqwertyuiopasdfghjklzxcv bnmgwertyuiopasdfghjklzxcvbn mgwertyuiopasdfghjklzxcvbnmg wertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfg

# Contenido

| Recordatorios                                    | 3  |
|--------------------------------------------------|----|
| Quiz #10                                         | 4  |
| FOLLOW()                                         | 5  |
| Cálculo de FOLLOW()                              | 5  |
| Argumento de FOLLOW()                            | 5  |
| FOLLOW(X)                                        | 5  |
| Observaciones de FOLLOW()                        | 6  |
| Ejemplo de FOLLOW()                              | 8  |
| Ejemplo de FIRST() y FOLLOW()                    | 12 |
| Obteniendo el FIRST()                            | 12 |
| PREDICT()                                        | 12 |
| Cálculo del PREDICT()                            | 14 |
| Argumento de PREDICT()                           | 14 |
| PREDICT(X)                                       | 14 |
| Ejemplo de PREDICT()                             | 15 |
| Otro ejemplo de PREDICT()                        | 16 |
| Construcción de la Tabla de Parsing              | 18 |
|                                                  | 18 |
|                                                  | 18 |
| Ejemplo de Construcción de Tabla de Parsing      | 20 |
| Otro ejemplo de Construcción de Tabla de Parsing | 20 |

# Recordatorios

- El último **quiz** será el miércoles 24 de mayo, además, se debe entregar la tarea sobre las gramáticas de micro que se mencionó en clase.
- La Entrega del **proyecto 3** será el miércoles 31 de mayo.
- El **segundo examen** será el viernes 2 de junio.
- El examen final será el viernes 9 de mayo.
- El profe nos dará donas.

# **Quiz #10**

CALCULE EL FIRST DE TODOS LOS NO TERMINALES DE LAS SIGUIENTES 3 GRAMÁTICAS:

E 
ightharpoonup iE'  $A 
ightharpoonup aAa|\varepsilon$  D 
ightharpoonup TV T 
ightharpoonup int |f|oat V 
ightharpoonup id ; V|id

# FOLLOW()



#### Cálculo de FOLLOW()

- Sea G una GFG CFG.
- La función FOLLOW(X) regresa un conjunto de terminales, y posiblemente \$, que indican todas las continuaciones factibles del No terminal X bajo la gramática G. NO TENDRÁ A ε.

# Argumento de FOLLOW()

- En **FOLLOW**(X), el argumento X solo puede ser un no terminal.
- El cálculo de **FOLLOW** es iterativo, hasta que no haya más cambios.

### FOLLOW(X)

- Si X es el símbolo inicial, agregue \$
   a FOLLOW(X).
- Si hay una regla A→αXβ, agregue
   FIRST(β) {ε} a FOLLOW(X).
- Si hay una regla A→ αXβ, y ε pertenece a FIRST(β), agregue FOLLOW(A) a FOLLOW(X).



Sin embargo...

.

.

.

# Este último paso se considera mágico, #Misteriosossonloscaminosdelseñor







### Observaciones de FOLLOW()

- Sólo se calcula para no terminales.
- $\varepsilon$  nunca es para de **FOLLOW**() pero \$ sí puede estar.
- Primero hay que calcular **FIRST**() de todos los **no terminales**.
- Se ignoran las reglas de la gramática que, únicamente, tengan terminales o  $\varepsilon$  en su lado derecho, las demás se procesan repetidamente hasta que **NO** haya cambios.

-"Profe, me imagino que antes del FOLLOW() se debe hacer el FIRST()".

-"Pues, se llama FOLLOW(), que sigue al FIRST() el cual significa primero."



# Ejemplo de FOLLOW()



- Debido a que solo se toman en cuenta las reglas que poseen no terminales, se puede pasar por recto de las reglas 3, 4, 5, 8, 9 y 11.
- Ahora, se verá cada pasada, para llegar a los FOLLOW() deseados.

#### Primera pasada:

|             | FOLLOW()         |          |          |
|-------------|------------------|----------|----------|
| No Terminal | PASADA 1         | PASADA 2 | PASADA 3 |
| E           | <b>{\$ , )}</b>  |          |          |
| E'          | <b>{\$}</b>      |          |          |
| OP          | {( , #}          |          |          |
| T           | {+ , - , \$}     |          |          |
| T'          | {+ , - , \$}     |          |          |
| M           | {( , #}          |          |          |
| F           | {* , + , - , \$} |          |          |

En esta pasada, se tomará en cuenta lo siguiente:

- Al símbolo inicial se le asigna un \$.
- El FIRST() de E' es {+ , , ε}, por lo que se introduce en el FOLLOW() de T, sin contar ε, quedando con {+ , -}.

- Se tiene a  $\varepsilon$  a la derecha de E', por lo que el **FOLLOW**() de E se debe asignar a E', quedando con  $\{\$\}$ .
- Debido a que E' puede ser ε, y este se encuentra a la derecha de T, se debe pasar el FOLLOW() de E a T, quedando con {+, -, \$}.
- En la segunda regla, se tiene a E' a la derecha de T, esto ya fue tomado en cuenta con la primera regla, por lo que, al pasar el **FIRST**() de E' a T, se obtiene el mismo resultado anterior: {+ , , \$}.
- El **FIRST**() de T es {( , #}, por lo que se debe pasar al **FOLLOW**() de OP, quedando con {( , #}.
- A la derecha de E' se tiene ε, por lo que el FOLLOW() de E' se pasa a T, quedando con {+ , - , \$}.
- Debido a que T no podría ser  $\varepsilon$ , no se debe pasar el **FOLLOW**() de E' a OP.
- En la regla 6, el FIRST() de T' es {\* , ε }, por lo que este debe ser pasado al FOLLOW() de F, quedando con {\*}.
- A la derecha de T' hay un ε, por lo que se debe pasar el FOLLOW() de T a
  T', quedando con {+ , , \$}.
- Debido a que el FIRST() T' puede ser ε, se pasa el FOLLOW() de T a F, quedando con {\* , + , - , \$}.
- En la regla 7, el **FIRST**() de T' es  $\{^*, \varepsilon\}$ , por lo que este es pasado a F, quedando  $\{^*, +, -, \$\}$ .
- El **FIRST**() de F es {( , #}, por lo que se pasa al **FOLLOW**() de M, quedando con {( , #}.
- A la derecha de T' hay un ε, por lo que el FOLLOW() de T' se pasa a T', quedando con {+ , - , \$}.
- Debido a que el FIRST() de T' puede ser ε, se pasa el FOLLOW() de T' a F, quedando con {\* , + , - , \$}.
- Debido a que el FIRST() de F no será ε, no se debe pasar el FOLLOW() de T' a M.
- En la regla 10, se tiene de primero un (, el cual se "ignora", para seguir con el no terminal E, acto seguido, se debe tener el **FIRST**() de ), el cual es ), se debe pasar al **FOLLOW**() de E, quedando con {\$, }}.

#### Segunda pasada:

|             | FOLLOW()         |                      |                      |
|-------------|------------------|----------------------|----------------------|
| No Terminal | PASADA 1         | PASADA 2             | PASADA 3             |
| E           | <b>{\$ , )}</b>  | <b>{\$ , )</b> }     | <b>{\$ , )</b> }     |
| E'          | <b>{\$}</b>      | <b>{\$ , )</b> }     | <b>{\$ , )</b> }     |
| OP          | {( , #}          | {( , #}              | {( , #}              |
| T           | {+ , - , \$}     | {+ , - , \$ , )}     | {+ , - , \$ , )}     |
| T'          | {+ , - , \$}     | {+ , - , \$ , )}     | {+ , - , \$ , )}     |
| М           | {( , #}          | {( , #}              | {( , #}              |
| F           | {* , + , - , \$} | {* , + , - , \$ , )} | {* , + , - , \$ , )} |

En esta pasada, se tomará en cuenta lo siguiente:

- El **FIRST**() de E' es {+ , , ε}, por lo que se introduce al **FOLLOW**() de T, quedando con {+ , , \$}.
- A la derecha de E' se encuentra ε, por lo que el **FOLLOW**() de E se introduce a E', quedando con {\$, }}.
- Debido a que el FIRST() de E' podría ser ε, se introduce el FOLLOW() de E a T, quedando con {+, -, \$, )}.
- En la regla 2, el FIRST() de E' es {+ , , ε }, por lo que se introduce en el FOLLOW() de T, quedando con {+ , , \$ , )}.
- El **FIRST**() de T es {( , #}, por lo que se introduce al **FOLLOW**() de OP, quedando con {( , #}.
- A la derecha de E' se encuentra ε, por lo que se introduce el FOLLOW() de E' a E', quedando con {\$, )}.
- Debido a que el FIRST() de E' podría ser ε, se introduce el FOLLOW() de E' a T, quedando con {+, -, \$, )}.
- Debido a que el FIRST() de T no podrá ser ε, no se introduce el FOLLOW() de E' a OP.
- En la regla 6, el **FIRST**() de T' es  $\{*, \varepsilon\}$ , por lo que se introduce al **FOLLOW**() de F, quedando con  $\{*, +, -\}$ .
- Debido a que a la derecha de T' está ε, se introduce el FOLLOW() de T al FOLLOW() de T', quedando con {+, -, \$, }}.
- Debido a que el FIRST() de T' puede ser ε, se introduce el FOLLOW() de T al FOLLOW() de F, quedando con {\* ,+ , , \$, }}

- En la regla 7, el **FIRST**() de T' es {\* , ε }, por lo que se introduce al **FOLLOW**() de F, quedando con {\* , + , , \$ , )}.
- El **FIRST**() de F es {( , #}, por lo que se introduce al **FOLLOW**() de M, quedando con {( , #}.
- Debido a que a la derecha de T' está ε, se introduce el FOLLOW() de T' a T', quedando con {+ , - , \$ , )}.
- Debido a que el FIRST() de T' puede ser ε, se introduce el FOLLOW() de T' a F, quedando con {\* , + , , \$ , )}.
- Debido a que F no será  $\varepsilon$ , no hace falta introducir el **FOLLOW**() de T' a M.
- En la regla 10, no se toma en cuenta el (, se sigue con el no terminal E.
- Debido a que el **FIRST**() de ) es ), se introduce al **FOLLOW**() de E, quedando con {\$, )}.
- En la siguiente pasada que se quiera hacer, será solo para comprobación, debido a que los FOLLOW() darán el mismo resultado.

- -"¿Hay forma de ir calculando el FIRST() y el FOLLOW() al mismo tiempo?".
- -"Sigan la receta y no busquen atajos o les va a ir M U Y M A L".
- -"Bison sí usa atajos".
- -"Pero Bison fue creado siguiendo la receta".



# Ejemplo de FIRST() y FOLLOW()

 $S \rightarrow (S)S$   $S \rightarrow \varepsilon$ 

#### Obteniendo el FIRST()

|             | FIRST()                    |         |         |
|-------------|----------------------------|---------|---------|
| No Terminal | PASADA 1 PASADA 2 PASADA 3 |         |         |
| S           | Ø                          | {ε , (} | {ε , (} |

Se debe tomar en cuenta que:

- ( no posee a ε, por lo que se coloca en el FIRST() de S y se continúa con la siguiente regla.
- $\varepsilon$  se coloca en el **FIRST**() de S, quedando con el conjunto {  $\varepsilon$  , (}
- En las siguientes pasadas, al ( no poseer  $\varepsilon$ , no se pasa al no terminal S, por lo que las pasadas quedan con el mismo **FIRST**().

# PREDICT()

-Mucho cuidado, Acuario. Ahora vamos contigo Piscis....



-B11 (Beyoncé)

- "En nivel de dificultad, comparado con el FIRST() y FOLLOW() ¿ Qué tal es?".
- -"Facilísimo".
- -"No lo sé Rick, parece falso".



# Cálculo del PREDICT()

- Sea G una GFG CFG.
- La función **PREDICT**(X) regresa un conjunto de terminales y, posiblemente \$ que predicen cuando hay que usar la regla X.

### Argumento de PREDICT()

- En PREDICT(X), el argumento X solo puede ser una regla de la gramática.
- Antes, se deben calcular los FIRST() y los FOLLOW().

#### PREDICT(X)

- X es una regla de la forma  $A\rightarrow \alpha$ .
- If(FIRST( $\alpha$ ) incluye a  $\varepsilon$ )-> PREDICT(X) = (FIRST( $\alpha$ ) {  $\varepsilon$  })  $\cup$  FOLLOW(A)).
- Else-> **PREDICT**(X) = **FIRST**( $\alpha$ ).

# Ejemplo de PREDICT()

 $S \rightarrow (S)S$  $S \rightarrow \varepsilon$ 

# Nos dan los FIRST() y FOLLOW() de S:

| NO TERMINAL | FIRST() FOLLOW() |                 |
|-------------|------------------|-----------------|
| S           | {( , ε}          | <b>{\$</b> , )} |

# Para obtener el PREDICT(), utilizamos la siguiente tabla:

| REGLA                       | FIRST(α) | FOLLOW(A)               | PREDICT()               |
|-----------------------------|----------|-------------------------|-------------------------|
| $S \rightarrow (S)S$        | {()      | <b>{\$ , )</b> }        | {()                     |
| $S \rightarrow \varepsilon$ | {ε}      | <b>{\$</b> , <b>)</b> } | <b>{\$</b> , <b>)</b> } |

Se debe considerar:

- En la regla 1, el FIRST(α) no incluye a ε, por lo que el PREDICT()
  para esta regla será el FIRST(α), es decir, {(}.
- En la regla 2, el FIRST(α) incluye a ε, por lo que el PREDICT() para esta regla será (FIRST(α) { ε }) ∪ FOLLOW(A)), es decir, (({ε} {ε}) U {\$, })}, dando como PREDICT() {\$, }).

# Otro ejemplo de PREDICT()

 $F \rightarrow TF'$ 

E'→OP T E'

 $m{\mathcal{E}'} \!\! o m{arepsilon}$ 

OP→+

OP→-

 $T \rightarrow FT'$ 

 $T' \rightarrow M F T'$ 

**T′**→ ε

. . \*

 $F \rightarrow (F)$ 

*F*→#

|    | FIRST()            | FOLLOW()             |
|----|--------------------|----------------------|
| E  | {( , #}            | <b>{\$ , )}</b>      |
| T  | {( , #}            | <b>{\$</b> ,),+,-}   |
| E' | {+ , <b>-</b> , ε} | <b>{\$ , )}</b>      |
| OP | {+ , -}            | {( , #}              |
| F  | {( , #}            | {\$ , ) , + , - , *} |
| T' | {* , ε }           | {\$ , ) , + , -}     |
| M  | {*}                | {( , #}              |

Obtendremos la siguiente tabla, donde obtenemos el PREDICT() de cada regla:

| REGLA                                                                        | FIRST(α)   | PREDICT()        |
|------------------------------------------------------------------------------|------------|------------------|
| <i>E</i> → <i>TE</i> ′                                                       | {( , #}    | {( , #}          |
| E'→OP T E'                                                                   | {+ , -}    | {+ , -}          |
| <b>E'</b> → ε                                                                | {ε}        | <b>{\$ , )</b> } |
| <i>OP</i> →+                                                                 | <b>{+}</b> | <b>{+}</b>       |
| <i>OP</i> →-                                                                 | {-}        | {-}              |
| <i>T</i> → <i>FT</i> ′                                                       | {( , #}    | {( , #}          |
| <i>T'</i> → <i>M F T'</i>                                                    | {*}        | {*}              |
| $T'\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | {ε}        | {\$ , ) , + , -} |
| <i>M</i> →*                                                                  | {*}        | {*}              |
| <i>F</i> →( <i>E</i> ) <i>F</i> →#                                           | {()        | {()              |
| <i>F</i> →#                                                                  | {#}        | {#}              |

Se debe tomar en cuenta lo siguiente:

- La columna FIRST(α) está conformada del FIRST() del primer terminal o no terminal (más a la izquierda) de la regla (a partir de la flecha).
- En la regla 1, el FIRST(α) no contiene a ε, por lo que el PREDICT() será FIRST(α), es decir, {(, #}.
- En la regla 2, el FIRST(α) no contiene a ε, por lo que el PREDICT() será
   FIRST(α), es decir, {+ , -}.
- En la regla 3, el FIRST( $\alpha$ ) contiene a  $\varepsilon$ , por lo que el PREDICT() será (FIRST( $\alpha$ ) { $\varepsilon$ })  $\cup$  FOLLOW(A)), es decir, ( ({ $\varepsilon$ } { $\varepsilon$ })  $\cup$  ({\$ $\varepsilon$ } , )}) ), dando como PREDICT() {\$ $\varepsilon$ } , )}.
- En la regla 4, el FIRST(α) no contiene a ε, por lo que el PREDICT() será el FIRST(α), es decir, {+}.
- En la regla 5, el FIRST(α) no contiene a ε, por lo que el PREDICT() será el FIRST(α), es decir, {-}.
- En la regla 6, el FIRST(α) no contiene a ε, por lo que el PREDICT() será el FIRST(α), es decir, {( , #}.
- En la regla 7, el FIRST(α) no contiene a ε, por lo que el PREDICT() será el FIRST(α), es decir, {\*}.
- En la regla 8, el FIRST( $\alpha$ ) contiene a  $\varepsilon$ , por lo que el PREDICT() será (FIRST( $\alpha$ ) { $\varepsilon$ })  $\cup$  FOLLOW(A)), es decir ( ({ $\varepsilon$ } { $\varepsilon$ })  $\cup$  ({\$, ) , + , -}) ), dando como PREDICT(), {\$, ) , + , -}.
- En la regla 9, el FIRST(α) no contiene a ε, por lo que el PREDICT() será el FIRST(α), es decir, {\*}.
- En la regla 10, el FIRST(α) no contiene a ε, por lo que el PREDICT() será el FIRST(α), es decir, {(}.
- En la regla 11, el FIRST(α) no contiene a ε, por lo que el PREDICT() será el FIRST(α), es decir, {#}.

# Construcción de la Tabla de Parsing

### Tendremos:

- Tabla M: una fila por cada no terminal y una columna por cada terminal y \$.
- Se calculan los FIRST() y los FOLLOW().
- Se calcula el **PREDICT**() de cada regla.
- Para toda regla  $A \rightarrow \alpha$ : Para cada elemento de a en **PREDICT**( $A \rightarrow \alpha$ ) agregue regla  $A \rightarrow \alpha$  en M[A][a].

Así de fácil es ©

### Todos:



Y bueno, todo comenzó a tener sentido...

"Semana 14 y todo empieza a tener sentido".



# Ejemplo de Construcción de Tabla de Parsing

Nos dan las Reglas y **PREDICT**() de cada una:

| REGLA                       | PREDICT() |
|-----------------------------|-----------|
| S→( S ) S                   | {()       |
| $S \rightarrow \varepsilon$ | {} , \$}  |

La tabla quedará:

|   | ( | ) | \$ |
|---|---|---|----|
| S | 1 | 2 | 2  |

Se debe tomar en cuenta que:

• Los números representan las reglas con las que coinciden con el **PREDICT**(), se muestra, por ejemplo, que el '(' se encuentra en el conjunto del **PREDICT**() de la Regla 1, siendo este representado en la tabla, lo mismo ocurre con ')' y '\$', los cuales pertenecen al PREDICT() de la regla 2.

### Otro ejemplo de Construcción de Tabla de Parsing

|                              | <u> </u>                 |
|------------------------------|--------------------------|
| REGLA                        | PREDICT()                |
| <i>E</i> → <i>TE</i> ′       | {( , #}                  |
| E'→OP T E'                   | {+ , -}                  |
| $E' \rightarrow \varepsilon$ | <b>{\$</b> , )}          |
| <i>OP→+</i><br><i>OP→-</i>   | { <b>+</b> }             |
| <i>OP</i> →-                 | {-}                      |
| <i>T</i> → <i>FT</i> ′       | {( , #}                  |
| $T' \rightarrow M F T'$      | <b>{*}</b>               |
| $T' \rightarrow \varepsilon$ | { <b>\$</b> , ) , + , -} |
| <i>M</i> →*                  | <b>{*}</b>               |
| F→(E)<br>F→#                 | {()                      |
| <i>F</i> →#                  | {#}                      |

Dando como resultado la tabla de parsing:

|    | (  | #  | ) | + | _ | * | \$ |
|----|----|----|---|---|---|---|----|
| E  | 1  | 1  |   |   |   |   |    |
| E' |    |    | 3 | 2 | 2 |   | 3  |
| OP |    |    | 4 | 5 |   |   |    |
| T  | 6  | 6  |   |   |   |   |    |
| T' |    |    | 8 | 8 | 8 | 7 | 8  |
| M  |    |    |   |   |   | 9 |    |
| F  | 10 | 11 |   |   |   |   |    |

Se debe tomar en cuenta que:

- Para la regla 1 (E), el **PREDICT**() contiene {( , #}.
- Para la regla 2 (E') el **PREDICT**() contiene {+, -}.
- Para la regla 3 (E') el **PREDICT**() contiene {\$, )}.
- Para la regla 4 (OP) el **PREDICT**() contiene {+}.
- Para la regla 5 (OP) el **PREDICT**() contiene {-}.
- Para la regla 6 (T) el **PREDICT**() contiene {(, #}.
- Para la regla 7 (T') el **PREDICT**() contiene {\*}.
- Para la regla 8 (T') el **PREDICT**() contiene {\$ , ) , + , -}.
- Para la regla 9 (M) el **PREDICT**() contiene {\*}.
- Para la regla 10 (F) el **PREDICT**() contiene {(}.
- Para la regla 11 (F) el PREDICT() contiene {#}.

- -"¿Qué pasa si dos reglas quieren caer en un cuadro de la tabla? Por ejemplo, si en T con # cae 6.7".
- -"Sería algo malo, muy malo, se pueden considerar diferentes formas de suicidio".



Esta fue la materia vista el 17 de mayo, recuerden empezar el proyecto 3 y estudiar para el quiz y examen, ah sí, y la tarea  $\odot$ .

BYE.

