Chapitre 5 Complexité des algorithmes

Complexité des algorithmes

- En général la solution d'un problème n'est pas unique
- Les critères de choix d'une solution répondent aux exigences souvent contradictoires :
 - L'algorithme doit être simple à mettre en œuvre et à mettre au point.
 - L'algorithme doit mettre intelligemment à contribution les ressources de l'ordinateur et doit s'exécuter le plus rapidement possible.
- Le temps d'exécution d'un programme dépend :
 - Des données entrant dans le programme.
 - De la qualité du code généré par le compilateur.
 - De la nature et de la vitesse d'exécution des instructions du microprocesseur utilisé.
 - De la complexité de l'algorithme mis en œuvre.

- Quel est le temps d'exécution du programme?
 - Complexité temporelle
- De combien de mémoire le programme a-t-il besoin?
 - → Complexité de mémoire (ou Complexité spatiale)
- Comment déterminer ces complexités ?
 - → méthode empirique
 - → méthode mathématique

Méthode empirique

- Avec une montre et un logiciel d'analyse de mémoire
- Problème : dépend des facteurs suivants
 - de la machine utilisée;
 - du jeu d'instructions utilisées
 - de l'habilité du programmeur
 - du jeu de données générées
 - du compilateur choisi

- ...

BIEN SUR : Le temps d'exécution dépend de la longueur de l'entrée .

 Ce temps est une fonction T(n) où n est la longueur des données d'entrée.

Méthode mathématique

- Théorie de la complexité
 - Temporelle
 - Spatiale
- Basée sur une machine abstraite
 - Random-Access Memory (RAM)
 - Instructions de base (affectation, boucle, appel de fonctions ...)

exemple 1

```
Pb: Trouver le maximum d'un tableau.
   i := 1; max:=T[1];
    tant que i<=n
         i := i + 1;
        si max< T[i] alors
                  max := T[i];
        fin si
    fin tant que
Affectations: 2 + 2n
Comparaisons: 2n
Appel de fonctions: 0
(Attention : considerer le "worst case", c-à-d le pire des cas)
                             T(n) = 4n+2
```

Exemple 2

Remplir une matrice identité

```
i := 1;
tant que i<=n faire
   j := 1;
   tant que j<=n faire
          si i=j ALORS
                     a[i][j] := 1;
            sinon
                     a[i][j] := 0;
           fin si
          j := j + 1;
   fin tant que
   i := i + 1;
fin tant que
```

Affectations: 1 + 2n + 2n*n

Comparaisons: n+ 2n*n

$$T(n) = 4n^2 + 3n + 1$$

Théorie de la complexité – Diminuer les constantes

Comment peut-on optimiser T(n)?

$$T(n) = an^2 + bn + c$$

1ère solution : diminuer les constantes a,b,c

Exemple:

- T1(n) =
$$4n^2 + 3n + 1$$

$$-$$
 T2(n) = $4n^2$

- T2(n) =
$$4n^2$$

- T3(n) = n^2

n	1	2	3	10	20	100	1000
T ₁ (n)	8	25	46	431	1661	40301	4003001
T ₂ (n)	4	16	36	400	1600	40000	4000000
T ₃ (n)	1	4	9	100	400	10000	1000000
T_1/T_2	2	1,56	1,28	1,08	1,04	1,01	1
T ₁ /T ₃	8	6,25	5,11	4,31	4,15	4,04	4

• Si on considère deux fonctions

$$- T1(n) = a_1 n^2 + b_1 n + c_1$$

$$- \mathbf{T2(n)} = a_2 n^2 + b_2 n + c_2$$

alors:

$$\lim_{n\to\infty} \frac{T1(n)}{T2(n)} = \frac{a_1}{a_2}$$

• Pour des grands n, seule la constante du plus grand degré est significative

Théorie de la complexité - Changement de la

2ème solution

changer la fonction

- T1(n) = log 2(n)
 - logarithmique
- T2(n) = n
 - linéaire
- $T3(n) = n \log 2 (n)$
 - Quasi-linéaire
- T4(n) = n^2
 - quadratique
- T5(n) = n^3
 - cubique
- $T6(n) = 2^n$
 - exponentiel

Quel taille de n peut être résolue en 1 seconde, une minute, une heure ?

- Avec une machine de 1000 instructions par seconde

$T_i(n)$	1 sec	1 min	1 heure
log ₂ n	21000	260000	23600000
N	1000	60000	36000000
n log ₂ n	140	4893	20000
n^2	31	244	1897
n^3	10	39	153
2 ⁿ	9	15	21