Datasheet

MM32SPIN2x

32-Bit Microcontroller based on Arm® Cortex®-M0

Version: 1.21_p

Content

1	Gen	eral Inti	roduction	1
	1.1	Introdu	uction	1
	1.2	Produc	ct Characteristics	1
2	Spec	cificatio	on	3
	2.1	Device	contrast	3
	2.2	Summa	ary	5
		2.2.1	$\text{Arm}^{\text{(B)}}$ Cortex $^{\text{(B)}}$ -M0 core with embedded flash memory and SRAM	5
		2.2.2	Embedded flash memory	5
		2.2.3	SRAM	5
		2.2.4	Nested vectored interrupt controller (NVIC)	6
		2.2.5	External interrupt/event controller (EXTI)	6
		2.2.6	Clocks and startup	6
		2.2.7	Boot modes	7
		2.2.8	Power supply schemes	8
		2.2.9	Power supply monitor	8
		2.2.10	Voltage regulator	8
		2.2.11	Low-power modes	8
		2.2.12	Direct memory access controller (DMA)	9
		2.2.13	Backup register (BKP)	9
		2.2.14	Timers and watchdogs	9
		2.2.15	Universal asynchronous receiver/transmitter (UART)	12
		2.2.16	I2C bus	12
		2.2.17	Serial peripheral interface (SPI)	12
		2.2.18	General-purpose inputs/outputs (GPIO)	12
		2.2.19	Analog-to-digital converter (ADC)	13
		2.2.20	Hardware division	13
		2.2.21	Hardware square unit	13
		2.2.22	PWM controller	13
		2.2.23	Temperature sensor	13
		2.2.24	Serial wire debug port (SW-DP)	14
		2.2.25	Comparator (COMP)	14
		2.2.26	Operational amplifier	14
3	Pin I	Definitio	on	16
4	Mem	nory ma	upping	33
5	Flec	trical cl	haracteristics	35
•	5.1		ondition	
	0.1	5.1.1	Minimum and maximum value	
		5.1.1	Typical value	
		5.1.3	Typical curve	
		5.1.4	Load capacitor	
		5.1.5	Pin input voltage	
		5.1.0	E	50

8	Revi	sion hi	story	82
7	Orde	ering in	formation	81
	6.7	Packa	ge TSSOP20	79
	6.6	•	ge QFN28	77
	6.5	•	ge LQFP32	
	6.4	Packaç	ge LQFP44	73
	6.3	Packa	ge QFN48	71
	6.2	Packa	ge LQFP48	69
	6.1	Packaç	ge LQFP64	67
6	Pack	kage inf	formation	67
		5.3.18	Operational amplifier characteristics	65
			Comparator characteristics	
			Temperature sensor characteristics	
			12-bit ADC characteristics	
		5.3.14	Communication interfaces	55
		5.3.13	Timer characteristics	54
		5.3.12	NRST pin characteristics	53
		5.3.11	I/O port characteristics	49
		5.3.10	Absolute Maximum (Electrical Sensitivity)	49
		5.3.9	EMC characteristics	48
		5.3.8	Memory characteristics	47
		5.3.7	PLL characteristics	47
		5.3.6	Internal clock source characteristics	45
		5.3.5	External clock source characteristics	43
		5.3.4	Supply current characteristics	40
		5.3.3	Embedded reset and power control block characteristics	39
		5.3.2	Operating conditions at power-up/power-down	39
		5.3.1	General operating conditions	
	5.3		ing conditions	
	5.2	Absolu	te maximum rating	
		5.1.7	Current consumption measurement	36
		5.1.6	Power scheme	36

List of Figures

1	Block diagram	5
2	Clock tree	7
3	LQFP64 pin assignment	16
4	LQFP48 pin assignment	17
5	QFN48 pin assignment	18
6	LQFP44 pin assignment	19
7	LQFP32 pin assignment	20
8	QFN28 pin assignment	21
9	TSSOP20 pin assignment	21
10	Load condition of the pin	35
11	Pin input voltage	36
12	Power scheme	36
13	Current consumption measurement scheme	37
14	High-speed external clock source AC timing diagram	44
15	Typical application with an 8 MHz crystal	
16	I/O AC characteristics	53
17	Recommended NRST pin protection	54
18	I2C bus AC waveform and measurement circuit $^{(1)}$	56
19	SPI timing diagram-slave mode and CPHA = 0	58
20	SPI timing diagram-slave mode and CPHA = 1 ⁽¹⁾	59
21	SPI timing diagram-master mode ⁽¹⁾	60
22	Typical connection diagram using the ADC	63
23	Power supply and reference power supply decoupling circuit	64
24	LQFP64, 64-pin low-profile quad flat package outline	67
25	LQFP48, 48-pin low-profile quad square flat package	69
26	QFN48, 48-pin quad flat no-leads package outline	71
27	LQFP44, 44-pin low-profile quad square flat package	73
28	LQFP32, 32-pin low-profile quad flat package outline	75
29	QFN28, 28-pin quad flat no-leads package outline	77
30	TSSOP20, 20-pin low-profile quad flat package outline	79
31	Ordering information scheme	81

List of Tables

Device features and peripheral configurations: M32SPIN27x	3
Device features and peripheral configurations: MM32SPIN25x	3
Low power mode list	8
Timer feature comparison	10
Pin definition	22
PA port alternate function	29
PB port alternate function	30
PC port alternate function	30
PD port alternate function	31
Comparator 1/2/3 input and output port	31
Comparator 4/5 input and output port	31
Operational amplifier input and output port	32
Memory mapping	33
Voltage characteristics	37
Current characteristics	38
General operating conditions	38
Operating conditions at power-up/power-down	39
Embedded reset and power control block characteristics	40
Typical and maximum current consumption in stop and standby $modes^{(2)} \ \ldots \ \ldots \ \ldots \ \ldots$	41
Typical current consumption in Run mode, code executing from flash memory	42
Maximum current consumption in sleep mode, code executing from flash	42
On-chip peripheral current consumption ⁽¹⁾	43
High-speed external user clock characteristics	43
HSE 2 ~ 24 oscillator characteristics $^{(1)(2)}$	44
HSI oscillator characteristics ⁽¹⁾⁽²⁾	45
LSI oscillator characteristics ⁽¹⁾	46
Low-power mode wakeup timings	46
PLL characteristics $^{(1)}$	47
Flash memory characteristics	47
Flash memory endurance and data retention ⁽¹⁾⁽²⁾	47
EMS characteristics	48
ESD characteristics	49
I/O static characteristics	50
Output voltage characteristics	51
I/O AC characteristics (1)	52
NRST pin characteristics	53
TIMx ⁽¹⁾ characteristics	54
I2C characteristics	55
SPI characteristics $^{(1)}$	56
ADC characteristics	
Maximum R_{AIN} at f_{ADC} = 15MHz ⁽¹⁾	61
ADC Accuracy - Limit Test Conditions ⁽¹⁾⁽²⁾	62
	Device features and peripheral configurations: MM32SPIN25x Low power mode list Timer feature comparison Pin definition PA port alternate function PB port alternate function PC port alternate function PD port al

43	Temperature sensor characteristics $^{(3)(4)}$	64
44	Comparator characteristics	64
45	Operational amplifier characteristics	65
46	LQFP64 size description	68
47	LQFP48 size description	69
48	QFN48 size description	71
49	LQFP44 size description	73
50	LQFP32 size description	75
51	QFN28 size description	77
52	TSSOP20 size description	79
53	Revision history	82

1

General Introduction

General Introduction

1.1 Introduction

This product incorporates a high performance 32-bit microcontroller with the core of Arm[®] Cortex[®]-M0. The highest operating frequency is up to 96MHz, with built-in high-speed memory, a rich set of enhanced I/O ports and peripherals connected to the external bus. This product contains two 12-bit ADCs, five comparators, four operational amplifiers, one 16-bit general-purpose timer, one 32-bit general-purpose timer, three 16-bit basic timers, two 16-bit advanced timers, and standard communication interfaces device: one I2C, two SPI, and two UART interfaces.

The device works between 2.0V to 5.5V range. The regular temperature for the device is -40°C to +85°C and -40°C to +105°C extended temperature range are also available. A comprehensive set of power-saving mode allows the design of low-power applications.

The devices are available in 7 different packages: LQFP64, LQFP48, QFN48, LQFP44, LQFP32,QFN28 and TSSOP20.

The abundant peripherals make this microcontroller suitable for a variety of applications:

- · Motor drive and application control
- · Healthcare and fitness equipment
- · PC gaming peripherals and GPS platform
- Industrial applications: programmable controllers (PLCs), inverters, printers and scanners
- · Alarm system, video intercom, heating, ventilation and air conditioning

1.2 Product Characteristics

- · Core and system
 - 32-bit Arm® Cortex®-M0 processor as the core
 - Maximum operating frequency is up to 96MHz
 - Single cycle 32-bit hardware multiplier
 - Hardware divider (32bit)
 - Hardware prescribing (32bit)
- Memory
 - 128K bytes of Flash memory
 - 12K bytes of SRAM

- Boot loader support Chip Flash and ISP (In-System Programming)
- · Clock, reset and power management
 - 2.0V to 5.5V application supply
 - Power-on/Power-down reset (POR/PDR), Programmable voltage detector (PVD)
 - External 2 ~ 24MHz high speed crystal oscillator
 - Embedded factory-tuned 48MHz high speed oscillator
- · Low-power
 - Sleep, Stop and Standby modes
- Two 12-bit ADCs and $1\mu S$ of conversion time (up to 16 channels)
 - Conversion range: 0 to V_{DDA}
 - Support sampling time and resolution configuration
 - On-chip temperature sensor
 - On-chip voltage sensor
- Five comparators
- · Four operational amplifiers
- · One 5-channel DMA controller
 - Supported peripherals: Timer, UART, I2C, SPI and ADC
- Up to 56 fast I/Os:
 - All I/O ports can be mapped to 16 external interrupts
 - All ports are capable of inputting and outputting 5V signals

Annotation: $V_{\rm DD}$ =5V

- · Debug mode
 - Serial wire debug (SWD)
- Ten timers
 - Two 16-bit 4-channel advanced control timer providing 4-channel PWM output, with dead time generation and emergency stop functions
 - One 16-bit timer and one 32-bit timer providing up to 4 input captures/output compares, usable for IR control decoding
 - Two 16-bit timers providing one input capture/output compare and one OCN with functions of dead zone generation, emergency stop and modulator gate circuit for IR control
 - One 16-bit timer providing one input capture/output compare
 - Two watchdog timers (independent and window type)
 - One SysTick timer: 24bit downcounter
- · Up to 5 communication interfaces
 - Two UART interfaces
 - One I2C interface
 - Two SPI interfaces
- 96-bit unique ID (UID)
- Packages LQFP64, LQFP48, QFN48, LQFP44, LQFP32, QFN28 and TSSOP20

For more information about the complete product, refer to Section 2.2 of the data sheet. The relevant information about the Cortex®-M0, please refer to Cortex®-M0 technical reference manual.

2

Specification

Specification

2.1 Device contrast

Table 1. Device features and peripheral configurations: M32SPIN27x

Peripheral	Device	MM32SPIN 27PS	MM32SPIN 27PF	MM32SPIN 27NF	MM32SPIN 27PQ	MM32SPIN 27PT	MM32SPIN 27NU	MM32SPIN 27TW				
Flash mem	ory-K bytes	128										
SRAM-	-K bytes	12										
0	PA		4		3	2	1	1				
	General-purpose (16 bit)	4	4	4	4	4	4	4				
Timers	General-purpose (32 bit)	1	1	1	1	1	1	1				
	Advanced	2	2	2	2	2	2	2				
Communication	UART	2	2	2	2	2	2	2				
	I2C	1	1	1	1	1	1	1				
interfaces	SPI	2	2	2	2	1	1	1				
GP	PIOs	56	40	40	36	25	25	15				
40 hit ADC	Number	2	2	2	2	2	2	2				
12-bit ADC	Channel	16	16	16	14	11	11	10				
DIV					1							
Comparator			5		4	2	2	2				
CPU fre	equency				96 MHz							
Operatin	g voltage				$2.0V\sim5.5V$							
Pac	kage	LQFP64	LQFP48	QFN48	LQFP44	LQFP32	QFN28	TSSOP20				

Table 2. Device features and peripheral configurations: MM32SPIN25x

Device Peripheral	MM32SPIN25PF	MM32SPIN25NF	MM32SPIN25PT	MM32SPIN25TW			
Flash memory-K bytes	32						
SRAM-K bytes		8					
OPA	4	4	2	1			

	Device	MM32SPIN25PF	MM22CDINGENE	MM22CDINAEDT	MANAGOCOINIGETIM	
Peripheral	Peripheral		MM32SPIN25NF	MM32SPIN25PT	MM32SPIN25TW	
	General-purpose (16 bit)	4	4	4	4	
Timers	General-purpose (32 bit)	1	1	1	1	
	Advanced	2	2	2	2	
Communication	UART	2	2	2	2	
	I2C	1	1	1	1	
interfaces	SPI	2	2	1	1	
GP	lOs	40	40	25	15	
40 hit ADC	Number	2	2	2	2	
12-bit ADC	Channel	16	16	11	10	
D	IV		1			
Comp	Comparator		5	2		
CPU fre	CPU frequency		96 M	Hz		
Operatin	g voltage		2.0V ~	5.5V		
Pac	kage	LQFP48	QFN48	LQFP32	TSSOP20	

Figure 1. Block diagram

2.2 Summary

2.2.1 Arm® Cortex®-M0 core with embedded flash memory and SRAM

The ARM® Cortex®-M0 processor is configurable and has multilevel pipeline 32-bit reduced instruction set processor, and characterized by high performance and low power consumption.

2.2.2 Embedded flash memory

The embedded flash memory is up to 128K bytes, usable for storing programs and data.

2.2.3 **SRAM**

The embedded SRAM is up to 12K bytes

2.2.4 Nested vectored interrupt controller (NVIC)

This product embeds a nested vectored interrupt controller, which can handle multiple maskable interrupting channels (excluding 16 Cortex[™]-M0 interrupt lines) with 16 programmable priorities.

- · Tightly coupled NVIC enables low latency interrupt response
- · Interrupt vector entry address directly enters into the core
- Tightly coupled NVIC interfaces
- · Allows early processing of interrupts
- · Handles higher-priority interrupts that arrive late
- · Supports tail-chaining of interrupts
- · Automatically saves the processor state
- Offers automatic recovery when the interrupt returns with no instruction overhead

This module provides flexible interrupt management with minimal interrupt latency.

2.2.5 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of multiple edge detectors used to generate interrupt/event requests. Each interrupt line can be independently configured to select the trigger event (rising edge, falling edge or both) and can be masked independently. A pending register maintains the status of all interrupt requests. The EXTI can detect a signal with a pulse width shorter than the internal AHB clock period. All GPIOs can be connected to the 16 external interrupt lines.

2.2.6 Clocks and startup

System clock selection is performed on startup, however the internal 48 MHz oscillator with 6 division is selected as default CPU clock on reset. Then an external $2 \sim 24$ MHz clock with failure monitoring function can be selected. If an external clock failure is detected, the clock will be isolated. The system automatically switches back to the internal oscillator. If an interrupt is enabled, the software can receive the corresponding interrupt. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example when an indirectly used external oscillator fails).

Multiple prescalers are used to configure AHB frequency, high-speed APB (APB2 and APB1) domain. The maximum frequency of AHB and high-speed APB is 96MHz. Please refer to the clock drive diagram in figure 2.

Figure 2. Clock tree

2.2.7 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- Boot from User Flash memory
- · Boot from System Memory
- · Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using UART1.

2.2.8 Power supply schemes

- V_{DD} = 2.0V \sim 5.5V: external power supply for I/Os and the internal regulator through V_{DD} pins.
- V_{SSA} , V_{DDA} = 2.0V \sim 5.5V: external analog power supply for ADC, reset blocks, oscillators and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} .

2.2.9 Power supply monitor

This product has integrated power-on reset (POR)/power-down reset (PDR) circuit. The circuit remains in the working state and ensures proper operation above a threshold of 2.0V. When $V_{\rm DD}$ is below a specified threshold ($V_{\rm POR/PDR}$), the device will be placed in the reset state, without the need for an external reset circuit.

Additionally, the device features an embedded programmable voltage detector (PVD) that monitors the $V_{\rm DD}/V_{\rm DDA}$ power supply and compares it to the threshold $V_{\rm PVD}$. When $V_{\rm DD}$ is below or above the threshold $V_{\rm PVD}$, an interrupt can be generated. The interrupt handler will send a warning message or switch the microcontroller to the safe mode. The PVD function should be enabled by a program.

2.2.10 Voltage regulator

The voltage regulator converts the external voltage into the internal digital logic operating voltage. The voltage regulator remains in the working state after reset.

2.2.11 Low-power modes

The product supports low-power mode to achieve the best compromise between low power consumption, short startup time and multiple wakeup events.

Table 3. Low power mode list

Made	Entry	Wakaun	Influence on 1.5V	Influence on	Voltage
Mode	Entry	Wakeup	area clock	V _{DD} area clock	regulator
Sleep (SLEEP	WFI (Wait for Interrupt)	Any interrupt	CPU clock off, no		
NOW or SLEEP ON EXIT)	WFE (Wait for Event)	Wakeup event	influence on other clock and ADC clock	N/A	On
Stop	PDDS bit SLEEPDEEP bit WFI or WFE	Any arbitrary interrupt (set in the external interrupt register)	All 1.5V area clocks are off	PLL, HSI and HSE oscillator off	On
Standby	PDDS bit SLEEPDEEP bit WFI or WFE	WKUP pin rising edge, NRST pin external reset,			Off

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode minimizes the power consumption while retaining the content of SRAM and registers. The HSI oscillator and HSE crystal oscillator are also shut down in the Stop mode. The microcontroller can be woken up from the Stop mode by any of the EXTI signals. The EXTI signal can be a wakeup signal from one of the 16 external I/O ports and the output of the PVD.

Standby mode

The Standby mode can minimize the power consumption of the system. In the Standby mode, the voltage regulator turns off when the CPU is in the deep sleep mode. The entire 1.5V power supply domain is disconnected. HSI and HSE oscillators are also turned off. They can be woken up by the rising edge of WKUP pin, external reset of NRST pin and IWDG reset. They also can be woken up by the watchdog timer without reset. The contents of SRAM and registers will be lost. Only the backup register and standby circuit provide power.

2.2.12 Direct memory access controller (DMA)

The flexible 5-way universal DMA can manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA controller supports the management of the ring buffer, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel has dedicated hardware DMA request logic, with support for software trigger on each channel. The length, the source address and the destination address of the transfer can be set separately by the software.

The DMA can be used with major peripherals: UART, I2C, SPI, ADC and general-purpose, basic, advanced control timer TIMx.

2.2.13 Backup register (BKP)

The backup registers are twenty 16-bit registers used to store user application data. They are also not reset when the system is woken up in standby mode, or when the system is reset or power is reset.

2.2.14 Timers and watchdogs

The product includes two advanced timers, two general-purpose timers, three basic timers, two watchdog timers and one SysTick timer.

The following table compares the functions of advanced control timer, general-purpose timer and basic timer:

Table 4. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/- compare channels	Complem -entary outputs
Advanced control	TIM1 /TIM8	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	Yes
General	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	No
purpose	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	No
Basic	TIM14	16-bit	Up	integer from 1 to 65536	Yes	1	No
24010	TIM16 / TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	Yes

Advanced-control timer (TIM1 / TIM8)

The advanced-control timer is composed of one 16-bit counter, four capture/compare channels and one three-phase complementary PWM generator. It has complementary PWM output with dead time insertion and can be used as a complete general-purpose timer. Four independent channels can be used for the following:

- · Input capture
- · Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a 16-bit general-purpose timer, it has the same features as the TIM2 timer. If configured as the 16-bit PWM generator, it has full modulation capability (0 \sim 100%).

In debug mode, the counter can be frozen and the PWM output is disabled to cut off the switches controlled by these output.

Many features are shared with those of the general-purpose timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

Two synchronizable general-purpose timers (TIM2, TIM3) are built into the product. This timer has one 16/32bit auto-load up/down counter, one 16-bit prescaler and four independent channels. Each channel can be used for input capture, output compare, PWM and one pulse mode output.

General-purpose timers 32-bit

The timer has one 32-bit auto-reload up/down counter, one 16-bit prescaler and four independent channels. Each channel can be used for input capture, output compare, PWM and one-pulse mode output.

General-purpose timers 16-bit

The general-purpose timer has one 16-bit auto-load up/down counter, one 16-bit prescaler and four independent channels. Each channel can be used for input capture, output compare, PWM and one pulse mode output.

The general-purpose timers can work together with the advanced control timer via the Timer Link feature for synchronization or event chaining. Their counters can be frozen in the debug mode. Any of the general-purpose timer can be used to produce PWM output. Each timer has independent DMA request mechanism.

These timers can also handle signals from incremental encoders and digital outputs from $1\sim4$ Hall sensors. Each timer can produce PWM output, or be seen as a simple time reference.

Basic timer

TIM14

This timer contains one 16-bit auto-load upcounter and one 16-bit prescaler. It has one single channel for input capture/output compare, PWM or one pulse mode output. Its counter can be frozen in the debug mode.

TIM16/TIM17

Each timer contains one 16-bit auto-load upcounter and one 16-bit prescaler. They each have one single channel for input capture/output compare, PWM or single pulse mode output. They have complementary output with functions of dead time generation and independent DMA request generation. In the debug mode, the counters can be frozen.

Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter. It is clocked from an independent 40 KHz internal oscillator and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the

option bytes. The counter can be frozen in debug mode.

Window watchdog (WWDG)

The window watchdog has one 7-bit downcounter that can be set to run freely. It can be used as a watchdog to reset the entire system in the event of a problem. It is driven by the master clock, providing the early warning of an interrupt. In the debug mode, the counter can be frozen.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- · A 24-bit down counter
- · Autoreload capability
- · Maskable system interrupt generation when the counter reaches 0
- · Programmable clock source

2.2.15 Universal asynchronous receiver/transmitter (UART)

The UART interface provides the hardware m anagement of CTS and RTS signals. It also supports LIN master-slave capability and it is compatible with ISO7816 smart card mode. The supported lengths of output data from UART interface can be 5 bits, 6 bits, 7 bits, 8 bits and 9 bits, which are all configurable.

All UART interfaces can be served by the DMA controller.

2.2.16 I2C bus

I2C bus interface can operate in the multi-master mode or slave mode and it supports the standard mode and the fast mode.

The I2C interface supports 7bit or 10bit addressing.

2.2.17 Serial peripheral interface (SPI)

The SPI interface can be configured to 1 \sim 32 bits per frame in the slave or master mode. The maximum rate is 24M for master mode and 12M for slave mode.

All SPI interfaces can be served by the DMA controller.

2.2.18 General-purpose inputs/outputs (GPIO)

Each GPIO pin can be configured by software as an output (push-pull or open-drain), an input (with or without pull-up/pull-down), or alternate peripheral function. Most GPIO pins are shared with digital or analog alternate peripherals.

If required, the peripheral function of the I/O pins can be locked following a specific sequence in order to avoid spurious writing to the I/O registers.

2.2.19 Analog-to-digital converter (ADC)

The product is embedded with two 12-bit analog-to-digital converters (ADC) which has up to 16 external channels and is available for single-shot, one-cycle and continuous scan conversion. In the scan mode, the acquisition value conversion is automatically performed on a selected set of analog inputs.

All ADC can be served by the DMA controller.

The analog watchdog function allows to monitor one or all selected channels precisely. An interrupt will occur when the monitored signal exceeds a preset threshold.

Events generated by general-purpose timers (TIMx) and the advanced control timer can be cascaded internally to the trigger of the ADC respectively. The application can synchronize the ADC conversion with the clock.

2.2.20 Hardware division

The hardware division unit consists of four 32-bit data registers, which are dividend, divisor, quotient and remainder, and can be done with signed or unsigned 32-bit division. The hardware division control register USIGN can choose whether to have signed division or unsigned division.

Each time the divisor register is written, the division operation is automatically triggered. After the operation is completed, the result is written to the quotient and remainder registers. If the reader register, remainder register, or status register is read before the end, the read operation is suspended until the end of the operation.

If the divisor is zero, an overflow interrupt flag will be generated.

2.2.21 Hardware square unit

The hardware square unit supports 32-bit root number operations.

2.2.22 PWM controller

The PWM control module controls the PWM waveform output by the advanced timer TIM1 to generate a six-step square wave drive motor. The module supports Auto Phase Mask, Current Compensation and Current Protection.

2.2.23 Temperature sensor

The temperature sensor generates a voltage that varies linearly with temperature. The temperature sensor is internally connected to the ADC input channel to convert the sensor output to a digital value.

2.2.24 Serial wire debug port (SW-DP)

Two-wire serial debug port (SW-DP) is embedded in the ARM.

An Arm SW-DP allows to be connected to a single-chip microcomputer through serial wire debugging tools.

2.2.25 Comparator (COMP)

Three single-channel comparators and two four-channel comparators are embedded in the product, including:

- Wake-up events from low-power mode triggered by an analog signal
- · Adjust the analog signal
- Cycle-by-cycle current control loop when combined with the PWM output from a timer
- · Support five independent comparators
- · Rail-to-rail comparators
- · Each comparator has an optional threshold
 - Reusable I/O pins
 - Internal comparison voltage CRV selects the voltage divider value of AVDD or internal reference voltage
- · Programmable hysteresis
- · Programmable speed/consumption
- Support filtering function of the comparison results
- Two comparators can be combined and used in one window comparator
- The output terminal can be redirected to an I/O port or multiple timer input terminals to trigger the following events:
 - Capture events
 - OCref_clr events (cycle-by-cycle current control)
 - Brake event to shut off PWM rapidly
- · Supports filtering of comparison results
- · COMP1 and COMP2 comparators can be combined in a window comparator
- COMP1/2/3 has only one positive input and one inverted input
- COMP4/5 has four positive phase inputs and four inverted inputs with polling:
 - Polling function for constant cycle switching
 - Control polling channel 1/2/3 or 1/2
 - Optional fixed inverted input
- Each comparator generates an interrupt and supports wake-up of the CPU from sleep and shutdown modes (via the EXTI controller)

2.2.26 Operational amplifier

Four op-amps are embedded, and each op-amp input and output is connected to an I/O. The shared I/O allows connection to ADC and comparators.

Rail-to-rail input/output

• Output is connected to I/O

3

Pin Definition

Pin Definition

Figure 3. LQFP64 pin assignment

Figure 4. LQFP48 pin assignment

Figure 5. QFN48 pin assignment

Figure 6. LQFP44 pin assignment

Figure 7. LQFP32 pin assignment

Figure 8. QFN28 pin assignment

Figure 9. TSSOP20 pin assignment

Table 5. Pin definition

			Pin cod	е			Pin	Type ⁽¹⁾	I/O	Main	Alternate	Additional
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type	level ⁽²⁾	function	function	function
64	48	48	44	32	28	20						
1	1	1	1	-	-	-	PD7	I/O	FT	PD7	TIM3_CH1 TIM17_CH1	COMP2_INP
2	2	2	2	-	-	-	PC13	I/O	FT	PC13	TIM2_CH1 _ETR	COMP2_INM
3	3	3	3	-	-	-	PC14	I/O	FT	PC14	TIM2_CH2	COMP3_INP
4	4	4	4	-	1	-	PC15 OSC_IN ⁽³⁾	I/O	FT	PC15	TIM2_CH3	COMP3_INM
5	5	5	5	2	-	2	PD0 OSC_IN ⁽⁴⁾	I/O	FT	PD0	TIM1_CH1N I2C1_SDA UART1_TX SPI1_MOSI COMP2_OUT	-
6	6	6	6	3	2	3	PD1 OSC_OUT	I/O	FT	PD1	TIM1_BKIN I2C1_SCL UART1_RX SPI1_MISO SPI1_SCK COMP3_OUT	-
7	7	7	7	4	3	4	nRST	I/O	FT	Reset	-	-
8	-	-	-	-	-	-	PC0	I/O	FT	PC0	TIM8_CH1	-
9	-	-	-	-	-	-	PC1	I/O	FT	PC1	TIM8_CH1N TIM8_CH2	-
10	-	-	-	-	-	-	PC2	I/O	FT	PC2	SPI2_MISO TIM8_CH2 TIM8_CH3	-
11	-	-	-	-	-	-	PC3	I/O	FT	PC3	SPI2_MOSI TIM8_CH2N TIM8_CH1N	-
12	8	8	8	16	-	15	VSSA	S	-	VSSA		-
13	9	9	9	5	5	5	VDDA	S	-	VDDA	-	-

			Pin cod	е			Pin	T (1)	I/O	Main	Alternate	Additional
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type ⁽¹⁾	level ⁽²⁾	function	function	function
64	48	48	44	32	28	20						
											UART2_CTS	
14	10	10	10	6	6	6	PA0	I/O	тс	PA0	TIM2_CH1_ETR	ADC1_VIN[0]
							WKUP				TIM14_CH1	7.501_11[0]
											COMP4_OUT	
											UART2_RTS	
15	11	11	11	7	7	7	PA1	I/O	TC	PA1	TIM2_CH2	ADC1_VIN[1]
											TIM1_CH2	
											UART2_TX	
16	12	12	12	8	8	8	PA2	I/O	TC	PA2	TIM2_CH3	ADC1_VIN[2]
10	12	. <u>-</u>	12	Ü	O		1712	1/0	10	I AZ	TIM1_CH2N	ADC I_VIN[2]
											COMP5_OUT	
											UART2_RX	
17	13	13	13	9	9	9	PA3	I/O	TC	PA3	TIM2_CH4	ADC1_VIN[3]
											TIM1_CH3	
											SPI1_MISO	
											SPI1_MOSI	
18	-	-	-	-	-	-	PD4	I/O	FT	PD4	TIM8_CH3	-
											TIM8_CH2N	
											COMP1_OUT	
											SPI1_MOSI	
19							PD5	I/O	FT	PD5	SPI1_MISO	
19	-	-	-	-	-	-	FD3	1/0	[FD3	TIM8_CH3N	-
											COMP2_OUT	
											SPI1_NSS	
20	4.4	4.4	4.4	40	40	10	DA 4	1/0	то	DA 4	SPI1_SCK	OP1_INP
20	14	14	14	10	10	10	PA4	I/O	TC	PA4	TIM1_CH3N	ADC2_VIN[4]
											TIM14_CH1	ADC1_VIN[4]
											ODIA COL	
24	15	15	15	11	11	11	DA <i>E</i>	1/0	TO	DA E	SPI1_SCK	OP1_INM
21	15	15	15	11	11	11	PA5	I/O	TC	PA5	SPI1_NSS	ADC2_VIN[5]
											TIM2_CH1_ETR	ADC1_VIN[5]

			Pin cod	le			Pin	Type ⁽¹⁾	I/O	Main	Alternate	Additional
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type	level ⁽²⁾	function	function	function
64	48	48	44	32	28	20						
22	16	16	16	12	12	12	PA6	I/O	тс	PA6	SPI1_MISO TIM3_CH1 TIM1_BKIN TIM8_BKIN TIM16_CH1 COMP4_OUT	COMP4_INP3 COMP5_INP3 OP1_OUT ADC2_VIN[6] ADC1_VIN[6]
23	17	17	17	13	13	13	PA7	I/O	TC	PA7	SPI1_MOSI TIM3_CH2 TIM1_CH1N TIM8_CH1N TIM14_CH1 TIM17_CH1 COMP5_OUT	ADC2_VIN[7] ADC1_VIN[7]
24	-	-	-	-	-	-	PC4	I/O	FT	PC4	UART2_TX TIM3_CH1 SPI1_MOSI	-
25	-	-	-	-	-	-	PC5	I/O	FT	PC5	UART2_RX TIM3_CH2 SPI1_MISO	-
26	18	18	18	14	14	-	PB0	I/O	тс	PB0	TIM3_CH3 TIM1_CH2N TIM8_CH2N	OP2_INP ADC2_VIN[8] ADC1_VIN[8]
27	19	19	19	15	15	14	PB1	I/O	тс	PB1	TIM14_CH1 TIM3_CH4 TIM1_CH3N TIM8_CH3N TIM2_CH3	OP2_INM ADC2_VIN[9] ADC1_VIN[9]
28	20	20	20	18	-	-	PB2	I/O	TC	PB2	CSM_CH1_ TXRX	COMP4_INP2 COMP5_INP2 OP2_OUT ADC2_VIN[10] ADC1_VIN[10]

			Pin cod	le			Pin	Type ⁽¹⁾	I/O	Main	Alternate	Additional						
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type	level ⁽²⁾	function	function	function						
64	48	48	44	32	28	20												
											I2C1_SCL	COMP4_INP						
											TIM2_CH3	COMP5_INP						
29	21	21	21	-	-	_	PB10	I/O	TC	PB10	CSM_CH2_	OP3_OUT						
											TXRX	ADC2_VIN[11						
											SPI2_SCK	ADC1_VIN[11						
30	22	22	22				PB11	I/O	FT	PB11	I2C1_SDA	OD2 INM						
30	22	22	22	-	-	-	PDII	1/0	гі	PDII	TIM2_CH4	OP3_INM						
31	23	23	23	16	4	15	VSS	S	-	VSS	-	-						
32	24	24	24	17	5	16	VDD	S	-	VDD	-	-						
											SPI2_NSS							
											SPI2_SCK	OP3_INP						
33	25	25	25	-	-	-	PB12	I/O	TC	PB12	TIM1_BKIN	COMP4_INM						
											SPI2_MOSI	COMP5_INM						
											SPI2_MISO							
											SPI2_SCK							
											SPI2_MISO							
			26 26	26 26	26 26	26	26	26	26								TIM1_CH1N	
34	26	26					-	-	-	PB13	I/O	TC	PB13	SPI2_NSS	ADC2_VIN[3]			
											SPI2_MOSI							
											I2C1_SCL							
											TIM17_CH1							
											SPI2_MISO							
											SPI2_MOSI							
35	27	27	_	_		_	PB14	I/O	TC	PB14	TIM1_CH2N	ADC2_VIN[2]						
00	21	21					1 514	1/0	10	1014	SPI2_SCK	ADCZ_VIN[2]						
											SPI2_NSS							
											I2C1_SDA							
											SPI2_MOSI							
											SPI2_NSS							
36	28	28	-	-	-	-	PB15	I/O	TC	PB15	TIM1_CH3N	ADC2_VIN[1]						
											SPI2_MISO	OP4_INP						
											SPI2_SCK							
											TIM3_CH1							
07							DCC			BCC	TIM8_CH1							
37	-	-	-	-	-	-	PC6	I/O	FT	PC6	TIM3_CH3	-						
											SPI1_NSS							

			Pin cod	le			Pin	Type ⁽¹⁾	I/O	Main	Alternate	Additional		
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type	level ⁽²⁾	function	function	function		
64	48	48	44	32	28	20								
											TIM3_CH2			
38	_	_	_	_	_	_	PC7	I/O	FT	PC7	TIM8_CH2	_		
								.,,		. 07	TIM2_CH1_ETR			
											SPI1_SCK			
											TIM3_CH3			
39	-	-	-	-	-	-	PC8	I/O	FT	PC8	TIM8_CH3	-		
											TIM2_CH2			
											TIM3_CH4			
40	-	-	-	-	-	-	PC9	I/O	FT	PC9	TIM8_CH4	-		
											TIM2_CH3			
41	29	29	27	18	16	_	PA8	I/O	тс	PA8	MCO	OP4_INM		
41	23	29	21	10	10	_	1 70	1/0	10	1 70	TIM1_CH1	COMP4_INM		
												COMP5_INM		
											UART1_TX			
											TIM1_CH2			
42	30	30	28	19	-	17	PA9	I/O	TC	PA9	UART1_RX	OP4_OUT		
											I2C1_SCL			
											MCO			
											TIM17_BKIN			
											UART1_RX			
43	31	31	29	20	17	18	PA10	I/O	тс	PA10	TIM1_CH3	ADC2_VIN[0]		
10	01	01		20	.,	10	17(10	""	10	17(10	UART1_TX	ADOZ_VIN[0]		
											I2C1_SDA			
											TIM16_CH1			
											UART1_CTS			
											TIM1_CH4			
											TIM1_CH3			
44	32	32	30	21	18	-	PA11	I/O	TC	PA11	TIM2_CH1_ETR	COMP5_INPO		
											I2C1_SCL			
													TIM1_BKIN	
											COMP4_OUT			

			Pin cod				Pin	Type ⁽¹⁾	I/O	Main	Alternate	Additional
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type	level ⁽²⁾	function	function	function
64	48	48	44	32	28	20						
											UART1_RTS	
											TIM1_ETR	
											TIM1_CH3N	
45	33	33	31	22	19	-	PA12	I/O	TC	PA12	TIM2_CH2	COMP5_INM2
											I2C1_SDA	
											TIM8_BKIN	
											COMP5_OUT	
46	34	34	32	23	20	19	PA13	I/O	FT	PA13	SWDIO	_
								., 0		.,,,,	COMP2_OUT	
											I2C1_SCL	
47	35	35	-	-	-	-	PD2	I/O	TC	PD2	SPI1_NSS	COMP4_INM2
											I2C1_SDA	
48	36	36	-	-	-	-	PD3	I/O	TC	PD3	SPI1_SCK	COMP4_INP0
											SPI1_MISO	
											SWDCLK	
49	37	37	33	24	21	20	PA14	I/O	FT	PA14	UART2_TX	-
											COMP1_OUT	
											SPI1_NSS	
											UART2_RX	
											TIM2_CH1_ETR	
50	38	38	34	25	22	-	PA15	I/O	FT	PA15	SPI2_SCK	-
											SPI2_MOSI	
											SPI2_MISO	
											TIM1_CH1N	
											TIM1_CH3N	
											UART1_TX	
											SPI2_MISO	
51	-	-	-	-	-	-	PC10	I/O	FT	PC10	SPI2_SCK	-
											SPI2_NSS	
											SPI2_MOSI	
											COMP5_OUT	
											UART1_RX	
											SPI2_MOSI	
52	-	-	-	-	-	-	PC11	I/O	FT	PC11	SPI2_NSS	-
										SPI2_SCK		
											SPI2_MISO	

	Pin code						Pin	Type ⁽¹⁾	I/O	Main	Alternate	Additional
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type	level ⁽²⁾	function	function	function
64	48	48	44	32	28	20						
											UART1_TX	
											SPI2_SCK	
53	-	-	-	-	-	-	PC12	I/O	FT	PC12	SPI2_MISO	-
											SPI2_MOSI	
											SPI2_NSS	
											TIM3_ETR	
											TIM1_CH3N	
54	-	-	-	-	-	-	PD6	I/O	FT	PD6	TIM1_CH1	-
											TIM1_CH1N	
											COMP3_OUT	
											SPI1_SCK	
55	39	39	35	26	23	_	PB3	I/O	FT	PB3	TIM2_CH2	_
33	39	39	33	20	25	-	1 03	1/0	''	1 03	TIM1_CH2N	-
											TIM1_CH3	
											SPI1_MISO	
											TIM3_CH1	
56	40	40	36	27	24	-	PB4	I/O	FT	PB4	TIM17_BKIN	-
											TIM1_CH3N	
											TIM1_CH2N	
											SPI1_MOSI	
											TIM3_CH2	
57	41	41	37	28	25	-	PB5	I/O	FT	PB5	TIM16_BKIN	-
											TIM1_CH1	
											TIM1_CH2	
											UART1_TX	
											I2C1_SCL	
58	42	42	38	29	26	-	PB6	I/O	FT	PB6	TIM16_CH1N	-
											TIM1_CH2	
											TIM1_CH1N	
											UART1_RX	
											I2C1_SDA	
59	43	43	39	30	27	-	PB7	I/O	FT	PB7	TIM17_CH1N	-
											TIM1_CH3	
											TIM1_CH1	
60	44	44	40	31	-	1	воото	I	_	воото	-	-

			Pin cod	е			Pin	Tuno(1)	I/O	Main	Alternate	Additional
LQFP	LQFP	QFN	LQFP	LQFP	QFN	TSSOP	name	Type ⁽¹⁾	level ⁽²⁾	function	function	function
64	48	48	44	32	28	20						
											UART1_RX	
											I2C1_SCL	
61	45	45	41	-	28	-	PB8	I/O	FT	PB8	TIM16_CH1	COMP1_INP
											TIM1_CH1	
											TIM3_CH2	
											UART1_TX	
											I2C1_SDA	
62	46	46	42	-	-	-	PB9	I/O	FT	PB9	TIM17_CH1	COMP1_INM
											SPI2_NSS	
											TIM3_CH3	
63	47	47	43	32	ı	-	VSS	S	-	VSS	-	-
64	48	48	44	1	•	-	VDD	S	-	VDD	-	-

- 1. I = Input, O = Output, S = Power Supply, HiZ = High Resistance
- 2. FT: 5V tolerant and input signal should be between $V_{\rm DD}$ and 5V TC: Standard IO, input signal does not exceed $V_{\rm DD}$ voltage.
- 3. Applicable to QFN28 package type only
- 4. Applicable to LQFP64, LQFP48, QFN48, LQFP44, LQFP32 and TSSOP20 package types only

Table 6. PA port alternate function

Pin								
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Name								
DAO		LIADTO OTO	TIM2_CH1_				TIMAA CUA	COMP4 OUT
PA0	-	UART2_CTS	ETR	-	-	-	TIM14_CH1	COMP4_OUT
PA1	-	UART2_RTS	TIM2_CH2	TIM1_CH2	-	-	-	-
PA2	-	UART2_TX	TIM2_CH3	TIM1_CH2N	-	-	-	COMP5_OUT
PA3	-	UART2_RX	TIM2_CH4	TIM1_CH3	-	-	-	_
PA4	SPI1_NSS	SPI1_SCK	-	TIM1_CH3N	TIM14_CH1	-	-	-
DAG	0DI4 00K	ODIA NOO	TIM2_CH1_					
PA5	SPI1_SCK	SPI1_NSS	ETR	-	-	-	-	-
PA6	SPI1_MISO	TIM3_CH1	TIM1_BKIN	TIM8_BKIN	-	TIM16_CH1	-	COMP4_OUT
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	TIM8_CH1N	TIM14_CH1	TIM17_CH1	-	COMP5_OUT
PA8	MCO	•	TIM1_CH1	-	-	-	-	-
PA9	-	UART1_TX	TIM1_CH2	UART1_RX	I2C1_SCL	MCO	-	-
DA 40	TIM17_	LIADTA DV	TIMA CUID	LIADTA TV	1004 CDA		TIMAC CLIA	
PA10	BKIN	UART1_RX	TIM1_CH3	UART1_TX	I2C1_SDA	-	TIM16_CH1	-
DA 44		LIADTA OTO	TIMA CUIA	TIMA CUO	TIM2_CH1_	1004 001	TIMA DIZINI	COMP4 OUT
PA11	-	UART1_CTS	TIM1_CH4	TIM1_CH3	ETR	I2C1_SCL	TIM1_BKIN	COMP4_OUT

Pin	A.F.O.	A F.4	AFO	A F 2	A F 4	AFF	AFC	A F.7	
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
PA12	-	UART1_RTS	TIM1_ETR	TIM1_CH3N	TIM2_CH2	I2C1_SDA	TIM8_BKIN	COMP5_OUT	
PA13	SWDIO	-	-	-	-	-	-	COMP2_OUT	
PA14	SWDCLK	UART2_TX	-	-	-	-	-	COMP1_OUT	
PA15	SPI1_NSS	UART2_RX	TIM2_CH1_ ETR	SPI2_SCK	SPI2_MOSI	SPI2_MISO	TIM1_CH1N	TIM1_CH3N	

Table 7. PB port alternate function

Pin								
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Name								
PB0	-	TIM3_CH3	TIM1_CH2N	TIM8_CH2N	-	-	-	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TIM8_CH3N	TIM2_CH3	-	-	-
				CSM_CH1_				
PB2	-	-	-	TXRX	-	-	-	-
PB3	SPI1_SCK	-	TIM2_CH2	-	-	-	TIM1_CH2N	TIM1_CH3
PB4	SPI1_MISO	TIM3_CH1	-	-	-	TIM17_BKIN	TIM1_CH3N	TIM1_CH2N
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	-	-	-	TIM1_CH1	TIM1_CH2
PB6	UART1_TX	I2C1_SCL	TIM16_CH1N	-	-	-	TIM1_CH2	TIM1_CH1N
PB7	UART1_RX	I2C1_SDA	TIM17_CH1N	-	-	-	TIM1_CH3	TIM1_CH1
PB8	UART1_RX	I2C1_SCL	TIM16_CH1	TIM1_CH1	-	-	TIM3_CH2	-
PB9	UART1_TX	I2C1_SDA	TIM17_CH1	-	-	SPI2_NSS	TIM3_CH3	-
				CSM_CH2_		0510 0011		
PB10	-	I2C1_SCL	TIM2_CH3	TXRX	-	SPI2_SCK	-	-
PB11	-	I2C1_SDA	TIM2_CH4	-	-	-	-	-
PB12	SPI2_NSS	SPI2_SCK	TIM1_BKIN	SPI2_MOSI	SPI2_MISO	-	-	-
PB13	SPI2_SCK	SPI2_MISO	TIM1_CH1N	SPI2_NSS	SPI2_MOSI	I2C1_SCL	TIM17_CH1	-
PB14	SPI2_MISO	SPI2_MOSI	TIM1_CH2N	SPI2_SCK	SPI2_NSS	I2C1_SDA	-	-
PB15	SPI2_MOSI	SPI2_NSS	TIM1_CH3N	SPI2_MISO	SPI2_SCK	-		-

Table 8. PC port alternate function

Pin	4.50	454	AF2	450	454	455	450	Λ E 7
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0	-	-	-	-	-	-	TIM8_CH1	-
PC1	-	-	-	-	-	TIM8_CH1N	TIM8_CH2	-
PC2	-	SPI2_MISO	-	-	-	TIM8_CH2	TIM8_CH3	-
PC3	-	SPI2_MOSI	-	-	-	TIM8_CH2N	TIM8_CH1N	-
PC4	-	-	-	UART2_TX	-	TIM3_CH1	SPI1_MOSI	-
PC5	-	-	-	UART2_RX	-	TIM3_CH2	SPI1_MISO	-
PC6	-	TIM3_CH1	-	TIM8_CH1	-	TIM3_CH3	SPI1_NSS	-
PC7	-	TIM3_CH2	-	TIM8_CH2	-	TIM2_CH1_ ETR	SPI1_SCK	-

Pin	A F.O.	A F.4	A F.2	AF2	A F 4	A F F	AFC	A F.7
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC8	-	TIM3_CH3	-	TIM8_CH3	-	TIM2_CH2	-	-
PC9	-	TIM3_CH4	-	TIM8_CH4	-	TIM2_CH3	-	-
PC10	UART1_TX	-	-	SPI2_MISO	SPI2_SCK	SPI2_NSS	SPI2_MOSI	COMP5_OUT
PC11	UART1_RX	-	-	SPI2_MOSI	SPI2_NSS	SPI2_SCK	SPI2_MISO	-
PC12	UART1_TX	-	-	SPI2_SCK	SPI2_MISO	SPI2_MOSI	SPI2_NSS	-
DC42							TIM2_CH1_	
PC13	-	-	-	-	-	-	ETR	-
PC14	-	-	-	-	-	-	TIM2_CH2	-
PC15	-	-	-	-	-	-	TIM2_CH3	-

Table 9. PD port alternate function

Pin	450	A E 4	450	A F.O.	A F 4	A F F	450	A F-7
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PD0	TIM1_CH1N	I2C1_SDA	-	UART1_TX	-	SPI1_MOSI	SPI1_MOSI	COMP2_OUT
PD1	TIM1_BKIN	I2C1_SCL	-	UART1_RX	-	SPI1_MISO	SPI1_SCK	COMP3_OUT
PD2	-	I2C1_SCL	-	-	-	SPI1_NSS	SPI1_NSS	-
PD3	-	I2C1_SDA	-	-	-	SPI1_SCK	SPI1_MISO	-
PD4	SPI1_MISO	SPI1_MOSI	-	-	-	TIM8_CH3	TIM8_CH2N	COMP1_OUT
PD5	SPI1_MOSI	SPI1_MISO	-	-	-	-	TIM8_CH3N	COMP2_OUT
PD6	-	TIM3_ETR	-	TIM1_CH3N	-	TIM1_CH1	TIM1_CH1N	COMP3_OUT
PD7	-	-	-	-	-	TIM3_CH1	TIM17_CH1	-

Table 10. Comparator 1/2/3 input and output port

Port Comparator	INP	INM	ОИТ
COMP1	PB8	PB9	PA14/PD4
COMP2	PD7	PC13	PA13/PD0/PD5
COMP3	PC14	PC15	PD1/PD6

Table 11. Comparator 4/5 input and output port

Port	INP0	INP1	INP2	INP3	INM0	INM1	INM2	INM3	ОПТ
									PA0/
COMP4	PD3	PB10	PB2	PA6	PA6 PB12	PB12 PA8	PD2	CRV	PA6/
									PA11
								2 CRV	PA2/
COMP5	PA11	PB10	PB2	PA6	DR12	PB12 PA8	PA12		PA7/
OOIVII 0					1 512				PA12/
									PC10

Table 12. Operational amplifier input and output port

Port Operational amplifier	INP	INM	ОИТ
OP1	PA4	PA5	PA6
OP2	PB0	PB1	PB2
OP3	PB12	PB11	PB10
OP4	PB15	PA8	PA9

Annotation: PB2 and PA8 share with one GPIO function:

- 1. If this GPIO is set as the op-amp output function, PB2 and PA8 need to be set to analog input mode.
- If this GPIO is disallowed to be used as an op-amp output function or ADC1_CH10/ADC2_CH10
 input function, the GPIO can set the corresponding pin multiplexing function of PB2 and
 PA8 respectively.

4

Memory mapping

Memory mapping

Table 13. Memory mapping

Bus	Addressing range	Size	Peripheral	Notes
			Main flash memory, system	
	0x0000 0000 0x0001 FFFF	128 KB	memory, or SRAM, depends on	
			the configuration of BOOT	
	0x0002 0000 0x07FF FFFF	~128 MB	Reserved	
	0x0800 0000 0x0801 FFFF	128 KB	Main Flash memory	
Flash	0x0802 0000 - 0x1FFD FFFF	~256 MB	Reserved	
	0x1FFE 0000 - 0x1FFE 01FF	0.5 KB	Reserved	
	0x1FFE 0200 - 0x1FFE 0FFF	3 KB	Reserved	
	0x1FFE 1000 - 0x1FFE 1BFF	3 KB	Reserved	
	0x1FFE 1C00 - 0x1FFF F3FF	~256 MB	Reserved	
	0x1FFF F400 - 0x1FFF F7FF	1 KB	System memory	
	0x1FFF F800 - 0x1FFF F80F	16 B	Option bytes	
	0x1FFF F810 - 0x1FFF FFFF	~2 KB	Reserved	
	0x2000 0000 - 0x2000 2FFF	12 KB	SRAM	
SRAM	0x2000 3000 - 0x2FFF FFFF	~512 MB	Reserved	
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2	
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3	
	0x4000 0800 - 0x4000 0BFF	8 KB	Reserved	
	0x4000 2800 - 0x4000 2BFF	1 KB	ВКР	
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG	
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG	
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved	
APB1	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2	
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved	
	0x4000 4400 - 0x4000 47FF	1 KB	UART2	
	0x4000 4800 - 0x4000 4BFF	3 KB	Reserved	
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1	
	0x4000 5800 - 0x4000 5BFF	1 KB	Reserved	
	0x4000 5C00 - 0x4000 5FFF	1 KB	Reserved	
	0x4000 6000 - 0x4000 63FF	1 KB	Reserved	

Bus	Addressing range	Size	Peripheral	Notes
	0x4000 6400 - 0x4000 67FF	1 KB	Reserved	
	0x4000 6800 - 0x4000 6BFF	1 KB	Reserved	
APB1	0x4000 6C00 - 0x4000 6FFF	1 KB	Reserved	
	0x4000 7000 - 0x4000 73FF	1 KB	PWR	
	0x4000 7400 - 0x4000 FFFF	35 KB	Reserved	
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG	
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI	
	0x4001 0800 0x4001 0BFF	1 KB	TIM8	
	0x4001 0C00 0x4001 23FF	6 KB	Reserved	
	0x4001 2400 - 0x4001 27FF	1 KB	ADC1	
	0x4001 2800 - 0x4001 2BFF	1 KB	ADC2	
4.000	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1	
APB2	0x4001 3000 - 0x4001 33FF	1 KB	SPI1	
	0x4001 3400 - 0x4001 37FF	1 KB	DBGMCU	
	0x4001 3800 - 0x4001 3BFF	1 KB	UART1	
	0x4001 3C00 - 0x4001 3FFF	1 KB	COMP	
	0x4001 4000 - 0x4001 43FF	1 KB	TIM14	
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16	
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17	
	0x4001 4C00 0x4001 63FF	6 KB	Reserved	
	0x4001 6400 0x4001 67FF	1 KB	PWM	
	0x4001 6800 0x4001 7FFF	6 KB	Reserved	
	0x4002 0000 - 0x4002 03FF	1 KB	DMA	
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved	
	0x4002 1000 - 0x4002 13FF	1 KB	RCC	
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved	
	0x4002 2000 - 0x4002 23FF	1 KB	Flash 接口	
ALID	0x4002 2400 0x4002 0C00	3 KB	Reserved	
AHB	0x4002 3000 0x4002 33FF	1 KB	CRC	
	0x4002 3400 0x4002 FFFF	51 KB	Reserved	
	0x4003 0000 0x4003 03FF	1 KB	HWDIV	
	0x4003 0400 0x4003 07FF	1 KB	HSQRT	
	0x4003 0800 0x47FF FFFF	~127 MB	Reserved	
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA	
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB	
	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC	
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD	
	0x4800 1000 - 0x5FFF FFFF	~383 MB	Reserved	

5

Electrical characteristics

Electrical characteristics

5.1 Test condition

All voltages are based on $V_{\mbox{\scriptsize SS}}$ unless otherwise stated.

5.1.1 Minimum and maximum value

Unless otherwise stated, the minimum and maximum value performed at ambient temperature T_A = 25°C and V_{DD} = 3.3V.

5.1.2 Typical value

Unless otherwise stated, typical data is based on $T_A = 25^{\circ}C$ and $V_{DD} = 3.3V$. These data are for design guidance only and have not been tested.

5.1.3 Typical curve

Typical curves are for design guidance only and are not tested unless otherwise stated.

5.1.4 Load capacitor

The load conditions when measuring the pin parameters are shown in the figure below.

Figure 10. Load condition of the pin

5.1.5 Pin input voltage

The measurement of the input voltage on the pin is shown in the figure below.

Figure 11. Pin input voltage

5.1.6 Power scheme

The power supply design scheme is shown in the figure below.

Figure 12. Power scheme

5.1.7 Current consumption measurement

The measurement of the current consumption on the pin is shown in the figure below.

Figure 13. Current consumption measurement scheme

5.2 Absolute maximum rating

If the load applied to the device exceeds the value given in the "Absolute Group Maximum Ratings" list (Table 14, Table 15), it may result in the device is permanently damaged. This is just to give the maximum load that can be tolerated, and does not mean that the functional operation of the device is correct under these conditions. Long-term operation of the device under maximum conditions can affect device reliability.

	Table 14.	Voltage char	acteristics
--	-----------	--------------	-------------

Symbol	Description	min	max	units
	External main supply voltage	0.3	5.9	
V _{DD} - V _{SS}	(including V_{DDA} and V_{SSA}) $^{(1)}$	in supply voltage V_{DDA} and V_{SSA}) ⁽¹⁾ In the 5Vtolerant pin (2) V_{SS} - 0.3 V_{DD} + 0.3 derence between 50	v	
	Input voltage on the 5Vtolerant pin	\/ _ 0 3	5.5	•
$V_{ m DD}$ - $V_{ m SS}$ $V_{ m IN}$ $ \triangle V_{ m DDx} $ $ V_{ m SSx} - V_{ m SS} $			3.3	
	Input voltage on other pins (2)	V _{SS} - 0.3	$V_{\rm DD}$ + 0.3	
1 A 17 1	voltage difference between		50	
$ \triangle V_{\text{DDx}} $	different supply pins		30	mV
177 77 1	Voltage difference between	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F0	
$ v_{\rm SSx} - v_{\rm SS} $	different ground pins		50	

- 1. All power (V_{DD}) and ground (V_{SS}) pins must always be connected to the external power supply within the permissible range.
- 2. V_{IN} maximum must always be respected. For information about the maximum allowed injected current values, please see the table below.

Symbol	Symbol Description		m Units
$I_{ m VDD}$	Total current into V _{DD} /V _{DDA} power lines (supply current) (1)	120	
I _{VSS}	Total current out of V _{SS} wire (outflow current) (1)	120	^
I _{IO}	Output sink current on any I/O and control pins		mA
	Output current on any I/O and control pins		
I _{INJ(PIN)} (2)(3)	Injection current on NRST pin	±5	mA
(2)(2)	Injection current on OSC_IN pin of HSE and OSC_IN pin		
$I_{\text{INJ(PIN)}}^{(2)(3)}$	LSE	±5	mA
I _{INJ(PIN)} (2)(3)	Injection current on other pins (4)	±5	mA
$\Sigma I_{\text{INJ(PIN)}}^{(6)}$	Total injection current on all I/O and control pins (5)	±25	mA

Table 15. Current characteristics

- 1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply within the permissible range.
- This current consumption must be correctly distributed to all I/O and control pins. The total output current must not be sunk/pulled between two consecutive power pins that refer to LQFP package with dense pins.
- 3. The reverse injection current can interfere with the analog performance of the device.
- 4. These I/Os cannot be forward injected, and forward injection does not occur when the input voltage is below the specified maximum.
- 5. A positive injection current is induced by $V_{\rm IN} > V_{\rm DDA}$ while a negative injection current is induced by $V_{\rm IN} < V_{\rm SS}$. $I_{\rm INJ(PIN)}$ must never be exceeded.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

5.3 Operating conditions

5.3.1 General operating conditions

Table 16. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f_{HCLK}	Internal AHB clock frequency		0	96	
f _{PCLK1}	Internal APB1 clock frequency		0	f _{HCLK}	MHz
f_{PCLK2}	Internal APB2 clock frequency		0	f _{HCLK}	
$V_{ m DD}$	Standard operating voltage		2.0	5.5	V

Symbol	Parameter	Conditions	Min	Max	Unit	
$V_{DDA}^{(1)}$	Analog operating voltage (ADC not used)	Must be the same voltage as $V_{ m DD}$	2.0	5.5	V	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC used)	macros are same relage as v _{DD}	2.5	5.5	-	
	A l. i 4 4	Maximum power dissipation	-40	85	°C	
T _A	Ambient temperature	Low power dissipation ⁽²⁾	-40	105	°C	

5.3.2 Operating conditions at power-up/power-down

The parameters given in the table below are based on tests under normal operating conditions.

Table 17. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD} ⁽¹⁾	V_{VDD} rise time tr	T - 25°C	300	∞	μS/V
	V_{VDD} fall time tr	$T_A = 25^{\circ}C$	300	∞	
$V_{\rm ft}^{(3)}$	Power-down		0		m) /
	threshold voltage	-	0	-	mV

1. All power-ups need to start at 0V, to ensure that the chip can be powered up reliably.

5.3.3 Embedded reset and power control block characteristics

The parameters given in the table below are based on the ambient temperature and the $V_{\rm DD}$ supply voltage listed in Table 16.

Table 18. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[3: 0]=0000 (Rising edge)		1.82		V
		PLS[3: 0]=0000 (Falling edge)		1.71		V
		PLS[3: 0]=0001 (Rising edge)		2.12		V
	Level selection of	PLS[3: 0]=0001 (Falling edge)		2.00		V
	programmable	PLS[3: 0]=0010 (Rising edge)		2.41		V
	voltage detectors	PLS[3: 0]=0010 (Falling edge)		2.30		V
V_{PVD}		PLS[3: 0]=0011 (Rising edge)		2.71		V
		PLS[3: 0]=0011 (Falling edge)		2.60		V
		PLS[3: 0]=0100 (Rising edge)		3.01		V
		PLS[3: 0]=0100 (Falling edge)		2.90		V
		PLS[3: 0]=0101 (Rising edge)		3.31		V
		PLS[3: 0]=0101 (Falling edge)		3.19		V
		PLS[3: 0]=0110 (Rising edge)		3.61		V
V_{PVD}		PLS[3: 0]=0110 (Falling edge)		3.49		V
	Level selection of	PLS[3: 0]=0111 (Rising edge)		3.91		V
	programmable	PLS[3: 0]=0111 (Falling edge)		3.79		V
	voltage detectors	PLS[3: 0]=1000 (Rising edge)		4.21		V
		PLS[3: 0]=1000 (Falling edge)		4.09		V
		PLS[3: 0]=1001 (Rising edge)		4.51		V
		PLS[3: 0]=1001 (Falling edge)		4.39		V
		PLS[3: 0]=1010 (Rising edge)		4.81		V
		PLS[3: 0]=1010 (Falling edge)		4.69		V
V _{PVDhyst} ⁽²⁾	PVD hysteresis			110		mV
\ /	Power on/down	Falling edge	1.63(1)	1.66	1.68	V
$V_{POR/PDR}$	reset threshold	Rising edge		1.75		V
V _{PDRhys} ⁽²⁾	PDR hysteresis			90.9		mV
T _{RSTTEMPO} ⁽²⁾	Reset duration			0.61		ms

- 1. The product behavior is guaranteed by design down to the minimum value $V_{POR/PDR}$.
- 2. Guaranteed by design, not tested in production.

Note: The reset duration is measured from power-on (POR reset) to the time when the user application code reads the first instruction.

5.3.4 Supply current characteristics

The current consumption is a function of multiple parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

All Run-mode current consumption measurements given in this section are performed with a reduced code.

Current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode, and are connected to a static level V_{DD} or V_{SS} (no load)
- · All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} (0 \sim 24 MHz is 0 waiting period , 24 \sim 48 MHz is 1 waiting period, 48 \sim 72 MHz is 2 waiting periods, 72 \sim 96 MHz is 3 waiting periods).
- The instruction prefetching function is on. When the peripherals are enabled: $f_{HCLK} = f_{PCLK1}. \label{eq:fhclk}$

Note: The instruction prefetching function must be set before setting the clock and bus divider.

T 11 40										1 (2)
Table 19	Lynical	and	maximilm	current	CONSIIM	nti∩n	in star	า and	standhy	y modes ⁽²⁾
Tubic 10.	i y piodi	ana	IIIaxiiIIaiii	Carrent	CONSCIN	puon	111 010	Juliu	Stariab	y illoucs

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Unit
G y	. urumotor	Conditions	T _A =25 °C	J
		Enter the stop mode after reset, $V_{\rm DD}$ = 3.3V,	30	
	Supply current in Stop mode	LPDS = 0 (PWR->CR bit 0)	30	
$I_{ m DD}$		Enter the stop mode after reset, $V_{\rm DD}$ = 3.3V,	4.6	μΑ
22		LPDS = 1 (PWR->CR bit 0)	4.0	
	Supply current in Standby	Enter the standby made after reset \(-2.2\)	0.4	
	mode	Enter the standby mode after reset, $V_{\rm DD}$ = 3.3V	0.4	

- 1. Typical values are tested at $T_A = 25$ °C.
- 2. Data based on characterization results, not tested in production. The IO state is an analog input.

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input configuration, and are connected to a static level V_{DD} or V_{SS} (no load).
- All the peripherals are closed, unless otherwise specified.
- The Flash memory access time is adjusted to the f_{HCLK} (0 \sim 24 MHz is 0 waiting period , 24 \sim 48 MHz is 1 waiting period, 48 \sim 72 MHzis 2 waiting periods, 72 \sim 96 MHzis 3 waiting periods).
- \bullet The ambient temperature and $V_{\rm DD}$ supply voltage conditions are summarized in Table 16.
- The instruction prefetching function is on. When the peripherals are enabled: $f_{HCLK} = f_{PCLK1} = f_{PCLK2}$.

Note: The instruction prefetch function must be set before the clock is set and the bus is divided.

		Conditions	f _{HCLK}	Тур) (1)	
Symbol Paran	Parameter			All peripherals	All peripherals disabled	Unit
		External clock ⁽²⁾	96MHz	26.23	15.2	
			72MHz	20.52	12.19	
	Supply current		48MHz	14.71	9.13	
I _{DD}	I _{DD} in run mode		36MHz	11.76	7.58	mA mA
			24MHz	6.158	1.544	
			8MHz	2.176	0.962	

Table 20. Typical current consumption in Run mode, code executing from flash memory

- 1. The typical value is tested at T_A = 25°Cand V_{DD} = 3.3V.
- 2. External clock is 8MHz, when $f_{HCLK} > 8 \text{MHz}$ enable PLL.

Table 21. Maximum current consumption in sleep mode, code executing from flash

Symbol	Parameter	Conditions	$\mathbf{f}_{ ext{HCLK}}$	Тур) (1)	Unit	
Gy ZG.	. Granicio		*HCLK	All peripherals enabled ⁽²⁾	All peripherals disabled		
		External clock ⁽²⁾	96MHz	30.6	15.7		
			72MHz	23.9	12.5		
	Supply current		48MHz	17	9.08	^	
$I_{ m DD}$	in Sleep mode		36MHz	13	7.32	- mA	
			24MHz	9.51	6.15		
			8MHz	3.51	2.24		

- 1. The typical value is tested at T_A = 25°Cand V_{DD} = 3.3V.
- 2. External clock is 8 MHz, when $f_{HCLK} > 8 \text{MHz}$ enable PLL.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in Table 22. The MCU is placed under the following conditions:

- All I/O pins are in analog input mode, and are connected to a static level —- V_{DD} or V_{SS} (no load) .
- All peripherals are disabled except when explicitly mentioned.
- The given value is calculated by measuring the current consumption.
 - With all peripherals clocked OFF
 - With only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions V_{DD} summarized in Table 16.

Table 22. On-chip peripheral current consumption⁽¹⁾

Peri	oheral	Typical consumption	Unit	Peripheral		Typical consumption	Unit
		at 25 °C				at 25 °C	
	TIM2	0.99		APB2	ADC	1.03	
APB1	TIM3	1.00	-		SPI1	0.99	
	I2C	0.99				UART1	0.52
	TIM14	1.02	mA		GPIOA	0.53	mA
APB2	TIM16	1.02		AHB	GPIOB	0.53	
APDZ	TIM17	1.02		AHB	GPIOC	0.53	
	TIM1	0.99			GPIOD	0.53	

1. $f_{HCLK} = 96 MHz$, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, the prescale coefficient for each device is the default value.

5.3.5 External clock source characteristics

High-speed external user clock generated from an external source

The characteristic parameters given in the following table are measured using a highspeed external clock source, ambient temperature and power supply voltage meet the conditions of general operating conditions.

Table 23. High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
£	User external clock source		2	0	24	NAL 1-
$f_{\mathrm{HSE_ext}}$	frequency ⁽¹⁾		2	8	24	MHz
\/	OSC_IN input pin high level		0.7V _{DD}		V	V
V_{HSEH}	voltage				V_{DD}	V
$V_{ m HSEL}$	OSC_IN input pin low level		V		0.3V _{DD}	V
VHSEL	voltage		V_{SS}		0.3 V DD	v
$t_{\rm w(HSE)}$	OSC_IN high or low time(1)		16			ns
$t_{r(\mathrm{HSE})}$	OSC_IN rise time ⁽¹⁾				20	ns
$t_{\rm f(HSE)}$	OSC_IN fall time ⁽¹⁾				20	ns
$C_{\text{in(HSE)}}$	OSC_IN input capacitance ⁽¹⁾			5		pF
$DuCy_{(HSE)}$	Duty cycle		45		55	%
$I_{\mathtt{L}}$	OSC_IN input leakage current	$V_{\mathrm{SS}} \leq V_{\mathrm{IN}} \leq V_{\mathrm{DD}}$			±1	μΑ

1. Guaranteed by design, not tested in production.

Figure 14. High-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with an 2 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this section are based on design simulation results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy...).

Table 24. HSE 2 ~ 24 oscillator characteristics (1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		4	8	24	MHz
$R_{\rm F}$	Feedback resistor			1000		kΩ
0	The proposed load					
C_{L1} $C_{\mathrm{L2}^{(3)}}$	capacitance corresponds to the	$R_S = 30\Omega$		30		pF
$C_{\mathrm{L2}}^{e_{j}}$	crystal serial impedance (R _S) ⁽⁴⁾					
		V _{DD} = 3.3V				
I_2	HSE current consumption	$V_{IN} = V_{SS}$			4.5	mA
		30pF load				
g_{m}	Oscillator transconductance	Startup		8.5		mA/V
t _{SU(HSE)} (5)	Startup time	V _{DD} is stabilized		3		mS

1. The characteristic parameters of the resonator are given by the crystal/ceramic resonator manufacturer.

- 2. Drawn from comprehensive evaluation, not tested in production.
- 3. For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF (typical value) range, designed for high-frequency applications. A suitable crystal or resonator should also be carefully selected. Usually, C_{L1} and C_{L2} have the same parameter. The crystal manufacturer typically specifies a load capacitance which is the serial combination of C_{L1} and C_{L2} . When choosing C_{L1} and C_{L2} , the capacitive reactance of the PCB and MCU pins should be taken into account (the combined pin and the PCB board capacitance can be roughly estimated as 10pF).
- 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- 5. $t_{SU(HSE)}$ is the startup time, measured from the moment the software enables HSE to a stable 8MHz oscillation is obtained. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 15. Typical application with an 8 MHz crystal

5.3.6 Internal clock source characteristics

The characteristic parameters given in the table below are measured using ambient temperature and supply voltage in accordance with general operating conditions.

High-speed internal (HSI) oscillator

Table 25. HSI oscillator characteristics(1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency			48		MHz
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -40^{\circ}C \sim 105^{\circ}C$	-10		7.9	%
ACC_{HSI}	Accuracy of the HSI oscillator	$T_A = -20^{\circ}C \sim 85^{\circ}C$	-7.6		6.6	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = 0^{\circ}C \sim 75^{\circ}C$	-4.6		4.7	%
ACC _{HSI}	Accuracy of the HSI oscillator	T _A = 25°C	-2.5		2.5	%

- 1. $V_{\rm DD}$ = 3.3V, unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

Low-speed internal (LSI) oscillator

Table 26. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency		31	40	75	KHz
t _{SU(LSI)} ⁽²⁾	LSI oscillator startup time				100	μS
(3)	LSI oscillator power			4.4	4.7	μА
$I_{\mathrm{DD(LSI)}}^{(3)}$	consumption			1.1	1.7	

- 1. V_{DD} = 3.3V, T_A = -40°C \sim 105°C, unless otherwise stated
- 2. Drawn from comprehensive evaluation, not tested in production.
- 3. Guaranteed by design, not tested in production.

Wake-up times from low power mode

The wake-up times listed in the table below are measured during the wake-up phase of the internal clock HSI. The clock source used when waking up depends on the current operating mode:

- · Stop or Standby mode: The clock source is the oscillator
- · Sleep mode: The clock source is the clock used when entering sleep mode

All times are measured using ambient temperature and supply voltage in accordance with common operating conditions.

Table 27. Low-power mode wakeup timings

Symbol	Parameter	Conditions	Тур	Unit
t _{WUSLEEP} (1)	Wakeup from Sleep mode	HSI clock wakeup	4.2	μS
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (Voltage regulator is in run mode)	HSI clock wakeup < 2µS	5	μS
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	HSI clock wakeup < 2µS The regulator wakes up from the off mode < 30µS	510	μS

1. The wake-up time is measured from the start of the wake-up event to the user program to read the first instruction.

5.3.7 PLL characteristics

The parameters listed in the table below are measured using ambient temperature and supply voltage in accordance with the general operating conditions.

Table 28. PLL characteristics(1)

Symbol	Symbol Parameter		Тур	Max	Unit
· ·	PLL input clock ⁽²⁾	2		24	MHz
$f_{\mathtt{PLL_IN}}$	PLL input clock duty cycle	40		60	%
f _{PLL_OUT}	PLL multiplier output clock	40		200	MHz
t _{LOCK}	PLL lock time			100	μS

- 1. Guaranteed by design, not tested in production.
- 2. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by $f_{PLL\ OUT}$.

5.3.8 Memory characteristics

Flash memory

Table 29. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{prog}	16-bit programming time			6	7.5	μS
t _{erase}	Page (1024K bytes) erase time			4	5	mS
t _{ME}	Mass erase time			30	40	mS
		Read mode		9		mA
I_{DD}	Supply current	Write mode			7	mA
		Erase mode			2	mA
V_{prog}	Programming voltage			1.5		V

Table 30. Flash memory endurance and data retention⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Endurance					
	(Annotation:					
NEND	Erase		20			K cycle
	number of					
	times)					
	Data	T _A = 105°C	20			Year
t _{RET}	retention	T _A = 25°C	100			rear

1. Drawn from comprehensive evaluation, not tested in production.

2. Cycle tests are carried out in the whole temperature range.

5.3.9 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

• EFT: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in the following table.

Table 31. EMS characteristics

Symbol	Parameter	Conditions	Level/Class
	Fast transientvoltage burst		
	limits to be applied through	$V_{\rm DD} = 3.3 \text{V}, T_{\rm A} = 25^{\circ} \text{C},$	
V_{EFT}	100 pF on V_{DD} and V_{SS}	f _{HCLK} =96MHz.Conforming to	2A
	pinsto induce a functional	IEC61000-4-4	
	disturbance		

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore, it is recommended that users apply EMC software optimization and conduct EMC-related prequalification tests.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- · Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be

reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors.

5.3.10 Absolute Maximum (Electrical Sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- · A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD78A IC latch-up standard.

Table 32. ESD characteristics

Symbol	Parameter	Conditions	Max ⁽¹⁾	Unit	
	Electrostatic discharge voltage	T _A = 25°C, conforming to	+6000		
$V_{ESD(HBM)}$	(Human body model)	±6000 JESD22-A114		V	
	Electrostatic discharge voltage	T _A = 25°C, conforming to	±2000	v	
$V_{ESD(CDM)}$	(Charging device model)	JESD22-C101	±2000		
1	Latab up aurrant	T _A = 25°C, conforming to	+100	A	
I _{LU}	Latch-up current	JESD78E	±100	mA	

5.3.11 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table 14 are derived from tests. All I/O ports are compatible with CMOS

Table 33. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
\/	Input low lovel voltage	2.5V < V _{DD} <			0.2*\/	.,
V_{IL}	Input low level voltage	5.5V			0.3*V _{DD}	V
W	Input high lovel veltage	2.5V < V _{DD} <	0.7*V _{DD}			V
V_{IH}	Input high level voltage	5.5V	U.7 V _{DD}			V
W	I/O pin Schmitt trigger voltage	itt trigger voltage $2.5V < V_{DD} < 0.1*V_{DI}$	0.1*\/		V	
V_{hy}	hysteresis ⁽¹⁾	5.5V	U.I V _{DD}			V
ı	Input leakage current (2)	2.5V < V _{DD} <			1	μΑ
$I_{ m lkg}$	input leakage current	5.5V				
$R_{\mathtt{PU}}$	Weak pull-up equivalent resistor	2.5V < V _{DD} <	10		50	kΩ
Тър	(3)	5.5V	10		30	K22
D	Weak pull-down equivalent	2.5V < V _{DD} <	10		100	kΩ
$R_{\mathtt{PD}}$	resistor ⁽³⁾	5.5V	10		100	N22
	I/O nin consoitance	2.5V < V _{DD} <			10	nE
C_{IO}	I/O pin capacitance	5.5V			10	pF

- 1. Schmitt Trigger switching hysteresis voltage level.Data drwan from comprehensive evaluation, not tested in production.
- 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins.
- 3. Pull-up and pull-down resistors are MOS.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±20mA.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in section 5.2:

- The sum of the currents obtained from V_{DD} for all I/O ports, plus the maximum operating current that the MCU obtains on V_{DD}, cannot exceed the absolute maximum rating I_{VDD}.
- The sum of the currents drawn by all I/O ports and flowing out of $V_{\rm SS}$, plus the maximum operating current of the MCU flowing out on $V_{\rm SS}$, cannot exceed the absolute maximum rating $I_{\rm VSS}$.

Output voltage levels

Unless otherwise stated, the parameters listed in the table below are measured using the ambient temperature and $V_{\rm DD}$ supply voltage in accordance with the condition of Table 16. All I/O ports are CMOS compatible.

Table 34. Output voltage characteristics

SPEED[1: 0]	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	$V_{OL}^{(1)}$	Output low level voltage	$ I_{IO} = 6 \text{mA}$			0.60	V
11	$V_{\mathrm{OH}}{}^{(2)}$	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$	2.60			V
	V _{OL} ⁽¹⁾⁽³⁾	Output low level voltage	I _{IO} = 8mA			0.60	V
	$V_{OH}^{(2)(3)}$	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$	2.40			V
	$V_{OL}^{(2)(3)}$	Output low level voltage	I _{IO} = 20mA			1.40	V
V _{OH} ⁽²⁾⁽³⁾	V _{OH} ⁽²⁾⁽³⁾	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$				V
10 V _{OH} ⁽²⁾	$V_{OL}^{(1)}$	Output low level voltage	$ I_{IO} = 6 \text{mA}$			0.40	V
	V _{OH} ⁽²⁾	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$	2.80			V
	V _{OL} ⁽¹⁾⁽³⁾	Output low level voltage	I _{IO} = 8mA			0.60	V
	V _{OH} ⁽²⁾⁽³⁾	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$	2.60			V
	$V_{OL}^{(2)(3)}$	Output low level voltage	I _{IO} = 20mA			1.00	V
	$V_{OH}^{(2)(3)}$	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$	1.80			V
	$V_{OL}^{(1)}$	Output low level voltage	$ I_{IO} = 6 \text{mA}$			0.40	V
01	$V_{OH}^{(2)}$	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$	2.80			V
	$V_{OL}^{(1)(3)}$	Output low level voltage	$ I_{IO} = 8 \text{mA}$			0.40	V
	$V_{OH}^{(2)(3)}$	Output high level voltage	$V_{\rm DD} = 3.3 \mathrm{V}$	2.80			V
	$V_{OL}^{(2)(3)}$	Output low level voltage	I _{IO} = 20mA			0.80	V
	$V_{OH}^{(2)(3)}$	Output high level voltage	$V_{\mathrm{DD}} = 3.3 \mathrm{V}$	2.20			V

^{1.} The current absorbed by the chip $I_{\rm IO}$ must always follow the absolute maximum ratings given in the table, and the sum of $I_{\rm IO}$ (all I/O feet and control pins) must not exceed $I_{\rm VSS}$.

- 2. The current output $I_{\rm IO}$ of the chip must always follow the absolute maximum rating given in the table, and the sum of $I_{\rm IO}$ (all I/O pins and control pins) must not exceed $I_{\rm VDD}$.
- 3. Data drawn from comprehensive evaluation, not tested in production.

Input/output AC characteristics

The definitions and values of the input and output AC characteristics are given in figure 16 and Table 35, respectively.

Unless otherwise stated, the parameters listed in Table 35 are measured using the ambient temperature and supply voltage in accordance with the condition Table 14.

Table 35. I/O AC characteristics (1)

SPEED[1: 0]	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Fall time from high					
11	tf	level output to low			7.0		ns
11		level output					
		Rise time from low	C_L =50pF,				
	tr	level output to high	$V_{\rm DD}$ =3.3V		11.4		ns
		level output					
		Fall time from high					
40	tf	level output to low			4.9		ns
10		level output					
		Rise time from low					
	tr	level output to high			6.5		ns
		level output					
		Fall time from high					
01	tf	level output to low			3.9		ns
O1		level output					
,		Rise time from low					
	tr	level output to high			5.0		ns
		level output					

1. The speed of the I/O port can be configured via MODEx[1:0]. See the description of the GPIO Port Configuration Register in this chip reference manual.

Maximum frequency is achieved if $((t_r + t_f) \le 2/3)T$, and if the duty cycle is $(45 \sim 55\%)$ when loaded by C_L (see the i/O AC characteristics definition)

868304

Figure 16. I/O AC characteristics

5.3.12 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, R_{PU} .

Unless otherwise stated, the parameters listed in the table below are measured using the ambient temperature and $V_{\rm DD}$ supply voltage in accordance with the condition of Table 16.

Table 36. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage		-0.3		$0.3*V_{\mathrm{DD}}$	V
V (1)	NRST input high level		0.7*\/		.,	V
$V_{IH(NRST)}^{(1)}$	voltage		0.7*V _{DD}		$V_{ m DD}$	V
· · · · · · · · · · · · · · · · · · ·	NRST Schmitt trigger voltage			0.4*\/		V
$V_{hys(NRST)}$	hysteresis			0.1*V _{DD}		V
	Weak pull-up equivalent	\/ -\/	7	19	00	l _t O
$R_{\mathtt{PU}}$	resistor ⁽²⁾	$V_{IN} = V_{SS}$	/		60	kΩ
$V_{F(NRST)}^{(1)}$	NRST input filtered pulse				100	μS
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse		300			μS

- 1. Guaranteed by design, not tested in production.
- 2. The pullup resistor is a MOS resistor.

Figure 17. Recommended NRST pin protection

- 1. The reset network is to prevent parasitic reset.
- 2. The user must ensure that the potential of the NRST pin is below the maximum $V_{\rm IL(NRST)}$ listed in Table 36, otherwise the MCU cannot be reset.

5.3.13 Timer characteristics

The parameters given in the following tables are guaranteed by design.

For details on the characteristics of the I/O multiplexing function pins (output compare, input capture, external clock, PWM output), see subsubsec 5.3.11.

Table 37. TIMx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t _{res(TIM)}	Timer resolution time		1		$t_{TIMxCLK}$
$t_{res(TIM)}$	Timer resolution time	f _{TIMxCLK} = 96MHz	10.4		nS
£	Timer external clock		0	f _{TIMxCLK}	MHz
f_{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 96MHz	0	96	IVITZ
Res _{TIM}	Timer resolution			16	Bit
4	16 bit counter clock cycle		1	65536	t _{TIMxCLK}
t _{COUNTER}	when the internal clock is selected	f _{TIMxCLK} 96MHz	0.0104	682	μS
+	The maximum passible count			65536 × 65536	$t_{TIMxCLK}$
t _{MAX_COUNT}	The maximum possible count	f _{TIMxCLK} 96MHz		44.7	S

1. TIMx is a generic name.

5.3.14 Communication interfaces

I2C interface characteristics

Unless otherwise specified, the parameters given in Table 38 are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in Table 16.

The I2C interface conforms to the standard I2C communication protocol, but has the following limitations: SDA and SCL are not true pins. When configured as open-drain output, the PMOS transistor between the pin and $V_{\rm DD}$ is closed but still exists.

The I2C I/Os characteristics are listed in Table 38, the alternate function characteristics of I/Os (SDA and SCL) refer to subsubsec 5.3.11.

Table 38. I2C characteristics

Curahal	Davamatav	Standa	ard I2C ⁽¹⁾	Fast I2	C (1)(2)	Unit
Symbol	Parameter	Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock fall time	4.7		1.3		μs
t _{w(SCLH)}	SCL clock rise time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0(3)		0(4)	900(3)	
$t_{r(SDA)} t_{r(SDL)}$	SDA and SCL rise time		1000	2.0+0.1C _b	300	ns
$t_{f(SDA)} t_{f(SDL)}$	SDA and SCL fall time		300		300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Start condition setup time	4.7		0.6		
t _{su(STO)}	Stop condition setup time	4.0		0.6		μs
	Time from Stop condition to	4.7		4.0		
$t_{w(STO:STA)}$	Start condition	4.7		1.3		
Сь	Capacitive load of each bus		400		400	pF

- 1. Guaranteed by design, not tested in production.
- 2. f_{PCLK1} must be at least 3MHz to achieve standard mode I2C frequencies. It must be at least 12MHz to achieve fast mode I2C frequencies.
- 3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.
- 4. In order to span the undefined area of the falling edge of SCL, it must ensure that the SDA signal has a hold time of at least 300nS.

Figure 18. I2C bus AC waveform and measurement circuit⁽¹⁾

1. Measurement point is set to the CMOS level: $0.3V_{DD}$ and $0.7V_{DD}$.

SPI characteristics

Unless otherwise specified, the parameters given in Table 39 are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in Table 16.

Refer to subsubsec 5.3.11 for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Table 39. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f 1/4	CDI alaak fraguanay	Master mode	0 36		MHz
$f_{SCK} 1/t_{c(SCK)}$	SPI clock frequency	Slave mode	0	18	IVIDZ
$t_{r(SCK)}$	SPI clock rise time	Load capacitance: C = 30pF		8	ns
$t_{f(SCK)}$	SPI clock fall time	Load capacitance: C = 30pF		8	ns
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4t _{PCLK}		ns
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	73		ns
t _{w(SCKH)} ⁽²⁾	SCK high time	Master mode,f _{PCLK} = 36MHz,	50	60	ns
		prescale coefficient = 4			

Symbol	Parameter	Conditions	Min	Max	Unit
t _{w(SCKL)} ⁽²⁾	SCK low time	Master mode, f _{PCLK} = 36MHz,	50	60	ns
		prescale coefficient = 4			
t _{su(SI)} (2)	Data input setup time	Slave mode	1		ns
t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	3		ns
		Slave mode, $f_{PCLK} = 36MHz$,	0	55	
$t_{a(SO)}^{(2)(3)}$	Data output access time	prescale coefficient = 4			
		Slave mode, f _{PCLK} = 24MHz		4t _{PCLK}	
t _{dis(SO)} (2)(4)	Data output disable time	Slave mode	10		
t _{v(SO)} (2)(1)	Data output valid time	Slave mode (after enable edge)		25	ns
4 (2)(1)	Data output valid time	Master mode (after enable		_	
$t_{v(MO)}^{(2)(1)}$	Data output valid time	edge)		3	
t _{h(SO)} (2)	Data output hold time	Slave mode (after enable edge)	25		
1 (2)	- Data output hold time	Master mode (after enable	4		
$t_{h(\mathrm{MO})}^{}{}^{(2)}$		edge)	4		

- 1. Data based on characterization results. Not tested in production.
- 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
- 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Figure 19. SPI timing diagram-slave mode and CPHA = 0

Figure 20. SPI timing diagram-slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at CMOS levels: $0.3V_{\rm DD}$ and $0.7V_{\rm DD}.$

Figure 21. SPI timing diagram-master mode(1)

1. Measurement points are done at CMOS levels: $0.3V_{\rm DD}$ and $0.7V_{\rm DD}.$

5.3.15 12-bit ADC characteristics

Unless otherwise specified, The parameters in the table below are measured using the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage in accordance with the conditions of Table 16.

Note: It is recommended to perform a calibration after each power-up

Table 40. ADC characteristics

Symbol	Parameter	Conditions	Min	Туре	Max	Unit
V_{DDA}	Supply voltage		2.5	3.3	5.5	V
$V_{\text{REF+}}$	Positive reference		2.5		V	V
	voltage		2.5		$V_{ m DDA}$	V

Symbol	Parameter	Conditions	Min	Туре	Max	Unit
	ADC clock				4 F(1)	NAL 1-
$f_{ m ADC}$	frequency				15 ⁽¹⁾	MHz
f _S ⁽²⁾	Sampling rate				1	MHz
f (2)	External trigger	f _{ADC} = 15MHz			823	KHz
f _{TRIG} ⁽²⁾	frequency				1/17	1/f _{ADC}
$V_{AIN}^{(2)}$	Conversion voltage range ⁽³⁾		V_{SSA}		V_{DDA}	V
$R_{AIN}^{(2)}$	External sample and hold capactor		See Formulas 1 and Table 41			kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance				1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor			10		pF
± (2)	0	f _{ADC} = 15MHz	0.1		16	μs
$t_S^{(2)}$	Sampling time		1.5		239.5	MHz
t _{STAB} ⁽²⁾	Stabilization time			1		μs
	Total conversion	f _{ADC} = 15MHz	1		16.9	μs
$t_{conv}^{(2)}$	time (including Sampling time)		15 \sim 253 (sampling t_{S^+}) stepwise approximation 13.5			1/f _{ADC}

- 1. Guaranteed by comprehensive evaluation, not tested in production.
- 2. Guaranteed by design. Not tested in production.
- 3. In this series of products, V_{REF+} is internally connected to V_{DDA} , V_{REF-} is internally connected to V_{SSA} .

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times In(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (namely 12-bit resolution).

Table 41. Maximum R_{AIN} at f_{ADC} = 15MHz⁽¹⁾

$T_{\rm S}$ (cycles)	t _s (μs)	${f R}_{ m AIN}$ max (${ m k}\Omega$)
1.5	0.1	1.2
7.5	0.5	30
13.5	0.9	57
28.5	1.9	123
41.5	2.76	180
55.5	3.7	240
71.5	4.77	312
239.5	16.0	1050

1. Guaranteed by design, not tested in production.

Table 42. ADC Accuracy - Limit Test Conditions⁽¹⁾⁽²⁾

Symbol	Parameter	Test Conditions	Туре	Max	Unit
ET	Comprehensive error		±10	±14	
EO	Offset error	f_{PCLK2} = 60MHz, f_{ADC} =	±4	±10	
EG	Gain error	15MHz, $R_{AIN} < 10K\Omega$,	±6	±8	LSB
ED	Differential linearity error	$V_{\rm DDA}$ = 5V, $T_{\rm A}$ = 25°C	±2	±4	
EL	Integral linearity error		±4	±6	

- 1. ADC Accuracy vs Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.
 - Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in subsubsec 5.3.12 does not affect the ADC accuracy.
- 2. Guaranteed by comprehensive evaluation, not tested in production.

ET = Total unadjusted error: The maximum deviation between the actual and ideal transmission curves.

EO = Offset error: The deviation between the first actual conversion and the first ideal conversion.

EG = Gain error: The deviation between the last ideal transition and the last actual transition.

ED = Differential linearity error: The maximum deviation between the actual step and the ideal value.

EL = Integral linearity error: The maximum deviation between any actual conversion and the associated line of the endpoint.

Figure 22. Typical connection diagram using the ADC

- 1. See Table 42 for the values of R_{AIN} , R_{ADC} and C_{ADC} .
- 2. $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly $7 \mathrm{pF}$). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

PCB design recommendations

The power supply must be connected as shown below. The 10nFcapacitor in the figure must be a ceramic capacitor (good quality), and they should be as close as possible to the MCU chip.

Figure 23. Power supply and reference power supply decoupling circuit

5.3.16 Temperature sensor characteristics

Table 43. Temperature sensor characteristics (3)(4)

Symbol	Parameter	Min	Type	Max	Unit	
$T_L^{(1)}$	V _{SENSE} linearity with respect to		ıE		0.0	
	temperature		±5		°C	
Avg_Slope ⁽¹⁾	Average slope	4.571	4.801	5.984	mV/°C	
V ₂₅ ⁽¹⁾	Voltage at 25°C	1.433	1.451	1.467	V	
t _{start} (2)	Setup time			10	μs	
T _{S_temp} ⁽²⁾	ADC sampling time when	10				
	reading temperature	10			μs	

- 1. Guaranteed by comprehensive evaluation, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. The shortest sampling time can be determined by the application through multiple iterations.
- 4. $V_{DD} = 3.3V$.

5.3.17 Comparator characteristics

Table 44. Comparator characteristics

Symbol	Parameter	Register configuration	Min	Type	Max	Unit
HYST	Hysteresis	00		0		mV
HYST	Hysteresis	01		15		mV
HYST	Hysteresis	10		30		mV

Symbol	Parameter	Register configuration	Min	Туре	Max	Unit
HYST	Hysteresis	11		90		mV
OFFSET	Offset voltage	00	0.091	0.213	0.358	mV
OFFSET	Offset voltage	01	3.23	7.51	12.08	mV
OFFSET	Offset voltage	10	9.79	15	20.8	mV
OFFSET	Offset voltage	11	34.25	47.4	62.22	mV
DELAY ⁽¹⁾	Propagation delay	00		80		nS
DELAY ⁽¹⁾	Propagation delay	01		51		nS
DELAY ⁽¹⁾	Propagation delay	10		26		nS
DELAY ⁽¹⁾	Propagation delay	11		9		nS
I _q ⁽²⁾	Operating current mean	00		4.5		uA
I _q (2)	Operating current mean	01		4.4		uA
I _q (2)	Operating current mean	10		4.4		uA
$I_q^{(2)}$	Operating current mean	11		4.4		uA

- 1. The output flips 50% of the time and the time difference between the input and the flip.
- 2. Total current consumption, operating current.

5.3.18 Operational amplifier characteristics

Table 45. Operational amplifier characteristics

Symbol	Parameter	Condition	Min	Туре	Max	Unit
V_{DDA}	Supply voltage		2.5	3.3	5.5	V
CMIR	Common mode input range		0		V_{DDA}	V
VI _{OFFSET}	Input offset voltage			0.6		mV
I _{LOAD}	Drive current				2	mA
IDD_{OPAMP}	Current consumption	No load, static mode		1.05		mA
CMRR	Common mode rejection ratio	@1KHz		80		dB
PSRR	Power supply rejection ratio	@1KHz		76		dB
AV	Open loop gain	C _{LOAD} = 5pF		80		dB
GBW	Bandwidth gain product	C _{LOAD} = 5pF		6		MHz
PM	Phase margin	C _{LOAD} = 5pF		60		
SR	Slew resistance	C _{LOAD} = 5pF		16		V/μs
$t_{ m WAKEUP}$	From the off state to the wakeup setup time, 0.1% precision	C_{LOAD} <= 50pF, R_{LOAD} >= 4K Ω , follower structure		2		μs
R_{LOAD}	Resistive load		4			ΚΩ
$C_{ ext{LOAD}}$	Capacitive load				50	pF

Symbol	Parameter	Condition	Min	Туре	Max	Unit	
VOL	High saturation	$R_{LOAD} = 4K\Omega$, input V_{DDA}	V _{DDA} - 100			\/	
VOH_{SAT}	output voltage	R_{LOAD} = 20K Ω , input V_{DDA}	V _{DDA} - 20			mV	
VOL	Low saturation	$R_{LOAD} = 4K\Omega$, input 0V			100	m\/	
VOL_{SAT}	output voltage	R_{LOAD} = 20K Ω , input 0V			20	mV	
		@1KHz,output resistance load		00			
EN	Equivalent input	4Κ Ω		80		$\frac{nV}{\sqrt{Hz}}$	
	voltage noise	@10KHz,output resistance load		00			
		4Κ Ω		30			

- 1. Design assurance, the product has not been tested.
- 2. The load current also limits the saturated output voltage.

6

Package information

Package information

6.1 Package LQFP64

Figure 24. LQFP64, 64-pin low-profile quad flat package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 46. LQFP64 size description

Label		ММ	
	Min	Тур	Max
Α	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.27
b1	0.17	0.20	0.23
С	0.13	-	0.18
c1	0.117	0.127	0.137
D	11.95	12.00	12.05
D1	9.90	10.00	10.10
E	11.95	12.00	12.05
E1	9.90	10.00	10.10
е	0.40	0.50	0.60
Н	11.09	11.13	11.17
L	0.53	-	0.70
L1		1.00REF	
R1		0.15REF	
R2		0.13REF	
θ	0 °	3.5 °	7 °
θ1	11 °	12 °	13 °
θ2	11 °	12 °	13 °

6.2 Package LQFP48

Figure 25. LQFP48, 48-pin low-profile quad square flat package

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 47. LQFP48 size description

Labal		ММ		
Label	Min	Тур	Max	
А	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.18	-	0.27	
b1	0.17	0.20	0.23	
С	0.13	-	0.18	
c1	0.117	0.127	0.137	

Label		ММ		
	Min	Тур	Max	
D	8.80	9.00	9.20	
D1	6.90	7.00	7.10	
E	8.80	9.00	9.20	
E1	6.90	7.00	7.10	
е	0.40	0.50	0.60	
Н	8.14	8.17	8.20	
L	0.50	-	0.70	
L1		1.00REF		
R1	0.08	-	-	
R2	0.08	-	0.20	
S	0.20	-	-	
θ	0 °	3.5 °	7 °	
θ 1	11 °	12 °	13 °	
θ 2	11 °	12 °	13 °	

6.3 Package QFN48

Figure 26. QFN48, 48-pin quad flat no-leads package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 48. QFN48 size description

Label	MM		
	Min	Тур	Max
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.18	0.25	0.30
D	6.90	7.00	7.10
E	6.90	7.00	7.10
D2	5.45	5.60	5.75
E2	5.45	5.60	5.75

Label	MM		
	Min	Тур	Max
е	0.40	0.50	0.60
K	0.20	-	-
L	0.35	0.40	0.45
R	0.09	-	-
N	Number of pins = 48		

6.4 Package LQFP44

Figure 27. LQFP44, 44-pin low-profile quad square flat package

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 49. LQFP44 size description

Labal		ММ		
Label	Min	Тур	Max	
A	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.33	-	0.42	
b1	0.32	0.35	0.38	
С	0.13	-	0.18	
c1	0.117	0.127	0.137	

Label	MM			
	Min	Тур	Max	
D	11.95	12.00	12.05	
D1	9.90	10.00	10.10	
E	11.95	12.00	12.05	
E1	9.90	10.00	10.10	
е	0.70	0.80	0.90	
Н	11.09	11.13	11.17	
L	0.53	-	0.70	
L1	1.00REF			
R1		0.15REF		
R2		0.13REF		
θ	0 °	3.5 °	7 °	
θ1	11 °	12 °	13 °	
θ2	11 °	12 °	13 °	

6.5 Package LQFP32

Figure 28. LQFP32, 32-pin low-profile quad flat package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 50. LQFP32 size description

Labal		ММ		
Label	Min	Тур	Max	
A	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.33	-	0.42	
b1	0.32	0.35	0.38	
С	0.13	-	0.18	
c1	0.117	0.127	0.137	

Label	ММ		
	Min	Тур	Max
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	0.70	0.80	0.90
Н	8.14	8.17	8.20
L	0.50	-	0.70
L1	1.00REF		
R1	0.08		
R2	0.08		0.20
S	0.20		
θ	0 °	3.5 °	7 °
θ1	11 °	12 °	13 °
θ2	11 °	12 °	13 °

6.6 Package QFN28

Figure 29. QFN28, 28-pin quad flat no-leads package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 51. QFN28 size description

Label	MM		
	Min	Тур	Max
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A2	0.50	0.55	0.60
A3	0.20REF		
b	0.15	0.20	0.25
D	3.90	4.00	4.10
Е	3.90	4.00	4.10
D2	2.50	2.60	2.70

	ММ			
Label	Min	Тур	Max	
E2	2.50	2.60	2.70	
е		0.40		
Н		0.35REF		
k		0.30REF		
L	0.30	0.40	0.45	
R	0.075			
aaa		0.10		
bbb		0.10		
ccc		0.08		
ddd		0.10		
eee		0.10		
N	Number of pins = 28			

6.7 Package TSSOP20

Figure 30. TSSOP20, 20-pin low-profile quad flat package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 52. TSSOP20 size description

Label		MM		
Label	Min	Тур	Max	
A	1.0	-	1.10	
A1	0.05	-	0.15	
A2	-	-	0.95	
A3	0.39	-	0.40	
b	0.20	0.22	0.24	
С	0.10	-	0.19	
c1	0.10	-	0.15	
D	6.40	6.45	6.50	

Label	мм		
	Min	Тур	Max
E	6.25	6.40	6.55
E1	-	4.35	4.40
е	0.55	0.65	0.75
L	0.45	0.60	0.75
L2	0.25BSC		
L1	1.0REF		
R	0.09	-	-
θ1	0 °	-	8 °

7

Ordering information

Ordering information

Figure 31. Ordering information scheme

8

Revision history

Revision history

Table 53. Revision history

Date	Version	Changes	
2022/06/14	Rev1.21	Add annotation in table 17 and 0.1uF capacitance	
		in NRST figure is changed into 1uF.	
2022/05/30	Rev1.20	Add SPIN27TW in table 1, update IO parameters.	
2022/01/20	Rev1.19	Modify the maximum value of voltage characteris-	
		tics.	
2021/05/19	Rev1.18	Modify electrical parameters.	
2020/08/14	Rev1.17	Modify clock tree.	
2020/08/14	Rev1.16	Modify clock tree.	
0000/04/00	Rev1.15	Modify high-speed internal oscillator characteristic	
2020/04/08		parameters.	
2020/04/04	Rev1.14	Add LQFP44 package.	
2019/04/02	Rev1.13	Modify pin definition.	
2019/03/11	Rev1.12	Modify package parameters.	
2019/01/07	Rev1.11	Modify ADC voltage parameters.	
2018/12/11	Rev1.10	Modify package descriptions.	
2018/11/13	Rev1.09	Modify parameters.	
2018/11/12	Rev1.08	Modify descriptions.	
2018/10/22	Rev1.07	Modify device contrast table.	
2018/10/19	Rev1.06	Modify electrical characteristics.	
2018/10/11	Rev1.05	Modify electrical parameters.	
2018/09/14	Rev1.04	Modify electrical parameters.	
2018/09/10	Rev1.03	Modify pin definition.	
2018/08/06	Rev1.02	Add and modify product descriptions.	
2018/08/01	Rev1.01	Modify header and footer.	
2018/06/15	Rev1.00	Initial release.	