

ROBT206 - Microcontrollers with Lab

Lectures 12 – Arithmetic Functions
20 February, 2018

Topics

Today's Topics

Iterative circuits

Binary Adders

Half and full adders

Ripple carry and carry look-ahead adders

Binary Subtraction

Iterative Combinational Circuits

- Arithmetic functions
 - Operate on binary vectors
 - Use the same subfunction in each bit position
- One can design a functional block for the subfunction and repeat it to obtain functional block for overall function
- Iterative array an array of interconnected cells (1-D or 2-D arrays)

Block Diagram of a 1D Iterative Array

- Number of inputs = ?
- Truth table rows = ?
- Equations with up to ? input variables
- Equations with huge number of terms
- Design impractical!
- Iterative array takes advantage of the regularity to make design feasible: Divide and Conquer!

Arithmetic Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - ► Half-Adder (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Arithmetic Functional Block: Half-Adder

A 2-input, I-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified as a truth table for S and C \Rightarrow

X	Y	С	S
0	0	0	0
0	I	0	ı
I	0	0	I
I	I	ı	0

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map!
 By inspection:

$$S = X \cdot \overline{Y} + \overline{X} \cdot Y = X \oplus Y$$

and

$$C = X \cdot Y$$

Arithmetic Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.
 - For a carry-in (Z) of 0, it is the same as the half-adder:
 - For a carry- in (Z) of I:

Z	0	0	0	0
X	0	0	I	I
<u>+Y</u>	+ 0	<u>+ 1</u>	+ 0	<u>+ 1</u>
C S	0 0	0 I	0 I	1 0
Z	I	ı	I	I
X	0	0	ı	ı
<u>+Y</u>	+ 0	<u>+ I</u>	+ 0	<u>+ 1</u>
C S	0 I	10	Ι 0	11

Logic Optimization: Full-Adder

► Full-Adder Truth Table:

Full-Adder K-Map:

X	Y	Z	С	S
0	0	0	0	0
0	0	I	0	I
0		0	0	I
0				0
	0	0	0	
I	0			0
I		0		0
ı		I		I

Equations: Full-Adder

From the K-Map, we get:

The S function is the three-bit XOR function (Odd Function):

$$S = X \oplus Y \oplus Z$$

The Carry bit C is I if both X and Y are I (the sum is 2), or if the sum is I and a carry-in (Z) occurs. Thus C can be re-written as:

$$C = XY + (X \oplus Y)Z$$

- The term X ·Y is carry generate.
- The term $X \oplus Y$ is carry propagate.

Implementation: Full Adder

- Full Adder Schematic
- Here X,Y, and Z, and C (from the previous pages) are A, B, C_i and C_o, respectively. Also,

G = generate and P = propagate.

Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for C_o):

(G = Generate) OR (P = Propagate AND
$$C_i$$
 = Carry In)
 $C_0 = G + P \cdot C_i$

Binary Adders

To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that

operate on the vectors

Example: 4-bit ripple carry adder: Adds input vectors A(3:0) and B(3:0) to get a sum vector S(3:0)

Note: carry out of cell i becomes carry in of cell i + I

Description	Subscript 3 2 I 0	Name
Carry In	0110	C _i
Augend	1011	A _i
Addend	0011	B _i
Sum	1110	S _i
Carry out	0011	C _i +I

4-bit Ripple-Carry Binary Adder

▶ A four-bit Ripple Carry Adder made from four I-bit Full Adders:

Slow adder: many delays from input to output

Delay of a Full Adder

- Assume that AND, OR gates have 1 gate delay and the XOR has 2 gate delays
- Delay of the Sum and Carry bit:

$$S_i = A_i \oplus B_i \oplus C_i$$

$$S_0 = A_0 \oplus B_0 \oplus C_0$$
2 delays
$$2+2=4 \text{ delays}$$

$$C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i$$

$$\mathbf{C_1} = \mathbf{A_0} \mathbf{B_0} + (\mathbf{A_0} \oplus \mathbf{B_0}) \mathbf{C_0}$$

$$0.3$$

$$2+2=4 \text{ delays}$$

Delay in a Ripple-carry adder

One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.

Example: 32-bit Ripple-carry has a unit gate delay of Ins.

- •What is the total delay of the adder?
- •What is the max frequency at which it can be clocked?

Carry Lookahead Adder

- Uses a different circuit to calculate the carry out (calculates it ahead), to speed up the overall addition
- Requires more complex circuits.
- ► Trade-off: speed vs. area (complexity, cost)

Unsigned Subtraction

- Algorithm:
 - Subtract N from M
 - If no end borrow occurs, then $M \ge N$, and the result is a non-negative number and correct.
 - If an end borrow occurs, then N > M and the difference

 $M - N + 2^n$ is subtracted from 2^n , and a minus sign is appended to

the result.

Examples:

1001 0100 - <u>0111</u> - <u>0111</u> 0010 1101

> 10000 - <u>1101</u> (-) 0011

Unsigned Subtraction (continued)

- ▶ The subtraction, $2^n N$, is taking the 2's complement of N
- To do both unsigned addition and unsigned subtraction requires:
- Quite complex!
- Goal: Shared simpler logic for both addition and subtraction
- Introduce complements as an approach

Complements

- Two complements:
 - Diminished Radix Complement of N
 - (r I)'s complement for radix r
 - I's complement for radix 2
 - \triangleright Defined as $(r^n 1) N$
 - Radix Complement
 - r's complement for radix r
 - ▶ 2's complement in binary
 - \triangleright Defined as $r^n N$
- Subtraction is done by adding the complement of the subtracted number
- If the result is negative, takes its 2's complement

Binary 1's Complement

- For r = 2, $N = 01110011_2$, n = 8 (8 digits): $(r^n - 1) = 256 - 1 = 255_{10}$ or 11111111_2
- The I's complement of 01110011₂ is then:

- <u>01110011</u> - <u>10001100</u>

Since the $2^n - 1$ factor consists of all 1's and since 1 - 0 = 1 and 1 - 1 = 0, the 1's complement is obtained by complementing each individual bit (bitwise NOT).

Binary 2's Complement

- For r = 2, $N = 01110011_2$, n = 8 (8 digits), we have: $(r^n) = 256_{10}$ or 100000000_2
- ▶ The 2's complement of 01110011 is then:

10000000 - 01110011 10001101

Note the result is the I's complement plus I, a fact that can be used in designing hardware

Alternate 2's Complement Method

- Given: an *n*-bit binary number, beginning at the least significant bit and proceeding upward:
 - Copy all least significant 0's
 - Copy the first I
 - Complement all bits thereafter.
- 2's Complement Example:

10010100

Copy underlined bits:

<u>100</u>

and complement bits to the left:

01101100

Subtraction with 2's Complement

- ▶ For n-digit, <u>unsigned</u> numbers M and N, find M N in base 2:
 - Add the 2's complement of N to M: $M + (2^n - N) = M - N + 2^n$
 - If $M \ge N$, the sum produces end carry 2^n which is discarded; from above, M N remains.
 - If M < N, the sum does not produce an end carry, since it is equal to $2^n-(N-M)$, the 2's complement of (N-M).
 - To obtain the result -(N-M), take the 2's complement of the sum and place a-to its left.

2's Complement Subtraction Example 1

Find 01010100₂ - 01000011₂

The carry of I indicates that no correction of the result is required.

2's Complement Subtraction Example 2

Find 01000011₂ - 01010100₂

- The carry of 0 indicates that a correction of the result is required.
- Result = -(00010001)

2's Complement Adder/Subtractor

- Subtraction can be done by addition of the 2's Complement.
 - I. Complement each bit (I's Complement.)
 - 2. Add I to the result.
- The circuit shown computes A + B and A B:
- For S = I, subtract, the 2's complement of B is formed by using XORs to form the I's comp and adding the I applied to C₀.
- For S = 0, add, B is passed through unchanged

Signed Integers

- Positive numbers and zero can be represented by unsigned n-digit, radix r numbers. We need a representation for negative numbers.
- To represent a sign (+ or −) we need exactly one more bit of information (I binary digit gives 2¹ = 2 elements which is exactly what is needed).
- Since computers use binary numbers, by convention, the most significant bit is interpreted as a sign bit:

$$s a_{n-2} \dots a_2 a_1 a_0$$

where:

s = 0 for Positive numbers

s = I for Negative numbers

and $a_i = 0$ or I represent the magnitude in some form.

Exercise

• Give the sign+magnitude, 1's complement and 2's complement of (using minimal required bits):

Sign+Mag		One's compl.	Two's compl.
+2	010	010	010
- 2	1 10	101	110
+3	011	011	011
- 3	1 11	100	101
+0	000	000	000
- 0	100	111	000

Signed 2's complement system

- Positive numbers are unchanged
- Negative numbers: take 2's complement
- Example for 4-bit word:

0	0000		
+	<mark>0</mark> 00 I	- l	
+2	0010	-2	1110
+3	0011	-3	1101
+4	0100	-4	1100
+5	0101	-5	1011
+6	0110	-6	1010
+7	QIII	-7	ا 100 ار
		-8	1000

- •0 indicates positive and I negative numbers
- •7 positive numbers and 8 negative ones

2's Complement Arithmetic

Addition: Simple rule

- Represent negative number by its 2's complement. Then, add the numbers including the sign bits, discarding a carry out of the sign bits (2's complement):
- ► Indeed, e.x. $M+(-N) \rightarrow M + (2^n-N)$
 - If M ≥ N: (M-N) + 2ⁿ ignore carry out: M-N is the answer in two's complement)
 - If $M \le N$: $(M-N) + 2^n = 2^n (N-M)$ which is 2's complement of the (negative) number (M-N): -(N-M).
- Subtraction: M-N \rightarrow M + (2ⁿ-N)

Form the complement of the number you are subtracting and follow the rules for addition.

Signed 2's Complement Examples

Example 1: 1101 + 0011

Example 2: 1101 - 0011

Example 3: $(5 - 11)_{10}$ (using 2's compl.)

Any Questions?

