ORIGINAL SOURCE OF THE DATA SETS AND Background IS :-

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

And the data:-

https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCl%20HAR%20Dataset.zip

See reference at end of this README.

This data has been transformed, by taking the mean of the variables grouped by one of 1 - 30 subjects, and the activity undertaken.

Subjectnumber - 1:30 - denotes the number of the subject(person) undertaking an activity

Activity - 6 levels, Laying, Sitting, Standing, Walking, Walking_Uphill, Walking_Downhill,

In order to understand the remaining variables:-

T prefix denotes time

F prefix denote frequency domain signals

Mean suffix denotes the mean of the variables below

Std suffix denotes the standard deviation of the variables below

The original data in the dataset was created as follows

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ.

The acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ)

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag.

These signals were used to estimate variables of the feature vector for each pattern:

'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

tBodyAcc-XYZ

tGravityAcc-XYZ

tBodyAccJerk-XYZ

tBodyGyro-XYZ

tBodyGyroJerk-XYZ

tBodyAccMag

tGravityAccMag

tBodyAccJerkMag

tBodyGyroMag

tBodyGyroJerkMag

fBodyAcc-XYZ

fBodyAccJerk-XYZ

fBodyGyro-XYZ

fBodyAccMag

fBodyAccJerkMag

fBodyGyroMag

fBodyGyroJerkMag

Original background on the underlying data

Human Activity Recognition Using Smartphones Dataset

Version 1.0

Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto.

Smartlab - Non Linear Complex Systems Laboratory

DITEN - Università degli Studi di Genova.

Via Opera Pia 11A, I-16145, Genoa, Italy.

activityrecognition@smartlab.ws

www.smartlab.ws

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear

acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.

For each record it is provided:

- Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
- Triaxial Angular velocity from the gyroscope.
- A 561-feature vector with time and frequency domain variables.
- Its activity label.
- An identifier of the subject who carried out the experiment.

The dataset includes the following files:

License:

======

Use of this dataset in publications must be acknowledged by referencing the following publication [1]

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.

Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita. November 2012.