COMPUTER ARCHITECTURE (9 CFU) Computer Engineering (CE) degree Antonio Prete

antonio.prete@ing.unipi.it

skype c.a.prete

The need to use online tools can impose a reorganization of the course day by day.

1

COMPUTER ARCHITECTURE

Topics selection:

- Classes of computers, technology trends, power consumption, performance evaluation and benchmarks
- Memory hierarchy, cache memory and virtual memory
- Instruction Level Parallelism, dynamic scheduling, multiple issue, speculation and multithreading
- Vector architecture and Graphics Processing Unit (GPU)
- Symmetric shared-memory multiprocessors, distributed shared-memory multiprocessor, cache coherence and memory consistency
- Domain-Specific Architectures

Goals:

- Skills on the architecture of current microprocessors
- Skills on power consumption and processing performance
- Using of resources and features of current microprocessors
- Sizing the resources of a computer according to the application features

COMPUTER ARCHITECTURE

Exercise activities:

The goal is to understand the features of current computers.

The activities will be developed in groups of two or three students.

Each group will deepen 3 arguments concerning current computers and prepare the presentations.

1st presentation: microprocessor architecture, features of the instruction set, TLB and cache memory organization, microcontroller, DSP,

Goal: verify that you have the basis for understanding the architectures of current computing systems

2nd presentation: multiprocessor architecture, multicore organization, GPU, coherence protocols, memory consistency model, ...

Examination (only spoken):

Evaluation of the presentations developed during the semester. Questions about the course program.

3

3

1st presentation

- Arduino
- · Computer Data Storage
- · Simultaneous Multithreading
- Memory Management Unit
- General Purpose computing on Graphics Processing Units
- Samsung Galaxy Tab 2 7.0
- ARM: history, characteristics and the arm11 MPcore
- Multi Level Cache
- Java Processors
- AMD vs INTEL General purpose microprocessors comparison
- Hardware security solutions. Trust Zone technology in ARM architecture
- Cache performances
- Raspberry PI
- Journal papers

2nd presentation

- · Intel-core-i7 Dynamic power-management
- PARALLELISM IN DATABASE SYSTEMS
- Arm Cortex A9
- Hardware / Software parallelism techniques for power reduction in ARM Cortex A11 MPCore
- Automatic Parallelization
- OpenCL: heterogeneous computing
- INTRODUCTION TO PROGRAMMING ON GPU AND MANAGING OF PARALLELISM
- Exploit Multicore and Multithreading CPU
- · GPU: analysis of the memory subsystem
- Hyper-Threading
- Multicore CPU comparison
- Cache coherence in multicore processors
- Multicore programming: increasing performance through software multithreading
- C Parallel Programming: OpenMP

5

5

Team practices

Organization

Step 1: 1-5 March, define the team (2 or 3 students)

Step 2: 5 March, define the subject of presentation

Step 3: prepare the presentation

Step 4: show the presentation at the class

Completion of activities and presentation to the course attendees:

March 29th: Draft of first presentation and verify that you have the basis for understanding the architectures of current computing systems.

May 15th: Work begins on the second presentation.

May 24th: Presentation of both presentations.

Books

- Computer Architecture, Fifth Edition: A Quantitative Approach, John L. Hennessy, David A. Patterson
- Advanced Computer Architecture and Computing, S.S. Jadhav
- Microprocessor Architecture: From Simple Pipelines to Chip Multiprocessors, Jean-Loup Baer
- Parallel computer organization and design, M. Dubois, M. Annavaram, P. Stenstrom

7

PDF?

- Microsoft Teams
 - Please send me a mail by specifying:
 - The name
 - The student identifier "matricola"
 - The degree

TIMETABLE

	1M Computer Eng				
	Lu	Ma	Me	Gi	Ve
8:30/9:30	Internet of things ADII Femileshells were entere	Cloud computing SI 5	Internet of things C31 Femiliarited in order orders ASE	Internet of things ADII Femineholis area rates ADI	Cloud computing A22
9:30/10:30	Internet of things ADII Proad-sorbed by seven system ASI	Cloud computing SI 5	Internet of things C31 Possilarited for more comma- ASE	Internet of things ADII Production of the count of the ADII	Cloud computing A22
10:30/11:30	Computer architecture ADI1		Fondations of cybersecurity SI 7	Fondations of cybersecurity ADII	Cloud computing A22
11:30/12:30	Computer architecture ADI1	Intelligent systems SI 3	Fondations of cybersecurity SI 7	Fondations of cybersecurity ADII	Internet of things ADM1 Nonsinethelite sour ayeas ADM
12:30/13:30	Computer architecture ADI1	Intelligent systems SI 3	Fondations of cybersecurity SI 7		Internet of things ADI1 Franklarfiel for some option ADI
13:30/14:30	Fondations of cybersecurity ADI1			Intelligent systems F01	
14:30/15:30	Fondations of cybersecurity ADI1			Intelligent systems F01	Computer architecture ADII
15:30/16:30	Fondations of cybersecurity ADI1	Cloud computing A21		Intelligent systems F01	Computer architecture ADI1
16:30/17:30		Cloud computing A21		Computer architecture ADII	Computer architecture ADI1
17:30/18:30		Cloud computing A21		Computer architecture ADII	

Theory lessons

Team practices