P/00/01345

日本国特許庁

06.03.00

JP/09/01345

PATENT OFFICE
JAPANESE GOVERNMENT

 REC'D
 1 7 MAR 2000

 W1PO
 PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年10月28日

出 願 番 号 Application Number:

平成11年特許願第306563号

三菱化学株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 2月18日

特 許 庁 長 官 Commissioner, Patent Office 近 藤 隆

特平11-306563

【書類名】

特許願

【整理番号】

J04176

【提出日】

平成11年10月28日

【あて先】

特許庁長官殿

【国際特許分類】

G02B 5/20

【発明の名称】

スクアリリウム系化合物及びこれを用いたプラズマディ

スプレイパネル用フィルター

【請求項の数】

9

【発明者】

【住所又は居所】

神奈川県横浜市青葉区鴨志田町1000番地 三菱化学

株式会社横浜総合研究所内

【氏名】

尾澤 鉄男

【発明者】

【住所又は居所】

神奈川県横浜市青葉区鴨志田町1000番地 三菱化学

株式会社横浜総合研究所内

【氏名】

村山 徹郎

【特許出願人】

【識別番号】

000005968

【氏名又は名称】

三菱化学株式会社

【代理人】

【識別番号】

100103997

【弁理士】

【氏名又は名称】 長谷川

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第 57944号

曉司

【出願日】

平成11年 3月 5日

【手数料の表示】

【予納台帳番号】

035035

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 スクアリリウム系化合物及びこれを用いたプラズマディスプレイパネル用フィルター

【特許請求の範囲】

【請求項1】 下記一般式(I)

【化1】

[式(I)中、Rは、ハロゲン原子、置換基を有していても良いアルキル基、置換基を有していても良いアルコキシ基又は置換基を有していても良いアルケニル基を表し、mは1~3の整数を、nは1~4の整数を表す。〕で表されるスクアリリウム系化合物。

【請求項2】 下記一般式(I)

【化2】

[式(I)中、Rは、ハロゲン原子、置換基を有していても良いアルキル基、置換基を有していても良いアルコキシ基又は置換基を有していても良いアルケニル基を表し、mは、1~3の整数をnは1~4の整数を表す。〕で表されるスクアリリウム系化合物を含有する層を有することを特徴とするプラズマディスプレイパネル用フィルター。

【請求項3】 請求項2に記載のスクアリリウム系化合物を含有する層に、 さらに紫外線吸収剤を含有する層とを積層したことを特徴とするプラズマディス プレイパネル用フィルター。

【請求項4】 一般式(I)において、Rが置換基を有していても良いアルキルであることを特徴とする請求項2又は3に記載のプラズマディスプレイパネル用フィルター。

【請求項5】 一般式(I)において、mが3であり、かつnが1であるスクアリリウム化合物であることを特徴とする請求項2又は4に記載のプラズマディスプレイパネル用フィルター。

【請求項6】 近赤外線カット層を設けたことを特徴とする請求項2乃至5 のいずれか1項に記載のプラズマディスプレイパネル用フィルター。

【請求項7】 電磁波カット層を設けたことを特徴とする請求項2乃至6のいずれかに1項に記載のプラズマディスプレイパネル用フィルター。

【請求項8】 反射防止層を設けたことを特徴とする請求項2乃至7のいずれか1項に記載のプラズマディスプレイパネル用フィルター。

【請求項9】 ぎらつき防止(ノングレア)層を設けたことを特徴とする請求項2万至8のいずれか1項に記載のプラズマディスプレイパネル用フィルター

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、スクアリリウム系化合物、及びこれを用いたプラズマディスプレイパネル用フィルターに関する。詳しくは特定のスクアリリウム系化合物を含有する層を有することを特徴とするプラズマディスプレイパネルから放射されるネオン発光を有効に遮蔽することができるプラズマディスプレイパネル用フィルターに関する。

[0002]

【従来の技術】

近年、大型の壁掛けテレビをはじめ種々の電子機器の表示パネルとしてプラズマディスプレイパネルが使用され、その需要が増大し、今後もその数は益々増加するものと考えられる。

プラズマディスプレイでは、放電によりキセノンとネオンの混合ガスが励起され真空紫外線を放射し、その真空紫外線励起による赤、青、緑のそれぞれの蛍光体の発光を利用して3原色発光を得ている。その際、ネオン原子が励起された後基底状態に戻る際に600nm付近を中心とするいわゆるネオンオレンジ光を発

光する(映像情報メディア学会誌 Vol.51 NO.4 P.459-463 (1997))。この為、プラズマディスプレイでは、赤色にオレンジ色が混ざり鮮やかな赤色が得られない欠点がある。

例えば、特開平10-204304号公報には、スクアリリウム系化合物において、ベンゼン環上の置換基としてOH基のみを有する化合物が記載されているが、これらはネオンオレンジ光の波長領域からずれたところに吸収を有するため、ネオンオレンジ光をカットするには不十分であった。

[0003]

【発明が解決しようとする課題】

本発明はネオン発光を有効にカットすることができるプラズマディスプレイパネル用フィルターを提供することにある。特に、耐光性に優れるプラズマディスプレイパネル用フィルターを提供するものである。

[0004]

【課題を解決するための手段】

本発明等は、種々検討を重ね、水酸基を有する特定のスクアリリウム系化合物を含有する層を使用することにより上記目的が達成されることを見出した。

即ち本発明の要旨は、下記一般式(I)で表されるスクアリリウム系化合物、 及び透明基板上にこれを含有する層を有することを特徴とするプラズマディスプ レイパネル用フィルターに存する。

[0005]

【化3】

[0006]

[式 (I) 中、Rは、ハロゲン原子、置換基を有していても良いアルキル基、置換基を有していても良いアルコキシ基又は置換基を有していても良いアルケニル基を表し、mは、1~3の整数をnは1~4の整数を表す。〕

[0007]

【発明の実施の形態】

以下に本発明を詳細に説明する。

本発明のスクアリリウム系化合物は、前記一般式(I)で示される。

- 般式 (I) において、置換基Rの好ましいものとしては、次の $(i) \sim (vii)$ のようなものが例示できる。
 - (i) フッ素原子、塩素原子、臭素原子等のハロゲン原子;
- (ii)メチル基、エチル基、プロピル基、ブチル基、ペンンチル基、ヘキシル基 、ヘプチル基、オクチル基、デシル基、ウンデシル基、ドデシル基、トリデシル 基、ペンタデシル基等の炭素数1~20の直鎖もしくは分岐鎖アルキル基;

[0008]

- (iii) 置換基としてヒドロキシ基、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基等のアルキコキシカルボニル基、アセチルオキシ基カルボニル基、プロピオニルオキシカルボニル基等のアシルオキシカルボニル基、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、ブトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基、シクロヘキシル基、フェニル基等を有する前記炭素数1~20の直鎖もしくは分岐鎖アルキル基;
- (iv)メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンンチルオキシ 基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシオキシ基、 ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、ペンタデシルオ キシ基等の炭素数 1 ~ 2 0 の直鎖もしくは分岐鎖アルコキシ基;

[0009]

- (v) 置換基としてメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等の 炭素数1~8のアルコキシ基を有する前記炭素数1~20の直鎖もしくは分岐鎖 アルコキシ基;
 - (vi)エテニル基などのアルケニル基;
- (vii) 置換基としてメチル基、エチル基、プロピル基、ブチル基、ペンンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基等のアルキル基、フェニル基、4-ヒドロキシフェニル基、4-アルコキシ(例えば、炭素数1~10のア

ルコキシ基)フェニル基、3, 4-ビスアルコキシ(例えば、炭素数 $1\sim10$ のアルコキシ基)フェニル基、3, 5-ビスアルコキシ(例えば、炭素数 $1\sim10$ のアルコキシ基)フェニル基、3, 4, 5-トリスアルコキシ(例えば、炭素数 $1\sim10$ のアルコキシ基)フェニル基で置換されたエテニル基等のアルケニル基

[0010]

これらのうち、Rは炭素数1~6の直鎖もしくは分岐鎖のアルキル基;水酸基 もしくはアルコキシカルボニル基で置換された炭素数1~6の直鎖もしくは分岐 鎖のアルキル基;炭素数1~6のアルコキシ基;または置換基を有するエテニル 基が特に好ましい。

又、m=3である場合、400~500nm付近に透過率の極小値を有さない ことから400~500nmの透過率が良好であること、又、合成時の収率、純 度等が良好であることから、より好ましい。最も好ましくはm=3であり、n= 1である場合が望ましく、中でもRは置換を有していてもよいアルキル基である のがより望ましい。

一般式 (I) のスクアリリウム系化合物は、例えば、Angew.Chem. 77 680-68 1 (1965) 記載の方法あるいはそれらに準じて製造することが出来る。

即ち、下記一般式 (II)

[0011]

【化4】

[0012]

〔式中、R、m、nは、前記一般式(I)と同じ定義を示す。〕で表されるフェノール系化合物2モルに対し、スクアリック酸1モルをエタノール、酢酸、nープチルアルコールートルエン混合溶媒、nープチルアルコールーベンゼン混合溶媒等の中で、70~150℃程度に加熱しながら脱水縮合させることにより合成することが出来る。

一般式(I)の代表例を次に示す。

[0013]

【化5】

$$(HO)_{m} \xrightarrow{3} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{3} (OH)_{m}$$

$$(R)_{n} \xrightarrow{3} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{3} \xrightarrow{6} \xrightarrow{5} (R)_{n} \cdots (I)$$

$$(R)_{n} \xrightarrow{3} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{3} (OH)_{m}$$

$$(HO)_{m} \xrightarrow{4} \xrightarrow{4} \xrightarrow{5} \xrightarrow{6} \xrightarrow{5} (R)_{n} \cdots (I)$$

$$(R)_{n} \xrightarrow{5} \xrightarrow{6} \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} (R)_{n} \cdots (I)$$

$$(HO)_{m} \xrightarrow{4} \xrightarrow{4} \xrightarrow{5} \xrightarrow{6} \xrightarrow{5} (R)_{n} \cdots (I)$$

$$(HO)_{m} \xrightarrow{4} \xrightarrow{4} \xrightarrow{6} \xrightarrow{5} (R)_{n} \cdots (I)$$

$$(HO)_{m} \xrightarrow{4} \xrightarrow{6} \xrightarrow{6} \xrightarrow{6} (R)_{n} \cdots (I)$$

$$(HO)_{m} \xrightarrow{4} \xrightarrow{6} \xrightarrow{6} (R)_{n} \cdots (I)$$

$$(HO)_{m} \xrightarrow{4} (R)_{m} \cdots (I)$$

$$(H$$

[0014]

本発明のフィルターの一般式(I)で表されるスクアリリウム系化合物を含有する層は、フィルムあるいはシート等に成形された透明基板に、一般式(I)のスクアリリウム系化合物を含む塗工液を塗布することにより、容易に製造される

塗工液は、一般式(I)のスクアリリウム系化合物をバインダーと共に有機溶剤に溶解させる方法、又は粒径0.1~3μmに微粒化したスクアリリウム系化合物を、必要に応じ分散剤を用い、バインダーと共に溶剤に分散させる方法により調製される。このとき溶剤に溶解、又は分散されるスクアリリウム系化合物、バインダー、分散剤等の塗工液に対する含有量は0.5~50重量%で、スクアリリウム系化合物、バインダー、分散剤の中でスクアリリウム系化合物が占める割合は0.05~50重量%、好ましくは0.1~20重量%である。

必要に応じて使用される分散剤としては、ポリビニルブチラール樹脂、フェノキシ樹脂、ロジン変性フェノール樹脂、石油樹脂、硬化ロジン、ロジンエステル、マレイン化ロジン、ポリウレタン樹脂等が挙げられる。その使用量は、スクアリリウム系化合物に対して0.5~150 重量倍、好ましくは100~100 重量倍である。

[0015]

使用されるバインダーとしては、ポリメチルメタクリレート樹脂、ポリエチルアクリレート樹脂等のアクリレート系樹脂、ポリカーボネート樹脂、エチレンービニルアルコール共重合樹脂、エチレンー酢酸ビニル共重合樹脂、AS樹脂、ポリエステル樹脂、塩酢ビ樹脂、ポリビニルブチラール樹脂、PVPA、ポリスチレン系樹脂、フェノール系樹脂、フェノキシ系樹脂、ポリスルフォン、ナイロン、セルロース系樹脂、酢酸セルロース系樹脂等が挙げられる。その使用量はスクアリリウム系化合物に対して、10~500 重量倍、好ましくは50~350 重量倍である。

[0016]

本発明のスクアリリウム系化合物を含有する層の透過率曲線の最小値における 波長は、使用するバインダーにより異なる値を示すので、600nm付近のネオン発光を有効にカットする為には、スクアリリウム系化合物の種類に応じたバインダー樹脂を選ぶことが好ましい。その際、600nm付近のネオン発光を効率 的にカットする様にスクアリリウム系化合物とバインダー樹脂の組み合わせを選択することが好ましい。この為には、スクアリリウム系化合物の透過率曲線はシャープなバレー型(谷型)を有しているほうが良く、スクアリリウム系化合物の

透過率曲線の最小値における波長は、580~600nmが好ましい。特開昭10-204304号記載のスクアリリウム系化合物は、透過率曲線の最小値が570nm台でネオン発光を有効にカット出来ない。透過率曲線の最小値としてはネオン発光をを抑えることを目的にしていることから好ましくは20%以下、更に好ましくは15%以下であり、シャープなバレー型(谷型)を有しているほうが良いことから、最小透過率が10%の場合、50%透過率における幅は、60nm以下が好ましい。又、視野の明るさを確保する為、600m付近の透過率曲線の最小値以外には、スクアリリウム系化合物は、透過率曲線の極小値を有さないことが好ましいが、有したとしても70%以上、より好ましくは80%以上であり、可視光透過率は好ましくは40%以上であり、より好ましくは、50%以上である。また、本発明のスクアリリウム系化合物の耐光性はバインダー樹脂により異なる。バインダー樹脂の内、ポリエステル樹脂を用いた場合、スクアリリウム系化合物の耐光性が、より良好である。

又、本発明の色素は紫色~青色の領域に吸収を有するので本発明のフィルター は色温度調整用フィルターとしても使用出来る。

[0017]

スクアリリウム系化合物を含む塗工液のコーティングは、ディッピング法、フローコート法、スプレー法、バーコート法、グラビアコート法、ロールコート法、プレードコート法及びエアーナイフコート法等の公知の塗工方法でコーティングされる。このとき膜厚は、0.1 ~30 μm、好ましくは0.5 ~10 μm となるようコーティングされる。

本発明のプラズマディスプレイパネル用のフィルターを構成する透明基板の材質としては、実質的に透明であって、吸収、散乱が大きくない材料であれば特に制限はない。具体的な例としては、ガラス、ポリオレフィン樹脂、非晶質ポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリ(メタ)アクリル酸エステル樹脂、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアリレート樹脂、ポリエーテルサルホン樹脂等を挙げることができる。

これらの中では、特に非晶質ポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリ(メタ)アクリル酸エステル樹脂、ポリアリレート樹脂、

ポリエーテルサルホン樹脂等が好ましい。

[0018]

上記の樹脂には、一般的に公知である添加剤、例えばフェノール系、燐系などの酸化防止剤、ハロゲン系、燐酸系等の難燃剤、耐熱老化防止剤、紫外線吸収剤、滑剤、帯電防止剤等を配合することができる。

また上記樹脂は、公知の射出成形、T ダイ成形、カレンダー成形、圧縮成形等の方法や、有機溶剤に溶融させてキャスティングする方法などを用い、フィルムまたはシート(板)に成形される。その厚みとしては、目的に応じて10μm ~5m の範囲が望ましい。かかる透明基板を構成する基材は、未延伸でも延伸されていても良い。また、他の基材と積層されていても良い。

更に、該透明基板は、コロナ放電処理、火炎処理、プラズマ処理、グロー放電 処理、粗面化処理、薬品処理等の従来公知の方法による表面処理や、アンカーコ ート剤やプライマー等のコーティングを施しても良い。

[0019]

本発明のプラズマディスプレイパネル用フィルターは、前記一般式(I)で表わされるスクアリリウム系化合物を透明基板を構成する各種樹脂あるいは他の樹脂に直接溶解あるいは分散させて、得られたスクアリリウム系化合物を含有する樹脂を、射出成形、Tダイ成形、カレンダー成形あるいは圧縮成形などの成形技術を用いて成形、フィルム化し、必要に応じて他の透明基板と張り合わせて製造することもできる。

更に、前記塗工液のコーティング法に代えて、前記一般式(I)表わされるスクアリリウム系化合物を透明基板を構成する樹脂シートあるいはフィルムその他の樹脂シート(板)またはフィルムに染着させ、必要に応じて他の透明基板と張り合わせて製造することもできる。

[0020]

また本発明では、フィルターの耐光性を上げるために紫外線吸収剤をスクアリリウム系化合物含有層に含有させるか、又は紫外線吸収剤をを含有した透明樹脂層を外側に積層することが出来る。透明樹脂層に使用する樹脂としては、前記のスクアリリウム系化合物のバインダーとして挙げた樹脂を使用することが出来る

。この場合、特開昭10-204304号公報に記載されているようなスクアリリウム系化合物と同じ層内に紫外線吸収剤を含有する方法より、紫外線吸収層を積層する方が、スクアリリウム系化合物の耐光性向上効果が大である。積層方法としては、スクアリリウム系化合物を含有する層に接して積層しても良いし、スクアリリウム系化合物を含有する層を塗布した透明基板のスクアリリウム系化合物を含有する層と反対側に積層しても良い。このとき紫外線吸収剤を含有層の膜厚は、0.1~30μm、好ましくは0.5~10μmとなるように積層する。又、紫外線吸収剤含有層を塗布して形成する代わりに、市販の紫外線カットフィルターを積層して使用しても良い。この様なフィルターとしては、シャープカットフィルターSС-38、SС-39、SС-40(富士写真フィルム(株)製)等を挙げることが出来る。

[0021]

Ti,

紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が使用出来る。有機系紫外線吸収剤としては、2-(2'-ヒドロキシ-5'-t-ブチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジーtーブチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系化合物、2-ヒドロキシー4-メトキシベンゾフェノン、2-ヒドロキシー4-n-オクチルオキシベンゾフェノン等のベンゾフェノン系化合物、フェニルサルシレート、4-t-ブチルフェニルサルシレート、2,5-t-ブチルー4-ヒドロキシ安息香酸n-ヘキサデシルエステル、2,4-ジーt-ブチルフェニルー3',5'-ジーt-ブチルー4'-ヒドロキシベンゾーエート等のヒドロキシベンゾエート系化合物等を挙げることが出来る。無機系紫外線吸収剤としては、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄、硫酸バリウム等を挙げることが出来る。紫外線吸収剤としては、50%透過率での波長が350~420nmが好ましく、より好ましくは360nm~400nmであり、350nmより低波長では、紫外線遮断能が弱く、420nmより高波長では着色が強くなり好ましくない。

[0022]

本発明のプラズマディスプレイパネル用フィルターは、近赤外線カット層や電磁波カット層を設けたり、表面への蛍光灯などの外光の写り込みを防止する反射

防止層、ぎらつき防止(ノングレア) 層を設けることができる。これらの層の膜厚は、それぞれ、 $0.1 \sim 30\,\mu$ m 、好ましくは $0.5 \sim 10\,\mu$ m となるように積層する

[0023]

近赤外線カット層は、プラズマディスプレーから放射される近赤外線によるリモコンや伝送系光通信における誤動作を防止する目的でディスプレーの前面に設置する。近赤外線光のカット領域は特に問題になる波長としてリモコンや伝送系光通信に、800~1000nmであり、その領域に吸収を有する近赤外線吸収物質を使用する。この近赤外線吸収物質しては、ニトロソ化合物及びその金属錯塩、シアニン系化合物、ジチオールニッケル錯塩系化合物、アミノチオールニッケル錯塩系化合物、フタロシアニン系化合物、トリアリルメタン系化合物、イモニウム系化合物、ジイモニウム系化合物、ナフトキノン系化合物、アントラキノン系化合物、アミノ化合物、アミニウム塩系化合物の近赤外線吸収色素、あるいは、カーボンブラックや、酸化インジウムスズ、酸化アンチモンスズなどの近赤外線吸収化合物を、単独又は組み合わせて使うことができる。

[0024]

[0025]

電磁波カット層は、金属酸化物等の蒸着あるいはスパッタリング方法等が利用できる。通常は酸化インジウムスズ(ITO)が一般的であるが、誘電体層と金属層を基材上に交互にスパッタリング等で積層させることで1000nm以上の光をカットすることもできる。誘電体層としては酸化インジウム、酸化亜鉛などの透明な金属酸化物等であり、金属層としては銀あるいは銀ーパラジウム合金が一般的であり、通常、誘電体層よりはじまり3層、5層、7層あるいは11層程度積層する。基材は、該フィルターをそのまま利用しても良いし、樹脂フィルムあるいはガラス上に蒸着あるいはスパッタリング後に、該フィルターと貼り合わせても良い。

反射防止層は、表面の反射を抑えてフィルターの透過率を向上させるために、 金属酸化物、フッ化物、ケイ化物、ホウ化物、炭化物、至化物、硫化物等の無機 物を、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビーム

アシスト法等で単層あるいは多層に積層させる方法、アクリル樹脂、フッ素樹脂

などの屈折率の異なる樹脂を単層あるいは多層に積層させる方法等がある。また 、反射防止処理を施したフィルムを該フィルター上に貼り付けることもできる。

また、ぎらつき防止層(ノングレア層)も設けることもできる。ノングレア層は、フィルターの視野角を広げる目的で、透過光を散乱させるために、シリカ、メラミン、アクリル等の徴粉体をインキ化して、表面にコーティングする方法などを用いることができる。インキの硬化は、熱硬化あるいは光硬化を用いることができる。また、ノングレア処理をしたフィルムを該フィルター上に貼り付けることもできる。更に必要であればハードコート層を設けることもできる。

[0026]

本発明のプラズマディスプレイ用フィルターには最外層に粘着剤層を設けても良い。この粘着剤層によりプラズマディスプレイの製造工程の途中、またはプラズマディスプレイの製造後、プラズマディスプレイの前面にこのフィルターを貼着する。

このようにすることにより、プラズマディスプレイ自体の前面に順番に近赤外 線吸収層、電磁波シールド層や他の層を設ける必要がなくなり、またフィルター がプラズマディスプレイと一体形成されるので、プラズマディスプレイの薄肉化 が可能となる。

粘着剤層を構成する粘着剤としては、スチレンブタジエンラバー、ポリイソブチレン、天然ゴム、ネオプレン、ブチルゴム等のゴム類やポリアクリル酸メチル、ボリアクリル酸エチル、ポリアクリル酸ブチル等のポリアクリル酸アルキルエステル等の低重合度ポリマー単独もしくはこれらに粘着付与剤としてピッコライト、ポリベール、ロジンエステル等を添加したもの等が挙げられる。

プラズマディスプレイにフィルターを貼着時、プラズマディスプレイの表面と フィルターとの間に気泡が入ると画像が歪んだり、見にくくなったりする等、実 用上の大きな問題となるので気泡の巻き込みには十分に注意する必要がある。

[0027]

また、プラズマディスプレイ自体、その表面が高温になるので、加熱によりガスが発生するような粘着剤は避けるべきである。

ガスの発生が考えられる場合には吸収剤等の添加を考慮するのがよい。このよ

特平11-306563

うな理由から、3mm のガラス板に30μm のポリエステルフィルムを、3 0 μm の 粘着剤で貼り合わせ、8 0 ℃で10日間保持後における1 8 0 度剥離強度が300g/cm 以上、好ましくは400g/cm 以上の粘着剤を用いるのが望ましい。

[0028]

具体的には、ポリアクリル酸アルキルエステル系等のポリマー系粘着剤、又はスチレンブタジエンラバー、天然ゴム等のゴム系粘着剤を、ハロゲン系、アルコール系、ケトン系、エステル系、エーテル系、脂肪族炭化水素系、芳香族炭化水素系等の有機溶剤を単独又は複数混合した溶剤系に分散又は溶解して粘度を調整したものをディッピング法、フローコート法、スプレー法、バーコート法、グラビアコート法、ロールコート法、プレードコート法及びエアーナイフコート法等の塗工方法で塗工し、その後溶剤を乾燥させ、粘着剤層とする。

[0029]

この際の粘着剤層の厚みは、通常、5 ~100 μm、好ましくは10~50μm である。粘着剤層の表面に剥離フィルムを設け、粘着剤層にゴミ等が付着しないように、プラズマディスプレイの表面に張り付けるまで粘着剤層を保護するのも良い

この場合、フィルターの縁綾部の粘着剤層と剥離フィルムとの間に、粘着剤層を設けない部分を形成したり、非粘着性のフィルムを挟む等して非粘着部分を形成し、剥離開始部とすれば貼着時の作業がやりやすい。

更に、このプラズマディスプレイパネル用フィルターは単独はもちろん透明の ガラスや他の透明樹脂板等と貼り合わせた積層体として用いることができる。

[0030]

【実施例】

以下に、実施例により本発明の実施態様を説明するが、本発明は実施例に限定 されるものではない。

実施例1

一般式 (I) において、R=メチル基、n=1(置換位置 3位)、m=3(置換位置 2、4、6位)のスクアリリウム系化合物の合成

2, 4, 6-トリヒドロキシトルエン 0. 45g、3, 4-ジヒドロキシー

3-シクロブテン-1,2-ジオン 0.18g、及び酢酸 15mlを反応容・器に加え、4時間加熱還流させる。反応終了後、反応混合物を放冷し、沈殿物を 濾過、メタノールと水の1:1混合溶媒で洗浄、乾燥し、目的の化合物0.32 gを得た。

可視部吸収 λ max : 5 7 6 n m (テトラヒドロフラン)

マススペクトル MALDI法 (NEGA):m/z = 357 (M-H)

[0031]

実施例2

-般式(I) において、R=n-プロピル、n=1(置換位置 3位)、m=3(置換位置 2、4、6位)のスクアリリウム系化合物の合成

実施例1の2, 4, 6-トリヒドロキシトルエン 0. 45gの代わりに等モル量の1-n-プロピル-2, 4, 6-トリヒドロキベンゼンを使用し、他は同様に処理して目的の化合物0. 32gを得た。

可視部吸収 1 max : 577 n m (テトラヒドロフラン)

マススペクトル MALDI法 (NEGA):m/z = 413 (M-H)

[0032]

実施例3

一般式 (I) において、R=メチル基、n=1(置換位置 3位)、m=2(置換位置 2、4位)のスクアリリウム系化合物の合成

実施例1の2,4,6ートリヒドロキシトルエン 0.45gの代わりに等モル量の2ーメチルレゾルシノールを使用し、酢酸 15mlの代わりにnーブタノール20ccとトルエン20ccの混合溶媒を使用し、ジーンスターク装置を備えた反応容器に加え、4時間加熱還流させる。反応終了後、反応混合物を放冷し、沈殿物を濾過、シリカゲルを使用し、クロロホルムを分離溶媒とするカラムクロマトグラフィーにより精製して、乾燥し、目的の化合物0.17gを得た。

可視部吸収 2 max : 575 n m (シクロヘキサノン)

マススペクトル MALDI法 (NEGA): m/z = 325 (M-H)

[0033]

実施例4

一般式 (I) において、R=エチル基、n=1(置換位置 5位)、m=2(置換位置 2、4位)のスクアリリウム系化合物の合成

実施例3の2-メチルレゾルシノールをの代わりに等モル量の4-エチルレゾルシノールを使用し、ジーンスターク装置を備えた反応容器に加え、4時間加熱 還流させる。反応終了後、反応混合物を放冷し、沈殿物を濾過、メタノールと水の1:1混合溶媒で洗浄、乾燥し、目的の化合物を0.1gを得た。

可視部吸収 Amax:593nm(テトラヒドロフラン)

マススペクトル MALDI法 (NEGA): m/z = 353 (M-H)

[0034]

実施例5

1) ポリエチレンテレフタレート製フィルム(ダイヤホイルヘキスト社製PETフィルム「T 100E」、厚み100μm)に、実施例1で合成したスクアリリウム系化合物の0.63%ジメトキシエタン溶液0.36g、ポリエステル系樹脂(バイロン200;東洋紡(株)製)の20%ジメトキシエタン溶液3gを混合し、バーコーターで塗工し、乾燥して、膜厚6μmのでコーティング膜を得た

このコーティングフィルムの透過率を日立分光光度計(U-3500)で測定した。透過率曲線を図-1に示す。透過率の最小値における波長は584nmで透過率14.5%であった。

また、この場合、透過率50%における波長幅は56nmであった。又、このネオン発光カットフィルターの可視光線透過率は54.0%であり、透過率の高い明るいフィルターであった。

[0035]

2)上記1)のコーティングフィルムのスクアリリウム系化合物含有層面と反対側のポリエステル樹脂面上に、シャープカットフィルターSC-39(富士写真フィルム(株)製)を積層して、耐光性の良好なプラズマディスプレイパネル用フィルター得た。この紫外線吸収層の50%透過率での波長は386nmであった。

キセノンフェードメーター (スガ試験機(株) 製 FAL-25AX-HC.B.EC) で上記

のネオン発光カットフィルターの紫外線吸収層を積層した場合としない場合の耐 光性の評価を行った(80Hr露光)。日立分光光度計(U-3500)の吸光 度で色素残存率(%)を測定した所、前者は、91.4%であるのに対し、後者 は、75.0%であった。

尚、前者は、紫外線吸収層面より露光し、後者は、スクアリリウム系化合物含 有層面より露光した。

[0036]

比較例1

ポリエチレンテレフタレート製フィルム(ダイヤホイルへキスト社製PET フィルム「T 100E」、厚み100μm)に、一般式(I)において、m=3(置換位置は2、4、6位)、n=0であるスクアリリウム系化合物の0.63%ジメトキシエタン溶液0.36g、ポリエステル系樹脂(バイロン200;東洋紡- 績(株)製)の20%ジメトキシエタン溶液3gを混合し、バーコーターで塗工し、乾燥して、膜厚6μmのコーティング膜を得た。

このコーティングフィルムの透過率を日立分光光度計(U-3500)で測定した。透過率曲線を図-1に示す。透過率の最小値における波長は576nmで透過率は8.2%であり、透過率の最小値の波長がネオン発光の波長領域である580~600nmから外れておりネオン発光カットフィルターとして好ましくないフィルターであった。

[0037]

実施例6

1) ポリエチレンテレフタレート製フィルム(ダイヤホイルへキスト社製PETフィルム「T 100E」、厚み100μm)に、実施例2で合成したスクアリリウム系化合物の0.81%ジメトキシエタン溶液0.36g、ポリエステル系樹脂(バイロン200;東洋紡(株)製)の20%ジメトキシエタン溶液3gを混合し、バーコーターで塗工し、乾燥して、膜厚6μmのでコーティング膜を得た

このコーティングフィルムの透過率を日立分光光度計 (U-3500)で測定した。透過率曲線を図-2に示す。透過率の最小値における波長は585nmで

透過率13.7%であった。

また、この場合、透過率50%における波長幅は58nmであった。又、このネオン発光カットフィルターの可視光線透過率は52.5%であり、透過率の高い明るいフィルターであった。

[0038]

2)上記1)のコーティングフィルムのスクアリリウム系化合物含有層面と反対側のポリエステル樹脂面上に、シャープカットフィルターSC-39(富士写真フィルム(株)製)を積層して、耐光性の良好なプラズマディスプレイパネル用フィルター得た。この紫外線吸収層の50%透過率での波長は386nmであった。

キセノンフェードメーター (スガ試験機 (株) 製 FAL-25AX-HC.B.EC) で上記のネオン発光カットフィルターの紫外線吸収層を積層した場合としない場合の耐光性の評価を行った (80Hr露光)。日立分光光度計 (U-3500)の吸光度で色素残存率 (%) を測定した所、前者は、88.9%であるのに対し、後者は、69.4%であった。

尚、前者は、紫外線吸収層面より露光し、後者は、スクアリリウム系化合物含 有層面より露光した。

[0039]

実施例7

ポリエチレンテレフタレート製フィルム(ダイヤホイルへキスト社製PET フィルム「T 100E」、厚み100μm)に、実施例3で合成したスクアリリウム系化合物の0.63%ジメトキシエタン溶液0.36g、ポリエステル系樹脂(バイロン200;東洋紡(株)製)の20%ジメトキシエタン溶液3gを混合し、バーコーターで塗工し、乾燥して、膜厚6μmのでコーティング膜を得た。

このコーティングフィルムの透過率を日立分光光度計(U-3500)で測定した。透過率の最小値における波長は584nmで透過率は16.4%であった。また、この場合、透過率50%における波長幅は41nmであった。又、このネオン発光カットフィルターの可視光線透過率は59%であり、透過率の高い明るいフィルターであった。

A den

2)上記1)のコーティングフィルムのスクアリリウム系化合物含有層面と反対側のポリエテレンテレフタレート樹脂面上に、イソシアネート樹脂をバインダーとし、酸化亜鉛を紫外線吸収剤として含有する紫外線吸収コート液(住友大阪セメント(株)製 ZR-133(硬化剤4.9重量%添加))をバーコーターでコーティングし、乾燥して、膜厚3μmの紫外線吸収層を形成し、耐光性の良好なプラズマディスプレイパネル用フィルター得た。この紫外線吸収層の50% 透過率での波長は383nmであった。

キセノンフェードメーターで上記のネオン発光カットフィルターの紫外線吸収層を形成した場合としない場合の耐光性の評価を行った(40Hr露光)。日立分光光度計(U-3500)の吸光度で色素残存率(%)を測定した所、前者は、97.5%であるのに対し、後者は82.1%であった。

---尚、前者は、紫外線吸収層面より露光し、後者は、スクアリリウム系化合物含 有層面より露光した。

[0041]

実施例8

1) ポリエチレンテレフタレート製フィルム(ダイヤホイルヘキスト社製PETフィルム「T 100E」、厚み100μm)に、実施例4で合成したスクアリリウム系化合物の0.63%ジメトキシエタン溶液0.36g、ポリエテレンテレフタレート樹脂(バイロン200;東洋紡(株)製)の20%ジメトキシエタン溶液3gを混合し、バーコーターで塗工し、乾燥して、膜厚6μmのでコーティング膜を得た。

このコーティングフィルムの透過率を日立分光光度計(U-3500)で測定した。透過率の最小値における波長は599nmで透過率は6.26%であった。また、この場合、透過率50%における波長幅は58nmであった。又、このネオン発光カットフィルターの可視光線透過率は57%であり、透過率の高い明るいフィルターであった。

[0042]

2) 上記1) のコーティングフィルムのスクアリリウム系化合物含有層面と反

対側のポリエテレンテレフタレート樹脂面上に、実施例1と同様に処理して、膜厚3μmの酸化亜鉛含有紫外線吸収層を形成し、耐光性の良好なプラズマディスプレイパネル用フィルター得た。この紫外線吸収層の50%透過率での波長は383nmであった。

キセノンフェードメーターで上記のネオン発光カットフィルターの紫外線吸収層を形成した場合としない場合の耐光性の評価を行った(40Hr露光)。日立分光光度計(U-3500)の吸光度で色素残存率(%)を測定した所、前者は、87.0%であるのに対し、後者は61.0%であった。

尚、前者は、紫外線吸収層面より露光し、後者は、スクアリリウム系化合物含 有層面より露光した。

[0043]

実施例9 (近赤外線カット層の形成例)

実施例1 で作成したフィルターのスクアリリウム系化合物含有層面と反対側のポリエテレンテレフタレート樹脂面上に、ジイモニウム系近赤外線吸収色素(N,N,N',N',-テトラキス(pージブチルアミノフェニル)-p-フェニレンジイモニウムの六フッ化アンチモン酸塩)の0.63%シクロヘキサノン溶液0.36g、ポリエステル系樹脂(バイロン200;東洋紡(株)製)の20%シクロヘキサノン溶液3gを混合し、バーコーターで塗工し、乾燥して、膜厚6μmのでコーティング膜を得た。

このコーティングフィルムを日立分光光度計 (U-3500)で測定した。透過率の最小値における波長は1100nmであった。

[0044]

実施例10 (電磁波カット層、ノングレア層の形成例)

実施例9で作成したフィルターのジイモニウム系化合物含有層面上に、酸化インジウム一酸化スズ競結体を用い、アルゴンガス、酸素ガスを用いて、ITO 薄膜を積層した。更に反対面上にアンチグレア層を有する厚み3mm のPMMA板(三菱レーヨン社製アクリルフィルターMR-NG)のノングレア層の形成されていない面と上記フィルターのITO面を貼り合わせて、プラズマディスプレイパネル用フィルターを作成し、良好なフィルターを作成することができた。

【発明の効果】

本発明の、一般式(I)で示されるスクアリリウム系化合物を含有する層を有するプラズマディスプレイパネル用フィルターは、ネオン発光カット性能、近赤外線遮蔽性能、可視光線透過性能、電磁波カット性能、反射防止能、ぎらつき防止能及び耐光性に優れている。

【図面の簡単な説明】

【図1】

実施例1 (実線) 及び比較例1 (点線) で得られたコーティングフィルムの透 過率曲線

【図2】

実施例2で得られたコーティングフィルムの透過率曲線

【書類名】 図面

【図1】

【図2】

【書類名】

要約書

【要約】

【課題】 プラズマディスプレイパネルから放射されるネオン発光を有効に遮蔽 することができる優れた色素及びプラズマディスプレイパネル用フィルターを提 供する。

【解決手段】 下記一般式(I)

【化1】

$$(HO)_{m}$$

$$(R)_{n}$$

$$(R)_{n}$$

$$(I)$$

[式(I)中、Rは、ハロゲン原子、置換基を有していても良いアルキル基、置換基を有していても良いアルコキシ基又は置換基を有していても良いアルケニル基を表し、mは1~3の整数を、nは1~4の整数を表す。]で表されるスクアリリウム系化合物、及びこれを含有する層と紫外線吸収剤を含有する層とを積層し、必要に応じて近赤外線カット層、反射防止層、ノングレア層をさらに設けたプラズマディスプレイパネル用フィルター。

【選択図】 なし

出願人履歴情報

識別番号

[000005968]

1. 変更年月日

1994年10月20日

[変更理由]

名称変更

住 所

東京都千代田区丸の内二丁目5番2号

氏 名

三菱化学株式会社