MA3402-1 Estadística Profesor: Felipe Tobar

Auxiliares: Nelson Moreno, Francisco Vásquez y Arie Wortsman

Auxiliar 3: Suficiencia Minimal y Familia Exponencial

- **P1.** Un objeto con masa θ es pesado en distintas pesas con diferentes precisiones. Los datos $X_1, ..., X_n$ son independientes, con $X_i \sim \mathcal{N}(\theta, \sigma_i^2), i = 1, ..., n$, con σ_i conocidas. Use suficiencia para sugerir un promedio ponderado de las masas para estimar θ . De el modelo paramétrico y diga si la distribución pertenece o no a la familia exponencial.
- **P2.** Muestre que el estadístico $T(X) = \sum_{i=1}^{n} X_i$ es minimal suficiente para la familia paramétrica exponencial:

$$\mathcal{P} := \left\{ \mathbb{P}_{\theta} | f_{X_i}(x) = \theta e^{-\theta x} \right\}$$

- **P3.** Sea una MAS $X = (X_1, ..., X_n)$ con n observaciones independientes del modelo gaussiano $\mathcal{N}(\mu, \sigma^2)$ y otra MAS $Y = (Y_1, ... Y_n)$ con n observaciones independientes del modelo gaussiano $\mathcal{N}(\nu, \sigma^2)$. Se supone que X e Y son vectores independientes y que los parámetros μ , ν y σ son desconocidos y no están sujetos a ninguna restricción.
 - a. Plantee el modelo paramétrico relacionado a la situación planteada. Compruebe \mathcal{P} pertenece a la clase exponencial.
 - b. Muestre que $S = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} Y_i, \sum_{i=1}^{n} X_i^2 + Y_i^2)$ es un estadístico suficiente completo para \mathcal{P} . ¿Es minimal?