School of Computer Science Engineering and Technology

Lab No. - 10

Course-B. Tech.	Type- Core
Course Code- CSET301	Course Name- Artificial Intelligence and Machine
	Learning
Year- 2025	Semester- Odd
Date-	Batch- 2023-2027

CO-Mapping

	CO1	CO2	CO3	CO4	CO5	CO6
Q1		✓		✓		

Lab - Random Forest classifier

Total Marks: 1

Objective:

To Implement Random Forest classifier in Python Programming Language on Wine Quality Dataset.

Problem Statement:

About Dataset:

Data Set Characteristics:	Multivariate	Number of Instances:	4898	Area:	Business
Attribute Characteristics:	Real	Number of Attributes:	12	Date Donated	2009-10-07
Associated Tasks:	Classification, Regression	Missing Values?	N/A	Number of Web Hits:	1942447

The list of attributes with description is given below: Input variables (based on physicochemical tests):

- 1 fixed acidity
- 2 volatile acidity
- 3 citric acid
- 4 residual sugar
- 5 chlorides
- 6 free sulfur dioxide
- 7 total sulfur dioxide
- 8 density
- 9 pH
- 10 sulphates
- 11 alcohol

Output variable (based on sensory data):

12 - quality (score between 0 and 10)

Questions

Dataset: Download the dataset from the link.

https://archive.ics.uci.edu/ml/datasets/wine+quality

- 1. Read the dataset.
- 2. Extract the Independent and Dependent Variable.
- 3. Convert the Output column quality (score between 0 and 10) into the three categories i.e., best, average, and poor.
- 4. Split the dataset into training and testing using 75-25 division.
- 5. Perform normalization on numerical features.
- 6. Build a Random Forest classification model using Sklearn with default parameters. Predict the target values in the testing set.
- 7. Check the performance of model using confusion matrix.
- 8. Calculate the accuracy, Precision, Recall and F1-score.
- 9. Compare the performance of the Random Forest model with Decision Tree Model.