Data Assimilation Research Testbed Tutorial

Section 7: Some Additional Low-Order Models

Version 2.0: September, 2006

Low-order models in DART:

Model	Size	Features
lorenz_63	3	Chaotic, nearly integral attractor, bifurcations
lorenz_84	3	More complex attractor, not as periodic
9var	9	Transient off-attractor dynamics
lorenz_96	40	Higher dimensional system. Attractor dimen-
	(variable)	sion 13.
forced_	80	Allows assimilation of model parameter (see
lorenz_96	(variable)	Section 20).
lorenz_96	440	Two primary interacting spatial/temporal
_2scale	(variable)	scales.
lorenz_04	variable	Multiscale dynamics.

Lorenz 84 model:

Attractor not sheet-like.

Rare significant deviations.

Trajectories along deviations don't 'mesh' back up with rest of attractor.

This behavior can be challenging for certain filter variants.

Lorenz 84 model:

3-variables:

$$\frac{dx_1}{dt} = -x_2^2 - x_3^2 - ax_1 + af$$

$$\frac{dx_2}{dt} = x_1 x_2 - bx_1 x_3 - x_2 + g$$

$$\frac{dx_3}{dt} = bx_1 x_2 + x_1 x_3 - x_3$$

Parameters: a=0.25, b=4, f=8, g=1.25 can be set from model_nml.

Lorenz 84 model:

Run csh workshop_setup.csh in directory models/lorenz_84/work.

Each state variable is observed every once every hour. Observational error variance is 1.

Use matlab to examine the output.

There's a new type of filter challenge represented here.

Can you identify it?

Can you propose ways to address it with techniques learned to date?

9 Variable model:

Three groups of variables

Variables 1-3: Divergence

Variables 4-6: Vorticity.

Variables 7-9: Height.

In general, divergence is small. Height and pressure similar. Height and pressure have attractor similar to Lorenz_63.

9 Variable model:

$$\dot{X}_{i} = U_{i}U_{k} + V_{i}V_{k} - v_{0}a_{i}X_{i} + Y_{i} + a_{i}z_{i}$$
(1)

$$\dot{Y}_{i} = U_{i}Y_{k} + Y_{i}V_{k} - X_{i} - v_{0}a_{i}Y_{i}$$
(2)

$$\dot{z}_i = U_i(z_k - h_k) + (z_i - h_i)V_k - g_0X_i - K_0a_iz_i + F_i$$
(3)

$$U_i = -b_i x_i + c y_i \tag{4}$$

$$V_i = -b_k x_i - c y_i \tag{5}$$

$$X_i = -a_i x_i \tag{6}$$

$$Y_i = -a_i y_i \tag{7}$$

Parameters can be adjusted from model_nml.

9 Variable model:

When perturbed off the attractor, mimics 'gravity waves'. Transient, high frequency oscillations dominate divergence variables. Can also appear in height and pressure variables.

Run csh workshop_setup.csh in directory models/9var/work.

Y1, Y2, Y3 (the 'vorticity' variables) are observed once every 6 hours Observational error variance is 0.4.

Use matlab to examine the output.

How do different filter kinds interact with 'gravity' waves?

Lorenz 96 (40-variable) model:

One dimensional cyclic domain [0.0, 1.0]. Acts something like synoptic scale weather around mid-latitude circle.

7/13/07

Lorenz 96 (40-variable) model:

Attractor dimension 13 by some measures.

Start to explore model sizes closer to ensemble size.

Can examine possible degeneracy issues with sample covariance.

Naive application of small ensembles diverges in many cases.

Run csh workshop_setup.csh in directory models/lorenz_96/work.

40 observations, randomly located in space, equally spaced in time. Observed once an hour; Observational error variance is 1.0.

Use matlab to examine the output. Need new techniques to fix this.