ENUMERATING SOLUTIONS TO p(a) + q(b) = r(c) + s(d)

DANIEL J. BERNSTEIN

ABSTRACT. Let p,q,r,s be polynomials with integer coefficients. This paper presents a fast method, using very little temporary storage, to find all small integers (a,b,c,d) satisfying p(a)+q(b)=r(c)+s(d). Numerical results include all small solutions to $a^4+b^4+c^4=d^4$; all small solutions to $a^4+b^4=c^4+d^4$; and the smallest positive integer that can be written in 5 ways as a sum of two coprime cubes.

1. Introduction

Let H be a positive integer. How can one find all positive integers $a, b, c, d \le H$ satisfying $a^3 + 2b^3 + 3c^3 = 4d^3$?

The following method is standard. Sort the set $\{(a^3+2b^3,a,b):a,b\leq H\}$ into increasing order in the first component. Similarly sort $\{(4d^3-3c^3,c,d):c,d\leq H\}$. Now merge the sorted lists, looking for collisions. The sorting takes time $H^{2+o(1)}$ and space $H^{2+o(1)}$.

It does not seem to be widely known that one can save a factor of H in space. Section 3 explains how to enumerate $\{(a^3+2b^3,a,b)\}$ and $\{(4d^3-3c^3,c,d)\}$ in order, using $O(H^2)$ heap operations on two heaps of size H. Heaps are reviewed in section 2. The remaining sections of this paper give several numerical examples. See http://pobox.com/~djb/sortedsums.html for a UNIX implementation of most of the algorithms discussed here.

A standard improvement is to split the range of $a^3 + 2b^3$ and $4d^3 - 3c^3$ into several (0-adic or p-adic) intervals. For example, one can separately consider each possibility for $4d^3 - 3c^3 \mod 7$, and skip pairs (a,b) with $a^3 + 2b^3 \mod 7 \in \{2,5\}$.

Notes. Lander and Parkin in [11] enumerated solutions to $a^4 + b^4 = c^4 + d^4$ using time $H^{3+o(1)}$ and space $H^{1+o(1)}$.

Ekl in [2] pointed out that the time of the Lander-Parkin method could be reduced to $H^{2+o(1)}$. I made the same observation independently in April 1997, when Yuri Tschinkel asked me about the example described in section 4 below. David W. Wilson made the same observation independently in October 1997, for the example described in section 5 below. The difference between my method, Ekl's method, and the Lander-Parkin method is the difference between a heap, a balanced tree, and an unstructured array.

©2000 D. J. Bernstein

Received by the editor July 10, 1998 and, in revised form, January 4, 1999.

2000 Mathematics Subject Classification. Primary 11Y50; Secondary 11D25, 11D41, 11P05,

The author was supported by the National Science Foundation under grant DMS-9600083.

The use of heaps to enumerate sums in sorted order actually appeared much earlier in another context, namely William S. Brown's algorithm for multiplication of sparse power series. See [9, exercise 5.2.3–29]; compare [9, exercise 5–18].

2. Heaps

A heap is a sequence $x_1, x_2, ..., x_n$ satisfying $x_{\lfloor k/2 \rfloor} \leq x_k$ for $2 \leq k \leq n$: i.e., $x_1 \leq x_2, x_1 \leq x_3, x_2 \leq x_4, x_2 \leq x_5, x_3 \leq x_6, x_3 \leq x_7$, etc.

The smallest element of a heap x_1, x_2, \ldots, x_n is x_1 . Given y, one can permute y, x_2, \ldots, x_n into a new heap by the following algorithm. First set $j \leftarrow 1$. Then perform the following steps repeatedly: set $k \leftarrow 2j$; stop if k > n; set $k \leftarrow k + 1$ if k < n and $x_{k+1} < x_k$; stop if $y \le x_k$; exchange y, which is now in the jth position, with x_k ; set $j \leftarrow k$. The total number of operations here is $O(\log n)$.

In particular, using $O(\log n)$ operations, one can permute $x_n, x_2, \ldots, x_{n-1}$ into a new heap. By a similar algorithm, also using $O(\log n)$ operations, one can permute x_1, x_2, \ldots, x_n, y into a new heap.

Notes. Heaps were published by Williams in [22]. Floyd in [5] pointed out an algorithm using O(n) operations to permute any sequence of length n into a new heap.

For some practical improvements in heap performance see [9, exercise 5.2.3–18] and [9, exercise 5.2.3–28]. The bottom-up algorithm in [9, exercise 5.2.3–18] is due to Floyd; the "new" algorithms announced many years later in [1] and [21] are the same as Floyd's.

There are many other data structures that support insertion of new elements and removal of the smallest element. Any such structure is called a *priority queue*. Examples include *leftist trees*, as discussed in [9, section 5.2.3]; *loser selection trees*, as discussed in [9, section 5.4.1]; *balanced trees*, as discussed in [9, section 6.2.3]; and *B-trees*, as discussed in [9, section 6.2.4]. See also [10, page 152]. The reader can replace the heap in section 3 with any priority queue. Beware, however, that some "fast" priority queues are several times bigger and slower than heaps; see, for example, section 10 below.

3. Enumerating sums

Fix $p, q \in \mathbf{Z}[x]$. This section explains how to print $\{(p(a) + q(b), a, b) : a, b \leq H\}$ in increasing order in the first component, using space $H^{1+o(1)}$.

First build a table of $\{(p(a), a) : a \leq H\}$. Sort the table into increasing order in the first component; say $p(a_1) \leq p(a_2) \leq \cdots$.

Next build a heap containing $\{(p(a_1) + q(b), 1, b) : b \leq H\}$. Perform the following operations repeatedly until the heap is empty:

- 1. Find and remove the smallest element (y, n, b) in the heap.
- 2. Print (y, a_n, b) ; by induction $y = p(a_n) + q(b)$ at this point.
- 3. Insert $(p(a_{n+1}) p(a_n) + y, n+1, b)$ into the heap if a_{n+1} exists.

Step 1 and step 3 can be combined into a single heap operation.

This algorithm takes time $H^{1+o(1)}$ for initializations, plus $H^{o(1)}$ for each of the H^2 outputs, for a total of $H^{2+o(1)}$. There are at most H elements in the heap at any moment.

Refinements. One can easily save half the heap operations if p = q: start with $\{(p(a_n) + p(a_n), n, a_n)\}$; print (y, b, a_n) along with (y, a_n, b) if $a_n \neq b$.

One can speed up the manipulation of y, and in some cases save space, by storing $p(a_2) - p(a_1), p(a_3) - p(a_2), \ldots$ instead of $p(a_2), p(a_3), \ldots$

One need not bother building tables of $n \mapsto a_n$ and $n \mapsto p(a_n)$ if p is a sufficiently dull function.

Generalizations. Given functions p,q,r,s from finite sets A,B,C,D to an ordered group, one can enumerate $\{(a,b,c,d) \in A \times B \times C \times D : p(a) + q(b) = r(c) + s(d)\}$ by the same algorithm. For example, one can enumerate small solutions (a,b,c,d) to $a^3 + 2b^3 = 3c^3 + 4d^3$ with $a,b,c,d \in \mathbf{Z}[w]/(w^2 + w + 1)$, using lexicographic order on $\mathbf{Z}[w]/(w^2 + w + 1)$. See section 10 for another example.

One can restrict attention to a subset of $A \times B$, simply by skipping to the next suitable a for each b. See sections 9 and 10 for examples.

There are many functions that are not of the form $a, b \mapsto p(a) + q(b)$ but that are nevertheless amenable to sorted enumeration. For example, one can apply the method here to any function f such that $a \mapsto f(a, b)$ is monotone for each b. See section 6 for an example.

4. Example:
$$a^3 + b^3 = c^3 + d^3$$

There are 12137664 solutions (a,b,c,d) to $a^3+b^3=c^3+d^3>0$ with $a\neq c$, $a\neq d, -10^5\leq a,b,c,d\leq 10^5$, and $a\mathbf{Z}+b\mathbf{Z}+c\mathbf{Z}+d\mathbf{Z}=\mathbf{Z}$. In other words, there are 12137664 rational points of height at most 10^5 on the surface $x^3+y^3+z^3=1$ away from the lines on the surface.

This computation took $1.4 \cdot 10^{13}$ cycles on a Pentium II-350. It takes roughly twice as long to do a similar computation for $pa^3 + qb^3 = pc^3 + qd^3$; roughly three times as long for $pa^3 + pb^3 = rc^3 + sd^3$; and roughly four times as long for $pa^3 + qb^3 = rc^3 + sd^3$.

Notes. Peyre and Tschinkel have checked some of my numerical results and some of their theoretical computations against the best available conjecture. See [16]. Heath-Brown in [8] had previously enumerated solutions to $a^3 + b^3 = c^3 + 2d^3$ and $a^3 + b^3 = c^3 + 3d^3$ with $-10^3 \le a, b, c \le 10^3$ by a cubic-time method.

In some cases one can save time by using [8, Theorem 1].

5. Example: Many equal sums of two positive cubes

The smallest integer that can be written in k ways as a sum of two cubes of positive integers is 1729 for k=2; 87539319 for k=3; 6963472309248 for k=4; and 48988659276962496 for k=5. There are no 6-way integers below 10^{18} . (There are two other 5-way integers below 10^{18} : 391909274215699968 = $8\cdot48988659276962496$ and 490593422681271000.)

This computation took $7.9 \cdot 10^{14}$ cycles on an UltraSPARC II-296.

Notes. The answer for k=3 was found by Leech in [14]. The answer for k=4 was found by Rosenstiel, Dardis, and Rosenstiel in [17]. The answer for k=5 was found by David W. Wilson in 1997 and independently by me in 1998. There is an answer for every k; see [19] for the best known bounds.

6. Example: Many equal sums of two cubes

The smallest positive integer that can be written in k ways as a sum of two cubes is 91 for k=2; 728 for k=3; 2741256 for k=4; 6017193 for k=5; 1412774811 for k=6; 11302198488 for k=7; and 137513849003496 for k=8. There are no 9-way integers below $2.5 \cdot 10^{17}$. (There are 37 other 8-way integers below $2.5 \cdot 10^{17}$.)

This computation took $9.2 \cdot 10^{14}$ cycles on an UltraSPARC II-296. To keep the heap small, I enumerated pairs (a, b) with $a \ge b/2$ and $1 \le a^3 + (b-a)^3 \le 2.5 \cdot 10^{17}$, in order of $a^3 + (b-a)^3$; these conditions imply $1 \le b \le 10^6$.

Notes. The answers for $k \in \{5, 6, 7\}$ were found by Randall Rathbun, according to [7, page 141]. The answer for k = 8 appears to be new.

7. Example: Many equal sums of two coprime cubes

The smallest positive integer that can be written in k ways as a sum of two cubes of coprime integers is 91 for k=2; 3367 for k=3; 16776487 for k=4; and 506433677359393 for k=5. Each of these integers is squarefree. There are no 6-way integers below $2.5 \cdot 10^{17}$. (There is one other 5-way integer, namely 137904678696613339.)

I found these results during the computation described in section 6. A separate computation, skipping pairs (a, b) with a common factor, would have been somewhat faster.

Notes. The answer for k=4 was found by Rathbun, according to [7, page 141]. The answer for k=5 appears to be new.

Silverman proved in [18] that the number of pairs of integers (a, b) satisfying $a^3 + b^3 = n$ is bounded by a particular function of the rank over \mathbf{Q} of the elliptic curve $x^3 + y^3 = n$, if n is cubefree. It is not known how tight Silverman's bound is.

Paul Vojta found that 15170835645 can be written in 3 ways as a sum of two cubes of coprime *positive* integers.

8. Example:
$$a^4 + b^4 = c^4 + d^4$$

There are 516 solutions (a, b, c, d) to $a^4 + b^4 = c^4 + d^4$ with $0 < b \le a$, $0 < d \le c$, $c < a \le 10^6$, and $a\mathbf{Z} + b\mathbf{Z} + c\mathbf{Z} + d\mathbf{Z} = \mathbf{Z}$. This computation took roughly 10^{15} cycles on an UltraSPARC II-296.

The fourth power of 10^6 does not fit into a 64-bit integer. I actually enumerated values of $(a^4 \mod m) + (b^4 \mod m) + (0 \text{ or } m)$ greater than or equal to m, where $m = 2^{60} - 93$. Then I checked each collision $a^4 + b^4 \equiv c^4 + d^4 \pmod{m}$ to see whether $a^4 + b^4 = c^4 + d^4$.

Notes. 218 of the 516 solutions were already known: Lander and Parkin in [11] exhaustively found all solutions with $a^4 + b^4 < 7.885 \cdot 10^{15}$; Lander, Parkin, and Selfridge in [13] exhaustively found all solutions with $a^4 + b^4 \leq 5.3 \cdot 10^{16}$; Zajta in [23] found many solutions with $a \leq 10^6$ by various ad-hoc techniques.

9. Example:
$$a^4 + b^4 + c^4 = d^4$$

The only positive solutions (a, b, c, d) to $a^4 + b^4 + c^4 = d^4$ with $d \le 2.1 \cdot 10^7$ and $a\mathbf{Z} + b\mathbf{Z} + c\mathbf{Z} + d\mathbf{Z} = \mathbf{Z}$ are permutations of the solutions

```
\begin{array}{c} (95800, 414560, 217519, 422481),\\ (1390400, 2767624, 673865, 2813001),\\ (5507880, 8332208, 1705575, 8707481),\\ (5870000, 11289040, 8282543, 12197457),\\ (12552200, 14173720, 4479031, 16003017),\\ (3642840, 7028600, 16281009, 16430513),\\ (2682440, 18796760, 15365639, 20615673).\end{array}
```

This computation took $4.5 \cdot 10^{15}$ cycles on a Pentium II-350.

I used several p-adic restrictions here. One can permute a,b,c so that $a \in 2\mathbb{Z}$ and $b \in 10\mathbb{Z}$. Then $a \in 8\mathbb{Z}$, $b \in 40\mathbb{Z}$, $d-1 \in 8\mathbb{Z}$, and $c \equiv \pm d \pmod{1024}$ by [20, Theorem 1]; also $d \notin 5\mathbb{Z}$. There are roughly $H^2/320$ possibilities for (a,b) and $H^2/10240$ possibilities for (c,d) if $d \leq H$. I enumerated sums modulo $2^{60}-93$ as in section 8.

Notes. Euler conjectured that $a^4 + b^4 + c^4 = d^4$ had no positive integer solutions. Ward in [20] proved that there are no solutions with $d \le 10^4$. Lander, Parkin, and Selfridge in [13] proved that there are no solutions with $d \le 2.2 \cdot 10^5$. Elkies in [4] proved that there are infinitely many solutions with $a\mathbf{Z} + b\mathbf{Z} + c\mathbf{Z} + d\mathbf{Z} = \mathbf{Z}$, and exhibited two examples. Elkies commented that the smaller example, with d = 20615673, "seems beyond the range of reasonable exhaustive computer search." Frye in [6] subsequently found the solutions with d = 422481, and proved that there are no other solutions with $d \le 2 \cdot 10^6$. Allan MacLeod subsequently found the solutions with d = 2813001 by Elkies's method. The solutions with $d \in \{8707481, 12197457, 16003017, 16430513\}$ appear to be new.

For each (c,d) satisfying various p-adic restrictions, Ward factored d^4-c^4 into primes and then found all representations of d^4-c^4 as a sum of squares; the total time of Ward's algorithm is $H^{2+o(1)}$ with modern factoring methods, but the o(1) is fairly large. Lander, Parkin, Selfridge, and Frye instead enumerated possibilities for b, and checked for each b whether $d^4-c^4-b^4$ was a fourth power; Frye estimated that his program used about $H^3/490000$ fourth-power tests to find all solutions with $d \leq H$.

10. Example:
$$a^7 + b^7 + c^7 + d^7 = e^7 + f^7 + g^7 + h^7$$

The five smallest integers that can be written in 2 ways as sums of four positive seventh powers are 2056364173794800, 12191487610289536, 263214614245734400, 696885239160606459, and 1560510414117060608. There are no other examples below 420^7 .

I began this computation by generating a sorted table of $\{a^7+b^7:a\geq b\}$. Then I enumerated sums $(a^7+b^7)+(c^7+d^7)$ in order, skipping inputs ((a,b),(c,d)) with b< c. Searching up to 155⁷, to verify the smallest example, took 1.4 · 10¹⁰ cycles (and roughly 340 kilobytes of memory) on an UltraSPARC I-167. Searching up to 420^7 took $1.4 \cdot 10^{12}$ cycles.

Notes. All the examples here were found by Ekl in [2] and [3]. However, Ekl needed $1.6 \cdot 10^{11}$ cycles on an HP PRISM-50 (and roughly 8900 kilobytes of memory) to find the first example. Presumably the main reason is that the priority queue in [2] and [3] was a balanced tree, whereas the priority queue here is a heap.

References

- 1. Svante Carlsson, Average-case results on heapsort, BIT 27 (1987), 2-17. MR 88b:68017
- Randy L. Ekl, Equal sums of four seventh powers, Mathematics of Computation 65 (1996), 1755–1756. MR 97a:11050
- Randy L. Ekl, New results in equal sums of like powers, Mathematics of Computation 67 (1998), 1309–1315. MR 98m:11023
- 4. Noam D. Elkies, $On A^4 + B^4 + C^4 = D^4$, Mathematics of Computation **51** (1988), 825–835. MR. **89h**:11012
- 5. Robert W. Floyd, Algorithm 245: Treesort3, Communications of the ACM 7 (1964), 701.
- Roger E. Frye, Finding 95800⁴ + 217519⁴ + 414560⁴ = 422481⁴ on the Connection Machine, in [15], 106-116.
- Richard K. Guy, Unsolved problems in number theory, second edition, Springer-Verlag, New York, 1994. MR 96e:11002
- 8. D. R. Heath-Brown, The density of zeros of forms for which weak approximation fails, Mathematics of Computation **59** (1992), 613–623. MR **93a**:11055
- Donald E. Knuth, The art of computer programming, volume 3: sorting and searching, Addison-Wesley, Reading, Massachusetts, 1973. MR 56:4281
- Donald E. Knuth, The art of computer programming, volume 3: sorting and searching, second edition, Addison-Wesley, Reading, Massachusetts, 1998.
- Leon J. Lander, Thomas R. Parkin, Equal sums of biquadrates, Mathematics of Computation 20 (1966), 450–451.
- Leon J. Lander, Thomas R. Parkin, A counterexample to Euler's sum of powers conjecture, Mathematics of Computation 21 (1967), 101–103. MR 36:3721
- Leon J. Lander, Thomas R. Parkin, John L. Selfridge, A survey of equal sums of like powers, Mathematics of Computation 21 (1967), 446–459. MR 36:5060
- John Leech, Some solutions of Diophantine equations, Proceedings of the Cambridge Philosophical Society 53 (1957), 778–780. MR 19:837f
- 15. Joanne L. Martin, Stephen F. Lundstrom, Supercomputing '88: proceedings, volume 2, IEEE Computer Society Press, Silver Spring, Maryland, 1988.
- 16. Emmanuel Peyre, Yuri Tschinkel, *Tamagawa numbers of diagonal cubic surfaces, numerical evidence*, this journal, previous article.
- 17. E. Rosenstiel, J. A. Dardis, C. R. Rosenstiel, The four least solutions in distinct positive integers of the Diophantine equation $s = x^3 + y^3 = z^3 + w^3 = u^3 + v^3 = m^3 + n^3$, Bulletin of the Institute for Mathematics and its Applications 27 (1991), 155–157. MR 92i:11134
- Joseph H. Silverman, Integer points and the rank of Thue elliptic curves, Inventiones Mathematicae 66 (1982), 395–404. MR 83h:10036
- Joseph H. Silverman, Integer points on curves of genus 1, Journal of the London Mathematical Society 28 (1983), 1–7. MR 84g:10033
- Morgan Ward, Euler's problem on sums of three fourth powers, Duke Mathematical Journal 15 (1948), 827–837. MR 10:283f
- 21. Ingo Wegener, Bottom-up-heapsort, a new variant of heapsort, beating, on average, quicksort (if n is not very small), Theoretical Computer Science 118 (1993), 81–98. MR 94c:68007
- 22. John W. J. Williams, Algorithm 232: Heapsort, Communications of the ACM 7 (1964), 347–
- 23. Aurel J. Zajta, Solutions of the diophantine equation $A^4 + B^4 = C^4 + D^4$, Mathematics of Computation 41 (1983), 635–659. MR 85d:11025

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045

E-mail address: djb@pobox.com