Siruri de numere reale - partea 1

Exercițiul 1: Studiați monotonia, mărginirea și convergența șirului de numere reale $(x_n)_{n\in\mathbb{N}}$, cu termenul general:

a)
$$x_n = \frac{2^n + 3^n}{5^n}$$
, b) $x_n = \frac{(-1)^n}{n}$, c) $x_n = \frac{2^n}{n!}$, d) $x_n = \frac{n}{n^2 + 1}$.

Exercițiul 2: Folosing teorema de caracterizare cu ε demonstrați că

$$a) \lim_{n \to \infty} \frac{n}{n^2 + 1} = 0 \qquad b) \lim_{n \to \infty} \frac{n^2}{-2n + 4} = -\infty.$$

Exercițiul 3: Calculați limitele următoareleor șirui de numere reale având următorii termeni generali:

a)
$$\frac{5^n+1}{7^n+1}$$
, b) $\frac{4^n+(-2)^n}{4^{n-1}+2}$, c) $\left(\sin\frac{\pi}{10}\right)^n$, $d(\sqrt{9n^2+2n+1}-3n)$

e)
$$\left(5 + \frac{1 - 2n^3}{3n^4 + 2}\right)^2$$
, f) $\sqrt[3]{n^3 + n + 3} - \sqrt[3]{n^3 + 1}$, g) $\left(\frac{n^3 + 5n + 1}{n^2 - 1}\right)^{\frac{1 - 5n^4}{6n^4 + 1}}$,

$$h$$
) $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\ldots\left(1-\frac{1}{n}\right)$.

Exercițiul 4: Fie $t \in \mathbb{R}$.

- a) Demonstrați că există un șir strict crescător de numere raționale care are ca limită t.
- b) Demonstrați că există un șir strict descrescător de numere raționale care are ca limită t.

Exercițiul 5: Fie a>0 și $x_0\in\mathbb{R}$ fie a.î. $0< x_0<\frac{1}{a}$. Considerați șirul de numere reale $(x_n)_{n\in\mathbb{N}}$ definit recursiv prin:

$$x_{n+1} = 2x_n - ax_n^2, \forall n \in \mathbb{N}.$$

Studiați convergența șirului urmând etapele:

- a) Demonstrați prin inducție că $x_n < \frac{1}{a}, \forall n \in \mathbb{N}.$
- b) Demonstrați prin inducție că $0 < x_n, \forall n \in \mathbb{N}$.
- c) Folosind a) și b) demonstrați că $(x_n)_{n\in\mathbb{N}}$ este strict crescător.
- d) Calculați valoarea limitei.