Tema 1: Topologia de \mathbb{R}^n

- 1. Espais mètrics
 - 1.1. **Definició** Donat un conjunt M, una **distància** és una aplicació $d: M \times M \longrightarrow \mathbb{R}$ tal que:
 - (i) $d(x,y) \ge 0 \quad \forall x,y \in M$.
 - (ii) $d(x,y) = 0 \iff x = y$.
 - (iii) $d(x,y) = d(y,x) \quad \forall x,y \in M$ (simetria).
 - (iv) $d(x,y) \le d(x,z) + d(z,y)$ (designaltat triangular).
 - 1.2. **Definició** Un conjunt M amb una distància d és un **espai mètric**.
- 2. Espais normats
 - 2.1. **Definició** Donat un espai vectorial real E, una **norma** és una aplicació $\|\cdot\|: E \longrightarrow \mathbb{R}$ tal que:
 - (i) $||v|| \ge 0 \quad \forall v \in E$
 - (ii) Si ||v|| = 0, aleshores v = 0
 - (iii) $\|\lambda v\| = |\lambda| \|v\| \quad \forall v \in E, \ \forall \lambda \in \mathbb{R}$
 - (iv) $||v + w|| \le ||v|| + ||w|| \quad \forall v, w \in E$ (designal triangular)
 - 2.2. **Definició** Un espai vectorial E amb una norma $\|\cdot\|$ és un **espai normat**.
 - 2.3. Proposició
 - (a) Tot espai normat és espai mètric amb la distància associada a la norma: d(x,y) = ||x-y||.
 - (b) El recíproc és fals.
- 3. Espais euclidians
 - 3.1. **Definició** Donat un espai vectorial real E, un **producte escalar** és una aplicació $<,>: E \times E \longrightarrow \mathbb{R}$:
 - (i) Bilineal.
 - (ii) Simètrica.
 - (iii) Definida positiva: $\langle x, x \rangle \geq 0, \ \forall x \in E$.
 - (iv) No degenerada: $\langle x, x \rangle = 0 \iff x = 0$.
 - 3.2. Definició (E, <, >) és un espai euclidià.
 - 3.3. Proposició
 - (a) Tot espai euclidià és espai normat amb la norma associada al producte escalar:

$$||v|| = +\sqrt{\langle v, v \rangle}.$$

- (b) El recíproc és fals.
- 3.4. Desigualtat de Cauchy-Schwarz: en un espai euclidià E,

$$|\langle x, y \rangle| \le ||x|| ||y||, \quad \forall x, y \in E.$$

3.5. Identitat del paral·lelogram: en un espai euclidià E,

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2, \quad \forall x, y \in E$$

3.6. Identitat de polarització: en un espai euclidià E,

$$4 < x, y > = ||x + y||^2 - ||x - y||^2, \quad \forall x, y \in E.$$

3.7. **Lema** \mathbb{R}^n és un espai euclidià amb el producte escalar: $\langle x,y \rangle = \sum_{i=1}^n x_i y_i$. També és espai normat i espai mètric amb la norma (que denotarem per $\|.\|_2$) i la distància (d_2) associades a aquest producte escalar.

1

4. Successions

4.1. **Definició** Donat un espai mètric (M,d), una **successió** és una aplicació

$$\mathbb{N} \to M$$
$$n \mapsto x_n$$

- 4.2. **Definició** Direm que (x_n) és **convergent** cap a x (o que té límit x) si $\lim_{n\to\infty} d(x_n,x) = 0$. És a dir, si $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$ tal que $d(x_n,x) < \varepsilon$ per a tot $n \geq N_{\varepsilon}$ o, equivalentment, $x_n \in \mathcal{B}(x,\varepsilon) \ \forall n \geq N_{\varepsilon}$.
- 4.3. **Proposició** Si (x_n) té límit, és únic.
- 5. Conceptes topològics
 - 5.1. **Definició** Sigui M un espai mètric, definim la **bola de centre** p i radi r com:

$$\mathcal{B}(p,r) = \{ x \in M \mid d(p,x) < r \}$$

- 5.2. **Definició** Direm que A és **obert** si $\forall p \in A, \exists r > 0$ tal que $\mathcal{B}(p,r) \subset A$.
- 5.3. Propietat
 - (i) La unió d'una colecció arbitrària de conjunts oberts és un conjunt obert.
 - (ii) La intersecció d'una colecció finita de conjunts oberts és un conjunt obert.
- 5.4. **Definició** Direm que F és **tancat** si $F^c := M \setminus F$ és obert.
- 5.5. Propietat
 - (i) La intersecció d'una colecció arbitrària de conjunts tancats és un conjunt tancat.
 - (ii) La unió d'una colecció finita de conjunts tancats és un conjunt tancat.
- 5.6. **Definició** Direm que p és **interior** a A si $\exists r > 0$ tal que $\mathcal{B}(p,r) \subset A$.
- 5.7. **Notació:** Al conjunt dels punts interiors l'anomenarem Å.
- 5.8. Corol·lari A obert $\iff A = \mathring{A}$.
- 5.9. **Definició** Direm que p és de **l'adherència** de A si $\forall r > 0$, $\mathcal{B}(p,r) \cap A \neq \emptyset$.
- 5.10. Notació: Al conjunt de punts adherents de A l'anomenarem \bar{A} .
- 5.11. **Definició** Direm que p és punt d'acumulació de A si $\forall r > 0$, $(\mathcal{B}(p,r) \setminus \{p\}) \cap A \neq \emptyset$.
- 5.12. **Definició** Direm que p és de la **frontera** de A si $\forall r > 0$ $\mathcal{B}(p,r) \cap A \neq \emptyset$ i $\mathcal{B}(p,r) \cap A^c \neq \emptyset$.
- 5.13. **Definició** p és **exterior** a A si $\exists r > 0$ tal que $\mathcal{B}(p,r) \subset A^c$.
- 5.14. **Proposició** $A \operatorname{tancat} \iff \operatorname{Fr}(A) \subset A$.
- 5.15. **Propietat** A tancat \iff $A = \bar{A}$.
- 5.16. **Propietat** $x \in \bar{A} \Rightarrow \exists (x_n) \subset A \text{ tal que } x_n \longrightarrow x.$
- 5.17. **Proposició** \mathring{A} és l'obert més gran dins A. Anàlogament, \bar{A} és el tancat més petit que conté A.
- 5.18. **Definició** Donat un conjunt A i un punt p, es defineix la distància entre el punt i el conjunt com $d(p, A) = \inf\{d(p, y), y \in A\}$.
- 5.19. **Propietat** A tancat \iff $A = \{x \in M | d(x, A) = 0\}.$

6. Compacitat

- 6.1. **Definició** Donat un espai mètric (M, d), un subconjunt $A \subset M$ es diu **fitat** si $\exists p \in M$ i r > 0 tal que $A \subset \mathcal{B}(p, r)$.
- 6.2. **Definició** Sigui (M, d) un espai mètric. Direm que un conjunt $A \subset M$ té la propietat de **Bolzano-Weierstrass** (o que és **compacte per successions**) si de tota successió $(x_n) \subset M$ se'n pot extreure una parcial $(x_{n_k})_{k \in \mathbb{N}}$ convergent en A.
- 6.3. **Definició** Sigui (M,d) un espai mètric. Direm que un conjunt $A \subset M$ té la propietat de **Heine-Borel** (o que és **compacte per recobriments**) quan per tot recobriment obert

$$A\subseteq\bigcup_{i\in I}G_i$$
 se'n pot extreure un subrecobriment finit $A\subseteq\bigcup_{i=1}^nG_i$, on G_i són oberts.

- 6.4. **Teorema** Sigui (M, d) un espai mètric i $A \subset M$, aleshores A té la propietat de Bolzano-Weierstrass $\Leftrightarrow A$ té la propietat de Heine-Borel.
- 6.5. **Definició** Sigui (M, d) un espai mètric. Direm que M és **compacte** si satisfà la propietat de Bolzano-Weierstrass o la de Heine-Borel.
- 6.6. **Teorema** Si (M,d) és un espai mètric i $K \subset M$ és compacte aleshores K és tancat i fitat.
- 6.7. **Teorema** A (\mathbb{R}^n, d_2) tot conjunt tancat i fitat és compacte.

7. Completesa

- 7.1. **Definició** Direm que (x_n) en un espai mètric (M,d) és una successió de **Cauchy** si $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N}$ tal que $d(x_l, x_m) < \varepsilon \ \forall m, l \geq N_{\varepsilon}$.
- 7.2. **Proposició** Si (x_n) és convergent aleshores (x_n) és de Cauchy.
- 7.3. **Definició** Un espai mètric és **complet** si tota successió de Cauchy és convergent.
- 7.4. **Proposició** (\mathbb{R}^n, d_2) és complet.
- 7.5. Propietat
 - 7.5.1. Si (a_n) és de Cauchy aleshores (a_n) és fitada.
 - 7.5.2. Si (a_n) és de Cauchy i $\exists (a_{n_k})$ convergent vers a aleshores $a_n \longrightarrow a$.
- 7.6. **Proposició** Donat (M,d) un espai mètric complet i $A \subset M$ aleshores A complet \Leftrightarrow A tancat.
- 7.7. **Definició** Un espai normat i complet s'anomena **espai de Banach**.

8. Conjunts connexos

8.1. **Definició** Sigui (M,d) un espai mètric. Direm que $A\subset M$ és **connex** si $\not\equiv U,V$ oberts no buits tals que:

$$\left\{ \begin{array}{l} A\subseteq U\cup V\\ A\cap U\cap V=\emptyset\\ A\cap U\neq\emptyset\\ A\cap V\neq\emptyset \end{array} \right.$$

- 8.2. **Propietat** M connex $\iff \emptyset$ i M són els únics oberts i tancats al mateix temps.
- 8.3. **Definició** $A \subset M$ és **arc-connex** $\iff \forall a, b \in A \ \exists \gamma : [0, 1] \longrightarrow A$ contínua tal que $\gamma(0) = a$ i $\gamma(1) = b$.
- 8.4. **Teorema** Sigui $G \subset \mathbb{R}^n$.
 - 8.4.1. Si G és arc-connex, aleshores G és connex.
 - 8.4.2. El reciproc és fals en general.
 - $8.4.3.\ {\rm Si}\ G$ és connex i obert, aleshores és arc-connex.