SPLEX

Statistiques pour la classification et fouille de données en génomique

Tests d'hypothèse

Pierre-Henri WUILLEMIN

DEcision, Système Intelligent et Recherche opérationnelle LIP6
pierre-henri.wuillemin@lip6.fr
http://webia.lip6.fr/~phw/splex

Les tests: introduction

▶ Définition

Un **test d'hypothèse** est une règle de décision permettant de déterminer laquelle parmi deux hypothèses concernant la valeur d'un paramètre $(p, \mu, \sigma^2, \dots)$ est la plus plausible.

La première étape dans la construction d'un test d'hypothèse, et peut-être la plus compliquée, consiste à identifier les deux hypothèses et à les formuler dans le langage statistique.

Les deux hypothèses à confronter seront toujours notées :

- ullet H_0 : hypothèse nulle et
- H₁: contre-hypothèse

Ces deux hypothèses doivent impérativement être mutuellement exclusives.

En principe, H_0 est l'hypothèse que l'on essaye de vérifier.

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothès

2 / 20

Les tests

problématique

Soit X suivant une loi P_{θ} sur \mathcal{X} , paramétrée par $\theta \in \Theta$. On dispose d'un échantillon X_1, \cdots, X_n , toutes i.i.d. de loi P_{θ} .

Soit une partition de $\Theta=\theta_0\cup\theta_1.$ Il s'agit de tester, sur l'échantillon, les 2 hypothèses :

 $H_0: \theta \in \theta_0$ $H_1: \theta \in \theta_1$

Exemple

Dans une assemblée de 100 personnes, on demande à chacun de donner un chiffre au hasard compris entre 0 et 9. On note $x_i \in \{0, \cdots, 9\}$ le chiffre donné par l'individu i et n_j le nombre d'individus ayant donné le chiffre j. Les résultats (c'est a dire l'ensemble des (j, n_j) où $j = 0, \cdots, 9$) sont les suivants : (0, 10), (1, 8), (2, 9), (3, 14), (4, 8), (5, 9), (6, 11), (7, 9), (8, 12), (9, 10)

Peut-on considérer que ces chiffres ont été effectivement donnés au hasard, au sens où les x_i sont des réalisations de variables aléatoires i.i.d. distribuées selon une loi uniforme sur $\{0, \dots, 9\}$? Il s'agit donc de tester :

 $H_0: X \text{ uniforme sur } \{0, \cdots, 9\}$ $H_1: \text{non}$

Tests d'hypothèses en statistique classique

hypothèses

- \bullet Θ = ensemble des valeurs du paramètre θ
- Θ partitionné en Θ_0 et Θ_1
- hypothèses = assertions $H_0 = "\theta \in \Theta_0$ "et $H_1 = "\theta \in \Theta_1$ "
- H_0 = hypothèse nulle, H_1 = contre-hypothèse
- hypothèse H_i est simple si Θ_i est un singleton; sinon elle est multiple
- test unilatéral = valeurs dans Θ_1 toutes soit plus grandes, soit plus petites, que celles dans Θ_0 ; sinon test bilatéral

	hypothèse	test	
$H_0: \mu = 4$	simple	unilatéral	
$H_1: \mu = 6$	simple		
$H_0: \mu = 4$	simple	test unilatéral	
$H_1: \mu > 4$	composée		
$H_0: \mu = 4$	simple	test bilatéral	
$H_1: \mu \neq 4$	composée		
$H_0: \mu = 4$	simple	formulation incorrecte : les hypothèses ne sont pas mutuellement exclusives	
$H_1: \mu > 3$	composée		

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

4 / 20

règle de décision

- La règle de décision du test est fondée sur les résultats de l'échantillonnage.
- Les résultats de l'échantillonnage sont examinés après la formulation des hypothèses, et non avant.
- Les valeurs du paramètre sous les différentes hypothèses ne doivent pas être fixées à partir du résultat observé à partir de l'échantillon.
- Construire la règle de décision, c'est déterminer quelles sont les valeurs qu'il est peu probable que le paramètre étudié (par exemple \overline{x}) prenne dans l'échantillon si l'hypothèse H_0 est vraie.
- Il faut examiner la distribution de l'estimateur du paramètre dans l'échantillon lorsque H_0 est vraie et déterminer une région critique, ou région de rejet de H_0 , telle que si la valeur prise par l'estimateur est dans cette région, il est peu probable que H_0 soit vraie.
- ullet La région critique doit tenir compte de la forme de la contre-hypothèse pour que le rejet de H_0 signifie que H_1 est un choix plausible.

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

5 / 20

Régions critiques

Regions critiques

hypothèses	règle de décision	
$H_0: \mu = \mu_0$	«rejeter H_0 si $\overline{x} > c$ », où c est un nombre plus	
$H_1: \mu > \mu_0$	grand que μ_0	
$H_0: \mu = \mu_0$	«rejeter H_0 si $\overline{x} < c$ », où c est un nombre plus	
$H_1: \mu < \mu_0$	petit que μ_0	
$H_0: \mu = \mu_0$	«rejeter H_0 si $\overline{x} < c_1$ ou $c_2 < \overline{x}$ », où c_1 et c_2 sont	
$H_1: \mu \neq \mu_0$	des nombres respectivement plus petit et plus grand que μ_0 , et également éloignés de celui-ci	

Erreurs dans les décisions

Réalité Décision prise	H_0 est vraie	H_1 est vraie
H_0 est rejetée	mauvaise décision : erreur de type l	bonne décision
H ₀ n'est pas rejetée	bonne décision	mauvaise décision : erreur de type II

- α = risque de première espèce
 - = probabilité de réaliser une erreur de type I
 - = probabilité de rejeter H_0 sachant que H_0 est vraie
 - $= P(\text{rejeter } H_0|H_0 \text{ est vraie}),$
- β = risque de deuxième espèce
 - = probabilité de réaliser une erreur de type II
 - = probabilité de rejeter H_1 sachant que H_1 est vraie
 - $= P(\text{rejeter } H_1|H_1 \text{ est vraie}).$

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

7 / 20

Exemple de calcul de α (1/2)

exemple

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- $\quad \text{o hypoth\`eses}: \ H_0: \mu = 10 \qquad H_1: \mu > 10$

Sous
$$H_0: \quad \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 10}{10/5} = \frac{\overline{X} - 10}{2} \sim \mathcal{N}(0; 1)$$

Sous H_0 : peu probable que \overline{X} éloignée de plus de 2 écart-types de μ (4,56% de chance)

- \Longrightarrow peu probable que $\overline{X} < 6$ ou $\overline{X} > 14$
- \implies région critique pourrait être «rejeter H_0 si $\overline{x} > 14$ »

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothès

8 / 20

Exemple de calcul de α (2/2)

Exemple

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- hypothèses : H_0 : $\mu = 10$ H_1 : $\mu > 10$
- région critique : «rejeter H_0 si $\overline{x} > 14$ »

$$\begin{split} \alpha &= P(\text{rejeter } H_0|H_0 \text{ est vraie}) \\ &= P(\overline{X} > 14|\mu = 10) \\ &= P\left(\frac{\overline{X} - 10}{2} > \frac{14 - 10}{2} \middle| \mu = 10\right) \\ &= P\left(\frac{\overline{X} - 10}{2} > 2\right) = 0,0228 \end{split}$$

en principe α est fixé et on cherche la région critique

Puissance du test

 $\alpha = P(\text{rejeter } H_0|H_0 \text{ est vraie})$

 $\beta = P(\text{rejeter } H_1|H_1 \text{ est vraie})$

 α et β varient en sens inverse l'un de l'autre

⇒ test = compromis entre les deux risques

 $H_0=$ hypothèse privilégiée, vérifiée jusqu'à présent et que l'on n'aimerait pas abandonner à tort

 \Longrightarrow on fixe un seuil α_0 :

- α doit être $\leq \alpha_0$
- \bullet test minimisant β sous cette contrainte
- min $\beta = \max 1 \beta$
- 1β = puissance du test

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

10 / 20

Courbe de puissance du test

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothès

11 / 20

Interprétation de α et β

L L

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

12 / 20

Rappel: vraisemblance

On se souvient que :

$$P(X \mid Y) = \frac{P(Y \mid X) \cdot P(X)}{P(Y)}$$

Ou encore :

$$P(X \mid Y) \propto P(Y \mid X) \cdot P(X)$$

En notant θ le paramètre que l'on veut estimer et d l'observation que l'on fait :

▶ Définition (Vraisemblance)

$$P(\theta \mid d) \propto P(d \mid \theta) \cdot P(\theta)$$

On nomme:

- $P(\theta)$ la probabilité a priori sur θ .
- $P(\theta \mid d)$ la probabilité a posteriori sur θ .
- $P(d \mid \theta) = L(d, \theta) = L(\theta : d)$ la vraisemblance.

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

13 / 20

Maximisation de la vraisemblance (MLE)

Soit une variable binaire X. Avec $\theta = P(X = 1)$:

$$\begin{split} \Theta = \{\theta, 1 - \theta\} \\ D = (1, 0, 0, 1, 1) \\ L(\Theta: D) = P(D \mid \Theta) = \prod P(X = d_m \mid \Theta) \end{split}$$

$$\mathsf{lci}: L(\Theta:D) = \theta \cdot (1-\theta) \cdot (1-\theta) \cdot \theta \cdot \theta.$$

Estimation de la probabilité par la fréquence

Pour des données qui font apparaı̂tre p fois 1 et q = n - p fois 0 :

$$L(\Theta:D) = \theta^p \cdot (1-\theta)^q$$

D'oé:
$$\frac{d(\Theta:D)}{d\theta} = p\theta^{p-1}(1-\theta)^q - q(1-\theta)^{q-1}\theta^p$$

$$\frac{d\theta}{d\theta} = p\theta^{p-1}(1-\theta)^{q} - q(1-\theta)^{q}$$

$$\frac{d(\Theta:D)}{d\theta} = 0 \iff p(1-\theta) - q\theta = 0$$

$$\hat{\theta} = \frac{p}{p+q}$$

finalement :

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothè

14 / 20

Lemme de Neyman-Pearson

$$\mathsf{cas}:\Theta_0=\{\theta_0\}\quad \ \Theta_1=\{\theta_1\}$$

Lemme de Neyman-Pearson

- ullet il existe toujours un test (aléatoire) le plus puissant de seuil donné $lpha_0$
- c'est un test du rapport de

$$\frac{L(x,\theta_0)}{L(x,\theta_1)} > k \Rightarrow x \in A \text{ (accepter } H_0)$$

vraisemblance:
$$\frac{L(x,\theta_1)}{L(x,\theta_1)} < k \Rightarrow x \in W \text{ (rejeter } H_0)$$

$$\frac{L(x,\theta_0)}{L(x,\theta_1)}=k\Rightarrow\delta(x)=\rho$$
 (accepter H_0 avec proba $1-\rho$

 H_1 avec proba ρ)

• k et ρ déterminés de façon unique par $\alpha = \alpha_0$

Loi de Student

Loi de Student

La loi de Student ne possède qu'un seul paramètre n (degré de liberté). La loi à n degrés est notée T_n .

- L'espérance d'une variable obéissant à une loi T_n est 0, Sa variance est $\frac{n}{n-2}$ pour n>2.
- . Plus n est grand, plus T_n se rapproche de $\mathcal{N}(0;1)$.

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

Utilisation de la loi de Student : Intervalles de confiance pour μ

Soit un échantillon $(x_i)_{i \le n}$ et \overline{x} sa moyenne et s^2 sa variance.

Intervalles de confiance pour μ de niveau de confiance $1-\alpha$

Situation	Loi utilisée	Bornes de l'intervalle
σ^2 connue $X \sim \text{loi normale ou } n \text{ grand } (>75)$	$\frac{\mathcal{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0; 1)$	$\overline{x} \pm z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}$
σ^2 inconnue n très grand (> 75)	$\frac{\mathcal{X} - \mu}{S/\sqrt{n}} \sim \mathcal{N}(0; 1)$	$\overline{x} \pm z_{\alpha/2} \times \frac{s}{\sqrt{n}}$
σ^2 inconnue $X \sim \text{loi normale}$	$\frac{\mathcal{X}-\mu}{S/\sqrt{n}}\sim T_{n-1}$	$\overline{x} \pm t_{n-1;\alpha/2} \times \frac{s}{\sqrt{n}}$

LP

Utilisation de la loi de Student : comparaison d'échantillons

Soit $\underline{\mathsf{de}}\mathsf{ux}$ échantillons :

- n_1 , \overline{X}_1 , s_1^2 issu d'une population μ_1 , σ_1^2 ,
- n_2 , \overline{X}_2 , s_2^2 issu d'une population μ_2 , σ_2^2 ,

Comparaison de μ_1 et de μ_2

 $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

Règle de décision

$$t = rac{\overline{X}_1 - \overline{X}_2}{\sqrt{s^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}} \sim T_{n_1 + n_2 - 2} \qquad ext{avec } s^2 = rac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

SPLEX Statistiques pour la classification et fouille de donnée

Application : Analyse d'expression différentielle

Analyse différentielle

- L'objectif est de trouver une liste de gènes différentiellement exprimés sur des résultats de puces avec plus de 22000 gènes.
- L'expression d'un gène est résumée par la moyenne des niveaux d'expression dans le groupe. Il s'agit donc bien de comparaison de moyenne pour l'analyse différentielle.
- Pour chaque gène i, H_0^i : $\mu_1^i = \mu_2^i$
- Classiquement : niveau de risque 5%

fold-change

Règle arbitraire : si $|\log_2(\frac{x_i^i}{x_2^i})| > 1$ alors le gène i est exprimée différentiellement.

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothèse

19 / 2

SAM: Significance Analysis of MicroArrays

- Utilisation d'un test de Student pour l'analyse différentielle,
- Problème : analyse multiples (22000 gènes)
- Solution: SAM calculates a test statistic for relative difference in gene expression based on permutation analysis of expression data and calculates a false discovery rate (FDR).

SAM is distributed by Stanford University in an R-package.

SPLEX Statistiques pour la classification et fouille de données

Tests d'hypothès

20 / 2