

NEET (Pre-Medical)

Course: Master Pro-1 | Minor Test-1

Test Date: 13 July 2025 | Answer Key & Solutions

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Que.		2	3	4	Э	0	1	0	9	10	11	12	13	14	15	10	17	10	פו	20	21	22	23	24	25
Ans.	1	1	3	4	3	4	4	2	1	3	2	2	4	4	2	1	1	3	2	2	1	2	4	1	1
Que.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	4	3	1	2	2	4	1	1	4	2	1	2	3	2	3	3	4	2	2	1	1	1	1	3	4
Que.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	4	2	4	3	2	1	4	4	2	2	2	2	3	3	3	1	4	2	3	3	4	3	2	3
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	3	3	3	4	3	3	1	3	3	2	1	2	1	1	1	1	1	3	2	1	3	2	2	4	4
Que.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
Ans.	3	1	2	3	3	4	3	4	3	4	3	2	2	2	4	2	3	3	3	4	1	3	3	4	1
Que.	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	3	3	1	3	3	1	2	3	1	3	2	3	1	3	3	3	4	4	4	2	4	2	2	4	2
Que.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
Ans.	4	4	1	3	4	1	1	2	3	1	3	4	3	4	2	3	2	4	2	1	4	3	3	3	3
Que.	176	177	178	179	180																				
Ans.	2	3	4	4	3																				

HINTS & SOLUTION

PHYSICS

1.
$$y = \sin 5x$$

Let $5x = \theta$
 $y = \sin \theta$
 $-\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} \implies \frac{dy}{d\theta} = \cos \theta \frac{d\theta}{dx} = 5$
 $\therefore \frac{d\theta}{dx} = 5 \cos \theta$ $\theta = 5x$
 $\therefore \frac{dy}{dx} = 5 \cos 5x$

3.
$$v = \frac{ds}{dt} = 15 - 0.8 t ; v = 7 ;$$

 $7 = 15 - 0.8 t \Rightarrow t = 10 second.$

4.
$$y = x^2 - 2x + 1$$

$$\int y dx = \int (x^2 - 2x + 1) dx + c$$

$$= \int x^2 dx - 2 \int x dx + \int dx + c$$

$$= \frac{x^3}{3} - x^2 + x + c$$

6. Dot product of two mutually perpendicular vectors is zero
$$\vec{A}.\vec{B}=0$$

$$\therefore (4\hat{i} + n\hat{j} - 2\hat{k}).(2\hat{i} + 3\hat{j} + \hat{k}) = 0$$

$$\Rightarrow (4 \times 2) + (n \times 3) + (-2 \times 1) = 0$$

$$\Rightarrow 3n = -6$$

$$\Rightarrow n = -2$$

7.
$$\frac{dy}{dx} = \frac{1}{x} + e^x$$
, $\frac{d^2y}{dx^2} = -\frac{1}{x^2} + e^x$

9. Here
$$\vec{r} = 5\hat{i} - 3\hat{j} + 0\hat{k}$$
 and $\vec{F} = 4\hat{i} - 10\hat{j} + 0\hat{k}$

$$\therefore \vec{\tau} = \vec{r} \times \vec{F} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -3 & 0 \\ 4 & -10 & 0 \end{vmatrix}$$

$$=\hat{i}(0-0) - \hat{j}(0-0) + \hat{k}(-50 + 12) = -38\hat{k}$$

$$\sqrt{(0.5)^2 + (2\alpha)^2 + \alpha^2} = 1$$

$$\Rightarrow 5\alpha^2 = 0.75 \Rightarrow \alpha^2 = 0.15$$

$$\Rightarrow \quad \alpha = \sqrt{\frac{15}{100}} = \sqrt{\frac{3}{20}} = \sqrt{\frac{3}{\beta}}$$

$$\beta = 20$$

22.
$$\cos\theta = \frac{\vec{A} \cdot \vec{B}}{AB} = \frac{2}{\sqrt{3}\sqrt{2}} = \sqrt{\frac{2}{3}}$$

$$\theta = \cos^{-1} \sqrt{\frac{2}{3}}$$

24.
$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$
 condition of being parallel

$$\frac{2}{5} = \frac{p}{7} = \frac{q}{3}$$

$$\Rightarrow p = \frac{14}{5} \text{ and } q = \frac{6}{5}$$

25.
$$|A \times B| = |(2\hat{i} + 3\hat{j} - \hat{k}) \times (\hat{i} + 2\hat{j} + 2\hat{k})|$$

= $|8\hat{i} - 5\hat{i} + \hat{k}| = \sqrt{90}$

$$|A - B| = |\hat{i} + \hat{j} - 3\hat{k}| = \sqrt{11}$$

$$A.B = 2 + 6 - 2 = 6$$

$$|A + B| = |3\hat{i} + 5\hat{j} + \hat{k}| = \sqrt{35}$$

27. As
$$i > i_c$$

At $i = i_c$ angle of refraction

$$\therefore$$
 sin i_c/sin 90° = μ = 1

28.
$$n_d \sin i_c = n_r \sin 90^\circ$$

(:: From Snell's law)

$$\sin i_c = n_r/n_d = v_d/v_r$$

$$sin i_c = \frac{1.5 \times 10^8}{2 \times 10^8} = 1.5 / 2$$

$$\sin i_c = \frac{3}{4} tani_c = \frac{3}{\sqrt{4^2 - 3^2}} \Rightarrow \frac{3}{\sqrt{7}}$$

The critical angle between them

$$i_c = tan^{-1} \left(\frac{3}{\sqrt{7}} \right)$$

29. We know that frequency of electromagnetic radiation remains the same when it changes the medium. Further

$$\mu = \frac{\text{wavelength of light in vacuum}}{\text{wavelength of light in medium}} = \frac{\lambda_v}{\lambda_m}$$

$$\lambda_m = \frac{\lambda_v}{\mu} = \frac{\lambda}{\mu}$$

Similarly, $\mu = \frac{\text{velocity of light in vacuum}}{\text{velocity of light in medium}}$

$$\lambda_{\rm m} = v/\mu$$

30. For critical angle
$$\theta_c$$
, $\sin i \theta_c = 1/\mu$

For greater wavelength or lesser frequency μ is less.

So, critical angle would be more. So, they will not suffer reflection and come out at angles less then 90°.

31.
$$\sin C = \frac{1}{\mu} = \frac{1}{\sqrt{2}}$$

$$\therefore c = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$$

Now sinC/sin r = 1/v or
$$\frac{\sin 45^{\circ}}{\sin r} = \frac{1}{\sqrt{2}}$$

$$\sin r = 1 \text{ or } r = 90^{\circ}$$

32. If a lens is cut into two half along principal axis, its focal length remains unchanged only the intensity of image gets reduced.
 So, power of L₁ will remain unaffected as p

= 1/f.
1/f =
$$(\mu - 1)(1/R_1 - 1/R_2)$$

33.

$$1/16 = (1.5) (1/R - 1/\infty)$$

$$\Rightarrow$$
 1/16 = 0.5 × 1/R

34.
$$p = 1/f = (\mu_1 - \mu_2)(1/R_1 - 1/R_2)$$

(μ_1 is refractive index of lens and μ_2 is of surrounding medium)

$$\Rightarrow$$
 1.25 = $(1.5 - \mu_2)(1/0.2 + 1/0.4)$

$$\Rightarrow \frac{1.25 \times 0.08}{0.6} = \left(1.5 - \mu_2\right)$$

$$\Rightarrow \mu_2 = 4/3$$

36. Let the distance between the lenses be d. Then, equivalent power is

$$P = P_1 + P_2 - dPP_1P_2$$

Given
$$P_1 = P_2 = +5 D$$

$$\therefore$$
 P = (10 - 25 d)D

For P to be -ve, 10 - 25d < 0

$$\Rightarrow$$
 d > $\frac{2}{5}$ m

or, d > 0.4 m or d > 40 cm

37. Cutting a lens in transverse direction doubles their focal length i.e., 2 f.

Using the formula of equivalent focal length.

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \frac{1}{f_4}$$

We get equivalent focal length as f/2.

38. Since
$$\lambda_R > \lambda_v$$

$$\mu_R < \mu_V$$

$$\left(: \mu \propto \frac{1}{\lambda} \right)$$

$$\Rightarrow f_{v} < f_{R} \left(\because \frac{1}{f} \propto (\mu - 1) \right)$$

39.
$$\frac{P_a}{P_1} = \frac{\left(\frac{\mu_g}{\mu_g} - 1\right)}{\left(\frac{\mu_g}{\mu_1} - 1\right)} = \frac{+5}{-100 / 100} = -5$$

$$-5\left(\frac{\mu_g}{\mu_1}-1\right) = \frac{\mu_g}{\mu_a}-1$$

$$\frac{1.5}{\mu_1} - 1 = \frac{-1}{5}(1.5 - 1) = -0.1; \ \mu_1 = \frac{1.5}{0.9} = \frac{5}{3}$$

40. In the position of minimum deviation

$$i = e = \frac{A + \delta m}{2} = \frac{60 + 30}{2} = 45^{\circ}$$

41.

There will be no refraction from P to Q and then from Q to R (all being identical). Hence the ray will now have the same deviation.

42.
$$i_1 = i_2 = 2/4A$$

As
$$A + \delta = i_1 + i_2$$

$$\therefore \quad \delta = i_1 + i_2 - A = \frac{3}{4}A + \frac{3}{4}A - A$$

$$=\frac{A}{2}=\frac{60^{\circ}}{2}=30^{\circ}$$

44. Light ray emerges normally from another surface, hence, e (angle of emergence) =0

$$\therefore r_2 = 0$$

$$\mathbf{r}_1 + \mathbf{r}_2 = \mathbf{A}$$

$$\Rightarrow \mu_1 \cdot \sin i = \mu_2 \cdot \sin r$$

Applying Snell's law on first surface PQ

$$\Rightarrow 1 \cdot \sin i = \mu \cdot \sin r_1 \Rightarrow \sin i = \mu \sin A$$

For small angles ($\sin \theta \approx \theta$)

45.
$$h_{app} = \frac{h_1}{\mu_1} + \frac{h_2}{\mu_2} = \frac{6}{3/2} + \frac{6}{8/5}$$

$$=4+\frac{15}{4}=\frac{31}{4}cm$$