# 訂正可能な削除割合の限界

安永 憲司(金沢大学)

2017.2.23 ICAワークショップ@唐津市

### 削除訂正

■ 010010 → 01000,001101 → 00111 (1個削除) 010010 → 0110, 001101 → 0110 (2個削除)

(r+1)回繰り返し符号は、r 個削除訂正可能

・ 
$$s'=$$
  $s_2'$  この位置は必ず  $s_2$ 

• レート 
$$\frac{t}{(r+1)t} = \frac{1}{r+1}$$
,削除割合  $\frac{r}{(r+1)t} = O\left(\frac{1}{t}\right)$ 

## 削除訂正符号

- $[k] = \{1,2,...,k\}$  上の p 削除訂正符号  $C \subseteq [k]^n$   $\Leftrightarrow \forall c_1, c_2 \in C$ ,  $LCS(c_1, c_2) < (1-p)n$ 
  - LCS $(c_1, c_2)$ : 最長共通部分系列の長さ (Longest Common Subsequence)
    - LCS(111222,121212) = 4
    - LCS(1112223333, 123123123) = 5
  - $c_1, c_2$  を最小の削除数で一致させたときの 長さが  $LCS(c_1, c_2)$ 
    - $\rightarrow$  このときの削除数 =  $n LCS(c_1, c_2)$
    - $\rightarrow n LCS(c_1, c_2) > pn$  なら p 削除訂正可能

### 削除訂正割合の限界

- 正レート符号で *p* 削除訂正可能な *p* の上限は?
  - $|C| \ge \exp(\Omega_k(n))$ で p 削除訂正  $\rightarrow$  冗長度  $O_k(1)$
- $p^*(k) = \limsup\{ p \in (0,1): \exists [k]$ 上の正レート p 削除訂正符号 }
  - $p^*(k) \le 1 1/k$
  - $p^*(2) \ge 0.17$ 
    - ランダム符号は 0.788n < LCS < 0.8263n</li>
  - $p^*(k) \ge 1 O(1/\sqrt{k})$  [Guruswami, Wang 2015]
    - $k \to \infty$  のとき  $E[LCS(c_1, c_2)] \sim \frac{2}{\sqrt{k}} n$  [Kiwi, Loebl, Matousek 2004]

### 紹介する論文

■ Boris Bukh, Venkatesan Guruswami, Johan Hastad: An improved bound on the fraction of correctable deletions. ECCC TR15-117.

(SODA 2016 とその改良)

#### ■ 主結果:

- $\forall k \ge 2$ ,  $p^*(k) \ge 1 \frac{2}{k + \sqrt{k}}$
- $\forall \varepsilon > 0$ , レート  $r(\varepsilon, k) > 0$  の明示的な k 元符号が存在し、LCS $(c_1, c_2) < \frac{2}{k + \sqrt{k}} + \varepsilon$ 
  - 2元のとき、 $\sqrt{2}-1-\varepsilon > 0.414-\varepsilon$ 削除訂正可能

## 準備

- $w \in [k]^n$  の部分系列 (subsequence) : w から削除して得られる系列
- $w \in [k]^n$  の部分語 (subword): w 内の連続した系列
- w 内の部分系列 w' のスパン span<sub>w</sub>(w'): w' を含む w の最短部分語の長さ
  - $\operatorname{span}_{1121112}(212) = 5$ ,  $\operatorname{span}_{111222333}(122) = 3$
- $w_1$  と  $w_2$  の共通部分系列 (common subsequence)  $(w'_1, w'_2)$ :  $w'_1 = w'_2$
- w<sub>1</sub> と w<sub>2</sub> の最長共通部分系列の長さ LCS(w<sub>1</sub>, w<sub>2</sub>)
- $C \subseteq [k]^n$  に対し、 $LCS(C) = \max_{c_1 \neq c_2 \in C} LCS(c_1, c_2)$

## 準備

 $\mathbf{w}_1 \succeq w_2$  の共通部分系列  $(w'_1, w'_2)$  のスパン:  $\operatorname{span}(w'_1, w'_2) = \operatorname{span}_{w_1}(w'_1) + \operatorname{span}_{w_2}(w'_2)$ 

- 事実.  $w_1$  と  $w_2$  の任意の共通部分系列  $(w'_1, w'_2)$  に対し、 $span(w'_1, w'_2) \ge b len(w'_1) c$  ならば、 $LCS(w_1, w_2) \le \frac{2n + c}{b}$ 
  - 証明:
    - $b \operatorname{len}(w'_1) \le \operatorname{span}(w'_1, w'_2) + c \le 2n + c$
    - LCS $(w_1, w_2) = \max_{(w'_1, w'_2)} \text{len}(w'_1) \le \frac{2n+c}{b}$

### 削除訂正符号のアルファベット削減

- $\forall \varepsilon > 0, K = K(\varepsilon) \gg k$  に対し、 $C_1 \subseteq [K]^n$  with  $LCS(C_1) \ll \varepsilon n$  を $C_2 \subseteq [k]^N$  with  $LCS(C_2) \approx \frac{2}{k+\sqrt{k}}N$  へ変換
  - $C_1$  の各シンボルを、サイズ K の符号で連接符号化
  - 内符号の構成法により最終的な符号の性質が変わる

- きれいな構成法 (定理 4):  $LCS(C_2) \approx \frac{2}{k+1}N$
- 汚れた構成法 (定理3):  $LCS(C_2) \approx \frac{2}{k+\sqrt{k}}N$

## きれいな構成法

#### 定理4

 $C_1 \subseteq [K]^n$  with  $LCS(C_1) = \gamma n, k \ge 2$  に対し ある  $T = T(K, \gamma, k) \le 32 \left(\frac{2k}{\gamma}\right)^K$  と  $\tau$ :  $[K] \to [k]^T$  が存在し、  $C_1$  の各シンボルを  $\tau$  で連接符号化して得られる  $C_2 \subseteq [k]^N, N = nT$  は、 2つの異なる  $c, \tilde{c} \in C_2$  の共通部分系列 s に対し以下を満たす:  $span(s) \ge (k+1) len(s) - 4\gamma kN$ 

特に、  $LCS(C_2) \leq \left(\frac{2+4\gamma k}{k+1}\right)N < \left(\frac{2}{k+1} + 4\gamma\right)N$ 

## きれいな構成法の符号化法 (1/2)

- 整数 L を割り切りる整数 A に対し、振幅 A の語: $f_A = (1^A 2^A \dots k^A)^{L/A}$ 
  - $\operatorname{len}(f_A) = kL$
  - L=4, k=2 のとき  $f_1=12121212, f_2=11221122, f_4=11112222$
  - L = 6, k = 3 のとき  $f_1 = 123123123123123123$   $f_2 = 112233112233112233$   $f_3 = 111222333111222333$  $f_6 = 11111122222223333333$

# きれいな構成法の符号化法 (2/2)

 $\blacksquare$  B/A が大きいとき  $f_A$  と  $f_B$  が長い共通部分系列を持たないことを利用

- $R \ge k$ , [K] 上の語  $w = \ell_1 \ell_2 \dots$  に対し、  $\widetilde{w} = f_{R^{\ell_1 1}} f_{R^{\ell_2 1}} \dots$ 
  - $\operatorname{len}(\widetilde{w}) = kL \operatorname{len}(w)$
  - $\bullet$  A, B  $\leq R^{K-1}$
  - $\widetilde{w}$  内のシンボル x が、 w 内のシンボル y から展開されているとき、 y は x の親と呼ぶ

## きれいな構成法の分析

### 補題5

$$f_A^{\infty} = (1^A 2^A ... k^A)^* とし、 kA \leq B のとき、 f_A^{\infty} と f_B^{\infty} の共通部分系列  $s = (w'_1, w'_2)$  に対し、 span $(s) \geq \left(k + 1 - \frac{kA}{B}\right) \operatorname{len}(s) - 2(A + B)$$$

- ■用語の定義
  - $\bullet$  チャンク: $\ell^A$ ,  $\ell^B$ の形をした部分語
  - $f_A^{\infty}$  内のチャンクが  $w'_1$  によってスパンされる  $\Leftrightarrow w'_1$  のスパンに対応する部分語が、 そのチャンクのシンボルを 1 つ以上含む
    - 例.  $f_A^{\infty} = 11112222333331111222233333 ...$   $w'_1 = 11 31 2$
    - スパンされるチャンクは、1111,2222,3333,1111,22222

# 補題5の証明 (1/2)

- 方針:  $s = (w'_1, w'_2)$  でスパンされるチャンク数 を見積もる
- $s = k_1^{p_1} k_2^{p_2} ... k_t^{p_t}$  の形をしている  $(k_\ell \neq k_{\ell+1})$
- $\mathbf{k}_{\ell}^{p_{\ell}}$ は $f_A^{\infty}$ 内で $k\left[\frac{p_{\ell}-A}{A}\right]+1$ 個以上のチャンクをスパンする
  - $\bullet$   $k_{\ell}^{A}$  というチャンクは含まれる
  - $p_{\ell} > A$  なら、その他の  $k_{\ell}^{A}$  を  $\left[\frac{p_{\ell}-A}{A}\right]$  個含む

## 補題5の証明(2/2)

 $= f_A^{\infty}$  と  $f_B^{\infty}$  の両方で  $k_\ell^{p_\ell}$  によってスパンされるチャンクに含まれるシンボル数は

$$\phi(p_{\ell}) = A\left(k\left\lceil\frac{p_{\ell} - A}{A}\right\rceil + 1\right) + B\left(k\left\lceil\frac{p_{\ell} - B}{B}\right\rceil + 1\right)$$

- $k_{\ell}^{p_{\ell}} \geq k_{\ell'}^{p_{\ell'}} \text{ でスパンされるチャンクは異なるため、} (s でスパンされるチャンクに含まれるシンボル数) \\ \geq \sum_{\ell} \phi(p_{\ell}) \geq \left(k+1-\frac{kA}{B}\right) \operatorname{len}(s)$
- 最初と最後のチャンクは全て入っていないかもしれないので 2(A + B) を引く (証明終)

### 共通部分系列のマッチ

- (w'<sub>1</sub>, w'<sub>2</sub>): w̃<sub>1</sub> と w̃<sub>2</sub> の共通部分系列
- $(w'_1, w'_2)$  内の i 番目シンボルが well-matched  $\Leftrightarrow w'_1[i]$  と  $w'_2[i]$  の親が [K] 内で同じ記号
- 共通部分系列が badly-matched ⇔ どのシンボルも well-matched でない
- 例.  $L = 4, k = 2, R = 2, w_1 = 1332, w_2 = 2313,$

### 補題6

 $w_1, w_2 \in [K]^*$  であり、 $\widetilde{w_1}$  と  $\widetilde{w_2}$  の共通部分系列  $s = (w'_1, w'_2)$  が badly-matched のとき

span(s) 
$$\ge \left(k + 1 - \frac{k}{R} - \frac{8R^{K-1}}{L}\right) \operatorname{len}(s) - 16R^{K-1}$$

#### ■ 証明:

- 以下を満たすように  $s = (s_1, s_2, ..., s_r)$  と分割
  - 各 $s_i$ の $w'_i$ における親が同じであり、rは最小

$$\widetilde{w_2} = \overline{11221122} \ 11112222 \ 12121212 \ 11112222$$
 $w_2 = 2 \ 3 \ 1 \ 3$ 

## 補題6の証明(続き)

- 各  $S_i$  に対する  $W_1$  と  $W_2$  における親は異なる
- $w_1$  と  $w_2$  における r-4 個以上のシンボルを展開したものは、 $w'_1$  と  $w'_2$  のスパンに含まれる
  - w₁ と w₂ の左右両端4つを除けばよい
- $= kL(r-4) \le \text{span}(s)$  であり、 $r \le \frac{\text{span}(s)}{kL} + 4$
- 補題5より

$$\operatorname{span}(s) \ge \left(k + 1 - \frac{k}{R}\right) \operatorname{len}(s) - 2(A + B)r$$

$$\ge \left(k + 1 - \frac{k}{R}\right) \operatorname{len}(s) - 4rR^{K-1}$$

$$\ge \left(k + 1 - \frac{k}{R}\right) \operatorname{len}(s) - 4R^{K-1} \left(\frac{\operatorname{span}(s)}{kL} + 4\right)$$

### 補題7

$$w_1, w_2 \in [K]^*$$
 であり、 $\widetilde{w_1}$  と  $\widetilde{w_2}$  の共通部分系列  $s = (w'_1, w'_2)$  に対し  $\operatorname{span}(s) \ge \left(k + 1 - \frac{k}{R} - \frac{8R^{K-1}}{L}\right) \operatorname{len}(s) - 2Lk(k+1)\operatorname{LCS}(w_1, w_2) - 16R^{K-1}$ 

### ■ 証明:

- s はスパン内で長さ最大と仮定
  - len(s) を増やせば span(s) も増える



### 補題7の証明(続き)

- マッチしたシンボル同士を 連結した二部グラフ *G* を構成
  - 次数は2以下にできる
- グラフの最大マッチングは、 |E(G)|/2 以上,  $LCS(w_1, w_2)$  以下  $\rightarrow |E(G)| \leq 2LCS(w_1, w_2)$



- s 内のマッチしたシンボルをすべて削除  $\rightarrow s'$  len $(s') \ge \text{len}(s) Lk|E(G)| \ge \text{len}(s) 2Lk LCS}(w_1, w_2)$
- s' は badly-matched であり、補題 6 より span(s)  $\geq$  span(s')

$$\geq \left(k+1-\frac{k}{R}-\frac{8R^{K-1}}{L}\right) \operatorname{len}(s) - 2Lk(k+1)\operatorname{LCS}(w_1, w_2) - 16R^{K-1}$$
(証明終)

## きれいな構成法 (再掲)

### 定理4

 $C_1 \subseteq [K]^n$  with  $LCS(C_1) = \gamma n, k \ge 2$  に対し ある  $T = T(K, \gamma, k) \le 32 \left(\frac{2k}{\gamma}\right)^K$  と  $\tau$ :  $[K] \to [k]^T$  が存在し、  $C_1$  の各シンボルを  $\tau$  で連接符号化して得られる  $C_2 \subseteq [k]^N, N = nT$  は、 2つの異なる  $c, \tilde{c} \in C_2$  の共通部分系列 s に対し以下を満たす:  $span(s) \ge (k+1) len(s) - 4\gamma kN$ 

特に、 
$$LCS(C_2) \le \left(\frac{2+4\gamma k}{k+1}\right) N < \left(\frac{2}{k+1} + 4\gamma\right) N$$

### 定理4の証明

- $C_1 \subseteq [K]^n$  with  $LCS(C_1) = \gamma n, \varepsilon > 0, k \ge 2$  に対し  $R = \left\lceil \frac{2k}{\gamma} \right\rceil, L = 16R^{K-1} \left\lceil \frac{1}{\gamma} \right\rceil$  とする
- $\tau$ :  $[K] \to [k]^T$ , T = kL を  $\tau(\ell) = f_{R^{\ell-1}}$  と定義し  $C_2 \subseteq [k]^N$ , N = nkL とする
  - $T = 16 \left[ \frac{2k}{\gamma} \right]^{K-1} \left[ \frac{1}{\gamma} \right] k \le 32 \left( \frac{2k}{\gamma} \right)^K$  である
- 補題7より、 $C_2$ の任意の共通部分系列sは

## きれいな構成法の限界

- k=2 で誤り割合 p<1/3 しか達成できない理由
  - $w_1 = abc, w_2 = def \in [K]^3$  が d > a, b および c > e, f を満たすとき



- $\bullet$   $f_{R^{d-1}}$  は  $f_{R^{a-1}}$ ,  $f_{R^{b-1}}$  にマッチする ( $f_{R^{c-1}}$  も同様)
  - $f_{R^{a-1}}, f_{R^{b-1}}$  の方が、変動が早いため
- 長さ 4L の共通部分系列が存在
  - *a,b,c,d,e,f* に共通シンボルが存在していなくても
- k>2 でも同様の議論より、  $p<\frac{k-1}{k+1}$  が限界

# 改善のアイディア (1/2)

- スパンの短い共通部分系列がネック
  - 補題5ではチャンク内シンボル数の下界を導出  $\phi(p_{\ell}) = A\left(k\left[\frac{p_{\ell}-A}{A}\right]+1\right) + B\left(k\left[\frac{p_{\ell}-B}{B}\right]+1\right)$
  - $p_{\ell} = B$  のときに値が小さそう
    - $s = 1^B$  とすると、 $f_B^{\infty}$  内のスパンは  $f_A^{\infty}$  内の半分

$$f_A^{\infty} = \begin{bmatrix} 1^A & 2^A & 1^A$$

$$f_B^{\infty} = \boxed{1^B} \qquad 2^B \qquad 1^B \qquad 2^B$$

## 改善のアイディア (2/2)

- アイディア: $f_B^{\infty}$  内の  $1^B$  の中に適度に 2 を挿入 ( $2^B$ ,  $1^A$ ,  $2^A$  も同様)
- 長い共通部分系列を作ろうとするとき、 その「汚れ」を含めるか、含めないか?
  - 1<sup>A</sup> とマッチさせている間は、1<sup>B</sup> 内の 2 とマッチ させても得しない
  - 2<sup>A</sup> とマッチさせている間に、1<sup>B</sup> 内の 2 とマッチ させると、1<sup>B</sup> 内の 1 とマッチしなくなる
- → 共通部分系列は広がらず、汚れの分だけスパンが伸びる

$$f_A^{\infty} = \begin{bmatrix} 1^A & 2^A & 1^A$$

$$f_B^{\infty} = \begin{bmatrix} 2 & 1^B & 2 \end{bmatrix} \qquad 2^B \qquad 1^B \qquad 2^B \qquad 2^A \cdots$$

## 汚れた構成法(2元の場合)

- $0 < c \le \sqrt{2} 1$  を固定
- 長さ *M* 振幅 *a* の汚れた 1:

$$1_{M,a} = (1^{a}2^{ca})^{M/(1+c)a}$$

$$= 1^{a} 2^{ca} 1^{a} 2^{ca} 1^{a} 2^{ca} ... 1^{a} 2^{ca}$$

$$M$$

- (参考) きれいな構成:  $f_{R^{i-1}} = (1^{R^{i-1}} 2^{R^{i-1}})^{L/R^{i-1}}$
- 汚れた構成:  $g_i = (1_{R^{K+1+i},R^{K-i}} 2_{R^{K+1+i},R^{K-i}})^{L/R^{K+1+i}}$ 
  - 整数 R = (1+c)t for integer  $t, L = R^{2K+1}$
  - $len(g_i) = R^{K+1+i} \times 2 \times \frac{L}{R^{K+1+i}} = 2L$

## 汚れた構成法の分析

### 補題8

$$w_1 = 1_{\infty,a}$$
 (or  $2_{\infty,a}$  ) および  $w_2 = (1_{b_1,b_2} 2_{b_1,b_2})$  の部分系列  $s$  に対し、  $\operatorname{span}_{w_1} s + 2b_1 \ge (3+c)\operatorname{len}(s) - \frac{4ab_1}{b_2}$ 

### ■ 証明:

- $w_1 = 1_{\infty,a}$  と仮定
  - 対称性より  $w_1=2_{\infty,a}$  も同様に証明可能
- $w_2 = 1^{b_2} 2^{cb_2} \cdots 1^{b_2} 2^{cb_2} 2^{b_2} 1^{cb_2} \cdots 2^{b_2} 1^{cb_2}$   $b_1 \qquad b_1$
- *s* は 1<sup>b2</sup>, 1<sup>cb2</sup>, 2<sup>b2</sup>, 2<sup>cb2</sup> の部分語で構成

# 補題8の証明の続き(1/2)

- *s* をそのような部分語に分解

  - *i* 番目の 1\* の部分語は *s<sub>i</sub>* 個の 1 で構成
  - i 番目の 2\* の部分語は t<sub>i</sub> 個の 2 で構成
- このとき  $\operatorname{span}_{w_1} 1^{s_i} \ge \left(\frac{s_i}{a} 1\right) (1 + c) a$ 
  - 同様に  $\operatorname{span}_{w_1} 2^{t_i} \ge \left(\frac{t_i}{cc} 1\right) (1+c)a$
- *s* に合計 *S* 個の 1,  $\tilde{S}$  個の 2 が含まれるとき  $\operatorname{span}_{w_1} s \ge \sum_{i} \left( \frac{s_i}{a} - 1 \right) (1+c)a + \sum_{i} \left( \frac{t_i}{ca} - 1 \right) (1+c)a$  $\geq \frac{s}{a}(1+c)a + \frac{\tilde{s}}{ca}(1+c)a - \sum (1+c)a$  $\geq (1+c)S + \frac{1+c}{c}\tilde{S} - \frac{4ab_1}{b}$  部分語の数  $\leq \frac{b_1}{(1+c)b_2} \times 2 \times 2$

27

## 補題8の証明の続き(2/2)

- $S, \tilde{S} \in [0, b_1]$  であり  $0 < c \le \sqrt{2} 1$  より  $\frac{1+c}{c} > 3 + c$  であるから  $(1+c)S + \frac{1+c}{c}\tilde{S} + 2b_1$   $\ge (1+c)S + (3+c)\tilde{S} + 2S$   $\ge (3+c)(S+\tilde{S})$  (証明終)

#### 補題9

$$g_i, g_j \ (i < j)$$
 の共通部分系列  $s$  に対し、 $R \ge 10$  のとき

$$\left(1 + \frac{2}{R}\right)\operatorname{span}_{g_i} s + \operatorname{span}_{g_j} s \ge (3 + c)\operatorname{len}(s) - \frac{10L}{R}$$

#### ■ 証明:

- $g_i = (1_{R^{K+1+i},R^{K-i}} 2_{R^{K+1+i},R^{K-i}})^{L/R^{K+1+i}}$
- s を  $g_i$  内のセグメント( $1_{R^{K+1+i},R^{K-i}}$   $2_{R^{K+1+i},R^{K-i}}$ )との対応関係により  $s^{(1)},s^{(2)},\cdots$  と分割
- $g_i$ 内の2セグメントに渡るものは更に分割

 $g_{i} = 1_{*,*} 2_{*,*} 1_{*,*} 2_{*,*} 1_{*,*} 2_{*,*} 1_{*,*} 2_{*,*} 1_{*,*} 2_{*,*} 1_{*,*} 2_{*,*} \cdots$   $S = S^{(1)} S^{(2)} 1_{*,*} 2_{*,*} 1_{*,*} 2_{*,*} \cdots$   $g_{j} = 1_{*,*} 2_{*,*} 1_{*,*} 2_{*,*} \cdots$ 

## 補題9の証明(続き)

$$S = (s^{(1)}, s^{(2)}, \dots, s^{(p)}), p \le 2 + \frac{\operatorname{span}_{g_i} s}{2R^{K+1+i}} + \frac{2L}{R^{K+1+j}}$$

- 各  $s^{(k)}$  は  $a = R^{K-j}$ ,  $b_1 = R^{K+1+i}$ ,  $b_2 = R^{K-i}$  として補題8の仮定を満たす
  - $w_1 \Leftrightarrow g_i$  内のセグメントの半分
  - $w_2 \Leftrightarrow g_i$  内のセグメント
- 補題8より  $\operatorname{span}_{g_j} s^{(k)} + 2R^{K+i+1} \ge (3+c) \operatorname{len}(s^{(k)}) 4R^{i-j} R^{K+i+1}$
- p の不等式より  $\operatorname{span}_{g_j} s + (1 + 2R^{i-j}) \operatorname{span}_{g_i} s \\ \geq (3 + c) \operatorname{len}(s) (1 + 2R^{i-j}) (4R^{K+i+1} + 4LR^{i-j})$ 
  - $R \ge 10$ ,  $R^{K+i+1} \le \frac{L}{R}$ , i < j より証明できる (証明終)

## 汚れた構成法の符号化法

■ [K] 上の語  $w = \ell_1 \ell_2 \dots$  に対し  $\widehat{w} = g_{\ell_1} g_{\ell_2} \dots$ 

#### 補題 10

$$w_1, w_2 \in [K]^*$$
 に対し、 $\widehat{w_1}$  と  $\widehat{w_2}$  の共通部分系列  $s = (w'_1, w'_2)$  が badly-matched のとき  $\operatorname{span}(w'_1) + \operatorname{span}(w'_1) \ge \left(3 + c - \frac{28}{R}\right) \operatorname{len}(s) - \frac{40L}{R}$ 

#### 補題 11

$$w_1, w_2 \in [K]^*$$
,  $\widehat{w_1}$  と  $\widehat{w_2}$  の共通部分系列  $s = (w'_1, w'_2)$  は  $span(s) \ge \left(3 + c - \frac{28}{R}\right) len(s) - 16L LCS(w_1, w_2) - \frac{40L}{R}$ 

## 汚れた構成法

### 定理3

 $C_1 \subseteq [K]^n$  with  $LCS(C_1) = \gamma n, k \ge 2$  に対しある  $T = T(K, \gamma, k) \le O((2k/\gamma)^{2K+2})$ と  $\tau: [K] \to [k]^T$  が存在し、 $C_1$  の各シンボルを  $\tau$  で連接符号化して得られる $C_2 \subseteq [k]^N, N = nT$  は、 $C_2 \subseteq [k]^N$  の共通部分系列 s に対し以下を満たす:

$$\mathrm{span}(s) \ge \left(k + \sqrt{k}\right) \mathrm{len}(s) - 5\gamma kN$$

特に、 
$$LCS(C_2) \le \left(\frac{2+5\gamma k}{k+\sqrt{k}}\right) N < \left(\frac{2}{k+\sqrt{k}} + 5\gamma\right) N$$

## よい削除訂正符号の存在性

#### 補題 13

 $\gamma,r>0$  と整数  $K\geq 2$  が  $2r\log K+2h(\gamma)-\gamma\log K<0$  を満たすとき、すべての n に対し、  $[K]^n$ 上のサイズ  $K^{rn}$  の符号が存在し、任意の異なる符号語 w,w' に対し、  $LCS(w,w')<\gamma n$ 

#### ■ 証明:

- $w_1, ..., w_{K^{rn}}$  を  $[K]^n$  から独立にランダムに、戻すことなく、選んだ系列とする
- i < j に対し、分布  $(w_i, w_i)$  は、互いに異なるという条件下で  $[K]^n$  から2つ独立に選ぶ分布に等しい
- 和集合上界より  $\Pr[LCS(w_i, w_j) > \gamma n ] \le {n \choose \gamma n} K^{(1-\gamma)n} K^{-n} \le {n \choose \gamma n}^2 K^{-\gamma n}$

#### ■ 証明の続き:

• 和集合上界より、十分大きなn に対し  $\Pr[\exists w_i, w_j \in C, LCS(w_i, w_j) > \gamma n] \leq K^{2rn} \binom{n}{\gamma n}^2 K^{-\gamma n}$   $= 2^{n(2r \log K + 2h(\gamma) - \gamma \log K) + o(n)} < 1$  (証明終)

#### 定理 14

整数 k を固定. 任意の  $\varepsilon > 0$  に対し  $\tilde{r} = (\varepsilon/k)^{O(\varepsilon^{-3})}$  が存在し、無限に多くの N について、レート  $\tilde{r}$  以上の符号  $C \subseteq [k]^N$  が存在し、 $LCS(C) < \left(\frac{2}{k+\sqrt{k}} + \varepsilon\right)n$ 

#### ■ 証明:

- 補題 13 で  $\gamma = \frac{\varepsilon}{4}$ ,  $r = \frac{\gamma}{6} = \frac{\varepsilon}{24}$  とすれば  $C_1 \subseteq [K]^n$ ,  $K \le O\left(\frac{1}{\varepsilon^3}\right)$ ,  $LCS(C_1) \le \frac{\varepsilon n}{4}$ ,  $|C_1| \ge K^{rn}$ となる
- 定理 3 を適用すると  $C_2 \subseteq [k]^N$ ,  $LCS(C_2) \le \left(\frac{2}{k+\sqrt{k}} + \varepsilon\right)N$  U- トは  $\tilde{r} = rn/Tn \ge (\varepsilon/k)^{O(\varepsilon^{-3})}$  (証明終)

## 明示的な構成法

- Guruswami, Wang (RANDOM 2015)
  - $\forall \gamma > 0, \exists K \leq O\left(\frac{1}{\gamma^5}\right)$  しート $\Omega(\gamma^3)$ , LCS(C)  $\leq \gamma n$  の符号  $C \subseteq [K]^n$  を  $n(\log n)^{\text{poly}(1/\gamma)}$  時間で構成できる
    - 符号化と復号も n(log n)<sup>poly(1/γ)</sup> 時間で可能

■ 定理 3 と組み合わせれば、  $LCS(C) < \left(\frac{2}{k+\sqrt{k}} + \varepsilon\right)N$  を満たす符号  $C \subseteq [k]^N$  を効率的に構成できる(定理 16)

## 効率的な復号ができる符号

- ハミング距離の大きな符号 (Reed-Solomon) と 定理 16 の符号を連接符号化することで実現
  - 外符号の相対ハミング距離  $\approx 1$  であれば、 $LCS(C) < \left(\frac{2}{k+\sqrt{k}} + \varepsilon\right)N$  が保たれる(補題 17)
- ■構成法
  - 外符号: F<sub>q</sub> 上の RS 符号
  - 内符号  $C_{in}$  :符号長  $m = O(\log q), |C_{in}| = q^2$
- 復号法
  - ・ 境界線がわからないため、連続した系列をしらみつぶした削除訂正 → 各位置に対し複数のシンボル候補
  - RS の list recovery によってリスト復号
  - 符号の性質より、一意復号となる

## [Bukh, Guruswami, Hastad] のまとめ

- $p^*(k)$ : 正レートk 元符号で訂正できる削除割合の上極限
  - $p^*(k) < 1 1/k$  が成立

- $\forall k \geq 2, \varepsilon > 0$ , ョ 効率的に構成可能なレート  $r(q,\varepsilon) > 0$  の k 元符号で  $1 - \frac{2}{k+\sqrt{k}} - \varepsilon$  割合削除を  $n^3$  poly(log n) 時間復号
  - $p^*(k) \ge 1 \frac{2}{k + \sqrt{k}}$  ( $\texttt{Lot} p^*(k) = 1 \Theta\left(\frac{1}{k}\right), k \to \infty$ )
  - 2元符号で  $\sqrt{2} 1 \varepsilon > 0.414 \varepsilon$  割合を訂正可能

### 削除訂正線形符号の限界

### 定理8[Brakensiek, Guruswami, Zbarsky (2016)]

k 削除訂正できる符号長n の線形符号C に対し、  $\dim(C) \leq \frac{n}{k+1} + (k+1)^2$ 

- k 削除訂正できる線形符号で達成可能な 漸近的な符号化レートは 1/(k + 1)
  - (k + 1) 回繰り返し符号で達成可能

## 定理8の証明

**■**  $C^0 = C, i = 1, ..., k$  に対し  $C^i = \{(x_{i+1}, ..., x_n, x_1, ..., x_i) | (x_1, ..., x_n) \in C\}$ 

### 補題9

すべての  $0 \le i < j \le k$  に対し  $\dim(C^i \cap C^j) \le j - i$ 

- 補題9の証明
  - $z \in C^i \cap C^j$  のとき  $x, y \in C$  が存在し  $z = (x_{i+1}, ..., x_n, x_1, ..., x_i) = (y_{j+1}, ..., y_n, y_1, ..., y_j)$
  - $j > i \& 0 (x_{i+1}, ..., x_{n-j+i}) = (y_{j+1}, ..., y_n)$
  - k > j より x, y は k 削除で同じ結果  $\rightarrow x = y$  である
  - $\rightarrow \forall \ell \in \{1, ..., n\}, x_{\ell} = x_{\ell+j-i \pmod{n}} (j-i)$  シフトで等価)
  - 各 $x_\ell$  は最大でj-i 種類の値  $\rightarrow x$  は $2^{j-i}$  通り以下

$$\dim(C^i \cap C^j) \le j - i$$

(補題の証明終)

### 定理8の証明

補題9より  $n \ge \dim\left(\bigcup_{i=0}^{k} C^{i}\right)$   $\geq \sum_{i=0}^{k} \dim(C^{i}) - \sum_{i=0}^{k} \sum_{\substack{j=i+1\\ \nu}}^{k} \dim(C^{i} \cap C^{j})$  $= (k+1)\dim(C) - \sum_{i=1}^{n} \sum_{j=1}^{n} \dim(C^{i} \cap C^{j})$  $\geq (k+1)\dim(C) - (k+1)^3$ 

■ したがって  $\dim(C) \le (k+1)^2 + n/(k+1)$ 

## 削除訂正符号に関する既存研究 (1/4)

- ランダム削除通信路
  - シンボル毎に確率 p で削除
  - 通信路容量は未解決
    - p → 0 のとき, レートは 1 h(p) を達成可能
    - $p \rightarrow 1$  のときでも正レートを達成可能
      - (1 − p)/9 を達成 [Mitzenmacher, Drinea 2006]

## 削除訂正符号に関する既存研究 (2/4)

- Schulman, Zuckerman (SODA '97, IEEE IT '99)
  - 小さな定数割合削除を効率的に訂正する定数レート符号
- Guruswami, Wang (RANDOM 2015)
  - $0 < \varepsilon < 1/2$  に対し、 $(1 \varepsilon)$  割合削除を訂正する レート  $\Omega(\varepsilon^2)$ , アルファベットサイズ poly $(1/\varepsilon)$  の符号
    - 構成・符号化・復号時間は N<sup>poly(1/ε)</sup>
  - $\varepsilon > 0$  に対し、 $\varepsilon$  割合削除を訂正する レート  $1 - \tilde{O}(\sqrt{\varepsilon})$  の 2 元符号
    - 構成・符号化・復号時間は N<sup>poly(1/ε)</sup>
  - $0 < \varepsilon < 1/2, 1/2 \varepsilon$  割合削除をサイズ  $(1/\varepsilon)^{O(\log \log(1/\varepsilon))}$  でリスト復号するレート $\Omega(\varepsilon^3)$  の 2 元符号
    - 構成・符号化・復号時間は N<sup>poly(1/ε)</sup>

## 削除訂正符号に関する既存研究 (3/4)

- del(*N*, *k*): 符号長 *N* の *k* 削除訂正符号の最大サイズ
  - 定数 k に対し、k だけに依存する定数  $a_k > 0, A_k < \infty$  が存在し

$$a_k \frac{2^N}{N^{2k}} \le \operatorname{del}(N, k) \le A_k \frac{2^N}{N^k}$$

- $\operatorname{del}(N, 1) = \Theta\left(\frac{2^N}{N}\right)$ 
  - 1 削除訂正の Varshamov-Tenengolts (VT) 符号  $\{(x_1, ..., x_n) \in \{0,1\}^N | \sum_{i=1}^N i x_i \equiv 0 \mod (N+1) \}$
- Brakensiek, Guruswami, Zbarsky (SODA 2016)
  - 定数 k に対し、冗長度  $N \log(del(N,k)) = O(k^2 \log k \log N)$  の k 削除訂正符号の効率的な構成法
  - 復号時間  $O_k(N(\log N)^4)$

## 削除訂正符号に関する既存研究 (4/4)

- Oblivious deletions
  - 符号語を見ずに削除パターンを決める通信路
  - ランダム削除と最悪ケース削除の間
- Guruswami, Li (arXiv 2016)
  - $\forall p \in (0,1), \exists R > 0, Enc: \{0,1\}^{Rn} \rightarrow \{0,1\}^n, Dec: \{0,1\}^{(1-p)n} \rightarrow \{0,1\}^{Rn} \cup \{\bot\} \text{ s.t. 任意の } pn 個削除のパターン <math>\tau \succeq m \in \{0,1\}^{Rn}$  に対し  $\Pr[Dec(\tau(Enc(m))) \neq m] \leq o(1)$
  - 明示的構成法で効率的な復号ができる レート (1-p)/180 の符号

任意の削除レートを訂正できる!

## 未解決問題

- *p*\*(*k*) の特定
  - k = 2 のとき、0.414 と 0.5 の間
  - $p^*(k) = 1 \Theta\left(\frac{1}{k}\right), k \to \infty$
- p 割合削除を訂正するレート  $1-p-\varepsilon$ , アルファベットサイズ  $poly(1/\varepsilon)$  の符号の構成

- $\varepsilon$  割合削除を訂正するレート  $1 \varepsilon poly(\log(1/\varepsilon))$  の 2 元符号の構成
  - レート  $1 O(\varepsilon(\log(1/\varepsilon)))$  はランダム符号で存在