

FD.io CSIT Performance Dashboard

Presented on behalf of CSIT project by: Tibor Frank, Maciek Konstantynowicz, Peter Mikus, Vratko Polak

https://lfnetworking.org

Topics

FD.io Overview

VPP and CSIT core projects

CSIT Dashboard - <u>csit.fd.io</u>

- Infrastructure
- UI and presentation layer

Usability Examples

- Performance and efficiency comparisons
- Failures, Anomalies and Root Cause Analysis

Discussion

FD.io VPP and CSIT Core Projects in LFN FastData.io

DLFNETWORKING	.= D.io
---------------	---------

SDN

VPP

Vector Packet Processing

Feature rich networking and host stack. VPP on COTS servers in many cases **outperforms** packet processing HW.

VPP runs on COTS hardware:

VPP runs in any environment: **bare-metal**, **VM**, **containers**.

Allows ability to upscale and downscale.

Software programmable, extendable and flexible.

CSIT

Continuous System Integration and Testing

Continuous benchmarking of VPP and DPDK.

Performance testbeds with **Xeon**, **Arm**, **AMD**, **Atom** HW.

Bare-metal, VM, container test environments.

Executing **2,900 benchmarking tests** daily.

Open-source CI/CD infrastructure for benchmarking of SW data-planes, **test data analytics** and **presentation**.

CDash

AWS S3 storage

used for all data.

ETL

- from JSON to Parquet.
- running on premise.

AWS beanstalk

- · application load balancing.
- EC2 instances (t3a.2xlarge).
- · scalability.

Plot.ly Dash

- data dashboard.
- interactive UI.
- loads data frame partitions from S3 compatible storage.

CDash

17

ETL pipelines

JSON

model

~2.9k

tests daily

~50k

performance tests per release

optimization

8GB RAM

~17.5k

tests weekly

rls2302

rls2306

2021 ...

130 days

sliding window

... 2023

CSIT-Dash

Performance Trending

- Daily MRR* Data
- Weekly NDR PDR** Data
- Packet Latency
- Telemetry

--- No-load, --- Low-load, 10% PDR, --- Mid-load, 50% PDR.

* MRR – Maximum Receive Rate a.k.a. forwarding rate at maximum offered load

** NDR PDR – Non-Drop Rate (no loss), Partial Drop Rate (non-zero loss <0.5%)

CSIT-Dash

Release Performance Data

- Iterative and Coverage Data
- Packet Throughput
- Packet Latency
- Results Statistics
- Comparison Tables

CSIT-Dash

Additional Information

- Test Job Statistics
- Failures and Anomalies
- Documentation

CSIT Benchmark Areas and Methodologies

Tests

Benchmark Test Areas

- L2 Ethernet Switching
- IPv4, IPv6 Routing
- IPsec, Wireguard with IPv4 Routing
- SRv6 Routing
- Features: ACLs, NAT44-EI/ED, Policer, ...
- IPv4, IPv6 Tunnels
- KVM VMs vHost-user
- Docker Container Memif
- Drivers: DPDK, AVF, RDMA, AF XDP

Test Methodologies

- Packet Throughput and Latency
- Stateful NAT44ed
- Stateful Host-stack
- Speedup Multi-Core
- Soak Tests
- Reconfiguration Tests

Test Topologies

Performance Testbed Variants*

2n-clx 2n-icx 2n-spr 2n-tx2 2n-zn2

3n-icx 3na-spr 3nb-spr 3n-alt 3n-snr 3n-tsh

*Testbed Topology - SUT Processor Model

Performance testing: List of compute platforms

Processor Family	Model	Cores per Socket	Base Frequency GHz	L3 Cache (LLC) MB	Testbeds	NICs
CLX Intel Xeon Cascade Lake	8280	28	2.6	38.5	3 x 2n-clx	x710-4p10GE, xxv710-2p25GE, e810-2p100GE, cx5- 2p100GE
ICX Intel Xeon Ice Lake	8358	32	2.6	48	4 x 2n-icx 2 x 3n-icx	xxv710-2p25GE, e810-4p25GE, e810-2p100GE, cx7-2p200GE* xxv710-2p25GE, e810-4p25GE, e810-2p100GE, cx6-2p200GE*
SPR Intel Sapphire Rapids	8462Y+	32	2.8	60	2 x 2n-spr 1 x 3na-spr 1 x 3nb-spr	e810-4p25GE, e810-2p100GE, cx7-2p200GE cx7-2p200GE e810-4p25GE, e810-2p100GE
ZN2 AMD EPYC Zen2	7532	32	2.4	256	1 x 2n-zn2	x710-4p10GE, xxv710-2p25GE, cx5-2p100GE
TX2 Cavium ThunderX2 ARMv8.1	CN9975	28	2.0	28	1 x 2n-tx2	xl710-2p40GE
ALT Ampere Altra N1	Q80-30	80	3.0	32	1 x 3n-alt	xl710-2p40GE cx7-2p200GE*
SNR Intel Atom Snowridge	P5362B	24	2.2	27	1 x 3n-snr	e810-4p25GE
TSH Huawei TaiShan 2280	hip07-d05	32	2.2	-	1 x 3n-tsh	x520-2p10GE, cx4-2p25GE

VPP release performance comparison views Performance: Xeon ICX vs CLX

Comparison VPP v23.02 ICX vs CLX:

COMPARISON FOR: VPP-RLS2302-23.02-RELEASE-1C-64BJ78B-MRR

	2	N-CLX-100GE2P1E810CQ-AVF	2 N -	ICX-100GE2P1E810CQ-AVF	RELATIVE CHANGE		
TEST NAME	⇒ MEAN [MPP	S] \$ STDEV [MPPS]	\$ MEAN [MPPS]	STDEV [MPPS]	\$ MEAN [%]	\$ STDEV [%]	
	ip4 🕒	X	ICX		ICX vs (CLX	
64b-1c-ethip4-ip4base-eth-2memif-1dcr-mrr	7.	49 0.18	8.80	0.03	17.57	2.82	
64b-1c-ethip4-ip4scale20k-mrr	16.	22 0.03	18.75	0.16	15.57	1.04	
64b-1c-ethip4udp-ip4base-oac150sf-10kflows-mrr	10.	0.02	11.63	0.05	15.36	0.53	
64b-1c-ethip4-ip4scale20k-rnd-mrr	16.	57 0.07	18.80		13.51	0.52	
64b-1c-ethip4udp-ip4base-iacl50sf-10kflows-mrr	10.	0.20	11.62	0.10	9.57	2.52	
64b-1c-ethip4-ip4base-mrr	18.	99 0.15	20.68	0.02	8.91	0.89	
64b-1c-ethip4udp-ip4base-oacl50sl-10kflows-mrr	8.	34 0.01	8.99	0.05	7.79	0.66	
64b-1c-ethip4udp-ip4base-iacl50sl-10kflows-mrr	8.	0.15	9.06	0.10	4.88	2.19	
					SH	now URL Download Data	

COMPARISON FOR: VPP-RLS2302-23.02-RELEASE-1C-64B|78B-MRR

	2N-CLX-100GE2P1E810CQ-AVF		21	N-ICX-100GE2P1E810CQ-AVF	RELATIVE CHANGE		
TEST NAME		\$ STDEV [MPPS]		\$ STDEV [MPPS]] \$ STDEV [%]	
ip6	- CLX		ICX		ICX vs	CLX	
78b-1c-ethip6-ip6scale20k-mrr	13.01	0.45	14.84	0.09	14.0	3.99	
78b-1c-ethip6-ip6scale20k-rnd-mrr	12.96	0.64	14.54	0.	12.2	2 5.55	
78b-1c-ethip6-ip6base-mrr	15.88	0.03	16.96	0.03	6.8	0.28	
						Show URL Download Data	

Introducing VPP Per Node Metrics

VPP per node metrics collected in CSIT performance tests

VPP "show runtime"

Calls

Clocks

Suspends

Vectors

Vectors/Call

VPP perfmon bundles

Intel platforms: vpp git repo /src/plugins/perfmon/bundle/intel/

inst-and-clock
Calls
Packets
Packets/Call,
Clocks/Packet
Instructions/Packet
IPC

Cache-hierarchy
L1 hit/pkt
L1 miss/pkt
L2 hit/pkt
L2 miss/pkt
L3 hit/pkt
L3 miss/pkt

Arm platforms: vpp git repo /src/plugins/perfmon/bundle/arm/

Currently not running in CSIT

Perfmon access to Arm counters requires newer kernel 5.17+ – work in progress ...

NOTE: VPP perfmon is VPP Developer Tool
Heavily dependant on Processor PMU counters

Proceed with caution !

Introducing VPP Telemetry Views

https://csit.fd.io/trending/

SELECT A METRIC

Start typing a metric name
vpp.cache_hierarchy.l1_hit
vpp.cache_hierarchy.l1_miss
vpp.cache_hierarchy.l2_hit
vpp.cache_hierarchy.l2_miss
vpp.cache_hierarchy.l3_hit
vpp.cache_hierarchy.l3_miss
vpp.inst_and_clock.calls
<pre>vpp.inst_and_clock.clocks_per_packets</pre>
vpp.inst_and_clock.instructions_per_packets
vpp.inst_and_clock.ipc
vpp.inst_and_clock.packets
vpp.inst_and_clock.packets_per_call
vpp.runtime.calls
vpp.runtime.clocks
vpp.runtime.suspends
vpp.runtime.vectors
vpp.runtime.vectors_calls

Performance trending – Throughput and efficiency metrics Xeon SPR vs ICX vs CLX

Test	Measurement	VPP Nodes of Interest	Node Telemetry
<u>ip4scale200k-rnd</u>	MRR	ip4-lookup	runtime.clocks inst_and_clock.clocks_per_packet cache_hierarchy.{ 3 2 1}_{hit} cache_hierarchy.{ 3 2 1}_{miss}
<u>ip6scale200k-rnd</u>	MRR	ip6-lookup	runtime.clocks inst_and_clock.clocks_per_packet cache_hierarchy.{ 3 2 1}_{hit} cache_hierarchy.{ 3 2 1}_{miss}
ipsec40tnlsw-aes256gcm	MRR	esp4-encrypt-tun esp4-decrypt-tun	runtime.clocks inst_and_clock.clocks_per_packet cache_hierarchy.{I3 I1}_{hit} cache_hierarchy.{I3 I1}_{miss} runtime.vectors_calls

Performance trending – Throughput and efficiency metrics VPP IPv6 and IPV4 FIB scale tests

Testbed-Platform	Test	Measurement	VPP Nodes of Interest	Telemetry
2n-icx	ip6base ip6scale20k-rnd ip6scale200k-rnd ip6scale2m-rnd	MRR	ip6-lookup	runtime.clocks cache_hierarchy.{I3 I1}_{hit} cache_hierarchy.{I3 I1}_{miss}
<u>2n-icx</u>	ip4base ip4scale-2m ip4scale-2m-rnd	MRR	ip4-lookup	<pre>inst_and_clock.clocks_per_packet cache_hierarchy.{l3 l1}_{hit}</pre>

Failures, Anomalies and Root Cause Analysis

Link	Comment
Test cases failure	All test cases affected by an infra issue.
<u>Test suites failure</u>	Reduction in test cases executed can be caused by failure in suite setups.
Anomalies and testbeds	Different testbeds of the same type show unequal performance, depending on NIC and driver.
Anomalies and RSS	Random RSS generates noise. Peformance change depends on testbed type and scale.
Scaling and anomalies	Comparing scalability of a test, includes a transient regression and failures.

CSIT Resources

Technical Papers

- SPR 2Tbps IPsec (2023)
 - https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-high-performance-ipsec-with-4th-gen-intel-xeon-scalable-processor-technology-guide
- "Benchmarking Software Data Planes Intel® Xeon® Skylake vs. Broadwell" (2019)
 - https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
- "Benchmarking and Analysis of Software Data Planes" (2017)
 - https://fd.io/docs/whitepapers/performance analysis sw data planes dec21 2017.pdf

Technology Demonstrator Video Clips

- "VPP: A Terabit Secure Network Data-plane" (Intel Xeon Icelake 07-APR-2021)
 - https://www.youtube.com/watch?v=ipQQmjzE_g0
- "FD.io: A Universal Terabit Network Dataplane" (Intel Xeon Skylake, 11-JUL-2017)
 - https://www.youtube.com/watch?v=aLJ0XLeV3V4

FD.io Presentations

- https://wiki.fd.io/view/Presentations
- Other FD.io Materials
 - https://fd.io/
 - https://fd.io/latest/whitepapers/

CSIT Resources

Project

- Wiki pages: https://wiki.fd.io/view/CSIT
- Meetings: https://wiki.fd.io/view/CSIT/Meeting
- Mailing list: <u>csit-dev@lists.fd.io</u>

CDash

• Dashboard: https://csit.fd.io

Previous Release Reports

• Wiki: https://wiki.fd.io/view/CSIT#Test_Reports

Source Code

- Git repo: https://git.fd.io/csit
- Github mirror: https://github.com/FDio/csit
- Gerrit reviews: https://gerrit.fd.io

Standalone libraries

- Speeding up binary search using shorter measurements: https://pypi.org/project/MLRsearch/
- Locating changes in time series by grouping results: https://pypi.org/project/jumpavg/

Q&A

