ANALYTIC GEOMETRY, PROBLEM SET 13

- 1. Find the intersection points between the line $d_2: 2x-y-10=0$ and the hyperbola $\mathcal{H}: \frac{x^2}{20} - \frac{y^2}{5} - 1 = 0.$
- 2. Find the area of the triangle determined by the asymptotes of the hyperbola $\mathcal{H}: \frac{x^2}{4}$ $\frac{y^2}{9} - 1 = 0$ and the line d: 9x + 2y - 24 = 0.
- 3. Find the equation of the parabola having the focus F(-7,0) and the director line x-7=0.
- **4.** Find the equation of the tangent line(s) to:
 - (1) the hyperbola $\mathcal{H}: \frac{x^2}{20} \frac{y^2}{5} 1 = 0$, orthogonal to the line $d_2: 4x + 3y 7 = 0$; (2) the parabola $\mathcal{P}: y^2 8x = 0$, parallel to $d_3: 2x + 2y 3 = 0$.
- **5.** Find the equations of the tangent line(s) to:
 - (1) the hyperbola $\mathcal{H}: \frac{x^2}{3} \frac{y^2}{5} 1 = 0$ passing through $P_2(1, -5)$; (2) the parabola $\mathcal{P}: y^2 36x = 0$, passing through $P_3(2, 9)$.
- **6.** Consider the hiperbola $x^2 \frac{y^2}{4} = 1$ and denote by F_1, F_2 its foci. Find the locus of all points M, situated on the hyperbola such that
 - (a) The angle $\angle F_1 M F_2$ is right;
 - (b) The angle $\angle F_1 M F_2$ is equal to 60°.
- 7. From the point P(-3,12) we draw tangents to the parabola $y^2 = 10x$. Compute the distance from the point P to the chord of the parabola which is formed by the two contact points.
- 8. Find a relation between the coordinates of the point $P_0(x_0, y_0)$ such that there is no tangent from this point to the hiperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$.
- **9.** Write down the formula for the isometry $Rot_{90}: \mathcal{E}_2 \to \mathcal{E}_2$ which represents the rotation of center O (origin) and angle 90° in the trigonometric sense. Find the equation of the image under Rot₉₀ of:
 - (a) The hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$; (b) The parabola $y^2 8x = 0$.

Do the same for $t_{\overline{v}} \circ \text{Rot}_{90}$, where $t_{\overline{v}} : \mathcal{E}_2 \to \mathcal{E}_2$ is the translation by $\overline{v}(1,0)$.

9. In the LORAN (Long Range Navigation) radio navigation system, two radio stations located at A and B transmit simultaneous signals to a ship or an aircraft located at P. The onboard computer converts the time difference in receiving these signals into a distance difference |PA| - |PB|, and this, according to the definition of a hyperbola, locates the

Date: January 8, 2022.

ship or aircraft on one branch of a hyperbola (see the figure). Suppose that station B is located 400 mi due east of station A on a coastline. A ship received the signal from B 1200 micro-seconds (μs) before it received the signal from A.

- (a) Assuming the radio signals travel at a speed of 0.2 miles per μs , find an equation of the hyperbola on which the ship lies.
 - (b) If the ship is due north of B, how far off the coastline is the ship?

