

MEMÓRIA INTERNA OU PRINCIPAL

Nos primeiros computadores, a forma mais comum de armazenamento de acesso aleatório para a memória principal do computador empregava uma matriz de loops ferromagnéticos em forma de anel, chamados de núcleos.

MEMÓRIA INTERNA OU PRINCIPAL

Logo, a memória principal normalmente era chamada de núcleo (ou core, em inglês), um termo que persiste até hoje.

Com o advento da microeletrônica, as memórias semicondutoras superaram de longe a memória de núcleo magnético.

Hoje, o uso de chips semicondutores para a memória principal é quase universal.

ELEMENTOS DAS MEMÓRIAS SEMICONDUTORAS

Como o valor de um bit tem pouco significado, as memórias são estruturadas e divididas em conjuntos ordenados de bits, denominados **células**, cada uma podendo armazenar uma parte da informação.

São propriedades compartilhadas entre as células de memória:

- Apresentam dois estados estáveis (ou semiestáveis), que podem ser usados para representar o binário 1 e 0;
- São capazes de ser escritas (pelo menos uma vez), para definir o estado;
- São capazes de ser lidas, para verificar o estado.

ELEMENTOS DAS MEMÓRIAS SEMICONDUTORAS

Iremos explorar as memórias de acesso aleatório (RAM), ou seja, palavras individuais da memoria são acessadas diretamente por meio da logica de **endereçamento interno**.

TIPOS DE MEMÓRIAS DE SEMICONDUTORES

Tipo de memória	Categoria	Apagamento	Mecanismo de escrita	Volatilidade	
Memória de acesso aleatório (RAM)	Memória de leitura-escrita	Eletricamente, em nível de byte	Eletricamente	Volátil	
Memória somente de leitura (ROM)			Máscaras		
ROM programável (PROM, do inglês programmable ROM)	Memória somente de leitura	Não é possível		Não volátil	
PROM apagável (EPROM, do inglês erasable PROM)		Luz UV, nível de chip			
PROM eletricamente apagável (EEPROM, do inglês electrically erasable PROM)	Memória principalmente de leitura	Eletricamente, nível de byte	Eletricamente		
Memória flash		Eletricamente, nível de bloco			

CARACTERÍSTICAS DAS MEMÓRIAS RAM

- A possibilidade de ler dados da memória e escrever novos dados na memória de modo fácil e rápido. Tanto a leitura quanto a escrita são realizadas por meio de sinais elétricos.
- Outra característica distinta da RAM é que ela é volátil. Uma RAM precisa receber uma fonte de alimentação constante.
- RAM só pode ser usada como armazenamento temporário. As duas formas tradicionais de RAM usadas nos computadores são DRAM e SRAM.

- A tecnologia da RAM é dividida em duas tecnologias: dinâmica e estática.
- Uma RAM dinâmica (DRAM) é feita com células que armazenam dados como carga em capacitores. A presença ou ausência de carga em um capacitor é interpretada como um binário 1 ou 0.
- Como os capacitores possuem uma tendência natural para descarga, as RAM dinâmicas exigem recarga periódica ("refresh" de memória) para manter o dado armazenado.

O termo dinâmica refere-se a essa tendência de perda da carga armazenada, mesmo com energia aplicada continuamente.

- A tecnologia da RAM é dividida em duas tecnologias: dinâmica e estática.
- Uma RAM dinâmica (DRAM) é feita com células que armazenam dados como carga em capacitores. A presença ou ausência de carga em um capacitor é interpretada como um binário 1 ou 0.
- Como os capacitores possuem uma tendência natural para descarga, as RAM dinâmicas exigem recarga periódica ("refresh" de memória) para manter o dado armazenado.

O termo dinâmica refere-se a essa tendência de perda da carga armazenada, mesmo com energia aplicada continuamente.

O transistor atua como uma chave que e fechada (permitindo o fluxo da corrente) se uma voltagem for aplicada a linha de endereco e e aberta (sem fluxos de corrente) se nenhuma voltagem estiver presente na linha de endereco.

MEMÓRIAS RAM ESTÁTICAS (SRAM)

- A RAM estática (SRAM) é um dispositivo que usa os mesmos elementos lógicos usados no processador.
- Em uma SRAM, os valores binários são armazenados por meio de configurações das portas lógicas de um flip-flop tradicional.
- Uma RAM estática manterá seus dados enquanto houver energia fornecida a ela.

MEMÓRIAS RAM ESTÁTICAS (SRAM)

Quatro transistores (T₁, T₂, T₃, T₄) são cruzados em um arranjo que produz um estado logico estável. No estado logico 1, o ponto C₁e alto e o ponto C₂e baixo; nesse estado, T₁e T₄estão desligados e T₂e T₃estão ligados. No estado logico 0, o ponto C₁e baixo e o ponto C₂e alto; nesse estado, T₁e T₄estão ligados e T₂e T₃ estão desligados.

MEMÓRIAS RAM ESTÁTICAS (SRAM)

SRAM VS DRAM

SRAM	DRAM		
O armazenamento de dados necessita de uma fonte contínua de energia.	O armazenamento de dados dura por poucos milissegundos quando é energizado.		
Usa um vetor de 6 transistores por cada célula de memória.	Usa um único transistor e um capacitor por cada célula de memória.		
Não necessita de refresh na célula de memória.	Necessita de refresh na célula de memória depois de cada leitura de um capacitor.		
O acesso aos dados é rápido.	O acesso aos dados é lento.		
Consome mais energia.	Consome pouca energia.		
Baixa densidade de memória por chip.	Alta densidade de memória por chip.		
Custo por bit é alto.	O custo por bit é baixo.		

TIPOS DE MEMÓRIAS ROM

- Como o nome sugere, uma memória somente de leitura (ROM, do inglês *Read-Only Memory*) contém um padrão permanente de dados, que não pode ser mudado.
- A ROM não é volátil, logo, nenhuma fonte de energia é necessária para manter os valores dos bits na memória.
- Embora seja possível ler uma ROM, não é possível escrever algo novo nela.
- Essa memória é utilizada normalmente para: bibliotecas de funções de uso frequente; programas do sistema; tabelas de função.

TIPOS DE MEMÓRIAS ROM

 Uma ROM é criada como qualquer outro chip de circuito integrado, com os dados realmente gravados fisicamente no chip como parte do processo de fabricação.

Porém isso gera dois problemas:

- A etapa de inserção de dados inclui um custo fi xo relativamente grande, não importa se são fabricadas uma ou milhares de cópias de determinada ROM.
- Não há espaço para erro. Se um bit estiver errado, o lote inteiro de ROM precisa ser descartado.

MEMÓRIAS PROM

- A ROM programável (PROM) é não volátil e pode ser escrita apenas uma vez.
- Para a PROM, o processo de escrita é realizado eletricamente, e pode ser realizado por um fornecedor ou cliente após a fabricação original do chip.
- Um equipamento especial é necessário para o processo de escrita ou "programação".
- As PROM oferecem flexibilidade e conveniência.
- A ROM continua sendo atraente para a produção em grandes volumes.

TIPOS DE MEMÓRIAS PROM

- Outro tipo é a memória principalmente de leitura, que é útil para aplicações em que operações de leitura são muito mais frequentes do que operações de escrita, mas para as quais o armazenamento não volátil é necessário.
- Existem três formas comuns de memória principalmente de leitura:
 - EPROM (leitura programável e apagável)
 - EEPROM (leitura programável e apagável eletricamente)
 - Memória flash

MEMÓRIAS EPROM

- A EPROM é lida e escrita eletricamente, assim como a PROM.
- Porém, antes de uma operação de escrita, todas as células de armazenamento precisam ser apagadas para retornar ao mesmo estado inicial, pela exposição do chip empacotado à radiação ultravioleta.
- Cada apagamento pode levar até 20 minutos.
- É mais cara que a PROM.
- Tem a capacidade de múltiplas atualizações.

MEMÓRIAS EEPROM

- Essa é uma memória principalmente de leitura que pode ser escrita a qualquer momento sem apagar o conteúdo anterior; somente o byte ou os bytes endereçados são atualizados.
- A operação de escrita leva muito mais tempo do que a operação de leitura, na ordem de muitas centenas de microssegundos por byte.
- A EEPROM combina a vantagem da não volatilidade com a flexibilidade de ser atualizável no local, usando as linhas comuns de controle, endereço e dados do barramento.

MEMÓRIAS FLASH

- A memória fl ash (que tem esse nome devido à velocidade com que pode ser reprogramada).
- Introduzida inicialmente em meados da década de 1980, a memória flash é intermediária entre a EPROM e a EEPROM tanto no custo quanto na funcionalidade.
- Uma memória flash inteira pode ser apagada em um ou alguns segundos, o que é muito mais rápido que a EPROM.
- A memória flash recebeu esse nome porque o microchip e organizado de modo que uma seção das células de memoria e apagada em uma única ação, ou "flash".

MEMÓRIAS DDR

- A sigla DDR vem de Double-Data-Rate (Taxa Dupla de Transferência). A memória DDR permite que dois dados sejam transferidos ao mesmo tempo.
- Uma DDR-SDRAM é uma memória do tipo SDRAM que permite que dois dados sejam transferidos no mesmo ciclo de clock.
- O módulo de memória do tipo DDR-SDRAM é, teoricamente, duas vezes mais rápido que um SDRAM comum.

PADRÃO DE MEMÓRIA - DDR

DDR 3

DDR 4

DIFERENÇAS ENTRE OS PADRÕES DDR

DIFERENÇAS ENTRE OS PADRÕES DDR

DDR SDRAM Standard	Internal rate (MHz)	Bus clock (MHz)	Prefetch	Data rate (MT/s)	Transfer rate (GB/s)	Voltage (V)
SDRAM	100-166	100-166	1n	100-166	0.8-1.3	3.3
DDR	133-200	133-200	2n	266-400	2.1-3.2	2.5/2.6
DDR2	133-200	266-400	4n	533-800	4.2-6.4	1.8
DDR3	133-200	533-800	8n	1066-1600	8.5-14.9	1.35/1.5
DDR4	133-200	1066-1600	8n	2133-3200	17-21.3	1.2

REVISÃO

REFERÊNCIAS

STALLINGS, William. **Arquitetura e organização de computadores: projeto para o desempenho**. 8 ed. São Paulo: Prentice Hall: Person Education, 2010. 624 p. ISBN 9788576055648.

TANENBAUM, Andrew S. **Organização estruturada de computadores**. 5. ed São Paulo: Pearson Prentice Hall, 2007. 449 p. ISBN 9788576050674.

VÍDEOS

Memória DRAM?

[Disponível em https://youtu.be/rt2TZNb3400]

Memória SRAM

[Disponível em https://youtu.be/CZMpkdt_UH8]

Memória RAM DDR4 OU DDR3?

[Disponível em https://youtu.be/yx5ukKPMyql]

O que é a memória RAM?

[Disponível em https://youtu.be/fFN9tKUJ81E]

