DS N°2 (le 07/10/2017)

SUJET n°1 (3 exercices)

EXERCICE 1 (extrait de CCP MP 2011)

Pour $A \in \mathcal{M}_3(\mathbb{R})$, on note $C(A) = \{M \in \mathcal{M}_3(\mathbb{R}) \mid AM = MA\}$ le commutant de la matrice A.

- 1. Démontrer que, pour $A \in \mathcal{M}_3(\mathbb{R})$, C(A) est un espace vectoriel.
- **2.** Démontrer, en détaillant, que la matrice $A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$ est semblable à la matrice

$$T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

On précisera une matrice de passage à coefficients entiers, que l'on notera P, et on calculera P^{-1} .

- 3. Déterminer le commutant $C\left(T\right)$ de la matrice T. Déterminer sa dimension.
- **4.** Démontrer que l'application $M \mapsto P^{-1}MP$ est un automorphisme de l'espace vectoriel $\mathcal{M}_3(\mathbb{R})$. Que peut-on en déduire pour la dimension de C(A)?
- **5. a)** Démontrer que la famille $\{I_3, A, A^2\}$ est libre dans $\mathcal{M}_3(\mathbb{R})$.
 - **b)** Démontrer alors que $C(A) = \text{Vect}(\{I_3, A, A^2\})$.
 - c) Ce résultat reste-t-il vrai pour toute matrice $A \in \mathcal{M}_3(\mathbb{R})$?

$\mathbf{EXERCICE}$ 2 (extrait de E3A PSI 2017, Maths 1)

Dans tout l'exercice, n désigne un entier supérieur ou égal à 3. On note $E = \mathbb{R}_{n-1}[X]$ et $\mathcal{B} = (1, X, \dots, X^{n-1})$ sa base canonique.

Soient a_1, \ldots, a_n , n réels vérifiant : $a_1 < a_2 < \cdots < a_n$.

- **1.** Montrer que l'application : $T: P \mapsto (P(a_1), \dots, P(a_n))$ est un isomorphisme de E dans \mathbb{R}^n .
- **2.** On note $\mathcal{E} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n et pour tout $i \in [1, n]$, on note $L_i = T^{-1}(e_i)$, c'est-à-dire l'unique polynôme dont l'image par T est e_i .

Montrer que $\mathcal{B}' = (L_1, \ldots, L_n)$ est une base de E puis déterminer les coordonnées d'un polynôme P quelconque de E dans cette base.

Dans la suite de l'exercice, on note $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$ la matrice de passage de la base \mathcal{B} à la base \mathcal{B}'

- **3. Dans cette question uniquement**, on suppose que n = 3, $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$.
 - a) Calculer les polynômes L_1 , L_2 , L_3 et expliciter la matrice M.
 - b) En utilisant la question 2, déterminer tous les polynômes P de $\mathbb{R}_2[X]$ vérifiant :

$$P(X) = P(0) + P(1)X + P(2)X^{2}.$$

- 4. On revient au cas général.
 - a) Montrer que M est inversible. Calculer son inverse. (On pourra utiliser la question 2)
 - b) Établir la relation : $\sum_{i=1}^{n} L_i = 1$.
 - c) Montrer que l'on a : $\sum_{i=1}^{n} m_{1,j} = 1$. Montrer ensuite que pour tout $i \in [2, n]$, $\sum_{i=1}^{n} m_{i,j} = 0$.
 - d) Lorsque $a_1 = 1$, déterminer la somme des coefficients de chaque colonne de M.
- **5. Dans cette question,** on suppose que $n \ge 4$ et que $a_1 = 0, a_2 = 1$ et $a_3 = 2$. Soit u l'endomorphisme de E défini par :

$$\forall P \in E, u(P) = Q$$
 avec $Q(X) = P(0)L_1(X) + P(1)L_2(X) + P(2)L_3(X)$.

- a) Déterminer Ker(u) et Im(u). Sont-ils supplémentaires?
- b) Montrer que u est une projection que l'on caractérisera.

EXERCICE 3 (extrait de E3A PSI 2017, Maths 2)

Dans tout le problème, on se donne un entier naturel $n \ge 2$ un entier et on note :

- $\mathcal{E} = \mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n à coefficients réels;
- O_n la matrice nulle de $\mathcal E$ et I_n la matrice identité;
- ${}^{t}A$ la transposée d'un élément de \mathcal{E} ;
- Pour tout couple $(i,j) \in [1;n]^2$, $E_{i,j}$ désigne la matrice de \mathcal{E} dont tous les coefficients sont nuls sauf celui de la ligne i et de la colonne j qui est égal à 1;
- $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de \mathcal{E} ;
- \mathcal{N} l'ensemble des matrices **nilpotentes** de \mathcal{E} , c'est à dire des $A \in \mathcal{E}$ telles qu'il existe un entier p avec $A^p = O_n$.

Questions de cours

- 1. Quelle est la dimension de \mathcal{E} ? En donner sans justification une base.
- **2.** Soit $(i, j, k, \ell) \in [1; n]^4$. Calculer le produit des matrices $E_{i,j}$ et $E_{k,\ell}$. (On montrera en particulier que ce produit est nul lorsque $j \neq k$).

I. Propriétés élémentaires

Soit A une matrice de $\mathcal N$

- 1. La matrice A peut-elle être inversible? Justifier votre réponse.
- 2. Montrer que le sous-espace vectoriel de \mathcal{E} engendré par A, noté $\operatorname{Vect}(A)$, est inclus dans \mathcal{N} .
- **3.** Vérifier que ${}^tA \in \mathcal{N}$.
- **4.** Montrer que si M est semblable à A, alors $M \in \mathcal{N}$.
- **5. a)** Soit p le plus petit entier naturel tel que $A^p = O_n$, et soit $X_0 \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $A^{p-1}X_0 \neq 0$. Montrer que la famille $\{X_0, AX_0, \dots, A^{p-1}X_0\}$ est libre. Que peut-on en déduire pour p?
 - b) En déduire qu'une condition nécessaire et suffisante pour que $M \in \mathcal{E}$ soit nilpotente est que $M^n = O_n$.

On pourra admettre ce résultat et l'utiliser dans la suite du problème.

- **6.** Soient $B, C \in \mathcal{E}$.
 - a) On suppose que $BC \in \mathcal{N}$. Prouver alors que $CB \in \mathcal{N}$.
 - b) Ici, on suppose de plus que $B \in \mathcal{N}$ et AB = BA. Montrer que $AB \in \mathcal{N}$ et que $A + B \in \mathcal{N}$.
- 7. Soient $A \in \mathcal{N}$, $\alpha \in \mathbb{R}^*$ et $M = I_n + \alpha A$. Montrer que M est inversible et calculer son inverse à l'aide des puissances de la matrice A. (On pourra utiliser une suite géométrique.)

II. Exemples

Dans cette partie, M est une matrice de \mathcal{E} .

1. Dans cette question, on prend $M = (m_{i,j}) \in \mathcal{E}$ définie par : $\forall (i,j) \in [1;n]^2$, $m_{i,j} = \begin{cases} 0 & \text{si } i \geq j \\ 1 & \text{sinon} \end{cases}$, c'est-à-dire

$$M = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

- a) Démontrer, en détaillant, que la matrice M appartient à \mathcal{N} .
- **b)** On pose $S = M + {}^tM$. Calculer $\det(S)$. A-t-on $S \in \mathcal{N}$? Montrer que $S^2 \in \operatorname{Vect}(I_n, S)$.
- c) $\mathcal N$ est-il un sous-espace vectoriel de $\mathcal E$?
- **2.** Dans cette question on prend n=2.
 - a) On suppose que M est de rang 1. Montrer que $M^2 = \operatorname{tr}(M)M$. En déduire une condition nécessaire et suffisante pour que M soit nilpotente.
 - b) Déterminer une matrice nilpotente de $\mathcal{M}_2(\mathbb{R})$ dont la diagonale n'est pas identiquement nulle.
 - c) Déterminer plus généralement l'ensemble de toutes les matrices nilpotentes de $\mathcal{M}_2(\mathbb{R})$.