UNIVERSIDADE FEDERAL DE MINAS GERAIS Sistemas Digitais Prof. Julio Conway

Sistema de Destravamento Presencial Sequencial

Cleber Vargas Borges Gabriel Machado de Castro Fonseca

1 Introdução

A eletrônica talvez seja considerada o maior avanço tecnológico do século XX. A sua evolução se deu de forma exponencial, sendo hoje em dia uma tecnologia acessível e praticamente onipresente. Enquanto no início lidávamos com componentes grandes, delicados e pouco eficientes, com o passar das décadas, foram-se criando alternativas menores, menos dispendiosas e muito mais rápidas.

Com o uso da eletrônica digital e as possibilidades surgidas com a miniaturização dos circuitos, foi possível criar máquinas programáveis que cabem em nossos bolsos e executam milhões de cálculos a mais por segundo do que os primeiros computadores a válvulas. A lógica digital permite uma extrema maleabilidade na solução de um problema, fazendo com que blocos construtivos simples componham um circuito complexo, projetado para lidar com uma situação específica.

O objetivo deste trabalho é o de demonstrar a modelagem de um circuito lógico seqüencial que funcione como um sistema de destravamento de um cofre. São necessárias 3 pessoas para se abrir o cofre, cada uma deve digitar seu código de acesso na ordem certa para que a porta se destrave. Ao identificar corretamente a primeira pessoa uma luz vermelha se acende, a segunda pessoa a ser identificada faz com que se acenda uma luz amarela e, finalmente, quando a terceira pessoa é identificada acende-se uma luz verde e a tranca é aberta por 4 segundos, retornando então ao estado inicial. Qualquer erro de identificação ou na ordem de entrada das senhas faz com que se retorne ao estado inicial.

2 Identificação dos Indivíduos

Definimos que as senhas seriam, conforme instruções do trabalho, G0, C7 e J2. Conforme tabela ASCII, a representação das senhas, considerando maiúscula e minúscula, seria conforme a tabela 1.

Senha												
$ \begin{array}{c c} \hline G0 \\ g0 \end{array} $	0	1	0	0	0	1	1	1	0	0	0	0
C7 c7	0	1	0	0	0	0	1	1	0	1	1	1
c7	0	1	1	0	0	0	1	1	0	1	1	1
J2	0	1	0	0	1	0	1	0	0	0	1	0
j2	0	1	1	0	1	0	1	0	0	0	1	0

Tabela 1: Codificação ASCII das senhas do sistema

Pode-se perceber que os números em destaque são redundantes para a identificação das senhas, uma vez que se repetem ou seguem um padrão óbvio, variando apenas um bit entre o caractere maiúsculo e minúsculo. Dessa forma podemos adotar apenas 6 bits para a letra e 3 bits para os números, uma vez que nenhuma senha possuí número maior que 8.

Na figura 1 pode-se ver os circuitos lógicos necessários para se identificar as senhas codificadas na tabela 1.

Figura 1: Lógica dos identificadores dos indivíduos

3 Máquina de Estados Finitos

O próximo passo da criação do sistema é a definição dos estados da máquina, para que possamos dimensionar as entradas, as saídas e as transições de estado, definindo em seguida o circuito lógico combinacional equivalente. Os estados da nossa máquina podem ser definidos conforme tabela 2. Com isso sabemos que os estados podem ser codificados usando 3 bits, que suportariam até 8 estados diferentes. A codificação deles pode ser vista na tabela 3.

A representação em forma de diagrama, com suas respectivas transições pode ser vista na figura 2. Pode-se perceber que a transição entre os estados só é feita quando os identificadores são identificados em certa ordem, no caso $X_a \to X_b \to X_c$. Com os estados codificados e as transições definidas podemos então montar a tabela verdade com as saídas e definir as equações booleanas necessárias para criarmos os circuitos lógicos que controlarão a FSM. A tabela 4 contém os valores de entrada e saída que representam nossa máquina de estados.

Estado	Descrição
0	Fechadura trancada, luzes apagadas, estado inicial
1	Fechadura trancada, luz vermelha acesa
2	Fechadura trancada, luzes vermelha e amarela acesas
3	Fechadura destrancada, todas as luzes acesas
4	Fechadura destrancada, todas as luzes acesas, 2 segundos passados
5	Fechadura destrancada, todas as luzes acesas, 4 segundos passados

Tabela 2: Descrição dos estados

Estado	S_0	S_1	S_2
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1

Tabela 3: Codificação dos estados da máquina

Figura 2: Diagrama de estados da FSM

4 Tabela Verdade

Tabela 4: Tabela verdade da máquina de estados

Entradas							Saídas						
Iden	tifica	dores	Est	t. At	ual	Prox. Estado Luzes							
X_a	X_b	X_c	S_0	S_1	S_2	N_0	N_1	N_2	Vm	Am	Ve		
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0	0	0	0		
0	0	0	0	1	0	0	0	0	0	0	0		
0	0	0	0	1	1	1	0	0	1	1	1		
0	0	0	1	0	0	1	0	1	1	1	1		
0	0	0	1	0	1	0	0	0	0	0	0		
0	0	0	1	1	0	0	0	0	0	0	0		
0	0	0	1	1	1	0	0	0	0	0	0		
0	0	1	0	0	0	0	0	0	0	0	0		
0	0	1	0	0	1	0	0	0	0	0	0		
0	0	1	0	1	0	0	0	0	0	0	0		
0	0	1	0	1	1	1	0	0	1	1	1		
0	0	1	1	0	0	1	0	1	1	1	1		
0	0	1	1	0	1	0	0	0	0	0	0		
0	0	1	1	1	0	0	0	0	0	0	0		
0	0	1	1	1	1	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0	0	0	0		
0	1	0	0	0	1	0	0	0	0	0	0		
0	1	0	0	1	0	0	0	0	0	0	0		
0	1	0	0	1	1	1	0	0	1	1	1		
0	1	0	1	0	0	1	0	1	1	1	1		
0	1	0	1	0	1	0	0	0	0	0	0		
0	1	0	1	1	0	0	0	0	0	0	0		
0	1	0	1	1	1	0	0	0	0	0	0		
0	1	1	0	0	0	0	0	0	0	0	0		
0	1	1	0	0	1	0	0	0	0	0	0		
0	1	1	0	1	0	0	0	0	0	0	0		
0	1	1	0	1	1	1	0	0	1	1	1		
0	1	1	1	0	0	1	0	1	1	1	1		
0	$\frac{1}{1}$	1 1	1	0	1	0	0	0	0	0	0		
0				1	0	0	0	0	0		0		
0	$\frac{1}{0}$	$\frac{1}{0}$	1 0	$\frac{1}{0}$	1 0	0	$\frac{0}{0}$	$\frac{0}{1}$	0	0	0		
1	0	0	0	0	1	0	0	0	0	0	0		
1	0	0	0	1	0	0	0	0	0	0	0		
1	0	0	0	1	1	1	0	0	1	1	1		
1	0	0	1	$\frac{1}{0}$	0	1	0	1	1	1	1		
1	0	0	1	0	1	0	0	0	0	0	0		
1	0	0	1	$\frac{0}{1}$	0	0	0	0	0	0	0		
1	0	0	1	1	1	0	0	0	0	0	0		
1	0	$\frac{0}{1}$	0	0	0	0	0	0	0	0	0		
1	$\frac{0}{0}$	$\frac{1}{1}$	0	$\frac{0}{0}$	1	0	0	0	0	0	0		
	<u> </u>	т		<u> </u>	1		U	U	U		U		

Tabela 4: Tabela verdade da máquina de estados

Entradas						Saídas						
Iden	tifica	Est	. At	ual	Pro	x. Es	tado	Luzes				
X_a	X_b	X_c	S_0	S_1	S_2	N_0	N_1	N_2	Vm	Am	Ve	
1	0	1	0	1	0	0	0	0	0	0	0	
1	0	1	0	1	1	1	0	0	1	1	1	
1	0	1	1	0	0	1	0	1	1	1	1	
1	0	1	1	0	1	0	0	0	0	0	0	
1	0	1	1	1	0	0	0	0	0	0	0	
1	0	1	1	1	1	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	1	0	1	0	1	1	0	
1	1	0	0	1	0	0	0	0	0	0	0	
1	1	0	0	1	1	1	0	0	1	1	1	
1	1	0	1	0	0	1	0	1	1	1	1	
1	1	0	1	0	1	0	0	0	0	0	0	
1	1	0	1	1	0	0	0	0	0	0	0	
1	1	0	1	1	1	0	0	0	0	0	0	
1	1	1	0	0	0	0	0	0	0	0	0	
1	1	1	0	0	1	0	0	0	0	0	0	
1	1	1	0	1	0	0	1	1	1	1	1	
1	1	1	0	1	1	1	0	0	1	1	1	
1	1	1	1	0	0	1	0	1	1	1	1	
1	1	1	1	0	1	0	0	0	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	1	1	1	0	0	0	0	0	0	