TÀI LIỆU LUYỆN THI OLYMPIC TOÁN SINH VIÊN

Phần I

Giải tích

1 Dãy số và hàm số

1.1 Tóm tắt lý thuyết

Đ/n 1.1. Dãy (a_n) đơn điệu tăng (tương ứng giảm) nếu $a_n \leq a_{n+1}, \ \forall n \in \mathbb{Z}^+$ (tương ứng \geq). Dãy tăng (hoặc giảm) gọi chung là đơn điệu.

Đ/n 1.2. Dãy (a_n) bị chặn trên (tương ứng dưới) nếu $\exists C, \ a_n \leq C, \ \forall n \in \mathbb{Z}^+$ (tương ứng \geq).

Đ/l 1.1. Dãy (a_n) tăng và bị chặn trên (tương ứng dưới) bởi C thì có giới hạn L và $u_n \leq L \leq C$, $\forall n \in \mathbb{Z}^+$ (tương ứng \geq).

Đ/l 1.2 (Nguyên lý kẹp). Cho các dãy (a_n) , (b_n) , (c_n) . Giả sử

a)
$$\exists n_0, \ a_n \leq b_n \leq c_n, \ \forall n \geq n_0; \ \ v\grave{a}$$

b)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$$

Khi đó
$$\lim_{n\to\infty} b_n = L$$
.

Đ/l 1.3 (Nguyên lý Cauchy). Dãy (a_n) hội tụ \Leftrightarrow nó là dãy cơ bản (dãy Cauchy):

$$\forall \varepsilon > 0, \ \exists n_0, \ \forall n, m > n_0, \ |a_n - a_m| < \varepsilon.$$

Đ/l 1.4 (Stolz). Cho hai dãy (a_n) , (b_n) . Giả sử

a)
$$\lim_{n\to\infty} b_n = \infty$$
; $v\dot{a}$

b)
$$\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = L$$

Khi đó
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$

H/q 1.1. Cho dãy số dương (a_n) . Khi đó $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L\Rightarrow\lim_{n\to\infty}\sqrt[n]{a_n}=L.$

HD. Áp dụng định lý Stolz với hai dãy (ln a_n) và (n).

Đ/I 1.5 (Đ/I trung bình Cesàro).
$$\lim_{n\to\infty} a_n = L \Rightarrow \lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = L$$

Chú ý 1.1. *Cho dãy* $a_{n+1} = f(a_n)$. *Xét hàm f* (*x*).

a) Giả sử
$$\alpha < f(x) < \beta$$
, $\forall x \in (\alpha, \beta)$. Khi đó $a_{n_0} \in (\alpha, \beta) \Rightarrow a_n \in (\alpha, \beta)$, $\forall n \geq n_0$.

- b) f'(x) > 0, $\forall x \in (\alpha, \beta) \Rightarrow d\tilde{a}y(a_n)_{n \geq n_0}$ tăng (tương ứng giảm) nếu $a_{n_0} \leq a_{n_0+1}$ (tương ứng \geq).
- c) f'(x) < 0, $\forall x \in (\alpha, \beta) \Rightarrow d\tilde{a}y \ ch\tilde{a}n \ (x_{2n}) \ don \ diệu \ và dãy lể <math>(x_{2n-1})$ cũng đơn điệu.

Gợi ý. (Quy nạp)

b) $a_{n+1} \ge a_n \Rightarrow a_{n+2} = f(a_{n+1}) \ge f(a_n) = a_{n+1}$

c)
$$g(x) = f[f(x)] \Rightarrow g'(x) = f'[f(x)]f'(x) > 0$$
, và $x_{n+2} = f(x_{n+1}) = f[f(x_n)] = g(x_n)$.

Chú ý 1.2. Cho f(x) liên tục tại a. Khi đó $\lim_{n\to\infty} x_n = a \Rightarrow \lim_{n\to\infty} f(x_n) = f(a)$.

Chú ý 1.3. Cho dãy (a_n) , xác định bởi $a_{n+1} = f(a_n)$ trong đó f là hàm liên tục. Khi đó $\lim_{n \to \infty} a_n = L \Rightarrow L = f(L)$.

Đ/l 1.6 (Nguyên lý ánh xạ co). *Cho dãy* (a_n) *xác định bởi* $a_{n+1} = f(a_n)$, $\alpha \leq a_0 \leq \beta$. *Giả sử*

a)
$$\alpha \leq f(x) \leq \beta$$
, $\forall x \in [\alpha, \beta]$

b)
$$\exists q \leq (0,1), |f(x) - f(y)| \leq q |x - y|, \forall x, y \in [\alpha, \beta].$$

Khi đó

a)
$$\lim_{n\to\infty} a_n = L \in [\alpha, \beta]$$
 và $L = f(L)$

b) Với n > 1

$$|a_n - L| \le \frac{q^n}{1 - q} |a_1 - a_0|$$

 $|a_n - L| \le \frac{q}{1 - q} |a_n - a_{n-1}|$

Chứng minh. a)
$$|a_{n+k} - a_n| = \left| \sum_{i=n+1}^{n+k} \left(a_i - a_{i-1} \right) \right| \le \sum_{i=n+1}^{n+k} |a_i - a_{i-1}|$$

$$|a_i - a_{i-1}| = \left| f \left(a_{i-1} \right) - f \left(a_{i-2} \right) \right| \le q |a_{i-1} - a_{i-2}| \le q^2 |a_{i-2} - a_{i-3}| \le \dots \le q^{i-1} |a_1 - a_0|$$

$$|a_{n+k} - a_n| \le \sum_{i=n+1}^{n+k} q^{i-1} |a_1 - a_0| = q^n \frac{1 - q^k}{1 - q} |a_1 - a_0| \le \frac{q^n}{1 - q} |a_1 - a_0| \xrightarrow{n \to \infty, k > 0} 0 \Rightarrow (a_n) \text{ là dãy Cauchy.}$$

Chú ý 1.4. Điều kiện (b) trong \not D/l 1.6 thỏa mãn nếu $|f'(x)| \le q < 1$, $\forall x \in [\alpha, \beta]$. Thật vậy theo định lý Lagrange, $\exists c \in (x, y)$, f(x) - f(y) = f'(c)(x - y), suy ra

$$|f(x) - f(y)| = |f'(c)| \times |x - y| < q|x - y|$$

Các dạng sau gồm Đ/l 1.7, M/đ 1.1 thì ít gặp hơn

Đ/I 1.7 (Phương pháp Newton trong giải tích số). *Cho dãy* (a_n) *xác định bởi* $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$, $a_0 \in [\alpha, \beta]$ trong đó

Nguyễn Đức Thịnh

a) f', f'' không đổi dấu trên $\left[\alpha,\beta\right]$; và

c) $f(a_0) f'' > 0$

b) $f(\alpha) f(\beta) < 0$; và

Khi đó

- a) $Day(a_n)$ tăng (tương ứng giảm) nếu f'f'' < 0 (tương ứng >)
- b) $\lim_{n\to\infty} a_n = L$, và L là nghiệm duy nhất của f trên $\left[\alpha,\beta\right]$

c)

$$|a_n - L| \le \frac{M}{2m} |a_n - a_{n-1}|^2, \ \forall n \ge 1$$

 $|a_n - L| \le \frac{|f(a_n)|}{m}, \ \forall n$

trong đó $M \ge |f''(x)|$, $0 < m \le |f'(x)|$, $\forall x \in [a, b]$

Chú ý 1.5 (Phương pháp Newton cải biên). *Nếu* $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_0)}$, thì các các mục trong Đ/l 1.7 vẫn đúng trừ kết luân (c).

M/đ 1.1 (Phương pháp dây cung trong giải tích số). *Cho dãy* (x_n) *xác định bởi* $a_{n+1} = a_n - \frac{f(a_n)}{f(a_n) - f(r)} (a_n - r)$, trong đó

a) f', f'' không đổi dấu trên $[x_0, r]$; và

c) f'f'' > 0 ứng với $x_0 < r$, và ngược lại

b) $f(x_0) f(r) < 0$; và

Khi đó

- a) Dãy (a_n) tăng (tương ứng giảm) nếu f'f'' > 0 (tương ứng <)
- b) $\lim_{n\to\infty} a_n = L$, và L là nghiệm duy nhất của f trên $[x_0, r]$

c)

$$|a_n - L| \le \left(\frac{M}{m} - 1\right) |a_n - a_{n-1}|^2, \ \forall n \ge 1$$
 $|a_n - L| \le \frac{|f(a_n)|}{m}, \forall n$

trong đó $0 < m \le |f'(x)| \le M, \ \forall x \in [a_0, r]$

1.2 Kiến thức bổ sung

1.2.1 Nguyên lý quy nap

Xét khẳng định S(n), $n \ge n_0$.

Dạng đơn giản Giả sử

- a) Khẳng định đúng tại $n = n_0$.
- b) Nếu khẳng định đúng **tại** n, $n \ge n_0$, thì cũng đúng tại n + 1.

Khi đó, khẳng định S(n) đúng $\forall n \geq n_0$.

Dang tổng quát Giả sử

- a) Khẳng định đúng với $n = n_0, n_0 + 1, ..., n_1$.
- b) Nếu khẳng định đúng **từ n_0 tới n**, $n \ge n_1$, thì cũng đúng tại n + 1.

Khi đó, khẳng định S(n) đúng $\forall n \geq n_0$.

Chú ý 1.6. Khi chứng minh S(n), chỉ cần giả thiết của S(n), S(n-1),..., và xa nhất là S(n-k), $k \ge 0$, thì $n_1 = n_0 + k$.

1.2.2 Khai triển Taylor, Maclaurin

1.3 Đề thi chính thức các năm

Vd 1.1 (2022). Cho dãy (u_n) xác định bởi $u_n = \sum_{k=1}^n \frac{1}{k!} = \frac{1}{1!} + \cdots + \frac{1}{n!}, n \ge 1.$

- a) Tìm tất cả các số nguyên dương n sao cho $u_n > \frac{3}{2}$.
- b) Chứng minh (u_n) hội tụ.
- c) (A) Chứng minh giới hạn của dãy số là một số vô tỷ.

HD. c) (Phương pháp phản chứng)

Giả sử
$$e = \frac{a}{b}$$
, $a, b \in \mathbb{Z}^+$ là số hữu tỷ. Xét $x = b! \left(e - \sum_{n=0}^b \frac{1}{n!} \right)$

1.
$$x = b! \left(\frac{a}{b} - \sum_{n=0}^{b} \frac{1}{n!} \right) = a(b-1)! - \sum_{n=0}^{b} \frac{b!}{n!} \in \mathbb{Z}$$

2.
$$x = b! \left(\frac{a}{b} - \sum_{n=0}^{b} \frac{1}{n!} \right) = b! \left(\sum_{n=0}^{\infty} \frac{1}{n!} - \sum_{n=0}^{b} \frac{1}{n!} \right) = \sum_{n=b+1}^{\infty} \frac{b!}{n!} > 0$$

3.
$$n \ge b + 1 \Rightarrow \frac{b!}{n!} = \frac{1}{(b+1)(b+2)\cdots n} \le \frac{1}{(b+1)^{n-b}}$$
, và nhỏ hơn thực sự nếu $n \ge b + 2$

$$\Rightarrow x = \sum_{n=h+1}^{\infty} \frac{b!}{n!} < \sum_{n=h+1}^{\infty} \frac{1}{(b+1)^{n-b}} = \sum_{k=1}^{\infty} \frac{1}{(b+1)^k} = \frac{\frac{1}{b+1}}{1 - \frac{1}{b+1}} = \frac{1}{b} \le 1$$

Vd 1.2 (2019). Cho dãy (x_n) xác định bởi $x_1 = 2019$, $x_{n+1} = \ln(1 + x_n) - \frac{2x_n}{2 + x_n}$. Chứng minh

a) Dãy (x_n) không âm.

b)
$$\exists c \in (0,1), |x_{n+1} - x_n| \le c |x_n - x_{n-1}|, \forall n \ge 2.$$

c) (x_n) có giới hạn hữu hạn. Tìm giới hạn đó.

Vd 1.3 (2018). Cho dãy (x_n) xác định bởi $x_1 = 2019$, $x_{n+1} = \frac{1}{2018}x_n^2 + \frac{2017}{2018}x_n$.

a) Chứng minh (x_n) tăng, không bị chặn trên.

b) Chứng minh
$$\frac{x_n}{x_{n+1}-1} = 2018 \left(\frac{1}{x_n-1} - \frac{1}{x_{n+1}-1} \right)$$

c)
$$Tim \lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{x_k}{x_{k+1} - 1}$$

Chú ý 1.7. Tổng quát cho $x_1 = a > 0$, $x_{n+1} = bx_n^2 + (1-b)x_n$ với 0 < b < 1.

Vd 1.4 (2017). Cho dãy (u_n) xác định bởi $u_1 = 1$, $u_{n+1} = \frac{1}{2}u_n^2 - 1$.

Bảng A: Chứng minh (u_n) hội tụ, và tìm $\lim_{n\to\infty} u_n$

Bảng B: Chứng minh

a)
$$-1 < u_n < 0, \forall n > 2$$

b) (u_n) có giới hạn, và giới hạn đó là $1-\sqrt{3}$

Vd 1.5 (2016). Cho dãy (u_n) xác định bởi $u_1 = a$, $u_{n+1} = u_n^2 - u_n + 1$.

- a) Tìm a để (u_n) hội tụ
- b) Tìm giới hạn của (u_n) khi nó hội tụ

Chú ý 1.8. *Tổng quát cho* $u_{n+1} = u_n + (u_n - b)^2$.

Vd 1.6 (2015). Cho dãy (a_n) xác định bởi $2a_{n+1} - 2a_n + a_n^2 = 0$, $n \ge 0$.

- a) Chứng minh (a_n) đơn điệu
- b) Cho $a_0 = 1$. Tim $\lim_{n \to \infty} a_n$
- c) Tìm tất cả giá trị của a_0 để (a_n) có giới hạn hữu hạn. Khi đó tìm $\lim_{n \to \infty} n a_n$

Vd 1.7 (2014). Cho dãy (u_n) xác định bởi $u_1 = 1$, $u_{n+1} = \sqrt{u_n^2 + a^n}$, $a \ge 0$. Tìm a để (u_n) hội tụ, và tìm giới hạn đó.

HD. Bình phương hệ thức rồi khử \rightarrow tính u_n^2 theo a

Vd 1.8 (2013). Cho dãy (x_n) xác định bởi $x_1 = a \in \mathbb{R}$, $(n+1)^2 x_{n+1} = n^2 x_n + 2n + 1$. Tìm $\lim_{n \to \infty} x_n$.

1.4 Luyện tập

Vd 1.9 (Olympic SV Bắc Mỹ).
$$x_n = \underbrace{\sqrt[3]{6 + \sqrt[3]{6 + \dots + \sqrt[3]{6}}}}_{n \mid \hat{a}_n} Tim \lim_{n \to \infty} 6^n (2 - x_n).$$

HD. 1.
$$x_1 = \sqrt[3]{6}$$
, $x_{n+1} = \sqrt[3]{6 + x_n}$

2.
$$f(x) = \sqrt[3]{6+x}$$
, $f'(x) = \frac{1}{3 \cdot \sqrt[3]{(6+x)^2}}$

3. Dự đoán
$$L = \lim_{n \to \infty} x_n = 2$$
: $L = f(L)$

4.
$$0 < x_n < 2, \ \forall n$$

5. (x_n) tăng

6.
$$L = 2$$

7.
$$2-x_n=f(2)-f\left(x_{n-1}\right)=f'(c)\left(2-x_{n-1}\right)<\frac{1}{3\cdot\sqrt[3]{(6+0)^2}}\left(2-x_{n-1}\right)$$

8. Đặt
$$q = \frac{1}{3 \cdot \sqrt[3]{36}} < \frac{1}{6} \Rightarrow 2 - x_n < q^{n-1} (1 - x_1) \Rightarrow 6^n (2 - x_n) = \frac{1 - x_1}{q} (6q)^n$$

Chú ý 1.9. *Tương tự với* $x_n = \underbrace{\sqrt{a + \sqrt{a + \dots + \sqrt{a}}}}_{n}$ *khi* $a \in \{2, 6, 12, 20\}$, *hoặc* $x_n = \underbrace{\sqrt[3]{a + \sqrt[3]{a + \dots + \sqrt[3]{a}}}}_{n}$ *khi* $a \in \{24, 60, 120\}$. *Riêng* $x_n = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{2} = 2\cos\frac{\pi}{2^{n+1}}$

Vd 1.10 (Olympic SV Bắc Mỹ). *Cho*
$$a_0 = a$$
, $x_1 = b$, $x_n = \left(1 - \frac{1}{n}\right) x_{n-1} + \frac{1}{n} x_{n-2}$. *Tìm* $\lim_{n \to \infty} x_n$.

HD. 1.
$$x_n - x_{n-1}$$

2. *x*_n

Vd 1.11. Cho dãy (x_n) xác định bởi $x_1 \in (0,1)$, $x_{n+1} = \ln(1+x_n)$. Tìm $\lim_{n\to\infty} nx_n$

HD. Dạng giống Vd 1.6 ý (c) □

Vd 1.12. Cho dãy (x_n) xác định bởi $x_0 = 1$, $x_{n+1} = x_n - \frac{x_n^2}{2002}$. Chứng minh $x_{2002} < \frac{1}{2}$.

Vd 1.13.
$$Tinh \lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{C_n^k}\right)^n$$

Nguyễn Đức Thịnh

2 Khai triển Taylor, Maclaurin

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o\left[(x - x_0)^n\right], \quad f \in C^n(a, b), \ x_0 \in (a, b)$$

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + o\left(x^n\right), \quad f \in C^n(a, b), \ 0 \in (a, b)$$

$$(1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \dots + \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} x^n + \dots, \quad -1 < x < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n!} + \dots, \quad -1 < x < 1$$

Vd 2.1. Chứng minh e là số vô tỷ.

HD.

Vd 2.2. Chứng minh π là số vô tỷ.

HD.