

Cambridge International AS & A Level

ΜΔΤΗΕΜΔΤΙΟ	CS.		9709/31
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

JC20 06_9709_31/FP © UCLES 2020

[Turn over

	of values of x		(-) -		<i>y</i> =				L .
		•••••	•••••	•••••					• • • • • •
•••••		•••••	••••••	•••••	•••••		•••••	•••••	•••••
•••••		•••••	•••••	•••••	•••••			•••••	• • • • • •
				•••••					•••••
•••••	••••••	•••••	•••••	•••••			••••••	•••••	• • • • • •
••••••		•••••	••••••	••••••	•••••	••••••	••••••	••••••	•••••
							•••••		• • • • • •
•••••		•••••	••••••	•••••	•••••		•••••	••••••	• • • • • •
				•••••					•••••
			•••••		••••••			•••••	• • • • • •
				•••••					•••••
				•••••					•••••
									• • • • • •
•••••	••••••	•••••	•••••	••••••	•••••		••••••	•••••	• • • • • •
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••

(a)	Expand $(2-3x)^{-2}$ in ascending powers of x , up to and including the term in x^2 , simplifying t coefficients.
(b)	State the set of values of x for which the expansion is valid.

the equat	ion for 0° ≤	$\theta \le 180^{\circ}$.							and hence	
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	•••••	
••••••		••••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	•••••	••••
										• • • •
••••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	••••••	•••••	••••
••••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	••••••	•••••	••••
			•••••							••••
•••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	••••••	••••••	••••
			•••••							••••
•••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	••••••	••••••	••••
			• • • • • • • • • • • • • • • • • • • •							••••
••••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	
										••••
••••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	
••••••	•••••	•••••	,	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	,
			•••••							
•••••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••
			•••••							
•••••	•••••	•••••		•••••	••••••	•••••	•••••	•••••	••••••	••••

(a)	Find the <i>x</i> -coordinate of this point, giving your answer correct to 2 decimal places.
(b)	Determine whether the stationary point is a maximum or a minimum.

[3]	Find the quotient and remainder when $2x^3 - x^2 + 6x + 3$ is divided by $x^2 + 3$.	(a)	5
••••••			
•••••			
••••••			

(b)	Using your answer to part (a), find the exact value of $\int_{1}^{3} \frac{2x^3 - x^2 + 6x + 3}{x^2 + 3} dx.$ [5]

6

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT, and by the minor arc AB. The area of the shaded region is equal to the area of the circle.

(a)	Show that x satisfies the equation $\tan x = \pi + x$.	[3]

This equation has obetween 1 and 1.4.	one root in the interval	$0 < x < \frac{1}{2}\pi$. Verify	by calculation that th	is root lies [2]
				•••••
••••••		••••••	•••••	•••••
Use the iterative for		$n^{-1}(\pi + x_n)$		
to determine the root	ot correct to 2 decimal		alt of each iteration to	
				[3]
				[3]
				[3]
				[3]
				[3]
				[3]
				[3]
				[3]
				[3]

7	Let $f(x) =$	$\cos x$
/	Let $f(x) =$	$1 + \sin x$

1	Find $\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} f(x) dx$. Give your answer in a simplified exact form.	
•		
•		
		••••
•		••••
•		••••
•		••••
•		•••••
•		••••
•		••••
•		• • • • •
•		••••
•		••••
•		•••••
•		•••••
•		•••••
•		•••••
•		••••
•		
•		
•		
•		
•		

(a)	By setting up and solving a differential equation, find the equation of the curve, expressing
	terms of x .

(b)	Describe what happens to y as x tends to infinity. [1]

	17
Wit	h respect to the origin O , the vertices of a triangle ABC have position vectors
	$\overrightarrow{OA} = 2\mathbf{i} + 5\mathbf{k}$, $\overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$.
(a)	Using a scalar product, show that angle <i>ABC</i> is a right angle. [3]
(b)	Show that triangle ABC is isosceles. [2]

1 1110	d the ex	act ien	gin oi i	ne per	penaic	cuiar i	rom <i>O</i>	to the	nne	nrougi	1 <i>B</i> an	ac.		[4
•••••	•••••	•••••	•••••		•••••	••••••	•••••	•••••		•••••		•••••	•••••	
••••	•••••	•••••			•••••	•••••	••••••	•••••		•••••		•••••		
••••	•••••	•••••			•••••	•••••	•••••	•••••	•••••			•••••	••••••	•••••
••••	•••••				•••••							•••••		
••••	•••••				•••••							•••••		
	•••••	•••••			•••••	•••••	•••••	••••••				•••••		
	•••••	•••••			•••••		•••••			•••••		•••••		•••••
••••	•••••	•••••			•••••		•••••					•••••		•••••
••••	•••••	•••••	•••••		•••••	•••••		•••••				•••••	•••••	
	•••••	•••••			•••••	•••••	•••••	•••••				•••••		
••••	•••••	•••••			•••••	•••••	•••••	•••••				•••••		
		•••••			•••••	•••••	•••••	•••••				•••••		
	•••••						•••••					•••••		
					•••••							•••••		
••••					•••••							•••••		
		•••••			•••••		•••••					•••••		
		•••••			•••••		•••••					•••••		
					•••••							•••••		
					•••••									
	•••••				•••••							•••••		
	•••••				•••••							•••••		
		••••												

10	(a)	The	complex number u is defined by $u = \frac{3i}{a+2i}$, where a is real.	
		(i)	Express u in the Cartesian form $x + iy$, where x and y are in terms of a . [3]]
				•
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{2}\pi$.	1
		(ii)	Find the exact value of a for which $\arg u^* = \frac{1}{3}\pi$. [3]]
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{3}\pi$. [3	
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{3}\pi$. [3]
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{3}\pi$. [3	
		(ii)	Find the exact value of a for which $\arg u^* = \frac{1}{3}\pi$. [3]	
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{3}\pi$. [3	
		(ii)	Find the exact value of a for which $\arg u^* = \frac{1}{3}\pi$. [3	
		(ii)]

numbers z satisfying the inequalities $|z-2i| \le |z-1-i|$ and $|z-2-i| \le 2$.

(i) On a sketch of an Argand diagram, shade the region whose points represent complex

(b)

	21
Calculate the least value of arg z for points in this region.	[2]
	•••
	•••
	•••
	•••
	•••
	•••
	•••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

老师微信: liuxue119118 (题目有修改过,请加微信确认是否完整,以免影响您的学习!