

Small-Worlds & Co

Master ACN Paris, France

Roadmap

Un peu d'histoires

Zoologie

Anneau de Watts et Strogatts (clustering)

Grille de Kleinberg (navigabilité)

SmallWorlds

Effet «petit monde» : le mème

Deux personnes se rencontrent...

- Elles se découvrent un ami commun
- Biais cognitif?
- Cause plus profonde ?
- Origine du mème : années 50 (Pool et Kochen)

SmallWorlds

Effet «petit monde»: les origines

Liens, Frigyes Karinthy, 1929

- ► La technologie réduit les distances sociales (village global)
- Proposition des «six degrés de séparation»

Un jeu fascinant naquit de cette discussion. L'un de nous suggéra de préparer l'expérience suivante afin de prouver que la population de la planète est plus proche ensemble maintenant qu'elle ne l'a jamais été dans le passé. Nous devrions sélectionner n'importe quelle personne des 1,5 milliard d'habitants de la planète, n'importe qui, n'importe où. Il paria que, n'utilisant pas plus de cinq individus, l'un d'entre eux étant une connaissance personnelle, il pourrait contacter les individus choisis en n'utilisant rien d'autre que le réseau des connaissances personnelles.

SmallWorlds October 15, 2014 – 4

Expérience de Milgram : interlude

- ► Stanley Milgram (1933–1984) : sociologue
- ► Expériences de Milgram sur la soumission (1960–1963)
 - ▶ 60% de réussite en moyenne
 - ▶ Pointe à 92.5% (37/40)
 - ► I comme lcare
 (http://www.youtube.com/watch?v=KmmLHAXtsKo)

Expérience de Stanley Milgram, 1967

- But : démontrer les «six degrés»
- Protocole :
 - ► Il faut envoyer une lettre (nom, métier, ville)
 - ▶ Transmis seulement de proche en proche

Des résultats contrastés

Première expérience : 60 personnes (50)

- Un routage en 3 sauts
- Routage moyen en 8 sauts

Des résultats contrastés

Première expérience : 60 personnes (50)

- ▶ Un routage en 3 sauts
- Routage moyen en 8 sauts
- 3 succès au total

Des résultats contrastés

- Expériences 2 et 3 : échecs (non publiés)
- Expérience 4 : 44/160
- ► Encore mieux par la suite (An Experimental Study of the Small World Problem, 1969).

Des résultats contrastés

SmallWorlds

Fin 90, Watts et Strogatz rebootent le petit-monde

- Réseaux sociaux plus faciles à obtenir
 - ► IMDB
 - Co-auteurs
 - **.** . . .
- Curiosité et criquets
- Approche math-info
- ► Collective dynamics of small-world networks, Nature, 1998

Effet «petit monde»: explosion

- Accès à des vrais réseaux sociaux
 - Facebook
 - Twitter
 - **.** . . .
- Enjeux économiques majeurs
- ▶ Domaine de recherche actif depuis 15 ans

Réseaux sociaux

Graphes représentant des interactions sociales (choix locaux).

Réseaux sociaux

Graphes représentant des interactions sociales (choix locaux).

Graphes de terrain

Graphes issus du monde réels

Réseaux sociaux

Graphes représentant des interactions sociales (choix locaux).

Graphes de terrain

Graphes issus du monde réels

Petit-mondes

Graphes avec certaines propriétés observées dans les réseaux sociaux (et dans certains graphes de terrain).

Réseaux sociaux

Graphes représentant des interactions sociales (choix locaux).

Graphes de terrain

Graphes issus du monde réels

Petit-mondes

Graphes avec certaines propriétés observées dans les réseaux sociaux (et dans certains graphes de terrain).

Tous les graphes ne sont pas des petits mondes

SmallWorlds

Réseaux sociaux

Graphes représentant des interactions sociales (choix locaux).

Graphes de terrain

Graphes issus du monde réels

Petit-mondes

Graphes avec certaines propriétés observées dans les réseaux sociaux (et dans certains graphes de terrain).

Tous les graphes ne sont pas des petits mondes

- Arbres généalogiques, organigrammes
- Rues de NY

SmallWorlds

Exemples de petits mondes

Réseaux sociaux

- Facebook
- Twitter
- ► Co-publication
 - ▶ acteurs → nombre de Kevin Beacon
 - ▶ chercheurs → nombre d'Erdös
- ▶ Web

Exemples de petits mondes

Graphes de terrain

- ► Réseau neuronal de C. Elegans
- Réseau de distribution électrique
- Réseau des aéroports
- DHTs

Exemples de petits mondes

Modèles

- Anneau de Watts et Strogatz
- Grille de Kleinberg
- etc etc

Propriétés des petits mondes

Six propriétés décrivent les petits mondes :

- beaucoup de sommets (n grand)
- ▶ Degré moyen faible, O(1) ou $O(\log(n))$
- ▶ Distances moyennes faibles : $O(\log n)$
- Distribution à aile lourde (heavy tail)
- un coef. de clustering élevé
- Navigabilité

Propriétés des petits mondes

Six propriétés décrivent les petits mondes :

- beaucoup de sommets (n grand)
- ▶ Degré moyen faible, O(1) ou $O(\log(n))$
- ▶ Distances moyennes faibles : $O(\log n)$
- Distribution à aile lourde (heavy tail)
- un coef. de clustering élevé
- Navigabilité

Pas toutes obligatoires :

- Minimum : taille, densité, diamètre, un de plus
- La plupart des réseaux sociaux possèdent les 5 premiers

Intuition : les propriétés viennent de la manière dont les connexions sont faites.

Propriétés des petits mondes

Un graphe aléatoire peu dense possède :

- ▶ un degré moyen faible : O(1)
- un coef. de clustering faible : $\simeq 0$
- des distances moyennes faible : O(log n) aussi ! (surprenant ?)

▶ n est grand

- ▶ *n* est grand
- Les connexions sont locales

- ▶ n est grand
- Les connexions sont locales
- La capacité de chaque nœud est limitée

- n est grand
- Les connexions sont locales
- La capacité de chaque nœud est limitée
- ▶ Nombre de Dunbar (148)

Faibles distances: intuition

Faibles distances: intuition

Aléatoire (Erdös-Rényi)

Faibles distances: intuition

- Aléatoire (Erdös-Rényi)
- Structure (arbre hiérarchique)

Aile lourde : chuuut !

Clustering: une définition

Clustering: une définition

- Pour chaque nœud, calculer la probabilité que 2 voisins se connaissent.
- Comparer avec un Erdös-Rényi équivalent

Clustering: une définition

Clustering: une définition

- Pour chaque nœud, calculer la probabilité que 2 voisins se connaissent.
- Comparer avec un Erdös-Rényi équivalent (p)

Clustering: intuition

Plusieurs modèles peuvent explique le clustering

Clustering: intuition

Plusieurs modèles peuvent explique le clustering

Clonage Les nouveaux vont se connecter à des nœuds et copier une partie de leurs contacts

Clustering: intuition

Plusieurs modèles peuvent explique le clustering

Clonage Les nouveaux vont se connecter à des nœuds et copier une partie de leurs contacts

Réseautage Partant d'un réseau existant, contacter les amis des amis (linkedin)

Clustering: intuition

Plusieurs modèles peuvent explique le clustering

Clonage Les nouveaux vont se connecter à des nœuds et copier une partie de leurs contacts

Réseautage Partant d'un réseau existant, contacter les amis des amis (linkedin)

Graphes géométriques II y a un espace topologiquem et la proximité renforce la connectivité

Clustering: intuition

Plusieurs modèles peuvent explique le clustering

Clonage Les nouveaux vont se connecter à des nœuds et copier une partie de leurs contacts

Réseautage Partant d'un réseau existant, contacter les amis des amis (linkedin)

Graphes géométriques II y a un espace topologiquem et la proximité renforce la connectivité

Graphes de cliques Le réseau provient d'un graphe bipartite sous-jacent (IMDB)

▶ Une distance faible, c'est intéressant

- Une distance faible, c'est intéressant
- ▶ Mais si les chemins ne peuvent être trouvés. . .

- Une distance faible, c'est intéressant
- ▶ Mais si les chemins ne peuvent être trouvés...
- ▶ Alors les lettres n'arrivent pas !

- Une distance faible, c'est intéressant
- Mais si les chemins ne peuvent être trouvés...
- Alors les lettres n'arrivent pas !
- ► Exemple: graphes Erdös-Rényi

- Une distance faible, c'est intéressant
- Mais si les chemins ne peuvent être trouvés...
- Alors les lettres n'arrivent pas !
- ► Exemple: graphes Erdös-Rényi

- ▶ Une distance faible, c'est intéressant
- ▶ Mais si les chemins ne peuvent être trouvés...
- ► Alors les lettres n'arrivent pas !
- Exemple: graphes Erdös-Rényi

Navigabilité

À partir de règles locales simples, n'importe quel nœud peut contacter n'importe quel autre nœud rapidement

- ▶ Une distance faible, c'est intéressant
- ▶ Mais si les chemins ne peuvent être trouvés...
- Alors les lettres n'arrivent pas !
- Exemple: graphes Erdös-Rényi

Navigabilité

À partir de règles locales simples, n'importe quel nœud peut contacter n'importe quel autre nœud rapidement Intuition : plus tard.

L'anneau de Watts et Strogatz

But du jeu

- Produire un modèle de petit-monde
- Focus sur clustering et diamètre

Hypothèses de travail

- Le clustering vient de l'ordre (localité)
- La proximité vient du chaos (raccourcis)
- Compromis entre les deux ?

SmallWorlds October 15, 2014 – 18

- Un grand anneau de nœuds
- ▶ Chaque sommet est relié à ses k plus proches voisins (4–10)
- ► Recablage : chaque arête est redirigée avec probabilité p
- ightharpoonup p = 0: graphe initial (clustering OK, distance pas OK)
- ightharpoonup p = 1: ERidal (distance OK, clustering pas OK)
- Existe-t-il une bonne valeur de p?

SmallWorlds October 15, 2014 – 19

Résultats

- Le diamètre s'écroule très vite
- ► Le clustering se maintient longtemps
- ▶ Une petite valeur de *p* suffit

Résultats

Sensibilité épidémique proche du diamètre

Impact

- ▶ Petit article de 2,5 pages dans Nature
- ▶ 15 ans de recherches en maths, info, socio, éco. . .

We hope that our work will stimulate further studies of small-world networks (...). Although small-world architecture has not received much attention, we suggest that it will probably turn out to be widespread in biological, social and made-made systems, often with important dynamical consequences.

SmallWorlds October 15, 2014 – 22

La grille de Kleinberg

But du jeu

- Un modèle pour comprendre Milgram
- Prouver des choses

Hypothèses de travail

- Les nœuds n'ont qu'une connaissance locale du graphe
- Topologie sous-jacente
- Routage glouton : j'envoie à mon «meilleur»

SmallWorlds October 15, 2014 – 23

▶ Une grille *nXn*, distance de Manhattan

- ▶ Une grille *nXn*, distance de Manhattan
- ▶ Chaque sommet est relié à ses voisins à distance p (p = 1)

- ▶ Une grille *nXn*, distance de Manhattan
- ▶ Chaque sommet est relié à ses voisins à distance p (p = 1)
- Raccourcis : chaque sommets est relié à q sommets (q=1) choisis aléatoirement avec probabilité $\equiv \frac{1}{d'}$

- ▶ Une grille *nXn*, distance de Manhattan
- lacktriangle Chaque sommet est relié à ses voisins à distance $p\ (p=1)$
- Raccourcis : chaque sommets est relié à q sommets (q=1) choisis aléatoirement avec probabilité $\equiv \frac{1}{d'}$
- Routage décentralisé (glouton par défaut)

- ▶ Une grille *nXn*, distance de Manhattan
- lacktriangle Chaque sommet est relié à ses voisins à distance $p\ (p=1)$
- Raccourcis : chaque sommets est relié à q sommets (q=1) choisis aléatoirement avec probabilité $\equiv \frac{1}{d'}$
- Routage décentralisé (glouton par défaut)
- Est-il possible de router vite ?

Résultats

- ▶ p = q = 1 (minimum), r = 2: le routage glouton prend en espérance un temps $O(\log^2(n))$.
- ▶ $0 \le r < 2$: quel que soit l'algo, le routage prend en espérance un temps $\Omega(f(p,q,r)n^{(2-r)/3})$.
- ▶ r > 2: quel que soit l'algo, le routage prend en espérance un temps $\Omega(f(p,q,r)n^{(2-r)/(r-1)})$.

Preuve interactive, cas r = 2

Borner saut vers un sommet selon sa distance

Preuve interactive, cas r = 2

- Borner saut vers un sommet selon sa distance
- ▶ Découper la grille en sphères, borner saut dans sphère

Preuve interactive, cas r = 2

- Borner saut vers un sommet selon sa distance
- Découper la grille en sphères, borner saut dans sphère
- ► Borner l'espérance intersphère

Preuve interactive, cas r = 2

- Borner saut vers un sommet selon sa distance
- Découper la grille en sphères, borner saut dans sphère
- Borner l'espérance intersphère
- ► Borner l'espérance totale

Cas $r \neq 2$

Mêmes idées mais avec les bornes inversées

- Mêmes idées mais avec les bornes inversées
- ▶ Plus technique, pas beaucoup plus compliqué

- Mêmes idées mais avec les bornes inversées
- ▶ Plus technique, pas beaucoup plus compliqué
- ightharpoonup r < 2: masse trop grande

- Mêmes idées mais avec les bornes inversées
- ▶ Plus technique, pas beaucoup plus compliqué
- r < 2: masse trop grande
 - ▶ On saute trop loin

Cas $r \neq 2$

- Mêmes idées mais avec les bornes inversées
- Plus technique, pas beaucoup plus compliqué
- r < 2: masse trop grande
 - On saute trop loin
 - Raccourcis inefficaces en approche finale

- Mêmes idées mais avec les bornes inversées
- ▶ Plus technique, pas beaucoup plus compliqué
- ightharpoonup r < 2: masse trop grande
 - On saute trop loin
 - Raccourcis inefficaces en approche finale
- ▶ r > 2 : masse trop concentrée

- Mêmes idées mais avec les bornes inversées
- ▶ Plus technique, pas beaucoup plus compliqué
- ightharpoonup r < 2: masse trop grande
 - On saute trop loin
 - Raccourcis inefficaces en approche finale
- ▶ r > 2 : masse trop concentrée
 - On saute trop court

Cas $r \neq 2$

- Mêmes idées mais avec les bornes inversées
- Plus technique, pas beaucoup plus compliqué
- ightharpoonup r < 2: masse trop grande
 - On saute trop loin
 - Raccourcis inefficaces en approche finale
- ▶ r > 2 : masse trop concentrée
 - On saute trop court
 - Raccourcis inefficaces au départ

Généralisations

- Tores
- Grilles générales
- Dimension quelconque

Conclusion sur Kleinberg

- Interprétation : valeur optimale de la distribution des raccourcis.
- ► En pratique : pas clair...
- ► Pour aller plus loin :
 - https://www.cs.cornell.edu/home/kleinber/swn.pdf
 - ▶ http:

//soict.hust.edu.vn/~vannk/MainPage/PODC04.pdf

Une mini-conclusion

Il n'y a pas de loi unique qui explique comment les liens se forment, mais la plupart des liens peuvent s'expliquer par au moins une raison simple : localité, hiérarchie, popularité...et hasard!

Une mini-conclusion

Il n'y a pas de loi unique qui explique comment les liens se forment, mais la plupart des liens peuvent s'expliquer par au moins une raison simple : localité, hiérarchie, popularité...et hasard!

Résultat : la plupart des réseaux sociaux sont des petits mondes, mais la plupart des modèles purs ne capturent qu'une partie des propriétés.

SmallWorlds October 15, 2014 – 30