Решения **теоретических ("малых") домашних заданий**

Математическая логика, ИТМО, M3232-M3239, весна 2023 года

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

13 апреля 2023 г.

Содержание

1	Равенства в аксимоматике Пеано	3
4	Вывод в формальной арифметике 4.1 Единственность нуля	4
5	Двухместные отношения	5

1. Равенства в аксимоматике Пеано

(a) $a \cdot b = b \cdot a$ (коммутативность умножения)

Как вводится умножение в аксиоматике Пеано?

$$a \cdot b = \begin{cases} 0 & b = 0 \\ a \cdot c + a & b = c' \end{cases} \tag{1.1}$$

Лемма 1. $a \cdot 0 = 0 \cdot a$

Доказательство. Индукция.

База: функциональная экстенсиональность.

Теорема 1.
$$a \cdot b = b \cdot a \tag{1.2}$$

Доказательство. Докажем по индукции по b при фиксированном a.

$$P(b) = a \cdot 0 = 0 \cdot a$$
 — лемма 1

База: $a \cdot b = b \cdot a$

Покажем

(b) ...

4. Вывод в формальной арифметике

4.1. Единственность нуля

Введём "предикат" (не предикат в смысле КИП) ψ (выражение со свободной переменной x):

$$(\exists q. q' = x) \lor x = 0 \tag{4.1}$$

 $\vdash \psi[x:=0]$, так как это $(\exists q.q'=0) \lor 0=0$, что доказуемо через схему 11: $(\forall a.a=a)[x:=a]$.

Теперь доказательство $\forall x.\psi \rightarrow \psi[x:=x']$, то есть что

$$\forall x. (\exists q. q' = x) \lor x = 0 \to (\exists q. q' = x') \lor x' = 0$$

 $\exists q.q'=x'$ докажем так:

(n)
$$x'=x'$$
 Генерализованное $a=a$ (n + 1) $(q'=x')[q:=x] \to \exists q.q'=x'$ схема 12 мР предыдущих

Последний штрих: применим аксиому об индукции:

$$\psi[x := 0] \& (\forall x . \psi \to \psi[x := x']) \to \psi.$$

и дважды MP: ψ , то есть $(\exists q.q'=x) \lor x=0$.

Генерализуем, применим к x: $(\exists q. q' = p) \lor p = 0$.

5. Двухместные отношения

(a) Полное отношение на \mathbb{N}^2 : формула $(x_1=x_1)\&(x_2=x_2)$ (некая заготовка на тавтологию, но со свободными переменными).

Если $\langle a_1,a_2\rangle\in\mathbb{N}$ (то есть всегда), покажем, что $\rho[x_1:=\overline{a_1}][x_2:=\overline{a_2}]$ доказуема.

На лекции мы доказали, что a=a. Не можем просто сказать, что на самом деле доказали для α , а не для a, так как у нас не схемы аксиом, а просто аксиомы. Зато можем воспользоваться выразительностью исчисления предикатов.

Допишем доказательство:

(n)	a = a	С лекции
(n + 1)	$B \vee \neg B \to a = a$	Ослабление
()	$B \lor \neg B \to \forall a.a = a$	Правило вывода для \forall
()	$B \vee \neg B$	Тавтология из полноты l
()	$\forall a.a = a$	МР двух предыдущих
()	$(\forall a.a = a) \to \overline{a_1} = \overline{a_1}$	Схема аксиом 11
()	$\overline{a_1} = \overline{a_1}$	МР двух предыдущих
()	$\overline{a_2} = \overline{a_2}$	Аналогично для $\overline{a_2}$
()	$(\overline{a_1} = \overline{a_1}) \to (\overline{a_2} = \overline{a_2}) \to (\overline{a_1} = \overline{a_1}) \& (\overline{a_2} = \overline{a_2})$	Введение $\&$
()	$(\overline{a_1} = \overline{a_1}) \& (\overline{a_2} = \overline{a_2})$	Дважды МР

КИВ

Для пустого множества пар, не входящих в отношение, верно всё, что угодно. ■

(b) Удивительно: выражение равенства — равенство.

Что для $a_1=a_2\vdash \overline{a_1}=\overline{a_2}$ — доказали на лекции + генерализация.

Покажем, что для $a_1 \neq a_2 \vdash \neg (\overline{a_1} = \overline{a_2}).$

Для этого достаточно прийти к противоречию из $\overline{a_1}=\overline{a_2}.$

Будем получать равенства с м Еньшим количеством штрихов по аксиоме A3, пока меньшее не станет нулём. То есть для каждого $i\in[1;\min{(a_1,a_2)}]$ будем добавлять такие строчки:

(k)
$$\overline{a_1-(i-1)} = \overline{a_2-(i-1)}$$
 Уже имеем это утверждение (k + 1)
$$\overline{a_1-i}' = \overline{a_2-i}' \to \overline{a_1-i} = \overline{a_2-i}$$
 АЗ MP k, k + 1

Теперь получили либо (...)'=0, либо 0=(...)'. В первом случае пришли к противоречию с A4 ($\neg a'=0$), во втором — ещё

применим аксиому $\alpha=\forall p. \forall q. p=q \rightarrow q=p$, подставив в неё $\alpha[p:=0][q:=(\ldots)']$

(c) Отношение «хотя бы один аргумент = 0»

Отношение такое: $x_1 \cdot x_2 = 0$.

- Для пары, где $a_2=0$, доказуемо, что $\overline{a_1}\cdot \overline{0}=0$:
 - (n) $x_1 \cdot 0 = 0$ Генерализованная А7

Для пары, где $a_1=0$, воспользуемся перестановочностью a и 0 при умножении.

• Если оба аргумента $\neq 0$, то по A3: $\neg\overline{a_1-1}'=0$ и $\neg\overline{a_2-1}'=0$. Для доказательства $\neg\overline{a_1}\cdot\overline{a_2}=0$ достаточно прийти к проти-

Выведем по 4c, что $p\cdot q=0 \to p=0 \lor q=0$. Тогда по МР с предположением: $p=0 \lor q=0$

Получим неверную формулу

воречию из $\overline{a_1} \cdot \overline{a_2} = 0$.