Final Project Presentation

Ricardo Oliveira Mario Rincon Richard Vo KC Kim

The problem

Stakeholders

Information accessed could potentially replace/ help scouters of various types of sports (i.e take large amounts of data and give output on prominent future stars) not just including basketball. Of course given that data is provided.

Context

Similarly to predicting a good wine using machine learning, we will create a model using methods learned in class to scout for future prominent potential stars going to the NBA. Using the data and the ncaa statistics for each player.

 Columns such as three pointers, games played, points etc.

Problem statement

Does a good performance in the NCAA correlate to a good performance in the NBA, using a player's stats from their NCAA career?

Datasets - Players(data.world), All_seasons, Games, Games_details, nba_players, rankings, teams. (7 total)

Players stats from their time playing for NCAA and NBA from 1947 to 2018

Personal info

Active years
Birthdate
College
Position
Weight
Height
Name

NCAA and NBA Performance

3 pts %
3 pts per game
Effective field goals %
Field goals %
Field goals per game
Free throw %
Free throw per game
Games
Points per game

Method

Data Cleaning

This task includes reading in the data as well as cleaning the data from dropping, renaming, and dealing with NaN values so we can apply prediction models

Prediction Models

We used Linear Regression with L2 Regularization,
Random Forest Regression,
Support Vector Machines,
and Neural Networks
algorithms to predict NBA
performance stats

Findings/Conclusions

Compare each method with evaluation metrics, such as MSE and R², from a test set to define the best algorithm to forecast basketball player performance based on NCAA and personal info

Data Cleaning

Load the dataset:

	active_from	active_to	birth_date	college	height	name	position	url	weight	NBA_3ptapg	 NCAA_3ptpg	NCAA_efgpc
0	1991	1995	June 24, 1968	Duke University	6-10	Alaa Abdelnaby	F-C	/players/a/abdelal01.html	240.0	0.0	 0.0	Nat
1	1969	1978	April 7, 1946	Iowa State University	6-9	Zaid Abdul- Aziz	C-F	/players/a/abdulza01.html	235.0	NaN	 NaN	Nat
2	1970	1989	April 16, 1947	University of California, Los Angeles	7-2	Kareem Abdul- Jabbar	С	/players/a/abdulka01.html	225.0	0.0	 NaN	Nah
3	1991	2001	March 9, 1969	Louisiana State University	6-1	Mahmoud Abdul- Rauf	G	/players/a/abdulma02.html	162.0	2.3	 2.7	NaN
4	1998	2003	November 3, 1974	University of Michigan, San Jose State University	6-6	Tariq Abdul- Wahad	F	/players/a/abdulta01.html	223.0	0.3	 NaN	NaN
4571	2018	2018	January 4, 1997	NaN	6-11	Ante Zizic	F-C	/players/z/zizican01.html	250.0	0.0	 NaN	NaN
4572	1983	1983	December 20, 1953	Kent State University	7-1	Jim Zoet	С	/players/z/zoetji01.html	240.0	0.0	 NaN	Nat
4573	1971	1971	June 7, 1948	Duquesne University	6-1	Bill Zopf	G	/players/z/zopfbi01.html	170.0	NaN	 NaN	Nat
4574	2017	2018	March 18, 1997	NaN	7-1	lvica Zubac	С	/players/z/zubaciv01.html	265.0	0.0	 NaN	NaN

Data Cleaning

Rename some of the NBA columns to be consistent in naming with names of NCAA columns:

```
In [4]: df = df.rename({'NBA fg%': 'NBA fgpct',
                        'NBA fg per game': 'NBA fgpg',
                        'NBA fga per game': 'NBA fgapg',
                        'NBA ft%': 'NBA ftpct',
                        'NCAA ft': 'NCAA ftpct',
                        'NBA ft per g': 'NBA ftpg',
                        'NBA fta p g': 'NBA ftapg',
                        'NBA q played': 'NBA games'
                        }, axis=1)
        # Lists of NBA and NCAA columns
        NBA columns = [c for c in df.columns if 'NBA' in c]
        NCAA columns = [c for c in df.columns if 'NCAA' in c]
        # Sort lists of columns to have more consistency later
        NBA columns.sort()
        NCAA columns.sort()
        # Move NBA efgpct to the end, because there will be no corresponding NCAA column
        NBA columns.remove('NBA efgpct')
        NBA columns.append('NBA efgpct')
```

Data Cleaning

Data cleaning

We can see that most of the columns contain null values. All values in the NCAA_efgpct column are null, therefore we can discard the whole column. There are 2598 non-null values in columns NCAA_games, NCAA_ppg and NCAA_ftpg. We will assume that players with null values in the NCAA_games column did not go to college and remove them completely from the dataset. Since we are interested in predicting performance in the NBA, we will also discard all rows for which at least one NBA column contains a missing value. The remaining missing values in the NCAA columns we will replace using the k-Nearest Neighbors approach - for each missing value, we will find the average value in that column of k other players that have most similar NCAA statistics.

```
In [5]: # Remove the all-null column
    df.drop('NCAA_efgpct', axis=1, inplace=True)
    NCAA_columns.remove('NCAA_efgpct')
    # Remove rows with null values in NCAA_games
    df = df[df['NCAA_games'].notnull()]
    # Remove rows with any of NBA values missing
    df = df[df[NBA_columns].notnull().all(axis=1)]
    # Use KNNImputer with 10 neighbors to impute missing values
    imputer = KNNImputer(n_neighbors=10)
    df[NCAA_columns] = imputer.fit_transform(df[NCAA_columns])
```

EDA and Visualization

Correlation Analysis

 We used a heat map in a correlation matrix to identify highly correlated features that could potentially identicate collinearity in the models

CAA_3ptapg	0.48	0.31	0.47	0.18	-0.27	0.11	-0.04	0.30	0.02	-0.02	0.13	-0.04
NCAA_fgapg NCAA_3ptpg NCAA_3ptpct NCAA_3ptapg	0.25	0.20	0.24	0.08	-0.17	0.04	-0.03	0.21	0.02	0.03	0.06	-0.04
NCAA_3ptpg N	0.48	0.31	0.47	0.18	-0.26	0.11	-0.04	0.31	0.02	-0.01	0.13	-0.03
NCAA_fgapg	0.12	0.09	0.12	0.46	0.03	0.43	0.33	0.19	0.34	0.23	0.42	0.02
NCAA_fgpct	-0.39	-0.30	-0.35	0.11	0.48	0.20	0.26	-0.15	0.21	0.25	0.17	0.26
NCAA_fgpg	-0.01	-0.00	-0.00	0.50	0.18	0.50	0.41	0.15	0.42	0.31	0.48	0.10
NCAA_ftapg	-0.03	-0.05	-0.04	0.34	0.15	0.35	0.48	0.06	0.46	0.23	0.37	0.07
NCAA_ftpct	0.33	0.29	0.33	0.10	-0.24	0.05	-0.06	0.51	0.04	-0.03	0.08	-0.07
NCAA_ftpg	0.06	0.04	0.06	0.35	0.08	0.34	0.43	0.19	0.45	0.21	0.37	0.04
NCAA_games	-0.10	-0.04	-0.09	-0.27	-0.10	-0.26	-0.25	0.01	-0.24	-0.10	-0.26	-0.07
NCAA_ppg	0.12	0.08	0.12	0.48	0.10	0.47	0.41	0.21	0.42	0.27	0.47	0.08
	NBA_3ptapg -	NBA_3ptpct -	NBA_3ptpg -	NBA_fgapg -	NBA_fgpct -	NBA_fgpg -	NBA_ftapg -	NBA_ftpct -	NBA_ftpg -	NBA_games -	NBA_ppg -	NBA_efgpct -

- 0.50

- 0.25

- -0.25

Predictive models

Evaluation metric	Linear regression	Random Forest	SVM	Neural Network		
R ² - mean	0.265	0.196	0.210	0.189		
R ² - std. dev.	0.084	0.067	0.083	0.099		
MSE - mean	0.668	0.730	0.718	0.735		
MSE - std. dev.	0.158	0.155	0.163	0.162		

Predictive models

Linear Regression

Linear Regression With L2 Regularization

Result & Conclusion

- High correlation indicates success to predict NBA stats from NCAA
- Collinearity within NCAA features points for redundancy and limitations in the models

Result & Conclusion

Linear Regression With L2 Regularization

```
[ ] # Use grid search cross-validation to find the best value of the paramater alpha
    model = GridSearchCV(Ridge(), param grid = {'alpha': np.linspace(0.0, 2.0, 21)})
    model.fit(X train, y train)
    print('Best alpha parameter:', round(model.best params ['alpha'], 2))
    y pred = model.predict(X test)
    stats_ridge = eval(y_test, y_pred, 'Linear Regression With L2 Regularization')
    Best alpha parameter: 0.7
    Average R2 score: 0.263
    R2 score standard deviation: 0.085
    Average MSE: 0.740
    MSE standard deviation: 0.082
                        NBA 3ptapg NBA 3ptpct NBA 3ptpg NBA fgapg \
    R2 score
                           0.405343
                                        0.175598
                                                   0.384402
                                                              0.243308
                           0.636253
                                                    0.653166
                                                              0.824364
    Mean Squared Error
                        NBA fgpct NBA fgpg NBA ftapg NBA ftpct NBA ftpg \
    R2 score
                         0.313851 0.257589
                                             0.285713
                                                        0.326494 0.263424
    Mean Squared Error 0.627809 0.784100
                                             0.790453 0.622194 0.816455
                        NBA games
                                    NBA ppg
                                            NBA_efgpct
    R2 score
                          0.12267 0.239419
                                               0.139324
                                              0.691901
    Mean Squared Error
                          0.82684 0.820584
                                      Linear Regression With L2 Regularization
```


Result & Conclusion

- Linear regression was the best predictor, but still with high MSE
- Every model had a high variance of accuracy of target columns
- We could try to improve the model by finding more independent features of NCAA performance

Thank you!

