Predicting Customer Satisfaction for Airlines with a Binary Classification Model

Sarah Lueling

Assignment Task

Goal

- The dataset contains an airline passenger satisfaction survey.
- Predict satisfaction of airline customer

Binary Classification

- Target: Satisfied or not satisfied/neutral
- Use 3 algorithms suitable to binary classification to predict satisfaction

Data

1 Summary of data

Data contains 129880 observations

80% in the training set

20% in the test set

Each classified as being satisfied (1) or dissatisfied/neutral (0)

56428 have it (1) 73452 don't have it (0)

24 features recorded for each observation

19 numerical

5 categorical

2 Appearance of data

	id	satisfaction_v2	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Seat comfort	Inflight entertainment		room service	Baggage handling	Checkin service	Inflight service	Cleanliness	Departure Delay in Minutes	Delay in Minutes
0 ′	117135	satisfied	Male	disloyal Customer	56	Personal Travel	Eco	369	0	2	3	3	1	5	3	3	4	3	0	0.0
1	72091	satisfied	Male	disloyal Customer	49	Personal Travel	Eco	2486	0	2	3	2	1	1	4	4	3	2	0	0.0
2	29663	satisfied	Male	disloyal Customer	55	Personal Travel	Eco	1448	0	3	3	3	3	5	3	2	3	3	0	0.0

- 3 Pre-processing steps taken
 - Dropping unnecessary columns
 - Change attribute names
 - Standardize scaling: Standardization of the quantitative features
 - Label Encoding

Classification Algorithms

LOGISTIC REGRESSION CLASSIFIER

DECISION TREE CLASSIFIER

K NEAREST NEIGHBOUR CLASSIFIER

Logistic Regression Classifier

Decision Tree Classifier

Hierarchically, it splits data into subsets which are then split again Explanation into the smaller subsets until they become "pure". Accuracy 0.9472 Score Tuning Parameter values : random_state = 42

KNN (K-Nearest Neighbors)

Its purpose is to use a database in which the data points are separated Explanation into several classes to predict the classification of a new sample point. Accuracy 0.934 Score Tuning Parameter values: (n_neighbors=3)

Comparison of Classification Models

	KNN	Logistic Regression	Decision Tree			
Pros	Easy to implement	Simple to implement	Requires less effort for data preparation Intuitive and easy to			
	Versatility	Less prone to over-fitting with regularization				
	Non-Linear Performance	techniques	explain			
Cons	Slow for large data sets	Not appropriate for non- linear problems	Can lead to overfitting of the data			
	As numbers of variables grow KNN algorithm struggles to predict the output of new data points	Need to pre-process data	For large dataset it's can become too complex to interpret and generalize			
		į				

Result Analysis

Results

- Best prediction were given by accuracy of the Decision Tree Classifier: 94%
- Three most important coefficients: "Seat comfort", "Inflight service", "Departure/arrival time" convenient"

Error Analysis

- Confusion Matrix:
 - F1 score is KNN model
 - Highest AUC of ROC curve
 - Overfit/underfit
- Analyse raw data
 - Data Collection
 - Improper splitting of training and test data

Thanks For Listening