THE DERIVATIVES

Dotni

If the fxn f is continous at X, then the tangent line to the graph of f at the Foint P(X1, f(X1)) is

DIs the line through P having slope m(Xi) given by

 $M(X_i) = \lim_{\Delta x \to 0} f(x_i + \Delta x) - f(x_i)$

If this limit exists

ii) Is the line $X = X_1$ if $\lim_{\Delta x \to 70} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x} = \infty$

Example

1 Find the slope of the tangent line

to the curve $y = x^2 - 4x + 3$ at the

point (x_1, y_1)

$\Delta \lambda \rightarrow 0$	
$M(X_i) = 1; m QX_1 + QX_1 - 4$	
Δ	
$m(x) = (im) 2x_1 \Delta x + \Delta x^2 - 4\Delta x$	
δX	
$m(x_1) = \lim_{x \to \infty} x_1^2 + 2x_1 \Delta x + \Delta x^2 - 4 \Delta x - x^2$	
DX -70	
$M(X_1) = 1$ $(X_1 + \Delta X)^2 - AX_1 + AAX_2 + 3 - X_2$	
$f(x_1+\Delta x) = (x_1+\Delta x)^2 - f(x_1+\Delta x) + 3$	
$f(x) = x^2 - 4x + 3$	
$(\mathcal{C}_{X_1},\mathcal{B}_{Y_1})$	1
Solo	ì

es Ho. 77,70 M(X)CMIVR g m (4) M (A) (4/8) Slope 11 DK-20 3 と × N N 11 10/0 10 2 (4) 4 2 7 2 Tongent + -6 DC-X 3 above Ø. DX-28 IM 4 of the C 0

$$M(\chi_i) = \frac{y - y_i}{x - \chi_i}$$

$$y = 4x - 13$$

- . Equation is
$$y = 4x - 13$$

Defn,

The normal line to the curve at the given point is the line perpendicular to the tangent line of that point

Lot L be a given line. To find the dope of L, we write its eqn in the slope intercept form which is y = -2x + 4/3 (slope-intercept form) then -2 will be over slope.

1 EXERCIJE

1 Find a dope of the tangent to the graph at the point P(X, y,)

b)
$$y = x^2 - 6x + 9$$

e)
$$y = X^2 - 3X$$

- a Find an egn of a tangent line and on egn of the normal ine to the given curve at the infrated points
 - a) $y = x^2 4x 5$ g(-2,7)
 - b) y= X2+2X+1 g (1,4)
 - c) $y = \frac{x^3}{8}$ (4,8)
 - $4) \quad y = 2x x^{3} \quad (-2, 4)$
 - e) y = 6/x; (3,2)
- Find an earn of the tangent line to the curve $y = 2x^2 + 3$ that is parallel to the line 8x - y + 3 = 0

4 Find an egn of the normal line to the curve $y = x^3 - 3x$ that is parallel to the line 2x + 18y - 9 = 0

Find an egn of the tangent line to the curve $y = \sqrt{4x-3}$ that is perpendiculate the line x + 2y - 11 = 0