Diszkrét matematika I.

Diszkrét matematika I.

3. előadás

Nagy Gábor nagygabr@gmail.com nagygabor@inf.elte.hu Mérai László diái alapján

Komputeralgebra Tanszék

2021. tavasz

Relációk tulajdonságai

Példa

Relációk: =, <, \leq , |, \subseteq , $T = \{(x, y) : x, y \in \mathbb{R}, |x - y| < 1\}.$

Definíció

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz; (=, <, \leq, |, \subseteq)$
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx; (=, T)$
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y; (=, \leq, \subseteq)$
- 4. *R* szigorúan antiszimmetrikus, ha *xRy* és *yRx* egyszerre nem teljesülhet; (<)
- 5. R reflexív, ha $\forall x \in X : xRx$; $(=, \leq, |, \subseteq, T)$
- 6. *R* irreflexív, ha $\forall x \in X : \neg xRx$; (<)
- 7. R trichotóm, ha $\forall x, y \in X$ esetén x = y, xRy és yRx közül pontosan egy teljesül; (<)
- 8. R dichotóm, ha $\forall x, y \in X$ esetén xRy vagy yRx (esetleg mindkettő). (\leq)

Relációk tulajdonságai

A reflexív, trichotóm, dichotóm tulajdonságok nem csak a relációtól függnek, hanem az alaphalmaztól is:

Az $\{(x,x)\in\mathbb{R}\times\mathbb{R},x\in\mathbb{R}\}\subseteq\mathbb{R}\times\mathbb{R}\subseteq\mathbb{C}\times\mathbb{C}$ mint \mathbb{R} -en értelmezett reláció reflexív, de mint \mathbb{C} -n értelmezett reláció nem reflexív. Példa

tranzitív	Χ	szigorúan antiszimmetrikus	X	trichotóm	Χ
szimmetrikus	Χ	reflexív	Χ	dichotóm	Χ
antiszimmetrikus	✓	irreflexív	Χ		

Ekvivalenciareláció, osztályozások

Definíció

Legyen X egy halmaz, R reláció X-en. Az R relációt ekvivalenciarelációnak nevezzük, ha reflexív, szimmetrikus és tranzitív.

Példa

1. =; 2. $z \sim w$, ha Re(z) = Re(w).

Definíció

Az X részhalmazainak egy $\mathcal O$ rendszerét az X osztályozásának nevezzük, ha $\mathcal O$ páronként diszjunkt, nem-üres halmazokból álló halmazrendszer és $\cup \mathcal O = X. \ x \in \mathcal O \in \mathcal O$ esetén $\mathcal O$ -t az x osztályának nevezzük.

Példa

- 1. \mathbb{R} egy osztályozása: $\{a\}: a \in \mathbb{R}\};$
- 2. \mathbb{C} egy osztályozása: $\{\{z \in \mathbb{C} : \text{Re}(z) = r\} : r \in \mathbb{R}\}.$

Ekvivalenciareláció, osztályozások

Tétel

Valamely X halmazon értelmezett \sim ekvivalenciareláció esetén az $\tilde{x}=\{y\in X:y\sim x\}$ $(x\in X)$ ekvivalenciaosztályok X-nek egy osztályozását adják, ezt az osztályozást X/\sim -mal jelöljük.

Bizonyítás

Legyen \sim egy X-beli ekvivalenciareláció. Azt kell megmutatni, hogy $X/\sim=\{\tilde{x}:x\in X\}$ az X egy osztályozását adja.

- Mivel \sim reflexív, így $x \in \tilde{x} \Rightarrow \bigcup \{\tilde{x} : x \in X\} = X$.
- Különböző ekvivalenciaosztályok páronként diszjunktak: tfh. $\tilde{x} \cap \tilde{y} \neq \emptyset$, legyen $z \in \tilde{x} \cap \tilde{y}$. Mivel $z \in \tilde{x}$, ezért $z \sim x$, ahonnan a szimmetria miatt $x \sim z$. Hasonlóan $z \in \tilde{y}$ miatt $z \sim y$. Ha $x_1 \in \tilde{x}$, akkor $x_1 \sim x$, így a tranzitivitás miatt $x_1 \sim x \wedge x \sim z \Rightarrow x_1 \sim z$, továbbá $x_1 \sim z \wedge z \sim y \Rightarrow x_1 \sim y \Rightarrow x_1 \in \tilde{y}$. Hasonlóan $y_1 \in \tilde{y}$ -ról megmutatható, hogy $y_1 \in \tilde{x}$, így $\tilde{x} = \tilde{y}$.

Ekvivalenciareláció, osztályozások

Tétel

Valamely X halmaz bármely $\mathcal O$ osztályozása esetén az $R=\bigcup\{Y\times Y:Y\in\mathcal O\}$ reláció ekvivalenciareláció .

Bizonyítás

- R reflexív: legyen az $x \in X$ osztálya $Y: x \in Y \in \mathcal{O}$. Ekkor $(x,x) \in Y \times Y \subseteq R$.
- R szimmetrikus: legyen az $(x, y) \in R$. Ekkor $x, y \in Y$ valamely Y osztályra, ezáltal $(y, x) \in Y \times Y \subseteq R$ is teljesül.
- R tranzitív: hasonlóan legyen $(x,y), (y,z) \in R$, ezért $x,y \in Y$, $y,z \in Y'$. Mivel az osztályok páronként diszjunktak, így Y = Y', speciálisan $z \in Y$, azaz $(x,z) \in Y \times Y \subseteq R$.

Ekvivalenciareláció, osztályozások

Az ekvivalenciarelációk illetve osztályozások kölcsönösen egyértelműen meghatározzák egymást.

Példa

- $\bullet = \longleftrightarrow \big\{\{a\} : a \in \mathbb{R}\big\};$
- $z \sim w$, ha $\operatorname{Re}(z) = \operatorname{Re}(w) \longleftrightarrow \{\{z \in \mathbb{C} : \operatorname{Re}(z) = r\} : r \in \mathbb{R}\}.$

Példa

- ullet A síkon két egyenes legyen \sim szerint relációban, ha párhuzamosak. Ekkor az osztályok az irány fogalmát adják.
- A síkon két szakasz legyen ~ szerint relációban, ha egybevágóak.
 Ekkor az osztályok a hossz fogalmát adják.
- Két egész számpár esetén $(r,s) \sim (p,q)$ $(s,q \neq 0)$, ha $r \cdot q = p \cdot s$. Ekkor az osztályok a racionális számoknak felelnek meg.

Részbenrendezés, rendezés

Definíció

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \preceq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható. (Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

Az X halmazon értelmezett reflexív, tranzitív, antiszimmetrikus és dichotóm relációt rendezésnek nevezzük.

Ha egy részbenrendezés esetén bármely két elem összehasonlítható, akkor az rendezés.

Példa

- \mathbb{R} -en a \leq reláció rendezés: $\forall x, y \in \mathbb{R}$: $x \leq y$ vagy $y \leq x$.
- N-en az | (osztója) reláció részbenrendezés: 4 ∤ 5, 5 ∤ 4.
- Az X halmaz összes részhalmazán a \subseteq reláció részbenrendezés $X = \{a, b, c\}, \{a\} \not\subseteq \{b, c\}, \{b, c\} \not\subseteq \{a\}.$

Részbenrendezések Hasse-diagramja

Definíció

Legyen $(X; \preceq)$ egy részbenrendezett halmaz. Ha $x \neq y$ -ra $x \preceq y$, de nem létezik szigorúan x és y közé eső elem (vagyis olyan z, amelyre $x \preceq z \land z \preceq y \land z \neq x \land z \neq y$), akkor x megelőzi y-t.

Ha egy részbenrendezett halmaz elemeit pontokkal ábrázoljuk, és csak azon x,y párok esetén rajzolunk irányított élt, amelyre x megelőzi y-t, akkor a részbenrendezett halmaz Hasse-diagramját kapjuk. Néha irányított élek helyett irányítatlan élt rajzolunk, és a kisebb elem kerül lejjebb.

Legkisebb, legnagyobb, minimális, maximális elem

Definíció

Az (X, \preceq) részbenrendezett halmaz

legkisebb eleme: olyan $x \in X : \forall y \in X, \ x \leq y$; legnagyobb eleme: olyan $x \in X : \forall y \in X, \ y \leq x$;

minimális eleme: olyan $x \in X$: $\neg \exists y \in X, x \neq y, y \leq x$;

maximális eleme: olyan $x \in X$: $\neg \exists y \in X, x \neq y, x \leq y$.

Példa

Legyen $X = \{1, 2, \dots, 8\}$ az oszthatósággal:

legkisebb elem: 1, legnagyobb elem: nincs, minimális elem: 1,

maximális elemek: 5, 6, 7, 8.

10.

Legkisebb, legnagyobb, minimális, maximális elem

Megjegyzések

- Minimális és maximális elemből több is lehet.
- Ha létezik legkisebb, illetve legnagyobb elem, akkor az egyértelmű.
- Ha a halmaz rendezett, akkor a minimális, és legkisebb elem, továbbá a maximális és legnagyobb elem egybeesik.
- Ha X-nek létezik egyértelmű minimális, ill. maximális eleme, akkor azt min X, ill. max X jelöli.

Példa

Legyen $X = \{1, 2, \dots, 8\}$ az oszthatósággal:

$$\min X = 1$$
,

 $\max X$ nincs.

12.

Kompozíció

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) \mid \exists z : (x, z) \in S, (z, y) \in R\}.$$

Kompozíció esetén a relációkat "jobbról-balra írjuk":

Példa

Legyen
$$R_{sin} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin x = y\},\$$

 $S_{log} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \log x = y\}.$

Ekkor

$$R_{\sin} \circ S_{\log} = \{(x, y) | \exists z : \log x = z, \sin z = y\}$$

= \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin \log x = y\}.