

入学前勉強会 第1回 2021年3月16日 「1万年後の今日は何曜日か? :剰余演算とプログラミング」

青森大学 ソフトウェア情報学部 大島和裕(oshima@aomori-u.ac.jp)

今日の内容

- プログラミングについて
- プログラムを使った剰余演算 「1万年後の今日は何曜日か?」
 - >曜日の計算
 - プログラムの書き方や計算方法を考えながら解く
 - プログラムで計算(paiza.ioを使って)
 四則演算, 剰余演算, 条件分岐if文, 繰り返しfor文
 - ▶ 100日後や365日後の曜日?
 - ▶ 1万年後の曜日?
 - ▶ 10100日後は?
- 課題,フォームへ入力

スライド資料と、サンプルプログラムのテキストファイル、 課題フォームへのリンクは、勉強会用連絡ページ: http://nodatsu.github.io/pre/

課題:フォーム(Forms)へ入力

- プログラムによる計算問題
- 数式をプログラムで書く
- 自分の誕生日の曜日は?
- 100歳になるのは何曜日?

3月27日(土)までに提出

ソフトウェア情報学部の特徴 **1** プログラミング・スキル

カリキュラムの中心に「プログラミング」

プログラミングのイメージは?

Scratchサイトより

```
void setup() {
    size(360, 480);
    ellipseMode(RADIUS);
}

void draw() {
    strokeWeight(2);
    int targetX = mouseX;
    x += (targetX - x) * easing;
    if (mousePressed) {
        neckHeight = 16;|
        bodyHeight = 90;
    } else {
        neckHeight = 70;
        bodyHeight = 160;
    }
    float neckY = y - bodyHeight - neckHeight - radius;
    background(0, 153, 204);
```

Processingのプログラム

気象庁気象研究所「地球温暖化とその予測」より

プログラム言語 は沢山ある

それぞれ特色がある

今回は、"Python(パイソン)" 最近人気があり、いくつかの 講義でも使われる paiza.ioで扱える言語の1つ

1年生のプログラミング演習では、"Processing" Javaを基にしたもの

https://www.thesoftwareguild.com/blog/ history-of-programming-languages/

プログラミング演習の教科書

Processing

- 図形の扱いが容易
- プログラムの結果を図示して視覚的に確認しながら、プログラミングを学べる
- ほかのプログラム言語だと、数値計算や文字 の扱いから始めることが多い

triangle(x1, y1, x2, y2, x3, y3)

rect(x, y, width, height)

ellipse(x, y, width, height)

プログラミング はどんなものか?

プログラミングが出来たら何ができるでしょう。 便利?色々できる?

プログラムはコンピュータへの命令

命令を順番に並べ、それらの命令に従って、 計算や作図などの処理が行われる。

- 命令の組合せと順序が大事
- コンピュータはプログラムの命令通りにしか動かない
- 融通は利かない(1文字でも間違うと動かない)

きちんとしたプログラムを完成できれば、早く、正確で、 多くの計算ができ、様々な処理の自動化ができる。

プログラミングで出来ること

- 多分野で役立ち、重要な役割を担う
 - ▶ ゲーム作成
 - ➤ Webサイトの作成
 - ▶ アプリの開発
 - ▶ システム開発
 - ▶ 自動化・業務効率化
 - ➤ AI(人工知能)開発
 - ▶ ロボット開発
 - ➤ 数値計算・データ解析・シミュレーション

プログラミングの基礎

最初のステップ

- 変数
- 演算(四則演算などの計算)
- 条件分岐(if文)
- 繰り返し(ループ, for文)

次のステップ

- 配列
- 関数
- オブジェクト

:

•

順次構造:書かれている順番に実行

反復構造:同じ処理を繰り返して実行

選択構造:条件で場合分けをして実行

1万年後の今日は何曜日か?

- まずは曜日を考える
- 一週間は7日間あり、曜日は7日ごとの繰り返す

	月	火	水	木	金	土	日
	今日	1日後	2日後	3日後	4日後	5日後	6日後
	7日後	8日後	9日後	10日後	11日後	12日後	13日後
	:	:	:	:	:	:	:
	7の倍数	7の倍数 +1	7の倍数	7の倍数 +3	7の倍数 +4	7の倍数 +5	7の倍数 +6
数を7で			. –	, •		, •	, •
った余り	0	1	2	3	4	5	6

剰余演算:余りを求める計算 日数を7で割る.剰余演算がカギになる

剰余演算で、曜日を求めるには

• 1万年後の今日までの日数は, 365(日)×10000(年)+ うるう年の回数

簡単なものから

少しやっかいなので後回し

- 100日後は?, 1年後(365日後)は?
- 今日が月曜日だったら

100日後

365日後

手計算や電卓で計算してみましょう

余り	0	1	2	3	4	5	6
曜日	月	火	水	木	金	土	日

プログラミングで計算: paiza.ioでPythonを使う

四則演算	演算子
足し算 +	+
引き算 一	_
掛け算 ×	*
割り算 ÷	/
割り算の整数部	//
割り算の余り(剰余)	%

四則演算の例

paiza.ioで計算

数式	プログラムの 書き方
5 + 2	5 + 2
5 - 2	5 – 2
5 × 2	5 * 2
5 ÷ 2	5/2

paiza.io

プログラムが書けたら 実行して結果を表示

練習問題1:プログラムを使って計算

paiza.ioで計算

四則演算1

```
1 print(5 - 5 + 1 + 9)
2 print(5 / 5 / 1 + 9)
3 print(5 / 5 + 1 * 9)
```

四則演算2

```
1  x = 1
2  y = 2
3  print(x+y)
4  print(x-y)
5  print(x*y)
6  print(x/y)
```

計算順序:カッコの中,掛け算と割り算,足し算と引き算

x, y:変数, データを保存(記憶)

print():変数の値や計算結果を出力(表示)

プログラミングによる剰余演算

paiza.ioで計算

今日が月曜日だったら 100日後

$$100÷7 = 14 余り2$$
$$= 14 \frac{2}{7}$$

水曜日

365日後 365÷7 = 52 余り1 火曜日

割り算 ÷	/
割り算の整数部	//
割り算の余り	%

```
Python3
                 Enter a title he
Main.py X
    ndays = 100
 2 a = ndays // 7
    b = ndays \% 7
    c = ndays / 7
 6 print(a)
 7 print(b)
    print(c)
                   Python O

→ 実行 (Ctrl-Enter)

出力 入力 コメント 0
```

練習問題2:一年の内,一日が日曜日になる月が少なくとも1回はある

	元日	lからのE	数(平	年)	除り 元	日からの	の日数(うるう年))	
1月1日										
2月1日										
3月1日										
4月1日										
5月1日										
6月1日										
7月1日										
8月1日										
9月1日										
10月1日										
11月1日										
12月1日										
	余り	0	1	2	3	4	5	6		
	曜日	月	火	水	木	金	土	日		

各月の日数

- 4, 6, 9, 11月は30日
- 2月はうるう年なら29日, 平年なら28日
- それ以外の月は31日

月	日数
1	31
2	平年は28, うるう年は29
3	31
4	30
5	31
6	30
7	31
8	31
9	30
10	31
11	30
12	31

練習問題3:4月以降の偶数月は,月と日にちが同じになる日の曜日がすべて同一である

	元	:日からの日数(平年)	余り	元	日からの日数(うるう年))(余り	J
1月1日							\neg
2月2日							
3月3日							
4月4日							
5月5日							
6月6日							
7月7日							
8月8日							
9月9日							
10月10日							
11月11日							
12月12日							

剰余演算で、曜日を求めるプログラム: 条件分岐 if文(1)

paiza.ioで計算

今日が月曜日の場合 100日後 100÷7 = 14 余り2 水曜日

if文:条件に合っていたら 命令を実行する

```
ndays = 100
 2 = ndays // 7
 B = ndays \% 7
4 print(a, b)
 6 \vee if b == 0:
       print("月曜日")
 9 \vee if b == 1:
       print("火曜日")
12 \vee if b == 2:
       print("水曜日")
```

余り	0	1	2	3	4	5	6
曜日	月	火	水	木	金	土	日

剰余演算で、曜日を求めるプログラム:

条件分岐 if文(2)

今日が月曜日の場合 100日後 100÷7 = 14 余り2 水曜日

```
if文:条件に合っていたら
命令を実行する
複数条件がある場合
if 条件1:
命令1
elif 条件2:
命令2
elif 条件3:
命令3
```

```
ndays = 100
   a = ndays // 7
   b = ndays % 7
   print(a, b)
 6 v if b == 0:
       print("月曜日")
 8 v elif b == 1:
       print("火曜日")
10 v elif b == 2:
11 print("水曜日")
12 v elif b == 3:
    print("木曜日")
14 v elif b == 4:
       print("金曜日")
16 v elif b == 5:
       print("土曜日")
elif b == 6:
       print("日曜日")
```

paiza.io で計算

余り	0	1	2	3	4	5	6
曜日	月	火	水	木	金	土	日

剰余演算で、曜日を求めるプログラミング: リスト(1)

今日が月曜日の場合
 100日後 100÷7 = 14 余り2 水曜日 paiza.ioで計算

```
1 ndays = 100

2 a = ndays // 7

3 b = ndays % 7

4 dow = ["月", "火", "水", "木", "金", "土", "日"]

6 print(dow[b] + "曜日")
```

余り	0	1	2	3	4	5	6
曜日	月	火	水	木	金	土	日
リスト	dow[0]	dow[1]	dow[2]	dow[3]	dow[4]	dow[5]	dow[6]

リスト:複数の文字や数字をまとめて扱う 角カッコ[]の中の数字は、0からスタートで何番目かを示す

剰余演算で、曜日を求めるプログラミング: リスト(2)

今日が任意の曜日の場合100日後 100÷7 = 14 余り2 今日の曜日から2日後

```
ndays = 100
  today = "木"
   print("今日は" + today + "曜日")
5 a = ndays // 7
   b = ndays \% 7
8 dow = ["月", "火", "水", "木", "金", "土", "日"]
10 √ for i in range(7):
       if today == dow[i]:
           dow2 = dow[i:7] + dow[0:i]
          break
   print(ndays, "日後は" + dow2[b] + "曜日")
```

paiza.io で計算

剰余演算で、曜日を求めるプログラミング: リスト(2)解説

```
dow = ["月", "火", "水", "木", "金", "土", "日"]

for i in range(7):
    if today == dow[i]:
        dow2 = dow[i:7] + dow[0:i] # todayがi番目のdowリストと一致するか # 一致したら、リストの順番を変える # ここに来たらfor文の繰り返しは終わり
```

木曜の場合, today = "木"。リストの順番を変更する。

	示	9	Ü	1	2	3	4	5	Ь
	曜日		月	火	水	木	金	土	日
	dow	ノスト	dow[0]	dow[1]	dow[2]	dow[3]	dow[4]	dow[5]	dow[6]
		3	4	5	6		0	1	2
		木	金	土	日		月	火	水
do	w[i:7]	dow[3	3] dow[4]] dow[5]	dow[6]	dow[0:i]	dow[0]	dow[1]	dow[2]
	余	ال:	0	1	2	3	4	5	6
	曜	日	木	金	土	日	月	火	水
	dow2	リスト	dow2[0]	dow2[1]	dow2[2]	dow2[3]	dow2[4]	dow2[5]	dow2[6]

一年間の日数:平年,うるう年

- 平年 365日, 2月は28日まで
- うるう年 366日,2月は29日まで
- ・うるう年の条件
 - ▶ 4年ごとに1回(2016, 2020, 2024,,,)
 - ▶ 100で割り切れる年は平年(1900, 2100, 2200,,,)
 - ▶ 400で割り切れる年はうるう年(2000, 2400,,,)
- グレゴリ暦地球が太陽を1周する日数は約365.2422

練習問題4:1万年後の今日までの日数は? 剰余はいくつで?曜日はいつになるか?

• まず400年間を考える うるう年は、前述の条件から、 ▶ 4年ごとに1回 → 400年で100回 ▶ 100で割り切れる年は平年 → 口 ▶ 400で割り切れる年はうるう年 → 口 平年は、 • 400年の日数は、 • 10000年の日数は、10000 = 400×25なので \times 25 = \div 7 = よって、1万年後の今日は 曜日になる

回ある

うるう年(2月29日)は1万年の間に

練習問題4b:1万年後の今日までの日数は? 剰余はいくつで?曜日はいつになるか?

- うるう年は、400年周期なので、周期性で考える
- 400年の中にうるう年は、平年は、回
- 400年の日数は,

400年周期を確認

10000年後は?

 $10000 = 400 \times 25$ $tab{5}$

よって、1万年後の今日は 曜日になる

簡単な方法?

- プログラムには予め使えるように, いろいろと便利な 機能が用意されている(モジュール, ライブラリ)
- datetimeという機能を利用すると、簡単に年月日の間の日数や、特定の年月日の曜日を求められる
- ただ、この方法では、1万年は想定外であり、年を 10000以上にするとエラーとなって計算できない

```
1 import datetime
2 dt1 = datetime.date(2021,3,16)
4 dt2 = datetime.date(3021,3,16)
5 diff = dt2 - dt1
7 print(diff.days) # dt2の日付からdt1の日付までの日数
8 print(dt1.weekday()) # 0~6が月から日曜日に対応
```

	0の数	今日からの日数	7で割り算	曜日
10 ⁰	0	1日後	1÷7=0余り1	火
10 ¹	1	10日後	10÷7=1余り3	木
10 ²	2	100日後	100÷7=14余り2	水
10 ³	3	1000日後	1000÷7=142余り6	日
10 ⁴	4	10000日後	10000÷7=1428余り4	金
10 ⁵	5	100000日後	100000÷7=14285余り5	土
10 ⁶	6	1000000日後	1000000÷7=142857余り1	火
10 ⁷	7	10000000日後	10000000÷7=1428571余り3	木
10 ⁸	8	100000000日後	100000000÷7=14285714余り2	水
10 ⁹	9	1000000000日後	1000000000÷7=142857142余り6	日
10 ¹⁰	10	10000000000日後	10000000000÷7=1428571428余り4	金
10 ¹¹	11	100000000000日後	1000000000000÷7=14285714285余り5	土
10 ¹²	12	10000000000000日後	10000000000000÷7=142857142857余り1	火

日数を7で割った余り	0	1	2	3	4	5	6
曜日	月	火	水	木	金	土	日

指数	0	1	2	3	4	5
指数	6	7	8	9	10	11
	•	:	•	•	•	•
	6の倍数	6の倍数 +1	6の倍数 +2	6の倍数	6の倍数 +4	6の倍数 +5
7で割った 余り	1	3	2	6	4	5
曜日	火	木	水	日	金	土

10のべき乗の指数は、6の周期で剰余が繰り返しになっている

※一週間の曜日は7日の周期

日数を7で割った余り	0	1	2	3	4	5	6
曜日	月	火	水	木	金	土	日

10のべき乗の指数を 6で割った余り	0	1	2	3	4	5
曜日	火	木	水	日	金	土

 今日が月曜日の場合 10¹⁰⁰日後 100÷6 = 16 余り4 金曜日

101億日後

金曜日

課題:フォーム(Forms)へ入力

- プログラムによる計算問題
- 数式をプログラムで書く
- 自分の誕生日の曜日は?
- 100歳になるのは何曜日?

3月27日(土)までに提出

参考文献

- ゆっくり考えよう!高校・総合学習の数学,佐々木正敏, 3章1万年後の今日は何曜日?, P.22-24, 2016.
- プログラマの数学, 結城 浩, 第3章 剰余 周期性と グループ分け, 曜日クイズ(1, 2) P.66-71, 2018.
- みんなのPython 第4版, 柴田 淳, 2016.

おまけ1 うるう年の判定

- 4年に1回(4で割り切れる年, 4で割った余り0)
- 100で割り切れる年は、平年
- 400で割り切れる年は、うるう年

```
Python3
                 Enter a title here
Main.py X +
 1 y = 2100
 2 \sqrt{15} if y % 4 == 0 and (y % 100 != 0 or y % 400 == 0):
     print("leap year")
 4 velse:
         print("common year")
               Nation Python のおすすめ本

    実行 (Ctrl-Enter)
出力 入力 コメント 0
common year
```

おまけ2 年月の日数計算

- 4, 6, 9, 11月は30日
- 2月はうるう年なら29日, 平年なら28日
- それ以外の月は31日

```
1 y = 2020
2 m = 2
 3 \sqrt{1} if m == 4 or m == 6 or m == 9 or m == 11:
   print(30)
5 velif m == 2:
       if y \% 4 == 0 and (y \% 100 != 0 \text{ or } y \% 400 == 0):
           print(29)
8√ else:
            print(28)
10 √else:
        print(31)
```

• これ以降のスライドは、練習問題などの穴埋めを入力した答え付き資料

剰余演算で、曜日を求めるには

1万年後の今日までの日数は、 365(日)×10000(年)+ うるう年の回数

簡単なものから

少しやっかい なので後半で

- 100日後は?, 1年後(365日後)は?
- 今日が月曜日だったら 100日後

100÷7 = 14 余り2 水曜日

365日後

365÷7 = 52 余り 1 火曜日 手計算や電卓で 計算してみましょう

余り	0	1	2	3	4	5	6
曜日	月	火	水	木	金	土	日

プログラミングによる剰余演算

paiza.ioで計算

今日が月曜日だったら 100日後

$$100÷7 = 14 余り2$$
$$= 14 \frac{2}{7}$$

水曜日

365日後 365÷7 = 52 余り1 火曜日

割り算 ÷	/
割り算の整数部	//
割り算の余り	%

```
Python3
                  Enter a title he
Main.py X
    ndays = 100
 2 a = ndays // 7
    b = ndays % 7
    c = ndays / 7
 6 print(a)
 7 print(b)
    print(c)

→ 実行 (Ctrl-Enter)

                   Python O
出力 入力 コメント 0
14
14.285714285714286
```

練習問題2:一年の内,一日が日曜日になる月が少なくとも1回はある

	元日からの日数(平年)	余り	元日からの日数(うるう年)	余り
1月1日	1	1	1	1
2月1日	32 (1+31)	4	32 (1+31)	4
3月1日	60 (32+28)	4	61 (32+29)	5
4月1日	91 (60+31)	0	92 (61+31)	1
5月1日	121 (91+30)	2	122 (92+30)	3
6月1日	152 (121+31)	5	153 (122+31)	6
7月1日	182 (152+30)	0	183 (153+30)	1
8月1日	213 (182+31)	3	214 (183+31)	4
9月1日	244 (213+31)	6	245 (214+31)	0
10月1日	274 (244+30)	1	275 (245+30)	2
11月1日	305 (274+31)	4	306 (275+31)	5
12月1日	335 (305+30)	6	336 (306+30)	0

0から6までの数字が少なくとも1回は現れる

練習問題3:4月以降の偶数月は,月と日にちが同じになる日の曜日がすべて同一である

	元日からの日数(平年)	余り	元日からの日数(うるう年)	余り
1月1日	1	1	1	1
2月2日	33 (1+31+1)	5	33 (1+31+1)	5
3月3日	62 (32+28+2)	6	63 (32+29+2)	0
4月4日	94 (60+31+3)	3	95 (61+31+3)	4
5月5日	125 (91+30+4)	6	126 (92+30+4)	0
6月6日	157 (121+31+5)	3	158 (122+31+5)	4
7月7日	188 (152+30+6)	6	189 (153+30+6)	0
8月8日	220 (182+31+7)	3	221 (183+31+7)	4
9月9日	252 (213+31+8)	0	253 (214+31+8)	1
10月10日	283 (244+30+9)	3	284 (245+30+9)	4
11月11日	315 (274+31+10)	0	316 (275+31+10)	1
12月12日	346 (305+30+11)	3	347 (306+30+11)	4

4月4日,6月6日,8月8日,10月10日,12月12日の余りは同じなので, 同じ曜日になる

練習問題4:1万年後の今日までの日数は? 剰余はいくつで?曜日はいつになるか?

- まず400年間を考える うるう年は、前述の条件から、
 - ▶ 4年ごとに1回 → 400年で100回
 - ▶ 100で割り切れる年は平年 →(100-4)回
 - ▶ 400で割り切れる年はうるう年 →(100-4+1)回 100-4+1 = 97回 平年は、400-97 = 303回
- 400年の日数は, 366×97 + 365×303 = 146097
- 10000年の日数は、10000 = 400×25なので 146097×25 = 3652425 3652425 ÷ 7 = 521775 余り0

よって、1万年後の今日は同じ曜日になるうるう年(2月29日)は1万年の間に2425回ある

練習問題4b:1万年後の今日までの日数は? 剰余はいくつで?曜日はいつになるか?

- うるう年は、400年周期なので、周期性で考える
- 400年の中に
 うるう年は、100-4+1 = 97回
 平年は、400-97 = 303回
- 400年の日数は、 365×303+366×97 = 146097 146097÷7 = 20871余り0 400年周期を確認
- 10000年後は? 10000 = 400×25 すなわち, 400年の25回繰り返しよって, 1万年後の今日は同じ曜日になる

10のべき乗の指数を 6で割った余り	0	1	2	3	4	5
曜日	火	木	水	日	金	土

 今日が月曜日の場合 10¹⁰⁰日後 100÷6 = 16 余り4 金曜日

10^{1億}日後 10000000÷6 = 16666666 余り4 金曜日