

Joshua Sheldon, Justin Barnwell, Michelle Arubi

OUTLINE

- Intro to TDA
- Data & Objective
- Implementation & Results

INTRO TO TDA

The science of shapes

SHAPING UP

TRANSFORMERS

TOPOLOGICAL DATA ANALYSIS

to polo gy

- 1. The way in which constituent parts are interrelated or arranged
- 2. The study of geometric properties and spatial relations unaffected by the continuous change of shape or size of figures

What shape?

PERSISTENT HOMOLOGY

- Middle hole may last from d = [2, 8]
- Persistence = $d_{end} d_{start}$
- Higher persistence = feature, lower persistence = noise

NOW WHAT?

- Point clouds = data sets
- Using homology, we acquire **important features** of our data.
- We can reduce the **dimensionality** of data while maintaining **important features**.
- Reduced dimensionality makes data analysis possible!

MAPPER ALGORITHM

2) Project data

3) Cover

4) Cluster Pre-image

5) Graph output

Nodes = clusters Edges = clusters share members

DATA & OBJECTIVE

Digit data with detracted dimensionality

MNIST 10 -10 -20 -20 20 20

• Library of grasycale handwritten digit images.

MNIST DIGIT EXAMPLE

28x28 matrix of numbers [0, 255] (8 bit unsigned ints)

OUR OBJECTIVE

- Select 10 MNIST images for each digit (100 total)
- Analyze them with the Mapper algorithm
- Visualize the relationships between digits

IMPLEMENTATION & RESULTS

You're in the weeds: beware Pythons

TECH STACK

IMPORTING MNIST

 Keras provides the MNIST dataset through 4 arrays:

```
• x_train : (60000,28,28)
```

• y_train : (60000,)

• x_test : (60000,28,28)

• y_test : (60000,)

- x = image data
- y = labels

```
# Demonstrating how the x array contains the numbers,
# and the y array contains the labels
for i in range(4):
    print(train_y[i])
    plt.subplot(330 + 1 + i)
    plt.imshow(train_x[i], cmap=plt.get_cmap('gray'))
    plt.show()
```


STORING DIGITS

- Converting 28x28 matrices to 784-dimension vectors
- Three new data structures
 - data : array(100,784)
 - •labels : array(100,)

SELECTION ALGORITHM

```
# Keep track of how many of each digit we've collected
added = new size 10 array, initialized to 0s
# Select digits
old_index = 0 # For traversing through Keras MNIST arrays
new_index = 0 # For traversing through our arrays
while not all(value == 10 for value in added):
    digit = train_y[old_index]
    if added[digit] < 10:</pre>
        # Add label in format: <digit> (#<occurrence>)
        labels.append(label)
        # Reduce dimensionality and add to array
        data[new_index] = train_x[old_index].reshape(-1)
        # Increment occurrences of digit and position in data array
        added[digit] += 1
        new index += 1
    old index += 1
```

REDUCING DIMENSIONALITY

- Now we apply a series of **projections** to reduce our data from 784 dimensions to 2.
- Example:
 - Isometric Mapping 784 -> 100
 - UMAP* 100 -> 2
- Other popular projections: PCA, t-SNE, Feature Scaling
- Each projection may have different strengths/objectives.

PROJECTION AS A LENS

IsometricMapping

0 = tab:blue

1 = tab:orange

4 = tab:purple

5 = tab:brown

2 = tab:green

3 = tab:red

- UMAP
- Pipeline 2
 - MinMaxScaler
 - T-SNE

COVER, CLUSTER, AND GRAPH

- Now that our data is in 2 dimensions, we can create a cover, cluster the data, and construct a graph.
- Will refer to these operations as mapping.
- We tried two types of mapping: informed and uninformed.
- The difference between these two is knowledge of the digit that each data point represents.

Step 1: Create concave hulls around all points of a digit.

For 2

For 3

For 7

- Cluster for Digit x concave hull created from all the data points of digit x
- Node for Digit x contains all data points within the cluster for digit x, even if some data points aren't of digit x
- Edge formed between two nodes when a data point is in both nodes
- May be improved by calculating edges by cluster overlap instead of data point overlap.

AUTOMATIC MAPPING

- KeplerMapper provides covering scheme
 - Each dimension spanned by hypercubes
 - Adjacent cubes have % of overlap
 - Hypercubes per dimension and % of overlap are parameters

AUTOMATIC MAPPING

- Many different clustering algorithms, each with different strengths and use cases.
- DBSCAN worked best for us.
- Spectral
 Clustering looks
 promising.

AUTOMATIC MAPPING

DATA PIPELINE

Selection Reshaping

INTERESTING FINDINGS

- 0 and 6 typically close on the scatter plot but no overlap
- 9 has large cluster (similar topology to many digits) and almost never overlap with 0 or 6
- 5 and 4 typically close to 9 on the scatter plot
- Both 1 and 3 typically within 2's cluster
- 9 and 7 typically close on the scatter plot
- All of this could change with different/more data, but consistent across lenses/projection pipelines!

THANK YOU

Interactive HTML files,
Jupyter Notebook w/ code,
Project proposal,
Presentation file, etc.