Data Structures 資料結構

Graphs – Part II

Department of Computer Science
National Tsing Hua University

Minimum-Cost Spanning Trees

- For a weighted undirected graph, find a spanning tree with least cost of the sum of the edge weights.
- Three greedy algorithms:
 - Kruskal's algorithm
 - Prims's algorithm
 - Sollin's Algorithm

- Idea: Add edges with minimum edge weight to tree one at a time.
- Step 1: Find an edge with minimum cost.
- Step 2: If it creates a cycle, discard the edge.
- Step 3: Repeat step 1 and 2 until we find n-1 edges.

Refer to textbook for detailed steps!

Connected graph


```
Kruskal's algorithm
1. T = φ
2. While((T contains less than n-1 edges)&&(E is not empty)){
3.    choose an edge (v,w) from E of lowest cost;
4.    delete (v,w) from E
5.    if((v,w) does not create a cycle) add (v,w) to T;
6.    else discard (v,w)
7. }
8. If(T contains less than n-1 edges)
9.    cout << "there is no spanning tree!" <<endl;</pre>
```

- Step 3 & 4: use min heap to store edge cost.
- Step 5: use set representation to group all vertices in the same connected component into a set. (see appendix)
 - For an edge (v,w) to be added, if vertices are in the same set, discard the edge, else merge two sets.

Time Complexity

```
Kruskal's algorithm
1. T = \( \psi \)
2. While((T contains less than n-1 edges)&&(E is not empty)) {
3.    choose an edge (v,w) from E of lowest cost;
4.    delete (v,w) from E
5.    if((v,w) does not create a cycle) add (v,w) to T;
6.    else discard (v,w)
7. }
8. If(T contains less than n-1 edges)
9.    cout << "there is no spanning tree!" <<endl;</pre>
```

- Min heap:
 - Step 3&4 : O(log e)
- Set:
 - Step 5: O(log e) -> see appendix
- At most execute e-1 rounds:
 - $(e-1) \cdot (\log e + \log e) = O(e \log e)$

《Theorem 6.1》

Let G be any undirected connected graph.

Kruskal's algorithm generates a minimum-cost spanning tree.

Proof:

- (a) Kruskal's method results in a spanning tree whenever a spanning tree exists
- (b) The generated spanning tree is of least cost

Step 1: Find an edge with minimum cost.

Step 2: If it creates a cycle, discard the edge.

Step 3: Repeat step 1 and 2 until we find n-1

- Proof (a): it finds a spanning tree whenever a spanning tree exists
 - Only delete those edges that form a cycle.
 - Delete a cycle doesn't affect the connectivity of the graph.
 - Always result in a connected graph with n-1 edges, therefore create a spanning tree.

Step 1: Find an edge with minimum cost.

Step 2: If it creates a cycle, discard the edge.

Step 3: Repeat step 1 and 2 until we find n-1

- Proof (b): The generated spanning tree is of least cost
 - Let U be another minimum-cost spanning tree.
 - If T = U, then T is a minimum-cost spanning tree.
 - If T ≠ U, let k, k > 0, be the number of edges in T
 not in U.
 - We shall see that there exists a way to transform
 U to T in k steps such that cost of U is not changed.

Step 1: Find an edge with minimum cost.

Step 2: If it creates a cycle, discard the edge.

Step 3: Repeat step 1 and 2 until we find n-1

- Transform U to T:
 - (1) Let **e** be the least-cost edge in **T** that is not in **U**.
 - (2) When **e** is added to **U**, a unique cycle **C** is created.
 - (3) Let **f** be any edge on **C** that is not in **T**. (This edge must exists as **T** contains no cycle).
 - Now $U = U+\{e\}-\{f\}$ is a spanning tree.
 - We need to proof that cost(e) = cost(f).

Step 1: Find an edge with minimum cost.

Step 2: If it creates a cycle, discard the edge.

Step 3: Repeat step 1 and 2 until we find n-1

- Case i : cost(e) < cost(f)
 - $\cot (U+\{e\}-\{f\}) < \cot(U) => Impossible!$
 - Because U is a minimum cost spanning tree.
- Case ii : cost(e) > cost(f)
 - **f** should be considered earlier than **e** in Kruskal's algo.
 - f is not in T means f together with edges in T whose costs are less than or equal to f form the cycle C.
 - Those edges are also in U (because as mentioned earlier, e is the least-cost-edge which is in T but not in U), hence U (which contains f) must also contain a cycle. Contradiction!
- Therefore cost(e)=cost(f).

Step 1: Find an edge with minimum cost.

Step 2: If it creates a cycle, discard the edge.

Step 3: Repeat step 1 and 2 until we find n-1

Prim's algorithm

- Idea: Add edges with minimum edge weight to tree one at a time. At all times during the algorithm, the set of selected edges form a tree.
- Step 1: Start with a tree T contains a single arbitrary vertex.
- Step 2: Among all edges, add a least cost edge (u,v) to T such that T U (u,v) is still a tree.
- Step 3: Repeat step 2 until T contains n-1 edges.

Refer to textbook for detailed steps!

Connected graph

Prim's Algorithm

```
Prim's algorithm
1. V(T) = {0} // start with vertex 0
2. for(T=ψ; T contains less than n-1 edges; add (u,v) to T) {
3. Let (u,v) be a least cost edge such that u⊆V(T) and v⊈V(T);
4. if (there is no such edge) break;
5. add v to V(T);
6. }
7. If (T contains fewer than n-1 edges)
8. cout << "there is no spanning tree!" <<endl;</pre>
```

- Step 3: use a near-to-tree data structure
 - Create an array to record the nearest distance of vertices to T.
 - Only vertices not in V(T) and adjacent to T are recorded.

near-to-tree	0	1	2	3	4	5	6
V(T)={ <mark>0</mark> }	*	28	∞	∞	∞	10	∞
$V(T)=\{0,5\}$	*	28	∞	∞	25	*	∞
$V(T)=\{0,5,4\}$	*	28	∞	22	*	*	24
$V(T)=\{0,5,4,\frac{3}{3}\}$	*	28	12	*	*	*	18
$V(T)=\{0,5,4,3,2\}$	*	16	*	*	*	*	18
$V(T)=\{0,5,4,3,2,1\}$	*	*	*	*	*	*	14
$V(T)=\{0,5,4,3,2,1,6\}$			0	28	0		

Time Complexity

Near-to-tree

- Step 3 : O(n)

At most execute n rounds: O(n²)

Prim's Algorithm: Correctness

See appendix

Sollin's Algorithm

- Idea: Select several edges at each stage.
- Step 1: Start with a forest that has n spanning trees (each has one vertex).
- Step 2: Select one minimum cost edge for each tree. This edge has exactly one vertex in the tree.
- Step 3: Delete multiple copies of selected edges and if two edges with the same cost connecting two trees, keep only one of them.
- Step 4: Repeat until we obtain only one tree.

Refer to textbook for detailed steps!

Connected graph

Single Source Shortest Paths

- Given a digraph with nonnegative edge costs, we want to compute the shortest path from a source vertex to all other vertices.
- Single source/all destinations problem.

Paths from 0 to 1:

0->1 : 50

0->2->4->1 : 95

•••

0->3->4->1 : 45

Dijkstra's Algorithm

"DIKE-stra" (['daɪk.stɹə])

- Similar to Prim's algorithm
- Use a set S to store the vertices whose shortest path have been found
- An array dist is used to store the shortest distances from source V to all vertices so far
- An array π is used to store the vertex's predecessor
- When a new vertex w is visited, update dist as:

dist[w] = min(dist[u]+length(<u,w>),dist[w])

²⁸u is the previously visited vertex which is adjacent to w

Dijkstra's Algorithm

- Initialization: for i ∈ V, set dist[i]=length[v][i], dist[v]=0, π[i]=NULL
- Steps:
 - Choose vertex u such that i) dist[u] is minimum and ii) vertex u is not in S; Add u to S
 - Pick a vertex w not in S,
 if dist[u]+length[u][w]< dist[w],
 then update:</pre>
 - dist[w] = dist[u]+length[u][w]
 - $\pi[w] = u$
- Repeat the above steps n-1 times.

vertex	π
0	NULL
1	NULL
2	NULL
3	NULL
4	NULL
5	NULL

S	0	1	2	3	4	5
{ <mark>0</mark> }	0	50	45	10	∞	∞
{0, <mark>3</mark> }	0	50	45	10	25	∞
{0, 3, <mark>4</mark> }	0	45	45	10	25	∞
{0, 3, 4, 1 }	0	45	45	10	25	∞
{0, 3, 4, 1, <mark>2</mark> }	0	45	45	10	25	∞

Dijkstra - How to Find the Path

- Retrieve the path from the source vertex to any vertex ${\bf w}$ with the help of array ${\bf \pi}$
- Lookup w's predecessor with π[w] (suppose vertex u), and u's predecessor π[u] and so on, until we reach the source vertex.

Dijkstra - Finding the Path

Suppose we want to find the shortest path from **0** to **1**

$$\pi[4]=9$$

vertex	π
0	NULL
1	4
2	0
3	0
4	3
5	NULL

Dijkstra's Algorithm

```
void MatrixWDigraph::Dijkstra(const int n, const int v)
2. \{ // \text{ dist}[j], 0 \le j < n, \text{ stores the shortest path from } v \text{ to } j \}
3.
     // length[i][j] stores length of edge <i, j>
4.
     for(int i=0; i<n; i++){ s[i]=false; dist[i]=length[v][i];</pre>
5.
     \pi[i]=NULL;
6. s[v] = true;
7. dist[v] = 0;
8. // find n - 1 paths starting from v
9. for(int i=0; i<n-1;i++){ ____
10.
     // Choose a vertex u, such that dist[u]
       // is minimum and s[u] = false
     int u = Choose(n); - - -
11.
12.
    s[u] = true;
13. for (int w=0; w<n; w++) { ---
14.
         if(!s[w] \&\& dist[u] + length[u][w] < dist[w]){
15.
           dist[w] = dist[u] + length[u][w];
16.
          \pi[w]=u;
17.
     } // end of for (i = 0; ...)
18. }
```

Time complexity: O(n²)

For Dijkstra algorithm, we assumed there is no edge with negative weight

What if such edges exist?

Running Example With Negative Edge

S	0	1	2	3	4
{ <mark>0</mark> }	0	6	∞	7	∞
{0, 1 }	0	6	11	7	2
{0, 1, <mark>4</mark> }	0	6	9	7	2
{0, 1, 4, <mark>3</mark> }	0	6	4	7	2
{0, 1, 4, 3, <mark>2</mark> }	0	6	4	7	2

9

vertex	π
0	NULL
1	NUOLL
2	NL 4 LL
3	NUOLL
4	NULL

Steps:

- Choose vertex u such that i) dist[u] is minimum and ii) vertex u is not in the S; Add u to S
- Pick a vertex w not in the S, if dist[u]+length[u][w]< dist[w], then update:
 - dist[w] = dist[u]+length[u][w]
- π[w] = u

Dijkstra Went Wrong

Dijkstra finds shortest path from 0 to 4 as:

The correct shortest path from 0 to 4 should be:

vertex	π
0	NULL
1	0
2	3
3	0
4	1

Dijkstra can't handle graphs with negative edges

Bellman-Ford Algorithm

- Works when edge weights may be negative
- An array dist is used to store the shortest distances from source to all vertices so far
- An array π is used to store the vertex's predecessor
- Relaxes all edges at most |V|-1 times
- Ability to detect negative cycles
- update dist[] using the equation:

Bellman-Ford Algorithm

- Initialize: for i ∈ V, set dist[i]=∞, π[i]=NULL
- For source v, dist[v]=0
- Step:
 - For each edge <u,w> ∈ E,
 if dist[u] + length[u][w] < dist[w], then update</p>
 - dist[w] = dist[u]+length[u][w]
 - $\pi[w] = u$
- Repeat the above step |V|-1 times
- Check whether the graph has a negative cycle

and the second		
vertex	π	
0	NULL	
1	NUZLL	
2	NUZLL	
3	NULL	
4	NULL	

307.00	WALL STREET			
0	1	2	3	4
0	∞	∞	∞	∞
0	6	∞	7	∞
0	6	4	7	2
0	2	4	7	2
O ³⁹	2	4	7	-2

- Step:
 - For each edge $\langle u,w \rangle \in E$, if dist[u] + length[u][w] < dist[w], then update
 - dist[w] = dist[u]+length[u][w]
 - $\pi[w] = u$
- Repeat the above step |V|-1 times

Bellman-Ford - How to Find the Path

- After the algorithm, we can find the shortest path from the source vertex to a vertex ${\boldsymbol w}$ with the array ${\boldsymbol \pi}$
- We use π[w] to find vertex w's predecessor
 (suppose vertex u) and u's predecessor and so on, until the source vertex is reached

Bellman-Ford - Find the Path (Similar to Dijkstra)

Suppose we want to find the shortest path from 0 to 4

$\pi[4] = 3$

vertex	π
0	NULL
1	2
2	3
3	0
4	1

Bellman-Ford Algorithm

```
bool MatrixWDigraph::Bellman Ford (const int n, const int v)
   { // dist[j], 0 \le j < n, stores the shortest path from v to j}
3.
     // length[i][j] stores length of edge <i, j>
4.
     //\pi [i] stores the predecessor of i
5.
     for (int i=0; i<n; i++) { \pi[i]=NULL; dist[i]=\infty;}// initialize
6.
   dist[v] = 0;
7.
    // find n - 1 paths starting from v
    for(int i=1; i<=n-1; i++) { - -
8.
9.
        for each edge \langle u, w \rangle \in E
10.
          if(dist[u] + length[u][w] < dist[w]){</pre>
11.
            dist[w] = dist[u] + length[u][w];
12.
            \pi[w]=u;
13.
14.
     } // end of for (i = 1; ...)
                                                                 → O(|E|)
15.
      for each edge \langle u, w \rangle \in E
          if(dist[u] + length[u][w] < dist[w])</pre>
16.
17.
            return false; // have a negative cycle
18.
      return true;
19.}
```

All-Pairs Shortest Paths

- One approach: Applying single source shortest path to each of n vertices
- Another approach: Floyd-Warshall's algorithm
- We number the vertices from 0 to n-1, and maintain an array A
 - A⁻¹[i][j]: is just the length[i][j]
 - Aⁿ⁻¹[i][j]: the length of the shortest i-to-j path in G
 - A^k[i][j]: the length of the shortest path from i to j
 going through no intermediate vertex of index
 greater than k
- $\mathbf{A}^{k}[i][j] = \min{\{\mathbf{A}^{k-1}[i][j], \mathbf{A}^{k-1}[i][k] + \mathbf{A}^{k-1}[k][j]\}}, k$

Floyd-Warshall's Algorithm

- There are only two possible paths for A^k[i][j]!
 - The path dose not pass vertex k.
 - The path dose pass vertex k.

$$A^{k}[i][j] = min\{A^{k-1}[i][j], A^{k-1}[i][k] + A^{k-1}[k][j]\}, k \ge 0$$

Floyd-Warshall's Algorithm

- Array A stores the shortest distance between vertex i and j in V
- Array p stores the vertices in the path from vertex i to j
- Initialize: Set A⁻¹[i][j] = length[i][j], p[i][j]=-1
- For k=0 to n-1, if $A^{k-1}[i][k] + A^{k-1}[k][j] < A^{k-1}[i][j]$, update $A^k[i][j] = A^{k-1}[i][k] + A^{k-1}[k][j]$, p[i][j] = k
- Finally Aⁿ⁻¹[i][j] is the shortest distance from vertex i to j

A ⁻¹	0	1	2
0	0	4	11
1	6	0	2
2	3	∞	0

р	0	1	2
0	-1	-1	-1
1	-1	-1	-1
2	-1	-1	-1

$$A^{0}[2][1] = min(A^{-1}[2][1], A^{-1}[2][0]+A^{-1}[0][1])$$

$$A^{0}[2][1] = min(\infty, 3+4) = 7$$

$$A^{0}[1][2] = min(A^{-1}[1][2], A^{-1}[1][0]+A^{-1}[0][2])$$

$$A^{0}[1][2] = min(2, 6+11) = 2$$

A ⁰	0	1	2
0	0	4	11
1	6	0	2
2	3	7	0

р	0	1	2
0	-1	-1	-1
1	-1	-1	-1
2	-1	0	-1

$$A^{1}[2][0] = min(A^{0}[2][0], A^{0}[2][1]+A^{0}[1][0])$$

$$A^{1}[2][0] = min(3, 7+6) = 3$$

$$A^{1}[0][2] = min(A^{0}[0][2], A^{0}[0][1]+A^{0}[1][2])$$

$$A^{1}[0][2] = min(11, 4+2) = 6$$

A ¹	0	1	2	
0	0	4	6	
1	6	0	2	
2	3	7	0	
р	0	1	2	
0	-1	-1	1	
1	-1	-1	-1	
2	-1	0	-1	

$$A^{2}[0][1] = min(A^{1}[0][1], A^{1}[0][2]+A^{1}[2][1])$$

$$A^{2}[0][1] = min(4, 6+7) = 4$$

$$A^{2}[1][0] = min(A^{1}[1][0], A^{1}[1][2]+A^{1}[2][0])$$

$$A^{2}[1][0] = min(6, 2+3) = 5$$

р	0	1	2
0	-1	-1	1
1	2	-1	-1
2	-1	0	-1

Floyd-Warshall - How to Find the Path

- With the help of array p
- If p[i][j] = -1, no vertex is needed to go through for the shortest path from i to j
- Otherwise, lookup p[i][j] to find vertex required to go thorugh (suppose vertex k), and then find the shortest path from i to k and from k to j

Floyd-Warshall find the path

Suppose we want to find the shortest path from 0 to 2

$$p[0][2]=1$$

р	0	1	2
0	-1	-1	1
1	2	-1	-1
2	-1	0	-1

Floyd-Warshall's Algorithm

```
1. void MatrixWDigraph::AllLengths(const int n)
2. {// length[n][n] stores edge length between
   // adjacent vertices
3. // a[i][j] stores the shortest path from i to j
4. for (int i = 0; i < n; i++) ------ \rightarrow O(n)
5. for (int j = 0; j < n; j++) - - - - - - - > O(n)
  a[i][j]= length[i][j];
6.
  // path with top vertex index k
8. for (int k=0; k< n; k++) ------ \rightarrow O(n)
9. // all other possible vertices
   for (int i= 0; i<n; i++)------> O(n)
10.
11. for (int j= 0; j<n; j++) - - - - - - \rightarrow O(n)
12. if((a[i][k]+a[k][j]) < a[i][j]) {
13.
        a[i][j] = a[i][k] + a[k][j];
14.
      p[i][j] = k;
15.
           Time complexity: O(n<sup>3</sup>)
16. }
```

Transitive Closure

A ⁺	0	1	2	3
0	0	1	1	1
1	0	1	1	1
2	0	1	1	1
3	0	0	0	0

A *	0	1	2	3
0	1	1	1	1
1	0	1	1	1
2	0	1	1	1
3	0	0	0	1

Transitive closure matrix

Reflexive transitive closure matrix

Transitive Closure

- The transitive closure matrix A*:
 - A⁺ is a matrix such that A⁺[i][j] = 1 if there is a path of length > 0 from i to j in the graph; otherwise, A⁺[i][j] = 0.
- The reflexive transitive closure matrix A*:
 - A* is a matrix such that A*[i][j] = 1 if there is a path of length >= 0 from i to j in the graph; otherwise, A*[i][j] = 0.
- Use Floyd-Warshall's algorithm!
 - $-A^{k}[i][j] = A^{k-1}[i][j] \mid | (A^{k-1}[i][k] && A^{k-1}[k][j]);$

Activity-on-Vertex (AOV) Networks

 A digraph G where the vertices represent tasks or activities and the edges represent precedence relations between tasks.

Predecessor:

Vertex i is a predecessor of vertex j, iff there is a directed path from vertex i to vertex j.

AOV Network

Topological order:

 A linear ordering of the vertices of a graph such that, for any two vertices i and j, if i is a predecessor of j in the network, then i precedes j in the linear ordering.

Application

Course No.	Course	Prerequisites
C1	Programming I	None
C2	Discrete Mathematics	None
C 3	Data Structures	C1, C2
C4	Calculus I	None
C 5	Calculus II	C4
C6	Linear Algebra	C 5
C7	Analysis of Algorithms	C3, C6
C 8	Assembly Language	C 3
C 9	Operating Systems	C7, C8
C10	Programming Languages	C7
C11	Compiler Design	C10
C12	Artificial Intelligence	C7
C13	Computational Theory	C7
C14	Parallel Algorithms	C13
C15	Numerical Analysis	C5

AOV Network of Courses

Topological Ordering

- Iteratively pick a vertex v that has no predecessors.
 - Use an additional field "count" to record the "indegree" value of each vertex.

Ordered list:

Ordered list: 0

Ordered list: 0 3

Ordered list: 0 3 2

Ordered list: 0 3 2 5

Ordered list:

Ordered list: 0 3 2 5 1 4

Intuition: Powers of Adj Matrices

- Computing #paths between two nodes
 - Recall: $A_{uv} = 1$ if $u \in N(v)$
 - Let $P_{uv}^{(K)} = \#$ paths of length K between u and v
 - We will show $P^{(K)} = A^k$
 - $P_{uv}^{(1)}$ = #paths of length 1 (direct neighborhood) between u and $v = A_{uv}$ $P_{12}^{(1)} = A_{12}$

Intuition: Powers of Adj Matrices

- How to compute $P_{uv}^{(2)}$?
 - Step 1: Compute #paths of length 1 between each of u's neighbor and v
 - Step 2: Sum up these #paths across u's neighbors

$$P_{uv}^{(2)} = \sum_{i} A_{ui} * P_{iv}^{(1)} = \sum_{i} A_{ui} * A_{iv} = A_{uv}^{2}$$

Intuition: Powers of Adj Matrices

$$P_{uv}^{(2)} = \sum_{i} A_{ui} * P_{iv}^{(1)} = \sum_{i} A_{ui} * A_{iv} = A_{uv}^{2}$$

從u到某個node i是否存在path (either 1 or 0) 乘上從 node i到v的path個數。把所有i的情況加起來

Example: we'd like to compute $P_{12}^{(2)}$, i.e., u=1, v=2

$$P_{12}^{(2)} = \sum_{i} A_{1i} * P_{i2}^{(1)} = A_{11} * P_{12}^{(1)} + A_{12} * P_{22}^{(1)} + A_{13} * P_{32}^{(1)} + A_{14} * P_{42}^{(1)}$$

$$= 0*1+1*0+0*0+1*1 = 1$$

ode 1's neighbors and Node 2
$$P_{12}^{(2)} = A_{12}^{2}$$

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \end{pmatrix}$$

$$A^2=egin{bmatrix}1&0&0&1\0&0&0&1\1&1&1&0 \end{bmatrix}$$

$$A^2 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}$$

Global Neighborhood Overlap

- Katz index: count the number of paths of all lengths between a pair of nodes.
- How to compute #paths between two nodes?
- Use adjacency matrix powers!
 - A_{uv} specifies #paths of length 1 (direct neighborhood) between u and v.
 - $A_{\rm u\ v}^2$ specifies #paths of length 2 (neighbor of neighbor) between u and v.
 - And, A_{uv}^{l} specifies #paths of length l.

APPENDIX – RECAP OF SET UNION

DS: Tree Representation

- Link elements of a subset to form a tree
 - Link children to root
 - Link root to set name

DS: Tree Representation

- Use an array to store the tree
- Identify the set by the root of the tree

DS Operation: Union(S_i, S_j)

Set the parent field of one of the root to the other root

DS Operation: Find(x)

- Following the index starting at x and tracing the tree structure until reaching a node with parent value = -1
- Use the root to identify the set name

DS Time Complexity

- $S = \{ 0, 1, 2, ..., n-1 \}$ $-S_1 = \{0\}, S_2 = \{1\}, S_3 = \{2\}, ..., S_n = \{n-1\}$
- Perform a sequence Union
 - Union(S_2 , S_1), Union(S_3 , S_2), ..., Union(S_n , S_{n-1})

Followed by a sequence of Find Find(0), Find(1), ..., Find(n-1)

Time Complexity =
$$\sum_{i=1}^{n} i = O(n^2)$$

Improved Union(S_i, S_j)

- Do not always merge two sets into the first set
- Adopt a Weighting rule to union operation

$$-S_i = S_i \cup S_j$$
, if $|S_i| >= |S_j|$
 $-S_j = S_i \cup S_j$, if $|S_i| < |S_j|$

• S = { 0, 1, 2, ..., n }

$$-S_1 = \{ 0 \}, S_2 = \{ 1 \}, S_3 = \{ 2 \}, ..., S_n = \{ n-1 \}$$

- Union (1, 2)->Union (1, 3)->Union (1, 4)

Maximum Tree Height

- Lemma 5.5
 - Let T be a tree with m nodes created by a sequence of weighting unions.
 The height of T is no greater than [log₂m] +1

- Proof with Induction:
 - 1) *m=1* is true
 - 2) Assume it is true for all trees with *i* nodes,
 i<=*m*-1

- We'd like to show that it is also true for i=m
- Let *T* be a tree with **m** nodes created by function
 WeightedUnion. Consider the last union operation performed on Union(k,j)
- Let a be the number of nodes in tree j and (m-a) the number in k. Wlog, we may assume 1 <= a <= m/2.
- Then, the height of T is either 1) the same as that of k (m-a>a) or 2) is one more than that of j (m-a=a)
- For case 1, $height(T) <= floor(log_2(m-a)) + 1 <= floor(log_2m)$
- For case 2,
 height(T)<=floor(log₂a)+2<=floor(log₂m/2)+2
 <=floor(log₂m)+1

Prim's Algorithm - Correctness

- Prove with induction.
- Hypothesis: After each iteration, the tree T is a subgraph of some minimum spanning tree M.
- At iteration 1, this is trivially true because T is a single vertex.
- Suppose that at iteration k, we have T which is a subgraph of M, and Prim's Algorithm tells us to add the edge e.
- We need to prove that T U {e} is also a subtree of some MST (not necessarily M).

Step 1: Start with a tree T contains a single arbitrary vertex.

Step 2: Among all edges, add a least cost edge (u,v) to T such that T U (u,v) is still a tree.

Step 3: Repeat step 2 until T contains n-1 edges.

Prim's Algorithm - Correctness

- To prove: T U {e} is also a subtree of some MST.
- If $e \in M =>$ this is clearly true
- If e ∉ M. Then if we add e to M, we create a cycle. Since e has one endpoint in T and one endpoint not in T, there has to be some other edge e' in this cycle that has exactly one endpoint in T.

Step 1: Start with a tree T contains a single arbitrary vertex.

Step 2: Among all edges, add a least cost edge (u,v) to T such that T U (u,v) is still a tree.

Step 3: Repeat step 2 until T contains n-1 edges.

Prim's Algorithm - Correctness

- Therefore, Prim's Algorithm could have added e' but instead chose to add e, which means that w(e')>=w(e). So if we add e to M and remove e', we create a new tree M' whose total weight is at most the weight of M. and which contains T **U** {**E**}. This maintains the induction, so proves the theorem.
- (In fact, w(e')=w(e) must hold. Otherwise M' would have weight less than M, contradicting the assumption arbitrary vertex. that M is an MST.

Step 1: Start with a tree T contains a single

Step 2: Among all edges, add a least cost edge (u.v) to T such that T U (u.v) is still a tree.

Step 3: Repeat step 2 until T contains n-1 edges.