An Elementary Proof of Bertrand's Postulate

Daniel W. Cranston Virginia Commonwealth University

> Davidson Math Coffee March 25, 2011

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Lemma 2:

For fixed n, let $f(p) = p^k$ s.t. $p^k | \binom{2n}{n}$ and $p^{k+1} / \binom{2n}{n}$.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Lemma 2:

$$4^n/(2n) \leq \binom{2n}{n}$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Lemma 2:

$$4^n/(2n) \le \binom{2n}{n} = \prod_{p \le 2n} f(p)$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Lemma 2:

$$4^{n}/(2n) \leq \binom{2n}{n} = \prod_{p \leq 2n} f(p) = \prod_{p \leq \frac{2n}{3}} f(p) \prod_{\frac{2n}{3}$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Lemma 2:

$$4^{n}/(2n) \leq \binom{2n}{n} = \prod_{p \leq 2n} f(p) = \prod_{p \leq \frac{2n}{3}} f(p) \prod_{\frac{2n}{3}, p \leq n} f(p) \prod_{n$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Lemma 2:

$$4^{n}/(2n) \leq \binom{2n}{n} = \prod_{p \leq 2n} f(p) = \prod_{p \leq \frac{2n}{3}} f(p) \prod_{\frac{2n}{3} p \leq n} f(p) \prod_{n$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Proof Outline

Find upper and lower bounds for $\binom{2n}{n} = (2n)!/(n!n!)$. If no such p exists, then lower bound is larger than upper. Only works for big n.

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Pf: The following are primes:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.

Lemma 2:

For fixed n, let $f(p) = p^k$ s.t. $p^k | \binom{2n}{n}$ and $p^{k+1} / \binom{2n}{n}$. If Bertrand's is false, then $\exists n > 4000$ s.t.

$$4^{n}/(2n) \leq \binom{2n}{n} = \prod_{p \leq 2n} f(p) = \prod_{p \leq \frac{2n}{3}} f(p) \prod_{\frac{2n}{3}, p \leq n} 1 f(p) \prod_{n$$

So, we need bounds on f(p)...

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Ex: p = 3, n = 17.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left| \frac{17}{3} \right| + \left| \frac{17}{3^2} \right| + \left| \frac{17}{3^3} \right| + \dots = 5 + 1 + 0 = 6$.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \ldots = 5 + 1 + 0 = 6$.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left| \frac{n}{p^k} \right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

1.
$$\left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor < \frac{2n}{p^k} - 2 \left(\frac{n}{p^k} - 1 \right) = 2.$$

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left| \frac{n}{p^k} \right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

$$1. \left| \frac{2n}{p^k} \right| - 2 \left| \frac{n}{p^k} \right| < \frac{2n}{p^k} - 2 \left(\frac{n}{p^k} - 1 \right) = 2.$$

2. If
$$p^k > 2n$$
, then summand is 0, so $f(p) \le 2n$.

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left| \frac{n}{p^k} \right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

- 1. $\left| \frac{2n}{p^k} \right| 2 \left| \frac{n}{p^k} \right| < \frac{2n}{p^k} 2(\frac{n}{p^k} 1) = 2.$
- 2. If $p^k > 2n$, then summand is 0, so $f(p) \le 2n$.
- 3. If $p > \sqrt{2n}$, then $p^2 > 2n$, so $f(p) \le p$.

Legendre's Thm: n! contains factor p exactly $\sum_{k>1} \left| \frac{n}{p^k} \right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

- 1. $\left| \frac{2n}{p^k} \right| 2 \left| \frac{n}{p^k} \right| < \frac{2n}{p^k} 2(\frac{n}{p^k} 1) = 2.$
- 2. If $p^k > 2n$, then summand is 0, so $f(p) \le 2n$.
- 3. If $p > \sqrt{2n}$, then $p^2 > 2n$, so $f(p) \le p$.

Lemma 2': If Bertrand's is false, then $\exists n > 4000$ s.t.

$$4^n/(2n) \le \prod_{p \le \frac{2n}{3}} f(p)$$

Legendre's Thm: n! contains factor p exactly $\sum_{k>1} \left| \frac{n}{p^k} \right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

- $1. \quad \left| \frac{2n}{p^k} \right| 2 \left| \frac{n}{p^k} \right| < \frac{2n}{p^k} 2 \left(\frac{n}{p^k} 1 \right) = 2.$
- 2. If $p^k > 2n$, then summand is 0, so $f(p) \le 2n$.
- 3. If $p > \sqrt{2n}$, then $p^2 > 2n$, so $f(p) \le p$.

Lemma 2': If Bertrand's is false, then $\exists n > 4000$ s.t.

$$4^n/(2n) \leq \prod_{p \leq \frac{2n}{3}} f(p) \leq \prod_{p \leq \sqrt{2n}} 2n \prod_{\sqrt{2n}$$

Legendre's Thm: n! contains factor p exactly $\sum_{k>1} \left| \frac{n}{p^k} \right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

- $1. \quad \left| \frac{2n}{p^k} \right| 2 \left| \frac{n}{p^k} \right| < \frac{2n}{p^k} 2 \left(\frac{n}{p^k} 1 \right) = 2.$
- 2. If $p^k > 2n$, then summand is 0, so $f(p) \le 2n$.
- 3. If $p > \sqrt{2n}$, then $p^2 > 2n$, so $f(p) \le p$.

Lemma 2': If Bertrand's is false, then $\exists n > 4000 \text{ s.t.}$

$$4^n/(2n) \leq \prod_{p \leq \frac{2n}{3}} f(p) \leq \prod_{p \leq \sqrt{2n}} 2n \prod_{\sqrt{2n}$$

Legendre's Thm: n! contains factor p exactly $\sum_{k\geq 1} \left|\frac{n}{p^k}\right|$ times.

Ex:
$$p = 3$$
, $n = 17$. So: $\left\lfloor \frac{17}{3} \right\rfloor + \left\lfloor \frac{17}{3^2} \right\rfloor + \left\lfloor \frac{17}{3^3} \right\rfloor + \dots = 5 + 1 + 0 = 6$.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cor:
$$f(p) = p^r$$
, where $r = \sum_{k \ge 0} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor$.

- 1. $\left|\frac{2n}{p^k}\right| 2\left|\frac{n}{p^k}\right| < \frac{2n}{p^k} 2\left(\frac{n}{p^k} 1\right) = 2.$
- 2. If $p^k > 2n$, then summand is 0, so $f(p) \le 2n$.
- 3. If $p > \sqrt{2n}$, then $p^2 > 2n$, so $f(p) \le p$.

Lemma 2': If Bertrand's is false, then $\exists n > 4000$ s.t.

$$4^{n}/(2n) \leq \prod_{p \leq \frac{2n}{3}} f(p) \leq \prod_{p \leq \sqrt{2n}} 2n \prod_{\sqrt{2n}$$

So we need bounds on $\prod_{p \leq \frac{2n}{3}} p$ in terms of 4^{\times} ...

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p \leq q} p \leq 4^{q-1}$,

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p \leq a} p \leq 4^{q-1}$, since then $\prod_{p \le x} p = \prod_{p \le q} p \le 4^{q-1} \le 4^{x-1}$.

We use strong induction on q and q = 2 is easy: $2 \le 4$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$. Consider q=2m+1.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$. Consider q=2m+1.

$$\prod_{p \le 2m+1} p =$$

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$.

Consider q = 2m + 1.

$$\prod_{p \le 2m+1} p = \prod_{\substack{p \le m+1 \\ \le 2m+1}} p \prod_{\substack{m+1$$

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$.

Consider q = 2m + 1.

$$\prod_{p \le 2m+1} p = \prod_{p \le m+1} p \prod_{\substack{m+1$$

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$,

since then $\prod_{p \le x} p = \prod_{p \le q} p \le 4^{q-1} \le 4^{x-1}$. We use strong induction on q and q = 2 is ea

We use strong induction on q and q=2 is easy: $2 \le 4$. Consider q=2m+1.

$$\prod_{p \le 2m+1} p = \prod_{p \le m+1} p \prod_{\substack{m+1
$$\le 4^m (\frac{1}{2} 2^{2m+1})$$$$

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$.

Consider q = 2m + 1.

$$\prod_{p \le 2m+1} p = \prod_{p \le m+1} p \prod_{\substack{m+1
$$\le 4^m \left(\frac{1}{2} 2^{2m+1}\right) = 4^{2m} = 4^{q-1}$$$$

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$. Consider q=2m+1.

$$\prod_{p \le 2m+1} p = \prod_{p \le m+1} p \prod_{\substack{m+1$$

$$\leq 4^m(\frac{1}{2}2^{2m+1}) = 4^{2m} = 4^{q-1}$$

Lemma 2": If Bertrand's is false, then $\exists n > 4000$ s.t.

$$4^{n}/(2n) < (2n)^{\sqrt{2n}}4^{\frac{2n}{3}}$$

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$.

Consider q = 2m + 1.

$$\prod_{p \le 2m+1} p = \prod_{p \le m+1} p \prod_{\substack{m+1
$$\le 4^m (\frac{1}{2} 2^{2m+1}) = 4^{2m} = 4^{q-1}$$$$

Lemma 2": If Bertrand's is false, then $\exists n > 4000$ s.t.

$$4^{n}/(2n) < (2n)^{\sqrt{2n}} 4^{\frac{2n}{3}}$$
$$4^{\frac{n}{3}} < (2n)^{1+\sqrt{2n}}$$

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Pf: If q is max prime $\leq x$, then suffices to show: $\prod_{p\leq q} p \leq 4^{q-1}$, since then $\prod_{p\leq x} p = \prod_{p\leq q} p \leq 4^{q-1} \leq 4^{x-1}$.

We use strong induction on q and q=2 is easy: $2 \le 4$.

Consider q = 2m + 1.

$$\prod_{p \le 2m+1} p = \prod_{p \le m+1} p \prod_{\substack{m+1
$$\le 4^m (\frac{1}{2} 2^{2m+1}) = 4^{2m} = 4^{q-1}$$$$

$$4^{n}/(2n) < (2n)^{\sqrt{2n}} 4^{\frac{2n}{3}}$$

$$4^{\frac{n}{3}} < (2n)^{1+\sqrt{2n}}$$

$$\frac{n}{3} \lg 4 < (1+\sqrt{2n}) \lg(2n)$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So 2*n*

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (|\sqrt[6]{2n}| + 1)^6$$

Obs. $a+1 < 2^a$ for all $a \ge 2$ (by induction) So $2n = (\sqrt[6]{2n})^6 < (|\sqrt[6]{2n}| + 1)^6 < 2^{6\lfloor \sqrt[6]{2n} \rfloor}$

Obs. $a+1 < 2^a$ for all $a \ge 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (|\sqrt[6]{2n}| + 1)^6 < 2^{6\lfloor \sqrt[6]{2n} \rfloor} \le 2^{6\sqrt[6]{2n}}$$
.

Obs. $a+1 < 2^a$ for all $a \ge 2$ (by induction) So $2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^{6\lfloor \sqrt[6]{2n} \rfloor} \le 2^{6\sqrt[6]{2n}}$.

Obs. $a+1 < 2^a$ for all $a \ge 2$ (by induction) So $2n = (\sqrt[6]{2n})^6 < (|\sqrt[6]{2n}| + 1)^6 < 2^{6\lfloor \sqrt[6]{2n} \rfloor} \le 2^{6\sqrt[6]{2n}}$.

$$2^{2n} = (4^{n/3})^3$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^{6 \lfloor \sqrt[6]{2n} \rfloor} \le 2^{6 \sqrt[6]{2n}}$$
.

$$2^{2n} = \left(4^{n/3}\right)^3 \le (2n)^{3(1+\sqrt{2n})}$$

Obs. $a+1 < 2^a$ for all $a \ge 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^{6 \lfloor \sqrt[6]{2n} \rfloor} \le 2^{6 \sqrt[6]{2n}}$$
.

$$2^{2n} = (4^{n/3})^3 \le (2n)^{3(1+\sqrt{2n})} \le \left(2^{6\sqrt[6]{2n}}\right)^{3(1+\sqrt{2n})}$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^6 \lfloor \sqrt[6]{2n} \rfloor \le 2^6 \sqrt[6]{2n}$$
.

$$2^{2n} = \left(4^{n/3}\right)^3 \le (2n)^{3(1+\sqrt{2n})} \le \left(2^{6\sqrt[6]{2n}}\right)^{3(1+\sqrt{2n})}$$

Since $n \ge 50$, we have $18 < 2\sqrt{2n}$, so

Obs. $a+1 < 2^a$ for all $a \ge 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^{6 \lfloor \sqrt[6]{2n} \rfloor} \le 2^{6 \sqrt[6]{2n}}.$$

$$2^{2n} = \left(4^{n/3}\right)^3 \le (2n)^{3(1+\sqrt{2n})} \le \left(2^{6\sqrt[6]{2n}}\right)^{3(1+\sqrt{2n})}$$

Since
$$n \ge 50$$
, we have $18 < 2\sqrt{2n}$, so

$$=2^{\sqrt[6]{2n}(18+18\sqrt{2n})}$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^{6 \lfloor \sqrt[6]{2n} \rfloor} \le 2^{6 \sqrt[6]{2n}}.$$

$$2^{2n} = \left(4^{n/3}\right)^3 \le (2n)^{3(1+\sqrt{2n})} \le \left(2^{6\sqrt[6]{2n}}\right)^{3(1+\sqrt{2n})}$$

Since
$$n \ge 50$$
, we have $18 < 2\sqrt{2n}$, so

$$=2^{\sqrt[6]{2n}(18+18\sqrt{2n})} \le 2^{\sqrt[6]{2n}(20\sqrt{2n})}$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^6 \lfloor \sqrt[6]{2n} \rfloor \le 2^6 \sqrt[6]{2n}$$
.

$$2^{2n} = \left(4^{n/3}\right)^3 \le (2n)^{3(1+\sqrt{2n})} \le \left(2^{6\sqrt[6]{2n}}\right)^{3(1+\sqrt{2n})}$$

Since
$$n \ge 50$$
, we have $18 < 2\sqrt{2n}$, so

$$=2^{\sqrt[6]{2n}(18+18\sqrt{2n})} \le 2^{\sqrt[6]{2n}(20\sqrt{2n})} = 2^{20(2n)^{2/3}}$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^6 \lfloor \sqrt[6]{2n} \rfloor \le 2^6 \sqrt[6]{2n}$$
.
 $2^{2n} = (4^{n/3})^3 \le (2n)^{3(1+\sqrt{2n})} \le \left(2^6 \sqrt[6]{2n}\right)^{3(1+\sqrt{2n})}$

Since $n \ge 50$, we have $18 < 2\sqrt{2n}$, so

$$=2^{\sqrt[6]{2n}(18+18\sqrt{2n})} \le 2^{\sqrt[6]{2n}(20\sqrt{2n})} = 2^{20(2n)^{2/3}}$$

Taking logs gives:

$$2n \leq 20(2n)^{2/3}$$

Obs. $a+1<2^a$ for all $a\geq 2$ (by induction)

So
$$2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^{6 \lfloor \sqrt[6]{2n} \rfloor} \le 2^{6 \sqrt[6]{2n}}.$$

$$2^{2n} = (4^{n/3})^3 \le (2n)^{3(1+\sqrt{2n})} \le \left(2^{6 \sqrt[6]{2n}}\right)^{3(1+\sqrt{2n})}$$

Since $n \ge 50$, we have $18 < 2\sqrt{2n}$, so

$$=2^{\sqrt[6]{2n}(18+18\sqrt{2n})} \le 2^{\sqrt[6]{2n}(20\sqrt{2n})} = 2^{20(2n)^{2/3}}$$

Taking logs gives:

$$2n \le 20(2n)^{2/3}$$
$$2n \le 8000$$

Obs. $a + 1 < 2^a$ for all $a \ge 2$ (by induction) So $2n = (\sqrt[6]{2n})^6 < (\lfloor \sqrt[6]{2n} \rfloor + 1)^6 < 2^{6 \lfloor \sqrt[6]{2n} \rfloor} \le 2^{6 \sqrt[6]{2n}}$. $2^{2n} = (4^{n/3})^3 \le (2n)^{3(1+\sqrt{2n})} \le (2^{6 \sqrt[6]{2n}})^{3(1+\sqrt{2n})}$

Since
$$n \ge 50$$
, we have $18 < 2\sqrt{2n}$, so

$$=2^{\sqrt[6]{2n}(18+18\sqrt{2n})} \le 2^{\sqrt[6]{2n}(20\sqrt{2n})} = 2^{20(2n)^{2/3}}$$

Taking logs gives:

$$2n \le 20(2n)^{2/3}$$

 $2n \le 8000$
 $n < 4000$.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$;

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

$$4^n/(2n) \leq \binom{2n}{n}$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

$$4^{n}/(2n) \leq \binom{2n}{n} = \prod_{p \leq \sqrt{2n}} f(p) \prod_{\sqrt{2n}$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

$$4^{n}/(2n) \leq \binom{2n}{n} = \prod_{p \leq \sqrt{2n}} f(p) \prod_{\sqrt{2n}$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

$$4^{n}/(2n) \leq \binom{2n}{n} = \prod_{p \leq \sqrt{2n}} f(p) \prod_{\sqrt{2n}$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

If Bertrand's is false, then $\frac{1}{2}n > 4000$ s.t.

$$4^{n}/(2n) \leq \binom{2n}{n} \leq \prod_{p \leq \sqrt{2n}} \binom{2n}{p} \prod_{\sqrt{2n}$$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

If Bertrand's is false, then $\exists n > 4000 \text{ s.t.}_p$ $4^n/(2n) \le \binom{2n}{n} \le \prod_{p \le \sqrt{2n}} (p) \prod_{\sqrt{2n}$

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

If Bertrand's is false, then $\exists n > 4000 \text{ s.t.}_p$ $4^n/(2n) \le \binom{2n}{n} \le \prod_{p \le \sqrt{2n}} (p) \prod_{\sqrt{2n}$

But $4^n/(2n) \le (2n)^{\sqrt{2n}} 4^{2n/3}$ implies $n \le 4000$.

Bertrand's Postulate

For every positive n, there exists a prime p s.t. n .

Lemma 1: Bertrand's Postulate holds for $1 \le n \le 4000$.

Legendre's Theorem implies

For all p, $f(p) \le 2n$; and if $p > \sqrt{2n}$, then $f(p) \le p$.

Lemma 3: For all real $x \ge 2$, we have $\prod_{p \le x} p \le 4^{x-1}$.

Lemma 2*:

If Bertrand's is false, then
$$\exists n > 4000 \text{ s.t.}_p$$
 $4^n/(2n) \le \binom{2n}{n} \le \prod_{p \le \sqrt{2n}} (p) \prod_{\sqrt{2n}$

But $4^n/(2n) \le (2n)^{\sqrt{2n}} 4^{2n/3}$ implies $n \le 4000$.

so Bertrand's Postulate is True!