Intersection of Uncountable a.s. Events May Be Empty

马浩博 518030910428

March 27, 2020

Exercise 4

This exercise is going to say that intersection of uncountable events may be empty. We already know that for the countable situation, things are different:

Theorem 1

If
$$F_n \in \mathcal{F}$$
 $(n \in \mathbb{N})$ and $P(F_n) = 1$, $\forall n$, then

$$P(\bigcap_{n} F_n) = 1$$

Now the number of α is obviously uncountable, so the theorem above is not working anymore. And we can get an opposite conclusion that

$$\bigcap_{\alpha} F_{\alpha} = \emptyset$$

Proof. For any given ω , we just need to find an α with $\omega \notin F_{\alpha}$. Then we can easily get the result that $\bigcap_{\alpha} F_{\alpha} = \emptyset$. Thus the only thing to concern about is to find the α .

For $\omega = (\omega_1, \omega_2, \dots)$, we can assume without losing generality that

$$\forall m, \ \exists n > m \ \omega_n = H \ (n \in N)$$

If ω doesn't satisfy this proposition, then because $\omega = \{H, T\}$, we have $\forall m, \exists n > m \ \omega_n = T$. These two cases are just the same, so we only consider the first one.

In this case, we can generate α in this way: For m=0, we can find $a_1>m$ with $\omega_{a_1}=H$. So we let $\alpha(1)=a_1$. Next, let $m=a_1$, find a_2 in the same way and also let $\alpha(2)=a_2$, and so on . . . Eventually, we get a map α with $\alpha(1)<\alpha(2)<\dots$ Obviously,

$$\frac{\#\{k \le n : \ \omega_{\alpha(k)} = H\}}{n} \to 1$$

Therefore we know that $\omega \notin F_{\alpha}$ and finish the proof.