MTH 375 Fall 2022 Hw 2 – due 1/27/2020

Key Concepts: Estimator, bias, unbiased estimator, standard error, MSE, δ -method.

Read Sec 4.1. Do

- 1. Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be two random samples with the same mean μ and variance σ^2 . (The pdf of X_i and Y_j are not specified.)
 - (a) Show that $T = \frac{1}{2}\overline{X} + \frac{1}{2}\overline{Y}$ and $U = \frac{1}{3}\overline{X} + \frac{2}{3}\overline{Y}$ are both unbiased estimators of μ .
- (b) Evaluate $MSE(T; \mu)$ and $MSE(U; \mu)$. According to the MSE criterion, is T or U the better estimator of μ ?
- 2. Let X_1, \ldots, X_n be a random sample uniform on $[0,\theta]$. (Hint: We know f_{X_i} , $E(X_i)$ and $V(X_i)$; use them all.)
 - (a) Show that $T = 2\overline{X}$ is an unbiased estimator of θ , and evaluate $MSE(T; \theta)$.
 - (b) Let $M = \max\{X_1, \dots, X_n\}$. Find the pdf of M.

(Hint: Use the fact that $F_M(m) = P(M \le m) = P(X_1 \le m \& \cdots \& X_n \le m)$.)

- (c) Compute E(M) and V(M).
- (d) Using your answers to (c), find an unbiased estimator M^* of θ based on M, and evaluate $MSE(M^*; \theta)$. According to the MSE criterion, which is a better estimator of θ , T or M^* ?
- 3. Do problem #4.1.10. There are typos in this problem: θ and p are two names for the same parameter. Use either one, but consistently. (Hint: We know f_{X_i} , $E(X_i)$ and $V(X_i)$; use them all.)
 - 4. Let X_1, \ldots, X_n be a sample of i.i.d $N(0, \sigma^2)$ random variables. Let $T = \frac{1}{n} \sum_{i=1}^n X_i^2$.
 - (a) Is T an unbiased estimator of σ^2 ?
 - (b) Find MSE (T, σ^2) . **Hint**: The mgf of X_i is $M(t) = e^{\frac{1}{2}\sigma^2 t^2}$.
 - 5. Do #4.1.20.