オペレーションズ・リサーチ I(6)

田中 俊二

shunji.tanaka@okayama-u.ac.jp

本文書のライセンスは CC-BY-SA にしたがいます

スケジュール

No.	内容
	オペレーションズ・リサーチと最適化,線形計画問題の基礎 (1)
2	線形計画問題の基礎 (2),線形計画問題の標準形
3	シンプレックス (単体) 法 1
4	シンプレックス (単体) 法 2, 2 段階シンプレックス法
5	双対問題,双対定理,相補性定理
6	双対シンプレックス法,感度分析
7	内点法

シンプレックスタブローの関係

min $y_1 + 2y_2 + 9y_3$ s.t. $-2y_1 + y_2 + 3y_3 \ge 1$ $y_1 - y_2 - 2y_3 \ge -2$ $y_1, y_2, y_3 \ge 0$

$\max x_1 - 2x_2$

s.t.
$$-2x_1 + x_2 + s_1 = 1$$

 $x_1 - x_2 + s_2 = 2$
 $3x_1 - 2x_2 + s_3 = 9$

$$x_1, \quad x_2, \quad s_1, \quad s_2, \quad s_3 \ge 0$$

min
$$y_1 + 2y_2 + 9y_3$$

s.t. $-2y_1 + y_2 + 3y_3 - t_1 = 1$
 $y_1 - y_2 - 2y_3 - t_2 = -2$

$$y_1, y_2, y_3, t_1, t_2 \ge 0$$

最適シンプレックスタブロー

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
s_1	0	-1	1	2	0	5
x_1	1	-1	0	1	0	2
53	0	1	0	-3	1	3

	У1	<i>y</i> 2	У3	t_1	t_2	
	5	0	3	2	0	-2
t_2	1	0	-1	1	1	1
У2	-2	1	3	-1	0	1

シンプレックスタブローの関係

最適シンプレックスタブロー

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
s_1	0	-1	1	2	0	5
x_1	1	-1	0	1	0	2
53	0	1	0	-3	1	3

	У1	У2	У3	t_1	t_2	
	5	0	3	2	0	-2
t_2	- 1	0	-1	1	1	1
у2	-2	1	3	-1	0	1

	x_1	x_2	s ₁	s ₂	53		
	0	-1	0	-1	0	-2	
x_1	1	-1	0	1	0	2	
s ₁	0	-1	1	2	0	5	
53	0	1	0	-3	1	3	

	x_1	x_2	s_1	s ₂	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s ₁	0	-1	1	2	0	5
53	0	1	0	-3	1	3

У1	у2	у3	t_1	t_2	
5	0	3	2	0	-2
1	0	-1	1	1	1
-2	1	3	-1	0	1

	x_1	x_2	s_1	s ₂	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s ₁	0	-1	1	2	0	5
53	0	1	0	-3	1	3

У1	У2	У3	t_1	t_2	
5	0	3	2	0	-2
1	0	-1	1	1	1
-2	1	3	-1	0	1

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s ₁	0	-1	1	2	0	5
53	0	1	0	-3	1	3

t_1	t_2	<i>y</i> ₁	У2	У3	
2	0	5	0	3	-2
1	1	1	0	-1	1
-1	0	-2	1	3	1

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
x_1	- 1	-1	0	1	0	2
s_1	0	-1	1	2	0	5
53	0	1	0	-3	1	3

У1	У2	У3	t_1	t_2	
5	0	3	2	0	-2
- 1	0	-1	1	1	1
-2	1	3	-1	0	1

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s_1	0	-1	1	2	0	5
53	0	1	0	-3	1	3
	•					

t_1	t_2	У1	У2	У3	
2	0	5	0	3	-2
1	1	1	0	-1	1
-1	0	-2	1	3	1

	x_1	x_2	s_1	52	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s_1	0	-1	1	2	0	5
53	0	1	0	-3	1	3

		t_2	У2
t_1	2	1	-1
t_1 t_2	0	1	0
У1	5	1	-2
y ₂	0	0	1
У3	3	-1	3
	-2	1	1

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s ₁	0	-1	1	2	0	5
53	0	1	0	-3	1	3

У1	у2	У3	t_1	t_2	
5	0	3	2	0	-2
- 1	0	-1	1	1	1
-2	1	3	-1	0	1

t_1	t_2	у1	<i>y</i> 2	У3	
2	0	5	0	3	-2
1	1	1	0	-1	1
-1	0	-2	1	3	1

	x_1	x_2	s_1	52	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s_1	0	-1	1	2	0	5
s_3	0	1	0	-3	1	3

		t_2	У2
t_1	2	1	-1
t_1 t_2	0	1	0
<i>y</i> 1	5	1	-2
	0	0	1
у ₂ уз	3	-1	3
	-2	1	1

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
x_1	- 1	-1	0	1	0	2
s ₁	0	-1	1	2	0	5
53	0	1	0	-3	1	3

<i>y</i> ₁	у2	У3	t_1	t_2	
5	0	3	2	0	-2
1	0	-1	1	1	1
-2	1	3	-1	0	1

t_1	t_2	У1	У2	У3	
2	0	5	0	3	-2
1	1	1	0	-1	1
-1	0	-2	1	3	1

	x_1	x_2	s_1	52	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s_1	0	-1	1	2	0	5
53	0	1	0	-3	1	3

		t_2	<i>y</i> 2
t_1	2	- 1	-1
t_1 t_2	0	1	0
<i>y</i> 1	5	1	-2
<i>y</i> ₂	0	0	1
у3	3	-1	3
	-2	1	1

	x_1	x_2	s_1	s_2	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s ₁	0	-1	1	2	0	5
53	0	1	0	-3	1	3

У1	У2	У3	t_1	t_2	
5	0	3	2	0	-2
- 1	0	-1	1	1	1
-2	1	3	-1	0	1

t_1	t_2	У1	У2	У3	
2	0	5	0	3	-2
1	1	1	0	-1	1
-1	0	-2	1	3	1

	x_1	x_2	s_1	s ₂	53	
	0	-1	0	-1	0	-2
x_1	1	-1	0	1	0	2
s_1	0	-1	1	2	0	5
s_3	0	1	0	-3	1	3

		t_2	<i>y</i> ₂
t_1	2	1	-1
t_1 t_2	0	1	0
У1	5	1	-2
y ₂	0	0	1
у3	3	-1	3
	-2	1	1

辞書の関係

主問題

$$\max c^{\mathsf{T}} x$$

s.t.
$$Ax = b$$

$$x \ge 0$$

基底・非基底変数に分解

$$\max \ c_{\mathrm{B}}^{\mathsf{T}} x_{\mathrm{B}} + c_{\mathrm{N}}^{\mathsf{T}} x_{\mathrm{N}}$$

s.t.
$$A_{\rm B}x_{\rm B} + A_{\rm N}x_{\rm N} = \boldsymbol{b}$$

$$x_{\rm B}, x_{\rm N} \geq 0$$

双対問題

min $b^{\mathsf{T}} y$

双対問題 (等式制約版)

s.t.
$$A_{\mathrm{B}}^{\mathsf{T}}y \geq c_{\mathrm{B}}$$

$$A_{N}^{\mathsf{T}} y \geq c_{N}$$

基底・非基底変数に分解

$$\max \ c_{\mathrm{R}}^{\mathsf{T}} x_{\mathrm{B}} + c_{\mathrm{N}}^{\mathsf{T}} x_{\mathrm{N}}$$

s.t.
$$A_{\rm B} \boldsymbol{x}_{\rm B} + A_{\rm N} \boldsymbol{x}_{\rm N} = \boldsymbol{b}$$

$$x_{\rm B}, \qquad x_{\rm N} \geq 0$$

min $b^{T}y$

s.t.
$$A_{\mathrm{B}}^{\mathsf{T}} y - s_{\mathrm{B}} = c_{\mathrm{B}}$$

$$A_{N}^{\mathsf{T}} y - s_{N} = c_{N}$$

$$s_{\rm B}, s_{\rm N} \geq 0$$

辞書

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \left\{ \boldsymbol{c}_{\mathrm{N}} - (\boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}})^{\mathsf{T}} \boldsymbol{c}_{\mathrm{B}} \right\}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} - \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

実行可能:
$$A_{R}^{-1}b \geq 0$$

最適:
$$\widetilde{c}_{\mathrm{N}} = c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}}c_{\mathrm{B}} \leq \mathbf{0}$$

辞書

$$g = c_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + (A_{\mathrm{B}}^{-1} \boldsymbol{b})^{\mathsf{T}} s_{\mathrm{B}}$$
$$s_{\mathrm{N}} = -\left\{ c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}} \right\} + (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} s_{\mathrm{B}}$$

実行可能: $\widetilde{c}_{\mathrm{N}} = c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}}c_{\mathrm{B}} \leq \mathbf{0}$ 最適: $A_{\mathrm{B}}^{-1}\mathbf{b} \geq \mathbf{0}$

辞書

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \left\{ \boldsymbol{c}_{\mathrm{N}} - (\boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}})^{\mathsf{T}} \boldsymbol{c}_{\mathrm{B}} \right\}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} - \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

実行可能: $A_{\rm R}^{-1} b \geq 0$

最適:
$$\widetilde{c}_{\mathrm{N}} = c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\intercal}c_{\mathrm{B}} \leq \mathbf{0}$$

辞書

$$g = c_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + (A_{\mathrm{B}}^{-1} \boldsymbol{b})^{\mathsf{T}} s_{\mathrm{B}}$$

$$s_{\mathrm{N}} = -\left\{c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}}\right\} + (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} s_{\mathrm{B}}$$

実行可能:
$$\widetilde{c}_{\mathrm{N}} = c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}}c_{\mathrm{B}} \leq \mathbf{0}$$

最適: $A_{\mathrm{B}}^{-1}b \geq \mathbf{0}$

双対実行可能 (dual feasible)

主問題の基底解 (x_B, x_N) が $\widetilde{c}_N \leq 0$ を満たす

双対シンプレックス法

- 主問題に対するシンプレックスタブローを用いて双対問題を解く
- 双対実行可能な基底解を辿る. 主問題に対して実行可能となれば終了
- 双対問題において非基底変数を基底変数と入れ替える
 - ⇔ 主問題において基底変数を非基底変数と入れ替える

双対シンプレックス法 (dual simplex method):最大化問題の場合

● 初期化

適当な双対実行可能基底解・対応するシンプレックスタブローを求める

● ピボット行の選択

タブローの右端の列の要素が負の行i (ピボット行)を選択

- 複数ある場合は絶対値がもっとも大きい行
- 存在しなければ最適解が求まったものとして終了 最適解は右端の列の 2 行目以降. 右端の列の 1 行目は最適値の (-1) 倍
- ピボット列の選択

1 行目の非基底変数の列の要素を行 i の各要素で割る. 0 以上かつ,もっとも小さい値となった列 i (ピボット列) を選択 \Rightarrow ピボット要素 (i,j)

● ピボット操作

行基本変形を施して、列 j のピボット要素 (i,j) 以外を 0 に、ピボット要素 を 1 に変形

双対シンプレックス法

- 主問題に対するシンプレックスタブローを用いて双対問題を解く
- 双対実行可能な基底解を辿る. 主問題に対して実行可能となれば終了
- 双対問題において非基底変数を基底変数と入れ替える
 - ⇔ 主問題において基底変数を非基底変数と入れ替える

双対シンプレックス法 (dual simplex method):最小化問題の場合

● 初期化

適当な双対実行可能基底解・対応するシンプレックスタブローを求める

● ピボット行の選択

タブローの右端の列の要素が正の行i (ピボット行)を選択

- 複数ある場合は絶対値がもっとも大きい行
- 存在しなければ最適解が求まったものとして終了 最適解は右端の列の 2 行目以降. 右端の列の 1 行目は最適値の (-1) 倍
- ピボット列の選択

1 行目の非基底変数の列の要素を行 i の各要素で割る. 0 以上かつ,もっとも小さい値となった列 i (ピボット列) を選択 \Rightarrow ピボット要素 (i,j)

● ピボット操作

行基本変形を施して、列 j のピボット要素 (i,j) 以外を 0 に、ピボット要素 を 1 に変形

例題

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 \le -1$

$$x_1 - 2x_2 - 3x_3 \le -3$$

$$x_1, x_2, x_3 \ge 0$$

等式標準形

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 + s_1 = -1$

$$x_1 - 2x_2 - 3x_3 + s_2 = -3$$

$$x_1, x_2, x_3, s_1, s_2 \ge 0$$

s_1, s_2 を基底変数としたタブローは双対実行可能

	x_1	x_2	x_3	s_1	s_2	
	-1	-2	-1	0	0	0
s_1	-1	1	1	1	0	-1
s_2	1	-2	-3	0	1	-3

例題

max
$$-x_1 - 2x_2 - x_3$$

s.t. $-x_1 + x_2 + x_3 \le -1$
 $x_1 - 2x_2 - 3x_3 \le -3$
 $x_1, x_2, x_3 \ge 0$

等式標準形

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 + s_1 = -1$

$$x_1 - 2x_2 - 3x_3 + s_2 = -3$$

$$x_1, x_2, x_3, s_1, s_2 \ge 0$$

s_1, s_2 を基底変数としたタブローは双対実行可能

	x_1	x_2	x_3	s_1	s_2	
	-1	-2	-1	0	0	0
s_1	-1	1	1	1	0	-1
<i>s</i> ₂	1	-2	-3	0	1	-3

例題

$$\max -x_1 - 2x_2 - x_3$$

s.t. $-x_1 + x_2 + x_3 \le -1$
 $x_1 - 2x_2 - 3x_3 \le -3$
 $x_1, x_2, x_3 \ge 0$

等式標準形

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 + s_1 = -1$

$$x_1 - 2x_2 - 3x_3 + s_2 = -3$$

$$x_1, x_2, x_3, s_1, s_2 \ge 0$$

s_1, s_2 を基底変数としたタブローは双対実行可能

双対問題

min
$$-y_1 - 3y_2$$

s.t. $-y_1 + y_2 \ge -1$
 $y_1 - 2y_2 \ge -2$
 $y_1 - 3y_2 \ge -1$
 $y_1, y_2 \ge 0$

双対問題の等式標準形

$$\begin{array}{lll} \min & -y_1 - 3y_2 \\ \text{s.t.} & -y_1 + \ y_2 - t_1 & = -1 \\ & y_1 - 2y_2 & -t_2 & = -2 \\ & y_1 - 3y_2 & -t_3 = -1 \\ & y_1, \quad y_2, \ t_1, \ t_2, \ t_3 \geq 0 \end{array}$$

例題

$$\max -x_1 - 2x_2 - x_3$$

s.t. $-x_1 + x_2 + x_3 \le -1$
 $x_1 - 2x_2 - 3x_3 \le -3$
 $x_1, x_2, x_3 \ge 0$

等式標準形

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 + s_1 = -1$

$$x_1 - 2x_2 - 3x_3 + s_2 = -3$$

$$x_1, x_2, x_3, s_1, s_2 \ge 0$$

s_1, s_2 を基底変数としたタブローは双対実行可能

双対問題

min
$$-y_1 - 3y_2$$

s.t. $-y_1 + y_2 \ge -1$
 $y_1 - 2y_2 \ge -2$
 $y_1 - 3y_2 \ge -1$
 $y_1, y_2 \ge 0$

双対問題の等式標準形

min
$$-y_1 - 3y_2$$

s.t. $-y_1 + y_2 - t_1 = -1$
 $y_1 - 2y_2 - t_2 = -2$
 $y_1 - 3y_2 - t_3 = -1$
 $y_1, y_2, t_1, t_2, t_3 \ge 0$

双対シンプレックス法の例その1(続き)

(2) ピボット行 (基底変数) の選択

	x_1	x_2	x_3	s_1	s_2	
	-1	-2	-1	0	0	0
s_1	-1	1	1	1	0	-1
52	1	-2	-3	0	1	-3

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-1	-2	-1	0	0	0
s_1	-1	1	- 1	1	0	-1
<i>s</i> ₂	1	-2	-3	0	1	-3
	-1	1	1/3			

(4) ピボット操作

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3	0	1	1/3 -1/3	-2
<i>x</i> ₃	-1/3	2/3	1	0	-1/3	1

(2) ピボット行 (基底変数) の選択

	x_1	x_2	x_3	s_1	s ₂	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3	0	1	1/3	-2
х3	-1/3	2/3	1	0	-1/3	1

双対シンプレックス法の例その1(続き)

(2) ピボット行 (基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2		
	-1	-2	-1	0	0	0	l
s_1	-1	1	1	1	0	-1	l
52	1	-2	-3	0	1	-3	ı

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-1	-2	-1	0	0	0
s_1	-1	1	- 1	1	0	-1
<i>s</i> ₂	1	-2	-3	0	1	-3
	-1	1	1/3			

(4) ピボット操作

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3 -1/3	1/3	0	1	1/3	-2
x_3	-1/3	2/3	1	0	-1/3	1

(2) ピボット行 (基底変数) の選択

	x_1	x_2	<i>x</i> ₃		s ₂	
	-4/3	-4/3			-1/3	
s_1	-2/3 -1/3	1/3	0	1	1/3	-2
х3	-1/3	2/3	1	0	-1/3	1

	<i>y</i> ₁	у2	t_1	t_2	t_3	
	-1	-3	0	0	0	0
t_1	1	-1	1	0	0	1
t_2	-1	2	0	1	0	2
t ₁ t ₂ t ₃	-1	3	0	0	1	1

	У1	у2	t_1	t_2	t_3	
	-1	-3	0	0	0	0 1 2
t_1	1	-1	1	0	0	1
t ₂	-1	2	0	1	0	2
t ₃	-1	3	0	0	1	1

					<i>t</i> ₃	
	-2	0	0	0	1 1/3 -2/3 1/3	1
t_1	2/3	0	1	0	1/3	4/3
t_2	-1/3	0	0	1	-2/3	4/3
у2	-1/3	1	0	0	1/3	1/3

	у1	у2	t_1	t_2	t_3	
	-2	0	0	0	1	1
t_1	2/3	0	1	0	1/3	4/3
t_2	-1/3	0	0	1	-2/3	4/3
<i>y</i> 2	2/3 -1/3 -1/3	0 0 1	0	0	1/3 -2/3 1/3	1/3

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s ₂	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3 2/3	0	1	1/3	-2
х3	-1/3	2/3	1	0	-1/3	- 1
	2	-4			-1	

(4) ピボット操作

	x_1	x_2	x_3	s_1	s_2	
	0	-2	0	-2	-1	5
x_1	- 1	-1/2	0	-3/2	-1/2 $-1/2$	3
<i>x</i> ₃	0	1/2	1	-1/2	-1/2	2

解答

最適解 $(x_1, x_2, x_3) = (3, 0, 2)$,最適値 -5 スラック変数 $(s_1, s_2) = (0, 0)$

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3 2/3	0	1	1/3	-2
х3	-1/3	2/3	1	0	-1/3	- 1
	2	-4			-1	

(4) ピボット操作

	x_1	x_2	x_3	s_1	s_2		
	0	-2	0	-2	-1	5	
x_1	- 1	-1/2	0	-3/2	-1/2 -1/2	3	
<i>x</i> ₃	0	1/2	1	-1/2	-1/2	2	

解答

最適解 $(x_1, x_2, x_3) = (3, 0, 2)$,最適値 -5 スラック変数 $(s_1, s_2) = (0, 0)$

	У1	у2	t_1	t_2	t_3	
	-2	0	0	0	1	1
t_1	2/3	0	1	0	1/3	4/3
t_2	-1/3	0	0	1	-2/3	4/3
У2	2/3 -1/3 -1/3	1	0	0	1/3 -2/3 1/3	1/3

	y_1	<i>y</i> ₂	t_1	t_2	t_3	
	0	0	3	0	2	5
У1	1	0	3/2 1/2 1/2	0	1/2 -1/2 1/2	2
<i>y</i> ₁ <i>t</i> ₂	0	0	1/2	1	-1/2	2
y2.	0	1	1/2	0	1/2	1

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3 2/3	0	1	1/3	-2
<i>x</i> ₃	-1/3	2/3	1	0	-1/3	- 1
	2	-4			-1	

(4) ピボット操作

	x_1	x_2	x_3	s_1	s_2		
	0	-2	0	-2	-1	5	1
x_1	1	-1/2	0	-3/2 -1/2	-1/2	3	1
<i>x</i> ₃	0	1/2	1	-1/2	-1/2	2	l
	$-t_1$	$-t_2$	$-t_3$	$-y_{1}$	$-y_{2}$		

解答

最適解 $(x_1, x_2, x_3) = (3, 0, 2)$,最適値 -5スラック変数 $(s_1, s_2) = (0, 0)$

		у2				
	-2	0	0	0	1 1/3 -2/3 1/3	1
t_1	2/3	0	1	0	1/3	4/3
t_2	-1/3	0	0	1	-2/3	4/3
у2	-1/3	1	0	0	1/3	1/3

	y_1	<i>y</i> ₂	t_1	t_2	t_3	
	0	0	3	0	2	5
У1	1	0	3/2	0	1/2	2
t_2	0	0	1/2	1	-1/2	2
У2	0	1	3/2 1/2 1/2	0	1/2 -1/2 1/2	1

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3 2/3	0	1	1/3	-2
<i>x</i> ₃	-1/3	2/3	1	0	-1/3	- 1
	2	-4			-1	

(4) ピボット操作

	x_1	x_2	x_3	s_1	s_2		
	0	-2	0	-2	-1	5	
x_1	1	-1/2	0	-3/2 -1/2	-1/2 -1/2	3	l
<i>x</i> ₃	0	1/2	1	-1/2	-1/2	2	
	$-t_1$	$-t_2$	-t ₃	-y ₁	-y ₂		•

解答

最適解 $(x_1, x_2, x_3) = (3, 0, 2)$,最適値 -5スラック変数 $(s_1, s_2) = (0, 0)$

	У1	у2	t_1	t_2	t_3	
	-2	0	0	0	1	1
t_1	2/3	0	1	0	1/3	4/3
t_2	-1/3	0	0	1	-2/3	4/3
У2	-1/3	1	0	0	1/3 -2/3 1/3	1/3

	y_1	<i>y</i> ₂	t_1	t_2	t_3	
	0	0	3	0	2	5
У1	1	0	3/2	0	1/2	2
t_2	0	0	3/2 1/2	1	-1/2	2
У2	0	1	1/2	0	1/2 -1/2 1/2	1

	t_1	t_2	t ₃	У1	<i>y</i> 2	
	3	0	2	0	0	5
t_2	1/2	1	-1/2 1/2 1/2	0	0	2
<i>y</i> ₁	3/2	0	1/2	1	0	2
у2	1/2	0	1/2	0	1	1

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3	0	1	1/3	-2
х3	-1/3	2/3	1	0	-1/3	- 1
	2	-4			-1	

(4) ピボット操作

	x_1	x_2	x_3	s_1	s_2		
	0	-2	0	-2	-1	5	1
x_1	1	-1/2	0	-3/2 -1/2	-1/2 -1/2	3	1
<i>x</i> ₃	0	1/2	1	-1/2	-1/2	2	l
	$-t_1$	$-t_2$	$-t_3$	-y ₁	-y ₂		•

解答

最適解 $(x_1, x_2, x_3) = (3, 0, 2)$,最適値 -5 スラック変数 $(s_1, s_2) = (0, 0)$

	У1	У2	t_1	t_2	t_3	
	-2	0	0	0	1	1
t_1	2/3	0	1	0	1/3	4/3
t_2	-1/3	0	0	1	1/3 -2/3 1/3	4/3
У2	-1/3	1	0	0	1/3	1/3

	y_1	<i>y</i> ₂	t_1	t_2	t_3	
	0	0	3	0	2	5
у1	1	0	3/2 1/2	0	1/2 -1/2 1/2	2
y ₁ t ₂	0	0	1/2	1	-1/2	2
y2.	0	1	1/2	0	1/2	1

	t_1	t_2	t ₃	у1	<i>y</i> 2	
	3	0	2	0	0	5
t_2	1/2	1	-1/2 1/2 1/2	0	0	2
у1	3/2	0	1/2	1	0	2
y ₂	1/2 3/2 1/2	0	1/2	0	1	1

		t_2	У1	<i>y</i> 2
t_1	3	1/2	3/2	1/2
t_2	0	1	0	0
t ₃	2	-1/2	1/2	1/2
y_1	0	0	1	0
у2	0	0	0	1
	5	2	2	1

(3) ピボット列 (非基底変数) の選択

	x_1	x_2	<i>x</i> ₃	s_1	s_2	
	-4/3	-4/3	0	0	-1/3	1
s_1	-2/3	1/3 2/3	0	1	1/3	-2
<i>x</i> ₃	-1/3	2/3	1	0	-1/3	- 1
	2	-4			-1	

(4) ピボット操作

	x_1	x_2	x_3	s_1	s_2	
	0	-2	0	-2	-1	5
x_1	1	-1/2	0	-3/2	-1/2	3
х ₁ х ₃	0	1/2	1	-1/2	-1/2	2
	$-t_1$	$-t_2$	$-t_3$	-y ₁	-y ₂	

解答

最適解 $(x_1, x_2, x_3) = (3, 0, 2)$,最適値 -5 スラック変数 $(s_1, s_2) = (0, 0)$

	У1	У2	t_1	t_2	t_3	
	-2	0	0	0	1	1
t_1	2/3	0	1	0	1/3 -2/3 1/3	4/3
t_2	-1/3	0	0	1	-2/3	4/3
у2	-1/3	1	0	0	1/3	1/3

	y_1	<i>y</i> ₂	t_1	t_2	t_3	
	0	0	3	0	2	5
у1	- 1	0	3/2 1/2	0	1/2 -1/2	2
t_2	0	0	1/2	1	-1/2	2
У2	0	1	1/2	0	1/2	1

	t_1	t_2	t ₃	<i>y</i> ₁	<i>y</i> ₂	
	3	0	2	0	0	5
t_2	1/2	1	-1/2 1/2 1/2	0	0	2
У1	3/2	0	1/2	1	0	2
У2	1/2 3/2 1/2	0	1/2	0	1	1

		t_2	У1	<i>y</i> 2
t_1	3	1/2	3/2	1/2
t ₁ t ₂ t ₃	0	1	0	0
t_3	2	-1/2	1/2	1/2
y_1	0	0	1	0
<i>y</i> 2	0	0	0	1
	5	2	2	1

双対シンプレックス法の利点

- 基底解が実行可能,双対実行可能のいずれかなら OK
 - 実行可能 ⇒ シンプレックス法
 - 双対実行可能 ⇒ 双対シンプレックス法
- 最適解を求めた後で新たに制約条件が追加された場合も OK
 - 元の最適基底解が制約条件を満たす ⇒ 解き直す必要なし
 - 元の最適基底解が制約条件を満たさない ⇒ 解き直す必要あり
 - ⇒ 双対実行可能なので**双対シンプレックス法の出番**
- 最適解を求めた後で制約条件の右辺ベクトルが変化した場合も OK
 - ・やはり元の最適基底解は双対実行可能 ⇒ 双対シンプレックス法 (目的関数の係数ベクトルが変化した場合:実行可能なのでシンプレックス法)
 - 次の話題の感度分析とも関連

例題

$$\max -x_1 - 2x_2 - x_3$$
s.t.
$$-x_1 + x_2 + x_3 \le -1$$

$$x_1 - 2x_2 - 3x_3 \le -3$$

$$x_1, x_2, x_3 \ge 0$$

等式標準形

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 + s_1 = -1$

$$x_1 - 2x_2 - 3x_3 + s_2 = -3$$

$$x_1, x_2, x_3, s_1, s_2 \ge 0$$

双対シンプレックス法の利点

- 基底解が実行可能, 双対実行可能のいずれかなら OK
 - 実行可能 ⇒ シンプレックス法
 - 双対実行可能 ⇒ 双対シンプレックス法
- 最適解を求めた後で新たに制約条件が追加された場合も OK
 - 元の最適基底解が制約条件を満たす ⇒ 解き直す必要なし
 - 元の最適基底解が制約条件を満たさない ⇒ 解き直す必要あり
 - ⇒ 双対実行可能なので<mark>双対シンプレックス法の出番</mark>
- 最適解を求めた後で制約条件の右辺ベクトルが変化した場合も OK
 - ・やはり元の最適基底解は双対実行可能 ⇒ 双対シンプレックス法 (目的関数の係数ベクトルが変化した場合:実行可能なのでシンプレックス法)

例題 + 新たな制約条件

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 \le -1$

$$x_1 - 2x_2 - 3x_3 \le -3$$

$$-x_1 - 2x_2 + 2x_3 \le -6$$

$$x_1, \quad x_2, \quad x_3 \ge 0$$

等式標準形

$$\max -x_1 - 2x_2 - x_3$$
s.t. $-x_1 + x_2 + x_3 + s_1 = -1$

$$x_1 - 2x_2 - 3x_3 + s_2 = -3$$

$$-x_1 - 2x_2 + 2x_3 + s_3 = -6$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

例題 + 新たな制約条件

max
$$-x_1 - 2x_2 - x_3$$

s.t. $-x_1 + x_2 + x_3 \le -1$
 $x_1 - 2x_2 - 3x_3 \le -3$
 $-x_1 - 2x_2 + 2x_3 \le -6$
 $x_1, x_2, x_3 \ge 0$

等式標準形

元の最適シンプレックスタブロー

	x_1	x_2	<i>x</i> ₃	s_1	s ₂	
	0	-2	0	-2	-1	5
x_1	1	-1/2	0	-3/2	-1/2	3
х3	0	1/2	1	-1/2	-1/2	2

基底変数の列を掃き出す. 双対実行可能なので準備完了

	x_1	x_2	x_3	s ₁	s ₂	53	
	0	-2	0	-2	-1	0	5
x_1	1	-1/2	0	-3/2	-1/2 $-1/2$	0	3
х3	0	1/2	1	-1/2	-1/2	0	3 2 -7
53	0	-7/2	0	-1/2	1/2	1	-7

制約条件を追加

	x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
	0	-2	0	-2	-1	0	5
x_1	1	-1/2	0	-3/2	-1/2	0	3
<i>x</i> ₃	0	1/2	1	-1/2	-1/2	0	2
<i>x</i> ₁ <i>x</i> ₃ <i>s</i> ₃	-1	-2	2	0	0	1	-6

1 回の反復で終了

x_1	x_2	x_3	s_1	s ₂	53	
0	0	0	-12/7	-9/7	-4/7	9
1	0	0	-10/7	-4/7	-1/7	4
0	0	1	-4/7	-3/7	1/7	1
0	1	0	1/7	-1/7	-2/7	2
	x_1 0 1 0 0	$ \begin{array}{c cc} x_1 & x_2 \\ \hline 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} $	$\begin{array}{c ccc} x_1 & x_2 & x_3 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array}$	$\begin{array}{c cccc} x_1 & x_2 & x_3 & s_1 \\ \hline 0 & 0 & 0 & -12/7 \\ 1 & 0 & 0 & -10/7 \\ 0 & 0 & 1 & -4/7 \\ 0 & 1 & 0 & 1/7 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

元の最適解の近くに最適解がありそう ⇒ 反復回数が少なくて済む!

感度分析

感度分析 (sensitivity analysis)

- 現実的な問題は正確に式で表すのは難しい
 - 不確かな値を使って解いた後により正確な値が分かった
 - 状況が変化して値も変化した
 - etc.
- 線形計画問題の値が変化 ⇒ 最適基底解の変化?
 - 目的関数の係数
 - 制約条件の右辺

最適プロダクトミックス問題の例

- 原材料 A, B, C から薬品 1, 2, 3 を生産する薬品工場
- 各薬品を生産するには、製品の種類に応じた原材料が必要
 - 各原材料の在庫量を超えて使用することはできない
 - 得られる利益は各薬品ごとに異なる
- 目的:総利益が最大各薬品の生産量を決定

	薬品 1	薬品 2	薬品 3	在庫量
利益	6	5	4	
原材料 A	2	1	2	120
原材料 B	4	2	1	180
原材料 C	3	2	2	240

感度分析 (sensitivity analysis)

- 現実的な問題は正確に式で表すのは難しい
 - 不確かな値を使って解いた後により正確な値が分かった
 - 状況が変化して値も変化した
 - etc.
- 線形計画問題の値が変化 ⇒ 最適基底解の変化?
 - 目的関数の係数
 - 制約条件の右辺

- 原材料 A, B, C から薬品 1, 2, 3 を生産する薬品工場
- 各薬品を生産するには、製品の種類に応じた原材料が必要
 - 各原材料の在庫量を超えて使用することはできない
 - 得られる利益は各薬品ごとに異なる
- 目的:総利益が最大各薬品の生産量を決定

	薬品 1	薬品 2	薬品 3	在庫量
利益	8	5	4	
原材料 A	2	1	2	120
原材料 B	4	2	1	180
原材料 C	3	2	2	240

感度分析 (sensitivity analysis)

- 現実的な問題は正確に式で表すのは難しい
 - 不確かな値を使って解いた後により正確な値が分かった
 - 状況が変化して値も変化した
 - etc.
- 線形計画問題の値が変化 ⇒ 最適基底解の変化?
 - 目的関数の係数
 - 制約条件の右辺

- 原材料 A, B, C から薬品 1, 2, 3 を生産する薬品工場
- 各薬品を生産するには、製品の種類に応じた原材料が必要
 - 各原材料の在庫量を超えて使用することはできない
 - 得られる利益は各薬品ごとに異なる
- 目的:総利益が最大各薬品の生産量を決定

	薬品 1	薬品 2	薬品 3	在庫量
利益	12	5	4	
原材料 A	2	1	2	120
原材料 B	4	2	1	180
原材料 C	3	2	2	240

感度分析 (sensitivity analysis)

- 現実的な問題は正確に式で表すのは難しい
 - 不確かな値を使って解いた後により正確な値が分かった
 - 状況が変化して値も変化した
 - etc.
- 線形計画問題の値が変化 ⇒ 最適基底解の変化?
 - 目的関数の係数
 - 制約条件の右辺

- 原材料 A, B, C から薬品 1, 2, 3 を生産する薬品工場
- 各薬品を生産するには、製品の種類に応じた原材料が必要
 - 各原材料の在庫量を超えて使用することはできない
 - 得られる利益は各薬品ごとに異なる
- 目的:総利益が最大各薬品の生産量を決定

	薬品 1	薬品 2	薬品 3	在庫量
利益	6	5	4	
原材料 A	2	1	2	120
原材料 B	4	2	1	180
原材料 C	3	2	2	240

感度分析 (sensitivity analysis)

- 現実的な問題は正確に式で表すのは難しい
 - 不確かな値を使って解いた後により正確な値が分かった
 - 状況が変化して値も変化した
 - etc.
- 線形計画問題の値が変化 ⇒ 最適基底解の変化?
 - 目的関数の係数
 - 制約条件の右辺

- 原材料 A, B, C から薬品 1, 2, 3 を生産する薬品工場
- 各薬品を生産するには、製品の種類に応じた原材料が必要
 - 各原材料の在庫量を超えて使用することはできない
 - 得られる利益は各薬品ごとに異なる
- 目的:総利益が最大各薬品の生産量を決定

	薬品 1	薬品 2	薬品 3	在庫量
利益	6	5	4	
原材料 A	2	1	2	100
原材料 B	4	2	1	180
原材料 C	3	2	2	240

感度分析 (sensitivity analysis)

- 現実的な問題は正確に式で表すのは難しい
 - 不確かな値を使って解いた後により正確な値が分かった
 - 状況が変化して値も変化した
 - etc.
- 線形計画問題の値が変化 ⇒ 最適基底解の変化?
 - 目的関数の係数
 - 制約条件の右辺

- 原材料 A, B, C から薬品 1, 2, 3 を生産する薬品工場
- 各薬品を生産するには、製品の種類に応じた原材料が必要
 - 各原材料の在庫量を超えて使用することはできない
 - 得られる利益は各薬品ごとに異なる
- 目的:総利益が最大各薬品の生産量を決定

	薬品 1	薬品 2	薬品 3	在庫量
利益	6	5	4	
原材料 A	2	1	2	80
原材料 B	4	2	1	180
原材料 C	3	2	2	240

最適プロダクトミックス問題の例題

max
$$6x_1 + 5x_2 + 4x_3$$

s.t. $2x_1 + x_2 + 2x_3 \le 120$
 $4x_1 + 2x_2 + x_3 \le 180$
 $3x_1 + 2x_2 + 2x_3 \le 240$
 $x_1, x_2, x_3 \ge 0$

等式標準形

$$\begin{array}{llll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 + s_1 & = 120 \\ & 4x_1 + 2x_2 + x_3 & + s_2 & = 180 \\ & 3x_1 + 2x_2 + 2x_3 & + s_3 = 240 \\ & x_1, & x_2, & x_3, & s_1, & s_2, & s_3 \geq 0 \end{array}$$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x ₃ x ₂ s ₃	2	1	0	-1/3	2/3	0	20 80 40
53	-1	0	0	-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 ⇒ 薬品 1 は作らないほうが得

max
$$6x_1 + 5x_2 + 4x_3$$
 max s.t. $2x_1 + x_2 + 2x_3 \le 120$ 4 $x_1 + 2x_2 + x_3 \le 180$ 3 x 薬品 1 を値上げして利益確保

等式標準形

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
<i>x</i> ₃ <i>x</i> ₂ <i>s</i> ₃	-1	0	0	2/3 -1/3 -2/3	-2/3	1	20 80 40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 ⇒ 薬品 1 は作らないほうが得

最適プロダクトミックス問題の例題

max
$$3x_1 + 5x_2 + 4x_3$$
 max s.t. $2x_1 + x_2 + 2x_3 \le 120$ 4 $x_1 + 2x_2 + x_3 \le 180$ 3 x 薬品 1 を値上げして利益確保

等式標準形

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2	-	-480
x_3	0 2	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	-1/3 2/3	0	80
<i>x</i> ₃ <i>x</i> ₂ <i>s</i> ₃	-1	0	0	-2/3	-2/3	1	20 80 40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 ⇒ 薬品 1 は作らないほうが得

最適解は $(x_1, x_2, x_3) = (0, 80, 20)$ のまま

最適プロダクトミックス問題の例題

max
$$12x_1 + 5x_2 + 4x_3$$

s.t. $2x_1 + x_2 + 2x_3 \le 120$
 $4x_1 + 2x_2 + x_3 \le 180$

3x 菜品 1 を値上げして利益確保

等式標準形

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	52	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x_3	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-1/3 2/3 -2/3	1	20 80 40

最適解 (x₁, x₂, x₃) = (0, 80, 20),最適値 480 ⇒ 薬品 1 は作らないほうが得

最適解は $(x_1, x_2, x_3) = (0, 80, 20)$ のまま

 $(x_1, x_2, x_3) = (0, 80, 20)$ は最適解ではない

最適プロダクトミックス問題の例題

max
$$(12x_1 + 5x_2 + 4x_3)$$

s.t.
$$2x_1 + x_2 + 2x_3 \le 120$$

$$4x_1 + 2x_2 + x_3 \le 180$$

薬品 1 を値上げして利益確保

等式標準形

max
$$(12)x_1 + 5x_2 + 4x_3$$

$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

$$4x_1 + 2x_2 + x_3 + s_2 = 180$$

$$3x_1 + 2x_2 + 2x_3 + s_3 = 240$$

 $x_1, \quad x_2, \quad x_3, \quad s_1, \quad s_2, \quad s_3 \ge 0$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2		-480
x_3	0	0	1	2/3	-1/3	0	20
x ₃ x ₂	2	1	0	-1/3	2/3	0	20 80 40
52	-1	0	0	-2/3	-2/3	- 1	40

	x_1	x_2	x_3	s_1	52	53	
	-2	0	0	-1	-2	0	-480
ν3	0	0	1	2/3	-1/3	0	20
\mathfrak{r}_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40

x₁ x₂ x₃ s₁ s₂ s₃

	2	U	U	-1	-2		-460
<i>x</i> ₃	0	0	1	2/3	-1/3	0	20
x_2	2	1		-1/3		0	80
x ₃ x ₂ s ₃	-1	0		-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 ⇒ 薬品 1 は作らないほうが得

最適解は $(x_1, x_2, x_3) = (0, 80, 20)$ のまま

境目は利益 10

 $(x_1, x_2, x_3) = (0, 80, 20)$ は最適解ではない

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \leq 120 \\ & 4x_1 + 2x_2 + x_3 \leq 180 \\ & 3x_1 + 2x_2 + 2x_3 \leq 240 \\ & x_1, \quad x_2, \quad x_3 \geq 0 \end{array}$$

等式標準形

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x ₃ x ₂ s ₃	2	1	0	2/3 -1/3	2/3	0	20 80
53	-1	0	0	-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適值 480 ⇒ 薬品 2 はたくさん作る

13/17

最適シンプレックスタブロー

	x_1	x_2	x_3		s ₂		
	-4	0	0		-2		-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	20 80 40
53	-1	0	0	-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 \Rightarrow 薬品 2 はたくさん作る

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x_3	2	1	0	-1/3	2/3	0	20 80
53	-1	0	0	2/3 -1/3 -2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 ⇒ 薬品 2 はたくさん作る

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適值 400

最適シンプレックスタブロー

- 1	_	_	_			_	
	x_1	x_2	x_3	s_1	52	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40
	x_1	x_2	х3	<i>s</i> ₁	s ₂	53	
	-2	0	0	-4/3	-4/3	0	-400
<i>x</i> ₃	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40
	x_1	x_2	x_3	s_1	52	53	
	2	0	0	-2	0	0	-240
<i>x</i> ₃	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 ⇒ 薬品 2 はたくさん作る

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適值 400

 $(x_1, x_2, x_3) = (0, 80, 20)$ は最適解ではない

最適シンプレックスタブロー

	x_1	x_2	х3	<i>S</i> ₁	s ₂	83	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40
	x_1			S1			
		x_2	х3	31	s ₂	53	
	-2	0	0	-4/3	-4/3	0	-400
<i>x</i> ₃			-				-400 20
x ₃ x ₂		0	-	-4/3	-4/3	0	-400 20 80
		0	0	-4/3 2/3	-4/3 -1/3	0	
x_2		0 0 1	0 1 0	-4/3 2/3 -1/3	-4/3 -1/3 2/3	0	80

0 - 2/3 - 2/3

Х3

 x_2

-1/3

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 ⇒ 薬品 2 はたくさん作る

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適值 400

- 境目は利益 3

-240 20

80

40

 $(x_1, x_2, x_3) = (0, 80, 20)$ は最適解ではない

問題

$$\max c^{\intercal}x$$

$$Ax = b$$
$$x \ge 0$$

辞書

$$\max c^{\mathsf{T}} x \text{s.t.} \quad Ax = b x \ge 0$$

$$f = c_{\mathsf{B}}^{\mathsf{T}} A_{\mathsf{B}}^{-1} b + \widetilde{c}_{\mathsf{N}}^{\mathsf{T}} x_{\mathsf{N}} x_{\mathsf{B}} = A_{\mathsf{B}}^{-1} b - A_{\mathsf{B}}^{-1} A_{\mathsf{N}} x_{\mathsf{N}} (\widetilde{c}_{\mathsf{N}} = c_{\mathsf{N}} - (A_{\mathsf{B}}^{-1} A_{\mathsf{N}})^{\mathsf{T}} c_{\mathsf{B}})$$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s_2	s_3	
	-4	0	0	-1	-2		-480
х3	0	0	1	2/3	-1/3 2/3	0	20 80
\mathfrak{r}_2	2	1	0	-1/3	2/3		80
53	-1	0	0	-2/3	-2/3	1	40

非基底変数の係数が変化した場合

- c_N が $c_N + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ に変化 \Rightarrow 相対コスト係数 \widetilde{c}_N は $\widetilde{c}_N + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ に変化
- 相対コスト係数の絶対値だけ増えれば、基底変数・非基底変数が入れ替わる

•
$$c_{\mathrm{B}}$$
 が $c_{\mathrm{B}} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 $\Rightarrow \left\{ \begin{array}{l} \mathrm{相対コスト係数} \; \widetilde{c}_{\mathrm{N}} \; \mathrm{lt} \; \widetilde{c}_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} \right.$ に変化 最適値 $c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1}b \; \mathrm{lt} \; c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1}b + \begin{pmatrix} \mathbf{0}^{\mathsf{T}} & \Delta & \mathbf{0}^{\mathsf{T}} \end{pmatrix} A_{\mathrm{B}}^{-1}b \; \mathbf{1}$ に変化

- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題

$$\max c^{\intercal}x$$

$$Ax = b$$
$$x \ge 0$$

辞書

$$\max c^{\mathsf{T}} \mathbf{x}$$
s.t. $A\mathbf{x} = \mathbf{b}$

$$\mathbf{x} \ge \mathbf{0}$$

$$\left(\widetilde{c}_{\mathrm{N}} = \mathbf{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \mathbf{b} + \widetilde{c}_{\mathrm{N}}^{\mathsf{T}} \mathbf{x}_{\mathrm{N}}\right)$$

$$\left(\widetilde{c}_{\mathrm{N}} = \mathbf{c}_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} \mathbf{c}_{\mathrm{B}}\right)$$

最適シンプレックスタブロー

x_1	x_2	x_3	s_1	s_2	s_3	
-4 + ∆	0	0	-1	-2	0	-480
0	0	1	2/3	-1/3	0	20
2	1	0	-1/3	2/3	0	80
-1	0	0	-2/3	-2/3	1	40

非基底変数の係数が変化した場合

- c_N が $c_N + \begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix}$ に変化 \Rightarrow 相対コスト係数 \widetilde{c}_N は $\widetilde{c}_N + \begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix}$ に変化
- 相対コスト係数の絶対値だけ増えれば、基底変数・非基底変数が入れ替わる

•
$$c_{\mathrm{B}}$$
 が $c_{\mathrm{B}} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 $\Rightarrow \left\{ \begin{array}{l} \mathrm{相対コスト係数} \; \widetilde{c}_{\mathrm{N}} \; \mathrm{lt} \; \widetilde{c}_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} \right.$ に変化 最適値 $c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1}b \; \mathrm{lt} \; c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1}b + \begin{pmatrix} \mathbf{0}^{\mathsf{T}} & \Delta & \mathbf{0}^{\mathsf{T}} \end{pmatrix} A_{\mathrm{B}}^{-1}b \; \mathbf{1}$ に変化

- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題

$$\max c^{\mathsf{T}} x$$

$$Ax = b$$
$$x \ge 0$$

辞書

$$\begin{array}{l} \max \ c^{\mathsf{T}} x \\ \text{s.t.} \ Ax = b \\ x \ge \mathbf{0} \end{array} \qquad \begin{array}{l} f = c_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} b + \overline{c}_{\mathrm{N}}^{\mathsf{T}} x_{\mathrm{N}} \\ x_{\mathrm{B}} = A_{\mathrm{B}}^{-1} b - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} x_{\mathrm{N}} \\ \left(\widetilde{c}_{\mathrm{N}} = c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}} \right) \end{array}$$

最適シンプレックスタブロー

x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
-4 + ∆	0	0	-1	-2	0	-480
0	0	1	2/3	-1/3	0	20
2	1	0	-1/3	2/3	0	80
-1	0	0	-2/3	-2/3	1	40

非基底変数の係数が変化した場合

- c_N が $c_N + \begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix}$ に変化 \Rightarrow 相対コスト係数 \widetilde{c}_N は $\widetilde{c}_N + \begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix}$ に変化
- 相対コスト係数の絶対値 (4) だけ増えれば、基底変数・非基底変数が入れ替わる

•
$$c_{\mathrm{B}}$$
 が $c_{\mathrm{B}} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 $\Rightarrow \left\{ \begin{array}{l} \mathrm{相対コスト係数} \; \widetilde{c}_{\mathrm{N}} \; \mathrm{lt} \; \widetilde{c}_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} \right.$ に変化 最適値 $c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1}b \; \mathrm{lt} \; c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1}b + \begin{pmatrix} \mathbf{0}^{\mathsf{T}} & \Delta & \mathbf{0}^{\mathsf{T}} \end{pmatrix} A_{\mathrm{B}}^{-1}b \; \mathbf{1}$ に変化

- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題

$$\max c^{\intercal}x$$

s.t.
$$Ax = b$$

 $x \ge 0$

辞書

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
	-4	0	0	-1	-2		-480
ιз	0	0	1	2/3	-1/3	0	20 80
\mathfrak{r}_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-1/3 2/3 -2/3	1	40

非基底変数の係数が変化した場合

•
$$c_N$$
 が c_N + $\begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix}$ に変化 \Rightarrow 相対コスト係数 \widetilde{c}_N は \widetilde{c}_N + $\begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix}$ に変化

● 相対コスト係数の絶対値だけ増えれば、基底変数・非基底変数が入れ替わる

•
$$c_{\mathrm{B}}$$
 が c_{B} + $\begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 \Rightarrow $\begin{cases} \mathrm{H} 対 コスト係数 \ \widetilde{c}_{\mathrm{N}} \ \mathrm{id} \ \widetilde{c}_{\mathrm{N}} - (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 \Rightarrow $\begin{cases} \mathrm{H} \to \mathbf{0} \ \mathrm{E} \$

- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題

 $\max c^{\mathsf{T}} x \qquad f = c_{\mathsf{R}}^{\mathsf{T}} A_{\mathsf{R}}^{-1} b + \widetilde{c}_{\mathsf{N}}^{\mathsf{T}} x_{\mathsf{N}}$ s.t. Ax = b $x_B = A_B^{-1}b - A_B^{-1}A_Nx_N$ $x \ge \mathbf{0} \qquad \left(\widetilde{c}_{\mathrm{N}} = c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}} \right)$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
	-4	0	0	-1	-2		-480
(3	0 2	0	1	2/3	-1/3	0	20
ί2	2	1	0	-1/3	2/3	0	80
3	-1	0	0	-2/3	-1/3 2/3 -2/3	1	40

非基底変数の係数が変化した場合

- c_N が c_N + $\begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 \Rightarrow 相対コ $-(A_B^{-1}A_N)^{\mathsf{T}}$ のある列に Δ をかけたもの \Rightarrow $-A_B^{-1}A_N$ のある行に Δ をかけたもの
- 相対コスト係数の絶対値だけ増えれば、基底変数・非基底変数が入れ替わる

- $\bullet \ c_{\rm B} \ \textit{if} \ c_{\rm B} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \Rightarrow \left\{ \begin{array}{l} \text{相対コスト係数} \ \overline{c}_{\rm N} \ \text{は} \ \overline{c}_{\rm N} (A_{\rm B}^{-1}A_{\rm N})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} \right\} に変化 \\ \text{最適値} \ c_{\rm R}^{\mathsf{T}}A_{\rm R}^{-1}\mathbf{b} \ \text{tt} \ c_{\rm R}^{\mathsf{T}}A_{\rm B}^{-1}\mathbf{b} + (\mathbf{0}^{\mathsf{T}} \quad \Delta \quad \mathbf{0}^{\mathsf{T}}) A_{\rm B}^{-1}\mathbf{b} \right\}$ に変化
- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題

nax
$$c^{\mathsf{T}} x$$

s.t.
$$Ax = b$$

 $x \ge 0$

$$\begin{array}{c} \max \ \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \text{s.t.} \quad A \mathbf{x} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{array} \qquad \begin{array}{c} f = \mathbf{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \mathbf{b} + \widetilde{\mathbf{c}}_{\mathrm{N}}^{\mathsf{T}} \mathbf{x}_{\mathrm{N}} \\ \mathbf{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \mathbf{b} - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} \mathbf{x}_{\mathrm{N}} \\ \left(\widetilde{\mathbf{c}}_{\mathrm{N}} = \mathbf{c}_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} \mathbf{c}_{\mathrm{B}} \right) \end{array}$$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s_2	53	
	-4	0	0	-1	-2		-480
3	0	0	1	2/3	-1/3	0	20
2	2	1	0	-1/3	2/3	0	80
3	-1	0	0	-2/3	-1/3 2/3 -2/3	1	40

非基底変数の係数が変化した場合

- c_N が c_N + $\begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 \Rightarrow 相対 $= -(A_B^{-1}A_N)^\mathsf{T}$ のある列に Δ をかけたもの $\Rightarrow -A_B^{-1}A_N$ のある行に Δ をかけたもの
- 相対コスト係数の絶対値だけ増えれば、基底変数・非基底変数が入れ替わる

- $\bullet \ c_{\rm B} \ \textit{if} \ c_{\rm B} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \Rightarrow \left\{ \begin{array}{l} \text{相対コスト係数} \ \overline{c}_{\rm N} \ \text{は} \ \overline{c}_{\rm N} (A_{\rm B}^{-1}A_{\rm N})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} \right\} に変化 \\ \text{最適値} \ c_{\rm R}^{\mathsf{T}}A_{\rm B}^{-1}\mathbf{b} \ \text{tt} \ c_{\rm R}^{\mathsf{T}}A_{\rm B}^{-1}\mathbf{b} + (\mathbf{0}^{\mathsf{T}} \quad \Delta \quad \mathbf{0}^{\mathsf{T}}) A_{\rm B}^{-1}\mathbf{b} \right\}$ に変化

- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題

 $\max c^{T}x$

辞書

 $f = \boldsymbol{c}_{\mathrm{R}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$ s.t. Ax = b $x_B = A_B^{-1}b - A_B^{-1}A_Nx_N$ $(\widetilde{c}_{N} = c_{N} - (A_{B}^{-1}A_{N})^{T}c_{B})$

最適シンプレックスタブロー

x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
-4 -2 ∆	0	0	$-1+\Delta/3$	$-2-2\Delta/3$	0	-480
0	0	1	2/3	-1/3	0	20
2	1	0	-1/3	2/3	0	80
-1	0	0	-2/3	-2/3	1	40

非基底変数の係数が変化した場合

- c_N が c_N + $\begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix}$ に変化 \Rightarrow 相対 $= -(A_B^{-1}A_N)^\mathsf{T}$ のある列に Δ をかけたもの $\Rightarrow -A_B^{-1}A_N$ のある行に Δ をかけたもの
- 相対コスト係数の絶対値だけ増えれば、基底変数・非基底変数が入れ替わる

- $\bullet \ c_{\rm B} \ \textit{if} \ c_{\rm B} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \Rightarrow \left\{ \begin{array}{l} \text{相対コスト係数} \ \overline{c}_{\rm N} \ \text{は} \ \overline{c}_{\rm N} (A_{\rm B}^{-1}A_{\rm N})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} \right\} に変化 \\ \text{最適値} \ c_{\rm R}^{\mathsf{T}}A_{\rm B}^{-1}\mathbf{b} \ \text{tt} \ c_{\rm R}^{\mathsf{T}}A_{\rm B}^{-1}\mathbf{b} + (\mathbf{0}^{\mathsf{T}} \quad \Delta \quad \mathbf{0}^{\mathsf{T}}) A_{\rm B}^{-1}\mathbf{b} \right\}$ に変化

- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題 $\max c^{\mathsf{T}} x$

辞書

 $f = \boldsymbol{c}_{\mathrm{R}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$ s.t. Ax = b $x_B = A_B^{-1}b - A_B^{-1}A_Nx_N$ $x \ge \mathbf{0}$ $\left(\widetilde{c}_{\mathrm{N}} = c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}}\right)$

最適シンプレックスタブロー

x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
-4 -2 ∆	0	0	$-1+\Delta/3$	$-2-2\Delta/3$	0	-480
0	0	1	2/3	-1/3	0	20
2	1	0	-1/3	2/3	0	80
-1	0	0	-2/3	-2/3	1	40

非基底変数の係数が変化した場合

- $c_{\rm N}$ が $c_{\rm N}$ + $\begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix}$ に変化 \Rightarrow 相対コ $-(A_{\rm B}^{-1}A_{\rm N})^{\rm T}$ のある列に Δ をかけたもの \Rightarrow $-A_{\rm B}^{-1}A_{\rm N}$ のある行に Δ をかけたもの
- 相対コスト $A_n^{(K)}$ のある行に Δ をかけたもの

- $\bullet \ c_{\rm B} \ \textit{が} \ c_{\rm B} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \Rightarrow \left\{ \begin{array}{l} \text{相対コスト係数} \ \mathbf{\tilde{c}_N} \ \cdot (A_{\rm B}^{-1}A_{\rm N})^{\intercal} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \\ \text{最適値} \ c_{\rm B}^{\intercal}A_{\rm B}^{-1}\mathbf{b} \ \textit{tx} \ c_{\rm B}^{\intercal}A_{\rm B}^{-1}\mathbf{a} + \begin{pmatrix} \mathbf{0}^{\intercal} & \Delta & \mathbf{0}^{\intercal} \end{pmatrix} A_{\rm B}^{-1}\mathbf{b} \ \textit{tx} \ \textit{xx} \right\}$

- 基底変数・非基底変数が入れ替わる条件: △ ≤ -△ または △ ≥ △
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題
$$f = c_B^T A_B^{-1} b + c_N^T x_N$$
s.t. $Ax = b$
 $x \ge 0$

非基底変数の係数が変化した場合

 $c_N \text{ if } c_N \text{ i$

- $\bullet \ c_{\rm B} \ \textit{が} \ c_{\rm B} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \Rightarrow \left\{ \begin{array}{l} \text{相対コスト係数} \ \mathbf{\tilde{c}_N} \ \cdot (A_{\rm B}^{-1}A_{\rm N})^{\intercal} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \\ \text{最適値} \ c_{\rm B}^{\intercal}A_{\rm B}^{-1}\mathbf{b} \ \textit{tx} \ c_{\rm B}^{\intercal}A_{\rm B}^{-1}\mathbf{a} + \begin{pmatrix} \mathbf{0}^{\intercal} & \Delta & \mathbf{0}^{\intercal} \end{pmatrix} A_{\rm B}^{-1}\mathbf{b} \ \textit{tx} \ \textit{xx} \right\}$
- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\underline{\Delta}$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - $\overline{\Delta}$: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

- $\bullet \ c_{\rm B} \ \textit{が} \ c_{\rm B} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \Rightarrow \left\{ \begin{array}{l} \text{相対コスト係数} \ \mathbf{\tilde{c}_N} \ \cdot (A_{\rm B}^{-1}A_{\rm N})^{\intercal} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \\ \text{最適値} \ c_{\rm B}^{\intercal}A_{\rm B}^{-1}\mathbf{b} \ \textit{tx} \ c_{\rm B}^{\intercal}A_{\rm B}^{-1}\mathbf{a} + \begin{pmatrix} \mathbf{0}^{\intercal} & \Delta & \mathbf{0}^{\intercal} \end{pmatrix} A_{\rm B}^{-1}\mathbf{b} \ \textit{tx} \ \textit{xx} \right\}$
- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\Delta$ または $\Delta \ge \overline{\Delta}$
 - ∆: (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - Δ: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

問題
max
$$c^{\mathsf{T}}x$$
s.t. $Ax = b$
 $x \ge 0$

非基底変数の係数が変化した場合

 $c_{\mathsf{N}} \bowtie c_{\mathsf{N}} \bowtie c_{$

- $\bullet \ \, c_{\mathrm{B}} \,\, \acute{m} \,\, c_{\mathrm{B}} + \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} に変化 \Rightarrow \left\{ \begin{array}{l} \mathrm{相対コスト係数} \, \overleftarrow{e}_{\mathrm{N}} \,\, \dot{\mathbf{t}} \,\, \overleftarrow{c}_{\mathrm{N}} (A_{\mathrm{B}}^{-1}A_{\mathrm{N}})^{\mathsf{T}} \begin{pmatrix} \mathbf{0} \\ \Delta \\ \mathbf{0} \end{pmatrix} \right. に変化 \\ \mathrm{最適値} \,\, c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1} \, b \,\, \dot{\mathbf{t}} \,\, c_{\mathrm{B}}^{\mathsf{T}}A_{\mathrm{B}}^{-1} \, \mathbf{a} + \begin{pmatrix} \mathbf{0}^{\mathsf{T}} \quad \Delta \quad \mathbf{0}^{\mathsf{T}} \end{pmatrix} A_{\mathrm{B}}^{-1} \, b \,\, \mathbf{c} \,\, \mathbf{z} \,\, \mathbf{c} \,\, \mathbf{$
- 基底変数・非基底変数が入れ替わる条件: $\Delta \le -\underline{\Delta}$ または $\Delta \ge \overline{\Delta}$ ($\underline{\Delta} = 2, \overline{\Delta} = 3$)
 Δ : (行の要素) > 0 の列に関する -(相対コスト係数)/(行の要素) の最小値
 - △: (行の要素) < 0 の列に関する (相対コスト係数)/(行の要素) の最小値

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \leq 120 \\ & 4x_1 + 2x_2 + x_3 \leq 180 \\ & 3x_1 + 2x_2 + 2x_3 \leq 240 \\ & x_1, \quad x_2, \quad x_3 \geq 0 \end{array}$$

等式標準形

$$\begin{array}{lllll} \max & 6x_1+5x_2+4x_3 \\ \text{s.t.} & 2x_1+\ x_2+2x_3+s_1 & = 120 \\ & 4x_1+2x_2+\ x_3 & +s_2 & = 180 \\ & 3x_1+2x_2+2x_3 & +s_3=240 \\ & x_1, & x_2, & x_3, & s_1, & s_2, & s_3 \geq 0 \end{array}$$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x_3 x_2	2	1	0	2/3 -1/3	2/3	0	20 80 40
53	-1	0	0	-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適值 480

⇒ 原材料 2 の在庫量が変化するとどうなる?

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \le 120 \\ & 4x_1 + 2x_2 + x_3 \le \boxed{180} \\ & 3x_1 + 2x_2 + 2x_3 \le 240 \\ & x_1, \quad x_2, \quad x_3 \ge 0 \end{array}$$

等式標準形

原材料 2 の在庫量が変化

5.1.
$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

 $4x_1 + 2x_2 + x_3 + s_2 = 180$
 $3x_1 + 2x_2 + 2x_3 + s_3 = 240$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2		-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	0 2 -1	1	0	-1/3	-1/3 2/3 -2/3	0	20 80
53	-1	0	0	-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適值 480

⇒ 原材料 2 の在庫量が変化するとどうなる?

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \le 120 \\ & 4x_1 + 2x_2 + x_3 \le 210 \\ & 3x_1 + 2x_2 + 2x_3 \le 240 \\ & x_1, \quad x_2, \quad x_3 \ge 0 \end{array}$$

等式標準形

原材料 2 の在庫量が変化

$$3x. \quad 2x_1 + x_2 + 2x_3 + s_1 = 120$$

$$4x_1 + 2x_2 + x_3 + s_2 = 210$$

$$3x_1 + 2x_2 + 2x_3 + s_3 = 240$$

$$x_1, \quad x_2, \quad x_3, \quad s_1, \quad s_2, \quad s_3 \ge 0$$

最適シンプレックスタブロー

	x_1	x_2	<i>x</i> ₃	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-480
<i>x</i> ₃	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-1/3 2/3 -2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 \Rightarrow 原材料 2 の在庫量が変化するとどうなる?

最適解 $(x_1, x_2, x_3) = (0, 100, 10)$

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \le 120 \\ & 4x_1 + 2x_2 + x_3 \le \boxed{270}^4 \\ & 3x_1 + 2x_2 + 2x_3 \le 240 \\ & x_1, \quad x_2, \quad x_3 \ge 0 \end{array}$$

等式標準形

原材料 2 の在庫量が変化

51.
$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

 $4x_1 + 2x_2 + x_3 + s_2 = 270$
 $3x_1 + 2x_2 + 2x_3 + s_3 = 240$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

最適シンプレックスタブロー

	<i>x</i> ₁	x_2	<i>x</i> ₃	s_1	<i>s</i> ₂	53	
	-4	0	0	-1	-2	0	-480
	<u> </u>		_				
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40
	x_1	x_2	х3	s ₁	s ₂	53	
	-4	0	0	-1	-2	0	-540
x_3	0	0	1	2/3	-1/3	0	10
x_2	2	1	0	-1/3	2/3	0	100
s_3	-1	0	0	-2/3	-2/3	1	20
	x_1	x_2	х3	s ₁	s ₂	53	
	-4	0	0	-1	-2	0	-660
x_3	0	0	1	2/3	-1/3	0	-10
x_2	2	1	0	-1/3	2/3	0	140
53	-1	0	0	-2/3	-2/3	1	-20

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 \Rightarrow 原材料 2 の在庫量が変化するとどうなる?

最適解
$$(x_1, x_2, x_3) = (0, 100, 10)$$

現在の基底解は実行不可能に

最適プロダクトミックス問題の例題

max
$$6x_1 + 5x_2 + 4x_3$$

s.t. $2x_1 + x_2 + 2x_3 \le 120$
 $4x_1 + 2x_2 + x_3 \le 270$
 $3x_1 + 2x_2 + 2x_3 \le 240$
 $x_1, x_2, x_3 \ge 0$

等式標準形

原材料 2 の在庫量が変化

s.t.
$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

 $4x_1 + 2x_2 + x_3 + s_2 = 270$
 $3x_1 + 2x_2 + 2x_3 + s_3 = 240$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

最適シンプレックスタブロー

	x_1	x_2	х3	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-480
<i>x</i> ₃	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	2/3 -1/3 -2/3	-2/3	1	40
33	-1	U	U	-2/3	-2/3	1	70

 最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 \Rightarrow 原材料 2 の在庫量が変化するとどうなる?

最適解 $(x_1, x_2, x_3) = (0, 100, 10)$

現在の基底解は実行不可能に

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \le 120 \\ & 4x_1 + 2x_2 + x_3 \le \boxed{180} \\ & 3x_1 + 2x_2 + 2x_3 \le 240 \\ & x_1, \quad x_2, \quad x_3 \ge 0 \end{array}$$

等式標準形

原材料 2 の在庫量が変化

5.1.
$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

 $4x_1 + 2x_2 + x_3 + s_2 = 180$
 $3x_1 + 2x_2 + 2x_3 + s_3 = 240$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s ₂	53	
	-4	0	0	-1	-2		-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	0 2 -1	1	0	-1/3	-1/3 2/3 -2/3	0	20 80
53	-1	0	0	-2/3	-2/3	1	40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適值 480

⇒ 原材料 2 の在庫量が変化するとどうなる?

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \le 120 \\ & 4x_1 + 2x_2 + x_3 \le \boxed{120} \\ & 3x_1 + 2x_2 + 2x_3 \le 240 \\ & x_1, \quad x_2, \quad x_3 \ge 0 \end{array}$$

等式標準形

r 原材料 2 の在庫量が変化

5.1.
$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

 $4x_1 + 2x_2 + x_3 + s_2 = 120$
 $3x_1 + 2x_2 + 2x_3 + s_3 = 240$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	52	53	
	-4	0	0	-1			-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	20 80 40

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 \Rightarrow 原材料 2 の在庫量が変化するとどうなる?

最適解
$$(x_1, x_2, x_3) = (0, 40, 40)$$

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \le 120 \\ & 4x_1 + 2x_2 + x_3 \le 30 \\ & 3x_1 + 2x_2 + 2x_3 \le 240 \\ & x_1, \quad x_2, \quad x_3 \ge 0 \end{array}$$

等式標準形

原材料 2 の在庫量が変化

5.1.
$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

 $4x_1 + 2x_2 + x_3 + s_2 = 30$
 $3x_1 + 2x_2 + 2x_3 + s_3 = 240$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

最適シンプレックスタブロー

7							
	x_1	x_2	x_3	s_1	52	53	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40
	x_1	x_2	x_3	s_1	52	53	
	-4	0	0	-1	-2	0	-360
x_3	0	0	1	2/3	-1/3	0	40
x_2	2	1	0	-1/3	2/3	0	40
53	-1	0	0	-2/3	-2/3	1	80
	x_1	x_2	<i>x</i> ₃	s_1	s ₂	53	
	-4	0	0	-1	-2	0	-180

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 \Rightarrow 原材料 2 の在庫量が変化するとどうなる?

最適解 $(x_1, x_2, x_3) = (0, 40, 40)$

現在の基底解は実行不可能に

最適プロダクトミックス問題の例題

max
$$6x_1 + 5x_2 + 4x_3$$

s.t. $2x_1 + x_2 + 2x_3 \le 120$
 $4x_1 + 2x_2 + x_3 \le 30$
 $3x_1 + 2x_2 + 2x_3 \le 240$
 $x_1, x_2, x_3 \ge 0$

等式標準形

原材料 2 の在庫量が変化

S.1.
$$2x_1 + x_2 + 2x_3 + s_1 = 120$$

 $4x_1 + 2x_2 + x_3 + s_2 = 30$
 $3x_1 + 2x_2 + 2x_3 + s_3 = 240$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

最適シンプレックスタブロー

x₃ 0 0 1 2/3 -1/3 0

x_2	2	1	0	-1/3	2/3	0	80	
53	-1	0	0	-2/3	-2/3	1	40	
	<i>x</i> ₁	<i>x</i> ₂	х3	<i>s</i> ₁	s ₂	53	•	•
	-4	0	0	-1	-2	0	-360	
<i>x</i> ₃	0	0	1	2/3	-1/3	0	40	1
x_2	2	1	0	-1/3	2/3	0	40	
53	-1	0	0	-2/3	-2/3	1	80	
								_
	x_1	x_2	х3	<i>s</i> ₁	s ₂	53		
	-4	0	0	-1	-2	0	-180	
<i>x</i> ₃	0	0	1	2/3	-1/3	0	70	
x_2	2	1	0	-1/3	2/3	0	-20	
53	-1	0	0	-2/3	-2/3	1	140	

最適解 $(x_1, x_2, x_3) = (0, 80, 20)$,最適値 480 \Rightarrow 原材料 2 の在庫量が変化するとどうなる?

最適解 $(x_1, x_2, x_3) = (0, 40, 40)$

境目は在庫量 60

現在の基底解は実行不可能に

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \leq 120 \\ & 4x_1 + 2x_2 + x_3 \leq 180 \\ & 3x_1 + 2x_2 + 2x_3 \leq 240 \\ & x_1, \quad x_2, \quad x_3 \geq 0 \end{array}$$

等式標準形

	x_1	x_2	x_3	s_1	s_2	s_3	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3 -1/3	-1/3	0	20
x_3	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	20 80 40

$$-120 \le \Delta \le 60$$
 のとき,
最適解 $(x_1, x_2, x_3) = (0, 80 + 2\Delta/3, 20 - \Delta/3)$,
最適値 $480 + 2\Delta$

最適プロダクトミックス問題の例題

max
$$6x_1 + 5x_2 + 4x_3$$

s.t. $2x_1 + x_2 + 2x_3 \le 120$
 $4x_1 + 2x_2 + x_3 \le 180 + \Delta$
 $3x_1 + 2x_2 + 2x_3 \le 240$
 $x_1, x_2, x_3 \ge 0$

等式標準形

$$\begin{array}{llll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + & x_2 + 2x_3 + s_1 & = 120 \\ & 4x_1 + 2x_2 + & x_3 & + s_2 & = 180 + \Delta \\ & 3x_1 + 2x_2 + 2x_3 & + s_3 = 240 \\ & x_1, & x_2, & x_3, & s_1, & s_2, & s_3 \geq 0 \end{array}$$

	x_1	x_2	x_3	s_1	s_2	s_3	
	-4	0	0	-1	-2		-480
x_3	0	0	1	2/3	-1/3	0	20
x_2	2	1	0	-1/3	2/3	0	80
53	0 2 -1	0	0	-2/3	-1/3 2/3 -2/3	1	20 80 40

$$-120 \le \Delta \le 60$$
 のとき,
最適解 $(x_1, x_2, x_3) = (0, 80 + 2\Delta/3, 20 - \Delta/3)$,
最適値 $480 + 2\Delta$

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \leq 120 \\ & 4x_1 + 2x_2 + x_3 \leq 180 + \Delta \\ & 3x_1 + 2x_2 + 2x_3 \leq 240 \\ & x_1, \quad x_2, \quad x_3 \geq 0 \end{array}$$

等式標準形

$$\begin{array}{llll} \max & 6x_1+5x_2+4x_3 \\ \text{s.t.} & 2x_1+& x_2+2x_3+s_1 & = 120 \\ & 4x_1+2x_2+& x_3 & +s_2 & = 180+\Delta \\ & 3x_1+2x_2+2x_3 & +s_3=240 \\ & x_1, & x_2, & x_3, & s_1, & s_2, & s_3 \geq 0 \end{array}$$

177	_						
	x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
	-4	0	0	-1	-2	0	-480
x_3	0	0	1	2/3 -1/3 -2/3	-1/3	0	20
x_3	2	1	0	-1/3	2/3	0	80
53	-1	0	0	-2/3	-2/3	1	40

$$-120 \le \Delta \le 60$$
 のとき,
最適解 $(x_1,x_2,x_3)=(0,80+2\Delta/3,20-\Delta/3)$,
最適値 $480+2\Delta$

最適プロダクトミックス問題の例題

$$\begin{array}{ll} \max & 6x_1 + 5x_2 + 4x_3 \\ \text{s.t.} & 2x_1 + x_2 + 2x_3 \leq 120 \\ & 4x_1 + 2x_2 + x_3 \leq 180 + \Delta \\ & 3x_1 + 2x_2 + 2x_3 \leq 240 \\ & x_1, \quad x_2, \quad x_3 \geq 0 \end{array}$$

等式標準形

	x_1	x_2	x_3	s_1	s_2	<i>s</i> ₃	
	-4			-1			$-480 - 2\Delta$
x_3	0	0	1	2/3	-1/3	0	$20 - \Delta/3$
x_2	0	1	0	-1/3	2/3	0	$80 + 2\Delta/3$
53	-1	0	0	2/3 -1/3 -2/3	-2/3	1	$40 - 2\Delta/3$

$$-120 \le \Delta \le 60$$
 のとき,
最適解 $(x_1, x_2, x_3) = (0, 80 + 2\Delta/3, 20 - \Delta/3)$,
最適値 $480 + 2\Delta$

最適プロダクトミックス問題の例題

max
$$6x_1 + 5x_2 + 4x_3$$

s.t. $2x_1 + x_2 + 2x_3 \le 120$
 $4x_1 + 2x_2 + x_3 \le 180 + \Delta$
 $3x_1 + 2x_2 + 2x_3 \le 240$
 $x_1, x_2, x_3 \ge 0$

等式標準形

最適シンプレックスタブロー

	x_1	x_2	x_3	s_1	s_2	53	
	-4	0	0	-1			$-480 - 2\Delta$
x_3	0	0	1	2/3	-1/3	0	$20 - \Delta/3$
x_3	2	1	0	-1/3	2/3	0	$80 + 2\Delta/3$
53	-1	0	0	2/3 -1/3 -2/3	-2/3	1	$40 - 2\Delta/3$

$$-120 \le \Delta \le 60$$
 のとき,
最適解 $(x_1,x_2,x_3)=(0,80+2\Delta/3,20-\Delta/3)$,
最適値 $480+2\Delta$

辞書

$$f = c_{\text{B}}^{\mathsf{T}} A_{\text{B}}^{-1} \boldsymbol{b} + \widetilde{c}_{\text{N}}^{\mathsf{T}} \boldsymbol{x}_{\text{N}}$$
$$\boldsymbol{x}_{\text{B}} = A_{\text{B}}^{-1} \boldsymbol{b} - A_{\text{B}}^{-1} A_{\text{N}} \boldsymbol{x}_{\text{N}}$$
$$\left(\widetilde{c}_{\text{N}} = c_{\text{N}} - (A_{\text{B}}^{-1} A_{\text{N}})^{\mathsf{T}} c_{\text{B}}\right)$$

$$e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 とすると, $b \to b + \Delta e_2 \Rightarrow \begin{cases} f \to f + \Delta c_{\rm B}^{\mathsf{T}} A_{\rm B}^{-1} e_2 \\ x_{\rm B} \to x_{\rm B} + \Delta A_{\rm B}^{-1} e_2 \end{cases}$ $A_{\rm N}$ の s_2 の列は $e_2 \Rightarrow$ タブローの s_2 の列の $2 \sim 4$ 行は $A_{\rm B}^{-1} e_2$ s_2 の相対コスト係数は $0 - (A_{\rm B}^{-1} e_2)^{\mathsf{T}} c_{\rm B} = -c_{\rm B}^{\mathsf{T}} A_{\rm B}^{-1} e_2$ 最終列に s_2 の列の Δ 倍を足せばよい (1番目の制約なら s_1 の列,3番目の制約なら s_3 の列)