# Introduction to Information Security

—— Symmetric/Secret Key Cryptography & Asymmetric/Public Key Cryptography

Dr. Tianlei HU

Associate Professor

College of Computer Science, Zhejiang Univ.

htl@zju.edu.cn

### Outlines

#### Symmetric/Secret Key Cryptography

- Model of Symmetric key Cryptography
- Feistel cipher structure, DES, and other modern cryptography
- Key Distribution problem and the solution

#### Asymmetric/Public Key Cryptography

- Fundamentals and model of Asymmetric/Public Key Cryptography
- Diffie-Hellman algorithm and attack
- RSA algorithm

# Symmetric/Secret Key Cryptography

Direct impact by computer in the field of cryptography ...

## What's Symmetric Key Cryptography?

- Symmetric Key Ciphers (对称密钥加密算法), also called
  - Shared Key Ciphers (共享密钥加密算法)
  - Secure Key Ciphers (保密密钥加密算法)
- Symmetric Key Algorithm is one of the encryption algorithms in Cryptography.
  - Its encryption algorithm is an Antagonistic function, so decryption algorithm is the same as
    encryption algorithm, that is, with the same encryption algorithm, we can get the plaintext.
  - In another words, with the proper key, two encryption can get the original message.(It is called involution in mathematic)
  - In application, it means encryption and decryption use the same key, or can calculate the other key easily.
- Complies with the Kerckhoffs's principle

## Model of Secret Key Cryptography



## Block Cipher

Divide input bit stream into n-bit sections, encrypt only that section, no dependency/history between sections



In a good block cipher, each output bit is a function of all n input bits and all k key bits

## Feistel Cipher Structure

- Proposed by IBM Feistel in 1973
  - Almost all modern symmetric encryption algorithms are based on this structure
- Use block cipher, and increase block size
  - If adopting the ideal block cipher (Completely random mapping), may cause length of key too long (n\*2<sup>n</sup>, n=64, needs 2<sup>70</sup>bits length of key
  - Thus, needs an approximation to the ideal block cipher
- Design:
  - Feistel utilized the concept of a product cipher to solve this problem
  - With two approaches to cause avalanche effect:
    - Diffusion 扩散 ——使得密文的统计特性与明文之间的关系尽量复杂
    - Confusion 扰乱 ——使得密文的统计特性与加密密钥之间的关系尽量复杂

### Feistel cipher encryption & decryption process

- Diffusion iteratively interchange left-right half
   Confusion - round function F
  - **Block Size:** Larger block size means greater security, typical size is 64bits or 128bits
  - Key Length: Larger key size means greater security, typical size is 128bits
  - Number of rounds: more number of rounds means greater security, typical size is 16
  - Sub-key generation algorithm:
     Greater complexity in this algorithm should lead to greater difficult of cryptanalysis
  - Round function F: Greater complexity generally means greater resistance of cryptanalysis



## DES Algorithm —— Progress

#### Data Encryption Standard, DES

- Adopted in 1977 by the National Bureau of Standards
- Widespread use at present
- Encrypted in 64-bits blocks
- Using a 56-bits key, based on Feistel structure

#### **Characteristics of DES:**

- Strong avalanche effect
- Has a strong anti-crack strength, only can be attacked with brute-force method
- In Internet age, it is not safe enough by only 56bits-key.

http://en.wikipedia.org/wiki/Data\_Encryption\_S
tandard



## Single Round of DES Algorithm



## Cracking DES

- DES has excellent anti-crack performance. Secure for about 25 years.
  - estimated 2283 years
- Cracked in 1997
  - Key is only 56bits, 2 exp 56: 72,057,584,037,927,936
  - Computing capability is increasing exponentially
  - Parallel attack exhaustively search key space
- 1997: Team leaded by Roche Verse using 70000 PCs connected with Internet, 96 days
- 1998: EFF (Electronic Frontier Foundation) using a specially designed machine (\$250,000), 3 days
- 1999: Using supercomputer, only 22 hours.

## Triple DES

- Utilize encryption decryption encryption
- to complete data encryption

$$C = E_{K3}[D_{K2}[E_{K1}[P]]]$$

C: Ciphertext; P: Plaintext



- Key size is up to  $56 \times 3 = 168$
- Utilize K<sub>3</sub>=K<sub>2</sub> or K<sub>1</sub>=K<sub>2</sub> to provide backward compatibility for the DES algorithm
- Adopted for Internet applications, e.g., PGP and S/MIME
- http://en.wikipedia.org/wiki/Triple\_DES

## Other Symmetric Key Cryptography

#### International Data Encryption Algorithm(IDEA)

- Designed by Sweden Royal Institute of Technology (KTH), James Massey and Lai Xuejia
- Based on Feistel cipher structure, 64bits block, 128bits key
- Adopted by PGP (Pretty Good Privacy)
- http://en.wikipedia.org/wiki/International\_Data\_Encryption\_Algorithm

#### Blowfish Algorithm

- Invented by American cryptologist Bruce Schneier in 1993;
- Based on Feistel cipher structure, encrypted both two parts of data in each roundS box depends on the key and harder to decipher, Key size from 32bit to 448bit
- Easy to implementation, fast to encryption, can run blow 5k memory!
- http://en.wikipedia.org/wiki/Blowfish\_(cipher)

#### RC5

- Invented by MIT Prof. Ronald L. Rivest in 1994
- Only use common preliminary computing operations, satisfied for both hardware and software implementation
- Easy and fast to implementation
- RC5-w/r/b, w/r/b are all parameters
  - w: word size 16/32/64, satisfied for different CPU
  - r: number of rounds (o to 255)
  - b: key size (o to 2040)
- Cost low memory, great security
- http://en.wikipedia.org/wiki/RC5

## New International Encryption Standard

----- AES

- Advanced Encryption Standard, promulgation of the new US Encryption
   Standard in 2001
  - Adopted Rijndael Algorithm proposed by Belgian scientist Joan Daemen and Vincent Rijmen
  - Replace DES and 3DES to overcome the following disadvantages of 3DES:
    - 3DES is slow implemented by software method
    - Block size is only 64bits

#### Characteristics of AES:

Block size: 128bits

Key size: 128/192/256 bits

- Immune to all known attacks
- Execution fast and code compactness on every platform
- Simple design

http://en.wikipedia.org/wiki/Advanced\_Encryption\_Standard

### Mode of Operation

A block cipher by itself is only suitable for the secure cryptographic transformation (encryption or decryption) of one fixed-length group of bits called a "block".

A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.

- Electronic Codebook (ECB)
- Cipher-block chaining (CBC)
- Propagating cipher-block chaining (PCBC)
- Cipher feedback (CFB)
- Output feedback (OFB)
- Counter (CTR)

We will address ECB and CBC. For more information, please refer to: <a href="http://en.wikipedia.org/wiki/Block\_cipher\_mode\_of\_operation">http://en.wikipedia.org/wiki/Block\_cipher\_mode\_of\_operation</a>

#### **ECB**

for block ciphers of a long digital sequence



If an attacker thinks block  $C_2$  corresponds to \$ amount, then substitute another  $C_k$  (ciphertext only attacks)

Attacker can also build a codebook of  $\langle C_k, guessed P_k \rangle$  pairs (chosen plaintext attacks). Replay Attacks?

#### **CBC**



Inhibits replay attacks and codebook building: identical input plaintext  $P_i = P_k$  won't result in same output code due to memory-based chaining

IV = Initialization Vector – use only once

## Different Mode of Operations



Original Image



**Encrypting using ECB** 



Encrypting using other modes

## Beyond Block Ciphers, Stream Cipher



Rather than divide bit stream into discrete blocks, as block ciphers do, XOR each bit of your plaintext continuous stream with a bit from a pseudo-random sequence

At receiver, use same symmetric key, XOR again to extract plaintext

## Beyond Block Ciphers, Stream Cipher



A. Steffen, 4.03.2002, KSy\_Crypto.ppt 34

## The Key Distribution Problem

- According to Kerckhoffs's principle, key is most important!
  - For symmetric encryption, the key should be shared, and how to share the key?
- For symmetric encryption, key distribution as follows:
  - A can select a key and physically deliver it to B
  - A third party can select the key and physically deliver it to A and B
  - If A and B have previously and recently used a key, one party can transmit the new key to the other, encrypted using the old key.
  - If A and B each has an encrypted connection to a third party C, C can deliver a key on the encrypted links to A and B
- Typical solution—— Key Distribution Center(KDC)
- Can this ensure the safety?

## Public Key Cryptography

The greatest revolution in the history of cryptography ......

## Existing problem of Secret Key Cryptography

#### Alice send one of her unpublished paper to Bob by Email:

- Problem 1: Alice do not want others except Bob to read her paper
  - Alice need to encrypt her paper, but how can she tell the password to Bob?
  - If she send the password by email, any one who capture all the emails between Alice and Bob can read the unpublished paper.
- Problem 2: If Bob plagiarize and publish the paper, Alice should be able to prove Bob's plagiarism

## Public Key Cryptography

- Public key cryptography is the greatest revolution in the history of cryptography, It may be said to be the ONLY revolution.
  - Public key encryption algorithms rely on mathematical functions, instead of substitution or transposition
  - Public key cryptography is asymmetric, using two separated key, also known as "asymmetric cryptography".
- Public key ciphers enable the exchange of secret information without sharing any secret message between the sender and the receiver.
  - Solve the key distribution problem (independent of KDC), correspond to previous problem 1
- Public key ciphers enable keeping secrecy of the sender and the receiver when they secretly communicate with each other!
  - Solve digital signature problem, correspond to problem 2

## Model of Public Key Cryptosystem —— for Secrecy



## Model of Public Key Cryptosystem —— for Authentication



## Major Differences with Secret Key Ciphers

- The public encryption key is different from the private decryption key.
  - Infeasible for an attacker to find out the private decryption key from the public encryption key.
  - no need for Alice & Bob to distribute a shared secret key beforehand!
  - only one pair of public and private keys is required for each user!
     No matter how many communication counterparties
- It is also called "asymmetric key" algorithm, instead of "symmetric key" algorithm.

2022/3/14

## Principle of Public Key

- A public key model consists of six elements :
  - Plaintext
  - Public key KU
  - Private key KR
  - Encryption Algorithm
  - Ciphertext
  - Decryption Algorithm
- The key point is to find a one-way function (Calculating the result of the function is easy, but the inverse is infeasible)
- Public Key Cryptosystems Used in Three Domains:
  - Encryption/Decryption: the sender encrypts a message with the recipient's public key.
  - Digital signature: The sender "signs" a message with its private key.
  - Key exchange: two sides cooperate to exchange a session key.

## Requirements of Public Key Cryptography

- It is computationally easy for party B to generate a pair (public key KU<sub>b</sub>, private key KR<sub>b</sub>).
  - Ensure: key generation is easy!
- It is computationally easy for a sender A to encrypt.
  - Ensure: Encryption is acceptable in time!
- It is computationally easy for the receiver B to decrypt
  - Ensure: Decryption is acceptable in time!
- It is computationally infeasible for an attacker, knowing the public key,  $KU_b$ , to determine the private key  $KR_b$ .
- It is computationally infeasible for an attacker, knowing the public key  $KU_b$  and a ciphertext C, to recover the original message M .
- Cipher pair can be exchanged.
  - Ensure: can be used either in encryption, or in signature.

## Development of Public Key Cryptography

- Diffie & Hellman proposed thought of public key cryptography in "New Directions in Cryptography" for the first time in 1976.
  - IEEE TRANSACTIONS ON INFORMATION THEORY, . 22(6), NOVEMBER. 1976
  - http://www-ee.stanford.edu/~hellman/publications/24.pdf
- Rivest, Shamir & Adleman proposed the RSA algorithm in 1977.
  - "A METHOD FOR OBTAINING DIGITAL SIGNATURES AND PUBLIC-KEY CRYPTOSYSTEMS"
  - COMMUNICATION OF THE ACM, 21 (2): 120–126, 1978
  - http://people.csail.mit.edu/rivest/Rsapaper.pdf
- Other public key cryptography appeared.
  - ElGamal Algorithm (By Taher ElGamal, 1985)
    - "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms". IEEE
       Transactions on Information Theory 31 (4): 469–472, 1985
    - http://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/Bo2.pdf
  - Elliptic Curves Algorithm (By Neal Koblitz and Victor S. Miller, 1985)
    - "Elliptic curve cryptosystems". Mathematics of Computation 48 (177): 203–209.
    - "Use of elliptic curves in cryptography". CRYPTO 85: 417–426.

## Diffie-Hellman Algorithm

- For a prime number p and an integer g :
  - g is a primitive root (原根)of p, if g mod p, g² mod p, ......, g<sup>p-1</sup> mod p are different integers, and include all integers from 1 to p-1.
  - For any integer A ( $0 \le A \le p-1$ ), we can find an only exponent a let
    - $A = g^a \mod p$   $(o \le a \le p-1, o \le A \le p-1)$
    - We call exponent a as A's discrete logarithm (离散对数) with base g and mod p
- Calculating the remainder of the power of an integer dividing a prime is relatively easy, but calculating the discrete logarithm is very hard:
  - When p, g are fixed and p is big enough
    - given a to calculate A is easy
    - However, given A to calculate a is difficult

## Diffie-Hellman Algorithm

- First, let's prove a mathematical formula:
  - $g^{ab} \mod p = (g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p$
  - Prove:
    - Let g<sup>a</sup> = n\*p + i, then: g<sup>a</sup> mod p = i
    - $g^{ab} = (n*p + i)^b -> g^{ab} \mod p = (n*p + i)^b \mod p = i^b \mod p$
    - So,  $g^{ab} \mod p = (g^a \mod p)^b \mod p$
    - Also,  $g^{ab} \mod p = (g^b \mod p)^a \mod p$

## Principle of Diffie-Hellman



 $K = A^b \mod p = (g^a \mod p)^b \mod p = g^{ab} \mod p = (g^b \mod p)^a \mod p = B^a \mod p$ 

A's private key: a, B's private key: b

A's public key: A, B's public key: B

Shared message: g, p

Session key: K

## Example of Diffie-Hellman

- Choose a prime number p=353, primitive root g=3
- Choose a private key a = 97, b = 233
- Computes public key in each:
  - A:  $A = 3^{97} \mod 353 = 40$
  - B:  $B = 3^{233} \mod 353 = 248$
- Computers key of exchanging in each:
  - A:  $K = B^a \mod 353 = (248)^{97} \mod 353 = 160$
  - B:  $K = A^b \mod 353 = (40)^{233} \mod 353 = 160$

## Example of Diffie-Hellman

- Attention: Selection of **a**, **b**, **p** largely affect the security of the algorithm
  - If p is only a small number, result can be find easily by simple brute-force.
  - Generally, when using DH, p is at least a 300-digit prime number, a and b are at least 100 digits. On this condition, even today, the best algorithms and the best computer can not break this encryption algorithm in significant time.
  - In the algorithm, g need not to be very large. We commonly choose 2, 3, 5 in practice.

### Drawback of Diffie-Hellman

- can be used only in key exchange
- Man-in-the-Middle Attack



# RSA Algorithm

RSA is proposed by Ron Rivest, Adi Shamir and Leonard Adleman in MIT in 1977



One way function: **large primes multiplication** . Multiplication is easy, but factorization is very difficult

Reference: <a href="http://en.wikipedia.org/wiki/RSA\_(algorithm)">http://en.wikipedia.org/wiki/RSA\_(algorithm)</a>

## Mathematical foundation of RSA

**Euler's totient function \phi(n)** is defined to be the number of positive integers less than n that are coprime to n

- If n is prime,  $\phi(n)=n-1$
- If n is composite number, it can be factorized as  $n = \prod_i a_i$ ,  $a_i > 0$ ,  $p_i$  is different, then:  $\phi(n) = n(1-1/p_1)(1-1/p_2)...(1-1/p_k)$
- For example: 20 = 2\*2\*5, then:
  - $\phi(20)=20*(1-1/2)*(1-1/5)=8$
  - integers from 1-19 which are coprime to 20 are:
    - 1,3,7,9,11,13,17,19, totally 8
- If p and q are coprime, then φ(pq)=φ(p)φ(q)
   In particular, if p≠q, and both are prime, then φ(pq)=(p-1)(q-1)

## Mathematical foundation of RSA

Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem): if n and a are coprime positive integers, then :  $a^{\phi(n)} \equiv 1 \pmod{n}$ 

#### • Prove:

- Consider the set of all numbers less than n and coprime to it. Let  $\{a_1, a_2, ..., a_{\phi(n)}\}$  be this set.
- Consider a number c<n and coprime to it i.e.  $c \in \{a_1, a_2, ..., a_{\phi(n)}\}$ .
- First observe that for any  $a_i$ ,  $c*a_i \equiv a_j \pmod{n}$  for some j. (True since c and  $a_i$  are themselves coprime to n, their product has to be coprime to n).
- And if  $c*a_i \equiv c*a_j \pmod{n}$  then  $a_i=a_j$ . (True as cancellation can be done since c is coprime to n).
- Hence, if we now consider the set  $\{c*a_1, c*a_2, ..., c*a_{\phi(n)}\}$ , this is just a (mod n) permutation of the set  $\{a_1, a_2, ..., a_{\phi(n)}\}$ .
- Thereby, we have:  $\prod_{k=1...\phi(n)} c * a_k \equiv \prod_{k=1...\phi(n)} a_k \pmod{n}$
- Hence, we get:  $c^{\phi(n)} * \prod_{k=1..\phi(n)} a_k \equiv \prod_{k=1..\phi(n)} a_k$  (mod n)
- Since  $\prod_{k=1...\varphi(n)} a_k$  is coprime to n and hence you can cancel them on both sides to get:  $c^{\varphi(n)} \equiv 1 \pmod{n}$ , whenever c coprime to n.

## Mathematical foundation of RSA

## Fermat Little Theorem

- If p is prime, for any integer a :  $a^p \equiv a \pmod{p}$ 
  - Example:
     5<sup>2</sup> mod 2 = 25 mod 2 = 1 = 5 mod 2; 5<sup>3</sup> mod 3 = 125 mod 3 = 2 = 5 mod 3
- If a is a positive integer not divisible by p, then :  $a^{p-1} \equiv 1 \pmod{p}$ 
  - Prove:
    - It is a special case of the Euler Theorem  $a^{\phi(n)} \equiv 1 \pmod{n}$
    - If p is prime,  $\phi(p) = p-1$ .
    - So  $a^{\phi(p)} = a^{p-1} \equiv 1 \pmod{p}$

# RSA – Key Generation & Encryption/Decryption

Bob generates key pair, keeps his private key and sends public key to Alice

- Choose two prime p and q (at least 100 digits ), Multiplies p and q : n = p \* q
- Finds out two numbers e & d such that :
  - e and (p-1)(q-1) are co-prime, and 1 < e & d < (p-1)(q-1)
  - $e * d \equiv 1 \pmod{(p-1)(q-1)}$
- Publish (e, n) as public key on Public key directory, and keep d as private key.

Alice have to encrypt plaintext m (m must smaller than n) to c, and send it to Bob:

- First find Bob's public key (e, n), and calculate: c = me mod n
- Sends cipher c to Bob

Bob receives cipher c, decrypts and gets plaintext m:

Use private key d to calculate: m = c<sup>d</sup> mod n

# RSA – Key Generation & Encryption/Decryption

Alice want to send message m to Bob:



# Principle of RSA —— Why RSA is Correct?

- 1.  $c^d = (m^e \mod n)^d \equiv m^{ed} \pmod n$
- 2. If m & n coprime:
  - From Euler Thereom:  $m^{\phi(n)} \equiv 1 \pmod{n}$
  - $c^d \equiv m^{ed} \pmod{n} = m^{h \oplus (n) + 1} \pmod{n} \equiv m \pmod{n}$
- 3. Otherwise:
  - From Requirement of key generation:
    - ed  $\equiv$  1 (mod (p-1)(q-1)) ->
    - ed  $\equiv$  1 (mod (p-1)) and ed  $\equiv$  1 (mod (q-1))
  - That is: ed = k(p-1) + 1 and ed = h(q-1) + 1
- 4. If m is not a multiple of p, then m and p are co-prime,
  - According to Fermat Little Theorem:  $m^{p-1} \equiv 1 \pmod{p}$
  - $m^{ed} = m^{k(p-1)+1} = (m^{p-1})^k m \equiv 1^k m \pmod{p} = m \pmod{p}$
- 5. If m is a multiple of p, then:  $m^{ed}$  mod p = 0  $\equiv$  m (mod p)
- 6. Synthesize 4 and 5:  $m^{ed} \equiv m \pmod{p}$ , and:  $m^{ed} \equiv m \pmod{q}$
- 7. Since p and q are prime,  $m^{ed} m$  divisible by pq, we have:  $m^{ed} \equiv m$  (mod pq)
- 8. Since n=pq, according to 1, we get:  $c^d \equiv m^{ed} \pmod{n} \equiv m \pmod{n}$

#### Requirement of key generation:

- $n = pq, \varphi(n) = (p-1)(q-1)$
- ed  $\equiv$  1 (mod (p-1)(q-1))

#### Encryption:

c = m<sup>e</sup> mod n

#### Decryption:

•  $m = c^d \mod n$ 

# RSA Example (1)

- Bob choose two prime p=5, q=11, then n=p\*q=55
  - (p-1)(q-1) = 4\*10 = 40
  - Find two numbers: e=3, d=27 and:  $3*27 \equiv 1 \pmod{40}$
  - So: Bob's public key is: (3, 55), private key is: 27
- Alice sends message m=13 to Bob:
  - Receive Bob's public key(3,55), and calculates: c = me mod n = 133 mod 55 = 2197 mod 55 = 52
  - Send cipher c=52 to Bob。
- Bob receives message c=52:
  - With private key 27, calculate:  $m = c^d \mod n = 52^{27} \mod 55 = 13$

## RSA Example (2)

- Bob choose two prime p=101, q=113, then n=p\*q=11413
  - (p-1)(q-1) = 100\*112 = 11200
  - Find two numbers: e=3533, d=6597 which:  $3533 * 6597 \equiv 1 \pmod{11200}$
  - So: Bob's pubic key: (3533, 11413), Bob's private key: 6597
- Alice sends message m=9726 to Bob:
  - Receive Bob's private key (3533,11413), and calculate: c = me mod n = 9726<sup>3533</sup> mod
     11413 = 5761
  - Send ciphertext c=5761 to Bob。
- Bob receives message c=5761:
  - With private key 6597, calculate:  $m = c^d \mod n = 5761^{6597} \mod 11413 = 9726$

## Attack scenarios :

- Marvin wants to get the information m from Alice to Bob, and which are supposed to be seen by Bob only;
- However, Alice uses RSA with Bob's public key (e,n) and encrypts plaintext m to ciphertext c = me mod n
- Marvin is a determined attacker and managed to intercept the ciphertext <u>c</u> on its way from Alice's to Bob's computer
- Marvin also looked up Bob's public key (e, n) to help him in his attack.
- Now, Begin.....
- Marvin now has (c, e, n), and wants to find out m!

- Marvin now has (c, e, n), and wants to find out m!
  - Approach 1: If Marvin could also find out Bob's private key d.....He knows
     All~
    - Suppose Bob guards his private key d very well, what can Marvin do then?
  - Approach 2: Marvin knows m is a number between 1 and n, so he could search bruteforcely
    - But if n is large (as mentioned before, p and q are commonly 100 digits primes)
  - Approach3: Marvin can try to compute Bob's private key d from (e, n), and then use Approach 1.
    - ed 

      1 (mod (p-1)(q-1)), Marvin found a very fast algorithm called "extended EUCLID algorithm" in a "Number Theory" book to solve the following problem: given two numbers (r, s), computes x such that
      - $r * x \equiv 1 \pmod{s}$ .
    - Once n can be factorized to p and q, then d can be easily found out!
- Approach 3 is the most efficient known method to attack RSA!

# Is RSA Secure? —— factorization problem

The time taken for Marvin to attack in Approach 3 is essentially the time to factorize:

- Therefore, we say that RSA is based on the factorization problem: While it is easy to multiply large primes together, it is computationally infeasible to factorize or split a large composite into its prime factors!
- It is the "one-way function" of RSA

# Is RSA Secure? —— factorization problem

### Research of prime factorization algorithm:

- the largest factored RSA number is a 250-digit prime, RSA-250, in 2020.02
  - RSA-250 (250 digits, 829 bits) =
  - 2140324650240744961264423072839333563008614715144755017797754920881418023447 14013664334551909580467961099285187247091458768739626192155736304745477052080511905649310 668769159001975940569345745223058932597669747168173806936489469 9871578494975937497937

```
64135289477071580278790190170577389084825014742943447208116859632024532344630238623598752668347708737661925585694639798853367\times\\ 33372027594978156556226010605355114227940760344767554666784520987023841729210037080257448673296881877565718986258036932062711
```

The factorization of RSA-250 utilized approximately 2700 CPU core-years, using a 2.1Ghz Intel Xeon Gold 6130 CPU as a reference.

## Is RSA Secure? —— factorization problem

#### Research of prime factorization algorithm:

- RSA-1024 (309 digits, 1024 bits) =
  13506641086599522334960321627880596993888147560566702752448514385152651060
  48595338339402871505719094417982072821644715513736804197039641917430464965
  89274256239341020864383202110372958725762358509643110564073501508187510676
  59462920556368552947521350085287941637732853390610975054433499981115005697
  7236890927563
- Successful factorization of RSA-1024 will have important security implications for many users of the RSA algorithm, NIST has "deprecated" 1024 bit RSA since 2011, with the recommendation switching to "disallowed" starting 2014.
- However, RSA-2048, the largest RSA number, may not be factorizable for many years to come, unless considerable advances are made in integer factorization or computational power in the near future.
- RSA-2048 (617 digits, 2048 bits) =

2519590847565789349402718324004839857142928212620403202777713783604366202070
7595556264018525880784406918290641249515082189298559149176184502808489120072
8449926873928072877767359714183472702618963750149718246911650776133798590957
0009733045974880842840179742910064245869181719511874612151517265463228221686
9987549182422433637259085141865462043576798423387184774447920739934236584823
8242811981638150106748104516603773060562016196762561338441436038339044149526
3443219011465754445417842402092461651572335077870774981712577246796292638635
6373289912154831438167899885040445364023527381951378636564391212010397122822120720357

- Marvin never gives up! He cannot find out the key passively, but he can use active attack! (active attack vs. passive attack)
- Approach 4:
  - Marvin generates a RSA key pair of his own
    - Public key: Kpub\_\* = (n\_\*, e\_\*), Private key: Ksec\_\* = d\_\*
    - Marvin sends a mail to Alice in the name "Bob":
    - Dear Alice,

Please send mail to me with my new public key Kpub\_\*

Yours sincerely, Bob

 Alice follows, sending mail to Bob encrypted by Kpub\_\*, Marvin can decrypt by Ksec\_\*!

#### Why Approach 4 can be successful?

- Naïve Alice is cheated by wicked Marvin!
- Alice uses fake Bob's public key (in fact it's Marvin's)!

#### How to counter attack?

- Before Alice sending ciphertext to Bob, she must make sure that Bob's public key is correct.
- Alice needs to verify correctness of all the information which inform Bob's key.
- Except Bob, no one can create such a message which can pass verification of Alice!
- This leads Message Integrity problem:

Alice and Bob need to avoid "Bob's key" being forged or distorted by attackers.

The tool of cryptography to solve this problem is "Digital Signatures"

# Symmetric vs. Asymmetric ciphers

### Symmetric ciphers:

- Good: cheap and fast; Low cost VLSI chips available.
- Bad: key distribution is a problem!

### Asymmetric ciphers:

- Good: Key distribution is NOT a problem!
- Bad: Relatively expensive and slow; VLSI chips not available or relatively high cost.

#### In practice:

- Use a public key cipher (such as RSA) to distribute key
- Use a private key cipher (such as AES) to encrypt and decrypt messages
- 另外,需要澄清的两个常见误解:
  - 公开密钥加密在防范密码攻击上比常规加密更安全。
    - 实际上,两者都依赖于密钥长度和解密的计算工作量,从抗密码分析的角度分析,互相之间都不比对方优越
  - 公开密钥加密使得常规加密过时。
    - 实际上,公开密钥加密在计算上相对的巨大开销,使得公开密钥加密更多地用于密钥管理和数字签名应用

## Review

- Symmetric/Secret Key Cryptography
  - Fundamentals and model
  - Feistel cipher structure and DES cryptography
  - Existing problems of Symmetric/Secret Key Cryptography
- Asymmetric/Public Key Cryptography
  - Fundamentals and model
  - DH Algorithm: Methods and issues
  - RSA Algorithm: Methods
- Compare and combination of Symmetric and Asymmetric cryptography