

QUERY OPTIMIZATION TEACHING SERVICE

Tecnologias de Bases de Dados 4º ano do Mestrado Integrado em Engenharia Informática e Computação

Elementos do grupo F:

Catarina Ramos - up201406219 - <u>up201406219@fe.up.pt</u>
Inês Gomes - up201405778 - <u>up201405778@fe.up.pt</u>
Mário Fernandes - up201201705 - <u>up201201705@fe.up.pt</u>

9 de Abril de 2018

Questions

0. Justification of the constraints (Y) and the extra indexes (Z).

a. Y constraints

Para o conjunto Y temos como únicas restrições as restrições de integridade, ou seja, as primary keys e foreign keys para a construção da BD normalizada.

YDOCENTES tem como única constraint a sua primary key (nr).

YDSD é um caso especial de tabelas muitos para muitos. Tem duas foreign keys correspondentes às duas primary keys das duas tabelas que esta tabela associa (YDOCENTES e YTIPOAULA).

YTIPOSAULA tem a sua primary key (ID) e tem 3 foreign keys correspondentes às primary keys da tabela YOCORRENCIAS o que indicia uma relação 1 para muitos.

YOCORRENCIA é constituída por uma primary key de 3 elementos (codigo,ano_letivo,periodo) sendo uma delas uma foreign key para a tabela YUCS.

YUCS tem como única constraint a sua primary key (codigo).

b. Z extra indexes

Para o conjunto Z temos colocamos as restrições de Y mais dois novos indíces:

CREATE INDEX ZTIPOSAULA_COD_ANO_IND ON ZTIPOSAULA(CODIGO, ANO_LETIVO)
CREATE INDEX ZUCS_CODCURS_IND ON ZUCS(CODIGO, CURSO)

O primeiro (ZTIPOSAULA_COD_ANO_IND) do tipo B-Tree junta o código de uma disciplina com o seu ano letivo na tabela ZTIPOSAULA. Embora, em conjunto com o período, estes atributos sejam primary key, são várias as queries que necessitam de saber o código e ano letivo sem o período, não dando uso ao index original da primary key.

O segundo (ZUCS_CODCURS_IND) também do tipo B-Tree junta o código de uma disciplina com o seu curso na tabela ZUCS. Esta tabela tem como primary key o código, mas não o curso. Como existem algumas cláusulas WHERE com seleção, não só pelo código, mas pelo curso também, este índice é otimizador.

1. Selection and join.

Show the *codigo*, *designacao*, *ano_letivo*, *inscritos*, *tipo*, and *turnos* for the course (*designacao*) 'Bases de Dados' of the program (*curso*) 275.

a. SQL query;

SELECT XUCS.CODIGO, DESIGNACAO, XOCORRENCIAS.ANO_LETIVO, INSCRITOS, TIPO, TURNOS FROM XUCS

JOIN XOCORRENCIAS ON XUCS.CODIGO=XOCORRENCIAS.CODIGO
JOIN XTIPOSAULA ON XTIPOSAULA.CODIGO=XOCORRENCIAS.CODIGO
AND XTIPOSAULA.ANO_LETIVO=XOCORRENCIAS.ANO_LETIVO
AND XTIPOSAULA.PERIODO = XOCORRENCIAS.PERIODO

b. Answer;

CODIGO	DESIGNACAO	ANO_LETIVO	INSCRITOS	TIPO	TURNOS
EIC3106	Bases de Dados	2003/2004	92	TP	4
EIC3106	Bases de Dados	2003/2004	92	Т	1
EIC3106	Bases de Dados	2004/2005	114	TP	4
EIC3106	Bases de Dados	2004/2005	114	Т	1
EIC3111	Bases de Dados	2005/2006	(null)	TP	6
EIC3111	Bases de Dados	2005/2006	(null)	Т	1

Figura 1: execution plan correspondente às tabelas 'X' da query da pergunta 1

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST	
■ SELECT STATEMENT				5	55
				5	55
☐ On Access Predicates ☐ AND YTIPOSAULA.CODIGO=YO YTIPOSAULA.ANO_LETIVO YTIPOSAULA.PERIODO=YC	=YOCORRENCIAS.ANO_LETIVO				
□ M NESTED LOOPS				5	19
				5	19
TABLE ACCESS	YUCS.	FULL		1	13
YUCS.CURSO=	ACAO='Bases de Dados' =275				
□ 0€ INDEX	YOCORRENCIAS_PRIMARY_KEY	RANGE SCAN		5	1
YUCS.CODIGO=YO	OCORRENCIAS.CODIGO				
TABLE ACCESS	YOCORRENCIAS	BY INDEX ROWID	2	24	6
					•

Figura 2: execution plan correspondente às tabelas 'Y' da query da pergunta 1

Figura 3: execution plan correspondente às tabelas 'Z' da query da pergunta 1

Na figura 1 é possível ver que o custo de execução da query sem índices é de 642, passando para 55 na figura 2 para o caso dos índices colocados nas primary e foreign keys. Também existe diferença no tipo de operações usadas. Enquanto sem índices é executado **hash join** seguido de um **merge join**, na figura 2 é executado um hash join seguido de dois **nested loops**. É de notar que na figura 1 a pesquisa é do tipo **full**, ou seja, é percorrido cada elemento da tabela um a um até chegar à solução. Esta é a opção mais custosa, o que explica um custo tão elevado.

Já na figura 2, neste caso de **nested loops**, para cada linha da tabela exterior o Oracle procura as linhas da tabela interior que satisfazem a condição de junção. De seguida combina os dados em pares de linhas que satisfazem a junção e devolve-as como resultado. Assim, o facto de existir um índice no **nested loop interior** otimiza a execução, porque executa o segunda passo em menos tempo. É apenas usado o index Y_OCORRENCIAS_PRIMARY_KEY.

Na figura 3, temos os mesmos índices da figura 2 mais os dois especificados na questão 0. Esse índice extra (ZTIPOSAULA_COD_AND_IND), é aplicado diminuindo o custo em quase metade. Este índice altera a ordem das operações executadas. Embora exista na mesma um **hash join** seguido de 2 **nested loops**, aqui dentro haverá um novo **hash join** com um **nested loop** para possibilitar o seu uso. Embora haja mais operações, o custo é muito menor. É também usado o índice ZOCORRENCIAS_PRIMARY_KEY.

d. If the execution time is measurable, a comparison of the execution times in the three environments.

	x	Y	Z
Time (s)	0.08	0.03	0.022

A diferença de tempos não é significativa.

2. Aggregation.

How many class hours of each type (*tipo*) did the program (*curso*) 233 got in year (*ano letivo*) 2004/2005?

a. SQL query;

SELECT TIPO, SUM(N_AULAS * HORAS_TURNO) AS HOURS
FROM XUCS

JOIN XOCORRENCIAS ON XUCS.CODIGO = XOCORRENCIAS.CODIGO

JOIN XTIPOSAULA ON XOCORRENCIAS.CODIGO = XTIPOSAULA.CODIGO

AND XOCORRENCIAS.ANO_LETIVO=XTIPOSAULA.ANO_LETIVO

AND XOCORRENCIAS.PERIODO = XTIPOSAULA.PERIODO

WHERE XUCS.CURSO=233 AND XOCORRENCIAS.ANO_LETIVO='2004/2005'
GROUP BY TIPO;

b. Answer;

TIPO	HOURS
Р	102,5
Т	369
TP	299,5

Figura 4: execution plan correspondente às tabelas 'X' da query da pergunta 2

Figura 5: execution plan correspondente às tabelas 'Y' da query da pergunta 2

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
SELECT STATEMENT				5 44
⇒ MASH		GROUP BY		5 44
			564	4 4:
Access Predicates ZUCS.CODIGO=ZOCORRENCI	AS.CODIGO			
□ nd INDEX	ZUCS_CODCURS_IND	FAST FULL SCAN	504	4 7
Filter Predicates ZUCS.CURSO=233				
■ NESTED LOOPS			1077	7 36
TABLE ACCESS	ZTIPOSAULA	FULL	1690	36
Filter Predicates ZTIPOSAULA.ANO_LE	TIVO='2004/2005'			
□ □ □ □ INDEX	ZOCORRENCIAS PRIMARY KEY	UNIQUE SCAN		1 0
☐ O Access Predicates				
- AND				
ZOCORRENCIAS.	CODIGO=ZTIPOSAULA.CODIGO ANO_LETIVO='2004/2005' PERIODO=ZTIPOSAULA.PERIODO			

Figura 6: execution plan correspondente às tabelas 'Z' da query da pergunta 2

Na figura 4 é possível verificar que o custo de execução sem qualquer índice é de 643, que é reduzido para 50 na figura 5 com apenas os índices primários e secundários. Tal como já foi mencionado anteriormente, as figuras relativas às tabelas X usam maioritariamente as opções **full** que obrigam a percorrer a tabela elemento a elemento, causando uma cardinalidade superior e um custo maior.

Neste caso, a figura 5 tem como ordem de execução **nested loop hash join** (diferente da figura 4). Aqui é usado o índice YOCORRENCIAS_PRIMARY_KEY para filtrar o join, sendo o grande diminuidor de custo.

Já para a figura 6 existe uma redução de custo diminuta, relativa apenas ao acréscimo do índice ZUCS_CODCURS_IND que associa o curso ao código da cadeira, possibilitando um fast full scan. O acréscimo deste índice é suficiente para inverter a ordem de execução que passa a ser hash join nested loop.

d. If the execution time is measurable, a comparison of the execution times in the three environments.

	x	Y	z
Time (s)	0.038	0.032	0.029

A diferença de tempos não é significativa.

3. Negation.

Which courses (*codigo*) (show the code) did not have service assigned in year (*ano*) 2003/2004?

a. Use not in.

i. SQL query;

```
SELECT CODIGO
FROM XUCS
WHERE CODIGO NOT IN
(
SELECT CODIGO
FROM XOCORRENCIAS
WHERE ANO_LETIVO='2003/2004'
);
```

ii. Answer;

Existem 4378 cursos que não foram lecionados no ano letivo 2003/2004.

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
SELECT STATEMENT			539	606
		RIGHT ANTI	539	606
☐ On Access Predicates CODIGO = CODIGO ☐ TABLE ACCESS	XOCORRENCIAS	FULL	102	3 593
Filter Predicates ANO_LETIVO='2003/2004'				
TABLE ACCESS	XUCS	FULL	539	5 13

Figura 7: execution plan correspondente às tabelas 'X' da query da pergunta 3 alínea a

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
SELECT STATEMENT SELECT STATE			5396	33
⇒ MASH JOIN		RIGHT ANTI	5396	33
CODIGO=CODIGO	VOCCODERICATE DEPARTMENT VETY	5.675.11.66.11	4020	
⊟-0€ INDEX □-0€ Filter Predicates ANO_LETIVO='2003/2004'	YOCORRENCIAS_PRIMARY_KEY	FAST FULL SCAN	1028	3 27
□€ INDEX	YUCS_PRIMARY_KEY	FAST FULL SCAN	5396	6

Figura 8: execution plan correspondente às tabelas 'Y' da query da pergunta 3 alínea a

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
■ SELECT STATEMENT			5396	33
HASH JOIN Access Predicates CODIGO=CODIGO		RIGHT ANTI	5396	33
□ □ INDEX □ OF Filter Predicates ANO LETIVO=2003/2004	ZOCORRENCIAS_PRIMARY_KEY	FAST FULL SCAN	1028	27
INDEX	ZUCS_PRIMARY_KEY	FAST FULL SCAN	5396	6

Figura 9: execution plan correspondente às tabelas 'Z' da query da pergunta 3 alínea a

Na figura 7 é possível verificar um custo de execução de 606 que é reduzido para 33 na figura 8. Neste caso, ambas as execuções usam **hash join** no entanto a segunda usa dois índices, YOCORRENCIAS_PRIMARY_KEY e YUCS_PRIMARY_KEY. Estes dois índices permitem o uso da opção **fast full scan** nas igualdades presentes no select interior e no próprio not in. A figura 8 é igual à figura 7 visto que nenhum dos índices adicionados é usado neste contexto.

iv. If the execution time is measurable, a comparison of the execution times in the three environments.

	x	Y	z
Time (s)	0.033	0.027	0.027

- b. Use external join and is not null.
 - SQL query;

```
SELECT DISTINCT XUCS.CODIGO
FROM XUCS
LEFT OUTER JOIN
(
SELECT CODIGO, ANO_LETIVO
FROM XOCORRENCIAS
WHERE XOCORRENCIAS.ANO_LETIVO != '2003/2004'
) TEMP2
ON XUCS.CODIGO = TEMP2.CODIGO
WHERE ANO_LETIVO IS NOT NULL
ORDER BY CODIGO ASC;
```

ii. Answer;

Igual a 3 a) ii.

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
			4550	608
		UNIQUE	4550	607
		SEMI	4550	606
Access Predicates XUCS.CODIGO = CODIGO				
TABLE ACCESS	XUCS	FULL	5396	13
TABLE ACCESS	XOCORRENCIAS	FULL	20719	593
Filter Predicates XOCORRENCIAS.ANO_LET	IVO<>'2003/2004'			

Figura 10: execution plan correspondente às tabelas 'X' da query da pergunta 3 alínea b

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
■ SELECT STATEMENT			4550	30
⇒ ♦ SORT		UNIQUE	4550	28
□ 0€ INDEX	YOCORRENCIAS PRIMARY KEY	FAST FULL SCAN	20719	27

Figura 11: execution plan correspondente às tabelas 'Y' da query da pergunta 3 alínea b

PERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
			4550	30
SORT		UNIQUE	4550	28
□ od INDEX	ZOCORRENCIAS PRIMARY KEY	FAST FULL SCAN	20719	27

Figura 12: execution plan correspondente às tabelas 'Z' da query da pergunta 3 alínea b

Na figura 10 é possível verificar um custo de execução de 608, reduzido para 30 na figura 11. Neste caso, o uso do índice Y_OCORRENCIAS_PRIMARY_KEY é suficiente para mudar as operações executadas. No primeiro é executado um **sort** seguido de **hash join** que executam em opção **full**. No caso da figura 11 é apenas usado um **sort** que ordena pelo index na opção **fast full scan**

A figura 12 é igual à figura 11 visto que nenhum dos índices adicionados é usado neste contexto.

Em comparação com a outra negação (3.a) para as tabelas Z, esta é mais eficiente porque apenas utiliza ordenação. Na query anterior é necessário fazer um **hash join** devido às duas comparações e usar índices nas duas. Neste caso só existe um índice.

iv. If the execution time is measurable, a comparison of the execution times in the three environments.

	X	Υ	z
Time (s)	0.048	0.031	0.031

A diferença de tempos diverge um pouco entre as tabelas X e Y/Z.

- 4. Who is the professor with more class hours for each type of class, in the academic year 2003/2004? Show the number and name of the professor, the type of class and the total of class hours times the factor.
 - a. SQL query;

```
SELECT TIPO, MAX_HORAS, XDOCENTES.NR, XDOCENTES.NOME
FROM

( --Gets the max hours per type of class
    SELECT MAX(NR) AS NR, TIPO, MAX(HORAS_TOTAIS) AS MAX_HORAS
    FROM

( --Selects the total hours per professor per type of class
    SELECT NR, TIPO, SUM(HORAS * FATOR) AS HORAS_TOTAIS
    FROM XTIPOSAULA
    JOIN XDSD ON XDSD.ID = XTIPOSAULA.ID
    WHERE ANO_LETIVO = '2003/2004'
    GROUP BY TIPO, NR

)
GROUP BY TIPO
```

b. Answer;

TIPO	MAX_HORAS	NR	NOME	
ОТ	3,5	246626	Jorge Manuel Gomes Barbosa	
Р	30	908100	Armínio de Almeida Teixeira	
TP	26	908290	José Manuel Miguez Araújo	
Т	30,67	909330	Nuno Filipe da Cunha Nogueira	

Figura 13: execution plan correspondente às tabelas 'X' da query da pergunta 4

Figura 14: execution plan correspondente às tabelas 'Y' da query da pergunta 4

Figura 15: execution plan correspondente às tabelas 'Z' da query da pergunta 4

Neste exercício a própria query já está otimizada, pelo que o custo é 70 para as 3 figuras. No entanto, existe uma diferença nas diferentes execução devido ao uso de índices nas figuras 14 e 15. Nestas 2 útimas figuras, não há diferença do plano de execução visto que usam o mesmo índice YDOCENTES_PRIMARY_KEY. Foi estudada a criação de um índice para o ano letivo, no entanto, embora o índice fosse usado, o custo apenas diferia em 3 e a cardinalidade era a mesma. Também já temos dois índices sobre este atributo, pelo que não seria racional acrescentar mais um índice. Um índice na seleção do **hash join** seria, teoricamente, a maneira mais eficiente de encarar o problema.

d. If the execution time is measurable, a comparison of the execution times in the three environments.

	x	Y	z
Time (s)	0.038	0.033	0.033

A diferença de tempos não é significativa.

- 5. Compare the execution plans and the index sizes for the query giving the course code (*codigo*), the academic year (*ano_letivo*), the period(*periodo*), and number of hours of the type 'OT' in the academic years of 2002/2003 and 2003/2004.
 - a. With a <u>B-tree index</u> on the type and academic year columns of the XTIPOSAULA table;
 - SQL query;

FROM XUCS

JOIN XOCORRENCIAS ON XUCS.CODIGO = XOCORRENCIAS.CODIGO
JOIN XTIPOSAULA ON XTIPOSAULA.CODIGO=XOCORRENCIAS.CODIGO
AND XTIPOSAULA.ANO_LETIVO=XOCORRENCIAS.ANO_LETIVO
AND XTIPOSAULA.PERIODO = XOCORRENCIAS.PERIODO

JOIN XDSD ON XTIPOSAULA.ID = XDSD.ID

WHERE XTIPOSAULA.TIPO = 'OT'

AND (XOCORRENCIAS.ANO_LETIVO = '2002/2003' OR XOCORRENCIAS.ANO_LETIVO = '2003/2004')

GROUP BY XUCS.CODIGO, XOCORRENCIAS.ANO_LETIVO, XOCORRENCIAS.PERIODO;

ii. Answer;

CODIGO	ANO_LETIVO	PE	HORAS
EIC5202	2002/2003	28	25.5
EIC5202	2003/2004	28	22

Figura 16: execution plan correspondente às tabelas 'X' da query da pergunta 5 alínea a

Figura 17: execution plan correspondente às tabelas 'Y' da query da pergunta 5 alínea a

Figura 18: execution plan correspondente às tabelas 'Z' da query da pergunta 5 alínea a

Na figura 16 é possível ver que o custo de execução da query sem índices é de 638. Na figura 17 e 18 são em ambos 65, embora com cardinalidades diferentes. Como na tabela X não existem primary keys, fazer joins entre as tabelas fica bastante custoso, chegando a existir 3 **hash joins.** Graças ao index b-tree criado, identificar a combinação entre o tipo e o ano_letivo da tabela tiposaula fica extremamente menos custoso face a uma pesquisa sem index, visto que o custo total do acesso à tabela ficaria por 36 em vez do atual de apenas custo 3.

Comparativamente aos casos retratados nas figuras 17 e 18, o custo é claramente menor que na tabela X sendo que dois **hash joins** são substituídos por 1 **nested loop**, fazendo ao todo apenas 2 pesquisas **FULL** em vez de 3.

iv. If the execution time is measurable, a comparison of the execution times in the three environments.

	x	Y	z
Time (s)	0.042	0.03	0.03

- With a <u>bitmap index</u> on the type and academic year columns of the XTIPOSAULA table.
 - i. SQL query;

Igual à query 5 a) i.

ii. Answer;

Igual à query 5 a) ii.

iii. Analysis of the three execution plans in the three environments and of the corresponding estimated effort;

Figura 19: execution plan correspondente às tabelas 'X' da query da pergunta 5 alínea b

A figura 19 retrata um caso semelhante ao da figura 16: custo bastante alto face aos casos da figura 17 e 18, 3 **hash joins** e um acesso a uma tabela por index. Neste caso o index usado é um **bitmap** e o custo torna-se maior face ao index em **b-tree**. O acesso à tabela tiposaula também é mais custoso, por isso o uso deste index é desaconselhado.

iv. If the execution time is measurable, a comparison of the execution times in the three environments.

	x	Υ	z
Time (s)	0.04	0.03	0.03

Conclusão deste exercício

Para poucas combinações entre parâmetros (como é o caso de relativamente poucos anos letivos e apenas 5 tipos de aulas), os indexes em b-tree são claramente melhor, visto que não só tornam o acesso mais rápido como também têm um impacto pequeno na inserção ou modificação de dados.

Se fosse utilizado na tabela Z o index em b-tree, o custo da query iria para quase metade do atual. Isto é bastante bom, mas como até o parâmetro ano_letivo já tem 3 outros índices associados e como a diminuição de custo é de apenas 30, o grupo achou desnecessário (e possivelmente prejudicial consoante a escalabilidade da base de dados) o uso de um index adicional.

6. Select the programs (curso) that have classes with all the types.

a. SQL query;

```
SELECT CURSO
FROM
( --Count the number of types of classes per course
  SELECT CURSO, COUNT(TIPO) AS N_TIPO
  FROM
    -- Type of classes per course
    SELECT XUCS.CURSO, TIPO
   FROM XUCS
   JOIN XTIPOSAULA ON XUCS.CODIGO = XTIPOSAULA.CODIGO
   GROUP BY XUCS.CURSO, TIPO
   ORDER BY XUCS.CURSO
 GROUP BY CURSO
WHERE N TIPO =
( --Number of types of classes
  SELECT COUNT(TIPO) AS N_TIPO
 FROM
   SELECT TIPO
   FROM XTIPOSAULA
   GROUP BY TIPO
 )
);
```

b. Answer;

CURSO	
9508	

2021	
9461	
4495	

Figura 20: execution plan correspondente às tabelas 'X' da query da pergunta 6

OPERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
□ □ SELECT STATEMENT				2 5
FILTER				
☐ O Filter Predicates				
COUNT(\$vm_col_1) = (SELECT COL	UNT(\$vm_col_1) FROM (SELECT TIPO	\$vm_col_1 FROM YTIPOSAULA YTIPO	OSAULA GROUP BY TIPO) VM_NV	VVW_1)
HASH		GROUP BY		2 5
i⊒	SYS.VM_NWVW_0		20	6 5
⊟ MASH		GROUP BY	20	6 5
			2120	6 49
YUCS.CODIGO=Y	TIPOSAULA.CODIGO			
TABLE ACCESS	YUCS	FULL	539	6 1
TABLE ACCESS	YTIPOSAULA	FULL	2120	6 30
		AGGREGATE		1
Ė≣ VIEW	SYS.VM_NWVW_1			5 3:
⇒ • SORT		GROUP BY		5 3:
TABLE ACCESS	YTIPOSAULA	FULL	2120	6 36

Figura 21: execution plan correspondente às tabelas 'Y' da query da pergunta 6

PERATION	OBJECT_NAME	OPTIONS	CARDINALITY	COST
⇒ SELECT STATEMENT				2 4
□ FILTER				
COUNT(\$vm_col_1)= (SELECT CO	UNT(\$vm_col_1) FROM (SELECT TIPO S	vm_col_1 FROM ZTIPOSAULA ZTIPOS	AULA GROUP BY TIPO) VM_NV	VVW_1)
⊟ ● HASH		GROUP BY		2 4
i⇒	SYS.VM_NWVW_0		40	4 4
⊟ ● HASH		GROUP BY	40	4 4
			2120	6 4
ZUCS.CODIGO=Z	TIPOSAULA.CODIGO			
□€ INDEX	ZUCS_CODCURS_IND.	FAST FULL SCAN	539	6
TABLE ACCESS	ZTIPOSAULA	FULL	2120	6 3
		AGGREGATE		1
Ġ VIEW	SYS.VM_NWVW_1			5 3
		GROUP BY		5 3
TABLE ACCESS	ZTIPOSAULA	FULL	2120	6 3

Figura 22: execution plan correspondente às tabelas 'Z' da query da pergunta 6

Nesta query consegue-se concluir que o uso de primary e foreign keys é inútil e apenas índices a conseguem otimizar. Isto deve-se ao facto de ter de ser feito um acesso do tipo **full** a todas as tabelas em causa. Por causa disto, a única otimização aqui presente é a do index que conjuga o código e o curso da tabela ucs (ZUCS_CODCURS_IND). Em todas as 3 figuras 20, 21 e 22 é feito um **hash join**.

d. If the execution time is measurable, a comparison of the execution times in the three environments.

	x	Y	z
Time (s)	0.05	0.05	0.047

Conclusão

No que diz respeito a otimização de queries, em caso geral, o mais importante é definir as primary e foreign keys das tabelas. Com o recurso a índices e a diferentes maneiras de fazer uma query, como as que foram exploradas neste trabalho, é possível obter um plano de execução o máximo otimizado. Ainda assim, conseguiu-se ver em alguns exercícios que o tempo de uma query a tabelas já com primary e foreign keys pode ser reduzido para menos de metade.

Uma das otimizações verificadas foi relativa à formulação das queries. É possível verificar que diferentes formulações como as agregações, negação, joins e seleções produzem planos de execução diferentes, com custos e cardinalidades diferentes.

Relativamente à diferenciação entre índices, chegou-se à conclusão que os índices b-tree são os mais indicados para parâmetros que podem assumir um baixo número de valores. Os índices bitmap são bastante mais custosos, nomeadamente em inserções ou modificações de uma tabela, mas para parâmetros que podem assumir muitos valores consegue-se obter uma melhor otimização.