question 1 model 2

Cheynna Growley Bios 667 HW#3 Due 11/01/17

 $n_{ij} = \beta_0 + \beta_1 T_j + \beta_2 T_j^2 + \beta_3 H_{1i} + \beta_4 H_{2i} + \beta_5 H_{3i} + \beta_6 Race_i$ + $\beta_7 (H_{1i} * T_j) + \beta_8 (H_{2i} * T_j) + \beta_9 (H_{3i} * T_j)$

Let race=0

Table 8.3			
Table 8.3	Est	SE	p-value
intercept Bo	-1.014	0.117	0.001
TBI	-0.610	0.127	0.001
$T^2 \beta_2$	0.130	0.029	0.001
HIB3	0.811	0.214	0.001
H2B4	0.366	0.142	0.010
H3 B5	0.271	0.141	0.055
Race Bu	0.353	0.200	0,078
HIXTB7	-0.219	0.097	0.024
H2+TB8	0.073	0.069	0,989
H3×TB9	-0.062	0.072	0.385

NOTE			
Group	HI	H2	H3
control	-1	0	0
NO-SNOW	1/3	-1	0
+x1	13	1/2	-1
+x2	1/3	1/2	1

PARTA create a 4x4 table of estimated linear predictors

TRT	0	1	2	4	
control	Bo - B3	β0+β1+β2-β3-β7	βο + 2β1 + 4β2 - β2 - 2β7	β0 + 4β1 + 110β2 -β3 - 4β7	
	Bo+ 1/3 F3 - B4	30 + B1 + B2 + 1/3 B3 - B4 + 1/3 B7 - B8	βο + 2β1 + 4β2 + 1/3β3 - β4 + 2/3β= - 2β4	180+4B1+10B2 +1/3B3-B4+ +1/8B7-4B8	
+ 1	βο+ 1/3β3+1/2β4-β5	βο + βι + β2 + 1/3β3 +1/2β4 - β5 + 1/3β7 +1/2β8 - β9	Fo+ 2B1+4B2 + 1/363+1/0 B4-B5 +2/367+B8-2B9		
+x2	βo + 1/3 β3 + 1/2 β4 + β5	Fo+B1+B2+1/363 +1/2B4+B5+1/3B4 +1/2B8+B9	BO+2BI+4B2	FO+4F1+16F2 + 1/3B3+1/6 Au+	

TIME

question | cont. TIME T 4 2 TRT \bigcirc control -2.087 -1.309 Numbers are -2.086 -1.825 off -3 no show -1,810 -1,470 -1,590 -1,110 No vertical lines -1,630 -1.382 +x1 -1,359 -0.832 -2 +x2 -1,333 -1,336 -01290 -0.941 e(a)/1+e(a) => estimated (ell probabilities By doing numbers are off \bigcirc TRT 0.110 0.213 0.110 Control 0.139 0,187 6.141 noshow 0.248 0.169 0.164 0.201 0.204 0.303 X 0.208 0.269 0,281 +X2 |0.428 question: Describe what aspects of the graph reflect the Answer: \$3 is the Hi contrast [-1,3/3,1/3]. Note none of The treatments contain u.so p3 effects all treatments,
since \$2 is not impacted by time it only effects the
Y axis. \$3 is "scaled" based on the contrast which takes into
y axis. \$3 is "scaled" based on the contrast which to group us. control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is "scaled" based on the control
y axis. \$3 is the treatments contain 0.50 B3 effects all treatments. 132 is the is the Hi * time interaction effect. This impacts the X axis and Y axis. By does not impact the estimated ceil probabilities at baseline (the Yintercept). Note: coll = 4/383, col2 = 4/3(83+84), col3= 4/3(83+28=), col4=4/3(83+48)

Estimated Cell Probabilities Over Time for Each Treatment

question 2

Placebo

$$\hat{V}_{A} = \begin{bmatrix} 0.0408 & 0.0287 & 6.0181 \\ 0.0287 & 0.0434 & 0.0159 \\ 0.0181 & 0.0159 & 0.0533 \end{bmatrix}$$

$$= 3 \left(\frac{1}{24} - \frac{1}{8} \right) = \hat{S} = \begin{bmatrix} -0.2878 \\ -0.3600 \\ 0.0633 \end{bmatrix}$$

$$\frac{1}{4} \sqrt{A} + \sqrt{p} = \sqrt{1} = \begin{bmatrix} 0.0485 & 0.0330 & 0.0215 \\ 0.0330 & 0.0515 & 0.0222 \\ 0.0215 & 0.0222 & 0.0640 \end{bmatrix} \rightarrow$$

ST J-18 ~ X2 \$ p-value = 0.299 = 3.673 Assume 0=0.05 since 3.473 is not greater than 7.815 SO We cannot reject the.

State the null -2 and conclude and conclude that ...? PART B| perform 3 seperate tests using numbers given on the midterm. Give 3 proles MA-MA NNIOII) 0.901(0.0898) 0.413 (0.202) 0.961 (0.0898) 0.400 (0.208) 0.848(0.104) 0.912 (0.231) 0.013-0.901

= -1.308. = p-value = 0.19 N(0,202')2+(0,0898)2 Dwe fail to reject and conclude there is not a=2 significant treeffect at j=2 For i= 31

= -1,59 7 p-value = 0.11 $(0.208)^2 + (0.0898)^2$

to we fail to reject and ificant conclude there is not a significant treatment effect at 1-3

=0.252 = pvalue =0.801 Twe fail to reject and conclude

there is not a significant

@significance levels?

0.600 - 0.961

0.912 - 0.848

N(0.231)2+10,1063

tor j=43

treatment effect at 1=4