# Tarea 5

Entrega: 9 de noviembre de 2023

# Problema 1

Calcula la masa, radio y energía de enlace de los siguientes núcleos (los excesos de masa se encuentran en https://www-nds.iaea.org/amdc/ame2016/mass16.txt):

- <sup>2</sup>H (deuterio)
- <sup>14</sup>C (carbono 14)
- <sup>56</sup>Fe (hierro 56)
- <sup>210</sup>Po (polonio 210)

A partir del modelo de la gota calcula las energías de enlace de los núcleos:

- <sup>76</sup>Ga
- <sup>76</sup>Ge
- <sup>76</sup>As
- <sup>76</sup>Se
- <sup>76</sup>Br
- <sup>76</sup>Kr

(parece mucho, pero en realidad pueden ahorrarse muchos cálculos ¿sí lo ven?). Grafiquen los valores de estas energías de enlace (esto será útil para la siguiente tarea).

¿Qué tipo de modelo es el gas de Fermi: colectivo o de partícula independiente? ¿Cuál es el principio a partir del cual se construye? Explica tu respuesta.

A partir del modelo de capas prediga el momento angular nuclear y la paridad de los siguientes núcleos:

- <sup>3</sup>He
- <sup>16</sup>O
- <sup>41</sup>Ca
- <sup>56</sup>Fe

 $\label{lem:compare} \textbf{Compare con los valores de $J$ observados experimentalmente: \verb|http://easyspin.org/documentation/isotopetable.html|}$ 

Determina el momento de inercia del núcleo de  $^{170}$ Hf de acuerdo a la figura 1, un valor por cada energía y  $J^{\pi}$  o si deseas puedes hacer una gráfica  $J^{\pi}$  vs. E.



Figura 1: Espectro rotacional del núcleo deformado <sup>170</sup>Hf.