장8

인터넷

장의 목적

- 인터넷 발전에 있어 역사적으로 중요한 사건을 식 별하고 설명합니다.
- 인터넷의 토폴로지에 대해 토론하십시오.
- 도메인 이름 시스템을 정의하고 이름 서버의 목적을 설명 합니다.
- 일반적인 인터넷 프로토콜과 애플리케이션을 나열하고 설명합니다.
- Internet2, Abilene 프로젝트 및 Internet2 작 업 그룹에 대해 토론합니다.
- IPv6 비즈니스 동인 및 주소 지정 체계를 설명합니다.

인터넷

- 인터넷은 1969년 9월 1일 ARPA(Advanced Research Projects Agency)의 후원으로 "탄생"되었습니다.
- 원래 형태로는 로 알려졌습니다.<mark>아르파넷,</mark> ARPA 네트워크의 약 자입니다.
- UCLA의 컴퓨터는 ARPANET에 연결된 최초의 컴퓨터였습니다.
- 1969년 말까지 4대의 컴퓨터가 온라인 상태였습니다.
- 1970년 말까지 13대의 컴퓨터가 ARPANET에 연결되었습니다.
- 1971년에는 16개 이상의 사이트, 1972년에는 30개 이상의 사이트.
- 1973년에는 40개 이상의 사이트가 있었고 ARPANET은 그 해에 국제적으로 활동했습니다.

인터넷(계속)

- Vinton Cerf와 Robert Kahn은 1973년에 TCP를 개발했습니다.
- ARPANET의 감독은 1975년에 국방통신국(DCA)으로 이 관되었습니다.
- TCP는 1978년에 TCP와 IP라는 두 부분으로 재설계 되었습니다.
- TCP와 IP는 1981년에 표준 ARPANET 전송 프로 토콜이 되었으며 1982년 말까지 완전히 마이그레이 션되었습니다.
- DCA는 1983년에 ARPANET을 군사 감독 하에 있는 는 MILNET과 ARPANET이라는 두 개의 네트워크로 분할했습니다.

인터넷(계속)

- ARPANET은 MILNET에서 분리된 후 상당한 성장을 이루었습니다.
- 그만큼국립과학재단(NSF)는 1980년대 초 CSNET과 ARPANET 간의 연결에 자금을 지원하기 시작했습니다.
- 1984년 NSF는 5개의 지역 슈퍼컴퓨팅 센터를 건설했습니다.
- 1985년에 NSF는 이들을 하나로 연결하여 NSFNET을 형성했습니다.
- NSFNET의 원래 링크는 56Kbps 전용 회선이었습니다.
- 1987년에는 연결성이 T1 회선으로 업그레이드되었습니다.

인터넷(계속)

- 인터넷의 군사 관할권은 1990년에 종료되었습니다.
- 1990년대 초반까지만 해도 NSFNET은 여전히 연구와 학술 활동에 국한되어 있었습니다.
- AT&T, MCI, Sprint와 같은 통신업체를 통해 영리를 목적으로 하는 민간 상용 TCP/IP 데이터 네트워크가 생겨났습니다.
- 이러한 상용 데이터 네트워크 백본이 마련되자 NSF는 인터넷을 민영화하는 계획을 개발했습니다.
- 1994년에 민영화가 이루어졌고 NSF 백본은 1995년 4월에 폐기되어 인터넷은 ISP에 의해 유지되는 민간 상업 기업이 되었습니다.

ISP에 연결

정보 접근

인터넷

- 파일, 웹 페이지, 스트리밍 미디어 등의 콘텐츠를 제공하도록 메인프레임과 서버 컴퓨터를 구성할 수 있습니다.
- IP, DNS, HTTP, FTP 등의 프로토콜은 인터넷에서 데이터를 찾는 데 도움이 됩니다.
- .com, .net, .org 및 .int와 같은 인터넷 도메인은 기능이나 지역 별로 데이터 액세스를 느슨하게 구성합니다.
- DNS는 IP 주소에 대한 친숙한 이름을 확인하여 데이터 액세스를 지원합니다.
- 이메일, 인스턴트 메시징, VoIP 등의 애플리케이션은 개인 대 개인, 개인 대 그룹, 그룹 대 그룹 통신 기능을 제공합니다.

- 도메인 이름 시스템의 기원
 - 원래 ARPANET 컴퓨터에서는 ARPANET에서 다른 컴퓨터를 찾으려면 호스 트.txt 파일이 필요했습니다.
 - 사이트에서 컴퓨터를 추가할 때마다 스탠포드 연구소의 네트워크 정보 센터 (NIC) 컴퓨터에 있는 기본 호스트.txt에 새 항목을 추가해야 했습니다. 각 사이트의 각 컴퓨터에 설치됩니다.

- 호스트.txt를 업데이트하고 다운로드하면 ARPANET 트래픽이 증가하고 두 개 이상의 사이트에서 새 컴퓨터에 대해 동일한 이름을 생성할 가능성이 실제 로 있었으며 ARPANET이 성장함에 따라 확장되는 ARPANET에서 일관된 호 스트.txt 파일을 유지하는 것이 더욱 어려워졌습니다. .

- 도메인 이름 시스템의 기원(계속)
 - Host.txt 유지 관리와 관련된 문제는 1980년대 초 ARPANET에 심각한 파괴적인 위협을 가져왔습니다.
 - 1983년에 Paul Mockapetris와 Jon Postel은 Host.txt를 대체할 수 있는 호 스트 이름과 주소의 분산 데이터베이스를 공식화했습니다.
 - 이 대체 기술은 DNS(도메인 이름 시스템) 기술로 알려졌으며 원래 RFC(Request for Comment) 882에 지정되었습니다.
 - DNS에 기능을 추가한 최신 RFC는 원래 DNS RFC를 대체합니다.

- 도메인 이름 시스템의 기원(계속)
 - DNS의 도입으로 호스트 이름과 주소에 대한 제어가 중앙 집중식 제어에서 분산 제어로 전환되었습니다.

- DNS는 호스트 정보를 네트워크 전체의 DNS 서버에 자동으로 배포합니다.
- 인터넷 호스트는 분산 데이터베이스를 사용하여 호
 스트 이름을 IP 주소로 확인합니다.

• 네임서버

- 인터넷에서는 DNS 서버로 알려져 있습니다.
- 일반적으로 모든 지역, 지역 및 국가 ISP에서 쌍으로 위치합니다.
- 요청한 웹 사이트의 IP 주소를 클라이언트 컴퓨터에 제공하십시오.
- 운영 체제 소프트웨어 및 DNS 소프트웨어로 구성됩니다.
- DNS 데이터베이스의 일부를 저장합니다.
- 하나 이상의 다른 DNS 서버와 통신하도록 구성됩니다.
- 다른 DNS 서버에 쿼리하는 동안 수신된 웹 사이트 주소 정보를 캐시하는 기능이 있습니다.

• 인터넷 도메인

- 인터넷에 조직 및 계층 구조를 제공합니다.
- <u>- 최상위 도메인(TLD)에는</u> .com, .net, .org, .gov, .biz 등이 포함됩니다.
- TLD에는 수백만 개의 도메인이 더 존재합니다.
- 우리가 인터넷에 접속할 때 사용하는 도메인 공간은 "."로 표시되는 루트 도메 인에서 시작됩니다.
- TLD는 루트 도메인 아래에 존재합니다.
- 도메인 이름의 최대 길이는 점을 제외하고 255자이며, 점 사이의 도메인 이름 부분은 63자로 제한됩니다.

DNS 네임스페이스

- 인터넷 도메인(계속)
 - 일반 TLD(gTLD)로 알려진 원래 7개의 TLD는 다음 과 같습니다.
 - •.com, .edu, .gov, .int, .mil, .net, .org 및 .arpa
 - 새로운 TLD 중 일부에는 국가 코드 TLDS(ccTLD)와 다음과 같은 다양한 조직 유형이 포함됩니다.
 - . aero, .biz, .info, .museum, .name, .pro 등.

원래 최상위 도메인

TABLE 10.1 Original Top-Level Domains

TLD	Original Purpose		
.com	Commercial organizations		
.edu	U.S. educational organizations		
.gov	U.S. government organizations		
.int	International organizations		
.mil	U.S. military organizations		
.net	Network infrastructure organizations		
.org	Nonprofit organizations		
.arpa	ARPANET hosts		
New TLD	Purpose		
.aero	Air transport organizations		
.biz	Businesses		
info	Information		
.museum	Museums		
.name	Individuals		
.pro	Professionals		

• 인터넷 프로토콜

- TCP와 IP는 ARPANET을 통해 효율적인 데이터 전송을 제공하기 위해 1970년대에 개발된 원본입니다.
- 오늘날에는 인터넷 프로토콜 전체가 존재합니다.
 - ARP(주소 확인 프로토콜)는 각 MAC 주소를 IP 주소에 매핑하는 데 사용됩니다.
 - DHCP는 IP 주소 정보를 클라이언트 컴퓨터에 자동으로 할당합니다.
 - DNS는 이름 확인을 제공합니다.
 - iSCSI는 SAN에서 데이터 전송을 제공합니다.
 - LDAP는 디렉토리 지원과 데이터베이스에 대한 액세스를 제공합니다.
 - HTTP는 웹 페이지에 대한 액세스를 지원합니다.

OSI 내의 TCP/IP 프로토콜 모델 레이어

Application	HTTP HTTPS FTP	Telnet SMTP PoP3	IMAP4 RTSP SLP	SNMP XMPP SIMPLE
Presentation				
Session	DNS iSCSI LDAP			
Transport	TCP UDP	RTP RTCP		
Network	IP DHCP			
Data link	ARP			
Physical				

- 인터넷 애플리케이션
 - 파일 전송- FTP 및 HTTP는 인터넷 사용자가 위치 간에 파일을 전송할 수 있도록 하는 OSI 응용 프로그램 계층 프로토콜입니다.
 - 원격 컴퓨팅 Telnet은 사용자가 원격 컴퓨터 및 네트워킹 장치에 로그인할 수 있도록 하는 OSI 응용 프로그램 계층 프로토콜입니다. SSH(Secure Shell)는 SSH가 장치 간 데이터 전송을 암호화한다는 점을 제외하면 Telnet과 매우 유사합니다.
 - _ <mark>스트리밍 미디어</mark>– RTP, UDP, RTCP와 같은 기본 전송 및 제 어 프로토콜을 활용하지만 스트리밍 미디어를 지원하는 OSI 애플리케이션 계층 프로토콜은 RTSP입니다.

- 인터넷 애플리케이션(계속)
 - 이메일- SMTP, POP3 및 IMAP4는 이메일을 지원하는 세 가지 기본 OSI 애플리케이션 계층 인터넷 프로토콜입니다.
 - 인스턴트 메시징 XMPP(Extensible Messaging and Presence Protocol) 및 SIMPLE(Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions)은 인스턴트 메시징과 이메일, 음성 메일, 그룹 예약 등 여러 데이터 통신 기술의 융합을 지원하는 표준화된 프로토콜입니다. 인스턴트 메시징을 통한 화상 회의, 화이트보드, 일정 관리, 음성 및 영상 채팅 등이 가능합니다.

vBNS

- MCI는 NSF의 슈퍼컴퓨팅 센터를 연결하기 위해 1995년 온라인에 등장한 고속 네트워크인 vBNS(초고 속 백본 네트워크 서비스)를 실행합니다.
- 기존 대역폭(현재 2.4Gbps)으로 업그레이드하여 vBNS에 대한 개발 작업이 계속되지만 vBNS는 더 이 상 NSF에서 자금을 지원하지 않습니다.

(계속)

• 인터넷2

- 차세대 인터넷 애플리케이션과 기술을 개발하기 위해 1996년 34개 대학에서 시작되었습니다.
- 현재는 200개가 넘는 대학으로 구성된 컨소시엄으로 정부 및 민간 부문과 협력하여 고급 애플리케이션과 기술을 구축, 테스트 및 배포하고 있습니다.
- Internet2는 네트워크 인프라가 아닙니다.

- 인터넷2(계속)
 - 그만큼애빌린 프로젝트Internet2 활동을 지원하는 실
 제 물리적 통신 네트워크입니다.
 - Abilene은 대학과 연구 기관에 Internet2의 고급 기술과 애플 리케이션을 테스트하고 구현할 수 있는 대역폭을 제공합니다.
 - Abilene은 1999년에 2.4Gbps의 대역폭을 제공하는 SONET OC-48 회로를 출시했습니다.
 - 2004년 초에 Abilene은 10Gbps의 대역폭을 제공하는 OC-192 회로로 업그레이드되었습니다.
 - Abilene은 현재 인터넷을 구성하는 상용 ISP 네트워크와 상호 연결되어 있지 않습니다.

애빌린 네트워크

- 인터넷2(계속)
 - _ 수많은 실무 그룹(WG)이 고급 서비스, 애플리케이션 및 기 술 개발을 지원합니다.
 - WG에는 다음이 포함됩니다.
 - 캠퍼스 대역폭 관리, 디지털 비디오, 인스턴트 메시징을 위한 통합 인프라, IPv6, MACE-Shibboleth, MACE-WebISO, 멀티캐스트, 정형외과 수술, 현재 상태 및 통합 커뮤니케이션, VidMid 화상 회의, VidMid 주문형 비디오, VoIP(Voice over IP) 등.

- 차세대 인터넷 프로토콜
 - Internet2에서 개발 중인 인터넷 애플리케이션 및 서비스를 위한 기반을 제공합니다.
 - IPv4IP 주소 지정의 최신 세대이며 32비트를 사용하여 각 호스트를 정의합니다.
 - IPv6차세대 IP 주소 지정 방식으로, 128비트를 사용하여
 340조 개가 넘는 주소를 제공합니다.
 - IPv6는 현재 vBNS 및 Abilene을 활용하는 수많은 사이트 에 구현되어 있습니다.
 - IPv6은 Internet2의 IPv6 작업 그룹에 의해 모니터링 됩니다.

- IPv6 비즈니스 동인
 - 점점 더 많은 장치에 IP 주소를 제공해야 하는 필요성.
 - 차세대 비즈니스 애플리케이션.
 - 모바일 및 무선 장치의 사용이 증가하고 있습니다.
 - 인터넷을 통해 전송되는 데이터의 노출이 증가합니다.

- IPv6 주소 지정
 - IPv6 주소는 8개의 16비트 섹션으로 나누어진 128비트를 사용합니다.
 - IPv4에서 정의된 클래스 A, 클래스 B, 클래스 C 주소와 같은주소 클래스는 없습니다.
 - IPv6 주소는 라우팅 정보를 식별하는 글로벌 라우팅 접두사 비트, 사이트 내 링크를 식별하는 서브넷 비트, 특정 노드를 식 별하는 인터페이스 ID 비트로 구성됩니다.

(계속)

- IPv6 주소 지정(계속)
 - IPv6 주소 지정에는 일부 약어가 포함되어 있습니다.
 - 주소:

FE80:0000:0000:0000:ABCD:FF32:030C:1234

다음과 같이 축약될 수 있습니다.

FE80:0:0:0:ABCD:FF32:30C:1234

또는

FE80::ABCD:FF32:30C:1234

- 조직에 미치는 영향
 - 시간이 중요한 애플리케이션의 전송 성능이 향상되었습니다.
 - QoS가 대폭 향상됩니다.
 - Internet2 애플리케이션은 언제 어디서나 실시간 강의실 교육을 제공할 것을 약속합니다.
 - IPv6은 차세대 서비스와 애플리케이션을 지원할 것 입니다.

- 조직에 미치는 영향(계속)
 - 응용 프로그램 개발자는 인증 및 웹 로그온 사양을 개발하는 데 시간을 낭비하지 않고 응용 프로그램의 중요한 기능에 집중할 수 있습니다.
 - 인스턴트 메시징은 오디오, 비디오, 음성, 텍스트 등 모든 종류의 데이터를 동시에 대화형으로 공유할 수 있는 통합 서비스 인터넷을 약속합니다.