Math 1432

Final Exam Review

1. Give the equation of the tangent line to the given graph at the point where x = 0

a.
$$f(x) = \ln(6x+1) + e^{2x}$$
 \Rightarrow $y - 1 = 6x$

b.
$$f(x) = \ln(2x+1) - 3e^{-4x}$$
 $\Rightarrow y + 3 = 14x$

c.
$$f(x) = \sqrt{9 - x^2}$$
 \Rightarrow $9 = 3$.
2. Find the inverse of the following:

a.
$$f(x) = \frac{2}{3-x}$$
 \Rightarrow $y=3-\frac{2}{x}$

b.
$$f(x) = \frac{x+1}{x+2}$$
 $\implies G = \frac{1}{1-x}$

3. Find the derivative of the inverse for the following:

a.
$$f(x) = x^3 + 1$$
, $f(2) = 9$, $(f^{-1})'(9) = 12$

a.
$$f(x) = x^3 + 1$$
, $f(2) = 9$, $(f^{-1})'(9) =$
b. $f(-3) = 1$, $f(1) = 2$, $f'(-3) = 3$, $f'(1) = -2$, $(f^{-1})'(1) = 3$

- c. f(x) passes through the points (3, -2) and (-2, 1). The slope of the tangent line to the graph of f(x) at x = 3 is -1/4. Evaluate the derivative of the inverse of f at -2.
- 4. Find the equation of the tangent and the normal lines to the parametric curves at the given points:

 a. $x(t) = -2\cos 2t$, y(t) = 4 + 2t, (-2,4)b. $x(t) = 3\cos(3t) + 2t$, y(t) = 1 + 5t, (3,1)5. Give an equation relating x and y for the curve given parametrically by

 a. $x(t) = -1 + 3\cos t$ $y(t) = 1 + 2\sin t$

a.
$$x(t) = -2\cos 2t$$
, $y(t) = 4 + 2t$, $(-2,4)$

$$\sqrt{b}$$
. $x(t) = 3\cos(3t) + 2t$, $y(t) = 1 + 5t$, (3,1) $y(t) = \frac{1}{2}(x-3)$

$$y = 4$$

 $y = -\frac{2}{5}(x-3)$

a.
$$x(t) = -1 + 3\cos t$$
 $y(t) = 1 + 2\sin t$

1.
$$x(t) = -1 + 3\cos t$$
 $y(t) = 1 + 2\sin t$ $y(t) = 1 + 2\sin t$

b.
$$x(t) = -1 + 3\cosh t$$
 $y(t) = 1 + 2\sinh t$

c.
$$x(t) = -1 + 4e^{t}$$
 $y(t) = 2 + 3e^{-t}$ $1 = \left(\frac{x+1}{3}\right) - \left(\frac{9}{3}\right)^{-1}$

a.
$$f(x) = 3^{x^2} \implies f(x) = [zxln3]_3x^2 = \frac{3}{4} = \frac{3}{y-2}$$

b.
$$f(x) = \tan(\log_5 x) \Rightarrow f(x) = \frac{\sec^2(\log_5 x)}{\sec^2(\log_5 x)}$$

$$c. \quad f(x) = x^{\sin x}$$

d.
$$f(x) = \sinh(3x) \implies f(x) = 3\cosh(3x)$$

b.
$$x(t) = -1 + 3\cosh t$$
 $y(t) = 1 + 2\sinh t$
c. $x(t) = -1 + 4e^t$ $y(t) = 2 + 3e^{-t}$

$$= (x + 1)^2 - (y + 1)^2$$
6. Differentiate the function:
a. $f(x) = 3^{x^2} \Rightarrow f(x) = [2x \ln 3] x^4 + [4] = \frac{3}{4}$
b. $f(x) = \tan(\log_5 x) \Rightarrow f(x) = \frac{\sec(\log_5 x)}{x}$
c. $f(x) = x^{\sin x}$
d. $f(x) = \sinh(3x) \Rightarrow f' = 3\cosh(3x)$
e. $f(x) = \frac{\cosh x}{x}$

$$= \frac{\cosh x}{x}$$

1. a. Find tangent line at
$$x=0$$

f(x)=ln(6x+1)+e^{2x}.

$$f(x) = \frac{6}{6x+1} + 2e^{2x}$$
 \Rightarrow slope@x=0: $f(0) = 6+2\cdot e^{0} = 6+2\cdot 1=8$

$$point \Rightarrow (0, f(0)) = (0, ln(1+e^{0}) = (0, 0+1) = (0, 1)$$

$$f(x) = \frac{2}{2x+1} + 12e^{-4x}$$
 > slope @x=0: $f(0) = +2 + 12e^{0} = +2 + 12$

C.
$$f(x) = \sqrt{9-x^2} = (9-x^2)^{\frac{1}{2}}$$

$$f(x) = \frac{1}{2}(9-x^2)^{\frac{1}{2}}(-2x) \Rightarrow slope@x=0:f(0)=0$$

2. Find inverse of f

$$Q \cdot f(x) = \frac{2}{3-x}$$

Old
$$y = fox = \frac{2}{3-x}$$

(2) Switching X and
$$y \Rightarrow X = \frac{2}{3-y}$$

(3) Solving
$$y: \Rightarrow 3-y=\frac{2}{x} \Rightarrow 3-\frac{2}{x}=y$$

b.
$$f(x) = \frac{x+1}{x+2}$$

O lot
$$y = f(x) = \frac{x+1}{x+2} = \frac{x+1+1-1}{x+2} = \frac{x+2-1}{x+2} = 1-\frac{1}{x+2}$$

3. Find derivative of $f': \Rightarrow \text{if } f(a) = b$, then $(f')(b) = \frac{1}{f(a)}$

a. $f(x) = x^{2} + 1 + f(2) = 9$

f(x)=3x2 => increasing => one-to-one => f exists.

$$\Rightarrow (f^{-1})'(q) = \frac{1}{f(2)} = \boxed{12}$$

b. f(3)=1. f(1)=2. f(3)=3. f(1)=-2

$$(f^{-1})'(1) = \frac{1}{f(-3)} = \frac{1}{3}$$

C. f(x) passes through $(31-2) \Rightarrow f(3) = -2 = b$ $(211) \Rightarrow f(-2) = 1$

The slope at X=3 is $-\frac{1}{4} \Rightarrow f'(3)=-\frac{1}{4}$

Find
$$(f^{-1})(-2) = \frac{1}{f(3)} = \frac{1}{4} = -4$$

4. Tangent line and normalline at given point

a.
$$\chi(t) = -2\cos 2t$$
, $y(t) = 4+2t$. @ $(-2,4)$. $\Rightarrow t=0$

[4+2 $t=4$ $\Rightarrow t=0$)

Tangent: $\frac{dy}{dx} = \frac{2}{4\sin 2t} = \frac{2}{t=0}$
 $\frac{2}{4\sin 2t} = \frac{2}{t=0}$

Vertical line $\Rightarrow x = -2$.

b,
$$\chi(t)=3\cos(3t)+2t$$
 ($g(t)=|+5t|$ ($g(3_1)$) $\Rightarrow |+5t=|\Rightarrow t=0$.
Tangent: $\frac{dy}{dx}=\frac{5}{9\sin(9t)+2}$ $\frac{5}{t=0}$ $\frac{5}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ \frac

Slope of normal line: $S_n \times S_T = -1$.

Normal line: Normal line

$$\Rightarrow S_n = \frac{-1}{S_T} = -\frac{2}{5} \quad \text{hormal line} \quad y - 1 = -\frac{2}{5} (x - 3)$$

5. Give a x,y equation

$$\Rightarrow \frac{X+1}{3} = \cos x$$
, $\frac{y-1}{3} = \sin x$

$$\Rightarrow l^2 = (\cos t)^2 + (\sin t)^2 = (\frac{x+1}{3})^2 + (\frac{y+1}{2})^2$$

$$\Rightarrow \frac{\chi+1}{3} = \cosh(x)$$
, $\frac{y+1}{2} = \sinh(x)$.

$$\Rightarrow i^{2} \left[\cosh(t) \right]^{2} \left[\sinh(t) \right]^{2} = \left(\frac{x+1}{3} \right)^{2} - \left(\frac{y+1}{3} \right)^{2}$$

$$\Rightarrow \frac{x+1}{+} = e^{\pm}, \quad \frac{y-2}{3} = e^{\pm} = \frac{1}{e^{\pm}}$$

$$\Rightarrow \frac{x+1}{4} = \frac{3}{y-2}$$

$$6. \quad f(x) = 3x^2.$$

$$\frac{2nf(x)=\chi^2-\ln 3}{dx} \Rightarrow \frac{f(x)}{f(x)} = \frac{2x \ln 3}{3} = \frac{3}{4} = \frac{2x \ln 3}{3} = \frac{3}{4} = \frac{3}$$

b.
$$f(x) = tan (log_5 X) = tan (ln X)$$

 $f(x) = [Sec^2(log_5 X)] \cdot \frac{l}{x \cdot ln 5}$

$$\frac{d}{dx} = \frac{f(x)}{f(x)} = \cos(x) \ln x + \sin(x) \cdot \frac{1}{x} = \frac{f(x)}{f(x)} = \frac{\cos(x) \ln x + \sin(x)}{x} \cdot \frac{1}{x} \cdot \frac{\sin(x)}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1$$

e.
$$f(x) = \frac{\cosh(x)}{x} = \left[\cosh(x)\right] \cdot x^{-1}$$

 $f(x) = \frac{\sinh(x)}{x} + \frac{\left[\cosh(x)\right]}{x^{2}}$

7. Integrate:

a.
$$\int (\cosh(3x) + \sinh(2x)) dx$$

b.
$$\int 4^{3x} dx$$

$$c. \int \frac{\log_2(x^3)}{x} dx$$

d.
$$\int (2^{7x} - \sinh(5x)) dx$$

$$e. \int \frac{\sin(3x)}{16 + \cos^2(3x)} dx$$

$$f. \int \frac{6x}{4+x^4} dx$$

g.
$$\int \tan(3x)dx$$

h.
$$\int \frac{\arctan(3x)}{1+9x^2} dx$$

i.
$$\int \frac{1}{\sqrt{4+x^2}} dx$$

$$j. \quad \int \sqrt{9 - x^2} \, dx$$

$$\sqrt{k}$$
. $\int 3 \ln(4x) dx$

$$\sqrt{1}$$
. $\int x^2 e^x dx$

m.
$$\int \frac{5x+14}{(x+1)(x^2-4)} dx$$

n.
$$\int \frac{x^2 + 5x + 2}{(x+1)(x^2+1)} dx$$

$$0. \quad \int \frac{2x^2}{\sqrt{9-x^2}} \, dx$$

p.
$$\int 2 \arctan(10x) dx$$

q.
$$\int 3x \cos(2x) dx$$

8. Write an expression for the nth term of the sequence:

b. 2, -1,
$$\frac{1}{2}$$
, $-\frac{1}{4}$, $\frac{1}{8}$,....

$$S. \int \frac{5}{\chi^2 \sqrt{36-\chi^2}} dx$$

```
Q. \int (\cosh(3x) + \sinh(ex)) dx = \frac{\sinh(3x)}{3} + \frac{\cosh(ex)}{2} + C
          b. \int 4^{3x} dx = \frac{4^{3x}}{3000} + C
      C. \int \frac{\log_2(x^3)}{x} dx = \frac{1}{\ln z} \int \frac{\ln x^3}{x} dx = \frac{3}{\ln z} \int \frac{\ln x}{x} dx = \frac{3}{\ln z} \cdot \frac{(\ln x)}{z} + C
      d_1 \int (2^{7x} - \sinh(5x)) dx = \frac{2^{7x}}{7 \ln 2} - \frac{\cosh(5x)}{5} + C
  e, \int \frac{\sin(3x)}{16 + \cos^{2}(3x)} dx = -\frac{1}{3} \int \frac{dy}{16 + y^{2}} = -\frac{1}{3} \frac{1}{4} \arctan(\frac{y}{4}) + C
f, \int \frac{6x}{4 + x^{4}} dx = 3 \int \frac{dy}{4 + y^{2}} = 3 \cdot \frac{1}{2} \arctan(\frac{y}{2}) + C = \frac{3}{2} \arctan(\frac{x^{2}}{2}) + C
                                                                     let u=x2, du=xxdx 1
       g \int tan(3x) dx = \frac{1}{3} ln |sec(3x)| + C
        h. \int \frac{\arctan(3x)}{1+9x^2} dx = \frac{1}{3} \int u du = \frac{1}{3} \cdot \frac{u^2}{2} + C = \frac{1}{6} \left[ \arctan(3x) \right] + C
      \int \frac{dx}{\sqrt{1+3x^2}} dx = \int \frac{2 \sec^2 0 d\theta}{2 \sec 0} = \int \sec 0 d\theta = \ln|\sec 0 + \tan 0| + C.
                                                                       Dot X=Z tan0. \Rightarrow \sqrt{4+x^2} = \sqrt{4+4 tan0} \Rightarrow tan0 = \frac{X}{Z}, x = \sqrt{x^2+4}
0 < x = 2 secod0 = \sqrt{4 seco} = 2 seco
                                                                                                                                                                                                                                                                                                                         = 2n/1/74 x / + C
\frac{3}{\sqrt{9-x^2}} \frac{1}{\sqrt{9-x^2}} \frac{1}{\sqrt{9-x^2}} = \frac{9}{\sqrt{9-x^2}} \frac{1}{\sqrt{9-x^2}} = \frac{9}{\sqrt{9-x^2}
```

7.

K.
$$\int 30n(4x)dx = 3x \ln(4x) - \int 3dx = 3x \ln(4x) - 3x + C$$
 $\int x \ln \ln(4x) dx = 3x \ln(4x) - \int 3dx = 3x \ln(4x) - 3x + C$
 $\int x \ln \ln(4x) dx = 3x \ln(4x) - \int 3dx = 3x \ln(4x) - 3x + C$
 $\int \ln \ln(4x) dx = 3x \ln(4x) - \int 3dx = 3x \ln(4x) - 3x + C$
 $\int \ln \ln(4x) dx = 3x \ln(4x) - \int 3dx = 4x + C$

M. $\int \frac{x^2 e^x}{4x} dx = x^2 e^x - 2x \cdot e^x + 2e^x + C$
 $\int \frac{x^2 e^x}{4x} dx = x^2 e^x - 2x \cdot e^x + 2e^x + C$
 $\int \frac{x^2 e^x}{4x} dx = x^2 e^x - 2x \cdot e^x + 2e^x + C$
 $\int \frac{x^2 e^x}{4x} dx = x^2 e^x - 2x \cdot e^x + 2e^x + C$
 $\int \frac{x^2 e^x}{4x} dx = \int \frac{x^2 e^x}{x^2 + 1} dx = \int \frac{x^2 + 1}{x^2 + 1} dx = \int \frac{x^2 + 1}$

7.

$$9. \int \frac{3x}{A} \frac{\cos(2x)}{dx} = \frac{3}{2} \times \sin(2x) + \frac{3}{4} \cos(2x) + C$$

8. Find an expression for n-th term

a.1.4.7.10, ... => 3 is common difference.

b, $2, -1, \frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, \Rightarrow (4)^{2}2^{1}, (4)^{3}2^{0}, (4)^{5}2^{-1}, (4)^{5}2^{-2}$ alternating $\Rightarrow (-1)^{n+1} \Rightarrow a_{n} = (-1)^{n+1}2^{2-n}, n \in \mathbb{N}$

9. A.
$$a_n - a_{n+1} = \frac{2n}{1+n} - \frac{2011+1}{14n+1} = \frac{2n}{1+n} - \frac{211+2}{2+n} = \frac{(2n)(2n) - (2n)(2n)}{(1+n)(2n)} = \frac{-2}{(1+n)(2n)} < 0$$

$$\Rightarrow a_n - a_{n+1} < 0 \Rightarrow a_n < a_{n+1} \text{ Which means an is increasing.} \text{ thum } a_1 < a_{n+1} < a_{n+1} = \frac{-2n}{1+n} = \frac{-2$$

11. Determine if the following series (A) converge absolutely, (B) converge conditionally or (C) diverge.

$$\left(\beta\right) \quad \text{a. } \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \sqrt{n}}{n+3}$$

(A) b.
$$\sum_{n=1}^{\infty} \frac{\cos \pi n}{n^2}$$

$$\left[\beta\right)$$
 c. $\sum_{n=0}^{\infty} \frac{4n(-1)^n}{3n^2 + 2n + 1}$

(b) d.
$$\sum_{n=0}^{\infty} \frac{3(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

(C) e.
$$\sum_{n=0}^{\infty} \frac{3n(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

$$\int \int \int_{n=0}^{\infty} \left(4(-1)^n \left(\frac{n}{n+3} \right)^n \right)$$

11. 2 (-1) 1/3.

$$(A) \stackrel{\bowtie}{=} \frac{(4)^{n+1} \sqrt{n}}{n+3} = \stackrel{\bowtie}{=} \frac{\sqrt{n}}{n+3} \sim \sum \frac{n^{\frac{1}{2}}}{n} = \sum \frac{1}{n^{\frac{1}{2}}}$$
 Diverges \Rightarrow NOT A.C.

V(B) \(\frac{\sqrt{1}}{\rm 1} \) \(\frac{\s

 $b \stackrel{N}{\underset{N=1}{\longrightarrow}} \frac{costtn}{N^2} = \stackrel{N}{\underset{N=1}{\longrightarrow}} \frac{(-1)^h}{N^2}$ (costtn=(+)). Check ie!,)

 $V(A) = \frac{p}{p+1} \frac{(-1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n$

C. 50 (-1)h 4h N=0 312+2h+1

X(A) $\frac{10}{170} \frac{10^{11} + 11}{170} = \frac{100}{170} \frac{411}{1700} = \frac{100}{1700} \frac{100}{1700} = \frac{100}{1700} \frac{100}{1700} = \frac{100}{1700} =$

 $\sqrt{(B)} \stackrel{\mathcal{L}}{\underset{N=0}{\longrightarrow}} \frac{4n}{3n^{2}+2n+1} \cdot lot bn = \frac{4n}{3n^{2}+2n+1} \Rightarrow 0 \leq bn \leq bn \Rightarrow 0$

by Alternating Series test it converges

 $d. \sum_{n=0}^{\infty} (-1)^n \frac{3}{\sqrt{3n+2n+1}}$

 $X(A) = \sqrt{\frac{N}{N-\delta}} \left(\frac{1}{N-\delta} \right) = \sqrt{\frac{3}{3}} = \sqrt{\frac{3}{3}} = \sqrt{\frac{1}{3}} = \sqrt{\frac{$

V (B) = 0 (1) 1 3 (1) 1 1 let br 3 3 > 0 5 brit by and by > 0.

by Afternating Series, it converges

11.
$$e \cdot \frac{2}{\sqrt{3}} \frac{(-1)^{n} \cdot 3n}{\sqrt{3} \frac{1}{\sqrt{3}} \frac$$

$$X(A) \stackrel{\sim}{\longrightarrow} \frac{|(-1)^{n} \times n|}{|(3n^{2} + m + 1)|} = \stackrel{\sim}{\longrightarrow} \frac{3n}{|(3n^{2} + m + 1)|} \sim \sum \frac{n}{|n|^{2}} = \sum \frac{n}{|n|} = \sum \frac{n$$

$$X(B) \stackrel{1}{\cancel{>}} (H)^n \stackrel{3n}{\cancel{>}} (h) \stackrel{1}{\cancel{>}} (h) \stackrel{3n}{\cancel{>}} (h) \stackrel{3n}{\cancel$$

$$f, \underset{N=0}{\overset{\sim}{\sum}} \left(4(4)^{n}, \left(\frac{N}{N+3} \right)^{n} \right)$$

Since
$$\left(\frac{n}{n+3}\right)^n = \left(\frac{n+3}{n}\right)^{-n} = \left(\frac{n+3}{n}\right)^n = \left$$

$$g, \sum_{n=0}^{\infty} \left(\frac{(t)^n z \operatorname{arctan}(n)}{n^2 + n^2 + 3} \right)$$

$$\frac{|an(n)|}{|an(n)|} \leq \frac{|an(n)|}{|an(n)|} \leq \frac{|an(n)|}{|an(n)|} = \frac{|an(n)|}{|an(n)|}$$

$$V(A) \stackrel{\infty}{\stackrel{\sim}{\mapsto}} \frac{|+|^n \ge \operatorname{arctan}(n)|}{|+|^n \ge \operatorname{arctan}(n)|} = \stackrel{\omega}{\stackrel{\sim}{\triangleright}} \frac{2\operatorname{arctan}(n)|}{|+|^n \ge n^2 + n^2 + 3} = \frac{2\cdot \frac{1}{2}}{|+|^n \ge n^2 + 3} = \frac{2\cdot \frac{1}{2}}{|+$$

|arctan(n) |< =

$$h \cdot \sum_{n=0}^{\infty} \left(\frac{(-1)^n + 3^n}{4^n + 3n} \right)$$

E Geomatriz series

$$\sqrt{(A)} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac$$

$$\frac{1}{1} \sum_{n=0}^{\infty} \left(\frac{(1)^n 3}{(n+2) \ln(n+2)} \right)$$

$$X (A) \stackrel{\text{XO}}{=} \frac{(H^2) \text{Im}(H^2)}{(H^2) \text{Im}(H^2)} = \frac{\cancel{X}}{\cancel{F}} \frac{\cancel{3}}{(H^2) \text{Im}(H^2)}$$

Cheek convergence by Thogral test.

$$\int_{0}^{\infty} \frac{3}{(M+2) \ln (X+2)} dX = 3 \ln (\ln (X+2)) |_{0}^{\infty} \rightarrow \text{Diverges}$$

V(B)
$$\frac{1}{1}$$
 $\frac{(-1)^{h}}{(1)^{h}}$, let $b_{n} = \frac{3}{(1)^{h}}$ $\frac{3}{(1)^{h}}$ $\frac{3}{(1)^{$

Geometric series
$$a=z, r=-\frac{4}{9}$$

 $q. \frac{8}{N=0} = \frac{2}{1-r} = \frac{2}{1-(-\frac{4}{9})} = \frac{2}{13} = \frac{18}{13}$

both sum exist by Geometric

b.
$$\frac{8}{1-\frac{5}{3}}\left(\frac{1}{3}-\frac{5}{6}\right) = \frac{8}{1-\frac{1}{3}} - \frac{5}{1-\frac{1}{3}} - \frac{5}{1$$

(A) g.
$$\sum_{n=0}^{\infty} \left(\frac{2(-1)^n \arctan n}{3 + n^2 + n^3} \right)$$

(A) h.
$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n 3^n}{4^n + 3n} \right)$$

(B) i.
$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n 3}{(n+2) \ln(n+2)} \right)$$

12. Find the sum of the following convergent series:

a.
$$\sum_{n=0}^{\infty} 2\left(-\frac{4}{9}\right)^n = \frac{18}{13}$$

b.
$$\sum_{n=0}^{\infty} \left(\frac{1}{3^n} - \frac{5}{6^n} \right) = -\frac{9}{2}$$

13. State the indeterminate form and compute the following limits:

(
$$\frac{1}{10}$$
), $\frac{1}{10}$ a. $\lim_{n \to \infty} \frac{\ln(n+4)}{n+2} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0$

($\frac{1}{10}$), $\frac{1}{10}$ a. $\lim_{n \to \infty} \frac{\ln(n+4)}{n+2} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0$

($\frac{1}{10}$), $\frac{1}{10}$ a. $\lim_{n \to \infty} \frac{\ln(n+4)}{n+2} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0$

($\frac{1}{10}$), $\frac{1}{10}$ a. $\lim_{n \to \infty} \frac{\ln(3n)^{\frac{1}{n}}}{n} \Rightarrow \frac{1}{10} \frac{1}{1$

$$\frac{\left(\begin{array}{c}0\\0\end{array}\right)}{\left(\begin{array}{c}1\\0\end{array}\right)} \stackrel{\text{lim}}{=} \frac{1+x}{x(e^{x}-1)} \stackrel{\text{lim}}{=} \frac{1+x}{x(e^{x}-1$$

$$VK$$
, $lim \frac{4e^{(\frac{x}{4})}-(4+x)}{x^2}$

$$V$$
 Q, $lim \frac{X-ln(X+1)}{1-cos(3X)}$

a.
$$\sum_{n=0}^{\infty} \frac{(n+1)x^n}{n^2 + 2}$$
 Quitaler.
$$(x) = C + \sum_{n=0}^{\infty} \frac{x^{n+1}}{n^2 + 2}$$

b.
$$\sum_{n=0}^{\infty} \frac{x^n}{2n+1} \xrightarrow{\text{antider}} F(x) = C + \sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)} (x^n+1)$$

15. For each of the problems in number 14, give the antiderivate F of the power series so that F(0)=0.

16. Evaluate each improper integral $\frac{1}{0}$ $\frac{1}{\sqrt{3}}$ = $\lim_{\Omega \to 0} \left[\frac{1}{2} \frac{1}{\sqrt{3}} \frac{1}{\alpha} \frac{1}$

17. Find the formula for the area of $r = 1 + 2\sin\theta$

- a. Inside inner loop
- b. Inside outer loop but outside inner loop
- c. Inside outer loop and below x-axis

18. Find the smallest value of n so that the nth degree Taylor Polynomial for $f(x) = \ln(1+x)$ centered at x = 0 approximates $\ln(2)$ with an error of no more than 0.001 (also be able to do this with some of the other Taylor Polynomials)

19. Find the radius of convergence and interval of convergence for the following Power series:

a.
$$\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(n+1)3^{n+1}}$$

b.
$$\sum_{n=0}^{\infty} \frac{1}{3^n} (x-1)^n$$

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{4^n}$$

d.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n n!}{n^n}$$

20. Use logarithmic differentiation to find the derivative of:

a.
$$y = (3x - 1)^{\sin(x)}$$

b.
$$y = (x+1)^{\ln(x)}$$

c.
$$y = (x^2 + 2)^{(\frac{1}{\ln x})}$$

$$[r,o] \Rightarrow [1,o] \qquad Graph$$

$$[3 \frac{1}{2}] \qquad [0,\frac{7\pi}{6}] \qquad [0,\frac{7\pi}{6}$$

$$A = \int_{\frac{1}{6}}^{\frac{1}{6}} \frac{1}{2} r^{2} d\theta = \frac{1}{2} \int_{\frac{1}{6}}^{\frac{1}{6}} (1 + 2 \sin \theta)^{2} d\theta$$

$$= 2 \times 1$$

$$C. \frac{1}{1} = 2x \frac{1}{2} \int_{\pi}^{\pi} (1+2siho)^{2} do.$$

18. Given
$$f(x) = Jn(1+x)$$
, $Rn = \frac{f^{(n+1)}}{(n+1)!} \times n+1$

To Find n Sit. $Rn(1) \in 0.001$

① find $f^{(n+1)}$, $f^{(n)} = (1+x)^{-1}$, $f^{(n)} = -1(1+x)^{-2}$, $f^{(n)} = (-1)(-2)(1+x)^{-3}$
 $f^{(n)} = (-1)(-2)(-3)(1+x)^{-1}$, $f^{(n+1)} = (-1)(-1)(1+x)^{-1}$
 $f^{(n+1)} = (-1)^n n! (1+x)^{-1}$

② $|R_n n| = \frac{(-1)^n n!}{(n+1)!} (1+x)^{-1}$
 $|R_n n| = \frac{(-1)^n n!}{(n+1)!} (1+x)^{-1}$
 $|R_n n| = \frac{1}{(n+1)!} = \frac{$

$$Q = \frac{\sum_{n=0}^{N} \frac{(x-2)^{n+1}}{(n+1)3^{n+1}}}{(n+1)3^{n+1}}$$

$$\int_{n=0}^{N} \frac{(x-2)^{n+1}}{(n+1)3^{n+1}} = \frac{(x-2)^{n+1}}{(x-1)3^{n+1}} = \frac{(x-2)^{n+1}}{(x-2)^{n+1}}$$

$$= \frac{(x-2)^{n+2}}{(n+2)3^{n+2}} = \frac{(n+1)3^{n+1}}{(x-2)^{n+1}} = \frac{(x-2)^{n+1}}{(x-2)^{n+1}}$$

$$= \frac{(x-2)^{n+2}}{(n+2)3^{n+2}} = \frac{(n+1)3^{n+1}}{(x-2)^{n+1}} = \frac{(x-2)^{n+1}}{(x-2)^{n+1}}$$

$$\Rightarrow |x-2| < 3 \Rightarrow 3 < x < 2 < 3 \Rightarrow -1 < x < 5$$
Interval.

check X=1, $\frac{1}{N}$ $\frac{1}{N+1}$ $\frac{1}{$

19. b.
$$\sum_{n=0}^{\infty} \frac{1}{3^n} (X-1)^n$$
. By Ratio test. If this series converges, we have $\lim_{n\to\infty} \left| \frac{2n\pi 1}{3^n} \right| = \left| \frac{2n\pi 1}$

19.

d.
$$\sum_{n=1}^{\infty} \frac{(+)^n \times^n n!}{n^n}$$

But $G_n = \frac{(+)^n \times^n n!}{n^n}$. By Ratio test, if this series converges, we have $\frac{1}{n^n}$

Dim $\frac{|A_n + i|}{|A_n|} < 1 \Rightarrow \frac{|A_n + i|}{|A_n|} = \frac{|A_n + i|}{|A_n + i|} = \frac{|A_n$

$$26$$
, a. $y = (3x-1)^{\sin(x)}$

$$\frac{d}{dy} = \cos(x) \ln(3x-1) + \sin(x) \cdot \frac{3}{3x-1}$$

$$\Rightarrow y' = \left[\cos(x) \ln(3x+) + \sin(x) \frac{3}{3x+1} \left(3x+1\right)^{\sin(x)}\right]$$

$$\frac{d}{dx} = \frac{1}{x} \cdot \ln(x+1) + \ln x \cdot \frac{1}{x+1}$$

$$\Rightarrow y = \left[\frac{\ln(x+1)}{x} + \frac{\ln x}{x+1}\right] \cdot (x+1)^{\ln x}$$

$$C. y = (x^{2} + 2)^{\frac{1}{2}}$$

$$\Rightarrow$$
 $Ony = (\frac{1}{2}) - In(x+2)$

$$\frac{dx}{dx} = \frac{-1}{x(2nx)^2} \cdot 2n(x+2) + \frac{1}{2n(x)} \cdot \frac{2x}{x^2+2}$$

$$\Rightarrow y = \left[\frac{-\ln(x^{2}+2)}{x(\ln x)^{2}} + \frac{2x}{(x^{2}+2)\ln(x)} \right] \cdot (x^{2}+2) \cdot$$

21. Determine the convergence or divergence for each series with the given general term:

Series	Converge or Diverge?	Test used
$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3}}$	Diverge	P-series = 1
$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$	Diverge	B.D.T. $\frac{2^n}{n^3} \Rightarrow 0$ as $n \Rightarrow \infty$
$\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n} \right)$	Converge	Telescoping, bn= n >0
$\sum_{n=1}^{\infty} \frac{3^{2n}}{n!}$	Converge.	Ratio test let an 3th an = 3th 2 n! = 32 70<
$\sum_{n=1}^{\infty}\cos(\pi n)$	Diverge.	BD.T. COS(TTN) 70 as N>100
$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n}$	Diverge	P-series $\frac{N}{N} = \frac{N}{N} = \frac{N}{N} = \frac{1}{N}$
$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^2}{3n^3 + 1}$	Not absolutely converges but it converges condition	Alternating Series test $b_n = \frac{h^2}{3n^3+1}$ vo
$\sum_{n=0}^{\infty} 3 \left(-\frac{1}{2}\right)^n$	Converges	geometric series , -= =
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$	Converges	Integral test, $\int_{-\infty}^{\infty} \frac{dx}{x(\ln x)^2} = \frac{-1}{x} _{\infty}^{\infty} = \frac{1}{\ln x}$
$\sum_{n=1}^{\infty} ne^{-n^3}$	Converges	Integral test, $\int_{-\infty}^{\infty} \frac{dx}{x(\ln x)^2} = \frac{-1}{\ln x} _{z} = \frac{1}{\ln z}$ Root test, $\ln \frac{n}{e^{n^2}}$, $\ln \ln \frac{n}{e^{n^2}} \to 0 < 1$
$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^n$	Diverges	Basic Divergence test, (n+1) = = +0.
$\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$	Converge	Limit Comparison with P-series $\frac{1}{n^3}$
$\sum_{n=0}^{\infty} \left(\frac{2}{9}\right)^n$	Converges	Geometric series, 1= <1.
$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$	Converges	Geometric series, $ \frac{2}{9} < 1$. Root test, $q_n = \frac{n^2}{2^n}$, $ \sqrt{q_n} = \frac{\sqrt{n^2}}{2}$, $ \sqrt{q_n} = \frac{\sqrt{n^2}}{2}$

$\sum_{n=1}^{\infty} (0.34)^n$	Converges	Geometriz series 10,34/<1
$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$	Converges	P -series $\frac{3}{2} > 1$.
$\sum_{n=1}^{\infty} \frac{1}{2n+1}$	Divergee	Limit Comparison with P-series
*	4	ΣŢ

22. Find a parameterization of a line segment from (4,4) to (8,-5) and to [0,1].