Лабораторная работа №3

Математические функции и функции проверки типов

1. Вычислить функции $F(x_i)=F1(x_i)+F2(x_i)+F3(x_i)+F4(x_i)$ в произвольном диапазоне x *ом* x_0 *до* x_κ . Задавать количество x не меньше 1000 ($x_0...x_{999}$). Вывод результата допустим в консоль, окно или файл.

Принять
$$F4(x_i) = \sum_{j=1}^{1000000} \left(\frac{1}{x_i + \sqrt{j}}\right)$$

- 2. Исключить возникновение ошибки при неправильно заданных аргументах x с использованием обработчика исключений. (Если исключение в каких-то случаях (С#) не возникает, можно вызвать его искусственно).
- 3. Оптимизировать код так, чтобы диапазон аргументов x перебирался наиболее быстрым способом вне зависимости от наличия или отсутствия аргументов вне области определения функции.
- 4. При помощи <u>единичного</u> метода MessageBox (или аналогичного) вывести сообщение об ошибке в случае наличия хотя бы одного некорректного аргумента функции.
- 5. Сохранять результаты вычислений в массиве (списке).

<u>Примечание.</u> Циклы типа *do...while* и *foreach* реализуются в соответствии с синтаксисом выбранного языка программирования, если он отличен от С#.

При реализации оконного интерфейса ввода-вывода + 1 бонусный балл. Гиперболические функции реализовывать через встроенные или библиотечные функции.

sh(x) – гиперболический синус = (exp(x) - exp(-x))/2

ch(x) – гиперболический косинус = (exp(x) + exp(-x))/2

th(x) – гиперболический тангенс = sh(x)/ch(x)

arsh(x), arch(x), artgh(x) – обратные гиперболические функции соответственно.

Вариант	F1(x)	F2(x)	F3(x)	Цикл типа
1.	$cos(-x^2)$	$lg(2^x-10)$	$cos(lg(I-x^2))$	for
2.	tg(1/x)	$ln(4/(9-x^3))$	$sh(lg(10-x^3))$	while
3.	$sin(-x^2)$	$-\sqrt{1/x^3 - 1}$	exp(-sin(5/ln(x)))	foreach
4.	ln(x)	$sh(-3^x)$	ln(sh(-1/x))	dowhile
5.	$log_2(x)$	$tg(1/x^3)$	$log_2(tg(2^x))$	for
6.	lg(x)	$th(-1/x^2)$	$log_x th(x) $	while
7.	exp(x)	$log_7(5/(x^3+4))$	$exp\left(-\sqrt{x/(1+x)}\right)$	foreach
8.	$\sqrt{x^7-8}$	$ch(2/x^2)$	$ln\left(2/\sqrt{10-x^2}\right)$	dowhile
9.	x!/x	$atg(-1/x^4)$	$sh(-1/\sqrt{x})$	for
10.	1/ x	$sin(x/(1-x^3))$	sin(x /(1-1/x))	while
11.	th(x)	$ -1/(x^2+1) $	$th(-1/(1-x^2))$	foreach
12.	sh(x)	$\sqrt[3]{x^2 - 1}$	$sh(\sqrt[3]{x-1/x})$	dowhile
13.	ch(x)	$2^{ x \cos(x)}$	$ch(x^{\sqrt{x}})$	for
14.	$\sqrt[3]{x^{3/2}-2}$	$cos(-x^2)$	$ch\sqrt[3]{2/x}$	while
15.	arctg(x)	$exp(-0.1^x)$	$log_{ x }(arctan(-x^2))$	foreach
16.	$log_3(x)$	$sh(-4^x)$	$\cos(-x /(1+1/x^3))$	dowhile
17.	$exp(x + \pi)$	$\sqrt[5]{-x^4}/x$	$log_3(tg(x^3))$	for
18.	$exp(1/x - \pi)$	$2^{ x arccos(x)}$	ln(ch(-1/(x-1)))	while
19.	x!/(x-1)	$th(x^{2/3})$	$log_3(x/(x^{3/2}-4))$	foreach
20.	$sh(x^2)$	$lg(3^{x}-100)$	exp(-sin(x/(x-5)))	dowhile
21.	exp(x)/x	$arcsin(-1/x^4)$	$lg\left(1/\sqrt{x}\right)$	for
22.	ln(1-x)	$ch(1/x^3+9)$	exp(cos(x/(1-x)))	while
23.	$log_2(1/x)$	$\sqrt[3]{\sin(\sqrt{x})}$	th(x/cos(1/x))	foreach
24.	exp(sin(x))	$\log_4(x/(1-x))$	$arcsin(\sqrt{(16-x^4)})$	dowhile
25.	$ln(x-\pi)$	$1.1^{\sqrt{5-x}}$	•	for
26.	$sh(1/x^2)$	$exp(100^{1/x})$	$\frac{log_{ x } th(x) }{1.05^{\operatorname{arch}(x+\sin(x))}}$	while
27.	x/exp(x)	sh(5/(10-x))	$\sin(1/(2-\cos(x))$	foreach
28.	ln(1/x)	arccos(ln(x))	$sin\left(\sqrt{exp(5/x)}\right)$	dowhile

Вариант	F1(x)	F2(x)	F3(x)	Цикл типа
29.	lg(x!)	$exp(0.9^{x}-1/x)$	$\begin{cases} \sin(1/x^2), & x < 5 \\ \sin(1/x^2), & x \ge 5 \end{cases}$	for
30.	$2^{ln(x)}$	$sh\sqrt{1/1-\sin\left(x\right)}$	$\begin{cases} ch(1/x^2), & x < 0 \\ arcsin(1/x^2), & x \ge 0 \end{cases}$	while
31.	1/x!	lg(6-x)/x	$\sqrt[3]{exp\left(cos(x+1)\right)}$	foreach
32.	$th(1/x^2)$	$\sqrt{2-x}/x$	$\begin{cases} lg(x^2), & x < 0 \\ arcsin(0.1 + x), & x \ge 0 \end{cases}$	dowhile
33.	sh(1-x)	$log_5(1-exp(x))$	$\sqrt[5]{2 - exp(1/\sin(x))}$	for
34.	$ch(x^2)$	$\arcsin \sqrt{x-1}$	$\sqrt[5]{1-exp(1-\ln(x))}$	while
35.	exp(1- x)	$arccos \sqrt{2-x}$	$\sqrt[3]{ln(x -1)}$	foreach
36.	$exp(x / \pi)$	$log_4(1-1/(1-x))$	$\begin{cases} tg(1/x^2), & x \le 0 \\ sh(x^2 - l n(x)), & x > 0 \end{cases}$	dowhile
37.	(x-1)!	$\sqrt{10-x^2}/(1-x)$	lg(th(-1/(2-x)))	for
38.	$exp(x^2-1)$	ch(1/x)	$\begin{cases} 1/tg(1+x^2), & x \le 0\\ \sin(\sqrt{10-x}-ln(x)), & x > 0 \end{cases}$	while
39.	1.2^x	lg(5-1/x)	$exp(x)/(\ln(5-x))$	foreach
40.	$exp(\pi x)$	$exp(sin(\pi/x))$	$\begin{cases} th(1/x^2 + exp(-x)), & x < 0 \\ tg(1/x^2), & x \ge 0 \end{cases}$	dowhile