CS 342: Computer Networks Laboratory

Packet Analysis Using Wireshark

M25

NAVEEN KUMAR A G LAKSHYA KOHLI ADVAITAA ARUN 210123075 210123077 210123078

Application: YouTube

The application under analysis is YouTube running on a Google chrome browser. Wireshark was used to capture incoming and outgoing packets.

Question-1: The packets used the following protocols at different layers:

Application layer:	HTTPS (TLSv1.3), DNS,
Transport layer:	TCP, UDP (by DNS)
Network layer:	IPv4
Link layer:	Link Control Protocol
Physical layer:	Ethernet II

Note: Sites like YouTube use a secure version of HTTP called HTTPS which has data encryption using SSL/TLS. SSL is the original and now deprecated protocol created at Netscape in the mid 90s. TLS is the new protocol for secured encryption on the web maintained by IETF.

Packet formats:

HTTP(S):

i) Request message:

ii) Response message:

DNS:

Identification	Flags	
Number of questions	Number of answer RRs	-12 bytes
Number of authority RRs	Number of additional RRs	
Questions (variable number of questions)		Name, type fields for a query
Answers (variable number of resource records)		RRs in response to query
Authority (variable number of resource records)		Records for authoritative servers
Additional information (variable number of resource records)		—Additional "helpful" info that may be used

TCP:

32 bits

Source port #	Dest port #	
Sequence	e number	
Acknowledge	ment number	
Header length Chursed S. A.	Receive window	
Internet checksum	Urgent data pointer	
Options		
Data		

UDP:

32 bits

IPv4:

32 Dits				
Version	Header length	Type of service	Datagram length (bytes)	
16-bit Identifier F		Flags	13-bit Fragmentation offset	
Time-t	o-live	Upper-layer protocol	Header checksum	
32-bit Source IP address				
32-bit Destination IP address				
Options (if any)				
Data				

32 hite

Question-2: Observed queries of protocols:

Consider the following snapshot of the packet exchange between client and DNS server when the site "youtube.com" is searched on a new chrome browser window. From the brief description of the formats of the packets discussed earlier, the following can be deduced:

1) DNS:

- i) Identification: 0x4a3c (in hexadecimal) and Flags: 0x8180 (in hexadecimal): This means this message is a response to a query.
- ii) # Questions: 1, # Answer RRs (resource record): 1, # Authority RRs: 4, # Additional RRs: 8
- iii) Queries field has numerous queries set ascertained by the # Questions field.
- iv) Answers field has answers (i.e. domain name to IP resolution if type is A) to the corresponding queries.
- v) Authority field has records for authoritative servers while Additional information field has additional helpful information that may be used.

2) UDP:

- i) Source port: 53 and Destination port: 6202
- ii) Length: 308 bytes (header + application data) and Checksum: 0x268f (in hexadecimal)
- iii) Application data has message content from the upper layer which is 300 bytes long.

3) IPv4:

i) Source: 172.17.1.1

ii) Destination: 10.150.47.190

4) Ethernet II:

i) Source: Dell_f0:ee:42 (c8:f7:50:f0:ee:42) and Destination: Apple_62:eb:4e (bc:d0:74:62:eb:4e)

Consider another snapshot which captures a random packet transferred from a server to the client while the YouTube video is being played.

- 5) TCP:
 - i) Source port: 443 and Destination port: 50088
 - ii) Sequence number: 5601
 - iii) Acknowledgment number: 518
 - iv) Flags: 0x018 (convert to binary and divide between PSH and ACK)
 - v) Receive window: 182 (used for flow control)
 - vi) Internet checksum: 0x9863
 - vii) Urgent data pointer: 0
 - viii) Options: 12 bytes (used by receiver and sender to negotiate maximum segment size)
 - ix) Data: 1332 bytes
- 6) TLSv1.3: (This is implemented on top of HTTP to make it more secure)
 - i) Version: TLS 1.2
 - ii) Length: 6794
 - iii) Application data protocol: HTTP (Encrypted data on the right side of the screen.)

Question-3: **DNS Name Resolution:**

The highlighted packets represent the DNS queries and their corresponding replies for name resolution. The queries above are of type A (host name to IP Conversion) and NS (domain name to hostname of authoritative name server for this domain).

Handshaking protocol:

The first four captured segment starting from no. 39931 are the 3 way TCP handshake data segments. The following are the 3 steps of handshaking to establish a TCP connection between client and server:

Step 1 (SYN): In the first step, the client wants to establish a connection with the server, so it sends a segment with SYN(Synchronize Sequence Number) which informs the server that the client is likely to start communication and with what sequence number it starts segments with.

Step 2 (SYN + ACK): Server responds to the client request with SYN-ACK signal bit set. Acknowledgement(ACK) signifies the response of the segment it received and SYN signifies with what sequence number it is likely to start the segments with.

Step 3 (ACK): In the final part client acknowledges the response of the server and they both establish a reliable connection with which they will start the application data transfer.

Note: In the snapshot above, the first step of the TCP handshake has ECE (Echo) and CWR (Congestion window reduced) bits set in addition to SYN.

ECE is used to echo back the congestion indication(i.e signal the sender to reduce the transmission rate) and CWR is used to acknowledge that the congestion indication echoing was received.

Right after the TCP handshake, TLS handshake occurs following which application data exchange occurs. These steps have been highlighted above.

Data Transmission during video playback:

A video was played on the YouTube tab which was open earlier.

Consider consecutive application data packets numbered 29940 and 29941 below.

As stated above, the sequence number in TCP segment keeps track of the number of bits sent. Here the TCP segment size is 1400. Therefore, it is observed that the sequence numbers increment by 1400 which is the segment size.

Observations are listed below for the following actions:

- 1) <u>Video played without interruptions</u>: The number of displayed packets filtered by TLS constantly rises as the video progresses without any interruptions.
- 2) <u>Video is paused</u>: The number of displayed packets increases for some time. This is because YouTube downloads the video few seconds in advance to prevent buffering. This is indicated by the white portion of the video progress bar. After this the displayed packets stop incrementing.
- 3) Switching to another point on the progress bar: The observations were similar to that of point 2.
- 4) <u>Playing the video on loop</u>: After the first viewing of the video, the displayed packets stopped incrementing as all packets have already been cached.

Question-4: Relevance of the protocols used above:

- 1) HTTPS: This is a secure version of HTTP which is a pivotal protocol in the application layer. Security is of utmost importance for any application and since YouTube runs on ads, creatives and tracking elements, these objects are requested using an appropriate connection.
- 2) DNS: This is the main protocol in the application layer that converts the requested domain name to the IP address without which the video servers hosted by YouTube cannot be accessed.
- 3) UDP: This is the underlying transport protocol used by DNS. Since DNS is versatile, getting access to the video servers in quick time (faster as compared to TCP) is of importance to YouTube.
- 4) TCP: This protocol is used while streaming the video. It is used because of its reliability, in-order packet transmission and flow and congestion control.

Question-5: Caching mechanisms observed:

DNS has a field named TTL (Time to live) which specifies the amount of time the resolution is valid.

It was observed that if another request to youtube.com, then no DNS request was made if it was within 3 minutes and 20 seconds which is the TTL. Additionally, clearing the browser cache within the TTL resulted in repeated DNS request. This implies that there were caching mechanisms in the network.	
12	

Question-6:

Session 1:

Network: IITG CONNECT Time: 2023-09-09 19:09:50

Packet statistics:

Throughput	542.9 packets per second
RTT	122.350000ms
Packet Size	181 bytes
Number of packets lost	0
Number of UDP packets	139198
Number of TCP packets	4331
Number of responses w.r.t. one request	4.2171

Session 2:

Network: IITG LAN Hostel Time: 2023-09-10 11:47:23

Packet statistics:

Throughput	156.5 packets per second
RTT	0.591000ms
Packet Size	857 bytes
Number of packets lost	0
Number of UDP packets	83814
Number of TCP packets	13866
Number of responses w.r.t. one request	3.9854

Session 3:

Network: Mobile Hotspot Time: 2023-09-11 00:58:55

Packet statistics:

Throughput	1225.2 packets per second
RTT	26.825000ms
Packet Size	1048 bytes
Number of packets lost	0
Number of UDP packets	181956
Number of TCP packets	541687
Number of responses w.r.t. one request	3.2472