Aprendizado Profundo

Frameworks de Desenvolvimento de Redes Neurais - PyTorch

Professor: Lucas Silveira Kupssinskü

Agenda

- Hardware (o mínimo do mínimo que precisamos saber)
- Frameworks de Desenvolvimento de Redes Neurais
- PyTorch
 - Tensores
 - Operações básicas
 - Autograd
 - Regressão Linear Simples
 - Camadas Lineares
 - Otimizadores
 - Funções de Custo
 - Laço de Treino e Laço de Teste

Hardware

 Quando treinamos redes neurais, alguns processamentos ocorrem na CPU enquanto outros ocorrem na GPU

Hardware

	Cores	Clock Speed	Memory	Preço	Velocidade
i9-14900K	24 (8 performance, 16 efficiency)	3.2GHz	System RAM	\$590,00	1,95 TFLOPS
NVIDIA H100	18.432 cores	1,125GHz	80GB HBM3	\$43000,00	~360 TFLOPs (FP32)

- CPUs tem menos cores porém cada um é muito rápido
 - Ótimo para tarefas sequenciais.
- GPUs tem muitos cores mas cada um deles é muito mais lento e limitado
 - Ótimo para executar diversas pequenas operações em paralelo

Para desenvolver para GPUs

- Opções para criar programas que rodam operações na GPU
- CUDA (NVIDIA)
 - Código C-like que roda diretamente na GPU
 - APIs: cuBLAS, cuFFT, cuDNN,...
- OpenCL
 - Similar ao CUDA mas é OpenSource
- HIP
 - https://github.com/ROCm/HIP

Hardware

Software melhor também ajuda

NVIDIA cuDNN

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, attention, matmul, pooling, and normalization.

cuDNN Accelerated Frameworks

cuDNN accelerates widely used deep learning frameworks, including <u>Caffe2</u>, <u>Chainer</u>, <u>Keras</u>, <u>MATLAB</u>, <u>MxNet</u>, <u>PaddlePaddle</u>, PyTorch, and TensorFlow.

Hardware

Hardware

- O modelo fica na GPU
- Os dados ficam no dispositivo de armazenamento
- As vezes o gargalo do treinamento pode ser na leitura dos dados e carga na GPU
- Nesses casos:
 - Carregar os dados na RAM
 - SSDs
 - Usar várias threads (workers) para carregar os dados

Frameworks

Por que PyTorch?

Frameworks

Paper Implementations grouped by framework

- Por que n\u00e3o fazemos tudo em numpy?
 - + Código é limpo e fácil de escrever
 - Derivadas tem que ser controladas na mão
 - Não roda em GPU

```
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x*y
b = a+z
c = np.sum(b)
grad_c = 1.0
grad_b = grad_c*np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a*y
print(grad_x)
```

• PyTorch é muito semelhante ©

```
import torch

N, D = 3, 4
x = torch.randn(N, D, requires_grad=True)
y = torch.randn(N, D, requires_grad=True)
z = torch.randn(N, D, requires_grad=True)

a = x*y
b = a+z
c = torch.sum(b)

c.backward()
print(x.grad)
```

```
import numpy as np
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x*y
b = a+z
c = np.sum(b)
grad_c = 1.0
grad_b = grad_c*np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a*y
print(grad_x)
```

• E para rodar em GPU basta especificar o device

```
import torch

device='cuda:0'
N, D = 3, 4
x = torch.randn(N, D, device=device, requires_grad=True)
y = torch.randn(N, D, device=device, requires_grad=True)
z = torch.randn(N, D, device=device, requires_grad=True)

a = x*y
b = a+z
c = torch.sum(b)

c.backward()
print(x.grad)
```

```
import numpy as np
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x*v
b = a+z
c = np.sum(b)
grad_c = 1.0
grad_b = grad_c*np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a*y
print(grad_x)
```

- Um torch. Tensor é uma matriz multi-dimensional que contém elementos de um único tipo
- Uma imagem RGB pode ser representada por um tensor [channels, height, width]

• Vamos criar um Tensor que representa um escalar

```
scalar = torch.tensor(7)
scalar
>>tensor(7)

scalar.ndim
>>0

# Funciona apenas para escalares
scalar.item()
>>7
```

• Vamos criar um Tensor que representa um vetor

```
vector = torch.tensor([7, 7])
vector
>>tensor([7, 7])

vector.ndim
>>1

vector.shape
>>torch.Size([2])
```

• Vamos criar um Tensor que representa uma matriz

Vamos criar um Tensor de três dimensões

```
tensor = torch.tensor([[[1, 2, 3],
                 [3, 6, 9],
                 [2, 4, 5]]])
tensor
>> tensor([[[1, 2, 3],
           [3, 6, 9],
           [2, 4, 5]]])
print(f'{tensor.ndim=}')
print(f'{tensor.shape=}')
 >> tensor.ndim=3
 >> tensor.shape=torch.Size([1, 3, 3])
```

Vamos criar um Tensor de três dimensões

```
tensor([[[1, 2, 3],
[3, 6, 9],
[2, 4, 5]]])
dim=0
                                                                                                       Dimension (dim)
       tensor([[[1, 2, 3], \leftarrow 0 [3, 6, 9], \leftarrow 1 [2, 4, 5]]) \leftarrow 2
                                                                                  torch.Size([1, 3, 3])
dim=1
       tensor([[[1, 2, 3],
[3, 6, 9],
[2, 4, 5]]])
dim=2
```

• Podemos criar Tensores com 0s, 1s, com valores pré-determinados ou

com valores aleatórios

```
tensor([[0., 0.],
[0., 0.]])
```

```
tensor([[1., 1.],
[1., 1.]])
```

```
tensor([[1, 2],
[3, 4]])
```

torch.matmul(input, other, *, out=None) → Tensor

- A principal operação em redes neurais é a multiplicação de matrizes
 - Implementada pela função torch.matmul()
- O comportamento é dependente da dimensionalidade dos tensores passados como argumento

```
torch.matmul(input, other, *, out=None) → Tensor
```

 Se ambos tensores tiverem apenas 1 dimensão e tiverem o mesmo tamanho então retorna o produto escalar

```
tensor1 = torch.rand(3)
tensor2 = torch.rand(3)
print(f'{tensor1=}', f'{tensor2=}')
print(f'{torch.matmul(tensor1, tensor2)=}')

>> tensor1=tensor([0.5186, 0.4053, 0.5219])
>> tensor2=tensor([0.6939, 0.6930, 0.9816])
>> torch.matmul(tensor1, tensor2)=tensor(1.1531)
```

```
torch.matmul(input, other, *, out=None) → Tensor
```

 Se ambos tensores tiverem apenas 2 dimensões e o número de colunas de *input* for igual as linhas de *other* então retorna o produto matriz-matriz

```
torch.matmul(input, other, *, out=None) → Tensor
```

 Caso o input tenha 1 dimensão e o other tenha duas, então adiciona uma dimensão em input para possibilitar o produto matrizmatriz

```
torch.matmul(input, other, *, out=None) → Tensor
```

- Caso o input tenha 2 dimensões e o other tenha 1, então retorna produto matriz-vetor
 - Basicamente o produto escalar de other com cada linha de input

```
torch.matmul(input, other, *, out=None) → Tensor
```

 Caso input e Other tenham pelo menos 1 dimensão, sendo um deles com mais do que 2 dimensões então é realizado broadcast de operações

```
torch.matmul(input, other, *, out=None) → Tensor
```

 Caso input e Other tenham pelo menos 1 dimensão, sendo um deles com mais do que 2 dimensões então é realizado broadcast de operações

>> torch.matmul(tensor1, tensor2)=tensor([[3., 3.], [6., 6.]])

```
torch.matmul(input, other, *, out=None) → Tensor
```

• Outro exemplo com broadcast de operações

```
>> tensor1.shape=torch.Size([3, 2, 2])
   tensor2.shape=torch.Size([2, 3])
>> ???
```

```
torch.matmul(input, other, *, out=None) → Tensor
```

• Outro exemplo com broadcast de operações

torch.matmul(input, other, *, out=None) → Tensor

- Em alguns trechos de código você pode encontrar um @ ou torch.mm ao invés de torch.matmul
 - É exatamente a mesma coisa ©

- É comum precisar transpor matrizes durante as operações que realizamos
 - Principalmente para poder multiplicar matrizes

```
x1 = torch.tensor([[1, 2, 3], [4, 5, 6]])
x2 = torch.tensor([[1, 2, 3], [4, 5, 6]])
torch.matmul(x1, x2.mT)
```

```
>> tensor([[14, 32], [32, 77]])
```

- Muito cuidado na hora de transpor matrizes de mais de duas dimensões
 - Normalmente o que queremos é Tensor.mT

Tensor.mT

Returns a view of this tensor with the last two dimensions transposed.

x.mT is equivalent to x.transpose(-2, -1).

torch.nn.Linear

CLASS torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None) [SOURCE]

Applies a linear transformation to the incoming data: $y = xA^T + b$

This module supports TensorFloat32.

Parameters

- in_features size of each input sample
- out_features size of each output sample
- bias If set to False, the layer will not learn an additive bias. Default: True

Shape:

- ullet Input: (N,st,H_{in}) where st means any number of additional dimensions and $H_{in}= ext{in_features}$
- Output: $(N,*,H_{out})$ where all but the last dimension are the same shape as the input and $H_{out}={
 m out_features}$.

Variables

- ~Linear.weight the learnable weights of the module of shape $(\text{out_features}, \text{in_features}). \text{ The values are initialized from } \\ \mathcal{U}(-\sqrt{k}, \sqrt{k}), \text{ where } k = \frac{1}{\text{in_features}}$
- **~Linear.bias** the learnable bias of the module of shape (out_features). If bias is True, the values are initialized from $\mathcal{U}(-\sqrt{k},\sqrt{k})$ where $k=\frac{1}{\text{in features}}$

torch.nn.Linear

```
linear = torch.nn.Linear(in_features=2, out_features=1, bias=True)
print(linear.weight)
print(linear.bias)
```

- >> Parameter containing: tensor([[-0.5916, -0.2051]], requires_grad=True)
- >> Parameter containing: tensor([-0.0648], requires_grad=True)

torch.nn.Linear

torch.nn.Linear

torch.nn.Linear

```
linear = torch.nn.Linear(in_features=2, out_features=3, bias=True)
print(linear.weight)
print(linear.bias)
>> Parameter containing: tensor([[ 0.4785, -0.2612],
                                   [-0.4352, 0.5959],
                                   [-0.0262, -0.4478]], requires_grad=True)
>> Parameter containing: tensor([0.3515, 0.5941, 0.1180], requires_grad=True)
x = torch.tensor([[1, 2],
                 [3, 4],
                 [6, 2]], dtype=torch.float32)
v = linear(x)
print(f'{y=}')
class_ = y.argmax(dim=1)
print(f'{class_=}')
>> y=tensor([[ 0.3077, 1.3508, -0.8037],
              [0.7425, 1.6724, -1.7516],
              [ 2.7003, -0.8249, -0.9346]], grad_fn=<AddmmBackward0>)
>> class_=tensor([1, 1, 0])
```

Reshape

- Em alguns casos é necessário modificar as dimensões de um vetor
 - Várias funções cumprem esse papel, dependendo do caso de uso

Method	One-line description
torch.reshape(input, shape)	Reshapes input to shape (if compatible), can also use torch. Tensor. reshape().
Tensor.view(shape)	Returns a view of the original tensor in a different shape but shares the same data as the original tensor.
torch.stack(tensors, dim=0)	Concatenates a sequence of tensors along a new dimension (dim), all tensors must be same size.
torch.squeeze(input)	Squeezes input to remove all the dimenions with value 1.
torch.unsqueeze(input, dim)	Returns input with a dimension value of 1 added at dim.
torch.permute(input, dims)	Returns a view of the original input with its dimensions permuted (rearranged) to dims.

Reshape

```
x = torch.arange(1., 8.)
print(x, x.shape)
>> tensor([1., 2., 3., 4., 5., 6., 7.]) torch.Size([7])
x_reshaped = x_reshape(1, 7)
print(x_reshaped, x_reshaped.shape)
>> tensor([[1., 2., 3., 4., 5., 6., 7.]]) torch.Size([1, 7])
z = x.view(1, 7)
print(z, z.shape)
>> tensor([[1., 2., 3., 4., 5., 6., 7.]]) torch.Size([1, 7])
z_squeeze = z.squeeze()
print(z_squeeze, z_squeeze.shape)
>> tensor([1., 2., 3., 4., 5., 6., 7.]) torch.Size([7])
z[:, 0] = 5
print(z, x)
>> tensor([[5., 2., 3., 4., 5., 6., 7.]]) tensor([5., 2., 3., 4., 5., 6., 7.])
```

Reshape

Regressão Linear em PyTorch

 Vamos fazer alguns dados toy para fazer o treinamento da regressão linear

Regressão Linear

Vamos definir uma classe para a Regressão Linear

Regressão Linear

• Vamos definir uma classe para a Regressão Linear

```
list(linear.parameters())
```

```
[Parameter containing: tensor([[-0.3805]], requires_grad=True), Parameter containing: tensor([-0.9030], requires_grad=True)]
```

Regressão Linear

• Vamos definir uma classe para a Regressão Linear

```
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)
linear.train()
for i in range(500):
    y_hat = linear(X)
    loss = (y_hat - y).pow(2).mean()
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    print(f'{loss.item()=}')
```

Precisamos definer um otimizador que conheça

Regressão Linear

• Vamos definir uma classe para a Regressão Linear

```
os parâmetros do nosso modelo. Cada otimizador
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)
                                                                   vai receber um conjunto de parâmetros diferente
linear.train()
for i in range(500):
  v hat = linear(X)
                                                                   Depois calculamos a função de custo
  loss = (y_hat - y).pow(2).mean()
  optimizer.zero_grad()
                                                                   Os gradientes por padrão são acumulados, então
  loss.backward()
                                                                     importante zerar esses valores antes de
  optimizer.step()
                                                                   realizar os passos de otimização
  print(f'{loss.item()=}')
                                                                   Fazemos o backward pass e realizamos um passo
                                                                   de otimização
```


Referências

- Documentação Padrão do PyTorch
 - https://pytorch.org/docs/stable/generated/
- PyTorch Fundamentals
 - https://www.learnpytorch.io/00 pytorch fundamentals/