Практическая работа №2(часть 2)

РАЗВЕТВЛЯЮЩИЙСЯ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС

ЦЕЛЬ РАБОТЫ. Изучить структуру ветвления, научиться описывать ее на языке VBA.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. ВЫПОЛНЕНИЕ РАБОТЫ

4.1 Алгоритмическая структура ветвление

Ранее были рассмотрены команды присваивания, ввода и вывода. С помощью этих команд можно записывать простейшие алгоритмы, содержащие действия, выполняемые одно за другим (линейные алгоритмы). В практических задачах часто бывает необходимо в зависимости от результатов проверки условия обеспечить выбор одного из альтернативных путей работы алгоритма. В этом случае говорят о базовой алгоритмической структуре — ветвлении. В языке блок-схем приняты следующие обозначения:

Представим струтуру ветвления в виде блок-схемы.

Полная форма ЕСЛИ – ТО - ИНАЧЕ

Неполная форма ЕСЛИ – ТО - ОБХОД

4.2 Условный Оператор IF ... THEN

Оператор ветвления (условный оператор) позволяет проверить некое условие, и в зависимости от результатов проверки выполнить то или иное действие.

Синтаксис условного оператора:

```
If < условие> Then < действия_1> [ Else < действия_2>] End If
```

Здесь

- If, Then, Else, End If зарезервированные слова VBA (если, то, иначе, конец ветвления);
- <условие> произвольное выражение логического типа;
- <действия_1>, < действия_2> − любые операторы языка VBA.

Условный оператор работает по следующему алгоритму. Вначале вычисляется значение условного выражения <условие>. Если результат есть True (истина), то выполняются <действия_1>, а <действия_2> пропускаются. Если результат есть False (ложь), наоборот, <действия_1> пропускаются, а выполняются <действия 2>.

Часть условного оператора, начинающаяся со слова Else, может быть опущена, в этом случае образуется неполная форма условного оператора. Если условное выражение имеет значение Да, то выполняются действия, стоящие за служебным словом Then; в противном случае весь оператор пропускается. Такая форма условного оператора называется неполной и выглядит следующим образом:

Условный оператор может содержать в себе еще несколько условных операторов. В этом случае условный оператор имеет вид

If Условие1 Then <Действия 1> Else If Условие2 Then <Действия 2> Else If Условие3 Then Else < Действия 3> End If

Пример

If A > 10 Then A = A + 1 : B = B + A : C = C + B

Для записи условий могут быть использованы знаки сравнений, представленные в табл. 4.1.

Зна

		Габлица 4.1
аки сравне	кин	

Операци	Название	Пример
R		выражения
=	Равно	A = B
<>	Не равно	A < >B
>	Больше	A > B
<	Меньше	A < B
>=	Больше или равно	A>=B
<=	Меньше или равно	$A \le B$

Сложные условия образуются из простых путем применения логических операций и круглых скобок.

Пример

A > 10 And A < 20

(B > 4 Or B < 2) And A > 5

В табл. 4.2 указаны логические операции, предназначенные для составления сложных условий.

Логические операции

Операция	Название	Пример
		выражения
Not	Логическое	Not A
	отрицание	
And	Логическое И	A And B
Or	Логическое ИЛИ	A Or B

▶ Откройте файл Лаб3 и сохраните его с именем Лаб4. Разберите все приведенные ниже примеры, наберите тексты программ запустите их на выполнение, задав различные значения условной переменной, и запишите в отчет результаты. Сохраните работу.

Пример

Задано целое число х. Вычислить значение функции

$$y = \begin{cases} \sqrt{x} & npux > 0 \\ x^2 & npux < 0 \\ 5 & npux = 5 \end{cases}$$

4.3 Оператор выбора Select Case

Оператор выбора Select Case удобно использовать, когда в зависимости от значения некоторого выражения, имеющего конечное множество допустимых значений, необходимо выполнить разные действия.

Select Case Тестируемое выражение

Case Условие выбора 1

Блок операторов 1

.....

Case Условие выбора n

Блок операторов n

Case Else

Блок операторов

End Select

После каждого оператора Case может находиться произвольное количество других операторов, и все они будут выполняться, если условие оператора Case истинно.

Пример

Рассмотрим пример начисления комиссионных на основе оператора выбора **Select Case**. В этом примере размер комиссионных зависит только от объема проданной продукции по правилу, приведенному в табл. 4.3.

Таблица 4.3

Объем продаж, тыс. руб.	Комиссионные, %
От 0 до 9999	8
От 10000 до 39999	10
40000 и более	14

Option Explicit

Public Sub PROG6()

Dim opr As Double

Dim prem As Double

opr = Val(InputBox("Введите объем продаж"))

Select Case opr

Case 0 To 9999

prem = 0.08 * opr

Case 10000 To 39999

prem = 0.1 * opr

Case Is >= 40000

prem = 0.14 * opr

End Select

MsgBox (" Комиссионные=" & prem)

End Sub

Слово Is, используемое в программе, является ключевым словом VBA, обозначающим тестируемое выражение в операторе Case.

В операторе Саѕе допустимо использовать составные условия, подобно тому, как это делается в условном операторе.

<u>Пример</u>

Case 5, 6, 9 to 10, 13, 14, Is >= 16

В этом операторе проверяется, принадлежит ли тестируемое выражение отрезку от 9 до 10 или равняется одному из значений: 5, 6, 13, 14, или оно больше 16.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Написать программу.

Вариант 1

- 1. Даны два числа. Вычислить, если это возможно, натуральный логарифм их произведения (логарифм существует только от положительного числа).
- 2. На плоскости XOY задана своими координатами точка А. Указать, где она расположена: на какой оси или в каком координатном угле.

Вариант 2

- 1. Составить программу, которая заданное число возводит в квадрат, если оно четное, и уменьшает его на 2 в противном случае.
- 2. Даны целые числа m, n. Если числа не равны, то заменить каждое из них одним и тем же числом, равным большему из исходных, а если равны, то заменить числа нулями.

<u>Вариант 3</u>

- 1. Составить программу, которая меньшее из двух чисел a и b удваивает и выводит его на экран.
- 2. Подсчитать количество отрицательных чисел среди чисел a, b, c.

- 1. Вычислить квадратный корень из данного числа, если оно неотрицательное, и уменьшить его на 2 в противном случае.
- 2. Подсчитать количество положительных чисел среди чисел a, b, c.

Вариант 5

- 1. Услуги телефонной сети оплачиваются по следующему правилу: за разговоры до А минут в месяц оплачиваются В р., а разговоры сверх установленной нормы оплачиваются из расчета С р. В минуту. Написать программу, вычисляющую плату за пользование телефоном для введенного времени разговоров за месяц.
- 2. Составить программу, вычисляющую значение функции

$$Y = \begin{cases} 5x + 3, \pi p & \ge 2 \\ \frac{x}{2} + 1, \pi p & < 2. \end{cases}$$

Вариант 6

- 1. Перераспределить значения переменных x и y так, чтобы в x оказалось большее из этих значений, а в у меньшее.
- 2. Составить программу, вычисляющую значение функции

$$Y = \begin{cases} 2x + 3, & \text{if } x \leq 1, \\ \frac{x^2}{2}, & \text{if } x > 1. \end{cases}$$

Вариант 7

- 1. Написать программу нахождения суммы большего и меньшего из 3 чисел.
- 2. Составить программу, вычисляющую значение функции

$$Y = \begin{cases} x - 3, & \text{if } x \ge 3, \\ \frac{x^2}{3}, & \text{if } x < 3. \end{cases}$$

- 1. Написать программу, определяющую по длинам сторон треугольника, является ли он прямоугольным. Если треугольник не прямоугольный, то вычислить косинус угла, лежащего против большей стороны.
- 2. Составить программу, вычисляющую значение функции

$$Y = \begin{cases} \sin x, & \text{if } x > 4, \\ x^2 - 1, & \text{if } x \le 4. \end{cases}$$

Вариант 9

- 1. Найти $\max\{\min\{a,b\},\min\{c,d\}\}$.
- 2. Дано целое число а. Если оно кратно четырем, то увеличить его в три раза, иначе возвести его в квадрат.

Вариант 10

- 1. Даны вещественные числа х и у, не равные друг другу. Меньшее из этих чисел заменить половиной их суммы. На экран вывести оба числа.
- 2. Составить программу, которая возводит данное число в куб, если оно отрицательное, и уменьшает его на 4 в противном случае.

Вариант 11

- 1. Даны три вещественных числа. Увеличить в 2 раза те из них, значения которых принадлежат интервалу (-2; 5).
- 2. Дано целое число а. Увеличить его в 2 раза, если оно четное, увеличить его на 3, если оно кратно 5.

Вариант 12

- 1. Три числа называются пифагоровыми, если квадрат одного из них равен сумме квадратов двух других. Определить, являются ли три заданных числа пифагоровыми.
- 2. Заданное число а возвести в квадрат, если оно больше 5, уменьшить на 2, если оно меньше 5, и увеличить на 1, если оно равно 5.

- 1. Даны два вещественных числа. Вычислить их сумму, если они оба положительные, и их произведение в противном случае.
- 2. Даны три числа. Возвести в квадрат те из них, значения которых неотрицательные.

Вариант 14

- 1. Даны два вещественных числа. Если они оба четные, то возвести каждое из них в квадрат, в противном случае увеличить каждое из них на 3.
- 2. Вычислить значение функции Y (х ввести с клавиатуры):

$$Y = \begin{cases} \cos x, \pi \mu x < 1 \\ \frac{1}{x}, \pi \mu x \le x \le 10 \\ \sqrt{x}, \pi \mu x > 10 \end{cases}$$

Вариант 15

- 1. Даны два числа а и b. Уменьшить в 4 раза их произведение, если они оба четные, и увеличить их произведение в 2 раза в противном случае.
- 2. Вычислить значение функции Y(x) ввести с клавиатуры):

$$Y = \begin{cases} -x, \pi p \times < 1, \\ -1, \pi p \times \le x \le 3, \\ x - 4, \pi p \times > 3. \end{cases}$$

Вариант 16

- 1. Даны два вещественных числа a и b. Вычислить, если это возможно, сумму натуральных логарифмов этих чисел.
- 2. Вычислить сумму двух заданных чисел, если они оба положительные, и произведение этих чисел, если это не так.

Вариант 17

1. Вычислить сумму двух заданных чисел, если они оба положительные, и произведение этих чисел, если это не так.

2. Даны числа a, b, c. Заменить на 0 максимальное из них. Вывести на экран все 3 числа.

Вариант 18

1. Вычислить значение функции Y(x) задается с клавиатуры):

$$Y = \begin{cases} \frac{x^2}{2}, & \text{при} < -10 \\ |x|, & \text{при} -10 < x < 10 \\ \sin x, & \text{при} x > 10 \end{cases}$$

2. Даны числа х и у. Вычислить их произведение, если они оба четные, и увеличить их на 1 в противном случае.

Вариант 19

- 1. Заменить минимальное из трех чисел a, b, c их суммой. Вывести все три числа.
- 2. Даны два натуральных числа. Проверить, делится ли одно из них на другое без остатка или нет. Результат проверки сообщить (что на что делится).

Вариант 20

1. Составить алгоритм распознавания кислотности раствора с помощью лакмусовой бумажки:

цвет красный – раствор кислотный;

цвет синий – раствор щелочной;

не меняет цвет – раствор нейтральный.

2. Вычислить значение функции Y(x) задается с клавиатуры):

$$Y = \begin{cases} x, \text{прих} < -5 \\ |x+2|, -5 < x < 5 \\ \cos x, x > 5 \end{cases}$$

- 1. Даны действительные числа a, b, c. Удвоить эти числа, если a < b < c, и заменить их абсолютными значениями, если это не так.
- 2. Подсчитать количество положительных чисел среди чисел a, b, c.

Вариант 22

1. Вычислить значение функции Z (Y задается с клавиатуры):

$$Z = \begin{cases} xy+1 & ecn \mathbf{W} > 0\\ x^{y+1} & ecn \mathbf{W} > 0\\ 3\frac{x}{y}+1 & ecn \mathbf{W} < 0 \end{cases}$$

$$X = 1 + 1g^{2}; \quad a = 1 + b\sqrt{b}, \quad b = 9$$

2. Составить программу, осуществляющую перевод величин из радианной меры в градусную или наоборот. Программа должна запрашивать, какой перевод нужно осуществить, и выполнять указанное действие.

Вариант 23

1. Вычислить значение функции Z (X, Y задается с клавиатуры):

$$Z = \begin{cases} 1, & e c n |\mathbf{x}| + |\mathbf{y}| \le 1u & x \ge 0 \\ \sin(x + y), & e c n |\mathbf{x}| + |\mathbf{y}| > 1 & u < 0u \ y < 0 \\ e^{x + 2} + |\mathbf{y}|, & e o c man b + \cos(xy) & u < 0 \end{cases}$$

2. Даны действительные числа a, b, c (a > 0). Полностью исследовать квадратное уравнение $ax^2 + bx + c = 0$, т.е. если действительных корней нет, то должно быть выдано сообщение об этом, иначе найти действительные корни.

1. Вычислить значение функции Y (X задается с клавиатуры)

$$Y = \begin{cases} (x-3)^2 - 2x, & ecnu > 0 \\ 15 & ecnu = 0 \\ 2x - (x-3)^2, & ecnu0 > x > -5 \end{cases}$$

2. Написать программу, которая по введенному номеру времени года (0 – зима, 1- весна, 2 – лето, 3 – осень) выводит соответствующие этому времени года месяцы и количество дней в каждом из этих месяцев.

Вариант 25

1. Вычислить значение функции Y (X задается с клавиатуры)

$$Y = \begin{cases} \frac{e^{\sqrt{x}}}{\sqrt[4]{\ln x + ctg}} x & ecnuR \ge V \\ \frac{x}{3} \left(\frac{x^2 + 10}{\ln x} + \sqrt[4]{x} \right), & ecnR < V \end{cases}$$

$$V = e^x; \quad R = \frac{x + \sqrt{x}}{\ln x^3}$$

2. Написать программу, которая по заданным трем числам определяет, является ли сумма каких-либо двух из них положительной.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какой процесс называется разветвляющимся?
- 2. Как в программе описывается полная структура ветвления Если-То Иначе? Если То Обход?
- 3. Какие знаки логических отношений могут быть использованы для записи условий?
- 4. Когда удобно использовать оператор Select Case?