WST 311

Assignment B: 12-16 February 2018

- 1. Let $\mathbf{X}: p \times 1 = \begin{pmatrix} \mathbf{X}_1: p_1 \times 1 \\ \mathbf{X}_2: p_2 \times 1 \end{pmatrix}$. Then \mathbf{X}_1 and \mathbf{X}_2 are independent if and only if $M_{\mathbf{X}}(t) = M_{\mathbf{X}_1}(t_1)M_{\mathbf{X}_2}(t_2)$. Prove this.
- 2. Let $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ where X_1 , X_2 and X_3 are independent and exponential, $X_i \sim EXP(1)$.
 - (a) Derive the pdf of X as well as the moment generating function of X
 - (b) Let $Y_1 = X_1$, $Y_2 = X_1 + X_2$ and $Y_3 = X_1 + X_2 + X_3$. Calculate the pdf of \mathbf{Y} and the moment generating function of \mathbf{Y} .
 - (c) Use moment generating functions and show that Y_1 , Y_2 and Y_3 are dependent.
 - (d) Calculate $E(\mathbf{Y})$.
- 3. Let $\mathbf{X}: 2 \times 1 = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ have a multivariate normal distribution with mean and covariance given by

$$oldsymbol{\mu} = \left(egin{array}{cc} \mu_1 \ \mu_2 \end{array}
ight) \qquad \quad oldsymbol{\Sigma} = \left(egin{array}{cc} \sigma_{1}^2 & \sigma_{12} \ \sigma_{12} & \sigma_{2}^2 \end{array}
ight).$$

Show that the density function is given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right) \left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 \right] \right\}.$$

4. Let X' be the random vector (X_1, X_2, X_3, X_4) with mean vector $\mu'_X = (4, 3, 2, 1)$ and

$$\Sigma_{\boldsymbol{X}} = \begin{pmatrix} 3 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 7 & -2 \\ 2 & 0 & -2 & 4 \end{pmatrix}.$$

Partition X as

$$\left(\begin{array}{c} X_1 \\ X_2 \\ \hline X_3 \\ X_4 \end{array}\right) = \left(\begin{array}{c} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{array}\right).$$

Let

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$.

Use PROC IML to calculate the following.

- (a) $E(\mathbf{X}_2)$
- (b) $E(\mathbf{A}\mathbf{X}_2)$
- (c) $cov(\boldsymbol{X}_2)$
- (d) $cov(\mathbf{A}\mathbf{X}_2)$
- (e) $cov(\boldsymbol{X}_1, \boldsymbol{X}_2')$
- (f) $cov(\mathbf{A}\mathbf{X}_1, (\mathbf{B}\mathbf{X}_2)')$

5. Write a SAS/IML program simulating the following theoretical fact:

Let X_1, X_2, \ldots, X_n be a random sample from N(0,1) distribution. It is then known that \overline{X} will follow a normal distribution, with mean 0 and standard deviation $\frac{1}{\sqrt{n}}$.

Accept that \overline{X} follows a normal distribution. Demonstrate through simulation that the mean is 0 and the standard deviation is $\frac{1}{\sqrt{n}}$. Simulate 1000 samples, each of size 300. Do the simulation without using a do loop! Give the theoretical and empirical values for the mean and standard deviation.

6. Work through Example A, Questions 1, 2 and 3.