# Atividade CEP

### João Inácio Scrimini - 201812400

### 16 outubro 2022

### Sumário

| T | Exemplo 1 | Т |
|---|-----------|---|
| 2 | Exemplo 2 | 5 |
| 3 | Exemplo 3 | 9 |

## 1 Exemplo 1

Neste exemplo existe vários problemas de desempenho nas amostras coletadas, mostrando que a determinada tarefa, ou função não está adequada, necessitando ajustes ou melhoramento. Processo fora de controle.

Tabela 1: Dados do exemplo 1.

| X1 | X2 | Х3 | X4 | X5 |
|----|----|----|----|----|
| 33 | 29 | 31 | 32 | 33 |
| 33 | 31 | 35 | 37 | 31 |
| 35 | 37 | 33 | 34 | 36 |
| 30 | 31 | 33 | 34 | 33 |
| 33 | 34 | 35 | 33 | 34 |
| 38 | 37 | 39 | 40 | 38 |
| 30 | 31 | 32 | 34 | 31 |
| 29 | 39 | 38 | 39 | 39 |
| 28 | 33 | 35 | 36 | 43 |
| 38 | 33 | 32 | 35 | 32 |
| 28 | 30 | 28 | 32 | 31 |
| 31 | 35 | 35 | 35 | 34 |
| 27 | 32 | 34 | 35 | 37 |
| 33 | 33 | 35 | 37 | 36 |
| 35 | 37 | 32 | 35 | 39 |
| 33 | 33 | 27 | 31 | 30 |
| 35 | 34 | 34 | 30 | 32 |
| 32 | 33 | 30 | 30 | 33 |
| 25 | 27 | 34 | 27 | 28 |
| 35 | 35 | 36 | 33 | 30 |

Tabela 2: Limites para a Média usando a Amplitude.

| LSC   | LIC   | LM    |  |
|-------|-------|-------|--|
| 34,36 | 32,28 | 33,32 |  |

Tabela 3: Limites para o Desvio Padrão usando a Amplitude.

| LSC  | LIC  | LM  |
|------|------|-----|
| 9,19 | 2,14 | 5,8 |



Figura 1: Gráfico de controle para a Média usando a Amplitude.



Figura 2: Gráfico de controle para o Desvio Padrão usando a Amplitude.

Tabela 4: Limites para a Média usando o Desvio Padrão.

| LSC   | LIC   | LM    |
|-------|-------|-------|
| 34,91 | 31,73 | 33,32 |

Tabela 5: Limites para o Desvio Padrão usando o Desvio Padrão.

| LSC | LIC  | LM   |
|-----|------|------|
| 3,5 | 1,19 | 2,35 |



Figura 3: Gráfico de controle para a Média usando o Desvio Padrão.



Figura 4: Gráfico de controle para a Desvio Padrão usando o Desvio Padrão.

## 2 Exemplo 2

Neste exemplo vemos que apenas a amostra 14, que está apresentando algum problema. Assim, devendo ser analizada, conforme possível problema que apresenta. Processo fora de controle e apresentando padrão de não aleatoriedade, podendo ser observado nos gráficos de médias, onde existem 6 pontos consecutivos de forma crescente, as médias amostrais das amostras 23 a 28.

Tabela 6: Dados do exemplo 2.

| X1        | X2         | Х3         | X4         | X5         | X6         | X7        | X8         | X9         | X10       |
|-----------|------------|------------|------------|------------|------------|-----------|------------|------------|-----------|
| 9,832     | 10,473     | 9,518      | 10,836     | 9,920      | 9,627      | 10,028    | 9,666      | 9,337      | 10,936    |
| 9,022     | 10,622     | 10,618     | 11,460     | 8,994      | 10,126     | 10,356    | 9,684      | 9,931      | 10,540    |
| 10,743    | 10,962     | $9,\!497$  | 10,170     | 8,932      | 9,674      | 10,247    | 9,777      | 10,057     | 10,582    |
| 10,054    | 11,011     | 10,436     | 11,407     | 10,132     | 11,390     | 9,996     | 9,818      | 10,461     | 10,465    |
| 9,691     | $11,\!226$ | 9,806      | 10,748     | $10,\!105$ | 11,148     | 10,162    | 9,912      | 9,908      | 10,644    |
| 9,921     | 10,031     | 10,528     | 10,988     | 9,817      | 10,132     | 10,063    | 11,129     | 11,294     | 9,745     |
| 9,634     | 11,047     | 9,821      | 11,147     | 9,115      | 10,776     | 9,739     | 10,053     | 9,794      | 11,662    |
| 10,204    | $10,\!494$ | 11,219     | $10,\!515$ | 9,415      | 10,715     | 9,544     | 10,178     | $9,\!105$  | 10,441    |
| 10,667    | 10,783     | 10,244     | 11,614     | 10,016     | 10,047     | 8,903     | 10,911     | 9,523      | 11,114    |
| 10,489    | $10,\!629$ | 10,691     | $11,\!387$ | $10,\!175$ | 9,581      | 9,664     | 11,022     | 9,858      | 10,604    |
| 10,665    | 11,169     | 11,020     | 9,861      | $9,\!574$  | 10,287     | 10,139    | 10,019     | 10,622     | 11,638    |
| 10,568    | 10,539     | 10,177     | 10,199     | 10,750     | 10,056     | 10,979    | 10,545     | 9,163      | 10,204    |
| 10,843    | $9,\!126$  | 9,981      | 11,297     | $9,\!385$  | $11,\!545$ | 10,666    | 9,919      | 10,417     | 10,945    |
| 9,610     | 9,800      | $10,\!417$ | $10,\!437$ | $9,\!580$  | 10,338     | 9,908     | 10,015     | 9,758      | 9,997     |
| 10,133    | $10,\!827$ | $10,\!507$ | $10,\!437$ | 10,878     | 10,898     | 8,991     | 10,188     | $10,\!554$ | 10,339    |
| 10,370    | 11,233     | 9,762      | 10,468     | 9,955      | 9,782      | 9,773     | $10,\!645$ | 9,842      | 10,868    |
| 9,501     | $9,\!596$  | 10,349     | 12,011     | 10,169     | 10,877     | 9,860     | 9,768      | 9,844      | 11,121    |
| $9,\!853$ | 10,043     | 10,027     | 10,783     | $10,\!105$ | 9,903      | 10,232    | 10,798     | 9,660      | 10,941    |
| 10,400    | 10,724     | 11,002     | 10,442     | 10,205     | 10,077     | 9,768     | 9,786      | 10,239     | 10,300    |
| 9,764     | $11,\!202$ | 9,567      | 10,171     | 9,785      | $10,\!335$ | 10,233    | $10,\!377$ | $10,\!827$ | 10,410    |
| 10,341    | 10,165     | 10,049     | 11,460     | 10,451     | 10,326     | 10,808    | 9,848      | 9,707      | 9,791     |
| 10,293    | 9,996      | 9,796      | 10,759     | 10,944     | 10,362     | 9,783     | 9,006      | 11,192     | 10,104    |
| 10,281    | 10,886     | 10,294     | 10,912     | 10,816     | 9,822      | $9,\!876$ | $9,\!126$  | 9,711      | $9,\!879$ |
| 9,898     | 11,042     | 10,399     | 11,013     | 9,265      | 10,208     | 9,824     | 9,893      | $10,\!307$ | 9,973     |
| 9,413     | 11,988     | 9,390      | 10,950     | 10,139     | 9,738      | 10,070    | 9,991      | 9,905      | 10,942    |
| 10,255    | 9,640      | 10,668     | 10,607     | 9,719      | 11,123     | 9,688     | 10,828     | 8,976      | 11,131    |
| 9,763     | $11,\!459$ | $10,\!573$ | $10,\!305$ | $10,\!528$ | 11,072     | 9,840     | 9,675      | 9,771      | 10,101    |
| 10,939    | 10,356     | 10,734     | 11,104     | 10,048     | $10,\!531$ | 11,069    | 9,802      | 10,263     | 10,278    |

Tabela 7: Limites para a Média usando a Amplitude.

| LSC   | LIC  | LM    |
|-------|------|-------|
| 10,57 | 9,99 | 10,28 |

Tabela 8: Limites para o Desvio Padrão usando a Amplitude.

| LSC  | LIC  | LM   |  |
|------|------|------|--|
| 2,89 | 0,86 | 1,87 |  |



Figura 5: Gráfico de controle para a Média usando a Amplitude.



Figura 6: Gráfico de controle para o Desvio Padrão usando a Amplitude.

Tabela 9: Limites para a Média usando o Desvio Padrão.

| LSC   | LIC  | LM    |
|-------|------|-------|
| 10,65 | 9,92 | 10,28 |

Tabela 10: Limites para o Desvio Padrão usando o Desvio Padrão.

| LSC  | LIC  | LM  |
|------|------|-----|
| 0,86 | 0,34 | 0,6 |



Figura 7: Gráfico de controle para a Média usando o Desvio Padrão.



Figura 8: Gráfico de controle para a Desvio Padrão usando o Desvio Padrão.

## 3 Exemplo 3

Neste exemplo todos os valores ficaram dentro dos limites, mostrando que dentro das amostras coletadas, tudo está ocorrendo dentro do esperado, não ocorrendo nenhum tipo de problema prejudicial de desenvolvimento. Pelos critérios de decisão em cartas de controle, o processo se encontra dentro de controle, não apresentando nenhum padrão não aleatório.

Tabela 11: Dados do exemplo 3.

| Diametro  | AM       |
|-----------|----------|
| 9,94      | NA       |
| 9,93      | 0,01     |
| 10,09     | 0,16     |
| 9,98      | 0,11     |
| 10,11     | 0,13     |
| 9,99      | 0,12     |
| 10,11     | $0,\!12$ |
| $9,\!84$  | $0,\!27$ |
| $9,\!82$  | 0,02     |
| 10,38     | $0,\!56$ |
| 9,99      | 0,39     |
| $10,\!41$ | 0,42     |
| 10,36     | 0,05     |
| 9,99      | $0,\!37$ |
| 10,12     | 0,13     |
| 9,81      | 0,31     |
| 9,73      | 0,08     |
| $10,\!14$ | 0,41     |
| 9,96      | 0,18     |
| 10,06     | $0,\!10$ |
| 10,11     | 0,05     |
| $9,\!95$  | 0,16     |
| 9,92      | 0,03     |
| 10,09     | $0,\!17$ |
| 9,85      | 0,24     |

Tabela 12: Limites para as Médias Individuais.

| LSC   | LIC   | LM    |
|-------|-------|-------|
| 10,54 | 9,519 | 10,03 |

Tabela 13: Limites para as Amplitudes Médias.

| LSC    | LIC | LM     |
|--------|-----|--------|
| 0,6248 | 0   | 0,1912 |



Figura 9: Gráfico de controle para as Médias Individuais.



Figura 10: Gráfico de controle para as Amplitudes Médias.

Todos os exemplos foram desenvolvidos em software R.