1

Definitions

Contents

1	Definitions		1	1.1	Vector Space
	1.1 Vector Space		1		
	1.2 Linear Combin	ation	1		etor space is a set V with the following properties:
	1.3 Span		1	(Assur	me that v, x, y, z are in V , and a, b, c are scalars in \mathbb{R})
	1.4 Linearly Indep	endent	1	Comn	nutativity:
			2	• x	+y=y+x
			$\frac{2}{2}$	Assoc	iativity:
			2	• (:	(x + y) + z = x + (y + z)
			2		ab)v = a(bv)
	1.10 Linear Map		2 3	Addit	ive Identity:
	1.11 Linear Maps a	nd Matrices	9	• t	here exists $0 \in V$ such that $\nu + 0 = \nu$ for all $\nu \in V$
2	Proofs	oofs		Addit	ive Inverse:
		a for Inner Product	3	• fo	or all $\nu \in V$, there exists $x \in V$ such that $\nu + x = 0$
	2.2 Triangle Inequality		3	Multi	plicative Identity:
	2.9 Cauchy Schwa	102 mequanty	0	• 1	v = v
3	Matrices			Distri	butive Properties:
		perties of Matrices	4	• a	a(x+y) = ax + ay
		perties of Matrix Transpose	4		(a+b)v = av + bv
	3.3 Leading Entry		4		
	3.4 Special Notation	ons	4	1.0	Time of Combinedian
	3.5 Main Diagonal		4	1.2	Linear Combination
	3.6 Diagonal Matr	ix	4	A line	ar combination of a list of vectors v_1, \ldots, v_n is itself a
	3.7 Identity Matrix	x	4		at combination of a list of vectors v_1, \ldots, v_n is itself a v_1, \ldots, v_n , taking the form:
	3.8 Lower-Triangu	lar Entries	5	VCCUOI	, taking the form.
		lar Matrix	5		$a_1v_1+\ldots+a_mv_m$
	3.10 Unit Lower-Tr	iangular Matrix	5	where	each $a_1, \dots a_n \in \mathbb{R}$
		lar Matrix	5		.,
	3.12 Bands of a Ma	trix	5	1.0	C
	3.13 Outer Product	of Vectors	5	1.3	Span
	3.14 Rank-one Upd	ates	5	Thogs	at of all linear combinations of a list of restors a
	3.15 Shear		5		et of all linear combinations of a list of vectors v_1, \ldots, v_n ed the span of v_1, \ldots, v_n , and is defined:
	3.16 Dilation		6		
	-		6	span	$(v_1, \ldots, v_n) = \{a_1v_1 + \cdots + a_nv_n : a_1, \ldots, a_m \in \mathbb{R}\}$
		rm	6		span is equal to some space $\operatorname{span}(\nu_1,\ldots,\nu_n)=V,$ then puld say that ν_1,\ldots,ν_n spans $V.$
4	Applications		6		
		rix of a Graph	6	1.4	Linearly Independent
			6		
	4.3 3D Polygons		6 6	For ν	$ u_1,\dots,\nu_n\in V \ \mathrm{and} \ \alpha_1,\dots,\alpha_n\in\mathbb{R} \ \mathrm{such \ that} $
	4.4 Spring Mass 1	TODICIII	U		$a_1v_1+\cdots+a_nv_n=0$
5	•		6	_	st of vectors v_1, \dots, v_n is called linearly independent
			6	when	^
	-	ions	6		$a_1 = \cdots = a_n = 0$
	5.3 The Matrix as	a Function	6	for all	possible values of v_1, \ldots, v_n .

Basis 1.5

A basis of V is a list of vectors in V that is both linearly independent and spans V.

The **Standard Basis** of the vector space \mathbb{R}^n is

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)$$

which could also be written, using matrix bracket notation,

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

1.6 Dimension

The dimension of a vector space is the length of any basis of the vector space. For example,

$$\dim \mathbb{R}^n = n$$

1.7 Inner Product

For a pair of vectors $u, v \in V$ in the same vector space (they are both in \mathbb{R}^n for example), the Inner Product is defined

$$u \cdot v = u_1 v_1 + ... + u_n v_n$$

which is also sometimes written using angular brackets:

$$\langle u, v \rangle$$

Keep in mind that the dimension of u and v must be the same. Using matrix dimension notation:

$$u_{\{n\times 1\}}\cdot v_{\{n\times 1\}}$$

The Inner Product is also a function $f:(\mathbb{R}^n,\mathbb{R}^n)\to\mathbb{R}$. The input is an ordered pair of vectors, and the output is a number. Inner products have the following properties:

Positivity:

• $\langle \nu, \nu \rangle \ge 0$ for all $\nu \in V$

Definiteness:

• $\langle v, v \rangle = 0$ if and only if v = 0

Additivity in First Slot:

• $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$

Homogeneity in First Slot:

• $\langle au, v \rangle = a \langle u, v \rangle$ for all $a \in \mathbb{R}$ and all $u, v \in V$

In another definition of the Inner Product, the concepts of "additivity" and "homogeneity" are combined into a concept called "linearity". Bilinearity is when there is linearity in both the First and Second slots. Additionally, there is a concept called **Symmetry** for all real numbers.

For $x, y, z \in V$ and $a, b \in \mathbb{R}$:

Bilinearity:

- Additivity and Homogeneity in First and Second Slot:
- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$

Symmetry:

•
$$\langle x, y \rangle = \langle y, x \rangle$$

1.8 Norm

The Norm of a vector \mathbf{x} is defined as the square root inner product of x with itself:

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

The Euclidean Norm, also called 2-norm, is defined:

$$\|\mathbf{x}\|_2 = \sqrt{{\mathbf{x_1}}^2 + \ldots + {\mathbf{x_n}}^2}$$

which has the following properties:

Positivity:

- $||x|| \ge 0$ ||x|| = 0 if and only if x = 0

Homogeneity:

• $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$

Triangle Inequality:

• $||x + y|| \le ||x|| + ||y||$

Orthogonal 1.9

Two vectors $u, v \in V$ are called **orthogonal** if the inner product between them is 0,

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$

you could also say " $\mathfrak u$ is orthogonal to $\mathfrak v$ ". Orthogonal is another way of saying "at right angles to each other", or "perpendicular".

Linear Map 1.10

A linear map from vector space V to vector space W is a function $T: V \to W$ with the following properties:

Additivity:

• T(u+v) = Tu + Tv for all vectors $u, w \in V$

Homogeneity:

• $T(\alpha v) = \alpha(Tv)$ for all $\alpha \in \mathbb{R}$ and all $v \in V$

1.11 Linear Maps and Matrices

Suppose M is a linear map $f: \mathbb{R}^a \to \mathbb{R}^b$, then M can be written as b-by-a matrix:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,\alpha} \\ \vdots & \vdots & \vdots \\ x_{b,1} & \cdots & x_{b,\alpha} \end{bmatrix}$$

2 Proofs

2.1 Cosine Formula for Inner Product

For two non-zero vectors $x, y \in V$,

$$\langle x, y \rangle = ||x|| ||y|| \cos \theta$$

where the angle $\angle xy = \theta$.

Proof:

There are two cases we need to write a proof for.

- Case 1: when x and y are not scalar multiples of each other.
- Case 2: when x and y are scalar multiples.

Case 1:

For any triangle with sides a, b, c, The Law of Cosines states,

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where the angle $\angle ab = \theta$. For vectors $x, y \in V$, we can treat them as sides of the triangle. Let:

$$a = ||x||$$
$$b = ||y||$$
$$c = ||x - y||$$

Which allows us to rewrite the Law of Cosines:

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

Start with the definition of Inner Product, and apply its algebraic properties (notably the Bilinearity property), to show that Law of Cosines for Inner Products is correct.

$$||x - y||^{2}$$

$$= \langle x - y, x - y \rangle$$

$$= \langle x, x - y \rangle - \langle y, x - y \rangle$$

$$= (\langle x, x \rangle - \langle x, y \rangle) - (\langle y, x \rangle - \langle y, y \rangle)$$

$$= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} - 2\langle x, y \rangle + ||y||^{2}$$

Returning to the Law of Cosines,

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

$$||x||^2 - 2\langle x, y \rangle + ||y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

$$||x||^2 - 2\langle x, y \rangle = ||x|| ||y|| \cos \theta$$

$$||x||^2 - 2||x|| ||y|| \cos \theta$$

$$||x||^2 - 2||x|| ||y|| \cos \theta$$

П

Case 2:

Since x and y are scalar multiples of each other, we can write,

$$y = cx$$

for some scalar $c \in \mathbb{R}$ where $c \neq 0$ (since the theorem statement says that x and y are "nonzero vectors"). Now, to find the value of θ , we look at the value of c:

- If c > 0, then $\theta = 0$, and $\cos \theta = 1$
- If c < 0, then $\theta = \pi$, and $\cos \theta = -1$

Define the sign of c, so that we can use it in our proof:

$$sign(c) = cos \theta$$

And here's the proof:

$$\begin{split} \langle x,y \rangle &= \langle cx,x \rangle \\ &= c \langle x,x \rangle \\ &= c \|x\|^2 \\ &= c \|x\| \|x\| \\ &= c \sqrt{(x_1^2 + \ldots + x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{c^2 (x_1^2 + \ldots + x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{(c^2 x_1^2 + \ldots + c^2 x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{(y_1^2 + \ldots + y_n^2)} \|x\| \\ &= \mathrm{sign}(c) \|y\| \|x\| \\ &= \|x\| \|y\| \cos \theta \end{split}$$

2.2 Triangle Inequality

TODO

2.3 Cauchy-Schwartz Inequality

TODO

3 Matrices

3.1 Algebraic Properties of Matrices

Compare these with the properties of Vector Space.

Protip: Matrices are in Vector Space.

Commutativity:

• A + B = B + A

Associativity:

•
$$A + (B + C) = (A + B) + C$$

Additive Identity:

• A + 0 = A

Additive Inverse:

• A + (-A) = 0

Distributivity of matrix addition:

• a(A + B) = aA + aB

Distributivity of scalar addition:

• (a+b)A = aA + bA

Associativity of scalar multiplication

• a(bA) = (ab)A

Multiplicative Identity of scalar multiplication

• 1A = A

3.2Algebraic Properties of Matrix Transpose

- $(A^{T})^{T} = A$
- $(A + B)^T = A^T + B^T$
- $(cA)^T = cA^T$ $(AB)^T = B^TA^T$

Leading Entry 3.3

The Leading Entry of a row in a matrix the is first non-zero element in that row (from left-to-right).

3.4 Special Notations

Entries

- A_{ii} of matrix A is the entry in the ith row and jth
- I like to use $A_{i,j}$ or $A_{[i,j]}$ depending on the situation.

The $1 - \star - \times - 0$ notation:

- 1: must be a 1
- \star : Non-zero numbers, = $\{c \in \mathbb{R} : c \neq 0\}$
- \times : any number = $\{c \in \mathbb{R}\}\$
- 0: must be a 0

MATLAB Syntax and Commands:

- A(i,k) returns the entry A_{i,k}
- A(i,:) returns the ith row
- A(:,k) returns the kth column
- numel(A) returns the number of elements in matrix A
- nnz(A) returns the number of non-zero elements in A

3.5 Main Diagonal

For a matrix entry $a_{i,k}$, the main diagonal entries would be defined as the set:

$$\{a_{i,k}: i=k\}$$

In the following example, the Main Diagonal would be the

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Non-Diagonal entries are all values that are not in the main diagonal:

$$\{a_{i,k}: i \neq k\}$$

Diagonal Matrix 3.6

Diagonal Matrix is a matrix where all non-diagonal entries

For example, the following is a Diagonal Matrix:

$$\begin{bmatrix} \star & 0 & 0 \\ 0 & \star & 0 \\ 0 & 0 & \star \end{bmatrix}$$

3.7 **Identity Matrix**

An Identity Matrix, denoted I_n or just I, is a square matrix in $\mathbb{R}^{n \times n}$ where all diagonal entries are 1, and all non-diagonal entries are 0. For example,

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

When used in Matrix Multiplication, for some matrix $A \in$ $\mathbb{R}^{m \times n}$, the Identity Matrix has the property:

$$I_m A = AI_n = A$$

3.8 Lower-Triangular Entries

Lower-Triangular Entries of a matrix are either: on the diagonal, or below the diagonal.

$$\{L_{i,k}: i \geq k\}$$

Strictly Lower-Triangular Entries of a matrix are only the values below the diagonal:

$$\{L_{i,k}: i > k\}$$

3.9 Lower-Triangular Matrix

A Lower-Triangular Matrix, $L \in \mathbb{R}^{n \times n},$ is a square matrix such that

$$L_{i,k} = 0$$
 for all $i < k$

For example, in this Lower-Triangular Matrix, $L \in \mathbb{R}^{3\times 3}$,

$$\begin{bmatrix} \times & 0 & 0 \\ \times & \times & 0 \\ \times & \times & \times \end{bmatrix}$$

the lower-triangular entries can be anything, and the rest must be 0.

3.10 Unit Lower-Triangular Matrix

The Unit Lower-Triangular Matrix, $L \in \mathbb{R}^{n \times n}$ is both:

$$\begin{split} L_{i,k} &= 1 & \quad \text{for all } i = k \\ L_{i,k} &= 0 & \quad \text{for all } i < k \end{split}$$

An example of a Unit Lower-Triangular Matrix, $L \in \mathbb{R}^{3\times 3}$,

$$\begin{bmatrix} 1 & 0 & 0 \\ \times & 1 & 0 \\ \times & \times & 1 \end{bmatrix}$$

3.11 Upper-Triangular Matrix

Upper-Triangular Entries are defined as:

$$\{U_{i,k}: i \leq k\}$$

Strictly-Upper-Triangular Entries are defined as:

$$\{U_{i,k} : i < k\}$$

Upper-Triangular Matrix example:

$$\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}$$

Unit Upper-Triangular Matrix example:

$$\begin{bmatrix} 1 & \times & \times \\ 0 & 1 & \times \\ 0 & 0 & 1 \end{bmatrix}$$

Quite similar to the Lower-Triangular Matrix definitions and examples.

3.12 Bands of a Matrix

Diagonal Band

The d^{th} -diagonal-band of a matrix A is the set of entries:

$$d^{th}$$
 diagonal band = $\{A_{i,k} : i - k = d\}$

For example, the 0-diagonal-band is the main diagonal, and the 2-band of $A \in \mathbb{R}^3$ would be:

$$\{A_{[0,2]}, A_{[1,1]}, A_{[2,0]}\}$$

Upper-Triangular Bands:

- Set of entries
- $\{A_{i,k} : i k \le 0\}$

Lower-Triangular Bands :

- Set of entries
- $\{A_{i,k}: k \ge 0\}$

Lower Bandwidth:

- Number
- d such that $A_{i,k} = 0$ for (i k > d).
- The lowest band before everything becomes 0s.

Upper Bandwidth:

- Number
- d such that $A_{i,k} = 0$ for (i k < d).
- The highest band before everything becomes 0s.

3.13 Outer Product of Vectors

For $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$ the outer product is defined,

$$x \otimes y = xy^T = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & \vdots & \vdots \\ x_my_1 & \cdots & x_my_n \end{bmatrix}$$

you could also say that the outer product is a function:

$$(\mathbb{R}^m, \mathbb{R}^n) \to \mathbb{R}^{m \times n}$$

3.14 Rank-one Updates

For $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^m, y \in \mathbb{R}^n$, the rank-one update is defined,

$$A + xy^T$$

3.15 Shear

Shear matrices are Rank-One Updates to the Identity matrix. An $n \times n$ shear matrix is:

$$S_{[i,k]}(c) = I_n + c e_i(e_k^T)$$

where **e** is the standard basis, and $i \neq k$.

Example: where i = 3, k = 1, c = -5, n = 3,

$$S_{[3,1]}(-5) = I_3 + -5e_3(e_1^T)$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + -5 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix}$$

3.16 Dilation

For $n \in \mathbb{N}, \ j \in \mathbb{N}, \ j \leq n$, define an $n \times n$ dilation matrix to be:

$$D_j(c) = I_n + (c-1)e_j(e_j^T)$$

3.17 Transposition

For $n \in \mathbb{N}, \ i \neq k$, define the $n \times n$ transposition matrix to be:

$$P_{[i,k]} = e_i(e_k^T) + e_k(e_i^T) + \sum_{\substack{j=1 \ i \neq k}}^n e_j(e_j^T)$$

Example:

$$P_{[2,4]} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

3.18 Gauss Transform

Let $n, k \in \mathbb{N}, \ k < n, \ T \in \mathbb{R}^n$, where T is a vector whose first k components are zero.

$$T^T = \begin{bmatrix} 0 & \cdots & T_{k+1} & \cdots & T_n \end{bmatrix}$$

The Gauss Transformation is a matrix

$$L_{k} = I_{n} - T(e_{k}^{T})$$

4 Applications

Examples of applying Linear Algebra to other things. Includes models made with Vectors and Matrices.

4.1 Incidence Matrix of a Graph

TODO

4.2 3D Wireframe

TODO

4.3 3D Polygons

TODO

4.4 Spring-Mass Problem

TODO

5 Tips and Tricks

Extra things that are useful as a reference.

5.1 Dimensions of Nine Different Products

Scalar, Scalar: $\mathbb{R} \times \mathbb{R}$ Scalar, Column Vector: $\mathbb{R} \times \mathbb{R}^n$ $\to \mathbb{R}^n$ $\rightarrow \mathbb{R}^{1 \times n}$ $\mathbb{R} \times \mathbb{R}^{1 \times n}$ Scalar, Row Vector: $\mathbb{R}^n \times \mathbb{R}^n$ Inner Product on \mathbb{R}^n : $\mathbb{R}^{1\times n}\times \mathbb{R}^{1\times n}$ Inner Product on $\mathbb{R}^{1\times n}$: $\mathbb{R}^{m \times 1} \times \mathbb{R}^{n \times 1}$ $\rightarrow \mathbb{R}^{m\times n}$ Outer Product: $\rightarrow \mathbb{R}^{m\times n}$ $\mathbb{R}\times\mathbb{R}^{m\times n}$ Scalar, Matrix:

Matrix, Column Vector: $\mathbb{R}^{m \times n} \times \mathbb{R}^{n \times 1} \longrightarrow \mathbb{R}^{m \times 1}$ Row Vector, Matrix: $\mathbb{R}^{1 \times m} \times \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{1 \times n}$

5.2 Matrix Operations

TODO

5.3 The Matrix as a Function

Let f be a function:

$$f(x,y) = (x + 2y, 3x + 4y, 5x + 6y)$$

The function takes 2 elements as input and gives 3 elements as output,

$$f:\mathbb{R}^2\to\mathbb{R}^3$$

Suppose x = 1 and y = 2,

$$f(1,2) = (1(1) + 2(2), 3(1) + 4(2), 5(1) + 6(2))$$

= (5,11,17)

We could rewrite the input list (1,2) and output list (5,11,17) as vectors, which reveals:

$$f\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}5\\11\\17\end{bmatrix}$$

Now, let's say that function f is a Linear Map, A, from \mathbb{R}^2 to \mathbb{R}^3 , and rewrite this in an algebraic form.

$$A\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}5\\11\\17\end{bmatrix}$$

Looking back above to the function f, we can use this to rewrite A in a matrix notation.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \\ 17 \end{bmatrix}$$

At this point, compare and contrast the dimensions of the matrix with the function definition,

$$\begin{aligned} f : \mathbb{R}^2 &\to \mathbb{R}^3 \\ A &\in \mathbb{R}^{3 \times 2} \end{aligned}$$

and compare and contrast the input and output:

$$x \in \mathbb{R}^2$$
$$Ax \in \mathbb{R}^3$$

We can rewrite the function again. This time, let's use our matrices to gain a new perspective of the nature of Linear Algebra:

$$f(x,y) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1x + 2y \\ 3x + 4y \\ 5x + 6y \end{bmatrix}$$