浙江水学

题	目	热电偶传感器实验	
姓名学	2号	冯 焯 3120100170	
学	院	生工食品学院	
专业班	E级	生物系统工程 1202 班	
指导老	台师	王剑平、叶尊忠	

热电偶传感器实验

一、 实验目的:

了解热电偶测量温度的原理和调理电路,熟悉调理电路工作方式。

二、 实验内容:

本实验主要学习以下几方面的内容

- 1. 了解热电偶特性曲线;
- 2. 观察采集到的热信号的实时变化情况。
- 3. 熟悉热电偶类传感器调理电路。

三、 实验仪器、设备和材料:

所需仪器

● myDAQ、myboard、nextsense01 热电偶实验模块、万用表

注意事项

- 1. 在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件插针弯曲,影响模块使用。
- 2. 禁止弯折实验模块表面插针,防止焊锡脱落而影响使用。
- 3. 更换模块或插槽前应关闭平台电源。
- 4. 开始实验前,认真检查热电偶的连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。
- 5. 本实验仪采用的电偶为 K 型热电偶和 J 型热电偶。

四、 实验原理:

热电偶是一种半导体感温元件,它是利用半导体的电阻值随温度变化而显著变化的特性 实现测温。

热电偶传感器的工作原理

热电偶是一种使用最多的温度传感器,它的原理是基于 1821 年发现的塞贝克效应,即两种不同的导体或半导体 A 或 B 组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为 T,另一端温度为 To,则回路中就有电流产生,见图 50-1 (a),即回路中存在电动势,该电动势被称为热电势。

两种不同导体或半导体的组合被称为热电偶。

当回路断开时,在断开处 a,b 之间便有一电动势 E_{7} ,其极性和量值与回路中的热电势一致,见图 50-1 (b),并规定在冷端,当电流由 A 流向 B 时,称 A 为正极,B 为负极。实验表明,当 E_{7} 较小时,热电势 E_{7} 与温度差 (T_{7} - T_{0}) 成正比

五、 实验步骤:

- 1. 关闭平台电源 (myboard),插上热电偶实验模块。开启平台电源,此时可以看到模块左上角电源指示灯亮。
- 2. 打开 nextpad, 运行热电偶实验应用程序
- 3. 查看传感器介绍,了解热电偶的原理及温差与热电势之间的关系。
- 4. 在特性曲线页面。选择不同型号的热电偶观察各型号热电偶的 V-T,在测温曲线的下方,手动模拟产生热电势的值,观察测温曲线。
- 5. 在实验内容页面中了解实验的内容、操作方式和过程
- 6. 在仿真页面任意改变运算放大器的输出电压值和运算放大倍数,记录 E(T,T0)和冷端温度仿真的输出值 E(T0),将数据填写到热电偶温度手动测量表中,查表计算热电偶的电势所对应的温度值。
- 7. 在测量页面
 - 1) 选择实际接入的电阻

8. 在 nextsense01 中, 用杜邦线将 R2 R4 链接到运算放大器上。

- 9. **调零。**将 A、B 端用杜邦线短接,调节模块右侧下方的电位器,对放大器的输出 Vout 进行调零。
- 10. **测量。**选择 K 型或者 J 型热电偶其中一个,连接到 A、B 两端,在自动测量页面,点击页面上的开始按钮进行数据的采集和记录,将热电偶放置到热水中记录温度的变化(温度变化范围至少 30 度)。
- 11. 在 nextpad 页面中,点击页面右上的数据保存按钮,选择保存的表格,进行数据的保存。

六、 数据及结论(绘制数据点散图,建立回归方程,分析灵敏度和 线性误差)

冷端温度	热电偶输出电势(uV)	测量点温度
23.20	75.93	25.07
23.20	277.91	40.61
23.21	551.20	36.79
23.21	707.33	40.61
23.21	806.38	43.02
23.21	990.47	47.50
23.21	1071.12	49.46

23.21 1342.38 56.03 23.21 1655.87 63.58 23.21 1893.36 69.30 23.21 2058.34 73.26 23.20 2115.42 74.64 23.20 2222.22 77.21 23.20 2333.04 79.85 23.21 2353.59 80.32 23.21 2354.19 80.34			
23.21 1893.36 69.30 23.21 2058.34 73.26 23.20 2115.42 74.64 23.20 2222.22 77.21 23.20 2333.04 79.85 23.21 2353.59 80.32	23.21	1342.38	56.03
23.21 2058.34 73.26 23.20 2115.42 74.64 23.20 2222.22 77.21 23.20 2333.04 79.85 23.21 2353.59 80.32	23.21	1655.87	63.58
23.20 2115.42 74.64 23.20 2222.22 77.21 23.20 2333.04 79.85 23.21 2353.59 80.32	23.21	1893.36	69.30
23.20 2222.22 77.21 23.20 2333.04 79.85 23.21 2353.59 80.32	23.21	2058.34	73.26
23.20 2333.04 79.85 23.21 2353.59 80.32	23.20	2115.42	74.64
23.21 2353.59 80.32	23.20	2222.22	77.21
	23.20	2333.04	79.85
23.21 2354.19 80.34	23.21	2353.59	80.32
	23.21	2354.19	80.34

结论: 用 SPSS 进行回归分析可得如下结果。回归方程为 U=42.86T-1090, R^2 =0.983(其中 U 为热电偶输出电势/uV,T 为热端温度/℃)。观察图形可得,在冷端温度基本保持不变的情况下,热电偶输出电势 U 与热端温度基本呈正相关。

讨论与心得:第二个点偏离曲线较远,可能是由于操作时存在失误或外界干扰。 在误差允许的情况下,不影响实验的最终结果。总体来说,数据稳定,相关程度 高。