

Chapter 6A: IPv4 Addressing (I)

IPv4 Addresses

Cisco | Networking Academy® Mind Wide Open®

IPv4 Address Structure

Represented in Dotted Decimal Format

network portion

192.168.10

host portion

11000000 . 10101000 . 00001010 . 00000001

an octet

* assuming a network mask of 255.255.255.0

- How many bits in an IPv4 address?
- How many octets are there?
- How many bits are there in an octet? ___
- d. What is the decimal range of each octet?

Binary Number System

The Binary number system (or Base 2)

- only two digits: 0 and 1
- let's examine 1 octet in an IPv4 address, 1 1 0 0 0 0 0 0:-

Radix	2	2	2	2	2	2	2	2
Exponent	7	6	5	4	3	2	1	0
Octet Bit Values	128	64	32	16	8	4	2	1
Binary Address	1	1	0	0	0	0	0	0
Binary Bit Values	128	64	0	0	0	0	0	0

Add the binary bit values.

3

Converting a Binary Address to Decimal

Practice

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
128	64	32	16	8	4	2	1
1	0	1	1	0	0	0	0

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

Converting a Binary Address to Decimal

5

Converting from Decimal to Binary

Converting decimal to binary is a series of steps starting from the leftmost bit of the octet

168 = ? In binary

Exponent 2^7 2^6 2^5 2^4 2^3 2^2 2^0 Octet Bit 128 64 32 16 8 4 1 Values Binary 0 0 0 0 0 Address

IPv4 Address Structure

Converting from Decimal to Binary (Cont.)

IP Addresses are 32 bits.

Where the network part ends and the host part begins depends on the subnet mask.

Divide into four 8 bit sections (bytes or octets).

Convert from binary to dotted decimal.

Network Portion and Host Portion of an IPv4 Address

- To define the network and host portion of an address, a separate 32-bit pattern called a <u>subnet mask</u> is used.
- The subnet mask does not actually contain the network or host portion of an IPv4 address, it just tells you where to look for these portions in a given IPv4 address

- Subnet mask appears in binary as a series of 1s followed by a series of 0s.
- The network divide (dash line) for the IP address is where the series of 1s meet the 0s in the subnet mask.

Example 1: IPv4 address: 10.20.30.40

Subnet mask: 255.255.0.0 (or /16)

	Netv	vork portion	Host portic	on
IPv4 address:	10.	20.	30.	40
(in binary):	00001010.	00010100.	00011110.	00101000
Subnet mask:	255.	255.	0.	0
(in binary):	11111111.	11111111.	00000000.	0000000

Representing the subnet mask as a subnet prefix:

- Subnet mask is in dotted decimal format.
- It can also be represented in a prefix format such as /16 as in this example above by counting the number of 1s in the binary form of the subnet mask

Example 2: IPv4 address: 10.20.30.40

Subnet mask: 255.255.240.0 (or /20)

Network portion	Host portion
-----------------	--------------

IPv4 address:	10.	20.	30.	40
(in binary):	00001010.	00010100.	0001 1110.	00101000
Subnet mask:	255.	255.	240.	0
(in binary):	11111111.	11111111.	1111 0000.	00000000

← 20 bits Network → ← 12 bits Host

Example 3: IPv4 address: 10.20.30.40 /24

Subnet mask: <u>255.255.255.0</u>

		Netv	Host portion	
IPv4 address:	10.	20.	30.	40
(in binary):	00001010.	00010100.	00011110.	00101000
Subnet mask:	255.	255.	255.	0
(in binary):	11111111.	11111111.	11111111.	00000000
	← 24	bits Network		₹ 8 bits Host

12

	1st octet	2nd octet	3rd octet	4th octet
172.0.0.0	Network	Host	Host	Host
Subnet Mask	11111111	00000000	00000000	00000000
192.4.0.0	Network	Network	Host	Host
Subnet Mask	11111111	11111111	00000000	00000000
102 169 1 0	Maturagle	Maturagle	Maturagle	Uest
192.168.1.0	Network	Network	Network	Host
Subnet Mask	11111111	11111111	11111111	00000000

- A "1" bit in the subnet mask means that the corresponding bit in the IP address should be read as a network number
- A "0" bit in the subnet mask means that the corresponding bit in the IP address should be read as a host bit.

1st actat

	131 00101	Ziid Ootot	ora ootet	7tii 00t0t
172.0.0.0	Network	Host	Host	Host
Subnet Meek				
Subnet Mask:	255	0	0	0

2nd octat

192.4.0.0

255.0.0.0 or /8

Subnet Mask: 255.255.0.0 or /16

Network	etwork Network		Host	
255	255	0	0	

3rd actat

Ath actat

192.168.1.0	Network	Network	Network	Host
Subnet Mask:				
255.255.255.0 or /24	255	255	255	0

- /n "slash" tells us how many "1" bits are in the subnet mask.
- Subnet masks do not have to end on "natural octet boundaries"
- Network Addresses have all zeros in the host portion of the address.

Subnet Mask:	1st octet	2nd octet	3rd octet	4th octet
255.0.0.0 or /8	Network	Host	Host	Host
255.255.0.0 or /16	Network	Network	Host	Host
255.255.255.0 or	Network	Network	Network	Host
/24				

Subnet masks do <u>not</u> have to end on "natural octet boundaries"

IPv4 Network, Host, and Broadcast Address

10.1.1.0/24

Network Portion			Host portion	Type of Address
10	1	1	0	
00001010	0000001	0000001	00000000	All 0s -> Network Address
10	1	1	10	
00001010	0000001	0000001	00001010	0s and 1s in host portion -> Host Address
10	1	1	255	
00001010	0000001	0000001	11111111	All 1s -> Broadcast Address

IPv4 Network, Host, and Broadcast Address

10.1.1.0/24

Network Portion			Host portion	Type of Address
10	1	1	1	
00001010	0000001	0000001	0000001	1 st host address
10	1	1	254	
00001010	0000001	0000001	11111110	Last host address

IPv4 Unicast, Broadcast, and Multicast

Assigning a Static IPv4 Address to a Host

LAN Interface Properties

Configuring a Static IPv4 Address

IPv4 Unicast, Broadcast, and Multicast

Assigning a Dynamic IPv4 Address to a Host

DHCP – The preferred method of assigning IPv4 addresses to hosts on large networks because it reduces the burden on network support staff and virtually eliminates entry errors.

- IP addresses are hierarchical with network, subnetwork, and host portions.
- An IP address can represent a complete network, a host, or the broadcast address of the network.
- The subnet mask or prefix is used to determine the network portion of an IP address.
- DHCP enables the automatic assignment of addressing information such as IP address, subnet mask, default gateway, and other configuration information.