

- Fundamentals
- Contiguous Memory Allocation
- Swapping
- Issue: Fragmentation

- Fundamentals
- Contiguous Memory Allocation
- Swapping
- Issue: Fragmentation

Address space

- Virtual (or logical) address: generated by CPU
- Virtual address space: all logical addresses (program address space)
- Physical address: actual address on physical (or main) memory
- Physical address space: all physical addresses (memory address space)

Address space

0	MOV
4	
8	23
12	
16	ADD

Program address space

(Physical or Main) Memory

Address binding (Relocation)

 Mapping from one address space to another address space

Address binding can be done during:

- ✓ Compile time
- ✓ Load time
- ✓ Execution time

Memory Management Unit (MMU)

Memory Management

- Allocation/Deallocation
- Address binding (Relocation)
- Protection
- Sharing

- Fundamentals
- Contiguous Memory Allocation
- Swapping
- Issue: Fragmentation

Characteristics

- Process: indivisible and must be loaded into a contiguous partition in the main memory
- (Physical/Main) memory: divided into different partitions before (fixed-partitions) or during (variable partitions) process loading

Fixed-partitions

- Fixed-partitions: created before process loading
- Partition size may not be suitable to the process' needs

Fixed-partition with multiple waiting queues

Variable-partitions

- Variable partitions: created during process loading
- Hole: block of available memory
- Partition allocated to a process is fit for the process' needs

Memory Allocation Strategies

P4 (2KB)

Memory

• **First-fit**: the process will be placed in the **first** free space which can contain it

Memory Allocation Strategies

P4 (2KB)

Memory

• **Best-fit**: the process will be placed in the **smallest** free space which can contain it

Memory Allocation Strategies

Memory 4KB

P1

2KB

P2

P3

10KB

• Worst-fit: the process will be placed in the largest free space which can contain it

P4 (2KB)

Address Protection

- Relocation register (base register): lower physical address limit (address min) of the memory region occupied by the process while it is executing
- **Limit register**: upper physical address limit (address max) of the memory region occupied by the process while it is executing

Address Binding

- Fundamentals
- Contiguous Memory Allocation
- Swapping
- Issue: Fragmentation

Principles

• Processes can be swapped in and out between memory and backing store (fast disk)

main memory

Memory Management with Bitmap

Memory Management with Linked List

Memory Allocation with Linked List

Memory allocation is managed by a linked list of segments:

- **H**: free segment (hole between two processes)
- **P**: occupied segment by a process

Swap Time

- Assume that:
 - ✓ Process P1: 1024MBs
 - ✓ Transfer rate between memory and backing store: 50MBs/s
- Total swap time = $2 \times (1024 / 50) = 40.96s$

- Fundamentals
- Contiguous Memory Allocation (without Swapping)
- Swapping
- Issue: Fragmentation

Issue: Fragmentation

External Fragmentation

Memory

P1 (1KB)

P2 (4KB)

P3 (3KB)

P4 (5KB)

Issue: Fragmentation

External Fragmentation

Memory

P2 (4KB)

P5 (5KB)

P4 (5KB)

- External fragmentation: free spaces are not contiguous to contain another process
- Solution: compaction
 - Free memory spaces into a larger free space

Issue: Fragmentation

Internal Fragmentation

Memory

P1 (1KB)

P2 (4KB)

Internal fragmentation: internal partition allocated to a process can not be used for another process

Solution: best-fit allocation

