Machine Learning and Algorithms (Session 6)

Yi Zhang March 10, 2022

Review of decision tree classifier

- Try to split the domain into segments
 - Loop through each feature
 - For each feature, loop through each mid-point between values to get the split performance
 - Choose feature that gives the best performance

Review of Cross-Validation

- For Decision Tree classification, if we keep on splitting
 - We can get very high accuracy on a dataset if we keep splitting.
 - The model might perform poorly on new data.

- Solution: Split the data into two sets
 - Training (For train the model)
 - Test (For the model performance evaluation)

Training-validation-testing

 Training/validation/testing is a technique when we want to perform both model selection and report the accuracy for the best model

- Split the data into training, validation, and testing
- 2. Use training to train each model
- 3. Use validation to validate each model
- 4. Choose final model that perform best on the validation model
- 5. Retrain the best model using training set and validation set combined
- 6. Evaluate accuracy on the test set

K-fold cross validation

- Split the data into training/testing
- Further split training data into kfolds
 - Each time, use a fold for measure model accuracy
 - Use the rest of the folds to train the model
- Choose the best model based on the average performance
- Re-train the best model on all training data
- Measure accuracy of the best model on the test data

Leave-one-out cross validation

- When we divide training set with n datapoints to n folds, it is called leave-one-out cross validation. Each time, we are only using one sample to evaluate the model performance.
- This method gives very good performance since each time, we use n-1 data points to train the model. However, it is very computational expensive

Decision tree regressor

- Decision tree classifier is used for categorial outcomes
- For continuous outcome, we use decision tree regressor (also called regression tree)
- The algorithm is as follows:
 - For each node
 - Loop through each feature
 - For each feature, loop through each possible split
 - The prediction for each segment is the average outcome
 - Evaluate the quality of the split based on Mean Square Error
 - Choose the best split based on the split quality

Mean square error

 Mean squared error (MSE) can be used to measure the prediction quality for continuous outcomes:

$$MSE = \frac{1}{n} \sum_{i} (y_i - \widehat{y_i})^2$$

- y_i: actual outcome for point i
- $\hat{y_i}$: predicted outcome for point i
- *n*: total number of points
- MSE reaches 0 when $y_i = \widehat{y_i}$ for every i (perfect prediction)
- For decision tree regression, prediction is equal to the average outcomes values of all the points belong to this segment

Datapoints	Prediction	MSE
1,3,0,2,4	$\frac{1}{5}(1+3+0+2+4)=2$	$\frac{1}{5}((1-2)^2 + (3-2)^2 + (0-2)^2 + (2-2)^2 + (4-2)^2) = 2$
2,6,0,4, -2	$\frac{1}{5}(2+6+0+4-2)=2$	$\frac{1}{5}((2-2)^2 + (6-2)^2 + (0-2)^2 + (4-2)^2 + (-2-2)^2) = 8$

Ensemble method

- Models might tend to become very complicated.
 - Very accuracy on the training set
 - Very inaccurate on the new data
- Use several models/datasets to increase robustness
 - Model averaging
 - Bagging
 - Random Forest
 - Boosting (Later lecture)

Model average

- Run several candidate models
- When predicting the outcome, combine the results of all
 - Regression: Take average
 - Classification: Majority vote

	Model 1 Error	Model 2 Error	Model Averaging
Data 1	-5	5	0
Data 2	-5	5	0
Data 3	0	5	2.5
Data 4	0	0	0
Data 5	5	-5	0
Data 6	0	-5	-2.5
MSE	12.5	20.83	2.08

Model average

 Especially good on models with similar accuracy but negatively correlated predictions

	Model 1 Error	Model 2 Error	Model Averaging
Data 1	-5	5	0
Data 2	-5	5	0
Data 3	0	5	2.5
Data 4	0	0	0
Data 5	5	-5	0
Data 6	0	-5	-2.5
MSE	12.5	20.83	2.08

Model average

 Especially good on models with similar accuracy but negatively correlated predictions

	Model 1	Model 2	Model Averaging
Data 1	-5	-1	-3
Data 2	-5	-1	-3
Data 3	0	0	0
Data 4	0	0	0
Data 5	5	0	2.5
Data 6	0	0	0
MSE	12.5	0.3333	4.04

Bagging (Bootstrap aggregating)

- Use sample with replacement (Bootstrap) to sample N sets of data
- Ran the model on each dataset
- Ensemble the model

X1		X2	У
	0.98	0.97	3.53
	0.50	0.57	3.33
	0.44	0.33	1.3
	0.01	0.12	0.49
	0.82	0.54	2.8
	0.77	0.95	3.24
	0.86	0.52	1.97
	0.17	0.86	2.75

X1		X2	У	
	0.86	0	.52	1.97
	0.86	0	.52	1.97
	0.82	0	.54	2.8
	0.01	0	.12	0.49
	0.77	0	.95	3.24
	0.77	0	.95	3.24
	0.98	0	.97	3.53

X1	X2	у
0.4	4 0.33	1.3
0.4	0.55	1.5
0.8	6 0.52	1.97
0.7	7 0.95	3.24
0.1	7 0.86	2.75
0.7	7 0.95	3.24
0.8	6 0.52	1.97
0.7	7 0.95	3.24

Random Forest

- Random Forest has two randomness
- For each model
 - Bootstrap Data
 - Randomly select a subset feature for split
- Ensemble the result