$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6a 7a	7h		7c	8a		12a	19h	13a	14a	1 <i>4h</i>	14c	24a	24h	24c	24d	26a	28a	28h	-28c	28 <i>d</i>	28e	28 f
χ_1 1 1 1 1 1 1		1		1	1	1	1	120	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\begin{vmatrix} \chi_1 \\ \chi_2 \end{vmatrix} = 1 = 1 = 1 = 1$	1 1	1		1	_1 _1	-1	1	1	1	1	1	1	-1	_1 _1	_ _1	-1	1	-1	-1	-1	-1	_1 _1	-1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 - 2	-2		-2	0	0	0	0	-1	2	2	2	0	0	0	0	1	0	0	0	0	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0 - E(7)^3 - E(6)$	7) $^4 - E(7)^2 -$	$E(7)^{}5 - E$	$E(7) - E(7)^{} 6$	0	0	0	0	-1 $-E$	$(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	0	0	0	0	-1 $-E(7)$	$-E(7)^{}6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$
χ_5 12 12 0 -2 0	$0 - E(7)^2 - E(7)^2$	-E(7) - E(7) - E(7)	$E(7) \hat{} 6 - E(7)$	$7)^{} 3 - E(7)^{} 4$	0	0	0	0	-1 $-I$	$E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	0	0	0	0	-1 $-E(7)$	$3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$
χ_6 12 12 0 2 0	$0 \qquad -E(7) - E(7)$	$^{}6 - E(7)^{}3 -$	$E(7)^{}4 - E(7)^{}$	$7)^2 - E(7)^5$	0	0	0	0	-1 $-E$	$(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	0	0	0	0	-1 $E(7)^{}$	$2 + E(7)^{} 5$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^{} 3 + E(7)^{} 4$	$E(7) + E(7)^{} 6$	$E(7)^2 + E(7)^5$
χ_7 12 12 0 2 0	$0 - E(7)^2 - E(6)$	$(7)^{} 5 \qquad -E(7) - E(7)$	$E(7)^{}6 \qquad -E(7)^{}$	$7)^{} 3 - E(7)^{} 4$	0	0	0	0		()	$-E(7)^3 - E(7)^4$	()	0	0	0	0	\ /	$3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7) + E(7)^{} 6$	$E(7)^{} 2 + E(7)^{} 5$	$E(7)^{} 3 + E(7)^{} 4$
7.00	$0 - E(7)^3 - E(6)$, , ,	\ /	()	0	0	0	0		` ' ' ' ' '	` ' ' ' ' '	$-E(7)^3 - E(7)^4$	0	0	0	0	(/	$+E(7)^{}6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$	$E(7)^{} 3 + E(7)^{} 4$	$E(7) + E(7)^{} 6$
7.00	$0 \qquad -E(7) - E(7)$	` /	()	/ /	0	0	0	0		()	$-E(7)^2 - E(7)^5$	() ()	0	0	0	0	$-1 \qquad -E(7)^{}$	$2 - E(7)^{} 5$	$-E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$
$ \chi_{10} 12 -12 0 0 0$	()	()	()	/ /	0	0	0	0	`	, , ,	$E(7)^2 + E(7)^5$	() ()	0	0	0	0	_ ($15 + E(28)^2$ 27	_(-0) 0 _(-0)	_ (-0) -0 1 _ (-0) -0	$E(28)^{}19 - E(28)^{}23$	$-E(28)^{} 3 + E(28)^{} 11$	$E(28)^{} 15 - E(28)^{} 27$
χ_{11} 12 -12 0 0 0	' /	, , ,	()	, , ,	0	0	0	0		()	$E(7)^{} 3 + E(7)^{} 4$	()	0	0	0	0	(- /	- ' (- / -	(- / (- /	(-) - (-)	(-/ - ' (-/	$-E(28)^{} 15 + E(28)^{} 27$	(- / (- /
7012	0 $-E(7) - E(7)$	()	()	/ /	0	0	0	0	(/	$E(7)^{} 2 + E(7)^{} 5$		0	0	0	0	_ (,	- ()	$-E(28)^3 + E(28)^1$	_ (-0) -0 _ (-0) -0	_(-0) -0 1 -(-0) -0	-()()	$-E(28)^{} 15 + E(28)^{} 27$
χ_{13} 12 -12 0 0 0	` '	, , ,	` '	` ' ' '	0	0	0	0	`	, , ,	() ()	$E(7)^{} 3 + E(7)^{} 4$	0	0	0	0	. \ /		$-E(28)^{}19 + E(28)^{}23$		\	` '. ` '.	$E(28)^{} 3 - E(28)^{} 11$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	' /	, , ,	()	, , ,	0	0	0	0		()	$E(7)^{} 3 + E(7)^{} 4$	()	0	0	0	0	()	()	() . ()	() . ()	()	$E(28)^{}15 - E(28)^{}27$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	` /	() $4 - E(1) 2 - \frac{1}{1}$	E(t) 5 $-E$	L(I) - E(I) = 0	0	U 1	0	U 1	-1 $E($	7)^2 + $E(7)$ ^5	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	U 1	0	U 1	U 1	$\frac{1}{0}$ $E(28)$ 3	3 - E(28) 11	E(28) 19 - E(28) 23	E(28) 15 - E(28) 27	-E(28) 15 + $E(28)$ 27	$-E(28)^{} 19 + E(28)^{} 23$	-E(28) 3 + E(28) 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1 1		-1 1	1 1	<u>l</u> 1	1 1	1 1	0	-1 1	-1 1	-1 1	1	1	1	1	0	-1 1	— <u>1</u>	- <u>1</u>	— <u>1</u>	— <u>1</u>	-1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1		-1 0	-1 -2	-1 -2	_1 _1	_1	1	-1	-1	-1 0	— <u>1</u>	— <u>1</u> 1	— <u>1</u> 1	— <u>1</u> 1	1	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		0	2	2	_1	_1	1	0	0	0	_1	_1 _1	_1 _1	_1 _1	1	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		0	0	0	-2	-2	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	1	0	0	$\overset{\circ}{0}$	$-E(8) + E(8)^{} 3$	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^{} 3$	$E(8) - E(8)^{} 3$	_1 _1	0	0	0	0	ŏ	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0			() ()	$-E(8) + E(8)^3$	0	0	1	0	0	0	$E(8) - E(8) \hat{3}$	$-E(8) + E(8)^3$	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^{} 3$	-1	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		0	0	0	1	1	1	0	0	0	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$	()	$E(12)^{}7 - E(12)^{}11$	1	0	0	0	0	0	0
$ \chi_{24} 14 14 -1 0 -2$	-1 0	0		0	0	0	1	1	1	0	0	0	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{} 7 - E(12)^{} 11$	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$	1	0	0	0	0	0	0
$ \chi_{25} 14 -14 -1 0 0$	1 0	0		0	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^3$	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}12$	1 1	0	0	0	$-E(24)^{}17 + E(24)^{}19$	$E(24) - E(24)^{} 11$	$-E(24) + E(24)^{} 11$	$E(24)^{}17 - E(24)^{}19$	-1	0	0	0	0	0	0
$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$	1 0	0		0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{}7 - E(12)^{}11$. 1	0	0	0	$-E(24) + E(24)^{}11$	$E(24)^{}17 - E(24)^{}19$	$-E(24)^{}17 + E(24)^{}19$	$E(24) - E(24)^{} 11$	-1	0	0	0	0	0	0
$ \chi_{27} 14 -14 -1 0 0$		0			(/	` ' ` ' '	` '	$-E(12)^{}7 + E(12)^{}1$		0	0	0	$E(24)^{}17 - E(24)^{}19$	() ()	() ()	$-E(24)^{}17 + E(24)^{}19$	-1	0	0	0	0	0	0
χ_{28} 14 -14 -1 0 0	1 0	0		0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$ -	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{}7 - E(12)^{}11$	1	0	0	0	$E(24) - E(24)^{} 11$	$-E(24)^{}17 + E(24)^{}19$	$E(24)^{}17 - E(24)^{}19$	$-E(24) + E(24)^{} 11$	-1	0	0	0	0	0	0

Trivial source character table of $G \cong C2$. (PSL(2,13):C2) = SL(2,13). C2 at p=3

Invial source character table of $G = C2$. (PSL(2,13): C2) = SL(2,13): C2 at $p = 3$																		
$Normalisers N_i$		N_1														N_2		
$p-subgroups\ of\ G\ up\ to\ conjugacy\ in\ G$								P	2								P_2	
Representatives $n_j \in N_i$	1a $2a$ $4a$ $4b$	7a	7b	7c	8a	8b	13a $14a$	14b	14c	26a $28a$	28b	28c	28d	28e	28f	1a $2a$ $4b$ $4b$ $4a$	8a	8b
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	$x_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28}$ 15 15 1 3	1	1	1	3	3	2 1	1	1	2 1	1	1	1	1	1	0 0 0 0 0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 15 15 -1 3$	1	1	1	-3	-3	2 1	1	1	2 -1	-1	-1	-1	-1	-1	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$_{5}+0\cdot\chi_{26}+0\cdot\chi_{27}+0\cdot\chi_{28} \mid 12 -12 0 0$	-2	-2	-2	0	0	-1 2	2	2	1 0	0	0	0	0	0	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$\chi_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 12 12 2 0$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	0	0	$-1 -E(7)^{} 2 - E(7)^{} $	$5 - E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-1 E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7)^{} 2 + E(7)^{} 5$	$E(7)^{} 3 + E(7)^{} 4$	$E(7) + E(7)^{} 6$	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$				$-E(7)^3 - E(7)^4$	0	0	$-1 -E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-1 \qquad -E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7) - E(7)^{} 6$	$-E(7)^{} 2 - E(7)^{} 5$	$-E(7)^3 - E(7)^4$	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$\chi_{3} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 12 12 -2 0$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	0	0	$-1 -E(7)^{} 3 - E(7)^{} 4$	$4 - E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-1 -E(7)^2 2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 2 - E(7)^5$	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	70-0 70-0	()	()	() ()	0	0	$-1 E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	1 $E(28)^3 - E(28)^11$	$E(28)^{} 19 - E(28)^{} 23$	$E(28)^{} 15 - E(28)^{} 27$	$-E(28)^{}15 + E(28)^{}27$	$-E(28)^{} 19 + E(28)^{} 23$	$-E(28)^3 + E(28)^1$	$1 \mid 0 0 0 0 0$	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $					0	0	$-1 -E(7)^{} 2 - E(7)^{} = 0$	$5 - E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-1 -E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 2 - E(7)^5$	$-E(7)^2 2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$	0 0 0 0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $. ,	0	0	$-1 -E(7)^{} 3 - E(7)^{} $	$4 - E(7)^2 2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-1 E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^{} 3 + E(7)^{} 4$	$E(7) + E(7)^{} 6$	() . ()		0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$			()	$-(\cdot)$ - $-(\cdot)$	0	0	$-1 E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$1 - E(28)^{} 15 + E(28)^{} 27$	$E(28)^3 - E(28)^11$	$-E(28)^{}19 + E(28)^{}23$	$E(28)^{} 19 - E(28)^{} 23$	$-E(28)^3 + E(28)^11$	$E(28)^{} 15 - E(28)^{} 27$		0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	/ / /20 / /21 / /220	() ()	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	0	0	$-1 E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	1 $E(28)^{}15 - E(28)^{}27$	$-E(28)^{} 3 + E(28)^{} 11$	$E(28)^{} 19 - E(28)^{} 23$	$-E(28)^{}19 + E(28)^{}23$	$E(28)^{} 3 - E(28)^{} 11$	$-E(28)^{}15 + E(28)^{}2$	7 0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$. ,	. , . , ,	$-E(7)^3 - E(7)^4$	0	0	$-1 -E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-1 E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7) + E(7)^{} 6$	$E(7)^2 + E(7)^5$	$E(7)^{} 3 + E(7)^{} 4$	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$					0	0	$-1 E(7)^{} 2 + E(7)^{} 5$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	1 $-E(28)^3 + E(28)^11$	$-E(28)^{} 19 + E(28)^{} 23$	$E(28)^{} = -E(28)^{} = 27$	$E(28)^{} 15 - E(28)^{} 27$	$E(28)^{} 19 - E(28)^{} 23$	$E(28)^{} 3 - E(28)^{} 11$		0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$						0	$-1 E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^{} 2 + E(7)^{} 5$	2 (20) 10 2 (20) 20	$E(28)^{}15 - E(28)^{}27$	2(20) 0 2(20) 11	$-E(28)^3 + E(28)^11$	() . ()	()	$\mathbf{B} \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0$	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	0	0	$-1 E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^{} 2 + E(7)^{} 5$	1 $E(28)^{} 19 - E(28)^{} 23$	$-E(28)^{}15 + E(28)^{}27$	$-E(28)^3 + E(28)^11$	$E(28)^{} 3 - E(28)^{} 11$	$E(28)^{}15 - E(28)^{}27$	$-E(28)^{} 19 + E(28)^{} 2$		0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$		-1	-1	-1	3	3	$1 \qquad -1$	-1	-1	$1 \qquad -1$	-1	-1	-1	-1	-1	0 0 0 0 0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-1	-1	-1	-3	-3	$1 \qquad -1$	-1	-1	1 1	1	1	1	1	1	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{10} + 0$	$x_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 42 42 0 -6$	0	0	0	0	0	3 0	0	0	3 0	0	0	0	0	0	0 0 0 0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	70-0 70-0	0	0	0		$3*E(8) - 3*E(8)^3$		0	0	-3 0	0	0	0	0	0	0 0 0 0 0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{10} + 0 \cdot$	$_{5}+1\cdot\chi_{26}+0\cdot\chi_{27}+0\cdot\chi_{28} \mid 42 -42 0 0$	0	0	0	$3*E(8) - 3*E(8)^3$	$-3*E(8) + 3*E(8)^3$	3 0	0	0	-3 0	0	0	0	0	0	0 0 0 0 0	0	0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	$x_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 1 1 1$	1	1	1	1	1	1 1	1	1	1 1	1	1	1	1	1	1 1 1 1 1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$\chi_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 13 13 1 1$	-1	-1	-1	-1	-1	0 -1	-1	-1	0 1	1	1	1	1	1	1 1 1 -1 1	-1	-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\chi_{3} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 1 1 -1 1$	1	1	1	-1	-1	1 1	1	1	$1 \qquad -1$	-1	-1	-1	-1	-1	1 1 1 1 -1	-1	-1
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + $	$\chi_{3} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 13 13 -1 1$	-1	-1	-1	1	1	0 - 1	-1	-1	$0 \qquad -1$	-1	-1	-1	-1	-1	1 1 1 -1 -1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 14 14 0 -2$	0	0	0	0	0	1 0	0	0	1 0	0	0	0	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$_{5}+0\cdot\chi_{26}+0\cdot\chi_{27}+0\cdot\chi_{28}$ 14 -14 0 0	0	0	0	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^{} 3$	1 0	0	0	-1 0	0	0	0	0	0	2 -2 0 0 0	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^3$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	$\chi_{5} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \mid 14 -14 0 0$	0	0	0	$-E(8) + E(8)^3$	$E(8) - E(8)^{} 3$	1 0	0	0	-1 0	0	0	0	0	0	2 -2 0 0 0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$

 $P_1 = Group([()]) \cong 1$ $P_2 \cong C3$

 $N_1\cong \mathrm{C2}$. (PSL(2,13) : C2) = SL(2,13) . C2 $N_2\cong \mathrm{C3}$: Q16