Tranziens szimulátor hidraulikai rendszerekhez

©Hős Csaba Bárdossy Gergely, Hegedűs Ferenc, Pandula Zoltán, Molnár Gergő BME Hidrodinamikai Rendszerek Tanszék

2011. július 10.

Tartalomjegyzék

1.	A sz	zámítási módszer	9
	1.1.	Előzmények	9
	1.2.	Rugalmas csövek	9
	1.3.	Merev alrendszerek	9
	1.4.	Ágegyenletek	10
		1.4.1. Cső	10
		1.4.2. Légüst	11
	a •		10
2.	Szın	nuláció	13
	2.1.	Adat előkészítés	13
	2.2.	Régi és új adatstruktúrák és fájlok	13
	2.3.	A program használata	14
		2.3.1. Számítás	14
		2.3.2. Eredmények megjelenítése	14
		2.3.3. Egyszerű rajz	14
		2.3.4. Számítási és mérési eredmények ábrázolása	15
		2.3.5. Animációk készítése	15
3	Ada	utstruktúrák	17
•			
	3.1.	Az adatfájl felépítése	17
	3.2.	Merev alrendszerek (mar)	17
		3.2.1. Csomópontok	18

		3.2.2.	Nyomottvizes hálózatok elemei	8
			3.2.2.1. Cső	8
			3.2.2.2. Fojtás	18
			3.2.2.3. Vezérelt fojtás	9
			3.2.2.4. Szivattyú	9
			3.2.2.5. Visszacsapó szelep	22
			3.2.2.6. Állandó nyomású pont	22
			3.2.2.7. Változó nyomású pont	23
			3.2.2.8. Változó tömegáramú pont	23
			3.2.2.9. Nyomásszabályozó	24
			3.2.2.10. Légüst	25
		3.2.3.	Csatornahálózatok elemei	25
			3.2.3.1. Akna	25
			3.2.3.2. Bukógát	25
			3.2.3.3. Nyomóvezeték	26
		3.2.4.	Görbék (gorbe)	26
	3.3.	Rugalı	mas alrendszerek	27
		3.3.1.	Nyomottvizes rugalmas cső (cso)	27
		3.3.2.	Csatorna (csatorna)	28
		3.3.3.	Viszkoelasztikus cső (viszkcso)	28
		3.3.4.	Amőba csomópontok (amoba)	29
		3.3.5.	Opciók (option)	29
4.		ıtafelac		31
	4.1.	1. felac	dat (Vízütés)	31
				32
	4.3.	3. felac	dat (Szivattyú kiesés)	32
	4.4.	4. felac	dat (Szivattyú kiesés tolózárral)	34

	4.5.	5. felac	lat (Légüs	st	n	né	ret	eze	és)																								34
	4.6.	6. fela	dat (Kétü	ïst	tö	s l	len	gő	rer	nd	iSZ	ze:	r)																				35
	4.7.	7. felad	lat (Nyíltf	fel	lsz	zír	ıű	ár	am	ılá	is)																					36
	4.8.	8. felac	lat (Áteme	nel	lős	szi	iva	tty	⁄ús	s c	:S&	atı	or	na	ar	er	nds	SZ	er))													38
	4.9.	9. felac	lat (Vérár	raı	m	lá	s)																										40
		4.9.1.	"A" rész	ζ.																													40
		4.9.2.	"B" rész	Ι.																													41
5.	A fe	eladato	k bemen	ne	ete	ei.	, n	air	ıt	le	eh	et	tse	ég	ge	s	m	ıe	go	olo	lá	50	k										43
		5.0.3.	1. feladat	t																													43
		5.0.4.	2. feladat	t																													43
		5.0.5.	3. feladat	t																													43
		5.0.6.	4. feladat	t																													44
		5.0.7.	5. feladat	t																													45
		5.0.8.	6. feladat	t																													45
		5.0.9.	7. feladat	t																													45
		5.0.10.	8. feladat	t																													46
		5.0.11.	9. feladat	t																													46
			5.0.11.1.	. ,,	,A	٠,	rés	δZ																									46
			5.0.11.2.	. ,,	,В	"	rés	SZ.																									48
6.	Fejle	esztőki	nek																														49
	6.1.	Elemel	k																														49
		6.1.1.	Virtuális	s e	ele	m	ek																										50
			6.1.1.1.	t	r	ar	ızi	.en	ıs_	ag	ge	el	en	n																			50
			6.1.1.2.	t	r	ar	ızi	.en	ıs_	ag	ge	el	en	n_	10	cs	р																50
			6.1.1.3.	t	r	ar	ızi	.en	ເຮ_	aį	ge	əl	en	n_	20	cs	р																50
		6.1.2.	Agelemel	ek																													51
			6.1.2.1.	k	(02	nc	:_c	so	٠.																								51

	7.1.	Hibák		7
7.	Ten	nivalól	k, hibák	7
	6.2.	A főpr	ogram: eon_driver.m	3
		6.1.4.	Rugalmas csövek	3
		6.1.3.	Merev alrendszer	2
			6.1.2.4. szivattyu	1
			6.1.2.3. vez_fojtas 5	1
			6.1.2.2. fojtas	1

Ábrák jegyzéke

1.1.	Légüst modell	11
4.1.	1. feladat vázlata	31
4.2.	1. feladat megoldása	32
4.3.	2. feladat megoldása	32
4.4.	A cső nyomvonala a 3. feladathoz	33
4.5.	A 3. feladat megoldása	33
4.6.	A 4. feladat megoldása. $cso1$ Nyomás-grafikonja	34
4.7.	A 4. feladat megoldása. $cso2$ Nyomás-grafikonja	34
4.8.	Az 5. feladat megoldása	35
4.9.	A 6. feladat megoldása	36
4.10.	A 7. feladat megoldása. $Q-t$ diagram	37
4.11.	A 7. feladat megoldása. $y-t$ diagram	37
4.12.	A 8. feladat megoldása. $at01$ akna vízszintváltozása	39
4.13.	A 8. feladat megoldása. szat 01 szivattyú fordulatszáma	39
4.14.	A 8. feladat megoldása. szat 01 szivattyú fordulatszáma	39
4.15.	A 9. feladat megoldása	41
6.1	Példa topolóigára, a megfelelő tics mátrix a 6.1. táblázatban látható	55

1. fejezet

A számítási módszer

1.1. Előzmények

1.2. Rugalmas csövek

A
$$C^+$$
 karakterisztika mentén: $\frac{d}{dt}(p + \rho av) = S^+ = -\rho g a \frac{dz}{dx} - \frac{\lambda}{2D} \rho av |v|$ (1.1)

A
$$C^-$$
 karakterisztika mentén: $\frac{d}{dt}(p - \rho av) = S^- = \rho g a \frac{dz}{dx} + \frac{\lambda}{2D} \rho av |v|$ (1.2)

1.3. Merev alrendszerek

A merev alrendszer tetszőleges bonyolultságú - csomópontokat és ú.n. ágakat tartalmazó, hurkolt - hálózat rész, amelynek néhány ága csatlakozik egy-egy rugalmas csőhöz. Az ilyen hálózat részeket - amelyekben a távolságok a rugalmas csövek hosszához képest kicsik, ezért a tranziens változások a hálózat rész minden pontján gyakorlatilag egyidejűleg következnek be - merev alrendszereknek nevezzük.

A merev alrendszerek modellje a csomóponti kontinuitás és az ágegyenletek. Ha j-edik csomópontba K darab ág fut be, az ágak \dot{m}_k tömegáramainak előjeles összege megegyezik a csomóponti fogyasztással (ágak esetén a csomópontba érkező tömegáramot tekintjük pozitívnak, míg fogyasztások esetén az elvételt):

$$\sum_{k=1}^{K} \dot{m}_k = f_j. \tag{1.3}$$

Az ágat áramlástanilag az ágegyenlet jellemzi, amely az ág tömegáramának legfeljebb másodfokú polinomja időben állandó, illetve változó együtthatókkal:

$$\alpha \dot{m} + \beta \dot{m}^2 + \gamma \dot{m} |\dot{m}| + \delta + p_e - p_v = 0, \tag{1.4}$$

ahol az ág elejét - tetszőlegesen rögzített áramlási iránnyal definiálva - e, végét v jelöli, p pedig a nyomás a megfelelő pontokban.

Külön megemlítjük a rugalmas csövekhez való csatlakozási pontokat. Az (1.1) és (1.2) karakterisztika egyenletek segítségével írhatjuk, hogy

$$p \pm \frac{a}{A}\dot{m}_r - (\tilde{p} \pm \rho a\tilde{v}) - \Delta t \,\mathcal{S}^{\pm} = 0, \tag{1.5}$$

ahol p a merev alrendszerhez tartozó (csatlakozó) csomópont nyomását jelöli, \dot{m}_r a rugalmas csőbeli tömegáramot, \tilde{p} és \tilde{v} a csőbeli szomszédos osztáspontbeli nyomást és sebességet jelöli.

Egy adott merev alrendszerben ismeretlen mennyiségek az ágáramok (n_{ag} darab) és a csomóponti nyomások (n_{csp} db), ezen kívül az egyes kapcsolódó rugalmas csövek tömegáramai a csatlakozó pontban (n_{rug} darab). E mennyiségek meghatározásához rendelkezésünkre állnak az (1.4) alakú ágegyenletek, minden csomópontban a (1.3) kontinuitási egyenlet és minden kapcsolódó rugalmas cső esetén egy-egy karakterisztika egyenlet; 1.1 C^+ mentén (a cső vége csatlakozik a merev alrendszerhez) vagy (1.2) C^- mentén (a cső eleje csatlakozik a merev alrendszerhez), azaz pontosan annyi egyenlet áll rendelkezésünkre, mint ahány ismeretlen mennyiség.

A hagyományos számítási módszer (ld. például Halász és szerzőtársai, 2002) ún. bázisáram kiválasztással indul, mely a merev alrendszer gráfjában független hurkokat állít elő és kiküszöböli az ismeretlen nyomásokat. A bázisáramok meghatározhatók, majd egyszerű visszahelyettesítéssel a többi ágáram és a nyomások is számíthatók. Mivel általában a bázisáramok száma sokkal kevesebb, mint az ágáramok száma, a feladat mérete jelentősen csökken, ami gyorsítja a megoldást. Bár a bázisáram kiválasztáson alapuló módszer hatékony (gyors) és az elmúlt évtizedek tapasztalata szerint stabil és mentes a numerikus oszcillációktól, hátránya, hogy programozása bonyolult. Az alábbiakban e kifinomult módszerrel szemben egy általános célú megoldót mutatunk be, mely ugyan kevésbé hatékony, de igen könnyen programozható és a kereskedelmi forgalomban kapható PC-k sebességét figyelembe véve nem okoz elviselhetetlenül nagyobb megterhelést a számítógépnek.

Első lépésként foglaljuk össze a merev alrendszer ismeretlen mennyiségeit egy vektorba:

$$\mathbf{x} = (\dot{m}_1, \dot{m}_2, \dots, \dot{m}_{i_1}, \dots, \dot{m}_{n_{ag}}, p_1, p_2, \dots, p_j, \dots, p_{n_{csp}}, r_1, r_2, \dots, r_k, \dots, r_{n_{rug}})^T,$$
(1.6)

ahol r_i a rugalmas csövek tömegáramát jelöli.

ide még duma...

A megoldandó egyenletrendszer tehát

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} [\alpha_i] & \mathbf{\Pi} & \mathbf{0} \\ \mathbf{K} & \mathbf{0} & \mathbf{P} \\ \mathbf{0} & \mathbf{E} & [\alpha_k] \end{pmatrix} \mathbf{x} + \begin{pmatrix} [\beta_i] & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \mathbf{x}^2 + \begin{pmatrix} [\gamma_i] & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \mathbf{x} |\mathbf{x}| + \begin{pmatrix} \delta_i \\ f_j \\ -\Delta t \, \mathcal{S}_k^{\pm} \end{pmatrix} = \mathbf{0}, \quad (1.7)$$

ahol a $[\dots]$ jelölés diagonál mátrixot jelöl. A vastagon szedett mátrixok csak ± 1 -et vagy 0 elemeket tartalmaznak, pl. a Π mátrix i-edik sorának j-edik eleme 1, ha az i-edik ágelem a j-edik csomópontba fut be, -1, ha onnan indul, egyébként 0. Hasonlóan, a \mathbf{K} mátrix j-edik sorának i-edik oszlopa 1, ha az i-edik ágelem belefut a j-edik csomópontba, -1 ha onnan indul, egyébként zérus. A \mathbf{P} mátrix j-edik sorának k-adik eleme 1, ha ebbe a j-edik csomópontba a k-adik rugalmas cső befut, -1, ha onnan indul és egyébként zérus. Végül, az \mathbf{E} mátrix k-adik sorának j-edik elem 1, ha a k-adik rugalmas cső a j-edik csomópontba csatlakozik, egyébként zérus.

1.4. Ágegyenletek

1.4.1. Cső

A legtipikusabb ág a cső, melynek keresztmetszete A, átmérője d, hossza L, h_e és h_v az elejének és végének magassága, míg p_e és p_v a nyomást jelöli a cső elején és végén. A csőben folyó tömegáram \dot{m} . Kiindulásként

írjuk fel az instacioner Bernoulli egyenletet:

$$p_e + \frac{\rho}{2}v_e^2 + \rho g h_e = p_v + \frac{\rho}{2}v_v^2 + \rho g h_v + \lambda \frac{L}{D}\frac{\rho}{2}v |v| + \rho L\frac{dv}{dt}.$$
 (1.8)

Mivel a keresztmetszet állandó, $v_e = v_v = v = \dot{m}/(\rho A)$. A sebesség deriváltját írjuk

$$\frac{dv}{dt} = \frac{1}{\rho A} \frac{\dot{m} - \dot{m}_r}{\Delta t} \tag{1.9}$$

alakban, ahol v_r az előző időszinten vett sebesség. Így (1.8) az alábbi alakot ölti.

$$0 = p_v - p_e + \rho g (h_v - h_e) + \lambda \frac{L}{\rho 2DA^2} \dot{m} |\dot{m}| + \frac{L}{A\Delta t} (\dot{m} - \dot{m}_r), \qquad (1.10)$$

amelyből kiolvashatjuk az ágegyenlet együtthatóit:

$$\alpha = \frac{L}{A\Delta t}, \quad \beta = 0, \quad \gamma = \lambda \frac{L}{\rho 2DA^2} \quad \text{és} \quad \delta = \rho g \left(h_v - h_e \right) - \frac{L}{A\Delta t} \dot{m}_r.$$
 (1.11)

1.4.2. Légüst

A politropikus állapotváltozást végző légüst modellje a 1.1. ábrán látható. Ide még egy csomó szöveg jön. A légüst keresztmetszete A, magassága H, a folyadékfelszín felett elhelyezkedő légpárna nyomása p, térfogata V. A légüstöt agy l hosszúságú függőleges cső köti a rendszerhez. A légüst talppontjában a nyomás p_t és Q térfogatáram áramlik a légüstbe.

1.1. ábra. Légüst modell

A talpponti nyomás a légpárna nyomásának és a folyadékoszlop hidrosztatikus nyomásának összege:

$$p_t = p + \rho g \left(l + H - \frac{V}{A} \right). \tag{1.12}$$

Mivel a légpárna állapotváltozása politropikus, így $pV^n = konst.$, ezért

$$0 = \frac{d(pV^n)}{dt} = V^n \frac{dp}{dt} + nV^{n-1}p\frac{dV}{dt} \rightarrow \frac{dp}{dt} = -n\frac{p}{V}\frac{dV}{dt} = n\frac{p}{V}Q,$$
(1.13)

melyet Δt lépésre integrálva kapjuk, hogy $(p^i = p(t), p^{i+1} = p(t + \Delta t))$

$$p^{i+1} - p^i = \Delta t \, Q \, n \left(\frac{\overline{p}}{\overline{V}} \right), \tag{1.14}$$

ahol a felülvonásos értékek az interálási tartományon vett átlagértéket jelentik. Ezt pl. extrapolációval számíthatjuk ki az előző két értékből. Írjuk fel az (1.12) hidrosztatikai egyenletet a számítandó és az előző időlépésre:

$$p_t^{i+1} = p^{i+1} + \rho g \left(l + H - \frac{V^{i+1}}{A} \right), p_t^i = p^i + \rho g \left(l + H - \frac{V^i}{A} \right),$$
 (1.15)

és vegyük a kettő különbségét:

$$p_t^{i+1} - p_t^i = p^{i+1} - p^i - \rho g \left(\frac{V^{i+1} - V^i}{A} \right) \approx p^{i+1} - p^i - \frac{\rho g}{A} \Delta t Q = \Delta t Q \left[n \left(\frac{\overline{p}}{\overline{V}} \right) - \frac{\rho g}{A} \right]. \tag{1.16}$$

Tehát az ágegyenlet együtthatói:

$$\alpha = \Delta t \left[n \left(\frac{\overline{p}}{\overline{V}} \right) - \frac{\rho g}{A} \right], \quad \delta = -p_t^i \quad \text{\'es} \quad \beta = \gamma = 0.$$
 (1.17)

2. fejezet

Szimuláció

2.1. Adat előkészítés

A tranziens hálózatszámítás első lépése - hasonlóan az állandósult állapotbeli vizsgálathoz - a vizsgált rendszer hidraulikai modelljének elkészítése. Ezután elkészítjük a merev alrendszerek kapcsolási rajzát, amely tartalmaz minden olyan elemet, mely a rendszer viselkedését érdemlegesen befolyásolja. Ez a kapcsolási rajz nem feltétlenül egyezik a stacioner hálózatszámítás kapcsolási rajzával, ugyanis pl. egy visszacsapó szelep vagy egy vezérelt/szabályozott elem a stacioner működés szempontjából ugyan közömbös, de tranziens folyamatok esetén igen fontos szerepe lehet. Az egyes elemek csomópontokban kapcsolódnak egymáshoz. Az ágelemeket és a csomópontokat egyedi névvel látjuk el. A vizsgált rendszerben (az összes merev alrendszert és az összes rugalmas csövet beleértve) minden csomópontnak és ágelemnek különböző neve legyen! Végül összegyűjtjük az ágelemek jellemzőit és megírjuk az adatfájlt (a későbbiekben taglalt szintaktika szerint). Az adatokat egyetlen adatfájlban foglaljuk össze, amelynek .tpr (tranziens projekt) nevet javasoljuk (de ez nem kötelező).

2.2. Régi és új adatstruktúrák és fájlok

2010 januárjában a leíró adatállományokat egyszerűsítettük. Ez a dokumentáció már csak az új adatstruktúrákat leírását tartalmazza.

A régi adatstruktúrákat a következő függvények támogatják:

- trsz_old.m (olvas_merev_old.m, olvas_rugalmas_old.m)
- trsz_rajz_old.m

2.3. A program használata

2.3.1. Számítás

A számítás maga Matlab környezetben a

```
>> trsz(<adatfajl>,<tmax>)
```

parancs meghívásával történik. Az első paraméter az adatfájl neve kiterjesztéssel (pl.'feladat.tpr'), a második paraméter a szimuláció időtartama másodpercben (pl. 60).

Ajánlott minden futtatást külön könyvtárban végezni az adat-, ill. az eredményfájlok keveredésének elkerülése végett. A szimuláció során az alábbi fájlok keletkeznek:

- Minden merev alrendszerhez egy-egy <nev>.out és <nev>.res állomány. Az előbbi közvetlenül olvasható szöveges állomány, az utóbbi csak a számítás numerikus eredményeit tartalmazza, értelmezéséhez a trsz_rajz.m eredménymegjelenítő program szükséges. Az .out fájl részletességét a mar_debug_level opcióval lehet beállítani az adatfájlban TODO.
- A rugalmas csövekben lezajló folyamatokat (csövenként) egy-egy <nev>.res állomány tartalmazza, melyet ugyancsak az eredménymegjelenítő program olvas.

A megoldó hívásakor lehetőség van további opciók megadására:

```
>> trsz(<adatfajl>,<tmax>,<option1>,<ertek1>,<option2>,<ertek2>,...),
```

melyek lehetséges értékei:

option	típus	érték
debug	integer	0,1,2,3,4,5: debug szint, az emelkedő értékekhez egyre részletesebb kimenet
		tartozik
t0	double	kezdeti időpont megadása
dtmin	double	minimális időlépés (a merev alrendszerek frissítésére)

2.3.2. Eredmények megjelenítése

A számítások eredményeit a trsz_rajz programmal tekinthetjük meg, ennek szintaktikája többféle lehet.

2.3.3. Egyszerű rajz

```
>> trsz_rajz('fnev','hol1','hol2','mit')
```

Az első argumentum a feladatot tartalmazó adatfájl neve kiterjesztéssel. A hol1 adat lehet merev alrendszer vagy rugalmas cső.

Merev alrendszer esetén a hol2 lehet ágelem vagy csomópont. Csomópont esetén csak nyomást lehet rajzolni, ekkor mit=p. Minden ágelem esetén lehetséges térfogatáram, sebesség, tömegáram rajzolása, ekkor mit=Q,m,v. Néhány elem esetén további lehetőségek is vannak:

• szivattyú: fordulatszám: mit=n

• vezérelt fojtás: jelleggörbék: mit=jg

• akna: vízszint: mit=y

Például a trsz_rajz('f1','f1','kohid','edh','Q') parancs a kohid merev alrendszer edh ágelemében térfogatáramot rajzol, a trsz_rajz('f1','f1','kohid','edh','n') parancs pedig ugyanitt a fordulatszámot.

Rugalmas cső esetén hol2 lehet 'eleje' hol2=e, 'vége' hol2=v és 'eleje és vége'hol2=ev. A mit argumentum ekkor lehet mit=p,v,Q,m, értelemszerűen. Például a trsz_rajz('f1','f1','cso1','ev','p') parancs a cso1 rugalmas cső elején és végén nyomáslefutást rajzol.

2.3.4. Számítási és mérési eredmények ábrázolása

```
» trsz_rajz('merevdata','rugdata','hol1','hol2','mit','adatfájl',y_oszlop)
» trsz_rajz('merevdata','rugdata','hol1','hol2','mit','adatfájl',y_oszlop,
t_eltol,y_eltol,y_szoroz)
```

2.3.5. Animációk készítése

A csatornában lezajló közegáramlási folyamatok szemléltetésére az alábbi parancs lefuttatásával nyílik lehetőség;

» csatorna_rajz('fajlnev.tpr',1,animacios_ido,idokoz,'-bol','csatorna_nev','-ba').

3. fejezet

Adatstruktúrák

3.1. Az adatfájl felépítése

Az adatfájlok szöveges állományok, melyek a rendszer minden adatát felsorolják. Az adatelválasztó vessző vagy soremelés, a tizedespont (.) pont (nem vessző). Az egyes struktúrákat kulcsszavak választják el egymástól, ezek lehetnek:

• mar: Merev alrendszer

• rugalmas_cso: Nyomottvizes rugalmas cső

• csatorna: Nyíltfelszínű csatorna

• viszkcso: Viszkoelasztikus cső

• amoba: Amőba csomópont (nem tartozik merev alrendszerhez)

• gorbe: Görbe

• option: Opció

• /*: Komment, nem tartalmazhat vesszőt

Ezek tetszőleges sorrendben követhetik egymást, az üres sorok jelenléte megengedett.

3.2. Merev alrendszerek (mar)

Egy merev alrendszert definiáló blokk a következő részekből épül fel:

- mar (Kulcsszó)
- A merev alrendszerneve
- Ágelemek definíciója: 1. ágelem, 2. ágelem, stb.
- Csomópontok definíciója: 1. csp, 2. csp, stb.

3.2.1. Csomópontok

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	csp	<kulcsszó></kulcsszó>	_	_
2	nev	Csomópont neve.	_	csp1
3	magassag	Magasság a közös alapszinttől.	m	123.4
4	fogyasztas	Koncentrált névleges fogyasztás a csomópont-	kg/h	-23.4
		ban		
5	gorbe	A névleges fogyasztás szorzófüggvényének	_	eso1, const
		neve		

Fontos: amennyiben nem kívánunk görbét hozzárendelni a csomóponti fogyasztáshoz, a const kulcsszót kell megadnunk a görbe nevének helyén.

3.2.2. Nyomottvizes hálózatok elemei

Az következőkben felsoroljuk az ágelemek, ill. a csomópontok részletes paramétereit. Közös jellemzőjük az ágelemnek az első 5 vagy hat adattag: típus, név, cspe azonosító, cspv vége azonosító (ha van), sűrűség, kezdeti tömegáram.

3.2.2.1. Cső

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	konc_cso	<kulcsszó></kulcsszó>	_	_
2	nev	ágelem neve	_	cso1
3	csp1	csomópont az elem elején	_	csp1
4	csp2	csomópont az elem végén	_	csp2
5	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
6	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
7	D	belső átmérő	m	0.3
8	L	csőhossz	m	15
9	lambda	csősúrlódási tényező (a nyomásesést a $\Delta p =$	_	0.02
		$\lambda \frac{L}{D} \frac{\rho}{2} v^2$ képlettel számítjuk)		

3.2.2.2. Fojtás

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	fojtas	<kulcsszó></kulcsszó>	_	_
2	nev	ágelem neve	_	fojt1
3	csp1	csomópont az elem elején	_	csp1
4	csp2	csomópont az elem végén		csp2
5	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
6	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
7	K	fojtási tényező (a nyomásesést a Δp =	$1/m^{4}$	1.23e5
		$K\dot{m} \dot{m} /\rho$ képlettel számítjuk)		

3.2.2.3. Vezérelt fojtás

Ennél az elemnél a felhasználónak lehetősége van a fojtás ellenállás tényezőjét időben változtatni. Ehhez egyrészről a K fojtási tényezőre van szükség egy dimenziótlan elmozdulás e függvényében, valamint ezen dimenziótlan függvény időbeli változására. K pontos definíciója az XXX pontban található. Mindkét függvénykapcsolatot pontonként kell megadni két-két vektor segítségével, a program számítás közben a közbenső értékeket lineáris interpolációval határozza meg.

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	vez_fojtas	<kulcsszó></kulcsszó>	_	_
2	nev	ágelem neve	_	fojt1
3	csp1	csomópont az elem elején	_	csp1
4	csp2	csomópont az elem végén	_	csp2
5	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
6	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
7	A	névleges keresztmetszet	m^2	0.01
8	jgpsz1	K(e) jelleggörbe pontszám	_	3
9	jgpsz2	e(t) jelleggörbe pontszám	_	4

Ezután következik a jelleggörbék megadása (a fejléc cellái csak az egyértelműség miatt vannak feltüntetve, az adatfájlban nem szerepelnek).

Ssz.	е	K
1	0.0	0.0
2	0.5	0.7
3	1.0	1.0

Ssz.	t[s]	е
1	0.0	1.0
2	1.0	0.7
3	3.0	0.1
4	1e5	0.1

3.2.2.4. Szivattyú

A szivattyú jelleggörbével rendelkező ágelem, melynek egy adott Q térfogatáram értékéhez mind a szállítómagasságot, mind a teljesítményigényt meg kell adni. Amennyiben a szivattyú állandó fordulatszámon jár, az ehhez a fordulatszámhoz tartozó jelleggörbét kell megadni, és – bár ilyenkor a számítás nem használja ezen értékeket – a teljesítmény helyére bármilyen számokat írhatunk, de valaminek mindenképpen kerülnie kell ezekbe a mezőkbe is. A tranziens nevű mező irányítja a szivattyú működését, ennek lehetséges értékei:

0 : állandó fordulatszám

 $\mathbf{1}$: szivattyú kiesés t_{ki} időpontban

 ${f 2}$: 'direkt' szivattyú indítás, motor jelleggörbe nem ismert pontosan, csak a billenőnyomaték M_b , az ehhez tartozó n_b billenő fordulatszám és n_{sz} szinkron fordulatszám

 $\mathbf{3}$: 'direkt' szivattyú indítás, motor jelleggörbe $M_m(n_m)$ ismert

4 : frekvenciaváltós szivattyú indítás, motor jelleggörbe nem ismert pontosan, csak a billenőnyomaték M_b , az ehhez tartozó n_b billenő fordulatszám és n_{sz} szinkron fordulatszám, az indítás t_{be} ideig tart

5 : szintkapcsolós szivattyú, állandó fordulatszám

6 : frekvenciaváltós szivattyú nyomásszabályzóval

A tehetetlenségi nyomaték $\Theta\left[kg\,m^2\right]$ jellemzésére régebben a $G\,D^2$ értéket alkalmaztuk, $\Theta=\frac{G\,D^2}{4g}$.

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	szivattyu	<kulcsszó></kulcsszó>	_	_
2	nev	ágelem neve	_	sz1
3	csp1	csomópont az elem elején	_	csp1
4	csp2	csomópont az elem végén	_	csp2
5	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
6	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
7	Ds	szívócsonk átmérő	m	0.3
8	Dn	nyomócsonk átmérő	m	0.3
9	tranziens	tranziens típus	_	2
10	jgpsz	$H(Q)$ és $P_{be}(Q)$ jelleggörbe pontszám	_	5

Ezután következik a jelleggörbék megadása (a megdöntött cellák csak az egyértelműség miatt vannak feltüntetve, az adatfájlban nem szerepelnek).

Ssz.	$Q[m^3/s]$	H[m]	$P_{be}[kW]$
1	0.000	210	100
2	0.135	205	339
3	0.270	196	649
4	0.378	150	698
5	0.486	51	304

A tranziens változó értékétől függenek a további adatok.

tranziens=0: Állandó fordulatszámú szivattyú

Nem szükséges további adat

tranziens=1: Szivattyú kiesés

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	n	Szivattyú fordulatszáma a kiesés előtt	1/min	1470
2	teta	Szivattyú, tengelykapcsoló és motor együttes tehetetlenségi nyomatéka	$kg m^2$	0.23
3	tki	A kiesés időpontja	s	10

tranziens=2: Direkt szivattyú indítás, közelítő motor jelleggörbe

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	n	A szivattyú jelleggörbéhez tartozó fordulat-	1/min	1470
		szám		
2	teta	Szivattyú, tengelykapcsoló és motor együttes	$kg m^2$	0.23
		tehetetlenségi nyomatéka		
3	Mb	Billenő nyomaték	Nm	200
4	nb	Billenő fordulatszám	1/min	1200
5	nsz	Szinkron fordulatszám	1/min	1500

tranziens=3: Direkt szivattyú indítás, motor jelleggörbe ismert

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	n	A szivattyú jelleggörbéhez tartozó fordulat-	1/min	1470
		szám		
2	teta	Szivattyú, tengelykapcsoló és motor együttes	$kg m^2$	0.23
		tehetetlenségi nyomatéka		
3	mjgpsz	Motor jelleggörbe pontszám	_	6

Ssz.	$n_m [1/min]$	$M_m [Nm]$
1	0.000	145
2	500	150
3	900	160
4	1200	200
5	1470	34
6	1500	0

tranziens=4: Frekvenciaváltós szivattyú indítás, közelítő motor jelleggörbe

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	n	A szivattyú jelleggörbéhez tartozó fordulat-	1/min	1470
		szám		
2	teta	Szivattyú, tengelykapcsoló és motor együttes	kgm^2	0.23
		tehetetlenségi nyomatéka		
3	Mb	Motor billenő nyomaték	Nm	200
4	nb	Motor billenő fordulatszám	1/min	1200
4	Mi	Motor indító nyomaték	Nm	100
5	nsz	Szinkron fordulatszám	1/min	1500
6	tbe	Indítás időpontja	s	10
7	tind	Felfutási idő	s	10

tranziens=5: Szintkapcsolós szivattyú

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	n	A szivattyú jelleggörbéhez tartozó fordulat-	1/min	1470
		szám.		
2	hbe	Kikapcsolási szint	m	0.23
2	hki	Bekapcsolási szint	m	0.53
3	uzem	Ha $0,$ a szivattyú nem működik, ha igen $\rightarrow 1$	_	0

tranziens=6: Frekvenciaváltós szivattyú nyomásszabályzóval

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	n	A jelleggörbéhez tartozó, maximális fordulat-	1/min	1470
		szám.		
2	pcsp	A szabályzott csomópont azonosítója		mar3.csp3
3	pp	Kívánt (abszolút) nyomás	Pa	2e5
4	parP	Szabályzó arányos tag	_	0.5
5	parI	Szabályzó integráló tag	_	25
6	nkezd	Induló fordulatszám.	1/min	1470

3.2.2.5. Visszacsapó szelep

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	visszacsapo_szelep	ágelem típusa	_	-
2	nev	ágelem neve	_	VCSSZ
3	csp1	csomópont az elem elején	_	csp1
4	csp2	csomópont az elem végén	_	csp2
5	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
6	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120

3.2.2.6. Állandó nyomású pont

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	nyomas	ágelem típusa	_	-
2	nev	ágelem neve	_	nyomas1
3	csp1	csomópont (csak egy van!)	_	csp1
4	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
5	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
6	р	nyomás a csomópontban	Pa	1.2e5

3.2.2.7. Változó nyomású pont

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	valtozo_nyomas	ágelem típusa	_	-
2	nev	ágelem neve		nyomas1
3	csp1	csomópont (csak egy van!)	_	csp1
4	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
5	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
6	kapcsolo	kapcsoló	_	file vagy JGPSZ

file opció választása után a jelleggörbét tartalmazó Excel adatfájl nevének megadása következik kiterjesztéssel együtt (pl. file,pontok.xls)

A kapcsoló lehetővé teszik a jelleggörbe pontok megadását a bemeneti fájlban, külső adatfájl beolvasása nélkül. Ebben az esetben JGPSZ egész szám, az alább felsorolandó pontpárok számossága. Példaként:

Ssz.	t[s]	p[Pa]
1	0.0	0
2	1.2	23e10
3	2.4	72e10

3.2.2.8. Változó tömegáramú pont

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	valtozo_tomegaram	ágelem típusa	_	-
2	nev	ágelem neve	_	nyomas1
3	csp1	csomópont (csak egy van!)	_	csp1
4	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
5	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
6	kapcsolo	kapcsoló	_	file vagy JGPSZ

Ssz.	t[s]	$\dot{m}[kg/s]$
1	0.0	0
2	1.2	3
3	2.4	1

Megadása analóg az előző pontban leírtakkal.

3.2.2.9. Nyomásszabályozó

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	nyomasszabalyzo	<kulcsszó></kulcsszó>	_	-
2	nev	ágelem neve		nysz1
3	csp1	csomópont az elem elején		csp1
4	csp2	csomópont az elem végén		csp2
5	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
6	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
7	jgpsz	K(e) jelleggörbe pontszám, hasonóan, mint az	_	3
		egyszerű vezérelt fojtásnál.		

Ssz.	$n_m [1/min]$	$M_m [Nm]$
1	0.0	1e-10
2	0.5	0.6
3	0.0	0.9

Ezután a szab mező jelzi, hogy egy csomópontbeli nyomást (szab=p) vagy két csomópont közti nyomáskülönbséget (szab=dp) szabályoz-e az elem, ennek megfelelően a következő adat egy vagy két csomópont azonosítója.

szab=p

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	szab	a szabályozás típusa	_	р
2	csp	A szabályozni kívánt csomópont neve (azonos merev alrendszerben kell lennie).	_	csp1

szab=dp

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	szab	a szabályozás típusa	_	р
2	csp1	A szabályozni kívánt egyik csomópont neve	_	csp1
		(azonos merev alrendszerben kell lennie).		
3	csp2	A szabályozni kívánt másik csomópont neve	_	csp2
		(azonos merev alrendszerben kell lennie).		

A második esetben a szabályozni kívánt nyomáskülönbség alatt $p_{csp1}-p_{csp2}$ nyomáskülönbséget értjük. Végül meg kell adni a szabályzó peremétereit.

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	ajel	Alapjel	Pa	2.3e5
2	pmax	Maximális nyomás	Pa	20e5
3	szabP	Arányos tag		120
4	szabI	Integráló tag	_	1
5	szabD	Differenciáló tag	_	1
6	e0	Szabályozó kezdeti nyitás	_	0.5
7	vmax	Maximális mozgatási sebesség (dimenziótlan e	1/s	0.01
		elmozdulás időegység alatt)		
8	tbe	A szabályzó bekapcsolásának időpontja	s	10

3.2.2.10. Légüst

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	legust	<kulcsszó></kulcsszó>	_	-
2	nev	ágelem neve	_	legust
3	csp1	csomópont (csak egy van!)	_	csp1
4	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
5	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
6	n	politropikus kitevő	_	1.4
7	VO	kezdeti gáztérfogat	m^3	0.5
8	p0	kezdeti gáznyomás	Pa	3.22e5
9	A	légüst felület	m^2	0.8
10	1	bekötő vezeték hossza	m	0.2
11	Н	összmagasság	m	2

3.2.3. Csatornahálózatok elemei

3.2.3.1. Akna

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	akna	<kulcsszó></kulcsszó>	_	-
2	nev	ágelem neve	_	akna1
3	csp1	csomópont (csak egy van!)	_	csp1
4	ro	sűrűség	kg/m^3	1000
5	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
6	A	alapterület	m^2	1.4
7	hmmin	fenékszint	m	213.5
8	hmax	fedlapszint	m	3.4
9	h0	kezdeti vízszint	m	1.2
10	rajz	String változó, rajz érték esetén a szimulá-	_	rajz vagy pl. nincsrajz
		ció során folyamatosan megjeleníti az akna-		
		szintet, bármi más érték esetén nem.		

3.2.3.2. Bukógát

Átfolyási egyenlet: $\dot{m}[kg/s] = C_d \rho \sqrt{2g} B (h - h_b)^n$.

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	buko	<kulcsszó></kulcsszó>	_	-
2	nev	ágelem neve	_	akna1
3	csp1	eleje csomópont	_	csp1
3	csp2	vége csomópont		csp2
4	hb	bukószint (abszolút)	m	213.4
5	Cd	átfolyási tényező		0.34
6	В	jellemző méret	m	0.5
7	n	vízszint kitevő	_	1.2
8	ro	sűrűség	kg/m^3	1000
9	mp0	tömegáram a szimuláció kezdetekor	kg/s	0.0

3.2.3.3. Nyomóvezeték

Ha az elején vagy a végén a szint z_e ill. z_v alatt van, lenullázza az áramlást.

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	nyomovezetek	<kulcsszó></kulcsszó>	_	-
2	nev	ágelem neve	_	cso1
3	csp1	csomópont az elem elején	_	csp1
4	csp2	csomópont az elem végén	_	csp2
5	ro	folyadék sűrűsége az ágelemben	kg/m^3	1000
6	mO	tömegáram a szimuláció kezdő időpontjában	kg/s	120
7	D	belső átmérő	m	0.3
8	L	csőhossz	m	15
9	lambda	csősúrlódási tényező (a nyomásesést a $\Delta p =$	_	0.02
		$\lambda \frac{L}{D} \frac{\rho}{2} v^2$ képlettel számítjuk)		
10	ze	cső eleje szint	m	114
11	zv	cső vége szint	m	120

3.2.4. Görbék (gorbe)

Az összes merev alrendszer definíció után jöhetnek a görbék.

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	gorbe	<kulcsszó></kulcsszó>	_	
2	nev	Görbe neve	_	eso1
3	psz	Adatpárok száma	_	10

Ezután jöhetnek az (x,y) pontpárok párosával. Amennyiben egy adott görbét csomóponthoz rendeljük hozzá, az x érték idő s-ban, az y érték pedig egy szorzó. Az aktuális időponthoz tartozó értéket a program lineáris interpolációval számítja.

3.3. Rugalmas alrendszerek

3.3.1. Nyomottvizes rugalmas cső (cso)

Ssz	Jel	Megnevezés	Mértékegység	Példa
0	rugalmas_cso	Azonosító.	_	
1	cso	A rugalmas cső neve.	_	rugcso1
2	csp1	Csomópont a cső elején.	_	mar9.csp23
3	csp2	Csomópont a cső végén.		mar5.csp34
4	ro	Folyadék sűrűsége a csőben.	kg/m^3	1000
5	mO	Tömegáram a szimuláció kezdő időpontjában.	kg/s	120
6	pe	Nyomás a cső elején a szimuláció kezdő idő-	Pa	1.23e5
		pontjában.		
7	D	Belső átmérő	m	0.3
8	lambda	Csősúrlódási tényező (a nyomásesést a $\Delta p =$	_	0.02
		$\lambda \frac{L}{D} \frac{\rho}{2} v^2$ képlettel számítjuk)		
9	delta	Falvastagság.	m	5e-3
10	L	Csőhossz	m	1500
11	Ec	Cső anyagának rugalmassági modulusa.	Pa	2e11
12	Ef	Folyadék rugalmassági modulusa.	Pa	2e9
13	opsz	Osztáspontok száma.	_	5
14	op_h	Osztáspontok magasságának megadása	_	user vagy auto

- $\bullet\,$ Ha ${\tt op_h}={\tt auto},$ következik $z_e[m]$ és $z_v[m]$ eleje és vége fenékmagasság.
- \bullet Amennyiben op_h \neq auto, következnek az osztáspontok magasság adatai opsz darab):

Ssz.	h[m]
1	0.0
2	12.3
3	34.5
4	49.1
5	50.0

3.3.2. Csatorna (csatorna)

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	csatorna	Azonosító	_	
2	cso	A csatorna neve	_	rugcso1
3	csp1	Csomópont a csatorna elején	_	mar9.csp23
4	csp2	Csomópont a csatorna végén	_	mar5.csp34
5	ro	Folyadék sűrűsége a csatornában	kg/m^3	1000
6	mO	Tömegáram a szimuláció kezdő időpontjában.	kg/s	120
7	tipus	Keresztmetszet típusa		kor vagy teglalap
8	D V B	Átmérő vagy szélesség, típus-sal összhangban	m	0.3
9	L	Csőhossz	m	1500
10	ze	Eleje fenékmagasság	m	123.4
11	zv	Vége fenékmagasság	m	122.2
12	n	Manning-féle érdességi tényező	-	0.01
13	у0	Kezdeti vízszint a fenékhez képest	m	0.5
14	opsz	Osztáspontok száma		5
15	op_h	Osztáspontok magasságának megadása		user vagy auto
16	rajz	Számítás közbeni rajzolás	_	rajz vagy bármi
				más
17	dt_type	Időlépés beállítása: auto esetén automatikus,	s	auto vagy pl. 0.5
		szám megadása esetén az időlépés nagysága.		

Amennyiben op_h \neq auto, következnek az osztáspontok magasság adatai.

3.3.3. Viszkoelasztikus cső (viszkcso)

Ssz.	Jel	Megnevezés	Mértékegység	Példa
1	viszkcso	Azonosító	_	
2	vcs1	A viszkoelasztikus cső neve	_	viszkcso1
3	csp1	Csomópont a cső elején	_	mar9.csp23
4	csp2	Csomópont a cső végén	_	mar5.csp34
5	D	Belső átmérő	m	0.02
6	nu	Folyadék kinematikai viszkozitása	m^2/s	10e-6
7	delta	Falvastagság	m	5e-3
8	L	Csőhossz	m	12
9	mO	Tömegáram a szimuláció kezdő időpontjában	kg/s	2e-2
10	p0	Kezdeti nyomás	Pa	5e9
11	ro	Folyadék sűrűsége	kg/m^3	1000
12	opsz	Osztáspontok száma	_	5
13	op_h	Osztáspontok magasságának megadása	_	user vagy auto
14	E1	Rugalmassági modulus	Pa	9e6
15	E2	Rugalmassági modulus	Pa	4e5
16	eta2	Csillapítási tényező	Pas	100000

Amennyiben op_h \neq auto, következnek az osztáspontok magasság adatai.

3.3.4. Amőba csomópontok (amoba)

Végül az amőba csomópontok adatai a merev alrenszerhez hasonlóan:

Ssz	Jel	Megnevezés	Mértékegység	Példa
1	amoba	<kulcsszó></kulcsszó>		
1	nev	Csomópont neve.	_	csp1
2	magassag	Magasság a közös alapszinttől.	m	123.4
3	fogyasztas	Koncentrált fogyasztás a csomópotban	kg/h	-23.4
5	gorbe	A névleges fogyasztás szorzófüggvényének	_	eso1, const
		neve (const, ha konstans)		

3.3.5. Opciók (option)

Az opciók megadására az alrendszerek definiálása előtt, azaz a bemeneti fájlok első soraiban nyílik lehetőség.

option, dt_save, auto, az automatikus időközű mintavételhez,

vagy

 ${\tt option,dt_save,N},$ ahol N a felhasználó által beállított tetszőleges mintavételezési időköz-érték.

4. fejezet

Mintafeladatok

1. feladat (Vízütés) 4.1.

A feladat a 4.1 ábrán látható egyszerű rendszerben a nyomáslengések kiszámítása. Az $1040\,m$ hosszú NÁ 150 méretű csőben (MSZ 99 szerint, 5 mm falvastagságú) csőben víz áramlik, 3 bar a kezdeti nyomással és $4\,kg/s$ a tömegárammal ($E_f=2.2\times 10^9\,Pa,\,E_{cs,azb.cem.}=2.4\times 10^9\,Pa$). A nyomáslengést hirtelen zárás feltételezésével számítsuk ki.

4.1. ábra. 1. feladat vázlata

Megoldás

A csőben a hullámsebesség: $E_r = \left(\frac{1}{E_f} + \frac{D}{\delta \cdot E_{cs,azb.cem.}}\right) = 1.5385 \times 10^9 \, Pa \rightarrow a = \sqrt{\frac{E_r}{\rho}} = 1240 \, m/s.$ Az áramlási sebesség: $v = \frac{\dot{m}}{A \cdot \rho} = 0.2264 \, m/s.$ A kialakuló nyomásugrás: $\Delta p = \rho \cdot a \cdot \Delta v = 2.81 \, bar.$

4.2. ábra. 1. feladat megoldása

4.2. 2. feladat (Vízütés súrlódásos csőben)

Az előző feladat szerinti számításokat végezzük el veszteséges áramlás esetére is. Az átlagos csősúrlódási tényező értékét 0.02-re vettük fel. A megoldás a 4.3 ábrán látható.

4.3. ábra. 2. feladat megoldása

4.3. 3. feladat (Szivattyú kiesés)

Egy szivattyútelep az alsó medencéből vizet szállít a felső medencébe. A folyadék visszaáramlását visszacsapó szelep akadályozza. A csővezeték hossz szelvénye a 4.4 ábrán látható. A cső adatai: $L=2250\,m,\,D=0.253\,m,\,\delta=13\,mm,\,E_{cs,azb.cem.}=2.4\times10^9\,Pa,\,E_f=2.2\times10^9\,Pa.$

4.4. ábra. A cső nyomvonala a 3. feladathoz.

A beépített búvárszivattyú adatai:

Ssz.	$Q\left[m^3/s\right]$	H[m]	$P_{be}\left[kW\right]$
1	0.000	110	16.8
2	0.005	105	18.0
3	0.010	98	20.8
4	0.015	93	23.2
5	0.020	88	25.6
6	0.025	84	28.0
7	0.030	72	30.0
8	0.035	65	32.0

A szivattyú fordulatszáma 1450 1/perc, a szivattyú és motor gépcsoport együttes lendítőnyomatéka $GD^2=1.9\,Nm^2$. Az átlagos csősúrlódási tényező 0.029. Számítsa ki a szivattyú áramkimaradása miatt bekövetkező nyomáslengéseket. Ismételje meg a számítást tízszeresére ill. százszorosára megnövelt tehetetlenségi nyomatékkal! Végezzen számítást acél- $(E_{\rm cs,ac\acute{e}l}=2.1\times10^{11}\,Pa)$ és kemény polietilén $(E_{cs,KPE}=690\times10^6\,Pa)$ csövekre.

4.5. ábra. A 3. feladat megoldása

4.4. 4. feladat (Szivattyú kiesés tolózárral)

A 3. feladat szerinti berendezésben a vezeték 1500 m-es szelvényében egy részben nyitott tolózár van. A tolózár ellenállás tényezője $\zeta=565$. Határozza meg a rendszer munkapontját. Végezzen számítást áramkimaradás esetére.

(Fojtási tényező: $f = \frac{\zeta}{2A^2}$)

4.6. ábra. A 4. feladat megoldása. csol Nyomás-grafikonja.

4.7. ábra. A 4. feladat megoldása. cso2 Nyomás-grafikonja.

4.5. 5. feladat (Légüst méretezés)

A 3. feladat szerinti berendezésben a szivattyúkifutás során a csővezeték elején fellépő nyomás meghaladja a csőre vonatkozó névleges nyomás értékét. Határozza meg számítással a szivattyútelepre beépítendő légüst gáztartalmát (V_0) úgy, hogy az első nyomáscsúcs ne haladja meg a $10\,bar$ értéket, valamint a légüst ne ürüljön ki.

A rendszer elemeinek bekötési sorrendje:

- 1. medence I.
- 2. szivattyú
- 3. visszacsapó szelep
- 4. légüst

- 5. rugalmas cső
- 6. medence II.

Légüst:

 $n = 1.4, p_0 = 3 \times 10^5 \, Pa, A = 0.8 \, m^2, \, l = 0.2 \, m, \, H = 2 \, m.$

4.8. ábra. Az 5. feladat megoldása.

4.6. 6. feladat (Kétüstös lengőrendszer)

Egy állandó keresztmetszetű cső két végén egy-egy légüst helyezkedik el. A bal oldali légüstöt "1", a jobb oldalit "2" jelöli, a cső paramétereit pedig "cs" indexszel jelöljük. A légüstökben a folyadék felszínen a nyomás p_1 ill. p_2 . A cső két végén $p_{cs,1}+\frac{\rho}{2v^2}=p_1+\rho\,g\,L_1$ és $p_{cs,2}+\frac{\rho}{2v^2}=p_2+\rho\,g\,L_2$. Az instacioner Bernoulli egyenletet alkalmazva kapjuk, hogy

$$p_1 + \rho g L_1 = p_2 + \rho g L_2 + \lambda \frac{L_{cs}}{D} \frac{\rho}{2A_{cs}^2} Q^2 + \frac{\rho L}{A_{cs}} \frac{dQ}{dt}.$$

Mivel a légüstben politropikus az állapotváltozás, tudjuk, hogy $pV^n = konst$, így

$$0 = \frac{d(pV^n)}{dt} = \frac{dp}{dt}V^n + nV^{n-1}p\frac{dV}{dt} \rightarrow \frac{dp}{dt} = -n\frac{p}{V}\frac{dV}{dt}.$$

Bár dV/dt=Q, az előjelekre oda kell figyelni, mert ha a csőben a balról jobbra irányt tekintjük pozitív áramlási iránynak, $dV_1/dt=-Q$ és $dV_2/dt=Q$. Ha a légüstök teljes magasságát H-val, felületét A-val jelöljük, a folyadékoszlopok magassága

$$L_1(t) = H_1 - \frac{V_1(t)}{A_1} = H_1 - \frac{V_{10} - \int Qdt}{A_1},$$

$$L_2(t) = H_2 - \frac{V_2(t)}{A_2} = H_2 - \frac{V_{20} + \int Qdt}{A_2}.$$

Tehát a megoldandó egyenletrendszer:

$$\begin{cases} \dot{Q} &= \frac{A_{cs}}{\rho L_{cs}} \left(p_1 - p_2 + \rho g \left(L_1 - L_2 \right) - \lambda \frac{L_{cs}}{D} \frac{\rho}{2A_{cs}^2} Q \left| Q \right| \right) \\ \dot{p}_1 &= n \frac{p_1}{V_{10} + z} Q \\ \dot{p}_2 &= -n \frac{p_2}{V_{20} - z} Q \\ \dot{z} &= Q \end{cases}$$

és
$$L_1 = H_1 - (V_{10} + z)/A_1$$
, $L_2 = H_2 - (V_{20} - z)/A_2$.

Az 1. (bal oldali) légüst adatai: $n=1.4, V_0=1\,m^3, A=1\,m^2, l=0\,m$ és $H=2\,m$. A 2. (jobb oldali) légüst adatai ugyanezek, kiv. $p_0=1\,bar$. A rugalmas cső adatai: $D=0.3\,m, L=10\,m, \lambda=0, E_f=2.1\times10^9\,Pa, E_c=2.1\times10^{11}\,Pa, p_0=0$ és $\dot{m}_0=0$. A 4.9. ábrán a 2. légüst talppontjának a nyomáslefutását vetjük össze a fenti KDER numerikus (Runge-Kutta) megoldásával.

4.9. ábra. A 6. feladat megoldása.

4.7. 7. feladat (Nyíltfelszínű áramlás)

Két aknából és egy az azokat összekötő kör keresztmetszetű csatornából álló hálózat adatai a következők: $A_1 = 10.5 \, m^2$,

 $h_{1,min} = 98.43 \, m, \, h_{1,max} = 105 \, m, \, h_{1,0} = 1.5 \, m.$

 $A_2 = 10.5 \, m^2, \, h_{2,min} = 101.6 \, m, \, h_{2,max} = 106.07 \, m,$

 $h_{2.0} = 0.3 \, m$. A kettes számú aknába $(-)50 \, m^3/h$ betáplálást vegyen figyelembe!

$$D=0.4\,m,\,L=941\,m,\,z_e=102\,m,\,z_v=101\,m,\,n=0.013,\,y_0=0.01\,m.$$

Használja az option, dt_save, 1.0 parancsot a .tpr fájl első sorában az 1 másodpercenként történő adatmentéshez. (A kimenetei fájlban láthatóan nem pontosan a megadott időközönként történik a mintavétel, ez a vizsgált szakasz hosszától –felosztásának finomságától– függ.)

Ábrázolja a csatorna Q-t diagramját, valamint az "1." számú akna vízszint változását az idő függvényében.

4.10. ábra. A 7. feladat megoldása. Q-t diagram.

4.11. ábra. A 7. feladat megoldása. y-t diagram.

4.8. 8. feladat (Átemelőszivattyús csatornarendszer)

Adott az alábbi kapcsolási vázlaton látható csatornahálózat. Az ak01 jelű aknából a cs1000 kör keresztmetszetű csatornán keresztül jut el a szennyvíz az at01 jelű átemelő aknába. Két szivattyú (szat01 és szat01s) az átemelőből egy ny1 jelű nyomóvezetéken keresztül szállítja a szennyvizet az szt aknába. Ez utóbbi akna a szennyvíztisztító telepet hivatott modellezni, ezért nagy keresztmetszettel rendelkezik. Az átemelő aknák modellezéséhez a korábban már használt akna típusú elemet egy vagy több szivattyúval kötjük össze. Ezek egy úgynevezett nyomóvezetéken keresztül szállítják el a szennyvizet az átemelőből. A szivattyúk működését szintkapcsolók vezérlik, melyek bekapcsolási vízmagasságaik eltérőek. Amennyiben tehát a főszivattyú nem képes elegendő szennyvizet szállítani -at01-be érkező túl nagy térfogatáram miatt— a segédszivattyú is működni kezd.

Ábrázolja az at01 akna szintváltozását és a szivattyúk fordulatszámát az idő függvényében azt alábbi adatok alapján:

Akna:

$$\begin{split} A_{szt} &= 5000\,m^2,\,h_{szt,min} = 108\,m,\,h_{szt,max} = 116\,m,\,h_{szt,0} = 0.2\,m\\ A_{at01} &= 1.5\,m^2,\,h_{at01,min} = 98.43\,m,\,h_{at01,max} = 105.22\,m,\,h_{at01,0} = 1.5\,m\\ A_{ak02} &= 28.3\,m^2,\,h_{ak02,min} = 104.6\,m,\,h_{ak02,max} = 106.07\,m,\,h_{ak02,0} = 0.4\,m \end{split}$$

Csatorna:

$$D_{cs} = 0.4\,m,\,L_{cs} = 941\,m,\,z_{cs,e} = 104.81\,m,\,z_{cs,v} = 101.11\,m,\,n = 0.013,\,y_{cs,0} = 0.05\,m$$

Nyomóvezeték:

$$D_{ny} = 0.3 \, m, \, L_{ny} = 1402 \, m, \, \lambda = 0.015, \, z_{ny,e} = 98.6 \, m, \, z_{ny,v} = 110.52 \, m.$$

Szivattyú:

 $D_{szat01,s} = 0.3 \, m, D_{szat01,n} = 0.3 \, m, \, \text{tranziens} = 5, \, n_{szat01} = 1440 \, 1/perc, \, h_{szat01,ki} = 100.23 \, m, \, h_{szat01,be} = 99.03 \, m.$

Ssz.	$Q[m^3/s]$	H[m]	$P_{be}\left[kW\right]$
1	0.0000	44.4	1
2	0.0280	38.1	1
3	0.0520	31.3	1
4	0.0750	24.4	1
5	0.0870	20.5	1
6	0.1030	13.9	1
7	0.1150	6.9	1

 $D_{szat01s,s} = 0.3 \, m, \ D_{szat01s,n} = 0.3 \, m, \ \text{tranziens} = 5, \ n_{szat01s} = 1440 \ 1/perc, \ h_{szat01s,ki} = 100.63 \, m, h_{szat01s,be} = 99.03 \, m.$

Ssz.	$Q[m^3/s]$	H[m]	$P_{be}\left[kW\right]$
1	0.0000	44.4	1
2	0.0280	38.1	1
3	0.0520	31.3	1
4	0.0750	24.4	1
5	0.0870	20.5	1
6	0.1030	13.9	1
7	0.1150	6.9	1

A teljesítmény és fordulatszám értékei a számítás szempontjából közömbösek, de $n,P\neq 0.$

4.12.ábra. A 8. feladat megoldása. at01akna vízszintváltozása

4.13.ábra. A 8. feladat megoldása. szat01szivattyú fordulatszáma

4.14.ábra. A 8. feladat megoldása. $\mathit{szat01}$ szivattyú fordulatszáma

4.9. 9. feladat (Véráramlás)

4.9.1. "A" rész

Az alábbi modell egy véráramlási modellt hivatott reprezentálni, melynek megvalósításához sok, eddig nem használt építőelemekkel kell dolgoznunk. A szív (mint változó tömegáram) hivatott a $\rho=1000\,kg/m^3$ sűrűségű közeget az érrendszer (viszkoelasztikus cső) felé pumpálni, a következő táblázatban foglaltak szerint.

- C		0[2/1]
Ssz.	t[s]	$Q\left[m^3/h\right]$
1	0.00	0
2	0.01	5.11875E-02
3	0.02	0.099750
4	0.03	0.145688
5	0.04	0.189000
6	0.05	0.229688
7	0.06	0.267750
8	0.07	0.303188
9	0.08	0.336000
10	0.09	0.366188
11	0.10	0.393750
12	0.11	0.418688
13	0.12	0.441000
14	0.13	0.460688
15	0.14	0.477750
16	0.15	0.492188
17	0.16	0.504000
18	0.17	0.513188
19	0.18	0.519750
20	0.19	0.523688
21	0.20	0.525000
22	0.21	0.523688
23	0.22	0.519750
24	0.23	0.513188
25	0.24	0.504000
26	0.25	0.492188
27	0.26	0.477750
28	0.27	0.460688
29	0.28	0.441000
30	0.29	0.418688
31	0.30	0.393750
32	0.31	0.366188
33	0.32	0.336000
34	0.33	0.303188
35	0.34	0.267750
36	0.35	0.229688
37	0.36	0.189000
38	0.37	0.145688

Ssz.	t[s]	$Q\left[m^3/h\right]$
39	0.38	9.975E-02
40	0.39	5.11875E-02
41	0.40	0
42	0.41	-2.55938E-02
43	0.42	-2.55938E-02
44	0.43	0
45	2.00	0

Tételezzük fel, hogy a viszkoelasztikus cső vége a "szabadba" nyílik, tehát nyomása állandó, légköri nyomás.

Használja az option, dt_save, auto parancsot az automatikus időközönkénti mentéshez!

Viszkoelasztikus cső:

$$D=0.01\,m,~\nu=1.1\times 10^{-6}\,m^2/s,~\delta=0.005\,m,~L=5\,m,~p_0=1.1\times 10^5\,Pa,$$
osztáspontok száma=20, $e_1=9\times 10^6,~e_2=4\times 10^5,~\eta_2=100000$

4.9.2. "B" rész

Az előző feladatban található táblázat adatai beolvashatóak közvetlenül a .tpr fájlba való begépelés nélkül is. Ez nagyban lerövidítheti a rendszer definiálásának idejét abban az esetben, ha az adatokról .xls kiterjesztésű vektorokkal rendelkezünk.

Megvalósítása a valtozo_tomegaram mint építőelem definiálásánál a kezdeti tömegáram értéke után ugyancsak felsorolásként, vesszővel elválasztva a file,fajlnev.xls parancsok kiadásával lehetséges, példakánt:

valtozo_tomegaram,sziv01,csp1,1000,0,file,tomegaramok.xls
.

4.15. ábra. A 9. feladat megoldása

5. fejezet

A feladatok bemenetei, mint lehetséges megoldások

5.0.3. 1. feladat

```
mar,medence
nyomas,medence,medencecsp,1000,4,3e5
csp,medencecsp,0,0,const

rugalmas_cso,cso
medencecsp,csoveg,1000,4,3e5,0.15,0,5e-3,1040,2.4e9,2.2e9,10,auto,0,0
amoba,csoveg,0,0,const
```

5.0.4. 2. feladat

```
mar,medence
nyomas,medence,medencecsp,1000,4,3e5
csp,medencecsp,0,0,const

rugalmas_cso,csosurl
medencecsp,csoveg,1000,4,3e5,0.15,0.02,5e-3,1040,2.4e9,2.2e9,10,auto,0,0
amoba,csoveg,0,0,const
```

5.0.5. 3. feladat

```
mar,also
nyomas,medencealso,medenceki,1000,0,1e5
szivattyu,szivattyu,medenceki,nyomocsp,1000,0,0.253,0.253,1,8
0,110,16.8
0.005,105,18
0.01,98,20.8
0.015,93,23.2
0.02,88,25.6
```

```
0.025,84,28
0.03,72,30
0.035,65,32
1450,1.9,120
visszacsapo_szelep,vszelep,nyomocsp,szelepki,1000,0
csp,medenceki,253,0,const
csp,nyomocsp,253,0,const
csp,szelepki,253,0,const
mar,felso
nyomas,medencefelso,medencebe,1000,0,1e5
csp,medencebe,327,0,const
rugalmas_cso,cso,szelepki,medencebe,1000,0,8.6e5,0.253,0.029,13e-3,2250,2.4e9,2.2e9,8,user
253,257,280,270,280,302,305,327
```

5.0.6. 4. feladat

```
mar,also
nyomas, medencealso, medenceki, 1000, 0, 1e5
szivattyu, szivattyu, medenceki, nyomocsp, 1000, 0, 0.253, 0.253, 1,8
0,110,16.8
0.005,105,18
0.01,98,20.8
0.015,93,23.2
0.02,88,25.6
0.025,84,28
0.03,72,30
0.035,65,32
1450,1.9,120
visszacsapo_szelep,vszelep,nyomocsp,szelepki,1000,0
csp, medenceki, 253, 0, const
csp,nyomocsp,253,0,const
csp,szelepki,253,0,const
mar, fojtas
fojtas, tolozar, csolvege, toloki, 1000, 0, 111778.0695
csp,cso1vege,253,0,const
csp,toloki,253,0,const
mar, felso
nyomas, medencefelso, medencebe, 1000, 0, 1e5
csp, medencebe, 327,0, const
rugalmas_cso,cso1,szelepki,cso1vege,1000,0,8.6e5,0.253,0.029,13e-3,1500,2.4e9,2.2e9,5,user
253,257,280,270,280
rugalmas_cso,cso2,toloki,medencebe,1000,0,3.6e5,0.253,0.029,13e-3,750,2.4e9,2.2e9,3,user
302,305,327
```

5.0.7. 5. feladat

```
mar,also
nyomas, medencealso, medenceki, 1000, 0, 1e5
szivattyu, szivattyu, medenceki, nyomocsp, 1000, 0, 0.250, 0.250, 1,8
0,110,16.8
0.005,105,18
0.01,98,20.8
0.015,93,23.2
0.02,88,25.6
0.025,84,28
0.03,72,30
0.035,65,32
1450,1.9,120
visszacsapo_szelep,vszelep,nyomocsp,szelepki,1000,0
legust,legust1,szelepki,1000,0.0,1.4,1.0,8.73e5,0.8,0.2,2
csp, medenceki, 253, 0, const
csp,nyomocsp,253,0,const
csp,szelepki,253,0,const
mar, felso
nyomas, medencefelso, medencebe, 1000, 0, 1e5
csp, medencebe, 327, 0, const
rugalmas_cso,cso,szelepki,medencebe,1000,26.72,8.73e5,0.250,0.035,13e-3,2250,2.4e9,2.2e9,8,user
253,257,280,270,280,302,305,327
```

5.0.8. 6. feladat

```
mar,legust1
legust,legust1,csp1,1000,0,1.4,1,2e5,1,0,2
csp,csp1,0,0,const

mar,legust2
legust,legust2,csp2,1000,0,1.4,1,1e5,1,0,2
csp,csp2,0,0,const

rugalmas_cso,cso,csp1,csp2,1000,0,0.0e5,0.3,0.1,13e-3,1000,2.1e11,2.1e9,5,auto,0,0
```

5.0.9. 7. feladat

```
option,dt_save,1.0
mar,alrendsz1
akna,ak01,csp1,1000,0,10.5,98.43,105.0,1.5,nincsrajz
csp,csp1,0.0,0.0,const
mar,alrendsz2
akna,ak02,csp2,1000,0,10.5,101.60,106.07,0.3,nincsrajz
csp,csp2,0.0,-50.0,gorbe1
```

```
csatorna,cs1000,csp2,csp1,1000,0.00,kor,0.4,941,102,101,0.013,0.01,1000,auto,nincsrajz,1.0
gorbe, gorbe1,4
0,1
600,1
601,0
1e6,0
5.0.10. 8. feladat
option, dt_save, 1.0
mar,alrendsz1
akna,szt,csp1,1000,0.0,5000.0,108.0,116.0,0.2,nincsrajz
nyomovezetek,ny1,csp2a,csp1,1000,0.0,0.3,1402,0.015,98.6,110.52
szivattyu,szat01,csp2,csp2a,1000,0,0.3,0.3,5,7
0.0,44.4,1
0.028,38.1,1
0.052,31.3,1
0.075,24.4,1
0.087,20.5,1
0.103,13.9,1
0.115,6.9,1
1440,100.23,99.03,0
szivattyu, szat01s, csp2, csp2a, 1000, 0, 0.3, 0.3, 5, 7
0.0,44.4,1
0.028,38.1,1
0.052,31.3,1
0.075,24.4,1
0.087,20.5,1
0.103,13.9,1
0.115,6.9,1
1440,100.63,99.03,0
akna,at01,csp2,1000,0,1.5,98.43,105.22,1.5,nincsrajz
csp,csp1,0.0,0.0,const
csp,csp2,0.0,-450.0,const
csp,csp2a,0.0,0.0,const
mar, alrendsz2
akna,ak02,csp3,1000,0,28.3,104.60,106.07,0.4,nincsrajz
csp,csp3,0.0,-10.0,const
csatorna,cs1000,csp3,csp2,1000,0.00,kor,0.4,941,104.81,101.11,0.013,0.05,1000,auto,nincsrajz,1.0
5.0.11. 9. feladat
5.0.11.1. "A" rész
```

option, dt_save, auto

```
mar, alrendsz1
valtozo_tomegaram,sziv01,csp1,1000,0,45
0,0
0.01,5.11875E-02
0.02,0.09975
0.03,0.145688
0.04,0.189
0.05,0.229688
0.06,0.26775
0.07,0.303188
0.08,0.336
0.09,0.366188
0.1,0.39375
0.11,0.418688
0.12,0.441
0.13,0.460688
0.14,0.47775
0.15,0.492188
0.16,0.504
0.17,0.513188
0.18,0.51975
0.19,0.523688
0.2,0.525
0.21,0.523688
0.22,0.51975
0.23,0.513188
0.24,0.504
0.25,0.492188
0.26,0.47775
0.27,0.460688
0.28,0.441
0.29,0.418688
0.3,0.39375
0.31,0.366188
0.32,0.336
0.33,0.303188
0.34,0.26775
0.35,0.229688
0.36,0.189
0.37,0.145688
0.38,9.975E-02
0.39,5.11875E-02
0.4,0
0.41,-2.55938E-02
0.42,-2.55938E-02
0.43,0
2.0,0
csp,csp1,0.0,0.0,gorbe1
mar,alrendsz2
nyomas,ny01,csp2,1000,0,1e5
csp,csp2,0.0,0.0,gorbe1
```

gorbe, gorbe1,2

6. fejezet

Fejlesztőknek

6.1. Elemek

Az osztályhierarchia:

tranziens_agelem: minden merev ágelemet ebből kell származtatni

tranziens_agelem_1csp: 1 csomópontos tranziens ágelemek

medence: egyszer medence, egyenlőre még a szintemelkedés sincs benne...

tranziens_agelem_2csp: 2 csomópontos tranziens ágelemek

konc_cso súrlódásos teltszelvényű cső

szivattyu jelleggörbés szivattyú

fojtas parabolikus jelleggörbéjű fojtás

vez_fojtas vezérelt fojtás

cso: telteszelvényű, elosztott paraméterű, súrlódásos cső (karakterisztikák módszere)

merev_alrendszer: merev elemekből összeépített rendszer

Van néhány olyan eljárás, amit mindig definiálni kell

név	magyarázat
<konstruktor></konstruktor>	az elemet létrhozó eljárás, neve az elem neve
<pre>out=subsref(trag,index)</pre>	hozzáférés a mezőkhöz, pl. p1=medence1.p
trag=subsasgn(trag,index,val)	értékadás mezőknek, pl. medence1.p=1e5
<pre>subsasgn(elem,flag,varargin)</pre>	információ kérés

Az info eljárás flag változója mondja meg, milyen típuú információt kérünk:

info	varargin magyarázat		
1		képernyőre (parancsablakba) általános info (csomó-	
		pontok, változók, paraméterek, stb)	
2	1: filenév	ugyanaz, mint az előző, csak file-ba írja.	
3		futás közbeni info fileba	
4		?????	
5		jelleggörbe plottolás, ha van ilyen	

6.1.1. Virtuális elemek

Ezeket az elemeket sosem alkalmazzuk a valóságban, csupán arra valók, hogy származtassuk belőlük a valós elemeket és így egy csomó változót és eljárást nem kell újra meg újra definiálni.

6.1.1.1. tranziens_agelem

Kapcsolódó mezők és eljárások:

név	default érték	magyarázat
nev	-	név
Q	-	térfogatáram, m^3/s
Qr	-	"régi" térfogatáram, m^3/s
folynev	viz	folyadék neve
ro	1e3	sűrűség, kg/m^3
nu	1e-6	kinematikai viszkozitás, m^2/s
mu	1e-3	dinamikai viszkozitás, Pas
В	1e9	rugalmassági modulus, Pa
resfile	0	legyen-e kimeneti file
subsref		hozzáférés a mezőkhöz (mind)
subsasgn		értékadás mezőknek (mind)

6.1.1.2. tranziens_agelem_1csp

1 csomópontos merev ágelemek. Kapcsolódó mezők és eljárások:

név	default érték	magyarázat
csp	-	kapcsolódási csomópont száma
p	0	nyomás a kapcsolódási pontban
subsref	-	hozzáférés a mezőkhöz (mind)
subsasgn	-	értékadás mezőknek (mind)
<pre>info(elem,flag,varargin)</pre>		info a mezőkről

6.1.1.3. tranziens_agelem_2csp

2 csomópontos tranziens ágelemek. Kapcsolódó mezők és eljárások:

név	default érték	magyarázat
csp	-	kapcsolódási csomópontok száma, vek-
		tor
p	[0,0]	nyomás a kapcsolódási csomópontok-
		ban, vektor
subsref		hozzáférés a mezőkhöz (mind)
subsasgn		értékadás mezőknek (mind)
<pre>info(elem,flag,varargin)</pre>		info a mezőkről

6.1.2. Agelemek

6.1.2.1. konc_cso

Konstruktor hívása:

	1	2	3	4	5	6	7	8
konc_cso	név	csp1	csp2	D[m]	s[m]	L[m]	{0.02}	{víz}
konc_cso							λ	folynév

6.1.2.2. fojtas

A fojtási egyenlet alakja: $\Delta p[Pa] = K_0 + K_1 \rho Q|Q|, Q[m^3/s]$. Konstruktor hívása:

	1	2	3	4	5	6
konc_cso	név	csp1	csp2	$K_0[1/m^2]$	$K_1[m^2]$	folynév

6.1.2.3. vez_fojtas

A fojtási egyenlet alakja: $\Delta p[Pa] = K_0 + K_1(t)\rho\,Q\,|Q|,\,Q[m^3/s].$ Meg kell adni egyrészről a K_ζ fojtási tényezőt valamilyen $\varepsilon = e/D$ dimenziótlan geometriai paraméter függvényében, pl. tolózár helyzet a csőátmérőre vonatkoztatva, ill meg kell adni ezen geometriai paraméter időbeli változását. Tehát adott: $t = (t_1, t_2, \ldots, t_N)$ időpontokban $\varepsilon_t = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N)$ és $\varepsilon_K = (\varepsilon_{t,1}, \varepsilon_{t,2}, \ldots, \varepsilon_{t,N})$ pontokban $K_\zeta = (K_{\zeta,1}, K_{\zeta,2}, \ldots, K_{\zeta,N})$. A számítás menete:

$$t \Rightarrow \varepsilon \Rightarrow K_{\zeta} \Rightarrow \zeta = \left(\frac{K}{1-K}\right)^2 \Rightarrow K_1 = \frac{\zeta}{2A^2}.$$

١		1	2	3	4	5	6	7	8	9
ĺ	konc_cso	név	csp1	csp2	folynév	$A[m^2]$	(ε_K)	(K_1)	(t)	(ε_K)

6.1.2.4. szivattyu

A szivattyú jellegörbével rendelkezik, a konstruktor végén a **tranziens** kapcsoló azt mutatja, hogy milyen tranziens állapot fog bekövetkezni. 0 értéknél nincsen semmilyen tranziens, 1 a szivattyú kiesés, 2 és 3

a szivattyú indítás attól függően, hogy rendelkezése áll-e a motor $M_m(n)$ jelleggörbéje vagy csak az M_b billenőnyomatékot, az ahhoz tartozó n_b forulatszámot és az n_{sz} szinkron forulatszámot tudjuk.

	1	2	3	4	5	6	7	8
szivattyu	név	csp1	csp2	$(Q[m^3/s])$	(H[m])	$D_s[m]$	$D_n[m]$	tranziens

Tranziens beállítások:

	9	10	11	12	13	14
tranziens=0						
tranziens=1	(P[kW])	n[1/min]	$\theta[kgm^2]$	$t_{ki}[s]$		
tranziens=2	(P[kW])	n[1/min]	$\theta[kgm^2]$	$M_b[Nm]$	$n_b[1/min]$	$n_{sz}[1/min]$
tranziens=3	(P[kW])	n[1/min]	$\theta[kgm^2]$	$(M_m[Nm])$	$(n_m[1/min])$	

6.1.3. Merev alrendszer

Merev alrendszert kétféleképpen lehet létrehozni:

- 1. Egy fnev.dat kiterjesztésű adatfileban fel kell sorolni az elemeket ill. a csomópontokat, és a konstruktor megkapja a filenevet kiterjesztés nélkül. A file első sorában egy szám áll, ami ez elemek számát jelenti, aztán minden soronként definiálni kell az elemeket, majd a csomópontokat: név, h[m], $Q_{be}[m^3/s]$. pl. mar1=merev_elrendszer('fnev')
- 2. A merev elrendszer konstruktora megkapja az elemeket és a csomópontokat készen: mar1=merev_elrendszer('nev',elemek,csp).

Az objektum adatmezői:

mező		magyarázat
n_elem		elemek száma
n_csp		csomópontok száma
elemek{i}		merev alrendszer elemei
csp{i}	{1}	csomópont neve
csp{i}	{2}	csomópont magassága $[m]$
csp{i}	{3}	csomópontba befutó ágak azonosító száma előjelesen
		(vektor)
csp{i}	{4}	csomóponti nyomás [Pa]
csp{i}	$\{5\}$	elvétel/betáp $[m^3/s]$
csp{i}	{6 }	csomópont neve

A kimenetet szabályzó mezők:

mező		magyarázat
plot_iter		a számítás befejezése után rajzoljuk-e ki a Newton-Raphson
		lépések konvergenciatörténetét (default:0)
save_level		információ a számítás közben (default:3)
	0	semmi
	1	$ ext{topológia} o ext{fnev.out}$
	2	$ ext{topológia} + ext{elemek} o ext{fnev.out}$
	3	$topológia + elemek + eredmények \rightarrow fnev.out$
	4	$topológia + elemek + eredmények + iterációk \rightarrow fnev.out$
	5	topológia + elemek + eredmények + iterációk + mátrixok
		$ m strukt\'ur\'aja ightarrow fnev.out$
	6	topológia + elemek + eredmények + iterációk + mát-
		rixok struktúrája $ o$ fnev.out és mátrixok értékei $ o$
		fnev_ABCD.res

6.1.4. Rugalmas csövek

Rugalmas cső konstruktora kétféle lehet; vagy megadunk egy dőlést (i=dz/dx), kezdeti nyomást és sebességet, vagy csomópontonként magasság- nyomás- és sebességértékeket. A 10. változó hossza dönti el, melyik konstrukctort választottuk.

	1	2	3	4	5	6	7	8	9	10	11	12
cso	név	csp1	csp2	D[m]	s[m]	L[m]	λ	folynev	N	dz/dx	$p_{0,e}$	v_0
cso	név	csp1	csp2	D[m]	s[m]	L[m]	λ	folynev	N	h_i	p_i	v_i

6.2. A főprogram: eon driver.m

Az eon_driver eljárás a főprogram. Kötelező paraméterek a merev és rugalmas adafájl és a számítás időtartama, az opcionális paramétereket később elsoroljuk. A szintaktika:

eon_driver(<merev adafájl>,<rugalmas adafájl>,<időtartam>,{<opció>,<érték>}),

ahol az utolsó blokk $\{\ldots\}$ többször is ismétlődhet. A lehetséges opciók:

Opció	<u>Értékek</u>	Magyarázat
debug	0 1 2 3	A képernyőn futás közben megjelenő információ mennyi-
		sége. Alapbeállításban 0, innen folyamatosan nő az info
		mennyisége.
rajz	0 1	Ha 1, a program futása után a rugalmas csövek végpontjain
		megjeleníti a nyomás- és térfogatáram lefutásokat. Alap-
		beállítás: 0.
dtmin	<szám></szám>	A megengedhető minimális időlépés, ami alatt összevonja
		a csövek időlépését. Alapbeállítása a legkisebb cső-időlépés
		ezrede.
op	windows linux	Az operációs rendszert definiálja, erre a futás eleji könyv-
		tártisztítás miatt van szükség. Alapbeállítás: windows.

Példák futtatásra Matlab környezetben:

```
eon_driver('f0','f0',20) \Rightarrow merev adatfájl: f0.mdt, rugalmas adafájl: f0.dat, időtartam: 20s. eon_driver('f0','f0',20,'debug',2) \Rightarrow több információ a képernyőre. eon_driver('f0','f0',20,'debug',2,'op','linux') \Rightarrow futtatás Linux op. rendszer alatt.
```

A program fő részei: (1) merev alrendszerek felépítés: olvas5m.m hívása, (2) rugalmas alrendszerek építése: olvas5r.m hívása, (3) rugalmas és merev alrendszerek csatlakozásának felépítése, (4) számítás és (5) eredmények listázása. A fájl végén külön eljárás az időlépés választását elvégző dtuj eljárás.

A futás közben használt belső adatstruktúrák, melyek a topológiát írják le:

- mar{i}, i=1..n_mar A merev alrendszereket tartalmazó vektor. Az olvas5m.m eljaras kimenete.
- csovek{i}, i=1..n_cso A rugalmas csöveket tartalmaz vektor. Az olvas5r.m eljaras kimenete.

Csomópont Biblia: cspb objektum

Ez a struktúra tartalmazza az összes merev alrendszer összes csomópontját. Minden eleme (cspb{i}) egy csomópontnak felel meg:

<u>Mező</u>		Magyarázat
cspb{i}	{1}	Merev alrendszer száma.
cspb{i}	{2}	Merev alrendszerben a csomópont száma.
cspb{i}	{3}	A csomópont neve.

Topológia nyilvántartása

A tjcs mátrix minden egyes sora megfelel egy 'globális' csomópontnak, azaz egy olyan csomópontnak, ahol merev-rugalmas vagy rugalmas-rugalmas kapcsolódás van. Az első n_cso számú oszlop a rugalmas csöveket reprezentálja. Ha az i-edik csomópontból indul a j-edik rugalmas cső, t(i,j)=-1, ha onnan indul t(i,j)=1. Az első n_cso számú oszlop után következő n_mar oszlop a merev alrendszerekkel való kapcsolódást mutatja. Ha az i-edik globális csomópont a j-edik merev alrendszer belső számozásában k, akkor tjcs(i,n_cso+j)=k. Ha egy globális csomópont amőba, azaz rugalmas-rugalmas kapcsolódásról van szó, a merev alrendszerek oszlopaiban csupa zérus elem áll.

	rcso1	rcso2	rcso3	mar1	mar2
g_csp1	-1	0	0	17	0
g_csp2	1	-1	0	0	0
g_csp3	0	1	-1	0	29
g_csp4	0	0	1	8	0

6.1. táblázat. Topológia példa.

A tjcs építése közben feltöltődik egy gcsp_tipus (globális csomópont típus) vektor is, aminek i-edik eleme 1, ha az i-edik globális csomópont merev-rugalmas csatlakozás és 2, ha amőba (rugalmas-rugalmas)¹.

 $^{^1}$ Az adatfájlokon keresztül még nem elérhető ugyan, de van egy 3. lehetőség, amikor adott nyomású amőba csomópontról van szó, ekkor a megfelelő elem 3.

6.1. ábra. Példa topolóigára, a megfelelő tjcs mátrix a 6.1. táblázatban látható.

Ezeken kívül a hálózat felépítése után létrehoznuk egy cso_mar és egy mar_cso nevű obektumot, ezek a futtatás közben hasznosak. A cso_mari struktúra két mezőből áll, mind a két mező egy-egy vektort tartalmaz. Az első elem a cső elejére, a második a cső végére vonatkozik, a vektorok pedig a kapcsolódó merev alrendszer számát és a csomópontszámot tartalmazzák. A fenti példában mar_cso11=[1,17], mar_cso12=[0,0], mar_cso21=[0,0], mar_cso22=[2,29], mar_cso31=[2,29], mar_cso32=[1,17]. A másik struktúra a merev alrendszerek frissítésekor megmutatja, hogy honnan van szükség peremfeltételekre, ennek merev alrendszerenként annyi mezője van, ahány rugalmas csőhöz kapcsolódó csomópontja van a merev alrendszernek. Az utolsó két mező pedig megadja a kapcsolódó csomópont belső számát ill. a hozzá kapcsolódó rugalmas csövek számát előjelesen (az induló rugalmas csövek negatív előjelűek, az érkezők pozitívak). A fenti pélában mar_cso111=17, mar_cso112=[-1], mar_cso121=8, mar_cso122=[3], mar_cso211=29 és mar_cso212=[2,-3].

7. fejezet

Tennivalók, hibák

7.1. Hibák