Automatic Scaling and Monitoring

Module overview

Topics

- Elastic Load Balancing
- Amazon CloudWatch
- Amazon EC2 Auto Scaling

Activities

- Elastic Load Balancing activity
- Amazon CloudWatch activity

Lab

 Scale and Load Balance Your Architecture

Module objectives

After completing this module, you should be able to:

- Indicate how to distribute traffic across Amazon Elastic Compute Cloud (Amazon EC2) instances by using Elastic Load Balancing
- Identify how Amazon CloudWatch enables you to monitor AWS resources and applications in real time
- Explain how Amazon EC2 Auto Scaling launches and releases servers in response to workload changes
- Perform scaling and load balancing tasks to improve an architecture

Section 1: Elastic Load Balancing

Elastic Load Balancing

- Distributes incoming application or network traffic across multiple targets in a single Availability

 Zone or across multiple

 Availability Zones.
- Scales your load balancer as traffic to your application changes over time.

Types of load balancers

Application Load Balancer	Network Load Balancer	Classic Load Balancer (Previous Generation)
 Load balancing of HTTP and HTTPS traffic 	 Load balancing of TCP, UDP, and TLS traffic where extreme performance is required 	 Load balancing of HTTP, HTTPS, TCP, and SSL traffic
 Routes traffic to targets based on content of request Provides advanced request routing targeted at the delivery of modern application architectures, including microservices and containers 	 Routes traffic to targets based on IP protocol data Can handle millions of requests per second while maintaining ultra-low latencies Is optimized to handle sudden and volatile traffic patterns 	 Load balancing across multiple EC2 instances
 Operates at the application layer (OSI model layer 7) 	 Operates at the transport layer (OSI model layer 4) 	 Operates at both the application and transport layers.

How Elastic Load Balancing works

- With Application Load
 Balancers and Network Load
 Balancers, you register
 targets in target groups, and
 route traffic to the target
 groups.
- With Classic Load Balancers, you register instances with the load balancer.

Load balancer performs health checks to monitor health of registered targets.

Elastic Load Balancing use cases

Highly available and fault-tolerant applications

Containerized applications

Elasticity and scalability

Virtual private cloud (VPC)

Hybrid environments

Invoke Lambda functions over HTTP(S)

Activity: Elastic Load Balancing

You must support traffic to a containerized application.

Application Load Balancer

You have extremely spiky and unpredictable TCP traffic.

Network Load Balancer

You need simple load balancing with multiple protocols.

Classic Load Balancer

You need to support a static or Elastic IP address, or an IP target outside a VPC.

Network Load Balancer

You need a load balancer that can handle millions of requests per second while maintaining low latencies.

Network Load Balancer

You must support HTTPS requests.

Application Load Balancer

Load balancer monitoring

- Amazon CloudWatch metrics Used to verify that the system is performing as expected and creates an alarm to initiate an action if a metric goes outside an acceptable range.
- Access logs Capture detailed information about requests sent to your load balancer.
- AWS CloudTrail logs Capture the who, what, when, and where of API interactions in AWS services.

Section 1 key takeaways

- Elastic Load Balancing distributes incoming application or network traffic across multiple targets in one or more Availability Zones.
- Elastic Load Balancing supports three types of load balancers:
 - Application Load Balancer
 - Network Load Balancer
 - Classic Load Balancer
- ELB offers instance health checks, security, and monitoring.

Section 2: Amazon CloudWatch

Monitoring AWS resources

To use AWS efficiently, you need insight into your AWS resources:

- How do you know when you should launch more Amazon EC2 instances?
- Is your application's performance or availability being affected by a lack of sufficient capacity?
- How much of your infrastructure is actually being used?

Amazon CloudWatch

Amazon CloudWatch

- Monitors
 - AWS resources
 - Applications that run on AWS
- Collects and tracks
 - Standard metrics
 - Custom metrics
- Alarms
 - Send notifications to an Amazon SNS topic
 - Perform Amazon EC2 Auto Scaling or Amazon EC2 actions
- Events
 - Define rules to match changes in AWS environment and route these events to one or more target functions or streams for processing

CloudWatch alarms

- Create alarms based on
 - Static threshold
 - Anomaly detection
 - Metric math expression
- Specify
 - Namespace
 - Metric
 - Statistic
 - Period
 - Conditions
 - Additional configuration
 - Actions

Activity: Amazon CloudWatch

Amazon EC2

Amazon RDS

Amazon S3

Elastic Load Balancing

Amazon Elastic Block Store If average CPU utilization is > 60% for 5 minutes...

Correct!

If the number of simultaneous connections is > 10 for 1 minute...

Correct!

If the maximum bucket size in bytes is around 3 for 1 day...

Incorrect. *Around* is not a threshold option. You must specify a threshold of >, >=, <=, or <.

If the number of healthy hosts is < 5 for 10 minutes...

Correct!

If the volume of read operations is > 1,000 for 10 seconds...

Incorrect. You must specify a statistic (for example, average volume).

Section 2 key takeaways

- Amazon CloudWatch helps you monitor your AWS resources—and the applications that you run on AWS—in real time.
- CloudWatch enables you to
 - Collect and track standard and custom metrics.
 - Set alarms to automatically send notifications to SNS topics, or perform Amazon EC2 Auto Scaling or Amazon EC2 actions.
 - Define rules that match changes in your AWS environment and route these events to targets for processing.

Section 3: Amazon EC2 Auto Scaling

Why is scaling important?

Amazon EC2 Auto Scaling

- Helps you maintain application availability
- Enables you to automatically add or remove EC2 instances according to conditions that you define
- Detects impaired EC2 instances and unhealthy applications, and replaces the instances without your intervention
- Provides several scaling options –
 Manual, scheduled, dynamic or ondemand, and predictive

Typical weekly traffic at Amazon.com

Provisioned capacity

November traffic to Amazon.com

Auto Scaling groups

An Auto Scaling group is a collection of EC2 instances that are treated as a logical grouping for the purposes of automatic scaling and management.

Scaling out versus scaling in

How Amazon EC2 Auto Scaling works

Implementing dynamic scaling

AWS Auto Scaling

AWS Auto Scaling

- Monitors your applications and automatically adjusts capacity to maintain steady, predictable performance at the lowest possible cost
- Provides a simple, powerful user interface that enables you to build scaling plans for resources, including –
 - Amazon EC2 instances and Spot Fleets
 - Amazon Elastic Container Service (Amazon ECS) Tasks
 - Amazon DynamoDB tables and indexes
 - Amazon Aurora Replicas