Límite, continuidad de la función

1.1. Limite de la magnitud variable, variable infinitamente grande

Definición 1.1 El número constante a se denomina límite de la variable x, si para cualquier número infinitesimal positivo ϵ prefijado, se puede indicar tal valor de la variable x, a partir del cual todos los valores posteriores de la misma satisfacen la desigualdad:

$$|x-a|<\epsilon$$

Si el número a es el límite de la variable x, se dice que x tiende al límite a; su notación es:

$$x \longrightarrow a$$
 ó $\lim x = a$

En términos geométricos la definición de limite puede enunciarse así: El número constante a es el limite de la variable x, si para cualquiera vecindad infinitesimal prefijada de radio ϵ y centro en el punto a, existe un valor de x tal que todo los puntos correspondientes a los valores posteriores de la variable se encuentren dentro de la misma vecindad.

Teorema 1.1 Una magnitud variable no puede tener dos límites.

Demostración.- En efecto, si lím x=a y lím x=b(a < b), entonces x debe satisfacer las dos desigual-dades simultáneamente: $|x-a| < \epsilon$ y $|x-b| < \epsilon$ siendo ϵ arbitrariamente pequeño, pero esto es imposible, si $\epsilon < \frac{b-a}{2}$

Definición 1.2 La variable x tiende al infinito, si para cualquier número positivo M prefijado se puede elegir un valor de x tal que, a partir de él todos los valores posteriores de la variable satisfagan la desigualdad |x| > M.

La variable x que tiende al infinito, se denomina infinitamente grande y esta tendencia se expresa así: $x \longrightarrow \infty$.

1.2. Limite de la función

Definición 1.3 Supongamos que la función y = f(x) está definida en determinada vecindad del punto a en ciertos puntos de la misma.

La función y=f(x) tiende al límite $b\ (y\to b)$ cuando x tienda a $a\ (x\to a)$, si para cada número positivo ϵ , por pequeño que éste sea, es posible indicar un número positivo δ tal que para todos los valores x, diferentes de a, que satisfacen la desigualdad: $|x-a|<\delta$, se verificará la desigualdad:

$$|f(x) - b| < \epsilon$$

Si b es el límite de la función f(x), cuando $x \to a$, su notación es:

$$\lim_{x \to a} f(x)$$

o bien $f(x) \to b$, cuando $x \to a$.

Si la variable y = f(x) tiende a un límite b, cuando x tiende a a, escribimos:

$$\lim_{x \to a} f(x) = b$$

Definición 1.4 La función f(x) tiende al límite b cuando $x \to \infty$, si para cualquier número positivo ϵ arbitrariamente pequeño existe un número positivo N tal que para todos los valores de x que satisfacen la desigualdad |x| > N, se cumpla la desigualdad

$$|f(x) - b| < \epsilon$$
.

1.3. Función que tiende al infinito. Funciones acotadas

Definición 1.5 La función f(x) tiende al infinito cuando $x \to a$, es decir, es una magnitud infinitamente grande cuando $x \to a$, si para cualquier número positivo M, por grande que sea, existe un valor $\delta > 0$ tal que para todos los valores de x diferentes de a y que satisfacen la condición $|x - a| < \delta$, se cumpla la desigualdad |f(x)| > M.

Si f(x) tiende al infinito cuando $x \to a$, se escribe

$$\lim_{x \to a} f(x) = \infty$$

Definición 1.6 La función y = f(x) se denomina acotada en el dominio dado de variación del argumento x, si existe un número positivo M tal que para todos los valores de x pertenecientes al dominio considerado se cumpla la desigualdad $|f(x)| \leq M$. Si el número M no existe, se dice que la función f(x) no está acotada en el dominio dado.

Definición 1.7 La función f(x) se denomina acotada, cuando $x \to a$, si existe una vecindad con centro en el punto a en la cual dicha función está acotada.

Definición 1.8 La función y = f(x) se denomina acotada, cuando $x \to \infty$, si existe un número N > 0 tal que para todos los valores de x que satisfacen la desigualdad |x| > N, la función f(x) esté acotada.

 $\textbf{Teorema 1.2} \ \textit{Si} \ \underset{x \rightarrow a}{\text{lim}} \ f(x) = b, \ \textit{siendo} \ b \ \textit{un número finito}, \ \textit{la función} \ f(x) \ \textit{está acotada cuando} \ x \rightarrow a.$

Demostración.- Por definición de límite se deduce que para $\epsilon>0$ existe un número δ tal que $a-\delta < x < a+\delta$ se cumple la desigualdad

$$|f(x) - b| < \epsilon$$

 $es\ decir$

$$|f(x)| < |b| + \epsilon$$

.