УЛК 576.895.772 : 591.512.13

© 1993

ДИСТАНЦИЯ НАПАДЕНИЯ, ДАЛЬНОСТЬ И ХАРАКТЕР СУТОЧНОГО РАЗЛЕТА СЛЕПНЕЙ РОДА HYBOMITRA (DIPTERA: TABANIDAE)

С. А. Константинов

Приводятся результаты экспериментов по мечению—повторному отлову слепней рода *Hybomitra* в Псковской обл. на полях, перемежающихся участками леса. Оценен ряд параметров поискового лета слепней, в том числе дистанция их нападения, средняя и максимальная дальность суточного разлета.

Эффективность поискового поведения у кровососущих двукрылых определяется присущей виду летной активностью, которая может быть оценена дальностью суточного разлета и дистанцией нападения — расстоянием, с которого насекомые начинают целенаправленное движение к опознанному объекту. В опытах по мечению—повторному отлову было установлено, что максимальная дальность суточного разлета составляет для рода Tabanus 1.6, а рода *Chrysops* — 2 км (Bennett, Smith, 1968). По другим данным, слепни T. abactor разлетались за сутки на 0.8 км (Kingston e. a., 1986), а слепни рода Chrysops — на 1.1 км (Beesley, Crewe, 1963). В отношении слепней рода Нувотіtrа известно, что они способны за 5 ч преодолевать расстояние в 1.5 км (Балашов и др., 1985), а в течение дня — прилетать к группе людей с расстояний до 5 км (Купрессова и др., 1977). В последней работе была предпринята попытка определить для слепней рода Hybomitra и дистанцию нападения, однако методические особенности опытов: длительное содержание меченых особей в садках (до 1 сут), предшествующее выпуску, и соответственно очень низкий их возврат (от 0 до 4.6 % со 100 м), а также малое число исследованных расстояний, которые гипотетически могли оказаться дистанцией нападения (200, 100 и 50 м), не позволяют прийти к определенным выводам.

Целью наших исследований являлась оценка дистанции нападения слепней рода *Hybomitra* на основании опытов по выпуску меченых особей с малых расстояний от прокормителя, а также определение дальности и характера их суточного разлета.

материал и методика

Эксперименты проводили 12—14.06.1986 и 24—28.06.1988 гг. в Себежском р-не Псковской обл. на полях, перемежающихся участками леса. Мечение слепней рода *Hybomitra*, среди которых доминировали *H. bimaculata* Macq. и *H. muehlfeldi* Br., осуществляли методом индивидуальной маркировки вручную, используя в качестве маркеров нетоксичные поливинилацетатные краски.

В 1986 г. на местности были выбраны 3 точки выпуска слепней и 3 пункта отлова, в которых в качестве привлекающего объекта использовали корову

419

Схема расположения на местности пунктов выпуска и отлова меченых слепней рода *Hybomitra* в эксперименте 1986 г.

1—3 — пункты мечения и отлова слепней на поле; 1′—3′ — точки выпуска меченых слепней. Disposition of the points of release and capture of horse-flies marked in 1986.

(см. рисунок). Маркировку (в каждом пункте особой меткой) и отлов вели одновременно во всех трех пунктах с 9 до 20 ч, выпуская меченых слепней в 150-200 м от животного через каждые 15 мин мечения. Прямая видимость между точками выпуска и ближайшими пунктами отлова отсутствовала. При подведении итогов повторного отлова учитывали меченых особей, пойманных до 16 ч следующего дня. Поскольку разлет первых особей, меченных в течение дня, продолжался 1.5, а последних — 0.5 сут, полученные значения повторного вылова характеризовали средний суточный разлет меченых слепней. Всего было проведено 2 мечения и 2 повторных отлова. Среднее число меченых особей, выпущенных в течение дня в каждой из точек, составило 857 ± 68 , общее число помеченных за 2 дня — 5139.

В 1988 г. привлекающим объектом служила одна корова, которая паслась в постоянной на весь период опыта (4 дня) точке поля. Маркировку слепней вели с 10 до 16 ч, выпуская меченых особей через каждые 15 мин в различных направлениях от коровы на расстояниях от 10 до 400 м. Все точки выпуска находились в пределах прямой видимости от животного. При каждой новой маркировке характер метки меняли. Время выпуска и отлова меченых особей фиксировалось. Повторный отлов вели постоянно в течение всего дня. Кроме

того, учитывали меченых особей, прилетевших к животному до определенного времени следующего дня, не превышающего 24 ч с момента выпуска. Это позволило, как и в 1986 г., оценить интенсивность суточного разлета меченых слепней. Всего за период опытов было помечено и выпущено 3164 слепня.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сравнение долей меченых особей, прилетевших в экспериментах 1986 г. к разным коровам в течение суток с одних и тех же расстояний, проведенное по критерию t, показало, что взаимное расположение на местности точек выпуска и пунктов отлова слепней не влияло на результаты повторного отлова (табл. 1). Отсутствие предпочтений мечеными особями какого-либо направления указывает на хаотический характер их разлета, что подтверждают опыты других исследователей (Купрессова и др., 1977; Joyce, Hansens, 1968; Thornhill, Hays, 1972; Sheppard e. a., 1980). Это обстоятельство позволило рассчитать средние значения интенсивности повторного отлова меченых особей в зависимости от расстояния по всей совокупности данных, полученных в 1986 г.

Сравнение по критерию t средних долей меченых особей, прилетевших к корове в экспериментах 1986 и 1988 гг. с одних и тех же расстояний (150, 200, 300, 350—400 м), ни в одном случае не выявило между ними достоверных различий (табл. 2). Следовательно, наличие или отсутствие прямой видимости между точками выпуска и пунктами отлова слепней при расстояниях свыше 150 м не влияет на интенсивность возврата меченых особей. Учитывая этот вывод, а также сходные погодные условия опытов и одинаковую методику мечения, мы, переходя к количественным оценкам суточного разлета слепней, объединили данные экспериментов двух лет в единый массив (табл. 3).

В наших опытах слепней, предназначенных для мечения, отлавливали во время их нападения на корову, т. е. метили особей, заведомо нуждающихся в кровяном питании. Предполагалось, что после выпуска их поведение будет направлено на поиск прокормителя. Однако после процедуры мечения поисковый рефлекс проявлялся лишь у части меченых особей, которая может быть практически оценена при выпуске насекомых с расстояний, заведомо меньших их дистанции нападения (несколько метров); тогда число особей, прилетевших к прокормителю, будет характеризовать долю слепней, у которых маркировка не отразилась на поведении (Foil, 1983). При неизменных условиях маркировки эта доля останется постоянной, с какого бы расстояния ни производили выпуск меченых особей, и для получения истинных количест-

Таблица 1

Средняя интенсивность повторного отлова меченых слепней рода $Hybomitra\ (Y,\ \%)$ в зависимости от взаимного расположения на местности пунктов выпуска и отлова (см. рисунок)

Dependence of averuge intensity of recapture of marked horse-flies of the genus Hybomitra $(\bar{Y}, \%)$ on reciprocal disposition of the release and capture points (see pic.)

Расстояние (м)	Пункты выпуска и отлова	$\bar{Y} \pm S_{Y}$	Число выпусков
150	1'—1	8.89 ± 0.47	2
300—350	2'—2 1'—2; 3	9.16 ± 3.16 1.61 ± 0.34	2 4
	2^{3} -3 3^{2} -2	2.11 ± 0.33 2.77 ± 0.92	$\frac{2}{2}$
580—630	2'—1 3'—1	1.07 ± 0.11 1.13 ± 0.34	$\frac{2}{2}$

Таблица 2 Средняя интенсивность повторного отлова меченых слепней рода Hybomitra (%) в экспериментах 1986 и 1988 гг. (Y_1 и Y_2 соответственно)

Average intensity of recapture of marked horse-flies of the genus Hybomitra (%) in 1986 and 1988 (Y_1 and Y_2 respectively)

Расстояние (м)	$Y_1 + S_Y$	$\bar{Y}_2 \pm S_Y$	Расстояние (м)	$\overline{Y}_1 \pm S_Y$	$Y_2 \pm S_Y$
10		20.7 ± 4	200	5.3 + 1.7	6.1 + 1.2
15		20.6 + 1.8	300	1.8 + 0.1	3.1 ± 1.2
25		22.2 ± 5.8	325	2 ± 0.7	
50		19.6 ± 4.2	350	2.1 + 0.3	
75		14.5 + 1.7	400		1.5 + 0.9
100		11.2 + 1.8	580	1.1 + 0.1	
125		7.4 + 1.3	630	1.1 + 0.3	
150	9 ± 1.6	7.7 ± 2.9			

венных оценок разлета слепней она должна быть принята за $100\,\%$. В наших опытах к корове с $10\,$ м летело $20.7\,\%$ меченых слепней. Следовательно, можно полагать, что при выпуске меченых особей с расстояний более $10\,$ м к нападению на корову способно лишь $20.7\,\%$ из них, поэтому истинная доля слепней, прилетающих к животному с расстояния $X\,(Y_\tau)$ должна вычисляться как

$$Y_r = \frac{Y_\phi \, 100 \,\%}{20.7 \,\%} \,, \tag{1}$$

где Y_{ϕ} — доля меченых насекомых, фактически прилетевших к корове с расстояния X (табл. 3). В дальнейших расчетах мы оперировали только значениями Y_{τ} .

Данные табл. 3 были оценены с точки зрения их соответствия теоретической модели разлета слепней, основанной на предположении, что все насекомые, выпущенные с какого-либо расстояния от привлекающего объекта,

Таблица З

Средняя интенсивность повторного отлова меченых слепней рода Hybomitra (Y, %) в зависимости от расстояния (по данным 1986 и 1988 гг.) и результатов расчетов их дистанции нападения (X_u , m)

Dependence of average intensity of recapture of marked horse-flies of the genus Hybomitra (Y, %) on the distance (data 1986, 1988), and estimations of its attack distance (X_u, m)

Расстояние (м)	\bar{Y} $+$	$-S_{\gamma}$	Число выпущен-		
	$ar{Y}_{m{\phi}m{a}m{\kappa}m{ au}.}$	$\bar{Y}_{reop.}$	ных меченых особей	Число выпусков	X_{u}
10	20.7 + 4	100+19.3	631	12	
15	20.6 + 1.8	99.5 + 8.7	308	6	
25	22.2 + 5.8	107.2 ± 28	263	5	
50	19.6 + 4.2	94.7 ± 20.3	227	4	46.5
75	14.7 ± 1.7	70.1 ± 8.1	362	7	58
100	11.2 ± 1.8	54.1 ± 8.7	215	4	63
125	7.4 ± 1.3	35.8 ± 6.3	521	8	54.5
150	8.3 ± 1.3	40.1 ± 6.3	3548	7	72.6
200	5.8 + 0.9	28 ± 4.3	1894	5	69.1
300	2.4 + 0.6	11.6 ± 2.9	1659	4	43.7
325	2 + 0.7	9.7 ± 3.4	3304	4	39.6
350	2.1 + 0.3	10.1 ± 1.4	1835	2	44.4
400	1.5 ± 0.9	7.2 ± 4.3	262	4	36.3
600	1.1 ± 0.2	5.3 + 0.9	3582	4	40

разлетаются равномерно и прямолинейно по радиусам во всех направлениях. С этих позиций долю меченых слепней, которая прилетит к объекту с расстояния X_n (Y_n), можно вычислить как

$$Y_n = Y_i \frac{\arcsin \frac{X_i}{X_n}}{\pi} \,, \tag{2}$$

где Y_i — доля меченых слепней, прилетающих к объекту с расстояния $X_i <\!\!< \!\! X_n$ (вывод формулы см. Плеханов, Плеханова, 1977). Используя формулу (2), мы рассчитали ожидаемый возврат меченых особей при выпуске со всех исследованных расстояний (X_n) , начиная со 100 м. В качестве контрольных использовали расстояния, лежащие в интервале $50 \, \mathrm{m} < X_i < X_n \cdot Y_i$ принимали равным возврату меченых особей (Y_{τ}) , соответствующему данному расстоянию X_i . Во всех случаях ожидаемый возврат меченых слепней оказался значительно ниже (в 1.9—3.5 раза) наблюдаемого, и эти различия достоверны (проверено по критерию t). Таким образом, фактическая вероятность прилета меченых особей на дугу с любым радиусом от привлекающего объекта в несколько раз выше, чем следует из принципа хаотического и прямолинейного разлета слепней, откуда можно заключить, что их поисковый полет протекает по сложной траектории, которая по сравнению с прямолинейной увеличивает вероятность случайного обнаружения прокормителя в среднем в 2.5 раза. Эту величину необходимо ввести в уравнение (2) в качестве поправочного коэффициента

$$Y_n = Y_i \frac{\arcsin \frac{X_i}{X_n}}{\pi} 2.5. \tag{3}$$

На основании уравнения (3) была произведена оценка минимальной дистанции нападения слепней, как такого расстояния от объекта (X_u) , на котором хаотический поисковый полет изменяется на строго целенаправленный — все насекомые, попавшие в круг с радиусом X_u , прилетают в его центр, где расположен привлекающий объект $(Y_i = Y_u = 100 \%)$

$$X_{u} = X_{n} \sin (0.0126 Y_{n}). \tag{4}$$

Результаты расчетов $X_{\rm u}$ представлены в табл. 3, из которой следует, что минимальная дистанция нападения слепней лежит в пределах 36.3-72.6 м, составляя в среднем 51.6 ± 3.8 м.

При выводе уравнения (4) не учитывалось, что какая-то часть особей (<100 %) может целенаправленно двигаться к объекту с расстояний, превы--шающих X_{u} . Гипотеза была проверена методом регистрации минимальных промежутков времени, требуемого меченым слепням для того, чтобы прилететь к объекту с определенного расстояния (табл. 4). Если это время исчисляется секундами, мы вправе предполагать наличие целенаправленного (прямолинейного) движения на объект. Анализ данных, представленных в табл. 4, приводит к следующим выводам: 1. Прилет к корове меченых слепней через несколько секунд после выпуска наблюдался с расстояний до 75 м, но ни разу с расстояний 100 м и более. 2. При выпуске меченых особей с расстояний 100—400 м минимальное время, затраченное на поиск коровы, составляло в среднем 13.3—219 мин, что еще раз подтверждает непрямолинейный характер траектории поискового полета слепней. З. В отдельных выпусках слепни не летели целенаправленно к животному даже с расстояний, заведомо меньших дистанции нападения (10—15 м). Возможно, этот факт объясняется негативным влиянием на насекомых 15-минутного содержания их в садке, предшествующего выпуску.

Таблица 4

Промежутки времени между моментами выпуска меченых слепней рода Hybomitra и подлета к корове первых из их числа $(t, \, \text{мин})$, а также оценки максимальной дальности суточного разлета слепней $(X_{\text{max}}, \, \text{м})$

Intervals between the time of releasing of marked horse-flies of the genus Hybomitra, and the time of the first registration of flies, attacking a cow (t, \min) , and estimations of the maximal distance of horse-flies flying away during a day (X_{\max}, \max)

Расстояние (м)		Промежутки времени	n	v	
	t _{min}	$t\pm S_t$	$t \pm S_t$ t_{max}		X _{max}
10	0.1	0.95 + 0.5	5	12	1
15	0.1	3.4 + 1.4	5	5	
25	0.1	0.1	0.1	5	
50	0.1	3.8 ± 1.7	7	4	
75	0.1	7.6 ± 4.2	30	7	3000
100	5	13.3 ± 5.5	28	4	2946
125	3	27.2 ± 12.1	109	9	1964
150	17	37.2 ± 17.5	72	3	1880
200	30	84.3 ± 33.1	160	3	1204
300	68	111.5 ± 43.5	155	2	
350					1214
400	81	219 ± 102.9	420	3	

Большинство меченых слепней, выпущенных в пределах дистанции нападения, нападали на корову не сразу, а по прошествии некоторого времени. Расчеты среднего времени между моментами выпуска меченых особей и их отлова у животного в течение суток представлены в табл. 5. С расстояний менее 50 м меченые слепни нападали на корову в среднем через 36.5 ± 1.1 мин, причем это время оставалось практически неизменным, с какого бы расстояния в пределах 50 м ни производили выпуск. Начиная с 50 м среднее время между выпуском и прилетом слепней к животному последовательно возрастало и для 350 м составило 261 ± 76.4 мин (мы взяли средние значения для 300 и 400 м ввиду малого объема выборки по каждому из этих расстояний).

Данные табл. 5 позволили оценить среднюю дальность суточного разлета слепней. Если для того чтобы прилететь к прокормителю в течение суток с расстояния X_n слепню необходимо затратить среднее время t_n , то правомерно предположить, что средняя дальность суточного разлета составит

$$\bar{X} = \frac{t}{t_n} X_n$$

где t — общая продолжительность суточной активности слепней. Так как в дни проведения опытов слепни были активны примерно с 9.30 до 20.30, т. е. в те-

Таблица 5

Среднее время подлета к корове слепней рода Hybomitra (t, мин) и оценки средней дальности их суточного разлета $(\bar{X},$ м)

Average time between the releasing of marked horse-flies of the genus Hybomitra and registration of the flies attacking a cow (I, min), and estimations of average distance of their flying away during a day (X, m)

		•					
Расстояние (м)	$t\pm S_t$	n	\bar{X}	Расстояние (м)	$t\pm S_t$	n	X
10	33.3+5.6	121		100	68 ± 10.6	21	1049
15	36.5 + 9.4	59		125	90.6 + 15.9	27	915
25	37.9 + 9.3	45		150	118.3 + 33.5	14	807
50	38.2 + 4.8	42		200	162.2 ± 49.7	9	788
75	50.4 ± 11.9	32	1187	350	260.9 + 76.4	9	1029

чение 11 ч, параметр t был принят равным 660 мин. Кроме того, считая, что с расстояний менее 50 м все слепни летят к корове целенаправленно, необходимо ввести поправку на то, что в наших опытах среднее время прилета меченых особей с этих расстояний составляло $t_{50}=36.5$ мин. Тогда формула расчета средней дальности суточного разлета слепней примет вид

$$\bar{X} = \frac{660 (X_n - 50)}{t_n - t_{50}}.$$
 (5)

Последовательно подставляя в это уравнение расстояния X_n , начиная с 75 м, и соответствующие им значения t_n , мы получим ряд оценок средней дальности суточного разлета слепней (табл. 5). Все они укладываются в интервал 788—1187 м, составляя в среднем 962.5 ± 63 м.

Другой способ оценки того же параметра заключается в экстраполяции фактической зависимости средней интенсивности прилета насекомых к прокормителю (Y) от расстояния до него (X). Предварительный анализ показал, что эта зависимость аппроксимируется уравнением регрессии типа

$$Y = a + b \cdot \frac{1}{X^2} \pm S,$$

которое было рассчитано нами по методу «трех точек» (Тьюки, 1981)

$$Y = 2.516 + \frac{1614051.39}{(X+80)^2} \pm 3.691. \tag{6}$$

На основании этого уравнения средняя дальность суточного разлета слепней (\bar{X}) может быть оценена как такое значение X, при котором вероятность прилета слепней к животному статистически не отличается от 0, т. е. когда Y становится равным S. Это значение $\bar{X}=1092$ м.

Зная средние значения промежутков времени между выпуском меченых слепней и прилетом к корове первых из их числа (табл. 4), можно, воспользовавшись уравнением (5), оценить максимальную дальность суточного разлета слепней (табл. 4). В этом случае параметр t_{50} будет равен 2.1 мин. Расчеты показывают, что максимальное расстояние, на которое слепни способны разлетаться за сутки, лежит в пределах 1204-3000 м, составляя в среднем 2035 ± 324.3 м.

выводы

- 1. Разлет слепней рода *Hybomitra* на полях, перемежающихся участками леса, происходит хаотически. Наличие или отсутствие прямой видимости до объекта не отражается на числе особей, прилетающих к нему с расстояний свыше 150 м.
- 2. Поисковый полет слепней рода *Hybomitra* протекает по сложной траектории, которая по сравнению с прямолинейной повышает вероятность обнаружения прокормителя примерно в 2.5 раза.
- 3. Предельное расстояние, с которого у части особей начинается целенаправленный полет к корове, лежит в интервале 75—100 м. С расстояний менее 50 м доля слепней, летящих к корове, достигает 100 % (вывод справедлив при условии, что все слепни, обнаружившие прокормителя, обязательно нападают на него).
- 4. Среднее расстояние, на которое слепни разлетаются в течение суток, составляет около 1, максимальное около 2 км.

Список литературы

Балашов Ю. С., Веселкии А. Г., Константинов С. А., Ульянов К. Н. Разлет и численность слепней рода Hybomitra Enderlain (Tabanidae) вокруг стад крупного рогатого

скота // Энтомол. обозр. 1985. Т. 64, вып. 1. С. 74—78. Купрессова В. Б., Савельева И. П., Шевякова Е. С., Ершов В. И. Некоторые особенности поведения слепней при поиске объектов питания // Этология насекомых и клещей. Томск, 1977. С. 76-86.

Плеханов Г. Ф., Плеханова Л. Г. Количественные методы изучения пространственной ориентации насекомых // Этология насекомых и клещей. Томск, 1977. С. 163—177. Тьюки Дж. Анализ результатов наблюдений. М.: Мир, 1981. 693 с.

Beesley W. N., Grewe W. The bionomics of Chrysops silacea Austen. II. The biting rhythm and dispersal in rain forests // Ann. Trop. Med. Parasitol. 1963. Vol. 57, N 2. P. 191—203. Bennett G. F., Smith S. M. Phosphorus for marking Tabanidae (Diptera) // Mosq. News. 1968. Vol. 28, N 4. P. 559—569.

Foil L. A mark-recapture method for measuring effects of epatial separation of horses on tabanid (Diptera) movement between host // J. Med. Entomol. 1983. Vol. 20, N 3. P. 301—305.

Joyce J. M. Jr., Hansens E. J. The influence of weather on the activity and behavior of Greenband Fligs. Tabanus pigrovittatus Magguest and Tabanus lineals Exhibiting // L. N. J. Entomol.

head Flies, Tabanus nigrovittatus Macquart and Tabanus lineola Fabricius // J. N. J. Ento-

mol. Soc. 1968. Vol. 76, N 2. P. 72—80.

Kingston S. R., Wangberg J. K., Sanders D. P. Flight behavior and nocturnal resting sites of Tabanus abactor Philip (Diptera: Tabanidae) in the Texas Rolling Plains // J. Kans. Entomol. 1986. Vol. 59, N 2. P. 337—342.

Sheppard C., Wilson B. H., Farthing B. R. Flight routes of Tabanidae in a Louisiana bottomland hard wood forests // Environ. Entomol. 1980. Vol. 9, N 5. P. 489—491.

Thornhill A. R., Hays K. L. Dispersal and flight activities of some species of Tabanus (Diptera: Tabanidae) // Environ. Entomol. 1972. Vol. 1, N 5. P. 602—606.

ЗИН РАН, Санкт-Петербург

Поступила 10.01.1993

A RANGE OF ATTACK, DISTANCE AND CHARACTER OF DAILY FLYING OF HORSE-FLIES OF THE GENUS HYBOMITRA (DIPTERA: TABANIDAE)

S. A. Konstantinov

Key words: Tabanidae, Hybomitra, attack distance, daily flying.

SUMMARY

The experiments on the capture-recapture of horse-flies of the genus Hybomitra at different distance from a single pasturing cow have been conducted in the Pskov region in fields with sections of forest. A chaotic flying away of horse-flies was observed; presence or absence of a direct visibility of an object did not influence on the number of horse-flies coming to it from a distance more than 150 m. The search flight of horse-flies has a complicated trajectory, that encreases the propability to find a host in 2.5 times approximately, as compared with a straightforward one. In the case of distance less than 50 meters a quota of horse-flies flying towards a cow can reach 100 % (this conclusion derives from the assumption that all horse-flies, which have discovered host, are sure to attack it). Mean value of daily flying about is approximaletly 1 km, maximum is about 2 km.