CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay
 nutan@cse.iitb.ac.in

Lecture 15: Extensions of DFA/NFAs February 06, 2017

Last class

Proof of the main claim: The class of languages recognized by 2DFAs is exactly REG.

Pushdown automata: NFA + Stack

Formal definition of 2DFA

Definition

A 2DFA
$$A = (Q, \Sigma \cup \{\#, \$\}, \delta, q_0, q_{acc}, q_{rej})$$
, where

Q: set of states, Σ : input alphabet

#: left endmarker \$: right endmarker

 q_0 : start state

 $q_{\rm acc}$: accept state $q_{\rm rej}$: reject state

$$\delta: Q \times (\Sigma \cup \{\#, \$\}) \to Q \times \{L, R\}$$

The following conditions are forced:

$$\forall q \in Q, \exists q', q'' \in Q \text{ s.t. } \delta(q, \#) = (q', R) \text{ and } \delta(q, \$) = (q'', L).$$

Power of 2DFAs

Lemma

The class of language recognized by 2DFAs is regular.

Proof.

Let $T_x : Q \times \{M\} \to Q \times \{\bot\}$, which is defined as follows:

 $T_x(p) := q$ if whenever A enters x on p it leaves x on q.

 $T_x(\bowtie) := q$ q is the state in which A emerges on x the first time.

 $T_x(q) := \bot$ if A loops on x forever.

Power of 2DFAs

Lemma

The class of language recognized by 2DFAs is regular.

Proof.

Let
$$T_x: Q \times \{ \bowtie \} \to Q \times \{ \bot \}$$
, which is defined as follows:
$$T_x(p) \coloneqq q \quad \text{if whenever } A \text{ enters } x \text{ on } p$$
 it leaves $x \text{ on } q$.
$$T_x(\bowtie) \coloneqq q \quad q \text{ is the state in which } A \text{ emerges }$$
 on $x \text{ the first time.}$
$$T_x(q) \coloneqq \bot \quad \text{if } A \text{ loops on } x \text{ forever.}$$

Total number of functions of the type

$$T_x \le (|Q|+1)^{(|Q|+1)}$$

 $T_x = T_y \Rightarrow \forall z(xz \in F \Leftrightarrow yz \in F)$ (Prove this.)
 $T_x = T_y \Leftrightarrow x \equiv_A y$

Pushdown automata

$$NFA + Stack$$

$$L_{a,b}=\left\{a^nb^n\mid n\geq 0\right\}.$$

$$PAL = \{ w \cdot w^R \mid w \in \Sigma^* \}.$$

Pushdown automata: formal definition

Definition

A non-deterministic pushdown automaton (NPDA)

$$A = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$$
, where

Q: set of states Σ : input alphabet

 Γ : stack alphabet q_0 : start state

 \bot : start symbol F: set of final states

$$\delta \subseteq Q \times \Sigma \times \Gamma \times Q \times \Gamma^*.$$

Understanding δ

For $q \in Q$, $a \in \Sigma$ and $X \in \Gamma$, if $\delta(q, a, X) = (p, \gamma)$,

then p is the new state and γ replaces X in the stack.

if $\gamma = \epsilon$ then X is popped.

if $\gamma = X$ then X stays unchanges on the top of the stack.

if $\gamma = \gamma_1 \gamma_2 \dots \gamma_k$ then X is replaced by γ_k and $\gamma_1 \gamma_2 \dots \gamma_{k-1}$ are pushed on top of that.

Configuration of an NPDA

Definition (Configurations)

A configuration of an NPDA $A = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ is a three tuple (q, w, γ) , where $q \in Q$, $w \in \Sigma^*$, and $\gamma \in \Gamma^*$.

if
$$(p, \gamma) \in \delta(q, a, X)$$
 then $\forall w \in \Sigma^*$ and $\gamma' \in \Gamma^*$,

$$(q, a \cdot w, X\gamma') \vdash (p, w, \gamma \cdot \gamma')$$

Let I, J are two configurations of A.

We say that $I \vdash^k J$ iff $\exists I'$ such that $I \vdash I'$ and $I' \vdash^{k-1} J$.

Language recognized by pushdown automata

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \epsilon)$, where $q \in Q$. acceptance by an empty stack.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

The class of languages recognized by NPDAs is called Context-free languages.

Another notion of acceptance of words:

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

Context-free languages

Examples

$$\mathsf{PAL} = \{ w \cdot w^R \mid w \in \Sigma^* \}.$$

Balanced = $\{w \in \{(,),[,]\} \mid w \text{ balanced string of paranthesis }\}.$

$$L_{a/b/c} = \{a^i b^j c^k \mid i \neq j \text{ or } j \neq k\}.$$

$$L_{a/b/c} = \{a^i b^j c^k \mid i \neq j \text{ and } j \neq k\}.$$
?

Non-context-free languages

Lemma (Pumping lemma for CFLs)

Say L is a language over the alphabet Σ^* . If

- \odot for all $n \in \mathbb{N}$,
- $\ \ \ \exists z \in \Sigma^*, such that$
- © for all possible ways of breaking z into $z = u \cdot v \cdot w \cdot x \cdot y$, s.t. $|v \cdot w \cdot x| \le n$ and $|v \cdot x| > 0$,
- $\exists i \in \mathbb{N} \text{ s. t. } u \cdot v^i \cdot w \cdot x^i \cdot y \notin L,$ then L is not a CFL.

Applications of the pumping lemma for CFLs

Let
$$L_{a,b,c} = \{a^n b^n c^n \mid n \ge 0\}$$

- \odot For any chosen n,
- \bigcirc let $z = a^n \cdot b^n \cdot c^n$
- \odot For any split of z into u, v, w, x, y
- © as $|v \cdot w \cdot x| \le n$ Either $v \cdot w \cdot x$ has no c's, or no a's. Therefore, $u \cdot v^0 \cdot w \cdot x^0 \cdot y \notin L$.

Say L is a language over the alphabet Σ^* . If

- \odot for all $n \in \mathbb{N}$,
- $\exists z \in \Sigma^*$, such that
- ② for all possible ways of breaking z into $z = u \cdot v \cdot w \cdot x \cdot y$, s.t. $|v \cdot w \cdot x| \le n$ and $|v \cdot x| > 0$,
- $\exists i \in \mathbb{N} \text{ s. t. } u \cdot v^i \cdot w \cdot x^i \cdot y \notin L,$ then L is not a CFL.

Applications of the pumping lemma for CFLs

Let
$$EQ = \{ w \cdot w \mid w \in \{a, b\}^* \}.$$

- For any chosen *n*,
- \bigcirc let $z = a^n \cdot b \cdot a^n \cdot b$
- © For any split of z into U, V, W, X, V
- \bigcirc Note that $|v \cdot w \cdot x| \le n$. (after some case analysis.) Therefore, $u \cdot v^0 \cdot w \cdot x^0 \cdot v \notin L$.

Say L is a language over the alphabet Σ^* . If

- \odot for all $n \in \mathbb{N}$.
- $\exists z \in \Sigma^*$, such that
- © for all possible ways of breaking z into $z = u \cdot v \cdot w \cdot x \cdot y$, s.t. $|v \cdot w \cdot x| < n$ and $|v \cdot x| > 0$.
- $\exists i \in \mathbb{N} \text{ s. t. } u \cdot v^i \cdot w \cdot x^i \cdot v \notin L.$ then L is not a CFL.

Context-free grammars

Inductive definition of PAL.

 $\epsilon, 0, 1$ are in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

Context-free grammar for PAL.

$$S \rightarrow \epsilon$$
.

$$S \rightarrow 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

Context-free grammar

Definition

A context-free grammar (CFG) G is given by (V, T, P, S_0) , where

V is a set of variables,

T is a set of terminal symbols or the alphabet,

P is a set of productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start symbol.

Example: Grammar for PAL.

$$S \rightarrow \epsilon.$$
 $G_{pal} = (V, T, P, S_0)$ such that $S \rightarrow 0.$ $V = \{S\},$ $T = \{0, 1\},$ $S \rightarrow 0S0.$ $P = \{S \rightarrow \epsilon, S \rightarrow 0, S \rightarrow 1, S \rightarrow 0S0, S \rightarrow 1S1\},$ $S \rightarrow 1S1.$ $S_0 = S.$

Drivations of a CFG

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \rightarrow v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

For all $\alpha \in (V \cup T)^*$, we say that $\alpha \Rightarrow^* \alpha$.

For all $\alpha, \beta, \gamma \in (V \cup T)^*$,

if $\alpha \Rightarrow^* \beta$ and $\beta \Rightarrow \gamma$ then $\alpha \Rightarrow^* \gamma$.

Language of a CFG

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

 $\forall w \in \{0,1\},^* w \in PAL \text{ if and only if } w = w^R.$

Proof.

By Induction on |w|. DIY!

Equivalence of CFGs and PDAs