Esercitazione 10 – Soluzione

Esercizio 1

1. Si tratta di un'equazione differenziale del secondo ordine con condizioni al contorno di Dirichlet omogenee. Scegliamo dunque lo spazio funzionale $V=H^1_0(\Omega)$, con $\Omega=(0,L)$, in cui cercare la soluzione debole u e scegliere le funzioni test v in modo di dare significato agli integrali che compariranno nella formulazione debole e garantire che u(0)=u(L)=0. Ricordiamo appunto che $H^1_0(\Omega):=\left\{w\in H^1(\Omega): w(0)=w(L)=0\right\}$ è uno spazio di Hilbert ed è dotato della norma $H^1(\Omega)$, ovvero $\|w\|_{H^1(\Omega)}=\left(\|w\|_{L^2(\Omega)}^2+\|w'\|_{L^2(\Omega)}^2\right)^{1/2}$.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_0^L \mu_0 u'' v \, dx + \int_0^L \beta_0 u' v \, dx + \int_0^L \sigma_0 u \, v \, dx = \int_0^L f \, v \, dx,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu_0 u' v' dx - \left[\mu_0 u'(x) v(x)\right]_{x=0}^L + \int_0^L \beta_0 u' v dx + \int_0^L \sigma_0 u v dx = \int_0^L f v dx,$$

che deve valere per ogni $v \in V$. Ricordando che $V = H_0^1(\Omega)$, abbiamo dunque che v(0) = v(L) = 0 e quindi la precedente diventa:

$$\int_0^L \mu_0 u' v' dx + \int_0^L \beta_0 u' v dx + \int_0^L \sigma_0 u v dx = \int_0^L f v dx.$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u \in V$$
: $a(u, v) = F(v)$ per ogni $v \in V$,

dove:

- $\bullet \ V=H^1_0(\Omega);$
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u,v) = \mu_0 \int_0^L u' v' dx + \beta_0 \int_0^L u' v dx + \sigma_0 \int_0^L u v dx$, dato che μ_0 , β_0 e σ_0 sono costanti;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = \int_0^L f v \, dx$.

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u \in V$ del problema debole esiste ed è unica. Ricordiamo che la prima ipotesi, ovvero che $V = H_0^1(\Omega)$ sia uno spazio di Hilbert, è già soddisfatta per definizione di tale spazio. Procediamo ora verificando che le ipotesi i)-v) sono soddisfatte.

i) ($a: V \times V \to \mathbb{R}$ è bilineare). Mostriamo che $a(\beta \, v + \gamma \, w, z) = \beta \, a(v, z) + \gamma \, a(w, z)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w, z \in V$. Abbiamo:

$$a(\beta v + \gamma w, z) = \int_{0}^{L} \mu_{0} (\beta v + \gamma w)' z' dx + \int_{0}^{L} \beta_{0} (\beta v + \gamma w)' z dx + \int_{0}^{L} \sigma_{0} (\beta v + \gamma w) z dx$$

$$= \beta \left[\mu_{0} \int_{0}^{L} v' z' dx + \beta_{0} \int_{0}^{L} v' z dx + \sigma_{0} \int_{0}^{L} v z dx \right]$$

$$+ \gamma \left[\mu_{0} \int_{0}^{L} w' z' dx + \beta_{0} \int_{0}^{L} w' z dx + \sigma_{0} \int_{0}^{L} w z dx \right]$$

$$= \beta a(v, z) + \gamma a(w, z),$$

dato che $(\beta v + \gamma w)' = \beta v' + \gamma w'$. In maniera analoga e sfruttando le stesse proprietà di linearità dell'operatore di derivazione e dell'integrale, si mostra che $a(v,\beta w + \gamma z) = \beta a(v,w) + \gamma a(v,z)$ per ogni $\beta,\gamma \in \mathbb{R}$ e per ogni $v,w,z \in V$. Dunque la forma $a:V\times V\to \mathbb{R}$ è bilineare.

ii) $(a:V\times V\to\mathbb{R}$ è continua). Mostriamo che $|a(u,v)|\leq M\,\|u\|_V\,\|v\|_V$ per ogni $u,v\in V,$ con M>0. Abbiamo:

$$|a(u,v)| = \left| \mu_{0} \int_{0}^{L} u' \, v' \, dx + \beta_{0} \int_{0}^{L} u' \, v \, dx + \sigma_{0} \int_{0}^{L} u \, v \, dx \right|$$

$$\leq \left| \mu_{0} \int_{0}^{L} u' \, v' \, dx \right| + \left| \beta_{0} \int_{0}^{L} u' \, v \, dx \right| + \left| \sigma_{0} \int_{0}^{L} u \, v \, dx \right|$$

$$\leq \left| \mu_{0} \| u' \|_{L^{2}(\Omega)} \| v' \|_{L^{2}(\Omega)} + \left| \beta_{0} \right| \| u' \|_{L^{2}(\Omega)} \| v \|_{L^{2}(\Omega)} + \sigma_{0} \| u \|_{L^{2}(\Omega)} \| v \|_{L^{2}(\Omega)}$$

$$\leq \left| \mu_{0} \| u \|_{H^{1}(\Omega)} \| v \|_{H^{1}(\Omega)} + \left| \beta_{0} \right| \| u \|_{H^{1}(\Omega)} \| v \|_{H^{1}(\Omega)} + \sigma_{0} \| u \|_{H^{1}(\Omega)} \| v \|_{H^{1}(\Omega)}$$

$$\leq \left| \mu_{0} + \left| \beta_{0} \right| + \sigma_{0} \right| \| u \|_{H^{1}(\Omega)} \| v \|_{H^{1}(\Omega)}$$

$$\leq M \| u \|_{V} \| v \|_{V} \quad \text{per ogni } u, v \in V,$$

con costante di continuità $M=(\mu_0+|\beta_0|+\sigma_0)$; abbiamo sfruttato la disuguaglianza di Cauchy-Schwarz e il fatto che $\|v\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$ e $\|v'\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$ per ogni $v\in H^1(\Omega)$ e dunque per ogni $v\in V$.

iii) $(a:V\times V\to\mathbb{R}$ è coerciva). Mostriamo che $a(v,v)\geq\alpha\,\|v\|_V^2$ per ogni $v\in V,$ con $\alpha>0.$ Abbiamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \beta_0 \int_0^L v' v dx + \sigma_0 \int_0^L v^2 dx$$

= $\mu_0 \|v'\|_{L^2(\Omega)}^2 + \beta_0 \int_0^L v' v dx + \sigma_0 \|v\|_{L^2(\Omega)}^2$
= $\mu_0 \|v'\|_{L^2(\Omega)}^2 + \sigma_0 \|v\|_{L^2(\Omega)}^2$,

dato che $\int_0^L v' \, v \, dx = \int_0^L \frac{1}{2} \, (v^2)' \, dx = \frac{1}{2} \, [v^2(L) - v^2(0)] = 0, \text{ essendo } v \in V = H_0^1(\Omega).$ Osserviamo che, essendo $v \in V = H_0^1(\Omega)$, vale la disuguaglianza di Poincarè, ovvero $\|v'\|_{L^2(\Omega)}^2 \geq \frac{1}{1 + C_\Omega^2} \|v\|_{H^1(\Omega)}^2 \text{ per ogni } v \in H_0^1(\Omega), \text{ con } C_\Omega = \frac{L}{\sqrt{2}}, \text{ essendo in tal caso } \|v\|_{L^2(\Omega)}^2 \leq C_\Omega^2 \, \|v'\|_{L^2(\Omega)}^2 \text{ e quindi la norma e la seminorma } H^1 \text{ equivalenti. Dunque:}$

$$a(v,v) = \mu_0 \, \|v'\|_{L^2(\Omega)}^2 + \sigma_0 \, \|v\|_{L^2(\Omega)}^2 \geq \frac{\mu_0}{1 + C_\Omega^2} \, \|v\|_{H^1(\Omega)}^2 = \alpha \, \|v\|_V^2 \qquad \text{per ogni } v \in V,$$

essendo per definizione $||v||_{L^2(\Omega)}^2 \ge 0$ e $\sigma_0 \ge 0$, con $\alpha = \frac{\mu_0}{1 + C_{\Omega}^2} = \frac{\mu_0}{1 + L^2/2}$. La forma $a: V \times V \to \mathbb{R}$ è dunque coerciva¹.

¹Solo nel caso $\sigma_0 > 0$ avremmo potuto scrivere che $a(v,v) \ge \min\{\mu_0,\sigma_0\} \left(\|v'\|_{L^2(\Omega)}^2 + \|v\|_{L^2(\Omega)}^2 \right)$, ovvero $a(v,v) \ge \alpha \|v\|_V^2$ per ogni $v \in V$, con $\alpha = \min\{\mu_0,\sigma_0\} > 0$, sfruttando la definizione di norma H^1 .

iv) $(F: V \to \mathbb{R} \text{ è lineare})$. Mostriamo che $F(\beta v + \gamma w) = \beta F(v) + \gamma F(w)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w \in V$. Abbiamo:

$$F(\beta v + \gamma w) = \int_0^L f(\beta v + \gamma w) \, dx = \beta \int_0^L f v \, dx + \gamma \int_0^L f w \, dx = \beta F(v) + \gamma F(w),$$

per la linearità dell'integrale. Dunque $F:V\to\mathbb{R}$ è un funzionale lineare.

v) $(F: V \to \mathbb{R}$ è continuo). Dato che F è un funzionale lineare, esso è continuo se è anche limitato. Mostriamo dunque che F è limitato, ovvero esiste una costante C > 0 tale che $|F(v)| \le C ||v||_V$ per ogni $v \in V$. Assumendo $f \in L^2(\Omega)$ e usando la disuguaglianza di Cauchy-Schwarz, abbiamo:

$$\begin{split} |F(v)| & \leq & \|f\|_{L^2(\Omega)} \, \|v\|_{L^2(\Omega)} \\ & \leq & \|f\|_{L^2(\Omega)} \, \|v\|_{H^1(\Omega)} = C \, \|v\|_V \qquad \text{per ogni } v \in V, \end{split}$$

dove $C = ||f||_{L^2(\Omega)}$. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u \in V$ del problema debole esiste ed è unica, inoltre:

$$||u||_V \le \frac{1}{\alpha} ||F||_{V'} = \frac{1 + L^2/2}{\mu_0} ||f||_{L^2(\Omega)}.$$

2. Si tratta di un'equazione differenziale di diffusione-trasporto con condizioni di Dirichlet non omogenee. Inoltre, il coefficiente di diffusione $\mu(x)$ è in realtà una funzione dello spazio.

Introduciamo una funzione di rilevamento $R_g(x)$ del dato al bordo, ovvero $R_g \in H^1(\Omega)$, con $\Omega = (0, L)$, tale che $R_g(0) = g_1$ e $R_g(L) = g_2$; una scelta possibile per la funzione rilvamento è $R_g(x) = g_1 + (g_2 - g_1) \frac{x}{L}$. Scegliendo lo spazio $H^1(\Omega)$ in cui cercare la soluzione u, scriviamo:

$$u(x) = u_0(x) + R_q(x),$$

dove, essendo u, $R_g \in H^1(\Omega)$, anche $u_0 \in H^1(\Omega)$; inoltre, dato che $u(0) = R_g(0) = g_1$ e $u(L) = R_g(L) = g_2$, allora $u_0(0) = u_0(L) = 0$. Scriveremo un problema debole nella soluzione omogenea $u_0 \in V = H^1_0(\Omega)$, in cui sceglieremo anche le funzioni test v. Scelta la funzione rilevamento R_g e risolto il problema in u_0 , sarà poi possibile determinare u(x), come $u = u_0 + R_g$.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_{0}^{L} (\mu u')' v \, dx + \int_{0}^{L} \beta_0 u' v \, dx = 0,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu \, u' \, v' \, dx - \left[\mu(x) \, u'(x) \, v(x) \right]_{x=0}^L + \int_0^L \beta_0 \, u' \, v \, dx = 0,$$

che deve valere per ogni $v \in V$. Ricordando che $V = H_0^1(\Omega)$, abbiamo dunque che v(0) = v(L) = 0 e quindi la precedente diventa:

$$\int_0^L \mu \, u' \, v' \, dx + \int_0^L \beta_0 \, u' \, v \, dx = 0.$$

Sostituiamo nella precedente $u = u_0 + R_g$, da cui otteniamo:

$$\int_0^L \mu (u_0 + R_g)' v' dx + \int_0^L \beta_0 (u_0 + R_g)' v dx = 0$$

e

$$\int_0^L \mu \, u_0' \, v' \, dx + \int_0^L \beta_0 \, u_0' \, v \, dx = -\left(\int_0^L \mu \, R_g' \, v' \, dx + \int_0^L \beta_0 \, R_g' \, v \, dx\right).$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u_0 \in V : a(u_0, v) = F(v)$$
 per ogni $v \in V$,

dove:

- $V = H_0^1(\Omega);$
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u_0, v) = \int_0^L \mu \, u_0' \, v' \, dx + \beta_0 \int_0^L u_0' \, v \, dx$, dato che β_0 è costante;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = -a(R_g, v) = -\int_0^L \mu R'_g v' dx \beta_0 \int_0^L R'_g v dx$.

La soluzione $u \in H^1(\Omega)$ sarà poi ottenuta come $u = u_0 + R_g$ dopo aver risolto il problema debole precedente.

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u_0 \in V$ del problema debole esiste ed è unica. Ricordiamo che $V = H_0^1(\Omega)$ è uno spazio di Hilbert. Procediamo ora verificando che le ipotesi i)-v) sono soddisfatte.

- i) ($a:V\times V\to\mathbb{R}$ è bilineare). Si mostra la bilinearità della forma in maniera del tutto analoga a quanto visto in precedenza.
- ii) $(a:V\times V\to\mathbb{R}$ è continua). Mostriamo che $|a(w,v)|\leq M\,\|w\|_V\,\|v\|_V$ per ogni $w,v\in V,$ con M>0. Abbiamo:

$$|a(w,v)| \leq \left| \int_{0}^{L} \mu \, w' \, v' \, dx \right| + \left| \beta_{0} \int_{0}^{L} w' \, v \, dx \right|$$

$$\leq \int_{0}^{L} \left| \mu \, w' \, v' \right| \, dx + \left| \beta_{0} \right| \left| \int_{0}^{L} w' \, v \, dx \right|$$

$$\leq \|\mu\|_{L^{\infty}(\Omega)} \|w' \, v'\|_{L^{1}(\Omega)} + \left| \beta_{0} \right| \|w'\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}$$

$$\leq \|\mu\|_{L^{\infty}(\Omega)} \|w'\|_{L^{2}(\Omega)} \|v'\|_{L^{2}(\Omega)} + \left| \beta_{0} \right| \|w'\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}$$

$$\leq (\|\mu\|_{L^{\infty}(\Omega)} + |\beta_{0}|) \|w\|_{H^{1}(\Omega)} \|v\|_{H^{1}(\Omega)}$$

$$\leq M \|w\|_{V} \|v\|_{V} \quad \text{per ogni } w, v \in V,$$

con costante di continuità $M=\left(\|\mu\|_{L^{\infty}(\Omega)}+|\beta_{0}|\right)$; avendo scelto $\mu\in L^{\infty}(\Omega)$, abbiamo usato la disuguaglianza di Hölder per stimare il primo termine, ovvero $\|\mu\,w'\,v'\|_{L^{1}(\Omega)}\leq \|\mu\|_{L^{\infty}(\Omega)}\|w'\,v'\|_{L^{1}(\Omega)}$. Dalla disuguaglianza di Cauchy-Schwarz, abbiamo poi ottenuto che $\|w'\,v'\|_{L^{1}(\Omega)}\leq \|w'\|_{L^{2}(\Omega)}\|v'\|_{L^{2}(\Omega)}$; infine, abbiamo sfruttato il fatto che $\|v\|_{L^{2}(\Omega)}\leq \|v\|_{H^{1}(\Omega)}$ per ogni $v\in H^{1}(\Omega)$ e dunque per ogni $v\in V$.

iii) $(a:V\times V\to\mathbb{R}$ è coerciva). Mostriamo che $a(v,v)\geq\alpha\,\|v\|_V^2$ per ogni $v\in V$, con $\alpha>0$. Abbiamo:

$$a(v,v) = \int_0^L \mu(v')^2 dx + \beta_0 \int_0^L v' v dx = \int_0^L \mu(v')^2 dx,$$

dato che $\int_0^L v' v \, dx = \int_0^L \frac{1}{2} (v^2)' \, dx = \frac{1}{2} [v^2(L) - v^2(0)] = 0$, essendo $v \in V = H_0^1(\Omega)$. Siccome $\mu(x) \ge \mu_0 > 0$ per ogni $x \in (0, L)$, allora abbiamo:

$$a(v,v) \ge \int_0^L \mu_0 (v')^2 dx = \mu_0 \|v'\|_{L^2(\Omega)}^2.$$

Essendo $v \in V = H_0^1(\Omega)$, vale la disuguaglianza di Poincarè, ovvero abbiamo $\|v'\|_{L^2(\Omega)}^2 \ge \frac{1}{1 + C_{\Omega}^2} \|v\|_{H^1(\Omega)}^2$ per ogni $v \in H_0^1(\Omega)$, con $C_{\Omega} = \frac{L}{\sqrt{2}}$. Dunque otteniamo:

$$a(v,v) \ge \frac{\mu_0}{1 + C_{\Omega}^2} \|v\|_{H^1(\Omega)}^2 = \alpha \|v\|_V^2$$
 per ogni $v \in V$,

con $\alpha=\frac{\mu_0}{1+C_\Omega^2}=\frac{\mu_0}{1+L^2/2}>0$. La forma $a\,:\,V\times V\to\mathbb{R}$ è quindi coerciva.

- iv) $(F:V\to\mathbb{R}$ è lineare). Dato che $F(v)=-a(R_g,v)$, la forma $a(R_g,v)$ è bilineare e dunque lineare nel secondo argomento v, allora F è lineare. È anche possibile dimostrarlo applicando la definizione.
- v) $(F: V \to \mathbb{R}$ è continuo). Dato che F è un funzionale lineare, esso è continuo se è anche limitato. Mostriamo dunque che F è limitato, ovvero esiste una costante C > 0 tale che $|F(v)| \le C ||v||_V$ per ogni $v \in V$. Possiamo già osservare che, essendo $F(v) = -a(R_g, v)$ e la forma a continua, lo sarà anche il funzionale F. Infatti:

$$|F(v)| = |a(R_a, v)| \le M \|R_a\|_{H^1(\Omega)} \|v\|_V = C \|v\|_V$$
 per ogni $v \in V$,

dove $C = M \|R_g\|_{H^1(\Omega)}$, essendo M la costante di continuità della forma a. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u_0 \in V$ del problema debole esiste ed è unica, inoltre:

$$||u_0||_V \le \frac{1}{\alpha} ||F||_{V'} \le \frac{1}{\alpha} C = \frac{M}{\alpha} ||R_g||_{H^1(\Omega)} = \frac{1 + L^2/2}{\mu_0} (||\mu||_{L^{\infty}(\Omega)} + |\beta_0|) ||R_g||_{H^1(\Omega)}.$$

Considerando i dati $\mu(x) = 1 + 2\frac{x}{L}$ e $\beta_0 = 7$, abbiamo $\mu_0 = \min_{x \in (0,L)} \mu(x) = 1$ e $\|\mu\|_{L^{\infty}(\Omega)} = \sup_{x \in (0,L)} |\mu(x)| = 3$. Dunque, otteniamo $M = \left(\|\mu\|_{L^{\infty}(\Omega)} + |\beta_0|\right) = 10$ e $\alpha = \frac{1}{1 + L^2/2}$.

3. Si tratta di un'equazione differenziale di diffusione-reazione con condizioni di Dirichlet non omogenee. Inoltre, il coefficiente di reazione $\sigma(x)$ è una funzione dello spazio.

Introduciamo una funzione di rilevamento del dato al bordo, ovvero $R_g \in H^1(\Omega)$, con $\Omega = (0, L)$, tale che $R_g(0) = g_1$ e $R_g(L) = g_2$; una scelta possibile è $R_g(x) = g_1 + (g_2 - g_1) \frac{x}{L}$. Ancora una volta, scegliendo lo spazio $H^1(\Omega)$ in cui cercare la soluzione u, scriviamo:

$$u(x) = u_0(x) + R_q(x),$$

dove, essendo u, $R_g \in H^1(\Omega)$, anche $u_0 \in H^1(\Omega)$; inoltre, dato che $u(0) = R_g(0) = g_1$ e $u(L) = R_g(L) = g_2$, allora $u_0(0) = u_0(L) = 0$. Scriveremo un problema debole nella soluzione omogenea $u_0 \in V = H^1_0(\Omega)$, in cui sceglieremo anche le funzioni test v. Scelta R_g e risolto il problema debole in u_0 , sarà poi possibile determinare u(x) come $u = u_0 + R_g$.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_{0}^{L} \mu_{0} u'' v dx + \int_{0}^{L} \sigma u v dx = \int_{0}^{L} f v dx,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu_0 \, u' \, v' \, dx - \left[\mu_0 \, u'(x) \, v(x) \right]_{x=0}^L + \int_0^L \sigma \, u \, v \, dx = \int_0^L f \, v \, dx,$$

che deve valere per ogni $v \in V$. Ricordando che $V = H_0^1(\Omega)$, abbiamo dunque che v(0) = v(L) = 0 e quindi la precedente diventa:

$$\int_0^L \mu_0 \, u' \, v' \, dx + \int_0^L \sigma \, u \, v \, dx = \int_0^L f \, v \, dx.$$

Sostituiamo nella precedente $u = u_0 + R_q$, da cui otteniamo:

$$\int_0^L \mu_0 (u_0 + R_g)' v' dx + \int_0^L \sigma (u_0 + R_g) v dx = \int_0^L f v dx,$$

е

$$\int_0^L \mu_0 \, u_0' \, v' \, dx + \int_0^L \sigma \, u_0 \, v \, dx = \int_0^L f \, v \, dx - \left(\int_0^L \mu_0 \, R_g' \, v' \, dx + \int_0^L \sigma \, R_g \, v \, dx \right).$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u_0 \in V : a(u_0, v) = F(v)$$
 per ogni $v \in V$,

dove:

- $V = H_0^1(\Omega)$:
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u_0, v) = \mu_0 \int_0^L u_0' v' dx + \int_0^L \sigma u_0 v dx$, dato che μ_0 è costante;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = \int_0^L f v \, dx a(R_g, v) = \int_0^L f v \, dx \mu_0 \int_0^L R_g' v' \, dx \int_0^L \sigma R_g v \, dx.$

La soluzione $u \in H^1(\Omega)$ sarà poi ottenuta come $u = u_0 + R_g$ dopo aver risolto il problema debole precedente.

Mostriamo, tramite il Teorema di Lax-Milgram, che la soluzione $u_0 \in V$ del problema debole esiste ed è unica. Ricordiamo che $V = H_0^1(\Omega)$ è uno spazio di Hilbert. Verifichiamo che le ipotesi i)-v) sono soddisfatte.

- i) ($a:V\times V\to\mathbb{R}$ è bilineare). Si mostra la bilinearità della forma in maniera del tutto analoga a quanto visto finora.
- ii) $(a: V \times V \to \mathbb{R}$ è continua). Mostriamo che $|a(w,v)| \le M \|w\|_V \|v\|_V$ per ogni $w,v \in V$, con M > 0. Abbiamo:

$$|a(w,v)| \leq \left| \mu_{0} \int_{0}^{L} w' \, v' \, dx \right| + \left| \int_{0}^{L} \sigma \, w \, v \, dx \right|$$

$$\leq \mu_{0} \left| \int_{0}^{L} w' \, v' \, dx \right| + \int_{0}^{L} |\sigma \, w \, v| \, dx$$

$$\leq \mu_{0} \left\| w' \right\|_{L^{2}(\Omega)} \left\| v' \right\|_{L^{2}(\Omega)} + \left\| \sigma \right\|_{L^{\infty}(\Omega)} \left\| w \, v \right\|_{L^{1}(\Omega)}$$

$$\leq \mu_{0} \left\| w' \right\|_{L^{2}(\Omega)} \left\| v' \right\|_{L^{2}(\Omega)} + \left\| \sigma \right\|_{L^{\infty}(\Omega)} \left\| w \right\|_{L^{2}(\Omega)} \left\| v \right\|_{L^{2}(\Omega)}$$

$$\leq (\mu_{0} + \|\sigma\|_{L^{\infty}(\Omega)}) \left\| w \right\|_{H^{1}(\Omega)} \left\| v \right\|_{H^{1}(\Omega)}$$

$$\leq M \left\| w \right\|_{V} \left\| v \right\|_{V} \quad \text{per ogni } w, v \in V,$$

con costante di continuità $M=\left(\mu_0+\|\sigma\|_{L^\infty(\Omega)}\right)$; avendo scelto $\sigma\in L^\infty(\Omega)$, abbiamo usato la disuguaglianza di Holder per stimare il secondo termine, ovvero $\|\sigma\,w\,v\|_{L^1(\Omega)}\leq \|\sigma\|_{L^\infty(\Omega)}\|w\,v\|_{L^1(\Omega)}$. Abbiamo poi sfruttato la disuguaglianza di Cauchy-Schwarz $\|w\,v\|_{L^1(\Omega)}\leq \|w\|_{L^2(\Omega)}\|v\|_{L^2(\Omega)}$, e allo stesso modo il fatto che, per tali funzioni, $\|w\|_{L^2(\Omega)}\leq \|w\|_{H^1(\Omega)}$ e $\|v\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$. Per quanto riguarda il primo termine, abbiamo invece proceduto come per l'esercizio precedente.

iii) $(a:V\times V\to\mathbb{R}$ è coerciva). Mostriamo che $a(v,v)\geq\alpha\,\|v\|_V^2$ per ogni $v\in V$, con $\alpha>0$. Abbiamo:

$$a(v,v) = \mu_0 \int_0^L \mu(v')^2 dx + \int_0^L \sigma v v dx = \int_0^L \mu(v')^2 dx.$$

Siccome $\sigma(x) \ge \sigma_0 > 0$ per ogni $x \in (0, L)$, allora abbiamo:

$$a(v,v) \ge \mu_0 \int_0^L (v')^2 dx + \sigma_0 \int_0^L (v)^2 dx = \mu_0 \|v'\|_{L^2(\Omega)}^2 + \sigma_0 \|v\|_{L^2(\Omega)}^2.$$

Abbiamo ora due possibilità per mostrare la coercività della forma.

* Essendo $v \in V = H_0^1(\Omega)$, vale la disuguaglianza di Poincarè, ovvero $||v||_{L^2(\Omega)}^2 \ge \frac{1}{1+C_{\Omega}^2} ||v||_{H^1(\Omega)}^2$ per ogni $v \in H_0^1(\Omega)$, con $C_{\Omega} = \frac{L}{\sqrt{2}}$. Dunque, essendo $\sigma_0 ||v||_{L^2(\Omega)}^2 \ge 0$ per ogni $v \in V$, otteniamo:

$$a(v,v) \ge \frac{\mu_0}{1 + C_0^2} \|v\|_{H^1(\Omega)}^2 = \alpha_1 \|v\|_V^2$$
 per ogni $v \in V$,

con $\alpha_1 = \frac{\mu_0}{1 + C_\Omega^2} = \frac{\mu_0}{1 + L^2/2} > 0$. La forma $a: V \times V \to \mathbb{R}$ è quindi coerciva con costante α_1 seguendo questo approccio.

* Siccome $\sigma_0 > 0$ (strettamente), allora:

$$\begin{aligned} a(v,v) & \geq & \mu_0 \, \|v\|_{L^2(\Omega)}^2 + \sigma_0 \, \|v\|_{L^2(\Omega)}^2 \\ & \geq & \min\{\mu_0,\sigma_0\} \, \left(\|v\|_{L^2(\Omega)}^2 + \|v\|_{L^2(\Omega)}^2 \right) = \alpha_2 \, \|v\|_V^2 \qquad \text{per ogni } v \in V, \end{aligned}$$

essendo $\alpha_2 = \min\{\mu_0, \sigma_0\}$ e $\left(\|v\|_{L^2(\Omega)}^2 + \|v\|_{L^2(\Omega)}^2\right) = \|v\|_{H^1(\Omega)}^2$. Dunque si trova che la forma $a: V \times V \to \mathbb{R}$ è coerciva con costante $\alpha_2 > 0$ anche seguendo questo approccio. Osserviamo che se $\mu_0 > 0$ ma molto "piccolo", le costanti α_1 e $\alpha_2 > 0$ saranno molto vicine a zero, mentre se $\sigma_0 > 0$ è molto "piccolo", la costante $\alpha_2 > 0$ sarà molto vicina a zero.

- iv) $(F: V \to \mathbb{R} \text{ è lineare})$. Dato che $F(v) = \int_0^L f v \, dx a(R_g, v)$, il funzionale $\int_0^L f \, v \, dx$ è lineare, la forma $a(R_g, v)$ è bilineare e dunque lineare nel secondo argomento v, allora F è lineare. È anche possibile dimostrarlo applicando la definizione.
- v) $(F:V\to\mathbb{R}$ è continuo). Dato che F è un funzionale lineare, esso è continuo se è anche limitato. Mostriamo dunque che F è limitato, ovvero esiste una costante C>0 tale che $|F(v)| \leq C \|v\|_V$ per ogni $v \in V$. Osserviamo che, essendo $F(v) = \int_0^L f \, v \, dx a(R_g, v)$, il funzionale $\int_0^L f \, v \, dx$ limitato e la forma a continua, lo sarà anche il funzionale F. Infatti, procedendo come negli Esercizi 1.1 e 1.2, abbiamo:

$$|F(v)| = \left| \int_0^L f \, v \, dx - a(R_g, v) \right| \le \left| \int_0^L f \, v \, dx \right| + |a(R_g, v)| \le C \, ||v||_V \quad \text{per ogni } v \in V,$$

dove $C = (\|f\|_{L^2(\Omega)} + M \|R_g\|_{H^1(\Omega)})$, essendo M la costante di continuità della forma a. Dunque F è lineare e limitato, dunque anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u_0 \in V$ del problema debole esiste ed è unica, inoltre:

$$||u_0||_V \le \frac{1}{\alpha} ||F||_{V'} \le \frac{1}{\alpha} C = \frac{1 + L^2/2}{\mu_0} \left[||f||_{L^2(\Omega)} + \left(\mu_0 + ||\sigma||_{L^{\infty}(\Omega)}\right) ||R_g||_{H^1(\Omega)} \right],$$

nel caso $\alpha = \alpha_1$ per esempio.

Considerando i dati $\mu_0 = 3$ e $\sigma = 5^{-x/L}$, abbiamo $\sigma_0 = 1/5$ e $\|\sigma\|_{L^{\infty}(\Omega)} = 1$. Quindi: M = 3 + 1 = 4, $\alpha_1 = \frac{3}{1 + L^2/2}$ e $\alpha_2 = 1/5$.

4. Si tratta di un'equazione differenziale di diffusione-reazione con condizioni al contorno di Neumann. Scegliamo dunque lo spazio funzionale $V = H^1(\Omega)$, con $\Omega = (0, L)$, in cui cercare la soluzione debole u e scegliere le funzioni test v in modo di dare significato agli integrali che compariranno nella formulazione debole.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_0^L \mu_0 \, u'' \, v \, dx + \int_0^L \sigma_0 \, u \, v \, dx = 0,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu_0 u' v' dx - \left[\mu_0 u'(x) v(x)\right]_{x=0}^L + \int_0^L \sigma_0 u v dx = 0,$$

che deve valere per ogni $v \in V$. Ricordando che abbiamo le condizioni al contorno di Neumann $\mu_0 u'(0) = q_1 e^{-\mu_0} u'(L) = q_2$, la precedente diventa:

$$\int_0^L \mu_0 u' v' dx + \int_0^L \sigma_0 u v dx = -q_1 v(0) - q_2 v(L).$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u \in V$$
: $a(u, v) = F(v)$ per ogni $v \in V$,

dove:

- $V = H^1(\Omega);$
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u,v) = \mu_0 \int_0^L u' \, v' \, dx + \sigma_0 \int_0^L u \, v \, dx$, dato che μ_0 e σ_0 sono costanti;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = -q_1 v(0) q_2 v(L)$.

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u \in V$ del problema debole esiste ed è unica; ricordiamo che $V = H^1(\Omega)$ è uno spazio di Hilbert. Procediamo ora verificando che le ipotesi i)-v) sono soddisfatte.

- i) $(a:V\times V\to\mathbb{R}$ è bilineare). Si verifica che la forma $a:V\times V\to\mathbb{R}$ è bilineare procedendo come precedentemente.
- ii) $(a:V\times V\to\mathbb{R}$ è continua). La forma è continua, infatti si mostra facilmente che $|a(u,v)|\leq M\,\|u\|_V\,\|v\|_V$ per ogni $u,v\in V$, con con costante di continuità $M=(\mu_0+\sigma_0)$.
- iii) ($a:V\times V\to\mathbb{R}$ è coerciva). Mostriamo che $a(v,v)\geq \alpha\,\|v\|_V^2$ per ogni $v\in V,$ con $\alpha>0.$ Abbiamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \sigma_0 \int_0^L v^2 dx$$
$$= \mu_0 \|v'\|_{L^2(\Omega)}^2 + \sigma_0 \|v\|_{L^2(\Omega)}^2.$$

Dunque:

$$a(v,v) \ge \min\{\mu_0, \sigma_0\} \|v\|_V^2 = \alpha \|v\|_V^2$$
 per ogni $v \in V$,

avendo sfruttato la definizione di norma H^1 ed essendo $\alpha = \min\{\mu_0, \sigma_0\} > 0$, per $\mu_0 > 0$ e $\sigma_0 > 0$.

iv) $(F: V \to \mathbb{R} \text{ è lineare})$. Mostriamo che $F(\beta v + \gamma w) = \beta F(v) + \gamma F(w)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w \in V$. Abbiamo:

$$F(\beta v + \gamma w) = -q_1 (\beta v(0) + \gamma w(0)) - q_2 (\beta v(L) + \gamma w(L))$$

= $\beta (-q_1 v(0) - q_2 v(L)) + \gamma (-q_1 w(0) - q_2 w(L)) = \beta F(v) + \gamma F(w).$

Dunque $F: V \to \mathbb{R}$ è un funzionale lineare.

v) $(F: V \to \mathbb{R}$ è continuo). Dato che F è un funzionale lineare, esso è continuo se è anche limitato. Mostriamo che F è limitato, ovvero esiste una costante C > 0 tale che $|F(v)| \leq C ||v||_V$ per ogni $v \in V$. Dato che $v \in V = H^1(\Omega)$, possiamo usare il Teorema di traccia per cui esiste una costante $\widetilde{C} > 0$ tale che:

$$|v(0)| \leq \widetilde{C} \|v\|_{H^1(\Omega)}$$
 e $|v(L)| \leq \widetilde{C} \|v\|_{H^1(\Omega)}$ per ogni $v \in H^1(\Omega)$.

Abbiamo, usando il risultato precedente:

$$|F(v)| \le |q_1| |v(0)| + |q_2| |v(L)| \le \widetilde{C} (|q_1| + |q_2|) ||v||_V = C ||v||_V$$
 per ogni $v \in V$,

dove $C = \widetilde{C}(|q_1| + |q_2|)$. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u \in V$ del problema debole esiste ed è unica, inoltre:

$$||u||_V \le \frac{1}{\alpha} ||F||_{V'} = \frac{\widetilde{C}(|q_1| + |q_2|)}{\min\{\mu_0, \sigma_0\}}.$$

Esercizio 2

1. Si tratta di un'equazione differenziale del secondo ordine con condizioni al contorno miste di Dirichlet omogeneo e Robin. Scegliamo lo spazio funzionale $V = H_S^1(\Omega) := \{v \in H^1(\Omega) : v(0) = 0\}$, con $\Omega = (0, L)$, in cui cercare la soluzione debole u e scegliere le funzioni test v in modo di dare significato agli integrali che compariranno nella formulazione debole e garantire che u(0) = 0.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_{0}^{L} \mu \, u'' \, v \, dx = 0,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu \, u' \, v' \, dx - \left[\mu(x) \, u'(x) \, v(x) \right]_{x=0}^L = 0,$$

che deve valere per ogni $v \in V$. Ricordando che $V = H_S^1(\Omega)$, e dunque che v(0) = 0, e $-\mu(L) \, u'(L) = \gamma_2 \, u(L) + q_2$, la precedente diventa:

$$\int_0^L \mu \, u' \, v' \, dx + \gamma_2 \, u(L) \, v(L) = -q_2 \, v(L).$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u \in V$$
: $a(u, v) = F(v)$ per ogni $v \in V$,

dove:

•
$$V = H_S^1(\Omega);$$

- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u,v) = \int_0^L \mu \, u' \, v' \, dx + \gamma_2 \, u(L) \, v(L);$
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = -q_2 v(L)$.

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u \in V$ del problema debole esiste ed è unica. Ricordiamo che la prima ipotesi, ovvero che $V = H_S^1(\Omega)$ sia uno spazio di Hilbert, è già soddisfatta per definizione di tale spazio. Procediamo ora verificando che le ipotesi i)-v) sono soddisfatte.

i) $(a: V \times V \to \mathbb{R}$ è bilineare). Mostriamo che $a(\beta v + \gamma w, z) = \beta a(v, z) + \gamma a(w, z)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w, z \in V$. Abbiamo:

$$a(\beta v + \gamma w, z) = \int_0^L \mu (\beta v + \gamma w)' z' dx + \gamma_2 [\beta v(L) + \gamma w(L)] z(L)$$

$$= \beta \left[\int_0^L \mu v' z' dx + \gamma_2 v(L) z(L) \right] + \gamma \left[\int_0^L \mu w' z' dx + \gamma_2 w(L) z(L) \right]$$

$$= \beta a(v, z) + \gamma a(w, z),$$

dato che $(\beta v + \gamma w)' = \beta v' + \gamma w'$. In maniera analoga e sfruttando le stesse proprietà di linearità dell'operatore di derivazione e dell'integrale, si mostra che $a(v, \beta w + \gamma z) = \beta a(v, w) + \gamma a(v, z)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w, z \in V$. Dunque la forma $a: V \times V \to \mathbb{R}$ è bilineare.

ii) $(a: V \times V \to \mathbb{R}$ è continua). Mostriamo che $|a(u,v)| \le M \|u\|_V \|v\|_V$ per ogni $u,v \in V$, con M > 0. Abbiamo:

$$|a(u,v)| = \left| \int_{0}^{L} \mu \, u' \, v' \, dx + \gamma_{2} \, u(L) \, v(L) \right|$$

$$\leq \int_{0}^{L} |\mu \, u' \, v'| \, dx + \gamma_{2} |u(L) \, v(L)|$$

$$\leq \|\mu\|_{L^{\infty}(\Omega)} \|u' \, v'\|_{L^{1}(\Omega)} + \gamma_{2} |u(L)| |v(L)|$$

$$\leq \|\mu\|_{L^{\infty}(\Omega)} \|u'\|_{L^{2}(\Omega)} \|v'\|_{L^{2}(\Omega)} + \gamma_{2} |u(L)| |v(L)|$$

$$\leq \|\mu\|_{L^{\infty}(\Omega)} \|u\|_{H^{1}(\Omega)} \|v\|_{H^{1}(\Omega)} + \gamma_{2} \widetilde{C}^{2} \|u\|_{H^{1}(\Omega)} \|v\|_{H^{1}(\Omega)}$$

$$\leq M \|u\|_{V} \|v\|_{V} \quad \text{per ogni } u, v \in V,$$

con costante di continuità $M=(\|\mu\|_{L^{\infty}(\Omega)}+\gamma_2\,\widetilde{C}^2)$. Abbiamo sfruttato per la prima parte le disuguaglianze di Hölder (assumendo $\mu\in L^{\infty}(\Omega)$) e di Cauchy-Schwarz, oltre al fatto che $\|v'\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$ per ogni $v\in H^1(\Omega)$ e dunque per ogni $v\in V$. Per la seconda parte, abbiamo usato il Teorema di traccia, ovvero esiste una costante $\widetilde{C}>0$ tale che:

$$|v(L)| \leq \widetilde{C} ||v||_{H^1(\Omega)}$$
 per ogni $v \in H^1(\Omega)$.

iii) $(a: V \times V \to \mathbb{R}$ è coerciva). Mostriamo che $a(v,v) \ge \alpha \|v\|_V^2$ per ogni $v \in V$, con $\alpha > 0$. Abbiamo:

$$a(v,v) = \int_0^L \mu(v')^2 dx + \gamma_2 (v(L))^2 \ge \mu_0 \|v'\|_{L^2(\Omega)} + \gamma_2 (v(L))^2 \ge \mu_0 \|v'\|_{L^2(\Omega)},$$

essendo $\gamma_2(v(L))^2 \geq 0$ e inoltre $\mu(x) \geq \mu_0 > 0$. Osserviamo ora che, essendo $v \in V = H^1_S(\Omega)$, vale la disuguaglianza di Poincarè, ovvero $\|v'\|_{L^2(\Omega)} \geq \frac{1}{1+C^2_{\Omega}} \|v\|_{H^1(\Omega)}^2$ per ogni

 $v \in H_S^1(\Omega)$, con $C_{\Omega} > 0$, essendo in tal caso $||v||_{L^2(\Omega)}^2 \le C_{\Omega}^2 ||v'||_{L^2(\Omega)}$ e quindi la norma e la seminorma H^1 sono equivalenti. Dunque:

$$a(v,v) \geq \frac{\mu_0}{1+C_\Omega^2} \, \|v\|_{H^1(\Omega)}^2 = \alpha \, \|v\|_V^2 \qquad \text{per ogni } v \in V,$$

con $\alpha = \frac{\mu_0}{1 + C_{\Omega}^2}$. La forma $a: V \times V \to \mathbb{R}$ è dunque coerciva.

iv) $(F: V \to \mathbb{R} \text{ è lineare})$. Mostriamo che $F(\beta v + \gamma w) = \beta F(v) + \gamma F(w)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w \in V$. Abbiamo:

$$F(\beta v + \gamma w) = -q_2 (\beta v(L) + \gamma w(L)) = \beta (-q_2 v(L)) + \gamma (-q_2 w(L)) = \beta F(v) + \gamma F(w).$$

Dunque $F: V \to \mathbb{R}$ è un funzionale lineare.

v) $(F: V \to \mathbb{R}$ è continuo). Dato che F è un funzionale lineare, esso è continuo se è anche limitato. Mostriamo dunque che F è limitato, ovvero esiste una costante C > 0 tale che $|F(v)| \le C ||v||_V$ per ogni $v \in V$. Abbiamo:

$$|F(v)| = |q_2| |v(L)| \le |q_2| \widetilde{C} ||v||_{H^1(\Omega)} = C ||v||_V$$
 per ogni $v \in V$

dove, avendo sfruttato la disuguaglianza del Teorema di traccia, $C = |q_2| \widetilde{C}$. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u \in V$ del problema debole esiste ed è unica, inoltre:

$$||u||_V \le \frac{1}{\alpha} ||F||_{V'} = \frac{C}{\alpha} = \frac{1 + C_{\Omega}^2}{\mu_0} |q_2| \widetilde{C}.$$

2. Si tratta di un'equazione di diffusione-reazione con condizioni al contorno miste di Neumann e Robin. Scegliamo lo spazio funzionale $V = H^1(\Omega)$, con $\Omega = (0, L)$, in cui cercare la soluzione debole u e scegliere le funzioni test v in modo di dare significato agli integrali che compariranno nella formulazione debole.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_0^L \mu_0 \, u'' \, v \, dx + \int_0^L \sigma \, u \, v \, dx = 0,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu_0 u' v' dx - \left[\mu_0 u'(x) v(x) \right]_{x=0}^L + \int_0^L \sigma u v dx = 0,$$

che deve valere per ogni $v \in V$. Ricordando che $\mu_0 u'(0) = q_1$ e $-\mu_0 u'(L) = \gamma_2 u(L) + q_2$, la precedente diventa:

$$\int_0^L \mu_0 u' v' dx + \int_0^L \sigma u v dx + \gamma_2 u(L) v(L) = -q_1 v(0) - q_2 v(L).$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u \in V$$
: $a(u, v) = F(v)$ per ogni $v \in V$,

dove:

- $V = H^1(\Omega)$;
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u,v) = \mu_0 \int_0^L u' v' dx + \int_0^L \sigma u v dx + \gamma_2 u(L) v(L)$, essendo il coefficiente μ_0 costante;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = -q_1 v(0) q_2 v(L)$.

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u \in V$ del problema debole esiste ed è unica. Ricordiamo che la prima ipotesi, ovvero che $V = H^1(\Omega)$ sia uno spazio di Hilbert, è già soddisfatta per definizione. Verifichiamo ora che le ipotesi i)-v) sono soddisfatte.

- i) $(a: V \times V \to \mathbb{R}$ è bilineare). Si dimostra analogamente a quanto visto in precedenza.
- ii) $(a:V\times V\to\mathbb{R}$ è continua). Mostriamo che $|a(u,v)|\leq M\,\|u\|_V\,\|v\|_V$ per ogni $u,v\in V,$ con M>0. Abbiamo:

$$\begin{aligned} |a(u,v)| &= \left| \mu_0 \int_0^L u' \, v' \, dx + \int_0^L \sigma \, u \, v \, dx + \gamma_2 \, u(L) \, v(L) \right| \\ &\leq \left| \mu_0 \left| \int_0^L u' \, v' \, dx \right| + \int_0^L |\sigma \, u \, v| \, dx + \gamma_2 \, |u(L) \, v(L)| \\ &\leq \left| \mu_0 \, \|u\|_{H^1(\Omega)|} \, \|v\|_{H^1(\Omega)} + \|\sigma\|_{L^\infty(\Omega)} \, \|u\|_{H^1(\Omega)|} \, \|v\|_{H^1(\Omega)} + \gamma_2 \, \widetilde{C}^2 \, \|u\|_{H^1(\Omega)} \, \|v\|_{H^1(\Omega)} \\ &\leq M \, \|u\|_V \, \|v\|_V \quad \text{per ogni } u, v \in V, \end{aligned}$$

con costante di continuità $M=(\mu_0+\|\sigma\|_{L^\infty(\Omega)}+\gamma_2\widetilde{C}^2)$. Abbiamo sfruttato le disuguaglianze di Hölder (assumendo $\sigma\in L^\infty(\Omega)$) e di Cauchy-Schwarz, oltre al fatto che $\|v\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$ e $\|v'\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$ per ogni $v\in H^1(\Omega)$, e infine il Teorema di traccia.

iii) $(a:V\times V\to\mathbb{R}$ è coerciva). Mostriamo che $a(v,v)\geq\alpha\,\|v\|_V^2$ per ogni $v\in V$, con $\alpha>0$. Abbiamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \int_0^L \sigma v^2 dx + \gamma_2 (v(L))^2$$

$$\geq \mu_0 \|v'\|_{L^2(\Omega)} + \sigma_0 \|v\|_{L^2(\Omega)}^2 + \gamma_2 (v(L))^2$$

$$\geq \min\{\mu_0, \sigma_0\} \|v\|_{H^1(\Omega)}^2 = \alpha \|v\|_V^2 \quad \text{per ogni } v \in V,$$

con $\alpha = \min\{\mu_0, \sigma_0\} > 0$, essendo $\sigma(x) \geq \sigma_0 > 0$ per $x \in \Omega$ e $\gamma_2(v(L))^2 \geq 0$. La forma $a: V \times V \to \mathbb{R}$ è dunque coerciva.

- iv) $(F:V\to\mathbb{R}$ è lineare). Si dimostra analogamente a quanto visto in precedenza.
- v) $(F:V\to\mathbb{R}$ è continuo). Sfruttando il Teorema di traccia, abbiamo:

$$|F(v)| < |q_1| |v(0)| + |q_2| |v(L)| < C ||v||_V$$
 per ogni $v \in V$,

dove $C = (|q_1| + |q_2|) \widetilde{C}$. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u \in V$ del problema debole esiste ed è unica, inoltre:

$$||u||_V \le \frac{1}{\alpha} ||F||_{V'} = \frac{C}{\alpha} = \frac{(|q_1| + |q_2|) \widetilde{C}}{\min\{\mu_0, \sigma_0\}}.$$

3. Si tratta di un'equazione di diffusione-reazione con condizioni al contorno miste di Neumann e Dirichlet non omogeneo. Introduciamo una funzione di rilevamento R_g tale che $R_g \in H^1(\Omega)$ e $R_g(L) = g_2$, ad esempio possiamo scegliere semplicemente $R_g = g_2$. Cerchiamo la soluzione $u \in H^1(\Omega)$ decomponendola come:

$$u(x) = u_0(x) + R_q(x),$$

dove $u_0 \in H_D^1(\Omega) := \{v \in H^1(\Omega) : v(L) = 0\}$; ovvero $u_0(L) = 0$ e $u(L) = R_g(L) = g_2$. Scriveremo dunque un problema debole nella soluzione omogenea $u_0 \in V = H_D^1(\Omega)$, in cui sceglieremo anche le funzioni test $v \in V$. Scelta R_g e risolto il problema debole in u_0 , sarà poi possibile determinare u(x) come $u = u_0 + R_g$.

Scegliamo lo spazio funzionale $V = H_D^1(\Omega)$, con $\Omega = (0, L)$, in cui cercare la soluzione debole u e scegliere le funzioni test v in modo di dare significato agli integrali che compariranno nella formulazione debole.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_0^L \mu_0 \, u'' \, v \, dx + \int_0^L \sigma_0 \, u \, v \, dx = 0,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu_0 u' v' dx - \left[\mu_0 u'(x) v(x) \right]_{x=0}^L + \int_0^L \sigma_0 u v dx = 0,$$

che deve valere per ogni $v \in V$. Ricordando che $\mu_0 u'(0) = q_1$ e $v \in H^1_D(\Omega)$ (ovvero v(L) = 0), la precedente diventa:

$$\int_0^L \mu_0 \, u' \, v' \, dx + \int_0^L \sigma_0 \, u \, v \, dx = -q_1 \, v(0).$$

Ricordiamo ora che $u = u_0 + R_g$, da cui:

$$\int_0^L \mu_0 (u_0 + R_g)' v' dx + \int_0^L \sigma_0 (u_0 + R_g) v dx = -q_1 v(0),$$

ovvero

$$\int_0^L \mu_0 \, u_0' \, v' \, dx + \int_0^L \sigma_0 \, u_0 \, v \, dx = -q_1 \, v(0) - \int_0^L \mu_0 \, R_g' \, v' \, dx - \int_0^L \sigma_0 \, R_g \, v \, dx.$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u_0 \in V : a(u_0, v) = F(v)$$
 per ogni $v \in V$,

dove:

- $V = H_D^1(\Omega)$;
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u,v) = \mu_0 \int_0^L u' v' dx + \sigma_0 \int_0^L u v dx$, essendo i coefficienti μ_0 e σ_0 costanti;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = -q_1 v(0) a(R_q, v)$.

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u_0 \in V$ del problema debole esiste ed è unica. Ricordiamo che la prima ipotesi, ovvero che $V = H_D^1(\Omega)$ sia uno spazio di Hilbert, è già soddisfatta per definizione. Verifichiamo ora che le ipotesi i)-v) sono soddisfatte.

i) $(a: V \times V \to \mathbb{R}$ è bilineare). Si dimostra analogamente a quanto già visto.

ii) $(a:V\times V\to\mathbb{R}$ è continua). Mostriamo che $|a(w,v)|\leq M\,\|w\|_V\,\|v\|_V$ per ogni $w,v\in V$, con M>0. Abbiamo:

$$|a(w,v)| = \left| \mu_0 \int_0^L w' \, v' \, dx + \sigma_0 \int_0^L w \, v \, dx \right|$$

$$\leq \mu_0 \, \|w\|_{H^1(\Omega)} \, \|v\|_{H^1(\Omega)} + \sigma_0 \, \|w\|_{H^1(\Omega)} \, \|v\|_{H^1(\Omega)}$$

$$\leq M \, \|w\|_V \, \|v\|_V \quad \text{per ogni } w, v \in V,$$

con costante di continuità $M = (\mu_0 + \sigma_0)$. Abbiamo sfruttato la disuguaglianza di Cauchy-Schwarz, oltre al fatto che $||v||_{L^2(\Omega)} \leq ||v||_{H^1(\Omega)}$ e $||v'||_{L^2(\Omega)} \leq ||v||_{H^1(\Omega)}$ per ogni $v \in H^1(\Omega)$.

iii) ($a: V \times V \to \mathbb{R}$ è coerciva). Mostriamo che $a(v,v) \ge \alpha \|v\|_V^2$ per ogni $v \in V$, con $\alpha > 0$. Abbiamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \sigma_0 \int_0^L v^2 dx = \mu_0 \|v'\|_{L^2(\Omega)} + \sigma_0 \|v\|_{L^2(\Omega)}^2.$$

Abbiamo due possibilità per dimostrare la coercività della forma bilineare.

* Siccome $\sigma_0 ||v||_{L^2(\Omega)} \ge 0$ e $v \in V = H_D^1(\Omega)$, sfruttiamo la disuguaglianza di Poincarè, ottendendo:

$$a(v,v) \ge \mu_0 \|v'\|_{L^2(\Omega)} \ge \frac{\mu_0}{1 + C_{\Omega}^2} \|v\|_{H^1(\Omega)}^2 = \alpha_1 \|v\|_V^2$$
 per ogni $v \in V$,

dove appunto
$$\alpha_1 = \frac{\mu_0}{1 + C_0^2} > 0$$
.

* Alternativamente, siccome μ_0 e $\sigma_0 > 0$, abbiamo:

$$a(v,v) \ge \min\{\mu_0, \sigma_0\} \left(\|v'\|_{L^2(\Omega)} + \|v\|_{L^2(\Omega)}^2 \right) = \alpha_2 \|v\|_V^2 \quad \text{per ogni } v \in V,$$

dove
$$\alpha_2 = \min\{\mu_0, \sigma_0\} > 0$$
.

La forma $a:V\times V\to\mathbb{R}$ è dunque coerciva.

- iv) $(F: V \to \mathbb{R}$ è lineare). Si dimostra sfruttando inoltre la linearità della forma $a(R_g, v)$ nel secondo argomento (che discende dalla sua bilinearità).
- v) $(F:V\to\mathbb{R}$ è continuo). Si dimostra analogamente a quanto visto (usando il Teorema di traccia con costante $\widetilde{C}>0$) e sfruttando la continuità della forma $a(u_0,v)$. Infatti:

$$\begin{split} |F(v)| & \leq & |q_1 \, v(0)| + |a(R_g, v)| \\ & \leq & |q_1| \, \widetilde{C} \, \|v\|_{H^1(\Omega)} + M \, \|R_g\|_{H^1(\Omega)} \, \|v\|_{H^1(\Omega)} = C \, \|v\|_V \qquad \text{per ogni } v \in V, \end{split}$$

dove
$$C = (|q_1|\widetilde{C} + M \|R_g\|_{H^1(\Omega)}) = (|q_1|\widetilde{C} + (\mu_0 + \sigma_0) \|R_g\|_{H^1(\Omega)}) > 0$$
. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u_0 \in V$ del problema debole esiste ed è unica, considerando la costante di coercività α_1 , abbiamo:

$$||u_0||_V \le \frac{C}{\alpha_1} = \frac{|q_1|\widetilde{C} + (\mu_0 + \sigma_0) ||R_g||_{H^1(\Omega)}}{\mu_0} (1 + C_{\Omega}^2);$$

invece usando α_2 , si ottiene:

$$||u_0||_V \le \frac{C}{\alpha_2} = \frac{|q_1|\widetilde{C} + (\mu_0 + \sigma_0) ||R_g||_{H^1(\Omega)}}{\min\{\mu_0, \sigma_0\}}.$$

4. Si tratta di un'equazione di diffusione-trasporto con condizioni al contorno miste di Dirichlet omogeneo e Neumann. Scegliamo lo spazio funzionale $V = H_S^1(\Omega) := \{v \in H^1(\Omega) : v(0) = 0\}$, con $\Omega = (0, L)$, in cui cercare la soluzione debole u e scegliere le funzioni test v in modo di dare significato agli integrali che compariranno nella formulazione debole e garantire che u(0) = 0.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_0^L \mu_0 u'' v \, dx + \int_0^L \beta_0 u' v \, dx = \int_0^L f_0 v \, dx,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu_0 u' v' dx - \left[\mu_0 u'(x) v(x) \right]_{x=0}^L + \int_0^L \beta_0 u' v dx = \int_0^L f_0 v dx,$$

che deve valere per ogni $v \in V$. Ricordando che $V = H_S^1(\Omega)$, e dunque che v(0) = 0, e $-\mu_0 u'(L) = 0$, la precedente diventa:

$$\int_0^L \mu_0 \, u' \, v' \, dx + \int_0^L \beta_0 \, u' \, v \, dx = \int_0^L f_0 \, v \, dx.$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u \in V$$
: $a(u, v) = F(v)$ per ogni $v \in V$,

dove:

- $V = H_S^1(\Omega)$;
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u,v) = \mu_0 \int_0^L u' v' dx + \beta_0 \int_0^L u' v dx$, dato che μ_0 e β_0 sono costanti;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = f_0 \int_0^L v \, dx$, essendo f_0 costante.

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u \in V$ del problema debole esiste ed è unica. Ricordiamo che la prima ipotesi, ovvero che $V = H^1_S(\Omega)$ sia uno spazio di Hilbert, è già soddisfatta per definizione di tale spazio. Procediamo ora verificando che le ipotesi i)-v) sono soddisfatte.

- i) (a : $V \times V \to \mathbb{R}$ è bilineare). La forma a : $V \times V \to \mathbb{R}$ è bilineare in analogia a quanto fatto in precedenza.
- ii) $(a: V \times V \to \mathbb{R}$ è continua). Mostriamo che $|a(u,v)| \le M ||u||_V ||v||_V$ per ogni $u,v \in V$, con M > 0. Abbiamo:

$$|a(u,v)| = \left| \mu_0 \int_0^L u' \, v' \, dx + \beta_0 \int_0^L u' \, v \, dx \right|$$

$$\leq \mu_0 \|u'\|_{L^2(\Omega)} \|v'\|_{L^2(\Omega)} + \beta_0 \|u'\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)}$$

$$\leq \mu_0 \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)} + \beta_0 \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)}$$

$$\leq M \|u\|_V \|v\|_V \quad \text{per ogni } u, v \in V,$$

con costante di continuità $M=(\mu_0+\beta_0)$. Abbiamo sfruttato il fatto che $\beta_0\geq 0$, la disuguaglianza di Cauchy-Schwarz, oltre al fatto che $\|v\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$ e $\|v'\|_{L^2(\Omega)}\leq \|v\|_{H^1(\Omega)}$ per ogni $v\in H^1(\Omega)$ e dunque per ogni $v\in V$.

iii) ($a:V\times V\to\mathbb{R}$ è coerciva). Mostriamo che $a(v,v)\geq \alpha\,\|v\|_V^2$ per ogni $v\in V,$ con $\alpha>0.$ Abbiamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \beta_0 \int_0^L v' v dx;$$

dato che $\int_0^L v' v \, dx = \int_0^L \frac{(v^2)'}{2} \, dx = \frac{1}{2} v^2(L) - \frac{1}{2} v^2(0) = \frac{1}{2} v^2(L)$, essendo $v \in H^1_S(\Omega)$, otteniamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \frac{1}{2} \beta_0 v^2(L).$$

Visto che $\beta_0 \geq 0$ e dunque $\frac{1}{2} \beta_0 v^2(L) \geq 0$ per ogni $v \in V$, otteniamo:

$$a(v,v) \ge \mu_0 \|v'\|_{L^2(\Omega)}.$$

Di nuovo, essendo $v \in V = H_S^1(\Omega)$, vale la disuguaglianza di Poincarè, ovvero $||v'||_{L^2(\Omega)} \ge \frac{1}{1+C_\Omega^2} ||v||_{H^1(\Omega)}^2$ per ogni $v \in H_S^1(\Omega)$, con $C_\Omega > 0$. Dunque:

$$a(v,v) \geq \frac{\mu_0}{1+C_\Omega^2} \, \|v\|_{H^1(\Omega)}^2 = \alpha \, \|v\|_V^2 \qquad \text{per ogni } v \in V,$$

con $\alpha = \frac{\mu_0}{1 + C_\Omega^2}$. La forma $a : V \times V \to \mathbb{R}$ è quindi coerciva.

iv) $(F: V \to \mathbb{R}$ è lineare). Mostriamo che $F(\beta v + \gamma w) = \beta F(v) + \gamma F(w)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w \in V$. Abbiamo:

$$F(\beta v + \gamma w) = f_0 \int_0^L (\beta v + \gamma w) \, dx = \beta f_0 \int_0^L v \, dx + \gamma f_0 \int_0^L w \, dx = \beta F(v) + \gamma F(w).$$

Dunque $F:V\to\mathbb{R}$ è un funzionale lineare.

v) $(F:V\to\mathbb{R}$ è continuo). Dato che F è un funzionale lineare, esso è continuo se è anche limitato. Mostriamo dunque che F è limitato, ovvero esiste una costante C>0 tale che $|F(v)|\leq C\,\|v\|_V$ per ogni $v\in V$. Abbiamo:

$$|F(v)| \leq |f_0| \int_0^L |v| \, dx \leq |f_0| \, ||v||_{L^1(\Omega)}$$

$$\leq |f_0| \, ||v||_{L^2(\Omega)} \leq |f_0| \, ||v||_{H^1(\Omega)} = C \, ||v||_V \quad \text{per ogni } v \in V,$$

dove $C = |f_0|$, avendo sfruttato il fatto che $v \in H^1(\Omega)$ e dunque $v \in L^2(\Omega)$ e anche $v \in L^2(\Omega)$. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u \in V$ del problema debole esiste ed è unica, inoltre:

$$||u||_V \le \frac{1}{\alpha} ||F||_{V'} = \frac{C}{\alpha} = \frac{1 + C_{\Omega}^2}{\mu_0} |f_0|.$$

5. Si definisce il problema in formulazione debole come nell'Esercizio 2.4. Per lo studio della buona posizione tramite il Teorema di Lax-Milgram, si procede come nell'Esercizio 2.4 usando $|\beta_0|$ al posto di β_0 . Più attenzione deve essere dedicata allo studio della coercività della forma bilineare a(u, v). Infatti, abbiamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx - \frac{1}{2} |\beta_0| v^2(L),$$

essendo $\beta_0 < 0$. Dato che $v \in V \subset H^1(\Omega)$, vale il Teorema di traccia, ovvero esiste una costante $\widetilde{C} > 0$ tale che

$$|v(L)| \le \widetilde{C} ||v||_{H^1(\Omega)}$$
 per ogni $v \in H^1(\Omega)$.

Dunque, otteniamo:

$$a(v,v) \ge \mu_0 \|v'\|_{L^2(\Omega)} - \frac{1}{2} |\beta_0| \widetilde{C}^2 \|v\|_{H^1(\Omega)}^2.$$

Dato che $v \in V = H_S^1(\Omega)$, vale la disuguaglianza di Poincarè, ovvero $||v'||_{L^2(\Omega)} \ge \frac{1}{1 + C_{\Omega}^2} ||v||_{H^1(\Omega)}^2$ per ogni $v \in H_S^1(\Omega)$, con $C_{\Omega} > 0$. Otteniamo:

$$a(v,v) \ge \left(\frac{\mu_0}{1+C_0^2} - \frac{1}{2} |\beta_0| \widetilde{C}^2\right) \|v\|_{H^1(\Omega)}^2 = \alpha \|v\|_V^2 \quad \text{per ogni } v \in V.$$

Affinchè la forma sia coerciva, la precedente deve essere verificata per $\alpha > 0$, da cui deduciamo la seguente condizione:

$$|\beta_0| < \frac{2\mu_0}{(1+C_0^2)\,\widetilde{C}^2}.$$

6. Si tratta di un'equazione di diffusione-trasporto-reazione con condizioni al contorno miste di Dirichlet omogeneo e Neumann. Scegliamo lo spazio funzionale $V = H^1_S(\Omega) := \{v \in H^1(\Omega) : v(0) = 0\}$, con $\Omega = (0, L)$, in cui cercare la soluzione debole u e scegliere le funzioni test v in modo di dare significato agli integrali che compariranno nella formulazione debole e garantire che u(0) = 0.

Presa l'equazione differenziale, moltiplicando a sinistra e a destra dell'uguale per la funzione test $v \in V$ e integrando, abbiamo:

$$-\int_0^L \mu_0 \, u'' \, v \, dx + \int_0^L \beta \, u' \, v \, dx + \int_0^L \sigma_0 \, u \, v \, dx = \int_0^L f_0 \, v \, dx,$$

da cui, applicando l'integrale per parti al primo termine a sinistra dell'uguale, otteniamo:

$$\int_0^L \mu_0 u' v' dx - \left[\mu_0 u'(x) v(x)\right]_{x=0}^L + \int_0^L \beta u' v dx + \int_0^L \sigma_0 u v dx = \int_0^L f_0 v dx,$$

che deve valere per ogni $v \in V$. Ricordando che $V = H_S^1(\Omega)$, e dunque che v(0) = 0, e $-\mu_0 u'(L) = 0$, la precedente diventa:

$$\int_0^L \mu_0 \, u' \, v' \, dx + \int_0^L \beta \, u' \, v \, dx + \int_0^L \sigma_0 \, u' \, v \, dx = \int_0^L f_0 \, v \, dx.$$

Il problema in formulazione debole si scrive quindi come:

trovare
$$u \in V : a(u, v) = F(v)$$
 per ogni $v \in V$,

dove:

- $V = H_S^1(\Omega);$
- $a: V \times V \to \mathbb{R}$ è la forma espressa come $a(u,v) = \mu_0 \int_0^L u'v' dx + \int_0^L \beta u'v dx + +\sigma_0 \int_0^L uv dx$, dato che μ_0 e σ_0 sono costanti;
- $F: V \to \mathbb{R}$ è il funzionale espresso come $F(v) = f_0 \int_0^L v \, dx$, essendo f_0 costante.

Ancora una volta, la scelta dello spazio funzionale V e il fatto che $\beta(x) = \sigma_0 x \in L^{\infty}(\Omega)$ conferisce senso agli integrali nella forma a(u, v) e nel funzionale F(v).

Mostriamo, usando il Teorema di Lax-Milgram, che la soluzione $u \in V$ del problema debole esiste ed è unica. Ricordiamo che la prima ipotesi, ovvero che $V = H_S^1(\Omega)$ sia uno spazio di Hilbert, è già soddisfatta per definizione di tale spazio. Procediamo ora verificando che le ipotesi i)-v) sono soddisfatte.

- i) ($a:V\times V\to\mathbb{R}$ è bilineare). La forma $a:V\times V\to\mathbb{R}$ è bilineare in analogia a quanto già visto.
- ii) $(a:V\times V\to\mathbb{R}$ è continua). Mostriamo che $|a(u,v)|\le M\,\|u\|_V\,\|v\|_V$ per ogni $u,v\in V,$ con M>0. Abbiamo:

$$|a(u,v)| = \left| \mu_0 \int_0^L u' \, v' \, dx + \int_0^L \beta \, u' \, v \, dx + \sigma_0 \int_0^L u \, v \, dx \right|$$

$$\leq \mu_0 \left| \int_0^L u' \, v' \, dx \right| + \int_0^L |\beta \, u' \, v| \, dx + \sigma_0 \left| \int_0^L u \, v \, dx \right|$$

$$\leq \mu_0 \left\| u' \right\|_{L^2(\Omega)} \left\| v' \right\|_{L^2(\Omega)} + \left\| \beta \right\|_{L^{\infty}(\Omega)} \left\| u' \right\|_{L^2(\Omega)} \left\| v \right\|_{L^2(\Omega)} + \sigma_0 \left\| u \right\|_{L^2(\Omega)} \left\| v \right\|_{L^2(\Omega)}$$

$$\leq \mu_0 \left\| u \right\|_{H^1(\Omega)} \left\| v \right\|_{H^1(\Omega)} + \left\| \beta \right\|_{L^{\infty}(\Omega)} \left\| u \right\|_{H^1(\Omega)} \left\| v \right\|_{H^1(\Omega)} + \sigma_0 \left\| u \right\|_{H^1(\Omega)} \left\| v \right\|_{H^1(\Omega)}$$

$$\leq M \left\| u \right\|_V \left\| v \right\|_V \quad \text{per ogni } u, v \in V,$$

con costante di continuità $M = (\mu_0 + \|\beta\|_{L^{\infty}(\Omega)} + \sigma_0) = (\mu_0 + \sigma_0 L + \sigma_0)$. Abbiamo sfruttato il fatto che μ_0 , $\sigma_0 > 0$, le disuguaglianze di Cauchy-Schwarz e di Hölder, oltre al fatto che $\|v\|_{L^2(\Omega)} \leq \|v\|_{H^1(\Omega)}$ e $\|v'\|_{L^2(\Omega)} \leq \|v\|_{H^1(\Omega)}$ per ogni $v \in H^1(\Omega)$ e dunque per ogni $v \in V$.

iii) $(a:V\times V\to\mathbb{R}$ è coerciva). Mostriamo che $a(v,v)\geq\alpha\,\|v\|_V^2$ per ogni $v\in V,$ con $\alpha>0.$ Abbiamo:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \int_0^L \beta v' v dx + \sigma_0 \int_0^L v^2 dx.$$

Utilizzando l'integrale per parti, abbiamo che $\int_0^L \beta \, v' \, v \, dx = \int_0^L \beta \frac{(v^2)'}{2} \, dx = \int_0^L \left(\beta \, \frac{v^2}{2}\right)' \, dx - \int_0^L \beta' \, \frac{v^2}{2} \, dx = \frac{1}{2} \beta(L) \, v^2(L) - \frac{1}{2} \beta(0) v^2(0) - \int_0^L \beta' \, \frac{v^2}{2} \, dx = \frac{1}{2} \beta(L) \, v^2(L) - \int_0^L \beta' \, \frac{v^2}{2} \, dx,$ essendo $v \in H_S^1(\Omega)$. Otteniamo dunque:

$$a(v,v) = \mu_0 \int_0^L (v')^2 dx + \frac{1}{2} \beta(L) v^2(L) - \int_0^L \beta' \frac{v^2}{2} dx + \sigma_0 \int_0^L v^2 dx$$
$$= \mu_0 \|v'\|_{L^2(\Omega)} + \frac{1}{2} \beta(L) v^2(L) + \int_0^L \left(\sigma_0 - \frac{1}{2}\beta'\right) v^2 dx.$$

In questo caso specifico abbiamo $\beta(x) = \sigma_0 x$ per $x \in (0, L)$, dunque $\beta(L) = \sigma_0 L > 0$ e $\beta'(x) = \sigma_0 > 0$, essendo $\sigma_0 > 0$. Dunque si ottiene che:

$$a(v,v) = \mu_0 \|v'\|_{L^2(\Omega)} + \frac{\sigma_0 L}{2} v^2(L) + \frac{\sigma_0}{2} \int_0^L v^2 dx \ge \mu_0 \|v'\|_{L^2(\Omega)} + \frac{\sigma_0}{2} \|v\|_{L^2(\Omega)}^2.$$

Abbiamo due possibilità per dimostrare la coercività della forma bilineare.

* Siccome $\sigma_0 ||v||_{L^2(\Omega)}^2 \ge 0$ e $v \in V = H_D^1(\Omega)$, sfruttiamo la disuguaglianza di Poincarè, ottendendo:

$$a(v,v) \ge \mu_0 \|v'\|_{L^2(\Omega)} \ge \frac{\mu_0}{1 + C_{\Omega}^2} \|v\|_{H^1(\Omega)}^2 = \alpha_1 \|v\|_V^2$$
 per ogni $v \in V$,

dove appunto
$$\alpha_1 = \frac{\mu_0}{1 + C_0^2} > 0$$
.

* Alternativamente, siccome μ_0 e $\sigma_0 > 0$, abbiamo:

$$a(v,v) \ge \min\left\{\mu_0, \frac{\sigma_0}{2}\right\} \left(\|v'\|_{L^2(\Omega)} + \|v\|_{L^2(\Omega)}^2\right) = \alpha_2 \|v\|_V^2 \quad \text{per ogni } v \in V,$$

dove
$$\alpha_2 = \min\left\{\mu_0, \frac{\sigma_0}{2}\right\} > 0.$$

La forma $a\,:\,V\times V\to\mathbb{R}$ è dunque coerciva.

- iv) $(F:V\to\mathbb{R}$ è lineare). Si dimostra facilmente.
- v) $(F:V\to\mathbb{R}$ è continuo). Si dimostra analogamente a quanto visto in precedenza. Abbiamo:

$$|F(v)| \ \leq \ |f_0| \, \|v\|_{L^1(\Omega)} \leq |f_0| \, \|v\|_{L^2(\Omega)} \leq |f_0| \, \|v\|_{H^1(\Omega)} = C \, \|v\|_V \qquad \text{per ogni } v \in V,$$

dove $C = |f_0|$, avendo sfruttato il fatto che $v \in H^1(\Omega)$ e dunque $v \in L^2(\Omega)$ e anche $v \in L^2(\Omega)$. Dunque F è limitato ed, essendo lineare, anche continuo.

Dato che tutte le ipotesi del Teorema di Lax-Milgram sono soddisfatte, la soluzione $u \in V$ del problema debole esiste ed è unica, considerando la costante di coercività α_1 , abbiamo:

$$||u||_V \le \frac{C}{\alpha_1} = \frac{|f_0|}{\mu_0} (1 + C_{\Omega}^2);$$

invece usando α_2 , si ottiene:

$$||u||_V \le \frac{C}{\alpha_2} = \frac{|f_0|}{\min\{\mu_0, \sigma_0/2\}}.$$