

Departamento de Ingeniería de Sistemas y Automática

Automática Básica. Formulario.

Tabla de transformadas de Laplace.

Impulso unitario	1	$e^{-a \cdot t}$	$\frac{1}{s+a}$
Escalón unitario	$\frac{1}{s}$	$e^{-a\cdot t}\cdot sen(\omega\cdot t)$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$
Rampa unitaria	$\frac{1}{s^2}$	$e^{-a\cdot t}\cdot cos(\omega\cdot t)$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$

Modelado de sistemas físicos.

Sistemas eléctricos pasivos:	$V_{R}(t) = R \cdot i(t)$ $V_{C}(t) = \frac{1}{C} \int_{0}^{t} i(\tau) d\tau$ $V_{L}(t) = L \frac{di(t)}{dt}$	Sistemas mecánicos de traslación: K M	$\sum F(t) = M \cdot \frac{d^2 x(t)}{dt^2}$ $F_K(t) = -K \cdot x(t)$ $F_B(t) = -B \cdot \frac{dx(t)}{dt}$
Sistemas eléctricos activos:	Impedancia de entrada infinita. Impedancia de salida nula. Ganancia infinita.	β B $x(t)$	dt dt
Sistemas mecánicos de rotación: θ(t) ω(t) J,B,K	$\sum T(t) = J \cdot \frac{d^2 \theta(t)}{dt^2} = J \cdot \frac{d\omega(t)}{dt}$ $T_K(t) = -K \cdot \theta(t)$ $T_B(t) = -B \cdot \frac{d\theta(t)}{dt} = -B \cdot \omega(t)$	Sistemas hidráulicos: Qe(t) h(t) Qs(t)	$A \cdot \frac{dh(t)}{dt} = q_e(t) - q_s(t)$ $q_s(t) = K \cdot \sqrt{h(t)}$

Errores en régimen permanente.

Error Tipo	ер	ev	ea
0	$\frac{1}{1+Kp} ; Kp = \lim_{s \to 0} G_{BA}(s)$	∞	∞
1	0	$\frac{1}{Kv} ; Kv = \lim_{s \to 0} s \cdot G_{BA}(s)$	8
2	0	0	$\frac{1}{Ka} ; Ka = \lim_{s \to 0} s^2 \cdot G_{BA}(s)$

Sistemas de primer orden.

$$G_1(s) = \frac{K_{est}}{1 + \tau \cdot s} = \frac{K_{est} \cdot p}{s + p}$$
 ; $p = \frac{1}{\tau}$; $te_{98\%} = 4 \cdot \tau = \frac{4}{p}$

Sistemas de segundo orden.

$$G_{2}(s) = \frac{K_{est} \cdot \omega_{n}^{2}}{s^{2} + 2 \cdot \xi \cdot \omega_{n} \cdot s + \omega_{n}^{2}} = \frac{K_{est} \cdot (\sigma^{2} + \omega_{p}^{2})}{\left[\left(s + \sigma\right)^{2} + \omega_{p}^{2}\right]} \quad ; \quad p1 = -\xi \cdot \omega_{n} + \omega_{n} \cdot \sqrt{\xi^{2} - 1} = -\sigma + \omega_{p} \cdot j$$

$$p2 = -\xi \cdot \omega_{n} - \omega_{n} \cdot \sqrt{\xi^{2} - 1} = -\sigma + \omega_{p} \cdot j$$

$$tp = \frac{\pi}{\omega_{p}} = \frac{\pi}{\omega_{n} \cdot \sqrt{1 - \xi^{2}}} \quad ; \quad te_{98\%} = \frac{4}{\sigma} = \frac{4}{\xi \cdot \omega_{n}} \quad ; \quad \delta = e^{-\sigma \frac{\pi}{\omega_{p}}} = e^{-\frac{\pi \cdot \xi}{\sqrt{1 - \xi^{2}}}}$$

Departamento de Ingeniería de Sistemas y Automática

Automática Básica. Formulario.

Sistemas de orden superior.

Reducción de orden.

$$G(s) = K \frac{\prod_{i=1}^{m} (s + z_i)}{\prod_{i=1}^{n} (s + p_i)}$$

$$Cancelación parejas polo/cero "próximas": |P-Z| < P/10$$

$$Eliminación de polos "alejados": P > 10 \sigma_{dominante}$$

$$La ganancia estática debe mantenerse: $\lim_{s \to 0} G(s) = \lim_{s \to 0} G_{eq}(s)$$$

Lugar de las raíces.

Criterio del argumento	Criterio del módulo	
$\sum \theta_{PI} - \sum \theta_{PF} = (2k+1) \cdot 180 , k = 0,1,2$	$K_{LDR} = \frac{\prod d_{PI}}{\prod d_{PF}}$; $K = \frac{K_{LDR}}{K_G \cdot K_H}$	

Relación plano complejo – características de la respuesta temporal.

Regulador PID.

$G_{PID}(s) = K_r \left(1 + T_d s\right) \left(1 + \frac{1}{T_i s}\right)$	$K_r = \frac{K_{LDR}}{K_G \cdot K_H \cdot T_d}$	$T_d = \frac{1}{z_d}$	$T_i = \frac{1}{z_i}$
$G_{PID}(s) = K_r' \left(1 + T_d' s + \frac{1}{T_i' s} \right)$	$K_r' = K_r \left(1 + \frac{T_d}{T_i} \right)$	$T_d' = \frac{T_d}{\left(1 + \frac{T_d}{T_i}\right)}$	$T_i' = T_i \left(1 + \frac{T_d}{T_i} \right)$