Jean-Baptiste Bouvier

bouvier3@berkeley.edu in Linkedin GitHub Website Google Scholar

WORK EXPERIENCE

JAN 2024	Postdoctoral Scholar, ICON Lab at UC BERKELEY • Trained generative AI using diffusion transformers for robot trajectories in PyTorch and on hardware robots (DDAT). Published at RSS 2025.
	Mentoring 3 PhD students on safe RL, LLM curriculum learning, and multi-agent diffusion.
JUNE 2023 DEC 2023	Postdoctoral Research Associate, ICON Lab at UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN (UIUC) Safe RL (POLICED RL) implemented with DDPG, DDQN, TD3, PPO in PyTorch. Published at RSS 2024. Mentored 1 PhD student working on safe RL and optimal robotic assembly planning.
MAY 2023 AUG 2019	Research Assistant, Control and Autonomy Lab at UIUC • Lyapunov stability of a model-based policy in PyTorch. • Resilience of autonomous systems enduring loss of control in MATLAB. • Teaching Assistant for the Structures and Control Lab and the Aerospace Dynamical Systems class.
JULY 2021 DEC 2021	PhD Intern in Optimization and Control, at PACIFIC NORTHWEST NATIONAL LABORATORY • Guaranteed distributed transient safety of electrical networks in Julia.
FEB 2019 JULY 2019	Intern in Flight Dynamics, at CNES: FRENCH SPACE AGENCY Contributed to a high fidelity satellite constellation simulator in C++.
Aug 2017 Dec 2018	Research Assistant, Space System and Optimization Lab at UIUC Optimized low-thrust low-energy interplanetary trajectories in MATLAB.
EDUCATION	ON

MAY 2023	Ph.D. in Aerospace Engineering, University of Illinois Urbana-Champaign
	Thesis: Guaranteed Resilience of Autonomous Systems to Loss of Control Authority over Actuators
DEC 2018	Masters of Science in Aerospace Engineering, University of Illinois Urbana-Champaign Thesis: Orbit Control for a Spacecraft around a Splitting Contact Binary Asteroid
June 2017	Masters of Science in Aerospace Engineering, ISAE-Supaéro, France

LATEST PUBLICATIONS

LATEST FUBLICATIONS		
JB. Bouvier, K. Ryu, K. Nagpal, Q. Liao, K. Sreenath, N. Mehr. DDAT: Diffusion Policies Enforcing Dynamically Admissible Robot Trajectories. <i>Robotics: Science and Systems</i> (RSS), 2025.		
JB. Bouvier, K. Nagpal, N. Mehr. POLICEd RL: Learning closed-loop robot control policies with provable satisfaction of hard constraints. <i>Robotics: Science and Systems</i> (RSS), 2024		
JB. Bouvier, K. Nagpal, N. Mehr. Learning to provably satisfy high relative degree constraints for blackbox systems. 63rd IEEE Conference on Decision and Control (CDC), 2024.		

PROPOSALS

2025	NSF Cyber-Physical Systems (CPS)
	CPS-Small: Provable Enforcement of Hard Constraints in Reinforcement Learning-Based Controllers for
	Safety-Critical CPS. Funded at \$600K.
2025	IRB Protocol
	Robotic Trajectory Planning in Environments Shared by Humans
2024	Google - BAIR program
	DAD: Dynamics Aware Diffusion for admissible robot trajectories. Funded at \$25K.

SKILLS

Machine Learning, Control, Optimization, Robotics

Python (PyTorch, Numpy, SciPy, Matplotlib), ROS, Julia, MATLAB, LaTeX. PROGRAMMING: