Homework2 CSCI 1420

Homework 2

Problem1:

(a) Conjunction:

$$w = \{1,1, ..., 1,1\}$$

 $b = -d + 1$
 $h_w(x) = sign(< w, x > +b)$
w is all 1 so that $< w, x >$ is d if and only if all

w is all 1 so that < w, x > is d if and only if all values of x is 1. In this case, $h_w(x)$ is 1. In all others cases, $h_w(x) = 0$ or -1.

(b) Majority:

$$w = \{1,1, ..., 1,1\}$$

$$b = -d/2$$

$$h_w(x) = sign(< w, x > +b)$$

w is all 1. When more than half of d values of x are 1, < w, x > is greater than d/2. In this case, $h_w(x)$ is 1. Otherwise, < w, x > +b is less or equal to 0, which leads to $h_w(x) = 0$ or -1

Homework2 CSCI 1420

Problem2: The plot of different scenarios of the given function.

The red dots are points where $h_{equiv}=1$, while the blue crosses are points where $h_{equiv}=0$. There is no way to draw to line to separate those points. Therefore, h_{equiv} can not be represented with a halfspace.

Homework2 CSCI 1420

Problem3: We already know that w is a vector perpendicular to the decision boundary, where $\langle w, x \rangle = 0$.

For a point x that is out of the decision boundary, the vector x can be written as the sum of the projection vector on decision boundary x_{proj} and the vector that perpendicular to the decision boundary x_{per}

$$x = x_{proj} + x_{per}$$

Besides, x_{per} can be written as $d\frac{w}{||w||_2}$ where d is the distance of x to the decision boundary and $\frac{w}{||w||_2}$ is a unit vector that perpendicular to the decision boundary. So,

$$x = x_{proj} + d \frac{w}{||w||_2}$$

Multiply the equation with w^T :

$$w^T x = w^T x_{proj} + d \frac{w^T w}{||w||_2}$$

Then,

$$|< w, x > | = |< w, x_{proj} > | + d * ||w||_2$$

Because x_{proj} is on the decision boundary, $|< w, x_{proj} > | = 0$. Therefore,

$$d = \frac{|< w, x > |}{||w||_2}$$