COMP 5630/6630:Machine Learning

Lecture 10: CNN, Demo CNN

Convolutional Neural Networks

Convolutional Nets: Intuition

- Basic Idea
 - On board
 - Assumptions:
 - Local Receptive Fields
 - Weight Sharing / Translational Invariance / Stationarity
 - Each layer is just a convolution!

LOCALLY CONNECTED NEURAL NET

Flatten Image (X) $1000x 1000 = 10^6$ Hidden unit/neuron (W) = 10^6

Each neuron is connected to only 10x10 units (Filter size)

Total number of parameters = $10^6 \times 100 = 100M$

LOCALLY CONNECTED NEURAL NET

CONVOLUTIONAL NET

Share the same parameters across different locations (assuming input is stationary):

Convolutions with learned kernels/filters

CONVOLUTIONAL NET

- Now we have two filters:
 - 1. One **black** color
 - 2. One red color
- Each filter will slide over the entire image
- Each filter will learn different local properties
- If we have 100 such filter, each with 10x10 size,
 - Total parameters to learn = 100 x 10 x 10 = 10k

Convolution Explained

http://setosa.io/ev/image-kernels/

https://github.com/bruckner/deepViz

Key Ideas

- Take advantage of properties of natural signals
 - Local connections
 - Shared weights
 - Pooling
 - Use of many layers

Comparison with Regular NNs

- Regular, Feed-forward NNs:
 - Need substantial number of training samples
 - Slow learning (convergence times)
 - Inadequate parameter selection techniques that lead to poor minima
- Solution?

Comparison with Regular NNs

- Regular, Feed-forward NNs:
 - Need substantial number of training samples
 - Slow learning (convergence times)
 - Inadequate parameter selection techniques that lead to poor minima
- Solution?
- Exploitation of Local Properties!
- Network should exhibit invariance to translation, scaling and elastic deformations
 - A large training set can take care of this
- It ignores a key property of images
 - Nearby pixels are more strongly correlated than distant ones
 - Modern computer vision approaches exploit this property
- Information can be merged at later stages to get higher order features and about whole image

Basic Mechanisms in CNNs

- Three Mechanisms of Convolutional Neural Networks:
 - Convolution Operation
 - Local Receptive Fields
 - Subsampling
 - Weight (Parameter) Sharing

7	2	3	3	8								
4	5	3	8	4		1	0	-1		6		
3	3	2	8	4	*	1	0	-1	=			
2	8	7	2	7		1	0	-1				
5	4	4	5	4		7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6						

Visualization of convolution: https://github.com/effat/MLP-Demo/blob/main/Convolution_gif.gif

Recap: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

32x32x3 image -> preserve spatial structure

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

each 1x28x28 3x32x32 image Consider 6 filters, each 3x5x5 Convolution Layer 32 6x3x5x5 Stack activations to get a filters 6x28x28 output image! Slide inspiration: Justin Johnson

6 activation maps,

6 activation maps, each 1x28x28

28x28 grid, at each point a 6-dim vector

Slide inspiration: Justin Johnson

Preview: ConvNet is a sequence of Convolution Layers

Preview: ConvNet is a sequence of Convolution Layers

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: What do convolutional filters learn?

Preview: What do convolutional filters learn?

MLP: Bank of whole-image templates

Preview: What do convolutional filters learn?

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

activation map

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

/

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

- \Rightarrow 5x5 output
- ⇒ With stride =1, takes 5 times sliding to traverse the width
- ⇒3 x 3 filter will need 5 times sliding to cover the height with stride = 1

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3. N

Assume input image height (== width) = N Applied stride's height(== width) = F

Output width (==height)
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Ν

Padding the Input Before Convolution

- Solution
 - Add extra pixels of filler around the boundary of our input image, thus
 increasing the effective size of the image.
 - Set values of extra pixels with zeros

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

CNN Vocabulary

- Padding
- Stride
- Pooling

Stride

- Number of rows and columns traversed per slide as the stride
- Previous example
- Stride = 1 for both height and width

Stride Limitations

- 1. The output feature map is smaller (3x3) than the input image (5x5).
 - 1. Applying more convolutional layers \rightarrow the spatial dimensions decreases \rightarrow loss of information.

- 2. The pixels at the borders of receives fewer convolutional operations compared to the center pixels.
 - 1.Can impact model's performance if important features are present at the edges.

Stride, Padding, and the Output Volume

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Stride, Padding, and the Output Volume

Common settings:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

- K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

- No learnable parameters
- Introduces spatial invariance

Pooling layer: Summary

Let's assume input is W₁ x H₁ x C Conv layer needs 2 hyperparameters:

- The spatial extent **F**
- The stride **S**

This will produce an output of $W_2 \times H_2 \times C$ where:

- $W_2 = (W_1 F)/S + 1$
- $H_2 = (H_1 F)/S + 1$

Number of parameters: 0

Pooling Continued

The three types of pooling operations are:

- 1. Max pooling: The maximum pixel value of the batch is selected.
- 2. Min pooling: The minimum pixel value of the batch is selected.
- 3. Average pooling: The average value of all the pixels in the batch is selected.

CNN Demo

https://github.com/effat/MLP-Demo/blob/main/CNN_Demo.ipynb