

Learning objectives

- Concepts
 - Understand the temporal dimension of language
 - Understand some basic concepts in attention
 - query, key, value, self-attention
 - Understand a head as a representation of a certain relationship between words
- Computation
 - Understand the power of matrix multiplication for parallel computation

Last session

A single self-attention head

A visual of what we have learned so far

Any questions?

Multi-head attention mechanism

ONSTELLAT

A visual of what we have learned so far

HEAD

 $egin{array}{ccccc} q_2^{t2} & \ldots & q_8^{t2} \ \ldots & \ldots & \ldots \ q_2^{t8} & \ldots & q_8^{t8} \ \end{bmatrix}$

k^T 83

8X8

8X8

$$\begin{bmatrix} a_{t1_{v1}}^{h1} & a_{t1_{v2}}^{h1} & \dots & a_{t1_{v8}}^{h1} \\ a_{t2_{v1}}^{h1} & a_{t2_{v2}}^{h1} & \dots & a_{t2_{v8}}^{h1} \\ \dots & \dots & \dots & \dots \\ a_{t8_{v1}}^{h1} & a_{t8_{v2}}^{h1} & \dots & a_{t8_{v8}}^{h1} \end{bmatrix} \quad \begin{bmatrix} a_{t1_{v1}}^{h2} & a_{t1_{v2}}^{h2} & \dots & a_{t1_{v8}}^{h2} \\ a_{t2_{v1}}^{h2} & a_{t2_{v2}}^{h2} & \dots & a_{t2_{v8}}^{h2} \\ \dots & \dots & \dots & \dots \\ a_{t8_{v1}}^{h1} & a_{t8_{v2}}^{h1} & \dots & a_{t8_{v8}}^{h2} \end{bmatrix}$$

$$egin{bmatrix} a_{t1_{v1}}^{h2} & a_{t1_{v2}}^{h2} & \dots & a_{t1_{v8}}^{h2} \ a_{t2_{v1}}^{h2} & a_{t2_{v2}}^{h2} & \dots & a_{t2_{v8}}^{h2} \ \dots & \dots & \dots & \dots \ a_{t8_{v1}}^{h2} & a_{t8_{v2}}^{h2} & \dots & a_{t8_{v8}}^{h2} \end{bmatrix}$$

8X8 8X8

$igl[a^{h1}_{t1_{v1}}$	$a_{t1_{v2}}^{h1}$	• • •	$a^{h1}_{t1_{v8}}$	$a_{t1_{v1}}^{h2}$	$a_{t1_{v2}}^{h2}$		$a_{t1_{v8}}^{h2} brace$
$egin{bmatrix} a_{t1_{v1}}^{h1} \ a_{t2_{v1}}^{h1} \ \cdots \ a_{t8_{v1}}^{h1} \end{bmatrix}$	$a^{h1}_{t2_{v2}}$	• • •	$a^{h1}_{t2_{v8}}$	$a_{t2_{v1}}^{h2}$	$a_{t2_{v2}}^{h2}$	• • •	$a^{h2}_{t2_{v8}}$
	• • •	• • •	• • •	• • •	• • •	• • •	
$igl[a^{h1}_{t8_{v1}}$	$a^{h1}_{t8_{v2}}$	• • •	$a^{h1}_{t8_{v8}}$	$a^{h2}_{t8_{v1}}$	$a^{h2}_{t8_{v2}}$	• • •	$a^{h2}_{t8_{v8}}oldsymbol floor}$

8X16

8X32

$a_{t1_{v1}}^{h1}$	• • •	$a^{h1}_{t1_{v8}}$
$a^{h1}_{t2_{v1}}$	• • •	$a^{h1}_{t2_{v8}}$
	• • •	
$a^{h1}_{t8_{v1}}$	• • •	$a^{h1}_{t8_{v8}}$

$a_{t1_{v1}}^{h3}$		$a_{t1_{v8}}^{h3}$
$a_{t2_{v1}}^{h3}$	•••	$a_{t2_{v8}}^{h3}$
	• • •	
$a_{t8_{v1}}^{h3}$		$a_{t8_{v8}}^{h3}$

$a_{t1_{v1}}^{h4} \ a_{t2_{v1}}^{h4}$	 $a_{t1_{v8}}^{h4} \ a_{t2_{v8}}^{h4}$
$a^{h4}_{t8_{v1}}$	 $a_{t8_{v8}}^{h4}$

HEAD 1

HEAD 2

HEAD 3

HEAD 4

Still remember the shape of the original input?

ONSTELLAT

A visual of what we have learned so far

HEAD

8X32

$a_{t1_{v1}}^{h1}$	• • •	$a^{h1}_{t1_{v8}}$
$a^{h1}_{t2_{v1}}$	• • •	$a^{h1}_{t2_{v8}}$
	• • •	
$a^{h1}_{t8_{v1}}$	• • •	$a^{h1}_{t8_{v8}}$

$a_{t1_{v1}}^{h3}$		$a_{t1_{v8}}^{h3}$
$a_{t2_{v1}}^{h3}$	•••	$a_{t2_{v8}}^{h3}$
	• • •	
$a_{t8_{v1}}^{h3}$		$a_{t8_{v8}}^{h3}$

$a_{t1_{v1}}^{h4} \ a_{t2_{v1}}^{h4}$	 $a_{t1_{v8}}^{h4} \ a_{t2_{v8}}^{h4}$
$a^{h4}_{t8_{v1}}$	 $a_{t8_{v8}}^{h4}$

HEAD 1

HEAD 2

HEAD 3

HEAD 4

Feedforward

8X32

Attention block

N attention blocks

Any questions?

Motivation

The order of the words in a sequence matters.

Even though she did not win the award, she was satisfied.

Even though she did win the award, she was not satisfied.

$ackslash x_1^{t1}$	x_2^{t1}		x_{32}^{t1}
x_1^{t2}	x_2^{t2}	• • •	x_{32}^{t2}
		• • •	
$oxed{x_1^{t8}}$	x_2^{t8}		$x_{32}^{t8} igg]$

x_1^{t1}	x_2^{t1}		x_{32}^{t1}
x_1^{t2}	x_2^{t2}	•••	$\left.x_{32}^{t2}\right $
		• • •	
$oxed{x_1^{t8}}$	x_2^{t8}		$x_{32}^{t8} igg]$

p_1^{t1}	p_2^{t1}	 p_{32}^{t1}
p_1^{t2}	p_2^{t2}	 $\left.p_{32}^{t2}\right $
p_1^{t8}	p_2^{t8}	 $\left.p_{32}^{t8} ight floor$

Positional encoding

$$egin{bmatrix} x_1^{t1} & x_2^{t1} & \dots & x_{32}^{t1} \ x_1^{t2} & x_2^{t2} & \dots & x_{32}^{t2} \ \dots & \dots & \dots & \dots \ x_1^{t8} & x_2^{t8} & \dots & x_{32}^{t8} \end{bmatrix}$$

Positional encoding

d=32

$$egin{aligned} PE_(pos,2i) &= sin\left(rac{pos}{10000^{rac{2i}{d}}}
ight) \ PE_(pos,2i+1) &= cos\left(rac{pos}{10000^{rac{2i}{d}}}
ight) \end{aligned}$$

$$\left\langle rac{pos}{10000^{rac{2i}{d}}}
ight
angle$$

$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$

Positional encoding

Positional encoding

Even though she did not win the award, she was satisfied.

Even though she did win the award, she was not satisfied.

Any questions?

Parallel computation

$$\begin{array}{c} \mathbf{X^{(1)}} \\ \mathbf{X^{(2)}} \\ \mathbf{X^{(m)}} \\ \mathbf{X^{(m)}}$$

$$\begin{array}{c} \mathbf{X^{(1)}} \\ \mathbf{X^{(2)}} \\ \mathbf{X^{(2)}}$$

$$\mathbf{X^{(1)}} \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \dots & \dots & \dots & \dots \\ x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \bullet \begin{bmatrix} \mathbf{W^c} & \mathbf{W^c} & \mathbf{W^{cK}} \\ \mathbf{W_1^{c1}} & \mathbf{W_1^{c2}} & \dots & \mathbf{W_1^{cK}} \\ \mathbf{W_2^{c1}} & \mathbf{W_2^{c2}} & \dots & \mathbf{W_1^{cK}} \\ \mathbf{W_2^{c1}} & \mathbf{W_2^{c2}} & \dots & \mathbf{W_2^{cK}} \\ \dots & \dots & \dots & \dots \\ \mathbf{W_n^{c1}} & \mathbf{W_n^{c2}} & \dots & \mathbf{W_n^{cK}} \end{bmatrix} + \begin{bmatrix} \mathbf{b^{c1}} & \mathbf{b^{c2}} & \dots & \mathbf{b^{cK}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{w^{c1}} \mathbf{x^{(1)}} + \mathbf{b^{c1}} & \mathbf{w^{c2}} \mathbf{x^{(1)}} + \mathbf{b^{c2}} & \dots & \mathbf{w^{cK}} \mathbf{x^{(1)}} + \mathbf{b^{cK}} \\ \mathbf{w^{c1}} \mathbf{x^{(2)}} + \mathbf{b^{c1}} & \mathbf{w^{c2}} \mathbf{x^{(2)}} + \mathbf{b^{c2}} & \dots & \mathbf{w^{cK}} \mathbf{x^{(2)}} + \mathbf{b^{cK}} \\ \dots & \dots & \dots & \dots \\ \mathbf{w^{c1}} \mathbf{x^{(m)}} + \mathbf{b^{c1}} & \mathbf{w^{c2}} \mathbf{x^{(m)}} + \mathbf{b^{c2}} & \dots & \mathbf{w^{cK}} \mathbf{x^{(m)}} + \mathbf{b^{cK}} \end{bmatrix}$$

$$\mathbf{X^{(1)}} \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \dots & \dots & \dots & \dots \\ x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \bullet \begin{bmatrix} \mathbf{w^c} & \mathbf{w^c} & \mathbf{w^{cK}} \\ \mathbf{w_2^{c1}} & \mathbf{w_2^{c2}} & \dots & \mathbf{w_2^{cK}} \\ \mathbf{w_2^{c1}} & \mathbf{w_2^{c2}} & \dots & \mathbf{w_2^{cK}} \\ \dots & \dots & \dots & \dots \\ \mathbf{w_n^{c1}} & \mathbf{w_n^{c2}} & \dots & \mathbf{w_n^{cK}} \end{bmatrix} + \begin{bmatrix} b^{c1} & b^{c2} & \dots & b^{cK} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{w^{c1}} \mathbf{x^{(1)}} + b^{c1} & \mathbf{w^{c2}} \mathbf{x^{(1)}} + b^{c2} & \dots & \mathbf{w^{cK}} \mathbf{x^{(1)}} + b^{cK} \\ \mathbf{w^{c1}} \mathbf{x^{(2)}} + b^{c1} & \mathbf{w^{c2}} \mathbf{x^{(2)}} + b^{c2} & \dots & \mathbf{w^{cK}} \mathbf{x^{(2)}} + b^{cK} \\ \dots & \dots & \dots & \dots \\ \mathbf{w^{c1}} \mathbf{x^{(m)}} + b^{c1} & \mathbf{w^{c2}} \mathbf{x^{(m)}} + b^{c2} & \dots & \mathbf{w^{cK}} \mathbf{x^{(m)}} + b^{cK} \end{bmatrix}$$

$$\mathbf{X^{(1)}} \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \dots & \dots & \dots & \dots \\ x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \bullet \begin{bmatrix} \mathbf{W^c} & \mathbf{W^c} & \mathbf{W^{cK}} \\ w_1^{c1} & \mathbf{Z}_1^{c2} & \dots & w_1^{cK} \\ w_2^{c1} & w_2^{c2} & \dots & w_2^{cK} \\ \dots & \dots & \dots & \dots \\ w_n^{c1} & w_n^{c2} & \dots & w_n^{cK} \end{bmatrix} + \begin{bmatrix} b^{c1} & b^{c2} & \dots & b^{cK} \end{bmatrix}$$

 $=\begin{bmatrix}\mathbf{w}^{c1}\mathbf{x}^{(1)}+b^{c1} & \mathbf{w}^{c2}\mathbf{x}^{(1)}+b^{c2} & \dots & \mathbf{w}^{cK}\mathbf{x}^{(1)}+b^{cK} \\ \mathbf{w}^{c1}\mathbf{x}^{(2)}+b^{c1} & \mathbf{w}^{c2}\mathbf{x}^{(2)}+b^{c2} & \dots & \mathbf{w}^{cK}\mathbf{x}^{(2)}+b^{cK} \\ \dots & \dots & \dots & \dots \\ \mathbf{w}^{c1}\mathbf{x}^{(m)}+b^{c1} & \mathbf{w}^{c2}\mathbf{x}^{(m)}+b^{c2} & \dots & \mathbf{w}^{cK}\mathbf{x}^{(m)}+b^{cK} \end{bmatrix}$

References

Jurafsky, Daniel, and James H. Martin. (2023). <u>Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition.</u>

Karpathy, Andrej. (2023), GitHub repository, https://github.com/karpathy/nanoGPT

Karpathy Andrej. (2023). Let's build GPT: from scratch, in code, spelled out. [Andrej Karpathy]. YouTube. Retrieved September 5, 2023 from https://www.youtube.com/watch?v=kCc8FmEb1nY

Vaswani, Ashish et al. (2017). <u>Attention is all you need</u>. In *Advances in Neural Information Processing Systems*. 5998–6008.