Pós-Graduação em Ciência de Dados

Professora Cecília Pereira de Andrade

e

Professor Ricardo Sovat

Grandezas escalares: representadas por um número real, apenas. Por exemplo: massa, temperatura, dimensão, etc.

► **Grandezas vetoriais:** devem ser representadas por *módulo* (ou comprimento ou intensidade), *direção* e *sentido*.

Na figura abaixo, notamos, em (a), que a reta r₂ tem uma direção diferente das retas r₁ e r₃. Em (b), existem dois sentidos em uma mesma direção.

Figura 1.1

► Notação: v ou AB

Figura 1.4

Para descobrir $\overrightarrow{u}+\overrightarrow{v}$, sendo $\overrightarrow{u}=\overrightarrow{AB}$ e $\overrightarrow{v}=\overrightarrow{BC}$, devemos representar os segmentos de reta, e, ao final, representarmos o vetor soma $\overrightarrow{u}+\overrightarrow{v}=\overrightarrow{AC}$.

Outra forma de encontrar esse resultado é criar um paralelogramo, sendo o vetor soma a diagonal do mesmo.

Figura 1.16

Caso \overrightarrow{u} e \overrightarrow{v} sejam paralelos, a soma se dá da mesma forma, como representado na figura abaixo, para $\overrightarrow{u}//\overrightarrow{v}$ no mesmo sentido, em (a), e em sentidos opostos, em (b).

Figura 1.15

Para três ou mais vetores, aplica-se o mesmo procedimento (a).

Caso a extremidade do último vetor coincida com a origem do primeiro, a soma é o vetor 0 (b).

Figura 1.17

Multiplicação de Número Real por Vetor

Na multiplicação de um numero real α e de um vetor \vec{v} , α interfere no comprimento de \vec{v} .

Ângulos entre Dois Vetores

Chamamos o ângulo entre dois vetores não nulos, \vec{u} e \vec{v} , de mesma origem, de θ . Assim, $0^{\circ} < \theta < 180^{\circ}$.

Figura 1.27

Ângulos entre Dois Vetores

Caso os vetores tenham a mesma direção, temos o caso de $\theta=0^{\circ}$ para o mesmo sentido (a) e $\theta=\pi$ para sentidos diferentes (b).

Figura 1.28

Todo vetor é representado por uma função. Portanto, para todo vetor \overrightarrow{v} , existem dois vetores \overrightarrow{v}_1 e \overrightarrow{v}_2 , representados no mesmo plano, e dois valores específicos a_1 e a_2 , sendo que:

$$\overrightarrow{v} = \overrightarrow{a_1} \overrightarrow{v_1} + \overrightarrow{a_2} \overrightarrow{v_2}$$

- Podemos dizer que o vetor está inserido num plano *ortonormal*, normalmente o *sistema* cartesiano ortogonal xOy.
- Nesse sistema, os vetores são representados por i e j.
- A base $C = \{\overrightarrow{i}, \overrightarrow{j}\}$ é chamada canônica.

Figura 1.40

A base canônica trabalha com um par ordenado e seus componentes são números baseados na abcissa (x) e na ordenada (y), sendo, então:

$$\overrightarrow{v} = (x, y)$$

Este par é chamado de expressão analítica de v.

Figura 1.4

Para efetuar operações com vetores, pode-se usar suas expressões analíticas.

$$\overrightarrow{u} + \overrightarrow{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

• $\overrightarrow{\alpha v} = \alpha (x, y) = (\alpha x, \alpha y)$

Figura 1.43

Vetores no Espaço

- Para colocarmos os vetores no espaço, usamos o sistema cartesiano ortogonal Oxyz.
- Assim, trabalhamos com três planos ao mesmo tempo, tendo figuras tridimensionais.

Figura 1.53

Vetores no Espaço

Representação de um vetor no sistema cartesiano ortogonal Oxyz

Produto Escalar

▶ O produto escalar é o resultado da multiplicação de dois vetores

Se
$$\vec{u} = (x_1, y_1, z_1)$$
 e $\vec{v} = (x_2, y_2, z_2)$ então

$$\vec{u} \cdot \vec{v} = x_1.x_2 + y_1.y_2 + z_1.z_2$$

$$\rightarrow$$
 < \vec{u} , \vec{v} >

Módulo de um vetor

ightharpoonup Se $\vec{v}=(x,y,z)$,

$$|\overrightarrow{V}| = \int (\overrightarrow{V}.\overrightarrow{V})$$

► Em coordenadas,

$$|\overrightarrow{v}| = \int (x^2 + y^2 + z^2)$$

OBS: Versor: $\frac{\vec{v}}{|\vec{v}|}$

Produto Escalar - Definição Geométrica

Se $\vec{u} \neq 0$, $\vec{v} \neq 0$ e se θ é o ângulo dos vetores ($0^{\circ} \leq \theta \leq 180^{\circ}$)

$$\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos\theta$$

Àngulo entre dois vetores:

$$\cos \theta = \frac{\vec{u}.\vec{v}}{|\vec{u}|.|\vec{v}|}$$

Figura 2.1

Ângulos Diretores

► São os ângulos formados pelos três vetores i, j e k em que ele se divide no sistema cartesiano, sendo os cossenos diretores seus respectivos cossenos.

Figura 2.9

Ângulos Diretores

► Cálculo:

$$\cos \alpha = \frac{\vec{v} \cdot \vec{i}}{|\vec{v}||\vec{i}|} = \frac{(x,y,z) \cdot (1,0,0)}{|\vec{v}|(1)} = \frac{x}{|\vec{v}|}$$

$$\cos \beta = \frac{\vec{v} \cdot \vec{j}}{|\vec{v}||\vec{j}|} = \frac{(x,y,z) \cdot (0,1,0)}{|\vec{v}|(1)} = \frac{y}{|\vec{v}|}$$

$$\cos \gamma = \frac{\vec{v} \cdot \vec{k}}{|\vec{v}||\vec{k}|} = \frac{(x,y,z) \cdot (0,0,1)}{|\vec{v}|(1)} = \frac{z}{|\vec{v}|}$$

Projeção de um vetor sobre outro

Considerando os vetores v e u, e decompondo v

$$(\vec{v} = \vec{v}_1 + \vec{v}_2)$$
, temos que $\vec{v}_1 | |\vec{u} e v_2 \perp \vec{u}$.

 \overrightarrow{v}_1 é a projeção de \overrightarrow{v} sobre \overrightarrow{u} .

► Concluímos, então, que:

$$\operatorname{proj}_{\vec{u}} \vec{v} = (\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}) \vec{u}$$

Figura 2.10

Produto Vetorial

Dados $\vec{u} = \vec{x_1} + \vec{i} + \vec{y_1} + \vec{j} + \vec{z_1} + \vec{k} = \vec{v} = \vec{x_2} + \vec{i} + \vec{y_2} + \vec{j} + \vec{z_2} + \vec{k}$

$$\vec{u} \times \vec{y} = (y_1 z_2 - z_1 y_2) \vec{i} - (x_1 z_2 - z_1 x_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k}$$

$$\vec{u} \times \vec{v} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \vec{k}$$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Interpretação Geométrica

ightharpoonup O módulo do produto vetorial dos vetores \vec{u} e \vec{v} é a área do paralelogramo ABCD.

$$A = |\overrightarrow{u} \times \overrightarrow{v}|$$

Produto Misto

Dados $\vec{u} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$, $\vec{v} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$ $\vec{v} = \vec{v} = \vec{v} + \vec{v$

$$(\overrightarrow{\mathsf{u}}, \overrightarrow{\mathsf{v}}, \overrightarrow{\mathsf{w}}) = \overrightarrow{\mathsf{u}}.(\overrightarrow{\mathsf{v}} \times \overrightarrow{\mathsf{w}}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

Interpretação Geométrica

▶ O módulo do produto vetorial dos vetores \vec{u} , \vec{v} e \vec{w} é o volume do paralelogramo ABCD.

$$V = |(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})|$$

