PC

Séries de fonctions

 $\mathcal I$ intervalle de $\mathbb R$

I. Modes de convergences

 $n \in \mathbb{N} \quad u_n : \mathcal{I} \longrightarrow \mathbb{K}$

I.1. Convergence simple (cvs)

<u>définition</u>: La série de fonctions $\sum u_n$ cvs sur $\mathcal I$ si $\forall \ x \in \mathcal I$, la série $\sum u_n(x)$ converge.

On note
$$S(x) = \sum_{n=0}^{+\infty} u_n(x)$$

S est dite fonction somme des u_n sur \mathcal{I}

Remarque: Il s'agit de la cvs de la suite des sommes partielles $\left(\sum_{k=0}^{n} u_k\right)_n$

I.2. Convergence uniforme (cvu)

<u>définition</u>: La série de fonctions $\sum u_n$ cvu sur $\mathcal I$ si $\left(\sum_{k=0}^n u_k\right)_n$ cvu sur $\mathcal I$

ie
$$\lim_{n \to +\infty} \left\| \sum_{k=0}^{n} u_n - S \right\|_{\infty} = \lim_{n \to +\infty} \|R_n\|_{\infty} = 0$$

 $\underline{\mathbf{Propri\acute{e}t\acute{e}}:}\,\mathrm{cvu}\Longrightarrow\mathrm{cvs}$

<u>définition</u>: La série de fonctions $\sum u_n$ evu sur tout segment de \mathcal{I} si $\left(\sum_{k=0}^n u_k\right)_n$ converge uniformément sur tout segment de \mathcal{I}

Propriété : cvu \Longrightarrow cvu sur tout segment de $\mathcal{I} \Longrightarrow$ cvs

Toutes les réciproques sont fausses

I.3. Convergence normale (cvn)

<u>définition</u>: La série de fonctions $\sum u_n$ cvn sur \mathcal{I} si $\sum \|u_n\|_{\infty}$ converge

<u>définition</u>: La série de fonctions $\sum u_n$ cvn sur tout segment de \mathcal{I} si \forall $(a,b) \in \mathcal{I}^2$ $\sum \|u_n\|_{\infty}^{[a,b]}$ converge

 $\underline{\mathbf{Propri\acute{e}t\acute{e}:}}\ \mathrm{cvn}\Longrightarrow\mathrm{cvu}\Longrightarrow\mathrm{cvs}$

 cvn sur tout segment \Longrightarrow cvu sur tout segment \Longrightarrow cvs

cvn ⇒ cvu sur tout segment

Toutes les réciproques sont fausses

PC Lycee Pasteur 2023 2024

Propriété : $\sum u_n$ cvn sur \mathcal{I} alors $\forall x \in \mathcal{I}$ $\sum u_n(x)$ cv absolument.

Propriété : $\sum u_n$ cvn sur \mathcal{I} alors $\forall x \in \mathcal{I}$ $\sum u_n(x)$ cv absolument.

II. Conservation des propriétés par cvu

II.1. Continuité

<u>théorème</u>: $n \in \mathbb{N}$ $u_n : \mathcal{I} \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ u_n continue sur \mathcal{I} et $\sum u_n$ evu vers S sur \mathcal{I} (ou evu sur tout segment de \mathcal{I}), alors $S = \sum_{n=0}^{+\infty} u_n$ est continue sur \mathcal{I}

II.2. Limites

théorème : $n \in \mathbb{N} \mid u_n : \mathcal{I} \longrightarrow \mathbb{K}$ avec $\sum u_n$ cvu sur \mathcal{I}

soit
$$a \in \bar{\mathcal{I}}$$
 et $\forall n \in \mathbb{N} \lim_{x \to a} u_n(x) = l_n$, alors $\sum l_n$ ev et $\lim_{x \to a} \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} l_n$

II.3. Dérivabilité

théorème : $n \in \mathbb{N}$ $u_n : \mathcal{I} \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ u_n de classe c^1 sur \mathcal{I} et $\sum u_n$ cvs vers S sur \mathcal{I} et $\sum u'_n$ cvu (ou cvu sur tout segment de \mathcal{I}), alors S est de classe c^1 sur \mathcal{I} et $S' = \left(\sum_{n=0}^{+\infty} u_n\right)' = \sum_{n=0}^{+\infty} u'_n$

Extension: $n \in \mathbb{N}$ $u_n : \mathcal{I} \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ u_n de classe c^k sur \mathcal{I} et $\sum u_n$ cvs vers S sur \mathcal{I} , $\sum u_n^{(k-1)}$ cvs sur \mathcal{I} et $\sum u_n^{(k)}$ evu sur \mathcal{I} (ou evu sur tout segment de \mathcal{I}), alors S est de classe c^k sur \mathcal{I} et $S^{(k)} = \left(\sum_{n=0}^{+\infty} u_n\right)^{(k)} = \sum_{n=0}^{+\infty} u_n^{(k)}$

S est de classe c^{∞} si S est de classe c^k pour tout $k \in \mathbb{N}$

II.4. Intégration

<u>théorème</u>: $n \in \mathbb{N}$ $u_n : [a,b] \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ u_n continue sur [a,b] et $\sum u_n$ evu vers S sur [a,b] alors $\int_a^b \sum_{n=0}^{+\infty} u_n(t) dt = \int_a^b S(t) dt = \int_a^b \sum_{n=0}^{+\infty} u_n(t) dt$

faux avec cvs

théorème d'intégration terme à terme (admis) : (version 1) $n \in \mathbb{N}$ $u_n : [a,b] \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ u_n continue sur [a,b] et $\sum u_n$ cvs vers S sur [a,b] avec S continue sur [a,b] et $\sum \int_a^b |f_n|$ converge alors $\int_a^b \sum_{r=0}^{+\infty} u_n(t) dt = \int_a^b S(t) dt = \int_a^b \sum_{r=0}^{+\infty} u_n(t) dt$