Ejercicio 1:

En los siguientes circuitos, identificar qué elementos están conectados en serie y qué elementos están conectados en paralelo.

4 is short-circuited

2//3

1//2//3

3 is short-circuited

2//4

5//6

1/[(2//4)+(5//6)]

Ejercicio 2:

Calcular I_1 , I_2 e I_3 :

Ley de Ohm:
$$I_1 = V_{RI}/R_1 = 6V/60\Omega = 0.1A$$

 $I_2 = V_{R2}/R_2 = 6V/20\Omega = 0.3A$
 $I_3 = V_{R3}/R_3 = 6V/10\Omega = 0.6A$

Ejercicio 3:

Calcular la resistencia equivalente del conjunto de tres resistencias:

LCK: $I_T = I_1 + I_2 + I_3 = 1A$

Ley de Ohm: $R_{Eq} = 6V/1A = 6\Omega$

Ejercicio 4:

Calcular las corrientes indicadas en los siguientes circuitos aplicando la ley de Kirchhoff de las corrientes:

Ejercicio 5:

Calcular v_{AB} en los siguientes circuitos:

Ejercicio 6:

Calcular v_X en el siguiente circuito:

$$-4V+v_X-4V+3V-10V=0V \rightarrow v_X=15V$$

Ejercicio 7:

Calcular v_{AB} aplicando la ley de Kirchhoff de las corrientes:

LCK: $I_{AB} = 5A + 2A = 7A$

Ley de Ohm: $v_{AB} = 7A \cdot 2\Omega = 14V$

Ejercicio 8:

Calcular I_1 , I_2 , I_3 e I_4 en el siguiente circuito:

LCK: Nodo A: $I_1+I_2=2A$

Nodo B: $0A = I_2 + 3A + 7A$

Nodo C: $I_4 + 7A = I_3$

Nodo D: $2A = I_4 + 4A$

$$\rightarrow I_1=12A, I_2=-10A,$$

 $I_3=5A, I_4=-2A,$

Ejercicio 9:

Calcular i₁ e i₂ en el siguiente circuito:

Ejercicio 10:

Calcular la potencia consumida total por el siguiente circuito:

$$P_{3k\Omega}=12mW$$
 (consumida)

$$P_{15k\Omega}$$
=15mW (consumida)

$$P_{8V}$$
=24mW (entregada)

$$P_{1mA} = 7mW$$
 (entregada)

$$P_{2mA}=4mW$$
 (consumida)

$$P_{Cons} = 31 mW (consumed)$$