Course Code	Course Title	L	Т	P	С		
PMDS506L	Database Management Systems	3	0	0	3		
Pre-requisite	NIL	Syllabus version					
Tre requisite	1112	1.0					
Course Objectiv	es			110			
1. To understand the basic concepts of database, ER Modelling, normalization and query							
optimization.							
2. To comprehend the concepts concurrency control, recovery and indexing.							
3. To explore the concepts of NoSQL and main types of NoSQL databases.							
Course Outcomes							
At the end of the course, students will be able to:							
1. Describe the concepts of database, construct entity-relationship (ER) model for the real							
world problems and transfer data model into database designs.							
2. Analyze the fundamental concepts of normalization, transaction, concurrency control and							
recovery mechanisms.							
3. Demonstrate the basic database storage structure and indexing techniques.							
4. Organize the detailed architecture and primary benefits using NoSQL Databases.							
5. Analyze the major types of NoSQL databases.							
Module:1 DATABASE SYSTEMS CONCEPTS AND DATA MODELING 7 hours							
Basic concepts of database systems- Entity Relationship Model - Structural Constraints-							
Relational Model- Relational Model Constraints- Mapping ER model to a Relational Schema and							
database integrity.							
Module:2 DATABASE DESIGN AND QUERY PROCESSING 7 hours							
Guidelines for Relational Schema- Functional Dependency- Normalization- Translating SQL							
	tional Algebra- Heuristic Query Optimization.						
	NSACTION PROCESSING CONCEPTS			•	6 hours		
Introduction to transaction processing- Transaction and system concepts -Desirable properties of							
transactions- Characterizing schedules based on recoverability- Characterizing schedules based							
	Test for serializability.	A D A C)TC		(1		
Module:4 CON DES	NCURRENCY CONTROL AND PHYSICAL DATA	ABAS	Ł		6 hours		
		00000	+α Ε	10 000	anization		
and Indexing.	cols- Techniques for concurrency control- Recovery c	опсер	is- F	ne org	amzauon-		
Module:5 NOS	OI.				6 hours		
		d ger	nerati	ion_			
Database revolutions: First generation, second generation, third generation- Managing transactions and data integrity- ACID and BASE for reliable database transactions- Speeding							
performance by strategic use of RAM, SSD, and disk, Brewer's CAP theorem.							
Module:6 KEY VALUE DATA STORES 6 hours							
Essential features of key value databases- Key-Value architecture- Designing structured values-							
Limitations of key-value databases - Design patterns for key-value databases and Case study for							
Key-Value databases.							
	QL DATA MODEL				5 hours		
Aggregate models- Document data model- Key- value data model- Columnar data model and							
Graph based data	•						
25 1 1 0 G							

2 hours

45 hours

Total Lecture hours:

Module:8 | Contemporary Issues

Text Book(s)

1. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 2015, 4th Edition, Tata McGraw Hill.

Reference Book(s)

- 1. Henry F Korth, Abraham Silberschatz, S. Sudharshan, Database System Concepts, 2006, Fifth Edition, McGraw Hill.
- 2. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 2016, 7th edition, Addison
- 3. Wesley
- 4. Guy Harrison, Next Generation database: NoSQL New SQL and Big Data, 2015, 1st Edition, Apress.
- 5. Daniel G. McCreary and Ann M. Kelly, Making Sense of NoSQL, 2013, Manning publisher.

Recommended by Board of Studies	15-02-2024			
Approved by Academic Council	No. 73	Date	14-03-2024	