Beginning Integration

Professor David Barrett

Transcribed by Thomas Cohn

10/22/18

On Friday, we proved that given $f \in C^2(\Omega^{\text{convex osso}\mathbb{R}^n}, \mathbb{R})$, $Hf(\vec{x}) \geq 0 \ \forall \vec{x} \in \Omega$, and $Df(\vec{x_0}) = 0$, then $f(\vec{x}) \ge f(\vec{x_0})$ for all $\vec{x} \in \Omega$.

Cor: Given $f \in C^2(\Omega^{\text{convex osso}\mathbb{R}^n}, \mathbb{R})$ and $Hf \geq 0$ on Ω , then $f(\vec{x}) \geq f(\vec{x_0}) - Df(\vec{x_0})(\vec{x} - \vec{x_0}) - f(\vec{x_0})$.

This is a strict inequality for $\vec{x} \neq \vec{x_0}$ if Hf > 0 on Ω .

Proof: Let $g(\vec{x}) = f(\vec{x}) - Df(\vec{x_0})(\vec{x} - \vec{x_0}) - f(\vec{x_0})$.

Then $Dg(\vec{x}) = Df(\vec{x}) - Df(\vec{x_0})$ and $Hg(\vec{x}) = Hf(\vec{x})$.

Notice that $Dg(\vec{x_0}) = \vec{0}$. So $g(\vec{x}) \geq g(\vec{x_0})$. \square

Defn: For $\psi: \Omega \to \mathbb{R}$, the epigraph of ψ is $\{(\vec{x}, y) \in \Omega \times \mathbb{R} : y \ge \psi(\vec{x})\}$.

Defn: The opposite of the epigraph is the hypograph.

Cor: Given $f \in C^2(\Omega^{\text{convex osso}\mathbb{R}^n}, \mathbb{R})$ and $Hf \geq 0$, then

 $\begin{array}{l} \operatorname{epi}(f) = \bigcap_{\vec{x_0} \in \Omega} \left\{ (\vec{x}, y) \in \Omega \times \mathbb{R} : y \geq f(\vec{x_0}) + Df(\vec{x_0})(\vec{x} - \vec{x_0}) \right\} \\ \operatorname{Proof:} \ (\vec{x}, y) \in \operatorname{epi}(f) \Rightarrow (\vec{x}, y) \in \operatorname{RHS} \ \text{by previous result. So assume} \ (\vec{x}, y) \in \operatorname{RHS} \ \operatorname{Then} \ \operatorname{let} \ \vec{x_0} = \vec{x}; \end{array}$

then $y \geq f(\vec{x}) \Rightarrow (\vec{x}, y) \in \text{epi}(f)$. \square

Cor: Same hypothesis as above \Rightarrow the epigraph is convex.

Defn: For $\Omega^{\text{convex}} \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$, f is convex $\stackrel{\text{def}}{\Leftrightarrow} \text{epi}(f)$ is convex.

$$\overset{\text{HW8}}{\Leftrightarrow} f((1-t)\vec{x_0} + t\vec{x_1}) \le (1-t)f(\vec{x_0}) + tf(\vec{x_1})$$
for $\vec{x_0}, \vec{x_1} \in \Omega$ and $0 < t < 1$.

Assume $f \in C^2(\Omega, \mathbb{R})$.

 $Hf(\vec{x_0}) \neq 0 \Leftrightarrow \vec{a}^T Hf(\vec{x_0})\vec{a} < 0 \text{ for some } \vec{a}.$

(Friday) \Rightarrow $(f \circ \varphi)''(0) < 0$ for $\varphi(t) = \vec{x_0} + t\vec{a}$

 \Rightarrow epi $(f) \cap \{(\vec{x_0} + t\vec{a}, y) : t, y \in \mathbb{R}\}$ is affine, and hence convex.

 \Rightarrow epi(f) is not convex.

Cor: Given $f \in C^2(\Omega^{\text{convex osso}\mathbb{R}^n}, \mathbb{R})$, then f is convex if and only if $Hf(\vec{x}) \geq 0$ for all $\vec{x} \in \Omega$.

	\mathbb{R}	\mathbb{R}^n
Reimann/Darboux	295/297	Munkres/Lecture
Lebesgue	IBL	Later

Lebesgue integration is more robust and coherent.

 $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Munkres calls this a rectangle. We'll call it a box.

Defn: $V(Q) \stackrel{\text{def}}{=} (b_1 - a_1) \cdots (b_n - a_n) = \prod_{i=1}^n (b_i - a_i)$. In IBL, we may say m(Q).

We want to define $\int_{Q} f$ for $f: Q \to \mathbb{R}$ (assume Q is bounded).

We hope to have $\int_Q c = c \cdot V(Q)$, and $f \leq g \to \int_Q f \leq \int_Q g$.

Subdivide each $[a_j, b_j]$ with finitely many partition points. We want $\int_O f = \sum \int_R f$ for R subbox of Q.

Set $m_R(f) = \inf_R f = \inf \{ f(\vec{x}) : \vec{x} \in R \}$ $M_R(f) = \sup_R f$

$$M_R(f) = \sup_{\mathcal{D}} f$$

$$L(f, P) \stackrel{\text{def}}{=} \sum_{R} m_{R}(f) \cdot V(R)$$
$$U(f, P) \stackrel{\text{def}}{=} \sum_{R} M_{R}(f) \cdot V(R)$$

$$U(f,P) \stackrel{\text{def}}{=} \sum_{R} M_{R}(f) \cdot V(R)$$

Then we have $L(f, P) \leq U(f, P)$.

Defn: P' refines P if and only if P' is obtained from P by adding more partition points.

Then $L(f, P) \le L(f, P') \le U(f, P') \le U(f, P)$.

Lemma: P, P' arbitrary partitions of Q. Then $L(f, P) \leq U(f, P')$.

Proof: Let P'' use all partition points in P and P'. Then it refines both, so

 $L(f, P) \leq L(f, P'') \leq U(f, P'') \leq U(f, P')$. \square

Defn: $\int_{Q} f \stackrel{\text{def}}{=} \sup_{P} L(f, P)$

Defn: $\overline{\int_{Q}} f \stackrel{\text{def}}{=} \inf_{P} U(f, P)$

Defn: Lemma + $^{295\#11}/_{297\#12} \Rightarrow \int_{Q} f = \overline{\int_{Q}} f \stackrel{\text{def}}{=} \int_{Q} f$ (if they match).

Thm: ("Riemann Criterion" or "Cauchy Criterion" for Integrability)

f is (Riemann)-integrable on $Q \Leftrightarrow \forall \varepsilon > 0, \exists P$ partition s.t. $U(f, P) - L(f, P) < \varepsilon$.