Gradient Boosted Decision Trees

Dr. Daniele Cattaneo, Prof. Dr. Josif Grabocka

Machine Learning Course Winter Semester 2023/2024

Albert-Ludwigs-Universität Freiburg

cattaneo@informatik.uni-freiburg.de, grabocka@informatik.uni-freiburg.de

11.12.2023

Prediction Model of a Decision Tree

- A tree having T leaves outputs the weights $w \in \mathbb{R}^T$.
- Let $q: \mathbb{R}^M \to \{1, \dots, T\}$ denote the leaf index $q(x_n)$ where instance x_n belongs to, then
- The prediction model of a tree is:

$$f(x_n) = w_{q(x_n)}$$

Decision Tree as a Step-wise Function

Tree Over-fitting

Tree over-fits if too many steps (nodes) and high jumps (large leaf weights)

Tree Regularization

- Note: Too many steps ≈ Too many leaves (T)
- Note: Too large step jumps \approx Too large leaves' output values (w)
- Penalize the number of leaves and leaves' weights, e.g.:

$$\Omega(f) = \gamma T + \frac{\lambda}{2} \sum_{j=1}^{T} w_j^2$$

Boosting

- Weak learners (single trees) are combined to create more expressive models
- Unite single trees into an ensemble of k trees
- The estimation is aggregated over the individual trees' predictions:

$$\hat{y}_n^{(1)} := f^{(1)}(x_n), \quad \hat{y}_n^{(2)} := \hat{y}_n^{(1)} + f^{(2)}(x_n), \dots
\hat{y}_n^{(k)} := \hat{y}_n^{(k-1)} + f^{(k)}(x_n) = \sum_{l=1}^k f^{(l)}(x_n)$$

Boosted Ensemble Loss

- Add one tree at a time to the ensemble (greedy strategy)
- The loss created as a result of adding the contribution of the k-th tree is:

$$\underset{f^{(k)}}{\operatorname{argmin}} \left[\sum_{n=1}^{N} \mathcal{L}^{(k)}(y_n, \hat{y}_n^{(k-1)} + f^{(k)}(x_n)) \right] + \Omega(f^{(k)}) \\
:= \underset{f^{(k)}}{\operatorname{argmin}} \left[\sum_{n=1}^{N} \mathcal{L}_n^{(k)} \right] + \Omega(f^{(k)})$$

• How to find the optimal k-th tree $f^{(k)}$?

Strategy

- Given the split rules what are the optimal leaves w?
- How to split the tree into further leaves?

Tailor Approximation

Remember Tailor Expansion (2nd degree):

$$F(x + \Delta x) \approx F(x) + \frac{dF(x)}{dx}\Delta x + \frac{1}{2}\frac{d^2F(x)}{dx^2}\Delta x^2$$

While our case:

$$\mathcal{L}_n^{(k)} = \mathcal{L}^{(k)}(y_n, \hat{y}_n^{(k-1)} + f^{(k)}(x_n))$$

Where $\mathcal{L}_n^{(k)}(y_n, \hat{y}_n^{(k-1)} + f^{(k)}(x_n))$ is equivalent to $F(x + \Delta x)$ with:

$$F := \mathcal{L}_n^{(k-1)}, \ x := \hat{y}_n^{(k-1)} \ \text{and} \ \Delta x := f^{(k)}(x_n)$$

Tailor Approximation (cont.)

$$F(x + \Delta x) \approx F(x) + \frac{dF(x)}{dx}\Delta x + \frac{1}{2}\frac{d^2F(x)}{dx^2}\Delta x^2$$

Leads to:

$$\mathcal{L}_{n}^{(k)} \approx \mathcal{L}_{n}^{(k-1)} + \frac{\partial \mathcal{L}_{n}^{(k-1)}}{\partial \hat{y}_{n}^{(k-1)}} f^{(k)}(x_{n}) + \frac{1}{2} \frac{\partial^{2} \mathcal{L}_{n}^{(k-1)}}{\partial \left(\hat{y}_{n}^{(k-1)}\right)^{2}} \left(f^{(k)}(x_{n})\right)^{2}$$

$$\mathcal{L}_{n}^{(k)} \approx \mathcal{L}_{n}^{(k-1)} + G_{n} f^{(k)}(x_{n}) + \frac{1}{2} H_{n} \left(f^{(k)}(x_{n})\right)^{2}$$
where $G_{n} := \frac{\partial \mathcal{L}_{n}^{(k-1)}}{\partial \hat{y}_{n}^{(k-1)}}, \quad H_{n} := \frac{\partial^{2} \mathcal{L}_{n}^{(k-1)}}{\partial \left(\hat{y}_{n}^{(k-1)}\right)^{2}}$

Learning Objective

Applying the Taylor expansion of the loss:

$$\operatorname{argmin}_{f^{(k)}} \left[\sum_{n=1}^{N} \mathcal{L}_{n}^{(k)} \right] + \Omega(f^{(k)}) \\
\approx \operatorname{argmin}_{f^{(k)}} \left[\sum_{n=1}^{N} \mathcal{L}_{n}^{(k-1)} + G_{n} f^{(k)}(x_{n}) + \frac{1}{2} H_{n} \left(f^{(k)}(x_{n}) \right)^{2} \right] + \Omega(f^{(k)})$$

Since $\mathcal{L}_n^{(k-1)}$ is constant w.r.t. $f^{(k)}$, then rewrite the objective as:

$$\underset{f^{(k)}}{\operatorname{argmin}} \sum_{n=1}^{N} \left[G_n f^{(k)}(x_n) + \frac{1}{2} H_n \left(f^{(k)}(x_n) \right)^2 \right] + \Omega(f^{(k)})$$

Learning Objective (cont.)

The objective is:

$$\underset{f^{(k)}}{\operatorname{argmin}} \sum_{n=1}^{N} \left[G_n f^{(k)}(x_n) + \frac{1}{2} H_n \left(f^{(k)}(x_n) \right)^2 \right] + \Omega(f^{(k)})$$

where the regularization term:

$$\Omega(f^{(k)}) = \gamma T + \frac{\lambda}{2} \sum_{i=1}^{T} w_i^2$$

We need to express the objective in terms of w.

Learning Objective (cont.)

$$\underset{f^{(k)}}{\operatorname{argmin}} \sum_{n=1}^{N} \left[G_n f^{(k)}(x_n) + \frac{1}{2} H_n \left(f^{(k)}(x_n) \right)^2 \right] + \Omega(f^{(k)})$$

- Remember $f^{(k)}(x) := w_{q(x)}$
- The ultimate objective is:

$$\underset{w_1,...,w_T}{\operatorname{argmin}} \sum_{n=1}^{N} \left[G_n w_{q(x_n)} + \frac{1}{2} H_n w_{q(x_n)}^2 \right] + \gamma T + \frac{\lambda}{2} \sum_{j=1}^{T} w_j^2$$

Rewrite objective in terms of leaves

$$\underset{w_1,...,w_T}{\operatorname{argmin}} \quad \sum_{n=1}^{N} \left[G_n w_{q(x_n)} + \frac{1}{2} H_n w_{q(x_n)}^2 \right] + \gamma T + \frac{\lambda}{2} \sum_{j=1}^{T} w_j^2$$

- Let indices of all instances belonging into the *j*-th leaf be $I_j := \{n \mid q(x_n) = j\}.$
- We can rewrite the objective as:

$$\underset{w_1,...,w_T}{\operatorname{argmin}} \quad \sum_{j=1}^{T} \left[\left(\sum_{n \in I_j} G_n \right) w_j + \frac{1}{2} \left(\lambda + \sum_{n \in I_j} H_n \right) w_j^2 \right] + \gamma T$$

Optimal Tree Leaves

• Given the objective:

$$\underset{w_1, \dots, w_T}{\operatorname{argmin}} \quad \textstyle \sum_{j=1}^T \left[\left(\sum_{n \in I_j} G_n \right) w_j + \frac{1}{2} \left(\lambda + \sum_{n \in I_j} H_n \right) w_j^2 \right] + \gamma T$$

- Denote $A = \sum_{n \in I_i} G_n$ and $B = \lambda + \sum_{n \in I_i} H_n$
- Optimal leaves can be computed in a closed-form solution:

$$w^{(\text{opt})} = \operatorname*{argmin}_{w} Aw + \frac{1}{2}Bw^{2} = -\frac{A}{B}$$

• The optimal leaf weights w are:

$$w_j = -rac{\sum\limits_{n \in I_j} G_n}{\lambda + \sum\limits_{n \in I_j} H_n}, \;\; j = 1, \ldots, T$$

Optimal Objective Function

• Given the objective:

$$\underset{w_1, \dots, w_T}{\operatorname{argmin}} \quad \sum_{j=1}^T \left[\left(\sum_{n \in I_j} G_n \right) w_j + \frac{1}{2} \left(\lambda + \sum_{n \in I_j} H_n \right) w_j^2 \right] + \gamma T$$

• Knowing that $w^{(opt)} = -\frac{A}{B}$:

$$\min_{w} Aw + \frac{1}{2}Bw^{2} = Aw^{(\text{opt})} + \frac{1}{2}Bw^{(\text{opt})^{2}} = -\frac{A^{2}}{2B}$$

• The optimal objective function is:

$$\mathcal{O}(G, H) := -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum\limits_{n \in I_{j}} G_{n}\right)^{2}}{\left(\lambda + \sum\limits_{n \in I_{j}} H_{n}\right)} + \gamma T$$

How to grow trees?

• Decompose $\mathcal{O}(G,H):=\sum\limits_{j=1}^{I}\mathcal{O}_{j}$ as per-leaf objectives:

$$\mathcal{O}_j := -rac{1}{2}rac{\left(\sum\limits_{n\in I_j} G_n
ight)^2}{\left(\lambda + \sum\limits_{n\in I_j} H_n
ight)} + \gamma$$

- When splitting leaf j after a decision split we yield two sub-leaves $j^{\text{(Left)}}$ and $j^{\text{(Right)}}$
- The gain in minimizing the objective after splitting leaf *j*:

$$\mathsf{Gain}_j := \mathcal{O}_j - \left(\mathcal{O}_{j^{(\mathsf{Left})}} + \mathcal{O}_{j^{(\mathsf{Right})}}
ight)$$

Gain of splitting a leaf

Given:

$$\mathcal{O}_j := -\frac{1}{2} \frac{\left(\sum\limits_{n \in I_j} G_n\right)^2}{\left(\lambda + \sum\limits_{n \in I_j} H_n\right)} + \gamma, \quad \mathsf{Gain}_j := \mathcal{O}_j - \left(\mathcal{O}_{j(\mathsf{Left})} + \mathcal{O}_{j(\mathsf{Right})}\right)$$

Derive:

$$\mathsf{Gain}_j := \frac{1}{2} \left[\frac{\left(\sum\limits_{n \in I_j^{(\mathsf{Left})}} \mathsf{G}_n\right)^2}{\left(\lambda + \sum\limits_{n \in I_j^{(\mathsf{Left})}} \mathsf{H}_n\right)} + \frac{\left(\sum\limits_{n \in I_j^{(\mathsf{Right})}} \mathsf{G}_n\right)^2}{\left(\lambda + \sum\limits_{n \in I_j^{(\mathsf{Right})}} \mathsf{H}_n\right)} - \frac{\left(\sum\limits_{n \in I_j} \mathsf{G}_n\right)^2}{\left(\lambda + \sum\limits_{n \in I_j} \mathsf{H}_n\right)} - \gamma \right] - \gamma \\ \mathsf{Regular}_{\mathsf{addition}}$$

$$\mathsf{Regular}_{\mathsf{beaf}}$$

$$\mathsf{Objective of left child}$$

$$\mathsf{Objective of parent}$$

leaf

Stopping Condition

$$\mathsf{Gain}_{j} := \frac{1}{2} \left[\frac{\left(\sum\limits_{n \in I_{j}^{(\mathsf{Left})}} \mathsf{G}_{n}\right)^{2}}{\left(\lambda + \sum\limits_{n \in I_{j}^{(\mathsf{Left})}} \mathsf{H}_{n}\right)} + \frac{\left(\sum\limits_{n \in I_{j}^{(\mathsf{Right})}} \mathsf{G}_{n}\right)^{2}}{\left(\lambda + \sum\limits_{n \in I_{j}^{(\mathsf{Right})}} \mathsf{H}_{n}\right)} - \frac{\left(\sum\limits_{n \in I_{j}} \mathsf{G}_{n}\right)^{2}}{\left(\lambda + \sum\limits_{n \in I_{j}} \mathsf{H}_{n}\right)} \right] - \gamma$$

We can decide to not split further if $Gain_i \leq 0$, i.e. stop if:

$$\frac{\left(\sum\limits_{n\in I_j^{(\text{Left})}} G_n\right)^2}{\left(\lambda + \sum\limits_{n\in I_j^{(\text{Left})}} H_n\right)} + \frac{\left(\sum\limits_{n\in I_j^{(\text{Right})}} G_n\right)^2}{\left(\lambda + \sum\limits_{n\in I_j^{(\text{Right})}} H_n\right)} - \frac{\left(\sum\limits_{n\in I_j} G_n\right)^2}{\left(\lambda + \sum\limits_{n\in I_j} H_n\right)} \leq \gamma$$

Notice that γ is a hyper-parameter that controls the minimum split gain.

Split rule search

- For each node, exhaustively visit all splitting rules:
 - For each feature m = 1, ..., M of the data $X \in \mathbb{R}^{N \times M}$
 - Sort the instances n = 1, ..., N of the m-th feature $x_{:,m} \in \mathbb{N}$
 - Denote the unique sorted values $\mathcal{V}_m \in \mathbb{R}^{N'}$, where $N' \leq N$
 - Generate all split rules:

$$\left[x_{:,m}; \frac{\mathcal{V}_{m,n'}+\mathcal{V}_{m,n'+1}}{2}\right], \text{ for } n'=1,\ldots,N'-1$$

Select the split rule that maximizes the gain

$$\begin{aligned} \underset{\left[x_{:,m}; \frac{\mathcal{V}_{m,n'} + \mathcal{V}_{m,n'+1}}{2}\right]}{\text{log}} & & \mathcal{O}_{j} - \left(\mathcal{O}_{j^{(\text{Left})}} + \mathcal{O}_{j^{(\text{Right})}}\right) \\ \forall m \in \{1, \dots, M\} \\ \forall n' \in \{1, \dots, |\mathcal{V}_{m,:}| - 1\} \end{aligned}$$
 where
$$I_{j}^{(\text{Left})} = \left\{ n \mid x_{n,m} \leq \frac{\mathcal{V}_{m,n'} + \mathcal{V}_{m,n'+1}}{2} \right\}$$

$$I_{j}^{(\text{Right})} = \left\{ n \mid x_{n,m} > \frac{\mathcal{V}_{m,n'} + \mathcal{V}_{m,n'+1}}{2} \right\}$$

Exercise

- Learn an ensemble of 2 trees to estimate:
 - Limit maximum depth of trees to two.
 - Use logistic loss
 - Set $\gamma = 1$, $\lambda = 1$.
 - Ignore the stopping criterion on gain for this exercise.

Exercise - Step 1: Gradients and Hessians

• Before building each tree compute the gradients and Hessians:

$$\mathcal{L}_{n} = -y_{n} \log(\sigma(\hat{y}_{n})) - (1 - y_{n}) \log(1 - \sigma(\hat{y}_{n}))$$

$$G_{n} = \frac{\partial \mathcal{L}_{n}}{\partial \hat{y}_{n}} = \sigma(\hat{y}_{n}) - y_{n}$$

$$H_{n} = \frac{\partial^{2} \mathcal{L}_{n}}{\partial (\hat{y}_{n})^{2}} = \frac{\partial G_{n}}{\partial \hat{y}_{n}} = \sigma(\hat{y}_{n})(1 - \sigma(\hat{y}_{n}))$$

• Remember the prediction model of a boosted ensemble:

$$\hat{y}_n^{(k)} = \hat{y}_n^{(k-1)} + f^{(k)}(x_n)$$

• For the first tree, assume $\hat{y}_n^{(0)} = 0$, yielding

$$\hat{y}_n^{(1)} = f^{(1)}(x_n)$$

Exercise - Step 1: Gradients and Hessians (II)

- Knowing $\sigma(\hat{y}_n) = (1 + e^{-\hat{y}_n})^{-1}$, $G_n = \sigma(\hat{y}_n) y_n$, $H_n = \sigma(\hat{y}_n)(1 \sigma(\hat{y}_n))$
- Compute once before growing each tree:

n	X_1	X_2	у	$\hat{y}^{(0)}$	$\sigma(\hat{y}^{(0)})$	G	Н
1	1	2	0	0	0.5	0.5	0.25
2	2	1	0	0	0.5	0.5	0.25
3	3	2	0	0	0.5	0.5	0.25
4	1	3	1	0	0.5	-0.5	0.25
5	2	2	1	0	0.5	-0.5	0.25
6	3	3	1	0	0.5	-0.5	0.25

Exercise - Step 2: Enumerate split rules

- For first feature m=1
 - Unique sorted values $V_1 = \{1, 2, 3\}$
 - Rules $[x_{:,1}; 1.5]$ and $[x_{:,1}; 2.5]$
- For second feature m = 2:
 - Unique sorted values $V_2 = \{1, 2, 3\}$
 - Rules $[x_{:,2}; 1.5]$ and $[x_{:,2}; 2.5]$
- In the beginning there is only the root j = 1, where:
 - All instances belong to the root: $I_1 = \{1, 2, 3, 4, 5, 6\}$
- Which rule $[x_{:,1}; 1.5]$, $[x_{:,1}; 2.5]$, $[x_{:,2}; 1.5]$, $[x_{:,2}; 2.5]$ maximizes the gain of splitting the root?

Exercise - Step 3: Best split rule = Maximal Gain

n	<i>X</i> ₁	<i>X</i> ₂	у	$\hat{y}^{(0)}$	$\sigma(\hat{y}^{(0)})$	G	Н
1	1	2	0	0	0.5	0.5	0.25
2	2	1	0	0	0.5	0.5	0.25
3	3	2	0	0	0.5	0.5	0.25
4	1	3	1	0	0.5	-0.5	0.25
5	2	2	1	0	0.5	-0.5	0.25
6	3	3	1	0	0.5	-0.5	0.25

- Rule $[x_{:,1}; 1.5]$:
 - $I_1^{(\mathsf{Left})} = \{1,4\}$ and $I_1^{(\mathsf{Right})} = \{2,3,5,6\}$, thus $\mathit{Gain}_1 = -1$
- Rule $[x_{:,1}; 2.5]$:
 - $I_1^{(\mathsf{Left})} = \{1,2,4,5\}$ and $I_1^{(\mathsf{Right})} = \{3,6\}$, thus $\mathit{Gain}_1 = -1$
- Rule $[x_{:,2}; 1.5]$:
 - $\emph{I}_1^{(Left)}=\{2\}$ and $\emph{I}_1^{(Right)}=\{1,3,4,5,6\}$, thus $\emph{Gain}_1=-0.84$
- Rule $[x_{:,2}; 2.5]$:
 - $I_1^{(\text{Left})} = \{1, 2, 3, 5\}$ and $I_1^{(\text{Right})} = \{4, 6\}$, thus $Gain_1 = -0.41$ (best)

Our first tree with depth 1!

- The best rule we found $[x_{:,2}; 2.5]$:
 - Splits node (j=1') into $I_{1'}^{(\text{Left})}=\{1,2,3,5\},\ I_{1'}^{(\text{Right})}=\{4,6\}$ Left child (j=1) with weight $w_1=-\frac{G_1+G_2+G_3+G_5}{H_1+H_2+H_3+H_5+\lambda}=-0.5$
 - Right child (j = 2) with weight $w_2 = -\frac{G_4 + G_6}{H_1 + H_2 + 1} = 0.66$

Our first tree with depth 1! (cont.)

- Interpretation of the outcome $y_n^{(1)} = f^{(1)}(x_n) = w_{q(x_n)}$:
 - $\sigma(\hat{y}_n^{(1)}) = \sigma(-0.5) = 0.37, \forall n \in \{1, 2, 3, 5\}, q(x_n) = 1$
 - $\sigma(\hat{y}_n^{(1)}) = \sigma(0.67) = 0.66, \forall n \in \{4, 6\}, q(x_n) = 2$

Grow the tree further

- Follow the same procedure to compute the best rules for further splitting the nodes 1 and 2
- Proceed until the maximum allowed depth is reached.
- For subsequent trees in the ensemble follow the same procedure, but note that:
 - For the first tree $\hat{y}_n^{(0)} = 0$
 - For the second tree $\hat{y}_n^{(1)} = f^{(1)}(x_n)$
 - For the third tree $\hat{y}_n^{(2)} = f^{(1)}(x_n) + f^{(2)}(x_n)$, etc ...
- Finish the exercise at home!

Algorithmic Complexity

- Compute sorted unique feature values $O(MN \log(N))$
- There are O(MN) many split rules in a dataset
- Computing the gradients and Hessians for each tree is O(N)
- The gain of one split rule at a node with N instances is O(N)
- The gain of all splits at a node naively is $O(MN^2)$
 - Can be incrementally computed in O(MN)
- In a balanced tree all the splits at each level are O(MN)
- For a tree having depth $O(\log(T))$ the tree is computed in $O(MN\log(T))$
- An ensemble with k trees is $O(kMN \log(T))$

Advantages of Gradient Boosted Decision Trees

- Work out of the box, no need for data preprocessing
- Work well with categorical features
- Ability to work with arbitrary loss functions
- Very low-bias, yet relatively low-variance
- Very fast algorithm $O(kMN \log(T))$
- XGBoost platform won numerous data science competitions
- Off-the-shelf tool for tabular data