سلسلةتمارين محلولة

مراجعة المكتسبات القبلية

التمرين الأول

نضع كتلة m=2g من كربونات الكالسيوم $CaCO_3$ في حوجلة تحتوي على محلول مائي لحمض كلور الماء m=2g نضع كتلة V=100ml حجمه V=100ml حجمه V=100ml و تركيزه المولي V=100ml فينتج غاز V=100ml خلال التفاعل ، ينمذج التفاعل الكيميائي الحادث بالمعادلة التالية :

$$CaCO_{3(s)} + 2H_3O^{+}_{(aq)} = Ca^{2+}_{(aq)} + CO_{2(g)} + 3H_2O_{(l)}$$

- 1- عين كمية المادة الإبتدائية لكل متفاعل
- ان وجد التقدم التفاعل عدد قيمة التقدم الأعظمي x_{max} و استنتج المتفاعل المحد ان وجد -2
 - 3- أحسب في نهاية التفاعل:
 - أ) حجم غاز ثنائي أكسيد الكربون CO₂ الناتج في الشرطين النظاميين
 - ب) كتلة كربونات الكالسيوم المتفاعلة (CaCO
 - ج) تركيز الوسط التفاعلي بالشوارد Ca^{2+} , Ca^{2+} في نهاية التفاعل

 $M(Ca) = 40 \ g/mol$, $M(C) = 12 \ g/mol$, $M(O) = 16 \ g/mol$:

التمرين الثاني :

نحل كمية من غاز كلور الهيدروجين في حجمها V_{HCl} في حجم V_{HCl} في حجم على محلول مائي V_{HCl} التفاعل الكيميائي المنمذج لهذا الانحلال يعبر عنه بالمعادلة التالية: V_{HCl} من الماء المعادلة التالية: V_{HCl} من الماء المعادلة التالية: V_{HCl} من الماء المعادلة التالية:

$$HCl + H_2O = H_3O^+ + Cl^-$$

- مثل جدول التقدم لهذا التفاعل -1
- 2- المحلول (S) ناقل للتيار الكهربائي. لماذا ؟
- V و حجمه χ_{max} بدلالة التركيز المولى للمحلول C و حجمه χ_{max} بدلالة التركيز المولى للمحلول C
- عبر عن الناقلية النوعية σ_{max} في نهاية التفاعل بدلالة التقدم الأعظمي x_{max} و الحجم V للمحلول S) و الناقلية النوعية المولية الشاردية $\lambda_{H_3O^+}$ و λ_{Cl}
 - $\sigma_{max} = 42,63 \; mS/m$ نقيس الناقلية النوعية للمحلول في نهاية التفاعل بواسطة تحهيز مناسب فنجدها أحسب:
 - x_{max} أ) التقدم الأعظمي
 - ب) التركيز المولي C للمحلول
 - (S) المنحل في المحلول V_{HCI} المنحل في المحلول (ج

 $\lambda_{H_3O^+} = 35 \times 10^{-3} \; S. \, m^2. \, mol^{-1}$, $\lambda_{Cl^-} = 7.63 \times 10^{-3} \; S. \, m^2. \, mol^{-1}$.

التمرين الشالث

يهدف هذا التمرين إلى دراسة تفاعل أكسدة إرجاع بين حمض كلور الماء ومعدن المفنزيوم

نضع في بيشر V=100ml من حمض كلور الماء $m_0(aq)$ تركيزه المولي m_0 ، نضيف إليه كتلة m_0 من معدن N=100ml المغنزيوم $N(H_3O^+)(mol)$ باستعمال طريقة مناسبة تم رسم المنحنى الممثل في الشكل $N(H_3O^+)(mol)$

التحول الكيمائي الحادث ينمذج بالمعادلة الكيميائية التالية:

$$Mg_{(s)} + 2H_3O^+_{(aq)} = Mg^{2+}_{(aq)} + H_{2(g)} + H_2O_{(l)}$$

- 1- أكتب المعادلتين النصفيتين للأكسدة و الإرجاع
- المشاركتين في هذا التفاعل Ox/Red المشاركتين المثائيتين -2
 - 3- أنشئ جدولا لتقدم التفاعل
- x_{max} و التقدم الأعظمي C و التقدم الأعظمي C
 - m_0 حدد المتفاعل المحد ثم استنتج قيمة -5
 - 6- حدد التركيب المولي للوسط التفاعلي في الحالة النهائية
 - $[Mg^{2+}]_f$ جد التركيز المولي لشوارد المغنزيوم المتشكلة في الحالة النهائية -7

 $M_{(Mg)} = 24 \ g/mol$ الكتلة المولية الذربة للمغازيوم

الشكل -1- تغيرات كمية مادة $H_3 O^+$ بدلالة التقدم

التمرين الرابع:

يستعمل الماء الأكسجيني (H_2O_2) في تطهير الجروح و تنظف العدسات اللاصقة ، على قارورة تحتوي 500ml من الماء الأكسجيني S_0 منتج حديثا كتبت الدلالة ماء أكسجيني V_1 أي تركيز المحلول التجاري S_0 هو S_0 هو $V_1=200ml$ وذلك بتمديد عينة من المحلول S_0 مرة S_0 محمد S_1 حجمه S_1 وذلك بتمديد عينة من المحلول S_1 مرة

- من بين الزجاجيات التالية اختر الزجاجيات المناسبة لتحضير المحلول الممدد S_1 انطلاقا من المحلول التجاري S_0 مع التعليل
 - ماصة عيارية ذات عيار 4ml، ماصة عيارية ذات عيار 30ml
 - حوجلة ذات عيار 200ml، حوجلة ذات عيار 50ml، حوجلة ذات عيار 300ml
 - 2- للتأكد من الدلالة المكتوبة على قارورة الماء الأكسجيني نعاير حجما V=10ml من المحلول الممدد S_1 بمحلول برمنغنات البوتاسيوم $(K^++MnO_4^-)$ المحمض بقطرات من حمض الكبريت المركز و المحضر حديثا تركيزه المولي بشوارد البرمنغنات $C_2=8,3\times 10^{-3}mol.\,l^{-1}$
 - أ) ما دور حمض الكبريت المركز ؟
 - ب) ما نوع هذه المعايرة ؟ علل
 - أذكر خطوات البروتوكول التجربي لهذه المعايرة مستعينا برسم تخطيطي تجربي يحمل كافة البيانات
 - ج) عرف المؤكسد و تفاعل الأكسدة، وأكتب معادلة تفاعل المعايرة الحادث علما أن الثنائتين الداخلتين
 - $(O_2 \ / \ H_2O_2)$ ، $(MnO_4^- \ / \ Mn^{2+})$ في التفاعل هما
 - د) أنشئ جدولا لتقدم التفاعل

 $[H_2O_2] = rac{5C_2V_{2\acute{e}q}}{2V}$ بين أن التركيز المولي للمحلول التجاري الممدد يعطى بالعلاقة التالية:

و) أحسب تركيز المحلول الممدد ثم استنتج التركيز المولي $[H_2O_2]_0$ للمحلول S_0 إذا علمت أن حجم التكافؤ $V_{2\acute{e}q}=8ml$

ز) هل النتائج المتوصل إليها متطابقة مع ماهو مسجل على القارورة ؟

التمرين الخامس

يتفاعل المركب الجزيئي C_4H_9Cl كليا مع الماء وفق المعادلة الكيميائية التالية:

$$C_4H_9C\ell_{(aq)} + 2H_2O_{(\ell)} \longrightarrow C_4H_9-OH_{(aq)} + H_3O^+_{(aq)} + C\ell^-_{(aq)}$$

نسكب في بيشر 80mL من الماء (كمية زائدة)، و حجما $V_0 = 20mL$ من المركب $C_4 H_9 C \ell$ (سائل في درجات الحرارة الإعتيادية)، و نشغل المخلاط المغناطيسي للحصول على مزبج متجانس تركيزه المولى C_0 بالمادة المذابة.

 $\sigma = 760 mS. m^{-1}$ باستعمال جهاز قياس الناقلية نحصل على القيمة

1- ما معنى كلا من العبارتين: مزيج متجانس؟ محلول مائي؟.

2- أنجز جدولا لتقدم التفاعل الحادث.

- حدد المتفاعل المحد، مع التبرير.

 \mathbb{C}^{-1} وجد، بالإعتماد على الجدول، عبارة الناقلية النوعية $\mathbf{\sigma}$ للمحلول الشاردي الناتج بدلالة تركيز الشاردة

لتفاعل. التقدم الأعظمي للتفاعل. x_{max} التقدم الأعظمي للتفاعل.

. $C_4 H_9 C\ell$ للمركب n_0 . ثم استنتج كمية المادة الإبتدائية المركب n_0 . x_{max}

- ما قيمة التركيز المولي الإبتدائي Co ؟.

6- ارسم ، بالإعتماد على النتائج السابقة، المنحنى $\sigma = f(C)$ مخطط المعايرة لخلية قياس الناقلية من أجل المحاليل المائية الممددة للمركب \mathcal{C}_4 ، علل إختيارك.

كل المحاليل مأخوذة في درجة الحرارة C 25°C حيث:

$$\lambda_{H_3O^+} = 35 \times 10^{-3} \; S. \, m^2. \, mol^{-1} \qquad ; \qquad \lambda_{Cl^-} = 7,\!63 \times 10^{-3} \; S. \, m^2. \, mol^{-1}$$

التمرين السادس

من بين الغازات الملوثة للجو غاز SO_2 ويتشكل عندما تتأكسد الشوائب المحتواة على الكبريت بواسطة أكسجين الهواء ، و SO_2 من بين الغاز ملوثا إذا تجاوزت كمية SO_2 المقدار : SO_2 المقدار : SO_3 من المعرفة مدى تلوث هواء المدينة التي يقطن بها . وكرياء قام بحل SO_2 من المهواء في SO_3 من الماء المقطر ، بحيث ينحل SO_2 في الماء .حصل على محلول SO_3 عديم اللون ثم عاير المحلول SO_3 بواسطة محلول محمض SO_3 بنفسجي اللون لبرمنغنات البوتاسيوم SO_3 بواسطة محلول محمض SO_3 بنفسجي اللون لبرمنغنات البوتاسيوم SO_4 بواسطة محلول محمض SO_3 بنفسجي اللون لبرمنغنات البوتاسيوم SO_4 بواسطة محلول محمض SO_4 بنفسجي اللون لبرمنغنات البوتاسيوم SO_4 بواسطة محلول محمض SO_4

- 1- لماذا اختار زكرياء عملية المعايرة ؟. أرسم شكلا تخطيطيا لهذه العملية مع البيانات المناسبة.
- -2 الثنائيات الموافقة لتفاعل المعايرة هي: $({
 m SO}_{4\,(
 m aq)}^2/{
 m SO}_{4\,(
 m aq)}^2)$. $({
 m SO}_{4\,(
 m aq)}^2/{
 m SO}_{2\,(
 m aq)})$. أكتب معادلة التفاعل.
 - 3- كيف نستدل على وصول عملية المعايرة إلى نقطة التكافؤ ؟.
 - -4 [عتمادا على جدول التقدم ، بين أنه عند التكافؤ يكون لدينا : $2n(SO_2) = 5n(MnO_4^-)$.
- $V_e=8,8$ mL : استنتج كمية مادة ${
 m S0}_2$ في المحلول ${
 m S0}_0$ ، علما أن حجم محلول البرمنغنات عند التكافؤ هو

5- أوجد كتلة غاز 50_2 في الـ $2\,m^3$ من الهواء . هل يعتبر جو المدينة ملوثا حسب المقياس السابق ؟.

التمرين السابع:

يعتبر الصدأ من المشكلات الخطيرة المتسببة في انهيار البنايات، إتلاف خطوط الأنابيب، تسمم الأدوية و الأغذية .. الخ و يحدث صدأ الحديد عند وجود الماء و الأكسجين حيث يوفران معا شروطا مناسبة لإنتقال الإلكترونات من الحديد نحو الأكسجين فيتأكل الحديد

يهدف هذا التمرين إلى دراسة صلاحية عينة من الحديد موجهة للبناء بتحديد الكتلة المتأكلة بعد مرور 6 ساعات

- 1. هل الحديد مؤكسد أم مرجع في عملية الصدأ ؟ علل
 - 2. هل ما حدث للأكسجين أكسدة أم إرجاع ؟
- 3. أكتب المعادلتين للنصفيتين للأكسدة و للإرجاع ، ثم المعادلة الإجمالية للتفاعل الحادث علما أن الثنائيتين المشاركتين في التفاعل هما: (Fe^{2+}/Fe) , (O_2/H_2O)

شوارد الحديد Fe^{2+} المتشكلة تفقد أيضا إلكترونا فتصبح Fe^{3+} و التي تشكل بعدها الصدأ Fe_2O_3 وفق المعادلة التالية :

$$2Fe^{2+} + O_2 + H_2O = Fe_2O_3 + 2H^+$$
 (1) المعادلة

بعد مرور 6 ساعات، نأخذ العينة المدروسة و نحضر منها محلولا من Fe^{2+} حجمه $V_0=100ml$ ثم يأخذ منه Sml ونمدده

10 مرات و نضيف له قطرات من حمض الكبريت المركز H_2SO_4 ثم نعايره بواسطة محلول برمنغنات البوتاسيوم

$$C_b = 2 imes 10^{-5} mol/l$$
 ترکيزه المولي ($K^+ + MnO_4^-$)

 $V_b = 11ml$ غلى التكافؤ عند بقاء حجم $V_b = 11ml$ في السحاحة التي سعتها

- 4. لماذا نضيف حمض الكبريت المركز؟ و لماذا نمدد المحلول قبل المعايرة؟
 - اذكر البروتوكول التجريبي للمعايرة مع الرسم
 - اذكر خصائص تفاعل المعايرة
- 7. أكتب المعادلتين النصفيتين للأكسدة و الارجاع، ثم المعادلة الإجمالية للتفاعل الحادث علما أن الثنائيتين المشاركتين هما: (٢٠٥٠ ١٠٠٠)
 - (Fe^{3+}/Fe^{2+}) , (MnO_4^-/Mn^{2+})
- 8. عرف التكافؤ
- C_0 برهن علاقة التكافؤ ثم أحسب تركيز شواد الحديد Fe^{2+} الممدد ثم استنتج التركيز الأصلي .9
 - 10. بالاعتماد على جدول تقدم المعادلة (1)، و علما أن Fe^{2+} هو المتفاعل المحد
 - $m(Fe_2O_3) = \frac{1}{2}C_0V_0 \times M(Fe_2O_3)$ ابین أن (أ
 - ب) استنتج كتلة الصدأ المتشكلة

حسب شروط البناء فإن كتلة الصدأ المتشكلة المسموح بها خلال 6 ساعات هي 10mg، هل هذه العينة صالحة للإستعمال ؟

$$M(0) = 16 \, g/mol$$
 . $M(Fe) = 56 g/mol$: