

Locus A and B have 2 alleles

- ► Locus A
 - $ightharpoonup \operatorname{Fr}(A) = p$
 - ► Fr(a) = q

¹Image: Public Domain

Locus A and B have 2 alleles

- ► Locus A
 - ightharpoonup Fr(A) = p
 - ightharpoonup Fr(a) = q
- ► Locus B
 - $ightharpoonup \operatorname{Fr}(B) = s$
 - ► Fr(b) = t

¹Image: Public Domain

Haploid chromosomal genotypes, "haplotypes"

▶ 4 haplotypes AB, Ab, aB, and ab

¹Image: Public Domain

Haploid chromosomal genotypes, "haplotypes"

- ▶ 4 haplotypes AB, Ab, aB, and ab
- Expected frequencies
 - ightharpoonup Fr(AB) = ps
 - ightharpoonup Fr(Ab) = pt
 - ightharpoonup Fr(aB) = qs
 - ightharpoonup Fr(ab) = qt
- ► Above are in *linkage equilibrium*

¹Image: Public Domain

Linkage equilibrium: 2 loci in a population are in linkage equilibrium if an allele present at one locus of the haplotype is independent of the allele present at the other locus.

Linkage disequilibrium: 2 loci in a population are in linkage disequilibrium when there is a non-random association between a haplotype's allele at one locus and its allele at the other locus.

Linkage equilibrium: Because loci are independent, knowing the allele at the one locus is of no use in predicting the allele at the other.

Linkage disequilibrium: If we know the haplotype's allele at 1 locus it provides a clue about the allele present at the other.

Coefficient of linkage disequilibrium

Coefficient of linkage disequilibrium (D) is a measure for quantifying the deviation of the population haplotype frequencies from linkage equilibrium, i.e., for quantifying the degree of linkage disequilibrium,

$$D = g_{AB}g_{ab} - g_{Ab}g_{aB}.$$

In the above, g_{AB} , g_{ab} , g_{Ab} , and g_{aB} are the *observed* frequencies of AB, ab, Ab, and ab haplotypes, respectively.

Coefficient of linkage disequilibrium

Coefficient of linkage disequilibrium (D) is a measure for quantifying the deviation of the population haplotype frequencies from linkage equilibrium, i.e., for quantifying the degree of linkage disequilibrium,

$$D = g_{AB}g_{ab} - g_{Ab}g_{aB}.$$

Equilibrium: $ga_{AB} = ps$, $ga_{ab} = qt$, $ga_{Ab} = pt$, $ga_{aB} = qs$, so D = psqt - ptqs = 0.

Disequilibrium: $ga_{AB} \neq ps$, $ga_{ab} \neq qt$, $ga_{Ab} \neq pt$, $ga_{aB} \neq qs$, so $D \neq 0$.

Recombination between loci decreases D

How rapidly does linkage disequilibrium (D) decay with recombination?

- ▶ D₀ initial linkage disequilibrium
- $ightharpoonup D_n$ linkage disequilibrium in generation n
- r rate of recombination between 2 loci $(0 \le r \le 0.5)$

Recombination between loci decreases D

How rapidly does linkage disequilibrium (D) decay with recombination?

- D₀ initial linkage disequilibrium
- $ightharpoonup D_n$ linkage disequilibrium in generation n
- r rate of recombination between 2 loci $(0 \le r \le 0.5)$

So,
$$D_1 = D_0(1-r)$$
, $D_2 = D_0(1-r)(1-r)$, etc.,

Recombination between loci decreases D

How rapidly does linkage disequilibrium (D) decay with recombination?

- D₀ initial linkage disequilibrium
- $ightharpoonup D_n$ linkage disequilibrium in generation n
- r rate of recombination between 2 loci $(0 \le r \le 0.5)$

So,
$$D_1 = D_0(1-r)$$
, $D_2 = D_0(1-r)(1-r)$, etc.,

$$D_n = D_0 (1-r)^n$$

Note each (1-r) is a generation of recombination.

What eliminates linkage disequilibrium

With sexual reproduction and random mating (recombination), linkage disequilibrium decays over time.

Sexual recombination eliminates linkage disequilibrium

- 1. The higher the rate of recombination the faster initial linkage disequilibrium is eliminated.
- 2. For tightly linked genes with low rates of recombination between them (e.g., r = 0.01), disequilibrium can persist for many generations.
- 3. Even if 2 loci are linked on the same chromosome, they will not necessarily be in linkage disequilibrium.
- Conversely, due to effects of selection, mutation, and gene flow, two loci may exhibit linkage disequilibrium even if determined by physically unlinked genes.