Optimal linear transform for multi-scale localization

Travis Harty

We update our state $x \sim N(\mu, \mathbf{P})$ using observation $y = \mathbf{H}\mu + \varepsilon$, where $\varepsilon \sim N(0, \mathbf{R})$, dim $x = N_x$, and dim $y = N_y$. We will look for transformations \mathbf{T}_{xl} , \mathbf{T}_{yl} , \mathbf{T}_{xs} , and \mathbf{T}_{ys} such that $x_l = \mathbf{T}_{xl}x$ and $y_l = \mathbf{T}_{yl}y$ contain long-scale information and $x_s = \mathbf{T}_{xs}x$ and $y_s = \mathbf{T}_{ys}y$ contains short-scale information.

We begin by calculating the eigenvalue decomposition of \mathbf{P} and \mathbf{R} ,

$$\mathbf{P} = \mathbf{Q}_x \mathbf{\Lambda}_x \mathbf{Q}_x^T$$
 and $\mathbf{R} = \mathbf{Q}_y \mathbf{\Lambda}_y \mathbf{Q}_y^T$.

We do not assume that P or R are full rank and that the decompositions are in reduced form.

We can now reform the relationship between x and y. First we must notice that even if the image of \mathbf{P} is equal to the image of \mathbf{Q}_x , this does not mean that μ is in the image of \mathbf{Q}_x . This means that if we project μ onto the preimage of \mathbf{Q}_x we will lose the part of μ that is in the kernel of \mathbf{Q}_x and therefore must add that part back using the projection onto the kernel of \mathbf{Q}_x

$$\mathbf{P}_{x}^{\text{roj}} = \mathbf{I} - \mathbf{Q}_{x} \mathbf{Q}_{x}^{T},$$

with the same statement being true for y. We therefore have

$$y = \mathbf{H}\mu + \varepsilon$$

$$\begin{aligned} \mathbf{Q}_y \mathbf{\Lambda}_y^{1/2} \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T y + \mathbf{P}_y^{\mathrm{roj}} y &= \mathbf{H} \left[\mathbf{Q}_x \mathbf{\Lambda}_x^{1/2} \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T \mu + \mathbf{P}^{\mathrm{roj}} \mu \right] + \varepsilon \\ \mathbf{Q}_y \mathbf{\Lambda}_y^{1/2} \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T y + \mathbf{P}_y^{\mathrm{roj}} y &= \mathbf{H} \left[\mathbf{Q}_{lx} \mathbf{\Lambda}_{lx}^{1/2} \mathbf{\Lambda}_{lx}^{-1/2} \mathbf{Q}_{lx}^T \mu + \mathbf{Q}_{sx} \mathbf{\Lambda}_{sx}^{1/2} \mathbf{\Lambda}_{sx}^{-1/2} \mathbf{Q}_{sx}^T \mu + \mathbf{P}^{\mathrm{roj}} \mu \right] + \varepsilon \end{aligned}$$

where

$$\mathbf{Q}_{x} \mathbf{\Lambda}_{x} \mathbf{Q}_{x}^{T} = \mathbf{Q}_{lx} \mathbf{\Lambda}_{lx} \mathbf{Q}_{lx}^{T} + \mathbf{Q}_{sx} \mathbf{\Lambda}_{sx} \mathbf{Q}_{sx}^{T}, \tag{1}$$

and \mathbf{Q}_{lx} and \mathbf{Q}_{sx} contain the eigenvectors that contain information about the long and short scales respectively. Setting $y' = \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T y$, $\mu'_l = \mathbf{\Lambda}_{xl}^{-1/2} \mathbf{Q}_{lx}^T \mu$, and $\mu'_s = \mathbf{\Lambda}_{xs}^{1/2} \mathbf{Q}_{sx} \mu$ we have

$$\mathbf{Q}_y \mathbf{\Lambda}_y^{1/2} y' + \mathbf{P}_y^{\mathrm{roj}} y = \mathbf{H} \mathbf{Q}_{lx} \mathbf{\Lambda}_{lx}^{1/2} \mu_l' + \mathbf{H} \mathbf{Q}_{sx} \mathbf{\Lambda}_{sx}^{1/2} \mu_s' + \mathbf{H} \mathbf{P}_x^{\mathrm{proj}} \mu + \varepsilon.$$

Furthermore, because $\mathbf{P}_y^{\text{roj}}y$ is orthogonal to the columns of \mathbf{Q}_y , setting $\varepsilon' = \mathbf{\Lambda}_y^{-1/2}\mathbf{Q}_y^T$ we have

$$y' = \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T \mathbf{H} \mathbf{Q}_{lx} \mathbf{\Lambda}_{lx}^{1/2} \mu_l' + \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T \mathbf{H} \mathbf{Q}_{sx} \mathbf{\Lambda}_{sx}^{1/2} \mu_s' + \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T \mathbf{H} \mathbf{P}_x^{\text{proj}} \mu + \varepsilon'.$$
 (2)

In this form, we cannot perform data assimilation on μ'_l or μ'_s individually because they each are using the single y' observation. The question then becomes: Can we decompose y' into observations of only long and short scales as defined though \mathbf{Q}_{xl} and \mathbf{Q}_{xs} ?

We can do this by taking the singular value decompositions of the matrices multiplying our μ 's in Eq. 2

$$y' = \mathbf{U}_l \mathbf{\Sigma}_l \mathbf{V}_l^T \mu_l' + \mathbf{U}_s \mathbf{\Sigma}_s \mathbf{V}_s^T \mu_s' + \mathbf{U}_{\perp} \mathbf{\Sigma}_{\perp} \mathbf{V}_{\perp}^T \mu + \varepsilon'$$

If we then assume that \mathbf{U}_l , \mathbf{U}_s , and \mathbf{U}_{\perp} are all orthogonal to each other, we can then decompose y'

$$\mathbf{U}_l^T y' = \mathbf{\Sigma}_l \mathbf{V}_l^T \mu_l' + \mathbf{U}_l^T \varepsilon'$$

$$\mathbf{U}_s^T y' = \mathbf{\Sigma}_s \mathbf{V}_s^T \mu_s' + \mathbf{U}_s^T \varepsilon'$$

This however will only be true it the long and short scales as defined by the eigenvectors of \mathbf{P} can truly be assimilated separately when taking \mathbf{R} and \mathbf{H} into account.