1.	(a)	Sketch	the	graph	of the	curve	with	equation

$$y = \left| \ln \left(2x + 5 \right) \right| \quad x > -\frac{5}{2}$$

On your sketch you should clearly state the equations of any asymptotes and mark the coordinates of points where the curve meets the coordinate axes.

(3)

(b) Solve the equation $\left| \ln(2x + 5) \right| = \ln 9$

(3)

(Total 6 marks)

2.	(a) By writing $u = \log_4 r$, where $r > 0$, show that	
	$\log_4 r = \frac{1}{2} \log_2 r$	(2)
	(b) Solve the equation	
	$\log_4(5x^2 - 11) = \log_2(3x - 5)$	(5)

3. Given that $\phi = \frac{1}{2} (\sqrt{5} + 1)$,								
	(a) show that							
	(i) $\phi^2 = \phi + 1$							
	(ii) $\frac{1}{\phi} = \phi - 1$	(4)						
	(b) The equations of two curves are							
	$y = \frac{1}{x} \qquad x > 0$							
	and $y = \ln x - x + k$ $x > 0$							
	where k is a positive constant. The curves touch at the point P . Find in terms of ϕ							
	(i) the coordinates of P ,							
	(ii) the value of k .	(6)						
		(+S1)						

4.

(a) Solve the equation

$$\sqrt{(3x+16)} = 3 + \sqrt{(x+1)}$$
(5)

(b) Solve the equation

$$\log_3(x-7) - \frac{1}{2}\log_3 x = 1 - \log_3 2 \tag{7}$$

(Total 12 marks)

Given that x > y > 0,

(a) by writing $\log_y x = z$, or otherwise, show that $\log_y x = \frac{1}{\log_x y}$.

(2)

(b) Given also that $\log_x y = \log_y x$, show that $y = \frac{1}{x}$.

(2)

(c) Solve the simultaneous equations

$$\log_x y = \log_y x,$$

$$\log_x (x - y) = \log_y (x + y).$$

(7)

6. (a) Given that x > 0, y > 0, $x \ne 1$ and n > 0, show that

$$\log_x y = \log_{x^n} y^n$$

(2)

- (b) Solve the following, leaving your answers in the form 2^p , where p is a rational number.
 - (i) $\log_2 u + \log_4 u^2 + \log_8 u^3 + \log_{16} u^4 = 5$
 - (ii) $\log_2 v + \log_4 v + \log_8 v + \log_{16} v = 5$

(iii)
$$\log_4 w^2 + \frac{3\log_8 64}{\log_2 w} = 5$$

(9)

(Total 11 marks)

7. (i) Anna, who is confused about the rules for logarithms, states that

$$\left(\log_3 p\right)^2 = \log_3\left(p^2\right)$$
 and
$$\log_3(p+q) = \log_3 p + \log_3 q.$$

However, there is a value for p and a value for q for which both statements are correct.

Find the value of p and the value of q.

(7)

(ii) Solve

$$\frac{\log_3(3x^3 - 23x^2 + 40x)}{\log_3 9} = 0.5 + \log_3(3x - 8).$$

(7)

(Total 14 marks)

8. [In this question the values of a, x, and n are such that a and x are positive real numbers, with a > 1, $x \ne a$, $x \ne 1$ and n is an integer with n > 1]

Sam was confused about the rules of logarithms and thought that

$$\log_a x^n = \left(\log_a x\right)^n \qquad (1)$$

(a) Given that x satisfies statement (1) find x in terms of a and n. (3)

Sam also thought that

$$\log_a x + \log_a x^2 + \dots + \log_a x^n = \log_a x + (\log_a x)^2 + \dots + (\log_a x)^n$$
 (2)

- (b) For n = 3, x_1 and x_2 ($x_1 > x_2$) are the two values of x that satisfy statement (2).
 - (i) Find, in terms of a, an expression for x_1 and an expression for x_2 .

(ii) Find the exact value of
$$\log_a \left(\frac{x_1}{x_2} \right)$$
. (5)

(c) Show that if $\log_a x$ satisfies statement (2) then

$$2(\log_a x)^n - n(n+1)\log_a x + (n^2 + n - 2) = 0$$
(6)

(Total 14 marks)