Задача 5. Цел: Работа с параметрични модели. Решение на права и обратна задача с параметрични модели. Работно пространство.

Начертайте символните означения на показаните на фиг.1 стави и звена. Размера a_1 =(ab).3, където ab са първите 2 цифри от факултетния Ви номер. Размера a_2 =(cd).3, където cd са последните 2 цифри от факултетния Ви номер (ако c=0 да се замени с a). Например ако номера Ви е 1234567 то a_1 =36 [mm], a_2 =201 [mm].

Фиг.1. Звена.

Непосочените размери са по ваш избор. Създайте блокове 1, 2 и 3. Внимавайте за точката на вмъкване. Начертайте координатни оси X и Y. Поставете блок 1 в началото на координатната система. Като ползвате геометрични ограничения фиксирайте block 1 и оста X. Поставете параметрични размери както е показано на фиг.2

Фиг.2. Пример ПЗК. В примера a_1 =36, a_2 =201.

- **5.1. Права задача.** Намерете координатите X и Y (с точност до 3 знак след десетичната точка) на точка P (хващача) при tita1 =25[deg] и tita2=22[deg]. Резултата запишете с текст в dwg файла.
- **5.2. Обратна задача.** За 4 точки $(P_1 \dots P_4)$ от хоризонтална (може и вертикална или наклонена) линия определете ставните ъгли tita1 и tita2. Запишете стойностите в таблица. Разположението на точките $(P_1 \dots P_4)$ в работното пространство преценете вие. Пример фиг.3. Ползвайте параметричния модел.

Фиг.3. Пример ОЗК. В примера a_1 =36, a_2 =201.

5.3. Работно пространство.

Ако ставните ограничения са $0.0 \, [\deg] \le \text{tita1} \le 3. (ab) [\deg] \, \text{и} -10.0 [\deg] \le \text{tita2} \le 3. (cd) [\deg].$ В примера $0.0 \, [\deg] \le \text{tita1} \le 36 \, [\deg] \, \text{и} -10.0 \, [\deg] \le \text{tita2} \le 201 \, [\deg] \, \text{фиг.4}.$ Начертайте работното пространство на робота. Множеството от всички точки до които може да достига точка P (хващача). Може да ползвате обикновени чертожни команди, а не параметричен модел (по-лесно e). Може да ползвате командата "polar array". Оформете работното пространство като затворена полилиния. Не винаги е много лесно. Изчислете площта P на работното пространство. Ползва се команда "list" или "properties".

Фиг.4. Работно пространство.

5.4. Параметричен чертеж на детайл.

Начертайте равнинния детайла от фиг.5. Ползвайте "Auto constrain" за да поставите автоматично геометрични ограничения. Построите оказаните на фиг. 6 осеви линии (в синьо). Поставете допълнителните ограничения и параметрични размери съгласно фиг.6. Обърнете внимание, че rad1 и rad2 са функционално зависими от dia1.

Променете стойността на параметъра dia1 = 15 + а, където а е първата цифра от факултетния Ви номер. Проверете дали коректно се променя фигурата. Ако е необходимо редактирайте ограниченията. Запишете файла.

Запишете файла под друго име. Създайте 3D модел от 2D контура чрез екструзия. Височината на екструдиране е аb от факултетния номер. Имайте в предвид, че 3D модела ще загуби параметричните свойства.

Фиг.5. Детайл

фиг.6. Геометрични ограничения и параметрични размери

Ползвайте командата "massprop" за да извлечете масовите характеристики на 3D модела. Запишете ги в текстови файл. Виж фиг.7

Фиг.7 Извличане на инерционни моменти обем и други характеристики от 3D Solid

Ако има въпроси ми пишете. Може да ми задавате въпроси всеки четвъртък от 16:00 до 20:00h по време на on-line упражненията.