1 Statements

1.1 Class Handout, Chapter 1.3, Implications.

Let a, b, and c be integers, with a and b non-zero. If $(ab) \mid (ac)$, then $b \mid c$.

Proof 1.

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$. Suppose $(ab) \mid (ac)$. Then $\exists k \in \mathbb{Z} \ s.t. \ ac = (ab)k$. Divide both sides of the equation by a:

$$c = bk$$
.

Since $k \in \mathbb{Z}$, by definition of divides, $b \mid c$.

1.2 Class Handout, Chapter 1.4, Contrapositive and Converse

Prove that for all real numbers a and b, if $a\in\mathbb{Q}$ and $ab\notin\mathbb{Q}$, then $n\notin Q$.

Proof 2.

Let $a, b \in \mathbb{Q}$. Assume for the sake of contradiction that if $a \in \mathbb{Q}$ and $ab \notin \mathbb{Q}$, we have $b \in \mathbb{Q}$. Then, $\exists p, q, m, n \in \mathbb{Z} \text{ s.t. } a = \frac{m}{n} \text{ and } b = \frac{p}{q}$. Hence,

$$ab = \frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

As $mp, nq \in \mathbb{Z}$, $ab \in \mathbb{Q}$.

* This contradicts with the fact that $ab \notin \mathbb{Q}$.

So, b must not be rational.

1.3 Chapter 1.1 # 7(c)

Prove the square of an even integer is divisible by 4.

Proof 3.

Suppose $x \in \mathbb{Z}$ is even. Then $\exists k \in \mathbb{Z} \text{ s.t. } x = 2k$. Then, $x^2 = (2k)^2 = 4k^2$. Since $k^2 \in \mathbb{Z}$, we have $4 \mid 4k^2$.

Theorem 1.1 (Archimedean Principle) For every real number x, there is an integer n, such that n > x.

1.4 Chapter 1.1 # 11

For every positive real number ε , there exists a positive integer N such that $\frac{1}{n} < \varepsilon$ for all $n \ge N$.

Proof 4.

Suppose $\varepsilon \in \mathbb{R}$ and $\varepsilon > 0$. Since $\varepsilon \in \mathbb{R}$, we have $\frac{1}{n} \in \mathbb{R}$. Then, by Archimedean Principle, $\exists n \in \mathbb{Z}$ s.t. $n > \frac{1}{\varepsilon}$. Hence, $n\varepsilon > 1$ or $\varepsilon > \frac{1}{n}$.

Suppose $N \in \mathbb{Z}$ s.t. $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, where $\left\lceil \frac{1}{\varepsilon} \right\rceil$ means the integer greater to $\frac{1}{\varepsilon}$ if $\frac{1}{\varepsilon} \notin \mathbb{Z}$, and the integer equals to $\frac{1}{\varepsilon}$ if $\frac{1}{\varepsilon} \in \mathbb{Z}$. Hence, $N \geq \frac{1}{\varepsilon}$. As $n > \frac{1}{\varepsilon}$, we have $n \geq N$

1.5 Chapter 1.1 # 12

Use the Archimedean Principle (Theorem 1.1) to prove if x is a real number, then there exists a positive integer n such that -n < x < n.

Proof 5.

Suppose $x \in \mathbb{R}$.

Case 1 If x > 0, then -x < 0 (i.e., -x < 0 < x). By the Archimedean Principle, $\exists n \in \mathbb{Z} \ s.t. \ n > x$. Multiply (-1) on both sides of the inequality:

$$-n < -x$$

As -x < 0 < x,

$$-n < -x < 0 < x < n,$$

which means -n < x < n, and n is positive.

Case 2 If x < 0, then -x > 0 (i.e., -x > 0 > x) Since $x \in \mathbb{R}$, we have $-x \in \mathbb{R}$. By the Archimedean Principle, $\exists n \in \mathbb{Z} \ s.t. \ n > -x$. Multiply (-1) on both sides of the inequality:

$$-n < x$$

As x < 0 < -x,

$$-n < x < 0 < -x < n$$

which means -n < x < n, and n is positive. In all cases, we have proven that $x \in \mathbb{R} \implies \exists n \in \mathbb{Z}, n > 0$ s.t. -n < x < n.

1.6 Chapter 1.1 # 13

Prove that if x is a positive real number, then there exists a positive integer n such that $\frac{1}{n} < x < n$.

Proof 6.

Suppose $x \in \mathbb{R}, \ x > 0$

Case 1 If $0 < x \le 1$, then $\frac{1}{x} \ge 1$. Hence, $x \le 1 \le \frac{1}{x}$. As $x \in \mathbb{R}$, $\frac{1}{x} \in \mathbb{R}$, then by the Archimedean Principle (Theorem 1.1):

$$\exists n \in \mathbb{Z} \ s.t. \ n > \frac{1}{x}.$$

Hence, nx > 1 or $x > \frac{1}{n}$. As $x \le \frac{1}{x}$, $n > \frac{1}{x}$, and $x > \frac{1}{n}$, we have

$$\frac{1}{n} < x < n.$$

Case 2 If x > 1, then $0 < \frac{1}{x} < 1$. Hence, $\frac{1}{x} < 1 < x$. As $x \in \mathbb{R}$, by the Archimedean Principle:

$$\exists n \in \mathbb{Z} \ s.t. \ n > x > 0$$

Hence, $\frac{1}{n} < \frac{1}{x}$. As $\frac{1}{x} < x$, $\frac{1}{n} < \frac{1}{x}$, and n > x, we have

$$\frac{1}{n} < x < n$$

In all cases, we proven that $x \in \mathbb{R}, \ x > 0 \implies \exists n \in \mathbb{Z}, n > 0 \ s.t. \ \frac{1}{n} < x < n.$

1.7 Handout Chapter 1.4-2 More Contradictions and Equivelence

There are no positive integer solutions to the equation $x^2 - y^2 = 10$.

Proof 7.

Assume for the sake of contradiction that there are positive integer solutions to the equation $x^2 - y^2 = 10$. Suppose $\exists x, y \in \mathbb{Z}$ and x > 0, y > 0 s.t. $x^2 - y^2 = 10$. Then, we have $x^2 = 10 + y^2$. Since x > 0, $x^2 > 0$, we have $10 + y^2 > 0$. Then, $y^2 > -10$.

* This contradicts with the fact that $y^2 \geq 0$ if $y \in \mathbb{Z}$.

So, our assumption is wrong. There must be no positive integer solutions to the equation $x^2 - y^2 = 10$.

1.8 Handout Chapter 1.4-2 More Contradictions and Equivelence

Show that if $a\in\mathbb{Q}$ and $b\in\mathbb{Q}'$, then $a+b\in\mathbb{Q}'$

Remark The notation \mathbb{Q} means the set for rational numbers, and \mathbb{Q}' means the set for irrational numbers.

Proof 8.

Suppose $a \in \mathbb{Q}$ and $b \in \mathbb{Q}'$ Assume for the sake of contradiction that $a + b \in \mathbb{Q}$. Then, $\exists m, n, p, q \in \mathbb{Z}$ such that $a = \frac{m}{n}$ and $a + b = \frac{p}{q}$. Then,

$$b = \frac{p}{q} - a = \frac{p}{q} - \frac{m}{n} = \frac{pn - mq}{qn} \in \mathbb{Q}$$

Since $pn - mq \in \mathbb{Q}$ and $qn \in \mathbb{Z}$, we have $b = \frac{pn - mq}{qn} \in \mathbb{Q}$.

* This contradicts with the fact that $b \in \mathbb{Q}'$.

So, a + b must be irrational.

1.9 Handout Chapter 1.4-2 More Contradictions and Equivalence

If $n \in \mathbb{N}$ and $2^n - 1$ is prime, then n is prime.

Proof 9.

We will prove the contrapositive: if n is not prime, then $2^n - 1$ is not prime. Suppose n is not prime. Then, $\exists a, b \in \mathbb{Z}$ with 1 < a, b < n s.t. n = ab. Then, $2^n - 1 = 2^{ab} = (2^a)^b - 1$. Notice that for $x^w - 1$, by

polynomial long division, have

$$x^{w} - 1 = (x - 1)(x^{w-1} + x^{w-2} + \dots + 1),$$

Substitute $x = 2^a$ and w = b, we have

$$2^{n} - 1 = (2^{a} - 1) \left[(2^{a})^{b-1} + (2^{a})^{b-2} + \dots + 1 \right].$$

Since $(2^a - 1) \in \mathbb{Z}$ and $\left[(2^a)^{b-1} + (2^a)^{b-2} + \dots + 1 \right] \in \mathbb{Z}$, we see that $2^n - 1$ is not prime.

1.10 Exam 1 Review 1-b-i

 $\text{Prove that } [P \wedge (P \implies Q)] \implies Q.$

Proof 10.

P	Q	$P \Rightarrow Q$	$P \wedge (P \Rightarrow Q)$	$[P \land (P \Rightarrow Q)] \implies P$
Т	Т	Τ	Т	T
${\bf T}$	F	\mathbf{F}	F	${ m T}$
F	Т	${ m T}$	F	${ m T}$
F	F	${ m T}$	F	T

1.11 Exam 1 Review 1-b-ii

Prove that $[Q \wedge (P \implies Q)] \implies P$.

Proof 11.

P	Q	$P \Rightarrow Q$	$Q \wedge (P \Rightarrow Q)$	$[Q \land (P \Rightarrow Q)] \implies Q$
Т	Т	Τ	Т	Т
Τ	F	\mathbf{F}	F	${ m T}$
\mathbf{F}	Т	${ m T}$	${ m T}$	T
F	F	${ m T}$	F	T

Page 5 of 22

1.12 Exam 1 Review 2-a

Given statements P and $Q\text{, prove }\neg(P\vee Q)\equiv\neg P\wedge\neg Q\text{.}$

Proof 12.

P	Q	$P \lor Q$	$\neg(P\vee Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$
T	Т	Τ	F	F	F	F
${ m T}$	F	Τ	${ m F}$	F	Т	\mathbf{F}
\mathbf{F}	\mathbf{T}	Τ	\mathbf{F}	Τ	F	F
F	F	F	${ m T}$	Τ	Τ	${ m T}$

1.13 Exam 1 Review 2-b

There is no smallest integer.

Proof 13.

Assume for the sake of contradiction that there exists a smallest integer n. Hence, $\forall x \in \mathbb{Z}$, we have $x \geq n$. Notice that if n > 0, we have $0 \in \mathbb{Z}$ and 0 < n. Hence, n = 0 cannot be the smallest integer (*) Therefore, n most be smaller than 0. Suppose m = -n. Since $n \in \mathbb{Z}$, $m = -n \in \mathbb{Z} \in \mathbb{R}$ By the Archimedean Principle (Theorem 1.1), $\exists k \in \mathbb{Z} \text{ s.t. } k > m$. Hence, k > -n. Multiply (-1) on both sides of the inequality:

$$-k < n$$
.

As $k \in \mathbb{Z}$, $-k \in \mathbb{Z}$. Then $\exists -k \in \mathbb{Z}$ s.t. -k < n.

* This contradicts with our assumption that n is the smallest integer.

Hence, our assumption must be wrong. There is no smallest integer.

1.14 Exam 1 Review 2-c

The number $\log_2 3$ is irrational.

Proof 14.

Assume for the sake of contradiction that $\log_2 3$ is irrational. By definition, $\exists p, qin\mathbb{Z}$, with $q \neq 0$ s.t. $\log_2 3 = \frac{p}{q}$. Observe that $\log_2 3 \neq 0$. Then $p \neq 0$ as well. By definition of logarithm,

$$2^{p/q} = 3$$

$$(2^p)^{1/q} = 3$$

Raise two sides of the equation to the power of q:

$$2^p = 3^q$$

As $p \neq 0$ and $q \neq 0$, 2^p and 3^q are not $1 \ \forall p, q \in \mathbb{Z}$. Hence, 2^p is even $\forall p \in \mathbb{Z}$ and 3^q is odd $\forall q \in \mathbb{Z}$.

* This contradicts with the fact that an even number cannot equal to an odd number.

Hence, our assumption is wront. The number $\log_2 3$, then, must be irrational.

1.15 Exam 1 Review 2-d

There is a rational number a and an irrational number b such that a^b is rational.

Proof 15.

Observe that 1 is a rational number and π is an irrational number. Suppose a=1 and $b=\pi$, we have $a^b=a^\pi=1$, which is irrational.

Proof 16.

Recall that we have proven in the previous proof, we have proven that $\log_2 3$ is an irrational number. Recall the definition of logarithm and exponents, we have

$$2^{\log_2 3} = 3$$

Hence, we find a pair of a and b that satisfies the requirement.

1.16 Exam 1 Review 2-e

For all integers n, the number $n+n^2+n^3+n^4$ is even.

Proof 17.

Suppose $n \in \mathbb{Z}$.

Case 1 If n is even. Suppose n = 2k f.s. $k \in \mathbb{Z}$. Then,

$$n + n^{2} + n^{3} + n^{4} = (2k) + (2k)^{2} + (2k)^{3} + (2k)^{4}$$
$$= 2k + 4k^{2} + 8k^{3} + 16k^{4}$$
$$= 2(k + 2k^{2} + 4k^{3} + 8k^{4})$$

Since $(k + 2k^2 + 4k^3 + 8k^4) \in \mathbb{Z}$, we have $2(k + 2k^2 + 4k^3 + 8k^4)$ is even. Hence, $n + n^2 + n^3 + n^4$ is even when n is even.

Case 2 If n is odd. Suppose n = 2k + 1 f.s. $k \in \mathbb{Z}$. Then,

$$n + n^{2} + n^{3} + n^{4} = (2k + 1) + (2k + 1)^{2} + (2k + 1)^{3} + (2k + 1)^{4}$$

$$= 2k + 1 + 4k^{2} + 4k + 1 + 8k^{3} + 12k^{2} + 6k + 1 + 16k^{4} + 32k^{3} + 24k^{2} + 8k + 1$$

$$= 16k^{4} + 40k^{3} + 40k^{2} + 20k + 4$$

$$= 2(8k^{4} + 20k^{3} + 20k^{2} + 10k + 2)$$

Since $(8k^4 + 20k^3 + 20k^2 + 10k + 2) \in \mathbb{Z}$, we have $2(8k^4 + 20k^3 + 20k^2 + 10k + 2)$ is even. Hence, $n + n^2 + n^3 + n^4$ is even when n is odd.

Since integers can either be even or odd, and we have proven $n + n^2 + n^3 + n^4$ is even in either case, $n + n^2 + n^3 + n^4$ is even for all integers.

Definition 1.1 (Perfect Square) A perfect square is an integer n for which there exists an integer m such that $n = m^2$.

1.17 Exam 1 Review 2-f

If n is a positive integer such that n is in the form 4k+2 or 4k+3, then n is not a perfect square.

Proof 18.

Page 8 of 22

We will prove the contrapositive of the statement: "If n is a perfect square, then n is a positive integer of the form 4k or 4k+1 f.s. $k \in \mathbb{Z}$." Suppose n to be a perfect square, then $\exists m \in \mathbb{Z}$ s.t. $n=m^2$. Case 1 Suppose m is even, then m=2t f.s. $t \in \mathbb{Z}$.

$$n = m^2 = (2t)^2 = 4t^2 > 0.$$

Let $k = t^2$. Since $t^2 \in \mathbb{Z}$, we have $k \in \mathbb{Z}$. Hence, n is positive and is in the form of 4k.

Case 2 Suppose m is odd, then m = 2t + 1 f.s. $t \in \mathbb{Z}$.

$$n = m^2 = (2t+1)^2 = 4t^2 + 4t + 1 = 4(t^2+t) + 1 > 1$$

Let $k = t^2 + t$. Since $(t^2 + t) \in \mathbb{Z}$, we have $k \in \mathbb{Z}$. Hence, n is in the form of 4k + 1. Hence, we prove the contrapositive of the original statement to be true, which means our original statement is also true.

1.18 Exam 1 Review 2-g

For any integer n, $3 \mid n$ if and only if $3 \mid n^2$.

Proof 19.

Suppose $n \in \mathbb{Z}$.

- (⇒) Suppose $3 \mid n$. Then, $\exists k \in \mathbb{Z}$ s.t. n = 3k. Then, $n^2 = (3k)^2 = 9k^2 = 3(3k^2)$. Since $3k^2 \in \mathbb{Z}$, by definition, $3 \mid n^2$. \square
 - (\Leftarrow) WTS: $3 \mid n^2 \implies 3 \mid n$. We will prove the contrapositive: If $3 \nmid n$, then $3 \nmid n^2$ Suppose $3 \nmid n$.

Case 1 Suppose n = 3m+1 f.s. $m \in \mathbb{Z}$. Then, $n^2 = (3m+1)^2 = 9m^2 + 6m + 1$ Since $9m^2 + 6m + 1$ cannot be written in the form of 3k f.s. $k \in \mathbb{Z}$, by definition, $3 \nmid n^2$.

Case 2 Suppose n = 3m + 2 f.s. $m \in \mathbb{Z}$ Then, $n^2 = (3m + 2)^2 = 9m^2 + 12m + 4$ Since $9m^2 + 12m + 4$ cannot be written in the form of 3k for some $k \in \mathbb{Z}$, by definition, $3 \nmid n^2$. Hence, we proved the contrapositive, and thus the original statement is true.

Therefore, $n \mid n \iff 3 \mid n^2$.

1.19 Exam 1 Review 2-h

There exists an integer n such that $12\mid n^2$ but $12\nmid n$.

Proof 20.

Observe that if we take n=6, we have $n^2=36$. Since $n^2=36=3\times 12$, we know $12\mid n^2$. However, $12\nmid 6$ since 6 cannot be written as 12k for all $k\in\mathbb{Z}$. Hence, there exists an integer n=6 s.t. $12\mid n^2$ but $12\nmid n$.

1.20 Exam 1 Review 2-i

For every integer a, the numbers a and (a+1)(a-1) have opposite parity.

Proof 21.

Suppose $a \in \mathbb{Z}$.

Case 1 Suppose a is even. Then a = 2k f.s. $k \in \mathbb{Z}$. Then,

$$(a+1)(a-1) = a^2 - 1 = (2k)^2 - 1 = 4k^2 - 1 = 2(2k^2) - 1.$$

Since $2k^2 \in \mathbb{Z}$, we have (a+1)(a-1) is odd. That is, a and (a+1)(a-1) have opposite parity.

Case 2 Suppose a is odd. Then a = 2k + 1 f.s. $k \in \mathbb{Z}$. Hence,

$$(a+1)(a-1) = a^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 2(2k^2 + 2k).$$

Since $2k^2 + 2k \in \mathbb{Z}$, we have (a+1)(a-1) is even. As a result, a and (a+1)(a-1) have opposite parity. In both cases, we've shown that a and (a+1)(a-1) have opposite parity.

1.21 Exam 1 Review 2-j

Suppose $x \in \mathbb{R}$. If x^2 is irrational, then x is irrational.

Proof 22.

We will prove the contrapositive: "If x is rational, then x^2 is rational." Suppose $x \in \mathbb{Q}$, then $x = \frac{p}{q}$ f.s. $p, q \in \mathbb{Z}$, assuming p and 1 have no common factors and $q \neq 0$. Then,

$$x^2 = \left(\frac{p}{q}\right)^2 = \frac{p^2}{q^2}.$$

As $p, q \in \mathbb{Z}$, we have $p^2, q^2 \in \mathbb{Z}$. Hence, $x^2 = \frac{p^2}{q^2} \in \mathbb{Q}$. Therefore, if x is rational, so is x^2 .

1.22 Exam 1 Review 2-k

For any integers a and b, if ab is even, then a is even or b is even.

Proof 23.

We will prove the contrapositive: "If a is odd and b is odd, then ab is odd." Suppose $a, b \in \mathbb{Z}$ and a and b are both odd. Then, $\exists k, l \in \mathbb{Z}$ s.t. a = 2k + 1 and b = 2l + 1. Then,

$$ab = (2k+1)(2l+1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1.$$

Since $2kl + k + l \in \mathbb{Z}$, we have ab is odd.

1.23 Exam 1 Review 2-l

For $n \in \mathbb{N}$, n, n+2, and n+4 are all prime if and only if n=3.

Proof 24.

 (\Rightarrow) WTS: n, n+2, and n+4 are all prime $\implies n=3$. We will prove the contrapositive: $n \neq 3 \implies n, n+2$, or n+4 is not prime.

Case 1 Suppose 0 < n < 3.

- ① If n = 1, then n = 1 is not a prime.
- ② If n=2, then n=2 is a prime number, but n+2=2+2=4 is not a prime.

Hence, if 0 < n < 3, n, n + 2, or n + 4 is not a prime.

Case 2 Suppose n > 3.

- ① If n = 3k f.s. $k \in \mathbb{Z}$, then n is not a prime because $3 \mid n$.
- ② If n = 3k + 1 f.s. $k \in \mathbb{Z}$, then n + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1). Since $k + 1 \in \mathbb{Z}$, we have $3 \mid n + 2$. Then, n + 2 is not a prime.
- ③ If n = 3k + 2 f.s. $k \in \mathbb{Z}$, then n + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2). Since $k + 2 \in \mathbb{Z}$, we know that $3 \mid n + 4$. Therefore, n + 4 is not a prime.

Hence, if n > 3, we also have n, n + 2, or n + 4 is not a prime.

In both cases, we have proven that if $n \neq 3$, then n, n+2, or n+4 is not a prime.

Practice Proofs

 (\Leftarrow) Note that when n=3, we have n+2=3+2=5 and n+4=3+4=7. Since 3, 5, and 7 are all primes, we have shown that when n=3, n, n+2, and n+4 are all primes.

1.24 Exam 1 Review 3-a

Prove or disprove: Every real number is less than or equal to its square.

Disproof 25.

Prove.

1.25 Exam 1 Review 3-b

Prove or disprove: The sum of two integers is never equal to their product.

Disproof 26.

Prove.

1.26 Exam 1 Review 3-c

Prove or disprove: There exists a non-zero integer whose cube equals its negative.

Disproof 27.

Prove.

1.27 Exam 1 Review 3-d

Prove or disprove: Fall all $x \in \mathbb{R}$, $x \le x^2$ or $0 \le x < 1$.

Proof 28.

1.28 Chapter 1.4 # 20-a

Let n be an integer. Prove that n is even if and only if n^3 is even.

Proof 29.

Prove.

1.29 Chapter 1.4 # 20-b

Let n be an integer. Prove that n is odd if and only if n^3 is odd.

Proof 30.

Prove.

1.30 Chapter 1.4 # 21

Prove that $\sqrt[3]{2}$ is irrational.

Proof 31.

2 Sets

2.1 Handout Chapter 2.1 - Sets and Subsets

Prove that $\{12a + 4b \mid a, b \in \mathbb{Z}\} = \{4c \mid c \in \mathbb{Z}\}.$

Proof 1.

- (\subseteq) Suppose $x \in \{12a+4b \mid a,b \in \mathbb{Z}\}$. Then, x=12a+4b f.s. $a,b \in \mathbb{Z}$. So, x=12a+4b=4(3a+b). As $3a+b \in \mathbb{Z}$, we have $x \in \{4c \mid c \in \mathbb{Z}\}$. By definition, $\{12a+4b \mid a,b \in \mathbb{Z}\} \subseteq \{4c \mid c \in \mathbb{Z}\}$.
- (\supseteq) Suppose $x \in \{4c \mid c \in \mathbb{Z}\}$. Then, x = 4c f.s. $c \in \mathbb{Z}$. Suppose c = 3a + b f.s. $a, b \in \mathbb{Z}$. Then, x = 4c = 4(3a + b) = 12a + 4b. By definition, $\{4c \mid c \in \mathbb{Z}\} \subseteq \{12a + 4b \mid a, b \in \mathbb{Z}\}$

Hence, we have proven $\{12a + 4b \mid a, b \in \mathbb{Z}\} = \{4c \mid c \in \mathbb{Z}\}.$

2.2 Exam 1 Review 2-m

If $A = \{x \mid x = n^4 - 1, n \in \mathbb{Z}\}$ and $B = \{x \mid x = m^2 - 1, m \in \mathbb{Z}\}$, then $A \subseteq B$.

Proof 2.

Prove.

2.3 Exam 1 Review 2-n

If A, B, and C are sets, then $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof 3.

Prove.

2.4 Exam 1 Review 2-0

For subsets A and B of a universal set U, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof 4.

2.5 Exam 1 Review 2-p

Suppose that A, B, and C are subsets of a universal set U. Let P and Q be the following statements:

$$P$$
: $A \subseteq B$ or $A \subseteq C$; and

$$Q: A \subseteq B \cap C$$
.

Write the statement $P \Rightarrow Q$, its converse and contrapositive. Prove the truth statements among these or give counterexamples.

Proof 5.

Prove.

2.6 Handout Chapter 2.2-Combining Sets

Let $A = \{6a+4 \mid x \in \mathbb{Z}\}$ and $B = \{18b-a \mid b \in \mathbb{Z}\}$. Prove or disprove: $A \subseteq B$.

Disproof 6.

Prove.

2.7 Handout Chapter 2.2-Combining Sets

Let $A=\{6a+4\mid x\in\mathbb{Z}\}$ and $B=\{18b-a\mid b\in\mathbb{Z}\}$. Prove or disprove: $B\subseteq A$.

Proof 7.

Prove.

2.8 Handout Chapter 2.2-Combining Sets

If A and B are sets, then $\mathcal{P}(A)-\mathcal{P}(B)=\mathcal{P}(A-B)$.

Proof 8.

2.9 Handout Chapter 2.2-Combining Sets

If A, B, and C are sets, and $A \times B = B \times C$, then A = B.

Proof 9.

Prove.

2.10 Chapter 2.1 # 6

Let $n \in \mathbb{Z}$ and let $A = n\mathbb{Z}$. Prove that if $x, y \in A$, then $x + y \in Z$ and $xy \in A$.

Proof 10.

Prove.

2.11 Chapter 2.1 # 10

Let n and m be integers. Let $A=n\mathbb{Z}$ and $B=m\mathbb{Z}$. Prove that if n is a multiplier of m, then $A\subseteq B$.

Proof 11.

Prove.

2.12 Chapter 2.1 # 12

Let $A=\{n\in\mathbb{Z}\mid n \text{ is a multiple of } 4\}$ and $B=\left\{n\in\mathbb{Z}\mid n^2 \text{ is a multiple of } 4\right\}.$ Prove that $A\subseteq B$ and $B\nsubseteq A$.

Proof 12.

Prove.

Proof 13.

2.13 Chapter 2.1 # 13

If $A = \{n \in \mathbb{Z} \mid n+3 \text{ is odd}\}$, then A is equal to the set of all even integers.

Proof 14.

Prove.

2.14 Chapter 2.1 # 15

Let $A = \{n \in \mathbb{Z} \mid n = 4t+1 \text{ for some } t \in \mathbb{Z}\}$ and $B = \{n \in \mathbb{Z} \mid n = 4t+9 \text{ for some } t \in \mathbb{Z}\}.$

Prove that A=B.

Proof 15.

Prove.

2.15 Chapter 2.1 # 16

Let $A = \{n \in \mathbb{Z} \mid n = 3t+1 \text{ for some } t \in \mathbb{Z}\}$ and $B = \{n \in \mathbb{Z} \mid n = 3t+2 \text{ for some } t \in \mathbb{Z}\}.$

Prove that A and B have no elements in common.

Proof 16.

Prove.

2.16 Chapter 2.3 # 8

Let $A_i = (-i,i) = \{x \in \mathbb{R} \mid -i < x < i\}$. Prove that $\bigcup_{i=1}^{\infty} (-i,i) = \mathbb{R}$ and $\bigcap_{i=1}^{\infty} (-i,i) = (-1,1)$.

Proof 17.

Prove.

Proof 18.

Let $A_i=\{1,2,3,\cdots,i\}$ for $i\in\mathbb{Z}^+$. Compute $\bigcup A_i$ and $\bigcap A_i$. Prove your answer.

Claim.
$$\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+.$$

Proof 19.

Prove.

Claim.
$$\bigcap_{i=1}^{\infty} A_i = \{1\}.$$

Proof 20.

Prove.

Let $A_i = [i, i+1) = \{x \in \mathbb{R} \mid i \leq x < i+1\}$ for $i \in \mathbb{Z}^+$. Compute $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$. Prove your answer. answer.

Claim.
$$\bigcup_{i=1}^{\infty} A_i = \{x \in \mathbb{R} \mid x \geq 1\}.$$

Proof 21.

Prove.

Claim.
$$\bigcap_{i=1}^{\infty} A_i = \varnothing.$$

Proof 22.

Prove.

 $\text{Let } A_i \ = \ \left(\frac{1}{i},i\right] \ = \ \left\{x \in \mathbb{R} \mid \frac{1}{i} < x \leq i\right\} \ \text{for } i \ \geq \ 2. \quad \text{Compute } \bigcup_{i=1}^{\infty} A_i \ \text{and } \bigcap_{i=1}^{\infty} A_i. \ \text{Prove your } i \in \mathbb{R}$ answer.

Claim.
$$\bigcup_{i=1}^{\infty} A_i = (0, \infty).$$

Proof 23.

Claim.
$$\bigcap_{i=1}^{\infty} A_i = \left(rac{1}{2}, 2
ight]$$
 . Proof 24.

Prove.

$$2.20 \quad \textit{Chapter 2.3 \# 13}$$
 Let $A_i = \left[i, 1 + \frac{1}{i}\right]$ for $i \in \mathbb{Z}^+$. Compute $\bigcup_{i=1}^\infty A_i$ and $\bigcap_{i=1}^\infty A_i$. Prove your answer.

Claim.
$$\bigcup_{i=1}^{\infty} A_i = [1, 2].$$

Proof 25.

Prove.

Claim.
$$\bigcap_{i=1}^{\infty} A_i = \{1\}.$$

Proof 26.

Prove.

2.21 Chapter 2.3
$$\#$$
 14 Let $A_i = \left(i, 1 + \frac{1}{i}\right)$ for $i \in \mathbb{Z}^+$. Compute $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$. Prove your answer.

Claim.
$$\bigcup_{i=1}^{\infty} A_i = (1,2)$$
, and $\bigcap_{i=1}^{\infty} A_i = \emptyset$.

Proof 27.

Similar proofs as done in the previous exercise.

For sets
$$A,B,C,D$$
, prove that $(A\times B)\cap (C\times D)=(A\cap C)\times (B\cap D).$

Proof 28.

2.23 Exam 2 Review 3

Given the indexed sets, compute the unions and intersections. Give full and careful proofs of each: $A_i = [i-1,i]$ for $i=1,\cdots,n$. Compute $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$.

Claim.
$$\bigcap_{i=1}^{n} A_i = \begin{cases} A_1, & n=1 \\ A_1 \cap A_2 = \{1\}, & n=2 \\ \varnothing, & n \geq 3 \end{cases}$$

Proof 29.

Prove.

Claim.
$$\bigcup_{i=1}^{n} A_i = [0, n].$$
Proof 30.

2.24 Exam 2 Review 4

Here's a mathematical statement:

(s): for all sets A and B, $A \subseteq B$ implies that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

State the converse (s_1) of (s), the contrapositive (s_2) of (s), the negation $(\neg s)$ of (s). Which of the statements (s), (s_1) , (s_2) , $(\neg s)$ are true?

Claim. (s) is true.

Proof 31.

Prove.

Claim. (s_1) is true.

Proof 32.

Prove.

Claim. (s_2) is true.

Proof 33.

Claim. $(\neg s)$ is false.

Proof 34.

Prove.

2.25 Exam 2 Review 5

For all sets A and B, if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B.

Proof 35.

Prove.

3 Integers

3.1 Handout Chapter 5.1-5.2-Axioms of Integers

Claim: Let $a,b\in\mathbb{Z}.$ Then (-a)(-b)=ab.

Proof 1.

Prove.

3.2 Chapter 5.1 # 1-a

-(-a)=a for all $a\in\mathbb{Z}$.

Proof 2.

Prove.

3.3 Chapter 5.1 # 1-c

a(b-c)=ab-ac for all $a,b,c\in\mathbb{Z}$.

Proof 3.

3.4 Chapter 5.1 # 2

Let $a, b \in \mathbb{Z}$. Prove that -(a+b) = -a - b.

Proof 4.

Prove.

3.5 Chapter 5.1 # 3

Let $a, b \in \mathbb{Z}$. Suppose that a < b. Prove that (-a) > (-b).

Proof 5.

Prove.

3.6 Exam 2 Review 1

State the Well Ordering Principle for \mathbb{N} .

Claim. Prove.

3.7 Exam 2 Review 6-a

Every non-empty subset of the rational numbers $\mathbb Q$ contains a minimum element.

Counterexample. Prove.

Counterexample. Prove

Proof 6.