Tuesday Reading Assessment: Unit 1, Ohm's Law and Batteries, DC Circuits and Power

Prof. Jordan C. Hanson

February 13, 2024

1 Memory Bank

- $C_{\text{tot}} = C_1 + C_2 + \dots$ Capacitors in parallel.
- $U = \frac{1}{2}CV^2$... Stored energy in a capacitor.
- $P = \Delta U/\Delta t$... Power is the consumption or change in stored energy versus time.
- y(x) = mx + b ... Linear function with slope m, and y-intercept b
- $m = \Delta y/\Delta x$... Formula for slope.
- V = iR ... Ohm's Law, with V for voltage, i for current, and R for resistance.
- $R_{\text{tot}} = R_1 + R_2 + \dots$ Resistors in series.

2 Power and Capacitance

1. Suppose a $1 \mu F$ capacitor is fully charged with 5 Volts. (a) How much energy is stored? (b) If the energy is released in 25 ms, what is the power delivered, in mW? (c) If a bank of 10 such capacitors were charged *in parallel*, what power would be delivered?

3 Ohm's Law: Calculating Slope from Data

1. Suppose you encounter the data in Tab. 1. If you treat the voltage as the y-variable, and current as the x-variable, what is the slope of the data? What are the units of the slope?

Current (mA)	Volts (V)
5	1
10	2
15	3
20	4
25	5
30	6

Table 1: A measurement of current through a resistor, given a voltage dropped across the resistor.

2. If two resistors with the resistance implied by the previous exercise are connected *in series*, what is the total resistance?