Metode Numerik

Pertemuan 2

Agenda Pertemuan 2

Persamaan Tidak Linier 2 Tabulasi

3 Bisection

4 Regula Falsi

Persamaan Tidak Linier

Metode Tabulasi

Metode Tabulasi

Metode penyelesaian persamaan non linier, persamaan transedental dengan cara membuat tabel-tabel persamaan (fungsi) non linier di sekitar titik penyelesaiannya.

Kondisi Awal Fungsi f(x) = 0

- 1. Langkah Pertama Menentukan dua titik awal fungsi sehingga $f(x_1) \cdot f(x_2) < 0$
- Langkah Kedua
 Membuat tabel fungsi f(x) di sekitar x₁ dan x₂
- 3. Langkah Ketiga Membuat tabel fungsi f(x) di sekitar dua titik yang membuat nilai f(x,) dan f(x,) yang berubah tanda
- 4. Langkah Keempat Ulangi langkah 3 sampai diperoleh galat yang relatif kecil.

Contoh Metode Tabulasi

Cari satu nilai x pada $f(x)=x^3 - 7x + 1$, dimana x berada diantara 0.1 dan 0.9. sebanyak 2 iterasi.

Langkah penyelesaian

Buat tabel nilai f(x) dari 0.1 sampai 0.9 dan hitung setiap nilai sesuai fungsi , semisal dengan $\Delta x = 0,1$:

х	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
f(x)	0,301	-0,392	-1,073	-1,736	-2,375	-2,984	-3,557	-4,088	-4,571

Hitung nilai f(a) * f(b) < 0 ada di x=0,1 dan x=0,2.

Buat tabel baru dengan $\Delta x = (0,2-0,1)/10 = 0,01$, dan hitung setiap nilai sesuai fungsi , dengan $\Delta x = 0,01$:

х	0,11	0,12	0,13		0,14	0,1	5	0,16	0,17	0,18	0,19
f(x	0,231331	0,161728	0,092197	7	,022744	-0,04667	5	-0,115904	-0,185087	-0,254168	-0,323141

Hitung nilai $f(x_1)*f(x_2)<0$ ada di x=0,14 dan x2=0,15

Metode Bisection

Metode Bisection

Metode interval bagi-dua atau disebut juga metode interval tengah adalah salah satu cara yang sering digunakan untuk mencari suatu akar.

Sekarang kita lihat bahwa c adalah pertengahan antara **a** dan **b** , yaitu

c = 1/2(a+b), dan menghasilkan f(c).

Metode Bisection

Kondisi awal

Terdapat fungsi f(x) dengan interval tebakan tertentu, yakni [x1, x2] dan lakukan iterasi sampai $|\mathbf{b} - \mathbf{a}| < \epsilon$

Iterasi 1

- Langkah Pertama Hitung $f(x1) \cdot f(x2)$. Jika hasilnya minus (<0), hitung nilai c, dan juga f(c) C = (a+b)/2
- Langkah Kedua
 Lakukan pengujian selang

f(a).f(c) > 0, akar berada pada [c,b] f(a).f(c) = 0, akar berada pada [c] f(a).f(c) < 0, akar berada pada [a,c]

Contoh Metode Bisection

Carilah akar dari $x^3 + 4x^2 - 10 = 0$ pada interval [1, 2].

$$f(x) = x3 + 4x2 - 10$$

- Iterasi 1

$$f(1) = (1)3 + 4(1)2 - 10 = -5$$

 $f(2) = (2)3 + 4(2)2 - 10 = 14$

cari nilai c! c = (1+2)/2 = 1.5

- Iterasi 2

$$f(1) = (1)3 + 4(1)2 - 10 = -5$$

 $f(1.5) = (1.5)3 + 4(1.5)2 - 10 = 2.375$

cari nilai c ! c= (1+1.5)/2 = 1.25

lakukan uji selang

$$f(1) = (1)3 + 4(1)2 - 10 = -5$$

 $f(1.5) = (1.5)3 + 4(1.5)2 - 10 = 2.375$

Terbukti f(a).f(c) <0 , maka akar selanjutnya [a,c]

lakukan uji selang

$$f(1) = (1)3 + 4(1)2 - 10 = -5$$

 $f(1.25) = (1.25)3 + 4(1.25)2 - 10 = -1.79687$

Terbukti f(a).f(c) >0 , maka akar selanjutnya [c,b]

It's time to S-S-Scilab!


```
function hasil=<u>f</u>(x);
hasil = exp(x)+3*x;
```

endfunction

Diprogram ini toleransi galatnya berdasarkan |f(c)|

```
function bisection()
--- a=input ('masukkan nilai batas bawah =- ');
b=input('masukkan nilai batas atas = ');
... tol=input ('masukkan nilai toleransi = ');
....printf('\nfungsi-Bisection-Scilab');
---if(f(a)*f(b)>0)
printf('\nfunsi.f(a) *f(b), tidak.ada.akar.pada.>>.>> [%d.%d]',a,b);
else e=abs(\underline{f}((a+b)/2));
i=1:
printf('\niterasi\ta\t\tb\t\tc\tf(a)\t\tf(b)\t\tf(c)');
while (e>tol)
c = (a+b)/2;
fa=f(a);
   fb=f(b);
fc=f(c);
printf('\n%d\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f',i,a,b,c,fa,fb,fc);
.....if(fa*fc>0)
   a=c;
....else
b=c;
-----end-----
e=abs(fc);
....i=i+1;
----end
printf('\n\nJadi hampiran akarnya adalah %.6f', c);
---end
endfunction
```

	<u></u>			\setminus
		\mathcal{V}	\triangleright	\bigvee

-1-> bisection

masukkan nilai batas bawah = -1

masukkan nilai batas atas = 0

masukkan nilai toleransi = 0.0001

fungsi Bisection Scilab

iterasi	a	b	c	f(a)	f(b)	f(c)
1	-1.000000	0.000000	-0.500000	-2.632121	1.000000	-0.893469
2	-0.500000	0.000000	-0.250000	-0.893469	1.000000	0.028801
3	-0.500000	-0.250000	-0.375000	-0.893469	0.028801	-0.437711
4	-0.375000	-0.250000	-0.312500	-0.437711	0.028801	-0.205884
5	-0.312500	-0.250000	-0.281250	-0.205884	0.028801	-0.088910
6	-0.281250	-0.250000	-0.265625	-0.088910	0.028801	-0.030148
7	-0.265625	-0.250000	-0.257813	-0.030148	0.028801	-0.000697
В	-0.257813	-0.250000	-0.253906	-0.000697	0.028801	0.014046
9	-0.257813	-0.253906	-0.255859	-0.000697	0.014046	0.006673
10	-0.257813	-0.255859	-0.256836	-0.000697	0.006673	0.002987
11	-0.257813	-0.256836	-0.257324	-0.000697	0.002987	0.001145
12	-0.257813	-0.257324	-0.257568	-0.000697	0.001145	0.000224
13	-0.257813	-0.257568	-0.257690	-0.000697	0.000224	-0.000237
14	-0.257690	-0.257568	-0.257629	-0.000237	0.000224	-0.000007

Jadi hampiran akarnya adalah -0.257629

Solusi akar (atau akar-akar) dengan menggunakan Metode Regula Falsi merupakan modifikasi dari Metode Bisection dengan cara memperhitungkan 'kesebangunan'.

Kondisi awal

Terdapat fungsi f(x) dengan interval tebakan tertentu, yakni [x1, x2]

Iterasi sampai |b - a| < E

Iterasi 1

Langkah PertamaHitung

$$c = b - \frac{f(b)(b-a)}{f(b)-f(a)}$$

Langkah Kedua
 Lakukan pengujian selang

$$f(a).f(c) > 0$$
, akar berada pada [c,b]
 $f(a).f(c) = 0$, akar berada pada [c]
 $f(a).f(c) < 0$, akar berada pada [a,c]

Tentukan akar dari $4x^3-15x^2+17x-6=0$

Iterasi 1 [-1, 3]

cari nilai yang f(a).f(b) <0

$$f(-1) = 4(-1)^3 - 15(-1)^2 + 17(-1) - 6 = -42$$

 $f(3) = 4(3)^3 - 15(3)^2 + 17(3) - 6 = 18$

Lakukan pencarian nilai c

$$C = 3 - \frac{(18)[3 - (-1)]}{18 - (-42)} = 1.8$$

Hitung f(c)

$$f(1.8) = 4(1.8)^3 - 15(1.8)^2 + 17(1.8) - 6 = -0.672$$

lakukan uji selang

$$f(-1) = 4(-1)^3 - 15(-1)^2 + 17(-1) - 6 = -42$$
 $f(-1) = 4(-1)^3 - 15(-1)^2 + 17(-1) - 6 = -42$ $f(3) = 4(3)^3 - 15(3)^2 + 17(3) - 6 = 18$ $f(1.8) = 4(1.8)^3 - 15(1.8)^2 + 17(1.8) - 6 = -0.672$

Terbukti f(a).f(c) > 0, maka akar selanjutnya [c,b]

Tentukan akar dari $4x^3-15x^2 + 17x-6 = 0$

Iterasi 2 [1.8 , 3]

cari nilai yang f(a).f(b) <0

$$f(1.8) = 4(1.8)^3 - 15(1.8)^2 + 17(1.8) - 6 = -0.672 \qquad f(1.8) = 4(1.8)^3 - 15(1.8)^2 + 17(1.8) - 6 = -0.672$$

$$f(3) = 4(3)^3 - 15(3)^2 + 17(3) - 6 = 18$$

Lakukan pencarian nilai c

$$C = 3 - \frac{(18)[3 - 1.8]}{18 - (-0.672)} = 1.84319$$

Hitung f(c)

$$f(1.84319) = 4(1.84319)^3 - 15(1.84319)^2 + 17(1.84319) - 6 = -0.57817$$

lakukan uji selang

$$f(1.8) = 4(1.8)^3 - 15(1.8)^2 + 17(1.8) - 6 = -0.672$$

$$f(1.84319) = 4(1.84319)^3 - 15(1.84319)^2 + 17(1.84319) - 6 = -0.57817$$

Terbukti f(a).f(c) > 0, maka akar selanjutnya [c,b]

Tugas

Kerjakan secara manual soal persamaan di bawah dengan metode **Regula Falsi** sampai iterasi ke-3

$$f(x) = -2x^3 + 7x^2 - 9x + 5$$

$$a = 0, b = 3$$

(boleh tulis tangan / dengan equation di komputer)

Teknis Pengumpulan

- Cara manual dikerjakan di kertas hvs/folio dan di foto, lalu gabungkan ke dalam bentuk word dan di-export menjadi pdf.
- Beri nama file dengan format Tugas2_NPM.pdf dan kumpulkan di Google Classroom
- Deadline pengumpulan sebelum hari praktikum selanjutnya Kelas A: Selasa 20 September 2022 pukul 23.59 Kelas B: Rabu 21 September 2022 pukul 23.59

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution

