Two hours

THE UNIVERSITY OF MANCHESTER

TOPOLOGY

 $21~\mathrm{May}~2019$

9:45-11:45

Answer **ALL** SIX questions

University approved calculators may be used.

© The University of Manchester, 2019

1 of 3 P.T.O.

1.

- (a) Define what is meant by a topology on a set X.
- **(b)** Define what is meant by the *usual* topology on a subset $X \subset \mathbb{R}^n$.
- (c) Define what is meant by saying that a function $f: X \to Y$ between topological spaces is continuous. Define what is meant by saying that f is a homeomorphism.
- (d) Consider the set $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Show that τ defines a topology on X. Find all continuous maps from $X \to \{1, 2\}$ with the usual topology on $\{1, 2\}$.

[15 marks]

2.

- (a) Define what is meant by saying that a topological space X is path-connected.
- (b) What is meant by saying that path-connectedness is a topological property?
- (c) Define what is meant by the set $\pi_0(X)$ of path-components of a topological space X.
- (d) Prove that a continuous map of topological spaces $f: X \to Y$ induces a map $f_*: \pi_0(X) \to \pi_0(Y)$ between the sets of path-components, taking care to prove that your function is well-defined. Prove that if f is a homeomorphism then f_* is a bijection.
- (e) Use (d) to show that path-connectedness is a topological property.
- (f) Consider the topological space (X, τ) from Question 1. (d), what are the path-components of this space? Justify your answer.

[15 marks]

3.

- (a) Suppose that $q: X \to Y$ is a surjection from a topological space X to a set Y. Define the quotient topology on Y determined by q. State the universal property of the quotient topology.
- (b) Suppose that $f: X \to Z$ is a continuous surjection from a compact topological space X to a Hausdorff topological space Z. Define an equivalence relation \sim on X so that f induces a bijection $F: X/\sim \to Z$ from the identification space X/\sim of this equivalence relation to Z. Prove that F is a homeomorphism. [State clearly any general results which you use.]
- (c) Prove that the quotient space $(S^1 \times [0,1])/(S^1 \times \{1\})$ is homeomorphic to the closed unit disc D^2 (where S^1 and D^2 have the usual topology).

[15 marks]

2 of 3 P.T.O.

4.

- (a) Define what is meant by saying that a topological space is *Hausdorff*.
- (b) Suppose that X and Y are topological spaces. Define the product topology on the Cartesian product $X \times Y$. [It is not necessary to prove that this is a topology.]
- (c) Consider the Sierpinski topology $\tau = \{\emptyset, \{a\}, \{a, b\}\}$ on $X = \{a, b\}$. Write down the product topology on $X \times X$.
- (d) Prove that if X and Y are Hausdorff spaces, then the product space $X \times Y$ is Hausdorff, as well.
- (e) Prove that, if a topological space X is Hausdorff, then all singleton subsets $\{x\}$ of X (where $x \in X$) are closed. Give an example to show that the converse of this statement is false; that is, if a topological space has all singleton subsets closed, it is not necessarily Hausdorff.

[15 marks]

5.

- (a) Define what is meant by a *compact subset* of a topological space.
- (b) Prove by using only the definition of compactness, that $\{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$ is not compact.
- (c) Prove that every compact subset of a Hausdorff topological space is closed.
- (d) Give an example to show that the Hausdorff condition in (c) cannot be omitted.

[15 marks]

6.

- (a) Suppose that X_1 is a subspace of a topological space X. Define what is meant by saying that X_1 is a retract of X.
- (b) Show that $S^1 = \{x \in \mathbb{R}^2 \mid |x| = 1\}$ is a retract of the punctured plane $\mathbb{R} \setminus \{0\}$.
- Explain how a continuous function of topological spaces $f: X \to Y$ induces a homomorphism of fundamental groups $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ for $x_0 \in X$. You should indicate why f_* is a well-defined homomorphism.
- (d) Use the functorial properties of the fundamental group to prove that, if X_1 is a retract of X, then, for any $x_0 \in X_1$, the homomorphism induced by the inclusion map

$$i_* \colon \pi_1(X_1, x_0) \to \pi_1(X, x_0)$$

is injective.

(e) Hence prove that S^1 is not a retract of the closed disc D^2 .

[You may quote any calculation of fundamental groups that you need, without proof.]

[15 marks]