Math 6417 Homework 4

Jacob Hauck

November 25, 2023

Question 1.

Define the Fourier transform operator $\mathscr{F}: L^1(\mathbf{R}) \to L^{\infty}(\mathbf{R})$ by

$$\mathscr{F}(f)(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iyx} f(x) \, \mathrm{d}x. \tag{1}$$

1.1) We note that the function $x \mapsto e^{iyx} f(x)$ is clearly integrable if f is, so the integral in (1) exists for all y. We show that $\mathscr{F}(f) \in L^{\infty}(\mathbf{R})$ as claimed, and $\|\mathscr{F}f\|_{L^{\infty}} \leq \frac{1}{\sqrt{2\pi}} \|f\|_{L^{1}}$. Indeed, for $y \in \mathbf{R}$,

$$|\mathscr{F}(f)(y)| = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} e^{iyx} f(x) \, \mathrm{d}x \right| \tag{2}$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left| e^{iyx} f(x) \right| dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| dx = \frac{1}{\sqrt{2\pi}} \|f\|_{L^{1}}. \tag{3}$$

Therefore, $\|\mathscr{F}f\|_{L^{\infty}} \leq \frac{1}{\sqrt{2\pi}} \|f\|_{L^{1}}$.

1.2) Suppose that $f \in C^2(\mathbf{R})$, and $f, f', f'' \in L^1(\mathbf{R})$, and $f(x), f'(x), f''(x) \to 0$ as $x \to \pm \infty$. Then there exists a constant C such that $|y^2\mathscr{F}(f)(y)| \leq C$ for all $y \in \mathbf{R}$. Furthermore, $\mathscr{F}(f) \in L^1(\mathbf{R})$.

Proof. Since $f'' \in L^1(\mathbf{R})$, we can take its Fourier transform, which yields

$$\mathscr{F}(f'')(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iyx} f''(x) \, \mathrm{d}x. \tag{4}$$

We can integrate by parts because $f', f \in L^1(\mathbf{R})$ and are continuous, and $f(x), f'(x) \to 0$ as $x \to \pm \infty$. This gives

$$\mathscr{F}(f'')(y) = \frac{1}{\sqrt{2\pi}} \left[f'(x)e^{iyx} \Big|_{-\infty}^{\infty} - iy \int_{-\infty}^{\infty} e^{iyx} f'(x) \, \mathrm{d}x \right]$$
 (5)

$$= \frac{iy}{\sqrt{2\pi}} \left[-f(x)e^{iyx} \Big|_{-\infty}^{\infty} + iy \int_{-\infty}^{\infty} e^{iyx} f(x) \, \mathrm{d}x \right]$$
 (6)

$$= -y^2 \mathscr{F}(f)(y). \tag{7}$$

By the reasoning in 1.1), it follows that

$$|y^2 \mathscr{F}(f)(y)| = |\mathscr{F}(f'')(y)| \le \frac{1}{\sqrt{2\pi}} \|f''\|_{L^1}$$
 (8)

for all $y \in \mathbf{R}$

Thus, if $C = \frac{1}{\sqrt{2\pi}} \|f''\|_{L^1}$, then $|\mathscr{F}(f)(y)| \leq \frac{C}{y^2}$ for all $y \in \mathbf{R}$. On the other hand, $\mathscr{F}(f) \in L^{\infty}(\mathbf{R})$ by part 1.1), so $\mathscr{F}(f)$ is dominated by the integrable function

$$\phi(y) = \begin{cases} \|\mathscr{F}(f)\|_{L^{\infty}} & y \in [-1, 1], \\ \frac{C}{y^2} & \text{otherwise.} \end{cases}$$
 (9)

By the integral comparison test, $\mathscr{F}(f) \in L^1(\mathbf{R})$.

1.3) Formally, $\mathscr{F}^{2}(f)(y) = f(-y)$.

Proof. Let $\delta_{x_0} = \delta(x - x_0)$, where δ is the Dirac delta function. Then, formally,

$$\mathscr{F}(\delta_{x_0})(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iyx} \delta(x - x_0) \, \mathrm{d}x = \frac{e^{iyx_0}}{\sqrt{2\pi}}.$$
 (10)

Next, we note that if $f \in C^1 \cap L^1(\mathbf{R})$, and $f' \in L^1(\mathbf{R})$, and $f(x) \to 0$ as $x \to \pm \infty$, then we can use integration by parts to show that

$$\mathscr{F}(f')(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iyx} f'(x) \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \left[e^{iyx} f(x) \Big|_{-\infty}^{\infty} - iy \int_{-\infty}^{\infty} e^{iyx} f(x) \, \mathrm{d}x \right]$$
(11)

$$= -iy\mathcal{F}(f)(y). \tag{12}$$

On the other hand, let $f \in L^1(\mathbf{R})$, and define g(x) = ixf(x). If $g \in L^1(\mathbf{R})$ as well, then

$$\frac{\mathrm{d}}{\mathrm{d}y}\mathscr{F}(f)(y) = \frac{\mathrm{d}}{\mathrm{d}y} \int_{-\infty}^{\infty} e^{iyx} f(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \frac{\partial}{\partial y} \left[e^{iyx} f(x) \right] \, \mathrm{d}x \tag{13}$$

$$= \int_{-\infty}^{\infty} e^{iyx} ix f(x) \, \mathrm{d}x = \mathscr{F}(g)(y). \tag{14}$$

If we take $f(x) = e^{-ax^2}$, then f satisfies the above assumptions. Since f'(x) = -2axf(x),

$$2ai\frac{\mathrm{d}}{\mathrm{d}y}\mathscr{F}(f)(y) = 2ai\mathscr{F}(i(\cdot)f(\cdot))(y) = \mathscr{F}(-2a(\cdot)f(\cdot))(y) = \mathscr{F}(f')(y) = -iy\mathscr{F}(f)(y). \tag{15}$$

Hence, $\mathscr{F}(f)(y)$ is the unique solution of the IVP

$$u' = -\frac{1}{2a}u, \qquad u(0) = \mathscr{F}(f)(0).$$
 (16)

Since

$$\mathscr{F}(f)(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ax^2} dx = \frac{1}{\sqrt{2a}},$$
 (17)

it follows that

$$\mathscr{F}(f)(y) = \frac{1}{\sqrt{2a}} e^{-\frac{y^2}{4a}}.$$
(18)

Thus, formally, if $\phi_a(x) = e^{-ax^2}$, then

$$\mathscr{F}(1)(y) = \lim_{a \to 0} \mathscr{F}(\phi_a)(y) = \lim_{a \to 0} \frac{1}{\sqrt{2a}} e^{-\frac{y^2}{4a}}.$$
 (19)

Note that for an integrable function g,

$$\int_{-\infty}^{\infty} \phi_a(y)g(y) \, dy = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2a}} e^{-\frac{y^2}{4a}} \, dy = \frac{1}{\sqrt{\pi}},$$
(20)

and $\lim_{a\to 0} \phi(x) = 0$ if $x \neq 0$, we can formally interpret $\lim_{a\to 0} \phi_a$ as the Dirac delta function.