Mapping Reductions

Announcements

- Casual CS Dinner for Women Studying Computer Science: Thursday, March 7 at 6PM in Gates 219!
- RSVP through the email link sent out earlier today.

Announcements

- All Problem Set 6's are graded, will be returned at end of lecture.
- Problem Set 7 due right now, or due at Thursday at 12:50PM with a late day.
 - Please submit no later than 12:50PM; we're hoping to get solutions posted then. This is a hard deadline.
- Problem Set 8 out, due next Monday, March 11 at 12:50PM.
 - Explore the limits of computation!

Recap from Last Time

The Limits of Computability

A Repeating Pattern

$L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \epsilon \}$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \varepsilon \rangle$.
- Run R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts $\langle M, \varepsilon \rangle$.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects $\langle M, \varepsilon \rangle$."

From $\overline{\mathrm{A}}_{\scriptscriptstyle\mathrm{TM}}$ to $L_{\scriptscriptstyle\mathrm{D}}$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M, \langle M \rangle \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M, \langle M \rangle \rangle$."

From HALT to A_{TM}

H = "On input $\langle M, w \rangle$:

- Build M into M' so M' loops when M rejects.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

The General Pattern

Machine H

The General Pattern

Machine H

H = "On input w:

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Reductions

• Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

Reductions

• Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

Reductions

- Intuitively, problem *A* reduces to problem *B* iff a solver for *B* can be used to solve problem *A*.
- Reductions can be used to show certain problems are "solvable:"

If A reduces to B and B is "solvable," then A is "solvable."

• Reductions can be used to show certain problems are "unsolvable:"

If A reduces to B and A is "unsolvable," then B is "unsolvable."

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

$$\Sigma_2^*$$

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \notin A$ maps to some $f(w) \notin B$.
- *f* does not have to be injective or surjective.

Computable Functions

- Not all mathematical functions can be computed by Turing machines.
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **computable function** if there is some TM M with the following behavior:

"On input w:

Compute f(w) and write it on the tape.

Move the tape head to the start of f(w).

Halt."

Mapping Reductions

- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a mapping reduction from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.

$w \in A \quad \text{iff} \quad f(w) \in B$

Machine H

H = "On input w:

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Mapping Reducibility

- If there is a mapping reduction from language A to language B, we say that language A is mapping reducible to language B.
- Notation: $A \leq_{\mathbf{M}} B$ iff language A is mapping reducible to language B.
- Note that we reduce *languages*, not *machines*.
- Interesting exercise: Show \leq_{M} is reflexive and transitive, but not antisymmetric.

Machine H

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

Machine H

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

Machine H

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.

- Theorem: If $B \in \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R}$.
- Theorem: If $B \in \mathbf{RE}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{RE}$.
- Theorem: If $B \in \text{co-RE}$ and $A \leq_{\text{M}} B$, then $A \in \text{co-RE}$.
- Intuitively: $A \leq_{\mathrm{M}} B$ means "A is not harder than B."

- Theorem: If $A \notin \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{R}$.
- Theorem: If $A \notin \mathbf{RE}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{RE}$.
- Theorem: If $A \notin \text{co-RE}$ and $A \leq_{\text{M}} B$, then $B \notin \text{co-RE}$.
- Intuitively: $A \leq_{\mathrm{M}} B$ means "B is at at least as hard as A."

If this one is "easy" (R, RE, co-RE)... $A \leq_{\scriptscriptstyle{\mathsf{M}}} B$

"easy" (R, RE, co-RE) too.

If this one is "hard" (not R, not RE, or not co-RE)...

$$A \leq_{\mathrm{M}} B$$

... then this one is "hard" (not R, not RE, or not co-RE) too.

Using Mapping Reductions

Revisiting our Proofs

Consider the language

$$L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } \epsilon \}$$

- We have already proven that this language is
 RE by building a TM for it.
- Let's repeat this proof using mapping reductions.
- Specifically, we will prove

$$L \leq_{\mathrm{M}} A_{\mathrm{TM}}$$

$L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } \epsilon \}$

• To prove $L \leq_{\mathbf{M}} \mathbf{A}_{\mathbf{TM}}$, we will need to find a computable function f such that

$$\langle M \rangle \in L \quad \text{iff} \quad f(\langle M \rangle) \in A_{\text{TM}}$$

• Since A_{TM} is a language of TM/string pairs, let's assume $f(\langle M \rangle) = \langle N, w \rangle$ for some TM N and string w (which we'll pick later):

$$\langle M \rangle \in L \quad \text{iff} \quad \langle N, w \rangle \in A_{\text{TM}}$$

• Substituting definitions:

M accepts ϵ iff N accepts w

• Choose N = M, $w = \varepsilon$. So $f(\langle M \rangle) = \langle M, \varepsilon \rangle$.

One Interpretation of the Reduction

Machine H

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

Machine *H*

H = "On input $\langle M \rangle$:

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

H accepts $\langle M \rangle$

H = "On input $\langle M \rangle$:

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

H accepts $\langle M \rangle$

iff

R accepts $\langle M, \varepsilon \rangle$

H = "On input $\langle M \rangle$:

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

H accepts $\langle M \rangle$ iff R accepts $\langle M, \epsilon \rangle$ iff M accepts ϵ

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

```
H 	ext{ accepts } \langle M \rangle
	ext{iff}
R 	ext{ accepts } \langle M, \, \epsilon \rangle
	ext{iff}
M 	ext{ accepts } \epsilon
	ext{iff}
\langle M \rangle \in L
```


- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

 $L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \epsilon \}$ Theorem: $L \in \mathbf{RE}$.

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} A_{\mathrm{TM}}$.

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} A_{\mathrm{TM}}$. Since $A_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} A_{\mathrm{TM}}$. Since $A_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$.

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} \mathbf{A}_{\mathrm{TM}}$. Since $\mathbf{A}_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. We state without proof that this function is computable and claim that f is a mapping reduction from L to A_{TM} .

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} A_{\mathrm{TM}}$. Since $A_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. We state without proof that this function is computable and claim that f is a mapping reduction from L to A_{TM} . To see this, note that $f(\langle M \rangle) = \langle M, \varepsilon \rangle \in A_{TM}$ iff M accepts ε

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} A_{\mathrm{TM}}$. Since $A_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. We state without proof that this function is computable and claim that f is a mapping reduction from L to A_{TM} . To see this, note that $f(\langle M \rangle) = \langle M, \varepsilon \rangle \in A_{TM}$ iff M accepts ε iff $\langle M \rangle \in L$

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} A_{\mathrm{TM}}$. Since $A_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. We state without proof that this function is computable and claim that f is a mapping reduction from L to A_{TM} . To see this, note that $f(\langle M \rangle) = \langle M, \varepsilon \rangle \in A_{TM}$ iff M accepts ε iff $\langle M \rangle \in L$, so $\langle M \rangle \in L$ iff $f(\langle M \rangle) \in A_{TM}$.

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} A_{\mathrm{TM}}$. Since $A_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. We state without proof that this function is computable and claim that f is a mapping reduction from L to A_{TM} . To see this, note that $f(\langle M \rangle) = \langle M, \varepsilon \rangle \in A_{TM}$ iff M accepts ε iff $\langle M \rangle \in L$, so $\langle M \rangle \in L$ iff $f(\langle M \rangle) \in A_{TM}$.

Since f is a mapping reduction from L to A_{TM} , we have $L \leq_M A_{TM}$, and thus $L \in \mathbf{RE}$.

Theorem: $L \in \mathbf{RE}$.

Proof: We will prove that $L \leq_{\mathrm{M}} \mathbf{A}_{\mathrm{TM}}$. Since $\mathbf{A}_{\mathrm{TM}} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. We state without proof that this function is computable and claim that f is a mapping reduction from L to A_{TM} . To see this, note that $f(\langle M \rangle) = \langle M, \varepsilon \rangle \in A_{TM}$ iff M accepts ε iff $\langle M \rangle \in L$, so $\langle M \rangle \in L$ iff $f(\langle M \rangle) \in A_{TM}$.

Since f is a mapping reduction from L to A_{TM} , we have $L \leq_M A_{TM}$, and thus $L \in \mathbf{RE}$.

What Did We Prove?

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

What Did We Prove?

Machine *H*

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w."

Interpreting Mapping Reductions

- If $A \leq_M B$, there is a known construction to turn a TM for B into a TM for A.
- When doing proofs with mapping reductions, you do not need to show the overall construction.
- You just need to prove that
 - f is a computable function, and
 - $w \in A$ iff $f(w) \in B$.

Another Mapping Reduction

$L_{\scriptscriptstyle m D}$ and $\overline{ m A}_{\scriptscriptstyle m TM}$

• Earlier, we proved $\overline{A}_{\scriptscriptstyle{TM}} \notin \mathbf{RE}$ by proving that

If
$$\overline{\mathbf{A}}_{\text{TM}} \in \mathbf{RE}$$
, then $L_{\mathbf{D}} \in \mathbf{RE}$.

• The proof constructed this TM, assuming R was a recognizer for $\overline{\mathbf{A}}_{\scriptscriptstyle{\mathrm{TM}}}$.

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."
- Let's do another proof using mapping reductions.

$$L_{\scriptscriptstyle \mathrm{D}} \leq_{\scriptscriptstyle \mathrm{M}} \overline{\mathrm{A}}_{\scriptscriptstyle \mathrm{TM}}$$

• To prove that $\overline{A}_{TM} \notin \mathbf{RE}$, we will prove

$$L_{\rm D} \leq_{\rm M} \overline{\mathbf{A}}_{\rm TM}$$

- By our earlier theorem, since $L_{\rm D} \notin \mathbf{RE}$, we have that $\overline{\mathbf{A}}_{\rm TM} \notin \mathbf{RE}$.
- Intuitively: \overline{A}_{TM} is "at least as hard" as L_D , and since $L_D \notin \mathbf{RE}$, this means $\overline{A}_{TM} \notin \mathbf{RE}$.

$$L_{\scriptscriptstyle \mathrm{D}} \leq_{\scriptscriptstyle \mathrm{M}} \overline{\mathrm{A}}_{\scriptscriptstyle \mathrm{TM}}$$

• Goal: Find a computable function *f* such that

$$\langle M \rangle \in L_{\rm D} \quad \text{iff} \quad f(\langle M \rangle) \in \overline{\mathcal{A}}_{\rm TM}$$

• Simplifying this using the definition of $L_{\scriptscriptstyle \mathrm{D}}$

$$M$$
 does not accept $\langle M \rangle$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$

• Let's assume that $f(\langle M \rangle)$ has the form $\langle N, w \rangle$ for some TM N and string w. This means that

M does not accept $\langle M \rangle$ iff $\langle N, w \rangle \in \overline{A}_{TM}$ M does not accept $\langle M \rangle$ iff N does not accept w

- If we can choose w and N such that the above is true, we will have our reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.
- Choose N = M and $w = \langle M \rangle$.

Machine H

- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w."

H = "On input $\langle M \rangle$:

- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w."

H accepts $\langle M \rangle$

H = "On input $\langle M \rangle$:

- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w."

H accepts $\langle M \rangle$

iff

R accepts $\langle M, \langle M \rangle \rangle$

H = "On input $\langle M \rangle$:

- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w."

H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$

H = "On input $\langle M \rangle$:

- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w."

 $H ext{ accepts } \langle M \rangle$ $ext{iff}$ $R ext{ accepts } \langle M, \langle M \rangle \rangle$ $ext{iff}$ $M ext{ does not accept } \langle M \rangle$ $ext{iff}$ $\langle M \rangle \in L_{ ext{D}}$

- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w."

Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$. By definition of $\overline{\rm A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$. Thus $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \in L_{\rm D}$, so f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.

Since f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$, we have $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$. Since $L_{\rm D} \notin {\bf RE}$ and $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$, this means $\overline{\rm A}_{\rm TM} \notin {\bf RE}$, as required. \blacksquare

Another Example of Mapping Reductions

A More Elaborate Reduction

- Since $\overline{A}_{TM} \notin \mathbf{RE}$, there is no algorithm for determining whether a TM will not accept a given string.
- Could we check instead whether a TM *never* accepts a string?
- Consider the language

$$L_e = \{ \langle M \rangle \mid M \text{ is a TM and}$$

 $M \text{ never accepts } \}$

• How "hard" is $L_{\rm e}$? Is it **R**, **RE**, co-**RE**, or none of these?

Building an Intuition

- Before we even try to prove how "hard" this language is, we should build an intuition for its difficulty.
- $L_{\rm e}$ is *probably* not in **RE**, since if we were convinced a TM never accepted, it would be hard to find positive evidence of this.
- $L_{\rm e}$ is *probably* in co-**RE**, since if we were convinced that a TM *did* accept some string, we could exhaustively search over all strings and try to find the string it accepts.
- Best guess: $L_e \in \text{co-}\mathbf{RE} \mathbf{R}$.

$$\overline{A}_{\scriptscriptstyle TM} \leq_{\scriptscriptstyle M} L_{\scriptscriptstyle e}$$

- We will prove that $L_{\rm e} \notin \mathbf{RE}$ by showing that $\overline{A}_{\rm TM} \leq_{\rm M} L_{\rm e}$. (This also proves $L_{\rm e} \notin \mathbf{R}$).
- We want to find a function f such that

$$\langle M, w \rangle \in \overline{A}_{TM} \quad \text{iff} \quad f(\langle M, w \rangle) \in L_{e}$$

• Since L_e is a language of TM descriptions, let's assume $f(\langle M, w \rangle) = \langle N \rangle$ for some TM N. Then

$$\langle M, w \rangle \in \overline{A}_{TM} \quad \text{iff} \quad \langle N \rangle \in L_{e}$$

Expanding out definitions, we get

M doesn't accept w iff N doesn't accept any strings

• How do we pick the machine N?

The Reduction

- Find a TM N such that N does not accept any strings iff M does not accept w.
- Key idea: Build N such that running N on any input runs M on w.
- Here is one choice of *N*:

N = "On input x:

Ignore x.

Run M on w.

If M accepts w, then N accepts x.

If M rejects w, then N rejects x."

- Notice that N "amplifies" what M does on w:
 - If *M* does not accept *w*, *N* does not accept anything.
 - If *M* does accept *w*, *N* accepts everything.

N = "On input x:

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

Justifying N

- Notice that our machine N has the machine M and string w built into it!
- This is different from the machines we have constructed in the past.
- How do we justify that it's possible for some TM to construct a new TM at all?

N = "On input x:

Ignore *x*.

Run M on w.

If M accepts w, accept.

If M rejects w, reject."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run *M* on *w*.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore *x*.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

- Ignore x.
- Run M on w.
- If M accepts w, then N accepts x.
- If M rejects w, then N rejects x."

The Takeaway Point

- Turing machines can embed TMs inside of other TMs.
- TMs of the following form are legal:

H = "On input $\langle M, w \rangle$, where M is a TM:

- Construct N = "On input x:
 - Do something with x.
 - Run M on w.
 - ..."
- Do something with N."

Theorem: $\overline{A}_{TM} \leq_M L_e$.

Proof: We exhibit a mapping reduction from \overline{A}_{TM} to L_{e} .

For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle N \rangle$, where $\langle N \rangle$ is defined in terms of M and w as follows:

We state without proof that N is computable. We further claim that $\langle M, w \rangle \in \overline{A}_{\scriptscriptstyle TM}$ iff $f(\langle M, w \rangle) \in L_{\scriptscriptstyle e}$. To see this, note that $f(\langle M, w \rangle) = N \in L_{\epsilon}$ iff N does not accept any strings. We claim that N does not accept any strings iff M does not accept w. To see this, note that M does not accept w iff M loops on w or M rejects w. By construction, if M loops on w, then N loops on all strings, and if M rejects w, then N rejects all strings. Thus Ndoes not accept any strings iff M does not accept w. Finally, Mdoes not accept w iff $\langle M, w \rangle \in \overline{A}_{TM}$. Thus $\langle M, w \rangle \in \overline{A}_{TM}$ iff $f(\langle M, w \rangle) \in L_e$, so f is a mapping reduction from \overline{A}_{TM} to L_e , and so $\overline{A}_{TM} \leq_M L_e$, as required.

A Math Joke

Recitation Sections

The Limits of Computability

RE ∪ co-**RE** is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither **RE** nor co-**RE**.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?

An Extremely Hard Problem

- Recall: All regular languages are also **RE**.
- This means that some TMs accept regular languages and some TMs do not.
- Let $REGULAR_{TM}$ be the language of all TM descriptions that accept regular languages:

$$REGULAR_{TM} = \{ \langle M \rangle \mid \mathcal{L}(M) \text{ is regular } \}$$

• Is REGULAR_{TM} \in **R**? How about **RE**? How about co-**RE**?

Building an Intuition

- If you were *convinced* that a TM had a regular language, how would you mechanically verify that?
- If you were *convinced* that a TM had a nonregular language, how would you mechanically verify that?
- Both of these seem difficult, if not impossible. Chances are REGULAR $_{\rm TM}$ is neither **RE** nor co-**RE**.

REGULAR_™ ∉ **RE**

- It turns out that REGULAR $_{\text{TM}}$ is unrecognizable, meaning that there is no computer program that can confirm that another TM's language is regular!
- To do this, we'll do a reduction from $L_{\rm D}$ and prove that $L_{\rm D} \leq_{\rm M} {\rm REGULAR_{\rm TM}}$.

$$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$$

 We want to find a computable function f such that

$$\langle M \rangle \in L_{\rm D}$$
 iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$.

• We need to choose N such that $f(\langle M \rangle) = \langle N \rangle$ for some TM N. Then

```
\langle M \rangle \in L_{\rm D} iff f(\langle M \rangle) \in {\rm REGULAR_{TM}}

\langle M \rangle \in L_{\rm D} iff \langle N \rangle \in {\rm REGULAR_{TM}}

\langle M \rangle \notin \mathscr{L}(M) iff \mathscr{L}(N) is regular.
```

• Question: How do we pick N?

$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- We want to construct some N out of M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(N)$ is not regular.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(N)$ is regular.
- One option: choose two languages, one regular and one nonregular, then construct N so its language switches from regular to nonregular based on whether $\langle M \rangle \notin \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(N) = \{ 0^n 1^n \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(N) = \emptyset$

The Reduction

- We want to build *N* from *M* such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(N) = \{ 0^n 1^n \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(N) = \emptyset$
- Here is one way to do this:

```
N = "On input x:
```

If x does not have the form $0^{n}1^{n}$, reject.

Run M on $\langle M \rangle$.

If M accepts, accept x.

If *M* rejects, reject *x*."

Theorem: $L_{D} \leq_{M} REGULAR_{TM}$.

Proof: We exhibit a mapping reduction from $L_{\rm D}$ to REGULAR_{TM}. For any TM M, let $f(\langle M \rangle) = \langle N \rangle$, where N is defined in terms of M as follows:

N = "On input x:

If x does not have the form $0^n 1^n$, then N rejects x. Run M on $\langle M \rangle$.

If M accepts $\langle M \rangle$, then N accepts x. If M rejects $\langle M \rangle$, then N rejects x."

We claim f is computable and omit the details from this proof. We further claim that $\langle M \rangle \in L_{\scriptscriptstyle D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\scriptscriptstyle \text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle N \rangle \in REGULAR_{TM}$ iff $\mathcal{L}(N)$ is regular. We claim that $\mathcal{L}(N)$ is regular iff $\langle M \rangle \notin \mathcal{L}(M)$. To see this, note that if $\langle M \rangle \notin \mathcal{L}(M)$, then N never accepts any strings. Thus $\mathcal{L}(N) = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in \mathcal{L}(M)$, then N accepts all strings of the form $0^{n}1^{n}$, so we have that $\mathscr{L}(N) = \{ \mathbf{0}^{n} \mathbf{1}^{n} \mid n \in \mathbb{N} \}, \text{ which is not regular. Finally,}$ $\langle M \rangle \notin \mathcal{L}(\langle M \rangle) \text{ iff } \langle M \rangle \in L_{D}. \text{ Thus } \langle M \rangle \in L_{D} \text{ iff } f(\langle M \rangle) \in \text{REGULAR}_{TM},$ so f is a mapping reduction from $L_{\scriptscriptstyle D}$ to REGULAR_{_{TM}}. Therefore, $L_{\rm D} \leq_{\rm M} {\rm REGULAR_{\rm TM}}$.