Reg. No.		170)#151 (7) (A)		

B. Tech. DEGREE EXAMINATION, NOVEMBER 2023

Second Semester

18MAB102T - ADVANCED CALCULUS AND COMPLEX ANALYSIS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.
- Part B & Part C should be answered in answer booklet. (ii)

Time: 3 hours

Max. Marks: 100

Marks BL CO

PA	ART	- A	(20	×1	= 2	20	Marks)
	Ar	iswe	er Al	LL (Que	est	ions
1 do	ch, i	c					

- 1. Evaluation of $\iint_{\Omega} dx dy$ is
 - (A) 1 (C) 0

- (B) 2
- (D) 4
- 2. The area of an ellipse is
 - (A) πa^2

- (B) πab
- (C) $\pi a^2 b$
- (D) $\pi a^2 b^2$
- The region of integration of the integral $\int_{0}^{\infty} \int_{0}^{\infty} f(x,y) dxdy$ is
 - (A) Rectangle

(B) Square

(C) Triangle

- (D) Circle
- $\iint_{0}^{1} \iint_{0}^{2} dx dy dz$ is equal to
 - (A) 2 ·

(B) 3

(C) 6

- (D) 24
- 5. If $\phi = xyz$, then $\nabla \phi$ is
 - (A) $xy\vec{i} + yz\vec{j} + zx\vec{k}$
- (B) $zx\vec{i} + xy\vec{j} + yz\vec{k}$

(C) 0

- (D) $yz\vec{i} + zx\vec{j} + xy\vec{k}$
- 6. If ϕ and ψ are scalar functions then $\nabla \phi \times \nabla \psi$ is
 - (A) Solenoidal

- (B) Irrotational
- (C) Constant vector
- (D) Both solenoidal and irrotational
- 7. The unit vector normal to the surface $x^2 + y^2 z^2 = 1$ at (1,1,1) is

8	If \vec{u} and \vec{v} are irrotation (A) Solenoidal (C) Constant vector	(B)	Irrotational Zero vector	1	1	2
9	The Laplace transform of (A) It is uniformly constant and are			1	1	3
	exponential order (C) It is piecewise concernial order	ontinuous of (D)	It is not continuous			
10.	$L(te^t) =$			1	1	3
	(A) $\frac{1}{s^2-1}$	(B)	1			
	(A) $\frac{1}{s^2 - 1}$ (C) $\frac{1}{(s-1)^2}$	(D)	$\frac{\frac{1}{s-1}}{\frac{1}{\left(s+1\right)^2}}$			
11.	Find $\lim_{t\to\infty} f(t)$ where $f(t)$	$=1+e^{-t}+t^2$		1	1	3
	(A) 1 (C) 0	(B) (D)	2 3			
12.	$L^{-1}\left(\frac{1}{s+2}\right) =$			1	1	3
	(A) $-e^{-2t}$ (C) e^{-2t}	(B) (D)	e^{2t} $-e^{2t}$			
13.	The function $f(z) = z^2 + $	- <i>Z</i> is		1	1	4
	(A) Analytic(C) Harmonic		Not analytic Entire function			
14.	An analytic function $f(z)$ (A) Constant (C) Independent of \overline{z}	(B)	Iginary part is Dependent of \overline{z} Variable	1	1	4
15.	(A) $u_x = u_y$ and $v_x = v_y$	(B)	ons in Cartesian coordinates? $u_y = v_x$ and $v_y = u_x$	1	1	4
	(C) $u_x = v_y$ and $u_y = -v_y$	(D)	$u_x = u_y$ and $v_y = -v_x$			
16.	For the mapping $\omega = \dot{z} + \dot{z}$ (A) Rotation		mapping is Constant	1	1	4
	(C) Identity	` '	Contraction			
17.	The value of $\int_{C} \frac{dz}{z+2}$, $C: z $	z = 1 is	r 2015 in Lette Grove Cless	1	1	5
	(A) 2πi(C) 4πi	(B) (D)				
18.	The poles of csc z	A-TIT		1	1	5
	(A) 0 (C) nπ/2	(B)	nπ 1/ nπ			
Page 2 of 4	(44) (47)	(D)	1/ 11/6	29NA21	RMAR	1027

29NA218MAB102T

19.	The residue at z=0 of the functions f(z)=e ^{1/2} (A) 1 (B) 2 (C) 0 (D) -1	26133		,	
20.	What kind of singularity have the function $f(z) = \frac{1}{1 - e^z}$?		1	1	5
	(A) Essential singularity (B) Pole of order 2 (C) Simple pole (D) Removable singularity				
	PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
21.	Evaluate $\int_0^1 \int_1^2 x(x+y) dy dx$.	4	1	1	
22.	Find the values of a, b, c if $\vec{F} = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k}$ is irrotational.	4	1	2	
23.	Find $L^{-1}\left[\frac{s}{(s-4)(s+5)}\right]$.	4	1	3	
24.	Find the constants, a, b, c if $f(z) = x + ay + i(bx + cy)$ is analytic.	4	1	4	
25.	Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is $ z = 3/2$.	4	1	5	
26.	Evaluate $\int_0^{\pi/2} \int_0^{\sin\theta} r dr d\theta$.	4	1	1	
27.	Find the image of the line $x=k$ under the transformation $w=1/z$.	. 4	1	4	
	PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	СО	PO
28. a.	Evaluate by changing the order of integration $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$.	12	1	1	
b.	(OR) Find the volume of sphere $x^2 + y^2 + z^2 = a^2$ using triple integrals.	12	1	1	
29. a.	Verify Green's theorem for $\int_C (xy + y^2) dx + x^2 dy$ where C is the boundary of the area between $y=x^2$ and $y=x$.	12	1	2	
	or and and outrious you make you				

(OR)

- b. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ taken around the 12 1 2 rectangle bounded by the lines $x = \pm a$, y = 0 and y = b.
- 30. a. Find $L^{-1} \left[\frac{2s^2 6s + 5}{s^3 6s^2 + 11s 6} \right]$.

b. Solve
$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} - 8y = 0$$
, given $y(0) = 3$, $y'(0) = 6$, using Laplace transform.

- 31. a. Prove that the function $v = e^{-x} (x \cos y + y \sin y)$ is harmonic and determine 12 1 4 the corresponding analytic function f(z) = u + iv.
 - b. Find the bilinear transformation which maps z=0, z=1, $z=\infty$ into the points w=i, w=1, w=-i.
- 32. a. Evaluate $\int_C \frac{dz}{(z^2+1)(z^2-4)}$ where C is $|z| = \frac{3}{2}$.
 - b. Evaluate $\int_{0}^{2x} \frac{d\theta}{2 + \cos \theta}$ by contour integration.

* * * * *