206hw3

Qi Wang

2022/2/13

Question 1

Posterior Sampling Distribution

Posterior Predictive Distribution

Posterior Sampling Distribution

Posterior Predictive Distribution

Question 7:

Laplace Approximation

Table 1: N=10, X=1

	2.5% Quantile	97.5 Quantile
True Beta	0.0110117	0.3813148
Laplace	-0.0949521	0.2060632
Monte Carlo	0.0110943	0.3867477

Table 2: N=100, X=10

	2.5% Quantile	97.5 Quantile
True Beta	0.0525847	0.1701239
Laplace	0.0379408	0.1539784
Monte Carlo	0.0527609	0.1711261

Laplace Approximation

Table 3: N=100, X=10

	2.5% Quantile	97.5 Quantile
True Beta	0.0825627	0.1197483
Laplace	0.0810296	0.1181696
Monte Carlo	0.0824730	0.1198322

Laplace Approximation

Question 8

Warning: 'cubature' R 4.1.2

 ${
m opt} <$ - ${
m optim}({
m c}(5,5),\,{
m f})$ ${
m para} <$ - ${
m opt}{
m \$par}$

Histogram of diff

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -7.75824 0.00000 0.00000 -0.03802 0.00000 3.39968

Question 9

Marginal Distribution for Sigma^2

Marginal Posterior Distribution of Theta

Marginal Distribution for Sigma^2

Marginal Posterior Distribution of Theta

Marginal Distribution for Sigma^2

Marginal Posterior Distribution of Theta

Table 4: Ratio of Mean to SD for 4 Cases

	2.5% Quantile	97.5% Quantile
Case 1	4.789701	5.208691
Case 2	4.768147	5.227301
Case 3	4.789512	5.208661
Case 4	4.767879	5.227299