## 기초사회과학통계

고려대 대학원 행정학과 2022 여름

최정호 University of Pennsylvania chjho@upenn.edu

- 가설검정의 절차
- Z 검정: 표준정규분포
- 단일표본과 이표본

• 가설검정의 절차

- 가설검정의 절차
- Z 검정: 표준정규분 포



| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0199 | 0.0239 | 0.0279 | 0.0319 | 0.0359 |
| 0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 | 0.0714 | 0.0753 |
| 0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987 | 0.1026 | 0.1064 | 0.1103 | 0.1141 |
| 0.3 | 0.1179 | 0.1217 | 0.1255 | 0.1293 | 0.1331 | 0.1368 | 0.1406 | 0.1443 | 0.1480 | 0.1517 |
| 0.4 | 0.1554 | 0.1591 | 0.1628 | 0.1664 | 0.1700 | 0.1736 | 0.1772 | 0.1808 | 0.1844 | 0.1879 |
| 0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224 |
| 0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 | 0.2389 | 0.2422 | 0.2454 | 0.2486 | 0.2517 | 0.2549 |
| 0.7 | 0.2580 | 0.2611 | 0.2642 | 0.2673 | 0.2704 | 0.2734 | 0.2764 | 0.2794 | 0.2823 | 0.2852 |
| 0.8 | 0.2881 | 0.2910 | 0.2939 | 0.2967 | 0.2995 | 0.3023 | 0.3051 | 0.3078 | 0.3106 | 0.3133 |
| 0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 | 0.3264 | 0.3289 | 0.3315 | 0.3340 | 0.3365 | 0.3389 |
| 1.0 | 0.3413 | 0.3438 | 0.3461 | 0.3485 | 0.3508 | 0.3531 | 0.3554 | 0.3577 | 0.3599 | 0.3621 |
| 1.1 | 0.3643 | 0.3665 | 0.3686 | 0.3708 | 0.3729 | 0.3749 | 0.3770 | 0.3790 | 0.3810 | 0.3830 |
| 1.2 | 0.3849 | 0.3869 | 0.3888 | 0.3907 | 0.3925 | 0.3944 | 0.3962 | 0.3980 | 0.3997 | 0.4015 |
| 1.3 | 0.4032 | 0.4049 | 0.4066 | 0.4082 | 0.4099 | 0.4115 | 0.4131 | 0.4147 | 0.4162 | 0.4177 |
| 1.4 | 0.4192 | 0.4207 | 0.4222 | 0.4236 | 0.4251 | 0.4265 | 0.4279 | 0.4292 | 0.4306 | 0.4319 |
| 1.5 | 0.4332 | 0.4345 | 0.4357 | 0.4370 | 0.4382 | 0.4394 | 0.4406 | 0.4418 | 0.4429 | 0.4441 |
| 1.6 | 0.4452 | 0.4463 | 0.4474 | 0.4484 | 0.4495 | 0.4505 | 0.4515 | 0.4525 | 0.4535 | 0.4545 |
| 1.7 | 0.4554 | 0.4564 | 0.4573 | 0.4582 | 0.4591 | 0.4599 | 0.4608 | 0.4616 | 0.4625 | 0.4633 |
| 1.8 | 0.4641 | 0.4649 | 0.4656 | 0.4664 | 0.4671 | 0.4678 | 0.4686 | 0.4693 | 0.4699 | 0.4706 |
| 1.9 | 0.4713 | 0.4719 | 0.4726 | 0.4732 | 0.4738 | 0.4744 | 0.4750 | 0.4756 | 0.4761 | 0.4767 |
| 2.0 | 0.4772 | 0.4778 | 0.4783 | 0.4788 | 0.4793 | 0.4798 | 0.4803 | 0.4808 | 0.4812 | 0.4817 |
| 2.1 | 0.4821 | 0.4826 | 0.4830 | 0.4834 | 0.4838 | 0.4842 | 0.4846 | 0.4850 | 0.4854 | 0.4857 |
| 2.2 | 0.4861 | 0.4864 | 0.4868 | 0.4871 | 0.4875 | 0.4878 | 0.4881 | 0.4884 | 0.4887 | 0.4890 |
| 2.3 | 0.4893 | 0.4896 | 0.4898 | 0.4901 | 0.4904 | 0.4906 | 0.4909 | 0.4911 | 0.4913 | 0.4916 |
| 2.4 | 0.4918 | 0.4920 | 0.4922 | 0.4925 | 0.4927 | 0.4929 | 0.4931 | 0.4932 | 0.4934 | 0.4936 |
| 2.5 | 0.4938 | 0.4940 | 0.4941 | 0.4943 | 0.4945 | 0.4946 | 0.4948 | 0.4949 | 0.4951 | 0.4952 |
| 2.6 | 0.4953 | 0.4955 | 0.4956 | 0.4957 | 0.4959 | 0.4960 | 0.4961 | 0.4962 | 0.4963 | 0.4964 |
| 2.7 | 0.4965 | 0.4966 | 0.4967 | 0.4968 | 0.4969 | 0.4970 | 0.4971 | 0.4972 | 0.4973 | 0.4974 |
| 2.8 | 0.4974 | 0.4975 | 0.4976 | 0.4977 | 0.4977 | 0.4978 | 0.4979 | 0.4979 | 0.4980 | 0.4981 |
| 2.9 | 0.4981 | 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | 0.4986 |
| 3.0 | 0.4987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989 | 0.4989 | 0.4989 | 0.4990 | 0.4990 |
| 3.1 | 0.4990 | 0.4991 | 0.4991 | 0.4991 | 0.4992 | 0.4992 | 0.4992 | 0.4992 | 0.4993 | 0.4993 |
| 3.2 | 0.4993 | 0.4993 | 0.4994 | 0.4994 | 0.4994 | 0.4994 | 0.4994 | 0.4995 | 0.4995 | 0.4995 |
| 3.3 | 0.4995 | 0.4995 | 0.4995 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4997 |
| 3.4 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4998 |

- 가설검정의 절차
- Z 검정: 표준정규분 포
- 단일표본과 이표본

$$\frac{(\bar{X}_{1} - \bar{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

- T-분포
- 단일표본 t-검정
- 독립표본 t-검정
- 종속표본 t-검정

• T-분포



• T-분포

[표 A-2] t-분포표

$$P\{T \geq t_{(q\,;\,\nu)}\} = q$$



| -        |        |       | WIT OF |       |        |        |        |        |        | t <sub>(q;v)</sub> |  |  |  |  |  |
|----------|--------|-------|--------|-------|--------|--------|--------|--------|--------|--------------------|--|--|--|--|--|
| 자유도<br>v | 꼬리확률 q |       |        |       |        |        |        |        |        |                    |  |  |  |  |  |
|          | 0.4    | 0.25  | 0.1    | 0.05  | 0.025  | 0.01   | 0.005  | 0.0025 | 0.001  | 0.0005             |  |  |  |  |  |
| 1        | 0.325  | 1.000 | 3.078  | 6.314 | 12.706 | 31.821 | 63.657 | 127.32 | 318.31 | 636.62             |  |  |  |  |  |
| 2        | 0.289  | 0.816 | 1.886  | 2.920 | 4.303  | 6.965  | 9.925  | 14.089 | 23.326 | 31.598             |  |  |  |  |  |
| 3        | 0.277  | 0.765 | 1.638  | 2.353 | 3.182  | 4.541  | 5.841  | 7.453  | 10.213 | 12.924             |  |  |  |  |  |
| 4        | 0.271  | 0.741 | 1.533  | 2.132 | 2.776  | 3.747  | 4.604  | 5.598  | 7.173  | 8.610              |  |  |  |  |  |
| 5        | 0.267  | 0.727 | 1.476  | 2.015 | 2.571  | 3.365  | 4.032  | 4.773  | 5.893  | 6.869              |  |  |  |  |  |
| 6        | 0.265  | 0.718 | 1.440  | 1.943 | 2.447  | 3.143  | 3.707  | 4.317  | 5.208  | 5.959              |  |  |  |  |  |
| 7        | 0.263  | 0.711 | 1.415  | 1.895 | 2.365  | 2.998  | 3.499  | 4.029  | 4.785  | 5.408              |  |  |  |  |  |
| 8        | 0.262  | 0.706 | 1.397  | 1.860 | 2.306  | 2.896  | 3.355  | 3.833  | 4.501  | 5.041              |  |  |  |  |  |
| 9        | 0.261  | 0.703 | 1.383  | 1.833 | 2.262  | 2.821  | 3.250  | 3.690  | 4.297  | 4.781              |  |  |  |  |  |
| 10       | 0.260  | 0.700 | 1.372  | 1.812 | 2.228  | 2.764  | 3.169  | 3.581  | 4.144  | 4.587              |  |  |  |  |  |
| 11       | 0.260  | 0.697 | 1.363  | 1.796 | 2.201  | 2.718  | 3.106  | 3.497  | 4.025  | 4.437              |  |  |  |  |  |
| 12       | 0.259  | 0.695 | 1.356  | 1.782 | 2.179  | 2.681  | 3.055  | 3.428  | 3.930  | 4.318              |  |  |  |  |  |
| 13       | 0.259  | 0.694 | 1.350  | 1.771 | 2.160  | 2.650  | 3.012  | 3.372  | 3.852  | 4.221              |  |  |  |  |  |
| 14       | 0.258  | 0.692 | 1.345  | 1.761 | 2.145  | 2.624  | 2.977  | 3.326  | 3.787  | 4.140              |  |  |  |  |  |
| 15       | 0.258  | 0.691 | 1.341  | 1.753 | 2.131  | 2.602  | 2.947  | 3.286  | 3.733  | 4.073              |  |  |  |  |  |
| 16       | 0.258  | 0.690 | 1.337  | 1.746 | 2.120  | 2.583  | 2.921  | 3.252  | 3.686  | 4.015              |  |  |  |  |  |
| 17       | 0.257  | 0.689 | 1.333  | 1.740 | 2.110  | 2.567  | 2.898  | 3.222  | 3.646  | 3.965              |  |  |  |  |  |
| 18       | 0.257  | 0.688 | 1.330  | 1.734 | 2.101  | 2.552  | 2.878  | 3.197  | 3.610  | 3.922              |  |  |  |  |  |
| 19       | 0.257  | 0.688 | 1.328  | 1.729 | 2.093  | 2.539  | 2.861  | 3.174  | 3.579  | 3.883              |  |  |  |  |  |
| 20       | 0.257  | 0.687 | 1.325  | 1.725 | 2.086  | 2.528  | 2.845  | 3.153  | 3.552  | 3.850              |  |  |  |  |  |
| 21       | 0.257  | 0.686 | 1.323  | 1.721 | 2.080  | 2.518  | 2.831  | 3.135  | 3.527  | 3.819              |  |  |  |  |  |
| 22       | 0.256  | 0.686 | 1.321  | 1.717 | 2.074  | 2.508  | 2.819  | 3.119  | 3.505  | 3.792              |  |  |  |  |  |
| 23       | 0.256  | 0.685 | 1.319  | 1.714 | 2.069  | 2.500  | 2.807  | 3.104  | 3.485  | 3.767              |  |  |  |  |  |
| 24       | 0.256  | 0.685 | 1.318  | 1.711 | 2.064  | 2.492  | 2.792  | 3.091  | 3.467  | 3.745              |  |  |  |  |  |
| 25       | 0.256  | 0.684 | 1.316  | 1.708 | 2.060  | 2.485  | 2.787  | 3.078  | 3.450  | 3.725              |  |  |  |  |  |
| 26       | 0.256  | 0.684 | 1.315  | 1.706 | 2.056  | 2.479  | 2.779  | 3.067  | 3.435  | 3.707              |  |  |  |  |  |
| 27       | 0.256  | 0.684 | 1.314  | 1.703 | 2.052  | 2.473  | 2.771  | 3.057  | 3.421  | 3.690              |  |  |  |  |  |
| 28       | 0.256  | 0.683 | 1.313  | 1.701 | 2.048  | 2.467  | 2.763  | 3.047  | 3.408  | 3.674              |  |  |  |  |  |
| 29       | 0.256  | 0.683 | 1.311  | 1.699 | 2.045  | 2.462  | 2.756  | 3.038  | 3.396  | 3.659              |  |  |  |  |  |
| 30       | 0.256  | 0.683 | 1.310  | 1.697 | 2.042  | 2.457  | 2.750  | 3.030  | 3.385  | 3.646              |  |  |  |  |  |
| 40       | 0.255  | 0.681 | 1.303  | 1.684 | 2.021  | 2.423  | 2.704  | 2.971  | 3.307  | 3.551              |  |  |  |  |  |
| 60       | 0.254  | 0.679 | 1.296  | 1.671 | 2.000  | 2.390  | 2.660  | 2.915  | 3.232  | 3.460              |  |  |  |  |  |
| 120      | 0.254  | 0.677 | 1.289  | 1.658 | 1.980  | 2.358  | 2.617  | 2.860  | 3.160  | 3.373              |  |  |  |  |  |
| 00       | 0.253  | 0.674 | 1.282  | 1.645 | 1.960  | 2.326  | 2.576  | 2.807  | 3.090  | 3.291              |  |  |  |  |  |

- T-분포
- 단일표본 t-검정

$$t_o = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

- T-분포
- 단일표본 t-검정
- 독립표본 t-검정

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

- T-분포
- 단일표본 t-검정
- 독립표본 t-검정
- 종속표본 t-검정

$$t = \frac{\overline{D} - (\mu_1 - \mu_2)}{s_D / \sqrt{n}}$$

- 분산분석의 기본 원리
- F분포
- 이원 ANOVA와 상호작용

• 분산분석의 기본 원리

$$\sum (X_{ij} - \overline{X}_T)^2 = \sum N(\overline{X}_i - \overline{X}_T)^2 + \sum (X_{ij} - \overline{X}_i)^2$$

$$SS_T = SS_B + SS_W$$

- 분산분석의 기본 원리
- F분포



- 분산분석의 기본 원 리
- F분포

 $\alpha = 0.1$ 

| $df_1$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 12    | 15    | 20    | 24    | 30    | 40    | 60    | 120   | 00    |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1      | 39.86 | 49.50 | 53.59 | 55.83 | 57.24 | 58.20 | 58.91 | 59.44 | 59.86 | 60.19 | 60.71 | 61.22 | 61.74 | 62.00 | 62.26 | 62.53 | 62.79 | 63.06 | 63.33 |
| 2      | 8.53  | 9.00  | 9.16  | 9.24  | 9.29  | 9.33  | 9.35  | 9.37  | 9.38  | 9.39  | 9.41  | 9.42  | 9.44  | 9.45  | 9.46  | 9.47  | 9.47  | 9.48  | 9.49  |
| 3      | 5.54  | 5.46  | 5.39  | 5.34  | 5.31  | 5.28  | 5.27  | 5.25  | 5.24  | 5.23  | 5.22  | 5.20  | 5.18  | 5.18  | 5.17  | 5.16  | 5.15  | 5.14  | 5.13  |
| 4      | 4.54  | 4.32  | 4.19  | 4.11  | 4.05  | 4.01  | 3.98  | 3.95  | 3.94  | 3.92  | 3.90  | 3.87  | 3.84  | 3.83  | 3.82  | 3.80  | 3.79  | 3.78  | 3.76  |
| 5      | 4.06  | 3.78  | 3.62  | 3.52  | 3.45  | 3.40  | 3.37  | 3.34  | 3.32  | 3.30  | 3.27  | 3.24  | 3.21  | 3.19  | 3.17  | 3.16  | 3.14  | 3.12  | 3.10  |
| 6      | 3.78  | 3.46  | 3.29  | 3.18  | 3.11  | 3.05  | 3.01  | 2.98  | 2.96  | 2.94  | 2.90  | 2.87  | 2.84  | 2.82  | 2.80  | 2.78  | 2.76  | 2.74  | 2.72  |
| 7      | 3.59  | 3.26  | 3.07  | 2.96  | 2.88  | 2.83  | 2.78  | 2.75  | 2.72  | 2.70  | 2.67  | 2.63  | 2.59  | 2.58  | 2.56  | 2.54  | 2.51  | 2.49  | 2.47  |
| 8      | 3.46  | 3.11  | 2.92  | 2.81  | 2.73  | 2.67  | 2.62  | 2.59  | 2.56  | 2.54  | 2.50  | 2.46  | 2.42  | 2.40  | 2.38  | 2.36  | 2.34  | 2.32  | 2.29  |
| 9      | 3.36  | 3.01  | 2.81  | 2.69  | 2.61  | 2.55  | 2.51  | 2.47  | 2.44  | 2.42  | 2.38  | 2.34  | 2.30  | 2.28  | 2.25  | 2.23  | 2.21  | 2.18  | 2.16  |
| 10     | 3.29  | 2.92  | 2.73  | 2.61  | 2.52  | 2.46  | 2.41  | 2.38  | 2.35  | 2.32  | 2.28  | 2.24  | 2.20  | 2.18  | 2.16  | 2.13  | 2.11  | 2.08  | 2.06  |
| 11     | 3.23  | 2.86  | 2.66  | 2.54  | 2.45  | 2.39  | 2.34  | 2.30  | 2.27  | 2.25  | 2.21  | 2.17  | 2.12  | 2.10  | 2.08  | 2.05  | 2.03  | 2.00  | 1.97  |
| 12     | 3.18  | 2.81  | 2.61  | 2.48  | 2.39  | 2.33  | 2.28  | 2.24  | 2.21  | 2.19  | 2.15  | 2.10  | 2.06  | 2.04  | 2.01  | 1.99  | 1.96  | 1.93  | 1.90  |
| 13     | 3.14  | 2.76  | 2.56  | 2.43  | 2.35  | 2.28  | 2.23  | 2.20  | 2.16  | 2.14  | 2.10  | 2.05  | 2.01  | 1.98  | 1.96  | 1.93  | 1.90  | 1.88  | 1.85  |
| 14     | 3.10  | 2.73  | 2.52  | 2.39  | 2.31  | 2.24  | 2.19  | 2.15  | 2.12  | 2.10  | 2.05  | 2.01  | 1.96  | 1.94  | 1.91  | 1.89  | 1.86  | 1.83  | 1.80  |
| 15     | 3.07  | 2.70  | 2.49  | 2.36  | 2.27  | 2.21  | 2.16  | 2.12  | 2.09  | 2.06  | 2.02  | 1.97  | 1.92  | 1.90  | 1.87  | 1.85  | 1.82  | 1.79  | 1.76  |
| 16     | 3.05  | 2.67  | 2.46  | 2.33  | 2.24  | 2.18  | 2.13  | 2.09  | 2.06  | 2.03  | 1.99  | 1.94  | 1.89  | 1.87  | 1.84  | 1.81  | 1.78  | 1.75  | 1.72  |
| 17     | 3.03  | 2.64  | 2.44  | 2.31  | 2.22  | 2.15  | 2.10  | 2.06  | 2.03  | 2.00  | 1.96  | 1.91  | 1.86  | 1.84  | 1.81  | 1.78  | 1.75  | 1.72  | 1.69  |
| 18     | 3.01  | 2.62  | 2.42  | 2.29  | 2.20  | 2.13  | 2.08  | 2.04  | 2.00  | 1.98  | 1.93  | 1.89  | 1.84  | 1.81  | 1.78  | 1.75  | 1.72  | 1.69  | 1.66  |
| 19     | 2.99  | 2.61  | 2.40  | 2.27  | 2.18  | 2.11  | 2.06  | 2.02  | 1.98  | 1.96  | 1.91  | 1.86  | 1.81  | 1.79  | 1.76  | 1.73  | 1.70  | 1.67  | 1.63  |
| 20     | 2.97  | 2.59  | 2.38  | 2.25  | 2.16  | 2.09  | 2.04  | 2.00  | 1.96  | 1.94  | 1.89  | 1.84  | 1.79  | 1.77  | 1.74  | 1.71  | 1.68  | 1.64  | 1.61  |
| 21     | 2.96  | 2.57  | 2.36  | 2.23  | 2.14  | 2.08  | 2.02  | 1.98  | 1.95  | 1.92  | 1.87  | 1.83  | 1.78  | 1.75  | 1.72  | 1.69  | 1.66  | 1.62  | 1.59  |
| 22     | 2.95  | 2.56  | 2.35  | 2.22  | 2.13  | 2.06  | 2.01  | 1.97  | 1.93  | 1.90  | 1.86  | 1.81  | 1.76  | 1.73  | 1.70  | 1.67  | 1.64  | 1.60  | 1.57  |
| 23     | 2.94  | 2.55  | 2.34  | 2.21  | 2.11  | 2.05  | 1.99  | 1.95  | 1.92  | 1.89  | 1.84  | 1.80  | 1.74  | 1.72  | 1.69  | 1.66  | 1.62  | 1.59  | 1.55  |
| 24     | 2.93  | 2.54  | 2.33  | 2.19  | 2.10  | 2.04  | 1.98  | 1.94  | 1.91  | 1.88  | 1.83  | 1.78  | 1.73  | 1.70  | 1.67  | 1.64  | 1.61  | 1.57  | 1.53  |

- 분산분석의 기본 원리
- F분포
- 이원 ANOVA와 상 호작용

- 명제와 가설
- 가설의 검증
- 왜 회귀분석인가?

• 명제와 가설

- 명제와 가설
- 가설의 검증

- 명제와 가설
- 가설의 검증
- 왜 회귀분석인가?

#### 단순회귀모형

- 회귀분석의 정의와 기능
- 선형성과 회귀식의 추정원리

#### 단순회귀모형

• 회귀분석의 정의와 기능

#### 단순회귀모형

- 회귀분석의 정의와 기능
- 선형성과 회귀식의 추정원리

