Software Engineering Project

프로젝트 개발계획서

-Subscription Sharing Service-

201501076 노재경

201603840 황정연

201702363 윤태현

201702436 이동규

201900810 김성중

I. 자원 및 일정 예측

1. 자원(인력, 비용) 예측

1-1. 소프트웨어 크기 예측

소프트웨어 크기의 추정은 LOC(원시 코드 라인 수) 계산법을 사용하기로 했다. 소프트웨어의 각 기능의 LOC를 비관치, 낙관치, 기대치를 측정하여 예측치(추정 LOC)를 구했다.

SW ·	분류	낙관치	기대치(보통)	비관치	예측치(추정 LOC)
프론트	엔드	600	900	1200	900
백인	l 드	800	1200	1600	1200

추정 LOC

1-2. COCOMO-81

가. 초기 개발 인건비 PM

프로젝트는 웹 디자인과 UI/UX로 구성된 프론트엔드와 서버와 DB로 구성된 백엔드로 이루어져 있다. 프론트엔드에 해당하는 부분은 유기형(Organic) 성격의 프로젝트로 분류가 가능하며, 백엔드는 반결합형(Semi-detached) 성격의 프로젝트로 분류가 된다.

각각 개발할 부분에서 추정 LOC는 900와 1200으로, KDSI는 0.9와 1.2이다. 이를 바탕으로 프론트엔드와 백엔드의 초기 개발 인건비는 다음과 같은 결과를 얻게 된다.

PM1 =
$$2.4 * (0.9)^{1.05} = 2.14865$$

PM2 = $3.0 * (1.2)^{1.12} = 3.67863$

$$PM = PM1 + PM2 = 5.87273$$

나. 보정 계수 반영 PM

프로젝트에 영향을 주는 제품의 성격, 컴퓨터의 특성, 개발 구성원의 특성, 프로젝트의 성격과 같은 비용 승수 요소들을 고려하여 앞서 예측한 결과를 보정하려 한다. 이를 위해 다음 표에 해당하는 보정계수를 사용하려 한다.

특성	WIR AA 0.4	승수 값									
	비용 승수 요소	매우 낮음	낮음	정상	높음	매우 높음	극히 높음				
	요구되는 신뢰도	0,75	0,88	1.00	1.15	1.40					
제품 특성	데이터베이스 크기	0.94	1.00	1.08	1.16						
	제품의 복잡도	0.70	0.85	1.00	1.15	1.30	1.65				
	실행 시간 제약			1,00	1,11	1,30	1.66				
컴퓨터 특성	주기억 장치의 제약			1.00	1.06	1.21	1.56				
	HW/SW의 안정성		0.87	1.00	1.15	1.30					
	처리 시간		0.87	1.00	1.07	1,15					
	분석가의 능력	1.46	1.19	1.00	0.86	0.71					
	응용 분야 경험	1.29	1.13	1.00	0.91	0.82					
개발자 특성	컴퓨터와 친숙성	1,21	1.10	1,00	0,90	-					
	프로그래머 능력	1.42	1.17	1.00	0.86	0.70					
	프로그램 언어의 경험	1.14	1.07	1.00	0.95						
프로젝트 특성	소프트웨어 공학 기술 사용	1.24	1.10	1,00	0.91	0,82					
	소프트웨어 도구의 사용	1.24	1.10	1.00	0.91	0.83					
	요구되는 개발 일정	1.23	1.08	1.00	1.04	1.10					

COCOMO-81 모델에서 사용되는 노력 승수값

다음 요소들을 고려하여 승수 요소를 적용시키면 다음과 같다.

비용 승수 요소	프론트엔드	백엔드
요구되는 신뢰도	정상	정상
데이터베이스 크기	정상	정상
제품의 복잡도	정상	정상
실행 시간의 제약	정상	정상
주기억 장치의 제약	정상	정상
H/W, S/W의 안정성	정상	정상
처리 시간	정상	정상
분석가의 능력	정상	정상

응용 경험	매우 낮음	매우 낮음
컴퓨터와 친숙성	정상	정상
프로그래머 능력	매우 낮음	매우 낮음
프로그래밍 언어 경험	매우 낮음	매우 낮음
소프트웨어 공학 원리의 사용	높음	높음
소프트웨어 도구의 사용	높음	높음
요구되는 개발 일정	정상	정상

보정 계수 반영

다. 총 개발 기간

위 두 표에서 나온 보정 계수를 반영하여 프로젝트에 드는 노력을 다음과 같은 결과가 나오게 된다.

PM1 =
$$2.4 * (0.9)^{1.05} * 1.72928 = 3.71562$$

PM2 = $3.0 * (1.2)^{1.12} * 1.72928 = 6.36138$

$$PM = PM1 + PM2 = 10.077$$

각각 다른 프로젝트 유형을 고려하여 개발기간은 다음과 같은 결과가 나타난다.

TDEV1 =
$$2.5 * (PM1)^{0.38} = 4.11672$$

TDEV2 = $2.5 * (PM2)^{0.35} = 4.77731$

총 개발 기간(TDEV) = TDEV1 + TDEV2 = 8.89403M

2. 일정 계획

2-1. 네트워크 차트 CPM 네트워크 활동 목록

작업	작업 설명	선행작업	소요기간(일)
Α	명세화 - 요구 결정	-	2
В	명세화 - 사용 사례 분석	А	3
С	명세화 - 모델링	В	3
D	아키텍쳐 설계	С	14
Е	UI 설계	С	21
F	DB 설계	С	21
G	프론트엔드 개발	D, E	21
Н	백엔드 개발	D, F	21
I	연동 구현	G, H	7
J	검증 - 알파 테스팅	I	5
K	검증 - 베타 테스팅	J	4

네트워크 차트(PERT/CPM) ES(Earliest Start Time) & EF(Earliest Finish Time)

	Α	В	С	D	Е	F	G	Н	1	J	K
ES	0	2	5	8	8	8	22	22	43	50	55
작업시간	2	3	3	14	21	21	21	21	7	5	4
EF	2	5	8	22	29	29	43	43	50	55	59

네트워크 차트 ES, EF

네트워크 차트(PERT/CPM) LS(Latest Start Time) & LF(Latest Finish Time)

	Α	В	C	D	E	F	G	Н	1	J	K
LS	0	2	5	8	8	8	29	29	50	57	62
작업시간	2	3	3	14	21	21	21	21	7	5	4
LF	2	5	8	22	29	29	50	50	57	62	66

네트워크 차트 LS, LF

네트워크 차트(PERT/CPM) ST(Slack Time) & 임계 경로(Critical Path)

	Α	В	С	D	Е	F	G	Н	1	J	K
ES	0	2	5	8	8	8	22	22	43	50	55
LS	0	2	5	8	8	8	29	29	50	57	62
ST	0	0	0	0	0	0	7	7	7	7	7

네트워크 차트 ST, 임계경로

2-2. 간트차트

田. 조직구성 및 인력배치

1. 조직도

2. 조직의 의무 및 기능

- 1) CEO 전체 프로젝트 총괄 및 책임
- 2) 디자인 서비스에 쓰일 이미지 파일 디자인
- 3) UI/UX 서비스 인터페이스 구현 및 사용자 경험 최적화
- 4) 서버 서버와 프로젝트 파일 연동 및 트래픽 관리
- 5) DB 사용자 및 포스팅 데이터 관리

Ⅲ. WBS

IV. 위험 요소

프로젝트를 진행함에 있어 발생 가능성이 있는 위험 요소를 사전에 파악하여 각각의 위험 요소 에 대한 대응 방안을 수립한다.

위험 요소	발생 가능성	대응 방안
개발 경험 부족	매우 높음	협업을 통한 문제 해결, 전문 인력에게 조언 구하기
개발 기간 부족	높음	작업 진행 정도에 대한 주기적 소통
요구 사항 변경	높음	새로운 요구 사항 및 프로젝트 변동 사항에 대한 상시 의논
프로젝트 관리 부족	보통	정기적 회의를 통해 프로젝트에 대한 관심의 지속적 환기
개발 인원의 참여도 부족	보통	팀원 간 소통을 통한 참여 독려 및 동기 부여

V. 개발 환경

프론트엔드

개발 언어: HTML, CSS, JavaScript

라이브러리 : React

디자인: Figma

에디터 : VS Code

백엔드

개발 언어: Java

프레임워크: Spring

에디터 : IntelliJ

DB

MariaDB

VI. 테스트 요구사항

아직 요구분석을 진행하지 않았기 때문에 구체적인 요구사항은 추후 기입할 예정이다. 이하의 내용은 대략적인 요구사항이다.

1. 단위 테스트

게시글이나 회원 정보 등 데이터의 단순 생성, 조회, 수정, 삭제가 잘 작동하는지, 화면 UI가 의도한대로 잘 출력되는지를 확인한다.

2. 통합 테스트

DB의 데이터(게시글 등)가 화면에 올바르게 나타나는지, 각 모듈의 상호작용에 의해 데이터의 생성, 조회, 수정, 삭제가 잘 컨트롤 되는지 확인한다.

3. 인수 테스트

외부 사용자 그룹에 릴리스하기 어려울 수 있기 때문에 팀 내부에서 진행하는 알파테스트 기반으로 진행한다.

WI. 유지보수 시 고려사항

- 1. 개발 실력 미숙으로 인해 디버깅에 많은 비용이 들어갈 수 있다.
- 2. 지속적인 게시판 및 커뮤니티 관리가 필요하다.
- 3. 게시판 확장 가능성을 염두해야 한다.
- 4. 시간이 지남에 따라 UI/UX 수정 및 보완을 고려해야 한다.
- 5. OTT 서비스의 정책 변화에 주시해야 한다.
- 6. 새로운 요구사항이 발생함에 따라 프로그램 수정이 필요할 수도 있다.
- 7. 시스템 성능 관리
- 8. 데이터 백업 관리