МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ім. ТАРАСА ШЕВЧЕНКА

Бєльський І.О.

3BIT

Напівпровідникові діоди

Київ. КНУ ім. Т. Шевченка, 2021

РЕФЕРАТ

Звіт до ЛР No2: 11 с., 5 рис., 3 джерела.

ОСЦИЛОГРАФ, ДІОД, МОДЕЛЮВАННЯ, ВАХ, LTSPICE, P-N-ПЕРЕХІД, НЕЛІНІЙНИЙ ЕЛЕМЕНТ

Об'єкт досдіження — діоди: випрямлювальний, стабілітрон, світлодіод.

Мета роботи — одержання зображення ВАХ діодів на екрані

двоканального осцилографа, який працює в режимі характериографа.

Методи дослідження:

- 1) одержання зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі характериографа.
- 2) побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму ІД, що відповідають певним значенням та полярності напруги UД, і подання результатів вимірів у вигляді графіка.

3MICT

Теоретичні відомості	4
Виконання роботи	
•	
Висновок	
Контрольні запитання	8
Джерела	11

ТЕОРЕТИЧНІ ВІДОМОСТІ

Напівпровідниковий діод — це напівпровідниковий прилад з одним p-n—переходом і двома виводами.

p-n-перехід – перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша – провідність p-типу.

Вольт-амперна характеристика (ВАХ) діода – це залежність сили струму Ід через p-n-перехід діода від величини і полярності прикладеної до діода напруги Uд.

Характериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму Ід від напруги Uд.

виконання роботи

Рис. 1. Параметри джерела напруги

Рис. 2. Схема

Рис. 3. ВАХ випрямлювального діода

Рис. 4. ВАХ стабілітрона

Рис. 5. ВАХ світлодіода

ВИСНОВОК

В ході данної лабораторної роботи ми дослідили ВАХ діоів, таким чином побачили відмінності між різними типами діодів, що дає уявлення про їх можливе застосування. Використовувались: стабілізатор, світлодіод та випрямлювальний діод.

КОНТРОЛЬНІ ЗАПИТАННЯ

1. Напівпровідники п– та р–типу. Основні та неосновні носії заряду в таких напівпровідниках.

Залежно від того, чи віддає домішковий атом електрон, чи захоплює, його називають донорним або акцепторним. Характер домішки може змінюватися залежно від того, який атом гратки вона заміщує, в яку кристалографічну площину вбудовується. Під час розриву зв'язку між електроном і ядром з'являється вільне місце в електронній оболонці атома. Це обумовлює перехід електрона з іншого атома на атом з вільним місцем. На атом, звідки перейшов електрон, входить інший електрон з іншого атома і т. д. Цей процес обумовлюється ковалентними зв'язками атомів. Таким чином, відбувається переміщення позитивного заряду без переміщення самого атома. Цей умовний позитивний заряд називають діркою. З ростом температури число вільних електронів і дірок збільшується, тому напівпровідник, що не містить домішок, має вищий питомий електричний опір, ніж з домішками. Умовно прийнято вважати напівпровідниками елементи з енергією зв'язку електронів меншою від 1,5...2 еВ. Електронно-дірковий механізм електричної провідності проявляється у власних напівпровідників (тобто у хімічно чистих з ідеально правильними кристалічними гратками). Він називається власною провідністю напівпровідників. Згідно із зонною теорією твердих тіл власна провідність напівпровідника пов'язана з тим, що в результаті теплового збудження частина електронів перекидається з валентної зони Ев у зону провідності Еп. Ці електрони називають електронами провідності; під дією зовнішнього електричного поля вони набувають у напівпровіднику впорядкованого руху (дрейфу), утворюючи електричний струм. Електрони в матеріалі п-типу називають основними носіями заряду, а дірки – неосновними носіями заряду. В матеріалі р-типу – навпаки: дірки є основними носіями заряду, а електрони – неосновними.

2. p—n-перехід. Власне електричне поле переходу. Контактна різниця потенціалів. Дифузійний та дрейфовий струми.

При встановленні контакту між двома напівпровідниковими матеріалами, матеріал n-типу буде втрачати негативний заряд і набувати позитивного заряду, а матеріал p-типу, навпаки, буде втрачати позитивний заряд і набувати негативного заряду. В результаті в області контакту буде виникати електричне поле, яке буде протидіяти подальшому переходу

електронів в р-область та дірок в n-область, і між матеріалом n-типу і матеріалом p-типу виникатиме різниця потенціалів. Ця різниця потенціалів називається контактною різницею потенціалів ϕ к, а

вищезгадане електричне поле — полем p—n-переходу Ep—n. В основі дифузійного струму лежить хаотичний рух носіїв заряду, при якому вони переходять із області, де їх більше у область, де їх менше. Дрейфовий струм — електричний струм, зумовлений рухом носіїв електричного заряду під дією електричного поля.

3. Пряме та зворотне включення p—n-переходу. Рух основних та неосновних носіїв через p—n-перехід під дією прямої та зворотної напруги.

Якщо до p—n-переходу прикласти зовнішню напругу у зворотному напрямку (U < 0) і збільшувати її, то струм основних носіїв прямуватиме до нуля і при

достатньо великих значеннях зворотної напруги повний струм I (його ще називають зворотним струмом) буде повністю визначатися струмом неосновних носіїв і перестане залежати від U.

4. Вольт-амперна характеристика (BAX) випрямлювального діода, її залежність від температури. Застосування випрямлювальних діодів в техніці. Струм I_0 залежить від температури та ширини забороненої зони напівпровідника:

$$I_0 = I_{00}e^{-\frac{E_g}{kT}}$$

Де I_{00} – множник, що слабо залежить від температури. Діоди, що мають таку BAX, називають випрямлювальними (англ. rectifier diode) і використовують у пристроях випрямлення, обмеження, детектування. Найпотужніші з них здатні працювати при значеннях прямого струму до кількох тисяч ампер і витримувати без пробою зворотні напруги в десятки кіловольт.

5. Оборотний та необоротний електричний пробій p—n-переходу. BAX стабілітрона. Застосування стабілітронів.

При великих зворотних напругах p—n-перехід "пробивається" і через нього протікає дуже великий струм. Пробій є відновлюваним, доки теплова потужність, розсіювана на p—n-переході, не перевищує припустимої, при якій відбувається його руйнування. Ця ділянка ВАХ, що відповідає зворотній напрузі, використовується на практиці в пристроях стабілізації напруги, а діоди, що мають таку ділянку, називають стабілітронами (англ. Zener diode). Напругу пробою можна регулювати технологічно (як правило, варіюванням концентрації домішок в p- і n- областях) в широких межах — від одиниць до сотень вольт. Для стабілізації напруги використовується і вертикальна ділянка ВАХ в прямому напрямку.

6. Тунельний ефект. Енергетична діаграма та BAX тунельного діода. Застосування тунельних діодів.

Якщо виготовити р—п-перехід з сильнолегованого напівпровідника (з великою концентрацією домішок), то перехід стане тонким і носії заряду зможуть "просочуватися" (тунелювати) через область р—п-переходу при прикладанні невеликої як зворотної, так і прямої напруги. Діоди з таким р—п- переходом називаються тунельними (англ. tunnel diode). ВАХ таких діодів поблизу початку координат (U = 0) являє собою відрізок прямої, тобто подібна до ВАХ звичайного резистора. Важливою особливістю ВАХ тунельних діодів є наявність на її прямій гілці ділянки з від'ємним диференціальним опором: гдиф = dU/dI < 0 (пунктирна лінія на Рис. 9), що дозволяє використовувати їх як підсилювачі та генератори електричних коливань надвисокочастотного діапазону (до десятків гігагерц). Такі діоди використовуються також як швидкодійні перемикачі, а також як елементи пам'яті в запам'ятовувальних пристроях з двійковим кодом.

7. Випромінювальна рекомбінація носіїв заряду в напівпровідниках. Принцип роботи і застосування світлодіодів.

У будь-якому прямозміщеному (включеному в прямому напрямку) р-п- переході при протіканні струму має місце рекомбінація носіїв заряду, в тому числі й випромінювальна, тобто з народженям фотонів. Випромінювально рекомбінує лише частина носіїв. І лише частина фотонів, уникнувши поглинання в самому діоді, може вийти назовні. Для створення практично придатного світловипромінювального діода (світлодіода) (англ. light-emitting diode, LED) необхідні матеріали з високою імовірністю випромінювальної рекомбінації. Якщо для випрямлювальних діодів використовуються переважно германій Ge і кремній Si, то матеріалом для світлодіодів ϵ арсенід галію GaAs, фосфід галію GaP і потрійні напівпровідникові сполуки на їх основі, а також карбід кремнію SiC. Сьогодні більш ефективними є світлодіоди, у яких використовуються не р-п-переходи, а так звані гетеропереходи – переходи між двома напівпровідниковими матеріалами з різною шириною забороненої зони. Оскільки енергія фотонів випромінювання (колір свічення) близька до ширини забороненої зони напівпровідника, то на основі перелічених напівпровідникових матеріалів були створені світлодіоди, що випромінюють у всій видимій, інфрачервоній та ближній ультрафіолетовій областях спектра.

8. Внутрішній фотоефект у напівпровідниках. Принцип роботи і застосування фотодіодів. Сонячні батареї. Внутрішній фотоефект - перерозподіл електронів по енергетичних рівнях у діелектриках я напівпровідниках (але не в металах) під дією світла. Якщо енергія кванта hv падаючого світла перевищує ширину забороненої зони в діелектрику або напівпровіднику, то електрон, що поглинув квант, переходить із валентної зони в зону провідності. У результаті цього переходу утворюється пара носіїв: у зоні провідності електрон, а у валентній зоні - дірка. Таким чином, у зоні провідності з'являються носії заряду, і при включенні напівпровідника в ланцюг по ній буде протікати струм або при додатку зовнішнього електричного поля буде протікати струм, що змінюється залежно від освітленості. Фотовольтаїчний модуль – це спеціальна конструкція, яка складається з набору взаємозв'язаних фотоелектричних комірок. Кожна з цих комірок, або селів (cell – анг. комірка), виготовлена з певного напівпровідника, наприклад кремнію, який в переважній більшості застосовується для створення сонячних панелей, оскільки демонструє наразі найвищі показники продуктивності. Коли сонячні промені потрапляють на цей напівпровідник, то він починає нагріватися, частково поглинаючи виділену від променів енергію. Фотони світла «вибивають» електрони з загальної атомної структури напівпровідника, і вільні електрони формують заряд.

ДЖЕРЕЛА

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк.
- 2. Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. К.: 2006.- с.