Il legame chimico La teoria di Lewis Il legame ionico

1. Metallo con non metallo:

Trasferimento di elettroni e legame ionico

2. Non metallo con non metallo:

Condivisione di elettroni e legame covalente

3. Metallo con metallo:

"Mare" di elettroni e legame metallico

Legame ionico attrazione elettrostatica tra ioni di segno opposto NaCl)

Legame covalente compartecipazione di elettroni tra due atomi (Cl₂)

Legame metallico compartecipazione di elettroni tra un gran numero di atomi (Na)

In tutti i casi elettroni vengono messi a comune o trasferiti tra atomi.

La teoria di Lewis

- Gli elettroni coinvolti nel legame sono detti *elettroni di* valenza.
- Gli elettroni di valenza sono quelli situati nel guscio più esterno di un atomo (guscio di valenza).
- Tranne che nei gas nobili il guscio di valenza è incompleto, cioè non ha la configurazione s^2p^6 .
- La configurazione s^2p^6 è quella più stabile.
- Gli atomi formano composti perché in questo modo possono raggiungere la configurazione dei gas nobili.

La teoria di Lewis

La configurazione s^2p^6 è la più stabile come dimostra:

- la stabilità dei gas nobili che allo stato elementare sono monoatomici e praticamente non reattivi.
- la bassa energia di prima ionizzazione degli elementi del gruppo 1A, che perdendo un elettrone raggiungono la configurazione del gas nobile.
- la alta affinità elettronica degli elementi del gruppo 7A, che acquistando un elettrone raggiungono la configurazione del gas nobile.

La teoria di Lewis

- Nella teoria di Lewis gli elettroni vengono rappresentati da punti attorno al simbolo dell'elemento.
- Queste rappresentazioni si chiamano strutture di Lewis.
- Nelle strutture di Lewis si riportano solo gli elettroni che stanno negli orbitali più esterni, quelli che appartengono al guscio di valenza.

Teoria di Lewis

Gli elettroni vengono generalmente piazzati sui quattro lati di un ideale quadrato disegnato attorno al simbolo dell'atomo.

		1A(1)	2A(2)
		ns ¹	ns ²
Periodo	2	• Li	•Be•
Per	3	• Na	•Mg•

3A(13)	4A(14)	5A(15)	6A(16)	7A(17)	8A(18)
ns ² np ¹	ns ² np ²	ns ² np ³	ns²np4	ns ² np ⁵	ns ² np ⁶
• B •	· c ·	• N •	:0:	: F:	:Ne:
•	•	••	: s ·	•	• A •

Teoria di Lewis

Regola dell'ottetto

Gli atomi tendono a guadagnare, perdere o mettere a comune elettroni in modo da raggiungere otto elettroni nel guscio di valenza.

TABLE 8.1	Lewis Symbols				
Element	Electron Configuration	Lewis Symbol	Element	Electron Configuration	Lewis Symbol
Li	[He]2s ¹	Li·	Na	[Ne]3s ¹	Na·
Be	$[He]2s^2$	·Be·	Mg	$[Ne]3s^2$	·Mg·
В	$[He]2s^22p^1$	٠ġ٠	Al	[Ne] $3s^23p^1$	·Àl·
C	$[He]2s^22p^2$	·ċ·	Si	[Ne] $3s^23p^2$	·Śi·
N	$[He]2s^22p^3$	٠Ņ٠	P	[Ne] $3s^23p^3$	·P:
O	$[He]2s^22p^4$;Ò:	S	[Ne] $3s^23p^4$; ; :
F	$[He]2s^22p^5$	· <u>;</u> :	Cl	$[Ne]3s^23p^5$	·Ċl:
Ne	[He] $2s^22p^6$:Ne:	Ar	[Ne] $3s^23p^6$:Är:

Il modo più semplice per raggiungere l'ottetto è quello di acquistare o cedere elettroni formando ioni negativi (anioni) o positivi (cationi).

Consideriamo la reazione tra cloro e sodio:

$$Na(s) + \frac{1}{2}Cl_2(g) \rightarrow NaCl(s)$$

La reazione è spontanea e piuttosto violenta: $Na(s) + \frac{1}{2}Cl_2(g) \rightarrow NaCl(s)$

Energetica della formazione del legame ionico

$$Na(s) + \frac{1}{2}Cl_2(g) \rightarrow NaCl(s)$$
 $\Delta H_f^{\circ} = -410.9 \text{ kJ/mole}$

- Questa reazione è molto esotermica.
- Il sodio perde un elettrone e diventa Na+.
- Il cloro acquista un elettrone e diventa Cl-.
- Na+ acquista la configurazione elettronica del Ne.
- Cl- acquista la configurazione elettronica dell'Ar.
- Na + e Cl- hanno raggiunto la configurazione elettronica s^2p^6 dei gas nobili.

Il NaCl ha una struttura molto regolare nella quale ogni ione Na+ è circondata da sei ioni Cl-.

Ogni ione Cl- è circondato da sei ioni Na+.

Gli ioni Na+ e Cl- sono disposti regolarmente in un reticolo tridimensionale.

In questo reticolo gli ioni si trovano impacchettati nella maniera più compatta possibile.

Energetica della formazione del legame ionico

La formazione degli ioni isolati $Na^+(g)$ e $Cl^-(g)$ dagli atomi isolati Na(g) e Cl(g) è endotermica.

Si noti che lo stato di atomi isolati corrisponde allo stato gassoso.

Le energie di formazione di $Na^+(g)$ e $Cl^-(g)$ dagli atomi isolati corrispondono rispettivamente all'energia di ionizzazione del Na e all'affinità elettronica del Cl.

Energetica della formazione del legame ionico

Energetica della formazione del legame ionico

La reazione $Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$ è fortemente esotermica ($\Delta H = -788 \text{ kJ/mol}$) e corrisponde alla formazione del reticolo cristallino determinata dall'interazione di ioni di segno opposto.

L'energia della reazione opposta:

$$NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)$$

si chiama *Energia di reticolo* ($\Delta H_{\text{lattice}}$) ed è l'energia richiesta per separare una mole di un composto ionico negli ioni (considerati allo stato gassoso) che lo compogono.

La reazione $NaCl(s) \rightarrow Na^+(g) + Cl^-(g)$ è endotermica $(\Delta H = +788 \text{ kJ/mol}).$

Legame Ionico Energetica della formazione del legame ionico

L'energia di reticolo dipende da:

- -la carica degli ioni
- -la dimensione degli ioni

La carica degli ioni influenza l'energia di reticolo in quanto la forza di attrazione fra gli ioni è determinata dall'equazione di Coulomb:

$$E = k \frac{Q_1Q_2}{d}$$

$$Q_1, Q_2 = \text{cariche degli ioni}$$

$$k = 8.99 \times 10^9 \text{ J-m/c}^2$$

$$d = \text{distanza tra gli ioni}$$

 Se avessimo un reticolo unidimensionale dovremmo sommare attrazioni e repulsioni fra cariche a distanze crescenti. Ottenendo una serie armonica a segni alterni

$$E = \frac{e^2}{4\pi\epsilon_o r_o} \left[2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) \right]$$

$$E = \frac{e^2}{4\pi\epsilon_o r_o} \left[2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) \right]$$

$$E = \frac{e^2}{4\pi\epsilon_o r_o} M$$

Compound	Crystal Lattice	М	A : C
NaCl	NaCl	1.74756	6:6
CsCl	CsCl	1.76267	6:6
CaF ₂	Cubic	2.51939	8:4
CdCl ₂	Hexagonal	2.244	
MgF_2	Tetragonal	2.381	
ZnS (wurtzite)	Hexagonal	1.64132	
TiO ₂ (rutile)	Tetragonal	2.408	6:3
bSiO ₂	Hexagonal	2.2197	
Al_2O_3	Rhombohedral	4.1719	6:4

Columns 3 to 6 show the deviations in number of ions in equivalent spheres centered on Ca²⁺ and F⁻ ions, and the net charges within that spheres.

L/a 1	N_{cell} -	$N_{ m sphere}$ -	$-N_{\mathrm{cell}}$	Sphere n	et charge	Madelung c	onstant
Δ/α	L/a Neell -	Ca^{2+}	F^-	Ca^{2+}	F^-	This work	$\Delta,\%$
2	12	-3	-1	-6	1	4.8351	-4.06
4	96	3	13	30	-25	5.1141	+1.47
6	324	-29	-17	-34	5	5.0442	+0.09
8	768	-39	-43	18	-5	5.0223	-0.35
10	1500	-1	5	94	-53	5.0424	+0.05
12	2592	31	19	38	-7	5.0531	+0.26
14	4116	93	61	18	23	5.0454	+0.11
16	6144	-19	-61	154	-35	5.0370	-0.06
18	8748	-17	-89	-34	89	5.0379	-0.04
20	12000	21	37	-30	-1	5.0422	+0.05
22	15972	5	83	298	-227	5.0407	+0.02

Exact = 5.0398

Un composto ionico se sottoposto ad una forza esterna si rompe

Figura 9.9 Conduttività elettrica e mobilità ionica. A. Nel solido ionico non fluisce corrente perché gli ioni sono immobili. B. Nel composto fuso, gli ioni mobili fluiscono verso gli elettrodi carichi di segno opposto e conducono corrente elettrica. C. In una soluzione acquosa del composto, gli ioni solvatati mobili conducono corrente.

I composti ionici sono solidi altofondenti

Composto	Temperatura di fusione (°C)	Temperatura di ebollizione (°C)
CsBr	636	1300
NaI	661	1304
$MgCl_2$	714	1412
KBr	734	1435
CaCl ₂	782	>1600
NaCl	801	1413
LiF	845	1676
KF	858	1505
MgO	2852	3600

Energetica della formazione del legame ionico

Lattice Energies for Some Ionic Compounds

Compound	Lattice Energy (kJ/mol)	Compound	Lattice Energy (kJ/mol)
LiF	1030	MgCl ₂	2326
LiCl	834	SrCl ₂	2127
LiI	730		
NaF	910	MgO	3795
NaCl	788	CaO	3414
NaBr	732	SrO	3217
NaI	682		
KF	808	ScN	7547
KCl	701		
KBr	671		
CsCl	657		
CsI	600		

Configurazioni elettronica degli ioni di elementi rappresentativi

- gli ioni degli elementi rappresentativi hanno in generale la configurazione elettronica dei gas nobili più vicini.

Mg: $[Ne]3s^2$ Cl: $[Ne]3s^23p^5$

Mg⁺: [Ne] $3s^1$ instabile Cl⁻: [Ne] $3s^23p^6$ = [Ar] = stabile

Mg²⁺: [Ne] stabile

Ioni dei metalli di transizione

- Le cariche più comuni degli ioni sono +1, +2, +3
- In generale gli elettroni vengono persi secondo *n* decrescente (cioè gli elettroni sono rimossi prima dal 4s poi dal 3d).

Ioni poliatoamici

- sono dei composti molecolari, legati covalentemente e dotati di carica

$$(SO_4^{2-}, NO_3^{-}, NH_4^{+})$$

- I cationi sono più piccoli degli atomi neutri.
- Gli anioni sono più grandi degli atomi neutri.
- Per ioni della stessa carica la dimensione cresce scendendo lungo un gruppo.

Serie isoelettroniche: sono serie di atomi o ioni che hanno lo stesso numero di elettroni.

$$O^{2-} > F^{-} > Na^{+} > Mg^{2+} > Al^{3+}$$

In una serie isoelettronica la dimensione diminuisce al crescere della carica nucleare.