Řízení jakosti a technická diagnostika (KET/+RJTD)

Shewhartovy regulační diagramy měřením (tabulky mezí)

Shewhartovy regulační diagramy měřením – vzorce pro výpočet mezí

Statistika	Základní h	odnoty nejsou stanoveny	Základní hodn	oty jsou stanoveny
	CL	UCL a LCL	CL	UCL a LCL
$\bar{\mathbf{x}}$	$\overline{\overline{x}}$	$\overline{\overline{X}} \pm A_2 \overline{R}$ nebo $\overline{X} \pm A_3 \overline{s}$	X ₀ nebo μ ₀	$X_0 \pm A\sigma_0$
R	\overline{R}	D ₄ R; D ₃ R	R ₀ nebo d ₂ σ ₀	$D_2\sigma_0; D_1\sigma_0$
s	s	B ₄ s; B ₃ s	S ₀ nebo C ₄ σ ₀	$B_6\sigma_0; B_5\sigma_0$

Shewhartovy regulační diagramy měřením pro individuální hodnoty – vzorce pro výpočet

Statistika	Základní hodne	oty nejsou stanoveny	Základní hodnoty jsou stanoveny	
	CL	UCL a LCL	CL	UCL a LCL
Individuální hodnota X	x	$\overline{X} \pm E_2 \overline{R}$	X ₀ nebo μ ₀	$X_0 \pm 3\sigma_0$
Klouzavé rozpětí R	R	$D_4\overline{R}$; $D_3\overline{R}$	R ₀ nebo d ₂ σ ₀	$D_2\sigma_0; D_1\sigma_0$

Shewhartovy regulační diagramy srovnáváním (tabulky mezí)

Tvorba diagramů srovnáváním, když nejsou stanoveny základní hodnoty

Centrální přímka	Regulační meze 3σ
\overline{p}	$\overline{p} \pm 3\sqrt{\overline{p}(1-\overline{p})/n}$
$n\overline{p}$	$n\overline{p} \pm 3\sqrt{n\overline{p}(1-\overline{p})}$
\bar{c}	$\overline{c} \pm 3\sqrt{\overline{c}}$
\overline{u}	$\overline{u} \pm 3\sqrt{\overline{u}/n}$

Tabulka 2 – Součinitele pro výpočet přímek regulačních diagramů

podsku-					Součinitele pro regulačni meze	pro regul	ačni meze					Souči	Součinitele pro centrální přímku	entrální při	imku
pusy a	Ā	A_2	A,s	B	B_{4}	go .	3	ğ	\mathcal{D}_2	ρ_3	D_4	ڻ <u>.</u>	1/6,	42	$1/d_{2}$
2	2,121	1.880	2.659	0.000	3.267	0.000	2.606	0.000	3.686	0,000	3,267	0,7979	1,253 3	1,128	0,8865
tus	1,732	1,023	1,954	0,000	2,568	0.000	2,276	0,000	4,358	0,000	2,574	0,8862	1,1284	1,693	0,5907
4	1,500	0,729	1,628	0,000	2,266	0.000	2,088	0,000	4,698	0,000	2,282	0,921 3	1,0854	2,059	0,4857
Ch.	1,342	0,577	1,427	0,000	2,089	0,000	1,964	0,000	4,918	0,000	2,114	0,9400	1,0638	2,326	0,4299
ch.	1 22 %	3 2 2 2	1 787	0.020	1 070	0 0 0 0	1 874		5078	0.000	2.004	0.951.5	1.051.0	2 534	0.3946
4			1 j	0110	- K	111	1 806	1000	706.5	0076	1 974	0 959 4	1 042 3	2704	0.3698
· ·			707	Sar Tea	1014	170	1 751	0,100	7 10 10 10 10 10 10 10 10 10 10 10 10 10	0,0,0	1 964	0.065.0	10363	2847	0 4 5 4
5 0	1,000,1		1,099	0.00	1,721	2,179 2,179 2,179	15/1	0,000	A 10 0	0.197	1,007	0,000	10317	2070	03367
i vo	L. CALLON, I	10 mm	1,032	10,235	1,/61	0,232	1,70/	0,34/	SKOLC	0,104	1,010	0,909.5	1,001	2,710	1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C
10	etect.	0,308	0,975	0,284	1,716	0,276	1,669	0,687	5,469	0,223	1,777	0,9727	1,028 1	3,0/8	0,324 9
)1 1	soco	0,285	0.927	0,321	1,679	0,313	1,637	0,811	5,535	0,256	1,744	0,9754	1,025 2	3,173	0,3152
12	0,866	0,266	0,886	0,354	1,646	0,346	1,610	0,922	5,594	0,283	1,717	0,977 6	1,0229	3,258	0,3069
ដ	0,832	0,249	0,850	0,382	1,618	0,374	1,585	1,025	5,647	0,307	1,693	0,9794	1,0210	3,336	0,2998
14	0,802	0,235	0,817	0,406	1,594	0,399	1,563	1,118	5,696	0,328	1,672	0,9810	1,0194	3,407	0,293 5
15	0,775	0,223	0,789	0,428	1,572	0,421	. 1,544	1,203	5,741	0,347	1,653	0,9823	1,0180	3,472	0,288 0
15	0,750	0,212	0,763	0,448	1,552	0,440	1,526	1,282	5,782	0,363	1,637	0,983 5	1,0168	3,532	0,283 1
17	0,728	0,203	0,739	0,466	1,534	0,458	1,511	1,356	5,820	0,378	1,622	0,984 5	1,0157	3,588	0,2787
18	0,707	0,194	0,718	0,482	1,518	0,475	1,496	1,424	5,856	0,391	1,608	0,9854	1,0148	3,640	0,2747
19	0,688	0,187	869,0	0,497	1;503	0,490	1,483	1,487	5,891	0,403	1,597	0,9862	1,0140	3,689	0,2711
26	0,671	0,180	0.680	0,510	1,490	0,504	1,470	1,549	5,921	0,415	1,585	0,9869	1,013 3	3,735	0,2677
19	0,655	0,173	0,663	0,523	1,477	0,516	1,459	1,605	5,951	0,425	1,575	0,987 6	1,0126	3,778	0,2647
ß	0,640	0,167	0,647	0,534	1,466	0,528	1,448	1,659	5,979	0,434	1,566	0,988 2	1,0119	3,819	0,2618
23	0,626	0,162	0,633	0,545	1,455	0,539	1,438	1,710	6, 006	0,443	1,557	0,988 7	1,011.4	3,858	0,259.2
24	0,612	0,157	619,0	0,555	1,445	0,549	1,429	1,759	6,031	0,451	1,548	0,989 2	1,0109	3,895	0,2567
25	0,600	0,153	0,606	0,565	1,435	0,559	1,420	1,806	6,056	0,459	1,541	0,989 6	1,0105	3,931	0,254 4
тател: А	ramen: ASTM, Philadelphia, PA, USA.	delphia, P/	, USA.												
Tamen: A	Stw. Phua	delphia, r/	A, USA.												,