# Projektmöglichkeiten

### **Namenskonvention**

Bei der Aufteilung wird Ihnen einen Projektcode zugeteilt der besteht aus folgende Schlüsseln

| 1-7                                                                         | A-C                                                           | а-с                                                     | • | X-Z                                                              |
|-----------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|---|------------------------------------------------------------------|
| System                                                                      | Problemvariante                                               | Regelziel                                               |   | Parametersatz                                                    |
| Zahl, die Beschreibt das<br>Systemtyp. S. die unten<br>stehenden Abschnitte | Das Problem, die zu lösen ist. In jeden Abschnitt beschrieben | Was der Regler tun soll. In jeden Abschnitt beschrieben |   | Die Parameter, die z.B. in einer<br>Simulation einzusetzen sind. |

# Grundsätzliche Anforderungen

Ziel Ihres Projektes ist die digitale Regelung der unten Beschriebene Problemstellungen. Dabei sollten Sie wie folgt vorgehen:

- 1. Beschreiben Sie Ihr System mithilfe von Differenzialgleichungen bzw. Übertragungsfunktionen:
  - a. Legen Sie Ihre Eingangs- und Ausgangsgröße des Prozesses fest.
  - b. Erstellen Sie die Differenzialgleichungen der Strecke.
  - c. Simulieren Sie Ihre Strecke und nehmen Sie eine einfache Plausibilisierung der Werte vor.
  - d. Die **Strecke** darf (muss aber nicht) diskretisiert werden
- 2. Legen Sie die Abtastrate Ihrer Regler fest und legen Sie den Anti-Aliasing-Filter aus.
- 3. Erstellen Sie den Blockschaltbild der Regelkreis (ggf. inklusive Ihre Störquelle)
- 4. Wählen Sie einen geeigneten Regler (digital) und parametrieren Sie es
- 5. Simulieren Sie Ihr geregelten System und optimieren Sie Ihre Reglerparameter

Aufbau des Berichts ist im separaten Dokument (project template.pdf) enthalten.

Viel Erfolg!

## 1. Elektrisches System

In diese Problemstellung gibt es 6 Projekte. Diese Berühren auf die Regelung der Ausgangsspannung  $U_a$  eines A: Tiefsetzstellers oder B: Hochstezstellers.



Ihren Ziel ist einen Spannungsregler zu entwerfen, der auf Änderungen in folgenden Größen reagiert:

- a. Sollausgangsspannung (Führungssprung)
- b. Lastwiderstand  $R_{LAST}$  (Sprung auf 90%)
- c. Eingangsspannung  $U_e$  (Sprung auf 110%)

| Symbol                     | Beschreibung         | Wert .x | Einheit   |
|----------------------------|----------------------|---------|-----------|
| $R_{i}$                    | Interne Widerstand   | 1       | $m\Omega$ |
| $R_{\scriptscriptstyle L}$ | Drosselwiderstand    | 10      | $m\Omega$ |
| L                          | Induktivität Drossel | 2       | mH        |
| C                          | Filterkondensator    | 100     | $\mu F$   |
| $R_{Last}$                 | Lastwiderstand       | 10      | Ω         |

### 2. Elektromechanische Rotation

In dieser Problemstellung werden Sie mit einfachen DC-Motoren arbeiten. Dabei ergeben sich 2 Problemstellungen:

A: Ein Aufzug

B: Eine Industrieapplikation





Ihren Ziel ist einen von folgende Größen zu regeln:

- a. Regelung der Position X
- c. Haltung der Winkelgeschwindigkeit bei Änderung des Drehmoments  $oldsymbol{M}_{last}$

### **Parametersatz**

| Symbol                     | Beschreibung                   | Wert .x | Einheit               |
|----------------------------|--------------------------------|---------|-----------------------|
| $R_A$                      | Ankerwiderstand                | 1       | $m\Omega$             |
| $L_{\scriptscriptstyle A}$ | Ankerinduktivität              | 2       | mН                    |
| $J_{\it motor}$            | Massenträgheitsmoment<br>Motor | 5       | $Kg \cdot m^2$        |
| r                          | Radius Riemenscheibe           | 0,5     | m                     |
| $C_e$                      | Back EMF Konstant              | 0.2     | <u>pu·s</u><br>rad    |
| $C_{m}$                    | Motor Konstant                 | 0.2     | $\frac{N \cdot m}{A}$ |
| $C_e$                      | Ggf. Masse der Aufzug          | 100     | Kg                    |
| $M_{Last}$                 | Ggf. Last Drehmoment           | 50      | $N \cdot m$           |

# 3. Hydraulische Systeme

In diese Problemstellung werden Sie der typische

- A. 1-Tank-Problem
- B. 2-Tank-Problem

lösen.



Ihren Ziele für diese Problemstellung sind:

- a. Die Regelung des Wasserpegels  $h_{\scriptscriptstyle W}$
- b. Die Haltung von  $h_{
  m w}$  bei einer Veränderung des Volumens (Mensch springt drauf)
- c. Die Haltung von  $h_{\rm w}$  bei einer Verstopfung des Rohrs (Verringerung der Fläche um 10%)

|                               |                                               | Wert |     |                |
|-------------------------------|-----------------------------------------------|------|-----|----------------|
| Symbol                        | Beschreibung                                  | .х   | .y  | Einheit        |
| $h_{_{\scriptscriptstyle W}}$ | Arbeitspunkt<br>Wasserpegel                   | 1    | 1   | m              |
| $D_{\it Rohr}$                | Durchmesser Rohr (alle)                       | 50   | 50  | mm             |
| $\boldsymbol{A}$              | Fläche unterer Tank                           | 4    | 6   | $m^2$          |
| $A_{\it Oben}$                | Fläche obere Tank (2-<br>Tank System)         | 100  | 100 | m <sup>2</sup> |
| $p_0$                         | Wasserdruck im Rohr (1-<br>Tank-System)       | 2    | 2,5 | bar            |
| $V_{\it Mensch}$              | Ggf. Störungsvolumen<br>(Mensch, die springt) | 0,5  | 0,5 | m <sup>3</sup> |
| $h_1$                         | Wasserpegel 1. Tank                           | 1    | 1   | m              |

### 4. Mechanische Translation

In diese Problemstellung werden Sie eine aktive Dämpfung der Ladebereich eines LKWs (A).



Dabei können Sie mithilfe eines Aktuators einen Kraft ins Laderaum ausüben (  $F_{\rm S}$  ). Der Laderaum ist außerdem mit einem traditionellen Dämpfungssystem ausgestattet.

Ihre Ziele für diese Problemstelleung sind:

- a. Die Regelung der Position x (Führungsgröße)
- b. Der Ausgleich von sprungartigen Veränderungen in der Position um 20cm
- c. Der Ausgleich von Veränderungen in der Ladung um 200Kg

#### **Parametersatz**

|        |                    | Wert |      |              |
|--------|--------------------|------|------|--------------|
| Symbol | Beschreibung       | .X   | .y   | Einheit      |
| m      | Masse Frachtraum   | 2,0  | 2,3  | t            |
| K      | Federkonstante     | 98,1 | 98,1 | kN/m         |
| μ      | Dämpfungskonstante | 2500 | 3000 | $kN \cdot s$ |
|        |                    |      |      | m            |

# 5. Selbstbalancierende Systeme

In dieser Problemstellung werden Sie Aufgabe übernehmen, einer selbst-balancierendes System zu stabilisieren. Dabei kann das System folgendes sein:

- A. Ein selbst-balancierender Roboter (mit Rad)
- B. Ein invertiertes Pendel



In beide Fälle ist das Ziel, das Gewicht an einer senkrechte Position zu halten (a).

| Symbol | Beschreibung    | Wert       | Wert |     |         |  |
|--------|-----------------|------------|------|-----|---------|--|
| Symbol |                 | <b>.</b> X | .y   | .Z  | Einheit |  |
| m      | Masse Kopf      | 0,5        | 0,6  | 0,7 | Kg      |  |
| r      | Ggf. Radius Rad | 200        | 200  | 200 | mm      |  |

# 6. Thermische Systeme

In dieser Problemstellung können Sie folgende Möglichkeiten bearbeiten:

- A. Die Kühlung eines Bierkegels mittels ein Peltierelement
- B. Die Haltung der Temperatur in einem Prozess mir Massenflüße (z.B. Warmwasseraufbereitung)





In beide Fälle sollen Sie die Temperatur halten bei eine Veränderung von.

- a. Umgebungstemperatur
- b. Massendurchfluss

### **Parametersatz**

|                  |                                                               | Wert |     |             |
|------------------|---------------------------------------------------------------|------|-----|-------------|
| Symbol           | Beschreibung                                                  | .x   | .y  | Einheit     |
| $T_{amb}$        | Umgebungstemperatur                                           | 25   | 25  | °C          |
| $G_{sun}$        | Einstrahlung Sonne auf<br>Fläche berechnet, (Va-<br>riante A) | 20   | 20  | W           |
| $R_{\it th}$     | Thermische Widerstand                                         | 1    | 2   | K/W         |
| $m_{\it Behäte}$ | Masse in Behälter                                             | 10   | 10  | Kg          |
| $T_{ m in}$      | Temperatur Zuleitung (Variante B)                             | 10   | 15  | $^{\circ}C$ |
| $T_{ m soll}$    | Solltemperatur                                                | 7    | 7   | $^{\circ}C$ |
| ṁ<br>            | Massendurchfluss<br>(Variante B)                              | 1    | 1,5 | kg/s        |

# 7. Pneumatische Systeme

In diese Problemstellung können Sie einen Schwebeballversuch nachstellen (A).



Dabei werden Sie folgende Ziele verfolgen:

- a. Die Regelung der Position nach Sollwervorgabe
- b. Der Ausgleich (Haltung der Position) nach Störung Verengung des Rohrs um 10%

|                                  |                           | Wert |      |                       |
|----------------------------------|---------------------------|------|------|-----------------------|
| Symbol                           | Beschreibung              | .x   | .y   | Einheit               |
| $D_{ m Rohr}$                    | Innendurchmesser Rohr     | 45   | 45   | °C                    |
| $D_{\scriptscriptstyle  m Ball}$ | Durchmesser Ball          | 40   | 40   | mm                    |
| $m_{\mathrm{Ball}}$              | Masse des Balls           | 1    | 1.5  | g                     |
| $V_{\scriptscriptstyle 0}$       | Nennluftdurchfluss Lüfter | 0.3  | 0.25 | m <sup>3</sup><br>min |
| $p_{0}$                          | Statische Luftdruck       | 40   | 38   | mPa                   |
| ${U}_{\scriptscriptstyle 0}$     | Bemessungsspannung        | 12   | 12   | V                     |
| $N_{ m nom}$                     | Bemessungs-RPM            | 5000 | 5000 | RPM                   |
|                                  |                           |      |      |                       |