Title

D. Zack Garza

August 19, 2019

Contents

0.1	Exercises	1
0.2	Qual Problems	3

0.1 Exercises

Problem 1 (Hungerford 1.6.3).

If $\sigma = (i_1 i_2 \cdots i_r) \in S_n$ and $\tau \in S_n$, then show that $\tau \sigma \tau^{-1} = (\tau(i_1)\tau(i_2)\cdots\tau(i_r))$.

Solution 1. Let

$$\sigma = (s_1 s_2 \cdots s_r) \in S_n$$

in cycle notation, and $\tau \in S_n$ be arbitrary. Define $t_j = \tau(s_j)$; we would then like to show that

$$\tau \sigma \tau^{-1} = (t_1 t_2 \cdots t_r) := (\tau(s_1) \tau(s_2) \cdots \tau(s_r))$$

To this end, it suffices to show that t_i maps to $t_{i+1 \mod r}$, under $\tau \sigma \tau^{-1}$, which is to say

$$\tau \sigma \tau^{-1}(t_i) = \begin{cases} t_{i+1} & i+1 \le r, \\ t_1 & i=r \end{cases}.$$

Bearing this in mind, we will immediately suppress notation and take all indices $\mod r$ for the rest of this problem.

The following then follows simply by definitions:

$$\tau \sigma \tau^{-1}(t_i) = \tau \sigma(s_i)$$
$$= \tau(s_{i+1})$$
$$= t_{i+1}.$$

Problem 2 (Hungerford 1.6.4).

Show that $S_n \cong \langle (12), (123 \cdots n) \rangle$ and also that $S_n \cong \langle (12), (23 \cdots n) \rangle$

Solution 2. Let $\sigma = (12)$ and $\tau = (123 \cdots n)$.

Claim: S_n is generated by swaps $f_{i,k} = (i \quad i+k)$ where $1 \leq i, k \leq n$, and moreover each such swap can be written as a product in σ and τ , which proves the desired result.

To see that S_n is generated by swaps, let $(s_1s_2\cdots s_r)\in S_n$ be arbitrary. We then construct the swaps $(s_1s_2), (s_1, s_3), \cdots (s_1s_r)$, and note that taking their product yields

$$(s_1s_2)(s_1,s_3)\cdots(s_1s_r)=(s_1s_2s_3\cdots s_r).$$

To see that each swap can be written as a product of powers of σ and τ , and thus in the subgroup $\langle \sigma, \tau \rangle$ they generate, we can first note that for $1 \leq i \leq n$, we have $\sigma(i) = i + 1$ and $\sigma^k(i) = i + k$ (where again everything is taken mod r).

By problem (1), we have

$$\sigma \tau \sigma^{-1} = \sigma(12)\sigma^{-1} = (\sigma(1)\sigma(2)) = (23)$$

and in general,

$$\sigma^k \tau(\sigma^k)^{-1} = (\sigma^k(1)\sigma^k(2)) = (k \quad k+1)$$

and so the cycles (k-k+1) are products of powers of τ, σ and thus contained in the group they generate.

If we then define the cycle $\gamma_k = (k + 1)$, we can then use the fact that each swap is a cycle with two elements, and thus of order 2 and equal to its own inverse. We then observe

$$\gamma_k \gamma_{k+1} \gamma_k^{-1}$$

Problem 3 (Hungerford 2.2.1).

Let G be a finite abelian group that is not cyclic. Show that G contains a subgroup isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$ for some prime p.

Problem 4 (Hungerford 2.2.12.b).

Determine all abelian groups of order n for $n \leq 20$.

Problem 5 (Hungerford 2.4.1).

Let G be a group and $A \subseteq G$ be a normal abelian subgroup. Show that G/A acts on A by conjugation and construct a homomorphism $\varphi: G/A \to \operatorname{Aut}(A)$.

Problem 6 (Hungerford 2.4.9).

Let Z(G) be the center of G. Show that if G/Z(G) is cyclic, then G is abelian.

Note that Hungerford uses the notation C(G) for the center.

Problem 7 (Hungerford 2.5.6).

Let G be a finite group and $H \subseteq G$ a normal subgroup of order p^k . Show that H is contained in every Sylow p-subgroup of G.

Problem 8 (Hungerford 2.5.9).

Let $|G| = p^n q$ for some primes p > q. Show that G contains a unique normal subgroup of index q.

0.2 Qual Problems

Problem 9.

Let G be a finite group and p a prime number. Let X_p be the set of Sylow-p subgroups of G and n_p be the cardinality of X_p . Let $\operatorname{Sym}(X)$ be the permutation group on the set X_p .

- 1. Construct a homomorphism $\rho: G \to \operatorname{Sym}(X_p)$ with image a transitive subgroup (i.e. with a single orbit).
- 2. Deduce that G is simple and the order of G divides $n_p!$.
- 3. Show that for any $1 \le a \le 4$ and any prime power p^k , no group of order ap^k is simple.

Problem 10.

Let G be a finite group and H < G a subgroup. Let n_H be the number of subgroups of G that are conjugate to H. Show that n_H divides the order of G.

Problem 11.

Let $G = S_5$, the symmetric group on 5 elements. Identify all conjugacy classes of elements in G, provide a representative from each class, and prove that this list is complete.