Algebra I

1er. Cuatrimestre 2013

Práctica 4 - Enteros

1. Decidir cuáles de las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$:

$$i) a.b \mid c \Longrightarrow a \mid c \lor b \mid c$$

$$(ii) 4 \mid a^2 \Longrightarrow 2 \mid a$$

$$iii) 2 \mid a.b \Longrightarrow 2 \mid a \circ 2 \mid b$$

$$(iv) 9 \mid a.b \Longrightarrow 9 \mid a \circ 9 \mid a$$

$$(v) a \mid b + c \Longrightarrow a \mid b \circ a \mid c$$

$$(vi) \ a \mid c \ y \ b \mid c \Longrightarrow a.b \mid c$$

$$vii) \ a \mid b \Longrightarrow a \le b$$

 $\begin{array}{lll} i)\,a.b\mid c\Longrightarrow a\mid c\neq b\mid c & & ii)\,4\mid a^2\Longrightarrow 2\mid a & & iii)\,2\mid a.b\Longrightarrow 2\mid a\;\lozenge 2\mid b\\ iv)\,9\mid a.b\Longrightarrow 9\mid a\;\lozenge 9\mid b & & v)\,a\mid b+c\Longrightarrow a\mid b\;\lozenge a\mid c & & vi)\,a\mid c\neq b\mid c\Longrightarrow a.b\mid c\\ vii)\,a\mid b\Longrightarrow a\leq b & & viii)\,a\mid b+a^2\Longrightarrow a\mid b. \end{array}$

2. Hallar todos los $n \in \mathbb{N}$ tales que:

$$i) 3n - 1 \mid n + 7.$$

$$ii) 3n - 2 \mid 5n - 8.$$

$$iii)2n + 1 \mid n^2 + 5.$$

$$iv) n - 2 \mid n^3 - 8.$$

3. Probar que las siguientes afirmaciones son verdaderas para todo $n \in \mathbb{N}$:

$$i)99 \mid 10^{2n} + 197.$$

$$ii) 9 \mid 7.5^{2n} + 2^{4n+1}.$$

$$iii)$$
 56 | $13^{2n} + 28n^2 - 84n - 1$.

$$(iv)$$
 256 | $7^{2n} + 208n - 1$.

- 4. (a) Probar que $a b \mid a^n b^n$ para todo $n \in \mathbb{N}$.
 - (b) Probar que si n es un número natural par entonces $a + b \mid a^n b^n$
 - (c) Probar que si n es un número natural impar entonces $a+b\mid a^n+b^n$
- 5. Probar que las siguientes afirmaciones son verdaderas para todo $n \in \mathbb{N}$:
 - (a) El producto de n enteros consecutivos es divisible por n!.

(b)
$$\binom{2n}{n}$$
 es divisible por 2.

(c)
$$2^n \cdot \prod_{i=1}^n (2i-1)$$
 es divisible por $n!$.

(d)
$$\binom{2n}{n}$$
 es divisible por $n+1$.

(Sugerencia: probar que
$$(2n+1)\binom{2n}{n} = (n+1)\binom{2n+1}{n}$$
.)

- 6. Hallar todos los primos positivos menores o iguales que 100.
- 7. (a) Probar que un número natural n es compuesto si y sólo si es divisible por algún primo positivo
 - (b) Determinar cuáles de los siguientes enteros son primos: 91, 209, 307, 791, 1001, 3001.
- 8. Sea $n \in \mathbb{N}$. Probar que
 - (a) si $n \neq 1$ y $n \mid (n-1)! + 1$ entonces n es primo;
 - (b) si $2^n 1$ es primo entonces n es primo;
 - (c) si $2^n + 1$ es primo entonces n es una potencia de 2.

9. Probar que existen infinitos primos.

(Sugerencia: probar que si existieran finitos primos p_1, p_2, \ldots, p_n entonces $a = 1 + \prod_{i=1}^n p_i$ sería un entero distinto de 1 y -1 que no es divisible por ningún primo.)

10. Calcular el cociente y el resto de la división de a por b en los casos

$$i) \ a = 133, \quad b = -14.$$
 $ii) \ a = 13, \quad b = 111.$ $iii) \ a = 3b + 7, \quad b \neq 0.$ $iv) \ a = b^2 - 6, \quad b \neq 0.$ $v) \ a = n^2 + 5, \quad b = n + 2(n \in \mathbb{N}).$ $vi) \ a = n + 3, \quad b = n^2 + 1(n \in \mathbb{N}).$

- 11. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de:
 - i) la división de $a^2 3a + 11$ por 18. ii) la división de a por 3. iii) la división de 4a + 1 por 9.
 - iv) la división de $a^2 + 7$ por 36. v) la división de $7a^2 + 12$ por 28. vi) la división de 1 3a por 27.
- 12. Hallar todos los $n \in \mathbb{N}$ para los cuales el resto de la división de $n^3 + 4n + 5$ por $n^2 + 1$ sea n 1.
- 13. Sean a_1, a_2, \ldots, a_n enteros. Probar que existen r, s tales que $\sum_{j=0}^{s} a_{r+j}$ es divisible por n.

(Sugerencia: Considere los n números a_1 , $a_1 + a_2$, $a_1 + a_2 + a_3$, ..., $a_1 + a_2 + \cdots + a_n$ y pruebe que si ninguno de ellos es divisible por n entonces necesariamente dos de ellos tienen el mismo resto en la división por n.)

- 14. (a) Hallar el desarrollo en base 2 de:
 - i) 1365. ii) 2800. iii) 3.2^{13} . iv) $13.2^n + 5.2^{n-1}$ $(n \in \mathbb{N})$.
 - (b) Hallar el desarrollo en base 7 de 8575.
 - (c) Hallar el desarrollo en base 16 de 2800.
 - (d) Sea a un entero. Probar que si el desarrollo en base 10 de a termina en n ceros entonces el desarrollo en base 5 de a termina en por lo menos n ceros.
- 15. (a) Sea $a \in \mathbb{Z}$ tal que $a \equiv 22$ (14). Hallar el resto de dividir a a por 2, por 7 y por 14.
 - (b) Sea $a \in \mathbb{Z}$ tal que $a \equiv 13$ (5). Hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
 - (c) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^{n} (-1)^{i} \cdot i!$ por 36.
- 16. (a) Hallar todos los $a \in \mathbb{Z}$ tales que $a^2 \equiv 3 \pmod{11}$.
 - (b) Probar que no existe ningún entero a tal que $a^3 \equiv -3 \pmod{13}$.
 - (c) Probar que $a^2 \equiv -1$ (5) $\iff a \equiv 2$ (5) ó $a \equiv 3 \pmod{5}$.
 - (d) Probar que $a^7 \equiv a \pmod{7}, \forall a \in \mathbb{Z}$.
 - (e) Probar que $3 \mid a^2 + b^2 \iff 3 \mid a \vee 3 \mid b$.
 - (f) Probar que $7 \mid a^2 + b^2 \iff 7 \mid a \neq 7 \mid b$.
 - (g) Probar que $5 \mid a^2 + b^2 \iff a \equiv 2b \pmod{5}$ ó $a \equiv 3b \pmod{5}$.
 - (h) Probar que $5 \mid a^2 + b^2 + 1 \Longrightarrow 5 \mid a \circ 5 \mid b$.
 - (i) Probar que cualesquiera sean $a, b, c \in \mathbb{Z}$, $a^2 + b^2 + c^2 + 1$ no es divisible por 8.
- 17. Sea a un entero impar que no es divisible por 5.
 - (a) Probar que $a^4 \equiv 1 \pmod{10}$.

- (b) Probar que a y a^{45321} tienen el mismo resto en la división por 10.
- 18. (a) Probar que $2^{5n} \equiv 1 \pmod{31}$ para todo $n \in \mathbb{N}$.
 - (b) Hallar el resto de la división de 2⁵¹⁸³³ por 31.
 - (c) Sea $k \in \mathbb{N}$. Sabiendo que $2^k \equiv 39 \pmod{31}$, hallar el resto de la división de k por 5.
 - (d) Hallar el resto de la división de $43.2^{163} + 11.5^{221} + 61^{999}$ por 31.
- 19. (a) Sea a un entero impar. Probar que $2^{n+2} \mid a^{2^n} 1$ para todo $n \in \mathbb{N}$.
 - (b) Hallar el resto de la división de 5²²⁶⁷ por 32.
- 20. Sean $a, b, c \in \mathbb{Z}$ tales que $a^2 + b^2 = c^2$. Probar que:
 - (a) $3 \mid a \circ 3 \mid b$.
 - (b) $5 \mid a \circ 5 \mid b \circ 5 \mid c$.
 - (c) $4 \mid a \circ 4 \mid b$.
- 21. Enunciar y demostrar los criterios de divisibilidad por 2, 3, 4, 5, 8, 9 y 11.
- 22. Probar que existen infinitos primos congruentes a 3 módulo 4.

(Sugerencia: probar primero que un número congruente a 3 módulo 4 distinto de 1 y -1 necesariamente es divisible por un primo congruente a 3 módulo 4. Luego probar que si existieran finitos primos congruentes a 3 módulo 4, digamos p_1, p_2, \ldots, p_n , entonces a = -1 + 4. $\prod_{i=1}^n p_i$ sería un entero distinto de 1 y -1 que no es divisible por ningún primo congruente a 3 módulo 4.)

23. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b

$$(i) \ a = 2532, b = 63$$
 $(ii) \ a = 5335, b = 110$ $(iii) \ a = 131, b = 23$ $(iv) \ a = n^2 + 1, b = n + 2 \ (n \in \mathbb{N}).$

- 24. Sean $a, b \in \mathbb{Z}$. Sabiendo que el resto de dividir a a por b es 27 y que $b \equiv 48 \pmod{27}$, calcular (a:b)
- 25. Sea $a \in \mathbb{Z}$, a > 1 y sean $n, m \in \mathbb{N}$. Probar que $(a^n 1 : a^m 1) = a^{(n:m)} 1$ (Sugerencia: probar que si r es el resto de la división de n por m entonces el resto de la división de $a^n 1$ por $a^m 1$ es $a^r 1$).
- 26. Sea $a \in \mathbb{Z}$
 - (a) Probar que (5a + 8 : 7a + 3) = 1 o 41.
 - (b) Probar que $(2a^2 + 3a 1 : 5a + 6) = 1$ o 43.
- 27. (a) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
 - (b) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
 - (c) Determinar todos los $a \in \mathbb{Z}$ tales que $\frac{2a+3}{a+1} + \frac{a+2}{4} \in \mathbb{Z}$.
- 28. Sean $a, b, c \in \mathbb{Z}$. Probar que si a y b son coprimos entonces (a:b.c)=(a:c). (Sugerencia: probar que (a:b.c) y b son coprimos.)
- 29. Sean $p \ y \ q$ primos positivos distintos y sea $n \in \mathbb{N}$. Probar que si $p.q \mid a^n$ entonces $p.q \mid a$.

3

- 30. Sean $a, b \in \mathbb{Z}$. Probar que si (a : b) = 1 entonces $(a^2.b^3 : a + b) = 1$.
- 31. (a) Sean $a, b, c \in \mathbb{Z}$, c > 0. Probar que (c.a : c.b) = c.(a : b).
 - (b) Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. Probar que:

i. Si
$$(a : b) = 1$$
 entonces $(a^n : b^n) = 1$.

ii. Si
$$(a:b) = d$$
 entonces $(a^n:b^n) = d^n$.

iii. Si
$$a^n \mid b^n$$
 entonces $a \mid b$.

- 32. Sean $a, b \in \mathbb{Z}$. Probar que:
 - (a) si (a:b) = 1 entonces (7a 3b : 2a b) = 1.
 - (b) si (a:b) = 1 entonces (2a 3b: 5a + 2b) = 1 ó 19.
 - (c) si (a:b) = 2 entonces (5a 3b: 4a + b) = 2 ó 34.
 - (d) si (a:b) = 3 entonces $(a.b^2:9a + 9b) = 27$.
- 33. Sea $n \in \mathbb{N}$. Probar que:
 - (a) $(2^n + 7^n : 2^n 7^n) = 1$.
 - (b) $(2^n + 5^{n+1} : 2^{n+1} + 5^n) = 3 ó 9.$
 - (c) $(3^n + 5^{n+1} : 3^{n+1} + 5^n) = 2 \text{ ó } 14.$
- 34. Determinar, cuando existan, todos los $a, b \in \mathbb{Z}$ que satisfacen:

$$i) 5a + 8b = 3$$

$$ii) 7a + 11b = 10$$

$$iii) 24a + 14b = 7$$

$$iv) 20a + 16b = 36$$

$$v) 39a - 24b = 6$$

$$vi) 1555a - 300b = 11$$

- 35. Si se sabe que cada unidad de un cierto producto A cuesta 39 pesos y que cada unidad de un cierto producto B cuesta 48 pesos, ¿cuántas unidades de cada producto se pueden comprar con 135 pesos?
- 36. Hallar, cuando existan, todas las soluciones de las siguientes ecuaciones de congruencia

$$i) 17X \equiv 3 \pmod{11}$$

$$ii) 56X \equiv 2 \pmod{884}$$

$$iii) 56X \equiv 28 \pmod{35}$$

$$iv) 33X \equiv 27 \pmod{45}$$
.

- 37. Hallar el resto de la división de un entero a por 18, sabiendo que el resto de la división de 7a por 18 es 5.
- 38. (a) Hallar todos los $a \in \mathbb{Z}$ tales que $(7a + 1 : 5a + 4) \neq 1$.
 - (b) Hallar todos los $a \in \mathbb{Z}$ tales que $(2a^2 + 3a 1 : 5a + 6) \neq 1$.