18.901 Notes

1 Topological Spaces

Definition 1.1. A *topology* on a set X is a collection \mathcal{T} of subsets of X such that:

- $\varnothing, X \in \mathscr{T}$.
- The union of (possibily uncountably many) sets in \mathcal{T} is in \mathcal{T} .
- The intersection of finitely many sets in \mathcal{T} is in \mathcal{T} .

A set X for which a topology has been specified is called a **topological space**. Elements of \mathcal{T} are called **open sets** of X. The complements of open sets of X are called **closed sets** of X. Sets that are both open and closed in X are called **clopen** in X. For any $x \in X$, a **neighborhood** of X is an open set of X containing X.

Example 1.1.

- 1. The **discrete topology** on X is $\mathscr{P}(X)$, i.e. all subsets of X are open in X.
- 2. The *indiscrete* (or trivial) topology on X is $\{\emptyset, X\}$.
- 3. The *finite complement topology* on X is $\{\emptyset\} \cup \{A \subseteq X : X \setminus A \text{ is finite}\}$. The *countable complement topology* on X is $\{\emptyset\} \cup \{A \subseteq X : X \setminus A \text{ is countable}\}$.

Exercise. Show that the above are valid topologies.

Definition 1.2. Suppose \mathcal{T} and \mathcal{T}' are topologies on X.

- We say $\mathscr T$ is finer than $\mathscr T'$ if $\mathscr T\supseteq \mathscr T'$. (Draw a diagram to visualize)
- We say \mathcal{T} is coarser than \mathcal{T}' if $\mathcal{T} \subseteq \mathcal{T}'$.
- We say $\mathscr T$ and $\mathscr T'$ are incomparable if neither $\mathscr T\supseteq \mathscr T'$ nor $\mathscr T\subseteq \mathscr T'$.

Definition 1.3. A (topological) \boldsymbol{basis} on X is a collection \mathscr{B} of subsets of X where

- $\bigcup_{B \in \mathscr{B}} B = X$. (\mathscr{B} covers X, i.e. every $x \in X$ belongs to some $B \in \mathscr{B}$)
- Any x in two basis elements B_1, B_2 belongs to some basis element $B_3 \subseteq B_1 \cap B_2$.

The topology generated by \mathcal{B} consists of all possible unions of elements in \mathcal{B} .

Theorem 1.1. The topology \mathcal{T} generated by a basis \mathcal{B} is in fact a topology on X.

Proof. Firstly, $\emptyset \in \mathcal{T}$ since it is the empty union. Also, $X \in \mathcal{T}$ because \mathcal{B} covers X. We then verify the union and intersection properties:

- Given any $\{U_{\alpha}\}_{\alpha} \subseteq \mathcal{F}$, each U_{α} is a union of elements in \mathcal{B} , so $\bigcup_{\alpha} U_{\alpha}$ is also a union of elements in \mathcal{B} , and hence is in \mathcal{F} .
- Given any $U_1, U_2 \in \mathcal{B}$, we show that $U_1 \cap U_2 \in \mathcal{B}$: Let $x \in U_1 \cap U_2$, then x belongs to some basis element $B_1 \subseteq U_1$ and some basis element $B_2 \subseteq U_2$. Hence x belongs to some basis element $B(x) \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2$. Now, $U_1 \cap U_2 = \bigcup_{x \in U_1 \cap U_2} B(x)$ and thus $U_1 \cap U_2 \in \mathcal{T}$. The general finite intersection case follows from induction.

Corollary 1.1. Suppose we have a topology with some basis \mathscr{B} . Given any open set U and an element $x \in U$, there exists some basis element $B \in \mathscr{B}$ such that $x \in B \subseteq U$.

We can often reduce a problem about open sets to one about just the basis elements:

Theorem 1.2. Let \mathscr{T} and \mathscr{T}' be topologies on X with bases \mathscr{B} and \mathscr{B}' respectively. Then \mathscr{T}' is finer than \mathscr{T} if and only if for every possible $x \in B \in \mathscr{B}$ there exists $B' \in \mathscr{B}'$ such that $x \in B' \subseteq B$. (We can always get a smaller one in \mathscr{B}')

Definition 1.4.

- The **standard topology** on \mathbb{R} is the topology generated by the collection of open intervals $(a, b) = \{x : a < x < b\}$. This is the default topology we assume.
- The *lower-limit topology* on \mathbb{R} is the topology generated by the collection of half-open intervals $[a,b) = \{x : a \leq x < b\}$. We write $\mathbb{R} = \mathbb{R}_{\ell}$ in this case.
- The K-topology on \mathbb{R} is the topology generated by all open intervals (a, b) and sets of the form $(a, b) \setminus \{1/n : n \in \mathbb{N}^*\}$. We write $\mathbb{R} = \mathbb{R}_K$ in this case.

By Theorem 1.2, we can show that \mathbb{R}_{ℓ} and \mathbb{R}_{K} are strictly finer than \mathbb{R} , but are incomparable.

Generalizing from Definition 1.3, we can generate a topology from any collection of subsets that covers X (i.e. without necessarily having the second condition).

Definition 1.5. Let \mathscr{S} be a collection of subsets of X that covers X. The **topology generated by** \mathscr{S} is the collection of all possible unions of all possible finite intersections of elements in \mathscr{S} . We say that \mathscr{S} is a **subbasis** of this topology.

2 Order, Product, and Subspace Topology

Definition 2.1. Let X have a simple order relation <. The *intervals* of X are:

$$(a,b) = \{x \in X : a < x < b\}$$

$$(a,b) = \{x \in X : a < x < b\}$$

$$[a,b) = \{x \in X : a \le x < b\}$$

$$[a,b] = \{x \in X : a \le x \le b\}$$

and the rays of X are:

$$(a, +\infty) = \{x \in X : x > a\}$$

$$(-\infty, a) = \{x \in X : x < a\}$$

$$[a, +\infty) = \{x \in X : x \geqslant a\}$$

$$(-\infty, a] = \{x \in X : x \leqslant a\}$$

The **order topology** on an ordered set X is the topology generated by the basis consisting of open intervals (a, b) and open rays $(a, +\infty), (-\infty, a)$.

Example 2.1.

- 1. The order topology on \mathbb{R} is the standard topology.
- 2. The order topology on \mathbb{Z} is the discrete topology.
- 3. The order topology on $\{1,2\} \times \mathbb{N}^*$ is *not* the discrete topology. Which one-point set is not open?

Definition 2.2. Let $X = \prod_{\alpha \in J} X_{\alpha}$ be a cartesian product of sets $\{X_{\alpha}\}_{\alpha \in J}$. The **projection** of X onto index β is the function $\pi_{\beta}((x_{\alpha})_{\alpha \in J}) = x_{\beta}$.

Definition 2.3. Let X, Y be topological spaces. The **box/product topology** on $X \times Y$ is generated by the basis $\{U \times V : U, V \text{ are open in } X, Y \text{ respectively}\}$

This definition can generalize to finite cartesian products. However, for infinite cartesian products, there is a distinction between box and product topologies:

Definition 2.4. Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be a collection of topological spaces.

- The **box topology** on $\prod_{\alpha \in J} X_{\alpha}$ is the topology generated by the basis $\{\prod_{\alpha \in J} U_{\alpha} : U_{\alpha} \text{ is open in } X_{\alpha} \text{ for all } \alpha\}.$
- The **product topology** on $\prod_{\alpha \in J} X_{\alpha}$ is the topology generated by the basis $\{\prod_{\alpha \in J} U_{\alpha} : U_{\alpha} \text{ is open in } X_{\alpha} \text{ for all } \alpha, \text{ but only finitely many } \alpha \text{ satisfy } U_{\alpha} \neq X_{\alpha}\}.$

For reasons to be seen, the product topology is the most preferred one.

Theorem 2.1. $\bigcup_{\beta \in J} \left\{ \pi_{\beta}^{-1} \left(U_{\beta} \right) \mid U_{\beta} \text{ open in } X_{\beta} \right\}$ is a subbasis for the product topology.

Definition 2.5. Let Y be a subset of a topological space X. The **subspace topology** on Y (with respect to X) consists of sets of the form $Y \cap U$ where U is open in X, i.e.

V open in $Y \Leftrightarrow V = Y \cap U$ where U open in X

Example 2.2. $[0,1]^2$ as a subspace of the dictionary ordered \mathbb{R}^2 and as its own dictionary order topology are different! The set $\{0.5\} \times (0.5,1]$ is open in the former topology but not in the latter. The latter topology is called the **ordered square** I_o^2 .

3 Limit Points

Definition 3.1. Let A be a subset of a topological space X.

- The *interior* of A, denoted Int(A) or \mathring{A} , is the largest open set contained in A.
- The *closure* of A, denoted \overline{A} , is the smallest closed set that contains A.

Definition 3.2. Let A be a subset of a topological space X. We say that $x \in X$ is a *limit point* of A if every neighborhood of x intersects $A \setminus \{x\}$.

Theorem 3.1. $\overline{A} = A \cup \{\text{limit points of } A\}.$

Proof.

- (\subseteq) We prove that if $a \in \overline{A} \backslash A$, then a is a limit point of A. Let U be any neighborhood of a. If $U \cap A = \emptyset$, then $X \backslash U$ is a closed set containing A, so $\overline{A} \cap (X \backslash U)$ is a smaller (no a) closed set than \overline{A} containing A, a contradiction. Hence $U \cap A \neq \emptyset$.
- (\supseteq) Since $A \subseteq \overline{A}$, it suffices to show that all limit points of A are in \overline{A} . Let a be a limit point of A. If $a \notin \overline{A}$, then a lies in the open set $X \setminus \overline{A}$ and hence has a neighborhood $U \subseteq X \setminus \overline{A}$. This means $U \cap \overline{A} = \emptyset \Rightarrow U \cap A = \emptyset$, contradiction.

Corollary 3.1. A set is closed if and only if it contains all its limit points.

Definition 3.3. A space X is **Hausdorff** if for each pair of distinct points $x_1, x_2 \in X$, there exist neighborhoods U_1, U_2 respectively that are disjoint.

Theorem 3.2.

• Every neighborhood of a limit point of a subset A of a Hausdorff space intersects A at *infinitely many* points.

• A sequence of points in a Hausdorff space converges to at most one point of X.

4 Continuous Functions

Definition 4.1. Let X, Y be topological spaces. A function $f: X \to Y$ is

- continuous at $x \in X$ if $f^{-1}(V)$ is open in X for all neighborhoods V of f(x).
- continuous if $f^{-1}(V)$ is open in X for all V open in Y.
- a **homeomorphism** if f is bijective, and f and f^{-1} are continuous.

Theorem 4.1.

- In both box/product topologies, if all X_{α} are Hausdorff, $\prod_{\alpha \in I} X_{\alpha}$ is Hausdorff.
- In both box/product topologies, $\prod_{\alpha \in I} \overline{A_{\alpha}} = \overline{\prod_{\alpha \in I} A_{\alpha}}$.
- In just the product topology, $f = (f_{\alpha})_{\alpha \in J} : A \to \prod_{\alpha \in J} X_{\alpha}$ is continuous if and only if each f_{α} is continuous.

5 Metric Topology

Definition 5.1. A *metric* on X is a function $d: X^2 \to \mathbb{R}$ such that

- $d(x,y) \ge 0$ for all $x,y \in X$ and equality holds if and only if x=y.
- d(x,y) = d(y,x) for all $x, y \in X$.
- $d(x,y) + d(y,z) \ge d(x,z)$ for all $x, y, z \in X$.

d(x,y) is called the **distance** between x and y. The set $B_d(x,\varepsilon) = \{y : d(x,y) < \varepsilon\}$ is called the (open) ε -ball centered at x.

Definition 5.2. The *metric topology* induced by a metric d on X is the topology generated by the collection of all open balls. A topological space X is said to be *metrizable* if there exists some metric that induces the topology of X.

Theorem 5.1. Given a metric d on X, the metric $\overline{d}(x,y) = \min \{d(x,y),1\}$ induces the same topology as d does.

Example 5.1.

- 1. The **euclidean metric** d on \mathbb{R}^n is $d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 y_1)^2 + \cdots + (x_n y_n)^2}$.
- 2. The **standard uniform metric** \overline{d} on \mathbb{R} is $\overline{d}(x,y) = \min\{|x-y|, 1\}$.
- 3. The *uniform metric* $\overline{\rho}$ on \mathbb{R}^J (for any index set J) is $\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup_{\alpha \in J} \overline{d}(x_\alpha, y_\alpha)$.
- 4. The metric $D(\mathbf{x}, \mathbf{y}) = \sup_{i} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}$ induces the product topology on \mathbb{R}^{ω} .

6 Quotient Topology

Definition 6.1.

- Let X, Y be topological spaces. A surjective map $p: X \to Y$ is a **quotient map** if 'U is open in Y if and only if $p^{-1}(U)$ is open in X'. In other words, p is a quotient map if and only if p is continuous and maps **saturated** (some union of $p^{-1}(\{y\})$) open sets of X to open sets of Y.
- Let X be a space, A be a set, and $p: X \to A$ be surjective. The **quotient topology** induced by p is the unique topology on A where p is a quotient map.
- Let X be a space and X^* be a partition of X. X^* is a **quotient space** of X, under the quotient topology induced by the natural mapping $p: X \to X^*$.

Example 6.1. Consider the unit 2-disk $X = D_2 = \{x \times y : x^2 + y^2 \le 1\}$. We let X^* be the partition of X consisting (i) the boundary $S^1 = \{x \times y : x^2 + y^2 = 1\}$, and (ii) the singleton sets $\{x \times y\}$ for all interior points $x^2 + y^2 < 1$. Then we can show that the quotient space X^* is homeomorphic with the subspace of \mathbb{R}^3 called the unit 2-sphere $S^2 = \{x \times y \times z : x^2 + y^2 + z^2 = 1\}$. (See diagram below)

Using similar ideas, we can construct a *torus* from the rectangle $[0,1] \times [0,1]$.

Theorem 6.1. Let $p: X \to Y$ be a quotient map. Let Z be a space and let $g: X \to Z$ be a map that is constant on each one-point preimage $p^{-1}(\{y\})$. Therefore g induces a map $f: Y \to Z$ where $f \circ p = g$. Then

- f is continuous if and only if g is continuous.
- f is a quotient map if and only if g is a quotient map.

7 Connectedness

Definition 7.1. A topological space X is said to be **connected** if there is no nontrivial clopen set A. (Equivalently, there is no $A \notin \{\emptyset, X\}$ where A and $X \setminus A$ are both open.)

Example 7.1. The subspace $(0,1) \cup (2,3)$ of \mathbb{R} is not connected.

Theorem 7.1.

• Let C be clopen in X. Any connected subspace of X lies within either C or $X \setminus C$.

- The union of connected subspaces that have a common point is connected.
- If A is a connected subspace of X and $A \subseteq B \subseteq \overline{A}$ then B is connected.
- A continuous function maps a connected space to a connected image.
- A cartesian product of connected spaces (in the product topology) is connected.

Definition 7.2. A simply ordered set L with more than one element is a *linear continuum* if (i) L has the least upper bound property, and (ii) for any x < y there exists x < z < y.

Theorem 7.2. In an order topology, linear continuums, and intervals and rays in a linear continuum are connected. (Hence intervals in \mathbb{R} are connected.)

Theorem 7.3. (Intermediate Value Theorem)

Let $f: X \to Y$ be continuous, X is connected, and Y is ordered. If $a, b \in X$ and r is a point lying between f(a), f(b), then there exists $c \in X$ such that f(c) = r.

Path-Connectedness

Definition 7.3. A space is *path-connected* if every pair $x, y \in X$ can be joined by a *path* in X: a continuous map $f: [0,1] \to X$ such that f(0) = x and f(1) = y.

Example 7.2. All path-connected spaces are connected. The converse is not true, e.g. the ordered square and the topologist's sine curve

Components and Path Components

Definition 7.4. The equivalence relation $x \sim y$ where there is a (path-)connected subspace containing both x, y partitions the space into (path-)connected **components**.

Local Connectedness

Definition 7.5. A space is *locally (path-)connected at* \boldsymbol{x} if for every neighborhood U of x, there is a (path-)connected neighborhood V of x contained in U.

8 Compactness

Definition 8.1. An *open covering* of X is a collection of open sets that cover X. A space X is *compact* if every open covering of X admits a finite subcovering.

Theorem 8.1.

- Every closed subspace of a compact space is compact.
- If Y is a compact subspace of a Hausdorff space and $x_0 \notin Y$, there exists disjoint open sets U, V containing $\{x_0\}$ and Y respectively.
- Every compact subspace of a Hausdorff space is closed.
- A continuous function maps compact spaces to a compact image.

Theorem 8.2. (Tychonoff Theorem)

A cartesian product of compact spaces is compact.

Compactness via Closed Sets

Definition 8.2. A collection \mathscr{C} of subsets of X has the *finite intersection property* if every finite subcollection has nonempty intersection.

Theorem 8.3. X is compact if and only if for every collection \mathscr{C} of closed sets having the finite intersection property, the intersection $\bigcap_{C \in \mathscr{C}} C$ is nonempty.

Compactness on \mathbb{R}^n

Theorem 8.4. Let X be a simply ordered set having the least upper bound property. Every closed interval in X is compact.

Theorem 8.5. (Heine-Borel)

A subspace A of \mathbb{R}^n is compact if and only if it is closed and bounded (in either the euclidean metric or square metric).

Functions on Compact Spaces

Theorem 8.6. (Extreme Value Theorem)

Let $f: X \to Y$ be continuous, X is compact, and Y is ordered. There exists $c, d \in X$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in X$.

Theorem 8.7. (Lebesgue Number Lemma)

Let \mathscr{A} be an open covering of a metric space (X,d). If X is compact, there exists $\delta > 0$ such that any subset of X with diameter (supremum of pairwise distances) less than δ admits an element of \mathscr{A} containing it. Here δ is a **Lebesgue number** for \mathscr{A} .

Definition 8.3. A function f from metric space (X, d_X) to metric space (Y, d_Y) is **uniformly continuous** if for all $\varepsilon > 0$ there exists $\delta > 0$ such that

$$d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon.$$

Theorem 8.8. (Heine-Cantor)

A continuous function on a compact space is uniformly continuous.

Theorem 8.9. A nonempty compact Hausdorff space with no isolated points (where $\{x\}$ is open) is uncountable. (Hence [0,1] is uncountable)

Proof. Let $\{x_n\}_{n\in\mathbb{N}^*}$ be an enumeration of X. Let $V_0=X$. Given the nonempty open set V_{n-1} , choose V_n to be a nonempty open set such that $V_n\subseteq V_{n-1}$ and $x_n\notin \overline{V_n}$: We can choose this by using the Hausdorff condition on x_n and some other point in V_{n-1} , and then take the intersection of V_{n-1} and the neighborhood around this other point. The nested sequence

$$\overline{V_1} \supseteq \overline{V_2} \supseteq \cdots$$

satisfies the finite intersection property and hence by compactness there exists $x \in \bigcap_n \overline{V_n}$. Such an x cannot be any x_n , because $x_n \notin \overline{V_n}$ but $x \in \overline{V_n}$.

Limit Point Compactness and Sequential Compactness

Definition 8.4.

- X is *limit point compact* if every infinite subset of X has a limit point.
- X is **sequentially compact** if every sequence of points in X admits a convergent subsequence.

Theorem 8.10. When X is metrizable, all three forms of compactness are equivalent.

Proof. (Compact \Rightarrow Limit Point Compact) Let X be compact and say $A \subseteq X$ has no limit points; we prove that A is finite. Since A vacuously contains all limit points, A is closed. Plus, since no element of A is a limit point, every $a \in A$ admits a neighborhood U_a that only intersects A at a alone. $\{X - A\} \cup \{U_a\}_{a \in A}$ is now an open covering of X, and hence admits a finite subcovering. This shows that A is finite. (True even for non-metric spaces)

(Limit Point Compact \Rightarrow Sequentially Compact) Let X be limit point compact and let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in X. If $\{x_n:n\in\mathbb{N}\}$ is finite, then some element repeats infinitely often, i.e. a trivial subsequence. If not, then $\{x_n:n\in\mathbb{N}\}$ has a limit point x. Repeatedly taking arbitrarily small ε -balls of x gives a subsequence converging to it.

(Sequentially Compact \Rightarrow Compact) Let \mathscr{A} be an open covering. We prove two properties:

• X has a Lebesgue number: Assume not, so for each $n \in \mathbb{N}^*$ there exists some C_n with diameter < 1/n that is not contained in any element of \mathscr{A} . Choose an $x_n \in C_n$ for each n, and say some subsequence x_{n_i} converges to x. \mathscr{A} contains some A that contains x, and we can pick some $B(x, 2/n_N) \subseteq A$. Pick $M \geqslant N$ such that $d(x_{n_M}, x) < 1/n_N$. Now since C_{n_M} has diameter $< 1/n_N$, any $c \in C_{n_M}$ satisfies $d(c, x) \leqslant d(c, x_{n_M}) + d(x_{n_M}, x) < 1/n_N$.

 $1/n_N + 1/n_N = 2/n_N$ and hence $C_{n_M} \subseteq A$, a contradiction.

• X is **totally bounded** (can be finitely covered by ε -balls for any $\varepsilon > 0$): Let $\varepsilon > 0$ and $x_0 \in X$. Assume X cannot be finitely covered by ε -balls. Then we can always pick x_{n+1} not in $B(x_1, \varepsilon) \cup \cdots \cup B(x_n, \varepsilon)$, giving a sequence where pairs of points differ by $\geq \varepsilon$, a contradiction.

Now let δ be a Lebesgue number for \mathscr{A} . Let U_1, \dots, U_k be a finite covering of $(\delta/3)$ -balls. Then the diameter of each U_i is $< \delta$, so each U_i is contained within some $A_i \in \mathscr{A}$. Then $\{A_1, \dots, A_k\}$ is a finite subcovering. Hence X is compact.

9 Countability Axioms

Definition 9.1.

• 1st Countability Axiom: There is a countable basis at every $x \in X$, i.e. for each x there exists countably many neighborhoods $\{U_n\}_{n\in\mathbb{N}}$ so that any neighborhood of x contains some U_n .

- 2nd Countability Axiom: There is a countable basis for X.
- *Lindelöf*: Every open covering admits a *countable* subcovering.
- Separable: There is a countable dense subset. (Dense means the closure is X)

Theorem 9.1. 2nd Countability implies the other three.

10 Separation Axioms

Definition 10.1. A topological space X is said to satisfy the T_1 Axiom if all singleton sets are closed. Assuming X is T_1 , we say that it could satisfy

- T_2 (Hausdorff): For each pair of distinct points $x_1, x_2 \in X$, there exist neighborhoods U_1, U_2 respectively that are disjoint.
- T_3 (Regular): For any $x \in X$ and closed set A of X not containing x, there exist open sets U_1, U_2 containing $\{x\}$, A respectively and are disjoint.
- T_4 (Normal): For each pair of disjoint closed sets A, B of X, there exist open sets U_1, U_2 containing A, B respectively and are disjoint.

Theorem 10.1. Normal \Rightarrow Regular \Rightarrow Hausdorff (recall T_1 is assumed)

Theorem 10.2.

- X is regular if and only if for any $x \in X$ and neighborhood U, there exists a neighborhood V such that $\overline{V} \subseteq U$.
- X is normal if and only if for any closed A and open $U \supseteq A$, there exists an open set $V \supseteq A$ such that $\overline{V} \subseteq U$.

Theorem 10.3. T_2 and T_3 are preserved under subspaces and products.

Example 10.1. \mathbb{R}_{ℓ} is normal but the *Sorgengrey plane* \mathbb{R}_{ℓ}^2 is not normal.

Theorem 10.4.

Compact Hausdorff spaces, metrizable spaces, and well-ordered spaces are normal.

Urysohn Lemma

Theorem 10.5. (Urysohn Lemma)

Let X be normal and A, B be disjoint closed sets of X. There exists a continuous map

$$f: X \to [0, 1]$$

such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

Proof. Define open sets U_p for each $p \in \mathbb{Q} \cap [0,1]$ as follows: Enumerate $\mathbb{Q} \cap [0,1]$ such that 1 and 0 are the first two elements. Define $U_1 = X - B$ and by normality pick U_0 such that $A \subseteq U_0 \subseteq \overline{U_0} \subseteq U_1$. By induction, say we defined U_p for a finite number of p's and let p be the next rational in the enumeration. We must have p < r < q where U_p, U_q are already defined. By normality we pick U_r such that $\overline{U_p} \subseteq U_r \subseteq \overline{U_r} \subseteq U_q$.

Additionally, we let $U_p = \emptyset$ for all rationals p < 0 and $U_p = X$ for all rationals p > 1. Hence,

$$p < q \implies \overline{U_p} \subseteq U_q.$$

We then define $f(x) = \inf\{p : x \in U_p\}$. It is easy to see $f(A) = \{0\}$ and $f(B) = \{1\}$. We show that f is continuous.

Lemma 1. $x \in \overline{U_r} \implies f(x) \leqslant r$

Proof. If $x \in \overline{U_r}$, then $x \in U_s$ for every s > r. Hence $f(x) \leq r$.

Lemma 2. $x \notin \overline{U_r} \implies f(x) \geqslant r$.

Proof. If $x \notin \overline{U_r}$, then $x \notin U_s$ for any s < r. Hence $f(x) \ge r$.

Given a ball $I = (f(x) - \delta, f(x) + \delta)$, we wish to find a neighborhood U of x such that $f(U) \subseteq I$. First we choose rational numbers $p, q \in I$ such that p < f(x) < q. Then the open set $U_q \setminus \overline{U_p}$ is the desired neighborhood using the lemmas above.

Urysohn Metrization Theorem

Theorem 10.6. Every Lindelöf regular space is normal.

Proof. Let X be Lindelöf and regular, and let A and B be closed in X. Since B is closed, each point $a \in A$ has a neighborhood U'_a not intersecting B. Using regularity (Theorem 10.2), pick a neighborhood U_a whose closure lies in U'_a . Therefore $\{U_a\}_{a\in A}$ is an open covering of A whose closures do not intersect B. Since X is Lindelöf, there is a countable subcovering $\{U_n\}_{n\in\mathbb{N}}$. Similarly, choose a countable open covering $\{V_n\}_{n\in\mathbb{N}}$ of B where each $\overline{V_n}$ is disjoint from A.

The sets $U = \bigcup U_n$ and $V = \bigcup V_n$ are open sets containing A and B respectively, but they may not be disjoint. We define for each $n \in \mathbb{N}$,

$$U_n^* = U_n \setminus \bigcup_{i=1}^n \overline{V_i}$$
 and $V_n^* = V_n \setminus \bigcup_{i=1}^n \overline{U_i}$.

(Exercise) Then $U^* = \bigcup U_n^*$ and $V^* = \bigcup V_n^*$ are disjoint open sets containing A and B respectively.

Theorem 10.7. (Urysohn Metrization Theorem)

Every 2nd countable regular space is metrizable.

Proof. Let X be regular with a countable basis \mathscr{B} . From Example 5.1, it suffices to imbed X into \mathbb{R}^{ω} . We first prove a lemma:

Lemma. There exists a collection $\{f_n: X \to [0,1]\}_{n \in \mathbb{N}}$ of continuous functions such that given any $x \in X$ and any neighborhood U, there exists some f_n that is positive at x but vanishes outside U.

Proof. For each $B, C \in \mathcal{B}$ with $\overline{B} \subseteq C$, apply the Urysohn Lemma to construct a continuous function $g_{B,C}: X \to [0,1]$ such that $g_{B,C}(\overline{B}) = \{1\}$ and $g_{B,C}(X \setminus C) = \{0\}$. $\{g_{B,C}: \overline{B} \subseteq C\}$ is the desired collection. It is countable because $\mathcal{B} \times \mathcal{B}$ is countable, and given any x with neighborhood U, we can choose by regularity and definition of basis the sequence of open sets $x \in B \subseteq \overline{B} \subseteq C \subseteq U$, and then use $g_{B,C}$.

Using $\{f_n\}_{n\in\mathbb{N}}$ from the Lemma, define $F:X\to\mathbb{R}^\omega$ such that

$$F(x) = (f_0(x), f_1(x), f_2(x), \cdots)$$

Firstly, F is continuous because each component is continuous and \mathbb{R}^{ω} has the *product* topology. Secondly, F is injective because given $x \neq y$, there exists some $f_n(x) > 0 = f_n(y)$ (X is Hausdorff!). It remains to show that for each open set U in X, F(U) is open in F(X).

Let $x \in U$ and f(x) = z. Choose a f_N that is positive at x but vanishes outside U. Let

$$W = F(X) \cap \pi_N^{-1}((0, +\infty))$$

be open in F(X). We claim that $z \in W \subseteq F(U)$. Firstly, we have $z = F(x) \in W$ because $f_N(x) > 0$. Secondly, given any $F(y) \in W$, we must have $f_N(y) > 0$. Since f_N vanishes outside U, y must be in U, so $F(y) \in F(U)$.

Tietze Extension Theorem

Theorem 10.8. (Tietze Extension Theorem)

Let X be normal and A be closed in X. Any continuous map from A to [-1, 1] can be extended to a continuous map from X to [-1, 1]. True also for \mathbb{R} instead of [-1, 1].

Proof.

Lemma. If $f: A \to [-\varepsilon, \varepsilon]$ is continuous, there exists continuous $g: X \to \mathbb{R}$ with $g(X) \subseteq [-\varepsilon/3, \varepsilon/3]$ and $(g-f)(A) \subseteq [-2\varepsilon/3, 2\varepsilon/3]$.

Proof. Applying the Urysohn Lemma on the disjoint closed sets $L = f^{-1}([-\varepsilon, -\varepsilon/3])$ and $R = f^{-1}([\varepsilon/3, \varepsilon])$, there exists $g: X \to [-\varepsilon/3, \varepsilon/3]$ such that $g(L) = \{-\varepsilon/3\}$ and $g(R) = \{\varepsilon/3\}$. This g works.

Now let $f: A \to [-1,1]$ be continuous. Then we can find $g_1: X \to [-1/3,1/3]$ such that $|f(a) - g_1(a)| \le 2/3$ for all $a \in A$. Then we apply the Lemma on $f - g_1$ again, so we get $g_2: X \to [-2/9,2/9]$ such that $|f(a) - g_1(a) - g_2(a)| \le 4/9$. Recursively, we get a sequence of functions g_n such that $g_{n+1}: X \to [-(2/3)^n/3, (2/3)^n/3]$ and

$$|f(a) - g_1(a) - \dots - g_{n+1}(a)| \le \left(\frac{2}{3}\right)^{n+1}.$$

By the Weierstrass M-test, $g(x) = \sum_{n=1}^{\infty} g_n(x)$ converges to the desired function (Exercise).

To show the \mathbb{R} version, it suffices to show the (-1,1) version since they are homeomorphic. Take g from the [-1,1] case. Apply the Urysohn Lemma to the disjoint closed sets A and $D = g^{-1}(\{-1\}) \cup g^{-1}(\{1\})$ to get a continuous $\varphi : X \to [0,1]$ so that $\varphi(D) = \{0\}$ and $\varphi(A) = \{1\}$. Then $h(x) = \varphi(x)g(x)$ works.