Understanding Deep Learning Equations

February 23, 2025

Introduction

Supervised Learning

$$\mathbf{y} = \mathbf{f}[\mathbf{x}]. \tag{2.1}$$

$$\mathbf{y} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]. \tag{2.2}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \Big[L\left[\boldsymbol{\phi} \right] \Big]. \tag{2.3}$$

$$y = f[x, \phi]$$

= $\phi_0 + \phi_1 x$. (2.4)

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2.$$
(2.5)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right]
= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \left(f[x_i, \boldsymbol{\phi}] - y_i \right)^2 \right]
= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \left(\phi_0 + \phi_1 x_i - y_i \right)^2 \right].$$
(2.6)

Shallow neural networks

$$y = f[x, \phi]$$

= $\phi_0 + \phi_1 a[\theta_{10} + \theta_{11}x] + \phi_2 a[\theta_{20} + \theta_{21}x] + \phi_3 a[\theta_{30} + \theta_{31}x].$ (3.1)

$$a[z] = \text{ReLU}[z] = \begin{cases} 0 & z < 0 \\ z & z \ge 0 \end{cases}.$$
 (3.2)

$$h_{1} = a[\theta_{10} + \theta_{11}x]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x]$$

$$h_{3} = a[\theta_{30} + \theta_{31}x],$$
(3.3)

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3. \tag{3.4}$$

$$h_d = \mathbf{a}[\theta_{d0} + \theta_{d1}x],\tag{3.5}$$

$$y = \phi_0 + \sum_{d=1}^{D} \phi_d h_d. \tag{3.6}$$

$$h_{1} = a[\theta_{10} + \theta_{11}x]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x]$$

$$h_{3} = a[\theta_{30} + \theta_{31}x]$$

$$h_{4} = a[\theta_{40} + \theta_{41}x],$$
(3.7)

$$y_1 = \phi_{10} + \phi_{11}h_1 + \phi_{12}h_2 + \phi_{13}h_3 + \phi_{14}h_4$$

$$y_2 = \phi_{20} + \phi_{21}h_1 + \phi_{22}h_2 + \phi_{23}h_3 + \phi_{24}h_4.$$
 (3.8)

$$h_{1} = a[\theta_{10} + \theta_{11}x_{1} + \theta_{12}x_{2}]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x_{1} + \theta_{22}x_{2}]$$

$$h_{3} = a[\theta_{30} + \theta_{31}x_{1} + \theta_{32}x_{2}],$$
(3.9)

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3. \tag{3.10}$$

$$h_d = a \left[\theta_{d0} + \sum_{i=1}^{D_i} \theta_{di} x_i \right],$$
 (3.11)

$$y_j = \phi_{j0} + \sum_{d=1}^{D} \phi_{jd} h_d, \tag{3.12}$$

HardSwish[z] =
$$\begin{cases} 0 & z < -3 \\ z(z+3)/6 & -3 \le z \le 3 \\ z & z > 3 \end{cases}$$
 (3.13)

$$ReLU[\alpha \cdot z] = \alpha \cdot ReLU[z]. \tag{3.14}$$

Deep neural networks

$$h_1 = a[\theta_{10} + \theta_{11}x]$$

 $h_2 = a[\theta_{20} + \theta_{21}x]$
 $h_3 = a[\theta_{30} + \theta_{31}x],$ (4.1)

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3. \tag{4.2}$$

$$h'_{1} = a[\theta'_{10} + \theta'_{11}y]$$

$$h'_{2} = a[\theta'_{20} + \theta'_{21}y]$$

$$h'_{3} = a[\theta'_{30} + \theta'_{31}y],$$
(4.3)

$$y' = \phi_0' + \phi_1' h_1' + \phi_2' h_2' + \phi_3' h_3'. \tag{4.4}$$

$$h'_{1} = a[\theta'_{10} + \theta'_{11}y] = a[\theta'_{10} + \theta'_{11}\phi_{0} + \theta'_{11}\phi_{1}h_{1} + \theta'_{11}\phi_{2}h_{2} + \theta'_{11}\phi_{3}h_{3}]$$

$$h'_{2} = a[\theta'_{20} + \theta'_{21}y] = a[\theta'_{20} + \theta'_{21}\phi_{0} + \theta'_{21}\phi_{1}h_{1} + \theta'_{21}\phi_{2}h_{2} + \theta'_{21}\phi_{3}h_{3}]$$

$$h'_{3} = a[\theta'_{30} + \theta'_{31}y] = a[\theta'_{30} + \theta'_{31}\phi_{0} + \theta'_{31}\phi_{1}h_{1} + \theta'_{31}\phi_{2}h_{2} + \theta'_{31}\phi_{3}h_{3}], (4.5)$$

$$h'_{1} = a[\psi_{10} + \psi_{11}h_{1} + \psi_{12}h_{2} + \psi_{13}h_{3}]$$

$$h'_{2} = a[\psi_{20} + \psi_{21}h_{1} + \psi_{22}h_{2} + \psi_{23}h_{3}]$$

$$h'_{3} = a[\psi_{30} + \psi_{31}h_{1} + \psi_{32}h_{2} + \psi_{33}h_{3}],$$

$$(4.6)$$

$$h_1 = a[\theta_{10} + \theta_{11}x]$$

 $h_2 = a[\theta_{20} + \theta_{21}x]$
 $h_3 = a[\theta_{30} + \theta_{31}x],$ (4.7)

$$h'_{1} = a[\psi_{10} + \psi_{11}h_{1} + \psi_{12}h_{2} + \psi_{13}h_{3}]$$

$$h'_{2} = a[\psi_{20} + \psi_{21}h_{1} + \psi_{22}h_{2} + \psi_{23}h_{3}]$$

$$h'_{3} = a[\psi_{30} + \psi_{31}h_{1} + \psi_{32}h_{2} + \psi_{33}h_{3}],$$
(4.8)

$$y' = \phi_0' + \phi_1' h_1' + \phi_2' h_2' + \phi_3' h_3'. \tag{4.9}$$

$$y' = \phi'_{0} + \phi'_{1} a \left[\psi_{10} + \psi_{11} a \left[\theta_{10} + \theta_{11} x \right] + \psi_{12} a \left[\theta_{20} + \theta_{21} x \right] + \psi_{13} a \left[\theta_{30} + \theta_{31} x \right] \right] + \phi'_{2} a \left[\psi_{20} + \psi_{21} a \left[\theta_{10} + \theta_{11} x \right] + \psi_{22} a \left[\theta_{20} + \theta_{21} x \right] + \psi_{23} a \left[\theta_{30} + \theta_{31} x \right] \right] + \phi'_{3} a \left[\psi_{30} + \psi_{31} a \left[\theta_{10} + \theta_{11} x \right] + \psi_{32} a \left[\theta_{20} + \theta_{21} x \right] + \psi_{33} a \left[\theta_{30} + \theta_{31} x \right] \right],$$

$$(4.10)$$

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \mathbf{a} \begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} x \end{bmatrix}, \tag{4.11}$$

$$\begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix} = \mathbf{a} \begin{bmatrix} \psi_{10} \\ \psi_{20} \\ \psi_{30} \end{bmatrix} + \begin{bmatrix} \psi_{11} & \psi_{12} & \psi_{13} \\ \psi_{21} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix},$$
(4.12)

$$y' = \phi'_0 + \begin{bmatrix} \phi'_1 & \phi'_2 & \phi'_3 \end{bmatrix} \begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix},$$
 (4.13)

$$\mathbf{h} = \mathbf{a} [\boldsymbol{\theta}_0 + \boldsymbol{\theta} x]$$

$$\mathbf{h}' = \mathbf{a} [\boldsymbol{\psi}_0 + \boldsymbol{\Psi} \mathbf{h}]$$

$$y' = \phi'_0 + \boldsymbol{\phi}' \mathbf{h}', \tag{4.14}$$

$$\mathbf{h}_{1} = \mathbf{a}[\boldsymbol{\beta}_{0} + \boldsymbol{\Omega}_{0}\mathbf{x}]$$

$$\mathbf{h}_{2} = \mathbf{a}[\boldsymbol{\beta}_{1} + \boldsymbol{\Omega}_{1}\mathbf{h}_{1}]$$

$$\mathbf{h}_{3} = \mathbf{a}[\boldsymbol{\beta}_{2} + \boldsymbol{\Omega}_{2}\mathbf{h}_{2}]$$

$$\vdots$$

$$\mathbf{h}_{K} = \mathbf{a}[\boldsymbol{\beta}_{K-1} + \boldsymbol{\Omega}_{K-1}\mathbf{h}_{K-1}]$$

$$\mathbf{y} = \boldsymbol{\beta}_{K} + \boldsymbol{\Omega}_{K}\mathbf{h}_{K}.$$

$$(4.15)$$

$$\mathbf{y} = \boldsymbol{\beta}_K + \boldsymbol{\Omega}_K \mathbf{a} \left[\boldsymbol{\beta}_{K-1} + \boldsymbol{\Omega}_{K-1} \mathbf{a} \left[\dots \boldsymbol{\beta}_2 + \boldsymbol{\Omega}_2 \mathbf{a} \left[\boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{a} \left[\boldsymbol{\beta}_0 + \boldsymbol{\Omega}_0 \mathbf{x} \right] \right] \dots \right] \right]. \tag{4.16}$$

$$N_r = \left(\frac{D}{D_i} + 1\right)^{D_i(K-1)} \cdot \sum_{j=0}^{D_i} {D \choose j}.$$
 (4.17)

$$\operatorname{ReLU}\left[\boldsymbol{\beta}_{1} + \lambda_{1} \cdot \boldsymbol{\Omega}_{1} \operatorname{ReLU}\left[\boldsymbol{\beta}_{0} + \lambda_{0} \cdot \boldsymbol{\Omega}_{0} \mathbf{x}\right]\right] = \lambda_{0} \lambda_{1} \cdot \operatorname{ReLU}\left[\frac{1}{\lambda_{0} \lambda_{1}} \boldsymbol{\beta}_{1} + \boldsymbol{\Omega}_{1} \operatorname{ReLU}\left[\frac{1}{\lambda_{0}} \boldsymbol{\beta}_{0} + \boldsymbol{\Omega}_{0} \mathbf{x}\right]\right] (4.18)$$

Loss functions

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i}|\mathbf{x}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i}|\boldsymbol{\theta}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i}|\mathbf{f}[\mathbf{x}_{i},\boldsymbol{\phi}]) \right]. \tag{5.1}$$

$$Pr(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_I | \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_I) = \prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{x}_i).$$
 (5.2)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]
= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]
= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right].$$
(5.3)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]
= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right],$$
(5.4)

$$\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{argmax}} \left[Pr(\mathbf{y} | \mathbf{f}[\mathbf{x}, \hat{\boldsymbol{\phi}}]) \right]. \tag{5.5}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]. \tag{5.6}$$

$$Pr(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]. \tag{5.7}$$

$$Pr(y|f[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - f[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right].$$
 (5.8)

$$L[\phi] = -\sum_{i=1}^{I} \log \left[Pr(y_i | f[\mathbf{x}_i, \phi], \sigma^2) \right]$$
$$= -\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right]. \tag{5.9}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \left(\log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2 \right], \qquad (5.10)$$

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} (y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2.$$
 (5.11)

$$\hat{y} = \underset{y}{\operatorname{argmax}} \left[Pr(y|f[\mathbf{x}, \hat{\boldsymbol{\phi}}], \sigma^2) \right]. \tag{5.12}$$

$$\hat{\boldsymbol{\phi}}, \hat{\sigma}^2 = \underset{\boldsymbol{\phi}, \sigma^2}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]. \tag{5.13}$$

$$\mu = f_1[\mathbf{x}, \boldsymbol{\phi}]$$

$$\sigma^2 = f_2[\mathbf{x}, \boldsymbol{\phi}]^2, \qquad (5.14)$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \left(\log \left[\frac{1}{\sqrt{2\pi f_2[\mathbf{x}_i, \boldsymbol{\phi}]^2}} \right] - \frac{(y_i - f_1[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2f_2[\mathbf{x}_i, \boldsymbol{\phi}]^2} \right) \right]. \tag{5.15}$$

$$Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0\\ \lambda & y = 1 \end{cases}, \tag{5.16}$$

$$Pr(y|\lambda) = (1-\lambda)^{1-y} \cdot \lambda^{y}. \tag{5.17}$$

$$sig[z] = \frac{1}{1 + \exp[-z]}. (5.18)$$

$$Pr(y|\mathbf{x}) = (1 - \operatorname{sig}[f[\mathbf{x}, \boldsymbol{\phi}]])^{1-y} \cdot \operatorname{sig}[f[\mathbf{x}, \boldsymbol{\phi}]]^{y}.$$
 (5.19)

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} -(1 - y_i) \log \left[1 - \operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right] - y_i \log \left[\operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right].$$
 (5.20)

$$Pr(y=k) = \lambda_k. (5.21)$$

$$\operatorname{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_{k}]}{\sum_{k'=1}^{K} \exp[z_{k'}]},$$
(5.22)

$$Pr(y = k|\mathbf{x}) = \operatorname{softmax}_{k} [\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]].$$
 (5.23)

$$L[\phi] = -\sum_{i=1}^{I} \log \left[\operatorname{softmax}_{y_i} \left[\mathbf{f} \left[\mathbf{x}_i, \phi \right] \right] \right]$$

$$= -\sum_{i=1}^{I} \left(f_{y_i} \left[\mathbf{x}_i, \phi \right] - \log \left[\sum_{k'=1}^{K} \exp \left[f_{k'} \left[\mathbf{x}_i, \phi \right] \right] \right] \right), \qquad (5.24)$$

$$Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]) = \prod_{d} Pr(y_d|\mathbf{f}_d[\mathbf{x}, \boldsymbol{\phi}]), \tag{5.25}$$

$$L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] = -\sum_{i=1}^{I} \sum_{d} \log \left[Pr(y_{id} | \mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}]) \right].$$
 (5.26)

$$D_{KL}[q||p] = \int_{-\infty}^{\infty} q(z) \log[q(z)] dz - \int_{-\infty}^{\infty} q(z) \log[p(z)] dz.$$
 (5.27)

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \tag{5.28}$$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log[q(y)] dy - \int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]
= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right],$$
(5.29)

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]
= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\frac{1}{I} \sum_{i=1}^{I} \log[Pr(y_i|\boldsymbol{\theta})] \right]
= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log[Pr(y_i|\boldsymbol{\theta})] \right].$$
(5.30)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(y_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]. \tag{5.31}$$

$$sig[z] = \frac{1}{1 + \exp[-z]}. (5.32)$$

$$L = -(1 - y) \log \left[1 - \operatorname{sig}[f[\mathbf{x}, \boldsymbol{\phi}]] \right] - y \log \left[\operatorname{sig}[f[\mathbf{x}, \boldsymbol{\phi}]] \right], \tag{5.33}$$

$$Pr(y|\mu,\kappa) = \frac{\exp\left[\kappa \cos[y-\mu]\right]}{2\pi \cdot \text{Bessel}_0[\kappa]},\tag{5.34}$$

$$Pr(y|\lambda, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2) = \frac{\lambda}{\sqrt{2\pi\sigma_1^2}} \exp\left[\frac{-(y-\mu_1)^2}{2\sigma_1^2}\right] + \frac{1-\lambda}{\sqrt{2\pi\sigma_2^2}} \exp\left[\frac{-(y-\mu_2)^2}{2\sigma_2^2}\right], (5.35)$$

$$Pr(y=k) = \frac{\lambda^k e^{-\lambda}}{k!}. (5.36)$$

Fitting models

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \Big[L[\boldsymbol{\phi}] \Big]. \tag{6.1}$$

$$\frac{\partial L}{\partial \phi} = \begin{bmatrix} \frac{\partial L}{\partial \phi_0} \\ \frac{\partial L}{\partial \phi_1} \\ \vdots \\ \frac{\partial L}{\partial \phi_N} \end{bmatrix} . \tag{6.2}$$

$$\phi \longleftarrow \phi - \alpha \cdot \frac{\partial L}{\partial \phi},\tag{6.3}$$

$$y = f[x, \phi]$$

= $\phi_0 + \phi_1 x$. (6.4)

$$L[\phi] = \sum_{i=1}^{I} \ell_{i} = \sum_{i=1}^{I} (f[x_{i}, \phi] - y_{i})^{2}$$
$$= \sum_{i=1}^{I} (\phi_{0} + \phi_{1}x_{i} - y_{i})^{2}, \qquad (6.5)$$

$$\frac{\partial L}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \phi}, \tag{6.6}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}. \tag{6.7}$$

$$f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{32.0}\right).$$
 (6.8)

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2.$$
 (6.9)

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \cdot \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi},$$
 (6.10)

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}, \tag{6.11}$$

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_{t} + (1 - \beta) \sum_{i \in \mathcal{B}_{t}} \frac{\partial \ell_{i} [\phi_{t} - \alpha \beta \cdot \mathbf{m}_{t}]}{\partial \phi}$$

$$\phi_{t+1} \leftarrow \phi_{t} - \alpha \cdot \mathbf{m}_{t+1}, \qquad (6.12)$$

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial L[\phi_t]}{\partial \phi}$$

$$\mathbf{v}_{t+1} \leftarrow \left(\frac{\partial L[\phi_t]}{\partial \phi}\right)^2. \tag{6.13}$$

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon},$$
 (6.14)

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_{t} + (1 - \beta) \frac{\partial L[\phi_{t}]}{\partial \phi}$$

$$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_{t} + (1 - \gamma) \left(\frac{\partial L[\phi_{t}]}{\partial \phi} \right)^{2}, \tag{6.15}$$

$$\tilde{\mathbf{m}}_{t+1} \leftarrow \frac{\mathbf{m}_{t+1}}{1 - \beta^{t+1}}$$

$$\tilde{\mathbf{v}}_{t+1} \leftarrow \frac{\mathbf{v}_{t+1}}{1 - \gamma^{t+1}}.$$
(6.16)

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\tilde{\mathbf{m}}_{t+1}}{\sqrt{\tilde{\mathbf{v}}_{t+1}} + \epsilon}.$$
 (6.17)

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_{t} + (1 - \beta) \sum_{i \in \mathcal{B}_{t}} \frac{\partial \ell_{i}[\phi_{t}]}{\partial \phi}$$

$$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_{t} + (1 - \gamma) \left(\sum_{i \in \mathcal{B}_{t}} \frac{\partial \ell_{i}[\phi_{t}]}{\partial \phi} \right)^{2}, \tag{6.18}$$

$$\mathbf{H}[\boldsymbol{\phi}] = \begin{bmatrix} \frac{\partial^{2}L}{\partial\phi_{0}^{2}} & \frac{\partial^{2}L}{\partial\phi_{0}\partial\phi_{1}} & \cdots & \frac{\partial^{2}L}{\partial\phi_{0}\partial\phi_{N}} \\ \frac{\partial^{2}L}{\partial\phi_{1}\partial\phi_{0}} & \frac{\partial^{2}L}{\partial\phi_{1}^{2}} & \cdots & \frac{\partial^{2}L}{\partial\phi_{1}\partial\phi_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}L}{\partial\phi_{N}\partial\phi_{0}} & \frac{\partial^{2}L}{\partial\phi_{N}\partial\phi_{1}} & \cdots & \frac{\partial^{2}L}{\partial\phi_{N}^{2}} \end{bmatrix}.$$
(6.19)

$$\mathbf{H}[\boldsymbol{\phi}] = \begin{bmatrix} \frac{\partial^2 L}{\partial \phi_0^2} & \frac{\partial^2 L}{\partial \phi_0 \partial \phi_1} \\ \frac{\partial^2 L}{\partial \phi_1 \partial \phi_0} & \frac{\partial^2 L}{\partial \phi_1^2} \end{bmatrix}, \tag{6.20}$$

$$Pr(y = 1|x) = sig[\phi_0 + \phi_1 x],$$
 (6.21)

$$sig[z] = \frac{1}{1 + \exp[-z]}. (6.22)$$

$$f[x, \phi] = \phi_0 + \phi_1 a[\theta_{10} + \theta_{11}x] + \phi_2 a[\theta_{20} + \theta_{21}x] + \phi_3 a[\theta_{30} + \theta_{31}x]. \tag{6.23}$$

Gradients and initialization

$$\mathbf{h}_{1} = \mathbf{a}[\boldsymbol{\beta}_{0} + \boldsymbol{\Omega}_{0}\mathbf{x}]$$

$$\mathbf{h}_{2} = \mathbf{a}[\boldsymbol{\beta}_{1} + \boldsymbol{\Omega}_{1}\mathbf{h}_{1}]$$

$$\mathbf{h}_{3} = \mathbf{a}[\boldsymbol{\beta}_{2} + \boldsymbol{\Omega}_{2}\mathbf{h}_{2}]$$

$$\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}] = \boldsymbol{\beta}_{3} + \boldsymbol{\Omega}_{3}\mathbf{h}_{3}, \tag{7.1}$$

$$L[\phi] = \sum_{i=1}^{I} \ell_i. \tag{7.2}$$

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i \in \mathcal{B}_*} \frac{\partial \ell_i[\phi_t]}{\partial \phi},$$
 (7.3)

$$\frac{\partial \ell_i}{\partial \boldsymbol{\beta}_k}$$
 and $\frac{\partial \ell_i}{\partial \boldsymbol{\Omega}_k}$, (7.4)

$$f[x, \phi] = \beta_3 + \omega_3 \cdot \cos \left[\beta_2 + \omega_2 \cdot \exp \left[\beta_1 + \omega_1 \cdot \sin \left[\beta_0 + \omega_0 \cdot x \right] \right] \right], \tag{7.5}$$

$$\ell_i = (\mathbf{f}[x_i, \boldsymbol{\phi}] - y_i)^2, \tag{7.6}$$

$$\frac{\partial \ell_i}{\partial \beta_0}$$
, $\frac{\partial \ell_i}{\partial \omega_0}$, $\frac{\partial \ell_i}{\partial \beta_1}$, $\frac{\partial \ell_i}{\partial \omega_1}$, $\frac{\partial \ell_i}{\partial \beta_2}$, $\frac{\partial \ell_i}{\partial \omega_2}$, $\frac{\partial \ell_i}{\partial \beta_3}$, and $\frac{\partial \ell_i}{\partial \omega_3}$. (7.7)

$$\frac{\partial \ell_i}{\partial \omega_0} = -2 \left(\beta_3 + \omega_3 \cdot \cos \left[\beta_2 + \omega_2 \cdot \exp \left[\beta_1 + \omega_1 \cdot \sin \left[\beta_0 + \omega_0 \cdot x_i \right] \right] \right] - y_i \right)
\cdot \omega_1 \omega_2 \omega_3 \cdot x_i \cdot \cos \left[\beta_0 + \omega_0 \cdot x_i \right] \cdot \exp \left[\beta_1 + \omega_1 \cdot \sin \left[\beta_0 + \omega_0 \cdot x_i \right] \right]
\cdot \sin \left[\beta_2 + \omega_2 \cdot \exp \left[\beta_1 + \omega_1 \cdot \sin \left[\beta_0 + \omega_0 \cdot x_i \right] \right] \right].$$
(7.8)

$$f_{0} = \beta_{0} + \omega_{0} \cdot x_{i}$$

$$h_{1} = \sin[f_{0}]$$

$$f_{1} = \beta_{1} + \omega_{1} \cdot h_{1}$$

$$h_{2} = \exp[f_{1}]$$

$$f_{2} = \beta_{2} + \omega_{2} \cdot h_{2}$$

$$h_{3} = \cos[f_{2}]$$

$$f_{3} = \beta_{3} + \omega_{3} \cdot h_{3}$$

$$\ell_{i} = (f_{3} - y_{i})^{2}.$$
(7.9)

$$\frac{\partial \ell_i}{\partial f_3}$$
, $\frac{\partial \ell_i}{\partial h_3}$, $\frac{\partial \ell_i}{\partial f_2}$, $\frac{\partial \ell_i}{\partial h_2}$, $\frac{\partial \ell_i}{\partial f_1}$, $\frac{\partial \ell_i}{\partial h_1}$, and $\frac{\partial \ell_i}{\partial f_0}$. (7.10)

$$\frac{\partial \ell_i}{\partial f_3} = 2(f_3 - y_i). \tag{7.11}$$

$$\frac{\partial \ell_i}{\partial h_3} = \frac{\partial f_3}{\partial h_3} \frac{\partial \ell_i}{\partial f_3}.$$
 (7.12)

$$\frac{\partial \ell_{i}}{\partial f_{2}} = \frac{\partial h_{3}}{\partial f_{2}} \left(\frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)
\frac{\partial \ell_{i}}{\partial h_{2}} = \frac{\partial f_{2}}{\partial h_{2}} \left(\frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)
\frac{\partial \ell_{i}}{\partial f_{1}} = \frac{\partial h_{2}}{\partial f_{1}} \left(\frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)
\frac{\partial \ell_{i}}{\partial h_{1}} = \frac{\partial f_{1}}{\partial h_{1}} \left(\frac{\partial h_{2}}{\partial f_{1}} \frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right)
\frac{\partial \ell_{i}}{\partial f_{0}} = \frac{\partial h_{1}}{\partial f_{0}} \left(\frac{\partial f_{1}}{\partial h_{1}} \frac{\partial h_{2}}{\partial f_{1}} \frac{\partial f_{2}}{\partial h_{2}} \frac{\partial h_{3}}{\partial f_{2}} \frac{\partial f_{3}}{\partial h_{3}} \frac{\partial \ell_{i}}{\partial f_{3}} \right).$$
(7.13)

$$\frac{\partial \ell_i}{\partial \beta_k} = \frac{\partial f_k}{\partial \beta_k} \frac{\partial \ell_i}{\partial f_k}
\frac{\partial \ell_i}{\partial \omega_k} = \frac{\partial f_k}{\partial \omega_k} \frac{\partial \ell_i}{\partial f_k}.$$
(7.14)

$$\frac{\partial f_k}{\partial \beta_k} = 1$$
 and $\frac{\partial f_k}{\partial \omega_k} = h_k.$ (7.15)

$$\frac{\partial f_0}{\partial \beta_0} = 1$$
 and $\frac{\partial f_0}{\partial \omega_0} = x_i$. (7.16)

$$\mathbf{f}_{0} = \boldsymbol{\beta}_{0} + \boldsymbol{\Omega}_{0} \mathbf{x}_{i}$$

$$\mathbf{h}_{1} = \mathbf{a}[\mathbf{f}_{0}]$$

$$\mathbf{f}_{1} = \boldsymbol{\beta}_{1} + \boldsymbol{\Omega}_{1} \mathbf{h}_{1}$$

$$\mathbf{h}_{2} = \mathbf{a}[\mathbf{f}_{1}]$$

$$\mathbf{f}_{2} = \boldsymbol{\beta}_{2} + \boldsymbol{\Omega}_{2} \mathbf{h}_{2}$$

$$\mathbf{h}_{3} = \mathbf{a}[\mathbf{f}_{2}]$$

$$\mathbf{f}_{3} = \boldsymbol{\beta}_{3} + \boldsymbol{\Omega}_{3} \mathbf{h}_{3}$$

$$\ell_{i} = \mathbf{1}[\mathbf{f}_{3}, y_{i}], \tag{7.17}$$

$$\frac{\partial \ell_i}{\partial \mathbf{f}_2} = \frac{\partial \mathbf{h}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} \frac{\partial \ell_i}{\partial \mathbf{f}_3}.$$
 (7.18)

$$\frac{\partial \ell_i}{\partial \mathbf{f}_1} = \frac{\partial \mathbf{h}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_2}{\partial \mathbf{h}_2} \left(\frac{\partial \mathbf{h}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} \frac{\partial \ell_i}{\partial \mathbf{f}_3} \right)$$
(7.19)

$$\frac{\partial \ell_{i}}{\partial \mathbf{f}_{1}} = \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{h}_{2}} \left(\frac{\partial \mathbf{h}_{3}}{\partial \mathbf{f}_{2}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{h}_{3}} \frac{\partial \ell_{i}}{\partial \mathbf{f}_{3}} \right)$$

$$\frac{\partial \ell_{i}}{\partial \mathbf{f}_{0}} = \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{f}_{0}} \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{h}_{1}} \left(\frac{\partial \mathbf{h}_{2}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{h}_{2}} \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{f}_{2}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{h}_{3}} \frac{\partial \ell_{i}}{\partial \mathbf{f}_{3}} \right).$$

$$(7.19)$$

$$\frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} = \frac{\partial}{\partial \mathbf{h}_3} \left(\boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3 \right) = \boldsymbol{\Omega}_3^T. \tag{7.21}$$

$$\frac{\partial \ell_{i}}{\partial \boldsymbol{\beta}_{k}} = \frac{\partial \mathbf{f}_{k}}{\partial \boldsymbol{\beta}_{k}} \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}}
= \frac{\partial}{\partial \boldsymbol{\beta}_{k}} (\boldsymbol{\beta}_{k} + \boldsymbol{\Omega}_{k} \mathbf{h}_{k}) \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}}
= \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}},$$
(7.22)

$$\frac{\partial \ell_{i}}{\partial \mathbf{\Omega}_{k}} = \frac{\partial \mathbf{f}_{k}}{\partial \mathbf{\Omega}_{k}} \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}}$$

$$= \frac{\partial}{\partial \mathbf{\Omega}_{k}} (\boldsymbol{\beta}_{k} + \mathbf{\Omega}_{k} \mathbf{h}_{k}) \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}}$$

$$= \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}} \mathbf{h}_{k}^{T}.$$
(7.23)

$$\mathbf{f}_{0} = \boldsymbol{\beta}_{0} + \boldsymbol{\Omega}_{0} \mathbf{x}_{i}$$

$$\mathbf{h}_{k} = \mathbf{a}[\mathbf{f}_{k-1}] \qquad k \in \{1, 2, \dots, K\}$$

$$\mathbf{f}_{k} = \boldsymbol{\beta}_{k} + \boldsymbol{\Omega}_{k} \mathbf{h}_{k}. \qquad k \in \{1, 2, \dots, K\}$$

$$(7.24)$$

$$\frac{\partial \ell_{i}}{\partial \boldsymbol{\beta}_{k}} = \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}} \qquad k \in \{K, K-1, \dots, 1\}
\frac{\partial \ell_{i}}{\partial \boldsymbol{\Omega}_{k}} = \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}} \mathbf{h}_{k}^{T} \qquad k \in \{K, K-1, \dots, 1\}
\frac{\partial \ell_{i}}{\partial \mathbf{f}_{k-1}} = \mathbb{I}[\mathbf{f}_{k-1} > 0] \odot \left(\boldsymbol{\Omega}_{k}^{T} \frac{\partial \ell_{i}}{\partial \mathbf{f}_{k}}\right), \qquad k \in \{K, K-1, \dots, 1\}$$
(7.25)

$$\frac{\partial \ell_i}{\partial \boldsymbol{\beta}_0} = \frac{\partial \ell_i}{\partial \mathbf{f}_0}
\frac{\partial \ell_i}{\partial \boldsymbol{\Omega}_0} = \frac{\partial \ell_i}{\partial \mathbf{f}_0} \mathbf{x}_i^T.$$
(7.26)

$$\mathbf{f}_{k} = \boldsymbol{\beta}_{k} + \boldsymbol{\Omega}_{k} \mathbf{h}_{k}$$

$$= \boldsymbol{\beta}_{k} + \boldsymbol{\Omega}_{k} \mathbf{a} [\mathbf{f}_{k-1}], \qquad (7.27)$$

$$\mathbf{h} = \mathbf{a}[\mathbf{f}],$$

$$\mathbf{f}' = \boldsymbol{\beta} + \boldsymbol{\Omega}\mathbf{h}$$
(7.28)

$$\mathbb{E}[f_i'] = \mathbb{E}\left[\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij} h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij}\right] \mathbb{E}\left[h_j\right]$$

$$= 0 + \sum_{j=1}^{D_h} 0 \cdot \mathbb{E}\left[h_j\right] = 0,$$
(7.29)

$$\sigma_{f_i'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2$$

$$= \mathbb{E}\left[\left(\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right] - 0$$

$$= \mathbb{E}\left[\left(\sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right]$$

$$= \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij}^2\right] \mathbb{E}\left[h_j^2\right]$$

$$= \sum_{j=1}^{D_h} \sigma_{\Omega}^2 \mathbb{E}\left[h_j^2\right] = \sigma_{\Omega}^2 \sum_{j=1}^{D_h} \mathbb{E}\left[h_j^2\right], \qquad (7.30)$$

$$\sigma_{f_i'}^2 = \sigma_{\Omega}^2 \sum_{i=1}^{D_h} \frac{\sigma_f^2}{2} = \frac{1}{2} D_h \sigma_{\Omega}^2 \sigma_f^2.$$
 (7.31)

$$\sigma_{\Omega}^2 = \frac{2}{D_h},\tag{7.32}$$

$$\sigma_{\Omega}^2 = \frac{2}{D_{h'}},\tag{7.33}$$

$$\sigma_{\Omega}^2 = \frac{4}{D_b + D_{b'}}.\tag{7.34}$$

$$y = \phi_0 + \phi_1 \mathbf{a} \Big[\psi_{01} + \psi_{11} \mathbf{a} [\theta_{01} + \theta_{11} x] + \psi_{21} \mathbf{a} [\theta_{02} + \theta_{12} x] \Big]$$
$$+ \phi_2 \mathbf{a} \Big[\psi_{02} + \psi_{12} \mathbf{a} [\theta_{01} + \theta_{11} x] + \psi_{22} \mathbf{a} [\theta_{02} + \theta_{12} x] \Big], \tag{7.35}$$

$$\ell_i = (y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2. \tag{7.36}$$

$$\ell_i = -(1 - y_i) \log \left[1 - \operatorname{sig} \left[f[\mathbf{x}_i, \boldsymbol{\phi}] \right] \right] - y_i \log \left[\operatorname{sig} \left[f[\mathbf{x}_i, \boldsymbol{\phi}] \right] \right], \tag{7.37}$$

$$sig[z] = \frac{1}{1 + \exp[-z]}. (7.38)$$

$$\frac{\partial \mathbf{z}}{\partial \mathbf{h}} = \mathbf{\Omega}^T, \tag{7.39}$$

$$\text{Heaviside}[z] = \begin{cases} 0 & z < 0\\ 1 & z \ge 0 \end{cases}, \tag{7.40}$$

$$rect[z] = \begin{cases} 0 & z < 0 \\ 1 & 0 \le z \le 1 \\ 0 & z > 1 \end{cases}$$
 (7.41)

$$\frac{\partial \ell}{\partial \mathbf{\Omega}} = \frac{\partial \ell}{\partial \mathbf{f}} \mathbf{h}^T. \tag{7.42}$$

$$\mathbf{a}[z] = \text{ReLU}[z] = \begin{cases} \alpha \cdot z & z < 0 \\ z & z \ge 0 \end{cases}, \tag{7.43}$$

$$y = \exp\left[\exp[x] + \exp[x]^2\right] + \sin[\exp[x] + \exp[x]^2].$$
 (7.44)

$$f_1 = \exp[x]$$

 $f_2 = f_1^2$
 $f_3 = f_1 + f_2$
 $f_4 = \exp[f_3]$
 $f_5 = \sin[f_3]$
 $y = f_4 + f_5$. (7.45)

$$\frac{\partial y}{\partial f_5}, \frac{\partial y}{\partial f_4}, \frac{\partial y}{\partial f_3}, \frac{\partial y}{\partial f_2}, \frac{\partial y}{\partial f_1} \text{ and } \frac{\partial y}{\partial x},$$
 (7.46)

$$\frac{\partial f_1}{\partial x}, \frac{\partial f_2}{\partial x}, \frac{\partial f_3}{\partial x}, \frac{\partial f_4}{\partial x}, \frac{\partial f_5}{\partial x}, \text{ and } \frac{\partial y}{\partial x},$$
 (7.47)

$$b = \text{ReLU}[a] = \begin{cases} 0 & a < 0 \\ a & a \ge 0 \end{cases}, \tag{7.48}$$

Measuring performance

$$\mu[x] = \mathbb{E}_y[y[x]] = \int y[x] Pr(y|x) dy, \tag{8.1}$$

$$L[x] = (f[x, \phi] - y[x])^{2}$$

$$= ((f[x, \phi] - \mu[x]) + (\mu[x] - y[x]))^{2}$$

$$= (f[x, \phi] - \mu[x])^{2} + 2(f[x, \phi] - \mu[x])(\mu[x] - y[x]) + (\mu[x] - y[x])^{2},$$
(8.2)

$$\mathbb{E}_{y} [L[x]] = \mathbb{E}_{y} \Big[(f[x, \phi] - \mu[x])^{2} + 2(f[x, \phi] - \mu[x]) (\mu[x] - y[x]) + (\mu[x] - y[x])^{2} \Big]
= (f[x, \phi] - \mu[x])^{2} + 2(f[x, \phi] - \mu[x]) (\mu[x] - \mathbb{E}_{y} [y[x]]) + \mathbb{E}_{y} [(\mu[x] - y[x])^{2}]
= (f[x, \phi] - \mu[x])^{2} + 2(f[x, \phi] - \mu[x]) \cdot 0 + \mathbb{E}_{y} [(\mu[x] - y[x])^{2}]
= (f[x, \phi] - \mu[x])^{2} + \sigma^{2},$$
(8.3)

$$f_{\mu}[x] = \mathbb{E}_{\mathcal{D}} \Big[f \big[x, \phi[\mathcal{D}] \big] \Big].$$
 (8.4)

$$(f[x, \phi[\mathcal{D}]] - \mu[x])^{2}$$

$$= (f[x, \phi[\mathcal{D}]] - f_{\mu}[x]) + (f_{\mu}[x] - \mu[x]))^{2}$$

$$= (f[x, \phi[\mathcal{D}]] - f_{\mu}[x])^{2} + 2(f[x, \phi[\mathcal{D}]] - f_{\mu}[x])(f_{\mu}[x] - \mu[x]) + (f_{\mu}[x] - \mu[x])^{2}.$$
(8.5)

$$\mathbb{E}_{\mathcal{D}}\left[\left(f[x,\phi[\mathcal{D}]] - \mu[x]\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(f[x,\phi[\mathcal{D}]] - f_{\mu}[x]\right)^{2}\right] + \left(f_{\mu}[x] - \mu[x]\right)^{2},\tag{8.6}$$

$$\mathbb{E}_{\mathcal{D}}\Big[\mathbb{E}_{y}[L[x]]\Big] = \underbrace{\mathbb{E}_{\mathcal{D}}\Big[\big(f[x,\phi[\mathcal{D}]] - f_{\mu}[x]\big)^{2}\Big]}_{\text{variance}} + \underbrace{\big(f_{\mu}[x] - \mu[x]\big)^{2}}_{\text{bias}} + \underbrace{\sigma^{2}}_{\text{noise}}.$$
 (8.7)

$$Vol[r] = \frac{r^D \pi^{D/2}}{\Gamma[D/2 + 1]},$$
(8.8)

Regularization

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right]
= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \ell_{i}[\mathbf{x}_{i}, \mathbf{y}_{i}] \right],$$
(9.1)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] + \lambda \cdot g[\boldsymbol{\phi}] \right], \tag{9.2}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{x}_i, \boldsymbol{\phi}) \right]. \tag{9.3}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}) \right]. \tag{9.4}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] + \lambda \sum_j \phi_j^2 \right], \tag{9.5}$$

$$\frac{d\phi}{dt} = -\frac{\partial L}{\partial \phi}. (9.6)$$

$$\phi_{t+1} = \phi_t - \alpha \frac{\partial L[\phi_t]}{\partial \phi}, \tag{9.7}$$

$$\tilde{L}_{GD}[\phi] = L[\phi] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \phi} \right\|^2. \tag{9.8}$$

$$\tilde{L}_{SGD}[\phi] = \tilde{L}_{GD}[\phi] + \frac{\alpha}{4B} \sum_{b=1}^{B} \left\| \frac{\partial L_b}{\partial \phi} - \frac{\partial L}{\partial \phi} \right\|^2
= L[\phi] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \phi} \right\|^2 + \frac{\alpha}{4B} \sum_{b=1}^{B} \left\| \frac{\partial L_b}{\partial \phi} - \frac{\partial L}{\partial \phi} \right\|^2.$$
(9.9)

$$L = \frac{1}{I} \sum_{i=1}^{I} \ell_i[\mathbf{x}_i, y_i] \quad \text{and} \quad L_b = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}_b} \ell_i[\mathbf{x}_i, y_i].$$
 (9.10)

$$Pr(\boldsymbol{\phi}|\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{\prod_{i=1}^{I} Pr(\mathbf{y}_i|\mathbf{x}_i, \boldsymbol{\phi}) Pr(\boldsymbol{\phi})}{\int \prod_{i=1}^{I} Pr(\mathbf{y}_i|\mathbf{x}_i, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}) d\boldsymbol{\phi}},$$
(9.11)

$$Pr(\mathbf{y}|\mathbf{x}, {\mathbf{x}_i, \mathbf{y}_i}) = \int Pr(\mathbf{y}|\mathbf{x}, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}|{\mathbf{x}_i, \mathbf{y}_i}) d\boldsymbol{\phi}. \tag{9.12}$$

$$\phi \longleftarrow (1 - \lambda')\phi - \alpha \frac{\partial L}{\partial \phi},$$
 (9.13)

$$\boldsymbol{\phi}_1 = \boldsymbol{\phi}_0 + \boldsymbol{\alpha} \cdot \mathbf{g}[\boldsymbol{\phi}_0], \tag{9.14}$$

$$\frac{d\phi}{dt} = \mathbf{g}[\phi]. \tag{9.15}$$

$$\frac{d\phi}{dt} \approx \mathbf{g}[\phi] + \alpha \mathbf{g}_1[\phi] + \dots, \tag{9.16}$$

$$\phi[\alpha] \approx \phi + \alpha \frac{d\phi}{dt} + \frac{\alpha^2}{2} \frac{d^2\phi}{dt^2} \bigg|_{\phi = \phi_0}$$

$$\approx \phi + \alpha \left(\mathbf{g}[\phi] + \alpha \mathbf{g}_1[\phi] \right) + \frac{\alpha^2}{2} \left(\frac{\partial \mathbf{g}[\phi]}{\partial \phi} \frac{d\phi}{dt} + \alpha \frac{\partial \mathbf{g}_1[\phi]}{\partial \phi} \frac{d\phi}{dt} \right) \bigg|_{\phi = \phi_0}$$

$$= \phi + \alpha \left(\mathbf{g}[\phi] + \alpha \mathbf{g}_1[\phi] \right) + \frac{\alpha^2}{2} \left(\frac{\partial \mathbf{g}[\phi]}{\partial \phi} \mathbf{g}[\phi] + \alpha \frac{\partial \mathbf{g}_1[\phi]}{\partial \phi} \mathbf{g}[\phi] \right) \bigg|_{\phi = \phi_0}$$

$$\approx \phi + \alpha \mathbf{g}[\phi] + \alpha^2 \left(\mathbf{g}_1[\phi] + \frac{1}{2} \frac{\partial \mathbf{g}[\phi]}{\partial \phi} \mathbf{g}[\phi] \right) \bigg|_{\phi = \phi_0}, \tag{9.17}$$

$$\mathbf{g}_{1}[\boldsymbol{\phi}] = -\frac{1}{2} \frac{\partial \mathbf{g}[\boldsymbol{\phi}]}{\partial \boldsymbol{\phi}} \mathbf{g}[\boldsymbol{\phi}]. \tag{9.18}$$

$$\frac{d\phi}{dt} \approx \mathbf{g}[\phi] + \alpha \mathbf{g}_{1}[\phi]$$

$$= -\frac{\partial L}{\partial \phi} - \frac{\alpha}{2} \left(\frac{\partial^{2} L}{\partial \phi^{2}}\right) \frac{\partial L}{\partial \phi}.$$
(9.19)

$$L_{GD}[\phi] = L[\phi] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \phi} \right\|^2, \tag{9.20}$$

$$Pr(\boldsymbol{\phi}) = \prod_{j=1}^{J} \text{Norm}_{\phi_j}[0, \sigma_{\boldsymbol{\phi}}^2], \tag{9.21}$$

$$\phi \longleftarrow (1 - \lambda)\phi - \alpha \frac{\partial L}{\partial \phi},$$
 (9.22)

$$\tilde{L}[\phi] = L[\phi] + \frac{\lambda}{2\alpha} \sum_{k} \phi_{k}^{2}, \qquad (9.23)$$

Convolutional networks

$$\mathbf{f}[\mathbf{t}[\mathbf{x}]] = \mathbf{f}[\mathbf{x}]. \tag{10.1}$$

$$\mathbf{f}[\mathbf{t}[\mathbf{x}]] = \mathbf{t}[\mathbf{f}[\mathbf{x}]].$$
 (10.2)

$$z_i = \omega_1 x_{i-1} + \omega_2 x_i + \omega_3 x_{i+1}, \tag{10.3}$$

$$h_{i} = a \left[\beta + \omega_{1} x_{i-1} + \omega_{2} x_{i} + \omega_{3} x_{i+1} \right]$$

$$= a \left[\beta + \sum_{j=1}^{3} \omega_{j} x_{i+j-2} \right], \qquad (10.4)$$

$$h_i = \mathbf{a} \left[\beta_i + \sum_{j=1}^D \omega_{ij} x_j \right]. \tag{10.5}$$

$$h_{ij} = a \left[\beta + \sum_{m=1}^{3} \sum_{n=1}^{3} \omega_{mn} x_{i+m-2,j+n-2} \right],$$
 (10.6)

Residual networks

$$\begin{array}{rcl} \mathbf{h}_{1} & = & \mathbf{f}_{1}[\mathbf{x}, \boldsymbol{\phi}_{1}] \\ \mathbf{h}_{2} & = & \mathbf{f}_{2}[\mathbf{h}_{1}, \boldsymbol{\phi}_{2}] \\ \mathbf{h}_{3} & = & \mathbf{f}_{3}[\mathbf{h}_{2}, \boldsymbol{\phi}_{3}] \\ \mathbf{y} & = & \mathbf{f}_{4}[\mathbf{h}_{3}, \boldsymbol{\phi}_{4}], \end{array} \tag{11.1}$$

$$\mathbf{y} = \mathbf{f}_4 \left[\mathbf{f}_3 \left[\mathbf{f}_2 \left[\mathbf{f}_1 \left[\mathbf{x}, \boldsymbol{\phi}_1 \right], \boldsymbol{\phi}_2 \right], \boldsymbol{\phi}_3 \right], \boldsymbol{\phi}_4 \right]. \tag{11.2}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{f}_1} = \frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_4}{\partial \mathbf{f}_3}.$$
 (11.3)

$$\begin{array}{rcl} \mathbf{h}_{1} & = & \mathbf{x} + \mathbf{f}_{1}[\mathbf{x}, \phi_{1}] \\ \mathbf{h}_{2} & = & \mathbf{h}_{1} + \mathbf{f}_{2}[\mathbf{h}_{1}, \phi_{2}] \\ \mathbf{h}_{3} & = & \mathbf{h}_{2} + \mathbf{f}_{3}[\mathbf{h}_{2}, \phi_{3}] \\ \mathbf{y} & = & \mathbf{h}_{3} + \mathbf{f}_{4}[\mathbf{h}_{3}, \phi_{4}], \end{array}$$
(11.4)

$$\mathbf{y} = \mathbf{x} + \mathbf{f}_{1}[\mathbf{x}]$$

$$+ \mathbf{f}_{2}[\mathbf{x} + \mathbf{f}_{1}[\mathbf{x}]]$$

$$+ \mathbf{f}_{3}[\mathbf{x} + \mathbf{f}_{1}[\mathbf{x}] + \mathbf{f}_{2}[\mathbf{x} + \mathbf{f}_{1}[\mathbf{x}]]]$$

$$+ \mathbf{f}_{4}[\mathbf{x} + \mathbf{f}_{1}[\mathbf{x}] + \mathbf{f}_{2}[\mathbf{x} + \mathbf{f}_{1}[\mathbf{x}]] + \mathbf{f}_{3}[\mathbf{x} + \mathbf{f}_{1}[\mathbf{x}] + \mathbf{f}_{2}[\mathbf{x} + \mathbf{f}_{1}[\mathbf{x}]]]],$$

$$(11.5)$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{f}_{1}} = \mathbf{I} + \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{f}_{1}} + \left(\frac{\partial \mathbf{f}_{3}}{\partial \mathbf{f}_{1}} + \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{f}_{2}}\right) + \left(\frac{\partial \mathbf{f}_{4}}{\partial \mathbf{f}_{1}} + \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{4}}{\partial \mathbf{f}_{2}} + \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{4}}{\partial \mathbf{f}_{3}} + \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{f}_{1}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{f}_{2}} \frac{\partial \mathbf{f}_{4}}{\partial \mathbf{f}_{3}}\right), (11.6)$$

$$m_h = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} h_i$$

$$s_h = \sqrt{\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} (h_i - m_h)^2},$$
(11.7)

$$h_i \leftarrow \frac{h_i - m_h}{s_h + \epsilon} \qquad \forall i \in \mathcal{B},$$
 (11.8)

$$h_i \leftarrow \gamma h_i + \delta \qquad \forall i \in \mathcal{B}.$$
 (11.9)

$$f_{1} = \mathbb{E}[z_{i}] \qquad f_{5} = \sqrt{f_{4} + \epsilon}$$

$$f_{2i} = z_{i} - f_{1} \qquad f_{6} = 1/f_{5}$$

$$f_{3i} = f_{2i}^{2} \qquad f_{7i} = f_{2i} \times f_{6}$$

$$f_{4} = \mathbb{E}[f_{3i}] \qquad z'_{i} = f_{7i} \times \gamma + \delta,$$
(11.10)

Transformers

$$f[x] = ReLU[\beta + \Omega x], \qquad (12.1)$$

$$\mathbf{v}_m = \boldsymbol{\beta}_v + \boldsymbol{\Omega}_v \mathbf{x}_m, \tag{12.2}$$

$$\mathbf{sa}_n[\mathbf{x}_1, \dots, \mathbf{x}_N] = \sum_{m=1}^N a[\mathbf{x}_m, \mathbf{x}_n] \mathbf{v}_m.$$
 (12.3)

$$\mathbf{q}_{n} = \boldsymbol{\beta}_{q} + \boldsymbol{\Omega}_{q} \mathbf{x}_{n}
\mathbf{k}_{m} = \boldsymbol{\beta}_{k} + \boldsymbol{\Omega}_{k} \mathbf{x}_{m},$$
(12.4)

$$a[\mathbf{x}_{m}, \mathbf{x}_{n}] = \operatorname{softmax}_{m} \left[\mathbf{k}_{\bullet}^{T} \mathbf{q}_{n} \right]$$

$$= \frac{\exp \left[\mathbf{k}_{m}^{T} \mathbf{q}_{n} \right]}{\sum_{m'=1}^{N} \exp \left[\mathbf{k}_{m'}^{T} \mathbf{q}_{n} \right]},$$
(12.5)

$$\mathbf{V}[\mathbf{X}] = \boldsymbol{\beta}_v \mathbf{1}^T + \boldsymbol{\Omega}_v \mathbf{X}$$

$$\mathbf{Q}[\mathbf{X}] = \boldsymbol{\beta}_q \mathbf{1}^T + \boldsymbol{\Omega}_q \mathbf{X}$$

$$\mathbf{K}[\mathbf{X}] = \boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{X},$$
(12.6)

$$Sa[X] = V[X] \cdot Softmax[K[X]^TQ[X]],$$
 (12.7)

$$\mathbf{Sa}[\mathbf{X}] = \mathbf{V} \cdot \mathbf{Softmax} \Big[\mathbf{K}^T \mathbf{Q} \Big]. \tag{12.8}$$

$$\mathbf{Sa}[\mathbf{X}] = \mathbf{V} \cdot \mathbf{Softmax} \left[\frac{\mathbf{K}^T \mathbf{Q}}{\sqrt{D_q}} \right]. \tag{12.9}$$

$$\mathbf{V}_{h} = \boldsymbol{\beta}_{vh} \mathbf{1}^{T} + \boldsymbol{\Omega}_{vh} \mathbf{X}$$

$$\mathbf{Q}_{h} = \boldsymbol{\beta}_{qh} \mathbf{1}^{T} + \boldsymbol{\Omega}_{qh} \mathbf{X}$$

$$\mathbf{K}_{h} = \boldsymbol{\beta}_{kh} \mathbf{1}^{T} + \boldsymbol{\Omega}_{kh} \mathbf{X}.$$
(12.10)

$$\mathbf{Sa}_{h}[\mathbf{X}] = \mathbf{V}_{h} \cdot \mathbf{Softmax} \left[\frac{\mathbf{K}_{h}^{T} \mathbf{Q}_{h}}{\sqrt{D}_{q}} \right],$$
 (12.11)

$$\mathbf{MhSa[X]} = \mathbf{\Omega}_c \left[\mathbf{Sa}_1[\mathbf{X}]^T, \mathbf{Sa}_2[\mathbf{X}]^T, \dots, \mathbf{Sa}_H[\mathbf{X}]^T \right]^T.$$
 (12.12)

$$\mathbf{X} \leftarrow \mathbf{X} + \mathbf{MhSa[X]}$$
 $\mathbf{X} \leftarrow \mathbf{LayerNorm[X]}$
 $\mathbf{x}_n \leftarrow \mathbf{x}_n + \mathbf{mlp[x}_n] \quad \forall n \in \{1, ..., N\}$
 $\mathbf{X} \leftarrow \mathbf{LayerNorm[X]}, \quad (12.13)$

Pr(It takes great courage to let yourself appear weak) =

 $Pr(\mathrm{It}) \times Pr(\mathrm{takes}|\mathrm{It}) \times Pr(\mathrm{great}|\mathrm{It}|\mathrm{takes}) \times Pr(\mathrm{courage}|\mathrm{It}|\mathrm{takes}|\mathrm{great}) \times Pr(\mathrm{courage}|\mathrm{It}|\mathrm{takes}|\mathrm{great}) \times Pr(\mathrm{takes}|\mathrm{It}) \times Pr(\mathrm{takes}|\mathrm{It}) \times Pr(\mathrm{great}|\mathrm{It}|\mathrm{takes}) \times Pr(\mathrm{courage}|\mathrm{It}|\mathrm{takes}) \times Pr(\mathrm{takes}|\mathrm{It}) \times Pr(\mathrm{takes}|\mathrm{It}) \times Pr(\mathrm{great}|\mathrm{It}|\mathrm{takes}) \times Pr(\mathrm{takes}|\mathrm{It}) \times P$

 $Pr(\text{to}|\text{It takes great courage}) \times Pr(\text{let}|\text{It takes great courage to}) \times$

 $Pr(yourself|It takes great courage to let) \times$

 $Pr(\text{appear}|\text{It takes great courage to let yourself}) \times$

Pr(weak|It takes great courage to let yourself appear). (12.14)

$$Pr(t_1, t_2, \dots, t_N) = Pr(t_1) \prod_{n=2}^{N} Pr(t_n | t_1, \dots, t_{n-1}).$$
 (12.15)

$$\mathbf{Sa}[\mathbf{X}] = \mathbf{V} \cdot \mathbf{Softmax} \left[\frac{\mathbf{K}^T \mathbf{Q}}{\sqrt{D_q}} \right],$$
 (12.16)

$$\mathbf{V} = \boldsymbol{\beta}_{v} \mathbf{1}^{T} + \boldsymbol{\Omega}_{v} \mathbf{X}$$

$$\mathbf{Q} = \boldsymbol{\beta}_{q} \mathbf{1}^{T} + \boldsymbol{\Omega}_{q} (\mathbf{X} + \boldsymbol{\Pi})$$

$$\mathbf{K} = \boldsymbol{\beta}_{k} \mathbf{1}^{T} + \boldsymbol{\Omega}_{k} (\mathbf{X} + \boldsymbol{\Pi}).$$
(12.17)

$$Sa[XP] = Sa[X]P. (12.18)$$

$$y_i = \operatorname{softmax}_i[\mathbf{z}] = \frac{\exp[z_i]}{\sum_{j=1}^5 \exp[z_j]},$$
(12.19)

$$a[\mathbf{x}_m, \mathbf{x}_n] = \operatorname{softmax}_m \left[\mathbf{k}_{\bullet}^T \mathbf{q}_n \right] = \frac{\exp \left[\mathbf{k}_m^T \mathbf{q}_n \right]}{\sum_{m'=1}^{N} \exp \left[\mathbf{k}_{m'}^T \mathbf{q}_n \right]}.$$
 (12.20)

Graph neural networks

$$\mathbf{X}' = \mathbf{X}\mathbf{P}$$

$$\mathbf{A}' = \mathbf{P}^T \mathbf{A} \mathbf{P}, \tag{13.1}$$

$$Pr(y = 1|\mathbf{X}, \mathbf{A}) = \operatorname{sig}\left[\beta_K + \omega_K \mathbf{H}_K \mathbf{1}/N\right], \tag{13.2}$$

$$Pr(y^{(n)} = 1 | \mathbf{X}, \mathbf{A}) = \operatorname{sig} \left[\beta_K + \omega_K \mathbf{h}_K^{(n)} \right].$$
 (13.3)

$$Pr(y^{(mn)} = 1 | \mathbf{X}, \mathbf{A}) = \operatorname{sig} \left[\mathbf{h}^{(m)T} \mathbf{h}^{(n)} \right].$$
 (13.4)

$$\begin{aligned} \mathbf{H}_1 &= \mathbf{F}[\mathbf{X}, \mathbf{A}, \phi_0] \\ \mathbf{H}_2 &= \mathbf{F}[\mathbf{H}_1, \mathbf{A}, \phi_1] \\ \mathbf{H}_3 &= \mathbf{F}[\mathbf{H}_2, \mathbf{A}, \phi_2] \\ \vdots &= \vdots \\ \mathbf{H}_K &= \mathbf{F}[\mathbf{H}_{K-1}, \mathbf{A}, \phi_{K-1}], \end{aligned}$$
(13.5)

$$\mathbf{H}_{k+1}\mathbf{P} = \mathbf{F}[\mathbf{H}_k\mathbf{P}, \mathbf{P}^T\mathbf{A}\mathbf{P}, \boldsymbol{\phi}_k]. \tag{13.6}$$

$$y = \operatorname{sig} \left[\beta_K + \omega_K \mathbf{H}_K \mathbf{1}/N \right] = \operatorname{sig} \left[\beta_K + \omega_K \mathbf{H}_K \mathbf{P} \mathbf{1}/N \right], \tag{13.7}$$

$$\mathbf{agg}[n,k] = \sum_{m \in \text{ne}[n]} \mathbf{h}_k^{(m)}, \tag{13.8}$$

$$\mathbf{h}_{k+1}^{(n)} = \mathbf{a} \left[\boldsymbol{\beta}_k + \boldsymbol{\Omega}_k \cdot \mathbf{h}_k^{(n)} + \boldsymbol{\Omega}_k \cdot \mathbf{agg}[n, k] \right]. \tag{13.9}$$

$$\mathbf{H}_{k+1} = \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k + \boldsymbol{\Omega}_k \mathbf{H}_k \mathbf{A} \right]$$

=
$$\mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k (\mathbf{A} + \mathbf{I}) \right], \qquad (13.10)$$

$$\mathbf{H}_{1} = \mathbf{a} \left[\boldsymbol{\beta}_{0} \mathbf{1}^{T} + \boldsymbol{\Omega}_{0} \mathbf{X} (\mathbf{A} + \mathbf{I}) \right]$$

$$\mathbf{H}_{2} = \mathbf{a} \left[\boldsymbol{\beta}_{1} \mathbf{1}^{T} + \boldsymbol{\Omega}_{1} \mathbf{H}_{1} (\mathbf{A} + \mathbf{I}) \right]$$

$$\vdots = \vdots$$

$$\mathbf{H}_{K} = \mathbf{a} \left[\boldsymbol{\beta}_{K-1} \mathbf{1}^{T} + \boldsymbol{\Omega}_{K-1} \mathbf{H}_{k-1} (\mathbf{A} + \mathbf{I}) \right]$$

$$\mathbf{f}[\mathbf{X}, \mathbf{A}, \boldsymbol{\Phi}] = \operatorname{sig} \left[\boldsymbol{\beta}_{K} + \boldsymbol{\omega}_{K} \mathbf{H}_{K} \mathbf{1} / N \right],$$

$$(13.11)$$

$$\mathbf{f}[\mathbf{X}, \mathbf{A}, \mathbf{\Phi}] = \mathbf{sig} \left[\beta_K \mathbf{1}^T + \boldsymbol{\omega}_K \mathbf{H}_K \right], \tag{13.12}$$

$$\mathbf{H}_{k+1} = \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \mathbf{\Omega}_k \mathbf{H}_k (\mathbf{A} + \mathbf{I}) \right]. \tag{13.13}$$

$$\mathbf{H}_{k+1} = \mathbf{a} \Big[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k (\mathbf{A} + (1 + \epsilon_k) \mathbf{I}) \Big].$$
 (13.14)

$$\mathbf{H}_{k+1} = \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k \mathbf{A} + \boldsymbol{\Psi}_k \mathbf{H}_k \right]$$

$$= \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \begin{bmatrix} \boldsymbol{\Omega}_k & \boldsymbol{\Psi}_k \end{bmatrix} \begin{bmatrix} \mathbf{H}_k \mathbf{A} \\ \mathbf{H}_k \end{bmatrix} \right]$$

$$= \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}'_k \begin{bmatrix} \mathbf{H}_k \mathbf{A} \\ \mathbf{H}_k \end{bmatrix} \right], \qquad (13.15)$$

$$\mathbf{H}_{k+1} = \begin{bmatrix} \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k \mathbf{A} \right] \\ \mathbf{H}_k \end{bmatrix}. \tag{13.16}$$

$$\mathbf{agg}[n] = \frac{1}{|\mathbf{ne}[n]|} \sum_{m \in \mathbf{ne}[n]} \mathbf{h}_m, \tag{13.17}$$

$$\mathbf{H}_{k+1} = \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \mathbf{\Omega}_k \mathbf{H}_k (\mathbf{A} \mathbf{D}^{-1} + \mathbf{I}) \right]. \tag{13.18}$$

$$\mathbf{agg}[n] = \sum_{m \in \mathbf{ne}[n]} \frac{\mathbf{h}_m}{\sqrt{|\mathbf{ne}[n]||\mathbf{ne}[m]|}},\tag{13.19}$$

$$\mathbf{H}_{k+1} = \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \mathbf{\Omega}_k \mathbf{H}_k (\mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} + \mathbf{I}) \right]. \tag{13.20}$$

$$\mathbf{agg}[n] = \max_{m \in \mathbf{ne}[n]} [\mathbf{h}_m], \tag{13.21}$$

$$\mathbf{H}_k' = \boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k. \tag{13.22}$$

$$s_{mn} = \mathbf{a} \left[\boldsymbol{\phi}_k^T \begin{bmatrix} \mathbf{h}_m' \\ \mathbf{h}_n' \end{bmatrix} \right]. \tag{13.23}$$

$$\mathbf{H}_{k+1} = \mathbf{a} \Big[\mathbf{H}'_k \cdot \mathbf{Softmask}[\mathbf{S}, \mathbf{A} + \mathbf{I}] \Big],$$
 (13.24)

$$\mathbf{h}_n \leftarrow \mathbf{f}\left[\mathbf{x}_n, \mathbf{x}_{m \in \text{ne}[n]}, \mathbf{e}_{e \in \text{nee}[n]}, \mathbf{h}_{m \in \text{ne}[n]}, \boldsymbol{\phi}\right],$$
 (13.25)

$$\mathbf{h}_{k+1}^{(n)} = \mathbf{mlp} \left[(1 + \epsilon_k) \, \mathbf{h}_k^{(n)} + \sum_{m \in \text{ne}[n]} \mathbf{h}_k^{(m)} \right].$$
 (13.26)

$$\mathbf{A}_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{A}_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

$$sig [\beta_K + \omega_K \mathbf{H}_K \mathbf{1}] = sig [\beta_K + \omega_K \mathbf{H}_K \mathbf{P} \mathbf{1}], \qquad (13.27)$$

$$\mathbf{H}_{k+1} = \operatorname{GraphLayer}[\mathbf{H}_k, \mathbf{A}]$$

$$= \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \begin{bmatrix} \mathbf{H}_k \\ \mathbf{H}_k \mathbf{A} \end{bmatrix} \right], \qquad (13.28)$$

$$GraphLayer[\mathbf{H}_k, \mathbf{A}]\mathbf{P} = GraphLayer[\mathbf{H}_k \mathbf{P}, \mathbf{P}^T \mathbf{A} \mathbf{P}], \qquad (13.29)$$

$$\mathbf{agg}[n] = \frac{1}{1 + |\mathbf{ne}[n]|} \left(\mathbf{h}_n + \sum_{m \in \mathbf{ne}[n]} \mathbf{h}_m \right). \tag{13.30}$$

Unsupervised learning

$$L[\phi] = -\sum_{i=1}^{I} \log \left[Pr(\mathbf{x}_i | \phi) \right]. \tag{14.1}$$

$$IS = \exp\left[\frac{1}{I}\sum_{i=1}^{I}D_{KL}\left[Pr(y|\mathbf{x}_{i}^{*})||Pr(y)\right]\right],$$
(14.2)

$$Pr(y) = \frac{1}{I} \sum_{i=1}^{I} Pr(y|\mathbf{x}_{i}^{*}).$$
 (14.3)

Generative adversarial networks

$$x_i^* = g[z_i, \theta] = z_i + \theta, \tag{15.1}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i} -(1 - y_i) \log \left[1 - \operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]] \right] - y_i \log \left[\operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]] \right] \right], \quad (15.2)$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{j} -\log \left[1 - \operatorname{sig}[f[\mathbf{x}_{j}^{*}, \boldsymbol{\phi}]] \right] - \sum_{i} \log \left[\operatorname{sig}[f[\mathbf{x}_{i}, \boldsymbol{\phi}]] \right] \right], \tag{15.3}$$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left[\min_{\boldsymbol{\phi}} \left[\sum_{j} -\log \left[1 - \operatorname{sig}[f[\mathbf{g}[\mathbf{z}_{j}, \boldsymbol{\theta}], \boldsymbol{\phi}]] \right] - \sum_{i} \log \left[\operatorname{sig}[f[\mathbf{x}_{i}, \boldsymbol{\phi}]] \right] \right] \right]. \quad (15.4)$$

$$L[\boldsymbol{\phi}] = \sum_{j} -\log\left[1 - \operatorname{sig}[f[\mathbf{g}[\mathbf{z}_{j}, \boldsymbol{\theta}], \boldsymbol{\phi}]]\right] - \sum_{i} \log\left[\operatorname{sig}[f[\mathbf{x}_{i}, \boldsymbol{\phi}]]\right]$$

$$L[\boldsymbol{\theta}] = \sum_{j} \log\left[1 - \operatorname{sig}[f[\mathbf{g}[\mathbf{z}_{j}, \boldsymbol{\theta}], \boldsymbol{\phi}]]\right], \qquad (15.5)$$

$$L[\phi] = -\frac{1}{J} \sum_{j=1}^{J} \left(\log \left[1 - \operatorname{sig}[f[\mathbf{x}_{j}^{*}, \phi]] \right] \right) - \frac{1}{I} \sum_{i=1}^{I} \left(\log \left[\operatorname{sig}[f[\mathbf{x}_{i}, \phi]] \right] \right)$$

$$\approx -\mathbb{E}_{\mathbf{x}^{*}} \left[\log \left[1 - \operatorname{sig}[f[\mathbf{x}^{*}, \phi]] \right] \right] - \mathbb{E}_{\mathbf{x}} \left[\log \left[\operatorname{sig}[f[\mathbf{x}, \phi]] \right] \right]$$

$$= -\int Pr(\mathbf{x}^{*}) \log \left[1 - \operatorname{sig}[f[\mathbf{x}^{*}, \phi]] \right] d\mathbf{x}^{*} - \int Pr(\mathbf{x}) \log \left[\operatorname{sig}[f[\mathbf{x}, \phi]] \right] d\mathbf{x},$$

$$(15.6)$$

$$Pr(\text{real}|\tilde{\mathbf{x}}) = \text{sig}[f[\tilde{\mathbf{x}}, \boldsymbol{\phi}]] = \frac{Pr(\tilde{\mathbf{x}}|\text{real})}{Pr(\tilde{\mathbf{x}}|\text{generated}) + Pr(\tilde{\mathbf{x}}|\text{real})} = \frac{Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})}, \quad (15.7)$$

$$L[\phi] = -\int Pr(\mathbf{x}^*) \log \left[1 - \operatorname{sig}[f[\mathbf{x}^*, \phi]] \right] d\mathbf{x}^* - \int Pr(\mathbf{x}) \log \left[\operatorname{sig}[f[\mathbf{x}, \phi]] \right] d\mathbf{x}$$
(15.8)
$$= -\int Pr(\mathbf{x}^*) \log \left[1 - \frac{Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}^* - \int Pr(\mathbf{x}) \log \left[\frac{Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}$$

$$= -\int Pr(\mathbf{x}^*) \log \left[\frac{Pr(\mathbf{x}^*)}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}^* - \int Pr(\mathbf{x}) \log \left[\frac{Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}.$$

$$D_{JS} \Big[Pr(\mathbf{x}^*) \mid\mid Pr(\mathbf{x}) \Big]$$

$$= \frac{1}{2} D_{KL} \left[Pr(\mathbf{x}^*) \mid\mid \frac{Pr(\mathbf{x}^*) + Pr(\mathbf{x})}{2} \right] + \frac{1}{2} D_{KL} \left[Pr(\mathbf{x}) \mid\mid \frac{Pr(\mathbf{x}^*) + Pr(\mathbf{x})}{2} \right]$$

$$= \frac{1}{2} \int \underbrace{Pr(\mathbf{x}^*) \log \left[\frac{2Pr(\mathbf{x}^*)}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}^*}_{\text{quality}} + \underbrace{\frac{1}{2} \int Pr(\mathbf{x}) \log \left[\frac{2Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}}_{\text{coverage}}.$$

$$(15.9)$$

$$D_w \left[Pr(x) || q(x) \right] = \min_{\mathbf{P}} \left[\sum_{i,j} P_{ij} \cdot |i - j| \right], \tag{15.10}$$

$$\sum_{j} P_{ij} = Pr(x = i)$$
 initial distribution of $Pr(x)$

$$\sum_{i} P_{ij} = q(x = j)$$
 initial distribution of $q(x)$ (15.11)

$$P_{ij} \geq 0$$
 non-negative masses.

$$D_w \left[Pr(x) || q(x) \right] = \max_{\mathbf{f}} \left[\sum_i Pr(x=i) f_i - \sum_j q(x=j) f_j \right], \tag{15.12}$$

$$|f_{i+1} - f_i| < 1. (15.13)$$

$$D_w \Big[Pr(\mathbf{x}), q(\mathbf{x}) \Big] = \min_{\pi[\bullet, \bullet]} \left[\iint \pi(\mathbf{x}_1, \mathbf{x}_2) \cdot ||\mathbf{x}_1 - \mathbf{x}_2|| d\mathbf{x}_1 d\mathbf{x}_2 \right], \tag{15.14}$$

$$D_w \left[Pr(\mathbf{x}), q(\mathbf{x}) \right] = \max_{f[\mathbf{x}]} \left[\int Pr(\mathbf{x}) f[\mathbf{x}] d\mathbf{x} - \int q(\mathbf{x}) f[\mathbf{x}] d\mathbf{x} \right], \tag{15.15}$$

$$L[\phi] = \sum_{j} f[\mathbf{x}_{j}^{*}, \phi] - \sum_{i} f[\mathbf{x}_{i}, \phi]$$

$$= \sum_{j} f[\mathbf{g}[\mathbf{z}_{j}, \theta], \phi] - \sum_{i} f[\mathbf{x}_{i}, \phi], \qquad (15.16)$$

$$\left| \frac{\partial f[\mathbf{x}, \boldsymbol{\phi}]}{\partial \mathbf{x}} \right| < 1. \tag{15.17}$$

$$\mathbf{b} = \big[Pr(x=1), Pr(x=2), Pr(x=3), Pr(x=4), q(x=1), q(x=2), q(x=3), q(x=4)\big] \big(15.18) + 2 \left[Pr(x=1), Pr(x=2), Pr(x=3), Pr(x=4), Pr(x=4)$$

$$Pr(z) = \begin{cases} 0 & z < 0 \\ 1 & 0 \le z \le 1 \\ 0 & z > 1 \end{cases} \quad \text{and} \quad Pr(z) = \begin{cases} 0 & z < a \\ 1 & a \le z \le a + 1 \\ 0 & z > a \end{cases}$$
 (15.19)

$$D_{kl} = \log\left[\frac{\sigma_2}{\sigma_1}\right] + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2},\tag{15.20}$$

$$D_w = (\mu_1 - \mu_2)^2 + \sigma_1 + \sigma_2 - 2\sqrt{\sigma_1 \sigma_2}, \tag{15.21}$$

Normalizing flows

$$Pr(x|\phi) = \left|\frac{\partial f[z,\phi]}{\partial z}\right|^{-1} \cdot Pr(z),$$
 (16.1)

$$\hat{\phi} = \underset{\phi}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(x_{i}|\phi) \right]
= \underset{\phi}{\operatorname{argmin}} \left[\sum_{i=1}^{I} -\log \left[Pr(x_{i}|\phi) \right] \right]
= \underset{\phi}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \log \left[\left| \frac{\partial f[z_{i},\phi]}{\partial z_{i}} \right| \right] - \log \left[Pr(z_{i}) \right] \right],$$
(16.2)

$$Pr(\mathbf{x}|\boldsymbol{\phi}) = \left| \frac{\partial \mathbf{f}[\mathbf{z}, \boldsymbol{\phi}]}{\partial \mathbf{z}} \right|^{-1} \cdot Pr(\mathbf{z}),$$
 (16.3)

$$\mathbf{x} = \mathbf{f}[\mathbf{z}, \boldsymbol{\phi}] = \mathbf{f}_K \left[\mathbf{f}_{K-1} \left[\dots \mathbf{f}_2 \left[\mathbf{f}_1 \left[\mathbf{z}, \boldsymbol{\phi}_1 \right], \boldsymbol{\phi}_2 \right], \dots \boldsymbol{\phi}_{K-1} \right], \boldsymbol{\phi}_K \right].$$
 (16.4)

$$\mathbf{z} = \mathbf{f}^{-1}[\mathbf{x}, \boldsymbol{\phi}] = \mathbf{f}_1^{-1} \left[\mathbf{f}_2^{-1} \left[\dots \mathbf{f}_{K-1}^{-1} \left[\mathbf{f}_K^{-1}[\mathbf{x}, \boldsymbol{\phi}_K], \boldsymbol{\phi}_{K-1} \right], \dots \boldsymbol{\phi}_2 \right], \boldsymbol{\phi}_1 \right].$$
 (16.5)

$$\frac{\partial \mathbf{f}[\mathbf{z}, \boldsymbol{\phi}]}{\partial \mathbf{z}} = \frac{\partial \mathbf{f}_K[\mathbf{f}_{K-1}, \boldsymbol{\phi}_K]}{\partial \mathbf{f}_{K-1}} \cdot \frac{\partial \mathbf{f}_{K-1}[\mathbf{f}_{K-2}, \boldsymbol{\phi}_{K-1}]}{\partial \mathbf{f}_{K-2}} \dots \frac{\partial \mathbf{f}_2[\mathbf{f}_1, \boldsymbol{\phi}_2]}{\partial \mathbf{f}_1} \cdot \frac{\partial \mathbf{f}_1[\mathbf{z}, \boldsymbol{\phi}_1]}{\partial \mathbf{z}}, \quad (16.6)$$

$$\left| \frac{\partial \mathbf{f}[\mathbf{z}, \boldsymbol{\phi}]}{\partial \mathbf{z}} \right| = \left| \frac{\partial \mathbf{f}_K[\mathbf{f}_{K-1}, \boldsymbol{\phi}_K]}{\partial \mathbf{f}_{K-1}} \right| \cdot \left| \frac{\partial \mathbf{f}_{K-1}[\mathbf{f}_{K-2}, \boldsymbol{\phi}_{K-1}]}{\partial \mathbf{f}_{K-2}} \right| \dots \left| \frac{\partial \mathbf{f}_2[\mathbf{f}_1, \boldsymbol{\phi}_2]}{\partial \mathbf{f}_1} \right| \cdot \left| \frac{\partial \mathbf{f}_1[\mathbf{z}, \boldsymbol{\phi}_1]}{\partial \mathbf{z}} \right| .(16.7)$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{z}_{i}) \cdot \left| \frac{\partial \mathbf{f}[\mathbf{z}_{i}, \boldsymbol{\phi}]}{\partial \mathbf{z}_{i}} \right|^{-1} \right]
= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \log \left[\left| \frac{\partial \mathbf{f}[\mathbf{z}_{i}, \boldsymbol{\phi}]}{\partial \mathbf{z}_{i}} \right| \right] - \log \left[Pr(\mathbf{z}_{i}) \right] \right],$$
(16.8)

$$\Omega = PL(U + D), \tag{16.9}$$

$$\mathbf{f}[\mathbf{h}] = \left[\mathbf{f}[h_1, \boldsymbol{\phi}], \mathbf{f}[h_2, \boldsymbol{\phi}], \dots \mathbf{f}[h_D, \boldsymbol{\phi}] \right]^T.$$
 (16.10)

$$\left| \frac{\partial \mathbf{f}[\mathbf{h}]}{\partial \mathbf{h}} \right| = \prod_{d=1}^{D} \left| \frac{\partial \mathbf{f}[h_d]}{\partial h_d} \right|. \tag{16.11}$$

$$f[h, \phi] = \left(\sum_{k=1}^{b-1} \phi_k\right) + (hK - b + 1)\phi_b, \tag{16.12}$$

$$\mathbf{h}_{1}' = \mathbf{h}_{1}$$

$$\mathbf{h}_{2}' = \mathbf{g} \left[\mathbf{h}_{2}, \boldsymbol{\phi}[\mathbf{h}_{1}] \right]. \tag{16.13}$$

$$\mathbf{h}_{1} = \mathbf{h}'_{1}$$

$$\mathbf{h}_{2} = \mathbf{g}^{-1} \left[\mathbf{h}'_{2}, \boldsymbol{\phi}[\mathbf{h}_{1}] \right]. \tag{16.14}$$

$$h'_d = g \left[h_d, \boldsymbol{\phi}[\mathbf{h}_{1:d-1}] \right]. \tag{16.15}$$

$$h'_{1} = g[h_{1}, \phi]$$

$$h'_{2} = g[h_{2}, \phi[h_{1}]]$$

$$h'_{3} = g[h_{3}, \phi[h_{1:2}]]$$

$$h'_{4} = g[h_{4}, \phi[h_{1:3}]].$$
(16.16)

$$h_{1} = g^{-1} [h'_{1}, \phi]$$

$$h_{2} = g^{-1} [h'_{2}, \phi[h_{1}]]$$

$$h_{3} = g^{-1} [h'_{3}, \phi[h_{1:2}]]$$

$$h_{4} = g^{-1} [h'_{4}, \phi[h_{1:3}]].$$
(16.17)

$$\mathbf{h}'_{1} = \mathbf{h}_{1} + \mathbf{f}_{1}[\mathbf{h}_{2}, \phi_{1}]$$

 $\mathbf{h}'_{2} = \mathbf{h}_{2} + \mathbf{f}_{2}[\mathbf{h}'_{1}, \phi_{2}],$ (16.18)

$$\mathbf{h}_{2} = \mathbf{h}'_{2} - \mathbf{f}_{2}[\mathbf{h}'_{1}, \phi_{2}]
\mathbf{h}_{1} = \mathbf{h}'_{1} - \mathbf{f}_{1}[\mathbf{h}_{2}, \phi_{1}].$$
(16.19)

$$\operatorname{dist}\left[\mathbf{f}[z'],\mathbf{f}[z]\right] < \beta \cdot \operatorname{dist}\left[z',z\right] \qquad \forall z,z', \tag{16.20}$$

$$y = z + f[z] \tag{16.21}$$

$$\log \left[\left| \mathbf{I} + \frac{\partial \mathbf{f}[\mathbf{h}, \boldsymbol{\phi}]}{\partial \mathbf{h}} \right| \right] = \operatorname{trace} \left[\log \left[\mathbf{I} + \frac{\partial \mathbf{f}[\mathbf{h}, \boldsymbol{\phi}]}{\partial \mathbf{h}} \right] \right]$$
$$= \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \operatorname{trace} \left[\frac{\partial \mathbf{f}[\mathbf{h}, \boldsymbol{\phi}]}{\partial \mathbf{h}} \right]^{k}, \qquad (16.22)$$

trace[
$$\mathbf{A}$$
] = trace [$\mathbf{A}\mathbb{E} \left[\epsilon \epsilon^{T}\right]$]
= trace [$\mathbb{E} \left[\mathbf{A}\epsilon \epsilon^{T}\right]$]
= $\mathbb{E} \left[\text{trace} \left[\mathbf{A}\epsilon \epsilon^{T}\right]\right]$
= $\mathbb{E} \left[\text{trace} \left[\epsilon^{T}\mathbf{A}\epsilon\right]\right]$
= $\mathbb{E} \left[\epsilon^{T}\mathbf{A}\epsilon\right]$, (16.23)

trace[
$$\mathbf{A}$$
] = $\mathbb{E}\left[\boldsymbol{\epsilon}^T \mathbf{A} \boldsymbol{\epsilon}\right]$
 $\approx \frac{1}{I} \sum_{i=1}^{I} \boldsymbol{\epsilon}_i^T \mathbf{A} \boldsymbol{\epsilon}_i.$ (16.24)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[KL \left[\frac{1}{I} \sum_{i=1}^{I} \delta \left[\mathbf{x} - f[\mathbf{z}_i, \boldsymbol{\phi}] \right] \middle| q(\mathbf{x}) \right] \right]. \tag{16.25}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[KL \left[\frac{1}{I} \sum_{i=1}^{I} \delta[\mathbf{x} - \mathbf{x}_i] \middle| \middle| Pr(\mathbf{x}_i, \boldsymbol{\phi}) \right] \right]. \tag{16.26}$$

$$Pr(z) = \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right],\tag{16.27}$$

$$x = f[z] = \frac{1}{1 + \exp[-z]}.$$
 (16.28)

$$\Omega_1 = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \qquad \qquad \Omega_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 1 & -1 & 2 & 0 \\ 4 & -2 & -2 & 1 \end{bmatrix}. \tag{16.29}$$

$$Pr(\mathbf{x}) = \Pr(\mathbf{z}) \cdot \left| \frac{\partial \mathbf{f}[\mathbf{z}]}{\partial \mathbf{z}} \right|^{-1}.$$
 (16.30)

$$LReLU[z] = \begin{cases} 0.1z & z < 0\\ z & z \ge 0 \end{cases}$$
 (16.31)

$$\mathbf{f}[\mathbf{z}] = \left[\text{LReLU}[z_1], \text{LReLU}[z_2], \dots, \text{LReLU}[z_D] \right]^T.$$
 (16.32)

$$\mathbf{h}' = f[h, \phi] = \sqrt{[Kh - b + 1] \phi_b} + \sum_{k=1}^{b-1} \sqrt{\phi_k},$$
 (16.33)

Variational autoencoders

$$Pr(\mathbf{x}) = \int Pr(\mathbf{x}, \mathbf{z}) d\mathbf{z}.$$
 (17.1)

$$Pr(\mathbf{x}) = \int Pr(\mathbf{x}|\mathbf{z})Pr(\mathbf{z})d\mathbf{z}.$$
 (17.2)

$$Pr(z=n) = \lambda_n$$

 $Pr(x|z=n) = \text{Norm}_x[\mu_n, \sigma_n^2].$ (17.3)

$$Pr(x) = \sum_{n=1}^{N} Pr(x, z = n)$$

$$= \sum_{n=1}^{N} Pr(x|z = n) \cdot Pr(z = n)$$

$$= \sum_{n=1}^{N} \lambda_n \cdot \text{Norm}_x [\mu_n, \sigma_n^2].$$
(17.4)

$$Pr(\mathbf{z}) = \text{Norm}_{\mathbf{z}}[\mathbf{0}, \mathbf{I}]. \tag{17.5}$$

$$Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi}) = \text{Norm}_{\mathbf{x}} [\mathbf{f}[\mathbf{z}, \boldsymbol{\phi}], \sigma^2 \mathbf{I}].$$
 (17.6)

$$Pr(\mathbf{x}|\boldsymbol{\phi}) = \int Pr(\mathbf{x}, \mathbf{z}|\boldsymbol{\phi})d\mathbf{z}$$

$$= \int Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi}) \cdot Pr(\mathbf{z})d\mathbf{z}$$

$$= \int \text{Norm}_{\mathbf{x}} \left[\mathbf{f}[\mathbf{z}, \boldsymbol{\phi}], \sigma^{2} \mathbf{I} \right] \cdot \text{Norm}_{\mathbf{z}} \left[\mathbf{0}, \mathbf{I} \right] d\mathbf{z}.$$
(17.7)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{x}_{i} | \boldsymbol{\phi}) \right] \right], \tag{17.8}$$

$$Pr(\mathbf{x}_i|\boldsymbol{\phi}) = \int \text{Norm}_{\mathbf{x}_i}[\mathbf{f}[\mathbf{z},\boldsymbol{\phi}], \sigma^2 \mathbf{I}] \cdot \text{Norm}_{\mathbf{z}}[\mathbf{0}, \mathbf{I}] d\mathbf{z}.$$
 (17.9)

$$g[\mathbb{E}[y]] \ge \mathbb{E}[g[y]]. \tag{17.10}$$

$$\log[\mathbb{E}[y]] \ge \mathbb{E}[\log[y]],\tag{17.11}$$

$$\log \left[\int Pr(y)ydy \right] \ge \int Pr(y)\log[y]dy. \tag{17.12}$$

$$\log \left[\int Pr(y)h[y]dy \right] \ge \int Pr(y)\log[h[y]]dy. \tag{17.13}$$

$$\log[Pr(\mathbf{x}|\boldsymbol{\phi})] = \log\left[\int Pr(\mathbf{x}, \mathbf{z}|\boldsymbol{\phi})d\mathbf{z}\right]$$
$$= \log\left[\int q(\mathbf{z})\frac{Pr(\mathbf{x}, \mathbf{z}|\boldsymbol{\phi})}{q(\mathbf{z})}d\mathbf{z}\right], \tag{17.14}$$

$$\log \left[\int q(\mathbf{z}) \frac{Pr(\mathbf{x}, \mathbf{z} | \boldsymbol{\phi})}{q(\mathbf{z})} d\mathbf{z} \right] \geq \int q(\mathbf{z}) \log \left[\frac{Pr(\mathbf{x}, \mathbf{z} | \boldsymbol{\phi})}{q(\mathbf{z})} \right] d\mathbf{z}, \quad (17.15)$$

ELBO
$$[\boldsymbol{\theta}, \boldsymbol{\phi}] = \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{x}, \mathbf{z}|\boldsymbol{\phi})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}.$$
 (17.16)

ELBO
$$[\boldsymbol{\theta}, \boldsymbol{\phi}] = \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{x}, \mathbf{z}|\boldsymbol{\phi})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}$$

$$= \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})Pr(\mathbf{x}|\boldsymbol{\phi})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}$$

$$= \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[Pr(\mathbf{x}|\boldsymbol{\phi}) \right] d\mathbf{z} + \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}$$

$$= \log \left[Pr(\mathbf{x}|\boldsymbol{\phi}) \right] + \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}$$

$$= \log \left[Pr(\mathbf{x}|\boldsymbol{\phi}) \right] - D_{KL} \left[q(\mathbf{z}|\boldsymbol{\theta}) \middle| \left| Pr(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) \right| \right]. \tag{17.17}$$

ELBO
$$[\boldsymbol{\theta}, \boldsymbol{\phi}] = \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{x}, \mathbf{z}|\boldsymbol{\phi})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}$$

$$= \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi})Pr(\mathbf{z})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}$$

$$= \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi}) \right] d\mathbf{z} + \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[\frac{Pr(\mathbf{z})}{q(\mathbf{z}|\boldsymbol{\theta})} \right] d\mathbf{z}$$

$$= \int q(\mathbf{z}|\boldsymbol{\theta}) \log \left[Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi}) \right] d\mathbf{z} - D_{KL} \left[q(\mathbf{z}|\boldsymbol{\theta}) \middle| Pr(\mathbf{z}) \right], \quad (17.18)$$

$$Pr(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) = \frac{Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi})Pr(\mathbf{z})}{Pr(\mathbf{x}|\boldsymbol{\phi})},$$
(17.19)

$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \text{Norm}_{\mathbf{z}} \Big[\mathbf{g}_{\boldsymbol{\mu}}[\mathbf{x}, \boldsymbol{\theta}], \mathbf{g}_{\boldsymbol{\Sigma}}[\mathbf{x}, \boldsymbol{\theta}] \Big],$$
 (17.20)

$$ELBO[\boldsymbol{\theta}, \boldsymbol{\phi}] = \int q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) \log \left[Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi}) \right] d\mathbf{z} - D_{KL} \left[q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) \middle| \middle| Pr(\mathbf{z}) \right], \quad (17.21)$$

$$\mathbb{E}_{\mathbf{z}}[\mathbf{a}[\mathbf{z}]] = \int \mathbf{a}[\mathbf{z}]q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})d\mathbf{z} \approx \frac{1}{N} \sum_{n=1}^{N} \mathbf{a}[\mathbf{z}_{n}^{*}],$$
(17.22)

$$ELBO[\boldsymbol{\theta}, \boldsymbol{\phi}] \approx \log[Pr(\mathbf{x}|\mathbf{z}^*, \boldsymbol{\phi})] - D_{KL}[q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})||Pr(\mathbf{z})]. \tag{17.23}$$

$$D_{KL}\left[q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})\middle|\middle|Pr(\mathbf{z})\right] = \frac{1}{2}\left(\text{Tr}[\boldsymbol{\Sigma}] + \boldsymbol{\mu}^T\boldsymbol{\mu} - D_{\mathbf{z}} - \log\left[\det[\boldsymbol{\Sigma}]\right]\right). \tag{17.24}$$

$$\mathbf{z}^* = \boldsymbol{\mu} + \boldsymbol{\Sigma}^{1/2} \boldsymbol{\epsilon}^*, \tag{17.25}$$

$$Pr(\mathbf{x}) = \int Pr(\mathbf{x}|\mathbf{z})Pr(\mathbf{z})d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z}} \Big[Pr(\mathbf{x}|\mathbf{z})\Big]$$

$$= \mathbb{E}_{\mathbf{z}} \Big[\operatorname{Norm}_{\mathbf{x}}[\mathbf{f}[\mathbf{z}, \boldsymbol{\phi}], \sigma^{2}\mathbf{I}]\Big]. \tag{17.26}$$

$$Pr(\mathbf{x}) \approx \frac{1}{N} \sum_{n=1}^{N} Pr(\mathbf{x}|\mathbf{z}_n).$$
 (17.27)

$$Pr(\mathbf{x}) = \int Pr(\mathbf{x}|\mathbf{z})Pr(\mathbf{z})d\mathbf{z}$$

$$= \int \frac{Pr(\mathbf{x}|\mathbf{z})Pr(\mathbf{z})}{q(\mathbf{z})}q(\mathbf{z})d\mathbf{z}$$

$$= \mathbb{E}_{q(\mathbf{z})}\left[\frac{Pr(\mathbf{x}|\mathbf{z})Pr(\mathbf{z})}{q(\mathbf{z})}\right]$$

$$\approx \frac{1}{N}\sum_{n=1}^{N}\frac{Pr(\mathbf{x}|\mathbf{z}_{n})Pr(\mathbf{z}_{n})}{q(\mathbf{z}_{n})},$$
(17.28)

$$L_{\text{new}} = -\text{ELBO}[\boldsymbol{\theta}, \boldsymbol{\phi}] + \lambda_1 \mathbb{E}_{Pr(\mathbf{x})} \Big[r_1 \big[q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) \big] \Big] + \lambda_2 r_2 \big[q(\mathbf{z}|\boldsymbol{\theta}) \big].$$
 (17.29)

$$ELBO[\boldsymbol{\theta}, \boldsymbol{\phi}] \approx \log[Pr(\mathbf{x}|\mathbf{z}^*, \boldsymbol{\phi})] - \beta \cdot D_{KL}[q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})||Pr(\mathbf{z})], \quad (17.30)$$

$$g[\mathbb{E}[y]] \le \mathbb{E}[g[y]].$$
 (17.31)

$$D_{KL}\left[q(\mathbf{z}|\mathbf{x})\middle|\middle|Pr(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})\right] = \int q(\mathbf{z}|\mathbf{x})\log\left[\frac{q(\mathbf{z}|\mathbf{x})}{Pr(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})}\right]d\mathbf{z}.$$
 (17.32)

$$\frac{\partial}{\partial \phi} \mathbb{E}_{Pr(x|\phi)} [f[x]], \tag{17.33}$$

$$\frac{\partial}{\partial \phi} \mathbb{E}_{Pr(x|\phi)} [f[x]] = \mathbb{E}_{Pr(x|\phi)} \left[f[x] \frac{\partial}{\partial \phi} \log [Pr(x|\phi)] \right]$$

$$\approx \frac{1}{I} \sum_{i=1}^{I} f[x_i] \frac{\partial}{\partial \phi} \log [Pr(x_i|\phi)]. \tag{17.34}$$

Diffusion models

$$\mathbf{z}_{1} = \sqrt{1 - \beta_{1}} \cdot \mathbf{x} + \sqrt{\beta_{1}} \cdot \boldsymbol{\epsilon}_{1}$$

$$\mathbf{z}_{t} = \sqrt{1 - \beta_{t}} \cdot \mathbf{z}_{t-1} + \sqrt{\beta_{t}} \cdot \boldsymbol{\epsilon}_{t} \qquad \forall t \in 2, \dots, T,$$

$$(18.1)$$

$$q(\mathbf{z}_{1}|\mathbf{x}) = \operatorname{Norm}_{\mathbf{z}_{1}} \left[\sqrt{1 - \beta_{1}} \mathbf{x}, \beta_{1} \mathbf{I} \right]$$

$$q(\mathbf{z}_{t}|\mathbf{z}_{t-1}) = \operatorname{Norm}_{\mathbf{z}_{t}} \left[\sqrt{1 - \beta_{t}} \mathbf{z}_{t-1}, \beta_{t} \mathbf{I} \right]$$

$$\forall t \in \{2, \dots, T\}.$$

$$(18.2)$$

$$q(\mathbf{z}_{1...T}|\mathbf{x}) = q(\mathbf{z}_1|\mathbf{x}) \prod_{t=2}^{T} q(\mathbf{z}_t|\mathbf{z}_{t-1}).$$
(18.3)

$$\mathbf{z}_{1} = \sqrt{1 - \beta_{1}} \cdot \mathbf{x} + \sqrt{\beta_{1}} \cdot \boldsymbol{\epsilon}_{1}$$

$$\mathbf{z}_{2} = \sqrt{1 - \beta_{2}} \cdot \mathbf{z}_{1} + \sqrt{\beta_{2}} \cdot \boldsymbol{\epsilon}_{2}.$$
(18.4)

$$\mathbf{z}_{2} = \sqrt{1 - \beta_{2}} \left(\sqrt{1 - \beta_{1}} \cdot \mathbf{x} + \sqrt{\beta_{1}} \cdot \boldsymbol{\epsilon}_{1} \right) + \sqrt{\beta_{2}} \cdot \boldsymbol{\epsilon}_{2}$$

$$= \sqrt{1 - \beta_{2}} \left(\sqrt{1 - \beta_{1}} \cdot \mathbf{x} + \sqrt{1 - (1 - \beta_{1})} \cdot \boldsymbol{\epsilon}_{1} \right) + \sqrt{\beta_{2}} \cdot \boldsymbol{\epsilon}_{2}$$

$$= \sqrt{(1 - \beta_{2})(1 - \beta_{1})} \cdot \mathbf{x} + \sqrt{1 - \beta_{2} - (1 - \beta_{2})(1 - \beta_{1})} \cdot \boldsymbol{\epsilon}_{1} + \sqrt{\beta_{2}} \cdot \boldsymbol{\epsilon}_{2}.$$
(18.5)

$$\mathbf{z}_2 = \sqrt{(1-\beta_2)(1-\beta_1)} \cdot \mathbf{x} + \sqrt{1-(1-\beta_2)(1-\beta_1)} \cdot \boldsymbol{\epsilon},$$
 (18.6)

$$\mathbf{z}_t = \sqrt{\alpha_t} \cdot \mathbf{x} + \sqrt{1 - \alpha_t} \cdot \boldsymbol{\epsilon},\tag{18.7}$$

$$q(\mathbf{z}_t|\mathbf{x}) = \text{Norm}_{\mathbf{z}_t} \left[\sqrt{\alpha_t} \cdot \mathbf{x}, (1 - \alpha_t) \mathbf{I} \right]. \tag{18.8}$$

$$q(\mathbf{z}_t) = \iint q(\mathbf{z}_{1...t}, \mathbf{x}) d\mathbf{z}_{1...t-1} d\mathbf{x}$$
$$= \iint q(\mathbf{z}_{1...t}|\mathbf{x}) Pr(\mathbf{x}) d\mathbf{z}_{1...t-1} d\mathbf{x}, \qquad (18.9)$$

$$q(\mathbf{z}_t) = \int q(\mathbf{z}_t | \mathbf{x}) Pr(\mathbf{x}) d\mathbf{x}.$$
 (18.10)

$$q(\mathbf{z}_{t-1}|\mathbf{z}_t) = \frac{q(\mathbf{z}_t|\mathbf{z}_{t-1})q(\mathbf{z}_{t-1})}{q(\mathbf{z}_t)}.$$
(18.11)

$$q(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \mathbf{x}) = \frac{q(\mathbf{z}_{t}|\mathbf{z}_{t-1}, \mathbf{x})q(\mathbf{z}_{t-1}|\mathbf{x})}{q(\mathbf{z}_{t}|\mathbf{x})}$$

$$\propto q(\mathbf{z}_{t}|\mathbf{z}_{t-1})q(\mathbf{z}_{t-1}|\mathbf{x})$$

$$= \operatorname{Norm}_{\mathbf{z}_{t}} \left[\sqrt{1 - \beta_{t}} \cdot \mathbf{z}_{t-1}, \beta_{t} \mathbf{I} \right] \operatorname{Norm}_{\mathbf{z}_{t-1}} \left[\sqrt{\alpha_{t-1}} \cdot \mathbf{x}, (1 - \alpha_{t-1}) \mathbf{I} \right]$$

$$\propto \operatorname{Norm}_{\mathbf{z}_{t-1}} \left[\frac{1}{\sqrt{1 - \beta_{t}}} \mathbf{z}_{t}, \frac{\beta_{t}}{1 - \beta_{t}} \mathbf{I} \right] \operatorname{Norm}_{\mathbf{z}_{t-1}} \left[\sqrt{\alpha_{t-1}} \cdot \mathbf{x}, (1 - \alpha_{t-1}) \mathbf{I} \right]$$

$$\operatorname{Norm}_{\mathbf{v}}\left[\mathbf{A}\mathbf{w},\mathbf{B}\right] \propto \operatorname{Norm}_{\mathbf{w}}\left[\left(\mathbf{A}^{T}\mathbf{B}^{-1}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\mathbf{B}^{-1}\mathbf{v},\left(\mathbf{A}^{T}\mathbf{B}^{-1}\mathbf{A}\right)^{-1}\right],\tag{18.13}$$

$$\operatorname{Norm}_{\mathbf{w}}[\mathbf{a}, \mathbf{A}] \cdot \operatorname{Norm}_{\mathbf{w}}[\mathbf{b}, \mathbf{B}] \propto (18.14)$$

$$\operatorname{Norm}_{\mathbf{w}} \left[\left(\mathbf{A}^{-1} + \mathbf{B}^{-1} \right)^{-1} (\mathbf{A}^{-1} \mathbf{a} + \mathbf{B}^{-1} \mathbf{b}), \left(\mathbf{A}^{-1} + \mathbf{B}^{-1} \right)^{-1} \right],$$

$$q(\mathbf{z}_{t-1}|\mathbf{z}_t, \mathbf{x}) = \text{Norm}_{\mathbf{z}_{t-1}} \left[\frac{(1 - \alpha_{t-1})}{1 - \alpha_t} \sqrt{1 - \beta_t} \mathbf{z}_t + \frac{\sqrt{\alpha_{t-1}} \beta_t}{1 - \alpha_t} \mathbf{x}, \frac{\beta_t (1 - \alpha_{t-1})}{1 - \alpha_t} \mathbf{I} \right]. (18.15)$$

$$Pr(\mathbf{z}_{T}) = \operatorname{Norm}_{\mathbf{z}_{T}}[\mathbf{0}, \mathbf{I}]$$

$$Pr(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \boldsymbol{\phi}_{t}) = \operatorname{Norm}_{\mathbf{z}_{t-1}}\left[\mathbf{f}_{t}[\mathbf{z}_{t}, \boldsymbol{\phi}_{t}], \sigma_{t}^{2}\mathbf{I}\right]$$

$$Pr(\mathbf{x}|\mathbf{z}_{1}, \boldsymbol{\phi}_{1}) = \operatorname{Norm}_{\mathbf{x}}\left[\mathbf{f}_{1}[\mathbf{z}_{1}, \boldsymbol{\phi}_{1}], \sigma_{1}^{2}\mathbf{I}\right], \qquad (18.16)$$

$$Pr(\mathbf{x}, \mathbf{z}_{1...T} | \boldsymbol{\phi}_{1...T}) = Pr(\mathbf{x} | \mathbf{z}_1, \boldsymbol{\phi}_1) \prod_{t=2}^{T} Pr(\mathbf{z}_{t-1} | \mathbf{z}_t, \boldsymbol{\phi}_t) \cdot Pr(\mathbf{z}_T).$$
(18.17)

$$Pr(\mathbf{x}|\boldsymbol{\phi}_{1...T}) = \int Pr(\mathbf{x}, \mathbf{z}_{1...T}|\boldsymbol{\phi}_{1...T}) d\mathbf{z}_{1...T}.$$
 (18.18)

$$\hat{\boldsymbol{\phi}}_{1\dots T} = \underset{\boldsymbol{\phi}_{1\dots T}}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{x}_i | \boldsymbol{\phi}_{1\dots T}) \right] \right]. \tag{18.19}$$

$$\log \left[Pr(\mathbf{x}|\phi_{1...T}) \right] = \log \left[\int Pr(\mathbf{x}, \mathbf{z}_{1...T}|\phi_{1...T}) d\mathbf{z}_{1...T} \right]$$

$$= \log \left[\int q(\mathbf{z}_{1...T}|\mathbf{x}) \frac{Pr(\mathbf{x}, \mathbf{z}_{1...T}|\phi_{1...T})}{q(\mathbf{z}_{1...T}|\mathbf{x})} d\mathbf{z}_{1...T} \right]$$

$$\geq \int q(\mathbf{z}_{1...T}|\mathbf{x}) \log \left[\frac{Pr(\mathbf{x}, \mathbf{z}_{1...T}|\phi_{1...T})}{q(\mathbf{z}_{1...T}|\mathbf{x})} \right] d\mathbf{z}_{1...T}. \quad (18.20)$$

$$ELBO[\boldsymbol{\phi}_{1...T}] = \int q(\mathbf{z}_{1...T}|\mathbf{x}) \log \left[\frac{Pr(\mathbf{x}, \mathbf{z}_{1...T}|\boldsymbol{\phi}_{1...T})}{q(\mathbf{z}_{1...T}|\mathbf{x})} \right] d\mathbf{z}_{1...T}.$$
 (18.21)

$$\log \left[\frac{Pr(\mathbf{x}, \mathbf{z}_{1...T} | \boldsymbol{\phi}_{1...T})}{q(\mathbf{z}_{1...T} | \mathbf{x})} \right] = \log \left[\frac{Pr(\mathbf{x} | \mathbf{z}_{1}, \boldsymbol{\phi}_{1}) \prod_{t=2}^{T} Pr(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \boldsymbol{\phi}_{t}) \cdot Pr(\mathbf{z}_{T})}{q(\mathbf{z}_{1} | \mathbf{x}) \prod_{t=2}^{T} q(\mathbf{z}_{t} | \mathbf{z}_{t-1})} \right]$$

$$= \log \left[\frac{Pr(\mathbf{x} | \mathbf{z}_{1}, \boldsymbol{\phi}_{1})}{q(\mathbf{z}_{1} | \mathbf{x})} \right] + \log \left[\frac{\prod_{t=2}^{T} Pr(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \boldsymbol{\phi}_{t})}{\prod_{t=2}^{T} q(\mathbf{z}_{t} | \mathbf{z}_{t-1})} \right] + \log \left[Pr(\mathbf{z}_{T}) \right].$$

$$q(\mathbf{z}_t|\mathbf{z}_{t-1}) = q(\mathbf{z}_t|\mathbf{z}_{t-1},\mathbf{x}) = \frac{q(\mathbf{z}_{t-1}|\mathbf{z}_t,\mathbf{x})q(\mathbf{z}_t|\mathbf{x})}{q(\mathbf{z}_{t-1}|\mathbf{x})},$$
(18.23)

$$\log \left[\frac{Pr(\mathbf{x}, \mathbf{z}_{1...T} | \boldsymbol{\phi}_{1...T})}{q(\mathbf{z}_{1...T} | \mathbf{x})} \right]$$

$$= \log \left[\frac{Pr(\mathbf{x} | \mathbf{z}_{1}, \boldsymbol{\phi}_{1})}{q(\mathbf{z}_{1} | \mathbf{x})} \right] + \log \left[\frac{\prod_{t=2}^{T} Pr(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \boldsymbol{\phi}_{t}) \cdot q(\mathbf{z}_{t-1} | \mathbf{x})}{\prod_{t=2}^{T} q(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \mathbf{x}) \cdot q(\mathbf{z}_{t} | \mathbf{x})} \right] + \log \left[Pr(\mathbf{z}_{T}) \right]$$

$$= \log \left[Pr(\mathbf{x} | \mathbf{z}_{1}, \boldsymbol{\phi}_{1}) \right] + \log \left[\frac{\prod_{t=2}^{T} Pr(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \boldsymbol{\phi}_{t})}{\prod_{t=2}^{T} q(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \mathbf{x})} \right] + \log \left[\frac{Pr(\mathbf{z}_{T})}{q(\mathbf{z}_{T} | \mathbf{x})} \right]$$

$$\approx \log \left[Pr(\mathbf{x} | \mathbf{z}_{1}, \boldsymbol{\phi}_{1}) \right] + \sum_{t=2}^{T} \log \left[\frac{Pr(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \boldsymbol{\phi}_{t})}{q(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \boldsymbol{\phi}_{t})} \right], \tag{18.24}$$

$$\begin{aligned} & \text{ELBO}\big[\boldsymbol{\phi}_{1...T}\big] \\ &= \int q(\mathbf{z}_{1...T}|\mathbf{x}) \log \left[\frac{Pr(\mathbf{x}, \mathbf{z}_{1...T}|\boldsymbol{\phi}_{1...T})}{q(\mathbf{z}_{1...T}|\mathbf{x})} \right] d\mathbf{z}_{1...T} \\ &\approx \int q(\mathbf{z}_{1...T}|\mathbf{x}) \left(\log \left[Pr(\mathbf{x}|\mathbf{z}_{1}, \boldsymbol{\phi}_{1}) \right] + \sum_{t=2}^{T} \log \left[\frac{Pr(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \boldsymbol{\phi}_{t})}{q(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \mathbf{x})} \right] \right) d\mathbf{z}_{1...T} \\ &= \mathbb{E}_{q(\mathbf{z}_{1}|\mathbf{x})} \Big[\log \left[Pr(\mathbf{x}|\mathbf{z}_{1}, \boldsymbol{\phi}_{1}) \right] - \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{z}_{t}|\mathbf{x})} \Big[D_{KL} \Big[q(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \mathbf{x}) \big| \big| Pr(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \boldsymbol{\phi}_{t}) \Big] \Big], \end{aligned}$$

$$Pr(\mathbf{x}|\mathbf{z}_1, \boldsymbol{\phi}_1) = \text{Norm}_{\mathbf{x}} \Big[\mathbf{f}_1[\mathbf{z}_1, \boldsymbol{\phi}_1], \sigma_1^2 \mathbf{I} \Big],$$
 (18.26)

$$Pr(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \boldsymbol{\phi}_{t}) = \operatorname{Norm}_{\mathbf{z}_{t-1}} \left[\mathbf{f}_{t}[\mathbf{z}_{t}, \boldsymbol{\phi}_{t}], \sigma_{t}^{2} \mathbf{I} \right]$$

$$q(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \mathbf{x}) = \operatorname{Norm}_{\mathbf{z}_{t-1}} \left[\frac{(1 - \alpha_{t-1})}{1 - \alpha_{t}} \sqrt{1 - \beta_{t}} \mathbf{z}_{t} + \frac{\sqrt{\alpha_{t-1}} \beta_{t}}{1 - \alpha_{t}} \mathbf{x}, \frac{\beta_{t} (1 - \alpha_{t-1})}{1 - \alpha_{t}} \mathbf{I} \right].$$

$$(18.27)$$

$$D_{KL}\left[q(\mathbf{z}_{t-1}|\mathbf{z}_{t},\mathbf{x})||Pr(\mathbf{z}_{t-1}|\mathbf{z}_{t},\boldsymbol{\phi}_{t})\right] = \frac{1}{2\sigma_{t}^{2}} \left\|\frac{(1-\alpha_{t-1})}{1-\alpha_{t}}\sqrt{1-\beta_{t}}\mathbf{z}_{t} + \frac{\sqrt{\alpha_{t-1}}\beta_{t}}{1-\alpha_{t}}\mathbf{x} - \mathbf{f}_{t}[\mathbf{z}_{t},\boldsymbol{\phi}_{t}]\right\|^{2} + C.$$
(18.28)

$L[\phi_{1...T}] = \sum_{i=1}^{I} \left(-\log \left[\operatorname{Norm}_{\mathbf{x}_{i}} \left[\mathbf{f}_{1}[\mathbf{z}_{i1}, \phi_{1}], \sigma_{1}^{2} \mathbf{I} \right] \right] + \sum_{t=2}^{T} \frac{1}{2\sigma_{t}^{2}} \left\| \frac{1 - \alpha_{t-1}}{1 - \alpha_{t}} \sqrt{1 - \beta_{t}} \mathbf{z}_{it} + \frac{\sqrt{\alpha_{t-1}}\beta_{t}}{1 - \alpha_{t}} \mathbf{x}_{i} - \mathbf{f}_{t}[\mathbf{z}_{it}, \phi_{t}] \right\|^{2} \right),$ $\operatorname{target, mean of } q(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \mathbf{x}) \text{ predicted } \mathbf{z}_{t-1}$

$$\mathbf{z}_t = \sqrt{\alpha_t} \cdot \mathbf{x} + \sqrt{1 - \alpha_t} \cdot \boldsymbol{\epsilon}. \tag{18.30}$$

$$\mathbf{x} = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{z}_t - \frac{\sqrt{1 - \alpha_t}}{\sqrt{\alpha_t}} \cdot \boldsymbol{\epsilon}.$$
 (18.31)

$$\frac{(1 - \alpha_{t-1})}{1 - \alpha_t} \sqrt{1 - \beta_t} \mathbf{z}_t + \frac{\sqrt{\alpha_{t-1}} \beta_t}{1 - \alpha_t} \mathbf{x}$$

$$= \frac{(1 - \alpha_{t-1})}{1 - \alpha_t} \sqrt{1 - \beta_t} \mathbf{z}_t + \frac{\sqrt{\alpha_{t-1}} \beta_t}{1 - \alpha_t} \left(\frac{1}{\sqrt{\alpha_t}} \mathbf{z}_t - \frac{\sqrt{1 - \alpha_t}}{\sqrt{\alpha_t}} \epsilon \right)$$

$$= \frac{(1 - \alpha_{t-1})}{1 - \alpha_t} \sqrt{1 - \beta_t} \mathbf{z}_t + \frac{\beta_t}{1 - \alpha_t} \left(\frac{1}{\sqrt{1 - \beta_t}} \mathbf{z}_t - \frac{\sqrt{1 - \alpha_t}}{\sqrt{1 - \beta_t}} \epsilon \right),$$

$$\frac{(1-\alpha_{t-1})}{1-\alpha_t}\sqrt{1-\beta_t}\mathbf{z}_t + \frac{\sqrt{\alpha_{t-1}}\beta_t}{1-\alpha_t}\mathbf{x} \qquad (18.33)$$

$$= \left(\frac{(1-\alpha_{t-1})\sqrt{1-\beta_t}}{1-\alpha_t} + \frac{\beta_t}{(1-\alpha_t)\sqrt{1-\beta_t}}\right)\mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}\sqrt{1-\beta_t}}\boldsymbol{\epsilon}$$

$$= \left(\frac{(1-\alpha_{t-1})(1-\beta_t)}{(1-\alpha_t)\sqrt{1-\beta_t}} + \frac{\beta_t}{(1-\alpha_t)\sqrt{1-\beta_t}}\right)\mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}\sqrt{1-\beta_t}}\boldsymbol{\epsilon}$$

$$= \frac{(1-\alpha_{t-1})(1-\beta_t) + \beta_t}{(1-\alpha_t)\sqrt{1-\beta_t}}\mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}\sqrt{1-\beta_t}}\boldsymbol{\epsilon}$$

$$= \frac{1-\alpha_t}{(1-\alpha_t)\sqrt{1-\beta_t}}\mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}\sqrt{1-\beta_t}}\boldsymbol{\epsilon}$$

$$= \frac{1}{\sqrt{1-\beta_t}}\mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}\sqrt{1-\beta_t}}\boldsymbol{\epsilon},$$

$$L[\boldsymbol{\phi}_{1...T}] = \sum_{i=1}^{I} \left(-\log \left[\operatorname{Norm}_{\mathbf{x}_{i}} \left[\mathbf{f}_{1}[\mathbf{z}_{i1}, \boldsymbol{\phi}_{1}], \sigma_{1}^{2} \mathbf{I} \right] \right] + \sum_{t=2}^{T} \frac{1}{2\sigma_{t}^{2}} \left\| \left(\frac{1}{\sqrt{1-\beta_{t}}} \mathbf{z}_{it} - \frac{\beta_{t}}{\sqrt{1-\alpha_{t}}\sqrt{1-\beta_{t}}} \boldsymbol{\epsilon}_{it} \right) - \mathbf{f}_{t}[\mathbf{z}_{it}, \boldsymbol{\phi}_{t}] \right\|^{2} \right).$$

$$(18.34)$$

$$\mathbf{f}_t[\mathbf{z}_t, \boldsymbol{\phi}_t] = \frac{1}{\sqrt{1 - \beta_t}} \mathbf{z}_t - \frac{\beta_t}{\sqrt{1 - \alpha_t} \sqrt{1 - \beta_t}} \mathbf{g}_t[\mathbf{z}_t, \boldsymbol{\phi}_t]. \tag{18.35}$$

$$L[\boldsymbol{\phi}_{1...T}] = \frac{1}{\sum_{i=1}^{I} -\log\left[\operatorname{Norm}_{\mathbf{x}_{i}}\left[\mathbf{f}_{1}[\mathbf{z}_{i1}, \boldsymbol{\phi}_{1}], \sigma_{1}^{2}\mathbf{I}\right]\right] + \sum_{t=2}^{T} \frac{\beta_{t}^{2}}{(1-\alpha_{t})(1-\beta_{t})2\sigma_{t}^{2}} \left\|\mathbf{g}_{t}[\mathbf{z}_{it}, \boldsymbol{\phi}_{t}] - \boldsymbol{\epsilon}_{it}\right\|^{2}}.$$
(18.36)

$$L[\phi_{1...T}] = \sum_{i=1}^{I} \frac{1}{2\sigma_1^2} \left\| \mathbf{x}_i - \mathbf{f}_1[\mathbf{z}_{i1}, \phi_1] \right\|^2 + \sum_{t=2}^{T} \frac{\beta_t^2}{(1 - \alpha_t)(1 - \beta_t)2\sigma_t^2} \left\| \mathbf{g}_t[\mathbf{z}_{it}, \phi_t] - \epsilon_{it} \right\|^2 + \mathcal{O}(8.37)$$

$$\frac{1}{2\sigma_1^2} \left\| \mathbf{x}_i - \mathbf{f}_1[\mathbf{z}_{i1}, \boldsymbol{\phi}_1] \right\|^2 = \frac{1}{2\sigma_1^2} \left\| \frac{\beta_1}{\sqrt{1 - \alpha_1} \sqrt{1 - \beta_1}} \mathbf{g}_1[\mathbf{z}_{i1}, \boldsymbol{\phi}_1] - \frac{\beta_1}{\sqrt{1 - \alpha_1} \sqrt{1 - \beta_1}} \boldsymbol{\epsilon}_{i1} \right\|^2 18.38)$$

$$L[\phi_{1...T}] = \sum_{i=1}^{I} \sum_{t=1}^{T} \frac{\beta_t^2}{(1-\alpha_t)(1-\beta_t)2\sigma_t^2} \left\| \mathbf{g}_t[\mathbf{z}_{it}, \phi_t] - \epsilon_{it} \right\|^2,$$
(18.39)

$$L[\phi_{1...T}] = \sum_{i=1}^{I} \sum_{t=1}^{T} \left\| \mathbf{g}_{t}[\mathbf{z}_{it}, \phi_{t}] - \boldsymbol{\epsilon}_{it} \right\|^{2}$$

$$= \sum_{i=1}^{I} \sum_{t=1}^{T} \left\| \mathbf{g}_{t} \left[\sqrt{\alpha_{t}} \cdot \mathbf{x}_{i} + \sqrt{1 - \alpha_{t}} \cdot \boldsymbol{\epsilon}_{it}, \phi_{t} \right] - \boldsymbol{\epsilon}_{it} \right\|^{2},$$
(18.40)

$$\mathbf{z}_{t-1} = \hat{\mathbf{z}}_{t-1} + \sigma_t^2 \frac{\partial \log[\Pr(c|\mathbf{z}_t)]}{\partial \mathbf{z}_t} + \sigma_t \epsilon.$$
 (18.41)

$$\mathbf{x}_t = \sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \boldsymbol{\epsilon}_t, \tag{18.42}$$

$$z = a \cdot \epsilon_1 + b \cdot \epsilon_2,\tag{18.43}$$

$$\mathbb{E}[z] = 0$$

 $\text{Var}[z] = a^2 + b^2,$ (18.44)

$$\mathbf{z}_3 = \sqrt{(1-\beta_3)(1-\beta_2)(1-\beta_1)} \cdot \mathbf{x} + \sqrt{1-(1-\beta_3)(1-\beta_2)(1-\beta_1)} \cdot \epsilon'(18.45)$$

$$\operatorname{Norm}_{\mathbf{v}}\left[\mathbf{A}\mathbf{w},\mathbf{B}\right] \propto \operatorname{Norm}_{\mathbf{w}}\left[(\mathbf{A}^{T}\mathbf{B}^{-1}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{B}^{-1}\mathbf{v}, (\mathbf{A}^{T}\mathbf{B}^{-1}\mathbf{A})^{-1}\right]. \tag{18.46}$$

$$\operatorname{Norm}_{\mathbf{x}}[\mathbf{a}, \mathbf{A}] \operatorname{Norm}_{\mathbf{x}}[\mathbf{b}, \mathbf{B}] \propto \operatorname{Norm}_{\mathbf{x}} \Big[(\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} (\mathbf{A}^{-1} \mathbf{a} + \mathbf{B}^{-1} \mathbf{b}), (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} \Big]. \tag{18.47}$$

$$D_{KL}\left[\operatorname{Norm}_{\mathbf{w}}[\mathbf{a}, \mathbf{A}] \middle| \operatorname{Norm}_{\mathbf{w}}[\mathbf{b}, \mathbf{B}]\right] = \frac{1}{2} \left(\operatorname{tr}\left[\mathbf{B}^{-1}\mathbf{A}\right] - d + (\mathbf{a} - \mathbf{b})^{T}\mathbf{B}^{-1}(\mathbf{a} - \mathbf{b}) + \log\left[\frac{|\mathbf{B}|}{|\mathbf{A}|}\right] \right).$$
(18.48)

$$\sqrt{\frac{\alpha_t}{\alpha_{t-1}}} = \sqrt{1 - \beta_t}.\tag{18.49}$$

$$\frac{(1 - \alpha_{t-1})(1 - \beta_t) + \beta_t}{(1 - \alpha_t)\sqrt{1 - \beta_t}} = \frac{1}{\sqrt{1 - \beta_t}}.$$
 (18.50)

Reinforcement learning

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}.$$
 (19.1)

$$v[s_t|\pi] = \mathbb{E}\Big[G_t|s_t,\pi\Big]. \tag{19.2}$$

$$q[s_t, a_t | \pi] = \mathbb{E} \Big[G_t | s_t, a_t, \pi \Big]. \tag{19.3}$$

$$v^*[s_t] = \max_{\pi} \left[\mathbb{E} \left[G_t | s_t, \pi \right] \right]. \tag{19.4}$$

$$q^*[s_t, a_t] = \max_{\pi} \left[\mathbb{E} \left[G_t | s_t, a_t, \pi \right] \right]. \tag{19.5}$$

$$\pi[a_t|s_t] \leftarrow \underset{a_t}{\operatorname{argmax}} \left[q^*[s_t, a_t] \right]. \tag{19.6}$$

$$v[s_t] = \sum_{a_t} \pi[a_t|s_t]q[s_t, a_t]. \tag{19.7}$$

$$q[s_t, a_t] = r[s_t, a_t] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) v[s_{t+1}].$$
(19.8)

$$v[s_t] = \sum_{a_t} \pi[a_t | s_t] \left(r[s_t, a_t] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1} | s_t, a_t) v[s_{t+1}] \right).$$
 (19.9)

$$q[s_t, a_t] = r[s_t, a_t] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) \left(\sum_{a_{t+1}} \pi[a_{t+1}|s_{t+1}] q[s_{t+1}, a_{t+1}] \right). \quad (19.10)$$

$$v[s_t] \leftarrow \sum_{a_t} \pi[a_t|s_t] \left(r[s_t, a_t] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) v[s_{t+1}] \right), \tag{19.11}$$

$$\pi[a_t|s_t] \leftarrow \underset{a_t}{\operatorname{argmax}} \left[r[s_t, a_t] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) v[s_{t+1}] \right]. \tag{19.12}$$

$$\pi[a|s] \leftarrow \underset{a}{\operatorname{argmax}} \Big[q[s,a]\Big].$$
 (19.13)

$$q[s_t, a_t] \leftarrow q[s_t, a_t] + \alpha \Big(r[s_t, a_t] + \gamma \cdot q[s_{t+1}, a_{t+1}] - q[s_t, a_t] \Big), \tag{19.14}$$

$$q[s_t, a_t] \leftarrow q[s_t, a_t] + \alpha \Big(r[s_t, a_t] + \gamma \cdot \max_{a} [q[s_{t+1}, a]] - q[s_t, a_t] \Big),$$
 (19.15)

$$L[\boldsymbol{\phi}] = \left(r[\mathbf{s}_t, a_t] + \gamma \cdot \max_{a} \left[q[\mathbf{s}_{t+1}, a, \boldsymbol{\phi}]\right] - q[\mathbf{s}_t, a_t, \boldsymbol{\phi}]\right)^2, \tag{19.16}$$

$$\phi \leftarrow \phi + \alpha \left(r[\mathbf{s}_t, a_t] + \gamma \cdot \max_{a} \left[q[\mathbf{s}_{t+1}, a, \phi] \right] - q[\mathbf{s}_t, a_t, \phi] \right) \frac{\partial q[\mathbf{s}_t, a_t, \phi]}{\partial \phi}.$$
(19.17)

$$\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \alpha \left(r[\mathbf{s}_t, a_t] + \gamma \cdot \max_{a} \left[q[\mathbf{s}_{t+1}, a, \boldsymbol{\phi}^-] \right] - q[\mathbf{s}_t, a_t, \boldsymbol{\phi}] \right) \frac{\partial q[\mathbf{s}_t, a_t, \boldsymbol{\phi}]}{\partial \boldsymbol{\phi}}.$$
(19.18)

$$q[s_t, a_t] \leftarrow q[s_t, a_t] + \alpha \left(r[s_t, a_t] + \gamma \cdot \max_{a} [q[s_{t+1}, a]] - q[s_t, a_t] \right)$$
(19.19)

$$q_{1}[s_{t}, a_{t}] \leftarrow q_{1}[s_{t}, a_{t}] + \alpha \left(r[s_{t}, a_{t}] + \gamma \cdot q_{2} \left[s_{t+1}, \underset{a}{\operatorname{argmax}} \left[q_{1}[s_{t+1}, a]\right]\right] - q_{1}[s_{t}, a_{t}]\right)$$

$$q_{2}[s_{t}, a_{t}] \leftarrow q_{2}[s_{t}, a_{t}] + \alpha \left(r[s_{t}, a_{t}] + \gamma \cdot q_{1} \left[s_{t+1}, \underset{a}{\operatorname{argmax}} \left[q_{2}[s_{t+1}, a]\right]\right] - q_{2}[s_{t}, a_{t}]\right).$$

$$(19.20)$$

$$\phi_{1} \leftarrow \phi_{1} + \alpha \left(r[\mathbf{s}_{t}, a_{t}] + \gamma \cdot q \left[\mathbf{s}_{t+1}, \operatorname{argmax} \left[q[\mathbf{s}_{t+1}, a, \phi_{1}] \right], \phi_{2} \right] - q[\mathbf{s}_{t}, a_{t}, \phi_{1}] \right) \frac{\partial q[\mathbf{s}_{t}, a_{t}, \phi_{1}]}{\partial \phi_{1}}$$

$$\phi_{2} \leftarrow \phi_{2} + \alpha \left(r[\mathbf{s}_{t}, a_{t}] + \gamma \cdot q \left[\mathbf{s}_{t+1}, \operatorname{argmax} \left[q[\mathbf{s}_{t+1}, a, \phi_{2}] \right], \phi_{1} \right] - q[\mathbf{s}_{t}, a_{t}, \phi_{2}] \right) \frac{\partial q[\mathbf{s}_{t}, a_{t}, \phi_{1}]}{\partial \phi_{2}}.$$

$$(19.21)$$

$$Pr(\boldsymbol{\tau}|\boldsymbol{\theta}) = Pr(\mathbf{s}_1) \prod_{t=1}^{T} \pi[a_t|\mathbf{s}_t, \boldsymbol{\theta}] Pr(\mathbf{s}_{t+1}|\mathbf{s}_t, a_t).$$
 (19.22)

$$\boldsymbol{\theta} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left[\mathbb{E}_{\boldsymbol{\tau}} \left[r[\boldsymbol{\tau}] \right] \right] = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left[\int Pr(\boldsymbol{\tau}|\boldsymbol{\theta}) r[\boldsymbol{\tau}] d\boldsymbol{\tau} \right], \tag{19.23}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \frac{\partial}{\partial \boldsymbol{\theta}} \int Pr(\boldsymbol{\tau}|\boldsymbol{\theta}) r[\boldsymbol{\tau}] d\boldsymbol{\tau}$$

$$= \boldsymbol{\theta} + \alpha \cdot \int \frac{\partial Pr(\boldsymbol{\tau}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} r[\boldsymbol{\tau}] d\boldsymbol{\tau}. \tag{19.24}$$

$$\theta \leftarrow \theta + \alpha \cdot \int \frac{\partial Pr(\tau|\theta)}{\partial \theta} r[\tau] d\tau$$

$$= \theta + \alpha \cdot \int Pr(\tau|\theta) \frac{1}{Pr(\tau|\theta)} \frac{\partial Pr(\tau|\theta)}{\partial \theta} r[\tau] d\tau$$

$$\approx \theta + \alpha \cdot \frac{1}{I} \sum_{i=1}^{I} \frac{1}{Pr(\tau_{i}|\theta)} \frac{\partial Pr(\tau_{i}|\theta)}{\partial \theta} r[\tau_{i}]. \tag{19.25}$$

$$\frac{\partial \log[f[z]]}{\partial z} = \frac{1}{f[z]} \frac{\partial f[z]}{\partial z},$$
(19.26)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \frac{1}{I} \sum_{i=1}^{I} \frac{\partial \log[Pr(\boldsymbol{\tau}_i|\boldsymbol{\theta})]}{\partial \boldsymbol{\theta}} r[\boldsymbol{\tau}_i].$$
 (19.27)

$$\log[Pr(\boldsymbol{\tau}|\boldsymbol{\theta})] = \log[Pr(\mathbf{s}_1) \prod_{t=1}^{T} \pi[a_t|\mathbf{s}_t, \boldsymbol{\theta}] Pr(\mathbf{s}_{t+1}|\mathbf{s}_t, a_t)]$$

$$= \log[Pr(\mathbf{s}_1)] + \sum_{t=1}^{T} \log[\pi[a_t|\mathbf{s}_t, \boldsymbol{\theta}]] + \sum_{t=1}^{T} \log[Pr(\mathbf{s}_{t+1}|\mathbf{s}_t, a_t)],$$
(19.28)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \frac{1}{I} \sum_{i=1}^{I} \sum_{t=1}^{T} \frac{\partial \log \left[\pi[a_{it}|\mathbf{s}_{it}, \boldsymbol{\theta}]\right]}{\partial \boldsymbol{\theta}} r[\boldsymbol{\tau}_i],$$
(19.29)

$$r[\boldsymbol{\tau}_i] = \sum_{t=1}^{T} r_{i,t+1} = \sum_{k=1}^{t} r_{i,k+1} + \sum_{k=t}^{T} r_{i,k+1},$$
(19.30)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \frac{1}{I} \sum_{i=1}^{I} \sum_{t=1}^{T} \frac{\partial \log \left[\pi[a_{it} | \mathbf{s}_{it}, \boldsymbol{\theta}] \right]}{\partial \boldsymbol{\theta}} \sum_{k=t}^{T} r_{i,k+1}.$$
 (19.31)

$$r[\boldsymbol{\tau}_{it}] = \sum_{k=t+1}^{T} \gamma^{k-t-1} r_{i,k+1}, \tag{19.32}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \gamma^t \frac{\partial \log \left[\pi_{a_{it}} [\mathbf{s}_{it}, \boldsymbol{\theta}] \right]}{\partial \boldsymbol{\theta}} r[\boldsymbol{\tau}_{it}] \qquad \forall i, t,$$
 (19.33)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \frac{1}{I} \sum_{i=1}^{I} \sum_{t=1}^{T} \frac{\partial \log \left[\pi_{a_{it}} [\mathbf{s}_{it}, \boldsymbol{\theta}] \right]}{\partial \boldsymbol{\theta}} \left(r[\boldsymbol{\tau}_{it}] - b \right). \tag{19.34}$$

$$\mathbb{E}_{\tau} \left[\sum_{t=1}^{T} \frac{\partial \log \left[\pi_{a_{it}} [\mathbf{s}_{it}, \boldsymbol{\theta}] \right]}{\partial \boldsymbol{\theta}} \cdot b \right] = 0, \tag{19.35}$$

$$b = \sum_{i} \frac{\sum_{t=1}^{T} \left(\partial \log \left[\pi_{a_{it}} [\mathbf{s}_{it}, \boldsymbol{\theta}] \right] / \partial \boldsymbol{\theta} \right)^{2} r[\boldsymbol{\tau}_{it}]}{\sum_{t=1}^{T} \left(\partial \log \left[\pi_{a_{it}} [\mathbf{s}_{it}, \boldsymbol{\theta}] \right] / \partial \boldsymbol{\theta} \right)^{2}}.$$
 (19.36)

$$b = \frac{1}{I} \sum_{i} r[\boldsymbol{\tau}_i]. \tag{19.37}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \frac{1}{I} \sum_{i=1}^{I} \sum_{t=1}^{T} \frac{\partial \log \left[\pi_{a_{it}}[\mathbf{s}_{it}, \boldsymbol{\theta}] \right]}{\partial \boldsymbol{\theta}} \left(r[\boldsymbol{\tau}_{it}] - b[\mathbf{s}_{it}] \right). \tag{19.38}$$

$$L[\phi] = \sum_{i=1}^{I} \sum_{t=1}^{T} \left(v[\mathbf{s}_{it}, \phi] - \sum_{j=t}^{T} r_{i,j+1} \right)^{2}.$$
 (19.39)

$$r[\boldsymbol{\tau}_{it}] \approx r_{i,t+1} + \gamma \cdot v[\mathbf{s}_{i,t+1}, \boldsymbol{\phi}].$$
 (19.40)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \frac{1}{I} \sum_{i=1}^{I} \sum_{t=1}^{T} \frac{\partial \log \left[Pr(a_{it}|\mathbf{s}_{it}, \boldsymbol{\theta})] \right]}{\partial \boldsymbol{\theta}} \left(r_{i,t+1} + \gamma \cdot v[\mathbf{s}_{i,t+1}, \boldsymbol{\phi}] - v[\mathbf{s}_{i,t}, \boldsymbol{\phi}] \right). (19.41)$$

$$L[\phi] = \sum_{i=1}^{I} \sum_{t=1}^{T} (r_{i,t+1} + \gamma \cdot v[\mathbf{s}_{i,t+1}, \phi] - v[\mathbf{s}_{i,t}, \phi])^{2}.$$
 (19.42)

$$\pi'[a_t|s_t] \leftarrow \underset{a_t}{\operatorname{argmax}} \left[r[s_t, a_t] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) v[s_{t+1}|\pi] \right]. \tag{19.43}$$

$$v[s_t|\pi] \leq q\left[s_t, \pi'[a_t|s_t]|\pi\right]$$

$$= \mathbb{E}_{\pi'}\left[r_{t+1} + \gamma \cdot v[s_{t+1}|\pi]\right]. \tag{19.44}$$

$$\pi[a|s] = \frac{\exp[q[s,a]/\tau]}{\sum_{a'} \exp[q[s,a']/\tau]}.$$
(19.45)

$$f[q[s,a]] = r[s,a] + \gamma \cdot \max_{a} [q[s',a]]. \tag{19.46}$$

$$\left\| f[q_1[s,a]] - f[q_2[s,a]] \right\|_{\infty} < \left\| q_1[s,a] - q_2[s,a] \right\|_{\infty} \qquad \forall q_1, q_2.$$
 (19.47)

$$\mathbb{E}_{\tau} \left[\frac{\partial}{\partial \boldsymbol{\theta}} \log [Pr(\tau | \boldsymbol{\theta})] b \right] = 0, \tag{19.48}$$

$$a' = a - c(b - \mu_b). (19.49)$$

$$\mathbb{E}_{\tau} \Big[g[\boldsymbol{\theta}](r[\boldsymbol{\tau}_t] - b) \Big], \tag{19.50}$$

$$g[\theta] = \sum_{t=1}^{T} \frac{\partial \log \left[Pr(a_t | \mathbf{s}_t, \boldsymbol{\theta})] \right]}{\partial \boldsymbol{\theta}},$$
(19.51)

$$r[\boldsymbol{\tau}_t] = \sum_{k=t}^{T} r_k. \tag{19.52}$$

$$b = \frac{\mathbb{E}[g[\tau]^2]r[\tau]}{\mathbb{E}[g[\tau]^2]}.$$
 (19.53)

Why does deep learning work?

Ethics