Вопросы на понимание

Упражнение 1. Ответьте на следующие вопросы:

- 1. Перед нами стоит задача вычислить интеграл от некоторой функции. Какой будет погрешность у метода прямоугольников и метода Монте-Карло? В каких ситуациях предпочтительнее использовать метод Монте-Карло?
- 2. Что такое несмещенная оценка? Объясните словами, что это свойство означает.
- 3. Что такое состоятельная оценка? Объясните словами, что это свойство означает.
- 4. Что такое функция правдоподобия?
- 5. В каких случаях для оценки среднего случайной величины лучше использовать медиану вместо среднего арифметического?
- 6. Что такое доверительный интервал?

ЗАДАЧИ

Упражнение 2. Сколько случайных точек надо бросить в единичный квадрат, чтобы получить площадь под дугой окружности (см. рисунок ниже) с точностью 0.001 и с вероятностью 0.997?

Упражнение 3. Для случайных величин X_i , i = 1, ..., n, взятых наудачу из отрезка $[0, \theta]$, проверьте несмещенность следующих оценок неизвестного параметра $\theta > 0$:

- 1. $\hat{\theta}_1(x_1,\ldots,x_n)=6;$
- 2. $\hat{\theta}_2(x_1,\ldots,x_n) = 2x_n;$
- 3. $\hat{\theta}_3(x_1,\ldots,x_n) = 2x_1 + 2x_n;$
- 4. $\hat{\theta}_4(x_1,\ldots,x_n) = 2(x_1 + x_2 + \ldots + x_n)/n;$
- 5. $\hat{\theta}_5(x_1,\ldots,x_n) = 3(x_1^2 + x_2^2 + \ldots + x_n^2)/n;$

Посчитайте значения этих оценок на следующих данных (n = 10):

$$4.47 \quad 2.13 \quad 2.94 \quad 0.02 \quad 2.65 \quad 3.01 \quad 0.43 \quad 3.63 \quad 2.84 \quad 4.89.$$

Упражнение 4. Пусть $X_i \sim \mathcal{N}(\mu, 3)$, i = 1, ..., n. Проверьте несмещенность следующих оценок неизвестного параметра $\mu \in \mathbb{R}$:

- 1. $\hat{\theta}_1(x_1,\ldots,x_n)=0;$
- 2. $\hat{\theta}_2(x_1,\ldots,x_n)=x_1;$

- 3. $\hat{\theta}_3(x_1,\ldots,x_n)=2x_n$;
- 4. $\hat{\theta}_4(x_1,\ldots,x_n)=2x_2-x_3;$

5.
$$\hat{\theta}_5(x_1,\ldots,x_n) = (x_1 + x_2 + \ldots + x_n)/n;$$

Посчитайте значения этих оценок на следующих данных (n = 10):

$$-3.19 \quad 2.25 \quad 4.64 \quad -0.39 \quad -1.44 \quad -1.87 \quad -1.68 \quad 0.27 \quad 0.43 \quad 0.58.$$

Упражнение 5. Пусть X_i равномерно распределены на $[0;\theta]$. Найдите оценку для неизвестного параметра θ методом моментов и методом максимального правдоподобия.

Упражнение 6. Пусть $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $i = 1, \ldots, n$. Найдите оценки для неизвестных параметров μ и σ^2 методом моментов. Что можно сказать о несмещенности полученных оценок? Является ли оценка μ состоятельной?

Упражнение 7. Пусть $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Найдите оценки для неизвестных параметров μ и σ^2 методом максимального правдоподобия. Что можно сказать о несмещенности полученных оценок? Является ли оценка μ состоятельной?

Упражнение 8. Для модели сдвига показательного закона с плотностью

$$f_{\theta}(u) = \begin{cases} e^{-(u-\theta)}, & u \ge \theta, \\ 0, & u > \theta, \end{cases}$$

оценкой максимального правдоподобия является $X_{(1)} = \min\{X_1, \dots, X_n\}$. Покажите, что

$$\mathbb{P}\left(X_{(1)} + \frac{\ln \alpha}{n} < \theta < X_{(1)}\right) = 1 - \alpha,$$

то есть $(X_{(1)}+(\ln\alpha)/n,X_{(1)})$ является доверительным интервалом с коэффициентом доверия $1-\alpha$.