Teoría Econométrica

Problem Set 4 Profesor: Tatiana Rosá Ayudante: Alejo Eyzaguirre

Noviembre 2021

Fecha de entrega: Miércoles 24 de noviembre 17:00 por buzón en canvas. Instrucciones: Se debe realizar uno de los ejercicios propuestos a elección.

1 Retornos a la educación

Sea y_i el logaritmo de salario (por hora) de un individuo i, y sea x_i su nivel educativo (en años). Queremos saber el efecto causal de x_i en y_i .

Empezamos por asumir el siguiente modelo:

$$y_i = \delta + \alpha x_i + u_i$$
$$x_i = \mu + \beta z_i + v_i$$
$$u_i = z_i + \eta_i$$

En este sistema z_i es inobservable, iid y con varianza σ_z^2 . Los errores v_i y η_i son iid, incorrelacionados, tienen media cero y varianza σ_v^2 y σ_η^2 respectivamente. Finalmente, $\mathbb{E}(v_i z_i) = \mathbb{E}(\eta_i z_i) = 0$

Se le pide:

- 1. Interprete el modelo estructural ¿Qué interpretación le da a z_i ?
- 2. Sea $\hat{\alpha}$ el coeficiente de la proyección lineal de y_i sobre x_i . Compute:

$$plim \hat{\alpha} - \alpha$$

Ayuda: Piense en $\hat{\alpha}$ como $\hat{\alpha}=\frac{Cov(x_iy_i)}{Var(x_i)}$ ¿Qué signo espera para esta diferencia? Discuta.

- 3. De la lista de variables que se presenta a continuación discuta cuales son potenciales instrumentos válidos y porqué.
 - Coeficiente Intelectual
 - Distancia a la Universidad
 - Profesión del padre
 - Salario mensual
 - Horas trabajadas
 - Mes de nacimiento
- 4. Utilizando un solo instrumento, explique como estimar consistentemente α . Demuestre la consistencia del estimador propuesto.

2 Endogeneidad y error de medida:

Un investigador que también está intentando estimar el efecto causal de la educación sobre los salarios, utilizando un instrumento válido encuentra:

$$\tilde{\alpha} = 1.2\hat{\alpha}$$

Para intentar explicar este resultado, consideramos este segundo modelo aumentado:

$$y_i = \delta + \alpha x_i + u_i$$

$$x_i = \mu + \beta z_i + v_i$$

$$u_i = z_i + \eta_i$$

$$\tilde{y_i} = y_i + \epsilon_i$$

$$\tilde{x_i} = x_i + \nu_i$$

donde $\tilde{y_i}$ y $\tilde{x_i}$ son las únicas variables observadas del modelo.

Además de los supuestos del ejercicio anterior, asumimos que ϵ_i y ν_i son iid, media cero, incorrelacionados y que $\mathbb{E}(\epsilon_i z_i) = \mathbb{E}(\epsilon_i v_i) = \mathbb{E}(\nu_i z_i) = \mathbb{E}(\nu_i v_i) = \mathbb{E}(\nu_i v_i) = \mathbb{E}(\nu_i v_i) = 0$. Asumimos además que ν_i tiene varianza σ_{ν}^2 .

Se le pide:

- 1. Interprete este nuevo modelo. ¿Cuál es la diferencia con el modelo presentado en el ejercicio 1?
- 2. Sea $\hat{\alpha}$ el coeficiente de la proyección lineal de \tilde{y}_i sobre \tilde{x}_i . Compute:

$$plim \hat{\alpha} - \alpha$$

- 3. En este nuevo modelo, ¿estimar por dos MC2E, nos permite estimar consistentemente α ? Comente que condiciones adicionales deberían cumplirse (si alguna) respecto al caso del ejercicio 1 (donde tenemos solamente endogeneidad por omisión de variable relevante).
- 4. Se cree que en los datos utilizados por el investigador para este estimación el error de medida de los años de educación representa el 10% de la varianza de esta variable. ¿Cómo relaciona ud. esto con el sesgo encontrado por el investigador en el estimador por MCO de α ($\hat{\alpha}$). Discuta.

3 Instrumentos débiles

Considere el siguiente modelo:

$$y_i = \beta x_i + u_i$$

donde β y x_i son escalares.

Sea z_i un escalar tal que: $x_i = \gamma z_i + v_i$

Se asume además que los datos son iid, que la $Var(z_i) \neq 0$, que $\mathbb{E}(v_i|z_i) = 0$ y que $\mathbb{E}(u_i|z_i) = 0$.

Sea $\hat{\beta}_{2SLS}$ el estimador en dos etapas de y_i sobre x_i usando z_i como instrumento.

Instrumento fuerte:

Comenzamos asumiendo que $\gamma \neq 0$ es una constante.

Se le pide:

- 1. Pruebe que $\mathbb{E}(x_i z_i) \neq 0$
- 2. Pruebe que $\hat{\beta}$ converge en probabilidad a β cuando N tiende a infinito

Instrumento débil:

Asumimos ahora que $\gamma = \frac{1}{\sqrt{N}}$

Se le pide:

1. Pruebe que

$$plim \ \frac{1}{N} \sum_{i=1}^{N} z_i x_i = 0$$

2. Pruebe que

$$\frac{1}{\sqrt{N}} \sum_{i=1}^{N} z_i x_i \xrightarrow{d} N(\mu, V)$$

donde debe especificar μ y V

- 3. Compute $AVar(\hat{\beta}_{2SLS})$. ¿Qué pasa cuando $N \to \inf$? Comente su implicación sobre la posibilidad de hacer inferencia usando esta estimación.
- 4. Relajamos levemente supuesto de exogeneidad de z_i tal que $\mathbb{E}(u_i|z_i)=0.001$. ¿Qué pasa con la consistencia del estimador? ¿Pasaría lo mismo si fuera un instrumento fuerte? Comente.