

(f) Int. Cl.⁷:

B 01 D 53/14

B 01 D 53/75 C 01 B 17/04

(9) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND **MARKENAMT**

® Offenlegungsschrift

_m DE 102 19 900 A 1

(21) Aktenzeichen:

102 19 900.0

② Anmeldetag:

3. 5.2002

(3) Offenlegungstag:

20. 11. 2003

(7) Anmelder:

Lurgi AG, 60439 Frankfurt, DE

② Erfinder:

Koss, Ulrich, 64289 Darmstadt, DE; Weiss, Max-Michael, 61440 Oberursel, DE; Tork, Thomas, 60316 Frankfurt, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(9) Verfahren zur Reinigung von kohlenwasserstoffhaltigem Gas

Die Erfindung betrifft ein Verfahren zur Reinigung von

Gas, insbesondere von kohlenwasserstoffhaltigem Gas wie z. B. Erdgas, das verunreinigt ist mit Schwefel in der Form von H₂S und Merkaptanen sowie CO₂. Um ein verbessertes Verfahren zur Reinigung von kohlenwasserstoffhaltigem Gas zu schaffen, bei dem der Energieaufwand und damit die Kosten für die Erzeugung eines möglichst H₂S-reichen Einsatzgases für die Clausanlage deutlich gesenkt werden kann, wird erfindungsgemäß vorgeschlagen, dass vor die bei einem Druck des Einsatzgases von 20-80 bar abs betriebene Absorptions- und Regenerationsanlage (23) eine weitere Absorptionsanlage (21) geschaltet wird, die bei dem gleichen Druck von 20-80 bar abs mit einem selektiven Lösungsmittel arbeitet und die das Einsatzgas auf 100-10000 ppmV H2S grob entschwefelt, wobei aus dieser vorgeschalteten Absorptionsanlage (21) ein mit Schwefelwasserstoff beladener Lösungsmittelstrom (17) abgezogen und einer nachfolgenden Regeneration (22) zugeführt wird, dass aus der vorgeschalteten Absorptionsanlage (21) ein dritter Gasstrom (2) das grobentschwefelte Rohgas der Absorptions- und Regenerationsanlage (23) zugeführt wird und aus dieser Absorptions- und Regenerationsanlage (23) das Wertgas (5) abgezogen wird, welches einer weiteren Verwertung zugeführt wird.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zur Reinigung von Gas, insbesondere von kohlenwasserstoffhaltigem Gas wie z. B. Erdgas, das verunreinigt ist mit Schwefel in der Form von H₂S und Merkaptan sowie CO₂.

[0002] In der Schrift WO 97/26069 wird ein Verfahren zur Reinigung von Kohlendioxid und schwefelhaltigen Gasen beschrieben, bei dem schwefelbehaftete Verunreinigungen in Form von Merkaptanen und H₂S vorliegen. In einer ersten Absorption werden die schwefelbehafteten Verunreinigungen aus dem Gas entfernt, um einen Reingasstrom und einen Sauergasstrom zu erzeugen, wobei das Sauergas hydriert wird um einen größeren Anteil an Merkaptanen zu H₂S umzuwandeln. Das hydrierte Sauergas wird in eine zweite Absorptions-/Regenerationsanlage eingeleitet, in dem das Sauergas in einen H₂S-reichen ersten Gasstrom separiert wird, der in eine Claus-Anlage eingeleitet wird, und einen zweiten H₂S-armen Gasstrom, welcher zur Nachverbrennung geführt wird. Der Claus-Anlage folgt eine Tailgas-Nachbehandlung, in der das H₂S weiter reduziert wird und ein H₂S-reiches Gas abgezogen wird.

[0003] Eine weitere unveröffentlichte Anmeldung beschreibt ein Verfahren, um die unerwünschten schwefelhaltigen Stoffe in der Form von H₂S und Merkaptan aus Rohgas zu entfernen. Dabei wird Rohgas in eine Absorptions- und Regenerationskolonne geleitet und dort gewaschen, wobei aus dieser Absorptions- und Regenerationskolonne drei Gasströme abgezogen werden. Ein erster Abgasstrom wird in eine Claus-Anlage geleitet wird, ein zweiter Sauergasstrom mit niedriger H₂S-Konzentration in eine weitere Absorptionsanlage geleitet und ein dritter Gasstrom, das Wertgas mit den Merkaptanen, wird gekühlt und einer Adsorptionsanlage zugeführt. Aus dieser Adsorptionsanlage wird ein gereinigtes Wertgas abgezogen und ein merkaptanhaltiger Gasstrom einer Wäsche unterzogen wird, der danach der Claus-Anlage zugeführt wird.

[0004] Nachteilig an diesen Verfahren ist der erhebliche Aufwand, um den H₂S-Gehalt des Abgases der bei hohem Druck arbeitenden ersten Wäsche, die sowohl das im Einsatzgas enthaltene H₂S aber auch das gesamte CO₂ entfernt, so anzuheben, dass eine problemlose und ökonomisch sinnvolle Schwefelerzeugung in der Claus-Anlage möglich ist. Es ist eine zweite Absorptionsanlage notwendig, deren Betrieb zur Wiederaufbereitung des eingesetzten Lösungsmittels sehr viel Energie verbraucht. Der Betrieb dieser Absorptionsanlage und insbesondere die Abstimmung mit den anderen Anlagenkomponenten ist sehr aufwendig und kompliziert.

[0005] Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren zur Reinigung von kohlenwasserstoffhaltigem Gas zu schaffen, bei dem der Energieaufwand und damit die Kosten für die Erzeugung eines möglichst H₂S-reichen Einsatzgases für die Clausanlage deutlich gesenkt werden kann.

[0006] Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass vor die bei einem Druck des Einsatzgases von 20-80 bar abs. betriebene Absorptions- und Regenerationsanlage eine weitere Absorptionsanlage geschaltet wird, die bei dem gleichen Druck von 20-80 bar abs. mit einem selektiven Lösungsmittel arbeitet und die das Einsatzgas auf 100-10 000 ppmV H₂S grob entschwefelt, wobei aus dieser vorgeschalteten Absorptionsanlage ein mit Schwefelwasserstoff beladener Lösungsmittelstrom abgezogen und einer nachfolgenden Regeneration zugeführt wird, dass aus der vorgeschalteten Absorptionsanlage ein dritter Gasstrom, das grobentschwefelte Rohgas der Absorptions- und Regenerationsanlage zugeführt wird, und aus dieser Absorptions- und Regenerationsanlage das Wertgas abgezogen wird, welches einer weiteren Verwertung zugeführt wird.

[0007] Aufgrund der groben Vorentschwefelung durch die vorgeschaltete Absorptionsanlage besteht der erste kleine Gasstrom, der aus der Regenerationsanlage in die Clausanlage geleitet wird, aus bis zu 95 Vol.-% Kohlenwasserstoff und aus bis zu 30 Vol.-% Kohlendioxid. Der zweite Gasstrom, der von der Regenerationsanlage in die Claus-Anlage geleitet wird, besteht aus 20 bis 90 Vol.-% Schwefelwasserstoff, maximal 80 Vol.-% Kohlendioxid und geringen Anteilen Merkaptan.

[0008] Dadurch, dass aus der vorgeschalteten Absorptionskolonne ein hoch mit H₂S beladener Lösungsmittelstrom abgezogen und der Regenerationsanlage zugeführt wird, ist der Lösungsmittelstrom je nach Anlagenkonfiguration um 30-60% kleiner ist als nach dem Stand der Technik. Damit ist der Energieverbrauch für die Regeneration ebenfalls um 30-60% kleiner.

[0009] Das grobentschwefelte Rohgas wird als zweiter Gasstrom aus der vorgeschalteten Absorptionskolonne abgezogen, und einer zweiten Wäsche, bestehend aus Absorption und Regeneration, zugeführt. Da in dieser zweiten Wäsche neben dem CO₂ nur noch eine sehr geringe Menge H₂S ausgewaschen werden muss, ist die benötigte Menge Lösungsmittel auch hier deutlich geringer als beim Stand der Technik, nämlich 20–70% geringer in Abhängigkeit vom H₂S/CO₂-Verhältnis, so dass auch hier 45% weniger Regenerationsenergie benötigt wird.

[0010] Als bevorzugtes Lösungsmittel der vorgeschalteten Absorptionsanlage wird typischerweise Methyl-Diethanolamin (MDEA) verwendet.

[0011] Die vorgeschaltete, selektive Absorptionsanlage wird derartig gestaltet, dass neben einer möglichst großen Menge H₂S eine möglichst kleine Menge CO₂ absorbiert wird. Bekannter Weise ist bei dem Lösungsmittel MDEA die CO₂-Absorption durch die Absorptionsgeschwindigkeit begrenzt, so dass sie minimiert werden kann, indem man das Einsatzgas nur kurzzeitig mit dem Lösungsmittel MDEA in Kontakt bringt. Die für die H₂S-Absorption notwendige Kontaktzeit sinkt mit steigendem Druck des Einsatzgases und liegt z. B. bei 50 bar abs. im Bereich bis zu 20 Sekunden. [0012] Als Produkt fällt ein Gas an, dass arm an H₂S (typischerweise 100–10 000 ppmV) ist, aber noch ein Grossteil des im Einsatzgas enthaltenen CO₂ enthält. Sowohl das CO₂ als auch die restliche kleine Menge an H₂S werden dann in der nachfolgenden Hochdruckwäsche vollständig aus dem Wertgas entfernt und als Abgas zusammen mit einem Teil des im Einsatzgas enthaltenen Merkaptans abgeführt. Der Schwefelrückgewinnungsgrad der Gesamtanlage wird dadurch erhöht, dass dieses Abgas in die Hydrierung der Tailgasanlage geleitet wird, um Schwefelkomponenten in H₂S umzuwandeln, und danach in die Absorptionsanlage der Tailgasanlage geleitet wird.

[0013] Da der für das Wertgas geforderte niedrige H₂S-Gehalt erst nach dieser zweiten Hochdruckwäsche erreicht werden muss, kann in der vorgeschalteten Absorptionsanlage Lösungsmittel zum Einsatz kommen, das von der Tailgaswäsche der Clausanlage kommt und schon H₂S und CO₂ enthält. Die Gesamtmenge der in einer Regeneration wiederaufzuarbeitenden MDEA-Lösung wird somit minimiert. Alternativ dazu kann auch unbeladenes Lösungsmittel eingesetzt

werden. Die durch geeignete Gestaltung der Absorptionsanlage erreichbaren H₂S Konzentrationen im Abgas aus der Regeneration, das der Clausanlage zugeführt wird, sind höher als diejenigen, die nach dem Stand der Technik erzielbar sind, so dass die Clausanlage entsprechend kleiner ausgeführt werden kann.

[0014] Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung beispielhaft erläutert.

[0015] Rohgas wird über Leitung (1) in eine erste Absorptionskolonne (21) geleitet, in der der Grossteil des enthaltenen H₂S ausgewaschen wird. Als Lösungsmittel wird der Absorptionskolonne (21) ein Lösungsmittelstrom (16) zugeführt, der in einer nachfolgenden Tailgasabsorptionsanlage (29) mit H₂S und CO₂ vorbeladen wurde.

[0016] Aus der Absorptionskolonne (21) wird ein hoch mit H₂S beladener Lösungsmittelstrom (17) abgezogen und einer Regenerationsanlage (22) zugeführt. Aus der Regenerationsanlage (22) wird ein erster kleiner Gastrom (3) direkt der Clausanlage (27) zugeführt. Dieser Abgasstrom (3) besteht hauptsächlich aus bis zu 95 Vol.-% Kohlenwasserstoff und bis zu 30 Vol.-% aus CO₂ mit geringen Mengen an Merkaptan (bis zu 0,3 Vol.-%) und H₂S (bis zu 5 Vol.-%).

[0017] Ein zweiter größerer Gasstrom (4), der zu 20-90 Vol.-% H₂S, zu 10-80 Vol.-% CO₂ und bis zu 3000 ppmV Merkaptan enthält, wird ebenfalls direkt der Clausanlage (27) zugeführt. Als weiterer Strom wird ein unbeladener Lösungsmittelstrom (18) abgezogen, der zur Tailgasabsorptionsanlage (29) geleitet wird. Sollte die in der ersten Absorptionskolonne (21) benötigte Lösungsmittelmenge größer sein als die in der Tailgasabsorptionsanlage (29) eingesetzte, dann ist es auch möglich, dass über Leitung (19) direkt unbeladenes Lösungsmittel aus der Regenerationsanlage (22) in die Absorptionskolonne (21) geleitet wird. Sollte die in der ersten Absorptionskolonne (21) benötigte Lösungsmittelmenge geringer sein als die in der Tailgasabsorptionsanlage (29) eingesetzte, dann ist es auch möglich, dass über Leitung (20) direkt vorbeladenes Lösungsmittel aus der Tailgasabsorptionsanlage (29) in die Regenerationsanlage (22) geleitet wird.

[0018] Aus der Absorptionskolonne (21) wird ein zweiter Gasstrom (2), das grobentschwefelte Rohgas abgezogen, und einer zweiten Wäsche (23), bestehend aus Absorption und Regeneration, zugeführt. Das grobentschwefelte Rohgas (2) enthält noch einen Grossteil des im Rohgas enthaltenen Merkaptans, 100–10 000 ppmV H₂S und 50–95% des im Rohgas enthaltenen CO₂. Aus dieser zweiten Wäsche (23) wird ein erster Gasstrom (6) abgezogen, der in einer der anderen Teilanlagen (z. B. Clausanlage (27) oder Hydrierung (8) oder beispielsweise in einer nicht dargestellten Abgasnachverbrennung) als Brenngas genutzt oder über Leitung (30) nach außen abgegeben werden kann. Dieser Gasstrom (6) besteht hauptsächlich aus bis zu 80 Vol.-% Kohlenwasserstoff und bis zu 20 Vol.-% aus CO₂ mit geringen Mengen an Merkaptan (bis zu 0,3 Vol.-%) und H₂S (bis zu 5000 ppmV). Als zweiter Gasstrom (5) wird aus der zweiten Wäsche (23) über Leitung (5) das Wertgas mit dem größten Teil des Merkaptans abgezogen und dann z. B. gekühlt (24) und zur Entfernung des Merkaptans über Leitung (8) einer Adsorption (25) zugeführt. Ein dritter Gasstrom aus der Absorptionsanlage (23), der bis zu 99,8 Vol.-% CO₂, bis zu 10 Vol.-% H₂S und 0,2 Vol.-% Merkaptan enthält, wird über Leitung (7) einer Hydrierung (28) zugeführt.

[0019] Bei der Claus-Anlage (27) handelt es sich um eine an sich bekannte Anlage, die aus einem Verbrennungsofen sowie mehreren katalytischen Reaktoren zur Durchführung der Reaktion besteht. Der anfallende flüssige Schwefel wird über Leitung (16) abgezogen und einer weiteren Verwertung zugeführt. In der Claus-Anlage (27) fällt immer ein sogenanntes Clausrestgas an, das neben nicht kondensiertem Elementarschwefel nicht umgesetztes Schwefeldioxid und H₂S enthält. Dieses Restgas wird über Leitung (13) abgezogen und wird einer Nachbehandlung unterzogen, um den Schwefelrückgewinnungsgrad zu erhöhen. Das Claus-Restgas wird über Leitung (13) einer Hydrier-Anlage (28) zugeführt, die auch mit dem Gas über Leitung (7) aus der zweiten Wäsche (23) versorgt wird. In der Hydrierung (28) wird Merkaptan und SO₂ zu H₂S umgewandelt und über Leitung (14) einer Absorptionsanlage (29) zugeführt. Aus der Absorptionsanlage (29) wird ein mit H₂S und CO₂ beladenes Lösungsmittel über Leitung (16) in die erste Absorptionskolonne (21) zur weiteren Absorption von H₂S gegeben, bevor es in der Regenerationsanlage (22) wie vorne beschrieben wiederaufgearbeitet und das gesamte enthaltene H₂S der Clausanlage (27) zugeführt wird. Damit wird ein hoher Schwefelrückgewinnungsgrad erreicht.

[0020] Das verbleibende Gas enthält nur noch sehr wenig (bis zu 2000 ppmV) H₂S und wird über Leitung (15) aus der 4 Absorptionsanlage (29) abgezogen und beispielsweise einer Verbrennung zugeführt.

Beispiel

[0021] Die folgende Tabelle zeigt eine Analyse der Gasströme und der flüssigen Prozess-Ströme in den einzelnen Leitungen.

65

55

Leitung Nr.:		1			2			3				
Prozess Stron	ו	Rohg			Grobent	 		Rohgas	Erster Entspannungsgas- strom zur Clausanlage			
Phase		gas gas					gas					
Komponenten	Nm³/h	kgMole /h	ppm V	Vol %	Nm³/h	kgMole /h	ppm V	Vol %	Nm³/h	kgMole /h	ppm V	Vol %
			T									
CO2	21680	967,3		2,59	18645	831,85		2,25	5,24	0,23		0,98
N2	29102			3,48	29093			3,51	9,03			1,68
CH4		31474, 1		84,26	704982			85,00	461,87	20,61		86,18
C2H6	45661	2037,1		5,45	45629	2035,7		5,50	29,41	1,31		5,49
СЗНВ	18593			2,22	18575			2,24	17,17	0,77		3,20
i-C4	2981			0.36	2981	133,0		0,36	0,57	0,03		0,11
n-C4	4333			0,52	4331	193,2		0,52	1,89			0,35
i-C5	1203		1	0,14	1203	53,7		0,15	0,21			0,04
n-C5	1040		— —	0,12	1040			0,13	0,21			0,04
C6 cut	751			0.09	751	33,5		0,09	0,25			0,05
C7 cut	379			0.05	379			0,05	0,03			0,01
C8	140			0.02	140			0.02	0,01			0,00
C9	93			0,01	93			0.01	0,05			0.01
H2S	5851			0,699	401,4			0,05	5,41			1.01
cos	2,5		3	0,0003	1.7		2	0,0002	0,01			0,00
CH3SH	21,8		26	0,0026	19,9			0,0024	0,13			0,03
C2H5SH	117,2		140	0,0140	99.5			0,0120	0,63		1170	
C3H7SH	47.7			0,0057	46,4			0,0056	0,29			0,05
C4H9SH	5.0			0,0006	5.0			0,0006	0.05			0,01
CS2		† <u>-</u> -					1				T .	i
SO2		1	-									
SX												
CO												
H2	<u> </u>											
Ō2		 										
H2O		satura	ited!		1019	45,48		0,12	3,49	0,16		0,65
Flow Nm ³				100,00				100,00	536			100,00
Flow kg			<u> </u>		709163				449		ļ	
Flow Kgmole			<u> </u>	ļ	37005		!		24	1	ļ	
Flow MMSCF	D 750,00		-		743,01		_		0,480			
Mole Wt. Kg/h	le				19,16				18,77			
Temp.	C 10				42				29			
(ab					67,8				6,0			
Density Kg/r												
Vap.Frac	- 1,0	1	L	İ	1,0				1,0		1	

Leitung N	r.:		4				5			6					
Prozess S	Strom		eiches / Clausan		zur	Wertg	jas zur Ga	skühl	ung	Zweiter Entspannungsgas- strom					
Phase			gas				gas				gas			5	
Kompone	enten	Nm³/h	kgMole /h	ppm V	Vol %	Nm³/h	KgMole/ h	Ppm V	Vol %	Nm³/h	kgMole /h	ppm V	Vol %		
CO2		5625.8	250.99	ļ. —	46,01	41	1,81	50	0.005	72,63	3.24		18,59		
N2				_		29087			3,59	5,47			1,40	10	
CH4		17,12	0,76		0,14		31439,68		86,94	266,08			68,10		
C2H6		2,45			0.02	45600			5,63	24,22			6,20		
C3H8		1,22	0,05		0,01	18564			2,29	8,60			2,20		
i-C4						2979			0,37	1,56			0,40		
n-C4						4329			0,53	2,03			0,52	15	
i-C5						1202			0,15	0,59			0,15	i	
n-C5						1039			0,13	0,51			0.13		
C6 cut						750	33,48		0,09	0,39			0,10		
C7 cut			<u> </u>			379			0,05	0,16			0,04	20	
C8			<u> </u>			140			0,02	0,08			0,02		
C9						93			0,01	0.04			0,01		
H2S		6174.5	275,47		50,50	2,5		3	0.000	0,39			0,10		
cos		0,8		69	0,01	0,4			0,00	0,01			0,00		
CH3SH		1.7	0.08		0.01	16,5			0.00	0.11			0,03	25	
C2H5SH		17,1		1395	0,14	82,6			0,01	0,59			0,15		
C3H7SH		1,0			0,01	44,6			0,01	0,21		540	0,05	ĺ	
C4H9SH		0.0			0,00	4.7			0,00	0,02			0,01		
CS2											-,		0,01	30	
SO2														"	
SX				-				l							
CO															
H2														ĺ	
O2														35	
H2O		385	17,18		3,15	1528	68,17		0,19	7,05	0,31		1,80	ļ	
Flow	Nm³/h	12227			100,0	810572			100,0	391			100,0		
Flow	kg/h	20818				672080				414				40	
Flow kgr	nole/h	545				36164	<u> </u>			17					
Flow MM	ISCFD	10,953				726,111				0,350					
Mole Wt.	kg/kg	38,16				18,58		ļ	 	23,74	 				
	mole							<u> </u>						45	
Temp.	°C	35				50		L_		47		L		ĺ	
Pressure	bar (abs)	1,8				66,8				6,0					
Density	kg/m³													-	
Vap.Frac	-	1,0				1,0				1,0				50	

Í	Leitung N	r:		7				8			9				
	Prozess !		CO2	reiches A		ur		hltes Wer Iolsieban		ur	Sweet Gas				
,	Phase			gas				gas				gas			
	Kompone	enten	Nm³/h	kgMole/h	ppmV	Vol %	Nm³/h	kgMole/h	ppm V	Vol %	Nm³/h	kgMole/h	ppm V	Vol %	
	CO2		18532	826,80		90,7	41	1,81		0,005	41	1,81	50	0,005	
)						8									
	N2							1297,72		3,59	29073			3,60	
	CH4		26,54			0,13		31439,6 8		87,1		31423,96		87,12	
	C2H6		4,08	0,18		0,02	45600			5,64	45578			5,64	
•	C3H8		2,04	0,09		0,01	18564			2,29	18550			2,29	
	i-C4						2979			0,37	2978			0,37	
	n-C4						4329			0,53	4327			0,54	
	i-C5						1202			0,15	1202			0,15	
	n-C5						1039			0,13	1039			0,13	
)	C6 cut						750			0,09	749			0,09	
	C7 cut						379			0,05	377		<u> </u>	0,05	
	C8						140			0,02	138			0,02	
	C9						93			0,01	89			0,01	
	H2S		398,6			1,95	2			0,00	2,5			0,00	
5	cos		1,22	0,05	60	0,01	C			0,00	0,4		1_1_	0,00	
1	CH3SH		3,27	0,15	160	0,02	17			0,002	0,2		0,3	0,00	
	C2H5SH		16,33	0,73	800	0,08	83			0,01	1,4		1,7	0,0002	
	C3H7SH		1,63	0,07	80_	0,01	45			0,006	0,7			0,0001	
	C4H9SH		0,20	0,01	10	0,00	5	0,21	6	0,001	0,1	0,004	0,1	0,000	
)	CS2								<u> </u>	ļ					
	SO2							<u> </u>	<u> </u>	ļ					
	SX									ļ					
	co			<u> </u>				ļ	ļ	 					
	H2					ļ			 	ļ		ļ	ļ		
5	O2							0.40	<u> </u>	0.00			10	0.0004	
	H2O		1428	63,71		7,00	144	6,43	1	0,02	1	0,04	1,0	0,0001	
		<u> </u>													
	Flow	Nm³/h				100,0			ļ	100,0				100,0	
	Flow	kg/h				<u> </u>	670968		<u> </u>		670035				
)	Flow kg	mole/h	911				36102		<u> </u>	 	36070		<u> </u>	 	
	Flow; Mi	MSCFD	18,287			 	725		 	-	724,237				
	Mole Wt.	kg/kg mole	41,98				19				18,58				
5	Temp.	°C	50				10			1	25				
	Pressur	bar	1,8				66,5		1		65,2				
	е	(abs)	i					l	<u>L</u>	<u></u>					
	Density	kg/m³													
	Vap.	-	1,0				1				1,0				
)	Frac.		,	1		1	٠ _			1	l	L	l		

Leitung N	r.:		10			11			12						
Prozess S		Merkap	tanhaltige	er Gas	strom	Fuel Gas zur Anlagengrenze					Angereichertes Merkaptangas zur Clausanlage				
Phase			gas				gas			gas					
Kompone	nten	Nm³/h	kgMole/h	ppm V	Vol %	Nm³/h	kgMole/h	ppm V	Vol %	Nm³/h	kgMole/h	ppm V	Vol %		
CO2														10	
N2		7814,5	348,65		29.27	7812,2	348,54		29,55	2,3	0.10		0.80		
CH4		18552,3			69,49	18447	822,99		69,78	105,7	4,72		36,13		
C2H6		22,8	1,02		0,09	22,3	1,00		0,08	0,5	0,02		0,16		
СЗНВ		13,9	0,62		0,05	11,9	0,53		0,05	2,0	0,09		0,68		
i-C4		1,5	0,07		0,01	1,0	0,05		0,00	0,4	0,02		0,15	15	
n-C4		2,2	0,10		0,01	1,8	0,08		0,01	0,4	0,02		0,12		
i-C5		0,6	0,03		0,00	0,3	0,01		0,00	0,3	0,02		0,12		
n-C5		0,5	0,02		0,00	0,2	0,01		0,00	0,3	0,01		0,10		
C6 cut		1,3	0,06		0,00					1,3	0,06		0,44		
C7 cut		2,1	0,09		0,01					2,1	0,09		0,71	20	
C8		1,7	0,08		0,01					1,7	0,08		0,60		
C9		4,3	0,19		0,02					4,3	0,19		1,47	ĺ	
H2S								 				L			
cos								L				<u> </u>			
CH3SH_		16,3	0,73	610	0,061	0,2	0,009		0,001	16,1	0,72		5,49	25	
C2H5SH		81,2		3042	0,304	0,3			0,001	80,9	3,61	<u> </u>	27,64	İ	
C3H7SH		43,9		1645	0,165	0,9			0,003	43,0	1,92		14,70		
C4H9SH		4,7	0,21	174	0,017	0,7	0,029	25	0,003	4,0	0,18	 	1,36		
CS2								-			<u> </u>				
SO2 SX				<u> </u>			 				 			30	
CO				-				-							
H2				 				 	-						
O2										·		 			
H2O		135	6,02		0,51	135	6,04		0,51	27	1,22		9,31	35	
Flow	Nm³/h	26699			100,00	26434			100,00	293			100,00		
Flow	kg/h	23698		<u> </u>	100,00	23142			,00,00	578		 	100,00		
	mole/h	1191		ļ		1179				13		 	+		
	MSCFD	23,917				23,679				0,262				40	
Mole Wt.	kg/kg mole	19,89			-	19,62				44,27					
Temp.	°C	50				50				57					
Pressure	bar (abs)	24,9				24,6				1,9				45	
Density	kg/m³			ļ							ļ				
Vap.Frac		1,0				1				1,0	L			j	

Leitun	g Nr.	:		13		14			15						
Prozes	ss St	rom	Clausre	stgas zur	Hydr	ierung		rtes Clau ailgasabs			Abgas zur Nachverbrennung				
Phase				gas		gas				gas					
Kompo	onen	ten	Nm³/h	kgMole/h	ppm V	Vol %	Nm³/h	kgMole/h	ppm V	Vol %	Nm³/h	kgMole/h	ppm V	Vol %	
CO2			6026	268,84	ļ	17,61	25958	1158,10		42,82	23362	1042,29		43,23	
N2			17220				21420			35,34		955,65		39,64	
CH4							40,9			0,07	41	1,83		0,08	
C2H6							18,2	0,81		0,03	18			0,03	
C3H8							3,5	0,16		0,01	4	0,16		0,01	
i-C4															
n-C4												[
i-C5					l										
n-C5															
C6 cut	t														
C7 cut													<u> </u>		
C8												 			
C9										<u> </u>					
H2S			137	6,09		0,40		33,81		1,25	27,02			0,05	
cos			60	2,67		0,17	3,8			0,01				0,01	
CH3S					!		0,97			0,00				0,00	
C2H5							5,15			0,01				0,01	
C3H7					<u> </u>	ļ	0,42	0,02	ļ	0,00	0,42	0,02	8	0,00	
C4H9	<u>SH_</u>				 				<u> </u>		<u> </u>		!		
CS2			7	0,33		0,02		<u> </u>	 -	ļ					
SO2			71			0,21			<u> </u>	<u> </u>	 	ļ	-	-	
SX			14			0,04		4 45		0.46	00.70	4.45	 -	0.10	
СО			634			1,85	99,72	4,45		0,16				0,18	
H2			372	16,61	ļ	1,09	1156,1	51,58	 	1,91	1156,1	51,58	1	2,14	
02			0000	450.45	 	20.20	1115	407.60	-	19 40	7898	352,35		14,62	
H2O			9686	432,15	1	28,30	11154	497,62	1	10,40	17090	352,35		14,02	
Flow		Nm³/h	34227			100,00	60618			100,00	54035			100,00	
Flow		kg/h	42578			1	88170				79345				
Flow	kan	nole/h	1527		1		2704		İ		2411				
Flow	MM	SCFD	31		 	<u> </u>	54,301	l	1		48,405				
Mole \	∕Vt.	kg/kg mole	27,88				32,60				32,91				
Temp	.	°C	165				175				55				
Press		bar (abs)	1,3				1,2				1,1				
Densi	ty	kg/m³								ļ		ļ	<u> </u>	<u> </u>	
Vap. Frac.			1,0				1,0				1,0	1			

Leitung Nr.			17			18		19 Vorbeladene MDEA				
Prozess St	rom	Bel	adene MD	EA	Reger	erierte M	DEA	Vorbe		DEA	Į	
Phase			flüssig			flüssig			flüssig		1	
Komponen	ten	kg/h	kgmole/h	Wt. %	kg/h	kgmole/h	Wt. %	kg/h	kgmole/h	Wt. %	ł	
CO2		11177,6	253,98	2,62	121,1	2,8	0,03	5217,9	118,6	1,26		
N2	·	11,3		0,00								
CH4		342,8		80,0]	
C2H6		42,7		0,01] ı	
C3H8		36,2	0,82	0,01							1	
i-C4		1,5	0,03	0,00							1	
n-C4		4,9	0,08	0,00		l					1	
i-C5		0,7	0,01	0,00							ļ,	
n-C5		0,7		0,00		<u> </u>					į '	
C6 cut		0,9		0,00					<u> </u>		1	
C7 cut		0,1		0,00					L		1	
C8		0,0									1	
C9		0,3		0,00							2	
H2S		9490,2		2,23	93,8	2,8	0,02	1204,8	35,4	0,29	4 -	
cos		2,3			_						1	
CH3SH		4,0		0,00							1	
C2H5SH		49,0					ļ				4	
C3H7SH_		4,3							 		2	
C4H9SH		0,2	0,00	0,00		<u> </u>			ļ		4	
CS2									ļ		4	
SO2						ļ					4	
SX									ļ		4	
co									ļ		_ 3	
H2				ļ					 		-	
O2		404446	1010	00.54	404440	4040	20.00	121440	1019	29,3		
MDEA		121440			121440			286616				
H2O		283340	15727	66,52	283360	13/20	09,90	200010	15909	09,13	<u>"</u> 3	
Flow	m³/h	416,4		100,0	400,2		100,0	409,6		100,0	-4	
Flow	kg/h	425950			405015		L	414479			-1	
Flow	kgmole/h	17304			16753	<u> </u>		17082	<u> </u>		1	
Flow	MMSCFD		<u> </u>				 				┨₄	
Molar M.	kg/kgmole	47,9	1		48,4			48,0			1	
Т	°C	32,0			50,0			40,0			1	
P (abs.)	bar (abs)	68,0			8,0			9,0			1	
Density	kg/m³	1023			1012			1012			1	
Vap. Frac.	1	0,0			0,0			0,0			4	

[0022] Entsprechend den in der Tabelle dargestellten Werten wird Rohgas über Leitung (1) in eine erste Absorptionskolonne (21) geleitet, in der das enthaltene H₂S bis auf einen Restgehalt von 484 ppmV ausgewaschen wird. Hierfür ist der in der Tailgasabsorptionsanlage (29) mit H₂S und CO₂ vorbeladene Lösungsmittelstrom (16) ausreichend, so dass für die Wäsche in der Absorptionskolonne (21) kein Mehrbedarf an Lösungsmittel gegenüber der in der Tailgasanlage (29) benötigten Menge entsteht. Das grobentschwefelte Rohgas (2) enthält neben dem Restgehalt H₂S noch einen Grossteil (84%) des im Rohgas enthaltenen CO₂ und auch einen Grossteil des im Rohgas enthaltenen Merkaptans.

[0023] Aus der Absorptionskolonne (21) wird ein hoch mit H₂S beladener Lösungsmittelstrom (17) abgezogen und einer Regenerationsanlage (22) zugeführt. Da der Lösungsmittelstrom um 47% kleiner ist als nach dem unveröffentlichten Stand der Technik beschriebenen Beispiel, ist der Energieverbrauch für die Regeneration ebenfalls um 47% kleiner.

[0024] Aus der Regenerationsanlage (22) wird ein erster kleiner Gastrom (3), der zu 95 Vol.-% aus Kohlenwasserstoff und zu 1 Vol.-% aus CO₂ mit ca. 1 Vol.-% Schwefel und Merkaptan besteht, direkt der Clausanlage (27) zugeführt.
[0025] Ein zweiter, größerer Gasstrom (4), der zu 50,5 Vol.-% aus H₂S, und zu 46 Vol.% CO₂ besteht, wird ebenfalls direkt der Clausanlage (27) zugeführt.

[0026] Das grobentschwefelte Rohgas wird als zweiter Gasstrom (2) aus der Absorptionskolonne (21) abgezogen, und einer zweiten Wäsche (23), bestehend aus Absorption und Regeneration, zugeführt. Da in dieser zweiten Wäsche (23) neben dem CO₂ nur noch eine sehr geringe Menge H₂S ausgewaschen werden muss, ist die benötigte Menge Lösungsmittel auch hier deutlich geringer als im Zahlenbeispiel in dem unveröffentlichten Stand der Technik, nämlich 45% geringer, so dass auch hier 45% weniger Regenerationsenergie benötigt wird. Aus dieser zweiten Wäsche wird ein erster Gasstrom (6) abgezogen, der zu 77 Vol.-% aus Kohlenwasserstoff und zu 18,6 Vol.-% aus CO₂ besteht, und der in der Clausanlage (27) als Brenngas genutzt wird. Ein zweiter Gasstrom aus der Absorptionsanlage (23), der 90,8 Vol.-% CO₂, 1,95 Vol.-% H₂S und 0,1 Vol.-% Merkaptan enthält, wird über Leitung (7) einer Hydrierung (28) zugeführt. Als dritter Gasstrom (5) wird aus der zweiten Wäsche (23) das Wertgas mit dem grössten Teil des Merkaptans abgezogen, gekühlt

(24) und über Leitung (8) einer Adsorption (25) zugeführt. Der merkaptanhaltige Gasstrom (10) wird einer physikalischen Wäsche (26) unterzogen, aus der über Leitung (11) das koadsorbierte Wertgas als Fuel-Gas zurückgewonnen wird, und über Leitung (12) das hoch konzentrierte Merkaptangas der Claus-Anlage (27) zugeführt wird. Der Merkaptanstrom wird in der Regeneration des Purisol-Lösungsmittels gewonnen. Die Menge ist zwar klein, aber mit einer sehr hohen Merkaptan-Konzentration von 49 Vol.-%. In der Claus-Anlage (27) wird das Merkaptan vollständig verbrannt. Das daraus entstehende SO₂ wird mit dem H₂S aus dem Sauergas der Leitung (4) zu Schwefel umgesetzt. Der anfallende flüssige Schwefel wird über Leitung (16) abgezogen und einer weiteren Verwertung zugeführt.

[0027] Das Restgas der Claus-Anlage besteht hauptsächlich aus den Bestandteilen CO₂, N₂ und H₂O und wird über Leitung (15) abgezogen.

10

15

20

25

30

35

40

Patentansprüche

1. Verfahren zur Reinigung von kohlenwasserstoffhaltigem Gas, bei dem in eine Claus-Anlage (27) ein erster kleiner Gasstrom (3) eingeleitet wird, der im wesentlichen aus Kohlenwasserstoff und aus Kohlendioxid besteht, sowie ein zweiter größerer Gasstrom (4) eingeleitet wird, der im wesentlichen aus Schwefelwasserstoff, Kohlendioxid und geringen Anteilen Merkaptan besteht, dadurch gekennzeichnet, dass vor die bei einem Druck des Einsatzgases von 20-80 bar abs betriebene Absorptions- und Regenerationsanlage (23) eine weitere Absorptionsanlage (21) geschaltet wird, die bei dem gleichen Druck von 20-80 bar abs mit einem selektiven Lösungsmittel arbeitet und die das Einsatzgas auf 100-10 000 ppmV H₂S grob entschwefelt, wobei aus dieser vorgeschalteten Absorptionsanlage (21) ein mit Schwefelwasserstoff beladener Lösungsmittelstrom (17) abgezogen und einer nachfolgenden Regeneration (22) zugeführt wird, dass aus der vorgeschalteten Absorptionsanlage (21) ein dritter Gasstrom (2), das grobentschwefelte Rohgas der Absorptions- und Regenerationsanlage (23) zugeführt wird, und aus dieser Absorptionsund Regenerationsanlage (23) das Wertgas (5) abgezogen wird, welches einer weiteren Verwertung zugeführt wird. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der zweite Gasstrom (4), der von der Regeneration (22) in die Claus-Anlage (27) geleitet wird, aus 20 bis 90 Vol.-% Schwefelwasserstoff, maximal 80 Vol.-% Kohlendioxid und geringen Anteilen Merkaptan besteht.

3. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass der erste kleine Gasstrom (3), der von der Regeneration (22) in die Clausanlage (27) geleitet wird, aus bis zu 95 Vol.-% Kohlenwasserstoff und aus bis zu 30 Vol.-% Kohlendioxid besteht.

4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass aus der Regenerationsanlage (22) ein unbeladener Strom (18) an Lösungsmittel der Tailgasabsorptionsanlage (29) zugeführt wird.

5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass aus der Tailgasabsorptionsanlage (29) ein mit Schwefelwasserstoff und Kohlendioxid beladener Lösungsmittelstrom (16) der vorgeschalteten Absorptionsanlage (21) zugeführt wird.

6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass aus der Absorptions- und Regenerationsanlage (23) ein erster kohlenwasserstoffhaltiger Gasstrom (6) ganz oder teilweise der Hydrieranlage (28) zugeführt wird.

7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass aus der Absorptions- und Regenerationsanlage (23) ein zweiter kohlendioxidhaltiger Gasstrom (7) der Hydrieranlage (28) zugeführt wird.

8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass aus der Absorptions- und Regenerationsanlage (23) der erste kohlenwasserstoffhaltige Gasstrom (6) ganz oder teilweise in die Claus-Anlage (27) geleitet wird.

9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass als Lösungsmittel der vorgeschalteten Absorptionsanlage (21) Methyl-Diethanolamin (MDEA) verwendet wird.

45

55

50

60