G. 1 Inner Product, Length, Orthogonality

The inner product / Dot product of two $n \times 1$ matrix (vectors) u and v (denoted $u \cdot v$) is computed as $u^T \cdot v$, and results in a scalar

Properties of Inner Product

- 1) Commutative: u.v = v.u
- 2) $(u+v) \cdot w = u \cdot w + v \cdot w$
- 4) $u \cdot u = must$ always be ≥ 6 , if $u \cdot u = 0$, the u = must = 0

Length of a Vector

The length of a vector, or its norm, is the non-negative scalar 11011 defined by:

 $||V|| = \int V_1^2 + V_2^2 + ... V_n^2$ where each V_i corresponds to a component of the original vector

Distance of two rectors can be found by: 11 V - U1)

WAIT VELTOR: any vector with length 1

* If we vent to find the unit vector for a particular vector, then we have to maltiply

V by 1/11111

ORTHO GONA L Vertors: Two vertors are said to be orthogonal if their dut product is 0 "means mey are perpendicular, u.w = 0

· Can also determine ormogonality if 11 u+ v 112 = 11 u 112 + 11 v 112

If w is a Subspace of \mathbb{R}^n , and say we ware vector \mathbb{Z} , which hoppens to be orthogonal to each vector in w, we would call the set of all vectors orthogonal to Those in w, as w^{\perp} , or the Orthogonal complement $\times \mathbb{C}$ which hoppens to every vector in w.

Theorem 3: Let A be an nxn matrix. The orthogonal complement of the raw space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A is the null space of A.

So, (Row A) = Nul A and (Col A) = Null AT