Série Temporelle

Master 1 MAS Rennes - Série Temporelle

Dylan

15 mai 2020

Table des matières

1	Import des données	1						
2	Lagplots	2						
3	Trouver la période et le degré							
	3.1 La période (lag)	3						
	3.2 Le degré (differencies)	5						
4	A choisir	6						
5	Reprod	7						

1 Import des données

```
period <-
   seq(as.Date('1969-01-01'), as.Date('1984-12-31'), by = "month")

ukdeath <-
   read_delim("../data.txt", delim = " ", col_types = "if") %>%
   mutate(death_log = log(death),
        period = period)
```

##	dea	th	law	death	n_log	per	riod
##	Min.	:1057	0:169	Min.	:6.963	Min.	:1969-01-01
##	1st Qu.	:1462	1: 23	1st Qu.	:7.287	1st Qu.	:1972-12-24
##	Median	:1631		Median	:7.397	Median	:1976-12-16
##	Mean	:1670		Mean	:7.406	Mean	:1976-12-15
##	3rd Qu.	:1851		3rd Qu.	:7.523	3rd Qu.	:1980-12-08
##	Max.	:2654		Max.	:7.884	Max.	:1984-12-01

Nombre de morts sur les accidents de la route

2 Lagplots

ukdeath\$death_log %>% lag.plot(., lags = 16)

3 Trouver la période et le degré

3.1 La période (lag)

```
Lag_Mean <- NULL
Lag_Var <- NULL

for (ind in 1:36) {
   diff <- diff(ukdeath$death_log, ind, 1)
   Lag_Mean[ind] <- abs(mean(diff))
   Lag_Var[ind] <- var(diff)
}

ggplot() + aes(y = Lag_Mean, x = 1:36) + geom_point()</pre>
```


ggplot() + aes(y = Lag_Var, x = 1:36) + geom_point()

3.2 Le degré (differencies)

```
Dif_Mean <- NULL
Dif_Var <- NULL

for (ind in 1:12) {
    diff <- diff(ukdeath$death_log, 12, ind)
    Dif_Mean[ind] <- abs(mean(diff))
    Dif_Var[ind] <- var(diff)
}

ggplot() + aes(y = Dif_Mean, x = 1:12) + geom_point()</pre>
```



```
ggplot() + aes(y = Dif_Var, x = 1:12) + geom_point()
```


4 A choisir

 $\log:12$ diff: 1 ou 2

```
exemple <- diff(ukdeath$death_log, 12 , 2)
acf(exemple, 25)</pre>
```

Series exemple

5 Reprod

```
t <- 1:192
sinusoides \leftarrow t %o% c(rep(1:5, 2)) * pi / 6
sinusoides[, 1:5] <- sin(sinusoides[, 1:5])</pre>
sinusoides[, 6:10] <- cos(sinusoides[, 6:10])</pre>
sinusoides <- as.data.frame(sinusoides)</pre>
names(sinusoides) <-</pre>
  c(paste("sin_", 1:5, sep = ""), paste("cos_", 1:5, sep = ""))
log_death <- ukdeath$death_log</pre>
df <- data.frame(log_death, t, t ^ 2, t ^ 3)</pre>
df <- cbind(df, sinusoides)</pre>
ModAddifitf <- lm(data = df, log_death ~ .)</pre>
summary(ModAddifitf)
##
## Call:
## lm(formula = log_death ~ ., data = df)
## Residuals:
          Min
                             Median
                      1Q
## -0.236069 -0.064984 0.003402 0.064214 0.214065
##
```

```
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                7.460e+00
                           2.760e-02 270.258 < 2e-16 ***
## (Intercept)
                           1.236e-03
## t
                                        1.673 0.096058 .
                2.068e-03
## t.2
               -2.903e-05
                           1.486e-05
                                       -1.954 0.052268 .
## t.3
                5.937e-08
                           5.062e-08
                                        1.173 0.242437
                           9.567e-03
## sin 1
               -7.471e-02
                                      -7.809 4.77e-13 ***
## sin_2
               -3.595e-02
                           9.539e-03
                                       -3.768 0.000223 ***
## sin_3
               -1.897e-02
                           9.534e-03
                                      -1.990 0.048128 *
               -1.199e-02
                           9.532e-03
                                      -1.258 0.210199
## sin_4
## sin 5
                1.651e-02
                           9.531e-03
                                        1.732 0.085045 .
## cos 1
                1.147e-01
                           9.534e-03
                                       12.034 < 2e-16 ***
                                        6.606 4.42e-10 ***
## cos 2
                6.297e-02
                           9.534e-03
## cos_3
                3.101e-02
                           9.534e-03
                                        3.253 0.001367 **
                                        2.422 0.016458 *
## cos_4
                2.309e-02
                           9.534e-03
## cos 5
                2.564e-02
                           9.534e-03
                                        2.689 0.007841 **
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 0.09338 on 178 degrees of freedom
## Multiple R-squared: 0.7231, Adjusted R-squared: 0.7029
## F-statistic: 35.76 on 13 and 178 DF, p-value: < 2.2e-16
```

plot(ModAddifitf)

plot(ModAddifitf\$residuals)

t.test(ModAddifitf\$residuals)

```
##
## One Sample t-test
##
## data: ModAddifitf$residuals
## t = 5.3199e-16, df = 191, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.01283293  0.01283293
## sample estimates:
## mean of x
## 3.461175e-18
acf (ModAddifitf$residuals, 192)
```

Series ModAddifitf\$residuals


```
MA <- arima(log_death, c(1, 2, 1))
plot(MA$residuals)</pre>
```

