国家精品课程,国家精品资源共享课

信号与系统

Signal and Systems

西安电子科技大学 Xidian University, Xi'an China

第三章 离散系统的时域分析

3. 1差分方程的建立及经典解法	z3.1 离散系统的解析描述-建立差分方程
	z3.2 差分方程的模拟框图
	z3.3 差分方程的经典解法
	z3.4 零输入响应的定义和求解
	z3.5 零状态响应的定义和求解
	z3.6 应用案例: 斐波那契(Fibonacci)数列问题
	z3.7 应用案例: 空运控制系统
	z3.8 应用案例: RC取样输入和输出关系
	z3.9 Matlab求解离散系统的零状态响应
3. 2基本信号与基本响应	z3.10 离散信号表示
	z3.11 单位脉冲序列
	z3.12 单位阶跃序列
	z3.13 单位脉冲响应的定义和求解
	z3.14 单位阶跃响应的定义和求解
	z3.15 单位阶跃响应与单位脉冲响应之间的关系
	z3.16 Matlab求解单位脉冲响应

第三章 离散系统的时域分析

3. 3卷积和	z3.17 序列的时域分解
	z3.18 卷积公式
	z3.19 卷积和的图解法
	z3.20 卷积和的不进位乘法运算
	z3.21 卷积和的性质
	z3.22 卷积和的Matlab求解
3. 4离散系统的差分算子描述	z3.23 差分算子E的定义
	z3.24 离散系统的差分算子方程
	z3.25 传输算子H(E)
	z3.26 算子法求离散系统的单位脉冲响应

注:学习方法的特点: 类比

知识点Z3.1

离散系统的解析描述--建立差分方程

主要内容:

- 1. 差分的定义
- 2. 差分方程的定义

基本要求:

- 1. 掌握一阶后向差分的定义
- 2. 掌握差分方程的一般形式

Z3.1 离散系统的解析描述--建立差分方程

1. 差分的定义

移位序列: 设有序列f(k),则…,f(k+2),f(k+1),f(k-1),f(k-2),… 等称为f(k)的移位序列。

差分运算:

$$\frac{\Delta f(k)}{\Delta k} = \frac{f(k+1) - f(k)}{(k+1) - k} \qquad \frac{\nabla f(k)}{\nabla k} = \frac{f(k) - f(k-1)}{k - (k-1)}$$

- 一阶前向差分定义: $\Delta f(k) = f(k+1) f(k)$
- 一阶后向差分定义: $\nabla f(k) = f(k) f(k-1)$ 我们主要用后向差分,简称为差分。

差分的线性性质:

$$\nabla [af_1(k) + bf_2(k)] = a\nabla f_1(k) + b\nabla f_2(k)$$

二阶差分定义:

$$\nabla^{2} f(k) = \nabla [\nabla f(k)] = \nabla [f(k) - f(k-1)] = \nabla f(k) - \nabla f(k-1)$$

$$= f(k) - f(k-1) - [f(k-1) - f(k-2)]$$

$$= f(k) - 2f(k-1) + f(k-2)$$

m阶差分:

$$\nabla^{m} f(k) = f(k) + b_{1} f(k-1) + ... + b_{m} f(k-m)$$

2. 差分方程

例1 某人每月初在银行存入一定数量的款,月息为 β 元/月,列出求第k个月初存折上的款数的差分方程。

解:设第k个月初的款数为y(k),这个月初的存款为f(k),上个月初的款数为y(k-1),其利息为 $\beta y(k-1)$,则

$$y(k) = y(k-1) + \beta y(k-1) + f(k)$$

即

$$y(k)-(1+\beta)y(k-1) = f(k)$$

若设开始存款月为k=0,则有y(0)=f(0)。

差分方程: 由未知输出序列项与输入序列项构成的 方程。 差分方程的一般形式:

$$y(k) + a_{n-1}y(k-1) + ... + a_0y(k-n) = b_mf(k) + ... + b_0f(k-m)$$

方程的阶数:未知变量最高序号与最低序号的差。

由n阶差分方程描述的系统称为n阶系统。

描述LTI离散系统的是线性常系数差分方程。