Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №10 Исследование математической модели электромеханического объекта управления Вариант - 9

Выполнила	Сорокина	(подпись)			
		(фамилия, и.о.)			
Проверил		(подпись)			
		(фамилия, и.о.)			
""	20r.	Санкт-Петербург,	20г.		
Работа выполне	ена с оценкой				
Дата защиты "_	"	20г.			

Цель работы: изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Исходные данные

Функциональная схема типичного электромеханического объекта представлена на рисунке 1. На рисунке 2 представлена структурная схема ЭМО. В таблице 1 представлены исходные данные, необходимые для выполнения данной лабораторной работы.

В работе рассматривается электромеханический объект управления, выходным сигналом которого является угловое перемещение ИМ, а управляющим сигналом - входное напряжение УПУ. Измерение угловой скорости осуществляется на валу двигателя. Момент сопротивления Мсм, приложенный к валу ИМ, выступает в качестве возмущающего воздействия.

Рисунок 1 — Функциональная схема типичного электромеханического объекта

Таблица 1 – Исходные данные

$U_{\scriptscriptstyle \mathrm{H}}$,B	n_0 , об/мин	<i>I</i> _н ,А	$M_{\scriptscriptstyle m H}, { m H}\cdot{ m M}$	R, Ом	$T_{\rm s}$,MC	J_{d} , $\mathrm{K}\Gamma$ · M^2	$T_{ m y}$,мс	i_p	$J_{\scriptscriptstyle \mathrm{M}}$,K Γ ·M 2
27	2440	0.38	0.04	32	6	$5.5 * 10^{-6}$	3	40	0.03

Рисунок 2 – Структурная схема ЭМО

1 Расчет параметров математической модели ЭМО

Выполним расчет параметров для полной модели ЭМО: $n_0 = 2440$ об/мин=255,52 рад/с

$$K_{\rm e} = \frac{U_{\rm H}}{\omega_0} = \frac{27}{255, 52} = 0,106 [{\rm B*c/pag}]$$
 (1)

$$K_{\rm g} = \frac{1}{R} = 0,031[{\rm Cm}]$$
 (2)

$$K_{\rm M} = \frac{M_{\rm H}}{I_{\rm H}} = \frac{0.04}{0.38} = 0.105[{\rm H^*M/A}]$$
 (3)

$$K_{\rm y} = \frac{U_{\rm H}}{U_{\rm M}} = \frac{27}{10} = 2,7[{\rm B}]$$
 (4)

$$J_{\rm p} = 0, 2J_{\rm g} = 0, 2*5, 5*10^{-6} = 1, 1*10^{-6} [{\rm K}\Gamma^*{\rm M}^2]$$
 (5)

$$J_{\Sigma} = J_{\pi} + J_{p} + \frac{J_{M}}{i_{p}^{2}} = 5,5 * 10^{-6} + 1,1 * 10^{-6} + \frac{0,03}{40^{2}} = 0,00002535[\text{kg}^{*}\text{M}^{2}]$$
 (6)

$$\frac{1}{J_{\Sigma}} = 39447,73\tag{7}$$

Для упрощенной модели:

$$K = \frac{K_{\rm y}}{K_{\rm e} * i_{\rm p}} = \frac{2.7}{0.106 * 40} = 0.637[{\rm pag/c}]$$
 (8)

$$K_{\rm f} = \frac{R}{K_{\rm M} * K_{\rm e} * i_{\rm p}^2} = \frac{32}{0,105*0,106*40^2} = 1,797 [{\rm OM*A*pag/(H*M*B*c)}]$$
 (9)

$$T_{\rm M} = \frac{R * J_{\Sigma}}{K_{\rm M} * K_{\rm e}} = \frac{0,00002535 * 32}{0,105 * 0,106} = 0,073 [{\rm OM*A*paд*kr*m}^2/({\rm H*B*c})]$$
 (10)

2 Математическое моделирование полной модели Θ МО

На рисунке 3 представлена структурная схема полной модели ЭМО, составленная по схеме, изображенной на рисунке 2.

Рисунок 3 – Структурная схема полной модели ЭМО

Коэффициенты передачи измерительных устройств K_U , K_ω , K_I , K_α выберем таким образом, чтобы максимальное значение измеряемого сигнала соответствовало уровню 10 В на выходе измерительного устройства.

 $K_U = 0,74$

 $K_{\omega} = 0,079$

 $K_I = 28, 5$

 $K_{\alpha} = 7,45$

Выполним построение графиков переходных процессов при Mcm=0 и U=5 В. На рисунках 4-7 представлены графики переходных процессов.

Рисунок 4 – Переходный процесс по напряжению

Рисунок 5 – Переходный процесс по току

Рисунок 6 – Переходный процесс по угловой скорости

Рисунок 7 – Переходный процесс по углу поворота

3 Исследование влияния момента сопротивления на вид переходных процессов

Требуется получить графики переходных процессов при различных значениях момента сопротивления Мсм. Диапазон изменения Мсм: от 0 до $i_p*M_{\rm H}=40*0,04=1,6$ Н*м. Графики переходных процессов представлены на рисунках 8 - 11.

Рисунок 8 – Переходные процессы по напряжению

Рисунок 9 – Переходные процессы по току

Определим по графикам время переходного процесса и установившееся значения тока.

При Мсм=0: tп=0,3 с, I_{ycr} =0.

При Мсм=0.6: $t\pi$ =0,3 c, I_{vcr} =4.

При Мсм=1.2: tп=0,3 с, $I_{\text{уст}}$ =8.2.

При Мсм=1.6: tп=0,3 с, $I_{\text{уст}}$ =10.76.

Рисунок 10 – Переходные процессы по угловой скорости

Определим по графикам время переходного процесса и установившееся значения скорости.

При Мсм=0: tп=0,3 с, ω_{ycr} =10.

При Мсм=0.6: tп=0,3 с, $\omega_{\text{уст}}$ =6.55.

При Мсм=1.2: tп=0,25 с, $\omega_{\text{уст}}$ =3.19.

При Мсм=1.6: tп=0,25 с, $\omega_{\text{уст}}$ =0.9.

Рисунок 11 – Переходные процессы по углу поворота

4 Влияние момента инерции нагрузки на вид переходных процессов

Требуется изменять момент инерции нагрузки в диапазоне $\pm 50\%$ от заданного значения. То есть будем изменять значения момента инерции нагрузки в пределах от $0.015~{\rm kr^*m}^2$ до $0.045~{\rm kr^*m}^2$.

На рисунках 12 - 15 представлены графики переходных процессов при различных значениях J_m .

Рисунок 12 – Переходные процессы по напряжению

Рисунок 13 – Переходные процессы по току

Определим по графикам время переходного процесса и установившееся значения тока.

При $J_m{=}0{,}015{:}$ tn=0,25 c, $I_{\rm ycr}{=}0.$

При J_m =0,02: tп=0,3 с, I_{ycr} =0.

При J_m =0,03: tп=0,35 с, I_{ycr} =0.

При J_m =0,045: tп=0,45 с, I_{ycr} =0.

Рисунок 14 – Переходные процессы по угловой скорости

Определим по графикам время переходного процесса и установившееся значения скорости.

При $J_m{=}0,015$: tп=0,2 с, $\omega_{\rm ycr}{=}10$.

При J_m =0,02: tп=0,25 с, $\omega_{\text{уст}}$ =10.

При J_m =0,03: tп=0,35 с, $\omega_{\text{уст}}$ =10.

При J_m =0,045: tп=0,45 с, $\omega_{\text{уст}}$ =10.

Рисунок 15 – Переходные процессы по углу поворота

5 Исследование влияния передаточного отношения редуктора на вид переходных процессов

Будем изменять передаточное отношение редуктора в диапазоне $\pm 75\%$ от заданного значения. То есть i_p изменяется от 10 до 70.

На рисунках 16 - 19 представлены графики переходных процессов, при Mcm=0.

Рисунок 16 – Переходные процессы по напряжению

Рисунок 17 – Переходные процессы по току

Рисунок 18 – Переходные процессы по угловой скорости

Рисунок 19 – Переходные процессы по углу поворота

На рисунках 20 - 23 представлены переходные процессы, при Mcm=0.8 (половина максимального значения момента, вычисленного в пункте 3)

Рисунок 20 – Переходные процессы по напряжению

Рисунок 21 – Переходные процессы по току

Рисунок 22 – Переходные процессы по угловой скорости

Рисунок 23 – Переходные процессы по углу поворота

6 Получение графиков переходных процессов при меньших значениях постоянных времени $T_{\mathbf{y}}$ и $T_{\mathbf{s}}$

Ту и Тя уменьшим на порядок, получим: $T_{\rm y}$ =0,003/10=0,0003; $T_{\rm s}$ =0,006/10=0,0006. Выполним построение графиков переходных процессов при полученных значениях $T_{\rm y}$ и $T_{\rm s}$, которые представлены на рисунке 24. Для более наглядного представления, все графики переходных процессов указаны на одном рисунке.

Рисунок 24 — Графики переходных процессов при различных значениях $T_{\rm v}$ и $T_{\rm s}$

Из рисунка 24, можно заключить, что при уменьшении значений постоянных времени $T_{\rm y}$ и $T_{\rm s}$ на один порядок, значение тока увеличилось, а все остальные параметры: напряжение, угловая скорость и угол поворота, остались практически неизменными. Так же можно сделать вывод, что при уменьшении значений постоянных времени, время переходного процесса и установившиеся значения угловой скорости и тока остались неизменными.

7 Математическое моделирование приближенной модели ЭМО

На рисунке 25 представлена структурная схема упрощенной модели ЭМО.

Рисунок 25 – Структурная схема упрощенной модели ЭМО

На рисунке 26 представлена схема моделирования упрощенной модели ЭМО.

Рисунок 26 – Схема моделирования упрощенной модели ЭМО

На рисунках 27 и 28 соответственно представлены переходные процессы по угловой скорости и углу поворота.

Рисунок 27 – Переходный процесс по угловой скорости

Рисунок 28 – Переходный процесс по углу поворота

Проанализируем погрешности, вызванные упрощением модели ЭМО.

Сопоставим результаты исследования с данными, полученными в пункте 2. На рисунке 29 представлены сравнительные графики переходных процессов по угловой скорости, с данными полученными в пункте 2.

Рисунок 29 – Сравнительные графики переходных процессов по угловой скорости

Из графиков видно, что время переходного процесса на обоих графиках совпадает. Сопоставим результаты исследования с данными, полученными в пункте 6. На рисунке 30 представлены сравнительные графики переходных процессов по угловой скорости, с данными полученными в пункте 6.

Рисунок 30 — Сравнительные графики переходных процессов по угловой скорости

Из представленного выше графика можно сделать вывод, что при уменьшении постоянных времени на один порядок, различия между полной и упрощенной моделями становится незначительным.

8 Вывод математических моделей вход-состояние-выход для полной и упрощенной схем моделирования ЭМО

Для полной модели ЭМО. Запишем следующие уравнения, характеризующие работу ЭМО. Данные уравнения были взяты из теории к этой лабораторной работе.

$$\begin{cases}
\dot{\alpha} = \omega \\
M_{\Pi} - M_{C} = K_{M}I - M_{C} = J_{\Sigma}\dot{\omega} \\
T_{Y}\dot{U}_{Y} + U_{Y} = K_{Y}U \\
T_{H}\dot{I} + I = K_{\Pi}(U_{Y} - K_{E}\omega)
\end{cases}$$

$$\begin{cases}
\dot{\alpha} = \omega \\
\dot{\omega} = \frac{K_{M}}{J_{\Sigma}}I - \frac{1}{J_{\Sigma}}M_{C} \\
\dot{U}_{Y} = -\frac{1}{T_{Y}}U_{Y} + \frac{K_{Y}}{T_{Y}}U \\
\dot{I} = -\frac{K_{E}K_{\Pi}}{T_{H}}\omega - \frac{1}{T_{H}}I + \frac{K_{\Pi}}{T_{H}}U_{Y}
\end{cases}$$

$$(11)$$

Положим, Х - вектор состояния

$$X = \begin{bmatrix} \alpha & \omega & I & U_{\mathbf{y}} \end{bmatrix}^T \tag{12}$$

U - вектор входных воздействий

$$U = \begin{bmatrix} U & M_C \end{bmatrix}^T \tag{13}$$

Получим следующую модель Вход-Состояние-Выход (ВСВ):

$$\begin{cases}
\dot{X} = AX + BU \\
y = CX
\end{cases} \Rightarrow
\begin{cases}
\begin{bmatrix}
\dot{\alpha} \\
\dot{\omega} \\
\dot{I} \\
\dot{U}_{y}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{K_{M}}{J_{\Sigma}} & 0 \\
0 & -\frac{K_{E}K_{\Pi}}{T_{\Re}} & -\frac{1}{T_{\Re}} & \frac{K_{\Pi}}{T_{\Re}} \\
0 & 0 & 0 & -\frac{1}{T_{y}}
\end{bmatrix}
\begin{bmatrix}
\alpha \\ \omega \\ I \\ U_{y}
\end{bmatrix} +
\begin{bmatrix}
0 & 0 \\ 0 & -\frac{1}{J_{\Sigma}} \\
0 & 0 \\ \frac{K_{Y}}{T_{Y}} & 0
\end{bmatrix}
\begin{bmatrix}
U \\ M_{C}
\end{bmatrix}$$

$$\alpha = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}
\begin{bmatrix}
\alpha \\ \omega \\ I \\ U_{y}
\end{bmatrix}.$$
(14)

Выполним подстановку рассчитанных значений и получим матрицы модели вход-состояниевыход:

ыход:
$$\begin{cases}
\begin{bmatrix} \dot{\alpha} \\ \dot{\omega} \\ \dot{I} \\ \dot{U}_{y} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 4142 & 0 \\ 0 & -0,548 & -166,67 & 5,17 \\ 0 & 0 & 0 & -333,3 \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \\ I \\ U_{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & -39447,73 \\ 0 & 0 \\ 900 & 0 \end{bmatrix} \begin{bmatrix} U \\ M_{C} \end{bmatrix} \\ \alpha = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \\ I \\ U_{y} \end{bmatrix}.
\end{cases} \tag{15}$$

Для приближенной модели ЭМО.

Используя структурную схему приближенной модели ЭМО, представленную на рисунке 25, получим формулы:

$$\dot{\omega} = \frac{KU - K_f M_c - \omega}{T_m} = 8,726U - 24,62M_c - 13.699w \tag{16}$$

$$x = \begin{bmatrix} 0 & 1/T_m \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \omega \\ \alpha \end{bmatrix} + \begin{bmatrix} K/T_m \\ 0 \end{bmatrix} U + \begin{bmatrix} K_f/T_m \\ 0 \end{bmatrix} M_c$$
 (17)

Выполним подстановку рассчитанных значений:

$$x = \begin{bmatrix} 0 & -13.699 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \omega \\ \alpha \end{bmatrix} + \begin{bmatrix} 8.726 \\ 0 \end{bmatrix} U + \begin{bmatrix} -24.62 \\ 0 \end{bmatrix} M_c$$
 (18)

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \tag{19}$$

Вывод

В данной лабораторной работе было проведено исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения. Был произведен расчет параметров для полной и упрощенной математической модели ЭМО.

Было проведено математическое моделирование для полной модели ЭМО, в ходе которого были получены графики переходных процессов при различных значениях: момента сопротивления, момента инерции нагрузки, передаточного отношения редуктора. Из этого можно сделать вывод, что при различных значениях: момента сопротивления, момента инерции нагрузки, передаточного отношения редуктора, графики переходного процесса по напряжению совпадают.

При увеличении момента сопротивления максимальные значения тока возрастают, а значения угловой скорости и угла поворота - уменьшаются.

При увеличении момента инерции нагрузки увеличиваются значения тока , а значения угловой скорости и угла поворота - уменьшаются.

При увеличении передаточного отношения редуктора максимальные значения тока и значения угла поворота - уменьшаются, а значения угловой скорости возрастают.

При уменьшении значений постоянных времени $T_{\rm y}$ и $T_{\rm g}$ на один порядок, значение тока увеличилось, а все остальные параметры: напряжение, угловая скорость и угол поворота, остались практически неизменными. Так же можно сделать вывод, что при уменьшении значений постоянных времени, время переходного процесса и установившиеся значения угловой скорости и тока остались неизменными.

При сравнении графиков переходных процессов упрощенной и полной модели ЭМО, можно заметить, что графики переходного процесса (по угловой скорости и угла поворота) полной модели практически совпадает с графиками переходного процесса (по угловой скорости и угла поворота) упрощенной модели.