Wykład czwarty

Pochodna funkcji

Zał. Funkcja f jest określona w pewnym otoczeniu O punktu x_0 ; $\Delta x \neq 0$ – przyrost argumentu x taki, że $x_0 + \Delta x \in O$.

xtaki, że $x_0+\Delta x\in O.$ Ułamek: $\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$ nazywamy ilorazem różnicowym.

Definicja 1. Liczbę $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ nazywamy pochodną funkcji f w punkcie x_0 i oznaczamy przez $f'(x_0)$.

Pochodne jednostronne (obliczane przy pomocy odpowiednich granic jednostronnych) funkcji f oznaczamy przez: $f'(x_0^-)$, $f'(x_0^+)$.

Funkcję f' nazywamy pochodną funkcji f.

Interpretacja geometryczna pochodnej

Równanie siecznej wykresu f przechodzącej przez punkty $(x_0, f(x_0)), (x_0 + \Delta x, f(x_0 + \Delta x))$ ma postać: $y - f(x_0) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \cdot (x - x_0)$.

Granicznym położeniem tej siecznej ($\Delta x \to 0$) jest styczna do wykresu funkcji f w punkcie $(x_0, f(x_0))$. Jeśli $f'(x_0)$ istnieje, to równanie tej stycznej:

$$y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

Uwaga 1. Jeżeli $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ jest niewłaściwa, to styczną do wykresu f w punkcie $(x_0, f(x_0))$ jest prosta $x = x_0$.

Obliczanie pochodnych

Twierdzenie 1. (o działaniach arytmetycznych na pochodnych) Jeżeli funkcje f
i g posiadają pochodne f', g', to prawdziwe są wzory

1. $(\alpha \cdot f)' = \alpha \cdot f'$ dla każdej liczby rzeczywistej α

2.
$$(f+g)' = f' + g'$$

3.
$$(f-g)' = f' - g'$$

4.
$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

5.
$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - g' \cdot f}{g^2}, g \neq 0$$

Pochodne funkcji elementarnych

1. (c)' = 0 c – funkcja stała

2.
$$(x^n)' = nx^{n-1}, n \in \mathbb{N}$$

$$3. (\sin x)' = \cos x$$

$$4. (\cos x)' = -\sin x$$

5.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x} = 1 + \operatorname{tg}^2 x$$

6.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

7.
$$(a^x)' = a^x \cdot \ln a$$
; $(e^x)' = e^x$

Twierdzenie 2. (o pochodnej funkcji odwrotnej) Jeżeli funkcja f jest ściśle monotoniczna i posiada pochodną $f'(x) \neq 0$, to funkcja odwrotna f^{-1} posiada pochodną i prawdziwy jest wzór

$$(f^{-1}(y))' = \frac{1}{f'(x)}, \text{ gdzie } y = f(x)$$

$$f'(x_0) = \operatorname{tg} \alpha, \ g'(y_0) = \operatorname{tg} \beta, \ \operatorname{tg} \beta = \operatorname{ctg} \alpha = \frac{1}{\operatorname{tg} \alpha}$$

8.
$$(\ln x)' = \frac{1}{x}$$

9.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

10.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

11.
$$(\operatorname{arctg} x)' = \frac{1}{x^2 + 1}$$

12.
$$(\operatorname{arcctg} x)' = -\frac{1}{x^2 + 1}$$

Twierdzenie 3. (o pochodnej funkcji złożonej) Jeżeli funkcja f ma pochodną w punkcie x i funkcja g ma pochodną w punkcie y = f(x), to funkcja złożona $g \circ f$ ma pochodną w punkcie x i prawdziwy jest wzór

$$(g\circ f)'(x)=g'(f(x))\cdot f'(x)$$

Powyższy wzór można stosować wielokrotnie.

$$13. (\sin x)' = \cot x$$

$$14. \ (\operatorname{ch} x)' = \operatorname{sh} x$$

15.
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}$$
, $\alpha \in \mathbb{R} - \{0\}$

Twierdzenie 4. (WK istnienia pochodnej) Jeżeli $f'(x_0)$ istnieje, to funkcja f jest ciągła w punkcie x_0 .

Uwaga 2. Jeżeli istnieje pochodna f' w przedziale P, to

- 1. jeżeli funkcja f jest rosnąca na przedziale P, to $f' \ge 0$ na tym przedziale;
- 2. jeżeli funkcja fjest malejąca na przedziale P, to $f'\leqslant 0$ na tym przedziale.

Funkcja $f(x) = x - \sin x$ jest rosnąca w \mathbb{R} . f'(x) = 0 dla nieskończenie wielu $x \in \mathbb{R}$.

Twierdzenie 5. (de l'Hospitala) Jeżeli funkcje $\frac{f}{h}$ oraz $\frac{f'}{h'}$ są określone na pewnym sąsiedztwie punktu x_0 oraz

- 1. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = 0$ lub $|\lim_{x \to x_0} h(x)| = +\infty$;
- 2. istnieje granica $\lim_{x\to x_0}\frac{f'(x)}{h'(x)}$ (właściwa lub niewłaściwa)

to istnieje granica $\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{f'(x)}{h'(x)}$.