Data Science and Data Engineering Bootcamp

Curriculum Overview

Phase I: Getting ready

Pre-bootcamp webinars

- Introduction to Big Data, Data Science and Predictive Analytics
- Introduction to Data Mining
- Introduction to R Programming
- Introduction to Azure Machine Learning
- Introduction to Amazon Machine Learning

Phase II: At the bootcamp

5-day in-person immersive learning

- Rigorous in-person training (8am-6pm)
- Theory and practice of data science
- Data engineering needed to make you a good data scientist

Phase III: Beyond the

Our relationship does not end with the bootcamp...

- Mentoring for Kaggle competition (https://www.kaggle.com/competitions)
- Office hours
- Connect with alumni globally through our alumni network
- Jobs, resources
- Exclusive access to our community events even if you are not based in Seattle

Data Science

- Emphasis on the process and best practices and not on covering as many topics as possible
- Data exploration, visualization, feature engineering, machine learning and predictive analytics
- 50% theory. 50% Hands-on Exercises
- Math/Theory is minimal but not trivial
- Primary tools: R and Azure ML Studio

Data Engineering

- Teach enough data engineering skills to be effective data scientist
- 20% theory. 80% hands-on
- Handle volume, variety and velocity of data
- Internet of Things (IoT) hack project.

Hack Project

- Gather accelerometer data in real-time
- Use message queues, stream processors to get real time analytics
- Answer questions like:
 - Did the device just get dropped?
 - What direction is the device holder moving?

Story Behind No Prerequisites

 You must attend all the pre-bootcamp webinars to be ready for the 5-day in person training

Bootcamp Logistics

- ~10 hours of pre-bootcamp work
- Bootcamp: 5-days. 8am-6pm daily
- Slides, sample code and other resources are consolidated in a git repository
- Office hours. Kaggle. LinkedIn group.
 Exclusive alumni events

Please keep the session interactive

• Interrupt and ask questions often.

Introduction to Big Data, Predictive Analytics, and Data Science

Big Data and Data Science Everywhere

Web search and online ads

Insurance

Telcos

Online Education

Online Retail

Social Networks

Entertainment

Healthcare

Online Shopping

Best Value

Buy Predictive Analytics: The Power Predict Who Will Click, Buy, Lie, or Die and get How to Measure Anything: Finding the Value of Intangibles in Business at an additional 5% off Amezon.com's everyday low price.

Buy together today: \$45.43

Add both to Cart

Show availability and shipping details

Customers Who Bought This Item Also Bought

Predictive Analytics: Microsoft Excel

Paperback \$24.36

Big Data: A Revolution That Will Transform ... Viktor Mayer-Schonberger

****** (32)

Hardcover \$15.84

Big Data, Big Analytics: Emerging Business ... Michael Minelli

★★★★ (6)

Hardcover \$32.82

How to Measure Anything: Finding the Value of ... > Douglas W. Hubbard

*********(56)

Hardcover \$31.96

Secrets of Analytical Leaders: Insights ... Wayne Eckerson

Perfect Paperback \$44.96

Big Data Analytics: Disruptive ... Dr. Arvind Sathi

Paperback \$10.45

Social Networks

facebook

Linked in

Online Entertainment

Brainstorming

What are some other applications?

Connecting the Dots

The underlying magic behind what we saw is 'big data' and 'predictive analytics'

Let's take a look at a big data pipeline

Typical Big Data Pipeline

stream

Big Data – Technology, Platforms & Products

Data Mining Tasks

Descriptive Methods:

- Find human-interpretable patterns that describe the data
- Techniques: Clustering, Association Analysis, x-point summaries

Predictive Methods:

- Use available data to build models that can predict the outcome of future data
- Techniques: Classification, Regression, Anomaly, and Deviation Detection

Prescriptive Methods:

- Predict future outcomes and suggest actions that may prevent or mitigate the impact of the predicted outcomes
- Techniques: Various optimization techniques

Traffic Management

Descriptive [Informing Role]:

- Traffic jam has happened already.
- [Implicit: Do something about it.]

Traffic Management

Predictive [Informing and Warning Role]:

- Traffic jam is about to happen in the next 30 minutes.
- [Implicit: Do something before it happens.]

Traffic Management

Prescriptive [Informing, Warning, and Advisory Role]:

Take action so traffic jam does not happen
OR

Traffic jam is about to happen in the next 30 minutes and you could possibly take the following courses of action:

- Route traffic to service road near I-5
- Block more traffic from entering the WA-520 bridge

Online Travel

Descriptive Analytics: Historical price trend and variation **Predictive Analytics:** Price may rise in next 7 days **Prescriptive Analytics:** *Advice: Buy Confidence:* 85%

Data Mining and Predictive Analytics

In the next few slides, we will take a look at some of the most common data mining tasks.

Classification: A Simple Example

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	Marital Status	Taxable Income	Cheat		
No	Single	75K	?		
Yes	Married	50K	?		
No	Married	150K	?		
Yes	Divorced	90K	?		
No	Single	40K	?	1	
No	Married	80K	?		Test
					Set
ning et	→ c	Learn Iassifi	er -	→	Model

unleash the data scientist in you

Classification

- Given a collection of records (training set)
 - Each record contains a set of *attributes*; one of the attributes is the *class label*.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.

Classification: More Examples

- Direct Marketing
 - Goal: reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product
- Fraud Detection
 - Goal: predict fraudulent cases in credit card transactions
- Customer Attrition/Churn
 - Goal: predict whether a customer is likely to be lost to a competitor

unleash the data scientist in you

Clustering: An Illustration Clustering in 3-D space using Euclidean distance

Clustering: Examples

 Subdivide the market into distinct subsets of customers where any subset may conceivably be selected as a segment to be reached with a particular offer

Clustering

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that:
 - Data points within a cluster have more similarities with one another
 - Data points in different clusters have less similarities with one another

Clustering: Similarity Measures

- Similarity Measures:
 - Euclidean Distance if attributes are continuous
 - Other problem-specific measures
 - Example: If a particular word occurs in two documents or not

Clustering: Examples

 To find groups of documents that are similar to each other based on the important terms appearing in

them

Association Analysis

Your behavior is being predicted, not by studying you, but by studying others.

Association Rule Discovery

- Given a set of records each of which contain some number of items from a given collection:
 - Produce dependency rules which will predict the occurrence of an item based on the occurrences of other items

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```


Association Analysis: Supermarket Shelf Management

- Goal: To identify items that are bought together by a sufficient amount of customers
- Place the items close to each other on supermarket shelves

Association analysis examples

- Marketing and sales promotion:
 - Users who buy item A usually also buy item B
 - If users bought item A, suggest item B or even offer discount on item B
- Inventory management:
 - Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equipped with the right parts to reduce the number of visits to consumer households

unleash the data scientist in

Regression Example: Predict Housing Prices

Regression

Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency

Regression: Ad Clicks

Predict the probability of whether or not an ad will be clicked

Deviation/Anomaly Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Bot detection in web traffic

Challenges in Data Mining

5 V_s Of Big Data

Questions?

