PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07H 21/00, A61K 31/70, C12Q 1/68

A1

(11) International Publication Number: WO 98/00434

(43) International Publication Date: 8 January 1998 (08.01.98)

(21) International Application Number: PCT/EP97/03192

(22) International Filing Date: 19 June 1997 (19.06.97)

(30) Priority Data:

96810431.5 28 June 1996 (28.06.96) EP
(34) Countries for which the regional or
international application was filed: DE et al.

(71) Applicant (for all designated States except US): NOVARTIS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors: and

(75) Inventors/Applicants (for US only): DE MESMAEKER, Alain [BE/CH]; Ueligasse 31, CH-4447 Känerkinden (CH). WENDEBORN, Sebastian [DE/CH]; Kapellenweg 11, CH-4102 Binningen (CH). LEBRETON, Jacques [FR/FR]; 55 B, boulevard Van Iseghem, F-44000 Nantes (FR).

(74) Agent: ROTH, Bernhard, M.; Novartis AG, Patent- und Markenabteilung, Lichtstrasse 35, CH-4002 Basel (CH).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH,

BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ,

Published

With international search report.

(54) Title: MODIFIED OLIGONUCLEOTIDES

(57) Abstract

It is one object of the present invention to provide an oligonucleotide of formula (1): 5'-(U)_n-3' in which U is an identical or different radical of a natural or a synthetic nucleoside, wherein the oligonucleotide comprises at least one modified nucleotide dimer comprising two nucleoside analogs connected via an amide-bond that has a certain configuration; the synthesis of these compounds and their use in pharmaceutical preparations.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/00434 PCT/EP97/03192

- 1 -

Modified oligonucleotides

The present invention relates to modified oligonucleotides comprising at least one nucleotide dimer with a modified backbone, to the modified nucleotide dimers in a certain configuration, processes for the preparation of these oligonucleotides or the nucleotide dimers, the use of these oligonucleotides or the nucleotide dimers and pharmaceutical preparations containing the modified oligonucleotides.

Nucleosides and oligonucleotides have acquired wide interest as antiviral active ingredients or because of their capability to interact with nucleic acids ("antisense" oligonucleotides) and the biological activity associated therewith, see, for example, Uhlmann & Peyman, Chemical Reviews (1990), **90**, 543-584. To provide nucleosides having novel properties or to improve the interaction of antisense oligonucleotides with natural nucleic acids and their stability to nucleases, the sugar radicals of nucleosides (or the nucleotide units in oligonucleotides) or the internucleotide phosphate bond in oligonucleotides have been modified in very different ways.

Although several modifications have been performed already, as for example in WO-A-9520597, the importance of a certain configuration at a certain position of the oligonucleotides, and its influence on the hybridization characteristics with DNA/RNA, has not been recognized. Accordingly, the current invention provides oligonucleotides in a certain configuration that are capable of a surprisingly strong hybridization to target RNA or DNA.

Detailed description of the invention

It is one object of the present invention to provide an oligonucleotide of formula 1

$$5'-(U)_n-3'$$
 (1)

in which U is an identical or different radical of a natural or a synthetic nucleoside, n is an integer from 2 to 200, preferably 2 to 100, more preferred 2 to 50 and most preferred 2 to 20 monomer units; and wherein the oligonucleotide of formula 1 comprises at least one structural unit of formula 2

wherein

R¹ is H, C₁-C₄alkyl or C₁-C₄alkoxy; preferred is H or C₁-C₄alkyl; more preferred is H or methyl; most preferred is H;

R² is H, C₁-C₄alkyl, phenyl, C₁-C₄alkyl-phenyl, C₃-C₉heteroaryl, C₁-C₄alkyl-C₃-C₉heteroaryl or an intercalator; wherein the aryl or heteroaryl is unsubstituted or substituted by OH, R⁴, C₁-C₄alkoxy, -O-(CH₂-CH₂-O)_mR⁴, NR⁴₂ or NHR⁴; preferred is H, C₁-C₄alkyl, phenyl, C₁-C₄alkyl-phenyl or C₃-C₉heteroaryl; more preferred is H, methyl, ethyl or phenyl; most preferred is H, methyl or phenyl;

R³ is C₁-C₄alkyl, unsubstituted or substituted by OH, NR⁴₂ or NHR⁴; preferred is C₁-C₄alkyl; more preferred is methyl or ethyl; most preferred is methyl;

R⁴ is H or C₁-C₄alkyl; preferred is methyl or ethyl; more preferred is methyl;

And Y are independent of one another, H, OH, OR⁴, O-C₁-C₄alkylNHR⁴, O-C₁-C₄alkylNR⁴₂, -O-(CH₂-CH₂-O)_mR⁴ or -O-CH₂-C(OR⁵)H-CH₂-OR⁶, -O-CH₂-C(OR⁵)H-CH₃; preferred is H, OH, OR⁴, O-C₁-C₄alkylNHR⁴, O-C₁-C₄alkylNR⁴₂, -O-(CH₂-CH₂-O)_mR⁴; more preferred is H, OH or OR⁴; O-CH₂CH₂NHR⁴, O-CH₂CH₂NR⁴₂, O-CH₂CH₂OR⁴; even more preferred is H, O-CH₃, O-CH₂CH₂OCH₃, O-CH₂CH₂NHCH₃, O-CH₂CH₂N(CH₃)₂; and most preferred is H, O-CH₃ and O-CH₂CH₂OCH₃;

R⁵ is H or C₁-C₁₀alkyl; preferred is H, CH₃ or C₁-C₄alkyl; more preferred is H, methyl or ethyl; WO 98/00434 PCT/EP97/03192

- 3 -

R⁶ is H, CH₃ or an OH-protecting group;

- m is an integer from 1 to 4; preferred is 1; and
- A and B are, independent of one another, a purine or pyrimidine radical or an analogue thereof:

with the proviso that if A and B are thymidine, R^1 , R^2 and X are hydrogen and Y is methoxy, R^3 is not methyl.

Beside the presence of one or more structural units of formula (2), the oligonucleotide may be further modified, e.g., by replacement of phosphodiester bonds with -thioate bonds.

Some examples of alkyl, alkoxy, hydroxyalkyl and aminoalkyl, as used throughout the specification, are methyl, ethyl and the isomers of propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl, and also the corresponding alkoxy, hydroxyalkyl and aminoalkyl radicals. The alkyl, alkoxy, hydroxyalkyl and aminoalkyl radicals preferably contain 1 to 4 C atoms like methyl, ethyl, n- and i-propyl, n-, i- and t-butyl, methoxy, ethoxy, aminomethyl, aminoethyl, hydroxymethyl and hydroxyethyl.

Examples of aminoalkyl are also aminomethyl, aminoethyl, 1-aminoprop-2-yl or -3-yl, 1-aminobut-2-yl or -3-yl or -4-yl, N-methyl- or N,N-dimethyl- or N-ethyl- or N,N-diethyl- or N-2-hydroxyethyl- or N,N-di-2-hydroxyethylaminomethyl or -aminoethyl or -aminopropyl or -aminobutyl. Examples of hydroxyalkyl are hydroxymethyl, 1-hydroxyeth-2-yl, 1-hydroxyprop-2- or -3-yl, 1-hydroxybut-2-yl, -3-yl or -4-yl.

Examples of C₆-C₁₀aryl are naphthyl and phenyl, wherein phenyl is preferred. The heteroaryl preferably contains 1 to 3 heteroatoms selected from the group consisting of O, S and N, like thienyl, furyl, pyranyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl.

A preferred intercalator in connection with the present invention is anthraquinone substituted by a linker, the linker being preferably a chain of 2 to 7 atoms selected from the group consisting of C, N and O, like C₂-C₇alkyl.

If A and/or B is a purine radical or an analogue thereof, it can be a radical of the formula 3, 4, 5 or 6.

in which

R⁸ and R⁹ independently of one another are H, OH, SH, NH₂, NHNH₂, NHOH, NHOalkyl having 1 to 12 C atoms, -N=CH-N(C₁-C₁₂alkyl)₂, F, Cl, Br, alkyl or hydroxyalkyl or aminoalkyl or alkoxy or alkylthio having 1 to 12 C atoms, preferably 1 to 4 C atoms; phenyl; benzyl; primary amino having 1 to 20 C atoms, preferably 1 to 12 C atoms and more preferably 1 to 4 C atoms or secondary amino having 2 to 30 C atoms, preferably 2 to 12 C atoms and more preferably 2 to 6 C atoms; and

R¹⁶ is as defined below.

The primary amino preferably contains 1 to 12 and particularly preferably 1 to 6 C atoms, and the secondary amino preferably 2 to 12 and particularly preferably 2 to 6 C atoms.

Some examples of alkyl, alkoxy, alkylthio, hydroxyalkyl and aminoalkyl, which preferably contain 1 to 6 C atoms, are methyl, ethyl and the isomers of propyl, butyl, pentyl and hexyl; and also corresponding alkoxy, alkylthio, hydroxyalkyl and aminoalkyl radicals. The alkyl, alkoxy, alkylthio, hydroxyalkyl and aminoalkyl radicals preferably contain 1 to 4 C atoms. Preferred alkyl, alkoxy, alkylthio, hydroxyalkyl and aminoalkyl radicals are methyl, ethyl, nand i-propyl, n-, i- and t-butyl, methoxy, ethoxy, methylthio and ethylthio, aminomethyl, aminoethyl, hydroxymethyl and hydroxyethyl.

The primary amino and secondary amino can, for example, be radicals of the formula $R^{13}R^{14}N$, in which R^{13} and R^{14} are independently H, C_1 - C_{20} alkyl, -aminoalkyl or -hydroxyalkyl, preferably C_1 - C_{12} alkyl, -aminoalkyl or -hydroxyalkyl and particularly preferably C_1 - C_6 alkyl, -aminoalkyl or -hydroxyalkyl; carboxyalkyl or carbalkoxyalkyl, where the carbalkoxy group contains 2 to 8 C atoms and the alkyl group contains 1 to 6, preferably 1 to 4, C atoms; C_2 - C_{20} alkenyl, preferably C_2 - C_{12} alkenyl and particularly preferably C_2 - C_6 alkenyl; phenyl, monoor di(C_1 - C_4 alkyl- or -alkoxy)phenyl, benzyl, mono- or di(C_1 - C_4 alkyl- or -alkoxy)benzyl; or 1,2-, 1,3- or 1,4-imidazolyl- C_1 - C_6 alkyl; or R^{13} and R^{14} together are tetra- or pentamethylene, 3-

oxa-1,5-pentylene, $-CH_2-NR^{15}-CH_2CH_2$ - or $-CH_2CH_2-NR^{15}-CH_2CH_2$ -, in which R^{15} is H or C_1-C_4 alkyl. The amino group in the aminoalkyl is unsubstituted or substituted by one or two C_1-C_4 alkyl or $-C_1-C_4$ hydroxyalkyl groups. The hydroxyl group in hydroxyalkyl is unsubstituted or etherified with C_1-C_4 alkyl.

Examples of alkyl have been given previously. Examples of aminoalkyl are aminomethyl, aminoethyl, 1-aminoprop-2-yl or -3-yl, 1-aminobut-2-yl or -3-yl or -4-yl, N-methyl- or N,N-dimethyl- or N,N-diethyl- or N,N-diethyl- or N,N-diethyl- or N,N-diethyl- or N,N-diethyl- or N,N-diethyl- or N,N-diethyl or -aminopropyl or -aminobutyl. Examples of hydroxyalkyl are hydroxymethyl, 1-hydroxyeth-2-yl, 1-hydroxyprop-2- or -3-yl, 1-hydroxybut-2-yl, -3-yl or -4-yl. Examples of carboxyalkyl are carboxymethyl, carboxyethyl, carboxypropyl and carboxybutyl, and examples of carbalkoxyalkyl are these carboxyalkyl groups esterified with methyl or ethyl. Examples of alkenyl are allyl, but-1-en-3-yl or -4-yl, pent-3- or 4-en-1-yl or -2-yl, hex-3- or -4- or -5-en-1-yl or -2-yl. Examples of alkyl- and alkoxyphenyl or benzyl are methylphenyl, dimethylphenyl, ethylphenyl, diethylphenyl, methylphenyl, diethoxyphenyl, diethoxyphenyl, methoxybenzyl, diethoxybenzyl, diethoxybenzyl, diethoxybenzyl, Examples of imidazolylalkyl, in which the alkyl group preferably contains 2 to 4 C atoms, are 1,2-, 1,3- or 1,4-imidazolylethyl or -n-propyl or -n-butyl.

R¹⁵ is preferably H, methyl or ethyl.

Preferred examples of primary amino and secondary amino are methyl-, ethyl-, dimethyl-, diethyl-, allyl-, mono- or di(1-hydroxyeth-2-yl)-, phenyl- and benzylamino, acetylamino, isobutyrylamino, benzoylamino, phenoxyacetylamino, 4-tert.-butylphenoxyacetylamino,

N=CH-N(CH₃)₂, N=CH-N(C₄H₉)₂, and N=
$$\stackrel{N}{=}$$

In a preferred embodiment R⁸ and R⁹ independently of one another are H, F, Cl, Br, OH, SH, NH₂, NHOH, NHNH₂, methyl, methylamino, dimethylamino, benzoylamino, isobutyrylamino, methoxy, ethoxy, methylthio, phenoxyacetylamino, 4-tert.-butylphenoxyacetylamino,

N=CH-N(CH₃)₂, N=CH-N(C₄H₉)₂, and N=
$$N$$

Besides purine, some examples of analogues of the purine series are adenine, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-amino-6-chloropurine, 2-amino-6-methylthiopurine, 2-aminopurine, hypoxanthine, 2-aminoadenine, 6-hydroxypurine, guanine and N-isobutyrylguanine. More preferred are adenine, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 2-hydroxypurine, 2-amino-6-chloropurine, 2-amino-6-methylthiopurine, guanine, N-isobutyrylguanine, 2-aminopurine and hypoxanthine. Adenine, 2-aminoadenine, 2-aminopurine, guanine and hypoxanthine are particularly preferred.

If A or B in formula 2 is an analogous pyrimidine radical, it is preferably uracil, thymine or cytosine radicals of formulae 9 or 10

$$R^{16}$$
 NH (9) , R^{17} NH (10) ,

in which R^{16} and R^{17} independently of one another are is H, F, Cl, Br, CONH₂, alkyl, propinyl or hydroxyalkyl or aminoalkyl or alkoxy or alkylthio having 1 to 12 C atom; phenyl; benzyl; primary amino having 1 to 20 C atoms or secondary amino having 2 to 30 C atoms; the hydrogen atoms of the NH₂ group in formula 10 are unsubstituted or substituted by C₁-C₆alkyl, benzoyl or benzyl; and the dihydro derivatives of the radicals of formulae 9 and 10:

- R¹⁶ is preferably H, F, Cl, Br, C₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkinyl, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl, NHC₁-C₄alkyl, N(C₁-C₄alkyl)₂, propinyl; and more preferably H, F, Cl, Br, methyl, ethyl, or propinyl; and most preferably H, propinyl or methyl;
- R¹⁷ is preferably H, F, Cl, Br, C₁-C₆alkyl or C₁-C₆alkoxy, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl, NH₂, NHC₁-C₄alkyl, N(C₁-C₄alkyl)₂, and propinyl; and more preferably H, F, Cl, Br, methyl, ethyl, and propinyl; and most preferably H, propinyl or methyl.

Some examples of pyrimidine analogues are uracil, thymine, cytosine, 5-fluorouracil, 5-chlorouracil, 5-bromouracil, 5-methylcytosine, 5-propinyluracil, 5-propinylcytosine and their base protected derivatives.

Especially preferred structural units are of formula B8, B28 and B49.

WO 98/00434

Another object of the present invention is a nucleoside dimer of the formula 12, that can be used, for example, as a building block for the construction of oligonucleotides as shown in formula 1.

wherein

R¹, R², R³, X,Y, m, A and B are as defined above;

R¹⁸ and R¹⁹ independent of one another are H, an OH-protecting group or a phosphorus-containing, nucleotide-bridge-group-forming radical.

In a preferred embodiment R¹⁸ is H or an OH-protecting group and R¹⁹ is a phosphorus-containing, nucleotide-bridge-group-forming radical.

Suitable Protective groups and processes for derivatisation of the hydroxyl groups with such protective groups are generally known in sugar and nucleotide chemistry and described, for example, by B. T. Greene, Protective Groups in Organic Synthesis, Wiley Interscience, New York (1991). Examples of such protective groups are: linear or branched C₁-C₈alkyl, particularly C₁-C₄alkyl, for example methyl, ethyl, n- and i-propyl, n-, i- and t-butyl; C₇-

C₁₈aralkyl, for example benzyl, methylbenzyl, dimethylbenzyl, methoxybenzyl, dimethoxybenzyl, bromobenzyl, diphenylmethyl, di(methylphenyl)methyl, di(dimethylphenyl)methyl, di(methoxyphenyl)methyl, di(dimethoxyphenyl)methyl, trityl, tri(methylphenyl)methyl, tri(dimethylphenyl)methyl, methoxyphenyl(diphenyl)methyl, di(methoxyphenyl)phenylmethyl, tri(dimethoxyphenyl)methyl, tri(methoxyphenyl)methyl; triphenylsilyl, alkyldiphenylsilyl, dialkylphenylsilyl and trialkylsilyl having 1 to 20, preferably 1 to 12 and particularly preferably 1 to 8, C atoms in the alkyl groups, for example trimethylsilyl, triethylsilyl, tri-npropylsilyl, i-propyldimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, n-octyldimethylsilyl, (1,1,2,2-tetramethylethyl)dimethylsilyl; -(C₁-C₈alkyl)₂Si-O-Si(C₁-C₈alkyl)₂-, in which alkyl, for example, is methyl, ethyl, n- or i-propyl, n-, i- or t-butyl; C2-C12acyl, particularly C2-C8acyl, for example acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, benzoyl, methoxybenzoyl, methylbenzoyl, chlorobenzoyl and bromobenzoyl; R¹²-SO₂-, in which R¹² is C₁-C₁₂alkyl. particularly C₁-C₆alkyl, C₅- or C₆cycloalkyl, phenyl, benzyl, C₁-C₁₂alkylphenyl and particularly C₁-C₄alkylphenyl, or C₁-C₁₂alkylbenzyl and particularly C₁-C₄alkylbenzyl, or halophenyl or halobenzyl, for example methyl-, ethyl-, propyl-, butyl-, phenyl-, benzyl-, p-bromo-, pmethoxy- or p-methylphenylsulfonyl; unsubstituted or F-, Cl-, Br-, C₁-C₄alkoxy-, tri(C₁-C₄alkyl)silyl- or C₁-C₄alkylsulfonyl-substituted C₁-C₁₂alkoxycarbonyl, preferably C₁-C₈alkoxycarbonyl, for example methoxy-, ethoxy-, n- or i-propoxy- or n-, i- or t-butoxycarbonyl, 2trimethylsilylethoxycarbonyl, 2-methylsulfonylethoxycarbonyl, or phenoxycarbonyl or benzyloxycarbonyl which is unsubstituted or substituted as for alkoxycarbonyl, for example methylor methoxy- or chlorophenoxycarbonyl or -benzyloxycarbonyl, and also 9-fluorenylmethyloxycarbonyl.

If the protecting group is alkyl, it can be substituted by F, Cl, Br, C₁-C₄alkoxy, phenoxy, chlorophenoxy, methoxyphenoxy, benzyloxy, methoxybenzyloxy or chlorophenoxy.

In a preferred embodiment, the protective groups are, independently of one another, linear or branched C_1 - C_4 alkyl, C_7 - C_{18} aralkyl, trialkylsilyl having 1 to 12 C atoms in the alkyl groups; -(C_1 - C_4 alkyl)₂Si-O-Si(C_1 - C_4 alkyl)₂ like (CH_3)₂Si-O-Si(CH_3)₂- and -(i- C_3H_7)₂Si-O-Si(iC₃H₇)₂-; C_2 - C_8 acyl, R^{12} -SO₂-, in which R^{12} is C_1 - C_6 alkyl; phenyl or benzyl unsubstituted or substituted with F, Cl or Br; C_1 - C_4 alkylphenyl; C_1 - C_4 alkylbenzyl; C_1 - C_8 alkoxycarbonyl; phenoxycarbonyl; benzyloxycarbonyl or 9-fluorenylmethoxycarbonyl.

WO 98/00434

In a particularly preferred embodiment, the protective groups are methyl, ethyl, n- or i-propyl, n-, i- or t-butyl; benzyl, methylbenzyl, dimethylbenzyl, methoxybenzyl, dimethoxybenzyl, dimethoxybenzyl, dimethoxybenzyl, dimethoxybenzyl, dimethoxybenzyl, dickimethylphenyl)methyl, dickimethylphenyl)methyl, dickimethylphenyl)methyl, tri(dimethylphenyl)methyl, tri(dimethylphenyl)methyl, tri(dimethylphenyl)methyl, tri(dimethylphenyl)methyl, tri(dimethylphenyl)methyl; trimethylsilyl, triethylsilyl, tri-n-propylsilyl, i-propyldimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, n-octyldimethylsilyl, (1,1,2,2-tetramethylethyl)dimethylsilyl, -(i-C₃H₇)₂Si-O-Si(i-C₃H₇)₂-,-(CH₃)₂-Si-O-Si(CH₃)₂-; C₁-C₈acyl groups like acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, benzoyl, methylbenzoyl, methoxybenzoyl, chlorobenzoyl and bromobenzoyl; methyl-, ethyl-, propyl-, butyl-, phenyl-, benzyl-, p-bromo-, p-methoxy- and p-methylphenylsulfonyl; methoxy-, ethoxy-, n- or i-propoxy- or n-, i- or t-butoxycarbonyl, or phenoxycarbonyl, benzyl-oxycarbonyl, methyl- or methoxy- or chlorophenoxycarbonyl or -benzyloxycarbonyl or 9-fluorenylmethoxycarbonyl.

In an especially preferred embodiment R18 is

$$CN$$
 CH_3
 N
 CH_3
 CH_3
 CH_3
 CH_3

A phosphorus-containing, nucleotide-bridge-group-forming radical may correspond to formula P1 or P2

$$Y_{a} = P = X_{a} \qquad (P1), \qquad P \qquad P \qquad (P2)$$

$$OR_{a} \qquad Y_{a} \qquad OR_{a}$$

wherein

Y_a is hydrogen, C₁-C₁₂alkyl, C₆-C₁₂aryl, C₇-C₂₀aralkyl, C₇-C₂₀alkaryl, -OR_b, -SR_b, secondary amino, O^TM⁺ or S^TM⁺;

X_a is oxygen or sulfur;

 R_a is hydrogen, M^+ , C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_6 - C_{12} aryl, or the group R_a O- is N-heteroaryl-N-yl having 5 ring members and from 1 to 3 nitrogen atoms;

R_b is hydrogen, C₁-C₁₂alkyl or C₆-C₁₂aryl; and

M⁺ is Na⁺, K⁺, Li⁺, NH₄⁺ or primary, secondary, tertiary or quaternary ammonium; alkyl, aryl, aralkyl and alkaryl in Y_a, R_a and R_b being unsubstituted or substituted by alkoxy, alkylthio, halogen, -CN, -NO₂, phenyl, nitrophenyl or halophenyl.

Y_a contains as secondary amino preferably from 2 to 12 and especially from 2 to 6 carbon atoms.

The secondary amino may be, for example, a radical of the formula R_cR_dN , wherein R_c and R_d , are independently of one another is $C_1\text{-}C_{20^-}$, preferably $C_1\text{-}C_{12^-}$ and especially $C_1\text{-}C_6$ -alkyl; $C_1\text{-}C_{20^-}$, preferably $C_1\text{-}C_{12^-}$ and especially $C_1\text{-}C_6$ -aminoalkyl; or $C_1\text{-}C_{20^-}$, preferably $C_1\text{-}C_{12^-}$ and especially $C_1\text{-}C_6$ -hydroxyalkyl; carboxyalkyl or carbalkoxyalkyl, the carbalkoxy group containing from 2 to 8 carbon atoms and the alkyl group from 1 to 6, preferably from 1 to 4, carbon atoms; $C_2\text{-}C_{20^-}$, preferably $C_2\text{-}C_{12^-}$ and especially $C_2\text{-}C_6\text{-alkenyl}$; phenyl, mono- or di- $(C_1\text{-}C_4\text{alkyl}$ or $C_1\text{-}C_4\text{alkoxy}$)phenyl, benzyl, mono- or di- $(C_1\text{-}C_4\text{alkyl}$ or $C_1\text{-}C_4\text{alk}$ oxy)benzyl; or 1,2-, 1,3- or 1,4-imidazolyl- $C_1\text{-}C_6\text{alkyl}$, or R_c and R_d together are tetra- or penta-methylene, 3-oxa-1,5-pentylene, - $CH_2\text{-}NR_e\text{-}CH_2CH_2\text{-}$ or - $CH_2CH_2\text{-}NR_e\text{-}CH_2CH_2\text{-}$, wherein R_e is hydrogen or $C_1\text{-}C_4\text{alkyl}$. The amino group in aminoalkyl may be substituted by one or two $C_1\text{-}C_4\text{alkyl}$ or $C_1\text{-}C_4\text{alkyl}$. The hydroxy group in hydroxyalkyl may be etherified by $C_1\text{-}C_4\text{alkyl}$.

Primary, secondary, tertiary and quaternary ammonium for Y_a in connection with the definition of M^+ is to be understood as being an ion of the formula $R_fR_gR_hR_iN^+$, wherein R_f is C_1 - C_{20^-} , preferably C_1 - C_{12^-} and especially C_1 - C_6 -alkyl, C_1 - C_{20^-} , preferably C_1 - C_{12^-} and especially C_1 - C_6 -aminoalkyl, C_1 - C_{20^-} , preferably C_1 - C_{12^-} and especially C_1 - C_6 -hydroxyalkyl; carboxyalkyl or carbalkoxyalkyl, the carbalkoxy group containing from 2 to 8 carbon atoms and the alkyl group from 1 to 6, preferably from 1 to 4, carbon atoms; C_2 - C_{20^-} , preferably C_2 - C_{12^-} and especially C_2 - C_6 -alkenyl; phenyl, mono- or di-(C_1 - C_4 alkyl or C_1 - C_4 alkoxy)phenyl, benzyl, mono- or di-(C_1 - C_4 alkyl or C_1 - C_4 alkyl or C_1 - C_4 alkoxy)benzyl; or 1,2-, 1,3- or 1,4-imidazolyl- C_1 - C_6 alkyl, and C_8 0, C_8 1 and C_8 1 are each independently of the others hydrogen or have the definition of C_8 1, or C_8 1 and C_8 2 together are tetra- or penta-methylene, 3-oxa-1,5-pentylene, -

WO 98/00434

 $CH_2-NR_e-CH_2CH_2-$ or $-CH_2CH_2-NR_e-CH_2CH_2-$, wherein R_e is hydrogen or C_1-C_4 alkyl, and R_h and R_i each independently of the other have the definition of R_t . The amino group in aminoalkyl may be substituted by one or two C_1-C_4 alkyl or C_1-C_4 hydroxyalkyl groups. The hydroxy group in the hydroxyalkyl may be etherified by C_1-C_4 alkyl.

Examples of carboxyalkyl are carboxymethyl, carboxyethyl, carboxypropyl and carboxybutyl, and examples of carbalkoxyalkyl are those carboxyalkyl groups esterified by methyl or ethyl. Examples of alkenyl are allyl, but-1-en-3-yl or -4-yl, pent-3- or -4-en-1-yl or -2-yl, hex-3- or -4- or -5-en-1-yl or -2-yl. Examples of alkyl- and alkoxy-phenyl and alkyl- and alkoxy-benzyl are methylphenyl, dimethylphenyl, ethylphenyl, diethylphenyl, methylbenzyl, dimethylbenzyl, dimethoxyphenyl, dimethoxyphenyl, ethoxyphenyl, ethoxyphenyl, diethoxyphenyl, diethoxybenzyl, diethoxybenzyl, ethoxybenzyl and diethoxybenzyl. Examples of imidazolylalkyl in which the alkyl group preferably contains from 2 to 4 carbon atoms are 1,2-, 1,3- or 1,4-imidazolyl-ethyl or -n-propyl or -n-butyl. R_e is preferably hydrogen, methyl or ethyl.

Preferred examples of primary amino and secondary amino are methyl-, ethyl-, dimethyl-, diethyl-, diisopropyl, mono- or di-(1-hydroxy-eth-2-yl)-, phenyl- and benzyl-amino, acetyl-amino and benzylamino and piperidinyl, piperazinyl and morpholinyl.

Preferred examples of primary and secondary ammonium are methyl-, ethyl-, dimethyl-, diethyl-, disopropyl-, mono- or di-(1-hydroxy-eth-2-yl)-, phenyl- and benzyl-ammonium.

Examples of Y_a , R_a and R_b as alkyl are methyl, ethyl and the isomers of propyl, butyl, pentyl, hexyl, heptyl and octyl; examples of Y_a , R_a and R_b as aryl are phenyl and naphthyl; examples of R_a as alkenyl are allyl and $(C_1-C_4alkyl)CH=CH-CH_2-$; examples of Y_a as aralkyl are phenyl- C_nH_{2n} - wherein n is a number from 1 to 6, especially benzyl; examples of Y_a as alkaryl are mono-, di- and tri- (C_1-C_4alkyl) phenyl. Preferred substituents are chlorine, bromine, methoxy, -NO₂, -CN, 2,4-dichlorophenyl and 4-nitrophenyl. Examples of R_b are 2,2,2-trichloroethyl, 4-chlorophenyl, 2-chlorophenyl and 2,4-dichlorophenyl; and examples of R_b O- as N-heteroaryl are pyrrol-N-yl, triazol-N-yl and benzotriazol-N-yl.

In an even more preferred form, R_a is β -cyanoethyl and Y_a is di(isopropylamino).

In an especially preferred form the dinucleoside analog is of formula C8, C28 or C49

The invention further relates to a process for the preparation of compounds of the formula 12, which is characterized in that a compound of the formula 14

wherein

R1, X and A are as defined above; and

R²⁷ is H or an OH-protecting group as defined above; and

 R^{29} is H or an ester activating group like $\mathsf{C_6F_5}$, p-NO₂-phenyl, hydroxybenzotriazol-1-yl and

is reacted with a compound of the formula 15,

wherein

WO 98/00434

R², R³, Y and B are as defined above; and

R²⁸ is H, an OH-protecting group as defined above, or a phosphorus-containing, nucleotide-bridge-group-forming radical;

if required ($R^{29} = H$) in the presence of a condensing agent like, e.g., dicyclohexylcarbodiimide, TBTU (benzotriazol-1-yl-tetramethyluronium tetrafluoroborate) or HBTU (hexafluorophosphate).

Compounds of formulae 14 and 15 can be prepared, for example, according to De Mesmaeker *et al.*, Angew. Chem. Int. Ed. Engl. (1994), **33**, 226-229 or Pudlo & Townsend, Tetrahedron Lett. (1990), **31**, 3101.

The temperature in the synthesis reaction can be from -80 to 150°C, preferably 0 to 100°C.

In general, solvents are used which are protic and/or aprotic, and particularly preferably dipolar. Examples of solvents which can be employed on their own or as a mixture of at least two solvents are ethers (dibutyl ether, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, ethylene glycol dimethyl or diethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether), halogenated hydrocarbons (methylene chloride, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane), carboxylic acid esters and lactones (ethyl acetate, methyl propionate, ethyl benzoate, 2-methoxyethyl acetate, methoxymethyl acetate, γ-butyrolactone, δ-valerolactone, pivalolactone), carboxamides and lactams (N,N-dimethylformamide, N,N-dimethylformamide, tetramethylurea, hexamethylphosphoramide, γ-butyrolactam, ∈-caprolactam, N-methylpyrrolidone, N-acetylpyrrolidone, N-methylcaprolactam), sulfoxides (dimethyl sulfoxide), sulfones (dimethyl sulfone, diethyl sulfone, trimethylene sulfone, tetramethylene sulfone), tertiary amines (triethylamine, N-methylpiperidine, N-methylmorpholine), aromatic hydrocarbons, for example benzene or substituted benzenes (chlorobenzene, o-dichlorobenzene, 1,2,4-

WO 98/00434 PCT/EP97/03192

- 14 -

trichlorobenzene, nitrobenzene, toluene, xylene) and nitriles (acetonitrile, propionitrile, benzonitrile, phenylacetonitrile), and also aliphatic or cycloaliphatic hydrocarbons (pentane, petroleum ether, hexane, cyclohexane and methylcyclohexane).

An object of the present invention is the use of a dimer of formula 12 for the preparation of oligonucleotides which comprise one or more identical or different dimer units of formula 12.

The oligonucleotides according to the invention can be prepared in a manner known per se by various processes, preferably on a solid support. For details see for example Gait, Oligonucleotide Synthesis: A Practical Approach, IRL Press, Oxford (1984).

The oligonucleotides of the formula 1 and the dimeres of formula 12 can be used in a method of treatment. They have, e.g., antiviral and antiproliferative properties. The oligonucleotides and dimeres according to the invention have a surprisingly high stability to degradation by nucleases. A very good pairing with complementary nucleic acid strands, particularly of the RNA type, is also observed. The oligonucleotides according to the invention are therefore particularly suitable for antisense technology, i.e. for inhibition of the expression of undesired protein products due to the binding to suitable complementary nucleotide sequences in nucleic acids (see EP-A-266099, WO-A-8707300 and WO-A-8908146). They can be employed for the treatment of infections and diseases, for example by blocking the expression of bioactive proteins at the nucleic acid stage (for example oncogenes). The oligonucleotides according to the invention are also suitable as diagnostics and can be used as gene probes for the detection of viral infections or of genetically related diseases by selective interaction at the single- or double-stranded nucleic acid stage. In particular - due to the increased stability to nucleases - diagnostic use is not only possible in vitro but also in vivo (for example tissue samples, blood plasma and blood serum). Use possibilities of this type are described, for example, in WO-A-9106556.

The invention relates to the use of the oligonucleotides according to the invention as diagnostics for the detection of viral infections or of genetically related diseases.

The invention also relates to the oligonucleotides of the formula 1 and dinucleosides of formula 12, according to the invention, for use in a therapeutic process for the treatment of diseases in mammals including humans by means of inactivation of nucleotide sequences

in the body. The dose when administered to mammals of about 70kg body weight can be, for example, 0.01 to 1000mg per day. Administration is preferably effected parenterally, for example intravenously or intraperitoneally, in the form of pharmaceutical preparations.

The invention further relates to a pharmaceutical preparation comprising an effective amount of an oligonucleotide of the formula 1 or dimeres of formula (12) on its own or together with other active ingredients, a pharmaceutical carrier in a customary amount and, if appropriate, excipients.

The pharmacologically active oligonucleotides or dimeres according to the invention can be used in the form of parenterally administrable preparations or of infusion solutions. Solutions of this type are preferably isotonic aqueous solutions or suspensions, it being possible to prepare these before use, for example in the case of lyophilized preparations which contain the active substance on its own or together with a carrier, for example mannitol. The pharmaceutical preparations can be sterilized and/or contain excipients, for example preservatives, stabilisers, wetting and/or emulsifying agents, solubilisers, salts for regulating the osmotic pressure and/or buffers. The pharmaceutical preparations, which if desired can contain further pharmacologically active substances such as, for example, antibiotics, are prepared in a manner known per se, for example by means of conventional dissolving or lyophilizing processes, and contain about 0.1% to 90%, in particular from about 0.5% to about 30%, for example 1% to 5% of active substance(s).

The examples below illustrate the invention.

The following abbreviations are used in the examples:

Ac

acetyl

Bn:

benzyl

DMT:

dimethoxy trityl

HV:

high vacuum

Me:

methyl

pMeOBOM (p-methoxyphenyl)-methoxymethyl

(MeO)Bn

(p-methoxyphenyl)-methyl

nBu₄NF:

tetrabutyl ammonium fluoride

O-Ac:

acetate

Ph: phenyl

pMeOBOM: p-methoxybenzyloxybenzyl

RT: room temperature

T: thymin-1-yl

tBuPh₂Si: tert. butyldiphenylsilyl

Ts: p-toluenesulfonyl
TTTr: tris tert. butyl trityl

A) Preparation of Modified Nucleosides and Dinucleotide Analogs

Example A1: Preparation of compound (A8)

$$\begin{array}{c}
O \\
CH_3 \\
CH_3 \\
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 \\
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array}$$

For preparation of the aldehyde I see: J. Lebreton, A. De Mesmaeker, A. Waldner *Synlett*, **1994**, 54.

A solution of dry CeCl₃ (31.8 g,128.7 mmol) in THF (300 ml) at -78°C is treated with CH₃MgBr (46.8 ml, 3M solution in Et₂O, 140.4 mmol) and stirred for 2.5 h at -78°C. A solution of aldehyde I (5.6 g, 11.7 mmol) is added and stirring is continued for 2 h at -78°C. The reaction mixture is poured into a saturated, aqueous solution of KHSO₄ and extracted with CH₂Cl₂ (3x). The combined organic layers are washed with Brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 25-50% EtOAc in hexane to give compound A1 (3.3 g, 56%).

¹H NMR (250 MHz, CDCl₃): δ = 6.2 (m, 1H, H-C(1')), mixture of diastereomers.

WO 98/00434 PCT/EP97/03192

- 17 -

$$\begin{array}{c} CH_{3} \\ CH_{3$$

To a solution of compound A1 (3.0 g, 6.06 mmol) in pyridine (20 ml) is added MeSO₂Cl and the reaction is stirred at 0°C for 1.5 h. The reaction mixture is diluted with CH₂Cl₂ (100 ml), washed with aqueous citric acid and brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (50% EtOAc in hexane) to give compound A2 (2.16 g, 63%).

 1 H NMR (250 MHz, CDCl₃): δ = 2.9 (2s, 3H, CH₃SO₂), mixture of diastereomers. Ms(FD): 573 (M)

To a solution of compound A2 (2.0 g, 3.48 mmol) in DMF (10 ml) is added NaN₃ (1.704 mg, 26.2 mmol) and the reaction mixture is stirred for 6 h at 65°C. The reaction mixture is poured into a saturated, aqueous solution of NH₄Cl and extracted with EtOAc (3x). The combined organic layers are washed with Brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 35-40% EtOAc in hexane) to give compound A3 (1.32 g, 72%).

¹H NMR (250 MHz, CDCl₃): δ = 6.45 (m, 1H, H-C(1')), mixture of diastereomers. Ms(CI): 537 (M+NH4)

$$H_2N$$
 CH_3
 CH_3

To a solution of compound A3 (1.3 g, 2.51 mmol) in MeOH (40 ml) is added $SnCl_2 = H_2O$ (2.54 g, 11.3 mmol). The reaction mixture is stirred for 28 h at 25°C. The reaction mixture is neutralized with saturated, aqueous solution of Na_2CO_3 and concentrated. The mixture is diluted with saturated, aqueous solution of Na_2CO_3 and extracted with CH_2Cl_2 (3x). The combined organic layers are washed with Brine, dried (Na_2SO_4), concentrated and purified by flash chromatography (silica, 5-10 % MeOH in CH_2Cl_2) to give the two diastereomeric compounds A4a (R-C(5') configuration,458.8 mg, 37%) and A4 (S-C(5'), configuration 133.8 mg, 11 %).

A4a: ¹H NMR (500 MHz, CDCl₃): δ = 3.79 dd, 1H, H-C(4')); MS(EI): 494 (M+H) **A4**: ¹H NMR (500 MHz, CDCl₃): δ = 3.70 dd, 1H, H-C(4')); MS(EI): 494 (M+H)

WO 98/00434

A solution of carboxylic acid **II** (cf. A. De Mesmaeker, A. Waldner, J. Lebreton, P. Hoffmann, V. Fritsch, R. M. Wolf, S. M. Freier, *Angew. Chem. Int. Ed.* **1994**, *33*, 226.) (142 mg, 0.272 mmol, dried over P_2O_5 on HV, 16.0 h) in CH₃CN (2 ml) is treated with Et₃N (30 mg, 0.299 mmol), O-(1-benztriazol-1-yl)-N,N,N,N-tetramethyluroniumtetrafluoroborat (95 mg, 0.299 mmol) and hydroxybenztriazol (18 mg, 0.135 mmol). The reaction mixture is stirred for 2 h. A solution of amine **A4a** (133 mg, 0.271 mmol, dried over P_2O_5 on HV, 16.0 h) in CH₃CN (2 ml) and Et₃N (30 mg, 0.299 mmol) are added to the reaction mixture and stirring is continued for 3 h. The reaction mixture is poured into aqueous, saturated NaH₂PO₄-solution and concentrated. The aqueous phase is extracted with CH₂Cl₂ (3x), the combined organic layers are washed with aqueous, saturated NaH₂PO₄-solution, brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (5% MeOH in CH₂Cl₂) to give compound **A5** (268 mg, 99 %).

¹H NMR (500 MHz, CDCl₃): δ = 6.23, 5.58 (2dd, 2H, 2x H-C(1')); MS(EI): 996 (M-H)

A solution of compound **A5** (265 mg, 0.266 mmol) in THF (3 ml) is treated with TBAF (0.58 ml of 1.0 M solution in THF, 0.58 mmol) and stirred at 25°C for 4.5 h. The reaction is concentrated and purified by flash chromatography (10 - 20% MeOH in CH_2Cl_2) to give compound **A6** (123 mg, 89%).

¹H NMR (400 MHz, D₆-DMSO): $\delta = 6.07$, 5.94 (2dd, 2H, 2x H-C(1')); MS(EI): 520 (M-H)

HO
$$CH_3O$$
 CH_3O C

A solution of compound **A6** (120 mg, 0.230 mmol) in pyridine (3 ml) is treated with 4,4'-dimethoxytriphenylmethylchloride (233 mg, 0.690 mmol) and stirred for 24 h at 25°C. The reaction mixture is poured into aqueous, saturated NaHCO₃-solution, extracted with CH₂Cl₂ (3x), the organic layers are washed with brine, dried (Na₂SO₄), concentrated, coevaporated with toluene (3x) and purified by flash chromatography (10-20% MeOH in EtOAc, 1% Et₃N) to give compound **A7** (151 mg, 80 %).

¹H NMR (250 MHz, CDCl3): $\delta = 6.08$, 5.85 (2dd, 2H, 2x H-C(1')); MS(EI): 822 (M-H)

$$CH_3O \longrightarrow CH_3O \longrightarrow CH_3$$

Alcohol A7 (108 mg, 0.130 mmol), dissolved in CH_2Cl_2 (2ml), is added to a solution of disopropylammonium tetrazolide (15 mg, 0.088 mmol) and cyanoethoxy-bis-diisopropylamino-phosphine (58 mg, 0.195 mmol) in CH_2Cl_2 (2 ml) at 25°C. The reaction mixture is stirred for 3 h, poured into aqueous, saturated NaHCO₃-solution, extracted with CH_2Cl_2 (3x), the organic layers are washed with brine, dried (Na₂SO₄), concentrated, and purified by flash chromatography (1-10 % MeOH in EtOAc, 1% Et₃N) to give compound A8 (120 mg, 90 %).

³¹P NMR (101 MHz, CDCl₃): δ = 149.3, 149.0 (2 diastereomers); MS(EI): 1023 (M-H)

Example A2: Preparation of compound (A28)

A solution of compound III (cf. D. C. Baker, D. Horton, C.G. Tindal *Methods Carbohydr. Chem.* **1972**, *7*, 3) (47.5 g, 0.182 mol) in THF (70 ml) is added to a suspension of NaH (8.76 g, 55%, 0.201 mol, washed with hexane) in THF (110 ml) at 0°C. The reaction is stirred for 1.0 h at 0°C and 0.5 h at 25°C. Benzylbromide (46.7 g, 0.273 mol) and Bu₄NI (3.36 g, 9.1 mmol) are added to the reaction mixture and stirring is continued for 1.0 h at 25°C. The reaction mixture is poured into a saturated, aqueous solution of NH₄Cl and extracted with EtOAc (3x). The combined organic layers are washed with Brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 20% EtOAc in hexane) to give compound **A9** (55.0 g, 86%)

¹H NMR (500 MHz, CDCl₃): $\delta = 1.60$, 1.40, 1.38, 1.37 (4s, 12H, CH₃); MS (FD): 350 (M)

Compound **A9** (55.0 g, 0.157 mol) is dissolved in AcOH/H₂O (9/1, 1105 ml) and stirred for 2.0 h at 40°C. The reaction mixture is concentrated coevaporated with toluene (3x) and purified by flash chromatography (silica, 65% EtOAc in hexane) to give diol **A10** (29.0 g, 60%).

¹H NMR (500 MHz, CDCl₃): $\delta = 1.60$, 1.37 (2s, 6H, CH₃); MS(FD): 310 (M)

A solution of compound A10 (29.0 g, 93.5 mmol) in pyridine (250 ml) is treated with toluene-4-sulfonyl-chloride (25.0 g, 130.9 mmol) and DMAP (1.1 g, 9.4 mmol) at 0°C. The reaction is stirred for 4.0 h at 25°C, quenched with MeOH (11 ml), stirred for additional 0.3 h, concentrated, coevaporated with toluene (2x) and purified by flash chromatography to give compound A11 (36.8 g, 85%)

¹H NMR (500 MHz, CDCl₃): $\delta = 1.57$, 1.35 (2s, 6H, CH₃); MS(FD): 464 (M)

WO 98/00434 PCT/EP97/03192

A solution of compound A11 (11.7 g, 25.3 mmol) in DME (83 ml, degassed with Argon) is treated with NaI (11.4 g, 76.0 mmol), Bu₃SnH (11.1 g, 38.0 mmol) and AIBN (410 g, 0.25 mmol) and stirred for 1.0 h at 80°C. The reaction mixture is adsorbed onto silica gel, concentrated and purified by flash chromatography (silica, 30% EtOAc in hexane) to give compound A12 (7.5 g, 73%).

¹H NMR (400 MHz, CDCl₃): δ = 1.60, 1.37 (2s, 6H, CH₃); 1.23 (d, J = 6 Hz, 3H, H-C(6')) MS (Cl): 312 (M+NH₄⁺)

A solution of compound A12 (12,5 g, 42.6 mmol) in pyridine (125 ml) at 0°C is treated with toluene-4-sulfonyl-chloride (20.3 g, 106 mmol) and DMAP (520 g, 4.3 mmol). The reaction is slowly heated to 70°C and stirred for 3.0 h. The reaction mixture is poured into aqueous, saturated NH₄Cl solution, extracted with CH₂Cl₂ (3x), dried (Na₂SO₄) concentrated and purified by flash chromatography (silica, 25 - 35% EtOAc in hexane) to give compound A13 (15,9 g, 84%)

¹H NMR (500 MHz, CDCl₃): δ = 1.34 (d, J = 6 Hz, 3H, H-C(6')); 1.32 (s, 3H, CH₃) MS(CI): 448 (M'), 357 (M-PhCH₂)

A solution of compound A13 (15.9 g, 36.0 mmol) in DMF (120 ml) is treated with NaN₃ (4.6 g, 71.2 mmol) and stirred at 80°C for 3.0 h. The reaction mixture is poured into Brine and extracted with EtOAc (3x). The combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 20% EtOAc in hexane) to give compound A14 (10.6 g, 93%).

¹H NMR (500 MHz, CDCl₃): $\delta = 1.60$ (s, 3H, CH₃); 1.44 (d, J = 7 Hz, 3H, H-C(6')); 1.38 (s, 3H, CH₃); MS(El): 320 (M+H⁺)

A solution of compound A14 (5.0 g, 15.7 mmol) in CH_2Cl_2 (25 ml) at 0°C is treated with H_2O (2.9 ml) and CF_3COOH (5.8 ml). The reaction mixture is stirred for 9.0 h at 25°C, cooled to 0°C and carefully treated with solid NaHCO₃. The reaction mixture is stirred for 0.3 h diluted with CH_2Cl_2 and washed with CH_2Cl_2 . The aqueous phase is extracted with CH_2Cl_2 (2x), the combined organic layers are dried (Na₂SO₄) and concentrated to give compound A15 (4.4 g, 100%). A small fraction is purified by flash chromatography (silica, 3% MeOH in CH_2Cl_2) for analysis.

 $R_f = 0.35$, 0.27 (silica, 4% MeOH in CH_2CI_2)

A solution of crude compound A15 (4.4 g, 15.8 mmol) in pyridine (50 ml) is treated with Ac₂O (8.1 g, 79.0 mmol) and DMAP (0.2 g, 1.6 mmol). The reaction mixture is stirred for 0.5 h at 25°C, poured into saturated, aqueous solution of NH₄Cl and extracted with CH₂Cl₂ (3x). The combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 15 - 20% EtOAc in hexane) to give compound A16 (4.7 g, 92%, mixture of anomers (3.5:1 by ¹H NMR))

¹H NMR of less polar, major anomer (500 MHz, CDCl₃): δ = 2.14, 2.11 (2s, 6H, OAc); 1.41 (d, J = 7 Hz, 3H, H-C(6')); MS(FD): 363 (M)

A solution of compound A16 (4.1 g, 12.0 mmol) and thymine (2.1 g, 16.8 mmol) in CH₃CN (40 ml) is treated with N,O-bis(trimethylsilyl)acetamid (5.8 g, 28.4 mmol) and stirred for 0.5 h at 50°C. Trimethylsilyltrifluoromethane-sulfonate (5.7 g, 25.8 mmol) is added to the reaction mixture and stirring is continued for 3.0 h at 50°C. The reaction mixture is cooled to 25°C, poured into saturated, aqueous NaHCO3 solution and extracted with CH2Cl2 (3x). The combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 50% EtOAc in hexane) to give compound A17 (4.42 g, 80%).

¹H NMR (250 MHz, CDCl₃): δ = 2.15 (s, 3H, OAc); 1.95 (s, 3H, CH₃); 1.42 (d, 3H, H-C(6'))

A solution of compound A17 (10.6 mg, 24.6 mmol) in DMF (70 ml) at 0°C is treated with DBU (7.5 g, 49.2 mmol) and a solution of p-methoxybenzyloxymethylchloride (8.3 g, 44.3 mmol) in DMF (30 ml). The reaction mixture is stirred for 2.0 h (0°C - 25°C), concentrated and purified by flash chromatography (30 - 50% EtOAc in hexane) to give compound A18 (12.3 g, 87%).

 $R_f = 0.27$ (silica, 33% EtOAc in hexane)

¹H NMR (250 MHz, CDCl₃): δ = 3.79 (s, 3H, OCH₃); 2.15 (s, 3H, OAc); 1.95 (s, 3H, CH₃)

A solution of compound A18 (12.3 g, 21.3 mmol) in MeOH (120 ml) at 0°C is treated with NaOMe (4.6 g, 85.2 mmol) and stirred for 1.0 h at 0°C. The reaction mixture is poured into aqueous, saturated NH₄Cl-solution, extracted with CH₂Cl₂ (3x), dried (Na₂SO₄), adsorbed on Silica gel and purified by flash chromatography (50% EtOAc in hexane) to give compound A19 (10.8 g, 94%)

¹H NMR (500 MHz, CDCl₃): δ = 3.80 (s, 3H, OCH₃); 1.94 (d, J = 1 Hz, 3H, CH₃) MS(Cl): 555 (M+NH₄⁺), 538 (M+H⁺)

To a solution of compound A19 (10.3 g, 19.1 mmol) in THF (100 ml) at 0°C is added NaH (2.3 g, 57.3 mmol) and the reaction mixture is stirred for 0.5 h at 0°C. Mel is added to the reaction mixture and stirring is continued for 1.0 h at 0°C. The reaction mixture is poured into aqueous, saturated NH₄Cl-solution, extracted with CH₂Cl₂ (3x), the combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (30% EtOAc in hexane) to give compound A20 (10.8 g, 100%)

¹H NMR (500 MHz, CDCl₃): $\delta = 3.79$ (s, 3H, ArOCH₃); MS(Cl): 569 (M+NH₄⁺), 552 (M+H⁺)

To a solution of compound A20 (2.0 g, 3.63 mmol) in MeOH (3 ml) is added SnCl₂H₂O at 0°C and the reaction is stirred for 16.0 h (0 - 25°C). The reaction mixture is poured into saturated, aqueous NaHCO₃-solution and extracted with CH₂Cl₂ (3x). The combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (5% MeOH in CH₂Cl₂) to give compound **A21** (1.4 g, 71%).

¹H NMR (500 MHz, CDCl₃): $\delta = 3.80$ (s, 3H, ArOCH₃); 3.54 (s, 3H, OCH₃); MS(Cl): 526 $(M+H^{+})$

A solution of carboxylic acid **IV** (344 g, 0.62 mmol, dried over P₂O₅ on HV, 16.0 h) in CH₃CN (6 mI) is treated with Et₃N (70 mg, 0.685 mmol), O-(1-benztriazol-1-yl)-N,N,N,N-tetramethyluroniumtetrafluoroborat (220 mg, 0.685 mmol) and hydroxybenztriazol (42 mg, 0.312 mmol). The reaction mixture is stirred for 1.5 h. A solution of amine **A21** (327 mg, 0.632 mmol, dried over P₂O₅ on HV, 16.0 h) in CH₃CN (6 ml) and Et₃N (94 mg, 0.935 mmol) are added to the reaction mixture and stirring is continued for 0.5 h. The reaction mixture is poured into aqueous, saturated NaH₂PO₄-solution and concentrated. The aqueous phase is extracted with CH₂Cl₂ (3x), the combined organic layers are washed with aqueous, saturated NaH₂PO₄-solution, brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (1-2.5%MeOH in CH₂Cl₂) to give compound **A22** (539 mg, 90%).

¹H NMR (500 MHz, CDCl₃): δ = 3.41 (2s, 6H, 2x OCH₃); 3.74 (3H, Ar-OCH₃); MS(EI): 1058 (M-H⁺)

WO 98/00434 PCT/EP97/03192

- 29 -

To a solution of compound A22 (770 mg, 0.727 mmol) in CH₂Cl₂ (10 ml) and H₂O (1 ml) is added DDQ (430 mg, 1.89 mmol) in portions during 2 h and the reaction mixture is stirred for additional 0.5 h. The reaction mixture is filtered though celite, concentrated and purified by flash chromatography (5% MeOH in CH₂Cl₂). The chromatographed compound (mixture of product and hemiaminal) is dissolved in CH2Cl2 and rapidly stirred with saturated, aqueous Na₂CO₃ solution. The organic phase is separated from the aqueous phase, dried (Na₂SO₄) and concentrated to give compound A23 (636 mg, 96%).

¹H NMR (500 MHz, CDCl₃): δ =3.40 and 3.43 (2s, 6H, 2x OCH₃); MS(Cl): 909 (M⁻)

A solution of compound A23 (630 mg, 0.693 mmol) in THF (8 ml) is treated with TBAF (1.04 ml of 1.0M solution in THF, 1.04 mmol) and stirred at 25°C for 1.5 h. The reaction is concentrated and purified by flash chromatography (5 - 7% MeOH in CH_2Cl_2) to give compound A24 (393 mg, 85%).

¹H NMR (500 MHz, CDCl₃): δ = 3.56 and 3.40 (2s, 6H, 2x OCH₃); MS(CI): 689 (M+NH4), 672 (M+H)

A solution of compound A24 (383 mg, 0.57 mmol) degassed with argon, is treated with Pd/C (10%, 76 mg) and stirred under an H_2 -atmosphere for 21 h. The reaction vessel is flushed with argon, filtered through celite, concentrated and purified by flash chromatography (15% MeOH in CH_2Cl_2) to give compound A25 (290 mg, 88%).

¹H NMR (250 MHz, CD₃OD): δ =3.47 and 3.45 (2s, 6H, 2x OCH₃); MS(EI): 580 (M-H)

WO 98/00434

- 31 -

A solution of compound A26 (288 mg, 0.496 mmol) in pyridine (3.5 ml) is treated with 4,4'dimethoxytriphenylmethylchloride (406 mg, 1.20 mmol) and Et₃N (152 mg, 1.50 mmol) and stirred for 4 h at 25°C. The reaction mixture is poured into aqueous, saturated NaHCO₃solution, extracted with CH2Cl2 (3x), dried (Na2SO4), concentrated, coevaporated with toluene (2x) and purified by flash chromatography (7% MeOH in CH₂Cl₂, 1% Et₃N) to give compound A27 (380 mg, 87%).

¹H NMR (500 MHz, CDCl₃): δ = 3.52 and 3.49 (2s, 6H, 2x OCH₃); MS(EI): 882(M-H)

$$CH_{3}O \longrightarrow CH_{3}O \longrightarrow CH_{$$

Alcohol A27 (300 mg, 0.339 mmol) and di-isopropylammonium tetrazolide (437 mg, 2.55 mmol) are dried for 12 h (HV), dissolved in CH₂Cl₂ (10 ml) and treated with cyanoethoxy-bisdiisopropylamino-phosphine (460 mg, 1.53 mmol). The reaction mixture is stirred for 6 h at 25° C. The reaction is concentrated, dissolved in CH_2Cl_2 and precipitated in cold pentane. The mother liquor is concentrated and remaining product is precipitated. The precipitates are washed with pentane and purified by flash chromatography (3% MeOH, 1% Et₃N in CH_2Cl_2) to give phosphoramidite **A28** (350 mg, 95%,1:1 mixture of diastereomers).

³¹P NMR (101 MHz, CDCl₃): δ = 151.3, 150.2; MS(EI): 1082(M-H)

Example A3: Preparation of compound (A49)

A solution of compound III (20 g, 0.077 mol) in THF (70 ml) is added to a suspension of NaH (3.69 g, 55%, 0.085 mol, washed with hexane) in THF (130 ml) at 0°C. The reaction is stirred for 1.0 h at 0°C and 0.5 h at 25°C. 4-methoxybenzylchloride (18 g, 0.1152 mol) and Bu₄NI (1.42 g, 3.8 mmol) are added to the reaction mixture and stirring is continued for 48 h at 25°C. The reaction mixture is poured into a saturated, aqueous solution of NH₄Cl and extracted with EtOAc (3x). The combined organic layers are washed with Brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 25-35% EtOAc in hexane) to give compound **A29** (15.24 g, 52%)

¹H NMR (500 MHz, CDCl₃): δ = 3.79 (3H, OCH₃); MS (EI): 379 (M-H)

Compound A29 (15.0 g, 0.039 mol) is dissolved in AcOH/H₂O (9/1, 1105 ml) and stirred for 2.0 h at 40°C. The reaction mixture is concentrated coevaporated with toluene (2x). The material is dissolved in CH₂Cl₂, washed with aqueous NaHCO₃, dried with Na₂SO₄, concentrated and purified by flash chromatography (silica, 65% EtOAc in hexane) to give diol A30 (11.9 g, 89%)

¹H NMR (500 MHz, CDCl₃): δ = 3.82 (3H, OCH₃); MS(EI): 339 (M-H)

A solution of compound **A30** (11.76 g, 34.6 mmol) in pyridine (100 ml) is treated with toluene-4-sulfonyl-chloride (9.23 g, 48 mmol) and DMAP (0.42 g, 3.5 mmol) at 0°C. The reaction is stirred for 4.0 h at 25°C, quenched with MeOH (11 ml), stirred for additional 0.3 h, concentrated, coevaporated with toluene (2x) and purified by flash chromatography to give compound **A31** (17.8 g, 89%)

¹H NMR (500 MHz, CDCl₃): $\delta = 3.82$ (3H, OCH₃); MS(CI): 512 (M + NH₄)

A solution of compound A31 (15.15 g, 31 mmol) in DME (200 ml, degassed with Argon) is treated with NaI (13.8 g, 92.0 mmol), Bu₃SnH (13.53 g, 46.5 mmol) and AIBN (1.2 g, 6.2 mmol) and stirred for 1.0 h at 80°C. The reaction mixture is adsorbed onto silica gel, concentrated and purified by flash chromatography (silica, 30-50% EtOAc in hexane) to give compound A32 (7.9 g, 79%)

¹H NMR (400 MHz, CDCl₃): δ = 3.81 (3H, OCH₃); MS (CI): 342 (M+NH₄)

$$p(MeO)BnO$$
 CH_3
 $p(MeO)BnO$
 CH_3
 $p(MeO)BnO$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

A solution of compound A32 (7.9 g, 24 mmol) in pyridine (80 ml) at 0°C is treated with toluene-4-sulfonyl-chloride (11.62 g, 61 mmol) and DMAP (293 mg, 2.4 mmol). The reaction is heated to 70°C and stirred for 3.0 h. The reaction mixture is poured into aqueous, saturated NH₄Cl solution, extracted with CH₂Cl₂ (3x), dried (Na₂SO₄) concentrated and purified by flash chromatography (silica, 25 - 35% EtOAc in hexane) to give compound A33 (9.14 g, 80%)

¹H NMR (500 MHz, CDCl₃): δ = 3.82 (3H, OCH₃)

$$\begin{array}{c} \text{TsO} \dots \\ \text{CH}_3 \\ \text{D} \\ \text{O} \\ \text{CH}_3 \\ \text{CH$$

A solution of compound A33 (8.94 g, 18.7 mmol) in DMF (90 ml) is treated with NaN₃ (3.65 g, 56 mmol) and stirred at 70°C for 16 h. The reaction mixture is poured into Brine and extracted with EtOAc (3x). The combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 15-20% EtOAc in hexane) to give compound A34 (6.0 g, 92%).

¹H NMR (500 MHz, CDCl₃): $\delta = 3.85$ (3H, OCH₃); MS(CI): 367 (M+NH₄)

$$P(MeO)BnO$$
 O CH_3 $P(MeO)BnO$ OH CH_3 $P(MeO)BnO$ OH CH_3

A solution of compound **A34** (6.0 g, 17.2 mmol) in 90% AcOH (90 ml) is stirred for 5 h at 80°C and 16 h at 25°C, cooled to 0°C and carefully treated with solid NaHCO₃. The reaction mixture is concentrated, coevaporated with toluene (2x) and purified by flash chromatography (silica, 35-50% EtOAc in hexane) to give **A35** (5.2 g, 98%).

¹H NMR (500 MHz, CDCl₃): $\delta = 3.83$ (3H, OCH₃)

A solution of crude compound **A35** (3.3 g, 10.7 mmol) in pyridine (30 ml) is treated with Ac₂O (5.45 g, 53.0 mmol) and DMAP (0.13 g, 1.01 mmol). The reaction mixture is stirred for 0.5 h at 25°C, poured into saturated, aqueous solution of NH₄Cl and extracted with CH₂Cl₂ (3x). The combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 25 - 35% EtOAc in hexane) to give compound **A36** (4.12 g, 98%, mixture of anomers (2.5:1 by ¹H NMR))

¹H NMR of less polar, major anomer (500 MHz, CDCl₃): δ = 3.81 (3H, OCH₃)

A solution of compound **A36** (4.12 g, 10.5 mmol) and thymine (1.72 g, 13.7 mmol) in CH₃CN (40 ml) is treated with N,O-bis(trimethylsilyl)acetamid (4.7 g, 23.1 mmol) and stirred for 0.5 h at 50°C. Trimethylsilyltrifluoromethane-sulfonate (4.67 g, 21 mmol) is added to the reaction

mixture and stirring is continued for 3.5 h at 50°C. The reaction mixture is cooled to 25°C, poured into saturated, aqueous NaHCO₃ solution and extracted with CH₂Cl₂ (3x). The combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (silica, 50% EtOAc in hexane) to give compound **A37** (4.13 g, 86%).

¹H NMR (250 MHz, CDCl₃): $\delta = 3.82$ (3H, OCH₃); MS(EI): 458 (M-H)

A solution of compound A37 (4.13 g, 10 mmol) in DMF (30 ml) at 0°C is treated with DBU (2.74 g, 18.0 mmol) and a solution of p-methoxybenzyloxymethylchloride (3.02 g, 16.2 mmol) in DMF (10 ml). The reaction mixture is stirred for 2.0 h (0°C - 25°C), concentrated and purified by flash chromatography (50% EtOAc in hexane) to give compound A38 (5.12 g, 93%)

¹H NMR (250 MHz, CDCl₃): δ = 3.80 and 3.81 (2s, 6H, 2x OCH₃); MS(Cl): 627 (M+NH4)

A solution of compound **A38** (5.2 g, 8.4 mmol) in MeOH (50 ml) at 0°C is treated with NaOMe (1.82 g, 33.6 mmol) and stirred for 1.0 h at 25°C. The reaction mixture is poured into aqueous, saturated NH₄Cl-solution, extracted with CH₂Cl₂ (3x), dried (Na₂SO₄), adsorbed on silica gel and purified by flash chromatography (50% EtOAc in hexane) to give compound **A39** (4.47 g, 94%)

¹H NMR (500 MHz, CDCl₃): δ = 3.80 and 3.83 (2s, 6H, 2x OCH₃); MS(CI): 602 (M+CI)

$$N_3$$
 CH_3
 C

To a solution of compound A39 (3.0 g, 5.3 mmol) in THF (30 ml) at 0°C is added NaH (381 mg, 15.9 mmol) and the reaction mixture is stirred for 0.5 h at 0°C. Mel (7.52g, 53 mmol) is added to the reaction mixture and stirring is continued for 2.5 h at 0°C. The reaction mixture is poured into aqueous, saturated NH₄Cl-solution, extracted with CH₂Cl₂ (3x), the combined organic layers are dried (Na₂SO₄), concentrated and purified by flash chromatography (50% EtOAc in hexane) to give compound A40 (3.04, 99%).

¹H NMR (500 MHz, CDCl₃): δ = 3.80 and 3.81 (2s, 6H, 2x OCH₃); MS(CI): 616 (M+CI)

To a solution of compound **A40** (3.4 g, 5.2 mmol) in CH₂Cl₂/H₂O (33 ml, 10:1) is added DDQ (4.93 g, 21.7 mmol) in portions during 1.5h. The reaction is stirred for an additional 1h at 25°C, filtered though Celite, concentrated and purified by flash chromatography (silica, 60-80% EtOAc in hexane) to give compound **A41** (1.25g, 77%).

¹H NMR (500 MHz, CDCl₃): $\delta = 3.60$ (3H, OCH₃); MS(EI): 310 (M-H)

A solution of compound A41 (1.25 g, 4.0 mmol) and imidazol (554 mg, 8 mmol) in CH₂Cl₂ (20 ml) at 0°C is treated with t-butyldiphenylchlorosilane (1.76 g, 6.4 mmol) and stirred for 4h at 25°C. The reaction is quenched with MeOH (2 ml), stirred for 0.25 h, poured into

aqueous, saturated NH₄Cl-solution, extracted with CH₂Cl₂ (3x), the combined organic layers are washed with saturated, aqueous NaHCO₃ solution, dried (Na₂SO₄), concentrated and purified by flash chromatography (35% EtOAc in hexane) to give compound **A42** (1.85, 86%)

¹H NMR (500 MHz, CDCl₃): δ = 3.32 (3H, OCH₃)

To a solution of compound A42 (1.85 g, 3.45 mmol) in CH₃CN (20 ml) is added triazol (5.35 g, 77.5 mmol), Et₃N (8.2 g, 81 mmol) and the reaction is cooled to 0°C. POCl₃ (1.32 g, 8.6 mmol) is added slowly and the reaction is stirred for 0.5 h at 25°C. The reaction mixture is poured into saturated, aqueous NaHCO₃ solution, extracted with CH₂Cl₂ (3x), the combined organic layers are washed with brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (50% EtOAc in hexane) to give compound A43 (1.91, 94%).

¹H NMR (500 MHz, CDCl₃): δ = 3.52 (3H, OCH₃)

WO 98/00434

To a solution of compound **A43** (1.91 g, 3.2 mmol) in dioxane (20 ml) is added NH₃ (10 ml, 25% in H₂O) and the reaction mixture is heated at 60°C for 0.5 h. The reaction mixture is concentrated, poured into saturated, aqueous NaHCO₃ solution, extracted with CH₂Cl₂ (3x), the combined organic layers are washed with brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (6% MeOH in CH₂Cl₂) to give compound **A44** (1.53, 86%).

¹H NMR (500 MHz, CDCl₃): $\delta = 3.45$ (3H, OCH₃); MS(Cl): 583 (M+Cl)

To a solution of compound A44 (1.53 g, 2.8 mmol) in MeOH (15 ml) is added pyridine (1.11 g, 14 mmol) and N-methyl pyrolidone dimethylacetal (2.03 g, 14 mmol) and the reaction mixture is stirred at 25°C for 3 h. The reaction mixture is concentrated, coevaporated with toluene (2x) and purified by flash chromatography (4% MeOH in CH₂Cl₂) to give compound A45 (1.41, 80%).

¹H NMR (500 MHz, CDCl₃): $\delta = 2.82$ (s, 3H, N-CH₃); MS(EI): 630 (M+H)

To a solution of compound A45 (897.6 mg, 1.42 mmol) in MeOH (10 ml) is added $SnCl_2$ $^{\circ}2H_2O$ (1.83 g, 8.31 mmol) in portions during 2h. The reaction is stirred for additional 3 h at 25°C. The reaction mixture is carefully quenched with saturated, aqueous NaHCO₃ solution, concentrated, redissolved in CH_2Cl_2 . The organic layer is washed with brine, dried (Na₂SO₄), and concentrated to give crude compound A46 (620 mg, 72%).

¹H NMR (500 MHz, CDCl₃): $\delta = 5.88 (1H,d,H-C(1'))$

A solution of carboxylic acid IV (572 mg, 1.01 mmol, dried over P_2O_5 on HV, 16.0 h) in CH₃CN (8 ml) is treated with Et₃N (112 mg, 1.11 mmol), O-(1-benztriazol-1-yl)-N,N,N,N-tetramethyluroniumtetrafluoroborat (356 mg, 1.11 mmol) and hydroxybenztriazol (68 mg, 0.505 mmol). The reaction mixture is stirred for 2 h. A solution of amine A46 (610 mg, 1.01 mmol, dried over P_2O_5 on HV, 16.0 h) in CH₃CN (5 ml) and Et₃N (153 mg, 1.51 mmol) are added to the reaction mixture and stirring is continued for 17 h. The reaction mixture is poured into aqueous, saturated NaH₂PO₄-solution and concentrated. The aqueous phase is extracted with CH₂Cl₂ (3x), the combined organic layers are washed with aqueous, saturated NaH₂PO₄-solution, brine, dried (Na₂SO₄), concentrated and purified by flash chromatography to give compound A47 (652 mg, 80 %).

¹H NMR (500 MHz, CDCl₃): δ = 3.19, 3.12, 3.05 (3s, 9H, 2x OCH₃, NCH₃); MS(EI): 1036 (M-H⁺)

A solution of compound A47 (650 mg, 0.59 mmol) in THF (10 ml) is treated with TBAF (1.34 ml of 1.0M solution in THF, 1.34 mmol) and stirred at 25°C for 4.5 h. The reaction is concentrated and purified by flash chromatography (5 - 20% MeOH in CH₂Cl₂) to give compound A48 (341 mg, 88%).

¹H NMR (500 MHz, CDCl₃): $\delta = 1.18$ (d, 3H, CH₃); MS(Cl): 662 (M+H⁺)

A solution of compound **A48** (335 mg, 0.506 mmol) in pyridine (10 ml) is treated with 4,4'-dimethoxytriphenylmethylchloride (265 mg, 0.76 mmol) and stirred for 22 h at 25°C. The reaction mixture is poured into aqueous, saturated NaHCO₃-solution, extracted with CH₂Cl₂ (3x), the organic layers are washed with brine, dried (Na₂SO₄), concentrated, coevaporated with toluene (3x) and purified by flash chromatography (10-20% MeOH in EtOAc, 1% Et₃N) to give compound **A49** (345 mg, 71%).

¹H NMR (500 MHz, CDCl₃): δ = 3.77 (2s, 6H, 2x ArOCH₃); 1.13 (d, 3H, CH₃) MS(EI): 962 (M-H⁺)

Alcohol **A49** (338 mg, 0.355 mmol), dissolved in CH_2Cl_2 (5ml), is added to a solution of disopropylammonium tetrazolide (67 mg, 0.0.391 mmol) and cyanoethoxy-bis-diisopropyl-

WO 98/00434 PCT/EP97/03192

- 43 -

amino-phosphine (235 mg, 0.78 mmol) in CH₂Cl₂ (10 ml) at 25°C. The reaction mixture is stirred at RT for 2 h and is then poured into aqueous, saturated NaHCO₃-solution, extracted with CH₂Cl₂ (3x), the organic layers are washed with brine, dried (Na₂SO₄), concentrated, and purified by flash chromatography (2-10 % MeOH in EtOAc, 1% Et₃N) to give compound **A50** (366 mg, 88 %).

³¹P NMR (101 MHz, CDCl₃): δ = 151.7, 150.8 (1:1 mixture of diastereomers).

Example A4: Preparation of compound (A54)

$$\begin{array}{c} CH_{3} \\ CH_{3$$

A solution of carboxylic acid IX (636 mg, 1.21 mmol, dried over P₂O₅ on HV, 16.0 h) in CH₃CN (6 ml) is treated with Et₃N (138 mg, 1.33 mmol), O-(1-benztriazol-1-yl)-N,N,N,N-tetramethyluroniumtetrafluoroborat (430 mg, 1.33 mmol) and hydroxybenztriazol (82 mg, 0.61 mmol). The reaction mixture is stirred for 1 h. A solution of amine A4 (600 mg, 1.21 mmol, dried over P₂O₅ on HV, 16.0 h) in CH₃CN (4 ml) and Et₃N (138 mg, 1.33 mmol) are added to the reaction mixture and stirring is continued for 3 h. The reaction mixture is poured into aqueous, saturated NaH₂PO₄-solution and concentrated. The aqueous phase is extracted with CH₂Cl₂ (3x), the combined organic layers are washed with aqueous, saturated NaH₂PO₄-solution, brine, dried (Na₂SO₄), concentrated and purified by flash chromatography (2-5% MeOH in CH₂Cl₂) to give compound A51 (1.14 g, 94 %).

¹H NMR (500 MHz, CDCl₃): δ = 6.31, 6.18 (2dd, 2H, 2x H-C(1')); MS(EI): 996 (M-H)

A solution of compound **A51** (700 mg, 0.70 mmol) in THF (5 ml) is treated with TBAF (1.54 ml of 1.0M solution in THF, 1.54 mmol) and stirred at 25°C for 4 h. The reaction is concentrated and purified by flash chromatography (12 - 15% MeOH in CH_2Cl_2) to give compound **A52** (316 mg, 86%).

¹H NMR (400 MHz, CD₃OD): δ = 6.21, 6.07 (2dd, 2H, 2x H-C(1')); MS(EI): 520 (M-H)

HO
$$CH_3O$$
 CH_3O C

A solution of compound **52** (290 mg, 0.56 mmol) in pyridine (3 ml) is treated with 4,4'-dimethoxytriphenymethyllchloride (568 mg, 1.68 mmol) in portioned and stirred for 24 h at

25°C. The reaction mixture is poured into aqueous, saturated NaHCO₃-solution, extracted with CH_2Cl_2 (3x), the organic layers are washed with brine, dried (Na₂SO₄), concentrated, coevaporated with toluene (3x) and purified by flash chromatography (5-10% MeOH in CH_2Cl_2 , 1% Et_3N) to give compound **53** (328 mg, 71 %).

¹H NMR (250 MHz, CD₃OD): $\delta = 6.25$ (m, 1H, H-C(1')); MS(EI): 822 (M-H)

$$CH_{3}O \longrightarrow CH_{3}O \longrightarrow CH_{$$

Alcohol **A53** (315 mg, 0.38 mmol), dissolved in CH_2Cl_2 (2ml), is added to a solution of disopropylammonium tetrazolide (44 mg, 0.256 mmol) and cyanoethoxy-bis-diisopropylamino-phosphine (172 mg, 0.0.573 mmol) in CH_2Cl_2 (2 ml) at 25°C. The reaction mixture is stirred for 5 h, poured into aqueous, saturated NaHCO₃-solution, extracted with CH_2Cl_2 (3x), the organic layers are washed with brine, dried (Na₂SO₄), concentrated, and purified by flash chromatography (1-10 % MeOH in EtOAc, 1% Et₃N) to give compound **A54** (365 mg, 93 %).

³¹P NMR (101 MHz, CDCl₃): δ = 149.8, 148.5 (2 diastereomers); MS(El): 1023 (M-H)

B: Synthesis of oligonucleotides

Each oligonucleotide is prepared on an ABI 390 DNA synthesizer using standard phosphoramidite chemistry according to Gait, M.J., Oligonucleotide Synthesis: A Practical Approach, IRL Press, Oxford (1984) but with prolonged coupling times (10 min). Dimethoxytrityl oligonucleotides are purified by reverse phase HPLC (column: Nucleosil RPC₁₈, 10 μ, 10x 250 mm; eluent A: 50 mM triethylammonium acetate (TEAA), pH 7.0; eluent B: 50mM TEAA, pH 7.0 in 70 % acetonitrile; elution with gradient from 15 % to 45 % B in 45 min). After purification by HPLC the oligodeoxynucleotides are controlled by capillary gel electrophoresis (concentration: 1 OD/ml, injection: 2 kV, 3 sec, separation: 9kV, capillary: effective length 30 cm, inner diameter 100 μm, polyacrylamide 10 % T, buffer: 100 mM H₃PO₄, 100 mM Tris, 2 mM EDTA, 7 M urea pH 8.8). The molecular weight of each oligodeoxynucleotide is checked by mass spectroscopy [MALDI-TOF: Pieles, U., Zürcher, W., Schär, M., Moser, H., Nucl. Acids Res. 21:3191 (1993)]. The oligodeoxynucleotide is desorbed using 2,4,6-trihydroxyacetophenone as a matrix (detection of negatively charged ions) with diammonium hydrogen citrate as additive (25mM final concentration).

Oligonucleotides synthesized:

SEQ 1:

5'-GpCpGpTsTpTsTpTsTpTsTpTsTpGpCpG-3'

SEQ 2:

5' TpTpTpTsTpCpTpCpTpCpTpCpTpCpT-3'

p is an usual phosphordiester bond

C: Properties of oligonucleotides

The thermal denaturation (T_m) of DNA/RNA hybrides is performed at 260 nm using a Gilford Response II Spectrophotometer (Ciba-Corning Diagnostics Corp., Oberlin, OH). Absorbance versus temperature profiles are measured at 4 μ M of each strand in 10 mM

phosphate pH 7.0 (Na salts), 100 mM total [Na $^{+}$] (supplemented as NaCl), 0.1 mM EDTA. T_m 's are obtained from fits of absorbance versus temperature curves to a two-state model with linear slope baselines [Freier, S.M., Albergo, D.D., Turner, D.H., Biopolymers 22:1107-1131 (1982)]. All values are averages of at least three experiments. The absolute experimental error of the T_m values is \pm 0.5°C.

·			lementary R compared to		
R³	×	Y	conf.	SEQ 1	SEQ 2
CH ₃	Н	Н	(S)	÷ 1.4	+ 1.0
CH ₃	Н	Н	(R)	- 4.9	- 3.6
Н	Н	Н	-	- 0.9	+ 0.4

From these examples it is evident that a change in the configuration from (R) to (S) causes a dramatic increase in T_m . Surprisingly, Δt_m for the (S) configuration is even better than Δt_m in case of no substitution (R³=H). This clearly shows that it is important to have a R³ that is not hydrogen and that is bound in (S) configuration.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Novartis AG
 - (B) STREET: Schwarzwaldallee 215
 - (C) CITY: Basel
 - (E) COUNTRY: Switzerland
 - (F) POSTAL CODE (ZIP): 4058
 - (G) TELEPHONE: +41 61 696 11 11
 - (H) TELEFAX: + 41 61 696 79 76
 - (I) TELEX: 962 991
- (ii) TITLE OF INVENTION: Modified oligonucleotides
- (iii) NUMBER OF SEQUENCES: 2
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

WO 98/00434 PCT/EP97/03192

- 49 -

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:4..5
- (D) OTHER INFORMATION:/note= "modified backbone"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:6..7
- (D) OTHER INFORMATION:/note= "modified backbone"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:8..9
- (D) OTHER INFORMATION:/note= "modified backbone"

(ix) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION:10..11
- (D) OTHER INFORMATION:/note= "modified backbone"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:12..13
- (D) OTHER INFORMATION:/note= "modified backbone"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GCGTTTTTT TTTGCG

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

WO 98/00434

- 50 -

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:4..5
 - (D) OTHER INFORMATION:/note= "modified backbone"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

TTTTTCTCTC TCTCT

WO 98/00434 PCT/EP97/03192

- 51 -

What is claimed is:

1. An oligonucleotide of formula 1

$$5'-(U)_n-3'$$
 (1),

in which U is an identical or different radical of a natural or a synthetic nucleoside, n is an integer from 2 to 200; and wherein the oligonucleotide of formula 1 comprises at least one structural unit of formula 2

wherein

 R^1 is H, C_1 - C_4 alkyl or C_1 - C_4 alkoxy;

R² is H, C₁-C₄alkyl, phenyl, C₁-C₄alkyl-phenyl, C₃-C₉heteroaryl, C₁-C₄alkyl-C₃-C₉heteroaryl or an intercalator; wherein the aryl or heteroaryl is unsubstituted or substituted by OH, R⁴, C₁-C₄alkoxy, -O-(CH₂-CH₂-O)_mR⁴, NR⁴₂ or NHR⁴;

R³ is C₁-C₄alkyl, unsubstituted or substituted by OH, NR⁴₂ or NHR⁴;

R⁴ is H or C₁-C₄alkyl;

X and Y are independent of one another, H, OH, OR4, O-C1-C4alkylNHR4, O-C1-C4alkyINR⁴2, -O-(CH2-CH2-O)_mR⁴ or -O-CH2-C(OR⁵)H-CH2-OR⁶; or -O-CH2-C(OR⁵)H-CH₃;

R⁵ is H, CH₃ or C₁-C₁₀alkyl;

R⁶ is H, CH₃ or an OH-protecting group;

m is an integer from 1 to 4;

A and B are, independent of one another, a purine or pyrimidine radical or an analogue thereof;

with the proviso that if A and B are thymidine, R1, R2 and X are hydrogen and Y is methoxy, R³ is not methyl.

- 2. The oligonucleotide of claim 1 wherein the intercalator is anthraquinone connected via a linker.
- 3. The oligonucleotide of claim 2 wherein the linker is a chain of 2 to 7 atoms selected from the group consisting of C, N and O.

4. The oligonucleotide according to claim 1 in which A and/or B as a purine radical or an analogue thereof is a radical of formula 3, 4, 5 or 6

in which

R⁸ and R⁹ independently of one another are H, OH, SH, NH₂, NHNH₂, NHOH, NHOalkyl having 1 to 12 C atoms, -N=CH-N(C₁-C₁₂alkyl)₂, F, CI, Br, alkyl or hydroxyalkyl or aminoalkyl or alkoxy or alkylthio having 1 to 12 C atoms;

R¹⁶ is H, F, Cl, Br, CONH₂, alkyl, propinyl or hydroxyalkyl or aminoalkyl or alkoxy or alkylthio having 1 to 12 C atom.

- 5. The oligonucleotide according to claim 4, in which the primary amino contains 1 to 12 C atoms and the secondary amino 2 to 12 C atoms.
- 6. The oligonucleotide according to claim 4, in which the primary amino and secondary amino are radicals of the formula R¹³R¹⁴N in which R¹³ and R¹⁴ are independently H, C₁-C₂oalkyl, -aminoalkyl or -hydroxyalkyl; carboxyalkyl or carbalkoxyalkyl, where the carbalkoxy group contains 2 to 8 C atoms and the alkyl group contains 1 to 6, C atoms; C₂-C₂oalkenyl; phenyl, mono- or di(C₁-C₄alkyl- or -alkoxy)phenyl, benzyl, mono- or di(C₁-C₄alkyl- or -alkoxy)benzyl; or 1,2-, 1,3- or 1,4-imidazolyl-C₁-C₆alkyl; or R¹³ and R¹⁴ together are tetra- or pentamethylene, 3-oxa-1,5-pentylene, -CH₂-NR¹⁵-CH₂-CH₂- or -CH₂-NR¹⁵-CH₂-CH₂-, in which R¹⁵ is H or C₁-C₄alkyl; and the amino group in the aminoalkyl is unsubstituted or substituted by one or two C₁-C₄alkyl or -C₁-C₄hydroxyalkyl groups; and the hydroxyl group in hydroxyalkyl is unsubstituted or etherified with C₁-C₄alkyl.
- 7. The oligonucleotide according to claim 5, in which the primary amino and secondary amino are selected from the group consisting of methyl-, ethyl-, dimethyl-, diethyl-, allyl-, mono- or di(hydroxyeth-2-yl)-, phenyl-, benzyl-, acetyl-, isobutyryl-, benzoylamino, phenoxyacetylamino, 4-tert.-butylphenoxyacetylamino, N=CH-N(CH₃)₂, N=CH-N(C₄H₉)₂, and

WO 98/00434 PCT/EP97/03192

- 8. The oligonucleotide according to claim 4, in which R⁸ and R⁹, independent of one another, are H, F, Cl, Br, OH, SH, NH₂, NHOH, NHNH₂, methyl, methylamino, dimethylamino, benzoylamino, methoxy, ethoxy, methylthio, phenoxyacetylamino, 4-tert.-butylphenoxyacetylamino, N=CH-N(CH₃)₂, N=CH-N(C₄H₉)₂, and
- 9. The oligonucleotide according to claim 1, in which A or B are independent of one another a purine radical or a radical of a purine analogue from the series consisting of adenine, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-amino-6-chloropurine, 2-amino-6-methylthiopurine, 2-aminopurine, hypoxanthine, 2-aminoadenine, 2-hydroxypurine, guanine, N-isobutyrylguanine and .
- 10. The oligonucleotide according to claim 1, in which A or B are independent of one another a purine radical or a radical of a purine analogue from the series consisting of adenine, 2-aminoadenine, 2-aminopurine, guanine and hypoxanthine.
- 11. The oligonucleotide according to claim 1, in which A or B are independent of one another an analogous pyrimidine radical like a uracil, thymine or cytosine radical of the formulae 9 or 10

$$R^{16}$$
 NH (9) R^{17} N NH (10)

in which R^{16} and R^{17} independently of one another are H, F, Cl, Br, alkyl, alkenyl, alkinyl, propargyl or hydroxyalkyl or aminoalkyl or alkoxy or alkylthio having 1 to 12 C atoms, phenyl, benzyl, primary amino having 1 to 20 C atoms or secondary amino having 2 to 30 C atoms, and the hydrogen atoms of the NH_2 group in formula 10 are unsubstituted or substituted by C_1 - C_6 alkyl, benzoyl or benzyl; and the dihydro derivatives of the radicals of formulae 9 and 10.

12. The oligonucleotide according to claim 10, in which R¹⁶ is H, F, Cl, Br, C₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkinyl, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl, NHC₁-C₄alkyl, N(C₁-C₄alkyl)₂, propinyl.

- 13. The oligonucleotide according to claim 10, in which R¹⁶ is H, F, Cl, Br, methyl, ethyl, and propinyl.
- 14. The oligonucleotide according to claim 10, in which R^{17} is H, F, Cl, Br, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 hydroxyalkyl, C_1 - C_6 aminoalkyl, NH_2 , NHC_1 - C_4 alkyl, $N(C_1$ - C_4 alkyl)₂, or propinyl.
- 15. The oligonucleotide according to claim 10, in which R¹⁷ is H, F, Cl, Br, methyl, ethyl, or propinyl.
- 16. The oligonucleotide according to claim 10, wherein R¹⁶ and R¹⁷ are H, methyl or propinyl.
- 17. The oligonucleotide according to claim 1, in which A and B are independent of one another as the radical of a pyrimidine analogue are derived from uracil, thymine, cytosine, 5-fluorouracil, 5-chlorouracil, 5-bromouracil, 5-methylcytosine, 5-propinyluracil, and 5-propinylcytosine.
- 18. The oligonucleotide according to claim 1, comprising at least one structural unit of formula 2 wherein
 - R¹ is H or C₁-C₄alkyl;
 - R² is H, C₁-C₄alkyl, phenyl, C₁-C₄alkyl-phenyl or C₃-C₉heteroaryl;
 - R³ is C₁-C₄alkyl;
 - R⁴ is methyl or ethyl;
 - X and Y are independent of one another, H, OH, OR⁴, O-C₁-C₄alkyINHR⁴, O-C₁-C₄alkyINR⁴₂, -O-(CH₂-CH₂-O)_mR⁴;
 - R⁵ is H or C₁-C₄alkyl.
- 19. The oligonucleotide according to claim 1, wherein
 - R¹ is H or methyl;
 - R² is H, methyl, ethyl or phenyl;
 - R³ is methyl or ethyl;
 - R⁴ is methyl;
 - X and Y are independent of one another, H, OH or OR⁴; O-CH₂CH₂NHR⁴, O-CH₂CH₂NR⁴₂, O-CH₂CH₂OR⁴;
 - R⁵ is H or C₁-C₄alkyl.
- 20. The oligonucleotide according to claim 1, wherein

R1 is H;

R² is H, methyl or phenyl;

R³ methyl;

X and Y are independent of one another, H, O-CH₃, O-CH₂CH₂OCH₃, O-CH₂CH₂NHCH₃, O-CH₂CH₂N(CH₃)₂;

R⁵ H or methyl.

21. The oligonucleotide according to claim 1, wherein the structural unit of formula 2 is of formula B8, B28 or B49

22. The oligonucleotide of claim 1 wherein n is 2 to 100.

23. The oligonucleotide of claim 1 wherein n is 2 to 50.

24. The oligonucleotide of claim 1 wherein n is 2 to 20.

25. A nucleoside dimer of formula 12

wherein

R¹ is H, C₁-C₄alkyl or C₁-C₄alkoxy;

- R² is H, C₁-C₄alkyl, C₁-C₄alkoxy, phenyl, C₁-C₄alkyl-phenyl, C₃-C₉heteroaryl, C₁-C₄alkyl-C₃-C₉heteroaryl or an intercalator; wherein the aryl or heteroaryl is unsubstituted or substituted by OH, R⁴, C₁-C₄alkoxy, -O-(CH₂-CH₂-O)_mR⁴, NR⁴₂ or NHR⁴;
- R³ is C₁-C₄alkyl, unsubstituted or substituted by OH, NR⁴₂ or NHR⁴;
- R⁴ is H or C₁-C₄alkyl;
- X and Y are independent of one another, H, OH, OR⁴, O-C₁-C₄alkylNHR⁴, O-C₁-C₄alkylNR⁴₂, -O-(CH₂-CH₂-O)_mR⁴ or -O-CH₂-C(OR⁵)H-CH₂-OR⁶; or -O-CH₂-C(OR⁵)H-CH₃;;
- R⁵ is H or C₁-C₁₀alkyl;
- R⁶ is H, CH₃ or an OH-protecting group;
- m is an integer from 1 to 4;
- A and B are, independent of one another, a purine or pyrimidine radical or an analogue thereof;
- R¹⁸ and R¹⁹ are H, an OH-protecting group or a radical forming a phosphorus-containing nucleotide bridging group;
- with the proviso that if A and B are thymidine, R_1 , R^2 and X are hydrogen and Y is methoxy, R^3 is not methyl.
- 26. The nucleoside dimer according to claim 25 wherein R¹⁸ is H or an OH-protecting group and R¹⁹ is a phosphorus-containing, nucleotide-bridge-group-forming radical.
- 27. The nucleoside dimer according to claim 25 wherein the OH-protecting group is linear or branched C₁-C₈alkyl; C₇-C₁₈aralkyl; triphenylsilyl, alkyldiphenylsilyl, dialkylphenylsilyl or trialkylsilyl having 1 to 20 C atoms in the alkyl groups; -(C₁-C₈alkyl)₂Si-O-Si(C₁-C₈alkyl)₂-, C₂-C₁₂acyl, R¹²-SO₂-, in which R¹² is C₁-C₁₂alkyl, C₅- or C₆cycloalkyl, phenyl, benzyl, C₁-C₁₂alkylphenyl, C₁-C₁₂alkylphenzyl, or is C₁-C₁₂alkoxycarbonyl, phenoxycarbonyl, benzyloxycarbonyl, methylphenoxycarbonyl or methylbenzyloxycarbonyl which is unsubstituted or substituted by F, Cl, Br, C₁-C₄alkoxy, tri(C₁-C₄alkyl)silyl or C₁-C₄alkylsulfonyl, or 9-fluorenylmethoxycarbonyl.
- 28. The nucleoside dimer according to claim 27, wherein the OH-protecting group is linear or branched C₁-C₄alkyl, C₇-C₁₈aralkyl, trialkylsilyl having 1 to 12 C atoms in the alkyl groups; -(CH₃)₂Si-O-Si(CH₃)₂-; -(i-C₃H₇)₂Si-O-Si(iC₃H₇)₂-; C₂-C₈acyl; R¹²-SO₂-, in which

WO 98/00434

 R^{12} is C_1 - C_6 alkyl; phenyl or benzyl unsubstituted or substituted with F, Cl or Br; C_4 - C_4 alkylphenyl, C_1 - C_4 alkylbenzyl; C_1 - C_6 alkoxycarbonyl; phenoxycarbonyl; benzyloxycarbonyl or 9-fluorenylmethoxycarbonyl.

- 29. The nucleoside dimer according to claim 27, wherein the OH-protecting group is methyl, ethyl, n- or i-propyl, n-, i- or t-butyl; benzyl, methylbenzyl, dimethylbenzyl, methoxybenzyl, dimethoxybenzyl, bromobenzyl; diphenylmethyl, di(methylphenyl)methyl, di(dimethylphenyl)methyl, di(methoxyphenyl)methyl, trityl, tri(methylphenyl)ethyl, tri(dimethylphenyl)methyl, tri(methoxyphenyl)methyl, tri(dimethoxyphenyl)methyl; trimethylsilyl, triethylsilyl, tri-n-propylsilyl, i-propyldimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, n-octyldimethylsilyl, (1,1,2,2-tetramethylethyl)dimethylsilyl, -(CH₃)₂Si-O-Si(CH₃)₂-, -(i-C₃H₇)₂Si-O-Si(iC₃H₇)₂-; acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, benzoyl, methylbenzoyl, methoxybenzoyl, chlorobenzoyl or bromobenzoyl; methyl-, ethyl-, propyl-, butyl-, phenyl-, benzyl-, p-bromo-, p-methoxy- or p-methylphenylsulfonyl; methoxy-, ethoxy-, n- or i-propoxy- or n-, i- or t-butoxycarbonyl, or phenoxycarbonyl, benzyloxycarbonyl, methyl- or methoxy- or chlorophenoxycarbonyl or -benzyloxycarbonyl or 9-fluorenylmethoxycarbonyl.
- 30. A nucleoside dimer according to claim 25 wherein the phosphorus-containing, nucleotide-bridge-group-forming radical may correspond to formula P1 or P2

wherein

 Y_a is hydrogen, C_1 - C_{12} alkyl, C_6 - C_{12} aryl, C_7 - C_{20} aralkyl, C_7 - C_{20} alkaryl, -OR_b, -SR_b, secondary amino, O^TM⁺ or S^TM⁺;

X_a is oxygen or sulfur;

R_a is hydrogen, M⁺, C₁-C₁₂alkyl, C₂-C₁₂alkenyl or C₆-C₁₂aryl, or the group R_aO- is N-heteroaryl-N-yl having 5 ring members and from 1 to 3 nitrogen atoms;

R_b is hydrogen, C₁-C₁₂alkyl or C₆-C₁₂aryl; and

 M^{\dagger} is Na^{\dagger} , K^{\dagger} , Li^{\dagger} , NH_4^{\dagger} or primary, secondary, tertiary or quaternary ammonium;

alkyl, aryl, aralkyl and alkaryl in Y_a, R_a and R_b being unsubstituted or substituted by alkoxy, alkylthio, halogen, -CN, -NO₂, phenyl, nitrophenyl or halophenyl.

- 31. A nucleotide dimer according to claim 30 wherein R_a is β -cyanoethyl and Y_a is di(isopropyl)amino.
- 32. A nucleoside dimer according to claim 25, wherein
 - R¹ is H or C₁-C₄alkyl;
 - R² is H, C₁-C₄alkyl, phenyl, C₁-C₄alkyl-phenyl or C₃-C₉heteroaryl;
 - R³ is C₁-C₄alkyl;
 - R⁴ is methyl or ethyl;
 - X and Y are independent of one another, H, OH, OR⁴, -O-(CH₂-CH₂-O)_mR⁴;
 - R⁵ is H or C₁-C₄alkyl.
- 33. A nucleoside dimer according to claim 25, wherein
 - R¹ is H or methyl;
 - R² is H, methyl, ethyl or phenyl;
 - R³ is methyl or ethyl;
 - X and Y are independent of one another, H, OH or OR⁴; O-CH₂CH₂NHR⁴, O-CH₂CH₂N(CH₃)₂, O-CH₂CH₂OCH₃;
 - R⁵ is H or C₁-C₄alkyl.
- 34. A nucleoside dimer according to claim 25, wherein
 - R¹ is H;
 - R² is H, methyl or phenyl;
 - R³ methyl;
 - R⁵ is H or methyl:
 - X and Y are independent of one another, H, O-CH₃, O-CH₂CH₂OCH₃, O-CH₂CH₂NHCH₃, O-CH₂CH₂N(CH₃)₂;
- 35. A nucleoside dimer according to claim 25, selected from the group consisting of compounds of formula C8, C28 and C49

WO 98/00434 PCT/EP97/03192

- 59 -

36. A process for the preparation of a nucleoside dimer according to claim 25 which comprises:

a compound of the formula 14

wherein

R¹ is H or C₁-C₄alkyl;

X is H, OH, OR^4 , $O-C_1-C_4$ alkyINHR 4 , $O-C_1-C_4$ alkyINR 4 ₂, $-O-(CH_2-CH_2-O)_mR^4$ or $-O-CH_2-C(OR^5)H-CH_2-OR^6$;

 R^4 is H or C_1 - C_4 alkyl;

R⁵ is H or C₁-C₁₀alkyl;

R⁶ is H, CH₃ or an OH-protecting group;

m is an integer from 1 to 4;

A is a purine or pyrimidine radical or an analogue thereof.

R²⁷ is H or an OH-protecting group;

R²⁹ is H or an ester activating group;

is reacted with a compound of the formula 15

$$\begin{array}{c}
R^{2} \\
HN \\
R^{28}
\end{array}$$

$$\begin{array}{c}
R^{28} \\
D \\
\end{array}$$

$$\begin{array}{c}
R^{3} \\
\end{array}$$

$$\begin{array}{c}
R^{28} \\
\end{array}$$

$$\begin{array}{c}
R^{2} \\$$

$$\begin{array}{c}
R^{2} \\
\end{array}$$

$$\begin{array}{c}
R^{2} \\
\end{array}$$

$$\begin{array}{c}
R^{2} \\$$

$$\begin{array}{c}
R^{2} \\
\end{array}$$

$$\begin{array}{c}
R^{2} \\
\end{array}$$

$$\begin{array}{c}
R^{2} \\$$

$$\begin{array}{c}
R^{2} \\$$

$$\begin{array}{c}
R^{2} \\
\end{array}$$

$$\begin{array}{c}
R^{2} \\$$

$$\begin{array}{c}
R^{2} \\$$

wherein

R² is H, C₁-C₄alkyl, C₁-C₄alkoxy, phenyl, C₁-C₄alkyl-phenyl, C₃-C₉heteroaryl, C₁-C₄alkyl-C₃-C₉heteroaryl or an intercalator; wherein the aryl or heteroaryl is unsubstituted or substituted by OH, R⁴, C₁-C₄alkoxy, -O-(CH₂-CH₂-O)_mR⁴, NR⁴₂ or NHR⁴;

R³ is C₁-C₄alkyl, unsubstituted or substituted by OH, NR⁴₂ or NHR⁴;

Y is H, OH, OR^4 , $O-C_1-C_4$ alkylNHR⁴, $O-C_1-C_4$ alkylNR⁴₂, $-O-(CH_2-CH_2-O)_mR^4$ or $-O-CH_2-C(OR^5)H-CH_2-OR^6$;

R⁴ is H or C₁-C₄alkyl;

R⁵ is H or C₁-C₁₀alkyl;

R⁶ is H or an OH-protecting group;

m is an integer from 1 to 4;

B is a purine or pyrimidine radical or an analogue thereof.

R²⁸ is H or an OH-protecting group.

- 37. The use of a nucleoside dimer according to claim 25 for the preparation of oligonucleotides according to claim 1.
- 38. The use of an oligonucleotide according to claim 1 as a diagnostic for the detection of viral infections or genetically related diseases.
- 39. The oligonucleotide according to claim 1 for use in a therapeutic process for the treatment of diseases in mammals including humans by means of interaction with nucleotide sequences in the body.
- 40. A pharmaceutical preparation comprising an effective amount of an oligonucleotide according to claim 1 on its own or together with other active ingredients, a pharmaceutical carrier and, if appropriate, excipients.
- 41. The nucleoside dimer according to claim 25 for use in a therapeutic process for the treatment of diseases in mammals including humans.

Ir ational Application No PCT/EP 97/03192

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 C07H21/00 A61K31/70 C1201/68 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO7H A61K C12Q Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages WO 95 20597 A (CIBA-GEIGY AG) 3 August 1-41 Χ 1995 see the whole document 1,4, χ WO 92 20822 A (ISIS PHARMACEUTICALS, INC.) 8-26, 26 November 1992 32-41 see claims 1-96 1,4, WO 92 20823 A (ISIS PHARMACEUTICALS, INC.) Х 8-26, 26 November 1992 32-41 see page 1-21 1-41 EP 0 714 907 A (H.HOFFMANN-LA ROCHE AG) 5 June 1996 see abstract -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed in the art. '&' document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 30 -09- 1997 16 September 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Scott, J

2

fr ational Application No PCT/EP 97/03192

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

ternational application No.

PCT/EP 97/03192

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim(s) 38 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Information on patent family members

national Application No PCT/EP 97/03192

			721 37703132
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9520597 A	03-08-95	AU 1534795 A CA 2180727 A EP 0741741 A FI 962980 A HU 75704 A NO 963092 A ZA 9500580 A	15-08-95 03-08-95 13-11-96 26-07-96 28-05-97 16-09-96 26-07-95
WO 9220822 A	26-11-92	US 5378825 A AU 662538 B AU 1998692 A AU 666121 B AU 2150292 A BR 9206026 A BR 9206027 A CA 2103378 A CA 2103464 A EP 0586520 A EP 0586570 A HU 66378 A HU 65941 A JP 6504067 T JP 6503838 T NO 934179 A NO 934179 A NO 934180 A US 5489677 A US 5386023 A WO 9220823 A US 5602240 A US 5610289 A US 5610289 A US 5618704 A US 5608046 A US 5623070 A	03-01-95 07-09-95 30-12-92 01-02-96 30-12-92 27-12-94 27-12-94 22-11-92 22-11-92 16-03-94 16-03-94 28-11-94 29-08-94 12-05-94 28-04-94 11-01-94 06-02-96 31-01-95 26-11-92 11-02-97 11-03-97 30-07-96 08-04-97 04-03-97 22-04-97
WO 9220823 A	26-11-92	US 5378825 A AU 662538 B AU 1998692 A AU 666121 B AU 2150292 A	03-01-95 07-09-95 30-12-92 01-02-96 30-12-92

Information on patent family members

PCT/EP 97/03192

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9220823 A		BR 9206026 A	27-12-94
		BR 9206027 A	27-12-94
		CA 2103378 A	22-11-92
		CA 2103464 A	22-11-92
		EP 0586520 A	16-03-94
		EP 0586570 A	16-03-94
		HU 66378 A	28-11-94
		HU 65941 A	29-08-94
		JP 6504067 T	12-05-94
		JP 6503838 T	28-04-94
		NO 934179 A	12-01-94
		NO 934180 A	11-01-94
		US 5489677 A	06-02-96
		US 5386023 A	31-01-95
		WO 9220822 A	26-11-92
		US 5602240 A	11-02-97
		US 5610289 A	11-03-97
		US 5541307 A	30 - 07-96
		US 5618704 A	08-04-97
		US 5608046 A	04-03-97
		US 5623070 A	22-04-97
EP 714907 A	05-06-96	CA 2163392 A	31-05-96
	·	CN 1128269 A	07-08-96
		FI 955767 A	31-05-96
		JP 8208686 A	13-08-96