

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 719 862 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 03.07.1996 Bulletin 1996/27

(21) Application number: 95309454.7

(22) Date of filing: 27.12.1995

(51) Int CI.6: **C12N 15/31**, C07K 14/195, C12N 15/74, C12N 1/21, C12N 9/78 // (C12N1/21, C12R1:01)

(84) Designated Contracting States: CH DE FR GB LI

(30) Priority: 28.12.1994 JP 337652/94

(71) Applicant: NITTO CHEMICAL INDUSTRY CO., LTD. Tokyo (JP)

(72) Inventors:

Mizumura, Yurie
 Yokohama-shi, Kanagawa 226 (JP)

Yu, Fujio
 Yokohama-shi, Kanagawa 227 (JP)

(74) Representative: Woods, Geoffrey Corlett
 J.A. KEMP & CO.
 14 South Square
 Gray's Inn
 London WC1R 5LX (GB)

(54) A regulatory factor for expression of nitrilase gene and a gene thereof

(57) The invention relates to a two component regulatory factor which activates a nitrilase gene promoter, comprising a polypeptide having the amino acid sequence of SEQ ID No: 1 and a polypeptide having the amino acid sequence of SEQ ID No: 2. Nitrilase can be produced by introducing the DNA coding for the regulatory factor together with a nitrilase gene containing a promoter region into a microorganism of the genus <u>Rhodococcus</u>.

Description

5

15

20

25

30

40

45

50

55

FIELD OF THE INVENTION

The present invention relates to a regulatory factor involved in expression of a nitrilase gene and a DNA coding for the same and particularly to a regulatory factor derived from the strain Rhodococcus erythropolis SK92 and activating a nitrilase gene promoter, as well as to DNAs coding for the same, a recombinant plasmid containing the DNAs and a transformant transformed with said recombinant plasmid.

BACKGROUND OF THE INVENTION

As known processes of producing organic acids by conversion from their corresponding nitriles, mention may be made of chemical synthetic means and biological means. The latter involves the use of a microorganism or a microorganism-derived enzyme as a catalyst to hydrolyze nitriles, so this means is advantageous in that organic acids can be produced under mild conditions. Microorganisms belonging to the genus <u>Rhodococcus</u> are known as such catalysts for use in production of amides or organic acids by hydration or hydrolysis of their corresponding nitriles (see Japanese Laid-Open Patent Publication Nos. 251,192/1991, 91,189/1987, 470/1990, and 84,198/1990).

As compared with the above-mentioned conventional processes, the use of a nitrilase gene cloned for hydrolysis of nitriles by genetic recombination is expected to drastically improve the catalytic ability of the microorganism to hydrate nitriles because the microorganism can be engineered to contain multiple copies of the same gene. To obtain such a catalyst organism with higher catalytic activity, the present inventors successfully cloned a nitrilase gene from the strain Rhodococcus erythropolis SK92 and constructed a plasmid by inserting said gene into a region downstream of an E. coli lactose promoter. By introducing this plasmid into E. coli, the organism came to exhibit higher nitrilase activity during incubation in the presence of IPTG (isopropyl-β-D-thiogalactoside). The present inventors further attempted to obtain a transformant of the genus Rhodococcus to attain higher performance as a catalyst organism. In this attempt, the nitrilase gene was inserted into a Rhodococcus-E. coli hybrid plasmid vector (see Japanese Laid-Open Patent Publication Nos. 64,589/1993 and 68,566/1993), and the vector thus constructed was introduced into a microorganism of the genus Rhodococcus. However, no nitrilase activity was expressed, and there is demand for a method of permitting the expression of nitrilase activity in a transformant of the genus Rhodococcus.

SUMMARY OF THE INVENTION

The present inventors speculated that the gene derived from the genus <u>Rhodococcus</u> is not expressed because the promoter for the nitrilase gene fails to function, and that a gene coding for a regulatory factor that allows the promoter to function might be present somewhere on the chromosomal DNA derived from SK92. Through screening, the present inventors found it in a region upstream of the nitrilase structural gene and succeeded thereby in expression of nitrilase activity in a transformant of the genus Rhodococcus.

That is, the present invention relates to a regulatory factor consisting of 2 components i.e. a polypeptide having the amino acid sequence of SEQ ID No: 1 and a polypeptide having the amino acid sequence of SEQ ID No: 2 to activate the nitrilase gene promoter, as well as to DNAs coding for them.

Introduction of the gene coding for the regulatory factor of the invention along with the nitrilase gene containing its promoter permits a microorganism of the genus <u>Rhodococcus</u> to produce nitrilase.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a schematic drawing of deletion plasmids, where the arrows on the DNA fragment from SK92 indicate the location and direction of the gene coding for the regulatory factor of the invention and the gene coding for nitrilase, respectively.

Fig. 2 shows a restriction enzyme map of recombinant plasmid pSK108.

DETAILED DESCRIPTION OF THE INVENTION

Hereinafter, the present invention is described in detail. The present invention is practiced in the following steps.

- (1) Preparation of chromosomal DNA from the strain SK92: Chromosomal DNA is isolated from <u>Rhodococcus erythropolis</u> SK92.
- (2) Construction of a DNA Library: The chromosomal DNA is cleaved with restriction enzymes, and a DNA fragment containing the target gene

is detected by Southern hybridization using the nitrilase gene of SK92 as probe. This fragment is inserted into a hybrid plasmid vector capable of replicating in cells of <u>E. coli</u> and the genus <u>Rhodococcus</u> to prepare a library.

(3) Transformation of <u>E. coli</u> and selection of recombinant DNA:

The recombinant library constructed in step (2) is used to prepare transformants. They are subjected to colony hybridization using the probe obtained in step (2) to select a colony carrying the target recombinant DNA.

(4) Preparation of recombinant plasmid:

A plasmid is prepared from the recombinant obtained in step (3).

(5) Transformation of a microorganism of the genus <u>Rhodococcus</u> and the nitrilase activity of the transformant: The resulting plasmid is introduced into a microorganism of the genus <u>Rhodococcus</u>, and its nitrilase activity is determined.

(6) Deletion plasmids and nitrilase activity:

Deletion plasmids are prepared by deleting various regions from the plasmid obtained in step (4) to identify the region essential for expression of the nitrilase structural gene. The plasmids prepared are not necessary to be capable of replicating in <u>E. coli</u> and are sufficient if they include a DNA region capable of replicating in cells of the genus <u>Phodococcus</u>.

(7) Nucleotide sequencing:

5

10

15

20

25

30

40

45

50

55

The nucleotide sequence of the region identified in step (6) is determined.

As the above hybrid plasmid vector, mention may be made of pK1, pK2, pK3 and pK4. These plasmids were introduced into <u>R. modochrous</u> ATCC 12674 and have been deposited respectively as <u>R. modochrous</u> ATCC 12674/pK1 (FERM BP-3728), <u>R. modochrous</u> ATCC 12674/pK2 (FERM BP-3739), <u>R. modochrous</u> ATCC 12674/pK3 (FERM BP-3730) and <u>R. modochrous</u> ATCC 12674/pK4 (FERM BP-3731) with the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Japan (see Japanese Laid-Open Patent Publication No. 68,556/1993).

As the above DNA region capable of replicating in cells of the genus <u>Rhodococcus</u>, mention may be made of those derived from plasmids pRC001, pRC002, pRC003 and pRC004, and these may be the whole of the plasmid or a partial fragment thereof. The above plasmids are derived respectively from the strains <u>R. rhodochrous</u> ATCC 4276, ATCC 314349, ATCC 14348 and IFO 3338 (see Japanese Laid-Open Patent Publication No. 68,556/1993).

<u>Rhodococcus erythropolis</u> SK92 has been deposited as FERM BP-3324 with the Fermentation Research Institute, Agency of Industrial Science and Technology. Plasmid pSK108 containing the nitrilase gene and the regulatory gene has been deposited as transformant JM109/pSK108 (FERM BP-5322) carrying said plasmid pSK108, with the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology. The strain SK92 was previously identified as belonging to the genus <u>Rhodococcus</u> on the basis of its bacterial properties (see Japanese Laid-Open Patent Publication No. 280,889/1991). This organism is further identified as <u>Rhodococcus erythropolis</u> on the basis of the following detailed properties:

	ITEMS EXAMINED	RESULTS
5	decomposition of adenine	+
	decomposition of tyrosine	+
10	decomposition of urea	+
,,	utilization	
	inositol	+
15	maltose	_
	mannitol	+
20	rhamnose	
	sorbitol ,	+
	sodium m-hydroxy-benzoate	_
25	sodium benzoate	+
	sodium citrate	+
30	sodium lactate	+
	testosterone	+
	acetamide	+
35	16	
	sodium pyruvate	+
40	growth in the presence of 0.02 % sodium azide	+
	growth at 10 °C	+
	growth at 40 ℃	~
45	growth in the presence of 0.001 % crystal viol	let -
	growth in the presence of 0.3 % phenyl ethanol	ı –
50	growth in the presence of 5 % NaCl	+
••	growth in the presence of 7 % NaCl	, +

EXAMPLES

55

Hereinafter, the present invention will be illustrated in detail by reference to the following examples which however are not intended to limit the scope of the invention.

Cloning of the nitrilase gene from SK92 and the expression thereof in E. coli and Rhodococcus will be further

illustrated in Reference Example.

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of chromosomal DNA from SK92

The strain SK92 was incubated at 30 °C for 72 hours under shaking in 100 ml MY medium (0.5 % polypeptone, 0.3 % Bacto-yeast extract, 0.3 % Bacto-molt extract). The cells were harvested and the pellet was suspended in 4 ml Saline-EDTA solution (0.1 M EDTA, 0.15 M NaCl, pH 8.0). 8 mg of lysozyme was added to the suspension. The suspension was incubated at 37 °C for 1 to 2 hours under shaking and then frozen. Then, 10 ml of Tris-SDS solution (1 % SDS, 0.1 M NaCl, 0.1 M Tris, pH 9.0) was added to it under gentle shaking, followed by addition of proteinase K (Merk) at a final concentration of 0.1 mg. The mixture was incubated under shaking at 37 °C for 1 hour and then at 60 °C. An equal amount of phenol saturated with TE (TE: 10 mM Tris, 1 mM EDTA, pH 8.0) was added to the mixture, stirred, and centrifuged. A 2-fold excess amount of ethanol was added to the upper layer, and the DNA was recovered using a glass rod. The phenol was removed successively with 90 %, 80 % and 70 % ethanol. Then, the DNA was dissolved in 3 ml TE buffer, and a solution of ribonuclease A (previously treated by heating at 100 °C for 15 min.) was added to it in an amount of 10 µ g/ml. The mixture was incubated at 37 °C for 30 minutes under shaking, followed by addition of proteinase K. The mixture was incubated at 37 °C for 30 minutes under shaking. An equal amount of TE-saturated phenol was added to the mixture, and it was separated by centrifugation into upper and lower layers. The upper layer was subjected twice to the same procedure, followed by the same procedure of extraction with an equal amount of chloroform containing 4 % isoamyl alcohol (these procedures are referred to hereinafter as phenol treatment). Then, a 2-fold excess amount of ethanol was added to the upper layer and the DNA was recovered with a glass rod whereby the chromosomal DNA was obtained. (2) Construction of a DNA library

10 μ I plasmid pSK002 prepared by inserting into vector pUC118 a DNA fragment containing the nitritase gene from the strain SK92 (see Reference Example) was cleaved at 37 °C for 2 hours with a mixture of 2 μ I of restriction enzyme Sac I, 10 μ I of the reaction buffer (10-fold conc.), and 78 μ I of sterilized water, and the digest was elec-

trophoresed on 0.7 % agarose gel to separate an Sat I fragment, 1.1 kb long.

Separately, the chromosomal DNA from SK92 obtained in step (1) was digested with Eco RI, electrophoresed on agarose gel and subjected to Southern hybridization where the above 1.1 kb Sac I fragment, labeled using a DIG DNA Labeling Kit (Boehringer Mannheim), was used as the probe (Southern E.M., Mol. Bionl. 98, 503 (1975)) to detect an about 14 kb DNA fragment. A DNA fraction containing the 14 kb fragment hybridized with the probe was cut off from the agarose gel and then inserted into a separately prepared Eco RI-cleaved hybrid plasmid vector pK4 (FERM BP-3731 containing plasmid pRC004 from the genus Rhodococcus and vector pHSG299 from E. coli (see Japanese Laid-Open Patent Publication Nos. 64,589/1993 and 68,566/1993)).

The above pK4 fragment used as vector was prepared as follows: $10 \,\mu$ l of the reaction buffer (10-fold conc.), 77 μ l of sterilized water and $2 \,\mu$ l of restriction enzyme Eco RI were added to $10 \,\mu$ l of vector pK4. The mixture was allowed to react at 37 °C for 2 hours, then treated with phenol, precipitated with ethanol, dried, and dissolved in $50 \,\mu$ l sterilized water. $1 \,\mu$ l of alkaline phosphatase (Takara Shuzo Co., Ltd.), $10 \,\mu$ l of the reaction buffer (10-fold conc.) and $39 \,\mu$ l of sterilized water were added to it. The mixture was allowed to react at $65 \,^{\circ}$ C, treated with phenol, precipitated with ethanol, dried, and dissolved in sterilized water.

As described above, 1 μ I of the above DNA fraction containing the 14 kb fragment was inserted into the above Eco RI-cleaved pK4 by overnight reaction at 4°C using a ligation kit (Takara Shuzo Co., Ltd.) to prepare a DNA library.

(3) Transformation of E. coli and selection of recombinant DNA

E. coli JM109 (available from Takara Shuzo Co., Ltd.) was inoculated into 1 ml of LB medium (1 % Bactotrypton extract, 0.5 % Bacto-yeast extract, 0.5 % NaCl) and pre-incubated at 37 °C for 5 hours. 100 μ l of the culture was inoculated into 50 ml of SOB medium (2 % Bacto-trypton, 0.5 % Bacto-yeast extract, 10 mM NaCl, 2.5 mM KCl, 1 mM MgSO4, 1 mM MgCl2) and incubated at 18 °C for 20 hours. The cells were recovered by centrifugation, and the pellet was suspended in 13 ml cold TF solution (20 mM PIPES-KOH, pH 6.0, 200 mM KCI, 10 mM CaCl₂, 40 mM MnCl₂), allowed to stand at 0 °C for 10 minutes and centrifuged again. After the supernatant was removed, the E. coli pellet was suspended in 3.2 ml of cold TF solution, followed by addition of 0.22 ml dimethyl sulfoxide. The suspension was allowed to stand at 0 °C for 10 minutes. 10 μ I of the recombinant plasmid (DNA library) prepared in step (2) was added to 200 μ l of the competent cells thus prepared. The mixture was incubated at 0 °C for 30 minutes, then heat-shocked at 42 °C for 30 seconds and cooled at 0 °C for 2 minutes, followed by addition of 0.8 ml of SOC medium (2 % Bacto-trypton, 0.5 % Bacto-yeast extract, 20 mM glucose, 10 mM NaCl, 2.5 mM KCl, 1 mM MgSO₄, 1 mM MgCl₂). The mixture was incubated at 37 °C for 60 minutes under shaking. The culture was plated in an amount of 200 μ I per plate on LB agar medium containing 100 μ g/ml ampicillin. The plate was incubated at 37 °C. Selection of transformants carrying the nitrilase gene from the colonies grown on the plate was carried out by colony hybridization in the following manner. The colonies grown on the plate were transferred to a nylon membrane (Biodyne A produced by Nippon Paul) and the microorganisms were lysed. The DNA

was fixed on the membrane and then hybridized with the probe (1.1 kb fragment) constructed in step (2), and the colony containing the target recombinant DNA was selected using a DIG Luminescent Detection Kit (Boehringer Mannheim).

(4) Preparation of recombinant plasmid

5

10

15

20

25

30

35

40

45

The transformant selected in step (3) was incubated at 37 °C overnight in 100 ml of LB medium, and the cells were harvested and washed with sterilized water. 5 ml of solution I (2 mM glucose, 10 mM EDTA, 25mM Tris-HCl buffer, pH 8.0) and 25 mg lysozyme were added to the cells. It was allowed to stand at 0 °C for 30 minutes. 10 ml of solution II (1 N NaOH, 5 % SDS) was added thereto, and the mixture was allowed to stand at 0 °C for 5 minutes. 7.5 ml of solution III (3 M sodium acetate, pH 4.8) was added thereto, and the mixture was allowed to stand at 0 °C for 30 minutes and centrifuged. 50 ml ethanol was added to the supernatant. It was centrifuged again to remove the supernatant. 5 ml of solution IV (10 mM sodium acetate, 50 mM Tris-HCl buffer, pH 8.0) and 2.5 μ I of 10 mg/ml ribonuclease A were added thereto. The mixture was allowed to stand at room temperature for 20 minutes, followed by addition of 12 ml ethanol. It was centrifuged, dried, and dissolved in sterilized water.

(5) Transformation of a microorganism of the genus Rhodococcus, and the nitrilase activity of the transformant

Rhodococus rhodochrous ATCC 12674 at the logarithmic growth phase was harvested by centrifugation, washed 3 times with ice-cold sterilized water and suspended in sterilized water. 1 μg of plasmid pSK104 obtained in step (4) was mixed with 10 μ l of the cell suspension, and the mixture was cooled on ice. This mixture of the DNA and the microorganism was introduced into the chamber in a electroporation apparatus CET-200 (Japan Spectroscopic Co., Ltd.), and the sample was pulsed 20 times with a density of electric field of 3.8 kV/cm and a pulse width of 1 ms. The cell suspension thus treated was placed on ice for 10 minutes and heat-shocked at 37 °C for 10 minutes. 500 μ l of MYK medium (0.5 % polypeptone, 0.3 % Bacto-molt extract, 0.3 % Bacto-yeast extract, 0.2 % KH₂ PO₄, 0.2 % K₂ HPO₄ (pH 7.0)) was added thereto. The cell suspension was then incubated at 26 °C for 3 hours under shaking. The suspension was plated on an MYK agar plate containing 75 μg/ml kanamycin and incubated at 26 °C for 3 days.

The resultant transformant of the genus Rhodococus was inoculated into 10 ml MYK medium containing 50 μ g/ml kanamycin and pre-incubated at 30 °C for 24 hours. 1 ml of the culture was added to 100 ml of GGP medium (1.5 % glucose, 0.1 % Bacto-yeast extract, 1.0 % sodium glutamate, 0.05 % KH_2PO_4 , 0.05 % K_2HPO_4 , 0.05 % $MgSO_4$ 7H $_2O$ (pH 7.2)) containing 1.5 % ethylene cyanohydrin (ECH) as inducer and 75 μ g/ml kanamycin. The microorganism was incubated at 30 °C for 48 hours and harvested, and the pellet was suspended in 50 mM phosphate buffer, pH 7.7, and a part of the suspension was allowed to react at 30 °C for 20 minutes in 50 mM phosphate buffer, pH 7.7, containing 100 mM acrylonitrile. The reaction was stopped by addition of 1 N HCl, and the amount of acrylic acid formed in the reaction solution was determined by high performance liquid chromatography (HPLC). The result indicated the formation of 8 mM acrylic acid in the transformant ATCC 12674/pSK104. It was revealed that the gene coding for the regulatory factor necessary for expression of nitrilase is present upstream or downstream of the structural gene of nitrilase.

(6) Deletion plasmids and nitrilase activity

Because pSK104 was estimated to still contain a number of regions not required for expressing nitrilase, various deletion plasmids were prepared therefrom. Microorganisms transformed with the deletion plasmids were examined for their nitrilase activity (Table 1, Fig. 1).

Table 1.

Deletion plasmids and formation of acrylic acid													
	amount of formed acrylic acid (mM)												
	inducer (ECH)												
absent present													
1) pSK102	0	0											
2) pSK104	0.77	8.00											
3) pSK105	0	1.71											
4) pSK123	0	0											
5) pSK124	0	0											
6) pSK106	1.14	6.38											
7) pSK107	0	3.40											
8) pSK125	0 0												
9) pSK126	. 0	0											

Table 1. (continued)

Deletion pla	Deletion plasmids and formation of acrylic acid												
amount of formed acrylic acid (mM)													
	inducer (ECH)												
	absent	present											
10) pSK127	0	0											
11) pSK109	0 0												
12) pSK108	0	8.05 ·											

As is evident from the table, ATCC12674/pSK108 (6.2 kb <u>Hind</u>III-<u>Eco</u>RV fragment) (FIG. 2) is of high nitrilase activity.

Additional deletion plasmids were constructed and examined for the gene coding for the regulatory factor. The result revealed that the gene is located within a far upstream region (about 3 kb BamHI-EcoRV fragment) from the structural gene of nitrilase.

(7) Nucleotide sequencing

The gene coding for the regulatory factor essential for expression of nitrilase, revealed in step (6), was sequenced using Fluorescence Sequencer ALFII (Pharmacia). The sequence analysis revealed the nucleotide sequence of SEQ ID No: 5, and the presence of 2 open reading frames coding respectively for the amino acid sequences of SEQ ID Nos: 1 and 2 was found. Comparison with Amino Acid Sequence Data Base NBRF (National Biomedical Research Foundation) suggested that the regulatory factor belongs to a family of two-component regulator. The nucleotide sequences of these open reading frames are shown in SEQ ID Nos: 3 and 4.

Reference Example

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA from the strain SK92

The chromosomal DNA from SK92 was prepared in the same manner as in Example, step (1).

(2) Preparation of a probe and construction of a DNA library

Polymerase chain reaction was carried out using $100\,\mu$ I solution containing $10\,\mu$ I of DNA as substrate (diluted 20-fold), $10\,\mu$ I of the reaction buffer (10-fold conc.), $4\,\mu$ I of 5 mM dNTP, $5\,\mu$ I (500 pmol) each of 5'-AACTGCTGGGA (AG)CACTTCCA-3' as primer #1 (20 nucleotides corresponding to the amino acid sequence NCWEHFQ) and 5'-GA(AG)TA(AG)TG(AG)CC(CG)AC(ACTG)GG(AG)TC-3' as primer #2 (20 nucleotides corresponding to the amino acid sequence DPVGHYS), and $1\,\mu$ I of Tth DNA polymerase (Toyo Boseki). The above 2 primers were prepared on the basis of amino acid sequences having high homologies with known various nitrilases. The reaction involved 50 cycles each consisting of the incubation of the sample at 93 °C for 30 seconds (denaturation step), 45 °C for 30 seconds (annealing step) and 72 °C for 2 minutes (elongation step). A 410 bp DNA fragment coding for the nitrilase from SK92 was obtained from the reaction solution. This DNA fragment was labeled as probe using a DIG DNA Labeling Kit (Boehringer Mannheim).

10 μ I of the reaction buffer (10-fold conc.), 37 μ I of sterilized water and 3 μ I of restriction enzyme <u>Sal</u> I were added to 50 μ I of the chromosomal DNA from SK92. The mixture was allowed to react at 37 °C for 2 hours, then precipitated with ethanol and electrophoresed on agarose gel. A DNA fragment, about 1.1 kb, was recovered using DNA PREP (DIA-IATRON). The DNA fragment was inserted into the <u>Sal</u> I site of <u>E</u>. <u>coli</u> vector pUC118 using a ligation kit (Takara Shuzo Co., Ltd.) whereby a recombinant DNA library was prepared.

The above pUC118 fragment was prepared in the following manner. 10 μ l of the reaction buffer (10-fold conc.), 77 μ l of sterilized water and 2 μ l of restriction enzyme <u>Sal</u> l were added to 10 μ l of pUC118. The mixture was allowed to react at 37 °C for 2 hours, then treated with phenol, precipitated with ethanol, dried, and dissolved in 50 μ l of sterilized water. 1 μ l of alkaline phosphatase (Takara Shuzo Co., Ltd.), 10 μ l of the reaction buffer (10-fold conc.) and 39 μ l of sterilized water were added thereto. The sample solution was allowed to react at 65 °C, treated with phenol, precipitated with ethanol, dried, and dissolved in sterilized water.

(3) Transformation of E. coli and selection of recombinant DNA

Competent cells of \underline{E} . \underline{coli} JM109 were prepared in the same manner as in Example, step (3). 10 μ I solution (DNA library) containing the recombinant plasmid prepared in step (2) was added to 200 μ I of the competent cells. The cells were allowed to stand at 0 °C for 30 minutes, then heat-shocked at 42 °C for 30 seconds and cooled at 0 °C for 2 minutes. 0.8 ml of SOC medium was added thereto, and the cells were incubated at 37 °C for 60 minutes under shaking. The culture was plated in an amount of 200 μ I per plate onto LB agar medium containing 100 μ g/ml ampicillin, followed by incubation at 37 °C. Selection of a transformant carrying the nitrilase gene from the

colonies grown on the agar medium was carried out by colony hybridization in the following manner. The transformants grown on the agar medium were transferred to a nylon membrane (Biodaine A produced by Paul Co., Ltd.) and they were lysed to fix DNA. The DNA was treated with the probe (410 bp fragment) prepared in step (2), and the colony containing the target recombinant DNA was selected using a DIG Luminescent Detection Kit (Boehringer Mannheim).

(4) Construction of recombinant plasmids and preparation of a restriction enzyme map

The transformant selected in step (3) was treated in the same manner as in Example, step (4). The recombinant plasmid pSK002 thus obtained was cleaved with several restriction enzymes to prepare a restriction enzyme map. (5) Production of nitrilase by transformed E. coli and conversion of a nitrile into an acid

The JM109/pSK002 strain was inoculated into 1 ml of 2×YT medium (1.6 % Bacto-trypton, 1.0 % Bacto-yeast extract, 0.5 % NaCl) containing 50 μ g/ml ampicillin and incubated at 37 °C for 8 hours. 1 ml of the culture was inoculated into 100 ml of 2×YT medium containing 50 μ g/ml ampicillin and 1 mM IPTG, followed by incubation at 37 °C for 14 hours. After harvested, the microorganisms were suspended in 50 mM phosphate buffer, pH 7.7, and a part of the suspension was allowed to react at 30 °C for 20 minutes in 50 mM phosphate buffer, pH 7.7, containing 100 mM acrylonitrile. The reaction was stopped by addition of 1 N HCl, and the amount of acrylic acid formed in the reaction solution was determined by HPLC. In the control test, the strain JM109 before transformation was used. The result indicates that while no acrylic acid was detected in the host JM109, the formation of 18 mM acrylic acid was found in the transformant JM109/pSK002.

(6) Introduction of the DNA fragment containing the nitrilase gene into a hybrid plasmid vector

A DNA fragment (5.8 kb <u>Bg</u>III-<u>Hind</u>III fragment) containing the nitrilase structual gene and a region speculated to contain its promoter were cloned into hybrid plasmid vector pK4 whereby plasmid pSK 120 was constructed.

(7) Transformation of a microorganism of the genus Rhodococcus and the nitrilase activity of the transformant

Rhodococcus rhodochrous ATCC 12674 at the logarithmic growth phase was harvested by centrifugation, washed 3 times with ice-cold sterilized water, and suspended in sterilized water. 10μ g cell suspension was mixed with 1μ g of plasmid pSK120 obtained in step (6), and the mixture was then cooled on ice. This mixture of the DNA and the microorganism was introduced into the chamber in a gene-introducing unit CET-200 (Nippon Bunko) where the sample was pulsed 20 times with a density of electric field of 3.8 kV/cm and a pulse width of 1ms.

The cell suspension thus treated was placed on ice for 10 minutes and heat-shocked at 37 °C for 10 minutes. 500 μ I of MYK medium was added to the suspension and the mixture was then incubated at 26 °C for 3 hours under shaking. The culture was plated onto MYK agar medium containing 75 μ g/ml kanamycin and incubated at 26 °C for 3 days.

The thus obtained transformant of the genus Rhodococcus was inoculated into 10 ml MYK medium containing 50 μ g/ml kanamycin and pre-incubated at 30 °C for 24 hours. 1 ml of the culture was added to 100 ml of GGP medium containing 75 μ g/ml kanamycin. 1.5 % ECH was added thereto as inducer. The transformant was incubated at 30 °C for 48 hours. After recovered, the cells were suspended in 50 mM phosphate buffer, pH 7.7, and their nitrilase activity was examined in the same manner as in step (5). No activity was found in it.

A number of references are cited herein, the disclosures of which are incorporated in their entireties by reference herein.

40 SEQUENCE LISTING

SEQ ID No: 1
LENGTH: 244
TYPE: amino acid
TOPOLOGY: linear
MOLECULAR TYPE: protein
ORIGINAL SOURCE
ORGANISM: Rhodococcus erythropolis
STRAIN: SK92
SEQUENCE:

E E

50

45

5

10

15

20

25

30

15
MetAlaGlyAlaAspValHisAlaGlnGlyGlyThrAsnArgArg
30
AlaArg[leLeuValValAspAspGluLysHisValArgThrMet
45
ValThrTrpGlnLeuGluSerGluAsnPheAspValValAlaAla
60
AlaAspGlyAspAlaAlaLeuArgGlnValThrGluSerAlaPro
75
AspLeuMetValLeuAspLeuSerLeuProGlyLysGlyGlyLeu
<i>§</i> 90
GluValLeuAlaThrValArgArgThrAspAlaLeuProlleVal
105
ValLeuThrAlaArgArgAspGluThrGluArgIleValAlaLeu
120
AspLouGlyAlaAspAspTyrVallleLysProPheSerProArg
135
GluLeuAlaAlaArglleArgAlaValLeuArgArgThrThrAla

	150
5	GluProProHisGluAlaAlaValGlnArgPheGlyAspLeuGlu
	165
	leAspThrAlaAlaArgGluValArgLeuHisGlyIleProLeu
10	180
	GluPheThrThrLysGluPheAspLeuLeuAlaTyrMetAlaAla
15	195
	SerProMetGInValPheSerArgArgArgLeuLeuLeuGluVal
20	210
	TrpArgSerSerProAspTrpGlnGlnAspAlaThrValThrGlu
	225
25	HisValHisArglleArgArgLyslleGluGluAspProThrLys
	240
	ProThr[leLeuGlnThrValArgGlyAlaGlyTyrArgPheAsp
30	244
35	GlyGluArgAla
33	SEQ ID No: 2
	TYPE: amino acid
40	TOPOLOGY: linear MOLECULAR TYPE: protein
	ORIGINAL SOURCE ORGANISM: Rhodococcus erythropolis
	STRAIN: SK92 SEQUENCE:
45	
	No the Attle of a street of a second of the street of a second of the se
	MetMetThrAspThrLeuProSerSerArgTrpThrLeuGlu
50	30

	GlyProllistcuGlnProteuGlnGlyGluAlateuAlaAspteu
5	45
	HisAlaArgThrLeuGluMetlleThrSerGlyArgGluLeuHis
	60
0	GluThrLeuGluValValAlaArgGlyIleGluGluLeuMetPro
	75
	GlyLysArgCysAlalleLeuLeuLeuAspAsnThrGlyProVal
15	90
	LeuArgCysGlyAlaAlaProThrMetSerAlaProTrpArgArg
20	105
	TrplleAspSerLeuValProGlyProMetSerGlyGlyCysGly
	120
25	ThrAlaValHisLeuClyCluProVallleSerTyrAspValAla
	135
30	AspAspProLysPheArgGlyProPheArgAlaAlaAlaLeuHis
	150
· .	GluGlyIleArgAlaCysTrpSerThrProValThrSerGlyAsp
35	165
	GlyThrileLeuGlyThrPheAlalleTyrGlySerValProAla
	180
	PheProAlaGlnGlnAspValAlaLeuValThrGlnCysThrAsp
	ý 195
15	LeuThrAlaAlaVallleThrThrHisLysLeuHisGlnAspLeu
	210
	SerMetSerGluGluArgPheArgArgAlaPheAspSerAsnVal
50	225
	ValGlyMetAlaLeuLeuAspGluSerGlySerSer[leArgVal
55	240
-	AsnAspThrLeuCysAlaLeuThrAlaAlaProProArgArgLeu

	255
	LeuGlyHisProMetGlnGlulleLeuThrAlaAspSerArgGlu
5	270
	ProPheAlaAsnGlnLeuSerSerlleArgGluGlyLeuThrAsp
10	. 285
	GlyGlyGlnLeuAspGlyArglleGlnThrThrGlyGlyArgTrp
	300
15	[leProValHisLeuSer[leSerGlyMetTrpThrThrGluArg
	315
	GluPheMetGlyPheSerValHisValLeuAsplleSerGluArg
20	330
	LeuAlaAlaGluArgAlaArgGluGluGlnLeuGluAlaGluVal
25	345
	AlaArgHisThrAlaGluGluAlaSerArgAlaLysSerThrPhe
	360
30	LeuSerGlyMetThrHisGluValGlnThrProMetAlaVallle
	375
35	ValGlyPheSerGluLeuLeuGluThrLeuAspLeuAspGluGlu
	390
	ArgArgGlnCysAlaTyrArgLysIleGlyGluAlaAlaLysHis
40	405
	VallieSerLeuValAspAspValLeuAspIleAlaLysIleGlu
45	420
	AlaGlyAla[leThrLeuGlnAspGluAsp[leAspLeuSerGlu
	435
50	GluValAlaThrIleValGluMetLeuGluProlleAlaArgAsp
	450
55	ArgAspArgAspValCysLeuArgTyrValProProGlnThrPro
	. 465

			1	valh	ısva	I Cys:	SerA	spAr	gArg	ArgV	alAr	gGlu	Vall	euLei	U	
5														480	0	
			,	Asnl	leVa	l Ser.	AsnG	l y []	eLys'	TyrA	snAr	gLeu(GlyG	lyVa	l	
														49	5	
10			1	Va I A	spPro	oPro'	ThrG	l ySe	rGI ya	AlaA	laArı	gPro/	ArgG	lnTh	r	
														510	0	
15			1	ArgA	laPro	oAsp'	TyrPı	roAla	aThrl	Pr oT l	hrTh	rAsnS	SerS	erSe	r	
														52	5	
			1	ProS	erTh	rGly'	TrpG	luSe	rArgl	ProA	rgGl	yCysl	LysG	lyAr	g	
20									į	534						
			(GlySo	erVa	Leu	ArgS	erPro	o Ala	Arg						
25	SEQ ID N LENGTH: TYPE: nu STRANDE TOPOLOG	735 cleic ad EDNES	S: dou	ıble					1							
30	ORIGINAL ORGANIS STRAIN: S	L SOUI SM: <u>Rh</u> SK92	RCE	cus e	rythrop	<u>olis</u>										
35	ATG	GCC	GGA	GCG	GAC	GTC	CAC	GCC	CAG	GGT	GGC	ACG	AAT	CGA	CGT	45
40 ·	GCA	CGC	ATC	СТС	GTC	GTC	GAC	GAC	GAA	AAA	CAC	GTG	CGC	ACG	ATG	90
45	GTG	ACG	TGG	CAA	СТС	GAA	TCG	GAG	AAT	TTC	GAT	GTT	GTC	GCT	GCG	135
50	GCA	GAC	GGA	GAT	GCG	GCA	CTG	CGT	CAG	GTC	ACT	GAG	AGC	GCA	CCC	180
5 <i>5</i>																

	GAT	TTG	ATG	GTG	CTC	GAT	CTG	TCG	CTC	CCG	GGG	AAA	GGT	GGG	TTG	225
5	GAA	GTG	стс	GCT	ACG	GTC	CGC	AGA	ACC	GAT	GCA	CTG	CCT	ATC	GTC	270
10	GTG	стс	ΛCA	GCA	CGC	CGC	GAT	GAA	ACC	GAA	CGG	ATC	GTC	GCG	CTG	315
15	GAT	стс	GGC	GCC	GAT	GAC	TAC	GTC	ATC	AAA	CCG	TTC	TCC	CCG	CGG	360
20	GAA	TTG	GCC	GCC	CGT	ATC	CGG	GCA	GTG	CTT	CGT	CGA	ACC	ACA	GCT	405
	GAA	CCC	CCA	CAC	GAG	GCG	GCG	GTT	CAG	CGA	TTC	GGT	GAC	CTA	GAG	450
25	ATC	GAC	ACC	GCT	GCG	CGC	GAG	GTT	CGG	CTC	CAC	GGG	ATA	CCG	C.TC	495
30	GAG	TTC	ACC	ACC	AAG	GAG	TTC	GAT	CTG	CTG	GCC	TAT	ATG	GCC	GCA	540
35	TCA	CCG	ATG	CAG	GTC	TTC	AGC	CGA	CGC	AGA	TTG	TTG	CTC	GAG	GTG	585
40	TGG	CGA	TCG	TCG	CCC	GAC	TGG	CAG	CAG	GAC	GCC	ACC	GTG	ACC	GAG	630
45	CAC	GTG	CAC	CGC		CGC	CGC	AAG	ATC	GAA	GAA	GAT	CCC	ACC	AAA	675
	CCG	VCC	ATC	CTG	CAG	VCV	GTG	CGG	GGA	GCC	GGT	TAC	CGT	TTC	GAC	720
50	GGA	GAG	CGT	GCA	TGA											735

SEQ ID No: 4

55 LENGTH: 1605

TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ORIGINAL SOURCE
ORGANISM: <u>Phodococcus erythropolis</u>
STRAIN: SK92
SEQUENCE:

5

	ATG	ATG	ACC	GAC	ACA	CTG	CCC	TCC	TCG	TCC	CGT	TGG	ACC	CTT	GAA	45
10	GGC	CCG	CAT	стс	CAG	CCG	CTG	CAG	GGT	GAG	GCC	стс	GCG	GAT	CTC	90
15	CAC	GCC	CGT	ACG	CTC	GAG	ATG	ATC	ACT	TCC	GGG	AGA	GAA	TTG	CAC	135
20	GAG	ACA	СТС	GAG	GTG	GTC	GCC	CGC	GGC	ATC	GAG	GAA	CTG	ATG	CCG	180
20	GGC	AAA	CGT	TGC	GCA	ATT	CTG	TTĢ	СТС	GAC	AAC	ACC	GGA	CCG	GTA	225
25	TTG	CGC	TGC	GGC	GCG	GCC	CCA	ACA	ATG	AGC	GCG	CCG	TGG	CGC	CGG	270
30	TGG	ATC	GAC	AGC	стс	GTC	CCT	GGT	CCG	ATG	TCG	GGT	GGC	TGC	GGC	315
35	ACA	ccë	GTT	CAC	CTC	GGC	GAG	CCG	GTT	ATT	TCC	TAT	GAC	GTG	GCC	360
40	GAT	GAC	CCG	AAA	TTC	CGC	GGC	CCC	TTC	CGC	GCC	GCA	GCC	CTC	CAC	405
	GAG	GGC	ATA	CGT	GCC	TGC	TGG	TCC	ACC	CCC	GTC	ACA	AGC	GGA	GAC	450
45	GGC	ACG	ATC	стс	GGC	ACT	TTC	GCG	ATC	TAC	GGA	TCC	GTG	CCG	GCG	495
50	TTC	CCC	GCA	CAA	CAG	GAC	GTT	CCC	CTG	GTC	ACC	CAA	TGC	ACC	GAC	540

UIG	AUC	GUT	GCC	GTC	ATC	ACC	ACC	CAC	AAA	CTT	CAT	CAA	GAT	CTG	585
AGC	ATG	AGC	GAG	GAG	CGG	TTC	CGA	CGC	GCC	TTC	GAT	TCC	AAT	GTC	630
GTC	GGC	ATG	GCA	CTT	CTC	GAC	GAA	TCC	GGC	TCC	AGC	ATC	CGC	GTC	675
AAC	GAC	ACC	CTG	TGC	GCG	TTG	ACC	GCA	GCT	CCG	CCA	CGG	CGC	CTC	720
стс	GGC	CAC	CCC	ATG	CAG	GAG	ATĄ	CTC	ACC	GCC	GAC	TCC	CGG	GAA	765
CCG	TTC	GCC	AAT	CAG	TTG	TCC	TCC	ATC	CGT	GAG	GGA	TTG	ACC	GAC	810
GGC	GGA	CAG	CTC	GAC	GGA	CGA	ATC	CAA	ACC	ACC	GGA	GGT	CGG	TGG	855
ATT	CCG	GTG	CAC	CTG	TCC	ATC	AGC	GGT	ATG	TGG	ACC	ACG	GAG	CGG	900
GAG	TTC	ATG	GGA	TTC	AGC	GTC	CAT	GTC	CTG	GAC	ATC	TCC	GAG	CGC	945
CTG	GCC	GCC	GAA	CGC	GCC	CGC	GAG	GAA	CAA	CTC	GAG	GCC	GAG	GTT	990
GCC	CGC	CAT	ACC	GCG	GAG	GAA	GCC	AGT	CGC	GCC	AAG	TCC	ACG	TTC	1035
CTG	TCC	GGC	ATG	ACG	CAC	GAG	GTC	CAA	ACG	CCC	ATG	GCC	GTT	ATC	1080
GTC	GGA	TTC	AGT	GAG [.]	CTA	CTC	GAG	ACG	CTG	GAC	CTG	GAT	GAA	GAA	1125
CGT	CGT	CAG	TGC	GCC	TAC	CGC	AAG	ATC	GGC	GAA	GCC	GCG	AAA	CAC	1170
GTG	ATC	TCC	CTG	GTC	GAC	GAC	GTT	CTC	GAT	ATA	GCC	AAG	ATC	GAA	1215

	, ecc	GGC	GCT	ATC	VCL	CTG	CVC	GAC	GλΛ	GAC	ATC	GAC	CTG	TCC	GAA	1260
5	GAA	GTT	GCC	ACC	ATC	GTG	GAG	ATG	стс	GAG	CCC	ATC	GCC	CGT	GAC	1305
10	CGT	GAC	CGT	GAC	GTC	TGC	CTG	CGG	TAC	GTC	CCG	CCG	CAG	ACA	CCG	1350
15	GTG	CAC	GTG	TGC	TCG	GAC	CGG	ĊĊG	CGG	GTG	CGG	GAA	GTG	CTG	CTC	1395
20	AAC	ATC	GTC	TCC	AAC	GGG	ATC	AAG	TAC	AAT	CGG	CTC	GGT	GGT	GTC	1440
	GTC	GAC	ccc	CCA	ACA	GGA	TCA	GGG	GCT	GCT	CGT	CCG	CGT	CAG	ACG	1485
25	AGG	GCC	CCG	GAC	TAC	CCA	GCG	ACG	CCG	ACG	ACG	AAC	TCT	TCG	AGC	1530
30	CCT	TCA	ACC	GGC	TGG	GAG	TCG	AGG	CCA	CGG	GGG	TGC	AAG	GGT	CGG	1575
	GGC	TCG	GTC	TTG	CGC	TCT	CCC	GCG	CGC	TGA						1605

SEQ ID No: 5
LENGTH: 2336
TYPE: nucleic acid
STRANDEDNESS: double
TOPOLOGY: linear
ORIGINAL SOURCE
ORGANISM: Rhodococcus erythropolis
STRAIN: SK92
SEQUENCE:

ATGGCCGGAG CGGACGTCCA CGCCCAGGGT GGCACGAATC GACGTGCACG 50

	I	CATCCTCGTC	GTCGACGACG	AAAAACACGT	GCGCACGATG	GTGACGTGGC	100
5		AACTCGAATC	GGAGAATTTC	GATGTTGTCG	CTGCGGCAGA	CGGAGATGCG	150
10	(GCACTGCGTC	AGGTCACTGA	GAGCGCACCC	GATTTGATGG	TGCTCGATCT	200
15		GTCGCTCCCG	GGGAAAGGTG	GGTTGGAAGT	GCTCGCTACG	GTCCGCAGAA	250
	(CCGATGCACT	GCCTATCGTC	GTGCTCACAG	CACGCCGCGA	TGAAACCGAA	300
20		CGGATCGTCG	CGCTGGATCT	CGGCGCCGAT	GACTACGTCA	TCAAACCGTT	350
25	. (CTCCCCGCGG	GAATTGGCCG	CCCGTATCCG	GGCAGTGCTT	CGTCGAACCA	400
30	C	CAGCTGAACC	CCCACACGAG	CCGCCGCTTC	AGCGATTCGG	TGACCTAGAG	450
	P	ATCGACACCG	CTGCGCGCGA	GGTTCGGCTC	CACGGGATAC	CGCTCGAGTT	500
35	(CACCACCAAG	GAGTTCGATC	TGCTGGCCTA	TATGGCCGCA	TCACCGATGC	550
40	Λ	AGGTCTTCAG	CCGACGCAGA	ттсттсстсс	AGGTGTGGCG	ATCGTCGCCC	600
45	G	ACTGGCAGC	AGGACGCCAC	CGTGACCGAG	CACGTGCACC	GCATTCGCCG	650
<i>5</i> 0	С	AAGATCGAA	GAAGATCCCA	CCANACCGAC	GATCCTGCAG	ACAGTGCGGG	700
-	(GAGCCGGTTA	CCGTTTCGAC	GGAGAGCGTG	CATGATGACC	GACACACTGC	750
55		сстсстсстс	CCGTTGGACC	CTTGAAGGCC	CGCATCTCCA	GCCGCTGCAG	800

850	TGATCACTTC	ACCCTCGAGA	CCACGCCCGT	TGGCGGATCT	GGTGAGGCCC
900	GGCATCGAGG	GGTCGCCCCC	CACTCGAGGT	TTGCACGAGA	CGGGAGAGAA
950	CAACACCGGA	TGTTGCTCGA	TGCGCAATTC	GGGCAAACGT	AACTGATGCC
1000	CGTGGCGCCG	ATGAGCGCGC	GGCCCCAACA	GCTGCGGCGC	CCGGTATTGC
1050	TGCGGCACAG	стсссстссс	CTGGTCCGAT	AGCCTCGTCC	GTGGATCGAC
1100	CGATGACCCG	ATGACGTGGC	GTTATTTCCT	CGGCGAGCCG	CGGTTCACCT
1150	GCATACGTGC	CTCCACGAGG	CGCCGCAGCC	CCCCCTTCCG	AAATTCCGCG
1200	CTCGGCACTT	CGGCACGATC	CAAGCGGAGA	ACCCCCGTCA	ствстветсе
1250	GGACGTTGCC	CCGCACAACA	CCGGCGTTCC	CGGATCCGTG	TCGCGATCTA
1300	CCACCCACAA	GCCGTCATCA	CCTGACCGCT	AATGCACCGA	CTGGTCACCC
1350	CGCGCCTTCG	GCGGTTCCGA	TGAGCGAGGA	GATCTGAGCA	ACTTCATCAA
1400	CTCCAGCATC	ACGAATCCGG	GCACTTCTCG	CGTCGGCATG	ATTCCAATGT
1450	CACGGCGCCT	GCAGCTCCGC	CGCGTTGACC	ACACCCTGTG	CGCGTCAACG
1500	CGGGAACCGT	CGCCGACTCC	AGATACTCAC	CCCATGCAGG	CCTCGGCCAC
1550	CGGCGGACAG	GATTGACCGA	ATCCGTGAGG	GTTGTCCTCC	TCGCCAATCA

CTCGACGGAC	GAATCCAAAC	CACCGGAGGT	CGGTGGATTC	CGGTGCACCT	1600
GTCCATCAGC	GGTATGTGGA	CCACGGAGCG	GGAGTTCATG	GGATTCAGCG	1650
TCCATGTCCT	GGACATCTCC	GAGCGCCTGG	CCGCCGAACG	CGCCCGCGAG	1700
GAACAACTCG	AGGCCGAGGT	TGCCCGCCAT	ACCGCGGAGG	AAGCCAGTCG	1750
CGCCAAGTCC	ACGTTCCTGT	CCGGCATGAC	CCACGAGGTC	CAAACGCCCA	1800
TGGCCGTTAT	CGTCGGATTC	AGTGAGCTĄC	TCGAGACGCT	GGACCTGGAT	1850
GAAGAACGTC	GTCAGTGCGC	CTACCGCAAG	ATCGGCGAAG	CCGCGAAACA	1,900
CGTGATCTCC	CTGGTCGACG	ACGTTCTCGA	TATAGCCAAG	ATCGAAGCCG	1950
GCGCTATCAC	TCTGCAGGAC	GANGACATCG	ACCTGTCCGA	AGAAGTTGCC	2000
ACCATCGTGG	AGATGCTCGA	GCCCATCGCC	CGTGACCGTG	ACCGTGACGT	2050
ствсствсвв	TACGTCCCGC	CGCAGACACC	GGTGCACGTG	TGCTCGGACC	2100
GGCGGGGGT	GCGGGAAGTG	CTGCTCAACA	TCGTCTCCAA	CGGGATCAAG	2150
TACAATCGGC	тсестестет	CGTCGACCCC	CCAACAGGAT	CAGGGGCTGC	2200
TCGTCCGCGT	CAGACGAGGG	CCCCGGACTA	CCCAGCGACG	CCGACGACGA	2250
ACTCTTCGAG	CCCTTCAACC	GGCTGGGAGT	CGAGGCCACG	GGGGTGCAAG	2300

GGTCGGGGCT CGGTCTTGCG CTCTCCCGCG CGCTGA

2336

Claims

5

- A two component regulatory factor which activates a nitrilase gene promoter, comprising a polypeptide having the amino acid sequence of SEQ ID No: 1 and a polypeptide having the amino acid sequence of SEQ ID No: 2.
 - 2. A regulatory factor according to claim 1 whose activation of the nitrilase gene promoter is enhanced in the presence of a nitrile.
- 15 3. A DNA molecule encoding a regulatory factor of claim 1 or 2.
 - 4. A DNA molecule according to claim 3 which possesses the nucleotide sequences of SEQ ID Nos: 3 and 4.
- 5. A recombinant plasmid containing DNA coding for a regulatory factor of claim 1 or 2, a nitrilase gene containing a promoter region and a DNA region capable of replicating in cells of a microorganism belonging to the genus <u>Rhodococcus</u>.
 - A recombinant plasmid according to claim 5 wherein the DNA region capable of replicating in cells of a microorganism belonging to the genus <u>Rhodococcus</u> is from plasmid pRC001 (ATCC 4276), pRC002 (ATCC 14349), pRC003 (ATCC 14348) or pRC004 (IFO 3338).
 - 7. A microorganism belonging to the genus Rhodococcus transformed with a recombinant plasmid of claim 5 or 6.
 - 8. A process for producing nitrilase, which process comprises:

(i) culturing a microorganism of the genus <u>Rhodococcus</u> containing a DNA molecule encoding the regulatory factor of claim 1 or 2 and a nitrilase gene including its promoter under conditions such that the regulatory factor activates expression of the nitrilase gene; and

(ii) recovering nitrilase from the culture.

35

25

30

40

45

50

FIG. 2

THIS PAGE BLANK (USPTO)