```
% Homework 3 - Question 1
clear all;
disp("la) glmfit for Wisconsin Breast Cancer Dataset")
data = readtable('bc wisc.csv');
data = data.Variables;
v = data(:,2):
X = data(:,[10, 23, 24, 30, 31]);
B_glm = glmfit(X,y,'binomial');
disp("Coeffecients of B");
disp(B_glm);
X_test = [ones(size(y)), X];
y_pred = X_test*B_glm>=0;
num_correct_predictions = sum(y_pred==y);
fprintf("Proportion of correction predictions = %f \n",num_correct_predictions/length(y));
%1h
fprintf("1b) Logistic Regression using Gradient Descent iterates\n");
X = [ones(size(X,1),1), X];
B_old = zeros(6,1);
step size = 0.00012;
num iterations = 10000000:
err = zeros(num iterations,1);
for i=1:num_iterations
    u = 1./(exp(X*B_old)+1);
    delta = (1-y).*X - u.*X;
    grad = sum(delta,1)';
    B_new = B_old - step_size*grad;
    err(i) = norm(B_new-B_glm);
    B_old = B_new;
fprintf("The following is the plot for the error in iterates of beta as a function of iterations.\nThis method converges takes a very long time to
figure(1)
plot(err);
xlabel('Iteration')
ylabel('B error')
snapnow
disp("")
% 1c
fprintf("lc) Logistic Regression using Newton-Raphson iterates\n"):
B \text{ old} = zeros(6.1):
num_iterations = 10;
err = zeros(num_iterations,1);
for i=1:num_iterations
    %calculate gradient
    u = 1./(exp(X*B_old)+1);
    delta = (1-y).*X - u.*X;
grad = sum(delta,1)';
    %calcualte hessian matrix
    N = size(X,1);
    W = zeros(N);
    for j=1:N
        W(j,j) = \exp(X(j,:)*B_old)/((\exp(X(j,:)*B_old)+1).^2);
    B_new = B_old - inv(X'*W*X) * grad;
    err(i) = norm(B_new-B_glm);
    B_old = B_new;
fprintf("The following is the plot for the error in iterates of beta as a function of iterations.\nThis method converges in just 8 iterations.\n"
figure(2)
plot(err);
xlabel('Iteration')
ylabel('B error')
snapnow;
disp("")
1a) glmfit for Wisconsin Breast Cancer Dataset
Coeffecients of B
   -34.2597
   53.8172
    1.0915
    0.2912
   22.8282
Proportion of correction predictions = 0.976786
1b) Logistic Regression using Gradient Descent iterates
The following is the plot for the error in iterates of beta as a function of iterations.
This method converges takes a very long time to converge.
```


1c) Logistic Regression using Newton-Raphson iterates The following is the plot for the error in iterates of beta as a function of iterations. This method converges in just 8 iterations.

Published with MATLAB® R2018a

a)
$$L_{\beta}(\chi, y) = \prod_{i=1}^{n} L_{\beta}(\chi_{i}, y_{i}) \left(\frac{\partial \chi_{i}}{\partial \chi_{i}} \right)$$

$$= \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-\pi_i \tau_{\beta})} \right)^{y_i} \left(\frac{\exp(-\pi_i \tau_{\beta})}{1 + \exp(-\pi_i \tau_{\beta})} \right)^{1-y_i^2} - 0$$

es. (1) the review breaks out.

c) Given the property
$$f(u) = \frac{1}{1 + enp(-u)}$$
 bring strictly increasing, lets take a look at the first part of eq. \mathbb{D}

When the doita is linearly seperable, xiB will be positive for all training points with Yi=1. So this part can always be made larger by increasing B (by multiples) - (deduced from that fact that f(u) is strictly increasing

The second term in O, is $\left(\frac{\exp(-x_{i}\tau_{\beta})}{1+\exp(-x_{i}\tau_{\beta})}\right)^{1-y_{i}}$ which is equal to 1-B(u). Since the data is lineaely syperable, NIB 20 for all training items with $y_i = 6$, on increasing multiples of β , 1-f(u) will get larger. This part also increases with B. Hence, when data is linearly separable, the Maximum Likelihood can be made larger by increasing B multiples. Enjoyed found (17 - (11) frieds on which () morecoing, us take a cook at the first parch O go fo ATIK = JV when the deler is liverely expended, eight well int positive for net maining points with your for the case stury be made danger by in a fill by martiples) - (didition by filling in.

musement aprile is continued increasing

```
% Homework 3 - Question 3
clear all;
data = readtable('bc wisc.csv');
data = data.Variables;
y = data(:,2);
X = data(:, 3:end);
methods = ["logistic";"lda"; "svm"];
disp("3a) Below is the average accuracy for each fold in 5-fold cross validation ");
average_accuracy=perform_cross_validation(X, y, 5, methods);
disp("Logistic Reg
                     LDA
                              SVM ");
disp(average accuracy);
disp("Average accuracy of LDA is highest in the all the folds, so we should select LDA");
disp(" ");
%3b
fprintf("3b) Visualisation of data.\n");
X = data(:,[23,30]);
y = data(:,2);
hold on
gscatter(X(:,1),X(:,2),y, 'br','o+')
B glm = glmfit(X,y,'binomial');
x_{axis} = [min(X(:,1)), max(X(:,1))];
y_axis_1 = -(B_glm(1) + B_glm(2) * x_axis)/B_glm(3);
[class,err,POSTERIOR,logp,B lda] = classify(X, X, y);
y_{axis_2} = -(B_{da(1,2).const+B_{da(1,2).linear(1)} * x_{axis})/B_{da(1,2).linear(2)};
svm mdl = fitcsvm(X,y);
y_axis_3 = -(svm_mdl.Bias+svm_mdl.Beta(1) * x_axis)/svm_mdl.Beta(2);
fprintf("Below is the scatter plot of data considering two featues: 21 and 28 \n");
plot(x_axis,y_axis_1, x_axis,y_axis_2, x_axis,y_axis_3);
ylim([-0.05 0.35]);
legend('Class 1', 'Class 2', 'Logistic Regression', 'LDA', 'SVM');
function average accuracy=perform cross validation(X,Y,k, methods)
    average accuracy = zeros(k,size(methods,1));
    for j = 1:length(methods)
        chunk size = size(Y,1)/k;
        for i=1:k
            index = (i * chunk_size) - chunk_size;
            X test = X(index+1:index+chunk size, :);
            Y test = Y(index+1:index+chunk size, :);
            X_train = [X(1:index, :);X(index+chunk_size+1:end, :)];
            Y train = [Y(1:index);Y(index+chunk size+1:end)];
            if methods(j) == "logistic"
                B glm = glmfit(X train, Y train, 'binomial');
                X_test = [ones(size(Y_test)), X_test];
                y_pred = X_test*B_glm>=0;
                average_accuracy(i,j) = sum(y_pred==Y_test)/length(y_pred);
            elseif methods(j) == "lda"
                y_pred = classify(X_test, X_train, Y_train);
                average_accuracy(i,j) = sum(y_pred==Y_test)/length(y_pred);
            else
                mdl = fitcsvm(X_train,Y_train);
                average_accuracy(i,j) = sum(Y_test==predict(mdl, X_test))/length(y_pred);
            end
        end
```

end end

3a) Below is the average accuracy for each fold in 5-fold cross validation

Logistic Reg	LDA	SVM
0.9375	0.9732	0.9554
0.9196	0.9286	0.9196
0.9732	0.9732	0.9732
0.9286	0.9554	0.9464
0.9464	0.9643	0.9554

Average accuracy of LDA is highest in the all the folds, so we should select LDA

3b) Visualisation of data.

Below is the scatter plot of data considering two featues: 21 and 28

Published with MATLAB® R2018a

```
data = readtable('wine.csv');
data = data.Variables;
y = data(1:end-50,1);
X = data(1:end-50,2:end);
y val = data(end-49:end,1);
X_val = data(end-49:end,2:end);
%a One-vs-One Classification
\label{lem:condition} \texttt{fprintf("4a) One-vs-One Classification $\n")}
exclude class = [1,2,3];
y_pred = [];
for i=1:length(exclude_class)
    y_train = y(y~=exclude_class(i));
    X_train = X(y~=exclude_class(i),:);
    [class,err,POSTERIOR,logp,B_lda] = classify(X_val, X_train, y_train);
    y_pred = [y_pred class];
predictions = zeros(size(y val));
ambiguous_classification = 0;correct_classification = 0;incorrect_classification = 0;
for i=1:length(X val)
    if y_pred(i,1) ~= y_pred(i,2) && y_pred(i,1) ~= y_pred(i,3) && y_pred(i,2) ~= y_pred(i,3)
        ambiguous_classification = ambiguous_classification + 1;
        predictions(i) = mode(y_pred(i,:));
    end
end
acc = sum(predictions==y_val)/length(y_val);
fprintf("Ambigous classification = %f \n", ambiguous_classification/length(X_val));
fprintf("Correct classification = %f \n", acc);
fprintf("Incorrect classification = %f \n", 1 - acc -ambiguous_classification/length(X_val));
disp(" ")
%a One-vs-All Classification
fprintf("4b) One-vs-All Classification \n")
y = data(1:end-50,1);
X = data(1:end-50,2:end);
y val = data(end-49:end,1);
X_val = data(end-49:end,2:end);
y_train(y==1)=1;
[class1,~,~,~,coeff] = classify(X_val, X, y_train);
w1 = [coeff(1,2).const ; coeff(1,2).linear];
y_train(y==2)=1;
y_train(y~=2)=0;
[class2, \sim, \sim, \sim, \sim] = classify(X_val, X, y_train);
y_pred = [class1 class2];
predictions = zeros(size(y_val));
for i=1:length(X_val)
    if y_pred(i,1) == 1 && y_pred(i,2) == 1
        ambiguous_classification = ambiguous_classification + 1;
    elseif y_pred(i,1) == 1
        predictions(i) = 1;
    elseif y_pred(i,2) == 1
        predictions(i) = 2;
    else
        predictions(i) = 3;
    end
acc = sum(predictions==y_val)/length(predictions);
fprintf("Ambigous classification = %f \n", ambiguous_classification/length(y_val));
fprintf("Correct classification = %f \n", acc);
fprintf("Incorrect classification = %f \n", 1-acc-ambiguous_classification/length(y_val));
disp(" ")
%c mnrfit
clear all;
```

```
fprintf("4c) Classification using mnrfit\n")
data = readtable('wine.csv');
data = data.Variables;
y = data(1:end-50,1);
X = data(1:end-50,2:end);
y_val = data(end-49:end,1);
X val = data(end-49:end,2:end);
B = mnrfit(X,y);
y_pred = mnrval(B,X_val);
[~,I]=max(y_pred, [], 2);
acc = sum(y_val ==I);
acc = acc/length(y_pred);
fprintf("Correct classification = %f \n", acc);
fprintf("Incorrect classification = %f \n", 1-acc);
disp(" ")
%1d
fprintf("4d) Based on the validation accuracy, I would choose One-vs-All or One-vs-One Classification Method \n");
```

```
4a) One-vs-One Classification
Ambigous classification = 0.000000
Correct classification = 0.980000
Incorrect classification = 0.020000

4b) One-vs-All Classification
Ambigous classification = 0.000000
Correct classification = 0.980000
Incorrect classification = 0.020000

4c) Classification using mnrfit
Correct classification = 0.860000
Incorrect classification = 0.140000
4d) Based on the validation accuracy, I would choose One-vs-All or One-vs-One Classification Method
```

Published with MATLAB® R2018a