

HACETTEPE UNIVERSITY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ELE338 MICROPROCESSOR ARCHITECTURE and PROGRAMMING LAB.

Project Name: PCB Trace Width Calculator

Project Explanation:

Calculation the width of a copper printed circuit board conductor or "trace" required to carry a given current while keeping the resulting increase in trace temperature below a specified limit. There are two calculations of width of trace with respect to be internal layers or external layers. Widths are significantly higher for traces on internal layers of a circuit board compared to those on a board's outer surface.

Project Requirements:

- 1. You can use equations given below for calculations.
- 2. For exponential operations, you can calculate an approximate value with the Taylor series. For example, you can use 1 + 1.3 (x 1) for $x^{1.3}$.
- 3. There should be realized two calculations for each internal or external layers.
 - a. One is to compute minimum trace width value according to the given current.
 - b. Another is to compute the maximum current value that trace can carry according to given trace width value
- 4. Therefore, there should be a menu to select which calculation will be done. Calculation options as follows:
 - a. Maximum current calculation from trace width in internal layer
 - b. Maximum current calculation from trace width in external layer
 - c. Minimum trace width calculation from current in internal layer
 - d. Minimum trace width calculation from current in external layer
- 5. With respect to calculations, the results should be plot on the screen like the figures above. Results should be printed on the screen in a clear and understandable way.
- 6. According to the calculation type, the required values should be inputted by the user, and the which units are wanted should be expressed.
- 7. Program should be able to terminate with the ESC key on the keyboard at any time and return to the operating system successfully.
- 8. The application should not get stuck in any infinite loops.

Equations:

$$Area = \left(\frac{\textit{Current}}{\textit{k*Temp_Rise}^b}\right)^{\frac{1}{\textit{c}}} \qquad \textit{Width} = \frac{\textit{Area}}{\textit{Thickness*1.378}}$$
 for internal layers: $\textit{k} = 0.024$, $\textit{b} = 0.44$, $\textit{c} = 0.725$ for external layers: $\textit{k} = 0.048$, $\textit{b} = 0.44$, $\textit{c} = 0.7$

Area	mils ²
Current	amps
Temp_Rise	deg C
Width	mils
Thickness	OZ

Common values: Thickness: 1 oz Ambient: 25 C Temp rise: 10 C

Project Inputs and Outputs:

	Inputs	Outputs
Calculation 1	Trace width	Maximum current
Calculation 2	Current	Minimum trace
		width

Project Grading:

Input and output interfaces: %20

Results of the trace width calculations: %30

Results of current calculations: %30

 Accuracy of general template and intelligibility of the codes: %20