Today

- Recap & questions from homework
- Coding likelihood intervals?

p-values

- Use constraint; prefer uncertainty intervals
- Key points
 - p-value is not the probability that: "null is true", "data were generated by the null", "by chance alone"
 - p < 0.05 does not mean "the null hypothesis is false"</p>
 - small p-value does not mean "the effect was large or important"
 - p > 0.05 does not mean "there was no effect", or "the null is true", or "the effect was small"
 - if many replicated studies have p > 0.05 it does not mean "there was no effect"

Likelihood in data science

- This week: pure likelihood inference
 - Learning goal: understand likelihood
- Likelihood is also used in
 - Frequentist: as a sample statistic
 - Bayesian: part of the posterior
 - Information theory: e.g. AIC
 - likelihood + complexity penalty

The likelihood principle

All the evidence in an observation (data) about the parameters (model) is in the likelihood function

The likelihood function

Counts all the ways the data could have happened for a given model or hypothesis

The likelihood

Probability of the data given a model

$$P(y|\theta_2)$$

A conditional probability

FIGURE 2.3. After eliminating paths inconsistent with the observed sequence, only 3 of the 64 paths remain.

Paths for data

FIGURE 2.3. After eliminating paths inconsistent with the observed sequence, only 3 of the 64 paths remain.

What is the likelihood for 2 blue + 1 white in any order?

given M₂

FIGURE 2.3. After eliminating paths inconsistent with the observed sequence, only 3 of the 64 paths remain.

What is the likelihood for 2 blue + 1 white in any order?

given M₂

Likelihood inference for the linear model

Model algorithm

Writing down the model:

$$y \sim \text{Normal}(\mu, \sigma)$$

$$\mu = \beta_0 + \beta_1 x$$

Algorithm:

```
lmod <- function(b0, b1, x) {
    return(b0 + b1 * x)
}
ystoch <- function(mu=lmod(b0, b1, x), sigma) {
    return(rnorm(n=length(mu), mean=mu, sd=sigma))
}</pre>
```

Simulating the model

ystoch (mu=lmod (b0=300, b1=-9, x=x), sigma=30)

Likelihood for the model:

$$L(\theta) = P(y \mid \theta) = P(y \mid \beta_0, \beta_1, \sigma)$$

 $dnorm(y, mean = beta_0 + beta_1 * x, sd)$

Total likelihood for a data set

One data point: $P(y_1 | \theta)$

All data points: $\prod_{i}^{n} P(y_i | \theta)$

because probabilities multiply together to give total probability (*n* is the number of datapoints). Independence is assumed.

Support function

The log likelihood:

$$\sum_{i}^{n} \ln P(y_i \mid \theta)$$

Instead of multiplying small probabilities, it is more accurate and convenient to sum their logs.

```
sum(dnorm(y, mean=beta_0 + beta_1 * x, sd, log=TRUE))
```

Training algorithm: Maximum likelihood

The values of the parameters that maximize the likelihood. In other words, the model that maximizes the probability of the data.

An optimization problem.

In practice: minimize the negative log likelihood. The model with the most support, has the smallest negative log likelihood.

Training algorithm

```
Find maximum
                                            likelihood estimates
                                            (MLE) for all 3
lmod \leftarrow function(b0, b1, x)  {
                                            parameters
    return(b0 + b1 * x)
    call the linear model
lm_nll <- function(p, y, x)</pre>
    mu < -lmod(b0=p[1], b1=p[2], x=x)
    nll <- -sum(dnorm(y, mean=mu, sd=p[3], log=TRUE))</pre>
    return(nll)
                                  minus sum log likelihoods
fitlm <- optim(p=start pars, lm nll, y=y, x=x)
fitlm
```

Training general approach

- 1) process model function
 - the biology
 - > biomod(parameters)
- 2) nll function (error distribution)
 - the stochasticity or error
 - > -sum(ddist(data,dpar=biomod,error parameters,log=T))
- 3) optimize
 - find biology parameters and error parameters
 - > optim(parameters, nllfunc, data)
- This recipe is the same no matter how complicated the process model or what the error distribution is

Inference algorithm

$$\frac{P(y|\theta_2)}{P(y|\theta_1)}$$
 Likelihood ratio

Bayes rule to the rescue:

$$\frac{P(\theta_2|y)}{P(\theta_1|y)} = \frac{kP(y|\theta_2)}{kP(y|\theta_1)} = \frac{P(y|\theta_2)}{P(y|\theta_1)} = LR$$

for each pair of models in a set calculate likelihood ratio judge the relative evidence for the models

$$\frac{P(y|\beta_{1i})}{P(y|\beta_{1MLE})}$$

Compare β_1 values for model *i* against MLE model

Calibrating likelihood ratio

- Measure strength of evidence
- How strong do you think it is?
- Two bags with many marbles
 - Bag 1: half white, half blue
 - Bag 2: all white
- 3 whites LR = $2^3 = 8$ $\frac{P(3 \text{ white } | \text{bag 2})}{P(3 \text{ white } | \text{bag 1})} = \frac{1}{\left(\frac{1}{2}\right)^3} = 2^3 = 8$
- 5 whites $LR = 2^5 = 32$
- 10 whites LR = 2^{10} = 1024

Likelihood profile & interval

Grid search β_1 while optimizing β_0

Compared to SSQ

Likelihood with a Normal distribution

Likelihood for a dataset

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2} \cdot \frac{(y_{i} - \mu_{i})^{2}}{\sigma^{2}}}$$

pdf of the Normal distribution

 y_i are the data points μ_i is the mean relationship σ^2 is the variance

Negative log likelihood

$$-\ln(L(\theta)) = n \left[\ln(\sigma) + \frac{1}{2}\ln(2\pi)\right] + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu_i)^2$$
This is the SSQ!
So, minimizing the nll is the same as minimizing the SSQ

Constant w.r.t μ

Notation (equivalent variants)

$$L(\theta) = \mathcal{L} = P(y \mid \theta)$$
 Probability of the data given the model parameters

"The likelihood of the model is the probability of the data given the model"

The following is equivalent:

$$L(y;\theta) = P(y \mid \theta)$$

Notice that we use a semicolon or comma here rather than a vertical bar

"The likelihood function is the probability of the data given the model"

Sometimes you may see it this way (e.g. Edwards 1992. "Likelihood".):

$$L(\theta \mid y) = P(y \mid \theta)$$

"The likelihood of the model given the data ..."

The vertical bar is the conditional operator.

Hilborn and Mangel (1997) and some other places in ecology/evolution:

$$L(y \mid \theta) = P(y \mid \theta)$$

This is probably not technically correct.

But DON'T read it thus "The likelihood of the data given the model ..."

Coding likelihood intervals

- Do it for your data
- Code at end of 06_3_likelihood_inference.Rmd