Method-2
Let
$$f(x)=2x^3-2x-5$$

Here
$$2x_3-2x-5=0$$

$$\therefore 2x3=2x+5$$

$$\therefore x3=2x+52$$

$$\therefore x=3\sqrt{(2x+5)/2}$$

$$\therefore \phi(x) = 3 \sqrt{(2x+5)/2}$$

Here
$$f(1.5)=-1.25<0$$
 and $f(1.8)=3.064>0$

: Root lies between 1.5 and 1.8

$$x0=1.5+1.82=1.65$$

$$x_1 = \phi(x_0) = \phi(1.65) = 1.607$$

$$x_1 = \phi(x_0) = \phi(1.65) = 1.607$$

 $x_2 = \phi(x_1) = \phi(1.607) = 1.6014$

$$x_3 = \phi(x_2) = \phi(1.6014) = 1.6007$$

$$x4 = \phi(x_3) = \phi(1.6007) = 1.6006$$

Approximate root of the equation 2x3-2x-5 using Iteration method is 1.6006 (After 4 iterations)

n	x_0	$x_1=\phi(x_0)$	Update	Difference x1-x0
2	1.65	1.607	<i>x</i> 0= <i>x</i> 1	0.043
3	1.607	1.6014	<i>x</i> 0= <i>x</i> 1	0.0056
4	1.6014	1.6007	<i>x</i> 0= <i>x</i> 1	0.0007
5	1.6007	1.6006	<i>x</i> 0= <i>x</i> 1	0.0001

Find the positive root of $x^3 - 2x - 8 = 0$ by method of successive substitution correct upto two places of decimal.

Solution

$$f(x) = x^3 - 2x - 8$$

To find the approximate location of the root (+ ive) we try to evaluate the function values at different x and tabulate as follows :

х	0	1	2	3	x > 3
f(x)	-8	-9	-4	13	+ ive
Sign of f(x)	-	ı	_	+	+

The root lies between 2 and 3. Let us choose the initial approximation as $x_0 = 2.5$.

Let us express f(x) = 0 as $\ x=\varphi(x)$ in the following forms and check whether $|\ \varphi'(\alpha)|<1$ for

$$x = 2.5$$
.

(i)
$$x = x^3 - x - 8$$

(ii)
$$x = \frac{1}{2}(x^3 - 8)$$

(iii)
$$x = (2x + 8)^{\frac{1}{3}}$$

We see that in cases (i) and (ii) $|\phi'(x)| > 1$, hence we should discard these

representations. As the third case satisfies the condition,
$$|\phi'(x)| = \left|\frac{1}{3(2x+8)^{\frac{2}{3}}}\right| < 1$$

for x = 2.5 we have the iteration scheme as,

$$x_{n+1} = (2x_n + 8)^{\frac{1}{3}}$$

Starting from $x_0 = 2.5$, we get the successive iterates as shown in the table below :

n	0	1	2	3
Xn	2.5	2.35	2.33	2.33

Find a root of an equation $f(x)=x^2+2x-8$ between 1 and 4, using Bisection method

Solution:

Here $x_2+2x-8=0$

Let
$$f(x)=x^2+2x-8$$

Here

x	1	2	3	4
f(x)	- 5	0	7	16

Here f(2)=0

Root of the equation x_2+2x-8 is 2

Bisection method solve the equ.x2+2x-8=0 in the interval [1,4].Use4iterations. x^2+2^*x-8

Step	x 0	x 1	x 2	f(x2)
1	1.000000	4.000000	2.500000	3.250000
2	1.000000	2.500000	1.750000	-1.437500
3	1.750000	2.500000	2.125000	0.765625
4	1.750000	2.125000	1.937500	-0.371094