ENPM 692 MANUFACTURING AND AUTOMATION

Smart Manufacturing-Network-centric manufacturing

Time: Wednesdays 7:00pm - 9:40pm

JMP 2222

Dr. Mahesh Mani, PhD

Email: mmani@umd.edu

Lectures

Lecture 1	1/29/2025	Introduction Lecture
Lecture 2	2/5/2025	Additive Manufacturing- technologies
Lecture 3	2/12/2025	Additive Manufacturing- capabilities and applications
Lecture 4	2/19/2025	Sustainable Manufacturing –Overview
Lecture 5	2/26/2025	Sustainable Manufacturing Practicality
Lecture 6	3/5/2025	Industrial Robotics
Lecture 7	3/12/2025	Guest Lecture
Spring Break	3/19/2025	No Lecture-Spring Break
Lecture 8	3/26/2025	Manufacturing Simulation
Lecture 9	4/2/2025	Digital Manufacturing
Lecture 10	4/9/2025	Network Centric Manufacturing
Lecture 11	4/16/2025	Smart Manufacturing Platforms
Lecture 12	4/23/2025	Smart Manufacturing Platforms
Lecture 13	4/30/2025	Final - Project Presentations
Lecture 14	5/7/2025	Final - Project Presentations
Final Report	5/15/2025	Submit Final Reports

Final Project Requirements

Technical report presenting proposals for making production more efficient.

- Choose any relevant manufacturing scenario
- Technical report summarizes
 - problem definition, goal and scope of the production scenario,
 - research and analysis,
 - smart manufacturing recommendations.
- Oral presentation with clear illustrations, within allotted time
- Reflect on classmates' presentations and provide feedback.

Final Report on 15th May?

Smart Manufacturing

What is Smart Manufacturing?

Smart manufacturing marries information, technology and human ingenuity to bring about a rapid revolution in the development and application of manufacturing intelligence to every aspect of business. It will fundamentally change how products are invented, manufactured, shipped and sold. It will improve worker safety and protect the environment by making zero-emissions, zero-incident manufacturing possible. It will help keep jobs in this country by keeping manufacturers competitive in the global marketplace despite the substantially higher cost of doing business in the United States.

Ref: Time MagazineSMcoverstory

Smart Manufacturing

Smart Manufacturing is the information-driven, event-driven, efficient and collaborative orchestration of business, physical and digital processes within plants, factories and across the entire value chain.

Strategy

Smart, modern factories are interconnected with suppliers, distributors, customers, and business systems via information technology (data, voice, mobile, etc.) to create a highly optimized and competitive business enterprise.

Ten Priority Actions for SM

Figure ES-2. Ten Priority Actions for Smart Manufacturing

Industrial Community Modeling and Simulation Platforms for Smart Manufacturing

- Create community platforms (networks, software) for the virtual plant enterprise
- Develop next generation toolbox of software and computing architectures for manufacturing decision-making
- Integrate human factors and decisions into plant optimization software and user interfaces
- Expand availability of energy decision tools (energy dashboards, automated data feedback systems. energy 'apps' for mobile devices) for multiple industries and diverse skill levels

Affordable Industrial Data Collection and Management Systems

- Establish consistent, efficient data methods for all industries (data protocols and interfaces. communication standards)
- Develop robust data collection frameworks (sensors/ data fusion, machine and user interfaces, data recording and retrieval tools)

Enterprise-wide Integration: Business Systems, Manufacturing Plants, and Suppliers

- Optimize supply chain performance 8. Develop open platform software through common reporting and rating methods (dashboard reports, metrics, common data architecture and language)
- and hardware to integrate and transfer data between small and medium enterprises (SMEs) and original equipment manufacturers (OEMs) (data sharing systems and standards, common reference architectures)
- Integrate product and manufacturing process models (software, networks, virtual and real-time simulations, data transfer systems)

Education and Training in Smart Manufacturing

10. Enhance education and training to build workforce for smart manufacturing (training modules, curricula, design standards, learner interfaces)

Network-centric Manufacturing

Technologies: Making it happen

Manufacturing Trends

Mass production or production-driven manufacturing

Flow production, series production, standardized products

Customer-driven manufacturing

Built-to-order, configurable products

Network-centric manufacturing

Variety, collaborative composable on demand networks

Networked Enterprises

- Collection of business processes
- > Consists of many networks:
 - o design,
 - o production,
 - distribution,
 - o Others

Network-centric computer aided product realization (CAPR)

Enabling Technologies?

Dimensions of Product Life Cycle

Knowledge Representation

A product is represented by a hierarchy of entities of the class Artifact, which is an aggregation of Function, Form and Behavior.

Form

Rupture Disc

Digital Picture

Detailed Design

3D Model

Function

Simplified Function Flow

Function Links

Links between Function and Artifact

Product Representation: Summary

Communication Levels

Content, Language, and Expressivity

Design-Manufacturing Integration

A Broad Overview of Standards

ISA 95 Model for Enterprise-Control

System Integration

Representative Standards

Roadmap for Systems Integration

Self Integrating Systems: Achieving Semantic Interoperability

To achieve semantic interoperability we will need to encode semantics of the domain. Ontologies provide one such path.

What Is An Ontology

- An ontology is an explicit description of a domain:
 - concepts
 - properties and attributes of concepts
 - constraints on properties and attributes
 - Individuals (often, but not always)
- An ontology defines
 - a common vocabulary
 - a shared understanding

Kinds of Ontologies

Glossaries & Data Dictionaries

Thesauri, Taxonomies MetaData, XML Schemas, & Data Models Formal Ontologies & Inference

Semantic interoperability of product information

Semantic interoperability: Technical approach

Why is all this important?

Example 1: Manufacturing on Smart Grid using Renewable Energy

Example 2: Virtual Manufacturing

Establish the VME test bed to include simulations of manufacturing supply chains, facilities, systems, operations, and processes as well as interface specifications, testing tools, and data sets

Internal- External Testing Services for Applications and Interfaces

Supply Chain Simulation

Example 3: Testing Interoperable Virtual to Real-World Environment

stations

Discussions

A Vision for Manufacturing Information Network

A widely available, easy to use service to:

- discover and connect design and manufacturing services
- securely exchange information
- develop a plug and play model evolving networks

Features of MIN

- Heterogeneous networks of design and manufacturing services
- No single, top-down-designed architecture
- Decentralized bottom-up deployment of services responding to specific opportunities/needs
- Need for interoperability among services of vastly different granularities

Services in Strawman Manufacturing Information Network (MIN)

Code	Description	
S1	Client	
S2	Designer	
S3	Manufacturer	
S4	Supplier	
S5	Warehouse	
S6	Locator	

Sample Set of Transactions for MIN

Code	Description	From service	To service
T1	Designer identification	Designer	Locator
T2	Manufacturer identification	Manufacturer	Locator
T3	Supplier identification	Supplier	Locator
T4	Warehouse identification	Warehouse	Locator
T5	Designer selection	Client	Locator
	Designer alternates	Locator	Client
	Designer approval*	Client	Locator
T6	Initial client specs	Client	Designer
	Design proposal	Designer	Client
	Design approval*	Client	Designer
Т7	Manufacturer selection	Designer (or client)	Locator
	Manufacturer alternates	Locator	Designer (or client)
	Manufacturer approval*	Designer (or client)	Locator
Т8	Manufacturing specifications	Designer	Manufacturer
	Manufacturer feedback	Manufacturer	Designer
	Manufacturing approval*	Designer	Manufacturer
Т9	Supplier selection	Manufacturer	Locator
	Supplier alternatives	Locator	Manufacturer
	Supplier approval*	Manufacturer	Locator

Interaction Diagram: Manufacturing Straw Man Use Case

Manufacturing Strawman Use Case

Challenges for MIN

- Model services in Design and Manufacturing
- Maintain different use case scenarios
- Provide location services based on demand
- Test service to service interaction requirements
- Simulate different MIN architectural models
- Apply Complex Adaptive Systems theory to characterize and model supply chains

Ν

Composable Virtual Manufacturing Networks

- Dynamically created from global resources
- Service oriented architecture
- Communications infrastructure that automates, as much as possible, the exchange of required manufacturing- and business-related knowledge

Ν

Composable Virtual Manufacturing Networks

Services: engineered for interoperability, supports open environment.

Knowledge Repositories: support s structured and unstructured information, semantically rich metadata, advertisement services

Brokers: bureau services, dynamically assemble components belonging to different applications into integrated processes

Courtesy: Subrahmanian

Homework Assignment

Explore Smart Manufacturing Platforms

- Industrial Internet Reference Architecture (IIRA)
- Reference Architectural Model for Industrie (RAMI) 4.0

Create 4 slides on what you learnt

- Send the slides to Dhairya Shah by 4/15
- Present and discuss in the next class 4/16