

Lecture 04: Attention mechanism

Radoslav Neychev

Words alignment

Attention

Attention

Main idea:

on each step of the **decoder**, use **direct connection to the encoder** to focus on a particular part of the source sequence

Seq2seq with attention **Attention** Weighted sum of all output encoder states **Attention** distribution **Attention**

scores

Encoder

Seq2seq with attention **Attention** output **Attention** Concatenate distribution **Attention** scores Encoder

Attention output **Attention** distribution Attention scores Encoder

Attention in equations

Denote encoder hidden states $\mathbf{h}_1,\dots,\mathbf{h}_N\in\mathbb{R}^k$ and decoder hidden state at time step t $\mathbf{s}_t\in\mathbb{R}^k$

The attention scores \mathbf{e}^t can be computed as dot product

$$\mathbf{e}^t = [\mathbf{s}^T \mathbf{h}_1, \dots, \mathbf{s}^T \mathbf{h}_N]$$

Then the attention vector is a linear combination of encoder states

$$\mathbf{a}_t = \sum_{i=1}^N oldsymbol{lpha}_i^t \mathbf{h}_i \in \mathbb{R}^k$$
 , where $oldsymbol{lpha}_t = \operatorname{softmax}(\mathbf{e}_t)$

Attention provides interpretability

- We may see what the decoder was focusing on
- We get word alignment for free!

Attention advantages

- "Free" word alignment
- Better results on long sequences

Image source: Neural Machine Translation by Jointly Learning to Align and Translate

Attention variants

- Basic dot-product (the one discussed before): $e_i = s^T h_i \in \mathbb{R}$
- Multiplicative attention: $e_i = s^T W h_i \in \mathbb{R}$
 - \bigcirc $W \in \mathbb{R}^{d_2 \times d_1}$ weight matrix
- Additive attention: $e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$
 - \circ $extbf{W}_1 \in \mathbb{R}^{d_3 imes d_1}, extbf{W}_2 \in \mathbb{R}^{d_3 imes d_2}$ weight matrices
 - \circ $v \in \mathbb{R}^{d_3}$ weight vector

Self-Attention

Self-Attention at a High Level

"The animal didn't cross the street because it was too tired"

- What does "it" in this sentence refer to?
- We want self-attention to associate "it" with "animal"

 Self-attention is the method the Transformer uses to bake the "understanding" of other relevant words into the one we're currently processing

Self-Attention at a High Level

What are the query, key, value vectors?

They're abstractions that are useful for calculating and thinking about attention.

STEP 2:

calculate a score

(score each word of the input sentence against the current word) Input

Embedding

Queries

Keys

Values

Score

STEP 5:

multiply each value vector by the softmax score

STEP 6:

sum up the weighted value vectors

Self-Attention

STEP 1: create Query, Key, Value

STEP 3: divide by $\sqrt{d_k}$

STEP 2: calculate scores

STEP 4. A sufficient

STEP 4: softmax

STEP 5: multiply each value vector by the softmax score

STEP 6: sum up the weighted value vectors

Self-Attention: Matrix Calculation

Pack embeddings into matrix **X**

Multiply X by weight matrices we've trained (Wk, Wq, Wv)

Image source: https://jalammar.github.io/illustrated-transformer/

Self-Attention: Matrix Calculation

Image source: https://jalammar.github.io/illustrated-transformer/

Image source: https://jalammar.github.io/illustrated-transformer/

1) Concatenate all the attention heads

2) Multiply with a weight matrix W° that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Why Multi-Head Attention?

Attention head: Who

Attention head: Did What?

Attention head: To Whom?

Attention vs. Multi-Head Attention

Attention: a weighted average

Multi-Head Attention:

parallel attention layers with different linear transformations on input and output.

Transformer outro

The Transformer

The Transformer

The Transformer

The Encoder Side

the word in each position flows through its own path in the encoder 43

Outro

- Attention mechanism allows to "attend all positions" in the original sequence (or any other input with internal structure)
- Attention mechanism requires more computational resources than original seq2seq models
- Change of the model architecture affects the training procedure, so be careful with intuitive explanations

More on translation quality evaluation

BLEU

BLEU (Bilingual Evaluation Understudy) compares the machine-written translation to human-written translation, and computes a similarity score based on:

- n-gram precision
- penalty for too-short system translations (brevity penalty)

$$BLEU = ext{brevity penalty} \cdot \left(\prod_{i=1}^n ext{precision}_i
ight)^{1/n} \cdot 100\%$$

brevity penalty =
$$min\left(1, \frac{\text{output length}}{\text{reference length}}\right)$$

Perplexity

$$PP(W) = P(w_1, w_2, .., w_N)^{-rac{1}{N}} = \sqrt[N]{rac{1}{P(w_1, w_2, .., w_N)}} = \sqrt[N]{rac{1}{\prod_{i=1}^N P(w_i | w_1, .., w_{i-1})}}$$

WER (Word Error Rate)

$$WER = rac{S+D+I}{N} = rac{S+D+I}{S+D+C}$$

- S is the number of substitutions,
- D is the number of deletions,
- I is the number of insertions,
- C is the number of correct words,
- N is the number of words in the reference (N = S + D + C)

ROUGE

- ROUGE Recall-Oriented Understudy for Gisting Evaluation
- Recall in the context of ROUGE means how much of the reference summary is the system summary recovering or capturing
- **BLEU** is focusing on **precision**:
 - overlapping_words / total_words_in_system_summary
- ROUGE is focusing on recall:
 - overlapping_words / total_words_in_reference_summary

ROUGE - Recall-Oriented Understudy for Gisting Evaluation

- ROUGE-N: Overlap of N-grams between the system and reference summaries.
- ROUGE-L: Longest Common Subsequence (LCS) based statistics. Longest common subsequence problem takes into account sentence level structure similarity naturally and identifies longest co-occurring in sequence n-grams automatically.
- ROUGE-W: Weighted LCS-based statistics
- etc

Seq2seq with attention

Seq2seq with attention

Machine Translation

