DM	W
----	---

	DHW						
	Assignment 1 Shashwat Shah						
	60004220126						
	Pre-Processing -						
1	Arranged Data: 13,15,16,16,19,20,20,21,22,22,25,25						
	Arranged Data: 13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,30,33,33,35,35,35,36,40,45,46,52,70						
	a) Mean & Median						
	$\hat{z} = \hat{z}_{xi}$						
	121						
	n						
	= 13+ 15+ 46+52+70						
	27						
	$= 809 27 \bar{z} = 29.96 $						
	D) medan = (n+1) to value						
(2)	2)						
	= 27+1						
	2						
	28 = 14th value						
	2						
	Median = 25						
	6) Mode (Also comment on modality)						
	13,15,19,21,30,36,40,45,46,52,70 occurs 1 time						
	16,20,22,33 ocus 2 times						
	25, 35 occus 4 times, Hence the lateret is bimodal						
Jundaram	FOR EDUCATIONAL USE with 25 235 as modes						

	1) Boxplot						
	13 10 15 35 70						
	o Q ₁ Q ₃						
	9) How is awartie another graph different from another plot A another plot is a graphical method used to show the						
<i>E</i> :	approximate percentage of values below or early to the industry						
	auntic information for all the data, where the value measured for the independent valuebles are plotted against their correspondly another. A another and plot grophs the another on univalent defiberon against the correspondly another the correspondly another the correspondly another the correspondly another of another univalent defiberon						
1.5							
	Both are display range of values meanined for their values						
	correpondry distrinuion and poner one plotted that correspon to						
	the anothe value of the two distributions						
(5 0)							
92	Age Frearing						
	6-15 450						
	51-86 700 81-110 44						
	21 10						
	compute an approximate median value for the data.						
	From the table N = 3194						
	Median = N 1597th value = media = 205-50.5						
Sundaram	2 FOR EDUCATIONAL USE						

	Median = L + (N/2 - (Z grea)). winth							
	frea (modian)							
	$L_{1} = 20.5$ $N = 3194$ $2(4ree) = 200 + 456 + 300$							
	Free median ~ 1500 wistn = 30							
	Median = 20.5 + 1597 - 956 × 30							
	1500							
	= 33.44 years							
	age 23 23 27 27 39 41 47 49 50							
	jat 1. 9.5 7.8 17.8 31.4 25.9 21.4 27.2 31.2							
	age 52 54 54 56 57 58 58 60 61							
	1. Jot / 34.6 42.5 28.8 33.4 30.2 34.1 32.9 41.2 35.7							
	a) Calculate mean, median, SD. of age & Jat							
	men gono age = 836 = 46.44							
	18							
	Median = $50+52 = 51$							
	2							
	$5D = [2(x,-\bar{x})^2] = [2972.2] = [2.85]$							
	1 18							
ndaram	FOR EDUCATIONAL USE							
11								

4	(22,1 42 10) & (20,0 36,8)		
	: Euclidean Distance		
	$= \sqrt{(x_{i_1} - x_{i_1})^2 + (x_{i_2} - x_{i_2}) + (x_{i_3} - x_{i_3})^2}$		
	$= \sqrt{(22-20)^2 + (1-0)^2 + (42-36)^2 + (10-2)}$		
-	2 \(\sqrt{45}		
	= 6·708		
=	: Minowski dictana		
	$= \frac{ x_{i_1} - x_{i_1} ^n + x_{i_2} - x_{i_2} ^n + \dots + x_{i_n} - x_{i_n} ^n}{ x_{i_n} - x_{i_n} ^n}$		
$h = 3$ $g' \sim 2$			
	$= \sqrt[3]{ 22-20 ^3 + 1-0 ^3 + 42-36 ^3 + (0-9)^3 }$		
	= $8+1+216+8$		
_	$=$ $\sqrt{8+1+216+8}$		
	= 3 233		
	= 6.153		
	Manhathan Distance		
	$= x_{i_1} - x_{j_1} + x_{i_2} - x_{j_2} + \dots$		
	= 22-20 + 1-0 + 42-36 + (0-8)		
	2 2 4 1 + 6 + 2		
	11		
	= 11		
	FOR EDUCATIONAL USE		
<u>Jundaram</u>	TON EDUCATIONAL USE		
!!			

	: Supremum Distance					
	$= \lim_{n \to \infty} \left(\frac{z}{x_{ij}} - \frac{x_{ij}}{x_{ij}} - \frac{1}{x_{ij}} \right)^{n}$					
	$= \max_{f} x_{ij} - x_{i1} $					
	$=$ $\max(2,1,6,2)$					
•	= 6					
5	Suppose we have 2-0 data set					
	A, A.					
	X1 1.5 1.7					
	X2 2 1.9					
	263 1.6 1.8					
	X, 1.2 1.5					
	25 1.5/ 1.0					
	Consider me data as 2.D data points. Other a new					
	data point, oc = 1.4, 1.61 as a avery rank the					
	database points based on similarity with the arrang					
	Using Euclidean distance Manhattan distance supremin					
	dictance and costne similarity.					
	> cosine sini will = xt.y x1 - trampose at x					
	(
Gundaram	FOR EDUCATIONAL USE					

					•		
	From ponts (1.4,1.6) we get						
	Euclidean Manhattan Supremum coome similarity						
	ا عو	0.1414	0 . 2		0.1	0.99999	
	x2 0.6708 0 9				0.6	0 , 99575	
	203	0-2828	0 .4		6 . 2	० . १००१ 7	
	24	0.2236	و ، ح		0.2	6 . 999 03	
	x= 6.6083 0.7		t	.0.6 6.96536			
	:- Ranhs,						
-	Euclidean: oc, x, x, x, sc, x2						
		Manhalten:	$\frac{x}{x}, \frac{x}{x}, \frac{x}{x}$	5,	2 5 72		
		Supremum	2,2, 2	X	5 22		
		cosine 2	2, 13, 24	122	25		
					1		
-	Norm	alise the	date set	4			
	-			-			
	<u></u>		Α.	A-2			
		∞_1	0.661602	6	.74984		
		22	6.72500	6	68875		
		٥٠,	0 . 66436	e	ं रममन पा		
	24 6.62470 0.78687						
	x5 6.83250 0.55 470						
	: Recomput Euclidean End Dist						
	21 0.00415						
	Rank		α	2	6.0927		
	x ,	x_3 x_4	22,25	×,	6 ,00	181	
	, ,	, ,	ı	DCH	0.04	409	
ndaram	FOR EDUCATIONAL USE 6 , 26320						