Fine moduli spaces the case of Grassmannians

Francesco Sorce

Università di Pisa Dipartimento di Matematica

Contents

1	Mo	duli Spaces
	1.1	Introduction to moduli problems
	1.2	Fine and Coarse moduli spaces
	1.3	Zariski sheaves and gluing of fine moduli spaces
2	Gra	assmannians
	2.1	Set-theoretic definition
		2.1.1 The Plücker embedding
	2.2	Definition as a projective scheme
	2.3	Moduli functor
		2.3.1 Affine cover
		2.3.2 Representability of the Grassmannian functor

Chapter 1

Moduli Spaces

Set theoretic issues: whenever I write that something is an element of a class, what I mean is that that object satisfies the proposition that defines the class.

1.1 Introduction to moduli problems

Definition 1.1 (Presheaf).

A contravariant functor $F: \mathcal{C}^{op} \to \text{Set}$ is called a **presheaf** on \mathcal{C} .

Definition 1.2 (Moduli problem).

Let S be a scheme. A presheaf on Sch/S is called a **moduli problem**.

Theorem 1.3 (Yoneda Lemma).

|TO DO|

Lemma 1.4.

The Yoneda embedding preserves limits.

Proof.

Suppose X is the limit of the diagram $\{f_{ij}: X_j \to X_i\}$. If we apply the Yoneda embedding to the diagram we obtain

$$\left\{ \circ f_{ij}: h_{X_j} \to h_{X_i} \right\}$$

Let F be any presheaf on \mathcal{C} and suppose that we have morphisms $F \to h_{X_i}$ which make the diagram commute, then for all $T \in \mathcal{C}$ we have compatible and natural $F(T) \to \operatorname{Hom}(T, X_i)$. If $f \in T(T)$ then these arrows define several $f_i \in \operatorname{Hom}(T, X_i)$ which compose respecting the diagram. By the universal property of limits this defines uniquely a morphism $f_{\ell} \in \operatorname{Hom}(T, X)$ and we see that the assignment $f \mapsto f_{\ell}$ is the unique map from F(T) to $\operatorname{Hom}(T, X)$ which makes the diagram in Set commute. Since all that we have done is natural in T we have effectively constructed a morphism $F \to h_X$ as we desired.

1.2 Fine and Coarse moduli spaces

1.3 Zariski sheaves and gluing of fine moduli spaces

Definition 1.5 (Equalizer).

Let \mathcal{C} be a category, $A, B, C \in \mathcal{C}$ and $f, g : B \to C$. We say that the pair (A, h) is an

equalizer of the diagram

$$B \stackrel{f}{\Longrightarrow} C$$

if $h:A\to B$ is such that $f\circ h=g\circ h$ and if (Q,q) is another such pair then there exists a unique morphism $Q\to A$ which makes the diagram commute

$$\begin{array}{ccc}
A & \xrightarrow{h} & B & \xrightarrow{f} & C \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
Q & & & & & \downarrow & & \downarrow \\
Q & & & & & & \downarrow & & \downarrow \\
\end{array}$$

Definition 1.6 (Zariski sheaf).

A moduli problem $F \in (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ is a **Zariski sheaf** if for any S-scheme X and any Zariski open cover $\{U_i \to X\}$ the following diagram is an equalizer

$$F(X) \longrightarrow \prod_{k} F(U_{k}) \Longrightarrow \prod_{i,j} F(U_{i} \cap U_{j})$$

where the arrows are induced by the inclusions.

Proposition 1.7 (Representable moduli functors are Zariski sheaves).

Let $F: (Sch/S)^{op} \to Set$ be a moduli problem, then if there exists a fine moduli space M for F it must be the case that F is a Zariski sheaf.

Proof.

By composing with the natural isomorphism we may assume $F = h_M$. Let X be an S-scheme and $\{U_i \to X\}$ a Zariski open cover for it. We want to show that the following diagram is an equalizer

$$\operatorname{Mor}(X, M) \longrightarrow \prod_{k} \operatorname{Mor}(U_{k}, M) \Longrightarrow \prod_{i,j} \operatorname{Mor}(U_{i} \cap U_{j}, M)$$

The arrows in this case correspond to restriction of morphisms, so the thesis is equivalent to the fact that restriction to a given set doesn't depend on the intermediate restrictions and that morphisms of schemes that coincide on double intersections glue to the union, both of which are true.

Definition 1.8 (Subfunctor).

Let $G: \mathcal{C} \to \mathcal{D}$ be a functor. A **subfunctor** of G is a pair (F, i) consisting of a functor $F: \mathcal{C} \to \mathcal{D}$ and a natural transformation $i: F \to G$ such that $i_X: F(X) \to G(X)$ is a monomorphism for all $X \in \mathcal{C}$.

Remark 1.9.

If $\mathcal{D} = \text{Set}$ then we can express the same data equivalently as follows:

A functor $F: \mathcal{C} \to \text{Set}$ is a subfunctor of $G: \mathcal{C} \to \text{Set}$ if for all $X \in \mathcal{C}$ and for all $f \in \text{Mor}_{\mathcal{C}}(A, B)$

$$F(X) \subseteq G(X)$$
, and $F(f) = G(f)|_{F(A)}$.

In this case we write $F \subseteq G$.

Definition 1.10 (Fibered product of presheaves).

Let $F, G, H: \mathcal{C}^{op} \to \text{Set}$ be presheaves together with two natural transformations $\xi^1: F \to H$ and $\xi^2: G \to H$. We define their fibered product as follows: If $X \in \mathcal{C}$ then

$$(F \times_H G)(X) = F(X) \times_{H(X)} G(X),$$

if $f: A \to B$ then¹

$$(F \times_H G)(f): \begin{array}{ccc} F(B) \times_{H(B)} G(B) & \longrightarrow & F(A) \times_{H(A)} G(A) \\ (b_1, b_2) & \longmapsto & (F(f)(b_1), G(f)(b_2)) \end{array}.$$

Definition 1.11 (Open subfunctor).

Let $F: (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ be a moduli problem. We say that a subfunctor $G \subseteq F$ is **open** if for any S-scheme T and any natural transformation $h_T \to F$, the pullback $h_T \times_F G$ is representable by an open subscheme of T.

Remark 1.12.

By the Yoneda lemma, giving a natural transformation like in the above definition is equivalent to choosing a family $\xi \in F(T)$. We can thus rephrase the definition as follows:

A subfunctor $G \subseteq F$ is open if for any S-scheme T and any family $\xi \in F(T)$ there exists an open subscheme $U \subseteq T$ such that the following diagram is natural in R and commutes

and a map $f \in \text{Mor}(R,T)$ factors as $R \stackrel{g}{\to} U \subseteq T$ if and only if $F(f)(\xi) \in G(R)^2$.

Definition 1.13 (Open cover of a functor).

Let $F: (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ be a moduli problem. A collection of open subfunctors $\{F_i\}$ is an **open cover** of F if for any S-scheme T and any natural transformation $h_T \to F$, the open subschemes U_i that represent the pullbacks $h_T \times_F F_i$ form an open cover of T.

Remark 1.14.

Like above, we can rephrase the definition as follows:

A collections of open subfunctors $F_i \subseteq F$ form an open cover of F if for any S-scheme T and any family $\xi \in F(T)$, there exists an open cover $\{U_i\}$ of T such that $\xi|_{U_i} \in F_i(U_i)$ for all i.

The definitions above let us state the following criterion for representability:

Proposition 1.15 (Representability by open cover).

Let $F: (Sch/S)^{op} \to Set$ be a moduli problem which is a Zariski sheaf and let $\{F_i\}$ be an open cover of it by representable subfunctors, then F is representable.

Proof.

Let X_i be the fine moduli space for F_i and let $\xi_i \in F_i(X_i)$ be their universal families. Note that for all S-schemes T we have

$$(F_i \times_F F_j)(T) = F_i(T) \times_{F(T)} F_j(T) = F_i(T) \cap F_j(T) \subseteq F(T),$$

¹the map is well defined because $\xi_A^1(F(f)(b_1)) = H(f)(\xi_B^1(b_1)) = H(f)(\xi_B^2(b_2)) = \xi_A^2(G(f)(b_2))$.
2the "only if" is trivially true by commutativity but for the "if" we are using the fact that $h_U \cong h_T \times_F G$.

it follows that $F_i \times_F F_j = F_j \times_F F_i \doteqdot F_{i,j}$. We can define analogously $F_{i,j,k}$.

Since F_j is an open subfunctor of F, there exists an open subscheme $U_{ij} \subseteq X_i$ which represents $h_{X_i} \times_F F_j \cong F_i \times_F F_j = F_{i,j}$. We can define $U_{ji} \subseteq X_j$ similarly and since they are both moduli spaces for $F_{i,j}$ they are isomorphic. Let $\varphi_{ji}: U_{ij} \to U_{ji}$ be the isomorphism given by $\varphi_{ji} = \alpha_{U_{ij}}(id_{U_{ij}})$ for α natural isomorphism which makes the following diagram commute

Note that if T is an S-scheme and $f \in h_{U_{ij}}(T)$ then

$$h_{\varphi_{ii}}(f) = \alpha_{U_{ij}}(id_{U_{ij}}) \circ f = \alpha_T(id_{U_{ij}} \circ f) = \alpha_T(f),$$

so α is the image of φ_{ii} under the Yoneda embedding.

We now want to show that the X_i can be glued along the U_{ij} using the isomorphisms φ_{ji} . First we need to show that $\varphi_{ji}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$ and then we have to verify the cocycle condition $\varphi_{ki} = \varphi_{kj} \circ \varphi_{ji}$.

The first condition follows immediately from the fact that F_k is an open subfunctor and our construction of the φ_{ji} .

Since the Yoneda embedding preserves limits (1.4) it preserves fibered products, so we see that the following diagram commutes

thus to prove that $\varphi_{kj} \circ \varphi_{ji} = \varphi_{ki}$ it is enough to see that $id_{F_{i,j,k}} \circ id_{F_{i,j,k}} = id_{F_{i,j,k}}$.

We can thus define X to be the scheme obtained by gluing the X_i along the U_{ij} . Observe that $\xi_i = \varphi_{ji}^* \xi_j$, so if we look at these families as elements of F(X) we see that $\xi_i|_{U_{ij}} = \xi_j|_{U_{ij}}$. Since F is a Zariski sheaf, the ξ_i can be glued to a family $\xi \in F(X)$.

We now only need to verify that (X, ξ) is a fine moduli space for F:

Let T be an S-scheme and let us consider a family $\zeta \in F(T)$. Since $\{F_i\}$ is an open cover of F, there exists an open cover $\{V_i\}$ of T such that $\zeta_{|_{V_i}} \in F_i(V_i) \cong \operatorname{Mor}(V_i, X_i)$. Since F is a sheaf and $\zeta_i|_{V_i \cap V_j} = \zeta_j|_{V_i \cap V_j}$, the morphisms $V_i \to X_i$ corresponding to the ζ_i glue to a morphism $f: T \to X$ such that $f^*\xi = \zeta$ (by construction). \square

Chapter 2

Grassmannians

2.1 Set-theoretic definition

Definition 2.1 (Grassmannian).

Let $k \leq n$ be a pair of positive integers. We define the (n, k)-Grassmannian, denoted $Gr(k, n, \mathbb{K})$, as the set of (n - k)-dimensional \mathbb{K} -vector subspaces of \mathbb{K}^n .

Remark 2.2 (Definition via quotients).

We may equivalently define Gr(k, n) to be the following set:

$$\{\ker \varphi \mid \varphi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k), \operatorname{rnk} \varphi = k\}.$$

Lemma 2.3.

Let $\varphi, \psi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k)$ be linear maps of full rank. The following conditions are equivalent:

- 1. $\ker \varphi = \ker \psi$,
- 2. there exists $\theta \in GL(\mathbb{K}^k)$ such that $\varphi = \theta \circ \psi$.

Proof.

We shall prove the two implications:

2.
$$\Longrightarrow$$
 1. $\ker(\theta \circ \psi) = \psi^{-1}(\ker \theta) = \psi^{-1}(\{0\}) = \ker \psi$.

1. \Longrightarrow 2. Let z_1, \dots, z_{n-k} be a basis of $\ker \varphi = \ker \psi$ and let $z_1, \dots, z_{n-k}, v_1, \dots, v_k$ be a completion of it to a basis of \mathbb{K}^n . By construction $\varphi(v_1), \dots, \varphi(v_k)$ and $\psi(v_1), \dots, \psi(v_k)$ are bases of \mathbb{K}^k . Let θ be the linear automorphism of \mathbb{K}^k determined by $\theta(\psi(v_i)) = \varphi(v_i)$ for all i. By construction θ is nonsingular and φ agrees with $\theta \circ \psi$ on a basis of \mathbb{K}^n .

Corollary 2.4.

We may identify Grassmannians in terms of linear maps as follows:

$$\operatorname{Gr}(k,n) = \left\{ \varphi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k) \mid \varphi \text{ surjective.} \right\}_{\sim}$$

where $\varphi \sim \psi$ if and only if $\exists \theta \in GL(\mathbb{K}^k)$ such that $\varphi = \theta \circ \psi$.

¹we shall often omit the field when clear from context

2.1.1 The Plücker embedding

To make the study of Grassmannians easier, we want to identify Gr(k, n) with a subset of some projective space.

Notation 2.5.

We shall use the following notation for brevity:

$$\left\{\alpha: (\mathbb{K}^n)^k \to \bigwedge^k \mathbb{K}^k \mid \alpha \text{ multilinear, alternating}\right\} = \bigwedge^k \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k)$$

Definition 2.6 (Plücker map).

Let $k \leq n$ be a pair of positive integers. We define the **Plücker map** as:

$$\phi: \begin{array}{ccc} \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n,\mathbb{K}^k) & \longrightarrow & \bigwedge^k \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n,\mathbb{K}^k) \\ \varphi & \longmapsto & \bigwedge^k \varphi \end{array},$$

where
$$(\wedge^k \varphi)(v_1, \dots, v_k) = \varphi(v_1) \wedge \dots \wedge \varphi(v_k) = \det (\varphi(v_1)| \dots | \varphi(v_k)) e_1 \wedge \dots \wedge e_k$$
.

Remark 2.7

The codomain of the Plücker map is isomorphic to $\bigwedge^k \mathbb{K}^n$, indeed

$$\bigwedge^k \operatorname{Hom}_{\mathbb{K}} \left(\mathbb{K}^n, \mathbb{K}^k \right) \stackrel{\operatorname{Univ.Prop.}}{\cong} \operatorname{Hom}_{\mathbb{K}} \left(\bigwedge^k \mathbb{K}^n, \bigwedge^k \mathbb{K}^k \right) \cong \left(\bigwedge^k \mathbb{K}^n \right)^{\vee} \cong \bigwedge^k \mathbb{K}^n.$$

Under this isomorphism the map takes on the following form

Remark 2.8.

The image of the Plücker map is a cone.

Proof.

For any $\lambda \in \mathbb{K}^*$ and any map $\varphi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k)$ we see that

$$\lambda \phi(\varphi) = \phi(\alpha \circ \varphi),$$

for any automorphism α of \mathbb{K}^k with determinant λ .

Remark 2.9.

 $\operatorname{rnk} \varphi < k \text{ if and only if } \phi(\varphi) = 0.$

Proof.

 $\phi(\varphi)$ is the zero map if an only if $\varphi(v_1), \dots, \varphi(v_k)$ are always linearly dependent, i.e. if and only if φ is not of full rank.

Lemma 2.10.

Let $\varphi : \mathbb{K}^n \to \mathbb{K}^k$ be a full rank linear map, then

$$\ker \varphi = \{ z \in \mathbb{K}^n \mid \forall w_2, \cdots, w_k \in \mathbb{K}^n, \ \phi(\varphi)(z, w_2, \cdots, w_k) = 0 \}.$$

²For example
$$\alpha(e_i) = \begin{cases} \lambda e_1 & \text{if } i = 1 \\ e_i & \text{otherwise} \end{cases}$$

Proof.

If $\varphi(z) = 0$ then for any $w_2, \dots, w_k \in \mathbb{K}^k$ we see that

$$\phi(\varphi)(z, w_2, \cdots, w_k) = 0 \land \varphi(w_2) \land \cdots \land \varphi(w_k) = 0.$$

Suppose now that $\varphi(z) \neq 0$ and let v_2, \dots, v_k be such that $\{\varphi(z), v_2, \dots, v_k\}$ form a basis for \mathbb{K}^k . Since φ is surjective there exist w_2, \dots, w_k such that $\varphi(w_i) = v_i$ for all $2 \leq i \leq k$. By construction

$$\phi(\varphi)(z, w_2, \cdots, w_k) = \varphi(z) \wedge v_2 \wedge \cdots \wedge v_k \neq 0.$$

Proposition 2.11.

Let \sim be the equivalence relation defined in corollary (2.4), then for any two full rank linear maps $\varphi, \psi : \mathbb{K}^n \to \mathbb{K}^k$

$$\varphi \sim \psi \iff \exists \lambda \in \mathbb{K}^* \ s.t. \ \phi(\varphi) = \lambda \phi(\psi).$$

Proof.

Let us prove both implications:

 \Longrightarrow If $\varphi = \theta \circ \psi$ for $\theta \in GL(\mathbb{K}^k)$ then it follows easily from known properties of the determinant that

$$\phi(\varphi) = \phi(\theta \circ \psi) = (\det \theta)\phi(\psi).$$

From lemma (2.3) we see that it is enough to prove that $\ker \varphi = \ker \psi$. We conclude by applying lemma (2.10) as follows:

$$\ker \varphi = \{ z \in \mathbb{K}^n \mid \forall w_2, \cdots, w_k \in \mathbb{K}^n, \ \phi(\varphi)(z, w_2, \cdots, w_k) = 0 \}$$

$$= \{ z \in \mathbb{K}^n \mid \forall w_2, \cdots, w_k \in \mathbb{K}^n, \ \lambda \phi(\psi)(z, w_2, \cdots, w_k) = 0 \} =$$

$$= \{ z \in \mathbb{K}^n \mid \forall w_2, \cdots, w_k \in \mathbb{K}^n, \ \phi(\psi)(z, w_2, \cdots, w_k) = 0 \} = \ker \psi.$$

Remark 2.12.

Because of proposition (2.11) and remark (2.9) there exists a unique h such that the diagram commutes

$$\left\{ \varphi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^{n}, \mathbb{K}^{k}) \mid \operatorname{rnk} \varphi = k \right\} \xrightarrow{[\phi]} \mathbb{P}(\bigwedge^{k} \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^{n}, \mathbb{K}^{k}))$$

$$\downarrow^{\pi}$$

$$\operatorname{Gr}(k, n)$$

Moreover, such an h must be injective by proposition (2.11).

Definition 2.13 (Plücker embedding).

We define the **Plücker embedding** as follows

$$\mathrm{Pl}: \begin{array}{ccc} \mathrm{Gr}(k,n) & \longrightarrow & \mathbb{P}(\bigwedge^k \mathbb{K}^n) \\ [\varphi]_{\sim} & \longmapsto & [(\det(\varphi(e_{i_1}) \mid \cdots \mid \varphi(e_{i_k})))_{1 \leq i_1 < \cdots < i_k \leq n}]_{\mathbb{K}^*} \end{array}.$$

Remark 2.14.

If ζ is the isomorphism $\bigwedge^k \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k) \to \bigwedge^k \mathbb{K}^n$ discussed during remark (2.7), we see that the following diagram commutes

This proves that the Plücker embedding is well defined and injective.

Let us consider the following map: let $\psi : \bigwedge^k \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k)$ be any alternating multilinear map, we define $\Phi(\psi)$ as

$$\Phi(\psi): v \longmapsto \sum_{I \in \omega(k,n)} \bigwedge^{k+1} \mathbb{K}^n$$

Proposition 2.15.

An alternating multilinear map $\psi \in \bigwedge^k \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k)$ is in the image of the Plücker map ϕ if and only if $\Phi(\psi)$ has rank at most n-k.

Proof.

Suppose that $\psi = \phi(\varphi)$ and let $\{z_1, \dots, z_k, z_{k+1}, \dots, z_n\}$ be a basis of \mathbb{K}^n such that the first k vectors are a basis of $\ker \varphi$. Then

$$\Phi(\psi)(v) = \sum_{I \in \omega(k,n)} \det(\varphi(z_{i_1} \mid \dots \mid \varphi(z_{i_k}))) z_I \wedge v.$$

2.2 Definition as a projective scheme

In order to write K-algebra morphisms that correspond to what we've done geometrically, we shall switch to the language of matricies.

Definition 2.16 (Multiindicies).

We define a (k, n)-multiindex as an element of $\{1, \dots, n\}^k$. Our notation for a multiindex I will usually be $I = (i_1, \dots, i_k)$.

If A is a $k \times n$ matrix and I is a (k, n)-multiindex, we denote the I-minor by A_I , i.e.

$$A_I = \begin{pmatrix} a_{1,i_1} & \cdots & a_{1,i_k} \\ \vdots & \ddots & \vdots \\ a_{k,i_1} & \cdots & a_{k,i_k} \end{pmatrix}.$$

We denote the set of **ordered** (k, n)-multiindicies with

$$\omega(k,n) = \{(i_1, \dots, i_k) \in \{1, \dots, n\}^k \mid i_1 < \dots < i_k\}.$$

Remark 2.17.

The set

$$\{e_{i_1} \wedge \cdots \wedge e_{i_k} \mid 1 \leq i_1 < \cdots < i_k \leq n\}$$

forms a basis for $\bigwedge^k \mathbb{K}^n$. For brevity, for all multiindicies $I = (i_1, \dots, i_k)$ we shall define

$$e_I = e_{i_1} \wedge \cdots \wedge e_{i_k}$$
.

Under the isomorphism $\operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n,\mathbb{K}^k)\cong\mathcal{M}(k,n)$ given by choosing a basis, we may redefine

$$Gr(k, n) = \{A \in \mathcal{M}(k, n) \mid \operatorname{rnk} A = k\}_{\sim},$$

where $A \sim B \iff \exists P \in GL_k \ s.t. \ A = PB$,

$$\phi: \begin{array}{ccc} \mathcal{M}(k,n) & \longrightarrow & \bigwedge^k \mathbb{K}^n \\ A & \longmapsto & \sum_{I \in \omega(k,n)} \det A_I e_I \end{array}$$

and

$$P1: \begin{array}{ccc} Gr(k,n) & \longrightarrow & \mathbb{P}(\bigwedge^k \mathbb{K}^n) \\ [A]_{\sim} & \longmapsto & [\sum_{I \in \omega(k,n)} \det A_I e_I]_{\mathbb{K}^*} \end{array}.$$

To connect Grassmannians to the world of representable functors we shall redefine them scheme-theoretically by mimicing the Plücker embedding using rings

Definition 2.18 (Braket ring).

We define the **braket ring** as the ring of polynomial functions on $\bigwedge^k \mathbb{K}^n$, i.e.

$$\mathcal{B}_{k,n} \doteq \frac{\mathbb{K}[z_I \mid I \in \{1, \cdots, n\}^k]}{(\{z_I - \operatorname{sgn}(\sigma) z_{\sigma(I)}\}_{\sigma \in S_i})} \cong \mathbb{K}[z_I \mid I \in \omega(k, n)]$$

Notation 2.19.

Let $\mathbb{K}[x_{1,1},\cdots,x_{k,n}]$ denote the polynomial ring with $k \cdot n$ variables. We will interpret this as the coordinate ring of $\mathcal{M}(k,n)$. Following this description we denote the **generic matrix** by

$$X = \begin{pmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{k,1} & \cdots & x_{k,n} \end{pmatrix}$$

and by the same token we denote by X_I the generic $k \times k$ minor determined by the multiindex I and by det X_I the formal determinant of this minor.

We shall also denote $\mathbb{K}[x_{1,1},\cdots,x_{k,n}]$ by the compacter notation $\mathcal{O}(\mathcal{M}(k,n))$.

Remark 2.20.

The familiar $\mathcal{M}(k,n)$ and $\bigwedge^k \mathbb{K}^n$ can be identified with the \mathbb{K} -points of the affine schemes $\operatorname{Spec} \mathcal{O}(\mathcal{M}(k,n))$ and $\operatorname{Spec} \mathcal{B}_{k,n}$ respectively³.

Definition 2.21 (Plücker ring homomorphism).

We define the **Plücker ring homomorphism** as

$$\phi^{\#}: \begin{array}{ccc} \mathcal{B}_{k,n} & \longrightarrow & \mathcal{O}(\mathcal{M}(k,n)) \\ z_I & \longmapsto & \det X_I \end{array}$$

³Example 2.3.32 from Qing Liu

Proposition 2.22.

The induced map $\operatorname{Spec} \phi^{\#}: \mathbb{A}^{kn}(\mathbb{K}) \to \mathbb{A}^{\binom{n}{k}}(\mathbb{K})$ is equal to the Plücker map $\phi: \mathcal{M}(k,n) \to \bigwedge^{k} \mathbb{K}^{n}$ under the afformentioned identification, i.e. for any matrix $A \in \mathcal{M}(k,n)$ with entries $a_{i,j}$ we have

$$(\phi^{\#})^{-1}((x_{i,j}-a_{i,j}))=(z_I-\det A_I).$$

Proof.

First we observe that for any multiindex I

$$\det X_I - \det A_I \in (x_{i,j} - a_{i,j}),$$

thus $(z_I - \det A_I) \subseteq (\phi^{\#})^{-1}((x_{i,j} - a_{i,j})).$

Since $(z_I - \det A_I)$ is a \mathbb{K} -point, it is in particular a maximal ideal of the Braket ring, thus we have the desired equality if $1 \notin (\phi^{\#})^{-1}((x_{i,j} - a_{i,j}))$, which is the case because otherwise $(x_{i,j} - a_{i,j})$ would not be proper.

Lemma 2.23.

The kernel of the Plücker homomorphism is homogeneous.

Proof.

By definition of homogeneous ideal, we want to show that if $f = \sum f_d$ for d homogeneous and $f \in \ker \phi^{\#}$ then $f_d \in \ker \phi^{\#}$ for all d.

Looking at the definition of $\phi^{\#}$ we see that $\phi^{\#}(f_d)$ is a homogeneous polynomial of degree kd, in particular if $d \neq h$ then $\deg \phi^{\#}(f_d) \neq \deg \phi^{\#}(f_h)$. Since

$$0 = \phi^{\#}(f) = \sum \phi^{\#}(f_d)$$

this proves that $\phi^{\#}(f_d) = 0$ for all d.

Since $\operatorname{Imm} \phi$ is closed and $V(\ker \phi^{\#}) = \overline{\operatorname{Imm} \phi}$, we can identify $\operatorname{Gr}(k,n)$ with $V_{+}(\ker \phi^{\#})$. This identification corresponds to the equality

$$\mathbb{P}(\operatorname{Imm} \phi) = V_{+}(\ker \phi^{\#})(\mathbb{K}).$$

2.3 Moduli functor

Let us consider the following functor

$$\mathbb{G}(k,n): \begin{array}{ccc} (\mathrm{Sch}/\mathbb{K})^{op} & \longrightarrow & Set \\ T & \longmapsto & \{\alpha: \mathcal{O}_T^n \twoheadrightarrow Q\}_{\sim} \end{array}$$

where Q is a locally free sheaf of rank k on T and two surjections $\alpha: \mathcal{O}_T^n \twoheadrightarrow Q$, $\beta: \mathcal{O}_T^n \twoheadrightarrow V$ are equivalent if and only if there exist an isomorphism of sheaves $\theta: Q \to V$ such that the diagram commutes

$$\begin{array}{ccc}
\mathcal{O}_T^n & \xrightarrow{\alpha} & Q \\
& & \downarrow_{\theta} \\
V
\end{array}$$

In this this section we will prove that the Grassmannian scheme $V_+(\ker \phi^{\#})$ defined above represents this functor.

⁴Known result of algebraic geometry

- 2.3.1 Affine cover
- 2.3.2 Representability of the Grassmannian functor