MAT 352 Assignment — 1

Computer Science Department

Question:

Proof of the Inclusion-Exclusion Rule

Submitted to Dr. Adinya

 $March\ 30,\ 2023$

Name of Students

S/N	Name	Matric Number
1	Adebowale Joseph Akintomiwa	214846
2	Adedapo Anjorin	214864
3	Adegbola Olatunde Williams	207186
4	Adeleke Sherifdeen Adeboye	214848
5	Adeleke Timothy Toluwani	214849
6	Adelowo Samuel Damilare	214850
7	Adeoti Warith Adetayo	214851
8	Adim Chimaobi Solomon	222455
9	Adisa Inioluwa Christiana	214853
10	Ahmad Animasaun	214863
11	Ajayi Prince Ayokunle	215221
12	Akinade Faith Eniola	222459
13	Akinrinola Akinfolarin	205526
14	Akinrinola, Blessing Opemipo	214857
15	Akinwusi Ifeoluwa	214858
16	Alao Tawakalit Omowunmi	222461
17	Alatise Oluwaseun Abraham	214860
18	Arowolo Ayomide Stephen	214865
19	Brai Daniel	214868
20	Chinedu Promise Okafor	213930
21	Daniel Emmanuel Oghenetega	224870
22	Denedo Oghenetega	214873
23	Emiade James	214874

24	Farayola Joshua Olatunde	214878
25	Godwin Daniel	214871
26	Ibraheem Nuh Babatunde	214879
27	Ikwuegbu Michael	214881
28	Kareem Mustapha Babatunde	214883
29	Kayode Peter Temitope	208077
30	Kehinde Boluwatife Soyoye	214916
31	Kip Charles Okechukwu Emeka	215061
32	Matric	Number
33	Kubiat Laura	214884
34	Lawal Uchechukwu Adebayo	214885
35	Matthews Victoria Olayide	214886
36	Nwatu Chidinma Augustina	214890
37	Odulate Oluwatobi Gabriel	214893
38	Ogbolu Precious Chiamaka	214894
39	Oghie Daniel O.	214895
40	Ogunesan Rhoda Oluwatosin	214897
41	Ogunyemi Temidayo Samuel	214898
42	Ojewale Opeoluwa David	214899
43	Okafor Lisa Chisom	214901
44	Okoro Joshua Akachukwu	214902
45	Okumagba Oghenerukevwe Miracle	222498
46	Olagidi Joshua	222500
47	Olalere Khadijat Titilayo	222502
48	Olatunji Michael Oluwayemi	214903
49	Olawale Eniola Emmanuel	214904

50	Olorogun Ebikabowei Caleb	214906
51	Oluwatade Iyanuoluwa	214907
52	Oluwayelu Oluwanifise	215257
53	Onasoga Oluwapelumi Idris	214909
54	Oyekanmi Eniola	214913
55	Sadiq Peter	214914
56	Salami Lateefat Abimbola	214915
57	Stephen Chidiebere Ivuelekwa	214882
58	Toluwanimi Oluwabukunmi Osuolale	214912
59	Ubaka Amazing-Grace Onyiyechukwu	214918
60	Uchechukwu Ahunanya	214854
61	Wisdom Oyor	215206

Proof of the Inclusion-Exclusion Rule

The Inclusion-Exclusion States that:

$$P(E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{n}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}) + \dots +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) + \dots +$$

$$(-1)^{n} \sum_{i_{1} < i_{2} < \dots < i_{n-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{n-1}}) +$$

$$(-1)^{n+1} P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{n})$$

$$(1)$$

where the summation $(-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_r})$ is taken over all the $\binom{n}{r}$ possible combinations.

Proof by Principle of Mathematical Induction

Proof by PMI involves two steps, the **Basic Step** where the rule shown for the base value/unit and the **Inductive step** which also involve two steps:

- 1. Making an assumption that the rule/relation holds for an arbitrary value n = k
- 2. Using this assumption to prove that the rule/relation holds for the $(n = k + 1)^{th}$ value.

0.1 The Basic Step

For the Induction-Exclusion Rule, the most basic value (base case) is when the number of events is 2 (i.e n = 2), therefore, the rule is applied as:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$
(2)

0.2 The Inductive Step

The assumption that it the rule holds for some n = k

It is assumed that the rule/relation holds for a n = k number of events. Therefore the equation below is noted.

$$P(E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k}) = \sum_{i=1}^{k} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}) + \dots +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) + \dots +$$

$$(-1)^{k} \sum_{i_{1} < i_{2} < \dots < i_{k-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k-1}}) +$$

$$(-1)^{k+1} P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{k})$$

$$(3)$$

The proof that the rule holds for n = k + 1

Now, the rule is also applied for n = k + 1 number of events:

$$P(E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k} \cup E_{k+1}) = \sum_{i=1}^{k+1} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}})$$

$$+ \dots + (-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}})$$

$$+ \dots + (-1)^{k+1} \sum_{i_{1} < i_{2} < \dots < i_{k}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}})$$

$$+ (-1)^{k+2} P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{k} \cap E_{k+1})$$

$$(4)$$

Consider that $P(E_1 \cup E_2 \cup E_3 \cup \cdots \cup E_k \cup E_{k+1})$ can be written as $P([E_1 \cup E_2 \cup E_3 \cup \cdots \cup E_k] \cup E_{k+1})$ wherer by " $E_1 \cup E_2 \cup E_3 \cup \cdots \cup E_k$ " is taken as a single event.

$$P(E_1 \cup E_2 \cup E_3 \cup \dots \cup E_k \cup E_{k+1}) = P([E_1 \cup E_2 \cup E_3 \cup \dots \cup E_k] \cup E_{k+1})$$
(5)

By applying the Base Relation of the Inclusion-Exclusion Rule as in equation (2) to the RHS of the equation (5) above and comparing with equation (4) the rule/relation can be proven.

So now:

$$P([E_1 \cup E_2 \cup E_3 \cup \dots \cup E_k] \cup E_{k+1}) = P(E_1 \cup E_2 \cup E_3 \cup \dots \cup E_k) + P(E_{k+1}) - P([E_1 \cup E_2 \cup E_3 \cup \dots \cup E_k] \cap E_{k+1})$$
(6)

The last term in equation (6) above can be expanded as:

$$P([E_1 \cup E_2 \cup E_3 \cup \dots \cup E_k] \cap E_{k+1}) = P([E_1 \cap E_{k+1}] \cup [E_2 \cap E_{k+1}] \cup \dots \cup [E_k \cap E_{k+1}])$$
 (7)

The RHS of equation (7) above can be further simplified by applying the Inclusion-Exclusion here again noting that $|P([E_1 \cap E_{k+1}] \cup [E_2 \cap E_{k+1}] \cup \cdots \cup [E_k \cap E_{k+1}])| = k$

$$P([E_{1} \cap E_{k+1}] \cup [E_{2} \cap E_{k+1}] \cup \dots \cup [E_{k} \cap E_{k+1}]) = \sum_{i=1}^{k} P(E_{i} \cap E_{k+1})$$

$$- \sum_{i_{1} < i_{2}} P([E_{i_{1}} \cap E_{k+1}] \cap [E_{i_{2}} \cap E_{k+1}])$$

$$+ \dots + (-1)^{r} \sum_{i_{1} < i_{2} \dots i_{r-1}} P([E_{i_{1}} \cap E_{k+1}] \cap [E_{i_{2}} \cap E_{k+1}] \cap \dots \cap [E_{i_{r-1}} \cap E_{k+1}])$$

$$+ \dots + (-1)^{k} \sum_{i_{1} < i_{2} \dots i_{k-1}} P([E_{i_{1}} \cap E_{k+1}] \cap [E_{i_{2}} \cap E_{k+1}] \cap \dots \cap [E_{i_{k-1}} \cap E_{k+1}])$$

$$+ (-1)^{k+1} P([E_{1} \cap E_{k+1}] \cap [E_{2} \cap E_{k+1}] \cap \dots \cap [E_{k} \cap E_{k+1}])$$

$$(8)$$

From Set Theory:

$$(A \cap B) \cap C = A \cap B \cap C$$
$$(A \cap B) \cap (A \cap C) = A \cap B \cap C$$

Some term in equation (8) can be rewritten as:

$$P([E_{i_1} \cap E_{k+1}] \cap [E_{i_2} \cap E_{k+1}]) = P(E_{i_1} \cap E_{i_2} \cap E_{k+1})$$

$$P([E_{i_1} \cap E_{k+1}] \cap [E_{i_2} \cap E_{k+1}] \cap \cdots \cap [E_{i_{r-1}} \cap E_{k+1}]) = P(E_{i_1} \cap E_{i_2} \cap \cdots \cap E_{i_{r-1}} \cap E_{k+1})$$

$$P([E_{i_1} \cap E_{k+1}] \cap [E_{i_2} \cap E_{k+1}] \cap \cdots \cap [E_{i_{k-1}} \cap E_{k+1}]) = P(E_{i_1} \cap E_{i_2} \cap \cdots \cap E_{i_{k-1}} \cap E_{k+1})$$

$$P([E_{1} \cap E_{k+1}] \cap [E_{2} \cap E_{k+1}] \cap \cdots \cap [E_{k} \cap E_{k+1}]) = P(E_{1} \cap E_{2} \cap \cdots \cap E_{k} \cap E_{k+1})$$

Therefore equation (8) is simplified as:

$$P([E_{1} \cap E_{k+1}] \cup [E_{2} \cap E_{k+1}] \cup \dots \cup [E_{k} \cap E_{k+1}]) = \sum_{i=1}^{k} P(E_{i} \cap E_{k+1})$$

$$- \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{k+1})$$

$$+ \dots + (-1)^{r} \sum_{i_{1} < i_{2} \dots i_{r-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r-1}} \cap E_{k+1})$$

$$+ \dots + (-1)^{k} \sum_{i_{1} < i_{2} \dots i_{k-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k-1}} \cap E_{k+1})$$

$$+ (-1)^{k+1} P(E_{1} \cap E_{2} \cap \dots \cap E_{k} \cap E_{k+1})$$

$$(9)$$

By substituting equation (3) and above equation (9) and in equation (6), equation (6) is then evaluated as:

$$P([E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k}] \cup E_{k+1}) = P(E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k}) + P(E_{k+1}) - P([E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k}] \cap E_{k+1})$$

$$= \sum_{i=1}^{k} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}) + \dots +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) + \dots +$$

$$(-1)^{k} \sum_{i_{1} < i_{2} < \dots < i_{k-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k-1}}) +$$

$$(-1)^{k+1} P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{k}) + P(E_{k+1})$$

$$- \left[\sum_{i=1}^{k} P(E_{i} \cap E_{k+1}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{k+1}) +$$

$$+ \dots + (-1)^{r} \sum_{i_{1} < i_{2} \dots i_{r-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r-1}} \cap E_{k+1}) +$$

$$+ \dots + (-1)^{k} \sum_{i_{1} < i_{2} \dots i_{k-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k-1}} \cap E_{k+1}) +$$

$$+ (-1)^{k+1} P(E_{1} \cap E_{2} \cap \dots \cap E_{k} \cap E_{k+1}) \right]$$

$$(10)$$

Note that the term " $(-1)^k \sum_{i_1 < i_2 < \dots < i_{k-1}} P(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_{k-1}})$ " can be contained in the terms " $(-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_r}) + \dots +$ " and therefore may be ignored. The equation is then reduced to:

$$P([E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k}] \cup E_{k+1})$$

$$= \sum_{i=1}^{k} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}) + \dots +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) + \dots +$$

$$(-1)^{k+1} P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{k}) + P(E_{k+1})$$

$$- \left[\sum_{i=1}^{k} P(E_{i} \cap E_{k+1}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{k+1}) +$$

$$+ \dots + (-1)^{r} \sum_{i_{1} < i_{2} \dots i_{r-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r-1}} \cap E_{k+1}) +$$

$$+ \dots + (-1)^{k} \sum_{i_{1} < i_{2} \dots i_{k-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k-1}} \cap E_{k+1})$$

$$+ (-1)^{k+1} P(E_{1} \cap E_{2} \cap \dots \cap E_{k} \cap E_{k+1}) \right]$$

$$(12)$$

Expand the bracket in equation (12) above and distribute the negative sign noting that $-1 \times (-1)^{a+1} = (-1)^{a+2}$

$$P([E_{1} \cup E_{2} \cup E_{3} \cup \cdots \cup E_{k}] \cup E_{k+1})$$

$$= \sum_{i=1}^{k} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}) + \cdots +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \cdots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{r}}) + \cdots +$$

$$(-1)^{k+1} P(E_{1} \cap E_{2} \cap E_{3} \cap \cdots \cap E_{k}) + P(E_{k+1})$$

$$- \sum_{i=1}^{k} P(E_{i} \cap E_{k+1}) + \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{k+1})$$

$$+ \cdots + (-1)^{r+1} \sum_{i_{1} < i_{2} \cdots i_{r-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{r-1}} \cap E_{k+1})$$

$$+ \cdots + (-1)^{k+1} \sum_{i_{1} < i_{2} \cdots i_{k-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{k-1}} \cap E_{k+1})$$

$$+ (-1)^{k+2} P(E_{1} \cap E_{2} \cap \cdots \cap E_{k} \cap E_{k+1})$$

Collecting like terms:

$$P([E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k}] \cup E_{k+1})$$

$$= \sum_{i=1}^{k} P(E_{i}) + P(E_{k+1})$$

$$- \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) - \sum_{i=1}^{k} P(E_{i} \cap E_{k+1})$$

$$+ \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}) + \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{k+1}) + \dots +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r-1}} \cap E_{k+1}) + \dots +$$

$$(-1)^{k+1} P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{k}) +$$

$$(-1)^{k+1} \sum_{i_{1} < i_{2} < \dots < i_{k-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k-1}} \cap E_{k+1}) +$$

$$(-1)^{k+2} P(E_{1} \cap E_{2} \cap \dots \cap E_{k} \cap E_{k+1})$$

Considering the collected like terms in equation (14) above, the terms can be collapsed as follows (including summation bounds):

$$\sum_{i=1}^{k} P(E_i) + P(E_{k+1}) = \sum_{i=1}^{k+1} P(E_i)$$
(15)

$$\sum_{1 \le i_1 < i_2 \le k} P(E_{i_1} \cap E_{i_2}) + \sum_{i=1}^k P(E_i \cap E_{k+1}) = \sum_{1 \le i_1 < i_2 \le k+1} P(E_{i_1} \cap E_{i_2})$$
(16)

$$\sum_{1 \le i_1 \le i_2 \le i_3 \le k} P(E_{i_1} \cap E_{i_2} \cap E_{i_3}) + \sum_{1 \le i_1 \le i_2 \le k} P(E_i \cap E_{k+1}) = \sum_{1 \le i_1 \le i_2 \le i_3 \le k+1} P(E_{i_1} \cap E_{i_2} \cap E_{i_3}) \quad (17)$$

$$\sum_{1 \leq i_{1} < i_{2} < \dots < i_{r \leq k} \leq k} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) + \sum_{1 \leq i_{1} < i_{2} \dots i_{r-1} \leq k} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r-1}} \cap E_{k+1})$$

$$= \sum_{1 < i_{1} < i_{2} \dots i_{r \leq k+1} \leq k+1} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) \quad (18)$$

$$P(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}) + \sum_{i_1 < i_2 \dots i_{k-1} \le k} P(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_{k-1}} \cap E_{i_{k-1}} \cap E_{k+1})$$

$$= \sum_{i_1 < i_2 \dots < i_k \le k+1} P(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}) \quad (19)$$

Substituting the collapsed equations (15) to (19) in equation (14):

$$P([E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{k}] \cup E_{k+1}) = \sum_{i=1}^{k+1} P(E_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq k+1} P(E_{i_{1}} \cap E_{i_{2}})$$

$$+ \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq k+1} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}})$$

$$+ \dots + (-1)^{r+1} \sum_{1 \leq i_{1} < i_{2} \dots i_{r} \leq k+1} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}})$$

$$+ \dots + (-1)^{k+1} \sum_{i_{1} < i_{2} \dots < i_{k} \leq k+1} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}})$$

$$+ (-1)^{k+2} P(E_{1} \cap E_{2} \cap \dots \cap E_{k} \cap E_{k+1})$$

$$(20)$$

Equation (20) above is equivalent to equation (4) (for the n = k + 1 number of events) and this concludes the proof for the Inclusion-Exclusion Rule.

Closing Statement

With the proof shown above, it can be said that for any n number of events, the Inclusion-Exclusion Rule:

$$P(E_{1} \cup E_{2} \cup E_{3} \cup \dots \cup E_{n}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}) + \dots +$$

$$(-1)^{r+1} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{r}}) + \dots +$$

$$(-1)^{n} \sum_{i_{1} < i_{2} < \dots < i_{n-1}} P(E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{n-1}}) +$$

$$(-1)^{n+1} P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{n})$$

is true!!!