Financial Engineering & Risk Management Including Dividends

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Including Dividends

- Consider again 1-period model and assume stock pays a proportional dividend of cS_0 at t=1.
- No-arbitrage conditions are now d + c < R < u + c.
- Can use same replicating portfolio argument to find price, C_0 , of any derivative security with payoff function, $C_1(S_1)$, at time t=1.
- Set up replicating portfolio as before:

$$uS_0x + cS_0x + Ry = C_u$$

$$dS_0x + cS_0x + Ry = C_d$$

Derivative Security Pricing with Dividends

- Solve for x and y as before and then must have $C_0 = xS_0 + y$.
- Obtain

$$C_{0} = \frac{1}{R} \left[\frac{R - d - c}{u - d} C_{u} + \frac{u + c - R}{u - d} C_{d} \right]$$

$$= \frac{1}{R} \left[q C_{u} + (1 - q) C_{d} \right]$$

$$= \frac{1}{R} \mathsf{E}_{0}^{\mathbb{Q}} [C_{1}].$$
(5)

- Again, can price any derivative security in this 1-period model.
- Multi-period binomial model assumes a proportional dividend in each period
 - so dividend of cS_i is paid at t = i + 1 for each i.
- Then each embedded 1-period model has identical risk-neutral probabilities
 - and derivative securities priced as before.
- In practice dividends are not paid in every period
 - and are therefore just a little more awkward to handle.

The Binomial Model with Dividends

Suppose the underlying security does not pay dividends. Then

$$S_0 = \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} \right] \tag{6}$$

- this is just risk-neutral pricing of European call option with K=0.
- Suppose now underlying security pays dividends in each time period.
- Then can check (6) no longer holds.
- Instead have

$$S_0 = \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} + \sum_{i=1}^n \frac{D_i}{R^i} \right] \tag{7}$$

- D_i is the dividend at time i
- and S_n is the ex-dividend security price at time n.
- Don't need any new theory to prove (7)
 - it follows from risk-neutral pricing and observing that dividends and S_n may be viewed as a portfolio of securities.

Viewing a Dividend-Paying Security as a Portfolio

ullet To see this, we can view the i^{th} dividend as a separate security with value

$$P_i = \mathsf{E}_0^{\mathbb{Q}} \left[\frac{D_i}{R^i} \right].$$

- Then owner of underlying security owns a "portfolio" of securities at time 0 value of this "portfolio" is $\sum_{i=1}^n P_i + \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} \right]$.
- But value of underlying security is S_0 .
- Therefore must have

$$S_0 = \sum_{i=1}^n P_i + \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} \right]$$

which is (7).

Financial Engineering & Risk Management

Pricing Forwards and Futures

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Pricing Forwards in the Binomial Model

• Have an *n*-period binomial model with u = 1/d.

- ullet Consider now a forward contract on the stock that expires after n periods.
- Let G_0 denote date t=0 "price" of the contract.
- Recall G_0 is chosen so that contract is initially worth zero.

Pricing Forwards in the Binomial Model

Therefore obtain

$$0 = \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n - G_0}{R^n} \right]$$

so that

$$G_0 = \mathsf{E}_0^{\mathbb{Q}} \left[S_n \right]. \tag{8}$$

• Again, (8) holds whether the underlying security pays dividends or not.

What is a Futures "Price"?

- ullet Consider now a futures contract on the stock that expires after n periods.
- Let F_t be the date t "price" of the futures contract for $0 \le t \le n$.
- Then $F_n = S_n$. Why?
- A common misconception is that:
 - (i) F_t is how much you must pay at time t to buy one contract
 - (ii) or how much you receive if you sell one contract

This is false!

- A futures contract always costs nothing.
- ullet The "price", F_t is only used to determine the cash-flow associated with holding the contract
 - so that $\pm (F_t F_{t-1})$ is the payoff received at time t from a long or short position of one contract held between t-1 and t.
- In fact a futures contract can be characterized as a security that:
 - (i) is always worth zero
 - (ii) and that pays a dividend of $(F_t F_{t-1})$ at each time t.

Pricing Futures in the Binomial Model

• Can compute time t = n - 1 futures price, F_{n-1} , by solving

$$0 = \mathsf{E}_{n-1}^{\mathbb{Q}} \left[\frac{F_n - F_{n-1}}{R} \right]$$

to obtain $F_{n-1} = \mathsf{E}_{n-1}^{\mathbb{Q}}[F_n]$.

• In general we have $F_t = \mathsf{E}_t^{\mathbb{Q}}[F_{t+1}]$ for $0 \leq t < n$ so that

$$F_{t} = \mathsf{E}_{k}^{\mathbb{Q}}[F_{t+1}]$$

$$= \mathsf{E}_{t}^{\mathbb{Q}}[\mathsf{E}_{t+1}^{\mathbb{Q}}[F_{t+2}]]$$

$$\vdots \qquad \vdots$$

$$= \mathsf{E}_{t}^{\mathbb{Q}}[\mathsf{E}_{t+1}^{\mathbb{Q}}[\cdots \mathsf{E}_{n-1}^{\mathbb{Q}}[F_{n}]]].$$

Pricing Futures in the Binomial Model

- Law of iterated expectations then implies $F_t = \mathsf{E}_t^{\mathbb{Q}}\left[F_n\right]$
 - so the futures price process is a Q-martingale.
- Taking t = 0 and using $F_n = S_n$ we also have

$$F_0 = \mathsf{E}_0^{\mathbb{Q}} \left[S_n \right]. \tag{9}$$

- Note that (9) holds whether the security pays dividends or not
 - dividends only enter through Q.
- Comparing (8) and (9) and we see that $F_0 = G_0$ in the binomial model
 - not true in general.

Financial Engineering & Risk Management

The Black-Scholes Model

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

The Black-Scholes Model

Black and Scholes assumed:

- 1. A continuously-compounded interest rate of r.
- 2. Geometric Brownian motion dynamics for the stock price, S_t , so that

$$S_t = S_0 e^{(\mu - \sigma^2/2)t + \sigma W_t}$$

where W_t is a standard Brownian motion.

- 3. The stock pays a dividend yield of c.
- 4. Continuous trading with no transactions costs and short-selling allowed.

Sample Paths of Geometric Brownian Motion

The Black-Scholes Formula

ullet The Black-Scholes formula for the price of a European call option with strike K and maturity T is given by

$$C_0 = S_0 e^{-cT} N(d_1) - K e^{-rT} N(d_2)$$

where

$$d_1 = \frac{\log(S_0/K) + (r - c + \sigma^2/2)T}{\sigma\sqrt{T}},$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

and $N(d) = P(N(0,1) \le d)$.

- ullet Note that μ does not appear in the Black-Scholes formula
 - just as p is not used in option pricing calculations for the binomial model.
- European put option price, P_0 , can be calculated from put-call parity

$$P_0 + S_0 e^{-cT} = C_0 + K e^{-rT}$$
.

The Black-Scholes Formula

- Black-Scholes obtained their formula using a similar replicating strategy argument to the one we used for the binomial model.
- In fact, can show that under the Black-Scholes GBM model

$$C_0 = \mathsf{E}_0^{\mathbb{Q}} \left[e^{-rT} \max(S_T - K, 0) \right]$$

where under \mathbb{Q}

$$S_t = S_0 e^{(\mathbf{r} - \mathbf{c} - \sigma^2/2)t + \sigma W_t}.$$

Calibrating a Binomial Model

- Often specify a binomial model in terms of Black-Scholes parameters:
 - 1. r, the continuously compounded interest rate.
 - 2. σ , the annualized volatility.
- Can convert them into equivalent binomial model parameters:
 - 1. $R_n = \exp\left(r\frac{T}{n}\right)$, where n = number of periods in binomial model
 - 2. $R_n c_n = \exp\left((r c)\frac{T}{n}\right) \approx 1 + r\frac{T}{n} c\frac{T}{n}$
 - 3. $u_n = \exp\left(\sigma\sqrt{\frac{T}{n}}\right)$
 - 4. $d_n = 1/u_n$

and now price European and American options, futures etc. as before.

Then risk-neutral probabilities calculated as

$$q_n = \frac{e^{(r-c)\frac{T}{n}} - d_n}{u_n - d_n}.$$

- Spreadsheet calculates binomial parameters this way
 - binomial model prices converge to Black-Scholes prices as $n \to \infty$.

The Binomial Model as $\Delta t \rightarrow 0$

- Consider a binomial model with n periods
 - each period corresponds to time interval of $\Delta t := T/n$.
- ullet Recall that we can calculate European option price with strike K as

$$C_0 = \frac{1}{R^n} \mathsf{E}_0^{\mathbb{Q}} \left[\max(S_T - K, 0) \right] \tag{10}$$

• In the binomial model can write (10) as

$$C_{0} = \frac{1}{R_{n}^{n}} \sum_{j=0}^{n} {n \choose j} q_{n}^{j} (1 - q_{n})^{n-j} \max(S_{0} u_{n}^{j} d_{n}^{n-j} - K, 0)$$

$$= \frac{S_{0}}{R_{n}^{n}} \sum_{j=\eta}^{n} {n \choose j} q_{n}^{j} (1 - q_{n})^{n-j} u_{n}^{j} d_{n}^{n-j} - \frac{K}{R_{n}^{n}} \sum_{j=\eta}^{n} {n \choose j} q_{n}^{j} (1 - q_{n})^{n-j}$$

where $\eta := \min\{j : S_0 u_n^j d_n^{n-j} \ge K\}.$

ullet Can show that if $n \to \infty$ then C_0 converges to the Black-Scholes formula.

Some History

- Bachelier (1900) perhaps first to model Brownian motion
 - modeled stock prices on the Paris Bourse
 - predated Einstein by 5 years.
- Samuelson (1965) rediscovered the work of Bachelier
 - proposed geometric Brownian motion as a model for security prices
 - succeeded in pricing some kinds of warrants
 - was Merton's doctoral adviser
- Itô (1950's) developed the Itô or stochastic calculus
 - the main mathematical tool in finance
 - Itô's Lemma used later by Black-Scholes-Merton
 - Doeblin (1940) recently credited with independently developing stochastic calculus
- Black-Scholes-Merton (early 1970's) published their papers
- Many other influential figures
 - Thorpe (card-counting and perhaps first to discover Black-Scholes formula?)
 - Cox and Ross
 - Harrison and Kreps

- . . .