МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М. А. БОНЧБРУЕВИЧА» (СпбГУТ)

ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА №1

Руководитель, старший преподаватель	подпись, дата	Гребенщикова А. А.
Исполнитель, группа ИКПИ-33	подпись, дата	Коньков М. Д.

Задание 1:

$$x_1 = 3$$
 $x_2 =$

$$\lambda = x_1 (c-1)$$

$$x_1 = 3$$
 $x_2 = 1$ $\lambda = x_1 \text{ (c-1)}$ $p_k(t) = ((\lambda t)k / k!) * e-\lambda t$

$$k = 0$$

$$t = x_2(c)$$

$$k = 0$$
 $t = x_2(c)$ $p_k(x_2) = ((x_1 * 1)0 / 0!) * e-3*1 \approx 0,0478 = 4,78%$

Задание 2

$$\lambda = x_1 \ (c-1)$$
 $t = x_2 \ (c)$

$$t = x_2(c)$$

$$p_k(t) = ((\lambda t)k / k!) * e-\lambda t = (3k / k!) * e-3$$

k	р
0	0.049787
1	0.149361
2	0.224042
3	0.224042
4	0.168031
5	0.100819
6	0.050409
7	0.021604
8	0.008102
9	0.002701
10	0.000810

$$P_{max} = 0.224042 \,$$

$$\lambda = x_2 \text{ (c-1)}$$
 $t = 0.01 \text{ (c)}$

$$p_k(t) = ((\lambda t) k \ / \ k!) * e-\lambda t = (0,01k \ / \ k!) * e-$$

k	р
0	0.990050
1	0.009900
2	0.000050
3	0.000000
4	0.000000
5	0.000000
6	0.000000
7	0.000000
8	0.000000
9	0.000000
10	0.000000

 $P_{max} = 0.990050$

График:

Задание 3

```
#:
# 0
1
{
}
i
}
```

Исходный код (С): $_{\rm Bbog\,/}$

maxK=10		
lam=3		
t=1		
k p		
0 0.049787		
1 0.149361		
2 0.224042		
3 0.224042		
4 0.168031		
5 0.100819		
6 0.050409		
7 0.021604		
8 0.008102		
9 0.002701		
10 0.000810		

maxK=10
lam=1
t=0.01
k p
0 0.990050
1 0.009900
2 0.000050
3 0.000000
4 0.000000
5 0.000000
7 0.000000
8 0.000000
9 0.000000

 $Bывод:h (t)
 = 1 - e^{-\mu t}$

t	h
0	0,000000
1	0,950213
2	0,997521
3	0,999877
4	0,99994
5	1,000000
6	1,000000
7	1,000000
8	1,000000
9	1,000000
10	1,000000

 $\mu_1 = x_1 \ (c-1)$

t	h
0	0,000000
1	0,632121
2	0,864665
3	0,950213
4	0,981684
5	0,993262
6	0,997521
7	0,999088
8	0,999665
9	0,999877
10	0,99955

 $\mu_2 = \overline{x_2 (c-1)}$

Задание 3

Исходный код (С):

```
#
#define e 2.718281828
     if (a == 0 || a == 1) {
    return 1;
     return getFactorial(a - 1) * a;
}
int main() {
   printf("maxT=");
   int maxT;
   scanf("%d", &maxT);
           h = 1 - pow(e, -mu * t);
}
```

Задание 7

Ввод / Вывод:

maxT=10	maxT=10
mu=3	mu=1
t h	t h
0 0.000000	0 0.000000
1 0.950213	1 0.632121
2 0.997521	2 0.864665
3 0.999877	3 0.950213
4 0.999994	4 0.981684
5 1.000000	5 0.993262
6 1.000000	6 0.997521
7 1.000000	7 0.999088
8 1.000000	8 0.999665
9 1.000000	9 0.999877
10 1.000000	10 0.999955

```
Исходный код (C): p_k(t) = ((\lambda t) k \ / \ k!) * e-\lambda t k = 20 + x_1 + x_2 \qquad t = x_1 \ / \ 100 \qquad \lambda = x_2 \ (c-1) p_k(t) = 0{,}0124
```

Исходный код (С):

```
#include <stdio.h>
#include <math.h>
#define e 2.718281828
long long getFactorial(long long a)
if (a == 0 || a == 1) \{
return 1;
}
return getFactorial(a - 1) * a;
}
int main() {
double t = 3.0 / 100;
int k = 24;
int lam = 1;
long double res = (pow(lam * t, k) / getFactorial(k)) * pow(e, -lam * t);
printf("res=%LF", res);
return 0;
}
```

Вывод:

res=-0.000000

Пояснение к ответу:

Результат настолько не велик, что после запятой стоит около сорока нулей (необходимо взять значения куда большие x1, x2). Программа выполняет свои функциональные требования.