# Автодифференцирование. Матричное дифференцирование.

Семинар

1 сентября 2025

### Определение дифференциала

Функция  $f: \mathbb{R}^n \to \mathbb{R}^m$  дифференцируема в точке x, если существует матрица  $Df(x) \in \mathbb{R}^{m \times n}$ , которая удовлетворяет условию:

$$\lim_{x \in \text{dom} f, z \neq x, z \to x} \frac{\|f(z) - f(x) - Df(x)(z - x)\|_2}{\|z - x\|_2} = 0.$$
 (1)

Функцию Df(x) будем называть дифференциалом или Якобианом функции f в точке x.

# Градиент функции

Для функции вида  $f:\mathbb{R}^n \to \mathbb{R}$  транспонированную матрицу  $Df(x)^{\top}$  будем называть градиентом функции f в точке x:

$$\nabla f(x) = Df(x)^{\top}$$

Компоненты градиента являются частными производными функции f:

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}$$

, где i = 1, ..., n.

### Матрица Гессе

Рассмотрим дважды дифференцируемую функцию  $f:\mathbb{R}^n \to \mathbb{R}$ . Назовем матрицей Гессе функцию f в точке  $x\in \mathrm{int}$  dom f:

$$\nabla^2 f(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j=1..n} \tag{2}$$

# Приближение функции с помощью дифференциала.

Из определения дифференциала (1) сразу следует одно из применений дифференциала функции, а именно ее аппроксимация.

Аппроксимация первого порядка:

$$f(x) + Df(x)(z - x) \tag{3}$$

Аппроксимация второго порядка:

$$f(x) + Df(x)^{\top}(z - x) + \frac{1}{2}(z - x)^{\top}D^{2}f(x)(z - x)$$

### Пример 1.

### Задача (Квадратичная функция.)

Квадратичная функция  $f: \mathbb{R}^n \to \mathbb{R}$ ,

$$f(x) = (1/2)x^{T}Px + q^{T}x + r,$$

где  $P \in \mathsf{S}^n$  (симметричная квадратная матрица),  $q \in \mathsf{R}^n$ , и  $r \in \mathsf{R}$ .

#### Решение.

$$Df(x) = (1/2)(Px + x^{\top}P) + q^{\top} = x^{\top}P + q^{\top}$$
  
Мы получили вектор-строку  $Df(x)$ , а её градиент равен

$$\nabla f(x) = Px + q.$$

### Пример 2.

### Задача (Определитель матрицы)

Пусть  $f: \mathbb{R}^{n \times n} \to \mathbb{R}$  — функция  $f(X) := \mathrm{Det}(X)$ . Рассмотрим произвольную точку  $X \in \mathbb{R}^{n \times n}$  и произвольное приращение аргумента  $H \in \mathbb{R}^{n \times n}$ . Будем предполагать, что матрица X обратима.

#### Решение.

Выпишем соответствующее приращение функции:

$$f(X + H) - f(X) = \text{Det}(X + H) - \text{Det}(X)$$
  
= \text{Det}(X(I\_n + X^{-1}H)) - \text{Det}(X) = \text{Det}(X)(\text{Det}(I\_n + X^{-1}H) - 1). (4)

### Решение (продолжение).

Pассмотрим отдельно  $Det(I_n + X^{-1}H)$ :

$$Det(I_n + X^{-1}H) = \prod_{i=1}^{n} [1 + \lambda_i(X^{-1}H)] = 1 + \sum_{i=1}^{n} \lambda_i(X^{-1}H) + \left(\sum_{1 \le i < j \le n} \lambda_i(X^{-1}H)\lambda_j(X^{-1}H) + \cdots\right),$$

где многоточие скрывает сумму всевозможных троек  $\lambda_i(X^{-1}H)\lambda_j(X^{-1}H)\lambda_k(X^{-1}H)$ , всевозможных четверок и т.д.

### Решение (продолжение).

Заметим, что выражение, стоящее в скобках, представляет из себя величину  $o(\|H\|)$ , поэтому

$$Det(I_n + X^{-1}H) = \prod_{i=1}^n [1 + \lambda_i(X^{-1}H)] = 1 + Tr(X^{-1}H) + o(\|H\|)$$

Подставим полученное выражение обратно в (4) и получим, что для любой обратимой матрицы  $X \in \mathbb{R}^{n \times n}$  функция f дифференцируема в точке X с производной

$$df(X)[H] = \operatorname{Det}(X)\operatorname{Tr}(X^{-1}H) = \operatorname{Det}(X)\langle X^{-T}, H\rangle.$$



Задача

$$f(X) = \log \det X$$
,

где 
$$\mathsf{dom}\, f = \mathsf{S}^n_{++}, \ f : \mathsf{S}^n \to \mathsf{R}$$

#### Решение.

Найдём первую аппроксимацию f в точке  $X \in \mathbb{S}^n_{++}$  (3). Пусть  $Z \in \mathbb{S}^n_{++}$  близка к X, и пусть  $\Delta X = Z - X$ . Тогда

$$egin{aligned} \log \det Z &= \log \det (X + \Delta X) \ &= \log \det \left( X^{1/2} (I + X^{-1/2} \Delta X X^{-1/2}) X^{1/2} 
ight) \ &= \log \det X + \log \det (I + X^{-1/2} \Delta X X^{-1/2}) \ &= \log \det X + \sum_{i=1}^n \log (1 + \lambda_i), \end{aligned}$$

где  $\lambda_i - i$ -ое собственное значение матрицы  $X^{-1/2} \Delta X X^{-1/2}$ .

#### Решение.

Теперь воспользуемся тем, что  $\Delta X$  мало, это эквивалентно тому, что собственные числа  $\lambda_i$  так же малы, поэтому  $\log(1+\lambda_i)\approx \lambda_i$ . Отсюда получаем:

$$\begin{aligned} \log \det Z &\approx \log \det X + \sum_{i=1}^n \lambda_i \\ &= \log \det X + \operatorname{tr}(X^{-1/2} \Delta X X^{-1/2}) \\ &= \log \det X + \operatorname{tr}(X^{-1} \Delta X) \\ &= \log \det X + \operatorname{tr}\left(X^{-1}(Z - X)\right), \end{aligned}$$

#### Решение.

Отсюда заключаем, что аппроксимация первого порядка (3) функции f в X имеет вид

$$f(Z) \approx f(X) + \operatorname{tr}(X^{-1}(Z - X))$$

Заметим, что второе слагаемое в правой части равенства выше - это стандартное скалярное умножение матриц (Frobenius inner product)  $X^{-1}$  и (Z-X), и отсюда заключаем

$$\nabla f(X) = X^{-1}$$



# Дифференцирование сложной функции (chain rule).

Пусть  $f:\mathbb{R}^n \to \mathbb{R}^m$  дифференцируема в точке  $x \in \operatorname{int} \operatorname{dom} f$  и функция  $g:\mathbb{R}^m \to \mathbb{R}^p$  дифференцируема в точке  $f(x) \in \operatorname{int} \operatorname{dom} g$ . Определим композицию функций  $h:\mathbb{R}^m \to \mathbb{R}^p$  как h(z) = g(f(z)). Тогда h дифференцируема в точке x с дифференциалом вида:

$$Dh(x) = Dg(f(x))Df(x)$$
 (5)

В качестве примера предположим, что  $f:\mathbb{R}^n\to\mathbb{R}$ ,  $g:\mathbb{R}\to\mathbb{R}$ , и h(x)=g(f(x)). Транспонирование Dh(x)=Dg(f(x))Df(x) даёт

$$\nabla h(x) = g'(f(x))\nabla f(x)$$

# Пример 4.

### Задача

Продифференцируем функцию  $f: \mathbb{R}^n \to \mathbb{R}$  с областью определения  $\mathrm{dom}\, f = \mathbb{R}^n$ , заданную формулой:

$$f(x) = \log \sum_{i=1}^{m} \exp(a_i^T x + b_i),$$

, где  $a_i \in \mathbb{R}^n$  и  $b_i \in \mathbb{R}$  для всех  $i=1,\ldots,m$ .

### Пример 4.

#### Решение.

Заметим, что данная функция является композицией аффинной функции Ax+b, где  $A\in\mathbb{R}^{m\times n}$  со строками  $a_1,...,a_m$  и зададим  $g:\mathbb{R}^m\to\mathbb{R}$  формулой  $g(y)=\log\sum_{i=0}^m\exp y_i$  Тогда градиент функции g(y) вычисляется по формуле (5):

$$\nabla g(y) = \frac{1}{\sum_{i=1}^{m} \exp y_i} \begin{bmatrix} \exp y_1 \\ \vdots \\ \exp y_m \end{bmatrix}.$$

Следовательно, используя формулу композиции, получаем градиент функции f(x):

$$\nabla f(x) = \frac{1}{1^T z} A^T z,$$

где 
$$z_i = \exp(a_i^T x + b_i)$$
 для  $i = 1, ..., m$ .



# Пример 5.

### Задача

Продифференцируем функцию  $f:\mathbb{R}^n o\mathbb{R}$ 

$$f(x) = \log \det(F_0 + x_1F_1 + \cdots + x_nF_n),$$

где 
$$F_0,\ldots,F_n\in\mathbb{S}^p$$
, и

dom 
$$f = \{x \in \mathbb{R}^n \mid F_0 + x_1 F_1 + \dots + x_n F_n > 0\}.$$

### Пример 5.

#### Решение.

Функция f является композицией аффинного отображения из  $x \in \mathbb{R}^n$  в  $F_0 + x_1F_1 + \cdots + x_nF_n \in \mathbb{S}^p$  и функции  $\log \det X$ . Используя правило дифференцирования сложной функции, получаем:

$$\frac{\partial f(x)}{\partial x_i} = \operatorname{tr}(F_i \nabla \log \det(F)) = \operatorname{tr}(F^{-1}F_i),$$

где  $F = F_0 + x_1 F_1 + \cdots + x_n F_n$ . Таким образом, градиент функции равен:

$$\nabla f(x) = \begin{bmatrix} \operatorname{tr}(F^{-1}F_1) \\ \vdots \\ \operatorname{tr}(F^{-1}F_n) \end{bmatrix}.$$

### Пример 5.

#### Решение.

Функция f является композицией аффинного отображения из  $x \in \mathbb{R}^n$  в  $F_0 + x_1F_1 + \cdots + x_nF_n \in \mathbb{S}^p$  и функции  $\log \det X$ . Используя правило дифференцирования сложной функции, получаем:

$$\frac{\partial f(x)}{\partial x_i} = \operatorname{tr}(F_i \nabla \log \det(F)) = \operatorname{tr}(F^{-1}F_i),$$

где  $F = F_0 + x_1 F_1 + \cdots + x_n F_n$ . Таким образом, градиент функции равен:

$$\nabla f(x) = \begin{bmatrix} \operatorname{tr}(F^{-1}F_1) \\ \vdots \\ \operatorname{tr}(F^{-1}F_n) \end{bmatrix}.$$

#### Ссылки І

Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004. (Appendix A.4)