Analiza matematyczna 1 Wykład 13, Badanie funkcji

1 Maksima i minima

Definicja 1.

Mówimy, że funkcja f określona w otoczeniu punktu x_0 ma w punkcie x_0 maksimum lokalne lub krócej maksimum, jeśli istnieje taka liczba $\delta > 0$, że

$$f(x_0) \ge f(x)$$
 dla $|x - x_0| < \delta$.

Maksimum jest właściwe, jeżeli

$$f(x_0) > f(x)$$
 dla $0 < |x - x_0| < \delta$.

Analogicznie funkcja f(x) ma w punkcie x_0 minimum lokalne lub krócej minimum, jeśli istnieje taka liczba $\delta > 0$, że

$$f(x_0) \le f(x)$$
 dla $|x - x_0| < \delta$.

Minimum właściwe określamy analogicznie.

Maksimum i minimum, właściwe lub nie, nazywamy krótko ekstremum.

Przykład 1. Uzasadnić z definicji, że funkcja

- a) f(x) = |x| + x ma ekstremum w punkcie $x_0 = 0$;
- b) $f(x) = \lfloor x \rfloor$ ma ekstremum w punkcie $x_0 = k$, gdzie $k \in \mathbb{Z}$.

Twierdzenie 1. (warunek konieczny na istnienie ekstremum)

Funkcja różniczkowalna w przedziale otwartym może mieć ekstremum tylko w takim punkcie x_0 , w którym

$$f'(x_0) = 0.$$

Warunek $f'(x_0) = 0$ nie jest jednak wystarczający do istnienia ekstremum, bo np. funkcja $y = x^3$ nie ma ekstremum, chociaż jej pochodna $y' = 3x^2$ równa się zeru w punkcie x = 0. Rozważmy funkcję f(x) = |x|. Funkcja ma w punkcie $x_0 = 0$ minimum lokalne właściwe, ale pochodna f'(0) nie istnieje. W tym przypadku pokazujemy, że dla $x_0 = 0$ funkcja ma minimum lokalne właściwe z definicji.

UWAGA! Funkcja może mieć ektrema lokalne tylko w punktach, w których jej pochodna równa się zero lub w punktach, w których jej pochodna nie istnieje.

I warunek wystarczający na istnienie ekstremum - zmiana znaku pochodnej wokół punktu, w którym pochodna się zeruje:

Warunek $f'(x_0) = 0$ staje się wystarczający do istnienia ekstremum, gdy pochodna funkcji f jest dodatnia z jednej i ujemna z drugiej strony punktu x_0 . Jest tak, ponieważ gdy na lewo od punktu x_0 jest f'(x) > 0, a na prawo f'(x) < 0, to funkcja f jest na lewo rosnąca, a na prawo malejąca, więc w punkcie x_0 istnieje maksimum. Minimum istnieje wtedy, gdy f'(x) < 0 dla $x < x_0$, f'(x) > 0 dla $x > x_0$.

Geometrycznie: jeżeli funkcja ma ekstremum lokalne wpunkcie x_0 oraz jeżeli w tym punkcie wykres funkcji ma styczną, to jest ona pozioma.

Przykład 2. Korzystając z powyższego faktu znaleźć wszystkie ektrema lokalne podanych funkcji.

a)
$$f(x) = e^x + e^{-x}$$
; b) $f(x) = \frac{x}{1+x^2}$; c) $f(x) = \frac{\ln x}{x}$.

Twierdzenie 2.(II warunek wystarczający na istnienie ekstremum) Jeżeli funkcja f spełnia warunki

1.
$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
,

- 2. $f^{(n)}(x_0) < 0$,
- 3. n jest liczbą parzystą, gdzie $n \ge 2$,

to w punkcie x_0 funkcja ma maksimum lokalne właściwe.

Jeżeli założenie 2. w powyższym twierdzeniu ma postać " $f^{(n)}(x_0) > 0$ ", to w punkcie x_0 funkcja ma minimum lokalne właściwe. Natomiast, jeżeli warunek 3. ma postać "n jest liczbą nieparzystą" oraz $f^{(n)}(x_0) \neq 0$, to w punkcie x_0 funkcja nie ma ekstremum lokalnego.

Przykład 3. Korzystając z powyższego twierdzenia znaleźć wszystkie ektrema lokalne podanych funkcji.

a)
$$f(x) = x^{100} + 2x^{50}$$
; b) $f(x) = \sin^3 x + \cos^3 x$; c) $f(x) = (x - 5)e^x$.

2 Funkcje wypukłe i wklęsłe

Definicja 3. (funkcja wypukła)

Funkcja f jest wypukła na przedziale I, jeżeli

$$\forall [x_1, x_2] \subset I \ \forall 0 < \lambda < 1 \ f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Jeżeli w powyższej nierówności jest znak ostry, to funkcja f jest ściśle wypukła. Geometrycznie wypukłość funkcji oznacza, że każdy odcinek siecznej wykresu leży wyżej

lub pokrywa się z fragmentem wykresu położonym między punktami, przez które przechodzi sieczna.

Poniżej ilustracja funkcji wypukłej i ściśle wypukłej:

Definicja $4.(funkcja \ wklęsła)$

Funkcja f jest wklęsła na przedziale I, jeżeli

$$\forall [x_1, x_2] \subset I \ \forall 0 < \lambda < 1 \ f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Jeżeli w powyższej nierówności jest znak ostry, to funkcja f jest ściśle wklęsła. Geometrycznie wklęsłość funkcji oznacza, że każdy odcinek siecznej wykresu leży niżej lub pokrywa się z fragmentem wykresu położonym między punktami, przez które przechodzi sieczna.

Poniżej ilustracja funkcji wklęsłej i ściśle wklęsłej:

Twierdzenie 3. (warunek wystarczający wypukłości)

Niech I oznacza dowolny przedział. Jeżeli dla każdego $x \in I$ funkcja f spełnia warunek:

- 1. f''(x) > 0, to jest ściśle wypukła na I;
- 2. $f''(x) \ge 0$, to jest wypukła na I;
- 3. f''(x) < 0, to jest ściśle wklęsła na I;
- 4. $f''(x) \leq 0$, to jest wklęsła na I.

Jeżeli $f''(x) \geq 0$ dla każdego $x \in I$, ale równość f''(x) = 0 zachodzi tylko na skończonej liczbie punktów tego przedziału, to funkcja f jest ściśle wypukła na I. Analogicznie jest dla funkcji wklęsłej.

Przykład 4. Określić przedziały wypukłości i wklęsłości podanych funkcji:

- a) $f(x) = e^{-x}$; b) $f(x) = x^4$; c) $f(x) = \sin x$;
- d) f(x) = arctg x; e) f(x) = |x|; f) $f(x) = |x^5|$.

3 Punkty przegięcia wykresu funkcji

Punkt wykresu funkcji jest punktem przegięcia, jeżeli funkcja ma w tym punkcie styczną i zmienia w nim rodzaj wypukłości. Wykres funkcji przechodzi wtedy z jednej strony stycznej na drugą. Ilustrują to poniższe wykresy.

Badanie funkcji

- 1. Ustalenie dziedziny funkcji.
- 2. Wskazanie podstawowych własności funkcji:
 - parzystość,
 - okresowość,
 - miejsca zerowe,
 - ciągłość.
- 3. Obliczenie granic lub wartości funkcji na krańcach dziedziny.
- 4. Znalezienie asymptot pionowych i ukośnych.
- 5. Zbadanie pierwszej pochodnej:

- wyznaczenie dziedziny pochodnej i jej obliczenie,
- wyznaczenie punktów, w których funkcja może mieć ekstrema,
- ustalenie przedziałów monotoniczności funkcji,
- ustalenie ekstremów funkcji,
- obliczenie granic lub wartości pochodnej na krańcach jej dziedziny.
- 6. Zbadanie drugiej pochodnej funkcji:
 - wyznaczenie dziedziny drugiej pochodnej i jej obliczenie,
 - wyznaczenie punktów, w których funkcja może mieć punkty przegięcia,
 - ustalenie przedziałów wklęsłości i wypukłości,
 - ustalenie punktów przegięcia wykresu funkcji,
 - obliczenie pierwszej pochodnej w punktach przegięcia.
- 7. Sporządzenie wykresu funkcji.

Pochodne a wykres funkcji

	które spełniają p a przedziale lub w		Własności funkcji	Wykres funkcji
f'	f''	f'''		
f'(x) > 0	f''(x) > 0		rosnąca i wypukła	1_/
f'(x) > 0	f''(x) < 0		rosnąca i wklęsła	
f'(x) < 0	f''(x) > 0		malejąca i wypukła	
f'(x) < 0	f''(x) < 0		malejąca i wklęsła	
$f'(x_0)=0$	$f''(x_0) > 0$		minimum lokalne właściwe	
$f'(x_0)=0$	$f''(x_0) < 0$		maksimum lokalne właściwe	
	$f''(x_0) = 0$	$f'''(x_0) \neq 0$	punkt przegięcia	

Przykład 5. Zbadać podane funkcje i następnie sporządzić ich wykresy:

a)
$$r(x) = \frac{x\sqrt{x}}{\sqrt{x}-1}$$
; b) $s(x) = \frac{x(x^2+10)}{x^2+1}$.

a) I. Dziedziną funkcji $r(x) = \frac{x\sqrt{x}}{\sqrt{x}-1}$ jest zbiór $[0,1) \cup (1,\infty)$.

II. Funkcja r jest ciągła w dziedzinie, bo jest funkcją elementarną. Jedynym miejscem zerowym tej funkcji jest x=0.

III. Obliczamy granice funkcji r na "krańcach" dziedziny. Mamy

$$\lim_{x \to 1^{-}} r(x) = \lim_{x \to 1^{-}} \frac{x\sqrt{x}}{\sqrt{x} - 1} = \frac{1}{0^{-}} = -\infty,$$

$$\lim_{x \to 1^{+}} r(x) = \lim_{x \to 1^{+}} \frac{x\sqrt{x}}{\sqrt{x} - 1} = \frac{1}{0^{+}} = \infty,$$

$$\lim_{x \to \infty} r(x) = \lim_{x \to \infty} \frac{x\sqrt{x}}{\sqrt{x} - 1} = \lim_{x \to \infty} \frac{x}{1 - \frac{1}{\sqrt{x}}} = \frac{\infty}{1 - 0} = \infty.$$

Nie wyznaczaliśmy granicy $\lim_{x\to 0^+} r(x)$, gdyż punkt 0 należy do dziedziny, a funkcja jest ciagła.

IV. Z obliczeń przeprowadzonych w części III wynika, że prosta x=1 jest asymptotą pionową obustronną badanej funkcji r. Z obliczeń tych wynika także, że funkcja r nie ma asymptoty poziomej w ∞ . Sprawdzimy teraz, czy funkcja ta ma asymptotę ukośną Mamy

$$A_{+} = \lim_{x \to \infty} \frac{r(x)}{x} = \lim_{x \to \infty} \frac{x\sqrt{x}}{x\left(\sqrt{x} - 1\right)} = \lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x} - 1} = 1$$

oraz

$$B_+ = \lim_{x \to \infty} \left(r(x) - A_+ x \right) = \lim_{x \to \infty} \left(\frac{x\sqrt{x}}{\sqrt{x} - 1} - x \right) = \lim_{x \to \infty} \frac{x}{\sqrt{x} - 1} = \infty.$$

Zatem funkcja r nie ma asymptoty ukośnej.

V. Zbadamy teraz pierwszą pochodną funkcji r. Mamy

$$r'(x) = \frac{\sqrt{x}(2\sqrt{x} - 3)}{2(\sqrt{x} - 1)^2},$$

przy czym dziedzina pochodnej pokrywa się z dziedziną funkcji. Badając znak pierwszej pochodnej ustalimy przedziały monotoniczności. Mamy

$$r'(x) < 0 \iff \frac{\sqrt{x}\left(2\sqrt{x} - 3\right)}{2\left(\sqrt{x} - 1\right)^2} < 0 \iff x \in (0, 1) \cup \left(1, \frac{9}{4}\right).$$

Funkcja r jest zatem malejąca na przedziałach (0,1) oraz $\left(1,\frac{9}{4}\right)$. Z rozważań tych wynika ponadto, że funkcja r jest rosnąca na przedziale $\left(\frac{9}{4},\infty\right)$. Ponieważ r' zmienia znak (z "–" na "+") w punkcie $x=\frac{9}{4}$, więc w tym miejscu ma minimum lokalne właściwe (równe $\frac{27}{4}$). Zbadamy jeszcze, czy w punkcie x=0 jest ekstremum lokalne. Ponieważ funkcja r jest malejaca na przedziale [0,1), więc można przyjąć umownie, że w punkcie x=0 ma maksimum lokalne "prawostronne" (równe 0).

VI. Przechodzimy do zbadania drugiej pochodnej funkcji r. Mamy

$$r''(x) = \frac{3 - \sqrt{x}}{4\sqrt{x}\left(\sqrt{x} - 1\right)^3}.$$

Dziedziną tej pochodnej jest zbiór $(0,1) \cup (1,\infty)$. Korzystając z warunku koniecznego wyznaczamy miejsca, w których funkcja może mieć punkty przegięcia. Mamy

$$r''(x) = 0 \iff \frac{3 - \sqrt{x}}{4\sqrt{x}(\sqrt{x} - 1)^3} = 0 \iff x = 9.$$

Zatem jedynym "podejrzanym" jest x=9. Teraz znajdziemy przedziały wypukłości funkcji r. W tym celu ustalimy, w jakich przedziałach druga pochodna jest dodatnia. Mamy

$$r''(x) > 0 \iff \frac{3 - \sqrt{x}}{4\sqrt{x}(\sqrt{x} - 1)^3} > 0 \iff x \in (1, 9).$$

Analogicznie otrzymamy

$$r''(x) < 0 \iff \frac{3 - \sqrt{x}}{4\sqrt{x}\left(\sqrt{x} - 1\right)^3} < 0 \iff x \in (0, 1) \cup (9, \infty).$$

Z rozważań tych wynika, że funkcja r jest wypukła w dół na przedziale (1,9) oraz wypukła w górę na przedziałach (0,1) i $(9,\infty)$. Z rozważań tych wynika także, że punkt $\left(9,\frac{27}{2}\right)$ jest miejscem przegięcia wykresu badanej funkcji.

VII. Wyniki otrzymane w punktach I-VI zbieramy w tabeli:

x	0	0 <x<1< th=""><th>1</th><th>$1 < x < \frac{9}{4}$</th><th><u>9</u> 4</th><th>$\frac{9}{4} < x < 9$</th><th>9</th><th>9<<i>x</i><∞</th><th>∞</th></x<1<>	1	$1 < x < \frac{9}{4}$	<u>9</u> 4	$\frac{9}{4} < x < 9$	9	9< <i>x</i> <∞	∞
r''(x)	×		×	+	+	+	0	-	0
r'(x)	0	-	×	-	0	+	<u>9</u> 8	+	1
r(x)	0		-∞ ∞	\	$\frac{27}{4}$		$\frac{27}{2}$	/	∞
					min.		p.p.		

VIII. Na podstawie tabeli sporządzamy wykres funkcji.

Aby lepiej zaprezentować kształt wykresu funkcji na osiach układu nie zachowano tej samej skali.

b) I. Dziedziną funkcji $s(x) = \frac{x(x^2 + 10)}{x^2 + 1}$ jest \mathbb{R} .

II. Funkcja s jest ciągła w dziedzinie, bo jest funkcją elementarną. Jedynym miejscem zerowym tej funkcji jest x=0. Funkcja s jest nieparzysta, mamy bowiem

$$s(-x) = \frac{-x((-x)^2 + 10)}{(-x)^2 + 1} = -\frac{x(x^2 + 10)}{x^2 + 1} = -s(x)$$

dla $x \in \mathbb{R}$. Dlatego dalsze badanie funkcji możemy ograniczyć do przedziału $I = [0, \infty)$. III. Obliczamy granicę funkcji na prawym "krańcu" przedziału I. Mamy

$$\lim_{x \to \infty} s(x) = \lim_{x \to \infty} \frac{x(x^2 + 10)}{x^2 + 1} = \lim_{x \to \infty} \frac{x(1 + \frac{10}{x^2})}{1 + \frac{1}{x^2}} = \infty.$$

Nie wyznaczaliśmy granicy $\lim_{x\to 0^+} s(x)$, gdyż punkt 0 należy do wnętrza dziedziny.

IV. Z przeprowadzonych w poprzednich punktach rozważań wynika, że funkcja s nie ma asymptot pionowych ani poziomych. Sprawdzimy teraz, czy ma ona asymptotę ukośną $y=A_+x+B_+$ w ∞ . Mamy

$$A_{+} = \lim_{x \to \infty} \frac{s(x)}{x} = \lim_{x \to \infty} \frac{x(x^{2} + 10)}{x(x^{2} + 1)} = \lim_{x \to \infty} \frac{x^{2} + 10}{x^{2} + 1} = 1$$

oraz

$$B_{+} = \lim_{x \to \infty} \left(s(x) - A_{+} x \right) = \lim_{x \to \infty} \left[\frac{x \left(x^{2} + 10 \right)}{x^{2} + 1} - x \right] = \lim_{x \to \infty} \frac{9x}{x^{2} + 1} = 0.$$

Zatem prosta y=x jest asymptotą ukośną funkcji $s\le\infty$.

V. Zbadamy obecnie pierwszą pochodną funkcji s. Mamy

$$s'(x) = \frac{x^4 - 7x^2 + 10}{(x^2 + 1)^2}.$$

Pochodna s' jest funkcją określoną na przedziale I, do którego ograniczyliśmy badania. Korzystając z warunku koniecznego istnienia ekstremum ustalimy, gdzie funkcja s może mieć ekstrema w przedziale I. Dla $x \in I$ mamy

$$s'(x) = 0 \iff \frac{x^4 - 7x^2 + 10}{(x^2 + 1)^2} = 0 \iff x = \sqrt{2} \text{ lub } x = \sqrt{5}.$$

Pierwszą pochodną wykorzystamy jeszcze do zbadania monotoniczności funkcji s na przedziale I. Dla $x \in I$ mamy

$$s'(x) > 0 \iff \frac{x^4 - 7x^2 + 10}{\left(x^2 + 1\right)^2} > 0 \iff x \in \left(0, \sqrt{2}\right) \cup \left(\sqrt{5}, \infty\right)$$

oraz

$$s'(x) < 0 \iff \frac{x^4 - 7x^2 + 10}{(x^2 + 1)^2} < 0 \iff x \in (\sqrt{2}, \sqrt{5}).$$

Zatem funkcja s jest rosnąca na przedziałach $\left(0,\sqrt{2}\right),\,\left(\sqrt{5},\infty\right)$ oraz malejaca na przedziale $\left(\sqrt{2},\sqrt{5}\right)$. Z rozważań tych wynika, że w punktcie $x=\sqrt{2}$ funkcja s ma maksimum lokalne właściwe równe $4\sqrt{2}$, a w punkcie $x=\sqrt{5}$ ma minimum lokalne w właściwe $\frac{5\sqrt{5}}{2}$. VI. Pozostała jeszcze do zbadania druga pochodna. Mamy

$$s''(x) = \frac{18x(x^2 - 3)}{(x^2 + 1)^3}.$$

Druga pochodna s'' także jest funkcją określoną na przedziale I, do którego ograniczyliśmy badania. Korzystając z warunku koniecznego wyznaczamy miejsca, w których funkcja s może mieć punkty przegięcia w przedziale I. Dla $x \in I$ mamy

$$s''(x) = 0 \iff \frac{18x(x^2 - 3)}{(x^2 + 1)^3} = 0 \iff x = 0 \text{ lub } x = \sqrt{3}.$$

Badanie znaku drugiej pochodnej wykorzystamy do ustalenia wypukłości na przedziale I. Dla $x \in I$ mamy

$$s''(x) > 0 \iff \frac{18x(x^2 - 3)}{(x^2 + 1)^3} > 0 \iff x \in (\sqrt{3}, \infty)$$

oraz

$$s''(x) < 0 \Longleftrightarrow \frac{18x(x^2 - 3)}{(x^2 + 1)^3} < 0 \Longleftrightarrow x \in (0, \sqrt{3}).$$

Zatem funkcja s jest wypukła w dół na przedziale $\left(\sqrt{3},\infty\right)$ oraz wypukła w górę na przedziale $\left(0,\sqrt{3}\right)$. Z rozważań tych wynika, że w punkcie $x=\sqrt{3}$ badana funkcja zmienia rodzaj wypukłości, więc punkt $\left(\sqrt{3},s\left(\sqrt{3}\right)\right)=\left(\sqrt{3},\frac{13}{4}\sqrt{3}\right)$ jest punktem przegięcia wykresu funkcji s. Ponadto z nieparzystości funkcji s wynika, że także $\left(0,f(0)\right)=\left(0,0\right)$ jest punktem przegięcia jej wykresu

VII. Uzyskane w poprzednich punktach wyniki, ograniczone do przedziału $I=[0,\infty)$, zestawiamy w tabeli:

x	0	$0 < x < \sqrt{2}$	$\sqrt{2}$	$\sqrt{2} < x < \sqrt{3}$	√3	$\sqrt{3} < x < \sqrt{5}$	√5	$\sqrt{5} < x < \infty$	∞
s''(x)	0	-		-	0	+		+	
s'(x)	10	+	0	1 -	$-\frac{1}{8}$, , , , , , , , , , , , , , , , , , ,	0	+ 1	
s(x)	0		$4\sqrt{2}$	~	$\frac{13\sqrt{3}}{4}$	\searrow	$\frac{5\sqrt{5}}{2}$		∞
	p.p.		max.		p.p.		min.		

VIII. Na podstawie tabeli oraz uwzględniając fakt, iż badana funkcja jest nieparzysta sporządzamy wykres funkcji.

Przykład 6. Zbadać podane funkcje i następnie sporządzić ich wykresy:

a)
$$f(x) = \frac{1}{1+x^2}$$
;

a)
$$f(x) = \frac{1}{1+x^2}$$
; b) $f(x) = -x^3 + 4x - 3$; c) $f(x) = \frac{x^3}{x-1}$;
d) $f(x) = xe^{-2x}$; e) $f(x) = \sin x - \sin^2 x$; f) $f(x) = \frac{\ln x}{\sqrt{x}}$;

c)
$$f(x) = \frac{x^3}{x-1}$$
;

$$d) f(x) = xe^{-2x};$$

$$e) f(x) = \sin x - \sin^2 x$$

f)
$$f(x) = \frac{\ln x}{\sqrt{x}}$$

g)
$$f(x) = \arcsin \frac{2x}{1+x^2}$$
; h) $f(x) = x^x$; i) $f(x) = \sqrt[x]{x}$.

$$h) f(x) = x^x$$

i)
$$f(x) = \sqrt[x]{x}$$