

Synthetic tabular data generation

A GAN based approach

Professional experience

Applied Maths & Data Science
From big enterprises to startups
Data Science & Architecture
Co-Founder @YData

Interests

Data Science
Time-Series
Generative Models

The Definition

Classify whether an animal is a cat or a dog

Generative Models

Build the model for those who look like dogs and then builds the model for those who look like cats

Then, matches the new animal to both cat and dog models.

Discriminative Models

Finds a decision boundary that separates cats and dogs.

Check on which side of the decision will fall the new animal.

Deep Generative Models

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)

Human Faces Generation

This person doesn't exist

From Human to Anime

Selfie to Anime

Github - taki0112/UGATIT

Pix2Pix

Image-to-image translation

CycleGAN

https://arxiv.org/pdf/1703.10593.pdf

But what about Tabular data?

What is Synthetic data?

Oversampling methods

Multivariate statistical methods

Agent-based simulation

Deconvolution and Convolution process

Auxiliary classifier

WGAN - Wasserstein GAN

Wasserstein GAN vs Vanilla GAN differences

- Introduction of a new loss function, based on Wasserstein distance
- Discriminator output is no longer the probability of a record being real or not, but rather a score in the domain
- The optimization problem constrains the discriminator to be a -lipschitz function
- Use of an alternative optimizer, RMSProp.

Vanilla GAN loss

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

Wasserstein loss

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

Tabular data particular challenges

Order ID	Product	Category	Amount	Date	Country
1	Carrots	Vegetables	\$4,270	1/6/2012	United States
2	Broccoli	Vegetables	\$8,239	1/7/2012	United Kingdom
3	Banana	Fruit	\$617	1/8/2012	United States
4	Banana	Fruit	\$8,384	1/10/2012	Canada
5	Beans	Vegetables	\$2,626	1/10/2012	Germany
6	Orange	Fruit	\$3,610	1/11/2012	United States
7	Broccoli	Vegetables	\$9,062	1/11/2012	Australia
8	Banana	Fruit	\$6,906	1/16/2012	New Zealand
9	Apple	Fruit	\$2,417	1/16/2012	France
10	Apple	Fruit	\$7,431	1/16/2012	Canada
11	Banana	Fruit	\$8,250	1/16/2012	Germany
12	Broccoli	Vegetables	\$7,012	1/18/2012	United States
13	Carrots	Vegetables	\$1,903	1/20/2012	Germany

No.	Attribute	Original Type	Range	Type Used
1	age	continuous	17-90	categorical
2	workclassge	categorical	1-8	categorical
3	final weight (fnlwgt)	continuous	12,285-1,484,705	numeric
4	education	categorical	1-16	categorical
5	education-num	continuous	1-16	categorical
5 6	marital-status	categorical	1-7	categorical
7	occupation	categorical	1-14	categorical
8	relationship	categorical	1-6	categorical
9	race	categorical	1-5	categorical
10	sex	categorical	1–2	categorical
11	capital-gain	continuous	0-99,999	numeric
12	capital-loss	continuous	0-4356	numeric
13	hours-per-week	continuous	1-99	categorical
14	native-country	continuous	1-41	categorical
15	class	categorical	1-2	categorical

Things you can explore

GANs hyperparameters tuning and improved stability

- Hyperparameters tuning <u>Open-sourced Google's Vizier</u>
- Introducing Gradient Penalty check this and this article
- Coevolution of Generative Adversarial Network

Avoiding mode collapse

- Packing <u>PacGAN</u>
- Defining the generator objective with respect to unrolled optimization of the discriminator <u>Unrolled</u>
 <u>GAN</u>

GANs for missing data imputation

Missing data imputation - <u>GAIN</u>

GitHub

The GAN Playground

Thank you!

We help adopters of AI to **improve** and **generate high quality** data so they can become the tomorrow's **industry leaders**

Fabiana Clemente

fabiana.clemente@ydata.ai

@fab_clemente

fabiana.clemente