Al-Autonomous Robots for Agriculture - Weeding with Laser

Cloud computing for agriculture Matteo Francia

2023-07-10

Background

How did we get here?

Data-Driven Innovation

- ☐ Use of data and analytics to foster new products, processes and markets
- ☐ Drive discovery and execution of innovation, achieving new services with a business value

Analytics

- ☐ A catch-all term for different business intelligence (BI)- and application-related initiatives
 - ❖ E.g., of analyzing information from a particular domain
 - E.g., applying BI capabilities to a specific content area (e.g., sales, service, supply chain)

Advanced Analytics

☐ (Semi-)Autonomous examination of data to discover deeper insights, make predictions, or generate recommendations (e.g., through data/text mining and machine learning)

Augmented Analytics

☐ Use of technologies such as machine learning and AI to assist with data preparation, insight generation and insight explanation to augment how people explore and analyze data

How did we get here?

- Digitalization is a journey that involves three main dimensions
 - ☐ Moving from A to B is a multi-year process made of intermediate goals
 - ☐ Each of which must be feasible
 - Solves a company pain and brings value
 - Can be accomplished in a limited time range (typically less than one year)

Big data as a noun – The V's

The big-data cube

☐ Volume: small to big

☐ Variety: structure to unstructured

☐ Velocity: pull to push

Reference scenario

- Variety
 - **□** Structured
 - ❖ Relational tuples with FK/PK relationships
 - □ Unstructured
 - Key-value
 - Columnar
 - Document-based
 - Graph
 - **...**

Reference scenario

- Velocity (latency)
 - ☐ **High**: clients synchronously pulling data from sources
 - □ Low: sources asynchronously pushing data to clients
- Velocity (speed; dual to latency)
 - ☐ **High**: processing in real-time (milliseconds) or near-real time (minutes)
 - □ Low: processing can take hours
- Acceleration
 - ☐ Velocity is not constant, data comes in bursts
 - ☐ Take Twitter as an example
 - Hashtags can become hugely popular and appear hundreds of times in just seconds
 - ... or slow down to one tag an hour
 - ☐ Your system must be able to efficiently handle the peak as well as the lows

Cloud Computing

https://xkcd.com/1444/

 Cloud computing (National Institute of Standards and Technology)

"A model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

- ☐ Broad network access (consume services from anywhere)
- ☐ Resource pooling (infrastructure, virtual platforms, and applications)
- ☐ Rapid elasticity (enable horizontal scalability)
- ☐ Measured service (pay for the service you consume as you consume)

Digital transformation involves the cloud to create/change business flows

- ☐ Often involves changing the company culture to adapt to this new way of doing business
- ☐ One of the end goal is to meet ever-changing business and market demand

- Goal: adjusts capacity to have predictable performance at the lowest cost
- Scalability that is not possible on premises
 - ☐ Scale from one to thousands of servers
- Elasticity
 - ☐ Automatically scale resources in response to run-time conditions
 - ☐ Adapt to changes in workload by turning on/off resources to match the necessary capacity
 - ☐ Core justification for the cloud adoption

- Hardware scalability
 - ☐ No longer think about rack space, switches, and power supplies, etc.
- Grow storage from GBs to PBs
 - ☐ 1PB: one hundred 10TB Enterprise Capacity 3.5 HDD hard drives

Resource pooling

- ☐ Enable cost-sharing, a resource to serve different consumers
- ☐ Resources are dynamically reassigned according to demands
- ☐ Based on virtualization, running multiple virtual instances on top of a physical computer system
- ☐ Economy of scale for physical resources

Reliability

- ☐ Built to handle failures
- ☐ Fault-tolerant or highly available

- Worldwide deployment
 - ☐ Deploy applications as close to customers as possible
 - ❖ E.g., to reduce network latency
 - ☐ Improve data locality
 - ☐ Compliant to privacy regulations (e.g., GDPR)
- Measured quality of service
 - ☐ Services leverage a quantitative qualitative metering capability making pay-as-you-go (or pay-per-use) billing and validation of the service quality available

- Service integration
 - ☐ Do not reinvent the wheel, eliminate repetitive tasks
 - Use services that solve common problems (e.g., load balancing, queuing)
 - ☐ Abstract and automatically adapt the architecture to requirements
 - ❖ E.g., create (test) environments on demand
- Integration and abstraction are drivers of change
 - ☐ From databases to data platforms
 - ☐ From on-premises to serverless architectures
 - ☐ From custom to standardized data pipelines

Cloud computing: types of cloud

- There are different types of cloud
 - □ **Public**: accessible to anyone willing to pay (e.g., Microsoft, AWS, Google)
 - ☐ **Private**: accessible by individuals within an institution
 - ❖ In public cloud, any resources that you are not using can be used by other
 - Users share the costs
 - Cost-sharing disappears in private clouds
 - ☐ **Hybrid**: a mix of the previous

Cloud computing: types of cloud

- Cloud services are hosted in separate geographic areas
 - ☐ Locations are composed of **regions** and **availability zones**
- Region (e.g., us-east-1)
 - ☐ Is an independent geographical area that groups data centers
 - ☐ Has availability zones
- Availability zones in a region
 - □ A data center
 - ☐ Connected through low-latency links
 - ☐ Resources are usually replicated across zone

Cloud computing: principal vendors

Gartner Magic Quadrant

- ☐ Understanding the technology providers to consider for an investment
- ☐ Leaders execute well and are well positioned for tomorrow
- ☐ Visionaries understand where the market is going but do not yet execute well
- □ Niche Players focus successfully on a small segment, or are unfocused and do not out-innovate or outperform others
- ☐ Challengers execute well but do not demonstrate an understanding of market direction
- ☐ Focusing on leaders isn't always the best
 - A niche player may support needs better than a market leader. It depends on how the provider aligns with business goals

Figure 1. Magic Quadrant for Cloud Infrastructure and Platform Services

Cloud computing: deployment models

- On a cloud architecture, you can rely on serverless or managed services
- Serverless
 - ☐ Standalone independent services built for a specific purpose and integrated by cloud service provider
 - ☐ No visibility into the machines
 - There are still servers in serverless, but they are abstracted away
 - ❖ No server management, do not have to manage any servers or scale them
 - E.g., when you run a query on <u>BigQuery</u> you do not know how many machines were used
 - ☐ Pay for what your application uses, usually per request or per usage
- (Fully) Managed
 - ☐ Visibility and control of machines
 - You can choose the number of machines that are being used to run your application
 - ☐ Do not have to set up any machines, the management and backup are taken care for you
 - ☐ Pay for machine runtime, however long you run the machines and resources that your application uses

https://cloud/google.com/blog/topics/developers-practitioners/serverless-vs-fully-managed-whats-difference (accessed 2020-08-01)

Cloud computing: deployment models

- Understanding architectures is paramount to successful systems
 - ☐ Good architectures help to scale
 - ☐ Poor architectures cause issues that necessitate a costly rewrite
- XaaS (anything as a service)
 - ☐ A collective term that refers to the delivery of anything as a service
 - ☐ It encompasses the products, tools and technologies that vendors deliver to users

Cloud computing: deployment models

 Principles of FaaS archite 	ectures
--	---------

- ☐ FaaS is based on a serverless approach, use a compute service to execute code on demand
- ☐ Every function could be considered as a standalone service
- ☐ Write single-purpose stateless functions

Functions react to events

- ☐ Design push-based, event-driven pipelines
- ☐ Create thicker, more powerful front ends
- ☐ Embrace third-party services (e.g., security)

FaaS is not a silver bullet

- ☐ Not appropriate for latency-sensitive applications
- ☐ Strict specific service-level agreements
- ☐ Migration costs
- ☐ Vendor lock-in can be an issue

Cloud in WeLASER

WeLASER

The EU-funded WeLASER project will develop a non-chemical solution for management based weed pioneering technology consisting the application of lethal doses energy on the weed meristems through a high-power laser source. Al-vision system separates crops from weeds, identifying the weed meristems and pointing the laser at them. A smart controller based on cloud computing Equipment deployment and start of task AO and techniques coordinates the system, which is transferred all over the field by an autonomous vehicle.

Network and Data Collection

- The architecture entails three networks
 - ☐ A wi-fi mesh necessary for exchanging data between the field nodes
 - Wi-fi mesh wakes up after receiving events from the e-fence
 - ☐ A wi-fi router on the robot connected to the internet
 - ❖ Always turned on
 - ☐ A SIM card on the HMI

Network and Data Collection

WEATHER STATION

MESH BRIDGE

CAMERA NODE

ROUTER WITH SIM (Internet connection)

НМІ

ROBOT

Requirements

- A modular data platform for precision agriculture
 - Collecting data from heterogeneous sources (e.g., MQTT devices and robots)
 - □ Augmenting data with externally available knowledge (e.g., Open Street Map open data)
 - ☐ Building a unifying data model supporting precision agriculture
 - ☐ Managing meta-data supporting effective data access and management (e.g., access data depending on the geographical location)
 - ☐ Enabling heterogenous data fruition
 - Querying the collected data through well-known languages and APIs
 - Dashboards of KPIs
 - ☐ Maintaining digital twins
 - **...**

Digital Twins and Simulation

Digital twin

☐ A virtual representation of an object or system that spans its lifecycle, is updated from real-time data, and uses simulation, machine learning and reasoning to help decision making (IBM)

Component twins

☐ Basic unit of digital twin, the smallest example of a functioning component

Asset twins

☐ Study the interaction of components

System twins

☐ How different assets come together to form an entire functioning system

Process twins

☐ How systems work together to create an entire production facility

FIWARE

- ☐ An open-source framework of modular software components
 - ❖ Goal: Developing digital twins and data spaces in several domains
- ☐ Only mandatory component of any "Powered by FIWARE" platform is the Context Broker
 - Manage context information
 - Enabling to perform updates
 - Bring access to context
- ☐ Smart Data Model includes three elements:
 - Schema defining data types and structure
 - Specification of a written document for human readers
 - Examples of the payloads

WeLASER Summer School

FIWARE

- GET /v2/entities/{entityID}/attrs/{attrName}
 - ☐ retrieve an attribute's data
- PUT /v2/entities/{entityID}/attrs/{attrName}
 - updates an attribute's data
- DELETE /v2/entities/{entityID}/attrs/{attrName}
 - deletes an attribute
- GET /v2/entities/{entityID}/attrs/{attrName}/value
 - ☐ retrieves an attribute's value
- PUT /v2/entities/{entityID}/attrs/{attrName}/value
 - ☐ updates an attribute's value
- GET /v2/entities/{entityID}/attrs/{attrName}
 - ☐ retrieve an attribute's data
- PUT /v2/entities/{entityID}/attrs/{attrName}
 - updates an attribute's data
- DELETE /v2/entities/{entityID}/attrs/{attrName}
 - deletes an attribute
- GET /v2/entities/{entityID}/attrs/{attrName}/value
 - ☐ retrieves an attribute's value
- PUT /v2/entities/{entityID}/attrs/{attrName}/value
 - updates an attribute's value

Smart Data Models

Example of FIWARE entity and Weeding Heatmap

```
"type": "Device",
"name": "Laser-123",
"id": "urn:ngsi-ld:Device:Laser123",
"areaServed": "urn:ngsi-ld:AgriFarm:123",
"location": { "type": "Point", "coordinates": [-3.481, 40.312 ] },
"timestamp": "2023-04-10T08:30:59"
"controlledProperty": [ "detectedWeeds", "treatedWeeds" ],
"value": [ 123, 100 ]
```


Innovation: Data Platform for Precision Agriculture

□ Visual dashboard

- ❖ A graphical user interface which provides at-a-glance views of key performance indicators (KPIs)
- Real-time and historical data
- ☐ Operator interface = HMI + Controller
- - A mobile tablet (e.g., iPad) running a web-based application
 - As of now, requires internet connection
- □ Controller
 - A "joystick" used both for safety and remote manual control

edge enables sensor-to-sensor communication without cloud delays

Smart Data Models

- Many smart data models from the FIWARE ecosystem exist
 - ☐ E.g., AgriFood, Robotics, SmartCities
 - ☐ DMs are overlapping and sometimes inconsistent between each other
 - ❖ E.g., AgriOperation and BuildingOperations have different semantics
 - ☐ DMs are good for representing data, but «bad» for analytics
- Create a unifying meta-model to integrate them

Cloud and Economy of Scale

- Cloud costs (on AWS) per 1/100/1000 licenses
 - Hardware
 - Computing:
 - o **Fixed**: machines that must always be up and running
 - Spot: machines that are turned only when concurrent missions are running
 - Storage:
 - o MongoDB: data from FIWARE Context Broker (i.e., current context) and historic data
 - S3: raw mission images
 - o **No HDFS**: more expensive than switching to S3 unless HW for storage is already available
 - □ People (8h/day): customer care (answering tickets) + developers (maintenance)
 - ☐ Software: cost of the single software license

	Per license cost	45 000€	3 700€	1 850€
	Total cost	45 000€	370 000€	1 850 000€
Software	License	1 000€	100 000€	1 000 000€
People	Developer	40 000€ (1person)	120 000€ (3 people)	200 000€ (5 people)
	Customer care	0€	120 000€ (3 people)	400 000€ (10 people)
	Storage (MongoDB + S3)	1 000€	15 000€	130 000€
Hardware	Computing (Fixed + Spot)	3 000€	15 000€	120 000€

Performance

- We implemented a FIWARE architecture to get practiced with it and to stess it performances and limitations
- We handled up to 600 messages per second

