PLDs (Progammable Logic Devices).

Quel est le problème qu'essaye de résoudre les PLDs? Eviter de réaliser les fonctions logiques en utilisant les portes logiques de base, parce que ceci donne naissance à des solutions non optimisées sur divers plans:

- **Espace**
- Souplesse de modification.
- Coût.

L'idéal serait d'avoir ce qui est appelé "The single chip solution", modifiable à volonté, là où le circuit réside.

C) Les réseaux logiques programmables. Les réponses.

FIGURE 13-1 Digital system family tree.

Source: Ronald J. Tocci's Book

C-1: Les Mémoires (à semi-conducteurs. Il n'est pas question de disques).

Question: c'est quoi un circuit mémoire?

Un circuit mémoire est un circuit dans lequel on peut *écrire* des données, et à partir duquel on peut *lire* les *dernières* données écrites.

À la base il y a la *Cellule Mémoire* (CM)(1 bit)

Ci-après son schéma bloc et un exemple de constitution: Tri-state buffer Selection Entrée Sortie Selection Read/Write Sortie Entrée Read/Write

C-2: Exemple d'un circuit mémoire (RAM): 4 Mots de 4 bits chacun.

C-3: Exemple d'un circuit mémoire (RAM): 4 Mots de 4 bits chacun.

C-4: type de mémoire.

- n lignes de données appelées généralement bus de donnés.
- k lignes d'adresse appelées généralement bus d'adresse.
- Les bus de donnés en entrée et en sortie peuvent être séparés ou confondus (bidirectionnels)
- Capacité ou taille : 2^k mots X n bits.

- Deux types de mémoire
- ❖ La RAM (Random Access Memory) volatile.
- ❖ La ROM (Read Only Mémory). Non volatile.
 - Factory rom ou mask-programmed ROM.
 - ➤ PROM Programmable ROM.
 - ➤ EPROM REPROM Erasable Reprogrammable ROM
 - EEROM Electrically Erasable Programmable ROM.

C-5: Exemple de contenu mémoire. (différenciez adresse et contenu).

Chapter 7 Memory and Programmable Logic

Binary	Decimal	Mem
0000000000	0	10110
0000000001	1	10101
0000000010	2	00001
	:	
1111111101	1021	10011
1111111110	1022	00001
1111111111	1023	11011

nory content

1011010101011101
1010101110001001
0000110101000110
:
:
1001110100010100
0000110100011110
1101111000100101

Source: Mano's Book.

FIGURE 7.3

Contents of a 1024×16 memory

C-6: Schéma générique, détaillé, d'un PLD simple.

C-7: Schéma générique d'un PLD simple et équivalence.

- Un fusible intacte, dans la matrice des AND, fait intervenir une entrée ou son complément dans le minterme généré par la porte AND.
- Son absence est équivalent à un 1 logique, élément neutre dans le produit logique.
- Un fusible intacte, dans la matrice des OR de sortie, fait intervenir un minterme dans la somme générée par la porte OR.
- Son absence est équivalent à un 0 logique, élément neutre dans la somme logique. les schémas des PLD simples seront représentés comme suit:

Les entrées.

C-8: Schéma générique, succinct, d'un PLD simple.

Matrice de AND suivie d'une matrice de OR.

Ici, aucune des matrices n'est programmée. La programmation consiste à garder ou bruler un fusible pour implémenter une fonction logique.

C) Les réseaux logiques programmables. Les SPLDs.

Simple PLDs

C-9: Structure générale.

C) Les réseaux logiques programmables. Les SPLDs.

C-10: Les variantes.

A) Les PROMs Progammable Read Only Memory.

B) Les PLAs Programmable Logic Array.

C) Les PALs Programmable Array Logic.

C-11: Utilisation des PROMs pour réaliser des fonctions logiques.

La table de vérité des fonctions est reportée en contenu de la ROM.

Entrées				Sorties								
14	13	12	I1	10	Α7	A6	A 5	Α4	А3	A2	A 1	AO
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

Source:

Roth's

Book.

C-11: Utilisation des PROMs pour réaliser des fonctions logiques.

Exemple 1. Conversion hexadécimal – ASCII.

FIGURE 9-22 Hexadecimal-to-ASCII Code Converter

Input	Hex	ASCII Code for Hex Dig	git
WXYZ	Digit	$A_6 A_5 A_4 A_3 A_2 A_1 A_0$	
0 0 0 0	0	0 1 1 0 0 0 0	
0 0 0 1	1	0 1 1 0 0 0 1	
0 0 1 0	2	0 1 1 0 0 1 0	
0 0 1 1	3	0 1 1 0 0 1 1	
0 1 0 0	4	0 1 1 0 1 0 0	
0 1 0 1	5	0 1 1 0 1 0 1	
0 1 1 0	6	0 1 1 0 1 1 0	
0 1 1 1	7	0 1 1 0 1 1 1	
1 0 0 0	8	0 1 1 1 0 0 0	
1 0 0 1	9	0 1 1 1 0 0 1	
1 0 1 0	Α	1 0 0 0 0 0 1	
1 0 1 1	В	1 0 0 0 0 1 0	
1 1 0 0	C	1 0 0 0 0 1 1	
1 1 0 1	D	1 0 0 0 1 0 0	
1 1 1 0	E	1 0 0 0 1 0 1	
1 1 1 1	F	1 0 0 0 1 1 0	

Source: Roth's Book.

C-11: Utilisation des PROMs pour réaliser des fonctions logiques.

Exemple 2. génération des carrés de nombres de 0 à 7.

	Entrées		Sorties								
A2	A1	A0	B5	B4	В3	B2	B1	В0	Carré		
0	0	0	0	0	0	0	0	0	0		
0	0	1	0	0	0	0	0	1	1		
0	1	0	0	0	0	1	0	0	4		
0	1	1	0	0	1	0	0	1	9		
1	0	0	0	1	0	0	0	0	16		
1	0	1	0	1	1	0	0	1	25		
1	1	0	1	0	0	1	0	0	36		
1	1	1	1	1	0	0	0	1	49		

Source: Roth's Book.

C-11: Utilisation des PROMs pour réaliser des fonctions logiques.

Exemple 3. Calcul de la taille d'une ROM.

Problème: Trouvez la taille de la ROM (Nombre de mots mémoire et le nombre de bits par mot mémoire) pour réaliser, un additionneur soustracteur de deux données codées chacune sur 8 bits, avec prise en compte des deux retenues (entrante/sortante). Le circuit doit générer la somme et la différence.

- ✓ Les entrées (8 Bits) + (8 Bits) + retenue entrante font 17 Donc le nombre de mots de la ROM est $2^{17} = 2^7 * 2^{10} = 128$ K mots.
- ✓ Les sorties (8 bits de somme) + (8 bits de différence) + retenue sortante font 17 bits par mot.

La capacité de la ROM: 128 K mots de 17 bits chacun.

C-12: Utilisation des PLAs pour réaliser des fonctions logiques.

Exemple 1.

Soit à réaliser les deux fonctions suivantes:

$$f_1 = A.B + A.\overline{C} + \overline{A}.\overline{B}.C$$

 $f_2 = A.B + \overline{A}.\overline{B}.C + A.C$

Certains produits $(P_1 et P_3)$ sont communs aux deux fonctions, on cherchera à les faire apparaitre.

C-12: Utilisation des PLAs pour réaliser des fonctions logiques.

Exemple 2. réalisation de l'additionneur complet.

Rappel des équations logiques des sorties de l'additionneur complet:

$$s = \overline{x}.\overline{y}.z + \overline{x}.y.\overline{z} + x.y.z + x.\overline{y}.\overline{z}$$

$$r = \overline{x}.y.z + x.\overline{y}.z + x.y.\overline{z} + x.y.z$$

C-12: Utilisation des PLAs pour réaliser des fonctions logiques.

Exemple 3. Comparateur

Comparateur de deux nombres formés de deux bits chacun $N1=(AB)_2$ $N2=(CD)_2$

A'B'C'D' A'BC'D ABCD - AB'CD' - A'C - B'D -BD'A'B'D B'CDABD' BC'D'

Source: Randy's Book

Figure 4.40 PLA implementation of magnitude comparator. ARCH1

Architecture

C-13: Schéma générique, succinct, d'un PAL.

Matrice de AND programmable suivie d'une matrice de OR figée.

C-13: Schéma générique, succinct, d'un PAL (séquentiel) avec des éléments de mémorisation (des bistables D). Les connexions aux entrées D sont également programmables à partir des sorties des OR.

C-14: Exemple: Compteur synchrone Modulo 8.

Q_2	Q_1	Q_0	Q_2^+	Q_1^+	Q_0^+	D_2	D_1	D_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

$$D_0 = \overline{Q_0}$$

$$\mathbf{D}_1 = \overline{\mathbf{Q}_1} \cdot \mathbf{Q}_0 + \mathbf{Q}_1 \cdot \overline{\mathbf{Q}_0}$$

$$D_{2} = \overline{Q_{2}} \cdot Q_{1} \cdot Q_{0} + Q_{2} \cdot \overline{Q_{1}} \cdot \overline{Q_{0}} + Q_{2} \cdot \overline{Q_{1}} \cdot Q_{0} + Q_{2} \cdot \overline{Q_{1}} \cdot \overline{Q_{0}}$$