Generalized adaptive partition based method for 2 stage stochastic linear problems

Maël Forcier, Vincent Leclère

February 23rd, 2022

ROADEF

mael.forcier@enpc.fr

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- 2 A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

$$\min_{\mathbf{x} \in \mathbb{R}_+^n} \qquad c^{\top} \mathbf{x} + \mathbb{E}\left[Q(\mathbf{x}, \boldsymbol{\xi})\right]$$
s.t. $A\mathbf{x} = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \boldsymbol{\xi}) := \min_{y \in \mathbb{R}_{+}^{m}} q^{\top} y \qquad \qquad = \max_{\lambda \in \mathbb{R}^{n}} (h - Tx)^{\top} \lambda$$
s.t. $Tx + Wy = h$ s.t. $W^{\top} \lambda \leqslant q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \}$$
 $D := \{ \lambda \in \mathbb{R}^I \mid W^\top \lambda \leqslant q \}$

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{\mathbf{x} \in \mathbb{R}^n_+} \qquad c^{\top} \mathbf{x} + \mathbb{E}\left[Q(\mathbf{x}, \boldsymbol{\xi})\right]$$
s.t. $A\mathbf{x} = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \boldsymbol{\xi}) := \min_{y \in \mathbb{R}_{+}^{m}} q^{\top} y \qquad \qquad = \max_{\lambda \in \mathbb{R}^{n}} (h - Tx)^{\top} \lambda$$
s.t. $Tx + Wy = h$ s.t. $W^{\top} \lambda \leqslant q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \}$$
 $D := \{ \lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q \}$

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in \mathbb{R}^n_+} \qquad c^\top x + \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right]$$
s.t. $Ax = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y \qquad \qquad = \max_{\lambda \in \mathbb{R}^n} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$ s.t. $W^\top \lambda \leqslant q$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q\}$

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in \mathbb{R}^n_+} \qquad c^\top x + \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right]$$
s.t. $Ax = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y \qquad \qquad = \max_{\lambda \in \mathbb{R}^n} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$ s.t. $W^\top \lambda \leqslant q$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q\}$

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in X} c^{\top} x + \mathbb{E}[Q(x, \boldsymbol{\xi})]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^I \mid W^\top \lambda \leqslant q\}$

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in X} c^{\top} x + \mathbb{E}[Q(x, \boldsymbol{\xi})]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y$$

$$= \max_{\lambda \in D} (h - Tx)^\top \lambda$$
s.t. $Tx + Wy = h$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^I \mid W^\top \lambda \leqslant q\}$

No direct formula to compute $V(x) := \mathbb{E}[Q(x, \xi)]$ even for fixed x.

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in X} c^{\top} x + \mathbb{E}[Q(x, \boldsymbol{\xi})]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q\}$

No direct formula to compute $V(x) := \mathbb{E}[Q(x, \xi)]$ even for fixed x. \rightsquigarrow need to discretize ξ

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

¹Can be extended to generic random q, and finitely supported W

Sample Average Approximation

$$\min_{x \in X} c^{\top} x + V(x)$$
 where $V(x) := \mathbb{E}[Q(x, \xi)]$ (2SLP)

Randomly draw ξ^1, \cdots, ξ^N and consider

$$\min_{x \in X} c^\top x + V_N^{SAA}(x) \quad \text{ where } \quad V_N^{SAA}(x) := \frac{1}{N} \sum_{k=1}^N Q(x, \xi^k) \quad (2SLP_N)$$

Solve the equivalent finite LP

$$\min_{x \in X, (y_k)_{k=1}^N \in (\mathbb{R}_+^m)^N} \quad c^\top x + \frac{1}{N} \sum_{k=1}^N q^\top y_k$$

$$T^k x + W y_k \leqslant h^k \qquad \forall k = 1..N$$

$$(2SLP_N)$$

3/21

By statistical results, $Val(2SLP_N) \rightarrow_{N \rightarrow \infty} Val(2SLP)$.

Sample Average Approximation

$$\min_{x \in X} c^{\top} x + V(x)$$
 where $V(x) := \mathbb{E}[Q(x, \xi)]$ (2SLP)

Randomly draw ξ^1, \cdots, ξ^N and consider

$$\min_{x \in X} c^{\top} x + V_N^{SAA}(x) \quad \text{where} \quad V_N^{SAA}(x) := \frac{1}{N} \sum_{k=1}^N Q(x, \xi^k) \quad (2SLP_N)$$

Solve the equivalent finite LP

$$\min_{x \in X, (y_k)_{k=1}^N \in (\mathbb{R}_+^m)^N} \quad c^\top x + \frac{1}{N} \sum_{k=1}^N q^\top y_k$$

$$T^k x + W y_k \leqslant h^k \qquad \forall k = 1..N$$

$$(2SLP_N)$$

3/21

By statistical results, $Val(2SLP_N) \rightarrow_{N\rightarrow\infty} Val(2SLP)$.

Sample Average Approximation

$$\min_{x \in X} c^{\top} x + V(x)$$
 where $V(x) := \mathbb{E} [Q(x, \xi)]$ (2SLP)

Randomly draw ξ^1, \cdots, ξ^N and consider

$$\min_{x \in X} c^{\top} x + V_N^{SAA}(x) \quad \text{where} \quad V_N^{SAA}(x) := \frac{1}{N} \sum_{k=1}^N Q(x, \xi^k) \quad (2SLP_N)$$

Solve the equivalent finite LP

$$\min_{x \in X, (y_k)_{k=1}^N \in (\mathbb{R}_+^m)^N} \quad c^\top x + \frac{1}{N} \sum_{k=1}^N q^\top y_k$$

$$T^k x + W y_k \leqslant h^k \qquad \forall k = 1..N$$

$$(2SLP_N)$$

3/21

By statistical results, $Val(2SLP_N) \rightarrow_{N \rightarrow \infty} Val(2SLP)$.

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- 2 A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

Partitioning the cost-to-go function

 $V_{\mathcal{P}}(x)$

$$V(x) = \mathbb{E}\left[Q(x, \xi)\right]$$
 $V_N^{SAA}(x) = \frac{1}{N} \sum_{k=1}^N Q(x, \xi^k)$

$$V_N^{SAA}(x) = \frac{1}{N} \sum_{k=1}^{N} Q(x, \xi^k)$$

Definition (Expected-cost-go of partition)

Let \mathcal{P} be a \mathbb{P} -partition of Ξ , we define

$$V_{\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi}|P])$$

Property of cost-to-go partition

$$V_{\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\xi|P])$$

For all x, $Q(x,\cdot)$ is convex, then $V_{\mathcal{P}}\leqslant V$ For all P, $Q(\cdot,\mathbb{E}\big[\boldsymbol{\xi}|P\big])$ is polyhedral thus $V_{\mathcal{P}}$ is polyhedral.

The $(2SLP_{\mathcal{P}})$ problem $\min_{x \in X} c^{\top}x + V_{\mathcal{P}}(x)$ is the equivalent finite LP

$$\min_{x \in X, (y_P)_{P \in \mathcal{P}} \in (\mathbb{R}_+^m)^{\mathcal{P}}} c^\top x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^\top y_P$$

$$\mathbb{E}[\mathbf{T}|P] x + W y_P \leqslant \mathbb{E}[\mathbf{h}|P] \qquad \forall P \in \mathcal{P}$$

$$(2SLP_{\mathcal{P}})$$

Property of cost-to-go partition

$$V_{\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi}|P])$$

For all x, $Q(x,\cdot)$ is convex, then $V_{\mathcal{P}}\leqslant V$ For all P, $Q(\cdot,\mathbb{E}\left[\boldsymbol{\xi}|P\right])$ is polyhedral thus $V_{\mathcal{P}}$ is polyhedral.

The $(2SLP_{\mathcal{P}})$ problem $\min_{x \in X} c^{\top}x + V_{\mathcal{P}}(x)$ is the equivalent finite LP

$$\min_{x \in X, (y_P)_{P \in \mathcal{P}} \in (\mathbb{R}_+^m)^{\mathcal{P}}} \quad c^\top x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^\top y_P$$

$$\mathbb{E}[\mathbf{T}|P] x + W y_P \leqslant \mathbb{E}[\mathbf{h}|P] \qquad \forall P \in \mathcal{P}$$

Adapted partition

Definition

We say that a partition P is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\left[Q(x_0, \xi)\right]$$

Refinement

We say that $\mathcal R$ refines $\mathcal P$ and we denote $\mathcal R \preccurlyeq \mathcal P$ if

$$\forall R \in \mathcal{R}, \exists P \in P, R \subset P$$

We denote $\preccurlyeq_{\mathbb{P}}$ the refinement relation \mathcal{R} up to \mathbb{P} -negligeable sets. Then,

$$\mathcal{R} \preccurlyeq_{\mathbb{P}} \mathcal{P} \Rightarrow V_{\mathcal{P}} \leqslant V_{\mathcal{R}}$$

Common Refinement

We define $\mathcal{P} \preccurlyeq \mathcal{P}'$ the common refinement of \mathcal{P} and \mathcal{P}'

$$\mathcal{P} \wedge \mathcal{P}' = \{ P \cap P' \mid P \in \mathcal{P}, P' \in \mathcal{P}' \}$$

Since $\mathcal{P} \wedge \mathcal{P}'$ refines \mathcal{P} and \mathcal{P}'

$$\max(V_{\mathcal{P}}, V_{\mathcal{P}'}) \leqslant V_{\mathcal{P} \wedge \mathcal{P}'}$$

General framework for APM

Algorithm General framework for APM methods

- 1: $k \leftarrow 0$, $z_0^U \leftarrow +\infty$, $z_0^L \leftarrow -\infty$, $\mathcal{P}^0 \leftarrow \{\Xi\}$
- 2: while $z_k^U z_k^L > \varepsilon$ do
- 3: Solve $z_k^L \leftarrow \min_{x \in X} c^\top x + V_{\mathcal{P}^{k-1}}(x)$ and let x_k be an optimal solution i.e. solve a finite (2SLP)
- 4: Choose a partition \mathcal{P}_{x_k} adapted to x_k
- 5: $\mathcal{P}^k \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x_k}$
- 6: for $P \in \mathcal{P}^k$ do
- 7: Compute $\mathbb{P}[P]$ and $\mathbb{E}[\boldsymbol{\xi}|P]$
- 8: end for
- 9: $z_k^U \leftarrow \min\left(z_{k-1}^U, c^\top x_k + V_{\mathcal{P}^k}(x_k)\right)$
- 10: end while

General framework for APM

Algorithm General framework for APM methods

- 1: $k \leftarrow 0$, $z_0^U \leftarrow +\infty$, $z_0^L \leftarrow -\infty$, $\mathcal{P}^0 \leftarrow \{\Xi\}$
- 2: while $z_k^U z_k^L > \varepsilon$ do
- 3: Solve $z_k^L \leftarrow \min_{x \in X} c^\top x + V_{\mathcal{P}^{k-1}}(x)$ and let x_k be an optimal solution i.e. solve a finite (2SLP)
- 4: Choose a partition \mathcal{P}_{x_k} adapted to x_k
- 5: $\mathcal{P}^k \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x_k}$
- 6: for $P \in \mathcal{P}^k$ do
- 7: Compute $\mathbb{P}[P]$ and $\mathbb{E}[\boldsymbol{\xi}|P]$
- 8: end for
- 9: $z_k^U \leftarrow \min\left(z_{k-1}^U, c^\top x_k + V_{\mathcal{P}^k}(x_k)\right)$
- 10: end while

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- 2 A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

Song and Luedtke APM algorithm apply to 2SLP with finitely supported random variable.

Lemma

Let $\mathcal P$ a partition of Ξ . $\mathcal P$ is adapted at x iff for all set of scenarios $P \in \mathcal P$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \exists \lambda_P \in D, \forall \xi_k \in P, \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

ldea

Sample a large number of scenario without loss of precision gather the scenarios thanks to this condition

Song and Luedtke APM algorithm apply to 2SLP with finitely supported random variable.

Lemma

Let $\mathcal P$ a partition of Ξ . $\mathcal P$ is adapted at x iff for all set of scenarios $P \in \mathcal P$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \exists \lambda_P \in D, \forall \xi_k \in P, \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

Idea

Sample a large number of scenario without loss of precision gather the scenarios thanks to this condition

Song and Luedtke APM algorithm apply to 2SLP with finitely supported random variable.

Lemma

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \exists \lambda_P \in D, \forall \xi_k \in P, \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

Idea

Sample a large number of scenario without loss of precision gather the scenarios thanks to this condition

Song and Luedtke APM algorithm apply to 2SLP with finitely supported random variable.

Lemma

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \exists \lambda_P \in D, \forall \xi_k \in P, \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

Idea

Sample a large number of scenario without loss of precision gather the scenarios thanks to this condition

Ramirez-Pico and Moreno GAPM

Idea : Partition directly Ξ instead of sampling first

Lemma (Ramirez-Pico Moreno)

Let \mathcal{P} a partition of Ξ . If there exists an optimal $\lambda(\xi)$ such that, for all $P \in \mathcal{P}$,

$$\mathbb{E} [\boldsymbol{h}|P]^{\top} \mathbb{E} [\lambda(\boldsymbol{\xi})|P] = \mathbb{E} [\boldsymbol{h}^{\top} \lambda(\boldsymbol{\xi})|P]$$
$$\times^{\top} \mathbb{E} [\boldsymbol{T}|P]^{\top} \mathbb{E} [\lambda(\boldsymbol{\xi})|P] = \times^{\top} \mathbb{E} [\boldsymbol{T}^{\top} \lambda(\boldsymbol{\xi})|P]$$

then P is an adapted partition.

Unfortunately, we do not know an explicit algorithm to find a partition that satisfies this condition.

Comparison between partition based method

	APM	GAPM	G ² APM
Paper	Song, Luedtke	Ramirez-Pico,	F., Leclère
	(2015)	Moreno (2020)	(2021)
Non-finite $supp(\xi)$	×	✓	√
Proof of convergence	✓	×	√
Explicit formulation	✓	×	√
Complexity result	×	×	√
Fast iteration	✓	×	×

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

M. Forcier, V. Leclère

GAPM for 2SLP

February 23rd, 2022

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^{\top}(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

M. Forcier, V. Leclère GAPM for 2SLP

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^{\top}(\lambda' - \lambda) \leq 0\}$ the normal cone of D on λ .

 $D \lambda$ and $N_D(\lambda)$

13 / 21

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022

Definition

The normal fan of the polyhedron D is

$$\mathcal{N}(D) := \{ N_D(\lambda) \, | \, \lambda \in D \}$$

with $N_D(\lambda) = \{h \mid \forall \lambda' \in P, \ h^\top(\lambda' - \lambda) \leqslant 0\}$ the normal cone of D on λ .

Proposition

 $\{ri(N) \mid N \in \mathcal{N}(D)\}\$ is a partition of $supp \mathcal{N}(D)\ (= \mathbb{R}^m \ if \ D \ is bounded).$

D and $\mathcal{N}(D)$

For any $N \in \mathcal{N}(D)$ and $h \to \underset{\lambda \in D}{\operatorname{argmax}}_{\lambda \in D} h^{\top} \lambda$ is constant for all $h \in ri(N)$.

In particular, there exists a common optimal multipler λ_N for all $h - Tx \in \text{ri } N$, i.e. where $Q(x, \xi) = (h - Tx)^T \lambda_N$.

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(\mathcal{D})$ a normal cone of D. We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Recall that for all $\xi = (T, h) \in E_{N,x}$, $Q(x, \xi) = (h - Tx)^{\top} \lambda_N$

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(\mathcal{D})$ a normal cone of D. We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Recall that for all $\xi = (T, h) \in E_{N,x}$, $Q(x, \xi) = (h - Tx)^T \lambda_N$

Then,

$$\mathbb{E}\big[Q(x,\boldsymbol{\xi})|E_{N,x}\big] = Q(x,\mathbb{E}\big[\boldsymbol{\xi}|E_{N,x}\big])$$

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(\mathcal{D})$ a normal cone of D. We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Recall that for all $\xi = (T, h) \in E_{N,x}$, $Q(x, \xi) = (h - Tx)^{\top} \lambda_N$

Then,

$$\mathbb{E}[Q(x,\boldsymbol{\xi})|E_{N,x}] = Q(x,\mathbb{E}[\boldsymbol{\xi}|E_{N,x}])$$

Theorem (FL 2021)

 $\mathcal{R}_x := \big\{ E_{N,x} \mid N \in \mathcal{N}(D) \big\}$ is an adapted partition i.e. $V_{\mathcal{R}_x}(x) = V(x)$

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(\mathcal{D})$ a normal cone of D. We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Recall that for all $\xi = (T, h) \in E_{N,x}$, $Q(x, \xi) = (h - Tx)^T \lambda_N$

Then,

$$\mathbb{E}\left[Q(x,\boldsymbol{\xi})|E_{N,x}\right] = Q(x,\mathbb{E}\left[\boldsymbol{\xi}|E_{N,x}\right])$$

Theorem (FL 2021)

 $\mathcal{R}_x := \big\{ E_{N,x} \mid N \in \mathcal{N}(D) \big\}$ is an adapted partition i.e. $V_{\mathcal{R}_x}(x) = V(x)$

 \rightsquigarrow Is it the coarsest one?

CNS conditions for a partition to be adapted

Theorem (FL 2021)

Consider $x \in \mathbb{R}^n$ and \mathcal{P} a partition of Ξ . Then, there exists a canonical cover $\overline{\mathcal{R}}_{\times}$ of Ξ (not necessarily a partition), is such that

$$\mathcal{P} \preccurlyeq_{\mathbb{P}} \mathcal{R}_{\mathsf{x}} \Longrightarrow V_{\mathcal{P}}(\mathsf{x}) = V(\mathsf{x})$$

$$\mathcal{P} \preccurlyeq_{\mathbb{P}} \overline{\mathcal{R}}_{x} \iff V_{\mathcal{P}}(x) = V(x).$$

If ξ admits a density, $\mathcal{R}_{\mathsf{x}} =_{\mathbb{P}} \mathcal{R}_{\mathsf{x}}$.

$$\overline{E}_{N,x} := \{ \xi \in \Xi \mid h - Tx \in N \}$$

Subgradient of partition function

Recall that if $\mathcal{P} \preccurlyeq_{\mathbb{P}} \mathcal{R}_{x}$ then

$$V_{\mathcal{R}_x}(x) = V_{\mathcal{P}}(x) = V(x)$$

$$V_{\mathcal{R}_x}(\cdot) \leqslant V_{\mathcal{P}}(\cdot) \leqslant V(\cdot)$$

Lemma

Let $x \in \text{dom}(V)$ and \mathcal{P} be a refinement of \mathcal{R}_x , i.e. $\mathcal{P} \preccurlyeq \mathcal{R}_x$, then

$$\partial V_{\mathcal{R}_x}(x) \subset \partial V_{\mathcal{P}}(x) \subset \partial V(x)$$

Furthermore, if $x \in ri dom(V)$,

$$\partial V_{\mathcal{R}_x}(x) = \partial V_{\mathcal{P}}(x) = \partial V(x)$$

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

M. Forcier, V. Leclère GAPM for 2SLP February 23rd, 2022 17 / 21

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

Contents

- Adaptive partition based methods
 - Problem setting
 - General framework for APM methods
 - Previous APM methods
- A novel APM algorithm
 - Polyhedral tools
 - An explicit adapted partition
 - Convergence and complexity of APM methods
 - Numerical results

Numerical Results - ProdMix

k	z_{L}^{k}	z_U^k	$z_U^k - z_L^k$	Total time	$ \mathcal{P}^k $
1	-18666.67	-16939.71	1726.96	0.57 s	4
2	-17873.01	-17383.73	489.28	2.1 s	9
4	-17744.67	-17709.00	35.67	9.1 s	25
6	-17713.74	-17711.37	2.37	23.7 s	49
8	-17711.71	-17711.56	0.15	50.0 s	81
10	-17711.57	-17711.56	0.01	88.0 s	121

Table: Results for problem Prod-Mix

Comparison with SAA : we solved the same problem $100\ \text{times}$, each with $10\ 000\ \text{scenarios}$ randomly drawn

- \rightsquigarrow 95% confidence interval centered in -17711, with radius 2.2.
- → required 2058s of computation.

Perspectives

A GAPM iteration is very slow in high dimension

 \leadsto Compute $\mathbb{E}\left[\xi|N\right]$ and $\mathbb{P}\!\left[N\right]$ with approximations and compare with SAA

The size of the partition can grow quickly

- \leadsto Find some heuristics for not only refining but merging which is equivalent to forget cuts for cutting planes method.
 - → Implement with bundle methods.

Perspectives

A GAPM iteration is very slow in high dimension

 \leadsto Compute $\mathbb{E}\left[\pmb{\xi}|\pmb{N}\right]$ and $\mathbb{P}\big[\pmb{N}\big]$ with approximations and compare with SAA

The size of the partition can grow quickly

- \leadsto Find some heuristics for not only refining but merging which is equivalent to forget cuts for cutting planes method.
 - → Implement with bundle methods.

References

- [1] Maël Forcier and Vincent Leclère. Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization. arXiv preprint arXiv:2109.04818, 2021.
- [2] Cristian Ramirez-Pico and Eduardo Moreno. Generalized adaptive partition-based method for two-stage stochastic linear programs with fixed recourse. *Mathematical Programming*, pages 1–20, 2021.
- [3] Yongjia Song and James Luedtke. An adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. *SIAM Journal on Optimization*, 25(3):1344–1367, 2015.
- [4] Wim van Ackooij, Welington de Oliveira, and Yongjia Song. Adaptive partition-based level decomposition methods for solving two-stage stochastic programs with fixed recourse. *Informs Journal on Computing*, 30(1):57–70, 2018.

Explicit representation of $E_{N,x}$

Let
$$N := \{\widetilde{h} \, | \, M\widetilde{h} \leqslant 0\}$$

Then

$$E_{N,x} = \{ \xi \in \Xi \mid h - Tx \in ri(N) \}$$

= \{ \xi \in \Xi \in \Xi \in \Xi \in X \in 0 \}
= \{ \xi \in \Xi \in \Xi \in X \in 0 \}

where $H^{\times} = (-x_1 M \cdots - x_n M M)$.

If $T \equiv T$ is deterministic,

$$\mathcal{R}_{\mathsf{X}} = \mathsf{T}\mathsf{X} + \mathcal{N}(\mathsf{D})$$

Then, we only need to compute $\mathcal{N}(D)$ once and translate at each iteration.

Explicit representation of $E_{N,x}$

Let
$$N := \{\widetilde{h} \mid M\widetilde{h} \leqslant 0\}$$

Then

$$E_{N,x} = \{ \xi \in \Xi \mid h - Tx \in ri(N) \}$$

= \{ \xi \in \Xi \in \Xi \in \Xi \in X \in 0 \}
= \{ \xi \in \Xi \in \Xi \in X \in 0 \}

where $H^{\times} = (-x_1 M \cdots - x_n M M)$.

If $T \equiv T$ is deterministic,

$$\mathcal{R}_{x} = Tx + \mathcal{N}(D)$$

Then, we only need to compute $\mathcal{N}(D)$ once and translate at each iteration.

Explicit formulas for usual distributions

Recall that $V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi}|P]).$

Thus, we need to compute $\mathbb{P}[C]$ and $\mathbb{E}[\xi \mid C]$ when C is a polyhedron.

Fortunately we have some explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution	Uniform on polytope	Exponential	
	$\frac{\mathbb{1}_{\xi \in Q}}{\operatorname{Vol}_d(Q)} \mathcal{L}_{\operatorname{Aff}(Q)}(d\xi)$	$\frac{e^{\theta^{\top}\xi}\mathbb{1}_{\xi\in K}}{\Phi_{K}(\theta)}\mathcal{L}_{\mathrm{Aff}(K)}(d\xi)$	$\frac{e^{-\frac{1}{2}\xi^{\top}M^{-2}\xi}}{(2\pi)^{\frac{m}{2}}\det M}d\xi$
Support	Polytope : Q	Cone: K	
	$\frac{\operatorname{Vol}_d(S)}{\operatorname{Vol}_d(Q)}$	$\frac{ \det(Ray(S)) }{\Phi_{\mathcal{K}}(\theta)} \prod_{r \in Ray(S)} \frac{1}{-r^{\top}\theta}$	$Ang(M^{-1}S)$
$\mathbb{E}\left[\xi\mid S\right]$	$\frac{1}{d} \sum_{v \in Vert(S)} V$	$\left(\sum_{r \in Ray(S)} \frac{-r_i}{r^\top \theta}\right)_{i \in [m]}$	

Explicit formulas for usual distributions

Recall that $V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\xi|P]).$

Thus, we need to compute $\mathbb{P}[C]$ and $\mathbb{E}[\xi \mid C]$ when C is a polyhedron.

Fortunately we have some explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution	Uniform on polytope	Exponential	Gaussian
$d\mathbb{P}(\xi)$	$rac{\mathbb{1}_{\xi\in Q}}{\operatorname{Vol}_d(Q)}\mathcal{L}_{\operatorname{Aff}(Q)}(d\xi)$	$rac{e^{ heta^{ op \xi}}\mathbb{1}_{\xi \in \mathcal{K}}}{\Phi_{\mathcal{K}}(heta)}\mathcal{L}_{Aff(\mathcal{K})}(d\xi)$	$\frac{e^{-\frac{1}{2}\xi^{\top}M^{-2}\xi}}{(2\pi)^{\frac{m}{2}}\det M}d\xi$
Support	Polytope : Q	Cone: K	\mathbb{R}^m
$\mathbb{P}[S]$	$\frac{\operatorname{Vol}_d(S)}{\operatorname{Vol}_d(Q)}$	$\frac{ \det(Ray(S)) }{\Phi_{\mathcal{K}}(\theta)} \prod_{r \in Ray(S)} \frac{1}{-r^{\top}\theta}$	$Ang\left(M^{-1}S\right)$
$\mathbb{E}\left[\boldsymbol{\xi}\mid S\right]$	$\frac{1}{d} \sum_{v \in Vert(S)} v$	$\left(\sum_{r \in Ray(S)} \frac{-r_i}{r^\top \theta}\right)_{i \in [m]}$	$\frac{\sqrt{2}\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m}{2})} M \operatorname{Ctr}\left(S \cap \mathbb{S}_{m-1}\right)$