VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

Artificial Intelligence LAB

Submitted by

Rahul Raj (1BM21CS158)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING BENGALURU-560019 Oct-2023 to Feb-2024

(Autonomous Institution under VTU)

B. M. S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Artificial Intelligence lab" carried out by **Rahul Raj** (**1BM21CS158**), who is a bonafide student of **B. M. S. College of Engineering.** It is inpartial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum during the year 2023. The Lab report has been approved as it satisfies the academic requirements in respect of an **Artificial Intelligence lab** (**22CS5PCAIN**) work prescribed for the said degree.

Dr. Pallavi GB

Assistant Professor Department of CSE BMSCE, Bengaluru Dr. Jyothi S Nayak

Professor and Head Department of CSE BMSCE, Bengaluru

Program 1:

cost += 1 #cost for suck

```
Implement the vacuum cleaner program(20/11/23)
def vacuum world():
# initializing goal state
# 0 indicates Clean and 1 indicates Dirty
goal_state = {'A': '0', 'B': '0'}
                               cost = 0
  location_input = input("Enter Location of Vacuum") #user_input of location vacuum is placed
status_input = input("Enter status of " + location_input) #user_input if location is dirty or clean
status input complement = input("Enter status of other room")
  print("Initial Location Condition" + str(goal_state))
if location_input == 'A':
  # Location A is Dirty.
     print("Vacuum is placed in Location A")
if status input == '1':
                             print("Location
A is Dirty.") # suck the dirt and mark it as
clean
       goal_state['A'] = '0'
                                   cost += 1
#cost for suck
                       print("Cost for CLEANING
A " + str(cost))
                       print("Location A has
been Cleaned.")
                         if
status input complement == '1':
  # if B is Dirty
          print("Location B is Dirty.")
          print("Moving right to the Location B. ")
cost += 1 #cost for moving right
          print("COST for moving RIGHT" + str(cost))
# suck the dirt and mark it as clean
          goal_state['B'] = '0'
                                         cost +=
                           print("COST for
1 #cost for suck
SUCK " + str(cost))
                               print("Location B
has been Cleaned. ")
                              else:
          print("No action" + str(cost))
# suck and mark clean
          print("Location B is already clean.")
     if status input == '0':
       print("Location A is already clean ")
                                                    if
status input complement == '1':# if B is Dirty
print("Location B is Dirty.")
          print("Moving RIGHT to the Location B. ")
cost += 1 #cost for moving right
                                           print("COST
for moving RIGHT " + str(cost))
                                      # suck the dirt
and mark it as clean
                                goal state['B'] = '0'
```

print("Cost for

```
SUCK" + str(cost))
                              print("Location B has
been Cleaned. ")
                          else:
          print("No action " + str(cost))
print(cost)
          # suck and mark clean
print("Location B is already clean.")
     print("Vacuum is placed in location B")
# Location B is Dirty.
                           if status input
== '1':
       print("Location B is Dirty.")
# suck the dirt and mark it as clean
       goal_state['B'] = '0'
                                   cost += 1 #
cost for suck
                     print("COST for
CLEANING " + str(cost))
                                  print("Location
B has been Cleaned.")
                                if
status input complement == '1':
  # if A is Dirty
          print("Location A is Dirty.")
print("Moving LEFT to the Location A. ")
cost += 1 # cost for moving right
print("COST for moving LEFT" + str(cost))
# suck the dirt and mark it as clean
          goal state['A'] = '0'
                                         cost +=
1 # cost for suck
                            print("COST for
SUCK " + str(cost))
                               print("Location A
has been Cleaned.")
                             else:
          print(cost)
          # suck and mark clean
print("Location B is already clean.")
status_input_complement == '1': # if A is Dirty
print("Location A is Dirty.")
                                   print("Moving
LEFT to the Location A. ")
                                   cost += 1 # cost
for moving right
                        print("COST for moving
LEFT " + str(cost))
                           # suck the dirt and mark it
as clean
       goal_state['A'] = '0'
                                   cost
+= 1 # cost for suck
                             print("Cost
for SUCK " + str(cost))
print("Location A has been Cleaned. ")
else:
       print("No action " + str(cost))
# suck and mark clean
print("Location A is already clean.")
```

```
# done cleaning
print("GOAL STATE: ")
print(goal_state)
    print("Performance Measurement: " + str(cost))
vacuum_world()
```



```
Enter Status of A1
Enter status of other room1
Initial Location Condition{'A': '0', 'B': '0'}
Vacuum is placed in Location A
Location A is Dirty.
Cost for CLEANING A 1
Location A has been Cleaned.
Location B is Dirty.
Moving right to the Location B.
COST for moving RIGHT2
COST for SUCK 3
Location B has been Cleaned.
```

Program 2:

Implement the 8 Puzzle Bieadth list Seaich Algoithm. (11/12/23)

```
import numpy as np import
pandas as pd
import os
def gen(state, m, b):
temp = state.copy()
   if m == 'd':
                   temp[b + 3], temp[b] =
                      elif m == 'u':
temp[b], temp[b + 3]
     temp[b - 3], temp[b] = temp[b], temp[b - 3]
elif m == 'l':
                 temp[b - 1], temp[b] =
temp[b], temp[b - 1]
                       elif m == 'r':
     temp[b + 1], temp[b] = temp[b], temp[b + 1]
  return temp # Return the modified state
def possible_moves(state, visited_states):
  b = state.index(0)
  d = []
   if b not in [0, 1,
2]:
d.append('u')
                if b
not in [6, 7, 8]:
d.append('d')
                if b
not in [0, 3, 6]:
d.append('l')
                if b
not in [2, 5, 8]:
d.append('r')
  pos_moves_it_can = []
   for i in
d:
     pos_moves_it_can.append(gen(state, i, b))
  return [move_it_can for move_it_can in pos_moves_it_can if move_it_can not in
visited_states]
def bfs(src, target):
  queue = []
queue.append(src)
                       cost=0
  exp = []
```

```
while len(queue) > 0:
source = queue.pop(0)
exp.append(source)
print("queue")
                   for q in
queue:
      print(q)
     print("____****____")
     print(source[0],'|',source[1],'|',source[2])
print(source[3],'|',source[4],'|', source[5])
                                              print(source[6],'|',
source[7],'|',source[8])
     print()
     cost=cost+1
     if source == target:
print("success")
                        print("path
cost",cost)
       return
     poss_moves_to_do = possible_moves(source, exp)
                                             if
    for move in poss_moves_to_do:
move not in exp and move not in queue:
queue.append(move)
src = [1, 2, 3, 4, 5, 6, 0, 7, 8] target
= [1, 2, 3, 4, 5, 6, 7, 8, 0] bfs(src,
target)
```

	Implement 5
_	Algorithm 1.
-	
	Monther (state depter, player) then then
30	they player = max) trayer
	clse. Enull - infinity]
10	
4	15) marion and timenty
	if (depth = 0
1	Score = evaluate the gameores than
	if (clepth - D us gameores) than Score = evaluate thin sax for flagar
1	return [null, score]
	for each Valid move in for player in sixte S execute move in min
	execute more m on s
1	
	[move, Score] = minorar (S, dopth -1, - Playe
	- fre + flage
	undo move m on
	if (players: max) than
	it score > nort. Score than
	pest = [move, Score]
2	be
	If Store & best Sine than
	by - Const Const
D	setum best [more , 5,000]
	all is they as to said

star-space-dugum:	- 50
Star - Spare - cue som -	- 29
	- 8
O X	
14 × 0 0 11 8 1	-
x x x x x x x x x x x	
x o o x o o x o o	
(+10) . (01+)	1000
de d	
OXXOXX PXXX	-
	7
x 10 10 X 10 10 X 10 10 X 1	
(01-1)	
VOIXXX	
× × ×	
0 0 0 X 50 0	
(3+) 5 (3 7 + 4 (ci+) 4 1 B 4	C
11 (184) 11	1
Output: Enter HOLD: 1 Cutty rows 2	
Enter Column: 2 Gates Tolumn: D	
1 1 - 0 88 1 58	
A -1-1-X 14 5 7 14 5	
10	
II Guler now: O Chap Son: O	
Enter Column: O from	
X-1-1-0-0	
· V- - - A	

Output

```
[1, 2, 3, 5, 0, 6, 4, 7, 8]
***
[1, 2, 3, 4, 0, 6, 7, 5, 8]
.............
[1, 2, 3, 4, 5, 6, 7, 8, 0]
0 | 2 | 3
1 | 5 | 6
4 | 7 | 8
[1, 2, 3, 4, 0, 6, 7, 5, 8]
[1, 2, 3, 4, 5, 6, 7, 8, 0]
[2, 0, 3, 1, 5, 6, 4, 7, 8]
1 | 2 | 3
5 | 0 | 6
4 | 7 | 8
[1, 2, 3, 4, 5, 6, 7, 8, 0]
[2, 0, 3, 1, 5, 6, 4, 7, 8]
[1, 0, 3, 5, 2, 6, 4, 7, 8]
[1, 2, 3, 5, 7, 6, 4, 0, 8]
[1, 2, 3, 5, 6, 0, 4, 7, 8]
***
1 | 2 | 3
4 | 0 | 6
7 | 5 | 8
aueue
[2, 0, 3, 1, 5, 6, 4, 7, 8]
***
[1, 0, 3, 5, 2, 6, 4, 7, 8]
-----***------
[1, 2, 3, 5, 7, 6, 4, 0, 8]
 ......
[1, 2, 3, 5, 6, 0, 4, 7, 8]
----***-----
[1, 0, 3, 4, 2, 6, 7, 5, 8]
***
[1, 2, 3, 0, 4, 6, 7, 5, 8]
.....***.....
[1, 2, 3, 4, 6, 0, 7, 5, 8]
1 | 2 | 3
4 | 5 | 6
7 | 8 | 0
success
path cost 7
```

queue

1 | 2 | 3

4 | 5 | 6 0 | 7 | 8

1 | 2 | 3

0 | 5 | 6

4 | 7 | 8

queue

[1, 2, 3, 5, 0, 6, 4, 7, 8]

1 | 2 | 3 4 | 5 | 6 7 | 0 | 8

Program 3:

for i in range(3): for j in range(3):

if

Explore the working of l'ic l'ac l'oe using Min max strategy.

```
(11/12/23)
print("0,0|0,1|0,2")
print("1,0|1,1|1,2")
print("2,0|,2,1|2,2 \n\n")
def print_board(): for
row in board:
print("|".join(row))
  print("-" * 5)
def check_winner(player): for i in range(3):
                                               if all([board[i][i] == player for j in
range(3)]) or all([board[j][i] == player for j in range(3)]):
                                                           return True
 if all([board[i][i] == player for i in range(3)]) or all([board[i][2 - i] == player for i in range(3)]):
return True
 return False
def is_full(): return all([cell != " " for row in board
for cell in row])
def minimax(depth, is_maximizing):
if check_winner("X"):
  return -1 if
check_winner("O"):
  return 1 if
is_full():
           return
0 if
is_maximizing:
  max_eval = float("-inf")
for i in range(3):
                    for j
in range(3):
board[i][j] == " ":
board[i][j] = "O"
      eval = minimax(depth + 1, False)
board[i][j] = " "
      max_eval = max(max_eval, eval)
return max_eval else:
  min_eval = float("inf")
```

```
board[i][j] == " ":
board[i][j] = "X"
       eval = minimax(depth + 1, True)
board[i][j] = " "
       min_eval = min(min_eval, eval)
  return min eval
def ai_move():
best_move = None
 best_eval = float("-inf") for i
in range(3): for j in
range(3):
              if board[i][j] == "
       board[i][j] = "O"
eval = minimax(0, False)
board[i][j] = " "
                    if eval >
best_eval:
                  best_eval =
eval
      best_move = (i, j)
 return best_move
while not is_full() and not check_winner("X") and not check_winner("O"):
print_board() row = int(input("Enter row (0, 1, or 2): ")) col =
int(input("Enter column (0, 1, or 2): ")) if board[row][col] == " ":
board[row][col] = "X"
                        if check_winner("X"):
                                                   print_board()
print("You win!")
                     break
                            if is_full():
                                             print_board()
                                                               print("It's a
draw!")
           break
  ai_row, ai_col = ai_move()
board[ai_row][ai_col] = "O"
if check_winner("O"):
print board()
                  print("Al
wins!")
    break
 else:
  print("Cell is already occupied. Try again.")
```

program 02 Smplement Tie-Tae-Toe game Algorithm: MinMaxl State, depth; player) I (player 2 more) then best > [mell, - impinity] alse best > (mell, + impinity) I (depth e0. 8) gamepure) then Slove - enclured the state fa player actuan (mell. Slove) for each valid more on for player on state of do axecute more on on s (more, Score) - minmax (s, dep th-1, -player) Undo more mo on s I (player > mee) then 2 Score > best, some then best = [more, Slove] seturn best .		
Implement Tie-Tae-Toe game Algorithm: MinMext State, depth, player) Pleyer = ores then best = [antl, - impinity] else Led = (null, + impinity] if I depth = O. B. gamepure 1 then Score = emeluete the state for player actuan [mill. Store] for each valid more m for player method do execute more m on s [more, Score] = minmex (S, depth-1, -player) Vado more mo on s y (player = me) then ? J. Score > best, Store then best = [more, Store] else if Store < best store than best - [more, Store]	6 S	9 11.
Implement Tie-Tae-Toe game Algorithm: MinMext State, depth, player Pleyer = ores then best = [antl, - imfinity] else Led = (antl, + infinity] if I depth = O. B. gamepure 1 then Score = methete the state for player actual [mill. Store] for each valid more in for player in state of do execute more in one [angue, Score] = minmex (S, depth-1, -player) Vado more mo on S if Score > best, Score then best = [angue, Score] else if Score < best score than best - [angue]		program 02
Algorithm: MinMext State, dypth, player) if I player = more I then best = [null, + infinity] alse best = (null, + infinity] if I depth = 0. B gamener) then Sloze = encluste this : state fa player neturn [mill. Store) for each valid more on for player or state? do assicult more on on s [more, Score] = minmex (S, dep thi-1, -player) Vallo more mo on s if [player = mexten y Score > best, Store then best = [more, Slose] else if Store (best, Store than best - [more, Slose]		
MinMex (State, depth; player) 3] (player = more) from bero = [null, - Infinity]. else best = (null, + Infinity] if depth = 0. or gamene 1 then Score = enablete this · state for player neturn [mill. store] for each valid more m for player m state of do execute more m on s [nume, score] = minmex (s, dep thi-1, - player) Valor more more on s 3] (player = mex) then 2] Score > best, store then best = [more, score) else if store < coept. store than best - [more, score)		Implement Tie-Tae-Toe game
MinMex (State, depth; player) If (player = more) from bero = [anth, - infinity]. else best = (null, + infinity] if (depth = 0. or gamepue) then \$(051 = inellecte this state for player neturn [mlll. store) for each valid more m for player m state of do execute more m on s [more, score] = minmex (s, depth-1, - player) Vado more mo on s If (player = mex) then if score > best, score then best = [more, score) else if score < core, score than best - [more, score)		Al assithme
if (player = more) from best = [mull, - infinity]. else best = [mull, + infinity] if I depth = 0. & game proce 1 then \$1001 = emalurate this . state fa player neturn [mlll. slove) for each valid more m for player m state of do axecula more m on s [more, score] = minmon (s, dep thi-1, -player) Value more mo on s if (player = mee) then if score > best, slove then best = [more, score) else if store < best spore than best - [more score)		MinMax (State , dupth , play es)
ske best = [null, + imfinity] if I depth = 0. & gamener 1 then Score = enablete this · state for player actual [mlll. score] for each valid more in for player in state of Do execute more in one on s [more, score] = minmox (s, dep th-1, -player) Undo more in one s y (player = me) then ? J Score > best, score then best = [mone, score] else if score < best score than best - [more, score]		31 (planes a most) then
ske best = [null, + imfinity] if I depth = 0. & gamener 1 then Score = enablete this · state for player actual [mlll. score] for each valid more in for player in state of Do execute more in one on s [more, score] = minmox (s, dep th-1, -player) Undo more in one s y (player = me) then ? J Score > best, score then best = [mone, score] else if score < best score than best - [more, score]		best = [null, - ?nutiniby].
best = (null, + impinity) if I depth = O. & gamegnee) + then Sloze = uncluste + tis · state fa player neturn [mlll. slove) for each valid more in for player in state (do axecute more in on s [mone, score] = minmox (s, dep thr-1, -player) Vindo more into on s **I (player = me) then **I score > best, store then best = [mone, score] else: if slove < best spee than bect - [more, score]		ole.
If I depth & O. B gamenue I then Scose = encluste this · State for player neturn [mill. Slove] for each valid more in for player in state of do execute more in on s [more, Score] = minmex (S, dep th-1, -player) Undo more mo on s If (player = me) then if Scose > best, Score then best = [more, Score] else : if Score < Gest Spere than best - [more, Score]		best = (null, + infinity)
for each valid more m for play or m state of do execute more m on s [more, Score] = minmon (S, dep th-1, -player) Valo more mo on s y (player = me.) then y Score > best, Score then best = [more, Score] else: "I Score < Gest spee than bect - [more, Score]		il depth = O. B. game gree) then
for each valid more m for play or m state of do execute more m on s [more, Score] = minmon (S, dep th-1, -player) Vado more mo on s y (player = me.) then y Score > best, Score then best = [more, Score] else if Score < best spee than bect - [more, Score]		SCO31 = enabrate this state to player
for each valid mon m for play a m state of do execute mone m on s [mone, Score] = minmex (S, dep th-1, -playes) Vado mone mo on s 1 (player = mex) then 2 Score > best, Score then best = [mone, Score] else: 1 Score < Gest spece than bect - [mone, Score]		A The feet of the
[more, scouls minmox (s, dep th-1, -player) Vado morre mo on s * (player = mex) then ? Score > best . score then best = [morre, score] else: * Score < Gest . score than best - [morre, score]	11	
[more, Score] = minmox (S, dep th-1, -player) Vado morre mo on S * (player = mex) then ? Score > best . Score then best = [morre, Score] else: "I Score < Gest . Score than best - [morre, Score]		for each valid mon m for play a m state s
Undo more mp on S 1 (player > mex) then 2 Score > best, Score then best = [mone, Score] else 1 Score < Gest spee than bect - [mone, Score]		do execute mono m on s
Undo more mo on s 1 (player = mer) then 1 Score > best, Score then best = [mone, Score] else 1 Score < Gest Spec than bect - [mone, Score]		
else if Store < Best . Store than best = [mone, store] else if Store < Best . Store than best - [mone, store]		(mone, scoul = minmon (s, dep th-1, -player)
else if Store < Best . Store than best = [mone, store] else if Store < Best . Store than best - [mone, store]		Undo morre mo on s
else: Score > best . Score then best = [mone, score] else: 'f Score < Gest . Spere than bect - [mone, score]		
else: if Store < Great Store than bect - Emone, septe >		? Seose > best , Seose then
if Som (Best spee than beck - [more , spee)		best = [mone, score?
if Score (Best spee than beck - [more, score)		
bed - [more seper)		
		if Store & Great Store than
setwo best		
		hetun bett.
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
III		


```
0,0|0,1|0,2
  1,0 | 1,1 | 1,2
  2,0|,2,1|2,2
  11
  11
  -----
  Enter row (0, 1, or 2): 1
  Enter column (0, 1, or 2): 1
  0 |
  -----
  |X|
  1.1
  Enter row (0, 1, or 2): 0
  Enter column (0, 1, or 2): 2
  0 | X
  ----
  |X|
  -----
  0 |
  Enter row (0, 1, or 2): 1
  Enter column (0, 1, or 2): 0
  0 X
  -----
  XXO
  -----
  0 |
  Enter row (0, 1, or 2): 2
  Enter column (0, 1, or 2): 1
  0 0 X
  -----
  X X O
  -----
  0|X|
  Enter row (0, 1, or 2): 2
  Enter column (0, 1, or 2): 2
  0 0 X
  -----
  X X O
  -----
  OXX
  It's a draw!
```

Program 4:

Implement Iteíative deepening seaích algoíithm.(18/12/23) from

collections import defaultdict

```
# This class represents a directed graph using adjacency
# list representation class
Graph:
  def___init__(self,vertices):
     # No. of vertices
     self.V = vertices
     # default dictionary to store graph
self.graph = defaultdict(list)
     self.ans = list()
  # function to add an edge to graph
                   addEdge(self,u,v):
def
self.graph[u].append(v)
  # A function to perform a Depth-Limited search
  # from given source 'src'
DLS(self,src,target,maxDepth,I):
     if src == target :
# print(self.ans)
       return True
     # If reached the maximum depth, stop recursing.
     if maxDepth <= 0 : return False
     # Recur for all the vertices adjacent to this vertex
for i in self.graph[src]:
if(self.DLS(i,target,maxDepth-1,l)):
I.append(i)
                        return True
     return False
  # IDDFS to search if target is reachable from v.
# It uses recursive DLS()
  def IDDFS(self,src, target, maxDepth):
     # Repeatedly depth-limit search till the
     # maximum depth
for i in range(maxDepth):
```

```
I = []
(self.DLS(src, target, i,l)):
l.append(src)
          I.reverse()
return I
             return I
# Create a graph given in the above diagram n,e = map(int
,input("Enter no.of vertices and edges").split()) g = Graph
(n); for i in range(e):
                       a,b = map(int , input().split())
g.addEdge(a,b)
# g.addEdge(0, 1)
# g.addEdge(0, 2)
# g.addEdge(1, 3)
# g.addEdge(1, 4)
# g.addEdge(2, 5)
# g.addEdge(2, 6)
target = int(input("Enter the target vertex")) maxDepth
= int(input("Enter the max depth"))
src = 0 I = g.IDDFS(src, target,
maxDepth) if len(l)!=0:
                          print(l)
  print ("Target is reachable from source " +
     "within max depth") else
  print ("Target is NOT reachable from source " +
     "within max depth")
```



```
Enter no.of vertices and edges7 6
0 1
0 2
1 3
1 4
2 5
2 6
Enter the target vertex6
Enter the max depth3
[0, 2, 6]
Target is reachable from source within max depth
```

Program 5:

Implement A* foi 8 puzzle pioblem(8/1/24)

```
# Online Python compiler (interpreter) to run Python online.
# Write Python 3 code in this online editor and run it.
class Node: def__init_(self,data,level,fval):
self.data = data
                      self.level = level
     self.fval = fval
  def generate_child(self):
                                  x,y =
self.find(self.data,'_')
                           val_list = [[x,y-
                               children = []
1],[x,y+1],[x-1,y],[x+1,y]]
for i in val_list:
        child = self.shuffle(self.data,x,y,i[0],i[1])
if child is not None:
          child_node = Node(child,self.level+1,0)
children.append(child node)
     return children
  def shuffle(self,puz,x1,y1,x2,y2):
                                          if x2 \ge 0 and x2 < len(self.data)
and y2 \ge 0 and y2 < len(self.data):
        temp_puz = []
                               temp puz =
self.copy(puz)
                       temp =
temp_puz[x2][y2]
                          temp_puz[x2][y2] =
temp_puz[x1][y1]
                          temp_puz[x1][y1] =
             return temp_puz
                                     else:
temp
return None
  def copy(self,root):
     temp = []
for i in root:
       t = []
for j in i:
          t.append(j)
temp.append(t)
     return temp
  def find(self,puz,x):
                            for i in
range(0,len(self.data)):
                                 for j in
range(0,len(self.data)):
                                   if
puz[i][j] == x:
                           return i,j
```

```
class Puzzle:
  def___init_(self,size):
     self.n = size
self.open = []
self.closed = []
  def accept(self):
     puz = []
                    for i in
range(0,self.n):
                          temp
= input().split(" ")
puz.append(temp)
     return puz
  def f(self,start,goal):
                               return
self.h(start.data,goal)+start.level
  def h(self,start,goal):
     temp = 0
                     for i in range(0,self.n):
for j in range(0,self.n):
                                    if start[i][j] !=
goal[i][j] and start[i][j] != '_':
                                            temp +=
       return temp
  def process(self):
                            print("Enter the
start state matrix \n")
                             start =
                    print("Enter the goal
self.accept()
state matrix \n")
                             goal =
self.accept()
     start = Node(start, 0, 0)
start.fval = self.f(start,goal)
     self.open.append(start)
     while True:
        cur = self.open[0]
        print("")
                           print(" | ")--
print(" | ")
                        print(" \\\'/ \n")
for i in cur.data:
                              for j in i:
print(j,end=" ")
                               print("")
if(self.h(cur.data,goal) == 0):
           break
                          for i in
cur.generate_child():
i.fval = self.f(i,goal)
self.open.append(i)
self.closed.append(cur)
        del self.open[0]
```

""" sort the opne list based on f value """ self.open.sort(key = lambda x:x.fval,reverse=False)

puz = Puzzle(3)
puz.process()

	Program 5
	Implement A to 8 puzzle.
	Algorithm:
	Initialize the open list
	Initialize the closed but
	Dhile Open list is not empty
Y	which open is the local to on plant
	callet is
	(c) generate v's successors & set paint to a
3	(c) generate v's succusors & set paint to a
17	d) for each successor
	(i) if succursor is gold, stop search
	(i) ene compute for h & g
4	Successor, g = q.g + dist 6/10
	Successor g = q. g + dist 4/10 Principor & goal
	(11) if a node with same position as
	successor is in open list which his a lover
1	f than successor them skip.
b	and (for loop)
-	(2) push a on The closed list
	V. A. S.
	Output
	Enter Vals, -[1,2,3,5,6,0,7,8,4]
	Enter val for goal state = [1,2,3,5,6,0,7,4]
	Contract Charles &
	123 1 213 1 23
-	560 - 506 - 586
	184 784 704


```
Enter the start state matrix
5 6 _
7 8 4
Enter the goal state matrix
 cost: 3
 cost: 3
```

Program 6:

Creation of Knowledge Base using prepositional logic and show that the query entails the KB or not (22/1/24)

combinations=[(True,True, True),(True,False),(True,False,True),(True,False,False),(False,True),(False,True),(False,True),(False,False)] variable={'p':0,'q':1, 'r':2} kb=" q=" priority={'~':3,'v':1,'^':2} def input_rules(): global

```
kb, y
        kb = (input("Enter rule: "))
                                      y = input("Enter the Query: ") def entailment():
global kb, q
  print('*'*10+"Truth Table Reference"+'*'*10)
                    print('*'*10)
                                  for comb in
print('kb','alpha')
combinations:
                    s =
evaluatePostfix(toPostfix(kb), comb)
     f = evaluatePostfix(toPostfix(y), comb)
print(s, f)
               print('-'*10)
                                if s and not
          return False
                         return True def
f:
isOperand(c):
  return c.isalpha() and c!='v'
def isLeftParanthesis(c):
  return c == '('
def isRightParanthesis(c):
  return c == ')'
def isEmpty(stack):
  return len(stack) == 0
def peek(stack):
return stack[-1]
def hasLessOrEqualPriority(c1, c2):
try:
     return priority[c1]<=priority[c2]
                                        except
KeyError:
                return False def toPostfix(infix):
stack = []
            postfix = "
                          for c in infix:
                                             if
isOperand(c):
                       postfix += c
                                         else:
if isLeftParanthesis(c):
stack.append(c)
                         elif
isRightParanthesis(c):
                                  operator =
stack.pop()
                       while not
isLeftParanthesis(operator):
             postfix += operator
                                              operator = stack.pop()
                                                                              else:
while (not isEmpty(stack)) and hasLessOrEqualPriority(c, peek(stack)):
             postfix += stack.pop()
stack.append(c)
                    while (not
isEmpty(stack)):
                       postfix +=
stack.pop()
  return postfix def
evaluatePostfix(exp, comb):
stack = []
            for i in exp:
isOperand(i):
```

```
stack.append(comb[variable[i]])
elif i == '~':
       val1 = stack.pop()
stack.append(not val1)
                             else:
       val1 = stack.pop()
                                 val2
= stack.pop()
stack.append(_eval(i,val2,val1))
return stack.pop() def _eval(i, val1,
val2):
  if i == '^':
     return val2 and val1
return val2 or val1
input_rules() ans = entailment() if ans:
print("The Knowledge Base entails query")
else:
  print("The Knowledge Base does not entail query")
```

```
Enter rule: (pvq)^(p^~r)
Enter the Query: p

************
kb alpha

********
False True

-----
True True

-----
False False
-----
False False
-----
False False
-----
False False
-----
True Knowledge Base entails query
```

	Bogsom - 6
_	Col
1	Entailment.
	Algantha
	function The
	input: KB - Karal ? (KBra)
	function II - entail ? (KB) instrumentare of the monteles Base.
	Symbol a let of the proportion Symbols
	the property
	C C C C C C C C C C C C C C C C C C C
	function II - Chex-all (kB, a , symbol) model
-	Cymbol) Then. (Charles)
	(Symbols) Then. (1) compry ?
1	PI - tone ? (KB, model) then return olse do.
	Protection Ti- Check and (Sept (Symbol)
10	112 - 211
-	[P toue model), and
13	(P. Jake, model))
10	11/4/1
one	int: Enter: pvg
	Antes query : q
- 7	1 * * Table Reference XXX
- 10	1 3
3	

1	TO A STATE OF THE PARTY OF THE
	0==0
	kb alpha
	Ing fine
1	Time Time => knowledge time don't amil pagage
5.	contrate the dest enter query
4	
1	Imth Table:
	P 9 PV9
1	7 7 7
1	T f T Prq + q
	T f T PVQ + q f T T f f f
	10.000000000000000000000000000000000000
1	the same of the sa
-	interest to the second
	Resolution.
	Algorithm:
	function PL- Resolution (KB, a) return for
	The state of the s
	ipputs: KB, the knowledge base, a sentince in
	Popposhonel logy of the query a sentence
	in programmal logic
	* Ald * success
	Clauses - the Set of clauses in the CNF
	representation of KB1 - Q
	11 - { }
	THE RESERVE OF THE PARTY OF THE

Program 7:

Creation of Knowledge Base using prepositional logic and prove the query using resolution(22/1/24)

```
kb = []
def CLEAR():
global kb
  kb = []
def TELL(sentence):
global kb
  # If the sentence is a clause, insert directly.
if isClause(sentence):
kb.append(sentence)
  # If not, convert to CNF, and then insert clauses one by one.
else:
    sentenceCNF = convertCNF(sentence)
if not sentenceCNF:
                           print("Illegal
input")
              return
     # Insert clauses one by one when there are multiple clauses
if isAndList(sentenceCNF):
                                  for s in sentenceCNF[1:]:
kb.append(s)
                  else:
       kb.append(sentenceCNF)
def ASK(sentence):
global kb
  # Negate the sentence, and convert it to CNF accordingly.
  if isClause(sentence):
    neg = negation(sentence)
else:
    sentenceCNF = convertCNF(sentence)
    if not sentenceCNF:
print("Illegal input")
                          return
     neg = convertCNF(negation(sentenceCNF))
```

```
# Insert individual clauses that we need to ask to ask_list.
  ask list = []
isAndList(neg):
for n in neg[1:]:
       nCNF = makeCNF(n)
                                     if
type(nCNF).__name__== 'list':
          ask_list.insert(0, nCNF)
else:
          ask_list.insert(0, nCNF)
else:
          ask_list = [neg]
clauses = ask_list + kb[:]
                           while
True:
     new clauses = []
for c1 in clauses:
for c2 in clauses:
if c1 is not c2:
            resolved = resolve(c1, c2)
if resolved == False:
               continue
if resolved == []:
return True
            new_clauses.append(resolved)
    if len(new_clauses) == 0:
       return False
     new in clauses = True
for n in new_clauses:
                             if n
not in clauses:
new_in_clauses = False
          clauses.append(n)
     if
             new_in_clauses:
return False
               return False
def resolve(arg_one, arg_two):
resolved = False
  s1 = make_sentence(arg_one)
```

```
s2 = make_sentence(arg_two)
  resolve s1 = None
resolve_s2 = None
  # Two for loops that iterate through the two clauses.
for i in s1:
               if isNotList(i):
                                     a1 = i[1]
a1_not = True
                    else:
                                 a1 = i
       a1 not = False
     for j in s2:
                       if
isNotList(j):
                      a2
= j[1]
                a2_not =
True
             else:
a2 = i
                a2 not
= False
       # cancel out two literals such as 'a' $ ['not', 'a']
if a1 == a2:
                      if a1_not != a2_not:
            # Return False if resolution already happend
# but contradiction still exists.
                                           if resolved:
return False
                          else:
               resolved = True
resolve_s1 = i
                              resolve_s2
= j
                  break
            # Return False if not resolution happened
if not resolved:
                     return False
  # Remove the literals that are canceled
s1.remove(resolve_s1) s2.remove(resolve_s2)
  ## Remove duplicates
                             result
= clear_duplicate(s1 + s2)
  # Format the result.
if len(result) == 1:
return result[0]
len(result) > 1:
result.insert(0, 'or')
  return result
```

```
def make_sentence(arg):
isLiteral(arg) or isNotList(arg):
return [arg]
              if isOrList(arg):
return clear_duplicate(arg[1:])
  return
def clear_duplicate(arg):
result = []
             for i in range(0,
len(arg)):
               if arg[i] not in
arg[i+1:]:
result.append(arg[i])
return result
def isClause(sentence):
if isLiteral(sentence):
     return True
  if isNotList(sentence):
if isLiteral(sentence[1]):
        return True
else:
        return False
if isOrList(sentence):
     for i in range(1, len(sentence)):
if len(sentence[i]) > 2:
          return False
                                elif
not isClause(sentence[i]):
return False
                  return True
  return False
def isCNF(sentence):
if isClause(sentence):
     return True
isAndList(sentence):
for s in sentence[1:]:
if not isClause(s):
return False
                  return
True return False
```

```
def negation(sentence):
if isLiteral(sentence):
return ['not', sentence]
                          if
isNotList(sentence):
return sentence[1]
  # DeMorgan:
isAndList(sentence):
result = ['or']
                  for i in
sentence[1:]:
                     if
isNotList(sentence):
result.append(i[1])
else:
          result.append(['not', sentence])
                                                  return
result if isOrList(sentence):
                                  result = ['and']
                                                     for
                                 if isNotList(sentence):
i in sentence[:]:
result.append(i[1])
                                                   else:
result.append(['not', i]) return result
  return None
def convertCNF(sentence):
                               while
                           if
not isCNF(sentence):
sentence is None:
                           return
None
           sentence =
makeCNF(sentence)
  return sentence
def makeCNF(sentence):
if isLiteral(sentence):
return sentence
  if (type(sentence).__name__== 'list'):
operand = sentence[0]
                             if isNotList(sentence):
if isLiteral(sentence[1]):
                                   return sentence
cnf = makeCNF(sentence[1])
                                      if cnf[0] ==
'not':
               return makeCNF(cnf[1])
                                                if
cnf[0] == 'or':
                        result = ['and']
```

```
for i in range(1, len(cnf)):
result.append(makeCNF(['not', cnf[i]]))
          return result
                               if
cnf[0] == 'and':
                          result =
['or']
               for i in range(1,
len(cnf)):
result.append(makeCNF(['not',
cnf[i]]))
                  return result
return "False: not"
     if operand == 'implies' and len(sentence) == 3:
                                                              return makeCNF(['or',
['not', makeCNF(sentence[1])], makeCNF(sentence[2])])
     if operand == 'biconditional' and len(sentence) == 3:
s1 = makeCNF(['implies', sentence[1], sentence[2]])
s2 = makeCNF(['implies', sentence[2], sentence[1]])
return makeCNF(['and', s1, s2])
     if isAndList(sentence):
       result = ['and']
                              for i in
range(1, len(sentence)):
                                    cnf
= makeCNF(sentence[i])
                                    #
Distributivity:
                        if
isAndList(cnf):
                            for i in
range(1, len(cnf)):
               result.append(makeCNF(cnf[i]))
continue
          result.append(makeCNF(cnf))
       return result
     if isOrList(sentence):
       result1 = ['or']
                              for i in
range(1, len(sentence)):
                                    cnf
= makeCNF(sentence[i])
                                     #
Distributivity:
                        if isOrList(cnf):
for i in range(1, len(cnf)):
               result1.append(makeCNF(cnf[i]))
continue
result1.append(makeCNF(cnf))
                                           #
Associativity:
                      while True:
```

```
result2 = ['and']
                          and clause = None
for r in result1:
                            if isAndList(r):
               and_clause = r
break
          # Finish when there's no more 'and' lists
          # inside of 'or' lists
if not and clause:
return result1
          result1.remove(and_clause)
          for i in range(1, len(and_clause)):
temp = ['or', and_clause[i]]
                                        for
o in result1[1:]:
               temp.append(makeCNF(o))
result2.append(makeCNF(temp))
                                             result1 =
makeCNF(result2)
       return None
  return None
def isLiteral(item): if
type(item).__name__== 'str':
     return True
return False
def isNotList(item):
  if type(item).__name__== 'list':
if len(item) == 2:
                         if item[0]
== 'not':
                   return True
return False
def isAndList(item):
  if type(item).__name__== 'list':
if len(item) > 2:
                        if item[0]
== 'and':
                   return True
return False
```

Output

True

	Program 7 (No. 1) (No. 1)
	Knowledge base using P.L 4 query wing resolution
	Algorithm
	purction PL RESPLUTONICES, A) returns true or falm
	2 - the guery a sertince
	Clarys & the let of Clarine in the CNF
	wing y
	loop do
	for lock pais of clauses Cit; in clauses to
1	susolutions = PL. RESOLUTELG; (i)
	i) resolvents contain impty clause then
	new < new of resolvents
	MA Green for some 1 to 1
*	Output: Tome of the
	Droot:
	Pray Dr is connected to CNF
	May May Make the day the same
	~ (P (-9) VA
	LVt 2 4 & converted to CNY.
	~CSV1) VOU
	FRYNANUL P PENNEVA D
	MAN FA MEVA E
	F-9 [4]
	Proned

Program 8:

Implement unification in first order logic(29/1/24)

```
import re def
getAttributes(expression):
  expression = expression.split("(")[1:]
expression = "(".join(expression)
expression = expression.split(")")[:-1]
expression = ")".join(expression)
attributes = expression.split(',') return
attributes
def getInitialPredicate(expression):
return expression.split("(")[0] def
isConstant(char):
  return char.isupper() and len(char) == 1
def isVariable(char): return
char.islower() and len(char) == 1 def
replaceAttributes(exp, old, new):
attributes = getAttributes(exp)
predicate = getInitialPredicate(exp) for
index, val in enumerate(attributes):
                                         if
val == old:
      attributes[index] = new
  return predicate + "(" + ",".join(attributes) + ")"
def apply(exp, substitutions):
for substitution in substitutions:
    new, old = substitution
                                  exp =
replaceAttributes(exp, old, new) return
exp def checkOccurs(var, exp): if
exp.find(var) == -1:
    return False
  return True
```

```
def getFirstPart(expression):
attributes = getAttributes(expression)
return attributes[0]
def getRemainingPart(expression):
  predicate = getInitialPredicate(expression)
attributes = getAttributes(expression)
  newExpression = predicate + "(" + ",".join(attributes[1:]) + ")"
return newExpression def unify(exp1, exp2): if exp1 == exp2:
    return []
  if isConstant(exp1) and isConstant(exp2):
if exp1 != exp2:
      print(f"{exp1} and {exp2} are constants. Cannot be unified")
return []
  if isConstant(exp1):
    return [(exp1, exp2)]
  if isConstant(exp2):
    return [(exp2, exp1)]
  if isVariable(exp1):
    return [(exp2, exp1)] if not checkOccurs(exp1, exp2) else []
  if isVariable(exp2):
    return [(exp1, exp2)] if not checkOccurs(exp2, exp1) else []
  if getInitialPredicate(exp1) != getInitialPredicate(exp2):
    print("Cannot be unified as the predicates do not match!")
return []
  attributeCount1 = len(getAttributes(exp1)) attributeCount2 = len(getAttributes(exp2))
attributeCount1 != attributeCount2:
                                         print(f"Length of attributes {attributeCount1} and
{attributeCount2} do not match. Cannot be unified")
    return []
  head1 = getFirstPart(exp1)
head2 = getFirstPart(exp2)
initialSubstitution = unify(head1,
head2) if not initialSubstitution:
```

```
return [] if
attributeCount1 == 1:
return initialSubstitution
  tail1 = getRemainingPart(exp1)
tail2 = getRemainingPart(exp2)
  if initialSubstitution != []:
                                tail1 =
apply(tail1, initialSubstitution)
                                   tail2 =
apply(tail2, initialSubstitution)
  remainingSubstitution = unify(tail1, tail2)
if not remainingSubstitution:
                                  return []
  return initialSubstitution + remainingSubstitution
             print("Enter the first expression")
def main():
e1 = input()
  print("Enter the second expression")
  e2 = input() substitutions =
unify(e1, e2) print("The
substitutions are:")
  print([' / '.join(substitution) for substitution in substitutions]) main()
  Enter the first expression
  knows(y, f(x))
  Enter the second expression
```

knows(pri,p)

The substitutions are: ['pri / y', 'f(x) / p']

	Dote Page
Program 9	
	1
Unification in FOI	
Capretue Noval 1930	1.01-1 4 U 1 2000 1,3
Algorithm;	10.
Step 1: Begin me	aking the substitute set em
Ston 2: 1/ Mily of	omic schulles in a recursi
as chick to	capselyions are veletical
b) 91 pm 100	is a variable vi, 4 the
wa tum to whi	ch does not contain misse
a) subetitute t	ilvi in existing substitution.
b) Add tilv	in vaisting substitutions
1 St both	ups are functions, then fell
name must be	similar & number of segun
mirst be same	
14	interest total row
Output: Entu 184	emp: knows (y, f(x))
ENTER 2nd	inp Knows (NITIN, N)
Substitution	halare:
['mi	thinly', N/+(a)').
Cr. Ranglines	Collins Jane College
Deade Here day	tota i came
so by new	Jacuis y with NITHIN, WE
unih both that	horing y with NITHIN, WE ments
Rowland 11	*) with N, imfication is
posible	
romeu	

Program 9:

Convert a given first order logic statement into Conjunctive Normal Form (CNF).(29/1/24)

```
import re
def getAttributes(string):
  expr = '([^{n}]+)'
  matches = re.findall(expr, string)
  return [m for m in str(matches) if m.isalpha()]
def getPredicates(string):
  expr = '[a-z^{-}]+([A-Za-z,]+)'
return re.findall(expr, string) def
DeMorgan(sentence):
  string = ".join(list(sentence).copy())
string = string.replace('~~','')
  flag = '[' in string string =
string.replace('~[','') string =
string.strip(']') for predicate in
getPredicates(string):
    string = string.replace(predicate, f'~{predicate}')
s = list(string) for i, c in enumerate(string):
== 'V':
              s[i] = '^'
                           elif c == '^':
                                               s[i] = 'V'
string = ".join(s)
                     string = string.replace('~~','')
return f'[{string}]' if flag else string def
Skolemization(sentence):
  SKOLEM CONSTANTS = [f'{chr(c)}' for c in range(ord('A'), ord('Z')+1)]
statement = ".join(list(sentence).copy()) matches = re.findall('[∀∃].',
statement) for match in matches[::-1]:
    statement = statement.replace(match, ")
statements = re.findall('\[[^]]+\]]', statement)
                                                      for
s in statements:
       statement = statement.replace(s, s[1:-1])
for predicate in getPredicates(statement):
attributes = getAttributes(predicate)
                                             if
".join(attributes).islower():
```

```
statement = statement.replace(match[1],SKOLEM CONSTANTS.pop(0))
else:
         aL = [a for a in attributes if a.islower()]
         aU = [a for a in attributes if not a.islower()][0]
         statement = statement.replace(aU, f'{SKOLEM CONSTANTS.pop(0)}{{aL[0] if
len(aL) else match[1]})')
return statement def
fol to cnf(fol):
  statement = fol.replace("<=>", " ")
while ' 'in statement:
statement.index(' ')
    new statement = '[' + statement[:i] + '=>' + statement[i+1:] + ']^['+ statement[i+1:] +
'=>' + statement[:i] + ']'
                             statement =
new statement statement =
statement.replace("=>", "-")
  expr = ' (([^]]+))'
  statements = re.findall(expr, statement)
for i, s in enumerate(statements): if '['in
s and ']' not in s:
                           statements[i] +=
']' for s in statements:
    statement = statement.replace(s, fol to cnf(s))
while '-' in statement:
                            i = statement.index('-')
    br = statement.index('[') if '[' in statement else 0
                                                             new statement = '~'
+ statement[br:i] + 'V' + statement[i+1:] statement = statement[:br] +
new_statement if br > 0 else new_statement while ^{\prime} while ^{\prime} in statement:
                            statement = list(statement)
statement.index('~∀')
    statement[i], statement[i+1], statement[i+2] = '\(\exists'\), statement[i+2], '\(\circ\)
statement = ".join(statement) while '~∃' in statement:
                                                                 i =
statement.index('~∃')
                            s = list(statement)
    s[i], s[i+1], s[i+2] = '\forall', s[i+2], '\sim'
statement = ".join(s)
  statement = statement.replace("[\forall','] \sim \forall')
statement = statement.replace('^{[\exists','[^{\exists'})]}
  expr = '(\sim[\forall \forall \exists].)'
  statements = re.findall(expr, statement) for s in
                  statement = statement.replace(s,
statements:
fol to cnf(s))
  expr = '~\[[^]]+\]'
  statements = re.findall(expr, statement) for s in
statements:
                 statement = statement.replace(s,
```

```
DeMorgan(s)) return statement def main():
print("Enter FOL:") fol = input()
    print("The CNF form of the given FOL is: ")
print(Skolemization(fol_to_cnf(fol)))
main()
```

```
Enter FOL:
food(x) =>
likex(priya,x)The CNF form of the given FOL is:
~food(x) V likex(priya,x)
```

Di	
Program 1	
C LEADER ON THE COLOR	
Connect FOL into conjucture Normal John (1	Mai
The March Washington	(A)
Algorithms in policy and I got	
Step ! Eliminate be conditionals (2)	
Step 2 Eliminate complianels (-)	
Step 3: MOVE negation invaid	
Step 3: MDVE negation invaid	
Skalemizahan (
Distribute Nous Va	
More Minimulated and block of	~
8. Convert to CMAN	wa .
wint be same.	
Output, Enta FOL	
(() food(x) = tikes (pools, x) of ()	
CNF form of given FOL is	
CNF form of given For in: - 5000(12) V likes (pool4, 2)	
The state of the s	
Proof. food (11) => Like (pogice, 2)	
Linone controvals by using	
Sa par Millia Millia Millia bear liques	
Themes ~ 9 V Do will.	
food ex? Vikes (pooja, 2)	
alding	
	_
	_
	_
	/

Program 10: Forward Chaining (29/1/24)

Code

```
import re
def isVariable(x):
                     return len(x) == 1 and
x.islower() and x.isalpha()
def getAttributes(string):
  expr = '([^{\wedge})]+')'
  matches = re.findall(expr, string)
return matches
def getPredicates(string):
                              expr
= '([a-z\sim]+)([^&|]+)'
re.findall(expr, string) class Fact:
def___init__(self, expression):
self.expression = expression
     predicate, params = self.splitExpression(expression)
     self.predicate = predicate
self.params = params
     self.result = any(self.getConstants())
  def splitExpression(self, expression):
     predicate = getPredicates(expression)[0]
                                                      params
= getAttributes(expression)[0].strip('()').split(',')
                                                       return
[predicate, params]
  def getResult(self):
return self.result
  def getConstants(self):
     return [None if isVariable(c) else c for c in self.params]
```

```
def getVariables(self):
                                return [v if isVariable(v) else
None for v in self.params]
  def substitute(self, constants):
c = constants.copy()
     f = f"{self.predicate}({','.join([constants.pop(0) if isVariable(p) else p for p in
self.params])})"
                      return Fact(f) class Implication:
  def init (self, expression):
self.expression = expression
= expression.split('=>')
     self.lhs = [Fact(f) for f in I[0].split('&')]
self.rhs = Fact(I[1])
  def evaluate(self, facts):
                                  constants = {}
                   for fact in facts:
                                            for val in
new lhs = []
self.lhs:
                   if val.predicate == fact.predicate:
for i, v in enumerate(val.getVariables()):
if v:
                   constants[v] = fact.getConstants()[i]
new_lhs.append(fact)
     predicate, attributes = getPredicates(self.rhs.expression)[0],
str(getAttributes(self.rhs.expression)[0])
                                                 for key in
constants:
                    if constants[key]:
          attributes = attributes.replace(key, constants[key])
expr = f'{predicate}{attributes}'
     return Fact(expr) if len(new lhs) and all([f.getResult() for f in new lhs]) else
None class
KB:
  def__init__(self):
     self.facts = set()
self.implications = set()
           def
tell(self, e):
if '=>' in e:
        self.implications.add(Implication(e))
else:
        self.facts.add(Fact(e))
for i in self.implications:
```

```
res = i.evaluate(self.facts)
if res:
           self.facts.add(res)
  def query(self, e):
                            facts =
set([f.expression for f in self.facts])
                                            i = 1
print(f'Querying {e}:')
                             for f in facts:
if Fact(f).predicate == Fact(e).predicate:
           print(f'\t{i}. {f}')
i += 1
                           print("All facts: ")
  def display(self):
                                                    for i, f in
enumerate(set([f.expression for f in self.facts])):
print(f'\t{i+1}. {f}') def main():
                                  kb = KB()
                                                 print("Enter KB:
(enter e to exit)")
                                        t = input()
                                                          if(t ==
                      while True:
'e'):
             break
     kb.tell(t)
print("Enter Query:")
                          q
= input() kb.query(q)
kb.display() main()
```

Output

```
Enter KB: (enter e to exit)
missile(x) \Rightarrow weapon(x)
missile(m1)
enemy(x,america) => hostile(x)
american(west)
enemy(china,america)
owns(china,m1)
missile(x) & owns(china,x) => sells(west,x,china)
american(x)&weapon(y)&sells(x,y,z)&hostile(z)=>criminal(x)
Enter Query:
criminal(x)
Querying criminal(x):

    criminal(west)

All facts:

 weapon(m1)

   criminal(west)
    missile(m1)
    4. owns(china,m1)
   american(west)
   sells(west,m1,china)
   hostile(china)
    enemy(china,america)
```

(reate KB consisting of FOL 4 proves	Date
given query using forward reasoning.	
Program 10	
1: Intialize the knowledge (KB):	
- Starl with an empty KR	
- Add wash for statement	to kB
2: Initative Agenda:	
- Creati an Agunda to stone &	tatements to
Processe.	THE REAL PROPERTY AND ADDRESS OF
- Add known falls of rules with	catisfied
3: while Agenda is non unpty;	
· boo a statement hom Agen	de
1) the stability,	then 'Query is to
. 7] the stalement to " fact -	-
ship to next.	0 4
· Il Hotement is a rule with	satisfied president
Apply rule to generate a	NEW LONSquine
And no consignent to A	gunda
9: Terminatron	
A A	
Output: Enter kB: (enter e to exit)	A
míssile (a) 27 weapon (a)	
mussile (m1)	
enemy (2, america). 2> hortile (2)	
enemy (line, amisia)	T IVI
Own (wine, m)	
missile (x) form (ching, 2) >> Sell	s (west, 2, thing)
Enter Query- (siminalla)	
Queting elements. Chairmel (x):	
1) aiminal (west))
All facts: cumical (west)	american (Den)
Wiaponimi)	hostil Ghine)
Ownst ching, m1)	missile m)
Evieny (ching, ancica Sells (west, m, aning)	