考试座位号 专业班级 躢

财

 κ

 \mathbb{E}

苹

Εķ

理工大学试卷(A) 明 昆

勤奋求学 诚信考试

考试科目:大学物理A(2)	考试日期:2021年1月5日	命题教师: 集体命题

	题号 选择题	华	填空题	计算题			简答题	总分
		201720		1	2	3	用合规	\$\times 71
	评分							
	阅卷人							

物理基本常量:

真空的磁导率: $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$; 真空的电容率 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$; 电子静止质量: $m_e = 9.11 \times 10^{-31} \text{kg}$; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{eV} = 1.602 \times 10^{-19} \text{J}$; 基本电荷: $e=1.602\times10^{-19}$ C: 普朗克常数: $h=6.63\times10^{-34}$ J·s 摩尔气体常数 R=8.31 J/mol·K; 1 atm = 1.013×10^5 Pa; 玻尔兹曼常数: $k = 1.38 \times 10^{-23}$ J/K

总分: (每小题 3 分, 共 33 分) 答案请填在题号前面的 [

11、若理想气体的体积为 V,压强为 p,温度为 T,一个分子的质量为 m,k 为玻尔兹 曼常量,R 为普适气体常量,则该理想气体的分子数为:

- (A) pV/m . (B) pV/(kT). (C) pV/(RT). (D) pV/(mT).

[2、 若 f(v) 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则

 $\int_{v_1}^{v_2} \frac{1}{2} mv^2 Nf(v) dv$ 的物理意义是:

- (A) 速率为 v_2 的各分子的总平动动能与速率为 v_1 的各分子的总平动动能之差。
- (B) 速率为 v_0 的各分子的总平动动能与速率为 v_1 的各分子的总平动动能之和。
- (C) 速率处在速率间隔 $v_1 v_2$ 之内的分子的平均平动动能。
- (D) 速率处在速率间隔 $v_1 v_2$ 之内的分子平动动能之和。
- 13、容积恒定的容器内盛有一定量的某种理想气体,分子热运动的平均自由程为

 λ_0 ,为了增大平均自由程,可以选择的正确方法是:

- (A) 减小气体分子数密度
- (B) 降低气体的温度
- (C) 增大气体分子数密度
- (D) 提高气体的温度

第1页共6页

[14、劲度系数分别为 k_1 和 k_2 的两个轻弹簧并联,下面悬挂质量为 m 的物体,构成一个竖 直悬挂的弹簧振子,则该系统的振动周期为:

$$(B) T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

(C)
$$T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{2k_1k_2}}$$
 (D) $T = 2\pi \sqrt{\frac{2m}{k_1 + k_2}}$

(D)
$$T = 2\pi \sqrt{\frac{2m}{k_1 + k_2}}$$

- [15、 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中:
 - (A) 它的势能转换成动能.
 - (B) 它的动能转换成势能,
 - (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.
 - (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.
- 16、 平凸玻璃球面放置在平板光学玻璃上, 用单色光垂直照射, 形成环形干涉条纹。这些 干涉条纹的特点是:
 - (A) 间距中心窄、边缘宽,干涉级次中心低、边缘高;
 - (B) 间距中心窄、边缘宽,干涉级次中心高、边缘低;
 - (C) 间距中心宽、边缘窄,干涉级次中心低、边缘高;
 - (D) 间距中心宽、边缘窄,干涉级次中心高、边缘低。
- [17、 在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上. 对应于衍射角为 30° 的方向上, 若单缝处波面可分成 3个半波带, 则缝宽度 a 等于:
 - $(A) \lambda$.
- (B) 1.5λ .
- (C) 2λ . (D) 3λ .
- [**18**、在相同的时间内,一束波长为 λ 的单色光在空气中和在玻璃中:
- (A) 传播的路程相等, 走过的光程相等;
- (B) 传播的路程相等, 走过的光程不相等;
- (C) 传播的路程不相等, 走过的光程相等;
- (D) 传播的路程不相等, 走过的光程不相等。
- [19、蓝光照射金属表面有光电子逸出,现仅增大光强,则:
- (A)单位时间内逸出的光电子数增加:
- (B) 逸出的光电子初动能增大:
- (C) 光电效应的红限频率增大:
- (D) 发射光电子所需的时间缩短。

\mathbf{I} \mathbf{I} \mathbf{I} 0 、
(散射光与入射 X 光的夹角) 观察散射光波长的变化,则观察到的结果为:
(A) 散射光波长与材料有关,且波长比入射 X 光的波长长
(B) 散射光波长与材料无关,且波长比入射 X 光的波长长
(C) 散射光波长与材料有关,且波长比入射 X 光的波长短
(D) 散射光波长与材料无关,且波长比入射 X 光的波长短
[]11、在气体放电管中,用能量为 12.09 eV 的电子去轰击处于基态的氢原子,此时氢原子所
能发射的光子的能量只能是:
(A) 12.09 eV
(B) 10.2 eV
(C) 12.09 eV, 10.2 eV 和 3.4 eV
(D) 12.09 eV, 10.2 eV 和 1.89 eV
总分: 二、填空题(共10题,共32分,答案写在横线上。)
1、(本题 4 分) 有一卡诺热机,用 290 g 空气为工作物质,工作在 27℃的高温热源与 -73
\mathbb{C} 的低温热源之间,此热机的效率 $\eta =$ 若在等温膨胀的过程中气缸体积增大到
2.718 倍,则此热机每一循环所作的功为(空气的摩尔质量为29×10 ⁻³ kg/mol,
普适气体常量 $R=8.31$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$)
2、(本题 3 分) 由绝热材料包围的容器被隔板隔为两半, 左边是理想气体, 右边是真空。
如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度("升高"、
"降低"或"不变"),气体的熵("增加"、"减小"或"不变")。
件版
3、(本题 4 分) 一简谐振动的旋转矢量图如图所示, $t=t$ $t=0$
振幅矢量长 $2cm$,则该简谐振动的初相位为,振动
方程为:。
N/T
4、(本题 3 分) 一驻波表达式为 $y = 2A\cos(2\pi x/\lambda)\cos\omega t$,则 $x = -\frac{1}{2}\lambda$ 处质点的振动

方程是	度表达式
是	
5、(本题3分)如图,杨氏双缝干涉实验中,若在 S_1 下缝盖住一折射率为 n ,厚度为 t 的均匀介质,则中央明纹将 S_2 S_2 n	
6、(本题 3 分)一束光是自然光和线偏振光的混合光,且自然光和 光的光强比值为 1:2,若让它垂直通过一偏振片,并以此入射光束为轴旋:	
则透射光强度最大值将是最小值的倍。 	
7、(本题 3 分)自然光以入射角 57°由空气投射于一块平板玻璃射光为完全线偏振光,则折射角为。	面上,反
8、(本题 3 分)为使电子的德布罗意波长为 1 Å,需要的加速电压	运为
°	
9、(本题 3 分) 波长λ=5000 Å 的光沿 x 轴正向传播, 若光的波长	:的不确
定量 $\Delta\lambda = 10^{-3}$ Å,则利用不确定关系式 $\Delta p_x \Delta x \ge h$ 可得光子的 x 坐标的不确定	定量至少
为。	
10 、(本题 3 分)要使描述微观粒子运动的波函数 $\Psi(\vec{r},t)$ 有意义,	除必须
满足归一化条件外, $arPsi(ec{r},t)$ 还须满足的三个标准条件是	`

三、计算题(共3题,共30分)

」 1、(本题 10 分) 1 mol 双原子分子理想气体从状态 $A(p_1,V_1)$ 沿 p-V 图所示直线变化到状态 $B(p_2,V_2)$,试求:

- (1)气体的内能增量;
- (2)气体对外界所作的功;
- (3)气体吸收的热量.

- (1) O点的振动方程;
- (2)该波的波函数;
- (3) x = 25 m 处质元的振动方程;
- (4) t = 3 s 时的波形方程.

