LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tillämpad matematik – Linjära system 2014–03–14 kl 08–13

Hjälpmedel: utdelat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och förklara dina beteckningar. Alla svar skall förenklas så långt som möjligt.

1. Låt

$$f(t) = (\cos t + \sin t) \ \theta(t).$$

Beräkna:

a)
$$f'(t)$$
, (0.2)

b) faltningen
$$f(t) * \theta(t)$$
, (0.3)

c) alla primitiva funktioner till
$$f(t)$$
, (0.2)

d) en kausal funktion
$$x(t)$$
 sådan att $x'' - x = f(t)$. (0.3)

2. a) Diagonalisera matrisen

$$A = \left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array}\right).$$

(0.4)

b) Beräkna exponentialmatrisen
$$e^{At}$$
. (0.3)

c) Lös begynnelsevärdeproblemet

$$\begin{cases} x_1' &= 3x_1 + x_2 \\ x_2' &= x_1 + 3x_2 \\ x_1(0) &= 1 \\ x_2(0) &= 3 \end{cases}.$$

(0.3)

- **3.** a) Ange sambandet mellan frekvens- och överföringsfunktioner. (0.2)
 - b) Vad menas med att ett system i insignal-utsignalform är linjärt? (0.2)
 - c) Ange sambandet mellan spår och egenvärden för en matris A. (0.2)
 - d) Under vilka vilkor på impulssvaret är ett linjärt system i insignal-utsignalform stabilt? (0.2)
 - e) För vilka a är den kvadratiska formen $4x^2 + 8xy + ay^2$ positivt definit? (0.2)

V.g. vänd!

4. Systemet S är kausalt, linjärt och tidsinvariant. Om man sänder in signalen $w(t) = (\sin t + \cos t)\theta(t)$ så kommer signalen $y(t) = (\sin t - \cos t)\theta(t)$ ut.

b)
$$\ddot{A}r$$
 systemet stabilt? (0.2)

c) Ange utsignalen $y_1(t)$ om insignalen är

$$w_1(t) = e^{-t}\theta(t).$$

(0.3)

d) Ange utsignalen $y_2(t)$ om insignalen är

$$w_2(t) = \cos t.$$

(0.3)

5. Låt A vara en reell kvadratisk matris och $B = e^{At}$. Det är känt att $b_{ij} = te^{3t} + e^{2t} - 1$ för något element b_{ij} i matrisen B. Vilka av följande påstående är sanna: (svaret ska **motiveras** och kan vara ett av tre alternativ: i)sant, ii)falskt, iii)informationen räcker ej för att avgöra):

a) A har storlek
$$2 \times 2$$
. (0.2)

b)
$$\det A = 0$$
. (0.2)

c)
$$i = j$$
. (0.2)

d)
$$a_{ij} = 3$$
. (0.2)

e)
$$A \text{ är symmetrisk.}$$
 (0.2)

6. Finns det en funktion f(t) sådan att

$$\int_0^x f(y)e^{y-x}dy = f(x) + 1$$

för x > 0?

LYCKA TILL!