Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №4.1.

по курсу общей физики на тему: «Определение энергии α-частиц по величине их пробега в вздухе»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1. Цель работы

Измерить пробег α -частиц в воздухе с помощью сцинтилляционного счетчика и ионизационной камеры. По полученным величинам определить энергию частиц.

2. Суть исследуемого явления

 α -распад — процесс испускания ядра гелия (α -частицы) родительским ядром, при котором в дочернем ядре число протонов и число нейтронов уменьшается на две единицы.

3. Теория явления

Рассмотрим взаимодействие заряженных частиц с веществом. Тяжелые заряженные частица с малым зарядом (Z=1,2, т.е. протоны и α -частицы) при прохождении в веществе свою энергию, главным образом, в результате неупругих столкновений с атомами вещества. Эти неупругие столкновения вызывают ионизацию и возбуждение атомов. Такие потери называют ионизационными. Процесс столкновений можно рассматривать как непрерывное замедление заряженных частиц, поскольку на каждом соударении теряется малая энергия и частица отклоняется на угол, максимальное значение которого m/M ($m \ll M$) крайне мало. Исходя из этого траекторию в веществе можно считать прямолинейной.

Получить хорошее количественное согласие с экспериментальными данными при учете взаимодействия проходящей частицы только с электроном не удается. Для связи между энергией α-частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α-частиц от 4 до 9 МэВ эта связь хорошо описывается выражением

$$R = 0.32E^{3/2} \tag{1}$$

В формуле (1) R — пробег α -частица в воздухе (при $15^{\circ}C$ и нормальном атмосферном давлении), выраженный в сантиметрах, а энергия E — в мегаэлектрон-вольтах. Кроме величины R, можно ввести величину $R' = \rho R$, где ρ — плотность среды. R' будем также называть пробегом.

Рассеяние α -частиц в веществе и статистический характер потерь энергии приводят к тому, что даже при одинаковой начальной энергии пробеги разных α -частиц несколько отличаются друг от друга. Это различия проявляются в форме кривой, выражающей зависимость числа частиц от расстояния, пройденного ими в поглотителе (рис. 1).

Рис. 1. Зависимость числа α-частиц от глубины их проникновения в вещество

Как видно из кривой dN/dx, большая часть α -частиц останавливается в узкой области, расположенной около некоторого значения x, которое называется средним пробегом $R_{\rm cp}$. В формулу (1) входит $R_{\rm cp}$. Также используют экстраполированный пробег $R_{\rm s}$. Из-за того, что мы имеем дело не с узкими параллельными пучками частиц, а с пучками конечных размеров, обладающими заметной угловой расходимостью более точное значение будет давать не $R_{\rm cp}$, а $R_{\rm s}$.

4. Эксперимент

Рис. 2. Установка для измерения пробега α-частиц с помощью сцинтилляционного счетчика

В качестве источника α -чатиц в работе используется 239 Pu. Альфа-частица, испускаемые 239 Pu, состоят из трех моноэнергетических групп, различие между которыми лежит в пределах 50 кэВ. При той точности, которая достигается в опыте, можно считать эти энергии совпадающими и равными $5,15~{\rm M}$ эВ.

4.1. Экспериментальная установка

Определение пробега α -частиц с помощью сцинтилляционного счетчика

Установка состоит из цилиндрической камеры, на дне которой находится исследуемый препарат. Камера герметично закрыта стеклянной пластинкой, на которую с внутренней стороны нанесен слой люминофора. С наружной стороны к стеклу прижат фотокатод фотоумножителя $(puc.\ 1)$. Оптический контакт ФЭУ-стекло обеспечивается тонким слоем вазелинового масла.

Сигналы с фотоумножителя через усилитель поступают на переучетную установку. Расстояние между препаратом и люминофором составляет 9 см, так что α -частицы не могут достигнуть люминофора при обычном давлении. Определение пробега сводится к измерению зависимости интенсивности счета от давления в камере.

Определение пробега α -частиц с помощью ионизационной камеры

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через

Рис. 3. Схема устройства ионизационной камеры

газ. Камера представляет собой наполненный газом сосуд двумя электродами (схема камеры приведена на *puc. 3*). Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС.

Ток возникает только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы. Ток, протекающий через камеру, вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 станет постоянным, как показано на $puc.\ 4$.

При небольшом напряжении сила тока оказывается заметно меньше I_0 . Это происходит в основном потому, что часть ионов успевает рекомбинировать и не доходит до электродов камеры. При достаточно больших напряжениях (порядка сотен вольт) ионы движутся достаточно быстро, и рекомбинация не играет существенной роли. При использовании камеры для регистрации ионизирующего излучения будет стремиться работать в области плато, так как при этом сила тока не зависит от небольших изменений напряжения на электродах камеры.

Рис. 4. Вольт-амперная характеристика ионизационной камеры

Рис. 5. Характерная кривая зависимости тока ионизационной камеры от давления. Ионизация создается α -частицами

При изменении давления в камере ионизационный ток меняется так, как это показано на puc. 5. При небольших давлений газа α -частицы передают часть энергии стенками камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается.

В данной работе измерение пробега α -частица проводится по величине тока ионизации с сферической камере. Внутренним электродом камеры служит диска диаметром 5 мм, на который нанесен тонкий слой $^{239}_{94}$ Pu, покрытый сверху тонкой защитной пленкой. Вторым электродом служит внешняя оболочка камеры — полый шар с внутренним диаметром 100 мм. Оба электрода тщательно изолированы друг от друга и от земли.

5. Результаты эксперимента

Определение пробега α -частиц с помощью сцинтилляционного счетчика

Проведем измерение зависимости счета частиц N в секунду от давления P в камере. Построим график N=N(P) (puc. 6), по которому определяется средний и экстраполированный пробег α -частиц при условиях опыта — $P_0=98,6$ кПа, $t=23^{\circ}C$.

Рис. 6. Зависимость количества сигналов с фотоумножителя в секунду N от давления P

Определение пробега α -частиц с помощью ионизационной камеры

Снимем зависимость тока через камеру I от давления P:

Рис. 7. Зависимость тока через камеру I от давления P

6. Анализ результатов

Определение пробега α -частиц с помощью сцинтилляционного счетчика

Для вычисления длины свободного пробега будем использовать формулу

$$R = \frac{k_B T}{\sqrt{2\pi} d^2 P} \tag{2}$$

где πd^2 — эффективная площадь поперечного сечения частиц. Получим формулу для пересчета длины свободного пробега к другой температуре и давлению:

$$R_2 = \frac{T_1}{T_2} \frac{P_2}{P_1} R_1 \tag{3}$$

Выполним пересчет пробега к давлению P=760 Тор и $T=15^{\circ}C$, ответ выразим в см и в г/см². Плотность воздуха при $T=15^{\circ}C$ равна 1,2250 кг/м³.

$$R_{\rm 9} = (3.08 \pm 0.14)~{\rm cm} = (3.8 \pm 0.2)~{\rm mr/cm^2}$$
 $R_{\rm cp} = (1.94 \pm 0.10)~{\rm cm} = (2.38 \pm 0.12)~{\rm mr/cm^2}$

По значениям $R_{\rm s}$ и $R_{\rm cp}$ определим толщину слюды Δh , закрывающей окно торцевого счетчика, при этом учтем, что пробег α -частицы в слюде, выраженный в г/см³, в 1,2 раза больше, чем пробег в воздухе, выраженный в тех же единицах.

$$\Delta h = (1.7 \pm 0.4) \, \text{г/cm}^2$$

Определим энергию α -частиц по формуле (1), в формуле будем использовать $R_{\scriptscriptstyle 9}.$

$$E = (4.5 + 0.2) \text{ M} \cdot \text{B}$$

Зная период полураспада 239 Ри $T_{1/2}=2.44\cdot 10^4$ лет, считая, что эффективность счета α -частиц равна 100% оценим количество вещества в препарате. Телесный угол, под которым виден источник, равен 0.04 ср.

Посчитаем начальное число атомов плутония N_0 . Для вычисления числа радиоактивных атомов в момент времени $T_{1/2}$ воспользуемся числом N при P=0 на puc. 6. Это число возьмем приближенно равным $350 \, {\rm c}^{-1}$.

$$N_0 = 2N(T_{1/2})$$

$$N(T_{1/2}) = 350 \cdot \frac{2\pi}{0.04} \cdot T_{1/2}.$$

Итого получим формулу для количества вещества в препарате ν и вычислим значение:

$$\nu = \frac{N_0}{N_A} = \frac{2 \cdot 350 \cdot 2\pi \cdot T_{1/2}}{0.04 N_A}$$

$$\nu \approx 1.4 \cdot 10^{-7} \text{ моль}$$

Определение пробега lpha-частиц с помощью ионизационной камеры

Определим экстраполированный пробег α -частиц в воздухе при условиях опыта и выполним перерасчет к P=760 Top, $T=15^{\circ}C$ по формуле (3).

$$R_{\rm 9}^* = (3.17 \pm 0.09)~{\rm cm} = (3.88 \pm 0.11)~{\rm mg/cm}^2$$

Определим энергию α -частиц по формуле (1):

$$E^* = (4.61 \pm 0.09) \text{ M} \cdot \text{B}$$

7. Выводы

C помощью сцинтилляционного счетчика и ионизационной камеры в работе был измерен пробег α -частиц в воздухе:

$$R_9 = (3.08 \pm 0.14) \text{ cm} = (3.8 \pm 0.2) \text{ mg/cm}^2$$

 $R_9^* = (3.17 \pm 0.09) \text{ cm} = (3.88 \pm 0.11) \text{ mg/cm}^2$

Значения в пределах погрешностей совпадают друг с другом. По длинам свободного пробега была определена энергия α -частиц:

$$E = (4.5 \pm 0.2) \text{ M} \Rightarrow \text{B}$$

 $E^* = (4.61 \pm 0.09) \text{ M} \Rightarrow \text{B}$

Результат, полученный с помощью ионизационной камеры получился точнее, однако он также отличаются от табличного значения:

$$E^{\text{\tiny T}} = 5.15 \, \text{МэВ}$$

Расхождения могут быть связаны с использованием эмпирической формулы для подсчета энергии (1), а также с неточностью измерений. При измерении с помощью сцинтилляционного счетчика неточность связана с угловой расходимостью пучка α -частиц, при измерении с помощью ионизационной камеры неточность возникает в измерении малых токов.

По измеренным значениям среднего пробега и экстраполированного пробега (с помощью сцинтилляционного счетчика) была вычислена толщина слюды, закрывающей окно торцевого счетчика.

$$\Delta h = (1.7 \pm 0.4) \, \text{г/cm}^2$$

По периоду полураспада плутония 239 Ри была проведена оценка количества вещества в препарате:

$$\nu \approx 1.4 \cdot 10^{-7}$$
 моль

А. Приложение

Данные для построения графика на *puc. 6*:

P , к Π а	N, c^{-1}	Р, кПа	N, c^{-1}	P , к Π а	N, c^{-1}
0,00	364,5	19,72	215,4	34,68	22,2
3,40	345,1	22,44	181,2	36,04	8,0
6,12	336,8	25,16	138,4	37,40	3,6
8,84	325,2	27,88	99,7	38,76	1,1
11,56	295,6	30,60	63,0	44,20	0,1
14,28	284,8	31,96	49,2	57,80	0,2
17,00	238,1	33,32	35,2		

Таблица 1. Зависимость количества сигналов с фотоумножителя в секунду N от давления P

Данные для построения графика на puc. 7:

P , к Π а	I , πA	P , к Π а	I , πA	P , к Π а	I , πA
0,00	8	65,96	835	79,56	951
3,40	42	67,32	851	80,92	947
17,00	188	68,68	875	82,28	946
30,60	348	70,04	895	83,64	947
44,20	522	71,40	908	85,00	935
57,80	711	71,40	911	87,72	935
59,16	733	72,76	928	90,44	932
60,52	754	74,12	931	93,16	929
61,88	772	75,48	941	95,88	924
63,24	793	76,84	943	98,60	918
64,60	816	78,20	946	99,28	913

Таблица 2. Зависимость тока через камеру I до давления P