

Bagging & Boosting

Qinliang Su (苏勤亮)

Sun Yat-sen University

suqliang@mail.sysu.edu.cn

Ensemble Methods Overview

- It is difficult to learn a strong classifier that can always classify instances correctly
- But it is easy to learn a lot of 'weak' classifiers

A weak classifier may not perform well on the whole dataset, but may perform well on a fraction of samples, *e.g.*, some may be good at recognizing 'cat', while some others may be good at recognizing 'dog'

- If weak classifiers perform well on different fractions of samples, it
 is possible to obtain a strong classifier by combining these weak
 classifiers in an appropriate way
- Two questions
 - 1) How to produce these weak classifiers?
 - 2) How to combine the weak classifiers?

Two Types of Combining Methods

- 1) Unweighted average
 - Majority vote
- Weighted average
 - Give better classifiers bigger weighting

For example, consider a two-class classification problem {-1, 1}

Two basic classifiers:
$$\hat{y}_1 = sign(f_1(\mathbf{x}))$$
 $\hat{y}_2 = sign(f_2(\mathbf{x}))$

Final classifiers:
$$\hat{y}_e = sign(\alpha_1 f_1(x) + \alpha_2 f_2(x))$$

Remark: The weak classifiers could be of any kind, e.g. decision trees, SVM, neural networks, logistic regression etc.

Outline

- Ensemble methods
 - Bagging (majority vote)
 - Boosting (weighted average)

Deriving Weak Classifiers

- We don't know how to obtain classifiers that perform well on different fractions of samples
- Instead, we seek to obtain classifiers that are as diverse as possible, that is, encouraging their predictions to be uncorrelated.
 For example,
 - 1) Creating subsets of the training dataset by bootstrapping
 - Randomly draw N' samples from the N-sample training dataset with replacement
 - Repeat the above procedure K times, generating subsets S_1, S_2, \dots, S_K
 - 2) Training a decision tree on each of the subset S_k

3) Combine *K* decision trees into one by majority voting

At testing, pass test data through all K classifiers, using the majority voting result as the final prediction

Example: Bagged Decision Trees

Random Forest

- What happens if the classifiers derived above are still strongly correlated?
 - Combining them by majority vote may not help too much on the final performance

 Remedy: Introducing extra randomness into the learning process of decision trees

As building the decision trees, only use a subset of randomly selected attributes

Random forest illustration

Outline

- Ensemble methods
 - Bagging (majority vote)
 - Boosting (weighted average)

Overview of Boosting Methods

Weak classifiers derivation

Repeat the following steps several times

- 1) Identifying the examples that are incorrectly classified
- Re-training the classifier by giving more weighting to the misclassified examples

Combining

Combing the prediction results of each classifier by weighted average

How to weight the examples and prediction results is the key

Adaboost

Consider a two-class classification problem with 10 training examples

 For simplicity, only consider the weak classifiers whose decision boundaries are parallel to the axes, that is,

$$\hat{y} = sign(x_1 + b)$$
 or $\hat{y} = sign(x_2 + b)$

First iteration

- \triangleright Error rate of the first classifier h_1 : $\epsilon_1 = 0.3$
- Veighting of the classifier h_1 : $\alpha_1 = \frac{1}{2} \ln \left(\frac{1 \epsilon_1}{\epsilon_1} \right) = 0.42$

$$\frac{1 - \epsilon_1}{\epsilon_1} = \frac{\text{correct rate}}{\text{error rate}}$$

⇒ The weighting is positively proportional to performance of the classifier

 \triangleright *Misclassified* examples' weights are amplified by e^{α_1}

$$e^{\alpha_1} = \sqrt{\frac{1 - \epsilon_1}{\epsilon_1}} = \sqrt{\frac{\text{correct rate}}{\text{error rate}}}$$

 \triangleright Correctly classified examples' weights are dampened by $e^{-\alpha_1}$

Second iteration

- From rate of the second classifier h_2 : $\epsilon_2 = 0.21$
- Veighting of the classifier h_2 : $\alpha_2 = \frac{1}{2} \ln \left(\frac{1 \epsilon_2}{\epsilon_2} \right) = 0.65$
- ightharpoonup Misclassified examples' weights are amplified by $e^{\alpha_2} = \sqrt{\frac{1-\epsilon_2}{\epsilon_2}}$
- Correctly classified examples' weights are dampened by

$$e^{-\alpha_2} = \sqrt{\frac{\epsilon_2}{1-\epsilon_2}}$$

Third iteration

- Fror rate of the second classifier h_3 : $\epsilon_3 = 0.14$
- Veighting of the classifier h_3 : $\alpha_3 = \frac{1}{2} \ln \left(\frac{1 \epsilon_3}{\epsilon_3} \right) = 0.92$
- Stop the iteration

Final classifier

Combining the three classifiers with a linear combination

Adaboost algorithm

- 1) Initialize the weight of examples as $\omega_0^{(n)}=rac{1}{N}$ for $n=1,\cdots$, N
- 2) For the k-th iteration, train a classifier $h_k(x)$ with the training examples weighted by $w_{k-1}^{(n)}$
- 3) Evaluate the weighted classification error

$$\epsilon_{k} = \frac{\sum_{n=1}^{N} \omega_{k-1}^{(n)} I(y_{i} \neq h_{k}(x_{n}))}{\sum_{n=1}^{N} \omega_{k-1}^{(n)}}$$

4) Determine the vote stake of the k-th classifier

$$\alpha_k = \frac{1}{2} \ln \left(\frac{1 - \epsilon_k}{\epsilon_k} \right)$$

5) Update the weights of examples as

$$\omega_k^{(n)} = \omega_{k-1}^{(n)} \exp\{-y_i h_k(\boldsymbol{x}_i) \alpha_k\}$$

 A typical error rate curve as a function of the number of weak classifiers

- Typical weak classifiers
 - Decision trees
 - Logistic regressions
 - Neural networks

Theories behind the Adaboost

Define the following exponential loss

$$\mathcal{L} = \sum_{n=1}^{N} \exp\{-y^{(n)} h_{combine}(\boldsymbol{x}^{(n)})\}\$$

where $x^{(n)}$ is the input, $y^{(n)} \in \{-1, 1\}$ is the label; and $h_{combine}(\cdot)$ is the combined classifier

$$h_{combine}(\mathbf{x}) = \alpha_1 h_1(\mathbf{x}) + \dots + \alpha_K h_K(\mathbf{x})$$

with $h_k(x)$ representing the k-th component classifier, e.g., $h_k(x) = sign(\mathbf{w}_k^T \mathbf{x} + b_k)$

 It can be proved that the Adaboost algorithm is equivalent to minimize the exponential loss in a sequential fashion