BUDT 730 Data, Models and Decisions

Lecture 12

Regression Analysis (4)

Transformation of Variables

Prof. Sujin Kim

Regression Analysis

Variable Transformation

Variable Transformations

- Several types of independent variables can be used in regression equations:
 - Dummy variables
 - Interaction variables
 - Nonlinear transformations
- We should be selective, and not include too many different types in a particular regression model
 - Only a few might improve the fit!
- Dataset:
 - Airline data.xlsx

Example: Southwest Airline Data

We would like to investigate the effect of Southwest Airlines on Fares.

S_CODE	S_CITY	E_CODE	E_CITY	COUPON	NEW	VACATION	SW	HI	S_INCOME	E_INCOME
*	Dallas/Fort	*	Amarillo	1.00	3	Ио	Yes	5291.99	\$28,637	\$21,112
*	Atlanta	*	Baltimore/Wash	1.06	3	Ио	Νο	5419.16	\$26,993	\$29,838
*	Boston	*	Baltimore/Wash	1.06	3	Ио	Νο	9185.28	\$30,124	\$29,838
ORD	Chicago	*	Baltimore/Wash	1.06	3	Ио	Yes	2657.35	\$29,260	\$29,838
MDW	Chicago	*	Baltimore/Wash	1.06	3	Ио	Yes	2657.35	\$29,260	\$29,838
*	Cleveland	*	Baltimore/Wash	1.01	3	Ио	Yes	3408.11	\$26,046	\$29,838
*	Dallas/Fort	*	Baltimore/Wash	1.28	3	Ио	Νο	6754.48	\$28,637	\$29,838
*	Fort Lauderd		Baltimore/Wash		3			5584.00		\$29,838
	i	E_POI	SLOT	G	ATE	DISTANCE	PA	X = F	RE	! +00 000
205711		l Free	Free		312	78	54 \$64	. 11		
		714589	7 Free	Ι	Free	576	88:	20 \$174	. 47	
		714589	7 Free	I	ree!	364	64	52 \$207	.76	
		714589	7 Controlled	Ι	ree	612	251	44 \$85	. 47	
		714589	7 Free	Ι	ree	612	251	44 \$85	. 47	
		714589	7 Free	Ι	ree	309	133	36 \$56	.76	
		714589	7 Free	Ι	Free	1220	46:	25 \$228	.00	
DUDT 700		714589	7 Free	Ι	ree!	921	. 55:	12 \$116	. 54	
BUDT 730		714589	7 Free	Ι	ree¦	1249	!	11 \$172		
			i !		i		!	!		

Adding Categorical Variables

Some independent variables are categorical and are not measured on a quantitative scale

 Therefore, we create one dummy variable for each category to indicate whether observations fall into that category

Rules for Using Dummy Variables

- When we add categorical variables to our model, we leave out one of the categories (dummies)
- If there are *m* categories, we include (*m-1*) dummy variables in our model
- Example:
 - We may choose to add SW=yes to our model, leaving out SW=no
- The category that is left out is called the reference or base category
 - In our example, the reference category is *SW=no*
- Any category can be made the reference category.
- In R use **factor** to encode a categorical variables as a set of dummy variables

Adding Southwest to the Model: reference ="No"

```
Call:
lm(formula = FARE ~ DISTANCE + factor(SW))
Residuals:
    Min 1Q Median 3Q
                                     Max
-141.935 -29.783 -4.203 30.183 147.286
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 115.582440 3.975797 29.07 <2e-16 ***
DISTANCE 0.067328 0.003025 22.26 <2e-16 ***
factor(SW)Yes -67.072135  4.246487  -15.79  <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 47.89 on 635 degrees of freedom
Multiple R-squared: 0.6044, Adjusted R-squared: 0.6031
F-statistic: 485 on 2 and 635 DF, p-value: < 2.2e-16
```

Adding Southwest to the Model: reference = "Yes"

```
Call:
lm(formula = FARE ~ DISTANCE + relevel(factor(SW), ref = "Yes"))
Residuals:
    Min
         1Q Median
                             3Q
                                   Max
-141.935 -29.783 -4.203 30.183 147.286
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
                              48.510305 4.104245 11.82 <2e-16 ***
(Intercept)
                               DISTANCE
relevel(factor(SW), ref = "Yes")No 67.072135 4.246487 15.79 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 47.89 on 635 degrees of freedom
Multiple R-squared: 0.6044, Adjusted R-squared: 0.6031
F-statistic: 485 on 2 and 635 DF, p-value: < 2.2e-16
```

Adding Southwest to the Model

Included SW=Yes

Included SW=No

```
Coefficients:
Estimate S
(Intercept) 115.582440
DISTANCE 0.067328
factor(SW)Yes -67.072135
```

```
Coefficients:

(Intercept)

DISTANCE

relevel(factor(SW), ref = "Yes")No 67.072135
```

What is the predicted fare for a route that is 5,000 miles and SW does not fly?

What is the predicted fare for a route that is 5,000 miles and SW does not fly?

Fare =
$$48.5 + 0.06733*5,000$$

Interpretation of Dummy Variable

Coefficients:

```
Estimate S
(Intercept) 115.582440
DISTANCE 0.067328
factor(SW)Yes -67.072135
```

- One cannot increase SW by one unit!
- Therefore, the interpretation of coefficients for categorical dummies are always relative to the base category that was left out
- Our model:
 - \circ Fare = a + b1*Distance + b2* (SW=Yes)
- Interpretation of b2 (= -67)

On average, the average fare is \$67 lower if SW is present (compared to the route where SW does not present), for routes of the same length.

Interpretation of Dummy Variable

Interpretation of the coefficient of a dummy variable

$$Y = a + b_1(X = 1) + b_2(X = 2) \dots$$

Suppose that the base variable is (X = 0).

- 1. On average,
- 2 the value of Y in category i exceeds the value of Y in category 0 (base category) by b_i units
- 3. if all else held equal

Adding "NEW" to the Model

NEW: number of new carriers entering that route between Q3-96 and Q2-97

```
call:
lm(formula = FARE ~ DISTANCE + factor(NEW))
Residuals:
   Min
            1Q Median
                          3Q
                                 Max
-137.83 -45.77 -10.55 40.13 162.65
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 72.626442 9.952820 7.297 8.84e-13 ***
DISTANCE 0.078313 0.003496 22.401 < 2e-16 ***
factor(NEW)1 9.960264 15.367311 0.648 0.517
factor(NEW)2 0.908575 21.215013 0.043 0.966
factor(NEW)3 12.795493 10.049491 1.273 0.203
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 56.52 on 633 degrees of freedom
Multiple R-squared: 0.4507, Adjusted R-squared: 0.4472
F-statistic: 129.8 on 4 and 633 DF. p-value: < 2.2e-16
```

Graphical Interpretation

- Fare = 115 + 0.067 * Distance − 67* (SW=Yes)
 - Regression line when SW=no: Fare = 115 + 0.067 * Distance
 - Regression line when SW=yes: Fare = 115 + 0.067 * Distance -67

After controlling for distance, the fare is more expensive when SW does not fly.

- When we include only a dummy variable in a regression equation, we are allowing the intercepts of the two lines to differ, but the lines are be parallel
- We want the rate of change to be different for different groups: To do so we introduce interaction terms

- An interaction variable is the product of two independent variables
- Suppose that the amount by which Fare increases for a unit increase in Distance is different for the routes where SW flies and those where SW does not.
- Construct a new variable (SW=Yes)*Distance
- This variable is obtained as the product between the columns of (SW=Yes) and Distance

■ Fare = a + b1 Distance + b2 (SW=Yes) + b3 Distance*(SW =Yes)

```
Call:
lm(formula = FARE ~ DISTANCE + SW + DISTANCE * SW)
Residuals:
           10 Median 30
   Min
                                Max
-138.97 -30.48 -3.74 29.53 147.90
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
            118.057961 4.263491 27.690 <2e-16 ***
(Intercept)
DISTANCE 0.065033 0.003347 19.431 <2e-16 ***
SWYes -77.041670 7.553509 -10.199 <2e-16 ***
DISTANCE: SWYes 0.012413 0.007782 1.595
                                         0.111
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 47.84 on 634 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6041
F-statistic: 325 on 3 and 634 DF, p-value: < 2.2e-16
```

Interpretation of Interaction Coefficients

- The model:
 - Fare = a + b1 Distance + b2 (SW=Yes) + b3 Distance*(SW = Yes)
- For a route without Southwest (SW=No):
 - \circ Fare = a + b1 Distance
- For a route with Southwest (SW=Yes):
 - Fare = a + b1 Distance + b2 (SW=Yes) + b3 Distance*(SW =Yes) = (a+b2) + (b1+b3) * Distance

Graphically ...

Graphically - Data

Interpretation of Interaction Coefficients

- For a route without Southwest: *Fare = a + b1 Distance*
- For a route with Southwest: Fare = (a+b2)+ (b1+b3) * Distance
- Interpretation of the coefficients
 - o a = 118, has no economic interpretation
 - b2= -77.0, has no economic interpretation. It is s the change in intercept when Southwest is present.
 - b1=0.065 is the average increase in fare per additional mile on routes where
 Southwest is not present
 - b3= 0.0124 is the average additional increase in fare per additional mile on routes where Southwest is present, compared to routes where Southwest is not present

Using the Regression Model

- What is the fare on a 5,000 mile route where Southwest is present?
 - Fare = (a+b2)+ (b1+b3) * Distance
 = (118.05-77.041)+ (0.0650+0.0124)*5,000 = \$428.24
- How does it differ from a route where Southwest is not present?
 - Fare = a + b1 Distance = 118 + 0.065*5,000 = \$443.22

Interactions are a powerful modeling tool :

$$Y = a + b_1 X_1 + b_2 X_2 + c X_1 X_2$$

- \circ All three variables X_1, X_2 and X_1X_2 must be added to the model
- They can be constructed between:
 - One numerical and one categorical variable
 - Two categorical variables
 - Two numerical variables (but, the interpretation is unclear)
 - o ... more variables for the adventurous