

מבוא למערכות לומדות (236756) סמסטר אביב תשפ"ג – 29 בדצמבר 2023 מרצה: ד"ר ניר רוזנפלד

מבחן מסכם מועד ב' – <u>פתרון חלקי</u>

שימו לב: הפתרונות המופיעים כאן הם <u>חלקיים</u> בלבד ומובאים בשביל לעזור לכם בתהליך הלמידה.

ייתכנו כאן חוסרים / ליקויים / טעויות של ממש.

בהצלחה!

(נק'<u>] 20] Nearest neighbors</u>

היו יותר מדי תשובות אפשריות לשאלה,

ולכן לדעתנו היא אינה דוגמה טובה ללמוד ממנה ולא צירפנו אותה לכאן.

שאלה 2: AdaBoost ,VC-dimension, פונקציות מיפוי [30] שאלה

חד-ממדיים. (intervals) של מקטעים ${\mathcal H}$ של ההיפותזות

 $h_{a,b}(x)=\underbrace{\mathbb{I}[a\leq x\leq b]}$ משמע, $\mathcal{X}=\mathbb{R}$ מעל $\mathcal{H}=\left\{h_{a,b}\,\middle|\, a,b\in\mathbb{R}\,\text{ s. t. }b>a
ight\}$ משמע, פונקציית האינדיקטור

$.VCdim(\mathcal{H}) = $	2
--------------------------	---

 \mathcal{H} של VC-dimension-א. [7 נק'] מהו ה-הוכיחו את תשובתכם.

הוכחה:
כמו בהרצאה.
·

: \mathbb{R} -נתון סט אימון עם חמש דוגמאות ב

מריצים אלגוריתם AdaBoost על הדאטה הנתון, עם המחלקה $\mathcal H$ שהגדרנו בתור מחלקת בסיס (מסווגים חלשים). בכל איטרציה לומדים מסווג חלש עם ERM על ההתפלגות הנוכחית. המסווג <u>החזק</u> הוא ה-ensemble הממושקל שמתקבל.

בשני הסעיפים הבאים מופיעים תרשימים של כללי החלטה על הישר \mathbb{R} . הכללים חוזים $\hat{y}=1$ רק במקטעים המקווקווים. בכל סעיף, הקיפו בבירור את האות <u>היחידה</u> שמתאימה לתשובה הנכונה.

ב. [7 נק'] מבין הבאים – מה המסווג <u>החזק</u> (הממושקל) שמחזיר AdaBoost אחרי האיטרציה הראשונה? אין צורך בהסבר.

. בקצרה. אחרי שתי איטרציות? הסבירו בקצרה. $\frac{1}{1}$ (הממושקל) שמחזיר AdaBoost אחרי שתי איטרציות?

הסבר קצר:

מסווג שממשקל 2 היפותזות בינאריות תמיד פועל כמו היפותזה <u>יחידה</u> (זו עם המשקל הגבוה יותר).

ראינו תופעה כזו ב-demo בתרגול 10.

ד. [9 נק'] אילו מבין פונקציות המיפוי הבאות הופכות את הדאטה הנתון לפריד <u>ליניארית</u> (לאו דווקא הומוגנית)? סמנו את <u>כֹּל</u> התשובות המתאימות <u>בבירור</u>. סימון לא ברור יוביל לפסילת התשובה.

לרשותכם דפי טיוטה בסוף הגיליון.

$$\mathbb{R}^2 \ni \phi(x) = \begin{bmatrix} x \\ 1.5 \end{bmatrix}$$
 .iv $\mathbb{R} \ni \phi(x) = x - 1.5$.i

$$\mathbb{R}^2 \ni \phi(x) = \begin{bmatrix} x^2 \\ 1.5 \end{bmatrix}$$
 .v $\mathbb{R} \ni \phi(x) = x^2 - 1.5$.ii

$$\mathbb{R}^2 \ni \phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$
 .vi $\mathbb{R} \ni \phi(x) = (x - 1.5)^2$.iii

שאלה 3: רגרסיה ורגולריזציה [20 נק']

. בעיות רגרסיה לינארית הומוגנית עם רגולריזציה: $R:\mathbb{R}^d \to \mathbb{R}_{\geq 0}$ פונקציה $X\in\mathbb{R}^{m imes d}$, עבור $y\in\mathbb{R}^m$ עבור

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left(\frac{1}{2m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + R(\mathbf{w}; \lambda) \right)$$

. Cast squares מקבלים בעיית מקבלים רגילה $R_{\rm LS}(\mathbf{w};\lambda) \triangleq 0$ רגילה. LASSO-כאשר משתמשים בפונקציה $R_{\ell 1}(\mathbf{w};\lambda) \triangleq \lambda \|\mathbf{w}\|_1$ מקבלים את בעיית ה

$$f(w;\lambda) \triangleq egin{cases} \lambda|w| - rac{w^2}{4}, & |w| \leq 2\lambda \\ \lambda^2, & |w| > 2\lambda \end{cases}$$
 עבור $R_{\mathrm{CP}}(\mathbf{w};\lambda) \triangleq \sum_{j=1}^d fig(w_j;\lambdaig)$ סעת נגדיר פונק' חדשה

 $f(w;\lambda)$ א. [5] עבור [1] שמתאר את בבירור את האות המתאימה לתרשים שמתאר את א. [2]

- ב. [3] מה ניתן לומר על הקמירות של הפונק' $f(w;\lambda)$ כאשר 0>0 הקיפו את התשובה בבירור.
- . קעורה אווו. קעורה וווו. תלוי בערך של גiv .iv ווו. קעורה. iii. קעורה iii. קעורה

תחת פיתרון ה-Least squares וב- $\widehat{\mathbf{w}}_{\mathrm{CP}}$ את פיתרון ה-רגרסיה תחת ב-ב-גרסיה תחת את פיתרון ה-גרסיה תחת רגולריזציה של הפונק' R_{CP} שהגדרנו.

 $\mathbf{X}^\mathsf{T}\mathbf{X} = m\mathbf{I}_{d imes d}$ מעתה נניח שהעמודות של \mathbf{X} אורתוגונליות כך שמתקיים

$$.(\widehat{\mathbf{w}}_{\ell 1})_i = \begin{cases} \operatorname{sign}((\widehat{\mathbf{w}}_{\mathsf{LS}})_i) \cdot (|(\widehat{\mathbf{w}}_{\mathsf{LS}})_i| - \lambda), & |(\widehat{\mathbf{w}}_{\mathsf{LS}})_i| > \lambda \\ 0, & |(\widehat{\mathbf{w}}_{\mathsf{LS}})_i| \leq \lambda \end{cases}$$

<u>נתונה טענה 1:</u> תחת ההנחה, מתקיים

<u>נתונה טענה 2:</u> תחת ההנחה, מתקיים

$$.(\widehat{\mathbf{w}}_{\mathrm{CP}})_i = \begin{cases} (\widehat{\mathbf{w}}_{\mathrm{LS}})_i, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \geq 2\lambda \\ 2 \cdot \mathrm{sign}((\widehat{\mathbf{w}}_{\mathrm{LS}})_i) \cdot (|(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| - \lambda), & \lambda < |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| < 2\lambda \\ 0, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \leq \lambda \end{cases}$$

ג. $[4 ext{ tg'}]$ עבור כניסה i שרירותית וערך i השתמשו בטענות וציירו באופן ברור על גבי התרשימים הבאים את העקומות [-3,3] בכל התחום $[\widehat{\mathbf{w}}_{\mathrm{LS}}]_i$ כפונקציה של $[\widehat{\mathbf{w}}_{\mathrm{LS}}]_i$ בכל התחום $[\widehat{\mathbf{w}}_{\mathrm{CP}}]_i$.

([-3,3] ציירו על גבי התרשימים בכל התחום

 $\mathbf{X}^\mathsf{T}\mathbf{X} = m\mathbf{I}_{4 imes 4}$ משמע בעיית רגרסיה בערבעה ממדים ($\mathbf{X} \in \mathbb{R}^{m imes 4}$) המקיימת את הנחת האורתוגונליות, משמע . התרשימים מתארים את ארבעת המקדמים (ציר אנכי) שמתקבלים עבור ערכי λ שונים (אופקי) תחת פונק' רגולריזציה שונות

- ד. [10 נק'] הקיפו את התשובות הנכונות והסבירו את בחירתכם.
 - הוא: $\widehat{\mathbf{w}}_{\ell 1}$ הוא למקדמים של
- - (d)

(d)

- (c)

(c)

(a)

(a)

(b)

(b)

הוא: $\widehat{m{w}}_{ ext{CP}}$ הוא

הסבר:

 $(\widehat{\pmb{w}}_{\mathrm{LS}})_i$ צריך להסתכל על כפונק' של λ בהינתן

(2) אות, שמקדם הגדול למשל לכן למשל מהעוס מאפס מתאפס מתאפס מתאפס מהנוסחאות, שמקדם מתאפס לאור. לואים

נפסל. a נפסל, $\lambda = 2$ נפסל צריך להתאפס כאשר

לפי אותן נוסחאות, LASSO לינארי לגמרי בין 0 עד שהמקדם מתאפס (מתאים רק לתרשים d).

CP אמור להיות לינארי <u>ורציף</u> בין החלקים בהם הוא קבוע (מתאים לתרשים d).

(נק'<u>] 30] Support Vector Regression (נק'</u>

.Least squares- מאשר ל SVM מאשר שאלה זו עוסקת ברגרסיה לינארית מ \mathbb{R}^d ל \mathbb{R}^d , אותה נפתור בשלבים, בדרך שדומה יותר ל

. בעיה והבינו אותה הבעיה ($\mathbf{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}$) בור שבור Hard-SVR נגדיר בעיית (גדיר בעיית

א. [6 נק'] כאשר $\epsilon \to 0$, עבור אילו סוגי דאטה קיים פיתרון לבעיית ה-Hard-SVR א. [7 נק'] א.

תשובה והסבר קצר: רק עבור דאטה לינארי (ללא ϵ אין מרווח לשגיאה).

 $\epsilon>0$ והיפר-פרמטר ($\mathbf{x}_i\in\mathbb{R}^d,y_i\in\mathbb{R}$) עבור דוגמאות Soft-SVR כדי להבטיח שלכל אינה פיתרון, נגדיר בעיית

$$\underset{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{m} (\xi_{i} + \xi_{i}^{*})$$

$$\forall i \in [m]: \xi_{i}, \xi_{i}^{*} \geq 0$$
s.t.
$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \leq y_{i} + \epsilon + \xi_{i}, \ \forall i \in [m]$$

$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \geq y_{i} - \epsilon - \xi_{i}^{*}, \ \forall i \in [m]$$

. בסעיפים הבאים נתונים תרשימים של דאטה חד-ממדי ($x_i,y_i\in\mathbb{R}$) וקווי רגרסיה שונים

.Soft-SVR בכל סעיף כתוב ערך של ההיפר-פרמטר ϵ . הקיפו <u>בבירור</u> את האות שמתאימה לקו הרגרסיה שנלמד על ידי

 $\epsilon
ightarrow \infty$ ב. [6 נק'] מהו קו הרגרסיה שנלמד כאשר

ג. [6 נק'] מהו קו הרגרסיה שנלמד כאשר $\epsilon o 0$? $rac{(תשובה: שימו לב שמתקבל least absolute deviation). (תשובה$

. ד. Soft-SVM, עברנו מבעיית אילוצים לבעיה ללא אילוצים. ד. $\ell_{\mathrm{hinge}}(\mathbf{w},b;\mathbf{x}_i,y_i) = \max\{0,1-y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b)\}$ ופיתרון הבעיה הבאה:

$$\underset{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \left(\|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{m} \ell_{\operatorname{hinge}}(\mathbf{w}, b; \mathbf{x}_{i}, y_{i}) \right)$$

. לא אילוצים Soft-SVR בדומה, הציעו פונקציית אילוצים. רציפה וקמורה שמתאימה לפיתרון בעיות $\ell(\pmb{w},b;\pmb{x}_i,y_i)$ loss בדומה, הציעו פונקציית הסבירו בקצרה.

תשובה והסבר קצר: רוצים להעניש <u>רק</u> על חריגה גדולה מדי מהערך הרצוי. $\ell(\pmb{w},b;\pmb{x}_i,y_i) = \begin{cases} |y_i-(\pmb{w}^\mathsf{T}\pmb{x}_i+b)|-1, & |y_i-(\pmb{w}^\mathsf{T}\pmb{x}_i+b)|>1\\ 0, & |y_i-(\pmb{w}^\mathsf{T}\pmb{x}_i+b)|\in[-1,1] \end{cases}$

ידוע שהבעיה הדואלית לבעיית ה-Soft-SVR שהגדרנו היא הבעיה הקעורה הבאה:

$$\underset{\substack{\sum_{i=1}^{m}(\alpha_{i}-\alpha_{i}^{*})=0\\\forall i\in[m]:\;\alpha_{i},\alpha_{i}^{*}\in[0,C]}}{\operatorname{argmax}} \left(\sum_{i=1}^{m}y_{i}(\alpha_{i}-\alpha_{i}^{*})-\epsilon \sum_{i=1}^{m}(\alpha_{i}+\alpha_{i}^{*})-\frac{1}{2}\sum_{i,j=1}^{m}(\alpha_{i}-\alpha_{i}^{*})\left(\alpha_{j}-\alpha_{j}^{*}\right)\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j} \right)$$

ה. [6 נק'] האם הבעיה הדואלית לעיל מתאימה להפעלת טריק הקרנל, בדומה למה שעשינו ב-SVM? אם כן – הסבירו בקצרה באיזה אופן. אם לא – הסבירו בקצרה מדוע. <u>הבהרה</u>: השאלה אינה עוסקת בקמירות/קעירות.

תשובה והסבר קצר:

הבעיה מתאימה להפעלת הטריק, כי הדוגמאות מופיעות בה רק בתור מכפלה פנימית.

 $K(\mathbf{x}_i, \mathbf{x}_j)$ בפונקציה $\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$ בחליף את המכפלה