Lab 13

AUTHOR
Nichelle Camden

Background

We will do all of the following: - DESeq Analysis - Visualization - Gene Annotation - Pathway Analysis

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

1. Read contData and colData

We need at least two tthingss for this type of analysis: - countData - colData (aka Metedata)

```
colData <- read.csv("GSE37704_metadata.csv", row.names=1)
#colData</pre>
```

```
countData <- read.csv("GSE37704_featurecounts.csv", row.names=1)
#countData</pre>
```

2. Fix countData

I need to remove the first length column and also heck that the colData and countData match up

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0

localhost:6492 1/11

ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Check to see if they're the same

```
all (rownames(colData) == colnames(countData))
```

[1] TRUE

We can sum across the row and if we get a zero, we have no counts in any exp for a given gene

```
keep.inds <- rowSums(countData) != 0
counts <- countData[keep.inds,]</pre>
```

Check to see how many genes we have left

```
nrow(counts)
```

[1] 15975

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)

res = results(dds)
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

```
out of 15975 with nonzero total read count adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27%

LFC < 0 (down) : 4393, 27%
```

```
outliers [1] : 0, 0%
low counts [2] : 1221, 7.6%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

```
plot(res$log2FoldChange, -log(res$padj))
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
mycols <- rep("gray", nrow(counts))
mycols[res$log2FoldChange > 2 ] <- "magenta"
mycols[res$log2FoldChange < -2 ] <- "blue"
mycols[res$padj > 0.05] <- "darkgray"

inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "cyan"

# Volcano plot with custom colors
plot( res$log2FoldChange, -log(res$padj),</pre>
```

localhost:6492 3/11

```
col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)" )
# Cut-off lines
abline(v=c(-2,2), col="black")
```


Quality Control with PCA

The prcomp() function in base R is often used to check the difference in samples

```
pca <- prcomp(t(counts), scale = T)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 6.648e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00
```

Our PCA score plot (aka PC1 vs PC2)

```
plot(pca$x[,1], pca$x[,2], col = as.factor(colData$condition), pch=16)
```

localhost:6492 4/11

#good quality control

3. DESeq Analysis

```
library(DESeq2)
```

First, I need to setup the input object required be DESeq

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

localhost:6492 5/11

```
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
res <- results(dds)
head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxal kd vs control sirna
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                              lfcSE
                                                          stat
                                                                    pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                 <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                      0.551863 5.81042e-01
                183.2296
                               0.4264571 0.1402658
                                                      3.040350 2.36304e-03
ENSG00000187634
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
                 209.6379
                               0.7297556 0.1318599
                                                      5.534326 3.12428e-08
ENSG00000187961
ENSG00000187583
                  47.2551
                               0.0405765 0.2718928
                                                      0.149237 8.81366e-01
ENSG00000187642
                  11.9798
                               0.5428105 0.5215598
                                                      1.040744 2.97994e-01
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
```

4. Add gene annotation

FNSG00000187642 4.03379e-01

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

```
columns(org.Hs.eg.db) #check what columns there are
```

localhost:6492 6/11

```
[1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                    "ENSEMBLTRANS"
[6] "ENTREZID"
                     "ENZYME"
                                    "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                    "GENENAME"
                                                                    "MAP"
[11] "GENETYPE"
                     "G0"
                                     "GOALL"
                                                    "IPI"
                     "ONTOLOGY"
                                    "ONTOLOGYALL"
                                                    "PATH"
                                                                     "PFAM"
[16] "OMIM"
[21] "PMID"
                                    "REFSEO"
                     "PROSITE"
                                                    "SYMBOL"
                                                                    "UCSCKG"
[26] "UNIPROT"
```

I will use the mapIDs() to add SYMBOL and ENTREZID annotation to or results

```
res$symbol <- mapIds(org.Hs.eg.db,
    keys = rownames (counts),
    keytype = "ENSEMBL",
    column = "SYMBOL")</pre>
```

'select()' returned 1:many mapping between keys and columns

and the ENTREZ ID required for the KeGG and GO etc

```
res$entrez <- mapIds(org.Hs.eg.db,
    keys = rownames (counts),
    keytype = "ENSEMBL",
    column = "ENTREZID")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 8 columns
                 baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
                               0.1792571 0.3248216
ENSG00000279457
                 29.9136
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
ENSG00000187961 209,6379
ENSG00000187583
                 47.2551
                               0.0405765 0.2718928
                                                     0.149237 8.81366e-01
                               0.5428105 0.5215598
                                                     1.040744 2.97994e-01
FNSG00000187642
                  11.9798
                                 symbol
                       padj
                                             entrez
                  <numeric> <character> <character>
ENSG00000279457 6.86555e-01
                                     NA
                                                 NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                             148398
ENSG00000188976 1.76549e-35
                                  N0C2L
                                              26155
ENSG00000187961 1.13413e-07
                                 KLHL17
                                             339451
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                              84069
ENSG00000187642 4.03379e-01
                                  PERM1
                                              84808
```

localhost:6492 7/11

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

5. Pathways analysis or Gene Set Enrichment

We can use gage() with gKEGG and GO

```
library(gage)
library(gageData)
library(pathview)
```

```
library(gage)
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
head(kegg.sets.hs, 3)
```

```
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                       "10720" "10941"
                                         "151531" "1548"
                                                            "1549"
                                                                     "1551"
 [9] "1553"
              "1576"
                       "1577"
                                "1806"
                                         "1807"
                                                  "1890"
                                                            "221223" "2990"
[17] "3251"
              "3614"
                       "3615"
                                "3704"
                                         "51733" "54490"
                                                           "54575"
                                                                     "54576"
[25] "54577"
             "54578"
                       "54579"
                                         "54657" "54658"
                                                            "54659"
                                                                     "54963"
                               "54600"
[33] "574537" "64816"
                       "7083"
                                "7084"
                                         "7172"
                                                  "7363"
                                                            "7364"
                                                                     "7365"
[41] "7366"
                       "7371"
                                         "7378"
                                                  "7498"
                                                            "79799"
              "7367"
                                "7372"
                                                                     "83549"
[49] "8824"
                                "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                       "10606"
               "10201"
                                 "10621"
                                          "10622"
                                                   "10623"
                                                             "107"
                                                                      "10714"
  [9] "108"
               "10846" "109"
                                 "111"
                                          "11128"
                                                   "11164"
                                                             "112"
                                                                      "113"
 [17] "114"
               "115"
                        "122481" "122622" "124583" "132"
                                                             "158"
                                                                      "159"
                                 "196883" "203"
 [25] "1633"
               "171568" "1716"
                                                   "204"
                                                             "205"
                                                                      "221823"
 [33] "2272"
               "22978" "23649" "246721" "25885" "2618"
                                                                      "270"
                                                             "26289"
```

localhost:6492 8/11

```
"27115"
[41] "271"
                        "272"
                                  "2766"
                                           "2977"
                                                    "2982"
                                                              "2983"
                                                                       "2984"
 [49] "2986"
               "2987"
                        "29922"
                                           "30833"
                                                    "30834"
                                                              "318"
                                                                       "3251"
                                  "3000"
                        "3615"
                                           "377841" "471"
                                                              "4830"
[57] "353"
               "3614"
                                  "3704"
                                                                       "4831"
                                           "4882"
[65] "4832"
               "4833"
                        "4860"
                                                    "4907"
                                                              "50484"
                                  "4881"
                                                                       "50940"
                                                    "5138"
[73] "51082"
               "51251"
                        "51292"
                                  "5136"
                                           "5137"
                                                              "5139"
                                                                       "5140"
                                                    "5146"
               "5142"
                        "5143"
                                                              "5147"
[81] "5141"
                                  "5144"
                                           "5145"
                                                                       "5148"
 [89] "5149"
               "5150"
                        "5151"
                                  "5152"
                                           "5153"
                                                    "5158"
                                                              "5167"
                                                                       "5169"
               "5198"
                                           "5315"
[97] "51728"
                        "5236"
                                  "5313"
                                                    "53343"
                                                             "54107"
                                                                       "5422"
[105] "5424"
               "5425"
                        "5426"
                                  "5427"
                                           "5430"
                                                    "5431"
                                                              "5432"
                                                                       "5433"
                                           "5438"
                                                    "5439"
                                                              "5440"
[113] "5434"
               "5435"
                        "5436"
                                  "5437"
                                                                       "5441"
                                                    "55703"
[121] "5471"
               "548644" "55276"
                                 "5557"
                                           "5558"
                                                              "55811"
                                                                       "55821"
                                  "56953"
[129] "5631"
               "5634"
                                           "56985"
                                                    "57804"
                                                              "58497"
                                                                       "6240"
                        "56655"
                        "646625" "654364" "661"
[137] "6241"
               "64425"
                                                    "7498"
                                                              "8382"
                                                                       "84172"
               "84284"
                        "84618" "8622"
                                                    "87178"
                                                              "8833"
                                                                       "9060"
[145] "84265"
                                           "8654"
               "93034"
                        "953"
                                  "9533"
                                           "954"
                                                    "955"
                                                              "956"
                                                                       "957"
[153] "9061"
[161] "9583"
               "9615"
```

What gage() wants as input is that vector of importance - in our case that will be the log2 foldchange values, This vector sgoyld have names() that are entrez IDs

get the fold change vector

```
foldchange <- res$log2FoldChange
names(foldchange) <- res$entrez</pre>
```

and run gage with KEGG Human set

```
# Get the results
keggres = gage(foldchange, gsets=kegg.sets.hs)
```

```
pathview(gene.data=foldchange, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nichellecamden 1/Desktop/bggn213/Lab13

Info: Writing image file hsa04110.pathview.png

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchange, gsets=gobpsets, same.dir=TRUE)
```

localhost:6492 9/11

lapply(gobpres, head)

```
$greater
                                             p.geomean stat.mean
                                                                         p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
                                          1.432451e-04 3.643242 1.432451e-04
GO:0048729 tissue morphogenesis
G0:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis
                                          5.932837e-04 3.261376 5.932837e-04
G0:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
GO:0007156 homophilic cell adhesion
                                                         113 8.519724e-05
                                          0.1951953
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
                                                         424 1.432451e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
G0:0007610 behavior
                                          0.2243795
                                                         427 2.195494e-04
GO:0060562 epithelial tube morphogenesis
                                          0.3711390
                                                         257 5.932837e-04
G0:0035295 tube development
                                          0.3711390
                                                         391 5.953254e-04
$less
                                            p.geomean stat.mean
                                                                        p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
G0:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                        exp1
GO:0048285 organelle fission
                                                            376 1.536227e-15
                                         5.841698e-12
GO:0000280 nuclear division
                                         5.841698e-12
                                                            352 4.286961e-15
G0:0007067 mitosis
                                         5.841698e-12
                                                            352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                            362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                            142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
G0:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3,643242 3,643242
                                           3.530241 3.530241
G0:0007610 behavior
GO:0060562 epithelial tube morphogenesis
                                           3.261376 3.261376
G0:0035295 tube development
                                           3.253665 3.253665
```

Reactome Analysis

We can use the online version for a fancy display

localhost:6492 10/11

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, qu
```

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/#TOOL=AT). Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

#Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The pathway with the most significant "entities p-value" is the endosomal/ vacuolar pathway. no, not really It's unclear why but could be related to differences in analyzing certain subsets over the whole dataset.

localhost:6492