

Model Development Phase Template

Date	July 2024
Team ID	Team-739815
Project Title	Power Consumption Analysis For Households
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Paste the screenshot of the model training code

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
Model 1	Linear regression is a valuable tool for analyzing household power consumption, employing a straightforward yet powerful approach to model the relationship between dependent variables (such as daily kWh usage) and various independent predictors (e.g., temperature, time of day, household size).	<pre>from sklearn.linear_model import LinearRegression lr=LinearRegression() lr.fit(X_train,y_train) v LinearRegression LinearRegression()</pre>

sklearn.datasets import make_regression sklearn.model_selection import train_test_split sklearn.metrics import mean_squared_error Ctrain, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) Decision Tree Regressor is a powerful machine learning technique used to regressor = DecisionTreeRegressor(random_state=42) analyze power consumption in DecisionTreeRegressor Model 2 households by partitioning data into DecisionTreeRegressor(random_state=42) subsets based on different features _pred = regressor.predict(X_test) such as temperature, time of day, and appliance usage patterns. print(f'Mean Squared Error: {ase}')
print(f'R Squares value:', metrics.r'_score(y_test, y_pred))
print(f'ME:', np.sqrt(dertics.mean_squared_error(y_test, y_pred)))
print(f'ME:', metrics.mean_absolute_error(y_test, y_pred))) Mean Squared Error: 6381.005171945824 R Squares value: 0.6217795975822628 RMSE: 79.88119410690994 MAE: 62.928834813527175 Random Forest Regressor is a powerful machine learning model used in power consumption analysis for households. It Model 3 operates by constructing multiple decision trees during training and se = mean_squared_error(y_test, y_pred)
-int(f'Mean Squared Error: (mse)')
-int('MAE:', metrics.mean_absolute_error(y_test,y_pred)) outputs the average prediction of the individual trees for regression tasks.. Mean Squared Error: 2606.5521627095645 MAE: 40.125547430828625 RMSE: 51.0544039501938 R Squares value: 0.8455022082982877