Relations and Functions

Relations

• Relations are a subset of the cardinal product of two sets.

A relation between set A and B can be denoted as:

$$R_{AB}\subseteq \{(x,y):x\in A,y\in B\}$$

Functions

- Functions are Relations of whom:
 - Every element of first set should have an image in second set.
 - \circ No $x \in A$ can have more than one image in B

Types of Relations

1. Void Relation

Let A be a set. Then $\phi \subseteq A \times A$, so it is a relation on A.

2. Universal Relation

Let A be a set. Then $A \times A \subseteq A \times A$

3. Identity Relation

Let A be a set. Then the Relation $I_A = \{(a,a): a \in A\}$

4. Reflexive Relation

A relation R on a set A is said to be reflexive if every element of A is related to itself. The R is reflexive $\Leftrightarrow (a,a) \in R$ for all $a \in A$

Eg:

$$A = \{1,2,3\}$$
 $R_1 = \{(1,1),(2,2),(3,3),(1,3),(1,2)\}$

 R_1 is reflexive.

$$R_2 = \{(1,1),(2,2)\}$$

 R_2 is not reflexive.

• Symmetric Relations

A relation R on a set A is symmetric iff:

$$(a,b)\in R \implies (b,a)\in R$$

for all $a,b\in A$

• Transitive Relations

A relation R on a set A is transitive iff:

$$(a,b) \in R \ \land (b,c) \in R \implies (a,c) \in R$$

for all $a,b,c\in A$

Notes:

- R_1 is Symmetric and Transitive $\implies R_1$ is Reflexive.
- Equivalence relation:

Iff:

- it is reflexive ((a,a) is present for all a)
- it is symmetric ((a,b) implies (b,a))
- it is transitive ((a,b) and (b,c) implies (a,c))