Faculty of Engineering, Environment & Computing School of Mechanical Engineering, School of Future Transport Engineering

6052/6053 MAA Mechanical Product Innovation Interim Presentation

Project Title: City Vehicle Door/Car Park Friendly Door

Agris Gavars:	10308903
----------------------	----------

Jenner Romero Leon: 9699487 Mat Mathushun: 10802836 Ravi Chaudhary: 10947986

Mechanical and Automotive Engineering

Supervisor: Rui Cai Date:27/03/2023

and results that have been obtained from other work are fully referenced. I understand that cheating and
plagiarism constitute a breach of University Regulations and will be dealt with accordingly.

Signed: Date:

Delivery Plan

- 1. Concept Generation.
- 2. Final Design.
- 3. Ergonomics.
- 4. Design Validation and Optimisation.
- 5. DFM, DFA and DFMEA.
- 6. Material Selection and Costing.
- 7. Sustainability.

Fig 1: lambo-DooredV8 Range Rover Stromer Concept.

Concept Generation

Design Requirements:

- > Ability to open the door in a space of width 2500mm.
- > Give unobstructed access to rear load space.
- Option to be powered or manual.
- > Premium feeling-smooth operation.
- > Function at acceptable speed.
- > Low vibration and noise level.
- > Quality finish and appearance.
- > Meet expected shut line gaps when close.

Initial Design Procedures:

- **Kano Model.**
- > QFD.
- > Morphological Analysis.

Exploded View-Hinge Components and Linear Actuator

Conceptual Design

Mechanism-Closed

Fig 2: Door lateral view during closed state

Fig 3: Back view of the mechanism

- ➤ Electric motor used to engage and disengage latch locking mechanism
- ➤ Can be locked and unlocked using button on car keys or buttons on interior of car.

- Linkages at 30° angle at closed-door condition.
- > Linear actuator is at normal state.

Conceptual Design

Mechanism-Half Opened

Fig 5: Door lateral view during closed state

- Linkages at 80° angle at half-open condition.
- Linear actuator expands by 130 mm.
- Lateral shifting of bigger linear actuator along with the movement of linkages.

Fig 7: Top view of the mechanism

Fig 6: Back view of the mechanism

Conceptual Design

Mechanism-Complete Open

Fig 8: Door lateral view during closed state

Fig 9: Back view of the mechanism

- > Upward rotational movement of door.
- ➤ Linear Actuator extends by 350mm maximum
- ➤ Ultrasonic and passive infrared sensors will prevent linear actuator movement from collisions with nearby people or objects
- > Electric
- key Controlled

Fig 10: Top view of the mechanism

Manual operation of the door

Fig 11: Free body diagram the hinge from rotation point to the door handle.

- kinetic coefficient of friction of low carbon steel $(\mu) = 0.2$
- Perependicular distance to the handle from rotation point (d) = 692 mm
- Reaction force at rotation point $(F_N) = 25 * 0.392 = 9.8 N$
- Frictional force at rotation point $(F_f) = \mu * F_N = 1.96 N$
- Frictional moment $(M_f) = F_f * d = 1.35 N$
- Moment without friction $(M) = F_N * d = 6.78 Nm$
- Net moment required $(M_{net}) = 6.78 + 1.35 = 8.13 Nm$

Since, the net moment required to lift the door with hand is 8.13 N which is easier to apply by female, male or any aged group except kids.

Fig 11: Picture showing manual door operation.

Material Comparison Graph

Fig 12: Young's modulus Vs Price graph of different Metals and Composites.

Fig 13: Fracture Toughness Vs Density graph of different Metals and Composites.

Material Comparison Graph

Fig 14: Yield Strength Vs Price of Elastomers.

Fig 15: Maximum temperature Vs Recycle of various Elastomers

Material Comparison Graph

Fig 16: Yield Strength Vs Density of various metals.

Fig 17: Yield Strength Vs Recycle of various metals.

Material Selection:

Table 1: Material specification		nge	Linea	r actuator
	AISI 1025-C	SA216 (Type WCC)	ZA-27	Aluminium 7050
Price (GBP/kg)	0.582-0.646	0.662-0.726	1.8-2.05	3.07-3.46
Density (kg/m^3)	7820-7900	7810-7840	4950-5050	2810-2840
Yield Strength (MPa)	248-274	228-241	235-395	359-414
Tensile Strength (MPa)	379-419	434-462	290-445	427-483
Specific Strength (kN.m/kg)	31.5-34.9	29.1-30.8	47-79	127-147
Flexural Strength (modulus of rupture) (MPa)	248-274	228-241	235-395	359-414
Fatigue Strength at 10^7 cycles (MPa)	203-293	207	100-175	130-150
CO2 footprint, primary production (typical grade) (kg/kg)	1.33-1.55	1.33-1.55	4.88-5.52	7.86-9.17

• Material Selection:

- ☐ Neoprene/EPDM foam strips selected for sealing.
- ☐ This material passes the 3c08 requirements, but the majority polymer is EPDM.
- ☐ Neoprene provides high resistance against oils, acids, alkalis.
- **☐ EPDM** has good weathering, heat and ozone resistance

Table 2: Material specification Table

Specification	Test Method	Required Limits	Test Results
		·	
Compression @25% Deflection (kPa)	ASTM D1056-00	35 – 65	43
Compression @50% Deflection (kPa)	ASTM D1056-00	80 – 160	112
Compression Set @50% 22h 20°C (kPa)	ASTM D1056-00	25% Max	19.1%
Water Absorption, max. change in weight (%)	ASTM D1056-00	10	0.8
Heat Aging, Change in Compression, 168h @ 70°C		±30%	Pass
Density (kg/M³)	ISO 845-95	120 ± 20	122
Flammability	FMVSS 302	Burn Rate < 100mm	Pass
Flammability	UL94 HBF		Pass
Elongation at Break (%)	ISO 1798-7		>180
Tensile Strength (KN/M²)	ISO 1798-7		>500
Temperature Range (°C)			-40°C to 85°C
High Intermittent			+100°C
Resistance to Air + UV			Excellent
Resistance to Oil			Poor
Resistance to Acids			Good
Environmental Protection			CFC and HFC free / Fully Recycleable
Specification		ASTM D1056-00 AFNOR 99-211	2A2 B2C 2C08/3C08 B3 C2

■ DFM- total manufacturing cost: 563.79 pence

								Α			
	COMPONENT DETAILS $M_c = V \times C_{mt} \times Wc$										
PART No. ID	PART DESCRIPTION	MATERIAL	PRIMARY PROCESS	SHAPE COMP.	VOLUME V [mms]	C _{mt}	Wc	Mc			
1	Eco Worthy 12 V Linear Actuator	Aluminum	AM	A1	278978.248	0.0005	1.6	221.4			
2	M12x40 steel grade C hexagon head screw	stainless steel	AM	A2	6616.976	0.0018	2	24.21			
3	M6x40 steel grade A hexagon head screw	stainless steel	AM	A2	1414.548	0.0018	2	5.177			
4	M12x50 steel grade A hexagon head bolt	stainless steel	AM	A2	8684.573	0.0018	2	31.26			
5	M6x50 steel grade A hexagon head bolt	stainless steel	AM	A2	1727.174	0.0018	2	6.217			
6	Door Hinge	low-carbon steel	IC	A2	145953.8055	0.0004	1	64.22			
7	Arm connected with hinge	low-carbon steel	IC	A1	49730.34295	0.0004	1	19.89			
8	M6 steel grade A hexagon nut	stainless steel	AM	A2	349.263	0.0018	2	1.278			
9	M12 steel grade A hexagon nut	stainless steel	AM	A2	2150.733	0.0018	2	7.871			
10	M12x60 steel grade C hexagon head screw	stainless steel	AM	A2	8796.841	0.0018	2	32.19			

$R_c = C_{mp} \times C_c \times C_s \times C_{ft}$									
C _{mp}	Сс	Cs	Tolerance [mm]	Ct	Surface Finish	C _f	C _{ft}	R _C	
4	1	1	0.12	1.34	0.4	2.3	2.3	9.2	
4	1.2	1	0.06	1.15	0.8	1.5	1.5	7.2	
4	1.2	1	0.06	1.15	0.8	1.5	1.5	7.2	
4	1.2	1	0.06	1.15	0.8	1.5	1.5	7.2	
4	1.2	1	0.06	1.15	0.8	1.5	1.5	7.2	
1	1.2	1.5	0.06	2.1	0.6	1.8	2.1	3.78	
1	1	1.5	0.08	1.8	0.4	1.6	1.8	2.7	
4	1.2	1	0.06	1.15	0.8	1.5	1.5	7.2	
4	1.2	1	0.06	1.15	0.8	1.5	1.5	7.2	
4	1.2	1	0.06	1.15	0.8	1.5	1.5	7.2	

В	A + E
(P _C x R _C)	Mi
11.96	233.36
9.36	33.578
9.36	14.537
9.36	40.624
9.36	15.578
42.336	106.56
30.24	50.132
9.36	10.638
9.36	17.232
9.36	41.556
Total Cost (n)	562.70

Total Cost (p)

563.79

• DFA- total assembly cost: 15.31 pence

COMPONENT DETAILS Handling Is						Indling Index H = Ah + $[\Sigma Po + \Sigma Pg]$					
PART No. ID	PART DESCRIPTION	ASSY PROCESS	Ah	P ₀₁	P ₀₂	ΣΡο	ΣPg	Н			
1	Eco Worthy 12 V Linear Actuator	HAND/FIT	1.5	0.1	0.1	0.2	0	1.7			
2	M12x40 steel grade C hexagon head screw	HAND/FIT	1.5	0.1	0	0.1	0	1.6			
3	M6x40 steel grade A hexagon head screw	HAND/FIT	1.5	0.1	0	0.1	0	1.6			
4	M12x50 steel grade A hexagon head bolt	HAND/FIT	1.5	0.1	0	0.1	0	1.6			
5	Door Hinge	HAND/FIT	1.5	0.1	0.1	0.2	0	1.7			
6	Arm connected with hinge	HAND/FIT	1.5	0.1	0.1	0.2	0	1.7			
7	M12 steel grade A hexagon nut	HAND/FIT	1.5	0.1	0	0.1	0	1.6			
8	M12x60 steel grade C hexagon head screw	HAND/FIT	1.5	0.1	0	0.1	0	1.6			
9	M6x50 steel grade A hexagon head bolt	HAND/FIT	1.5	0.1	0	0.1	0	1.6			
10	M6 steel grade A hexagon nut	HAND/FIT	1.5	0.1	0	0.1	0	1.6			

	Fitting Index F = Af + $[\sum Pf + \sum Pa]$									_
	Af	Pf ₁	Pf ₂	Pf ₃	Pf ₄	Pf ₅	Pf ₆	∑Pf	∑Pa	F
	1	0	0.7	0	0	0	0	0.7	0	1.7
l	4	0	0	0	0	0	0.1	0.1	0	4.1
	4	0	0	0	0	0	0.1	0.1	0	4.1
ı	4	0	0	0	0	0	0.1	0.1	0	4.1
ı	1	0	0.7	0	0	0	0	0.7	0	1.7
ı	1	0	0	0	0	0	0	0	0	1
	4	0	0	0	0	0	0.1	0.1	0	4.1
	4	0	0	0	0	0	0.1	0.1	0	4.1
	4	0	0	0	0	0	0.1	0.1	0	4.1
	4	0	0	0	0	0	0.1	0.1	0	4.1

	C₁(F + H)
Line Total	Сма
(F + H)	(cost in pence)
3.4	1.05
5.7	1.77
5.7	1.77
5.7	1.77
3.4	1.05
2.7	0.84
5.7	1.77
5.7	1.77
5.7	1.77
5.7	1.77

49 Total Assy Cost

t 1

Sustainability

Fig 18: Three Pillar of Sustainability

- > Availability of materials.
- > Life-cycle of materials.
- > Transportation.
- > Manufacturing Process and,
- > Cost.

DFMEA

						0	E		D				Actio	n Resu	lts		
Item	Function	Potential Failure Mode	Potential Effects of Failure	s e v e r i t	Potential Causes of Failure	c c u r a n c	Current Controls for Prevention	Detection	e t e c t i o n	R P N	Recommended Action	Responsibility and Target Completion Date	Action Taken	S v r t	c r n	D t c t	R P N
Hinge	connect two components keeping them alligned while supporting the weight of the door	Hinge Fracture	Door could come off and injure surrounding people	9	Bad material selection and excessive loading	3	Ensure Suitable material is selected by comparing properties such as Young's Modulas and Ultimate tensile strength of materials.	calculating forces resulting from the weight of the door, wind resistance.	2	54	Complete tensile, compressive and fatigue tests to determine stregth values for materials. Use of extra suppot.	20/03/2023	calculation of forces acting on the hinge. Double linkage introduced instead of one.	7	2	2	28
Linear Actuator	Push/pull the door	fails to keep/push door in primary position and failure to keep/pull into secondary position	Door will not operate fully	7	insufficient power provided by motor and faulty wiring, control communication error	2	Ensure motor in the linear actuator has sufficient capacity to lift door, use of high quality electrical components	buzzing noise from component, inspect wiring	2	28	Choosing appropriate shock and vibration testing standards of linear actuator such as IEC.	20/03/2023	Linear actuator with 8-35V 1500N Motor selected after calculation of force required to operate door	7	1	2	14
	act as secondary support of the door	Door weight no longer fully supported	Door may become loose	6	Excessive loading and side loading		Ensure the linear actuator of suitable material is selected by comparing properties such as Young's Modulas and Ultimate tensile strength of materials	Door will have slow and	2	24	Complete tensile, compressive and fatigue tests to determine stregth values for materials	20/03/2023	Zinc-Aluminium alloy selected as a material due to its high yield strength.	6	1	2	12
Sealing	Waterproofing, Noise reduction, pressure control, climate control inside of the car	Tear in car seal	reduced fuel efficiency due to increased aerodynamic drag	6	Incorrect installation and not the correct use of adhesive	5	Ensure proper seal selection by considering system operating pressure, seal material compatibility with fluid and fluid operating temperature, resistance against extrusion, expected service life	Direct observation of the sealing in the frame of the car door. loud popping sound	2	60	Proper material selection for the sealing. Incase of tear replace sealing.	20/03/2023	Black closed cell neoprene/epdm foam strips used	6	3	2	36
			leakage of water and air inside car, increased noise.	6	Wear and tear overtime due to regular use	5	Tensile strength tests for different materials,	Partial or total sealing off of the frame	2	60	Use protective coating to help prevent damage from UV rays, moisture, and other environmental factors.	20/03/2023	Use of silicone coating	5	3	2	30

Cost Estimation

Linear Actuators:

-Eco worthy Linear Actuator 6-inch- £63.99

-Eco worthy Linear Actuator 12inch - £68.99

Neoprene/EPDM foam strips:

10m roll-£16.25

- Roll length- 10m
- Thickness- 25mm
- Width- 25mm

Objective: Door opening within 5 sec.

- linear actuator extension (d) = 0.35 m
- required time (t) = 5 sec
- $mass\ of\ the\ door\ (m)=25\ kg$
- Power required (P) = ?

$$ho$$
 $P = Force(F) * velocity(v)$ where, $v = \frac{d}{t}$

P = 17.16 w

Since, the power required by the linear actuator to open the door within <mark>5 sec</mark> is 17.16 w

Hinge-AISI 1025 carbon steel:

- Cost: 5.1e3 GBP/m^3 = £5100/m^3
- Cost of manufacturing= 156.66 pence
- Cost of assembly= 15.31 pence
- Volume = 3389000mm3
- Price = £18.96

Cost Estimation:

Component	Price	Quantity
M12x40 steel grade C hexagon head screw	£2.20	4
M12x60 steel grade C hexagon head screw	€1.06	4
M6x40 steel grade A hexagon head screw	£1.65	4
M12x50 steel grade A hexagon head bolt	£1.53	2
M12x50 steel grade A hexagon head bolt	£2.86	5
M12 steel grade A hexagon nut	£1.15	2
M6 steel grade A hexagon nut	€0.61	2

Total Cost of door mechanism: £199.47

LSD door kit: £1096.67

Total Cost of Screw, Nuts, and Bolts: £31.94

Stress and Displacement Analysis-Static Analysis

Mesh Convergence Study

Fig 21: Mesh convergence stress analysis.

Fig 22: Mesh convergence displacement analysis.

- Different Models with Mesh size: 5,7 and 15 (mm)
- Smaller results are showing more accuracy.
- Max stress lower than the yield strength.

TATA TECHNOLOGIES

City Vehicle Door/Car Park Friendly Door

Forces at nodes

Fig 23: Reaction forces at the nodes found using Hyper work.

	iorces [N]	ID
300.54 N 150	308.6	Α
(upward) (do	272.5	В
ig 26: reactio	34.6	С
Percenta	158.1	D

Fig 24: Results obtained using Hyper work.

A_{y}	B_y	C_y	D _y
300.54 N (upward)	150.54 N (downward)	150.54 N (upward)	300.54 N (downward)

on forces obtained Hand Calculation

Fig 27: Percentage error between numerical approach and hand calculation

Validation using Hand calculations:

Fig 25: Free body diagram of the hinge

Assumptions:

- Straight arm.
- Linkages are held straight at half-open condition. Since, the forces at front and rear pin connection Experiences equal and opposite forces.

 $A_{\nu} = 300.54 N$ (force reacting in upward direction)

 $B_v = -150.54 N$ (force reacting in downward direction)

 $A_{\nu} = -D_{\nu}$ (The force in A and D should be equal and opposite to balance the hinge)

 $-B_{\nu} = C_{\nu}$ (The force in B and C should be equal and opposite to balance the hinge)

Modal Shapes at different Frequencies.

Fig 28: Modal Shape of hinge at frequency 97.244 Hz

Fig 30: Modal Shape of hinge at frequency 1097 Hz

Fig 29: Modal Shape of hinge at frequency 289.1 Hz

- > Deformation starts at frequency: 97.244 Hz
- Max displacement: 21.717 mm
- > At frequency 289.1 Hz
- Max Displacement: 23.052 mm
- > At frequency 1097 Hz
- Max Displacement: 17.908 mm and high deformation in the middle section in comparison.

Design Optimization

Fig 31: Counter plot showing density change

Part Considered

> Front arm

Objectives

- Minimize stress and minimize deformation.
- Volume, material reduction.

Fig 32: Iso View of counter plot showing density change

Design Validation

Fig 33: Stress analysis after design validation.

Fig 34: Displacement analysis after design validation.

- Max stress: 53.9 MPa
- ➤ Max Displacement: 0.3 mm
- Mass of arm before optimization: 1371.933 g
- Mass of the arm after optimization: 1193.716 g

Factor of Safety = 4.73

- > Stress Difference before and after optimization: 2 MPa
- > Displacement difference before and after optimization: 0.11 mm

Could achieved better results optimising all the highly stressed components.

Ergonomics

Fig 35: Design showing the width of opening, and height of the door when door is opened.

- Maximum opening of 1325.31mm in height and 492.86mm in width.
- A 95th percentile male has a hip breadth of 376.5mm and a sitting height of 971.9mm

Fig 36: Design showing height of the door

❖ Car side pockets have a cover which remains constantly shut unless held open to prevent objects from falling while operating the door

Fig 37: Design showing the height from bottom of the door to handle

- A 5th percentile female standing shoulder height (124cm)
- A 95th percentile male has a wrist height of (63cm)
- Door handle height (561mm) + Ride height of the door (219mm)= 78cm

References

- Linear Actuator Eco Worth linear actuator
 https://www.accu.co.uk/hexagon-nuts/7896-HPN-M12 A2?uk google shopping=1&c=3&gclid=Cj0KCQjwlPWgBhDHARIsAH2xdNfEO5YgEE73Mii
 kp6QsEuMY8U7rapFlmRAaILbOKePcH53tdH5Iu3saArX4EALw wcB
- Sealing Neoprene/EPDM foam strip
 https://www.polymax.co.uk/rubber-sheet/sponge-epdm-neoprene-foam-strips-sab
- Neoprene/EPDM foam strip property table
 https://www.polymax.co.uk/media/documents/Datasheet/EPDM Foam Strips.pdf
- LSD door kit
 https://www.demon-tweeks.com/uk/lsd-lambo-look-door-kit-kwa50080014/
- lambo-DooredV8 Range Rover Stromer Concept
 https://www.youtube.com/watch?v=1xrJDsOVzBw&ab_channel=TopGear

Thank you for listening

Any Questions?