In [32]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [33]: data=pd.read_csv(r"C:\Users\user\Downloads\6_Salesworkload1 - 6_Salesworkload1
 data

Out[33]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLe
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	6.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	6.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	6.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	6.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	6.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

localhost:8888/notebooks/sales model.ipynb

In [34]: df=data.head(100)
df

Out[34]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
95	10.2016	1.0	United Kingdom	18808.0	London (II)	14.0	Non Food	7817.148	0.0
96	10.2016	1.0	United Kingdom	18808.0	London (II)	15.0	Admin	5110.728	0.0
97	10.2016	1.0	United Kingdom	18808.0	London (II)	12.0	Checkout	6209.031	0.0 (
98	10.2016	1.0	United Kingdom	18808.0	London (II)	16.0	Customer Services	3115.53	0.0
99	10.2016	1.0	United Kingdom	18808.0	London (II)	11.0	Delivery	7209.777	246.0

100 rows × 14 columns

4

```
In [35]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	MonthYear	100 non-null	object
1	Time index	100 non-null	float64
2	Country	100 non-null	object
3	StoreID	100 non-null	float64
4	City	100 non-null	object
5	Dept_ID	100 non-null	float64
6	Dept. Name	100 non-null	object
7	HoursOwn	100 non-null	object
8	HoursLease	100 non-null	float64
9	Sales units	100 non-null	float64
10	Turnover	100 non-null	float64
11	Customer	0 non-null	float64
12	Area (m2)	100 non-null	object
13	Opening hours	100 non-null	object
dtvn	os: float64(7)	object(7)	

dtypes: float64(7), object(7)

memory usage: 11.1+ KB

In [36]: df.describe()

Out[36]:

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Customer
count	100.0	100.000000	100.000000	100.000000	1.000000e+02	1.000000e+02	0.0
mean	1.0	43781.340000	9.310000	65.340000	1.063110e+06	3.590811e+06	NaN
std	0.0	28146.505061	5.292829	249.349222	1.769242e+06	5.968009e+06	NaN
min	1.0	17647.000000	1.000000	0.000000	0.000000e+00	0.000000e+00	NaN
25%	1.0	18808.000000	5.000000	0.000000	5.300125e+04	2.702460e+05	NaN
50%	1.0	38976.000000	9.000000	0.000000	3.072850e+05	8.339250e+05	NaN
75%	1.0	73949.000000	14.000000	0.000000	9.195138e+05	2.966010e+06	NaN
max	1.0	88253.000000	18.000000	1896.000000	7.476680e+06	2.571973e+07	NaN

```
In [37]: df.columns
```

In [38]: sns.pairplot(df)

Out[38]: <seaborn.axisgrid.PairGrid at 0x1d790da5700>

Out[10]:

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_la
0	24238194	7.5	-73.999817	40.738354	-73.999512	40.72
1	27835199	7.7	-73.994355	40.728225	-73.994710	40.7!
2	44984355	12.9	-74.005043	40.740770	-73.962565	40.7
3	25894730	5.3	-73.976124	40.790844	-73.965316	40.80
4	17610152	16.0	-73.925023	40.744085	-73.973082	40.76
199995	42598914	3.0	-73.987042	40.739367	-73.986525	40.74
199996	16382965	7.5	-73.984722	40.736837	-74.006672	40.7
199997	27804658	30.9	-73.986017	40.756487	-73.858957	40.69
199998	20259894	14.5	-73.997124	40.725452	-73.983215	40.69
199999	11951496	14.1	- 73.984395	40.720077	-73.985508	40.76

200000 rows × 7 columns

In [40]: sns.heatmap(da.corr())

Out[40]: <AxesSubplot:>


```
In [43]: x=da[['Unnamed: 0', 'fare_amount']]
         y=da['passenger_count']
In [44]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [45]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[45]: LinearRegression()
In [46]: |print(lr.intercept_)
         1.6656992560926966
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [47]:
         coeff
Out[47]:
                       Co-efficient
           Unnamed: 0 7.037157e-11
          fare_amount 1.331269e-03
In [48]:
         prediction=lr.predict(x test)
         plt.scatter(y test,prediction)
Out[48]: <matplotlib.collections.PathCollection at 0x1d794f36550>
           2.3
           2.2
           2.1
           2.0
           1.9
           1.8
           1.7
           1.6
                         50
                                  100
                                             150
                                                       200
In [49]:
         print(lr.score(x_test,y_test))
         9.84596096761381e-05
```

In [50]: sns.distplot(da)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[50]: <AxesSubplot:ylabel='Density'>

In []: