Prova Parziale di **Ottimizzazione Combinatoria** 20 marzo 2007

Cognome	
Nome	
Matricola	

Domanda 1

Enunciare e dimostrare il teorema di Gallai

Domanda 2

Disegnare un grafo G = (V, E) con le seguenti caratteristiche:

- 1. $\rho + \tau = 16$
- 2. $\alpha + \tau = 16$
- 3. $\alpha + \rho = 16$

Domanda 3

Dato il problema di knapsack

$$\begin{aligned} &\max 10x_1 + 21x_2 + 11x_3 + 17x_4 + 16x_5 + 23x_6 + 32x_7 + 27x_8 \\ &st \\ &4x_1 + 7x_2 + 6x_3 + 6x_4 + 5x_5 + 4x_6 + 6x_7 + 2x_8 \le 15 \\ &x \in \{0,1\}^8 \end{aligned}$$

descrivere un algoritmo basato sulla programmazione dinamica e risolverlo.

Esercizio 1

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	1	2	3	4	5	6	7
1	_	2	7	4	11	4	6
2	2	-	6	7	8	7	12
3	7	6	-	5	13	11	6
4	4	7	5	-	3	2	10
5	11	8	13	3	-	5	1
6	4	7	11	2	5	-	4
7	6	12	6	10	1	4	-

Calcolare

- 1. Il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo.
- 2. Una soluzione euristica S ottenuta tramite l'algoritmo double tree

Esercizio 2

Determinare, sul grafo di figura, il massimo matching (a partire dal matching evidenziato in grassetto) e il massimo insieme stabile a partire dall'abbinamento evidenziato in grassetto e spiegando nel dettaglio i passi degli algoritmi utilizzati.

Cognome	
Nome	
Matricola	

Esercizio 3

Un'azienda di deve pianificare gli investimenti per il prossimo anno. La direzione ha selezionato i seguenti investimenti (tutti i dati sono in milioni di Euro)

I1: Redditività: 9 Cash flow: {-7, -13, -12, -20}

I2: Redditività: 22 Cash flow: {-15, -12, +5, +11}

I3: Redditività: 13 Cash flow: {-3, -4, -5, -2}

I4: Redditività: 8 Cash flow: {-12, -11, +4, +7}

I5: Redditività: 15 Cash flow: {+11, +6, -5, -12}

I6: Redditività: 7 Cash flow: {-3, -6, -8, -10}

I7: Redditività: 4 Cash flow: {+7, +4, -2, -4}

Sapendo che il budget trimestrale a disposizione dell'azienda è di {21, 14, 6, 19} M€ per trimestre e che gli investimenti I1, I2 e I3 non possono essere attivati tutti insieme:

- 1. Formulare come PL-{0, 1} il problema di massimizzare la redditività senza violare il vincolo di budget trimestrale.
- 2. Rafforzare il rilassamento lineare della formulazione di cui al punto 1 con l'aggiunta di opportune disequazioni valide
- 3. Risolvere la formulazione di cui al punto 1 con l'algoritmo di branch-and-bound.

Prova Parziale di **Ottimizzazione Combinatoria** 20 marzo 2007

Cognome	
Nome	
Matricola	

Esercizio 4

Un'azienda di telecomunicazioni deve realizzare il backbone in fibra ottica di una rete WAN, collegando le seguenti località: L'Aquila, Pescara, Chieti, Teramo, Roma, Rieti e Viterbo. Sapendo che:

- 1. Il costo di attivazione di un collegamento tra due città è pari a 2400 €/km
- 2. Le distanze chilometriche sono riportate nella seguente matrice:

AQ	PE	CH	TE	RM	RI	VT	
_	95	82	50	140	70	83	AQ
	-	15	60	229	190	292	PE
		-	72	212	180	201	CH
			-	160	125	159	TE
				-	90	80	RM
					-	119	RI
						-	VT

- 1. Formulare come PL-{0, 1} il problema di determinare la rete di costo minimo in modo che tutte le città siano connesse e che la città di L'Aquila abbia almeno 4 connessioni.
- 2. Calcolare un lower bound per il problema di cui al punto 1.