EOE038

			-				
Roll No:					1	27	

B. Tech. (SEM III) ODD SEMESTER THEORY EXAMINATION 2013 - 2014

DISCRETE MATHEMATICS

Time: 3 Hrs.

Max. Marks100

Note: Attempt all questions.

Q.1 Attempt any four parts of the following:

 $4 \times 5 = 20$

- (a) If $f(x) = \sqrt{81 x^2}$, then find range and domain of f(x). If $g(x) = x^2 2$, then find $g^{-1}(14)$.
- (b) If A, Band C are sets, then prove that $A (B \cap C) = (A B) \cup (A C)$.
- (c) If $f(x) = x^2 + 3$ and g(x) = 4x 7, then find fog, gof and $g^{-1}(4)$.
- (d) Prove that $R = \{(x, y) : x \text{ divides } y, x \in Z, y \in Z\}$ is transitive but not an equivalence relation.
- (e) Show that the mapping $f: R \to R$, $f(x) = \frac{1}{x}$, $x \ne 0$ and $x \in R$ is one-one and onto, where R is set of non-zero real numbers.
- (f) If $f: X \to Y$ and $g: Y \to Z$ are one-one and onto, then prove that $gof: X \to Z$ is one-one onto and $(gof)^{-1} = f^{-1}og^{-1}$.

Q.2 Attempt any two parts of the following:

 $2 \times 10 = 20$

- (a) By finding truth table verify whether $(pVq)\Lambda(\sim p)\Lambda(\sim q)$ is a tautology or not.
- (b) By Mathematical induction, show that $n(n^2 1)$ is divisible by 24, where n is any odd positive integer.
- (c) Find truth table of $(p \Leftrightarrow q) \land (r \lor q)$ and $(p \Leftrightarrow q \land r) \Rightarrow (\neg r \Rightarrow \neg p)$.

Q.3 Attempt any two parts of the following:

 $2 \times 10 = 20$

- (a) Using Generating function method, solve the recurrence relation:
 - $a_n 9a_{n-1} + 20a_{n-2} = 0$; $a_0 = 5$, $a_1 = 22$. Also, find the sequence $\{a_n\}$ whose generating function is $\frac{1}{5-6z+z^2}$.
- (b) Solve the recurrence relations:

i.
$$a_n + 2a_{n-1} - 15a_{n-2} = 0$$
; $a_0 = 0, a_1 = 1$.

- ii. $a_r 5a_{r-1} + 6a_{r-2} = 7^r$.
- (c) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$. State and prove Pigeon hole principle. If 7 colours are used to paint 50 cars, find at least how many cars will have the same colour.

Q.4 Attempt any two parts of the following:

 $2 \times 10 = 20$

(a) Define a commutative ring with unit element. Show that every field is an integral domain.

- (b) Prove the following:
 - i. A subgroup H of a group G is normal iff $xH^{-1}x = H$, $\forall x \in G$.
 - ii. The intersection of any two normal subgroup of a group is a normal subgroup.
- (c) Prove that the order of each subgroup of a finite group is a divisor of the order of group.

Q.5 Attempt any two parts of the following:

 $2 \times 10 = 20$

- (a) Define Hamiltonian circuit. Prove that a planar graph with e edges and v vertices will have Hamiltonian circuit if $2(e-3) \ge v(v-3)$.
- (b) Define proper coloring and chromatic polynomial of a graph. Find chromatic polynomial of graph given below:

- (c) Write short notes on:
 - i. Enumeration of graphs;
 - ii. Posets and Lattices;
 - iii. Kuratowski's graphs.