MATH 262: Homework #8

Jesse Farmer

10 March 2005

1. Let X be a compact Hausdorff space. Show that X is metrizable if and only if X has a countable basis. Every compact metrizable space (X, ρ) is second-countable. To see this, consider

$$\mathfrak{O}_n = \left\{ B_{\frac{1}{n}}(x) \mid x \in X \right\}$$

where $n \in \mathbb{Z}_+$ is fixed. Since X is compact there exists a finite subcover \mathcal{A}_n . Let $\mathcal{B} = \bigcup_{n \in \mathbb{Z}_+} \mathcal{A}_n$. \mathcal{B} is countable. Since the usual basis for X, $\{B_{\epsilon}(x)\}$, contains \mathcal{B} , it is sufficient to show that for every ϵ -ball there exists some $B \in \mathcal{B}$ such that B is contains in that ϵ -ball. Simply let n be such that $\frac{1}{n} < \frac{\epsilon}{2}$, then there is some $B \in \mathcal{B}$ of radius $\frac{1}{n}$ containing x and $B \subset B_{\epsilon}(x)$. Therefore \mathcal{B} is a basis for the metric topology on X.

The other direction is easier. Every compact Hausdorff space is normal, and any second-countable normal space is metrizable by Urysohn.

2. Let X be a locally compact Hausdorff space. Is it true that if X has a countable basis then X is metrizable? What about the converse?

Let X be an uncountable discrete space. Then X is locally compact, Hausdorff, and metrizable, but not second-countable.

Let X be a second-countable, locally compact Hausdorff space. Let S be the one-point compactification of X. By 29.4 it follows that X is homeomorphic to an open subspace of S. Since S is compact Hausdorff it is normal, and hence completely regular. X inherits this property as a subspace of S, and therefore X is also regular. As X is also second-countable, it follows that X is metrizable (since second-countable and regular implies metrizable).

- 3. Let (X, ρ) be a metric space.
 - (a) Fix $\epsilon > 0$. Show that if every ball of radius ϵ in X has a compact closure then X is complete. Let $\{x_k\}$ be a Cauchy sequence in X, and fix $\epsilon > 0$ such that every ball of radius ϵ has compact closure. Then there exists some $N \in \mathbb{N}$ such that $\rho(x_k, x_n) < \epsilon$ for all $k \in \mathbb{N}$. Hence the sequence $\{x_{k+N}\}$ is contained entirely in $\overline{B_{\epsilon}(x_k)}$. As a subspace this is compact since it is closed, and therefore sequentially compact. But this means that it contains a convergence subsequence, and therefore that $\{x_k\}$ converges.
 - (b) Show that if for every x there exists an $\epsilon > 0$ such that $B_{\epsilon}(x)$ has compact closure then X need not be complete.

Let X = (0,1). For every $x \in X$ choose ϵ such that $0 < x - \epsilon < x < x + \epsilon < 1$. Then $\overline{B_{\epsilon}(x)} = [x - \epsilon, x + \epsilon]$, which is compact. However, X is not complete. In particular the sequence $\{1/n\}$ is Cauchy but does not converge in X.

4. Let (X, ρ) be a complete metric space. Show that if $f: X \to X$ is a contraction mapping then there is a unique point $x \in X$ such that f(x) = x.

Define a sequence in X as follows. Let $x_0 \in X$ be arbitrary, and let $x_n = f(x_{n-1})$. Let $0 < \alpha < 1$ be the coefficient of contraction, then it follows by induction that

$$\rho(x_n, x_0) \le \frac{1 - \alpha^n}{1 - \alpha} \rho(x_1, x_0)$$

Since this is obvious for n=0, assume it to be true for n-1. Then

$$\rho(x_n, x_0) \leq \rho(x_n, x_{n-1}) + \rho(x_{n-1}, x_0)
\leq \alpha^{n-1} \rho(x_1, x_0) + \frac{1 - \alpha^{n-1}}{1 - \alpha} \rho(x_1, x_0)
= \left(\frac{\alpha^{n-1} - \alpha^n}{1 - \alpha} + \frac{1 - \alpha^{n-1}}{1 - \alpha}\right) \rho(x_1, x_0)
= \frac{1 - \alpha^n}{1 - \alpha} \rho(x_1, x_0)$$

And therefore it is true for every $n \in \mathbb{N}$. Let $m, n \in \mathbb{N}$, and, without loss of generality, assume $m \geq n$. Then by the above

$$\rho(x_m, x_n) \leq \alpha^n \rho(x_{m-n}, x_0)$$

$$\leq \alpha^n \frac{1 - \alpha^{m-n}}{1 - \alpha} \rho(x_1, x_0)$$

$$= \frac{\alpha^n - \alpha^m}{1 - \alpha} \rho(x_1, x_0)$$

$$< \frac{\alpha^n}{1 - \alpha} \rho(x_1, x_0)$$

However, as $\frac{\alpha^n}{1-\alpha} \to 0$ as $n \to \infty$, we can choose N such that if $n \ge N$ then $\frac{\alpha^n}{1-\alpha} < \epsilon$ for all $\epsilon > 0$. Therefore $\{x_n\}$ is a Cauchy sequence, and by the completeness of X it has some limit $x \in X$. Assume for contradiction that this is not a fixed point of f, i.e., $\rho(f(x), x) > 0$. Then choose N such that for $n \ge N$, $\rho(x, x_n) < \frac{\rho(f(x), x)}{2}$. Then

$$\rho(f(x), x) \leq \rho(f(x), x_{N+1}) + \rho(x_{N+1}, x)
\leq \alpha \rho(x, x_N) + \rho(x_{N+1}, x)
< \frac{\rho(f(x), x)}{2} + \frac{\rho(f(x), x)}{2} < \rho(f(x), x)$$

which is absurd. Therefore $\rho(f(x), x) = 0$ and hence f(x) = x. To see that x is unique, let y be such that f(y) = y. Then

$$\rho(x, y) = \rho(f(x), f(y)) \le \alpha \rho(x, y)$$

which is true if and only if $\rho(x,y) = 0$, i.e., x = y.

- 5. Let X be a compact metric space. Is $C(X,\mathbb{R})$ necessarily second-countable? What about C(X,Y) if Y is also a compact metric space?
- 6. If X and Y are compact metric spaces such that there are isometric embeddings of X into Y and Y into X, must X and Y be isometric?