Note del corso di Geometria 1

Gabriel Antonio Videtta

28 aprile 2023

Spazi affini (parte due)

Se E è affine su V di dimensione n su \mathbb{K} , allora ogni scelta di un punto $O \in E$ di una base \mathcal{B} di V dà una bigezione $\varphi_{O,\mathcal{B}}: E \to A_n(\mathbb{K}): O + \underline{v} \mapsto [\underline{v}]_{\mathcal{B}}$.

Proposizione. Un sottoinsieme $D \subseteq E$ è un sottospazio affine $\iff \forall P_0 \in D$, l'insieme di vettori $D_0 = \{P - P_0 \mid P \in D\} \subseteq V$ è un sottospazio vettoriale.

Dimostrazione. $P = \sum \lambda_i P_i \in D$ combinazione affine di $P_i \in D \iff \forall P_0 \in D, P - P_0 = \sum \lambda_i (P_i - P_0) \in D_0.$

$$(\Longrightarrow) P = P_0 + \sum \lambda_i (P_i - P_0) = \sum \lambda_i P_i + (1 - \sum \lambda_i) P_0$$

$$(\Longleftrightarrow) \operatorname{Sia} \sum \lambda_i P_i = P_0 + \sum \lambda_i (P_i - P_0) = P_0 + (P - P_0) = P$$

D si dice la direzione del sottospazio affine D. In $A_n(\mathbb{K})$, i sottospazi affini corrispondono ai traslati dei sottospazi vettoriali.

Esercizio 1.

- (i) D_0 è unico
- (ii) $D_0 = \{Q P \mid P, Q \in D\}$

Definizione (dimensione un sottospazio affine). Dato D sottospazio affine di E, si dice dimensione di D, indicata con dim D, la dimensione di D_0 , ossia dim D_0 . IN particolare dim $E = \dim V$.

Osservazione.

▶ I sottospazi affini di dimensione zero sono tutti i punti di E, quelli di dimensione uno retta, due piano, n-1 iperpiano affine (ossia con codimensione 1)

Definizione (punti affinemente indipendenti). I punti $P_1, ..., P_n \in E$ si dicono affinemente indipendenti se l'espressione $P = \sum \lambda_i P_i$ con $\sum \lambda_i = 1$ è unica $\forall P \in \text{Aff}(P_1, ..., P_n)$. Analogamente un sottoinsieme $S \subseteq E$ si dice affinemente indipendente se ogni suo sottoinsieme finito lo è.

Proposizione. $P_1, ..., P_n$ sono affinemente indipendenti $\iff \forall i = 1, ..., k$ i vettori $P_j - P_i$ con $j \neq i$ sono linearmente indipendenti $\iff \exists i = 1, ..., k$ i vettori $P_j - P_i$ con $j \neq i$ sono linearmente indipendenti $\forall i P_i \notin Aff\{P_1, ..., P_n\}$ con P_i escluso.

Dimostrazione.	٦
Dimosituzione.	 ┙

Osservazione.

- ▶ Il numero massimo di punti affinemente indipendenti in E è dim E+1.
- ▶ Se $E = A_n(\mathbb{K})$ e $V = \mathbb{K}^n$. Allora $\underline{w_1}, ..., \underline{w_k} \in E$ sono aff. indip. \iff i vettori $\underline{w_1}, ..., \underline{w_k}$ immersi in \mathbb{K}^{n+1} aggiungendo una coordinata 1 in fondo sono linearmente indipendenti.

Osservazione. Sia E spazio affine con V di dimensione n. Si scelgano n+1 punti affinemente indipendenti $P_0, ..., P_n$. Allora $\mathrm{Aff}(P_0, ..., P_n) = E$. Quindi $P \in E$ si scrive in modo unico come $P = \sum \lambda_i P_i$ con $\sum \lambda_i = 1$. Le λ_i si diranno allora le coordinate affini di P nel riferimento $P_0, ..., P_n$.

Se si impone $\lambda_i \geq 0$, si definisce che la combinazione è una combinazione convessa. Si definisce baricentro il punto con $\lambda_i = \frac{1}{n}$.

Definizione (inviluppo convesso). Si dice IC(S) di un insieme $S \subseteq E$ l'insieme delle combinazioni convesse di S (finite).

Definizione. Sia E uno spazio affine su V, E' spazio affine su V' (sullo stesso \mathbb{K}) un'applicazione $f: E \to E'$ si dice app. affine se conserva le combinazioni affini $(f(\sum \lambda_i P_i) = \sum \lambda_i f(P_i), \sum \lambda_i = 1)$.

Teorema. Sia $f: E \to E'$ affine. Allora \exists unica app. lineare $g: V \to V'$ lineare tale che valga $f(O + \underline{v}) = f(O) + g(\underline{v})$, per ogni scelta di $O \in E$.

Dimostrazione. Sia $O \in E$. L'applicazione $g_O : V \to V'$ data da $g_O(\underline{v}) = f(O + \underline{v}) - f(O)$. Si dimostra che g_O è lineare.