LC10

Capteurs electrochimiques

Introduction

Potentiels d'électrode

$$Cu^{2+}(aq) + 2e^{-} = Cu(s)$$

$$Zn^{2+}(aq) + 2e^{-} = Zn(s)$$

Electrode à calomel saturé (ECS)

❖ Couple Ox/Red :

 $Hg_2Cl_2(s) / Hg(l)$

❖ Demi-équation :

 $Hg_2Cl_2(s) + 2e^- = 2Hg(l) + 2Cl^-(aq)$

❖ Couple Ox/Red :

E=0,24V à 25°C

Electrode à chlorure d'argent

❖ Couple Ox/Red:

AgCl(s) / Ag(s)

❖ Demi-équation :

 $AgCl(s) + 1e^{-} = Ag(s) + Cl^{-}(aq)$

❖ Couple Ox/Red:

E=0,22V à 25°C

Electrode standard à hydrogène (ESH)

Couple Ox/Red: $H^+(aq) / H_2(g)$

❖ Demi-équation :

 $2H^{+}(aq) + 2e^{-} = H_{2}(g)$

❖ Couple Ox/Red:

E= 0,0 V à toute température

Potentiel d'électrode: Fe3+/Fe2+

[Fe³⁺] =
$$\frac{V_{\text{Fe}^{3+}} \times C_{\text{Fe}^{3+}}}{V_{\text{tot}}}$$

[Fe²⁺] = $\frac{V_{\text{Fe}^{2+}} \times C_{\text{Fe}^{2+}}}{V_{\text{tot}}}$

$$\frac{[Fe^{3+}]}{[Fe^{2+}]} = \frac{V_0(Fe^{3+})}{V_{vers\acute{e}}(Fe^{2+})} \operatorname{car} C_0(Fe^{3+}) = C_0(Fe^{2+})$$

Analyse chimique d'une eau souterraine

Eau souterraine : très enrichie en fer Le fer est sous forme d'ions ferreux. • Conséquence d'une eau trop ferreuse

• Réglementation : Concentration < 0,2 mg/L [Fe²⁺]<3,6.10⁻⁶ mol.L⁻¹

Afin de mettre au point un <u>processus de traitement</u>, il faut auparavant réaliser une analyse chimique : Titrage des ions Fe²⁺ dans l'eau souterraine

Titrage potentiométrique des ions Fer (II)

	Fe ²⁺ (aq) +	Ce ⁴⁺ (aq) =	: Fe ³⁺ _(aq) +	Ce ³⁺ (aq)
Avant l'équivalence	1	=0	7	
A l'équivalence	$V_o.C_o-x_{\acute{e}q}\approx o$	V _{versé} .C-x _{éq} ≈o	$X_{\acute{e}q} = V_o.C_o$	$X_{\text{\'eq}} = V_o.C_o$
Après l'équivalence	=0			<i>V_o.C_o</i> →

À l'équivalence $C \times V_{eq} = C_0 \times V_0$

Solution de sel de Mohr $(NH_4)_2$ Fe $(SO_4)_2$, 6 H_2O $V_0 = 20mL$ $C_0 = ??$

$$Fe^{2+}$$
 (aq) + Ce^{4+} (aq) = Fe^{3+} (aq) + Ce^{3+} (aq)

Titrage potentiométrique des ions Fer (II)

	Fe ²⁺ _(aq) +	Ce ⁴⁺ (aq) =	Fe ³⁺ (aq) +	Ce ³⁺ (aq)
Avant l'équivalence	1	=0	7	
A l'équivalence	$V_o.C_o-x_{\acute{e}q}\approx o$	V _{versé} .C-x _{éq} ≈o	$X_{\acute{e}q} = V_o.C_o$	$X_{\text{\'eq}} = V_o.C_o$
Après l'équivalence	=0			V _o .C _o →

Conductimétrie

 \grave{A} gauche : schéma d'une cellule conductimétrique. \grave{A} droite : zoom sur les plaques.