Security in 802.11 wireless networks

© André Zúquete, João Paulo Barraca

ormation and Organizational Security

Wireless (data) communications:
A glance

MAN
IEEE 802.16- s

LAN
IEEE 802.11 - WiFi

PAN
IEEE 802.15.2 - Bluetooth
IEEE 802.15.4 - ZigBee

BAN
IEEE 802.15.6

NFC
ISO/IEC 144443
15693 18092

© André Züquete, João Paulo Barraca

Intornation and Organizational Security
2

Wireless vs. cabled communications: Security issues

Broadcast communication

- Hard to enforce physical propagation boundaries
- Typical physical boundaries are useless to avoid:
 - Interference with communications
 - Eavesdropping of communications

Mitigation

- Reduce interference and eavesdropping capabilities
 - At the physical layer
- At the data link layer

© André Zúquete, João Paulo Barraca

Information and Organizational Security

2

Reduce interference and eavesdropping capabilities: Physical layer

Prevent eavesdroppers from decoding the channel

Channel coding needs to use some shared secret

Example: Bluetooth FHSS (Frequency Hoping Spread Spectrum)

- · Carrier changes frequency in a pattern known to both transmitter and receiver
- $\circ\,$ The data is divided into packets and transmitted over 79 hop frequencies in a pseudo random pattern
- Only transmitters and receivers that are synchronized on the same hop frequency pattern will have access to the transmitted data
- FHSS appears as short-duration impulse noise to eavesdroppers
 - $\circ\,$ The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security

© André Zúquete, João Paulo Barraca

Information and Organizational Security

Reduce interference and eavesdropping capabilities: Physical layer

Present channel monopolization by transmitters

Physical Medium access Policies

Examples

- Bluetooth FHSS
 - Unsynchronized transmitters seldom collide
- ∘ \//i-F
- Each network is instantiated over a specific frequency
- GSM
 - Each terminal transmits over a specific mobile station

Interference is still possible from external sources or overlapping channels

© André Zúquete, João Paulo Barraca

Information and Organizational Security

5

Reduce interference and eavesdropping capabilities: data layer

Prevent attackers from identifying the participants in a communication

 $\,^\circ\,$ Headers need to be encrypted, and temporary identifiers should be used

Prevent eavesdroppers from understanding data link payloads

- Frames need to be encrypted
- Usually, payloads only are encrypted

Prevent attackers from forging acceptable data link frames

- Frames need to be authenticated
 - Origin authentication
 - Freshness

© André Zúquete, João Paulo Barraca

Information and Organizational Security

IEEE 802.11:

Architecture (in structured networks)

Station (STA)

- Device that can connect to a wireless network
- Has a (unique) identifier
 - Media Access Control (MAC) address
 - Today it is becoming popular its randomization (for anonymity sake)

Access Point (AP)

 Device that allows the interconnection between a wireless network and other network devices or networks

Wireless network

 Network formed by a set of STAs and AP that communicate using radio signals

André Zúquete, João Paulo Barraca

Information and Organizational Security

IEEE 802.11:

Structured network terminology

Basic Service Set (BSS)

 Network formed by a set of STA associated to an AP

Extended Service Set (ESS)

 Network formed by several BSS interconnected by a Distribution System (DS)

Service Set ID (SSID)

- Identifier of a wireless network served by a BSS or ESS
- The same infrastructure can use several SSID

André Zúquete, João Paulo Barraca

Information and Organizational Security

IEEE 802.11 data link security: Overview

Network Type		pre-RSN	RSN (Robust Security Network)		
Functionality		WEP	WPA	802.11i (ou WPA2)	
Authentication		Unilateral	Bilateral with 802.1X		802.1X
		(STA)	(STA, AP and network)		
Key Distribution			EAP ou PSK, 4-Way Handshake		y Handshake
IV Management Policy			TKI	IP	AES-CCMP
Data Cipher		RC4			AES-CTR
Integrity Control	Headers		Mich	ael	AES
	Payload	CRC-32	CRC-32, N	Michael	CBC-MAC

Other

- SSID hiding (on beacons)
- MAC address filtering (on associations)
- (Privacy) MAC client randomization before association

© André Zúquete, João Paulo Barraca

Information and Organizational Security

4

IEEE 802.11: WEP (Wired Equivalent Privacy)

Optional and unilateral Authentication

Can support multiple types simultaneously

OSA: Open System Authentication

No authentication, just for the state transition model

SKA: Shared Key Authentication

- Challenge/response between STA and AP
- Key (password) per person (MAC address) or network
- Unilateral STA authentication
 - No AP / network authentication

Frame payload encryption

With RC4, using 40 or 104 bit keys

Frame payload authentication with CRC-32

© André Zúquete, João Paulo Barraca

Information and Organizational Security

WEP: Lots of security problems ... SKA is completely insecure An eavesdropper gets all it needs to impersonate a victim No need to discover the password Rogue APs cannot be detected **►** CRC Same key for authentication and payload confidentiality ICV No key distribution, keys overused Keystream Weak integrity control CRC-32 is linear · Frame deterministic modification is trivial Cryptogram **Mediocre IV management** RC4 IV is too short (24 bits) IV Key Keystream Easy to get cryptograms produced with the same IV \oplus Same IV, same key ⇒ same keystream, cryptanalysis becomes easier IV is not managed at all Reuse is not controlled / prevented → CRC >→ =?

Mitigation of WEP problems: WPA (WiFi Protected Access)

WPA uses WEP in a safe way

- A different RC4 key per frame
- RC4 week keys are avoided
- Extra cryptographic integrity control with Michael
- IV strict sequencing for preventing frame reuse

Implemented first by device drivers

Latter on firmware

Inline with 802.11i

- The actual 802.11 security standard
- WPA can be used with 802.1X for strong, mutual authentication

© André Zúquete, João Paulo Barraca

Information and Organizational Security

IEEE 802.1X: Port-Based Authentication

Authentication model for all IEEE 802 networks

Layer 2 mutual authentication

Originally conceived for large networks

- University campus, etc.
- Model was extended for wireless networks

Performs key distribution

Additional protocols focus in the remaining processes

André Zúguete, João Paulo Barraca

Information and Organizational Security

EAP (Extensible Authentication Protocol)

Initially conceived for PPP

Adapted to 802.1X

AP not involved

- Relay EAP traffic
- Different EAP protocols do not imply changes in Aps

Not conceived for wireless networks

- EAP traffic not protected
- Mutual authentication not mandatory
 - An STA can be fooled by a stronger (radio level), rogue AP

André Zúquete, João Paulo Barraca

Information and Organizational Security

2

Some EAP protocols for 802.1X

	LEAP	EAP-TLS	EAP-TTLS	PEAP	
AS authentication	digest (challenge, password)	Public Key (certificate)			
Supplicant authentication	digest (challenge, password)	Public Key (certificate)	EAP, Public Key (certificate)	PAP, CHAP, MS-CHAP, EAP	
Risks	Identity exposure Dictionary attacks Host-in-the-Middle attacks	Identity exposure		Possible identity exposure in phase 1	

© André Zúquete, João Paulo Barrac

nformation and Organizational Security

IEEE 802.11i (WPA2)

Defines Robust Security Networks (RSN)

Those that support WPA and 802.11i

Uses advanced security mechanisms for frame protection

 Advanced Security Algorithm (AES) for payload encryption and frame integrity control

Uses 802.1X for network access authentication

- Simplified Pre-Shared Key (PSK) mode for SOHO (Small Office, Home Office) environments
- EAP-based protocol for enterprise environments

© André Zúquete, João Paulo Barraca

Information and Organizational Security

3/1

802.11w: Protected Management Frames

Management frames that can be used for DoS attacks are authenticated

- Deauthentication & Deassociation requests
- Other management frames unicasted or broadcast by an AP

BIP (Broadcast Integrity Protocol)

- IGTK (Integrity GTK)
- For protecting part of the AP broadcast traffic

Security Association Query Request / Response

Help to deal with desynchronization issues

© André Zúquete, João Paulo Barraca

Information and Organizational Security

2

IEEE 802.11 security: Are all the problems solved? No!

Dictionary attacks are still possible with PSK or EAP-based authentication

 And they will continue to be as long as (weak) passwords are chosen by people

There are still some unprotected frames

Some weaknesses at the CSMA level

 Low Congestion Window (CW) values allow attackers to get all the bandwidth

© André Zúquete, João Paulo Barraca

Information and Organizational Security