

GKN - Contactmoment 2

Structurele Vergelijkingsmodellen (vervolg)

Sven De Maeyer & Bea Mertens

21/10/2021

1/39

Herhaling contactmoment 1

Be Kind and Rewind

Een echt padmodel - Visueel

3/39

Een echt padmodel - lavaan

```
PIRLS_M2 <- ' Leesvaardigheid ~ Motivatie + Zelfvertrouwen

Motivatie ~ Leesplezier + Stimuleren

Zelfvertrouwen ~ Leesplezier + Stimuleren

Motivatie ~ Zelfvertrouwen'

Fit_PIRLS_M2 <- sem(PIRLS_M2, fixed.x = F, data = Vlaanderen)

summary(Fit_Pirls_M2, standardized = T, rsq = T)
```

Een echt padmodel - Resultaten

5/39

Een echt padmodel - Resultaten visueel

Hoe goed is dat padmodel?

Andere logica dan bij regressieanalyse...

- Geobserveerde variantie-covariantiematrix wordt vergeleken met verwachte variantie-covariantiematrix (cfr. kruistabellen)
- Hoe verschillend zijn beiden? (Waarbij we 'hopen' dat het verschil zo klein mogelijk is)
- FIT INDICES!

7/39

Fit indices

Onderstaande tabel geeft een overzicht van de fit indices die we hanteren

Fit Index	Wanneer ok?
Chi^2 - toets	Hoe lager, hoe beter ($p>0.05$)
CFI	Goed model $CFI>0.95$
RMSEA	Goed: ≤ 0.05 aanvaardbaar: ≤ 0.08

Een echt padmodel - Model fit

9/39

Confirmatieve Factor Analyse (CFA)

Laat ons theorie de voorrang geven

Meervoudige metingen

Ik geef les in een anderstalige context ...

- 1. omdat ik er graag mee bezig ben.
- 2. omdat anderen dit van mij verwachten.
- 3. omdat ik het erg boeiend vind.
- 4. opdat anderen me vaardig zouden vinden.
- 5. omdat ik nieuwe zaken wil leren.
- 6. omdat anderen (collega's/school/directie) mij daartoe verplichten.
- 7. omdat het me erg interesseert.
- 8. omdat ik me schuldig voel als ik het niet doe.
- 9. omdat ik het leuk vind om met anderstalige leerlingen te werken.
- 10. omdat ik wil dat anderen me een goede leerkracht vinden.
- 11. omdat ik me beschaamd voel als ik het niet doe.
- 12. omdat ik ervoor kies om met anderstalige leerlingen te werken.
- 13. omdat dit voor mij persoonlijk een belangrijke doelstelling is.
- 14. omdat ik dit zelf erg waardevol vind om te doen.
- 15. ik weet niet waarom, ik zie niet welk verschil dit uitmaakt.

11 / 39

Zelfdeterminatie theorie

- Intrinsieke motivatie: items 1, 3, 7 en 9
- Geïdentificeerde motivatie: items 5, 12, 13 en 14
- Geïntrojecteerde motivatie: items 4, 8, 10 en 12
- Externe motivatie: items 2 en 6
- Amotivatie: item 15

Manifeste en Latente variabelen

Intrinsieke motivatie is niet direct waarneembaar en vertaalbaar in een betrouwbaar cijfer

= LATENTE VARIABELE

Wel kunnen we beroep doen op 'indicatoren' die wel rechtstreeks meetbaar zijn

= MANIFESTE VARIABELEN

13/39

Theoriegedreven vs. datagedreven

We deden beroep op je persoonlijke theorie over 'motivatie'

= theoriegedreven wijze om latente variabelen te onderscheiden

PCA en EFA (zie MOB) daarentegen zijn datagedreven

= op basis van aanwezige samenhang in de data ga je op zoek naar onderliggende componenten (latente variabelen)

PCA model

- Evenveel componenten als manifeste variabelen
- Alle manifeste variabelen laden op alle componenten
- Componenten zijn orthogonaal (= hangen niet samen) (maar niet-orthogonale rotatie is mogelijk)
- Geen meetfouten
- DATAGEDREVEN

15 / 39

EFA model

- Minder factoren dan manifeste variabelen
- Alle manifeste variabelen laden op alle factoren
- Factoren zijn orthogonaal (maar nietorthogonale rotatie is mogelijk)
- Wel meetfouten
- DATAGEDREVEN

CFA Model

- Minder factoren dan manifeste variabelen
- Niet alle manifeste variabelen laden op alle factoren
- Factoren kunnen correleren
- Wel meetfouten
- THEORIEGEDREVEN

17/39

CFA voorbeeld: Doorlichting.RData

In welke mate bent u het in het algemeen als leraar eens met onderstaande stellingen:

Utility	
Feedback draagt bij aan mijn succes op het werk.	1234567
Om mijn vaardigheden op het werk te ontwikkelen, vertrouw ik op feedback.	1234567
Feedback van een directeur, collega of inspecteur kan me helpen om door te groeien.	1234567
Ik vind feedback essentieel om mijn doelen te bereiken.	1234567
Accountability	
Het is mijn eigen verantwoordelijkheid om feedback te benutten en zo mijn prestaties te verbeteren.	1234567
Ik voel me pas voldaan als ik tegemoet kom aan feedback.	1234567
Als iemand zoals een directie of inspecteur me feedback geeft, is het mijn verantwoordelijkheid om hier aan tegemoet te komen.	1234567
Ik voel me verplicht om wijzigingen door te voeren op basis van feedback.	1234567
Feedback Self-Efficacy	
Ik voel me zelfverzekerd als ik feedback ontvang.	1234567
Ik geloof dat ik bekwaam ben om effectief met feedback aan de slag te gaan.	1234567
Ik voel me zelfverzekerd als ik reageer op zowel positieve als negatieve feedback.	1234567
Ik weet dat ik kan omgaan met feedback die ik ontvang.	1234567

CFA voorbeeld Doorlichting.RData - lavaan

```
# Model definiëren

Feedback_CFA1 <- '
Utility =~ FB_Utility1 + FB_Utility2 + FB_Utility3 + FB_Utility4
Account =~ FB_Account1 + FB_Account2 + FB_Account3 + FB_Account4
Selfeff =~ FB_Selfeff1 + FB_Selfeff2 + FB_Selfeff3 + FB_Selfeff4
'
# Model schatten

Fit_Feedback_CFA1 <- cfa(Feedback_CFA1, data = Doorlichting)
# Resultaten opvragen
summary(Fit_Feedback_CFA1, standardized = T, fit.measures = T)</pre>
```

19/39

CFA voorbeeld Doorlichting.RData - Model Fit

CFA voorbeeld Doorlichting.RData - Parameterschattingen

Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Utility =~						
FB_Utility1	1.000				0.600	0.520
FB_Utility2	1.353	0.159	8.511	0.000	0.813	0.756
FB_Utility3	1.176	0.132	8.929	0.000	0.706	0.846
FB_Utility4	1.419	0.159	8.951	0.000	0.852	0.852
Account =~						
FB_Account1	1.000				0.508	0.611
FB_Account2	1.547	0.190	8.123	0.000	0.785	0.638
FB_Account3	1.123	0.127	8.834	0.000	0.570	0.740
FB_Account4	1.143	0.158	7.220	0.000	0.580	0.541
Selfeff =~						
FB_Selfeff1	1.000				0.990	0.784
FB_Selfeff2	0.545	0.047	11.477	0.000	0.539	0.717
FB_Selfeff3	0.873	0.072	12.109	0.000	0.864	0.762
FB_Selfeff4	0.629	0.058	10.862	0.000	0.623	0.678
Covariances:						
ESE ASSOCIA	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Utility ~~	CON 100 1000	005 0000000	707 (000)	n 1850au	0 21,620	500 0.000 000
Account	0.217	0.038	5.705	0.000	0.710	0.710
Selfeff	0.258	0.052	4.932	0.000	0.434	0.434
Account ~~						
Selfeff	0.230	0.045	5.069	0.000	0.457	0.457

21/39

Modification Indices

Wat als de fit toch niet 'je dat' is?

Wat als een model niet goed fit?

Het pad van zuiver theoriegedreven verlaten!

- ightarrow Op zoek naar modelverbetering met minimale aanpassingen
- \rightarrow Nood aan informatie!

23 / 39

Modification indices

Als je een model 'tekent' zie je pijlen, maar sommige pijlen ontbreken:

- \rightarrow Samenhang tussen items
- ightarrow Lading van een item op een tweede factor

Modification indices geven per ontbrekende pijl (= verband / effect / lading) weer hoe sterk model fit zou verbeteren indien je die pijl zou opnemen

Die pijl die het model het **sterkst zou verbeteren** EN **inhoudelijk** steek houdt, kan worden toegevoegd aan het model

Modification indices in R

Via het commando modindices()

Maak gebruik van het argument sort = T om ze te sorteren van hoog naar laag

Door dit nog een keer binnen een andere functie head(..., 10) te zetten, krijg je de 10 hoogste waarden zien

```
head(modindices(Fit_Feedback_CFA1, sort = T),10)
```

25 / 39

CFA voorbeeld Doorlichting.RData - Modification indices

```
head(modindices(Fit_Feedback_CFA1, sort = T),10)
                                                 epc sepc.lv sepc.all sepc.nox
## 116 FB_Selfeff1 ~~ FB_Selfeff3 30.233 0.372 0.372
                                                                  0.648
## 44
           Account =~ FB_Selfeff2 23.990
                                              0.458
                                                        0.233
                                                                  0.309
                                                                            0.309
## 55 FB_Utility1 ~~ FB_Utility2 20.685 0.215 ## 118 FB_Selfeff2 ~~ FB_Selfeff3 20.682 -0.170
                                                                  0.310
                                                                           0.310
                                                                 -0.441
## 117 FB_Selfeff1 ~~ FB_Selfeff4 18.373 -0.214 -0.214
                                                                 -0.405
                                                                           -0.405
## 57 FB_Utility1 ~~ FB_Utility4 16.076 -0.165 -0.165
                                                                 -0.320
                                                                           -0.320
          Account =~ FB_Selfeff3 11.993 -0.479
                                                      -0.243
                                                                 -0.214
                                                                           -0.214
## 108 FB_Account3 ~~ FB_Selfeff2 11.115 0.068
## 119 FB_Selfeff2 ~~ FB_Selfeff4 9.832 0.090
                                                       0.068
                                                                 0.251
                                                                           0.251
                                                       0.090
                                                                 0.254
                                                                           0.254
## 114 FB_Account4 ~~ FB_Selfeff4 9.801 -0.127 -0.127
                                                                -0.208
                                                                           -0.208
```

- Samenhang tussen fb_selfeff1 en fb_selfeff3 wordt gesuggereerd
- Chi-kwadraat zou met 30.23 eenheden dalen
- kolom sepc.all leert dat het een positieve samenhang zou zijn (0.65). Let op! Dat is een schatting.

CFA voorbeeld Doorlichting.RData - lavaan (model 2)

```
# Model definiëren

Feedback_CFA2 <- '
Utility =~ FB_Utility1 + FB_Utility2 + FB_Utility3 + FB_Utility4
Account =~ FB_Account1 + FB_Account2 + FB_Account4
Selfeff =~ FB_Selfeff1 + FB_Selfeff2 + FB_Selfeff4
FB_Selfeff1 ~~ FB_Selfeff3
'
# Model schatten

Fit_Feedback_CFA2 <- cfa(Feedback_CFA2, data = Doorlichting)
# Resultaten opvragen
summary(Fit_Feedback_CFA2, standardized = T, fit.measures = T)</pre>
```

27 / 39

CFA voorbeeld Doorlichting.RData - Fit measures (model 2)

CFA voorbeeld PIRLS - Parameterschattingen (model 2)

Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Utility =~						
FB_Utility1	1.000				0.603	0.522
FB_Utility2	1.349	0.158	8.540	0.000	0.813	0.756
FB_Utility3	1.173	0.131	8.961	0.000	0.707	0.846
FB_Utility4	1.413	0.157	8.979	0.000	0.851	0.851
Account =~						
FB_Account1	1.000				0.511	0.615
FB_Account2	1.517	0.186	8.149	0.000	0.776	0.630
FB_Account3	1.123	0.125	8.995	0.000	0.574	0.746
FB_Account4	1.124	0.155	7.234	0.000	0.575	0.536
Selfeff =~						
FB_Selfeff1	1.000				0.845	0.669
FB_Selfeff2	0.720	0.073	9.889	0.000	0.608	0.809
FB_Selfeff3	0.845	0.072	11.698	0.000	0.714	0.630
FB_Selfeff4	0.761	0.081	9.436	0.000	0.643	0.700
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.FB_Selfeff1 ~~						
.FB_Selfeff3	0.345	0.070	4.947	0.000	0.345	0.417
Utility ~~						
Account	0.219	0.038	5.734	0.000	0.709	0.709
Selfeff	0.237	0.048	4.898	0.000	0.465	0.465
Account ~~						
Selfeff	0.233	0.044	5.348	0.000	0.539	0.539

29 / 39

Is het aangepaste model echt beter?

```
anova(Fit_Feedback_CFA1, Fit_Feedback_CFA2)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

Fit_Feedback_CFA2 50 8517.3 8620.0 141.8

Fit_Feedback_CFA1 51 8543.3 8642.3 169.8 28.006 1 1.21e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Verdere werkwijze

Stapsgewijs te werk gaan:

- 1. Modification indices bekijken en 1 aanpassing maken;
- 2. Model opnieuw schatten met die aanpassing erbij;
- 3. Beter model?
- 4. Indien fit nog niet goed, opnieuw modification indices bekijken;
- 5. Eventueel nieuwe aanpassing toepassen;
- 6. Model fit bekijken van nieuwer model;

7. ...

31 / 39

Andere SEM modellen

Regressiemodel met latente variabelen

33 / 39

Regressiemodel met latente variabelen

```
Regmodel_PIRLS_Latent <- '
    Reading_Proficiency =~ ASRLIT01 + ASRINF01 + ASRIIE01 + ASRRSI01
    LikeRead =~ LikeRead1 + LikeRead2 + LikeRead3 + LikeRead4 + LikeRead5 + LikeRead6 + LikeRead7 + LikeRead8
    ConfRead =~ ConfRead1 + ConfRead2 + ConfRead3 + ConfRead4 + ConfRead5 + ConfRead6
    Reading_Proficiency ~ LikeRead + ConfRead'

Vlaanderen_1_2_3$ASRLIT01 <- Vlaanderen_1_2_3$ASRLIT01/100
    Vlaanderen_1_2_3$ASRINF01 <- Vlaanderen_1_2_3$ASRINF01/100
    Vlaanderen_1_2_3$ASRIE01 <- Vlaanderen_1_2_3$ASRRIE01/100
    Vlaanderen_1_2_3$ASRRSI01 <- Vlaanderen_1_2_3$ASRRSI01/100

Fit_Regmodel <- sem(Regmodel_PIRLS_Latent, data = Vlaanderen_1_2_3)

summary(Fit_Regmodel, standardized = T, fit.measures = T)</pre>
```

Regressiemodel met latente variabelen

```
## npar chisq df pvalue cfi rmsea
## 39.000 4828.206 132.000 0.000 0.909 0.086
```

35 / 39

Regressiemodel met latente variabelen

Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Readina_Proficien	CV =~					
ASRLITØ1	1.000				0.537	0.853
ASRINF01	0.978	0.012	79.241	0.000	0.525	0.859
ASRIIE01	1.088	0.011	100.926	0.000	0.584	0.968
ASRRSI01	1.137	0.011	99.503	0.000	0.610	0.961
LikeRead =~						
LikeRead1	1.000				0.458	0.443
LikeRead2	1.592	0.055	28.875	0.000	0.729	0.694
LikeRead3	-1.874	0.062	-30.468	0.000	-0.857	-0.806
LikeRead4	1.747	0.059	29.563	0.000	0.799	0.738
LikeRead5	2.119	0.067	31.471	0.000	0.969	0.909
LikeRead6	1.059	0.042	25.495	0.000	0.485	0.531
LikeRead7	1.297	0.049	26.245	0.000	0.593	0.561
LikeRead8	0.993	0.041	24.384	0.000	0.454	0.490
ConfRead =~						
ConfRead1	1.000				0.544	0.725
ConfRead2	1.107	0.022	49.615	0.000	0.602	0.779
ConfRead3	-0.901	0.031	-29.183	0.000	-0.490	-0.454
ConfRead4	-1.257	0.029	-43.168	0.000	-0.684	-0.673
ConfRead5	-1.174	0.027	-43.022	0.000	-0.639	-0.671
ConfRead6	-1.360	0.027	-51.046	0.000	-0.740	-0.804
Regressions:						
		Std.Err	z-value	P(> z)	Std.lv	Std.all
Reading_Proficien						
LikeRead	-0.147	0.019	-7.577	0.000	-0.125	-0.125
ConfRead	-0.319	0.017	-18.702	0.000	-0.323	-0.323
Covariances:						
	Estimate Std.E	rr z-val	ue P(>1z	(I) Std.	lv Std.a	111
LikeRead ~~						
ConfRead	0.100 0.0	05 18.2	254 0.0	00 0.4	00 0.4	-00

Time to pRactice!

Oefeningen en respons terug te vinden op BB

37 / 39

Appendix

Code op de achtergrond om variabelenamen uit PIRLS te verandere

```
Vlaanderen_1_2_3$LikeRead1 <- Vlaanderen_1_2_3$ASBR06A
Vlaanderen_1_2_3$LikeRead2 <- Vlaanderen_1_2_3$ASBR06B
Vlaanderen_1_2_3$LikeRead3 <- Vlaanderen_1_2_3$ASBR06C
Vlaanderen_1_2_3$LikeRead4 <- Vlaanderen_1_2_3$ASBR06D
Vlaanderen_1_2_3$LikeRead5 <- Vlaanderen_1_2_3$ASBR06E
Vlaanderen_1_2_3$LikeRead6 <- Vlaanderen_1_2_3$ASBR06F
Vlaanderen_1_2_3$LikeRead7 <- Vlaanderen_1_2_3$ASBR06G
Vlaanderen_1_2_3$LikeRead8 <- Vlaanderen_1_2_3$ASBR06H
Vlaanderen_1_2_3$ConfRead1 <- Vlaanderen_1_2_3$ASBR07A
Vlaanderen_1_2_3$ConfRead2 <- Vlaanderen_1_2_3$ASBR07B
Vlaanderen_1_2_3$ConfRead3 <- Vlaanderen_1_2_3$ASBR07C
Vlaanderen_1_2_3$ConfRead4 <- Vlaanderen_1_2_3$ASBR07D
Vlaanderen_1_2_3$ConfRead5 <- Vlaanderen_1_2_3$ASBR07F
```

Terug naar slide met code

39 / 39