

บทนำ

ปิติ ตรีสุกล โครงการจัดตั้งสายวิชาเคมี

คณะศิลปศาสตร์และวิทยาศาสตร์ ม.เกษตรศาสตร์ วิทยาเขตกำแพงแสน

เงื่อนไขการเรียน

- นิสิตที่ลงทะเบียนเรียน ต้องเข้าเรียนในชั้นเรียนครบตามที่ กำหนด คือ ไม่ต่ำกว่า 80%
- นิสิตต้องเข้าระบบ MS Team: 01403111(60)-kps-68s
 โดยใช้ Team Code: stwtj6g
- การเช็คชื่อและการมอบหมายงาน (การบ้าน/แบบฝึกหัด)
 จะทำผ่านระบบ MS Team
- นิสิตต้องเข้าในระบบโดยใช้ e-mail ของตนเอง
 (@live.ku.th) ภายใน 3 วันนับจากเปิดเรียน หลังจากนั้น จะไม่มีการเปิดงานหรือเช็คชื่อย้อนหลัง

ข้อพึงปฏิบัติ

- ให้นิสิตเข้าระบบ MS Team ภายในวันพุธที่ 23 เมษายน 2568
- นิสิตที่มีปัญหาให้ติดต่อ จนท.ที่ LH4 ชั้น 1
- นิสิตที่ไม่เข้า Team ในเวลาที่กำหนด จะไม่ สามารถส่งการบ้าน #1 ได้
- ตรวจสอบชื่อนามสกุล (ไทย-อังกฤษ) และ Email ในระบบต่าง ๆ ให้ถูกต้องตรงกัน

Course Syllabus

ประมวลการสอน

ภาคฤดูร้อน ปีการศึกษา 2568

คณะศิลปศาสตร์และวิทยาศาสตร์ ภาควิชาวิทยาศาสตร์กายภาพและวัสดุศาสตร์
 รหัสวิชา 01403111-60 ชื่อวิชา (ไทย) เคมีทั่วไป หน่วยกิต 4(4-0-8) (อังกฤษ) General Chemistry พื้นฐาน คณะผู้สอน

ลำดับที่	ชื่อ-นามสกุล	ห้องพัก	email
1	ผศ.ดร.ปิติ ตรีสุกล	SC14-302	piti.t@ku.th
2	รศ.ดร.กมลทิพย์ ขัตติยะวงศ์	SC14-314	kamontip.k@ku.th

4. วัน-เวลาและห้องเรียน

หมู่เรียน 700

วัน-เวลาเรียน : จันทร์-ศุกร์ 09:00-12:00 น.

ห้องเรียน : LH3-303

MS Team: 01403111(60)-kps-68s Tea

Team Code: Stwtj6g

การให้นิสิตเข้าพบและให้คำแนะนำนอกเวลาเรียน

ท้ายคาบเรียนหรือนัดหมายกับอาจารย์ผู้สอนล่วงหน้า และผ่านระบบ MS Team

คำอธิบายรายวิชา

อะตอมและโครงสร้างอะตอม ระบบพีริออดิก พันธะเคมีปฏิกิริยาเคมีแก๊ส ของเหลว ของแข็ง สารละลาย อุณหพล ศาสตร์ จลนพลศาสตร์เคมี สมดุลเคมี อิเล็กโทรไลต์และการแตกตัวเป็นไอออน กรดและเบส สมดุลไอออน เคมีไฟฟ้า

7. จุดประสงค์ของรายวิชา

- 7.1 เพื่อให้นิสิตมีความรู้ความเข้าใจเกี่ยวกับพื้นฐานทางเคมี
- 7.2 เพื่อให้นิสิตสามารถนำความรู้ที่ได้ไปประยุกต์ใช้กับวิทยาศาสตร์แขนงอื่นที่สัมพันธ์กัน

10 การวัดผลสัมฤทธิ์ในการเรียน

	รูปแบบ	สัดส่วนคะแนน (%)	
1)	การมีส่วนร่วมในชั้นรียน	5.0	(ผ่านระบบ MS Team)
2)	แบบฝึกหัด	11.5	(ผ่านระบบ MS Team)
3)	การสอบกลางภาค	39.0	
4)	การสอบปลายภาค	39.5	

11 การประเมินผลการเรียน (summative)

แบบอิงเกณฑ์และอิงกลุ่ม

8. เค้าโครงรายวิชา

หัวข้อ	เนื้อหา	คะแนน
7)	ของเหลว :ลักษณะทั่วไปของของเหลว, การระเหยของของเหลว, ความดันไอของของเหลว, จุดเดือดปกติของของเหลว, ความตึงผิวของของเหลว, แผนผังวัฏภาค	
8)	สารละลาย :ชนิดของสารละลาย, การเกิดสารละลาย, หน่วยความเข้มข้นของสารละลาย, กฎของราอูลต์, สารละลายอุดมคติ, การเบี่ยงเบนจากกฎของราอูลต์, สมบัติคอลลิเกทีฟ, สารละลายอิเล็กโทรไลต์	4 ซม. (6.5%)
9)	9) อุณหพลศาสตร์เบื้องตั้น :ระบบและสิ่งแวดล้อม, กฎที่หนึ่งของอุณหพลศาสตร์, การเปลี่ยนแปลงเอนทัลปีกับพลังงานพันธะ , กฎของเฮสส์, การเปลี่ยนแปลงที่เกิดขึ้นได้เองและการเปลี่ยนแปลงที่ผันกลับได้, กฎที่สองของอุณหพลศาสตร์, กฎที่สามของ อุณหพลศาสตร์, การเปลี่ยนแปลงพลังงานอิสระกับทิศทางของปฏิกิริยาเคมี	
10)	จลนพลศาสตร์เคมี :ทฤษฎีของจลนพลศาสตร์เคมี, อัตราของปฏิกิริยา, ความเข้มข้นและอัตราของปฏิกิริยา, กฎอัตราติฟ เฟอเรนเซียล, กฎอัตราอินทิเกรต, ผลของอุณหภูมิต่ออัตราการเกิดปฏิกิริยา, ตัวเร่งปฏิกิริยาและอัตราการเกิดปฏิกิริยา	
11)	สมดุลเคมี :ลักษณะทั่วไปของภาวะสมดุล, ค่าคงที่สมดุล, หลักของเลอซาเตอลิเยร์	
12)	สมดุลของไอออน :อิเล็กโทรไลต์แก่และอิเล็กโทรไลต์อ่อน, นิยามของกรดและเบส, ความแรงของกรดและเบส, ค่าคงที่ สมดุลของน้ำ, มาตราส่วน pH, การแตกตัวของกรดอ่อนและเบสอ่อน, การแยกสลายด้วยน้ำ, สารละลายบัฟเฟอร์, อินดิเคเตอร์ , การไทเทรตกรด-เบส, สมดุลของสารที่ละลายน้ำได้น้อย, สมดุลของไอออนเชิงซ้อน	
13)) เคมีไฟฟ้า :เซลล์กัลวานิก, สัญลักษณ์ของเซลล์, ศักย์ขั้วไฟฟ้าและแรงเคลื่อนไฟฟ้าของเซลล์, ศักย์ออกซิเดชันและศักย์ รีดักชันมาตรฐาน, พลังงานอิสระกับแรงเคลื่อนไฟฟ้าของเซลล์, สมการเนิร์นสต์, เซลล์ความเข้มข้น, การแยกสลายด้วยไฟฟ้า, กฎของฟาราเดย์, เซลล์อิเล็กโทรไลต์	

ott

กิจกรรม

13 ตารางกิจกรรมการเรียนการสอน

วันจันทร์-ศุกร์ เวลา 09:00 - 12:00 น.

สัปดาห์ที่	ทุกวัน/เดือน/ปี	เนื้อหา	วิธีการสอน	ผู้สอน
	8 พ.ค. 68	ของเหลว (2 ชม.)	บรรยาย อภิปราย	กมลทิ <mark>พ</mark> ย์
	9 พ.ค. 68 - 13 พ.ค. 68	สารละลาย (4 ชม.)	บรรยาย อภิปราย	กมลทิพย์
4	12 พ.ค. 68	สอบกลางภาค วันที่ 12 พ.ค. 68 เวลา 9:00-12:00		
	14 พ.ค. 68 - 15 พ.ค. 68	อุณหพลศาสตร์เบื้องต้น (6 ชม.)	บรรยาย อภิปราย	กมลทิพย์
	16 พ.ค. 68 - 19 พ.ค. 68	จลนศาสตร์เคมี (6 ชม.)	บรรยาย อภิปราย	กมลทิพย์
5	20 พ.ค. 68	สมดุลเคมี (2 ชม.)	บรรยาย อภิปราย	กมลทิพย์
	21 พ.ค. 68 - 22 พ.ค. 68	สมดุลไอออน (6 ชม.)	บรรยาย อภิปราย	กมลทิพย์
	23 พ.ค. 68 - 27 พ.ค. 68	เคมีไฟฟ้า (6 ชม.)	บรรยาย อภิปราย	กมลทิพย์
15	28 พ.ค. 68	สำรองและทบทวน (3 ชม.)	บรรยาย อภิปราย	กมลทิพย์
16	30 พ.ค. 68	สอบปลายภาค วันที่ 30 พ.ค. 68 เวลา 9:00-12:00		

หากมีวันหยุดพิเศษหรือมีสอนชดเชย อาจารย์ผู้สอนจะแจ้งในชั้นเรียน

ข้อมูลรายวิชา

- หมู่ 700: วันจันทร์-ศุกร์ 09:00 12:00 น.
- MS Teams: 01403111(60)-kps-68s

Team code: stwtj6g

http://chem.flas.kps.ku.ac.th

วิทยาศาสตร์

• วิทยาศาสตร์คือ ...

 Science refers to a system of acquiring knowledge. This system uses observation and experimentation to describe and explain natural phenomena.

กระบวนการทางวิทยาศาสตร์

- สงสัย/ตั้งคำถาม
 - Observation สังเกต/รวมรวมข้อมูล
 - Hypothesis สมมติฐาน
 - Prediction ทำนาย
 - Experimentation ทุดลอง
 - Conclusion สรุป

เคมี (Chemistry)

• ศึกษาสมบัติและการเปลี่ยนแปลงของสสาร

สสาร? มีมวล ต้องการที่อยู่

สสาร

• สสาร(Matter) สิ่งที่มีมวลและต้องการที่อยู่

- -สารเอกพันธุ์ (homogeneous)
 - สารที่มีเนื้อเดียวกันตลอด
- สารวิวิธพันธุ์ (heterogeneous) สารไม่รวมกันเป็นเนื้อเดียว

สมบัติของสสาร

- สมบัติทางกายภาพ (Physical Properties)
 - สมบัติของสสารที่ไม่เกี่ยวข้องกับการเปลี่ยนแปลงทางเคมี (*ไม่มีการ* เกิดสารชนิดใหม่)
 - สี ขนาด ความหนาแน่น การนำไฟฟ้า จุดหลอมเหลว จุดเดือด
- สมบัติทางเคมี (Chemical Properties)

สมบัติที่เกี่ยวข้องกับการเปลี่ยนแปลงทางเคมีของสสาร

(มีการเปลี่ยนแปลงชนิดของสาร)

ติดไฟได้ ทำปฏิกิริยากับอากาศ ไม่ทำปฏิกิริยากับน้ำ

การเปลี่ยนแปลง

- การเปลี่ยนแปลงทางเคมี (Chemical Changes)
 - มีการเปลี่ยนแปลงชนิดของสาร
 - ปฏิกิริยาเคมี การเผาใหม้ การสลายตัว การหมัก ฯลฯ
- การเปลี่ยนแปลงทางกายภาพ (Physical Changes)
 - ไม่มีการเปลี่ยนแปลงชนิดของสาร
 - <u>– การเปลี่ยนสถานะ การละลาย การบด การหล่</u>อ การผสม
 - น้ำแข็งละลาย ?
 - ทอดไข่ดาว ?
 - สร้อยเงินเปลี่ยนสี ?

กระบวนการเหล่านี้เป็นการเปลี่ยนแปลงแบบใด

- การต้มน้ำ
- การละลายของเกลือ
- ข้าวบูด
- เผาถ่าน
- การจุดเทียนใข

- การตัดเหล็ก
- ผนตก
- เหล็กเป็นสนิม
- การเน่าเปื่อยของพืช
- เทียนไขละลาย

ัสถานะของสาร (State of Matter)

- รูปแบบการจัดเรียงตัวของอนุภาคของสสาร ซึ่งส่งผลให้มีแรง
 ยึดเหนี่ยวระหว่างอนุภาคของสสารและสมบัติทางกายภาพของ สสารที่แตกต่างกันอย่างชัดเจน
 - ของแข็ง (Solid)
 - ของเหลว (Liquid)
 - แก๊ส (Gas)

การจำแนกสสาร (Classification of Matter)

Homogeneous Mixtures

ตัวอย่างของผสมเนื้อเดียวที่พบบ่อย

- Pewter (Sn + Cu + Pb + Sb) เครื่องเงินโบราณ
- Brass (Cu + Zn) ทองเหลือง
- Bronze (Cu + Sn) ทองสำริด
- Stainless steel (Fe + C + Cr)
- เหรียญบาท (Cu + Ni / Fe + Ni)
- เหรียญห้าสิบสตางค์ (Aluminium Bronze)

พลังงาน (Energy)

- พลังงาน คือ ความสามารถในการทำงาน
 - พลังงานจลน์ (Kinetic energy) : พลังงานที่เกี่ยวข้องกับการ เคลื่อนที่ของสสาร
 - พลังงานศักย์ (Potential energy) : พลังงานที่สะสมอยู่ในสสาร ซึ่งไม่เกี่ยวข้องกับสภาพการเคลื่อนที่ เช่น พลังงานในอาหาร พลังงาน เนื่องจากแรงโน้มถ่วง
- พลังงานสามารถก่อให้เกิดการเป<mark>ลี่ยนแปลงทางเคมี</mark>และการ เปลี่ยนแปลงทางกายภาพได้
- พลังงานสามารถ ถ่ายเท หรือ เปลี่ยนรูป ได้

กฎพื้นฐาน (Fundamental Laws)

กฎพื้นฐานที่มีความสำคัญกับการศึกษาวิชาเคมี

- กฎทรงมวล (Law of Conservation of Mass): มวลของสารก่อนทำ ปฏิกิริยา เท่ากับมวลของสารหลังทำปฏิกิริยา
- *กฎทรงพลังงาน* (Law of Conservation of Energy): พลังงานเป็นสิ่ง ไม่สูญหาย แต่เปลี่ยนจากรูปหนึ่งเป็นอีกรูปหนึ่งได้
- กฎสัดส่วนคงที่ (Law of Definite Proportions) : สารเคมีบริสุทธิ์ใดก็ ตาม ธาตุที่เป็นองค์ประกอบของสารนั้น จะมีสัดส่วนโดยมวลคงที่เสมอ

หน่วยและการวัด (Measurement Units)

การศึกษาวิทยาศาสตร์จะเกี่ยวข้องกับปริมาณต่าง ๆ เสมอ

- การวัด (Measurement) คือการศึกษาสมบัติต่าง ๆ ของสิ่งที่สนใจ เช่น น้ำหนัก ปริมาตร ความหนาแน่น การดูดหรือคายพลังงาน
- หน่วยวัด (Measuring unit) ค่าที่ได้จากการวัดจะต้องระบุหน่วยวัด เสมอ เพื่อใช้เป็นตัวอ้างอิง โดยหน่วยวัดที่ใช้ขึ้นกับความนิยมหรือ จุดประสงค์ในการวัด หน่วยวัดที่ใช้กันอย่างแพร่หลาย เช่น ระบบเมตริก และ ระบบ SI*

ปริมาณที่ไม่มีหน่วย ถือว่าไม่มีความหมาย!

เช่น ระยะทาง 10.5 (ไม่สามารถบอกได้ว่ายาวแค่ไหน)

ระบบ SI (SI Units)

- SI unit (Système international d'unités) เป็นหน่วยสากลที่ ใช้ในปัจจุบันในทางธุรกิจและวิทยาศาสตร์
- หน่วยหลัก (SI base units) ของ ระบบ SI

ปริมาณ	หน่วย	สัญลักษณ์
ความยาว	Metre	m
มวล	Kilogram	kg
เวลา	Second	S
อุณหภูมิ	Kelvin	K
ปริมาณสาร	Mole	mol
กระแสไฟฟ้า	Ampere	Α
ความเข้มของแสง	Candela	Cd

ระบบ SI (SI Units)

หน่วยอนุพันธ์ (derived unit) ของ SI

ปริมาณ	หน่วย	สัญลักษณ์	ความหมาย
ความถึ	Hertz	Hz	s ⁻¹
แรง	Newton	Ν	kg m s -2
พลังงาน	Joule	J	kg m² s -2
ความดัน	Pascal	Ра	$kg s^{-2} m^{-1}$

- วัตถุหนัก 400 g เคลื่อนที่ด้วยความเร็ว 3 m/s มีพลังงานเท่าไร

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2} \times 0.4 \text{ kg} \times (3.0 \frac{\text{m}}{\text{s}})^2$$

= 1.8 kg m² s⁻² = 1.8 J

ตัวคูณหน่วย

 เพื่อให้หน่วยที่ใช้มีความเหมาะสมกับปริมาณค่าที่วัด เราอาจใช้ตัว คูณ (Prefix) กับหน่วยวัดได้

คำนำหน้า	สัญลักษณ์	เลขคูณ
mega	M	10 ⁶
kilo	k	10 ³
deci	d	10 ⁻¹
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹

หน่วยวัดอื่นๆ ที่นิยมใช้

- ความยาว (L)
 - angstrom (Å) = 1×10^{-10} m
 - decimetre (dm) = 10 cm = 0.1 m
- อุณหภูมิ (T)
 - degree celcius (°C) = T(K) 273.15
- ปริมาตร (V)
 - litre (L) = $1000 \text{ ml} = 1 \text{ dm}^3$
- ความดัน (P)
 - atmosphere (atm) = 101 325 Pa = 1.01325 bar
 - $bar = 10^5 Pa$
- พลังงาน (E)
 - calorie (cal) = 4.182 J

การแปลงหน่วยและการเลือกใช้หน่วย

- เราสามารถแปลงหน่วยวัดได้โดยใช้การเทียบค่าหรือใช้ตัวแปลงหน่วย (conversion factor)
- 1 kg = 1000 g \rightarrow 2.5 kg = 2.5 (1000 g) = 2500 g
- 1 m = 100 cm \rightarrow 0.5 m³ = 0.5 (100 cm)³ = 0.5 x 10⁶ cm³ \rightarrow 10 cm³ = 10 (1/100 m)³ = 10x10⁻⁶ m³
- 1 bar = 1 bar (1) = 1 bar (atm/1.013 bar) = 0.987 atm
- การ **บวก-ลบ ปริมาณ** ต้องเป็น<u>หน่วยเดียวกัน</u>
- ค่าคงที่อาจมีค่าแตกต่างกันได้ขึ้นกับหน่วยที่ใช้ เช่น ค่าคงที่ของแก๊ส: $R = 8.314 \ J \ K^{-1} \ mol^{-1} = 0.082 \ L \ atm \ K^{-1} \ mol^{-1}$

ความสำคัญของหน่วย

- ระบบประกอบด้วยแก๊ส A ปริมาณ 5 g อยู่ในภาชนะ ขนาด 5 L ที่ 300 K และ 760 mmHg แก๊สนี้มี ปริมาตรเท่าใด
- สารละลายประกอบด้วยสาร B 5 mol ในน้ำ 500 mL สารละลายมีเข้มข้น 4.78 M กำหนดให้ d=0.98
 g/mL
- แก๊สที่ 300 K หากปรับสภาวะจนมีอุณหภูมิ 30 °C จะ มีการเปลี่ยนแปลงอย่างไร

ความน่าเชื่อถือในการวัด

- ความน่าเชื่อถือในการวัดปริมาณต่าง ๆ ขึ้นกับ
 - เครื่องมือวัดที่เลือกใช้ (ความละเอียด, ความแม่นยำ)
 - ผู้ทำการวัด (การอ่านค่า, การประมาณ)
- สมมติฐาน: ผู้ทำการวัดอ่านค่าที่วัดได้ถูกต้อง<u>ตามความละเอียดของ</u> <u>เครื่องมือ</u>โดยไม่มีอคติและ<u>ใช้การประมาณประกอบตามวิจารณญาณ</u> ของผู้วัดอย่างเหมาะสม
 - ค่าที่อ่านได้แสดงถึงความละเอียดของเครื่องมือ

เลขนัยสำคัญ (Significant Figures)

- ปริมาณต่าง ๆ ที่วัดได้จะมีความคลาดเคลื่อนเนื่องจากการอ่านค่า และ ความคลาดเคลื่อนของเครื่องมือ
- ตัวเลขที่แสดงปริมาณที่ได้จากการวัดโดยรวมเอา<u>ตัวเลขที่ยังมีความ</u> <u>สงสัย</u> (ความคลาดเคลื่อนเนื่องจากการอ่านค่า เนื่องจากการ ประมาณตัวเลขตำแหน่งท้ายสุด) เรียกว่า *เลขนัยสำคัญ*
- ความคลาดเคลื่อนของปริมาณต่าง ๆ ที่เกิดจากการอ่านค่า (เนื่องจาก ความละเอียดของเครื่องมือ) สามารถระบุได้โดยจำนวนของเลข นัยสำคัญ
 - จำนวนเลขนัยสำคัญน้อย มีความคลาดเคลื่อนมาก (เช่น 1.1 ก.ม.)
 - จำนวนเลขนัยสำคัญมาก มีความคลาดเคลื่อนน้อย (เช่น 1.235 ก.ม.)

การนับจำนวนเลขนัยสำคัญ

- กฎการนับจำนวนเลขนัยสำคัญ นับ ...
 - ตัวเลขที่ไม่ใช่ศูนย์ทุกตัว
 - เลขศูนย์ที่อยู่ระหว่างเลขนัยสำคัญตัวอื่น
 - เลขศูนย์ที่อยู่หลังเลขทศนิยมและต้องตามหลังเลขนัยสำคัญตัวอื่น
- เราสามารถกำหนดจำนวนเลขนัยสำคัญได้โดยใช้การเขียนเลขเชิง วิทยาศาสตร์

การคำนวณเลขนัยสำคัญ

- การพิจารณาจำนวนเลขนัยสำคัญเกิดจากความคลาดเคลื่อน จากการอ่านค่าที่วัดได้
- การบวก/ลบ เลขนัยสำคัญ
 - ปัดตัวเลขสุดท้ายให้มีจำนวนเลขทศนิยมเท่ากับตัวเลขที่มีเลข ทศนิยมน้อยที่สุด
 - ***ต้องมีหน่วยเดียวกัน***
- การคูณ/หาร เลขนับสำคัญ
 - ปัดตัวเลขสุดท้ายให้มีจำนวนเลขนัยสำคัญเท่ากับตัวเลขที่มีจำนวน
 เลขนัยสำคัญน้อยที่สุด

ตัวอย่างการคำนวณเลขนัยสำคัญ

• 1.25 + 3.4445 + 2.735 = 7.4295

• $(1.002 \times 1.5) / 30.0 = 0.0501$

• $(1.002 \times 1.5) / 30 = 0.0501$

ใข่ 1 ฟอง หนัก 30.58 g ใข่ 1 โหล หนักเท่าไร
 30.58 x 12 = 366.96 g

ลำดับของการคำนวณ

- วงเล็บ
 - คูณ/หาร
 - บวก/ลบ

 $= 64.028 \rightarrow 64.0$

แบบฝึกหัด

- 1) สมบัติของเหล็กต่อไปนี้เป็นสมบัติทางกายภาพหรือทางเคมี
 - จุดหลอมเหลวเท่ากับ 1811 K
 - เกิดสนิมเมื่อมีความชื้น
 - ความหนาแน่นเท่ากับ 7.86 g/cm³
 - ไม่ทำปฏิกิริยากับน้ำตาลทรายที่อุณหภูมิห้อง
- 2) จงจำแนกสารต่อไปนี้ว่าเป็นชนิดใด
 - นม

- 🗖 ทองแดง
- น้ำตาลทราย
 ทองเหลือง

- อากาศ
- พริกกับเกลือ
- 3) กล่องลูกบาศก์ยาวด้านละ 1.00 m จำนวน 2 กล่อง มีปริมาตรกี่ ml
- 4) แท่งทองแดงหนัก 100.25 g ทองแดง 32 แท่งหนักเท่าใด
- 5) รถยนต์หนัก 1.25 ตัน มีความเร็ว 50.6 km/h มีพลังงานจลน์เท่าใด

- จงเขียนจำนวนเหล่านี้เป็นเลขกำลังของฐานสิบ
 253000 53690 0.0086 0.00000327
- แสงสีแดงมีความยาวคลื่น 780 nm จงหาความยาวคลื่นนี้ในหน่วย ไมโครเมตร (ไมครอน), อังสตรอม และ พิโคเมตร
- ชั่งน้ำหนักของแผ่นทองแดง 3 ครั้ง ได้ค่าคือ 1.28 g, 1.283 g, 1.286 g จง หาค่าเฉลี่ยของน้ำหนักทองแดงนี้ (แสดงเลขนัยสำคัญให้ถูกต้องด้วย)