Predmet: Linearni algebra 2

Ukol: 2. Verze: 1.

Autor: David Napravnik

Prezdivka: DN

1. zadani

Prevedte nasledujici matice do tvaru SDS^{-1} , kde D je diagonalni a S je regularni.

reseni A

$$\begin{bmatrix} 0 - \lambda & -3 & -3 \\ -4 & -7 - \lambda & -7 \\ 6 & 12 & 12 - \lambda \end{bmatrix}$$

Vlastni cisla:

$$p_A(\lambda) = +(0-\lambda)*(-7-\lambda)*(12-\lambda) + (-3)*(-7)*(6) + (-3)*(-4)*(12) - (-3)*(-7-\lambda)*(6) - (-7)*(12)*(0-\lambda) - (-3)*(-4)*(12-\lambda) = -\lambda^3 + 5\lambda^2 - 6\lambda$$

$$\lambda_1 = 0$$

$$\lambda_2 = 2$$

$$\lambda_3 = 3$$

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Vlastni vektory:

$$S = \begin{bmatrix} 0 & -3 & 1 \\ -1 & -1 & 1 \\ 1 & 3 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -3 & 1 \\ -1 & -1 & 1 \\ 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & -3 & 1 \\ -1 & -1 & 1 \\ 1 & 3 & -2 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & -3 & -3 \\ -4 & -7 & -7 \\ 6 & 12 & 12 \end{bmatrix}$$

reseni B

$$\begin{bmatrix} -1 - \lambda & 1 \\ -1 & -1 - \lambda \end{bmatrix}$$

Vlastni cisla: $p_A(\lambda) = (-1 - \lambda)^2 + 1 = \lambda^2 + 2\lambda + 2$

$$\lambda_1 = -1 + i$$

$$\lambda_2 = -1 - i$$

Vlastni vektory:

pro
$$\lambda_1$$
: $\begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} = > [-i, 1]$
pro λ_2 : $\begin{bmatrix} i & 1 \\ -1 & i \end{bmatrix} = > [i, 1]$

2. zadani

Rozhodnete o platnosti nasledujicich implikacich

reseni

1.) Plati

Mejme λ_{Ax} jsou vlastni cisla matice A, a λ_{Bx} jsou vlastni cisla matice A^2 , pak pro kazde z nich plati: $\lambda_{Bx} = (\lambda_{Ax})^2$

2.) Neplati

Mejme λ_{Ax} jsou vlastni cisla matice A, a λ_{Bx} jsou vlastni cisla matice A^2 , pak pro kazde z nich musi platit: $\lambda_{Bx} = (\lambda_{Ax})^2$, ale to neplati pro $\lambda_{Ax} < 0$

3. zadani

Bud $A \in \mathbb{R}^{n \times n}$ diagonalizovatelna. Ukazte $A \sim A^T$

reseni

4. zadani

Budte $A,B\in\mathbb{R}^{n\times n}$ podobne. Ukazte, ze maticova soustava AX-XB=0 ma reseni $X\in\mathbb{R}^{n\times n}$

reseni

 $A=SBS^{-1}\mid$ vzorecek podobnosti $SBS^{-1}X=XB\mid$ dokazovana rovnice $SBS^{-1}XX^{-1}=XBX^{-1}$ $SBS^{-1}=XBX^{-1}\mid$ pak vidime ze X=S