ME46002 Chapter 4: Tutorial questions

Question 1:

For a set of four data points

i	0	1	2	3
Xi	1	2.2	2.8	3.5
$f(x_i)$	1	2.4	3.2	4.1

- (a) Employ Newton's divided difference interpolating polynomial $f_3(x)$ to fit the data $f_3(x) = a_0 + a_1(x x_0) + a_2(x x_0)(x x_1) + a_3(x x_0)(x x_1)(x x_2)$. Find the coefficients of $f_3(x)$.
- (b) Least-square regression is employed to fit the data $f(x)=a_0+a_1x$. Find the fitting coefficients a_0 and a_1 .

Solution:

(a)

The interpolating polynomial is written as

$$f_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

The divided differences can be computed as:

i	Χį	y i	$g[x_{i+1},x_i]$	$g[x_{i+2},x_{i+1},x_i]$	$g[x_{i+3},x_{i+2},x_{i+1},x_i]$
0	1	1	1.1667	0.0926	-0.0517
1	2.2	2.4			
2	2.8	3.2			
3	3.5	4.1			

The coefficients of the interpolating polynomial are

$$a_0=1$$
 $a_1=1.1667$
 $a_2=0.0926$
 $a_3=-0.0517$

(b)
$$f(x) = a_0 + a_1 x$$
 is the fitting function

$$e = \sum_{i=1}^{n} [f(x_i) - y_i]^2, \qquad \frac{\partial e}{\partial a_0} = 0, \qquad \frac{\partial e}{\partial a_1} = 0$$

Resulting in

$$\sum_{i=1}^{n} y_i - na_0 - a_1 \left(\sum_{i=1}^{n} x_i\right) = 0$$

$$\sum_{i=1}^{n} (x_i y_i) - a_0 \sum_{i=1}^{n} x_i - a_1 \sum_{i=1}^{n} x_i^2 = 0$$

Solving the equation we have

$$a_{0} = (\sum_{i=0}^{n} y_{i} \sum_{i=0}^{n} x_{i}^{2} - \sum_{i=0}^{n} x_{i} \sum_{i=0}^{n} x_{i} y_{i}) / (n \sum_{i=0}^{n} x_{i}^{2} - (\sum_{i=0}^{n} x_{i})^{2})$$

$$= (n \sum_{i=0}^{n} x_{i} y_{i} - \sum_{i=0}^{n} y_{i} \sum_{i=0}^{n} x_{i}) / (n \sum_{i=0}^{n} x_{i}^{2} - (\sum_{i=0}^{n} x_{i})^{2})$$

$$= 1.2405$$

Question 2:

For a set of 4 data points, employ the Newton's divided difference interpolating polynomial to fit the data. Determine the coefficients of the interpolating formulas.

i	0	1	2	3
\mathbf{x}_{i}	1.5	2.5	3.5	4.5
y _i	3	5	3	7

Answers:

$$f_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

$$a_0 = 3$$

$$a_1 = 2$$

$$a_2 = -2$$

$$a_3 = 1.667$$

Question 3:

For a set of 4 data points, employ the linear least-square regression to fit the data points

i	0	1	2	3
Xi	1.5	2.5	3.5	4.5
y _i	3	5	7.2	8.6

Answers:

 $f(x) = a_0 + a_1 x$ is the fitting function

$$a_0 = \left(\sum_{i=0}^{n} y_i \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i y_i\right) / \left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)$$

$$a_{1} = (n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}) / (n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2})$$

Question 4:

Answer the following questions

- (a) For a set of three data points (x_i, y_i) , i = 0, 1, 2, with $x_i = -2, 0, 2$ and $y_i = -6, 0, 6$, if the data are fitted with cubic splines $f(x) = a + bx + cx^2 + dx^3$ with the constrains that f'(-2) = 11; f'(2) = 11, determine the cubic functions.
- (b) Are the following functions cubic splines? Why?

$$1 \le x \le 2$$
: $f_1(x) = 11 - 24x + 18x^2 - 4x^3$
 $2 \le x \le 3$: $f_2(x) = -54 + 72x - 30x^2 + 4x^3$

Solution:

(a)

$$f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3$$

$$f_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3$$

Equations can be generated to determine 8 unknowns in the cubic splines.

At interior points

$$f_1(x_1) = 0$$

$$f_2(x_1) = 0$$

At two endpoints

$$f_1(x_0) = -6$$

$$f_2(x_2) = 6$$

First derivatives are continuous at the interior point $x_1=0$

$$f_1'(x_1) = f_2'(x_1)$$

Second derivatives are continuous at the interior point $x_1=0$

$$f_1$$
" $(x_1) = f_2$ " (x_1) ,

At the endpoints the constrains are given by

$$f_1'(-2) = 11; f_2'(2) = 11,$$

which leads to two equations

Solving the 8 equations we have

$$a_1 = a_2 = 0$$

$$b_1 = b_2 = -1$$

$$c_1 = c_2 = 0$$

$$d_1 = d_2 = 1$$

therefore

$$f_1(x) = -x + x^3$$

$$f_2(x) = -x + x^3$$

(b)

No.

Because $f_1(x_1) \neq f_2(x_1)$

Question 5:

Use the Continuous Fourier Series to approximate the saw-tooth form functions

Solution:

$$a_{0} = 0$$

$$a_{k} = \frac{2}{T^{2}} \int_{-T/2}^{T/2} -2t \cos(k\omega_{0}t) dt$$

$$= -\frac{4}{T^{2}} \left[\frac{1}{(k\omega_{0})^{2}} \cos(k\omega_{0}t) + \frac{t}{k\omega_{0}} \sin(k\omega_{0}t) \right]_{-T/2}^{T/2}$$

$$\begin{aligned} b_k &= \frac{2}{T^2} \int_{-T/2}^{T/2} -2t \sin(k\omega_0 t) dt \\ &= -\frac{4}{T^2} \left[\frac{1}{(k\omega_0)^2} \sin(k\omega_0 t) - \frac{t}{k\omega_0} \cos(k\omega_0 t) \right]_{-T/2}^{T/2} \end{aligned}$$

On the basis of these, all a's = 0. For k = odd,

$$b_k = \frac{-2}{k\pi}$$

For
$$k = \text{even}$$
,

$$b_k = \frac{2}{k\pi}$$

Therefore, the series is

$$f(t) = -\frac{2}{\pi}\sin(\omega_0 t) + \frac{1}{\pi}\sin(2\omega_0 t) - \frac{2}{3\pi}\sin(3\omega_0 t) + \frac{1}{2\pi}\sin(4\omega_0 t) + \cdots$$

The first 4 terms are plotted below along with the summation:

