

Introduction to NLP

Probabilities

Probabilistic Reasoning

- Very important for language processing
- Example in speech recognition:
 - "recognize speech" vs "wreck a nice beach"
- Example in machine translation:
 - "l'avocat general": "the attorney general" vs. "the general avocado"
- Probabilities make it possible to combine evidence from multiple sources in a systematic way.

Probabilities

- Probability theory
 - predicting how likely it is that something will happen
- Experiment (trial)
 - e.g., throwing a coin
- Possible outcomes
 - heads or tails
- Sample spaces
 - discrete or continuous
- Events
 - Ω is the certain event
 - $-\emptyset$ is the impossible event
 - event space all possible events

Probabilities

- Probabilities
 - numbers between 0 and 1
- Probability distribution
 - distributes a probability mass of 1 throughout the sample space Ω .
- Example:
 - A fair coin is tossed three times.
 - What is the probability of 3 heads?
 - What is the probability of 2 heads?

Meaning of Probabilities

- Frequentist
 - I threw the coin 10 times and it turned up heads
 5 times
- Subjective
 - I am willing to bet 50 cents on heads

Properties of Probabilities

- $p(\emptyset) = 0$
- P(certain event)=1
- $p(X) \le p(Y)$, if $X \subseteq Y$
- $p(X \cup Y) = p(X) + p(Y)$, if $X \cap Y = \emptyset$

Conditional Probability

- Prior and posterior probability
- Conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability

- Six-sided fair die
 - P(D even) = ?
 - P(D>=4)=?
 - P(D even | D > = 4) = ?
 - P(D odd|D>=4)=?
- Multiple conditions
 - P(D odd|D>=4, D<=5)=?

Conditional Probability

- Six-sided fair die
 - P(D even) = 3/6 = 1/2
 - -P(D>=4)=3/6=1/2
 - P(D even | D > = 4) = 2/3
 - P(D odd | D > = 4) = 1/3
- Multiple conditions
 - P(D odd|D>=4, D<=5)=1/2

The Chain Rule

- $P(w_1, w_2, w_3...w_n) = ?$
- Using the chain rule:
 - $P(w_1, w_2, w_3...w_n) = P(w_1) P(w_2|w_1) P(w_3|w_1, w_2)...$ $P(w_n|w_1, w_2...w_{n-1})$
- This rule is used in many ways in statistical NLP, more specifically in Markov Models

Independence

- Two events are independent when $-P(A \cap B) = P(A)P(B)$
- Unless P(B)=0 this is equivalent to saying that P(A) = P(A|B)
- If two events are not independent, they are considered dependent

Adding vs. Removing Constraints

Adding constraints

- P(walk=yes|weather=nice)
- P(walk=yes|weather=nice,freetime=yes,crowded=yes)
- More accurate
- But more difficult to estimate

Removing constraints (Backoff)

- P(walk=yes|weather=nice,freetime=yes,crowded=yes)
- P(walk=yes|weather=nice,freetime=yes)
- P(walk=yes|weather=nice)
- Note that it is *not* possible to do backoff on the left hand side of the conditional

Random Variables

- Simply a function: $X: \Omega \to \mathbb{R}^n$
- The numbers are generated by a stochastic process with a certain probability distribution
- Example
 - the discrete random variable X that is the sum of the faces of two randomly thrown fair dice
- Probability mass function (pmf) which gives the probability that the random variable has different numeric values: $P(x) = P(X = x) = P(A_x)$ where $A_x = \{\omega \in \Omega : X(\omega) = x\}$

Random Variables

- If a random variable X is distributed according to the pmf p(x), then we write X ~ p(x)
- For a discrete random variable, we have

$$\sum_{p(x_i) = P(\Omega) = 1}$$

Example

- p(1) = 1/6
- p(2) = 1/6
- etc.
- **P(D)**=?
- $P(D) = \{1/6, 1/6, 1/6, 1/6, 1/6, 1/6\}$
- $P(D|odd) = \{1/3, 0, 1/3, 0, 1/3, 0\}$

