Практика

Характеристики векторных полей.

Дивергенция. Линейный интеграл. Циркуляция. Ротор.

Дивергенция векторного поля

Дивергенция (расходимость) векторного поля даёт информацию о распределении и интенсивности источников и стоков векторного поля.

Дивергенция векторного поля $\overline{a}(M) = \{P(M); Q(M); R(M)\}$ находится по формуле:

$$\operatorname{div} \overline{a}(M) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Замечания:

- 1) Дивергенция скалярная характеристика векторного поля.
- 2) Если div a(M) > 0, то в точке M находится источник векторного поля, если div a(M) < 0 сток векторного поля.
- $3)|\mathit{div}\,\bar{a}(M)|$ даёт интенсивность источника(стока) в точке M .

Векторная форма записи теоремы Остроградского-Гаусса.

Пусть выполнены условия теоремы Остроградского-Гаусса. Тогда справедлива формула:

$$\oint_{\mathbf{G}_{\mathrm{BHeIII}}} \overline{a}(M) \cdot \overline{n}_0(M) d\sigma = \iiint_T div \overline{a}(M) dx dy dz$$

Свойства дивергенции векторного поля

1)
$$div\left(\lambda_1 \cdot \overline{a_1}(M) \pm \lambda_2 \cdot \overline{a_2}(M)\right) = \lambda_1 \cdot div \, \overline{a_1}(M) \pm \lambda_2 \cdot div \, \overline{a_2}(M)$$
, где $\lambda_1, \lambda_2 = const$

2)
$$\operatorname{div}\left(\varphi(M)\cdot \overline{a}(M)\right) = \overline{a}(M)\cdot \operatorname{grad}\varphi(M) + \varphi(M)\cdot \operatorname{div}\overline{a}(M) \ \forall (\cdot) M \in A \subset R^3$$

Линейный интеграл векторного поля.

Пусть $\bar{a}(M)$ — векторное поле для всякой точки $M \in A \subset R^3$.

Пусть Γ_{AB} — простая, спрямляемая, ориентированная кривая: $\Gamma_{AB} \subset A$. Тогда

$$\int_{\Gamma_{AR}} \overline{a}(M) \cdot \overline{\tau_0} dl$$

- линейный интеграл векторного поля, где

 $\overline{\tau_0}$ - единичный вектор направляющего вектора $\overline{\tau}$ касательной, проведённой к кривой Γ_{AB} в точке M, направление которого совпадает с ориентацией кривой Γ_{AB} .

Другие формы записи линейного интеграла

1)
$$\int_{\Gamma_{AB}} \overline{a}(M) \cdot \overline{\tau_0} dl = \int_{\Gamma_{AB}} \Pi p_{\overline{\tau_0}} \overline{a}(M) \cdot dl = \int_{\Gamma_{AB}} \overline{a}(M)_{\overline{\tau_0}} dl$$

2) Пусть $\bar{r}(M)$ – радиус-вектор точки $M \in \Gamma_{AB}$, тогда $\bar{\tau}_0 dl = d\bar{r}$ и

$$\int_{\Gamma_{AB}} \overline{a}(M) \cdot \overline{\tau}_0(M) dl = \int_{\Gamma_{AB}} \overline{a}(M) \cdot d\overline{r}$$

3) Пусть

$$\overline{a}(M) = \{P(x, y, z); Q(x, y, z); R(x, y, z)\}$$

Точка $M \in \Gamma_{AB}$, $\bar{r}(M) = x \cdot \bar{i} + y \cdot \bar{j} + z \cdot \bar{k}$ и $d\bar{r}(M) = dx \cdot \bar{i} + dy \cdot \bar{j} + dz \cdot \bar{k}$ Тогда

$$\int_{\Gamma_{AB}}^{-} \overline{a}(M) \cdot d\overline{r} = \int_{\Gamma_{AB}} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

Свойства линейных интегралов

2) Пусть $\Gamma_{AB} = \Gamma_{AC} \vee \Gamma_{CB}$. Тогла

$$\int_{\Gamma_{AB}} \overline{a}(M) \cdot d\overline{r} = \int_{\Gamma_{AC}} \overline{a}(M) \cdot d\overline{r} + \int_{\Gamma_{CB}} \overline{a}(M) \cdot d\overline{r}$$

3)
$$\int_{\Gamma_{AB}} \overline{a}(M) \cdot d\overline{r} = -\int_{\Gamma_{BA}} \overline{a}(M) \cdot d\overline{r}$$

Замечание (о физическом смысле линейного интеграла)

Если поле $\overline{a}(M)$ рассматривать как силовое поле $\overline{F}(M)$, то

$$\int_{\Gamma_{AB}} \overline{F}(M) d\overline{r}$$

представляет собой работу по перемещению материальной точки силой \overline{F} вдоль кривой Γ_{AB}

Циркуляция векторного поля

$$circul_{\Gamma}\overline{a}(M) = \oint_{\Gamma} \overline{a}(M) \cdot \overline{\tau}_{0}(M)dl$$

Ротор векторного поля.

Пусть векторное поле $\bar{a}(M)$ имеет координаты $\{P(M), Q(M), R(M)\}$. Пусть $P, Q, R \in C^1(A)$.

Ротором векторного поля $\overline{a}(M)$ в точке M называется вектор \overline{W} :

$$rot \ \overline{a} \ (M) = \overline{W} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cdot \overline{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cdot \overline{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cdot \overline{k}$$

Свойства ротора векторного поля

- 1) $rot \ \overline{a}(M) = \overline{0} \ \forall (\cdot) M \in A \subset R^3 \Rightarrow \overline{a}(M) = \overline{c}, \ \partial e \ \overline{c} \text{постоянный вектор} \ \forall (\cdot) M \in A \subset R^3.$
- 2) $rot(\lambda \bar{a}) = \lambda \cdot rot \bar{a}$, где $\lambda = const$
- 3) $rot(\lambda_1 \overline{a_1}(M) \pm \lambda_2 \overline{a_2}(M)) = \lambda_1 \cdot rot \overline{a_1}(M) \pm \lambda_2 \cdot rot \overline{a_2}(M), \ \ rot \lambda_1, \ \lambda_2 = const$
- 4) $rot(\varphi(M) \cdot \overline{a_1}(M)) = grad \varphi(M) \times \overline{a}(M) + \varphi(M) \cdot rot \overline{a}(M)$

Векторная форма записи формулы Стокса

Пусть выполнены условия теоремы Стокса, тогда справедлива формула:

$$\oint_{\Gamma} \overline{a}(M) \cdot d\overline{r} = \iint_{\sigma} rot \, \overline{a}(M) \cdot \overline{n_0}(M) \cdot d\sigma$$

Плотность циркуляции векторного поля

Пусть задано $\bar{a}(M)$ - векторное поле $\forall (\cdot) M \in A \subset \mathbb{R}^3$.

Пусть плоскость P и $(\cdot)M \in P$.

Пусть σ - плоская поверхность, лежащая в плоскости P.

Пусть Γ — замкнутый контур, ограничивающий плоскую поверхность σ и точка $M \in \sigma$ и лежит внутри контура Γ .

Пусть \bar{n}_0 — единичный вектор нормали к плоской поверхности σ .

Выбирем на контре Γ напрвление обхода, соответствующее теореме Стокса.

Определение (плотности циркуляции векторного поля)

Предел

$$\lim_{\substack{\dim \sigma \to 0}} \frac{\int \bar{a}(M) \cdot d\bar{r}}{\mu \sigma}$$

называется (удельной) *плотностью циркуляции* по кривой Γ векторного поля $\bar{a}(M)$ в точке M_0 .

Обозначение:
$$\Pi(\overline{a}(M); \overline{n_0})$$
.

Вычисление плотности циркуляции

Если задано векторное поле $\bar{a}(M) = \{P(M); Q(M); R(M)\}$, то плотность циркуляции в точке M_0 в направлении \bar{n}_0 можно найти по формуле.

$$\Pi(\bar{a}(M_0); \, \bar{n}_0) = \begin{vmatrix} \cos\alpha & \cos\beta & \cos\gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P(M_0) & Q(M_0) & R(M_0) \end{vmatrix}$$

Инвариантное определение ротора векторного поля

Ротором векторного поля $\overline{a}(M)$ в точке M называется вектор \overline{W} , проекция которого на любое направление $\overline{n_0}$ равна плотности циркуляции векторного поля.

Обозначение:

$$\Pi p_{\overline{n_0}} \overline{W} = \Pi \left(\overline{a}(M); \overline{n_0} \right)$$

Замечание:

Из определения $rot\bar{a}(M)$ вытекает, что направление ротора — это направление вокруг которого циркуляция имеет наибольшую плотность по сравнению с циркуляцией вокруг любого другого напрвления и величина наибольшей плотности циркуляции равна $|rot\bar{a}(M_0)|$.