Predictive Analytics with California Airbnb Dataset/ SAS Enterprise Miner

Didem B. Aykurt

Colorado State University Global

MIS530; Predictive Analytics

Dr.Jennifer Catalano

March 12, 2023

Table of Contents

Introduction	3
Editing Variables	8
Data Partition	9
Data Exploration	10
Data Preparation	14
Missing Data	16
Handling Outliers	17
CA Airbnb Dataset Descriptive Statistic	20
Covariance and Correlation	22
Business Question and Hypothesis	23
Predictive Analysis	28
Linear Regression Model	29
Decision Tree	31
Neural Network Model with HP Neural Node	34
Model Comparison	38
Conclusion	39
References	

Predictive Analysis of California Airbnb Dataset

Introduction

A privately owned multinational corporation headquartered in San Francisco, Airbnb, Inc. runs an online trade and accommodation business that may be accessed through its apps and web apps. Subscribers of the website can use it to book or provide accommodation, generally guesthouses or travel opportunities.

Brian Chesky and Joe Gebbia built a company for a cash grab. First, they bought mattresses and rented part of their San Francisco apartment. Next, they had the first guest attending a design conference; after a successful weekend, they added a third founder, Nate Blecharczyk, in 2008. Twelve years later, Airbnb is the world's most significant tourism to traveling days and has over 5.6 million active listings in 220 countries, at least 100,000 cities, 4M hosts, and over 1B guests. Airbnb had a value of \$86.5B at IPO. They were now selling at \$146 per share on opening day.

My family and I are the best Airbnb customers when we vacation. We always use the Airbnb web to choose the best price at a beautiful place. However, that company name is so unique that three words make the company name Air, Bed, and Breakfast. That is why I chose the company and want to see how the company increases loyalty. Airbnb hosts' pricing strategy is the key to having long-run resemble, such as charging a lower price to entice more customers and executing higher residence rates instead of a short-run approach. Airbnb listing price is a

significant risk faced when entering the market. As a result, businesses must study the elements contributing to listing prices and understand the perfect daily price to charge and its effects.

To examine the relationship between room type and price, I will use SAS Enterprise Miner to analyze price and forecast the key elements contributing to a higher occupancy rate. I then compared those findings to the pricing amount. Additionally, I conducted a descriptive study to examine a few crucial factors that would be very beneficial for business, such as:

- 1. What California neighborhoods are the most popular for Airbnb rentals?
- 2. What is the relation between Airbnb guests' most local neighborhood area, room type, property, and price?

For the analysis, a public database from the Airbnb platform was utilized. The dataset offers details on the characteristics of homes, review ratings, comments, and the availability of more than 10,000 listings in 2019. The Airbnb data was employed to execute visualizations, and SAS additionally carried out linear regression to identify the elements influencing higher ratings. SAS was also used to analyze consumer reviews.

I have chosen to explore the <u>Bay Area, CA-Airbnb Data (UPDATE 2020)</u> CSV dataset, an open data source available on Kaggle and has been updated June 12th, 2020, and the variables required to address the business problem.

The research aims to build price recommendations, factors affecting residence rates, and the hypothesis that room type plays a significant role in booking the Airbnb analysis in California.

This report is divided into three milestones. Milestone 1 introduces and defines the business problem of Airbnb, the dataset, etc. Milestone Project two descriptive statistics describe four minimum business problems and create alternate and null hypotheses for each business

question. It also includes testing the ideas with an appropriate statistical test. Finally, milestone project 3 performs a predictive analysis technique, compares the different models' performance, and identifies the best model for the CA-Arbnb.csv dataset.

The business problem of Airbnb states that we can say which neighborhood has the highest price range for the listings. From this, we can find out that the solution to the problem is to regulate the price of areas or room types.

CA-Airbnb.csv data set has 7221 observations of 106 variables. Therefore, I will use 20 variables or columns, including 15 numerical and five-character variables.

Data Description of Listings, Calendar, and Reviews

Variable	Description
ID	Listing id of the property
Name	Name of the property
Host_Id	Id of the property host
host_name	Name of the host property
neighborhood_cleansed	The neighborhood of the property
Latitude	Location of the Latitude
Longitude	Location of the Longitude
Property_type	Type of the property

room_type	Type of the room
bathrooms	Total number of bathrooms
bedrooms	Total number of bedrooms
beds	Total number of beds
price	Price of the property
Min_nights	Minimum number of nights required to book
number_of_reviews	Total number of reviews
availability_365	Availability of property
last_review	Date of the last review
review_scores_rating	The total score of the review rating
Calculated_hostListings_count	Total listings the host has
Reviews_per_month	Average Number of reviews in a month

Import CA Airbnb Dataset into SAS Enterprise Miner

Figure 1

Import CA-Airbnb Dataset into SAS Enterprise Miner.

Figure 2

Output window of File Import node for CA-Airbnb Dataset.

Figure 3

Output of Variables Alfabetics List.

2	#	Variable	Туре	Len	Format	Informat	Label
3	16	availability 365	Num	8	BEST.		availability 365
4	10	bathrooms	Num	8	BEST.		bathrooms
5	11	bedrooms	Num	8	BEST.		bedrooms
6	12	beds	Num	8	BEST.		beds
7	19	calculated host listings count	Num	8	BEST.		calculated host listings coun
8	3	host id	Num	8	BEST.		host id
9	4	host name	Char	35	\$35.	¢35.	host name
0	1	id	Num	8	BEST.		id
1	17	last_review	Num	8	MMDDYY10.		last_review
2	6	latitude	Num	8	BEST.		latitude
3	7	longitude	Num	8	BEST.		longitude
4	14	minimum_nights	Num	8	BEST.		minimum_nights
5	2	name	Char	281	\$281.	\$281.	name
6	5	neighbourhood_cleansed	Char	20	\$20.	\$20.	neighbourhood_cleansed
7	15	number_of_reviews	Num	8	BEST.		number_of_reviews
8	13	price	Num	8	NLMNY15.2		price
9	8	property_type	Char	18	\$18.	\$18.	property_type
0	18	review_scores_rating	Num	8	BEST.		review_scores_rating
1	20	reviews_per_month	Num	8	BEST.		reviews_per_month
2	9	room_type	Char	15	\$15.	\$15.	room_type
3							
4							

Editing Variables

Rejected a few variables: bathrooms,' 'bedrooms,' 'beds,' 'id,' 'host_name,' and 'last_review' are unnecessary to address the business problem because these drop variables are irrelevant and insignificant to our investigation. So, instead, I set the target variable for the price on the Variables-FIMPORT window. At the end of the variable eliminated process, the CA-Airbnb dataset contains 7221 records with 11 different attributes including but not limited to availability_364, calculate_host_listing_count, host_id, minimum_nights, neigborhood_cleansed, room_type, and price.

Figure 4

Variables-FIMPORT- Update variables' Roles.

(none)	_ v 0	not Equal to	~				
Columns: 🔲 I	Label					Mining	
Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
availability_365	Input	Interval	No		No		
bathrooms	Rejected	Interval	No		No		
bedrooms	Rejected	Interval	No		No		
beds	Rejected	Interval	No		No		
calculated_host	Input	Interval	No		No		
host_id	Input	Nominal	No		No		
host_name	Rejected	Nominal	No		No		
id	Rejected	Nominal	No		No		
last_review	Rejected	Interval	No		No		
latitude	Rejected	Interval	No		No		
longitude	Rejected	Interval	No		No		
minimum_nights	Input	Interval	No		No		
name	Rejected	Nominal	No		No		
neighbourhood_	Input	Nominal	No		No		
number_of_revi	Input	Interval	No		No		
price	Target	Interval	No		No		
property_type	Input	Nominal	No		No		
reviews_per_mo	Input	Interval	No		No		
review_scores_i	Input	Interval	No		No		
room_type	Input	Nominal	No		No		

Data Partition

Created a training of 55% of the dataset to train or develop the model, and validation of 45% of the dataset will be used to validate it. To connect the Data Partition node to the File Import node.

Figure 5

Data Set Allocation.

Data Exploration

The most worthwhile variables are room type, property type, and neighborhood. I will build hypothesis testing for room type and neighborhood variables to get more details about the price average.

Figure 6

The bar chart shows the Variable Worth window by price.

The highest percentage of room type was a private room at 47.83%, then an Entire home/apt at 47.51%.

Figure 7Result of summary statistics Room type class variable frequency and percentage.

51						
52	Dietwik	ution of Clos	- T	nd Comment Wardahlas		
			-	nd Segment Variables	;	
53	(maximu	m 500 observa	tions prin	ited)		
54						
55	Data Ro	le=TRAIN				
56						
57	Data	Variable			Frequency	
58	Role	Name	Role	Level	Count	Percent
59						
60	TRAIN	room_type	TARGET	Private room	3454	47.8327
61	TRAIN	room_type	TARGET	Entire home/apt	3431	47.5142
62	TRAIN	room_type	TARGET	Shared room	334	4.6254
63	TRAIN	room_type	TARGET	Hotel room	2	0.0277
64						
65						

The result of StatExplore shows that the highest percentage of room types by neighborhood is Hotel rooms in Palo Alto 50% and Santa Clara 50%.

Figure 8Result of summary statistics Room type by neighborhood.

	ble Summary Statist O observations prin	-	ass Target				
Data Role=T	RAIN Variable Name=	neighbourh	nood_cleanse	ď			
		Number					
		of			Mode		Mode2
Target	Target Level	Levels	Missing	Mode	Percentage	Mode2	Percentage
OVERALL		16	0	San Jose	40.39	Palo Alto	11.67
room_type	Entire home/apt	16	0	San Jose	37.62	Palo Alto	15.29
room_type	Hotel room	2	0	Palo Alto	50.00	Santa Clara	50.00
room_type	Private room	15	0	San Jose	43.80	Sunnyvale	10.92
room_type	Shared room	11	0	San Jose	30.60	Santa Clara	20.77

The private room median at \$67 is a private room, and the highest median at \$170 is a hotel room. The cheapest room type is a shared room.

Figure 9Result of summary statistics Room type by price.

192 193	Data Role=7	TRAIN Variable=price							
194					Non				Standard
195	Target	Target Level	Median	Missing	Missing	Minimum	Maximum	Mean	Deviation
196									
197	_OVERALL_		100	0	7221	10	10000	161.2871	352.069
198	room_type	Entire home/apt	168	0	3431	10	5500	232.9948	304.9958
199	room_type	Hotel room	170	0	2	170	199	184.5	20.5061
200	room_type	Private room	67	0	3454	10	10000	100.3891	392.0329
201	room_type	Shared room	30	0	334	15	2900	54.2994	180.9512
202									

The highest percentage of the neighborhood is San Jose at 41.29%, then Palo Alto at 11%.

Figure 10Result of summary statistics for Neighborhood frequency and percentage list.

54	Distrib	ution of Class Target and	Segment Va	riables		
55	(maximu	um 500 observations printed	.)			
56						
57	Data Ro	le=TRAIN				
58						
59	Data				Frequency	
60	Role	Variable Name	Role	Level	Count	Percent
61						
62	TRAIN	neighbourhood_cleansed	TARGET	San Jose	1529	41.2908
63	TRAIN	${\tt neighbourhood_cleansed}$	TARGET	Palo Alto	423	11.4232
64	TRAIN	neighbourhood_cleansed	TARGET	Sunnyvale	376	10.1539
65	TRAIN	neighbourhood_cleansed	TARGET	Santa Clara	340	9.1817
66	TRAIN	neighbourhood_cleansed	TARGET	Mountain View	326	8.8037
67	TRAIN	neighbourhood_cleansed	TARGET	Milpitas	155	4.1858
68	TRAIN	neighbourhood_cleansed	TARGET	Unincorporated Areas	155	4.1858
69	TRAIN	neighbourhood_cleansed	TARGET	Cupertino	154	4.1588
70	TRAIN	neighbourhood_cleansed	TARGET	Campbell	63	1.7013
71	TRAIN	neighbourhood_cleansed	TARGET	Los Gatos	44	1.1882
72	TRAIN	neighbourhood_cleansed	TARGET	Los Altos	39	1.0532
73	TRAIN	neighbourhood_cleansed	TARGET	Saratoga	32	0.8642
74	TRAIN	neighbourhood_cleansed	TARGET	Los Altos Hills	28	0.7561
75	TRAIN	neighbourhood_cleansed	TARGET	Morgan Hill	22	0.5941
76	TRAIN	neighbourhood_cleansed	TARGET	Gilroy	11	0.2971
77	TRAIN	neighbourhood_cleansed	TARGET	Monte Sereno	6	0.1620
78						
80						

The price for the neighborhood is between \$65 to \$150 per unit. Los Altos and Los Altos Hills are the highest medians at \$150 and the most expensive.

Figure 11Result of summary statistics neighborhood by price.

300	Data Role=TRAIN Variable	=price						
301								
302					Non			
303	Target	Target Level	Median	Missing	Missing	Minimum	Maximum	Mean
304								
305	_OVERALL_		100	0	7221	10	10000	161.2871
306	neighbourhood_cleansed	Campbell	100	0	131	25	2000	163
307	neighbourhood_cleansed	Cupertino	99	0	325	24	1200	131.5138
308	neighbourhood_cleansed	Gilroy	65	0	20	48	385	114.9
309	neighbourhood_cleansed	Los Altos	150	0	73	30	1985	242.4247
310	neighbourhood_cleansed	Los Altos Hills	150	0	52	35	2998	297.6538
311	neighbourhood_cleansed	Los Gatos	100	0	85	36	1000	158.7412
312	neighbourhood_cleansed	Milpitas	80	0	301	18	799	119.3688
313	neighbourhood_cleansed	Monte Sereno	125	0	13	85	235	132.3846
314	neighbourhood_cleansed	Morgan Hill	80	0	42	49	350	108.1667
315	neighbourhood_cleansed	Mountain View	122	0	664	15	10000	220.887
316	neighbourhood_cleansed	Palo Alto	134	0	794	10	3000	219.8929
317	neighbourhood_cleansed	San Jose	87	0	2882	10	3250	134.855
318	neighbourhood_cleansed	Santa Clara	90	0	711	11	5000	155.1913
319	neighbourhood_cleansed	Saratoga	110	0	62	39	3400	267.3226
320	neighbourhood_cleansed	Sunnyvale	95	0	768	15	3000	125.2292
321	neighbourhood_cleansed	Unincorporated Areas	105	0	298	10	5500	256.349

The result of property type percentage is that the highest rate is House at 51.44%, and the lowest properties are aparthotel, campsite, chalet, and a few more.

Figure 12Result of summary statistics Property type frequency and percentage.

JH						
55	Data Ro	le=TRAIN				
56						
57	Data				Frequency	
58	Role	Variable Name	Role	Level	Count	Percent
59						
60	TRAIN	property_type	TARGET	House	3715	51.4472
61	TRAIN	property_type	TARGET	Apartment	1152	15.9535
62	TRAIN	property_type	TARGET	Serviced apartment	504	6.9796
63	TRAIN	property_type	TARGET	Townhouse	429	5.9410
64	TRAIN	property_type	TARGET	Guest suite	363	5.0270
65	TRAIN	property_type	TARGET	Guesthouse	318	4.4038
66	TRAIN	property_type	TARGET	Condominium	303	4.1961
67	TRAIN	property_type	TARGET	Villa	129	1.7865
68	TRAIN	property_type	TARGET	Bungalow	115	1.5926
69	TRAIN	property_type	TARGET	Loft	41	0.5678
70	TRAIN	property_type	TARGET	Cottage	29	0.4016
71	TRAIN	property_type	TARGET	Camper/RV	27	0.3739
72	TRAIN	property_type	TARGET	Boutique hotel	23	0.3185
73	TRAIN	property_type	TARGET	Tiny house	16	0.2216
74	TRAIN	property_type	TARGET	Other	13	0.1800
75	TRAIN	property_type	TARGET	Bed and breakfast	12	0.1662
76	TRAIN	property_type	TARGET	Cabin	7	0.0969
77	TRAIN	property_type	TARGET	Farm stay	6	0.0831
78	TRAIN	property_type	TARGET	Tent	5	0.0692
79	TRAIN	property_type	TARGET	Treehouse	3	0.0415
80	TRAIN	property_type	TARGET	Yurt	3	0.0415
81	TRAIN	property_type	TARGET	Barn	2	0.0277
82	TRAIN	property_type	TARGET	Aparthotel	1	0.0138
83	TRAIN	property_type	TARGET	Campsite	1	0.0138
84	TRAIN	property_type	TARGET	Chalet	1	0.0138
85	TRAIN	property_type	TARGET	Earth house	1	0.0138
86	TRAIN	property_type	TARGET	Lighthouse	1	0.0138
87	TRAIN	property_type	TARGET	Train	1	0.0138
88						

Data Preparation

The StatExplore node result window shows 'review_scores_rating' has 19% missing data points and 'reviews_per_month' of 18%. In addition, the Graph Explore node result window shows that 'minimum_nights' and 'calculated_host_listings_count' have outliers variables.

Figure 13Result of summary statistics StatExplore Output Window.

Outpi	ut											
40												
41				Number								
42	Data			of			Mode			Mode2		
43	Role	Variable Name	Role	Levels	Missing	Mode	Percentage	Mode2		Percentage		
14					_		_			_		
45	TRAIN	neighbourhood_cleansed	INPUT	16	0	San Jose	39.91	Palo Alt	.0	11.00		
16	TRAIN	property_type	INPUT	28	0	House	51.45	Apartmen	t	15.95		
17	TRAIN	room_type	INPUT	4	0	Private room	47.83	Entire h	ome/apt	47.51		
18		_										
19												
0												
1	Interval	l Variable Summary Statis	tics									
2	(maximum	n 500 observations printe	d)									
- 0												
) 3												
	Data Ro	le=TRAIN										
53 54 55	Data Ro	le=TRAIN										
54 55	Data Ro	Le=TRAIN			Standard	Non						
54 55 56	Data Ro		Role	Mean	Standard Deviation		Missing	Minimum	Median	Maximum	Skewness	Kurto
54 55 56 57			Role	Mean			Missing	Minimum	Median	Maximum	Skewness	Kurtos
i4 i5 i6 i7	Variable		Role INPUT	Mean 160.2826			Missing 0	Minimum O	Median 136		Skewness 0.289908	
i4 i5 i6 i7 i8	Variable availab:	2			Deviation	Missing	-			365		-1.48
;4 ;5 ;6 ;7 ;8 ;9	Variable availab:	e ility_365 ted_host_listings_count	INPUT	160.2826	Deviation	Missing	0	0	136	365	0.289908	-1.485 11.350
4 5 6 7 8 9	Variable availab: calculat	e ility_365 ted_host_listings_count	INPUT INPUT	160.2826 32.04861	Deviation 141.7469 95.15919	Missing 7221 7221	0	0	136 3	365 411 37.46298	0.289908 3.589658	-1.489 11.350 4.005
4 5 6 7 8 9 0 1 2	Variable availab: calculat	e ility_365 ted_host_listings_count e	INPUT INPUT INPUT	160.2826 32.04861 37.35228	Deviation 141.7469 95.15919 0.064819	Missing 7221 7221 7221	0 0 0	0 1 36.9656	136 3 37.35819	365 411 37.46298	0.289908 3.589658 -1.3717 0.293048 20.1114	-1.48 11.35 4.005 0.431 537.4
4 5 6 7 8 9 0 1 2 3	Variable availab: calculat latitude longitue minimum	e ility_365 ted_host_listings_count e	INPUT INPUT INPUT INPUT	160.2826 32.04861 37.35228 -121.967	Deviation 141.7469 95.15919 0.064819 0.108587	7221 7221 7221 7221 7221	0 0 0	0 1 36.9656 -122.19	136 3 37.35819 -121.962	365 411 37.46298 -121.38	0.289908 3.589658 -1.3717 0.293048	-1.48 11.35 4.005 0.431 537.4
i4 i5 i6 i7 i8 i9 i0 i1 i2 i3 i4	Variable availab: calcular latitude longitue minimum number_e	e ility_365 ted_host_listings_count e e e nights	INPUT INPUT INPUT INPUT INPUT	160.2826 32.04861 37.35228 -121.967 9.756959 29.85376 95.24547	Deviation 141.7469 95.15919 0.064819 0.108587 34.68985 51.48876 7.734005	7221 7221 7221 7221 7221 7221 7221 7221	0 0 0 0	0 1 36.9656 -122.19 1 0	136 3 37.35819 -121.962 2 10 98	365 411 37.46298 -121.38 1125 488 100	0.289908 3.589658 -1.3717 0.293048 20.1114 3.323531 -4.43398	-1.483 11.356 4.005 0.4316 537.46 14.55
54	Variable availab: calcular latitude longitue minimum number_ review_:	e ility_365 ted_host_listings_count e e nights of_reviews	INPUT INPUT INPUT INPUT INPUT INPUT	160.2826 32.04861 37.35228 -121.967 9.756959 29.85376	Deviation 141.7469 95.15919 0.064819 0.108587 34.68985 51.48876	7221 7221 7221 7221 7221 7221 7221	0 0 0 0 0	0 1 36.9656 -122.19 1	136 3 37.35819 -121.962 2 10	365 411 37.46298 -121.38 1125 488 100	0.289908 3.589658 -1.3717 0.293048 20.1114 3.323531	Kurtos -1.488 11.350 4.005' 0.4318 537.44' 14.53 30.22 6.1880

Figure 14

Frequency Histograms of input variables.

The SAS Output shows large Standard Deviation values of 100 and above: availability_365 of 141.75 and price of 352.069. I will explore transformations to reduce the variance in those variables with large deviations.

Kurtosis shows the variable's probability or frequency, which also helps to compare which variable has a heavy distribution tail with three kurtosis types. All variables have a high kurtosis that is leptokurtic (kurtosis>0), except availability_365, which has close zero and is mesokurtic (kurtosis=0).

Skewness tells whether the dataset has an asymmetric distribution or not that measures three different distributions. Zero skew means the distribution is symmetrical—another negative skew when the number is negative and a positive skew when the number is positive. For example, the skewness of availability_365 shows a close to zero number of 0.29, the symmetrical distribution. Finally, I will look at each continuous variable's distribution to improve the normal distribution of descriptive statistics subjects.

Thus, the availability_365 distribution should have outliers; the skewness result is close to zero, which can be accepted for normal distribution if outliers exceed what we expect.

Missing Data

Ca Airbnb data set has missing data points with a high volume for review_scores_rating of 1367 and reviews_per_month of 1309 in a total observation of 7221 that can replace a median number.

Let's look at missing values because missing values can cause the model result. I used the Impute node on the Modify tab for the 'review_scores_rating' and 'reviews_per_month'

variables with high missing values. I used the median imputation method for replacing values in skewed distributions.

Figure 15

Impute node setting into SAS Enterprise Miner.

Figure 16

Impute Result into SAS Enterprise Miner.

Handling Outliers

The Filter node on the Sample tab filters out the outliers. The CA-Airbnb data set variables are 'minimum_nights,' and 'calculated_host_listings_count' have outlier variables.

The filter setting needs to change under the Train group, Table to Filter set All Data Sets, and under the Interval Variables group, click the Interval Variables' ellipsis and set the minimum for both variables' zero and the maximum value for 'minimum_nights,' variable;

the mean (μ) of 9.756959,

the standard deviation (σ) of 34.68985

as μ + σ =9.756959+3*34.68985=113.826509.

The maximum value for the 'calculated_host_listings_count' variable;

the mean (μ) of 32.04861,

the standard deviation (σ) of 95.15919

as μ + σ =32.04861+3*95.15919= 317.52618.

Both values, probably 99.7% of the values, are within three standard deviations.

Therefore, the Default Filtering Method is set to User-Specified Limits. Click and update the new Upper Limit value, then click OK, run the Filter node, and view the results.

Figure 17Remove outliers for the Interval variable with the Filter node in SAS Enterprise Mine.

Figure 18

Result in the Interval variable window.

4	Number Of Obse	rvations				
5						
6	Data			F.1.		
7	Role Fi	ltered	Excluded	DATA		
8	TTD 1 TTT		505			
9 0	TRAIN	3465	507	3972		
U 1	VALIDATE	2860	389	3249		
2						
3						
э 4	Statistics for	Origina	l and ETITE	DED Data		
5	(maximum 500 c	_				
о 6	(maximum 300 c	DSELVACI	ons princed	.)		
7	Data Role=TRAI	W Variab	le-calculat	ed host lis	etings count	
8	Data Noic-INAI	N variab	ic-carcara	ca_nosc_ii	cings_counc	
9	Statistics		Original	Filtered		
0						
1	Non Missing		3972.00	3465.00		
2	Missing		0.00	0.00		
3	Minimum		1.00	1.00		
4	Maximum		411.00	125.00		
5	Mean		32.16	9.47		
6	Standard Devia	tion	95.52	20.71		
7	Skewness		3.58	4.01		
8	Kurtosis		11.25	17.34		
9						
0						
1	Data Role=TRAI	N Variab	le=minimum_	nights		
2						
3	Statistics		Original	Filtered		
4						
5	Non Missing		3972.00	3465.00		
6	Missing		0.00	0.00		
7	Minimum		1.00	1.00		
8	Maximum		1125.00	100.00		
9	Mean		10.17	6.50		
.0	Standard Devia	tion	37.56	11.43		
1	Skewness		18.60	3.43		
.2	Kurtosis		460.39	16.46		
.3						
4						

■ **今** 切 9:04 PM 2/4/2023

As a result, the train partition has 507, and the validated dataset has 389 filtered observations. The train data display that the maximum 'calculated_host_listings_count' value in the cell is 125, but the original maximum is 411. Likewise, the 'minimum_nights' maximum value in the partition is 100, with a total value of 1125.

Reduce Many Levels of Categorical Variables

One of the topics is that many different levels of the categorical or class variable reduce the performance of the variable. For example, the 'neighborhood_cleansed' has 16 different levels, and 'Property_type' has 28 different level variables. The Replacement node can solve different levels for the groups. For example, I used the Filter node on the Class Variable group to set the 'Property_type' variable default minimum frequency of 25 or can set to manually click ellipsis by Class Variables and the result in the Interactive Class Filter.

Figure 19Result of Class Variable and properties on Filter node.

CA Airbnb Dataset Descriptive Statistic

Here is the SAS Enterprise Miner StatExplore node result, which describes the CA Airbnb summary statistics as follows:

The most common value or mode for the categorical variable neighborhood area is San Jose, which makes up 41.29%, and the second most frequent value is Palo Alto at 11.71% in For

property type, the most frequent variable is House at 53.22%, and the second one is Apartment at 16.96% in Figure 10. Additionally, the variable of room type's most common value is Private room at 47.83%, and the second is Entire home/apt at 47.51% in Figure 7.

Figure 13 shows the result of a summary statistic for interval variables; the mean price amount was \$161.2871 per unit with a standard deviation of \$352.069 and the median value at \$100. The price result of the mean is greater than the median, which means the price dataset has a right skew. The number of reviews' compromise was 29.85376, with a standard deviation of 51.48076, and the median was 10, which is a mean greater than the median as the number of reviews also right skew. The kurtosis of the property's price was 464.0688 as higher than zero means a leptokurtic has a sharper peak than a bell shape. The result of kurtosis for the number of reviews was 14.5345, which means the number of reviews has a leptokurtic kurtosis.

Those variables should be transformed into a normal distribution. I used the Transform Variables node to modify the log transformation for the price and number of reviews. First, review the distribution of the variable by Formulas ellipsis, then the Variables ellipsis set the Log on Method column.

Figure 20
Formulas window- the number of reviews and price of the properties.

Result of Transform Variables node.

Figure 21

Covariance and Correlation

One of the other causes of the model's performance is multicollinearity. Correlation analysis helps us to know how to relate two variables, as if the high correlation between two variables may negatively affect the predictive result, as red color is a high relation and blue color is less relation between two input variables. I used the Variable Cluster node in the

Explore tab in SAS Enterprise Miner to find if there is multicollinearity. The CA Airbnb dataset has no collinearity to warrant concerns.

Figure 22: Variable correlation

Business Question and Hypothesis

These are the business problems that I will explore some key points which would be very helpful for business, such as:

- 1. Does the room type differ based on the property's price?
- 2. Does the room type differ based on the total number of reviews?
- 3. Is there a difference in the room types based on the property's availability?
- 4. Does the neighborhood differ on the property's price?

The organization's strategic goal is that Airbnb's constant goals were to expand into new areas and deliver more inventory within the company's network.

I created the null and alternative hypotheses for each business and the result. Calculating the p-value is complicated, so I will use Chi-Square to find the p-value and compare the null and alternative hypotheses. I set the target value as 'room_type' to see each room type's price mean; the median also helps me to reject the null hypothesis. The StatExplore node includes the Chi-square test.

Business Question 1: Does the room type differ based on the property's price?

- Null hypothesis(H10): No difference between room types based on property prices exists.
- Alternative Hypothesis(H1): at least one group differs significantly from the overall mean price of the property.

Based on the Figure 24 result, the p-value of the property's price effect is close to zero and less than the significance level, implying that 0.000 < 0.05. So, we can reject the null hypothesis in favor of an alternative idea. Therefore, in Figure 23, we can conclude that there is a significant difference and that at least one room type differs significantly from the overall mean property price. Simply put, the solution to the business problem indicates that the room types (i.e., Entire home/apt, Private Room, and Shared room) differ for the property's price.

Figure 23

Result of Chi-square price by room_type with LOG_price.

L57													
L58	Data Role=T	RAIN Variable=LOG_p	rice										
L59													
L60					Non				Standard				
161	Target	Target Level	Median	Missing	Missing	Minimum	Maximum	Mean	Deviation	Skewness	Kurtosis	Role	Label
L62													
L63	_OVERALL_		4.564348	0	3719	2.397895	9.21044	4.657673	0.781201	0.840901	1.79121	INPUT	Transformed: price
164	room_type	Entire home/apt	5.141664	0	1648	2.397895	8.2943	5.203174	0.654337	0.974727	3.032905	INPUT	Transformed: price
L65	room_type	Hotel room	5.141664	0	2	5.141664	5.298317	5.21999	0.110771			INPUT	Transformed: price
166	room_type	Private room	4.219508	0	1886	2.397895	9.21044	4.282189	0.539283	2.122231	11.9929	INPUT	Transformed: price
167	room_type	Shared room	3.433987	0	183	2.944439	7.313887	3.60878	0.561329	3.168122	14.39391	INPUT	Transformed: price
L68													
169													
	1 w (2 👺 📆	91								^ 6	=	令 ゆ) 11:53 AM 2/11/2023 2
~			-										2/11/2023

Figure 24

Chi-square output for p-value for room type.

Business Question 2: Does the room type differ based on the total number of reviews?

- Null hypothesis(H20): There is no difference between room types based on the total number of reviews.
- Alternative Hypothesis(H2): at least one group differs significantly from the overall mean
 of the total number of reviews.

Based on the Figure 24 result, the p-value of the total number of review effects is close to zero and less than the significance level, implying that 0.000 < 0.05. So, we can reject the null hypothesis in favor of an alternative idea. Therefore, in Figure 25, we can conclude that there is a significant difference and that at least one room type differs significantly from the overall mean of the total number of reviews.

Figure 25

Chi-square result for the number of reviews by room type with LOG number of review.

Business Question 3: Is there a difference in the room types based on the property's availability?

- Null hypothesis(H30): There is no difference between room types based on the property's availability.
- Alternative Hypothesis(H3): at least one group differs significantly from the overall mean
 of property availability.

Based on the Figure 24 result, the p-value of the room type effect is close to zero and less than the significance level, implying that 0.000 < 0.05. So, we can reject the null hypothesis in favor of an alternative idea. Therefore, in Figure 26, we can conclude that there is a significant difference and that at least one room type differs significantly from the overall mean of availability of the property.

Figure 26

Result of Chi-square test for property type by room type with availablety 365.

170	Data Role=T	RAIN Variable=availa	bility_365										
171													
172					Non				Standard				
173	Target	Target Level	Median	Missing	Missing	Minimum	Maximum	Mean	Deviation	Skewness	Kurtosis	Role	Label
174													
175	_OVERALL_		130	0	3719	0	365	160.5085	142.2407	0.296754	-1.48995	INPUT	availability_365
176	room_type	Entire home/apt	141	0	1648	0	365	157.9575	140.3476	0.288128	-1.47349	INPUT	availability_365
177	room_type	Hotel room	167	0	2	167	365	266	140.0071			INPUT	availability_365
178	room_type	Private room	94	0	1886	0	365	156.6193	141.4264	0.371388	-1.42565	INPUT	availability_365
179	room_type	Shared room	303	0	183	0	365	222.4098	153.6615	-0.42357	-1.6192	INPUT	availability_365
180													
												_	12:53 PM
Q		🥰 😘 🔣									^ 6 (令 ゆ) 2/11/2023 2

Business Question 4: Does the neighborhood differ on the property's price?

- Null hypothesis(H40): There is no difference between the neighborhood of the property based on the price of the property.
- Alternative Hypothesis(H4): at least one group differs significantly from the overall mean cost of the property.

Based on the Figure 27 result, the p-value of the effect is close to zero and less than the significance level, implying that 0.002 < 0.05. So, we can reject the null hypothesis in favor of an alternative idea. Therefore, in Figure 28, we can conclude that there is a significant difference and that at least one neighborhood group differs significantly from the overall mean property price.

Figure 27

Chi-Square statistics result of p-value by neigborhood_cleansed dataset.

374					
375	Chi-Square Statistics				
376	(maximum 500 observations printed	d)			
377					
378	Data Role=TRAIN Target=neighbour	hood_cleansed			
379					
380	Input	Chi-Square	Df	Prob	
381					
382	latitude	6709.1199	60	<.0001	
383	longitude	5903.5813	60	<.0001	
384	calculated_host_listings_count	320.2544	45	<.0001	
385	room_type	159.1430	30	<.0001	
386	property_type	952.7695	285	<.0001	
387	LOG_price	222.5418	60	<.0001	
388	minimum_nights	156.5336	60	<.0001	
389	availability_365	141.1279	60	<.0001	
390	IMP_review_scores_rating	108.1250	60	0.0001	
391	IMP_reviews_per_month	106.1387	60	0.0002	
392	LOG_number_of_reviews	95.2241	60	0.0026	
393					
394					
395	*			*	
396	* Score Output				
397	*			*	
398					
			~	0 40	12:33 PM
		~ €	=	\$ (D))	2/11/2023

Figure 28

Chi-square results The HP Neural node is also priced by neighborhood properties.

Predictive Analysis

After achieving descriptive statistics and data preparation, the next step is building the predictive model. I will then use the Big Three models: linear regression, Decision tree, and HP Neural network.

Figure 29

Node process flow of models.

Linear Regression Model

The most popular model is linear regression, which allows us to measure the strength of the relationship between the response and predictor variable, also known as line fitting and curve fitting. The case target variable is 'price,' which is the continuous variable, so I apply a linear regression model.

Figure 30

Linear regression properties.

The average square error of 0.279806 on the Validation partition. Suppose the high difference between the Train and Validation partition is the average squared error is insignificant. In that case, the result of the difference is 0.003375 for the claim fraud train and validation partition. The model does not appear to be overfitting.

Fit Statistics of Linear Regression result.

	Target Label	Fit Statistics	Statistics Label	Train	Validation
OG price	Transformed:	AIC	Akaike's Infor	-4597.1	
.OG price	Transformed:	ASE	Average Squ	0.283181	0.279806
OG price	Transformed:	AVERR	Average Erro	0.283181	0.279806
OG price	Transformed:	DFE	Degrees of F	3670	
OG price	Transformed:	DFM	Model Degre	45	
OG price	Transformed:	DFT	Total Degree	3715	
OG price	Transformed:	DIV	Divisor for ASE	3715	3051
OG price	Transformed:	ERR	Error Function	1052.019	853.6883
.OG price	Transformed:	FPE	Final Predicti	0.290126	
OG price	Transformed:	MAX	Maximum Ab	3.831268	3.633768
.OG price	Transformed:	MSE	Mean Square	0.286654	0.279806
.OG price	Transformed:	NOBS	Sum of Frequ	3715	3051
.OG price	Transformed:	NW	Number of E	45	
OG price	Transformed:	RASE	Root Average	0.532148	0.528967
.OG price	Transformed:	RFPE	Root Final Pr	0.538633	
OG price	Transformed:	RMSE	Root Mean S	0.5354	0.528967
OG price	Transformed:	SBC	Schwarz's B	-4317.19	
.OG price	Transformed:	SSE	Sum of Squa	1052.019	853.6883
OG price	Transformed:	SUMW	Sum of Case	3715	3051
m.			•	<u> </u>	12:55 PN

The most significant result is close to zero, and Analysis of Variance shows model statistical information like the F value measures how a group of variables is jointly substantial. The P value shows how strongly this model supported the CA-Airbnb dataset. Thus, Pr> F is <0.001, which means the model supports the CA-Airbnb dataset.

The Type 3 Analysis of Effect table contains each variable Pr>F value; if the result is close to 1, the insignificant input variables can be removed as the input variable if statistically

significant input should be included in further analysis. The most variable is statistically significant except 'latitude' and 'longitude.'

Figure 32

Output window of Linear Regression Model.

52	Analysis of Variance										
53				_							
54	_			um of		_					
55	Source	DF	Sq	uares	Mean	Square	F V	alue	Pr > F		
56							_				
57	Model	44				645468	9	6.44	<.0001		
58	Error	3670			0.	286654					
59	Corrected 7	Total 3714	2268.4	19485							
60											
61											
62		Model Fit S	tatistics								
63											
64	R-Square	0.5362	Adj R-Sq		0.5307						
65	AIC	-4597.0952	BIC		93.9920						
66	SBC	-4317.1892	C(p)		45.0000						
67											
68											
69		Ty	pe 3 Analys	is of 1	Effects						
70											
71					Sum o						
72	Effect			DF	Square	s F	Value	Pr	> F		
73											
74		_scores_rating		1	7.973	7	27.82	<.0	0001		
75	IMP_review:	s_per_month		1	2.088	19	7.29	0.0	070		
76	LOG_number	_of_reviews		1	23.839	19	83.17	<.0	0001		
77	availabili	ty_365		1	13.120	13	45.77	<.0	0001		
78	calculated	_host_listings_	count	1	5.487	'3	19.14	<.0	0001		
79	latitude			1	0.154	14	0.54	0.4	1631		
80	longitude			0							
81	minimum_ni	ghts		1	6.486	5	22.63	<.0	0001		
82	neighbourh	ood_cleansed		15	49.792	:6	11.58	<.0	0001		
83	property_t	уре		19	113.603	19	20.86	<.0	0001		
84	room_type			3	879.679	5 10	22.93	<.0	0001		
85											
200								4-	1:27 PM		
	0				<u> </u>	<u> </u>	(D)		3/6/2023		
									3,0,2023		

Decision Tree

Decision trees are the most popular predictive and descriptive-analytic because it is easy to create and understand at least one categorical or continuous target variable as I applied the CA-Airbnb dataset with the price as a constant target variable. Criteria used for evaluating performance will be an average squared error, lift charts, and misclassification rates.

Figure 33

Properties of Decision Tree Model.

Property	Value
Number of Rules	5
Number of Surrogate Rules	0
Split Size	
☐ Split Search	
-Use Decisions	No
-Use Priors	No
Exhaustive	5000
Node Sample	20000
■Subtree	
-Method	Assessment
Number of Leaves	1
-Assessment Measure	Average Square Error
Assessment Fraction	0.25
☐ Cross Validation	
Perform Cross Validation	No
Number of Subsets	10
Number of Repeats	1
:-Seed	12345
Observation Based Importa	
Observation Based Importa	
Number Single Var Importa	5
□P-Value Adjustment	
Bonferroni Adjustment	Yes
Time of Bonferroni Adjustm	Before
	hi-

The result of the average square error at 0.264227 by validation dataset that statistical result helps to compare the predictive model. The previous mode is the linear regression model result of an average square error of 0.279806 on the Validation partition. The decision tree model is slightly better than the linear regression because of the lower average square error.

Fit Statistics window of Decision Tree.

The Variable Importance window shows a list of input variables used in the decision tree and the number of splits obtained within those variables. The importance of statistics for the training dataset shows how the input variables fit the tree. The decision tree Variable Importance result shows that the ten input variables are the ratio of validation importance. The room_type affects the entire tree, and property_type is the second variable that affects the tree.

Figure 35

Variable Importance of Decision Tree.

File Edit View Window	File Edit View Window										
🖺 🖺 🖨 🎹 🇳											
Variable Importance											
Variable Name	Label	Number of Splitting Rules	Importance	Validation Importance	Ratio of Validation to Training Importance						
room type	room type	2	1.0000	1.0000	1.0000						
property type	property type	2	0.3920	0.3880	0.9898						
calculated host listings c	calculated host listings c	7	0.2664	0.1580	0.5930						
LOG number of reviews	Transformed: number of r	3	0.2609	0.2464							
longitude	longitude	6	0.2557	0.1825	0.7140						
availability 365	availability 365	3	0.1768	0.2109	1.1929						
minimum nights	minimum nights	2	0.1222	0.0145	0.1188						
neighbourhood cleansed	neighbourhood cleansed	2	0.1038	0.0522	0.5027						
IMP reviews per month	Imputed: reviews per month	2	0.1014	0.0321	0.3162						
latitude	latitude	3	0.0796	0.0557	0.7000						
IMP review scores rating	Imputed: review scores ra	0	0.0000	0.0000							

The Subtree Assessment plot helps to know if the model has been overfitting. If it fits the data, it becomes less comprehensive; the resulting decision tree model is balanced.

Figure 36

Subtree Assessment Plot of Decision Tree.

Neural Network Model with HP Neural Node

The HP Neural node creates a neural network that best applies a large amount of data to make it practical for the most significant decision-making. The HP Neural node can process with interval, binary, or nominal target variable(s) and input(s). Additionally, the HP Neural node eliminates significant data movement and builds advances in parallel processing and inline memory.

Figure 37

HP Neural model properties.

Property	Value
■ Network Options	
Input Standardization	Range
Architecture	One Layer
Number of Hidden Neurons	3
Number of Hidden Layers	3
Hidden Layer Options	
-Direct Connections	No
Target Standardization	Range
Target Activation Function	
L-Target Error Function	Normal
Number of Tries	2
Maximum Iterations	300
Use Missing as Level	No
Report	
Maximum Number of Links	1000
Status	
Create Time	3/3/23 8:13 PM
Run ID	86a567ea-6ae7-7742-829a
Last Error	
Last Status	Complete
Last Run Time	3/6/23 8:15 PM

The Output window contains model information as the Limited Memory BFGS algorithm processed; three hidden neurons and one hidden layer were created, 163 weights were used, 6766 observations were read, and only 3715 were used to train the model.

Figure 38

Output of HP Neural model.

≅ Outpu	ıt								
49									
50	Data	Engin	e	Role	Path				
51									
52	WORK.HPNNA_TRAINDATA	٧9		Input	On Client				
53									
54									
55	Model Information								
56									
57	Data Source		WOR	K.HPNNA_T	RAINDATA				
58	Architecture		MLP						
59	Number of Input Variables								
60	Number of Hidden Layers		1						
61	Number of Hidden Neuron	_	3						
62	Number of Target Variab	les							
63	Number of Weights		163						
64	Optimization Technique		Lim	ited Memo	ry BFGS				
65									
66									
67	Number of Observations			676	-				
68	Number of Observations			676	-				
69	Number Used for Trainin	-		371					
70	Number Used for Validat	ion		305	1				

The result of the average square error at 0.240371 by validation dataset. The previous mode is the decision tree model result of an average square error at 0.264227 on the validation dataset. The neural network model is slightly better than the decision tree because of the lower average square error.

Fit Statistics result of HP Neural.

Fit Statistics										
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test				
LOG price	Transfor	ASE	Average	0.240371	0.246757					
LOG price	Transfor	DIV	Divisor fo	3715	3051					
LOG price	Transfor	MAX	Maximum	3.673405	4.039275					
LOG price	Transfor	NOBS	Sum of Fr	3715	3051					
LOG price	Transfor	RASE	Root Aver	0.490276	0.496747					
LOG price	Transfor	SSE	Sum of S	892.977	752.8563					

In the HPNeural node, one of the results is a Link Graph, which the neural network doesn't. The Link Graph plot is an ideal representation of the neural network. The target variable is always on the right side, and the input(s) are on the left. A color difference on the line means the thicker red line represents a more significant link weight, and the thinner blue represents a smaller one.

Thus, in this neural network, extensive weight links are room_type=Entire Home property_type-Boutique Hotel, Log_number_of_reviews.

Figure 40

Link Graph of HP Neural model.

Model Comparison

After the 3 Big models' results, the next step is to compare which best fits the CA_Airbnb dataset. The Model Comparison node compares models and predictions from other models and then decides on the best-fit model for the CA-Airbnb dataset to help us find statistically significant predictors for price decisions. I will compare linear regression, decision tree, and HP neural.

The result of output Fit statistics tables contains each model ASE as the selected Model column shows Y which HP Neural model is the best fit.

Fit Statistics by Model Comparison Node.

٠.						
28						
29	Fit Statis	tics				
30	Model Sele	ction bas	ed on Valid: Ave	rage Square	d Error (_VASE_))
31						
32				Valid:	Train:	
33				Average	Average	
34	Selected	Model	Model	Squared	Squared	
35	Model	Node	Description	Error	Error	
36						
37	Y	HPNNA	HP Neural	0.24676	0.24037	
38		Tree	Decision Tree	0.26423	0.24033	
39		Reg2	Regression	0.27981	0.28318	
40						
41						
42						
43						
				^ <u></u>	♠ Φ) *	11:46 AM 3/8/2023
						5, 0, 2025

The Score Ranking Overlay with Mean Predicted selection shows that each model predicts mean price. The x-axis shows the result of the mean predicted, and the y-axis shows the depth, which is how far the model is from random guessing. The higher the mean predicted, the better. Thus, the highest mean predicted was 5.99 and 5% depth from the HP Neural model on the validation dataset.

Figure 42

Score Rankings Overlay by Model Comparison node.

Conclusion

My project involved exploring the CA-Airbnb.csv dataset to gain insight into the price predicted and which variables are predicted. I started by discussing and dividing the dataset into training and validation partitions. I then used linear regression, decision trees, and neural

networks to train my models on the training set and evaluate their performance on the validation set. After comparing the models' results, I concluded that the HP Neural model was the most effective for the CA-Airbnb.csv dataset. I also used the Weights graph by the HP Neural model to explore the data further and gain insights into the results.

Model Name	Average Square error	Depth	Mean Predicted
Linear Regression	0.279808	5%	5.71
Decision Tree	0.264227	5%	5.85
HP Neural	0.246757	5%	5.99

The result of HP Neural's essential variables for the Weight window contains color; the dark red heavy weight means the most significant link weight and the blue color values indicate a smaller link weight. Thus, the CA-Airbnb dataset's most predictive variable for the target variable is price; room_type= Entire home/Apt at 0.85, property type=Boutique Hotel at 1.05, and number of reviews at 0.84.

Figure 43
Weight window from HP Neural.

- -A high percentage of room types by neighborhood, as hotel rooms in Palo Alto and Santa Clara are 50%.
- The room type Entire Home/Apt price median is \$168 per unit, and the Private room price is the median at \$67 per unit.
- The highest number of room type private room reviews of 6.19.
- The highest mean availability by room type is a hotel room 266.

Overall, the predictive project was a great learning experience. I learned about the various data predictive techniques and how they can be used to gain insights from the data. I also learned about the different methods that can be used to evaluate the performance of the models. Additionally, I gained a better understanding of the importance of data visualization and how it can be used to identify patterns and relationships in the data.

References

- Richard V. McCarthy; Mary M. McCarthy; Wendy Ceccucci, 2022. *Applying Predictive Analytics Finding Value in Data*. Second edition.
- Bode, O., Toader, V., & Rus, R. (2022). Pricing Strategies of Porto's Airbnb New Listings.

 International Conference On Tourism Research, 15(1), 425-432.

 https://doi.org/10.34190/ictr.15.1.249
- Guggilla, Chakraborty, P. Price Recommendation Engine for Airbnb. Support.sas.com. Retrieved from https://support.sas.com/resources/papers/proceedings17/1326-2017.pdf
- Kas, J., Delnoij, J., Corten, R., & Parigi, P. (2022). Trust spillovers in the sharing economy: Does international Airbnb experience foster cross-national trust? Journal Of Consumer Behaviour, 21(3), 509-522. https://doi.org/10.1002/cb.2014
- SAS Documentation. Support.sas.com. (2022). Retrieved from https://support.sas.com/en/documentation.html
- Vlogger, M., Pforr, C., Stawinoga, A., Taplin, R., & Matthews, S. (2018). Who adopts the Airbnb innovation? An analysis of international visitors to Western Australia. Tourism Recreation Research, 43(3), 305-320. https://doi.org/10.1080/02508281.2018.1443052

Ray William, 2020. Bay Area, CA – Airbnb Data (UPDATED 2020).

- Way X, 2020. New York City Airbnb Data Analysis, Visualization, and Prediction9V2).
 - https://tyuion1215.medium.com/newyorkcity-airbnb-data-analysis-visualization-and-predication-8397943066f9

https://www.kaggle.com/datasets/raywilliam/bay-area-airbnb-data-updated-2020

PropertyManagement, 2022. Airbnb Statistics. https://ipropertymanagement.com/research/airbnb-statistics

J.Li, F. Biljecki.(2019). The Implementation of Big Data Analysis in Regulating Online Short-Term

Rental Business: A Case of Airbnb in Beijing. https://ual.sg/publication/2019-sdsc-airbnb-beijing/2019-sdsc-airbnb-beijing.pdf