Bisection:

```
%the bisection function:

□ function x1= bisection(f,a,b,tol,maxiter)
 %This function computes a root of f in the interval [a, b]
 x1=[];%define the new matrix with void value
mean (a+b)/2% the interval of b is too large, change the interval
     x1=[x1, mean];
     %add the new approximate root in the array;
     if length(x1)==maxiter
         break
     elseif f(a)*f(mean)<=0</pre>
             a=a;
             b=mean;%now the new interval is a~mean left interval
     else
         a=mean;
         b=b; %now using the right half interval
     end
 end
 end
```

Secant:

```
%secant

□ function x2=secant(f, a, b, tol, maxiter)
 index1=a; %defined the boundary point a
 index2=b; %definedn the boundary point b
 x2=[]; %define the initial matrix with void value
 i=1; %set the initial value

while i<=maxiter&&tol<abs(index2-index1)
</pre>
     %when not exceed the total iteration value and
     %the new range within the interval, do the loop
     %define the 3rd indicatior->delta x
      indexn=index2-index1;
     %define the 4th indicatior->delta y
      indexd=f(index2)-f(index1);
     %find the new narror interval
      index1=index2;
      index2=index1-f(index1)*(indexn/indexd);
     x2(i)=index2;
      i=i+1;
 end
 end
```

```
Newton:
```

```
%newton

□ function x3=newton(f, fprime, a, tol, maxiter)
  i=1; %set the interaction index
 %define the Newton's recursion formuala:
 x1=a-f(a)/fprime(a);
 %set the two boundary points:
  index1=a;
 index2=x1;
 %give value to x3
 x3=[index2];
 index3=index2-index1;
index1=index2;
     %do the recursion
     index2=index1-f(index1)/fprime(index1);
     x3=[x3,index2];
     index3=index2-index1;
     i=i+1;
 end
 end
Fixed point:
   %fixed point method:

□ function x4=fixedpoint(g, a, tol, maxiter);
   %set the initial function a and gx
   index1=a;
   index2=g(a);
   x4=[index2];
   i=1;%set the initial value of index
 index1=index2; %set the new index
       index2=g(index1);
       x4=[x4, index2];
       i=i+1;
   end
   end
```

Output: Bisection:

Iteration	x_k	e_k	e_k/e_{k-1}	e_k/e_{k-1}^1.6	e_k/e_{k-1}^2
1 2	2.0000000000000000 1.2500000000000000	2.6795e-01 4.8205e-01	4.8205e-01	1.7990e+00	6.7141e+00
3	1.625000000000000	1.0705e-01	1.0705e-01	2.2207e-01	4.6069e-01
4	1.812500000000000	8.0449e-02	8.0449e-02	7.5150e-01	7.0201e+00
5	1.71875000000000	1.3301e-02	1.3301e-02	1.6533e-01	2.0551e+00
6	1.76562500000000	3.3574e-02	3.3574e-02	2.5242e+00	1.8978e+02
7	1.74218750000000	1.0137e-02	1.0137e-02	3.0192e-01	8.9926e+00
8	1.73046875000000	1.5821e-03	1.5821e-03	1.5607e-01	1.5397e+01
9	1.73632812500000	4.2773e-03	4.2773e-03	2.7036e+00	1.7089e+03
10	1.73339843750000	1.3476e-03	1.3476e-03	3.1506e-01	7.3659e+01
11	1.73193359375000	1.1721e-04	1.1721e-04	8.6978e-02	6.4541e+01
12	1.73266601562500	6.1521e-04	6.1521e-04	5.2486e+00	4.4778e+04
13	1.73229980468750	2.4900e-04	2.4900e-04	4.0474e-01	6.5789e+02
14	1.73211669921875	6.5892e-05	6.5892e-05	2.6463e-01	1.0628e+03
15	1.73211009921873	2.5661e-05	2.5661e-05	3.8944e-01	5.9104e+03
16	1.73207092285156	2.001e-05 2.0115e-05	2.0115e-05	7.8388e-01	3.0548e+04
10 17	1.73204803466797	2.0113e-03 2.7729e-06	2.0113e-03 2.7729e-06	1.3785e-01	6.8530e+03
17	1.75204005400797	2.77296-00	2.77296-00	1.37036-01	0.03306+03
18	1.73205947875977	8.6712e-06	8.6712e-06	3.1271e+00	1.1277e+06
19	1.73205375671387	2.9491e-06	2.9491e-06	3.4011e-01	3.9223e+04
20	1.73205089569092	8.8122e-08	8.8122e-08	2.9881e-02	1.0132e+04
21	1.73204946517944	1.3424e-06	1.3424e-06	1.5233e+01	1.7287e+08
22	1.73205018043518	6.2713e-07	6.2713e-07	4.6718e-01	3.4802e+05
23	1.73205053806305	2.6951e-07	2.6951e-07	4.2974e-01	6.8525e+05
24	1.73205071687698	9.0692e-08	9.0692e-08	3.3651e-01	1.2486e+06
25	1.73205080628395	1.2849e-09	1.2849e-09	1.4168e-02	1.5622e+05
26	1.73205085098743	4.3419e-08	4.3419e-08	3.3791e+01	2.6298e+10
27	1.73205082863569	2.1067e-08	2.1067e-08	4.8520e-01	1.1175e+07
28	1.73205081745982	9.8909e-09	9.8909e-09	4.6950e-01	2.2286e+07
29	1.73205001743302	4.3030e-09	4.3030e-09	4.3505e-01	4.3984e+07
30	1.732050801107103	1.5090e-09	1.5090e-09	3.5069e-01	8.1500e+07
31	1.73205080768093	1.1206e-10	1.1206e-10	7.4257e-02	4.9208e+07
32	1.73205080698244	5.8643e-10	5.8643e-10	5.2333e+00	4.6702e+10
33	1.73205080733169	2.3719e-10	2.3719e-10	4.0446e-01	6.8969e+08
34	1.73205080750631	6.2566e-11	6.2566e-11	2.6378e-01	1.1121e+09
35	1.7320508075031	2.4746e-11	2.4746e-11	3.9552e-01	6.3217e+09
36	1.73205080754997	1.8910e-11	1.8910e-11	7.6415e-01	3.0880e+10
30 37					
	1.73205080757180	2.9181e-12	2.9181e-12	1.5432e-01	8.1607e+09
38	1.73205080756088	7.9958e-12	7.9958e-12	2.7401e+00	9.3899e+11
39	1.73205080756634	2.5389e-12	2.5389e-12	3.1752e-01	3.9711e+10
40	1.73205080756907	1.8963e-13	1.8963e-13	7.4690e-02	2.9419e+10
41	1.73205080756770	1.1746e-12	1.1746e-12	6.1944e+00	3.2666e+13
42	1.73205080756838	4.9249e-13	4.9249e-13	4.1928e-01	3.5695e+11

Secant:

Which method? 2

Iteration	x_k	e_k	e_k/e_{k-1}	e_k/e_{k-1}^1.6	e_k/e_{k-1}^2
1	1.18750000000000	5.4455e-01			
2	1.52666666666667	2.0538e-01	3.7716e-01	5.4912e-01	6.9261e-01
3	1.77325759901750	4.1207e-02	2.0063e-01	5.3365e-01	9.7687e-01
4	1.72948613614626	2.5647e-03	6.2239e-02	4.4674e-01	1.5104e+00
5	1.73202063639781	3.0171e-05	1.1764e-02	4.6975e-01	4.5870e+00
6	1.73205082992306	2.2354e-08	7.4091e-04	4.6082e-01	2.4557e+01
7	1.73205080756868	1.9451e-13	8.7013e-06	4.6552e-01	3.8925e+02
8	1.73205080756888	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00

Newton:

Which method? 3

Iteration	x_k	e_k	e_k/e_{k-1}	e_k/e_{k-1}^1.6	e_k/e_{k-1}^2
1	3.250000000000000	1.5179e+00			
2	2.08653846153846	3.5449e-01	2.3353e-01	1.8043e-01	1.5385e-01
3	1.76216323998582	3.0112e-02	8.4946e-02	1.6125e-01	2.3963e-01
4	1.73230809320663	2.5729e-04	8.5442e-03	7.4449e-02	2.8374e-01
5	1.73205082667515	1.9106e-08	7.4261e-05	1.2281e-02	2.8863e-01
6	1.73205080756888	2.2204e-16	1.1622e-08	6.8511e-04	6.0826e-01
7	1.73205080756888	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00

Fixed point:

1: bisection, 2: secant, 3: newton, 4 fixed point Which method? 4

Iteration	x_k	e_k	e_k/e_{k-1}	e_k/e_{k-1}^1.6	e_k/e_{k-1}^2
1	1.69078493020360	4.1266e-02			
2	1.75194638077097	1.9896e-02	4.8213e-01	3.4576e+00	1.1684e+01
3	1.72193161989028	1.0119e-02	5.0862e-01	5.7255e+00	2.5564e+01
4	1.73706606179116	5.0153e-03	4.9562e-01	8.4730e+00	4.8978e+01
5	1.72953228898671	2.5185e-03	5.0217e-01	1.3248e+01	1.0013e+02
6	1.73330732028817	1.2565e-03	4.9891e-01	2.0147e+01	1.9810e+02
7	1.73142186755829	6.2894e-04	5.0054e-01	3.1064e+01	3.9836e+02
8	1.73236510628927	3.1430e-04	4.9973e-01	4.7567e+01	7.9456e+02
9	1.73189361543409	1.5719e-04	5.0014e-01	7.3089e+01	1.5913e+03
10	1.73212939293680	7.8585e-05	4.9993e-01	1.1211e+02	3.1804e+03
11	1.73201151221078	3.9295e-05	5.0003e-01	1.7211e+02	6.3629e+03
12	1.73207045457930	1.9647e-05	4.9998e-01	2.6412e+02	1.2724e+04
13	1.73204098389652	9.8237e-06	5.0001e-01	4.0540e+02	2.5450e+04
14	1.73205571936327	4.9118e-06	5.0000e-01	6.2217e+02	5.0897e+04
15	1.73204835166124	2.4559e-06	5.0000e-01	9.5492e+02	1.0180e+05
16	1.73205203552009	1.2280e-06	5.0000e-01	1.4656e+03	2.0359e+05
17	1.73205019359262	6.1398e-07	5.0000e-01	2.2494e+03	4.0718e+05
18	1.73205111455684	3.0699e-07	5.0000e-01	3.4523e+03	8.1436e+05
19	1.73205065407485	1.5349e-07	5.0000e-01	5.2985e+03	1.6287e+06
20	1.73205088431588	7.6747e-08	5.0000e-01	8.1320e+03	3.2575e+06
21	1.73205076919537	3.8374e-08	5.0000e-01	1.2481e+04	6.5149e+06
22	1.73205082675563	1.9187e-08	5.0000e-01	1.9155e+04	1.3030e+07
23	1.73205079797550	9.5934e-09	5.0000e-01	2.9399e+04	2.6060e+07
24	1.73205081236557	4.7967e-09	5.0000e-01	4.5122e+04	5.2119e+07
25	1.73205080517053	2.3983e-09	5.0000e-01	6.9252e+04	1.0424e+08
26	1.73205080876805	1.1992e-09	5.0000e-01	1.0629e+05	2.0848e+08
27	1.73205080696929	5.9959e-10	5.0000e-01	1.6313e+05	4.1695e+08
28	1.73205080786867	2.9979e-10	5.0000e-01	2.5036e+05	8.3391e+08
29	1.73205080741898	1.4990e-10	5.0000e-01	3.8425e+05	1.6678e+09
30	1.73205080764383	7.4948e-11	5.0000e-01	5.8975e+05	3.3357e+09
31	1.73205080753140	3.7474e-11	5.0000e-01	9.0512e+05	6.6712e+09
32	1.73205080758761	1.8737e-11	5.0001e-01	1.3892e+06	1.3343e+10
33	1.73205080755951	9.3685e-12	4.9999e-01	2.1321e+06	2.6685e+10
34	1.73205080757356	4.6843e-12	5.0000e-01	3.2723e+06	5.3370e+10
35	1.73205080756654	2.3421e-12	5.0000e-01	5.0223e+06	1.0674e+11
36	1.73205080757005	1.1711e-12	5.0000e-01	7.7081e+06	2.1348e+11
37	1.73205080756829	5.8531e-13	4.9981e-01	1.1826e+07	4.2680e+11
38	1.73205080756917	2.9265e-13	5.0000e-01	1.8161e+07	8.5425e+11