```
const int ledPin = 13;
void setup() { // 1 度だけ実行される
 pinMode(ledPin, OUTPUT);
void loop() { // 繰り返し実行される
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
 delay(1000);
```

```
if (x > 8) {...} else {...}
for (int i = 0; i < 8; i++) {...}
while (x < 8) \{...\}
do \{...\} while (x < 8);
continue; ループの残りの部分を飛び越す
break; 処理を中止して抜ける
return x; 関数から抜けて値 x を返す
switch (x) {
 case 1:
   break:
  case 2:
   break;
 default:
```

コメントと特別な命令

// 1 行ずつのコメント /* 長さが自由なコメント */ #define LEDPIN 12 #include <EEPROM.h>

```
x = y + 3;
              y = x - 3;
x = y * 5;
              y = x / 5;
a = b % 8; 8で割った余りを求める
```

x != y 等しくない x == y x < y x > yx <= y x >= y

i++ 評価して加算 ++i 加算して評価 i-- 評価して減算 --i 減算して評価 x += 2; はx = x + 2; と同じ

どちらも真なら真 ((x < y) && (y < z)) && どちらかが真なら真 ((x == 1) || (y != 1)) ш 否定 if (!x) { ... }

x &= B11111100; マスク(AND) x |= B00000011; セット(OR) $z = x ^ y$; 排他的論理和 (XOR) y = ~x; 否定 (NOT) y = x << 2; 左シフト y = x >> 2; 右シフト

刑

void 真 true か偽 false boolean char $-128 \sim 127$ unsigned char $0 \sim 255$ byte $0 \sim 255$ int $-32768 \sim 32767$

unsigned int $0 \sim 65535$ $0 \sim 65535$ word

 $-2147483648 \sim 2147483647$ long unsigned long $0 \sim 4294967295$

 $-3.4028235E+38 \sim 3.4028235E+38$ float **double** $-3.4028235E+38 \sim 3.4028235E+38$

char str[] = "hello"; 配列として初期化 str[0] = 'H';] 文字目を H に変更 "Hello\tworld!\r\n" タブと改行 (CR+LF) print(F("Hello")) Flash メモリを使用

定数と数値表現

HIGH | LOW デジタル入出力の値 **INPUT** | **OUTPUT** デジタル入出力の向き true | false 論理値(真と偽) 170 十進数 0252 八進数 0xAA 十六進数 B10101010 二進数 100 符号なし 20L long 30UL 符号なし long

10.0 浮動小数点数 2.4e5 240000.0

int array[5]; 要素を5個持つ配列 array[0] = 2; ひとつめの要素に代入 int pins[] = $\{2, 4, 8, 6\}$; sizeof(pins)/sizeof(pins[0]) 要素の数

型宣言で使うキーワード

const float pi = 3.14; volatile char buf; static int result;

デジタル入出力

pinMode(pin, [INPUT|OUTPUT]) digitalWrite(pin, [HIGH|LOW]) int x = digitalRead(pin); 内蔵プルアップ抵抗を有効にする pinMode(pin, INPUT); digitalWrite(pin, HIGH);

アナログ入出力

int x = analogRead(pin); analogReference([DEFAULT|INTERNAL| EXTERNAL 1) デフォルトは電源電圧 analogWrite(pin, x) \times to \sim 255

その他の入出力

shiftOut(dataPin, clockPin, [MSBFIRST|LSBFIRST], value) shiftIn(dataPin, clockPin, [MSBFIRST|LSBFIRST]) pulseIn(pin, [HIGH|LOW]) tone(pin, freq) 周波数はヘルツ (Hz) で指定 tone(3, 440, 90); 90 ミリ秒間だけ鳴らす noTone(pin)

millis() 起動からの経過時間(ミリ秒) **micros()** 起動からの経過時間 (マイクロ秒) delay(250); 250 ミリ秒間停止 delayMicroseconds(250); 250 マイクロ秒

LilyPad

randomSeed(analogRead(0)); 初期化の例 long x = random(max); max-1 までの整数long x = random(min, max); 最小値を指定

数学的な関数

min(x, y)max(x, y)abs(x) sqrt(x) pow(base, exponent) sin(rad) cos(rad) tan(rad) constrain(x, min, max) map(x, fromL, fromH, toL, toH)

ビットとバイトの処理

lowByte(x) highByte(x) bitRead(x, n) bitWrite(x, n, bit) bitSet(x, n) bitClear(x, n) **bit(n)** (1 << (n)) と同じ処理

外部割り込み

attachInterrupt([0|1], function, [LOW|CHANGE|RISING|FALLING]) detachInterrupt([0|1]) noInterrupts() 割り込みの一時停止

interrupts() 止めた割り込みの再スタート

SCL SDA AREFI GND 113 #114 #18 Z 4 t t C DIGITAL [#=PWM] L 🗀 ON RX 🔲 Arduino™ DC 7~12V POWER ANALOG IN IOREF RESE1303 1303 150 150 1600 C (0)電源ピン アナログ入力ピン

デジタル入出力ピン

Arduino Uno R3

ATmega168/ATmega328P

FTDI USB IF メモリ容量の比較

	black	GND		mega168	mega328	mega1280	
	brown	CTS#	Flash	16KB	32KB	128KB	
	red	VCC	SRAM	1KB	2KB	8KB	
ī	orange	TXD	EEPROM	512B	1KB	4KB	
	yellow	RXD	ICSP MISO VCC				
	green	RTS#					

SCK (• •) MOSI

Reset (● ●) GND

Sparkfun FTDI Basic の green は DTR 端子

シリアル通信

Serial.begin(9600); 初期化 9600bps 受信した 1 バイトを 10 進数で送り返す例 if (Serial.available() > 0) { buf = Serial.read(); // 1 文字読む Serial.print("I received: "); Serial.println(buf, DEC); }

String クラス

String s1 = "Hello"; print(s1 + s2); 文字列の連結 if (s1 == s2) 文字列の比較

キャラクタ液晶ディスプレイ

#include <LiquidCrystal.h> **LiquidCrystal** 1cd(2, 3, 4, 5, 6, 7); lcd.begin(16,2); LCD の桁数と行数を指定 lcd.setCursor(10,1); カーソル位置を指定 lcd.print("Hello world!"); lcd.clear(); 画面をクリアしカーソルは左上

