

■ alexandersoen@gmail.com | 🆀 alexandersoen.github.io | 🖸 alexandersoen | 🎓 Alexander Soen

Summary.

I have a wide range of interests within machine learning, with a primary interest in utilizing information geometric tools and loss function theory. My current research focus involves exploring bounds for domain adaptation and exploring novel perspectives for learning with rejection. I also have a strong interest in fairness and boosting algorithms, which I have explored earlier in my PhD. Previously, I have worked on topics including theorem provers, visualisation of academic influence, universal approximation theorems, and point process models.

Education

Doctor of Philosophy in Computer Science	Anticipated Submission 2025 July
The Australian National University; Canberra, Australia	2021 – Pres.
Bachelor of Advanced Computing (R&D) (First Class Honours, University Medal)	
The Australian National University; Canberra, Australia	2016 – 2019
Secondary School	ATAR: 98.75
Radford College; Canberra, Australia	2014 - 2015

Publications

Published		
[1]	Koc O, Soen A , Chiang CK, Sugiyama M, "Domain Adaptation and Entanglement: an Optimal Transport	AISTATS 2025
	Perspective"	
[2]	Calderon P, Soen A , Rizoiu MA, "Linking Across Data Granularity: Fitting Multivariate Hawkes Processes to Partially	IEEE TCSS 2024
	Interval-Censored Data"	
[3]	Soen A, Husain H, Schulz P, Nguyen V, "Rejection via Learning Density Ratios"	NeurIPS 2024
[4]	Soen A, Sun K, "Tradeoffs of Diagonal Fisher Information Matrix Estimators"	NeurIPS 2024
[5]	Nock R, Amid E, Nielsen F, Soen A , Warmuth MK, "Hyperbolic Embeddings of Supervised Models"	NeurIPS 2024
[6]	Zhu H, Soen A , Cheung YK, Xie L, "Online Learning in Betting Markets: Profit versus Prediction"	ICML 2024
[7]	Wang EX, et al., "3D NLTE Lithium abundances for late-type stars in GALAH DR3"	MNRAS 2024/3
[8]	Soen A , Husain H, Nock R, "Fair Densities via Boosting the Sufficient Statistics of Exponential Families"	ICML 2023
[9]	Soen A, Alabdulmohsin I, Koyejo S, Mansour Y, Moorosi N, Nock R, Sun K, Xie L, "Fair Wrapping for Black-box	NeurIPS 2022
	Predictions"	
[10]	Rizoiu MA, Soen A , Li S, Calderon P, Dong L, Menon AK, Xie L, "Interval-censored Hawkes processes"	JMLR 2022
[11]	Soen A, Sun K, "On the Variance of the Fisher Information for Deep Learning"	NeurIPS 2021
[12]	Soen A , Mathews A, Grixti-Cheng D, Xie L, "UNIPoint: Universally Approximating Point Processes Intensities"	AAAI 2021
[13]	Shin M, Soen A , Readshaw BT, Blackburn SM, Whitelaw M, Xie L, "Influence flowers of academic entities"	IEEE VAST 2019
Pre	prints (arXiv)	
[14]	Soen A, Nielsen F, "pyBregMan: A Python library for Bregman Manifolds"	2408.04175
[15]	Li S, Walder C, Soen A , Xie L, Liu M, "Sampled transformer for point sets"	2302.14346

Work Experience and Projects

Student Trainee Remote + Tokyo, Japan RIKEN 2023 - Pres.

· 6 month internship at the RIKEN Imperfect Information Learning Team.

- · Machine learning research on generalized exponential families, importance weighting, and PAC-Bayesian generalization bounds.
- Coauthored a paper on unsupervised domain adaptation [1].

PhD Student Canberra, Australia

AUSTRALIAN NATIONAL UNIVERSITY

2021 - Pres.

- · In collaboration with the interdisciplinary Humanising Machine Intelligence group at the Australian National University.
- · Developing novel algorithms using tools from theoretical machine learning and information geometry, with applications in algorithmic fairness.

PyBregMan - Co-creator

Remote + Tokyo, Japan 2024 - Pres.

AUSTRALIAN NATIONAL UNIVERSITY / RIKEN

- · An open source Python library for geometric computing on BREGman MANifolds with applications. Available on GitHub and PyPi.
- Tutorial "Data Representations on the Bregman Manifold" accepted at ICML'24 GRaM workshop with Google Colab.
- Website at: https://franknielsen.github.io/pyBregMan/index.html. Reference documentation for software [14].

Applied Scientist Intern Canberra, Australia

AMAZON 2023

- 6 month internship at the Amazon Australian Machine Learning team.
- Machine learning research on causal inference, uncertainty quantification, and learning with rejection. Paper published [3].
- Working on business projects in the retail product space.
- Analysing data, building models, and using Amazon's tool-kits (AWS, Python, Tensorflow).

Interval-Censored Point Processes - Research Assistant

Sydney, Australia

2020

UNIVERSITY OF TECHNOLOGY SYDNEY

· Worked in a Facebook funded project which involves the collaboration of computer scientists and social scientists to study hate speech.

- Built and deployed various web-crawlers from scratch in Python using numerous APIs.
- Developed new algorithms to fit interval-censored data to Hawkes Process; which resulted in publications [10, 2].

Knowledge Graphs - Research Assistant

Canberra, Australia

AUSTRALIAN NATIONAL UNIVERSITY

2020

- Collaborated with departments of the Australian Government to integrate different data sources for analysis.
- Created a software pipeline to create knowledge graphs using various technologies (RDF, SPARQL, external APIs).

Point Processes and Neural Networks - Summer Research + Research Student

Canberra, Australia

2018 - 2019

AUSTRALIAN NATIONAL UNIVERSITY + AUSTRALIAN SIGNALS DIRECTORATE

- Collaborated with the Australian Signals Directorate in linking different types of Hawkes process models.
- Proposed a novel architecture for incorporating universal approximation of neural networks for Hawkes process models.
- The work resulted in publication [12].

Visualisation of Academic Influence - Research Assistant

Canberra, Australia

AUSTRALIAN NATIONAL UNIVERSITY

2017 - 2019

- Maintained and developed the InfluenceMap website (https://influencemap.cmlab.dev): a visualisation tool for examining citation and publication based influence patterns in research.
- Worked with Microsoft Academic API to gather the data used for visualisation.
- · Presented and demoed the project at the 2018 ACM Multimedia Conference business meeting in Seoul, South Korea.
- The insights and tools developed resulted in publication [13].

Theorem Provers - Summer Research

Canberra, Australia

AUSTRALIAN NATIONAL UNIVERSITY

- Investigated translating formal semantics defined in HOL4 to executable code in CakeML.
- Presented a talk with a poster at the Fifth Data61 Software Systems Summer School.

Other Experience _____

Teaching Assistant Canberra, Australia

AUSTRALIAN NATIONAL UNIVERSITY (VARIOUS COURSES)

2017. 2020 - 2024

- · Taught courses ranging in topics from machine learning (primarily), data management, to logic with various conveners.
- · Helped design and release course material, including, original assignments and lecture plans.
- Taking a head tutor role in 2022 and part of 2023 for a machine learning course of 250+ students, which includes overseeing course design and day-to-day logistics. I have advised in the material and topics taught in the course; and have been strongly involved in developing and creating all course content including examination material.

Honors & Awards

o Australian National University Vice-Chancellor's HDR Travel Grants (\$1500)

NeurIPS Scholar Award (Registration + Accommodation Cover) 2022, 2024

Australian Government Research Training Program

Australian National University: University Medal [Top 2 First Class Honours Graduates] 2019

Ian Ross Honours Scholarship [High-performing Honours Student] (\$5000) 2019

Honours Scholarship with the Australian Signal Directorate (\$8000)

2016 - 2018

2024

2021

2019

Summer Scholarship with the Australian National University (\$5000) $\times 3$

Coding Proficiency

Programming Python (Adv.), R (Inter.), C (Inter.), Julia (Basic), Coq (Basic), ML (Basic), Haskell (Basic), Rust (Basic)

Machine Learning PyTorch (Adv.), scikit-learn (Adv.), Tensorflow (Inter.) Other AWS (Inter.), Bash (Adv.), LaTeX (Adv.), Git (Inter.)