som plays baseball or Paul plays baseball x= som, y= Paul, x V y Sam plays baseball or Ryan doesn't play baseball x=Sam, z=Ryan, xV7Z Knowledge Base = (xVy) 1 (xV-z) Boolean Expression (x Vy) N (x V¬ z xVyVz) XVE) F A. It closen't entail anything. Som and Ryan

both play baseball is false, but knowledge base is

true when x=F, z=F, y=T.

B. Yes. Al least one among Som, Paul and Ryan

play baseball is true. Knowledge base is also

true when X=T, Z=T, y=F

2	
a. If Ana eats, Bret eats	
X y	
V - 3.11	
$x \rightarrow y$	
b. Charles eats and Derek doesn't eat	
X y	
	_
X-77y	_
c. Bret doesn't eat	_
X	
a 7× A Contra and Contra to the source	
	_
d. If (Derek) cloesn't eat at least one amon Ana Earl and Fread eats	9
X y 2	
$7a \rightarrow (x \vee y \vee z)$	_
	_
c. If atleast one of Charles and Gary cats,	
Earl cloesn't eat x	_
2	
X Vy →¬Z	_
	_

3. Using the premis	es in Q2, show that Fred eats
az Given:	
Ana = A	Derek - D Gary = G
Bret = B	Fred - F
Charles = C	Earl = E
· A -> B. If Ana	eate Bret eate
	es eats and Derek doesn't eat
· ¬B. Bret d	veroit ant
· -D - (A PE	AF). If D olvesn't eat. Among A, E,
· C V G -> - E	(2) [[[[[[[[[[[[[[[[[[[
	of Charles and G eats, E doesn't ea
1. Show Fred ea	ts = F
j. 311000 1 1 001 CO	
1. C→¬D	Given
2. ¬D	1. Simplification
3. 7D -> (ANEAF	
1. AVEVP	2,3 Modus Ponens
5. 1/2 A-7 B	Given
6 7B	5 Given
7. ¬A	5,6, Modus Tollens
8. E v F	1,7 Disjunctive Syllogism
9. CVG -> 7E	Given
10. C-> 7E	9, Simplification
11. C	12 simplification
12.7E	10,11 Modus Ponens
B	
J3. P	8, 12 Disjunctive Syllogism
	9 10 9 3