LINEAR PROGRAMMING ALGORITHMS

Linear Programming

- Solving systems of Linear Inequalities.
 - Early work by Fourier (Fourier-Motzkin Elimination Algorithm).
 - In symbolic logic, this is called "Linear Arithmetic".

- World War II: Optimal allocation of resources.
 - Advent of electronic/mechanical calculating machines.
 - L.V. Kantorovich in USSR (1940) and G.B. Dantzig et al. in the USA (1947).

SIMPLEX

• Simplex: algorithm for solving LPs.

First Published by George B. Dantzig

G.B Dantzig: Maximization of a linear function of variables subject to linear inequalities, 1947.

Photo credit: Stanford University

 Prof. Dantzig contributed numerous seminal ideas to this field.

Your instructor (many years ago)

A very special picture for your instructor!!

Visualizing the Simplex Algorithm

Not drawn to scale

Solution: $x_1 = 6$, $x_2 = 11$ Objective Value: 28

Linear Programming Theory

- Duality: John Von Neumann
 - Early work by Lagrange.
 - Connections to game theory.
- Generalized to Karush-Kuhn-Tucker Conditions.

- Complexity of Simplex:
 - Exponential time in the worst case (Klee + Minty).
 - Polynomial time in the "average case".
 - Much remains to be understood.

Polynomial Time Algorithms

- Leonid Khachiyan's ellipsoidal algorithm [Kachiyan'1980]
 - First polynomial time algorithm.

- Interior Point Methods
 - Ideas go back to Isaac Newton (Newton-Raphson).
 - First algorithms for Linear Programs by Narendra Karmarkar [Karmarkar'1984]
 - Interior point methods are useful for non-linear programming (Cf. Nocedal + Wright textbook).

Applications of Linear Programming Theory

Too numerous to list exhaustively...

- Major application areas:
 - Operations Research.
 - Optimal allocation of resources.
 - Decision making.
 - Computer Science
 - Algorithms, Machine Learning, Automated Reasoning, Robotics.
 - Engineering
 - Control Theory

In this course...

- We will first study Simplex algorithm.
 - Understand duality of Linear Programs.

Finally, study interior point methods.