Mydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej nformatyka, rok II Zespół numer 3 Piotr Kucharski Dominik Zabłotny	
Sprawozdanie z ćwiczenia nr 0 Nyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego.	

1 Cel ćwiczenia

2 Wykonanie ćwiczenia

3 Opracowanie danych pomiarowych

Długość druta oporowego została zmierzona i wynosi $100\,\mathrm{cm}$. Jest ona dana zmienną l

$$l = 100 \text{ cm} \tag{1}$$

Rezystancję z danych podanych w tabelach obliczamy za pomocą wzoru ??. Krok zmiany znanej rezystancji został dostosowany do danego opornika aby zmiana wychylenia na mikroamperomierza była zauważalna.

3.1 Pomiar dla opornika R_1

W tabeli 1 zestawiono pomiary przeprowadzone dla opornika 1. Przyjęty został krok zmiany znanej rezystancji $0.5~\Omega$.

Rezystancja opornika znanego $[\Omega]$	12.5	13.0	13.5	14.0	14.5	12.0	11.5	11	10.5	10
Długość $a\ [mm]$	500	491	482	473	464	510	519	529	543	555
Opór R_1 obliczona $[\Omega]$	12.50	12.54	12.56	12.57	12.55	12.49	12.41	12.35	12.48	12.47

Tablica 1: Wyniki pomiarów dla opornika nr 1

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_1} = \frac{\sum_{i=1}^{10} R_{1_i}}{10} \approx 12.49 \,\Omega \tag{2}$$

3.2 Pomiar dla opornika R_2

W tabeli 2 zestawiono pomiary przeprowadzone dla opornika 2. Przyjęty został krok zmiany znanej rezystancji $1~\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500~\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	35.8	36.0	37.0	38.0	39.0	35.0	34.0	33.0	32.0	31.0
Długość $a\ [mm]$	500	494	487	480	473	502	509	517	524	533
Opór R_2 obliczona $[\Omega]$	35.80	35.15	35.12	35.08	35.00	35.28	35.25	35.32	35.23	35.38

Tablica 2: Wyniki pomiarów dla opornika nr 2

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_2} = \frac{\sum_{i=1}^{10} R_{2_i}}{10} \approx 35.26 \,\Omega \tag{3}$$

3.3 Pomiar dla opornika R_3

W tabeli 3 zestawiono pomiary przeprowadzone dla opornika 3. Przyjęty został krok zmiany znanej rezystancji $2\,\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500\,\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	72.1	74.0	76.0	78.0	80.0	70.0	68.0	66.0	64.0	62.0
Długość $a\ [{\sf mm}]$	500	491	481	476	469	506	508	513	520	527
Opór R_3 obliczona $[\Omega]$	72.10	71.38	70.44	70.85	70.66	71.70	70.21	69.52	69.33	69.08

Tablica 3: Wyniki pomiarów dla opornika nr 3

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_3} = \frac{\sum_{i=1}^{10} R_{3_i}}{10} \approx 70.53 \,\Omega \tag{4}$$

3.4 Pomiar dla połączenia szeregowego

W tabeli 4 zestawiono pomiary przeprowadzone połączenia szeregowego oporników R_1 , R_2 , R_3 . Przyjęty został krok zmiany znanej rezystancji $5~\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500~\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	116.3	120.0	125.0	130.0	135.0	110.0	105.0	100.0	95.0	90
Długość $a\ [mm]$	500	496	484	474	465	514	526	538	554	568
Opór R_s obliczona $[\Omega]$	116.30	118.10	117.25	117.15	117.34	116.34	116.52	116.45	118.00	118.33

Tablica 4: Wyniki pomiarów dla połączenia szeregowego

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_s} = \frac{\sum_{i=1}^{10} R_{s_i}}{10} \approx 117.18 \,\Omega \tag{5}$$

3.5 Pomiar dla połączenia równoległego

W tabeli 5 zestawiono pomiary przeprowadzone połączenia równoległego oporników R_1 , R_2 , R_3 . Przyjęty został krok zmiany znanej rezystancji $0.5\,\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500\,\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	8.0	8.5	9.0	9.5	10.0	7.5	7.0	6.5	6.0	5.5
Długość $a\ [{\rm mm}]$	500	485	472	459	450	519	534	552	557	596
Opór R_r obliczona $[\Omega]$	8.0	8.0	8.05	8.06	8.18	8.09	8.02	8.01	7.95	8.11

Tablica 5: Wyniki pomiarów dla połączenia równoległego

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_r} = \frac{\sum_{i=1}^{10} R_{r_i}}{10} \approx 8.05 \,\Omega \tag{6}$$

3.6 Analiza niepewności

3.6.1 Niepewność pomiarowa długości druta oporowego

Drut oporowy został rozciagnięty nad całą długością przymiaru milimetrowego, dlatego stosujemy niepewność typu B, czyli wartość działki elementarnej:

$$u(l) = 0.1 \, \mathrm{cm} \tag{7}$$

3.6.2 Niepewność pomiarowa opornika o znanej rezystancji

Oporność rezystora jest ściśle określona oraz możliwa do regulacji pokrętłami na obudowie urządzenia. Niestety, urządzenie nie oferowało żadnej podanej niepewności na tabliczce znamionowej, przez co musimy przyjąć, że ustawiona rezystancja nie jest obarczona żadnym błędem. Jest to nieprawdziwe, ponieważ po sprawdzeniu wartości oporu za pomocą multimetru ustawiona wartość odbiegała od rzeczywistej o niestały procent, przez co nie jesteśmy w stanie określić dokładnej niepewności pomiarowej znanej rezystancji.

4 Podsumowanie