Polytech Sorbonne - MAIN 4

Projet HPC : le modèle shallow water Parallélisation MPI

Fadwa Alozade Inès Benzenati

Lundi 9 avril 2018

Sommaire

Introduction

Le modèle shallow water Ce que fait le code séquentiel

La parallélisation

Ce que nous parallélisons Distribution des tâches Parallélisation par bandes Parallélisation par blocs

Les performances

Conclusion

- ► Écoulement d'un fluide homogène sur la verticale
- Exemple : ondes à la surface de l'eau lorsque vous y jetez un caillou
- ► Modèle numérique

Ce que fait le code séquentiel

- ▶ parse_args : Parser les arguments : x, y, t, export, ...
- ► alloc : Allouer de la mémoire : hFil, uFil, vFil, hPhy, uPhy, vPhy
- gauss_init : Initialiser l'image (hFil) au temps t=0
- forward : Remplir les images suivantes (et exporter le film)
- ► dealloc : Désallouer la mémoire

La parallélisation Ce que nous parallélisons

parse_args	Tous		
alloc	Rang 0		
loc_alloc	Rang 0		
gauss_init	Rang 0		
forward	Parallélisé par rapport à x et y		
export	Rang 0		
dealloc	Rang 0		
loc_dealloc	Tous		

Distribution des tâches

- ▶ La parallélisation par bandes : nombre de bandes = nombre de processeurs
- ► La parallélisation par blocs : nombre de blocs = nombre de processeurs

La parallélisation Parallélisation par bandes

La parallélisation Parallélisation par blocs

Les performances Performances de la parallélisation par bandes

Pour les valeurs par défaut x = 256, y = 256 et t = 1000

Nb procs	Séquentiel	Par bandes	Speedup	Efficacité
1	17.2168s	8.10715s	2.1176	2.1176
2	17.2168s	12.4133s	1.383	0.6915
4	17.2168s	9.33068s	1.84	0.46
8	17.2168s	9.044s	1.8983	0.2372
16	17.2168s	14.9356s	1.1495	0.07184

Conclusion

Fait	Á faire	
Paralléliser par bandes	Améliorer les performances et visualiser le film	
Découpage par blocs	Débuguer la parallélisation par blocs	
Communications synchrones	Recouvrer les communications par le calcul	
Gérer les export par un seul proc	Simuler des entrées/sorties pa- rallèles (MPI-IO)	
	Partie 2 avec OpenMP	

