

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2223 - Teoría de Autómatas y Lenguajes Formales Segundo semestre de 2024

Profesor: Cristian Riveros AYUDANTE: AMARANTA SALAS

Ayudantia 7 Repaso II

Problema 1 [P2.2-I1-2022]

Construya un autómata finito determinista con el menor número de estados que defina a

$$L = \{w \in \{a, b, c\}^* \mid w \text{ no contiene tres } c \text{ seguidas}\}$$

Demuestre, usando el algoritmo de minimización, que su autómata es mínimo.

Solución

Un autómata determinista que que defina a L puede ser el siguiente:

Para demostrar que el autómata es mínimo, realizaremos el algoritmo de minimización visto en clases. En primer lugar, construiremos una tabla con todos los pares de nodos sin marcar.

	0	1	2	3
0	-			
1	-	-		
2	-	-	-	
3	-	-	-	-

En segundo lugar, marcar todos los pares $\{p,q\}$ si $p\in F$ y $q\notin F$ o viceversa.

	0	1	2	3
0	-			X
1	-	-		X
2	-	-	-	X
3	-	-	-	-

Luego, si $\{p,q\}$ no están marcado y $\{\delta(p,a);\delta(q,a)\}$ si están marcados. Entonces, marcar $\{p,q\}$.

Página 1 de 4 IIC2223 - Ayudantia 7

	0	1	2	3
0	-		c(1, 3)	X
1	-	-	c(2, 3)	X
2	-	-	-	X
3	-	-	-	-

	0	1	2	3
0	-	c(1,2)	X	X
1	-	-	X	X
2	-	-	-	X
3	-	-	-	-

	0	1	2	3
0	-	X	X	X
1	-	-	X	X
2	-	-	-	X
3	-	-	-	-

Cómo todas las entradas están marcadas, entonces para todo estado p,q en el autómata, $p \neq q$ son distinguibles. Por lo tanto, el autómata es mínimo.

Problema 2 [P4-I1-2022]

Sea $\Sigma = \{a, b\}$. Para dos lenguajes L_1 y L_2 , considere el operador "cortar y pegar" lenguajes:

$$L_1 \ddagger L_2 = \{u_1 \cdot v_2 \mid \exists u_2 \in \Sigma^* \ \exists v_1 \in \Sigma^*. \ u_1 \cdot u_2 \in L_1 \land v_1 \cdot v_2 \in L_2\}$$

En otras palabras, se "corta" un inicio (prefijo) de una palabra de L_1 y un final (sufijo) de una palabra en L_2 , y se "pega" (esto es, concatenan). Demuestre que si L_1 y L_2 son lenguajes regulares, entonces $L_1 \ddagger L_2$ también es regular.

Solución

Como L_1 y L_2 son regulares, existen autómatas no deterministas $\mathcal{A}_1 = (Q_1, \Sigma, \Delta_1, I_1, F_1)$ y $\mathcal{A}_2 = (Q_2, \Sigma, \Delta_2, I_2, F_2)$, tales que $\mathcal{L}(\mathcal{A}_1) = L_1$ y $\mathcal{L}(\mathcal{A}_2) = L_2$. La idea general, es construir un nuevo autómata no determinista, que al leer $w = u_1 \cdot v_2$ como input, ejecute \mathcal{A}_1 sobre el w, intente adivinar en qué momento termina u_1 , y mediante una ϵ -transición, pasar a ejecutar v_2 a partir de algún estado de \mathcal{A}_2 . Si la ejecución termina en un estado final de \mathcal{A}_2 , entonces el autómata acepta el input.

Para lograr lo anterior, nuestro nuevo autómata debe contener a \mathcal{A}_1 y \mathcal{A}_2 , y tener ϵ -transiciones que vayan de algunos estados de \mathcal{A}_1 a algunos estados de \mathcal{A}_2 . La elección de cuáles estados van a tener ϵ -transiciones salientes o entrantes, viene por la definición de $L_1\ddagger L_2$.

Dado un $w = u_1 \cdot v_2$, para verificar si $w \in L_1 \ddagger L_2$, es necesario comprobar que existe u_2 tal que $u_1 \cdot u_2 \in L_1$, y que existe v_1 tal que $v_1 \cdot v_2 \in L_2$. Para esto, construimos los siguientes conjuntos de estados:

$$Q_{1}^{F} = \{ p \in Q_{1} \mid \exists u \in \Sigma^{*} \exists q \in F_{1}. (p, u) \vdash_{\mathcal{A}_{1}}^{*} (q, \epsilon) \}$$

$$Q_{2}^{I} = \{ q \in Q_{2} \mid \exists v \in \Sigma^{*} \exists p \in I_{2}. (p, v) \vdash_{\mathcal{A}_{1}}^{*} (q, \epsilon) \}$$

Con esto, construimos el autómata no determinista $\mathcal{A}^{\ddagger} = (Q^{\ddagger}, \Sigma, \Delta^{\ddagger}, I^{\ddagger}, F^{\ddagger})$ donde

- $Q^{\ddagger} = Q_1 \uplus Q_2$
- $I^{\ddagger} = I_1$

IIC2223 – Ayudantia 7 Página 2 de 4

- $F^{\ddagger} = F_2$
- $\Delta^{\ddagger} = \Delta_1 \uplus \Delta_2 \uplus \{(p, \epsilon, q) \mid p \in Q_1^F \land q \in Q_2^I\}$

Ahora, queda demostrar que $\mathcal{L}(\mathcal{A}^{\ddagger}) = L_1 \ddagger L_2$. Primero demostraremos que $L_1 \ddagger L_2 \subseteq \mathcal{L}(\mathcal{A}^{\ddagger})$. Sea $w \in L_1 \ddagger L_2$. Por definición de $L_1 \ddagger L_2$, existen $u_1, u_2, v_1, v_2 \in \Sigma^*$ tales que $w = u_1 \cdot v_2, u_1 \cdot u_2 \in L_1$, y $v_1 \cdot v_2 \in L_2$. Luego, existen $q_0^1 \in I_1, q_1^1 \in F_1, q_2^0 \in I_2, q_f^2 \in F_2$ tales que:

$$(q_0^1, u_1 \cdot u_2) \vdash_{\mathcal{A}_1}^* (q_f^1, \epsilon)$$

$$(q_0^2, v_1 \cdot v_2) \vdash_{\mathcal{A}_2}^* (q_f^2, \epsilon)$$

Existen $p \in Q_1, q \in Q_2$ tales que se cumple lo siguiente:

$$(q_0^1, u_1 \cdot u_2) \vdash_{\mathcal{A}_1}^* (p, u_2) \vdash_{\mathcal{A}_1}^* (q_f^1, \epsilon)$$

$$(q_0^2, v_1 \cdot v_2) \vdash_{\mathcal{A}_2}^* (q, v_2) \vdash_{\mathcal{A}_2}^* (q_f^2, \epsilon)$$

Por construcción de \mathcal{A}^{\ddagger} , tenemos que $q_0^1 \in I^{\ddagger}, q_f^2 \in F^{\ddagger}$. También notamos que $p \in Q_1^F$, y que $q \in Q_2^I$. Luego, por definición de Δ^{\ddagger} , hay una ϵ -transición que lleva de p a q. Entonces, lo siguiente es una secuencia válida de configuraciones de \mathcal{A}^{\ddagger} :

$$(q_0^1, u_1 \cdot v_2) \vdash_{\mathcal{A}^{\ddagger}}^* (p, v_2) \vdash_{\mathcal{A}^{\ddagger}} (q, v_2) \vdash_{\mathcal{A}^{\ddagger}}^* (q_f^2, \epsilon)$$

De aquí queda claro que $(q_0^1, u_1 \cdot v_2) \vdash_{\mathcal{A}^{\ddagger}}^* (q_f^2, \epsilon)$, por lo que $u_1 \cdot v_1 \in \mathcal{L}(\mathcal{A}^{\ddagger})$. Luego, $L_1 \ddagger L_2 \subseteq \mathcal{L}(\mathcal{A}^{\ddagger})$.

Ahora demostraremos que $\mathcal{L}(\mathcal{A}^{\ddagger}) \subseteq L_1 \ddagger L_2$. Sea $w \in \mathcal{L}(\mathcal{A}^{\ddagger})$. Luego, $\exists q_0 \in I_1, \exists q_f \in F_2$ tal que

$$(q_0, w) \vdash^*_{A^{\ddagger}} (q_f, \epsilon)$$

Por construcción, tenemos que $Q_1 \cap Q_2 = \emptyset$, por lo que en algún momento de la ejecución, se debe utilizar una ϵ -transición que lleve de los estados Q_1 a los estados Q_2 . Entonces, $\exists u_1, v_2 \in \Sigma^*$ tal que $w = u_1 \cdot v_2$, y $\exists p \in Q_1^F, q \in Q_2^I$ tal que:

$$(q_0, u_1 \cdot v_2) \vdash_{\mathcal{A}^{\ddagger}}^* (p, v_2) \vdash_{\mathcal{A}^{\ddagger}} (q, v_2) \vdash_{\mathcal{A}^{\ddagger}}^* (q_f, \epsilon)$$

Por construcción, se tiene que $(q_0, u_1) \vdash_{\mathcal{A}_1}^* (p, \epsilon)$. Y, como $p \in Q_1^F$, existe u_2 tal que $(p, u_2) \vdash_{\mathcal{A}_1}^* (q_f^1, \epsilon)$ con $q_f^1 \in F_1$. Luego,

$$(q_0, u_1 \cdot u_2) \vdash_{\mathcal{A}_1}^* (q_f^1, \epsilon)$$

Por lo tanto, $u_1 \cdot u_2 \in L_1$. Análogamente, se tiene que $(q, v_2) \vdash_{\mathcal{A}_2}^* (q_f, \epsilon)$. Y, como $q \in Q_2^I$, existe v_1 tal que $(q_0^2, v_1) \vdash_{\mathcal{A}_2}^* (q, \epsilon)$ con $q_0^2 \in I_2$. Luego,

$$(q_0^2, v_1 \cdot v_2) \vdash_{\mathcal{A}_2}^* (q_f, \epsilon)$$

Por lo tanto, $v_1 \cdot v_2 \in L_2$. Como existen $u_2, v_1 \in \Sigma^*$ tales que $u_1 \cdot u_2 \in L_1$ y $u_1 \cdot u_2 \in L_1$, tenemos que $w \in L_1 \ddagger L_2$. Luego, $\mathcal{L}(\mathcal{A}^{\ddagger}) \subseteq L_1 \ddagger L_2$.

Como $L_1 \ddagger L_2 \subseteq \mathcal{L}(\mathcal{A}^{\ddagger})$ y $\mathcal{L}(\mathcal{A}^{\ddagger}) \subseteq L_1 \ddagger L_2$, se cumple que $L_1 \ddagger L_2 = \mathcal{L}(\mathcal{A}^{\ddagger})$, y concluimos que $L_1 \ddagger L_2$ es regular.

Problema 3 [P3-I1-2022]

Sea $\Sigma = \{a, b\}$. Considere el siguiente lenguaje:

$$Eq = \{ w \cdot w \mid w \in \Sigma^+ \}$$

Demuestre que el lenguaje $(Eq)^+$ es no regular.

IIC2223 – Ayudantia 7 Página 3 de 4

Solución

Para realizar la demostración pedida, utilizaremos el contrapositivo del lema de bombeo. Una posible solución es la siguiente:

Sea un N>0 arbitrario. Entonces, existe la siguiente palabra:

$$ab^Nab^N$$

La cual se puede dividir de la siguiente forma:

$$x = a$$

$$y = b^N$$

$$z = ab^N$$

Entonces, para todo $y=b^lb^mb^n$ con $u=b^l,\,v=b^m,\,w=b^n$ y m>0, existe i=2 tal que:

$$x \cdot u \cdot v^2 \cdot w \cdot z = ab^N b^m ab^N$$

Entonces buscamos demostrar que $ab^Nb^mab^N \notin \text{Eq}^+$. Debido a que la palabra a analizar comienza con a, y solo hay dos a presentes en esta, la única forma de separar la palabra en dos sería de la forma:

$$w \cdot w = ab^N b^m \cdot ab^N$$

Y como m > 0, tendremos que $ab^Nb^m \neq ab^N$ y por ende, la palabra no pertenece a Eq⁺. Por lo tanto, Eq⁺ no es regular.

IIC2223 – Ayudantia 7 Página 4 de 4