\mathbb{S} 1. Consider the following matrix A and vector \mathbf{b} :

$$A = \begin{bmatrix} -1 & 2 & 3 & -4 & 8 \\ 3 & -6 & -4 & 7 & -9 \\ 2 & -4 & 1 & 1 & 5 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 7 \\ -6 \\ 7 \end{bmatrix}$$

(a) Are the columns of A linearly independent?

No. A contains more columns than rows. Hence, A cannot have a pixot in every column. So, the columns of A are linearly dependent.

(b) Compute the solution set of the associated linear system of equations $A\mathbf{x} = \mathbf{b}$ and express it in parametric vector form.

express it in parametric vector form.

$$\begin{bmatrix}
-1 & 2 & 3 & -4 & 0 & 17 \\
3 & -6 & -4 & 7 & -9 & 1-6 \\
2 & -4 & 1 & 1 & 5 & 17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
3 & -6 & -4 & 7 & -9 & 1-6 \\
2 & -4 & 1 & 1 & 5 & 17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
2 & -4 & 1 & 1 & 5 & 17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 7 & -7 & 21 & 21
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & 4 & -6 & 1-7 \\
0 & 0 & 1 & 1 & 3 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 &$$

2. True or false? If the given statement is true, briefly explain why. If it is false, give a counterexample.
(a) If the columns of an augmented matrix are linearly independent, then the associated linear system of equations is inconsistent.
Linearly independent columns means pilots in all columns. A pivot in the last column of an augmented matrix means to have an equality $0=x$ lith $x\neq 0$, which is a contradiction. Hence, the system is in consistent.
(b) Four different vectors in \mathbb{R}^3 always span \mathbb{R}^3 . False. Consider for example [1234]. 1234 1234 these are four different veltors in \mathbb{R}^3 , but they all belong to the Schme Line. Hence, the four veltors do not span \mathbb{R}^3 .
these are four different veltors in R2, but they all belong to the salme line Hence, the four veltors do not
Alternative answer: note that [1234] (1239) Alternative answer: note that [1234] (1239) [1234] (1000) [1235] (1000) [1235] (1000) [1236]
Mence, there is not a pivot position in every roward thus the vectors do not span 123.
(c) The effect of adding a vector \mathbf{p} to a vector \mathbf{v} is to move the vector \mathbf{v} in a direction parallel to \mathbf{p} .
False.
P+V
As you can see, the direction of y+p is not parallel to the direction of p.
(d) If the augmented matrix of a linear system of equations has more rows than columns, then it cannot have infinitely many solutions.
False. Consider for example $A:b=(2:2)\times(0.0)$ There is a free variable, so there are infinitely many solutions.
There is a free variable, so there are infinitely many solutions.
(e) If A and B are matrices for which the product AB and the sum $A+B$ are both well defined, then the product BA is also well defined.
m[A] P[B] True.

AB is well defined, so $n=p$. Therefore,
A+B is well defined, so m=n and n=q. Therefore,
n[A] n[B]
Hence, BA is well defined because
Hence, BA is well defined because # columns of B = # rows of A. (n)
(f) If all the rows of an augmented matrix have a pivot, then the associated linear system of equations is inconsistent.
False. Consider for example the reduced exhalor form of an augmented matrix: 0 0 0 2;57 0 1 0 3 16 0 0 1 4 17
there is a pivot in every row. And the linear system is consistent (with infinitely many solutions).
(g) If S and T are 2×2 matrices such that $ST = 0$, then also $TS = 0$.
False. Consider for example $S = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ and $T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Then, $ST = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ but $TS = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$.
(h) If the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$ are such that $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent, $\{\mathbf{x}, \mathbf{z}\}$ is linearly independent, and $\{\mathbf{y}, \mathbf{z}\}$ is linearly independent, then also $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly independent.
False Consider for example $= \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $z = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
then f_{x} , y_{f} is linearly independent because neither of the vectors is a multiple of the other. Using the same argument, we also lunch that f_{x} , z_{f} and f_{y} , z_{f} are linearly independent. However, $z = x + y$ and thus f_{x} , f_{y} , f_{y} is a linearly dependent set.