Elementos de Probabilidades - Exercícios Suplementares à Folha 4

- 1. Assuma que o número de artigos de luxo vendidos diariamente num certa loja é uma v.a. discreta, X, que segue a distribuição de Poisson com média de 0.6.
 - (a) Determine a probabilidade de, num dia, não se vender qualquer artigo de luxo.
 - (b) Qual a probabilidade de, numa semana, haver exatamente 3 dias em que não se vende qualquer artigo de luxo? (assuma que a semana é de 6 dias e que as quantidades vendidas em dias distintos são independentes).
 - (c) (*) Suponha agora que cada artigo de luxo tem, independentemente dos outros, probabilidade p (com $0) de ter defeito. Determine a f.m.p. da v.a. que representa o número de artigos defeituosos vendidos diariamente (em particular, mostre que esta v.a. tem distribuição Poisson<math>(0.6 \times p)$).
 - (d) (*) Generalize a alínea anterior para $X \sim Poisson(\lambda)$, com qualquer $\lambda \in \mathbb{R}^+$.
 - (e) Assuma agora que, por cada artigo de luxo vendido, a loja tem um lucro de 100 €.
 - i. Calcule a média e a variância do lucro diário obtido com a venda de artigos de luxo.
 - ii. Determine a média e a variância do lucro obtido ao fim de 5 dias de vendas (assuma que as quantidades vendidas em dias distintos são independentes).
- 2. O rótulo de uma garrafa de água indica que o seu conteúdo é de 350 mililitros (ml). A linha de produção que enche estas garrafas pode não conseguir colocar exatamente os 350ml, mas garante que a quantidade de água contida numa garrafa é uma v.a. $X \sim U([340, 360])$.
 - (a) Qual é a probabilidade de uma garrafa conter menos do que 345ml de água?
 - (b) Qual é a probabilidade de uma garrafa conter mais de 355ml de água?
 - (c) O controle de qualidade aceita uma garrafa se a quantidade de água que esta contém não se afastar em mais de 2ml do indicado no rótulo. Qual é a probabilidade de uma garrafa de água produzida nesta linha ser rejeitada no controle de qualidade?
- 3. Calcule o valor das seguintes probabilidades quando $X \sim N(\mu, \sigma^2)$:

i.
$$P(|X - \mu| \le \sigma)$$
 ii. $P(|X - \mu| \le 2\sigma)$ iii. $P(|X - \mu| \le 3\sigma)$

- 4. O Sr. A. trabalha como vendedor numa certa empresa e o montante de unidades vendidas por ele diariamente é uma v.a., A, que segue a distribuição Normal com parâmetros $\mu_A = \sigma_A = 100$.
 - (a) Assuma que o Sr. A. trabalha 6 dias por semana e que os montantes vendidos em dias distintos são quantidades independentes. Qual a probabilidade de, <u>numa semana</u> de trabalho, haver exatamente 3 dias em que o Sr. A. vende menos de 100 unidades?
 - (b) Esta empresa tem um outro vendedor, o Sr. B., cujo montante diário de vendas é uma outra v.a. B. Sabe-se que $B \sim N(80,9)$ e que as v.a.'s A e B são independentes.
 - i. Considere a v.a. $D = B \frac{3}{4}A$. Determine E[D], Var[D] e identifique a lei de D.
 - ii. Qual a probabilidade de, num dia, o Sr. B. vender pelo menos 75% das unidades vendidas pelo Sr. A.?

^(*) Sug.: Use o T.P.T., com a partição $\{X=k\}_{k\in\mathbb{N}_0}$, e recorde que, $\forall x\in\mathbb{R}, \sum_{m=0}^{+\infty}\frac{x^m}{m!}=e^x$.