Российский Университет Дружбы Народов Факультет физико-математических и естесственных наук

Функциональный анализ

IV CEMECTP

Лектор: Россовский Леонид Ефимович

Автор: Финаревский Леонид $\frac{\Pi poe\kappa m\ s\ Telegram}{\Pi poe\kappa m\ s\ Github}$

Содержание

1	Семинар 1		
	1.1	Пример неизмеримого множества	2
	1.2	Канторово множество C	2
	1.3	Неравенства Юнга. Гёльдера и Минковского	3

РУДН, весна 2024

1 Семинар 1

1.1 Пример неизмеримого множества

Возьмем окружность $S, r_S = 1, \mu(S) = 2\pi$

Возьмем α такое, что $\frac{\alpha}{\pi}$ — иррационально.

Рассмотрим $R_{n\alpha}$, $n \in \mathbb{Z}$.

Орбита точки x $O(x) = \{R_{nx}(x) : n \in \mathbb{Z}\}$

 $x \sim y$, если $y = R_{nx}(x)$ для некоторого n. Или же O(x) = O(y)

Возьмем по одному представителю из каждого класса эквивалентности. Тогда полученное множество E_0 неизмеримо.

$$E_n = R_{n\alpha}(E_0), n \in \mathbb{Z}$$

$$\triangleright \bigcup_{\mathbb{Z}} E_n = S$$

$$\triangleright E_n \cap E_m = \varnothing (n \neq m)$$

$$\triangleright \mu(E_n) = \mu(E_0)$$

$$2\pi = \mu(S) = \mu\left(\bigcup_{\mathbb{Z}} E_n\right) = \sum_{\mathbb{Z}} \mu(E_0)$$

Последнее, в зависимости от $\mu(E_0)$ либо 0, либо ∞ .

Получаем противоречие.

1.2 Канторово множество C

Из единичного отрезка $C_0 = [0, 1]$ удалим среднюю треть, то есть интервал $(\frac{1}{3}, \frac{2}{3})$. Оставшееся точечное множество обозначим через C_1 . Множество $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю треть, и оставшееся множество обозначим через C_2 . Повторив эту процедуру опять, удаляя средние трети у всех четырёх отрезков, получаем C_3 . Дальше таким же образом получаем последовательность замкнутых множеств $C_0 \supset C_1 \supset C_2 \supset \dots$ Пересечение $C = \bigcap_{i=0}^{\infty} C_i$ называется канторовым множеством.

Свойства:

- \triangleright Канторово множество имеет меру $\mu=0$ (доказывается подсчетом суммы длин удаляемых интервалов)
- \triangleright C замкнуто
- \triangleright C нигде не плотно
- ▶ С имеет мощность континуума

Докажем последнее утверждение. Для этого воспользуемся троичной записью числа. Тогда числа из C записываются в троичной записи только цифрами 0 и 2. Но таких чисел столько же, сколько существует двоичных записей чисел на [0,1]. Получается $C \equiv [0,1]$

РУДН, весна 2024

1.3 Неравенства Юнга, Гёльдера и Минковского

$$p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$$

Теорема 1.1 (Юнг). $ab \leqslant S_1 + S_2 = \int_0^a x^{p-1} dx + \int_0^b x^{q-1} dx = \frac{a^p}{p} + \frac{b^q}{q}$

Теорема 1.2 (Гёльдер). $a = (a_1, a_2, \dots, a_n)$ $b = (b_1, \dots, b_n)$

$$\sum_{i=1}^{n} |a_i b_i| \leqslant \left(\sum_{i=1}^{n} |a_i|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |b_i|^q \right)^{\frac{1}{q}}$$

Доказательство. В силу однородности имеем право предположить, что $\sum_{i=1}^{n}|a_i|^p=\sum_{i=1}^{n}|b_i|^q=1.$

По неравенству Юнга

$$\sum_{i=1}^{n} |a_i b_i| \leqslant \sum_{i=1}^{n} \left(\frac{a_i|^p}{p} + \frac{|b_i|^q}{q} \right) = \frac{1}{p} \sum |a_i|^p + \frac{1}{q} \sum |b_i|^q = 1$$

Замечание 1. При $n \to \infty$ получим неравенство для рядов.

Замечание 2. Имеется аналог неравенства Гёльдера для интегралов

Теорема 1.3.

$$\int_{Y} |fg| \ d\mu \leqslant \left(\int_{Y} |f|^{p} \ d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{Y} |g|^{q} \ d\mu \right)^{\frac{1}{q}}$$