Introduction to Deep Learning for Computer Vision

Adhyayan '23 - ACA Summer School Department of Computer Science and Engineering Indian Institute of Technology Kanpur

Lecture 9

Semi-Supervised Learning!

Semi-Supervised Learning

- Training on labeled data is mostly easy. (Supervised Learning)
- Getting labeled data is hard!
- Real Life Scenario: Some labeled data. A LOT of unlabeled data!
- How can we utilize the unlabeled data?

Semi-Supervised Learning: Assumptions

• **(H1) Smoothness Assumptions:** If two data samples are close in a high-density region of the feature space, their labels should be the same or very similar.

Semi-Supervised Learning: Assumptions

- **(H1) Smoothness Assumptions:** If two data samples are close in a high-density region of the feature space, their labels should be the same or very similar.
- **(H2) Cluster Assumptions:** The feature space has both dense regions and sparse regions. Densely grouped data points naturally form a cluster. Samples in the same cluster are expected to have the same label.

Semi-Supervised Learning: Assumptions

- **(H1) Smoothness Assumptions:** If two data samples are close in a high-density region of the feature space, their labels should be the same or very similar.
- **(H2) Cluster Assumptions:** The feature space has both dense regions and sparse regions. Densely grouped data points naturally form a cluster. Samples in the same cluster are expected to have the same label.
- **(H3) Low-density Separation Assumptions:** The decision boundary between classes tends to be located in the sparse, low density regions, because otherwise the decision boundary would cut a high-density cluster into two classes, corresponding to two clusters, which invalidates H1 and H2.

- Self-training: is a simple and popular semi-supervised learning technique.
- It involves training a model initially on the labeled data and then using this model to predict labels for the unlabeled data.
- The predicted labels are treated as pseudo-labels and used to augment the labeled dataset for further training iterations.

- **Co-training:** is a semi-supervised learning technique suitable for scenarios with multiple views or feature sets.
- It involves training multiple models independently on different subsets of features or views of the data.
- The models then collaborate and exchange predictions on unlabeled data to improve overall performance.

- Consistency regularization: assumes that randomness within the neural network (e.g. with Dropout) or data augmentation transformations should not modify model predictions given the same input.
- It enforces that small changes in input should lead to small changes in the model's output, promoting smooth predictions and improving robustness.

- Virtual Adversarial Training: introduces adversarial perturbations to both labeled and unlabeled data.
- The model is trained to maximize the disagreement between its predictions on the original and perturbed inputs, leading to improved generalization.

Quality of Unlabeled Data

- Quality of Unlabeled Data
- Balance between Labeled and Unlabeled Data

- Quality of Unlabeled Data
- Balance between Labeled and Unlabeled Data
- Transferability of Semi-Supervised Learning

- Quality of Unlabeled Data
- Balance between Labeled and Unlabeled Data
- Transferability of Semi-Supervised Le

Nice Survey Paper:

https://arxiv.org/pdf/2006.05278.pdf

- All the data are labeled. Belongs to either purple class or yellow class.
- Drawing a decision boundary is easy.

- Now what if most data points are unlabeled?
- Deciding on drawing the boundary is not so easy now.

Valuable labeled dataset

Active Learning: Uncertainty Sampling

- Select samples that the model is uncertain about typically with high entropy or low confidence.
- gain more knowledge and improve performance in challenging regions by labeling those samples.

Active Learning: Query by Committee

- Maintain an **ensemble** or **committee** of *multiple models*.
- Select uncertain samples based on disagreement or consensus among the committee members.

Self-Supervised Learning

Self-Supervised Learning

 leverage unlabeled data to learn meaningful representations without explicit human annotations.

Self-Supervised Learning: Rotation Loss

- Predict the rotation angle of an image.
- Images randomly rotated by 90, 180, or 270 degrees.

Self-Supervised Learning: Contrastive Learning

 Learn representations by maximizing the similarity between positive pairs and minimizing the similarity between negative pairs.

Bring positive pairs closer together in the embedding space and push negative

Contrastive Learning: SimCLR

- Data Augmentation: Apply various augmentations to create multiple versions of the same input.
- Base Encoder: To map the augmented inputs into an embedding space.
- Contrastive Loss: maximize the agreement between positive pairs and minimize the agreement between negative pairs.

Contrastive Learning: Other Techniques

Thank You!