Measurement of Gaussian laser beam radius using the knife-edge technique: Improvement on data analysis

Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis

Marcos A. C. de Araújo,¹ Rubens Silva,¹,² Emerson de Lima,¹ Daniel P. Pereira,¹,³ and Paulo C. de Oliveira¹,*

¹Departamento de Física, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil

²Faculdade de Física, ICEN, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil

³Centro Federal de Educação Tecnológica do Pará, Belém 66093-020, Pará, Brazil

*Corresponding author: pco@fisica.ufpb.br

Received 13 October 2008; accepted 17 November 2008; posted 26 November 2008 (Doc. ID 102613); published 8 January 2009

We revisited the well known Khosrofian and Garetz inversion algorithm [Appl. Opt. 22, 3406–3410 (1983)] that was developed to analyze data obtained by the application of the traveling knife-edge technique. We have analyzed the approximated fitting function that was used for adjusting their experimental data and have found that it is not optimized to work with a full range of the experimentally-measured data. We have numerically calculated a new set of coefficients, which makes the approximated function suitable for a full experimental range, considerably improving the accuracy of the measurement of a radius of a focused Gaussian laser beam. © 2009 Optical Society of America

OCIS codes: 140.3295, 070.2580, 000.4430, 120.3940.

1. Introduction

The accurate measurement of the waist of a laser beam near the focus of a lens is very important in many applications [1], for instance, in a Z scan [2] and thermal lens spectrometry [3]. Many techniques have been developed with this purpose, such as the slit scan technique [4,5] and the pinhole technique [6]; but among the most used is the knife-edge technique [7–9]. The knife-edge technique is a beam profiling method that allows for quick, inexpensive, and accurate determination of beam parameters. The knife-edge technique has been widely used for decades and is considered a standard technique for Gaussian laser beam characterization [10]. In this technique a knife edge moves perpendicular to the direction of propagation of the laser beam, and the total transmitted power is measured as a function of the knife-edge position. A typical experimental setup is shown in Fig. 1. The knife-edge technique

requires a sharp edge (typically a razor blade), a translation stage with a micrometer, and a power meter or an energy meter when working with pulses.

In our discussion we consider a radially symmetric Gaussian laser beam with intensity described by

$$I(x,y) = I_0 \exp \left[-\frac{(x-x_0)^2 + (y-y_0)^2}{w^2} \right],$$
 (1)

where I_0 is the peak intensity at the center of the beam, located at (x_0, y_0) , x and y are the transverse Cartesian coordinates of any point with respect to an origin conveniently chosen at the beginning of an experiment, and w is the beam radius, measured at a position where the intensity decreases to 1/e times its maximum value I_0 . Equation (1) is not the only way to express the intensity of a Gaussian laser beam. Some authors prefer to define the beam radius at a position where the electric field amplitude drops to 1/e, while the intensity drops to $1/e^2$ times the maximum value. Our choice in the definition of the intensity follows the choice made by Khosrofian and Garetz [9].

Fig. 1. Simplified scheme for the measurement of laser beam radius using the knife-edge technique. The gray color area represents the shadow caused by the knife edge.

With the knife-edge initially blocking the laser beam, the micrometer can be adjusted in appropriate increments, and the normalized transmitted power is obtained by the integral

$$P_N = \frac{\int_{-\infty}^{x} \int_{-\infty}^{\infty} I(x', y) dy dx'}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(x', y) dy dx'},$$
 (2)

which gives

$$P_N(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - x_0}{w}\right) \right], \tag{3}$$

where erf is the error function.

The area of the photodiode is considered to be larger than the area of the laser beam cross section at the detection position; therefore, diffraction effects may be neglected. The large-area photodiode may be substituted by a small-area photodiode coupled to an integrating sphere [8].

2. Data Analysis

The error function in Eq. (3) is not an analytical function and its use in fitting experimental data is not a practical procedure. One approach in data analysis is to work with the derivative of Eq. (3) [7,11,12], which is analytical and is given by

$$\frac{dP_N(x)}{dx} = \frac{1}{\sqrt{\pi w}} \exp\left[-\frac{(x-x_0)^2}{w^2}\right]. \tag{4}$$

But the process of taking derivatives of experimental data with fluctuations results in amplification of the fluctuations and, consequently, an increase in the errors. To overcome this problem, Khosrofian and Garetz [9] suggested a substitution of $P_N(x)$ by an analytical function, which approximately represents $P_N(x)$, to fit the experimental data. This fitting function is given by

$$f(s) = \frac{1}{1 + \exp[p(s)]}, \tag{5}$$

where

$$p(s) = \sum_{i=0}^{m} a_i s^i, \tag{6}$$

$$s = \frac{\sqrt{2}(x - x_0)}{w}. (7)$$

For practical reasons Khosrofian and Garetz limited the polynomial p(s) to the third order term, so that

$$f(s) = \frac{1}{1 + \exp(a_0 + a_1 s + a_2 s^2 + a_3 s^3)}.$$
 (8)

Using data from tabulated normal distribution function and least-square analysis, the polynomial coefficients were determined as

$$a_0 = -6.71387 \times 10^{-3}, \qquad a_1 = -1.55115,$$

$$a_2 = -5.13306 \times 10^{-2},$$

$$a_3 = -5.49164 \times 10^{-2}.$$

Although this fitting function has been used for decades and referenced by many authors [13,14], we decided to compare it with the exact function, given by Eq. (3). The first step in the comparison process was to plot the equations within a single graphic. The result is shown in Fig. 2. We verified that the fitting function presents a very good adjustment for f(s) > 0.5 but fails to adjust for f(s) < 0.5. This result is a consequence of the procedure that has been employed to fit f(s) to the data points because the parameters that define f(s) have been determined from tabulated normal data with positive arguments only. To extend the procedure to include negative arguments of f(s), Khosrofian and Garetz [9] assumed that f(-s) = 1 - f(s). But since f(s) contains p(s), which is a polynomial that includes terms of even powers of s, this assumption is not valid. Considering the symmetry of the error function, the fitting function f(s) must contains only terms of odd powers of s. In fact, a fitting of f(s) to the exact data, given by Eq. (3), shows that a_0 and a_2

Fig. 2. (Color online) Comparison of the data obtained from Eq. (3) with f(s) defined by Eq. (8).

numerically converge to zero and the new nonnull adjusted coefficients, up to the third order, are given by

$$a_1 = -1.597106847, \qquad a_3 = -7.0924013 \times 10^{-2}.$$

We thus may write Eq. (8) as

$$f(s) = \frac{1}{1 + \exp(a_1 s + a_3 s^3)}. (9)$$

To arrive at these new coefficients we have generated a set of points directly from Eq. (3) with $x_0 = 0$ and w = 1 by using Maple 10, and with the help of Origin 7.5, we fit the data set with Eq. (8). The fitting procedure was to keep x_0 and w fixed, while allowing the coefficients to vary. The result is shown in Fig. 3.

By fitting the same simulated data set with f(s)given by Eq. (8) with the old coefficients, the obtained values for x_0 and w were 0.0132 and 0.9612, respectively. This corresponds to a difference of about 3.9% in the laser beam radius, and the error in the center position, relative to the beam radius, of about 1.3%. These differences may represent a serious problem in high accuracy experiments. For example, since the laser intensity is inversely proportional to the square of the radius, an overestimation of about 7.6% of the laser intensity will result, if Eq. (8) is used, as the fitting function. On the other hand, an estimation of the error in w and x_0 give values in a range of 10^{-7} – 10^{-8} when fitting Eq. (9) to the exact function, given by Eq. (3). With these results we may say that Eq. (9) is not only a good approximation for our particular problem, but it may also be useful in many numerical problems in different fields of science involving the error function. As an example of the use of analytical expressions for the error function in another physical problem, we may refer to the work of Van Halen [15], which was used to calculate the electric field and potential distribution in semiconductor junctions with a Gaussian doping profile.

Fig. 3. (Color online) Fitting the data obtained from Eq. (3) with f(s) defined by Eq. (9).

The inclusion of the fifth order term in the polynomial p(s) will further improve the accuracy but is not worth doing in an analysis of the knife-edge technique data, where the experimental fluctuations dominate the errors in the data analysis. However, since the focus of our discussion is on the improvement of data analysis and the possible use of this fitting function in different kinds of problems, we extend our discussion to analyze the behavior of f(s) when the fifth order term is included. The first annotation about the inclusion of the fifth order term a_5 in the polynomial p(s) is that it will require a recalculation of all the coefficients; therefore a_1 and a_3 will change. The new calculated coefficients are given by

$$a_1 = -1.5954086, \qquad a_3 = -7.3638857 \times 10^{-2},$$

$$a_5 = +6.4121343 \times 10^{-4}$$
.

To verify how close the approximated functions are from the exact function $P_N(x)$, we have plotted the differences between f(s) and $P_N(x)$ for $(x-x_0)/w$ ranging from -4.0 to 4.0, covering the full range of interest. In Fig. 4(a), f(s), given by Eq. (8), was used in two different ways: with the parameters w=1.0 and $x_0=0.0$ (solid line), and w=0.9612 and $x_0=0.0132$ (dashed line), obtained when one tries to fit $P_N(x)$ with f(s). In Fig. 4(b), the differences are calculated with f(s) given by Eq. (9) in two ways: where only the coefficients a_1 and a_3 are considered (solid line), and when the new set of coefficients that includes a_5 is considered (dashed line).

By analyzing the curves shown in Fig. 4, we may conclude that the approximated function f(s) defined by Eq. (9) is, on average, two orders of magnitude closer to the exact function $P_N(x)$ than that defined by Eq. (8). When the fifth order term is included in the polynomial p(s), the approximation is even better,

Fig. 4. (Color online) Differences between f(s) and $P_N(x)$. (a) f(s) is given by Eq. (8) with the parameters w=1.0 and $x_0=0.0$ (solid line) and w=0.9612 and $x_0=0.0132$ (dashed line). (b) f(s) is given by Eq. (9) when only the coefficients a_1 and a_3 are considered (solid line), and when the new set of coefficients that includes a_5 is considered (dashed line).

Fig. 5. (Color online) Fitting of the experimental data using Eq. (9). A similar curve is obtained by using Eq. (8), but with the adjusted laser beam radius 3.8% lower.

making the biggest difference to be about 2×10^{-5} in the full range of interest.

3. Analysis of Experimental Data

To verify how the choice of the fitting function interferes in the true experimental data analysis, we performed a simple experiment using the setup shown in Fig. 1. In our experiment a He-Ne laser with an output power of $10\,\mathrm{mW}$ was focused by a $25\,\mathrm{cm}$ focal length lens. A razor blade was mounted on top of a motorized translation stage made by Newport (model M-UTM150PP.1) with a resolution of $0.1 \,\mu \text{m}$. The translation stage position was controlled by a computer while the total transmitted laser power was measured by an Ophir NOVA power meter. The analog output signal of the power meter was sent to the computer through a National Instruments USB-6000 acquisition card. We set the speed of the translation stage at 0.5 mm/s and the acquisition rate at 100 samples/s. The experimental data, taken at a position near the focus of the lens, is shown in Fig. 5, where we also show a fitting of the experimental data with Eq. (9). The same fitting was done with Eq. (8) and, although both equations give rise to curves that apparently are representative of the experimental data, they result in different values for the laser beam radius. After analyzing 10 scans, fitting each data set with Eq. (9), we arrived at the mean value $w = 36.60 \pm 0.06 \,\mu\text{m}$. A result 3.8% lower than this is obtained if one tries to fit the same experimental data with Eq. (8). This confirms the necessity of using the correct fitting function to analyze the experimental data. If we now compare the position of the beam center, given by the two fitting functions, we find a difference, relative to the radius, of 1.2% between the results. Since the type of errors introduced by the use of Eq. (8) is systematic, past results on laser beam radius may be corrected by using a multiplying factor of 1.04.

If one defines the radius of the laser beam at a position where the intensity drops to $1/e^2$ times

the maximum value, one needs to multiply w by $\sqrt{2}$ to arrive at the desired value.

4. Conclusions

We have shown that a modified sigmoidal function, based on the Khosrofian and Garetz function, with new coefficients is needed for correct laser beam characterization in the knife-edge technique. We have found these new coefficients and showed that the new function fits the experimental data very well and improves the accuracy of the results.

We thank the financial support from the Brazilian agencies Financiadora de Estudos e Projetos (FINEP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

- S. Nemoto, "Determination of waist parameters of a Gaussian beam," Appl. Opt. 25, 3859–3863 (1986).
- M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760–769 (1990).
- 3. M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths, J. Appl. Phys. **75**, 3732–3737 (1994).
- R. L. McCally, "Measurement of Gaussian beam parameters," Appl. Opt. 23, 2227 (1984).
- 5. P. B. Chapple, "Beam waist and M^2 measurement using a finite slit," Opt. Eng. 33 2461–2466 (1994).
- P. J. Shayler, "Laser beam distribution in the focal region," Appl. Opt. 17, 2673–2674 (1978).
- J.A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. Franke, "Technique for fast measurement of Gaussian laser beam parameters," Appl. Opt. 10, 2775–2776 (1971).
- 8. D. R. Skinner and R. E. Whitcher, "Measurement of the radius of a high-power laser beam near the focus of a lens," J. Phys. E 5, 237–238 (1972).
- J. M. Khosrofian and B. A. Garetz, "Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data," Appl. Opt. 22, 3406–3410 (1983).
- D. Wright, P. Greve, J. Fleischer, and L. Austin, "Laser beam width, divergence and beam propagation factor: an international standardization approach," Opt. Quantum Electron. 24, S993—S1000 (1992).
- M. Mauck, "Knife-edge profiling of Q-switched Nd:YAG laser beam and waist," Appl. Opt. 18, 599

 –600 (1979).
- R. M. O'Connell and R. A. Vogel, "Abel inversion of knife-edge data from radially symmetric pulsed laser beams," Appl. Opt. 26, 2528–2532 (1987).
- Z. A. Talib and W. M. M. Yunus, "Measuring Gaussian laser beam diameter using piezoelectric detection," Meas. Sci. Technol. 4, 22–25 (1993).
- L. Bachmann, D. M. Zezell, and E. P. Maldonado, "Determination of beam width and quality for pulsed lasers using the knife-edge method," Instrum. Sci. Technol. 31, 47–52 (2003).
- P. Van Halen, "Accurate analytical approximations for error function and its integral," Electron. Lett. 25, 561–563 (1989).