

Implicit Deep Generative Model

Il-Chul Moon

Department of Industrial and Systems Engineering

KAIST

icmoon@kaist.ac.kr

Implicit Density Modeling

Taxonomy of Deep Generative Model

- Deep Learning + Generative Modeling
 - Why model a problem in a generative approach?
 - Good learning requires a generation of previous and new examples.

Detour: Variational Inference and Implicit Models

- Traditional VI requires conjugacy and tractable likelihood.
 - VAE resort the conjugacy issue by forming the inference networks for variational distribution.
 - VAE still requires an explicit likelihood function.

$$q^*(\mathbf{z}) = \underset{q \in Q}{\operatorname{argmin}} KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x}))$$
$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \prod_{n=1}^{N} q(z_n; \lambda_n = \text{NN}(x_n; \text{NN}(x_n|\phi)); \ q(.) = \text{Normal}$$

- What if we combine the methods of "learning in implicit models" with VI?
 - We can use an implicit form of q
 - More expressive than explicit forms
 - We also can use an implicit form of p
 - GAN, simulator...
 - Of course we can use both p and q in an implicit form.

Generative Adversarial Network

- True image generation from a generator model
 - Generator is not able to distinguish the true image
 - Discriminator identifies the true or the generated images
 - Feedback enables the learning
- A discriminator model identifies the true or the fake image
 - True image is gathered from the dataset
 - Fake image is generated from the generator

Notations of GAN

- $p_z(z)$: prior distribution on the input noise variables
 - $p_z(z) \sim N(0,1)$
- $p_{data}(x)$: data distribution over x
- $p_g(x)$: distribution of the sample G(z) obtained when $z \sim p_z$

- $G(z; \theta_g)$: Generator
 - Differentiable function represented by a MLP with parameter θ_g
 - Mapping a input noise variables to the data space, X
- $D(x; \theta_d)$: Discriminator
 - Probability that x came from the data rather than p_g
 - $D(x; \theta_d) = 1 \Rightarrow$ the data x comes from real data
 - $D(x; \theta_d) = 0 \Rightarrow$ the data x comes from the generator
 - Outputs a single scalar

Formalization of GAN

- For training Example *x* from the real world
 - Maximize the probability of assigning the correct label to training examples
 - For training examples, D should assign "True" label: D(x) = 1
 - Maximize $E_{x \sim p_{data}(x)}[log D(x)]$ w.r.t. D

Objective Function

- Binary case becomes the Bernoulli trial and the cross entropy
- $V(D,G) = E_{x \sim p_{data(x)}}[logD(x)] + E_{z \sim p_z(z)}[log(1 D(G(z))]$
- $\min_{G} \max_{D} V(D,G)$
- For input noise *z*
 - G maps z to data space, X, as close as possible
 - G should minimize $E_{z \sim p_z(z)}[\log(1 D(G(x)))]$
 - Minimize $\log(1 D(G(x)))$
 - Maximize $D(G(x)) \Rightarrow \text{Ideal case} : D(G(x)) = 1 : \text{Fool the Discriminator}$
 - D should maximize $E_{z \sim p_z(z)}[\log(1 D(G(x)))]$
 - Minimize $D(G(x)) \Rightarrow \text{Ideal case} : D(G(x)) = 0$

Analogy of GAN

- Loop
 - (a) Sample z from uniform dist. and G(z) = x
 - (b) **D** is trained to discriminate samples from data
 - (c) *G* is updated to fool the *D*
 - (d) **D** cannot discriminate at all (D(x) = D(G(z)) = 0.5)

Loss Function of GAN

Objective Function of GAN

 $= 2JS(P_a||P_{data}) - \ln 4$

•
$$V(D,G) = E_{x \sim p_{data(x)}}[logD(x)] + E_{z \sim p_{z(z)}}[log(1 - D(G(z))]$$

$$= \sum_{x} p_{data}(x) \ln \frac{P_{data}(x)}{P_{g}(x) + P_{data}(x)} + \sum_{x} p_{g}(x) \ln\{1 - \frac{P_{data}(x)}{P_{g}(x) + P_{data}(x)}\}$$

$$= \sum_{x} p_{data}(x) \ln \frac{P_{data}(x)}{P_{g}(x) + P_{data}(x)} + \sum_{x} p_{g}(x) \ln\{\frac{P_{g}(x)}{P_{g}(x) + P_{data}(x)}\}$$

$$= \sum_{x} p_{data}(x) \ln \frac{P_{data}(x)}{P_{g}(x) + P_{data}(x)} + \sum_{x} p_{g}(x) \ln\{\frac{P_{g}(x)}{P_{g}(x) + P_{data}(x)}\}$$

$$= \sum_{x} p_{data}(x) \ln \frac{P_{data}(x)}{2 \times \frac{P_{g}(x) + P_{data}(x)}{2}} + \sum_{x} p_{g}(x) \ln \frac{P_{g}(x)}{2 \times \frac{P_{g}(x) + P_{data}(x)}{2}}$$

$$= \sum_{x} p_{data}(x) \ln \frac{P_{data}(x)}{2 \times \frac{P_{g}(x) + P_{data}(x)}{2}} + \sum_{x} p_{g}(x) \ln \frac{P_{g}(x)}{2 \times \frac{P_{g}(x) + P_{data}(x)}{2}} - \ln 2 \sum_{x} p_{data}(x) - \ln 2 \sum_{x} p_{g}(x)$$

$$= KL(P||Q) = \sum_{i} P(i) \ln \left(\frac{P(i)}{Q(i)}\right)$$

$$= \sum_{i} P($$

Definition of Jensen-Shannon Divergence

•
$$JS(P_g||P_{data}) = \frac{1}{2}KL(P_g(x)||\frac{P_g(x) + P_{data}(x)}{2}) + \frac{1}{2}KL(P_{data}(x)||\frac{P_g(x) + P_{data}(x)}{2})$$

Jensen Shannon Divergence

- $JS(P||Q) = \frac{1}{2}KL(P||\frac{Q+P}{2}) + \frac{1}{2}KL(Q||\frac{Q+P}{2})$
 - $0 \le JS(P||Q) \le \ln 2$
 - JS(P||Q) = 0, if and only if P = Q
 - JS(P||Q) = JS(Q||P)
- Close relation to the information theory
 - Assume X an abstract function on the events, or a mixture distribution, M, with a mode selection of Z; and with two mode components of P and Q
 - X samples from P distribution if Z=0
 - X samples from Q distribution if Z=1
 - The mode proportion between Z=0 and Z=1 is uniform

•
$$X \sim M = \frac{P+Q}{2}$$

•
$$I(X;Z) = H(X) - H(X|Z) = -\sum MlogM + \frac{1}{2} [\sum PlogP + \sum QlogQ]$$

 $= -\sum \frac{P+Q}{2} logM + \frac{1}{2} [\sum PlogP + \sum QlogQ]$
 $= -\sum \frac{P}{2} logM - \sum \frac{Q}{2} logM + \frac{1}{2} [\sum PlogP + \sum QlogQ]$
 $= \frac{1}{2} \sum P(logP - logM) + \frac{1}{2} \sum Q(logQ - logM)$
 $= \frac{1}{2} \sum Plog \frac{P}{M} + \frac{1}{2} \sum Qlog \frac{Q}{M} = \frac{1}{2} KL(P||M) + \frac{1}{2} KL(Q||M) = JS(P||Q).$

Training of GAN

- $min_{\theta_g} max_{\theta_d} V(D, G; \theta_g, \theta_d)$
 - $= min_{\theta_g} max_{\theta_d} E_{x \sim p_{data(x)}} [logD(x; \theta_d)] + E_{z \sim p_{z(z)}} [log(1 D(G(z; \theta_g); \theta_d)]$
 - Two sets of parameter θ_g and θ_d
 - Alternative gradient learning
 - Gradient ascent
 - $\theta_d^* = argmax_{\theta_d} E_{x \sim p_{data(x)}} [logD(x; \theta_d)] + E_{z \sim p_{z(z)}} [log(1 D(G(z; \theta_g); \theta_d)]$
 - Gradient descent
 - $\theta_g^* = argmin_{\theta_g} E_{z \sim p_{z(z)}} [log(1 D(G(z; \theta_g); \theta_d)]$
- Because the learning on θ_d requires the output from $G(z;\theta_g)$; and the learning on θ_g requires the feedback from $D(G(z;\theta_g);\theta_d)$
 - The simultaneous learning of θ_d and θ_q is infeasible
 - This suggest that the training is not a simultaneous game, rather a sequential game
 - Imagine a rock-paper-scissors game with a player who plays first
 - The other player who plays second has a deterministic result

Theoretical Results of GAN

- $V(D,G) = E_{x \sim p_{data(x)}}[logD(x)] + E_{z \sim p_{z(z)}}[log(1 D(G(z))]$
 - $\min_{G} \max_{D} V(D,G)$
 - $C(G) = \max_{D} V(D, G)$
- There exists the global minimum and its meaning
 - The global minimum of the virtual training criterion C(G) is achieved
 - if and only if $p_g = p_{data}$.
 - At that point, C(G) achieves the value –log 4.
 - \Rightarrow For optimal D (fixed), global minimum is achieved iff $p_g = p_{data}$
- There exists the convergence path to the global optimum
 - p_g converges to p_{data}
 - If G and D have enough capacity,
 - And at each step, the discriminator is allowed to reach its optimum given G
 - And, p_g is updated so as to improve the criterion $V(D^*, G)$,
 - \Rightarrow For optimal D (fixed), $V(D^*, G)$ converges to global minimum
 - \Rightarrow For optimal D (fixed), p_g converges to p_{data}

Mode Collapse

- The objective of G(z) is $\min E_{z \sim p_{z(z)}}[\log(1 D(G(z))]$
 - $\min E_{z \sim p_{Z(z)}}[\log(1 D(G(z))] \rightarrow \max E_{z \sim p_{Z(z)}}[\log D(G(z))]$
 - In the generator perspective, the below is the potential possibility
 - $G(z) = x^*$ such that $x^* = argmax_x D(x)$
 - Here, x^* becomes a fixed output regardless of $z \sim p_{z(z)}$ sampling
 - Producing the most realistic image, yet a single fixed image regardless of the latent
 - Fixed discriminator → fixed optimal x*

Unrolling Discriminator Learning

Ordinary GAN

•
$$\theta_G^* = arg\min_{\theta_G} \max_{\theta_D} f(\theta_G, \theta_D) = arg\min_{\theta_G} f(\theta_G, \theta_D^*(\theta_G))$$

- $\theta_D^*(\theta_G) = arg \max_{\theta_D} f(\theta_G, \theta_D)$
- Optimal point : $\theta^* = \{\theta_G^*, \theta_D^*\}$
 - Multiple problem in reaching to the optimal points
 - $f(\theta_G, \theta_D)$ may not be a simple convex or concave function \rightarrow Local optimum
 - Alteranating gradient approach → Depending on the gradient descent, the learning could be infeasible from the time perspective

- $\theta_G^* = arg\min_{\theta_G} f(\theta_G, \theta_D^*(\theta_G))$
 - But, $\theta_D^*(\theta_G)$ is unreachable
 - Then, Let's approximate the learning
 - $\theta_D^0 = \theta_D$
 - $\theta_D^{k+1} = \theta_D^k + \eta^k \frac{df(\theta_G, \theta_D^k)}{d\theta_D^k}$
 - $\bullet \quad \theta_D^*(\theta_G) = \lim_{k \to \infty} \theta_D^k$
- Surrogate of $f(\theta_G, \theta_D^*(\theta_G))$: $f_K(\theta_G, \theta_D) = f(\theta_G, \theta_D^K(\theta_G, \theta_D))$
 - if k = 0, $f_K(\theta_G, \theta_D) = f(\theta_G, \theta_D)$
 - if $k \to \infty$, $f_K(\theta_G, \theta_D) = f(\theta_G, \theta_D^*(\theta_G))$
 - under the condition that $\theta_D^*(\theta_G)$ can be reached via the gradient method

Unrolled GAN

- Parameter update
 - $\theta_G \leftarrow \theta_G \eta \frac{df_K(\theta_G, \theta_D)}{d\theta_G}, \, \theta_D \leftarrow \theta_D \eta \frac{df(\theta_G, \theta_D)}{d\theta_D}$
- Effect on the generator learning
 - $\frac{df_K(\theta_G,\theta_D)}{d\theta_G} = \frac{\partial f(\theta_G,\theta_D^K(\theta_G,\theta_D))}{\partial \theta_G} + \frac{\partial f(\theta_G,\theta_D^K(\theta_G,\theta_D))}{\partial \theta_D^K(\theta_G,\theta_D)} \frac{d\theta_D^K(\theta_G,\theta_D)}{d\theta_G}$
 - as $k \to \infty$, $\frac{\partial f(\theta_G, \theta_D^K(\theta_G, \theta_D))}{\partial \theta_D^K(\theta_G, \theta_D)} \to 0$
 - This becomes the standard GAN with the optimal discriminator
 - as k = 0, this becomes the standard GAN with the iteratively optimized discriminator without optimality

Effects on Mode Collapsing by Unrolled GAN

- If G, D have enough capacity, and at each step,
 - Given G, the discriminator is allowed to reach its optimum
 - p_g is updated so as to improve the criterion
 - $E_{x \sim p_{data(x)}}[logD(x)] + E_{z \sim p_{z(z)}}[log(1 D(G(z))]$
 - then p_g converges to p_{data}

Surrogate Function

- $f_K(\theta_G, \theta_D) = f(\theta_G, \theta_D^K(\theta_G, \theta_D))$
- Unrolling K-step

•
$$\theta_G \leftarrow \theta_G - \eta \frac{f_K(\theta_G, \theta_D)}{d\theta_G}, \theta_D \leftarrow \theta_D + \eta \frac{f(\theta_G, \theta_D)}{d\theta_D}$$

Anticipating the K-future discriminator parameter if we update the generator parameter

Variants of Generative Adversarial Network

Conditional Generative Adversarial Network

- Role of original GAN from the generative modeling perspective
 - An implicit method of generating x by G(z), such as p(x|z)
 - Original GAN has a pure noise modeling on z, i.e. N(0,1)
 - Therefore, modeling on a conditional probability is needed

Original GAN

• $\min_{G} \max_{D} V(D, G)$ $= \min_{G} \max_{D} E_{x \sim p_{data(x)}} [logD(x)] + E_{z \sim p_{z}(z)} [log(1 - D(G(z))]$

Conditional GAN

• $\min_{G} \max_{D} V(D,G)$

$$= \min_{G} \max_{D} E_{x \sim p_{data(x)}} [log D(x|y)] + E_{z \sim p_{z}(z)} [log (1 - D(G(z|y))]$$

- $D(x) = p \rightarrow D(x|c) = p \rightarrow NN_D(x, c; w_D) = p$
 - The discriminator takes the condition as an additional input
- $G(z) = x \rightarrow G(z|c) = x \rightarrow NN_G(z,c;w_G) = x$
 - The generator takes the condition as an additional input

Structure of Conditional GAN

- Just a concatenated input of y
 - $NN_G(z, c; w_G) = x$
 - $NN_D(x, c; w_D) = p$
- Enables the conditioned sampling of x
 - Condition can be indicated as a vector value
 - i.e. a latent vector from autoencoder

MNIST Image generation through CGAN

Adding Latent Variable to GAN

- Original GAN objective
 - $\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} E_{x \sim p_{data(x)}} [logD(x)] + E_{z \sim p_{z}(z)} [log(1 D(G(z))]$
- Mutual information
 - $I(X;Z) = D_{KL}(P_{X,Z}||P_X \otimes P_Z) = H(X) H(X|Z) = H(Z) H(Z|X)$
 - $I(X;Z) = \sum_{x \in X, z \in Z} P_{(X,Z)}(x,z) \log \frac{P_{(X,Z)}(x,z)}{P_X(x)P_Z(z)}$

$$= \sum_{x \in X, z \in Z} P_{(X,Z)}(x,z) \log \frac{P_{(X,Z)}(x,z)}{P_X(x)} - \sum_{x \in X, z \in Z} P_{(X,Z)}(x,z) \log P_Z(z) = \sum_{x \in X, z \in Z} P_X(x) P_{Z|X=x}(z) \log P_{Z|X=x}(z) - \sum_{x \in X, z \in Z} P_{(X,Z)}(x,z) \log P_Z(z)$$

$$= \sum_{x \in X} P_X(x) \left(\sum_{z \in Z} P_{Z|X=x}(z) \log P_{Z|X=x}(z) \right) - \sum_{z \in Z} \left(\sum_{x \in X} P_{(X,Z)}(x,z) \right) \log P_Z(z) = -\sum_{x \in X} P_X(x) H(Z|X=x) - \sum_{z \in Z} P_Z(z) \log P_Z(z)$$

$$= -H(Z|X) + H(Z)$$

- If we add a latent variable, c, to the generated data, p_q
 - The original GAN can be further extended
 - $\min_{G} \max_{D} V(D,G) \lambda I(c;G(z,c))$
 - If c and G(z,c) are independent, I(c;G(z,c))=0

InfoGAN

- $\min_{G} \max_{D} V(D,G) \lambda I(c;G(z,c))$
 - Given the above objective function, I(c; G(z, c)) needs to be optimized
 - However, c is a latent variable that requires an approximation
 - Variational mutual information maximization

•
$$I(c; G(z,c)) = H(c) - H(c|G(z,c))$$

 $= H(c) + E_{x \sim G(z,c)} [\sum_{c' \sim P(C|X)} P(c'|x) \log P(c'|X)]$
 $= H(c) + E_{x \sim G(z,c)} [KL(P(c'|x)||Q(c'|x)) + E_{c' \sim P(C|X)} [\log Q(c'|X)]]$
 $\geq E_{x \sim G(z,c)} [E_{c' \sim P(C|X)} [\log Q(c'|X)]] + H(c)$

• Introduced the implicit variational distribution Q(c'|x)

•
$$L_I(G,Q) = E_{x \sim G(z,c)} \left[E_{c' \sim P(C|X)} [\log Q(c'|X)] \right] + H(c) \le I(c;G(z,c))$$

- $\min_{G} \max_{D} V(D,G) \lambda I(c; G(z,c)) \le \min_{G,Q} \max_{D} V(D,G) \lambda L_{I}(G,Q)$
 - From the perspective of Q,
 - $V(D,G) \lambda L_I(G,Q)$ should be minimized
 - Discriminator should not distinguish the generation from the prior noise and the latent variable

Implementation of InfoGAN

- $\min_{G,Q} \max_{D} V(D,G) \lambda L_{I}(G,Q)$
 - $L_I(G,Q) = E_{x \sim G(z,c)} \left[E_{c' \sim P(C|X)} [\log Q(c'|X)] \right] + H(c)$
 - Q(c'|X) becomes a distribution that produces the estimation of c given x
- Virtual example is generated from the designed c and the noise z
 - Sample c from a selected prior distribution
- Real example is evaluated to produce *c*

Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016.

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation) (d) Varying c_3 from -2 to 2 on InfoGAN (Width)

Comparison between Conditional GAN and InfoGAN

- Both Conditional GAN and InfoGAN uses the code as an input to the generator.
- Conditional GAN
 - $\min_{G} \max_{D} E_{x \sim p_{data(x)}} [log D(x|y)] + E_{z \sim p_z(z)} [log (1 D(G(z|y))]$
 - Generator : y=[0,0,1,0,0,0,0,0,0,0], $Z \rightarrow G(z,y) = x = image of '2'$
 - Discriminator : y=[0,0,1,0,0,0,0,0,0,0], $x=image\ of\ '2' \rightarrow D(y,x) = p\ in\ [0,1]$

- $\min_{G,Q} \max_{D} V(D,G) \lambda L_I(G,Q)$
- $\min_{G,Q} \max_{D} E_{x \sim p_{data(x)}} [log D(x)] + E_{z \sim p_{z}(z)} [log (1 D(G(z,c))] \lambda \{E_{x \sim G(z,c)} \left[E_{c' \sim P(C|X)} [log Q(c'|x)] \right] + H(c) \}$
- Generator same as Conditional GAN
 - $y=[0,0,1,0,0,0,0,0,0,0], Z \rightarrow G(z,y) = x = image of '2'$
 - However, here, y is sampled, not a supervised output
- Discriminator
 - x=image of '2' → D(x) = p in [0,1]
- Auxiliary structure
 - $x=image of '2' \rightarrow Q(c|x)$
 - Q(c|x): the probability distribution of c given x
 - c=[0.05, 0.1, 0.7,....]: c is estimated, not embedded as the label in the dataset
 - If Q(c|x) follows the multinomial distribution, it could have a final softmax layer
 - If Q(c|x) follows the Gaussian distribution, it could have a layer to produce the mean and the variance

Modifying the Loss Characteristics

Generalizing Loss of Divergence

GAN minimizes the loss of the Jensen-Shannon divergence

•
$$V(D,G) = E_{x \sim p_{data(x)}}[logD(x)] + E_{z \sim p_{z(z)}}[log(1 - D(G(z))]$$

= $2JS(P_a||P_{data}) - \ln 4$

- Divergence
 - The difference between two probability distributions
 - Jensen-Shannon divergence
 - Kullback-Liebler divergence
 - This is not the distance measure. Distance is defined to be a function, d
 - $d(x,y) \ge 0$ and $d(x,y) = 0 \Leftrightarrow x = y$
 - d(x,y) = d(y,x): Not satisfied by divergence
 - $d(x,y) + d(y,z) \ge d(x,z)$: Not satisfied by divergence
 - Usually, x and y are assumed to be a vector, but a function can be a vector, as well
 - Abstract vector space
 - Natually, it is feasible to define a distance between two vectors representing functions
 - Probability density function is a function
- Then, our question becomes how to generalize the function
 - In terms of the divergence and the distance

Detour: Convex Duality

APPLIED ARTIFICIAL INTELLIGENCE LAB

- Systematic variational transform?
 - Utilize the convex duality
- Concave function f(x), such as log function
 - Can be represented via a conjugate or dual function as follows
 - Remember that if f(x) is not a concave function
 - You can always use the log-concave function
 - Transform using the log function
 - Re-transform using the exp function

•
$$f(x) = min_{\lambda} \{\lambda^T x - f^*(\lambda)\}\$$

 $\Leftrightarrow f^*(\lambda) = min_{\lambda} \{\lambda^T x - f(\lambda)\}\$

Dual function or Conjugate function

Convex Conjugate Function

- For a function $f: X \to R$, the convex conjugate function $f^*: X \to R$ is defined by
 - $f^*(a) := \sup\{\langle a, x \rangle f(x)\}$
 - $f^*(a) \ge [< a + x > -f(x)]$
 - Also, known as Fenchel conjugate, which is convex regardless of the convexity of f
- Property of conjugate functions
 - Fenchel's inequality: for any function f and its convex conjugate f*
 - for all $a, x \in X$, $f^*(a) + f(x) \ge < a, x >$
 - Order reversing: if $f(x) \le g(x)$ for all $x \in X \Longrightarrow g^*(a) \le f^*(a)$ for all $a \in X$
 - Convex conjugate function f* is always convex and lower semi-continuous
 - But, not necessarily proper

•
$$a = f'(x) \Rightarrow \forall y \in X, f(y) \ge f(x) + \langle a, y - x \rangle$$

 $\Leftrightarrow \langle a, y \rangle - f(y) \le \langle a, x \rangle - f(x)$
 $\Leftrightarrow \sup_{y \in X} \{\langle a, y \rangle - f(y)\} = f^*(a) \le \langle a, x \rangle - f(x)$
 $\Leftrightarrow f^*(a) + f(x) \le \langle a, x \rangle \Leftrightarrow f^*(a) + f(x) = \langle a, x \rangle$

- By the convexity of f at the first step
- By the Fenchel's inequality at the last step

f - divergence

- Let's generalize the divergence as the below
 - $D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx$
 - f: generator function, convex, f(1) = 0
 - We can define the Fenchel conjugate of the generator function, $f^*(t), t \in T$
 - $f(u) = \sup_{t \in T} \{tu f^*(t)\}$

•
$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx = \int_x q(x) \sup_{t \in T} \left\{ t \frac{p(x)}{q(x)} - f^*(t) \right\} dx$$

$$\geq \sup_{\tau \in T} \left\{ \int_x p(x) \tau(x) dx - \int_x q(x) f^*(\tau(x)) dx \right\}$$

$$= \sup_{\tau \in T} \left\{ E_{x \sim p(x)}[\tau(x)] - E_{x \sim q(x)}[f^*(\tau(x))] \right\}$$

- The domain of f is $\frac{p(x)}{q(x)}$
- t becomes the function by varying x: t at $x \to \tau(x)$
 - Optimal setting of $\tau(x) = f'\left(\frac{p(x)}{q(x)}\right)$
 - By following the property of Fenchel conjugate: $a = f'(x) \Leftrightarrow f^*(a) + f(x) = \langle a, x \rangle$
 - $\tau \in T : T$ is an arbitrary class of functions $\tau : X \longrightarrow R$
- Samples from p(x) are real images
- Samples from q(x) are generated images
- Two steps of the lower bound
 - Jensen's inequality: swapping the supremum and the integration
 - The limited search space of T

$$KL(P||Q) = \sum_{i} P(i) \ln \left(\frac{P(i)}{Q(i)}\right)$$

Derivations of Optimal τ of Fenchel Conjugate

- Let's calculate some examples of Fenchel conjugate of some divergences
 - Only applicable to the family of f-divergence: $D_f(P||Q) = \int_x^{\infty} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$
 - KL divergence
 - $D_f(P||Q) = \int p(x) \log \frac{p(x)}{q(x)} dx$
 - $f(u) = u \log u$, $f'(u) = \log u + u \frac{1}{u} = 1 + \log u$
 - Optimal setting of $\tau(x) = f'\left(\frac{p(x)}{q(x)}\right) = 1 + \log \frac{p(x)}{q(x)}$

Optimal setting of $\tau(x) = f'\left(\frac{p(x)}{a(x)}\right) = \log \frac{p(x)}{p(x) + q(x)}$

- GAN divergence
 - $V(D,G) = E_{x \sim p_{data(x)}}[logD(x)] + E_{z \sim p_{z(z)}}[log(1 D(G(z))]$ $= \int p(x) \log \frac{p(x)}{p(x) + q(x)} + q(x) \log \frac{q(x)}{p(x) + q(x)} dx$ $= \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} p(x) \log 2 q(x) \log 2 dx$ $= \int p(x) \log \frac{2\frac{p(x)}{p(x)}}{\frac{p(x)}{q(x)}} + q(x) \log \frac{2}{\frac{p(x)}{q(x)}} dx \log 4$ $= \int p(x) \log \frac{p(x)}{\frac{p(x)}{q(x)}} (p(x) + q(x)) \log \left(\frac{p(x)}{q(x)} + 1\right) + (p(x) + q(x)) \log 2 dx \log 4$ $= \int q(x) \left\{ \frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)} \left(\frac{p(x)}{q(x)} + 1\right) \log \left(\frac{p(x)}{q(x)} + 1\right) \right\} dx$

 $f(u) = u \log u - (u+1) \log(u+1), f'(u) = 1 + \log u - \log(u+1) - (u+1) \frac{1}{u+1} = \log \frac{u}{u+1}$

- $D_f(P||Q) \ge \sup_{\tau \in T} \{ E_{x \sim p(x)}[\tau(x)] E_{x \sim q(x)}[f^*(\tau(x))] \}$
 - The domain of f is $\frac{p(x)}{q(x)}$
 - $f(u) = \sup_{t \in T} \{tu f^*(t)\}$
 - $f^*(t) := \sup\{\langle t, u \rangle f(u)\}$
 - Fenchel conjugate of the generator function, $f^*(t), t \in T$
 - Optimal setting of $\tau(x) = f'\left(\frac{p(x)}{q(x)}\right)$

Variational Divergence Minimization

- $D_f(P||Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx \ge \sup_{\tau \in T} \left\{ E_{x \sim p(x)}[\tau(x)] E_{x \sim q(x)}[f^*(\tau(x))] \right\}$
 - $f(u) = u \log u (u+1) \log(u+1), \ \tau(x) = f'\left(\frac{p(x)}{q(x)}\right) = \log \frac{p(x)}{p(x) + q(x)}$

- The domain of f is $\frac{p(x)}{q(x)}$
- $f(u) = \sup_{t \in T} \{tu f^*(t)\}$
 - $f^*(t) \coloneqq \sup\{\langle t, u \rangle f(u)\}$
 - Fenchel conjugate of the generator function, $f^*(t)$, $t \in T$
- We cannot optimize the f-divergence, directly, so we optimize the lower bound
 - Any functions that we do not need to approximate
 - p(x): distribution sampled as the dataset
 - $f^*(t)$: Fenchel conjugate of f(u), already determined by setting a certain f-divergence
 - Any functions that we need to approximate
 - q(x): distribution to be approximated. generator function!
 - $z \sim p(z)$, $x_{gen} = G(z)$
 - $\tau(x)$: a function as changing t by x, a function to select out of T given $\tau \in T$
 - T: a set of functions that can be approximated by a neural network
 - optimal $\tau(x)$ is set to be $\log \frac{p(x)}{p(x)+q(x)}$, so we need to learn τ to be the classifier between p(x) and q(x)
- Eventually, we can provide the parameterized version of the lower bound
 - $F(\theta, \omega) = E_{x \sim P}[T_{\omega}(x)] E_{x \sim Q_{\theta}}[f^*(T_{\omega}(x))]$
 - minimize $F(\theta, \omega)$ to reduce the divergence by θ
 - maximize $F(\theta, \omega)$ to tighten the inequality, or finding optimal τ , by ω

Instantiation of Variational Divergence Minimization

- $F(\theta, \omega) = E_{x \sim P}[T_{\omega}(x)] E_{x \sim Q_{\theta}}[f^*(T_{\omega}(x))]$
 - minimize $F(\theta, \omega)$ to reduce the divergence by θ
 - maximize $F(\theta, \omega)$ to tighten the inequality, or finding optimal τ , by ω
- Under the instantiation of GAN divergence, a type of f-divergence
 - $f(u) = u \log u (u+1) \log(u+1), \ \tau(x) = f'\left(\frac{p(x)}{q(x)}\right) = \log \frac{p(x)}{p(x) + q(x)}$
 - Now, $T_{\omega}(x)$ is a neural network without a restriction
 - However, we are providing inputs to the Fenchel conjugate of $f^*(t)$
 - So, we need to make sure that $T_{\omega}(x)$ provides an input fall into the range of t of $f^*(t)$
- $f^*(t) = \sup_{u \in U} \{ut f(u)\} = \sup_{u \in U} \{ut u \log u + (u+1) \log(u+1)\}$
 - Let's say $g(t,u) = ut u \log u + (u+1) \log(u+1)$
 - $\frac{dg(t,u)}{du} = t \log u u \frac{1}{u} + (u+1) \frac{1}{u+1} + \log(u+1) = t + \log \frac{u+1}{u}$ • $\frac{d^2g(t,u)}{(du)^2} = \frac{1}{u+1} - \frac{1}{u} < 0, g(t,u)$ is concave with respect to u
 - $\frac{dg(t,u)}{du} = 0 \rightarrow t = \log \frac{u}{u+1} \rightarrow t < 0$
 - Given $t = \log \frac{u}{u+1}$, $g(t,u) = ut u \log \frac{u}{u+1} + \log(u+1) = ut ut + \log(u+1)$ $\to f^*(t) = g(t) = -\log(1 - e^t)$ at the optimal t
- Therefore, $T_{\alpha}(x)$ should result in R_{-}
 - $T_{\omega}(x)$ can utilize the output rectifier for the negative domain, i.e. softplus with minus
 - softplus : $a(x) = \log(1 + e^x) \rightarrow$ negative softplus : $a(x) = -\log(1 + e^x)$, here x is the input from the last layer of NN
 - This choice of the output function depends upon the instantiation of f-divergence

- The domain of f is $\frac{p(x)}{q(x)}$
- $f(u) = \sup_{t \in T} \{tu f^*(t)\}$
 - $f^*(t) \coloneqq \sup\{\langle t, u \rangle f(u)\}$
 - Fenchel conjugate of the generator function, $f^*(t)$, $t \in T$

Difference of Two Probability Distributions

- How to compare two sequences of values (or a function)?
 - Ratio or difference
- Is f-divergence the only method in comparing two distributions?
 - $D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx$
 - $\frac{p(x)}{q(x)}$ is the likelihood ratio based comparison
 - assuming the support of q(x) will cover the support of p(x)
 - What-if $supp(p) supp(q) \neq \phi$?
 - f-divergence requires the generation distribution q(x) to be wider than p(x)
 - Numerical instability : $\frac{p(x)}{q(x)}$ can diverge
 - Mode collapse : the ratio in $f\left(\frac{p(x)}{q(x)}\right)$ could be ignored if q(x) becomes 0
- Are there any other comparison method for two probability distributions?
 - (Absolute) difference of two densities over the domain
 - Integral Probability Metrics, or IPM

Integral Probability Metric

IPM is defined as

$$d_{\mathcal{G}}(\mu,\nu) = \sup_{g \in \mathcal{G}} \left\{ \left| \int g d\mu - \int g d\nu \right| \right\}$$

 $D_f(P||Q) = \int_{x} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$

- Settings of G determines the variation of IPM
- g could be
 - Total variation distance : g is the class of all measurable functions taking value in [0,1]

•
$$\delta(P_r, P_g) = \sup_{A \in \Sigma} |P_r(A) - P_g(A)|$$

- Wasserstein metric : g is the class of 1-Lipschitz functions
 - Wassertein-1 or Earth-Mover Distance. Norm can be set by the modeler

•
$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma}[||\mathbf{x} - \mathbf{y}||]$$

- Maximum Mean Discrepancy : G is the unit ball of RKHS
 - Kernel and basis mapping function can be set by the modeler

•
$$MMD(P_r, P_g) = \sup_{\|\psi\|_{\mathcal{H}} \le 1} (E_{x \sim P_r}[\psi(x)] - E_{y \sim P_g}[\psi(x)])$$

GAN+MMD(1)

f-GAN optimizes the f-divergence (in spite that the target is the bound)

•
$$D_f(P||Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx \ge \sup_{\tau \in \mathcal{T}} \left\{ E_{x \sim p(x)}[\tau(x)] - E_{x \sim q(x)}[f^*(\tau(x))] \right\}$$

- If we substitute the f-divergence by the IPM
 - Let's exchange $D_f(P||Q)$ with $MMD(P_r, P_g)$

•
$$MMD^{2}(P_{r}, P_{g}) = \sup_{\|\psi\|_{\mathcal{H}} \le 1} (E_{x \sim P_{r}}[\psi(x)] - E_{y \sim P_{g}}[\psi(x)]) = \|\mu_{p} - \mu_{q}\|_{\mathcal{H}}^{2}$$

- if $\psi(x)=x$, then matching the mean
- if $\psi(x) = (x, x^2)$, then matching the mean and variance
- $\mu_p = \int k(x,\cdot)p(dx) \in \mathcal{H}$
 - we may not have a direct access to p or q, so $E[f(X)] = \langle f, \mu_p \rangle_{\mathcal{H}}$
- By following the kernel two-sample test

•
$$MMD^{2}(P_{r}, P_{g}) = E_{x,x'}[k(x, x')] - 2E_{x,y}[k(x, y)] + E_{y,y'}[k(y, y')]$$

$$= \frac{1}{N(N-1)} \sum_{n \neq n'} k(x_{n}, x_{n'}) + \frac{1}{M(M-1)} \sum_{m \neq m'} k(y_{m}, y_{m'}) - \frac{2}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} k(y_{m}, x_{n})$$

Gretton, Arthur, et al. "A kernel two-sample test." *The Journal of Machine Learning Research* 13.1 (2012): 723–773.

GAN+MMD(2)

We can substitute f-divergence with MMD

•
$$MMD^{2}(P_{r}, P_{g}) = \sup_{\|\psi\|_{\mathcal{H}} \leq 1} (E_{x \sim P_{r}}[\psi(x)] - E_{y \sim P_{g}}[\psi(x)]) = \|\mu_{p} - \mu_{q}\|_{\mathcal{H}}^{2}$$

 $= E_{x,x'}[k(x, x')] - 2E_{x,y}[k(x, y)] + E_{y,y'}[k(y, y')]$
 $= \frac{1}{N(N-1)} \sum_{n \neq n'} k(x_{n}, x_{n'}) + \frac{1}{M(M-1)} \sum_{m \neq m'} k(y_{m}, y_{m'}) - \frac{2}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} k(y_{m}, x_{n})$

- If we optimize the generator of $y = G_{\theta}(z)$, $z \sim P(z)$
 - P(z) as the base distribution for the stochasticity of $G_{\theta}(z)$
 - We need to optimize the MMD loss with respect to θ
- $\min_{\rho} MMD^2(P_r, P_g)$

$$= \min_{\theta} \frac{1}{N(N-1)} \sum_{n \neq n'} k(x_n, x_{n'}) + \frac{1}{M(M-1)} \sum_{m \neq m'} k(y_m, y_{m'}) - \frac{2}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} k(y_m, x_n)$$

$$= \min_{\theta} \frac{1}{M(M-1)} \sum_{m \neq m'} k(G_{\theta}(z_m), G_{\theta}(z_{m'})) - \frac{2}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} k(G_{\theta}(z_m), x_n)$$

$$= \min_{\theta} \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} \left[\frac{1}{M(M-1)} \sum_{m'=1, m' \neq m}^{M} k(G_{\theta}(z_m), G_{\theta}(z_{m'})) - \frac{2}{M} \left(k(G_{\theta}(z_m), x_n) \right) \right]$$

- Still, the gradient method is applicable in optimizing θ
- Then, where is the discriminator learning?
 - f-divergence : optimal τ is required, and the optimality is approached through the optimized Discriminator
 - IPM: MMD requires a good selection of k including its hyperparameter setting, which could be optimized, as well

Example of Parallel Line Density

- Let's assume
 - $Z \sim U[0,1]$: the uniform distribution on the unit interval
 - P_0 : the distribution of $(0, Z) \in \mathbb{R}^2$, simulation of the data distribution in this example
 - $g_{\theta}(z) = (\theta, z), \ \theta \in R, \ \theta$ as a parameter of the Generator function
- Then, the Wasserstein metric is the only metric as a continuous function
 - out of total variation, KL, JS, and Wasserstein

Total variation distance : \mathcal{G} is the class of all measurable functions taking value in [0,1]

•
$$\delta(P_r, P_g) = \sup_{A \in \Sigma} |P_r(A) - P_g(A)|$$

•
$$\delta(P_0, P_g) = \begin{cases} 1, & \text{if } \theta \neq 0 \\ 0, & \text{if } \theta = 0 \end{cases}$$

Wasserstein metric: \mathcal{G} is the class of 1-Lipschitz functions

•
$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} [||\mathbf{x} - \mathbf{y}||]$$

•
$$W(P_0, P_g) = |\theta|$$

KL Divergence

•
$$D_{KL}(P_r||P_g) = \int P_r(x) \log \frac{P_r(x)}{P_g(x)} dx$$

•
$$D_{KL}(P_0||P_g) = D_{KL}(P_g||P_0) = \begin{cases} \infty, & \text{if } \theta \neq 0 \\ 0, & \text{if } \theta = 0 \end{cases}$$

JS Divergence

•
$$D_{JS}(P_r||P_g) = \frac{1}{2}D_{KL}(P_r||\frac{P_r + P_g}{2}) + \frac{1}{2}D_{KL}(P_g||\frac{P_r + P_g}{2})$$

•
$$D_{JS}(P_r||P_g) = \begin{cases} \log 2, & \text{if } \theta \neq 0 \\ 0, & \text{if } \theta = 0 \end{cases}$$

Visualization of Divergence & Distance

- Wasserstein metric : \mathcal{G} is the class of 1-Lipschitz functions
 - $W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} [||\mathbf{x} \mathbf{y}||]$
 - $W(P_0, P_g) = |\theta|$

JS Divergence

•
$$D_{JS}(P_r||P_g) = \frac{1}{2}D_{KL}(P_r||\frac{P_r + P_g}{2}) + \frac{1}{2}D_{KL}(P_g||\frac{P_r + P_g}{2})$$

•
$$D_{JS}(P_r||P_g) = \begin{cases} \log 2, & \text{if } \theta \neq 0 \\ 0, & \text{if } \theta = 0 \end{cases}$$

Wassertein Distance with GAN

- Original Wassertein Distance
 - $W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} [||\mathbf{x} \mathbf{y}||]$
- Original GAN objective
 - $\min_{G} \max_{D} E_{x \sim p_{data(x)}} [log D(x)] + E_{z \sim p_{z}(z)} [log (1 D(G(z))]$
- Need to merge the two structure
 - By turning the original GAN objective into the Wassertein distance formula
 - But, there is no common aspect in the original form of the distance
 - Original Wassertein distance defines the mass transport in the joint space, $\Pi(P_r, P_g)$
 - The complexity becomes $O(X \times X)$, which is a huge space given the high dimensionality of X
 - Original GAN objective utilizes the expectation on the marginal distribution of P_r and P_g
 - This becomes the acceptable complexity because P_r is sampled as a dataset, and P_g can be generated multiple times
- Passing-by OR researchers says why not utilize the dual form of the wassertein distance
 - As you can see, $W(P_r, P_g)$ is inherently an optimization problem of infimum

Kantorovich-Rubinstein Duality

In linear programming, there is a duality in optimization

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} [||\mathbf{x} - \mathbf{y}||]$$

- Primal : Minimize $c^T x$, subject to Ax = b, $x \ge 0$
- Dual : Maximize b^Ty , subject to $A^Ty \le c$
- The optimization becomes choosing an instance of γ from $\Pi(P_r, P_g)$ to minimize $W(P_r, P_g)$

0	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0

$$\gamma \in \Pi(P_r, P_g)$$

$$||x-y||$$

Wasserstein as Primal LP $W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma}[||\mathbf{x} - \mathbf{y}||]$ Primal: Minimize $\mathbf{c}^T \mathbf{x}$, subject to $A\mathbf{x} = \mathbf{b}$, $\mathbf{x} \geq 0$ Dual: Maximize $\mathbf{b}^T \mathbf{y}$, subject to $A^T \mathbf{y} \leq \mathbf{c}$

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} E_{(x,y) \sim \gamma} [||x - y||]$$

- The optimization becomes choosing an instance of γ from $\Pi(P_r, P_g)$ to minimize $W(P_r, P_g)$
- Representing the "earth" movement as a LP problem
 - Ax = b: Hard constraint: maintaining the marginal distribution
 - x : Decision variable : each cell value in γ
 - \mathbf{c}^{T} : Objective function coefficient : distance between the earth movement

		P_r						
D								
P_g		1						
			1					
			1	1				
						1		
$\gamma \in \Pi(P_r, P_g)$								

0	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0

||x - y||

$$\gamma_{ij} = \gamma(x_i, y_j)$$

X

	$P_r(x_1)$	$P_r(x_2)$	$P_r(x_3)$	$P_r(x_4)$	$P_r(x_5)$	$P_g(y_1)$	$P_g(y_2)$	$P_g(y_3)$	$P_g(y_4)$	$P_g(y_5)$
	1	2	1	0	1	1	1	0	2	1
γ ₁₁	1					1				
γ ₁₂	1						1			
γ ₁₃	1							1		
γ ₁₄	1								1	
γ ₁₅	1									1
γ ₂₁		1				1				
γ ₂₂		1					1			
γ ₂₃		1						1		
γ ₂₄		1							1	
γ ₂₅		1								1
γ ₃₁			1			1				
γ ₃₂			1				1			
γ ₃₃			1					1		
γ ₃₄			1						1	
γ ₃₅			1							1
γ ₄₁				1		1				
γ ₄₂				1			1			
γ ₄₃				1				1		
γ ₄₄				1					1	
γ45				1						1
γ ₅₁					1	1				
γ ₅₂					1		1			
γ ₅₃					1			1		
γ ₅₄					1				1	
1 755 1 0	г.		TZ A TOT							

Wasserstein as Dual LP

Primal: Minimize $c^T x$, subject to Ax = b, $x \ge 0$ Dual: Maximize $b^T y$, subject to $A^T y \le c$

APPLIED ARTIFICIAL INTELLIGENCE LA

- The optimization becomes choosing an instance of γ from $\Pi(P_r, P_g)$ to minimize $W(P_r, P_g)$
- Representing the "earth" movement as a LP problem
 - Ax = b: Hard constraint: maintaining the marginal distribution
 - x : Decision variable : each cell value in γ
 - c^T : Objective function coefficient : distance between the earth movement

0	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0

||x - y||

$$C - D_{ij} = ||x_i - y_j||$$

D ₁₁	0		1					1				
D ₁₂	1		1						1			
D ₁₃	2		1							1		
D_{14}	3		1								1	
D ₁₅	4		1									1
D ₂₁	1			1				1				
D ₂₂	0			1					1			
D ₂₃	1			1						1		
D ₂₄	2			1							1	
D ₂₅	3			1								1
D ₃₁	2				1			1				
D ₃₂	1				1				1			
D ₃₃	0				1					1		
D ₃₄	1				1						1	
D ₃₅	2				1							1
D_{41}	3					1		1				
D_{42}	2					1			1			
D_{43}	1					1				1		
D_{44}	0					1					1	
D_{45}	1					1						1
D_{51}	4						1	1				
D ₅₂	3						1		1			
D ₅₃	2						1			1		
D ₅₄	1						1				1	
Indiistr	al and S	lvet	ems En	gineering	KAIS	 Г						

Property of Dual LP on Wasserstein Distance

- Duality in LP
 - Primal : Minimize $c^T x$, subject to Ax = b, $x \ge 0$
 - Dual : Maximize b^Ty , subject to $A^Ty \le c$
- Primal of Wasserstein Distance:

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} [||\mathbf{x} - \mathbf{y}||]$$

- Dual constraints
 - $f(x_i) + g(y_j) \le D_{i,j}$: this should be hold for every i, j
 - If i = j, $f(x_i) + g(y_i) \le D_{i,i} = 0$
 - At the optimality, the equality occurs from a diagonal constraint

•
$$f(x_i) + g(y_i) = 0 \to f(x_i) = -g(y_i)$$

- Then, every other constraints need to satisfy
 - $f(x_i) + g(y_j) \le D_{i,j} \to f(x_i) f(y_j) \le D_{i,j}$
 - This limits the variation of f = Lipschitz constraint on f

Detour: Lipschitz Continuity

- Lipschitz constraint of the dual problem of Wasserstein distance
 - $f(x_i) + g(y_j) \le D_{i,j} \to f(x_i) f(y_j) \le D_{i,j}$
 - This limits the variation of f = Lipschitz constraint on f
- Lipschitz continuity
 - Given two metric spaces (X, d_x) and (Y, d_y) where d_x denotes the metric on the set X and d_y on the set Y
 - a function $f: X \to Y$ is Lipschitz continuous if there exists a real constant $K \ge 0$
 - such that, for all x_1 and x_2 in X,
 - $d_Y(f(x_1), f(x_2)) \le Kd_X(x_1, x_2)$
 - *K* : Lipschitz constant
- Distance can be the absolute difference in R
 - $|f(x_1) f(x_2)| \le K|x_1 x_2|$
- Is a neural network Lipschitz continuous?
 - Exact constant calculation of Neural Network is NP-Hard
 - Most activation functions (ReLU, Softplus, tanh, logistic...) are 1-Lipschitz continuous
 - However, their combinations are difficult to analyze

Scaman, Kevin, and Aladin Virmaux. "Lipschitz regularity of deep neural networks: analysis and efficient estimation." *arXiv preprint arXiv:1805.10965* (2018).

Dual Problem of Wasserstein Distance

0	1	2	3	4			
1	0	1	2	3			
2	1	0	1	2			
3	2	1	0	1			
4	3	2	1	0			
x-y							

- Primal and dual problem in LP
 - Primal : Minimize $c^T x$, subject to Ax = b, $x \ge 0$
 - Primal of Wasserstein Distance : $W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} [||\mathbf{x} \mathbf{y}||]$
 - Dual : Maximize b^Ty , subject to $A^Ty \le c$
 - Dual of Wassersteing Distance : $W(P_r, P_g) = \max_{f} E_{P_r}[f(x)] + E_{y \sim P_g}[g(y)]$
 - Constrained by $f(x_i) + g(y_i) \le D_{i,j}$
 - Dual of Wassersteing Distance : $W(P_r, P_g) = \max_{f} E_{P_r}[f(x)] E_{y \sim P_g}[f(y)]$
 - Constrained by $f(x_i) + g(y_i) = 0 \rightarrow f(x_i) = -g(y_i), f(x_i) f(y_j) \le D_{i,j}$
 - == Constrained by f to be Lipschitz continuous
 - inf → min: continuous function on a compact set by the constraints
 - f and γ : decision variables
 - A : Matrix
 - between $\gamma_{i,j}$ and b
 - between $D_{i,j}$ and y
 - $D_{i,j}$: Distance of the earth movement
 - ullet b : marginal distribution concatenating P_r and P_g

Kantorovich-Rubinstein Duality and Wassertein GAN

Kantorovich-Rubinstein Theorem

•
$$W(p_r, p_g) = \inf_{\gamma \in \Pi(p,q)} E_{(x,y) \sim \gamma}[|x - y|] = \sup_{||f||_{L} \le 1} \left[E_{x \sim p_r}[f(x)] - E_{y \sim p_g}[f(x)] \right]$$

- Original GAN
 - $\min_{G} \max_{D} E_{x \sim p_{data(x)}} [log D(x)] + E_{z \sim p_{z}(z)} [log (1 D(G(z))]$
- Wassertein GAN
 - Max: To make a Wassertein metric between two distributions

•
$$W(P_r, P_g) = \max_{f} E_{P_r}[f(x)] - E_{y \sim P_g}[f(y)]$$

- Min : To make P_g close to P_r
 - $\min_{P_g} W(P_r, P_g) = \min_{P_g} \max_{f} E_{P_r}[f(x)] E_{y \sim P_g}[f(y)]$
- Constraints to make the Wassertein metric
 - Lipschitz constraint of f
 - Weight clipping: make the gradient of neural network to be bounded
 - Regularization on f (a.k.a. critic)
 - Let's say $x_t = tx + (1-t)y$, $t \in [0,1]$, $x \sim p_q$, $y \sim p_r \to ||\nabla f^*(x_t)|| = 1$ when f^* is the optimal function of f
 - $\min_{P_g} \max_{f} E_{P_r}[f(x)] E_{y \sim P_g}[f(y)] \lambda E_{x'' \sim p''} \left[\left(\left| \left| \nabla_{x''} f^*(x'') \right| \right|_2 1 \right)^2 \right], x'' \sim p'' \text{ is the sampling on the interpolation}$

Acknowledgements

- This lecture is influenced and adopted materials from 10807 Topics in Deep Learning by Prof. Russ Salakhutdinov, Carnegie Mellon University.
- Some parts are adopted from the slides by
 - Wonsung Lee
 - Kyungwoo Song