Лекция 5

Кластеризация

Типы методов кластеризации

- Ранее был рассмотрен метод кластеризации, основанный на измерении расстояния до центроидов.
- Для устранения недостатков, можно выделить следующие виды класт.:
 - Основанные на плотности
 - Агломеративная
 - Основанная на графах расстояния
 - Оценке законов распределения

DBSCAN

- DBSCAN Density-based spatial clustering of applications with noise -Основанная на плотности пространственная кластеризация для приложений с шумами
- Алгоритм кластеризации который оценивает плотность расположения точек, выделяя плотные группы точек в отдельный кластер
- Количество кластеров не фиксировано, также алгоритм выделяет точки, которые являются выбросом (шумом)
- Алгоритм определяется двумя параметрами: ε радиус поиска, minPts минимальное количество точек

Виды точек в DBSCAN

- Свойство: ٤-соседство если расстояние между двумя точками меньше ٤
- Основная (core) точка такая точка, у которой в радиусе ε находятся не меньше minPts точек, включая саму основную точку.
- Граничная (border) точка такая точка, у которой в радиусе є находится меньше minPts точек, но среди них есть основная точка. То есть сохраняется є-соседство с основной точкой.
- Шум (noise) все точки, которые не являются основными или граничными

Связи в DBSCAN (1)

 Точки q и р являются прямо достижимыми по плотности, если они основные точки и ε-соседи

Точки q и р являются достижимыми по плотности, если есть цепочка точек p₁, p₂, ..., p_n, где p₁ = q и p_n = p. И каждая p_i и p_{i+1} точка являются прямо достижимыми по плотности точками

Связи в DBSCAN (2)

 Точки q и р являются связанными по плотности, если у каждой в радиусе є есть основные точки, которые достижимы по плотности

 Все точки, которые связаны между собой по плотности образуют единый кластер

Алгоритм DBSCAN

- 1. Формируется множество всех основных непроверенных точек D по параметрам ε и minPts
- 2. Если множество D не пустое, то берется случайная основная точка и добавляется в очередь Q. Начинает формироваться новый кластер. Если множество D пустое, то алгоритм завершается.
- 3. Если очередь Q пустая, то шаг 2, иначе, достается следующая точка Р из Q:
 - а. Если Р основная, то добавляется к текущему кластеру. Р удаляется из D. Все ε-соседи точки Р добавляются в очередь Q.
 - b. Если P граничная, то добавляется к текущему кластеру.
- 4. Точки, которые не попали ни в один кластер помечаются как шум

Визуализация: https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Сравнение DBSCAN и K-Means

```
dbscan = DBSCAN(eps = 0.08, min_samples = 6)
dbscan_clust = dbscan.fit_predict(dens_data)
```


Особенность в SKlearn - отсутствие метода predict

OPTICS

- Основной недостаток DBSCAN предполагается то, что у всех кластеров схожая плотность
- OPTICS Ordering points to identify the clustering structure Упорядочение точек для обнаружения кластерной структуры
- OPTICS также как и DBSCAN оперирует с понятием основной точки, но оперирует с понятиями основного расстояния, которое определяет плотность кластера, и расстоянием достижимости.

OPTICS расстояние

• Основное расстояние - показывает минимальный радиус от основной точки р в котором лежит minPts точек:

$$\operatorname{core-dist}_{arepsilon, MinPts} = \left\{ egin{array}{ll} \operatorname{UNDEFINED} & |N_{arepsilon}(p)| < MinPts \ MinPts ext{-}\operatorname{th}N_{arepsilon}(p) & |N_{arepsilon}(p)| \geqslant MinPts \end{array}
ight.$$

 Достижимое расстояние для точек р и о равно максимуму из основного расстояния и обычного расстояния между ними:

$$\text{reachability-dist}_{\varepsilon,\mathit{MinPts}}(o,p) = \begin{cases} \text{UNDEFINED} & |N_\varepsilon(p)| < \mathit{MinPts} \\ \max(\mathsf{core\text{-}dist}_{\varepsilon,\mathit{MinPts}}(p),\mathsf{dist}(p,o)) & |N_\varepsilon(p)| \geqslant \mathit{MinPts} \end{cases}$$

 Таким образом, для каждой основной точки, основное расстояние обозначает плотность кластера, в который она должна быть отнесена

OPTICS расстояние

Одним из параметров OPTICS является max_eps - максимальное расстояние для поиска соседних точек.

По умолчанию = бесконечность

Позволяет оптимизировать алгоритм

Алгоритм OPTICS

- 1. Для всех точек принять. Достижимость не определена
- 2. Для каждой не посещенной точки:
 - а. Рассчитать кол-во соседей. Если точка не основная, то перейти на шаг 2.
 - b. Если точка основная. Рассчитать основное расстояние.
- 3. Для основной точки сделать очередь с приоритетом, добавив туда всех соседей из радиуса поиска. Если для соседа уже была рассчитана достижимость, то обновить по минимальному значению.

Таким образом, алгоритм не строит кластеры на прямую, а только хранит дерево достижимости

Особенность OPTICS

По дереву достижимости, можно построить график достижимости, где по х отмечены точки в порядке их обработки, а по у значение достижимости.

Далее варьируя значение по у, можно разделять кластеры и отделять шумы.

Применение OPTICS

График достижимости

Иерархическая кластеризация

- Иерархическая (агломеративная) кластеризация алгоритм кластеризации, при котором объединяются малые кластеры в один большой.
- Изначально, каждое наблюдения представляет отдельный кластер. Кластеры объединяются до тех пор, пока не будет получен один большой кластер (если не было задано других условий на остановку алгоритма)
- В качестве условий на остановку может быть указано:
 - Было получено N кластеров
 - Превышение предельной дистанции между кластерами

Иерархическая кластеризация - пример [1]

- Используется Манхэттенское расстояние
- Расстояние между кластерами расстояние между центроидами

Набор данных. На 1 шаге, каждая точка кластер

No	x	у
1	0	0
2	1	1
3	0	3
4	0	4
5	2	3

Матрица расстояний

0	2	3	4	5
	0	3	4	3
		0	1	2
			0	3
				0

Иерархическая кластеризация - пример [2]

- Объединили 3 и 4 кластер, получили новый кластер с центром [0, 3.5]
- Получили новые кластеры пересчитали попарные расстояния

Nō	х	у
1	0	0
2	1	1
(3, 4)	0	3.5
5	2	3

Матрица расстояний

Ø	2	3.5	5
	0	3.5	3
		0	2.5
			0

Иерархическая кластеризация - пример [3]

- Объединили 1 и 2 кластер, получили новый кластер с центром [0.5, 0.5]
- Получили новые кластеры пересчитали попарные расстояния

Nō	х	у
(1, 2)	0.5	0.5
(3, 4)	0	3.5
5	2	3

Матрица расстояний

0	3.5	4
	0	2.5
		0

Иерархическая кластеризация - пример [4]

- Объединили (3, 4) и 5 кластер, получили новый кластер с центром [1, 3.25]
- Осталось 2 кластера, последний шаг тривиальный

No	x	у
(1, 2)	0.5	0.5
((3, 4), 5)	1	3.25

Дендрограмма

- Для визуализации иерархической кластеризации рисуется дендрограмма
- Дендрограмма отображает какие кластеры объединялись.
- Для объединения обычно указывается номер шага, либо расстояния между кластерами.

https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html#sphx-glr-auto-examples-cluster-plot-agglomerative-dendrogram-py

AgglomerativeClustering

```
agc = AgglomerativeClustering(n_clusters = 5,
                                                              agc2 = AgglomerativeClustering(n_clusters = 5,
                                 linkage = 'average')
                                                                                               linkage = 'ward')
ag_clust = agc.fit_predict(dens_data)
                                                              ag_clust2 = agc2.fit_predict(dens_data)
1.0
                                                             1.0
0.8
                                                             0.8
0.6
                                                             0.6
0.4
                                                             0.4
0.2
                                                             0.2 -
0.0 -
                                                             0.0
               0.2
                        0.4
                                  0.6
                                           0.8
     0.0
                                                     1.0
```

0.0

0.2

0.4

0.6

0.8

1.0

Расстояние между кластерами

- Пока кластеры состоят из одной точки, между ними легко рассчитать расстояние
- Если кластеры состоят из множества точек, то необходимо учитывать их все
- Параметр linkage позволяет определить то, как считается расстояние между класт.
- 'ward' минимизация дисперсии в кластерах. Аналог инерции из K-means. Параметр по умолчанию, работает только с евклидовым расстоянием.
- 'average' минимизирует среднее расстояние между каждыми точками двух кластеров. Альтернатива для не евклидовых расстояний.
- 'complete' минимизирует максимальное расстояние между точками двух кластеров
- 'single' минимизирует расстояние между ближайшими точками двух кластеров.
 Эффективна только в явно разделяемых кластерах со сложной формой. Не устойчива к шумам.

Кластеризация с ограничением по расстоянию

BIRCH

- BIRCH balanced iterative reducing and clustering using hierarchies Сбалансированное итеративное сокращение и кластеризация с помощью иерархий
- Алгоритм кластеризации, который эффективно применяется на больших наборах данных.
- Алгоритм не работает с признаками напрямую, а вычисляет для каждого кластера информацию, которая хранится в СF-дереве, и которую легко обновлять

CF-дерево

- СF-дерево характеризуется:
 - В фактор ветвления. Сколько дочерних узлов может в быть не в листе.
 - Т порог. Определяет максимальный радиус кластера.
 - L максимальное кол-во листов одного узла.
- Каждый узел дерева хранит следующую информацию: $CF = (N, \overrightarrow{LS}, SS)$

Узел CF-дерева

- N количество наблюдений во всех подкластерах
- ullet Линейная сумма всех наблюдений в подкластерах: $\overrightarrow{LS} = \sum_{i=1}^N \overrightarrow{X_i}$
- ullet Сумма квадров всех наблюдений в подкластерах: $SS = \sum_{i=1}^N (\overrightarrow{X_i})^2$

На основе хранимой информации можно легко рассчитать:

- ullet Центроид кластера $\overrightarrow{C} = rac{\sum_{i=1}^{N}\overrightarrow{X_i}}{N} = rac{\overrightarrow{LS}}{N}$
- ullet Радиус кластера $R = \sqrt{rac{\sum_{i=1}^{N}(\overrightarrow{X_i} \overrightarrow{C})^2}{N}} = \sqrt{rac{N \cdot \overrightarrow{C}^2 + SS 2 \cdot \overrightarrow{C} \cdot \overrightarrow{LS}}{N}} = \sqrt{rac{SS}{N} (rac{\overrightarrow{LS}}{N})^2}$
- Среднее расстояние между кластерами

$$D_2 = \sqrt{\frac{\sum_{i=1}^{N_1}\sum_{j=1}^{N_2}(\overrightarrow{X_i}-\overrightarrow{Y_j})^2}{N_1\cdot N_2}} = \sqrt{\frac{N_1\cdot SS_2 + N_2\cdot SS_1 - 2\cdot \overrightarrow{LS_1}\cdot \overrightarrow{LS_2}}{N_1\cdot N_2}}$$

Алгоритм BIRCH

- Алгоритм кластеризации заключается в итеративном построении СF-дерева
- При добавлении новой точки в дерево. Определяется, в какую ветвь узла добавить точку, путем расчета LS и SS, путем простого добавления в сумму значения признаков и их квадратов соответственно.
- Оценивается параметр Т. Выбирается ветвь с минимальным радиусом.
- Если радиус превышает Т, то создается новая ветвь в узле. Новый узел также создается, если достигнут максимум листов L в узле.
- Если достигнут предел по количестве ветвей В, то создается новая ветвь в ближайшем родительском узле, где это возможно.
- Так как дерево не дает кластеры в явном виде, то после построения применяется более простой алгоритм кластеризации для узлов дерева на определенном уровне.

Пример CF-дерева

Sno	X	у	x^2	y^2
1	3	4	9	16
2	2	6	4	36
3	4	5	16	25
4	4	7	16	49
5	3	8	9	64
6	6	2	36	4
7	7	2	49	4
8	7	4	49	16
9	8	4	64	16
10	8	5	64	25

Mean-shift кластеризация

- Центроидный алгоритм с автоматическим определением количества кластеров.
- В начале вокруг каждой точки образуется ядро с заданным радиусом.
 Центр каждого ядра считается кандидатом для центроида.
- Рассчитывается новый центр ядра.
 Согласно оценке плотности точек в радиусе. Ядро смещается в сторону большей плотности точек.
- В конце, ядра, которые лежат в одной области принимаются как одно ядро.
 Центр оставшихся ядер определяют центроиды кластеров.

Спектральная кластеризация

- В спектральной кластеризации использует матрицы похожести между точками, представленной матрицей Кирхгофа. То есть связи между данными представляются в виде графа.
- Далее вычисляется спектр матрицы Кирхгофа, то есть его собственный вектора.
 Таким образом, происходит преобразование в пространство меньшей размерности.
- После понижения размерности используется другой алгоритм кластеризации для собственных векторов.
- Алгоритм эффективно работает для сегментации изображения с применением техники "Алгоритм нормализованных сечений"

Affinity Propagation

- Алгоритм использующий матрицу схожести S.
- Основная идея заключается в том, что точки хотят "объединится" и выбрать "лидера" представляющий их всех.
- Для этого используются матрицы
 R ответственности и А доступности
- Матрица R показывает то, насколько
 і-я точка хочет видеть j-ю точку лидером
- Матрица А показывает то, насколько
 ј-я точка хочет быть лидером для і-й точки
- Для выделения кластеров, считается матрица
 C = R + A, в которой похожие строки выделяются
 в один кластер

Affinity Propagation - пример итераций

Gause Mixture Model

- Модель Гауссовской смеси алгоритм, который предполагает, что все данные сгенерированы несколькими нормальными распределениями.
- Алгоритму задается количество компонент в смеси
- Далее, алгоритм подбирает параметры каждой компоненты, используя
 EM-алгоритм

Обобщение

Алгоритм	Применимость
K-means	Равные размеры кластеров, небольшое кол-во кластеров, плоская геометрия
DBSCAN	Выделение шумов, неравные размеры кластеров, не плоская геометрия
OPTICS	Выделение шумов, неравные размеры кластеров, не плоская геометрия, разная плотность точек в кластерах
Иерархическая к.	Большое количество кластеров, не евклидовы расстояния, ограничения на расстояния
BIRCH	Большое количество наблюдений, удаление шумов, снижение размерности
Mean-shift	Много кластеров, неравные размеры кластеров, не плоская геометрия
Спектральная к.	Мало кластеров, равные размеры кластеров, не плоская геометрия
Affinity propagation	Много кластеров, неравные размеры кластеров, не плоская геометрия