Санкт-Петербургский Политехнический университет Петра Великого

Институт Прикладной Математики и Механики Кафедра «Прикладная Математика и Информатика»

Отчет

По лабораторной работе № 6 По Дисциплине «Математическая статистика»

Выполнил:

Студент Селянкин Федор

Группа 3630102/70301

Проверил:

 κ .ф. – м.н., доцент

Баженов Александр Николаевич

Содержание

Постановка задачи	3
Теория	3
Модель простой линейной регрессии	3
Метод наименьших квадратов	3
Расчётные формулы для МНК-оценок	
Робастные оценки коэффициентов линейной регрессии	5
Реализация	6
Результаты	6
Выборка без возмущений	6
Выборка с возмущениями	7
Литература	7
Обсуждения	8
Список иллюстраций:	
Рисунок 1 Выборка без возмущений	7
Рисунок 2 Выборка с возмущениями	

Постановка задачи

Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8; 2] с равномерным шагом равным 0.2. Ошибку e_i считать нормально распределённой с параметрами (0, 1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1 и y_2 0 вносятся возмущения 10 и - 10.

Теория

Модель простой линейной регрессии

Регрессионную модель описания данных называют простой линейной регрессией, если

$$y_i = \beta_0 + \beta_1 + \varepsilon_i, i = 1, ..., n,$$
(1)

где $x_1, ..., x_n$ – заданные числа (значения фактора); $y_1, ..., y_n$ – наблюдаемые значения отклика; $\varepsilon_1, ..., \varepsilon_n$ – независимые, нормально распределённые $N(0, \sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые); β_0 , β_1 –неизвестные параметры, подлежащие оцениванию.

В модели (1) отклик y зависит от одного фактора x, и весь разброс экспериментальных точек объясняется только погрешностями наблюдений (результатов измерений) отклика y. Погрешности результатов измерений x в этой модели полагают существенно меньшими погрешностей результатов измерений y, так что ими можно пренебречь.

Метод наименьших квадратов

При оценивании параметров регрессионной модели используют различные методы. Один из наиболее распространённых подходов заключается в следующем: вводится мера (критерий) рассогласования отклика и регрессионной функции, и оценки параметров регрессии определяются так, чтобы сделать это рассогласование наименьшим. Достаточно простые расчётные формулы для оценок получают при выборе критерия в виде суммы квадратов отклонений значений отклика от значений регрессионной функции (сумма квадратов остатков):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}$$

Задача минимизации квадратичного критерия (2) носит название задачи метода наименьших квадратов (МНК), а оценки $\widehat{\beta_0}$, $\widehat{\beta_1}$ параметров β_0 , β_1 , реализующие минимум критерия(2), называют МНК-оценками.

(2)

Расчётные формулы для МНК-оценок

МНК-оценки параметров $\widehat{eta_0}$ и $\widehat{eta_1}$ находятся из условия обращения функции $Q(eta_0,\,eta_1)$ в минимум.

Для нахождения МНК-оценок $\widehat{\beta_0}$ и $\widehat{\beta_1}$ выпишем необходимые условия экстремума:

 $\begin{cases} \frac{\partial Q}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0\\ \frac{\partial Q}{\partial \beta_1} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0 \end{cases}$

Далее для упрощения записи сумм будем опускать индекс суммирования. Из системы (3) получим

$$\begin{cases} n\widehat{\beta_0} + \widehat{\beta_1} \sum x_i = \sum y_i \\ \widehat{\beta_0} \sum x_i + \widehat{\beta_1} \sum x_i^2 = \sum x_i y_i \end{cases}$$

Разделим оба уравнения на n:

(4)

(3)

$$\begin{cases} \widehat{\beta_0} + \left(\frac{1}{n} \sum x_i\right) \widehat{\beta_1} = \frac{1}{n} \sum y_i \\ \left(\frac{1}{n} \sum x_i\right) \widehat{\beta_0} + \left(\frac{1}{n} \sum x_i^2\right) \widehat{\beta_1} = \frac{1}{n} \sum x_i y_i \end{cases}$$

и, используя известные статистические обозначения для выборочных первых и вторых начальных моментов

$$\bar{x} = \frac{1}{n} \sum x_i$$
, $\bar{y} = \frac{1}{n} \sum y_i$, $\bar{x}^2 = \frac{1}{n} \sum x_i^2$, $\bar{x}\bar{y} = \frac{1}{n} \sum x_i y_i$,

получим

(5)

$$\begin{cases} \widehat{\beta_0} + \bar{x}\widehat{\beta_1} = \bar{y} \\ \bar{x}\widehat{\beta_0} + \bar{x^2}\widehat{\beta_1} = \bar{xy} \end{cases}$$

Откуда МНК-оценку $\widehat{eta_1}$ наклона прямой регрессии находим по формуле Крамера

(6)

$$\widehat{\beta_1} = \frac{\overline{xy} - \overline{x} * \overline{y}}{\overline{x^2} - (\overline{x})^2},$$

а МНК-оценку $\widehat{\beta_0}$ определяем непосредственно из первого уравнения системы (5):

(7)

$$\widehat{\beta}_0 = \overline{y} - \overline{x}\widehat{\beta}_1$$

Заметим, что определитель системы (5)

$$\overline{x^2} - (\overline{x})^2 = n^{-1} \sum (x_i - \overline{x})^2 = s_x^2 > 0,$$

Если среди значений $x_1, ..., x_n$ есть различные, что и будем предполагать.

Доказательство минимальности функции $Q(\beta_0, \beta_1)$ в стационарной точке проведём с помощью известного достаточного признака экстремума функции двух перемеренных. Имеем:

$$\frac{\partial^2 Q}{\partial \beta_0^2} = 2n, \frac{\partial^2 Q}{\partial \beta_1^2} = 2\sum_i x_i^2 = 2n\overline{x^2}, \frac{\partial^2 Q}{\partial \beta_0 \beta_1} = 2\sum_i x_i = 2n\overline{x}.$$

$$\Delta = \frac{\partial^2 Q}{\partial \beta_0^2} * \frac{\partial^2 Q}{\partial \beta_1^2} - \left(\frac{\partial^2 Q}{\partial \beta_0 \beta_1}\right)^2 = 4n^2\overline{x^2} - 4n^2(\overline{x})^2 = 4n^2\left[\overline{x^2} - (\overline{x})^2\right] = 4n^2\left[\frac{1}{n}\sum_i (x_i - \overline{x})^2\right] = 4n^2s_x^2 > 0$$

Этот результат вместе с условием $\frac{\partial^2 Q}{\partial \beta_0^2} = 2n > 0$ означает, что в стационарной точке функция Q имеет минимум.

Робастные оценки коэффициентов линейной регрессии

Робастность оценок коэффициентов линейной регрессии (т.е. их устойчивость по отношению к наличию в данных редких, но больших по величине выбросов) может быть обеспечена различными способами. Одним из них является использование метода наименьших модулей вместо метода наименьших квадратов:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}$$

Напомним, что использование метода наименьших модулей в задаче оценивания параметра сдвига распределений приводит к оценке в виде выборочной медианы, обладающей робастными свойствами. В отличие от этого случая и от задач метода наименьших квадратов, на практике задача (8) решается численно. Соответствующие процедуры представлены в некоторых современных пакетах программ по статистическому анализу.

Здесь мы рассмотрим простейшую в вычислительном отношении робастную альтернативу оценкам коэффициентов линейной регрессии по МНК. Для этого сначала запишем выражения для оценок (6) и (7) в другом виде:

$$\widehat{\beta_{1}} = \frac{\overline{xy} - \overline{x} * \overline{y}}{\overline{x^{2}} - (\overline{x})^{2}} = \frac{k_{xy}}{s_{x}^{2}} = \frac{k_{xy}}{s_{x}s_{y}} * \frac{s_{y}}{s_{x}} = r_{xy} \frac{s_{y}}{s_{x}}$$

$$\widehat{\beta_{0}} = \overline{y} - \overline{x}\widehat{\beta_{1}}$$
(9)

В формулах (17) заменим выборочные средние x и y соответственно на робастные выборочные медианы med x и med y, среднеквадратические отклонения sx и sy на робастные нормированные интерквартильные широты q_x^* и q_y^* , выборочный коэффициент корреляции r_{xy} - на знаковый коэффициент корреляции r_{Q} :

(8)

$$\widehat{\beta_1}_R = r_Q \frac{q_y^*}{q_x^*}$$

(11)

$$\widehat{\beta_0}_R = \text{med } y - \widehat{\beta_1}_R \text{ med } x$$
,

(12)

$$r_Q = \frac{1}{n} \sum_{i=1}^n \operatorname{sign}(x_i - \operatorname{med} x) \operatorname{sign}(y_i - \operatorname{med} y)$$

(13)

$$q_y^* = \frac{y_{(j)} - y_{(l)}}{k_q(n)}, \qquad q_x^* = \frac{x_{(j)} - x_{(l)}}{k_q(n)}$$

$$l = \left\{ egin{aligned} n/_4 & +1 & \text{при } n/_4 & \text{дробном} \\ n/_4 & \text{при } n/_4 & \text{целом} \end{aligned}
ight.$$

$$j = n - l + 1$$

$$sign z = \begin{cases} 1 \text{ при } z > 0 \\ 0 \text{ при } z = 0 \\ -1 \text{ при } z < 0 \end{cases}$$

Уравнение регрессии здесь имеет вид

(14)

$$y=\widehat{\beta_0}_R+\widehat{\beta_1}_Rx$$

Статистики выборочной медианы и интерквартильной широты обладают робастными свойствами в силу того, что основаны на центральных порядковых статистиках, малочувствительных к большим по величине выбросам в данных. Статистика выборочного знакового коэффициента корреляции робастна, так как знаковая функция $\sin z$ чувствительна не к величине аргумента, а только к его знаку. Отсюда оценка прямой регрессии (14) обладает очевидными робастными свойствами устойчивости к выбросам по координате y, но она довольно груба.

Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm, с использованием дополнительных библиотек для отображения и расчетов. Исходный код лабораторной выложен на веб-сервисе GitHub [1].

Результаты

Выборка без возмущений

• Критерий наименьших квадратов

$$\hat{a} \approx 2.17$$
, $\hat{b} \approx 2.22$

• Критерий наименьших модулей

$$\hat{a} \approx 2.50, \quad \hat{b} \approx 1.67$$

Рисунок 1 Выборка без возмущений

Выборка с возмущениями

• Критерий наименьших квадратов

$$\hat{a} \approx 2.49, \quad \hat{b} \approx 0.63$$

• Критерий наименьших модулей

$$\hat{a} \approx 2.38$$
, $\hat{b} \approx 1.88$

Рисунок 2 Выборка с возмущениями

Литература

- 1. Ссылка на репозиторий GitHub https://github.com/SelyankinFyodor/math-statistics
- 2. Вероятностные разделы математики. Учебник для бакалавров технических направлений.
- 3. //Под ред. Максимова Ю.Д. Спб.: .Иван Федоров., 2001. 592 С.Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие Ю.Д. Максимов; под ред. В.И. Антонова. СПб.: Изд-во Политехн. ун-та, 2009. 395 с. (Математика в политехническом университете).

Обсуждения

Критерий наименьших квадратов точнее оценивает коэффициенты линейной регрессии на выборке без возмущений.

Критерий наименьших модулей точнее оценивает коэффициенты линейной регрессии на выборке с возмущениями.

Критерий наименьших модулей устойчив к редким выбросам.(страница. 5)