

Transformer ()

- Encoder

seq2seq

Attention

Encoder의 마지막 hidden state만 참조해 출력

-> 정보 손실

Decoder의 매 timestep마다 Encoder의 모든 hidden state 값들을 Attention 한다

Attention mechanism

1) Attention score dot product étudiant <eos> 인코더(Encoder) 디코더(Dec LSTM LSTM LSTM étudiant student <sos> Attention

2) Attention distribution

softmax()

 $= [0.4 \ 0.4 \ 0.1 \ 0.1]$

3) Attention value

: word's hidden state

* 어텐션 메커니즘 구성요소를 간결하게 나타냄

value 집중할 위치의 정보 ->가중치로 최종 값 계산

집중할 위치 결정 -> 가중치(연관성)를 계산

: **인코더**의 은닉상태

: **디코더**의 은닉상태

* 어텐션 메커니즘 구성요소를 간결하게 나타냄

* 어텐션 메커니즘 구성요소를 간결하게 나타냄

* 어텐션 메커니즘 구성요소를 간결하게 나타냄

3) Attention value

어텐션 가중치를 value에 가중합하여

Attention value를 얻는다

Attention

하나의 벡터로 압축하는 과정에서 여전히 **정보 손실**

RNN없이 Attention만으로 Encoder와 Decoder을 만들자

self - Attention

같은 문장 내에서 단어들 간의 관계를 고려하여 **어텐션 계산**

Figure 1: The Transformer - model architecture.

Positional Encoding

: 각 단어의 임베딩 벡터에 위치 정보를 더하는 것

같은 단어라도 **문장 내 위치에 따라**서 **임베딩 벡터값이 달라짐**

-> 순서 정보를 고려하기 위해 PE 반영

선형 연산

: 차원을 줄여서 병렬 연산에 적합한 구조를 만듦 (입력 문장 -> 임베딩 벡터 -> **Q, K, V 벡터로 변환**)

am

Q

K

V

Q

٧

Scaled Dot-Product Attention

(self-attention)

Scaled Dot-Product Attention

Scaled Dot-Product Attention

Query

Key1

Value1

Key2

Value2

Key3

Value3

value

Attention

Value

Multi-head Attention

: Self-Attention을 병렬로 h번 학습

Which do you like better, coffee or tea? - 문장 타입에 집중하는 어텐션
Which do you like better, coffee or tea? - 면서에 집중하는 어텐션
Which do you like better, coffee or tea? - 관계에 집중하는 어텐션
Which do you like better coffee or tea? - 감조에 집중하는 어텐션

다양한 시각에서 자동으로 정보 수집 및 포착

-> 표현력 풍부 복잡한 관계 파악 용이 concatenate

Add & Norm

Add

잔차 연결(Residual Connection)

$$H(x) = x + Multi - head Attention(x)$$

gradient 소실문제 완화, 안정성 증진

Add & Norm

Norm

층 정규화(Layer Normalization)

: 통계적 분포 조절(안정화)

keras.
LayerNormalization()

시퀀스 내, **토큰 사이의 관계 파악**

토큰의 표현을 발전시켜 **더욱 정교한 표현을 얻음** (복잡한 특징이나 패턴 추가로 학습)

Position-wise FFNN

: 전체 임베딩 시퀀스를 하나의 벡터로 처리하지 않고 각 임베딩을 독립적으로 처리 (병렬 처리)

Add & Norm

Feed

Forward

Add & Norm

Multi-Head

Attention

Input Embedding

Inputs

N×

Positional Encoding

