MA327 Turma Y - 1S 2009 - Prova 2

Nome:	RA:	19/05/20	009
1,0116.			000

- 1. (10pts) Escreva a definição de produto interno para um espaço vetorial sobre o corpo dos números complexos. Escreva também a definição de transformação unitária (ortogonal).
- 2. Sejam $V = \mathbb{R}^3$ com o produto interno usual, β a base $\beta = \{v_1, v_2, v_3\}$, onde $v_1 = (1, 0, 0), v_2 = (1, 0, 1)$ e $v_3 = (0, -1, 1)$ e $T : V \to V$ a função linear satisfazendo $T(v_1) = (0, 1, \pi), T(v_2) = (1, \sqrt{2}, 0)$ e $T(v_3) = (0, 0, 1)$.
 - (a) (15pts) Calcule $[T]^{\alpha}_{\beta}$, $[T]^{\beta}_{\alpha}$ e $[T]^{\alpha}_{\alpha}$ onde α é a base canônica de V.
 - (b) (05pts) Use uma das matrizes encontradas em (b) (aquela que for apropriada) para calcular $[T(1,2,3)]_{\beta}$.
 - (c) (05pts) Determine se T é uma transformação ortogonal.
 - (d) (05pts) Determine se T é uma transformação auto-adjunta (simétrica).
- 3. Considere o espaço vetorial $V = P_3(\mathbb{R})$.
 - (a) (10pts) Verifique que $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$ define um produto interno em V.
 - (b) (10pts) Calcule a matriz desse produto interno com relação à base $\alpha = \{1, x, x^2, x^3\}$
 - (c) (10pts) Use a matriz encontrada em (b) para calcular $\langle p(x), q(x) \rangle$ onde $p(x) = 1 + x^3$ e $q(x) = x^2 x$ e calcule o ângulo entre p(x) e q(x).
 - (d) (15pts) Obtenha uma base ortonormal para o subespaço U de V gerado por $\{1, x^2, x^3\}$.
 - (e) (10pts) Calcule W^{\perp} onde W é o subespaço gerado por $\{1, x^2\}$.
 - (f) (15pts) Calcule $P_W(q(x)), P_{W^{\perp}}(q(x))$ e $R_W(q(x))$ onde $q(x) = x^2 x$ e $W = [1, x^2]$.

Existem 10 pontos extras. Bom trabalho!