Xilinx Zynq FPGA, TI DSP, MCU 기반의 프로그래밍 및 회로 설계 전문가 과정

강사 - Innova Lee(이상훈)

gcccompil3r@gmail.com

학생

hyungjun Yu(유형준)

love592946@nave.rcom

역행렬의 정의

A의 역행렬은 곱해서 단위행렬이 나오게 하는 행렬입니다. 이번에는 그 역행렬을 구하는 2가지 방법에 대해 이야기 하겠습니다. 이를 이용하여 연립방정식의 해를 구하는 과정을 다뤄봅니다. 마지막으로 (ramer의 정리를 이용하여 연립방정식의 해를 구하는 과정도 다뤄봅니다.

Adjoint(딸림) 행렬을 이용하여 역행렬 구하기

행렬 A의 Adjoint 행렬을 adj A라고 할때 그 행렬식(det A)을 같이 이용하여 역행렬을

$$\mathbf{A}^{-1} = \left(\frac{1}{\det \mathbf{A}}\right) \operatorname{adj} \mathbf{A}$$

위와 같이 구할 수 있습니다. 이 때 adj A는

위에서 처럼 여인수(cofactor)행렬의 전치(transpose)행렬입니다.

위에서 처럼 여인수(cofactor)행렬의 전치(transpose)행렬입니다.

$$\mathbf{A}(\text{adj }\mathbf{A}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix}$$
$$= \begin{pmatrix} \det \mathbf{A} & 0 & 0 \\ 0 & \det \mathbf{A} & 0 \\ 0 & 0 & \det \mathbf{A} \end{pmatrix}$$

위를 보시면 행렬 A와 그 adj A를 서로 곱하면 det A가 곱해진 단위행렬이 된다는 사실을 알 수 있습니다. 그러니 다시 det A로 나눠주면 역행렬의 정의를 만족하게 되는 것입니다. 만약 det A가 '0'이라면 그 역행렬은 존재하지 않습니다.

$$\mathbf{A}(\text{adj }\mathbf{A}) = (\det \mathbf{A}) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (\det \mathbf{A})\mathbf{I}$$

(예제)

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix} \circ 1 \ \, \text{역 행렬을 구하라.}$$

$$\blacksquare 0 \ \, \det \mathbf{A} = 12 \circ 1 \ \, \Box \mathbf{E} \ \, (5) \mathbf{E} \ \, \Box \mathbf{E} \ \, \mathbf{E}$$

$$(\mathbf{A}|\mathbf{I}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 1 & 0 & \cdots & 0 \\ \vdots & & & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{pmatrix}$$

A행렬과 단위행렬을 위와 같이 배치하고 A행렬이 있는 자리를 단위행렬로 만들게끔 소거법을 진행하면 단위행렬이 있는 자리에 나타나는 행렬이 그 역행렬이 됩니다.

(예제)

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{pmatrix}$$

의 역행렬을 소거법으로 구해보면

$$\begin{pmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ -2 & 3 & 4 & 0 & 1 & 0 \\ -5 & 5 & 6 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ -2 & 3 & 4 & 0 & 1 & 0 \\ -5 & 5 & 6 & 0 & 0 & 1 \end{pmatrix}$$

$$\stackrel{2R_1 + R_2}{\Rightarrow} \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 3 & 5 & 1 & 1 & 0 \\ 0 & 5 & \frac{17}{2} & \frac{5}{2} & 0 & 1 \end{pmatrix}$$

$$\stackrel{\frac{1}{3}R_2}{\Rightarrow} \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 1 & \frac{17}{10} & \frac{1}{2} & 0 & \frac{1}{5} \end{pmatrix}$$

$$-R_2 + R_3 \Rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{30} & \frac{1}{6} & -\frac{1}{3} & \frac{1}{5} \end{pmatrix}$$

$$\stackrel{30R_3}{\Rightarrow} \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{30} & \frac{1}{6} & -\frac{1}{3} & \frac{1}{5} \end{pmatrix}$$

$$\stackrel{30R_3}{\Rightarrow} \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 1 & 5 & -10 & 6 \end{pmatrix}$$

$$\stackrel{-\frac{1}{2}R_3 + R_1}{\Rightarrow R_3 + R_2} \begin{pmatrix} 1 & 0 & 0 & -2 & 5 & -3 \\ 0 & 1 & 0 & -8 & 17 & -10 \\ 0 & 0 & 1 & 5 & -10 & 6 \end{pmatrix}$$

의 단계를 진행할 수 있고

$$\mathbf{A}^{-1} = \begin{pmatrix} -2 & 5 & -3 \\ -8 & 17 & -10 \\ 5 & -10 & 6 \end{pmatrix}$$

그 역행렬을 찾을 수 있게 됩니다. 이렇게 소거법을 진행하다 보면 마지막 행이 모두 영으로 채워지는 경우는 역행렬이 존재하지 않는 다고 생각하면 됩니다.

연립방정식

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

에 대해 각 행렬을 잡아보면

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

위와 같을 것입니다. 이때 A행렬을

$$\mathbf{AX} = \mathbf{B}. \qquad \mathbf{X} = \mathbf{A}^{-1}\mathbf{B}.$$

역행렬을 찾아서 미지수 행렬 X를 찾을 수 있습니다.

(ramer의 방법을 이용하여 연립방정식의 해를 구하기

간단한 연립방정식 문제를 보면

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

에서 적절히 위 연립을 풀어서 정리하면

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$
 그리고 $x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}$

입니다. 이때 각 x1, x2의 분모 분자를 관찰해보면

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \quad x_2 = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

로 표현할 수 있음을 알 수 있습니다. 이로서...

정리 8.23 Cramer의 규칙

 \mathbf{A} 를 연립방정식 (4)의 계수행렬이라 하자. $\det \mathbf{A} \neq 0$ 이면, (4)의 해는

$$x_1 = \frac{\det \mathbf{A}_1}{\det \mathbf{A}}, \quad x_2 = \frac{\det \mathbf{A}_2}{\det \mathbf{A}}, \quad \dots, \quad x_n = \frac{\det \mathbf{A}_n}{\det \mathbf{A}}$$
 (6)

이다. 여기서 \mathbf{A}_k , k=1,2,...,n은 (5)에서 정의되었다.

Cramer의 정리를 확인할 수 있습니다. 위 정리에서 Ak 행렬은

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ &\vdots &\vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{aligned}$$

$$\mathbf{A}_{k} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1\,k-1} & b_{1} & a_{1\,k+1} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2\,k-1} & b_{2} & a_{2\,k+1} & \cdots & a_{2n} \\ \vdots & & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n\,k-1} & b_{n} & a_{n\,k+1} & \cdots & a_{nn} \end{pmatrix} \mathbf{B}$$

B행렬을 k번째 열과 교체한 것입니다.

(예제)

$$3x_1 + 2x_2 + x_3 = 7$$

$$x_1 - x_2 + 3x_3 = 3$$

$$5x_1 + 4x_2 - 2x_3 = 1$$

를 Cramer의 정리로 해결해 보면

$$\det \mathbf{A} = \begin{vmatrix} 3 & 2 & 1 \\ 1 & -1 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 13, \qquad \det \mathbf{A}_1 = \begin{vmatrix} 7 & 2 & 1 \\ 3 & -1 & 3 \\ 1 & 4 & -2 \end{vmatrix} = -39,$$

$$\det \mathbf{A}_2 = \begin{vmatrix} 3 & 7 & 1 \\ 1 & 3 & 3 \\ 5 & 1 & -2 \end{vmatrix} = 78, \qquad \det \mathbf{A}_3 = \begin{vmatrix} 3 & 2 & 7 \\ 1 & -1 & 3 \\ 5 & 4 & 1 \end{vmatrix} = 52$$

$$x_1 = \frac{\det \mathbf{A}_1}{\det \mathbf{A}} = -3$$
, $x_2 = \frac{\det \mathbf{A}_2}{\det \mathbf{A}} = 6$, $x_3 = \frac{\det \mathbf{A}_3}{\det \mathbf{A}} = 4$

입니다.