međuispit iz Wolframove Mathematice aprilili 2011.

- 1. Koja će od navedenih naredbi ispravno izračunati izraz $\pi A^{-3}B^{14}$:
 - (a) Pi.A^(-3).B^14
 - (b) Pi*Inverse[MatrixPower[A,3]].B^14
 - (c) Pi*Inverse[A.A.A].MatrixPower[B,14]
 - (d) Pi.MatrixPower[A,-3].MatrixPower[B,14]
- 2. Koja će od navedenih naredbi izračunati duljinu vektora ILKO:
 - (a) Abs[ILKO]
 - (b) Norm[ILKO.ILKO]
 - (c) Length[ILKO]
 - (d) Sqrt[ILKO.ILKO]
- 3. Neka je AVA= $\{\{1,0,0,1\},\{0,1,1,0\},\{1,0,0,1\}\}$. Naredba Tr[AVA] će ispisati:
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- 4. Kako ćemo izračunati sumu prvih 314 članova sume Sumica(k), definirane za $k \geq 314$?
 - (a) Sum[Sumica[k], {k,314,314}]
 - (b) Sum[Sumica[k], {k,314,627}]
 - (c) Sum[Sumica[k],{314,628}]
 - (d) Sum[Sumica[k],314,628]
- 5. Kojom naredbom rastavljamo razlomak na parcijalne razlomke?
 - (a) Apart
 - (b) Cancel
 - (c) Expand
 - (d) Parcial
- **6.** Koji od navedenih izraza neće izračunati rješenje nelinearne jednadžbe $x^2 = x + \sin x$:
 - (a) $Solve[x^2=x+Sin[x],x]$
 - (b) $NSolve[x^2==x+Sin[x],x]$
 - (c) $Solve[x^2==x+Sin[x],x]$
 - (d) $N[Solve[x^2=x+Sin[x],x]]$
- 7. Naredba Eigenvectors[LINDA] ispisuje:
 - (a) prvi svojstveni vektor matrice LINDA
 - (b) listu svih svojstvenih vektora matrice LINDA
 - (c) listu svih svojstvenih vrijednosti i listu pripadnih svojstvenih vektora matrice LINDA
 - (d) listu svih svojstvenih vrijednosti koje pripadaju svojstvenim vektorima matrice LINDA
- 8. Neka su zadani komplanarni vektori z, e i c. Što će ispisati naredba ScalarTripleProduct[z,e,c]?
 - (a) 0
 - (b) površinu trokuta određenog vektorima z, e, c
 - (c) volumen paralelepipeda razapetog vektorima z, e, c
 - (d) error

9. Neka je zadan kompleksni broj PIPI=3+14I. Naredba Re[PIPI]*Conjugate[PIPI] će ispisati:	
(a) 9	
(b) 9+14I	
(c) 9-14I	
(d) 9-42I	

- 10. Neka su zadani vektori a i b. Kako ćemo izračunati površinu paralelograma razapetog vektorima a i b?
 - (a) Cross[a,b]
 - (b) Sqrt[Cross[a,b]]
 - (c) Sqrt[Cross[a,b].Cross[a,b]]
 - (d) Cross[a.b]
- 11. Kojom ćemo naredbom riješiti sustav x+z=3, y-z=1, x+y+z=4?
 - (a) Solve [x+z=3, y-z=1, x+y+z=4]
 - (b) Solve[x+z==3, y-z==1, x+y+z==4,{x,y,z}]]
 - (c) Solve $[\{x+z=3, y-z=1, x+y+z=4\}, \{x,y,z\}]$
 - (d) Solve[$\{x+z=3, y-z=1, x+y+z=4\},\{x,y,z\}$]
- 12. Drugu svojstvenu vrijednost matrice MILKA računamo naredbom:
 - (a) Eigenvalues[MILKA][[2]]
 - (b) Eigenvalues[[MILKA],2]
 - (c) Eigenvalues[MILKA][2]
 - (d) Eigenvalues [MILKA, 2]
- 13. Neka je zadana kvadratna matrica EVA reda 4. Naredba Transpose [EVA] [[2,3]] će ispisati:
 - (a) drugi i treći redak matrice EVA
 - (b) element u trećem retku, drugom stupcu matrice EVA
 - (c) element u drugom retku, trećem stupcu matrice EVA
 - (d) drugi i treći stupac matrice EVA
- 14. Kako ćemo numerički izračunati sumu $\sum_{k=0}^{\infty}\frac{1}{(2k+1)^2}?$
 - (a) NSum[{1/(2k+1)^2,0,Infinity}]
 - (b) N[Sum[1/(2k+1)^2,{k,0,Infinity}]]
 - (c) NSum[1/(2k+1)^2,{0,Infinity}]
 - (d) N[Sum[1/(2k+1)^2,0,Infinity]]
- 15. Paket koji sadrži dodatne naredbe za manipulaciju vektorima pozivamo naredbom:
 - (a) <<Calculus'VectorManipulation'
 - (b) <<Calculus'VectorAnalysis'</pre>
 - (c) <<Algebra'VectorManipulation'
 - (d) <<LinearAlgebra'VectorCalculus'
- 16. Želite li da 2. međuispit bude teži od prvog?
 - (a) Da, naravno.
 - (b) Da, svakako.
 - (c) Da, obavezno.
 - (d) Da, jedva čekam.