

Computer System- B Security

Introduction to Cryptography

Alma Oracevic

bristol.ac.uk

Agenda

- A non-technical brief introduction to cryptography
- Where/how/why they are used in practice (real examples to follow)
- You will have more rigorous treatment in other units

Security services

Protecting data

- confidentiality
- integrity
- authentication
- non-repudiation

at rest

- access control
 - identification
 - authorization
 - auditing
- availability

Basic Security Services (1)

1. Confidentiality

2. Message integrity

3. Message authentication

Basic Security Services (2)

4. Non-repudiation

- of sender - of receiver - mutual

Technique: digital signature

DIGITAL Signature HANDWRITTEN

A6E3891F2939E38C745B 25289896CA345BEF5349 245CBA653448E349EA47

Main Goals:

- unique identification
- proof of agreement to the contents of the document

User Authentication

On the basis of

- what you know (passwords, PINs)
- what you have (magnetic card, smart card)
- what you are (fingerprints, handprints, voiceprints, keystroke timing, signatures, retinal scanners)

What is encryption

Encryption?

Encryption is the process of encoding information.

This process converts the original representation of the information, known as plaintext, into an alternative form known as ciphertext.

Is it something new?

How does it work?

Applications?

Fun with Caesar Shift Cipher

How does Symmetric encryption work?

Symmetric Cryptography

Essential elements

Figure 3.2 Model of Symmetric Cryptosystem

Secret-key (Symmetric) Cryptosystems

key of Alice and Bob - K_{AB} key of Alice and Bob - K_{AB} Network **Decryption Encryption** Bob Alice

Symmetric

• Alice Carly plans the same to key, which is used for both encryption and decryption.

Symmetric Cryptosystems

 Alice and Bob share a secret key, which is used for both encryption and decryption.

Symmetric Key

• Requires tribution communicating parties to share a (separate) secret key.

Symmetric Key

• Requires tribution communicating parties to share a (separate) secret key.

Symmetric Key

• Requires tribution communicating parties to share a (separate) secret key.

Key Distribution Problem

Keys

N - Users	
-----------	--

Users	Keys
100	5,000
1000	500,000

Symmetric Key conti...

- Data Encryption Standard- DES (triple DES)
- Computationally scalable for large messages
- Hardware implementation is available.
- Advanced Encryption Standard -AES (current standard)
 - key lengths: 128, 192 and 256 bits
 - AES-NI (intel)
- Key distribution is a challenge!

Public-Key

- Bob has two Resignates Parameters, SB, which Bob keeps secret, and a public key, PB, which Bob broadcasts widely.
 - In order for Alice to send an encrypted message to Bob, she need only obtain his public key, PB, use that to encrypt her message, M, and send the result, $C = E_{PB}$ (M), to Bob. Bob then uses his secret key to decrypt the message as $M = D_{SB}$ (C).

Public-Key

• Separate Keys a Graph of encryption and decryption.

Public-Key Cryptography

Separate keys are used for encryption and decryption

Public Key (Asymmetric) Cryptosystems

Public key of Bob - K_B

Private/Secret key of Bob - k_B

Network

Encryption

Alice

Private/Secret key of Bob - k_B

Decryption

Bob

How does Asymmetric encryption work?

Public Key

• Only one Rey is the eded for each recipient

Public Key Distribution

Only one key is needed for each recipient

Figure 9.1 Public-Key Cryptography

Cryptography and Network Security, Seventh Edition by William Stallings

Features of Public-Key Ciphers

Primary Applications: Exchange of keys for secret-key ciphers Digital signatures

Public Key conti...

- Examples:
 - Rivest Shamir Adleman (RSA)
 - Recommended key size: 1,024 to 4,096 bit typical
 - ElGamal encryption
- Computationally very expensive
 - Handling large message is ineffecient

_

Message Authentication of the message and confidentiality.

- message authentication is concerned with:
- protecting the integrity of a
- message validating identity of
- originator
- Tripre e pludiation vé digirculo la subset
 - fassition encryption
 - message authentication code
 - (MAC) hash function

Message

- Message ticketication is a mechanism or service used to verify the integrity of a message.
- Message authentication assures that data received are exactly as sent by (i.e., contain no modification, insertion, deletion, or replay) and
- that the purported identity of the sender is valid

Authentication

- Message in Spanner The ciphertext of the entire message serves as its authenticator
- Message authentication code (MAC): A function of the message and a secret key that produces a fixedlength value that serves as the authenticator
- Hash function: A function that maps a message of any length into a fixed-length hash value, which serves as the authenticator

Message Authentication Code

(MAC) lice and Bob to have data integrity, if they share a secret key.

Generated by an algorithm that creates a small fixed-sized block deptending on both message M and some secret key K s.t. MAC = C(K,M), where =

- MAC function
- K = shared secret key
- · AppleAccel to enseage great seats ignizature
- Recorder performs same computation on message and checks it matches
- the MAC Provides assurance that message is unaltered and comes from sender

MAC conti...

Digital

- Public-key Signatures Sides a method for doing digital signatures
- To sign a message, M, Alice just encrypts it with her private key, SA, creating $C = E_{SA}(M)$.
- Anyone can decrypt this message using Alice's public key, as $M' = D_{PA}(C)$, and compare that to the message M.

Digital Signature Problem

Both corresponding sides have the same information and are able to generate a signature

There is a possibility of the

- receiver falsifying the message
- . sender denying that he/she sent the message

Cryptographic Hash

- A Eneck Strippin & message, M, that is:
- One-way: it should be easy to compute Y=H(M), but hard to find M given only Y
- Collision-resistant: it should be hard to find two messages, M and N, such that
- H(M)=H(N).

Examples: SHA-1, SHA-256.

Hash function

Hash functions

Security requirements

It is computationally infeasible

Property	Given	To Find
One-way	h(m)	m
Weak collision resistant	m and h (m)	$m' \neq m$, such that $h(m') = h(m)$
Strong collison resistant		$m' \neq m$, such that $h(m') = h(m)$

One-way function

EXAMPLE:

$$f: Y=f(X) = A^X \mod P$$

where P and A are constants, P is a large prime,
A is an integer smaller than P

Number of bits of P	Average number of multiplications		
	necessary to compute		
	f	f -1	
1000	1500	10^{30}	

Application of Hash

Public Distribution of Secret Keys Library Lib

- So we usually want to use symmetric key encryption to protect message
- contents Hence need to share secret
- (session) key
 There are alternatives for negotiating a suitable session

Diffie-Hellman Key

Exchange type scheme proposed by Diffie & Hellman in 1976 along with the exposition of public key concepts1

- Practical method for public exchange of a secret
- key

Used in a number of real-world commercial products/protocols

1. Now know that Williamson (UK CESG) secretly proposed the concept in

1970

Trap-door one-way function

Whitfield Diffie and Martin Hellman "New directions in cryptography," 1976

PUBLIC KEY

Diffie-Hellman Key

Exchange tribution

schange an arbitrary

- message rather it can establish a common
- key
- value von keely depte eds von partition private and public key information)
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Figure 10.1 Diffie-Hellman Key Exchange

Cryptography and Network Security, Seventh Edition by William Stallings