CSED 226 Introduction to Data Analysis Final Exam

Problem

- You have learned supervised learning and unsupervised learning in this class.
- What if we have a limited number of labeled data for supervised learning tasks and additional unlabeled data?
 - You are given a limited number of labeled data and additional unlabeled data in this exam.
 - The goal is to improve your model's accuracy as much as possible using a given dataset consisting of labeled and unlabeled data.

Strategies

- You can improve your supervised learning task model's accuracy using additional unlabel ed data.
- We suggest two simple strategies for this problem.
 - Self-Training
 - Co-Training
- You can follow these strategies, or you can apply your own method.

Self-Training

- Train your classifier with labeled data.
- Use the trained model to predict labels for the unlabeled data.
 - A confidence score can be used for predicting labels.
 - √ Score(x) > threshold
 - ✓ The model's prediction for x can be regarded as a confident label.
 - ✓ Score(x) < threshold</p>
 - ✓ The model's prediction for x cannot be regarded as a confident label.

 Retrain the model with the pseudo and labeled datasets tog ether.

Co-Training

- Split features into two exclusive feature sets.
- Train two different classifiers using two different feature sets.
- Get pseudo-labels from unlabeled data.
- Expand labeled data using pseudo-labels from the different view models.

Libraries

- For the library, you can use the library used in the previous HW (i.e., seaborn, matplotlib, pandas, NumPy), sklearn, xgboost, kmodes, and mvlearn.
 - "sklearn.semi_supervised" and "mvlearn.semi_supervised" are allowed.