Lecture 3: Limits By Omari C.O

1 Limits

1.1 Introduction

The concept of a limit is a central idea that distinguishes calculus from algebra and trigonometry. It is fundamental to finding the tangent to a curve or the velocity of an object. In this chapter we develop the limit, first intuitively and then formally. We use limits to describe the way a function f varies. Some functions vary continuously; small changes in x produce only small changes in f(x). Other functions can have values that jump or vary erratically. The notion of limit gives a precise way to distinguish between these behaviors. The geometric application of using limits to define the tangent to a curve leads at once to the important concept of the derivative of a function. The derivative, which we investigate thoroughly in Chapter 4, quantifies the way a function? values change.

1.2 Limits of Function Values

1.2.1 Informal Definition of a Limit

Consider the graph of $y = f(x) = x^2 + 3$

What happens to f(x)as4x gets close to the value x=2?

as x gets close to x = 2, f(x) gets close to 7. This is rather obvious, after all $f(2) = 2^2 + 3 = 7$. However not all limits are so simple. Suppose we did not know the answer, it would be appropriate to compute a few values and see what happens as x gets closer and closer to 2.

x	2.05	2.01	2.001	2.0001	2	1.9999	1.999	1.99	1.95
f(x)	7.2025	7.0401	7.004001	7.00040001		6.99960001	6.996001	6.9601	6.8025
				\longrightarrow					

It appears that as x gets close to 2, $f(x) = x^2 + 3$ gets close to 7.

$$\therefore \lim_{x \to 2} x^2 + 3 = 7$$

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$. What happens to f(x) as x approaches 1? We cannot substitute the value x = 1 because f(1) is not defined. The table provides values of $\frac{x^2 - 1}{x - 1}$ for x near 1.

It seems that f(x) approaches 2 as x approaches 1. This makes sense because, for $x \neq 1$,

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{(x - 1)} = x + 1.$$

approaches 2 as x approaches 1. We write

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Despite not setting x = 1 because that would imply division by zero, we know what happens to this function as x approaches 1. It is hence clear why we are not required to evaluate f(x) at x = 1 when we calculate the limit as x approaches 1.

1.2.2 Definition of a Limit

Let L be a real number and suppose that f(x) is defined as an open interval containing x_0 but not necessarily at x_0 itself. We say that the limit as x approaches(tends to) x_0 (denoted by $x \to x_0$) of f(x) is L, written as

$$\lim_{x \to x_0} f(x) = L^1$$

In this definition f is defined on an open interval containing the number x_0 except possibly at x_0 itself. This ensures that f is defined on both sides of x_0 . It is important that f(x) gets close to L when x gets close to x_0 from either side

¹This is read as 'the limit of f(x) as x approaches x_0 is L'.

While we do not actually need to know what $f(x_0)$ is (in fact, $f(x_0)$ need not even exist), it is helpful to know $f(x_0)$ in the actual computation of $\lim_{x\to x_0} f(x_0)$, since it frequently happens that $\lim_{x\to x_0} f(x)$ indeed equals $f(x_0)$. However, it should be emphasized that this is not always the case. In Example 3... we showed that $\lim_{x\to x_0} f(x) = 2$ even though f(1) did not exist.

1.3 Elementary Properties of Limits

Let b and c be real numbers and let n be a positive integer, and let f and g be functions with the following limits.

$$\lim_{x \to c} f(x) = L \qquad \lim_{x \to c} g(x) = K$$

- (a). Scalar multiple: $\lim_{x\to c} [bf(x)] = bL$
- (b). Sum or difference: $\lim_{x\to c} [f(x)\pm g(x)] = L\pm K$
- (c). Product: $\lim_{x \to c} [f(x)g(x)] = LK$
- (d). Quotient: $\lim_{x\to c} \left[\frac{f(x)}{g(x)}\right] = \frac{L}{K} \quad \text{provided } K\neq 0.$
- (e). Power: $\lim_{x \to c} [f(x)]^n = L^n$

1.4 Methods of Evaluating Limits

There are various methods for evaluating the limit of a function. The most commonly used methods include

- (a). Table method
- (b). Direct substitution method
- (c). Method of factorization(cancelation) method
- (d). Method of rationalization.

1.4.1 Table method

Calculate

$$\lim_{h \to 0} f(h) = \lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h}$$

where h denotes a real number.

Note that

$$f(0) = \frac{\sqrt{4+0}-2}{0} = \frac{0}{0}$$

which is an undefined expression.

Using the table

$\frac{}{b}$	f(h)	h	f(h)
10	0 ()		0 ()
1	$\mid 0.2360679775 \mid$	-1	0.26794991924
0.5	0.2426406871	-0.5	0.2583426132
0.1	0.2484567313	-0.1	0.2515823419
0.01	0.2498439448	-0.01	0.2501564457
0.001	0.2499843740	-0.001	0.2500156290
0.0001	0.2499984200	-0.0001	0.2500015900

it appears

$$\lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h} = 0.25$$

Using graph of $f(x) = \sqrt{x}$, the line joining the points (4,2) and $(4 + h, \sqrt{4 + h})$ is called a **secant line** to the curves. Two such secant lines for two different values of h are drawn in the Figure....

Graph of $f(x) = \sqrt{x}$ with selected tangent and secant lines.

From the graph, as $h \to 0$, (so that $(4 + h, \sqrt{4 + h})$ moves along the curve towards the point (4, 2), the secant lines approach the line tangent to the curve at the point (4, 2).

But the slope of secant line

$$= \frac{\text{change in } y}{\text{change in } x}$$

$$= \frac{\Delta y}{\Delta x} = \frac{\Delta y}{h} = \frac{\sqrt{4+h} - 2}{h}$$

and the slope of the tangent line

$$= \lim_{h \to 0} \text{(slope of secant line)}$$

$$= \lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h} = \frac{1}{4}$$

This technique of computing a limit in order to find the slope of a line tangent to a given curve is the central technique in calculus. Compute

$$\lim_{x \to 0} \frac{\sin \theta}{\theta}$$

where θ is measured in radians. Since

$$f(0) = \frac{\sin 0}{0} = \frac{0}{0}$$

which is un defined, we use the table method.

θ	$\sin \theta$	$\sin \theta/\theta$
1	0.8414709848	0.8414709848
0.5	0.4794255386	0.9588510772
0.1	0.09983341665	0.9983341665
0.01	0.009999833334	0.9999833334
0.001	0.0009999998333	0.9999998333
0.000	0.00009999999983	0.9999999983

Since $\sin(-\theta) = -\sin \theta$, if $\theta = -0.0001$, then $\sin(-0.0001) = -\sin(0.0001)$, so that

$$\frac{\sin(-0.0001)}{-0.0001} = \frac{-0.0000999999983}{-0.0001} = 0.9999999983$$

Generally if $\theta > 0$, then

$$\frac{\sin(-\theta)}{-\theta} = \frac{-\sin\theta}{-\theta} = \frac{\sin\theta}{\theta}$$

So, we pick only positive values for θ in the table. Therefore

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

1.4.2 Direct substitution method

Evaluate the following limits. The Limit of a Polynomial $f(x) = 4x^2 + 3$

$$\lim_{x \to 2} (4x^2 + 3) = \lim_{x \to 2} (4x^2 + 3) = \lim_{x \to 2} 4x^2 + \lim_{x \to 2} 3 \qquad \text{property two.}$$

$$= 4 \left[\lim_{x \to 2} x^2 \right] + \lim_{x \to 2} 3$$

$$= (4^2) + 3$$

$$= 19$$

In the example above note that the limit (as $x \to 2$) of the *Polynomial* function $P(x) = 4x^2 + 3$ is simply the value of P at x = 2.

$$\lim_{x \to 2} P(x) = P(2) = 4(2^2) + 3 = 19$$

This direct substitution property is valid for all polynomial and rational functions with nonzero denominators. If p is a polynomial function and c is a real number, then

$$\lim_{x \to c} p(x) = p(c)$$

If r is a rational function given by r(x) = p(x)/q(x) and c is a real number such that $q(x) \neq 0$, then

$$\lim_{x \to c} r(x) = \frac{p(c)}{q(c)}$$

Find $\lim_{x\to 1} \frac{x^2+x+2}{x+1}$ Because the denominator is not 0 when x=1, you can apply the theorem above to obtain

$$\lim_{x \to 1} \frac{x^2 + x + 2}{x + 1} = \frac{1^2 + 1 + 2}{1 + 1} = \frac{4}{2} = 2$$

Find $\lim_{x\to 2}\frac{x^3-5x^2+2x-4}{x^2-3x+3}$ In this case, neither the numerator nor the denominator approaches 0. In fact, $\lim_{x\to 2}(x^3-5x^2+2x-4)=-12$, $\lim_{x\to 2}(x^2-3x+3)=1$. Hence, our limit is

$$\lim_{x \to 2} \frac{x^3 - 5x^2 + 2x - 4}{x^2 - 3x + 3} = \frac{2^3 - 5(2)^2 + 2(2) - 4}{2^2 - 3(2) + 3} = \frac{-12}{1} = -12$$

Find
$$\lim_{u\to 0} \frac{5u^2 - 4}{u+1}$$
 Find $\lim_{x\to 2} \frac{x^2 + 5x + 3}{2x^3 - x + 4}$

1.4.3 Factorization method

Find the limit: $\lim_{x\to -3} \frac{x^2+x-6}{x+3}$. Although you are taking the limit of a rational function, you *cannot* apply the theorem above because the limit of the denominator is 0.

$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3} = \frac{\lim_{x \to -3} (x^2 + x - 6)}{\lim_{x \to -3} (x + 3)}.$$
 substitution method fails.

In fact the limit of the numerator is also 0. However, the numerator and denominator have a common factor (x + 3). Thus, for all $x \neq -3$, you can cancel this factor to obtain

$$\frac{x^2 + x - 6}{x + 3} = \frac{(x + 3)(x - 2)}{x + 3} = x - 2, \qquad x \neq -3.$$

Then it follows that

$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3} = \lim_{x \to -3} (x - 2) = -5$$

In the above example direct substitution produces the meaningless fractional form 0/0. Such an expression is called an **indeterminate form** because you cannot (from the form alone) determine the limit. When you try to evaluate a limit and encounter this form, remember that you rewrite the fraction so that the new denominator does not have 0 as its limit. One way to do this is to cancel like factors (factorization), as shown in the above example. A second way is to rationalize the numerator, as it will be shown shortly. Find the limit: $\lim_{x\to 5} \frac{x^2-25}{x-5}$ The numerator and denominator both approach zero. Factorizing the numerator,

$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x + 5)(x - 5)}{(x - 5)}$$
$$= \lim_{x \to 5} (x + 5) = 10$$

Find the limit: $\lim_{x\to 1} \frac{x^3-1}{x-1}$ Factorizing the numerator,

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$

$$= \lim_{x \to 1} (x^2 + x + 1) = 1 + 1 + 1 = 3$$

Find the limit:
$$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{4}{x^2-4} \right)$$
 Since $x^2 - 4 = (x+2)(x-2)$,

we can factor out $\frac{1}{r-2}$ and simplify:

$$\lim_{x \to 2} \left(\frac{1}{x-2} - \frac{4}{x^2 - 4} \right) = \lim_{x \to 2} \frac{1}{x-2} \left(1 - \frac{4}{x+2} \right) = \lim_{x \to 2} \frac{1}{x-2} \left(\frac{x+2-4}{x+2} \right)$$

$$= \lim_{x \to 2} \frac{1}{x - 2} \left(\frac{x - 2}{x + 2} \right) = \lim_{x \to 2} \left(\frac{1}{x + 2} \right) = \frac{1}{4}$$

Find the limit: $\lim_{x\to 1} \left(\frac{x^3+x^2-x-1}{x-1}\right)$ Factorizing the numerator:

$$\lim_{x \to 1} \frac{x^3 + x^2 - x + 1}{x - 1} = \lim_{x \to 1} \frac{x^2(x+1) - 1(x+1)}{x - 1} = \lim_{x \to 1} \frac{(x^2 - 1)(x+1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x+1)(x-1)(x+1)}{x-1} = \lim_{x \to 1} (x+1)^2 = 4$$

Find the limit $\lim_{x\to -2} \left(\frac{2x^2-8}{x+2}\right)$ Factorizing the numerator:

$$\lim_{x \to -2} \frac{2x^2 - 8}{x + 2} = \lim_{x \to -2} \frac{2(x^2 - 4)}{x + 2} = \lim_{x \to -2} \frac{2(x - 2)(x + 2)}{x + 2}$$

$$= \lim_{x \to -2} 2(x-2) = -8$$

Find the limit $\lim_{x \to 1} \frac{1}{x-1} - \frac{2}{x^2-1}$

$$\lim_{x \to 1} \frac{1}{x - 1} - \frac{2}{x^2 - 1} = \lim_{x \to 1} \frac{x^2 - 1 - 2(x - 1)}{(x^2 - 1)(x - 1)}$$

$$= \lim_{x \to 1} \frac{x^2 - 2x + 1}{(x^2 - 1)(x - 1)} = \lim_{x \to 1} \frac{(x - 1)(x - 1)}{(x + 1)(x - 1)(x - 1)}$$

$$= \lim_{x \to 1} \frac{1}{(x + 1)}$$

$$= \frac{1}{2}$$

Find the limit $\lim_{x \to \infty} \frac{x^{2/3} + x}{1 + x^{3/4}}$

$$\lim_{x \to \infty} \frac{x^{2/3} + x}{1 + x^{3/4}} = \lim_{x \to \infty} \frac{x^{2/3 - 3/4} + x^{1 - 3/4}}{\frac{1}{x^{3/4}} + 1}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x^{1/12}} + x^{1/4}}{\frac{1}{x^{3/4}} + 1}$$

Find the limit
$$\lim_{x \to \infty} \frac{\sqrt{x} + 1}{x^2 + x^3}$$
$$\lim_{x \to \infty} \frac{\sqrt{x} + 1}{x^2 + x^3} = \lim_{x \to \infty} \frac{x^{\frac{1}{2} - 2} + \frac{1}{x^2}}{1 + x}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x^{3/2}} + \frac{1}{x^2}}{1 + x}$$

Evaluate the following Limits.

(a).
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$

(b).
$$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{4}{x^2+2} \right)$$

(c).
$$\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4}$$

(d).
$$\lim_{x\to 2} \frac{2-x}{x^2-4}$$

(e).
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1}$$

(f).
$$\lim_{x\to 2} \frac{x^3 - 5x^2 + 2x - 4}{x^2 - 3x + 3}$$

(g).
$$\lim_{x\to 3} \frac{x^2 - 5x + 6}{x - 3}$$

(h).
$$\lim_{x \to 5} \frac{x-5}{x^2-25}$$

(i).
$$\lim_{x\to 9} \frac{x^2-81}{x-9}$$

(j).
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

(k).
$$\lim_{x\to 3} \frac{x^2 - 5x + 6}{x - 3}$$

(1).
$$\lim_{x \to 0} \frac{x^3 - 4x + 4}{x^3}$$

(m).
$$\lim_{x \to 1} \left(1 + \frac{1}{x} \right) \left(\frac{1}{x} - 1 \right)$$

(n).
$$\lim_{x \to 1} \frac{x^3 + x^2 - x - 1}{x - 1}$$

(o).
$$\lim_{x\to 2} \frac{x^5-32}{x-2}$$

(p).
$$\lim_{x\to 3} \left(\frac{x+4}{x^2+1} + \frac{x^3-27}{x-3} \right)$$

(q).
$$\lim_{x \to 1} \frac{x^4 + 3x^3 - 13x^2 - 27x + 36}{x^2 + 3x - 4}$$
 (r). $\lim_{x \to 4} \frac{x^3 - 64}{x - 4}$

(r).
$$\lim_{x \to 4} \frac{x^3 - 64}{x - 4}$$

Rationalization method

Calculate

$$\lim_{x \to 0} \frac{\sqrt{4+x} - 2}{x}$$

Rationalizing the function

$$\frac{\sqrt{4+x}-2}{x} = \frac{(\sqrt{4+x}-2)(\sqrt{4+x}+2)}{x(\sqrt{4+x}+2)}$$
$$= \frac{4+x-4}{x(\sqrt{4+x}+2)}$$
$$= \frac{1}{\sqrt{4+x}+2}$$

$$\therefore \lim_{x \to 0} \frac{\sqrt{4+x}-2}{x} = \lim_{x \to 0} \frac{1}{\sqrt{4+x}+2} = \frac{1}{4}$$

Evaluate

$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

Rationalizing the function

$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x} = \lim_{x \to 1} \frac{(1 - \sqrt{x})(1 + \sqrt{x})}{(1 - x)(1 + \sqrt{x})}$$
$$= \lim_{x \to 1} \frac{(1 - x)}{(1 - x)(4\sqrt{x})} = \frac{1}{2}$$

Find the limit: $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$

By direct substitution, you obtain the indeterminate form 0/0.

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$$
 Direct substitution fails.

In this case, you can rewrite the fraction by rationalizing the numerator 2

$$\frac{\sqrt{x+1} - 1}{x} = \left(\frac{\sqrt{x+1} - 1}{x}\right) \left(\frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1}\right)$$

$$= \frac{(x+1) - 1}{x(\sqrt{x+1} + 1)}$$

$$= \frac{x}{x(\sqrt{x+1} + 1)}$$

$$= \frac{1}{\sqrt{x+1} + 1}, \quad x \neq 0$$

²The rationalization technique for evaluating limits is based on multiplication by a convenient form of 1. In the above example, the convenient form is $1 = \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}$.

Now, using direct substitution, you can evaluate the limit as follows.

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0} \frac{1}{\sqrt{x+1} + 1}$$
$$= \frac{1}{1+1}$$
$$= \frac{1}{2}$$

Evaluate the following limits Find the limit $\lim_{x\to 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$ Rationalizing

the numerator

$$\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x} = \lim_{x \to 0} \left(\frac{\sqrt{x+3} - \sqrt{3}}{x} \right) \left(\frac{\sqrt{x+3} + \sqrt{3}}{\sqrt{x+3} + \sqrt{3}} \right)$$

$$= \lim_{x \to 0} \frac{(x+3) - 3}{x(\sqrt{x+3} + \sqrt{3})}$$

$$= \lim_{x \to 0} \frac{3}{x(\sqrt{x+3} + \sqrt{3})}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x+3} + \sqrt{3}}$$

$$= \frac{1}{2\sqrt{3}}$$

Find the limit $\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{x^2-2x}$ Rationalizing the numerator

$$\lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x^2 - 2x} = \lim_{x \to 2} \left(\frac{\sqrt{x^2 + 5} - 3}{x^2 - 2x} \right) \left(\frac{\sqrt{x^2 + 5} + 3}{\sqrt{x^2 + 5} + 3} \right)$$

$$= \lim_{x \to 2} \frac{(x^2 + 5) - 9}{(x^2 - 2x)(\sqrt{x^2 + 5} + 3)}$$

$$= \lim_{x \to 2} \frac{x^2 - 4}{(x^2 - 2x)(\sqrt{x^2 + 5} + 3)}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x(x - 2)(\sqrt{x^2 + 5} + 3)}$$

$$= \lim_{x \to 2} \frac{(x + 2)}{x(\sqrt{x^2 + 5} + 3)}$$

$$= \frac{4}{2(\sqrt{9} + 3)} = \frac{1}{3}$$

Evaluate the following Limits.

(a).
$$\lim_{x\to 0} \frac{x(1+\sqrt{1-x})}{1-(1-x)}$$
 (b). $\lim_{x\to 1} \frac{2}{2-\sqrt{3+x}}$

(c).
$$\lim_{x\to 0} \frac{\sqrt{x+1}-2}{x+1}$$
 (d). $\lim_{x\to 0} \frac{x}{2-\sqrt{x-2}}$

(e).
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16}$$
 (f). $\lim_{x \to 0} \frac{[1/(2+x)] - (1/2)}{x}$

(g).
$$\lim_{x\to 2} \frac{x^5 - 32}{x - 2}$$
 (h). $\lim_{x\to 0} \frac{2(2 + \sqrt{4 + x})}{4 - (4 + x)}$

(i).
$$\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{x^2-2x}$$
 (j). $\lim_{x\to 0} \frac{1-\sqrt{1-x}}{x}$

(k).
$$\lim_{x\to 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$$
 (l). $\lim_{x\to \infty} \frac{5+x}{x^2+x+1}$

(m).
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$
 (n). $\lim_{x \to 0} \frac{5x^2 - 4}{x + 1}$

(o).
$$\lim_{x\to 0} \frac{x}{2-\sqrt{2-x}}$$
 (p). $\lim_{x\to 0} \frac{\sqrt{x}+1}{x^2+x^3}$

A Limit Involving a Trigonometric Function

Find the limit: $\lim_{x\to 0} \frac{\tan x}{x}$. Direct substitution yields the intermediate form 0/0. To solve this problem, you can write $\tan x$ as $(\sin x)/(\cos x)$ and obtain

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right) \left(\frac{1}{\cos x}\right) = \lim_{x \to 0} \left(\frac{\sin x}{x}\right) \lim_{x \to 0} \left(\frac{1}{\cos x}\right)$$

Now, because

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \qquad \therefore, \qquad \lim_{x \to 0} \left(\frac{\sin x}{x} \right) \lim_{x \to 0} \left(\frac{1}{\cos x} \right) = \frac{1}{1} = 1.$$

1.5 One sided Limits

Let L be a real number

(i). Suppose that f(x) is defined near x_0 for $x > x_0$ and that the x gets close to x_0 (with $x > x_0$), f(x) gets close to L. Then we say that L is the right hand limit of f(x) as x approaches x_0 and we write

$$\lim_{x \to x_0^+} f(x) = L$$

(ii). Suppose that f9x) is defined near x_0 for $x < x_0$ and that as x gets close to L. Then we say that L is the left hand limit of f(x) as x

$$\lim_{x \to x_0^-} f(x) = L$$

For function

$$f(x) = \frac{|x|}{x} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

It follows that

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1$$

and

$$\lim_{x \to 0^-} \frac{|x|}{x} = -1$$

 $\lim_{x\to x_0} f(x) = L$ exists if and only if the following hold:

- (i). $\lim_{x\to x_0^+} f(x)$ exists
- (ii). $\lim_{x\to x_0^-} f(x)$ exists
- (iii). $\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=L$

i.e., the limits if and only if the right hand side and left hand side exist and are equal. Let

$$f(x) = \begin{cases} x+1 & x > 0 \\ x-1 & x < 0 \end{cases}$$

 $\lim_{x\to 0} f(x)$ does not exist.

1.6 Infinite limits and limits at infinity

Consider

$\lim_{x\to 0} \frac{1}{x^2}$							
\overline{x}	$1/x^2$	x	$1/x^2$				
1	1	-1	1				
0.5	4	-0.5	4				
0.1	100	-0.1	100				
0.01	10,000	-0.01	10,000				
0.001	1,000,000	-0.001	1,000,000				
0.0001	100,000,000	-0.0001	100,000,000				

It appears f(x) tends to infinity as x approaches zero, and we write

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

1.7 Infinite Limits

(i). If f(x) grows without bound in the positive direction as x gets close to the number x_0 from either side, then we say that f(x) tends to infinity as x approaches x_0 , and we write

$$\lim_{x \to x_0} f(x) = \infty$$

(ii). If f(x) grows without bound in the negative direction as x gets close to the number x_0 from either side, then we say that f(x) tends to minus infinity as x approaches x_0 , and we write

$$\lim_{x \to x_0} f(x) = -\infty$$

Since $1/x^2$ grows without bound as $x \to 0$, $-1/x^2$ grows without bound in the negative direction as $x \to 0$.

$$\lim_{x \to 0} -\frac{1}{x^2} = -\infty$$

Calculate

$$\lim_{x \to 0} \frac{1}{x^2 + x^3}$$

Using the table method

$$\therefore \lim_{x \to 0} \frac{1}{x^2 + x^3} = \infty$$

Calculate

$$\lim_{x\to 0}\frac{1}{x}$$

$$\lim_{x\to 0^+}\frac{1}{x}=\infty,\qquad \lim_{x\to 0^-}\frac{1}{x}=-\infty$$

To this point we have considered limits as $x \to x_0$, where x_0 is a real number. But in many important applications it is necessary to determine what happens to f(x) as x becomes very large. For example, what happens to function $f(x) = \frac{1}{x}$ as x becomes large

These examples suggest the following definition

1.7.1 Limits at infinity

If you have a limit of a rational function (i.e. a quotient of polynomials), then there are three cases.

(1) **Degree of numerator** < **degree of denominator**: In this case, the denominator dominates the quotient, so you multiply the numerator and denominator of the function by 1 over the highest degree term. As an example, if we have

$$\lim_{x \to \infty} \frac{x^2 + 3x + 1}{x^3 - 2},$$

then the degree of the bottom is 3 and the top has degree 2. In this case, we multiply the top and bottom by $1/x^3$ to get

$$\lim_{x \to \infty} \frac{(x^2 + 3x + 1)\frac{1}{x^3}}{(x^3 - 2)\frac{1}{x^3}} = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{3}{x^2} + \frac{1}{x^3}}{1 - \frac{2}{x^3}}.$$

At this point, the usual limit laws work, and since the top goes to 0 and the bottom goes to 1, the limit is 0/1 = 0.

(2) **Degree of numerator** = **degree of denominator**: In this case, you do the same procedure as above. For example, if the limit is

$$\lim_{x \to \infty} \frac{-3x^2 + x + 1}{x^2 - 2},$$

then we can multiply the top and bottom by $1/x^2$, and we find

$$1-2\frac{}{x^2}$$

and now we use the usual limit laws to get -3/1 = -3.

- Degree of numerator > degree of denominator: In this case, the limit will be ∞ or $-\infty$. While the method I showed
- (i). The limit as x approaches infinity of f(x) is L, written

$$\lim_{x \to \infty} f(x) = L$$

if f(x) is defined for all large values of x and if f(x) gets close to L as as x increases without bound.

(ii). The limit as x approaches minus infinity of f(x) is L, written

$$\lim_{x \to -\infty} f(x) = L$$

if f(x) is defined for all values of x that are large in the negative direction and f(x) gets close to L as x increases without bound in the negative direction.

Let f be the function given by

$$f(x) = \frac{3}{x - 2}.$$

From the table below, you can see that f(x) decreases without bound as x approaches 2 from the left, and f(x) increases without bound as x approaches 2 from the right. This behaviour is denoted as

$$\lim_{x\to 2^-}\frac{3}{x-2}=-\infty \qquad f(x) \text{ decreases without bound as x approaches 2 from the left}$$

and

$$\lim_{x\to 2^+} \frac{3}{x-2} = \infty \qquad f(x) \text{ increases without bound as x approaches 2 from the right}$$

				1.999					
f(x)	-6	-30	-300	-3000	?	3000	300	30	6

A limit in which f(x) increases or decreases without bound as x approaches c is called an **infinite limit.** Evaluate $\lim_{x\to\infty}\frac{5+x}{x^2+x+1}$

$$\lim_{x \to \infty} \frac{5+x}{x^2+x+1} = \lim_{x \to \infty} \frac{5/x^2+1/x}{1+1/x+1/x^2}$$
$$= \frac{0}{1} = 0$$

Evaluate the following Limits.

(a).
$$\lim_{x \to \infty} 1 - \frac{1}{x}$$
 (b). $\lim_{x \to \infty} \frac{x^{\frac{2}{3}} + x}{1 + x^{\frac{3}{4}}}$ (c).

Use the position function $s(t) = -16t^2 + 1000$, which gives the height (in feet) of an object that has fallen for t seconds from a height of 1000 ft. The velocity at time t = a seconds is given by

$$\lim_{t \to a} \frac{s(a) - s(t)}{a - t}$$

- (a). If a construction worker drops a wrench from a height of 1000 feet, how fast will the wrench be falling after 5 seconds?
- (b). If a construction worker drops a wrench from a height of 1000 feet, when will the wrench hit the ground? At what velocity will the wrench impact the ground.

Evaluate the following Limits.

(a).
$$\lim_{x \to 4} x^2$$

(b).
$$\lim_{x \to 3} (3x + 2)$$

(c).
$$\lim_{x \to 0} (2x - 1)$$

(d).
$$\lim_{x \to 1} (-x^2 + 1)$$

(e).
$$\lim_{x\to 2} (-x^2 + x - 2)$$

(f).
$$\lim_{x \to 1} (3x^3 - 2x^2 + 4)$$

(g).
$$\lim_{x \to 3} \frac{x^2 + x}{x + 5}$$

(h).
$$\lim_{x \to 0} \frac{1}{x - 3}$$

(i).
$$\lim_{x \to -1} \frac{1}{(1+x)^2}$$

(j).
$$\lim_{x\to 2} \frac{x^3 - x^2 - x - 1}{x - 2}$$

(k).
$$\lim_{x \to 3} \frac{x^2 + x}{x + 5}$$

(1).
$$\lim_{x \to 3} \sqrt{x+1}$$

(m).
$$\lim_{x \to -4} (x+3)^2$$

(n).
$$\lim_{x \to 2} \frac{1}{x}$$

(0).
$$\lim_{x \to -1} \frac{x^2 + 1}{x}$$

(p).
$$\lim_{x \to 4} \sqrt[3]{x+4}$$

(q).
$$\lim_{x\to 0} (2x-1)^{\frac{1}{2}}$$

(r).
$$\lim_{x \to -3} \frac{2}{x+2}$$

(t).
$$\lim_{x \to 5} (3x^4 - 275)$$

(u).
$$\lim_{x \to 4} \frac{x^3}{x+5}$$