ÁLGEBRA LINEAL

Hoja de ejercicios 03: Espacios Vectoriales

Ejercicio 1. Demuestra que el conjunto P_3 de polinomios de la forma $a_0+a_1x+a_2x^2+a_3x^3$ de grado menor o igual que tres es un espacio vectorial (donde a_0 ; a_1 ; a_2 y a_3 son números reales cualesquiera y x es una variable).

Demostrar que el conjunto $P^{(3)}$ de polinomios, $a_0+a_1x+a_2x^2+a_3x^3$; $a \ne 0$; (i.e., de grado exactamente tres) no es un espacio vectorial.

Obsérvese que en general el conjunto de polinomios P_n de grado menor o igual que n, n natural, es un espacio vectorial.

Ejercicio 2. Decide cuáles de los siguientes subconjuntos de R³ son subespacios:

- a) $A = \{(x, 0, z) : x, z \in R\}$
- b) $B = \{(x, y, z): x, y, z \in R\}$
- c) $C = \{(x, y, z): x = 2y + 5; x, y, z \in R\}$

Ejercicio 3. Considera las tres matrices en el espacio vectorial R^{2x2} dadas por

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Demuestra que el conjunto de combinaciones lineales de A, B y C es un subespacio vectorial de \mathbb{R}^{2x2} .

Ejercicio 4. Comprueba si el vector (3, 4, 4) de R³ pertenece al subespacio generado por el conjunto de vectores {(1, 2, 3); (-1, 0, 2)} y si éste es el caso, encontrar la correspondiente combinación lineal.

Ejercicio 5. Demuestra que el conjunto de vectores {(1, 0, 0); (0, 1, 0); (0, 0, 1); (1, 2, 3)} de R³ es linealmente dependiente. Prueba que el conjunto de vectores {(0, 1, 0); (0, 0, 1); (1, 2, 3)} es linealmente independiente.

Ejercicio 6. Decide si los tres polinomios siguientes $p(x) = 1 - x + x^2$; q(x) = 2 + x; $r(x) = 1 + 2x - x^2$ son linealmente dependientes o independientes. Si son linealmente dependientes, encuentra alguna relación de dependencia lineal.

Ejercicio 7. Prueba que el conjunto $B = \{(1, 1, 0); (1, 2, 1); (2, 1, 0)\}$ es una base de R^3 . Halla las coordenadas del vector v = (3, -2, 1) con respecto a B.

Ejercicio 8. Halla una base y la dimensión de cada uno de los posibles subespacios siguientes de R⁴:

- a) $V_1 = \{(y, 2y, y, 0): y \in R\}$
- b) $V_2 = \{(y, 2y, y, z) : y, z \in R\}$
- c) $V_3 = \{(y, 2y, z, 1): y, z \in R\}$
- d) $V_4 = \{(y, y + z, 3y 2z, z): y, z \in R\}$

Ejercicio 9. Sea la matriz

$$A = \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 1 & -1 & 6 & 5 & -3 \\ 0 & 1 & -3 & -8 & 9 \\ 2 & 2 & 0 & -6 & -2 \end{bmatrix}$$

- a) Halla una base del subespacio vectorial ColA.
- b) Halla el valor del parámetro real, \mathbf{c} , para el que el vector $\mathbf{v} = (\mathbf{0}, \mathbf{2}, \mathbf{c})$ pertenezca a ese subespacio.

Ejercicio 10. Demuestra que:

- a) "Si $\{x_1, x_2, ..., x_p\}$ es un conjunto de p vectores linealmente independiente de un espacio vectorial y $\{x_1, x_2, ..., x_p, x\}$ es un conjunto linealmente dependiente, entonces x pertenece al subespacio generado por $\{x_1, x_2, ..., x_p\}$ y x se puede expresar de una manera única como combinación lineal de los vectores $\{x_1, x_2, ..., x_p\}$ "
- b) "En un espacio vectorial E de dimensión n sobre el cuerpo K:
 - 1. Todo sistema l.i. tiene a lo sumo n elementos.
 - 2. Todo sistema que tenga al menos n+1 elementos es l. d."
- c) "Todo sistema B de un espacio vectorial E de dimensión n sobre K que posee dos de las tres propiedades siguientes (n>0):
 - 1. B tiene n elementos.
 - 2. B es libre.
 - 3. B es sistema generador de E. es una base de E"