

What's in it for you?

- What is Machine Learning?
- Types of Machine Learning
- Problems in Machine Learning
- What is Decision Tree?
- What are the problems a Decision Tree solves?
- Advantages of Decision Tree
- Disadvantages of Decision Tree
- How does Decision Tree work?
- Use Case Loan repayment prediction

Machine Learning is an application of Artificial Intelligence wherein the system gets the ability to automatically learn and improve based on experience

Ordinary system

Machine Learning is an application of Artificial Intelligence wherein the system gets the ability to automatically learn and improve based on experience

Ordinary system

With Artificial Intelligence

Machine Learning is an application of Artificial Intelligence wherein the system gets the ability to automatically learn and improve based on experience

Ordinary system

Ability to learn and improve on its own

Machine Learning is an application of Artificial Intelligence wherein the system gets the ability to automatically learn and improve based on experience

Ordinary system

Ability to learn and improve on its own

Machine Learning

Types of Machine Learning

Supervised Learning

Types of Machine Learning

Supervised Learning

Unsupervised Learning

Types of Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Classification

Problems with categorical solutions like 'Yes' or 'No', 'True' or 'False','1' or '0'

Regression

Problems wherein continuous value needs to be predicted like 'Product Prices', 'Profit'

Classification

Problems with categorical solutions like "Yes" or "No", "True" or "False", "1" or "0"

Regression

Problems wherein continuous value needs to be predicted like 'Product Prices', 'Profit'

Clustering

Problems wherein the data needs to be organized to find specific patterns like in the case of 'Product Recommendation'

Classification

Problems with categorical solutions like 'Yes' or 'No', 'True' or 'False', '1' or '0'

Regression

Problems wherein continuous value needs to be predicted like 'Product Prices', 'Profit'

Clusterin

Problems wherein the data needs to be organized to find specific patterns like in the case of 'Product Recommendation'

Problems that Decision Tree can solve

Problems that Decision Tree can solve

Problems that Decision Tree can solve

Classification

A classification free will determine a set of logical if-then conditions to classify problems.

For example, discreninating between three types of flowers based on certain features

Reg ession

Regression tree is used when the target variable is numerical or continuous in nature. We fit a regression model to the target variable using each of the independent variables. Each split is made based on the sum of squared error.

Problem statement

To classify the different types of animals based on their features using decision tree

Problem statemen

To classify the different types of animals based on their features using decision tree

The dataset is looking quite messy and the entropy is high in this case

The dataset is looking quite messy and the entropy is high in this case

How to split the data

We have to frame the conditions that split the data in such a way that the information gain is the highest

How to split the data

We have to frame the conditions that split the data in such a way that the information gain is the highest

Note

Gain is the measure of decrease in entropy after splitting

Let's try to calculate the entropy for the current dataset

Let's use the formula

 $\sum_{i=1}^{k} P(valuei), log_2(P(value_i)$

Let's use the formula

$$\sum_{i=1}^k P(valuei), log_2(P(value_i)$$

$$\mathsf{Entropy} = (\tfrac{3}{6}) \ log_2(\tfrac{3}{6}) + (\tfrac{2}{6}) \ log_2(\tfrac{2}{6}) + (\tfrac{1}{6}) \ log_2(\tfrac{1}{6}) + (\tfrac{2}{6}) \ log_2(\tfrac{2}{6})$$

Entropy=0.571

Let's use the formula

$$\sum_{i=1}^{N} P(valuei), log_2(P(value_i$$

 $\mathbb{E} n trop_Y = \binom{2}{n} \log_2(\frac{2}{n}) + \binom{2}$

ntropyeo.cri

We will calculate the entropy of the dataset similarly after every split to calculate the gain

Gain can be calculated by finding the difference of the subsequent entropy values after split

Now we will try to choose a condition that gives us the highest gain

Now we will try to choose a condition that gives us the highest gain

We will do that by splitting the data using each condition and checking the gain that we get out them.

The condition that gives us the highest gain will be used to make the first split

We will do that by splitting the data using each condition and checking the gain that we get out them.

Color==Yellow? Height>=10 Color==Brown? Color==Grey Diameter<10

Label

elephant

giraffe

Monkey

elephant

Tiger

Training Dataset

Height

10

10

10

Color

We split the data

since every branch now contains single label type, we can say that the entropy in this case has reached the least value

This Tree can now predict all the classes of animals present in the dataset with 200% accuracy

This Tree can now predict all the classes of animals present in the dataset with 200% accuracy

That was easy

Use Case - Loan Repayment prediction

Use Case - Problem Statement

Problem statement

To predict if a customer will repay loan amount or not using Decision Tree algorithm in python


```
#import the necessary packages
import numpy as np
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree

#Loading data file
balance_data =pd.read_csv('C:/Users/anirban.dey/Desktop/data_2.csv',
sep= ',', header= 0)
```



```
#import the necessary packages
print ("Dataset Lenght:: "), len(balance_data)
print ("Dataset Shape:: "), balance_data.shape
```

```
Dataset Lenght::
Dataset Shape::
Out[166]: (None, (1000, 5))
```



```
print ("Dataset:: ")
balance_data.head()
```

Dataset::

Out[167]:

	Result	Initial payment	Last payment	Credit Score	House Number
0	Yes	201	10018	250	3046
1	Yes	205	10016	395	3044
2	Yes	257	10129	109	3251
3	Yes	246	10064	324	3137
4	Yes	117	10115	496	3094


```
#Seperating the Target variable
X = balance_data.values[:, 1:5]
Y = balance_data.values[:,0]

#Spliting Dataset into Test and Train
X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size = 0.3, random_state = 100)

#Function to perform training with Entropy
clf_entropy = DecisionTreeClassifier(criterion = "entropy", random_state = 100, max_depth=3, min_samples_leaf=5)
clf_entropy.fit(X_train, y_train)
```

```
Out[170]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=5, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=100, splitter='best')
```



```
#Function to make Predictions
y_pred_en = clf_entropy.predict(X_test)
y_pred_en
```

```
Out[171]: array(['Yes', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'N
```



```
#Checking Accuracy
print ("Accuracy is "), accuracy_score(y_test,y_pred)*100
```

Accuracy is

Out[172]: (None, 94.66666666666671)

Use Case

So, we have created a model that uses decision tree algorithm to predict whether a customer will repay the loan or not

Use Case

The Accuracy of the model is 94.6%

Use Case

The bank can use this model to decide whether it should approve loan request from a particular customer or not

Key takeaways

