Introdução a UML (Unified Modeling Language)

O que é a UML?

- Linguagem Gráfica de Modelagem para:
 - Visualizar
 - Especificar
 - Construir
 - Documentar
 - Comunicar
 - Artefatos de sistemas complexos
- Linguagem: vocabulário + regras de combinação

Modelos

- O que é um modelo?
 - Um modelo é uma simplificação (representação) da realidade

- O que modelamos?
 - Dimensões: dados, função, comportamento

Objetivos da Modelagem

- Compreender melhor o sistema que estamos desenvolvendo
- Visualizar o sistema
- Documentar decisões tomadas
- Especificar comportamento ou a estrutura de um sistema

Princípios da Modelagem

- A escolha dos modelos a serem criados tem profunda influência sobre a maneira como um determinado problema é atacado e como uma solução é definida
- Cada modelo poderá ser expresso em diferentes níveis de precisão
- Os melhores modelos estão relacionados à realidade
- Nenhum modelo único é suficiente. Qualquer modelo não-trivial será melhor investigado por meio de um pequeno conjunto de modelos quase independentes

A UML não é

- um processo
- uma metodologia
- análise e projeto OO
- regras de projeto

Origem e Evolução da UML

Algumas aplicações

- Sistemas de informações corporativos
- Serviços bancários e financeiros
- Sistemas Técnicos: Telecomunicações,
 Transportes, Defesa/espaço aéreo
- Vendas de varejo
- Sistemas de tempo real
- Científicos
- Serviços distribuídos baseados na Web

Elementos da UML

Para formar um modelo conceitual da linguagem é necessário aprender três elementos principais

- Blocos de construção
- Regras que determinam como esses blocos poderão ser combinados
- Mecanismos comuns aplicados na UML

Blocos de Construção

- Três tipos:
 - Itens: são abstrações
 - Relacionamentos: os relacionamentos reunem esses itens
 - Diagramas: agrupam coleções interessantes de item

Itens da UML

- Estruturais
- Comportamentais
- De agrupamento
- Anotacionais

Itens estruturais

- São os substantivos dos modelos. São a parte estática, representando elementos conceituais ou físicos
- Sete tipos: classes, interfaces, colaborações, casos de uso, classes ativas, componentes e

Classe

Itens comportamentais

- Representam as partes dinâmicas dos modelos.
 São os verbos, representando comportamentos no tempo e no espaço
- Dois tipos: interação e máquina de estado

Itens de agrupamento

- São as partes organizacionais dos modelos de UML. São os blocos em que os modelos podem ser decompostos – pacotes
- Um pacote é um mecanismo de propósito geral para a organização de elementos em grupos

Regras de negócios

Pacote

Itens anotacionais

 Partes explicativas dos modelos UML. São comentários, incluídos para descrever, esclarecer e fazer alguma observação importante sobre qualquer elemento do modelo - notas

Retornar cópia

Nota

Relacionamentos

- Dependência
- Associação
- Generalização
- Realização

Dependência

Relacionamento semântico entre dois itens, nos quais a alteração de um (o item independente) pode afetar a semântica do outro (o item dependente)

Associação

É um relacionamento estrutural que descreve um conjunto de ligações, em que as ligações são conexões entre objetos

(Agregação)

A agregação é um tipo especial de associação representando um relacionamento estrutural entre o todo

Generalização

 É um relacionamento de especialização/generalização, nos quais os objetos dos elementos especializados (os filhos) são substituíveis por objetos do elemento generalizado (os pais)

Realização

 É um relacionamento semântico entre classificadores, em que um classificador especifica um contrato que outro classificador garante executar

Diagramas

- Apresentações gráficas de um conjunto de elementos, geralmente representadas como gráficos de vértices (itens) e arcos (relacionamentos)
- Tipos: classes, objetos, pacotes, casos de uso, seqüências, colaborações, estados, atividades, componentes e implantação

Diagramas de classes

- Diagramas de classe são a espinha dorsal da maioria dos métodos orientados a objeto, inclusive UML
- Descrevem a estrutura estática do sistema (entidades e relacionamentos)

Diagramas de pacotes

 Organizam elementos do sistema em grupos relacionados a fim de minimizar a dependência entre eles

Diagramas de objetos

 Descrevem a estrutura estática de um sistema em um determinado momento

Podem ser usados para testar a precisão dos diagramas de classe

Diagramas de casos de uso

- Modelam a funcionalidade do sistema através de atores e casos de uso
- Casos de uso são serviços ou funções fornecidas pelo sistema aos seus usuários

Diagramas de seqüências

 Descreve as interações entre as classes através das trocas de mensagens ao logo do tempo

Diagramas de colaborações

- Representam as interações entre objetos em termos de mensagens em seqüência
- Descrevem tanto a estrutura estática como o comportamento dinâmico do sistema

Diagramas de estados

- Descrevem o comportamento dinâmico do sistema em resposta a estímulos externos
- São especialmente úteis para modelar objetos reativos cujos estados são disparados por eventos específicos

Diagramas de atividades

- Ilustram a natureza dinâmica de um sistema modelando o fluxo de controle de uma atividade para outra
- Uma atividade representa uma operação em uma classe do sistema que resulta na mudança do estado do sistema
- Tipicamente, são usados para modelar fluxo de trabalho ou processos de negócio e funcionamento interno

Diagramas de componente

Descreve a organização dos componentes físicos de software

Ex.: código-fonte, código em tempo de execução (binário) e

Diagramas de implantação

Descrevem os recursos físicos em um sistema, incluindo nós, componentes e conexões

Regras da UML

- Especificam o que deverá ser um modelo bem-formado
- Modelos bem-formados são aqueles autoconsistentes semanticamente e em harmonia com todos os modelos a ele relacionados
- Regras para: nome, escopo, visibilidade, integridade e execução

Mecanismos básicos da UML

- Especificações
- Adornos
- Divisões comuns
- Mecanismos de extensão

Arquitetura

- Decisões significativas acerca de:
 - A organização do sistema de software
 - A seleção dos elementos estruturais e suas interfaces
 - Seu comportamento, conforme especificado nas colaborações entre esses elementos
 - A composição desses elementos estruturais e comportamentais em subsistemas cada vez maiores
 - O estilo de arquitetura que orienta a organização: os elementos estáticos e dinâmicos e suas respectivas interfaces,

Modelagem da arquitetura

desempenho escalabilidade throughput

topologia do sistema distribuição fornecimento instalação