Lab 02

HIEU NGUYEN

- Create a folder for your lab 02 (See Lab01 for more detail)
- Launch Vivado 2017.x (See Lab01 for more detail)
- Create a new project with name: Lab02_YourName
- Create a new VHDL-design file with the name: Lab02_partl

Click on «Create File» to create constraint file with name: Lab02_ucf. Then click OK and then

Choose the board (Basys-3) as bellow

Define input and output ports as below. Then click OK

Edit Lab02_PartI by adding the following statement

```
Project Summary × Lab02_Partl.vhd * ×
M:/HSN_Undervisning/EFDP1100_V2018/Lecture_02/Lab_02/Lab02_HN/Lab02_HN.srcs/sources_1/
Q 💾 ← → 🔏 🖫 🗈 // 頭 ♀
22 library IEEE;
23 use IEEE.STD LOGIC 1164.ALL;
25 -- Uncomment the following library declaration if using
26 : -- arithmetic functions with Signed or Unsigned values
27 -- use IEEE.NUMERIC STD.ALL;
29 -- Uncomment the following library declaration if instantiating
30 -- any Xilinx leaf cells in this code.
31 --library UNISIM;
32 --use UNISIM.VComponents.all;
34 🖯 entity Lab02_PartI is
        Port ( Z : out STD LOGIC;
               A : in STD LOGIC;
               B : in STD LOGIC);
38 end Lab02_PartI;
40 - architecture Behavioral of Lab02_PartI is
42 | begin
44 | Z <= (A and (not B)) or (B and (not A));
46 end Behavioral;
```

 Create the test bench with the name: Lab02_PartI_tb and generate the test vectors for this design (See Lab01 for more detail)

Click on constrs_1 and then right click on Lab02_ucf and choose «Set target constraint file»

Click on Lab02_ucf to edit the this file. Now the ucf-file is empty.

Open xdc file from Digilent with notepad

```
M:\HSN_Undervisning\EFDP1100_V2018\BASYS3_XUP\Basys3_Master.xdc - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
3 🖶 🖶 🖺 🥦 🥦 🔏 | 🚜 🐚 🜓 | D C | # 🛬 | 🔍 🤫 | 🖫 🖼 | 5. 1 | 🗜 🗷 📓 💋 📾 📀 | 🖲 🗩 🗩 🛍 |
proto_base_RCn13_ID10.dat 🔀 📑 base_start.dat 🔀 🛗 ndex_search.dat 🔀 🚞 config_bluetooth_hn.ino.ino 🔀 🚟 config_bluetooth_hn.ino.ino 🔀 🛗 BLUETOOTH_HN_v4.ino 🗷 📑 new 1 🔀 🛗 Basys3_Master.xdc 🔀
 1 ## This file is a general .xdc for the Basys3 rev B board
 2 ## To use it in a project:
 3 ## - uncomment the lines corresponding to used pins
  4 ## - rename the used ports (in each line, after get ports) according to the
  6 ## Clock signal
  7 #set property PACKAGE PIN W5 [get ports clk]
         #set property IOSTANDARD LVCMOS33 [get ports clk]
         #create clock -add -name sys clk pin -period 10.00 -waveform {0 5} [get
 11 ## Switches
 #set property PACKAGE PIN V17 [get ports {sw[0]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[0]}]
 14 #set property PACKAGE PIN V16 [get ports {sw[1]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[1]}]
 16 #set property PACKAGE PIN W16 [get ports {sw[2]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[2]}]
 18 #set property PACKAGE PIN W17 [get ports {sw[3]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[3]}]
 20 #set property PACKAGE PIN W15 [get ports {sw[4]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[4]}]
 22 #set property PACKAGE PIN V15 [get ports {sw[5]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[5]}]
24 #set property PACKAGE PIN W14 [get ports {sw[6]}]
```

Copy all the content of xdc file from Digilent and paste in Lab02_ucf.dxc

```
Project Summary X Lab02_Partl.vhd X Lab02_ucf.xdc X
M:/HSN_Undervisning/EFDP1100_V2018/Lecture_02/Lab_02/Lab02_HN/Lab02_HN.srcs/constrs_1/r
1 ## This file is a general .xdc for the Basys3 rev B board
  2 | ## To use it in a project:
  3 ## - uncomment the lines corresponding to used pins
  4 | ## - rename the used ports (in each line, after get ports) according to
  6  ## Clock signal
  7 | #set_property PACKAGE_PIN W5 [get_ports clk]
         #set property IOSTANDARD LVCMOS33 [get ports clk]
         #create clock -add -name sys clk pin -period 10.00 -waveform {0 5} [(
 10
 12 | #set property PACKAGE PIN V17 [get ports {sw[0]}]
 #set property IOSTANDARD LVCMOS33 [get ports {sw[0]}]
 14 #set property PACKAGE PIN V16 [get ports {sw[1]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[1]}]
 16 | #set property PACKAGE PIN W16 [get ports {sw[2]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[2]}]
 18 | #set_property PACKAGE_PIN W17 [get_ports {sw[3]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[3]}]
 20 | #set property PACKAGE PIN W15 [get_ports {sw[4]}]
 21  #set property IOSTANDARD LVCMOS33 [get ports {sw[4]}]
 22 #set property PACKAGE PIN V15 [get ports {sw[5]}]
 23 | #set property IOSTANDARD LVCMOS33 [get ports {sw[5]}]
 24 #set_property PACKAGE_PIN W14 [get_ports {sw[6]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[6]}]
 26 : #set property PACKAGE PIN W13 [get ports {sw[7]}]
         #set property IOSTANDARD LVCMOS33 [get ports {sw[7]}]
 28 | #set property PACKAGE PIN V2 [get ports {sw[8]}]
```

- Enable line 12 and line 13 to use Switch 0 for input signal A
- Enable line 14 and line 15 to use Switch 1 for input signal B

```
11 ## Switches
12 set_property PACKAGE_PIN V17 [get_ports {A}]
13 set_property IOSTANDARD LVCMOS33 [get_ports {A}]
14 set_property PACKAGE_PIN V16 [get_ports {B}]
15 set property IOSTANDARD LVCMOS33 [get ports {B}]
16 #set_property PACKAGE_PIN W16 [get_ports {sw[2]}]
17 #set_property IOSTANDARD LVCMOS33 [get_ports {sw[2]}]
18 #set_property PACKAGE_PIN W17 [get_ports {sw[3]}]
19 #set_property IOSTANDARD LVCMOS33 [get_ports {sw[3]}]
20 #set_property PACKAGE_PIN W15 [get_ports {sw[4]}]
```

Enable line 47 and line 48 to use Led0 for output signal Z

```
45
46 ## LEDs
47 set_property PACKAGE_PIN U16 [get_ports {Z}]
48 set_property IOSTANDARD LVCMOS33 [get_ports {Z}]
49 #set_property PACKAGE_PIN E19 [get_ports {led[1]}]
50 #set_property IOSTANDARD LVCMOS33 [get_ports {led[1]}]
51 #set_property PACKAGE_PIN U19 [get_ports {led[2]}]
52 #set_property IOSTANDARD LVCMOS33 [get_ports {led[2]}]
53 #set_property PACKAGE_PIN V19 [get_ports {led[3]}]
54 #set_property IOSTANDARD LVCMOS33 [get_ports {led[3]}]
```

Click on Run Synthesis

Connect BASYS-3 to your computer using USB port and choose Open Hardware Manager

Click on Open target

Choose Auto Connect

Click on Program device

Check if the bit-file with name of your project is in the Bitstream-file box. Then click Program

Change the state of two switches Sw0 and Switch 1 and Observe the Led0

Switch 0 (A)	Swith 1(B)	Led0 (Z)
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

Send the table above and vhdl for your design, testbench and ucf as the report of lab 02 part I

- In this part, you will design one-bit full adder (See your previous home work). Student should report your testing result including
 - VHDL code for one-bit full adder
 - VHDL test bench for such one-bit full adder
 - Simulation waveform for behavior of one bit adder
 - Follow the procedure to generate *.bit file and download your bit-file to your BASYS-3 and test. Following is suggestion about pin-mapping for input and output signals

Signal	Pin
A	SW0
В	SW1
Cin	SW2
Sum	LED0
Cout	LED1

Send your vhdl for design, testbench and ucf as a report for Lab02-partII