PRÁCTICA 1 - 2024 REDES NEURONALES

Dinámica Neuronal I

1. Usando la ecuación de Nernst, determinar los potenciales de equilibrio para los siguiente iones: K, Na y Cl. Las concentraciones son:

	Interior (mM)	Exterior (mM)
K^+	430	20
Na^+	50	440
Cl^-	65	550

La temperatura es de 20 grados centígrados. Ayuda: el valor de la constante de Boltzmann es $k_B \approx 8.6 \ 10^{-5} \ \mathrm{eV/K}$.

- 2. Considerar una neurona esférica con un radio de 15 micrones y una capacitancia de $1\mu F/cm^2$. ¿Qué cantidad de iones de sodio deben ingresar a la neurona para cambiar el potencial de membrana en 100 mV? Comparar el cambio de concentración con la concentración de iones de sodio del problema anterior. Ayuda: usar como valor de la constante de Faraday: $F = 10^5$ coulombs/mol.
- 3. Utilizando la ecuación de Goldman graficar la corrientes de los iones de potasio, sodio y calcio como función del potencial de membrana. ¿En que casos una aproximacón lineal está mejor justificada?
- 4. Simular la dinámica de una neurona de Hogdkin-Huxley Calcular la curva f - I.

Repetir usando la aproximaciones:

$$m(t) = m_{\infty}(V)$$
 y
 $m(t) = m_{\infty}(V), h + n = cte.$

Las ecuaciones del modelo son:

$$C\frac{dV}{dt} = I - g_{Na}m^{3}h(V - V_{Na}) - g_{K}n^{4}(V - V_{K}) - g_{l}(V - V_{l}) (1)$$

$$\frac{dm}{dt} = (m_{\infty}(V) - m)/\tau_{m}(V)$$

$$\frac{dh}{dt} = (h_{\infty}(V) - h)/\tau_{h}(V)$$

$$\frac{dn}{dt} = (n_{\infty}(V) - n)/\tau_{n}(V)$$

$$(3)$$

$$\frac{dm}{dt} = (m_{\infty}(V) - m)/\tau_m(V) \tag{2}$$

$$\frac{dh}{dt} = (h_{\infty}(V) - h)/\tau_h(V) \tag{3}$$

$$\frac{dn}{dt} = (n_{\infty}(V) - n)/\tau_n(V) \tag{4}$$

con $x_{\infty}(V) = a_x/(a_x + b_x)$, $\tau_x(V) = 1/(a_x + b_x)$ (en milisegundos), para x = m, h, n y $a_m = 0.1(V+40)/(1-\exp{((-V-40)/10)})$, $b_m = 4\exp{((-V-65)/18)}$ $a_h = 0.07\exp{((-V-65)/20)}$, $b_h = 1/(1+\exp{((-V-35)/10)})$ $a_n = 0.01(V+55)/(1-\exp{((-V-55)/10)})$, $b_n = 0.125\exp{((-V-65)/80)}$ (donde el potencial esta expresado en milivolts). Los potenciales de inversión y las conductancias máximas están dados por: $V_{Na} = 50mV$, $V_K = -77mV$, $V_l = -54.4mV$ $g_{Na} = 120mS/cm^2$, $g_K = 36mS/cm^2$, $g_l = 0.3mS/cm^2$. La capacitancia de la membrana es $C = 1\mu F/cm^2$.

- 5. Tomar I=0 y esperar que el sistema converja a un punto fijo. Luego inyectar una corriente negativa de $4 \mu A/cm^2$ durante 100 msecs. ¿Qué sucede cuando la corriente termina?
- 6. Simular la dinámica de una neurona Integrate-and-Fire con adaptación:

$$\tau \frac{dV}{dt} = -V + I - A(t) \tag{5}$$

$$\tau_A \frac{dA}{dt} = -A + A_0 \delta(t - t_{spike}) \tag{6}$$

donde t_{spike} es el tiempo donde V alcanza el valor umbral $V_t=1$. Supiniendo que se está en un estado estacionario, calcular analiticamente la curva f-I.

7. Las ecuaciones del modelo de FitzHugh-Nagumo son

$$\tau \frac{dV}{dt} = f(V) + I - w \tag{7}$$

$$\tau_w \frac{dw}{dt} = -\gamma w + bV \tag{8}$$

con
$$f(V) = V(a - V)(V - 1)$$
, $0 < a < 1$, $b > 0$, $\gamma > 0$.

Calcular las nullclinas. ¿Cuales son las diferentes configuraciones de puntos fijos y ciclos límites a medida que cambia I?