(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-285881 (P2001-285881A)

(43)公開日 平成13年10月12日(2001.10.12)

(51) Int.CL'		識別記号	ΡI			テーマユ	}*(多考)
H04N	7/32		G06T	3/40		A . 5	B 0 5 7
G06T	3/40			9/00		5	C059
	9/00	•	H 0 3 M	7/30		Z 5	J064
H03M	7/30		H04N	7/137		Z	
			審査請求	未請求	請求項の数24	OL	(全 14 頁)
(21)出願番号	,	特顧2000-101542(P2000-101542)	(71)出顧人	0000021	.85		
				ソニー	朱式会社		
(22)出題日		平成12年4月3日(2000.4.3)		東京都。	别区北岛川6	丁目7番	35号
			(72)発明者	近藤	至二郎		· 2 / A. ·
				東京都。	8川区北岛川6	丁目7番	35号 ソニ
				一株式会	会社内		
			(72)発明者	野森泰弘			
		·	東京都品川区北品川6丁目7番35号 ソニ				
				一株式会	会社内		
			(74)代理人	1000827	62		
				弁理士	杉浦 正知		
						•	

(54) 【発明の名称】 ディジタル情報変換装置および方法、並びに画像情報変換装置および方法

(57)【要約】

【課題】 符号化復号化の処理を経たディジタル情報信号に対してクラス分類適応予測処理を適用する時に、予測精度を向上する。

【解決手段】復号器 1 からは、復号化された画像信号と、復号化用の付加情報とが出力される。付加情報は、信号種類情報、画像フォーマット情報、画質情報、動きベクトル等である。付加情報に基づいたクラスが生成される。領域切出し部4で抽出されたクラスタッブの画素データから特徴量が抽出される。付加情報クラスと特徴量に基づいて、クラスコードが生成される。予測係数ROM8は、供給されるクラスコードに対応する予測係数セットを予測演算部9に出力する。予測係数は、学習によって予め決定され、記憶されている。予測タッブデータ生成部5で抽出された予測タッブの画素データと、ROM8から供給される予測係数セットとによる予測演算を行うことによって、復号器 1 の出力画像信号に対して、時間解像度および/または空間解像度がより高い予測画像信号が生成される。

最終頁に続く

JEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 符号化されたディジタル情報信号を復号 化するととによって生成される入力ディジタル情報信号 を、時間および/または空間においてよりサンプル数の 多い信号へ変換するようにしたディジタル情報変換装置 において、

1

復号化処理用の付加情報に基づいてクラス情報を生成す るクラス情報生成手段と、

予め決定された予測係数を記憶し、記憶した上記予測係 予測係数を出力する係数記憶手段と、

上記入力ディジタル情報信号から複数のサンプルからな る領域を抽出する領域切出し手段と、

上記領域切出し手段で抽出された複数のサンプルと上記 予測係数とに基づいて、予測演算を行ってサンブル値を 生成する演算処理手段とを有することを特徴とするディ ジタル情報変換装置。

【請求項2】 符号化されたディジタル情報信号を復号 化することによって生成される入力ディジタル情報信号 を、時間および/または空間においてよりサンブル数の 20 多い信号へ変換するようにしたディジタル情報変換装置 において、

入力ディジタル情報信号から複数のサンブルからなる領 域を抽出する第1の領域切出し手段と、

上記第1の領域切出し手段からのサンブルに基づいて特 徽量を抽出する特徴量抽出手段と、

上記特徴量および復号化処理用の付加情報に基づいてク ラス情報を生成するクラス情報生成手段と、

予め決定された予測係数を記憶し、記憶した上記予測係 数の内から、上記クラス情報生成手段の出力に対応する 30 予測係数を出力する係数記憶手段と、

上記入力ディジタル情報信号から複数のサンブルからな る領域を抽出する第2の領域切出し手段と、

上記第2の領域切出し手段で抽出された複数のサンブル と上記予測係数とに基づいて、予測演算を行ってサンプ ル値を生成する演算処理手段とを有することを特徴とす るディジタル情報変換装置。

【請求項3】 請求項1または2において、

上記予測係数は、

よりサンブル数の多いディジタル情報信号に対応する教 40 節信号と上記入力ディジタル情報信号に対応する生徒信 号を用いて予め生成されていることを特徴とするディジ タル情報変換装置。

【請求項4】 符号化されたディジタル画像信号を復号 化することによって生成される入力画像信号を、時間お よび/または空間においてより解像度の高い画像信号へ 変換するようにした画像情報変換装置において、

復号化処理用の付加情報に基づいてクラス情報を生成す るクラス情報生成手段と、

予め決定された予測係数を記憶し、記憶した上記予測係 50

数の内から、上記クラス情報生成手段の出力に対応する 予測係数を出力する係数記憶手段と、

上記入力画像信号から複数の画素からなる領域を抽出す る領域切出し手段と、

上記領域切出し手段で抽出された複数の画素と上記予測 係数とに基づいて、予測演算を行って画素値を生成する 演算処理手段とを有することを特徴とする画像情報変換 装置。

【請求項5】 符号化されたディジタル画像信号を復号 数の内から、上記クラス情報生成手段の出力に対応する 10 化することによって生成される入力画像信号を、時間お よび/または空間においてより解像度の高い画像信号へ 変換するようにした画像情報変換装置において、

> 入力画像信号から複数の画素からなる領域を抽出する第 1の領域切出し手段と、

> 上記第1の領域切出し手段からの画素データに基づいて 特徴量を抽出する特徴量抽出手段と、

> 上記特徴量および復号化処理用の付加情報に基づいてク ラス情報を生成するクラス情報生成手段と、

予め決定された予測係数を記憶し、記憶した上記予測係 数の内から、上記クラス情報生成手段の出力に対応する 予測係数を出力する係数記憶手段と、

上記入力画像信号から複数の画素からなる領域を抽出す る第2の領域切出し手段と、

上記第2の領域切出し手段で抽出された複数の画素と上 記予測係数とに基づいて、予測演算を行って画素値を生 成する演算処理手段とを有することを特徴とする画像情 報変換裝置。

【請求項6】 請求項4または5において、

上記付加情報が処理対象画像信号の種類を表す情報であ ることを特徴とする画像情報変換装置。

【請求項7】 請求項4または5において、

上記付加情報が処理対象画像信号のフォーマット情報で あることを特徴とする画像情報変換装置。

【請求項8】 請求項4または5において、

上記付加情報が画質情報であることを特徴とする画像情 報変換装置。

【請求項9】 請求項4または5において、

上記付加情報が動きベクトル情報であることを特徴とす る画像情報変換装置。

【請求項10】 請求項4または5において、

上記第1の領域切出し手段および上記第2の領域切出し 手段の少なくとも一方が上記付加情報に含まれる動きべ クトル情報に応答して切り出す領域の位置が変更される ととを特徴とする画像情報変換装置。

【請求項11】 請求項4または5において、

上記第1の領域切出し手段および上記第2の領域切出し 手段の少なくとも一方が上記付加情報に含まれる画像フ ォーマット情報に応答して切り出す領域の大きさが変更 されることを特徴とする画像情報変換装置。

【請求項12】 請求項11において、

上記画像フォーマット情報が上記画像信号の時間および /または空間解像度情報であることを特徴とする画像情 報変換装置。

【請求項13】 請求項11において、

上記画像フォーマット情報が上記画像信号のアスペクト 情報であることを特徴とする画像情報変換装置。

【請求項14】 請求項4または5において、

上記予測係数は、

より解像度の高い画像信号に対応する教師信号と上記入 力画像信号に対応する生徒信号を用いて予め生成されて 10 いることを特徴とする画像情報変換装置。

【請求項15】 請求項14において、

上記予測係数は、

上記生徒信号に付随する復号化処理用の付加情報に基づ いてクラス情報を生成する学習用のクラス情報生成手段

上記生徒信号から複数の画素からなる領域を抽出する学 習用の領域切出し手段と、

上記教師信号と、上記クラス情報生成手段の出力と、上 記領域切出し手段の出力とに基づいて、正規方程式を解 20 くためのデータを生成する正規方程式演算手段と、

上記正規方程式演算手段の出力に基づいて所定の演算処 理を行うことにより、上記予測係数を算出する予測係数 決定手段とによって決定されることを特徴とする画像情 報変換装置。

【請求項16】 請求項14において、

上記予測係数は、

入力画像信号から複数の画素からなる領域を抽出する学 習用の第1の領域切出し手段と、

上記第1の領域切出し手段からの画素データに基づいて 特徴量を抽出する学習用の特徴量抽出手段と、

上記特徴量および上記生徒信号に付随する復号化処理用 の付加情報に基づいてクラス情報を生成する学習用のク ラス情報生成手段と、

上記生徒信号から複数の画素からなる領域を抽出する学 習用の第2の領域切出し手段と、

上記教師信号と、上記クラス情報生成手段の出力と、上 記第2の領域切出し手段の出力とに基づいて、正規方程 式を解くためのデータを生成する正規方程式演算手段

上記正規方程式演算手段の出力に基づいて所定の演算処 理を行うことにより、上記予測係数を算出する予測係数 決定手段とによって決定されることを特徴とする画像情 報変換装置。

【請求項17】 符号化されたディジタル情報信号を復 号化することによって生成される入力ディジタル情報信 号を、時間および/または空間においてよりサンブル数 の多い信号へ変換するようにしたディジタル情報変換方

復号化処理用の付加情報に基づいてクラス情報を生成す 50 入力画像信号から複数の画素からなる画素領域を抽出す

るクラス情報生成のステップと、

予め決定された予測係数を記憶し、記憶した上記予測係 数の内から、上記クラス情報に対応する予測係数を出力 するステップと、

上記入力ディジタル情報信号から複数のサンブルからな る領域を抽出する領域切出しのステップと、

上記領域切出しのステップで抽出された複数のサンブル と上記予測係数とに基づいて、予測演算を行ってサンブ ル値を生成するステップとからなることを特徴とするデ ィジタル情報変換方法。

【請求項18】 符号化されたディジタル情報信号を復 号化することによって生成される入力ディジタル情報信 号を、時間および/または空間においてよりサンブル数 の多い信号へ変換するようにしたディジタル情報変換方 法において、

入力ディジタル情報信号から複数のサンプルからなる領 域を抽出する第1の領域切出しのステップと、

上記第1の領域切出しのステップで抽出されたサンブル に基づいて特徴量を抽出する特徴量抽出のステップと、

上記特徴量および復号化処理用の付加情報に基づいてク ラス情報を生成するクラス情報生成のステップと、

予め決定された予測係数を記憶し、記憶した上記予測係 数の内から、上記クラス情報に対応する予測係数を出力 するステップと、

上記入力ディジタル情報信号から複数のサンプルからな る領域を抽出する第2の領域切出しのステップと、

上記第2の領域切出しのステップで抽出された複数のサ ンプルと上記予測係数とに基づいて、予測演算を行って サンブル値を生成するステップとからなることを特徴と するディジタル情報変換方法。

【請求項19】 符号化されたディジタル画像信号を復 号化することによって生成される入力画像信号を、時間 および/または空間においてより解像度の高い画像信号 へ変換するようにした画像情報変換方法において、

復号化処理用の付加情報に基づいてクラス情報を生成す るクラス情報生成のステップと、

予め決定された予測係数を記憶し、記憶した上記予測係 数の内から、上記クラス情報に対応する予測係数を出力 するステップと、

40 上記入力画像信号から複数の画素からなる領域を抽出す る領域切出しのステップと、

上記領域切出しのステップで抽出された複数の画素と上 記予測係数とに基づいて、予測演算を行って画素値を生 成するステップとからなることを特徴とする画像情報変 換方法。

【請求項20】 符号化されたディジタル画像信号を復 号化することによって生成される入力画像信号を、時間 および/または空間においてより解像度の高い画像信号 へ変換するようにした画像情報変換方法において、

(4)

る第1の領域切出しのステップと、

上記第1の領域切出しのステップで抽出された画素デー タに基づいて特徴量を抽出する特徴量抽出のステップ Ł.

上記特徴量および復号化処理用の付加情報に基づいてク ラス情報を生成するクラス情報生成のステップと、 予め決定された予測係数を記憶し、記憶した上記予測係 数の内から、上記クラス情報に対応する予測係数を出力 するステップと、

上記入力画像信号から複数の画素からなる画素領域を抽 10 出する第2の領域切出しのステップと、

上記第2の領域切出しのステップで抽出された複数の画 素と上記予測係数とに基づいて、予測演算を行って画素 値を生成するステップとからなることを特徴とする画像 情報変換方法。

【請求項21】 請求項19または20において、 上記付加情報が処理対象画像信号の種類を表す情報であ ることを特徴とする画像情報変換方法。

【請求項22】 請求項19または20において、 あることを特徴とする画像情報変換方法。

【請求項23】 請求項19または20において、 上記付加情報が画質情報であることを特徴とする画像情 報変換方法。

【請求項24】 請求項19または20において、 上記付加情報が動きベクトル情報であることを特徴とす る画像情報変換方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、符号化されたデ ィジタル画像信号、または符号化されたディジタルオー ディオ信号を復号化した後に品質を改善するようにした ディジタル情報変換装置および方法、並びに画像情報変 換装置および変換方法に関する。

[0002]

【従来の技術】画像信号の圧縮符号化方式のひとつとし TMPEG2 (Moving Picture Expert Group phase 2) による符号化方式が用いられている。 MPEG2に よる送受信または記録再生システムでは、画像信号に対 してMPEG2による圧縮符号化処理を施して送信また 40 は記録し、また、受信または再生した画像信号に対し て、MPEG2による圧縮符号化処理に対応する伸長復 号化を施すことにより、元の画像信号を復元する。

【0003】MPEG2による符号化処理では、符号化 処理に汎用性を持たせ、また、符号化による圧縮の効率 を向上させるために、符号化された画像データと共に、 復号化処理用の付加情報を伝送している。付加情報は、 MPEG2のストリーム中のヘッダ中に挿入され、復号 化装置に対して伝送される。

る画像信号の特性は、適用される符号化復号化方式によ って大きく異なる。例えば輝度信号、色差信号、三原色 信号などの信号種類に応じてその物理的な特性(周波数 特性等)が大きく相違する。この相違が符号化復号化処 理を経た復号信号にも残ることになる。また、一般的に 画像の符号化復号化処理では、時空間の間引き処理を導 入することによって、符号化の対象となる画素数を低減 することが多い。間引き方法によって、画像の時空間解 像度の特性が大きく相違する。さらに、時空間解像度特 性の相違が小さい場合においても、符号化における圧縮 率(伝送レート)の条件によってS/N、符号化歪み量 などの画質特性が大きく異なる。

【0005】本願出願人は、先に、クラス分類適応処理 を提案している。これは、予め(オフラインで)学習処 理において、実際の画像信号(教師信号および生徒信 号)を使用して予測係数をクラス毎に求め、蓄積してお き、実際の画像変換処理では、入力画像信号からクラス を求め、クラスに対応する予測係数と入力画像信号の複 数の画素値との予測演算によって、出力画素値を求める 上記付加情報が処理対象画像信号のフォーマット情報で 20 ものである。クラスは、作成する画素の空間的、時間的 近傍の画素値の分布、波形に対応して決定される。実際 の画像信号を使用して予測係数を演算し、また、クラス 毎に予測係数を演算することによって、単なる補間フィ ルタの処理と比較して、入力画像信号以上の解像度を創 造することができる特徴を有する。

[0006]

【発明が解決しようとする課題】復号化された画像信号 に対してクラス分類適応処理を適用することによって、 時空間の解像度を創造する時に、対象とする画像信号が 上述したような特性の相違を有している。それによっ て、クラス分類適応処理の予測精度が低下するため、十 分な解像度創造性能を得られないという問題があった。 【0007】また、クラス分類適応処理において、対象 画像信号の動き情報をクラスに導入することによって予 測性能を向上するととができる。 その動き情報は、動き ベクトルのような詳細な動き情報の表現形式が効果的で ある。しかしながら、符号化復号化処理を経た画像信号 から動きベクトルを検出する場合には、復号画像信号の 歪みのために動きベクトルの検出精度が低下し、また、 動きベクトル検出のために、多量の演算処理が必要とな るという問題があった。

【0008】従って、との発明の目的は、符号化復号化 の処理を経たディジタル情報信号に対して付加情報を使 用したクラス分類適応処理を行うことによって、時間お よび/または空間の解像度の向上を良好に行うことが可 能なディジタル情報変換装置および方法、並びに画像情 報変換装置および方法を提供することにある。

[0009]

【課題を解決するための手段】上述した課題を解決する 【0004】MPEGに限らず、復号化によって得られ 50 ために、請求項1の発明は、符号化されたディジタル情 報信号を復号化することによって生成される入力ディジタル情報信号を、時間および/または空間においてよりサンブル数の多い信号へ変換するようにしたディジタル情報変換装置において、復号化処理用の付加情報に基づいてクラス情報を生成するクラス情報生成手段と、予め決定された予測係数を記憶し、記憶した予測係数の内から、クラス情報生成手段の出力に対応する予測係数を出力する係数記憶手段と、入力ディジタル情報信号から複数のサンブルからなる領域を抽出する領域切出し手段と、領域切出し手段で抽出された複数のサンブルと予測係数とに基づいて、予測演算を行ってサンブル値を生成する演算処理手段とを有することを特徴とするディジタル情報変換装置である。

【0010】請求項17の発明は、符号化されたディジタル情報信号を復号化することによって生成される入力ディジタル情報信号を、時間および/または空間においてよりサンブル数の多い信号へ変換するようにしたディジタル情報変換方法において、復号化処理用の付加情報に基づいてクラス情報を生成するクラス情報生成のステップと、予め決定された予測係数を記憶し、記憶した予測係数の内から、クラス情報に対応する予測係数を出力するステップと、入力ディジタル情報信号から複数のサンブルからなる領域を抽出する領域切出しのステップと、() 領域切出しのステップとが自動を担ける領域切出しのステップとが自動をといまでは、予測演算を行ってサンブル値を生成するステップとからなることを特徴とするディジタル情報変換方法である。

【0011】請求項1および17の発明によれば、復号 化処理用の付加情報を使用することによって、クラス分 類適応処理によってサンプル数の多い出力を生成する処 30 理における予測精度を向上することができる。

【0012】請求項2の発明は、符号化されたディジタ ル情報信号を復号化することによって生成される入力デ ィジタル情報信号を、時間および/または空間において よりサンプル数の多い信号へ変換するようにしたディジ タル情報変換装置において、入力ディジタル情報信号か ら複数のサンブルからなる領域を抽出する第1の領域切 出し手段と、第1の領域切出し手段からのサンブルに基 づいて特徴量を抽出する特徴量抽出手段と、特徴量およ び復号化処理用の付加情報に基づいてクラス情報を生成 するクラス情報生成手段と、予め決定された予測係数を 記憶し、記憶した予測係数の内から、クラス情報生成手 段の出力に対応する予測係数を出力する係数記憶手段 と、入力ディジタル情報信号から複数のサンブルからな る領域を抽出する第2の領域切出し手段と、第2の領域 切出し手段で抽出された複数のサンブルと予測係数とに 基づいて、予測演算を行ってサンブル値を生成する演算 処理手段とを有することを特徴とするディジタル情報変 換装置である。

[0013] 請求項18の発明は、符号化されたディジ 50

タル情報信号を復号化することによって生成される入力 ディジタル情報信号を、時間および/または空間におい てよりサンプル数の多い信号へ変換するようにしたディ ジタル情報変換方法において、入力ディジタル情報信号 から複数のサンブルからなる領域を抽出する第1の領域 切出しのステップと、第1の領域切出しのステップで抽 出されたサンブルに基づいて特徴量を抽出する特徴量抽 出のステップと、特徴量および復号化処理用の付加情報 に基づいてクラス情報を生成するクラス情報生成のステ ップと、予め決定された予測係数を記憶し、記憶した予 測係数の内から、クラス情報に対応する予測係数を出力 するステップと、入力ディジタル情報信号から複数のサ ンプルからなる領域を抽出する第2の領域切出しのステ ップと、第2の領域切出しのステップで抽出された複数 のサンブルと予測係数とに基づいて、予測演算を行って サンブル値を生成するステップとからなることを特徴と するディジタル情報変換方法である。

[0014] 請求項2および18の発明によれば、入力ディジタル情報信号の特徴量と共に復号化処理用の付加 情報を使用することによって、クラス分類適応処理を行うことが可能となり、クラス分類適応処理によってサンブル数の多い出力を生成する処理における予測精度を向上することができる。

【0015】請求項4の発明は、符号化されたディジタル画像信号を復号化することによって生成される入力画像信号を、時間および/または空間においてより解像度の高い画像信号へ変換するようにした画像情報変換装置において、復号化処理用の付加情報に基づいてクラス情報を生成するクラス情報生成手段と、予め決定された予測係数を記憶し、記憶した予測係数の内から、クラス情報生成手段の出力に対応する予測係数を出力する係数記憶手段と、入力画像信号から複数の画素からなる領域を抽出する領域切出し手段と、領域切出し手段で抽出された複数の画素と予測係数とに基づいて、予測演算を行って画素値を生成する演算処理手段とを有することを特徴とする画像情報変換装置である。

[0016] 請求項19の発明は、符号化されたディジタル画像信号を復号化することによって生成される入力画像信号を、時間および/または空間においてより解像度の高い画像信号へ変換するようにした画像情報変換方法において、復号化処理用の付加情報に基づいてクラス情報を生成するクラス情報生成のステップと、予め決定された予測係数を記憶し、記憶した予測係数の内から、クラス情報に対応する予測係数を出力するステップと、入力画像信号から複数の画素からなる領域を抽出する領域切出しのステップと、領域切出しのステップで抽出された複数の画素と予測係数とに基づいて、予測演算を行って画素値を生成するステップとからなることを特徴とする画像情報変換方法である。

【0017】請求項4および19の発明によれば、復号

化処理用の付加情報を使用することによって、クラス分 類適応処理によって解像度の高い出力画像を生成する処 理における予測精度を向上することができる。

【0018】請求項5の発明は、符号化されたディジタ ル画像信号を復号化することによって生成される入力画 像信号を、時間および/または空間においてより解像度 の高い画像信号へ変換するようにした画像情報変換装置 において、入力画像信号から複数の画素からなる領域を 抽出する第1の領域切出し手段と、第1の領域切出し手 段からの画素データに基づいて特徴量を抽出する特徴量 10 抽出手段と、特徴量および復号化処理用の付加情報に基 づいてクラス情報を生成するクラス情報生成手段と、予 め決定された予測係数を記憶し、記憶した予測係数の内 から、クラス情報生成手段の出力に対応する予測係数を 出力する係数記憶手段と、入力画像信号から複数の画素 からなる領域を抽出する第2の領域切出し手段と、第2 の領域切出し手段で抽出された複数の画素と予測係数と に基づいて、予測演算を行って画素値を生成する演算処 理手段とを有することを特徴とする画像情報変換装置で

【0019】請求項20の発明は、符号化されたディジ タル画像信号を復号化することによって生成される入力 画像信号を、時間および/または空間においてより解像 度の高い画像信号へ変換するようにした画像情報変換方 法において、入力画像信号から複数の画素からなる画素 領域を抽出する第1の領域切出しのステップと、第1の 領域切出しのステップで抽出された画素データに基づい て特徴量を抽出する特徴量抽出のステップと、特徴量お よび復号化処理用の付加情報に基づいてクラス情報を生 成するクラス情報生成のステップと、予め決定された予 30 測係数を記憶し、記憶した予測係数の内から、クラス情 報に対応する予測係数を出力するステップと、入力画像 信号から複数の画素からなる画素領域を抽出する第2の 領域切出しのステップと、第2の領域切出しのステップ で抽出された複数の画素と予測係数とに基づいて、予測 演算を行って画素値を生成するステップとからなること を特徴とする画像情報変換方法である。

【0020】請求項5および20の発明によれば、入力 ディジタル画像信号の特徴量と共に復号化処理用の付加 情報を使用することによって、クラス分類適応処理によ って解像度の高い出力画像を生成する処理における予測 精度を向上することができる。

[0021]

【発明の実施の形態】以下、この発明の一実施形態につ いて説明する。まず、図1を参照して、予測画像信号の 生成に係る構成について説明する。入力ビットストリー ムが復号器1に供給される。ここでは、入力ビットスト リームは、送受信システム(または記録再生システム、 以下、同様である。) において、MPEG2で圧縮符号 化された画像データと、付加情報等のその他のデータと 50 素値のピット数を圧縮する符号化を使用するようにして

である。復号器1からは、復号化された画像信号と、復 号化用の付加情報とが出力される。

【0022】付加情報は、復号化処理に必要な付随情報 であり、入力ビットストリーム中のシーケンス層、GO P層、ピクチャー層のそれぞれのヘッダ中に挿入されて おり、復号器1は、付加情報を使用して復号化処理を行 い、また、付加情報を分離して出力する。

【0023】付加情報は、付加情報抽出部2に供給さ れ、クラス分類適応処理に使用される付加情報が付加情 報抽出部2から選択的に出力される。 との抽出された付 加情報が付加情報クラス生成部3に供給される。例えば クラス分類適応処理に使用される付加情報として、以下 に挙げるものがある。

【0024】(1) 信号種類情報:コンポーネント信号の 各成分(Y, U, Vのコンポーネント、Y, Pr, Pb のコンポーネント、R、G、Bのコンポーネント等) (2) 画像フォーマット情報:インターレース/プログレ ッシブの識別情報、フィールドまたはフレーム周波数 (時間解像度情報)、水平画素数や垂直ライン数の画像 20 サイズ情報(空間解像度情報)、4:3,16:9等の アスペクトレシオ情報

- (3) 画質情報: 伝送ビットレート (圧縮率) 情報
- (4) 動きベクトル:水平と垂直の動き量情報

【0025】付加情報は、付加情報抽出部2に供給さ れ、クラス分類適応処理に使用される付加情報が付加情 報抽出部2から選択的に出力される。この抽出された付 加情報が付加情報クラス生成部3 に供給される。

【0026】復号器1からの復号化画像信号が領域切出 し部4および予測タップデータ生成部5に供給される。 領域切出し部4は、入力画像信号から複数の画素からな る領域を抽出し、抽出した領域に係る画素データを特徴 量抽出部6に供給する。特徴量抽出部6は、供給される 画素データに1ビットADRC等の処理を施すことによ ってADRCコードを生成し、生成したADRCコード をクラスコード生成部7に供給する。領域切出し部4に おいて抽出される複数の画素領域をクラスタップと称す る。クラスタップは、注目(目標)画素の空間的および /または時間的近傍に存在する複数の画素からなる領域 である。後述するように、クラスは、注目(目標)画素 40 どとに決定される。

【0027】ADRCは、クラスタップ内の画素値の最 - 大値および最小値を求め、最大値および最小値の差であ るダイナミックレンジを求め、ダイナミックレンジに適 応して各画素値を再量子化するものである。1ビットA DRCの場合では、タップ内の複数の画素値の平均値よ り大きいか、小さいかでその画素値が1ビットに変換さ れる。ADRCの処理は、画素値のレベル分布を表すク ラスの数を比較的小さなものにするための処理である。 したがって、ADRCに限らず、ベクトル量子化等の画

も良い。

【0028】クラスコード生成部7には、付加情報クラ ス生成部3において、付加情報に基づいて生成された付 加情報クラスも供給される。クラスコード生成部7は、 付加情報クラスとADRCコードに基づいて、クラス分 類の結果を表すクラスコードを発生し、クラスコードを 予測係数ROM8に対してアドレスとして供給する。R OM8は、供給されるクラスコードに対応する予測係数 セットを予測演算部9に出力する。予測係数セットは、 後述する学習処理によって予め決定され、クラス毎に、 より具体的にはクラスコードをアドレスとする形態で予 測係数ROM8に記憶されている。予測係数は、外部か ら予測係数のダウンロードが可能なRAMの構成のメモ リに蓄積しても良い。

11

 $y = w_1 \times x_1 + w_2 \times x_2 + \cdots + w_n \times x_n$

ここで、x1, …, x。が予測タップの各画素データ であり、w,, ····, w, が予測係数セットである。予 測演算は、この式(1)で示す1次式に限らず、2次以 上の髙次式でも良いし、非線形であっても良い。

[0031]予測画像信号は、復号器1の出力画像信号 20 側となる。 に対して、空間解像度がより高いものとされたものであ る。例えば、水平方向および垂直方向のそれぞれに関し て画素数が元の画像の2倍とされた画像信号が出力され る。クラス分類適応処理は、平均値等で画素を補間する ものとは異なり、予め実際の画像信号を使用して求めた 予測係数を使用するので、解像度を創造することができ る処理である。また、との発明は、空間解像度に限ら ず、時間解像度を高くする処理に対しても適用できる。 例えばフィールド周波数を60Hzから120Hzとする処 理に対しても適用することができる。さらに、時空間 (空間および時間)の解像度を高くする処理を行うよう にしても良い。

【0032】図2は、領域切出し部4によって抽出され るクラスタップの配置の一例を示す。復号化画像信号の 内で注目画素とその周辺の複数画素との合計7個の画素 によってクラスタッブが設定される。図3は、予測タッ ブデータ生成部5から出力される予測タップの配置の一 例を示す。復号化画像信号の内で、注目画素と注目画素 を中心とした周辺の複数の画素との合計13個の画素に よって予測タップが設定される。なお、図2および図3 において、実線は、第1フィールドを示し、破線が第2 フィールドを示す。また、図示のタップの配置は、一例 であって、種々の配置を使用することができる。

【0033】次に、図4を参照して、クラスコード生成 部7において形成されるクラスコード(予測係数ROM のアドレス)と、予測係数ROM8に記憶されている予 測係数との一例について説明する。 図4に示すクラス情 報の内で、信号種類クラス、フォーマットクラス、圧縮 室 (伝送レート) クラスおよび動きベクトルクラスは、

*【0029】一方、予測タップデータ生成部5は、入力 画像信号から複数の画素からなる所定の領域(予測タッ ブ)を抽出し、抽出した予測タップの画素データを予測 演算部9に供給する。予測タップは、クラスタップと同 様に、注目(目標)画素の空間的および/または時間的 近傍に存在する複数の画素からなる領域である。予測演 算部9は、予測タップデータ生成部5から供給される画 素データと、ROM8から供給される予測係数セットと に基づいて以下の式(1)に従う積和演算を行うことに よって、予測画素値を生成し、予測画素値を出力する。 予測タップと上述したクラスタップは、同一、または別 々の何れでも良い。

[0030]

(1)

号特徴量クラスは、特徴量抽出部6で抽出された特徴量 に基づくクラス、例えばADRCクラスである。図4の 表において、最も左側の信号種類クラスがアドレスの最 上位側となり、最も右側の信号特徴量クラスが最も下位

【0034】信号種類クラスは、例えばY、U、Vと Y, Pr, Pbとの2種類とされ、各信号種類に対応し て予測係数が別々に求められ、各信号種類がクラスK O. K1で区別される。フォーマットクラスは、処理対 象の画像の時空間解像度特性に対応したもので、例えば 2種類とされ、各フォーマットクラスに対応してFO, F1のクラスが規定される。例えばインターレースの画 像であれば、FO、プログレッシブの画像であれば、F 1のクラスが割り当てられる。画像フォーマットのクラ スの他の例は、フィールドまたはフレーム周波数、水平 画素数または垂直ライン数である。一例として、FO, F1、F2、・・・と番号が大きくなるほど、時空間解 像度が高くなる。

【0035】圧縮率(伝送レート)クラスは、画質情報 に基づいたクラスであり、 i 種類のクラスRO~Ri-1 が用意されている。圧縮率が高いほど符号化歪み量が多 くなる。動きベクトルクラスは、動きベクトルに応じた クラスであり、」種類用意されている。圧縮率クラスお よび動きベクトルクラスは、個々の値でも良いが、その 場合には、クラス数が多くなるので、代表的な複数の値 にまとめられている。例えば適当なしきい値によって形 成された複数の範囲毎に一つの代表値を設定し、その代 表値に対応したクラスを設定すればよい。具体的には、 水平方向および垂直方向の動きを表現した動きベクトル から静止、小さな動き、大きな動きとの3段階のクラス を形成しても良い。

【0038】以上の4種類のクラスが付加情報クラス生 成部3において生成されるクラスである。但し、上述し たクラスは、一例であり、一部のクラスのみを使用して 付加情報クラス生成部3で生成されるクラスである。信 50 も良い。例えば付加情報クラスのみをクラスとして使用

4

しても良い。そして、上述した4種類のクラスの下位側に、特徴量抽出部6において生成された信号特徴量クラス(例えばADRCコードに基づくクラス)が付加される。信号特徴量クラスとしては、k種類用意されている。

【0037】とのように、4種類の付加情報クラスと1種類の信号特徴量クラスとで定まるクラス毎に予測係数セットがROM8に記憶されている。上述した式(1)で示される予測演算を行う時には、w1.w2.……、w。のn個の予測係数セットが各クラス毎に存在する。【0038】図5を参照してこの発明の他の実施形態について説明する。一実施形態の構成を示す図1と対応する部分には、同一の参照符号を付して示す。他の実施形態は、復号器1からの復号画像信号の特性に基づいて、クラス分類のためのデータ抽出方法と、予測タップの構造を変更することによって、クラス分類適応処理の予測性能を向上するようにしたものである。

【0039】付加情報抽出部2によって抽出される付加情報によって、復号画像信号の特徴量を抽出するクラスタップ構造を変更するために、図5に示すように、付加20情報によって領域切出し部4で抽出されるクラスタップのパターンが切り替えられる。特徴量抽出部6がADRCによって特徴量としての波形、レベル分布を抽出する場合、対象画像の空間解像度に応じてADRCの対象とする領域の広さが変更される。また、信号の種類によって信号特性が異なるので、クラスタップ構造が変更される。さらに、画像のアスペクト比に応じてクラスタップ構造を変更することも可能である。

【0040】また、付加情報には、符号化復号化による画像の歪みを示す圧縮率(伝送レート情報)も含まれ、圧縮率の情報を付加情報から抽出することができる。一旦復号化された画像信号中の符号化歪み量を検出することは、難しい。異なる符号化歪み量の信号に対してクラス分類適応処理を適用した場合、予測性能の向上が困難である。そとで、この圧縮率(伝送レート情報)に対応してクラスタッブの構成が変更される。さらに、動きべクトル情報に基づいてクラスタッブの構成を変更することによって、時空間相関特性が高いクラスタッブ構造を実現することができる。例えば静止の場合では、フレーム内でクラスタッブを構成し、動きがあるときには、現在フレームに加えて前後のフレームにわたってクラスタッブを構成するようになされる。

【0041】さらに、図5に示すように、クラスコード 生成部7で形成されたクラスコードが予測タップデータ 生成部5に対して制御信号として供給される。それによって、図4に示すような付加情報を加味したクラス毎 に、最適な予測タップのパターンが設定されるようになされる。上述したクラスタップの構造を付加情報によって変更するのと同様に、クラス中の付加情報に応じて予測タップの構造が変更され、クラスタップの場合と同様 50 に、予測タップを変更することによって、予測性能を向 上することができる。

【0042】図6は、タップ(クラスタップまたは予測タップ)の領域を付加情報に応じて変更する一例を示すものである。図6は、空間解像度と時間解像度の両者を創造する例を示している。すなわち、時間的に連続するフレーム(またはフィールド)T0, T1の中間に新たなフレームT'を作成し、また、元の画素数の4倍の画素数を作成する。

[0043] タップは、復号画像信号中に存在するフレームTOおよびT1に属する画像中に構成される空間タップを合わせた時空間タップとされる。画像フォーマット情報例えば空間解像度情報F0,F1,F2に応じて、タップが含まれる範囲の領域が変更される。具体的なタップ構造は、これらの何れかの領域内に構成される。空間解像度情報F0,F1,F2は、付加情報クラスとしてクラスコード生成部7が生成するクラス情報中に含まれている。前述の図4の例では、F0,F1の2種類のクラスが存在している。

【0044】一例として、F0が空間解像度が最も低く、F1が空間解像度が中間で、F2が最も空間解像度が高い。空間解像度が高くなるにしたがってタップが含まれる領域が徐々に拡大される。空間解像度が低い場合には、相関の強い画素が存在する範囲が狭くなるために、タップの領域も狭いものとされる。それによって、クラス分類適応処理による解像度創造の性能の向上を図ることができる。

【0045】また、図4に示すように、フレームT0およびT1間の動き量に応じてタップが含まれる領域の位置が変更される。クラスタップの場合では、付加情報中の動きベクトルに応じてタップが含まれる領域の位置が変更される。予測タップの場合では、クラス情報中の動きベクトルクラスに応じてタップが含まれる領域の位置が変更される。このように領域の位置を変更することによって、より高い相関を持つ領域からクラスタップの画素を切出し、または予測タップの画素を抽出することができる。それによって、クラス分類適応処理の予測精度を向上することができる。

【0046】次に、学習すなわちクラス毎の予測係数を求める処理について説明する。一般的には、クラス分類適応処理によって予測されるべき画像信号と同一の信号形式の画像信号(以下、教師信号と称する)と、教師信号にクラス分類適応処理の目的とされる画像情報変換に関連した処理を行うことによって得られる画像信号とに基づく所定の演算処理によって予測係数が決定される。MPEG2規格等に従う画像信号の符号化/復号化を経た画像信号の解像度を向上させるためになされるクラス分類適応処理においては、学習は、例えば図7に示すような構成によって行われる。図7は、図5に示す他の実施形態における予測係数データを学習するための構成で

ある。

【0047】学習のために、教師信号と入力画像信号が使用される。教師信号は、入力画像信号に対して時空間解像度が高い信号である。教師信号を間引き処理することによって入力画像信号を形成しても良い。入力画像信号が符号化器21で例えばMPEG2によって符号化される。符号化器21の出力信号が図1の画像情報変換装置における受信信号に相当する。符号化器21の出力信号が復号器22に供給される。復号器22からの復号画像信号が生徒信号として使用される。また、復号器22で分離された復号用の付加情報が付加情報抽出部23に供給され、付加情報が抽出される。

15

【0048】抽出された付加情報は、付加情報クラス生成部24および領域切出し部25に供給される。付加情報は、上述した情報変換装置について説明したのと同様に、信号種類情報、画像フォーマット情報、画質情報、助きベクトル等である。

【0049】復号器22からの復号画像信号、すなわち、生徒信号が領域切出し部25および予測タップデータ生成部26に供給される。図5の構成と同様に、領域切出し部25が付加情報抽出部23で抽出された付加情報によって制御され、予測タップデータ生成部26がクラスコード生成部28で生成されたクラスの内の付加情報クラスによって制御される。それによって、時間的および/または空間的相関の高い複数の画素によってタップを設定することが可能とされる。領域切出し部25で抽出されたクラスタップのデータが特徴量抽出部27に*

*供給され、特徴量抽出部27においてADRC等の処理 によって、特徴量を抽出する。この特徴量がクラスコー ド生成部28に供給される。クラスコード生成部28 は、付加情報クラスとADRCコードに基づいて、クラ ス分類の結果を表すクラスコードを発生する。クラスコー ードは、正規方程式加算部29に供給される。

【0050】一方、予測タップデータ生成部26により 抽出された予測タップの画素データが正規方程式加算部 29に供給される。正規方程式加算部29は、予測タッ プデータ生成部26の出力と、教師信号とに基づく所定 の演算処理によって、クラスコード生成部28から供給 されるクラスコードに対応する予測係数セットを解とす る正規方程式のデータを生成する。正規方程式加算部2 9の出力は、予測係数算出部30に供給される。

【0051】予測係数算出部30は、供給されるデータに基づいて正規方程式を解くための演算処理を行う。この演算処理によって算出された予測係数セットがメモリ31に供給され、記憶される。予測推定に係る画像変換処理を行うに先立って、図5中の予測係数ROM8にメモリ31の記憶内容がロードされる。

【0052】正規方程式について以下に説明する。上述の式(1)において、学習前は予測係数セット w_1 , ・・・・・・・・、 w_n が未定係数である。学習は、クラス毎に複数の数師信号を入力することによって行う。教師信号の種類数をmと表記する場合、式(1)から、以下の式(2)が設定される。

[0053]

 $+w_n \times \chi_{kn}$ (2)

y = w, ×x,+w, ×x,2+····+w, ×x, (k = 1, 2, ····, m) 0.5.4] m > n の場合、予測係数セットw, ··· 30※セットを定る

30% セットを定めるようにする。すなわち、いわゆる最小2 乗法によって予測係数セットを一意に定める。

[0055]

 $e_k = y_k - \{w_1 \times x_{k1} + w_2 \times x_{k2} + \dots + w_n \times x_{kn}\}$ (3) $(k = 1, 2, \dots m)$

[0056]

★ ★【数1】

 $e^2 = \sum_{k=0}^m e_k^2$

(4)

【0057】式 (4) の e^2 を最小とする予測係数セットを求めるための実際的な計算方法としては、 e^2 を予測係数w, $(i=1,2\cdots)$ で偏傲分し(式 (5))、i の各値について偏傲分値が0となるように各予測係数w, ϕ

X,,, Y, を定義すると、式(5)は、式(8)の行列·

【0058】. 【数2】

40☆を定めれば良い。

 $\frac{\partial e^2}{\partial w_i} = \sum_{k=0}^{m} 2 \left(\frac{\partial e_k}{\partial w_i} \right) e_k = \sum_{k=0}^{m} 2x_{ki} \cdot e_k$

【0059】式 (5) から各予測係数w. を定める具体 的な手順について説明する。式 (6)、(7) のように

式の形に掛くことができる。 【0060】 【数3】

$$X_{ji} = \sum_{p=0}^{m} x_{\pi} \cdot x_{pj}$$
$$Y_{i} = \sum_{k=0}^{m} x_{ki} \cdot y_{k}$$

(6)

18

[0061]

$$Y_i = \sum_{k=0}^{\infty} x_{ki} \cdot y_i$$

*【数4】

(8)

[0062]

$$\begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ X_{mI} & X_{m2} & \cdots & X_{mn} \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ \cdots \\ W_n \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ \cdots \\ Y_m \end{bmatrix}$$

※ ※【数5】

る。 [0068]

【発明の効果】上述したように、この発明は、時間解像 度および/または空間解像度を高くするために、復号化 された画像信号に対してクラス分類適応処理を適用する 時に、対象とする画像信号が有する特性の相違を反映し 20 たクラス分類を行うので、クラス分類適応処理の予測精 度を向上させ、十分な解像度創造性能を得ることができ

【図面の簡単な説明】

【図1】この発明の一実施形態の構成を示すブロック図 である。

【図2】 クラスタップの画素配置の一例の略線図であ

【図3】予測タップの画素配置の一例の路線図である。 【図4】付加情報および特徴量に基づくクラスの一例を

【図5】 この発明の他の実施形態の構成を示すブロック 図である。

【図6】 この発明の他の実施形態を説明するための略線 図である。

【図7】クラス分類適応処理を行う場合の予測係数の学 習処理に係る構成の一例を示すブロック図である。

【図8】学習処理をソフトウェアで行う時の処理を示す フローチャートである。

【符号の説明】

40 1, 22・・・復号器、2, 23・・・付加情報抽出 部、3,24・・・付加情報クラス生成部、4,25・ ・・領域切出し部、5,26・・・予測タップデータ生 成部、6、27・・・特徴量抽出部、7、28・・・ク ラスコード生成部、8···予測係数ROM、9··· 予測演算部

【0063】式(8)が一般に正規方程式と呼ばれるも のである。予測係数算出部30は、掃き出し法等の一般 的な行列解法に従って正規方程式(8)を解くための計 算処理を行って予測係数w、を算出する。

【0064】また、予測係数の生成は、図8に示すフロ ーチャートで示されるようなソフトウェア処理によって も行うことができる。ステップS1から処理が開始さ れ、ステップS2において、生徒信号を生成することに よって、予測係数を生成するのに必要十分な学習データ を生成する。ステップS3において、予測係数を生成す るのに必要十分な学習データが得られたどうかを判定 し、未だ必要十分な学習データが得られていないと判断 された場合には、ステップS4に処理が移行する。

【0065】ステップS4において、生徒信号から抽出 された特徴量と付加情報とからクラスを決定する。ステ ップS5においては、各クラス毎に正規方程式を生成 し、ステップS2に戻って同様の処理手順を繰り返すと 30 示す略線図である。 とによって、予測係数セットを生成するのに必要十分な 正規方程式を生成する。

【0066】ステップS3において、必要十分な学習デ ータが得られたと判断されると、ステップS6に処理が 移る。ステップS6では、正規方程式を掃き出し法によ って解くことによって、予測係数セットw。,w。,・ ・・・、w。を各クラス毎に生成する。そして、ステッ プS7において、生成した各クラス毎の予測係数セット w、~w、をメモリに記憶し、ステップS8で学習処理 を終了する。

【0067】との発明は、上述したとの発明の一実施形 態に限定されるものではなく、この発明の要旨を逸脱し ない範囲内で様々な変形や応用が可能である。例えばM PEG2に限らず、MPEG4等の他の符号化方法を使 用する場合に対して、この発明を適用することができ

【図1】

【図4】

	クラスぐ				
信号程類 フォーマット クラス (Y11V・・・) (2程類の例) (2程類の例)		圧縮率 伝送レート クラス (i 極気の何)	型きベクトル クラス () 程度の何)	何号特徴量 クラス (ADRCなど) (h 微類の例)	予測係徴データ (n タップフィルタ)
ко	FO	R0 ↑ Ri−1	(i(iv)	((အဘုဘ	((((WWW.)J)))FO)KO
	F1	R0 ‡ Ri−1	(VI) I	((Ck)J)I)	((((Wn)k)J)I)F1)K1
К1	FO	R0	וננא	((Gk)j)i)	((((\w _n)k)jji)F0)K0
	F1	R0	(V)) i ·	((Ck) <u>J</u>)1)	{(((\mu_k)}))F1)K1

【図5】

【図7】

フロントページの続き

(72)発明者 勅使川原 智 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内

F ターム(参考) 58057 CA01 CA08 CA12 CA18 CA19 CB01 CB08 CB12 CB16 CD05 CG03 CG05 CH01 CH11 5C059 KK01 LB11 MA00 MA04 MA05 NNO1 RB09 RC11 RC12 RC16 TA30 TC00 TD13 UA05 UA38 5J064 AA01 BA13 BA15 BB03 BB12 BC01 BC02 BC26 BD01

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant:

Defects in the images include but are not limited to the items checked:					
BLACK BORDERS					
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES					
☐ FADED TEXT OR DRAWING					
Blurred or illegible text or drawing					
☐ SKEWED/SLANTED IMAGES					
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS					
☐ GRAY SCALE DOCUMENTS					
☐ LINES OR MARKS ON ORIGINAL DOCUMENT					
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY					
□ other.					

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)