Module 2A003: Méthodes mathématiques pour la mécanique

TD 13-14 - Suites et séries numériques : rappels

Exercice 1 - Suites récurrentes

1. Soit (u_n) la suite définie par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{2 + u_n}$

- (a) Montrer par récurrence que $\forall n, 0 \leq u_n < 2$.
- (b) Déterminer si la suite (u_n) est monotone et le sens de variation.
- (c) On suppose maintenant que $u_0 > 2$. Que peut-on dire du sens de variation de (u_n) ? La suite est-elle bornée?
- 2. On considère les deux suites définies pour $n \in \mathbb{N}$ par :

$$u_n = \sqrt{u_{n-1}v_{n-1}}, \quad v_n = \frac{u_{n-1} + v_{n-1}}{2}$$

avec $u_0 = a$ et $v_0 = b$, a et b étant deux nombres réels vérifiant 0 < a < b.

- (a) Montrez que $u_n < v_n$ pour tout $n \in \mathbb{N}$.
- (b) Etudier la monotonie des deux suites.
- (c) Montrez que ces deux suites convergent et admettent la même limite.

Exercice 2 *- Supplémentaire (suite homographique)

On souhaite étudier la convergence de la suite (u_n) définie par :

$$u_0 = 2$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 4 - \frac{3}{u_n}.$

- 1. Montrer que $\forall n, 1 < u_n < 3$ et en déduire que la suite (u_n) est bien définie.
- 2. Montrer que (u_n) n'est ni une suite arithmétique ni une suite géométrique.
- 3. Supposons que la suite u_n est convergente et soit l sa limite. Montrer que l est solution d'une équation de second degrée et déterminer les deux solutions a et b de cette équation.
- 4. Soit (v_n) la suite définie par

$$\forall n \in \mathbb{N}, v_n = \frac{u_n - a}{u_n - b}$$

- 4.1 Montrer que (v_n) est une suite géométrique : déterminer sa raison et son premier terme.
 - 4.2 En déduire l'expression explicite de (u_n) .
- 5. Conclure quand à la convergence de u_n et sa limite pour $n \to \infty$.

Exercice 3 - Séries

Etudier la convergence des séries $\sum u_n$ suivantes :

1.
$$u_n = \frac{2n}{3n^3+1}$$
,

$$2. \ u_n = n \sin \frac{1}{n},$$

3.
$$u_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

$$4. \ u_n = \frac{\cos(n^2\pi)}{n \ln n}$$

2.
$$u_n = n \sin \frac{n}{n}$$
,
3. $u_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$,
4. $u_n = \frac{\cos(n^2 \pi)}{n \ln n}$,
5. * $u_n = \frac{1}{n} \sin n = k^2$, k étant un entier positif, et zéro sinon,

6. *
$$u_n = \arctan n + a - \arctan n$$
, avec $a > 0$.

Exercice 4

Soit (u_n) la suite définie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n}$

- 1. Etudier la posibilité de l'existence d'une limite pour la suite (u_n) .
- 2. Qu'en est-il de l'existence de la limite de la suite de terme général

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n \frac{1}{u_k}$$

Module 2A003: Méthodes mathématiques pour la mécanique

TD 15-16 : Séries entières. Développement en séries entières. Application aux équations différentielles

Exercice 1

Déterminer le rayon de convergence des séries entières suivantes :

$$\sum_{n=0}^{\infty} (-1)^n (n+3)! z^n, \quad \sum_{n=0}^{\infty} n^n z^n, \quad \sum_{n=0}^{\infty} (1+\frac{1}{n})^{n^2} z^n, \quad \sum_{n=0}^{\infty} \ln\left(1+\sin\left(\frac{1}{n}\right)\right) z^n.$$

Exercice 2^* (Supplémentaire)- Division par n!

Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entière de rayon de convergence $\rho > 0$. Montrer que $\sum_{n=0}^{\infty} \frac{a_n}{(n!)} x^n$ a pour rayon de convergence $+\infty$.

Exercice 3* (Supplémentaire) - Puissance

Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entière de rayon de convergence $\rho \in [0, +\infty]$, telle que $a_n > 0$ pour tout entier positif n et tout $\alpha > 0$. Quel est le rayon de convergence de la série $\sum_{n=0}^{\infty} a_n^{\alpha} x^n$?

Exercice 4

Développer les fonctions suivantes en séries entières de x:

$$f(x) = \frac{1}{(1-x)(2+x)}, \quad g(x) = \ln(x^2 + x + 1), \quad h(x) = \frac{e^x}{1-x}.$$

Exercice 5- Séries entières et équations différentielles

Soit
$$f:]-1, 1[\to \mathbb{R}, f(x) = \frac{\arcsin(x)}{\sqrt{1-x^2}}.$$

- 1. Justifier que f est développable en série entière sur]-1,1[.
- 2. Montrer que f est solution de l'équation différentielle :

$$(1 - x^2)y' - xy = 1.$$

3. Déterminer le développement en série entière de f sur]-1,1[.

Exercice 6 - Séries entières et équations différentielles

Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entière dont le rayon de convergence est strictement positif. On note f sa somme sur]-R,R[.

1. Trouver les conditions nécessaires et suffisantes portant sur les coefficients a_n pour que f satisfasse l'équation différentielle :

$$xf''(x) + 2f'(x) + xf(x) = 0.$$

- 2. On suppose ces conditions vérifiées. Déterminer a_n lorsque $a_0 = 1$.
- 3. Quelle est la valeur de R? Quelle est la fonction f obtenue?

Exercice 7* (Supplémentaire) - Séries entières et équations différentielles

Soit $f:]-1, 1[\to \mathbb{R}, f(t) = \cos(\alpha \arcsin(t)), \alpha \in \mathbb{R}.$

- 1. Former l'équation différentielle linéaire du second ordre vérifiée par f.
 - 2. Chercher les solutions y(x) de l'équation différentielle obtenue, qui sont développables en série entière et vérifient y(0) = 1 et y'(0) = 0.
 - 3. En déduire que f est développable en série entière sur]-1,1[et donner son développement.

Module 2A003: Méthodes mathématiques pour la mécanique

TD 17-18 - Séries de Fourier

Exercice 1

- 1. Développer en série de Fourier la fonction f, périodique, de période 2π , telle que $f(t) = e^t$ si $t \in]-\pi,\pi[$.
- 2. En déduire : $\sum_{p=0}^{+\infty} \frac{(-1)^p}{p^2+1}$ et $\sum_{p=0}^{+\infty} \frac{1}{p^2+1}$.

Exercice 2

Développer en série de Fourier la fonction $f(x) = \frac{x}{4}$ pour $x \in]0,2[$ en une série de cosinus, puis en une série de sinus.

Exercice 3

On considère la fonction réelle f, périodique, de période 2π , telle que $f(x) = x^2 - \pi^2$ pour $x \in]-\pi,\pi[$.

- 1. Calculer sa série de Fourier et étudier sa convergence en justifiant les réponses.
- 2. En déduire les valeurs des sommes des séries convergentes :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

Exercice 4*- Supplémentaire

On considère la fonction $f(x) = e^{\cos x} \cos(\sin x)$.

- 1. Etablir la périodicité et la parité de la fonction f. Est-elle développable en série de Fourier? Donner les expressions des coefficients du développement en série de Fourier.
- 2. Rappeler le développement en série entière de e^z , avec $z\in\mathbb{C}$.
- 3. En déduire le développement en série de Fourier de f. On utilisera le changement de variable $z=e^{ix}$ et on exprimera f en fonction de e^z .
- 4. Que peut-on conclure sur la valeur de l'intégrale $I_n = \int_0^{\pi} e^{\cos x} \cos(\sin x) \cos nx dx$, $n \in \mathbb{N}$?
- 5. On considère l'intégrale $J = \int_{0}^{\pi} e^{2\cos x} \cos^{2}(\sin x) dx$. Montrez que

$$J = \pi \left(1 + \frac{1}{2} \sum_{1}^{+\infty} \frac{1}{(n!)^2} \right)$$

En déduire une valeur approchée à 10^{-4} de J.

Corrigé

1. f est périodique de période 2π et paire. De plus, f est C^1 par morceaux et donc développable en série de Fourier. Les coefficients sont :

$$a_0 = \frac{1}{\pi} \int_0^{\pi} e^{\cos x} \cos(\sin x) dx, \quad a_n = \frac{2}{\pi} \int_0^{\pi} e^{\cos x} \cos(\sin x) \cos nx dx, \text{ pour } n \ge 1$$

2.
$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

3.

$$f(x) = \frac{e^{e^{ix}} + e^{e^{-ix}}}{2} = \frac{1}{2}(e^z + e^{-z})$$

En utilisant le développement en série entièrie de e^z on obtient :

$$f(x) = \frac{1}{2} \sum_{0}^{+\infty} \frac{z^n + z^{-n}}{n!} = \sum_{0}^{+\infty} \frac{\cos nx}{n!}$$

ce qui représente le développement en série de Fourier de f.

4. Par identification des coefficients du développement en série de Fourier on obtient :

$$I_0 = \pi, \quad I_n = \frac{\pi}{2n!}$$

5. La relation de l'ennoncé est une application directe de la formule de Parseval pour le développement en série de Fourier de f. On majore $\sum_{k=n+1}^{+\infty} \frac{1}{(k!)^2}$ par $\frac{1}{n(n+2)(n!)^2}$ qui est $<\frac{2}{\pi}10^{-4}$ pour $n\geq 4$. En utilisant donc 4 termes du développement de J on trouve

$$J \simeq 5,1133 \text{ à } 10^{-4} \text{ près}$$