SENSOR DE EFECTO HALL

El sensor de efecto Hall está basado en chip el Allegro A1302¹, que tiene una sensibilidad de 1.3 mV/Gauss. El sensor está acoplado a un cable USB que se conecta a los puertos USB3 ó USB4 del sistema de adquisición de datos. Este cable dirige las terminales V_{out}, V_{cc} y GND del sensor a los pines internos de la tarjeta Arduino.

En la hoja de datos del sensor se indica que el voltaje de salida V_{out} (respecto a GND) depende de V_{cc} y del campo magnético B aplicado perpendicular a la cara del sensor. La dependencia está dada por:

$$V_{out} = \frac{V_{CC}}{2} + \frac{1.3 \text{ mV}}{\text{Gauss}} * B$$

Por otro lado, cuando se escoge la opción "Sensores USB, USB4" el sistema arroja los valores del conversor analógico-digital de 10 bits asociado al voltaje V_{in} aplicado a estos dos puertos. El número N arrojado está relacionado con el voltaje de entrada V_{in} mediante la ecuación:

$$N = V_{in} * \frac{1023}{3.3V}$$

Dado lo anterior, si se conecta por ejemplo el sensor de efecto Hall al puerto USB4, el valor *N* arrojado por el sistema dependerá del campo magnético (componente normal a la cara del sensor), según la ecuación:

$$N = \left(\frac{V_{CC}}{2} + \frac{1.3 \text{ mV}}{\text{Gauss}} * B\right) * \frac{1023}{3.3V}$$

Para encontrar el valor de Vcc, se aleja la fuente de campo magnético del sensor, de modo que B=0 y así Vcc=2*N*(3.3 V/1023).

El valor de *N* puede presentar fluctuaciones, por lo tanto puede tomarse un promedio con su respectiva desviación estándar.

La siguiente imagen muestra la conexión del sensor:

¹ https://www.allegromicro.com/~/media/Files/Datasheets/A1301-2-Datasheet.ashx