PRESENTED BY JAKE AND JASON ZHANG A Geologic Analysis of the McNinch Field, Ness and Trego Counties, KS **GEOLOGY 535** 12.1.2017

Outline

- Field location
- Brief petroleum system overview
- Field history
- Geologic setting
- Petrophysical parameters
- Production forecast
- Economics

MCNINCH FIELD LOCATION

Merriam, 1963

MCNINCH FIELD LOCATION CONT'D

KGS, 2017

- Spans ~800 geographic acres
- Sections:
 - 35-15S-25W
 - 36-15S-25W
 - 21-6S-25W
 - 3-16S-25W
- Data collected in surrounding sections
- Miss. Stages at surface
 - Osagian, Warsaw, Salem

BRIEF PETROLEUM SYSTEM OVERVIEW

SORENSON, 2005

- Oil generated in southern OK, TX panhandle
- Woodford shale source rock
 - Possibly Springer sands
- Critical moment ~220-320
 Million years ago
- Migrated through
 Mississippian system
 - TX, OK, KS, NE
- Not all oil migrated north

FIELD HISTORY

Field Inception

- First oil production in 1987
 - Double Eagle Exploration Co., LLC's McNinch 'B' 1
 - 24-hr IP: 130 STB/day (field record)
 - 4 total wells (75% success rate)

Drilling Campaigns

- 7 step-out wells drilled in 1988 (86% success rate)
- 2 wells drilled in 1989 (50% success rate)
- 3 wells drilled in 1990 (67% success rate)
- 4 wells drilled in 2010
 - 1 D&A (Double Eagle), 3 Oil (Palomino Petroleum, Inc.)

VISUAL FIELD HISTORY

Decline Curve - McNinch Field (1987-2017)

KGS Data, 2017

PRODUCTION HISTORY

Cumulative Oil Production - McNinch Field (1987-2017)

Cum Production To-Date: 694,099 STB

• **OOIP:** 2,720,022 STB

• **RF**: 26%

GEOLOGIC SETTING

- Western flanks of Central Kansas Uplift
- Upper Mississippian dolomite production
 - Cherokee group seal
- Karst structure anticlines
 - Doline initiated
- Actual stage within Mississippian system unknown

Ramaker, 2009

TYPELOG

- Kansas City Group down
- Shows difficulty in obtaining log data for Mississippian
- Open-hole Miss.
 Production
 - Pennsylvanian shale seal above
 - Sporadic chert/conglomerate above shale

GEOLOGIC FACIES

- 15-135-22830
- Perfs at 4523-4531 ft(TVD)
- Upper seal shale
- Lower seal shale
- Trap Mississippian dolomite

- 15-195-22984
- Perf at 4501-4526 ft(TVD)
- Upper seal shale
- Lower seal shale
- Trap Mississippian dolomite

Mississippian System:

- Upper 8-10 ft limestone
- Remainder dolomite (main producing stages)
 - Finely crystalline
 - Fossiliferous
 - Fair to good vugular porosity
 - Possibly fossil-cast
 - Fair permeability

KARST STRUCTURES IN MCNINCH FIELD

MAP VIEW OF E-W CROSS-SECTION

-1915-

-1920--1925--1930--1935--1940--1945--1950--1955--1960--1965--1970--1975--1980--1985--1990--1995--2000-

E-W CROSS SECTION OF MCNINCH FIELD

MAP VIEW OF N-S CROSS-SECTION

-1915 -1920--1925 -1930--1935--1940--1945--1950 -1955--1960--1965 -1970--1975--1980--1985 -1990 -1995 -2000

N-S CROSS SECTION OF MCNINCH FIELD

PETROPHYSICAL PARAMETERS

Mean Sw: 47%

• High: 68%

• Low: 18%

• Mean Φ: 22%

• High: 35%

• Low: 13%

- IP Bubbles
 - Correlate w/ Sw
 - Correlate w/ Φ
- OOIP: 2,720,022 STB

PETROPHYSICAL PARAMETERS CONT'D

FIELD POTENTIAL

- Water Oil Contact at ~1960ft
- Determined location of main structural traps within field
 - WOC between:
 - Lowest oil producing wells
 - Highest water producing wells
 - Dry holes within boundary Ft. Scott wells
- Purple stars denote potential future field step-out locations
 - Likely only possible if boundaries expanded

PRODUCTION FORECAST

McNinch Field Decline Curve 2017-Future

- Arp's Equation Parameters:
 - Qi: 50,000 STB/d
 - d: 0.4
 - b: 1 (harmonic)
- Based off current field configuration
- Econ Limit: 2024 (7 years)
- EUR: 773,551 STB
- RF₂₀₂₄: 28%

UPDATED CUMULATIVE OIL PRODUCTION

Cumulative Oil Production - McNinch Field (1987-

MCNINCH FIELD MISSISSIPPIAN TYPECURVE

McNinch Field - Mississippian Typecurve

- Yearly decline curve
 - McNinch Field
 - Mississippian wells
- Determination
 - Qi: Mean 24-hr IP
 - Mult. By 365
 - d: Mean field decline
 - Constant well count
 - b: 1 (harmonic)

MCNINCH FIELD ECONOMICS

Field value from cumulative production to-date in today's dollars

Discount Rate	Econ. Limit (Years)	Econ. Limit per well (bbl/day)	Value	(\$)
PV0	38	4	\$	15,578,292
PV10	38	4	\$	6,217,568
PV20	38	4	\$	3,831,696
PV30	38	4	\$	2,663,787

Incremental economics for production forecasted 2017-Econ Limit

Discount Rate	Econ. Limit (Years)	Econ. Limit (bbl/day)	Value (\$)
PV0	7	7580	\$ 758,235
PV10	7	7580	\$ 648,062
PV20	7	7580	\$ 572,680
PV30	7	7580	\$ 518,555

Economics based on McNinch Mississippian Typecurve

Discount Rate	Econ. Limit (Years)	Econ. Limit per well (bbl/day)	Value (\$)	
PV0	66	4	\$	5,655,576
PV10	66	4	\$	<mark>2,670,574</mark>
PV20	66	4	\$	1,861,671
PV30	66	4	\$	1,468,102

Assumptions

- \$50/BBL flat pricing
- \$3000/mo LOE
- 12.5% royalties
- 8% tax rate
- Dry-hole CAPEX: \$180,000
- Oil well CAPEX: \$450,000

ACKNOWLEDGEMENTS

- Dr. Walton
- Kansas Geological Survey Staff
- Kansas Geological Society
- IHS

REFERENCES

Arps, J. J., 1945, Analysis of Decline Curves: Transactions of the AIME, p. 228–247.

Beebe, B. W., 1957, Petroleum geology of the northwestern Anadarko Basin: Congreso Geológico Internacional XX Sesión, Ciudad de México, 1956, sec. 3, p. 41-55.

Clark, S. K., Arnett, C. L., and Royds, J. S., 1948, Geneseo Uplift, Rice, Ellsworth, and McPherson Counties, Kansas; *in*, Structure of typical American oil fields, v. 3: Am. Assoc. Petroleum Geologists, Tulsa, p. 225-248. **Goebel, E. D.,** 1966, Stratigraphy of Mississippian rocks in western Kansas: Unpub. Ph.D. dissertation, Dept. Geol., Univ. Kansas, 187 p.

Goebel, E. D., and Merriam, D. F., 1957, "Trend players" look to western Kansas Cherokee: Oil and Gas Jour., v. 55, no. 15, p. 126-127, 130-132, 134-135.

Kansas Geological Survey: Energy, 2017: The University of Kansas:

http://www.kgs.ku.edu/PRS/petroIndex.html (accessed November 14, 2017).

Kansas Independent Oil and Gas Association, 2017, Oil and Gas Drilling Promotions: Costs and Risks: Wichita, Kansas, KIOGA.

Merriam, D. F., 1963, The geologic history of Kansas: Kansas Geological Survey, Bulletin 162

Mitchell, J., 2012, The Anadarko Basin: Oil and Gas Exploration - Past, Present and Future, speech: Tulsa.

REFERENCES CONT'D

Newell, K. D., Watney, W.Lynn, Stephen, W. L. Cheng., and Richard, L. Brownrigg., 1987, Stratigraphic and Spatial Distribution of Oil and Gas Production in Kansas: Kansas Geological Survey, p.2

Ramaker, B. J., 2009, Influence of Mississippian Karst Topography on Deposition of the Cherokee Group:

Ness County, Kansas, dissertation: Ann Arbor, Michigan, ProQuest, LLC.

Reservoir Drive Mechanisms, 2016: American Association of Petroleum Geologists:

http://wiki.aapg.org/Reservoir_drive_mechanisms (accessed November 16, 2017).

Robert F. Walters Digital Geological Library, 2017.: Kansas Geological Society.

Sorenson, R. P., 2005, A dynamic model for the Permian Panhandle and Hugoton fields, western Anadarko Basin: AAPG Bulletin, v. 89, no. 7, p. 921–938.

Walton, A. W., 2017, Geology 535 Lecture, lecture: Lawrence, The University of Kansas.

Watney, W. L., and Paul, S. E., 1983, Oil exploration and production in Kansas--present activity and future potential: Oil and Gas Journal, v. 81, July 25, p. 193-198.

