

基于ARM® 32位的Cortex®-M4微控制器+FPU,带256 K字节至4032 K字节内部闪存、sLib、双QSPI、SDRAM、摄像头、18个定时器、3个ADC、23个通信接口(双OTGFS和以太网)

功能

■ 内核: 带有FPU的ARM®32位的Cortex®-M4 CPU

- 最高288 MHz工作频率,带存储器保护单元 (MPU),内建单周期乘法和硬件除法
- 内建浮点运算单元(FPU)
- 具有DSP指令集

■ 存储器

- 256 K字节至4032 K字节的内部闪存存储器
- **sLib**: 将指定之主存储区设为执行代码安全库区,此区代码仅能调用无法读取
- 默认384 K字节的SRAM,最大可设定为512 K字节
- 具有16位数据总线的外部存储器控制器 (XMC): 支持CF卡、SRAM、PSRAM、 NOR、NAND和SDRAM存储器
- 多达2个QSPI接口,用于连接外部SPI闪存存储器或SPI RAM扩展,支持地址映射模式

■ XMC作为LCD并口,兼容8080/6800模式

■ 电源控制 (PWC)

- 2.6至3.6 V供电
- 上电复位(POR)、低电压复位(LVR)、 电源电压监测器(PVM)
- 低功耗模式: 睡眠、深睡眠、和待机
- V_{BAT}为LEXT、ERTC和20个32位的电池供电 寄存器(BPR)供电

■ 时钟和复位管理(CRM)

- 4至25 MHz晶振(HEXT)
- 内置经出厂调校的48 MHz高速内部时钟 (HICK), 25 °C达1 %精度, -40 °C至 +105 °C达2.5 %精度,带自动时钟校准 (ACC)功能
- PLL可灵活配置倍频和分频系数
- 32 kHz晶振(LEXT)
- 低速内部时钟(LICK)

■ 模拟模块

- 3个12位5.33 MSPS A/D转换器,多达24个外部输入通道;分辨率12/10/8/6位可调;硬件过采样最高达16位分辨率
- 温度传感器(V_{TS})、内部参考电压 (V_{INTRV})、V_{BAT}电池电压监控(V_{BAT}/4)
- 2个12位D/A转换器

■ DMA

- 2个通用型DMA和1个增强型EDMA控制器
- 合计22通道

■ 多达116个快速GPIO端口

- 所有GPIO口可以映像到16个外部中断 (EXINT)
- 几乎所有GPIO口可容忍5V输入信号

■ 多达18个定时器(TMR)

- 多达3个16位7通道高级定时器,包括3对互补通道PWM输出,带死区控制和紧急停止功能
- 多达8个16位和2个32位定时器,每个定时器最多达4个用于输入/输出/PWM/脉冲计数的通道
- 2个看门狗定时器(一般型WDT和窗口型 WWDT)
- 系统滴答定时器: 24位递减计数器
- ERTC:增强型RTC,具有自动唤醒、闹钟、亚 秒级精度、及硬件日历,带校准功能

■ 多达23个通信接口

- 多达3个I2C接口,支持SMBus/PMBus
- 多达4个USART/4个UART接口,支持 ISO7816、LIN、IrDA接口、调制解调控制和 RS485驱动使能,支持TX/RX可配置引脚互换
- 多达4个SPI接口(36 M位/秒),4个均可用为I²S接口,其中I²S2/I²S3支持全双工
- 多达2个CAN接口(2.0B主动)
- 多达2个OTG全速控制器,设备模式时支持无 晶振(Crystal-less)
- 多达2个SDIO接口
- 红外发射器 (IRTMR)
- 10/100M以太网MAC(EMAC):有专用DMA和4 K字节缓存,支持IEEE 1588,MII/RMII接口(只有AT32F437支持)
- 8~14位数字摄像头并口(DVP)
- CRC计算单元
- 96位的芯片唯一码(UID)
- 调试模式
 - 串行线调试 (SWD) 和JTAG接口
- 温度范围: -40至+105°C

■ 封装

- LQFP144 20 x 20 mm
- LQFP100 14 x 14 mm
- LQFP64 10 x 10 mm
- LQFP48 7 x 7 mm
- QFN48 6 x 6 mm

表 1. AT32F435 选型列表

内部闪存存储器	型号
4032 K字节	AT32F435ZMT7 , AT32F435VMT7 , AT32F435RMT7 , AT32F435CMT7 , AT32F435CMU7
1024 K字节	AT32F435ZGT7 , AT32F435VGT7 , AT32F435RGT7 , AT32F435CGT7 , AT32F435CGU7
448 K字节	AT32F435ZDT7 , AT32F435VDT7 , AT32F435RDT7 , AT32F435CDT7 , AT32F435CDU7
256 K字节	AT32F435ZCT7 , AT32F435VCT7 , AT32F435RCT7 , AT32F435CCT7 , AT32F435CCU7

表 2. AT32F437 选型列表

the minimum to the Carry the			
内部闪存存储器	型号		
4032 K字节	AT32F437ZMT7 , AT32F437VMT7 , AT32F437RMT7		
1024 K字节	AT32F437ZGT7 , AT32F437VGT7 , AT32F437RGT7		
448 K字节	AT32F437ZDT7 , AT32F437VDT7 , AT32F437RDT7		
256 K字节	AT32F437ZCT7 , AT32F437VCT7 , AT32F437RCT7		

目录

1	规格	\$说明	13
2	功能	6 简介	18
	2.1	ARM®Cortex®-M4 和 FPU	18
	2.2	存储器	19
		2.2.1 内置闪存存储器(Flash)	19
		2.2.2 存储器保护单元(MPU)	19
		2.2.3 随机存取存储器(SRAM)	19
		2.2.4 外部存储控制器(XMC)	19
		2.2.5 四线串行外设存储器接口(QSPI)	19
	2.3	中断	20
		2.3.1 嵌套的向量式中断控制器(NVIC)	20
		2.3.2 外部中断(EXINT)	20
	2.4	电源控制(PWC)	20
		2.4.1 供电方案	20
		2.4.2 复位和电源电压监测器(POR / LVR / PVM)	20
		2.4.3 电压调节器(LDO)	20
		2.4.4 低功耗模式	21
	2.5	启动模式	21
	2.6	时钟	22
	2.7	通用输入输出口(GPIO)	22
	2.8	直接存储器访问控制器(DMA)	22
	2.9	定时器(TMR)	23
		2.9.1 高级定时器(TMR1,TMR8,和 TMR20)	23
		2.9.2 通用定时器(TMR2~5 和 TMR9~14)	24
		2.9.3 基本定时器(TMR6 和 TMR7)	24
		2.9.4 系统滴答定时器(SysTick)	24
	2.10) 看门狗(WDT)	24

	2.11	窗口型看门狗(WWDT)2	24
	2.12	增强型实时时钟(ERTC)和电池供电寄存器(BPR)	25
	2.13	通信接口	25
		2.13.1 串行外设接口(SPI)	25
		2.13.2 内部集成音频接口(I ² S)	25
		2.13.3 通用同步/异步收发器(USART)	25
		2.13.4 内部集成电路总线(I ² C)	26
		2.13.5 安全数字输入/输出接口(SDIO)	26
		2.13.6 控制器区域网络(CAN)	26
		2.13.7 通用串行总线 On-The-Go 全速(OTGFS)	27
		2.13.8 红外发射器(IRTMR)	27
		2.13.9 以太网 MAC 接口(EMAC)	27
	2.14	数字摄像头并口(DVP)	28
	2.15	循环冗余校验(CRC)计算单元	28
	2.16	模拟/数字转换器(ADC)	28
		2.16.1 温度传感器(V _{TS})	29
		2.16.2 内部参考电压(V _{INTRV})	29
		2.16.3 V _{BAT} 电池电压监控(V _{BAT} /4)	29
	2.17	数字/模拟转换器(DAC)	29
	2.18	串行线(SWD)/ JTAG 调试接口	29
3	引脚	功能定义	30
4	存储	器地址映射4	45
_	. t. &		
5	电气律	beter	1 6
	5.1	测试条件	46
		5.1.1 最小和最大数值	46
		5.1.2 典型数值	46
		5.1.3 典型曲线	46
		5.1.4 供电方案	46

5.2	绝对最	:大值	47
	5.2.1	额定值	47
	5.2.2	电气敏感性	48
5.3	规格		49
	5.3.1	通用工作条件	49
	5.3.2	上电和掉电时的工作条件	49
	5.3.3	内置复位和电源控制模块特性	50
	5.3.4	存储器特性	51
	5.3.5	供电电流特性	51
	5.3.6	外部时钟源特性	61
	5.3.7	内部时钟源特性	65
	5.3.8	PLL 特性	66
	5.3.9	低功耗模式唤醒时间	66
	5.3.10	EMC 特性	66
	5.3.11	GPIO 端口特性	67
	5.3.12	NRST 引脚特性	69
	5.3.13	XMC(含 SDRAM)特性	69
	5.3.14	TMR 定时器特性	89
	5.3.15	SPI 接口特性	89
	5.3.16	I ² S 接口特性	91
	5.3.17	QSPI 接口特性	93
	5.3.18	I ² C 接口特性	93
	5.3.19	SDIO 接口特性	94
	5.3.20	OTGFS 接口特性	95
	5.3.21	EMAC 接口特性	96
	5.3.22	DVP 接口特性	98
	5.3.23	12 位 ADC 特性	99
	5.3.24	内部参照电压(V _{INTRV})特性	102
	5.3.25	温度传感器(V _{TS})特性	102
	5.3.26	V _{BAT} 电池电压监控特性	103
	5.3.27	12 位 DAC 特性	104

6	封装	数据	105
	6.1	LQFP144 封装	. 105
	6.2	LQFP100 封装	. 107
	6.3	LQFP64 封装	. 109
	6.4	LQFP48 封装	111
	6.5	QFN48 封装	113
	6.6	封装丝印	114
	6.7	热特性	115
7	型号	说明	.116
8	文档	版本历史	117

表目录

表 1. AT32F435 选型列表	2
表 2. AT32F437 选型列表	2
表 3. AT32F435 系列产品功能和配置	14
表 4. AT32F437 系列产品功能和配置	16
表 5. 启动加载程序(Bootloader)的型号支持和引脚配置	21
表 6. 定时器功能比较	23
表 7. USART/UART 功能比较	26
表 8. AT32F435/437 系列引脚定义	34
表 9. XMC 引脚定义	42
表 10. 电压特性	47
表 11. 电流特性	47
表 12. 温度特性	47
表 13. 静电放电值	48
表 14. 静态栓锁值	48
表 15. 通用工作条件	49
表 16. 上电和掉电时的工作条件	49
表 17. 内置复位和电源控制模块特性	50
表 18. 内部闪存存储器特性	51
表 19. 内部闪存存储器寿命和数据保存期限	51
表 20. 运行模式下的典型电流消耗	52
表 21. 睡眠模式下的典型电流消耗	53
表 22. 运行模式下的最大电流消耗	54
表 23. 睡眠模式下的最大电流消耗	55
表 24. 深睡眠和待机模式下的典型和最大电流消耗	56
表 25. V _{BAT} 的典型和最大电流消耗	58
表 26. 内置外设的电流消耗	59
表 27. HEXT 4 ~ 25 MHz 晶振特性	61
表 28. 高速外部用户时钟特性	62
表 29. LEXT 32.768 kHz 晶振特性	63
表 30. 低速外部用户时钟特性	64

表 31. HICK 时钟特性	
表 32. LICK 时钟特性	65
表 33. PLL 特性	66
表 34. 低功耗模式的唤醒时间	66
表 35. EMS 特性	66
表 36. GPIO 静态特性	67
表 37. 输出电压特性	68
表 38. 输入交流特性	68
表 39. NRST 引脚特性	69
表 40 . 异步非总线复用的 SRAM/PSRAM/NOR 读操作时序	70
表 41. 异步非总线复用的 SRAM/PSRAM/NOR 写操作时序	71
表 42. 异步总线复用的 PSRAM/NOR 读操作时序	72
表 43. 异步总线复用的 PSRAM/NOR 写操作时序	73
表 44. 同步非总线复用 PSRAM/NOR 读操作时序	75
表 45. 同步非总线复用 PSRAM 写操作时序	76
表 46. 同步总线复用 PSRAM/NOR 读操作时序	77
表 47. 同步总线复用 PSRAM 写操作时序	78
表 48 . NAND 闪存读写操作时序	79
表 49. PC 卡/CF 卡读写操作时序	83
表 50. SDRAM 读操作时序	87
表 51. SDRAM 写操作时序	88
表 52. TMR 定时器特性	89
表 53. SPI 特性	89
表 54. I ² S 特性	91
表 55. QSPI 特性	93
表 56. SD/MMC 接口特性	94
表 57. OTGFS 启动时间	95
表 58. OTGFS 直流特性	95
表 59. OTGFS 电气特性	95
表 60. EMAC 直流特性	96
表 61. EMAC 的 SMI 接口信号动态特性	96
表 62. EMAC 的 RMII 接口信号动态特性	96

AT32F435/437系列 数据手册

表 63. EMAC 的 MII 接口信号动态特性	97
表 64. ADC 特性	99
表 65. f _{ADC} = 80 MHz 时的最大 R _{AIN}	100
表 66. ADC 精度	100
表 67. 内置参照电压特性	102
表 68. 温度传感器特性	102
表 69. V _{BAT} 监控特性	103
表 70. DAC 特性	104
表 71. LQFP144 – 20 x 20 mm 144 引脚薄型正方扁平封装机械数据	106
表 72. LQFP100 – 14 x 14 mm 100 引脚薄型正方扁平封装机械数据	108
表 73. LQFP64 – 10 x 10 mm 64 引脚薄型正方扁平封装机械数据	110
表 74. LQFP48 – 7 x 7 mm 48 引脚薄型正方扁平封装机械数据	112
表 75. QFN48 – 6 x 6 mm 48 引脚正方扁平无引线封装机械数据	114
表 76. 封装的热特性	115
表 77. AT32F435/437 系列型号说明	116
表 78. 文档版本历史	117

图目录

图	1. <i>A</i>	AT32F435/437 系列功能框图	. 18
图	2. <i>F</i>	AT32F435/437 系列 LQFP144 引脚分布	. 30
图	3. <i>A</i>	AT32F435/437 系列 LQFP100 引脚分布	. 31
图	4. <i>F</i>	AT32F435/437 系列 LQFP64 引脚分布	. 32
图	5. <i>F</i>	AT32F435 系列 LQFP48 引脚分布	. 33
图	6. <i>F</i>	AT32F435 系列 QFN48 引脚分布	. 33
图	7.	存储器图(以 AT32F435/437xM 为例)	. 45
图	8.	供电方案	. 46
图	9.	上电复位和低电压复位的波形图	. 50
图	10.	调节器在运行模式,LDO 1.2V 时,深睡眠模式下的典型电流消耗在不同的 VDD 时与	
		温度的对比	. 56
图	11.	调节器在低功耗模式,LDO 1.0V 时,深睡眠模式下的典型电流消耗在不同的 V _{DD} 时与	
		温度的对比	. 57
图	12.	待机模式下的典型电流消耗在不同的 V _{DD} 时与温度的对比(AT32F435/437xD)	. 57
图	13.	待机模式下的典型电流消耗在不同的 V _{DD} 时与温度的对比(AT32F435/437xD 外其它型号)
图	14.	V _{BAT} 的典型电流消耗(LEXT 和 ERTC 开启)在不同的 V _{BAT} 电压时与温度的对比	. 58
图	15.	使用 8 MHz 晶振的典型应用	. 61
图	16.	外部高速时钟源的交流时序图	. 62
图	17.	使用 32.768 kHz 晶振的典型应用	. 63
图	18.	外部低速时钟源的交流时序图	. 64
图	19.	HICK 时钟精度与温度的对比	. 65
图	20.	建议的 NRST 引脚保护	. 69
图	21.	异步非总线复用的 SRAM/PSRAM/NOR 读操作波形	.70
图	22.	异步非总线复用的 SRAM/PSRAM/NOR 写操作波形	.71
图	23.	异步总线复用 PSRAM/NOR 读操作波形	.72
图	24.	异步总线复用 PSRAM/NOR 写操作波形	. 73
图	25.	同步非总线复用 PSRAM/NOR 读操作波形	. 75
图	26.	同步非总线复用 PSRAM 写操作波形	. 76
图	27.	同步总线复用 PSRAM/NOR 读操作波形	. 77

图 28. 同步总线复用 PSRAM 写操作波形	78
图 29. NAND 控制器读操作波形	80
图 30. NAND 控制器写操作波形	80
图 31. NAND 控制器在通用存储空间的读操作波形	80
图 32. NAND 控制器在通用存储空间的写操作波形	81
图 33. 通用存储空间读操作的 PC 卡/CF 卡控制器波形	84
图 34. 通用存储空间写操作的 PC 卡/CF 卡控制器波形	84
图 35. 属性存储空间读操作的 PC 卡/CF 卡控制器波形	85
图 36. 属性存储空间写操作的 PC 卡/CF 卡控制器波形	85
图 37. I/O 空间读操作的 PC 卡/CF 卡控制器波形	86
图 38. I/O 空间写操作的 PC 卡/CF 卡控制器波形	86
图 39. SDRAM 读操作波形	87
图 40. SDRAM 写操作波形	88
图 41. SPI 时序图 – 从模式和 CPHA = 0	90
图 42. SPI 时序图 – 从模式和 CPHA = 1	90
图 43. SPI 时序图 – 主模式	90
图 44. I ² S 从模式时序图(Philips 协议)	91
图 45. I ² S 主模式时序图(Philips 协议)	92
图 46. QSPI 时序图	93
图 47. SDIO 高速模式	94
图 48. SD 默认模式	94
图 49. OTGFS 时序:数据信号上升和下降时间定义	95
图 50. EMAC 的 SMI 接口时序图	96
图 51. EMAC 的 RMII 接口时序图	97
图 52. EMAC 的 MII 接口时序图	97
图 53. DVP 时序图	98
图 54. ADC 精度特性	100
图 55. 使用 ADC 典型的连接图	101
图 56. 供电电源和参考电源去耦线路(具有外部 V _{REF+} 引脚封装)	101
图 57. 供电电源去耦线路(无外部 V _{REF+} 引脚封装)	102
图 58. V _{TS} 对温度理想曲线图	103

AT32F435/437系列 数据手册

图 59. LQFP144 – 20 x 20 mm 144 引脚薄型正方扁平	封装图109
图 60. LQFP100 – 14 x 14 mm 100 引脚薄型正方扁平	封装图10 ⁻
图 61. LQFP64 – 10 x 10 mm 64 引脚薄型正方扁平封	装图109
图 62. LQFP48 – 7 x 7 mm 48 引脚薄型正方扁平封装	图11
图 63. QFN48 – 6 x 6 mm 48 引脚正方扁平无引线封装	图 11:
图 64. 丝印示意图	11

1 规格说明

AT32F435/437系列微控制器基于高性能的ARM®Cortex®-M4 32位的RISC内核,最高工作频率达到 288 MHz,Cortex®-M4内核带有单精度浮点运算单元(FPU),支持所有ARM®单精度数据处理指令和数据类型。它还具有DSP指令和提高应用安全性的存储器保护单元(MPU)。

AT32F435/437系列产品内置高速存储器(高达4032 K字节的内存和最高可配置为512 K字节的 SRAM),丰富的GPIO端口和联接到两条APB总线的外设。内置存储器可设置任意范围程序区受sLib 保护,成为执行代码安全库区。另外AT32F435/437系列产品包含高阶的存储器扩展: 1个外部存储器控制器(XMC)(包含SDRAM接口)和2个四线串行外设接口(QSPI)。

AT32F435/437系列产品提供3个12位的ADC、2个12位的DAC、13个通用16位定时器(包括3个用于电机控制的PWM高级定时器)、2个通用32位定时器、1个低功耗ERTC。它们还带有标准和先进的通信接口:多达3个I²C接口、4个SPI接口(可用为I²S接口)、2个SDIO接口、4个USART和4个UART接口、1个红外发射器、2个OTGFS接口、2个CAN接口、1个数字摄像头并行接口(DVP)、和1个以太网MAC接口。

AT32F435/437系列产品可工作于-40 ℃至+105 ℃的温度范围,供电电压2.6 V至3.6 V,省电模式可达到低功耗应用的要求。

AT32F435/437系列产品提供各种不同封装形式;根据不同的封装形式,其系列产品之间是完全地引脚兼容,软件和功能上也兼容,仅产品中的外设配置不尽相同。

表 3. AT32F435 系列产品功能和配置

		AT	衣 3. AT 32F 435 永列)																		
	型号		CD	1	1	СС	CD	CG	СМ	RC	RD	RG	RM	vc	VD	VG	VM	zc	ZD	ZG	ZM
	频率(MHz)			<u> </u>				<u> </u>		<u> </u>	28	38	<u> </u>					<u> </u>		<u> </u>	
1)(2)	ZW (K字节)	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256
内部闪存(1)(2)	NZW(K 字节)	0	192	768	3776	0	192	768	3776	0	192	768	3776	0	192	768	3776	0	192	768	3776
内部	加总 (K 字节)	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032
S	RAM ⁽²⁾ (K 字节)		I	I	I			38	4 (出厂默认),最大可设筑					定为 512							
	XMC			-		-					1	(3)			1(4	1)(5)				1	
	SDRAM			•				•				•			1	(4)			,	1	
	QSPI		2	2			2	2			2	2			2	2			2	2	
	高级		3	3			3	3			3	3			;	3			;	3	
	32 位通用		2	2		2				2				2	2		2				
	16 位通用		8	3			8				8			8				8			
定时器	基本		2	2			2	2		2			2			2					
完	SysTick		•	1		1				1			1			1					
	WDT	1				1					1				•	1				1	
	WWDT		•	1		1					1	l		1					1		
	ERTC			1		1				1			1					1			
	I ² C		3	3		3			3			3			3						
	SPI ⁽⁶⁾		4	1		4			4			4			4						
_	I ² S ⁽⁶⁾	4 ((2 个:	全双工	_)	4 (2 个全双工)			4 (2 个全双工)			4 (2 个全双工)			4 (2 个全双工)						
通信接口	USART + UART		3 +	4 ⁽⁷⁾		3 + 4 ⁽⁷⁾				4 + 4			4 + 4			4 + 4					
通信	SDIO		1	(8)			1	(8)		2				2	2			:	2		
	OTGFS		2	2			2	2		2				2				2			
	CAN		2	2			2	2			2	2			2	2		2			
	红外发射器			1				1			1	l				1				1	
莫块	12 位 ADC 转换器/									ı	3							ı			
模拟模块	通道数		1	0			1	0				6			1	6		24			
45.	12 位 DAC 转换器										2										
	DVP ⁽⁹⁾ GPIO			<u>α</u>		1				1 52			1			1 116					
	 工作温度		39						39 53 40 ° € ₹ 1105 ° C						84 116						
	封装形式		QFI 6 x 6					P48 mm		-40 °C 至+105 °C LQFP64 10 x 10 mm			LQFP100 14 x 14 mm			LQFP144 20 x 20 mm					

- (1) ZW = 零等待(zero wait-state),可达SYSCLK 288 MHz NZW = 非零等待(non-zero wait-state)
- (2) 透过用户系统数据设置支持内部闪存存储器和SRAM分配使用,以每64 K字节为一个级距配置。 以AT32F435xC为例,内部闪存存储器和SRAM可以设置为以下三种配置:
 - ZW: 256 K字节, NZW: 0 K字节, SRAM: 384 K字节; (出厂默认值)
 - ZW: 192 K字节, NZW: 64 K字节, SRAM: 448 K字节;
 - ZW: 128 K字节, NZW: 128 K字节, SRAM: 512 K字节。
 - 以AT32F435xD为例,内部闪存存储器和SRAM可以设置为以下六种配置:
 - ZW: 448 K字节, NZW: 0 K字节, SRAM: 192 K字节;
 - ZW: 256 K字节, NZW: 192 K字节, SRAM: 384 K字节; (出厂默认值)
 -
 - ZW: 128 K字节, NZW: 320 K字节, SRAM: 512 K字节。
 - 以AT32F435xG为例,内部闪存存储器和SRAM可以设置为以下七种配置:
 - ZW: 512 K字节, NZW: 512 K字节, SRAM: 128 K字节;
 -
 - ZW: 256 K字节, NZW: 768 K字节, SRAM: 384 K字节; (出厂默认值)
 -
 - ZW: 128 K字节, NZW: 896 K字节, SRAM: 512 K字节。
 - 以AT32F435xM例,内部闪存存储器和SRAM可以设置为以下七种配置:
 - ZW: 512 K字节, NZW: 3520 K字节, SRAM: 128 K字节;
 -
 - ZW: 256 K字节, NZW: 3776 K字节, SRAM: 384 K字节; (出厂默认值)
 -
 - ZW: 128 K字节, NZW: 3904 K字节, SRAM: 512 K字节。
- (3) LQFP64封装XMC仅支持推动8位模式LCD屏。
- (4) LQFP100封装XMC仅支持片选支持直接连接复用信号的NOR/PSRAM存储器、16位或8位NAND闪存存储器、和SDRAM。封装没有Port G,因此中断线无法使用。
- (5) LQFP100封装XMC透过外加锁存器件可连接非复用信号的PSRAM和SRAM,请参见应用笔记AN0068。
- (6) 半双工I²S和SPI功能复用。
- (7) LQFP48和QFN48封装无UART8, USART6因缺少CK引脚,只能作UART使用。
- (8) LQFP48和QFN48封装SDIO1/2仅可选用一组使用,其中SDIO2最高支持4位(D0~D3)模式。
- (9) 仅LQFP144封装支持最高14位模式,LQFP48和QFN48封装仅支时8位模式,LQFP100和LQFP64封装支时最高12位模式。

表 4. AT32F437 系列产品功能和配置

				- 10	4. AI 32	.1 401 2		137xxT7						
	型号	RC	RD	RG	RM	VC	VD	VG	VM	ZC	ZD	ZG	ZM	
	频率(MHz)		288											
1)(2)	ZW(K 字节)	256	256	256	256	256	256	256	256	256	256	256	256	
内部闪存(1)(2)	NZW(K 字节)	0	192	768	3776	0	192	768	3776	0	192	768	3776	
内部	加总 (K 字节)	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032	
	SRAM ⁽²⁾ (K 字节)			l	38	84(出厂	默认),	最大可	设定为5	12			<u>I</u>	
	XMC		1	(3)			1(4	1)(5)				1		
	SDRAM			-			1	(4)			,	1		
	QSPI		2	2			2	2			:	2		
	高级		;	3			;	3			;	3		
	32 位通用		2	2			2	2			2	2		
	16 位通用		8	3			8	3			;	8		
定时器	基本		2	2			2	2		2				
定即	SysTick			1				1		1				
	WDT			1			,	1		1				
	WWDT			1			,	1				1		
	ERTC		•	1			•	1			,	1		
	I ² C		(3			(3			;	3		
	SPI ⁽⁶⁾		4	4			4	4		4				
	I ² S ⁽⁶⁾		4(2个3	全双工)			4(2个3	全双工)		4 (2 个全双工)				
П	USART + UART		4 -	+ 4			4 -	+ 4		4 + 4				
通信接口	SDIO		2	2			2	2		2				
浬	OTGFS		2	2			2	2			:	2		
	CAN		2	2			2	2			:	2		
	以太网 MAC		•	1			•	1				1		
	红外发射器		•	1			•	1				1		
ţ 抉	12 位 ADC 转换器/					ı		3		ı				
模拟模块	通道数		1	6				6			2	24		
₩.	12 位 DAC 转换器					I		2						
	DVP ⁽⁷⁾ GPIO			1 3				1 4		1				
	 工作温度		5	.			-40 °C 至		`	116				
	封装形式			P64 0 mm			LQF	P100 4 mm		LQFP144 20 x 20 mm				

- (1) ZW = 零等待(zero wait-state),可达SYSCLK 288 MHz NZW = 非零等待(non-zero wait-state)
- (2) 透过用户系统数据设置支持内部闪存存储器和SRAM分配使用,以每64 K字节为一个级距配置。 以AT32F437xC为例,内部闪存存储器和SRAM可以设置为以下三种配置:
 - ZW: 256 K字节, NZW: 0 K字节, SRAM: 384 K字节; (出厂默认值)
 - ZW: 192 K字节, NZW: 64 K字节, SRAM: 448 K字节;
 - ZW: 128 K字节, NZW: 128 K字节, SRAM: 512 K字节。
 - 以AT32F437xD为例,内部闪存存储器和SRAM可以设置为以下六种配置:
 - ZW: 448 K字节, NZW: 0 K字节, SRAM: 192 K字节;
 - ZW: 256 K字节, NZW: 192 K字节, SRAM: 384 K字节; (出厂默认值)
 -
 - ZW: 128 K字节, NZW: 320 K字节, SRAM: 512 K字节。
 - 以AT32F437xG为例,内部闪存存储器和SRAM可以设置为以下七种配置:
 - ZW: 512 K字节, NZW: 512 K字节, SRAM: 128 K字节;
 -
 - ZW: 256 K字节, NZW: 768 K字节, SRAM: 384 K字节; (出厂默认值)
 -
 - ZW: 128 K字节, NZW: 896 K字节, SRAM: 512 K字节。
 - 以AT32F437xM例,内部闪存存储器和SRAM可以设置为以下七种配置:
 - ZW: 512 K字节, NZW: 3520 K字节, SRAM: 128 K字节;
 -
 - ZW: 256 K字节, NZW: 3776 K字节, SRAM: 384 K字节; (出厂默认值)
 -
 - ZW: 128 K字节, NZW: 3904 K字节, SRAM: 512 K字节。
- (3) LQFP64封装XMC仅支持推动8位模式LCD屏。
- (4) LQFP100封装XMC仅支持片选支持直接连接复用信号的NOR/PSRAM存储器、16位或8位NAND闪存存储器、和SDRAM。封装没有Port G,因此中断线无法使用。
- (5) LQFP100封装XMC透过外加锁存器件可连接非复用信号的PSRAM和SRAM,请参见应用笔记AN0068。
- (6) 半双工I²S和SPI功能复用。
- (7) 仅LQFP144封装支持最高14位模式,LQFP100和LQFP64封装支时最高12位模式。

2 功能简介

2.1 ARM®Cortex®-M4 和 FPU

ARM® Cortex®-M4是最新一代的嵌入式ARM®内核处理器,它是一款32位的RISC高性能处理器,具有优异的代码效率,卓越的计算性能和先进的中断系统响应。该处理器支持一组DSP指令,能够实现有效的信号处理和复杂的算法执行。它配有的单精度FPU(浮点单元)可加速浮点运算需求并防止饱和。图1是AT32F435/437系列产品的功能框图。

图 1. AT32F435/437 系列功能框图

2.2 存储器

2.2.1 内置闪存存储器(Flash)

内置高达4032 K字节的内部闪存存储器,用于存放程序和数据。内置存储器可指定任意一范围程序区受sLib保护,成为仅能执行无法被读取的执行代码安全库区。sLib是基于保护方案商代码安全之下,又顾及其客户便于进行二次开发而设计的。加速寄存器位NZW_BST使能后可整体提升NZW区代码执行效能,但需注意AHB最高时钟频率较禁能时低,使用时请遵照表15之限制。

片上另有18 K字节的启动程序代码区区,启动加载程序(Bootloader)存放于其中。

另外内部包含用户系统数据区块,用于配置访问擦写保护、看门狗自启动等硬件设置行为。用户系统数据对于存储器提供擦写保护和访问保护各自设置功能,其中访问保护有2个级别可配置。

2.2.2 存储器保护单元(MPU)

存储器保护单元(MPU)用于管理CPU对存储器的访问,防止一个任务意外损坏另一个激活任务所使用的存储器或资源。此存储区由最多8个保护区组成,还可依次再被分为最多8个子区。保护区大小可为32字节至可寻址存储器的整个4 G字节。MPU特别适合有一些关键的或认证的代码必须受到保护,以免被其它任务的错误行为影响。它通常是一个RTOS(实时操作系统)。

2.2.3 随机存取存储器(SRAM)

默认384 K字节的片上SRAM,可设置最高达512 K字节。CPU能以零等待周期访问(读/写)。

2.2.4 外部存储控制器(XMC)

AT32F435/437系列集成了外部存储控制器模块(XMC)。它具有4个片选输出,支持CF卡、SRAM、PSRAM、NOR闪存、NAND闪存和SDRAM。

主要功能:

- 8位和16位数据总线宽度:
- 读缓存,用于SDRAM控制器:
- 写缓存。

XMC也可以配置成与多数图形LCD控制器连接,它支持Intel 8080和Motorola 6800的模式。

2.2.5 四线串行外设存储器接口(QSPI)

AT32F435/437系列产品内置2个四线串行外设接口(QSPI),是一种专用的通信接口,连接单、双、或四条数据线的SPI闪存存储器或SPI RAM。可工作于间接模式(使用寄存器执行全部操作)、状态轮询模式、或地址映射模式,最高映射256 M字节的外部闪存存储器或RAM。QSPI允许字节、半字和字访问,支持芯片内执行(XIP)操作,并完全可编程操作码和帧格式。

2.3 中断

2.3.1 嵌套的向量式中断控制器(NVIC)

AT32F435/437系列产品内置嵌套的向量式中断控制器,可管理16个优先级,处理Cortex®-M4内核的可屏蔽中断通道及16个中断线。该模块以最小的中断延迟提供灵活的中断管理功能。

2.3.2 外部中断 (EXINT)

外部中断(EXINT)与NVIC直接连接,EXINT包含22个边沿检测器,用于产生中断请求。每个中断 线都可以独立地配置它的触发事件(上升沿、下降沿、或双边沿),并能够单独地被屏蔽;挂起寄存 器维持所有中断请求的状态。外部中断其中最多有16根可从GPIO中选择连接。

2.4 电源控制 (PWC)

2.4.1 供电方案

- V_{DD} = 2.6 ~ 3.6 V: 通过V_{DD}引脚为GPIO引脚和内部模块如: 调压器(LDO)供电。
- V_{DDA} = 2.6 ~ 3.6 V: 通过V_{DDA}引脚为ADC和DAC供电。V_{DDA}和V_{SSA}必须分别与V_{DD}和V_{SS}等电位。
- V_{BAT} = 1.62 ~ 3.6 V: V_{BAT}引脚允许从外部电池、外部超级电容器为器件的V_{BAT}域供电,或当没有外部电池及外部超级电容器时从V_{DD}供电。当没有V_{DD}存在时,V_{BAT}引脚(通过内部电源切换器)为ERTC、外部32 kHz晶振(LEXT)和电池供电寄存器(BPR)供电。

2.4.2 复位和电源电压监测器(POR / LVR / PVM)

本产品内部集成了上电复位(POR)和低电压复位(LVR)电路,该电路始终处于工作状态,可使器件在供电超过2.6~V时工作;当 V_{DD} 压降低于规定阈值(V_{LVR})时,置器件于复位状态,而不必使用外部复位电路。

产品中还包含一个电源电压监测器(PVM),它监视V_{DDD}供电并与阈值V_{PVM}比较,当V_{DD}下降低于或爬升高于阈值V_{PVM}时产生中断。PVM功能需要通过程序开启。

2.4.3 电压调节器 (LDO)

LDO有三个操作模式:正常模式、低功耗模式、和关断模式。

- 正常模式:用于正常的运行操作并可用于CPU的深睡眠模式;
- 低功耗模式:可用于CPU的深睡眠模式;
- 关断模式:用于CPU的待机模式。LDO的输出为高阻状态,内核电路的供电切断,寄存器和SRAM的内容将丢失。

该LDO在复位后处于正常模式工作状态。

LDO另有输出电压调整功能,除默认的1.2 V外,支持1.3/1.1/1.0 V软件可调,提供效能及功耗之间最大适应可能。不同LDO电压适应AHB时钟最高频率见*表15*。使用者须遵照AT32F435/437系列参考手册进行正确的LDO电压切换与系统时钟设置步骤。

2.4.4 低功耗模式

AT32F435/437系列产品支持三种低功耗模式:

睡眠模式 (Sleep)

在睡眠模式,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。

深睡眠模式 (Deepsleep)

深睡眠模式下可以实现低功耗,同时保持SRAM和寄存器的内容。此时,LDO供电域中的所有时 钟都会停止,PLL、HICK时钟、和HEXT晶振也被关闭。还可以将LDO置于正常模式或低功耗模 式并调整输出电压。

可以通过任一配置成EXINT的信号把微控制器从深睡眠模式中唤醒,EXINT信号可以是16个外 部GPIO口之一、PVM的输出、ERTC闹钟/唤醒/入侵检测/时间戳事件、OTGFS或以太网MAC的 唤醒信号。

待机模式(Standby)

在待机模式下可以达到最低的电能消耗。内部的LDO被关闭,因此所有内部LDO供电被切断, PLL、HICK时钟、和HEXT晶振也被关闭。进入待机模式后,SRAM和寄存器的内容将消失,但 ERTC寄存器和电池供电寄存器的内容仍然保留,待机电路仍工作。

从待机模式退出的条件是: NRST上的外部复位信号、WDT复位、WKUPx引脚上的一个上升边 沿或ERTC的闹钟/唤醒/入侵检测/时间戳事件。

在进入深睡眠或待机模式时,ERTC对应的时钟不会被停止。WDT视用户系统数据设置决定。 注:

启动模式 2.5

在启动时,通过对启动引脚设置可以选择三种启动模式中的一种:

- 从程序内部闪存存储器启动。对于AT32F435/437xG/xM,用户可以选择从任意一个内部闪存储 块启动。默认选择片1(Bank 1),也可以设置用户系统数据从而选择片2(Bank 2);
- 从启动程序代码区区启动;
- 从内部SRAM启动。

启动加载程序(Bootloader)存放于启动程序代码区区中,可以通过USART1, USART2, USART3,OTGFS1,或OTGFS2对闪存重新编程,其中OTGFS1和OTGFS2支持无晶振(crystalless)操作。表5提供启动加载程序(Bootloader)对AT32F435/437的型号支持和引脚配置。

表 5. 启动加载程序(Bootloader)的型号支持和引脚的	心置
活用型号	

外设	适用型号	对应引脚
USART1	全部型号	PA9: USART1_TX
USAKTT	生即至5	PA10: USART1_RX
	AT32F435ZxT7,AT32F435VxT7	PD5: USART2_TX
USART2	AT32F437ZxT7,AT32F437VxT7	PD6: USART2_RX
USARIZ	其它型号	PA2: USART2_TX
	央占型写	PA3: USART2_RX

外设	适用型号	对应引脚
		PC10: USART3_TX
	AT32F435ZxT7,AT32F435VxT7,AT32F435RxT7	PC11: USART3_RX
	AT32F437ZxT7, AT32F437VxT7, AT32F437RxT7	或
USART3	A132F437ZX17, A132F437VX17, A132F437RX17	PB10: USART3_TX ⁽¹⁾
		PB11: USART3_RX ⁽¹⁾
	其它型号	PB10: USART3_TX
	央心至 5	PB11: USART3_RX
OTGFS1	全部型号	PA11: OTGFS1_D-
Oldrai	王即坐与	PA12: OTGFS1_D+
OTGFS2	全部型号	PB14: OTGFS2_D-
UIGF52	生命坐专	PB15: OTGFS2_D+

⁽¹⁾ 从硅版本B开始支持。

2.6 时钟

系统时钟在复位后,高速内部48 MHz时钟(HICK)经6分频后(8 MHz)被选为默认的CPU时钟,随后可以选择外部的、具失效监控的4~25 MHz高速晶振(HEXT);当检测到高速外部晶振失效时,它将被关闭,系统将自动地切换到HICK,软件可以接收到相应的中断。同样当PLL使用的高速外部晶振失效时,硬件也会如此自动设置。

时钟控制分成多个预分频器用于配置AHB的频率和APB(APB1和APB2)的频率。AHB的最高频率是288 MHz,APB的最高频率为144 MHz。

另外,AT32F435/437系列产品内置一个特别的自动时钟校准(ACC)模块,高速内部时钟HICK 48 MHz可被此模块校准,可保证在整个芯片可操作温度范围内HICK的最佳准确度。

2.7 通用输入输出口(GPIO)

每个GPIO引脚都可以由软件配置成输出(推挽或开漏、带或不带上拉/下拉)、输入(浮空、带或不带上拉/下拉)或复用的外设功能端口。多数GPIO引脚都与数字或模拟的多个外设共享。所有的GPIO引脚都有大电流通过能力。

在需要的情况下,GPIO引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入GPIO寄存器。

2.8 直接存储器访问控制器(DMA)

AT32F435/437系列产品具有两个通用DMA(DMA1和DMA2)加上一个增强型EDMA共22个通道。它们能够管理存储器到存储器、外设到存储器、存储器到外设的传输。它们具有用于APB/AHB外设的专用缓存,支持突发传输,其设计可提供最大外设带宽(AHB/APB)。

DMA/EDMA控制器支持循环缓冲区管理,当控制器到达缓冲区末尾时,无需专门代码。EDMA控制器还有双缓冲特性,可自动使用和切换两个存储器缓冲,而不需要特殊代码。

每个数据通道都与专用的硬件DMA/EDMA请求相连,同时支持软件触发。通过软件进行相关配置, 并且数据源和数据目标之间传输的数据量不受限制。

DMA/EDMA可以用于主要的外设: SPI和I²S, I²C, USART, 高级、通用和基本定时器TMRx, DAC, SDIO, ADC, DVP, 和QSPI。

2.9 定时器 (TMR)

AT32F435/437系列产品包含最多3个高级定时器、10个通用定时器和2个基本定时器,以及1个系统 滴答定时器。

下表比较了高级定时器、通用定时器和基本定时器的功能:

计数器 定时器类型 定时器 计数器类型 预分频系数 产生 DMA 请求 | 捕获/比较通道 互补输出 分辩率 TMR1 递增,递减, 1~65536 之间 TMR8 高级 16位 有 4 3 递增/递减 的任意整数 TMR20 递增,递减, TMR2 1~65536 之间 16 或 32 位 有 4 无 TMR5 递增/递减 的任意整数 TMR3 递增,递减, 1~65536 之间 16 位 有 4 无 TMR4 递增/递减 的任意整数 TMR9 1~65536 之间 通用 16 位 递增 无 2 无 TMR12 的任意整数 TMR10 TMR11 1~65536 之间 16 位 递增 无 无 1 TMR13 的任意整数 **TMR14** TMR6 1~65536 之间 基本 16 位 递增 有 无 无 TMR7 的任意整数

表 6. 定时器功能比较

2.9.1 高级定时器(TMR1, TMR8, 和 TMR20)

三个高级定时器(TMR1,TMR8,和TMR20)可以被看成是分配到6个通道的三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生PWM(边缘或中心对齐模式)
- 単周期输出

配置为16位通用定时器时,它与TMRx定时器具有相同的功能。配置为16位PWM发生器时,它具有全调制能力(0~100%)。

在调试模式下,计数器可以被冻结,同时PWM输出被禁止,从而切断由这些输出所控制的开关。 很多功能都与通用定时器相同,内部结构也相同,因此高级定时器可以通过定时器链接功能与通用定时器协同操作,提供同步或事件链接功能。

2.9.2 通用定时器 (TMR2~5 和 TMR9~14)

AT32F435/437系列产品中,内置了多达10个可同步运行的定时器。

● TMR2, TMR3, TMR4和TMR5

AT32F435/437系列内置了多达4个通用定时器(TMR2,TMR3,TMR4和TMR5)。TMR2和TMR5是基于一个32位动加载递加/递减计数器和一个16位的预分频器。而TMR3和TMR4是基于一个16位动加载递加/递减计数器和一个16位的预分频器。这些定时器在最大的封装配置中可提供4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单周期模式输出。

它们还能通过定时器链接功能与高级定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一通用定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求机制。

这些定时器还能够处理增量编码器的信号,也能处理1至3个霍尔传感器的数字输出。

● TMR9和TMR12

TMR9和TMR12都有一个16位的自动加载递加计数器、一个16位的预分频器和2个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单周期模式输出,它们可以与全功能通用定时器(TMR2,TMR3,TMR4和TMR5)同步。它们也可以用作简单的定时器。

● TMR10, TMR11, TMR13和TMR14

这些定时器都有一个16位的自动加载递加计数器、一个16位的预分频器和1个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单周期模式输出,它们可以与全功能通用定时器(TMR2,TMR3,TMR4和TMR5)同步。它们也可以用作简单的定时器。

2.9.3 基本定时器 (TMR6 和 TMR7)

这2个定时器主要是用于产生DAC触发信号,也可当成通用的16位时基计数器。

2.9.4 系统滴答定时器(SysTick)

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它包含以下述功能:

- 24位的递减计数器
- 自动重加载功能
- 当计数器为0时能产生一个可屏蔽系统中断
- 可编程时钟源(HCLK或HCLK/8)

2.10 看门狗 (WDT)

看门狗由一个12位的递减计数器和一个8位的预分频器所组成,它的时钟源由低速内部时钟(LICK)提供,因为这个时钟独立于主时钟,所以它可运行于深睡眠和待机模式。它可以被当成看门狗用于在发生错误时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过用户系统数据可以配置看门狗是否自启动。在调试模式下,计数器可以被冻结。

2.11 窗口型看门狗(WWDT)

窗口型看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生错误时复位整个系统。它由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

2.12 增强型实时时钟(ERTC)和电池供电寄存器(BPR)

电池供电域包括:

- 增强型实时时钟(ERTC)
- 20个32位电池供电寄存器(BPR)

增强型实时时钟(ERTC)是一个独立的BCD定时器/计数器。它支持下列功能:

- 日历具有秒、分、小时(12或24小时格式)、星期几、日、月、年,格式为BCD(二进码十进数)。
- 提供二进制格式的亚秒值。
- 自动调整每月的天数为28、29(闰年)、30、还是31天。
- 可编程闹钟和可编程的周期性中断具有从深睡眠和待机模式唤醒的能力。
- 为补偿天然石英的偏差,可通过512 Hz的外部输出对ERTC进行校准。

两个闹钟寄存器用于在特定的时间生成闹铃,可单独屏蔽日历字段以比较闹钟。为生成周期性中断,使用了分辨率可编程的16位可编程二进制自动重载递减计数器,可从每隔120 μs至每隔36小时自动唤醒和周期性闹铃。其它32位寄存器还包含可编程的闹钟亚秒、秒、分钟、小时、星期几和日期。

预分频器用于时间基准时钟。默认情况下,它被配置为从32.768 kHz时钟生成1秒的时间基准。

电池供电寄存器(BPR)为32位寄存器存储80字节的用户应用数据。电池供电寄存器不会在系统复位或电源复位时复位,也不会在器件从待机模式唤醒时复位。

ERTC和BPR通过开关供电,当VDD电源存在时,该开关选择VDD供电,否则选择由VBAT引脚供电。

2.13 通信接口

2.13.1 串行外设接口(SPI)

多达4个SPI接口,在从或主模式下,全双工和半双工的通信速率可达36兆位/秒。预分频器可产生多种主模式频率,可配置成每帧8位或16位。硬件的CRC产生/校验支持基本的SD卡、MMC、和SDHC模式。所有的SPI接口都可以使用DMA操作。

SPI接口可配置为TI模式工作,用于主模式和从模式的通信。

2.13.2 内部集成音频接口(I²S)

4个标准的I²S接口(与SPI复用)可以在主或从模式下工作于半双工,以及I²S2和I²S3全双工模式。这4个接口可以配置为16/24/32位分辨率的输入或输出通道工作,支持音频采样频率从8 kHz到192 kHz。当任一个I²S接口配置为主模式,它的主时钟可以以256倍采样频率输出。所有I²S均可使用DMA控制器。

2.13.3 通用同步/异步收发器(USART)

AT32F435/437系列产品中,内置了4个通用同步/异步收发器(USART1,USART2,USART3和USART6),和4个通用异步收发器(UART4,UART5,UART7和UART8)。

这8个接口提供异步通信、支持IrDA SIR ENDEC传输编解码、多处理器通信模式、单线半双工通信模式和LIN主/从功能。USART1,USART2,USART3和USART6接口还提供了具有硬件的CTS和RTS信号管理、兼容ISO7816的智能卡模式和类似SPI通信模式。所有接口都可以使用DMA操作。这8个接口接口通信速率均可达9兆位/秒。

USART/UART 功能	USART1	USART2	USART3	UART4	UART5	USART6	UART7	UART8
调制解调器的硬件流控	支持	支持	支持	-	-	支持	-	-
使用 DMA 连续通信	支持	支持	支持	支持	支持	支持	支持	支持
多处理器通信	支持	支持	支持	支持	支持	支持	支持	支持
同步模式	支持	支持	支持	-	-	支持	-	-
智能卡模式	支持	支持	支持	-	-	支持	-	-
单线半双工通	支持	支持	支持	支持	支持	支持	支持	支持
红外 IrDA SIR 编解码	支持	支持	支持	支持	支持	支持	支持	支持
LIN 模式	支持	支持	支持	支持	支持	支持	支持	支持
TX/RX 交换	支持	支持	支持	支持	支持	支持	支持	支持
RS-485 驱动使能	支持	支持	支持	-	-	支持	-	-

表 7. USART/UART 功能比较

2.13.4 内部集成电路总线 (I²C)

多达3个I²C总线接口,能够工作于多主模式或从模式。它们支持标准模式(standard mode,最高 100 kHz)、快速模式(fast mode,最高400 kHz)、和增强快速模式(fast mode plus,最高1 MHz),部分GPIO支持超高电流吸入能力20 mA。

I²C接口支持7位或10位寻址,7位从模式时支持双从地址寻址。内置了硬件CRC发生器/校验器。它们可以使用DMA操作并支持SMBus总线2.0版/PMBus总线。

2.13.5 安全数字输入/输出接口(SDIO)

2个SD/SDIO/MMC主机接口,可以支持MMC卡系统规范4.2版中的3个不同的数据总线模式: 1位 (默认)、4位和8位。在8位模式下,该接口可以使数据传输速率达到48 MHz,该接口兼容SD存储卡规范2.0版。

SDIO存储卡规范2.0版支持两种数据总线模式: 1位(默认)和4位。

目前的芯片版本一个SDIO接口只能一次支持一个SD/SDIO/MMC4.2版的卡,但可以同时支持多个MMC4.1版或之前的多个版本的卡。

除了SD/SDIO/MMC/eMMC,这个接口完全与CE-ATA数字协议版本1.1兼容。

2.13.6 控制器区域网络(CAN)

2个CAN接口兼容规范2.0A和2.0B(主动),位速率高达1兆位/秒。它可以接收和发送11位标识符的标准帧,也可以接收和发送29位标识符的扩展帧。每个CAN具有3个发送邮箱,2个具3级深度的接收缓存,和28个可调节的滤波器。每个CAN都分配有368字节的专用缓存,此专用缓存不和另一个CAN或其他硬件外设共享。

为保证传输品质,根据CAN 2.0协议规范的时钟准确度要求,CAN的时钟源必须来自由HEXT晶振为源头所产生的PLL时钟。

2.13.7 通用串行总线 On-The-Go 全速 (OTGFS)

AT32F435/437内置2个集成了收发器(PHY)的OTG全速(12 Mb/s)设备和主机模式控制模块。它具有可由软件配置的端点设置,并支持挂起/恢复机制。OTGFS模块要求专用的48 MHz时钟,用作主机模式时此时钟必须来自由HEXT晶振为源头所产生的PLL时钟源,只有用作设备模式时此时钟可另选择直接来自48 MHz HICK。

每个OTGFS模块特性有:

- 专用的1280字节缓存(不和另一OTGFS模块或其他任何外设共享)
- 8个IN + 8个OUT端点(包含端点0,设备模式)
- 16个通道(主机模式)
- SOF和OE输出
- 兼容USB2.0协议,提供以下传输速率:
 - 主机模式: 全速和低速
 - 设备模式: 全速

2.13.8 红外发射器 (IRTMR)

AT32F435/437系列产品提供了红外发射器。基于TMR10、USART1、或USART2与TMR11间的内部连接。TMR11用于提供载波频率,TMR10、USART1、或USART2提供要发送的主信号。红外输出信号在PB9或PA13上可用。

为生成红外遥控信号,必须正确配置TMR10通道1和TMR11通道1以生成正确的波形。所有标准红外脉冲调制模式都可通过编程两个定时器输出比较通道获得。

2.13.9 以太网 MAC 接口(EMAC)

此外设只有AT32F437系列产品支持。

AT32F437芯片提供兼容IEEE-802.3-2002的媒体访问控制器(MAC),通过业界标准的媒体独立接口(MII)或减少的媒体独立接口(RMII)提供以太网LAN通信。AT32F437芯片需要外接物理接口器件(PHY)来连接物理的LAN总线(双绞线,光纤等)。PHY通过17根信号线(MII接口)或9根信号线(RMII接口)来连接AT32F437芯片的EMAC接口,并通过AT32F437芯片输出的25 MHz(MII接口)或50 MHz(RMII接口)时钟信号来驱动。

以太网MAC接口片具有以下特性:

- 支持10 M和100 Mbit/s的通讯率
- 使用专用的DMA控制器,以提供在专用缓存和描述符之间的高速数据传输
- 支持带标签的MAC帧(支持VLAN)
- 支持半双工(CSMA/CD)和全双工操作
- 支持MAC控制子层(控制帧)
- 32位CRC生成和去除
- 物理和多播地址的多种地址过滤模式(多播和组播地址)
- 每个传送和接收帧的32位状态码
- 内置缓存用于帧的传输和接收。发送缓存和接收缓存各有2 K字节, 共4 K字节

- 支持兼容IEEE 1588的硬件PTP协议(精密时间协议),时间戳比较输出连接到TMR2的触发输入
- 当系统时间大于目标时间时触发中断

2.14 数字摄像头并口(DVP)

AT32F435/437内置有数字摄像头接口,可通过8位至14位并行接口与数字摄像头模块连接以接收视频数据。该摄像头接口可支持的数据传输速率可在54 MHz时高达54兆字节/秒。它具有以下特性:

- 输入像素时钟和同步信号的可编程极性
- 并行数据通信可为8、10、12、14位
- 支持8位逐行视频单色或原始拜尔格式、YCbCr 4:2:2逐行视频、RGB 565逐行视频、或压缩数据(如JPEG)
- 连续模式或快照(单帧)模式
- 自动裁剪图像的能力
- 灰阶影像二值化转换

2.15 循环冗余校验(CRC)计算单元

CRC(循环冗余校验)计算单元使用一个固定的多项式发生器,从一个32位的数据字产生一个CRC码。在众多的应用中,基于CRC的技术被用于验证数据传输或存储的一致性。

2.16 模拟/数字转换器 (ADC)

AT32F435/437系列产品内置3个12位的模拟/数字转换器(ADC),具有以下功能:

- 可配置12位、10位、8位、或6位分辨率,带自校准功能
- 5.33 MSPS的12位分辨率最高转换率,可通过降低分辨率来缩短转换时间
- 共享多达24个外部通道,其中有6个快速通道
- 3个内部专用通道:内部温度传感器(V_{TS})、内部参考电压(V_{INTRV})、和V_{BAT}监测(V_{BAT}/4)
- 可独立设置各通道采样时间
- 2到256倍硬件过采样,最高达等效16位分辨率
- 转换可通过以下方式启动:
 - 通过软件启动普通转换和抢占转换
 - 通过极性可配置的硬件触发器(内部定时器事件或GPIO输入事件)启动普通转换和抢占转换
- 转换模式:
 - ADC可转换单个通道,也可一系列通道序列转换
 - 序列模式会在每次触发时对选定的通道执行一次转换
 - 反复模式可连续转换选定的通道
 - 分割模式
- 单从机或双从机下ADC之间同时模式或位移模式转换的控制
- 电压监测功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阈值时,将产生中断
- 所有ADC都可以使用DMA操作

2.16.1 温度传感器 (V_{TS})

温度传感器产生一个随温度线性变化的电压V_{TS}。温度传感器在内部被连接到ADC1_IN16的输入通道上,用于将传感器的输出转换到数字数值。

由于工艺不同,温度传感器的偏移因芯片而异,因此内部温度传感器主要适合检测温度变化的应用,而不是检测绝对温度的应用。如果需要读取精确温度,则应使用外部温度传感器部分。

2.16.2 内部参考电压(V_{INTRV})

内部参考电压(V_{INTRV})为ADC提供了一个稳定的电压输出。V_{INTRV}内部连接到ADC1_IN17输入通道。

2.16.3 V_{BAT} 电池电压监控(V_{BAT}/4)

此内置的硬件使用内部ADC通道ADC1_IN18测量V_{BAT}电池电压。因为V_{BAT}电压可能高于V_{REF+}或 V_{DDA},超出ADC的输入范围,所以V_{BAT}引脚内部连至除4的桥,转换出的数字值为V_{BAT}电压的1/4。

2.17 数字/模拟转换器 (DAC)

2个12位带缓冲的DAC通道可以用于转换2路数字信号成为2路模拟电压输出。

DAC具有下述功能:

- 两个DAC转换器:各有一个输出通道
- 8位或12位单调输出
- 12位模式下的左右数据对齐
- 同步更新功能
- 产生噪声波
- 产生三角波
- 双DAC通道独立或同时转换
- 每个通道都可使用DMA功能
- 外部触发进行转换
- 输入参考电压为V_{REF+}

AT32F435/437系列产品中有数个触发DAC转换的输入。DAC通道可以由定时器的更新输出触发,更新输出也可连接到不同的DMA通道。

2.18 串行线 (SWD) / JTAG 调试接口

内置的ARM® SWJ-DP接口,这是一个由串行线和JTAG调试端口结合而成,可以实现要连接到目标的串行线调试接口或JTAG接口。JTAG的TMS和TCK信号分别与SWDIO和SWCLK共享引脚。

3 引脚功能定义

图 2. AT32F435/437 系列 LQFP144 引脚分布

图 3. AT32F435/437 系列 LQFP100 引脚分布

图 4. AT32F435/437 系列 LQFP64 引脚分布

图 5. AT32F435 系列 LQFP48 引脚分布

图 6. AT32F435 系列 QFN48 引脚分布

下表为AT32F435/437系列引脚定义,"-"表示对应封装下没有该引脚。除非在引脚名下面的括号中特别说明,复位期间和复位后的引脚功能与实际引脚名相同。除非特别注释说明,否则在复位期间和复位后所有GPIO都设为浮空输入。引脚复用是通过GPIOx_MUXx寄存器选择功能,附加功能是通过外设寄存器直接选择/启用的功能。

表 8. AT32F435/437 系列引脚定义

引脚号								
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
-	-	1	1	PE2	I/O	FT	TMR3_EXT / SPI4_SCK / I2S4_CK / TMR20_CH1 / QSPI1_IO2 / XMC_SDNCAS / EMAC_MII_TXD3 / XMC_A23	-
-		2	2	PE3	I/O	FT	TMR3_CH1 / TMR20_CH2 / XMC_A19 / DVP_D9	-
-	-	3	3	PE4	I/O	FT	CLKOUT1 / TMR3_CH2 / SPI4_CS / I2S4_WS / TMR20_CH1C / XMC_A20 / DVP_D4	-
-	-	4	4	PE5	I/O	FT	TMR3_CH3 / TMR9_CH1 / SPI4_MISO / TMR20_CH2C / XMC_A21 / DVP_D6	-
-	1	5	5	PE6	I/O	FT	TMR3_CH4 / TMR9_CH2 / SPI4_MOSI / I2S4_SD / TMR20_CH3C / XMC_SDNRAS / XMC_A22 / DVP_D7	-
1	1	6	6	V_{BAT}	S	-	电池供电电源	
2	2	7	7	PC13 ⁽⁴⁾⁽⁵⁾	I/O	FT	-	ERTC_AF1 / WKUP2
3	3	8	8	PC14 / LEXT_IN (PC14) ⁽⁴⁾⁽⁵⁾	I/O	тс	-	LEXT_IN
4	4	9	9	PC15 / LEXT_OUT (PC15) ⁽⁴⁾⁽⁵⁾	I/O	тс	-	LEXT_OUT
-	-	-	10	PF0	I/O	FT	I2C2_SDA / XMC_A0	-
-	-	-	11	PF1	I/O	FT	I2C2_SCL / XMC_A1	-
-	-	-	12	PF2	I/O	FT	TMR20_CH3 / I2C2_SMBA / XMC_A2	-
-	-	-	13	PF3	I/O	FTa	TMR20_CH4 / XMC_A3	ADC3_IN9
-	-	ı	14	PF4	I/O	FTa	TMR20_CH1C / XMC_A4	ADC3_IN14
-	-	ı	15	PF5	I/O	FTa	TMR20_CH2C / XMC_A5	ADC3_IN15
-	-	10	16	V_{SS}	S	-	数字地	
-	-	11	17	V_{DD}	S	-	数字电源	
-	-	ı	18	PF6	I/O	FTa	TMR10_CH1 / TMR20_CH4 / UART7_RX / QSPI1_IO3 / XMC_NIORD	ADC3_IN4
-	-	-	19	PF7	I/O	FTa	TMR11_CH1 / TMR20_BRK / UART7_TX / QSPI1_IO2 / XMC_NREG	ADC3_IN5
-	-	-	20	PF8	I/O	FTa	TMR13_CH1 / QSPI1_IO0 / XMC_NIOWR	ADC3_IN6
-	-	-	21	PF9	I/O	FTa	TMR14_CH1 / TMR20_BRK / QSPI1_IO1 / XMC_CD	ADC3_IN7
-	-	-	22	PF10	I/O	FTa	TMR1_EXT / TMR5_CH4 / QSPI1_SCK / XMC_INTR / DVP_D11	ADC3_IN8

	引身	申号										
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能				
5	5	12	23	PH0 / HEXT_IN (PH0)	I/O	тс	I2C1_SDA	HEXT_IN				
6	6	13	24	PH1 / HEXT_OUT (PH1)	I/O	тс	I2C1_SCL	HEXT_OUT				
7	7	14	25	NRST	I/O	R	器件复位输入/内部复位输出(低电平有效)				
-	8	15	26	PC0	I/O	FTa	I2C3_SCL / UART7_TX / SDIO2_D0 / XMC_SDNWE	ADC123_IN10 ⁽⁶⁾				
-	9	16	27	PC1	I/O	FTa	I2C3_SDA / SPI3_MOSI / I2S3_SD / SPI2_MOSI / I2S2_SD / UART7_RX SDIO2_D1 / EMAC_MDC	ADC123_IN11 ⁽⁶⁾				
-	10	17	28	PC2	I/O	FTa	TMR20_CH2 / SPI2_MISO / I2S2_SDEXT / UART8_TX / SDIO2_D2 / EMAC_MII_TXD2 / XMC_SDCS0 / XMC_NWE	ADC123_IN12 ⁽⁶⁾				
-	11	18	29	PC3	I/O	FTa	SPI2_MOSI / I2S2_SD / UART8_RX / QSPI2_IO1 / SDIO2_D3 / EMAC_MII_TX_CLK / XMC_SDCKE0 / XMC_A0	ADC123_IN13 ⁽⁶⁾				
-	-	19	30			ı	未连接					
8	12	20	31	V _{SSA} / V _{REF} -	S	-	模拟地 / 负参考电压					
-	-	21	32	V _{REF+}	S	-	正参考电压					
-	-	22	33	V _{DDA}	S	-	模拟电源					
9	13	-	1	V _{DDA} / V _{REF+}	S	-	模拟电源 / 正参考电压					
10	14	23	34	PA0	I/O	FTa	TMR2_CH1 / TMR2_EXT / TMR5_CH1 / TMR8_EXT / I2C2_SCL / USART2_CTS / UART4_TX / EMAC_MII_CRS	ADC123_IN0 ⁽⁶⁾ / ERTC_AF2 / WKUP1				
11	15	24	35	PA1	I/O	FTa	TMR2_CH2 / TMR5_CH2 / I2C2_SDA / SPI4_MOSI / I2S4_SD / USART2_RTS_DE / UART4_RX / QSPI1_IO3 / EMAC_MII_RX_CLK / EMAC_RMII_REF_CLK	ADC123_IN1 ⁽⁶⁾				
12	16	25	36	PA2	I/O	FTa	TMR2_CH3 / TMR5_CH3 / TMR9_CH1 / USART2_TX / SDIO2_CK / EMAC_MDIO / XMC_D4	ADC123_IN2				
13	17	26	37	PA3	I/O	FTa	TMR2_CH4 / TMR5_CH4 / TMR9_CH2 / I2S2_MCK / USART2_RX / QSPI2_IO3 / SDIO2_CMD / EMAC_MII_COL / XMC_D5	ADC123_IN3				
-	18	27	38	Vss	S	-	数字地					
-	19	28	39	V _{DD}	S	-	数字电源					
14	20	29	40	PA4	I/O	FTa	SPI1_CS / I2S1_WS / SPI3_CS / I2S3_WS / USART2_CK / USART6_TX / SDIO2_D4 / SDIO2_D0 / OTGFS2_SOF / DVP_HSYNC / XMC_D6	ADC12_IN4 / DAC1_OUT				
15	21	30	41	PA5	I/O	FTa	TMR2_CH1 / TMR2_EXT / TMR8_CH1C / SPI1_SCK / I2S1_CK / USART6_RX / QSPI2_IO2 / SDIO2_D5 / SDIO2_D1 / XMC_D7	ADC12_IN5 / DAC2_OUT				

		却号						
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
16	22	31	42	PA6	I/O	FTa	TMR1_BRK / TMR3_CH1 / TMR8_BRK / SPI1_MISO / I2S2_MCK / USART3_CTS / TMR13_CH1 / QSPI1_IO0 / SDIO2_D2 / SDIO1_CMD / DVP_PCLK / SDIO2_D6	ADC12_IN6
17	23	32	43	PA7	I/O	FTa	TMR1_CH1C / TMR3_CH2 / TMR8_CH1C / SPI1_MOSI / I2S1_SD / TMR14_CH1 / QSPI1_IO1 / EMAC_MII_RX_DV / EMAC_RMII_CRS_DV / XMC_SDNWE / SDIO2_D3 / SDIO2_D7	ADC12_IN7
-	24	33	44	PC4	I/O	FTa	TMR9_CH1 / I2S1_MCK / USART3_TX / QSPI1_IO2 / EMAC_MII_RXD0 / EMAC_RMII_RXD0 / XMC_SDCS0 / SDIO2_CK / XMC_NE4	ADC12_IN14
,	25	34	45	PC5	I/O	FTa	TMR9_CH2 / I2C1_SMBA / USART3_RX / QSPI1_IO3 / EMAC_MII_RXD1 / EMAC_RMII_RXD1 / XMC_SDCKE0 / SDIO2_CMD / XMC_NOE	ADC12_IN15
18	26	35	46	PB0	I/O	FTa	TMR1_CH2C / TMR3_CH3 / TMR8_CH2C / I2S1_MCK / USART2_RX / SPI3_MOSI / I2S3_SD / USART3_CK / QSPI2_IO0 / QSPI1_IO0 / EMAC_MII_RXD2 / SDIO1_D1	ADC12_IN8
19	27	36	47	PB1	I/O	FTa	TMR1_CH3C / TMR3_CH4 / TMR8_CH3C / SPI2_SCK / I2S2_CK / USART3_RTS_DE / QSPI1_SCK / QSPI2_SCK / EMAC_MII_RXD3 / SDIO1_D2	ADC12_IN9
20	28	37	48	PB2 / BOOT1 (PB2)	I/O	FT	TMR2_CH4 / TMR20_CH1 / I2C3_SMBA / SPI3_MOSI / I2S3_SD / QSPI1_SCK / SDIO1_CK	-
-	-	-	49	PF11	I/O	FT	TMR20_EXT / TMR8_EXT / XMC_SDNRAS / DVP_D12	-
-	-		50	PF12	I/O	FT	TMR20_CH1 / TMR8_BRK / XMC_A6	-
-	-	-	51	Vss	S	-	数字地	
-		_	52	V _{DD}	S	-	数字电源	
-	-	-	53	PF13	I/O	FT	TMR20_CH2 / I2C3_SMBA / XMC_A7	-
-	-	-	54	PF14	I/O	FTf	TMR20_CH3 / I2C3_SCL / XMC_A8	-
-	-	-	55	PF15	I/O	FTf	TMR20_CH4 / I2C3_SDA / XMC_A9	-
-	-	-	56	PG0	I/O	FT	TMR20_CH1C / SPI1_MISO / CAN1_RX / XMC_A10	-
-	-	-	57	PG1	I/O	FT	TMR20_CH2C / SPI1_MOSI / I2S1_SD / CAN1_TX / XMC_A11	-
-	-	38	58	PE7	I/O	FT	TMR1_EXT / UART7_RX / QSPI2_IO0 / XMC_D4	-
-	-	39	59	PE8	I/O	FT	TMR1_CH1C / UART4_TX / UART7_TX / QSPI2_IO1 / XMC_D5	-

	引服	却号			_	6		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
-	-	40	60	PE9	I/O	FT	TMR1_CH1 / UART4_RX / QSPI2_IO2 / XMC_D6	-
-	-	-	61	Vss	S	-	数字地	
-	-	-	62	V _{DD}	S	-	数字电源	
-	-	41	63	PE10	I/O	FT	TMR1_CH2C / UART5_TX / QSPI2_IO3 / XMC_D7	-
-	ı	42	64	PE11	I/O	FT	TMR1_CH2 / SPI4_CS / I2S4_WS / UART5_RX / XMC_D8	-
-	-	43	65	PE12	I/O	FT	TMR1_CH3C / SPI1_CS / I2S1_WS / SPI4_SCK / I2S4_CK / XMC_D9	-
-	-	44	66	PE13	I/O	FT	TMR1_CH3 / SPI1_SCK / I2S1_CK / SPI4_MISO / XMC_D10	-
-	1	45	67	PE14	I/O	FT	TMR1_CH4 / SPI1_MISO / SPI4_MOSI / I2S4_SD / XMC_D11	-
-	-	46	68	PE15	I/O	FT	TMR1_BRK / SPI1_MOSI / I2S1_SD / XMC_D12	-
21	29	47	69	PB10	I/O	FTf	TMR2_CH3 / I2C2_SCL / SPI2_SCK / I2S2_CK / I2S3_MCK / USART3_TX / QSPI1_CS / QSPI1_IO1 / EMAC_MII_RX_ER / SDIO1_D7 / XMC_NOE	-
22	30	48	70	PB11	I/O	FT	TMR2_CH4 / TMR5_CH4 / I2C2_SDA / USART3_RX / QSPI1_IO0 / EMAC_MII_TX_EN / EMAC_RMII_TX_EN	-
23	31	49	71	PH3	I/O	FT	TMR5_CH2 / I2C2_SDA / UART4_TX / QSPI1_IO1	-
24	32	50	72	V _{DD}	S	-	数字电源	
25	33	51	73	PB12	I/O	FT	TMR1_BRK / TMR5_CH1 / I2C2_SMBA / SPI2_CS / I2S2_WS / SPI4_CS / I2S4_WS / SPI3_SCK / I2S3_CK / USART3_CK / CAN2_RX / EMAC_MII_TXD0 / EMAC_RMII_TXD0 / OTGFS2_ID / XMC_D13	-
26	34	52	74	PB13	I/O	FT	TMR1_CH1C / I2C3_SMBA / SPI2_SCK / I2S2_CK / SPI4_SCK / I2S4_CK / I2C3_SCL / USART3_CTS / CAN2_TX / EMAC_MII_TXD1 / EMAC_RMII_TXD1 / OTGFS2_VBUS	-
27	35	53	75	PB14	I/O	TC	TMR1_CH2C / TMR8_CH2C / I2C3_SDA / SPI2_MISO / I2S2_SDEXT / USART3_RTS_DE / TMR12_CH1 / OTGFS2_D- / SDIO1_D6 / XMC_D0	-
28	36	54	76	PB15	I/O	TC	ERTC_REFIN / TMR1_CH3C / TMR8_CH3C / I2C3_SCL / SPI2_MOSI / I2S2_SD / TMR12_CH2 / OTGFS2_D+ / SDIO1_CK	-
-	-	55	77	PD8	I/O	FT	USART3_TX / EMAC_MII_RX_DV / EMAC_RMII_CRS_DV / XMC_D13	-

		助号						
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
-	1	56	78	PD9	I/O	FT	USART3_RX / EMAC_MII_RXD0 / MAC_RMII_RXD0 / XMC_D14	-
-	-	57	79	PD10	I/O	FT	USART3_CK / EMAC_MII_RXD1 / EMAC_RMII_RXD1 / XMC_D15	-
-	-	58	80	PD11	I/O	FT	I2C2_SMBA / USART3_CTS / QSPI1 _IO0 / XMC_A14 / XMC_SDBA0 / EMAC_MII_RXD2 / XMC_A16_CLE	-
-	1	59	81	PD12	I/O	FTf	TMR4_CH1/ I2C2_SCL / USART3_RTS_DE / QSPI1 _IO1 / XMC_A15 / XMC_SDBA1 / EMAC_MII_RXD3 / XMC_A17_ALE	-
-	-	60	82	PD13	I/O	FTf	TMR4_CH2/ I2C2_SDA / UART8_TX / QSPI1_IO3 / XMC_SDCLK / XMC_A18	-
-	-	-	83	Vss	S	-	数字地	
-	-	-	84	V_{DD}	S	-	数字电源	
-	-	61	85	PD14	I/O	FTf	TMR4_CH3 / I2C3_SCL / UART8_RX / XMC_D0	-
-	-	62	86	PD15	I/O	FTf	TMR4_CH4 / I2C3_SDA / XMC_D1	-
-	-	-	87	PG2	I/O	FT	TMR20_CH3C / XMC_A12	-
-	-	-	88	PG3	I/O	FT	TMR20_BRK / XMC_A13	-
-	-	-	89	PG4	I/O	FT	XMC_A14 / XMC_SDBA0	-
-	-	-	90	PG5	I/O	FT	TMR20_EXT / XMC_A15 / XMC_SDBA1	-
-	1	-	91	PG6	I/O	FT	QSPI1_CS / XMC_INT2 / DVP_D12	-
-	•	•	92	PG7	I/O	FT	USART6_CK / XMC_INT3 / DVP_D13	-
-	1	1	93	PG8	I/O	FT	QSPI2_CS / USART6_RTS_DE / EMAC_PPS_OUT / XMC_SDCLK	-
-	-	-	94	V _{SS}	S	-	数字地	
-	-	-	95	V_{DD}	S	-	数字电源	
-	37	63	96	PC6	I/O	FT	TMR3_CH1 / TMR8_CH1 / I2C1_SCL / I2S2_MCK / USART6_TX / XMC_A0 / SDIO1_D6 / DVP_D0 / XMC_D1	-
-	38	64	97	PC7	I/O	FT	TMR3_CH2 / TMR8_CH2 / I2C1_SDA / SPI2_SCK / I2S2_CK / I2S3_MCK / USART6_RX / XMC_A1 / SDIO1_D7 / DVP_D1	-
-	39	65	98	PC8	I/O	FT	TMR3_CH3 / TMR8_CH3 / I2S4_MCK / TMR20_CH3 / UART8_TX / USART6_CK / QSPI1_IO2 / XMC_A2 / SDIO1_D0 / DVP_D2	-
-	40	66	99	PC9	I/O	FT	CLKOUT2 / TMR3_CH4 / TMR8_CH4 / I2C3_SDA / UART8_RX / QSPI1_IO0 / XMC_A3 / OTGFS2_OE / SDIO1_D1 / DVP_D3	-
29	41	67	100	PA8	I/O	FT	CLKOUT1 / TMR1_CH1 / I2C3_SCL / USART1_CK / USART2_TX / OTGFS1_SOF / SDIO1_D1 / XMC_A4	-

	引展	申号				í		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
30	42	68	101	PA9	I/O	FT	TMR1_CH2 / I2C3_SMBA /	-
31	43	69	102	PA10	I/O	FT	TMR1_CH3 / SPI2_MOSI / I2S2_SD / I2S4_MCK / USART1_RX / I2C1_SDA / OTGFS1_ID / DVP_D1	-
32	44	70	103	PA11	I/O	TC	TMR1_CH4 / I2C2_SCL / SPI2_CS / I2S2_WS / SPI4_MISO / USART1_CTS / USART6_TX / CAN1_RX / OTGFS1_D- / DVP_D2	-
33	45	71	104	PA12	I/O	тс	TMR1_EXT / I2C2_SDA / SPI2_MISO / USART1_RTS_DE / USART6_RX / CAN1_TX / OTGFS1_D+ / DVP_D3	-
34	46	72	105	PA13 (JTMS / SWDIO)	I/O	FT	JTMS / SWDIO / IR_OUT / SPI3_MISO / OTGFS1_OE	-
35	47	73	106	PH2	I/O	FT	TMR5_CH1/I2C2_SCL/ UART4_RX/QSPI1_IO0	-
-		74	107	Vss	S	-	数字地	
36	48	75	108	V_{DD}	S	-	数字电源	
37	49	76	109	PA14 (JTCK / SWCLK)	I/O	FT	JTCK / SWCLK / SPI3_MOSI / I2S3_SD / USART2_TX	-
38	50	77	110	PA15 (JTDI)	I/O	FT	JTDI / TMR2_CH1 / TMR2_EXT /	-
-	51	78	111	PC10	I/O	FT	TMR5_CH2 / SPI3_SCK / I2S3_CK / USART3_TX / UART4_TX / QSPI1 _IO1 / SDIO1_D2 / DVP_D8	-
-	52	79	112	PC11	I/O	FT	TMR5_CH3 / I2S3_SDEXT / SPI3_MISO / USART3_RX / UART4_RX / QSPI1_CS / SDIO1_D3 / DVP_D4 / XMC_D2	-
-	53	80	113	PC12	I/O	FT	TMR11_CH1 / I2C2_SDA / SPI3_MOSI / I2S3_SD / USART3_CK / UART5_TX / SDIO1_CK / DVP_D9 / XMC_D3	-
-	-	81	114	PD0	I/O	FT	SPI4_MISO/ SPI3_MOSI / I2S3_SD / SPI2_CS / I2S2_WS / CAN1_RX / XMC_A5 / XMC_D2	-
-	-	82	115	PD1	I/O	FT	SPI2_SCK / I2S2_CK / SPI2_CS / I2S2_WS / CAN1_TX / XMC_A6 / XMC_D3	-
-	54	83	116	PD2	I/O	FT	TMR3_EXT / USART3_RTS_DE / UART5_RX / XMC_A7 / SDIO1_CMD / DVP_D11 / XMC_NWE	-

	引息	却号				ล		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
-	-	84	117	PD3	I/O	FT	SPI2_SCK / I2S2_CK / SPI2_MISO / USART2_CTS / QSPI1_SCK / XMC_A8 / XMC_CLK / DVP_D5	-
-	-	85	118	PD4	I/O	FT	SPI2_MOSI / I2S2_SD / USART2_RTS_DE / XMC_A9 / XMC_NOE	-
-	-	86	119	PD5	I/O	FT	USART2_TX / XMC_A10 / XMC_NWE	-
-	-	-	120	Vss	S	-	数字地	
-	-	-	121	V_{DD}	S	-	数字电源	
-	-	87	122	PD6	I/O	FT	SPI3_MOSI / I2S3_SD / USART2_RX / XMC_A11 / XMC_NWAIT / DVP_D10	-
-	-	88	123	PD7	I/O	FT	USART2_CK / XMC_A12 / XMC_NE1 / XMC_NCE2	-
-	-	-	124	PG9	I/O	FT	USART6_RX / QSPI1_IO2 / XMC_NE2 / XMC_NCE3 / DVP_VSYNC	-
-	-	-	125	PG10	I/O	FT	QSPI2_IO2 / XMC_NE3 / XMC_NCE4_1 / DVP_D2	-
-	-	-	126	PG11	I/O	FT	QSPI2_IO3 / SPI4_SCK / I2S4_CK / CAN2_RX / EMAC_MII_TX_EN / EMAC_RMII_TX_EN / XMC_NCE4_2 / DVP_D3	-
-	-	-	127	PG12	I/O	FT	QSPI2_IO1 / SPI4_MISO / USART6_RTS_DE / CAN2_TX / XMC_NE4	-
-	-	-	128	PG13	I/O	FT	QSPI2_SCK / SPI4_MOSI / I2S4_SD / USART6_CTS / EMAC_MII_TXD0 / EMAC_RMII_TXD0 / XMC_A24	-
-	-	-	129	PG14	I/O	FT	QSPI2_IO0 / SPI4_CS / I2S4_WS / USART6_TX / QSPI1_IO3 / EMAC_MII_TXD1 / EMAC_RMII_TXD1 / XMC_A25	-
-	-	-	130	Vss	S	-	数字地	
-	-	-	131	V_{DD}	S	-	数字电源	
-	-	-	132	PG15	I/O	FT	USART6_CTS / XMC_SDNCAS / DVP_D13	-
39	55	89	133	PB3 (JTDO)	I/O	FTf	JTDO / TMR2_CH2 / I2C2_SDA / SPI1_SCK / I2S1_CK / SPI3_SCK / I2S3_CK / USART1_RX / UART7_RX / QSPI1_IO3 / DVP_D4 / SWO	-
40	56	90	134	PB4 (NJTRST)	I/O	FT	JNTRST / TMR3_CH1 / I2C3_SDA / SPI1_MISO / SPI3_MISO / I2S3_SDEXT / UART7_TX / SDIO1_D0 / DVP_D5	-
41	57	91	135	PB5	I/O	FT	TMR3_CH2/I2C1_SMBA / SPI1_MOSI / I2S1_SD / SPI3_MOSI / I2S3_SD / USART1_CK / UART5_RX / CAN2_RX / EMAC_PPS_OUT / XMC_SDCKE1 / DVP_D10 / SDIO1_D3	-

	引度	申号				(2)		
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	引脚名称 (复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
42	58	92	136	PB6	I/O	FT	TMR4_CH1/ I2C1_SCL / I2S1_MCK / SPI4_CS / I2S4_WS / USART1_TX / UART5_TX / CAN2_TX / QSPI1_CS / XMC_SDCS1 / DVP_D5 / SDIO1_D0	-
43	59	93	137	PB7	I/O	FT	TMR4_CH2 / TMR8_BRK / I2C1_SDA / SPI4_SCK / I2S4_CK / USART1_RX / QSPI2_IO1 / XMC_NADV / DVP_VSYNC / SDIO1_D0	-
44	60	94	138	BOOT0	I	В	-	-
45	61	95	139	PB8	I/O	FT	TMR2_CH1 / TMR2_EXT / TMR4_CH3 / TMR10_CH1 / I2C1_SCL / SPI4_MISO / UART5_RX / CAN1_RX / QSPI2_CS / EMAC_MII_TXD3 / SDIO1_D4 / DVP_D6	-
46	62	96	140	PB9	I/O	FTf	IR_OUT / TMR2_CH2 / TMR4_CH4 / TMR11_CH1 / I2C1_SDA / SPI2_CS/I2S2_WS / SPI4_MOSI / I2S4_SD / I2C2_SDA / UART5_TX / CAN1_TX / QSPI1_CS / SDIO1_D5 / DVP_D7	-
-	-	97	141	PE0	I/O	FT	TMR4_EXT / TMR20_EXT / UART8_RX / XMC_LB / XMC_SDDQML / DVP_D2	-
-	-	98	142	PE1	I/O	FT	TMR1_CH2C / TMR20_CH4 / UART8_TX / XMC_UB / XMC_SDDQMH / DVP_D3	-
47	63	99	143	V _{SS}	S	-	数字地	
48	64	100	144	V _{DD}	S	-	数字电源	
-/49	-	-	-	EPAD	S	-	数字地	

- (1) I = 输入, O = 输出, S = 电源。
- (2) TC = 标准电平, FT = 一般5 V电平容忍, FTa = 带模拟功能5 V电平容忍, FTf = 5 V电平容忍带20 mA吸入能力, R = 配有内置弱上拉电阻的双向复位引脚, B = 配有内置弱下拉电阻的专用BOOT0引脚。其中FTa引脚设置为输入浮空、输入上拉、或输入下拉时,具有5 V电平容忍特性,设置为模拟模式时,不具5 V电平容忍特性,此时输入电平必须小于VDD + 0.3 V。
- (3) 可用功能取决于所选型号。任一GPIO皆拥有EVENTOUT功能。
- (4) PC13, PC14和PC15引脚通过电源开关进行供电,而这个电源开关只能够推动有限的电流(3 mA),因此这三个引脚作为输出引脚时不能作为电流源(如驱动LED)。
- (5) 这些引脚在电池供电区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由电池供电区域寄存器控制(这些寄存器不会被主复位系统所复位)。关于如何控制这些I/O口的具体信息,请参考AT32F435/437系列参考手册的电池电池供电区域和BPR寄存器的相关章节。
- (6) PAO, PA1, PC0, PC1, PC2, 和PC3为ADC快速通道; 其它为慢速通道。

表 9. XMC 引脚定义

-1 Hin 4-74			表 9. XMC 引脚定义 XMC					
引脚名称	CF卡	SRAM/PSRA M/NOR	复用信号的 PSRAM/NOR	NAND16位	SDR	AM ⁽¹⁾	LQFP100	LQFP64
PF0	A0	A0	-	-	-	A0	-	-
PF1	A1	A1	-	-	-	A1	-	-
PF2	A2	A2	-	-	-	A2	-	-
PF3	A3	A3	-	-	-	А3	-	-
PF4	A4	A4	-	-	-	A4	-	-
PF5	A5	A5	-	-	-	A5	-	-
PF12	A6	A6	-	-	-	A6	-	-
PF13	A7	A7	-	-	-	A7	-	-
PF14	A8	A8	-	-	-	A8	-	-
PF15	A9	A9	-	-	-	A9	-	-
PG0	A10	A10	-	-	-	A10	-	-
PG1	-	A11	-	-	-	A11	-	-
PG2	-	A12	-	-	-	A12	-	-
PG3	-	A13	-	-		-	-	-
PG4	-	A14	-	-	-	SDBA0	-	-
PG5	-	A15	-	-	-	SDBA1	-	-
PD11	-	A14 / A16	A14 / A16	- / CLE	SDBA0	-	有	-
PD12	-	A15 / A17	A15 / A17	- / ALE	SDBA1	-	有	-
PD13	-	A18	A18	-	SDCLK	-	有	-
PE3	-	A19	A19	-		-	有	-
PE4	-	A20	A20	-		-	有	-
PE5	-	A21	A21	-		-	有	-
PE6	-	A22	A22	-	SDN	RAS	有	-
PE2	-	A23	A23	-	SDN	CAS	有	-
PG13	-	A24	A24	-		_	-	-
PG14	-	A25	A25	-		_	-	-
PC3	-	A0	-	-	SDC	KE0	有	有
PC6	A0 / D1	A0 / D1	- / AD1	- / D1	A0	-	有	有
PC7	A1	A1	-	-	A1	-	有	有
PC8	A2	A2	-	-	A2	-	有	有
PC9	A3	A3	-	-	A3	-	有	有
PA8	A4	A4	-	-	A4	-	有	有
PD0	A5 / D2	A5 / D2	- / AD2	- / D2	A5	D2	有	-
PD1	A6 / D3	A6 / D3	- / AD3	- / D3	A6	D3	有	-
PD2	A7 / NWE	A7 / NWE	NWE	NWE	A7	-	有	有
PD3	A8 / -	A8 / CLK	- / CLK	-	A8	-	有	-
PD4	A9 / NOE	A9 / NOE	- / NOE	- / NOE	A9	-	有	_

			XMC					
引脚名称	CF卡	SRAM/PSRA M/NOR	复用信号的 PSRAM/NOR	NAND16位	SDR	AM ⁽¹⁾	LQFP100	LQFP64
PD5	A10 / NWE	A10 / NWE	- / NWE	- / NWE	A10	-	有	-
PD6	- / NWAIT	A11 / NWAIT	- / NWAIT	- / NWAIT	A11	-	有	-
PD7	-	A12 / NE1	- / NE1	- / NCE2	A12	•	有	-
PD14	D0	D0	AD0	D0	D	0	有	-
PD15	D1	D1	AD1	D1	D)1	有	-
PE7	D4	D4	AD4	D4	D)4	有	-
PE8	D5	D5	AD5	D5	D	5	有	-
PE9	D6	D6	AD6	D6	D	6	有	-
PE10	D7	D7	AD7	D7	D	7	有	-
PE11	D8	D8	AD8	D8	D	8	有	-
PE12	D9	D9	AD9	D9	D	9	有	-
PE13	D10	D10	AD10	D10	D	10	有	-
PE14	D11	D11	AD11	D11	D	11	有	-
PE15	D12	D12	AD12	D12	D.	12	有	-
PD8	D13	D13	AD13	D13	D13		有	-
PD9	D14	D14	AD14	D14	D14		有	-
PD10	D15	D15	AD15	D15	D15		有	-
PB14	D0	D0	AD0	D0	-		有	有
PC6	D1	D1	AD1	D1		-	有	有
PC11	D2	D2	AD2	D2	D2	-	有	有
PC12	D3	D3	AD3	D3	D3	-	有	有
PA2	D4	D4	AD4	D4		_	有	有
PA3	D5	D5	AD5	D5		-	有	有
PA4	D6	D6	AD6	D6		-	有	有
PA5	D7	D7	AD7	D7		-	有	有
PB12	D13	D13	AD13	D13		-	有	有
PD7	-	NE1	NE1	NCE2		-	有	-
PG9	-	NE2	NE2	NCE3		-	-	-
PA15	-	NE2	NE2	NCE3			有	有
PG10	NCE4_1	NE3	NE3	-		-	-	-
PG11	NCE4_2	-	-	-		-	-	-
PG12	-	NE4	NE4	-		-	-	-
PC4	-	NE4	NE4	-	SDO	CS0	有	有
PB7	-	-	NADV	-	-		有	有
PB10	NOE	NOE	NOE	NOE	-		有	有
PC5	NOE	NOE	NOE	NOE	SDC	KE0	有	有
PC2	NWE	NWE	NWE	NWE	SDO	CS0	有	有

			ХМС						
引脚名称	CF卡	SRAM/PSRA M/NOR	复用信号的 PSRAM/NOR	NAND16位	SDRAM ⁽¹⁾		LQFP100	LQFP64	
PF6	NIORD	-	-	-	-		-	-	
PF7	NREG	-	-	-	-		-	-	
PF8	NIOWR	-	-	-	-		-	-	
PF9	CD	-	-	-	-		-	-	
PF10	INTR	-	-	-	-		-	-	
PG6	-	-	-	INT2	-		-	-	
PG7	-	-	-	INT3	-		-	-	
PE0	-	LB	LB	-	SDDQML		有	-	
PE1	-	UB	UB	-	SDD	QMH	有	-	
PG8	-	-	-	-	-	SDCLK	-	-	
PC0	-	-	-	-	SDN	IWE	有	-	
PF11	-	-	-	-	SDN	RAS	-	-	
PG15	-	-	-	-	SDN	CAS	-	-	
PA7	-	-	-	-	SDNWE		有	有	
PB5	-	-	-	-	SDCKE1		有	-	
PB6	-	-	-	-	SDO	CS1	有	-	

⁽¹⁾ SDRAM的地址、块地址、数据、和时钟推荐使用以下两种组合。若混合使用功能仍可正常工作但无法达到最高效能。

4 存储器地址映射

图 7. 存储器图 (以 AT32F435/437xM 为例)

⁽¹⁾ 软件可设置部分区块逻辑地址互换重映射。0x6000_0000至0x9FFF_FFFF为代码可执行区。请参考AT32F435/437系列参考手册。

电气特性 5

测试条件 5.1

最小和最大数值 5.1.1

所有最小和最大值是在最坏的条件下得出,在每个表格下方的注解中说明为通过综合评估、设计模 拟和/或工艺特性,以其平均值 ± 3 倍标准差(mean $\pm 3\sigma$)得到的数据,不会在生产线上进行测试。

典型数值 5.1.2

典型数据是基于T_A = 25 °C和V_{DD} = 3.3 V。

典型曲线 5.1.3

典型曲线仅用于设计指导而未经测试。

5.1.4 供电方案

图 8. 供电方案

5.2 绝对最大值

5.2.1 额定值

加在器件上的载荷如果超过「绝对最大额定值」列表(*表10*,*表11*,*表12*)中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表 10. 电压特性

符号	描述	最小值	最大值	单位	
V _{DDx} -V _{SS}	外部主供电电压	-0.3	4.0		
	在FT,FTf引脚上的输入电压		6.0	V	
	在FTa引脚上的输入电压,引脚设置为输入浮空、	V _{SS} -0.3			
V _{IN}	输入上拉、或输入下拉模式				
	在TC引脚上的输入电压	V _{SS} -0.3	4.0		
	在FTa引脚上的输入电压,引脚设置为模拟模式	V _{SS} -0.3	4.0		
$ \Delta V_{DDx} $	不同供电引脚之间的电压差	-	50	m\/	
V _{SSx} -V _{SS}	不同接地引脚之间的电压差	-	50	mV	

表 11. 电流特性

符号	描述	最大值	单位			
I_{VDD}	经过V _{DD} 电源线的总电流(流入电流)	250				
I _{VSS}	经过V _{SS} 地线的总电流(流出电流) 250					
1	任意GPIO和控制引脚上的输出灌电流	25	mA			
IIO	任意GPIO和控制引脚上的输出电流	-25				

表 12. 温度特性

符号	描述	数值	单位
T _{STG}	储存温度范围	-60 ~ +150	°C
TJ	最大结温度	125	C

5.2.2 电气敏感性

基于三个不同的测试(HBM,CDM,和LU),使用标准的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电 (ESD)

静电放电施加到所有样品的所有引脚上。这个测试符合JS-001-2017/JS-002-2018标准。

表 13. 静电放电值

符号	参数	条件	类型	最小值	单位
VESD(HBM)	静电放电电压 (人体模型)	T _A = +25 °C,符合JS-001-2017	3A	±4000	\/
VESD(CDM)	静电放电电压(充电设备模型)	T _A = +25 °C,符合JS-002-2018	III	±1000	V

静态栓锁(Static latch-up)

为了评估栓锁性能需要在样品上进行符合EIA/JESD78E集成电路栓锁标准的互补静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的GPIO引脚上注入电流。

表 14. 静态栓锁值

符号	参数	条件	级别/类型
LU	静态栓锁	T _A = +105 °C,符合EIA/JESD78E	II 类A(±200 mA)

5.3 规格

5.3.1 通用工作条件

表 15. 通用工作条件

		水 13. 旭用工作 》	*****			
符号	参数	条件		最小值	最大值	单位
			LDO电压1.3 V	0	288	
		NZW POT光短加速次黑	LDO电压1.2 V	0	240	
		NZW_BST关闭加速设置	LDO电压1.1 V	0	192	
fHCLK	内部AHB时钟频率		LDO电压1.0 V	0	144	MHz
IHCLK	内 mAI IDII tr /灰华	NZW_BST打开加速设置	LDO电压1.3 V	0	192	IVII IZ
			LDO电压1.2 V	0	160	
			LDO电压1.1 V	0	136	
			LDO电压1.0 V	0	108	
		LDO电压1.3 V	0	144		
fPCLK1/2	内部APB1/2时钟频率	LDO电压1.2 V		0	120	MHz
IPCLK1/2		LDO电压1.1 V	LDO电压1.1 V			1411 12
		LDO电压1.0 V		0	72	
V_{DD}	 数字电源工作电压	LDO电压1.2/1.1/1.0 V	2.6	3.6	V	
V DD	数于电 <u>你工</u> 作电压	LDO电压1.3 V	3.0	3.6	V	
V_{DDA}	模拟电源工作电压	必须与VDD相同		V	DD	V
VBAT	电池供电工作电压	-		1.62	3.6	V
		LQFP144		-	402	
		LQFP100		-	316	
P_D	功率耗散: T _A = 105 ℃	LQFP64	-	310	mW	
		LQFP48	-	320		
		QFN48	-	500		
TA	环境温度	-		-40	105	°C

5.3.2 上电和掉电时的工作条件

表 16. 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
	V _{DD} 上升速率		0	∞	ms/V
t _{VDD}	V _{DD} 下降速率	-	20	8	μs/V

5.3.3 内置复位和电源控制模块特性

表 17. 内置复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单位
		PVMSEL[2:0] = 001(上升沿) ⁽¹⁾	2.19	2.28	2.37	V
		PVMSEL[2:0] = 001(下降沿) ⁽¹⁾	2.09	2.18	2.27	V
		PVMSEL[2:0] = 010(上升沿) ⁽²⁾	2.28	2.38	2.48	V
		PVMSEL[2:0] = 010(下降沿) ⁽²⁾	2.18	2.28	2.38	V
		PVMSEL[2:0] = 011(上升沿) ⁽²⁾	2.38	2.48	2.58	V
		PVMSEL[2:0] = 011(下降沿) ⁽²⁾	2.28	2.38	2.48	V
\/=\ a.	市海市压炼测现的市亚连权	PVMSEL[2:0] = 100(上升沿) ⁽²⁾	2.47	2.58	2.69	V
VPVM	电源电压监测器的电平选择	PVMSEL[2:0] = 100(下降沿) ⁽²⁾	2.37	2.48	2.59	V
		PVMSEL[2:0] = 101(上升沿) ⁽²⁾	2.57	2.68	2.79	V
		PVMSEL[2:0] = 101(下降沿) ⁽²⁾	2.47	2.58	2.69	V
		PVMSEL[2:0] = 110(上升沿) ⁽²⁾	2.66	2.78	2.9	V
		PVMSEL[2:0] = 110(下降沿) ⁽²⁾	2.56	2.68	2.8	V
		PVMSEL[2:0] = 111(上升沿)	2.76	2.88	3	V
		PVMSEL[2:0] = 111(下降沿)	2.66	2.78	2.9	V
V _{HYS_P} ⁽²⁾	PVM迟滞	-	-	100	-	mV
V _{POR} ⁽²⁾	上电复位阈值	-	2.02	2.2	2.45	V
V _{LVR} ⁽²⁾	低电压复位阈值	-	1.84 ⁽³⁾	2.07	2.3	V
V _{LVRhyst} ⁽²⁾	LVR迟滞	-	-	130	-	mV
	复位持续时间: VDD高于VPOR	ZW = 128 K字节	-	10	-	
Tresttempo ⁽²⁾	且持续时间超过TRESTTEMPO	ZW = 256 K字节	-	15	-	ms
	后CPU开始运行	ZW = 512 K字节	-	25	-	

- (1) PVMSEL[2:0] = 001电平可能因低于VPOR无法使用。
- (2) 由综合评估得出,不在生产中测试。
- (3) 产品的特性由设计保证至最小的数值VLVR。

图 9. 上电复位和低电压复位的波形图

5.3.4 存储器特性

表 18. 内部闪存存储器特性(1)

符号	参数	条件	典型值	最大值	单位	
T	绝 担时间	AT32F435/437xD	30	80		
T _{PROG}	编程时间	其它型号	50	200	μs	
		AT32F435/437xC	50	500		
	良豆塘炒叶间	AT32F435/437xD	50	240		
tse	扇区擦除时间 	AT32F435/437xG	50	500	ms	
		AT32F435/437xM	45	400		
	of HabitAtta	AT32F435/437xC	250	2300		
.		AT32F435/437xD	300	1200		
t _{BLE}	区块擦除时间	AT32F435/437xG	200	2300	ms	
		AT32F435/437xM	225	2000		
		AT32F435/437xC	2.5	5		
+ ==	上坡 吟 时 问	AT32F435/437xD	3	10		
t _{BKE}	片擦除时间	AT32F435/437xG	1.6	20	S	
		AT32F435/437xM	7.2	64		

⁽¹⁾ 由设计保证,不在生产中测试。

表 19. 内部闪存存储器寿命和数据保存期限(1)

符号	参数	条件	最小值	典型值	最大值	单位
NEND	寿命 (擦写次数)	T _A = -40 ~ 105 °C	100	-	-	千次
t RET	数据保存期限	T _A = 105 °C	10	-	-	年

⁽¹⁾ 由设计保证,不在生产中测试。

5.3.5 供电电流特性

电流消耗是与多种参数和因素有关的综合指标,由综合评估得出,不在生产中测试。这些参数和因素包括工作电压、环境温度、GPIO引脚的负载、产品的软件配置、工作频率、GPIO脚的翻转速率、以及执行的代码等。

典型和最大电流消耗

微控制器处于下述条件下:

- 所有的GPIO引脚都处于模拟模式。
- 指令预取功能开启(提示:这个参数必须在设置时钟和总线分频之前设置)。
- 当开启外设时:
 - 若fhclk > 144 MHz, fpclk1 = fhclk/2, fpclk2 = fhclk/2, fadcclk = fpclk2/2;
 - 若f_{HCLK} ≤ 144 MHz, f_{PCLK1} = f_{HCLK}, f_{PCLK2} = f_{HCLK}, f_{ADCCLK} = f_{PCLK2}/2。
- 代码运行在ZW区
- 除非特别标注,典型值是在V_{DD} = 3.3 V和T_A = 25 °C时测试得到,最大值是在V_{DD} = 3.6 V时测试得到。

表 20. 运行模式下的典型电流消耗

					`的 典 型电流相	典型值			
符号	参数	条件	f _{HCLK}	LDO 电压	使能所有外设	使能EMAC外 所有外设	关闭所有外设	单位	
			288 MHz	1.3	231.6	222.7	59.9		
			l			264 MHz	1.3	213.1	204.9
			240 MHz	1.2	178.1	171.3	46.3		
			216 MHz	1.2	160.9	154.7	42.0		
			192 MHz	1.1	130.8	125.8	34.2		
			168 MHz	1.1	115.0	110.5	30.2		
			144 MHz	1.0	97.5	94.1	24.3		
			120 MHz	1.0	82.1	79.2	20.9		
		高速外部晶振	108 MHz	1.0	74.1	71.5	19.1	•	
		(HEXT) (1)(2)	72 MHz	1.0	50.1	48.4	13.4	mA	
			48 MHz	1.0	34.4	33.2	9.86		
			36 MHz	1.0	26.3	25.4	7.91		
	运行模式的供应电流		24 MHz	1.0	18.5	17.9	6.23		
			16 MHz	1.0	13.0	12.6	4.83		
			8 MHz	1.0	7.08	6.89	3.19		
			4 MHz	1.0	4.56	4.45	2.61		
			2 MHz	1.0	3.31	3.24	2.33		
			1 MHz	1.0	2.67	2.62	2.18		
I _{DD}			288 MHz	1.3	231.3	222.4	59.7		
			264 MHz	1.3	212.7	204.5	55.0		
			240 MHz	1.2	177.8	170.9	46.1		
			216 MHz	1.2	160.6	154.4	41.7		
			192 MHz	1.1	130.6	125.6	33.9		
			168 MHz	1.1	114.8	110.3	30.0		
			144 MHz	1.0	97.3	93.9	24.0		
			120 MHz	1.0	81.9	79.0	20.7		
		高速内部时钟	108 MHz	1.0	73.9	71.2	18.7		
		(HICK) (2)	72 MHz	1.0	49.9	48.1	13.1	mA	
			48 MHz	1.0	34.1	32.9	9.54		
			36 MHz	1.0	26.0	25.1	7.57		
			24 MHz	1.0	18.2	17.6	5.88		
			16 MHz	1.0	12.7	12.3	4.48		
			8 MHz	1.0	6.73	6.54	2.84		
			4 MHz	1.0	4.21	4.11	2.25		
			2 MHz	1.0	2.95	2.89	1.97		
			1 MHz	1.0	2.32	2.28	1.82		

⁽²⁾ 外部时钟为8 MHz。

⁽³⁾ 当f_{HCLK} > 8 MHz时启用PLL。

表 21. 睡眠模式下的典型电流消耗

			火 21. 座 版		`的典型电流消 	典型值			
				LDO		四 空祖			
符号	参数	条件	f _{HCLK}	电压	使能所有外设	使能EMAC外 所有外设	关闭所有外设	単位	
				288 MHz	1.3	210.2	201.1	36.4	
			264 MHz	1.3	193.2	185.0	33.7		
			240 MHz	1.2	161.4	154.5	28.3		
			216 MHz	1.2	145.8	139.6	25.8		
			192 MHz	1.1	118.5	113.4	20.9		
			168 MHz	1.1	104.1	99.7	18.6		
			144 MHz	1.0	89.1	85.6	15.1		
			120 MHz	1.0	75.0	72.1	13.3		
		高速外部晶振	108 MHz	1.0	67.7	65.1	12.2	A	
		(HEXT) (1)(2)	72 MHz	1.0	45.9	44.1	8.80	mA	
			48 MHz	1.0	31.5	30.4	6.84		
			36 MHz	1.0	24.2	23.3	5.65		
	睡眠模式的		24 MHz	1.0	17.1	16.5	4.75		
			16 MHz	1.0	12.1	11.7	3.86		
			8 MHz	1.0	6.67	6.49	2.73		
			4 MHz	1.0	4.39	4.30	2.41		
			2 MHz	1.0	3.25	3.20	2.25		
			1 MHz	1.0	2.68	2.65	2.17		
I _{DD}	供应电流		288 MHz	1.3	209.8	200.8	36.1		
			264 MHz	1.3	192.9	184.6	33.4		
			240 MHz	1.2	161.1	154.2	28.0		
			216 MHz	1.2	145.5	139.3	25.5		
			192 MHz	1.1	118.3	113.2	20.6		
			168 MHz	1.1	103.9	99.5	18.3		
			144 MHz	1.0	88.9	85.4	14.8		
			120 MHz	1.0	74.8	71.9	13.0		
		高速内部时钟	108 MHz	1.0	67.5	64.9	11.8	^	
		(HICK) (2)	72 MHz	1.0	45.6	43.9	8.46	mA	
			48 MHz	1.0	31.3	30.1	6.50		
			36 MHz	1.0	23.9	23.0	5.31		
			24 MHz	1.0	16.8	16.2	4.40		
			16 MHz	1.0	11.8	11.4	3.51		
			8 MHz	1.0	6.33	6.15	2.38		
			4 MHz	1.0	4.05	3.95	2.06		
			2 MHz	1.0	2.91	2.86	1.90		
			1 MHz	1.0	2.34	2.31	1.82		

⁽¹⁾ 外部时钟为8 MHz。

⁽²⁾ 当f_{HCLK} > 8 MHz时启用PLL。

表 22. 运行模式下的最大电流消耗

	4. 394	衣 22. 运1				 大 值	
符号	参数	条件	f _{HCLK}	LDO电压	T _A = 85 °C	T _A = 105 °C	单位
			288 MHz	1.3	275.7 ⁽²⁾	298.5 ⁽²⁾	
		高速外部晶振(HEXT) ⁽¹⁾	240 MHz	1.2	211.1	229.9	
			192 MHz	1.1	154.5	170.2	
			144 MHz	1.0	115.2	127.6	
			120 MHz	1.0	98.9	111.3	
			108 MHz	1.0	90.5	102.9	A
		使能所有外设	72 MHz	1.0	65.3	77.7	mA
			48 MHz	1.0	48.9	61.5	
			36 MHz	1.0	40.5	52.9	
			24 MHz	1.0	32.3	44.6	
			16 MHz	1.0	26.6	38.9	
			8 MHz	1.0	20.5	32.6	
		高速外部晶振(HEXT) ⁽¹⁾ 使能EMAC外所有外设	288 MHz	1.3	266.0(2)	288.9(2)	
	运行模式的供应电流		240 MHz	1.2	203.9	222.5	mA
			192 MHz	1.1	149.7	164.8	
			144 MHz	1.0	111.9	123.9	
			120 MHz	1.0	96.1	108.4	
			108 MHz	1.0	88.0	100.1	
I _{DD}			72 MHz	1.0	63.7	75.8	
			48 MHz	1.0	47.9	60.2	
			36 MHz	1.0	39.7	52.1	
			24 MHz	1.0	31.9	44.1	
			16 MHz	1.0	26.3	38.6	
			8 MHz	1.0	20.4	32.6	
			288 MHz	1.3	88.8	111.5	
			240 MHz	1.2	68.8	86.8	
			192 MHz	1.1	51.6	66.5	
			144 MHz	1.0	38.0	50.1	
			120 MHz	1.0	34.5	46.8	
		高速外部晶振(HEXT) ⁽¹⁾	108 MHz	1.0	32.6	44.7	m^
		关闭所有外设	72 MHz	1.0	26.8	38.9	mA
			48 MHz	1.0	23.2	35.4	
			36 MHz	1.0	21.2	33.4	
			24 MHz	1.0	19.5	31.8	
			16 MHz	1.0	18.0	30.3	
			8 MHz	1.0	16.4	28.5	

⁽¹⁾ 外部时钟为8 MHz, 当fHCLK > 8 MHz时启用PLL。 (2) 已超出芯片总电流最大值,仅供参考。

表 23. 睡眠模式下的最大电流消耗

	4. 191		(快入 I 的 A			 大值	
符号	参数	条件	f _{HCLK}	LDO电压	T _A = 85 °C	T _A = 105 °C	单位
			288 MHz	1.3	253.5 ⁽²⁾	276.7(2)	
			240 MHz	1.2	194.2	212.9	
		高速外部晶振(HEXT) ⁽¹⁾	192 MHz	1.1	142.4	157.7	
			144 MHz	1.0	107.0	119.1	
			120 MHz	1.0	92.0	104.2	
			108 MHz	1.0	84.3	96.6	Λ
		使能所有外设	72 MHz	1.0	61.2	73.5	mA
			48 MHz	1.0	46.1	58.3	
			36 MHz	1.0	38.4	50.6	
			24 MHz	1.0	31.0	43.1	
			16 MHz	1.0	25.8	37.9	
			8 MHz	1.0	20.1	32.1	
			288 MHz	1.3	244.0	267.0 ⁽²⁾	
	睡眠模式的供应电流		240 MHz	1.2	186.9	205.6	mA
		高速外部晶振(HEXT) ⁽¹⁾ 使能EMAC外所有外设	192 MHz	1.1	137.2	152.2	
			144 MHz	1.0	103.4	115.4	
			120 MHz	1.0	88.9	101.0	
l			108 MHz	1.0	81.5	93.7	
I _{DD}			72 MHz	1.0	59.3	71.5	
			48 MHz	1.0	44.9	57.1	
			36 MHz	1.0	37.5	49.7	
			24 MHz	1.0	30.4	42.5	
			16 MHz	1.0	25.4	37.4	
			8 MHz	1.0	19.9	32.0	
			288 MHz	1.3	64.5	86.7	
			240 MHz	1.2	50.5	68.6	
			192 MHz	1.1	38.4	53.2	
			144 MHz	1.0	28.9	41.0	
			120 MHz	1.0	27.0	39.1	
		高速外部晶振(HEXT) ⁽¹⁾	108 MHz	1.0	25.9	38.1	mA
		关闭所有外设	72 MHz	1.0	22.3	34.5	IIIA
			48 MHz	1.0	20.3	32.3	
			36 MHz	1.0	19.1	31.2	
			24 MHz	1.0	18.1	30.0	
			16 MHz	1.0	17.2	29.1	
			8 MHz	1.0	16.1	28.0	

⁽¹⁾ 外部时钟为8 MHz, 当fHCLK > 8 MHz时启用PLL。 (2) 已超出芯片总电流最大值,仅供参考。

		条件		典型值(1)		最大值(2)			
符号	参数			V _{DD} = 2.6 V	V _{DD} = 3.3 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	单位
	深睡眠模式		莫式,输出 1.2 V, 关闭,WDT 关闭	2.21 2.22 23.2 40		40.6	mA		
l	的供应电流		毛模式,输出 1.0 V, 关闭,WDT 关闭	1.24	1.25	多儿(7	14.3	25.7	IIIA
ldd		LEXT和ERTC	AT32F435/437xD	13.0	15.8	18.9	24.1	30.3	
	待机模式的	关闭	其它型号	9.2	10.9	12.5	17.1	23.2	μΑ
	供应电流	LEXT和ERTC	AT32F435/437xD	14.5	18.8	21.0	26.4	32.7	
		开启	其它型号	10.6	13.5	14.6	19.3	25.9	

- (1) 典型值是在T_A = 25°C下测试得到。
- (2) 由综合评估得出,不在生产中测试。
- (3) 随工艺徧移可能为典型值的数倍。

图 10. 调节器在运行模式,LDO 1.2V 时,深睡眠模式下的典型电流消耗在不同的 VDD 时与温度的对比

图 11. 调节器在低功耗模式,LDO 1.0V 时,深睡眠模式下的典型电流消耗在不同的 V_{DD} 时与温度的对比

图 12. 待机模式下的典型电流消耗在不同的 V_{DD} 时与温度的对比(AT32F435/437xD)

图 13. 待机模式下的典型电流消耗在不同的 V_{DD} 时与温度的对比(AT32F435/437xD 外其它型号)

表 25. VBAT 的典型和最大电流消耗

符号				典型值(1)			最大值(2))	
	参数	条件	V _{BAT} = 1.62 V	V _{BAT} = 2.6 V	V _{BAT} = 3.3 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	单位
I _{DD_VBAT}	V _{BAT} 的供应 电流	LEXT和ERTC开启,V _{DD} < V _{LVR}	1.04	1.49	1.89	2.29	2.70	3.23	μΑ

- (1) 典型值是在TA = 25°C下测试得到。
- (2) 由综合评估得出,不在生产中测试。

图 14. VBAT 的典型电流消耗(LEXT 和 ERTC 开启)在不同的 VBAT 电压时与温度的对比

内置外设电流消耗

微控制器的工作条件如下:

- 所有的GPIO引脚都处于模拟模式。
- 给出的数值是通过测量只开启一个外设的时钟与关闭所有外设的时钟电流消耗相差值计算得出。

表 26. 内置外设的电流消耗

J- 12	I AI VIL		内直外校的电 典型	9.5.0.4 		34 62.
丹 直 	外设	LDO = 1.3 V	LDO = 1.2 V	LDO = 1.1 V	LDO = 1.0 V	单位
	DMA1 DMA2	14.67 14.85	13.39 13.56	12.21 12.36	11.08 11.22	
	EDMA	68.04	62.02	56.48	51.21	
	GPIOA	2.68	2.46	2.24	2.04	
	GPIOB	2.66	2.44	2.21	2.02	
	GPIOC	2.65	2.42	2.22	2.02	
	GPIOD	2.58	2.38	2.17	1.98	
	GPIOE	2.67	2.46	2.23	2.04	
	GPIOF	2.58	2.37	2.16	1.97	
	GPIOG	2.64	2.42	2.20	2.02	
	GPIOH	2.59	2.39	2.18	1.99	
AHB	XMC	43.05	39.29	35.81	32.47	
	QSPI1	49.85	45.54	41.53	37.69	
	QSPI2	50.05	45.66	41.59	37.72	
	CRC	1.74	1.60	1.46	1.34	
	SDIO1	20.30	18.51	16.86	15.28	
	SDIO2	20.56	18.76	17.12	15.54	
	OTGFS1	58.65	53.58	48.87	44.36	µA/MHz
	OTGFS2	59.09	53.96	49.17	44.62	F
	DVP	8.12	7.42	6.76	6.15	
	EMAC EMAC_TX EMAC_RX EMAC_PTP	32.68	29.84	27.21	24.69	
	TMR2	12.43	11.33	10.32	9.37	
	TMR3	9.11	8.30	7.57	6.86	
	TMR4	9.29	8.47	7.71	7.00	
	TMR5	12.17	11.12	10.13	9.20	
	TMR6	1.71	1.58	1.44	1.31	
4554	TMR7	1.59	1.47	1.34	1.22	
APB1	TMR12	5.54	5.07	4.63	4.22	
	TMR13	3.59	3.31	3.01	2.74	
	TMR14	3.71	3.42	3.12	2.85	
	WWDT	0.79	0.73	0.67	0.61	
	SPI2/I ² S2	10.21	9.34	8.52	7.73	
	SPI3/I ² S3	7.80	7.16	6.53	5.95	

++ =	표시 가.		—————————————————————————————————————	型值		44 A4
内 直	置外设	LDO = 1.3 V	LDO = 1.2 V	LDO = 1.1 V	LDO = 1.0 V	单位
	USART2	3.14	2.87	2.62	2.38	
	USART3	3.09	2.83	2.58	2.35	
	UART4	3.04	2.78	2.53	2.31	
	UART5	2.96	2.72	2.47	2.25	
	I ² C1	7.28	6.66	6.07	5.52	
	I ² C2	7.31	6.69	6.09	5.54	
APB1	I ² C3	7.25	6.64	6.06	5.51	
	CAN1	4.92	4.51	4.11	3.75	
	CAN2	4.56	4.18	3.81	3.48	
	PWC	0.55	0.54	0.48	0.46	
	DAC	2.72	2.50	2.28	2.08	
	UART7	3.06	2.80	2.56	2.33	
	UART8	3.07	2.80	2.56	2.33	
	TMR1	13.26	12.11	11.04	10.02	0 /841 1-
	TMR8	13.44	12.28	11.21	10.17	μA/MHz
	USART1	3.24	2.97	2.71	2.47	
	USART6	3.44	3.15	2.87	2.62	
	ADC1	15.11	13.80	12.56	11.40	
	ADC2	15.02	13.70	12.49	11.34	
	ADC3	14.95	13.65	12.44	11.30	
APB2	SPI1/I ² S1	5.70	5.22	4.77	4.33	
	SPI4/I ² S4	3.67	3.36	3.07	2.80	
	SCFG	0.95	0.88	0.80	0.74	
	TMR9	5.89	5.40	4.93	4.48	
	TMR10	3.72	3.41	3.12	2.84	
	TMR11	3.97	3.63	3.31	3.02	
	TMR20	12.88	11.74	10.69	9.70	
	ACC	1.12	1.02	0.93	0.86	

5.3.6 外部时钟源特性

使用晶体/陶瓷谐振器产生的高速外部时钟

高速外部晶振(HEXT)可以使用一个4~25 MHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

	20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
符号参数		条件 最小化		典型值	最大值	单位	
fhext_in	振荡器频率	-	4	8	25	MHz	
tsu(HEXT)(3)	启动时间	VDD是稳定的	-	2	-	ms	

表 27. HEXT 4~25 MHz 晶振特性(1)(2)

- (1) 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- (2) 由综合评估得出,不在生产中测试。
- (3) tsu(HEXT)是启动时间,是从软件使能HEXT开始测量,直至得到稳定的8 MHz振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计的(典型值为)5~25 pF之间的资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,PCB和MCU引脚的容抗应该考虑在内(可以粗略地把引脚与PCB板的电容按10 pF估计)。

图 15. 使用 8 MHz 晶振的典型应用

使用外部振荡源产生的高速外部时钟

下表中给出的特性参数是使用一个高速的外部时钟源测得。

表 28. 高速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
fHEXT_ext	用户外部时钟频率(1)		1	8	25	MHz
VHEXTH	HEXT_IN输入引脚高电平电压		0.7V _{DD}	-	V _{DD}	V
VHEXTL	HEXT_IN输入引脚低电平电压		Vss	-	0.3V _{DD}	V
tw(HEXT)	HEXT_IN高或低的时间 ⁽¹⁾	-	5	-	-	20
tr(HEXT)	HEXT_IN上升或下降的时间 ⁽¹⁾		-	-	20	ns
Cin(HEXT)	HEXT_IN输入容抗 ⁽¹⁾	-	-	5	-	pF
Duty(HEXT)	占空比	-	45	-	55	%
IL	HEXT_IN输入漏电流	Vss ≤ Vin ≤ VDD	-	-	±1	μA

⁽¹⁾ 由设计保证,不在生产中测试。

图 16. 外部高速时钟源的交流时序图

使用晶体/陶瓷谐振器产生的低速外部时钟

低速外部晶振(LEXT)可以使用一个32.768 kHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表 29.	LEXT	32.768	kHz	晶振特性(1)(2)
1X 23.		JZ./ UU	NI IZ	HEDIKAN IT

符号	参数	条件	最小值	典型值	最大值	单位
t _{SU(LEXT)}	启动时间	VDD是稳定的	-	200	-	ms

- (1) 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- (2) 由综合评估得出,不在生产中测试。

对于CL1和CL2,建议使用高质量的5~20 pF之间的资介电容器,并挑选符合要求的晶体或谐振器。通常CL1和CL2具有相同参数。晶体制造商通常以CL1和CL2的串行组合给出负载电容的参数。

负载电容 C_L 是基于下列算式计算出: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$,其中 C_{stray} 是引脚的电容和 PCB板或PCB相关的电容,它的典型值是介于2 pF至7 pF之间。

Bias Controlled gain

CL2

LEXT_IN Bias Controlled gain

图 17. 使用 32.768 kHz 晶振的典型应用

注: LEXT IN和LEXT OUT间不需要外部电阻,也禁止添加。

使用外部振荡源产生的低速外部时钟

下表中给出的特性参数是使用一个低速的外部时钟源测得。

表 30. 低速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
fLEXT_ext	用户外部时钟频率(1)		-	32.768	1000	kHz
VLEXTH	LEXT_IN输入引脚高电平电压		0.7V _{DD}	-	V _{DD}	V
VLEXTL	LEXT_IN输入引脚低电平电压		Vss	-	0.3V _{DD}	V
tw(LEXT)	.EXT_IN高或低的时间 ⁽¹⁾	-	450	_	_	
tw(LEXT)	LEXI_IN同以队的时间(/		430	-	-	ns
tr(LEXT)	 LEXT_IN上升或下降的时间 ⁽¹⁾				50	113
t _{f(LEXT)}			_	_	30	
Cin(LEXT)	LEXT_IN输入容抗 ⁽¹⁾	-	-	5	-	pF
Duty _(LEXT)	占空比	-	30	-	70	%
IL	LEXT_IN输入漏电流	Vss ≤ Vin ≤ Vdd	-	-	±1	μA

⁽¹⁾ 由设计保证,不在生产中测试。

图 18. 外部低速时钟源的交流时序图

5.3.7 内部时钟源特性

高速内部时钟 (HICK)

表 31. HICK 时钟特性

符号	参数	条件		最小值	典型值	最大值	单位
fніск	频率	-		-	48	-	MHz
DuCy(HICK)	占空比		-	45	-	55	%
		使用者校准(以寄存器CRM_CTRL)	-	-	1 ⁽¹⁾	
		ACC校准		-	-	0.25(1)	
ACCHICK	HICK振荡器的精度		T _A = -40 ~ 105 °C	-2.5	-	2.5	%
ACCHICK	HICK旅物 裔的 稍及		T _A = -40 ~ 85 °C	-2	-	2	
		出厂校准(2)	T _A = 0 ~ 70 °C	-1.5	-	1.5	
			T _A = 25 °C	-1	0.5	1	
tsu(HICK) ⁽²⁾	HICK振荡器启动时间	-		-	-	10	μs
IDD(HICK)(2)	HICK振荡器功耗		-		255	325	μA

- (1) 由设计保证,不在生产中测试。
- (2) 由综合评估得出,不在生产中测试。

图 19. HICK 时钟精度与温度的对比

低速内部时钟(LICK)

表 32. LICK 时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
flick ⁽¹⁾	频率	-	30	40	60	kHz

(1) 由综合评估得出,不在生产中测试。

5.3.8 PLL 特性

表 33. PLL 特性

符号	参数	最小值(1)	典型值	最大值(1)	单位
f	PLL输入时钟 ⁽²⁾	2	8	16	MHz
fpll_in	PLL输入时钟占空比	40	-	60	%
fpll_out	PLL倍频输出时钟	16	-	288	MHz
t LOCK	PLL锁相时间	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

⁽¹⁾ 由设计保证,不在生产中测试。

5.3.9 低功耗模式唤醒时间

下表列出的唤醒时间是在系统时钟为HICK时钟的唤醒阶段测量得到。唤醒时使用的时钟源依据当前的操作模式而定:

- 睡眠模式:时钟源是进入睡眠模式时所使用的时钟;
- 深睡眠或待机模式:时钟源是HICK时钟。

表 34. 低功耗模式的唤醒时间

符号	参数	条件	典型值	单位				
twusleep	从睡眠模式唤醒	-	1.8	μs				
	从深睡眠模式唤醒	LDO处于运行模式	330					
twudeepsleep		LDO处于低功耗模式	360	μs				
		ZW = 128 K字节	5					
twustdby		ZW = 256 K字节	10	ms				
		ZW = 512 K字节	20					

5.3.10 EMC 特性

敏感性测试是在产品的综合评估时抽样进行测试的。

功能性EMS(电磁敏感性)

● **EFT:** 在V_{DD}和V_{SS}上通过耦合/去耦合网路施加一个瞬变电压的脉冲群(正向和反向)直到产生功能性错误。这个测试符合**IEC** 61000-4-4标准。

表 35. EMS 特性

符号	参数	条件	级别/类型
	范的耦合/去耦合网路施加导致功能错误的 瞬变脉冲群电压极限,V _{DD} 和Vss入口有一 47 μF电容并且每对V _{DD} 和Vss电源各有一 0.1 μF旁路电容	V _{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 288 MHz, LDO = 1.3 V, NZW_BST = 0。符合IEC 61000-4-4 V _{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 160 MHz, LDO = 1.2 V, NZW_BST = 1。符合IEC 61000-4-4	4A (±4 kV)

在器件级进行EMC的评估和优化,是在典型的应用环境中进行的。应注意好的EMC性能与用户应用和具体的软件密切相关。因此,建议用户对软件实行EMC优化,并进行与EMC有关的测试。

⁽²⁾ 需要注意使用正确的倍频系数,从而根据PLL输入时钟频率使得fpll_out处于允许范围内。

5.3.11 GPIO 端口特性

通用输入/输出特性

所有的GPIO端口都是兼容CMOS和TTL。

表 36. GPIO 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
VIL	输入低电平电压	-	-0.3	-	0.28 x V _{DD} + 0.1	V
	TC输入高电平电压	-		_	V _{DD} + 0.3	
	FTa输入高电平电压	模拟模式	0.31 x V _{DD} +	-	V 00 + 0.3	
VIH	FT和FTf输入高电平电压	-	0.8			V
	FTo 於 》 京中亚中国	输入浮空、输入上	0.0	-	5.5	
	FTa输入高电平电压	拉、或输入下拉				
\ /.	施密特触发器电压迟滞(1)		200	200	mV	
Vhys	留行	-	5% V _{DD}	-	-	-
		Vss ≤ Vin ≤ VDD				
		TC GPIO脚	-	-		
likg	输入浮空模式漏电流(2)	Vss ≤ Vin ≤ 5.5V				μΑ
		FT,FTf,和 FTa	-	-	±1	
	GPIO 脚					
Rpu	弱上拉等效电阻(3)	VIN = VSS	60	70	100	kΩ
Rpd	弱下拉等效电阻(3)(4)	V _{IN} = V _{DD}	60	70	100	kΩ
C _{IO}	GPIO引脚的电容	-	-	9	-	pF

- (1) 施密特触发器开关电平的迟滞电压。由综合评估得出,不在生产中测试。
- (2) 如果在相邻引脚有反向电流倒灌,则漏电流可能高于最大值。
- (3) FT, FTf, 和FTa引脚当输入高于VDD+0.3 V时, 必须禁用内部上拉/下拉电阻。
- (4) BOOT0引脚弱下拉电阻不可禁用。

所有GPIO端口都是CMOS和TTL兼容(不需软件配置),它们的特性考虑了多数严格的CMOS工艺或TTL参数。

输出驱动电流

在用户应用中,GPIO脚的数目必须保证驱动电流不能超过5.2.1节给出的绝对最大额定值:

- 所有GPIO端口从V_{DD}上获取的电流总和,加上MCU在V_{DD}上获取的最大运行电流,不能超过绝对最大额定值I_{VDD}(参见*表11*)。
- 所有GPIO端口吸收并从V_{SS}上流出的电流总和,加上MCU在V_{SS}上流出的最大运行电流,不能超过绝对最大额定值I_{VSS}(参见*表11*)。

输出电压

所有的GPIO端口都是兼容CMOS和TTL的。

表 37. 输出电压特性

符号	参数	条件	最小值	最大值	单位
极大电流剂	 建动/吸入能力				
Vol	输出低电平	CMOS端口,I _{IO} = 15 mA	-	0.4	V
Vон	输出高电平	—— CIVIOS编口,IIO – IS IIIA	V _{DD} -0.4	-	7 °
Vol	输出低电平	TTL端口,I _{IO} = 6 mA	-	0.4	V
Vон	输出高电平	————————————————————————————————————	2.4	-	7 °
较大电流推	建动/吸入能力	•			
Vol	输出低电平	CMOS端口,lio = 6 mA	-	0.4	V
V _{OH}	输出高电平	CIMOS _{埔口} ,IIO – 6 IIIA	V _{DD} -0.4	-	7 ·
Vol	输出低电平	TTL端口,l _{lo} = 3 mA	-	0.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Vон	输出高电平	————————————————————————————————————	2.4	-	- V
V _{OL} ⁽¹⁾	输出低电平	L = 20 mA	-	1.3	V
V _{OH} ⁽¹⁾	输出高电平	I _{IO} = 20 mA	V _{DD} -1.3	-	
适中电流推	建动/吸入能力	•			
Vol	输出低电平	CMCC ^M H	-	0.4	
V _{OH}	输出高电平	CMOS端口,I _{IO} = 4 mA	V _{DD} -0.4	-	V
V _{OL}	输出低电平	TTI 344 FI I O A	-	0.4	.,
Vон	输出高电平	TTL端口,lio = 2 mA	2.4	-	V
V _{OL} ⁽¹⁾	输出低电平	10	-	1.3	.,
V _{OH} ⁽¹⁾	输出高电平	I _{IO} = 10 mA	V _{DD} -1.3	-	V
超高电流观	及入能力 ⁽²⁾	•	- '		1
Vol	输出低电平	I _{IO} = 20 mA	-	0.4	V

⁽¹⁾ 由综合评估得出,不在生产中测试。

输入交流特性

输入交流特性的定义和数值在下表给出。

表 38. 输入交流特性

符号	参数	最小值	最大值	单位
texintpw	EXINT控制器检测到外部信号的脉冲宽度	10	-	ns

⁽²⁾ GPIO使能超高电流吸入能力时,其VoH同极大电流推动能力。

5.3.12 NRST 引脚特性

NRST引脚输入驱动使用CMOS工艺,它连接了一个不能断开的上拉电阻,R_{PU}(参见下表)。

符号 参数 条件 最小值 典型值 最大值 单位 $V_{\text{IL}(\text{NRST})}^{(1)}$ NRST输入低电平电压 -0.5 8.0 $V_{IH(NRST)}^{(1)}$ NRST输入高电平电压 2 $V_{DD} + 0.3$ $V_{hys(NRST)}$ NRST施密特触发器电压迟滞 500 mV 弱上拉等效电阻 Rpu VIN = Vss 30 40 50 kΩ $t_{ILV(NRST)}^{(1)}$ NRST输入低电平无效时间 -33.3 μs t_{ILNV(NRST)}(1) NRST输入低电平有效时间 66.7 μs

表 39. NRST 引脚特性

图 20. 建议的 NRST 引脚保护

- (1) 复位网络是为了防止寄生复位。
- (2) 用户必须保证NRST引脚的电位能够低于表39中列出的最大VIL(NRST)以下,否则MCU不能得到复位。

5.3.13 XMC (含 SDRAM) 特性

下表列出的参数由设计保证,不在生产中测试。

SRAM/PSRAM/NOR异步时序和波形

这些表格中的结果是按照下述XMC配置得到:

- 地址建立时间(AddressSetupTime) = 0
- 地址保持时间(AddressHoldTime) = 1
- 数据建立时间(DataSetupTime) = 1

⁽¹⁾ 由设计保证,不在生产中测试。

主 40	巴比亚岛经有田的	SRAM/PSRAM/NOF	法操作时序
衣 40.	并水非从线发用的	SKAW/PSKAW/NU	【 谜 傑作的 序

符号	参数	最小值	最大值	单位
tw(NE)	XMC_NE低时间	5tнськ - 1.5	5thclk + 2	ns
tv(NOE_NE)	XMC_NE低至XMC_NOE低有效时间	0.5	1.5	ns
tw(NOE)	XMC_NOE低时间	5tнськ - 1.5	5tнськ + 1.5	ns
th(NE_NOE)	XMC_NOE高至XMC_NE高保持时间	-1.5	-	ns
tv(A_NE)	XMC_NE低至XMC_A有效时间	-	7	ns
th(A_NOE)	XMC_NOE高之后的地址保持时间	2.5	-	ns
tv(UBLB_NE)	XMC_NE低至XMC_UB/LB有效时间	-	0	ns
th(UBLB_NOE)	XMC_NOE高之后的XMC_UB/LB保持时间	2.5	-	ns
tsu(Data_NE)	数据至XMC_NE高的建立时间	2thclk + 25	-	ns
tsu(Data_NOE)	数据至XMC_NOE高的建立时间	2tнськ + 25	-	ns
th(Data_NOE)	XMC_NOE高之后的数据保持时间	0	-	ns
th(Data_NE)	XMC_NE高之后的数据保持时间	0	-	ns
tv(NADV_NE)	XMC_NE低至XMC_NADV低有效时间	-	5	ns
tw(NADV)	XMC_NADV低时间	-	tнськ + 1.5	ns

图 21. 异步非总线复用的 SRAM/PSRAM/NOR 读操作波形

符号	参数	最小值	最大值	单位
tw(NE)	XMC_NE低时间	3 tнсцк - 1	3tнськ + 2	ns
tv(NWE_NE)	XMC_NE低至XMC_NWE低有效时间	tнськ - 0.5	tнськ + 1.5	ns
tw(NWE)	XMC_NWE低时间	tнськ - 0.5	tнськ + 1.5	ns
th(NE_NWE)	XMC_NWE高至XMC_NE高保持时间	thclk	-	ns
tv(A_NE)	XMC_NE低至XMC_A有效时间	-	7.5	ns
th(A_NWE)	XMC_NWE高之后的地址保持时间	thclk + 2	-	ns
tv(UBLB_NE)	XMC_NE低至XMC_UB/LB有效时间	-	1.5	ns
th(UBLB_NWE)	XMC_NWE高之后的XMC_UB/LB保持时间	tнськ - 0.5	-	ns
tv(Data_NE)	XMC_NE低至数据有效时间	-	thclk + 7	ns
th(Data_NWE)	XMC_NWE高之后的数据保持时间	thclk + 3	-	ns
tv(NADV_NE)	XMC_NE低至XMC_NADV低有效时间	-	5.5	ns
tw(NADV)	XMC_NADV低时间	-	tнськ + 1.5	ns

图 22. 异步非总线复用的 SRAM/PSRAM/NOR 写操作波形

(1) 只适于模式2/B、C和D。在模式1,不使用XMC_NADV。

表 42.	异步总线复用的	PSRAM/NOR	读操作时序
7C TE:	フログ ルンション・フロコ	1 011/11/11/01	

符号	参数	最小值	最大值	单位
tw(NE)	XMC_NE低时间	7 tнськ - 2	7thclk + 2	ns
tv(NOE_NE)	XMC_NE低至XMC_NOE低有效时间	3tнськ - 0.5	3tнськ + 1.5	ns
tw(NOE)	XMC_NOE低时间	4tнськ - 1	4tнськ + 2	ns
th(NE_NOE)	XMC_NOE高至XMC_NE高保持时间	-1	-	ns
tv(A_NE)	XMC_NE低至XMC_A有效时间	-	0	ns
tv(NADV_NE)	XMC_NE低至XMC_NADV低有效时间	3	5	ns
tw(NADV)	XMC_NADV低时间	tнськ - 1.5	tнськ + 1.5	ns
th(AD_NADV)	XMC_NADV高之后XMC_AD(地址)有效保持时间	tнськ + 3	-	ns
th(A_NOE)	XMC_NOE高之后的地址保持时间	thclk + 3	-	ns
th(UBLB_NOE)	XMC_NOE高之后的XMC_UB/LB保持时间	0	-	ns
tv(UBLB_NE)	XMC_NE低至XMC_UB/LB有效时间	-	0	ns
tsu(Data_NE)	数据至XMC_NE高的建立时间	2tнськ + 24	-	ns
tsu(Data_NOE)	数据至XMC_NOE高的建立时间	2tнськ + 25	-	ns
th(Data_NE)	XMC_NE高之后的数据保持时间	0	-	ns
th(Data_NOE)	XMC_NOE高之后的数据保持时间	0	-	ns

图 23. 异步总线复用 PSRAM/NOR 读操作波形

表 43.	异步总线复用的	PSRAM/NOR	写操作时序
1C TU.	エング 心をなる(1111)	1 011/4/11/11/11	-3 DK F H J / J

符号	参数	最小值	最大值	单位
tw(NE)	XMC_NE低时间	5tнськ - 1	5t _{HCLK} + 2	ns
tv(NWE_NE)	XMC_NE低至XMC_NWE低有效时间	2t _{HCLK}	2t _{HCLK} + 1	ns
tw(NWE)	XMC_NWE低时间	2t _{HCLK} - 1	2t _{HCLK} + 2	ns
th(NE_NWE)	XMC_NWE高至XMC_NE高保持时间	t _{HCLK} - 1	-	ns
tv(A_NE)	XMC_NE低至XMC_A有效时间	-	7	ns
t _v (nadv_ne)	XMC_NE低至XMC_NADV低有效时间	3	5	ns
tw(NADV)	XMC_NADV低时间	t _{HCLK} - 1	t _{HCLK} + 1	ns
th(AD_NADV)	XMC_NADV高之后XMC_AD(地址)保持时间	t _{HCLK} - 3	-	ns
th(A_NWE)	XMC_NWE高之后的地址保持时间	4t _{HCLK} + 2.5	-	ns
th(UBLB_NWE)	XMC_NWE高之后的XMC_UB/LB保持时间	t _{HCLK} - 1.5	-	ns
tv(UBLB_NE)	XMC_NE低至XMC_UB/LB有效时间	-	1.6	ns
tv(Data_NADV)	XMC_NADV高至数据有效时间	-	t _{HCLK} + 1.5	ns
th(Data_NWE)	XMC_NWE高之后的数据保持时间	t _{HCLK} - 5	-	ns

图 24. 异步总线复用 PSRAM/NOR 写操作波形

PSRAM/NOR同步时序和波形

这些表格中的结果是按照下述XMC配置得到:

- BurstAccessMode = XMC_BurstAccessMode_Enable, 使能突发传输模式
- MemoryType = XMC_MemoryType_CRAM,存储器类型为CRAM
- WriteBurst = XMC_WriteBurst_Enable, 使能突发写操作
- CLKPrescale = 1, (1个存储器周期 = 2个HCLK周期)(译注: CLKPrescale是XMC_BK1TMGx 寄存器中的CLKPSC位,参见AT32F435/437系列参考手册)
- 使用NOR闪存时,DataLatency = 1;使用PSRAM时,DataLatency = 0(注: DataLatency是XMC_BK1TMGx寄存器中的DATLAT位,参见AT32F435/437系列参考手册)

表 44. 同步非总线复用 PSRAM/NOR 读操作时序

符号	参数	最小值	最大值	单位
tw(CLK)	XMC_CLK周期	20	-	ns
td(CLKL-NEL)	XMC_CLK低至XMC_NE低间隔时间	-	1.5	ns
td(CLKL-NEH)	XMC_CLK低至XMC_NE高间隔时间	1	-	ns
td(CLKL-NADVL)	XMC_CLK低至XMC_NADV低间隔时间	-	4	ns
td(CLKL-NADVH)	XMC_CLK低至XMC_NADV高间隔时间	5	-	ns
td(CLKL-AV)	XMC_CLK低至XMC_A有效间隔时间	-	0	ns
td(CLKL-AIV)	XMC_CLK低至XMC_A无效间隔时间	4	-	ns
td(CLKH-NOEL)	XMC_CLK高至XMC_NOE低间隔时间	-	1.5	ns
td(CLKL-NOEH)	XMC_CLK低至XMC_NOE高间隔时间	0.5	-	ns
tsu(DV-CLKH)	XMC_CLK高之前XMC_D数据有效建立时间	6.5	-	ns
th(CLKH-DV)	XMC_CLK高之后XMC_D数据有效保持时间	7	-	ns
tsu(NWAITV-CLKH)	XMC_CLK高之前XMC_NWAIT有效建立时间	7	-	ns
th(CLKH-NWAITV)	XMC_CLK高之后XMC_NWAIT有效保持时间	2	-	ns

图 25. 同步非总线复用 PSRAM/NOR 读操作波形

表 45. 同步非总线复用 PSRAM 写操作时序

符号	参数	最小值	最大值	单位
tw(CLK)	XMC_CLK周期	20	-	ns
td(CLKL-NEL)	XMC_CLK低至XMC_NE低间隔时间	-	2	ns
td(CLKL-NEH)	XMC_CLK低至XMC_NE高间隔时间	2	-	ns
td(CLKL-NADVL)	XMC_CLK低至XMC_NADV低间隔时间	-	4	ns
td(CLKL-NADVH)	XMC_CLK低至XMC_NADV高间隔时间	5	-	ns
td(CLKL-AV)	XMC_CLK低至XMC_A有效间隔时间	-	0	ns
td(CLKL-AIV)	XMC_CLK低至XMC_A无效间隔时间	2	-	ns
td(CLKL-NWEL)	XMC_CLK低至XMC_NWE低间隔时间	-	1	ns
td(CLKL-NWEH)	XMC_CLK低至XMC_NWE高间隔时间	0.5	-	ns
td(CLKL-Data)	XMC_CLK低之后XMC_D数据间隔时间	-	6	ns
td(CLKL-UBLBH)	XMC_CLK低至XMC_UB/LB高间隔时间	1.5	-	ns
tsu(NWAITV-CLKH)	XMC_CLK高之前XMC_NWAIT有效建立时间	7	-	ns
th(CLKH-NWAITV)	XMC_CLK高之后XMC_NWAIT有效保持时间	2	-	ns

图 26. 同步非总线复用 PSRAM 写操作波形

表 46. 同步总线复用 PSRAM/NOR 读操作时序

符号	参数	最小值	最大值	单位
tw(CLK)	XMC_CLK周期	20	-	ns
td(CLKL-NEL)	XMC_CLK低至XMC_NE低间隔时间	-	1.5	ns
td(CLKL-NEH)	XMC_CLK低至XMC_NE高间隔时间	1	-	ns
td(CLKL-NADVL)	XMC_CLK低至XMC_NADV低间隔时间	-	4	ns
td(CLKL-NADVH)	XMC_CLK低至XMC_NADV高间隔时间	5	-	ns
td(CLKL-AV)	XMC_CLK低至XMC_A有效间隔时间	-	0	ns
td(CLKL-AIV)	XMC_CLK低至XMC_A无效间隔时间	2	-	ns
td(CLKH-NOEL)	XMC_CLK高至XMC_NOE低间隔时间	-	1	ns
td(CLKL-NOEH)	XMC_CLK低至XMC_NOE高间隔时间	0.5	-	ns
td(CLKL-ADV)	XMC_CLK低至XMC_AD有效间隔时间	-	12	ns
td(CLKL-ADIV)	XMC_CLK低至XMC_AD无效间隔时间	0	-	ns
tsu(ADV-CLKH)	XMC_CLK高之前XMC_AD有效建立时间	6	-	ns
th(CLKH-ADV)	XMC_CLK高之后XMC_AD有效保持时间	6	-	ns
tsu(NWAITV-CLKH)	XMC_CLK高之前XMC_NWAIT有效建立时间	8	-	ns
th(CLKH-NWAITV)	XMC_CLK高之后XMC_NWAIT有效保持时间	6	-	ns

图 27. 同步总线复用 PSRAM/NOR 读操作波形

表 47. 同步总线复用 PSRAM 写操作时序

符号	参数	最小值	最大值	单位
tw(CLK)	XMC_CLK周期	20	-	ns
td(CLKL-NEL)	XMC_CLK低至XMC_NE低间隔时间	-	2	ns
td(CLKL-NEH)	XMC_CLK低至XMC_NE高间隔时间	2	-	ns
td(CLKL-NADVL)	XMC_CLK低至XMC_NADV低间隔时间	-	4	ns
td(CLKL-NADVH)	XMC_CLK低至XMC_NADV高间隔时间	5	-	ns
td(CLKL-AV)	XMC_CLK低至XMC_A有效间隔时间	-	0	ns
td(CLKL-AIV)	XMC_CLK低至XMC_A无效间隔时间	2	-	ns
td(CLKL-NWEL)	XMC_CLK低至XMC_NWE低间隔时间	-	1	ns
td(CLKL-NWEH)	XMC_CLK低至XMC_NWE高间隔时间	0.5	-	ns
td(CLKL-ADV)	XMC_CLK低至XMC_AD有效间隔时间	-	12	ns
td(CLKL-ADIV)	XMC_CLK低至XMC_AD无效间隔时间	3	-	ns
td(CLKL-Data)	XMC_CLK低之后XMC_AD间隔时间	-	6	ns
td(CLKL-UBLBH)	XMC_CLK低至XMC_UB/LB高间隔时间	1	-	ns
tsu(NWAITV-CLKH)	XMC_CLK高之前XMC_NWAIT有效建立时间	7	-	ns
th(CLKH-NWAITV)	XMC_CLK高之后XMC_NWAIT有效保持时间	2	-	ns

图 28. 同步总线复用 PSRAM 写操作波形

NAND控制器时序和波形

这些表格中的结果是按照下述XMC配置得到:

- COM.XMC SetupTime = 0x01; (注: XMC BKxTMGMEM的STP)
- COM.XMC_WaitSetupTime = 0x03; (注: XMC_BKxTMGMEM的OP)
- COM.XMC HoldSetupTime = 0x02; (注: XMC BKxTMGMEM的HLD)
- COM.XMC HiZSetupTime = 0x01; (注: XMC BKxTMGMEM的WRSTP)
- ATT.XMC_SetupTime = 0x01; (注: XMC_BKxTMGATT的STP)
- ATT.XMC WaitSetupTime = 0x03; (注: XMC BKxTMGATT的OP)
- ATT.XMC_HoldSetupTime = 0x02; (注: XMC_BKxTMGATT的HLD)
- ATT.XMC_HiZSetupTime = 0x01; (注: XMC_BKxTMGATT的WRSTP)
- Bank = XMC_Bank_NAND;
- MemoryDataWidth = XMC_MemoryDataWidth_16b; (注: 存储器数据宽度 = 16位)
- ECC = XMC_ECC_Enable; (注: 使能ECC计算)
- ECCPageSize = XMC_ECCPageSize_512Bytes; (注: ECC页大小 = 512字节)
- DLYCRSetupTime = 0; (注: XMC_BKxCTRL的DLYCR)
- DLYARSetupTime = 0; (注: XMC_BKxCTRL的DLYAR)

表 48. NAND 闪存读写操作时序

符号	参数	最小值	最大值	单位
tw(NOE)	XMC_NOE低时间	4tнськ - 1.5	4thclk + 1.5	ns
tsu(D-NOE)	XMC_NOE高之前至XMC_Dx数据有效建立时间	25	-	ns
th(NOE-D)	XMC_NOE高之后至XMC_Dx数据有效保持时间	14	-	ns
td(ALE-NOE)	XMC_NOE低之前至XMC_ALE有效间隔时间	-	3tнськ + 2	ns
th(NOE-ALE)	XMC_NOE高至XMC_ALE无效保持时间	3tнськ + 4.5	-	ns
tw(NWE)	XMC_NWE低时间	4tнськ - 1	4tнськ + 2.5	ns
t _v (NWE-D)	XMC_NWE低至XMC_Dx数据有效时间	-	0	ns
th(NWE-D)	XMC_NWE高至XMC_Dx数据无效保持时间	10thclk + 4	-	ns
td(D-NWE)	XMC_NWE高之前至XMC_Dx数据有效间隔时间	6tнськ + 12	-	ns
td(ALE-NWE)	XMC_NWE低之前至XMC_ALE有效间隔时间	-	3tнськ + 1.5	ns
th(NWE-ALE)	XMC_NWE高至XMC_ALE无效保持时间	3tнськ + 4.5	-	ns

图 29. NAND 控制器读操作波形

图 30. NAND 控制器写操作波形

图 31. NAND 控制器在通用存储空间的读操作波形

图 32. NAND 控制器在通用存储空间的写操作波形

PC卡/CF卡控制器时序和波形

这些表格中的结果是按照下述XMC配置得到:

- COM.XMC_SetupTime = 0x04; (注: XMC_BKxTMGMEM的STP, x = 2...4)
- COM.XMC_WaitSetupTime = 0x07; (注: XMC_BKxTMGMEM的OP, x = 2...4)
- COM.XMC_HoldSetupTime = 0x04; (注: XMC_BKxTMGMEM的HLD, x = 2...4)
- COM.XMC HiZSetupTime = 0x00; (注: XMC BKxTMGMEM的WRSTP, x = 2...4)
- ATT.XMC_SetupTime = 0x04; (注: XMC_BKxTMGATT的STP, x = 2...4)
- ATT.XMC_WaitSetupTime = 0x07; (注: XMC_BKxTMGATT的OP, x = 2...4)
- ATT.XMC_HoldSetupTime = 0x04; (注: XMC_BKxTMGATT的HLD, x = 2...4)
- ATT.XMC_HiZSetupTime = 0x00; (注: XMC_BKxTMGATT的WRSTP, x = 2...4)
- IO.XMC_SetupTime = 0x04; (注: XMC_BKxTMGIO的STP, x = 4)
- IO.XMC_WaitSetupTime = 0x07; (注: XMC_BKxTMGIO的OP, x = 4)
- IO.XMC_HoldSetupTime = 0x04; (注: XMC_BKxTMGIO的HLD, x = 4)
- IO.XMC_HiZSetupTime = 0x00; (注: XMC_BKxTMGIO的WRSTP, x = 4)
- DLYCRSetupTime = 0; (注: XMC_BKxCTRL的DLYCR)
- DLYARSetupTime = 0; (注: XMC_BKxCTRL的DLYAR)
- 注: 关于以上寄存器(XMC_BKXTMGMEMx、XMC_BKxTMGATT、XMC_BKxTMGIO和XMC_BKxCTRL) 的说明,详见AT32F435/437系列参考手册。

表 49. PC 卡/CF 卡读写操作时序

符号	参数	最小值	最大值	单位
tv(NCEx-A)	XMC_NCEx 低至 XMC_Ax 有效时间	-	0	ns
th(NCEx-AI)	XMC_NCEx 高至 XMC_Ax 无效保持时间	0	-	ns
td(NREG-NCEx)	XMC_NCEx 低至 XMC_NREG 有效时间	-	2	ns
th(NCEx-NREG)	XMC_NCEx 高至 XMC_NREG 无效保持时间	t _{HCLK} + 4	-	ns
td(NCEx-NWE)	XMC_NCEx 低至 XMC_NWE 低间隔时间	-	5t _{HCLK} + 1	ns
td(NCEx-NOE)	XMC_NCEx 低至 XMC_NOE 低间隔时间	-	5t _{HCLK} + 1	ns
tw(NOE)	XMC_NOE低时间	8t _{HCLK} - 0.5	8t _{HCLK} + 1	ns
td(NOE -NCEx)	XMC_NOE高至XMC_NCEx高间隔时间	5tнськ — 0.5	-	ns
tsu(D-NOE)	XMC_NOE高之前XMC_Dx数据有效建立时间	32	-	ns
th(NOE-D)	XMC_NOE高之后XMC_Dx数据无效保持时间	thclk	-	ns
tw(NWE)	XMC_NWE低时间	8t _{HCLK} - 1	8t _{HCLK} + 4	ns
td(NWE-NCEx)	XMC_NWE高至XMC_NCEx高间隔时间	5t _{HCLK} + 1.5	-	ns
td(NCEx-NWE)	XMC_NCEx低至XMC_NWE低间隔时间	-	5t _{HCLK} + 1	ns
t _v (NWE-D)	XMC_NWE低至XMC_Dx有效时间	-	0	ns
th(NWE-D)	XMC_NWE高至XMC_Dx无效保持时间	11t _{HCLK}	-	ns
td(D-NWE)	XMC_NWE高之前XMC_Dx有效间隔时间	13t _{HCLK} + 2.5	-	ns
tw(NIOWR)	XMC_NIOWR低时间	8thclk	-	ns
tv(NIOWR-D)	XMC_NIOWR低至XMC_Dx有效时间	-	5t _{нськ} - 4	ns
th(NIOWR-D)	XMC_NIOWR高至XMC_Dx无效保持时间	11thclk	-	ns
td(NCEx-NIOWR)	XMC_NCEx低至XMC_NIOWR有效间隔时间			
th(NCEx-NIOWR)	XMC_NCEx 高至 XMC_NIOWR 无效保持时间	5tнськ - 7	-	ns
td(NIORD-NCEx)	XMC_NCEx 低至 XMC_NIORD 有效间隔时间	-	- 5t _{HCLK} + 1	
th(NCEx-NIORD)	XMC_NCEx 高至 XMC_NIORD 无效保持时间	5t _{нськ} — 0.5	-	ns
tw(NIORD)	XMC_NIORD低时间	8t _{HCLK}	-	ns
tsu(D-NIORD)	XMC_NIORD高之前XMC_Dx有效建立时间	28	-	ns
td(NIORD-D)	XMC_NIORD高之后XMC_Dx有效间隔时间	3	-	ns

图 33. 通用存储空间读操作的 PC 卡/CF 卡控制器波形

(1) XMC_NCE4_2保持低(8位操作时为无效状态)。

图 34. 通用存储空间写操作的 PC 卡/CF 卡控制器波形

td(NOE-NCE4_1)

XMC_NIORD

XMC_NREG

 $\mathsf{XMC}_{\mathsf{NWE}}$

XMC_NOE

XMC_D[15:0]⁽¹⁾

XMC_NCE4_1

XMC_NCE4_2

High

XMC_NIOWR

td(NREG-NCE4_1)

图 35. 属性存储空间读操作的 PC 卡/CF 卡控制器波形

(1) 只使用数据位0~7(数据位8~15被丢弃)。

td(NCE4_1-NOE)

XMC_NCE4_1 ⁻ XMC_NCE4_2 High th(NCE4_1-AI)→ tv(NCE4_1-A) XMC_A[10:0] XMC_NIOWR XMC_NIORD th(NCE4_1-NREG)─► ^tv(NREG-NCE4_1) XMC_NREG d(NCE4_1-NEW) ^tw(NWE)⁻ XMC_NWE _ td(NWE-NCE4_1)+ XMC_NOE tv(NWE-D) XMC_D[7:0] (1)

图 36. 属性存储空间写操作的 PC 卡/CF 卡控制器波形

tsu(D-NOE)—

th(NCE4_1-NREG) -

-th(NOW-D)

(1) 只输出数据位0~7(数据位8~15保持为高阻)。

图 37. I/O 空间读操作的 PC 卡/CF 卡控制器波形

图 38. I/O 空间写操作的 PC 卡/CF 卡控制器波形

SDRAM控制器时序和波形

表 50. SDRAM 读操作时序

符号	参数	最小值	最大值	单位
1/tw(SDCLK)	SDCLK频率	-	100	MHz
tsu(SDCLKH_Data)	数据输入建立时间	2	-	ns
th(SDCLKH_Data)	数据输入保持时间	0	-	ns
td(SDCLKL_Add)	地址有效时间	-	1.5	ns
td(SDCLKL_SDCS)	片选有效时间	-	0.5	ns
th(SDCLKL_SDCS)	片选保持时间	0	-	ns
td(SDCLKL_SDNRAS)	SDNRAS/SDNCAS有效时间		0.5	20
td(SDCLKL_SDNCAS)	SDINKAS/SDINCAS有 XX的 同	-	0.5	ns
th(SDCLKL_SDNRAS)	SDNRAS/SDNCAS保持时间	0	_	ns
th(SDCLKL_SDNCAS)			_	115

图 39. SDRAM 读操作波形

表 51. SDRAM 写操作时序

符号	参数	最小值	最大值	单位
1/tw(SDCLK)	SDCLK频率	-	100	MHz
td(SDCLKL_Data)	数据输出有效时间	-	2.5	ns
th(SDCLKL_Data)	数据输出保持时间	3.5	ı	ns
td(SDCLKL_Add)	地址有效时间	-	1.5	ns
td(SDCLKL_SDNWE)	SDNWE有效时间	-	1	ns
th(SDCLKL_SDNWE)	SDNWE保持时间	0	1	ns
td(SDCLKL_SDCS)	片选有效时间	-	0.5	ns
th(SDCLKL_SDCS)	片选保持时间	0	ı	ns
td(SDCLKL_SDNRAS)	SDNRAS有效时间	-	2	ns
th(SDCLKL_SDNRAS)	SDNRAS保持时间	0	ı	ns
td(SDCLKL_SDNCAS)	SDNCAS有效时间	-	0.5	ns
th(SDCLKL_SDNCAS)	SDNCAS保持时间	0	-	ns
td(SDCLKL_DQM)	DQM有效时间	-	0.5	ns
th(SDCLKL_DQM)	DQM保持时间	0	-	

图 40. SDRAM 写操作波形

5.3.14 TMR 定时器特性

下表列出的参数由设计保证。

表 52. TMR 定时器特性

符号	参数	条件	最小值	最大值	单位
t (711D)	tres(TMR) 定时器分辨时间	-	1	-	tmrxclk
tres(TMR)	<u> </u>	f _{TMRxCLK} = 288 MHz	3.47	-	ns
fext	CH1至CH4的定时器外部时钟频率	-	0	fTMRxCLK/2	MHz

5.3.15 SPI 接口特性

表 53. SPI 特性

符号	参数		条件	最小值	最大值	单位
10 7	少以		水 T	取小匠	取八直	辛匹
		主模式	预分频系数 ≠3	-	36	
f sck		工侠八	预分频系数 = 3	-	32	
(1/t _{c(SCK)}) ⁽¹⁾	SPI时钟频率 ⁽²⁾⁽³⁾	11 11/4 44 -4	预分频系数 ≠3	-	36	MHz
(I/IC(SCK))		从收模式	预分频系数 = 3	-	32	
		从发模式	•	-	32	
t _{su(CS)} ⁽¹⁾	CS建立时间	从模式		4t _{PCLK}	-	ns
t _{h(CS)} ⁽¹⁾	CS保持时间	从模式		2t _{PCLK}	-	ns
$t_{\text{w(SCKL)}}^{(1)}$ $t_{\text{w(SCKL)}}^{(1)}$	SCK高和低的时间	主模式, 预分频系数 = 4		2t _{PCLK} - 3	2t _{PCLK} + 3	ns
t _{su(MI)} ⁽¹⁾	NATIONAL STATE OF THE STATE OF	主模式		5	-	
t _{su(SI)} (1)	数据输入建立时间	从模式		5	-	ns
t _{h(MI)} ⁽¹⁾	*** +0 +5 \ /0 +1 +1 +1 +1 +1	主模式		5	-	
t _{h(SI)} (1)	· 数据输入保持时间	从模式		4	-	ns
t _{a(SO)} (1)(4)	数据输出访问时间	从模式		t _{PCLK} - 2	2t _{PCLK} + 2	ns
t _{dis(SO)} (1)(5)	数据输出禁止时间	从模式		t _{PCLK} - 2	2t _{PCLK} + 2	ns
t _{v(SO)} ⁽¹⁾	数据输出有效时间	从模式 (使能边沿之后)		-	25	ns
t _{v(MO)} ⁽¹⁾	数据输出有效时间	主模式 (使能边沿之后)		-	10	ns
t _{h(SO)} ⁽¹⁾	粉 担 於 山 但 挂 时 词	从模式 (使	能边沿之后)	9	-	
t _{h(MO)} ⁽¹⁾	数据输出保持时间	主模式(使	能边沿之后)	2	-	ns

⁽¹⁾ 由设计保证,不在生产中测试。

⁽²⁾ 从模式最大时钟频率不得超过fpclk/2。

⁽³⁾ 最大时钟频率与器件和PCB布局高度相关。想要获得更完整详细的解决方案,可以联系邻近的雅特力销售处寻求技术支持。

⁽⁴⁾ 最小值表示驱动输出的最小时间,最大值表示正确获得数据的最大时间。

⁽⁵⁾ 最小值表示关闭输出的最小时间,最大值表示把数据线置于高阻态的最大时间。

图 41. SPI 时序图 - 从模式和 CPHA = 0

图 42. SPI 时序图 - 从模式和 CPHA = 1

图 43. SPI 时序图 - 主模式

5.3.16 I2S 接口特性

表 54. I2S 特性

符号	参数	条件	最小值	最大值	单位
tr(CK)	I ² S时钟上升和下降时间	负载电容: C = 15 pF	-	12	
t _{v(WS)} ⁽¹⁾	WS有效时间	主模式	0	4	
t _{h(WS)} ⁽¹⁾	WS保持时间	主模式	0	4	
tsu(WS) ⁽¹⁾	WS建立时间	从模式	9	-	
t _{h(WS)} ⁽¹⁾	WS保持时间	从模式	0	-	
tsu(SD_MR) ⁽¹⁾	数据输入建立时间	主接收器	6	-	
tsu(SD_SR) ⁽¹⁾	数据制八建立时间	从接收器	2	-	ns
th(SD_MR)(1)(2)	数据输入保持时间	主接收器	0.5	-	
t _{h(SD_SR)} (1)(2)	数据制八体符时间	从接收器	0.5	-	
t _{v(SD_ST)} (1)(2)	数据输出有效时间	从发送器(使能边沿之后)	-	20	
th(SD_ST) ⁽¹⁾	数据输出保持时间	从发送器 (使能边沿之后)	9	-	
t _{v(SD_MT)} (1)(2)	数据输出有效时间	主发送器 (使能边沿之后)	-	15	
th(SD_MT) ⁽¹⁾	数据输出保持时间	主发送器 (使能边沿之后)	0	-	

- (1) 由设计保证,不在生产中测试。
- (2) 依赖于 f_{PCLK} 。例如,如果 f_{PCLK} = 8 MHz,则 t_{PCLK} = 1/ f_{PCLK} = 125 ns。

图 44. I2S 从模式时序图 (Philips 协议)

(1) 前一字节的最低位发送/接收。在第一个字节之前没有这个最低位的发送/接收。

图 45. I2S 主模式时序图 (Philips 协议)

(1) 前一字节的最低位发送/接收。在第一个字节之前没有这个最低位的发送/接收。

5.3.17 QSPI 接口特性

表 55. QSPI 特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{SCK}	QSPI时钟频率	-	-	-	96	MHz
tw(CKH)	QSPI时钟高和低的时间 - (t)		(t _(CK) / 2) - 2	-	t _(CK) / 2	ns
tw(CKL)			t _(CK) / 2	-	$(t_{(CK)} / 2) + 2$	ns
ts(IN)	数据输入建立时间	-	2	-	-	ns
th(IN)	数据输入保持时间	-	4.5	-	-	ns
t _{v(OUT)}	数据输出有效时间	-	-	1.5	3	ns
th(OUT)	数据输出保持时间	-	0	-	-	ns

图 46. QSPI 时序图

5.3.18 I²C 接口特性

SDA和SCL GPIO要求的满足有以下限制: SDA和SCL不是"真"开漏的引脚,当配置为开漏输出时,在引出脚和V_{DD}之间的PMOS管被关闭,但仍然存在。

 I^2C 总线接口支持标准模式(最高100 kHz)、快速模式(最高400 kHz)、和增强快速模式(最高1 MHz)。

2024.4.1 第 93 页 版本 2.12

5.3.19 SDIO 接口特性

图 47. SDIO 高速模式

图 48. SD 默认模式

表 56. SD/MMC 接口特性

符号	参数		最小值	最大值	单位
10 3	> X	AT II	政(7.匝	取八直	平匹
fрр	数据传输模式下的时钟频率	-	0	48	MHz
tw(ckl)	时钟低时间	-	32	-	
tw(ckh)	时钟高时间	-	30	-	
tr	时钟上升时间	-	-	4	ns
t f	时钟下降时间	-	-	5	
CMD、D输	入 (参照CK)				
tısu	时钟建立时间	-	2	-	no
tıн	时钟保持时间	-	0	-	ns
在MMC和S	D高速模式CMD、D输出(参照CK)		<u>.</u>		
tov	输出有效时间	-	-	6	
tон	输出保持时间	-	0	-	ns
在SD默认模	其式CMD、D输出(参照CK)				•
tovd	输出有效默认时间	-	-	7	
tонр	输出保持默认时间	-	0.5	-	ns

5.3.20 OTGFS 接口特性

表 57. OTGFS 启动时间

符号	参数	最大值	单位
t _{STARTUP} (1)	OTGFS收发器启动时间	1	μs

⁽¹⁾ 由设计保证,不在生产中测试。

表 58. OTGFS 直流特性

符号		参数	条件	最小值(1)	典型值	最大值(1)	单位	
	V_{DD}	OTGFS操作电压	-	3.0(2)		3.6	V	
 输入电平	V _{DI} (3)	差分输入灵敏度	I (OTGFS_D+/D-)	0.2		-		
柳八屯丁	$V_{CM}^{(3)}$	差分共模范围	包含V _{DI} 范围	0.8		2.5	V	
	$V_{SE}^{(3)}$	单端接收器阈值	-	1.3		2.0		
输出电平	V_{OL}	静态输出低电平	1.24 kΩ的R _L 接至3.6 V ⁽⁴⁾	-		0.3	V	
柳田屯丁	V_{OH}	静态输出高电平	15 kΩ的R _L 接至V _{SS} ⁽⁴⁾	2.8		3.6	V	
D _n		OTGFS_D+内部上拉电	VIN = VSS	0.97	1.24	1.58	kΩ	
R _{PU}		阻	VIN = V55	0.97	1.24	1.56	K22	
R _{PD}		OTGFS_D+/D-内部下	VIN = VDD	15	19	25	kΩ	
		拉电阻	טט = עטט	15	19	25	N22	

- (1) 所有的电压测量都是以设备端地线为准。
- (2) AT32F435/437系列的正确USB功能可以在2.7 V得到保证,而不是全部的电气特性在2.7~3.0 V电压范围下降级。
- (3) 由设计保证,不在生产中测试。
- (4) RL是连接到USB驱动器上的负载。

图 49. OTGFS 时序: 数据信号上升和下降时间定义

表 59. OTGFS 电气特性

符号	参数	条件	最小值(1)	最大值(1)	单位
t _r	上升时间(2)	C _L ≤ 50 pF	4	20	ns
t _f	下降时间(2)	C _L ≤ 50 pF	4	20	ns
t _{rfm}	上升下降时间匹配	t _r /t _f	90	110	%
V_{CRS}	输出信号交叉电压	-	1.3	2.0	V

- (1) 由设计保证,不在生产中测试。
- (2) 测量数据信号从10%至90%。更多详细信息,参见USB规范第7章(2.0版)。

2024.4.1 第 95 页 版本 2.12

5.3.21 EMAC 接口特性

工作电压

表 60. EMAC 直流特性

符号	参数	最小值(1)	最大值(1)	单位
V_{DD}	以太网工作电压	3.0	3.6	V

⁽¹⁾ 所有的电压测量都是以设备端地线为准。

SMI接口

表 61. EMAC 的 SMI 接口信号动态特性

符号	参数		典型值	最大值	单位
tmdc	MDC周期(1.96 MHz,f _{AHB} = 200 MHz)	509	510	511	
t _{d(MDIO)}	MDIO写数据的有效时间	13.5	14.5	15.5	no
t _{su(MDIO)}	读数据的建立时间	35	-	-	ns
t _{h(MDIO)}	读数据的保持时间	0	-	-	

图 50. EMAC 的 SMI 接口时序图

RMII接口

表 62. EMAC 的 RMII 接口信号动态特性

符号	参数	最小值	典型值	最大值	单位
t _{su(RXD)}	接收数据建立时间	4	-	-	
tih(RXD)	接收数据保持时间	2	1		
t _{su(DV)}	载波建立时间	4	-	-	20
t _{ih(DV)}	载波保持时间	2	-	-	ns
t _{d(TXEN)}	传输使能有效延迟	8	10	16	
t _{d(TXD)}	传输数据有效延迟	7	10	16	

图 51. EMAC 的 RMII 接口时序图

MII接口

表 63. EMAC 的 MII 接口信号动态特性

符号	参数	最小值	典型值	最大值	单位
t _{su(RXD)}	接收数据建立时间	10	-	-	
t _{ih(RXD)}	接收数据保持时间	10	-	-	
t _{su(DV)}	数据有效建立时间	10	-	-	
t _{ih(DV)}	数据有效保持时间	10	-	-	20
t _{su(ER)}	错误建立时间	10	-	-	ns
tih(ER)	错误保持时间	10	-	-	
t _{d(TXEN)}	传输使能有效延迟	14	16	18	
t _{d(TXD)}	传输数据有效延迟	13	16	20	

图 52. EMAC 的 MII 接口时序图

5.3.22 DVP 接口特性

DVP_PCLK 极性:下降沿; DVP_HSYNC 和 DVP_VSYNC 极性:高电平。

表 57. DVP 特性

符号	参数	最小值	最大值	单位
f _{DVP_PCLK}	f _{DVP_PCLK} 象素时钟输入频率		54	MHz
Duty _{DVP_PCLK}	Duty _{DVP_PCLK} 象素时钟输入占空比		70	%
tsu(DVP_DATA) 数据输入建立时间		1	-	ns
th(DVP_DATA)	数据输入保持时间	3.5	-	ns
tsu(DVP_HSYNC) tsu(DVP_VSYNC)	HSYNC/VSYNC输入建立时间	2	-	ns
th(DVP_HSYNC) th(DVP_VSYNC)	HSYNC/VSYNC输入保持时间	0	-	ns

图 53. DVP 时序图

5.3.23 12 位 ADC 特性

除非特别说明,下表的参数是使用符合表15的条件的环境温度, f_{PCLK2} 频率和 V_{DDA} 供电电压测量得到。

注: 建议在每次上电时执行一次校准。

表 64. ADC 特性

符号	参数	Ź	·····································	最小值	典型值	最大值	单位		
Vdda	供电电压		-	2.6	-	3.6	V		
V _{REF+}	正参考电压(3)		-	2.0	-	Vdda	V		
Idda	在VDDA输入脚上的电流	-		-	1280(1)	1560	μA		
Ivref+	在VREF+输入脚上的电流 (3)		-	-	400 ⁽¹⁾	480	μA		
	A D OR LELIES TO	V _{REF+} ≥ 2.6 V		0.6	-	80			
fadc	ADC时钟频率	V _{REF+} < 2.6 V		0.6	-	30	MHz		
		// 	快速通道	0.04		5.33			
		分辨率12位	慢速通道	0.04	-	4.21			
		// 	快速通道	0.047		6.15			
5 (2)	T W + +	分辨率10位	慢速通道	0.047	-	4.71			
fs ⁽²⁾	采样速率	/\ \delta	快速通道	0.055		7.27	MSPS		
		分辨率8位	慢速通道	0.055	0.055	0.055	-	5.33	5.33
		快速通道		8.88					
		分辨率6位	慢速通道	0.067	-	6.15			
5 (2)		f _{ADC} = 80 MH	f _{ADC} = 80 MHz		-	4.44	MHz		
f _{TRIG} ⁽²⁾	外部触发频率		-	-	-	18	1/fadc		
Vain	转换电压范围(3)		-	0 (V REF-内部 连接到地)	-	VREF+	V		
R _{AIN} ⁽²⁾	外部输入阻抗		-	参	·见 <i>表</i> 65	I.	Ω		
C _{ADC} ⁽²⁾	内部采样和保持电容		-	-	10	-	pF		
. (2)	12-20-21	f _{ADC} = 80 MH	Z		2.56		μs		
t _{CAL} ⁽²⁾	校准时间		-		205		1/fadc		
. (2)	14 1.41.10 44.14 - 1.75	f _{ADC} = 80 MH:	Z	-	-	37.5	ns		
$t_{lat}^{(2)}$	抢占触发转换时延		-	-	-	3 ⁽⁴⁾	1/fadc		
1 (2)	**	f _{ADC} = 80 MH	Z	-	-	25	ns		
$t_{latr}^{(2)}$	普通触发转换时延	-		-	-	2(4)	1/fadc		
. (2)	TIME LOT	f _{ADC} = 80 MHz		0.031	-	8.006	μs		
ts ⁽²⁾	采样时间	-		2.5	-	640.5	1/fadc		
t _{STAB} (2)	上电时间	-		45			1/fadc		
1 (2)	总转换时间(包括采样时	f _{ADC} = 80 MH	z,分辨率12位	0.188	-	8.163	μs		
$t_{CONV}^{(2)}$	间)	分辨率12位			ts + 逐步i	15~653 (采样ts + 逐步逼近12.5)			

- (1) 由综合评估得出,不在生产中测试。
- (2) 由设计保证,不在生产中测试。
- (3) 依据不同的封装,VREF+可能在内部连接到VDDA。
- (4) 对于外部触发,必须在表64列出的时延中加上一个延迟1/fpcLK2。

表65决定最大的外部阻抗,使得误差可以小于1 LSB。(分辨率12位)

表 65. f_{ADC} = 80 MHz 时的最大 R_{AIN}

T _s (周期)		最大RAIN	(Ω) (1)
	t _s (µs)	快速通道	慢速通道
2.5	0.031	30	不支持
6.5	0.081	200	50
12.5	0.156	400	350
24.5	0.306	800	700
47.5	0.594	1700	1500
92.5	1.156	3000	2600
247.5	3.094	9000	8500
640.5	8.006	20000	19000

⁽¹⁾ 由设计保证。

表 66. ADC 精度⁽¹⁾⁽²⁾

符号	参数	测试条件	典型值	最大值	单位
ET	综合误差		±1.5	±3	
EO	偏移误差	$f_{ADC} = 80 \text{ MHz}, R_{AIN} < 20 \text{ k}\Omega,$	±0.5	±1.5	
EG	增益误差	V _{DDA} = 3.0~3.6 V, T _A = 25 °C,	±0.5	±1.5	LSB
ED	微分线性误差	V _{REF+} = V _{DDA}	±1	+1.5/-1	
EL	积分线性误差		±1.5	±3	
ET	综合误差		±2	±4.5	
EO	偏移误差	$f_{ADC} = 15 \sim 80 \text{ MHz}, R_{AIN} < 20 \text{ k}\Omega,$	±0.5	±3	
EG	增益误差	$V_{DDA} = 2.6 \sim 3.6 \text{ V}, T_A = -40 \sim 105 °C,$	+1.5	+4/-2	LSB
ED	微分线性误差	V _{REF+} = 2.0~3.6 V	±1	+2/-1	
EL	积分线性误差		±1.5	±3.5	

- (1) ADC的直流精度数值是在经过内部校准后测量的。
- (2) 由综合评估得出,不在生产中测试。

图 54. ADC 精度特性

图 55. 使用 ADC 典型的连接图

- (1) 有关RAIN和CADC的数值,参见表64。
- (2) Cparasitic表示PCB(与焊接和PCB布局质量相关)与焊盘上的寄生电容(大约7 pF)。较大的Cparasitic数值将降低转换的精度,解决的办法是减小fADC。

PCB设计建议

依据 V_{REF+} 是否与 V_{DDA} 相连,电源的去藕必须按照 图56或 图57连接。图中的100 nF电容必须是瓷介电容(好的质量),它们应该尽可能地靠近MCU芯片。

若在使能HEXT并且使用ADC3_IN4~8或ADC123_IN10~13任一通道的条件下,请遵照以下PCB设计建议以隔绝HEXT高频振荡对其邻近ADC输入信号之干扰。

- ADC IN信号与HEXT信号使用不同PCB层走线
- ADC IN信号走线避免与HEXT信号走线平行

图 56. 供电电源和参考电源去耦线路(具有外部 VREF+引脚封装)

(1) VREF+输入只出现在100脚以上封装。

图 57. 供电电源去耦线路 (无外部 VREF+引脚封装)

(1) VREF+输入只出现在100脚以上封装。

5.3.24 内部参照电压 (VINTRY) 特性

表 67. 内置参照电压特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{INTRV} ⁽¹⁾	内部参照电压	-	1.16	1.20	1.24	V
T _{Coeff} ⁽¹⁾	温度系数	-	-	50	100	ppm/°C
Ts_VINTRV ⁽²⁾	当读出内部参照电压时,ADC的采样时间	-	5	-	-	μs

- (1) 由综合评估得出,不在生产中测试。
- (2) 由设计保证,不在生产中测试。

5.3.25 温度传感器 (V_{TS}) 特性

表 68. 温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
T _L (1)	V _{TS} 相对于温度的线性度	T _A = -40 ~ +85 °C	-	±1	±2	°C
	VTS作利了価浸的线性浸	T _A = -40 ~ +105 °C	-	-	±3	.0
Avg_Slope ⁽¹⁾⁽²⁾	平均斜率	-	-4.00	-4.13	-4.25	mV/°C
$V_{25}^{(1)(2)}$	在25℃时的电压	-	1.21	1.27	1.34	V
t _{START} (3)	建立时间	-	-	1	100	μs
Ts_temp ⁽³⁾	当读取温度时,ADC采样时间	-	5	-	-	μs

- (1) 由综合评估得出,不在生产中测试。
- (2) 温度传感器输出电压随温度线性变化,由于生产过程的变化,温度变化曲线的偏移在不同芯片上会有不同(最多相差50°C)。内部温度传感器更适合于检测温度的变化,而不是测量绝对的温度。如果需要测量精确的温度,应该使用一个外置的温度传感器。
- (3) 由设计保证,不在生产中测试。

利用下列公式得出温度:

温度(°C) = {(V25 - VTS) / Avg_Slope} + 25

这里:

V25 = VTS在25°C时的数值

Avg Slope = 温度与VTs曲线的平均斜率(单位为mV/°C)

图 58. V_{TS}对温度理想曲线图

5.3.26 V_{BAT} 电池电压监控特性

表 69. VBAT 监控特性

符号	参数	最小值	典型值	最大值	单位
R _{VBATM} ⁽¹⁾	V _{BAT} 监控分压电阻值	-	45	-	kΩ
Q	V _{BAT} 监控分压系数	-	4	-	-
Q _{ET} ⁽¹⁾	Q的综合误差	-1	-	+1	%
T _{S_VBATM} ⁽²⁾	当读取V _{BAT} 监控电压时,ADC采样时间	5	-	-	μs

⁽¹⁾ 由综合评估得出,不在生产中测试。

⁽²⁾ 由设计保证,不在生产中测试。

5.3.27 12 位 DAC 特性

表 70. DAC 特性

符号	参数	条件	最小值	典型值	最大值	单位
VDDA	模拟供电电压	-	2.6	-	3.6	V
V _{REF+} (3)	参考电压	-	2.0	-	3.6	V
Vssa	地线	-	0	-	0	V
R _{LOAD} ⁽¹⁾	缓冲器打开时的负载电阻	-	5	-	-	kΩ
Ro ⁽²⁾	缓冲器关闭时的输出阻抗	-	-	13.2	16	kΩ
C _{LOAD} ⁽¹⁾	负载电容 (缓冲器打开时)	-	-	-	50	pF
	缓冲器打开时低端的 DAC_OUT 电压	-	0.15	-	-	V
DAC OUT ⁽¹⁾	缓冲器打开时高端的 DAC_OUT 电压	-	-	-	V _{REF+} - 0.15	V
DAC_OUT	缓冲器关闭时低端的DAC_OUT电压	-	-	0.5	5	mV
	缓冲器关闭时高端的DAC_OUT电压	-	-	-	V _{REF+} - 2 mV	V
Idda	在静止模式DAC直流消耗	无负载,当V _{REF+} = 3.6 V时	-	460	625	μA
I _{VREF+} (3)	在静止模式DAC直流消耗	无负载,当V _{REF+} = 3.6 V时	-	270	310	μA
DNL ⁽²⁾	非线性失真	-	-	±0.4	±0.8	LSB
INL ⁽²⁾	非线性积累(在代码i时测量的数值与代码DAC_OUT大和代码DAC_OUT小之间的连线间的偏差)	-	-	±1	±3	LSB
伯秒:旦举(2)	偏移误差(代码0x800时测量的数值与理		-	10	15	mV
偏移误差 ⁽²⁾	想数值V _{REF+} /2之间的偏差)	-	-	10	25	LSB
增益误差(2)	增益误差	-	-	0.1	0.25	%
tsettling	设置时间	$R_{LOAD} \ge 5 \text{ k}\Omega$ $C_{LOAD} \le 50 \text{ pF}$	-	1	4	μs
更新速率	当输入代码为较小变化时(从数值 i 变到 i+1 LSB),得到正确 DAC_OUT 的频率	$R_{LOAD} \ge 5 \text{ k}\Omega$ $C_{LOAD} \le 50 \text{ pF}$	-	-	1	MSPS
twakeup	从关闭状态唤醒的时间(设置 DAC 控制 寄存器中的 EN 位)	R _{LOAD} ≥ 5 k Ω C _{LOAD} ≤ 50 pF	-	1.2	4	μs

⁽¹⁾ 由设计保证,不在生产中测试。

⁽²⁾ 由综合评估得出,不在生产中测试。

⁽³⁾ 依据不同的封装,V_{REF+}可能在内部连接到V_{DDA}。

6 封装数据

6.1 LQFP144 封装

图 59. LQFP144 - 20 x 20 mm 144 引脚薄型正方扁平封装图

表 71. LQFP144 - 20 x 20 mm 144 引脚薄型正方扁平封装机械数据

标号		毫米		
	最小值	典型值	最大值	
А	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.18	-	0.26	
b1	0.17	0.20	0.23	
С	0.13	-	0.17	
c1	0.12	0.13	0.14	
D	21.80	22.00	22.20	
D1	19.90	20.00	20.10	
Е	21.80	22.00	22.20	
E1	19.90	20.00	20.10	
е	0.50 BSC.			
L	0.45	0.60	0.75	
L1	1.00 REF.			
θ	0°	3.5°	7°	

6.2 LQFP100 封装

图 60. LQFP100 - 14 x 14 mm 100 引脚薄型正方扁平封装图

表 72. LQFP100 - 14 x 14 mm 100 引脚薄型正方扁平封装机械数据

标号	毫米				
	最小值	典型值	最大值		
А	-	-	1.60		
A1	0.05	-	0.15		
A2	1.35	1.40	1.45		
b	0.17	0.20	0.26		
С	0.10	0.127	0.20		
D	15.75	16.00	16.25		
D1	13.90	14.00	14.10		
E	15.75	16.00	16.25		
E1	13.90	14.00	14.10		
е	0.50 BSC.				
L	0.45	0.60	0.75		
L1		1.00 REF.			

6.3 LQFP64 封装

图 61. LQFP64 - 10 x 10 mm 64 引脚薄型正方扁平封装图

表 73. LQFP64 - 10 x 10 mm 64 引脚薄型正方扁平封装机械数据

1-11		毫米				
标号	最小值	典型值	最大值			
А	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.17	0.20	0.27			
С	0.09	-	0.20			
D	11.75	12.00	12.25			
D1	9.90	10.00	10.10			
E	11.75	12.00	12.25			
E1	9.90	10.00	10.10			
е		0.50 BSC.				
Θ	3.5° REF.					
L	0.45	0.60	0.75			
L1	1.00 REF.					
ccc		0.08				

6.4 LQFP48 封装

图 62. LQFP48 - 7 x 7 mm 48 引脚薄型正方扁平封装图

表 74. LQFP48 - 7 x 7 mm 48 引脚薄型正方扁平封装机械数据

		毫米		
标号	最小值	典型值	最大值	
А	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
b	0.17	0.22	0.27	
С	0.09	-	0.20	
D	8.80	9.00	9.20	
D1	6.90	7.00	7.10	
E	8.80	9.00	9.20	
E1	6.90	7.00	7.10	
е		0.50 BSC.		
Θ	0°	3.5°	7°	
L	0.45	0.60	0.75	
L1	1.00 REF.			

6.5 QFN48 封装

图 63. QFN48 - 6 x 6 mm 48 引脚正方扁平无引线封装图

表 75. QFN48 - 6 x 6	nm 48 引脚正方扁平无引线封装机械	数据
---------------------	---------------------	----

标号	毫米				
	最小值	典型值	最大值		
А	0.80	0.85	0.90		
A1	0.00	0.02	0.05		
A3	0.203 REF.				
b	0.15	0.20	0.25		
D	5.90	6.00	6.10		
D2	3.07	3.17	3.27		
Е	5.90	6.00	6.10		
E2	3.07	3.17	3.27		
е	0.40 BSC.				
K	0.20	-	-		
L	0.35	0.40	0.45		

6.6 封装丝印

图 64. 丝印示意图

(1) 未按比例绘制。

6.7 热特性

根据电路板为FR-4材质, 板厚1.6 mm, 两层板仿真计算。由设计保证, 不在生产中测试。

表 76. 封装的热特性

符号	参数	数值	单位
ӨЈА	结到环境的热阻抗—LQFP144 – 20 x 20 mm/0.5 mm 间距	49.7	
	结到环境的热阻抗—LQFP100 – 14 x 14 mm/0.5 mm 间距	63.2	
	结到环境的热阻抗—LQFP64 – 10 x 10 mm/0.5 mm 间距	64.4	°C/W
	结到环境的热阻抗—LQFP48 – 7 x 7 mm/0.5 mm 间距	62.5	
	结到环境的热阻抗—QFN48 – 6 x 6 mm/0.4 mm 间距	40.0	

7 型号说明

7 = -40 °C至+105 °C

关于更多的选项列表(速度、封装等)和其他相关信息,请与您本地的雅特力销售处联络。

8 文档版本历史

表 78. 文档版本历史

日期	版本	变更	
2021.10.27	2.00	最初版本	
2022.1.13	2.01	1. 更新图63	
2022.1.13		2. 修正原表16内容	
2022.6.13	2.02	1. 新增表24和表25 TA = 25°C最大值和注脚	
2022.0.13	2.02	2. 新增各封装D, D1, E, E1最小最大值	
		1. 新增AT32F435/437xD型号	
		2. 新增表5启动加载程序(Bootloader)USART3可用引脚	
	2.10	3. 修改表15 VDD和TA数值并删除原表16,适用于硅版本B及以后版本	
2023.3.24		4. 修改 <i>表</i> 22、 <i>表</i> 23、和 <i>表</i> 24电流值	
		5. 修改表53 SPI时钟频率	
		6. 修正表64电流值; 更新图56和图57	
		7. 修改表76 QFN48热特性值	
		1. 修改表18,表44,表45,表46,表47,表53,和表54	
2023.10.17	2.11	2. 新增表36注脚3	
2023.10.17	2.11	3. 新增2.13.6 CAN必须使用HEXT说明	
		4. 修改重要通知第四段	
2024.4.1	2.12	修正图7内部闪存存储器片2结束地址	

重要通知 - 请仔细阅读

买方自行负责对本文所述雅特力产品和服务的选择和使用,雅特力概不承担与选择或使用本文所述雅特力产品和服务相关的任何责任。

无论之前是否有过任何形式的表示,本文档不以任何方式对任何知识产权进行任何明示或默示的授权或许可。如果本文档任何部分涉及任何 第三方产品或服务,不应被视为雅特力授权使用此类第三方产品或服务,或许可其中的任何知识产权,或者被视为涉及以任何方式使用任何 此类第三方产品或服务或其中任何知识产权的保证。

除非在雅特力的销售条款中另有说明,否则,雅特力对雅特力产品的使用和/或销售不做任何明示或默示的保证,包括但不限于有关适销性、适合特定用途(及其依据任何司法管辖区的法律的对应情况),或侵犯任何专利、版权或其他知识产权的默示保证。

雅特力产品并非设计或专门用于下列用途的产品:(A)对安全性有特别要求的应用,例如:生命支持、主动植入设备或对产品功能安全有要求的系统;(B)航空应用;(C)航天应用或航天环境;(D)武器,且/或(E)其他可能导致人身伤害、死亡及财产损害的应用。如果采购商擅自将其用于前述应用,即使采购商向雅特力发出了书面通知,风险及法律责任仍将由采购商单独承担,且采购商应独力负责在前述应用中满足所有法律和法规要求。

经销的雅特力产品如有不同于本文档中提出的声明和/或技术特点的规定,将立即导致雅特力针对本文所述雅特力产品或服务授予的任何保证 失效,并且不应以任何形式造成或扩大雅特力的任何责任。

© 2024 雅特力科技 保留所有权利