КРАТКОСРОЧНОЕ ПРОГНОЗИРОВАНИЕ И НАУКАСТИНГ ТЕМПОВ ПРИРОСТА РЕАЛЬНОГО ВВП С ПОМОЩЬЮ МОДЕЛИ MF-VAR ПО ДАННЫМ СМЕШАННОЙ ЧАСТОТЫ

Т. А. Бовт

Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь, bout.timofey@gmail.com
Научный руководитель — В. И. Малюгин, доктор экономических наук, профессор

В статье представляются результаты построения векторных авторегрессионных моделей по данным смешанной частоты, предназначенных для краткосрочного прогнозирования и наукастинга темпов прироста реального ВВП Республики Беларусь на основе экономических показателей, доступных с месячной частотой наблюдения. Проводится сравнительный анализ точности краткосрочных прогнозов и наукастов на основе построенных моделей по смешанным и агрегированным данным.

Ключевые слова: данные смешанной частоты; краткосрочное прогнозирование и наукастинг; модель MF-VAR; прогнозирование прироста реального ВВП; макроэкономические показатели; опережающие показатели; белорусская экономика.

1. Актуальность проблемы и цель исследования

Первая официальная оценка реального валового внутреннего продукта (ВВП) формируется Национальным статистическим комитетом Республики Беларусь (НСК РБ) на квартальной частоте на 90-ый день после отчетного периода, т.е. с задержкой на один квартал. В то же время статистика по отраслевым показателям формируется на месячной частоте и публикуется в следующий месяц после отчетного — за два месяца до истечения текущего квартала. В связи с этим становится актуальной задача прогнозирования реального ВВП для только что прошедшего, текущего и ближайшего будущего кварталов на основе доступных месячных данных. Эта задача оценивания текущего состояния моделируемого процесса известна как задача наукастинга [6]. Очевидно, от оценки текущего состояния зависит точность прогнозов для последующих периодов.

Целью исследования являются: построение векторных авторегрессионных моделей по смешанным данным (Mixed Frequency Vector Autoregression - MF-VAR) [7], предназначенных для краткосрочного прогнозирования на один квартал вперед и наукасинга темпов прироста реального ВВП на основе экономических показателей, доступных с сравнительный частотой наблюдения; анализ месячной построенных моделей по смешанным и агрегированным прогнозов данным. Рассматриваемая задача имеет опыт решения в различных

странах, включая Российскую Федерацию [1]. Для белорусской экономики эта задача ранее не рассматривалась.

2. Описание построенных моделей

При построении моделей решались следующие задачи: 1) предварительная обработка временных рядов (сезонная корректировка, логарифмирование, приведение к стационарному виду посредством сведения к темпам прироста); 2) выбор оптимальной спецификации моделей; 3) оценивание, анализ статистической адекватности и оценка точности прогнозов.

Для проведения исследований использовались временные ряды следующих экономических показателей, предоставляемых НСК РБ:

- PC_LRGDP темпы прироста в логарифмах реального квартального ВВП Беларуси по источникам использования доходов в среднегодовых ценах 2018 г., млн. руб. год к предыдущему году (в %);
- PC_LRPP_M_SA¹ темпы прироста в логарифмах объема промышленного производства в среднегодовых ценах 2018 г. месяц к предыдущему месяцу (в %);
- PC_LRRET_M_SA темпы прироста в логарифмах объема розничного товарооборота в среднегодовых ценах 1995 г. месяц к предыдущему месяцу (в %);
- PC_LRINV_M_SA темпы прироста в логарифмах объема инвестиций в основной капитал в среднегодовых ценах 2018 г. месяц к предыдущему месяцу (в %);
- PC_LRAGRO_M_SA темпы прироста в логарифмах объема сельского хозяйства в среднегодовых ценах 2018 г. месяц к предыдущему месяцу (в %);
- PC_LBI_BLD_M_SA темпы прироста в логарифмах базисного индекса объема строительно-монтажных работ (янв. 2018 = 1) месяц к предыдущему месяцу (в %);
- PC_LBI_RRDH_M_SA темпы прироста в логарифмах базисного индекса объема денежных доходов населения (янв. 2018 = 1) месяц к предыдущему месяцу (в %);
- CESI_M_SA сводный индекс экономических настроений [2].

Также в модель были добавлены константа и импульсная фиктивная переменная dum2022q2 для учета структурного изменения во II квартале 2022 г. Модель MF-VAR(p), оцененная с помощью метода наименьших квадратов, состоит из 22 уравнений (одно для целевого квартального показателя

_

¹ Символы _SA указывают на сезонно скорректированный временной ряд с помощью метода TRAMO/SEATS.

и по три уравнения на каждый месячный показатель, соответствующих 1, 2 и 3 месяцу в квартале). Таким образом, число оцениваемых параметров равно 22(2+22p), где p соответствует количеству лагов для переменных.

Для оценивания моделей использовались данные за период с I квартала 2009 г. до II квартала 2022 г., то есть 54 квартальных наблюдения.

Построенные модели являются статистически адекватными, остатки моделей являются гауссовским белым шумом.

3. Сравнительный анализ точности прогнозов

Оценка точности одношаговых прогнозов на один квартал вперед для моделей по смешанным данным (MF-VAR) и векторным моделям авторегрессии по агрегированным данным (VAR) проводилась на оносве ретроспективных прогнозов на периоде оценивания моделей, а также на основе вневыборочных одношаговых прогнозов с помощью алгоритма «расширяющегося окна». В соответствии с этим алгоритмом с последовательным продвижением на один квартал вперед строились прогнозы на периоды с III квартала 2022 г. до IV квартала 2024 г. Таким образом, для прогнозируемых переменных получено по 10 квартальных прогнозов, на основании которых рассчитаны следующие характеристики точности прогнозов: RMSE (Root Mean Squared Error) и MAE (Mean Absolute Error). Значения указанных характеристик для целевого показателя представлены в таблице для моделей MF-VAR и VAR.

Все представленные в таблице модели имеют оптимальную спецификацию в смысле указанных метрик. Модели VAR и MF-VAR включают все описанные макроэкономические показатели независимо от значимости. Модель VAR* включает только переменную PC_LRPP_M_SA как значимую и наилучшую в смысле метрик; модель MF-VAR* включает переменные PC_LRPP_M_SA, PC_LRRET_M_SA, CESI_M_SA как значимые и наилучшие в смысле метрик.

Показатели точности прогнозов годовых темпов прироста ВВП РБ

Прогнозный период 2022Q3 – 2024Q4 (ретроспективные прогнозы)		
Модель	RMSE	MAE
VAR(1)	2,1391	1,6827
VAR*(2)	1,7437	1,2460
MF-VAR(1)	1,8983	1,3382
MF-VAR*(2)	1,2306*	0,8253*
Прогнозный период 2022Q3 – 2024Q4 (расширяющееся окно с 1 шагом)		
VAR(1)	2,4954	1,8776
VAR*(2)	2,1128	1,4246
MFVAR(1)	3,1069	2,3759
MFVAR*(2)	1,8467*	1,2564*

Согласно таблице, модель MF-VAR* имеет наилучшие показатели точности прогнозов. На рисунке приводится график одношаговых вневыборочных прогнозов прироста реального ВВП по алгоритму расширяющегося окна.

Вневыборочные прогнозы для лучшей модели MF-VAR

4. Заключение

В результате исследования было установлено, что наилучшей комбинацией переменных для прогноза прироста ВВП РБ в смысле метрик является $PC_LRPP_M_SA$, $PC_LRRET_M_SA$, $CESI_M_SA$, при количестве лагов p=2. Полученный результат также соответствует экономическому смыслу построенной модели. Действительно, промышленное производство ($PC_LRPP_M_SA$) и розничный товарооборот ($PC_LRRET_M_SA$) являются аппроксимациями тех компонент, которые составляют наибольшую долю от всего ВВП Беларуси по добавочной стоимости; а показатель CU3H (CESI) можно трактовать как среднее ожидаемое значение $BB\Pi$ через некоторый период.

На основе полученных результатов можно сделать выводы:

- 1) модель MF-VAR по данным смешанной частоты при наилучшем подборе высокочастотных переменных способна строить более точные прогнозы по сравнению с моделью VAR по агрегированным данным в режиме краткосрочного прогнозирования и наукастинга;
- 2) на значения реального ВВП белорусской экономики в краткосрочной перспективе наибольшее влияние оказывают такие макроэкономические показатели, как объем промышленного производства, объем розничного товарооборота и индекс экономических настроений СИЭН.

Библиографические ссылки

- 1. *Макеева Н.М., Станкевич И.П.* Наукастинг элементов использования ВВП России // Экономический журнал ВШЭ. №10. 2022. С. 598-622.
- 2. *Малюгин В.И*. Краткосрочное прогнозирование и наукастинг темпов роста инфляции на основе моделей по смешанным данным // Банковский вестник. №1/726, 2024. C. 23–36.
- 3. *Малюгин В., Крук Д., Милевский П*. Индекс экономических настроений белорусской экономики: методические, модельные и программные средства. // Банковский вестник. Исследования банка. №16, 2019, 30 с.
- 3. *Малюгин В.И.*, *Новопольцев А.Ю*. Взаимосвязь темпов роста экономик Беларуси и России при воздействии шоков: эконометрический анализ и прогнозирование. Минск: Экономика. Моделирование. Прогнозирование. Вып. 16, 2022. С. 236-250.
- 4. *Станкевич И.П.* Сравнение методов наукастинга макроэкономических индикаторов на при-мере российского ВВП // Прикладная эконометрика. №.59, 2020. С. 113–127.
- 5. *Харин Ю.С., Малюгин В.И., Харин А.Ю*. Эконометрическое моделирование: учебное пособие. Минск: БГУ, 2003, 313 с.
- 6. *BańBura*, *M.* Nowcasting / M. BańBura, D. Giannone, L. Reichlin // The Oxford Handbook of Economic Forecasting. Oxford University Press, 2012. P. 193–224.
- 7. Foroni, C. A survey of econometric methods for mixed frequency data / C. Foroni, M. Marcellino // Working Paper 2013/06, Norges Bank., 2013.
- 8. *IHS Markit*. EViews 12 User's Guide II. IHS Markit, 2021. URL: https://www.eviews.com (date of access: 12.05.2025)