Adott egy Y függvény, amely akkor 1-es értékű, ha a D,C,B,A változók közül legalább 2, 1-es értékű. Adja meg a függvény legegyszerűbb alakját a grafikus minimalizálás segítségével!

Megoldás: Első lépésként írjuk fel az igazságtáblát.

	D	С	В	A	Y
0h	0	0	0	0	0
1h	0	0	0	1	0
2h	0	0	1	0	0
3h	0	0	1	1	1
4h	0	1	0	0	0
5h	0	1	0	1	1
6h	0	1	1	0	1
7h	0	1	1	1	1
8h	1	0	0	0	0
9h	1	0	0	1	1
Ah	1	0	1	0	1
Bh	1	0	1	1	1
Ch	1	1	0	0	1
Dh	1	1	0	1	1
Eh	1	1	1	0	1
Fh	1	1	1	1	1

Az igazságtábla egy sorát meg kell feleltetnünk a Karnaugh tábla egy cellájának. Súlyozzuk a változókat, D=2³, C=2², B=2¹, A=2⁰. A súlyozás alapján a sorok mellé írt hexadecimális értékek a 4 változón felírt 2-es számrendszerbeli számnak felelnek meg. Rajzoljuk fel a 4 változós Karnaugh táblát, ahol az egyes cellákba beírjuk az igazságtábla sorai elé írt hexadecimális számokat, így egyértelműen megfeleltetjük az igazságtáblát és a Karnaugh táblát.

Következő lépésként beírjuk az Y kimenet értékeit a Karnaugh táblába, de csak az 1-eseket.

Y			H	3		
		A	A	ı	1	
			1			
	0h	1h	3h	2h	_	
		1	1	1		
	4h	5h	7	6	C	_
	1	1	1	1		
	Ch	Dh	Fh	Eh		D
		1	1	1		ח
	8h	9h	Bh	Ah		

Sorra vesszük az 1-eseket és megvalósítjuk a lefedéseket. Először a 3h cellában lévő 1-est fedjük le. A 3h cellában található 1-est a 7h, az Fh, és Bh cellában lévő 1-essel tudjuk összevonni. Nagyobb, vagyis 8-as lefedés, nem valósítható meg. A megvalósított lefedés: B*A.

Y		_	E	3		
	-	A	1			
			$\overline{1}$			
	0h	1h	3h	2h	_	
		1	1	1		
	4h	5h	7h	6h	C	
	1	1	1	1		
	Ch	Dh	Fh	Eh		D
		1	1	1		ען
	8h	9h	BH	Ah		

Következő lefedésben az 5h cellában lévő 1-est vesszük.

Itt is 4-es lefedést tudunk megvalósítani, amelyben C és A változók szerepelnek, vagyis a lefedés C*A.

Vesszük a következő 1-est, a Ch indexű cellában.

Y			E	3		
		P	A			
			1			
	0h	1h	3h	2h	_	
		\prod	\Box	1		
	4h	5h	7h	6h	C	
	1	1	1	1)		
	Ch	- Dh	- Fh	—Eh		D
		1	1	1		
	8h	9h	BH	Ah		

Itt is 4-es lefedést tudunk megvalósítani úgy, hogy összevonjuk a Ch, Dh, Fh, Eh indexű cellákban található 1-eseket. A lefedésben szereplő változók C és D, vagyis a lefedés D*C alakban írható fel. A következő 1-es a 6h cellában van.

Y			E	3		
		Α	1			
			1			
	0h	1h	3	2h		
		\bigcap	7	\Box		
	4h	5h	7h	6h	C	
	1	1	1	1		
	Ch	Dh	Fh	E ń		D
		1	1	1		יין
	8h	9h	BH	Ah		

Itt is 4-es lefedést tudunk felírni, ami a következő alakban írható fel C*B. A 9h cellában lévő 1-es következik, amit szintén egy 4-es lefedéssel tudunk felírni.

Y		·	F	3		
	ı	Ā	A			
			1			
	0h	1h	3h	2h		
		\bigcap		\Box		
	4h	5h	\perp_{7h}	6h	C	
	1	1	1)	1		
	Ch	Dh	Fh	—Eń		D
		1	1	1		יו
	8h	9h	—BH	Ah		

A megvalósított lefedés: D*A.

Ezután már csak az Ah cellában van 1-es, amit szintén egy 4-es lefedésben tudunk szerepeltetni.

A lefedést a következő alakban tudjuk felírni D*B. Most már csak fel kell írni az Y függvényt, amelynél a korábban felírt lefedéseket VAGY kapcsolatba hozzuk.

$$Y = (B * A) + (C * A) + (D * C) + (C * B) + (D * A) + (D * B)$$

Utolsó lépésként felrajzoljuk az Y függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $Y = \overline{B*A*\overline{C*A*\overline{D*C}*\overline{C*B}*\overline{D*B}}}$

VAGY-NEM kapus megvalósítás: $Y = \overline{\overline{B} + \overline{A} + \overline{C} + \overline{A} + \overline{D} + \overline{C} + \overline{C} + \overline{B} + \overline{D} + \overline{A} + \overline{D} + \overline{B}}$

Most nézzük meg az előző példát úgy, hogy 0-kra írjuk fel a megoldást. Így most a 0-kat írjuk be a Karnaugh táblába. Utána mindent úgy csinálunk, mintha 1-esekre írnánk fel a kimenetet (Y), de a végén a kapott egyenletet negálni kell.

Y			F	3		
	ı	A	A			
	0	0		0		
	0h	1h	3h	2h	_	
	$0_{\underline{4h}}$					
	4h	5h	7h	6h	C	
	Ch	Dh	Fh	Eh		D
	0 8h					
	8h	9h	Bh	Ah		

Vegyük a 0h cellában lévő 0-át és keressünk szomszédját. Több megoldás is lehet, mert az 1h, a 2h, a 4h, és a 8h cellában található 0-val is összevonhatnánk. Mindegyik 2-es lefedést megvalósítjuk, így az összes 0-t lefedjük.

Nézzük őket sorban:

0h, 1h cella összevonásából létrejött lefedés (0h, 1h értéknél D, C, B 0 értékű, ezért negáltan fognak szerepelni a lefedésben): $\overline{D}*\bar{C}*\bar{B}$.

0h, 2h cella összevonása (0h, 2h értéknél D, C, A is 0 értékű, ezért negáltan szerepelnek a lefedésben): $\overline{D}*\overline{C}*\overline{A}$.

0h, 4h cella összevonása (0h, 4h értéknél D, B, A is 0 értékű, ezért negáltan szerepelnek a lefedésben): $\overline{D}*\overline{B}*\overline{A}$.

0h, 8h cella összevonása (0h, 8h értéknél C, B, A is 0 értékű, ezért negáltan szerepelnek a lefedésben): $\bar{C}*\bar{B}*\bar{A}$.

$$Y = \overline{(\overline{D} * \overline{C} * \overline{B}) + (\overline{D} * \overline{C} * \overline{A}) + (\overline{D} * \overline{B} * \overline{A}) + (\overline{C} * \overline{B} * \overline{A})}$$

Adott az alábbi függvényünk:

$$Y = \sum_{i=1}^{5} m_i^5 (i = 0h, 2h, 4h, 5h, 7h, 9h, Ah, Ch, Dh, Eh, Fh X = 3h, 6h, 8h, 18h, 19h, 1Bh)$$

Adjuk meg az Y függvény egyszerű alakját és rajzoljuk fel a kombinációs hálózatot, amely az Y kimenetet megvalósítja!

Megoldás:

Az i mellé írt értékek, azt mutatják, hogy az Y, hol 1-es értékű, mely cellákban, mely mintermeknél. Az X mellé írt számok azokat a cellákat jelölik, ahol az Y közömbös értékű, ezt amúgy is X-szel jelöljük a Karnaugh táblában. Az m fölé írt 5-ös azt jelzi, hogy 5 változós függvényről van szó. Nézzük akkor az 5 változós Karnaugh táblát, és írjuk be az Y kimenet értékeit.

Vegyük sorra a lefedéseket:

- 1. lefedés: 6h, 7h, 5h, 4h, Eh, Fh, Dh, Ch indexű cellákban található 1-esek és X érték, $\bar{E} * C$
- 2. lefedés: 0h, 8h, 2h, 6h, Ah, Eh, 4h, Ch indexű cellák összevonása, $\overline{E}*\overline{A}$
- 3. lefedés: 8h, 9h, 18h, 19h indexű cellák összevonása, $D*\bar{C}*\bar{B}$

A kimenetünk:
$$Y = (\bar{E} * C) + (\bar{E} * \bar{A}) + (D * \bar{C} * \bar{B})$$

A tanult rajzjelekkel felírjuk az Y függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $Y = \overline{\overline{E} * C} * \overline{\overline{E} * \overline{A}} * \overline{D * \overline{C} * \overline{B}}$

VAGY-NEM kapus megvalósítás: $Y = \overline{\overline{E} + \overline{C} + \overline{E} + \overline{A} + \overline{\overline{D}} + C + B}$

Adott az alábbi Y függvény egy 5 változós Karnaugh táblában. Írjuk fel a kimeneti függvényt, és rajzoljuk fel a függvényt megvalósító kombinációs hálózatot!

Megoldás:

- 1. lefedés: 0h, 1h, 3h, 2h, 8h, 9h, Bh, Ah indexű cellák, $\overline{E} * \overline{C}$
- 2. lefedés: 6h, 7h, 5h, 4h, 16h, 17h, 15h, 14h indexű cellák, $\overline{D} * C$
- 3. lefedés: 2h, 6h, Bh, Eh, 1Bh, 1Eh, 12h, 16h indexű cellák, $B * \overline{A}$
- 4. lefedés: 0h, 2h, 6h, 4h, 10h, 12h, 16h, 14h indexű cellák, $\overline{D} * \overline{A}$
- 5. lefedés: 1Eh, 1Fh, 16h, 17h indexű cellák, E * C * B

$$Y = (\overline{E} * \overline{C}) + (\overline{D} * C) + (B * \overline{A}) + (\overline{D} * \overline{A}) + (E * C * B)$$

Végezetül felrajzoljuk az Y függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $Y = \overline{\overline{E} * \overline{C}} * \overline{\overline{D} * C} * \overline{B} * \overline{A} * \overline{\overline{D} * \overline{A}} * \overline{E} * \overline{C} * \overline{B}$

VAGY-NEM kapus megvalósítás: $Y = \overline{\overline{E + C} + \overline{D} + \overline{C}} + \overline{\overline{B} + A} + \overline{D + A} + \overline{\overline{E} + \overline{C} + \overline{B}}$

Adott az alábbi Z függvény egy 5 változós Karnaugh táblában. Írjuk fel a kimeneti függvényt, és rajzoljuk fel a függvényt megvalósító kombinációs hálózatot! Itt most 0-kra írjuk fel a függvényt!

	A	4			A	A		
ı			I	3				
0	0	X	X	0	X	0	0	
	0	X	0	0				D
		X	X	0	0			
0	0	0	0	X	X	0	0	
_1					(7		-

Megoldás:

- 1. lefedés: 0h, 1h, 3h, 2h, 6h, 7h, 5h, 4h, 10h, 11h, 13h, 12h, 16h, 17h, 15h, 14h indexű cellák, $\overline{\rm D}$
- 2. lefedés:2h, 6h, Ah, Eh, 1Ah, 1Eh, 12h, 16h indexű cellák, B * Ā
- 3. lefedés: 1Bh, 1Ah, 1Eh, 1Fh, 13h, 12h, 16h, 17h indexű cellák, E * B
- 4. lefedés: 1h, 3h, 9h, Bh indexű cellák, $\bar{E} * \bar{C} * A$

$$Z = \overline{\overline{D}} + (B * \overline{A}) + (E * B) + (\overline{E} * \overline{C} * A)$$

Végezetül felrajzoljuk az Z függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $Z = \overline{D * \overline{B * \overline{A}} * \overline{E * \overline{B}} * \overline{\overline{E} * \overline{C} * A}}$

VAGY-NEM kapus megvalósítás: $Z = \overline{\overline{D} + \overline{\overline{B}} + A} + \overline{\overline{E}} + \overline{\overline{B}} + \overline{E} + \overline{C} + \overline{\overline{A}}$

Adott az alábbi V függvény egy 5 változós Karnaugh táblában. Írjuk fel a kimeneti függvényt, és rajzoljuk fel a függvényt megvalósító kombinációs hálózatot!

Megoldás:

- 1. lefedés: 18h, 19h, 1Bh, 1Ah, 1Eh, 1Fh, 1Dh, 1Ch indexű cellák, *E* * *D*
- 2. lefedés: 2h, 6h, Bh, Eh, 1Ah, 1Eh, 12h, 16h indexű cellák, $B * \overline{A}$
- 3. lefedés: 0h, 2h, 10h, 12h indexű cellák, $\overline{D} * \overline{C} * \overline{A}$
- 4. lefedés: 9h, Bh, 19h, 1Bh indexű cellák, $D * \overline{C} * A$

$$V = (E * D) + (B * \overline{A}) + (\overline{D} * \overline{C} * \overline{A}) + (D * \overline{C} * A)$$

Végezetül felrajzoljuk az Z függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $V = \overline{\overline{E*D}*\overline{B*\overline{A}*\overline{D}*\overline{C}*\overline{A}*\overline{D}*\overline{C}*\overline{A}}$

VAGY-NEM kapus megvalósítás: $V = \overline{\overline{\overline{E} + \overline{D}} + \overline{\overline{B} + A} + \overline{D + C + A} + \overline{\overline{D} + C + \overline{A}}}$

Adott az alábbi V függvény egy 5 változós Karnaugh táblában. Írjuk fel a kimeneti függvényt, és rajzoljuk fel a függvényt megvalósító kombinációs hálózatot! 0-kra valósítjuk meg a függvényt!

		4	_			A		
1			E	3		i		
0	0	0	0	X	X	0		
	0	X	X	0	0	0	D	
X	0	0		0	0	X		Е
0	0		0	0	X	0		
					(7	-	

Megoldás:

- 1. lefedés: 0h, 1h, 3h, 2h indexű cellák egyesítése, $\overline{E} * \overline{D} * \overline{C}$
- 2. lefedés: 6h, 7h, Eh, Fh, 1Eh, 1Fh, 16h, 17h indexű cellák egyesítése, C * B
- 3. lefedés: 1h, 9h, 19h, 11h, 5h, Dh, 1Dh, 15h indexű cellák egyesítése, $\bar{B}*A$
- 4. lefedés: 9h, Bh, 19h, 1Bh, Fh, Dh, 1Fh, 1Dh indexű cellák egyesítése, D * A
- 5. lefedés: 0h, 2h, 10h, 12h indexű cellák egyesítése, $\overline{D}*\overline{C}*\overline{A}$

Felírjuk a V függvényt: $V = \overline{(\overline{E} * \overline{D} * \overline{C}) + (C * B) + (\overline{B} * A) + (D * A) + (\overline{D} * \overline{C} * \overline{A})}$

ÉS-NEM kapus megvalósítás: $V = \overline{\overline{E} * \overline{D} * \overline{C} * \overline{C} * \overline{B} * \overline{B} * \overline{A} * \overline{D} * \overline{A} * \overline{\overline{D}} * \overline{C} * \overline{A}}$

VAGY-NEM kapus megvalósítás: $V = \overline{\overline{E} + D + C} + \overline{\overline{C} + \overline{B}} + \overline{B} + \overline{A} + \overline{D} + \overline{A} + \overline{D} + \overline{C} + \overline{A}$

Nézzük meg az alábbi igazságtáblával megadott függvényt: Adjuk meg a legegyszerűbb megvalósítását!

	Е	D	С	В	A	Y
0h	0	0	0	0	0	0
1h	0	0	0	0	1	0
2h	0	0	0	1	0	0
3h	0	0	0	1	1	0
4h	0	0	1	0	0	0
5h	0	0	1	0	1	0
6h	0	0	1	1	0	0
7h	0	0	1	1	1	0
8h	0	1	0	0	0	0
9h	0	1	0	0	1	0
Ah	0	1	0	1	0	0
Bh	0	1	0	1	1	0
Ch	0	1	1	0	0	0
Dh	0	1	1	0	1	0
Eh	0	1	1	1	0	0
Fh	0	1	1	1	1	1
10h	1	0	0	0	0	0
11h	1	0	0	0	1	0
2h	1	0	0	1	0	0
13h	1	0	0	1	1	0
14h	1	0	1	0	0	0
15h	1	0	1	0	1	0
16h	1	0	1	1	0	0
17h	1	0	1	1	1	0
18h	1	1	0	0	0	0
19h	1	1	0	0	1	0
1Ah	1	1	0	1	0	0
1Bh	1	1	0	1	1	0
1Ch	1	1	1	0	0	0
1Dh	1	1	1	0	1	0
1Eh	1	1	1	1	0	0
1Fh	1	1	1	1	1	1

Megoldás: Azigazságtáblából látszik, hogy kevesebb helyen 1-es értékű az Y kimenet, mint 0, ezért 1-esekre valósítjuk meg a kimenetet. Súlyozzuk a bemeneti változókat $E\equiv 2^4$, $D\equiv 2^3$, $C\equiv 2^2$, $B\equiv 2^1$, $A\equiv 2^0$. Így a sorok mellé írt hexadecimális számok az 5 változón felírt bináris

számok megfelelői. Az igazságtáblának 32 sora van így az 5 változós Karnaugh táblának 32 cellája lesz. Feleltessük meg az igazságtábla sorait a Karnaugh tábla celláinak.

	P	A			P	A			
			I	3		ı			
0h	1h	3h	2h	6h	7h	5h	4h		
8h	9h	Bh	Ah	Eh	Fh	Dh	Ch	D	
18h	19h	1Bh	1Ah	1Eh	1Fh	1Dh	1Ch		Е
10h	11h	13h	12h	16h	17h	15h	14h		
					(2		•	

Most írjuk be hol 1-es az Y kimenet.

Y		A		A					
!	ĺ		I	3					
0h	1h	3h	2h	6h	7h	5h	4h		
8h	9h	Bh	Ah	Eh	1 Fh	Dh	Ch	D	
18h	19h	1 1Bh	1Ah	1 1Eh	1 1Fh	1 1Dh	1Ch		E
10h	11h	13h	12h	16h	1 17h	15h	14h	_	
					(7		ı	

Vegyük sorba az 1-eseket tartalmazó cellákat, és keressünk szomszédjait, amelyekkel összevonható. Az 1Bh indexű cellában lévő 1-esnek szomszédja az 1Fh indexű cellában található 1-es. Ennek a 2-es lefedésnek nincs 2-es szomszédja, tehát marad a 2-es lefedés. 1Bh, és 1Fh értéknél E, D 1-es, C nem szerepel, mert 1Bh-nál 0, míg 1Fh-nál 1-es, B, A 1-es értékű, így a lefedés: E*D*B*A.

	Y	A				A				
	,	ļ		F	3					
	0h	1h	3h	2h	6h	7h	5h	4h		
	8h	9h	Bh	Ah	Eh	1 Fh	Dh	Ch	D	
	18h	19h	① 1Bh	1Ah	1 1Eh	① 1Fh	1 1Dh	1Ch	ט	E
	10h	11h	13h	12h	16h	1 17h	15h	14h	-	
C								I		

Vegyük az Fh indexű cellában lévő 1-est, és keressünk neki szomszédos 1-est. Ilyen az 1Fh indexű cellában található 1-es. Ennél nagyobb lefedést nem tudunk létrehozni.

A lefedés: D * C * B * A.

Az 1Eh indexű cellában lévő 1-est is az 1Fh indexű cellában lévő 1-essel vonjuk össze.

A lefedés: E*D*C*B.

Az 1Dh indexű cellában lévő 1-est is az 1Fh indexű cella 1-esével vonjuk össze.

A lefedés: E * D * C * A.

Már csak egy db 1-es van hátra a 17h indexű cellában. Ezt az 1-est is az 1Fh indexű cella 1-esével vonhatjuk össze.

A lefedés: E * C * B * A.

Minden 1-es szerepel legalább 1 lefedésben, így felírhatjuk az Y kimenetet.

$$Y = (E * D * B * A) + (D * C * B * A) + (E * D * C * B) + (E * D * C * A) + (E * C * B * A)$$

Utolsó lépésként felrajzoljuk az Y kimenetet megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás:

$$Y = \overline{E * D * B * A} * \overline{D * C * B * A} * \overline{E * D * C * B} * \overline{E * D * C * A} * \overline{E * C * B * A}$$

VAGY-NEM kapus megvalósítás:

$$Y = \overline{\overline{E} + \overline{D} + \overline{B} + \overline{A} + \overline{D} + \overline{C} + \overline{B} + \overline{A} + \overline{E} + \overline{D} + \overline{C} + \overline{B} + \overline{E} + \overline{D} + \overline{C} + \overline{A} + \overline{E} + \overline{C} + \overline{B} + \overline{A}}$$

9. Feladat

Adjuk meg az alábbi Karnaugh táblában megadott Y függvény lehető legegyszerűbb megvalósítását!

Y	A		A			A			
•			В						
	1	1		1	1	1			
0h	1h	3h	2h	6h	7h	5h	4h		
	1	1		1	1	1			
8h	9h	Bh	Ah	Eh	Fh	Dh	Ch	D	
		1	1	1	1			D	
18h	19h	1Bh	1Ah	1Eh	1Fh	1Dh	1Ch		Е
				1	1				
10h	11h	13h	12h	16h	17h	15h	14h		
					(7			

Megoldás: A lefedési szabályok figyelembevételével kezdjük el felírni a lefedéseket. Vegyük sorra az egyeseket és nézzük meg, mely egyesekkel tudjuk összevonni.

Először az 1h cellában lévő 1-esnek keressünk szomszédjait. A lehető legnagyobb lefedést a 3h, 9h, Bh, 7h, 5h, Fh, Dh cellákban található 1-esekkel történő összevonással kaphatjuk. A lefedés a következő lesz: \$\overline{E}*A\$.

Y	A	1	A						
	i		E	3		İ			
	1	1		1	1	1			
0h	1h	3 h	2h	6h	7h	5h	4h	_	
	1	1)		1	1				
8h	9h	Bh	Ah	Eh	Fh	Dh	Ch	D	_
		1	1	1	1			ال	
18h	19h	1Bh	1Ah	1Eh	1Fh	1Dh	1Ch		Е
				1	1				
10h	11h	13h	12h	16h	17h	15h	14h		
			ı		(7			

– A következő 1-es a 6h cellában található. Ezt az 1-est a 7h, Eh, Fh, 1Eh, 1Fh, 16h, 17h cellákban található 1-esekkkel tudjuk összevonni. A lefedés: C*B.

– A következő 1-es az 1Bh cellában van, keressünk szomszédjait. Ezt az 1-est az 1Ah, 1Eh, 1Fh cellákban található 1-ekkel tudjuk összevonni. A lefedés a következő lesz: E*D*B.

Y		<u> </u>	В	3	A	A			
0h	1 1h	1 3h	2h	1 6h	1 7h	1 5h	4h		
8h	1 9h	1 Bh	Ah	1 Eh	1 Fh	1 Dh	Ch	_	
18h	19h	1 1Bh	1 1Ah	1 1Eh	1) 1Fh	1Dh	1Ch	D	E
10h	11h	13h	12h	1 16h	1 17h	15h	14h	•	
					(

Rajzoljuk fel a kapott függvényt. $Y = (\bar{E} * A) + (C * B) + (E * B * D)$

Megvalósítás ÉS-NEM kapukkal: $Y = \overline{\overline{E} * A * \overline{C * B} * \overline{E * B * D}}$

Megvalósítás VAGY-NEM kapukkal: $Y = \overline{\overline{E} + \overline{A} + \overline{C} + \overline{B} + \overline{E} + \overline{B} + \overline{D}}$

