2.1.3. Определение C_p/C_v по скорости звука в газе.

Семёнов Андрей Б02-016 21 апреляля 2021г. **Цель работы:** 1) Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) Определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ, электронный осциллограф ЭО, микрофон, телефон, раздвижная труба, теплоизолированная труба, обогреваемая водой из термостата, баллон со сжатым углекислым газом, газгольдер.

1 Теоретические сведения

Из теории нам известна зависимость скорости звука от показателя адиабаты γ :

$$c = \sqrt{\gamma \frac{RT}{\mu}}.$$

Таким образом, задача нахождения γ сходится к задаче нахождения скорости звука при заданной температуре.

В этом эксперименте предпологается использовать стоячие волны для нахождения c. Известно, что стоячие волны в коридоре длиной L образуются при:

$$L = \frac{n}{2}\lambda,$$

где λ – длина волны звука, связанная со скоростью звука и частотой f, как:

$$\lambda = c/f$$
.

То есть верно, что:

$$L = \frac{c}{2f}n.$$

При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Для k-ого резонанса имеем:

$$L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k.

При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для k-ого резонанса получим:

$$L = (n+k)\frac{\lambda_{k+1}}{2}$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

В текущем эксперименте мы будем знать не абсолютный номер порядка n, а его приращение $k = n - n_0$, для которого верно, что:

$$\Delta L = L - L_0 = \frac{c}{2f}k + \Delta L_0,$$

где L_0 – минимальный размер трубы, а ΔL – отклонение от него, которое мы можем измерить.

2 Экспериментальная установка

В этой работе мы будем измерять зависимость $\Delta L(k)$ при постоянных значениях f, из чего получим c. Для этого мы используем установку на Рис. 1. Эта установка представляет из себя две вложенных друг в друга трубы с миллиметровой шкалой на подвижной части. На краях этой системы установлены приемник T и передатчик M. Также к системе подведена трубка, через которую можно накачивать пространство внутри труб воздухом или углекислым газом.

Рис. 1. Установка для измерения скорости звука при помощи раздвижной трубы

3 Выполнение работы

Сперва запишем параметры установки: $L = 570 \pm 5$.

Затем включим звуковой генератор с осциллографом и дадим им прогреться 5-7 минут.

Зададим амплитуду и частоту сигнала на генераторе так, чтобы на осциллографе можно было пронаблюдать сигнал. Он должен быть неискаженным синусоидальным. Если он будет искаженным, уменьшим амплитуду.

При изменении длины в 230мм, для того, чтобы при скорости в 340 м/c было ≈ 4 резонанса, нужна частота порядка:

$$f pprox rac{4 \cdot 340 \text{м/c}}{2 \cdot 0.23 \text{м}} pprox 3 \text{к} \Gamma$$
ц.

Продуем трубу воздухом ≈ 5 мин.

Для нескольких частот получим различные зависимости $\Delta L(k)$, плавно вытягивая и втягивая внутреннюю трубку относительно внешней и наблюдая за амплитудой показаний

осциллографа. При достижении максимума амплитуды, наблюдается резонанс, и мы записываем новое значение ΔL .

$N_{\scriptscriptstyle { m M}3M}$	f , к Γ ц	L(0), MM	L(1), MM	L(2), MM	L(3), MM	L(4), MM	λ , mm	$\Delta\lambda$, mm	с, м/с	Δc , M
1	3.49	28	72	130	180	230	88.4	0.2	354	2
2	2.50	55	125	195	-	-	86.2	0.5	344	3
3	4.00	42	86	130	173	217	140.6	1.1	344	4
4	4.5	52	130	168	191	205	132.2	10.7	324	27

Приборная погрешность у этого эксперимента сопоставима с погрешностью мнк:

$$\varepsilon f \approx \frac{1}{200} = 0.5\%,$$

$$\varepsilon L \approx \frac{0.5}{100} = 0.5\%,$$

что добавит дополнительные 1% погрешности к финальному результату.

Из таблицы видны выбросы на 4 и 10 измерении – видимо, на них слишком неточно были получены несколько точек. В последующих вычислениях я их не буду учитывать. Из МНК получается средняя скорость звука:

$$c = (350 \pm 3) \frac{M}{c}$$
.

Измерение скорости звука в углекислом газе.

Измерение скорости звука в углекислом газе проводится аналогично скорости звука в воздухе, но со своими особенностями: установка не является герметичной, и поэтому в нее поступает воздух при движении трубы наружу. Поэтому метод нахождения получает новые особенности:

Просто открытия краника для того, чтобы закачать CO_2 , недостаточно — надо открыть краник и начать вводить-выводить внутреннюю трубу где-то 20 секунд, прокачивая CO_2 внутрь, и удаляя воздух. Измерения проводятся только при входе трубы внутрь. Поскольку измерения при полностью открытом кране невозможны из-за сильного шума на осциллографе, при выводе трубы, в установку закачивается воздух.

Во время измерений краник немного приоткрыт – достаточно, чтобы был доступ к CO_2 , но недостаточно, чтобы были помехи в работе осциллографа.

$N_{\scriptscriptstyle { m M}3{ m M}}$	f , к Γ ц	L(0), MM	L(1), MM	L(2), MM	L(3), MM	L(4), MM	L(5), MM	λ , mm	$\Delta \lambda$, mm	c, r
1	3.25	8	48	89	132	172	212	82.0	0.4	26
2	3.02	12	64	118	174	-	-	108.0	0.9	32
3	2.74	35	90	149	207	-	-	115.0	0.8	3
4	2.74	40	88	138	185	-	-	97.0	0.5	26
5	2.23	32	92	153	212	-	-	120.2	0.4	26
6	1.75	78	155	-	-	-	-	154.0	0.1	27
7	1.50	8	105	188	-	-	-	180.0	4.7	27
8	1.99	45	115	177	-	-	-	132.0	2.7	26
9	2.50	55	105	160	213	-	-	105.8	1.0	26

Вычислим с помощью полученных графиков скорость звука в воздухе и рассчитаем погрешности. Погрешность σ_c отдельного измерения определяется следующей формулой:

$$\sigma_c = c\sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2},$$

где A - коэффициент наклона прямой на графике.

По полученным данным расчитаем γ .

$$\bar{\gamma} = 1.423$$

$$\gamma = \sqrt{\frac{\sum_{i=1}^{4} (\gamma_i - \bar{\gamma})^2}{3}} = 0.04.$$

Косвенная погрешность определения γ мала, так как $\frac{2\sigma_c}{4c}\approx 0.25\%$. Итак,

$$\gamma = 1.42 \pm 0.04$$
.

что в пределах погрешности совпадает с теоретическим значением $\gamma=1.4$. Если обратить внимание на полученные значения для c, то можно усомниться в справедливости формулы $c^2=\frac{\gamma RT}{\mu}$ и начать предпологать, что показатель адиабаты является функцией от температуры $\gamma=\gamma(T)$. Однако температуры в данном опыте не слишком большие и другие степени свободы не могли активироваться у молекул газа. Есть гипотеза, объясняющая такие разбросы.Вероятно измерения производились не во время достижения термодинамического равновесия и нужно было ждать приличное время (5 минут) после того как на термостате установится необходимая температура, для того чтобы система пришла в пригодное состояние для измерений.

4 Вывод

Мы научились измерять показатель адиабаты через скорость звука с помощью резонансных пиков зависимости амплитуды принимаемого сигнала при прохождении в закрытом пространстве от расстояния, проходимого звуком в одну сторону из-за появления стоячих волн, результаты эксперимента совпали с табличными значениями.