UNIVERSITÀ DEGLI STUDI DEL SANNIO DIPARTIMENTO DI INGEGNERIA

CORSO di LAUREA in INGEGNERIA INFORMATICA

Prova scritta del 14 settembre 2021

Tempo a disposizione 2.30 ore

Riportare i calcoli e commentare lo svolgimento degli esercizi.

L'ordine e la chiarezza espositiva concorrono alla formulazione del voto (± 2 punti).

È possibile consultare il solo testo di teoria.

EX. 1

Un esperimento consiste nel lanciare una moneta ben bilanciata 6 volte. Successivamente si contano i risultati in cui si ottiene testa e si lancia un'altra moneta nel caso in cui si sono ottenute almeno 3 teste.

Calcolare

- 1. la probabilità di lanciare la seconda moneta;
- 2. la probabilità che si ottenga testa nel lancio della seconda moneta.

EX. 2

Si consideri il segnale

$$x(t) = \Pi\left(\frac{t-2}{4}\right)e^{-j2\pi 100t}$$

Calcolarne

- 1. l'energia e la densità spettrale di energia;
- 3. la funzione di autocorrelazione.

EX. 3

Il segnale $x(n) = 3\delta(n-1) - \delta(n-2)$, viene inviato in ingresso ad un sistema LTI con risposta impulsiva $h(n) = R_3(n)$.

Calcolare

- 1. l'autocorrelazione e l'energia del segnale in uscita al sistema;
- la densità spettrale di energia mutua tra uscita e ingresso.

EX. 1

Un esperimento consiste nel lanciare una moneta ben bilanciata 6 volte. Successivamente si contano i risultati in cui si ottiene testa e si lancia un'altra moneta nel caso in cui si sono ottenute almeno 3 teste.

- 1. la probabilità di lanciare la seconda moneta;
- la probabilità che si ottenga testa nel lancio della seconda moneta.

$$\alpha = \frac{1}{6} \left[\frac{1}{6} \right] = \frac{1}{6} \left[\frac{1}{6} \left[\frac{1}{6} \right] = \frac{1}{6} \left[\frac{1}{6} \right] = \frac{1}{6} \left[\frac{1}{6} \left[\frac{1}{6} \right] = \frac{1}{6} \left[\frac{1}{6} \right] = \frac{1}{6} \left[\frac{1}{6} \right] = \frac{1}{6} \left[\frac{1}{6} \left[\frac{1}{6} \right] =$$

Nella Traccia leggiamo una parola "Contano"; questo ci deve subito far venire in meute la "v.A. che conta" ovvero la Distribuzione Binomiale, definita come:

$$X \sim \mathbb{B}(n,p)$$
 dove n sono gli elementi totali da contare e p la probabilita' (vguale $\forall x \in \mathcal{A}x$) definiamo q come 1-p.

Sappiamo che i lanci sono 6 = 0 2 = 64 possibili lanci. Piu lanci uguali (solo To soloc) vogliamo ottenere, minore sara la probabilita, il perclu lo vedremo dopo...

Definiano la PMF della v.A. B:
$$f_X(\kappa) = \binom{n}{k} \mathcal{P}^{\kappa} q^{n-\kappa}$$
 con $\kappa = \lfloor \text{Lanci} \rfloor e \binom{n}{k} = \frac{n!}{\kappa! (n-\kappa)!}$

Nel nostro caso n = 6e k = ... beh ragioniamoci

Faccia mo un esempio: Lancia mo la moneta 6 volte mo voglia mo ottenere MASSIMO 2 volte Testa $= 0 P(1X \le 21) = P(1X = 01) + P(1X = 11) + P(1X = 21)$

Nel nostro caso vogliamo ottenere MINIMO 3 Teste =D

$$P(1\times 23) = P(2) - [Prob de casi in wi si ottengono 3 Teste]$$

$$P(1\times 23) + P(1\times 23) + P(1\times 24) + P(1\times 25) + P(1\times 26)$$

=>
$$P(1/2 \times 31) = 1 - P(1/2 \times 31) + P(1/2 \times 41) + P(1/2 \times 51) + P(1/2 \times 61)$$

come calcoliamo P(3x=x3) ?

•
$$P_{X}(3) = \frac{6!}{3! \ 3!} \cdot \frac{1}{2^{3}} \cdot \frac{1}{2^{3}} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{6 \cdot 3!} \cdot \frac{1}{64} = \frac{20}{64}$$

•
$$P_{x}(4) = \frac{3.6.5 \, \text{M}}{47.2} \cdot \frac{1}{64} = \frac{15}{64}$$

•
$$P_{X}(5) = \frac{6}{8!} \cdot \frac{1}{64} = \frac{6}{64}$$
 = $P(3X \ge 33) = 1 - (20 + 15 + 6 + 1) \cdot \frac{1}{64} = \frac{11}{32} \times 34 \%$

•
$$P_X(6) = \frac{6!}{6! \cdot 1} \cdot \frac{1}{64} = \frac{1}{64}$$
 Time 15'

La prob scende all'aumentare dei lanci "positivi"

EX. 2

Si consideri il segnale

$$x(t) = \Pi\left(\frac{t-2}{4}\right)e^{-j2\pi 100t}$$

Calcolarne

- 1. l'energia e la densità spettrale di energia;
- la funzione di autocorrelazione.

$$\chi(t) = \pi\left(\frac{t-2}{4}\right) e^{-\int_{-\infty}^{2\pi} 100 t}$$

$$Q_1$$
: Ee S_x ci conviene calcolare l' E con la définizione

$$\mathcal{E}_{\chi} = \int_{-\infty}^{+\infty} |\chi(t)|^2 dt = \int_{-\infty}^{+\infty} |\chi(f)|^2 df$$

Dobbiamo Trovare | X(t)| 2 , il segnale e complesso!

$$-D \left| \chi(t) \right|^2 = \left[\pi \left(\frac{t-2}{4} \right) \cdot e^{-\int 2\pi I 00 t} \right] \left[\pi \left(\frac{t-2}{4} \right) \cdot e^{-\int 2\pi I 00 t} \right] = \pi \left(\frac{t-2}{4} \right)$$

$$= D \mathcal{E}_{x} = \int_{-\infty}^{+\infty} \pi\left(\frac{t^{-2}}{4}\right) dt = \int_{0}^{4} dt = t \int_{0}^{4} = D \mathcal{E}_{x} = 4 \mathcal{J}$$

$$S_X = |X(f)|^2 - 0$$
 Troviamo la Trasformata Sapendo che : $\chi(f) = \chi(f) \times \chi(f)$

-0 Sappiamo che
$$AT(\frac{t}{7}) \rightleftharpoons AT \operatorname{Sinc}(fT)$$
 e che $Ae \stackrel{J2\pi fot}{\Longrightarrow} AS(f-fo)$
Ricordiamo la propri eta: $\chi(t-To) \rightleftharpoons \chi(f) e$

•
$$\pi\left(\frac{t-z}{4}\right) \Longrightarrow 4 \operatorname{Sinc}\left(4f\right) \cdot e^{-Jq\pi f}$$

=D
$$X(f) = 4 \sin(4f) e^{-J4\pi f} \times S(f+100)$$
 -D la convoluzione per una delta non ci spaventa
Sappia mo che $x(t) \times S(t-to) = x(t-to)$

$$-D(X(f) = 4 \sin([4(f+100)]e)$$

- Per calcolare Sx (f) dobbiamo calcolare il modulo quadro di X(f)

$$= D \left\{ 4 \sin(\left[4(f+100)\right] e^{-J4\pi(f+100)} \right\} \cdot \left\{ 4 \sin(\left[4(f+100)\right] e^{-J4\pi(f+100)} \right\}$$

=
$$16 \operatorname{Sinc}^{2} \left(4 f + 400 \right)$$

$$Q_2: \mathcal{C}_X(t)$$
? Sappiamo dal Teoremo di Wiener-Kinchine che $\mathcal{C}_X(\cdot) \Longrightarrow S_X(\cdot)$

-o per trovare Ex(t) ci basta trosformae Sx(f)

=D Teniamo a mente le proprieta:
$$\begin{cases} X(af) \rightleftharpoons \frac{1}{|a|} \cdot X\left(\frac{t}{a}\right) \\ X(f-To) \rightleftharpoons x(t) \cdot e \end{cases}$$

Inoltre ATSinc²(fT)
$$\Rightarrow$$
 A \wedge $\begin{pmatrix} \frac{t}{T} \end{pmatrix}$

$$= D \left(7\chi(t) = 16 \wedge \left(\frac{t}{4} \right) \cdot \frac{-J2\pi t}{6} \right)$$

Time ToT: 24

EX. 3

Il segnale $x(n) = 3\delta(n-1) - \delta(n-2)$, viene inviato in ingresso ad un sistema LTI con risposta impulsiva $h(n) = R_3(n)$.

Calcolare

- 1. l'autocorrelazione e l'energia del segnale in uscita al sistema;
- 2. la densità spettrale di energia mutua tra uscita e ingresso.

$$\chi(n) = 3\delta(n-1) - \delta(n-2) \qquad h(n) = \mathcal{R}_3(n)$$

$$Q_1 \quad \mathcal{C}_{Y}(m) = ?$$

Per prima cosa dobbia mo tro vare
$$y(n) = \chi(n) * h(n)$$

• $y(n) = 3R_3(n) * \delta(n-1) - R_3(n) \cdot \delta(n-2) = (3R_3(n-1) - R_3(n-2))$

Calcoliamo Zy(m)

		3 2 2 -1		
と(m-3)	3 2 2	-1	て (-3)=-3	
7(m-z)		2 -1	°(-2) = 6-2=4	$\mathcal{E}_{y}(m) = -3 \left[S(m-3) S(m+3) \right] + 4 \left[S(m-2) S(m+2) \right] +$
と(m-1)	3	2 2 -1	2(-1)=6+4-2=8	
7 (m)		3 2 2 -1	8(0) = 9+8+1= 18	$+ 8 \left[S(m-1) + S(m+1) \right] + 18 S(m)$

Q₁ B Ey =?
$$E_y = \sum_{K=-\infty}^{+\infty} |\chi(n)|^2 = \sum_{K=-\infty}^{+\infty} [3R_3(n-1)-R_3(n-2)]^{\frac{5eg \, nale \, teale}{2}}$$

$$= \sum_{K \in \mathcal{H}_{K}} q R_{3}(n-1) + R_{3}(n-2) - 6 R_{3}(n-1) R_{3}(n-2)$$

$$|\chi(n)|^{2} = |\chi(0)| = 0, \chi(1) = q+1, \chi(2) = q+1-6, \chi(3) = q+1-6, \chi(4) = 1$$

$$Q_1 B = \mathcal{E}_y = ?$$

Per trovare l'energia di y(n) ci basta valutare l'autocorrelazione in zero:

$$Q_2$$
 $S_{yx} = ?$

Sappiamo che

$$z_{yx} \rightleftharpoons S_{yx}(f)$$

$$\chi(n) = 3\delta(n-1) - \delta(n-2)$$

で(t+3)
を(t+2)
さ(t+1) て(t)
~(t-1)
7 (t-2)
W// - \

			1	Z	3	4								
			3	2	2	-1								
3	-1	0	0	•		•		て	(- 3	5) = (C			
	3	-1	0	0				و)	Z (- 2	() = (9			
		3	-1	0	0	·				L) =				
			3	-1	0	0			て(c) =	0	- 2) =	7
				3	-1	0	0		' (:	1) =	6 -	Z =	- 4	
					3	-1	0	0	て	(2)	= 6	+1	= 7	
						વ	-1	0	0	77(3)	 =	2	

Prima di scrivere γ_x teniamo a mente una cosa importante: Se abbi amo scritto la corr come $\gamma(\pm 03)$ -0 Dobbiamo cambia re Segno!

$$= 0 \, \mathcal{C}_{4x}(t) = -3 \, \delta(t+1) + 7 \, \delta(t) + 4 \, \delta(t-1) + 7 \, \delta(t-2) - 3 \, \delta(t-3)$$

Teniamo a mente che
$$\begin{cases} A S(t) \rightleftharpoons A \\ \chi(t-To) \rightleftharpoons \chi(f) \end{cases} = \int_{0}^{2\pi} f^{To}$$

$$+32\pi f$$
 $-32\pi f$ $-34\pi f$ $-36\pi f$ $-3e$ $+7+4e$ $+7e$ $-3e$ = $-12\left[e+e\right]+7+7e$ $-3e$

$$-12 \left[\begin{array}{ccc} 32\pi f & -32\pi f \\ e & + e \end{array} \right] + 7 + 7 e - 3 e$$

• Strada 2
$$\chi(t), \chi(t) \rightleftharpoons \chi(t), \chi(t) = 0$$

Sappiamo che
$$S_{yx} = Y(f) \cdot X(f)$$

• $X(f) = 3e - e$

Sappiamo che
$$S_{yx} = Y(f) \cdot X(f)$$

$$-32\pi f -34\pi f$$

•
$$Y(f) = 3e + 2e + 2e - e$$

$$= D \begin{bmatrix} 3e + 2e + 2e - e \\ 3e + 2e + 2e - e \end{bmatrix} \begin{bmatrix} 3e^{-32\pi f} & 34\pi f \\ 3e + 2e + 2e - e \end{bmatrix} \begin{bmatrix} 3e^{-2\pi f} & 3e^{-2\pi f} \\ 3e^{-2\pi f} & 3e^{-2\pi f} \end{bmatrix} = 9 - e + 6e - 2 + 6e - 2e - 3e + e$$

Strada 2 molto piu veloce!

Correlazione Tra yedx