7. The theme of Question 7 is the untyped λ -calculus. That is, the calculus of anonymous functions such as λn . (+1) n which form the logical foundation of functional programming. (a) Give a hand coded evaluation for the lambda expression, $(+) ((\lambda n \cdot (+) n 2) 3) ((\lambda n \cdot (*) 3 ((-) 6 n)) 4).$ [12](b) The so-called Y combinator is defined in the original notation of untyped λ -calculus by, $Y = \lambda f \cdot (\lambda x \cdot f(x(x))) \cdot (\lambda x \cdot f(x(x)))$. For any function q prove that $Y(q) \rightsquigarrow q(Y(q))$. That is, Y(q)reduces to g(Y(q)).