Ordinary Differential Equations

as an alternative to agent-based modelling

eX Modelo school

OpenMOLE

June 26, 2019

ODE systems

ightarrow widely used to model transmission phenomena

- population split into compartments
- system of ordinary differential equations

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta S + \lambda I \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= \beta S - (\lambda + \gamma)I \\ \frac{\mathrm{d}R}{\mathrm{d}t} &= \gamma I \end{cases}$$

ODE

Equation-based
Generic mechanisms

Population scale

Needs less resources

ABM

Precise mechanisms

Individual-based

Individual scale

illulviuuai Scale

Computationally expensive

A Zombie situation

How could we model the Zombie invasion?

- ► Which mechanisms?
- ► Which parameters?

How could we model the Zombie invasion?

- ► Which mechanisms?
- Which parameters?

How can we assess our model's ability to reproduce the real data?

- ▶ Which metrics?
- ▶ Which fitness function?

$$\begin{cases} \frac{\mathrm{d}H_{walk}}{\mathrm{d}t} &= -(panic + inf) * H_{walk} + exhaustH * H_{run} \\ \frac{\mathrm{d}H_{run}}{\mathrm{d}t} &= panic * H_{walk} - (exhaustH + inf) * H_{run} \\ \frac{\mathrm{d}Z_{walk}}{\mathrm{d}t} &= inf * (H_{walk} + H_{run}) - hunt * Z_{walk} + exhaustZ * Z_{run} \\ \frac{\mathrm{d}Z_{run}}{\mathrm{d}t} &= hunt * Z_{walk} - exhaustZ * Z_{run} \end{cases}$$

Exploration

Process

Process

► Embed the model in OpenMOLE

Process

- Embed the model in OpenMOLE
- ► Define a fitness function

Process

- ► Embed the model in OpenMOLE
- Define a fitness function
- Write a calibration task

Parameter set

Adding complexity

The parcimony issue

The parcimony issue

▶ Do the new mechanisms really improve the fitness?

The parcimony issue

- Do the new mechanisms really improve the fitness?
- ▶ Do we need them all?

The parcimony issue

- ▶ Do the new mechanisms really improve the fitness?
- ▶ Do we need them all?
- What are the best combinations?

Process

► Embed the model in OpenMOLE DONE

Process

- ► Embed the model in OpenMOLE DONE
- ▶ Define a **second** fitness function

Process

- ► Embed the model in OpenMOLE DONE
- ► Define a **second** fitness function
- Modify the calibration task

Pareto front

Dynamics for 0 mechanism activated

Dynamics for 1 mechanism activated

Dynamics for 2 mechanisms activated

Dynamics for 3 mechanisms activated

