

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Control 1

Teoría de Autómatas y Lenguajes Formales — IIC2223 Fecha de Entrega: 2020-09-07

Problema 1:

Un autómata finito no determinista (NFA) $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se dice no-ambiguo, si para toda palabra $w \in \mathcal{L}(\mathcal{A})$ existe exactamente una ejecución de aceptación de \mathcal{A} sobre w. Por ejemplo, un autómata finito determinista es un NFA no-ambiguo, pero existen autómatas que no son deterministas, pero si no ambiguos.

- (a) Para $i \geq 0$, considere el lenguaje L_i de todas las palabras $w = a_1 \dots a_n$ sobre $\{a, b\}$ con n > i tal que $a_{n-i} = b$. Demuestre que para cada L_i existe un NFA no-ambiguo \mathcal{A} con menor o igual a i + 2.
- (b) Demuestre que para todo lenguaje regular L con $\varepsilon \notin L$, existe un NFA no-ambiguo $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ tal que |I| = |F| = 1 y $\mathcal{L}(\mathcal{A}) = L$.

Solución problema 1: Doy mi palabra que la siguiente solución de la pregunta 1 fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad

—Nicholas Mc-Donnell

(a) Sea q_1 estado 'prefijo', q_2 estado 'b' y q_j con $3 \le j \le i+2^1$ como estados 'sufijo'. Se tiene que $q_{i+2} \in F$ y $q_1 \in I$, además se tiene que $\Delta(q_1, c, q_1)$ y $\Delta(q_j, c, q_{j+1})$ para $c \in \Sigma$ y $2 \le j < i+2$, por último se tiene $\Delta(q_1, b, q_2)$. Lo anterior define \mathcal{A}_i . Ahora, sea $w \in L_i$, se tiene que $w = a_1 \dots a_n$ para algún n > i, se ve la siguiente ejecución $\rho: q_1 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_{n-i-1}} q_1 \xrightarrow{b} q_2 \xrightarrow{a_{n-i+1}} q_3 \xrightarrow{a_{n-i+2}} \dots \xrightarrow{a_{n-1}} q_{i+1} \xrightarrow{a_n} q_{i+2}$, como $q_{i+2} \in F$ \mathcal{A}_i acepta w, por lo que se tiene que $\mathcal{L}(\mathcal{A}_i) \subseteq L_i$. Ahora, sea $w \in \mathcal{L}(\mathcal{A}_i)$, tal que $w = a_1 \dots a_n$, se tiene que existe una ejecución ρ que acepta w, se nota que $w = a_1 \dots a_n$, se tiene que existe una ejecución $v = a_1 \dots v_n$ ya que toda palabra aceptada por $v = a_1 \dots a_n$ tiene que pasar por los estados $v = a_1 \dots v_n$ que son $v = a_1 \dots v_n$ ya como toda ejecución que acepta tiene que pasar por esos estados, en especifico tiene que pasar por la transición $v = a_1 \dots v_n$ y como después de $v = a_1 \dots v_n$ y como despu

 $^{{}^{1}}$ Si i=0, se usa el estado q_{2}

 $^{^{1}}$ Ver 1

²Para cada q_k hay solo un q_i tal que $\Delta(q_k, c, q_i)$ para algún $c \in \Sigma$

 $^{{}^{3}}$ Si i=0 el autómata es de 2 estados y q_{2} es de aceptación, por lo que una vez se llega al estado q_{2} no hay más transiciones.

(b) Sea \mathcal{A} un DFA tal que $\mathcal{L}(\mathcal{A}) = L$, se tiene que visto como NFA |Q| = 1. Ahora, se construye un NFA \mathcal{A}' en base a \mathcal{A} de la siguiente manera, se crea un estado extra q_{final} que es de aceptación, y para todo otro estado de aceptación q_i^4 se usa el siguiente proceso, para todo estado q_j y carácter $a \in \Sigma$ tal que $\delta_{\mathcal{A}}(q_j, a) = q_i$ se agrega $\Delta_{\mathcal{A}'}(q_j, a, q_{final})$, y una vez que toda transición que llegue al estado q_j se haya procesado se tiene que $q_j \notin F$. Este NFA cumple que $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$ ya que para toda ejecución de aceptación ρ de \mathcal{A} sobre w se tiene una ejecución de aceptación ρ' con la diferencia que la última transición desde el estado correspondiente $p_j \xrightarrow{w_k} p_i$ es $p_j \xrightarrow{w_k} q_{final}^5$, más aún esta transición es única por construcción y como ρ es única se tiene que la ejecución hasta p_i es única, con lo que se tiene que ρ' es única en su totalidad. Con lo anterior, se tiene que el NFA \mathcal{A}' cumple lo pedido.

Problema 2:

Sea Σ un alfabeto finito y sea R una expresión regular sobre Sigma. Se define el operador:

 $R^{\downarrow\downarrow}$

tal que $w \in \mathcal{L}(R^{\downarrow\downarrow})$ si, y solo si, existe una palabra $w' \in \mathcal{L}(R)$ que se puede descomponer como $w' = u_1 v_1 \dots u_k v_k$ para algún $k \geq 1$ y con $u_i, v_i \Sigma^*$, y tal que $w = u_1 \dots u_k$. Demuestre que para toda expresión regular R, el resultado $R^{\downarrow\downarrow}$ define un lenguaje regular.

Solución problema 2: Doy mi palabra que la siguiente solución de la pregunta 2 fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad

—Nicholas Mc-Donnell

Se ve que $R^{\downarrow\downarrow}$ corresponde a todas las subsecuencias de carácteres⁶ de palabras aceptadas por R. Sea $w \in \mathcal{L}(R)$, entonces se tiene que $w = w_1 \dots w_k = u_1 v_1 \dots u_k v_k$ donde k = |w| y se tiene $\{u_i, v_i\} = \{\varepsilon, w_i\}$, por lo tanto $u_1 \dots u_k \in \mathcal{L}(R^{\downarrow\downarrow})$, lo que nos dice que dado una palabra en $\mathcal{L}(R)$ toda subsecuencia de carácteres pertenece a $\mathcal{L}(R^{\downarrow\downarrow})$. Para ver que $\mathcal{L}(R^{\downarrow\downarrow})$ es regular, se toma \mathcal{A} un DFA tal que $\mathcal{L}(\mathcal{A}) = \mathcal{L}(R)$, y se construye un NFA- ε \mathcal{A}' de la siguiente forma. Todo estado se vuelve estado de aceptación e iterativamente se hace el siguiente proceso,

 $^{^4{\}rm Se}$ nota que como $\varepsilon\notin L$ se tiene que q_0 no es estado de aceptación.

⁵Para la otra implicania, es claro que por construcción tiene que existir un estado de aceptación $p_i \in Q_A$ tal que $p_j \xrightarrow{w_k} p_i$

⁶Incluida la secuencia vacia, i.e. la palabra vacia

dados q_i, q_j tales que $\delta(q_i, a) = q_j$ y $a \in \Sigma$ se agrega $\Delta(q_i, \varepsilon, q_j)$ Como hay finitos estados el proceso termina y nos define un NFA. Ahora, sea $w \in \mathcal{L}(R)$ tal que $w = u_1 v_1 \dots u_k v_k$ como se vio anteriormente, y $\rho: p_1 \xrightarrow{w_1} \dots \xrightarrow{w_k} p_{k+1}$ una ejecución de aceptación de \mathcal{A} sobre w, sea i tal que $u_i = \varepsilon$, entonces se puede ver la ejecución $\rho': p_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} p_i \xrightarrow{\varepsilon} p_{i+1} \xrightarrow{w_{i+1}} p_{i+1} \xrightarrow{w_{i+2}} \dots \xrightarrow{w_k} p_{k+1}$, se ve entonces que toda subsecuencia de w es aceptada, pero se ve que toda palabra aceptada por \mathcal{A}' es una subsecuencia alguna palabra en \mathcal{A} por construcción Ahora, como cada NFA- ε define un lenguaje regular, se tiene que $\mathcal{L}(R)$ es regular.

 7 Las ε -transiciones nos garantizan eso.