# Seq2Seq:

Sequence to Sequence Learning with Neural Networks

2024.02.02

이은주

#### Intro

Seq2Seq(2014): 한 시퀀스를 다른 시퀀스로 변환하는 작업을 수행하는 딥러닝 모델 주로 자연어 처리(NLP)분야에서 활용

Transformer(2017)가 나오기 전까지는 성능이 가장 좋았음.

GPT(2018): Transformer의 디코더 아키텍처 사용

BERT(2019): Transformer의 인코더 아키텍처 사용





## 이전 seq2seq(SMT)

전통적인 통계적 언어모델(Statistical Language Model)은 카운트 기반의 접근 사용

• 
$$P(\text{지낸다}|\text{친구와 친하게}) = \frac{count}(\text{친구와 친하게 지낸다})}{count}(\text{친구와 친하게})$$

#### 한계점:

- 현실적으로 모든 문장에 대한 확률을 가지고 있어야함. 만일, '친구와 친하게'라는 문장이 없으면 확률은 0.
- 긴문장 처리 어려움
- P(나는 공부를 마치고 집에서 밥을 먹었다) = P(나는) \* P(공부를|나는) \* P(마치고|나는 공부를) \* P(집에서|나는 공부를 마치고) \* <math>P(밥을|나는 공부를 마치고 집에서) \* P(먹었다|나는 공부를 마치고 집에서 밥을)
- => N-gram 언어 모델 사용 인접한 일부 단어만 고려하는 아이디어

## 이전 seq2seq(RNN)

RNN과 같은 딥러닝 기법은 강력하지만 일반적인 task에 한계 존재. 초반 딥러닝 모델은 입력과 출력의 dim이 고정되어 있는 경우가 많음.



->음성인식, 번역과 같은 sequential data에서 한계 => LSTM으로 해결

#### The Model

입력 시퀀스가 하나의 고정된 크기의 벡터로 바꾸는 방법 사용. 인코더가 고정된 크기의 문맥벡터(context vector)를 추출 인코더를 위한 RNN, 디코더를 위한 RNN 따로 사용.



#### The Model

1. 인코더, 디코더 파트의 각각의 LSTM은 서로 다른 파라미터 사용



2. LSTM은 총 4개의 레이어를 겹쳐(위로 쌓음) 사용(Multilayer LSTM)

옆 사진은 layer를 2층 쌓음



morning

#### The Model

3. 입력 token의 순서를 바꿨을 때 성능이 더 향상

Input: a, b, c 이고 실제로 모델에 들어갈 때는 c, b, a순으로 들어가게끔.

Decoder 부분의 input이  $\alpha$ ,  $\beta$ ,  $\gamma$ 라고 했을 때. 즉, a는  $\alpha$ 와 비슷하게 되므로 상대적으로 a와  $\alpha$ 가 높은 연관성을 가져 매핑됨.

학습난이도 낮추므로 좋은 성능 얻음.



## Experiments

```
- English to French(논문)
(실습 : 독일어(src) – 영어(trg))
- BLEU score(기계번역 성능지표)
```

- WMT14 dataset 160만개의 token(단어). 입력 단어는 160만개의 token 중 하나. Src와 trg 순서 반대

```
# 학습 데이터 중 하나를 선택해 출력
print(vars(train_dataset.examples[30])['src'])
print(vars(train_dataset.examples[30])['trg'])

['.', 'steht', 'urinal', 'einem', 'an', 'kaffee', 'tasse', 'einer', 'mit', 'der', ',', 'mann', 'ein']
['a', 'man', 'standing', 'at', 'a', 'urinal', 'with', 'a', 'coffee', 'cup', '.']
```

#### Conclusion

Result 1.

Baseline model(SMT): 33.3%

LSTM: 34.8%

=> 딥러닝이 통계적 모델보다 성능이 높다는 결과

SMT + LSTM : 36.5%

입력문장을 바꾸는 것이 성능향상에 도움을 준다는 결과

| Method                                     | test BLEU score (ntst14) |
|--------------------------------------------|--------------------------|
| Bahdanau et al. [2]                        | 28.45                    |
| Baseline System [29]                       | 33.30                    |
| Single forward LSTM, beam size 12          | 26.17                    |
| Single reversed LSTM, beam size 12         | 30.59                    |
| Ensemble of 5 reversed LSTMs, beam size 1  | 33.00                    |
| Ensemble of 2 reversed LSTMs, beam size 12 | 33.27                    |
| Ensemble of 5 reversed LSTMs, beam size 2  | 34.50                    |
| Ensemble of 5 reversed LSTMs, beam size 12 | 34.81                    |

Table 1: The performance of the LSTM on WMT'14 English to French test set (ntst14). Note that an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of size 12.

| Method                                                                | test BLEU score (ntst14) |
|-----------------------------------------------------------------------|--------------------------|
| Baseline System [29]                                                  | 33.30                    |
| Cho et al. [5]                                                        | 34.54                    |
| State of the art [9]                                                  | 37.0                     |
| Rescoring the baseline 1000-best with a single forward LSTM           | 35.61                    |
| Rescoring the baseline 1000-best with a single reversed LSTM          | 35.85                    |
| Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs | 36.5                     |
| Oracle Rescoring of the Baseline 1000-best lists                      | ~45                      |

Table 2: Methods that use neural networks together with an SMT system on the WMT'14 English to French test set (ntst14).

### Conclusion

Result 2. 긴 문장에서도 좋은 성능을 보임



Result 3. PCA결과 단어의 순서에 따라 민감하지만, 문장의 수동, 능동 형태에는 큰 영향 받지 x

