Normal Forms

Chittaranjan Pradhan

Normal Forms

1NF(First Normal Form)

Partial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)

Database Management System 17 Normal Forms

> Chittaranjan Pradhan School of Computer Engineering, KIIT University

Normal Forms

Normal Forms

1NF(First Normal Form)

Partial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)

Normal Forms

- Normal forms provide a stepwise progression towards the construction of normalized relation schemas, which are free from data redundancies
- A relation schema is said to be in a particular normal form if it is satisfying certain defined conditions

1NF(First Normal Form)

A relation is in 1NF iff the values in the relation are atomic and single-valued for every attribute in the relation

Module Dept Lecturer Text M_1 D_1 L_1 T_1, T_2 M_2 T_1, T_3 D_1 Course M_3 T_{Δ} D_1 M_{Λ} D_2 L_3 T_{1}, T_{5} M_5 T_6 Dο

- As the Text column values are not atomic, this relation is not present in 1NF
- To convert this non-1NF relation into a 1NF relation, split up the non-atomic values

Normal Forms

1NF(First Normal

Partial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal Form)

1NF(First Normal Form)...

Module Dept Lecturer Text $\overline{T_1}$ M_1 $\overline{D_1}$ L_1 T_2 M_1 D_1 Lı T_1 M_2 D_1 L_1 Course 1 T_3 M_2 D_1 Lı M_3 D_1 M_{Δ} D_2 M_{4} D_2 M_5 D_2 T_6

Course2	Module	Dept	Lecturer	Text ₁	Text ₂
	M_1	D_1	L ₁	T_1	T_2
	M_2	D_1	L_1	T_1	T_3
	M_3	D_1	L_2	T_4	
	M_4	D_2	L_3	T_1	T_5
	<i>M</i> ₅	D_2	L_4	<i>T</i> ₆	

Corollary: As the relation schema contains no data values, therefore all relation schemas are in 1NF

Anomalies in 1NF Relations:

- Insertion anomalies
- Updation anomalies
- Deletion anomalies

Normal Forms

Chittaranian Pradhan

Normal Forms

Partial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal Form)

tial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)

Partial FD

A FD A \rightarrow B is a partial FD, if some attribute of A can be removed and the FD still holds. That means there is some proper subset of A, C \subset A, such that C \rightarrow B

- Key attributes: are the attributes which are part of some candidate key
- Non-key attributes: are the attributes which are not part of any candidate key

2NF(Second Normal Form)

2NF(Second Normal Form)

A relation is in 2NF iff the following two conditions are met simultaneously:

- It is in 1NF
- No non-key attribute is partially dependent on any key

A non-2NF relation can be decomposed into 2NF relations by following:

Create a new relation by using the attributes from the

- offending FD as the attributes in the new relation. The determinant of the FD becomes the primary key of the new relation
- The attribute on the RHS of the FD is then eliminated from the original relation
- If more than one FD prevents the relation from being 2NF, repeat steps 1 and 2 for each offending FD
- If the same determinant appears in more than one FD, place all the attributes functionally dependent on this determinant as non-key attributes in the relation having the determinant as the primary key

Normal Forms

1NF(First Normal

Chittaranian Pradhan

Partial FD

Form)

(Second N

Transitive FD 3NF(Third Normal

Form)

2NF(Second Normal Form)...

Normal Forms

Chittaranjan Pradhan

Normal Forms

1NF(First Normal Form)

Partial FD

2NF(Second Normal

Transitive FD

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)

Text Module Dept Lecturer $\overline{T_1}$ M_1 D_1 L_1 T_2 M_1 D_1 T_1 Mэ D_1 Course Mэ D_1 T_3 T_4 M_3 D_1 T_1 M_{4} D_2 L₃ T_5 M_{4} D_2 L_3 M_5 D_2 T_6

F={Module→Dept, Module→Lecturer, Lecturer→Dept, {Module, Text}→{Dept, Lecturer}} Here, Key:{Module, Text}

Normal Forms

1NF(First Normal

Partial FD

2NF(Second Normal

Transitive FD

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)

Course1

 $\begin{array}{c|cccc} \underline{\text{Module}} & \text{Dept} & \text{Lecturer} \\ M_1 & D_1 & L_1 \\ M_2 & D_1 & L_1 \\ M_3 & D_1 & L_2 \\ M_4 & D_2 & L_3 \\ M_5 & D_2 & L_4 \\ \end{array}$

 $F_1=\{\text{Module}\rightarrow\{\text{Dept}, \text{Lecturer}\}, \text{Lecturer}\rightarrow \text{Dept}\}$

Module Text M_1 T_1 M₁ T_2 M_2 T_1 Course2 M_2 T_3 M_3 T_{4} M_{Λ} T_1 M_4 T_5 M_5 T_6

 $F_2 = \{\{Module, Text\}\} \rightarrow \{\{Module, Text\}\}\$

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)

Corollary: If the primary key has a single attribute, then the relation is in 2NF

Anomalies in 2NF Relations:

- Insertion anomalies
- Updation anomalies
- Deletion anomalies

Q: R=(A, B, C, D, E), & F={A
$$\rightarrow$$
 {B, C, D, E}, {A, B} \rightarrow {C, D, E}, C \rightarrow E, D \rightarrow E}

Q: R=(A, B, C, D, E), & F={{A, B}
$$\rightarrow$$
 {C, D, E}, B \rightarrow C, A \rightarrow D}

Transitive FD

Normal Forms

Chittaranjan Pradhan

Normal Forms

1NF(First Normal Form)

Partial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)

Transitive FD

A FD A \to C is a transitive FD, if there are some set of attributes B such that A \to B and B \to C are non-trivial FDs

 $\mathsf{A} \to \mathsf{B}$ non-trivial means B is not a subset of A

3NF(Third Normal Form)

A relation is in 3NF iff the following two conditions are satisfied simultaneously:

- It is in 2NF
- No non-key attribute is transitively dependent on the key

The process of decomposing the non-3NF relation into 3NF relations is similar to the process of decomposing the non-2NF relation to 2NF relations

Course

•	Module	Dept	Lecturer
	M ₁	D ₁	L ₁
	M_2	D_1	L ₁
	M ₃	D_1	L ₂
	M ₄ M ₅	D_2 D_2	L ₃
	M ₅	D_2	L ₄

 $F=\{Module \rightarrow \{Dept, \ Lecturer\}, \ Lecturer \rightarrow Dept\}$

This relation is not present in 3NF because Module \rightarrow Lecturer and Lecturer \rightarrow Dept

Normal Forms

1NF(First Normal Form)

Partial FD

2NF(Second Normal Form)

Transitive FD

NF(Third Normal

3NF(Third Normal Form)...

Course1

<u>Module</u>	Lecturer
M ₁	L ₁
M ₂	L ₁
M ₃	L ₂
M_4	L ₃
M ₅	L ₄

 F_1 ={Module \rightarrow Lecturer}

Course2

 $\begin{array}{|c|c|c|} \hline Lecturer & Dept \\ \hline L_1 & D_1 \\ L_2 & D_1 \\ L_3 & D_2 \\ L_4 & D_2 \\ \hline \end{array}$

 F_2 ={Lecturer \rightarrow Dept}

Corollary: A 2NF relation is in 3NF if no non-key attribute functionally determines any other non-key attribute

Normal Forms

Chittaranjan Pradhan

Normal Forms

1NF(First Normal

Partial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal

3NF(Third Normal Form)...

The 3NF helped us to get rid of the anomalies caused by dependencies of a non-key attribute on another non-key attribute

attribute

However, relations in 3NF are still susceptible to anomalies when the relations have two overlapping candidate keys or

when non-key attribute functionally determines a key attribute.

Overlapping candidate keys means composite candidate keys with at least one attribute in common among themselves

Note: A database should normally be in 3NF at least

Q: Lecturer = (lectid, lectname, courseid, coursename) & F={lectid \rightarrow lectname, lectid \rightarrow courseid, lectid \rightarrow coursename, courseid \rightarrow coursename}

Q: R=(B, C, E), F= {E \rightarrow B, {B,C} \rightarrow E}

Q: Store = (<u>order</u>, <u>product</u>, customer, address, qty, unitprice) & $F = \{ order \rightarrow \{ customer, address \}, customer \rightarrow address, product \rightarrow unitprice, \{ order, product \} \rightarrow qty \}$

Normal Forms

Chittaranjan Pradhan

Normal Forms

1NF(First Normal Form) Partial FD

2NF(Second Normal Form)

Transitive FD

BCNF (Boyce-Codd

Normal Form)

BCNF (Boyce-Codd Normal Form)

A relation is in BCNF iff the following two conditions are satisfied simultaneously:

• It is in 3NF

S

 If for every non-trivial functional dependency, the determinant is a key

The process of decomposing the non-BCNF relation into BCNF relations is a simple process. For each non-trivial FD where the determinant is not the key, construct new relations

	Student	Course	Time
	Rahul	Database	12: 00
	Pratik	Database	12: 00
tudent	Praveen	Database	15: 00
	Praveen	Programming	10:00
	Rajib	Programming	10:00
	Shivam	Programming	13: 00

F={{Student, Course} \rightarrow Time, Time \rightarrow Course, {Student, Time} \rightarrow Course} Key={Student, Course} and {Student, Time} Normal Forms

1NF(First Normal

Partial FD
2NF(Second Normal

Form)

Form)
Transitive FD

3NF(Third Normal Form)

This relation is not present in BCNF as in FD Time \rightarrow Course; the determinant {Time} is not a key

After the conversion of this relation to BCNF, create a new relation R_1 =(Time, Course) with set of FDs F_1 ={Time \rightarrow Course}

The original relation is changed to R=(Student, Time) as {Student, Time} set is also the key of the relation

Here, we have lost the functional dependency {Student, Course} \rightarrow Time

Normal Forms

1NF(First Normal Form)

Partial FD

2NF(Second Normal Form)

Transitive FD

3NF(Third Normal Form)

BCNF (Boyce-Codd Normal Form)... Corollary: If a relation has only one candidate key, then

3NF and BCNF are same. That means if a relation is in 3NF having only one candidate key, then it is also present in **BCNF**

Note: Normalization to 3NF is always lossless and dependency preserving. But, normalization to BCNF is lossless, but may not preserve all the functional dependencies

relation to BCNF Q: R=(A, B, C, D), F={{A, B} \rightarrow {C, D}, C \rightarrow B}. Decompose the

Q: R = (A, B, C, D, E), F={A \rightarrow {B, E}, C \rightarrow D}. Decompose the

relation into BCNF

Q: R =(A, B, C, D, E, G), F={{A, B} \rightarrow {C, D}, {B, C} \rightarrow {D, A}, C \rightarrow G, B \rightarrow E}. Decompose this relation to BCNF

Q: R = (A, B, C, D) & F = {{A, C}} \rightarrow {B, D}, {B, C} \rightarrow {D, A}, A \rightarrow B, B \rightarrow A}. Decompose this relation to BCNF

Normal Forms

Normal Forms

Chittaranian Pradhan

1NF(First Normal

Form) Partial FD 2NF(Second Normal

Form) Transitive FD

3NF(Third Normal Form)