CLIPPEDIMAGE= JP406151829A

PAT-NO: JP406151829A

DOCUMENT-IDENTIFIER: UP 06151829 A

TITLE: MANUFACTURE OF SEMICONDUCTOR DEVICE

PUBN-DATE: May 31, 1994

INVENTOR-INFORMATION:

MAME

MARASAWA, OSAMU

ASSIGNEE-INFORMATION:

NAME

KAWASAKI STEEL CORF

COUNTRY

N/A

APFL-NO: JP04294094

APFL-DATE: Nivember 2, 1992

INT-CL (IPC: H01L029/784; H01L021/265; H01L021/336

US-CL-CURRENT: 257/410

ABSTFACT:

FUFFDSE: To prevent penetration of boron where boron is diffused into a silicin

substrate via a gate insulation film from a polysilicon film by performing ion

implantation of nitrogen atom to silicon oxynitride film or the interface

between the silicon nitride and oxide film and the silicon substrate.

CONSTITUTION: Silicon oxynitride film 2 is formed on a silicon substrate 1.

Then, nitrigen atom 3 is ion-implanted onto the film, thus introducing nitrogen

atom into the silicon nitride and oxide film or an area near the interface

between the silicen exymitride film and the silicon substrate and hence

suppressing penetration of boron. Finally, polysilicon film 4 is formed on the

silicon oxnitride film, boron B<SP>+</SP> is ion-implanted for forming a date

electrode, and patterning is made, thus completing a semiconductor device

through a desired process.

COPYRIGHT: (C) 1994, JPC&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-151829

(43)公開日 平成6年(1994)5月31日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 L 29/784

21/265

21/336

7377-4M

H 0 1 L 29/78

301 G

8617-4M

21/ 265

審査請求 未請求 請求項の数1(全 4 頁) 最終頁に続く

(21)出願番号

特願平4-294094

(71)出願人 000001258

川崎製鉄株式会社

(22)出願日

平成 4 年(1992)11月 2 日

兵庫県神戸市中央区北本町通1丁目1番28

(72) 発明者 唐澤 修

千葉県千葉市中央区川崎町1番地 川崎製

鉄株式会社技術研究本部内

(74)代理人 弁理士 小林 英一

(54) 【発明の名称】 半導体装置の製造方法

(57)【要約】

【目的】 抵抗加熱炉で形成されたシリコン窒化酸化膜 を絶縁膜として用い、その膜上にゲート電極を形成する 半導体装置において、ポリシリコン膜からゲート絶縁膜 を介してボロンがシリコン基板中に拡散する、いわゆる ボロンの突き抜けを防止する

【構成】 シリコン窒化酸化膜、またはシリコン窒化酸 化膜とシリコン基板との界面に窒素原子をイオン注入す

【特許請求の範囲】

【請求項1】 ショコン基板上に抵抗加熱炉で形成され たショコン窒化酸化膜をゲート絶縁膜として用い。当該 膜上にケート電極を形成する半導体装置の製造方法にお いて シリコン窒化酸化膜 またはシリコン窒化酸化膜 とレリコン基板との界面に窒素原子をイオン注入するこ とを特徴とする半導体装置の製造方法。

【発明の詳細な説明】

[0.001]

に関し、詳しくは シリコン室化酸化膜をゲート絶縁膜 にもち、かつ多結晶シリコン膜にボロン原子などのP型 不純物をイオン注入法により導入したP・ボリシリコン ゲート電極をもったトランジスターの製造方法に関す。 25

【0~02】

【従もの技術】MMSにはN・ポリシリコン PMMSにはP 1 ポリシリコンをゲート電極として用いるデュアル構造 がディーアサブミクロン領域のMUSのゲート構造として 有力視されている。FMOSはチャネルがサーフェイス型に、20 変わり優れたショートチャネル効果やターノオフ特性を 示す。しかし、このデュアルゲートCMOSをスケールグウ ンするために解決しなければならない最大の課題はPi ポリンリコンからゲート絶縁膜を介してポロンかシリコ 2. 基板中に拡散する「ボロンの突き抜け」(以下突き抜 けと略す) である

【りいり3】この突き抜けが起こると、シリコン基板表 面の不純物濃度が変化し、FMISトランジスターの関値電 圧が変動する。さらに突き抜けが大きい場合はハンチス ルーが生じる。このように突き抜けはトランジスター動 30 作に重大な変化をもたらす。従来、ボロン原子のイオン 注入時の注入エネルギーを調整したり、ゲート絶縁膜の 膜厚や膜質の調整によってこの突き抜けを防止してい る」しかし、ディープサブミクロンではゲート絶縁膜が、 10回し下となり、従来から用いられている熱酸化膜では 防止能力が下十分となっている。そこで近年シリコン窒 化酸化膜という新しいゲート絶縁膜が開発されている。

【0回04】

【発明が解決しようとする課題】前記シリコン窒化酸化 する。窒素濃度が極端に高い場合には、その後の熱処理 により固定電荷が急増したり不安定化するという問題が あった。一方、窒素濃度が低い場合には、突き抜けの防 正効果が実用上なかったり、バラツキが大きくやはり突 き抜けをおこすという問題があった。

【0005】また。レリコン窒化酸化膜の形成方法とし ては、従来がらある抵抗加熱炉でレリコン基板上に形成 した熱酸化膜の一部分をNE 雰囲気で窒化または窒化酸 化する方法が一般的である。また、近年抵抗加熱炉を使 わずRTP (Rapid ThermalProcess)法により、酸化膜 - 50。

を形成した後でME 雰囲気などで酸化膜の一部分を窒化 して平成する方法も開発されている。さらに上記方法に 加えてシリコン窒化酸化膜を再度酸化する方法も用いる れている。これらの方法は窒化時に取り込まれる水素原 子の遺度をも考慮しなければならない。水素濃度が大き いと初期の界面準位の増加や一電流ストレス後の界面準 位の増加などの問題を生じる

【0006】M・を用いた酸窒化は、窒素濃度と水素濃 度の両方の制御という点でゲート絶縁膜形成が複雑化し 【産業上の利用が野】本発明は「半導体装置の製造方法」10~たり「あるいは前記ボロンの突き抜け防止に起因する制」 わのためプロセスマージンが大きくとれないという問題 があった。本発明は、前述の問題にかんがみて、レリコ ン窒化酸化膜中またはシリコン窒化酸化膜とシリコン基 板と凸界面に窒素原子をイオン注入法により導入しシリ コン窒化酸化膜中の窒素濃度を成膜時のそれよりも高 め、これにより突き抜けを抑制できかつ電気特性に優れ たシリコン窒化酸化膜の形成方法を提供するためになざ れたものである

[0007]

【課題を解決するための手段】本発明は、シリコン基板 上に抵抗加熱炉で形成されたレリコン窒化酸化膜をゲー ト絶縁膜として用い。 当該膜上にゲート電極を形成する 牛導体装置の製造方法において、シリコン窒化酸化膜 またはシリコン窒化酸化膜とシリコン基板との界面に窒 **奉原子をイオン圧入することを特徴とする半導体装置の** 製造方法である

【ODOS】

【作用】本発明によれば、シリコン窒化酸化膜またはシ リコン窒化酸化膜とシリコン基板との界面に窒素原子を イオン注入法により導入し 当領域の窒素濃度を成膜時 のシリコン窒化酸化膜の窒素濃度に比べて高め、この窒 素原子の存在によって前記シリコン窒化膜上に形成され た(ホロン)ドーフトホリシリコン膜からのボロンの突 き抜けを抑制することができる。

【0009】ボロッの突き抜けを抑制する窒素原子量の 一部をイオン注入法により得るため。窒化時にとり込む 窒素量を減らすことができ、ML 雰囲気などを用いて行 う従来方法において窒化の程度を低く抑えることができ る。これにともなって窒化中に取り込まれてしまっ水素 膜中の窒素濃度はゲート絶縁膜の電気特性を大きく左右。40。原子の導入量を減らすことができるので、固定電荷の発 生や不安定化、界面準位の増大などを防止することがで き、電気的特性の優れたゲート絶縁膜を得ることができ

> 【0010】イオン注入された窒素原子は、LSTテバ くス形成のその後の熱履歴により活性化したり、膜中の「 ホットワークに取り込まれたりして突き抜け防止能力を 発生するが、必要に応じてイオン注入直後やボリシリコ ン膜形成直後に熱処理を加えて防止能力を発生させても tu:

[0011]

【実施例】本発明に係る実施例を図1に従って説明す る 図1は、本発明の実施例に係る半導体装置の製造方 法を示す一部説明断面図である。図1 (a)に示す工程 では、抵抗加熱炉による熱酸化法と熱窒化法により、シ リコン基板 1 上に膜厚が80×100 A程度のシリコン窒化 酸化膜2を形成する。次に図1(b)に示す工程では、 図1 [a] に示す L程で得た膜上から窒素原子3をエネ ルギー:4 ~ 8kel 、ドーズ量・2 ~ 5 ~ 10년 cm - 程度 でイオン注入する。このようにすることで、シリコン窒 化酸化膜、またほどリコン窒化酸化膜とシリコン基板と の界面付近に窒素原子を導入することができ、ボロッの 突き抜けを抑制することができる。窒素原子のエネルギ ーやドーズ量は、ゲート絶縁膜の膜厚や要求されるトラ ンジスター特性 (例えばV+sの値) によって、さらには 後述するポリシリコン膜厚やボロンのドーで量で変化す ることはいうまでもない

【0012】最後に図1(c)に示す正程では、シリコ ン窒化酸化膜上にポリンリコン膜4を1000~2500A程度 形成し、イオン注入法によりボロンB・またはBF」。な どをドース量3~8・10¹⁵cm¹程度イオン注入してデー ト電極を形成した。その後バターニングを行い、さらに 所望の工程(熱処理を含む・を行い半導体装置を完成す

【0013】図2に 本実施例と従来例との容量 電圧 |特性国を示した。| 図2は、P・ボリシリコンケード電極 をもった試料を用いたときの容量-電圧特性図である が、A (実施例) は、ゲート絶縁膜がシリコン窒化酸化 膜であり、シリコン窒化酸化膜、または窒化酸化膜とシ リコン基板との界面に窒素原子をイオン注入した場合で あり、B(従来例1)は、ゲート絶縁膜が窒化酸化膜で 30 2 シリコン窒化酸化膜 ある場合。C(従来例2)は、ゲート絶縁膜が酸化膜で ある場合である(基板はP型)」この特性図から、本実 施例ではボロンドーフトボリシリコン膜からのボロンの

突き抜けを抑制できたことがあきらかである

【0011】なお、シリコン酸化窒化膜形成に関して は **の**シリコン基板に酸素や水蒸気雰囲気で熱酸化膜を 形成し、その後NE。雰囲気で上記酸化膜の一部を熱窒化 する製造法が一般的であるが、②亜酸化窒素 (人□)を用 いてシリコン基板上に直接シリコン窒化酸化膜を形成す る方法や ◎熱酸化法による酸化膜形成後 亜酸化窒素 で自該膜を一部窒化してもよい。亜酸化窒素を用いた前 述②。③の2方法と、本発明の窒素原子をイオン注入法 - 10 - により導入する方法を合わせて用いれば、さらに特性の 優れた半導体装置をえることができる

【0015】

【発明の効果】本発明は、シリコン基板上に形成したシ リコン窒化酸化膜。またはレリコン窒化酸化膜とシリコ ン基板との界面にイオン注入法により窒素原子を導入 し、これをもって成膜時よりも窒素濃度を高めることに より 上部のボロンドープトポリシリコン膜からのボロ ンの突き抜けを抑制することができるようになった。

【001ヵ】またイオン注入法による窒素原子の導入に 20 より、膜中水素濃度と無関係に窒素濃度を決定すること ができ、水素濃度を低く押さえ、窒素濃度を高くするこ ともでき、水素に起因する界面準位なども低く抑えるこ とが可能となった。

【図面の簡単な説明】

【図1】本実施例に係る半導体装置の製造方法を示す説 明断面図である

【図2】本実施例と従来例の容量 電圧特性図である 【符号の説明】

- 1 シリコン基板
- - 3 窒素原子
 - 4 ポリンリコン膜
 - う ボロン原子

【图2】

【**②**1】

(a)

フロントページの続き

 (51) Int.CL:
 識別記号
 庁内整理番号
 F I
 打

 7377 = 4M
 H O 1 L 29/78
 3 O 1 P

技術表示箇所