IT314 - Lab8 Vraj Patel - 202201401

Q.1

Tester action and input data(date,month,year)	Expected output
Equivalence partitioning	
1, 1, 1900	Previous Date: 31/12/1899
1, 2, 1900	Previous Date: 31/01/1900
1, 1, 2015	Previous Date: 31/12/2014
1, 2, 2015	Previous Date: 31/01/2015
1, 3, 2015	Previous Date: 29/02/2015 (leap year)
1, 1, 1899	An Error message
1, 13, 1900	An Error message
Boundary value analysis	
1, 1, 1900	Previous Date: 31/12/1899
1, 31, 2015	Previous Date: 30/11/2015
1, 2, 1900	Previous Date: 31/01/1900
1, 2, 2015	Previous Date: 31/01/2015
1, 0, 2015	An Error message
1, 12, 2015	Previous Date: 30/11/2015
1, 31, 2014	Previous Date: 30/11/2014

Tester action and input data(date,month,year)	Expected output	
Equivalence partitioning		
Search for 5 in {1, 2, 3, 4, 5}	4 (index of 5)	
Search for 1 in {1, 2, 3, 4, 5}	0 (index of 1)	
Search for 10 in {1, 2, 3, 4, 5}	-1 (not found)	
Search for -1 in {1, -1, 2, 3}	1 (index of -1)	
Search for 3 in {}	-1 (empty array)	
Boundary value analysis		
Search for the first element in {5}	0 (index of 5)	
Search for the last element in {1, 2, 3, 4, 5}	4 (index of 5)	
Search for a value less than the minimum in {1, 2, 3}	-1 (not found)	
Search for a value greater than the maximum in {1, 2, 3}	-1 (not found)	
Search for 2 in {1, 2, 3}	1 (index of 2)	
Search in a single element array {3}	0 (index of 3)	
Search for a non-existent value in {3}	-1 (not found)	

Equivalence Partitioning Test Cases

Tester Action and Input Data	Expected Outcome
Count occurrences of 2 in {1, 2, 3, 2, 4}	2
Count occurrences of 1 in {1, 1, 1, 1}	4
Count occurrences of 3 in {4, 5, 6}	0
Count occurrences of -1 in {1, -1, -1, 2}	2
Count occurrences of 5 in []	0

Tester Action and Input Data	Expected Outcome
Count occurrences of the first element in {3}	1
Count occurrences of the last element in {1, 2, 3}	1
Count occurrences of a value less than the minimum in {1, 2, 3}	0
Count occurrences of a value greater than the maximum in {1, 2, 3}	0
Count occurrences of 2 in {1, 2, 2, 2, 3}	3
Count occurrences in a single-element array {2}	1

Tester Action and Input Data	Expected Outcome
Count occurrences of a non-existent value in {2}	0

Р3

Equivalence Partitioning Test Cases

Tester Action and Input Data	Expected Outcome
Search for 5 in {1, 2, 3, 4, 5}	4
Search for 1 in {1, 2, 3, 4, 5}	0
Search for 10 in {1, 2, 3, 4, 5}	-1
Search for -1 in {-2, -1, 0, 1, 2}	1
Search for 3 in {1, 2, 3}	2
Search for 6 in {1, 2, 3, 4, 5}	-1

Tester Action and Input Data	Expected Outcome
Search for the first element in {3}	0
Search for the last element in {1, 2, 3, 4, 5}	4
Search for a value less than the minimum in {1, 2, 3}	-1
Search for a value greater than the maximum in {1, 2, 3}	-1
Search for 2 in {1, 2, 2, 2, 3}	1 (first occurrence)
Search in a single element array {2}	0

Tester Action and Input Data	Expected Outcome
Search for a non-existent value in {1, 2, 3}	-1

P4

Equivalence Partitioning Test Cases

Tester Action and Input Data	Expected Outcome
Inputs: 3, 3, 3	EQUILATERAL (0)
Inputs: 3, 3, 5	ISOSCELES (1)
Inputs: 3, 4, 5	SCALENE (2)
Inputs: 1, 2, 3	INVALID (3)
Inputs: 0, 2, 2	INVALID (3)
Inputs: -1, 2, 2	INVALID (3)

Tester Action and Input Data	Expected Outcome
Inputs: 1, 1, 1	EQUILATERAL (0)
Inputs: 1, 1, 2	ISOSCELES (1)
Inputs: 2, 2, 3	ISOSCELES (1)
Inputs: 1, 2, 2	ISOSCELES (1)
Inputs: 1, 2, 3	INVALID (3)
Inputs: 3, 4, 5	SCALENE (2)

Tester Action and Input Data	Expected Outcome
Inputs: 3, 5, 9	INVALID (3)

P5

Equivalence Partitioning Test Cases

Tester Action and Input Data	Expected Outcome
Inputs: "abc", "abcdef"	true
Inputs: "abc", "abc"	true
Inputs: "abc", "xyzabc"	false
Inputs: "abc", "a"	false
Inputs: "", "abc"	true
Inputs: "abc", ""	false
Inputs: "abcd", "abcde"	true
Inputs: "abcdef", "abc"	false

Tester Action and Input Data	Expected Outcome
Inputs: "", ""	true
Inputs: "a", "a"	true
Inputs: "a", "ab"	true

Tester Action and Input Data	Expected Outcome
Inputs: "ab", "a"	false
Inputs: "a", "abc"	true
Inputs: "abc", "abcd"	true
Inputs: "abcd", "ab"	false

P6: Triangle Program (Floating-Point Inputs)

a) Equivalence Classes

The following are the identified equivalence classes for the triangle program:

- 1. **Equilateral Triangle**: All sides are equal (A = B = C).
- 2. **Isosceles Triangle**: Two sides are equal (A = B, B = C, or A = C).
- 3. **Scalene Triangle**: No sides are equal $(A \neq B \neq C)$.
- 4. **Right-angled Triangle**: Follows the property A2+B2=C2A² + B² = C²A2+B2=C2.
- 5. **Invalid Triangle**: The sum of two sides is less than or equal to the third.

b) Test Cases to Cover the Identified Equivalence Classes

Input (A, B, C)	Expected Outcome	Equivalence Class
3.0, 3.0, 3.0	Equilateral triangle	Equilateral Triangle
5.0, 5.0, 3.0	Isosceles triangle	Isosceles Triangle
6.0, 7.0, 8.0	Scalene triangle	Scalene Triangle
2.0, 5.0, 10.0	Invalid triangle	Invalid Triangle
3.0, 4.0, 5.0	Scalene (right-angled)	Right-angled Triangle

c) Boundary Condition for Scalene Triangle: A + B > C

For the boundary condition A + B > C, the following test cases are used to verify the boundary:

Input (A, B, C)	Expected Outcome	Boundary Condition
3.0, 4.0, 7.0	Invalid triangle	A + B = C (boundary case)
3.0, 4.0, 6.9	Scalene triangle	A + B > C (valid case)
3.0, 4.0, 7.1	Scalene triangle	A + B < C (valid case)

d) Boundary Condition for Isosceles Triangle: A = C

For the boundary condition A = C, the following test cases verify the boundary:

Input (A, B, C)	Expected Outcome	Boundary Condition
5.0, 7.0, 5.0	Isosceles triangle	A = C (valid case)
5.0, 7.0, 4.9	Scalene triangle	A ≠ C (near-boundary case)
5.0, 7.0, 5.1	Scalene triangle	A ≠ C (near-boundary case)

e) Boundary Condition for Equilateral Triangle: A = B = C

For the boundary condition A = B = C, the following test cases verify the boundary:

Input (A, B, C)	Expected Outcome	Boundary Condition
3.0, 3.0, 3.0	Equilateral triangle	A = B = C (valid case)
3.0, 3.0, 2.9	Isosceles triangle	A ≠ B ≠ C (near-boundary)
3.0, 3.0, 3.1	Isosceles triangle	A ≠ B ≠ C (near-boundary)

f) Boundary Condition for Right-Angled Triangle: $A^2 + B^2 = C^2$

For the boundary condition $A^2 + B^2 = C^2$ (right-angle), the following test cases verify the boundary:

Input (A, B, C)	Expected Outcome	Boundary Condition
3.0, 4.0, 5.0	Scalene (right-angled)	$A^2 + B^2 = C^2$ (valid case)
3.0, 4.0, 5.1	Scalene triangle	$A^2 + B^2 < C^2$ (near-boundary)
3.0, 4.0, 4.9	Scalene triangle	A ² + B ² > C ² (near-boundary)

g) Non-Triangle Case (Invalid Triangle)

For non-triangle cases, the following test cases explore the boundary conditions where the sum of two sides is less than or equal to the third:

Input (A, B, C)	Expected Outcome	Boundary Condition
1.0, 2.0, 3.0	Invalid triangle	A + B = C (boundary case)
1.0, 2.0, 3.1	Scalene triangle	A + B < C (valid case)
1.0, 2.0, 2.9	Scalene triangle	A + B > C (valid case)

h) Non-Positive Input (Invalid Case)

For non-positive input values, the following test cases ensure invalid inputs are handled correctly:

Input (A, B, C)	Expected Outcome	Boundary Condition
0.0, 3.0, 3.0	Invalid triangle	Non-positive value
-1.0, 2.0, 3.0	Invalid triangle	Negative value
3.0, 0.0, 4.0	Invalid triangle	Non-positive value
3.0, -2.0, 4.0	Invalid triangle	Negative value