

ObfusMem: A Low-Overhead Access Obfuscation for Trusted Memories

Amro Awad 1, Yipeng Wang 2, Deborah Shands 3, Yan Solihin 2

- ¹ Sandia National Laboratories
- ² North Carolina State University
 - ³ National Science Foundation

ISCA 2017

Presented by Andrew Loveless and Alex Kisil

Motivation: Hiding Information

- Attackers rely on information
- Consider a heist movie

High Tech Vault

New Security

- Ocean's Eleven. (2001). [film] Directed by S. Soderbergh. Warner Bros.
- Ocean's Thirteen. (2007). [film] Directed by S. Soderbergh. Warner Bros.

Motivation: Hiding Information

- Attackers rely on information
- Consider a heist movie

Study the Blueprints

Infiltrate the Casino

- Ocean's Eleven. (2001). [film] Directed by S. Soderbergh. Warner Bros.
- Ocean's Thirteen. (2007). [film] Directed by S. Soderbergh. Warner Bros.

Motivation: Hiding Information

- Attackers rely on information
- Consider a heist movie

Steal the Money

Rig the Games

- Ocean's Eleven. (2001). [film] Directed by S. Soderbergh. Warner Bros.
- Ocean's Thirteen. (2007). [film] Directed by S. Soderbergh. Warner Bros.

Hide any information an attacker could exploit

Secure Hardware

Secure systems rely on secure hardware

Memory

- Zlatko Najdenovski. "Missile." Flaticon Basic License. https://www.flaticon.com/free-icon/missile_182414
- OpenClipartVectors. "Explosion." CC Zero. https://commons.wikimedia.org/wiki/File:Explosion-155624_icon.svg
- Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doublejdesign.co.uk.
 - GraphicLoads. "Lock Icon." Freeware.

Sec

Secure Hardware

Secure systems rely on secure hardware

Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doublejdesign.co.uk.

GraphicLoads. "Lock Icon." Freeware.

Memory Bus: An Easy Target

- Memory bus is vulnerable to snooping
- Addresses are still transmitted plainly
- Can still determine request type

Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doubleidesign.co.uk.

GraphicLoads. "Lock Icon." Freeware.

ClipartXtras. "Inspector Clipart." https://clipartxtras.com

What's the Harm?

- Steal important information
- Prevent system from working
- Enable a future attack
- Xbox Case Study (2002)
 - Probed HyperTransport bus
 - Identified boot code
 - Found decryption algorithm
 - Isolated key in boot code
 - Accessed boot loader

- A. Huang. "Breaking the Physical Security." Keeping Secrets in Hardware: the Microsoft XboxTM Case Study. https://dspace.mit.edu/bitstream/handle/1721.1/6694/AIM-2002-008.pdf?sequence=2.
- Evan-Amos. "Xbox-Motherboard-Rev1." Public Domain. https://commons.wikimedia.org/wiki/File:Xbox-Motherboard-Rev1.jpg

Oblivious RAM (ORAM)

Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doublejdesign.co.uk.

Oblivious RAM (ORAM)

Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doublejdesign.co.uk.

Oblivious RAM (ORAM): Downsides

- High bandwidth overhead
- Early device wear-out (100x writes)
- Dummy blocks require space
- Slow performance
- Possible system deadlock

ObfusMem Architecture

- CPU and memory have ObfusMem controller.
- Extends trust base to include memory.
- Keys used to create a secure channel.

Secure Memory

Use logic layer in

ObfusMem Controller

Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doubleidesign.co.uk.

GraphicLoads. "Lock Icon." Freeware.

Flickr "3D DRAM" http://farm8.staticflickr.com/7013/643652 5561 27bf9b4eaf.jpg.

ObfusMem: Key Exchange

Processor

Memory

Private

Keys burned in

Memory

Memory

Private

Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doublejdesign.co.uk.

- Flickr "3D DRAM" http://farm8.staticflickr.com/7013/6436525561_27bf9b4eaf.jpg.
- IconFinder. "Key Icon." MIT License. https://www.iconfinder.com/icons/298808/key_icon.

ObfusMem: Key Exchange

Share Public Keys:

- 1. Trust the integrator
- 2. Don't trust integrator attestation
- 3. Key generation at boot

- Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doublejdesign.co.uk.
- Flickr "3D DRAM" http://farm8.staticflickr.com/7013/6436525561_27bf9b4eaf.jpg.
- IconFinder. "Key Icon." MIT License. https://www.iconfinder.com/icons/298808/key_icon.

ObfusMem: Key Exchange

Establish Session Keys:

- CPU starts Diffie-Hellman exchange
- Establish/exchange session keys using public keys
- Use session keys until reboot

- Double-J Design. "CPU Icon." CC Attribution 4.0. http://www.doublejdesign.co.uk.
- Flickr "3D DRAM" http://farm8.staticflickr.com/7013/6436525561_27bf9b4eaf.jpg.
- IconFinder. "Key Icon." MIT License. https://www.iconfinder.com/icons/298808/key_icon.

Memory

Access Pattern Obfuscation

- Patterns to obfuscate
 - Spatial
 - Temporal
 - Command
 - Memory Footprint

 Ou, Elaine. "Obfuscated Obfuscation." Elaine's Idle Mind. https://elaineou.com/2016/06/07/obfuscatedobfuscation/.

Access Pattern Obfuscation

- Method: use counter mode encryption
 - ...twice

Counter (CTR) mode encryption

 WhiteTimberwolf. "CTR encryption 2." Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg.

Pattern Obfuscation: Command

- Method: pair each read with a dummy write, and vice versa
- A fixed location in memory is used for the dummy address
 - CTR mode encryption ensures it'll never look the same

 A. Awad et al. "Illustration of dummy request generation." Obfusmem. ACM Digital Library. https://dl.acm.org/citation.cfm?id=3080230.

Pattern Obfuscation: Inter-Channel

- Method: idle channel dummy replication
- Fake a request on any idle channel during a real one

 PhoneProject. "Multi-Channel Memory." An Overview of Storage Devices - CompTIA A+ 220-801: 1.5. http://studyforyourcerts.blogspot.com/2015/01/.

Analysis: Performance Overhead

- ORAM adds 946.1% to execution time and 100% memory overhead
- ObfusMem adds 10.9% on average and 32.1% worst case with 0-2% memory overhead

 A. Awad et al. "5.1 Performance Overhead." Obfusmem. ACM Digital Library. https://dl.acm.org/citation.cfm?id=3080230.

Benchmark	ORAM	ObfusMem+Auth	Speedup
bwaves	1561.0%	18.9%	14.0×
mcf	1133.3%	32.1%	9.3×
lbm	1298.6%	12.5%	12.4×
zeus	1644.3%	14.9%	15.2×
milc	1846.6%	28.4%	15.2×
xalan	137.7%	0.8%	2.4×
omnetpp	64.96%	1.2%	1.6×
soplex	1878.6%	15.7%	17.1×
libquantum	604.8%	2.9%	6.8×
sjeng	152.5%	1.1%	2.5×
leslie3d	1626.6%	15.1%	15.0×
astar	30.7%	0.1%	1.3×
hmmer	86.6%	0.0%	1.9×
cactus	784.8%	5.2%	8.4×
gems	1340.9%	14.3%	12.6×
Avg	946.1%	10.9%	9.1×

Analysis: Challenges

 Multiprocessor systems' cache coherence protocols require processor-processor protection

ObfusMem remains susceptible to thermal and timing

side-channel attacks

Aspect	ORAM	ObfusMem
Spatial pattern	Full	Full
Temporal pattern	Full	Full
Read vs. write	Full	Full
Memory footprint	Full	Full
Command authentication	No	Yes
TCB	Proc only	Proc+Mem
Exe time overheads	946%	11%
Storage overheads	100%	0%
Write amplification	100×	None
Deadlock possibility	Low	Zero
Component upgrade	Easy	Harder

A. Awad et al. "6.1 Security Analysis." Obfusmem.
 ACM Digital Library.
 https://dl.acm.org/citation.cfm?id=3080230.

Discussion

Is it a problem that ObfusMem does not protect from side-channel attacks?

Discussion

Is it feasible to assume the memory is not vulnerable to physical attacks?

Discussion

Is ObfusMem strictly better than ORAM?