Applying the Power Rule

Use the power rule to find the derivative of each of the following functions, first expressing it as a power function (or a multiple of a power function) if necessary.

f(x)	f(x) expressed as a power function or multiple of a power function	f'(x)
Example: $f(x) = \frac{5x^6}{4}$	$\frac{5}{4}x^6$	$f'(x) = \frac{30}{4}x^5 = \frac{15}{2}x^5$
$1. f(x) = \frac{x^7}{3}$		f'(x) =
2. $f(x) = \frac{1}{x^4}$		f'(x) =
$3. f(x) = \sqrt[3]{x}$		f'(x) =
$4. f(x) = -\frac{3}{x}$		f'(x) =
5. $f(x) = 6\sqrt[4]{x^3}$		f'(x) =

Understanding Composite Functions

Each of the functions h(x) given in the first column below is a composition of functions f(g(x)). What is the outer function f(x)? What is the inner function g(x)? Complete the table below.

h(x) = f(g(x))	Outer Function $f(x)$	Inner Function $g(x)$
Example: $h(x) = \sqrt{x^3 + 1}$	$f(x) = \sqrt{x}$	$g(x)=x^3+1$
1. $h(x) = (3 + \sin x)^5$		
2. $h(x) = \tan(3x)$		
$3. \ h(x) = \cos^4 x$		
4. $h(x) = e^{5x-2}$		
5. $h(x) = \ln(3x^4 + x - 5)$		

Products, Quotients, and Composite Functions

For each of the functions f(x) given below, decide whether the function is a product, a quotient, or a composition of simpler functions, and then complete the second and third columns of the table.

Example: $f(x) = x^3 \sec x$	$u(x) = x^3$	$v(x) = \sec x$
Check one: \square Product: $\square(x) \cdot \nu(x)$		
\square Quotient: $\frac{u(x)}{v(x)}$		
\Box Composition: $u(v(x))$		
1. $f(x) = \cos(\ln x)$	<i>u</i> (<i>x</i>) =	<i>V</i> (<i>X</i>) =
Check one:		
\square Quotient: $\frac{u(x)}{v(x)}$		
\square Composition: $u(v(x))$		
(=)		, ,
$2. f(x) = \tan^{-1}\left(\sqrt{x}\right)$	<i>u</i> (<i>x</i>) =	V(X) =
Check one:		
\square Product: $u(x) \cdot v(x)$		
\square Quotient: $\frac{u(x)}{v(x)}$		
\square Composition: $u(v(x))$		
$3. \qquad f(x) = \frac{\sin x}{1 + \sin x}$	<i>u</i> (<i>x</i>) =	<i>V(X)</i> =
Check one:		
\square Product: $u(x) \cdot v(x)$		
\square Quotient: $\frac{u(x)}{v(x)}$		
\square Composition: $u(v(x))$		
$4. \qquad f(x) = e^x \csc x$	<i>u</i> (<i>x</i>) =	V(X) =
Check one:		
\square Product: $u(x) \cdot v(x)$		
\square Quotient: $\frac{u(x)}{v(x)}$		
\Box Composition: $u(v(x))$		

$5. f(x) = e^{\sin^{-1}x}$	<i>u</i> (<i>x</i>) =	<i>V(X)</i> =
Check one:		
\square Product: $u(x) \cdot v(x)$		
\square Quotient: $\frac{u(x)}{v(x)}$		
\square Composition: $u(v(x))$		
$6. f(x) = \frac{3^x}{3^x + x}$	<i>u</i> (<i>x</i>) =	<i>V(X)</i> =
Check one:		
\square Product: $u(x) \cdot v(x)$		
\square Quotient: $\frac{u(x)}{v(x)}$		
\square Composition: $u(v(x))$		
$7. f(x) = \sqrt[3]{x} \ln x$	u(x) =	V(X) =
Check one:		
\square Product: $u(x) \cdot v(x)$		
\square Quotient: $\frac{u(x)}{v(x)}$		
\Box Composition: $u(v(x))$		