HSIC Clustering with Multiple Sources

Chieh Wu, Northeastern University

July 2020

1 Formulation

Let $X_1, X_2, ..., X_{\tau} \in \mathbb{R}^{n \times d}$ be τ separate datasets of n samples with d features and let $U \in \mathbb{R}^{n \times k}$ be the corresponding clustering labels where k denotes the number of classes. Given $\kappa_{X_i}(\cdot, \cdot)$ and $\kappa_{U}(\cdot, \cdot)$ as two kernel functions that applies respectively to X_i and U to construct kernel matrices $K_{X_i} \in \mathbb{R}^{n \times n}$ and $K_U \in \mathbb{R}^{n \times n}$. Also let H be a centering matrix where $H = I - (1/n)\mathbf{1}_n\mathbf{1}_n^T$ with $H \in \mathbb{R}^{n \times n}$, I as the identity matrix and $\mathbf{1}_n$ as a vector of 1s. Let $K_U = UU^T$ and $\Gamma = HK_UH$, our goal is to find all $W_i \in \mathbb{R}^{d \times q}$ that maximizes

$$\max_{W_{i}, U, \lambda_{i}} \text{Tr}((\lambda_{1} K_{X_{1}W_{1}} + \lambda_{2} K_{X_{2}W_{2}} + \dots + \lambda_{\tau} K_{X_{\tau}W_{\tau}}) H U U^{T} H)$$
s. t. $\lambda_{1} + \dots + \lambda_{\tau} = 1, U^{T} U = I, W_{i}^{T} W_{i} = I.$ (1)

This objective requires us to solve 3 groups of variables: W_i , λ_i and U. We solve this objective by holding 2 variable groups constant while maximizing just one variable group. In the following 3 sections, we will break up the objective into 3 forms with each solving a group of variables.

Finding U. We start by setting $\lambda_i = 1 \forall i$ and let W_i be identify matrices $\forall i$, implying that the only variable is U. This implies that we can set the following matrix to a constant where

$$K_X = \lambda_1 K_{X_1 W_1} + \lambda_2 K_{X_2 W_2} + \dots + \lambda_\tau K_{X_\tau W_\tau}.$$
 (2)

Let $\mathcal{L} = HK_XH$, the objective reduces down to

$$\max_{U} \quad \text{Tr}(U^{T}\mathcal{L}U^{T})$$
s. t.
$$U^{T}U = I.$$
(3)

Traditionally, this is a simple objective with a known solution, i.e, U is simply the set of the most dominant eigenvectors. However, since in this case we wish to automatically discover key hyperparameters, additional complexity must be added.

Specifically, since the spectral embedding U is going to be used for clustering, we need to determine the number of classes. Therefore, instead of using the standard eigen-decomposition, we will employ sparse eigen-decomposition. This is motivated by the idea that an ideal clustering should be block diagonal, with the off-diagonals as 0. By employing sparse eigen-decomposition, we hope to recover the sparse block diagonal structure, an idea proposed by Ogino and Yukawa [1]. By combining this idea with sparse-eigen-decomposition and matrix deflation as proposed by Moghaddam et al. [2] and Mackey [3], we developed a novel approach to identify the number of clusters. The sparse-eigen-decomposition allows us to identify the block structure. Consequently, by counting the number of blocks, we can also identify the number of classes.

To perform sparse eigen-decomposition, we perform the following steps.

1. Given λ and v as the most dominant eigen-value, eigen-vector of \mathcal{L} , and let v_i be the *i*th element in the vector v. We use the following equation to identify the initial submatrix size k_0

$$k_0 = \min_i \quad i \quad \text{s. t.} \quad \sum_{j=1}^i \frac{v_j}{\langle v, \mathbf{1} \rangle} \ge 0.9.$$
 (4)

2. We uniformly sample a principal submatrix $\hat{\mathcal{L}}$ starting from the size of $\mathbb{R}^{k_0 \times k_0}$. We record the most dominant eigen-value \hat{v} of $\hat{\mathcal{L}}$ and compare it against the original v. We keep sampling $\hat{\mathcal{L}}$ with increment of 1 until its \hat{v} is within a reasonable percentage p of v. At this point, we let this $\hat{\mathcal{L}}$ be the key submatrix and let its domainant eigen-vector be the subvector. More specifically, we solve

$$\hat{n} = \min_{i} i$$
s. t. $\hat{\mathcal{L}} \in \mathbb{R}^{i \times i}$, $\text{Tr}(\hat{v}^T \hat{\mathcal{L}} \hat{v}) > p\lambda$. (5)

For the experiments, we set p=0.99, or 99%. Note that the *Inclusion Principal* guarantees that $\text{Tr}(\hat{v}^T\hat{\mathcal{L}}\hat{v}) \leq \text{Tr}(v^T\mathcal{L}v)$.

- 3. Given \hat{v} and $\hat{\mathcal{L}}$, the samples associated with \hat{v} will be replaced in v while the rest are set to 0. This is how the sparse vectors are set and we refer to this first sparse eigen-vector as \mathbf{v}_1 .
- 4. We remove this eigenvector from \mathcal{L} by performing Matrix Projection Deflation to obtain the next Laplacian where

$$\mathcal{L}_{i+1} = (I - \mathbf{v}_i \mathbf{v}_i^T) \mathcal{L}_i (I - \mathbf{v}_i \mathbf{v}_i^T)$$
(6)

- 5. Go back to Step 1 using \mathcal{L}_{i+1} as the new Laplacian matrix to obtain the next eigen-vector \mathbf{v}_2 .
- 6. In general, given \mathbf{v}_i , we need to use Gram Schmidt to make sure that \mathbf{v}_i is orthogonal to $\mathbf{v}_{i:j< i\forall j}$.
- 7. Note that each time we obtain a new sparse eigen-vector, some elements of the n size \mathbf{v}_i will be zero while others are non-zero. Given n samples, we stop obtaining new sparse eigen-vectors when every sample has a non-zero weight in one of the eigenvector.
- 8. The sparse eigen-vectors is then set to U and the number of columns becomes the number of clusters c.

The source code for this sparse eigen-decomposition can be found at

https://github.com/endsley/ml_examples/blob/master/sparse_eigen_decomposition/sparse_pca.py

Here is an example of this algorithm given the following data.

Here is the results sparse eigen-decomposition result.

Cluster 1			Cluster 2			Cluster 3		
0	-0.28	0	-0.399	0	0	0	0	0.34
0	-0.365	0	-0.377	0	0	0	0	0.32
0	-0.327	0	-0.272	0	0	0	0	0.35
0	-0.217	-0	-0.218	0	0	0	0	0.24
0	-0.288	0	-0.344	0	0	0	0	0.23
0	-0.386	0	-0.302	0	0	0	0	0.39
0	-0.313	0	-0.231	0	0	0	0	0.37
0	-0.147	0	-0.291	0	0	0	0	0.23
0	-0.383	0	-0.289	0	0	0	0	0.39
0	-0.368	0	-0.382	0	0	0	0	0.36

Finding λ_i Holding U and W_i as constants, we solve λ_i with the objective

$$\max_{\lambda_i} \quad \text{Tr}((\lambda_1 K_{X_1 W_1} + \lambda_2 K_{X_2 W_2} + \dots + \lambda_\tau K_{X_\tau W_\tau})\Gamma)$$
s. t. $\lambda_i > 0 \forall i, \sum \lambda_i = 1.$ (7)

Given that τ is relatively small, this objective can be solved simply by randomly sample λ_i values and pick the one that gives us the best HSIC value.

Finding W_i Since each W_i is completely independent of each other, we can obtain a sparse W_i matrix separately by solving each objective as a separate ISM problem where

$$\max_{W_i} \quad \text{Tr}(K_{X_i W_i} \Gamma)$$
s. t. $W_i^T W_i = I$. (8)

Note that the constant λ_i is unnessary since we are solving each W_i term separately.

References

- [1] Yuto Ogino and Masahiro Yukawa. Spectral clustering with automatic cluster-number identification via finding sparse eigenvectors. In 2018 26th European Signal Processing Conference (EUSIPCO), pages 1187–1191. IEEE, 2018.
- [2] Baback Moghaddam, Yair Weiss, and Shai Avidan. Spectral bounds for sparse pca: Exact and greedy algorithms. In Advances in neural information processing systems, pages 915–922, 2006.
- [3] Lester W Mackey. Deflation methods for sparse pca. In Advances in neural information processing systems, pages 1017–1024, 2009.