合 肥 工 业 大 学 试 卷(A)

共 1 页第 1 页

2020~**2021** 学年第<u>二</u>学期 课程代码<u>1400071B</u> 课程名称<u>线性代数</u>学分<u>2.5</u>课程性质:必修☑、选修□、限修□考试形式:开卷□、闭卷☑专业班级(教学班)______考试日期<u>2021年5月19日10:20−12:20</u> 命题教师<u>集体</u>系(所或教研室)主任审批签名_____

一、填空题(每小题4分,共20分)

1.
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
,则行列式 $|\mathbf{A}^{-1} + \mathbf{A}^*| =$ _____.

- $2. A \setminus B$ 均为 2 阶非零实方阵, 如果 AB = O, 则 R(A) =
- 3. 向量组 α_1 , α_2 , α_3 线性无关,则向量组 α_1 , $\alpha_1+\alpha_2$, $\alpha_1-\alpha_3$ 的秩为

4.
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & \mathbf{a} \end{pmatrix}$$
,若 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 是 \mathbf{A} 的一个特征向量,则 $\mathbf{a} = \underline{}$.

5.
$$\mathbf{A} = \begin{pmatrix} \mathbf{t} & \sqrt{2} \\ \sqrt{2} & \mathbf{t} - 1 \end{pmatrix}$$
 为正定矩阵,则 \mathbf{t} 的取值范围是_____

二、选择题(每小题4分,共计20分)

- 1. **A** 是一个 3 阶实方阵,|A| = 0,则下述说法正确的是()
- (A) 0 必是 A 的一个特征值 (B) A 必有一行全为 0
- (C) **A** 必有两行成比例
- (D) 必有 $\boldsymbol{A}^* = \boldsymbol{O}$
- 2. A 是 3 阶实方阵,则 $R(A^*)$ 不可能取到的值为()
- (A) 0
- (B) 1 (C) 2
- (D) 3

3. P. A. B 均为 3 阶实方阵,若 PA = B,则下述说法正确的是()

- (A) 必有 $R(\mathbf{A}) = R(\mathbf{B})$
- (B) \mathbf{A} 与 \mathbf{B} 的行向量组必等价
- (C) \mathbf{A} 必可通过初等行变换变为 \mathbf{B} (D) \mathbf{B} 的行向量组可由 \mathbf{A} 的行向量组线性表示
- 4. 若 α_1 , α_2 , α_3 是非齐次线性方程组 Ax = b 的三个不同的解, 则下述是 Ax = 0 的一个解的是()
- (A) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$

- (B) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 \boldsymbol{\alpha}_3$
- (C) $3\boldsymbol{\alpha}_1 2\boldsymbol{\alpha}_2 \boldsymbol{\alpha}_3$
- (D) $\boldsymbol{\alpha}_1 \boldsymbol{\alpha}_2 \boldsymbol{\alpha}_3$

5. 若
$$\mathbf{A} = \begin{pmatrix} 1 & a & 0 \\ 0 & 2 & b \\ 0 & 0 & 2 \end{pmatrix}$$
可对角化,则关于 a、b,有()

- (A) a 与 b 只能全为 0
- (B) b=0, a 可取任意值
- (C) a=0, b 可取任意值
- (D) a, b 均可取任意值

三、(**12**分)已知四阶行列式 $D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{vmatrix}$, 求 $M_{11} + M_{21} + M_{31} + M_{41}$.

其中 M_{ii} 为 D 的(i,j) 位置元素的余子式.

四、(12分) n 阶实方阵 A 满足 $A^2 + 2A - 3E = 0$.

- (1) 证明 $\mathbf{A} + 2\mathbf{E}$ 可逆, 并求其逆.
- (2) 当 $\mathbf{A} \neq \mathbf{E}$ 时,判断 $\mathbf{A} + 3\mathbf{E}$ 是否可逆,并给出理由.

五、(**10**分) 求向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} -5 \\ 1 \\ 1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$ 的一个极大线性无关组,

并将其余向量用该极大无关组线性表示.

六、(10分) 解线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 3x_4 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 = -1 \end{cases}$$

七、(**12**分)已知二次型 $x_1^2 + ax_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 可以经过正交变换

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} = \boldsymbol{P} \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{pmatrix}$$
 变为 $\mathbf{y}_1^2 + 4\mathbf{y}_2^2$. 求 a 的值以及正交矩阵 \boldsymbol{P} .

八、(4分) A 是一个 2×3 的实矩阵, $\mathbf{R}(A)=2$, A^T 的列向量组记为 α_1 , α_2 . 记实向量 β 为 Ax=0 的一个非零解,证明: 向量组 α_1 , α_2 , β 线性无关.