Bases de Datos

El Modelo Relacional

Ciclo 2024

El Modelo Relacional Un poco de historia

Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation).... Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed.

It is also hoped that this paper can contribute to greater precision in work on formatted data systems.

A Relational Model of Data for Large Shared Data Banks

Communications of the ACM en 1970

Edgar F. Codd (1923 -2003)

- Modelo Relacional : E. F.Codd (Ted Codd) , 1970, IBM Research.
- Acaparó gran atención en la comunidad de BD debido a su simplicidad y su potencial.
- Bases teóricas: teoría de conjuntos y lógica de predicados de primer orden.
- Objetivo: manipular datos con un menor conocimiento de cómo están guardados los mismos. Esto no ocurría con los SGBD de los modelos predecesores: jerárquico y red.

Prof. Norma Herrera Año 2024

- En principio no tuvo eco en IBM que prefirió IMS (Information Management System) un DBMS jerárquico.
- Un grupo de la Universidad de Berkeley en California, liderado por Michael Stonebreaker obtuvo financiamiento para desarrollar un sistema relacional, Ingres, cuya primera versión se presentó en 1974.
- IBM reaccionó poniendo en marcha otro sistema relacional, el System R, con características de multiusuario y un lenguaje de consulta estructurado, el SEQUEL que luego pasaría a llamarse SQL (Structured Query Language).
- Para entonces Larry Ellison, viendo el potencial de los escritos de Codd, crea un nuevo producto y una nueva empresa que hasta la fecha se conoce como Oracle.

- El modelo relacional es considerado una de las grandes innovaciones tecnológicas del siglo XX.
- En 1981, la ACM (Association for Computer Machinery) otorgó a Codd el Premio
 Turing considerado uno de los más prestigiosos en el campo de la informática.
- La industria actual de bases de datos relacionales debe su existencia a E. Codd.

Conceptos Básicos Dominios, Atributos, Relaciones

Dato e Información en el MR

- Base de datos:
 - Conjunto de datos relacionados
 - Colección de información
- En el modelo relacional:
 - Los datos se modelizan con atributos
 - La información se modeliza con relaciones.

Dominios y Atributos

Dominios

- Conjunto de valores atómicos.
- Atómicos: cada valor del dominio es indivisible y se trabaja como una unidad.

Atributo:

- Modeliza un dato.
- Se especifica dando su nombre y su dominio.

significado del dato modelizado

conjunto de valores permitidos.

Dominios y Atributos Ejemplo

La universidad quiere armar una BD para registrar información sobre las materias que han regularizado los alumnos.

De cada materia se registra un código único, el nombre, el crédito horario semanal y el cuatrimestre en que dicta (primero, segundo, anual).

De cada alumno interesa registrar el número de alumno, el nombre, la dirección, las materias que ha regularizado y la fecha en que la regularizó.

Datos de Materias	Nombre del Atributo	<u>Dominio</u>
Código de la materia	MCod	?
Nombre de la Materia	MNombre	Alfa+
Crédito Horario Semanal	MCHS	?
Cuatrimestre en que dicta	MCuat	{1,2, A}

Prof. Norma Herrera Año 2024

Relaciones Esquema e Instancia

Esquema de Relación → Conjunto de atributos. El esquema determina la constitución de la relación.

Instancia de Relación → Conjunto de elementos que conforman la relación en un instante dado de tiempo. Cada elemento de la instancia se denomina **nupla** o **tupla**.

Relaciones Esquema e Instancia

<u>Dato</u>	Nombre del Atributo	<u>Dominio</u>
Código de la materia	Mcod	N
Nombre de la Materia	MNombre	Alfa+
Crédito Horario Semanal	MCHS	{2, 3,,20}
Cuatrimestre en que dicta	MCuat	{1, 2, A}

Relacionamos todos esos datos → información sobre materias Esquema de relación:

Materias= { MCod, MNbreA, MCHS, MCuat } $dom(MCod)=\mathbb{N}$ $dom(MNbreA)=Alfa+ \\ dom(MCHS)= \{2, 3, ..., 20\}$ $dom(MCuat)= \{1, 2, A\}$

Relaciones

Esquema e Instancia

Nombre de la Relación
Atributos que la conforman

Esquema de relación:

$$dom(MCod)=\mathbb{N}$$

 $dom(MNbreA)=Alfa+$
 $dom(MCHS)=\{2, 3,..,20\}$
 $dom(MCuat)=\{1, 2,A\}$

Dominios de los atributos

Instancia de relación:

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	А
40	Programación II	4	2
50	Álgebra	6	1

Cada fila es una nupla y cada columna un atributo.

Relaciones

Esquema e Instancia

Instancia → conjunto de tuplas → no hay orden.

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	Α

MCod	MNbre	MCHS	MCuat
30	Lógica	2	Α
10	Base de Datos	5	2
20	Programación I	6	1

- No existe primera fila, última fila ni segunda fila en una instancia.
- ¿Cómo indico que necesito la información de la materia Base de Datos?

- En toda relación debe existir un atributo o conjunto de atributos cuyos valores identifiquen unívocamente las nuplas de la relación → Clave o Identificador.
- Una clave es un atributo o conjunto de atributos cuya combinación de valores no se pueden repetir en las nuplas de la instancia.

Relaciones

Clave

La universidad quiere armar una BD para registrar información sobre las materias que han regularizado los alumnos.

De cada materia se registra un código único, el nombre, el crédito horario semanal y el cuatrimestre en que dicta (primero, segundo, anual).

De cada alumno interesa registrar el número de alumno, el nombre, la dirección, las materias que ha regularizado y la fecha en que la regularizó.

Materias= {MCod, MNbreA, MCHS, MCuat}

$$dom(MCod)=N$$
 $dom(MNbreA)=Alfa+$
 $dom(MCHS)=\{2, 3, ..., 20\}$ $dom(MCuat)=\{1, 2, A\}$

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	А

Para encontrar la/s clave/s: analizar el esquema descriptivo.

IMPORTANTE: Nunca debemos suponer nada sobre la realidad que estamos trabajando.

Un relación puede tener una o mas claves, que pueden ser simples o compuestas.

En el esquema las claves las indicaremos subrayándolas.

```
Materias= { \underline{MCod}, \underline{MNbreA}, \underline{MCHS}, \underline{MCuat} } \underline{dom}(\underline{MCod}) = \mathbb{N} \underline{dom}(\underline{MNbreA}) = \underline{Alfa} + \underline{dom}(\underline{MCHS}) = \{2, 3, ..., 20\} \underline{dom}(\underline{MCuat}) = \{1, 2, A\}
```

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	A
40	Base de Datos	6	1

Prof. Norma Herrera Año 2024 19

```
Materias= { \underline{MCod}, \underline{MNbreA}, \underline{MCHS}, \underline{MCuat} } \underline{dom}(\underline{MCod}) = \mathbb{N} \underline{dom}(\underline{MNbreA}) = \underline{Alfa} + \underline{dom}(\underline{MCHS}) = \{2, 3, ..., 20\} \underline{dom}(\underline{MCuat}) = \{1, 2, A\}
```

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	A
40	Base de Datos	6	1

Relaciones Instancias Válidas

Instancia válida → cumple con todas las restricciones dadas en el esquema.

Siempre hay que asegurar que la instancia de una relación es válida.

Base de Datos Relacional

Base de Datos Relacional

El Modelo Relacional (BD Relacional) es un conjunto de relaciones que representan una realidad dada.

Esquema de la Base de Datos: conjunto de esquema de relaciones que conforman la BD.

$$\rho = \{ R_1, R_2, ..., R_n \}$$

$$R_i = \{ A_1, ..., A_m \}$$

Instancia de la Base de Datos: conjunto de instancias de las relaciones que forman el esquema de la BD.

Base de Datos Relacional Ejemplo

La universidad quiere armar una BD para registrar información sobre las materias que han regularizado los alumnos.

De cada materia se registra un código único, el nombre, el crédito horario semanal y el cuatrimestre en que dicta (primero, segundo, anual).

De cada alumno interesa registrar el número de alumno, el nombre, la dirección, las materias que ha regularizado y la fecha en que la regularizó.

Esquema de la BD

ρ={ Materias, Alumnos, Regulares}

Materias= { \underline{MCod} , \underline{MNbreA} , \underline{MCHS} , \underline{Mcuat} } $dom(MCod)=\mathbb{N}$ dom(MNbreA)=Alfa+ $dom(MCHS)=\{2, 3,..,20\}$ $dom(MCuat)=\{1, 2,A\}$

Alumnos= {NroA, NbreA, DirA} dom(NroA)=N dom(NbreA)=Alfa+ dom(DirA)=AlfaNco+

Regulares= { $\underline{\mathsf{MCod}}$, $\underline{\mathsf{NroA}}$, $\underline{\mathsf{Fecha}}$ } $dom(\mathsf{NroA}) = dom(\mathsf{MCod}) = \mathbb{N}$ $dom(\mathsf{Fecha}) = \mathbb{N}$

Instancia de la BD

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	Α
40	Programación II	4	2
50	Álgebra	6	1

NroA	NbreA	DirA
100	María Celi	Sucre 100
200	Juan Páez	España 200
300	Ana Mica	Junin 123
400	Juana Nohe	Caseros 345

MCod	NroA	Fecha
10	100	10/7/2021
20	100	30/11/2022
10	300	10/7/2021

¿Fecha es atómico?

Base de Datos Relacional Clave Foránea

- Las Claves Foránea o FK (por sus siglas en inglés Foreign Key), nos permite establecer restricciones que dependen de nuplas en otra relación.
- Las FK se conocen con el nombre de restricciones de integridad referencial → mantener la integridad en la información que hay almacenada en la BD.

Esquema de la BD

ρ={ Materias, Alumnos, Regulares}

Materias= {MCod, MNbreA, MCHS, Mcvat} dom(MCod)=N dom(MNbreA)=Alfa+ $dom(MCHS)= \{2, 3,..,20\}$ $dom(MCuat)= \{1, 2,A\}$

Alumnos= $\{NroA, NbreA, DirA\}$ dom(NroA)=N dom(NbreA)=Alfa+dom(DirA)=AlfaNco+

Regulares= {MCod, NroA, Fecha }

dom(NroA)= dom(MCod)=N

dom(Fecha)= N

FK(MCod)→ Materias(MCod)

FK(NroA) → Alumnos(ANroA)

Instancia de la BD

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	А
40	Programación II	4	2
50	Álgebra	6	1

	NroA	NbreA	DirA
	100	María Celi	Sucre 100
	200	Juan P <mark>áez</mark>	España 200
	300	Ana Mica	Junin 123
\	400	Juana Nohe	Caseros 345

MCod	NroA	Fecha
10	100	10/7/2021
20	800	30/11/2022
70	300	10/7/2021

Base de Datos Relacional Clave Foránea

- Las FK se encuentran durante el proceso de modelado de la BD (lo veremos en las próximas clases).
- Una FK establece otra restricción sobre el esquema que hay que tener en cuenta para decidir si una instancia es o no válida

¿ Cómo obtenemos el Modelo Relacional?

Prof. Norma Herrera Año 2024 29

Estudiaremos en paralelo 2 temas:

- Dado el Esquema Descriptivo de un UD: obtener el Modelo Relacional
 - Obtener el Modelo Entidad Relación (ya lo vimos)
 - Realizar el pasaje del Modelo Entidad Relación al Relacional
- Dado un Modelo Relacional implementarlo usando un SGBD
 - SQL
 - SQLite como SGBD.

MES	SEMANA	LUNES	JUEVES
S	Semana 5 del 2 al 6	Teoría: SQL, parte 1	Práctico 4: SQL
S E P T I	Semana 6 del 9 al 13	Práctico 4: SQL	Práctico 4: finalización Consulta para parcial
E M B R E	Semana 7 del 16 al 20	Parcial 1 (entra hasta el práctico 4)	Teoría: SQL (ensambles) Práctico 5: SQL
	Semana 8 del 23 al 27	Teoría: Pasaje al MR Práctico 5: Pasaje al MR	Teoría: SQL (GB, Having) Práctico 5: SQL

