(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開2000-36765

(P2000 - 36765A)(43)公開日 平成12年2月2日(2000.2.2)

			 		· 		
(51)IntCL'		識別記号	ΥI				デーマコート"(参考)
HO3M	13/27		MEUH	13/22			5 C 0 5 9
H04N	7/08		H04N	7/08		z	5C063
	7/081			7/13		Ā	5 J O 6 5
# H04N	7/24						

審査請求 未請求 前求項の数2 FD (全 14 頁)

(21)出顯為号	特 顏平10-218705	(71)出願人	000003595
			株式会社ケンウッド
(22)出願日	平成10年7月17日(1998.7.17)		東京都渋谷区道玄坂1丁目14番8号
		(72)発明者	堀井 阳浩
		1	東京都狹谷区選玄坂1丁目14番6号 株式
			会社ケンウッド内
		(72)発明者	白石 憲一
			東京都渋谷区道玄坂1丁目14番6号 株式
			会社ケンウッド内
		(74)代理人	100078271
			弁理上 砂子 配夫
			25.46 W 1 4cm

最終頁に続く

(54) 【発明の名称】 デインターリーブ回路

(57)【要約】

【碑題】 記憶容量が少なくてすむデインターリーブ回 路を提供する。

【解决手段】 デインターリーブ用メモリ4に対してデ インタリープに基づく順順序にてアドレスデータAを出 力するアドレスデータ発生器3を備え、アドレスデーク Aによって指定されたデインターリーブ用メモリ4のア ドレス位置に記憶されている主信号を説み出し、そのア ドレス位置にインタリープされて入力される次ぎの主信 号を書き込んで行くことにより、デインターリープ用メ モリ4の記憶容量を1スーパフレーム分とした。

(2)

特別2000-36765

【特許請求の範囲】

【請求項1】BSディジタル放送受信機におけるデイン ターリーブ回路であって、1 スロット中における主信号 の数をmとし、デインクーリーブの深さをnとし、デイ ンターリーブ用のメモリに割り付けた固有のアドレス番 サをソとし、データの読み書きアドレス位置を指定する アドレスデータをAとし、a modulo bはa・a b (αは0を含む自然数)の剰余であるとしたとき、 (y≠n×m-1) のときはA=y×nのx乗 mod u l o (n×m-1) とし、

 $(y = n \times m - 1)$ のときは $\Lambda = y \ge 0$ 、 アドレス舞号yまでを繰返し相定した回数であるアドレ スセット番号xをA=y×nのx乗 modulo (n ×m-1) においてy=1のときにA-1となるxと L.

かつy×nの×乗の値が(n×m−1)の値未満のとき はA=(y×nのx珠)とするアドレスデータAを発生 するアドレスデータ発生手段を備え、

アドレス発生手段により発生されたアドレスデータで指 定されるメモリのアドレス位置に記憶されている主信号 20 あった。 を読み出し、該アドレス位置にインタリーブされて人力 される次の主信号を書き込むことを特徴とするデインタ ーリーブ回路。

【請求項2】請求項1記載のデインターリーブ回路にお いて、アドレスデータ発生手段は入力される主信号の数 を計数するm進カウンタと、

m進カウンタのキャリを計数するS迎カウンクと、 S進カウンタの計数値に(n×m)を乗算する乗算器

スロットの方向に主信号数を計数し、計数主信号値が (m-1) に達したときn方向にl 段シフトしてスロッ ト方向に主信号を計数し、同様に順位繰り返して計数値 が(n×m)に建するまで計数するオフセット値計数手 段と、

乗算器の出力とオフセット値計数予段の計数とを加算す る加算手段と、

を備え、加算手段の出力をアドレスデータAとすること を特徴とするデインターリーブ回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はBSディジタル放送 受信機に用いるデインターリーブ回路に関する。

[0002]

【従来の技術】BSディジタル放送受信機におけるイン ターリーブ方式は、既に知られているように、パイト単 位で8×203パイトのブロックインターリーブが行わ れ、スーパーフレーム方向で各フレームのスロット番号 が同一のスロット間でインターリーブが行われている。 【0003】ここで、BSディジタル放送信号の主信号

パリティ16パイトを含む203パイトと同期信号、変 調方式や誤り訂正方式などを示すために伝送多面制御 (TMCC (Transmission andMultiplexing Cofigurat ian Control))信号の1パイトとの204パイトで形 成される1メロットからなり、48メロットで1フレー

ムを構成し、8フレームを1スーパーフレームとしてい

【0004】上記のようにインターリープされたデーク をデインターリーブするためには、2スーパーフレーム 10 分の記憶容量を有するメモリが必要であった。このため に、 坂大155904バイト (=203 (バイト) ×4 8(スロット)×8フレーム×2(スーパ、フレー ム)) にも及ぶ記憶容量のメモリが必要である。

【発明が解決しようとする課題】しかしながら、従来の ように2スーパーフレームに及ぶ記憶容量のメモリを用 いてデインターリーブ回路を構成するときは、デインタ ーリープ同路を集積回路化する場合にゲート数が多くな るほかチップ血積が大きくなってしまうという問題点が

【0006】本発明は、記憶容量が少なくてすむディン ターリーブ回路を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明にかかるデイング ーリーブ回路は、DSディジタル放送受信機におけるデ インターリーブ回路であって、1スロット中における主 信号の数をmとし、デインターリーブの深さを n とし、 デインターリーブ用のメモリに割り付けた固有のアドレ ス番号をyとし、データの読み書きアドレス位置を指定 30 するアドレスデータをAとし、a modulo bはa 一 a b (a は 0 を含む自然数) の剰余であるとしたと き、(y≠n×m-1)のときはA=y×nのx梁 m odulo $(n \times m-1) \ \xi \cup (y=n \times m-1)$ のときはA=yとし、アドレス番号yまでを繰返し指定 した回数であるアドレスセット番号xをA=y×nのx 乗 mndulo (n×m-1) においてy-1のとき にA=1となるxとし、かつy×nのx乗の値が (n× m-1) の値未満のときは $A=(y \times n \circ x \cdot x)$ とする アドレスデータAを発生するアドレスデータ発生手段を 40 備え、アドレス発生手段により発生されたアドレスデー 夕で指定されるメモリのアドレス位置に記憶されている 主信号を読み出し、該アドレス位置にインタリープされ て入力される次の主信号を書き込むことを特徴とする。 【0008】本発明にかかるデインターリープ回路で は、アドレス発生手段によって発生されるアドレスデー タAによって指定されるメモリのアドレス位置に記憶さ れている主信号が読み出される。この読み出しによって 実質的に空きとなったアドレス位置にインタリーブされ て入力される次の主信号が書き込まれるために、デイン のMPEG2-TSパケットは外符号説り訂正のための 50 ターリーブ用のメモリの記憶容量でディンターリーブが

(3)

特別2000~36765

行なえて、デインターリーブ用のメモリの記憶容量は、 従来必要とした2メーパーフレームの記憶容量のメモリ に対して、1/2の記憶容量のメモリですみ、集積回路 化したとき必要而積は少なくてすむことになる。

3

【0009】本発明にかかるデインターリープ回路にお いて、アドレスデ、タ発生小敗は入力される主信号の数 を計数するm進力ウンタと、m進力ウンタのキャリを計 数するS髙カウンクと、S進カウンタの計数値に(n× m)を乗算する乗算器と、スロットの方向に上信号数を 計数し、計数主信号値が(m-1)に達したときn方向 10 がされているため伝送スロットは2スロットとなって、 に1段シフトしてスロット方向に主信号を計数し、同様 に順位繰り返して計数値が(n×in)に達するまで計数 するオンセット値計数手段と、乗算器の出力とオフセッ ト値計数手段の計数とを加算する加算平段と、を備え、 加算手段の出力をアドレスデータAとすることを特徴と **する。**

【0010】アドレス発生手段から出力されるアドレス データにより指定される、メモリのアドレス位置から主 信号が読み出され、かつ書き込まれることによって、デ インターリーブが行なわれる。

[0011]

【発明の実施の形態】以下、本発明にかかるデインター リーブ回路を実施の形態によって説明する。

【0012】図1は、木発明の実施の一形態にかかるデ インターリーブ回路の構成を示すブロック図である。本 発明の実施の一形態にかかるデインターリープ回路はト レリス符号方式(以下、トレリス符号方式をTCと記 す) 8 P S K (符号化率 r = 2 / 3) が 4 6 スロット、 量み込み符号化およびパンクチャード符号化法式QPS ている。

【0013】図3 (a) は各スーパーフレームに同期し て出力されるスーパーフレームパルス』を示す。BSデ イジタル放送信号を受信して内符号復号された出力(パ イト単位)、すなわちトレリス符号、または昼み込み符 号に対する復号器であるトレリス、ビタビ復号器によっ て復身されてバイト化された図3(b)に示す内符号復 号データbはスーパーフレームパルス a に同期して出力 される。内符号復号データもはスーパーフレームタイミ ング信号と伝送モード個号とを受けたタイミング信号発 40 る。 生器1から出力される図3 (c) に示す書き込みゲート パルスcを受けてバッファメモリ2に書き込まれる。

【0014】この書き込みは、書き込みゲートパルスで によって、例えばFIFOからなるパッファメモリ2に 203バイトの主信号が書き込まれて記憶される。同期 信号、TMCC信号およびバーストシンボル信号は分離 されてバッファメモリ2へは書き込まれず、この期間は 無データが書き込まれる。図3 (c) において4パイト の表記はバーストシンボル期間を示している。

【0015】ここで、パイト化されたデータのデータレ 50 デインターリーブメモリ4から出力される。

一トは変調方式、符号化率に依存し、例えばTC8PS K符号(符号化学 r=2/3(以下、符号化率 r=2/ 3は省略する場合もある)) のデークレートを1とずれ は、QPSK符号 (符号化率 r=1/2 (以下、符号化 中 r = 1 / 2 は省略する場合もある))ではデータレー トは1/2である。したがって、本一形態では8PSK 符号が46スロット、QPSK符号が1スロットの場合 であって、QPSK符号の情報ピット伝送効率は8PS K符号の場合の1/2であり、シンボル速度一定の変調 1フレームで48スロットになる。

[0016] 主た、BPSK符号(符号化平 r = 1/2 (以下、符号化率で=1/2は省略かる場合もある)) ではデータレートは1/4である。また、BPSK (打 号化率 r = 1/2) で伝送される同期信号、TMC C信 号区間はTC8PSKのデータレートに対して1/4の データレートであり、パーストシンポル信号4パイトは QPSK (符号化率 r=1/2) で伝送され、パースト シンボル信号のデータレートは1/2のデータレートで 20 ある。

【0017】タイミング信号死生器1から出力される姿 き込みゲートバルスcを受けて、203パイトの主信号 のバッファメモリとへの歯さ込みの際に、TMCC信身 およびパーストシンボル信号は主信号から分離されて、 バッファメモリ2への書き込みは行われないこと前記の とおりである。

【0018】パッファメモリ2に書き込まれた内符号復 号出力もは、図3 (a) に示すスーパーフレームパルス から所定の時間差をおいた図3 (d) に示す読み出しス K (符号化率 r = 1 / 2) が 1 スロットの場合を例示し 30 タートパルス d の発生時期から、タイミング信号発生器 1から出力される図3 (e) に示す説み出しゲートバル スeを受けて、TMCC信号およびパーストシンボル信 号の期間流み出しを実質的に停止して、203パイトの 主信号 j (以下、203バイトのパイトの配載を省略す る場合もある)が一定の速度でバッファメモリ2からバ ースト的に読み出される。さらに、タイミング信号発生 器1からアドレスデータ発生器3に図3(f)(図3 (g) に一部を拡大して示してある) に示すデインター リープ書き込み、読み出しゲートパルス「が出力され

> 【0019】デインターリーブメモリ書き込み、読み出 しゲートバルス f を受けたアドレスデータ発生器 3 から 図3 (h) に示すアドレスデータAおよび図3 (i) に 示すR/W信号:がデインターリープメモリムに出力さ れ、図3(j)に示す203パイトの主信号jがデイン ターリープメモリ 4 へ順次音き込まれ、読み出しアドレ ス指定に基づいてデインターリーブメモリ4からの読み 出しに際してデインターリーブが行われ、デインターリ ープされた図3(k)に杀す203パイトの主信号kが ...

-3-

(4)

特別2000-36765

6

【0020】R/W信号iは高電位のときには読み出し 指示が行われ、低電位のときには書き込み相示が行われ て、アドレスデータAによるアドレス相定によって主信 号jが読み出されたアドレスに次に供給された主信号が 書き込まれる。

【0021】次に、図2に基づいてさらに詳細に説明する。図2は本実施の 形態における処理過程毎のデータフレーム構成を示している。

【0022】図2(a)はバッファメモリ2へ供給される内符号復号データを示す。図2(a)に示す内符号 10 復号データもは、46スロットをTC8PSK信号で、1スロットをQPSK信号(符号化率r=1/2)で伝送する場合の1スーパーフレーム分のフレーム構成を示していて、12バイトの同期、TMCC信号に統き、TC8PSKの主信号203パイト、バーストシンボル信号に相当する空白部4バイト、立信号203パイト、バーストシンボル信号に相当する空白部4バイト、 QPSK(符号化率r=1/2)の主信号203パイト、バーストシンボル信号に相当する空白部4バイトにて1フレームが構成され、また、第0フレーム~第7フレームの8フレームで1スーパーフレームが構成されている。

【0023】図2(a)に示す内符号復号データものデータストリームは書き込みゲートパルスにによって、同ゲートパルスが高電位の区間のみパッファメモリ2に書き込まれて記憶される。図2(b)に示すように、主信号、すなわち同期信号、TMCC信号、パーストシンポル信号区間以外の信号がパッファメモリ2に書き込まれる。

【0024】タイミング信号発生器1においてはスーパ 30 ーフレームパルス u を受けて、一定時間遅延された読み 出しスタート信号 d が生成されこのタイミングによって 読み出しゲートパルス e が出力される。読み出しゲート パルス e を受けてバッファメモリ 2 からは一定の速度で 読み出しが行われる。読み出し速度は基本レートである 8 P S K の速度とする。

【0025】統み出しゲートパルス®は、48パイトの同期、TMCC信号区間休止し、203パイト統み出し、4パイト休止し、203パイト統み出し、4パイト休止し、…、203パイト休止し、4パイト休止しとな 40る。同期、TMCC信号区間が48パイトとなるのはそのデータ速度が書き込み時には1/4であったため、流み出し時にはその4倍(12バイト×4-48)となるからである。

【0026】最後に203パイト休止としたのは、主信号のQPSK符号の情報ピット伝送効率はTS8PSK符号の場合の1/2であり、シンボル速度一定の変調がされているため伝送スロットは2スロットとなっているが、内符号復号によって203パイトとなって、この部分にダミーデータを挿入するためである。図2(c)は50

203バイト休止とされた部分にダミーデータが挿入された様子を示している。

【0027】なお、ここではパーストシンボル信号をバッファメモリ2へ書き込まないとしたが、パースト信号も主信号と共に書き込み、また、読み出しを行ってもよい。この場合は図3(c)に示すパッファメモリ書き込みゲートパルスcと図3(c)に示す読み出しゲートパルスeの4パイト区的低素位になっている部分を高電位とすればよい。

[0028] タイミング信号発生器1からは図3(f)に示すデインターリーブメモリ書き込み、読み出しゲートパルスfがアドレスデータ発生器3へ出力される。デインターリーブメモリ書き込み、読み出しゲートパルスfを受けて、アドレスデータ発生器3からはアドレスデータAおよびR/W信号1がデインターリーブメモリ4に出力され、デインターリーブが行われる。

【0029】図2(c)に示すダミーデータを含んだバッファメモリ2からの出力データjは、デインターリーブメモリ書き込み、読み出しゲートパルスにタイミングを一致させられたアドレスデータA、R/W信号iによってデインターリーブメモリ4に書き込まれ、読み出される。図3(g)~(k)にはデインターリーブメモリ書き込み、読み出しゲートパルスgを1スロット区間分拡大し、同時に1スロット区間分拡大したアドレスデータAとR/W信号iとデインターリーブメモリ書き込みデータj、読み出しデータkを示している。

【0030】図3からも明白なように、先ず1スーパーフレーム前のデインターリープされたデータkが読み出され、続いて現在のデインターリープするためのデータjを替き込む順となる。また、書き込みデータjはデータkを読み出した同一アドレスに書き込むことにより、告き込みデータ、読み出しデータのタイミングも同一となる。読み出されたデータkはデインターリープされたデータであり、そのフレーム機成は図2(c)と同様である。

【0031】デインターリーブはデインターリーブメモリ4への書き込み、読み出し動作によって行なわれる。 次にアドレスデータ発生器3について説明する。

【0032】アドレスデーク発生器3についての詳細な 説明の前に、アドレスデーク発生の原理を図4、図5お よび図6に基づいて説明する。

【0033】図4、図5および図6は、mはデータ長の 基本単位(-BSディジタル放送の場合は203バイト)、nはインターリーブの深さ(=BSディジタル放送の場合は8(1スーパーフレームを構成するフレーム の数))であるが、簡単のためにm=5およびn=4としたときの、n×m-4×5のデインターリーブを説明する例である。

【0034】図4 (a)、図5 (a)、(b) および (c) のデインターリーブマトリクスの上段にはアドレ

(5)

特別2000-36765

スデータを、下段に入力されたデータが記入してある。 図4 (a) ドポサようにアドレスデータA [0]、A [1] \ A [2] \ A [3] \ \ \ \ A [18] \ A [1 9] に対して、デークストリームロ「0]、 D[1]、 D[2]、D[3]、…D[18]、D[19]が許き 込まれている。このデータは図4(c)に示すように模 方向に順次書き込まれ、図4 (b) に示すように縦方向 に順次読み出されてインター・リーブがなされる。

【0035】この状態が図5(a)に示してあり、この 状能をアドレスセット番号×=0の場合とする。この状 IO A [0]、A [7]、A [14]、A [2]、A 態は、アドレスデーク発生器3からは順次、

A[0], A[1], A[2], A[3], A[4], A[5],, A[18], A[19] のアドレスデータが出力され、データストリーム D[0], D[1], D[2], D[3], D[4],D[5],, D[18], D[19] に対する深さ4のインターリーブされたデータストリー

D(0), D(5), D(10), D(15), D[1], D[6],, D[14], D[19] が書き込まれた状態である。

【0036】この場合、アドレスデータ発生器3から出 力されるアドレスデータは単にインクリメントであり、 これを基本アドレスセットと呼ぶ。デインターリーブメ モリ4からの読み出しアドレスデータは、読み出された 後のデータストリームがインターリーブされる前の状態 D[0], D[1], D[2], D[3], D[4],D[5],, D[18], D[19] となるように、アドレスデータ発生器3からは順次、 A[0], A[4], A[8], A[12], A[1 6] A [1] A [15] A [19] のアドレスデータが出力される。このアドレスセット番 号×を1とする。

【0037】読み出しが行なわれたアドレス位置に次の デークストリームが書き込まれる。このデータストリー ムは、

D'[0], D'[5], D'[10], D'[1 5], D'[1], D'[6],, D'[14], D'[19]

であり、図5(b)はこのデータストリームが過き込ま 40 q.アドレスセット番号x=8で読み出し、 れた状態を示している。

【0038】同様にデインターリーブされるには、 A[0], A[16], A[13], A[10], A [7] A [4] A [3] A [19] のようにアドレスデータが出力されるようにアドレッシ ングされれば、

D'[0], D'[1], D'[2], D'[3], U [4], D [5],, D [18], D [1 9]

のデータが得られる。この状態がアドレスセット番号× 50

=2の状態である。

【0039】また、このアドレスデークの順、すなわち データが読み出されたアドレスデークにより指定された アドレス位置に順次、デーク

D'' [0], D'' [5], D'' [10], D'' [15] \ D" [1] \ D" [6] \ \ \ \ \ \ \ D" [14] \ D# [19]

が書き込まれ(図5(c))、アドレスセット番号x=

L9], A [16],, A [12], A [19] のアドレスデークにより指定された位置からデータが読 み出されれば、データ

D" [0], D" [1], D" [2], D" [3], D "[4], D"[5],, D"[18], D"[1 9]

が出力される。

【0040】図6ではデインターリーブメモリ4に対し て割り付けられた固有のアドレスデータに対応するアド 20 レス番号yと、読み川し掛き込み回数に対応するアドレ ス番号yまでを繰返し指定した回数であるアドレスセッ ト番号×とに対するアドレスデークAの推移を示し、例 えば、アドレスセット番号x=2を例に説明すれば、デ インターリーブメモリ4に対して割り付けられた固有の アドレス番号A [0]、A [16]、A [13]、A [10], A [7], A [4],, A [3], A [19] がアドレスデータとしてアドレスデーク発生器 3から出力されることを示している。

【〇〇41】ここで、デインターリープを行う手順をま 30 とめると次の如くである。

a. アドレスセット番号x=0で読み出し(…番始めは 省略)、

b. アドレスセット番号x=0で書き込み、

c. アドレスセット番号×=1で読み出し、

d. アドレスセット番号x=1で書き込み、

e. アドレスセット番号x=2で読み出し、

f、アドレスセット番号x=2で書き込み、

τ. アドレスセット番号x=8で書き込み、

s. アドレスセット番号x=9 (=0) で説み出し、 となって、データが疏み出されたアドレスデータのアド レスに入力されてくるデータが書き込まれる。このよう に、n×m=4×5のデインターリープでのアドレスデ ータの指定はアドレスセット番号xが9の周期で巡回す ることが判る。アドレスセット番号ェの周期が9でこれ を周期Xと記す。周期X=0は意味がなくX-0は除

【0042】次にこのアドレッシングを一般式化する。

(6)

特明2000-36765

٥

10 デインターリーブの深さをn、基本単位のデータ数を *レスデータをAとすると、アドレスデータAは m、アドレスセット番号をx、アドレス番号をy、アド*

 $A = y \times n \omega x \times m \omega dulo (n \times m-1)$ $(y \neq n \times m-1)$

… (1式)

… (2式)

 $A = y \quad (y = n \times m - 1)$

により指定される。この場合、a modulo bは、 aーab(aはOを含む自然数)の剰余であって、aが b未満のときには、a modulo bはaであるとす

【0043】アドレスセット番号×の周期Xは(1)式 10 52がオフセット値計数手段に対応する。 においてy=1のときにA=1となるxを求めることに よって得られ、この場合は前記したようにX=9であ

【0044】図4、図5および図6による例は、2次元 のアドレスマトリクス上でのデインターリーブに関して 一般式化したものだが、BSディジタル放送信号のディ ンターリーブにも適用することができる。 BSディジタ ル放送信号では同一スロット間でフレーム方向に從さ8 のインターリーブが行なわれるが、1スロットには20 3バイトの主信号が割り当てられており、203(パイ 20 ンタ56と、m進カウンタ53の計数値 montとS進力 ト)×8(フレーム)の2次元マトリクスが48(スロ ット)集まったものとして扱うことができる。つまり、 1スーパーフレーム分のメモリ空間を48分割し、それ ぞれのエリア内で203×8のデインターリーブを行う ことになる。

【0045】本実施の一形態では、1ス…パーフレーム のメモリマトリクスを図7のように定める。 山=203 (パイト) ×n=8 (フレーム) ×S=48 (スロッ ト) とし、アドレスは203×8の2次元マトリクスで アドレスOからm方向にインクリメントし、続いてn方 30 向に一段シフトしてまたm方向にインクリメントし、… というように定めると、「スロットの最終アドレスは1 623となる。また、スロット方向へは、第1スロット から第48スロットの方向へ、nxm=1621ずつオ フセットが加えられて行くものとする。

【0046】この場合も、アドレスセット番号×の周別 Xは(1)式においてy=1のときにA=1となるxか ら求められて、アドレスセット番号×の周期X=180

【0047】図8にアドレスデータ発生器3の実施例を 40 示し、図9および図10にその作用を示すフローチャー トを示す。

【0048】アドレスデーク発生器3は図8に示すよう に、ストローブパルス発生部50、ストローブ発生部5 0と協働してスロットの番号を指定するスロット番号検 出部51、ストローブパルス発生部50とスロット番号 校出部51と協働してモアユロ演算を行なってアドレス データを送出するモデュロ演算部52とを備えている。 ここで、m=203 (1スロットにおける主信号のバイ

(1 フレームにおけるスロット数)、F=8(1 スーパ ーフレームを構成するフレーム数であって、F=n -8)、X=180 (アドレスセット回数xの周期) であ る。ここで、後記する加算器 7 0 を除くモデユロ演算部

【0049】ストローブパルス発生部50はタイミング 信号発生器1から出力されるデインターリーン書き込 み、読み出しゲートパルスが供給されて、該デインター リーブ書き込み、読み出しゲートパルスが高電位の期間 出力されるクロックパルスを受けてクロックパルスを計 数するm進丸ウンタ53と、m進丸ウンタ53のキャリ 出力の計数を行なうS進力ウンタ54と、S進力ウンタ 54のキャリ出力の計数を行なうF進力ウンタ55と、 F 進丸ウンダ55のキャリ出力の計数を行なうX進力ウ ウンタ54の計数値ScntとF進カウンタ55の計数値 FcntとX進力ウンタ56の計数値xcntとを受けてスト ローブバルスを発生するデコーダ57とからなってい る。

【0050】S進カウンタ54の計数値はm進カウンタ 53がクロックパルスを0から203回計数する毎にイ ンクリメントされるために、S進カウンタ54でスロッ ト舞号を検出していることになる。スロット番号検出部 51ではS進カウンタ54の計数値を受けて (n×m) 倍する乗算器58とからなり、S進力ウンタ54の計数 **値に基づいてスロット番号の開始アドレスデータ0、1** 624、3248、…、76328を発生することにな る。スロット番号検出部51からのこの出力に後起のデ ータA0が加算されて、アドレスデータAが得られる。 【0051】モデユロ演算部52はAオフセットレジス タ60を設定値1に初期化する設定器59、ストローブ パルスsaを受けてRオフセットレジスタ61の置数値 が置数されるAオフセットレジスタ60、ストローブパ ルス s b を受けてアドレスデータA0を置数するRオフ ヤットレジスタ61、アドレスデータAOとAオフセッ トレジスタ60の置数値を加算する加算器62と、加算 器62の加算出力と設定器63の設定値 (n×m) とを 比較する比較器64と、(加算器62の加算出力≥設定 器63の設定値(n×m))のときの比較器64の出力 に基づき加算器62の加算出力から設定器65の設定値 (n×m-1) を滅算した値をアドレスデータA # とし で出力し、かつ (加算器62の加算出力≥設定器63の 設定値(n×m))でないとき比較器64の出力に基づ き加算器62の加算出力をアドレスデータA』として出 ト数)、n=8 (デインターリーブの深さ)、S=48 50 力する滅算器66と、滅算器66から出力されるアドレ

(7)

特明2000-36765

12

スデータ人』をストローブパルスscを受けて値数値と する Ament レジスタ 6 7 と、減算器 6 6 から出力される アドレスデータA # と Amontレジスタ 6 7 の固数値との 一方をセレクトパルスspにより選択するセレクタ6g と、セレクク68から出力されるアドレスデータA^を 1クロックパルスの期間遅延させるロドノドからなるラ ッチも9と、ラッチされたアドレスデータAOと乗算器 58の出力とを加算する加算器 70とを備え、加算器 7 0の出力をアドレスデーダAとする。

11

【0052】Aオフセットレジスタ60へのストローブ 10 いてアドレスデータ発生器3の作用を説明する。 パルスssはF進カウンク55のキャリ出力に同期して 出力される。ただし、xcnt=X-1の場合は1が置数 され、xcnt≠X-1の場合はRオフセットレジスタ 6 1の置数値Rofsetが置数される。Rオフセットレジス タ61へのストローブパルスsbは下進カウンタ53の 計数値ドcntがり、S進カウンタ52の計数値Scntが O、かつm進カウンタ53の計数値mentがnになった ときに出力される。 Amontレジスタ 6 7 へのストローブ パルスs cはS辿カウンタ52の計数位ScntがOで、 かつm進力ウンタ53の計数値mentがOになったとき に出力される。セレクタ68へのセレクトバルスspは m進力ウンタ53の計数値mcnt=m-1、かつS進力 ウンタ52の計数値Scnt ≠5-1となったときに出力 されて、Amontレジスタ67の置数値が選択される。

【0053】加算器82にてAオフセットレジスタに置 数された値とアドレスデータAOとが加算され、加算結 果が比較器64と減算器86に送出される。アドレスデ ータA0は203×8の2次元マトリクス上でのアドレ スデータであり、スロット数をカウントするS進カウン タ54の計数値Scntを乗算器58によってn×m倍さ れた(つまりスロット方向へのオフセット)値とアドレ スプータAOとの加算結果が、アドレスデータAとな **వ**。

【0054】比較器64は加算器62の加算出力が(n ×m(=1624)) 以上となった場合に減算器66に 対して滅算指示を出力し、滅算器66は滅算指示を受け て加算器62からの加算出力から設定器65に設定され ている(n×m-1)を減算する。また、加算器62の 加算出力が (n×m (=1624)) 以上でない場合は 放算されず、加算器62の加算出力がそのまま減算器6 40 6から出力される。

【0055】Amcntレジスタ67にはストロープパルス scの発生時点でのアドレスアータAIIが直数されお り、セレクタ88がセレクト信号spを受けた場合にA mcntレジスタ67の置数値A # がセレクトされて出力さ れる。セレクタ68からの出力をアドレスデータA~と する。アドレスデータA~がラッチ69によってラッチ され、ラッチ出力をアドレスデータAOとする。また、 Rオフセットレジスタ61はストローブパルスsaを受 けて、その時点でのデータAOが置数される。また、R 50 オフセットレジスタ61の置数値はAオフセットレジス タ60に出力され、ストローブパルスsaを受けてAオ フセットレジスタ60に超数される。

【0056】m並カウンタ53、5進カウンタ54、F 進丸ウンタ55、X準カウンタ56およびラッチ69は 共通のクロックバルスで動作しているが、デインターリ ープメモリ書き込み、読み出しゲートパルスが低電位の 場合には動作を停止する。

【0057】図9および図10のフローチャートに振づ

【ひひり8】デインターリーブが開始されるとAオフセ ットレジスタ60の置数値Aofactが1に初期化され、 かつX進力ウンタ56の計数値xcnt-rなわちアドレス セット番号xは0に初期化される (ステップS1)。ま た、m進力ウンタ53の計数値mcnt、S進力ウンタ5 4の計数値Scntおよびカウンタド54の計数値Fcntが 0に初期化され、ラッチ69も初期化されてアドレスデ ータA0も初期化される(ステップ52)。この時のデ ークA〃がAmontレジスタ67に置数されるがこの場合 20 は0が異数されることになる (ステップ53)。また、 ストローブバルスscはm進カウンタ53の計数値mcn tがO、S進力ウンタ52の計数値ScntがOになったと き高電位になるためAmontレジスタ67への畳数はF進 カウンタ55のインクリメント毎に行なわれることにな

【0059】セレクタ68を介して出力されたAmontレ

ジスタ67への世数値はラッチ69にてラッチされて、 アドレスデータA0が確定する (ステップS4)。デコ ーダ57からF進カウンタ55の計数値Fcnt=0、S の計数値mcnt=n=8か否かがチェックされる(ステ ップS5)。ステップS5において、F進カウンタ55 の計数値Fcnt=0、S進力ウンタ54の計数値Scnt= れたときにストローブパルス s b が出力され、Rオフセ ットレジスタ61にアドレスデータA0が置数され(ス テップS6)、ステップS7が実行される。しかるに、 この時点ではm進カウンタ53の計数値mcnt=0であ るためステップSSからステップS7が実行される。 【0060】ステップS1においてm進カウンタ53の 計数値montが、計数値mont=m-1 (=202) にな るまでは、ステップ57に続いて図9において図示して いないがm進カウンタ53の計数値mcnがインクリメン トされて、次いでステップS8が実行される。ステップ S8において加算器62によってアドレスデータA0と Aオフセットレジスタ60に足数されている関数値とが 加算される(ステップS8)。加算器62の加算出力A # ´が (n×m (=1624)) 以上である場合には (ステップ59) 、加算出力A n ^ から (n×m-1 (=1623))が減算され、ステップS4から実行さ

13

れる(ステップS10)。加算器62の加算出力人#ご が (n×m (=1624)) 以上でない場合にステップ Suに続いてステップS4から実行される。

【0061】ここまでの動作を前記アドレッシングの 般式に照らし合わせると、Aオフセットレジスタ60の 微数値はnのx乗に等しく (nのx乗が (n×m-1) を超えた場合には(n×m-1)を繰り返して減算した ときの剰余に等しい)、y×nのx乗はnのx乗の果積 加算に等しい。また、(n×m-1)のモデユロ波算 がないことから、(n×m-1) を超えた場合に (n× in-1) を減算することで構成が衝略化できる。データ A » 「が(n×m-1)と等しくなる境終アドレスで は、(n×m-1)を破算するとOとなってしまい不具 合を来す。

【0062】しかるに、A〃´が(n×m-1)と等し くなるのは最終アドレスのみであることから、菠算の条 件を、(n×m)を超えた場合に(n×m·1)を減算 すると変更することによりこれを回避できる。これは、 前記アドレッシングの一般式のy=n×m-1の場合 に、Amyとする条件を簡単化したことと何等である。 【0063】m進カウンタ53の引数値mcntがm-1 (=202)となった場合にはS進丸ウンタ54の計数 値Scntに基づく条件分岐のステップが実行される(ス テップS11)。S進カウンタ54の計数値ScntがS -1 (=47) となるまではステップS12が実行さ れ、ステップS12に続いてステップS4から繰り返し て実行される。ステップS12ではS進カウンタ54の 計数値Scntがインクリメントされ、またm進力ウンタ 5 3 の計数値mcntがリセットされ、そしてアドレスデ ータA~としてAmontレジスタ67の混数値が出力され る (ステップS12)。つまり、セレクタ68によって Amontレジスタ67の置数値が選択される。この動作 は、各スロットのアドレスデータAの初期値を、フレー ム内で等しくするためである。

【0064】例えば1フレーム日では各スロットのアド レスデータA0は0で始まり、また2フレーム目では2 03から始まる。したがって、2フレーム目ではスロッ トが代わる毎にアドレスデータA0に203をロードす cnt=0、つまり1フレーム目なので、スロットのイン クリメント毎にAmontレジスタ67に置数されていた0 がロードされることになる。上記の動作は5進カウンタ 54の計数値ScntがS-1 (=47) となるまで繰り 返される。

【0065】S進力ウンタ54の計数値ScntがS-1 (-47)となった場合には、下進カウンタ55の計数 値Fcntに基づく条件分岐ステップが実行される(ステ ップS13)。ステップS13においてF地カウンタ5 5の計数値Fcnt=F-1に満たない場合は、ステップ

S14が実行されてド進カウンタ55の計数値Fcntが インクリメントされ、S進カウンタS4の計数値Scnt およびm進カウンタ53の計数値mentのリセットが行 なわれる(ステップS14)。 続いてAオフセットレジ スタ60へA0が累算される(ステップS15)。これ は、フレーム変更時のアドレスデータA0の初期値は、 前フレームの最終値のデータAOの次の値になるからで ある。

14

【0066】つまり、アドレスセット登号×が0のとき は、データA * ´が(n×m-1)の2倍を超えること 10 は、1フレーム目の最終のアドレスデータA 0 は2 0 2 であり、2フレームの先頭は、Aオフセットレジスタ6 ロの最数値は1であるから、202+1=203とな る。また、ステップS15での結果、ステップS16が 実行され、データA´≥ (n×m) がチェックされ、ス テップS 16の結果、選択的にステップS 17が実行さ れ、次いでステップS3が実行される。データA「が $(n \times m)$ を超えた場合に $(n \times m - 1)$ が減算される (ステップS17) ことは、前記の場合と同様である。 さらに、この結果はステップS3によってAmontレジス 20 タ67に置数され、スロットが変更されるごとにロード される値となる。

> 【0067】ステップS13においてF進カウンタ55 の計数値FcntがF-1 (=7) となった場合にはこの 時点で、1スーパーフレーム分のデインク、リープは完 了している。X進カウンタ56の計数値xontに基づく 条件分岐 (ステップS20) により、アドレスセット番 号xがx=X-1 (≈179) に速していない場合に は、ステップS21が実行され、ステップS6において **運放されたRオフセットレジスタ61の置数値がAオフ** セットレジスタ60に置数される(ステップ521)。 さらに、アドレスセット番号×がインクリメントされる (ステップS22)。

【0068】この動作を前記したアドレシングの一般 式、(1式)および(2式)により脱明する。

【0069】Aオフセットレジスタ60の監数値は、n のx 兼、つまりy=1の場合のアドレスデータA ((A =1×nのx梁の値) に等しいが(前紀の如く、nのx 乗の値が(n×m-1)を超えた場合には(n×m-1) で放算を繰り返したときの剰余に等しい)、次のア る必要がある。現時点ではF進力ウンタ55の計数値F 40 ドレスセットのAオフセットレジスタ60の置数値Aof set 'は同様に1×nの (x+1) 乗=1×nのx乗× $n=8 \times n$ のx乗となり、これはy=8の場合のアドレ スデータAに等しい。言い換えれば、現在のy=8のア ドレスデータAを記憶しておけば、これは次のアドレス セット番号xのAオフセットレジスタ60の置数値であ るAofset~となり、計算回路が省略できることにな る。ステップS5、ステップS6によりy∞mcnt=n =8のときのアドレスデータAをRオフセットレジスタ 61に記憶していたので、次のアドレスセットに進む前 50 にこれをAオフセットレジスタ60に書き込むのであ

15

(9) 特開2000-36765

16

る。また、X進カウンタ56の計数値xontがX-1 (=179)となった場合には、全て初期化される。

【0070】本実施の 形態によって生成されたアドレ スデータへの一部を図し1および図12に示す。紙面の 関係から、アドレスセット番号×は17まで、またアド レス番号yは50までを示した。

【0071】以上のように本実脈の一形態にかかるディ ンターリープ回路によれば、アドレスデータ発生器3に よって発生させたデインターリープメモリ4へのアドレ ド(R)、ライト(W)、……のようにライトよりもリ ードが先行して行なわれ、データが読み出されたことに よって空きとなったアドレスにデータを書き込むことに よって、メモリの使用効率を向上させている。

【0072】これに対し、例えば2つのアドレスデータ 発生器を設けて1つを説み出しアドレスデータ発生専用 とし、1つを書き込みアドレスデータ専用として、読み 出しをスーパーフレーム単位で高速に行なうことができ る。この場合アドレスデークは同一のアドレスデータで なければならない。例えば、図3に示したタイミングに 20 る。 よれば、銃み出し、書き込みともに203パイト処理を しては4バイト区間休止という繰返しであるが、読み出 しのみ4パイトの休止をせずに運統的に読み出すように することも可能である。

[0073]

【発明の効果】以上説明したように本発明にかかるディ ンタ・・リーブ回路によれば、1スーパーフレーム分の記 憶容量のメモリでデインターリーブが行なえるようにな り、部品点数、部品コストが下がる効果が得られる。ま た、集積回路化した場合は従来に比べゲート数が削減で 30 51 スロット番号検出部 き、かつチップ面積が人幅に縮小できることになる。

【図面の簡単な説明】

【図1】本発明の実施の一形態にかかるデインターリー ブ回路の構成を示すプロック図である。

【図2】本苑明の実施の一形態にかかるデインターリー ブ回路におけるバッファメモリの入出力データの説明に 供する模式図である。

【図3】本発明の実施の一形態にかかるデインターリー プ回路におけるタイミング信号発生器のタイミング信号 の説明に供する模式図である。

【図4】 本発明の実施の…形態にかかるデインターリー プ回路でデインターリープされるインターリープの説明 に供する模式図である。

【図5】本発明の実施の一形態にかかるデインターリー

ブ回路におけるデインターリーブの原理の説明に供する 模式図である。

【図6】 木発明の実施の 形態にかかるデインターリー ブ回路におけるデインターリーブの原理の説明に供する 模式図である。

【図7】本発明の実施の一形態にかかるデインターリー ブ回路におけるデインターリーブの説明に供するアドレ ス空間の儀式図である。

【図8】本発明の実施の一形能にかかるディンターリー スデータAに対してリード(R)、ライト(W)、リー 10 ブ回路におけるアドレスデータ発生器の構成を示すプロ ック図である。

> 【図9】 本発明の実施の一形態にかかるデインターリー ブ回路におけるアドレスデータ発生作用の説明に供する フローチャートである。

> 【図10】本発明の実施の一形態にかかるデインターリ ープ回路におけるアドレスデータ発生作用の説明に供す るフローチャートである。

【図11】本発明の実施の一形態にかかるデインターリ ーブ回路における発生アドレスの一部を示す模式図であ

【図12】本発明の実施の一形態にかかるデインターリ ープ回路における発生アドレスの一部を示す模式図であ

【符号の説明】

- 1 タイミング信号発生器
- 2 バッファメモリ
- 3 アドレスデータ発生器
- 4 デインターリーブ用のメモリ
- 50 ストローブパルス発生部
- - 52 モデユロ演算部
 - 53、54 m進力ウンタ、S進力ウンダ
 - 55、56 F 逃丸ウンタ、X 進カウンタ
 - 57 デコーダ
 - 58 乘算器
 - 59、63、66 政定器
 - 60、61 Aオフセットレジスタ、Rオフセットレジ スタ
 - 62、70 加算器
- 40 64 比較器
 - 66 波篤器
 - 67 Amontレジスタ
 - 68 セレクタ
 - 69 ラッチ

(10)

竹朋2000-36765

(11)

特別2000-36765

[图3]

(12)

特明2000-36765

[2]7]

[図8]

: -12-

:

:

(13)

[四10]

[图11]

(14)

特別2000-36765

[図12]

								7	<u> ۲レ2</u>	47	ト田の	hχ							
	<u></u>	1 -																	
	쓚	- 24 25	<u> </u>	2153	92	92	90	70	9 79	5 149	1 5C	1290	582	1410	1542	975	1308	726	839
	26		201	91,000	1:	13	120	104	21143	11 13	3(1004	4 397	n 553	1063	388	1489	551	1102	1181
	27	27	1 60	<u> </u>		100	ПЭн	1/0/	11120	/ 39	601591	11 127	1901	716	859	200	1417	1590	1423
- 1-1	28	28			1199	107	1 50	826	1 1 1	00	3 435 9 932	234	548	369	1329				42
-11	28	29	235	233	24	30.	817	44	35	2110	1428	771					1526		
- 1 (30	30	240						58	9145	303	801	1020	1298	-545	200	769	1200	
- [31	_31	248	361	1285	382	1433	103	102	100	800	1524	007	931	1116	813	12	96	
[32	-32		425		1232					1297	831	235	257	433	218	121	332 968	
6	33		264		666	458	426	152	1296	630		1368			803	732		1404	
	94	94		_		1800	734	1Dog	1532	895		475					230	217	113
KI 1	35	35					1012		145	1160	1165			830	220		1096		
۱ اد	36	-58			5 <u>79</u>	1386	1350	1062	381	1425	39	312	873		690		339		
- -	97	37	296			613			817				221				1206		
· -	3B	38	-					1121	853	332	1033	149	1192	1⊿21[7		148		
1 -	-33	- 39	312	873	492	690	851	338	1089	597	1530	879	540	1074	477			774	
1 F	40	<u> 40</u>	320	937	1004	1540	959	1180	1325	802	404	1009		727	947	084	557	210	223
1 F	41	411		1001			267	396			901		689	360	4171	598	423		184
	49	42				1817			174	1392	1398	1446	207	33	264	489	666		
	굺.	44		1129 1193		844		457			272	553 1	1781	300	7341	0031	532	895	668
1 1	45	_	_	1257	918			1298			769		526	9821		517	7764	331	810
	481					3211	104	읫빞	882	:64	1266			615		408		1441	
	47			1385	942	998		357 575						268			884		394
	48			448	201	223		418					193 1 184 1	544				018	_13
10	48	40	392	1513	743	076		634		7	-133			850	200	327	6831		
∤ 🖸	50			5/71			783			266		7931					238 1 02		497 735

フロントページの統さ

(72) 発明者 新城 壮一 東京都渋谷区道玄坂 1 丁日14番 6 号 株式 会社ケンウッド内 F ターム(参考) 5C059 KK08 MAOO SS02 UA05 UA36 5C063 AA11 AB03 AC01 CA40 5J065 AA03 AB01 AC02 AF03 AG06 AH02 AH05 AH06 AH09 AH15