Esercizio. Si dimostri, utilizzando la definizione di Θ, che

$$f(n) = Ig^2(2n) + Ig 4n = \Theta(Ig^2 n)$$

mettendo in evidenza e commentando con chiarezza i passi seguiti.

Secondo le oblinizione,
$$f(m) = \Theta(\log^2(m))$$
 se $f(m) = O(\log^2(m))$ se $f(m) = O(\log^2(m))$

Dinostro (ité $f(m) \leq \log^2(m) + \log(4n) \leq C \cdot \log^2(m)$

$$(K \cdot \log^2(n) \leq \log^2(2n) + \log(4n) \leq C \cdot \log^2(n)$$

•
$$K \log^2(n) \leq \left[\log(2) + \log(n)\right] + \log(\ell_1) + \log(n)$$

$$|| \log^2(n) \le [1 + \log(n)]^2 + 2 + \log(n)$$

$$K \log^2(m) \leq 3 + \log(m^3) + \log^2(m)$$

$$K \leq \frac{3}{\log^2(n)} + \frac{3\log(n)}{\log(n)} + 1$$

$$K \leq \frac{6}{100} + 1$$
 omelogenente C

$$0 \quad k \geq \frac{6}{\log(n)} + 1 \qquad k = \frac{6}{\log(n)} + 1$$

Esercizio. Sia data una funzione che prende un intero e restituisce un intero, è strettamente crescente (vale a dire f(x) < f(x+1)) e vogliamo trovare il primo intero non negativo per cui la funzione assume un valore non negativo. Ad esempio, per f(x)=-100+3x il valore da trovare è 34. Progettare un algoritmo che trova questo valore in tempo O(log n), assumendo che il calcolo di f costi $\Theta(1)$. DO GU 100 8(0) > 0 → FINE \$ (0) < 0 x = 8 (0) CHIAMO PROVO $\frac{9}{3}(-x) < 0$ L. CHIAMO CHIAMO) X = Y · Z RICERCA BINARIA TRA X

																	_				
																	+				
															-						
																	+				
															+						
																	+				
														_							
															-						
																	+				
														_							
																		+			
																	_				