

[Nicolas Douillet]

I Introduction et existant

Conjecture des nombres premiers jumeaux, à démontrer

Il existe une infinité de nombres premiers dits jumeaux ainsi décrits :

un couple (p_A, p_B) de nombres premiers est dit de nombres premiers jumeaux si et seulement si il existe un unique $n \in \mathbb{N}^*$ tel que $p_A = n - 1$ et $p_B = n + 1$, soit $p_B - p_A = 2$, que l'on peut donc aussi qualifier de nombres « 1-jumeaux ».

II Généralisation de la conjecture des nombres premiers jumeaux

Conjecture de Polignac reformulée

En reprenant et en étendant cette définition, on conjecture qu'il existe de même une infinité de nombres premiers « 2-jumeaux », une infinité de nombres premiers « 3-jumeaux », etc..., et de manière générale une infinité de nombres premiers « n-jumeaux », formée par l'ensemble des couples de nombres premiers (p_A, p_B) tels que $p_B - p_A = 2n, n \in \mathbb{N}^* \setminus \{1\}$.

Chacun de ces ensembles peut aussi être appelé plus précisément « ensemble des nombres premiers frères à distance 2n ». Pour $n \in \mathbb{N}^*$, il existe donc une infinité d'ensemble de nombres premiers frères à distance 2n.

Le nombre 2, unique premier pair, peut être défini comme son propre « 0-jumeau » ou « frère à distance 0 ».

III Conjecture de Nicolas

Sur la réunion des n ensembles de « nombres premiers frères à distance 2n »

La réunion des n ensembles de nombres premiers frères à distance $2n, n \in \mathbb{N}^*$, et du nombre 2 décrit l'ensemble des nombres premiers \mathbb{P} .

Cette réunion est aussi la réunion du nombre 2 avec l'intersection de ces mêmes n ensembles de nombres premiers frères à distance $2n, n \in \mathbb{N}^*$.