US DEPART

IC20 Rec'd PCT/PTO _2 7 JUL 2001

OF COMMERCE PATENT AND TRADEMARK OFFICE

MATSUOKA=18

TRANMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

U.S. APPLICATION NO (If known, see 37 CFR 15)

09/890219

INTERNATIONAL APPLICATION NO.

INTERNATIONAL FILING DATE 28 January 1999

PRIORITY CLAIMED

28 January 1999

PCT/JP00/00444

TITLE OF INVENTION

SUBSTITUTED PHENETHYLAMINE DERIVATIVES

CONCERNING A FILING UNDER 35 U.S.C. 371

APPLICANT(S) FOR DO/EO/US

Hiroharu MATSUOKA et al.

	United States Designated/Elected (Office (DO/EO/LIG) the f	allowing items and o	ther information
Annlicant herewith submits to the	United States Designated/Elected v		onowing icoms and o	uici illioillianon

- 1. [X] This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
- 2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
- 3. [X] This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
- 4. [X] The US has been elected in a Demand by the expiration of 19 months from the priority date (PCT Article 31).
- 5. [X] A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a [] is attached hereto (required only if not transmitted by the International Bureau).
 - b [X] has been communicated by the International Bureau.
 - c. [] is not required, as the application was filed in the United States Receiving Office (RO/US).
- 6. [X] An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).
- 7. [X] Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. [] are transmitted herewith (required only if not transmitted by the International Bureau).
 - b [] have been communicated by the International Bureau.
 - c. [] have not been made; however, the time limit for making such amendments has NOT expired.
 - d. [X] have not been made and will not be made.
- 8. [] An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3))
- 9. [] An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
- 10. [] An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern document(s) or information included:

- 11. [X] An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- 12. [] An Assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- 13. [X] A FIRST preliminary amendment
 - [X] A SECOND or SUBSEQUENT preliminary amendment
- 14. [] A substitute specification.
- 15. [] A change of power of attorney and/or address letter.
- 16. [X] Other items or information:
 - [X] Courtesy copy of the first page of the International Publication (WO 00/44770).
 - [X] Courtesy copy of the Translation of the International Preliminary Examination Report. There were no annexes
 - [X] Courtesy Copy of the International Search Report.
 - [X] Application Data Sheet.
 - [X] The application is (or will be) assigned to: CHUGAI SEIYAKU KABUSHIKI KAISHA, whose address is 5-1, Ukima 5-chome, Kita-ku, Tokyo 115-8543, Japan.

U.S. APPLICATION NO (If known, see 37 CFR 15) Attorney's Docket No International Application No. PCT/JP00/00444 MATSUOKA=18 17. [xx] The following fees are submitted: CALCULATIONS PTO USE ONLY BASIC NATIONAL FEE (37 CFR 1.492 (a)(1) -(5): Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO.......\$1000.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO......\$860.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4)......\$690.00 International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4).....\$100.00 ENTER APPROPRIATE BASIC FEE AMOUNT = 860.00 Surcharge of \$130.00 for furnishing the oath or declaration later than [] 20 [X] 30 130.00 months from the earliest claimed priority date (37 CFR 1.492(e)). Claims as Originally Presented Number Filed Number Extra Rate Total Claims 32 - 20 X \$18.00 12 \$ 216.00 Independent Claims 1 - 3 X \$80.00 \$ Multiple Dependent Claims (if applicable) +\$270.00 \$ TOTAL OF ABOVE CALCULATIONS = \$1,206.00 Claims After Post Filing Prel. Amend Number Filed Number Extra Rate Total Claims 34 - 32 X \$18.00 36.00 Independent Claims 1 -X \$78.00 \$ TOTAL OF ABOVE CALCULATIONS = \$1,242.00 Reduction of ½ for filing by small entity, if applicable. Applicant claims small entity status. See 37 CFR 1.27. SUBTOTAL = \$1,242.00 Processing fee of \$130.00 for furnishing the English translation later than [] 20 [] 30 \$ months from the earliest claimed priority date (37 CFR 1.492(f)) **TOTAL NATIONAL FEE =** \$1,242.00 Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property + TOTAL FEES ENCLOSED = \$1,242.00 Amount to be: refunded charged A check in the amount of \$ to cover the above fees is enclosed. b. [X] Credit Card Payment Form (PTO-2038), authorizing payment in the amount of \$1,242.00, is attached. Please charge my Deposit Account No. 02-4035 in the amount of \$ to cover the above fees. A duplicate copy of this sheet is enclosed. d. [XX] The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 02-4035 A duplicate copy of this sheet is enclosed. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.437(a) or (b)) must be filed and granted to restore the application to pending status. SEND ALL CORRESPONDENCE TO: SIGNATURE BROWDY AND NEIMARK, P.L.L.C. Roger L. Browdy 624 NINTH STREET, N.W., SUITE 300 NAME WASHINGTON, D.C. 20001 25,618 TEL: (202) 628-5197 REGISTRATION NUMBER FAX: (202) 737-3528 Date of this submission: July 27, 2001 Form PTO-1390 (as slightly revised by Browdy and Neimark) Page 2 of 2

09/8902**1**9 JC17 Rec'd PCT/PTO 27 JUL **200**1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

	ATTY.=S DOCKET: MATSUOKA18
In re Application of:) Art Unit:
Hiroharu MATSUOKA, et al.) Examiner:
Serial No.: not yet received) Confirmation No.
Filed: even date herewith) Washington D.C.
For: SUBSTITUTED PHENETHYLAMINE DERIVATIVES)) July 26, 2001)
)

SUPPLEMENTAL PRELIMINARY AMENDMENT

Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examination upon the merits, kindly amend as follows:

IN THE SPECIFICATION

After the title please insert the follwing paragraph: REFERENCE TO RELATED APPLICATIONS

--The present application is the national stage under 35 U.S.C. §371 of international application PCT/JP00/00444, filed January 28, 2000 which designated the United States, and which application was not published in the English language.--

Page 42, please amend Table A-8 as follows:

Table A-8

Example No.	Structural formula or chemical name
126	N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH2OH
127	Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH2OH
128	N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH2OH
129	N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH2OH
130	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH2OH
131	N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH ₂ OH
132	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH2OH
133	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-N-((1S)-1-{[3-(tert-butyl)-4-hydroxyphenyl]methyl}-2-morpholin-4-yl-2-oxoethyl)-3-methyl-N-methylbutanamide
134	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-N-((1S)-1-{[3-(tert-butyl)-4-hydroxyphenyl]methyl}-2-[4-(methylsulfonyl)piperazinyl]-2-oxoethyl)-3-methyl-N-methylbutanamide
135	ethyl 2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-3,N-dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl] propanoyl)piperazinyl]acetate
136	2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-3,N-dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl]propanoyl)piperazinyl]acetic acid
137	Phe(4-F)-N-Me-Val-N-Pr-Tyr(3-tBu)-NH ₂
138	Phe(4-F)-N-Me-Abu-N-Me-Tyr(3-tBu)-NH ₂
139	Phe (4-F) -N-Me-D-Abu-N-Me-Tyr (3-tBu) -NH ₂
140	Phe(4-F)-N-Me-Nva-N-Me-Tyr(3-tBu)-NH ₂

Page 43, please amend Table A-9 as follows:

Table A-9

Example	Structural formula or chemical name
No.	
141	Phe(4-F)-N-Me-D-Nva-N-Me-Tyr(3-tBu)-NH ₂
142	Phe(4-F)-N-Me-Ile-N-Me-Tyr(3-tBu)-NH ₂
143	Phe(4-F)-N-Me-D-Ile-N-Me-Tyr(3-tBu)-NH ₂
144	Phe(4-F)-N-Me-Leu-N-Me-Tyr(3-tBu)-NH ₂
145	Phe(4-F)-N-Me-D-Leu-N-Me-Tyr(3-tBu)-NH ₂
146	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-N-methylpent-4-enamide
147	(2R)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-N-methylpent-4-enamide
148	Phe(4-F)-N-Me-Leu(γ -Me)-N-Me-Tyr(3-tBu)-NH $_2$
149	Phe (4-F)-N-Me-D-Leu $(\gamma$ -Me)-N-Me-Tyr (3-tBu)-NH ₂
150	$\label{eq:phe} \texttt{Phe}(4\text{-F})-\texttt{N-Me-Ala}(\Box\text{-CF}_3)-\texttt{N-Me-Tyr}(3\text{-tBu})-\texttt{NH}_2$
151	Phe(4-F)-N-Me-Chg-N-Me-Tyr(3-tBu)-NH ₂
152	Phe(4-F)-N-Me-D-Chg-N-Me-Tyr(3-tBu)-NH ₂
153	Phe(4-F)-N-Me-Cha-N-Me-Tyr(3-tBu)-NH ₂
154	Phe(4-F)-N-Me-D-Cha-N-Me-Tyr(3-tBu)-NH ₂
155	Phe(4-F)-N-Me-Phe-N-Me-Tyr(3-tBu)-NH ₂
156	Phe(4-F)-N-Me-D-Phe-N-Me-Tyr(3-tBu)-NH ₂
157	Phe(4-F)-N-Me-Phe(4-F)-N-Me-Tyr(3-tBu)-NH ₂
158	Phe(4-F)-N-Me-D-Phe(4-F)-N-Me-Tyr(3-tBu)-NH ₂
159	Phe(4-F)-N-Me-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
160	Phe(4-F)-N-Me-D-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
161	Phe(4-F)-N-Me-Tyr-N-Me-Tyr(3-tBu)-NH ₂
162	Phe(4-F)-N-Me-D-Tyr-N-Me-Tyr(3-tBu)-NH ₂

In re of: MATSUOK 18

Page 106, please amend paragraph 1 as follows:

To a solution of 2-(4-benzyloxy-3-t-butylphenyl)-1cyanomethylethylcarbamic acid benzyl ester (1.38 g, 3.03 mmol) in

DMSO (24 ml), potassium carbonate (1.59 g) and 30% hydrogen peroxide

(4.0 ml) were added under cooling with ice. After stirring at room
temperature for 2 hours, the reaction mixture was mixed with water;
the thus formed precipitates were collected by filtration to give 2
(4-benzyloxy-3-t-butylphenyl)-1-carbamidemethylethylcarbamic acid
benzyl ester.

Page 257, please amend Table E-7 as follows:

Table E-7

Intermediate T14

(2S)-3-[3-(tert-butyl)-4-hydroxyphenyl]-2-(methylamino)-1-[4-hydroxyphenyl]

(methylsulfonyl)piperazinyl]propane-1-one

(methylsul	TOUAT) b	rperaz.	T11 A T 1 D T	Opane					
Reaction 1									
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	Boc- piperazine (g)	ClCO₂Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.500	0.700	0.36	0.42	15.00	20	nHx:EA=1:1	I-a(7)	1.900	
Reaction 2									
Compound I-a(7) (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	n sol.	Product	1	Amount (g)	
1.900	5.00	20.00	4	MC:MeOH=20:1 I-b(7)		1.	1.400		
Reaction 3							·		
Compound I-b(7) (g)	ClSO ₂ Me (ml)	TEA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product	1	Amount (g)	
1.400	0.46	0.82	20.00	2	MC:MeOH =20:1	I-c(7)	1.500		
Reaction 4									
Compound I-c(7) (g)	Pd(OH) ₂ (g)	MeOH (ml)	1	Reaction time Colur		mn sol.	sol. Amount (g)		
1.500	0.300	20.00		20 MC:MeC		OH =20:1	0.900		

IN THE CLAIMS

In re of: MATSUON =18

Please add the following claims:

35. (New) A method for treating a patient suffering from hypermotilinemia comprising administering to said patient an effective amount of a compound according to claim 1.

36. (New) A method for suppressing gastrointestinal motility in a patient suffering therefrom comprising administering to said patient an effective amount of a compound according to claim 1.

REMARKS

Claims 1-25 and 28-36 presently appear in this case. The above amendments to the specification are being made in order to correct several self-evident typographical errors. The amendments to the claims are being made in order to add new claims.

Attached hereto is a marked-up version of the changes made to the specification by the current amendment. The attached page is captioned "Version with Markings to Show Changes Made."

Favorable consideration is earnestly solicited.

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C. Attorneys for Applicant

'

Roger L. Browdy

Registration No. 25,618

RLB:wrd

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

F:\,Y\YUAS\mATSUOKA 18\Pto\Sup. Pre. Amendment.doc

09/8902**1**9 JC17 Rec'd PCT/PTO 27 JUL 2001

Version with markings to show changes

IN THE SPECIFICATION

A paragraph was added after the title.

Page 42, please amend Table A-8 as follows:

Table A-8

Table A-8	
Example No.	Structural formula or chemical name
126	N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH2OH
127	Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH2OH
128	N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH2OH
129	N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH2OH
130	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH2OH
131	N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH2OH
132	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH2OH
133	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-N-((1S)-1-{[3-(tert-butyl)-4-hydroxyphenyl]methyl}-2-morpholin-4-yl-2-oxoethyl)-3-methyl-N-methylbutanamide
134	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N- methylpropanolyamino]-N-((1S)-1-{[3-(tert-butyl)-4- hydroxyphenyl]methyl}-2-[4- (methylsulfonyl)piperazinyl]-2-oxoethyl)-3-methyl-N- methylbutanamide
135	ethyl 2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-3,N-dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl] propanoyl propanoly)piperazinyl]acetate
136	2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-3,N-dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl]propanoylpropanoylpropanoly)piperazinyl]acetic acid
137	Phe(4-F)-N-Me-Val-N-Pr-Tyr(3-tBu)-NH ₂
138	Phe(4-F)-N-Me-Abu-N-Me-Tyr(3-tBu)-NH ₂
139	Phe(4-F)-N-Me-D-Abu-N-Me-Tyr(3-tBu)-NH ₂
140	Phe (4-F) -N-Me-Nva-N-Me-Tyr(3-tBu)-NH ₂

Page 43, please amend Table A-9 as follows:

Table A-9

Example No.	Structural formula or chemical name
141	Phe(4-F)-N-Me-D-Nva-N-Me-Tyr(3-tBu)-NH ₂
142	Phe(4-F)-N-Me-Ile-N-Me-Tyr(3-tBu)-NH ₂
143	Phe(4-F)-N-Me-D-Ile-N-Me-Tyr(3-tBu)-NH ₂
144	Phe(4-F)-N-Me-Leu-N-Me-Tyr(3-tBu)-NH ₂
145	Phe(4-F)-N-Me-D-Leu-N-Me-Tyr(3-tBu)-NH ₂
146	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N- methylpropanoylamino methylpropanolyamino]-N-{(1S)-2- [3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-N- methylpent-4-enamide
147	(2R)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N- methylpropanoylamino methylpropanolyamino]-N-{(1S)-2- [3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-N- methylpent-4-enamide
148	Phe (4-F) -N-Me-Leu (γ -Me) -N-Me-Tyr (3-tBu) -NH $_2$
149	Phe (4-F) -N-Me-D-Leu (γ -Me) -N-Me-Tyr (3-tBu) -NH $_2$
150	Phe(4-F)-N-Me-Ala(β -CF $_3$)-N-Me-Tyr(3-tBu)-NH $_2$
151	Phe(4-F)-N-Me-Chg-N-Me-Tyr(3-tBu)-NH ₂
152	Phe(4-F)-N-Me-D-Chg-N-Me-Tyr(3-tBu)-NH ₂
153	Phe(4-F)-N-Me-Cha-N-Me-Tyr(3-tBu)-NH ₂
154	Phe(4-F)-N-Me-D-Cha-N-Me-Tyr(3-tBu)-NH ₂
155	Phe(4-F)-N-Me-Phe-N-Me-Tyr(3-tBu)-NH ₂
156	Phe(4-F)-N-Me-D-Phe-N-Me-Tyr(3-tBu)-NH ₂
157	Phe $(4-F)$ -N-Me-Phe $(4-F)$ -N-Me-Tyr $(3-tBu)$ -NH ₂
158	Phe $(4-F)$ -N-Me-D-Phe $(4-F)$ -N-Me-Tyr $(3-tBu)$ -NH ₂
159	Phe(4-F)-N-Me-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
160	Phe(4-F)-N-Me-D-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
161	Phe(4-F)-N-Me-Tyr-N-Me-Tyr(3-tBu)-NH ₂
162	Phe(4-F)-N-Me-D-Tyr-N-Me-Tyr(3-tBu)-NH ₂
163	Phe(4-F)-N-Me-Ala(β -2-thienyl)-N-Me-Tyr(3-tBu)-NH ₂

Page 106, please amend paragraph 1 as follows:

To a solution of 2-(4-benzyloxy-3-t_butylphenyl)-1cyanomethylethylcarbamic acid benzyl ester (1.38 g, 3.03 mmol)
in DMSO (24 ml), potassium carbonate (1.59 g) and 30% hydrogen
peroxide (4.0 ml) were added under cooling with ice. After
stirring at room temperature for 2 hours, the reaction mixture
was mixed with water; the thus formed precipitates were
collected by filtration to give 2-(4-benzyloxy-3-tbutylphenyl)-1-carbamidemethylethylcarbamic acid benzyl ester.

Page 257, please amend Table E-7 as follows:

Table E-7

Intermediate T14

(2S)-3-[3-(tert-butyl)-4-hydroxyphenyl]-2-(methylamino)-1-[4-hydroxyphenyl]

(methylsulfonyl) piperazinyl piperazineyl]propane-1-one

Reaction 1						- 1 1			
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	Boc- piperazine (g)	ClCO₂Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.500	0.700	0.36	0.42	15.00	20	nHx:EA=1:1	I-a(7)	1.900	
Reaction 2				L-,-					
Compound I-a(7) (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	n sol.	Product	Amount (g)		
1.900	5.00	20.00	4	MC:MeC	MeOH=20:1 I-b(7)		1.4	1.400	
Reaction 3			****	·				***************************************	
Compound I-b(7) (g)	ClSO ₂ Me (ml)	TEA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)		
1.400	0.46	0.82	20.00	2	MC:MeOH =20:1	I-c(7)	1.500		
Reaction 4				. ,,					
Compound I-c(7) (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)		Column sol.		Amount (g)		
1.500	0.300	20.00	20		MC:MeOH =20:1		0.900		

IN THE CLAIMS

New claims 35 and 36 were added.

09/8902**1**9
JC17 Rec'd PCT/PTO 27 JUL 2001

In re Appl. MATSUOKA18

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ATTY.=S DOCKET: MATSUOKA18

In re Application of:

Hiroharu MATSUOKA, et al.

Serial No.: not yet received

Filed: even date herewith

For: SUBSTITUTED

PHENETHYLAMINE

DERIVATIVES

Art Unit:

Confirmation No.

Washington D.C.

July 26, 2001

PRELIMINARY AMENDMENT

Honorable Commissioner for Patents Washington, D.C. 20231

Contemporaneous with the filing of this case and prior to calculation of the filing fee, kindly amend as follows:

IN THE CLAIMS

Please amend claim 13 as follows:

13. (Amended) The compound according to claim 1, wherein R_6 in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 14 as follows:

14. (Amended) The compound according to claim 1, wherein R_7 in Formula (1) is hydrogen or optionally substituted amino;

or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 15 as follows:

15. (Amended) The compound according to claim 1, wherein R_8 in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 16 as follows:

16. (Amended) The compound according to claim 1, wherein R₉ in Formula (1) is methyl, isopropyl, isobutyl, secbutyl, tert-butyl, 3-pentyl, neopentyl, cyclohexyl, phenyl, benzyl, para-hydroxybenzyl, cyclohexylmethyl or para-fluorobenzyl;

or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 17 as follows:

17. (Amended) The compound according to claim 1, wherein R_{20} in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 18 as follows:

18. (Amended) The compound according to claim 1, wherein R_{10} in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 19 as follows:

19. (Amended) The compound according to claim 1, wherein R_{11} in Formula (1) is methyl, hydroxymethyl, carbamoylmethyl, methanesulfonylmethyl, ureidemethyl, sulfamoylaminomethyl, methanesulfonylaminomethyl, carbamoyl,

ethylcarbamoyl, n-propylcarbamoyl, isopropylcarbamoyl, cyclopropylcarbamoyl, tertbutylcarbamoyl, 2-pyridylcarbamoyl, methoxycarbamoyl, 2-thiazolyl, 1,3,4-oxadiazol-2-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-triazol-2-yl, 6-methyl-4-pyrimidinon-2-yl, methylcarbamoyl, methanesulfonylmethylcarbamoyl, methoxymethylcarbamoyl, 1-morpholinylcarbonyl, 4-carboxymethyl-1-piperazinecarbonyl, 4-ethoxycarbonylmethyl-1-piperazinecarbonyl or 4-methylsulfonyl-1-piperazinecarbonyl; or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 20 as follows:

20. (Amended) The compound according to claim 1, wherein R_{12} in Formula (1) is hydroxy; or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 21 as follows:

21.(Amended) The compound according to claim 1, wherein R_{13} in Formula (1) is isopropyl, tert-butyl (tBu), 1,1-dimethylpropyl or 1,1-dimethyl-2-propenyl; or a hydrate or pharmaceutically acceptable salt thereof.

Please amend claim 24 as follows:

24. (Amended) A medicine containing an effective amount of the compound according to claim 1 as an active ingredient.

Please amend claim 25 as follows:

25. (Amended) A motilin receptor antagonist composition containing an effective amount of the compound according to claim 1.

Cancel claims 26 and 27 without prejudice or disclaimer.

REMARKS

Claims 1-25 and 28-34 presently appear in this case. The above amendments to the claims are being made in order to eliminate any properly multiply dependent claims, for the purpose of reducing the filing fee. Please enter this amendment prior to calculation of the filing fee in this case.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attached page is captioned "Version with Markings to Show Changes Made."

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C.

Attorneys for Applicant(s)

Roger L. Browdy

Registration No. 25,618

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

RLB:nmp/wrd

F:\USER10\kola's documents\amendment.wpd

Version with markings to show changes@

IN THE CLAIMS

- 13. The compound according to any one of claims 1- $\frac{12 \text{ claim 1}}{12 \text{ claim 1}}$, wherein R_6 in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.
- 14. The compound according to any one of claims 1- 13claim 1, wherein R_7 in Formula (1) is hydrogen or optionally substituted amino; or a hydrate or pharmaceutically acceptable salt thereof.
- 15. The compound according to any one of claims 1- 14claim 1, wherein R_8 in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.
- 16. The compound according to <u>claim lany one of</u> claims 1-15, wherein R₉ in Formula (1) is methyl, isopropyl, isobutyl, sec-butyl, tert-butyl, 3-pentyl, neopentyl, cyclohexyl, phenyl, benzyl, para-hydroxybenzyl, cyclohexylmethyl or para-fluorobenzyl; or a hydrate or pharmaceutically acceptable salt thereof.
- 17. The compound according to any one of claims 1- 16claim 1, wherein R_{20} in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.

- 18. The compound according to any one of claims 1- $\frac{17\text{claim 1}}{17}$, wherein R_{10} in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.
- 19. The compound according to any one of claims 1—
 18claim 1, wherein R₁₁ in Formula (1) is methyl, hydroxymethyl,
 carbamoylmethyl, methanesulfonylmethyl, ureidemethyl,
 sulfamoylaminomethyl, methanesulfonylaminomethyl, carbamoyl,
 ethylcarbamoyl, n-propylcarbamoyl, isopropylcarbamoyl,
 cyclopropylcarbamoyl, tertbutylcarbamoyl, 2-pyridylcarbamoyl,
 methoxycarbamoyl, 2-thiazolyl, 1,3,4-oxadiazol-2-yl, 1,2,4oxadiazol-5-yl, 1,3,4-triazol-2-yl, 6-methyl-4-pyrimidinon-2yl, methylcarbamoyl, methanesulfonylmethylcarbamoyl,
 methoxymethylcarbamoyl, 1-morpholinylcarbonyl, 4carboxymethyl-1-piperazinecarbonyl, 4-ethoxycarbonylmethyl-1piperazinecarbonyl or 4-methylsulfonyl-1-piperazinecarbonyl;
 or a hydrate or pharmaceutically acceptable salt thereof.
- 20. The compound according to any one of claims 1- $\frac{19\text{claim 1}}{19\text{claim 1}}$, wherein R_{12} in Formula (1) is hydroxy; or a hydrate or pharmaceutically acceptable salt thereof.
- 21. The compound according to any one of claims 1-20claim 1, wherein R_{13} in Formula (1) is isopropyl, tert-butyl (tBu), 1,1-dimethylpropyl or 1,1-dimethyl-2-propenyl; or a hydrate or pharmaceutically acceptable salt thereof.

- 24. A medicine containing <u>an effective amount of</u> the compound according to <u>any one of claims 1-23claim 1</u> as an active ingredient.
- 25. A motilin receptor antagonist <u>composition</u> containing <u>an effective amount of</u> the compound according to <u>any one of claims 1-23</u>claim 1.

09/890219 JC17 Rec'd PCT/PTO 27 JUL 2001

SPECIFICATION

SUBSTITUTED PHENETHYLAMINE DERIVATIVES

5 TECHNICAL FIELD

This invention relates to substituted phenethylamine derivatives that function as a motilin receptor antagonist and that are useful as medicines.

10 BACKGROUND ART

Motilin, which is one of the gastrointestinal hormones, is a straight-chained peptide consisting of 22 amino acids and is well known to be responsible for regulating the motility of the gastrointestinal tract in animals including human. It has been reported that exogenously administered motilin causes contractions in humans and dogs that are similar to interdigestive migrating contractions, thus promoting gastric emptying (Itoh et al., Scand. J. Gastroenterol., 11, 93-110 (1976);

Peeters et al., Gastroenterology 102, 97-101 (1992)).

Hence, erythromycin derivatives which are an agonist of motilin are under development as an gastrointestinal tract motor activity enhancer (Satoh et al., J. Pharmacol. Exp. Therap., 271, 574-579 (1994); Lartey et al., J. Med. Chem.,

25 38, 1793-1798 (1995); Drug of the Future, 19, 910-912 (1994)).

Peptide and polypeptide derivatives have been reported as antagonists of motilin receptors (Depoortere et

20

25

al., Eur. J. Pharmacol., 286, 241-247 (1995); Poitras et al., Biochem. Biophys. Res. Commun., 205, 449-454 (1994); Takanashi et al., J. Pharmacol. Exp. Ther., 273, 624-628 (1995)). These derivatives are used as a pharmacological tool in the study of the action of motilin on the motility of the gastrointestinal tract and in the research and development of medicines in the field of the art contemplated by the invention.

Motilin receptors had been known to occur principally
in the duodenum but recently it has been shown that they
also occur in the large intestine, or the lower part of the
gastrointestinal tract (William et al., Am. J. Physiol.,
262, G50-G55 (1992)), and this indicates the possibility
that motilin is involved not only in the motility of the
upper part of the gastrointestinal tract but also in the
motility of its lower part.

Reports have also been made of the cases of hypermotilinemia in patients with irritable bowel syndrome who were manifesting diarrhea and in patients with irritable bowel syndrome who were under stress (Preston et al., Gut, 26, 1059-1064 (1985); Fukudo et al., Tohoku J. Exp. Med., 151, 373-385 (1987)) and this suggests the possibility that increased blood motilin levels are involved in the disease. Other diseases that have been reported to involve hypermotilinemia include crohn's disease, ulcerative colitis, pancreatitis, diabetes mellitus, obesity, malabsorption syndrome, bacterial diarrhea, atrophic gastritis and postgastroenterectomy

syndrome. The antagonists of motilin receptors have the potential to ameliorate irritable bowel syndrome and other diseased states accompanied by increased blood motilin levels.

5

10

15

DISCLOSURE OF INVENTION

An object of the present invention is to provide substituted phenethylamine derivatives that function as an antagonist of motilin receptors and which are useful as medicines.

The present inventors conducted repeated intensive studies in an attempt to develop compounds having an outstanding motilin receptor antagonistic action. As a result, they found that substituted phenethylamine derivatives represented by Formula (1) were an excellent antagonist of motilin receptors. The present invention has been accomplished on the basis of this finding.

Thus, the present invention provides compounds of Formula (1):

20

wherein:

Cy is a group of Formula (2):

$$\begin{array}{c}
R_2 \\
R_3 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_5
\end{array}$$

$$(2)$$

15

an optionally substituted heterocyclic ring, C₃₋₇cycloalkyl or phenyl;

 R_1 , R_2 , R_3 , R_4 and R_5 are hydrogen, halogen, hydroxy, amino, trifluoromethyl or nitrile and at least one of R_1 , R_2 , R_3 , R_4 and R_5 is halogen, trifluoromethyl or nitrile;

 R_6 is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, amino or hydroxy;

 R_7 is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, optionally substituted amino or hydroxy;

R_s is hydrogen, methyl or ethyl;

 R_9 is optionally substituted straight-chained or branched C_{1-6} alkyl, optionally substituted straight-chained or branched C_{2-6} alkenyl, optionally substituted straight-chained or branched C_{2-6} alkynyl, C_{3-7} cycloalkyl or optionally substituted phenyl;

 R_{20} is hydrogen or straight-chained or branched C_{1-3} alkyl or R_9 and R_{20} may together form C_{3-7} cycloalkyl;

 R_{10} is hydrogen or straight-chained or branched 20 C_{1-3} alkyl;

 R_{11} is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, -CO-N(R_{14}) R_{15} , carboxyl or an optionally substituted heterocyclic ring;

 R_{12} is hydroxy or $-OR_{16}$;

 R_{13} is hydrogen, straight-chained or branched C_{1-6} alkyl, straight-chained or branched C_{2-6} alkenyl, straight-chained or branched C_{2-6} alkynyl or a group of Formula (3):

10

$$R_{17}$$
 R_{18} (3)

 R_{14} and R_{15} , which may be the same or different, are hydrogen, optionally substituted straight-chained or branched C_{1-4} alkyl, C_{3-7} cycloalkyl, straight-chained or branched C_{1-4} alkyloxy, straight-chained or branched C_{1-4} alkylsulfonyl or a heterocyclic ring, or R_{14} and R_{15} , as - $N(R_{14})R_{15}$, form optionally substituted 3- to 7-membered cyclic amine;

 R_{16} is straight-chained C_{1-4} alkyl;

 R_{17} is hydrogen or methyl;

 R_{18} and R_{19} together form cycloalkyl or $C_{3\text{--}7} cycloalkenyl; \label{eq:cycloalkenyl}$

X is carbonyl or methylene;

Y is carbonyl or methylene;

15 provided that

when Cy is 3-indoly1,

(i) R_{11} is an optionally substituted heterocyclic ring; or

(ii) R_6 is hydrogen, R_7 is amino, R_8 is methyl,

20 R_9 is isopropyl, R_{20} is hydrogen, R_{10} is methyl, R_{11} is carbamoyl, R_{12} is hydroxy, R_{13} is tert-butyl, X is carbonyl and Y is carbonyl, and

when Cy is cyclohexyl or phenyl, R_{11} is an optionally substituted heterocyclic ring,

or hydrates or pharmaceutically acceptable salts thereof.

The present invention also provides a medicine

containing a compound of Formula (1) as an active ingredient. Further, the present invention provides a motilin receptor antagonist composition containing the compound. The present invention also provides a gastrointestinal motility suppressor agent containing the compound as an active ingredient. Further, the present invention provides a therapeutic of hypermotilinemia containing the compound as an active ingredient.

The present invention also provides compounds of 10 Formula (4):

$$\begin{array}{c|c} Cy & R_6 & R_8 & R_{13} \\ R_7 & X & N & R_{10} & R_{11} \\ \end{array}$$
 (4)

wherein

5

Cy, R_6 , R_8 , R_9 , R_{20} , R_{10} , R_{12} , R_{13} , X and Y are as defined in claim 1;

15 R_7 ' is hydrogen, straight-chained or branched C_{1-3} alkyl optionally having at least one protected substituent, amino optionally having at least one protected substituent or protected hydroxy;

 R_{11} " is hydrogen, optionally substituted straightchained or branched C_{1-3} alkyl, -CO-N(R_{14}) R_{15} , wherein R_{14} and R_{15} are as defined in claim 1, carboxyl, straight-chained or
branched C_{1-3} alkyl having protected amino or an optionally
substituted heterocyclic ring;

or hydrates or pharmaceutically acceptable salts thereof.

The present invention also provides compounds of

15

Formula (5):

$$\begin{array}{c|c} Cy & R_{6} & R_{8} & R_{12} \\ R_{7} & X & N & R_{10} & R_{11} \\ \end{array}$$

$$\begin{array}{c|c} R_{12} & R_{13} & \\ R_{20} & R_{9} & R_{10} \\ \end{array}$$

$$(5)$$

wherein:

Cy, R_6 , R_8 , R_9 , R_{20} , R_{10} , R_{12} , R_{13} , X and Y are as defined 5 in claim 1;

 R_7 " is hydrogen, straight-chained or branched C_{1-3} alkyl optionally having at least one optionally protected substituent, amino optionally having at least one optionally protected substituent or optionally protected hydroxy;

 R_{11} ' is hydrogen, straight-chained or branched C_{1-} alkyl optionally having at least one protected substituent, $-CO-N(R_{14})R_{15}$ wherein R_{14} and R_{15} are as defined in claim 1, carboxyl or an optionally substituted heterocyclic ring; or hydrates or pharmaceutically acceptable salts thereof.

The present invention also provides compounds of Formula (6):

20 wherein:

 $R_{\text{g}},\ R_{\text{g}},\ R_{\text{20}},\ R_{\text{10}},\ R_{\text{12}},\ R_{\text{13}}$ and Y are as defined in claim 1;

 $P_{\rm 1}$ is hydrogen or a protecting group of amine; $R_{\rm 11} \mbox{'''} \mbox{ is hydrogen, optionally substituted straight-}$

chained or branched C_{1-3} alkyl, $-CO-N(R_{14})R_{15}$ wherein R_{14} and R_{15} are as defined in claim 1, carboxyl, straight-chained or branched C_{1-3} alkyl having protected amino or an optionally substituted heterocyclic ring;

5 or hydrates or pharmaceutically acceptable salts thereof.

The present invention also provides compounds of Formula (7):

10

15

wherein:

Cy, R_6 , R_8 , R_9 , R_{20} and X are as defined in claim 1;

 R_7 " is hydrogen, straight-chained or branched C_{1-3} alkyl optionally having at least one optionally protected substituent, amino optionally having at least one optionally protected substituent or optionally protected hydroxy;

 ${\rm P}_{\rm 2}$ is optionally protected carboxyl, formyl or methyl having a leaving group;

20 or hydrates or pharmaceutically acceptable salts thereof.

The present invention also provides compounds of Formula (8)

$$P_{3} \sim N \qquad R_{11} \qquad (8)$$

25

wherein:

 R_{10} and R_{13} are as defined in claim 1;

P₃ is hydrogen or a protecting group of amine;

 R_{11} ''' is hydrogen, optionally substituted straightchained or branched C_{1-3} alkyl, $-CO-N(R_{14})R_{15}$ wherein R_{14} and R_{15} are as defined in claim 1, carboxyl, straight-chained or branched C_{1-3} alkyl having protected amino or an optionally substituted heterocyclic ring;

 R_{12} ' is hydroxy or $-OR_{16}$ wherein R_{16} is as defined in claim 1; or hydrates or pharmaceutically acceptable salts thereof.

The present invention also provides compounds of Formula (9)

15

$$\begin{array}{c}
Cy & R_6 \\
R_7 & P_4
\end{array}$$

wherein:

Cy and R6 are as defined in claim 1;

 R_7 " is hydrogen, straight-chained or branched C_{1-3} alkyl optionally having at least one optionally protected substituent, amino optionally having at least one optionally protected substituent or optionally protected hydroxy;

 P_4 is optionally protected carboxyl, formyl or methyl having a leaving group; or hydrates or pharmaceutically acceptable salts thereof.

The present invention also provides compounds of Formula (10)

$$P_{5} \xrightarrow{R_{8}} P_{6} \qquad (10)$$

5 wherein:

10

15

20

25

 R_8 , R_9 and R_{20} are as defined in claim 1;

P₅ is hydrogen or a protecting group of amine;

 P_6 is optionally protected carboxyl, formyl or methyl having a leaving group;

or hydrates or pharmaceutically acceptable salts thereof.

In the definition of the compounds of Formula (1), halogen as R_1 , R_2 , R_3 , R_4 and R_5 of Formula (2) as Cy is preferably fluorine or chlorine, with fluorine being more preferred. When at least 2 of R_1 to R_5 are halogen, they may be the same or different halogen, however it is preferable that they are the same. The number of halogen atoms is preferably 1 to 3 and more preferably 1 or 2.

Preferably, at least one of R_1 , R_2 , R_3 , R_4 and R_5 of Formula (2) as Cy is halogen, trifluoromethyl or nitrile and the others are independently hydrogen or hydroxy. Preferably, R_3 is halogen, trifluoromethyl or nitrile or R_2 and R_3 are the same kind of halogen. Preferred compounds include those in which R_3 is halogen and R_1 , R_2 , R_4 and R_5 are hydrogen; those in which R_2 and R_3 are the same halogen and R_1 , R_4 and R_5 are hydrogen; and those in which at least one of R_1 , R_2 , R_3 , R_4 and R_5 is trifluoromethyl or nitrile and the others are hydrogen, halogen or hydroxy.

10

15

20

Preferred examples of the group of Formula (2) as Cy include 4-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl, 4-chlorophenyl, 3-chlorophenyl, 3,4-dichlorophenyl, 2-fluoro-4-hydroxyphenyl, 3-fluoro-4-hydroxyphenyl, 4-trifluoromethylphenyl and 4-cyanophenyl, more preferably 4-fluorophenyl and 4-chlorophenyl, with 4-fluorophenyl being most preferred.

Preferred examples of the heterocyclic ring of the optionally substituted heterocyclic ring as Cy include aliphatic or aromatic 5- to 7-membered mono- or fused-rings containing at least one hetero atom selected from among N, S and O; specific examples include pyridyl, pyrazinyl, furyl, thienyl, pyrrolyl, imidazolyl, indolyl, quinolinyl, benzoimidazolyl, benzodiazepinyl, benzofuryl, pyrrolidinyl, piperazinyl, piperidinyl and tetrahydroisoquinolinyl, with indolyl being preferred.

Exemplary substituents of the optionally substituted heterocyclic ring as Cy include hydroxy, methoxy, amino, methyl, ethyl, trifluoromethyl, carboxy, methoxycarbonyl and oxo. The heterocyclic ring may have one or more of the above-mentioned substituents, which may be the same or different.

Preferably, the optionally substituted heterocyclic ring of Cy is 3-indolyl.

25 Preferably, the C_{3-7} cycloalkyl as Cy is cyclopentyl or cyclohexyl.

While Cy has the definitions set forth above, Cy is preferably Formula (2) or an optionally substituted

20

25

heterocyclic ring, more preferably 4-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl, 4-chlorophenyl, 3-chlorophenyl, 3,4-dichlorophenyl, 2-fluoro-4-hydroxyphenyl, 3-fluoro-4-hydroxyphenyl, 4-trifluoromethylphenyl, 4-cyanophenyl and 3-indolyl, with 4-fluorophenyl being particularly preferred.

The alkyl of the optionally substituted straight-chained or branched $C_{1\text{--}3}$ alkyl as R_6 is preferably methyl or ethyl.

Exemplary substituents of the optionally substituted straight-chained or branched C_{1-3} alkyl as R_6 include halogen, with fluorine being preferred. The alkyl may have one or more of the above-mentioned substituents, which may be the same or different.

The optionally substituted straight-chained or branched C_{1-3} alkyl as R_6 is preferably methyl, ethyl, fluoromethyl or trifluoromethyl, with methyl being particularly preferred.

While R_6 has the definitions set forth above, R_6 is preferably hydrogen or methyl.

The alkyl of the optionally substituted straight-chained or branched C_{1-3} alkyl as R_7 is preferably methyl.

Exemplary substituents of the optionally substituted straight-chained or branched $C_{1\text{--}3}$ alkyl as R_7 include halogen, hydroxy and amino, with hydroxy being preferred. The alkyl may have one or more of the above-mentioned substituents, which may be the same or different.

The optionally substituted straight-chained or

15

branched C_{1-3} alkyl as R_7 is preferably methyl or trifluoromethyl, with methyl being particularly preferred.

Exemplary substituents of the optionally substituted amino as R_7 include straight-chained or branched C_{1-3} alkyl, with methyl and ethyl being preferred. The amino may have one or more of the above-mentioned substituents, which may be the same or different.

The optionally substituted amino as R_7 is preferably amino optionally substituted with one or more of the same or different kinds of straight-chained or branched C_{1-3} alkyl; specific examples include amino, methylamino, dimethylamino and ethylamino, with amino and methylamino being particularly preferred.

While R_7 has the definitions set forth above, R_7 is preferably hydrogen or optionally substituted amino, with hydrogen, amino and methylamino being particularly preferred.

R₈ is preferably hydrogen or methyl.

The alkyl of the optionally substituted straight- chained or branched C_{1-6} alkyl as R_9 is preferably straight-chained or branched C_{1-5} alkyl, e.g., methyl, ethyl, isopropyl, isobutyl, sec-butyl, tert-butyl, 3-pentyl and neopentyl.

Exemplary substituents of the optionally substituted

25 straight-chained or branched C₁₋₆alkyl as R₉ include

substituted or unsubstituted phenyl (e.g., phenyl, tolyl,

para-hydroxyphenyl and para-fluorophenyl), C₃₋₇cycloalkyl,

heterocyclic rings (e.g., pyrazyl, furyl, thienyl, pyrrolyl,

10

15

20

25

imidazolyl and quinolinyl) and halogen, with phenyl, cyclohexyl and thienyl being preferred.

The optionally substituted straight-chained or branched C_{1-6} alkyl as R_9 is preferably methyl, isopropyl, isobutyl, sec-butyl, tert-butyl, 3-pentyl, neopentyl, parafluorobenzyl, 2-thienylmethyl, 3-indolylmethyl, benzyl, para-hydroxybenzyl, phenethyl or cyclohexylmethyl.

The alkenyl of the optionally substituted straight-chained or branched C_{2-6} alkenyl as R, is preferably vinyl, 2-propenyl, 2-propen-1-yl, 2-buten-1-yl or 2-isobuten-1-yl, with 2-propen-1-yl being more preferred.

Exemplary substituents of the optionally substituted straight-chained or branched C_{2-6} alkenyl as R_9 include phenyl, tolyl, para-hydroxyphenyl and para-fluorophenyl.

The optionally substituted straight-chained or branched C_{2-6} alkenyl as R_9 is preferably 2-propen-1-yl.

The alkynyl of the optionally substituted straight-chained or branched C_{2-6} alkynyl as R_9 is preferably ethynyl, propargyl or 2-butyn-1-yl, with 2-butyn-1-yl being preferred.

Exemplary substituents of the optionally substituted straight-chained or branched C_{2-6} alkynyl as R_9 include halogen, phenyl, tolyl, para-hydroxyphenyl and para-fluorophenyl.

The optionally substituted straight-chained or branched C_{2-6} alkynyl as R_9 is preferably 2-butyn-1-yl.

The $C_{3-7}\text{cycloalkyl}$ as R_9 is preferably cyclopentyl or cyclohexyl.

15

20

25

Exemplary substituents of the optionally substituted phenyl as R, include hydroxy, amino, methyl, ethyl and halogen. The phenyl may have one or more of the abovementioned substituents, which may be the same or different.

The optionally substituted phenyl as $R_{\mbox{\scriptsize 9}}$ is preferably phenyl.

The C_{3-7} cycloalkyl formed by R_9 and R_{20} is preferably cyclopentyl or cyclohexyl.

While R, has the definitions set forth above, R, is

preferably isopropyl, isobutyl, sec-butyl, tert-butyl, 3
pentyl, neopentyl, cyclohexyl, 2-thienylmethyl, 3
indolylmethyl, phenyl, benzyl, para-hydroxybenzyl, para
fluorobenzyl or cyclohexylmethyl, with isopropyl being

particularly preferred.

The straight-chained or branched C_{1-3} alkyl as R_{20} is preferably methyl.

R₂₀ is preferably hydrogen.

 R_{10} is preferably hydrogen or methyl.

The alkyl of the optionally substituted straight-chained or branched C_{1-3} alkyl as R_{11} is preferably methyl.

Exemplary substituents of the optionally substituted straight-chained or branched C_{1-3} alkyl as R_{11} include amino optionally substituted with one or more of the same or different kind of straight-chained or branched C_{1-3} alkyl (e.g., amino, methylamino, dimethylamino and ethylamino), optionally substituted 3- to 7-membered cyclic amino (exemplary substituents of the cyclic amino include hydroxy, amino, carboxyl, carbamoyl and methyl), hydroxy, methoxy,

10

15

halogen, carbamoyl, methanesulfonyl, ureide, guanidyl, N'-cyano-N"-methylguanidyl, sulfamoylamino, carbamoylmethylamino and methanesulfonylamino, with amino, hydroxy, carbamoyl, methanesulfonyl, ureide, sulfamoylamino, methanesulfonylamino and carbamoylmethylamino being preferred. The alkyl may have one or more of the abovementioned substituents, which may be the same or different.

The optionally substituted straight-chained or branched C_{1-3} alkyl as R_{11} is preferably methyl, aminomethyl, hydroxymethyl, carbamoylmethyl, methanesulfonylmethyl, ureidemethyl, guanidylmethyl, sulfamoylaminomethyl or methanesulfonylaminomethyl, with methyl, hydroxymethyl and methanesulfonylmethyl being more preferred.

The alkyl of the optionally substituted straight-chained or branched C_{1-4} alkyl as R_{14} and R_{15} of $-CO-N(R_{14})R_{15}$ as R_{11} is preferably methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl or tert-butyl, with methyl and ethyl being more preferred.

Exemplary substituents of the optionally substituted straight-chained or branched C₁₋₄alkyl as R₁₄ and R₁₅ in -CO-N(R₁₄)R₁₅ as R₁₁ include optionally substituted straight-chained or branched C₁₋₃alkoxy (exemplary substituents of the optionally substituted straight-chained or branched C₁₋₃alkoxy include hydroxy, amino, carboxyl and carbamoyl), hydroxy, amino, methylamino, dimethylamino, carbamoyl and methanesulfonyl, with hydroxy, methoxy and methanesulfonyl being preferred.

Examples of the optionally substituted straight-

25

chained or branched C_{1-4} alkyl as R_{14} and R_{15} in -CO-N(R_{14}) R_{15} as R_{11} include methyl, ethyl, propyl, isopropyl, tert-butyl, hydroxymethyl, methoxymethyl, 2-hydroxyethyl, 2-aminoethyl, 2-hydroxy-2-methylpropyl, 2-hydroxy-2-methylpropyl, 2-amino-2-methylpropyl and methanesulfonylmethyl, with methyl, ethyl, propyl, isopropyl, tert-butyl, hydroxymethyl, methoxymethyl and methanesulfonylmethyl being preferred.

The C_{3-7} cycloalkyl as R_{14} and R_{15} in -CO-N(R_{14}) R_{15} as R_{11} is preferably cyclopropyl.

The straight-chained or branched C_{1-4} alkyloxy as R_{14} and R_{15} in -CO-N(R_{14}) R_{15} as R_{11} is preferably methoxy.

The straight-chained or branched C_{1-4} alkylsulfonyl as R_{14} and R_{15} in -CO-N(R_{14}) R_{15} as R_{11} is preferably methanesulfonyl.

Examples of the heterocyclic ring as R_{14} and R_{15} in - $CO-N(R_{14})R_{15}$ as R_{11} include aliphatic or aromatic 5- or 6-membered rings containing at least one hetero atom selected from among N, S and O; specific examples include 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrazinyl, furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl and triazolyl, with 2-pyridyl being preferred.

The 3- to 7-membered cyclic amine of the optionally substituted 3- to 7-membered cyclic amine as $-N(R_{14})R_{15}$ as R_{11} include aziridine, azetidine, pyrrolidine, piperidine, piperazine and morpholine, with piperazine and morpholine being preferred. Exemplary substituents of the optionally substituted 3- to 7-membered cyclic amine include hydroxy, amino, carboxyl, alkoxycarbonyl, carbamoyl, methyl,

20

25

carboxymethyl, alkoxycarbonylmethyl and methylsulfonyl.

The optionally substituted 3- to 7-membered cyclic amine as $-N(R_{14})R_{15}$ of $-CO-N(R_{14})R_{15}$ as R_{11} is preferably 4-carboxymethylpiperazine, 4-ethoxycarbonylpiperazine, 4-methylsulfonylpiperazine or morpholine.

The -CO-N(R_{14}) R_{15} as R_{11} is preferably carbamoyl, methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, isopropylcarbamoyl, cyclopropylcarbamoyl, tert-butylcarbamoyl, 2-pyridylcarbamoyl,

methanesulfonylmethylcarbamoyl, 4-ethoxycarbonylmethyl-1piperazinecarbonyl, methoxymethylcarbamoyl,
methoxycarbamoyl, 1-morpholinylcarbonyl, 4-carboxymethyl-1piperazinecarbonyl and 4-methylsulfonyl-1piperazinecarbonyl, with carbamoyl and ethylcarbamoyl being
more preferred.

Examples of the heterocyclic ring of the optionally substituted heterocyclic ring as R₁₁ include aliphatic or aromatic 5- or 6-membered rings containing at least one hetero atom selected from among N, S and O. Exemplary substituents of the heterocyclic ring include oxo, hydroxy, methyl, ethyl and trifluoromethyl; the heterocyclic ring may have one or more of the above-mentioned substituents, which may be the same or different. Specific examples of the optionally substituted heterocyclic ring include furyl, thienyl, pyrrolyl, oxazolyl, 2-thiazolyl, 1,3,4-oxadiazol-2-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-thiadiazol-2-yl, 1,3,4-triazol-2-yl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 4-pyrimidinon-2-yl, 6-methyl-4-pyrimidinon-2-yl

15

and imidazolidine-2,4-dion-5-yl, with 2-thiazolyl, 1,3,4-oxadiazol-2-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-triazol-2-yl and 6-methyl-4-pyrimidino-2-yl being preferred.

While R_{11} has the definitions set forth above, R_{11} is preferably methyl, hydroxymethyl, carbamoylmethyl, methanesulfonylmethyl, ureidemethyl, sulfamoylaminomethyl, methanesulfonylaminomethyl, carbamoyl, methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, isopropylcarbamoyl, cyclopropylcarbamoyl, tert-butylcarbamoyl, 2-

pyridylcarbamoyl, methanesulfonylmethylcarbamoyl, 4-ethoxycarbonylmethyl-1-piperazinecarbonyl, methoxymethylcarbamoyl, methoxycarbamoyl, 1-morpholinylcarbonyl, 4-carboxymethyl-1-piperazinecarbonyl, 4-methylsulfonyl-1-piperazinecarbonyl, 2-thiazolyl, 1,3,4-oxadiazol-2-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-triazol-2-yl and 6-methyl-4-pyrimidinon-2-yl, with carbamoyl and

The straight-chained $C_{1\text{-}4}$ alkyl as R_{16} of $-OR_{16}$ as R_{12} is preferably methyl.

 R_{12} is preferably hydroxy.

ethylcarbamoyl being more preferred.

The straight-chained or branched C_{1-6} alkyl as R_{13} is preferably straight-chained or branched C_{2-5} alkyl, more preferably branched C_{3-5} alkyl, and most preferably tertbutyl.

25 The straight-chained or branched C_{2-6} alkenyl as R_{13} is preferably straight-chained or branched C_{3-5} alkenyl and more preferably branched C_{3-5} alkenyl.

The straight-chained or branched C_{2-6} alkynyl as R_{13} is

preferably straight-chained or branched C_{3-5} alkynyl and more preferably branched C_{3-5} alkynyl.

 $\ensuremath{R_{\text{17}}}$ in Formula (3) as $\ensuremath{R_{\text{13}}}$ is preferably methyl.

The C_{3-7} cycloalkyl formed by R_{18} and R_{19} in Formula (3) as R_{13} is preferably C_{3-5} cycloalkyl.

The C_{3-7} cycloalkenyl formed by R_{18} and R_{19} in Formula (3) as R_{13} is preferably C_{3-5} cycloalkenyl.

While R_{13} has the definitions set forth above, R_{13} is preferably isopropyl, tert-butyl, 1,1-dimethylpropyl and 1,1-dimethyl-2-propenyl, with tert-butyl being more preferred.

X is preferably carbonyl or methylene.

Y is preferably carbonyl or methylene.

Examples of compounds of Formula (1)

15

wherein:

Cy, R_6 , R_7 , R_8 , R_9 , R_{20} , R_{10} , R_{11} , R_{12} , R_{13} , X and Y are as defined as above

- include those compounds of which Cy is a group of Formula (2) in which at least one of R_1 , R_2 , R_3 , R_4 and R_5 is halogen and the others are hydrogen or hydroxy; R_6 is hydrogen or methyl; R_7 is hydrogen or optionally substituted amino; R_8 is hydrogen or methyl; R_9 is methyl, isopropyl, isobutyl,
- 25 sec-butyl, tert-butyl, 3-pentyl, neopentyl, cyclohexyl, phenyl, benzyl, para-hydroxybenzyl, para-fluorobenzyl or

cyclohexylmethyl; R_{20} is hydrogen; R_{10} is hydrogen or methyl; R₁₁ is methyl, hydroxymethyl, carbamoylmethyl, methanesulfonylmethyl, ureidemethyl, sulfamoylaminomethyl, methanesulfonylaminomethyl, carbamoyl, methylcarbamoyl, ethylcarbamoyl, n-propylcarbamoyl, isopropylcarbamoyl, cyclopropylcarbamoyl, tert-butylcarbamoyl, 2pyridylcarbamoyl, methanesulfonylmethylcarbamoyl, methoxymethylcarbamoyl, methoxycarbamoyl, 1morpholinylcarbonyl, 4-carboxymethyl-1-piperazinecarbonyl, 4-ethoxycarbonylmethyl-1-piperazinecarbonyl, 4-10 methylsulfonyl-1-piperazinecarbonyl, 2-thiazolyl, 1,3,4oxadiazol-2-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-triazol-2-yl or 6-methyl-4-pyrimidinon-2-yl; R_{12} is hydroxy; R_{13} is isopropyl, tert-butyl (tBu), 1,1-dimethylpropyl or 1,1-dimethyl-2propenyl. More preferred compounds are Phe(4-F)-N-Me-Val-15 N-Me-Tyr(3-tBu)-NH2, Phe(4-C1)-N-Me-Val-N-Me-Tyr(3-tBu)-NH2, Phe $(3,4-F_2)-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$, Phe(3-F)-N-Me-Val- $N-Me-Tyr(3-tBu)-NH_2$, Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe, 2-((2-amino-3-(4-fluorophenyl)propionyl)-Nmethylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-20 hydroxyphenyl)-1-(2-pyridylcarbamoyl)ethylamide, N-(2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea, N-(2-(2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-25 3-methyl)butyrylamino)-3-(3-tert-butyl-4hydroxyphenyl)propyl)sulfamide, N-[2-(3-tert-butyl-4-

hydroxyphenyl)-1-(methanesulfonylaminomethyl)ethyl]-2-[N-

(4-fluorophenylalanynoyl)methylamino]-3-methylbutanamide,

```
2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-
    methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-
    carbamidemethylethylamide, 2-((2-amino-3-(4-
    fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid
 5
    2-(3-t-butyl-4-hydroxyphenyl)-1-
    methanesulfonylmethylethylamide, 2-(2-((2-amino-3-(4-
    fluorophenyl)propionyl)-N-methylamino)-3-methyl-
    butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol, 2-(1-(2-
    ((2-amino~3-(4-fluorophenyl)propionyl)-N-methylamino)-3-
10
    methyl-butyrylamino)-2-(3-tert-butyl-4-
    hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone, 2-((2-amino-
    3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric
    acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-oxadiazol-2-
    y1)ethylamide, 2-((2-amino-3-(4-fluoropheny1)propiony1)-N-
15
    methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-
    hydroxyphenyl)-1-(1,2,4-oxadiazol-5-yl)ethylamide, 2-((2-
    amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-
    methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-
    (thiazol-2-yl)ethylamide, 2-((2-amino-3-(4-
20
    fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid
    2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-triazol-2-
    yl)ethylamide, Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH<sub>2</sub>,
    Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH2, Phe(4-F)-N-Me-Val-
    Tyr(3-tBu)-NH2, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH2, N-Et-
25
    Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH_2, Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH_2
    tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe, N-Et-
    Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val-
    N-Me-Tyr(3-tBu)-NH2, N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-
```

tBu)-NH₂, Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHMe, N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHMe, Phe(4-F)-N-Me-Val-N-Et-Tyr(3tBu)-NH2, N-Me-Phe(4-F)-N-Me-Val- N-Et-Tyr(3-tBu)-NH2, N-Et-Phe(4-F)-N-Me-Val- N-Et-Tyr(3-tBu)- NH₂, Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3tBu)-NHMe, N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHMe, Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHtBu, Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH,SO,CH, Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt, N-Et-Phe(4-F)-N-Me-10 Val-Tyr(3-tBu)-NHEt, Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH2OH, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH,OH, N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH,OH, Phe(4-F)-N-Me-Val-N-Me-Tyr(3tBu)-NHEt, N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt, N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt, Phe(4-F)-N-Me-15 Val-N-Me-Tyr(3-tBu)-NHCH2OH, N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH,OH, N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH₂OH, Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt, N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt, N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt, Phe(4-F)-N-Me-Val-N-Et-Tyr(3-20 tBu)-NHCH₂OH, N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH₂OH, N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH₂OH, Phe(4-F)-N-

Particularly preferred compounds are Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂, Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂, Phe(3,4-F₂)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt, 2-((2-amino-3-(4-

tBu)-NHnPr Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHiPr.

Me-Val-N-Me-Tyr(3-tBu)-NHcPr and Phe(4-F)-N-Me-Val-Tyr(3-

fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid
2-(3-tert-butyl-4-hydroxyphenyl)-1-(2pyridylcarbamoyl)ethylamide, 2-((2-amino-3-(4fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid

2-(3-t-butyl-4-hydroxyphenyl)-1methanesulfonylmethylethylamide and 2-(2-((2-amino-3-(4fluorophenyl)propionyl)-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol.

Compounds of Formulae (4) to (10) are useful

intermediates for synthesizing the compounds of Formula (1).

Various protected functional groups are defined in Formulae

(4) to (10); specific examples of protecting groups are

shown below:

Examples of the protecting groups of the protected substituent of the straight-chained or branched C1-3alkyl as 15 R,' include those which are known as useful protecting groups of amino or hydroxy; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl, 20 trimethylsilyl, t-butyldimethylsilyl, benzyl, benzyloxymethyl, t-butyl and tetrahydropyranyl. Examples of the protecting groups of the protected substituent of the amino as R,' include those which are known as useful 25 protecting groups of amino; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl,

trimethylsilyl, t-butyldimethylsilyl, benzyl and benzyloxymethyl. Examples of the protecting groups of the protected hydroxy include those which are known as useful protecting groups of hydroxy; specific examples are

- benzyloxycarbonyl, t-butoxycarbonyl, 9fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl,
 acetyl, trifluoroacetyl, trimethylsilyl, tbutyldimethylsilyl, benzyl, benzyloxymethyl, t-butyl and
 tetrahydropyranyl.
- amino of the straight-chained or branched C₁₋₃alkyl as R₁₁" include those which are known as useful protecting groups of amino; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl,
- allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl, trimethylsilyl, t-butyldimethylsilyl, benzyl and benzyloxymethyl.

Examples of the protecting groups of the optionally protected substituent of the straight-chained or branched

20 C₁₋₃alkyl as R₇" include those which are known as useful protecting groups of amino or hydroxy; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl,

trimethylsilyl, t-butyldimethylsilyl, benzyl, benzyloxymethyl, t-butyl and tetrahydropyranyl. Examples of the protecting groups of the optionally protected substituent of the amino as R_7 " include those which are

known as useful protecting groups of amino; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl,

- trimethylsilyl, t-butýldimethylsilyl, benzyl and benzyloxymethyl. Examples of the protecting groups of the optionally protected hydroxy as R_7 " include those which are known as useful protecting groups of hydroxy; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-
- 10 fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, trimethylsilyl, t-butyldimethylsilyl, benzyl, benzyloxymethyl, t-butyl and tetrahydropyranyl.

Examples of the protecting groups of the protected substituent of the straight-chained or branched C_{1-3} alkyl as R_{11} ' include those which are known as useful protecting groups of amino or hydroxy; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl,

acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl, trimethylsilyl, t-butyldimethylsilyl, benzyl, benzyloxymethyl, t-butyl and tetrahydropyranyl.

Examples of the protecting groups of amine as P_1 include those which are known as useful protecting groups of amino; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl, trimethylsilyl, t-

10

25

butyldimethylsilyl, benzyl and benzyloxymethyl.

Examples of the protecting groups of the protected amino of the straight-chained or branched C_{1-3} alkyl as R_{11} ''' include those which are known as useful protecting groups of amino; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl, trimethylsilyl, t-butyldimethylsilyl, benzyl and benzyloxymethyl.

Examples of the protecting groups of the optionally protected carboxyl as P_2 include those which are known as useful protecting groups of carboxyl; specific examples are methyl, ethyl, t-butyl, allyl, benzyl, 2,2,2-trichloroethyl, trimethylsilyl and t-butyldimethylsilyl.

15 Examples of the protecting groups of amine as P_3 include those which are known as useful protecting groups of amino; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl,

20 benzenesulfonyl, p-toluenesulfonyl, trimethylsilyl, tbutyldimethylsilyl, benzyl and benzyloxymethyl.

Examples of the protecting groups of the protected amino of the straight-chained or branched C_{1-3} alkyl as R_{11} ''' include those which are known as useful protecting groups of amino; specific examples are benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethyloxycarbonyl, allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl, benzenesulfonyl, p-toluenesulfonyl, trimethylsilyl, t-

15

butyldimethylsilyl, benzyl and benzyloxymethyl.

Examples of the protecting groups of the optionally protected carboxyl as P_4 include those which are known as useful protecting groups of carboxyl; specific examples are methyl, ethyl, t-butyl, allyl, benzyl, 2,2,2-trichloroethyl, trimethylsilyl and t-butyldimethylsilyl.

Examples of the protecting groups of amine as Ps

include those which are known as useful protecting groups of amino; specific examples are benzyloxycarbonyl, tbutoxycarbonyl, 9-fluorenylmethyloxycarbonyl,
allyloxycarbonyl, benzoyl, acetyl, trifluoroacetyl,
benzenesulfonyl, p-toluenesulfonyl, trimethylsilyl, tbutyldimethylsilyl, benzyl and benzyloxymethyl.

Examples of the protecting groups of the optionally protected carboxyl as P₆ include those which are known as useful protecting groups of carboxyl; specific examples are methyl, ethyl, t-butyl, allyl, benzyl, 2,2,2-trichloroethyl, trimethylsilyl and t-butyldimethylsilyl.

Salt-forming acids include inorganic acids such as

10 hydrochloric acid, hydrobromic acid, hydroiodic acid,

11 sulfuric acid and phosphoric acid, as well as organic acids

12 such as acetic acid, oxalic acid, maleic acid, fumaric acid,

13 citric acid, succinic acid, tartaric acid, methanesulfonic

13 acid and trifluoroacetic acid.

The compounds of the present invention can occur as optical isomers and the respective optical isomers and mixtures thereof are all included within the scope of the invention.

. 5

The compounds of the present invention can also be obtained as hydrates.

The subject application claims priority on the basis of Japanese Patent Application Nos. 11-20523 and 11-283163 all disclosures in their specification shall be incorporated herein by reference.

On the pages that follow, the present invention is described more specifically and the amino acids that constitute peptides, the amino acids protected by 10 protecting groups, the protecting groups, reagents and solvents are represented by the following abbreviations: Val: valine, Phe: phenylalanine, Tyr: tyrosine, Z: benzyloxycarbonyl, Boc: tert-butoxycarbonyl, CMPI: 2chloro-1-methylpyridinium iodide, PyCIU: chloro-N,N,N',N'-15 bis(tetramethylene)formamidinium hexafluorophosphate, DIC: N, N'-diisopropylcarbodiimide, HOBT: 1-hydroxylbenzotriazole monohydrate, NMM: N-methylmorpholine, TEA: triethylamine, DIEA: diisopropylethylamine, TFA: trifluoroacetic acid, THF: tetrahydrofuran, DMF: N, N-dimethylformamide, CH: 20 chloroform, MC: methylene chloride, M: methanol, N: concentrated aqueous ammonia, EA: ethyl acetate, H and nHx: n-hexane and ACT: acetone.

BEST MODE FOR CARRYING OUT THE INVENTION

25 The compounds of Formula (1)

wherein Cy, R_6 , R_7 , R_8 , R_9 , R_{20} , R_{10} , R_{11} , R_{12} , R_{13} , X and Y are as defined above

5 can basically be produced by binding Compound (I), Compound (II) and Compound (III), which are represented by the following formulae and in which functional groups other than those involved in bond formation are protected as required:

10

$$R_7$$
 R_7 R_8 R_9 R_{12} R_{13} R_{13} R_{13}

A and B in Formulae (I) to (III) are functional groups which can form a bond by the reaction with amino; specific examples are carboxyl, formyl, halomethylene of which halogen is chlorine, bromine or iodine, and sulfonyloxymethylene of which sulfonyl is methanesulfonyl, trifluoromethanesulfonyl, paratoluenesulfonyl and the like.

R₁ to R₁₀, R₁₂ and R₁₃ are as defined above, provided that

10

15

20

25

when they are reactive groups such as amino, hydroxy or carboxyl, they are protected by normally used appropriate protecting groups, if desired. R_{11} is as defined above or is a functional group which is convertible to one of the above defined groups.

The compounds of Formula (1) may be produced by first binding Compound (II) and Compound (III), optionally followed by deprotection, and then binding the resultant compound with Compound (I), optionally followed by deprotection or conversion of the functional group(s).

Alternatively, the compound of Formula (1) may be produced by first binding Compound (I) and Compound (II), optionally followed by deprotection, and then binding the resultant compound with Compound (III), optionally followed by deprotection or conversion of the functional group(s).

The compounds of the present invention may be produced by either the solid-phase process or the liquid-phase process. In the production by the solid-phase process, an automatic organic synthesizer can be used but it may be replaced by the manual procedure.

Almost all amino acids that are used for the production of the compounds of the present invention are commercially available and readily purchasable. Those which are not commercially available can be produced by well-known established methods such as the Strecker synthesis, the Bucherer method, the acetamido malonic ester method, the method of alkylating an amino group protected glycine ester and the Z- α -phosphonoglycine trimethylester

method.

5

25

Compound (I), if it has a functional group such as amino and hydroxy, with the functional group being protected, is carboxylic acid (A is $-CO_2H$), aldehyde (A is -CHO), alkylhalide (A is $-CH_2-Hal$), sulfonate (A is $-CH_2-OSO_2R$) or the like. In this case, bond can be formed by reacting A of Compound (I) with the amino group of Compound (II).

Compound (II) can, in almost all cases, be derived from an α-amino acid and B is carboxyl (-CO₂H), formyl (-CHO), halomethyl (-CH₂-Hal), sulfonyloxymethyl (RSO₂O-CH₂-) or the like. The amino group of Compound (II) is reacted with A of Compound (I) to form bond and B of Compound (II) is reacted with the amino group of Compound (III) to form bond.

Compound (III) is an ethylamine derivative and can be generally derived from an amino acid. The amino group of Compound (III) is reacted with B of Compound (II) to form bond.

When A or B is carboxyl, various methods known in peptide synthesis may be used to activate the carboxyl for condensation with the amino group and such methods include the use of benzotriazol-1-yl-oxy-

tris(dimethylamino)phosphonium hexafluorophosphate (BOP),

the use of PyCIU, the use of bromo tripyrrolidino phosphonium hexafluorophosphate (PyBrop), the use of chlorotripyrrolidino phosphonium hexafluorophosphate (PyClop), the use of O-(7-azabenzotriazol-1-yl)-1,1,3,3-

25

tetramethyluronium hexafluorophosphate (HATU), the use of DIC, the use of N-ethyl-N'-3-dimethylaminopropyl carbodiimide (WSCI), the use of dicyclohexyl carbodiimide (DCC), the use of diphenylphosphorylazide (DPPA), the use of CMPI, the use of 2-bromo-1-methylpyridinium iodide (BMPI), the combination of one of these reagents with HOBT or N-hydroxysuccinimide (HONSu), the mixed acid anhydride method using isobutyl chloroformate or the like, the method of changing the carboxyl group to a pentafluorophenyl ester (OPfp), a p-nitrophenyl ester (ONP) or an N-hydroxysuccinimide ester (OSu), and the combination of one of these methods with HOBT. If necessary, a base such as TEA, DIEA, NMM or 4-dimethylaminopyridine (DMAP) may be

When A or B is formyl, bond can be formed by conventional reductive bond forming reaction with amino group. When A or B is halomethylene or sulfonyloxymethylene, bond can be formed by substitution reaction with amino group.

added to accelerate the reaction.

20 .The compounds of the present invention can also be produced by applying the specific methods of production to be described in the following Examples.

On the pages that follow, the production of the compounds of the invention is described more specifically by reference to Examples, to which the invention is by no means limited.

In order to demonstrate the utility of the compounds of the invention, typical examples of them were subjected

to pharmacological tests on the motilin receptor antagonistic action and the results are described under Test Examples. The chemical structural formulae or chemical names of the compounds produced in Examples are set forth in Tables A-1 to A-10 and Tables B-1 to B-18.

Table A-1

Example No.	Structural formula or chemical name
1	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
2	Phe(4-C1)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
3	${\tt Phe(3,4-F_2)-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2}$
4	Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
5	Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
6	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHSO ₂ Me TFAsalt
7	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe
8	2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric 2- (3-tertbutyl-4-hydroxyphenyl)-1-(2-pyridylcarbamoyl)ethylamide
9	N-(2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea
10	N-(2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)guanidine
11	N-(2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)-N'-cyano-N''-methylguanidine
12	2-(2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tertbutyl-4-hydroxyphenyl)propylsulfamide

Table A-2

Example No.	Structural formula or chemical name
13	2-(2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tertbutyl-4-hydroxyphenyl)propylaminoacetamide
14	N-[2-(3-tertbutyl-4-hydroxyphenyl)-1- (methanesulfonylaminomethyl)ethyl]-2- [N-(4- fluorophenylalaninoyl)methylamino]-3-methylbutanamide
15	2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-carbamidemethylethylamide
16	2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-methanesulfonylmethylethylamide
17	2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)- 3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol
18	(2-(2-(2-amino-3-(4-fluorophenyl)propylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)methylsulfone
19	2-(1-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-2-(3-tertbutyl-4-hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone
20	5-(1-(2-((2-amino-3-(4-fluorophenyl)propanoyl)-N-methylamino)-3-methylbutyrylamino)-2-(3-tertbutyl-4-hydroxyphenyl)ethyl)imidazolidine-2,4-dione
21	2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-oxadiazol-2-yl)ethylamide

Table A-3

Example No.	Structural formula or chemical name
22	2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)- 3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1- (1,2,4-oxadiazol-5-yl)ethylamide
23	2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tertbutyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide
24	2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-triazol-2-yl)ethylamide
25	2-[2-amino-3-(4-fluorophenyl)propyl]amino-3-methylbutyric acid 2-(3-tertbutyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

Table A-4

Structural formula or chemical name
Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH ₂
N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)- NH ₂
N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)- NH ₂
Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe
N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)- NHMe
N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)- NHMe
N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)- NH ₂
N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)- NH ₂
Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHMe
N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)- NHMe
N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)- NHMe
Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NH ₂
N-Me-Phe(4-F)-N-Me-Val- N-Et-Tyr(3-tBu)- NH ₂
N-Et-Phe(4-F)-N-Me-Val- N-Et-Tyr(3-tBu)- NH ₂
Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHMe
N-Me-Phe(4-F)-N-Me-Val- N-Et-Tyr(3-tBu)- NHMe
N-Et-Phe(4-F)-N-Me-Val- N-Et-Tyr(3-tBu)- NHMe
Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NH ₂
N-Me-Phe(4-F)-N-Et-Val-Tyr(3-tBu)- NH ₂
N-Et-Phe(4-F)-N-Et-Val-Tyr(3-tBu)- NH ₂
Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHMe
N-Me-Phe(4-F)-N-Et-Val-Tyr(3-tBu)- NHMe
N-Et-Phe(4-F)-N-Et-Val-Tyr(3-tBu)- NHMe

Table A-5

Example	Structural formula or chemical name	
No.	Del de la	
51	Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NH ₂	
52	N-Me-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)-NH ₂	
53	N-Et-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)-NH ₂	
54	Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHMe	
55	N-Me-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)-NHMe	
56	N-Et-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)-NHMe	
57	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NH ₂	
58	N-Me-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)-NH ₂	
59	N-Et-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)-NH ₂	
60	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHMe	
61	N-Me-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)-NHMe	
62	N-Et-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)-NHMe	
63	Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHtBu	
64	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH ₂ SO ₂ CH ₃	
65	2-(2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-carbamoylethyl)-N-methyl-3-methylbutanamide	
66	2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-carbamoylethyl)-N-methyl-3-methylbutanamide	
67	2-(N-acetyl-2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-carbamoylethyl)-N-methyl-3-methylbutanamide	
68	2-(2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-carbamoylethyl)-N-ethyl-3-methylbutanamide	
69	2-(2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-hydroxymethylethyl)-3-methylbutanamide	
70	2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-hydroxymethylethyl)-3-methylbutanamide	

Table A-6

Example No.	Structural formula or chemical name
71	2-(2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-methylethyl)-N-methyl-3-methylbutanamide
72	2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N- (2-(3-tert-butyl-4-hydroxyphenyl)-1-methylethyl)-N- methyl-3-methylbutanamide
73	2-(N-acetyl-2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-methylethyl)-N-methyl-3-methylbutanamide
74	2-(2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-methylethyl)-3-methylbutanamide
75	2-((2-amino-3-(4-fluorophenyl)propyl)-N-methylamino)- N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-methylethyl)-3- methylbutanamide
76	2-(N-acetyl-2-amino-3-(4-fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-methylethyl)-3-methylbutanamide
77	2-((2-amino-3-(4-fluorophenyl)propyl)-N-methylamino)- N-(2-(3-tert-butyl-4-hydroxyphenyl)-1- hydroxymethylethyl)-N,3-dimethylbutanamide
78	2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N-(1-aminomethyl-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-3-methylbutanamide

Table A-7

Example No.	Structural formula or chemical name
101	Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt
102	N-Me-Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt
103	N-Et-Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt
104	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt
105	N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt
106	N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt
107	Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt
108	N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt
109	N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt
110	Phe(4-F)-N-Et-Val -Tyr(3-tBu)-NHEt
111	N-Me-Phe(4-F)-N-Et-Val -Tyr(3-tBu)-NHEt
112	N-Et -Phe(4-F)-N-Et-Val -Tyr(3-tBu)-NHEt
113	Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHEt
114	N-Me-Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHEt
115	N-Et-Phe(4-F)-N-Et-Val-Me-Tyr(3-tBu)-NHEt
116	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt
117	N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt
118	N-Et-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt
119	Phe(4-F)-N-Me-Val- Tyr(3-t Bu)-NH-n-Pr
120	Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH-i-Pr
121	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-t Bu)-NH-c-Pr
122	Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH ₂ OH
123	N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH ₂ OH
124	N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH ₂ OH
125	N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH2OH

Table A-8

Example No.	Structural formula or chemical name
126	N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH ₂ OH
127	Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH ₂ OH
128	N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH ₂ OH
129	N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH ₂ OH
130	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH ₂ OH
131	N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH ₂ OH
132	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH ₂ OH
133	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N- methylpropanolyamino]-N-((1S)-1-{[3-(tert-butyl)-4- hydroxyphenyl]methyl}-2-morpholin-4-yl-2-oxoethyl)-3- methyl-N-methylbutanamide
134	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-N-((1S)-1-{[3-(tert-butyl)-4-hydroxyphenyl]methyl}-2-[4-(methylsulfonyl)piperazinyl]-2-oxoethyl)-3-methyl-N-methylbutanamide
135	ethyl 2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-3,N-dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl] propanoly)piperazinyl]acetate
136	2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-3,N-dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl]propanoly)piperazinyl]acetic acid
137	Phe(4-F)-N-Me-Val-N-Pr-Tyr(3-tBu)-NH ₂
138	Phe(4-F)-N-Me-Abu-N-Me-Tyr(3-tBu)-NH ₂
139	Phe(4-F)-N-Me-D-Abu-N-Me-Tyr(3-tBu)-NH ₂
140	Phe(4-F)-N-Me-Nva-N-Me-Tyr(3-tBu)-NH ₂

Table A-9

Example No.	Structural formula or chemical name
141	Phe(4-F)-N-Me-D-Nva-N-Me-Tyr(3-tBu)-NH ₂
142	Phe(4-F)-N-Me-Ile-N-Me-Tyr(3-tBu)-NH ₂
143	Phe(4-F)-N-Me-D-Ile-N-Me-Tyr(3-tBu)-NH ₂
144	Phe(4-F)-N-Me-Leu-N-Me-Tyr(3-tBu)-NH ₂
145	Phe(4-F)-N-Me-D-Leu-N-Me-Tyr(3-tBu)-NH2
146	(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-N-methylpent-4-enamide
147	(2R)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanolyamino]-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-N-methylpent-4-enamide
148	Phe(4-F)-N-Me-Leu(γ-Me)-N-Me-Tyr(3-tBu)-NH ₂
149	Phe(4-F)-N-Me-D-Leu(γ -Me)-N-Me-Tyr(3-tBu)-NH ₂
150	Phe(4-F)-N-Me-Ala(β-CF ₃)-N-Me-Tyr(3-tBu)-NH ₂
151	Phe(4-F)-N-Me-Chg-N-Me-Tyr(3-tBu)-NH ₂
152	Phe(4-F)-N-Me-D-Chg-N-Me-Tyr(3-tBu)-NH ₂
153	Phe(4-F)-N-Me-Cha-N-Me-Tyr(3-tBu)-NH ₂
154	Phe(4-F)-N-Me-D-Cha-N-Me-Tyr(3-tBu)-NH ₂
155	Phe(4-F)-N-Me-Phe-N-Me-Tyr(3-tBu)-NH ₂
156	Phe(4-F)-N-Me-D-Phe-N-Me-Tyr(3-tBu)-NH ₂
157	Phe(4-F)-N-Me-Phe(4-F)-N-Me-Tyr(3-tBu)-NH ₂
158	Phe(4-F)-N-Me-D-Phe(4-F)-N-Me-Tyr(3-tBu)-NH ₂
159	Phe(4-F)-N-Me-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
160	Phe(4-F)-N-Me-D-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
161	Phe(4-F)-N-Me-Tyr-N-Me-Tyr(3-tBu)-NH ₂
162	Phe(4-F)-N-Me-D-Tyr-N-Me-Tyr(3-tBu)-NH ₂
163	Phe(4-F)-N-Me-Ala(β-2-thienyl)-N-Me-Tyr(3-tBu)-NH ₂

Table A-10

Example No.	Structural formula or chemical name
164	Phe(4-F)-N-Me-D-Ala(β-2-thienyl)-N-Me-Tyr(3-tBu)-NH ₂
165	Phe(4-F)-N-Me-Ala(β-c-Pr)-N-Me-Tyr(3-tBu)-NH ₂
166	Phe(4-F)-N-Me-Phg-N-Me-Tyr(3-tBu)-NH ₂
167	Phe(4-F)-N-Me-α-Me-Phe-Tyr(3-tBu)-NH ₂
168	Phe(4-F)-N-Me-α-Me-Phe-Tyr(3-tBu)-NH ₂
169	Phe(4-F)-N-Me-α-Me-Leu-Tyr(3-tBu)-NH ₂
170	Phe(4-F)-N-Me-α-Me-D-Abu-Tyr(3-tBu)-NH ₂
171	Phe(4-F)-N-Me-α-Me-D-Val-Tyr(3-tBu)-NH ₂
172	(2S)-N-[(N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}carbamoyl)cyclopentyl]-2-amino-3-(4-fluorophenyl)-N-methylpropanamide
173	(2S)-N-[(N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}carbamoyl)cyclohexyl]-2-amino-3-(4-fluorophenyl)-N-methylpropanamide
174	Phe(4-F)-N-Me-Tle-Tyr(3-tBu)-NH ₂
175	Phe(4-F)-N-Me-Tle-N-Me-Tyr(3-tBu)-NH ₂
176	Phe(4-F)-N-Me-D-Phg-N-Me-Tyr(3-tBu)-NH ₂
177	(2S)-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-2-[2-amino-3-(2-fluoro-4-pyridyl)-N-methylpropanoylamino]-3-methyl-N-methylbutanamide
178	(2S)-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-2-[2-amino-3-(2-fluoro-5-pyridyl)-N-methylpropanoylamino]-3-methyl-N-methylbutanamide
179	(2S)-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-2-{2-amino-N-methyl-3-[4-(trifluoromethyl)phenyl]propanoylamino}-3-methyl-N-methylbutanamide
180	(2S)-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-2-{2-[(4-fluorophenyl)methyl]-3-hydroxy-N-methylpropanoylamino}-3-methyl-N-methylbutanamide
181	Ala(β-4-pyridyl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
182	Phe(4-CN)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
183	Trp-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
L	

Table B-1

Example No.	Structural formula
1	CH ₃ O NH ₂ PBu P ₃ C CH ₃ O CH ₃ O NH ₂ CH ₃ O NH ₂
2	CI CH_3 OH t
3	F CH ₃ O NH ₂ CH ₃ O NH ₂ CH ₃ O CH ₃ O CH ₃ O
4	F CH_3 O NH_2 CH_3 O CH_3 O OH OH OH OH OH OH OH
5	$\begin{array}{c c} F & & OH \\ \hline \\ H_2N & N & NH_2 \\ \hline \\ H_3C & CH_3O \\ \hline \\ CH_3O \\ \end{array}$

Table B-2

Example No.	Structural formula
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	CH ₃ O H t-Bu H OCH ₃ O CH ₃ O CH ₃ O CH ₃
8	CH ₃ O N D D D D D D D D D D D D D D D D D D
9	$\begin{array}{c ccccc} F & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$
10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
11	CH ₃ O H t-Bu NHMe NCN

Table B-3

Example No.	Structural formula
12	CH ₃ O H t-Bu CH ₃ O H SO ₂ NH ₂ CH ₃ C CH ₃
13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
14	CH ₃ O H t-Bu h SO ₂ CH ₃
15	$\begin{array}{c c} F & OH \\ \hline \\ H_2N & N \\ \hline \\ H_3C & CH_3 \\ \end{array}$
16	$\begin{array}{c c} F & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
17	CH ₃ O OH t-Bu H_2N H_3C CH_3 CH_3 OH CH_3

Table B-4

Example No.	Structural formula
18	H ₂ N H ₃ C CH ₃ CH ₃ OH t-Bu
19	CH ₃ O N H CH ₃ CH ₃ CH ₃ CH ₃
20	CH ₃ O H t-Bu N O N O NH O NH O NH O NH O NH O NH O N
21	F CH_3 OH t EH_2N H_3C CH_3 N
22	CH ₃ O t-Bu OH CH ₃ O N N N N N N N N N N N N N N N N N N N
23	CH ₃ O N S t-Bu P ₃ C CH ₃ N

Table B-5

Example No.	Structural formula
24	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
25	H ₂ N H ₃ C CH ₃ CH ₃ OH

5 Table B-6

Example No.	Structural formula
26	HO F Me O NH ₂ N
27	HO Me O NH ₂ N

Table B-7

Example No.	R ₃₁	R ₃₂	R ₃₃	R ₃₄	Example No.	R ₃₁	R ₃₂	R ₃₃	R ₃₄
28	Н	Me	Н	H	54	Н	Et	Me	Me
29	Me	Me	Н	H	55	Me	Et	Me	Me
30	Et	Me	Н	Н	56	Et	Et	Me	Me
31	H	Me	Н	Me	57	Н	Et	Et	Ħ
32	Me	Me	H	Me	58	Me	Et	Et	Н
33	Et	Me	Н	Me	59	Et	Et	Et	H
34	Me	Me	Me	H	60	Н	Et	Et	Me
35	Et	Me	Me	H	61	Me	Et	Et	Me
36	H	Me	Ме	Me	62	Et	Et	Et	Me
37	Мe	Me	Me	Me	101	H	Me	н	Et
38	Et	Me	Me	Me	102	Me	Me	Н	Et
39	Н	Me	Et	н	103	Et	Me	Н	Et
40	Me	Me	Et	H	122	Н	Me	н	CH ₂ OH
41	Et	Me	Et	H	123	Me	Me	H	CH ₂ OH
42	H	Ме	Et	Me	124	Et	Me	H	CH ₂ OH
43	Me	Me	Et	Me	104	Н	Me	Me	Et
44	Et	Ме	Et	Me	105	Me	Me	Me	Et
45	H	Et	H	Н	106	Et	Me	Me	Et
46	Ме	Et	H	H	132	Н	Me	Мe	CH ₂ OH
47	Et	Et	H	H	125	Me	Ме	Me	CH ₂ OH
48	H	Et	Н	Me	126	Et	Me	Me	CH ₂ OH
49	Me	Et	H	Me	107	H	Me	Et	Et
50	Et	Et	H	Me	108	Me	Me	Et	Et
51	H	Et	Me	H	109	Et	Me	Et	Et
52	Me	Et	Me	H	127	H	Me	Et	CH₂OH
53	Et	Et	Ме	Н	128	Me	Me	Et	CH₂OH
					129	Et	Me	Et	CH ₂ OH

Table B-8

Example No.	R ₃₁	R ₃₂	R ₃₃	R ₃₄
110	Н	Et	Н	Et
111	Me	Et	H	Et
112	Et	Et	H	Et
113	H	Et	Me	Et
114	Me	Et	Me	Et
115	Et	Et	Me	Et
116	H	Et	Et	Et
117	Me	Et	Et	Et
118	Et	Et	Et	Et
130	H	Et	Et	CH₂OH
131	Me	Et	Et	CH ₂ OH
121	H	Me	Me	cPr
119	H	Me	H	nPr
120	H	Me	H	iPr
137	H	Me	nPr	H
63	H	Me	H	tBu
64	Н	Me	Me	CH ₂ SO ₂ CH ₃

Table B-9

Example No.	R ₃₂	R ₃₃	R ₁₁	Example No.	R ₃₂	R ₃₃	R ₁₁
65	Н	Me	CONH ₂	72	Me	Me	Me
66	Me	Me	CONH ₂	73	Ac	Me	Me
67	Ac	Me	CONH ₂	74	H	H	Me
68	H	Et	CONH ₂	75	Me	H	Me
69	H	H	CH ₂ OH	76	Ac	H	Me
70	Me	Н	CH_2OH	77	Me	Me	CH ₂ OH
71	н	Me	Me	78	Me	Н	CH ₂ NH ₂

Table B-10

Example No.	Structural formula
133	H ₂ N N N O N N O N N O
134	Me O N N N N N N N N N N N N N N N N N N
135	H ₂ N N CO ₂ Et
136	H ₂ N N N CO ₂ H
138	H ₂ N N NH ₂ NH ₂ NH ₂
139	Me O NH ₂ NH ₂ O Et Me O

Table B-11

Example No.	Structural formula
140	H ₂ N NH ₂ OH NH ₂ OH
141	Me O NH ₂ NH ₂ NH ₂
142	Me O NH ₂ NH ₂ NH ₂
143	Me O NH ₂ NH ₂ SBu Me O
144	H ₂ N N NH ₂ NH ₂ NH ₂
145	Me O NH ₂ NH ₂ NH ₂
146	Me O NH ₂ NH ₂ NH ₂

Table B-12

Table B-12	2
Example No.	Structural formula
147	H ₂ N N NH ₂ NH ₂
148	Me O NH ₂ NH ₂ NH ₂
149	H ₂ N N NH ₂ NH ₂
150A, 150B	H ₂ N N N NH ₂ OCH ₂ Me OCF ₃
151	H ₂ N N N NH ₂ Me O
152	H ₂ N N NH ₂ NH ₂

Table B-13

Example No.	Structural formula
153	H ₂ N N NH ₂ NH ₂
154	Me O NH ₂ NH ₂
155	Me O NH ₂ Me O NH ₂
156	Me O NH ₂ NH ₂ Me O
157	H ₂ N O NH ₂ Me O NH ₂ Me O NH ₂

Table B-14

Example No.	Structural formula
158	Me O NH ₂ Ne O NH ₂ F
159	H ₂ N O NH ₂ Me O NH ₂ Me O CI
. 160	H ₂ N OH NH ₂ NH ₂ OCI
161	H ₂ N OH NH ₂ OH OH
162	Me O NH ₂ OH OH

Table B-15

Example No.	Structural formula
163	H ₂ N N NH ₂ NH ₂
164	H ₂ N N NH ₂ NH ₂
165	Me O NH ₂ Me O NH ₂ Me O
166	H ₂ N N NH ₂ NH ₂ Me O
167	H ₂ N NH ₂
168	H ₂ N NH ₂ NH ₂

Table B-16

Example No.	Structural formula
169	H ₂ N O NH ₂ NH ₂
170	H ₂ N H O NH ₂
171	H ₂ N NH ₂ NH ₂ NH ₂
172	H ₂ N H ₂ OH NH ₂ OH
173	H ₂ N NH ₂ NH ₂
174	H ₂ N H ₂ O NH ₂ O NH ₂

Table B-17

Example No.	Structural formula
175	Me O NH ₂ Ne O NH ₂ Ne O
176	H ₂ N N NH ₂ NH ₂ Me O
177A, 177B	F H ₂ N N CONH ₂
178A, 178B	H ₂ N N CONH ₂
179A, 179B	F ₃ C
180A, 180B	FON CONH2

Table B-18

Example No.	Structural formula
181	Me O CONH ₂
182	NC Me O OH O
183	H tBu OH Me O N CONH ₂ Me

In the following Examples, Merck Silica gel 60 (0.063-0.200 mm) or Merck Silica gel 60 (0.040-0.063 mm) was used for silica gel column chromatography unless otherwise stated.

In the following examples, mass spectra (MA) and ¹H-NMR were taken by the following equipment:

MA (EI-MS): SHIMADZU GCMS-QP5050A or SHIMADZU GCMS-QP1000.

MA (ESI-MS): Extrel ELQ400

MA (FAB-MS): JASCO 70-250SEQ

10 ¹H-NMR: JEOL JNM-EX-270 (270 MHz) or Bruker ARX300 (300 MHz)

Reaction conditions, data from the equipment, yielded amount and the like of Example 28 onward were shown in Tables in which "Reaction time" means stirring time and "Column sol." means the eluting solvent for silica gel column chromatography.

In the following Examples, the retention time (min.) on HPLC is measured under the following conditions:

Apparatus: HITACHI L-6300 or Young Lin M930

- Column: $\mu BONDASPHERE~5\mu~C18~100A~(3.9\times150~mm)$ Detecting conditions: linear gradient of B (10-80%) using A (0.1% TFA/distilled water) and B (0.1% TFA/acetonitrile), 35 min., flow of rate 1 ml/min, detected at 280 nm (UV).
- 25 Example 1

Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

(1) Synthesis of Tyr(3-tBu)-OMe

To a solution of Tyr-OMe·HCl (500 g, 2.16 mol) in

tert-butyl acetate (4500 ml), 70% HClO₄ (278 ml, 3.24 mol) was added and stirred for 4.5 days at room temperature.

The reaction mixture was evaporated under reduced pressure; the thus obtained residue was dissolved in ethyl acetate,

- poured into a saturated aqueous NaHCO₃ solution and stirred. The organic layer was collected and washed with a saturated aqueous NaHCO₃ solution and saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue
- was mixed with ether (950 ml) and at room temperature, stirred overnight. The thus precipitated crystals were collected by filtration to give Tyr(3-tBu)-OMe (242 g, 45%).

 ¹H-NMR(CDCl₃): δ 1.38(9H,s), 2.83(1H,dd,J=13.7,7.4Hz), 3.02(1H,dd,J=13.7,5.1Hz), 3.70(1H,dd,J=7.4,5.1Hz),
- 15 3.73(3H,s), 6.55(1H,d,J=7.9Hz), 6.85(1H,dd,J=7.9,1.7Hz), 7.04(1H,d,J=1.7Hz)
 - (2) Synthesis of Z-Tyr(3-t-Bu)-OMe

To a solution of Tyr(3-tBu)-OMe (41.4 g, 0.165 mol) in 1,4-dioxane (170 ml) and H₂O (170 ml), under cooling

with ice, sodium carbonate (26.2 g, 0.247 mol) was added and then Z-Cl (24.7 ml 0.173 mol) was further added over 25 min., followed by stirring for 2.5 hours at room temperature. The reaction mixture was mixed with water, extracted with chloroform, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus precipitated crystals were collected by filtration, washed with n-hexane and dried to give Z-Tyr(3-t-Bu)-OMe (54.7 g, 86%).

¹H-NMR(CDCl₃): δ 1.36(9H,s), 3.04(2H,brd,J=5.6Hz), 3.72(3H,s), 4.57-4.68(1H,m), 4.97(1H,brs), 5.10(2H,s), 5.20(1H,brd,J=7.9Hz), 6.55(1H,d,J=7.9Hz), 6.78(1H,dd,J=7.9,2.0Hz), 6.95(1H,d,J=2.0Hz), 7.26-

 $5 \quad 7.41(5H,m)$

(3) Synthesis of Z-Phe(3-tBu-4-benzyloxy)-OMe

A solution of Z-Tyr(3-tBu)-OMe (1.0 g, 2.60 mmol), benzyl bromide (0.56 ml, 4.68 mmol) and potassium carbonate (1.08 g, 7.79 mmol) in DMSO (5 ml) was stirred overnight.

- The resulting mixture was mixed with a saturated aqueous ammonium chloride solution, extracted with ethyl acetate.

 The organic layer was washed with water and then saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure;
- the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:5) to give Z-Phe(3-tBu-4-benzyloxy)-OMe (1.44 g, 99%).

 $^{1}\text{H-NMR(CDCl}_{3}): \delta 1.36(9\text{H,s}), 3.05(2\text{H,d,J=5.6Hz}), 3.71(3\text{H,s}),$

- 20 4.60-4.68(1H,m), 5.06(2H,s), 5.09(2H,s),
 - 5.24(1H,brd,J=8.3Hz), 6.82(1H,d,J=8.5Hz),
 - 6.88(1H,dd,J=8.5,1.8Hz), 7.00(1H,d,J=1.8Hz), 7.27-
 - 7.50(10H,m)
 - (4) Synthesis of Z-N-Me-Phe(3-tBu-4-benzyloxy)-NH₂
- To a solution of Z-Phe(3-tBu-4-benzyloxy)-OMe (1.44 g, 2.60 mmol) in 1,4-dioxane (30 ml), a 2N aqueous sodium hydroxide solution (3 ml) was added and stirred for 2 hours. The resulting mixture was mixed with water and washed with

10

15

ethyl acetate; the aqueous layer was rendered acidic by the addition of dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure, giving crude Z-Phe(3-tBu-4-benzyloxy)-OH (1.35 g).

To a solution of the thus obtained crude Z-Phe(3-tBu-4-benzyloxy)-OH (1.35 g) in THF (7 ml), under cooling with ice, methyl iodide (1.3 ml, 20.8 mmol) was added and then sodium hydride (60% in oil, 312 mg, 7.8 mmol) was added slowly, followed by stirring for 21 hours at room temperature. The resulting mixture was mixed with water, rendered acidic by the addition of dilute hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure, giving crude Z-N-Me-Phe(3-tBu-4-benzyloxy)-OH (1.60 g).

Phe(3-tBu-4-benzyloxy)-OH (1.60 g) in THF (25 ml), under cooling with ice, ethyl chloroformate (0.27 ml, 2.86 mmol) and NMM (0.31 ml, 2.86 mmol) were added in that order. The mixture was stirred for 15 min. and further stirred for another 15 min. while bubbling gaseous ammonia therein.

The resultant mixture was left standing at room temperature, diluted with ethyl acetate and washed with water and then saturated brine. The organic layer was dried over anhydrous magnesium sulfate and evaporated to remove the

solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 2:1) to give Z-N-Me-Phe(3-tBu-4-benzyloxy)-NH₂ (1.08 g, 88%, in 3 steps).

- 1 H-NMR(CDCl₃): δ 1.37(9H,s), 2.87(3H,s), 2.86-2.99(1H,m), 3.21-3.35(1H,m), 4.73-4.95(1H,m), 5.06(2H,s), 5.09(2H,s), 5.67,5.83 and 6.13(3/2H,brs), 6.78-7.47(27/2H,m)
 - (5) Synthesis of N-Me-Tyr(3-tBu)-NH,

To a solution of Z-N-Me-Phe(3-tBu-4-benzyloxy)-NH₂

- 10 (1.08 g, 2.28 mmol) in methanol (20 ml), 10%
 palladium/carbon (100 mg) was added and stirred in a
 hydrogen atmosphere at room temperature overnight. The
 mixture was filtered and the filtrate was concentrated
 under reduced pressure; the thus obtained residue was
- subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1) to give N-Me-Tyr(3-tBu)-NH₂ (0.55 g, 96%).

 $^{1}\text{H-NMR}(CDCl_{3}): \delta 1.40(9\text{H,s}), 2.31(3\text{H,s}),$

- 2.63(1H,dd,J=14.7,10.7Hz), 3.10-3.19(2H,m), 5.24(1H,brs),
- 20 5.38(1H,brs), 6.63(1H,d,J=7.9Hz), 6.91(1H,dd,J=7.9,1.8Hz), 7.05(1H,brs), 7.10(1H,d,J=1.8Hz)
 - (6) Synthesis of Z-N-Me-Val-N-Me-Tyr(3-tBu)-NH,

To a solution of Z-N-Me-Val-OH (700 mg, 2.64 mmol), $N-Me-Tyr(3-tBu)-NH_2 \ (0.55\ g,\ 2.20\ mmol) \ and \ CMPI \ (674\ mg)$

2.64 mmol) in THF (22 ml), under cooling with ice, TEA (0.61 ml) was added and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed

with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 3:2) to give Z-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.98 g, 90%).

 $^{1}\text{H-NMR(CDCl}_{3}): (\text{four rotamers}) \ \delta \ 0.07, \ 0.32, \ 0.63, \ 0.74,$ 0.79, 0.81, 0.84 and 0.89(6H,d,J=6.3-6.6Hz), 1.30, 1.33, 1.37 and 1.39(9H,s), 2.13-2.33(1H,m), 2.34, 2.41, 2.78,

- 10 2.87 and 2.98(6H,s), 2.79-3.22(2H,m), 4.40 and 4.32(1H,d,J=10.6Hz), 4.60-5.43(5H,m), 5.96(1H,brs), 6.23-7.12(3H,m), 7.26-7.47(5H,m)
 - (7) Synthesis of N-Me-Val-N-Me-Tyr(3-tBu)-NH $_2$ (Intermediate I-b3 in the following Tables)
- A mixture of Z-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.98 g, 1.97 mmol) and 20% palladium hydroxide/carbon (0.10 g) in methanol (20 ml) was stirred at room temperature in a hydrogen atmosphere for 1.5 hours. The reaction mixture was filtered and the filtrate was concentrated under
- reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1) to give N-Me-Val-N-Me-Tyr(3-tBu)-NH, (0.71 g, 99%).

 $^{1}\text{H-NMR(CDCl}_{3})\!:\!(\text{two rotamers})$ δ 0.35,0.71,0.92 and

25 0.96(6H,d,J=6.9Hz), 1.36 and 1.37(9H,s), 1.73-1.81 and 2.03-2.17(1H,m), 1.74 and 2.23(3H,s), 2.64(1H,d,J=9.2Hz), 2.90-3.04(1H,m), 2.93 and 3.00(3H,s), 3.19 and 4.60(1H,dd,J=14.7,5.8 and 10.7,3.8Hz), 5.29,5.32 and

10

15

6.06(2H,brs), 5.59(1H,dd,J=10.4,5.8Hz), 6.54 and 6.60(1H,d,J=7.9Hz), 6.79 and 6.93(1H,dd,J=7.9,2.0 and 1.7Hz), 7.01 and 7.07(1H,d,J=2.0 and 1.7Hz), 8.10(1H,brs)

(8) Synthesis of Z-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

To a solution of Z-Phe(4-F)-OH (1.09 g, 3.44 mmol), N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (1.04 g, 2.87 mmol) and CMPI (878 mg, 3.44 mmol) in THF (30 ml), TEA (0.96 ml, 6.88 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: n-hexane:ethyl acetate =1:3) to give Z-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (1.73 g, 91%).

 $^{1}\text{H-NMR(CDCl}_{3}): (\text{two rotamers}) \ \delta \ 0.57, 0.73, 0.75 \ \text{and}$ 0.90(6H,d,J=6.3-6.6Hz), 1.33 and 1.39(9H,s), 2.18-3.43(5H,m), 2.40 and 3.03(3H,s), 2.74 and 3.01(3H,s),

- 20 4.62-5.49(7H,m), 5.95(1H,brs), 6.44(1H,d,J=7.9Hz), 6.57-7.35(12H,m)
- (9) Synthesis of Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
 A mixture of Z-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
 (1.73 g, 2.61 mmol) and 10% palladium/carbon (340 mg) in

 25 methanol (50 ml) was stirred at room temperature in a hydrogen atmosphere for 17 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to silica

gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1) to give Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (1.25 g, 91%). EI-MS:528(M⁺)

- 1 H-NMR(CDCl₃):(two rotamers) δ 0.50,0.76,0.79 and 0.93(6H,d,J=6.3-6.9Hz), 1.34 and 1.39(9H,s), 2.19-2.95(5H,m), 2.50 and 3.03(3H,s), 2.81 and 3.02(3H,s), 3.17 and 3.34(1H,dd,J=15.2,5.9 and 13.9,6.9Hz), 3.66 and 3.84(1H,dd,J=8.9,4.6 and 8.6,4.6Hz), 4.91 and
- 5.07(1H,d,J=10.6Hz), 5.07,5.19,5.30,5.98 and 6.64(2H,brs),
 5.49(1H,dd,J=10.6,5.9Hz), 6.35 and 6.62(1H,d,J=7.9Hz),
 6.74(2/3H,dd,J=7.9,1.7Hz), 6.95-7.11(19/3H,m)

Example 2

- Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
- (1) Synthesis of Boc-Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

 To a solution of Boc-Phe(4-Cl)-OH (354 mg, 1.18 mmol),

 N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.33 g, 0.908 mmol) and CMPI

 (301 mg, 1.18 mmol) in THF (8 ml), TEA (0.38 ml, 2.72 mmol)
- was added under cooling with ice and stirred at room
 temperature overnight. The reaction mixture was mixed with
 water and extracted with ethyl acetate. The organic layer
 was washed with saturated brine, dried over anhydrous
 magnesium sulfate and evaporated to remove the solvent
- under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 40:1:0.05) to give Boc-Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.45 g,

77%).

(2) Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

To a solution of Boc-Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.45 g, 0.697 mmol) in methylene chloride (4 ml),

5 TFA (3 ml) was added, stirred for 20 min. and evaporated to remove the solvent under reduced pressure. The thus obtained residue was mixed with a saturated aqueous NaHCO₃ solution, and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 30:1:0.1) to give Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (355 mg, 93%).

15 EI-MS:544 and $546(M^{+})$

 1 H-NMR(CDCl₃):(two rotamers) δ 0.49,0.75,0.78 and 0.93(6H,d,J=6.3-6.9Hz), 1.34 and 1.38(9H,s), 2.10-2.92(5H,m), 2.50 and 3.04(3H,s), 2.80 and 3.01(3H,s), 3.13 and 3.33(1H,dd,J=15.2,5.9 and 13.9,6.9Hz), 3.67 and

3.85(1H,dd,J=8.9,5.0 and 8.6,5.0Hz), 4.90 and 5.06(1H,d,J=10.6Hz), 5.33,5.41, 5.99 and 6.61(2H,brs), 5.49(1H,dd,J=10.6,5.9Hz), 6.37 and 6.63(1H,d,J=7.9Hz), 6.72 and 6.98(1H,dd,J=7.9,1.7Hz), 7.07-7.10(3H,m), 7.25-7.31(2H,m)

25

Example 3

Phe(3,4-F₂)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

(1) Synthesis of Fmoc-Phe(3,4-F₂)-N-Me-Val-N-Me-Tyr(3-tBu)-

 NH_2

To a solution of Fmoc-Phe(3,4-F₂)-OH (500 mg, 1.18 mmol), N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.33 g, 0.908 mmol) and CMPI (301 mg, 1.18 mmol) in THF (8 ml), TEA (0.38 ml, 2.72 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 60:1:0.05), giving Fmoc-Phe(3,4-F₂)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.56 g, 80%).

- To a solution of Fmoc-Phe(3,4-F₂)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

 To a solution of Fmoc-Phe(3,4-F₂)-N-Me-Val-N-Me
 Tyr(3-tBu)-NH₂ (0.55 g, 0.715 mmol) in methylene chloride

 (5 ml), diethylamine (5 ml) was added, stirred for 4 hours

 and then evaporated to remove the solvent under reduced

 pressure. The thus obtained residue was subjected to

 silica gel column chromatography (developing solvent:

 chloroform:ethanol:aqueous ammonia = 60:1:0.1) to give

 Phe(3,4-F₂)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (381 mg, 97%).

 EI-MS:546(M⁺)
- 1 H-NMR(CDCl₃):(two rotamers) δ 0.51,0.74,0.79 and 0.93(6H,d,J=6.3-6.9Hz), 1.33 and 1.38(9H,s), 2.10-2.93(5H,m), 2.51 and 3.03(3H,s), 2.83 and 3.01(3H,s), 3.17 and 3.33(1H,dd,J=14.8,5.9 and 13.9,6.6Hz), 3.66 and

3.84(1H,dd,J=8.4,5.0 and 8.6,4.3Hz), 4.88 and 5.07(1H,d,J=10.6Hz), 5.41, 5.9(1H,brs), 5.41-5.51(1H,m), 6.43 and 6.64(1H,d,J=7.9Hz), 6.75(2/5H,dd,J=7.9,1.7Hz), 6.84-7.16(28/5H,m)

5

Example 4

91왕).

Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

- (1) Synthesis of Boc-Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ To a solution of Boc-Phe(3-F)-OH (0.20 g, 0.706 mmol), N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.21 g, 0.578 mmol) and CMPI 10 (0.20 g, 0.783 mmol) in THF (6 ml), TEA (0.30 ml, 2.15 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous 15 magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 60:1:0.05) to give Boc-Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH2 (0.33 g, 20
- (2) Synthesis of Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

 To a solution of Boc-Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.33 g, 0.525 mmol) in methylene chloride (3 ml),

 TFA (1.5 ml) was added, stirred for 15 min. and then evaporated to remove the solvent under reduced pressure.

 The residue was mixed with methylene chloride, washed with a saturated aqueous NaHCO₃ solution, dried over anhydrous

magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 40:1:0.1) to give Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (241 mg, 87%). EI-MS:528(M⁺)

¹H-NMR(CDCl₃):(two rotamers) δ 0.51,0.73,0.78 and 0.93(6H,d,J=6.3-6.6Hz), 1.33 and 1.38(9H,s), 2.10-2.96(5H,m), 2.46 and 3.03(3H,s), 2.78 and 3.01(3H,s), 3.16 and 3.35(1H,dd,J=14.8,5.9 and 13.9,6.6Hz), 3.70 and 3.90(1H,dd,J=8.3,5.6 and 8.6,5.0Hz), 4.89 and

5.06(1H,d,J=10.6Hz), 5.42, 5.99(1H,brs), 5.43-5.52(1H,m), 6.41 and 6.64(1H,d,J=7.9Hz), 6.72(2/5H,dd,J=7.9,1.7Hz),

6.83-6.99(18/5H,m), 7.10(2/5H,d,J=1.7Hz), 7.22-7.33(1H,m)

15

20

25

10

5

Example 5

Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

(1) Synthesis of Boc-Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

To a solution of Boc-Phe(2-F)-OH (0.20 g, 0.706 mmol),

N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.21 g, 0.578 mmol) and CMPI (0.20 g, 0.783 mmol) in THF (6 ml), TEA (0.30 ml, 2.15 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing

solvent: chloroform:methanol:aqueous ammonia = 60:1:0.05)
to give Boc-Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.33 g,
91%).

(2) Synthesis of Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

To a solution of Boc-Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.33 g, 0.525 mmol) in methylene chloride (3 ml),

TFA (1.5 ml) was added, stirred for 15 min. and then
evaporated to remove the solvent under reduced pressure.

The residue was mixed with methylene chloride, washed with

a saturated aqueous NaHCO₃ solution, dried over anhydrous
magnesium sulfate and evaporated to remove the solvent
under reduced pressure. The thus obtained residue was
subjected to silica gel column chromatography (developing
solvent: chloroform:methanol:aqueous ammonia = 40:1:0.1) to

give Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (235 mg, 85%).

EI-MS:528(M $^{+}$) $^{1}\text{H-NMR(CDCl}_{3}$):(two rotamers) δ 0.45,0.71,0.79 and

2.89(5H,m), 2.47 and 3.06(3H,s), 2.76 and 3.01(3H,s), 3.14

and 3.34(1H,dd,J=14.3,5.9 and 13.9,6.6Hz), 3.79 and 3.95(1H,dd,J=8.4,5.0 and 8.6,4.3Hz), 4.88 and 5.06(1H,d,J=10.6Hz), 5.37, 5.99(1H,brs), 5.41-5.51(1H,m),

0.93(6H,d,J=5.9-6.6Hz), 1.31 and 1.38(9H,s), 2.10-

6.43(3/5H,d,J=7.9Hz), 6.56(2/5H,brs), 6.60-6.71(1H,m),

6.92-7.29(6H,m)

25

Example 6

TFA salt of Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHSO₂Me

(1) Synthesis of Z-N-Me-Phe(3-tBu-4-benzyloxy)-NHSO₂Me

15

To a solution of crude Z-N-Me-Phe(3-tBu-4-benzyloxy)-OH (0.95 g, 2.0 mmol), WSCI'HCl (0.77 g, 3.99 mmol) and methanesulfonamide (0.29 g, 3.0 mmol) in DMF (15 ml), DMAP (0.49 g, 0.99 mmol) was added under cooling with ice and stirred at room temperature overnight. The mixture was mixed with water and then with 2N hydrochloric acid, extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 2:1) to give the titled compound (0.83 g, 75%).

 1 H-NMR(CDCl₃): δ 1.36(9H,s), 2.80(s,3H), 2.97-3.30(m,2H), 3.21(s,3H), 4.60-4.74(m,1H), 5.08(s,2H), 5.13(s,2H),

6.81(d,1H,J=8.2Hz), 6.86-7.13(m,2H), 7.20-7.46(m,10H),

9.0(brs,1H)

(2) Synthesis of Z-N-Me-Val-N-Me-Tyr(3-t-Bu)-NHSO $_2$ Me

A mixture of Z-N-Me-Tyr(3-tBu-4-benzyloxy)-NHSO₂Me

20 (0.80 g, 1.45 mmol) and 20% palladium hydroxide/carbon (0.09 g) in methanol (15 ml) was stirred at room temperature overnight in a hydrogen atmosphere. The reaction mixture was filtered and the filtrate was evaporated to remove the solvent under reduced pressure,

25 giving crude N-Me-Tyr(3-t-Bu)-NHSO₂Me (0.53 g).

To a solution of the crude N-Me-Tyr(3-t-Bu)-NHSO $_2$ Me (0.51 g, 1.43 mmol), Z-N-Me-Val-OH 0.49 g, 1.86 mmol) and CMPI (0.51 g, 2.00 mmol) in THF (10 ml), TEA (0.60 ml, 4.29

15

20

25

mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water, rendered acidic by the addition of 2N hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 2:3 containing 0.5% acetic acid) to give the titled compound (0.70 g, in 2 steps, 85%).

(3) Synthesis of Boc-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-t-Bu)-NHSO₂Me

A mixture of Z-N-Me-Val-N-Me-Tyr(3-t-Bu)-NHSO₂Me (0.65 g, 1.13 mmol) and 20% palladium hydroxide/carbon (0.09 g) in methanol (10 ml) was stirred at room temperature for 2.5 hours in a hydrogen atmosphere. The reaction mixture was filtered and the filtrate was evaporated to remove the solvent under reduced pressure, giving crude N-Me-Val-N-Me-Tyr(3-t-Bu)-NHSO₂Me (0.50 g).

To a solution of the above crude compound (0.48 g, 1.09 mmol), Boc-Phe(4-F)-OH 0.40 g, 1.41 mmol) and CMPI (0.39 g, 1.53 mmol) in THF (8 ml), TEA (0.46 ml, 3.27 mmol) was added under cooling with ice and stirred at room temperature overnight for 22 hours. The reaction mixture was mixed with water, rendered acidic by the addition of 10% aqueous citric acid solution and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over magnesium sulfate and evaporated to remove the

solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 2:3 containing 5% acetic acid) to give the titled compound (0.50 g, in 2 steps, 65%).

(4) Synthesis of Phe(4-F)-N-Me-Val-N-Me-Tyr(3-t-Bu)-NHSO $_2$ Me TFA salt

To a solution of Boc-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-t-

Bu)-NHSO₂Me (208 mg, 0.294 mmol) in methylene chloride (6 ml), TFA (3 ml) was added and stirred for 1.5 hours. The reaction mixture was evaporated under reduced pressure; the thus obtained residue was dissolved in a mixture of acetonitrile/water (1:10) (80 ml), which mixture containing 0.1% TFA, and lyophilized to give the titled compound (0.20

EI-MS:606(M⁺)

g, 94%).

 $^{1}\text{H-NMR}(DMSO-d_{6}):(\text{three rotamers}) \delta 0.02(d,3/5H,J=5.9Hz),$

0.22(d,3/5H,J=5.9Hz), 0.62(d,3/5H,J=7.6Hz),

0.68(d,3/5H,J=6.6Hz), 0.77(d,9/5H,J=6.6Hz),

20 0.89(d,9/5H,J=6.3Hz), 1.28(s,27/5H), 1.31(s,9/5H),

1.35(s,9/6H), 1.86-2.03(m,2/7H), 2.15-2.28(m,5/7H), 2.5-

3.4(m,10H), 4.35-4.62(m,1H), 4.80-5.02(1H), 5.11-5.42(m,1H),

6.55-7.18(m,7H), 8.0-8.2(m,3H), 8.98-9.06(m,1H),

11.2(brs,1H)

25

15

Example 7

Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe

(1) Synthesis of Z-N-Me-Phe(4-benzyloxy-3-tBu)-NHOMe

To a solution of Z-N-Me-Phe(4-benzyloxy-3-tBu)-OH

(3.8 g, 7.99 mmol) in THF (50 ml), ethyl chloroformate

(0.85 ml, 8.78 mmol) was added under cooling with ice and then NMM (0.97 ml, 8.78 mmol) was slowly added dropwise.

- 5 After stirring for 1 hour, $MeONH_2$ (1.0 g, 12.0 mmol) and TEA 2.23 ml (16.0 mmol) were added to the mixture, followed by stirring for 2 hours at room temperature. The mixture was mixed with water, and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and
- 10 evaporated to remove the solvent under reduced pressure.
 The thus obtained residue was subjected to silica gel
 column chromatography (developing solvent: ethyl acetate:nhexane = 1:2) to give the titled compound (2.7 g, 67%).

 ¹H-NMR(CDCl₃): δ 1.39(9H,s), 2.95(3H,s), 2.99(1H,m),
- 15 3.24(1H,m), 3.64(3H,s), 4.7(1H,m), 5.1(4H,d), 6.8-7.5(13H,m), 9.06(1H,s)
 - (2) Synthesis of N-Me-Tyr(3-tBu)-NHOMe

To a solution of Z-N-Me-Phe(4-benzyloxy-3-tBu)-NHOMe (2.7 g, 5.36 mmol) in MeOH (30 ml), palladium hydroxide

- 20 /carbon (675 mg) was added and stirred in a hydrogen atmosphere for 2 hours. Insoluble matters were removed by filtration with Celite and the filtrate was concentrated under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing
- solvent: methylene chloride:methanol = 20:1) to give the titled compound (1.24 g, 82%).

 1 H-NMR(CDCl₃): δ 1.43(9H,s), 2.45(3H,s), 2.92(2H,m), 3.12(1H,m), 3.59(3H,s), 6.77(1H,d,J=9.4Hz),

6.95(1H,dd,J=2.8,3.4Hz), 7.13(1H,d,J=3.15Hz)

(3) Synthesis of Z-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe

To a solution of N-Me-Tyr(3-tBu)-NHOMe (1.24 g, 4.42 mmol), Z-N-Me-Val-OH (1.76 g, 6.63 mmol) and CMPI (1.7 g,

- 5 6.63 mmol) in THF (30 ml), TEA (1.23 ml, 8.84 mmol) was added and stirred overnight. The mixture was mixed with water, extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and evaporated to remove the solvent under reduced pressure. The thus
- obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:1) to give the titled compound (1.32 g, 57%).

 $^{1}H-NMR(CDCl_{3}): \delta 0.43(3H,m), 0.80(3H,m), 1.36(9H,s),$

3.02(9H,m), 3.65(3H,s), 4.4(1H,m), 5.1(3H,m), 6.4-7.4(8H,m)

15 (4) Synthesis of Boc-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe

To a solution of Z-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe

(1.23 g, 2.33 mmol) in MeOH (20 ml), palladium

hydroxide/carbon (350 mg) was added and stirred in a

20 hydrogen atmosphere for 1 hour. Insoluble matters were

removed by filtration with Celite and the filtrate was

concentrated under reduced pressure to give crude N-Me-Val
N-Me-Tyr(3-tBu)-NHOMe (0.91 g).

A solution of the thus obtained crude compound (0.98 g, 2.5 mmol), Boc-Phe(4-F)-OH (0.92 g, 3.25 mmol) and CMPI (0.83 g, 3.25 mmol) in THF 20 ml, TEA (0.52 ml, 3.75 mmol) was added and stirred overnight. The mixture was mixed with water, extracted with ethyl acetate. The organic

layer was dried over anhydrous sodium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:2), giving the titled compound (972 mg, 56%).

- (6) Synthesis of Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe
- To a solution of Boc-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe (972 mg, 1.508 mmol) in methylene chloride (10 ml), TFA (7 ml) was added and stirred for 30 min. The
- mixture was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 20:1), giving the titled compound (288 mg, 34%).
- 15 EI-MS: $558(M^{+})$

 $^{1}H-NMR(CDCl_{3}): \delta 0.42(3H,d,J=13.5Hz), 0.79(3H,d,J=13.2Hz),$

- 1.33(9H,s), 2.10(1H,m), 2.60(1H,m), 2.90(2H,m), 2.91(3H,s),
- 3.07(3H,s), 3.28(1H,m), 3.68(3H,s), 3.91(1H,m),
- 4.82(1H,d,J=10.7Hz), 5.13(1H,m), 6.60(1H,d,J=10.4Hz),
- 20 6.89(1H,m), 7.0-7.3(5H,m), 9.1(1H,m)

Example 8

- 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(2-
- 25 pyridylcarbamoyl)ethylamide
 - (1) Synthesis of N-benzyloxycarbonyl-3-tert-butyl-4-hydroxyphenylalanyl (2-pyridyl)amide

To a solution of Z-Tyr(3-tBu)-OH (3.04 g, 8.19 mmol)

in THF (8.2 ml), under cooling with ice N,N-carbonyldiimidazole (1.59 g, 9.83 mmol) was added and stirred for 1 hour. To the mixture, 2-aminopyridine (925 mg, 9.83 mmol) was then added and stirred for 2 hours under cooling with ice and then further 6.5 hours at room temperature. The mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure.

- The thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:2), giving the titled compound (2.16 g, 59%).

 ¹H-NMR(CDCl₃): δ 1.24(9H,s), 2.95-3.20(2H,m), 4.45-4.60(1H,m), 5.11(2H,dd,J=17.5,12.2Hz), 6.53(1H,d,J=7.9Hz),
- 15 6.85(1H,d,J=7.9Hz), 6.95-7.15(2H,m), 7.32(5H,brs), 7.67-7.73(1H,m), 8.15-8.25(2H,m)
 - (2) Synthesis of 3-tert-butyl-4-hydroxyphenylalanyl (2-pyridyl)amide

To a solution of N-benzyloxycarbonyl-3-tert-butyl-4hydroxyphenylalanyl (2-pyridyl)amide (2.16 g, 4.83 mmol) in
methanol (160 ml), 10% palladium/carbon (400 mg) was added
and stirred in a hydrogen atmosphere at room temperature
overnight. After filtering the reaction mixture, the
filtrate was evaporated to remove the solvent under reduced
pressure and the thus obtained residue was subjected to
silica gel column chromatography (developing solvent:
methanol:aqueous ammonia:methylene chloride = 10:1:100),
giving the titled compound (1.48 g, 98%).

¹H-NMR(CDCl₃): δ 1.36(9H,s), 2.72-3.23(2H,m), 3.67-3.72(1H,m), 6.62(1H,d,J=7.9Hz), 6.85-6.88(1H,m), 6.95-7.20(2H,m), 7.70-7.77(1H,m), 8.29-8.39(2H,m)

(3) Synthesis of 2-(N-benzyloxycarbonyl-N-methylamino)-3methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(2pyridylcarbamoyl)ethylamide

To a solution of 3-tert-butyl-4-hydroxyphenylalanyl (2-pyridyl)amide (1.48 g, 4.73 mmol), Z-N-Me-Val-OH (1.63 g, 6.15 mmol) and CMPI (1.57 g, 6.15 mmol) in THF 30 ml, TEA

10 (1.5 ml, 10.88 mmol) was added under cooling with ice and stirred for 3 hours under cooling with ice. The mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the

15 solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:2), giving the titled compound (1.74 g, 65%).

 $^{1}\text{H-NMR(CDCl}_{3}): \delta 0.70-0.95(6\text{H,m}), 1.26(9\text{H,s}), 2.20-$

- 20 2.35(1H,m), 2.70-3.10(5H,m), 4.00-4.20(1H,m), 4.65-4.80(1H,m), 5.17(2H,brs), 6.44(1H,d,J=7.6Hz), 6.60-6.85(1H,m), 6.95-7.10(2H,m), 7.36(5H,brs), 7.60-7.75(1H,m), 8.10-8.25(2H,m)
- (4) Synthesis of 3-methyl-2-methylaminobutyric acid 2-(3-25 tert-butyl-4-hydroxyphenyl)-1-(2pyridylcarbamoyl)ethylamide

To a solution of 2-(N-benzyloxycarbonyl-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-

hydroxyphenyl)-1-(2-pyridylcarbamoyl)ethylamide (1.74 g, 3.10 mmol) in methanol (50 ml), 10% palladium carbon (300 mg) was added and stirred in a hydrogen atmosphere at room temperature overnight. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: methanol:aqueous ammonia:methylene chloride = 5:0.1:100), giving the titled compound (1.30 g, 98%).

- (5) Synthesis of 2-((2-butoxycarbonylamino-3-(4fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid
 2-(3-tert-butyl-4-hydroxyphenyl)-1-(2pyridylcarbamoyl)ethylamide

To a solution of 3-methyl-2-methylaminobutyric acid

2-(3-tert-butyl-4-hydroxyphenyl)-1-(2
pyridylcarbamoyl)ethylamide (1.25 g, 2.93 mmol), Boc-Phe(4
F)-OH (1.08 g, 3.81 mmol) and CMPI (973 mg, 3.81 mmol) in

THF 19 ml, TEA (0.94 ml, 6.74 mmol) was added under cooling

with ice and stirred for 4 hours under cooling with ice.

25 The reaction mixture was mixed with water and extracted

with ethyl acetate. The organic layer was washed with

saturated brine, dried over anhydrous magnesium sulfate and

evaporated to remove the solvent under reduced pressure;

the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:1), giving the titled compound (1.72 g, 85%). $^{1}\text{H-NMR(CDCl}_{3}$): δ 0.65-1.02(6H,m), 1.26(9H,s), 1.34(9H,s),

- 5 2.20-2.40(1H,m), 2.75-3.15(4H,m), 2.89(3H,s), 4.20-4.35(1H,m), 4.70-5.00(2H,m), 6.61(1H,d,J=7.9Hz), 6.75-7.20(7H,m), 7.60-7.80(1H,m), 8.20-8.30(2H,m) (6) 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-
- methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-
- 10 hydroxyphenyl)-1-(2-pyridylcarbamoyl)ethylamide

To a solution of 2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(2-

pyridylcarbamoyl)ethylamide (1.67 g, 2.41 mmol) in

methylene chloride (30 ml), TFA (5 ml) was added and

stirred at room temperature for 1.5 hours. The reaction

mixture was evaporated under reduced pressure; the thus

obtained residue was mixed with chloroform, washed with a

saturated aqueous NaHCO₃ solution and saturated brine,

dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: methanol:aqueous ammonia:methylene chloride = 3:0.1:100), giving the titled compound (370 mg).

 $EI-MS:591(M^{+})$

 1 H-NMR(CDCl₃): δ 0.74(2H,d,J=6.9Hz), 0.77(1H,d,J=6.9Hz), 0.88(1H,d,J=6.3Hz), 0.95(2H,d,J=6.3Hz), 1.25(9H,s), 2.24-

2.44(1H,m), 2.50-3.25(4H,m), 2.78(2.4H,s), 2.85(0.6H,s),
3.55-3.65(0.8H,m), 3.80-3.90(0.2H,m), 4.00(0.8H,d,J=10.9Hz),
4.36(0.2H,d,J=10.9Hz), 4.65-4.80(0.2H,m), 4.90-5.00(0.8H,m),
6.55-7.20(8H,m), 7.65-7.75(1H,m), 8.15-8.25(2H,m)

5

15

20

Example 9

N-(2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea

10 (1) Synthesis of Z-3-tBu-tyrosinol

To a solution of Z-Tyr(3-tBu)-OMe (7.4 g, 19 mmol) in THF (190 ml), lithium borohydride (1.25 g, 57.4 mmol) was added under cooling with ice and stirred for 1.5 hours at room temperature. The mixture was mixed with a saturated aqueous NH₄Cl solution and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: hexane:ethyl acetate = 1:1), giving the titled compound (6.8 g, 99%).

 $^{1}\text{H-NMR(CDCl}_{3}): \delta 1.38(9\text{H,s}), 2.15(1\text{H,m}),$

2.78(2H, brd, J=6.9Hz), 3.5-3.8(2H, m), 3.8-4.0(1H, m),

4.86(1H,s), 4.9-5.0(1H,m), 5.09(2H,s), 6.58(1H,d,J=7.9Hz),

25 6.88(1H,brd,J=7.9Hz), 7.05(1H,brs), 7.34(5H,s)

(2) Synthesis of 2-(benzyloxycarbonylamino)-3-(3-tBu-4-hydroxyphenyl)propylamine

To a solution of Z-3-tBu-tyrosinol (2 g, 5.6 mmol),

triphenylphosphine (1.76 g, 6.7 mmol), phthalimide (0.99 g, 6.7 mmol) in THF 50 ml, diethyl azodicarboxylate (DEAD)

(1.05 ml, 6.7 mmol) was added under cooling with ice and stirred at the same temperature for 1 hour. The mixture

5 was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography

10 (developing solvent: hexane:ethyl acetate = 2:1) to give (1-(1,3-dihydro-1,3-dioxo-isoindol-2-yl)methyl-2-(3-tBu-4-hydroxyphenyl)ethyl)carbamic acid benzyl ester (3.2 g).

To the above compound (3.2 g), a 40% methylamine methanol solution (40 ml) was added at room temperature and stirred at the same temperature for 10 hours. The reaction mixture was concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent:

chloroform:methanol:aqueous ammonia = 20:1:0.1), giving the titled compound (1.9 g).

 1 H-NMR(CDCl₃): δ 1.37(9H,s), 2.6-2.9(4H,m), 3.7-3.9(4/5H,m), 3.9-4.1(1/5H,m)4.8-4.9(4/5H,m), 5.09(2H,s), 5.4-5.5(1/5H,m), 6.5-6.6(1H,m), 6.84(1H,d,J=7.3Hz), 6.9-7.1(1H,m), 7.33(5H,s)

25 (3) Synthesis of N-(2-(benzyloxycarbonylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea

A mixture of 2-(benzyloxycarbonylamino)-3-(3-tBu-4-hydroxyphenyl)propylamine (1.0 g, 2.8 mmol), potassium

20

cyanate (0.5 g, 5.5 mmol), acetic acid (0.5 ml), dioxane (10 ml) and water (10 ml) was stirred at 60°C for 2 hours. The mixture was mixed with a saturated aqueous NaHCO₃ solution and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:methanol = 50:1), giving the titled compound (0.9 g, 80%).

¹H-NMR(CD₃OD): δ 1.35(9H,s), 2.5-2.8(2H,m), 3.0-3.2(1H,m), 3.2-3.4(1H,m), 3.7-3.9(1H,m), 5.01(2H,d,J=3.6Hz), 6.63(1H,d,7.9Hz), 6.84(1H,brd,J=7.9Hz), 7.04(1H,brs), 7.2-7.4(5H,m)

15 (4) Synthesis of N-(2-(2-(benzyloxycarbonyl-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea

To a solution of N-(2-(benzyloxycarbonylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea (0.9 g, 2.26 mmol) in methanol (20 ml), 10% palladium carbon (100 mg) was added and stirred in a hydrogen atmosphere at room temperature for 12 hours. After filtration, the filtrate was concentrated under reduced pressure to give N-(2-amino-3-(3-tBu-4-hydroxyphenyl)propyl)urea (0.54 g).

To a solution of the above compound (0.53 g, 2 mmol),

Z-N-Me-Val-OH (0.69 g, 2.6 mmol) and CMPI (0.67 g, 2.6 mmol) in THF (20 ml), TEA (1 ml, 7.2 mmol) was added under cooling with ice and stirred at room temperature for 1.5 hours. The reaction mixture was mixed with water and

extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel

chloroform:methanol:aqueous ammonia = 20:1:0.1), giving the titled compound (0.98 g, 98%).

column chromatography (developing solvent:

 $^{1}\text{H-NMR}(\text{CDCl}_{3}): \delta \ 0.82(3\text{H,d,J=6.3Hz}), \ 0.88(3\text{H,d,J=6.3Hz}), \ 1.35(9\text{H,s}), \ 2.1-2.3(1\text{H,m}), \ 2.6-2.8(2\text{H,m}), \ 2.76(3\text{H,s}), \ 2.76(3\text{H,s}), \ 2.86-2.8(2\text{H,m}), \ 2.8$

- 10 3.0-3.4(2H,m), 3.9-4.1(1H,m), 4.7-5.0(2H,m), 5.0-5.1(2H,m), 5.5-5.6(1H,m), 6.4-7.0(5H,m), 7.34(5H,s)
 - (5) Synthesis of N-(2-(2-((2-(t-butoxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea

To a solution of N-(2-(2-(benzyloxycarbonyl-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea (0.97 g, 1.95 mmol) in methanol (20 ml), 10% palladium carbon (100 mg) was added and stirred in a hydrogen atmosphere at room temperature for 3 hours. After filtering the reaction mixture, the filtrate was evaporated to remove the solvent under reduced pressure, giving N-(2-(2-amino-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea (0.72 g).

To a solution of the above crude compound (0.64 g,
1.85 mmol), Boc-Phe(4-F)-OH (0.63 g, 2.22 mmol) and CMPI
(0.57 g, 2.23 mmol) in THF (18 ml), TEA (0.93 ml, 6.67
mmol) was added under cooling with ice and stirred at room
temperature for 8 hours. The mixture was mixed with water

and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel

5 column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 20:1:0.1), giving the titled compound (0.79 g, 66%).

 $^{1}\text{H-NMR}(DMSO-d_{6}): \delta 0.70, 0.75, 0.85, and 0.95(total 6H,d,J=5.9-6.3Hz), 1.2-1.4(18H,m), 2.0-2.1(1H, m),$

- 2.4-2.9(7H,m), 2.9-3.1(2H,m), 3.8-4.0(1H,m), 4.3-4.6(2H,m), 5.39, 5.51(2H,brs), 5.74(1H,d,J=1.3Hz), 5.9-6.0(1H,m), 6.6-6.9(2H,m), 6.9-7.1(2H,m), 7.1-7.3(3H,m), 7.60 and 7.73(total 1H, brd), 9.02(1H,s)
 - (6) Synthesis of N-(2-(2-((2-amino-3-(4-
- fluorophenyl)propionyl)-N-methylamino)-3methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea

To a solution of N-(2-(2-((2-(t-butoxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea

- 20 (0.75 g) in methylene chloride (6 ml), TFA (6 ml) was added under cooling with ice, stirred at room temperature for 1 hour and evaporated to remove the solvent under reduced pressure. The thus obtained residue was mixed with methylene chloride, washed with a saturated aqueous NaHCO₃
- 25 solution, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure.

 The thus obtained residue was subjected to silica gel column chromatography (developing solvent:

chloroform:methanol:aqueous ammonia = 20:1:0.1), giving the titled compound (480 mg, 76%).

FAB-MS: $544(M^{+}+1)$

¹H-NMR(DMSO-d₆): δ 0.49, 0.73, and 0.85(total 6H,d,J=6.0-6.6Hz), 1.30 and 1.32(total 9H,s), 2.0-2.2(1H,m), 2.4-3.1(9H,m), 3.7-4.1(3H,m), 4.52 and 5.48(total 2H,m), 5.8-6.0(1H,m), 6.6-6.8(2H,m), 6.9-7.3(5H,m), 7.67 and 8.79(total 1H,d,J=7.6-8.6Hz), 9.01 and 9.06(total 1H,s)

10 Example 10

N-(2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)guanidine

(1) Synthesis of N-(2-(benzyloxycarbonylamino)-3-(3-tBu-415 hydroxyphenyl)propyl)carbamic acid t-Bu ester

To a solution of (2-(benzyloxycarbonylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)amine (1.46 g, 4.1 mmol) in dioxane (8 ml), an aqueous sodium carbonate solution (0.44 g, 4.1 mmol) (8 ml) and (Boc)₂O (0.9 g, 4.1 mmol) were added in that order under cooling with ice and stirred at the same temperature for 2.5 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: hexane:ethyl acetate = 2:1), giving the titled compound (1.7 g, 91%).

25

¹H-NMR(CDCl₃):δ 1.38(9H,s), 1.42(9H,s), 2.6-2.9(2H,m), 3.1-3.3(2H,m), 3.8-4.0(1H,m), 4.7-4.8(1H,m), 5.08(2H,s), 6.58(1H,d,J=8.9Hz), 6.85(1H,brd,J=8.9Hz), 7.03(1H,brs), 7.2-7.5(5H,m)

5 (2) Synthesis of N-(2-(2-(benzyloxycarbonyl-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)carbamic acid t-Bu ester

tBu-4-hydroxyphenyl)propyl)carbamic acid t-Bu ester (1.6 g, 3.5 mmol) in methanol (35 ml), 10% palladium carbon (160 mg) was added and stirred in a hydrogen atmosphere at room temperature for 1.5 hours. After filtration, the filtrate was concentrated under reduced pressure to give N-((2-amino-3-(3-tBu-4-hydroxyphenyl)propyl)carbamic acid t-Bu ester (1.1 g).

To a solution of N-(2-(benzyloxycarbonylamino)-3-(3-

To a solution of the thus obtained crude compound (1.1 g, 3.42 mmol), Z-N-Me-Val-OH (1.08 g, 4.08 mmol) and CMPI (1.04 g, 4.07 mmol) in THF (35 ml), TEA (1.7 ml, 12.2 mmol) was added under cooling with ice and stirred at room temperature for 1 hour. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: hexane:ethyl acetate = 2:1), giving the titled compound (1.8 g, 93%).

1H-NMR(CDCl₃): 8 0.82(3H,d,J=6.6Hz), 0.90(3H,d,J=6.2Hz), 1.37(9H,s), 1.42(9H,s), 2.1-2.3(1H,m), 2.5-2.8(5H,m), 3.0-

20

25

- 3.3(2H,m), 3.9-4.3(2H,m), 5.13(2H,s), 6.44(1H,d,J=7.9Hz), 6.75(1H,brd,J=7.9Hz), 7.00(1H,brs), 7.36(5H,s)
- (3) Synthesis of N-(2-(2-((2-(benzyloxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-
- 5 methylbutyrylamino)-3-(3-tBu-4-

hydroxyphenyl)propyl)carbamic acid t-Bu ester

To a solution of N-(2-(2-(benzyloxycarbonyl-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)carbamic acid t-Bu ester (1.8 g, 3.16 mmol) in methanol (35 ml), 10% palladium carbon (180 mg) was added and stirred for 1 hour in a hydrogen atmosphere at room temperature. After filtration, the filtrate was concentrated under reduced pressure to give N-(2-(2-(N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-

15 hydroxyphenyl)propyl)carbamic acid t-Bu ester (1.33 g).

To a solution of the thus obtained crude compound (1.33 g, 3.15 mmol), Z-Phe(4-F)-OH (1.2 g, 3.78 mmol) and CMPI (0.97 g, 3.78 mmol) in THF (35 ml), TEA (1.6 ml, 11.5 mmol) was added under cooling with ice and stirred at room temperature for 10 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: hexane:ethyl acetate = 1:1), giving the titled compound (1.48 g, 53%).

¹H-NMR(CDCl₃):8 0.68, 0.75, 0.91, and 0.98(total 6H,d,J=6.2-6.9Hz), 1.35,1.37,1.40, and 1.42(total 18H,m),

- 2.1-3.4(10H,m), 4.0-4.5, 4.7-5.1, and 5.5-5.7(total 7H,m), 6.3-7.5(17H, m)
- (4) Synthesis of 2-(2-((2-(benzyloxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-
- 5 methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propylamine
 To a solution of N-(2-(2-((2-

(benzyloxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-

hydroxyphenyl)propyl)carbamic acid t-Bu ester (1.38 g) in

methylene chloride (5 ml), TFA (5 ml) was added under cooling with ice, stirred at room temperature for 30 min.

and evaporated under reduced pressure to remove the solvent.

The thus obtained residue was mixed with methylene chloride,

washed with a saturated aqueous $NaHCO_3$ solution, dried over

15 anhydrous magnesium sulfate and evaporated to remove the

solvent under reduced pressure; the thus obtained residue

was subjected to silica gel column chromatography

(developing solvent: chloroform:methanol:aqueous ammonia =

20:1:0.1), giving the titled compound (1.1 g, 92%).

- 20 ${}^{1}\text{H-NMR}(CDCl}_{3}):\delta$ 0.67,0.76,0.92,and 0.97(total 6H,d,J=6.6-
 - 6.9Hz), 1.35 and 1.37(total 9H,s), 2.2-2.5(1H,m), 2.4-
 - 3.1(9H,m), 4.0-4.2 and 4.4-4.5(total 2H,m), 4.7-5.1(2H,m),
 - 5.5-5.6 and 5.7-5.9(total 1H,brd,J=7.6-8.1Hz), 6.2-6.4,
 - 6.5-6.7, and 6.8-7.4(total 13H,m)
- 25 (5) Synthesis of N-(2-(2-((2-amino-3-(4-

fluorophenyl)propionyl)-N-methylamino)-3-

methylbutyrylamino)-3-(3-tBu-4-

hydroxyphenyl)propyl)guanidine

20

25

To a solution of 2-(2-((2-(benzyloxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propylamine (580 mg, 0.91 mmol) in DMF (4.5 ml), 1H-pyrazole-1carboxamidine hydrochloride (161 mg, 1.09 mmol) and DIEA 5 (0.19 ml, 1.09 mmol) were added at room temperature and stirred at the same temperature for 18 hours. The reaction mixture was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (aminopropylated silica gel (CHROMATOREX NH-10 DM1020, FUJI SILYSIA CHEMICAL LTD.), developing solvent: ethyl acetate:methanol = 100:1 to 10:1) to give N-(2-(2-((2-(benzyloxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-

To a solution of the above compound (410 mg) in methanol (20 ml), 10% palladium carbon (40 mg) was added and stirred in a hydrogen atmosphere at room temperature for 5 hours. After filtration, the filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (aminopropylated silica gel (CHROMATOREX NH-DM1020, FUJI SILYSIA CHEMICAL LTD.), developing solvent: ethyl acetate:methanol =5:1), giving the titled compound (250 mg, 76%).

hydroxyphenyl)propyl)guanidine (410 mg).

 $FAB-MS:543(M^++1)$

 1 H-NMR(CD₃OD)): δ 0.47, 0.53, 0.80, 0.90(6H,d,J=6.3-6.9Hz), 1.31, 1.37(9H,s), 2.0-2.3(1H,m), 2.41, 2.46, and 2.57(total

3H,s), 2.5-3.4(6H,m), 3.8-4.6(3H,m), 6.6-7.3(7H,m)

Example 11

Synthesis of N-(2-(2-((2-amino-3-(4-

5 fluorophenyl)propionyl)-N-methylamino)-3methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)-N'cyano-N''-methylguanidine

To a solution of 2-(2-((2-(benzyloxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-

10 methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propylamine
(500 mg, 0.79 mmol) in ethanol (4 ml), dimethyl Ncyanodithioiminocarbonate (127 mg, 0.87 mmol) was added at
room temperature and stirred at the same temperature for 16
hours. The reaction mixture was concentrated under reduced
15 pressure; the thus obtained residue was mixed with a 40%
methylamine methanol solution (5 ml) at room temperature
and stirred at the same temperature for 16 hours. The
reaction mixture was concentrated under reduced pressure
and the thus obtained residue was subjected to silica gel

column chromatography (developing solvent:
 chloroform:methanol:aqueous ammonia = 20:1:0.1) to give N (2-(2-((2-(benzyloxycarbonylamino)-3-(4 fluorophenyl)propionyl)-N-methylamino)-3 methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)-N'cyano-N''-methylguanidine (450 mg).

To a solution of the above compound (440 mg) in methanol (6 ml), 10% palladium carbon (50 mg) was added and stirred in a hydrogen atmosphere at room temperature for 15

hours. After filtration, the filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 20:1:0.1),

5 giving the titled compound (280 mg, 78%).

FAB-MS: $582(M^++1)$

 $^{1}\text{H-NMR(CDCl}_{3}): \delta \text{ 0.62, 0.79, 0.87, and 0.91(total}$ 6H,d,J=6.3-6.6Hz), 1.37 and 1.40(total 9H,s), 2.1-2.4(1H,m), 2.5-3.0(10H,m), 3.1-3.4(2H,m), 3.6-4.4(3H,m), 5.8-6.1(1H,m),

10 6.6-7.2(7H,m), 8.68(1H,d,J=6.6Hz)

Example 12

2-(2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tert-butyl-4-

- 15 hydroxyphenyl)propylsulfamide
 - (1) Synthesis of 2-(2-(2-benzyloxycarbonylamino-3-(4-fluorophenylpropanoyl-N-methylamino)-3methyl)butyrylamino)-3-(3-tert-butyl-4-hydroxyphenyl)propylsulfamide
- To a solution of 2-(2-(2-benzyloxycarbonylamino-3-(4-fluorophenylpropanoyl-N-methylamino)-3methyl)butyrylamino)-3-(3-tert-butyl-4hydroxyphenyl)propylamine (514 mg, 0.811 mmol) in 1,4dioxane (8 ml), sulfamide (156 mg, 1.62 mmol) was added and
 stirred at 120°C for 5 hours. The reaction mixture was
 evaporated under reduced pressure to remove the solvent;
 the thus obtained residue was mixed with water, and
 extracted with chloroform. The organic layer was washed

with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 20:1), giving the titled compound (397 mg, 69%).

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):(\text{two rotamers})\delta$ 0.69,0.85 and 0.99(6H,d,J=6.3-6.6Hz), 1.36 and 1.37(9H,s), 1.80-

1.90(1H,m), 2.22-2.40(1H,m), 2.43 and 2.81(3H,s), 2.60-

3.10(4H,m), 3.26-3.38(1H,m), 3.70-3.80(1H,m), 3.90-4.10(1H,m), 4.28-4.44(1H,m), 4.72-5.30(3H,m), 5.03(2H,s), 6.52-6.66(2H,m), 6.80-7.40(10H,m)

(2) Synthesis of 2-(2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tert-butyl-4-

15 hydroxyphenyl)propylsulfamide

A mixture of 2-(2-(2-benzyloxycarbonylamino-3-(4-fluorophenylpropanoyl-N-methylamino)-3methyl)butyrylamino)-3-(3-tert-butyl-4-

hydroxyphenyl)propylsulfamide (332 mg, 0.466 mmol) and 10% palladium carbon (40 mg) in methanol (5 ml) was stirred at room temperature in a hydrogen atmosphere overnight. After filtration, the filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent:

chloroform:methanol:aqueous ammonia = 200:10:1), giving the titled compound (180 mg, 67%).

 $FAB-MS:580(M+H^+)$

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):(\text{two rotamers})\delta \text{ 0.63,0.75,0.81}$ and

0.93(6H,d,J=6.3-6.6Hz), 1.38 and 1.39(9H,s), 2.20-3.42(6H,m), 2.60 and 3.02(3H,s), 3.49(1H,s), 3.60-3.90(2H,m), 4.30-4.44(1H,m), 5.30-5.40(1H,m), 6.56-7.16(7H,m), 8.34-8.42(1H,m)

5

Example 13

2-(2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tert-butyl-4-hydroxyphenyl)propylaminoacetamide

(1) Synthesis of 2-(2-(2-benzyloxycarbonylamino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tert-butyl-4-hydroxyphenyl)propylaminoacetic acid ethyl ester

To a solution of 2-(2-(2-benzyloxycarbonylamino-3-(4fluorophenylpropanoyl-N-methylamino)-3-15 methyl)butyrylamino)-3-(3-tert-butyl-4hydroxyphenyl)propylamine (1.17 g, 1.84 mmol) in ethanol (18 ml), ethyl glyoxylate (0.7 ml, 2.76 mmol), acetic acid (1.8 ml) and sodium cyanoborohydride (173 mg, 2.76 mmol) were added and stirred for 1 hour. The reaction mixture 20 was mixed with a saturated aqueous NaHCO3 solution, extracted with ethyl acetate and washed with saturated The resultant was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica 25 gel column chromatography (developing solvent: hexane:ethyl acetate:methylene chloride = 2:3:1), giving the titled

compound (900 mg, 68%).

20

 1 H-NMR(CDCl₃):(two rotamers) δ 0.65,0.75,0.91 and 0.97(6H,d,J=6.2-6.9Hz), 1.22 and 1.29(3H,t,J=7.2Hz), 1.35 and 1.36(9H,s), 2.22-2.40(1H,m), 2.42 and 2.90(3H,s), 2.60-3.02(5H,m), 3.22-3.46(2H,m), 4.06-4.28(2H,m),

- 5 4.47(1H,d,J=12.2Hz), 4.80-5.12(3H,m), 5.29(2H,s), 5.74(1H,d,J=8.9Hz), 6.58-7.42(12H,m)
 - (2) Synthesis of 2-(2-(2-benzyloxycarbonylamino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)-3-
- 10 hydroxyphenyl)propylaminoacetamide

To a solution of 2-(2-(2-benzyloxycarbonylamino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tert-butyl-4-hydroxyphenyl)propylaminoacetic acid ethyl ester (889 mg, 1.23 mmol) in methanol (24 ml), aqueous ammonia (16 ml)

- was added and stirred for 15 hours at room temperature.

 The reaction mixture was evaporated to remove the solvent under reduced pressure, extracted with ethyl acetate and washed with saturated brine. The resultant was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 110:10:1), giving the titled compound (600 mg, 70%).
- 1 H-NMR(CDCl₃):(two rotamers) δ 0.65,0.75,0.90 and 0.96(6H,d,J=6.0-6.6Hz), 1.36 and 1.37(9H,s), 2.22-2.40(1H,m), 2.47 and 2.82(3H,s), 2.60-3.02(4H,m), 3.24 and 3.26(2H,s), 4.02-4.38(2H,m), 4.76-5.08(3H,m), 5.40-

5.90(3H,m), 6.56-7.38(12H,m)

(3) Synthesis of 2-(2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-methyl)butyrylamino)-3-(3-tert-butyl-4-hydroxyphenyl)propylaminoacetamide

To a solution of 2-(2-(2-benzyloxycarbonylamino-3-(4-fluorophenylpropanoyl-N-methylamino)-3methyl)butyrylamino)-3-(3-tert-butyl-4hydroxyphenyl)propylaminoacetamide (595 mg, 0.860 mmol) in
methanol (10 ml), 20% palladium hydroxide/carbon (150 mg)

was added and stirred at room temperature in a hydrogen
atmosphere overnight. After filtration, the filtrate was
concentrated under reduced pressure and the thus obtained
residue was subjected to silica gel column chromatography
(developing solvent: methylene chloride:methanol:hexane =

15 10:1:1), giving the titled compound (333 mg, 70%). FAB-MS:558(M+H $^{+}$)

 $^{1}\text{H-NMR}(CDCl_{3}): (two rotamers) \delta 0.66,0.79 and 0.92(6H,d,J=6.3-6.6Hz), 1.36 and 1.39(9H,s), 2.22-$

2.38(1H,m), 2.63 and 2.91(3H,s), 2.50-2.82(4H,m), 3.12-

20 3.28(2H,m), 3.58-3.88(2H,m), 4.18-4.40(2H,m), 5.50-5.70(1H,m), 6.58-7.14(8H,m)

Example 14

N-[2-(3-tert-butyl-4-hydroxyphenyl)-1-

25 (methanesulfonylaminomethyl)ethyl]-2-[N-(4-fluorophenylalaninoyl)methylamino]-3-methylbutanamide

(1) Synthesis of N-Z-2-(4-benzyloxy-3-tert-butylphenyl)-1-hydroxymethylethylamine

To a solution of Z-Phe(4-benzyloxy-3-tBu)-OMe (5.8 g, 12.2 mmol) in methanol/water (100 ml/20 ml), sodium borohydride (1.5 g, 36.6 mmol) was added and stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure, mixed with a saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:2), giving the titled compound (5.1 g, 94%).

(2) Synthesis of 3-(4-benzyloxy-3-tert-butylphenyl)-2-benzyloxycarbonylaminopropylamine

15 To a solution of N-Z-2-(4-benzyloxy-3-tertbutylphenyl)-1-hydroxymethylethylamine (5.09 g, 11.4 mmol), triphenylphosphine (4.41 g, 17.1 mmol) and phthalimide (2.51 g, 17.1 mmol) in THF (66 ml), diethyl azodicarboxylate (3.0 ml, 17.1 mmol) was added and stirred 20 for 4 hours under cooling with ice. The reaction mixture was concentrated; a solution of the thus obtained residue in methanol (70 ml) was mixed with hydrazine (6 ml) and stirred at room temperature for 4 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was dried over magnesium 25 sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent:

10

15

methylene chloride:methanol = 10:1), giving the titled compound (2.45 g, 49%).

(3) N-[3-(4-benzyloxy-3-tert-butylphenyl)-2-benzyloxycarbonylaminopropyl]methanesulfonamide

To a solution of 3-(4-benzyloxy-3-tert-butylphenyl)2-benzyloxycarbonylaminopropylamine (1.27 g, 2.84 mmol) in
methylene chloride (29 ml), TEA (0.6 ml, 4.26 mmol) and
then methanesulfonyl chloride (0.3 ml, 3.69 mmol) were
added slowly under cooling with ice. After stirring for 30
min., the mixture was mixed with water and extracted with
chloroform. The organic layer was dried over magnesium
sulfate and evaporated to remove the solvent under reduced
pressure; the thus obtained residue was subjected to silica
gel column chromatography (developing solvent: methylene
chloride:ethyl acetate:n-hexane = 1:1:2), giving the titled
compound (1.23 g, 83%).

(4) Synthesis of 2-[N-(benzyloxycarbonyl)methylamino]-N-[2-(3-tert-butyl-4-hydroxyphenyl)-1-

(methanesulfonylaminomethyl)ethyl]-3-methylbutanamide

N-[3-(4-benzyloxy-3-tert-butylphenyl)-2benzyloxycarbonylaminopropyl]methanesulfonamide (1.2 g,
2.29 mmol) was dissolved in a mixture of methanol (23 ml)
and methylene chloride (5 ml), mixed with palladium
hydroxide/carbon (0.60g) and stirred for 12 hours in a

25 hydrogen atmosphere. After filtering off insoluble
material using Celite, the filtrate was concentrated to
give crude N-[2-amino-3-(4-benzyloxy-3-tertbutylphenyl)propyl]methanesulfonamide (0.68 g).

15

25

¹H-NMR(CDCl₃):δ 1.39(s,9H), 2.48(dd,1H,J=8.2,13.9Hz), 2.73(dd,1H,J=5.1,13.3Hz), 2.94(dd,1H,J=7.9,11.9Hz), 2.96(s,3H), 3.10-3.22(m,1H), 3.24(dd,1H,J=3.6,12.2Hz), 6.60(d,1H,J=7.9Hz), 6.83(dd,1H,J=2.0,7.9Hz),

 $5 \quad 7.03(d,1H,J=2.0Hz)$

To a solution of the above crude compound (0.66 g), Z-N-Me-Val-OH (758 mg, 2.86 mmol) and CMPI (730 mg, 2.86 mmol) in THF (22 ml), TEA (0.91 ml, 6.59 mmol) was added under cooling with ice. The resultant was stirred overnight at room temperature, mixed with a saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:ethyl acetate:n-hexane = 1:3:2), giving the titled compound (1.08 g, 90%).

(5) Synthesis of 2-[N-(N-benzyloxycarbonyl-4fluorophenylalaninoyl)methylamino]-N-[2-(3-tert-butyl-420 hydroxyphenyl)-1-(methanesulfonylaminomethyl)ethyl]-3methylbutanamide

To a solution of 2-[N(benzyloxycarbonyl)methylamino]-N-[2-(3-tert-butyl-4hydroxyphenyl)-1-(methanesulfonylaminomethyl)ethyl]-3methylbutanamide (1.0 g, 1.83 mmol) in methanol (18 ml),
palladium hydroxide/carbon (0.40 g) was added and stirred
in a hydrogen atmosphere for 1.5 hours. After filtering
off insoluble material using Celite, the filtrate was

10

20

concentrated; to a solution of the thus obtained residue (0.75 g), Z-Phe(4-F)-OH (748 mg, 2.66 mmol) and CMPI (602 mg, 2.36 mmol) in THF 18 ml, TEA (0.82 ml, 5.44 mmol) was added under cooling with ice. The mixture was stirred at room temperature overnight, mixed with a saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:ethyl acetate:n-hexane = 1:3:2), giving the titled compound (827 mg, 64%).

(6) Synthesis of N-[2-(3-tert-butyl-4-hydroxyphenyl)-1(methanesulfonylaminomethyl)ethyl]-2-[N-(4-

To a solution of 2-[N-(N-benzyloxycarbonyl-4-

15 fluorophenylalaninoyl)methylamino]-3-methylbutanamide

fluorophenylalaninoyl)methylamino]-N-[2-(3-tert-butyl-4-hydroxyphenyl)-1-(methanesulfonylaminomethyl)ethyl]-3-methylbutanamide (680 mg, 0.95 mmol) in methanol (10 ml), palladium hydroxide/carbon (0.25 g) was added and stirred in a hydrogen atmosphere for 1 hour. After filtering off insoluble material using Celite, the filtrate was concentrated; the thus obtained residue was subjected to silica gel column chromatography (developing solvent:

chloroform:methanol:concentrated aqueous ammonia =
100:10:1), giving the titled compound (494 mg, 89%).
EI-MS:578(M⁺)

 1 H-NMR(CDCl₃):(two rotamers) δ 0.62(d,21/10H,J=6.9Hz),

- 0.75(d,9/10H,J=6.6Hz), 0.84(d,9/10H,J=6.6Hz),
- 0.93(d,21/10H,J=6.3Hz), 1.36(s,27/10H), 1.39(s,63/10H),
- 2.20-2.45(m,1H), 2.46-2.95(m,8H), 3.02-3.17(m,3H), 3.61-
- 4.05(m,2H), 4.18-4.37(m,1H), 4.87-4.95(m,7/10H), 5.23-
- 5 5.35(m,3/10H), 5.55-5.70(m,3/10H), 6.20-6.50(m,7/10H),
 - 6.60-7.20(m,7H), 8.01(d,1H,J=7.6Hz)

Example 15

2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-

- methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-carbamidomethylethylamide
 - (1) Synthesis of 2-(4-benzyloxy-3-t-butylphenyl)-1-hydroxymethylethyl carbamic acid benzyl ester

To a solution of Z-Phe(3-tBu-4-benzyloxy)-OMe (2.46 g,

- 15 5.19 mmol) in THF (50 ml), lithium borohydride (339 mg,
- 15.57 mmol) was added under cooling with ice and stirred at
 - room temperature for 3 hours. The reaction mixture was mixed with a saturated aqueous ammonium chloride solution
 - and extracted with ethyl acetate. The organic layer was
- 20 washed with saturated brine, dried over anhydrous magnesium
- sulfate and evaporated to remove the solvent under reduced
 - pressure; the thus obtained residue was subjected to silica
 - gel column chromatography (developing solvent: n-
- hexane:ethyl acetate = 2:1), giving the titled compound
- 25 (2.30 g, 99%).

 ${}^{1}\text{H-NMR}(CDCl}_{3}):\delta 1.38(9\text{H,s}), 2.11(1\text{H,brs}),$

- 2.80(2H,d,J=6.9Hz), 3.54-3.77(2H,m), 3.83-3.97(1H,m), 4.88-
- 4.97(1H,m), 5.09(4H,s), 6.85(1H,d,J=8.3Hz),

10

20

25

6.97(1H,dd,J=8.3,1.8Hz), 7.11(1H,d,J=1.8Hz), 7.27-7.50(10H,m)

(2) Synthesis of 2-(4-benzyloxy-3-t-butylphenyl)-1-methanesulfonyloxymethylethylcarbamic acid benzyl ester

To a solution of 2-(4-benzyloxy-3-t-butylphenyl)-1-hydroxymethylethylcarbamic acid benzyl ester (1.87 g, 4.18 mmol) in pyridine (42 ml), methanesulfonyl chloride (0.36 ml, 4.60 mmol) was added under cooling with ice. After stirring for 1 hour, the mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure, giving the titled compound (1.93 g, 88%).

1H-NMR(CDCl₃): δ 1.38(9H,s), 2.76-2.92(2H,m), 2.96(3H,s),

15 4.10-4.21(2H,m), 4.21-4.32(1H,m), 4.88-5.00(1H,m), 5.09(4H,s), 6.86(1H,d,J=8.6Hz), 6.98(1H,brd,J=7.9Hz), 7.11(1H,brs), 7.30-7.48(10H,m)

(3) Synthesis of 2-(4-benzyloxy-3-t-butylphenyl)-1-cyanomethylethylcarbamic acid benzyl ester

To a solution of 2-(4-benzyloxy-3-t-butylphenyl)-1-methanesulfonyloxymethylethylcarbamic acid benzyl ester 1.93 g, 4.23 mmol) in DMSO (11 ml), potassium cyanide (827 mg, 12.7 mmol) was added and heated at 70°C. After stirring for 4 hours, the mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel

column chromatography (developing solvent: n-hexane:ethyl acetate = 2:1), giving the titled compound (1.42 g, 74%).

¹H-NMR(CDCl₃): δ 1.38(9H,s), 2.46(1H,dd,J=16.8,4.0Hz),

2.74(1H,dd,J=16.8,4.6Hz), 2.82(1H,dd,J=13.8,8.4Hz),

5 2.96(1H,dd,J=13.8,6.5Hz), 4.07-4.18(1H,m), 4.89-4.98(1H,m),

5.09(4H,s), 6.87(1H,d,J=8.3Hz), 6.99(1H,dd,J=8.3,1.5Hz),

7.12(1H,d,J=1.5Hz), 7.36-7.47(10H,m)

(4) Synthesis of 2-(3-t-butyl-4-hydroxyphenyl)-1-carbamidomethylethylamine

To a solution of 2-(4-benzyloxy-3-tbutylphenyl)-1cyanomethylethylcarbamic acid benzyl ester (1.38 g, 3.03
mmol) in DMSO (24 ml), potassium carbonate (1.59 g) and 30%
hydrogen peroxide (4.0 ml) were added under cooling with
ice. After stirring at room temperature for 2 hours, the
reaction mixture was mixed with water; the thus formed
precipitates were collected by filtration to give 2-(4benzyloxy-3-t-butylphenyl)-1-carbamidemethylethylcarbamic
acid benzyl ester.

A mixture of the above crude compound, 20% palladium hydroxide/carbon (0.50 g) and methanol (30 ml) was stirred at room temperature in a hydrogen atmosphere for 8 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (639 mg, 84%).

1H-NMR(DMSO):δ 1.33(9H,s), 1.96(1H,dd,J=14.5,8.6Hz), 2.12(1H,dd,J=14.5,4.0Hz), 2.37(1H,dd,J=13.4,7.4Hz),

25

2.46-2.55(1H,m), 3.07-3.20(1H,m), 6.68(1H,d,J=8.2Hz), 6.73(1H,brs), 6.79(1H,brd,J=8.2Hz), 7.40(1H,brs), 9.05(1H,s)

(5) Synthesis of 2-(benzyloxycarbonyl)methylamino-3methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-5 carbamidomethylethylamide

To a solution of Z-N-Me-Val-OH (736 mg, 2.78 mmol), 2-(3-t-butyl-4-hydroxyphenyl)-1-carbamidomethylethylamine (579 mg, 2.32 mmol) and CMPI (710 mg, 2.78 mmol) in THF (23 ml), TEA (0.77 ml) was added under cooling with ice and stirred at room temperature for 4 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus 15 obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate), giving the titled compound (1.09 g, 95%).

 $^{1}\text{H-NMR}(CDCl}_{3}):\delta 0.78-0.90(6\text{H,m}), 1.37(9\text{H,s}), 2.14-$

2.80(5H,m), 2.72(3H,s), 3.92-4.04(1H,m), 4.32-4.48(1H,m), 20 5.04,5.15(2H,brs), 5.27-5.37(1H,m), 5.78,6.03(1H,brs), 6.38-6.82(3H,m), 7.04(1H,brs), 7.30-7.41(5H,m).

(6) Synthesis of 3-methyl-2-methylaminobutyric acid 2-(3t-butyl-4-hydroxyphenyl)-1-carbamidomethylethylamide

To a solution of 2-(benzyloxycarbonyl)methylamino-3methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1carbamidomethylethylamide (1.04 g, 2.09 mmol) in methanol (20 ml), 10% palladium carbon (100 mg) was added and

20

25

stirred in a hydrogen atmosphere at room temperature for 1 hour. After filtration, the filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (0.67 g, 88%).

 $^{1}\text{H-NMR(CDCl}_{3}): \delta \text{ 0.68(3H,d,J=6.9Hz), 0.83(3H,d,J=6.9Hz),}$

1.38(9H,s), 1.82-1.97(1H,m), 2.27(3H,s),

2.45(1H,dd,J=15.8,7.3Hz), 2.68(1H,d,J=4.6Hz), 2.78-

2.91(2H,m), 4.41-4.56(1H,m), 5.30(1H,brs), 5.58(1H,brs), 6.34(1H,brs), 6.62(1H,d,J=8.0Hz), 6.92(1H,dd,J=8.0,2.0Hz),

7.04(1H,d,J=2.0Hz), 7.63(1H,brd,J=8.9Hz)

(7) Synthesis of 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-

15 hydroxyphenyl)-1-carbamidomethylethylamide

To a solution of Z-Phe(4-F)-OH (650 mg, 2.05 mmol), 3-methyl-2-methylaminobutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-carbamidomethylethylamide (0.62 g, 1.71 mmol) and CMPI (524 mg, 2.05 mmol) in THF (17 ml), TEA (0.57 ml, 4.10 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate), giving 2-((2-benzyloxycarbonylamino-3-(4-fluorophenyl))propionyl)-

15

20

25

N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-carbamidomethylethylamide (1.05 g, 93%).

A mixture of the above compound (1.16 g, 1.75 mmol) and 10% palladium carbon (120 mg) in methanol (18 ml) was stirred at room temperature in a hydrogen atmosphere for 3 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (761 mg, 82%).

10 100:10:1), giving the titled compound (761 mg, 82%).

EI-MS:528(M⁺)

¹H-NMR(CDCl₃):δ 0.67,0.80,0.90,0.92(6H,d,J=6.3-6.9Hz), 1.37, 1.39(9H,s), 2.21-3.22(6H,m), 2.61,2.89(3H,s), 3.59-3.88,4.34-4.48(3H,m), 5.33,5.42(1H,brs), 5.90,6.07(1H,brs), 6.56-7.18(7H,m), 8.71(1H,brd,J=8.3Hz)

Example 16

2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-methanesulfonylmethylethylamide

(1) Synthesis of 2-(4-benzyloxy-3-t-butylphenyl)-1-toluenesulfonyloxymethylethylcarbamic acid benzyl ester

To a solution of 2-(4-benzyloxy-3-t-butylphenyl)-1-hydroxymethylethylcarbamic acid benzyl ester (2.07 g, 4.63 mmol) in pyridine (46 ml), toluenesulfonyl chloride (6.79 g, 35.6 mmol) was added under cooling with ice. After stirring for 6.5 hours, the mixture was mixed with water and extracted with ethyl acetate. The organic layer was

washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: n-

5 hexane:ethyl acetate = 2:1), giving the titled compound (2.46 g, 88%).

¹H-NMR(CDCl₃):δ 1.36(9H,s), 2.42(3H,s), 2.72-2.86(2H,m), 3.92-4.09(3H,m), 4.84-4.95(1H,m), 5.04(2H,s), 5.07(2H,s), 6.79(1H,d,J=8.0Hz), 6.87(1H,brd,J=8.0Hz), 7.06(1H,brs),

- 10 7.26-7.48(12H,m), 7.76(2H,d,J=8.3Hz)
 - (2) Synthesis of 2-(4-benzyloxy-3-t-butylphenyl)-1-methylthiomethylethylcarbamic acid benzyl ester

toluenesulfonyloxymethylethylcarbamic acid benzyl ester 2.4

g, 3.99 mmol) in ethanol (40 ml), a solution of sodium
methanethiolate (560 mg, 7.99 mmol) in methanol (4 ml) was
added and stirred at 40°C for 3 hours. The mixture was
evaporated under reduced pressure to remove the solvent,
mixed with a saturated aqueous ammonium chloride solution
and extracted with ethyl acetate. The organic layer was
washed with saturated brine, dried over anhydrous magnesium
sulfate and evaporated to remove the solvent under reduced
pressure; the thus obtained residue was subjected to silica
gel column chromatography (developing solvent: n-

hexane:ethyl acetate = 5:1), giving the titled compound (1.63 g, 86%).

 1 H-NMR(CDCl₃): δ 1.38(9H,s), 2.12(3H,s), 2.61(2H,d,J=5.6Hz), 2.85(2H,d,J=6.3Hz), 3.99-4.12(1H,m), 4.80-4.91(1H,m),

- 5.09(4H,s), 6.85(1H,d,J=8.3Hz), 6.96(1H,brd,J=7.6Hz), 7.11(1H,brs), 7.27-7.50(10H,m)
- (3) Synthesis of 2-(4-benzyloxy-3-t-butylphenyl)-1-methanesulfonylmethylethylcarbamic acid benzyl ester
- 5 To a solution of benzyl ester of 2-(4-benzyloxy-3-t-butylphenyl)-1-methylthiomethylethylcarbamic acid (1.54 g, 3.23 mmol) in THF (75 ml) and water (25 ml), oxone (5.91 g, 6.46 mmol) was added at room temperature. After stirring for 1 hour, the mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: n-hexane:ethyl
- acetate = 1:1), giving the titled compound (1.59 g, 97%). $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta$ 1.38(9H,s), 2.88(3H,brs),
 - 3.00(2H,brd,J=6.9Hz), 3.17(1H,dd,J=14.8,4.6Hz), 4.19-
 - 4.30(1H,m), 4.35-4.47(1H,m), 5.07-5.18(1H,m), 5.09(2H,s),
 - 5.10(2H,s), 6.85(1H,d,J=8.5Hz), 6.97(1H,dd,J=8.5,1.7Hz),
- 20 7.10(1H,brs), 7.28-7.49(10H,m)
 - (4) Synthesis of 2-(3-t-butyl-4-hydroxyphenyl)-1-methanesulfonylmethylethylamine

A mixture of 2-(4-benzyloxy-3-t-butylphenyl)-1methanesulfonylmethylethylcarbamic acid benzyl ester (1.0 g,
1.96 mmol) and 20% palladium hydroxide/carbon (0.08 g) in

methanol (16 ml) was stirred at room temperature in a hydrogen atmosphere overnight. The reaction mixture was filtered and the filtrate was concentrated under reduced

pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (0.56 g, 99%).

- 5 ¹H-NMR(CDCl₃):δ 1.40(9H,s), 2.64(1H,dd,J=13.7,7.9Hz), 2.73(1H,dd,J=13.7,5.9Hz), 2.93-3.03(1H,m), 2.98(3H,s), 3.13(1H,dd,J=14.2,2.0), 3.61-3.74(1H,m), 6.62(1H,d,J=7.9Hz), 6.88(1H,dd,J=7.9,2.0), 7.05(1H,d,J=2.0Hz)
- (5) Synthesis of 2-(benzyloxycarbonyl)methylamino-3methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1methanesulfonylmethylethylamide

To a solution of Z-N-Me-Val-OH (518 mg, 1.96 mmol),

2-(3-t-butyl-4-hydroxyphenyl)-1
methanesulfonylmethylethylamine (0.47 g, 1.63 mmol) and

15 CMPI (500 mg, 1.96 mmol) in THF (16 ml), TEA (0.55 ml) was added under cooling with ice and stirred at room temperature for 2 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: n-hexane:ethyl acetate = 1:1), giving the titled compound (0.70 g, 81%).

¹H-NMR(CDCl₃):δ 0.83(3H,d,J=6.6Hz), 0.89(3H,d,J=6.3Hz), 1.38(9H,s), 2.14-2.33(1H,m), 2.64-2.97(2H,m), 2.74(3H,s), 2.91(3H,s), 3.13(1H,dd,J=14.6,4.6Hz), 3.29(1H,dd,J=14.6,6.9Hz), 3.94(1H,d,J=11.2Hz), 4.43-

15

4.57(1H,m), 4.79(1H,brs), 5.14(2H,s), 6.40-6.84(3H,m), 7.06(1H,brs), 7.37(5H,brs).

- (6) Synthesis of 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-
- 5 hydroxyphenyl)-1-methanesulfonylmethylethylamide

To a solution of 2-(benzyloxycarbonyl)methylamino-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-methanesulfonylmethylethylamide (0.65 g, 1.22 mmol) in methanol (10 ml), 10% palladium carbon (130 mg) was added and stirred in a hydrogen atmosphere at room temperature for 30 min. After filtration, the filtrate was concentrated under reduced pressure. To a solution of the thus obtained residue, Z-Phe(4-F)-OH (465 mg, 1.47 mmol) and CMPI (375 mg, 1.47 mmol) in THF (15 ml), TEA (0.41 ml, 2.93 mmol) was added under cooling with ice and stirred at

- room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent
- under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent:n-hexane: ethyl acetate =1:1) to give 2-((2-benzyloxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-
- hydroxyphenyl)-1-methanesulfonylmethylethylamide (484 mg, 57%). A mixture of the above compound (424 mg, 0.609 mmol) and 10% palladium carbon (43 mg) in methanol (16 ml) was stirred at room temperature in a hydrogen atmosphere for 2

hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol=15:1),

5 giving the titled compound (239 mg, 70%).

 $EI-MS:563(M^{+})$

 $^{1}H-NMR(CDCl_{3}):\delta 0.65,0.78,0.91,0.93(6H,d,J=6.6-7.3Hz), 1.38,$

1.39(9H,s), 2.22-2.40(1H,m), 2.46-3.40(6H,m), 2.66(3H,s),

2.93(3H,s), 3.60-3.83(1H,m), 3.87,4.26(1H,d,J=10.8Hz),

10 4.38-4.67(1H,m), 6.57-7.17,8.88(8H,m)

Example 17

Synthesis of 2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol

(1) Synthesis of 3-tBu-tyrosinol

To a solution of Z-3-tBu-tyrosinol (8.2 g, 23 mmol) in methanol (250 ml), 10% palladium carbon (800 mg) was added and stirred in a hydrogen atmosphere at room

temperature for 10 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give the titled compound (5.1 g, 99%).

 $^{1}H-NMR(CDCl_{3}):\delta 1.40(9H,s), 2.45(1H,dd,J=8.6,13.5Hz),$

2.71(1H,dd,5.3,13.5Hz), 3.0-3.2(1H,m),

25 3.38(1H,dd,J=7.6,10.5Hz), 3.65(1H,dd,J=3.6,10.5Hz),

6.61(1H,d,J=7.9Hz), 6.88(1H,dd,J=2.0,7.9Hz),

7.06(1H,d,J=2.0Hz)

(2) Synthesis of (2-(benzyloxycarbonyl-N-methylamino)-3-

25

methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol

To a solution of 3-tBu-tyrosinol (1 g, 4.48 mmol), Z-N-Me-Val-OH (1.43 g, 5.4 mmol) and CMPI (1.38 g, 5.4 mmol) in THF (45 ml), TEA (2.2 ml, 15.8 mmol) was added under cooling with ice and stirred at room temperature for 13 5 The reaction mixture was mixed with water and hours. extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica 10 gel column chromatography (developing solvent: hexane:ethyl acetate = 1:1), giving the titled compound (1.9 g, 90%). $^{1}H-NMR(CDCl_{3}):\delta 0.84(3H,d,J=6.6Hz), 0.92(3H,d,J=6.3Hz),$ 2.1-2.3(1H,m), 2.5-2.8(5H,m), 3.5-3.7(2H,m), 3.9-4.2(2H,m),

15 5.13(2H,s), 6.2-6.4(1H,m), 6.45(1H,d,J=7.6Hz), 6.80(1H,brd,J=7.6Hz), 7.05(1H,brs), 7.36(5H,s)

(3) Synthesis of 2-(2-((2-(t-butoxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol

To a solution of (2-(benzyloxycarbonyl-N-methylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol (1.9 g, 4 mmol) in methanol (40 ml), 10% palladium carbon (190 mg) was added and stirred in a hydrogen atmosphere at room temperature for 3 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give (2-(N-methylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol (1.4 g).

To a solution of the above crude compound (1.4 g),
Boc-Phe(4-F)-OH (1.4 g, 4.94 mmol) and CMPI (1.3 g, 5.09
mmol) in THF (40 ml), TEA (2 ml, 14.3 mmol) was added under
cooling with ice and stirred at room temperature for 12

- hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel
- column chromatography (developing solvent: hexane:ethyl acetate = 1:1), giving the titled compound (1.9 g, 78%). ${}^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta \text{ 0.77, 0.92, and 1.02(total 6H,d), 1.2-1.5(18H,m), 2.2-3.1(8H,m), 3.5-3.8(2H,m), 4.0-4.3, 4.4-4.5, 4.7-4.9, and 5.2-5.4(total 2H,m), 6.3-7.5(8H,m) }$
- 15 (4) Synthesis of 2-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol

To a solution of 2-(2-((2-(t-butoxycarbonylamino)-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl
butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol (0.5 g) in methylene chloride (2 ml), TFA (2 ml) was added under cooling with ice, stirred for 1 hour at room temperature and evaporated to remove the solvent under reduced pressure. The thus obtained residue was mixed with methylene chloride, washed with a saturated aqueous NaHCO₃ solution, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography

(developing solvent: chloroform:methanol:aqueous ammonia = 20:1:0.1), giving the titled compound (250 mg, 60%). EI-MS:501(M⁺)

¹H-NMR(CDCl₃):δ 0.68, 0.79, and 0.93(total 6H,d,J=6.3-6.9Hz), 1.36 and 1.39(total 9H,s), 2.2-2.4(1H,s), 2.5-3.2(4H,m), 2.68 and 2.84(total 3H,s), 3.5-3.9(3H,m), 3.89 and 4.43(total 1H,d,J=10.9Hz), 4.0-4.4(1H,m), 6.5-7.1(7H,m), 6.58 and 8.41(total 1H,d,J=6.9-7.6Hz)

10 Example 18

20

(2-(2-(2-amino-3-(4-fluorophenyl)propylamino)-3-methylbutyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)methylsulfone

(1) Synthesis of (2-(2-(benzyloxycarbonylamino)-3-methyl15 butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)methylsulfone

To a solution of (2-(benzyloxycarbonylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)methylsulfone (797 mg, 1.56 mmol) in methanol (15 ml), 10% palladium hydroxide (80 mg) was added and stirred at room temperature for 12 hours in a hydrogen atmosphere. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give (2-amino-3-(3-tBu-4-hydroxyphenyl)propyl)methylsulfone (400 mg, 90%).

To a solution of the above crude compound (400 mg,

1.4 mmol), Z-Val-OH (528 mg, 2.1 mmol) and CMPI (539 mg,

2.1 mmol) in THF (10 ml), TEA (0.58 ml, 4.2 mmol) was added

under cooling with ice and stirred at room temperature for

2 hours. The reaction mixture was mixed with water and

10

7.34(5H,s)

extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: hexane:ethyl acetate = 1:1), giving the titled compound (504 mg, 69%).

1H-NMR(CDCl₃): \delta 0.79(3H,d,J=6.9Hz), 0.91(3H,d,J=6.6Hz),
1.38(9H,s), 2.0-2.2(1H,m), 2.89(3H,s), 2.97(2H,d,J=6.9Hz),
3.1-3.4(2H,m), 3.94(1H,dd,J=5.6,7.9Hz), 4.4-4.6(1H,m),
5.10(2H,s), 5.1-5.2(1H,m), 5.35(1H,brs), 6.59(1H,d,J=8.3Hz),
6.5-6.7(1H,m), 6.88(1H,brd,J=8.3Hz), 7.05(1H,brs),

(2) Synthesis of of (1-formy1-2-(4-fluorophenyl)ethyl)carbamic acid tBu ester

To a solution of Boc-Phe(4-F)-OH (1 g, 3.53 mmol) and 15 O, N-dimethylhydroxylamine hydrochloride (0.38 g, 3.9 mmol) in methylene chloride (17 ml), TEA (1.1 ml, 7.9 mmol) and BOP (1.64 g, 3.7 mmol) were added under cooling with ice and stirred at room temperature for 1.5 hours. reaction mixture was mixed with water and extracted with 20 ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: hexane:ethyl acetate = 1:1), giving N-25 methoxy-N-methyl-2-(t-butoxycarbonylamino)-3-(4fluorophenyl)propylamide (1.08 g, 94%).

To a solution of the above compound (1 g, 3.07 mmol)

in ether (30 ml), lithium aluminum hydride (120 mg, 3.16 mmol) was added at -10°C and stirred at the same temperature for 10 min. The reaction mixture was mixed with 15 ml of a solution of potassium hydrogen sulfate (630 mg, 4.63 mmol). The reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: hexane:ethyl acetate = 2:1), giving the titled compound (0.8 g, 98%).

1H-NMR(CDCl₃): 8 1.44(9H,s), 3.0-3.2(2H,m), 4.3-4.5(1H,m),

TH-NMR(CDCl₃): 8 1.44(9H,s), 3.0-3.2(2H,m), 4.3-4.5(1H,m), 5.02(1H,brs), 7.00(2H,t,J=8.6Hz), 7.13(2H,dd,J=5.4,8.6Hz), 9.63(1H,s)

15 (3) Synthesis of (2-(2-(2-(t-butoxycarbonylamino)-3-(4fluorophenyl)propylamino)-3-methyl-butyrylamino)-3-(3-tBu4-hydroxyphenyl)propyl)methylsulfone

To a solution of (2-(2-(benzyloxycarbonylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-

hydroxyphenyl)propyl)methylsulfone (500 mg, 0.96 mmol) in methanol (10 ml), 10% palladium carbon (50 mg) was added and stirred in a hydrogen atmosphere at room temperature for 12 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give (2-(2-amino-3-methyl-butyrylamino)-3-(3-tBu-4-

(2-(2-amino-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)methylsulfone (330 mg).

To a solution of the above crude compound (330 mg, 0.86 mmol) and (1-formyl-2-(4-fluorophenyl)ethyl)carbamic

acid tBu ester (275 mg, 1.03 mmol) in methanol (8 ml), acetic acid (0.07 ml, 1.22 mmol) and sodium cyanoborohydride (85 mg, 1.29 mmol) were added in that order under cooling with ice and stirred at room

- temperature for 30 min. The reaction mixture was mixed with methylene chloride, washed with a saturated aqueous NaHCO₃ solution, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel
- column chromatography (developing solvent:
 chloroform:methanol:aqueous ammonia = 40:1:0.1), giving the
 titled compound (520 mg, 95%).

 $^{1}\text{H-NMR(CDCl}_{3}): \delta \text{ 0.68(3H,d,J=5.6Hz), 0.85(3H,d,J=6.9Hz),}$

- 1.38(9H,s), 1.41(9H,s), 1.9-2.1(1H,m), 2.4-2.9(5H,m),
- 15 2.9-3.1(2H,m), 2.99(3H,s), 3.1-3.3(2H,m), 3.8-4.0(1H,m),
 - 4.47(1H,d, J=8.9Hz), 4.5-4.8(1H,m), 5.56(1H,brs),
 - 6.64(1H,d,J=7.9Hz), 6.9-7.2(6H,m), 7.7-7.9(1H,m)
 - (4) Synthesis of (2-(2-(2-amino-3-(4-

fluorophenyl)propylamino)-3-methyl-butyrylamino)-3-(3-tBu-

20 4-hydroxyphenyl)propyl)methylsulfone

To a solution of (2-(2-(2-(t-butoxycarbonylamino)-3-(4-fluorophenyl)propylamino)-3-methyl-butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)methylsulfone (520 mg) in methylene chloride (2 ml), TFA (2 ml) was added under cooling with ice, stirred at room temperature for 30 min. and evaporated to remove the solvent under reduced pressure. The thus obtained residue was mixed with methylene chloride, washed with a saturated aqueous NaHCO3 solution, dried over

anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 20:1:0.1), giving the titled compound (400 mg, 91%).

EI-MS:535(M⁺)

 $^{1}\text{H-NMR(CDCl}_{3}):\delta \text{ 0.75(3H,d,J=6.9Hz), 0.89(3H,d,J=6.9Hz),}$

- 1.39(9H,s), 2.0-2.1(1H,m), 2.3-2.5(2H,m),
- 2.53(1H,dd,J=3.6,11.6Hz), 2.72(1H,dd,J=4.6,13.2Hz),
- 10 2.80(1H,d,J=4.6Hz), 2.8-3.1(5H,m), 3.19(2H,d,J=5.9Hz), 4.5-
 - 4.7(1H,m),6.62(1H,d,J=7.9Hz), 6.93(1H,dd,J=2.0,7.9Hz),
 - 6.99(2H,t,J=8.8Hz), 7.0-7.2(3H,m), 7.80(1H,d,J=8.6Hz)

Example 19

- 2-(1-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone
 - (1) Synthesis of 3-(4-benzyloxy-3-tert-butylphenyl)-2-benzyloxycarbonylaminopropionitrile
- To a solution of Z-Phe(4-benzyloxy-3-tBu)-NH₂ (4.6 g, 10 mmol) in THF (20 ml), pyridine (1.6 ml, 20 mmol) and trifluoroacetic anhydride (1.55 ml, 11 mmol) were added under cooling with ice and stirred for 4.5 days at room temperature. The reaction mixture was evaporated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:4), giving the titled compound (3.35 g, 99%).

10

15

20

25

¹H-NMR(CDCl₃):δ 1.37(9H,s), 3.0(2H,m), 4.85(1H,brd), 5.03(1H,brd), 5.10(2H,s), 5.14(2H,s), 6.69(1H,d,J=8.58Hz), 7.05(1H,d,J=8.58Hz)7.2(1H,s), 7.3-7.5(10H,m)

(2) Synthesis of 2-[2-(4-benzyloxy-3-tert-butylphenyl)-1-benzyloxycarbonylaminoethyl]-6-methyl-4-pyrimidinone

A solution of 3-(4-benzyloxy-3-tert-butylphenyl)-2benzyloxycarbonylaminopropionitrile (3.48 g, 7.85 mmol) in saturated hydrochloric acid/ethanol (50 ml) was stirred at room temperature for 1.5 days. The reaction mixture was concentrated under reduced pressure and the thus obtained residue was dissolved in ethanol (70 ml); into the thus obtained solution, gaseous ammonia was blown under cooling with ice, followed by stirring at room temperature for 17 The resultant was concentrated under reduced pressure; the thus obtained residue was dissolved in methanol (50 ml), mixed with methyl acetoacetate (0.640 ml) and potassium hydroxide (562 mg) and stirred at room temperature for 4.5 days. The mixture was mixed with a saturated aqueous ammonium chloride solution and extracted with methylene chloride. The organic layer was dried over anhydrous magnesium sulfate, evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: n-hexane:ethyl acetate = 2:1), giving the titled compound (1.76 g, 67%).

¹H-NMR(CDCl₃):δ 1.39(9H,s), 2.25(3H,s), 3.09(2H,brd), 4.89(1H,brd), 5.03(2H,s), 5.07(2H,s), 5.80(1H,brd), 6.14(1H,s), 6.79(1H,d,J=8.24Hz), 6.92(1H,d,J=8.24Hz),

25

6.96(1H,s), 7.25-7.43(10H,m)

(3) Synthesis of 2-[1-amino-2-(3-tert-butyl-4-hydroxyphenyl)ethyl]-6-methyl-4-pyrimidinone

A suspension of 2-[2-(4-benzyloxy-3-tert-

- butylphenyl)-1-benzyloxycarbonylaminoethyl]-6-methyl-4pyrimidinone (1.76 g, 3.35 mmol) and 20% palladium
 hydroxide/carbon (0.15 g) in methanol (30 ml) was stirred
 in a hydrogen atmosphere for 16 hours. The reaction
 mixture was filtered and the filtrate was concentrated
- under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 10:1), giving the titled compound (824 mg, 82%).

 $^{1}\text{H-NMR(CDCl}_{3}):\delta \ 1.37(9\text{H,s}), \ 2.32(3\text{H,s}),$

- 15 2.74(1H,dd,J=8.90,9.24Hz), 3.15(1H,dd,J=4.28,4.29Hz), 4.09(1H,m), 6.16(1H,s), 6.59(1H,d,J=7.92Hz), 6.83(1H,d,J=7.92Hz), 6.99(1H,s).
 - (4) Synthesis of 2-(1-(2-(benzyloxycarbonylmethylamino)-3-methylbutyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone

To a solution of Z-N-Me-Val-OH (678 mg, 2.55 mmol), 2-[1-amino-2-(3-tert-butyl-4-hydroxyphenyl)ethyl]-6-methyl-4-pyrimidinone (700 mg, 2.32 mmol) and CMPI (653 mg, 2.55 mmol) in THF (20 ml), TEA (0.97 ml) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove

the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:2), giving the titled compound (0.77 g, 61%).

- 5 ¹H-NMR(CDCl₃):δ 0.79-0.90(6H,m), 1.30(9H,m), 2.2(4H,m), 2.8-3.1(5H,m), 4.3(1H,d,J=7.3), 4.97(1H,m), 5.1-5.25(2H,m), 6.18(1H,d,J=8.58), 6.41(1H,d,J=8.58Hz), 6.5-6.85(2H,m), 7.3(5H,m)
- (5) Synthesis of 2-[2-(3-tert-butyl-4-hydroxyphenyl)-1-(310 methyl-2-methylaminobutyrylamino)ethyl]-6-methyl-4pyrimidinone

A mixture of 2-(1-(2-(benzyloxycarbonylmethylamino)3-methyl-butyrylamino)-2-(3-tert-butyl-4hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone (0.71 g, 1.294

15 mmol), 20% palladium hydroxide/carbon (0.15 g) and methanol
(20 ml) was stirred in a hydrogen atmosphere for 4 hours.

The reaction mixture was filtered and the filtrate was
concentrated under reduced pressure; the thus obtained
residue was subjected to silica gel column chromatography

20 (developing solvent: methylene chloride:methanol = 15:1),
giving two diastereoisomers A and B of the titled compound,
A (296 mg, 38%) being eluted first and then B (77 mg, 9.4%).

(A)

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta 0.72(3\text{H},d,J=6.93\text{Hz}), 0.83(3\text{H},d,J=6.93\text{Hz}),$

25 1.34(9H,s), 1.94(1H,m), 2.28(3H,s), 2.30(3H,s),

2.77(1H,d,J=4.62Hz), 3.11(2H,m), 5.04(1H,d,J=7.59Hz),

6.14(1H,s), 6.61(1H,d,J=7.92Hz), 6.81(1H,dd,J=7.92Hz),

6.99(1H,s), 7.84(1H,d,J=6.92Hz)

(B)

 $^{1}\text{H-NMR}(CDCl}_{3}$): δ 0.84(3H,d,J=6.93Hz), 0.89(3H,d,J=6.93Hz),

- 1.33(9H,s), 2.00(1H,m), 2.14(3H,s), 2.18(3H,s),
- 2.78(1H,d,J=4.95Hz), 3.11(2H,m), 5.10(1H,d,J=6.60Hz),
- 5 6.14(1H,s), 6.63(1H,d,J=7.92Hz), 6.75(1H,dd,J=7.92Hz),
 - 6.97(1H,s), 7.81(1H,d,J=7.26Hz)
 - (6) Synthesis of 2-(1-(2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6-
- 10 methyl-4-pyrimidinone (A)

To a solution of Boc-Phe(4-F)-OH (200 mg, 0.707 mmol), 2-[2-(3-tert-butyl-4-hydroxyphenyl)-1-(3-methyl-2-methylaminobutyrylamino)ethyl]-6-methyl-4-pyrimidinone (A) (244 mg, 0.589 mmol) and CMPI (180 mg, 0.706 mmol) in THF

- 15 (8 ml), TEA (0.25 ml, 4.7 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and
- evaporated to remove the solvent under reduced pressure;
 the thus obtained residue was subjected to silica gel
 column chromatography (developing solvent: acetone:n-hexane
 = 1:2), giving the titled compound (0.33 g, 82%).

 $^{1}\text{H-NMR(CDCl}_{3}): (\text{two rotamers}) \delta 0.75, 0.80 \text{ and}$

- 0.98(6H,d,J=6.6,6.9Hz), 1.34 and 1.38(9H,s), 1.4 (9H,s),
 - 2.10(1H,m), 2.3 and 2.4(3H,s), 2.7(3H,s), 2.85(2H,m),
 - 3.04(2H,d,J=7.01Hz), 4.12 and 4.58(1H,d,J=9.6Hz),
 - 4.75(1H,m), 5.05(1H,m), 4.83 and 5.2(1H,brd), 5.45 and

- 5.6(1H,dd,J=7.4Hz), 6.2(1H,s), 6.6(1H,m), 6.77(1H,m), 7.0(5H,m).
- (7) Synthesis of 2-(1-(2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-
- 5 butyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6methyl-4-pyrimidinone (B)

To a solution of Boc-Phe(4-F)-OH (63 mg, 0.222 mmol), 2-[2-(3-tert-butyl-4-hydroxyphenyl)-1-(3-methyl-2-methylaminobutyrylamino)ethyl]-6-methyl-4-pyrimidinone (B)

- 10 (77 mg, 0.185 mmol) and CMPI (57 mg, 0.222 mmol) in THF (5 ml), TEA (0.08 ml, 0.573 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated
- brine, dried over anhydrous magnesium sulfate and
 evaporated to remove the solvent under reduced pressure;
 the thus obtained residue was subjected to silica gel
 column chromatography (developing solvent: acetone:n-hexane
 = 1:2), giving the titled compound (0.098 g, 74%).
- ¹H-NMR(CDCl₃):(two rotamers)δ 0.78(6H,brd), 1.3-1.4(18H,s), 1.8(2H,brd), 2.25(3H,brd), 2.8 and 3.20(7H,brd), 4.1(2H,m), 4.4 and 4.5(1H,d,J=9.89Hz), 4.7 and 5.17(1H,brd), 5.3 and 5.58(1H,d,J=9.89Hz), 6.0 and 6.17(1H,s), 6.6(1H,brd), 6.7-7.2(8H,m)
- 25 (8) Synthesis of 2-(1-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone (A)

10

25

To a solution of 2-(1-(2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone (A) (279 mg) in methylene chloride (8 ml), TFA (1.3 ml) was added under cooling with ice. The resultant mixture was stirred at room temperature for 1 hour and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 15:1), giving the titled compound (225 mg, 95%).

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):(\text{two rotamers})\delta$ 0.7 and 0.8(6H,dd,J=6.6 and 6.59Hz), 1.29(9H,s), 2.14 and 2.275(3H,s), 2.1-2.2(1H,m), 2.67 and 2.78(3H,s), 2.6-2.8(2H,m), 3.07(2H,m), 3.7-

- 3.83(1H,m), 4.15 and 4.62(1H,d,J=9.87Hz), 4.98 and 5.18(1H,dd,J=6.5 and 7.6Hz), 6.02 and 6.11(1H,s), 6.55 and 6.8(2H,m), 6.92(1H,d,J=6.92Hz), 6.93-7.15(4H,m)
- (9) Synthesis of 2-(1-(2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl20 butyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone (B)

To a solution of 2-(1-(2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methyl-butyrylamino)-2-(3-tert-butyl-4-hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone (B) (93 mg) in methylene chloride (5 ml), TFA (1 ml) was added under cooling with ice. The resultant mixture was stirred at room temperature for 1.5 hours and evaporated under reduced pressure to remove the

20

25

solvent; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 15:1), giving the titled compound (70 mg, 91.8%).

- 1 H-NMR(CDCl₃):(two rotamers) δ 0.68, 0.78 and 0.86(6H,dd,J=6.6 and 6.27Hz), 1.3 and 1.32(9H,s), 2.21 and 2.23(3H,s), 2.2-2.4(1H,brd), 2.6 and 2.8(1H,m), 2.71-2.91(3H,s), 3.00(3H,m), 3.77 and 3.9(1H,m), 3.97 and 4.52(1H,d,J=9.37Hz), 4.97 and 5.18(1H,m),
- 10 6.12(1H,d,J=3.3Hz), 6.5-7.2(8H,m)

Example 20

5-(1-(2-(2-amino-3-(4-fluorophenyl)propanoyl)-N-methylamino)-3-methylbutyrylamino)-2-(3-tert-butyl-4-hydroxylphenyl)ethyl)imidazolidine-2,4-dione

(1) Synthesis of Z-Tyr(3-tBu)-H

To a solution of Z-Tyr(3-tBu)-OMe (3.30 g, 8.57 mmol) in THF (200 ml), diisobutyl aluminum hydride (1.0 M toluene solution) (42.9 ml, 42.9 mmol) was added dropwise at -78°C over 15 min. After stirring for 1 hour, the mixture was mixed with methanol and a saturated aqueous NaHCO₃ solution and extracted with ethyl acetate. The organic layer was washed with water and then with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:2), giving the titled compound (2.18 g, 72%).

15

25

NMR(CDCl₃): δ 1.37(9H,s), 3.00-3.14(2H,m), 4.40-4.52(1H,m), 4.89(1H,brs), 5.12(2H,s), 5.22-5.32(1H,m), 6.57(1H,d,J=8.2Hz), 6.82(1H,d,J=8.2Hz), 7.00(1H,s), 7.30-7.42(5H,m), 9.64(1H,s)

5 (2) Synthesis of 5-(1-(benzyloxycarbonylamino)-2-(3-tert-butyl-4-hydroxylphenyl)ethyl)imidazolidine-2,4-dione

in ethanol (25 ml), potassium cyanide (480 mg, 7.37 mmol), 30% ammonium carbonate (1.77 g, 18.4 mmol) and water (25 ml) were added and stirred at 60°C for 8 hours. The mixture was left for cooling and mixed with a saturated aqueous NaHCO₃ solution. The organic layer was extracted with ethyl acetate and washed with water and then with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus

chromatography (developing solvent: ethyl acetate:n-hexane

To a solution of Z-Tyr(3-tBu)-H (2.18 g, 6.14 mmol)

= 1:1), giving the titled compound (1.38 g, 53%). 1 H-NMR(CDCl₃): δ 1.37(9H,s), 2.90-3.00(2H,m), 3.10-

obtained residue was subjected to silica gel column

3.22(1H,m), 4.27(1H,brs), 5.06(2H,s), 5.02-5.12(1H,m), 6.07(1H,brs), 6.57(1H,d,J=8.2Hz), 6.88(1H,dd,J=2.0,8.2Hz), 7.10(1H,d,J=2.0Hz), 7.22-7.40(5H,m)

(3) Synthesis of 5-(1-(2-(benzyloxycarbonyl-N-methylamino)-3-methylbutyrylamino)-2-(3-tert-butyl-4-hydroxylphenyl)ethyl)imidazolidine-2,4-dione

To a solution of 5-(1-(benzyloxycarbonylamino)-2-(3-tert-butyl-4-hydroxylphenyl)ethyl)imidazolidine-2,4-dione (543 mg, 1.28 mmol) in methanol (10 ml), 10% palladium

carbon (55 mg) was added and stirred at room temperature in a hydrogen atmosphere for 3 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; to a solution of the thus obtained

- residue in THF (13 ml), Z-N-Me-Val-OH (509 mg, 1.92 mmol), CMPI (491 mg, 1.92 mmol) and TEA (0.535 ml, 3.84 mmol) were added under cooling with ice and stirred at room temperature for 3 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic
- layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 2:1), giving the titled compound (365 mg, 53%).

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta \text{ 0.79 and 0.85(6H,d,J=6.6Hz), 2.14-}$

2.26(1H,m), 2.60(3H,s), 2.70-2.92(2H,m),

3.89(1H,d,J=10.8Hz), 4.27(1H,brs), 4.62-4.74(2H,m),

5.14(2H,s), 6.28(1H,d,J=7.9Hz), 6.56-7.10(3H,m), 7.30-

20 7.42(5H,m)

(4) Synthesis of 5-(1-(3-methyl-2-methylaminobutyrylamino)-2-(3-tert-butyl-4-hydroxylphenyl)ethyl)imidazolidine-2,4-dione

To a solution of 5-(1-(2-(benzyloxycarbonyl-Nmethylamino)-3-methylbutyrylamino)-2-(3-tert-butyl-4hydroxylphenyl)ethyl)imidazolidine-2,4-dione (363 mg, 0.675
mmol) in methanol (10 ml), 10% palladium carbon (50 mg) was
added and stirred at room temperature in a hydrogen

atmosphere overnight. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give the titled compound (261 mg, 96%).

 $EI-MS:404(M^{+})$

 $^{1}\text{H-NMR}(DMSO-d_{6}): \delta \text{ 0.79 and 0.82(6H,d,J=6.3-6.6Hz),}$ 1.31(9H,s), 1.90(3H,s), 2.74-2.84(2H,m), 4.02-4.14(1H,m), 4.17(1H,brs), 4.38-4.48(1H,m), 6.64(1H,d,J=8.2Hz),

6.82(1H,d,J=8.2Hz), 6.99(1H,s), 7.85(1H,brs)

(5) Synthesis of 5-(1-(2-(2-(benzyloxycarbonylamino)-3-(4-

fluorophenyl)propanoyl)-N-methylamino)-3methylbutyrylamino)-2-(3-tert-butyl-4hydroxylphenyl)ethyl)imidazolidine-2,4-dione

To a solution of 5-(1-(3-methyl-2-methylaminobutyrylamino)-2-(3-tert-butyl-4-

hydroxylphenyl)ethyl)imidazolidine-2,4-dione (254 mg, 0.629 mmol) in THF (6 ml), Z-Phe(4-F)-OH (239 mg, 0.755 mmol), CMPI (193 mg, 0.755 mmol) and TEA (0.219 ml, 1.57 mmol) were added under cooling with ice and stirred at room temperature for 4 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:1), giving the titled

 $^{1}\text{H-NMR(CDCl}_{3}): (\text{two rotamers}) \delta \ 0.62, 0.71, 0.94 \ \text{and}$ 0.98(6H,d,J=6.0-6.6Hz), 1.34 and 1.37(9H,s), 2.26 and

compound (168 mg, 38%).

```
2.92(3H,s), 2.24-2.42(1H,m), 2.64-3.12(4H,m), 3.84-
```

4.32(2H,m), 4.50-4.82(2H,m), 5.02-5.12(2H,m), 5.20-

5.64(1H,m), 6.21(1H,brs), 6.31(1H,brs), 6.50-6.60(2H,m),

6.86-7.14(5H,m), 7.24-7.40(5H,m), 7.50-8.00(1H,m)

5 (6) Synthesis of 5-(1-(2-(2-amino-3-(4-fluorophenyl)propanoyl)-N-methylamino)-3-methylbutyrylamino)-2-(3-tert-butyl-4-hydroxylphenyl)ethyl)imidazolidine-2,4-dione

To a solution of 5-(1-(2-(2-(benzyloxycarbonylamino)-

- 3-(4-fluorophenyl)propanoyl)-N-methylamino)-3methylbutyrylamino)-2-(3-tert-butyl-4hydroxylphenyl)ethyl)imidazolidine-2,4-dione (157 mg, 0.223
 mmol) in methanol (5 ml), 10% palladium carbon (50 mg) was
 added and stirred at room temperature in a hydrogen
- atmosphere overnight. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to preparative TLC (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (83.0 mg, 65%).
- 20 FAB-MS: $570(M+H^{+})$

 1 H-NMR(DMSO- d_{6}):(two rotamers) δ 0.48-0.84(6H,m), 1.28, 1.32 and 1.33(9H,s), 2.00-2.12(1H,m), 2.28,2.42 and 2.62(3H,s), 2.40-3.10(4H,m), 3.82-4.08(2H,m), 4.24-4.50(2H,m), 6.58-7.30(7H,m), 7.66-8.30(2H,m), 8.92-9.24(2H,m)

25

Example 21

2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-

hydroxyphenyl)-1-(1,3,4-oxadiazol-2-yl)ethylamide

(1) Synthesis of 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-

oxadiazol-2-yl)ethylcarbamic acid benzyl ester

To a solution of Z-Tyr(3-tBu)-OMe (4.0 g, 10.39 mmol) in ethanol (100 ml), hydrazine monohydrate (6.4 ml, 103.9 5 mmol) was added at room temperature. The mixture was stirred overnight and evaporated under reduced pressure to remove the solvent. The thus obtained residue was mixed with ethyl orthoformate (100 ml) and p-toluenesulfonic acid monohydrate (198 mg, 1.04 mmol) at room temperature. 10 mixture was stirred for 1.5 hours and mixed with 1N HCl (100 ml). The mixture was stirred for 20 min., and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium bicarbonate solution and then with saturated brine, dried over anhydrous magnesium 15 sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:1), giving the titled compound (1.34 g, 33%). 20

 1 H-NMR(CDCl₃): δ 1.32(9H,s), 3.19(2H,brs), 5.02(1H,brs), 5.05-5.16(2H,m), 5.35(2H,brs), 6.53(1H,d,J=7.9Hz), 6.75(1H,dd,J=7.9,2.0Hz), 6.85(1H,d,J=2.0Hz), 8.34(1H,s)

(2) Synthesis of 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-oxadiazol-2-yl)ethylamine

To a solution of 2-(3-t-butyl-4-hydroxyphenyl)-1(1,3,4-oxadiazol-2-yl)ethylcarbamic acid benzyl ester (1.25 g, 3.16 mmol) in methanol (30 ml), 10% palladium carbon

(130 mg) was added and stirred in a hydrogen atmosphere at room temperature for 1 day. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (0.80 g, 97%).

 $^{1}H-NMR(CDCl_{3}):\delta$ 1.36(9H,s), 3.02(1H,dd,J=13.8,7.9Hz),

- 3.18(1H,dd,J=13.8,5.6Hz), 4.47(1H,dd,J=7.9,5.6Hz),
- 10 6.57(1H,d,J=7.9Hz), 6.84(1H,dd,J=7.9,2.0Hz),
 - 6.97(1H,d,J=2.0Hz), 8.40(1H,s)
 - (3) Synthesis of 3-methyl-2-methylaminobutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-oxadiazol-2-yl)ethylamide
 To a solution of Z-N-Me-Val-OH (914 mg, 3.45 mmol),
- 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-oxadiazol-2-yl)ethylamine (0.75 g, 2.87 mmol) and CMPI (881 mg, 3.45 mmol) in THF (30 ml), TEA (0.96 ml) was added under cooling with ice and stirred at room temperature for 2 hours. The reaction mixture was mixed with water and extracted with
- 20 ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-
- hexane = 1:1), giving 2-benzyloxycarbonylamino-3methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4oxadiazol-2-yl)ethylamide (1.28 g, 88%).

To a solution of the above compound (1.23 g) in

methanol (24 ml), 10% palladium carbon (120 mg) was added and stirred in a hydrogen atmosphere at room temperature for 1 hour. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (0.87 g, 96%).

 1 H-NMR(CDCl₃): δ 0.70(3H,d,J=6.9Hz), 0.85(3H,d,J=6.9Hz),

- 10 1.35(9H,s), 1.88-2.03(1H,m), 2.34(3H,s), 2.77(1H,d,J=4.6Hz), 3.12(1H,dd,J=14.0,8.4Hz), 3.28(1H,dd,J=14.0,5.9Hz),
 - 5.45(1H,brs), 5.61-5.71(1H,m), 6.58(1H,d,J=8.0Hz),
 - 6.68(1H,dd,J=8.0,2.0Hz), 6.96(1H,d,J=2.0Hz),
 - 7.84(1H,brd,J=8.9Hz), 8.35(1H,s)
- 15 (4) Synthesis of 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-oxadiazol-2-yl)ethylamide

To a solution of Z-Phe(4-F)-OH (835 mg, 2.63 mmol), 3-methyl-2-methylaminobutyric acid 2-(3-t-butyl-4-

- hydroxyphenyl)-1-(1,3,4-oxadiazol-2-yl)ethylamide (0.82 g, 2.19 mmol) and CMPI (672 mg, 2.63 mmol) in THF (22 ml), TEA (0.74 ml, 5.26 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl
- acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column

chromatography (developing solvent: n-hexane:ethyl acetate = 1:1), giving 2-(2-benzyloxycarbonylamino-3-(4-fluorophenyl)propionyl)amino-N,3-dimethylbutyric acid 1-(1,3,4-oxadiazol-2-yl)-2-(3-t-butyl-4-

5 hydroxyphenyl)ethylamide (1.31 g, 89%).

A mixture of the above compound (1.31 g, 1.95 mmol) and 10% palladium carbon (130 mg) in methanol (20 ml) was stirred at room temperature in a hydrogen atmosphere for 4 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (752 mg, 72%).

EI-MS:539(M*)

Example 22

25

2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,2,4-oxadiazol-5-yl)ethylamide

(1) Synthesis of N-Me-Val-Tyr(3-tBu)-NH₂

To a solution of $Tyr(3-tBu)-OCH_3$ (1.5 g, 5.97 mmol) in MeOH (10 ml), aqueous ammonia (10 ml) was added and

10

15

stirred at room temperature overnight. The mixture was evaporated to remove the solvent under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 10:1), giving Tyr(3-tBu)-NH₂ (1.4 g, 99%).

To a solution of the thus obtained Tyr(3-tBu)-NH₂ (1 g, 4.23 mmol), Z-N-Me-Val-OH (1.23 g, 4.63 mmol) and CMPI (1.2 g, 4.69 mmol) in THF (20 ml), TEA (1.8 ml) was added under cooling with ice and stirred at room temperature for 4 hours. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 2:1), giving Z-N-Me-Val-Tyr(3-tBu)-NH₂ (1.7 g, 83%).

A mixture of the thus obtained Z-N-Me-Val-Tyr(3-tBu)20 NH₂ (1.7 g), 20% palladium hydroxide/carbon (0.15 g) and
methanol (30 ml) was stirred at room temperature in a
hydrogen atmosphere for 1 hour. The reaction mixture was
filtered and the filtrate was concentrated under reduced
pressure; the thus obtained residue was subjected to silica
25 gel column chromatography (developing solvent: methylene
chloride:methanol = 10:1), giving the titled compound
(1.07 g, 88%).

 $^{1}H-NMR(CDCl_{3}):\delta 0.67(3H,d,J=6.27Hz), 0.80(3H,d,J=6.6Hz),$

1.35(9H,s), 1.91(1H,m), 2.25(3H,s), 2.76(1H,d,J=4.62Hz), 3.00(2H,m), 4.75(1H,q,J=6.6Hz), 6.13(1H,s), 6.55(1H,s), 6.66(1H,d,J=7.92Hz), 6.89(1H,d,J=7.59Hz), 7.02(1H,s), 7.84(1H,d,J=7.91Hz)

- (2) Synthesis of Boc-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH₂ 5 To a solution of Boc-Phe(4-F)-OH (890 mg, 3.14 mmol), $N-Me-Val-Tyr(3-tBu)-NH_2$ (1 g, 2.86 mmol) and CMPI (804 mg, 3.15 mmol) in THF (20 ml), TEA (1.2 ml, 7.16 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with 10 water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing 15 solvent: acetone:n-hexane = 1:2), giving Boc-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH, (1.5 g, 85%).
- (3) Synthesis of 2-((2-tertbutoxycarbonylamino-3-(4fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid
 20 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,2,4-oxadiazol-5yl)ethylamide

A solution of Boc-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH₂ (600 mg, 0.976 mmol) and N,N-dimethylacetamide (0.2 ml, 1.5 mmol) in dioxane (3 ml) was stirred at room temperature for 1 hour and mixed with a solution of sodium hydroxide (108 mg) and hydroxyamine hydrochloride (190 mg) in acetic acid/water (7 ml/3 ml). The mixture was stirred at room temperature for 10 min., mixed with water and filtered; a

solution of the thus obtained precipitate in acetic acid/dioxane (10 ml/10 ml) was stirred at 60°C overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:1), giving the titled compound (474 mg, 76%).

15 6.65(1H,brd), 6.9-7.2 (7H,m), 8.37(1H,brd)
 (4) Synthesis of 2-((2-amino-3-(4-fluorophenyl)propionyl) N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4 hydroxyphenyl)-1-(1,2,4-oxadiazol-5-yl)ethylamide

fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid
2-(3-t-butyl-4-hydroxyphenyl)-1-(1,2,4-oxadiazol-5yl)ethylamide (440 mg) in methylene chloride (5 ml), TFA (1
ml) was added under cooling with ice. The mixture was
stirred at room temperature for 1 hour and evaporated to
remove the solvent under reduced pressure; the thus
obtained residue was subjected to silica gel column
chromatography (developing solvent: methylene
chloride:methanol = 15:1), giving the titled compound (370

mg, 99%).

5

¹H-NMR(CDCl₃):(two rotamers)δ 0.75 and 0.87 (total 6H,d and dd,J=6.59 and 6.92Hz), 1.27(9H,s), 2.17(1H,m), 2.77(2H,m), 2.83(3H,s), 3.1(2H,m), 3.55(1H,m), 3.96(1H,d,J=10.89Hz), 5.7(1H,m), 6.45(1H,s), 6.59(1H,d,J=5.94Hz), 6.9(1H.brd), 8.35(1H,s), 9.5(1H,d,J=8.91Hz), 6.95(2H,t,J=8.25Hz), 7.06(2H,t,J=8.25Hz)

Example 23

- 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide
 - (1) Synthesis of N-benzyloxycarbonyl-3-tBu tyrosinylthioamide
- To a solution of Z-Tyr(3-tBu)-NH₂ (2.08 g, 5.62 mmol) in dioxane (70 ml), Lawesson's reagent (1.36 g, 3.37 mmol) was added and stirred at 80°C for 1 hour. The reaction mixture was evaporated to remove the solvent under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:3), giving the titled compound (1.66 g, 77%).

 1 H-NMR(CDCl₃): δ 1.37(9H,s), 3.01-3.14(2H,m), 4.56-4.65(1H,m), 5.08(2H,s), 6.58(1H,d,J=7.9Hz),

- 25 6.90(1H,dd,J=7.9,1.7Hz), 7.09(1H,d,J=1.7Hz), 7.20-7.40(5H,m)
 - (2) Synthesis of N-benzyloxycarbonyl-2-(3-tert-butyl-4-hydroxylphenyl)-1-(thiazol-2-yl)ethylamine

10

15

20

25

To a solution of N-benzyloxycarbonyl-3-tBu tyrosinylthioamide (21.49 g, 55.67 mmol) in ethanol (300 ml), bromoacetaldehyde diethylacetal (43 ml, 278 mmol) was added, stirred at 80°C for 2 hours, further mixed with bromoacetaldehyde diethylacetal (43 ml, 278 mmol), stirred at 80°C for 4 hours, further mixed with bromoacetaldehyde diethylacetal (43 ml, 278 mmol) and stirred at 80°C for 3 hours. The mixture was evaporated to remove the solvent under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:3), giving the titled compound (15.32 g, 67%).

¹H-NMR(CDCl₃):δ 1.29(9H,s), 3.10-3.30(2H,m), 5.10(2H,s), 5.20-5.40(1H,m), 6.51(1H,d,J=8.3Hz), 6.74-6.78(2H,m), 7.22 (1H,d,J=3.3Hz), 7.20-7.40(5H,brs), 7.76(1H,d,J=3.3Hz) (3) Synthesis of 2-(3-tert-butyl-4-hydroxylphenyl)-1- (thiazol-2-yl)ethylamine

To a solution of N-benzyloxycarbonyl-2-(3-tert-butyl-4-hydroxylphenyl)-1-(thiazol-2-yl)ethylamine (15.28 g, 37.27 mmol) in methylene chloride (1.1 l), thioanisole (8.75 ml, 74.54 mmol) was added. To the mixture, a solution of 1.0M boron tribromide in methylene chloride (186 ml, 186.34 mmol) was added dropwise under cooling with ice and stirred for 1 hour. The reaction mixture was mixed with water and alkalinized by 2N sodium hydroxide and extracted with methylene chloride. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced

20

pressure, giving the titled compound (9.46 g, 90%). $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta\ 1.36(9\text{H,s}),\ 2.82-3.27(2\text{H,m}),\ 4.51 4.56(1\text{H,m}),\ 6.57(1\text{H,d,J=7.9Hz}),\ 6.89(1\text{H,dd,J=7.9,2.0Hz}),$ $6.99(1\text{H,d,J=2.0Hz}),\ 7.27(1\text{H,d,J=3.3Hz}),\ 7.76(1\text{H,d,J=3.3Hz})$

5 (4) Synthesis of 2-(N-tert-butoxycarbonyl-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

(thiazol-2-yl)ethylamine (4.67 g, 16.64 mmol), Boc-N-Me-10 Val-OH (5.0 g, 21.63 mmol) and CMPI (5.53 g, 21.63 mmol) in

To a solution of 2-(3-tert-butyl-4-hydroxylphenyl)-1-

THF (110 ml), TEA (5.33 ml, 38.27 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with

saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methanol:aqueous ammonia:methylene chloride = 3:0.1:100), giving the titled compound (8.10 g, 100%).

¹H-NMR(CDCl₃):δ 0.75-0.97(6H,m), 1.29(6H,s), 1.31(3H,s), 1.41(3H,s), 1.48(6H,s), 2.10-2.35(1H,m), 2.71(1.5H,s), 2.73(1.5H,s), 3.10-3.30(2H,m), 3.90-4.10(1H,m), 5.50-5.70(1H,m), 6.58(1H,d,J=7.9Hz), 6.70-6.90(2H,m),

25 7.20(1H,d,J=3.0Hz), 7.74-7.76(1H,m)

(5) Synthesis of 3-methyl-2-methylaminobutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

To a solution of 2-(N-tert-butoxycarbonyl-N-

methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (8.03 g, 16.42 mmol) in methylene chloride (80 ml), TFA (40 ml) was added and stirred at room temperature for 30 min. The reaction

- 5 mixture was evaporated to remove the solvent under reduced pressure; the thus obtained residue was mixed with methylene chloride, washed with a 2N aqueous sodium hydroxide solution and saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the
- solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: acetone:hexane = 1:2), giving two diastereoisomers A and B of the titled compound, A (2.37 g, 37%) being eluted first and then B (2.17 g, 34%).
- 15 (A)

 ¹H-NMR(CDCl₃):δ 0.65(3H,d,J=6.9Hz), 0.82(3H,d,J=6.9Hz),

 1.33(9H,s), 1.85-2.00(1H,m), 2.32(3H,s), 2.75(1H,d,J=4.6Hz),

 3.09-3.37(2H,m), 5.63-5.71(1H,m), 6.61(1H,d,J=7.9Hz), 6.87-6.92(2H,m), 7.22(1H,d,J=3.0Hz), 7.77(1H,d,J=3.3Hz)
- 20 (B)

 ¹H-NMR(CDCl₃):δ 0.84(3H,d,J=6.9Hz), 0.92(3H,d,J=6.9Hz),

 1.33(9H,s), 1.95-2.15(1H,m), 2.11(3H,s), 2.68(1H,d,J=5.0Hz),

 3.12-3.39(2H,m), 5.60-5.69(1H,m), 6.59(1H,d,J=8.2Hz),

 6.87(1H,dd,J=7.9,2.0Hz), 6.93(1H,d,J=2.0Hz),
 - (6) Synthesis of 2-((2-butoxycarbonylamino-3-(4fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

7.22(1H,d,J=3.3Hz), 7.77(1H,d,J=3.3Hz)

(A)

To a solution of 3-methyl-2-methylaminobutyric acid

2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

(A) (1.00 g, 2.57 mmol), Boc-Phe(4-F)-OH (947 mg, 3.34

5 mmol) and CMPI (853 mg, 3.34 mmol) in THF (17 ml), TEA

(0.82 ml, 5.91 mmol) was added under cooling with ice and

stirred at room temperature overnight. The reaction

mixture was mixed with water and extracted with ethyl

acetate. The organic layer was washed with saturated brine,

dried over anhydrous magnesium sulfate and evaporated to

remove the solvent under reduced pressure; the thus

obtained residue was subjected to silica gel column

chromatography (developing solvent: ethyl acetate:n-hexane

= 1:2), giving the titled compound (1.55 g, 92%).

7.30(6H,m), 7.21(0.7H,d,J=3.3Hz), 7.23(0.3H,d,J=3.3Hz), 7.74(0.3H,d,J=3.3Hz), 7.77(0.7H,d,J=3.3Hz)

(7) Synthesis of 2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

25 (B)

To a solution of 3-methyl-2-methylaminobutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (B) (1.00 g, 2.57 mmol), Boc-Phe(4-F)-OH (947 mg, 3.34

mmol) and CMPI (853 mg, 3.34 mmol) in THF (17 ml), TEA (0.82 ml, 5.91 mmol) was added under cooling with ice and stirred at room temperature overnight. The reaction mixture was mixed with water and extracted with ethyl

- acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane
- 10 = 1:2), giving the titled compound (1.54 g, 92%).

 ¹H-NMR(CDCl₃):δ 0.57(1H,d,J=6.6Hz), 0.62(1H,d,J=6.9Hz),

 0.78(4H,d,J=6.3Hz), 1.33(9H,s), 1.36(9H,s), 2.10-2.30(1H,m),

 2.60-3.70(4H,m), 2.82(1.8H,s), 2.85(1.2H,s),

 3.99(0.3H,d,J=10.6Hz), 4.51(0.7H,d,J=10.9Hz), 4.70-
- 15 4.90(1H,m), 5.20-5.60(1H,m), 6.59-7.21(7H,m), 7.20(1H,d,J=3.3Hz), 7.71(1H,d,J=3.3Hz)
 - (8) Synthesis of 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (A)
- To a solution of 2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (A) (1.49 g, 2.28 mmol) in methylene chloride (20 ml), TFA (10 ml) was added and stirred at room temperature for 1.5 hours. The reaction mixture was evaporated to remove the solvent under reduced pressure; the thus obtained residue was mixed with methylene chloride, washed with a 2N aqueous sodium hydroxide solution and saturated brine, dried over

anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: methanol:aqueous ammonia:methylene

5 chloride = 3:0.1:100), giving the titled compound (430 mg). EI-MS:554(M^{\dagger})

 $^{1}\text{H-NMR}(\text{CDCl}_{3}): \delta \text{ 0.75(2.3H,d,J=6.9Hz), 0.80(0.7H,d,J=6.6Hz),}$

0.90-0.92(0.7H,m), 0.93(2.3H,d,J=6.6Hz), 1.24(7H,s),

1.30(2H,s), 2.25-2.65(1H,m), 2.70-3.40(4H,m), 2.79(2.4H,s),

10 2.85(0.6H,s), 3.50-3.60(0.8H,m), 3.75-3.90(0.2H,m),

3.97(0.8H,d,J=10.9Hz), 4.51(0.2H,d,J=10.6Hz), 5.45-

5.60(0.2H,m), 5.65-5.80(0.8H,m), 6.55-7.20(7H,m),

7.23(1H,d,J=3.3Hz), 7.76(1H,d,J=3.3Hz)

(9) Synthesis of 2-((2-amino-3-(4-fluorophenyl)propionyl)-

N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (B)

To a solution of 2-((2-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

(B) (1.48 g, 2.26 mmol) in methylene chloride (20 ml), TFA (10 ml) was added and stirred at room temperature for 1.5 hours. The reaction mixture was evaporated to remove the solvent under reduced pressure; the thus obtained residue was mixed with methylene chloride, washed with a 2N aqueous sodium hydroxide solution and saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography

25

(developing solvent: methanol:aqueous ammonia:methylene chloride = 3:0.1:100), giving the titled compound (587 mg). EI-MS: $554(M^{+})$

 $^{1}H-NMR(CDCl_{3}):\delta 0.72(1.5H,d,J=6.9Hz), 0.786(1.5H,d,J=6.3Hz),$

0.793(1.5H,d,J=6.6Hz), 0.88(1.5H,d,J=6.3Hz), 1.24(5.4H,s),

1.33(3.6H,s), 2.15-2.40(1H,m), 2.40-3.35(4H,m),

2.75(1.8H,s), 2.87(1.2H,s), 3.55-3.85(1H,m),

3.86(0.6H,d,J=10.9Hz), 4.56(0.4H,d,J=10.9Hz), 5.50-

5.65(1H,m), 6.45-7.15(7H,m), 7.17-7.20(1H,m),

10 7.23(1H,d,J=3.3Hz), 7.76(1H,d,J=3.0Hz)

Example 24

Synthesis of 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid

2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-triazol-2-yl)ethylamide

To a solution of Boc-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH $_2$ (400 mg, 0.651 mmol) in methylene chloride (6.5 ml), dimethylformamide dimethylacetal (0.26 ml, 1.954 mmol) was added at room temperature. The mixture was stirred for 30 min. and evaporated to remove the solvent under reduced pressure. To a solution of the thus obtained residue in dioxane (6.5 ml), acetic acid (2 ml) and hydrazine monohydrate (48 μ l, 0.977 mmol) were added at room temperature. The mixture was stirred for 40 min., mixed with water and filtered to collect the precipitated solid. The thus obtained solid was subjected to silica gel column chromatography (developing solvent: ethyl acetate), giving

2-((2-t-butoxycarbonylamino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-triazol-2-yl)ethylamide (384 mg, 93%).

To a solution of the above compound (421 mg) in methylene chloride (3 ml), TFA (1 ml) was added under cooling with ice. The mixture was stirred at room temperature for 30 min., mixed with a saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with saturated bri

- acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent:
- chloroform:methanol:aqueous ammonia = 100:10:1), giving the titled compound (175 mg, 49%).

 $EI-MS:538(M^{\dagger})$

 $^{1}\text{H-NMR(CDCl}_{3}): \delta \text{ 0.72,0.87,0.73-0.80(6H,d,J=6.3-6.6Hz), 1.22,}$

- 1.25(9H,s), 2.24-2.41(1H,m), 2.50-3.30(4H,m), 2.78,
- 20 2.87(3H,s), 3.47-3.58, 3.79-3.88(1H,m),
 - 4.00,4.39(1H,brd,J=10.6Hz), 5.29-5.38,5.40-5.50(1H,m),
 - 6.41-7.11(7H,m), 7.52,9.33(1H,brd,J=8.3Hz), 8.02,8.10(1H,s)

Example 25

- 2-[2-amino-3-(4-fluorophenyl)propyl]amino-3methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1(thiazol-2-yl)ethylamide
 - (1) Synthesis of 2-tert-butoxycarbonylamino-3-

methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

To a solution of Boc-Val-OH (890 mg, 4.09 mmol), 2(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamine

5 (1.03 g, 3.73 mmol) and CMPI (653 mg, 1.05 mmol) in THF
(10 ml), TEA (1 ml) was added under cooling with ice and
stirred at room temperature overnight. The reaction
mixture was mixed with water and extracted with ethyl
acetate. The organic layer was washed with saturated brine,

- dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:1), giving the titled compound (1.88 g, 99%).
- 20 (2) Synthesis of 2-amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide

To a solution of 2-(3-tert-butyl-4-hydroxyphenyl)-1(thiazol-2-yl)ethylamine (1.7 g) in methylene chloride (14 ml), TFA (6 ml) was added under cooling with ice and

25 stirred at room temperature for 2 hours. The mixture was evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene

chloride:methanol:ethyl acetate = 20:1:2), giving two diastereoisomers A and B of the titled compound, A (700 mg) being eluted first and then B (650 mg, 99%).

(A)

5 ¹H-NMR(CDCl₃-CD₃OD):δ 0.89(6H,brd), 1.28(9H,s), 2.15(1H,m), 3.18-3.7(3H,m), 5.48(1H,brd), 6.6(1H,brd), 6.8(2H,brd), 7.27(1H,s), 7.7(1H,s)

(B)

 $^{1}\text{H-NMR}(CDCl_{3}-CD_{3}OD):\delta 0.72(6H,d,J=6.27Hz), 1.31(9H,s),$

- 1.92(1H,brd), 3.04(2H,brd), 3.28(1H,dd,J=5.28 and 5.6Hz),
 5.55(1H,m), 6.62(1H,d,J=7.92Hz), 6.86(1H,brd), 6.97(1H,s),
 7.28(1H,s), 7.68(1H,d,J=2.64Hz)
 - (3) Synthesis of 2-[2-tert-butoxycarbonylamino-3-(4-fluorophenyl)propyl]amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (A)

To a solution of 2-amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (A) (600 mg, 1.59 mmol) and (1-formyl-2-(4-

fluorophenyl)ethyl)carbamic acid tBu ester (640 mg, 2.39

mmol) in MeOH (10 ml), NaBH₃CN (200 mg, 3.1 mmol) was added under cooling with ice and stirred at room temperature for one hour. The mixture was evaporated under reduced pressure, mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was

subjected to silica gel column chromatography (developing
solvent: ethyl acetate:n-hexane = 1:1), giving the titled

compound (935 mg, 93%).

 $^{1}\text{H-NMR(CDCl}_{3}): \delta \text{ 0.75 and 0.83(6H,d,J=6.93 and 6.59Hz),}$

- 1.36(9H,s), 1.42(9H,s), 2.46(2H,brd), 2.66(2H,brd),
- 2.73(1H,d, J=4.61Hz), 2.81(1H,d, J=7.26Hz),
- 5 3.20(2H,d,J=6.26Hz), 3.6(2H,m), 3.8(1H,brd), 4.7(1H,brd),
 - 5.6(1H,q,J=6.93 and 5.94Hz), 6.61(1H,d,J=7.92Hz),
 - 6.77(1H,s), 6.85(1H,d,J=7.92Hz), 6.9-7.21(8H,m),
 - 7.66(1H,d,J=2.97Hz)
 - (4) Synthesis of 2-[2-tert-butoxycarbonylamino-3-(4-
- fluorophenyl)propyl]amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (B)

To a solution of 2-amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (B) (600 mg, 1.59 mmol) and 1-formyl-2-(4-

- fluorophenyl)ethyl)carbamic acid tBu ester (640 mg, 2.39 mmol) in MeOH (10 ml), NaBH3CN (200 mg, 3.1 mmol) was added under cooling with ice and stirred at room temperature for one hour. The mixture was evaporated under reduced pressure, mixed with water and extracted with ethyl acetate.
- The organic layer was washed with saturated brine, dried over sodium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:1), giving the titled compound (950 mg, 95%).

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta$ 0.83 and 0.87(6H,d,J=6.93 and 6.92Hz), 1.34(9H,s), 1.41(9H,s), 2.00(1H,brd), 2.31(2H,brd), 2.6-2.81(3H,brd), 2.81(1H,d, J=7.26Hz), 3.20(2H,m), 3.6(2H,m),

- 3.8(1H,brd), 4.58(1H,brd), 4.83(1H,brd), 5.59(2H,q,J=6.93Hz), 6.60(1H,d,J=7.92Hz), 6.81(1H,d,J=7.91Hz), 6.88(1H,s), 6.9-7.21(8H,m), 7.74(1H,d,J=2.29Hz)
- 5 (5) Synthesis of 2-[2-amino-3-(4-fluorophenyl)propyl]amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (A)

To a solution of 2-[2-tert-butoxycarbonylamino-3-(4-fluorophenyl)propyl]amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (A) (300 mg) in methylene chloride (5 ml), TFA (1 ml) was added under cooling with ice. The mixture was stirred at room temperature for 1 hour and evaporated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 15:1), giving the titled compound (180 mg, 71%).

 $^{1}\text{H-NMR}(DMSO-d_{6}):\delta$ 0.78 and 0.88(6H,d,J=3.3 and 5.6Hz), 1.28(9H,s), 1.90(1H,brd), 2.6(1H,m), 2.7-3.0(3H,brd),

3.1(2H,m), 3.4(1H,brd), 5.29(1H,q,J=5.93 and 8.58Hz), 6.69(1H,d,J=7.92Hz), 6.86(1H,d,J=7.59Hz), 6.95(1H,s), 7.2(4H,m), 7.62(1H,d,J=2.97Hz), 7.77(1H,d,J=3.3Hz)

(6) Synthesis of 2-[2-amino-3-(4-

fluorophenyl)propyl]amino-3-methylbutyric acid 2-(3-tert-

25 butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (B)

To a solution of 2-[2-tert-butoxycarbonylamino-3-(4-fluorophenyl)propyl]amino-3-methylbutyric acid 2-(3-tert-butyl-4-hydroxyphenyl)-1-(thiazol-2-yl)ethylamide (B) (300

mg) in methylene chloride (5 ml), TFA (1 ml) was added under cooling with ice. The mixture was stirred at room temperature for 1 hour and evaporated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: methylene chloride:methanol = 15:1), giving the titled compound (193 mg, 76%).

 $^{1}\text{H-NMR}(DMSO-d_{6}):\delta \ 0.61(6H,q,J=6.6 \ \text{and} \ 12.54Hz), \ 1.3(9H,s), \\ 1.72(1H,s), \ 2.7-3.0(4H,brd), \ 3.16(1H,s), \ 3.28(1H,m),$

3.5(1H,brd), 5.37(1H,m), 6.65(1H,d,J=8.25Hz), 6.85(1H,d,J=10.89Hz), 7.0(1H,s), 7.2(4H,m), 7.68(1H,d,J=2.97Hz), 7.81(1H,d,J=3.3Hz)

Example 26

20

25

15 Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

(1) Synthesis of Boc-Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
To a solution of Tyr(2-F)-OH (0.60 g, 3.01 mmol) and di-tert-butyl dicarbonate (0.69 g, 3.16 mmol) in dioxane/water (5 ml/5 ml), TEA (0.84 ml, 6.02 mmol) was added under cooling with ice and stirred for 2 hours. The reaction mixture was concentrated to approximately a half volume, mixed with a saturated aqueous NaHCO₃ solution and washed with ether. The aqueous layer was rendered acidic by the addition of 2N hydrochloric acid under cooling with ice, and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure, giving crude Boc-Tyr(2-F)-OH (0.85 g).

10

 $EI-MS(M^+):544$

To a solution of the above crude Boc-Tyr(2-F)-OH (0.82 g), N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.77 g, 2.11 mmol) and CMPI (0.81 g, 3.17 mmol) in THF (5 ml), TEA (1.18 ml, 8.44 mmol) was added under cooling with ice and stirred at room temperature for 23 hours. The reaction mixture was mixed with water, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:concentrated aqueous ammonia = 30:1:0.05), giving the titled compound (0.21 g, 15%).

(2) Synthesis of Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

To a solution of Boc-Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.21 g, 0.326 mmol) in methylene chloride (3 ml),

TFA (1.5 ml) was added and stirred for 15 min. The reaction mixture was concentrated under reduced pressure, mixed with a saturated aqueous NaHCO₃ solution, and

extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate. The resultant was evaporated to remove the solvent under reduced pressure, giving the titled compound (173 mg, 82%).

 $^{1}\text{H-NMR}(\text{DMSO-d}_{6}\text{-CDCl}_{3}): \delta \ 0.21(6/5\text{H,d,J=6.3Hz}),$ $0.59(6/5\text{H,d,J=6.6Hz}), \ 0.71(9/5\text{H,d,J=6.6Hz}), \ 0.84\text{-}$ $0.98(9/5\text{H,m}), \ 1.30(27/5\text{H,s}), \ 1.37(18/5\text{H,s}), \ 2.00\text{-}2.22(1\text{H,m}),$ $2.10(6/5\text{H,s}), \ 2.3\text{-}2.8(2\text{H,m}), \ 2.44(9/5\text{H,s}),$

15

20

2.85(9/5H,d,J=5.9Hz), 3.1-3.8(2H,m), 3.24(6/5H,d,J=5.0Hz),

3.94-4.20(1H,m), 4.51(2/5H,d,J=10.2Hz),

4.78(2/5H,dd,J=3.9,11.2Hz), 4.88(3/5H,d,J=10.2Hz),

5.41(3/5H,dd,J=3.9,10.2Hz), 6.48-7.21(7.7H,m), 7.60-

5 7.75(0.3H,m), 8.88(1H,d,J=7.3Hz), 9.47(1H,brs)

Example 27

Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

(1) Synthesis of Boc-Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

To a solution of Tyr(3-F)-OH (0.80 g, 4.02 mmol) and di-tert-butyl dicarbonate (0.92 g, 4.22 mmol) in dioxane/water (7 ml/7 ml), TEA (1.12 ml, 8.04 mmol) was added under cooling with ice and stirred for 2.5 hours. The reaction mixture was concentrated to approximately a half volume, mixed with a saturated aqueous NaHCO₃ solution and washed with ether. The aqueous layer was rendered acidic by the addition of 2N hydrochloric acid under cooling with ice, and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure, giving crude Boc-Tyr(3-F)-OH (1.18 g).

To a solution of the above crude Boc-Tyr(3-F)-OH $(1.18~\rm g),~N-Me-Val-N-Me-Tyr(3-tBu)-NH_2~(1.10~\rm g,~3.03~mmol)$ and CMPI (1.16 g, 4.55 mmol) in THF (6 ml), TEA (1.27 ml,

12.1 mmol) was added under cooling with ice and stirred at room temperature for 27 hours. The reaction mixture was mixed with water, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over

anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol:concentrated aqueous ammonia = 30:1:0.05), giving the titled compound (0.19 g, 10%).

- (2) Synthesis of $Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$ To a solution of Boc-Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ (0.19 g, 0.294 mmol) in methylene chloride (3 ml),
- TFA (1.5 ml) was added and stirred for 15 min. The reaction mixture was concentrated under reduced pressure, mixed with a saturated aqueous NaHCO3 solution, and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate. The resultant was
- evaporated to remove the solvent under reduced pressure, giving the titled compound (136 mg, 85%). $EI-MS(M^+):544$

 $^{1}H-NMR$ (DMSO- $d_{6}-CDCl_{3}$): δ 0.18(6/5H,d,J=6.3Hz),

- 0.58(6/5H,d,J=6.6Hz), 0.68(9/5H,d,J=6.6Hz),
- 20 0.85(9/5H,d,J=6.3Hz), 1.29(27/5H,s), 1.37(18/5H,s),
 - 1.95-2.21(1H,m), 2.04(6/5H,s), 2.30-3.00(2H,m),
 - 2.41(9/5H,s), 2.81(9/5H,s), 3.10-3.60(16/5H,m), 3.55-
 - 6.64(3/5H,m), 4.00-4.10(2/5H,m), 4.45(2/5H,d,J=10.2Hz),
 - 4.70(2/5H,dd,J=3.9,11.2Hz), 4.85(3/5H,d,J=10.2Hz),
- 25 5.38(3/5H,dd,J=3.9,10.2Hz), 6.51-7.31(8H,m),
 - 8.98(1H,d,J=2.6Hz), 9.50(1H,brs)

Examples 28-64 were conducted according to Scheme 1

and Examples 65-78 were conducted according to Scheme 2. The following Reference Examples show the methods of preparing Intermediates of Schemes 1 and 2. Table C-1 shows structural formulae of Intermediates of Examples 28-64.

Table C-1

Intermediates of Examples 28-78

10

15

5

In Table C-1, "(Example 1 (5))", "(Example 17)" and "(Example 10)" mean that the methods of preparing the compounds are described in the corresponding Examples 1 (5), 17 and 10, respectively. "Commercial" means that the compound is commercially available.

Reference Example 1

Synthesis of Intermediate T1

A mixture of Tyr(3-tBu)-OMe (12.4 g, 49 mmol) and concentrated aqueous ammonia (240 ml) was stirred at room temperature for 18 hours. The reaction mixture was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography (CHCl₃:MeOH = 10:1), giving Tyr(3-tBu)-NH₂ (T1) (10 g, 80%). ¹H-NMR(CDCl₃):δ 1.40(9H,s), 2.63(1H,dd,J=9.6,13.9Hz), 3.19(1H,dd,J=4.0,13.9Hz), 3.58(1H,dd,J=4.0,9.6Hz),

10 3.19(1H,dd,J=4.0,13.9Hz), 3.58(1H,dd,J=4.0,9.6Hz),
5.11(1H,brs), 5.38(1H,brs), 6.64(1H,d,J=7.9Hz),
6.92(1H,dd,J=2.0,7.9Hz), 7.11(1H,d,J=2.0Hz).

Reference Example 2

15 Synthesis of Intermediate T2

A mixture of Tyr(3-tBu)-OMe (12 g, 48 mmol) and a 40% methylamine methanol solution (80 ml) was stirred at room temperature for 14 hours. The reaction mixture was concentrated under reduced pressure, giving Tyr(3-tBu)-NHMe

20 (T2) (12 g) as a crude product.

 $^{1}\text{H-NMR}(CDCl_{3}):\delta 1.39(9\text{H,s}), 2.60(1\text{H,dd,J=9.6,13.9Hz}),$

2.83(3H,d,J=5.0Hz), 3.18(1H,dd,J=4.0,13.9Hz),

3.57(1H,dd,J=4.0,9.6Hz), 6.67(1H,d,J=7.9Hz),

6.88(1H,dd,J=1.8,7.9Hz), 7.07(1H,d,J=1.8Hz).

25

Reference Example 3

Synthesis of Intermediate T5

(1) Synthesis of N-formyl-Tyr(3-tBu)-OMe

10

15

25

To a solution of acetyl chloride (22.6 ml, 299 mmol) in diethyl ether (1 1), sodium formate (30.6 g, 450 mmol) was added under cooling with ice and stirred at room temperature for 23 hours. The reaction mixture was filtered and evaporated to remove the solvent. The thus obtained residue was added dropwise to a solution of H-Tyr(3-tBu)-OMe (22.2 g, 83.8 mmol) in methylene chloride (500 ml) under cooling with ice, mixed with TEA (46.7 ml, 335 mmol) and stirred at room temperature for 2 hours. The reaction mixture was mixed with saturated aqueous NaHCO3 and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: nhexane:ethyl acetate = 1:1), giving N-formyl-Tyr(3-tBu)-OMe (23.8 g, 100%).

¹H-NMR (CDCl₃): δ 1.38(9H,s), 3.09(2H,d,J=5.3Hz), 3.76(3H,s), 4.93(1H,dd,J=5.3,13.5Hz), 5.23(1H,s), 6.02(1H,d,J=13.5Hz),

- 20 6.55(1H,d,J=7.9Hz), 6.80(1H,dd,J=2.0,7.9Hz), 6.95(1H,d,J=2.0Hz), 8.18(1H,s).
 - (2) Synthesis of N-Me-Tyr(3-tBu)-OMe

85.3 mmol) in THF (400 ml), 1.0M borane-THF complex (170 ml) was added dropwise under cooling with ice over 30 min. The mixture was stirred for 20 min., mixed with methanol (50 ml) and further stirred for 30 min. The reaction mixture was mixed with 33% hydrobromic acid/acetic acid (31

To a solution of N-formyl-Tyr(3-tBu)-OMe (23.8 g,

- ml) and stirred for 2 hours. The mixture was neutralized by saturated aqueous $NaHCO_3$ under cooling with ice and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium
- sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: chloroform:methanol=20:1), giving N-Me-Tyr(3-tBu)-OMe (20.3 g, 90%).
- 10 ¹H-NMR (CDCl₃):δ 1.38(9H,s), 2.37(3H,s), 2.89(2H,d,J=6.6Hz),
 3.42(1H,t,J=6.6Hz),3.68(3H,s), 6.55(1H,d,J=7.9Hz),
 6.86(1H,dd,J=2.0,7.9Hz), 7.02(1H,d,J=2.0Hz)
 - (3) Synthesis of N-Me-Tyr(3-tBu)-NHMe

mmol) in methanol (20 ml), a 30% methylamine methanol solution (200 ml) was added and stirred at room temperature for 16 hours. The reaction mixture was evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column

To a solution of N-Me-Tyr(3-tBu)-OMe (8.20 g, 31.1

chromatography (developing solvent:
chloroform:methanol=20:1), giving N-Me- Tyr(3-tBu)-NHMe
(T5) (6.27 g, 76%).

 $^{1}\text{H-NMR}$ (CDCl₃): δ 1.39(9H,s), 2.26(3H,s),

2.58(1H,dd,J=10.5,14.8Hz), 2.84(2H,d,J=4.9Hz), 3.06-

25 3.18(2H,m), 5.00(1H,brs), 6.62(1H,d,J=7.9Hz), 6.89(1H,dd,J=1.7,7.9Hz), 7.08(1H,d,J=1.7Hz), 7.15(1H,brs).

Reference Example 4

Synthesis of Intermediate T7

A mixture of Tyr(3-tBu)-NH₂ (1.6 g, 6.8 mmol) and acetaldehyde (7.6 ml, 0.14mol) was stirred under cooling with ice for 10 min. The reaction mixture was concentrated under reduced pressure under cooling with ice; the thus obtained residue was mixed with methanol (34 ml) and then under cooling with ice with sodium borohydride (0.28 g, 7.4 mmol) and stirred at the same temperature for 15 min. The resultant was mixed with water and extracted with ethyl acetate. The organic layer was washed with water, dried and concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (CHCl₃:MeOH = 20:1), giving N-Et-Tyr(3-tBu)-NH₂ (T7) (1.3 g, 73%).

20

25

10

Reference Example 5

Synthesis of Intermediate T8

A mixture of Tyr(3-tBu)-NHMe (1.7 g, 6.8 mmol), acetaldehyde (0.76 ml, 13.6 mmol) and dichloromethane (10 ml) was stirred under cooling with ice for 30 min. The reaction mixture was concentrated under reduced pressure under cooling with ice; the thus obtained residue was mixed with methanol (20 ml) and then under cooling with ice with

25

sodium borohydride (0.28 g, 7.4 mmol) and stirred at the same temperature for 15 min. The resultant was mixed with water and extracted with dichloromethane. The organic layer was washed with water, dried and concentrated under reduced pressure under cooling with ice; the thus obtained residue was subjected to silica gel column chromatography (CHCl₃:MeOH=20:1), giving N-Et- Tyr(3-tBu)-NHMe (T8) (1.7 g, 90%).

¹H-NMR(CDCl₃):δ 0.94(3H,t,J=7.3Hz), 1.39(9H,s), 2.4-2.6(2H,m), 2.60(1H,dd,J=9.6,13.8Hz), 2.83(3H,d,J=4.9Hz), 3.13(1H,dd,J=4.0,13.8Hz), 3.25(1H,dd,J=4.0,9.6Hz), 5.44(1H,brs),6.64(1H,d,J=7.9Hz), 6.88(1H,dd,J=2.0,7.9Hz), 7.07(1H,d,J=2.0Hz), 7.27(1H,brs)

15 Reference Example 6
Synthesis of Intermediate V2

To a solution of Z-Val-OH (50 g) in THF (500 ml), ethyl iodide (127.3 ml, 1592 mmol) was added under cooling with ice and then sodium hydride (60% in oil) (23.88 g, 597 mmol) was added slowly, followed by stirring at 60°C for 12 hours. The reaction mixture was mixed with water and washed with ether. The thus obtained aqueous layer was rendered acidic by the addition of dilute hydrochloric acid and extracted with ethyl acetate. The resultant was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (H:EA:AcOH = 100:50:1),

giving Z-N-Et-Val-OH (V2) (29.29 g, 53%). $^{1}NMR(CDCl_{3}):\delta$ 0.92(3H,d,J=6.3Hz), 1.03(3H,d,J=6.6Hz), 1.16(3H,t,J=6.9Hz), 2.40-2.60(1H,m), 3.15-3.58(2H,m), 3.73(1H,brd,J=10.9Hz), 5.20(2H,brs), 7.36(5H,brs)

5

10

15

20

Reference Example 7

Synthesis of Intermediate P2

To a solution of Boc-Phe(4-F)-OH (13.4 g, 47.3 mmol) in THF (100 ml), 60% sodium hydride (5.7 g, 142 mmol) and then methyl iodide (23.6 ml, 378 mmol) were added under cooling with ice. The mixture was stirred at room temperature for 38 hours, under cooling with ice, mixed with water and washed with n-hexane. Under cooling with ice, the aqueous layer was rendered acidic by 1N hydrochloric acid and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was mixed with ether and n-hexane and the thus formed precipitate was collected by filtration to give Boc-N-Me-

 1 H-NMR(CDCl₃): δ 1.32 and 1.39(9H,s), 2.67 and 2.75(3H,s), 2.94-3.11(1H,m), 3.20-3.35(1H,m), 4.53-4.62(1H,brd), 4.97(1H,brs), 6.90-7.20(4H,m)

25

Reference Example 8

Synthesis of Intermediate P3

Phe(4-F)-OH(P2)(11.4 g, 81%).

To a solution of Z-Phe(4-F)-OH (13.9 g, 44.0 mmol) in

10

20

25

THF/DMF (73 ml/37 ml), ethyl iodide (28.1 ml, 352 mmol) and 60% sodium hydride (5.28 g, 132 mmol) were added under cooling with ice and stirred at room temperature for 5.5 hours. Water was added slowly to the reaction mixture, followed by washing with ether. The aqueous layer was adjusted to pH 3 by the addition of dilute hydrochloric acid and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (n-hexane:ethyl acetate:acetic acid =

100:50:1), giving Z-N-Et-Phe(4-F)-OH (P3) (10.9 g, 72%).

Reference Example 9

15 Synthesis of Intermediate P10

To a solution of Boc-Phe(4-F)-OH (1.0 g, 3.53 mmol) in THF/DMF (6 ml/1.5 ml), ethyl iodide (2.24 ml, 20.8 mmol) and 60% sodium hydride (422 mg, 10.6 mmol) were added under cooling with ice and stirred at room temperature for 19 hours. The reaction mixture was mixed with water slowly and then with a saturated aqueous NH₄Cl solution and extracted with ethyl acetate. The extract was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (n-hexane:ethyl acetate:methylene chloride = 1:1:15), giving Boc-N-Et-Phe(4-F)-OH (P10) (593 mg, 54%).

10

Reference Example 10
Synthesis of Intermediate T17

A suspension of Z-N-Me-Phe(3-tBu-4-benzyloxy)-NH₂ (2.5 g, 5.27 mmol), a 35% aqueous formaldehyde solution (10 ml) and potassium carbonate (2.19 g, 15.8 mmol) in acetonitrile was stirred for 2 hours. The mixture was mixed with water, and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous NH₄Cl solution and then with saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography (n-hexane:ethyl acetate:methylene chloride = 1:1:1), giving Z-N-Me-Phe(3-tBu-4-benzyloxy)-NHCH₂OH (2.0 g).

15 To a solution of the above compound (2.0 g, 3.97 mmol) in 85% formic acid (30 ml), sodium methanesulfinate (1.5 g, 15.3 mmol) was added and then stirred at 50°C for 1 hour. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed 20 with a saturated aqueous NaHCO, solution, dried over anhydrous magnesium sulfate and concentrated under reduced pressure; to a solution of the thus obtained residue (1.8 g) in methanol (20 ml), 20% palladium hydroxide/carbon (0.50g) was added and stirred in a hydrogen atmosphere for 25 2 days. The reaction mixture was filtered to remove the catalyst and the filtrate was concentrated; the thus obtained residue was subjected to silica gel column chromatography (n-hexane:methanol:methylene chloride

=1:1:15), giving N-Me-Phe(3-tBu-4-benzyloxy)-NHCH₂SO₂CH₃ (T17) (890 mg).

Reference Example 11

5 Synthesis of Intermediate T18

To a solution of Z-Tyr(3-tBu)-OMe (1.01 g, 2.62 mmol) in methanol/water (12 ml/3 ml), lithium hydroxide monohydrate (0.17 g, 3.93 mmol) was added and stirred at room temperature for 2 hours. The reaction mixture was washed with ether, rendered acidic by 2N hydrochloric acid and extracted with methylene chloride. The extract was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure, giving crude Z-Tyr(3-tBu)-OH (0.98 g).

15 To a solution of the above crude compound (0.92 g, 2.48 mmol), WSCI (0.52 g, 2.73 mmol) and HOBT (0.37 g, 2.73 mmol) in DMF (15 ml), tert-butylamine (0.31 ml, 2.48 mmol) and then NMM (0.29 ml, 2.73 mmol) were added under cooling with ice and stirred at room temperature for 2 hours. 20 reaction mixture was mixed with water, and extracted with ethyl acetate. The organic layer was washed with 2N hydrochloric acid, a saturated aqueous NaHCO3 solution and saturated brine in that order. The extract was dried over anhydrous magnesium sulfate and concentrated under reduced 25 pressure; the thus obtained residue was subjected to silica gel column chromatography (ethyl acetate:n-hexane = 1:2), giving Z-Tyr(3-tBu)-NHtBu (1.05 g, 99%).

To a solution of the above compound (1.0 g, 2.34

mmol) in methanol (20 ml), 20% palladium hydroxide/carbon (0.16 g) was added and stirred in a hydrogen atmosphere for 2 hours. The reaction mixture was filtered with Celite and the filtrate was evaporated to remove the solvent under reduced pressure, giving crude Tyr(3-tBu)-NHtBu (T18) (0.60 g, 88%).

Reference Example 12
Synthesis of Intermediate T20

10 (1) Synthesis of 2-(4-benzyloxy-3-tert-butylphenyl)-N-benzyloxycarbonyl-N-methyl-1-methylethylamine

To a solution of Z-N-Me-Phe(3-tBu-4-benzyloxy)-OH (27.8 g, 58.5 mmol) in THF (290 ml), ethyl chloroformate (6.2 ml, 64.3 mmol) and N-methyl morpholine 7.7 ml, 70.2

- 15 mmol) were added under cooling with ice and stirred. After 2 hours, the reaction mixture was mixed with sodium borohydride (6.7 g, 175 mmol), water (100 ml) and methanol (100 ml) and stirred at room temperature for 6 hours. The reaction mixture was evaporated to remove the solvent under
- reduced pressure and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography
- 25 (developing solvent: methylene chloride:ethyl acetate:nhexane = 1:1:2), giving 2-(4-benzyloxy-3-tert-butylphenyl)N-benzyloxycarbonyl-1-hydroxymethyl-N-methylethylamine
 (12.4 g, 46%).

A solution of the above compound (5.21 g, 11.2 mmol) in methylene chloride (55 ml), TEA (2.34 ml, 16.8 mmol) and methanesulfonyl chloride (0.954 ml, 12.3 mmol) were added under cooling with ice and stirred for 30 min. Under cooling with ice, the reaction mixture was mixed with

- 5 cooling with ice, the reaction mixture was mixed with saturated aqueous NaHCO₃ and extracted with methylene chloride. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure,
- giving a mesylate. To a solution of the mesylate in THF (30 ml), a 1M lithium triethyl borohydride/THF solution (22.4 ml, 22.4 mmol) was added. After 1 hour, further lithium triethylborohydride/THF solution (22.4 ml, 22.4 mmol) was added. After 30 min., the mixture was mixed with
- 15 water under cooling with ice and extracted with chloroform.

 The organic layer was washed with water and saturated brine,
 dried over anhydrous magnesium sulfate and evaporated to
 remove the solvent under reduced pressure; the thus
 obtained residue was subjected to silica gel column
- chromatography (developing solvent: ethyl acetate:n-hexane
 = 1:5), giving 2-(4-benzyloxy-3-tert-butylphenyl)-Nbenzyloxycarbonyl-N-methyl-1-methylethylamine (3.42 g, 68%).

 1H-NMR(CDCl₃):δ 1.14(3H,d,J=6.9Hz), 1.36(9H,s), 2.502.80(2H,m), 2.76 and 2.83(total 3H,s), 4.30-4.58(1H,m),
- 25 4.88-5.10(4H,m), 6.74-7.14(3H,m), 7.20-7.50(10H,m)
 (2) Synthesis of 2-(3-tert-butyl-4-hydroxyphenyl)-Nmethyl-1-methylethylamine (T20)

A suspension of 2-(4-benzyloxy-3-tert-butylphenyl)-N-

benzyloxycarbonyl-N-methyl-1-methylethylamine (3.30 g, 7.35 mmol) and 20% palladium hydroxide/carbon catalyst (350 mg) in methanol (100 ml) was stirred in a hydrogen atmosphere for 1.5 hours. The mixture was filtered to remove the catalyst and the filtrate was evaporated to remove the solvent under reduced pressure, giving 2-(3-tert-butyl-4-hydroxyphenyl)-N-methyl-1-methylethylamine (T20) (1.62 g, 100%).

¹H-NMR(CDCl₃):δ 1.12(3H,d,J=6.3Hz), 1.38(9H,s), 2.42(3H,s), 2.64(2H,d,J=6.6Hz), 2.75-2.90(1H,m), 6.55(1H,d,J=7.9Hz), 6.84(1H,dd,J=1.6,7.9Hz), 7.04(1H,d,J=1.6Hz).

Reference Example 13
Synthesis of Intermediate T21

15 (1) Synthesis of Z-N,O-dibenzyl-Tyr(3-tBu)-OMe

To a solution of Z-Tyr(3-tBu)-OMe (3.0 g, 7.78 mmol) in DMF (20 ml), under cooling with ice, sodium hydride (0.68 g, 17.1 mmol) was added and stirred for 15 min., followed by the addition of benzylbromide (2.3 ml, 19.5

- 20 mmol). The reaction mixture was stirred for 3 hours, mixed with a saturated aqueous NaHCO₃ solution and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure;
- the thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:5), giving the titled compound (4.14 g, 94%).
 - (2) Synthesis of N-benzyl-2-(4-benzyloxy-3-tert-

butylphenyl)-1-methyl-N-(benzyloxycarbonyl)ethylamine

To a solution of Z-N,O-dibenzyl-Tyr(3-tBu)-OMe (4.14 g, 7.32 mmol) in ethanol/THF (36 ml/6 ml), a 2M lithium borohydride/THF solution (11.0 ml, 22.0 mmol) was added under cooling with ice and stirred at room temperature overnight. The mixture was mixed with water, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium and evaporated to remove the solvent under reduced pressure.

- The thus obtained residue was dissolved in methylene chloride (50 ml) and under cooling with ice mixed with triethylamine (2.0 ml, 14.4 ml) and then with methanesulfonyl chloride (0.72 ml, 9.36 mmol), followed by stirring for 30 min. The reaction mixture was washed with
- a saturated aqueous NaHCO3 solution. The organic layer was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was dissolved in THF (10 ml) and mixed with a 1M lithium triethyl borohydride/THF solution (28.0)
- ml, 28.0 mmol). The mixture was stirred for 3 hours, mixed with water under cooling with ice and extracted with methylene chloride. The organic layer was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue
- was subjected to silica gel column chromatography

 (developing solvent: ethyl acetate:n-hexane = 1:5), giving

 the titled compound (2.35 g, 61%).
 - (3) Synthesis of 2-(3-tert-butyl-4-hydroxyphenyl)-1-

methylethylamine

A suspension of N-benzyl-2-(4-benzyloxy-3-tert-butylphenyl)-1-methyl-N-(benzyloxycarbonyl)-ethylamine (2.35 g, 4.50 mmol) and 20% palladium hydroxide/carbon catalyst (0.50 g) in methanol (30 ml) was stirred in a hydrogen atmosphere overnight. The mixture was filtered to remove the catalyst and the filtrate was evaporated to remove the solvent under reduced pressure, giving 2-(3-tert-butyl-4-hydroxyphenyl)-1-methylethylamine (T21) (0.90 g, 96%).

 $^{1}\text{H-NMR}(CDCl_{3}):\delta \ 1.16(3\text{H,d,J=6.6Hz}), \ 1.39(9\text{H,s}),$

- 2.45(1H,dd,J=4.9, 13.3Hz), 2.69(1H,dd,J=4.9,13.3Hz),
- 3.15(1H,m), 3.52H,brs), 6.58(1H,d,J=7.9Hz),
- 6.83(1H,dd,J=1.6,7.9Hz), 7.03(1H,d,J=1.6Hz).

15

10

5

Reference Example 14

Synthesis of Intermediate T23

To a solution of Tyr(3-tBu)-OMe (3.0 g, 11.9 mmol) in 1,4-dioxane/water (12 ml/12 ml), sodium carbonate (1.9 g, 17.9 mmol) and then ethyl chlorocarbonate (1.26 ml, 13.1 mmol) were added under cooling with ice and stirred for 2 hours. The reaction mixture was mixed with water, extracted with chloroform, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. To a solution of the thus obtained residue (3.85 g) in THF (120 ml), lithium aluminum hydride (2.83 g, 59.7 mmol) was added little by little and stirred at 60°C for 5 hours. The reaction mixture was poured into ice water,

stirred and then filtered with Celite for removing insoluble material. The filtrate was extracted with ethyl acetate, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (methylene chloride:methanol = 3:1), giving 3-(3-tert-butyl-4-hydroxyphenyl)-2-methylaminopropanol (T23) (1.9 g, 67%, in 2 steps).

10 Reference Example 15
Synthesis of Intermediate P11

(1) Synthesis of 2-(4-fluorophenyl)-1-(N-methoxy-N-methylcarbamoyl)ethylcarbamic acid tert-butyl ester

To a solution of Boc-Phe(4-F)-OH (5.0 g, 17.7 mmol)

in methylene chloride (89 ml), BOP reagent (9.39 g, 21.2 mmol), N,O-dimethylhydroxylamine hydrochloride (2.07 g, 21.2 mmol) and TEA (5.92 ml, 42.5 mmol) were added under cooling with ice and stirred for 30 min. The reaction mixture was mixed with water and extracted with methylene chloride. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate:n-25 hexane = 1:1), giving the titled compound (5.76 g, 100%).

 $^{1}\text{H-NMR}$ (CDCl₃): δ 1.39(9H,s), 2.84(1H,dd,J=6.9,13.8Hz), 3.02(1H,dd,J=5.9,13.8Hz), 3.16(3H,s), 3.68(3H,s), 4.86-4.96(1H,m), 5.10-5.24(1H,m), 6.95(1H,d,J=8.9Hz),

9.63(1H,s).

6.98(1H,d,J=8.9Hz), 7.11(1H,d,J=8.2Hz), 7.13(1H,d,J=8.2Hz).

(2) Synthesis of 2-(4-fluorophenyl)-1-formylethylcarbamic acid tert-butyl ester (P11)

To a solution of the above compound (3.30 g, 10.1 mmol) in diethyl ether (150 ml), lithium aluminum hydride (498 mg, 13.1 mmol) was added under cooling with ice and stirred for 30 min. The reaction mixture was mixed with a solution of potassium hydrogen sulfate (2.75 g, 20.2 mmol) in water (20 ml) and stirred for 1 hour. The reaction 10 mixture was filtered and extracted with ethyl acetate. organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography 15 (developing solvent: ethyl acetate:n-hexane = 1:5), giving the titled compound (2.37 g, 88%). 1 H-NMR(CDCl₃): δ 1.44(9H,s), 3.00-3.20(2H,m), 4.34-4.46(1H,m), 4.98-5.06(1H,m), 6.98(1H,d,J=8.6Hz), 7.01(1H,d,J=8.6Hz), 7.12(1H,d,J=8.3Hz), 7.14(1H,d,J=8.3Hz),

Scheme 1 shows the synthesis scheme of Examples 28-64.

Scheme 1: synthesis scheme of Examples 28-64

Synthesis process shown in scheme 1 is explained below:

5 Reaction step 1

To a solution of Compounds T and V and CMPI in THF, TEA was added under cooling with ice and stirred at room temperature. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-a. Reaction step 2

To a solution of Compound I-a in methanol, palladium catalyst was added and stirred at room temperature in a hydrogen atmosphere. The mixture was filtered to remove the palladium/carbon and the filtrate was evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-b.

Reaction step 3

To a solution of Compounds I-b and P and CMPI in THF, TEA was added under cooling with ice and stirred at room temperature. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-c.

10 Reaction step 4a (PG=Boc)

To a solution of Compound I-c in methylene chloride, TFA was added and stirred at room temperature. The reaction mixture was concentrated under reduced pressure, alkalified by adding a saturated aqueous NaHCO3 solution and extracted with methylene chloride. The resultant was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography, giving the titled compound.

20

25

15

5

Reaction step 4b (PG=Z)

To a solution of Compound I-c in methanol, palladium catalyst was added and stirred at room temperature in a hydrogen atmosphere. The mixture was filtered to remove the palladium/carbon and the filtrate was evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving the titled compound.

10

15

Scheme 2 shows the synthesis scheme of Examples 65-78.

Scheme 2: synthesis scheme of Examples 65-78

Synthesis process shown in scheme 2 is explained below:

Reaction step 1

To a solution of Compounds T and V4 and CMPI in THF, TEA was added under cooling with ice and stirred at room temperature. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium

10

15

20

25

sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-d. Reaction step 2

To a solution of Compound I-d in methanol, palladium catalyst was added and stirred at room temperature in a hydrogen atmosphere. The mixture was filtered to remove the palladium catalyst and the filtrate was evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-e.

Reaction step 3

To a solution of Compounds P11 and I-e in methanol, acetic acid and sodium cyanoborohydride were added under cooling with ice and stirred at room temperature. The reaction mixture was mixed with saturated aqueous NaHCO3 and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-f. Reaction step 4

To a solution of Compound I-f in methanol, 35% aqueous formaldehyde solution, acetic acid and sodium cyanoborohydride were added under cooling with ice and stirred at room temperature. The reaction mixture was mixed with saturated aqueous NaHCO₃ and extracted with chloroform. The organic layer was washed with saturated

15

20

25

brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-g.

5 Reaction step 5

To a solution of Compound I-f in pyridine, acetic acid anhydride and 4-dimethylaminopyridine were added under cooling with ice and stirred at room temperature. The reaction mixture was mixed with water and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous copper sulfate solution, water and saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-h.

Reaction step 6

To a solution of Compound I-h in methanol, a 2N aqueous sodium hydroxide solution was added and stirred at room temperature. The reaction mixture was mixed with saturated aqueous NH_4Cl and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure. The thus obtained residue was subjected to silica gel column chromatography, giving Compound I-i.

Reaction step 7

To a solution of Compound I-f, or I-g, or I-i in methylene chloride, TFA was added and stirred at room

temperature. The reaction mixture was concentrated under reduced pressure, alkalified by adding a saturated aqueous NaHCO3 solution and extracted with methylene chloride. The resultant was dried over anhydrous magnesium sulfate and evaporated to remove the solvent under reduced pressure; the thus obtained residue was subjected to silica gel column chromatography, giving the titled compound.

Examples conducted according to Scheme 1 are shown in Tables D-1 to D-43.

Table D-1

Structural Formula of Compounds of Example 28-64

Example 28

5 Synthesis of Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH₂

R ₃	1		R ₃₂		R ₃₃		R ₃₄		
H			Me		H		H		
Reaction	1								
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount	
T1:g	V1:g	g	ml	ml	time	sol.		g	
					hr		<u> </u>		
1	1.35	1.3	2.1	40	19	EA:H	I-a1	1.6	
						3:1	<u></u>		

 1 H-NMR(CDCl₃): δ 0.84 and 0.88(6H,d,J=6.6Hz), 1.36(9H,s), 2.15-2.35(1H,m), 2.75(3H,s), 2.8-3.1(2H,m), 4.02(1H,brd,J=11.2Hz), 4.5-4.7(1H,m), 5.13 and 5.15(2H,s), 5.3-5.5, 5.5-5.7, 5.8-6.0, 6.1-6.2, and 6.5-6.8(3H,m), 6.45(1H,d,J=7.9Hz),

6.81(1H,brd,J=7.9Hz), 7.07(1H,brs), 7.37(5H,s)

Reaction 2

Compound	Pd(OH) ₂	МеОН	Reaction	Column	Product	Amount
I-a1:g	g	ml	time	sol.		g
			hr			
1.5	0.3	30	1	Not purified	I-b1	1.1

 $^{1}H-NMR(CDCl_{3}):\delta 0.65(3H,d,J=6.9Hz), 0.82(3H,d,J=6.9Hz),$

1.37(9H,s), 1.8-2.0(1H,m), 2.30(3H,s), 2.74(1H,d,J=4.3Hz), 2.9-

3.2(2H,m), 4.6-4.8(1H,m), 5.3-5.7(1H,m), 6.1-6.3(1H,m), 6.5-

6.7(1H,m), 6.93(1H,brd,J=7.9Hz), 7.06(1H,brs), 7.6-7.8(1H,m)

Table D-2

Example 28(Continued from Table D-1)

Synthesis of Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH $_2$

Reaction	3							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b1:g	P1:g	g	ml	m1	time	sol.		g
	J				hr			
0.3	0.29	0.26	0.43	5	18	MC:M	I-c1	0.45
						20:1		

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta$ 0.77, 0.89, and 1.01(6H,d,J=6.6Hz), 1.33, 1.36, 1.37, and 1.39(18H,s), 2.15-2.4(1H,m), 2.32 and 2.77(3H,s),

2.7-3.0(4H,m), 4.1-4.3, 4.5-4.6, and 4.6-4.8(2H,m),

5.36(1H,brd,J=8.9Hz), 5.44, 5.57, 5.71, 5.75, and

6.18(3H,brs), 6.6-7.2(7H,m), 7.8-7.9(1H,m)

Reaction 4	a					
Compound	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-cl:g	ml	ml.	time	sol.	g	min
			hr			
0.4	2	4	0.5	CH:M:N	0.32	17.8
	_			400.10.1		

EI-MS(M⁺):514

 $^{1}\text{H-NMR}(CDCl_{3}):\delta$ 0.71, 0.79, 0.91, and 0.92(6H,d,J=6.3-6.6Hz),

1.36 and 1.38(9H,s), 2.2-2.4(1H,m), 2.4-3.2(4H,m), 2.70 and

2.83(3H,s), 3.56 and 3.79(1H,dd,J=5.0-5.9,7.6Hz), 3.94 and

4.44(1H,d,J=10.9-11.2Hz), 4.56 and 4.74(1H,dd,J=6.6-8.9,14.2-11.2Hz)

16.2Hz), 5.47(1H,brs), 5.85 and 5.96(1H,brs), 6.4-6.9(3H,m),

6.9-7.2(5H,m), 9.01(1H,d,J=7.9Hz)

Table D-3

Synthesis of N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH $_2$

R ₃₁		R ₃₂			R ₃₃		R ₃₄		
Me		Me			H		H		
Reaction	3								
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount	
I-bl:g	P2:g	g	ml	ml	Time	sol.		g	
					hr				
0.3	0.31	0.26	0.43	5	20	MC:M	I-C2	0.43	
						20:1			

 1 H-NMR (CDCl₃): δ 0.72,0.79,and 0.92(6H,d,J=6.6Hz), 1.33, 1.34, 1.37, and 1.40(18H,s), 2.1-2.3(1H,m), 2.24 and 2.67(3H,s), 2.6-3.3(4H,m), 4.40 and 4.50(1H,d,J=10.9-11.6Hz), 4.5-4.8(1H,m), 4.8-4.9 and 5.0-5.2(1H,m), 5.49 and 5.98(2H,brs), 6.16(1H,s), 6.31(1H.brd,J=8.3Hz), 6.5-6.8(2H,m), 6.8-

7.3(5H,m)

Reaction 4	la				·····	1
Compound I-c2:g	TFA ml	CH ₂ Cl ₂ ml	Reaction Time hr	Column sol.	Amount g	HPLC min
0.35	1.5	3	0.5	CH:M:N 400:10:1	0.24	18.0

 $EI-MS(M^+):528$

 1 H-NMR(CDCl₃): δ 0.52, 0.79, and 0.91(6H,d,J=5.0-6.9Hz), 1.33 and 1.39(9H,s), 2.1-2.3(1H,m), 2.24 and 2.36(3H,s), 2.56 and 2.61(3H,s), 2.6-3.2(4H,m), 3.54 and 3.61(1H,dd,J=5.9-6.3,7.3-7.6Hz), 3.78 and 4.58(1H,d,J=10.9Hz), 4.49 and 4.68(1H,dd,J=7.3,14.5Hz), 5.38, 5.58, 5.78, and 5.90(2H,brs), 6.6-7.2(7H,m), 9.07(1H,brd,J=7.6Hz)

Table D-4

Synthesis of N-Et-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NH₂

R ₃₁			R ₃₂		R ₃₃		R ₃₄	
Et			Me		H		Н	
Reaction 3								
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b1:g	P3:g	g	ml	ml	time	sol.		g
					hr			
0.3	0.36	0.26	0.43	5	16	CH:M:N	I-c3	0.42
j				1		400:10:1		

 1 H-NMR(CDCl₃): δ 0.41, 0.67, and 0.86(6H,d,J=6.6Hz), 1.0-1.2(3H,m), 1.36(9H,s), 2.1-2.3(1H,m), 2.51 and 2.76(3H,s), 2.6-3.0 and 3.0-3.2(6H,m), 4.1-4.3(1H,m), 4.4-4.6(1H,m), 4.9-5.0 and 5.1-5.3(1H,m), 5.13(2H,s), 5.35(1H,brs), 5.76(2H,brs), 6.1-6.2 and 6.4-7.4(13H,m)

Reaction 4a

Compound I-c3:g	Pd(OH) ₂	MeOH ml	Reaction time hr	Column sol.	Amount g	HPLC min
0.37	0.07	5	1	CH:M:N 400:10:1	0.24	18.5

 $EI-MS(M^+):542$

 1 H-NMR(CDCl₃): δ 0.39, 0.77, and 0.90(6H,d,J=6.3-6.9Hz), 1.05 and 1.16(3H,t,J=6.9Hz), 1.32 and 1.39(9H,s), 2.1-2.3(1H,m), 2.3-3.2(6H,m), 2.43 and 2.46(3H,s), 3.5-3.7(1H,m), 3.76 and 4.58(1H,d,J=10.9-11.5Hz), 4.47 and 4.68(1H,dd,J=7.0,13.9Hz), 5.42, 5.73, and 6.00(2H,brs), 6.6-7.2(7.8H,m), 8.74(0.2H,d,J=7.9Hz)

Table D-5

Example 31

Synthesis of Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe

. R ₃₁		R_3	2		R ₃₃		R ₃ .	1
H		Me			Н		M∈	}
Reaction	1							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
T2:g	V1:g	g	ml	ml	time	sol.		g
					hr			
1.07	1.36	1.31	1.79	43	2.5	EA:H	I-a2	2.11
						1:1		
H-NMR (C)	DCl ₂):δ ().84 a	nd 0.	89(6	H,d,J=6.6	Hz), 1	.36(9H,s),
¹ H-NMR (Cl 2.12-2.30 4.04(1H,d 5.19(2H,s 6.53(1H,d 7.42(5H,m Reaction	0(1H,m), 1,J=11.2H s), 5.70 d,J=8.2H m)	2.71, Hz), 4 -5.80(2.73 2.40-4 (1H,m	8, an 1.58(1, 6.	d 2.74(6H 1H,m), 4. 43(1H,d,J	(,s), 2 82-4.8 (=7.9Hz	.70-3.00 6(1H,m),),	(2H,m),
2.12-2.30 4.04(1H,d 5.19(2H,s 6.53(1H,d 7.42(5H,m Reaction	0(1H,m), d,J=11.21 s), 5.70 d,J=8.2H n)	2.71, Hz), 4 -5.80(2.73 .40-4 1H,m) 80(1H	8, an 1.58(1, 6.	d 2.74(6H 1H,m), 4. 43(1H,d,J =8.2Hz),	(,s), 2 82-4.8 (=7.9Hz 7.04(1	.70-3.00 6(1H,m),),	(2H,m),
2.12-2.30 4.04(1H,d 5.19(2H,s 6.53(1H,d 7.42(5H,m	0(1H,m), d,J=11.21 s), 5.70 d,J=8.2H n)	2.71, Hz), 4 -5.80(z), 6.	2.73 .40-4 1H,m) 80(1F	8, an 1.58(1, 6. 1,d,J React	dd 2.74(6H 1H,m), 4. 43(1H,d,J =8.2Hz), ion Col- ie so	(,s), 2 82-4.8 (=7.9Hz 7.04(1	.70-3.00 6(1H,m),), H,s), 7.	(2H,m),
2.12-2.30 4.04(1H,d 5.19(2H,s 6.53(1H,d 7.42(5H,m Reaction	0(1H,m), d,J=11.2H s), 5.70 d,J=8.2H m) 2	2.71, Hz), 4 -5.80(z), 6.	2.73 .40-4 1H,m) 80(1H	8, an 1.58(, 6. 1,d,J	dd 2.74(6H 1H,m), 4. 43(1H,d,J =8.2Hz), ion Col- ie so	(,s), 2 82-4.8 (=7.9Hz 7.04(1	.70-3.00 6(1H,m),), H,s), 7.	(2H,m), 30- Amount

 $^{1}\text{H-NMR(CDCl}_{3}):\delta$ 0.67 and 0.83(6H,d,J=5.9Hz), 1.37(9H,s), 1.84-

2.02(1H,m), 2.31(3H,s), 2.73(1H,d,J=5.9Hz),

2.74(3H,d,J=5.0Hz), 2.90-3.08(2H,m),

4.52(1H,ddd,J=7.2,7.2,7.2Hz), 5.51(1H,brs),

5.98(1H,d,J=3.6Hz), 6.61(1H,d,J=7.9Hz),

6.91(1H,dd,J=2.0,7.9Hz), 7.04(1H,d,J=2.0Hz),

7.68(1H,d,J=7.9Hz)

Table D-6

Example 31(Continued from Table D-5)

Synthesis of Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe

Reaction	3							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b2:mg	P1:mg	mg	ml	ml	time	sol.		mg
					hr			
400	387	337	0.46	11	13	EA:H	I-c4	652
						2:1		

 $EI-MS(M^+):628$

 $^{1}\text{H-NMR}$ (CDCl₃): δ 0.75, 0.77, 0.88, and 1.00(total 6H,d,J=5.3-6.3Hz), 1.36, 1.37 and 1.39(total 18H,s), 2.16-2.30(1H,m),

- 2.72(3H,d,J=4.6Hz), 2.70-3.22(7H,m), 4.38-4.80, and 5.10-
- 5.22(total 3H,m), 5.28 and 5.32(total 1H,brs), 5.54-
- 5.64(1H,m), 6.04-6.12(1H,m), 6.58-7.22(7H,m)

Reaction 4a

Compound I-c4:mg	TFA ml	CH ₂ Cl ₂ ml	Reaction time hr	Column sol.	Amount mg	HPLC min
564	2	8	1.5	MC:M 20:1	367	18.9

 $EI-MS(M^{\dagger}):528$

 $^{1}\text{H-NMR}$ (CDCl₃): δ 0.72,0.81 and 0.92(total 6H,d,J=6.3-6.6Hz),

- 1.36 and 1.38(total 9H,s)
- ,2.20-2.40(1H,m), 2.50-3.24(10H,m),
- [3.59(2/3H,dd,J=5.6,7.6Hz), 3.73(1/5H,d,J=7.0Hz),
- 3.80(1/3H,dd,J=6.0,8.3Hz), 3.95(4/5H,d,J=8.9Hz), 4.40-
- 4.54(2/5H,m), 4.63(3/5H,dd,J=6.6,14.2Hz), 5.65 and
- 5.78(total 1H,d,J=3.8-4.3Hz), 6.60(1/4H,d,J=8.3Hz), 6.70-
- 7.16(7H,m), 9.07(3/4H,d,J=8.3Hz)

Table D-7

Synthesis of N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe

R_3	1		R ₃₂		R ₃₃		R	34
Me	3		Me		H		M	е
Reaction	3							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b2:mg	P2:mg	mg	ml.	ml	time	sol.		mg
					hr			
400	392	337	0.46	11	15	EA:H	I-c5	590
						1:1		

$EI-MS(M^{\dagger}):642$

 1 H-NMR(CDCl₃): δ 0.72, 0.80, and 0.91(total 6H,d,J=6.2-6.6Hz), 1.23, 1.34, 1.37 and 1.39(total 18H,s), 2.06-2.30(1H,m), 2.25, 2.68, 2.75 and 2.86(total 6H,s), 2.79(3H,d,J=4.6Hz), 2.50-3.24(4H,m), 4.38-4.92 and 5.08-5.20(total 3H,m), 5.53 and 6.00(total 1H,brs), 5.88 and 6.21(total 1H,d,J=5.0-8.3Hz), 6.52-7.22(7H,m)

Reaction 4a

Compound I-c5:mg	TFA ml	CH ₂ Cl ₂ ml	Reaction time hr	Column sol.	Amount mg	HPLC min
492	2	8	1	CH:M 20:1	305	18.9

$EI-MS(M^+):542$

 1 H-NMR(CDCl₃): δ 0.57,0.79 and 0.91(total 6H,d,J=6.3-6.6Hz),

- 1.35 and 1.38(total 9H,s), 2.20-2.34(1H,m), 2.25 and
- 2.40(total 3H,s), 2.63 and 2.64(total 3H,s), 2.71 and
- 2.73(total 3H,d,J=4.3-4.6Hz), 2.60-3.10(4H,m),
- 3.55(1/2H,t,J=7.0Hz), 3.67(1/2H,t,J=6.9Hz),
- 3.81(1/2H,d,J=10.9Hz), 5.30-5.72(2H,m), 6.58-7.20(7H,m),
- 9.13(1/2H,d,J=8.6Hz)

Table D-8

Synthesis of N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe

R ₃	1		R ₃₂		R ₃₃		R ₃₄		
Et		Me			Н		Me	е	
Reaction 3									
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount	
I-b2:mg	P3:mg	mg ml ml			time	sol.		mg	
					hr				
490	559	414	14 0.45 8		13	EA:H	I-c6	747	
						1:1			

 1 H-NMR(CDCl₃): δ 0.40, 0.47, 0.67 and 0.86(total 6H,d,J=6.3-6.9Hz), 1.06-1.22(3H,m), 1.36 and 1.38(total 9H,s), 2.10-2.26(1H,m), 2.49 and 2.78(total 3H,s), 2.79 and 2.73(total 3H,d,J=4.6-4.9Hz), 2.60-3.40(6H,m), 4.28-4.44(2H,m), 4.90-5.16(3H,m), 5.40-5.68(2H,m), 6.38-7.42(12H,m)

Reaction 4b

Compound	Pd-C	MeOH	Reaction	Column	Amount	HPLC
I-c6:mg	mg	ml	time	sol.	mg	min
			hr		_	
660	66	10	12	CH:M:N	184	19.6
			1	10:1:0.1		

$EI-MS(M^{+}):556$

 1 H-NMR(CDCl₃): δ 0.40, 0.77 and 0.89(total 6H,d,J=6.6Hz), 1.06 and 1.19(total 3H,t,J=7.0-7.3Hz), 1,34 and 1.38(total 9H,s), 2.10-2.28(1H,m), 2.48(3H,s), 2.30-3.20(6H,m), 2.73 and 2.74(total 3H,d,J=4.6Hz), 3.58-3.70(1H,m),

- 3.76(3/10H,d,J=11.2Hz), 4.38(7/10H,dt,J=4.9,7.3Hz),
- 4.50(7/10H,d,J=11.2Hz), 4.56(3/10H,dt,J=7.3,7.9Hz), 5.72-
- 5.90(2/3H,m), 6.60-7.18(8H,m), 8.68(1/2H,d,J=7.9Hz)

Table D-9

Synthesis of N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

R ₃₁		F	₹32			R ₃₃			R ₃ ,	
Me		Me				Me			Н	
Reaction	3									
CompoundI	Compour	d CMPI	TEA	THF	Re	action	Colum	n	Product	Amount
I-b3:g	P2:g	g	ml	ml		time	sol.			g
						hr				
0.600	0.638	0.549	0.46	16		16	H:EA=2	:1	I-c7	0.729
Reaction	4a									
Compound	TFA	CH ₂ Cl ₂	Rea	actio	on	Col	ımı	An	nount	HPLC
I-c7:g	ml	ml	t	ime		so.	1.		g	min
				hr						
0.635	15	15 2			MC:	M:H	0	.413	19.6	
						10:	1:1			

$EI-MS(M^+):542$

 $^{1}\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.58, 0.81, 0.82 and 0.93(6H, d, J=6.4-6.9 Hz), 1.32 and 1.40(9H, s), 2.20-2.34(1H, m), 2.22 and 2.24(3H, s), 2.50 and 2.93(3H, s), 2.84 and 3.04(3H, s), 2.52 and 2.74(3H, d, J=6.5-6.9Hz), 3.18-3.41(1H, m), 3.42 and 3.62(1H, t, J=5.0-6.8Hz), 5.03 and 5.13(1H, d, J=10.7-10.9 Hz), 5.42-5.49(1H, m), 5.38 and 6.01(1H, brs), 6.38 and 6.62(1H, d, J=8.0Hz), 6.78-6.99(3H, m), 7.04-7.12(3H, m)

Table D-10

Synthesis of N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

R _{3:}	1			R ₃₂			R ₃₃		R ₃₄		
Et	:			Me			Me		H		
Reaction	3										
Compound Compound CMPI TEA THF Reaction Column Product										Amount	
I-b3:g	F	24:g	g	ml	ml	t:	ime	sol.		g	
						1	nr				
0.460	0.460 0.520				3 10.0		17	H:EA	I-c8	0.300	
								2:1			
Reaction	4a	L									
Compoun	đ	TFA	CH ₂ C	12	React	ion	Col	umn	Amount	HPLC	
I-c8:g	·	ml	ml	.	tim		so	1.	g	min	
			j	{	hr	hr		1	}		
0.300		1.44	1.4	4	2		MC:	M:H	0.200	20.2	
								1:1	1		

EI-MS(M⁺):556

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.54~1.1(6H, m and d, J=6.3Hz), 1.35 and 1.39(9H, s), 2.48 and 2.81(3H,s) 2.97 and 3.07(3H, s), 2.21 ~ 3.76(7H, m), 5.55~5.02(3H,m), 6.37 and 6.61(1H, d, J=8.3Hz), 6.78~7.21(6H, m)

m)

Table D-11

Example 36

Synthesis of Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH-Me

R_3	1		R ₃₂			R ₃₃			R ₃₄		
Н			Me			Me			Me		
Reaction	1										
Compound	Compound	CMPI	TEA	THF	Re	actio	Colur	nn	Product	Amount	
T5:g	V1:g	g	ml	ml	n	time	sol	•		g	
						hr					
1.500	1.960	2.030	2.37	30.0	0	21	EA:H:		I-a4	2.200	
				3:2:	2		L				
Reaction	2										
Compound	Pd(OH)	₂ MeOH	I Re	eactio	n	Colu	ımn	P:	roduct	Amount	
I-a4:g	:g	ml		time		sol	. •			g	
hr											
2.200 0.220 50.00 1 Not purified I-b4 1.400											
Reaction	3										
CompoundI	Compound	CMPI	TEA	THE	' Re	eaction	n Colu	ımn	Product	Amount	
I-b4:g	P1:g	g	ml	ml		time	sol	. •		g	
						hr					
0.430	0.420	0.400	0.4	7 10.0	0	19	MC:N		1	0.500	
	<u> </u>	<u> </u>					10:1	.:3	L		
Reaction		,									
Compound	I TFA	CH ₂ C	12	React		Col	ımn	Ar	mount	HPLC	
I-c9:g	ml	ml		time	е	so	1.		g	min	
				hr							
0.500	2.50	2.50	0	1		MC:		0	.320	19.8	
						15:	1:2				
EI-MS(M ⁺)	:542										
¹ H-NMR (C	$CDCl_3$): (two rot	tame	cs) δ	0.5	1~0.92	2(6H,	đ,	J=6.6Hz	z),	
1.32 and	1.37(9H	, s), 2	2.24(2H, d	, J=	-8.3Hz) 2.52	2 a	nd 2.82	(3H,	
s) 2.18											
5.42~4.8	2(3H.m).	6.41 a	and 6	5.63(1	H. ć	1. J=8	.2Hz)	. 6	.78~7.1	9(6H.	

Table D-12

Example 37

Synthesis of N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH-Me

		F	₹32		R ₃₃			R ₃₄			
		Me			<u> </u>	le_			Me		
3											
Compound Compound CMPI TEA THF Reaction Column Produc									Product	Amount	
P2:g		g	ml	ml	tim	ie	sol		!	g	
					hr						
0.440	0	.400	0.47	10.00	19		EA:H:	MC	I-c10	0.500	
							2:1:	: 1			
4a											
T	·A	CH	₂ Cl ₂	Reac	tion	Co	olumn	T	Amount	HPLC	
m	1	n	nl	ti	me	sol.			g	min	
				h:	nr						
2.	50	.50	1		MO	C:M:H		0.260	20.3		
						15	5:1:2				
	P2:g 0.440 la	Compound Com	Compound CMPI P2:g g 0.440 0.400 la TFA CH ml r	Me B Me B Me B Me B Me B B Me B B B B B	Me	Me Me Me Me Me Me Me Me	Me Me Me	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me Me Me	Me Me Me Me Me Me Me Me	

 $EI-MS(M^+):556$

 $^{1}\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.76~0.92(6H, m and d, J=6.3Hz), 1.34 and 1.39(9H, s), 2.25(3H, d, J=11.6Hz), 2.52 and 2.82(3H, s), 2.95 and 3.07(3H, s), 2.21 ~ 3.64(5H, m), 2.71 and 2.76(3H, d, J=4.3Hz), 5.42~5.01(3H,m), 6.37 and 6.54(1H, d, J=8.2Hz), 6.78~7.11(6H, m)

Table D-13

Synthesis of N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHMe

R ₃₁				R ₃₂			R ₃₃			R_3	4
Et				Me			Me			M∈)
Reaction	3										
CompoundI	Compour	nd CM	PΙ	TEA	THF	Rea	ction	Colu	mn	Product	t Amount
I-b4:g	P3:g	9	3	ml	ml	t	ime	sol	•		g
							hr				
0.450	0.560	0.4	460	0.50	10.00	00 19		EA:H:MC		I-c11	0.450
					<u> </u>		····	2:1:	1		
Reaction	4a										
Compound	Pd(OH) ₂	M	eOH	React	cion	Col	umn	Aı	nount	HPLC
I-c11:g	:	g	1	ml	tin	ne	so	1.		g	min
					hr	<u>-</u>					Ī
0.450	0.0	050	15	00	1		MC:	M:H	0	.220	21.4
							15:	1:2			

EI-MS(M⁺):570

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.54~1.1(6H, m and d, J=6.3Hz), 1.26 and 1.34(9H, s), 2.77(3H,s), 2.97(3H, s), 3.07(3H, s), 2.12 ~ 3.72(7H, m), 5.38~5.21(3H,m), 6.37 and 6.54(1H, d, J=8.3Hz), 6.78~7.21(6H, m)

Table D-14

Example 39

Synthesis of Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NH $_2$

		- T			>			R ₃₃		1	R ₃₄	
R ₃₁	·				R ₃₂ Me			Et			H	
	1				110	1_						
Reaction Compound T7:g	Cc	ompound V1:g	d C	MPI g	TEA ml	THF ml	Reac ⁻		Colur sol	1	Product	Amount g
4.000		5.720	5.	510 6.02		100	h:				I-a5	3.310
					<u> </u>		<u> </u>		2:1:	<u> </u>		1
Reaction			,		OTT 1	D	<u> </u>	Co	Lumn	Dr	oduct	Amount
Compound I-a5 :9	- 1	Pd(Ol			OH nl	Reac		į.			dade	g
1- 45 .9	'	• 9			_	h	r					
3.100		0.30	00	70	.00	1	-	į .	M:H:1:2	•	I-b5	1.600
Reaction				<u> </u>	l						1	
Compoun		mpoun	CI	MPI	TEA	THF	Rea	ctio	Colu	ımn	Produc	Amount
đ		đ		g	m1	ml	1	time hr	sol	L.	t	a
I-b5:g 0.400		P1:g 0.430	0.	370	0.46	10.0		19	EA:H 2:1		I-c12	0.380
D						<u> </u>						,.
Reaction			אי	СН	2C12	Reac	tion	Co	olumn	I	Mount	HPLC
Compou I-c12		m		l .	nl	ti	me	1	sol.		g	min
0.200		1.	50	1	.50		r2	MO	C:M:H	+	0.150	20.5
0.380	ı	1.	30	1	. 50		. .	1	5:1:2			
EI-MS(M ⁺ 1H-NMR (CD	C1.):	(tw	o ro	otame	rs) () 0.°	72~1	.33(m,	9H	(3H, s)	and , 2.21

¹H-NMR (CDCl₃): (two rotamers) δ 0.72~1.33(m, 9H), 1.35 and 1.39(9H, s), 2.24(2H, d, J=8.3Hz), 2.70 and 2.90(3H, s), 2.21 ~ 3.70 (7H, m) 4.92~5.23(3H, m), 6.41 and 6.61(1H, d, J=7.9Hz), 6.80~7.19(6H, m)

Table D-15

Synthesis of N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NH₂

R	31				R ₃₂				R ₃₃			R	34	
М	е				Ме				Et]	Ι_	
Reaction	3													
Compound Compound CMPI TEA THE Reaction Co										Colum	าก	Produc	t	Amount
I-b5:g	1	P2:g		g	ml	_	ml	t	ime	sol.	.			g
									hr					
0.440	0	.450	0	.380	0.4	8	10.00		19	EA:H:	MC	I-c13		0.220
										2:1:	1			
Reaction	4 4	a												
Compoun	d	TFA		CH ₂ C		F	Reacti	on Column		Lumn	An	ount		HPLC
I-c13:	g	ml		ml	-		time		so	1.		g		min
					ĺ		hr							
0.220		1.50		1.5	0		2		MC:1	1:H	0	.130		21.0
]								15:	1:2				

 $EI-MS(M^+):447$

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.72~0.95(6H, d, J=6.6Hz), 1.13~1.32(3H, m) 1.35 and 1.39(9H, s), 2.24(2H, d, J=8.3Hz) 2.21 ~ 3.96 (7H, m), 2.75 and 3.08 (3H, s), 4.92~5.40(3H, m), 6.41 and 6.63(1H, d, J=7.9Hz), 6.78~7.19(6H, m)

Table D-16

Synthesis of N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NH₂

R	31				R ₃₂			R ₃₃			R ₃₄	
E	t				Me			Et			Н	
Reaction	ı 3											
Compound	Cor	npound	CMPI TE		TEA	THF	Reaction Co		Colum	n	Product	Amount
I-b5:g]	P2:g	g		ml	ml	t	ime	sol.			g
							<u> </u>	hr				
0.490	0	.480	0.	420	0.52	10.00	}	19	EA:H:N	1C	I-c14	0.260
									2:1:1			
Reaction	4 6	a.										
Compoun	ıđ	Pd(OH) 2	Me	ОН	React	Lon	Co	lumn	7	Amount	HPLC
I-c14:	g	:g		m	1	time	e sol.		ol.		g	min
						hr						
0.260		0.03	0	10	.00	2		MC:	M:H		0.120	21.9
					ĺ			15:	1:2			
EI-MS(M ⁺):570												

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.74~1.26(12H, m), 1.34 and 1.39(9H, s), 2.84 and 2.67(3H, s), 2.22~3.81(8H, m), 4.7~5.22(3H, m), 6.43 and 6.59(1H, d, J=7.9Hz), 6.81~7.19(6H,

Table D-17

Synthesis of Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHMe

R ₃₁			R ₃₂		R ₃₃		R ₃₄	1
Н		Me			Et		Me	
Reaction	1							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
T8:g	V1:g	g	ml	ml	time	sol.		g
					hr			
4.20	4.80	4.62	6.31	75	13	EA:H	I-a6	4.33
						1:1		

$EI-MS(M^{+}):585$

 1 H-NMR(CDCl₃): δ 0.53, 0.80, 0.82 and 0.89(total 6H,d,J=6.3-6.6Hz), 0.96-1.30(3H,m), 1.34,1.36 and 1.36(total 9H,s), 2.20-2.40(1H,m), 2.46 and 2.75(total 3H,d,J=4.6Hz), 2.57 and 2.95(total 3H,s), 2.66-3.68(4H,m), 4.33, 4.45 and 4.59(total 1H,d,J=10.6Hz), 4.78-4.92(1H,m), 4.96-5.36(3H,m), 6.30-7.12(4H,m), 7.30-7.44(5H,m)

Reaction 2

Compound I-a6:g	Pd(OH) ₂ mg	MeOH ml	Reaction time	Column sol.	Product	Amount g
2.81	280	60	1.5	CH:M 10:1	I-b6	2.10

$EI-MS(M^+):391$

 $^{1}\text{H-NMR}(\text{CDCl}_{3}): \delta \text{ 0.34, 0.73, 0.90 and 0.96}(\text{total 6H,d,J=6.3-6.9Hz}), 1.13 \text{ and 1.18}(\text{total 3H,t,J=6.9Hz}), 1.36 \text{ and 1.37}(\text{total 9H,s}), 1.60-1.80(1/2H,m), 2.14 \text{ and 2.27}(\text{total 3H,s}), 2.10-2.30(1/2H,m), 2.58(1/2H,d,J=9.6Hz), 2.92-3.64(9/2H,m), 4.50-4.60(1/3H,m), 4.96-5.10(2/3H,m), 5.10-5.30(1H,m), 6.48(2/3H,brs), 6.54(1/3H,d,J=7.9Hz), 6.57(2/3H,d,J=7.9Hz), 6.79(1/3H,dd,J=2.0,7.9Hz), 6.91(2/3H,dd,J=2.0,7.9Hz), 7.00(1/3H,d,J=2.0Hz),$

7.10(2/3H,d,J=2.0Hz), 8.24-8.34(1/3H,m)

Table D-18

Example 42(Continued from Table D-17)

Synthesis of Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHMe

Reaction	3							
Compound	Compoun	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b6:mg	dP1:mg	mg	ml	ml	time	sol.		mg
					hr			
457	397	359	0.39	6	22	MC:M	I-c15	724
10,						20:1		

EI-MS(M⁺):657

 1 H-NMR(CDCl₃): δ 0.72,0.78,0.82 and 0.89(total 6H,d,J=6.3-6.9Hz),1.08 and 1.16(total 3H,t,J=6.9Hz),1.33,1.36,1.38,and 1.39(total 18H,s),2.14-2.28(1H,m),2.54 and 2.98(total 3H,s),2.65 and 2.75(total 3H,d,J=4.6-4.9Hz),2.60-3.64(6H,m),4.58-5.18(4H,m),6.32-6.72(2H,m),6.90-7.18(5H,m)

3.64(6H,m),4.58-5.18(4H,m),6.32-6.72(2H,m),0.90-7.10(5H,m)
Reaction 4a

Compound I-c15:mg	TFA ml	CH ₂ Cl ₂ ml	Reaction time hr	Column sol.	Amount mg	HPLC min
651	3	7	1	MC:M:H 20:1:1	354	21.5

EI-MS(M⁺):556

 1 H-NMR(CDCl₃): δ 0.67,0.82 and 0.92(total 6H,d,J=6.6Hz),1.10 and 1.15(total 3H,t,J=6.9Hz),1.34 and 1.39(total 9H,s),2.24-2.44(1H,m),2.67 and 2.76(total 3H,d,J=4.3-4.9Hz),2.73 and 3.05(total 3H,s),2.50-3.90(7H,m),4.94-5.08(2H,m),6.36-7.18(7H,m)

Table D-19

Synthesis of N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHMe

R ₃₁			R ₃₂		R ₃₃		R ₃₄	
Me		Me		Et		Me		
Reaction	Reaction 3							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b6:mg	P2:mg	mg	ml	ml	time	sol.		mg
!			<u> </u>		hr			
465	424	365	0.40	6	21	EA:H	I-c16	759
						2:1		

 1 H-NMR(CDCl₃): δ 0.45, 0.73, 0.82 and 0.89(total 6H,d,J=6.4-6.9Hz), 1.02(3H,t,J=6.6Hz), 1.29, 1.36, 1.37, 1.39 and 1.42(total 18H,s), 2.20-2.30(1H,m), 2.36, 2.71, 2.93 and 3.67(total 6H,s), 2.77 and 2.90(total 3H,d,J=4.6-4.9Hz), 2.60-3.44(6H,m), 4.80-5.28(total 3H,m), 6.09(1H,d,J=4.0Hz), 6.19 and 6.35(total 1H,dd,J=1.3,7.3Hz), 6.51(1/2H,s), 6.60 and 6.69(total 1H,d,J=7.3Hz), 6.94-7.16(13/2H,m)

Reaction 4a

Compound	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-c16:mg	ml	ml ml time		sol.	mg	min
]	hr			
651	3	7	1	MC:M:H:N	457	22.1
	[10:1:1:0.1		

$EI-MS(M^+):570$

 1 H-NMR(CDCl₃): δ 0.72, 0.83 and 0.92(total 6H,d,J=6.6Hz), 1.14 and 1.16(total 3H,t,J=6.6-6.9Hz), 1.34 and 1.39(total 9H,s), 2.23 and 2.27(total 3H,s), 2.20-2.40(1H,m),

- 2.55(1H,d,J=6.3Hz), 2.64-2.88(7H,m),
- 2.99(1H,dd,J=9.2,14.9Hz), 3.23(1H,dd,J=6.9,14.9Hz), 3.40-
- 3.74(3H,m), 5.00-5.12(2H,m), 6.40 and 6.57(total 1H,d,J=7.9-
- 8.2Hz), 6.44(1/2H,brs), 6.80(1/2H,dd,J=1.6,7.9Hz), 6.90-
- 7.18(11/2H,m)

Table D-20

Example 44

Synthesis of N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHMe

R ₃₁		R ₃₂		R ₃₃	R ₃₃		R ₃₄		
Et			Me		Et	Et		Me	
Reaction 3									
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount	
I-b6:mg	P3:mg	g	ml	ml	time	sol.		mg	
		<u> </u>			hr				
640	675	501	0.55	9	17	EA:H	I-c	963	
						1:1	17		

 1 H-NMR(CDCl₃): δ 0.71, 0.78, 0.88, 1.07 and 1.09(total 6H,d,J=6.3-6.9Hz), 0.98 and 1.18(total 3H,t,J=6.9Hz), 1.29, 1.35 and 1.39(total 9H,s), 2.14-2.30(1H,m), 2.48-3.56(14H,m), 4.78(1H,d,J=10.6Hz), 4.86-5.24(3H,m), 5.98-6.10(3/2H,m), 6.21(1H,s), 6.59 and 6.64(total 1H,d,J=7.9Hz), 6.84-7.20(11/2H,m), 7.30-7.44(5H,m)

Reaction 4b

THOUSE TOTAL	~					
Compound	Pd(OH)₂mg	МеОН	Reaction	Column	Amount	HPLC
I-c17:mg	,	ml	time	sol.	mg	min
			hr			
870	87	15	15	CH:M	252	22.9
				10:1		

 $EI-MS(M^+):584$

 1 H-NMR(CDCl₃): δ 0.73, 0.82 and 0.91(total 6H,d,J=6.3-6.6Hz), 1.01, 1.06, 1.13 and 1.16(total 6H,t,J=6.6-6.9Hz), 1.34 and 1.39(total 9H,s), 2.20-3.04(5H,m), 2.67 and 2.78(total 3H,s), 2.69 and 2.74(total 3H,d,J=4.6-4.9Hz), 3.26(1H,dd,J=7.9,14.2Hz), 3.45(1H,dd,J=8.9,13.2Hz), 3.54-3.74(2H,m), 4.94-5.12(5/2H,m), 5.38-5.46(1/2H,m), 6.42 and

6.57(total 1H,d,J=7.9-8.3Hz), 6.80-7.16(6H,m)

Example 45

Synthesis of Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NH₂

R ₃ :			R ₃₂		R ₃₃		R	34
Н			Et		Н		ŀ	I
Reaction	1							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
T1:g	V2:g	g	ml	ml	time	sol.		g
					hr			
3.3	4.29	4.0	4.3	80	2	EA:H	I-a7	6.5
						3:1		

 1 H-NMR(CDCl₃): δ 0.7-1.0(9H,m), 1.2-1.4(9H,m), 2.2-2.4(1H,m),

- 2.8-3.0(1H,m), 3.0-3.15(1H,m), 3.2-3.35(2H,m), 3.6-
- 3.7(1H,brd,J=10.9Hz), 4.45-4.6(1H,m), 5.04(1H,brs),
- 5.15(1H,s), 5.15-5.25(1H,m), 6.02(1H,brs),
- 6.47(1H, brd, J=7.3Hz), 6.86(1H, brd, J=7.3Hz), 7.0-7.2(2H, m),
- 7.3-7.5(5H,m)

Reaction 2

	Compound	Pd(OH) ₂	EtOH	Reaction	Column	Product	Amount
	I-a7:g	g	ml	time	sol.		g
-	6.1	1.2	130	hr 1.5	Not	I-b7	4.37
	6.4	1.2	130	1.5	purified	Ι-07	4.3/

 1 H-NMR(CDCl₃): δ 0.63(3H,d,J=6.6Hz), 0.83(3H,d,J=6.6Hz),

- 1.03(3H,t,J=6.9z), 1.37(9H,s), 1.85-2.05(1H,m), 2.4-
- 2.6(2H,m), 2.86(1H,d,J=4.0Hz), 2.9-3.2(2H,m), 4.6-4.8(1H,m),
- 5.55(1H,brs), 6.22(1H,brs), 6.4-6.6(1H,m),
- 6.64(1H,d,J=7.3Hz), 6.92(1H,brd, J=7.3Hz), 7.05(1H,brs),
- 7.90(1H,brd,J=8.3Hz)

Example 45(Continued from Table D-21)

Synthesis of Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NH2

Reaction	3							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b7:g	P1:g	g	m1	ml	time hr	sol.		g
1	1.17	1.06	1.7	4	13	EA:H	I-c18	0.56
				}		1:2		

¹H-NMR(CDCl₃):δ 0.3-0.9(9H,m), 1.2-1.5(18H,m), 2.2-2.4(1H,m), 2.6-3.4(6H,m), 3.9-4.1, 4.4-4.8, and 4.8-4.9(3H,m), 5.53(1H,brs), 6.25(1H,brs), 6.25-6.45(2H,m),

6.56(1H,brs), 6.6-6.9(1H,m), 6.9-7.1(3H,m), 7.15-7.3(2H,m), 7.6-7.8(1H,m)

Rea	cti	on	4a
			- T-

(
Compound	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-c18	ml	ml	time	sol.	g	min
g		ł	hr			
0.51	2	4	1	MC:M	0.36	19.9
				20:1		

EI-MS(M⁺):528

 $^{1}\text{H-NMR}(CDCl}_{3}):\delta 0.60(3\text{H},d,J=6.6\text{Hz}), 0.8-0.9(6\text{H},m),$

- 1.38(9H,s), 2.2-2.4(1H,m), 2.68(1H,dd,J=7.3,13.5Hz), 2.8-
- [3.0(2H,m), 3.0-3.25(3H,m), 3.71(1H,t,J=6.9Hz),
- 4.21(1H,brd,J=10.9Hz), 4.4-4.6(1H,m), 5.55(1H,brs),
- 6.23(1H,brs), 6.64(1H,d,J=7.9Hz), 6.86(1H,dd,J=1.7,7.9Hz),
- 6.9-7.0(1H,m), 6.97(2H,t,J=8.6Hz), 7.0-7.2(3H,m)

Table D-23

Synthesis of N-Me-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NH₂

R_3	1			R_{32}	<u>. </u>			R	33	R	34
Me	<u> </u>			Et]	ł	1	i
Reaction	3										
Compound	Compou	nd	CMPI	TE	A	THF	Rea	ction	Column	Product	Amount
I-b7:g	P2:g		g	m1	.	ml	t:	imė	sol.		g
]	ır			
1.0	1.23		1.06	1.	7	4		L 4	MC:M	I-c	0.54
									50:1	19	
Reaction	4a				_						
Compour	nd TF	A	CH ₂ C	1_2]	React	tion	Co.	Lumn	Amount	HPLC
I-c19:	g m		ml	l		tir	ne	s	1.	g	min
						h	r	_			
0.48	2		4			0.	5	MO	2:M	0.26	20.4
			ļ	-				20):1		
EI-MS(M ⁺)	:542										
H-NMR(CI	OCl_3): δ	ο.	.57, 0	.68	3,	0.7	1, a	nd 0.	91(6H,	d,J=6.6H	z),

- 0.99 and 1.05(3H,t,J=6.9Hz), 1.37(9H,s), 2.29 and
- 2.38(3H,s), 2.3-2.5(1H,m), 2.8-3.4(6H,m), 3.52 and
- 3.60(1H,t,J=6.6Hz), 3.6-3.9(1H,m), 4.5-4.7(1H,m), 5.66,
- 5.74, 5.83, and 6.25(2H,brs), 6.66.6-7.2(7H,m),
- 7.61(1H,brd,J=5.4Hz), 9.16(1H,d,J=7.6Hz)

Table D-24

Synthesis of N-Et-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NH₂

R ₃	1		R ₃₂		R ₃₃		R_3	4
Et			Et		Н		Н	
Reaction	3							
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount
I-b7:g	P3:g	g	ml	ml	time	sol.		g
					hr			
1	1.42	1.06	1.7	4	14	MC:M	I-c	0.86
						50:1	20	

 1 H-NMR (CDCl₃): δ 0.35-1.2(12H,m), 1.36, 1.38, and 1.40(9H,s), 2.2-2.4(1H,m), 2.7-3.0 and 3.2-3.6(8H,m), 3.7-3.9, 4.1-4.3, 4.4-4.6, and 4.9-5.1(3H,m), 5.1-5.5(3H,m), 6.5-6.7, 6.8-7.0, and 7.0-7.4(12H,m), 7.6-7.8(1H,m).

Reaction 4a

Compound I-c20 g	Pd(OH) ₂	MeOH ml	Reaction time hr	Column sol.	Amount g	HPLC min
0.8	0.16	10	1	MC:M 20:1	0.31	20.6

$EI-MS(M^+):556$

 1 H-NMR(CDCl₃): δ 0.45, 0.63, 0.67, and 0.73(6H,d,J=6.6Hz), 0.8-1.2(6H,m), 1.38(9H,s), 2.1-2.7(3H,m), 2.7-3.3(6H,m), 3.5-3.9(2H,m), 4.4-4.7(1H,m), 5.38(1H,brs), 5.4-5.6(1H,m), 5.9-6.3(1H,m), 6.62(1H,d,J=7.9Hz), 6.7-7.0(3H,m), 7.0-7.2(3H,m), 7.45-7.65(1H,m)

Table D-25

Synthesis of Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHMe

R_3	1		R ₃₂			R ₃₃	3	R	34
Н			Et			Н			le
Reaction	1								
Compound	Compound	CMPI	TE	A THF	Rea	ction	Colum	Product	Amount
T2:g	V2:g	g	m]	L ml	t	ime	sol.	1	g
			ļ			hr			
4.95	6.62	6.57	8.	3 120		2	EA:H	I-a8	9.0
		<u> </u>	<u> </u>				3:2	<u> </u>	1
Reaction	2					·—·—·			,
Compoun	.d Pd(OH)	₂ Me	HC	React	ion	Col	umn	Product	Amount
I-a8:g	g	m.	1	tim	е	so	1.	l	g
				hr					
8.9	0.90	20	0	1.5	5	No		I-b8	6.4
						puri	fied		
¹ H-NMR (CI	OCl_3): δ 0	.64(3H	I,d,	J=6.9H	[z),	0.84(3H,d,J	=6.9Hz),	
1.05(3H,	t,J=7.1H	z), 1.	37(9H,s),	1.9	90-2.0	2(1H,m	ι),	
2.51(2H,	g,J=6.9H	z), 2.	.73(ЗH,d,J	=4.9	Hz),	2.86(1	H,d,J=4	3Hz),
2.91-3.0	7(2H,m),	4.53((1H,	dd, J=7	.2,	L5.2Hz),		
6.04(1H,	-			•		-			
6.91(1H,	dd,J≈2.0	,7.9Hz	z),	7.03(1	H, d,	J=2.0	Hz),		
7.88(1H,	d,J=8.3H	z)							

Example 48(Continued from Table D-25)

Synthesis of Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHMe

Reaction	3									
Compound	Cor	npound	CMPI	TEA	THF	React	ion	Column	Product	Amount
I-b8:g]]	?1:g	g	ml	ml	tim	e	sol.	-	g
	<u> </u>					hr				
1.70	-	1.91	1.72	1.9	7.5	31		MC:M:N	I-c21	0.63
<u></u>	l				ļ			30:1:0.	L [
Reaction	4a									
Compoun	đ	TFA	CH ₂ C	12	Reac	tion	С	olumn	Amount	HPLC
I-c21:	g	ml	ml		ti	.me		sol.	g	min
			<u> </u>		m:	in				
0.54		5	6		1	.5	М	C:M:N	0.31	21.0
			1				40	:1:0.1		
EI-MS(M ⁺)	:54	42								
¹ H-NMR (CI	Cl.):δ 0.	67(1H	I.d.3	r=6.6	Hz), (.72	(1H,d,J=	6.3Hz),	
0.75(2H,										
1.37(6H,										
3.2/4H m	-	-	=			-				

6.04(0.3H,brs), 6.44(0.7H,brs), 6.6-6.8(2H,m), 6.88-

7.20(6H,m), 7.45(0.3H,brd), 9.09(0.7H,d,J=7.9Hz)

Example 49

Synthesis of N-Me-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHMe

		Т		R ₃₂ _		T	R,	19	R_{34}	
R ₃₃							H		Me	
Me				Et				<u> </u>		
Reaction	3						_	Column	Product	Amount
Compound	Compou	nd	CMPI	TEA	THF	Reaction	n		Troduce	g
I-b8:g	P2:9		g	ml	ml	time		sol.		9
2 2019	_					hr_				0.44
2.03	1.60		1.51	2.3	10	24		MC:M:N	I-c22	0.44
2.03	1.00							30:1:0.1		
	L		L	<u> </u>						
Reaction			GII		Pos	action		Column	Amount	HPLC
Compoun	d T	FΑ	i i	₂ Cl ₂	ì			sol.	g	min
I-c22:	g n	11.	n	nl		ime		201.	3	
						min	<u> </u>	75.75.77	0.23	20.8
0.41		3		4		30	1	MC:M:N	0.23	20.0
0.11	Ì						3	0:1:0.1		
EI-MS(M ⁺	1.556									
E1-M5(M).330 - ~		60/E	/2U	a .I=6	5 6Hz).	ο.	68(4/3H,	d,J=6.6H	z),
H-NMR(C	DCT^3):	0	.62(3	7 311,	1/5/2).OH_	5 7	RHz).		
0.72(4/3	BH,d,J:	=6.0	bHZ),	0.9	T(2/2),, u, 0 - 0	· · ·	онг), 1.3	7(5H,s),	
1.04(5/3	3H,t,J:	=7.	3Hz),	1.0	6(4/	3A, L, J=1	: . ر د سه	Hz), 1.3	/3H s).	
	` ~	_	A F/1	II m \	7)	311 (4 / 3H	- 55), 2.43(5 9Hz), 2.8	, 011, 0, ,	
1	11 A T	_ 1	6H7)	27	1(4/	3H.d.J=4	4.5	9HZ), Z.O	-3.0(30)	211,111,1

- 2.67(5/3H,d,J=4.6Hz), 2.71(4/3H,d,J=4.9Hz), 2.8-3.8(58/9H,m),
- 3.83(5/9H, d,J=10.9Hz), 4.48(1H,m), 5.4-6.2(2H,br), 6.62-
- 6.66(1H,m), 6.8-7.2(6H,m), 7.40(4/9H,brd),
- 9.21(5/9H,d,J=7.9Hz)

Table D-28

Example 50

.F)-N-Et-Val-Tvr(3-tBu)-NHMe

R ₃₁			R ₃₂		T F	R ₃₃	R ₃	
Et			Et			Н	Me	<u> </u>
Reaction	3						T	3 +
Compound		d CMPI	TEA	THF	Reactio	I	Product	1
I-b8:g	P3:g	g	ml	ml	time	sol.		mg
•					hr		T -02	520
1.52	1.53	1.13	1.23	20	96	EA:H 1:1	I-c23	320
9H,s), 2	22 2 4	2/1U m	1 26	56 C3F	I d J=4.	JHZ), Z.	1.40(tot 74-3.56(-6.00(1H	011,111,1
4.37(1H, 6.50-6.6	.22-2.4 dd,J=7. 6(1H,m)	2(1H,m 3,7.9H), 2.6 z), 5.	56 (3F . 00-5	1,d,J=4. 5.48(4H,	JHZ), Z.	/4-3.30(011,111,1
4.37(1H, 6.50-6.6 Reaction	.22-2.4 dd,J=7. 6(1H,m) 4b	2(1H,m 3,7.9H , 6.84), 2.6 z), 5. -7.44	66 (3F .00-5 (11H	1, d, J=4. 5.48(4H, ,m)	JHZ), Z.	/4-3.30((,m),
4.37(1H, 6.50-6.6 Reaction	.22-2.4 dd,J=7. 6(1H,m) 4b d Pd(C	2(1H,m 3,7.9H), 2.6 z), 5. -7.44 MeOH	66(3F .00-5 (11H)	1,d,J=4. 5.48(4H,	m), 5.78	-6.00(1H	(,m),
4.37(1H, 6.50-6.6 Reaction	.22-2.4 dd,J=7. 6(1H,m) 4b d Pd(C	2(1H,m 3,7.9H , 6.84), 2.6 z), 5. -7.44	66(3F .00-5 (11H)	action	Column	-6.00(1H	HPLC min
4.37(1H, 6.50-6.6 Reaction Compoun I-c23:m	.22-2.4 dd,J=7. 6(1H,m) 4b dd Pd(C	2(1H,m 3,7.9H , 6.84 OH) ₂ mg), 2.6 z), 5. -7.44 MeOH	66(3F .00-5 (11H)	action time	Column	-6.00(1H	HPLC
4.37(1H, 6.50-6.6 Reaction	.22-2.4 dd,J=7. 6(1H,m) 4b dd Pd(C	2(1H,m 3,7.9H , 6.84), 2.6 z), 5, -7.44 MeOH ml	66(3F .00-5 (11H)	action time	Column sol.	-6.00(1H Amount	HPLC

6.6Hz), 0.88-1.24(6H,m), 1.38(9H,s), 2.10-2.64(3H,m), 2.70 and 2.71(total 3H,d,J=4.6Hz), 2.80-3.30(6H,m), 3.58-3.94(2H,m), 4.46(1H,dd,J=7.6-7.9Hz), 5.74-6.08(2H,m), 6.61(1H,d,J=7.9Hz), 6.78-7.20(6H,m), 7.38(1/2H,d,J=6.3Hz), 8.74(1/2H,d,J=7.9Hz)

Table D-29

Example 51

Synthesis of Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NH2

R ₃₁]	₹32				R ₃₃		\prod	R ₃₄	
Н				Ξt				Me			H	
Reaction	1											
Compound	Cc	mpound	CMPI	Т	EA	THF		action	Colu	ımn	Product	Amount
T4:g	•	V2 :g	g	r	nl	ml		time hr	so]	- •		g
3.360		4.500	4.113	3	.73	110		20	H:A 3:		I-a9	5.970
Reaction	2											
Compoun	d	Pd-C	MeOI	I	Rea	ctio	n	Colum	ın	Pr	oduct	Amount
I-a9:g		g	ml		t	ime	1	sol.			1	g
			_			hr						
5.870		1.000	114			1		Not			I-b9	3.600
								purifi	.ed			
Reaction	3											
CompoundI	C	ompound	CMPI		TEA	THF	Re	action	Col		Product	Amount
I-b9:g		P1:g	g		ml	ml		time hr	so.	1.		g ·
1.200	T	1.350	1.220	1	33	6		18	H:	EΑ	I-c24	1.160
				_					2:	1_		
Reaction	48	a										
Compoun	đ	TFA	CH ₂ C	12	Re	acti	on	Col	amı		Amount	HPLC
I-c24:0	7	ml	m1			time		so	1.		g	min
						hr						
1.06		5.00	10			1.5		MC:M	: H		0.251	19.3
								15:	1:2			
FT_MC(M+)	- =	42										

$|EI-MS(M^{\dagger}):542|$

¹H-NMR (CDCl₃): (two rotamers) δ 0.30, 0.69, 0.82 and 0.85(6H,d, J=6.4-6.9 Hz), 0.92 and 1.12(3H,t,J=3.4-4.1HZ), 1.35 and 1.37(9H,s), 2.25-2.40(1H,m), 2.56-3.37(5H,m), 2.82 and 3.02(3H,s), 3.60-3.77(2H,m), 4.83-5.38(2H,m), 6.02band 6.18(2H,brs), 6.43 and 6.62(1H,d,J=6.8Hz), 6.82-7.15(6H,m)

Table D-30

Example 52

Synthesis of N-Me-Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NH2

R ₃₁			R	32				R ₃₃			R_3	4
Me			Е	t				Me			Н	
Reaction	3											
CompoundI	Compour	ıd	CMPI	T	EA	THF	Rea	action	Colum	n	Product	Amount
I-b9:g	P2:g		g	m	11	m1	t	ime	sol.			g
							1	hr				L
1.200	1.420		1.220	1.	33	7		30	H:EA		I-c25	0.740
							<u> </u>		1:2			
Reaction	4a											
Compound	TFA	7	CH ₂ Cl	-2	Re	acti	Lon	Colu	ımı	A	mount	HPLC
I-c25:g	ml		ml			time	3	so	L.		g	min
			1			hr						
0.674	3.0	0	10			2		MC:	1:H	(0.278	20.0
			<u></u>					10:	L:2			

 $EI-MS(M^{\dagger}):556$

 1 H-NMR (CDCl $_{3}$): (two rotamers) δ 0.42, 0.78, 0.84 and 0.91(6H,d, J=6.3-6.9 Hz), 0.94 and 1.18(3H, t, J=3.6Hz), 1.35 and 1.37(9H, s), 2.20-2.34(1H,m), 2.29(3H,s), 2.62-3.02(4H,m), 2.93 and 3.04(3H,s), 3.17-3.31(2H,m), 3.45-3.72(1H,m), 5.02 and 5.22(1H, d,J=10.7-10.9 Hz), 5.09 and 5.17(1H,t,J=5.8-6.1Hz), 5.69, 6.07 and 6.57(2H,brs), 6.45 and 6.64(1H,d,J=8.0Hz), 6.78-7.14(6H,m)

Table D-31

Example 53

Synthesis of N-Et-Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NH,

R ₃₁			F	32_				R ₃₃		R ₃₄	
Et			E	it				Me		Н	
Reaction	3										
Compound	Compo	ınd	CMPI	TI	EΑ	THF	Rea	action	Column	Product	Amount
I	P3:9	ſ	g	m	1	ml	t	ime	sol.	1	g
I-b9:g								hr			
1.020	1.64	0	1.220	1.	33	8		12	MC:M:	I I-c26	1.040
]		20:1:3	1	
Reaction	4b										
Compoun	d P	1-C	MeC	H	Re	acti	on	Col	umn	Amount	HPLC
I-c26:g	,	g	ml	. [time		so	1.	g	min
						hr			!		
0.934	0.	093	20			3		MC:	M:H	0.201	20.7
	_							=15:	1:2	0.103	22.4
Compound	of wh	iah	770 i l d	~4	am.	2112	1.79	7 0 20	1 0 57	th UDIC	

Compound of which yeilded amount was 0.201 g with HPLC retention time of 20.7 min.

 $EI-MS(M^+):570$

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.42,0.79,0.84 and 0.91(6H,d and m, J=6.3-6.9Hz), 1.02 and 1.11(6H,t,J=3.6Hz), 1.33 and 1.40(3H,s), 2.20-3.36(9H,m), 2.92 and 3.03(3H,s), 3.51-3.75(1H,m), 5.00-5.38(2H,m), 6.02 and 6.58(2H,brs), 6.42-6..62(1H, d, J=8.0Hz), 6.82-7.20(6H, m) Compound of which yeilded amount was 0.103 g with HPLC retention time of 22.4 min.

 $EI-MS(M^{+}):570$

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.13 and 0.79(4H, t, J=3.4 Hz), 0.62 and 0.89(2H, d, J=6.3-6.9Hz), 0.97 and 1.05(6H,t,J=3.6Hz), 1.34 and 1.41(9H,s), 1.92-2.03(1H,m), 2.21-2.60(2H, m), 3.00 and 3.08(3H,s), 2.74-3.25(4H,m), 3.60-3.72(1H,m), 4.62(1H,d,J=8.0Hz), 4.78-4.82(1H,m), 5.18-5.36(2H,m), 6.02(1H,brs), 6.59 and 6.63(1H,d,J=8.0Hz), 6.81-6.98(3H,m), 7.09-7.20(3H,m)

Table D-32

Synthesis of Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHMe

R ₃₁				R ₃₂]	R ₃₃	F	34
Н				Et			1	Me .	1	le
Reaction	1									
Compound	Compo	ound	CMPI	TEA	THF	React	tion	Column	Product	Amount
T5:g	V2:	g	g	g ml ml time sol.						
		}				h	r			
3.93	5.	0	4.56	5.0	150	12	2.	EA:H	I-a10	5.02
								2:1		<u> </u>
EI-MS(M ⁺)	:525									
¹ H-NMR (CI	Cl ₃):	δ 0.	23-1.	08(9	H,m),	1.34	, 1.	37, 1.3	39(9H,s)	2.10-
3.56(10H	, m),	4.25	-5.33	(5H,	m), 6	.00-7	.48(9H,m)		
Reaction	2									
Compoun	d Po	(OH)	2 M	HOe	Reac	tion	Co.	Lumn	Product	Amount
I-a10:g		g	1	nl	ti	me	so.	L.		g
					mi	Ln				
4.92		0.50		94	4	0	CH	:M:N	I-b10	3.42
			}				100	:10:1		_
¹ H-NMR(CI	Cl ₂):	δ 0.	35. 0	.69.	0.88	. 0.9	5 (6H	.d.J=6	.6-6.9Hz	
0.82, 1.	•									•

- 1.92(2H,dd,J=13.9,6.6Hz), 2.76,2.79(3H,d,J=4.8Hz), 2.89,
- 2.99(3H,s), 2.92-3.23(2H,m), 4.55, 5.46(1H,dd,J=10.9,4.0Hz),
- 5.71, 5.89(1H,brs), 6.13, 8.19(1H,m), 6.55,
- 6.60(1H,d,J=7.9Hz), 6.78, 6.91(1H,dd,J=7.9,1.7Hz), 7.00,
- 7.07(1H,d,J=1.7Hz)

Table D-33

Example 54(Continued from Table D-32)

Synthesis of Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHMe

- 4			•	•			-	•		
Reaction	3									
Compound	Co	mpound	CMPI	TEA	THF	Reac	tion	Column	Product	Amount
I-b10:g		P1:g	g	ml	ml	ti	me	sol.		mg
						h	r		<u> </u>	
1.15		1.25	1.13	1.23	20	1	3	EA:H	I-c27	434
								2:1		
Reaction	4a									
Compoun	đ	TFA CH ₂ Cl ₂		Cl ₂	React	ion	Co	olumn	Amount	HPLC
I-c27:m	g	ml	m.	1	tim	ie	5	sol.	mg	min
			1		hr	•				
434		2	2		2.5	5	EA	:EtOH	86.0	20.6
				ļ			=	10:1	26.8	22.8
Compound	of	which	yeil	ded	amount	was	86.0	mg wit	h HPLC	
retention	ı t	ime of	20.6	min						
EI-MS(M⁺)	:556								
¹H-NMR	(CD	Cl_3): δ	0.27-	1.18	(9H,m)), 1.	35,1	.39(9Н,	s), 2.15	-

¹H-NMR(CDCl₃):δ 0.27-1.18(9H,m), 1.35,1.39(9H,s), 2.15-3.77(12H,m), 2.84, 3.06(3H,s), 4.87-5.27(2H,m), 5.99-7.20(8H,m)

Compound of which yeilded amount was 26.8 mg with HPLC retention time of 22.8 min.

 $EI-MS(M^{+}):556$

¹H-NMR(CDCl₃): δ 0.16, 0.40, 0.55, 0.84(6H,d,J=6.3-6.9Hz), 0.83, 1.01(3H,t,J=7.1Hz), 1.36,1.41(9H,s), 2.00-2.21(1H,m), 2.67,2.76(3H,d,J=4.8Hz), 3.05,3.09(3H,s), 2.81-3.30(7H,m), 3.68-3.87(1H,m), 3.72, 3.80(1H,dd,J=7.8,6.1Hz), 4.61, 5.10(1H,d,J=10.7Hz), 4.66, 5.24(1H,dd,J=9.7,6.4Hz), 6.05-7.20(8H,m)

Table D-34

Synthesis of N-Me-Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHMe

R ₃₃				R ₃₂	2			I	₹33		R	34
Me				Et				ľ	Ме		M	e
Reaction	3											
Compound	Con	npound	CMPI	TE	Α .	THF	Rea	ction	Column	Produc	ct	Amount
I-b10:g		2:g	g	m1	- 1	ml	t	ime	sol.			mg
		J						hr				
1.0	1	L.14	0.98	1.0	7	17		14	EA:H	I-c28	3	322
	_								2:1			
Reaction	4a											
Compoun	d	TFA	CH ₂ C	1,	Rea	acti	Lon	Col	umn	Amount		HPLC
I-c28:m		ml	ml		1	time	3	so	1.	mg		min
1 020.11	.9					hr						
322		2	2			2		EA:	EtOH	101		21.1
022		_						10):1	38		22.6
		l							_	· · · TITAT	~	

Compound of which yeilded amount was 101 mg with HPLC retention time of 21.1 min.

EI-MS(M*):570

 $^{1}\text{H-NMR}$ (CDCl₃): δ 0.41, 0.79, 0.86, 0.90(6H,d,J=6.3-6.9Hz), 0.94, 1.15(3H,t,J=7.3Hz), 1.34, 1.39(9H,s), 2.27,

- 2.28(3H,s), 2.71, 2.76(3H,d,J=4.8Hz), 2.15-3.78(9H,m),
- 2.93,3.08(3H,s), 4.98-5.32(2H,m), 6.03-7.20(8H,m)

Compound of which yeilded amount was 38 mg with HPLC retention time of 22.6 min.

EI-MS(M⁺):570

 $^{1}\text{H-NMR}$ (CDCl₃): δ 0.10, 0.14, 0.63, 0.85(6H,d,J=6.3-6.9Hz), 0.82, 0.95(3H,t,J=7.1Hz), 1.35, 1.40(9H,s), 2.18,

- 2.54(3H,s), 2.71, 2.75(3H,d,J=4.8Hz), 2.99, 3.08(3H,s),
- 1.89-3.27(8H,m), 3.46-3.64(1H,m), 4.54, 5.19(1H,d,J=10.6Hz),
- 4.66, 5.23(1H,t,J=7.3Hz), 6.51, 6.60(1H,d,J=7.9Hz), 6.07-
- 7.20(7H,m)

Table D-35

Example 56

Synthesis of N-Et-Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHMe

K ₃₁					. К ₃₂			r_3	3		IX.	34
Et					Et			Me	€		M	e
Reaction	3											
Compound	Co	mpound	CM	PΙ	TEA	THF	Reac	tion	Colum	n P	roduct	Amount
I-b10:g]]	P3:g	ç	7	ml	ml	tir	ne	sol.			mg
							h	<u> </u>				
1.0		1.32	0.	98	1.07	17	14	4	EA:H		I-c29	576
									2:1			
Reaction	41	b	_									
Compoun	đ	Pd-C		Me	еОН	React	tion	Col	Lumn	Am	ount	HPLC
I-c29:m	g	g		I	ml	tir	ne	so	ol.	1	mg	min
)	h	r		Ī			
576		0.05			5	3		EA:	EtOH	1	192	22.0
								15	5:1	1	129	23.6

Compound of which yeilded amount was 192 mg with HPLC retention time of 22.0 min.

 $EI-MS(M^+):584$

 1 H-NMR (CDCl₃): δ 0.41-1.18(12H,m), 1.35, 1.39(9H,s), 2.12-4.13(14H,m), 2.92,3.08(3H,s), 4.99-5.27(2H,m), 6.00-7.20(8H,m)

Compound of which yeilded amount was 129 mg with HPLC retention time of 23.6 min.

EI-MS(M⁺):584

 1 H-NMR (CDCl₃): δ 0.12-1.30(12H,m), 1.36, 1.41(9H,s), 1.93-4.16(14H,m), 2.99,3.07(3H,s), 4.57-5.23(2H,m), 5.40-7.22(8H,m)

Table D-36

Example 57

Synthesis of Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NH₂

R	31				R ₃₂				R ₃₃]	R ₃₄	
H					Et				Et				H	
Reaction	1 1	·												
Compoun	Co	mpoun	CMF	I	TEA	THF	•	Reac	tio	Colu	mn	Produ	ct	Amount
đ]	đ	g	ļ	ml	ml		n t	ime	sol	. •			g
T7:g		V2:g					_		ır	<u> </u>		ļ		<u> </u>
16.000	2	4.088	23.2	200	25.32	2 400.	00	6	0	EA:H		I-a1	.1	16.000
	L			1						3:2	: 2	<u> </u>		<u> 1</u>
Reaction									,					
Compoun	ıd	Pd(OH	I) ₂	M	eOH	Rea	ct:	ion	Co	lumn	Pr	roduct		Amount
I-al1:	g	:g	[ml	t	ime	Э	S	ol.				g
							hr						\perp	
9.000		0.90	0	20	0.00		2			:M:H	I	-b11		4.000
								<u>_</u>	15	:1:2	<u> </u>			
Reaction														
Compound		mpound	CMF	PI [TEA	THF	R	eact	- 1	Colu		Produ	ct	Amount
I-b11:g		P1:g	g	Ì	ml	ml		tim	-	sol	.			g
	ļ		-			40 00	ـ	hr				T . 0		0.700
1.100	-	1.150	1.0	40	1.13	10.00		72		EA:H:		I-c3	ויי	0.700
D	<u> </u>		L							3:2:	2		1	
Reaction			CIT						Colu		7 200	ount		HPLC
Compoun		TFA		₂ C1	2 16	eactio)11	1		í		ì		
I-c30:	g	ml	I	ml.		time hr			sol	•		g		min
0.650		2.00	2	.00		2		ľ	IC:M	H	0.	180		20.9
								1	5:1	2				
EI-MS(M*):5	542												
¹ H-NMR (-		two	ro	tamer	cs) δ	O	.51	. 0.	82. 0	.87	and		
(3/- (J J			,			, - •	, -				

- 0.94(6H,d,J=6.6~6.9Hz), 0.82~1.31(6H,m), 1.35 and 3.81(9H,s),
- 2.21~3.82 (9H,m) 4.83~5.30(3H,m), 6.62 and 6.54(1H,d,J=7.9Hz),
- 6.80~7.21(6H,m)

Table D-37

Synthesis of N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NH₂

R ₃₁	L			R ₃₂			R ₃₃			R ₃₄	
Me	:			Et			Et			H	
Reaction	3										
Compound	Cor	npound	CMPI	TEA	THF	Rea	ction	Colu	mn	Product	Amount
I-b11:g	1	?2:g	g	ml	ml	t	íme	sol			g
							hr				
1.240	1	.360	1.170	1.28	10.00)	72	EA:H:	MC	I-c31	0.300
								3:2:	2		<u> </u>
Reaction	4a										
Compour	ıd	TFA	CH ₂ C		React	ion	Col	umn	Aı	mount	HPLC
I-c31:	g	ml	m.	L	tim	e	so	1.		g	min
ł				1	hr]				
0.280		2.00	2.0	00	2		MC:	M:H	0	.170	21.2
							15:	1:2			

 $EI-MS(M^{+}):570$

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.63~1.30(9H, m and d, J=6.3Hz),), 1.34 and 1.39(9H, s), 2.30(3H,s), 2.22~3.90(9H,m), 4.97~5.33(3H,m), 6.43 and 6.62(1H,d,J=7.92), 6.81~7.19(6H, m)

Table D-38

Synthesis of N-Et-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NH $_2$

R ₃	11				R ₃₂			R ₃₃ _			R ₃₄	
E1					Et			Et			H	
Reaction	3											
Compound	Сс	mpound	CI	IPI	TEA	THF	Reac	tio	Colu	nn	Product	Amount
I-b11:g		P3:g		g	ml	ml	nt	ime	sol	•		g
		_		-			h	ır _				
1.500		1.980	1.	470	1.60	10.00) 7	2	EA:H:	MC	I-c32	0.700
1.500									3:2:	2		
Reaction	4	b	·		L							
Compoun		Pd(OH),	М	eOH	Reac	tion	Co	lumn	A	mount	HPLC
I-c32:0		:g	, ,		ml	ti	me	s	ol.		g	min
1-032.9	9	.9				r	ır					
0.650		0.06	5	10	0.00		2	MC	:M:H		0.240	20.0
0.030			_					15	:1:2			
		<u> </u>										

EI-MS(M⁺):458

 $^{1}\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.85~1.27(15H, m), 1.37 and 1.39(9H, s), 2.03~3.63(11H, m), 4.50~4.55(1H, m), 5.02~5.34(2H, m), 6.43 and 6.60(1H, d, J=8.24), 6.81~7.19(6H, m)

Table D-39

Synthesis of Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHMe

R ₃				I	₹32					R ₃₃				R	34	
H					Ξt					Et				М	e	
Reaction	1															
Compound	Cor	npound	C	MPI	T	EA	THE	F	≀ea	ctio	n Co	lumn	Pr	oduc	t	Amount
T8:g	7	/2:g		g	r	nl	ml		_	ime hr	s	ol.	_			g
10.000	15	5.000	14	.000	14	.96	357	7		48		EA:1	I	-a12		5.610
Reaction	2				1					**						
Compour	nd	Pd-C		MeC	H	Re	act	io	n	Co	Lumn	Pı	codi	ıct	A	mount
I-a12:	g	g		m]	L		tim hr	-		so	01.					g
5.500		1.00	0	10	0		2				ACT:1		[-b]	12		2.950
Reaction	3					.i										
CompoundI	Cc	mpoun	C	MPI	TE	A 7	CHE	Re	act	ion	Col	umn	Pı	coduc	it	Amount
I-b12:g		d P1:g		g	m.	L :	ml		tin hı		sc	1.				g
0.900	'	0.943	0.	850	0.9	93	6		48	3	CH:	M:N 10:	J -	[-c33	3	0.750
Reaction	4a	L						·								
Compoun	đ	TFA	C	H ₂ Cl	2	Read	ctio	on		Col	umn	T	Amo	unt		HPLC
I-c33:9	3	ml		ml			ime ır			so	1.		Ş	3		min
0.742		4.00		6			2				M:N 10:1		0.2	210		22.0
EI-MS(M [*])	: 5	70														

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.64 and 0.78-1.20(12H, d and m, J=7.0-7.9Hz), 1.24and 1.37(9H, s), 2.20-2.40(1H, m), 2.62-3.08(4H, m), 3.19-3.46(3H, m), 3.57-3.89(2H, m), 4.62-5.11(2H, m), 6.44-6..62(2H, m), 6.79-7.13(5H, m)

Table D-40

Synthesis of N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHMe

R ₃₁		R	32		R ₃₃			R ₃₄	
Me		E	t		Et			Me	
Reaction	3								
CompoundI	Compour	CMPI	TEA	THF	Reaction	Colum	nn	Product	Amount
I-b12:g	đ	g	m1	ml	time	sol.	.		g
	P2:g				hr				
0.979	1.077	0.925	1.00	24	53	H:E <i>F</i>	1	I-c34	0.410
		1			<u> </u>	2:1			
Reaction	4a								
Compound	TFA	CH ₂ Cl ₂	Read	ction	Colum	n	Ar	nount	HPLC
I-c34:g	ml	ml	t:	ime	sol.			g	min
]]	hr					
0.400	4.00	4		1	CH:M:	N	0.034 22		22.4
			<u> </u>		200:10	:1			

EI-MS(M⁺):584

 $^1\text{H-NMR}$ (CDCl₃): (two rotamers) δ 0.65 and 0.85-1.20(12H, d and m, J=6.8-7.9Hz), 1.34 and 1.39(9H, s), 2.30 and 2.33(3H, s), 2.30-2.48(1H, m), 2.65-3.89(10H, m), 4.90-5.07(2H, m), 5.10-5.23(2H, m), 6.48-6.58(1H, m), 6.63-7.20(6H, m)

Table D-41

Synthesis of N-Et-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHMe

R ₃₁			R	32				R_{33}			R ₃₄		
Et			E.	t	Et					Me			
Reaction	Reaction 3												
CompoundI	Compou	nd	CMPI	TE	Α	THF	Re	action	Colu	mn	Product	Amoun	
I-b12:g	P3:g		g	m]	L	m1		time	sol.			t	
								hr			İ	g	
1.000	1.277	7	0.945	1.1	1.10 6.00 48 MC:		MC:M	I:H	I-c35	0.540			
									20:1	:1			
Reaction	4b												
Compound	Pd-0	C	MeOH React		actio	on Column		Ar	nount	HPLC			
I-c35:g	- 1		ml_		tir		ne so				g	min	
		!				hr			}				
0.501 0.05		0	67		2	MC:M		1:H 0		.240	23.2		
								25:1	:3				

EI-MS(M⁺):598

 1 H-NMR (CDCl₃): (two rotamers) δ 0.64 and 0.84-0.92(6H, d and m, J=7.9Hz), 1.04, 1.05 and 1.13(6H,t,J=6.3Hz), 1.33 and 1.39(3H, s), 2.21-2.94(6H,m), 3.12-3.80(6H,m), 4.82-5.08(1H, m), 5.13 and 5.20(1H,d,J=9.7Hz), 6.47 and 6.58(1H,d,J=8.8Hz), 6.79-7.19(6H,m)

Table D-42

Example 63

Synthesis of Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHtBu

R ₃₁				R ₃₂				R ₃₃	<u></u>		R ₃₄		
Н				Me				H			t	Βυ	l
Reaction	1												
Compound	Compour	nd (CMPI TEA		THF	Reaction		ı Colu	mn	Product		Amount	
T18:g	V2:g	g ml ml		ml	'	time	sol	sol.			g		
							hr						
0.58	0.55		0.56	0.	61	10		2	EA:		I-a13	3	1.0
									1:3	3			
Reaction 2													
Compound Pd(OH)2 MeOH Reaction Column Product Amount													
I-a13:g	r g		m.	1		time	е	so	1.				g
					<u> </u>	hr							
1.0	1.0 0.16 20 5				5		N	ot	I	-b13		0.75	
						puri	fied	L		<u> </u>			
Reaction 3													
Compound	Compour	nd C	MPI	TE	Α	THF		ction	Colum	\mathbf{n}	Produc	ct	Amount
I-b13:g	P1:g		g	m.	1	ml		ime	sol.	•			g
								nr					
0.37	0.34	0	.33	0.	38	4	-	L4	MC:M		I-c3	5	0.58
					ļ				50:1:0).			
<u></u>									1		<u> </u>		L
Reaction													
Compound	1	1	CH ₂ CJ	-2		acti	1		lumn	İ	Amount		HPLC
I-c36:g	ml		ml	- 1		time	,	s	ol.	j	g		min
				_		min						-+	
0.49	2		4	1		30			:M:N	- 1	0.31		23.4
	_ <u></u>							30:	1:0.1				
EI-MS(M ⁺)										_		_	
$^{1}\text{H-NMR}(CDCl}_{3}):\delta 0.72(2\text{H},d,J=6.9\text{Hz}), 0.82(1\text{H},d,J=6.6\text{Hz}), 0.92-$													
0.96(3H,m), 1.19(3H,s), 1.22(6H,s), 1.37(3H,s), 1.38(6H,s),													
2.2-2.4(1H,m), 2.5-3.0(32/5H,m), 3.17(3/5H,dd,J=4.9,13.9Hz), 3.61(3/5H,br), 3.82(2/5H,br), 3.96(3/5H,d,J=10.9Hz), 4.3-													
												3-	
4.6(7/5H												-	7 011-1
6.03(2/3H,br), $6.6-6.8(2H,m)$, $6.9-7.2(5H,m)$, $9.00(1H,d,J=7.9Hz)$													

Table D-43

Example 64

Synthesis of Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH₂SO₂CH₃

R ₃₁	 			R ₃₂			R ₃₃			R ₃₄	
H	·			Ме			Me			CH ₂ SO	
Reaction	1										
Compound	Compoun	d CI	MPI	TEA	THF	Reac	tion	Colum	n	Product	Amount
T17:g	V1:g		g	ml	ml	ti		sol.			g
				<u> </u>		h			_		
0.840	0.782	0.	753	0.8	10	1	5	EA:H:N	- 1	I-a14	1.200
				2	J			3:2:2	2		<u> </u>
Reaction 2											
Compound	1	$H)_2$		он		tion	1	lumn	Pı	coduct	Amount
I-al4:g	: g	Ì	m	1		me	s	ol.			g
						r					
1.100	0.15	50	30.	.00	2	2		Not		[-b14	0.850
							pur	ified			
Reaction										1	1
CompoundI	_	nd C	MPI	TEA	THE	,	ctio	1		Product	
I-b14:g	:g		g	ml	ml	"	ime hr	sol	•		g
0.850	0.710	0.	572	0.62	10.0			EA:H:MC		I-c37	1.020
1			• • •			1:1:					
Reaction	4a				<u> </u>						
Compoun	d Pd(OH) ₂	M	еОН	Rea	ction	C	olumn	7	Amount	HPLC
I-c37:g	, :	g		ml	t	ime		sol.		g	min
					į .	hr					
1.020	0.3	L50	30	0.00		2	М	C:M:H		0.530	20.2
							1	5:1:2			
EI-MS(M ⁺):620											
$^{1}\text{H-NMR}$ (CDCl ₃): (two rotamers) δ 0.78(3H, dd, J=6.6, 12.1Hz),											
0.91(3H, dd, J=6.6, 11.2Hz), 1.26 and 1.35(9H, s), 2.00(3H,s),											
2.55, 2.0	63, 2.7	5, 2	.84,	2.9	9 and	3.1	6 (8H	,s), 2	. 21	. ~ 5.30)(11H,
m), 6.43	m), 6.43 and 6.55(1H, d, J=7.9Hz), 6.76~7.13(6H, m)										

5 Examples of compounds synthesized according to the scheme 2 are shown in Tables D-44 to D-66.

Example 65

Synthesis of 2-(2-amino-3-(4-

5 fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

hydroxyphenyl)-1-carbamoylethyl)-N-methyl-3-

methylbutanamide

 R_{32}

Structural Formula of Compounds of Example 65-78

 R_{33}

Η Me CONH, Reaction 1 Compound Compound CMPI TEA THF Reaction Column Product Amount T4:g V4:g time sol. :g mlmlhr 6.97 7.08 8.05 19 I-dl 9.50 5.78 115 EA:H 1:1

R'

 $^{1}\text{H-NMR}(CDCl}_{3}):\delta$ 0.63, 0.74, 0.89 and 0.94(total 6H,d,J=6.6-

6.9Hz), 1.36 and 1.39(total 9H,s), 1.90-2.04(1H,m), 2.80-

3.38(2H,m), 2.96 and 3.04(total 3H,s), 4.14-4.22(1/2H,m), 4.40-

4.50(1/2H,m), 4.60-4.70(1/2H,m), 4.88-5.40(11/2H,m),

5.88(1/2H,brs), 6.49(1/2H,d,J=7.9Hz), 6.58(1/2H,d,J=7.9Hz),

6.87(1H,d,J=7.9Hz), 7.02-7.14(1H,m), 7.30-7.40(5H,m)

Reaction 2

Compound I-d1:g	Pd-C g	MeOH ml	Reaction time	Crude Compound I-el was used in Reaction 3.
			hr	
4.23	0.50	100	2	

Example 65(Continued from Table D-44)

Synthesis of 2-(2-amino-3-(4-

5 fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

hydroxyphenyl)-1-carbamoylethyl)-N-methyl-3-

methylbutanamide

Reaction 3	Reaction 3											
	Compoun	NaBH₃C	AcOH	1	Reactio	Column	ſ	Amount				
-e1	d	N	ml	ml	n time	sol.	t	g				
	P5:g	g			hr			L				
Crude	2.37	1.16	1.01	90	1	EA:H	I-f1	2.08				
compound				ļ		1:1	j	1				
of												
Reaction 2	L	<u> </u>	<u></u>	<u> </u>	<u> </u>							

 $EI-MS(M^{\dagger}):600$

 1 H-NMR(CDCl₃): δ 0.86 and 1.02(total 6H,d,J=6.6-6.9Hz), 1.31,

1.35, 1.37 and 1.43(total 18H,s), 1.56–1.80(3H,m), 2.58-

3.20(7H,m), 3.56-3.66(1H,m), 4.51(1H,d,J=8.6Hz), 5.28(1H,brs),

5.58-5.68(1H,m), 5.93(1H,brs), 6.53(1H,d,J=8.2Hz), 6.82-

7.22(7H,m)

Reaction 7

ROGOCTOIL ,						
Compound	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-f1:mg	ml	ml	time	sol.	mg	min
1			hr			
360	3	3	0.5	MC:M:N	275	17.8
				10:1:0.1		

EI-MS(M⁺):500

 $^{1}H-NMR(CDCl_{3}): \delta 0.47, 0.67, 0.92 \text{ and } 0.95(total 6H,d,J=6.3-$

6.6Hz), 1.38(9H,s), 1.64-1.80(2H,m), 1.97(1H,dd,J=5.3,11.6Hz),

2.28(1H,dd,J=9.2,13.5Hz), 2.72(1H,dd,J=4.0,13.5Hz), 2.80-

3.02(3H,m), 2.94(3H,s), 3.18(1H,dd,J=5.8,14.5Hz), 5.31(1H,brs),

5.55(1H,dd,J=5.9,10.9Hz), 6.00(1H,brs), 6.59(1H,d,J=8.2Hz),

6.89(1H,dd,J=1.9,8.2Hz), 6.97(2H,t,J=8.2Hz),

7.11(2H,t,J=8.2Hz), 7.11(1H,d,J=1.9Hz)

Example 66

 R_{32}

Synthesis of 2-(2-amino-3-(4-fluorophenyl)-N-

5 methylpropylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-

carbamoylethyl)-N-methyl-3-methylbutanamide

 R_{33}

Me	3		Me		CONH ₂			
Reaction	4							
Compound	НСНО	NaBH ₃ CN	AcOH	MeOH	Reaction	Column	Product	Amoun
I-f1:mg	ml	mg	ml	ml	time	sol.		t
					hr			mg
530	0.38	117	0.10	8	0.5	H:A	I-g1	532
	!					1:1		

R'

 $^{1}H-NMR(CDCl_{3}):\delta 0.76,0.78$ and 0.94(total 6H,d,J=5.2-6.6Hz),

- 1.37 and 1.38(total 18H,s), 1.58-1.76(4H,m), 1.94-2.30(2H,m),
- 2.49 and 2.89(total 3H,s), 2.60-3.22(4H,m), 3.58-3.76(1H,m),
- 4.38 and 4.62(total 1H,d,J=8.6Hz), 5.22-5.30(1H,m), 5.64-
- 5.72(1H,m), 6.07(1H,brs), 6.52-6.62(1H,m), 6.94-7.12(6H,m)

Reaction 7

1						
Compound	1 TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-g1:mg	ml	ml	time	sol.	mg	min
			hr			
465	4	4	1	CH:M:N	280	21.5
				10:1:0.1		

FAB-MS: $515(M+H^{+})$

 1 H-NMR(CD₃OD): δ 0.14, 0.83, 0.89 and 1.01(total 6H,d,J=6.3-6.6Hz), 1.40 and 1.43(total 9H,s), 1.84-2.18(2H,m), 2.10(3H,s), 2.38-2.50(1H,m), 2.60-3.04(3H,m), 2.91 and 3.06(total 3H,s), 3.18-3.30 and 3.58-3.66(total 3H,m), 4.70 and 5.61(total 1H,dd,J=4.3-5.0,10.9Hz), 6.66 and 6.69(total 1H,d,J=7.9Hz), 6.92 and 6.96(total 1H,dd,J=1.3,7.9Hz), 7.04-7.34(5H,m)

Example 67

Synthesis of 2-(N-acetyl-2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

 R_{33}

5 hydroxyphenyl)-1-carbamoylethyl)-N-methyl-3-

methylbutanamide

 R_{32}

Ac		1	Me	CON	$1H_2$							
Reaction	Reaction 5											
Compound I-f1:mg	AC ₂ O ml	DMAP mg	pyridine ml	Reaction time hr	Column sol.	Product	Amount mg					
451	3	42.9	5	15	EA:H 1:1	I-h1	306					

R'

 1 H-NMR(CDCl₃): δ 0.13, 0.60 and 0.87(total 6H,d,J=6.3-6.6Hz), 1.23, 1.26, 1.32 and 1.36(total 18H,s), 2.06-2.30(3H,m), 2.15, 2.16 and 2.31(total 6H,s), 2.48(1H,dd,J=7.9,13.2Hz), 2.74-2.94(2H,m), 3.05 and 3.07(total 3H,s), 3.28-3.42(2H,m), 3.88-4.00(1H,m), 4.88(1H,d,J=8.6Hz), 5.08-5.42(3H,m), 6.31(1H,brs), 6.92(2H,d,J=8.2Hz), 6.98(2H,d,J=8.2Hz), 7.08-7.26(3H,m)

Reaction 6

- 1							
ı	Compound	NaOH	MeOH	Reaction	Column	Product	Amount
	I-h1:mg	ml	ml	time	sol.		mg
				hr			
ĺ	412	1	4	1	EA:H	I-i1	341
					1:1	j	

 1 H-NMR(CDCl₃): δ 0.05, 0.11, 0.52 and 0.61(total 6H,d,J=6.3-6.9Hz), 1.36, 1.37 and 1.42(total 18H,s), 1.70 and 2.05(total 3H,s), 2.00-2.42(2H,m), 2.80-3.40(5H,m), 3.04 and 3.07(total 3H,s), 3.64-3.88(1H,m), 4.76-5.32(5H,m), 5.92(1H,brs), 6.56(1H,d,J=8.2Hz), 6.88-7.30(6H,m)

Example 67(Continued from Table D-47)

Synthesis of 2-(N-acetyl-2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-carbamoylethyl)-N-methyl-3-

methylbutanamide

Reaction 7						
CompoundI-i1	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
mg	ml	ml	time	sol.	mg	min
			hr			
330	3	2	0.5	CH:M	210	23.4
				10:1		

 1 H-NMR(CDCl₃): δ 0.31, 0.69, 0.81 and 0.86(total 6H,d,J=6.3-7.0Hz), 1.38(9H,s), 1.78-1.86(1H,m), 1.85(3H,s), 2.5-2.94(3H,m), 3.05 and 3.07(total 3H,s), 3.04-3.30(1H,m), 3.50-3.84(2H,m), 4.10 and 4.40(total 1H,brs), 4.63 and 4.66(total 1H,brs), 5.06(1H,d,J=10.2Hz), 5.16-5.32(2H,m), 6.54 and 6.65(total 1H,d,J=7.9-8.2Hz), 6.80 and 6.93(total 1H,dd,J=1.5-2.0,7.9-8.2Hz), 6.98-7.14(5H,m)

Example 68

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-carbamoylethyl)-N-ethyl-3-

methylbutanamide

R ₃	R ₃₂ R ₃₃			R'						
H			Et		CONH ₂					
Reaction	Reaction 1									
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount		
T7:g	V4:g	g	ml	ml	time	sol.	1	g		
					hr					
1.01	1.25	1.27	1.23	10	19	EA:H	I-d2	0.75		
						1:1				

 $^{1}H-NMR(CDCl_{3}):\delta 0.72,0.87, 0.92 \text{ and } 0.95(total 6H,d,J=6.6-$

6.9Hz), 1.14-1.30(3H,m), 1.37 and 1.38(total 9H,s),

1.86-1.98(1H,m), 2.76(1/4H,dd,J=6.6,13.8Hz),

3.12(3/4H,dd,J=7.9,13.9Hz), 3.24-3.56(3H,m), 4.20 and

4.33(total 1H,dd,J=6.6-8.6,8.9Hz), 4.60 and 4.71(total

1H,t,J=7.2-7.6Hz), 5.02-5.28(7/2H,m), 5.36(1H,d,J=8.6Hz),

6.26(1/2H,brs), 6.54 and 6.58(total 1H,d,J=7.9-8.2Hz), 6.84-

6.92(total 1H,m), 7.08(1H,d,J=1.7Hz), 7.20-7.40(5H,m)

Reaction 2

Compound I-d2:g	Pd-C	MeOH ml	Reaction time	Crude Compound I-e2 was used in Reaction 3.
	3		hr	
0.62	0.10	12	1	

Example 68(Continued from Table D-49)

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-carbamoylethyl)-N-ethyl-3-

methylbutanamide

Reaction	3							
Compound I-e2	Compoun d P5:mg	NaBH₃CN mg	ACOH ml	MeOH ml	Reactio n time hr	column sol.	Product	Amount mg
Crude compound of Reaction 2	400	124	0.4	10	1	EA:H 1:1	I-f2	298

 $^{1}H-NMR(CDCl_{3}):\delta$ 0.65, 0.87, 0.90 and 1.02(total 6H,d,J=6.2-

6.9Hz), 1.12 and 1.24(total 3H,t,J=6.9-7.3Hz), 1.35, 1.37,

1.38 and 1.41(total 18H,s), 1.50-1.82(3H,m), 2.58-3.64(7H,m),

4.28-4.54(1H,m), 5.04-5.36(2H,m), 6.20-6.32 and 6.52-

6.64(2H,m), 6.80-7.12(6H,m)

Reaction 7						
Compound	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-f2	ml	ml	time	sol.	mg	min
mg			hr			
331	2	3	0.5	MC:M	234	19.7
				20:1		

EI-MS(M⁺):514

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta$ 0.56, 0.75, 0.94 and 0.96(total 6H,d,J=6.6-

6.9Hz), 1.17 and 1.26(total 3H,t,J=6.9-7.3Hz), <math>1.38(9H,s),

1.50-1.80(2H,m), 1.98(1H,dd,J=8.6,11.2Hz), 2.20-2.50(2H,m),

2.71(1H,dd,J=3.8,13.2Hz), 2.88-3.50(5H,m), 4.54-4.62 and 4.94-4.62

5.02(1H,m), 5.21 and 6.40(total 1H,brs), 6.58(1H,d,J=8.2Hz),

6.82-7.18(6H,m)

Example 69

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

hydroxyphenyl)-1-hydrozymethylethyl)-3-methylbutanamide

									1		
R ₃₂			R ₃				R'				
H			H				CH ₂ OH		<u> </u>		
Reaction	1										
Compound	Compour	nd	CMPI	TEA	THF	R	eaction	Colum	ın	Product	Amount
T19:g	V4:g		g	ml	ml		time	sol.			g
				_			hr				
1.2	1.62		1.65	1.8	50		1.5	EA:H		I-d3	2.2
				!				1:1			
$^{1}\text{H-NMR}(CDCl_{3}):\delta 0.81(3\text{H,brd,J=6.3Hz}), 0.91(3\text{H,d,J=6.6Hz}),$											
1.38(9H,s			-								3.5-
3.7(2H,m)											
6.09(1H,b	_					-		_,,			
6.86(1H,d			-					z). 7.	36	(5H,s)	,
Reaction										· · · · · · · · · · · · · · · · · · ·	
Compound		: 1	MeOH	Rea	acti	on.	Colu	mn	Pr	roduct	Amount
I-d3	g		ml	1	ime		sol				g
q	"	1	*****	`	hr]	•		1	9
2.2	0.2	_	48		12		Not	-		I-e3	1.6
2.2	purified										
1											
¹ H-NMR (CDC	•										
1.38(9H,s	L.38(9H,s), 2.1-2.3(1H,m), 2.68(1H,dd,J=8.9,13.9Hz),										

2.86(1H,dd,J=6.3,13.9Hz), 3.23(1H,d,J=3.6Hz),

3.62(1H,dd,J=6.3,10.9Hz), 3.75(1H,dd,J=3.6,10.9Hz), 4.0-

4.2(1H,m), 5.45(1H,brs), 6.61(1H,d,J=7.9Hz),

6.90(1H,dd,J=2.0,7.9Hz), 7.05(1H,d,J=2.0Hz),

7.56(1H, brd, J=6.6Hz)

Example 69(Continued from Table D-51)

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-hydroxymethylethyl)-3-methylbutanamide

Reaction	ı 3							
Compound	Compound	NaBH₃CN	AcOH				Product	Amount
I-e3:g	P5:g	g	ml	ml	time	sol.		g
					hr			
0.8	0.8	0.33	0.28	25	1.5	CH:M:N	I-£3	1.05
						300:10:1		

 $^{1}\text{H-NMR}(CDCl}_{3}):\delta 0.69(3\text{H,brd,J=5.9Hz}), 0.81(3\text{H,d,J=6.9Hz}),$

- 1.38(9H,s), 1.42(9H,s), 1.8-2.0(1H,m), 2.35-3.0(6H,m), 3.0-
- 3.2(1H,m), 3.5-3.9(3H,m), 4.1-4.3(1H,m), 4.5-4.7(1H,m),
- 5.47(1H,brs), 6.62(1H,d,J=7.9Hz), 6.9-7.2(6H,m),
- 7.36(1H, brd, J=7.6Hz)

Reaction 7						
Compound I-f3:g			Column sol.	Amount g	HPLC min	
0.3	0.5	5	10	CH:M:N 200:10:1	0.21	17.7

 $^{1}H-NMR(CDCl_{3}):0.72(3H,d,J=6.9Hz), 0.83(3H,d,J=6.9Hz),$

- 1.38(9H,s), 1.8-2.0(1H,m), 2.4-2.9(7H,m), 2.9-3.1(1H,m),
- 3.50(1H,dd,J=4.6,11.6Hz), 3.66(1H,dd,J=3.0,11.6Hz), 4.1-
- 4.3(1H,m), 6.60(1H,d,J=7.9Hz), 6.92(1H,dd,J=1.7,7.9Hz), 7.0-
- 7.2(6H,m), 7.35(1H,brd,J=8.3Hz)

Example 70

Synthesis of 2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-

5 hydroxymethylethyl)-3-methylbutanamide

R_3	2		R_{33}		R'			
Me	3		H CH ₂ OH					
Reaction	4		-					
Compound	нсно	NaBH ₃ CN	AcOH	МеОН	Reaction	Column	Product	Amount
I-f3:g	ml	g	ml	ml	time hr	sol.		g
0.34	0.23	0.077	0.07	6	1.5	CH:M:N 300:10:1	I-g3	0.33
1	-					3H,d,J=6.		
1.37(9H,	s), 1	.41(9H,s	;), 2.0	06(3H	s), 2.1-	2.6(4H,m)	,	
2.70(1H	t=T. Kh	3.9 14.2	Hz)	2.8-3	.0(2H.m).	3.5-3.8(3H.m)	

2.70(1H,dd,J=8.9,14.2Hz), 2.8-3.0(2H,m), 3.5-3.8(3H,m), 4.2-4.5(2H,m), 5.62(1H,brs), 6.4-6.6(1H,m), 6.62(1H,d,J=7.9Hz), 6.9-7.2(6H,m)

Reaction 7

Compound	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-g3:g	ml	ml	time	sol.	g	min
		_	hr			}
0.3	0.5	5	10	CH:M:N	0.17	20.1
				200:10:1		

EI-MS(M⁺):487

 1 H-NMR(CDCl₃):0.79(3H,d,J=6.6Hz), 0.94(3H,d,J=6.6Hz),

- 1.39(9H,s), 1.9-2.2(1H,m), 2.22(3H,s), 2.2-2.4(3H,m),
- 2.51(1H,d,J=8.9Hz), 2.6-2.8(2H,m), 2.87(1H,dd,J=6.6,14.2Hz),
- 3.0-3.2(1H,m), 3.57(1H,dd,J=5.3,10.9Hz),
- 3.72(1H,dd,J=3.6,10.9Hz), 4.1-4.3(1H,m), 6.19(1H,brd,J=7.3Hz),
- 6.63(1H,d,J=7.9Hz), 6.89(1H,dd,J=1.7,7.9Hz),
- 6.98(2H,t,J=8.6Hz), 7.0-7.2(3H,m)

Example 71

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-methylethyl)-N-methyl-3-methylbutanamide

R ₃	2		R ₃₃		R'				
Н		Me			Me				
Reaction	1								
Compound	Compound	CMPI	TEA	THF	Reaction	Column	Product	Amount	
T20:g	V4:g	g	ml	ml	time	sol.		g	
	_				hr				
1.62	2.22	2.25	2.46	36	16	EA:H	I-d4	2.74	
						1:1			
¹H-NMR (C	DCl ₂):δ	0.67,	0.72,	0.89	and 0.95	(total	6H,d,J=6	5.6-	
6.9Hz).	1.08 and	1.20(total	ЗН,	d,J=6.6-6	9Hz), 1	L.37 and		
1.39(tot	al 9H,s)	, 1.88	-2.02	(1H,	n), 2.60-2	2.90(2H	, m) ,		
2.89(3H.	2.89(3H,d,J=3.3Hz), 4.30-4.46(1H,m), 4.90-5.00(1H,m),								
5.07(2H.	5.07(2H,s), 6.48 and 6.59(total 1H,d,J=7.9Hz), 6.78-								
					30-7.40(5I				

0.00(11171117	, , , , , ,					
Reaction 2						
		MeOH ml	Reaction time hr	Column sol.	Product	Amount g
2.68	0.25	50	18	MC:M	I-e4	1.35

 1 H-NMR(CDCl₃): δ 0.68, 0.85, 0.95 and 0.99(total 6H,d,J=6.6-6.9Hz), 1.11 and 1.24(total 3H,d,J=6.6Hz), 1.88-2.04(1H,m), 2.58-2.70(2H,m), 2.83 and 2.91(total 3H,s), 3.56-3.64(1H,m), 3.95 and 4.99(total 1H,ddd,J=6.6,6.9,7.6Hz), 6.62 and 6.67(total 1H,d,J=7.9Hz), 6.77 and 6.88(total 1H,dd,J=1.7,7.9Hz), 6.98 and 7.02(total 1H,d,J=1.7Hz)

Example 71(Continued from Table D-54)

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-methylethyl)-N-methyl-3-methylbutanamide

Reaction	ı 3							
Compoun	Compoun	NaBH ₃ CN	AcOH	MeOH	Reaction	Column.	Product	Amount
đ	đ	mg	ml	ml	time	sol		g
I-e4:g	P5:g	i			hr			
1.26	1.58	521	0.45	40	1	EA:H	I-£4	1.52
ļ	}		3			1:4	}	

 1 H-NMR (CDCl₃): δ 0.74, 0.85 and 0.99(total 6H,d,J=6.6-6.9Hz), 1.16(3H,d,J=6.69Hz), 1.30, 1.41 and 1.44(total 18H,s), 1.50-1.70(3H,m), 2.36-2.90(7H,m), 3.52-3.68(1H,m), 4.54-4.64(1H,m), 5.22-5.38(1H,m), 6.51 and 6.60(total 1H,d,J=7.9Hz), 6.80-7.20(6H,m)

Reaction 7

MCGCTON 1						
Compound	TFA	CH ₂ Cl ₂	Reaction	Column. sol	Amount	HPLC
I-f4:mg	m1	ml.	time		mg	min
			hr			
330	2	3	0.5	CH:M:N	224	20.8
				10:1:0.1		

 $EI-MS(M^+):471$

 1 H-NMR(CDCl₃): δ 0.80, 0.91 and 0.92(total 6H,d,J=6.6Hz),

1.15(3H,d,J=6.9Hz), 1.38 and 1.41(total 9H,s), 1.64-

2.04(4H,m), 2.28-3.14(5H,m), 2.79 and 2.92(total 3H,s), 3.90-

4.02 and 5.10-5.24(total 1H,m), 6.62 and 6.65(total

1H,d,J=7.4-7.6Hz), 6.74-7.20(6H,m)

Example 72

Synthesis of 2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-

5 methylethyl)-N-methyl-3-methylbutanamide

	R ₃₂		R ₃₃		R'			
Me			Me		Me			
Reaction	4							,
CompoundI	нсно	NaBH ₃ CN	AcOH	MeOH	Reaction	Column	Product	Amount
- f4: g	ml	mg	ml	ml	time hr	sol.		mg
520	0.39	120	0.105	9	0.5	H:EA 2:1	I-g4	404
H-NMR(CD 6.6Hz), 1.39(tota 2.52(4H,r 4.42-4.54	L.17 a al 18H n), 2. 4(1H,n	and 1.21 I,s), 1.	(total 50-1.6 (3H,m)	3H,d 0(1H, , 2.7	,J=6.6-6 m), 1.58 1(3H,s),	.9Hz), (3H,s), 3.62-3	1.37 and 1.80- 3.78(1H,	ā
Reaction Compoun		FA C	H ₂ Cl ₂	Reac	tion Co	olumn	Amount	HPLC
COMBOULT		ml	ml	tir		sol.	mg	min
I-g4:mg	' <i>'</i>			h:	r			

 1 H-NMR(CDCl₃): δ 0.44, 0.79, 0.93 and 0.96(total 6H,d,J=6.6-6.9Hz), 1.13 and 1.20(total 3H,d,J=6.6-6.9Hz), 1.39 and 1.41(total 9H,s), 1.50-1.98(3H,m), 2.04-2.18(1H,m), 2.13 and 2.30(total 3H,s), 2.32-3.10(5H,m), 2.80 and 2.86(total 3H,s), 4.18-4.28 and 5.24-5.36(total 1H,m), 6.57 and 6.61(total 1H,d,J=7.9Hz), 6.72-7.18(6H,m)

Example 73

Synthesis of 2-(N-acetyl-2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-methylethyl)-N-methyl-3-methylbutanamide

R ₃ ;	2		R ₃₃		R'		
Ac			Me		Me		
Reaction	5						
Compound	Ac ₂ O	DMAP	pyridine	Reaction	Column	Product	Amount
I-f4:mg	mĺ	mg	ml	time	sol.		mg
				hr			
735	4	158	6	16.5	EA:H	I-h4	489
					1:2		

 1 H-NMR(CDCl₃): δ 0.13, 0.54, 0.58 and 0.86(total 6H,d,J=6.3-6.6Hz), 1.13 and 1.15(total 3H,d,J=6.3Hz), 1.30, 1.33, 1.36 and 1.42(total 18H,s), 1.69, 2.08, 2.13 and 2.31(total 6H,s), 2.02-2.84(5H,m), 2.91 and 2.96(total 3H,s), 3.14-3.40(2H,m), 3.82-4.04(1H,m), 4.70-5.28(2H,m), 6.88-7.30(7H,m)

Reaction 6						
Compound	NaOH	MeOH	Reaction	Column	Product	Amount
I-h4:mg	ml	ml	time	sol.		mg
			hr			
470	1	6	1	Not	I-i4	440
				purified		

 1 H-NMR(CDCl₃): δ 0.11, 0.12, 0.51 and 0.64(total 6H,d,J=5.9-6.6Hz), 1.09 and 1.13(total 3H,d,J=6.3-6.6Hz), 1.37, 1.38, 1.40 and 1.43(total 18H,s), 1.66 and 2.03(total 3H,s), 2.00-2.44(3H,m), 2.62-2.72(2H,m), 2.68 and 2.92(total 3H,s), 2.88-3.40(2H,m), 3.72-3.88(1H,m), 4.52-5.32(2H,m), 6.52-7.34(7H,m)

Example 73(Continued from Table D-57)

Synthesis of 2-(N-acetyl-2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-methylethyl)-N-methyl-3-methylbutanamide

Reaction	7					
Compound	TFA	CH ₂ Cl ₂	Reaction	Column	Amount	HPLC
I-14	ml	ml_	time	sol.	mg	min
mg			hr			
351	2	2	0.5	MC:M:H	233	27.7
				20:1:1		

 1 H-NMR(CDCl₃): δ 0.27, 0.69, 0.83 and 0.87(total 6H,d,J=6.3-6.9Hz), 1.11(3H,d,J=6.6Hz), 1.39 and 1.40(total 9H,s), 1.78 and 1.83(total 3H,s), 1.80-2.04(1H,m), 2.50-2.74(4H,m), 2.82 and 2.93(total 3H,s), 3.28-3.64(2H,m), 4.00-4.24(1H,m), 4.62 and 4.74(total 1H,s), 4.64-5.10(1H,m), 4.97 and 5.13(total 1H,d,J=10.6-10.9Hz), 6.60-7.18(7H,m)

Example 74

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-methylethyl)-3-methylbutanamide

R ₃	32	F	₹33			R	,			
Н			H			Me	э			
Reaction	1									
Compound	Compound	CMPI	TEA	THF	R	eaction	Col	umn.	Product	Amount
T21:g	V4: g	g	ml	ml		time	s	ol		g
	····				\perp	hr	<u> </u>			
3.000	4.350	4.400	6.00	80	1	5	H:E	A:MC	I-d5	4.000
							5:	1:1	<u> </u>	
Reaction	2									
Compound	Pd(OH)2:	MeOH	React:	ion	C	olumn.	Prod	uct	Amou	nt
I-d5:g	g	ml	time	e		sol			g	
	1		hr							
4.000	0.400	100	1		M	C:Me:H	I-6	≥5	1.200 an	i
					1	0:1:1		ĺ	0.500	
ĺ		1							(diastere	omers)
Reaction	3									
Compound	Compound	NaBH ₃ CN	AcOH	MeC	Н	Reaction	on Co	lumn	Product	Amoun
I-e5:g	P5:g	g	ml	ml	-	time	.	sol	. [t
						hr				g
1.200	1.100	0.490	0.30	30)	2	H:	EA:	M	0.730
}								C	I-£5	
]							3	:2:2	2	
0.480	0.628	0.207	0.3	10) 2		I	I:EA		0.620
								1:1		

Example 74(Continued from Table D-59)

Synthesis of 2-(2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-methylethyl)-3-methylbutanamide

Reaction	7					
Compound I-f5:g	TFA ml	CH ₂ Cl ₂ ml	Reaction time hr	Column. sol	Amount g	HPLC min
0.500	2.00	2	1	MC:M:H 10:1:1	0.320	20.7
0.113	1.00	2	1	CH:M:N 300:10:1	0.063	20.4

Compound of which yielded amount was 0. 320 g with HPLC retaintion time of 20.7 min.

 $EI-MS(M^+):457$

 $^{1}\text{H-NMR}(CDCl_{3})$: δ 0.73(3H, d, J=6.9Hz), 0.84(3H,d,J=6.9Hz),

1.08(3H,d, J=6.3Hz), 1.37(9H,s), 1.81~2.00(1H,m), 2.28-

2.80(9H,m), 2.90-3.00(1H,m), 4.21~4.38 (1H,m),

6.68(1H,d,J=8.2Hz), 6.83~7.18(6H,m)

Compound of which yielded amount was $0.063~\mathrm{g}$ with HPLC retention time of $20.4~\mathrm{min}$.

 $EI-MS(M^+):457$

 $^{1}\text{H-NMR(CDCl}_{3}):\delta$ 0.88 and 0.92(6H,d,J=6.9Hz),

1.14(3H,d,J=6.6Hz), 1.39(9H,s), 2.00-2.10(1H,m), 2.18-

2.44(3H,m), 2.84-2.96(4H,m), 3.63-3.75(1H,m), 4.22-

4.31(1H,m), 6.60(1H,d,J=6.8Hz), 6.86-7.26(6H, m)

Example 75

Synthesis of 2-((2-amino-3-(4-fluorophenyl)propyl)-N-methylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-

5 methylethyl)-3-methylbutanamide

R ₃₂				R_{33}			R	,		
Me				Н			M	е		
Reaction	4									
CompoundI	нсно	Na	BH ₃ CN	AcOH	МеОН	Read	ction	Column	Product	Amount
I-f5:g	ml		g	ml	ml	t:	ime	sol		g
	[1	nr			
0.400	0.32	0	.093	0.30	10		2	H:EA:M	1	0.300
						<u></u>	***************************************	3:1:1	I-g5	
0.500	0.38	0	.118	0.10	9		2	H:EA:M		0.320
	0	l				<u> </u>		2:1:1		l
Reaction	7									
Compound	TF	'A	CH ₂	Cl ₂	React	ion	Col	umn.	Amount	HPLC
I-g5:g	m.	1	m	1	tim	е	s	ol	g	min
					hr					
0.240	1.	00	1	ī	1		MC	:M:H	0.140	23.0
0.210	-	-					10	:1:1		
0.320	2.			4	1		СН	:M:N	0.226	22.5
0.320		•		-			300	:10:1		
Compound	of w	nic	h yie	elded	amour	ıt wa	as 0.	140 g v	vith HPLC	

Compound of which yielded amount was 0.140 g with HPLC retention time of 23.0 min.

 $EI-MS(M^{+}+1):472$

 $^{1}\text{H-NMR}(\text{CDCl}_{3})$: δ 0.82(3H, d, J=6.6Hz), 0.93(3H,d,J=6.6Hz), 1.29(3H,d, J=6.3Hz), 1.38(9H,s), 2.03-2.80(11H,m),

2.20(3H,s), 3.00-3.14(1H,m), 4.33~4.40(1H,m),

5.64(1H,d,J=7.7Hz), 6.68(1H,d,J=7.9Hz), 6.87(1H,d,J=7.9Hz), 6.95~7.18(5H,m)

Compound of which yielded amount was 0.226 g with HPLC retention time of 22.5 min.

 $EI-MS(M^+):471$

 $^{1}\text{H-NMR(CDCl}_{3}$): δ 0.68 and 0.95(6H, d, J=6.6Hz), 1.15(3H,d, J=6.6Hz), 1.37(9H,s), 2.01-2.17(1H,m), 2.21(3H,s), 2.32-2.49(4H,m), 2.64-2.72(3H,m), 3.08-3.10(1H,m), 4.22-

4.32(1H,q,J=2.5Hz), 5.60(1H,d,J=6.8Hz), 6.65 and

6.84(2H,d,J=7.9Hz), 6.94-7.00(3H,dd,J=6.3,11.2Hz), 7.13-

7.18(2H,m)

Example 76

Synthesis of 2-(N-acetyl-2-amino-3-(4-

fluorophenyl)propylamino)-N-(2-(3-tert-butyl-4-

5 hydroxyphenyl)-1-methylethyl)-3-methylbutanamide

R ₃₂	,			R ₃₃					R'			
Ac				Н					Me			
Reaction	5											
Compound	A	C ₂ O	DMAP	pyrid	ine	Rea	ctio	n	Column.	Pr	oduct	Amount
I-f5:g	I	nl	ml	ml	_		ime hr					g
0.630	3	.00	0.21	4.5	0			H:EA:MC 3:2:2		J	-h5	0.560
Reaction	6											
Compound	1	Na	OH	MeOH	Rea	icti	on	С	olumn.	Pro	oduct	Amount
I-h5:g		m	1	ml	t	ime hr	,		sol			g
0.540		2.	00	4.00		1		Not purified		I	-i5	0.430
Reaction	7											
Compound			FΑ	CH ₂ Cl ₂	Rea	acti	on	C	column.	Am	ount	HPLC
I- i 5:g		m	1	ml	1	time hr	3	sol			g	min
0.430		2.	00	2.00		1			MC:M:H 10:1:1	0	.185	22.5
EI-MS(M+	+1):50	00									
¹ H-NMR (CI	oc.	1,)	: δ	0.70(31	H, d	, J:	=5.6H	Ιz), 0.84(3H,	1, J=6	.6Hz),
1.05(3H.	đ.	J=	6.6H	z), 1.3	37 (9)	H,s), 1.	. 78	8-1.96(2	H,m),	
1.90(3H,	s)	, 2	.43-	2.74(41	H,m)	, 3	.07-3	3.:	32(2H,m)	, 3	.46-	
1.90(3H,s), 2.43-2.74(4H,m), 3.07-3.32(2H,m), 3.46- 3.56(1H,m), 3.59(1H,d,J=14.5Hz), 4.10-4.72(3H,m),												
4.71(2H,s), 6.18-6.22(2H,br), 6.63-6.78(2H,m), 6.95-												
7.18(5H,	m))										

Example 77

Synthesis of 2-((2-amino-3-(4-fluorophenyl)propyl)-.
N-methylamino)-N-(2-(3-tert-butyl-4-hydroxyphenyl)-1-

5 hydroxymethylethyl)-N,3-dimethylbutanamide

R _{3:}	2	\Box		R ₃₃						R'						
Me	}			Ме						CH ₂ C	H					
Reaction	1															
Compound	Compo	ınd	CMPI	T	EA	TF	IF	Rea	act	ion	Co	lumn	. P	roduct	A	mount
T23:g	V4:	J	g	n	nl	m	1	t	tin hr			sol				g
0.928	1.47	0	1.497	1.	64	3	9		15	,		:EA:M	1	I-d6	1	.170
Reaction	2	L														
Compound	l Pd	-C	Med	OH	R	ead	ct:	ion	T	Col	um	n.	Pro	oduct	Aı	noun
I-d6:g		3	m.	L		t:	ime	Э		s	01	1				t
		-]	hr									g
1.170	0.2	220	2	5			1			Ne	ot		I	-e6	0	.836
	į									puri	fi.	.ed				
Reaction	3													·		
CompoundI	Compo	und	NaBH ₃	CN	Acc	HC	Ме	ОН	Re	acti	0	Colu	nn.	Produc	t	Amou
I-e6:g	P5:	g	g		m.	1	m	1	n	tim hr	е	sol			nt g	
0.836	0.99	7	0.32	9	0.2	28	_2	5		1	MC:M: 15:1:					1.20
Reaction	4		·											1		
CompoundI	нсно	Na.	BH ₃ CN	Acc	H	Me	OH	Rea	act	ion	Co	lumn	. P	roduct	A	mount
I-f6:g	ml.		g	m]	L	m.	1	-	tin hı			sol				g
0.530	0.400	0	.119	0.1	LΟ	9)		2			H:ACT 2:1:		I-g6	C	.341
Reaction	7															
Compound	i TF	Α	CH ₂	Cl,		Re	ac	tic	n	Co	lu	mn.	A	mount]	HPLC
I-g6:g	m.	ı	m	_	1		ti	me		j	so	1		g		min
		ļ					h	r								
0.225	2.	5	3	3				1		CI	1:1	1:N	С	.100		24.3
		[,			300):	10:1				
EI-MS(M ⁺)	:471															
¹ H-NMR (CD	Cl ₃):	δο	.12,	0.7	79,	0.8	34	and	ā (0.98	(6	H,d,	J=6	.6-6.8	Hz	:),
1.20(9H,	-															
2.87(3H,																
6.52 and																
6.93-7.1																

Example 78

Synthesis of 2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N-(1-aminomethyl-2-(3-tert-butyl-4-

5 hydroxyphenyl)ethyl)-3-methylbutanamide

R_3	2		R ₃₃		R			
Me			Н		CH ₂	NH ₂		
Reaction	1							
Compound	Compound	CMPI	TEA	THF	Reaction	1	. Produc	t Amount
T22:g	V4:g	g	ml	ml.	time hr	sol		g
0.89	0.90	0.92	0.89	13	20	MC:M:N 100:3:0		1.40
3.10-3.3 5 11(2H	0(2H,m), brs), 5. d,J=7.9H	3.90- 20-5.4	-4.20 10(1H	(2H,ı,m),	.15(1H,m) m), 4.80- 6.35-6.5 , J=1.3,7	4.90(1H 50(1H,m)	,m),	
Reaction	2							
Compoun	d Pd-C	Me	он к	eact	ion Co	lumn.	Product	Amount
I-d7:g	g	m:	l	tim hr	_	sol		g
	0.40	4		16	MO	C:M:N	I-e7	0.89

 $^{1}\text{H-NMR}(\text{CDCl}_{3}):\delta \text{ 0.56(3H,d,J=6.9Hz),0.88(3H,d,J=6.9Hz),}$

1.38(9H,s), 1.43(9H,s), 2.10-2.30(1H,m), 2.65-2.85(2H,m),

3.15-3.35(3H,m), 4.15-4.30(1H,m), 4.95-5.05(1H,m),

6.62(1H,d,J=7.9Hz), 6.88(1H,dd,J=2.0,7.9Hz),

7.01(1H,d,J=2.0Hz), 7.43(1H,d,J=8.3Hz)

Example 78 (Continued from Table D-64)

Synthesis of 2-(2-amino-3-(4-fluorophenyl)-N-

methylpropylamino)-N-(1-aminomethyl-2-(3-tert-butyl-4-

5 hydroxyphenyl)ethyl)-3-methylbutanamide

Reaction 3												
Compound I	Compound	NaBH₃CN	AcOH	MeOH	Reaction	Column.	Product	Amount				
-e7:g	P5:g	g	ml	ml	time hr	sol		g				
1.02	1.07	0.28	0.15	26	1	EA:H 1:2	I-£7	1.41				

 1 H-NMR(CDCl₃): δ 0.70(3H,d,J=6.6Hz), 0.82(3H,d,J=6.6Hz),

- 1.37(9H,s), 1.39(9H,s), 1.44(9H,s), 1.80-2.00(1H,m), 2.20-
- 2.50(1H,m), 2.60-2.90(6H,m), 3.10-3.40(2H,m), 3.70-3.90(1H,m),
- 4.20-4.30(1H,m), 4.60-4.80(1H,m), 4.95-5.10(1H,m),
- 6.60(1H,d,J=7.9Hz), 6.85-7.30(6H,m)

Reaction 4

Compound I -f7:g	HCHO ml	NaBH₃CN g	AcOH ml	MeOH ml	Reaction time hr	Column. sol	Product	Amount g
0.75	0.48	0.14	0.13	11	1	EA:H 1:2	I-g7	0.76

 $^{1}H-NMR(CDCl_{3}):0.83(3H,d,J=6.6Hz), 0.93(3H,d,J=6.6Hz),$

- 1.36(9H,s), 1.41(18H,s), 1.90-3.10(10H,m), 3.10-3.30(2H,m),
- 3.60-3.80(1H,m), 4.40-4.60(1H,m), 4.60-4.80(1H,m), 4.90-
- 5.05(1H,m), 6.10-6.20(1H,m), 6.30-6.40(1H,m),
- 6.63(1H,d,J=7.9Hz), 6.85-7.25(6H,m)

Example 78 (Continued from Table D-55)

Synthesis of 2-(2-amino-3-(4-fluorophenyl)-N-methylpropylamino)-N-(1-aminomethyl-2-(3-tert-butyl-4-

5 hydroxyphenyl)ethyl)-3-methylbutanamide

Reaction	7					
Compound	TFA	CH ₂ Cl ₂	Reaction	Column.	Amount	HPLC
I-g7:g	ml	ml	time	sol	g	min
			hr			
0.70	10	0	1	MC:M:N	0.46	17.7
				100:10:1	1	

 $EI-MS(M^+):486$

 1 H-NMR(CDCl₃): δ 0.83(3H,d,J=6.6Hz), 0.95(3H,d,J=6.6Hz), 1.39(9H,s), 2.00-2.90(10H,m), 2.19(3H,s), 2.95-3.10(1H,m), 4.20-4.35(1H,m), 6.06(1H,d,J=8.3Hz), 6.62(1H,d,J=7.9Hz), 6.87(1H,dd,J=1.7,7.9Hz), 6.94-7.15(5H,m)

Examples 101-121 were carried out according to Scheme 3, Examples 121-131 were carried out according to Scheme 4, Example 132 was carried out according to Scheme 5, 10 Examples 133-135 were carried out according to Scheme 6, Example 136 was carried out according to Scheme 7, Example 137 was carried out according to Scheme 8, Examples 138-165 were carried out according to Scheme 9, Examples 166 and 176 were carried out according to Scheme 10, Examples 167-15 171 were carried out according to Scheme 11, Examples 172 and 173 were carried out according to Scheme 12, Example 174 was carried out according to Scheme 13, Example 175 was carried out according to the scheme 14, Examples 177-179 were carried out according to Scheme 15, Example 180 was 20 carried out according to Scheme 16, Examples 181 and 182 were carried out according to Scheme 17 and Example 183 was

5

carried out according to Scheme 18.

The processes of synthesizing Intermediates in Schemes 3-8 are shown below as Reference Examples. In addition, structural formulae of Intermediates of Examples 101-137 are shown in Table C-2.

Table C-2

Intermediates of Examples 101-137

R₃₁, N OH

5 T1: R33=H, R34=H

V1: R32=Me

P1: PG=Boc, R31=H

T3: R33=H, R34=Et

V2: R32=Et

P2: PG=Boc, R31=Me

T6: R33=Me, R34=Et

P3: PG=Z, R31=Et

T9: R33=Et, R34=Et

P4: PG=Z, R31=H

P5: PG=Z, R31=Me

T10: R33=H, R34=n-Pr

Me O

T11: R33=H, R34=i-Pr

V3

T12: R33=Me, R34=c-Pr

T16: R33=n-Pr, R34=H

T13

15

10

Т14

T15

15

25

Reference Example 16

Synthesis of Intermediates T3 and T9

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediates T3 and T9

The process of synthesizing Intermediates T3 and T9

10 is explained below.

Reaction step 1) Synthesis of Intermediate T3

To a solution of Tyr(3-tBu)-OMe in methanol, a 70% aqueous ethylamine solution was added and stirred at room temperature. The reaction mixture was concentrated under reduced pressure, extracted with dichloromethane, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving Compound T3.

20 Reaction step 2) Synthesis of T9

To a solution of Compound T3 and acetaldehyde in methanol, NaBH3CN was slowly added dropwise. The reaction was stopped by the addition of an aqueous NaHCO3 solution and the reaction mixture was concentrated under reduced pressure. The resultant was extracted with dichloromethane,

dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving Compound T9.

The result is shown in Table E-1. In Table E-1, indications "Reaction 1" and "Reaction 2" means Reaction step 1 and Reaction step 2, "Reaction time" means stirring time, "Column sol." means the eluting solvent for silica gel column chromatography, "Product" means the obtained product and "Amount" means the yielded amount of the product. The same manner is applied to the subsequent Tables.

Table E-1

15 Intermediates T3 (Tyr(3-tBu)-NHEt) and T9 (N-Et-Tyr(3-tBu)-NHEt)

Tyr(3-tBu)-OMe (g)	Ethyl amine (ml)	MeOH (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
14.000	168.00	56.00	18	nHx:EA=1:1	T3	12.810
Reaction2	· · · · · · · · · · · · · · · · · · ·		!		<u> </u>	
Compound T3(g)	CH₃CHO (ml)	NaBH₃CN (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)
12.810	2.98	3.350	100.00	0.5	MC:MeOH =20:1	8.130

25

Reference Example 17

Synthesis of Intermediates T6, T10, T11, T12 and T13

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediates T6, T10, T11, T12 and T13

 R_{33} and R_{34} in the above reaction scheme indicate substituents shown in Tables E-2 to E-6.

The process of synthesizing Intermediates is explained below.

Reaction step 1)

To solutions of Z-N-Me-Tyr(O-Bn,3-tBu)-OH and ethyl chloroformate in THF, NMM was added. The mixture was stirred at room temperature and mixed with solutions of alkyl amines in THF. The mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium and filtered. The filtrates were concentrated under reduced pressure and the thus obtained residues were subjected to silica gel column chromatography, giving Compounds I-a(2) to I-a(6).

Reaction step 2)

To solutions of Compounds I-a(2) to I-a(6) in

methanol, palladium hydroxide/carbon was added and stirred at room temperature in a hydrogen atmosphere. After filtering reaction mixtures, filtrates were concentrated under reduced pressure and the thus obtained residues were subjected to silica gel column chromatography, giving Compounds T6, T10, T11, T12 and T13. The results are shown in Tables E-2 to E-6.

Table E-2

Intermediate T6

N-Me-Tyr(3-tBu)-NHEt

	R33					R34		
	Me					Et		
Reaction 1								
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	Ethylamine (ml)	CICO ₂ Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
11.300	118.80	3.40	3.90	230.00	6	nHx:EA =2:1	I-a(2)	8.400
Reaction 2								
Compound $Pd(CH)_2$ MeCH Resolution $Pd(CH)_2$ (ml)				on time hr)	Colum	n sol.	Amount (g)	
6.200	0.600	120.00		3	MC:MeO	H =20:1	3.600	

5

Table E-3

Intermediate T10

Tyr(3-tBu)-NH-n-Pr

	R33					R34		
	Н	<u></u>				n-Pr		
Reaction 1								
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	n- Propylamine (ml)	ClCO ₂ Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.100	1.40	0.57	0.66	30.00	2	nHx:EA:MC =1:3:1	I-a(3)	1.150
Reaction 2	h							
Compound I-a(3) (g)	Pd(OH) ₂ (g)	MeCH (ml.)		cion time (hr)	Colum	n sol.	Amo (g	unt g)
1.150	0.200	30.00	2		MC:MeC	H =20:1	0.580	

10

Table E-4

Intermediate T11

Tyr(3-tBu)-NH-i-Pr

	R33					R34				
	H			i-Pr						
Reaction1										
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	i-Propyl amine (ml)	CICO ₂ Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)		
1.300	0.72	0.54	0.46	15.00	0.6	nHx:EA=2:1	I-a(4)	1.200		
Reaction2										
Compound I-a(4)(g)	Pd(OH) ₂ (g)	MeOH (ml)		ion time hr)	Colu	mn sol.		ount g)		
1.200	0.500	30.00	3.5		EA:Me	OH=20:1	0.660			

5

Table E-5

Intermediate T12

N-Me-Tyr(3-tBu)-NH-c-Pr

	R33					R34			
	Me			c-Pr					
Reaction 1									
Z-N-Me-Tyr(O- Bn,3-tBu)-CH (g)	c-Propyl- amine (ml)	CICOÆT (ml.)	NMM (ml.)	71 4F (mL)	Reaction time (hr)	sol. Colum	Product	Amount (g)	
1.000	1.20	0.46	0.40	30.00	2	nHx:FA:MC =1:3:1	I-a(5)	1.050	
Reaction 2							,		
Compand I-a(5) (g)	Pd(CH) ₂ (g)	MeCH (ml.)	Reactio (h	n time r)	Colum	n sol.	1	unt g)	
1.050	0.200	30.00		2	MC:MECI	H =20:1	0.	500	

10

Intermediate P5 was synthesized according to a similar method described in Reference Example 7.

Table E-6
Intermediate T13

(2S)-3-[3-(tert-butyl)-4-hydroxyphenyl]-2-(methylamino)-1-morpholin-4-ylpropan-1-one

	R33			R34					
	Me		:	morpholine					
Reaction 1									
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	morpholine (g)	ClCO ₂ Et (ml)	NMM (mL)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.200	0.660	0.27	0.42	15.00	20	nHx:EA =1:1	I-a(6)	1.200	
Reaction 2	1								
Compound I-a(6) (g)	Pd(OH) ₂ (g)	MeOH (ml)		on time hr)	Column	sol.		ount g)	
1.200	0.300	20.00		20 MC:MeOH =20:1		I =20:1	0.	600	

5

10

20

Reference Example 18

Synthesis of Intermediate T14

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediate T14

3-tBu)-OH

The process of synthesizing Intermediate T14 is explained below.

Reaction step 1)

Compound I-a(7) was obtained according to the method described in Reaction step 1 of Reference Example 17.

Reaction step 2)

To a solution of Compound I-a(7) in dichloromethane,

TFA was added under cooling and stirred at room temperature.

The reaction mixture was concentrated under reduced

pressure, extracted with dichloromethane, washed with

saturated brine, dried over anhydrous magnesium sulfate and

filtered. The filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving Compound I-b(7). Reaction step 3)

To a solution of Compound I-b(7) and ClSO₂Me in dichloromethane, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered.

The filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving Compound I-c(7).

Reaction step 4)

Compound T14 was obtained according to the method

15 described in Reaction step 2 of Reference Example 17.

Result is shown in Table E-7.

Table E-7

Intermediate T14

(2S)-3-[3-(tert-butyl)-4-hydroxyphenyl]-2-(methylamino)-1-

[4-(methylsulfonyl)piperazineyl]propane-1-one

Reaction 1								
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	Boc- piperazine (g)	ClCO₂Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.500	0.700	0.36	0.42	15.00	20	nHx:EA=1:1	I-a(7)	1.900
Reaction 2								
Compound I-a(7) (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	n sol.	Product		unt g)
1.900	5.00	20.00	4	MC:MeC)H=20:1	I-b(7)	1.	400
Reaction 3								
Compound I-b(7) (g)	ClSO ₂ Me (ml)	TEA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product		unt g)
1.400	0.46	0.82	20.00	2	MC:MeOH =20:1	I-c(7)	1.	500
Reaction 4								
Compound I-c(7) (g)	Pd(OH) ₂ (g)	MeOH (ml)		on time r)	Colum	m sol.	1	ount g)
1.500	0.300	20.00	2	20	MC:Me	OH =20:1	0.	900

10

15

20

Reference Example 19

Synthesis of Intermediate T15

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediate T15

The process of synthesizing Intermediate T14 is explained below.

Reaction step 1)

To a solution of Compound I-b(7) and ethyl 2-bromoacetate in dichloromethane, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving Compound I-a(8).

Reaction step 2)

Compound T15 was obtained according to the method described in Reaction step 2 of Reference Example 17.

Result is shown in Table E-8.

Table E-8

Intermediate T15

Ethyl 2-(4-{(2S)-3-[3-(tert-butyl)-4-hydroxyphenyl]-2-(methylamino)propanoyl}piperazinyl)acetate

Compound I-b(7) (g)	Ethyl bromo acetate(ml)	TEA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.970	0.30	0.40	17.00	4	nHx:EA=3:1	I-a(8)	1.000
Reaction2					······································	•	
Compound	Pd(OH)	2	N	1eOH	Reaction	time	Amount
I-a(8) (g)	(g)			(ml)	(hr))	(g)
1.000	0.300			16.00 1 0.6		0.643	

Reference Example 20

Synthesis of Intermediate T16

The synthesis scheme is shown below.

10

5

Synthesis scheme of Intermediate T16

15

20

The process of synthesizing Intermediate T16 is explained below.

To a solution of Compound T1 in methanol, propional dehyde was added, stirred at room temperature for 30 min., mixed with NaBH $_3$ CN and stirred for 2 hours. The reaction mixture was mixed with a saturated aqueous NH $_4$ Cl solution, extracted with ethyl acetate, washed with

saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving Compound T16.

5 Result is shown in Table E-9.

Table E-9

Intermediate T16

N-Pr-Tyr(3-tBu)-NH₂

10

Reaction						
Compound T1 (g)	CH ₃ CH ₂ CHO (ml)	NaBH ₃ CN (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)
4.000	1.34	1.170	70.00	2 .	nHx:EA=1:2	1.580

Scheme 3 shows the synthesis process of Examples 101-121.

15

20

Scheme 3: Synthesis process of Examples 101-121

I-c101-121

 $R_{\rm 31}\text{, }R_{\rm 32}\text{, }R_{\rm 33}$ and $R_{\rm 34}$ in the above reaction scheme

20

25

indicate substituents shown in Tables D-101 to D-121.

The synthesis process in scheme 3 is explained below. Reaction step 1)

To solutions of Compounds T, Compounds V and CMPI in THF, TEA was added under cooling and stirred at room temperature. The mixtures were mixed with water, extracted with ethyl acetate, washed with a saturated aqueous NaHCO₃ solution, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure and the thus obtained residues were subjected to silica gel column chromatography, giving Compounds I-a101 to I-a121.

15 Reaction step 2)

To solutions of Compounds I-a101 to I-a121 in methanol, Pd/C was added and stirred at room temperature in a hydrogen atmosphere. After filtering off the Pd/C, the filtrates were concentrated under reduced pressure and the thus obtained residues were subjected to silica gel column chromatography, giving Compounds I-b101 to I-b121.

Reaction step 3)

To solutions of Compounds I-b101 to I-b121, P1 to P5 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered.

The filtrates were concentrated under reduced pressure and the thus obtained residues were subjected to silica gel column chromatography, giving Compounds I-c101 to I-c121.

5 Reaction step 4-a)

To solutions of Compounds I-c101 to I-c121 in dichloromethane, TFA was added under cooling and stirred at room temperature. The reaction mixtures were neutralized by the addition of a saturated aqueous NaHCO₃ solution, extracted with dichloromethane, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving the titled compounds.

15

20

10

Reaction step 4-b)

To solutions of Compounds I-c101 to I-c121 in methanol, Pd/C or $Pd(OH)_2$ was added and stirred in a hydrogen atmosphere at room temperature. After filtering off the Pd/C or $Pd(OH)_2$, the filtrates were concentrated under reduced pressure and the thus obtained residues were subjected to silica gel column chromatography, giving the titled compounds.

Examples conducted according to Scheme 3 are shown in 25 Tables D-101 to D-121.

Example 101

Synthesis of Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt

R	31		R32	R	33		R34	
	H		Me	1	H		Et	
Reaction1								
Compound T3(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
3.000	3.000	4.350	3.30	60.00	20	nHx:EA =1:1	I-a101	5.220
Reaction2				I				
Compound I-a101(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Pro	duct		ount g)
4.500	0.450	45.00	20	MC:MeOH =20:1	I-b	101	2.2	200
Reaction3	, , , , , , , , , , , , , , , , , , , ,							
Compound I-b101(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.500	0.600	0.50	15.00	20	nHx:EA =1:1	I-c101	0.830
Reaction4-b	.l		<u> </u>	l		<u> </u>		l
Compound I-c101(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)		PLC nin
0.830	0.100	10.00	20	MC:Me(OH =10:1	0.170	18	.42

1H-NMR(CDCl₃): δ 0.59-1.05(9H,m), 1.37(9H, s), 2.25-2.39(1H, m), 2.58-3.24(9H, m),3.58-3.97(2H,m), 4.44-4.62(1H,m), 5.59-5.77(1H,m), 6.60-7.72(8H,m), 9.03 and 9.06(1H, d, J=7.9Hz)

Example 102

N-Me-Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt

R	31		R32	P	33		R34	
M	le		Me		H		Et	
Reaction1								
Compound T3(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
3.000	3.000	4.350	3.30	60.00	20	nHx:EA =1:1	I-a102	5,220
Reaction2						·		
Compound I-a102(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
4.500	0.450	45.00	20	MC:Me	OH =20:1	I-b102	2.2	:00
Reaction3								
Compound I-b102(g)	Compound P2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.000	1.310	0.72	20.00	20	nHx:EA =1:1	I-c102	1.560
Reaction4-a								
Compound I-c102(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		LC in
1.500	1.70	10.00	4	MC:MeOH =10:1		0.28	18.73	

ESI-MS(M⁺+1): 557

1H-NMR(CDCl₃): (two rotamers) 8 0.57, 0.79, 0.92 and 1.00(9H, d and m, J=6.3-6.8Hz), 1.34and 1.38(9H, s), 2.25, 2.40 and 2.58, 2.65(6H, s), 2.05-2.40(1H, m), 2.67-3.25(6H, m), 3.55 nad 3.68(1H,m), 3.84, 4.40 and 4.55(2H, d and m, J=10.9Hz), 5.56 and 5.72(1H,m), 6.65-7.17(8H,m), 9.15 and 9.18 (1H, d, J=8.2Hz)

Table D-103

Example 103

N-Et-Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt

R3	1		R32	R	33		R34	
Е	i		Me		H		Et	
Reaction1								
Compound T3(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
3.000	3.000	4.350	3.30	60.00	20	nHx:EA=1:1	I-a103	5.220
Reaction2			· · · · · · · · · · · · · · · · · · ·		·			
Compound I-a103(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	nn sol.	Product		ount g)
4.500	0.450	45.00	20	MC:Me0	OH =20:1	I-b103	2.2	200
Reaction3	·		<u></u>					
Compound I-b103(g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.800	0.670	1.050	0.57	20.00	20	nHx:EA =1:1	I-c103	0.800
Reaction4-b	•							
Compound I-c103(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		LC in
0.800	0.100	10.00	20	MC:MeOH =10:1		0.220	19.27	

ESI-MS(M+1): 57

1H-NMR(CDCl₃): (two rotamers) δ 0.42-1.20(12H,m), 1.35 and 1.39(9H, s), 2.05-2.26(1H, m), 2.31-2.54(1H, m),2.40 and 2.50(3H,s), 2.62-3.26(6H,m), 3.62-3.80(1H,m),4.34-4.58(1H,m), 5.79-5.87(1H, m), 6.60-7.04(7H, m)

Example 104

Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt

R31		R32		R2	33	R34			
Н		Me		Me		Et			
Reaction1									
Compound T6 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF Reaction time (ml) (hr)		Column sol.	Product	Amount (g)	
2.500	3.570	3,440	2.50	90.00	8	nHx:EA =1:2	I-a104	4.200	
Reaction2									
Compound I-a104 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	ın sol.	Product	Amount (g)		
4.200	0.400	75.00	5	MC:MeOH =20:1		I-b104	3.900		
Reaction3									
Compound I-b104(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1,300	1,600	1.300	0.90	30.00	18	nHx:EA =1:2	I-c104	0.920	
Reaction4-b	<u> </u>								
Compound I-c104(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min		
0.920	0.100	10.00	3	MC:MeOH =20:1		0.210	19.57		

ESI-MS(M+1): 557

1H-NMR(CDCl₃): (two rotamers) δ 0.56, 0.77, 0.79 and 0.92(6H, d, J=6.4-6.7Hz), 1.01-1.12(3H, m), 1.38 and 1.33(9H, s), 2.19-2.68(2H, m), 2.52 and 2.83(3H, s), 2.68-3.42(4H, m), 3.00 and 3.02(3H, s), 3.65-3.87(1H, m), 4.90-5.11 and 5.35-5.47(2H, m), 5.95-6.08(1H, m), 6.36 and 6.62(1H, d, J=7.8-7.9Hz), 6.68-7.16(6H, m)

Table D-105

Example 105

N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt

R31		R32		R33		R34		
M	le e	Me		Me		Et		
Reaction1								
Compound T6 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
2.500	3.570	3.440	2.50	90.00	8	nHx:EA =1:2	I-a105	4.200
Reaction2								
Compound I-a105 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	nn sol.	Product	oduct Amount (g)	
4.200	0.400	75.00	5	MC:MeOH =20:1		I-b105	3.900	
Reaction3			-					
Compound I-b105 (g)	Compound P2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.300	1.480	1.300	0.90	30.00	18	nHx:EA =1:2	I-c105	1.020
Reaction4-a								
Compound I-c105 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol. Amount (g)		HPLC min		
1.020	2.30	23.00	6	MC:MeOH =20:1		0.200	20.213	

ESI-MS(M+1): 571

1H-NMR(CDCl₃): (two rotamers) & 0.63, 0.80, 0.81 and 0.92(6H, d, J=6.4-6.9Hz), 1.06(3H, t, J=7.3Hz), 1.34 and 1.39(9H, s), 2.13-2.33(1H, m), 2.22 and 2.25(3H, s), 2.53 and 2.82(3H s), 2.54(1H, s), 2.60-2.70(2H, m), 2.74-2.90(1H, m), 2.95 and 3.06(3H, s),3.45 and 3.59(1H, t, J=5-6.8Hz),5.07 and 5.15(1H, d, J=10.6-10.9Hz), 5.05 and 5.38(1H, dd, J=8.1-9.3, 6.1-6.8Hz), 6.0(1H, t, J=5.0Hz),6.40 and 6.61(1H, d, J=8.0Hz), 6.75(3H, m), 7.02-7.18(3H, m)

Example 106

N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt

R31		R32		R	33	R34		
E	it	Me		Me		Et		
Reaction1								
Compound T6 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
2.500	3.570	3.440	2.50	90.00	8	nHx:EA =1:2	I-a106	4.200
Reaction2								
Compound I-a106 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
4.200 .	0.400	75.00	5	MC:MeOH= 20:1		I-b106	3.900	
Reaction3								
Compound I-b106 (g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.300	1.740	1.300	0.90	30.00	15	nHx:EA =1:2	I-c106	1.050
Reaction4-b								
Compound I-c106 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
1.050	0.100	14.00	3	MC:MeOH= 20:1		0.200	20.950	
ESI-MS(M+1): 585							-

1H-NMR(CDCl₃): (two rotamers) δ 0.65, 0.79, 0.8 and 0.91(6H, d, J=6.0Hz), 0.97-1.08(6H, m), 1.34 and 1.39(9H, s), 2.21-2.38(2H, m), 2.46-2.59(2H, m), 2.61-2.9(2H, m),2.5 and 2.75(3H, s),2.96 and 3.06(3H, s), 3.17-3.46(2H, m), 3.55 and 3.68(1H, t, J=7.0Hz), 5.01-5.36(2H, m), 5.97-6.0(1H, m), 6.41 and 6.59(1H, d, J=8.0Hz), 6.79-6.98(3H, m), 7.04-7.17(3H, m)

Example 107

Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt

R31		R	R32		33		R34	
I	I	Me		Et		Et		
Reaction1								
Compound T9(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF Reaction time (ml) (hr)		Column sol.	Product	Amount (g)
6.000	16.300	26.200	14.30	30.00	15	nHx:EA=2:1	I-a107	3.030
Reaction2	·		·					
Compound I-a107(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol. Product		Amount (g)		
8.000	1.200	50.00	15	MC:MeOH = 10:1		I-b107	5.000	
Reaction3								
Compound I-b107(g)	Compound P4(g)	CMPI (g)	TEA (ml)	THF (mi)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.800	0.815	0.606	0.40	30.00	18	nHx:EA=1:2	I-c107	1.040
Reaction4-b								
Compound I-c107(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
1.047	0.156	20.00	3.5	MC:MeOH =20:1		0.252	21.09	

ESI-MS(M+1):571

1H-NMR(CDCl₃):(two rotamers) δ 0.74, 0.80 and 0.92(6H, d, J=7.0-7.9Hz), 0.97-1.20(6H, m), 1.32 and 1.36(9H, s), 2.20-3.13(5H, m), 2.74 and 3.05(3H, s), 3.15-3.35(3H, m), 3.35-3.95(3H, m), 4.92-5.10(2H, m), 6.44 and 6.73(1H, d, J=8.8Hz), 6.50(3/5H, m), 6.75(3/5H, dd, J=7.9, 1.7Hz), 6.90-7.29(29/5H, m)

Example 108

N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt

R31		R32		R33		R34		
M	[e	Me		Et		Et		
Reaction1								
Compound T9(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
6.000	16.300	26.200	14.30	30.00	15	nHx:EA=2:1	I-a108	3.030
Reaction2					•			
Compound I-a108(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
8.000	1.200	50.00	15.00	MC:MeOH = 10:1		I-b108	5.000	
Reaction3		·						
Compound I-b108(g)	Compound P2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.022	1.130	0.966	0.70	20.00	19	nHx:EA=1:2	I-c108	1.590
Reaction4-a					•			
Compound I-c108(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
1.590	1.80	10.00	3	MC:MeOH =20:1		0.251	21.54	

ESI-MS(M+1):585

1H-NMR(CDCl₃):(two rotamers) δ 0.78-0.90 and 0.95(6H, m and d, J=7.9Hz), 0.97-1.10(3H, m), 1.10 and 1.22(3H, m),1.31 and 1.39(9H, s), 2.21-2.25(3H, s), 2.19-2.40(1H, m),2.55-3.35(7H, m), 2.69 and 2.72(3H, s), 3.42-3.75(3H, m),4.95-5.10(1H, m),5.12(1H, d, J=10.6Hz),6.44 and 6.58(1H, d, J=8.8Hz), 6.50(3/5H,m), 6.79(3/5H, dd, J=8.1, 2.5Hz), 6.88-7.00(12/5H, m), 7.05-7.20(12/5H, m) 7.27(1H, brs)

Example 109

N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt

R31		R32		R33		R34		
E	<u>I</u> t	Me		Et		Et		
Reaction1								
Compound T9(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
6.000	16.300	26,200	14.30	30.00 15		nHx:EA=2:1	I-a109	3.030
Reaction2			J					
Compound I-a109(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
8.000	1.200	50.00	15	MC:MeOH = 10:1		I-b109	5.000	
Reaction3	<u> </u>		_1					
Compound I-b109(g)	Compound P3(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.800	0.819	0.606	0.40	16.00	18	nHx:EA=1:2	I-c109	1.000
Reaction4-b		-wawn-			•			
Compound I-c109(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
1.000	0.150	20.00	15	MC:MeOH =20:1		0.127	21.920	

ESI-MS(M+1):599

1H-NMR(CDCl₃):(two rotamers) δ 0.78-0.88 and 0.92(6H, m and d, J=7.4Hz), 0.98-1.18(6H, m), 1.20(3H, q, J=6.4Hz), 1.34 and 1.38(9H, s), 2.20-2.43(2H, m),2.43-3.35(8H, m),2.68 and 2.80(3H, s), 3.42-3.78(3H, m), 4.90-5.12(1H, m), 5.12(1H, d, J=10.6Hz), 6.42 and 6.58(1H, d, J=15.3Hz), 6.50(1/3H,m), 6.80(2/3H, dd, J=8.8, 2.1Hz), 6.85-7.00(3H, m),7.05-7.17(10/3H, m),7.30(2/3H, brs)

Example 110

Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHEt

R	31	F	32	R	33		R34	
I	H		Et		H		Et	
Reaction1								
Compound T3 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
6.000	6.240	8.700	6.60	120.00	20	nHx:EA=1:1	I-a110	9.540
Reaction2					<u> </u>			
Compound I-a110 (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Product	Product Amount (g)	
6.000	0.600	60.00	20	MC:Me0	OH =20:1	I-b110	3.570	
Reaction3								
Compound I-b110(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.200	1.500	2.000	1.00	20.00	20	nHx:EA =1:1	I-c110	0.400
Reaction4-a								
Compound I-c110(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)	HP m	LC in
0.400	0.60	3.00	4	MC:Me	OH =20:1	0.200	20.	.25
ESI-MS(M+1): 557							

1H-NMR(CDCl₃): δ 0.62-1.16(12H,m), 1.38(9H, s), 2.25-2.45(1H, m), 2.62-3.86(9H, m),3.92 and 3.95(1H, d, J=10.0Hz), 4.44-5.56(1H, m), 5.67-5.90(1H, m), 6.60-7.20(7H, m),9.05 and 9.08(1H, d, J=7.8Hz)

Table D-111

N-Me-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHEt

R.	31	I	32	F	33		R34	
M	le		Et		H		Et	
Reaction1								
Compound T3 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
6.000	6.240	8.700	6.60	120.00	20	nHx:EA =1:1	I-a111	9.540
Reaction2								
Compound I-a111 (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product	,	ount g)
6.000	0.600	60.00	20	MC:Me	OH =20:1	I-b111	3.5	570
Reaction3								
Compound I-b111(g)	Compound P2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.600	2.000	1.00	20.00	20	nHx:EA =1:1	I-c111	0.400
Reaction4-a								
Compound I-c111(g)	TFA (ml)	MC (ml)	Reaction time (hr)	ne Column sol. Amount (g)		I	LC nin	
0.400	0.60	3.00	4	MC:Me	:OH =20:1	0.300	20.77	
ESI-MS(M+1): 571							

1H-NMR(CDCl₃): (two rotamers) δ 0.67 and 0.80-1.16(12H, d and m, J=6.8Hz), 1.37(9H, s), 2.30(3H, s), 2.35-2.39(1H, m), 2.79-3.22(8H, m), 3.53-3.59(1H, m), 4.04-4.15(1H, m), 4.39-4.46(1H, m), 5.73-5.77(1H, m), 6.61 and 6.64(1H, d, J=8.2Hz), 6.84-7.19(6H, m)

Example 112

N-Et -Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHEt

31	F	32	P	33		R34	
<u>ĝt</u>		Et		H		Et	
Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
6.240	8.700	6.60	120.00	20	nHx:EA =1:1	I-a112	9.540
				·			····
Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product	Amount (g)	
0.600	60.00	20	МС:Ме	OH =20:1	I-b112	3.5	570
Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.585	2.000	1.00	20.00	20	nHx:EA =1:1	I-c112	0.550
Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HPLC min	
0.050	4.00	20	MC:Me	OH =30:1	0.098	21.090	
	Compound V2 (g) 6.240 Pd(OH) ₂ (g) 0.600 Compound P3 (g) 1.585 Pd(OH) ₂ (g)	Compound CMPI V2 (g) (g) 6.240 8.700 Pd(OH) ₂ MeOH (ml) 0.600 60.00 Compound CMPI P3 (g) (g) (g) 1.585 2.000 Pd(OH) ₂ MeOH (ml)	Compound CMPI TEA V2 (g) (g) (ml) 6.240 8.700 6.60 Pd(OH)2 MeOH Reaction time (hr) 0.600 60.00 20 Compound CMPI TEA P3 (g) (g) (ml) 1.585 2.000 1.00 Pd(OH)2 MeOH Reaction time (hr) Reaction time (hr) CMPI Compound V2 (g) CMPI (g) TEA (ml) THF (ml) V2 (g) (g) (ml) (ml) 6.240 8.700 6.60 120.00 Pd(OH)2 (g) MeOH (ml) Reaction time (hr) Column 0.600 60.00 20 MC:Me Compound P3 (g) (g) (ml) (ml) (ml) 1.585 2.000 1.00 20.00 Pd(OH)2 (g) MeOH (ml) Reaction time (hr) Column	Compound CMPI TEA THF Reaction time V2 (g) (g) (ml) (ml) (hr) 6.240 8.700 6.60 120.00 20 Pd(OH)2	Compound CMPI TEA THF Reaction time Column sol.	Compound CMPI TEA THF Reaction time Column sol. Product	

1H-NMR(CDCl₃): (two rotamers) δ 0.48 and 0.71-1.31(15H, d and m, J=7.4Hz), 1.37(9H, s), 2.20-2.61(2H, m), 2.71-3.34(10H, m), 3.60-3.82(2H, m), 4.40-4.56(1H, m), 5.80-5.98(1H, m), 6.67-7.01(3H, m), 7.02-7.16(3H, m), 7.48 and 7.50(1H, d, J=6.8Hz), 8.73 and 8.76(1H,d, J=7.9Hz)

Example 113

Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHEt

	R32		R33		R34		
1		Bt .	M	[e		Et	
Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
8.720	5.880	4.20	150.00	20	nHx:EA =1:2	I-a113	5.500
Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	an sol.	Product Amount (g)		
0.500	100.00	2	MC:Me(OH =20:1	I-b113	3.200	
Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.850	0.760	0.60	20.00	18	nHx:EA =1:2	I-c113	0.320
TFA (ml)	MC (ml)	Reaction time (hr)	Column soi. Amount HPL				
0.70	7.40	6	MC:Me	1C:MeOH =20:1 0.020 20.26		260	
	Compound V2 (g) 8.720 Pd/C (g) 0.500 Compound P1 (g) 0.850 TFA (ml)	Compound CMPI V2 (g) (g) 8.720 5.880 Pd/C MeOH (ml) 0.500 100.00 Compound CMPI P1 (g) (g) 0.850 0.760 TFA MC (ml) (ml)	Compound V2 (g) CMPI (g) TEA (ml) 8.720 5.880 4.20 Pd/C (g) MeOH (ml) Reaction time (hr) 0.500 100.00 2 Compound P1 (g) TEA (ml) (ml) 0.850 0.760 0.60 TFA (ml) MC (ml) Reaction time (hr) (ml) (ml) time (hr)	Compound CMPI TEA THF (ml) 8.720 5.880 4.20 150.00 Pd/C MeOH Reaction (ml) time (hr) 0.500 100.00 2 MC:MeC Compound CMPI TEA THF (ml) (ml) P1 (g) (g) (ml) (ml) 0.850 0.760 0.60 20.00 TFA MC Reaction Column (ml) (ml) (ml) (ml) time (hr) Column (ml) (ml)	Compound CMPI TEA THF Reaction time (hr)	Compound V2 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. 8.720 5.880 4.20 150.00 20 nHx:EA =1:2 Pd/C (g) MeOH (ml) Reaction time (hr) Column sol. Product 0.500 100.00 2 MC:MeOH =20:1 I-b113 Compound P1 (g) (g) (ml) (ml) time (hr) Column sol. 0.850 0.760 0.60 20.00 18 nHx:EA =1:2 TFA (ml) MC (ml) Reaction time (hr) Column sol. (g)	Compound V2 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. Product 8.720 5.880 4.20 150.00 20 nHx:EA =1:2 I-a113 Pd/C (g) MeOH (ml) Reaction time (hr) Column sol. Product Amage (g) 0.500 100.00 2 MC:MeOH =20:1 I-b113 3.2 Compound P1 (g) TEA (ml) THF (ml) Reaction (ml) Column sol. Product 0.850 0.760 0.60 20.00 18 nHx:EA =1:2 I-c113 TFA (ml) MC (ml) Reaction (ml) Column sol. Amount (g) HP (ml)

1H-NMR(CDCl₃): (two rotamers) δ 0.36-0.96(8H,m), 0.98-1.10(4H,m), 1.35 and 1.39(9H,s), 2.28-2.41(1H,m), 2.84 and 3.04(3H,s), 2.55-3.39(8H,m), 3.68-3.78(1H,m), 4.90-5.32(2H,m) 6.45 and 6.65(1H, d, J=6.0Hz),6.77-7.23(6H,m)

Example 114

N-Me-Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHEt

RS	31	R	.32	R	33		R34		
М	[e		Et	M	e		Et		
Reaction1						,			
CompoundT6 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
4.170	8.720	5.880	4.20	150.00	20	nHx:EA =1:2	I-a114	5.500	
Reaction2									
Compound I-a114 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	ın sol.	Product	Amount (g)		
5.500	0.500	100.00	2	MC:MeOf	H =20:1	I-b114	3.2	3.200	
Reaction3	<u> </u>								
Compound I-b114 (g)	Compound P2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)	
1.000	0.850	0.760	0.60	20.00	20	nHx:EA =1:2	I-c114	0.300	
Reaction4-a									
Compound I-c114 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.			LC in		
0.300	0.70	6.80	6	MC:MeOI	H =20:1	0.030	20.	880	

ESI-MS(M⁺+1): 585

1H-NMR(CDCl₃): (two rotamers) δ 0.51, 0.81, 0.87 and 0.91(6H, d, J=6.3-6.9Hz), 0.94, 1.04 and 1.17(6H, t, J=3.6Hz), 1.34 and 1.39(9H,s), 2.18-2.62(1H, m), 2.38(3H, s), 2.57-2.88 (3H,m), 2.91-3.38(5H,m), 2.94 and 3.06(3H,s), 3.49 and 3.57(1H, t, J=6.4-7.2Hz), 5.49-5.32 (2H,m), 6.02-6.1 and 6.53-6.59(1H, m), 6.45 and 6.64(1H, d, J=8.0Hz), 6.76-7.03(3H, m), 7.08-7.19(3H, m)

Example 115

N-Et-Phe(4-F)-N-Et-Val-Me-Tyr(3-tBu)-NHEt

R3	31		R32	R	.33		R34	
E	t		Et	N	Лe		Et	
Reaction1								
Compound T6 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
4.170	8.720	5.880	4.20	150.00	20	nHx:EA =1:2	I-a115	5.500
Reaction2								
Compound I-a115 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
5.500	0.500	100.00	2	MC:MeC)H =20:1	I-b115	3.	200
Reaction3								
Compound I-b115 (g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.850	0.760	0.60	20.00	18	nHx:EA =1:2	I-c115	0.300
Reaction4-b								
Compound (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	Column sol.		int HPLC min	
0.300	0.030	4.00	3	MC:MeC	OH =20:1	0.040	2:	1.59

1H-NMR(CDCl₃):(two rotamers) δ 0.38-1.17(15H,m), 1.34, 1.36 and 1.38(9H,s), 3.38-2.12 (1H,m), 3.55(1H, t, J=6.3Hz), 3.47-3.72(1H, m), 4.88-5.37(2H, m), 5.79-6.09 and 6.63-6.7(1H, m), 6.42 and 6.62(1H, dd, J=8.3,7.4Hz), 7.05-7.22(6H,m)

Example 116

Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt

R3	1		R32	R	33		R34	
H	I		Et	I	∃t		Et	
Reaction1								
Compound T9(g)	Compound V2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
5.020	9.110	17.550	9.50	100.00	16	nHx:EA=3:1	I-a116	3.030
Reaction2								
Compound I-a116(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	nn sol.	Product	Am (į	ount g)
3.030	0.454	60.00	14	MC:MeO	H = 10:1	I-b116	2.:	24
Reaction3								
Compound I-b116(g)	Compound P4(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column soi.	Product	Amount (g)
0.600	0.680	0.549	0.40	12.00	18	nHx:EA=1:1	I-c116	0.200
Reaction4-b								
Compound I-c116(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	i	LC in
0.200	0.030	4.00	3	MC:Me	OH =20:1	0.053	21	.59
		<u> </u>						

Example 117

N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt

R	1	R	.2		R3		R4	
M	le l	I	it		Et		Et	
Reaction1							· · · · · · · · · · · · · · · · · · ·	
Compound T9(g)	Compound V2(g)	CM PI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
5.020	9.110	17.550	9.50	100.00	16	nHx:EA=3:1	I-a117	3.030
Reaction2								
Compound I-a117(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column soi. Product		Amount (g)		
3.030	0.454	60.00	14	MC:MeC	H = 10:1	I-b117	2.2	40
Reaction3	1		1					
Compound I-b117(g)	Compound P2(g)	CM PI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.845	0.681	0.585	0.40	16.00	48	nHx:EA=1:1	I-c117	0.378
Reaction4-a	1							
Compound I-c117(g)	TFA (ml)	M C (ml)	Reaction time (hr)	Column sol. Amount (g)		3	LC in	
0.378	0.80	4.00	3	MC:M	OH =20:1	0.056	22	.20

ESI-M S(M++1):599

1H-NM R(CDCl₃):(two rotamers) δ 0.75 and 0.83-1.10(10H, d and m, J=7.9Hz), 1.10-1.30(5H, m), 1.35 and 1.39(9H, s), 2.30 and 2.33(3H, s), 2.30-2.48(1H, m), 2.65-3.89(12H, m), 4.90 and 5.07(1H, m), 5.18 and 5.23(1H, d, J=9.7Hz), 6.48 and 6.58(1H, d, J=8.8Hz), 6.63(1/2H, m), 6.80(1H, dd, J= 8.1, 1.8Hz), 6.90-7.0(7/2H, m), 7.05(1/2H, d, J=1.7Hz), 7.06-7.20(5/2H, m)

Table D-118

N-Et-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt

R3	1]	R32	R	33		R34	
E	t		Et	E	it		Et	
Reaction1								
Compound T9(g)	Compound V2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
5.020	9.110	17.550	9.50	100.0	16	nHx:EA=3:1	I-a118	3.030
Reaction2	····							·
Compound I-a118(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colum	ın sol.	Product		ount g)
3.030	0.454	60.00	14	MC:MeOI	H = 10:1	I-b118	2.2	240
Reaction3								
Compound I-b118(g)	Compound P3(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.520	0.642	0.475	0.30	10.00	48	nHx:EA=1:1	I-c118	0.174
Reaction4-b	!!		 		h			
Compound I-c118(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol. Amount (g)			LC iin	
0.174	0.026	4.00	3	MC:MeC	OH =20:1	0.141	22	.84

ESI-MS(M+1):613

1H-NMR(CDCl₃):(two rotamers) δ 0.75 and 0.80-0.98(8H, d and m, J=7.9Hz), 0.98-1.08(6H, m),1.08-1.23(4H, m), 1.34 and 1.38(9H, s), 2.23-2.88(6H, m), 2.93-3.88(9H, m), 4.92 and 5.08(1H, m), 5.15 and 5.22(1H, d, J=9.7Hz), 6.49 and 6.57(1H, d, J=8.8Hz), 6.63(1/2H, m), 6.80(1/2H, dd, J=8.1, 1.7Hz), 6.85-7.00(3H, m), 7.05(1/2H, d, J=1.7Hz), 7.08-7.20(5/2H, m)

Example 119

Phe(4-F)-N-Me-Val-Tyr(3-t Bu)-NH-n-Pr

R.	31	I	32	R33	5		R34	
I	I)	Me	Н			n-Pr	
Reaction1								
Compound T10(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.580	0.640	0.670	0.92	10.00	18	nHx:EA=1:1	I-a119	1.030
Reaction2								
Compound I-a119(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column	ı sol.	Product	Amount (g)	
1.030	0.200	10.00	2	MC:MeOF	H=15:1	I-b119	0.	76
Reaction3								
Compound I-b119(g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.760	0.660	0.650	1.07	10.00	19	nHx:EA=1:2	I-c119	1.100
Reaction4-a						L		
Compound I-c119(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.			LC nin	
1.100	6.66	13.30	2	MC:MeOF	:MeOH =15:1 0.210 20.1		.10	

1H-NMR(CDCl₃): (two rotamers) δ 0.68-0.92(9H, m), 1.38 and 1.39(9H, s), 2.69 and 2.85 (3H, s), 1.37-3.20(7H, m), 3.62-3.90(1H, m), 3.93(1H, d, J=10.9Hz), 4.42-4.57(1H, m), 6.62-7.17(7H, m)

Example 120

Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH-i-Pr

R.	31		R32	R	33		R34	
I	-I		Me]	H		i-Pr	
Reaction1								
Compound T11 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.660	0.630	0.910	0.66	10.00	3	nHx:EA= 1:1	I-a120	1.210
Reaction2								
Compound I-a120 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Product		ount g)
1.210	0.500	20.00	2	MC:Me0	OH =20:1	I-b120	0.9	900
Reaction3								
Compound I-b120 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.900	0.650	0.880	0.64	15.00	3	nHx:EA =2:1	I-c120	1.300
Reaction4-a								
Compound I-c120 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	Column sol. Amount (g)			LC in
1.300	5.00	20.00	2	MC:MeC)H = 25:1	0.960	19.99	

ESI-MS(M⁺+1):557

1H-NMR(CDCl₃): (two rotamers) δ 0.70-1.07(12H, m), 1.35 and 1.38(9H, s), 1.72(2H, brs), 2.29-2.37(1H, m), 2.72 and 2.83(3H, s), 2.52-2.74(4H, m), 3.60 and 3.81(1H, dd, J=8.2, 3.0Hz), 3.85-3.98(2H, m), 4.42-4.60(1H, m), 5.48 and 5.69(1H, d, J=7.8Hz), 6.62-6.80(2H, m), 6.90-6.98(3H, m), 7.06-7.11(2H, m), 9.07(1H, d, J=8.2Hz)

Example 121

Phe(4-F)-N-Me-Val-N-Me-Tyr(3-t Bu)-NH-c-Pr

R	31	I	32	R	33		R34	
	H		Me	N	1e		c-Pr	
Reaction1								
Compound T12(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.520	0.600	0.70	10.00	18	nHx:EA:MC =1:1:1	I-a121	0.850
Reaction2								
Compound I-a121(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Product		ount g)
0.850	0.200	10.00	2	MC:Me	OH=15:1	I-b121	0.4	100
Reaction3							·	
Compound I-b121(g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.400	0.540	0.550	0.57	10.00	19	nHx:EA:MC =1:3:1	I-c121	0.720
Reaction4-a								
Compound I-c121(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	nn sol.	Amount (g)		PLC un
0.700	3.30	6.60	2	MC:MeC)H =15:1	0.210	18	.12
ESI-MS(M ⁺ +1):569		<u> </u>				*····	
`	Cl ₃): (two rotame	-				53, 2.90 and 3.93	(6H, s), 2.11-	3.08 (6H,

Scheme 4 shows the synthesis process of Examples 122-131

Scheme 4: Synthesis process of Examples 122-131

 R_{31} , R_{32} , and R_{33} in the above reaction scheme indicate substituents shown in Tables D-122 to D-131.

The synthesis process in scheme 4 is explained below. Reaction step 1)

To solutions of Compounds I-b1, I-b3, I-b5 and I-b11,
Compounds P3 to P5 and CMPI in THF, TEA was added under
cooling and stirred at room temperature. The reaction
mixtures were mixed with water, extracted with ethyl
acetate, washed with saturated brine, dried over anhydrous
magnesium sulfate and filtered. The filtrates were
concentrated under reduced pressure and the thus obtained
residues were subjected to silica gel column chromatography,
giving Compounds I-a122 to I-a131.

Reaction step 2)

5

10

15

To solutions of Compounds I-a122 to I-a131 in CH_3CN , 38% HCHO and an aqueous K_2CO_3 solution were added and stirred at room temperature. The reaction mixtures were mixed with a saturated aqueous NH_4Cl solution, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure and the thus obtained residue was subjected to silica gel column chromatography, giving Compounds I-b122 to I-b131.

Reaction step 3)

To solutions of Compounds I-b122 to I-b131 in methanol, Pd/C was added and stirred in a hydrogen atmosphere at room temperature. After filtering off the Pd/C, the filtrates were concentrated under reduced pressure and the thus obtained residues were subjected to silica gel column chromatography, giving the titled compounds.

20 Examples conducted according to Scheme 4 are shown in Tables D-122 to D-131.

Table D-122

Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH₂OH

	R31			R32			R33	
	Н		Me				Н	
Reaction1								
Compound I-b1 (g)	CompoundP4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.700	0.760	0.610	0.56	40.00	4	nHx:EA=2:1	I-a122	1.000
Reaction2			•					
Compound I-a122(g)	HCHO (ml)	K₂CO₃ (g)	(mi)	Reaction time (hr)	Column sol.	Product	Amo (g	
1.000	1.15	0.430	30.00	2	nHx:EA:MC =1:3:1	I-b122	0.9	00
Reaction3								
Compound I-b122(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HP: mi	
0.900	0.140	13.00	2	EA:Me	OH=15:1	0.560 15.91		91
FSI-MS/M ⁺ +1)·54	·		·		,			

1H-NMR(CDCl₃):(two rotamers) & 0.69, 0.75, 0.83 and 0.90(6H, d, J=6.4-6.7Hz), 1.34 and 1.35(9H, s), 2.22-3.17(5H, m) 2.68 and 2.88(3H, s), 3.57 and 3.82(1H, dd, J=8.0-8.5, 5.5-6.0Hz), 4.51-4.74(3H, m), 6.61-9.02(8H, m)

Table D-123

N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH₂OH

	R31			R32			R33	
	Me			Me			Н	
Reaction1								
Compund I-b1 (g)	Compound P5(g)	CMPI (g)	TEA (ml)	THF (mi)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.569	0.439	0.60	20.00	16	nHx:EA=1:1	I-a123	0.920
Reaction2					<u> </u>			
Compound I-a123(g)	HCHO (ml)	K₂CO₃ (g)	CH ₃ CN (ml)	Reaction time (hr)	Column sol.	Product	Am (g	ount g)
0.910	1.00	0.380	25.00	2	nHx:EA=1:1	I-b123	0.9	27
Reaction3								
Compound I-b123(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)	HP m	LC in
0.270	0.100	10.00	1.5	EA:MeC)H=30:1	0.228	16.04	
ESI-MS(M ⁺ +1):559)		1			<u> </u>		

1H-NMR(CDCl₃):(two rotamers) δ 0.52, 0.77 and 0.89(6H, d, J=6.5-6.8Hz), 1.31 and 1.37(9H, s), 2.08-2.17(1H, m), 2.24 and 2.28(3H, s), 2.46 and 2.56(3H, s), 2.58-3.06(4H, m), 3.54-4.35(2H, m), 6.62-7.34(7H, m)

Table D-124

N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH₂OH

	R31			R32			R33	
	Et .			Me			Н	
Reaction1								
Compund I-b1 (g)	Compound P3(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.630	0.750	0.555	0.75	20.00	26	nHx:EA=1:1	I-a124	0.987
Reaction2	***						····	
Compound I-a124(g)	HCHO (ml)	K₂CO₃ (g)	(ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
0.980	1.10	0.400	25.00	2	nHx:EA=1:1	I-b124	0.9	711
Reaction3					· · · · · · · · · · · · · · · · · · ·			
Compound I-b124(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)	· · · · · · · · · · · · · · · · · · ·	
0.910	0.200	15.00	3	MC:Me0	OH=15:1			.36
ESI-MS(M [†] +1):57	3		L			L		

1H-NMR(CDCl₃):(two rotamers) δ 0.50, 0.75, 0.82 and 0.85(6H, d, J=6.3-7.0Hz), 0.98 and 1.12(3H, t, J=6.7Hz), 1.40 and 1.45(9H, s), 2.15(1H, m), 2.42 and 2.46(3H, s), 2.40(2H, m), 2.60-3.10(5H, m), 3.63(1H, dd, J=10.6, 6.0Hz), 4.50(1H, m), 4.70(2H, m), 6.70(4H, m), 6.90(1H, m), 7.00(1H, s), 7.12(1H, s), 7.20 and 7.40(1H, m), 8.75(1H, d, J=6.6Hz)

Table D-125

Example 125

N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH,OH

R31			R32		R33		
Me			Me			Me	
Campound P5 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.420	1.100	0.92	30.00	14	nHx:FA:MC =1:2:1	I-a125	1.800
HCHO (ml.)	K ₂ CO ₃ (g)	(mL) CH ² CN	Reaction time (hr)	Column sol.	Product	Amou (g:	
1.970	0.730	52.00	2	nHx:EA:MC =1:3:1	I-b125	1.50	00
Pd/C (g)	MeCH (ml.)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.230	20.00	2	EA:MeC	H =10:1	0.970	17.2	27
	Me Compound P5 (g) 1.420 HCHO (mL) 1.970 Pd/C (g)	Me Compound OMPI P5 (g) (g) 1.420 1.100 HOHO K ₂ CO ₃ (ml) (g) 1.970 0.730 Pd/C MeOH (g) (ml)	Me Compound CMPI TEA P5 (g) (g) (ml) 1.420 1.100 0.92 HOHO K ₂ CO ₃ CH ₃ CN (ml) (g) (ml) 1.970 0.730 52.00 Pd/C MeCH Reaction time (hr)	Me Me Compound PF P5 (g) CMPI (g) TFA (mL) THF (mL) 1.420 1.100 0.92 30.00 HCHO K ₂ CO ₃ (mL) CH ₃ CN Reaction time (hr) Reaction time (hr) 1.970 0.730 52.00 2 Pd/C (g) (mL) time (hr) Column	Me Me Compound PF (g) CMPT (ml) TFA (ml) THF Reaction time (hr) 1.420 1.100 0.92 30.00 14 HCHO (ml) K2O3 (ml) CH3ON Reaction time (hr) Column sol. 1.970 0.730 52.00 2 THx:FA:MC =1:3:1 PG/C (g) MECH (ml) Reaction time (hr) Column sol.	Me Me Compound P5 (g) CMPT (ml) TEA (ml) THF Reaction time (hr) Column sol. 1.420 1.100 0.92 30.00 14 nHx:EA:MC =1:2:1 HCHO K2CO3 (ml) CH3CN Reaction time (hr) Column sol. Product 1.970 0.730 52.00 2 nHx:EA:MC =1:3:1 I-bl25 Pd/C (g) MeCH (ml) Reaction time (hr) Column sol. Amount (g)	Me Me Me Me Compound PF (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. Product 1.420 1.100 0.92 30.00 14 nHx:FA:MC =1:2:1 I-al25 HCHO (ml) K2CO3 (ml) CH3CN (ml) Reaction time (hr) Column sol. Product (g) Amount (g) 1.970 0.730 52.00 2 nHx:FA:MC =1:3:1 I-bl25 1.50 Pd/C (g) MECH (ml) Reaction time (hr) Column sol. Amount (g) HPL min

Table D-126

 $\hbox{N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH$_2OH}$

	R31			R32 R33				
	Et			Me			Me	
Reaction1								
Compund I-b3(g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.400	1.720	1.270	1.07	38.00	14	nHx:EA=2:1	I-a126	2.110
Reaction2						<u> </u>		
Compound I-a126(g)	HCHO (ml)	K₂CO₃ (g)	CH₃CN (ml)	Reaction time (hr)	Column sol.	Product	Ama (g	
2.050	2.20	0.820	59.00	2	nHx:EA:MC =1:3:1	I-b126	2.0	
Reaction3			····	<u> </u>				
Compound I-b126(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol. Amount HP				
1.950	0.290	27.00	2	EA:Med	OH =10:1	1.350	18.09	

1H-NMR(CDCl₃):(two rotamers) δ 0.60, 0.79 and 0.91(6H, d, J=6.4-6.5Hz), 1.00 and 1.04(t, 3H, J=6.7-7.2Hz), 1.34 and 1.39(9H, s), 2.18-2.89(7H, m) 2.52 and 2.77(3H, s), 2.95 and 3.04(3H, s), 3.22 and 3.39(1H, dd, J=14.0-15.0, 7.9-7.6Hz), 3.57 and 3.70(t, 1H, J=6.8, 6.9Hz), 4.59-4.73(2H, m), 5.05 and 5.13(1H, d, J=10.6-10.7Hz), 5.13 and 5.31(1H, dd, J=9.0, 7.3Hz), 6.45 and 6.62(1H, d, J=7.9 and 8.04Hz), 6.78-7.12(6H, m)

Table D-127

Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH $_2$ OH

	R31			R32		R33		
	Н			Me			Et	
Reaction1								
Compund I-b5 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.760	1.240	0.990	0.91	20.00	12	nHx:EA=1:1	I-a127	0,440
Reaction2				·				
Compound I-a127(g)	HCHO (ml)	K₂CO₃ (g)	CH3CN (ml)	Reaction time (hr)	Column sol.	Product	Am (£	ount g)
0.420	0.76	0.035	5.00	12	nHx:EA=1:1	I-b127	0.3	· · · · · · · · · · · · · · · · · · ·
Reaction3			<u> </u>	h		L		
Compound I-b127(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	nn sol.	Amount (g)	HP m	LC in
0.350	0.050	15.00	3	MC:Me0	OH =20:1	0.100	18.	26

IH-NMR(CDCl₃): (two rotamers) δ 0.67, 0.81 and 0.91(6H, d, J=5.9-6.9Hz),1.07 and 1.16(3H, t, J=6.8 and 6.1Hz), 1.33 and 1.38(9H, s), 2.24-2.49(2H, m) 2.58-2.75(1H, m), 2.78 and 3.05(3H, s),2.83-3.03(1H, m), 3.15-3.30(1H, m), 3.37-3.44(1H, m), 3.55-3.65(1H, m), 3.75-3.90(1H, m), 4.55-4.76(2H, m),4.85-5.06(2H, m), 6.43 and 6.61(1H, d, J=8.1-8.4Hz), 6.75-7.1(6H, m), 7.36 and 8.03(1H, brs)

Example 128

 $\hbox{N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH$_{2}OH}$

	R31			R32 R33				
	Me			Me			Et	
Reaction1								
Compund I-b5(g)	Compound P5 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0,700	1.230	0.950	0.91	20.00	12	nHx:EA =1:1	I-a128	0,640
Reaction2								
Compound I-a128(g)	HCHO (ml)	K ₂ CO ₃ (g)	CH3CN (ml)	Reaction time (hr)	Column sol.	Product		ount g)
0.610	1.10	0.051	3.00	12	nHx:EA=1:1	I-b128	0.5	560
Reaction3					——————————————————————————————————————	.1.		***************************************
Compound I-b128(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)	HP m	LC in
0.540	0.080	23.00	1	MC:Me0	OH=20:1	0.200	18.85	

1H-NMR(CDCl₃):(two rotamers) δ 0.77, 0.83, 0.84 and 0.93(6H, d, J=6.4-6.8Hz),1.12 and 1.18(3H, t, J=7.0-7.1Hz), 1.34 and 1.38(9H, s), 2.25(3H, s), 2.29-2.39(1H, m), 2.64-3.01(3H, m), 2.75 and 2.85(3H, s), 3.21-3.33(1H, m), 3.42-3.69(3H, m), 4.58-4.76(2H, m), 4.88-4.94 and 5.10-5.19(1H, m), 5.12(1H, dd, J=10.5, 2.6Hz), 6.50 and 6.61(1H, d, J=8.0Hz), 6.80-6.98(3H, m), 7.07-7.15(3H, m), 7.42 and 8.29(1H, t, J=6.0-6.4Hz)

Example 129

N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH₂OH

	R31			R32 R33				
	Et			Me			Et	
Reaction1								
Compund I-b5 (g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.370	1.010	0.92	25.00	12	nHx:EA=1:1	I-a129	0.970
Reaction2								
Compound I-a129(g)	HCHO (ml)	K ₂ CO ₃ (g)	CH ₃ CN (ml)	Reaction time (hr)	Column sol.	Product		ount g)
0.950	1.70	0.079	6.00	12	nHx:EA=1:1	I-b129	0.0	790
Reaction3								
Compound I-b129(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)		rLC iin
0.780	0.120	30.00	2	MC:MeO	H =20:1	0.300	19	.68

ESI-MS(M+1):601

1H-NMR(CDCl₃):(two rotamers) δ 0.76, 0.82, 0.83 and 0.92(6H, d, J=6.4-6.9Hz), 1.00-1.28(6H, m), 1.34 and 1.38(9H,s), 2.25-2.43(2H, m), 2.49-2.59(1H, m), 2.65-2.97(3H, m), 2.72 and 2.79(3H, s), 3.17-3.33(1H, m), 3.41-3.76(3H, m), 4.52-4.74(2H, m), 4.85-4.90 and 5.12-5.16(1H, m), 5.09(1H, dd J=10.7, 3.5Hz), 6.48 and 6.59(1H, d, J=8.0-8.4Hz), 6.80-6.98(3H, m), 7.08-7.17(3H, m), 7.38 and 8.32(1H, t, J=5.7Hz)

Table D-130

Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHC H_2OH

	R31	_		R32			R33	
	Н			Et			Et	
Reaction1								
Campund I-b11 (g)	Compoundi P4 (g)	CMPI (g)	TEA (ml)	THF (ml.)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.770	1.250	1.000	0.68	25.00	30	nHx:EA =1:1	I-a130	0.200
Reaction2								
Compound I-al30(g)	HCHO (ml.)	K₂∞₃ (g)	(ml)	Reaction time (hr)	Column sol.	Product	Amount	(g)
0.200	0.36	0.400	4.00	12	nHx:EA =1:1	I-b130	0.	100
Reaction3								
Compound I-b130(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	n sol.	Amount (g)	1	AC in
0.100	0.015	5.00	1	MC:MeOH	=25:1	0.016	18	.41
ESI-MS(M+1):	587		1	L				

1H-NMR(CDCl₃): (two rotamers) d 0.54, 0.81, 0.87 and 0.93(6H, d, J=6.0-6.8Hz), 1.12 and 1.19(6H, t, J=6.8-7.2Hz), 1.36 and 1.39(9H, s), 2.25-2.43(1H, m), 2.60-2.74(1H, m), 2.78-2.99(2H, m), 3.16-3.50(4H,m), 3.56-3.80(2H, m), 4.53-4.74(2H, m), 4.83-4.88 and 4.99-5.11(2H, m), 6.48 and 6.63(1H, d, J=7.9Hz), 6.80-6.85 and 6.96-7.18(6H, m), 7.46-7.49 and 7.58-

Table D-131

${\tt N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH_2OH}$

	R31			R32			R33		
	Me			Et			Et		
Reaction1									
Compund I-b11 (g)	Compound P5 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
0.770	1.340	1.000	0.68	25.00	30	nHx:EA =1:1	I-a131	0.170	
Reaction2									
Compound I-a131(g)	HCHO (ml)	K ₂ CO ₃ (g)	CH ₃ CN (ml)	Reaction time (hr)	Column sol.	Product		ount g)	
0.170	0.31	0.014	4.00	12	nHx:EA =1:1	I-b131	0.0	080	
Reaction3	· · · · · · · · · · · · · · · · · · ·								
Compound I-b131(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)		LC iin	
0.080	0.012	4.00	1	MC:MeO)H =25:1	0.040	18	.97	

1H-NMR(CDCl₃):(two rotamers) δ 0.64(1H, d, J=6.4Hz), 0.85-0.97(7H, m), 1.10-1.19(4H, m), 1.33 and 1.37(9H, s), 2.25-2.43(1H, m), 2.29 and 2.31(3H, s), 2.67-2.86(3H, m), 3.12-3.65 and 3.74-3.81(6H, m), 4.52-4.72(2H, m), 4.87-4.92 and 5.09-5.19(2H, m), 6.45 and 6.59(1H, d, J=8.0 and 8.4Hz), 6.78(2/3H, dd, J=7.9, 1.5Hz), 6.90-6.98(7/3H, m), 7.04(2/3H, d, J=1.5Hz), 7.10-7.16(7/3H, m), 7.50 and 7.90(1H, t, J=6.3 and 6.0Hz)

Scheme 5 shows the synthesis process of Example 132.

Scheme 5: Synthesis process of Example 132

Tyr(3-tBu)-NH₂

5

15

20

The synthesis process in scheme 5 is explained below. 10 Reaction step 1)

To a solution of Z-N-Me-Val-N-Me-Tyr(3-tBu)-NH2 in $\mathrm{CH_{3}CN}$, 38% HCHO and $\mathrm{K_{2}CO_{3}}$ were added and stirred at room temperature. The reaction mixture was mixed with a saturated aqueous NH4Cl solution, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-a132.

Reaction step 2)

To a solution of Compound I-a132 in methanol, Pd/C was added and stirred in a hydrogen atmosphere at room

temperature. After filtering off the Pd/C, the filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-b132.

5

10

Reaction step 3)

To a solution of Compound I-b132, Compound P4 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-c132.

15

20

Reaction step 4)

To a solution of Compound I-c132 in methanol, Pd/C was added and stirred in a hydrogen atmosphere at room temperature. After filtering off the Pd/C, the filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give the titled compound.

Table D-132 shows Example conducted according to Scheme 5.

Table D-132

Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH2OH

	R31			R32			R33	
	Н			Me			Me	
Reaction1								
Z-N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	HCHO (ml)	K₂CO₃ (g)	CH3CN	Reaction time (hr)	Column sol.	Product	Am (į	
2.000	3.00	1.100	71.00	2	nHx:EA:MC =1:3:1	I-a132	2.0	000
Reaction2					·			
Compound I-a132(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Product	Amount (g)	
1.950	0.290	50.00	1	EA:Me	OH=7:1	I-b132	0.7	730
Reaction3								
Compound I-b132(g)	Compound P4(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.730	0.880	0.700	0.50	35.00	4	nHx:EA=1:4	I-c132	0.700
Reaction4								
Compound I-c132(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HPLC min	
0.700	0.110	10.00	4	MC:Me	OH =20:1	0.410	16	5.64

IH-NMR(CDCl₃): (two rotamers) δ 0.49, 0.74, 0.78 and 0.91(6H, d, J=5.9-6.6Hz), 1.33 and 1.37(9H, s), 2.20-2.97(4H, m),2.54, 2.81 and 3.00(6H, s),3.16 and 3.35(1H, dd, J=13.7-15.1, 6.2-6.5Hz),3.71 and 3.85(1H, dd, J=8.1-9.4, 4.5-5.0Hz), 4.64 and 4.69(2H, d, J=6.0-6.4Hz), 4.79 and 5.06(1H, d, J=10.2-10.6Hz), 5.00 and 5.36(1H, dd, J=9.2, 5.5Hz), 6.43 and 6.64(1H, d, J=7.8Hz), 6.71-7.12(6H, m)

15

2.0

Scheme 6 shows the synthesis process of Examples 133-135.

Scheme 6: Synthesis process of Examples 133-135

Rc in the above Scheme indicates the substituent shown in Tables D-133 to D-135.

The synthesis process in scheme 6 is explained below. Reaction step 1)

To solutions of Compounds T13 to T15, Compound V1 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-al33 to I-

15

20

a135.

Reaction step 2)

To solutions of Compound I-al33 to I-al35 in methanol, palladium hydroxide/carbon was added and stirred in a 5 hydrogen atmosphere at room temperature. The reaction mixtures were filtered and the filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-b133 to I-b135.

Reaction step 3)

To solutions of Compounds I-b133 to I-b135, Compound P1 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-c133 to Ic135.

Reaction step 4)

To solutions of Compounds I-c133 to I-c135 in dichloromethane, TFA was added under cooling and stirred at 25 room temperature. The reaction mixtures were neutralized by the addition of a saturated aqueous NaHCO3 solution, extracted with dichloromethane, washed with saturated brine,

dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds.

Tables D-133 to D-135 show Examples conducted according to Scheme 6.

Example 133

(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-

methylpropanoylamino]-N-((1S)-1-{[3-(tert-butyl)-4-

hydroxyphenyl]methyl}-2-morpholin-4-yl-2-oxoethyl)-3-5 methyl-N-methylbutanamide

				R				
				4-morpholine				
Reaction1								
Compound T13(g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.490	0.720	0.50	20.00	20	nHx:EA = 1:1	J-a133	0.900
Reaction2								
Compound I-a133(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	nn sol.	Product		ount g)
0.900	0.100	20.00	20	MC:MeO	H = 20:1	I-b133	0.6	500
Reaction3		 	 -					
Compound I-b133(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.450	0.530	0.40	20.00	20	nHx:EA ≈ 1:1	I-c133	0.850
Reaction4								
Compound I-c133 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	nn sol.	Amount (g)		LC in
0.850	3.00	10.00	4	MC:MeO	H = 20:1	0.600	19	.77
ESI-MS(M ⁺ +1	L):599		<u> </u>				<u> </u>	

1H-NMR(CDCl₃): (two rotamers) δ 0.78 and 0.85(6H, d, J=6.2-6.7Hz), 1.37(9H, s), 2.23-2.28(1H, m), 2.24(3H, s), 2.48-2.56(1H, m), 2.79-2.87(SH, m), 3.02-3.09(1H, m), 3.40-3.74(10H, m), 5.01-5.05(1H, J=10.0 Hz), 5.79-5.84(1H,m), 6.39 and 6.41(1H,d, J=7.9Hz), 6.74-6.77(1H,m), 6.99-7.18(6H,m)

Example 134

(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-

methylpropanoylamino]-N-((1S)-1-{[3-(tert-butyl)-4-

5 hydroxyphenyl]methyl}-2-[4-(methylsulfonyl)piperazinyl]-2oxoethyl)-3-methyl-N-methylbutanamide

				R				
			4-(methy	lsulfonyl) pi	erazine			
Reaction1								
Compound T14(g)	Compound V1 (g)	CMPI (g)	TEA (m1)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.200	0.790	1.100	0.84	20.00	20	nHx:EA = 1:1	I-a134	1.500
Reaction2	· · · · · · · · · · · · · · · · · ·							
Compound 1-a134 (g)	Pd(OH) ₂ (g)	McOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
1.500	0.300	20.00	20	M C:M eOH = 20:1		I-b134	0.900	
Reaction3								
Compound I-b134 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.700	0.520	0.430	0.38	15	2	nHx:EA = 1:1	I-c134	0.700
Reaction4								
Compound I-c134 (g)	TFA (ml)	M C (m1)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.700	3.00	10.00	4	MC:McOH = 20:1		0.350	19.94	

1H-NMR(CDCl₃): (two rotamers) δ 0.79 and 0.85(6H, d, J=6.2-6.7Hz), 1.37(9H, s), 2.23-2.28(1H, m), 2.52-2.69(4H, m), 2.73(3H, s), 2.75-2.89(7H, m), 3.01-3.16(4H, m), 3.58-3.78(1H, m), 5.03 and 5.07(1H, d, J=10.6 Hz), 5.75-5.81(1H, m), 6.42 and 6.45(1H, d, J=7.9Hz), 6.76-6.80(1H, m), 6.99-7.18(6H, m)

Example 135

Ethyl 2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-

fluorophenyl)-N-methylpropanoylamino]-3,N-

dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl] propanoyl)piperazinyl]acetate

		ethyl-	-2-piperazin	ylacetate			
Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.547	0.527	0.50	16.00	16	nHx:EA= 2:3	I-a135	0.827
Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
0.250	13.00	1	MC:MeOH =20:1		I-b135	0.645	
Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.458	0.413	0.40	12	16	nHx:EA= 2:3	I-c135	0.796
TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Атоипі (д)	HPLC min	
2.00	5.00	1	MC:MeOH =30:1		0.430	17.1	
	V1 (g) 0.547 Pd(OH) ₂ (g) 0.250 Compound P1 (g) 0.458 TFA (m1)	V1 (g) (g) 0.547 0.527 Pd(OH) ₂ MeOH (g) (ml) 0.250 13.00 Compound CMPI P1 (g) (g) 0.458 0.413 TFA MC (ml) (ml)	Compound V1 (g) CMPI (g) (ml) 0.547 0.527 0.50 Pd(OH)2 (g) MeOH (hr) Reaction time (hr) 0.250 13.00 1 Compound P1 (g) CMPI (g) (ml) TEA (ml) 0.458 0.413 0.40 TFA (ml) MC (ml) Reaction time (hr)	Compound V1 (g) CMPI (g) TEA (mi) THF (mi) 0.547 0.527 0.50 16.00 Pd(OH) ₂ (g) MeOH (hr) Reaction time (hr) Column 0.250 13.00 1 MC:Me Compound P1 (g) TEA (mi) THF (mi) 0.458 0.413 0.40 12 TFA (mi) MC (mi) Reaction time (hr) Column	V1 (g) (g) (ml) (ml) (hr) 0.547 0.527 0.50 16.00 16 Pd(OH) ₂ (g) MeOH (ml) Reaction time (hr) Column sol. 0.250 13.00 1 MC:MeOH = 20:1 Compound P1 (g) TEA (ml) THF (ml) Reaction time (hr) 0.458 0.413 0.40 12 16 TFA (ml) (ml) (ml) Column sol.	Compound V1 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. 0.547 0.527 0.50 16.00 16 nHx:EA= 2:3 Pd(0H)2 (g) MeOH (ml) Reaction time (hr) Column sol. Product 0.250 13.00 1 MC:MeOH = 20:1 I-b135 Compound P1 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. 0.458 0.413 0.40 12 16 nHx:EA= 2:3 TFA (ml) MC (ml) Reaction time (hr) Column sol. Amount (g)	Compound V1 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. Product 0.547 0.527 0.50 16.00 16 nHx:EA= 2:3 I-a135 Pd(0H)2 (g) MeOH (ml) Reaction time (hr) Column sol. Product Am (nl) 0.250 13.00 1 MC:MeOH = 20:1 I-b135 0.6 Compound P1 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. Product 0.458 0.413 0.40 12 16 nHx:EA= 2:3 I-c135 TFA (ml) MC (ml) Reaction time (hr) Column sol. Amount (g) HF (ml)

H-NMR(CDCl₃): (two rotamers) & 0.77 and 0.84(6H, d, J=6.4-6.8Hz),1.26(3H, t, J=7.1Hz),1.26(9H, s), 2.22-2.30(1H, m),2.47-2.54(1H, m),3.00-3.07(1H, m) 2.40, 2.81 and 3.18(6H, s), 3.54-3.73(5H, m), 4.18(2H, q, J=7.1Hz), 5.03(2H, d, J=10.4Hz), 5.85(1H, t, J=2.3Hz), 6.40(1H, d, J=7.9Hz), 6.72-6.75 (1H, dd, J=9.7, 1.9Hz), 7.00-7.26(5H, m)

Scheme 7 shows the synthesis process of Example 136.

Scheme 7: Synthesis process of Example 136

Example 135

5

10

15

Example 136

Reaction step 1)

The compound obtained in Example 135 was added to a dioxane solution, mixed with a 2N-NaOH solution and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give the titled compound.

Table D-136 shows Example conducted according to Scheme 7.

Example 136

2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-

methylpropanoylamino]-3,N-dimethylbutanoylamino}-3-[3-

5 (tert-butyl)-4-hydroxyphenyl]propanoyl)piperazinyl]acetic
acid

Compound of Example 135(g)	NaOH (g)	H ₂ O (ml)	Dioxane (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.375	0.400	5.00	5.00	16	MC:MeOH=20:1	0.200	14.97

1H-NMR(CD3OD): (two rotamers) δ 0.78 and 0.82(6H, d, J=6.1Hz),1.27(9H, s), 2.12-2.29(1H, m), 2.74-3.12(8H, m),3.61-3.82(4H, m), 2.48, 2.94, 3.25 and 3.55(6H, s), 4.50-4.56(1H, q, J=10.5Hz), 5.02(1H, d, J=10.5Hz), 5.73(1H, t, J=7.9Hz), 6.74-6.78(1H, dd, J=9.4, 2.2Hz), 7.00-7.27(6H, m)

Scheme 8 shows the synthesis process of Example 137.

10

Scheme 8: Synthesis process of Example 137

The synthesis process in scheme 8 is explained below. Reaction step 1)

To a solution of Compound V3, Compound P4 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-al37.

10 Reaction step 2)

To a solution of Compound I-al37 in methanol, NaOH and water were added and stirred at room temperature. The reaction mixture was mixed with a saturated aqueous NH₄Cl solution, concentrated under reduced pressure, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-b137.

20

25

15

5

Reaction step 3)

To a solution of Compound I-b137, Compound T16 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography

(silica gel) to give Compound I-c137.

Reaction step 4)

To a solution of Compound 1-c137 in methanol, Pd/C was added and stirred in a hydrogen atmosphere at room temperature. After filtering off the Pd/C, the filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give the titled compound.

Table D-137 shows Example conducted according to Scheme 8.

Table D-137

Example 137

Phe(4-F)-N-Me-Val-N-Pr-Tyr(3-tBu)-NH₂

Reaction1 Compound V3 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.146	3.000	2.410	2.20	28.00	12	nHx:EA =5:1	I-a137	1.877
Reaction2	l 			<u> </u>				<u> </u>
Compound I-a137(g)	NaOH (g)	H ₂ O (ml)	MeOH (ml)	Reaction time (hr)	Product		Amount (g)	
1.870	0.646	8.00	40.00	8	I-b137		1.710	
Reaction3	/ <u>-</u>		.!	·				
Compound I-b137(g)	Compound T10 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.710	0.709	0.976	0.88	14.00	12	nHx:EA ≈3:2	I-c137	0.610
Reaction4	l		<u> </u>	<u> </u>				'
Compound I-c137(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	nn sol.	Amount (g)	HPLC min	
0.400	0.080	16.00	1	MC:MeOH =25:1		0.128	22.7	

1H-NMR(CDCl₃): δ 0.66(3H, d, J=6.6Hz), 0.80(3H, d, J=6.5Hz), 0.84(3H, t, J=7.4Hz), 1.33(9H, s), 1.43-1.59(2H, m), 2.20-2.28(1H, m), 2.53(1H, dd, J=13.5, 9.1Hz), 2.60-2.75(2H, m), 2.95(1H, dd, J=13.8, 4.8Hz), 3.01(3H, s), 3.20(1H, dd, J=14.1, 6.2Hz), 3.32(1H, dd, J=13.6, 10.9Hz), 3.52-3.63(1H, m), 3.89-3.93(1H, m), 4.21-4.28(1H, m), 4.89(1H, d, J=10.6Hz), 5.48(1H, brs), 6.51(1H, d, J=7.9Hz), 6.73(1H, dd, J=7.9, 1.9Hz), 6.82(1H, brs), 6.99-7.10(3H, m), 7.11-7.16(2H, m)

5

The processes of synthesizing Intermediates of Schemes 9-14 are shown below as Reference Examples. In addition, structural formulae of Intermediates of Examples 138-176 are shown in Tables C-3 and C-4.

5

Table C-3

Intermediates of Examples 138-176

T1: R33=H P1: PG=Z or Boc I1:R=Et , I2:R=Et(D) 13:R=n-Pr, I4:R=n-Pr(D) T4: R33=Me P4: PG=Z or Boc I5:R=s-Bu (commercial), I6:R=s-Bu(D)

I7:R=i-Bu (commercial), I8:R=i-Bu(D)

19:R=Allyl, I10:R=Allyl(L,D-mixture)

I11:R=neo-Pentyl, I12:R=neo-Pentyl(D)

I13:R=CH₂CF₃(L,D-mixture) 10

I14:R=c-Hex, I15:R=c-Hex(D)

I16:R=CH₂c-Hex, I17:R=CH₂c-Hex(D)

I18: $R=CH_2Ph$, I19: $R=CH_2Ph(D)$

 $I20:R=CH_2Ph(4-F)$, $I21:R=CH_2Ph(4-F)(D)$

 $122:R=CH_2Ph(4-C1)$, $123:R=CH_2Ph(4-C1)(D)$ 15

 $I24:R=CH_2Ph(4-OBn)$, $I25: R=CH_2Ph(4-OBn)(D)$

I26:R=CH₂(2-thienyl), I27: R=CH₂(2-thienly)(D)

I28:R=CH2c-Pr

I38:R=tBu

I29:N-Me-Phg-OMe, I30:N-Me-D-Phg-OMe 20

Table C-4

Intermediates of Examples 138-176 (continued)

I31: $R=CH_2Ph$, I32: $R=CH_2Ph(D)$

5 I33: R=i-Bu

I34: R=Et(D)

I35: R=i-Pr(D)

10

15

In Tables C-3 and C-4, "commercial" means that the compound is commercially available, "(D)" means a D-amino acid in stereochemistry and those which are not indicated as (D) are L-amino acids. PG in the Intermediate (I) means Z or Boc.

15

20

Reference Example 21

Synthesis of Intermediates I1 to I28

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediates I1 to I28

Z or Boc-Amino acid

I1~28

The synthesis process of Intermediates I1 to I28 is 10 explained below.

Reaction step 1)

To solutions of Z- and Boc-protected amino acids in THF, NaH and MeI were added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, adjusted to pH 3-4 by the addition of 1N HCl, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I1 to I28.

Results are shown in Tables E-10 to E-35.

Table E-10

Intermediates I1: Z-N-Me-Abu-OH

			R							
	Et									
Reaction										
Z-Abu-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)				
2.000	4.20	1.340	40.00	15	MC:MeOH =10:1	1.400				

5 Table E-11

Intermediate I2: Boc-N-Me-D-Abu-OH

			R							
	Et:D									
Reaction										
Boc-(D)-Abu- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)				
0.750	1.83	0.738	18.00	48	MC:MeOH =8:1	0.810				

Table E-12

10 Intermediate I3: Z-N-Me-Nva-OH

			R								
	n-Pr										
Reaction											
Z-Nva-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)					
2.000	5.00	0.960	30.00	24	MC:MeOH =10:1	2.090					

Table E-13

Intermediate I4: Boc-N-Me-D-Nva-OH

			R			
	-		n-Pr:D			
Reaction						A
Boc-(D)-Nva- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	2.87	0.552	25.00	40	MC:MeOH =10:1	1.000

5 Table E-14

Intermediate I6: Boc-N-Me-D-Ile-OH

			R			
		S-	Bu:D			
Reaction Boc-(D)-Ile-OH	Methyl iodide	NaH	THF	Reaction	Column sol.	Amount
(g)	(ml)	(g)	(ml)	time (hr)		(g)
0.500	1.35	0.866	17.00	12	MC:MeOH =10:1	0.490

Table E-15

10 Intermediate I8: Boc-N-Me-D-Leu-OH

			R			
		i-	Bu:D			
Reaction						Amount
Boc-(D)-Leu-OH	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	(g)
(g) 1.000	2.49	1.600	17.00	12	MC:MeOH =15:1	0.960

Table E-16

Intermediate 19:

(2S)-2-[N-(tert-butoxycarbonyl)-methylamino]pent-4-enoic acid

R								
		Allyl						
Reaction								
(2S)-2-[(tert- butoxy)carbonylamino]pent-4- enoic acid (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)		
0.660	1.79	1.150	12.00	12	MC:MeOH =10:1	0.570		

5

Table E-17

Intermediate I10:

2-[N-(tert-butoxycarbonyl)-methylamino]pent-4-enoic acid

R									
Reaction	Ally	/l: D,L-n	ixture						
2-[(tert-butoxy)carbonyl - amino]pent-4-enoic acid (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)			
2.656	7.67	4.924	51.00	12	MC:MeOH =15:1	2.360			

Table E-18

Intermediate I11:BOC-N-Me-Leu(γ -Me)-OH

			R (-						
neo-Pent										
Reaction		,				,				
BOC-Leu(gamma- Me)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)				
1.930	4.86	3.120	40.00	48	MC:MeOH =10:1	1.500				

5 Table E-19

Intermediate I12: BOC-N-Me-D-Leu(γ -Me)-OH

R neo-Pent:D Reaction								
BOC-(D)-Leu(gamma- Me)-OH (g)	Methyl iodide (mI)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)		
1.000	2.50	1.630	20.00	24	MC:MeOH =10:1	1.110		

Table E-20

10 Intermediate I13: 2-[N-(phenylmethoxy)carbonyl-

methylamino]-4,4,4-trifluorobutanoic acid

R								
CH ₂ CF ₃ :L,D-mixture								
Reaction								
Z-2-amino-4,4,4- trifluorobutanoic acid (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)		
0.75	1.61	1.03	20.00	12	MC:MeOH =10:1	0.567		

Table E-21

Intermediate I14: Boc-N-Me-Chg-OH

			R			
			c-Hex			
Reaction						
Boc-Chg-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.60	2.300	40.00	20	MC:MeOH =30:1	1.500

5 Table E-22

Intermediate I15: Boc-N-Me-D-Chg-OH

			R			
		С	-Hex:D			
Reaction						
Boc-(D)-Chg-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.500	2.70	1.740	30.00	20	MC:MeOH =30:1	1.150

10 Table E-23

Intermediate I16: Boc-N-Me-Cha-OH

			R			
		C	H₂c-Hex			
Reaction						
Boc-Cha-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.40	1.100	23.00	18	MC:MeOH =10:1	1.300

Table E-24

Intermediate I17: Boc-N-Me-D-Cha-OH

			R			
		CF	I2c-Hex:D			
Reaction				,		
Boc-(D)-Cha-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.72	0.552	11.50	18	MC:MeOH =10:1	1.000

5 Table E-25

Intermediate I18: Boc-N-Me-Phe-OH

			R			
			CH ₂ Ph			
Reaction						
Boc-Phe-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.66	0.400	20.00	20	MC:MeOH =20:1	0.800

Table E-26

10 Intermediate I19: Boc-N-Me-D-Phe-OH

			R						
	CH ₂ Ph:D								
Reaction						,			
Boc-(D)-Phe-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)			
0.890	1.66	0.400	20.00	20	MC:MeOH =20:1	0.800			

Table E-27
Intermediate I20: Boc-N-Me-Phe(4-F)-OH

		CU	R L Pho(4 E)			
Reaction	·	Cr.	l ₂ Phe(4-F)			
Boc-Phe-(4-F)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
15.000	27.00	6.360	180.00	24	MC:MeOH =10:1	15.000

5 Table E-28

Intermediate I21: Boc-N-Me-D-Phe(4-F)-OH

		CH.	R Phe(4-F):1			
Reaction		C11 ₂	1 110(4-1)			
Boc-(D)-Phe(4-F)- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.76	0.424	12.00	18	MC:MeOH =10:1	1.000

Table E-29

Intermediate I22: Boc-N-Me-Phe(4-Cl)-OH

			R		······································	
	· · · · · · · · · · · · · · · · · · ·		$H_2Ph(4-C)$	(1)		
Reaction						
Boc-Phe(4-Cl)- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.32	0.800	40.00	18	MC:MeOH =20:1	1.630

5 Table E-30

Intermediate I23: Boc-N-Me-D-Phe(4-C1)-OH

			R			
		CH	$I_2Ph(4-Cl)$:D		
Reaction						
Boc-(D)-Phe(4- Cl)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.66	0.401	20.00	18	MC:MeOH =20:1	0.781

Table E-31

10 Intermediate I24: Boc-N-Me-Phe(4-OBn)-OH

			R						
CH ₂ Ph(4-OBn) Reaction									
Boc-Phe(4- OBn)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)			
2.500	3.35	0.808	50.00	36	MC:MeOH =20:1	2.590			

Table E-32

Intermediate I25: Z-N-Me-D-Phe(4-OBn)-OH

			R			
		CH ₂	Ph(4-OBn)	:D		
Reaction						
Z-(D)-Phe(4- OBn)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	2.51	0.592	40.00	36	MC:MeOH =20:1	2.060

Table E-33

5 Intermediate I26: Boc-N-Me-Ala(β -2-thienyl)-OH

		CH ₂	R (2-Thieny	1)		
Reaction				•		
Boc-Ala(beta-2- thienyl)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.84	0.443	20.00	18	MC:MeOH =20:1	0.916

Table E-34

Intermediate I27: Boc-N-Me-D-Ala(β -2-thienyl)-OH

Descion	R CH ₂ (2-Thienyl):D										
Boc-(D)-Ala(beta- 2-thienyl)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)					
1.000	1.84	0.443	20.00	18	MC:MeOH =20:1	1.040					

			R			
		CH	I ₂ c-Propyl			
Reaction						·
Z-N-Ala(beta-c- Pr)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.500	2.84	0.680	15.00	15	MC:MeOH =10:1	1.160

5 Reference Example 22

Synthesis of Intermediate I29

The synthesis scheme is shown below.

Synthesis scheme of Intermediate I29

The synthesis process of Intermediate I29 is explained below.

Reaction step 1)

To a solution of N-Me-Phg-OH in methanol, $SOCl_2$ was slowly added dropwise under cooling and then stirred under reflux. The reaction mixture was concentrated under reduced pressure to give crude Compound I29.

Result is shown in Table E-36.

20

10

15

10

20

Table E-36

Intermediate I29: N-Me-Phg-OMe

Reaction				
N-Me-Phg- OH (g)	SOCl ₂ (ml)	MeOH (ml)	Reaction time (hr)	Amount (g)
2.000	1.32	20.00	3.00	2.000

5 Reference Example 23

Synthesis of Intermediate I30

The synthesis scheme is shown below.

Synthesis scheme of Intermediate I30

The synthesis process of Intermediate I30 is explained below.

15 Reaction step 1)

To a solution of Z-D-Phg-OH and CH_3I in THF and DMF, NaH was slowly added dropwise and then stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Z-N-Me-D-Phg-OMe.

Reaction step 2)

To a solution of Z-N-Me-D-Phg-OMe in methanol, palladium hydroxide/carbon was added and stirred in a hydrogen atmosphere at room temperature. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel), giving Compound I30.

Result is shown in Table E-37.

10

5

Table E-37

Intermediate I30: N-Me-D-Phg-OMe

	-				R					
					Ph :D)				
Reaction1										
Z-N-Me-(D)- Phg-OH (g)	Me	ethyl iodide (ml)	NaH (g)			Reaction time (hr)	,	Column sol.	Product	Amount (g)
2.000		3.49	0.842	20.00 (10.00/10.00)		16	nHx:EA=5:1		Z-N-Me-(D Phg-OMe)- 2.200
Reaction2										
Z-N-Me-(D)-Pl OMe(g)	hg-	Pd(OH) ₂ (g)	MeC (ml			ction time (hr)		Colur	mn sol.	Amount (g)
2.200		0.330	40.0	00		12		nHx:EA=5:1		1.240

15 Reference Example 24

Synthesis of Intermediates I31-I35

The synthesis scheme is shown below.

Synthesis scheme of Intermediates I31-I35

 $\alpha\text{-Me-Amino}$ acid

 $z\text{-}\alpha\text{-Me-Amino}$ acid

I31~I35

The synthesis process of Intermediates I31 to I35 is explained below.

Reaction step 1)

To solutions of α -Me-amino acids and Na $_2$ CO $_3$ in dioxane and water, Z-Cl was slowly added dropwise under cooling while stirring. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel), giving Z- α -Me-amino acids.

10

15

5

Reaction step 2)

T solutions of the Z- α -Me-Amino acid and CH $_3$ I in THF, NaH was slowly added dropwise under cooling. The reaction mixtures were adjusted to pH 3-4 by the addition of 1N HCl, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to giving Compounds I31 to I35.

20

Results are shown in Tables E-38 to E-42.

				R				
				CH₂Ph				
Reaction1								
alpha-Me-Phe- OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.90	0.900	25.00	25.00	5	MC:MeOH =10:1	Z-alpha-Me- Phe-OH	0.890
Reaction2								
Z-alpha-Me-Phe- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.		Amount (g)	
0.890	1.40	0.340	28.00	15	MC:MeOH =10:1		1.180	

Table E-39

Intermediate I32: Z-N-Me- α -Me-D-Phe-OH

				R				
				CH ₂ Ph:D				
Reaction1								
alpha-Me-(D)- Phe-OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.90	0.900	25.00	25.00	5	MC:MeOH =10:1	Z-alpha-Me- (D)-Phe-OH	0.810
Reaction2								
Z-alpha-Me-(D)- Phe-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Colum	ın sol.	Amo (g	
0.810	1.40	0.340	28.00	15	MC:MeOF	H =10:1	1.0	50

5

Table E-40

Intermediate I33: Z-N-Me- α -Me-Leu-OH

				R				
				i-Bu				
Reaction1								
alpha-Me-Leu-OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.970	2.10	2.140	30.00	20.00	24	MC:MeOH =10:1	Z-alpha-Me- Leu-OH	2.000
Reaction2								
Z-alpha-Me-Leu- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.		Amount (g)	
2.000	4.40	2.000	35.00	12	MC:MeO	H =10:1	1.7	80

10

				R				
				CH ₂ CH ₃ : D				
Reaction1							-	
alpha-Me-(D)- Abu-OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	THF (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.250	0.36	0.450	10.00	2.00	3	MC:MeOH =10:1	Z-alpha-Me- (D)-Et-OH	0.177
Reaction2	<u> </u>							
Z-alpha-Me- (D)-Abu-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.		Amount (g)	
0.750	0.42	0.190	10.00	12	MC:MeOH=10:1		0.152	

5

Table E-42

Intermediate I35: Z-N-Me- α -Me-D-Val-OH

				R				
				i-Pr:D				
Reaction1						·····		
alpha-Me-(D)- Val-OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.31	1.454	4.00	4.00	12	MC:MeOH =15:1	Z-alpha-Me- (D)-Val-OH	0.170
Reaction2							 	
Z-alpha-Me-(D)- Val-OH(g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Colum	n sol.	Amount (g)	
0.170	0.40	0.128	3.00	12	MC:MeOH=10:1		0.170	

Reference Example 25

Synthesis of Intermediate I36, I37

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediates 136 and 137

Spiro-cyclic-Amino acid

I36~37

The synthesis process of Intermediates I36 and I37 is 10 explained below.

Reaction step 1)

To solutions of a spiro-cyclic-amino acids and CH₃I in THF, NaH was slowly added dropwise under cooling. The reaction mixtures were adjusted to pH 3-4 by the addition of 1N HCl, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I36 and I37.

Results are shown in Tables E-43 and E-44.

Table E-43

Intermediate I36:

1-[N-

methyl(phenylmethoxy)carbonylamino]cyclopentanecarboxylic

5 acid

Reaction				,		·····
Z-1-amino-1-cyclo pentanecarboxylic acid(g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.79	0.912	26.00	18	MC:MeOH =20:1	1.730

Table E-44

Intermediate I37:

1-[N-

Reaction						
Z-1-amino-1-cyclo hexanecarboxylic acid(g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
4.000	7.19	1.730	80.00	18	MC:MeOH =20:1	4.190

15

25

Reference Example 26

Synthesis of Intermediate I38

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediate I38

The synthesis process of Intermediate I38 is 10 explained below.

Reaction step 1)

To a solution of Boc-Tle-OH in DMF, NaH and MeI were added under cooling and stirred at room temperature. The reaction mixture was mixed with 1N HCl, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure to give Boc-N-Me-Tle-OMe.

20 Reaction step 2)

To a solution of Boc-N-Me-Tle-OMe in methanol and water, NaOH was added and stirred at room temperature. The reaction mixture was adjusted to pH 3-4 by the addition of 1N HCl, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the

thus obtained residue was purified by column chromatography (silica gel), giving Intermediate I38.

Result is shown in Table E-45.

Table E-45
Intermediate I38: Boc-N-Me-Tle-OH

Reaction1						
Boc-Tle-OH (g)	Methyl iodide (ml)	NaH (g)	DMF (ml)	Reaction time (hr)	Product	Amount (g)
1.000	2.70	0.865	18.00	16	Boc-N-Me-Tle-OMe	1.180
Reaction2						
Boc-N-Me- Tle-OMe (g)	NaOH (g)	MeOH (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.180	0.550	10.00	2.00	22	MC:MeOH=10:1	0.900

15

20

Scheme 9 shows the synthesis process of Examples 138-165.

Scheme 9: Synthesis process of Examples 138-165

10 The synthesis process in scheme 9 is explained below.

Reaction step 1)

To solutions of Compound T4, Compounds I1 to I28 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-al38 to I-al65.

Reaction step 2-a)

To solutions of Compounds I-a in dichloromethane, TFA was added under cooling and stirred at room temperature.

The reaction mixtures were concentrated under reduced pressure, neutralized by the addition of a saturated aqueous NaHCO₃ solution, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-b.

Reaction step 2-b)

To solutions of Compounds I-a in methanol, Pd/C was added and stirred in a hydrogen atmosphere at room temperature. After filtering off Pd/C, the filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-b.

Reaction step 3)

To solutions of Compounds I-b138 to I-b165, Compound P1 or P4 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-c138 to I-c165.

Reaction step 4-a)

To solutions of Compounds I-c in dichloromethane, TFA was added under cooling and stirred at room temperature. The reaction mixtures were concentrated under reduced pressure, neutralized by the addition of a saturated aqueous NaHCO₃ solution, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds.

10

15

5

Reaction step 4-b)

To solutions of Compounds I-c in methanol, Pd/C was added and stirred in a hydrogen atmosphere at room temperature. After filtering off Pd/C, the filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds.

Compounds which were synthesized in Examples

20 according to Scheme 9 are shown in Tables D-138 to D-165.

In the tables "A" indicated after the Example number means

"less polar isomer" and "B" means "more polar isomer". For

example, Compound of Example 150A is "less polar isomer" of

Phe(4-F)-N-Me-Ala(β-CF₃)-N-Me-Tyr(3-tBu)-NH₂ and Compound of

Example 150B is "more polar isomer" of Phe(4-F)-N-Me-Ala(β
CF₃)-N-Me-Tyr(3-tBu)-NH₂.

Table D-138

Example 138

Phe(4-F)-N-Me-Abu-N-Me-Tyr(3-tBu)-NH₂

				R				
				Et				
Reaction1								
Compound T4 (g)	Compound I1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.800	0.960	0.980	0.90	30.00	12 nHx:EA=1:2		I-a138	1.420
Reaction2-b			·					
Compound I-a138(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
1.400	0.430	28.00	2	MC:MeOH =15:1	I-b138		0.950	
Reaction3								
Compound I-b138(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.890	0.860	0.780	0.70	5.00	72	nHx:EA =1:1	I-c138	0.720
Reaction4-a				•				
Compound I-c138(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.720	1.80	9.00	3	MC:MeOH= 15:1	 		17.07	

ESI-MS(M+1):515

1H-NMR(CD₃OD):(two rotamers) & 0.55 and 0.88(3H, t, J=7.2-7.6Hz), 1.39 and 1.44(9H, s), 1.56-1.85(2H, m), 2.23, 2.62, 2.91 and 2.98(6H, s), 2.56-3.01(4H, m), 3.26(1H, dt, J=3.0-4.7, 13.9-15.4Hz), 3.78 and 3.97(1H, dd, J=8.4, 5.1Hz), 5.28 and 5.55(1H, dd, J=7.8-11.6, 4.8-6.0Hz),6.59 and 6.74(1H, d, J=8.0Hz), 6.69-7.30(6H, m)

5

Table D-139

Example 139

Phe(4-F)-N-Me-D-Abu-N-Me-Tyr(3-tBu)-NH₂

				R				
				Et:D				
Reaction1								
Compound T4 (g)	Compound I2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.770	0.800	0.950	0.85	60.00	12	nHx:EA =1:2	I-a139	1.100
Reaction2-a			 			 		
Compound I-a139(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
1.100	4.90	26.00	1	MC:MeOH ≈8:1	I-b139		0.770	
Reaction3			<i></i>					
Compound I-b139(g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.770	0.750	0.670	0.60	44.00	72	nHx:EA =1:2	I-c139	1.310
Reaction4-a								
Compound I-c139(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
1.300	4.20	21.00	2	MC:MeOH= 15:1	0	.620	19.96	

1H-NMR(CD₂OD): δ 0.48(3H, t, J=7.5Hz), 1.36(9H, s), 1.38-1.43(2H, m), 2.59 and 2.87(3H, s), 2.73(1H, dd, J=13.2, 7.5 Hz), 2.81-2.92(2H, m), 3.02 and 3.14(3H, s), 3.37(1H, dd, J=15.0,6.1Hz), 3.93(1H, t, J=6.8-7.1Hz), 4.82(1H, t, J=7.7Hz), 5.34(1H, brs),5.50(1H, dd, J=11.3, 5.9Hz), 6.42(1H, brs),6.57(1H, d, J=7.8Hz), 6.88(1H, dd, J=7.7, 2.0Hz), 6.96(2H, t, J=8.6Hz), 7.08(1H, d, J=2.3Hz), 7.13(2H, m)

Table D-140

Example 140

Phe(4-F)-N-Me-Nva-N-Me-Tyr(3-tBu)-NH₂

				R				
				n-Pr				
Reaction1								
Compound T4 (g)	Compound I3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.830	0.800	0.847	0.84	30.00	24	nHx:EA =1:2	I-a140	1.372
Reaction2-b	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 		•	· · · · · · · · · · · · · · · · · · ·				
Compound I-a140(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
1.372	0.200	80.00	2	MC:MeOH ≈10:1	I-b140		0.895	
Reaction3								
Compound I-b140(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.480	0.387	0.40	20.00	16	nHx:EA =1:2	I-c140	0.744
Reaction4-b								
Compound I-c140(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.727	0.200	50.00	2	MC:MeOH ≈10:1	0.450		19.05	

ESI-MS(M+1):529

1H-NMR(CDCl₃+CD₃OD): (two rotamers) δ 0.20 and 0.70-1.20(3H, m), 0.65 and 0.75(3H, t, J=6.9Hz), 1.50-1.70(1H, m), 1.33 and 1.38(9H, s), 2.30 and 2.69(3H, s), 2.47 and 2.70(2H, m), 2.72(3H,s), 2.80 and 2.92(2H, m), 3.65 and 3.85(1H,m), 4.83(1H, m), 5.84(1H, m), 6.48(1H, d, J=9.69Hz), 6.70-6.82(1H, m), 6.90-7.20(5H, m)

Table D-141

Example 141

Phe(4-F)-N-Me-D-Nva-N-Me-Tyr(3-tBu)- NH_2

				R				
				n-Pr:D				
Reaction1								
Compound T4 (g)	Compound I4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.650	0.547	0.665	0.70	20.00	16	nHx:EA =1:2	I-a141	0.670
Reaction2-a								
Compound I-a141(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
0.670	1.50	10.00	2	MC:MeOH =10:1	I-b141		0.500	
Reaction3								 -
Compound I-b141(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr) Column sol.		Product	Amoun (g)
0.490	0.480	0.387	0.40	20.00	16	nHx:EA =1:2	I-c141	0.680
Reaction4-b								
Compound I-c141(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
		20.00	2	MC:MeOH	0.358		22.27	

1H-NMR(CDCl₃+CD₃OD): (two rotamers) δ 0.65-0.90(2H, m), 0.75(3H, t, J=6.9Hz), 1.20-1.50(2H, m), 1.37 and 1.39(9H, s), 2.75(2H, brs), 2.85 and 2.87(3H,s), 2.80(1H, m), 3.00 and 3.02(3H, s), 3.45(1H, m), 3.95(1H, t, J=7.2Hz), 4.91(1H, t, J=7.5Hz), 5.40(2H, m, brs), 6.40(1H, brs), 6.60(1H, d, J=9.3Hz), 6.37(1H, d, 9.3Hz), 6.90-7.18(5H, m)

Table D-142

Example 142

Phe(4-F)-N-Me-Ile-N-Me-Tyr(3-tBu)-NH₂

				R				
				s-Bu				
Reaction1								
Compound T4 (g)	Compound I5 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.750	1.000	0.910	0.83	19.00	12 nHx:EA= 2:3		I-a142	1.350
Reaction2-b	<u> </u>		•					
Compound I-a142 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
1.300	0.190	50.00	2	MC:MeOH =20:1	I-b142		0.920	
Reaction3			<u></u>					
Compound I-b142 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.920	0.830	0.750	0.67	25.00	12	nHx:EA=2:3	I-c142	1.170
Reaction4-a	<u> </u>		•					
Compound I-c142 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
1.150	2.75	13.00	3	MC:MeOH =20:1			19.710	

1H-NMR(CDCl₃ + CD₃OD):(two rotamers) δ 0.38, 0.81, 0.85 and 0.88(6H, d, J=6.0-6.5Hz), 0.93-1.02(1H, m), 1.18-1.29(1H, m), 1.34 and 1.39(9H, s), 1.97-2.11(1H, m), 2.38-2.93(3H, m), 2.50, 2.86, 2.95 and 3.00(6H, s), 3.11-3.18(1H, m), 3.69 and 3.84(1H, dd, J=8.0-8.9, 4.0-5.5Hz), 4.91-4.96 and 5.02-5.14(4/3H, m), 5.45(2/3H, dd, J=10.2, 5.7Hz), 6.48(2/3H, d, J=7.9Hz), 6.65-6.71(1H, m), 6.91-7.12(16/3H, m)

Table D-143

Example 143

Phe(4-F)-N-Me-D-Ile-N-Me-Tyr(3-tBu)-NH₂

				R				
				s-Bu:D				
Reaction1				-				
Compound T4 (g)	Compound I6 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.420	0.490	0.510	0.46	10.00	12	nHx:EA =2:3	I-a143	0.330
Reaction2-a								
Compound I-a143 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
0.310	0.94	4.70	3	MC:MeOH = 10:1	I-b143		0.240	
Reaction3								
Compound I-b143 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.240	0.220	0.200	0.18	6.00	12	nHx:EA =2:3	I-c143	0.340
Reaction4-a								
Compound I-c143 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.330	1.20	6.00	4	MC:MeOH = 10:1			23.200	

1H-NMR(CDCl₃): δ 0.27(3H, d, J=6.8Hz), 0.67-0.80(4H, m), 0.88-0.97(1H, m), 1.36(9H, s), 1.74-1.85(1H, m), 2.71(1H, dd, J=13.9, 7.2Hz), 2.84-3.00(2H, m), 2.96(3H, s), 3.12(3H, s), 3.35(1H, dd, J=14.6, 5.2Hz), 3.96(1H, t, J=7.0Hz), 4.79(1H, d, J=11.0Hz), 5.46(1H, dd, J=11.5, 5.4Hz), 5.50(1H, brs), 6.35(1H, brs), 6.58(1H, d, J=8.0Hz), 6.90-7.05(4H, m), 7.12-7.16(2H, m)

Example 144

Phe(4-F)-N-Me-Leu-N-Me-Tyr(3-tBu)-NH₂

				R				
				i-Bu				
Reaction1								
Compound T4 (g)	Compound I7 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.747	1.000	0.910	0.83	19.00	12	nHx:EA=2:3	I-a144	1.320
Reaction2-b			•					
Compound I-a144 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
1.300	0.190	50.00	2	MC:Me	OH =20:1	I-b144	0.9	940
Reaction3		-						
Compound I-b144 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.940	0.850	0.760	0.69	25.00	12	nHx:EA =2:3	I-c144	1.230
Reaction4-a								
Compound I-c144 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	1	PLC nin
1.210	2.90	14.50	3	MC:Me	OH =20:1	0.750	19	.380

1H-NMR(CD₃OD):(two rotamers) δ 0.66, 0.73, 0.94 and 0.96(6H, d, J=6.0-6.6Hz),1.37 and 1.40(9H, s), 1.40-1.52(2H, m), 1.55-1.68(1H, m), 2.26 and 2.65(3H, s), 2.53-2.69(1H, m), 2.69-3.00(1H, m),2.86 and 3.00(3H, s), 3.09-3.29(1H, m),3.72-3.78 and 3.90-3.94(1H, m), 4.56-4.64(1H, m),4.94-5.06(1H, m), 5.39-5.52(1H, m), 6.55-6.78(2H, m), 6.94-7.30(5H, m)

Example 145

Phe(4-F)-N-Me-D-Leu-N-Me-Tyr(3-tBu)-NH₂

				R				
				i-Bu:D				
Reaction1								
Compound T4 (g)	Compound I8 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.810	0.960	1.000	0.91	25.00	12	nHx:EA=2:3	I-a145	1.450
Reaction2-a	······································							
Compound I-a145 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colı	ımn sol.	Product		ount g)
1.430	4.60	23.00	3	MC:M	eOH =5:1	I-b145	1.5	140
Reaction3		-						
Compound I-b145 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.140	1.010	0.910	0.83	25.00	12	nHx:EA=2:3	I-c145	0.940
Reaction4-a								
Compound I-c145 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colı	ımn sol.	Amount (g)		LC nin
0.920	2.20	11.00	3	MC:M	eOH =5:1	0.60	21	.40

ESI-MS(M++1):543

1H-NMR(CDCl₃): δ 0.72(3H, d, J=4.3Hz), 0.73(3H, d, J=4.1Hz), 0.81-0.92(2H, m), 1.24-1.30(1H, m), 1.36(9H, s), 2.73-2.90(3H, m), 2.84(3H, s), 2.99(3H, s), 3.30(1H, dd, J=14.6, 5.6Hz), 3.96(1H, t, J=7.2Hz), 5.02(1H, dd, J=9.9, 4.9Hz), 5.44(1H, dd, J=10.9, 5.6Hz), 5.63(1H, brs), 6.38(1H, brs), 6.57(1H, d, J=8.4Hz), 6.85(1H, dd, J=7.8, 1.9Hz), 6.91-7.01(3H, m), 7.09-7.13(2H, m)

Example 146

(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-

methylpropanoylamino]-N-{(1S)-2-[3-(tert-butyl)-4-

5 hydroxyphenyl]-1-carbamoylethyl}-N-methylpent-4-enamide

				R				
				Allyl				
Reaction1								
Compound T4 (g)	Compound 19 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.573	0.630	0.700	0.64	14.00	12	nHx:EA=2:3	I-a146	0.900
Reaction2-a								
Compound I-a146 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	mn sol.	Product		ount g)
0.870	2.90	14.0	3	MC:MeOH=10:1 1-b146		0.0	660	
Reaction3								
Compound I-b146 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.660	0.620	0.560	0.51	17.00	12	nHx:EA =2:3	I-c146	0.570
Reaction4-a								
Compound I-c146 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	1	PLC nin
0.550	1.35	5,40	3	MC:Me	:OH=10:1	0.36	17	.750

ESI-MS(M++1):527

1H-NMR(CDCl₃): (two rotamers) & 0.97-1.04(1/2H, m), 1.34 and 1.36(9H, s), 2.12-2.24(1/2H, m), 2.32-2.75(2H, m), 2.34 and 2.66(3H, s), 2.84-2.99(2H, m), 2.97(3H, s), 3.07-3.18(1H, m), 3.62-3.66 and 3.83-3.87(1H, m), 4.80-5.09(3H, m), 5.25-5.33 and 5.63-5.76(1H, m), 5.35-5.46(1H, m), 5.39(1H, brs), 6.06(0.5H, brs), 6.41 and 6.58(1H, d, J=8.2 and 8.0Hz), 6.74 and 6.83(1H, dd, J=7.9, 1.9Hz), 6.92-7.00(2H, m), 7.03-7.14(3H, m), 7.36(1/2H, brs)

Example 147

(2R)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-

methylpropanoylamino]-N-{(1S)-2-[3-(tert-butyl)-4-

5 hydroxyphenyl]-1-carbamoylethyl}-N-methylpent-4-enamide

				R				
				Allyl:D				
Reaction1								
Compound T4 (g)	Compound I10 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.180	1.300	1.440	1.30	30.00	12	nHx:EA =1:1	I-a147	0.340
Reaction2-a	<u> </u>							
Compound I-a147 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Product		ount g)
0.330	1.10	5.00	3	MC:Me	:ОН=7:1	I-b147	0.2	270
Reaction3								
Compound I-b147 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.270	0.240	0.220	0.30	6.00	12	nHx:EA =2:3	I-c147	0.370
Reaction4-a	-							
Compound I-c147 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)		LC in
0.350	1.30	5.00	3	MC:Me	OH=7:1	0.24	20.	320

1H-NMR(CDCl₃): 8 1.35(9H, s), 1.99-2.16(2H, m), 2.64-2.72(1H, m), 2.79-2.89(2H, m), 2.87(3H, s), 2.97(3H, s), 3.31(1H, d, J=15.3, 5.9Hz), 3.90(1H, t, J=7.0Hz), 4.87-4.93(2H, m), 5.01(1H, dd, J=9.0, 6.7Hz), 5.16-5.29(1H, m), 5.44(1H, dd, J=10.5, 6.0Hz), 5.50(1H, brs), 6.37(1H, brs), 6.57(1H, d, J=7.8Hz), 6.85(1H, dd, J=7.9, 1.9Hz), 6.92-6.98(2H, m), 7.02(1H, d, J=2.2Hz), 7.09-7.13(2H, m)

Example 148

Phe(4-F)-N-Me-Leu(γ -Me)-N-Me-Tyr(3-tBu)-NH₂

				R				
				neo-Pent				
Reaction1								
Compound T4 (g)	Compound I11 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.630	0.780	0.770	0.35	25.00	48	nHx:EA =1:2	I-a148	0.850
Reaction2-a				•				
Compound I-a148(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Co	lumn sol.	Product		ount g)
0.800	2.50	12.50	4	MC:	MeOH=9:1	I-b148	0.0	600
Reaction3								
Compound I-b148(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.580	0.470	0.42	30.00	12	nHx:EA:MC =1:2:1	I-c148	0.950
Reaction4-b					<u></u>			
Compound I-c148(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Со	lumn sol.	Amount (g)		PLC nin
0.950	0.140	13.00	3	MC:N	MeOH=20:1	0.58	20	.96
ESI-MS(M ⁺ +1):557							
` -	, ,	•	, ,		id 1.46(9H, s), 1.3 3.92(1/3H, dd, J=			

3.07(6H, s), 2.23-3.04(4H, m), 3.25-3.28(1H, m), 3.79(2/3H, m), 3.92(1/3H, dd, J=9.8, 4.6Hz), 5 J=6.9-8.2, 4.8-6.9Hz), 6.61 and 6.80(1H, d, J=8.2Hz), 6.74-7.37(6H, m)

Example 149

Phe(4-F)-N-Me-D-Leu(γ -Me)-N-Me-Tyr(3-tBu)-NH₂

				R				
			nec	Pent:D				
Reaction1								
Compound T4 (g)	Compound I12 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.800	0.990	0.980	0.90	30.00	12	nHx:EA=1:2	I-a149	1.250
Reaction2-a				• • • • • • • • • • • • • • • • • • • •	·		I	I
Compound I-a149(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Col	umn sol.	Product	I	ount g)
1.250	3.90	19.50	3	MC:M	IeOH=20:1	I-b149	0.	99
Reaction3						,,,,_	L	
Compound I-b149(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.970	0.780	0.71	50.00	5	nHx:EA=1:2	I-c149	1.500
Reaction4-b								
Compound I-c149(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol. Amount HPI				
1.500	0.230	20.00	2	MC:M	eOH=20:1	0.83	22	.63
ESI-MS(M+1):557		<u> </u>		······················	······································		****

1H-NMR(CD₃OD):(two rotamer) δ 0.62 and 0.84(9H, s), 0.88 and 1.35(2H, s), 1.40(9H, s), 2.45 and 2.82(3H, s), 2.84-2.95(3H, m), 3.04 and 3.10(3H, s), 3.23(1H, dd, J=14.7, 4.9Hz), 4.65(1H, dd, J=8.0, 2.3Hz), 5.28(1H, m), 5.45(1H, dd, J=11.8, 5.1Hz), 6.63(1H, d, J=7.9Hz), 6.88(1H, dd, J=8.0, 2.3Hz), 7.01(2H, m), 7.10(1H, d, J=2.3Hz), 7.25(2H, dd, J=8.5, 5.4Hz)

Table D-150A

Example 150A(less polar)

Phe(4-F)-N-Me-Ala(β -CF $_3$)-N-Me-Tyr(3-tBu)-NH $_2$

				R				
				CH ₂ CF ₃ :L,D-	mixture			
Reaction1								*****
Compound T4(g)	Compound I13(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.560	0.560	0.51	20.00	5.000	nHx:EA=1:1	I-a150	0.980
Reaction2-b							<u> </u>	!
Compound I-a150(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
0.980	0.500	20.00	2	MC·Me	OH =15:1	I-b150A	0.360(le	ss polar)
	0.000	20.00		MCM	011-15.1	I-b150B	0.280(mc	ore polar)
Reaction3								
Compound I-b150A(g)	Compound P4(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.360	0.310	0.270	0.27	15.00	12	nHx:EA=1:1	I-c150A	0.32
Reaction4-b					!			
Compound I-c150A(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HP m	
0.310	0.150	10.00	2	EA:Me(OH =15:1	0.200	18.	66
ESI-MS(M ⁺ +1)): 569		<u></u>				L	
1H-NMR(CD3 J=4.8Hz), 3.72(OD):(two rotan (1H, t, J=7.2Hz	ners) δ 1.38), 4.73(1H, t	and 1.41(9H, s), ers), 5.53 and 5.5	2.20, 2.56, 2 57(1H, d, J=4	.91, and 2.99(6H .6Hz), 5.80(1H, c	, s), 2.38-3.03(4H, n , J=4.4Hz), 6.55-6.7	n), 3.25 and 3.3 9(2H, m), 7.00	1(1H, d, -7.15(3H,

m), 7.25-7.30(2H, m)

Table D-150B

Example 150B(more polar)

Phe(4-F)-N-Me-Ala(β -CF₃)-N-Me-Tyr(3-tBu)-NH₂

				R				
			CH	2CF₃:L,D-mixt	ıre	···	*****	
Reaction3					*****			
Compound I-b150B(g)	Compound P4(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.270	0.240	0.200	0.20	15.00	12.00	nHx:EA=1:1	I-c150B	0.300
Reaction4-b					-			
Compound I-c150B(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	nn sol.	Amount (g)	HP m	_
0.300	0.150	10.00	2	EA:Me0	OH =20:1	0.170	21.	51

ESI-MS(M+1): 569

1H-NMR(CD₃OD):(two rotamers) δ 1.40(9H, s), 2.19-2.40(2H, m), 2.73 and 2.76(1H, d, J=7.0Hz), 2.89(3H, s), 2.92-2.96(1H, m), 2.98(3H, s), 3.21 and 3.24(1H, d, J=6.1Hz), 4.03(1H, t, J=7.2Hz), 4.52-4.61(1H, m), 5.36(1H, q, J=5.5Hz), 5.61(1H, t, J=7.0Hz), 6.67(1H, d, J=8.0Hz), 6.89(1H, dd, J=7.9, 2.4Hz), 7.01-7.10(3H, m), 7.24-7.29(2H, m)

Example 151

Phe(4-F)-N-Me-Chg-N-Me-Tyr(3-tBu)- NH_2

				R				
				c-Hex				
Reaction1								
Compound T4 (g)	Compound I14(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
1.290	1.500	2.650	1.45	30.00	20	nHx:EA=1:1	I-a151	0.700
Reaction2-a			*		·			!
Compound I-a151(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	ımn sol.	Product		ount g)
0.700	4.00	20.00	4	MC:M	eOH =20:1	I-b151	0.4	100
Reaction3						•		
Compound I-b151(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.400	0.380	0.760	0.41	20.00	20	nHx:EA=1:1	I-c151	0.500
Reaction4-a					J	······································	,	
Compound I-c151(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colı	ımn sol.	Amount (g)	HP m	
0.500	4.00	20.00	4	MC:Mo	eOH =20:1	0.400	20.	140

1H-NMR(CDCl₃): (two rotamers) & 0.72-1.68(10 H, m), 1.35 and 1.40(9H, s), 1.82-2.10(1H, m), 2.30-2.65(1H, m), 2.52(3H,s), 2.70-2.90(1H, m), 2.75(3H, s), 2.75-2.90(1H, m), 3.05-3.40(3H, m), 3.60-3.85(1H, m), 5.05-5.20(2H, m), 6.35-6.75(2H, m), 6.75-7.20(5H, m)

Example 152

 $\label{eq:Phe} \texttt{Phe(4-F)-N-Me-D-Chg-N-Me-Tyr(3-tBu)-NH}_2$

				R				
				c-Hex:D				
Reaction1								
Compound T4 (g)	Compound I15(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.600	0.620	1.520	0.69	20.00	20	nHx:EA=1:1	I-a152	0.540
Reaction2-a	· · · · · · · · · · · · · · · · · · ·							
Compound I-a152(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colt	ımı sol.	Product	Ame (g	ount g)
0.540	3.00	15.00	4	MC:Me	eOH =20:1	I-b152	0.2	50
Reaction3								
Compound I-b152(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.250	0.240	0.470	0.26	15.00	20	nHx:EA=1:1	I-c152	0.350
Reaction4-a			<u> </u>					
Compound I-c152(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HP m	
0.350	3.00	10.00	4	MC:Me	OH =20:1	0.27	22.0	040
ESI-MS(M ⁺ +1	<i>/</i>							
2.95(3H, s), 3.	Cl3): (two rotan 10-3.25(3H, m) 7.05-7.15(2H, m	, 5.20-5.27(2	-1.70(11H, m), 1. 2H, m), 5.55-5.65	38(9H, s), 2 5(1H, m), 6.	.15-2.35(1H, m 15-6.25(2H, m),), 2.25(3H, s), 2 , 6.54 and 6.57(2	:.75-3.05(1H, 2H, d, J=8.4	m), Hz), 6.75-

Example 153

Phe(4-F)-N-Me-Cha-N-Me-Tyr(3-tBu)-NH $_2$

				R				
				CH ₂ c-Hex				
Reaction1								
Compound T4 (g)	Compound I16 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.950	1.300	1.150	1.10	38.00	15	nHx:EA=1:1	I-a153	1.600
Reaction2-a						1		.
Compound I-a153 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Product	Ame (g	ount g)
1.600	4.80	24.00	3	MC:Me	OH =20:1	I-b153	0.8	40
Reaction3	•		1					
Compound I-b153 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount
0.840	0.680	0.620	0.60	20.00	15	nHx:EA=1:1	I-c153	1.100
Reaction4-a			-			1 · · · · · · · · · · · · · · · · · · ·	- '	
Compound I-c153 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HP m	
1.100	2.40	12.00	3	MC:Me	OH =30:1	0.50	21.	154
ESI-MS(M++1): 583					!		

1H-NMR(CDCl₃): (two rotamers) δ 0.09-1.88(13H, m), 1.35 and 1.26(9H, s), 2.32-2.80(2H, m), 2.46 and 2.74(3H, s), 2.83-3.27(3H, m), 2.99 and 3.03(3H, s), 3.59-3.73 and 3.81-3.95(1H, m), 4.62-4.74 and 5.11-5.25(1H, m), 5.27-5.59(2H, m), 6.08(1/2H, brs), 6.44 and 6.63(1H, d, J=7.9-8.3Hz), 6.77 and 6.87(1H, dd, J=7.2-7.5 1.8-1.9Hz), 6.92-7.20(5H, m), 7.59(1/2H, brs)

Table D-154

Phe(4-F)-N-Me-D-Cha-N-Me-Tyr(3-tBu)-NH₂

				R				
			(CH ₂ c-Hex:D)			
Reaction1								
Compound T4 (g)	Compound I17 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.730	1.000	0.900	0.80	29.00	15	nHx:EA=1:1	I-a154	1.200
Reaction2-a								
Compound I-a154(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	ımn sol.	Product		ount g)
1.200	3.60	18.00	3	МС:М	eOH =20:1	I-b154	0.7	740
Reaction3								
Compound I-b154(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.740	0.600	0.540	0.50	17.00	15	nHx:EA=1:1	I-c154	0.900
Reaction4-a	L		!		l	I		L
Compound I-c154 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	ımn sol.	Amount (g)	HP m	LC in
0.900	2.00	10.00	3	MC:Me	OH =30:1	0.24	25.	144
ESI-MS(M ⁺ +1	.): 583		·					

1H-NMR(CDCl₃): δ 0.62-1.37(13H, m), 1.37(9H, m), 2.67-3.10(7H, m), 2.88(3H, s), 2.97(3H, s), 3.30 and 3.35(1H, d, J=3.3-3.4Hz), 3.95(1H, t, J=6.9Hz), 5.04 and 5.08(1H, d, J=4.2-4.5Hz), 5.43 and 5.47(1H, d, J=5.4-5.8Hz), 5.52(1H, brs), 6.37(1H, brs), 6.58(1H, d, J=7.9Hz), 6.79-7.09(4H, m), 7.11(1H, d, J=5.2Hz), 7.14(1H, d, J=5.4Hz)

Example 155

Phe(4-F)-N-Me-Phe-N-Me-Tyr(3-tBu)- NH_2

				R				
				CH₂Ph				
Reaction1								
Compound T4 (g)	Compound I18 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.800	1.000	1.230	0.89	20.00	20	nHx:EA =1:1 I-a155 1		1.390
Reaction2-b				I	·		······	
Compound I-a155(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colı	ımı sol.	Product		ount g)
1.390	0.300	20.00	20	MC:MeOH =20:1		I-b155	0.8	340
Reaction3				L.			 	
Compound I-b155(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.770	0.710	0.720	0.52	15.00	20	nHx:EA =1:1	I-c155	0.997
Reaction4-a			•		<u></u>			
Compound I-c155(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	ımn sol.	Amount (g)	HP m	
	3.00	10.00	4	MC:Mo	eOH =20:1	0.68	19.	710

1H-NMR(CDCl₃):(two rotamers) δ 1.40 and 1.42(9H, s), 2.54(3H, s), 2.61-3.04(5H, m), 3.15-3.39(4H, m), 3.67-3.85(1H, m) 5.32-5.72(2H, m), 6.57-6.72(1H, m), 6.98-7.29(10H, m)

Table D-156

Phe(4-F)-N-Me-D-Phe-N-Me-Tyr(3-tBu)- NH_2

				R				
				CH ₂ Ph:D				
Reaction1								
Compound T4 (g)	Compound I19 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.800	0.800	1.230	0.89	20.00	20	nHx:EA=1:1	I-a156	1.140
Reaction2-a							· · · · · · · · · · · · · · · · · · ·	L
Compound I-a156(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	umn sol.	Product		ount g)
1.140	3.00	10.00	4	МС:М	eOH =20:1	I-b156	0.9	990
Reaction3								
Compound I-b156(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.770	0.710	0.720	0.52	20,00	20	nHx:EA=1:1	I-c156	0.960
Reaction4-a			•		<u> </u>			
Compound I-c156(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colt	ımn sol.	Amount (g)	HP m	
0.960	3.00	10.00	4	MC:Me	eOH =20:1	0.73	21.	960
ESI-MS(M ⁺ +1): 577						,	
	Cl ₃): δ 1.42(91 5.75-6.80(1H, n			7-3.25(2H, 1	n), 3.04(3H,s), 3	3.15(3H, s), 3.32	2-3.51(3H, n	n), 4.01-

Table D-157

Phe(4-F)-N-Me-Phe(4-F)-N-Me-Tyr(3-tBu)-NH $_2$

				R				
			C	H ₂ Phe(4-F)				
Reaction1								
Compound T4 (g)	Compound I20 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.960	1.370	1.180	1.10	38.00	15	nHx:EA=1:2	I-a157	1.880
Reaction2-a								
Compound I-a157 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	ımn sol.	Product		ount 3)
1.880	5.40	27.00	3	MC:MeOH =20:1		I-b157	1.2	220
Reaction3								
Compound I-b157(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
1.220	0.780	0.710	0.60	23.00	18	nHx:EA=1:2	I-c157	1.550
Reaction4-a								
Compound I-c157 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	ımn sol.	Amount (g)		LC in
	3.30	16.00	3	MC:Mo	eOH =20:1	0.73	21.	035

1H-NMR(CDCl₃): (two rotamers) δ 1.28 and 1.35(9H, s), 2.30-3.25(12H, m), 2.38 and 2.56(3H, s), 2.86 and 2.99(3H, s), 3.49-3.72(1H, m), 4.84-5.17(1H, m), 5.18-5.41(2H, m), 5.51-5.78(1H, m), 6.38 and 6.43(1H, d, J=8.3Hz), 6.60-7.23(10H, m)

Table D-158

Phe(4-F)-N-Me-D-Phe(4-F)-N-Me-Tyr(3-tBu)-NH $_2$

				R				
			CH	₂ Phe(4-F):D				
Reaction1								
Compound T4 (g)	Compound I21 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.700	1.000	0.850	0.80	27.00	18	nHx:EA=1:2	I-a158	1.120
Reaction2-a	•				I	·		
Compound I-a158 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	n sol.	Product		ount g)
1.120	3,30	16.50	3	MC:MeOH =20:1		I-b158	0.880	
Reaction3			* <u>-</u>		······································	<u></u>		
Compound I-b158 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.880	0.560	0.500	0.50	16.00	15	nHx:EA=1:2	I-c158	0.900
Reaction4-a						· · · · · · · · · · · · · · · · · · ·		
Compound I-c158 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP	LC in
0,900	2.00	10.00	3	MC:MeO	H =20:1	0.30	23.	049

1H-NMR(CDCl₃): (two rotamers) d 1.34 and 1.37(9H, s), 2.38-2.51(1H, m), 2.53-2.82(5H, m), 2.86(3H, s), 2.88(3H, s), 3.04-3.15(1H, m), 3.21 and 3.26(1H, d, J=6.4-6.3), 3.78-3.95(1H, m), 5.26-5.38(1H, m), 5.38-5.52(1H, m), 5.62(1H, brs), 6.27(1H, brs), 6.79(1H, d, J=8.1Hz), 6.78(1H, d, J=8.7Hz), 6.83-7.22(9H, m)

Table D-159

Phe(4-F)-N-Me-Phe(4-C1)-N-Me-Tyr(3-tBu)- NH_2

				R				
				CH ₂ Ph(4-Cl)				
Reaction1								
Compound T4 (g)	Compound I22 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.080	1.630	1.330	0.91	20.00	16	nHx:EA=1:1	I-a159	2.000
Reaction2-a		`						
Compound I-a159(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Product		ount g)
2.000	5.60	25.00	1	MC:MeOH =20:1		I-b159	1.	13
Reaction3								
Compound I-b159 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.130	0.861	0.777	0.53	20.00	3	nHx:EA=1:1	I-c159	0.908
Reaction4-a								
Compound I-c159(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)	HP m	
0.908	1.96	10.00	3	MC:Me0	OH =20:1	0.625	21	.59
ESI-MS(M ⁺ +1):612							
			and 1.35(9H,s), 2 0-5.50(5/2H, m)					s), 3.56 and

Table D-160

Phe(4-F)-N-Me-D-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH $_2$

ā				R					
			C	H ₂ Ph(4-Cl):	D				
Reaction1									
Compound T4 (g)	Compound I22 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun	
0.519	0.781	0.639	0.44	10.00	16	nHx:EA=1:1	I-a160	0.947	
Reaction2-a									
Compound I-a160(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	nn sol.	Product		ount g)	
0.947	5.60	15.00	1	MC:MeOH =20:1		I-b160	0.6	0.624	
Reaction3	•								
Compound I-b160 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)	
1.130	0.476	0.430	0.30	15.00	3	nHx:EA=1:1	I-c160	0.46	
Reaction4-a									
Compound I-c160(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	nn sol.	Amount (g)	HP m		
0.460	1.00	5.00	3	MC:Me	OH ≈20:1	0.300	19	.53	
ESI-MS(M++1):612					•			
1H-NMR(CD	Cl ₃): d 1.35(91	H,s), 1.30-2	.96(5H, m), 2.88((3H, s), 2.89(3H, s), 3.03-3.3	5(1H, m), 3.83(3/4H, m), 5.2	9(2H, s),	

5.43(6/4H, m), 6.20(3/4H, brs), 6.52(1H, d, J=8.8Hz), 6.78(1H, d, J=8.8Hz), 6.90-7.32(10H, m)

Table D-161

Phe(4-F)-N-Me-Tyr-N-Me-Tyr(3-tBu)-NH₂

				R					
			C	H ₂ Ph(4-OH)					
Reaction1									
Compound T4 (g)	Compound I24 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.300	2.600	1.730	1.09	30.00	3	nHx:EA=1:1	I-a161	2.610	
Reaction2-a									
Compound I-a161(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	nn sol.	Product		ount g)	
2.610	6.47	33.00	3	MC:MeOH =20:1		I-b161	1.3	1.300	
Reaction3	<u> </u>								
Compound I-b161 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.300	1.200	0.964	0.70	30.00	3	nHx:EA=1:1	I-c161	1.880	
Reaction4-b									
Compound I-c161(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		PLC nin	
1.880	0.282	40.00	3	MC:Me	OH =20:1	0.500	17	7.94	
ESI-MS(M ⁺ +		· · · · · · · · · · · · · · · · · · ·							
1H-NMR(CD	3OD): (two rot	amers) d 1.4	1 and 1.42(9H,s), 2.32 and 2.	39(3H, s), 2.90	and 3.07(3H, s)	, 2.59-3.50(7	H, m), 3.7	

and 3.85(1/2H, m), 5.05 and 5.30(1/2H, m), 5.60(1H, m), 6.50-7.43(11H, m)

Table D-162

Phe(4-F)-N-Me-D-Tyr-N-Me-Tyr(3-tBu)-NH₂

				R					
			C	H ₂ Ph(4-OH):	D				
Reaction1									
Compound T4 (g)	Compound I25 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)	
0.920	2.000	1.220	0.77	30.00	3	nHx:EA=1:1	I-a162	1.550	
Reaction2-b									
Compound I-a162(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)	
1.550	0.233	20.00	12	MC:MeOH =20:1		I-b162	0.9	0.977	
Reaction3	l!				,L				
Compound I-b162 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)	
0.977	1.080	0.871	0.64	20.00	3	nHx:EA=1:1	I-c162	1.330	
Reaction4-b	\ <u></u>				•				
Compound I-c162(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		PLC nin	
	0,200	30.00	3	MC:Me	OH =20:1	0.500	18	3.54	

1H-NMR(CD₃OD): δ 1.45(9H,s), 2.42-2.75(4H, m), 3.02(3H, s), 2.34-3.15(2H, m), 3.32(1/5H, dd, J = 7.6, 8.8Hz), 4.03(4/5H, t, J=8.8Hz), 5.42-5.65(2H, m), 6.65-7.25(12H, m)

Example 163

Phe(4-F)-N-Me-Ala(β -2-thienyl)-N-Me-Tyr(3-tBu)-NH₂

				R				
			CI	H ₂ (2-Thienyl)				
Reaction1								
Compound T4 (g)	Compound I26 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.670	0.916	0.820	0.56	20.00	16	nHx:EA=1:1	I-a163	1.280
Reaction2-a								
Compound I-a163(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
1.280	3.80	19.00	3	MC:MeOH =20:1		I-b163	0.513	
Reaction3								
Compound I-b163 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.513	0.418	0.379	0.30	20.00	3	nHx:EA=1:1	I-c163	0.587
Reaction4-a								
Compound I-c163(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colui	Column sol.		HP m	LC in
0.587	1.32	10.00	3	MC:Me	OH =20:1	0.35	23	3.7

1H-NMR(CDCl₃+ CD₃OD): (two rotamers) δ 1.30 and 1.35(9H,s), 1.80(1/3H, m), 2.25, 2.58 and 2.88, 3.0(6H, s), 2.0-3.25(5H, m), 3.35(2/3H, m), 3.60(1H, m), 4.90(1/3H, m), 5.27(2/3H, m), 5.37-5.64(1H, m), 6.40-6.72(2H, m), 6.72-7.20(8H, m)

Example 164

Phe(4-F)-N-Me-D-Ala(β -2-thienyl)-N-Me-Tyr(3-tBu)-NH₂

				R				
			CI	₁₂ (2-Thienyl):	D			
Reaction1								
Compound T4 (g)	Compound I26 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.760	1.040	0.930	0.64	20.00	16	nHx:EA=1:1	I-a164	1.430
Reaction2-a			1					
Compound I-a164(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Product		ount g)
1.430	4.43	25.00	3	MC:MeOH =20:1 I-b164		0.500		
Reaction3			· · · · · · · · · · · · · · · · · · ·					
Compound I-b164 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.400	0.360	0.28	20.00	3	nHx:EA=1:1	I-c164	0.857
Reaction4-a			<u> </u>					
Compound I-c164(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)		LC in
0.857	1.92	15.00	3	MC:Me	OH =20:1	0.33	23	1.7
ESI-MS(M ⁺ +1	1):583	·	.1					

1H-NMR(CDCl₃): δ 1.35(9H,s), 2.17-3.20(7H, m), 2.91(3H, s), 2.95(3H, s), 3.28(1/2H, dd, J=15.8, 7.9Hz), 3.85(1/2H, t, J=7.9Hz), 5.35 and 5.45(2H, m), 5.65(1H, brs), 6.28(2/3H, brs), 6.48-7.30(28/3H, m)

Table D-165

Phe(4-F)-N-Me-Ala(β -c-Pr)-N-Me-Tyr(3-tBu)-NH₂

Reaction1				CH ₂ c-Pr				
Reaction1				C112C-11				
Compound (T4 (g)	Compound I28 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.820	1.100	1.000	0.90	33.00	17	nHx:EA=1:1	I-a165	1.260
Reaction2-b								
Compound I-a165 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	ın sol.	Product		ount g)
1.260	0.120	24.00	3	MC:MeC)H =30:1	I-b165	0.0	600
Reaction3								
Compound (I-b165 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.540	0.490	0.50	16.00	18	nHx:EA=1:1	I-c165	0.590
Reaction4-a			<u> </u>					
Compound I-c165 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colun	nn sol.	Amount (g)		LC in
0.590	1.40	7.00	3	MC:Me0	OH =30:1	0.300	18	.61

1H-NMR(CD₃OD): (two rotamers) δ 0.85-0.78(5H, m), 1.39-1.91(2H, m), 1.47 and 1.49(9H, s), 2.34 and 2.69(3H, s), 2.49-3.38(4H, m), 2.98 and 3.03(3H, s), 3.75-3.48(1H, m), 5.06-5.15 and 5.49-5.67(2H, m), 6.65-6.88(2H, m), 7.04-7.43(5H, m)

5

Scheme 10 shows the synthesis process of Examples 166 and 176.

Scheme 10: Synthesis process of Examples 166 and 176

I-c166, I-c176

The synthesis process in scheme 10 is explained below.

10 Reaction step 1)

To solutions of Compound P4, Compounds I29 and I30 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-al66 and I-al76.

20

15

Reaction step 2)

To solutions of Compounds I-a166 and I-a176 in

dioxane, 2N NaOH was added and stirred at room temperature. The reaction mixtures were adjusted to pH 3 to 4 by the addition of 1N HCl, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-b166 and I-b176.

10 Reaction step 3)

To solutions of Compounds I-b166 and I-b176, Compound T4 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-c166 and I-c176.

20

25

15

5

Reaction step 4)

To solutions of Compounds I-c166 and I-c176 in methanol, Pd(OH)₂ was added and stirred in a hydrogen atmosphere at room temperature. After filtering off the Pd(OH)₂, the filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds.

Examples conducted according to Scheme 10 are shown in Tables D-166 and D-176.

Table D-166

Phe(4-F)-N-Me-Phg-N-Me-Tyr(3-tBu)-NH₂

Reaction1								
Compound I29 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.630	1.000	1.170	1.22	30.00	3	nHx:EA =1:1	I-a166	1.070
Reaction2	<u> </u>		-lii		<u> </u>			L.—
Compound I-a166(g)	2N NaOH (ml)	dioxane (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
1.070	2.50	20.00	3	МС:Ме	OH =20:1	I-b166	1.0)30
Reaction3								
Compound I-b166 (g)	Compound T4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.030	0.504	0.668	0.42	20.00	3	nHx:EA =1:1	I-c166	0.595
Reaction4	<u> </u>	<u> </u>			<u> </u>			
Compound I-c166(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		LC in
0.595	0.100	10.00	3	MC:Me	OH =20:1	0.480	20	.00
ESI-MS(M ⁺ +1	1):563		<u> </u>			1		

Table D-176

Phe(4-F)-N-Me-D-Phg-N-Me-Tyr(3-tBu)- NH_2

Reaction1								
Compound I30 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.646	2.160	2.300	1.45	20.00	3	nHx:EA =1:1	I-a176	1.030
Reaction2								
Compound I-a176(g)	2N NaOH (ml)	dioxane (ml)	Reaction time (hr)	Colu	mn sol.	Product Amount (g)		
1.030	2.40	20.00	3	MC:MeOH =20:1		I-b176	0.540	
Reaction3	L,.,.		_1					
Compound I-b176 (g)	Compound T4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.540	0.268	0.355	0.22	10.00	3	nHx:EA =1:1	I-c176	0.450
Reaction4								
Compound I-c176(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.450	0.070	10.00	3	MC:MeOH =20:1		0.270	20.98	

1H-NMR(CD₃OD): δ 1.46(9H,s), 2.50(3H, s), 2.82(3H, s), 2.72-3.13(3H, m), 3.402H, m), 4.20(1H, m), 5.48(1H, dd, J=13.2, 6.2Hz), 6.25(1H, brs), 6.35(2H, d, J=8.8Hz), 6.75(1H, d, J=8.8Hz), 6.90(1H, dd, J=8.8, 1.7Hz), 7.05-7.45(8H, m)

Scheme 11 shows the synthesis process of Examples 167-171.

Scheme 11: Synthesis scheme of Examples 167-171

The synthesis process in scheme 11 is explained below.

10 Reaction step 1)

To solutions of Compound T1, Compounds I31 to I35 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-al67 to I-al71.

20

15

Reaction step 2)

To solutions of Compounds I-a167 to I-a171 in methanol, Pd/C was added and stirred in a hydrogen

atmosphere at room temperature. After filtering off the Pd/C, the filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-b167 to I-b171.

Reaction step 3)

5

10

15

To solutions of Compounds I-b167 to I-b171, Compound P1 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-c167 to I-c171.

Reaction step 4)

dichloromethane, TFA was added under cooling and stirred at room temperature. The reaction mixtures were concentrated under reduced pressure, neutralized by the addition of a saturated NaHCO₃ aqueous solution, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds.

Examples conducted according to Scheme 11 are shown in Tables D-167 to D-171.

Table D-167

Phe(4-F)-N-Me- α -Me-Phe-Tyr(3-tBu)-NH₂

				R				
			(CH ₂ Phe				
Reaction1								
Compound T1 (g)	Compound I31 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.570	1.180	0.900	0.80	24.00	5	nHx:EA =1:2	I-a167	0.360
Reaction2	<u> </u>							
Compound I-a167 (g)	Pd/C (g)	MeOH (ml)	Reaction time Produ		uct	Amount (g)		
0.360	0.040	6.00	3 I-b16		67	0.260		
Reaction3	<u></u>							
Compound I-b167 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.260	0.420	0.780	0.40	6.30	120	nHx:EA =1:2	I-c167	0.060
Reaction4	· · · · · ·							
Compound I-c167 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.060	0.20	0.70	3	MC:MeOH =20:1		0.01	21.813	
ESI-MS(M++								
1H-NMR(CD	Cl ₃): δ 1.30(3H	, s), 1.34(9H,	s), 2.37-2.62(3I	I, m), 2.51(3	J=9.0Hz), 6.75(i, J=14.5Hz)	, 3.24-3.41(2	H, m),

7.37(9H, m)

Example 168

Phe(4-F)-N-Me- α -Me-Phe-Tyr(3-tBu)-NH $_2$:Diastereomeric

mixture

				R					
				CH ₂ Phe:D					
Reaction1									
Compound T1 (g)	Compound I32 (g)	CMPI (g)	TEA (ml)	l Column sol.		Column sol.	Product	Amount (g)	
0.390	0.820	0.640	0.60	16.00	5	nHx:EA =1:2	I-a168	0.670	
Reaction2									
Compound I-a168 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)		Pro	Product		Amount (g)	
0.670	0.060	12.00	3	3		I-b168		0.500	
Reaction3	·								
Compound I-b168 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF Reaction time (ml) (hr)		Column sol.	Product	Amount (g)	
0.500	0.810	1.400	1.20	12.00	120	nHx:EA =2:1	I-c168	0.210	
Reaction4									
Compound I-c168 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min		
0.210	0.53	2.60	3	MC:MeOH =20:1 0.070		0.070	20.15/20.93		

ESI-MS(M+1): 577

1H-NMR(CDCl₃): (two rotamers) & 1.12-1.41(3H, m), 1.35(9H, s), 1.98 and 2.40(3H, s), 2.36(1H, s), 2.46-2.78(2H, m), 2.82-3.28(4H, m), 3.42-3.83(2H, m), 4.52-4.72(1H, m), 5.38-5.56(1H, m), 5.98-6.22(1H, m), 6.61-6.28(2H, m), 6.35-7.38(10H, m)

5

Table D-169

Phe(4-F)-N-Me- α -Me-Leu-Tyr(3-tBu)-NH $_2$

				R				
				i-Bu				
Reaction1								
Compound T1 (g)	Compound I33 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.560	1.770	2.310	1.68	60.00	12	nHx:EA:MC = 1:1.5:1	I-a169	2.390
Reaction2								
Compound I-a169(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)		Product		Amount (g)	
2.390	0.360	80.00	12		I-b169		1.490	
Reaction3								
Compound I-b169(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.490	1.230	1.510	1.10	78.00	12	nHx:EA=1:2	I-c169	0.910
Reaction4-a	l	<u> </u>						
Compound I-c169(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.850	1.30	1.30	4	MC:MeOH =25:1		0.130	21.50	

1H-NMR(CD₃OD): δ 0.79(6H, t, J=7.0Hz), 1.27(3H, s), 1.46(9H, s), 1.51-1.79(3H, m), 2.54-2.67(2H, m), 2.76(3H, s), 3.04(1H, dd, J=14.3, 5.6Hz), 3.21(1H, dd, J=14.0, 6.8Hz), 3.81(1H, t, J=6.5-7.1Hz), 4.56(1H, dd, J=14.1, 6.4Hz), 5.39(1H, brs), 5.78(1H, brs), 6.61(1H, d, J=7.8Hz), 6.93-7.14(6H, m), 7.45(1H, brs)

Table D-170

Phe(4-F)-N-Me- α -Me-D-Abu-Tyr(3-tBu)-NH $_2$

			R					
	· · · · · · · · · · · · · · · · · · ·		Et:D					
Compound I34(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
0.150	0.220	0.16	3.00	12	nHx:EA =1:1	I-a170	0.251	
Pd/C (g)	MeOH (ml)	Reaction time (hr)		Product		Amount (g)		
0.150	5.00	3		I-b	I-b170		0.151	
Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
0.18	0.160	0.12	3.00	16	nHx:EA =1:1	I-c170	0.145	
L		<u> </u>						
TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min		
	3.00	2.5	EA:MeOH =20:1		0.075	19.5		
	134(g) 0.150 Pd/C (g) 0.150 Compound P1(g) 0.18	I34(g) (g) 0.150 0.220 Pd/C MeOH (ml) 0.150 5.00 Compound P1(g) (g) 0.18 0.160 TFA MC	I34(g) (g) (ml) 0.150 0.220 0.16	Compound CMPI TEA THF (ml) Compound CMPI TEA THF Reaction time (hr)	Compound CMPI TEA THF Reaction time Column sol.	Compound CMPI TEA THF Reaction time Column sol. Product		

1H-NMR(CDCl₃): δ 0.57(3H, t, J=7.6Hz), 1.21(3H, s), 1.37(9H, s), 1.63-1.82(2H, m), 1.70-1.92(2H, m), 2.59-2.71(2H, m), 2.72(3H, s), 3.03-3.21(2H, m), 3.84(1H, t, J=7.0Hz), 4.60(1H, q, J=6.0Hz), 5.51(1H, brs), 5.84(1H, d, J=7.3 Hz), 6.62(1H, d, J=8.0Hz), 6.91-7.03(5H, m), 7.09-7.14(2H, m), 7.54(1H, s)

Table D-171

Phe(4-F)-N-Me- α -Me-D-Val-Tyr(3-tBu)-NH $_2$

				R				
				i-Pr:D				
Reaction1								
Compound T1 (g)	Compound I35 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.144	0.170	0.150	0.17	3.6	12	nHx:EA=3:2	I-a171	0.120
Reaction2	· · · · · · · · · · · · · · · · · · ·							
Compound I-a171(g)	Pd/C (g)	MeOH (ml)	1	Reaction time (hr) Pro		duct	Amount (g)	
0.120	0.020	5.00	1.:	1.5 I-b		71 0.080)80
Reaction3								
Compound I-b171(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.080	0.190	0.170	0.12	2.00	30	nHx:EA=2:3	I-c171	0.050
Reaction4	!		<u> </u>					
Compound I-c171(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.050	0.36	1.00	3	MC:MeOH =7:1		0.02	20.40	

1H-NMR(CDCl₃): 8 0.69(3H, d, J=6.7Hz), 0.85(3H, d, J=6.7Hz), 1.16(3H, s), 1.36(9H, s), 1.76-1.92(1H, m), 2.27-2.44(1H, m), 2.52-2.70(2H, m), 2.82(3H, s), 3.03-3.24(2H, m), 4.54-4.62(1H, m), 5..47(1H, brs), 5.76(1H, d, J=7.5Hz), 6.60(1H, d, J=8.1Hz), 6.87-7.06(4H, m), 7.09-7.16(2H, m), 7.37(1H, brs)

Scheme 12 shows the synthesis process of Examples 172 and 173.

Scheme 12: Synthesis scheme of Examples 172 and 173

The synthesis process in scheme 12 is explained below.

10 Reaction step 1)

To solutions of Compound T1, Compounds I36 and I37 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-a172 and I-173.

20

15

5

Reaction step 2)

To solutions of Compounds I-a172 and I-a173 in methanol, Pd(OH)₂ was added and stirred in a hydrogen

atmosphere at room temperature. After filtering off the Pd(OH)₂, the filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-b172 and I-b173.

Reaction step 3)

5

10

15

20

25

To solutions of Compounds I-b172 and I-b173, Compound P1 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixtures were mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give Compounds I-c172 and I-c173.

(Reaction step 4)

To solutions of Compounds I-c172 and I-c173 in dichloromethane, TFA was added under cooling and stirred at room temperature. The reaction mixtures were concentrated under reduced pressure, neutralized by the addition of a saturated aqueous NaHCO3 solution, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds.

Examples conducted according to Scheme 12 are shown in Tables D-172 and D-173.

Table D-172

Example 172

 $(2S)-N-[(N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carb}]$ amoylethy1}carbamoy1)cyclopenty1]-2-amino-3-(4-fluoropheny

5 1)-N-methylpropanamide

Reaction1								
Compound T1 (g)	Compound 136 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	1.050	0.973	0.70	20.00	3	nHx:EA =1:1	I-a172	1.210
Reaction2			•					
Compound I-a172(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reactio (h		Proc	duct	Colur	nn sol.
1.210	0.182	30.00	3		I-b1	172	MC:Me	OH =20:1
Reaction3								
Compound I-b172 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.744	1.170	1.050	0.72	20.00	52	nHx:EA =1:1	I-c172	0.518
Reaction4								
Compound I-c172(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	nn sol.	Amount (g)		LC in
0.518	1.330	10.00	3	MC:Me	OH =20:1	0.130	19	.59
ESI-MS(M*+1):527							

3.35(2H, m), 3.58 and 3.85(1H, m),4.30 and 4.61(1H, m), 5.68(1H, brs),6.08-6.42(1H, m), 6.51-7.39(7H, m)

Table D-173

Example 173

(2S)-N-[(N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}carbamoyl)cyclohexyl]-2-amino-3-(4-

5 fluorophenyl)-N-methylpropanamide

Reaction1								
Compound T1(g)	Compound I37 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.708	1.310	0.766	0.84	20.00	3	nHx:EA =1:1	I-a173	1.400
Reaction2	L		<u> </u>					
Compound I-a173(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction (h		Pro	duct		ount g)
1.400	0.210	30.00	3	1	I-b:	173	0.9	934
Reaction3	<u></u>							
Compound I-b173 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.930	1.410	1.270	0.87	30.00	120	nHx:EA =1:1	I-c173	0.271
Reaction4								
Compound I-c173(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		LC in
0.271	0.700	5.00	3	MC:Me	OH =20:1	0.030	24	.76
ESI-MS(M ⁺ +1	<u> </u>					<u></u>		

1H-NMR(CDCl₃): (two rotamers) & 1.30 and 1.40(9H,s), 1.15-2.50(10H, m), 2.52-2.80(2H, m), 2.86 and 2.92(3H, s), 3.02-3.35(2H, m), 3.58 and 3.85(1H, m), 4.30 and 4.61(1H, m),5.68(1H, brs),6.08-6.42(1H, m), 6.51-7.39(7H, m)

5

Scheme 13 shows the synthesis process of Example 174.

Scheme 13: Synthesis scheme of Example 174

The synthesis process in scheme 13 is explained below. Reaction step 1)

10 To a solution of Compound T1, Compound I38 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-a174.

Reaction step 2)

To a solution of Compound I-al74 in dichloromethane,

TFA was added under cooling and stirred at room temperature.

The reaction mixture was concentrated under reduced pressure, neutralized by adding a saturated aqueous NaHCO₃ solution, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-b174.

(Reaction step 3)

5

20

25

To a solution of Compound I-b174, Compound P1 and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered.

The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-c174.

(Reaction step 4)

To a solution of Compound I-c174 in dichloromethane,
TFA was added under cooling and stirred at room temperature.
The reaction mixture was concentrated under reduced
pressure, neutralized by adding a saturated aqueous NaHCO₃
solution, extracted with ethyl acetate, dried over
anhydrous magnesium sulfate and filtered. The filtrate was
concentrated under reduced pressure; the thus obtained
residue was purified by column chromatography (silica gel)
to give the titled compound.

Example conducted according to Scheme 13 is shown in Table D-174.

Table D-174

Example 174

Phe(4-F)-N-Me-Tle-Tyr(3-tBu)- NH_2

Reaction1								
Compound T1 (g)	Compound I38 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.633	0.660	0.756	0.37	15.00	24	nHx:EA =1:2	I-a174	0.670
Reaction2								
Compound I-a174(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
0.670	2.00	10.00	1	MC:Me	OH =10:1	I-b174	0.5	518
Reaction3			<u> </u>					
Compound I-b174(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.518	0.809	0.730	0.40	10.00	36	nHx:EA =1:2	I-c174	0.393
Reaction4								
Compound I-c174(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		LC in
0.393	1.00	5.00	1	MC:Me0	OH =15:1	0.162	17	.54

ESI-MS(M+1):529

1H-NMR(CDCl₃):(two rotamers) δ 1.02 and 1.03 (9H,s), 1.35 and 1.36(9H, s), 2.75(3H, s), 2.70 and 3.00(4H, m), 3.12(1H, dd, J=10.3, 6.3Hz), 3.60 and 3.82(1H, m), 4.64(1H, m), 5.50(1H, brs), 5.80 and 6.00(1H, brs), 6.70(1H, s), 6.80-7.15(6H, m)

5

10

Scheme 14 shows the synthesis process of Example 175.

Scheme 14: Synthesis scheme of Example 175

The synthesis process in scheme 14 is explained below.

Reaction step 1)

To a solution of Tyr(O-Bn,3-tBu)-OMe, Compound Boc-Tle-OH and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced

20

pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-a175.

Reaction step 2)

To a solution of Compound I-a175 in DMF, NaH and MeI were added under cooling and stirred at room temperature. The reaction mixture was mixed with water under cooling, neutralized by the addition of 1N HCl and extracted with EA/nHx (1/2). The organic layer was washed three times with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-b175.

15 Reaction step 3)

To a solution of Compound I-b175 in methanol, 28% aqueous ammonia was added and stirred at room temperature. The reaction mixture was concentrated under reduced pressure, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-c175.

25 Reaction step 4)

To a solution of Compound I-c175 in dichloromethane,

TFA was added under cooling and stirred at room temperature.

The reaction mixture was concentrated under reduced

pressure, neutralized by the addition of a saturated aqueous NaHCO₃ solution, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-d175.

Reaction step 5)

To a solution of Compound I-d175, Compound P4 and

CMPI in THF, TEA was added under cooling and stirred at
room temperature. The reaction mixture was mixed with
water, extracted with ethyl acetate, washed with saturated
brine, dried over anhydrous magnesium sulfate and filtered.
The filtrate was concentrated under reduced pressure; the
thus obtained residue was purified by column chromatography
(silica gel) to give Compound I-e175.

Reaction step 6)

To a solution of Compound I-e175 in methanol, Pd(OH)₂
was added and stirred in a hydrogen atmosphere at room
temperature. After filtering off the Pd(OH)₂, the filtrate
was concentrated under reduced pressure; the thus obtained
residue was purified by column chromatography (silica gel)
to give the titled compound.

Example conducted according to Scheme 14 is shown in Table D-175.

Table D-175

Example 175

Phe(4-F)-N-Me-Tle-N-Me-Tyr(3-tBu)-NH,

Reaction1						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Tyr(O-Bn,3-tBu)- OMe (g)	Boc-Tle-OH (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.720	1.280	1.410	1.40	34.00	12	nHx:EA=5:1	I-a175	2.200
Reaction2								
Compound	NaH	Methyl	DMF	Reaction time	01 1		Am	ount
I-a175 (g)	(g)	Iodide(ml)	(ml)	(hr)	Column sol.	Product	(g)
2.200	0.480	2.22	22.00	1	nHx:EA=5:1	I-b175	1.9	930
Reaction3	1		·					
Compound	NH₄OH	MeOH	Reaction time	Colun	1	Product	Am	ount
I-b175 (g)	(ml)	(ml)	(hr)	Colum	m sol.	Product		g)
1.930	130.00	230.00	20	nHx:E	A=2:1	I-c175	0.5	564
Reaction4			.1					
Compound	TFA	MC	Reaction time	Colun		Product	Am	ount
I-c175 (g)	(ml)	(ml)	(hr)	Colum	III SOL	Produci	()	g)
0.680	2.78	8.00	1.5	MC:MeOH	=20:1	I-d175	0.5	500
Reaction5	<u> </u>							
Compound I-d175 (g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.951	0.546	0.50	12.50	12	nHx:EA=2:1	I-d175	0.254
Reaction6								
Compound	Pd(OH) ₂	MeOH	Reaction time	<u> </u>		Amount	HP.	LC
I-d175 (g)	(g)	(ml)	· (hr)	Colun	n soi.	(g)	m	in
0.250	0.050	10.00	3	MC:MeC	H=15:1	0.098	19.2	280

1H-NMR(CDCl₃): δ 0.80(9H, s), 1.37(9H, s), 2.68(1H, dd, J=13.6, 7.3Hz), 2.85-3.01(2H, m), 2.92(3H, s), 2.98(3H, s), 3.11-3.22(1H, m), 3.94(1H, t, J=7.0Hz), 5.19(1H, s), 5.22(1H, brs), 5.37(1H, dd, J=10.5, 5.6Hz), 5.98(1H, brs), 6.55(1H, d, J=7.9Hz), 6.88(1H, dd, J=8.0, 2.2Hz),6.94-7.00(2H, m),7.07-7.14(3H, m)

Methods of producing Intermediates in the scheme 15 are shown as Reference Examples in the following. The structural formulae of Intermediates of Examples 177-180 are shown in Table C-5.

5

Table C-5

Intermediates of Examples 177-180

10

Reference Example 27

Synthesis of Intermediates P6-P8

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediates P6-P8

Glycine ethyl ester

I-a177-I

I-b177-I

hydrochloride

The synthesis methods of Intermediates P6-P8 are explained below.

F-Pyridyl iodide [2-fluoro-4-(iodomethyl)pyridine

and 2-fluoro-5-(iodomethyl)pyridine] were synthesized

referring to J. Med. Chem., 1998, 41(23), 4615. P7 and P8

were synthesized according to a similar method of

synthesizing P6 using the above 2-fluoro-5-(iodomethyl)

pyridine and 4-(iodomethyl)-1-(trifluoromethyl)benzene.

20

10

Reaction step 1)

To a solution of glycine ethyl ester hydrochloride, CS_2 and water in THF, K_2CO_3 and CH_3I were added dropwise and

5

10

15

then stirred at room temperature. After the completion of the reaction, the reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; to a solution of the thus obtained residue in a mixture of DMSO and water, K_2CO_3 was added dropwise gradually and then under cooling with ice, CH_3I was added dropwise gradually, followed by stirring at room temperature. The reaction mixture was mixed with water, extracted with Et_2O , washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-a177-I.

Reaction step 2)

To a solution of Compound I-a177-I and t-BuOK in THF, F-pyridyl iodide was added dropwise gradually at -78°C

while stirring. The reaction mixture was mixed with water, extracted with Et₂O, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography

(silica gel) to give Compound I-b177-I.

Reaction step 3)

To a solution of Compound I-b177-I in a mixture of

ethanol, water and dioxane, a saturated HCl/ethanol solution was added and stirred at room temperature. The reaction mixture was concentrated under reduced pressure, extracted with dichloromethane, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-c177-I.

10 Reaction step 4)

To a solution of Compound I-c177-I and Na_2CO_3 in a mixture of dioxane and water, Z-Cl was added dropwise gradually under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with Et_2O , washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-d177-I.

20

15

5

Reaction step 5)

To a solution of Compound I-d177-I in dioxane, 2N
NaOH was added and stirred at room temperature. The
reaction mixture was adjusted to pH 3-4 by the addition of
25 1N HCl, extracted with ethyl acetate, washed with
saturated brine, dried over anhydrous magnesium sulfate
and filtered. The filtrate was concentrated under reduced
pressure; the thus obtained residue was purified by column

chromatography (silica gel) to give Intermediate P6.

The results are shown in Tables E-46 to E-48.

Table E-46

Intermediate P6

3-(2-fluoro-4-pyridyl)-2-

[(phenylmethoxy)carbonylamino]propanoic acid

Reaction 1 - a							
Gly-OEt HCl(g)	K ₂ CO ₃ (g)	Methyl iodide(ml)	CS ₂ (ml)	THF/H ₂ O (ml)	Reaction time (hr)	Product	Amount (g)
20.000	19.890	8.96	8.66	60.00 /14.00	1	Crude intermediate	27.061
Reaction1-b							
Crude intermediate (g)	K ₂ CO ₃ (g)	Methyl iodide(ml)	DMSO/H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
12.000	8.590	3.90	60.00 / 14.00	0.5	nHx:EA =5:1	I-a177-I	11.7000
Reaction 2			·	!			
I-a177-I (g)	2-fluoro-4- (iodomethyl) pyridine(ml)	tBuOK (g)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
2.000	2.520	1.190	32.00	2.50	nHx:EA =7:1	I-b177-I	2.480
Reaction3		ı		I			
I-b177-I (g)	HCl(sat'd in (ml)		EtOH/H ₂ O (ml)	Dioxane (ml)	Reaction time (hr)	Product	Amount (g)
2.480	11.50)	11.50 / 11.50	6	16	I-c177-I	1.33
Reaction4							
I-c177-I (g)	ZCl (ml)	Na ₂ CO ₃ (g)	1	nc/H ₂ O nl)	Reaction time (hr)	Product	Amount (g)
1.330	0.99	1.000	18.00	/18.00	2	1-d177-I	1.36
Reaction5		<u> </u>	·				
I-d177-I (g)	NaOH (g)	EtOH (m	/H ₂ O 11)		on time 11)	Amor (g)	
1.330	0.314	30.00	/ 10.00	1.5	00	1.20	0

Table E-47

Intermediate P7

3-(2-fluoro-5-pyridyl)-2-

[(phenylmethoxy)carbonylamino]propanoic acid

Gly-OEt HCl(g)	, K ₂ CO ₃ (g)	Methyl iodide(ml)	CS ₂ (ml)	THF/H ₂ O (ml)	Reaction time (hr)	Product	Amount (g)
20.000	19.890	8.96	8.66	60.00 /14.00	1	Crude intermediate	27.061
Reaction 1-b				l		· · · · · · · · · · · · · · · · · · ·	
Crude intermediate(g)	K ₂ CO ₃ (g)	Methyl iodide(ml)	DMSO/H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
12.000	8.590	3.90	60.00 / 14.00	0.5	BITX.EA	I-a178-I	11.7000
Reaction2							
I-a178-I (g)	2-fluoro-5- (iodomethyl) pyridine(ml)	tBuOK (g)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
3.990	8.37	2.380	60.00	3.00	nHx:EA	I-b178-I	4.300
Reaction3							
I-b178-I (g)	HCl(sat'd in EtOH)(ml)	EtOH/H ₂ O (ml)	Dioxane (ml)	Reaction time (hr)	Product	Amo (g	
4.300	20.00	12.00 / 12.00	10.00	16	l-c178-I	1.8	80
Reaction4						•	
I-c178-I (g)	ZCl (ml)	Na ₂ CO ₃ (g)	Dioxane/ H2O (ml)	Reaction time (hr)	Product	Amo (g	
1.880	1.40	1.410	25.00 / 25.00	2	I-d178-I	2.9	40
Reaction 5	* *****				•		
I-d178-I (g)	NaOH (g)	Е1ОН/Н	₂ O (ml)	Reactio (h		Amo (g	
2.620	0.606	40.00	10.00	1.5	00	2.4	00

Table E-48

Intermediate P8

2-[(Phenylmethoxy)carbonylamino]-3-[4-

(trifluoromethyl)phenyl]propanoic acid

Reaction 1-a							
Gly-OEt-HCl(g)	K ₂ CO ₃ (g)	Methyl iodide(ml)	CS ₂ (ml)	THF/H ₂ O (ml)	Reaction time (hr)	Product	Amount (g)
20.000	19.890	8.96	8.66	60.00 /14.00	1	Crude intermediate	27.061
Reaction1-b			·			in to the collect	
Crude intermediate(g)	K ₂ CO ₃ (g)	Methyl iodide(ml)	DMSO/H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
12.000	8.590	3.90	60.00 / 14.00	0.5	nHx:EA =5:1	I-a179-I	11.700
Reaction2				A			
I-a179-I (g)	4-(iodomethyl)-1- (trifluoro methyl)benzene (ml)	tBuOK (g)	THF (m1)	Reaction time (hr)	Column sol.	Product	Amount (g)
2.120	3.220	1.270	40.00	2	nHx:EA =7:1	I-b179-I	3.730
Reaction3							
I-b179-I (g)	HCl (sat'd in EtOf	i)(ml)	EtOH/H2O (ml)	Dioxanc (ml)	Reaction time (hr)	Product	Amoun (g)
1.620	6.50		6.50 / 6.50	3.00	16	I-c179-I	0.737
Reaction4							
I-c179-I (g)	ZC1 (ml)	Na ₂ CO ₃ (g)	Dioxanc/ H ₂ O (m1)	Reaction time (hr)	Product	Amo (g)	
0.737	0.45	0.450	9.00 / 9.00	1	I-d179-I	1.09	00
Reaction5							
I-d177-I (g)	NaOH (g)	EtOH/H	20 (ml)	Reactio (h		Amo (g	
1.090	0.186	9.00	9.00	1.	.5	1.01	

(Reference Example 28)

Synthesis of Intermediate P9

The synthesis scheme is shown below.

5 Synthesis scheme of Intermediate P9

The synthesis method of Intermediates P9 is explained below.

10

Reaction step 1)

To a solution of Na-metal in ethanol, diethyl malonate and 4-(chloromethyl)-1-fluorobenzene were added dropwise and then stirred at room temperature. The reaction mixture was concentrated under reduced pressure, mixed with water, extracted with $\rm Et_2O$, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure to give Compound I-al80-I in a crude form.

20

25

15

Reaction step 2)

To a solution of Compound I-al80-I in ethanol, KOH was added and stirred at room temperature. The reaction mixture was concentrated under reduced pressure, mixed with water and washed with $\rm Et_2O$. The aqueous layer was

adjusted to a pH of 3-4 by the addition of 1N HCl, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Intermediate P9.

Result is shown in Table E-49.

Table E-49

Intermediate P9

2-(Ethoxycarbonyl)-3-(4-fluorophenyl)propanoic acid

Reaction1					
Diethyl malonate (g)	4-(chloromethyl)-1- fluorobenzene (ml)	Na-metal (g)	EtOH (ml)	Product	Amount (g)
15.000	10.90	2.180	120.00	I-a180-I	25.000
Reaction2					
I-a180-I (g)	KOH (g)	EtOH (ml)	Amount		(g)
2.160	5.170	160.00		1.400	

5

10

15

20

25

The synthesis scheme of Examples 177A to 179B is shown in Scheme 15.

Scheme 15: Synthesis scheme of Examples 177A to 179B

N-Me-Val-N-Me-Tyr I-a177A (less polar) Example 177A(less polar) (3-tBu)-NH₂ I-a177B (more polar) Example 177B(more polar)

Referring to Examples 177A and 177B, the synthesis process of Scheme 15 is explained below:

Reaction step 1)

To a solution of Comound P6, N-Me-Val-N-Me-Tyr(3-tBu)-NH $_2$ and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-al77A (less polar) and Compound I-al77B (more polar).

Reaction step 2)

To solutions of Compound I-a177A (less polar) and Compound I-a177B (more polar) in methanol, $Pd(OH)_2$ was added and stirred in a hydrogen atmosphere at room

temperature. After filtering off the Pd(OH)₂, the filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds.

5

Example 178 (178A and 178B) and Example 179 (179A and 179B) were conducted similar to the above, except that P7 and P8 were employed, respectively, instead of P6.

10

Examples conducted according to Scheme 15 are shown in Tables D-177A to D-179B.

Table D-177A

Example 177A:Less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoyl$

ethyl}-2-[2-amino-3-(2-fluoro-4-pyridyl)-N-methylpropanoyla

5 mino]-3-methyl-N-methylbutanamide

Reaction1								
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Compound P6(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
						W EA 1.1	I-a177A	0.275
0.776	0.886	0.711	0.45	30.00	16	nHx:EA=1:1	I-a177B	0.288
Reaction2			······································					
Compound I- a177A(g)	Pd(OH) ₂ (g)	MeOH (mi)	Reaction time (hr)	Column sol.	Amo		HP! mi	
0.275	0.042	20.00	3	MC:MeOH =20:1	0.1	.60	17.	50

ESI-MS(M+1):530

1H-NMR(CDCl₃): (two rotamers) δ 0.32, 0.42 and 0.60, 0.88(6H, d, J=7.1-7.9Hz), 1.37 and 1.42(9H, s), 2.00-2.20(1H, m), 2.52 and 2.91, 2.95(6H, s), 2.60-3.28(4H, m), 2.95(3H, s), 3.75(1/2H, dd, J=8.8, 6.1Hz), 3.95(1/2H, t, J=8.8Hz), 4.65 and 5.00(1H, d, J=8.8Hz), 4.96 and 5.47(1H, dd, J=8.8, 7.0Hz), 5.60 and 6.05(1H, brs), 6.60 and 6.15(1H, d, J=8.8Hz), 6.70 and 7.04(2H, m), 6.92 and 7.12(2H, m), 8.12(1H, m)

Table D-177B

Example 177B: more polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoy$

lethyl}-2-[2-amino-3-(2-fluoro-4-pyridyl)-N-methylpropanoyl

5 amino]-3-methyl-N-methylbutanamide

Reaction2						
Compound I-a177B(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.288	0.043	20.00	3	MC:MeOH =20:1	0.160	15.48

ESI-MS(M+1):530

1H-NMR(CDCl₃): (two rotamers) δ 0.46, 0.72 and 0.78, 0.91(6H, d, J=7.1-7.9Hz), 1.32 and 1.38(9H, s), 2.15-2.40(1H, m), 2.50, 2.83, and 3.0, 3.08(6H, s), 2.40-3.40(5H, m), 3.70 and 3.90(1H, dd, J=8.8, 3.5-4.4Hz), 4.81 and 5.05(1H, d, J=9.7Hz), 4.99 and 5.52(2H, m), 6.05 and 6.49(1H, brs), 6.48 and 6.64(1H, d, J=7.9Hz), 6.74 and 6.76, 6.82(2H, brs), 6.90-7.18(2H, m), 8.12(1H, d, J=6.2Hz)

Table D-178A

Example 178A:less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoy$

lethyl}-2-[2-amino-3-(2-fluoro-5-pyridyl)-N-methylpropanoyl

5 amino]-3-methyl-N-methylbutanamide

Reaction1								
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Compound P7(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1110	0.017	0.50	20.00	3	nHx:EA=1:1	I-a178A	0.380
1.000	1.140	0.917	0.58	20.00	3	IIIX.EA=1.1	I-a178B	0.100
Reaction2								
Compound I-a178A(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Am (£	1	HP m	
0.380	0.057	10.00	3	MC:MeOH =20:1	0.2	210	17.	76

ESI-MS(M+1):530

1H-NMR(CDCl₃): (two rotamers) δ 0.32, 0.42 and 0.60, 0.89(6H, d, J=7.1-7.9Hz), 1.37 and 1.42(9H, s), 2.00-2.30(1H, m), 2.50, 2.90 and 2.94, 2.95(6H, s), 2.58-3.29(4H, m), 3.70(1/2H, dd, J=8.8, 6.1Hz), 3.90(1/2H, t, J=8.8Hz), 4.67 and 5.04(1H, d, J=8.8Hz), 4.95 and 5.47(1H, dd, J=8.8, 7.0Hz), 5.70(1H, brs), 6.05 and 6.55(1H, brs), 6.58 and 6.65(1H, d, J=8.8Hz), 6.75-6.99(2H, m), 7.10 and 7.18(1H, brs), 7.58-7.75(1H, m), 8.12(1H, m)

Table D-178B

Example 178B: more polar

(2S)-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoy

lethyl}-2-[2-amino-3-(2-fluoro-5-pyridyl)-N-methylpropanoyl

5 amino]-3-methyl-N-methylbutanamide

Reaction2						
Compound I-a178B(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.100	0.015	5.00	3	MC:MeOH =20:1	0.040	15.65

ESI-MS(M+1):530

1H-NMR(CDCl₃): (two rotamers) δ 0.50, 0.75 and 0.77, 0.95(6H, d, J=7.1-7.9Hz), 1.32 and 1.39(9H, s), 2.00-2.30(1H, m), 2.47, 2.83 and 3.0, 3.05(6H, s), 2.18-3.42(4H, m), 3.61 and 3.82(1H, dd, J=8.8, 3.5-4.0Hz), 4.85 and 5.07(1H, d, J=9.7Hz), 5.57 and 5.70, 5.79, 6.11(2H, m and brs), 6.55 and 6.65(1H, d, J=7.9-8.8Hz), 6.73, 6.88 and 6.97(2H, m), 7.13(1H, brs), 7.60-7.75(1H, m), 7.97 and 8.05(1H, brs)

Table D-179A

Example 179A:less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoy$

lethyl}-2-{2-amino-N-methyl-3-[4-(trifluoromethyl)phenyl]pr

5 opanoylamino}-3-methyl-N-methylbutanamide

Reaction1								
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Compound P8(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.513	0.626	0.435	0.3	30.00	3	nHx:EA= 1:1	I-a179A	0.330
							I-a179B	0.332
Reaction2								
Compound I-a179A(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.330	0.049	10.00	3	MCMeOH =20:1	0.136		19.89	

ESI-MS(M+1):579

1H-NMR(CDCl₃): (two rotamers) δ 0.49, 0.74 and 0.79, 0.93(6H, d, J=6.3-6.8Hz), 1.34 and 1.39(9H, s), 2.25-2.48(1H, m), 2.53, 2.79 and 3.01, 3.05(6H, s), 2.58-3.40(4H, m), 3.74 and 3.90(1H, m), 4.87 and 5.07(1H, d, J=10.5-10.9Hz), 5.38-5.10(2H, m), 6.20(2/3H, brs), 6.40 and 6.65(1H, d, J=7.9Hz), 6.58(1/3H, brs), 6.73 and 6.97(1H, d, J=7.9-8.4Hz), 7.12(1H, m), 7.27-7.30(2H, m), 7.55-7.60(2H, m)

Table D-179B

Example 179B: more polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoy$

lethyl}-2-{2-amino-N-methyl-3-[4-(trifluoromethyl)phenyl]pr

5 opanoylamino}-3-methyl-N-methylbutanamide

Reaction2						
Compound I-a179B(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.332	0.049	10.00	3	MC:MeOH =20:1	0.123	22.09

ESI-MS(M++1):579

1H-NMR(CDCl₃): (two rotamers) δ 0.33, 0.36 and 0.55, 0.87(6H, d, J=6.4-6.9Hz), 1.37 and 1.41(9H, s), 2.00-2.20(1H, m), 2.56, 2.92 and 2.98(6H, s), 2.60-3.21(4H, m), 3.77 and 3.96(1H, m), 4.67 and 5.02(1H, d, J=10.6-10.9Hz), 4.96 and 5.45(1H, dd, J=9.0-11.3, 3.4-6.0Hz), 5.67 and 6.04(1H, brs), 6.57 and 6.63(1H, d, J=7.9Hz), 6.74 and 6.94(1H, dd, J=8.0-9.8, 1.8-2.1Hz), 7.08 and 7.16(1H, d, J=1.9Hz), 7.27-7.37(2H, m), 7.52-7.60(2H, m)

Scheme 16 shows synthesis process of Examples 180A and B.

10 Scheme 16: synthesis process of Examples 180A and B

N-Me-Val-N-Me-Tyr

I-a180A (less polar)

Example 180A (less polar)

(3-tBu)-NH₂

I-a180B (more polar)

Example 180B (more polar)

The synthesis process of Scheme 16 is explained 15 below.

Reaction step 1)

To a solution of Compound P9, N-Me-Val-N-Me-Tyr(3-tBu)-NH $_2$, EDCL and HOBT in DMF, TEA was added under

20

Scheme 16.

cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with $\rm Et_2O$, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure and purified by column chromatography (silica gel) to give Compound I-al80A (less polar) and Compound I-al80B (more polar).

Reaction step 2)

and Compound I-a180B (more polar) in ethanol, NaBH4 was added under cooling and stirred at room temperature. The reaction mixtures were mixed with a 1N HCl solution, extracted with Et20, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure; the thus obtained residues were purified by column chromatography (silica gel) to give the titled compounds (less polar compound and more polar compound).

Tables D-180A and B show Examples conducted according to

Table D-180A

Example 180A: Less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoy$

lethyl}-2-{2-[(4-fluorophenyl)methyl]-3-hydroxy-N-methylpro

5 panoylamino}-3-methyl-N-methylbutanamide

Reaction1						·	T	γ	
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Compound P9(g)	EDCI (g)	HOBT (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.500 1.29		9 1.030	0,824	1.08	30.00	2,5	nHx:EA=1:1	I-a180A	0.700
	1.29							I-a180B	0.820
Reaction2									
Compound I-a180A(g)	NaBH ₄ (g)	EtOH (ml)	Reaction time (hr)	Column sol.		1			PLC min
0.700	0.490	30.00	3	MC:MeOH =20:1		0.17		21.83	

ESI-MS(M+1):544

1H-NMR(CDCl₃): (two rotamers) δ 0.48, 0.74 and 0.76, 0.92(6H, d, J=6.0-7.2Hz), 1.35 and 1.39(9H, s), 2.05-2.50(1H, m), 2.50, 2.80 and 2.98, 3.01(6H, s), 2.40-3.36(5H, m), 3.50-3.70(2H, m), 3.50-3.70(2H, m), 4.90 and 5.08(1H, d, J=10.6Hz), 5.45(1H, m), 5.50 and 6.05(1H, brs), 5.70 and 6.20(1H, brs), 6.44 and 6.64(1H, d, J=8.8-8.3Hz), 6.73-7.15(7H, m)

Table D-180B

Example 180B: more polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoy$

lethyl}-2-{2-[(4-fluorophenyl)methyl]-3-hydroxy-N-methylpro

5 panoylamino}-3-methyl-N-methylbutanamide

Reaction2									
Compound I-a180B(g)	NaBH₄ (g)	EtOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC / min			
0.820	0.492	30.00	3	MC:MeOH =20:1	0.060	23.95			

ESI-MS(M+1):544

1H-NMR(CDCl₃): (two rotamers) δ 0.17-0.20 and 0.44, 0.84(6H, m and d, J=6.5-6.7Hz), 1.36 and 1.40(9H, s), 2.00-2.20(1H, m), 2.41 and 2.90, 2.92(6H, s), 2.67-4.00(13H, m),4.73 and 5.00(1H, d, J=10.5Hz), 5.20 and 5.35(1H, m), 5.83 and 6.18(1H, brs), 6.38 and 6.51(1H, brs), 6.62 and 6.65(1H, d, J=7.9Hz), 6.75-7.20(8H, m)

The synthesis scheme of Examples 181 and 182 is shown in Scheme 17.

Scheme 17: Synthesis scheme of Examples 181 and 182

N-Me-Val-N-Me-Tyr

I-a181

Example 181

(3-tBu)-NH₂

Referring to Example 181, the synthesis process of Scheme 17 is explained below:

10

15

20

25

5

Reaction step 1)

To a solution of Comound Boc-Ala(β -4-pyridyl)-OH, N-Me-Val-N-Me-Tyr(3-tBu)-NH $_2$ and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-al81.

Reaction step 2)

To a solution of Compound I-a181 in dichloromethane, TEA was added under cooling and stirred at room temperature. The reaction mixture was concentrated under

10

reduced pressure, extracted with dichloromethane, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give the titled compound.

Compound of Example 182 was obtained according to a similar process to Example 181 using Boc-Ala(β -4-pyridyl)-OH.

Examples conducted according to Scheme 17 are shown in Tables D-181 and D-182.

Table D-181

Example 181

 ${\tt Ala(\beta-4-pyridyl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2}$

Reaction1		· · · · · · · · · · · · · · · · · · ·						
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Boc-Ala(beta-4- pyridyl)-OH(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.680	0.500	0.960	0.52	15.00	24	MC:MeOH =30:1	I-a181	0.800
Reaction2								
Compound I-a181(g)	TFA	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		PLC nin
0.800	4,00	20.00	3	MC:MeOH =20:1		0.450	13.30	

ESI-MS(M+1):512

1H-NMR(CDCl₃): (two rotamers) δ 0.40, 0.72 and 0.82, 0.96(6H, d, J=6.3-6.7Hz), 1.37 and 1.42(9H, s), 2.05-2.30(1H, m), 2.51, 2.89 and 2.94, 2.96(6H, s), 2.59-3.30(4H, m), 4.65-5.05(1H, m), 5.30(1H, s), 5.45-5.05(1H, m), 6.30-6.45(1H, m), 6.60-7.05(2H, m), 7.10-7.20(2H, m), 8.20-8.25(2H, m)

Table D-182

Example 182

Phe(4-CN)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

Reaction1								
N-Me-Val-N-Me- Tyn(3-tBu)-NH₂(g)	Boc-Phe(4-CN)- OH(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.620	0.500	0.660	0.48	15.00	24	MCMeOH =30:1	I-a182	0.900
Reaction2			I.,					
Compound I-a182(g)	TFA	MC (ml)	Reaction time (hr)	Column sol.	Am (į	ount g)		PLC nin
0.900	4.00	20.00	4	MCMeOH =20:1	0.520		16.82	

ESI-MS(M+1):536

IH-NMR(CDCl₃): (two rotamers) δ 0.48, 0.76 and 0.85, 0.94(6H, d, J=6.3-6.8Hz), 1.37 and 1.43(9H, s), 2.20-2.70(1H, m), 2.55, 2.85 and 2.95, 3.05(6H, s), 3.15-3.40(2H, m), 3.65-3.85(2H, m), 4.75-5.20(2H, m), 5.40-5.50(1H, m), 6.40-6.65(1H, m), 6.75-6.85(1H, m), 6.95-7.15(1H, m), 7.25-7.35(2H, m), 7.58-7.63(2H, m)

The synthesis scheme of Example 183 is shown in Scheme 18.

Scheme 18: Synthesis scheme of Example 183

N-Me-Val-N-Me-Tyr

I-a183

Example 183

 $(3-tBu)-NH_2$

5

The synthesis process of Scheme 18 is explained below:

10 Reaction step 1)

To a solution of Z-Trp-OH,N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ and CMPI in THF, TEA was added under cooling and stirred at room temperature. The reaction mixture was mixed with water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure; the thus obtained residue was purified by column chromatography (silica gel) to give Compound I-a183.

20

25

15

Reaction step 2)

To a solution of Compound I-a183 in methanol, $Pd(OH)_2$ was added and stirred in a hydrogen atmosphere at room temperature. After filtering off the $Pd(OH)_2$, the filtrate was concentrated under reduced pressure; the thus

obtained residue was purified by column chromatography (silica gel) to give the titled compound.

Example conducted according to Scheme 18 is shown in Table D-183.

Table D-183

Example 183

Trp-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

Reaction1								
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Z-Trp-OH(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.620	0.700	0.660	0.48	15.00	24	MC:MeOH =30:1	I-a183	0.700
Reaction2								
Compound I-a183(g)	Pd(OH) ₂	MeOH (ml)	Reaction time (hr)	Column sol.	Am (£	ount g)		LC in
0,700	0.100	20.00	24	MC:MeOH =20:1	0.380		18.14	

ESI-MS(M+1):550

1H-NMR(CDCl₃): (two rotamers) δ 0.39, 0.73 and 0.79, 0.93(6H, d, J=6.3-6.7Hz), 1.33 and 1.39(9H, s), 2.15-2.35(2H, m), 2.37, 2.75 and 2.95, 3.05(6H, s), 2.60-3.15(2H, m), 3.25-3.40(2H, m), 3.80-4.05(1H, m), 4.70-5.10(1H, m), 6.30-6.55(1H, m), 6.65-7.20(5H, m), 7.40-7.60(2H, m)

Test Example 1

5

10

15

20

25

Motilin receptor binding test

A motilin receptor binding test was conducted in the following manner [Vantrappen et al., Regul. Peptides, 15, 143 (1986)]. The duodenum was extracted from a slaughtered rabbit, had the mucous membrane separated and homogenized in 50 mM Tris buffer to prepare a protein sample. The protein sample was incubated together with ¹²⁵I motilin 25 pM and thereafter the radioactivity bound to the protein was measured. Specific binding was defined as the difference between the radioactivity in the case of adding a great excess amount of motilin (10⁻⁷ M) and that in the case of no adding. The activity of the compound was expressed by IC₅₀ (in nM), as the concentration sufficient to reduce the specific binding by 50%. Result is shown in Tables F-1 to F-3.

Test Example 2

Action on the contraction of a specimen of longitudinal muscle in the duodenum extracted from a rabbit

The action on the motilin-induced contraction of a specimen of longitudinal muscle in the duodenum extracted from a rabbit was investigated by the following method. A duodenum specimen (5 x 15 mm) extracted from a slaughtered rabbit was suspended in an organ bath (10 ml) such that the longitudinal muscle would run vertically; the bath was filled with a Krebs solution kept at 28° C. A mixed gas (95% O_2 and 5% CO_2) was continuously bubbled into the Krebs

solution and the contraction of the duodenum specimen was recorded isotonically (with a 1-g load) via an isotonic transducer (ME-3407, ME Commercial, Tokyo, Japan). The degree of contraction was expressed in relative values, with the contraction by acetylcholine at a dose of 10^{-4} M being taken as 100%. The activity of the compound was calculated as pA₂ value indicating its effect on the dose-dependent muscle contraction by the motilin put into the organ bath. The result is shown in Tables F-1 to F-3.

10

Table F-1

Example	Motilin receptor	Contraction
No.	binding test, IC ₅₀ (nM)	suppressing test, pA ₂
1	0.89	8.8
2	0.71	8.7
3	1.5	8.7
4	1.6	8.3
8	0.35	9.5
9	1.0	9.0
12	0.52	9.3
14	0.70	9.3
15	0.82	8.5
16	0.41	9.4
17	0.70	9.1
19	2.2	8.7
21	0.27	9.8
22	0.52	8.3
23	0.67	9.3
24	0.94	9.1

Table F-2

Example No.	Motilin receptor binding test, IC ₅₀ (nM)	Contraction suppressing test, pA_2
26	7.3	8.0
27	1.2	8.6
28	0.52	9.0
29	0.45	8.7
30	0.81	9.1
31	0.79	9.5
32	0.76	9.1
33	1.7	8.4
34	1.5	9.4
35	1.7	8.8
36	2.3	8.8
37	0.60	8.8
38	3.0	8.2
39	2.0	8.7
40	1.6	8.6
41	3.1	8.4
42	1.2	8.3
43	1.9	8.5
44	3.6	8.5
63	0.62	8.4
64	1.0	9.0
101	0.24	8.9
102	0.31	9.0
103	0.86	8.9

Table F-3

		T		
Example	Motilin receptor	Contraction		
No.	binding test, IC ₅₀ (nM)	suppressing test, pA ₂		
104	0.32	9.1		
105	0.31	9.8		
106	0.62	9.8		
107	0.39	8.7		
108	0.43	9.0		
109	0.17	8.7		
119	0.40	9.4		
120	0.27	9.0		
121	0.41	8.9		
122	0.47	9.0		
123	0.70	9.1		
124	0.98	9.1		
125	1.0	9.0		
126	1.9	9.2		
127	1.7	8.7		
128	1.5	8.7		
129	4.0	8.5		
132	0.86	8.9		

Table F-4

Example	Motilin receptor	Contraction		
No.	binding test, IC_{50} (nM)	suppressing test, pA ₂		
133	1.1	8.2		
134	1.5	8.3		
135	0.70	8.5		
136	6.8	7.6		
140	4.0	8.2		
142	0.62	8.6		
144	2.0	8.5		
148	4.1	8.4		
151	0.36	8.2		
155	2.5	8.1		
157	6.1	8.1		
163	2.4	7.8		
165	2.8	8.2		
166	1.8	9.8		
182	2.3 8.5			
183	0.57	9.5		

INDUSTRIAL APPLICABILITY

The compounds of the present invention function as a motilin receptor antagonist and are useful as medicines including therapeutics of irritable bowel syndrome.

10

1. A compound of Formula (1):

5 wherein:

Cy is a group of Formula (2):

$$\begin{array}{c}
R_3 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_5
\end{array}$$
(2)

an optionally substituted heterocyclic ring, C_{3-7} cycloalkyl or phenyl;

 R_1 , R_2 , R_3 , R_4 and R_5 are hydrogen, halogen, hydroxy, amino, trifluoromethyl or nitrile and at least one of R_1 , R_2 , R_3 , R_4 and R_5 is halogen, trifluoromethyl or nitrile;

 R_6 is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, amino or hydroxy;

 R_7 is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, optionally substituted amino or hydroxy;

R₈ is hydrogen, methyl or ethyl;

 R_9 is optionally substituted straight-chained or branched C_{1-6} alkyl, optionally substituted straight-chained or branched C_{2-6} alkenyl, optionally substituted straight-chained or branched C_{2-6} alkynyl, C_{3-7} cycloalkyl or

optionally substituted phenyl;

 R_{20} is hydrogen or straight-chained or branched $C_{1\text{--}3}alkyl$ or R_9 and R_{20} may together form $C_{3\text{--}7}cycloalkyl;$

 R_{10} is hydrogen or straight-chained or branched C_{1-3} alkyl;

 R_{11} is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, -CO-N(R_{14}) R_{15} , carboxyl or an optionally substituted heterocyclic ring;

 R_{12} is hydroxy or $-OR_{16}$;

 R_{13} is hydrogen, straight-chained or branched C_{1-6} alkyl, straight-chained or branched C_{2-6} alkenyl, straight-chained or branched C_{2-6} alkynyl or a group of Formula (3):

$$\begin{array}{c} R_{17} \\ - + R_{18} \\ R_{19} \end{array}$$
 (3)

 R_{14} and R_{15} , which may be the same or different, are hydrogen, optionally substituted straight-chained or branched C_{1-4} alkyl, C_{3-7} cycloalkyl, straight-chained or branched C_{1-4} alkyloxy, straight-chained or branched C_{1-4} alkyloxyl or a heterocyclic ring, or R_{14} and R_{15} , as $-N(R_{14})R_{15}$, form optionally substituted 3- to 7-membered cyclic amine;

 R_{16} is straight-chained C_{1-4} alkyl;

 R_{17} is hydrogen or methyl;

 R_{18} and R_{19} together form cycloalkyl or

25 C₃₋₇cycloalkenyl;

X is carbonyl or methylene;

Y is carbonyl or methylene; provided that

when Cy is 3-indoly1,

- (i) R_{11} is an optionally substituted
- 5 heterocyclic ring; or
 - (ii) R_6 is hydrogen, R_7 is amino, R_8 is methyl, R_9 is isopropyl, R_{20} is hydrogen, R_{10} is methyl, R_{11} is carbamoyl, R_{12} is hydroxy, R_{13} is tert-butyl, X is carbonyl and Y is carbonyl, and
- when Cy is cyclohexyl or phenyl, R_{11} is an optionally substituted heterocyclic ring;

or a hydrate or pharmaceutically acceptable salt thereof.

- The compound according to claim 1,
- wherein Cy in Formula (1) is a group of Formula (2);
- 15 or a hydrate or pharmaceutically acceptable salt thereof.
 - 3. The compound according to claim 1,
 - wherein Cy in Formula (1) is a group of Formula (2) in which at least one of R_1 , R_2 , R_3 , R_4 and R_5 is halogen and the others are hydrogen or hydroxy;
- 20 or a hydrate or pharmaceutically acceptable salt thereof.
 - 4. The compound according to claim 1,

wherein Cy in Formula (1) is a group of Formula (2) in which R_3 is halogen or R_2 and R_3 are the same kind of halogen;

- 25 or a hydrate or pharmaceutically acceptable salt thereof.
 - The compound according to claim 1,

wherein Cy in Formula (1) is a group of Formula (2) in which R_3 is halogen and R_1 , R_2 , R_4 and R_5 are hydrogen, or

 R_2 and R_3 are the same kind of halogen and R_1 , R_4 and R_5 are hydrogen;

or a hydrate or pharmaceutically acceptable salt thereof.

- The compound according to claim 1,
- wherein Cy in Formula (1) is a group of Formula (2) in which at least one of R_1 , R_2 , R_3 , R_4 and R_5 is trifluoromethyl and the others are hydrogen, halogen or hydroxy;

or a hydrate or pharmaceutically acceptable salt thereof.

- 7. The compound according to claim 1, wherein Cy in Formula (1) is a group of Formula (2) in which at least one of R_1 , R_2 , R_3 , R_4 and R_5 is nitrile and the others are hydrogen, halogen or hydroxy; or a hydrate or pharmaceutically acceptable salt thereof.
- 15 8. The compound according to claim 1, wherein Cy in Formula (1) is a group of Formula (2) in which R_3 is trifluoromethyl; or a hydrate or pharmaceutically acceptable salt thereof.
 - The compound according to claim 1,
- wherein Cy in Formula (1) is a group of Formula (2) in which R_3 is nitrile;

- 10. The compound according to claim 1,
- wherein Cy in Formula (1) is an optionally substituted 25 heterocyclic ring provided that when Cy is 3-indoly1,
 - (i) R_{11} is an optionally substituted heterocyclic ring; or
 - (ii) R_6 is hydrogen, R_7 is amino, R_8 is methyl, R_9 is

isopropyl, R_{20} is hydrogen, R_{10} is methyl, R_{11} is carbamoyl, R_{12} is hydroxy, R_{13} is tert-butyl, X is carbonyl and Y is carbonyl;

or a hydrate or pharmaceutically acceptable salt thereof.

5 11. The compound according to claim 1, wherein in Formula (1), Cy is $C_{3-7} \text{cycloalkyl}$ provided that when Cy is cyclohexyl, R_{11} is an optionally substituted heterocyclic ring;

- 10 12. The compound according to claim 1, wherein in Formula (1), Cy is phenyl and R₁₁ is an optionally substituted heterocyclic ring; or a hydrate or pharmaceutically acceptable salt thereof.

 13. The compound according to any one of claims 1-12,
- wherein R_6 in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof. 14. The compound according to any one of claims 1-13, wherein R_7 in Formula (1) is hydrogen or optionally substituted amino;
- or a hydrate or pharmaceutically acceptable salt thereof.

 15. The compound according to any one of claims 1-14,

 wherein R_8 in Formula (1) is hydrogen or methyl;

 or a hydrate or pharmaceutically acceptable salt thereof.

 16. The compound according to any one of claims 1-15,
- wherein R, in Formula (1) is methyl, isopropyl, isobutyl, sec-butyl, tert-butyl, 3-pentyl, neopentyl, cyclohexyl, phenyl, benzyl, para-hydroxybenzyl, cyclohexylmethyl or para-fluorobenzyl;

- 17. The compound according to any one of claims 1-16, wherein R_{20} in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.
- 5 18. The compound according to any one of claims 1-17, wherein R_{10} in Formula (1) is hydrogen or methyl; or a hydrate or pharmaceutically acceptable salt thereof.
 - 19. The compound according to any one of claims 1-18, wherein R_{11} in Formula (1) is methyl, hydroxymethyl,
- carbamoylmethyl, methanesulfonylmethyl, ureidemethyl, sulfamoylaminomethyl, methanesulfonylaminomethyl, carbamoyl, ethylcarbamoyl, n-propylcarbamoyl, isopropylcarbamoyl, cyclopropylcarbamoyl, tertbutylcarbamoyl, 2-pyridylcarbamoyl, methoxycarbamoyl,
- 2-thiazolyl, 1,3,4-oxadiazol-2-yl, 1,2,4-oxadiazol-5-yl,
 1,3,4-triazol-2-yl, 6-methyl-4-pyrimidinon-2-yl,
 methylcarbamoyl, methanesulfonylmethylcarbamoyl,
 methoxymethylcarbamoyl, 1-morpholinylcarbonyl, 4carboxymethyl-1-piperazinecarbonyl, 4-
- or a hydrate or pharmaceutically acceptable salt thereof. 21. The compound according to any one of claims 1-20, wherein R_{13} in Formula (1) is isopropyl, tert-butyl (tBu), 1,1-dimethylpropyl or 1,1-dimethyl-2-propenyl;

or a hydrate or pharmaceutically acceptable salt thereof.

22. The compound according to claim 1, wherein in Formula (1)

Cy is a group of Formula (2) in which at least one of R_1 ,

 R_2 , R_3 , R_4 and R_5 is halogen and the others are hydrogen or hydroxy;

R₆ is hydrogen or methyl;

R, is hydrogen or optionally substituted amino;

R₈ is hydrogen or methyl;

R₉ is methyl, isopropyl, isobutyl, sec-butyl, tert-butyl, 3-pentyl, neopentyl, cyclohexyl, phenyl, benzyl, para-hydroxybenzyl, para-fluorobenzyl or cyclohexylmethyl;
R₂₀ is hydrogen;

 R_{10} is hydrogen or methyl;

- 15 R₁₁ is methyl, hydroxymethyl, carbamoylmethyl, methanesulfonylmethyl, ureidemethyl, sulfamoylaminomethyl, methanesulfonylaminomethyl, carbamoyl, methylcarbamoyl, ethylcarbamoyl, n-propylcarbamoyl, isopropylcarbamoyl, cyclopropylcarbamoyl, tert-butylcarbamoyl, 2-
- pyridylcarbamoyl, methanesulfonylmethylcarbamoyl,
 methoxymethylcarbamoyl, methoxycarbamoyl, 1morpholinylcarbonyl, 4-carboxymethyl-1-piperazinecarbonyl,
 4-ethoxycarbonylmethyl-1-piperazinecarbonyl, 4methylsulfonyl-1-piperazinecarbonyl, 2-thiazolyl, 1,3,4-
- oxadiazol-2-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-triazol-2-yl or 6-methyl-4-pyrimidinon-2-yl;

 R_{12} is hydroxy;

 $R_{\rm l3}$ is isopropyl, tert-butyl (tBu), 1,1-dimethylpropyl or

```
1,1-dimethyl-2-propenyl;
          or a hydrate or pharmaceutically acceptable salt thereof.
                        The compound according to claim 1 which is selected
          23.
          from the group of compounds consisting of Phe(4-F)-N-Me-
          Val-N-Me-Tyr(3-tBu)-NH2, Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-
          tBu)-NH<sub>2</sub>, Phe(3,4-F<sub>2</sub>)-N-Me-Val-N-Me-Tyr(3-tBu)-NH<sub>2</sub>, Phe(3-
          F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH<sub>2</sub>, Phe(4-F)-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-
          Tyr(3-tBu)-NHOMe, 2-((2-amino-3-(4-
          fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric
          acid 2-(3-tertbutyl-4-hydroxyphenyl)-1-(2-
10
          pyridylcarbamoyl)ethylamide, N-(2-(2-((2-amino-3-(4-
           fluorophenyl)propionyl)-N-methylamino)-3-methyl-
           butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propyl)urea, N-(2-
           (2-(2-amino-3-(4-fluorophenylpropanoyl-N-methylamino)-3-
           methyl)butyrylamino)-3-(3-tertbutyl-4-
15
           hydroxyphenyl)propyl)sulfamide, N-[2-(3-tertbutyl-4-
           hydroxyphenyl)-1-(methanesulfonylaminomethyl)ethyl]-2-[N-
           (4-fluorophenylalanyloyl)methylamino]-3-methylbutanamide,
           2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-
           methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-
 20
           carbamidemethylethylamide, 2-((2-amino-3-(4-
           fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric
            acid 2-(3-t-butyl-4-hydroxyphenyl)-1-
           methanesulfonylmethylethylamide, 2-(2-((2-amino-3-(4-
            fluorophenyl)propionyl)-N-methylamino)-3-methyl-
 25
            butyrylamino)-3-(3-tBu-4-hydroxyphenyl)propanol, 2-(1-(2-
            ((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-
            methyl-butyrylamino)-2-(3-tertbutyl-4-
```

hydroxyphenyl)ethyl)-6-methyl-4-pyrimidinone, 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3methylbutyric acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4oxadiazol-2-yl)ethylamide, 2-((2-amino-3-(4fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric 5 acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,2,4-oxadiazol-5y1)ethylamide, 2-((2-amino-3-(4-fluorophenyl)propionyl)-Nmethylamino)-3-methylbutyric acid 2-(3-tertbutyl-4hydroxyphenyl)-1-(thiazol-2-yl)ethylamide, 2-((2-amino-3-(4-fluorophenyl)propionyl)-N-methylamino)-3-methylbutyric 10 acid 2-(3-t-butyl-4-hydroxyphenyl)-1-(1,3,4-triazol-2yl)ethylamide, Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂, Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂, Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH2, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH2, N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH₂, Phe(4-F)-N-Me-Val-15 Tyr(3-tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe, N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH2, N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH2, Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHMe, N-Et-Phe(4-F)-20 N-Me-Val-N-Me-Tyr(3-tBu)-NHMe, Phe(4-F)-N-Me-Val-N-Et- $Tyr(3-tBu)-NH_2$, $N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NH_2$, N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NH₂, Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)Val-N-Et-Tyr(3-tBu)-NHMe, N-Me-Phe(4-F)-N-Me-Val- N-Et-Tyr(3-tBu)-NHMe, N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-25 NHMe, Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHtBu, Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH, SO, CH, Phe(4-F)-N-Me-Val-Tyr(3tBu)-NHEt, N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt, N-Et5

$$\label{eq:phe-decomposition} \begin{split} &\text{Phe}(4\text{-}F)\text{-}\text{N-Me-Val-Tyr}(3\text{-}tBu)\text{-}\text{NHEt}, \; \text{Phe}(4\text{-}F)\text{-}\text{N-Me-Val-Tyr}(3\text{-}tBu)\text{-}\\ &\text{Tyr}(3\text{-}tBu)\text{-}\text{NHCH}_2\text{OH}, \; \text{N-Me-Phe}(4\text{-}F)\text{-}\text{N-Me-Val-Tyr}(3\text{-}tBu)\text{-}\text{NHCH}_2\text{OH}, \; \text{Phe}(4\text{-}F)\text{-}\text{N-Me-Val-N-Me-Tyr}(3\text{-}tBu)\text{-}\text{NHCH}_2\text{OH}, \; \text{Phe}(4\text{-}F)\text{-}\text{N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Val-N-Me-Tyr}(3\text{-}tBu)\text{-}\text{NHEt}, \; \text{N-Et-Phe}(4\text{-}F)\text{-}\text{N-Me-Val-N-Me-Tyr}(3\text{-}tBu)\text{-}\text{NHCH}_2\text{OH}, \; \text{N-Me-Phe}(4\text{-}F)\text{-}\text{N-Me-Val-N-Me-Tyr}(3\text{-}tBu)\text{-}\text{NHCH}_2\text{OH}, \; \text{N-Me-Phe}(4\text{-}F)\text{-}\text{N-Me-Val-N-Me-Tyr}(3\text{-}tBu)\text{-}\text{NHCH}_2\text{OH}, \; \text{N-Et-Phe}(4\text{-}F)\text{-}\text{N-Me-Val-N-Me-Tyr}(3\text{-}tBu)\text{-}\text{NHCH}_2\text{OH}, \; \text{N-Et-Phe}(4\text{-}F)\text{-}\text{N-Me-Val-N-Me-Tyr}(3\text{-}tBu)\text{-}\text{N-Et-Phe}(4\text{-}F$$

Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH₂OH, N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH₂OH, Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt, N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-

tBu)-NHEt, N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt,

Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH₂OH, N-Me-Phe(4-F)
N-Me-Val-N-Et-Tyr(3-tBu)-NHCH₂OH, N-Et-Phe(4-F)-N-Me-Val
N-Et-Tyr(3-tBu)-NHCH₂OH, Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCPr, and Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHnPr Phe(4-

15 F)-N-Me-Val-Tyr(3-tBu)-NHiPr;

- 24. A medicine containing the compound according to any one of claims 1-23 as an active ingredient
- 25. A motilin receptor antagonist containing the20 compound according to any one of claims 1-23.
 - 26. A gastrointestinal motility suppressor agent containing the compound according to any one of claims 1-23 as an active ingredient
- 27. A therapeutic of hypermotilinemia containing the 25 compound according to any one of claims 1-23 as an active ingredient.
 - 28. A compound of Formula (4):

wherein

Cy, R_6 , R_8 , R_9 , R_{20} , R_{10} , R_{12} , R_{13} , X and Y are as defined in claim 1;

 R_7 ' is hydrogen, straight-chained or branched C_{1-3} alkyl optionally having at least one protected substituent, amino optionally having at least one protected substituent or protected hydroxy; and

 R_{11} " is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, -CO-N(R_{14}) R_{15} , wherein R_{14} and R_{15} are as defined in claim 1, carboxyl, straight-chained or branched C_{1-3} alkyl having a protected amino or an optionally substituted heterocyclic ring; or a hydrate or pharmaceutically acceptable salt thereof.

15 29. A compound of Formula (5):

$$\begin{array}{c|c} Cy & R_{6} & & & & & \\ R_{7}" & X & N & Y & N & R_{11}' & & \\ R_{7}" & X & R_{9} & R_{10} & & & \\ \end{array}$$
 (5)

wherein:

Cy, R_6 , R_8 , R_9 , R_{20} , R_{10} , R_{12} , R_{13} , X and Y are as defined in claim 1;

 R_7 " is hydrogen, straight-chained or branched C_{1-3} alkyl optionally having at least one optionally protected substituent, amino optionally having at least one optionally protected substituent or optionally

protected hydroxy; and

 R_{11} ' is hydrogen, straight-chained or branched C_{1-} alkyl optionally having at least one protected substituent, $-CO-N(R_{14})R_{15}$ wherein R_{14} and R_{15} are as defined in claim 1, carboxyl or an optionally substituted heterocyclic ring; or a hydrate or pharmaceutically acceptable salt thereof.

30. A compound of Formula (6):

$$\begin{array}{c|c}
R_{12} \\
R_{13} \\
R_{10} \\
R_{20} \\
R_{9} \\
R_{10}
\end{array}$$
(6)

10 wherein:

5

 $R_{8}\,,\ R_{9}\,,\ R_{20}\,,\ R_{10}\,,\ R_{12}\,,\ R_{13}$ and Y are as defined in claim 1;

 P_1 is hydrogen or a protecting group of amine; and R_{11} ''' is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, $-CO-N(R_{14})R_{15}$ wherein R_{14} and R_{15} are as defined in claim 1, carboxyl, straight-chained or branched C_{1-3} alkyl having protected amino or an optionally substituted heterocyclic ring; or a hydrate or pharmaceutically acceptable salt thereof.

20 31. A compound of Formula (7):

$$\begin{array}{c|c} Cy & R_6 & R_8 \\ R_7 & X & N & P_2 \\ R_{20} & R_9 \end{array}$$
 (7)

wherein:

Cy, R_6 , R_8 , R_9 , R_{20} and X are as defined in claim 1; R_7 " is hydrogen, straight-chained or branched C_{1-} 3alkyl optionally having at least one optionally protected substituent, amino optionally having at least one optionally protected substituent or optionally protected hydroxy; and

 P_2 is optionally protected carboxyl, formyl or methyl which has a leaving group;

or a hydrate or pharmaceutically acceptable salt thereof.

10 32. A compound of Formula (8):

$$P_{3}$$
 R_{11}
 R_{13}
 R_{10}
(8)

wherein:

5

15

20

 R_{10} and R_{13} are as defined in claim 1;

P₃ is hydrogen or a protecting group of amine;

 R_{11} ''' is hydrogen, optionally substituted straight-chained or branched C_{1-3} alkyl, $-CO-N(R_{14})R_{15}$ wherein R_{14} and R_{15} are as defined in claim 1, carboxyl, straight-chained or branched C_{1-3} alkyl having protected amino or an optionally substituted heterocyclic ring; and

 R_{12} ' is hydroxy or $-OR_{16}$ wherein R_{16} is as defined in claim 1;

or a hydrate or pharmaceutically acceptable salt thereof.

33. A compound of Formula (9):

$$\begin{array}{c|c}
Cy & R_6 \\
R_7 & P_4
\end{array} (9)$$

wherein:

Cy and R₆ are as defined in claim 1;

 R_7 " is hydrogen, straight-chained or branched C_{1-3} alkyl optionally having at least one optionally protected substituent, amino optionally having at least one optionally protected substituent or optionally protected hydroxy; and

P₄ is optionally protected carboxyl, formyl or

10 methyl which has a leaving group;

or a hydrate or pharmaceutically acceptable salt thereof.

34. A compound of Formula (10):

$$P_{5} \xrightarrow{R_{8}} P_{6} \qquad (10)$$

wherein:

15 R_8 , R_9 and R_{20} are as defined in claim 1;

P, is hydrogen or a protecting group of amine; and

 P_6 is optionally protected carboxyl, formyl or methyl which has a leaving group;

Daga	1	~£	` つ	Dagge	
rage	1	OI	_	Pages	3

[X] Original

[] Supplemental

Atty. Docket

Combined Declaration for Patent Application and Power of Attorney

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name; and that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

		s sought on the invention IINE DERIVATIVE					
the specification of w	hich (check one)						_
[]	is attached hereto;						
	was filed in the Un	ited States under 35 U.S	S.C. §111 on	, 8	ıs		
	U.S. Appln. No.	*; or					
[X]	was/will be filed in	the U.S. under 35 U.S.C	C. §371 by entry int	to the U.S. national	stage of an	international (Po	CT)
	application,PCT/J	P00/00444 filed <u>Jan</u> .	28, 2000 , er	ntry requested on _	_	*; nati	onal
	stage application r	eceivea U.S. Appln. No	o*; §	§371/§102(e) date		* (*	if
	known)						
and was amended on				(if applicable).			
	(include dates of a	mendments under PCT Ar	t. 19 and 34 if PCT)	,			
material to patentabil I hereby claim foreig certificate, or prior PC identified below any 20523 (Number	ity as defined in 37 Cm priority benefits uncertainty benefits uncertainty application (s) designed application having the series of the serie	duty to disclose to the Pa C.F.R. §1.56. nder 35 U.S.C. §§ 119 ignating a country other ing a filing date before the Japan (Country) Japan (Country)	and 365 of any pr	rior foreign applicated below with the "Yon on which priority 9 (Year Filed)	ation(s) for Yes" box ch	patent or invent	or's
the U.S. listed below, the claims of this appl §112, I acknowledge	or under §119(e) of a lication is not disclose the duty to disclose t	. §120 of any prior U.S. any prior U.S. provisiona ed in such U.S. or PCT a to the PTO all informational filing date of this app	al applications listed application in the m on as defined in 37 (below, and, insofa anner provided by	ir as the sub the first par	oject matter of eac ragraph of 35 U.S	h of S.C.
(Applica	ation No.)	(Day Month Yea	r Filed)	(Status: patented	, pending, ab	pandoned)	
(Applica	ation No.)	(Day Month Yea	r Filed)	(Status: patented	pending, ab	pandoned)	
(Applica	ation No.)	(Day Month Yea	r Filed)	(Status: patented	, pending, ab	pandoned)	
A	T h h : 4 db -	£-11	.4:	41. : 1: 4:			41

As a named inventor, I hereby appoint the following registered practioners to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

All of the practioners associated with Customer Number 001444

Direct all correspondence to the address associated with Customer Number 001444; i.e.,

BROWDY AND NEIMARK, P.L.L.C. 624 Ninth Street, N.W. Washington, D.C. 20001-5303 (202) 628-5197

The undersigned hereby authorizes the U.S. Attorneys or Agents appointed herein to accept and follow instructions from YUASA AND HARA as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. Attorneys or Agents and the undersigned. In the event of a change of the persons from whom instructions may be taken, the U.S. Attorneys or Agents appointed herein will be so notified by the undersigned.

	Page 2 of 2 Pages Title: SUBSTITUTED PHENETHYLAMINE	DERTUATIVES	Atty. Docket:
	U.S. Application filed	, Serial No.	
	PCT Application filed January 28, 2000		00444
	I hereby further declare that all statements made herein of m belief are believed to be true; and that these statements were are punishable by fine or imprisonment, or both, under 18 U. of the application or any patent issued thereon.	y own knowledge are true and that made with the knowledge that will	all statements made on information and ful false statements and the like so made
1-00	FULL NAME OF FIRST INVENTOR Hiroharu MATSUOKA	inventor's signature Heroharu Mai	DATE Aug. 20,200
	RESIDENT		CITAZENSHIP
	Shizuoka, Japan JPX		, Japanese
	POST OFFICE ADDRESS c/o CHUGAI SEIYAKU K Gotenba-shi, Shizuoka 412-8513 Jap		35, Komakado 1-chome,
~ ~~	FULL NAME OF SECOND JOINT INVENTOR	INVENTOR'S SIGNATURE	DATE
2-00	Tsutomu SATO	Tentomn Sato	Aug. 20,2001
	RESIDENT		CITIZENSHIP
	Shizuoka, Japan JPX		Japanese
	POST OFFICE ADDRESS CAC CHIICAT SETVAKII K	ARIISHTET EATSHA of 1	35, Komakado 1-chome,
	Gotenba-shi, Shizuoka 412-8513 Japa	an	55, Romakado 1-chome,
5, E 3	FULL NAME OF THIRD JOINT INVENTOR	INVENTOR'S SIGNATURE	DATE
3-00	<u>Tadakatsu TAKAHASHI</u>	Tadakatsu Takahast	w Aug. 20,2001
9 -00	RESIDENT		CITIZENSHIP
Continues of	Shizuoka, Japan JPX		Japanese
	POST OFFICE ADDRESS c/o CHUGAI SEIYAKU K	ABUSHIKI KAISHA of 1	35, Komakado 1-chome,
Services Services	Gotenba-shi, Shizuoka 412-8513 Japa	an	ss, namendes i chame,
integrals And the second seco	FULL NAME OF FOURTH JOINT INVENTOR	INVENTOR'S SIGNATURE	DATE
4-00	Dong Ick KIM	Dong Jok Kim	Aug. 20,2001
	RESIDENT <u>Kyunggi</u> —do, Republic of Korea	KRX	CITIZENSHIP Korean
	POST OFFICE ADDRESS 103-902 Wonhyo Apt., 437-020 Kyunggi-do Republic of Kon	599 Wanggok-dong, U: rea	iwang-si,
5	FULL NAME OF FIFTH JOINT INVENTOR	INVENTOR'S SIGNATURE	DATE
5-00	Kyung Yun JUNG	Kywng ywn Ju	ang Aug. $20,2001$
	RESIDENT		CITIZENSHIP
	Kyunggi-do, Republic of Korea	KRX	Korean
		pt., 50 Maetan 2-dong	g, Paltal-gu,
	FULL NAME OF SIXTH JOINT INVENTOR	INVENTOR'S SIGNATURE	DATE
\sim	<u>Chan Hee PARK</u>	Chan Hee Park	Aug. 20,2001
	RESIDENT Kyunggi-do, Republic of Korea	KRX	сітіzensнір Когеап
	POST OFFICE ADDRESS 129-1201 Jukong Apt Paltal-gu, Suwon-si, 442-470 Kyung	., Hwanggolmaul 955-	-1, Youngtong-dong,
	FULL NAME OF SEVENTH JOINT INVENTOR	INVENTOR'S SIGNATURE	DATE
	RESIDENT	<u> </u>	CITIZENSHIP
	DOST OFFICE ADDRESS		
	POST OFFICE ADDRESS		

ALL INVENTORS MUST REVIEW APPLICATION AND DECLARATION BEFORE SIGNING. ALL ALTERATIONS MUST BE INITIALED AND DATED BY ALL INVENTORS PRIOR TO EXECUTION NO ALTERATIONS CAN BE MADE AFTER THE DECLARATION IS SIGNED. ALL PAGES OF DECLARATION MUST BE SEEN BY ALL INVENTORS.