MODULE 1

ADDITIONAL PRACTISE QUESTIONS

Question:

Find the rank of the following matrices:

$$1. \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$2. \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & 1 & -6 \\ 2 & -2 & 0 & 5 \end{bmatrix} \qquad 3. \begin{bmatrix} 2 & -3 \\ -1 & 2 \\ 3 & -4 \end{bmatrix}$$

$$3. \begin{bmatrix} 2 & -3 \\ -1 & 2 \\ 3 & -4 \end{bmatrix}$$

$$4. \begin{bmatrix} 1 & 1 & 1 & -1 \\ -2 & 3 & 2 & 4 \\ 2 & 2 & 2 & -2 \\ 0 & 5 & 4 & 2 \end{bmatrix}$$

Answers:

1. Rank
$$= 3$$

$$2. Rank = 2$$

$$3. \text{Rank} = 2$$

4. Rank
$$= 2$$

Question:

Solve the following linear systems by Gauss elimination method or indicate the non existence of solutions.

1.
$$6x + 4y = 2$$
, $3x - 5y = -34$.

2.
$$4x-6y=-1$$
, $2x-3y=2$.

3.
$$x + y - z = 9$$
, $8y + 6z = -6$, $-2x + 4y - 6z = 40$.

4.
$$x+y-z=-1$$
, $2x-y+z=8$, $x+3y-z=2$.

5.
$$x + 3y = 7$$
, $2x - y = 0$, $3x + y = 4$.

6.
$$x-3y+5z=2$$
, $x+2y-4z=1$, $3x-y+2z=4$.

7.
$$3x - 2y + z - w = 1$$
, $x - 3y + z - 2w = 0$, $3x - y + 4z + w = 3$, $-x + y - 2z + 3w = 4$.

Answers:

1.
$$x = -3$$
, $y = 5$

2. No solutions exist.

3.
$$x = 1$$
, $y = 3$, $z = -5$

4.
$$x = \frac{7}{3}$$
, $y = \frac{3}{2}$, $z = \frac{29}{6}$

5. No solutions exist

6.
$$x = \frac{9}{7}$$
, $y = -\frac{5}{7}$, $z = -\frac{2}{7}$

7.
$$x = \frac{1}{5}$$
, $y = -\frac{11}{10}$, $z = -\frac{1}{10}$, $w = \frac{17}{10}$

Question:

1. Solve the linear system x - y + z = -2, 2x + y - z = 5, 3x - 2y + 2z = -3 and show that it has a one-parameter family of solutions.

2. Solve the linear system x - 2y + 3z = 5, 3x - y - z = 5, 2x + 3y + z = 2

3. Solve the linear system x - y - 4z = 6, 2x - 2y + z = 5, -x + 2y - 4z = 4.

4. Solve the homogeneous linear system 2x - 3y + z = 0, 3x - y + 2z = 0, x - 4y - z = 0.

5. Solve the homogeneous linear system x+3y+z=0, 2x-y-z=0, x-4y-2z=0.

6. Solve the homogeneous linear system x - y + 3z = 0, -x + y - 3z = 0, 2x - 2y + 6z = 0.

7. Solve the homogeneous linear system 2x-4y+z=0, 3x+y-2z=0, 2x+y-4z=0.

Answers:

1. x = 1, y = 3 + k, z = k where k is any constant.

2.
$$x = \frac{5}{3}$$
, $y = -\frac{2}{3}$, $z = \frac{2}{3}$.

3.
$$x = \frac{20}{3}$$
, $y = \frac{34}{9}$, $z = -\frac{7}{9}$.

4.
$$x = 0$$
, $y = 0$, $z = 0$.

5.
$$x = \frac{2}{7}k$$
, $y = -\frac{3}{7}k$, $z = k$.

6.
$$x = k_1 - 3k_2$$
, $y = k_1$, $z = k_2$.

7.
$$x = 0$$
, $y = 0$, $z = 0$.

M SIGMA **Question:**

Find the eigen values and eigen vectors of following matrices:

[3 5 3]

$$(1)\begin{bmatrix}3 & 4\\4 & -3\end{bmatrix} \qquad \qquad (2)\begin{bmatrix}1 & 2\\0 & 3\end{bmatrix}$$

$$(2)\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

$$\begin{array}{c|cccc}
 & 3 & 5 & 3 \\
 & 0 & 4 & 6 \\
 & 0 & 0 & 1
\end{array}$$

$$(4) \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

$$(5) \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$(6) \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ -3 & 0 & -2 \end{bmatrix}$$

$$(7) \begin{bmatrix} 3 & -1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$

$$(7) \begin{vmatrix} 3 & -1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 3 \end{vmatrix}$$

Answers:

1.
$$\lambda_1 = 5$$
: $X_1 = \begin{bmatrix} 2k \\ k \end{bmatrix}$, $k \in \mathbb{R}$; $\lambda_2 = -5$: $X_2 = \begin{bmatrix} -1 \\ 2 \\ k \end{bmatrix}$, $k \in \mathbb{R}$

2.
$$\lambda_1 = 1$$
: $X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$; $\lambda_2 = 3$: $X_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

3.
$$\lambda_1 = 1$$
: $X_1 = \begin{bmatrix} \frac{7}{2}k \\ -2k \\ k \end{bmatrix}$; $\lambda_2 = 3$, $X_2 = \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}$; $\lambda_3 = 4$, $X_3 = \begin{bmatrix} 5k \\ k \\ 0 \end{bmatrix}$, $k \in R$.

$$4. \ \lambda_1=-3: \ X_1=\begin{bmatrix} -2s+3t\\ s\\ t \end{bmatrix}, \ s, \ t\in R; \quad \lambda_2=5, \ X_2=\begin{bmatrix} -k\\ -2k\\ k \end{bmatrix}, \ k\in R$$

5.
$$\lambda_1=0$$
: $X_1=\begin{bmatrix}k\\k\\k\end{bmatrix}$; $\lambda_2=1$: $X_2=\begin{bmatrix}-k\\0\\k\end{bmatrix}$; $\lambda_3=3$: $X_3=\begin{bmatrix}k\\-2k\\k\end{bmatrix}$, $k\in R$.

6.
$$\lambda_1 = -2$$
: $X_1 = \begin{bmatrix} 0 \\ s \\ 0 \end{bmatrix}$, $X_2 = \begin{bmatrix} 0 \\ 0 \\ t \end{bmatrix}$, s , $t \in R$

7.
$$\lambda_1 = 3$$
: $X_1 = \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}$, $k \in R$

Question:

Diagonalize the following matrices if possible.

1.
$$\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

$$2. \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

$$3. \begin{bmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix}$$

$$4. \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Answers:

1.
$$\lambda = -5$$
, 5; $P = \begin{bmatrix} -\frac{1}{2} & 2\\ 1 & 1 \end{bmatrix}$

2.
$$\lambda = 3$$
, 1; $P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

3.
$$\lambda = 1$$
, 3, 4; $P = \begin{bmatrix} \frac{7}{2} & 1 & 5 \\ -2 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

4.
$$\lambda = -3$$
, -3 , 5; $P = \begin{bmatrix} 3 & -2 & 5 \\ 0 & 1 & 1 \\ -1 & -2 & 1 \end{bmatrix}$