Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkeit
- 13 PSPACE

Definition (Nichtdeterministische Turing-Machine)

Eine Nichtdeterministische Turing-Maschine (kurz NTM) ist ein Septupel

3:

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$
 mit

- $\bullet \ \delta \subseteq (Z \setminus E) \times \underline{\Gamma} \times Z \times \Gamma \times \{L, R, N\}.$

Definition (Nichtdeterministische Turing-Machine)

Eine Nichtdeterministische Turing-Maschine (kurz NTM) ist ein Septupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$
 mit

Die "Folgekonfiguration"-Relation \vdash^1_M von M spannt einen Berechnungsbaum auf

 $ightharpoonup z_0 w \vdash_M^* k$ bedeutet: k kann von Startkonfiguration erreicht werden (Berechnungspfad)

Definition (Nichtdeterministische Turing-Machine)

Eine Nichtdeterministische Turing-Maschine (kurz NTM) ist ein Septupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$
 mit

Die "Folgekonfiguration"-Relation \vdash_{M}^{1} von M spannt einen Berechnungsbaum auf

- $ightharpoonup z_0 w \vdash_M^* k$ bedeutet: k' kann von Startkonfiguration erreicht werden (Berechnungspfad)
- ▶ haltende/akzeptierende Konfig., halten auf/akzeptieren von Wörtern analog zu DTM

Definition (Nichtdeterministische Turing-Machine)

Eine Nichtdeterministische Turing-Maschine (kurz NTM) ist ein Septupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$
 mit

- **•** ...

Die "Folgekonfiguration"-Relation \vdash_{M}^{1} von M spannt einen Berechnungsbaum auf

- $ightharpoonup z_0 w \vdash_M^* k$ bedeutet: k' kann von Startkonfiguration erreicht werden (Berechnungspfad)
- ▶ haltende/akzeptierende Konfig., halten auf/akzeptieren von Wörtern analog zu DTM
- ▶ Zertifikat für \underline{w} in $\underline{T}(\underline{M})$ ist endlicher Pfad von z_0w in akzeptierende Konfiguration

Definition (Nichtdeterministische Turing-Machine)

Eine Nichtdeterministische Turing-Maschine (kurz NTM) ist ein Septupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$
 mit

- **.**.

Die "Folgekonfiguration"-Relation \vdash_{M}^{1} von M spannt einen Berechnungsbaum auf

- $ightharpoonup z_0 w \vdash_M^* k$ bedeutet: k' kann von Startkonfiguration erreicht werden (Berechnungspfad)
- ▶ haltende/akzeptierende Konfig., halten auf/akzeptieren von Wörtern analog zu DTM
- ightharpoonup Zertifikat für w in T(M) ist endlicher Pfad von z_0w in akzeptierende Konfiguration
- ▶ akzeptierte Sprache analog zu DTM: $T(M) := \{\underline{w \in \Sigma^*} \mid \exists_{\alpha,\beta \in \Gamma^*} \exists_{z \in E} : \underline{z_0 w} \vdash_M^* \underline{\alpha z \beta} \}$

Definition (Nichtdeterministische Turing-Machine)

Eine Nichtdeterministische Turing-Maschine (kurz NTM) ist ein Septupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$
 mit

- . .
- $\blacktriangleright \ \delta \subseteq (Z \setminus E) \times \Gamma \times Z \times \Gamma \times \{L, R, N\}$
- . .

Die "Folgekonfiguration"-Relation \vdash_M^1 von M spannt einen Berechnungsbaum auf $\not\models z_0w \vdash_M^* k$ bedeutet: k' kann von Startkonfiguration erreicht werden (Berechnungspfad)

- ► haltende/akzeptierende Konfig., halten auf/akzeptieren von Wörtern analog zu DTM
- ightharpoonup Zertifikat für w in T(M) ist endlicher Pfad von z_0w in akzeptierende Konfiguration
- \bigstar akzeptierte Sprache analog zu DTM: $T(M) := \{ w \in \Sigma^* \mid \exists_{\alpha,\beta \in \Gamma^*} \exists_{z \in E} : z_0 w \vdash_M^* \alpha z \beta \}$
 - ▶ die von M berechnete Funktion ist $f: \Sigma^* \to \Sigma^*$ sodass, für alle $x \in \Sigma^*$ und $y \in \Sigma^*$,

$$f(x) = y \qquad \Leftrightarrow \qquad \overbrace{\{y' \in \Gamma^* \mid \exists_{z \in E} \ z_0 x \vdash_M^* zy'\}} = \{y\}$$

5-01

Definition (Nichtdeterministische Turing-Machine)

Eine Nichtdeterministische Turing-Maschine (kurz NTM) ist ein Septupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$
 mit

- \triangleright $\delta \subset (Z \setminus E) \times \Gamma \times Z \times \Gamma \times \{L, R, N\}$

Die "Folgekonfiguration"-Relation \vdash^1_M von M spannt einen Berechnungsbaum auf

- $ightharpoonup z_0 w \vdash_{M}^{*} k$ bedeutet: k' kann von Startkonfiguration erreicht werden (Berechnungspfad)
- ▶ haltende/akzeptierende Konfig., halten auf/akzeptieren von Wörtern analog zu DTM
- **Zertifikat** für w in T(M) ist endlicher Pfad von z_0w in akzeptierende Konfiguration
- \blacktriangleright akzeptierte Sprache analog zu DTM: $T(M) := \{ w \in \Sigma^* \mid \exists_{\alpha,\beta \in \Gamma^*} \exists_{z \in F} : z_0 w \vdash_M^* \alpha z \beta \}$
- \blacktriangleright die von M berechnete Funktion ist $f: \mathbb{N} \to \mathbb{N}$ sodass, für alle $x \in \mathbb{N}$ und $y \in \mathbb{N}$,

$$f(x) = y$$
 \Leftrightarrow $\{y' \in \Gamma^* \mid \exists_{z \in E} \ z_0 \ \mathsf{BIN}(x) \vdash_M^* zy'\} = \{\mathsf{BIN}(y)\}$

Berechenbarkeit und Komplexität

$$y' \in \Gamma^* \mid \exists_{z \in E} \ z_0 \ \mathsf{BIN}(x) \vdash_M^*$$

Bemerkung: DTM sind spezielle NTM (ohne Gebrauch des Nichtdeterminismus)

Bemerkung: DTM sind spezielle NTM (ohne Gebrauch des Nichtdeterminismus)

Theorem

Für jede NTM N gibt es eine DTM M mit T(M) = T(N).

Bemerkung: DTM sind spezielle NTM (ohne Gebrauch des Nichtdeterminismus)

Theorem

Für jede NTM N gibt es eine DTM M mit T(M) = T(N).

Beweis (Idee)

Zeigen: T(N) ist Wertebereich einer berechenbaren Funktion ($\sim T(N)$ semi-entscheidbar)

$$\underbrace{f(x,z)} = \begin{cases} x & \text{falls } z \text{ ein Zertifikat für } x \text{ in } T(N) \text{ ist} \\ \bot & \text{sonst} \end{cases}$$

f kann von DTM berechnet werden indem sie dem Pfad im Berechnungsbaum von N folgt.

Einführung Komplexitätstheorie - TSP

traveling salespesson

noiv: protienalle Permutationen von Städte

n! Permutation

~ Efficienz?

Pohynouseit

lingeste Rudbus "opinie uppproblem" "Entscheiduspproblen" Fronte des Länge =100

(D/r) 3

Quelle: http://de.wikipedia.org/wiki/Datei:TSP_Deutschland_3.png

Algorithmische Komplexität

Bisher: qualitativ: berechenbar/entscheidbar oder nicht?

Jetzt: quantitativ: wie schnell/effizient kann ein entscheidbares Problem entschieden werden? ... es gibt viele Algorithmen zur Lösung berechenbarer Probleme wie z.B.

- Sortieren
- ► Potenzieren einer natürlichen Zahl
- **•** . . .

Algorithmische Komplexität

Bisher: qualitativ: berechenbar/entscheidbar oder nicht?

Jetzt: quantitativ: wie schnell/effizient kann ein entscheidbares Problem entschieden werden? ... es gibt viele Algorithmen zur Lösung berechenbarer Probleme wie z.B.

- Sortieren
- ► Potenzieren einer natürlichen Zahl
- **.**..

Einige davon sind

- schneller (weniger Elementaroperationen) oder
- platzsparender (weniger Speicher) als Andere.

Zentrale Frage

Wann ist ein Algorithmus effizient bzw. ein Berechnungsproblem effizient lösbar?

(Praktisch meist von Anwendung abhängig)

Problem: wie misst man Laufzeit von Algorithmen?

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

→ "Landau-Symbole" / O-Notation

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

→ "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq \underline{c} \cdot g(n)$

10n EO(207)

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße *n* abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

 \sim "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

- ▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,
- ▶ $\underline{f} \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße *n* abhängen **Ziel**: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

→ "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

- ▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,
- ▶ $f \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

$$ightharpoonup 10\sqrt{n}$$

Problem: wie misst man Laufzeit von Algorithmen?

 ${\bf Beobachtung}:$ Laufzeit muss (mindestens) von der Eingabegröße nabhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

→ "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶
$$f \in O(g)$$
 falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

▶
$$f \in \Theta(g)$$
 falls $f \in O(g)$ und $g \in O(f)$,

►
$$10\sqrt{n} \in O(n)$$

Problem: wie misst man Laufzeit von Algorithmen?

 ${\bf Beobachtung}:$ Laufzeit muss (mindestens) von der Eingabegröße nabhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

"Landau-Symbole" / *O*-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

▶ $f \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

- ► $10\sqrt{n} \in O(n)$
- **▶** 2*n*

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße *n* abhängen **Ziel**: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

→ "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

- ▶ $f \in O(g)$ falls $\exists_{\underline{c \in \mathbb{N}^+}} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,
- $ightharpoonup f\in\Theta(g)$ falls $f\in O(g)$ und $g\in O(f)$,

- ► $10\sqrt{n} \in O(n)$
- ▶ $2n \in \Theta(n)$

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

 \sim "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

$$\blacktriangleright \ \ f \in O(g) \ \text{falls} \ \exists_{c \in \mathbb{N}^+} \ \exists_{n_0 \in \mathbb{N}} \ \forall_{n \geq n_0} \ f(n) \leq c \cdot g(n),$$

 $ightharpoonup f \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

- ► $10\sqrt{n} \in O(n)$
- ▶ $2n \in \Theta(n)$
- $\triangleright \log_2 n$

Problem: wie misst man Laufzeit von Algorithmen?

 $\textbf{Beobachtung} : \mathsf{Laufzeit} \ \mathsf{muss} \ (\mathsf{mindestens}) \ \mathsf{von} \ \mathsf{der} \ \mathsf{Eingabegr\"{o}Be} \ \textit{n} \ \mathsf{abh\"{a}ngen}$

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache
→ "Landau-Symbole" / *O*-Notation

Landad Symbole / C Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

- ▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,
- $ightharpoonup f\in \Theta(g)$ falls $f\in O(g)$ und $g\in O(f)$,

- ► $10\sqrt{n} \in O(n)$
- ▶ $2n \in \Theta(n)$
- ▶ $\log_2 n \in O(\sqrt{n})$

Problem: wie misst man Laufzeit von Algorithmen?

 ${\bf Beobachtung}:$ Laufzeit muss (mindestens) von der Eingabegröße nabhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache "Landau-Symbole" / *O*-Notation

Landau-Symbole / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶
$$f \in O(g)$$
 falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

$$ightharpoonup f\in \Theta(g)$$
 falls $f\in O(g)$ und $g\in O(f)$,

- $\blacktriangleright 10\sqrt{n} \in O(n) \qquad \qquad \blacktriangleright 10^6$
- ▶ $2n \in \Theta(n)$
- ▶ $\log_2 n \in O(\sqrt{n})$

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache → "Landau-Symbole" / O-Notation

Definition

Seien
$$f, g : \mathbb{N} \to \mathbb{N}$$
. Dann,

Seien
$$f, g: \mathbb{N} \to \mathbb{N}$$
. Dann, $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

▶
$$f \in \Theta(g)$$
 falls $f \in O(g)$ und $g \in O(f)$,

- $ightharpoonup 10\sqrt{n} \in O(n)$ $ightharpoonup 10^6 \in \Theta(1)$
- $ightharpoonup 2n \in \Theta(n)$
- $ightharpoonup \log_2 n \in O(\sqrt{n})$

Problem: wie misst man Laufzeit von Algorithmen?

 ${\bf Beobachtung}:$ Laufzeit muss (mindestens) von der Eingabegröße nabhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

 \sim "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶
$$f \in O(g)$$
 falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

$$ightharpoonup f \in \Theta(g)$$
 falls $f \in O(g)$ und $g \in O(f)$,

Beispiele

 $ightharpoonup 10\sqrt{n} \in O(n)$

 $\blacktriangleright 10^6 \in \Theta(1)$

▶ $2n \in \Theta(n)$

 $ightharpoonup n \log_2 n$

▶ $\log_2 n \in O(\sqrt{n})$

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

 \sim "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

- ▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,
- ▶ $f \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

Beispiele

▶ $10\sqrt{n} \in O(n)$

 $ightharpoonup 10^6 \in \Theta(1)$

▶ $2n \in \Theta(n)$

- ▶ $p \log_2 n \in O(n^2)$
- ▶ $\log_2 n \in O(\sqrt{n}) \leq O(n)$

Problem: wie misst man Laufzeit von Algorithmen?

 ${\bf Beobachtung}:$ Laufzeit muss (mindestens) von der Eingabegröße nabhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache
→ "Landau-Symbole" / *O*-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

 $ightharpoonup f \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

- ▶ $10\sqrt{n} \in O(n)$ ▶ $10^6 \in \Theta(1)$
- ▶ $\log_2 n \in O(\sqrt{n})$ ▶ $n\sqrt{n}$

Problem: wie misst man Laufzeit von Algorithmen?

 ${\bf Beobachtung}:$ Laufzeit muss (mindestens) von der Eingabegröße nabhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache
→ "Landau-Symbole" / *O*-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

 $ightharpoonup f\in \Theta(g)$ falls $f\in O(g)$ und $g\in O(f)$,

- ▶ $10\sqrt{n} \in O(n)$ ▶ $10^6 \in \Theta(1)$

Problem: wie misst man Laufzeit von Algorithmen?

 $\textbf{Beobachtung} : \mathsf{Laufzeit} \ \mathsf{muss} \ (\mathsf{mindestens}) \ \mathsf{von} \ \mathsf{der} \ \mathsf{Eingabegr\"{o}Be} \ \textit{n} \ \mathsf{abh\"{a}ngen}$

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache
→ "Landau-Symbole" / *O*-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶
$$f \in O(g)$$
 falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

▶
$$f \in \Theta(g)$$
 falls $f \in O(g)$ und $g \in O(f)$,

Beispiele

►
$$10\sqrt{n} \in O(n)$$

$$ightharpoonup n \log_2 n \in O(n^2)$$

 $\rightarrow n^{10}$

▶
$$\log_2 n \in O(\sqrt{n})$$

 $ightharpoonup 2n \in \Theta(n)$

$$I \cap \log_2 I \in \mathcal{O}(I)$$

 $ightharpoonup 10^6 \in \Theta(1)$

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße n abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

 \sim "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

▶
$$f \in O(g)$$
 falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

▶ $f \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

►
$$10\sqrt{n} \in O(n)$$

$$ightharpoonup 10^6 \in \Theta(1)$$

▶
$$2n \in \Theta(n)$$

▶
$$\log_2 n \in O(\sqrt{n})$$

$$ightharpoonup n\sqrt{n} \in O(n^2)$$

Problem: wie misst man Laufzeit von Algorithmen?

Beobachtung: Laufzeit muss (mindestens) von der Eingabegröße *n* abhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

→ "Landau-Symbole" / O-Notation

Definition

Seien $f, g: \mathbb{N} \to \mathbb{N}$. Dann,

▶
$$f \in O(g)$$
 falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,

$$ightharpoonup f \in \Theta(g)$$
 falls $f \in O(g)$ und $g \in O(f)$,

►
$$10\sqrt{n} \in O(n)$$

▶
$$10^6 \in \Theta(1)$$

▶
$$2n \in \Theta(n)$$

▶
$$\log_2 n \in O(\sqrt{n})$$

$$ightharpoonup n\sqrt{n} \in O(n^2)$$

▶
$$n^{10} \in O(2^n)$$

$$ightharpoonup 3n^4 + 5n^3 + 7\log_2 n$$

$$\rightarrow 3n^4 + 5n^3 + 7\log_2 r$$

Problem: wie misst man Laufzeit von Algorithmen?

 ${\bf Beobachtung}:$ Laufzeit muss (mindestens) von der Eingabegröße nabhängen

Ziel: "Effizienz" von Algorithmen unabhängig von Rechentechnik & Programmiersprache

→ "Landau-Symbole" / O-Notation

Definition

Seien $f, g : \mathbb{N} \to \mathbb{N}$. Dann,

- ▶ $f \in O(g)$ falls $\exists_{c \in \mathbb{N}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq c \cdot g(n)$,
- ▶ $f \in \Theta(g)$ falls $f \in O(g)$ und $g \in O(f)$,

$$ightharpoonup 10\sqrt{n} \in O(n)$$

$$ightharpoonup \log_2 n \in O(\sqrt{n})$$

►
$$10^6 \in \Theta(1)$$

► $n \log_2 n \in O(n^2)$

$$ightharpoonup n\sqrt{n} \in O(n^2)$$

►
$$n^{10} \in O(2^n)$$

$$(4) \frac{\log_2 n}{600}$$

Definition (time_M, \mathbf{D} TIME (f(n)))

Für jede (Mehrband-) DTM M sei $\underline{\operatorname{time}_M(n)}$ die $\underline{\operatorname{maximale}}$ Anzahl Konfigurationsübergänge von M auf Eingaben x der Länge n (Schritte bevor M auf x hält).

Definition (time_M, DTIME (f(n)))

Für jede (Mehrband-) DTM M sei $\operatorname{time}_M(n)$ die maximale Anzahl Konfigurationsübergänge von M auf Eingaben x der Länge n (Schritte bevor M auf x hält).

Für eine monoton wachsende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist $\overline{\text{DTIME}\,(f(n))}$ die Klasse aller Sprachen $L \subseteq \Sigma^*$, die von einer deterministischen Mehrband-TM M akzeptiert werden, welche für jedes $\underline{x} \in \Sigma^*$ maximal O(f(|x|)) Schritte ausführt, das heißt,

Definition (time_M, DTIME (f(n)))

Für jede (Mehrband-) DTM M sei $\operatorname{time}_{M}(n)$ die maximale Anzahl Konfigurationsübergänge von M auf Eingaben x der Länge n (Schritte bevor M auf x hält).

Für eine monoton wachsende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist $\operatorname{DTIME}(f(n))$ die Klasse aller Sprachen $L \subseteq \Sigma^*$, die von einer deterministischen Mehrband-TM M akzeptiert werden, welche für jedes $x \in \Sigma^*$ maximal O(f(|x|)) Schritte ausführt, das heißt,

$$\operatorname{DTIME}\left(f(n)\right) := \{L \subseteq \Sigma^* \mid \exists_{\operatorname{\underline{DTM}}\ M}\ L = T(M) \land \operatorname{time}_M(n) \in O(f(n))\}$$

Definition (time_M, DTIME (f(n)))

Für jede (Mehrband-) DTM M sei $\underline{\operatorname{time}_M(n)}$ die maximale Anzahl Konfigurationsübergänge von M auf Eingaben \times der Länge n (Schritte bevor M auf \times hält).

Für eine monoton wachsende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist $\operatorname{DTIME}(f(n))$ die Klasse aller Sprachen $L \subseteq \Sigma^*$, die von einer deterministischen Mehrband-TM M akzeptiert werden, welche für jedes $x \in \Sigma^*$ maximal O(f(|x|)) Schritte ausführt, das heißt,

$$\operatorname{DTIME}(f(n)) := \{ L \subseteq \Sigma^* \mid \exists_{\mathsf{DTM} \ M} \ L = T(M) \land \operatorname{time}_M(n) \in O(f(n)) \}$$

Definition (P)

$$\mathbf{P} \coloneqq \bigcup_{k \ge 1} \text{DTIME } \underline{(n^k)}.$$

"deterministisch, in Polynomzeit"

Definition (time_N, NTIME (f(n)))

Für jede (Mehrband-) NTM N sei $\underline{\text{time}_N(n)}$ die maximale Länge eines Berechnungspfades von N auf Eingaben x der Länge n.

Definition (time_N, NTIME (f(n)))

Für jede (Mehrband-) NTM N sei $\operatorname{time}_N(n)$ die maximale Länge eines Berechnungspfades von N auf Eingaben x der Länge n.

Für eine monoton wachsende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist $\underline{\text{NTIME}}(f(n))$ die Klasse aller Sprachen $L \subseteq \Sigma^*$, die von einer **nichtdeterministischen** Mehrband-TM N akzeptiert werden, deren Berechnungspfade für jede Eingabe $x \in \Sigma^*$ maximal Länge $\underline{O}(f(|x|))$ haben, das heißt,

Definition (time_N, NTIME (f(n)))

Für jede (Mehrband-) NTM N sei $\operatorname{time}_N(n)$ die maximale Länge eines Berechnungspfades von N auf Eingaben x der Länge n.

Für eine monoton wachsende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist $\operatorname{NTIME}(f(n))$ die Klasse aller Sprachen $L \subseteq \Sigma^*$, die von einer **nichtdeterministischen** Mehrband-TM N akzeptiert werden, deren Berechnungspfade für jede Eingabe $x \in \Sigma^*$ maximal Länge O(f(|x|)) haben, das heißt,

$$\operatorname{NTIME}\left(f(n)\right) := \{L \subseteq \Sigma^* \mid \exists_{\mathsf{NTM}\ N}\ L = \mathit{T}(N) \land \operatorname{time}_{N}(n) \in \mathit{O}(f(n))\}$$

Definition (time_N, NTIME (f(n)))

Für jede (Mehrband-) NTM N sei $\operatorname{time}_N(n)$ die maximale Länge eines Berechnungspfades von N auf Eingaben x der Länge n.

Für eine monoton wachsende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist $\operatorname{NTIME}(f(n))$ die Klasse aller Sprachen $L \subseteq \Sigma^*$, die von einer **nichtdeterministischen** Mehrband-TM N akzeptiert werden, deren Berechnungspfade für jede Eingabe $x \in \Sigma^*$ maximal Länge O(f(|x|)) haben, das heißt,

$$\operatorname{NTIME}\left(f(n)\right) := \{L \subseteq \Sigma^* \mid \exists_{\mathsf{NTM}\ N}\ L = \mathit{T}(N) \land \operatorname{time}_N(n) \in \mathit{O}(f(n))\}$$

Definition (NP)

$$\mathbf{NP}\coloneqq\bigcup_{k\geq1}\operatorname{\underline{NTIME}}\left(n^{k}\right).$$

"nichtdeterministisch, in Polynomzeit"

Definition (time_N, NTIME (f(n)))

Für jede (Mehrband-) NTM N sei $\underline{\operatorname{time}_N(n)}$ die $\underline{\operatorname{maximale Länge eines Berechnungspfades}}$ von N auf Eingaben x der Länge n.

Für eine monoton wachsende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist $\operatorname{NTIME}(f(n))$ die Klasse aller Sprachen $L \subseteq \Sigma^*$, die von einer **nichtdeterministischen** Mehrband-TM N akzeptiert werden, deren Berechnungspfade für jede Eingabe $x \in \Sigma^*$ maximal Länge O(f(|x|)) haben, das heißt, $\operatorname{NTIME}(f(n)) := \{L \subseteq \Sigma^* \mid \exists_{\operatorname{NTM}(N)} L = T(N) \land \operatorname{time}_N(n) \in O(f(n))\}$

Definition (NP)

$$NP := \bigcup_{k>1} NTIME(n^k).$$

"nichtdeterministisch, in Polynomzeit"

Bemerkung: $P \subseteq NP$, klar, da jede DTM eine NTM ist.

DTIME (f(4)) = NT IME (f(4))

- "role" ein Zertifilet

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L\subseteq \Sigma^*$ ist in $\underline{\operatorname{NP}}$, gdw. ein Polynom $\underline{p}:\mathbb{N}\to\mathbb{N}$ und eine polynomiell zeitbeschränkte $\underline{\operatorname{DTM}\ M}$ (d.h. $\underline{\operatorname{time}_M(n)\in O(n^c)}$) existieren, sodass für jedes $x\in\Sigma^*$ gilt $x\in L\Leftrightarrow \exists_{u\in\Sigma_P(|x|)}\langle x,u\rangle\in T(M)$.

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L \subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p: \mathbb{N} \to \mathbb{N}$ und eine polynomiell zeitbeschränkte **D**TM M (d.h. $\operatorname{time}_M(n) \in O(n^c)$) existieren, sodass für jedes $x \in \Sigma^*$ gilt $x \in L \Leftrightarrow \exists_{u \in \Sigma^p(|x|)} \langle x, u \rangle \in T(M)$.

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L.

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L\subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p:\mathbb{N}\to\mathbb{N}$ und eine polynomiell zeitbeschränkte $\underline{\mathsf{DTM}}\ M$ (d.h. $\mathrm{time}_M(n)\in O(n^c)$) existieren, sodass für jedes $x\in\Sigma^*$ gilt

$$x \in L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M).$$

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L. Wir wählen u als Kodierung eines akzeptierenden Berechnungspfads ("Zertifikat") für x in T(N).

$$|x \in L \Rightarrow \exists u \in \mathcal{E}^{\rho(ixi)} \langle x, u \rangle \in T(h)$$

$$|x \notin L \Rightarrow \forall u \in \mathcal{E}^{\rho(ixi)} \langle x, u \rangle \notin T(h)$$

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L\subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p:\mathbb{N}\to\mathbb{N}$ und eine polynomiell zeitbeschränkte DTM M (d.h. $\mathrm{time}_M(n)\in O(n^c)$) existieren, sodass für jedes $x\in \Sigma^*$ gilt $x\in L\Leftrightarrow \exists_{u\in \Sigma^p(|x|)}\ \langle x,u\rangle\in T(M)$.

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L. Wir wählen u als Kodierung eines akzeptierenden Berechnungspfads ("Zertifikat") für x in T(N). Das Zertifikat ist polynomiell lang, da N polynomiell zeitbeschränkt ist.

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L\subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p:\mathbb{N}\to\mathbb{N}$ und eine polynomiell zeitbeschränkte **D**TM M (d.h. $\mathrm{time}_M(n)\in O(n^c)$) existieren, sodass für jedes $x\in \Sigma^*$ gilt $x\in L\Leftrightarrow \exists_{u\in \Sigma^{p(|x|)}}\langle x,u\rangle\in T(M)$.

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L. Wir wählen u als Kodierung eines akzeptierenden Berechnungspfads ("Zertifikat") für x in T(N).

Das Zertifikat ist polynomiell lang, da N polynomiell zeitbeschränkt ist.

 $\rightarrow x \in L$ gdw. es ein solches Zertifikat $u \in \Sigma^{p(|x|)}$ für x in T(N) gibt.

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L\subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p:\mathbb{N}\to\mathbb{N}$ und eine polynomiell zeitbeschränkte DTM M (d.h. $\mathrm{time}_M(n)\in O(n^c)$) existieren, sodass für jedes $x\in\Sigma^*$ gilt $x\in L\Leftrightarrow \exists_{u\in\Sigma^{p(|x|)}}\langle x,u\rangle\in T(M)$.

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L.

Wir wählen u als Kodierung eines akzeptierenden Berechnungspfads ("Zertifikat") für x in T(N). Das Zertifikat ist polynomiell lang, da N polynomiell zeitbeschränkt ist.

 $\rightarrow x \in L$ gdw. es ein solches Zertifikat $u \in \Sigma^{p(|x|)}$ für x in T(N) gibt.

 $\rightarrow x \in L$ gdw. es ein solches Zertifikat $u \in \Sigma^{p(|x|)}$ für x in I(N) gibt

" \leftarrow ": Sei M eine DTM wie im Theorem, zeitbeschränkt durch Polynom \underline{q} .

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L\subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p:\mathbb{N}\to\mathbb{N}$ und eine polynomiell zeitbeschränkte **D**TM M (d.h. $\mathrm{time}_M(n)\in O(n^c)$) existieren, sodass für jedes $x\in \Sigma^*$ gilt $x\in L\Leftrightarrow \exists_{u\in \Sigma^{p(|x|)}}\langle x,u\rangle\in T(M)$.

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L.

Wir wählen u als Kodierung eines akzeptierenden Berechnungspfads ("Zertifikat") für x in T(N).

Das Zertifikat ist polynomiell lang, da N polynomiell zeitbeschränkt ist.

 $\rightarrow x \in L$ gdw. es ein solches Zertifikat $u \in \Sigma^{p(|x|)}$ für x in T(N) gibt.

"←": Sei *M* eine DTM wie im Theorem, zeitbeschränkt durch Polynom *q*.

Wir konstruieren eine NTM N die:

- 1. das Zertifikat u der Länge p(|x|) nichtdeterministisch erzeugt ("rät") und
- 2. sich danach wie M auf $\langle x, u \rangle$ verhält.

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L\subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p:\mathbb{N}\to\mathbb{N}$ und eine polynomiell zeitbeschränkte DTM M (d.h. $\mathrm{time}_M(n)\in O(n^c)$) existieren, sodass für jedes $x\in \Sigma^*$ gilt $x\in L\Leftrightarrow \exists_{u\in \Sigma^{p(|x|)}}\langle x,u\rangle\in T(M)$.

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L.

Wir wählen u als Kodierung eines akzeptierenden Berechnungspfads ("Zertifikat") für x in T(N).

Das Zertifikat ist polynomiell lang, da N polynomiell zeitbeschränkt ist.

 $\rightarrow x \in L$ gdw. es ein solches Zertifikat $u \in \Sigma^{p(|x|)}$ für x in T(N) gibt.

" \Leftarrow ": Sei M eine DTM wie im Theorem, zeitbeschränkt durch Polynom q. Wir konstruieren eine NTM N die:

- 1. das Zertifikat u der Länge p(|x|) nichtdeterministisch erzeugt ("rät") und
- 2. sich danach wie M auf $\langle x, u \rangle$ verhält.
- \sim N terminiert in p(|x|) + q(|x| + |u|) Schritten (also polynomieller Zeit) und

$$x \in L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \overline{\langle x, u \rangle} \in \overline{T(M)} \Leftrightarrow x \in T(N).$$

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L \subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p : \mathbb{N} \to \mathbb{N}$ und eine polynomiell zeitbeschränkte **D**TM M (d.h. $\operatorname{time}_M(n) \in O(n^c)$) existieren, sodass für jedes $x \in \Sigma^*$ gilt $x \in L \Leftrightarrow \exists_{u \in \Sigma^p(|x|)} \langle x, u \rangle \in T(M)$.

Beweis (Skizze)

" \Rightarrow ": Sei $L \in NP$, d.h. es gibt eine polynomiell zeitbeschränkte NTM N mit T(N) = L.

Wir wählen u als Kodierung eines akzeptierenden Berechnungspfads ("Zertifikat") für x in T(N).

Das Zertifikat ist polynomiell lang, da N polynomiell zeitbeschränkt ist. $\sim x \in L$ gdw. es ein solches Zertifikat $u \in \Sigma^{p(|x|)}$ für x in T(N) gibt.

"⇐": Sei *M* eine DTM wie im Theorem, zeitbeschränkt durch Polynom *a*.

Wir konstruieren eine NTM N die:

- 1. das Zertifikat u der Länge p(|x|) nichtdeterministisch erzeugt ("rät") und
- 2. sich danach wie M auf $\langle x, u \rangle$ verhält.
- $\sim N$ terminiert in p(|x|) + q(|x| + |u|) Schritten (also polynomieller Zeit) und

$$x \in L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M) \Leftrightarrow x \in T(N)$$
. Also $L \in \text{NTIME}(p(n) + q(n + p(n)))$, also $L \in \text{NP}$.

3-COLORING versus 2-COLORING

3-Coloring (2-Coloring)

Eingabe: ungerichteter Graph G = (V, E)

Lassen sich die Knoten von G mit drei (zwei) Farben so färben, dass keine zwei mit

einer Kante verbundenen Knoten die gleiche Farbe haben?

3-Coloring=

{G | die Knoten von G lassen sich mit 3 Fonder fürben sid. }

3-COLORING versus 2-COLORING

3-Coloring (2-Coloring)

Eingabe: ungerichteter Graph G = (V, E)

Frage: Lassen sich die Knoten von G mit drei (zwei) Farben so färben, dass keine zwei mit

einer Kante verbundenen Knoten die gleiche Farbe haben?

3-Coloring versus 2-Coloring

3-Coloring (2-Coloring)

Eingabe: ungerichteter Graph G = (V, E)

Frage: Lassen sich die Knoten von G mit drei (zwei) Farben so färben, dass keine zwei mit

einer Kante verbundenen Knoten die gleiche Farbe haben?

Mitteilung: Beide Probleme liegen in NP und 2-Coloring sogar in P

Frage: geben Sie einen deterministischen Polynomzeitalgorithmus für 2-Coloring an

Longest Path versus Shortest Path

Shortest Path (Longest Path)

Eingabe: ungerichteter Graph G = (V, E), zwei Knoten s, t und eine natürliche Zahl $k \le |V|$ **Frage:** Existiert ein "einfacher" Pfad zwischen s und t der Länge **höchstens** (**mind.**) k?

Longest Path versus Shortest Path

Shortest Path (Longest Path)

Eingabe: ungerichteter Graph G = (V, E), zwei Knoten $\underline{s, t}$ und eine natürliche Zahl $\underline{k \leq |V|}$

Frage: Existiert ein "einfacher" Pfad zwischen s und t der Länge höchstens (mind.) k?

Longest Path versus Shortest Path

Shortest Path (Longest Path)

Eingabe: ungerichteter Graph G = (V, E), zwei Knoten s, t und eine natürliche Zahl $k \le |V|$ **Frage:** Existiert ein "einfacher" Pfad zwischen s und t der Länge **höchstens** (**mind.**) k?

Mitteilung: Beide Probleme liegen in NP und Shortest Path liegt sogar in P (Breitensuche)!

3-SAT versus 2-SAT

3-SAT (2-SAT)

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform" mit ≤ 3 (bzw. ≤ 2) Literalen pro Klausel.

Frage: Ist F erfüllbar, d.h. gibt es eine {0,1}-wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

3-SAT versus 2-SAT

3-SAT (2-SAT)

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform" mit \leq 3 (bzw. \leq 2) Literalen pro Klausel.

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Booleschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele
$$(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_3 \lor x_4) \land (\overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \land (x_2 \lor x_3 \lor x_4)$$

3-SAT versus 2-SAT

3-SAT (2-SAT)

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform" mit \leq 3 (bzw. \leq 2) Literalen pro Klausel.

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Booleschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

```
 (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_3 \lor x_4) \land (\overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \land (x_2 \lor x_3 \lor x_4)  ist erfüllbar z.B. mit x_1 = 0, x_2 = 0, x_3 = 1 (und x_4 beliebig).
```

3-SAT versus 2-SAT

3-SAT (2-SAT)

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform" mit ≤ 3 (bzw. ≤ 2) Literalen pro Klausel.

Ist F erfüllbar, d.h. gibt es eine {0,1}-wertige Belegung der in F verwendeten Boo-Frage: leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

- ist erfüllbar z.B. mit $x_1 = 0$, $x_2 = 0$, $x_3 = 1$ (und x_4 beliebig).
- \blacktriangleright $(x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_3}) \land (\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_2 \lor x_3)$ nicht erfüllbar
- x,=0 x,=0 => X,=0

3-SAT versus 2-SAT

3-SAT (2-SAT)

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform" mit ≤ 3 (bzw. ≤ 2) Literalen pro Klausel.

Frage: Ist \overline{F} **erfüllbar**, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Booleschen Variablen derart, dass F zu **wahr** (d.h. 1) ausgewertet wird?

Beispiele

- $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_3 \lor x_4) \land (\overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \land (x_2 \lor x_3 \lor x_4)$ ist erfüllbar z.B. mit $x_1 = 0$, $x_2 = 0$, $x_3 = 1$ (und x_4 beliebig).
- \blacktriangleright $(x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_3}) \land (\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_2 \lor x_3)$ nicht erfüllbar

Mitteilung: Beide Probleme liegen in NP und 2-SAT liegt sogar in P

P versus NP

Die bekannteste offene Frage der (Theoretischen) Informatik ist: P

'solwersk Problemen in NP" · 3 - SAT · Longest path

P versus NP

Die bekannteste offene Frage der (Theoretischen) Informatik ist: $P \stackrel{?}{=} NP$.

Zur Einordnung von P versus NP: "Geglaubtes Schaubild" (unter $P \subseteq NP$):

P versus NP

Die bekannteste offene Frage der (Theoretischen) Informatik ist: $P \stackrel{?}{=} NP$.

Zur Einordnung von P versus NP: "Geglaubtes Schaubild" (unter $P \subsetneq NP$):

