Rödl Nibble

David Brandfonbrener Math 345

December 1, 2016

Definition 1. For $2 \le l < k < n$, define the covering number M(n,k,l) to be the minimal size of a family \mathcal{K} of k-element subsets of $\{1,..,n\}$ such that every l-element subset of $\{1,..,n\}$ is contained in some $A \in \mathcal{K}$

Theorem 1. For fixed $2 \le l < k$, where $o(1) \to 0$ as $n \to \infty$:

$$M(n, k, l) \le (1 + o(1)) \frac{\binom{n}{l}}{\binom{k}{l}}$$

Definition 2. Let H = (V, E) be an r-uniform hypergraph, with $x \in V$. Then define the degree of x in H, d(x) to be the number of edges in E containing x. And for $x, y \in V$, define d(x, y) to be the number of edges in E containing both x and y. And a covering of E is a set of edges in E such that every vertex in E is in some edge in E.

Lemma 1. For every integer $r \ge 2$ and reals $k \ge 1$, a > 0, there are $\gamma = \gamma(r, k, a) > 0$ and $d_0 = d_0(r, k, a)$ such that for every $n \ge D \ge d_0$ the following holds.

For every H = (V, E) an r-uniform hypergraph with n vertices, all with positive degree and satisfying:

- 1. For all except at most γn vertices $x \in V$, $d(x) = (1 \pm \gamma)D$
- 2. For all $x \in V$, d(x) < kD
- 3. For any distinct $x, y \in V$, $d(x, y) < \gamma D$.

Then there exists a cover of H with at most $(1+a)\frac{n}{r}$ edges.

Lemma 2. For every integer $r \geq 2$ and reals K > 0, $\epsilon > 0$, and every $\delta' > 0$, there are $\delta = \delta(r, K, \epsilon, \delta') > 0$ and $D_0 = D_0(r, K, \epsilon, \delta') > 0$ such that for every $n \geq D \geq D_0$ the following holds.

For every H = (V, E) an r-uniform hypergraph with n vertices, satisfying:

- 1. For all except at most δn vertices $x \in V$, $d(x) = (1 \pm \delta)D$
- 2. For all $x \in V$, d(x) < KD
- 3. For any distinct $x, y \in V$, $d(x, y) < \delta D$.

Then there exist a set of edges $E' \subseteq E$ that has the following properties:

- 4. $|E'| = \frac{\epsilon n}{r} (1 \pm \delta')$
- 5. Define $V' = V \setminus \bigcup_{e \in E'} e$. Then we have $|V'| = ne^{-\epsilon}(1 \pm \delta')$
- 6. For all except at most $\delta'|V'|$ vertices $x \in V'$ the degree d'(x) in the induced hypergraph of H on V' satisfies $d'(x) = De^{-\epsilon(r-1)}(1 \pm \delta')$