Probability and Statistics

Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

- Concepts and reality
- Probability distributions
- · Bayes's Law
- Stationarity and ergodicity
- Correlation functions and power spectra
- Propagation of a probability distribution

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/MAE546.html
http://www.princeton.edu/~stengel/OptConEst.html

1

Concepts and Reality of Probability

(Papoulis, 1990)

- Theory may be exact
 - Deals with averages of phenomena with many possible outcomes
 - Based on models of behavior
- Application can only be approximate
 - Measure of our state of knowledge or belief that something may or may not be true
 - Subjective assessment

A: event

P(A): probability of event

 n_A : number of times A occurs experimentally

n:total number of trials

$$P(A) \approx \frac{n_A}{n}$$

2

Interpretations of Probability

(Papoulis)

- **Axiomatic Definition (Theoretical interpretation)**
 - Probability space, abstract objects (outcomes), and sets (events)
 - Axiom 1: $Pr(A_i) \ge 0$
 - Axiom 2: Pr("certain event") = 1 = Pr [all events in probability space (or universe)]
 - Axiom 3: With no common elements,

$$\Pr(A_i \cup A_j) = \Pr(A_i) + \Pr(A_j)$$

Relative Frequency (Empirical interpretation)

$$\Pr(A_i) = \lim_{N \to \infty} \left(\frac{n_{A_i}}{N}\right)$$

N = number of trials (total) $n_{Ai} =$ number of trials with attribute A_i

3

Interpretations of Probability

(Papoulis)

Classical ("Favorable outcomes" interpretation)

$$\Pr(A_i) = \frac{n_{A_i}}{N}$$

 $\Pr(A_i) = \frac{n_{A_i}}{N}$ N is finite $n_{Ai} = \text{ number of outcomes}$ "favorable to" A_i

- Measure of belief (Subjective interpretation)
 - $Pr(A_i)$ = measure of belief that A_i is true (similar to fuzzy sets)
 - Informal induction precedes deduction
 - Principle of insufficient reason (i.e., total prior ignorance):
 - e.g., if there are 5 event sets, A_i , i = 1 to 5, $Pr(A_i) = 1/5 = 0.2$

Probability

"... a way of expressing knowledge or belief that an event will occur or has occurred."

Statistics

"The science of making effective use of numerical data relating to groups of individuals or experiments."

5

Empirical (or Relative) Frequency of Discrete, Mutually Exclusive Events in Sample Space

$$\Pr(x_i) = \frac{n_i}{N} \quad ; \quad i = 1 \text{ to } I \quad \text{in } [0,1]$$

- **N** = total number of events
- n_i = number of events with value x_i
- I = number of different values
- x_i = ordered set of hypotheses or values

- x is a random variable
- · Equivalent sets

$$A_i = \left\{ x \in U \mid x = x_i \right\} \quad ; \quad i = 1 \text{ to } I$$

· Cumulative probability over all sets

$$\sum_{i=1}^{I} \Pr(A_i) = \sum_{i=1}^{I} \Pr(x_i) = \frac{1}{N} \sum_{i=1}^{I} n_i = 1$$

Cumulative Probability, $Pr(x \ge \le a)$, and Discrete Measurements of a Continuous Variable

- · Suppose x represents a continuum of colors
 - $-x_i$ is the center of a band in x

$$\Pr(x_i \pm \Delta x / 2) = n_i / N$$

$$\sum_{i=1}^{I} \Pr(x_i \pm \Delta x / 2) = 1$$

7

Probability Density Function, pr(x), and Cumulative Distribution Function, Pr(x < X)

Probability density function

Cumulative distribution function

$$\Pr(x < X) = \int_{-\infty}^{X} \Pr(x) \, dx$$

Gaussian probability density and cumulative distribution functions

Random Number Example

Statistical properties prior to actual event

=RAND()

Excel spreadsheet: 2 random rows and one deterministic row

0.3

- [RAND()] generates a uniform random number on each call =RAND()

=RAND()

=RAND()

=RAND()

0.4

=RAND()

=RAND()

Output for 4th trial

0.18 0.54 0.49 0.49 0.02 0.73 0.88 0.81 0.46 0.84 0.16 0.89 0.30 0.03 0.10 0.20 0.30 0.40 0.50 0.60 0.70

=RAND()

=RAND()

0.5

=RAND()

=RAND()

Once the experiment is over, the results are determined

9

Properties of Random Variables

- Mode
 - Value of x for which pr(x) is maximum
- Median
 - Value of x corresponding to 50th percentile
 - Pr(x < median) = Pr(x > median) = 0.5
- Mean
 - Value of x corresponding to statistical average
- First moment of x =Expected value of x =

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$
"Moment arm"

10

Expected Values

Mean Value
$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$

- Second central moment of x = Variance
 - Variance from the mean value rather than from zero
 - Smaller value indicates less uncertainty in the value of x

$$E\left[\left(x-\overline{x}\right)^{2}\right] = \sigma_{x}^{2} = \int_{-\infty}^{\infty} \left(x-\overline{x}\right)^{2} \operatorname{pr}(x) dx$$

Expected value of any function of x, f(x)

$$E[f(x)] = \int_{-\infty}^{\infty} f(x) \operatorname{pr}(x) dx$$

11

Expected Value is a Linear Operation

Expected value of sum of random variables

 x_1 and x_2 need not be statistically independent

$$E[x_1 + x_2] = \int_{-\infty}^{\infty} (x_1 + x_2) \operatorname{pr}(x) dx$$
$$= \int_{-\infty}^{\infty} x_1 \operatorname{pr}(x) dx + \int_{-\infty}^{\infty} x_2 \operatorname{pr}(x) dx = E[x_1] + E[x_2]$$

Expected value of constant times random variable

$$E[kx] = \int_{-\infty}^{\infty} kx \operatorname{pr}(x) dx = k \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = k E[x]$$

Mean Value of a Uniform **Random Distribution**

Used in most random number generators (e.g., RAND)

- **Bounded distribution**
- **Example is symmetric about the mean**

$$\int_{-\infty}^{\infty} \operatorname{pr}(x) \, dx = 1$$

Mean value

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = \int_{x_{\min}}^{x_{\max}} \frac{x}{x_{\max} - x_{\min}} dx = \frac{1}{2} \frac{x_{\max}^2 - x_{\min}^2}{x_{\max} - x_{\min}} = \frac{1}{2} (x_{\max} + x_{\min})$$

Variance and Standard Deviation of a Uniform Random Distribution

$$x_{\min} = -x_{\max} \triangleq a$$

$$E\left[(x - \overline{x})^{2} \right] = \sigma_{x}^{2} = \frac{1}{2a} \int_{-a}^{a} x^{2} dx = \frac{x^{3}}{6a} \Big|_{-a}^{a} = \frac{a^{2}}{3}$$

Standard deviation

$$\sigma_x = \sqrt{\sigma_x^2} = \sqrt{\frac{a^2}{3}} = \frac{a}{\sqrt{3}}$$

Gaussian (Normal) Random Distribution

- Used in some random number generators (e.g., RANDN)
- Unbounded, symmetric distribution
- Defined entirely by its mean and standard deviation

$$E\left[\left(x-\overline{x}\right)^{2}\right] = \int_{-\infty}^{\infty} \left(x-\overline{x}\right)^{2} \operatorname{pr}(x) dx = \sigma_{x}^{2}$$

Units of x and σ_x are the same

15

Probability of Being Close to the Mean (Gaussian Distribution)

Probability of being within $\pm 1\sigma$

$$\Pr[x < (\overline{x} + \sigma_x)] - \Pr[x < (\overline{x} - \sigma_x)] \approx 68\%$$

 $\operatorname{pr}(x) = \frac{1}{\sqrt{2\pi} \sigma_x} e^{-\frac{(x-\overline{x})^2}{2\sigma_x^2}}$

Probability of being within $\pm 2\sigma$

$$\Pr\left[x < \left(\overline{x} + 2\sigma_x\right)\right] - \Pr\left[x < \left(\overline{x} - 2\sigma_x\right)\right] \approx 95\%$$

0.4 pr(x)

Probability of being within $\pm 3\sigma$

$$\Pr\left[x < \left(\overline{x} + 3\sigma_x\right)\right] - \Pr\left[x < \left(\overline{x} - 3\sigma_x\right)\right] \approx 99\%$$

Experimental Determination of Mean and Variance

Sample mean for N data points, x₁, x₂, ..., x_N

· Sample variance for same data set

Divisor is (N-1) rather than N to produce an unbiased estimate

Inconsequential for large N

- Prior knowledge: fit histogram to known distribution
- Hypothesis test: determine best fit (e.g., Rayleigh, binomial, Poisson, ...)

0.6

 n_i/N pr(x)

Histogram

Central Limit Theorem

- Probability distribution of the <u>sum of independent, identically</u> distributed (i.i.d.) variables
 - Approaches normal distribution as number of variables approaches infinity
 - Summation of continuous random variables produces a convolution of probability density functions (Papoulis, 1990)
 - See Supplemental Material for sufficient conditions

Multiple Probability Densities and Expected Values

Probability density functions of two random variables, x and y

 $\operatorname{pr}(x)$ and $\operatorname{pr}(y)$ given for all x and y in $(-\infty,\infty)$ $\operatorname{pr}(x,y)$: **Joint probability density function** of x and y $\int_{-\infty}^{\infty} \operatorname{pr}(x) dx = 1$; $\int_{-\infty}^{\infty} \operatorname{pr}(y) dy = 1$; $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \operatorname{pr}(x,y) dx dy = 1$;

Expected values of x and y

Mean Value

Mean Value

Covariance

Autocovariance

$$E(x) = \int_{-\infty}^{\infty} x \ pr(x) dx = \overline{x}$$

$$E(y) = \int_{-\infty}^{\infty} y \ pr(y) dy = \overline{y}$$

$$E(xy) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \ pr(x,y) dx dy$$

$$E(x^2) = \int_{-\infty}^{\infty} x^2 \ pr(x) dx$$

Joint Probability (n = 2)

Suppose x can take I values and y can take J values; then,

$$\sum_{i=1}^{J} \Pr(x_i) = 1 \quad ; \quad \sum_{j=1}^{J} \Pr(y_j) = 1$$

If x and y are uncorrelated,

$$\Pr(x_i, y_j) = \Pr(x_i \land y_j) = \Pr(x_i) \Pr(y_j)$$

and

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \Pr(x_i, y_j) = 1$$

 $Pr(x_i)$

	0.5	0.3	0.2	
0.6	0.3	0.18	0.12	0.6
0.4	0.2	0.12	80.0	0.4
	0.5	0.3	0.2	1

19

Conditional Probability (n = 2)

If x and y are *not independent*, probabilities are related Probability that x takes i^{th} value when y takes i^{th} value

$$\Pr\left(\mathbf{x}_{i} \mid \mathbf{y}_{j}\right) = \frac{\Pr\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right)}{\Pr\left(\mathbf{y}_{j}\right)}$$

Similarly

$$\Pr(y_j \mid x_i) = \frac{\Pr(x_i, y_j)}{\Pr(x_i)}$$

$$\Pr(x_i \mid y_j) = \Pr(x_i)$$

iff x and y are independent of each other

$$\Pr(y_j \mid x_i) = \Pr(y_j)$$

iff x and y are independent of each other

Causality is not addressed by conditional probability

21

Dependence and Correlation

x and y are independent if

$$\operatorname{pr}(x,y) = \operatorname{pr}(x)\operatorname{pr}(y)$$
 at every x and y in $(-\infty,\infty)$
 $\operatorname{pr}(x \mid y) = \operatorname{pr}(x); \quad \operatorname{pr}(y \mid x) = \operatorname{pr}(y)$

Dependence

 $\operatorname{pr}(x,y) \neq \operatorname{pr}(x)\operatorname{pr}(y)$ for some x and y in $(-\infty,\infty)$

x and y are uncorrelated if

$$E(xy) = E(x)E(y)$$
$$= \overline{x} \ \overline{y}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \operatorname{pr}(x, y) dx dy = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx \int_{-\infty}^{\infty} y \operatorname{pr}(y) dy$$

Correlation

$$E(xy) \neq E(x)E(y)$$

Applications of Conditional Probability (n=2)

Joint probability can be expressed in two ways

$$\Pr(\mathbf{x}_{i}, y_{j}) = \Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i}) = \Pr(\mathbf{x}_{i} \mid \mathbf{y}_{j}) \Pr(\mathbf{y}_{j})$$

Unconditional probability of each variable is expressed by a sum of terms

$$\Pr(\mathbf{x}_i) = \sum_{j=1}^{J} \Pr(\mathbf{x}_i \mid \mathbf{y}_j) \Pr(\mathbf{y}_j)$$

$$\Pr(\mathbf{x}_i) = \sum_{j=1}^{J} \Pr(\mathbf{x}_i \mid \mathbf{y}_j) \Pr(\mathbf{y}_j) \left| \Pr(\mathbf{y}_j) = \sum_{i=1}^{J} \Pr(\mathbf{y}_j \mid \mathbf{x}_i) \Pr(\mathbf{x}_i) \right|$$

23

Bayes's Rule

Bayes's Rule proceeds from the previous results Probability of x taking the value x_i conditioned on y taking its j^{th} value

$$\Pr(\mathbf{x}_{i} \mid \mathbf{y}_{j}) = \frac{\Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i})}{\Pr(\mathbf{y}_{j})} = \frac{\Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i})}{\sum_{i=1}^{I} \Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i})}$$

... and the converse

$$\Pr(y_j \mid x_i) = \frac{\Pr(x_i \mid y_j) \Pr(y_j)}{\Pr(x_i)} = \frac{\Pr(x_i \mid y_j) \Pr(y_j)}{\sum_{j=1}^{J} \Pr(x_i \mid y_j) \Pr(y_j)}$$

Random Processes

25

Nonstationary Processes

Non-Stationary Process: Ensemble statistics (e.g., joint probability distribution and expected value) depend on t_1 and t_2

$$pr_{ensemble} [x(t_1), x(t_2)]$$

$$E_{ensemble} [x(t_1)x(t_2)]$$

Stationary Processes

Stationary Process: Ensemble statistics (e.g., joint probability distribution and expected value) depend on Δt

$$\begin{aligned} \operatorname{pr}_{ensemble} \left[x(t_1), x(t_2) \right] &= \operatorname{pr}_{ensemble} \left[x(t_1), x(t_1 + \Delta t) \right] \\ &= \operatorname{pr}_{ensemble} \left[x(t), x(t + \Delta t) \right] \end{aligned}$$

$$E_{ensemble}[x(t_1)x(t_2)] = E_{ensemble}[x(t)x(t+\Delta t)]$$

27

Ergodic Processes

Ergodic Process: Ensemble statistics and timeseries statistics are stationary and the same

$$\operatorname{pr}_{ensemble}\left[x(t),x(t+\Delta t)\right] = \operatorname{pr}_{time}\left[x(t),x(t+\Delta t)\right]$$

$$E_{ensemble} \left[x(t)x(t+\Delta t) \right] = E_{time} \left[x(t)x(t+\Delta t) \right]$$

Stationary, Ergodic Process

Stationary, Non-Ergodic Process

Non-Stationary Process: Sinusoidal Mean

31

Non-Stationary Process: Sinusoidal Variance

Histograms of Random Processes

33

Correlation and Covariance Functions

Autocorrelation Functions of Random Processes

Autocorrelation Function for Non- Stationary Variance

$$E[x(t_1),x(t_2)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t_1)x(t_2) \operatorname{pr}_{ensemble} \left[x(t_1), x(t_2) \right] dx(t_1) dx(t_2)$$

$$\triangleq \psi \left[x(t_1), x(t_2) \right]$$

35

Autocovariance Functions of Random Processes

Mean values subtracted from variables

$$E\left\{\left[x(t_1) - \overline{x}(t_1)\right]\left[x(t_2) - \overline{x}(t_2)\right]\right\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[x(t_1) - \overline{x}(t_1) \right] \left[x(t_2) - \overline{x}(t_2) \right] \operatorname{pr}_{ensemble} \left[x(t_1), x(t_2) \right] dx(t_1) dx(t_2)$$

$$\triangleq \phi \left[\tilde{x}(t_1) \tilde{x}(t_2) \right], \quad where \left(\tilde{x} \right) \triangleq x - \overline{x}$$

Autocovariance Functions of Random Processes

With $t_1 = t_2$, autocovariance function = Variance

$$E\{[x(t_1) - \overline{x}(t_1)][x(t_2) - \overline{x}(t_2)]\} = E\{[x(t_1) - \overline{x}(t_1)]^2\}$$
$$= E[\tilde{x}^2(t_1)] = \sigma_x^2$$

$$\tilde{x}(t) \triangleq [x(t) - \overline{x}(t)]$$

37

Cross-Covariance Functions

Cross-covariance Function for Non-Stationary Variance

$$E\left\{\left[x(t_1)-\overline{x}(t_1)\right]\left[y(t_2)-\overline{y}(t_2)\right]\right\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[x(t_1) - \overline{x}(t_1) \right] \left[y(t_2) - \overline{y}(t_2) \right] \operatorname{pr}_{ensemble} \left[x(t_1), y(t_2) \right] dx(t_1) dy(t_2)$$
$$= \phi \left[\tilde{x}(t_1) \tilde{y}(t_2) \right]$$

With $t_1 = t_2$, cross-covariance function

$$E\left\{\left[x(t_1) - \overline{x}(t_1)\right]\left[y(t_1) - \overline{y}(t_1)\right]\right\} = \sigma_{xy}$$

Covariance Functions for Stationary Processes

For stationary processes, statistics are independent of time

Autocovariance

$$\phi \left[\tilde{x}(t_1) \tilde{y}(t_2) \right] = \phi \left[\tilde{x}(t_1) \tilde{y}(t_1 + \Delta t) \right]$$

$$\triangleq \phi_{xy}(\Delta t)$$

$$\phi_{xx}(\Delta t) = \phi_{xx}(-\Delta t)$$

 $\Delta t = \text{Lag time}$

Ordering in product is immaterial; therefore.

> Autocovariance function is symmetric

Cross-covariance function is not symmetric unless y = x

39

Properties of Continuous-Time Covariance Functions for Ergodic Processes

Correlation depends on Δt only

Convolution integrals of the dependent variables

$$\frac{\phi_{xx}(\Delta t)}{\int_{T-\infty}^{T} E(x(t)x(t+\Delta t))} = \lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} x(t)x(t+\Delta t)dt$$

$$\phi_{yy}(\Delta t) = E(y(t)y(t + \Delta t))$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} y(t)y(t + \Delta t)dt$$

Cross-covariance function

$$\phi_{xy}(\Delta t) = E(x(t)y(t+\Delta t)) = \lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} x(t)y(t+\Delta t)dt$$

Properties of Discrete-Time Covariance Functions for Ergodic Processes

$k = \text{Number of } (\pm) \text{ lags}$

Convolution sums of the dependent variables Discrete case approaches continuous case as $k \rightarrow 0$

$$\phi_{xx}(k) = E(x_n x_{n+k}) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (x_n x_{n+k})$$

$$\phi_{yy}(k) = E(y_n y_{n+k}) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (y_n y_{n+k})$$

$$\phi_{yy}(k) = E(y_n y_{n+k}) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (y_n y_{n+k})$$

Cross-covariance function

$$\phi_{xy}(k) = E(x_n y_{n+k}) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (x_n y_{n+k})$$

41

Additional Properties of Covariance Functions for Stationary Processes

"Self" correlation ≥ lagged correlation

$$\phi_{xx}(0) \ge \phi_{xx}(\Delta t)$$

$$\phi_{yy}(0) \ge \phi_{yy}(\Delta t)$$

$$\phi_{xx}(0)\phi_{yy}(0) \ge \left[\phi_{xy}(\Delta t)\right]^2$$

Additional Properties of Correlation Functions for Stationary Processes

$$\phi_{xx}(k) = E(x_n x_{n+k}) = \lim_{N \to \infty} \sum_{n=1}^{N} (x_n x_{n+k})$$

For finite length, number of products in correlation function estimate <u>decreases</u> as number of lags <u>increases</u>

Time, sec	c Phi(k) # o	f Products	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
n			0	- 1	2	3	4	5	6	7	8	9	10	
x(n)	-		0.000	0.050	0.100	0.149	0.199	0.247	0.296	0.343	0.389	0.435	0.479 -	-
x(n)	0.911	11	0.000	0.050	0.100	0.149	0.199	0.247	0.296	0.343	0.389	0.435	0.479 -	-
x(n+1)	0.785	10 -		0.000	0.050	0.100	0.149	0.199	0.247	0.296	0.343	0.389	0.435	0.479 -
x(n+2)	0.659	9 -			0.000	0.050	0.100	0.149	0.199	0.247	0.296	0.343	0.389	0.435 0.479

Approximate correction: multiply ϕ by $\frac{n+k}{n}$

43

AutoCovariance Functions for Previous Examples

The Color of Noise

45

Dirac Delta Function

$$\delta(\Delta t) = \begin{cases} \infty, & \Delta t = 0 \\ 0, & \Delta t \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t) dt = \lim_{\Delta t_1 \to 0} \int_{-\Delta t_1}^{\Delta t_1} \delta(\Delta t) d(\Delta t) = 1$$

Representation of Dirac delta function as Gaussian distribution with vanishing standard deviation

$$\delta(\Delta t) = \lim_{a \to 0} \frac{1}{a\sqrt{\pi}} e^{-\left(\frac{\Delta t}{a}\right)^2}$$

White Noise

1) Autocovariance function at zero lag

$$\phi_{xx}(0) = \sigma_x^2$$

2) Autocovariance function at non-zero lag = 0
3) Model using Dirac delta function

$$\phi_{xx}(\Delta t) = \phi_{xx}(0)\delta(\Delta t) = \sigma_x^2\delta(\Delta t)$$

Conditional probability distribution = Unconditional probability distribution

$$\operatorname{pr}[x(t)|x(t+\Delta t)] = \operatorname{pr}[x(t)]$$

47

Colored Noise*: First-Order Filter Effects

$$\dot{x} = ax - au$$
, $a < 0$

Colored Noise: Probability Density Functions

$$\dot{x} = -x + u$$

Probability density functions are virtually identical

49

Markov Sequences and Processes

- Markov Sequence (Discrete Time)
 - Probability distribution of dynamic process at time $t_{k+1} > t_k > 0$, conditioned on the past history depends only on the state, x, at time t_k

$$\left| \Pr \left[x_{k+1} \mid \left(x_k, x_{k-1}, x_{k-2}, \dots, 0 \right) \right] \right| = \Pr \left[x_{k+1} \mid x_k \right] \right|$$

- Markov Process (Continuous Time)
 - Probability distribution of dynamic process at time s > t > 0, conditioned on the past history depends only on the state, x, at time t

Stochastic Steady State

Scalar LTI system with zero-mean Gaussian random input

$$x_{i+1} = ax_i + (1-a)u_i, \quad 0 < a < 1$$

Expected value

$$E(x_{i+1}) = E[ax_i + (1-a)u_i], \quad 0 < a < 1$$

= $aE(x_i) + (1-a)E(u_i)$

Expected value at stochastic steady state

$$E(x_{i+1}) = E(x_i)$$

$$(1-a)E(x_i) = (1-a)E(u_i)$$

$$E(x_i) = E(u_i) = 0$$

51

Autocovariance of a Markov Sequence

Scalar LTI system with zero-mean Gaussian random input

$$\phi_{xx}(1) = E(x_i x_{i+1}) = E[x_i a(x_i - u_i)]$$
$$= a[E(x_i^2) - E(x_i u_i)]$$

If input is white noise, $E(x_i u_i) = 0$

$$\phi_{xx}(1) = aE(x_i^2) = a\sigma_x^2$$

$$\phi_{xx}(k) = a^{|k|} \sigma_x^2, \quad 0 < a < 1$$

Autocovariance of a Markov Process

Expected value at stochastic steady state

$$\dot{x} = ax - au = a(x - u), \quad a < 0$$

$$E(\dot{x}) = a \left[E(x) - E(u) \right] \xrightarrow[t \to \infty]{} 0$$

$$E(x) \xrightarrow[t \to \infty]{} E(u)$$

Autocovariance function of Markov Process

$$\phi_{xx}(\Delta t) = E[x(t)x(t+\Delta t)] = E[x(t)e^{a|\Delta t|}x(t)]$$
$$= e^{a|\Delta t|}E(x^2) = e^{a|\Delta t|}\sigma_x^2, \quad a < 0$$

53

AutoCovariance
Functions of
Markov
Sequences and
Processes

Colored Noise: First-Order Filter a = -1 rad/s

Input AutoCovariance Function

Output AutoCovariance Function

 $t_f = 10,000 \text{ sec}$

55

Colored Noise: Comparison of AutoCovariance Functions for 1st-Order Filters

a = -1 rad/s

a = -0.1 rad/s

 $t_f = 10,000 \text{ sec}$

Fourier Transform and Its Inverse

Fourier transform of x(t)

$$F[x(t)] = X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
, $\omega = frequency, rad / s$

Inverse Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

x(t) and $X(j\omega)$ are a Fourier transform pair

57

Power Spectral Density Function of a Random Process

Frequency distribution of the complex amplitude in x(t)

$$X(\omega) = X_{\text{Re}}(\omega) + jX_{\text{Im}}(\omega)$$

Complex conjugate

$$X * (\omega) = X_{Re}(\omega) - jX_{Im}(\omega)$$

Power spectral density function

$$|X(\omega)|^{2} = X(\omega)X^{*}(\omega)$$

$$= [X_{Re}(\omega) + jX_{Im}(\omega)][X_{Re}(\omega) - jX_{Im}(\omega)]$$

$$= X_{Re}^{2}(\omega) + X_{Im}^{2}(\omega) \triangleq \Psi_{xx}(\omega)$$

58

Power Spectral Density and Autocorrelation Functions Form a Fourier Transform Pair

For a stationary process, Power spectral density function

$$\Psi_{xx}(\omega) = \int_{-\infty}^{\infty} \psi_{xx}(\tau) e^{-j\omega\tau} d\tau$$

Autocorrelation function

$$\psi_{xx}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Psi_{xx}(\omega) e^{j\omega\tau} d\omega$$

59

Power Spectral Density and Autocovariance Functions for

Variation from the Mean

for

$$\tilde{x}(t) = x(t) - \overline{x}$$

Power spectral density function

$$\Phi_{xx}(\omega) = \int_{-\infty}^{\infty} \phi_{xx}(\tau) e^{-j\omega\tau} d\tau$$

Autocovariance function

$$\phi_{xx}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{xx}(\omega) e^{j\omega\tau} d\omega$$

Power Spectral Density and Autocovariance Functions for 1st-Order Filter Output, a = -1rad/s, White-Noise Input

Autocovariance Function

Power Spectral Density Function

Power spectral density function has magnitude but not phase angle

61

Spectral Characteristics of White Noise

$$\phi_{xx}(0) = \sigma_x^2 = \frac{1}{\pi} \int_0^\infty \Phi_{xx}(\omega) e^{j\omega(0)} d\omega = \frac{1}{\pi} \int_0^\infty \Phi_{xx}(\omega) d\omega$$

Which is $(1/\pi) \times area$ under the power spectral density curve

For white noise,

$$\Phi_{xx}(\omega) = \phi_{xx}(0) \int_{-\infty}^{\infty} \delta(\tau) e^{-j\omega\tau} d\tau = \phi_{xx}(0) = \text{constant}$$

However, A is infinite except when the constant integrand is zero

White Noise and Band-Limiting

- Heuristic arguments for use of "white noise":
 - Real systems are band-limited by dynamics
 - Discrete-time systems are band-limited by sampling frequency

Assume that power spectral density has a sharp cutoff at ω_R

$$\Phi_{xx}(\omega) = \begin{cases} \Phi, & |\omega| \le \omega_B \\ 0, & |\omega| > \omega_B \end{cases}$$
$$\sigma_x^2 = \Phi \omega_B / 2\pi$$
$$\phi_{xx}(\tau) = \Phi \sin \omega_B \tau / 2\pi \tau$$

If x(t) is a Markov process

$$\Phi_{xx}(\omega) = \frac{2f\sigma_x^2}{\omega^2 + f^2}$$

When power spectral density is plotted against frequency rather than log(frequency), rolloff does not seem as abrupt

63

Multivariate Statistics and Propagation of Uncertainty

Multivariate Expected Values: Mean Value Vector and Covariance Matrix

Mean value vector of measurement error

$$\overline{\mathbf{n}} = E(\mathbf{n}) = \int_{-\infty}^{\infty} \mathbf{n} \operatorname{pr}(\mathbf{n}) d\mathbf{n} = \begin{bmatrix} \overline{\mathbf{n}}_{1} \\ \overline{\mathbf{n}}_{2} \\ \dots \\ \overline{\mathbf{n}}_{n} \end{bmatrix}$$

Covariance matrix of measurement error

$$\mathbf{R} \triangleq E\left[\left(\mathbf{n} - \overline{\mathbf{n}}\right)\left(\mathbf{n} - \overline{\mathbf{n}}\right)^{T}\right] = \int_{-\infty}^{\infty} \left(\mathbf{n} - \overline{\mathbf{n}}\right)\left(\mathbf{n} - \overline{\mathbf{n}}\right)^{T} \operatorname{pr}(\mathbf{n}) d\mathbf{n}$$

If the error is Gaussian, its probability distribution is

$$\operatorname{pr}(\mathbf{n}) = \frac{1}{(2\pi)^{r/2}} \frac{1}{|\mathbf{R}|^{1/2}} e^{-\frac{1}{2}(\mathbf{n} - \overline{\mathbf{n}})^T \mathbf{R}^{-1}(\mathbf{n} - \overline{\mathbf{n}})}$$

65

Covariance Matrix is Expected Value of the Outer Product

$$\mathbf{R} = E \left[(\mathbf{n} - \overline{\mathbf{n}}) (\mathbf{n} - \overline{\mathbf{n}})^{T} \right]$$

$$= \begin{bmatrix} \boldsymbol{\sigma_{n_{1}}}^{2} & \rho_{12} \boldsymbol{\sigma_{n_{1}}} \boldsymbol{\sigma_{n_{2}}} & \dots & \rho_{1r} \boldsymbol{\sigma_{n_{1}}} \boldsymbol{\sigma_{n_{r}}} \\ \rho_{12} \boldsymbol{\sigma_{n_{1}}} \boldsymbol{\sigma_{n_{2}}} & \boldsymbol{\sigma_{n_{2}}}^{2} & \dots & \rho_{2r} \boldsymbol{\sigma_{n_{2}}} \boldsymbol{\sigma_{n_{r}}} \\ \dots & \dots & \dots & \dots \\ \rho_{1r} \boldsymbol{\sigma_{n_{1}}} \boldsymbol{\sigma_{n_{r}}} & \rho_{2r} \boldsymbol{\sigma_{n_{2}}} \boldsymbol{\sigma_{n_{r}}} & \dots & \boldsymbol{\sigma_{n_{r}}}^{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma_{n_{1}}}^{2} = Variance \ of \ n_{1} \\ \rho_{12} = Correlation \ coefficient \ for \ n_{1} \ and \ n_{2} \\ \rho_{12} \boldsymbol{\sigma_{n_{1}}} \boldsymbol{\sigma_{n_{2}}} = Covariance \ of \ n_{1} \ and \ n_{2} \end{bmatrix}$$

$$\sigma_{n_1}^2$$
 = Variance of n_1
 ρ_{12} = Correlation coefficient for n_1 and n_2
 $\rho_{12}\sigma_{n_1}\sigma_{n_2}$ = Covariance of n_1 and n_2

Gaussian probability distribution is completely described by its mean value and covariance matrix

$$\operatorname{pr}(\mathbf{n}) = \frac{1}{(2\pi)^{r/2} |\mathbf{R}|^{1/2}} e^{-\frac{1}{2}(\mathbf{n} - \overline{\mathbf{n}})^T \mathbf{R}^{-1}(\mathbf{n} - \overline{\mathbf{n}})}$$

Covariance Matrix is Expected Value of the Outer Product

Transcript correlation

- Sample tissue correlation
 - Confirms or questions the classification of samples

67

Mean Values and Covariances of State and Disturbance Vectors

$$\overline{\mathbf{x}} = E(\mathbf{x}) = \int_{-\infty}^{\infty} \mathbf{x} \operatorname{pr}(\mathbf{x}) d\mathbf{x} = \begin{bmatrix} \overline{\mathbf{x}}_1 \\ \overline{\mathbf{x}}_2 \\ \dots \\ \overline{\mathbf{x}}_n \end{bmatrix}$$

$$\begin{bmatrix} \overline{\mathbf{x}}_1 \\ \overline{\mathbf{x}}_2 \\ \dots \\ \overline{\mathbf{x}}_n \end{bmatrix} \quad \overline{\mathbf{w}} = E(\mathbf{w}) = \int_{-\infty}^{\infty} \mathbf{w} \operatorname{pr}(\mathbf{w}) d\mathbf{w} = \begin{bmatrix} \overline{\mathbf{w}}_1 \\ \overline{\mathbf{w}}_2 \\ \dots \\ \overline{\mathbf{w}}_n \end{bmatrix}$$

$$\mathbf{P} \triangleq E\left[\left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T}\right] = \int_{-\infty}^{\infty} \left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T} \operatorname{pr}(\mathbf{x}) d\mathbf{x}$$
$$\mathbf{Q} \triangleq E\left[\left(\mathbf{w} - \overline{\mathbf{w}}\right)\left(\mathbf{w} - \overline{\mathbf{w}}\right)^{T}\right] = \int_{-\infty}^{\infty} \left(\mathbf{w} - \overline{\mathbf{w}}\right)\left(\mathbf{w} - \overline{\mathbf{w}}\right)^{T} \operatorname{pr}(\mathbf{w}) d\mathbf{w}$$

If the disturbance is Gaussian, its probability distribution is

$$\operatorname{pr}(\mathbf{w}) = \frac{1}{(2\pi)^{s/2}} \frac{1}{|\mathbf{Q}|^{1/2}} e^{-\frac{1}{2}(\mathbf{w} - \overline{\mathbf{w}})\mathbf{Q}^{-1}(\mathbf{w} - \overline{\mathbf{w}})}$$

Uncertain Linear, Time-Invariant Dynamic Model

Linear, time-invariant, discrete-time model with known coefficients

$$\mathbf{x}_{k+1} = \mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}\mathbf{u}_k + \mathbf{\Lambda}\mathbf{w}_k$$

Gaussian uncertainty models for initial condition and disturbance

$$\begin{aligned} \overline{\mathbf{x}}_0 &= E[\mathbf{x}_0]; \quad \mathbf{P}_0 = E\{[\mathbf{x}_0 - \overline{\mathbf{x}}_0][\mathbf{x}_0 - \overline{\mathbf{x}}_0]^T\} \\ \overline{\mathbf{x}}_k &= E[\mathbf{x}_k]; \quad \mathbf{P}_k = E\{[\mathbf{x}_k - \overline{\mathbf{x}}_k][\mathbf{x}_k - \overline{\mathbf{x}}_k]^T\} \\ \overline{\mathbf{w}}_k &= \mathbf{0}; \quad \mathbf{Q}_k = E\{[\mathbf{w}_k][\mathbf{w}_k]^T\} \end{aligned}$$

Control is assumed to be known

$$\mathbf{u}_k = \overline{\mathbf{u}}_k; \quad E[\mathbf{u}_k - \overline{\mathbf{u}}_k] \triangleq \mathbf{U}_k = \mathbf{0}$$

69

Propagation of the Ensemble Mean Value Estimate

Mean value of the state

$$E(\mathbf{x}_{k+1}) = E(\mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}\mathbf{u}_k + \mathbf{\Lambda}\mathbf{w}_k)$$

Extrapolation

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi}\overline{\mathbf{x}}_k + \mathbf{\Gamma}\overline{\mathbf{u}}_k + 0, \quad \overline{\mathbf{x}}_0 \text{ given}$$

Propagation of the Ensemble State Covariance Estimate

State covariance matrix

Expected values of cross terms are zero

$$E\left\{\left[\mathbf{x}_{k+1} - \overline{\mathbf{x}}_{k+1}\right]\left[\mathbf{x}_{k+1} - \overline{\mathbf{x}}_{k+1}\right]^{T}\right\} = \mathbf{P}_{k+1} = E\left[\left(\mathbf{\Phi}\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right] + \mathbf{\Gamma}\left(\mathbf{u}_{k} - \overline{\mathbf{u}}_{k}\right) + \mathbf{\Lambda}\mathbf{w}_{k}\right)\left(\mathbf{\Phi}\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right] + \mathbf{\Gamma}\left(\mathbf{u}_{k} - \overline{\mathbf{u}}_{k}\right) + \mathbf{\Lambda}\mathbf{w}_{k}\right)^{T}\right]$$

$$\begin{aligned} \mathbf{P}_{k+1} &= E \left\{ \mathbf{\Phi} \left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k} \right] \left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k} \right]^{T}_{k} \mathbf{\Phi}^{T} + \mathbf{0} + \mathbf{\Lambda} \mathbf{w}_{k} \mathbf{w}^{T}_{k} \mathbf{\Lambda}^{T}_{k} \right\} \\ &= \mathbf{\Phi} E \left\{ \left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k} \right] \left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k} \right]^{T}_{k} \right\} \mathbf{\Phi}^{T} + \mathbf{\Lambda} E \left(\mathbf{w}_{k} \mathbf{w}^{T}_{k} \right) \mathbf{\Lambda}^{T} \end{aligned}$$

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q}_k \mathbf{\Lambda}^T, \quad \mathbf{P}_0 \text{ given}$$

71

Probability Density Functionof the State Estimate

Uncertainty propagation model

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi} \overline{\mathbf{x}}_k + \mathbf{\Gamma} \overline{\mathbf{u}}_k, \quad \overline{\mathbf{x}}_0 \text{ given}$$

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q}_k \mathbf{\Lambda}^T, \quad \mathbf{P}_0 \text{ given}$$

Probability density function of the state is Gaussian

$$\operatorname{pr}(\mathbf{x}_{k}) = \frac{1}{\left(2\pi\right)^{n/2} \left|\mathbf{P}_{k}\right|^{1/2}} e^{-\frac{1}{2}\left(\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right)^{T} \mathbf{P}_{k}^{-1}\left(\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right)}$$

Propagating the state mean and covariance is equivalent to propagating the entire probability density function of the state

Example: Propagating a Scalar Probability Density Function

Scalar LTI system with zero-mean Gaussian random input

$$x_{k+1} = bx_k + \sqrt{1 - b^2}u_k + \sqrt{1 - b^2}w_k$$
, x_0 given

Propagation of the mean value

$$\overline{x}_{i+1} = b\overline{x}_i + \sqrt{1 - b^2}\overline{u}_i, \quad \overline{x}_0 \ given$$

Propagation of the variance

$$P_{k+1} = b^2 P_k + (1 - b^2) Q_k$$
, P_0 given

$$Q_k = E(w_k^2)$$

73

Example: Propagating a Scalar Probability Density Function

$$x_0 = 0; P_0 = 0$$

Example: Propagating a Scalar Probability Density Function

$$x_0 = 1; P_0 = 0$$

Example: Propagating a Scalar Probability Density Function

$$x_0 = 0; P_0 = 3$$

Next Time: Least-Squares Estimation

77

Supplemental Material

Favorable Outcomes Example: Probability of Rolling a "7" with Two Dice

(Papoulis)

• Proposition 1: 11 possible sums, one of which is 7

$$\Pr(A_i) = \frac{n_{A_i}}{N} = \frac{1}{11}$$

- 3 pairs: 1-6, 2-5, 3-4

$$\Pr(A_i) = \frac{n_{A_i}}{N} = \frac{3}{21} = \frac{1}{7}$$

- Proposition 3: 36 possible outcomes, distinguishing between the two dice
 - 6 pairs: 1-6, 2-5, 3-4, 6-1, 5-2, 4-3

$$\Pr(A_i) = \frac{n_{A_i}}{N} = \frac{6}{36} = \frac{1}{6}$$

79

Simple Hypothesis Test: t Test

Is A different from B?

- t compares mean value difference of two data sets, normalized by standard deviations
 - If is reduced by uncertainty in the data sets (s)
 - It is increased by number of points in the data sets (n)

$$t = \frac{\left(m_A - m_B\right)}{\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}}$$

- m: Mean value of the data set
- σ : Standard deviation of data set
- n: Number of points in data set
- If > 3, $m_A \neq m_B$ with ≥99.7% confidence (error probability ≤ 0.003 for Gaussian distributions) [n > 25]

Application of *t* **Test to DNA Microarray Data**

(Data from Alon et al, 1999)

$$t = \left(m_T - m_N\right) / \sqrt{\frac{\sigma_T^2}{36} + \frac{\sigma_N^2}{22}}$$

- 58 RNA samples representing tumor and normal tissue
- 1,151 transcripts are over/underexpressed in tumor/normal comparison (p ≤ 0.003)
- Genetically dissimilar samples are apparent

81

Some Non-Gaussian Distributions

Bimodal Distribution

- Two Peaks
- Often the sum of two unimodal distributions

Binomial Distribution

- Probability of k successes in n trials
- Discrete probability distribution described by a probability mass function

- Probability of a number of events occurring in a fixed period of time
- Discrete probability distribution described by a probability mass function

Some Non-Gaussian Distributions

- Poisson Distribution
 - Probability of a number of events occurring in a fixed period of time
 - Discrete probability distribution described by a probability mass function

$$\operatorname{pr}(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

 λ = Average rate of occurrence of event (per unit time) k = # of occurrences of the event pr(k) = probability of k occurrences (per unit time) \sim normal distribution for large λ

- Cauchy-Lorentz Distribution
 - Mean and variance are undefined
 - <u>"Fat tails"</u>: extreme values more likely than normal distribution

Scaled Numbers

- Central limit theorem fails

$$\operatorname{pr}(x) = \frac{\gamma}{\pi \left[\gamma^2 + (x - x_0)^2 \right]}$$

$$\operatorname{Pr}(x) = \frac{1}{\pi} \tan^{-1} \left(\frac{x - x_0}{\gamma} \right) + \frac{1}{2}$$

Histograms (Wikipedia Example)

Sufficient Conditions for Central Limit Theorem

(Papoulis, 1990)

The probability distribution of the <u>sum of independent, identically distributed (i.i.d.) variables</u> approaches a normal distribution as the number of variables approaches infinity

Random variables, x_i , are independent, identically distributed (*iid.*) and $E(x_i^3)$ is finite

Random variables, x_i , are bounded, $|x_i| < A < \infty$, and $\sigma_i > a > 0$

$$E(x_i^3) < B < \infty$$
, and $\sum \sigma_n^2 \xrightarrow[n \to \infty]{} \infty$

85

Which Combinations are Possible?

Independence and lack of correlation

$$\operatorname{pr}(x,y) = \operatorname{pr}(x)\operatorname{pr}(y) \text{ at every } x \text{ and } y \text{ in } (-\infty,\infty)$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, y \operatorname{pr}(x,y) dx dy = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx \int_{-\infty}^{\infty} y \operatorname{pr}(y) dy = \overline{x} \, \overline{y}$$

Dependence and lack of correlation

$$\Pr(x,y) \neq \Pr(x)\Pr(y) \text{ for some } x \text{ and } y \text{ in } (-\infty,\infty)$$

$$\iint_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, y \Pr(x,y) dx \, dy = \int_{-\infty}^{\infty} x \Pr(x) dx \int_{-\infty}^{\infty} y \Pr(y) dy = \overline{x} \, \overline{y}$$

Independence and correlation

$$\operatorname{pr}(x,y) = \operatorname{pr}(x)\operatorname{pr}(y) \text{ at every } x \text{ and } y \text{ in } (-\infty,\infty)$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \operatorname{pr}(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \operatorname{pr}(x)\operatorname{pr}(y) dx dy \neq \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx \int_{-\infty}^{\infty} y \operatorname{pr}(y) dy = \overline{x} \overline{y}$$

Dependence and correlation

$$\operatorname{pr}(x,y) \neq \operatorname{pr}(x)\operatorname{pr}(y)$$
 for some x and y in $(-\infty,\infty)$
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, y \operatorname{pr}(x,y) \, dx \, dy \neq \int_{-\infty}^{\infty} x \operatorname{pr}(x) \, dx \int_{-\infty}^{\infty} y \operatorname{pr}(y) \, dy = \overline{x} \, \overline{y}$$

Example

$$\mathbf{x}_{k} = \begin{bmatrix} x_{k} \\ y_{k} \end{bmatrix} = \begin{bmatrix} x_{1_{k}} \\ x_{2_{k}} \end{bmatrix}$$

2nd-order LTI system

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Lambda} \mathbf{w}_k, \quad \mathbf{x}_0 = \mathbf{0}$$

Gaussian disturbance, \mathbf{w}_k , with independent, uncorrelated components

$$\begin{bmatrix} \overline{\mathbf{w}} = \begin{bmatrix} \overline{w}_1 \\ \overline{w}_2 \end{bmatrix}; \quad \mathbf{Q} = \begin{bmatrix} \sigma_{w_1}^2 & 0 \\ 0 & \sigma_{w_2}^2 \end{bmatrix} \end{bmatrix}$$

Propagation of state mean and covariance

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi} \overline{\mathbf{x}}_k + \mathbf{\Lambda} \overline{\mathbf{w}}$$

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q} \mathbf{\Lambda}^T, \quad \mathbf{P}_0 = 0$$

Off-diagonal elements of P and Q express correlation

$$\overline{\overline{\mathbf{x}}}_{k+1} = \mathbf{\Phi} \overline{\overline{\mathbf{x}}}_k + \mathbf{\Lambda} \overline{\overline{\mathbf{w}}}$$

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q} \mathbf{\Lambda}^T, \quad \mathbf{P}_0 = 0$$

Independence and lack of correlation in state

Example

Independent dynamics and correlation in state

$$\left[\mathbf{\Phi} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}; \quad \mathbf{\Lambda} = \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix}$$

$$\mathbf{\Phi} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}; \quad \overline{\mathbf{x}}_0 \neq \mathbf{0}; \quad \overline{\mathbf{w}} = \overline{w}; \quad \mathbf{\Lambda} = \begin{bmatrix} c \\ c \end{bmatrix}$$

Dependence and lack of correlation in nonlinear output

$$\mathbf{\Phi} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \quad \mathbf{\Lambda} = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}$$
$$\mathbf{z} = \begin{bmatrix} x_1 \\ x_2^2 \end{bmatrix}; \quad \text{Conjecture (t.b.d.)}$$

Dependence and correlation in state

$$\mathbf{\Phi} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]; \quad \mathbf{\Lambda} = \left[\begin{array}{cc} e & 0 \\ 0 & f \end{array} \right]$$

87

Skewness and Kurtosis of Probability Distributions

(3rd and 4th Central Moments)

Two Trials to Show Mean, Standard Deviation, Kurtosis, and Skewness

Stationary, Ergodic Mean and Variance Mean = 0.0068123 Standard Deviation = 1.0006 Kurtosis = 3.0291Skewness = -0.0093799Stationary, Non-Ergodic Mean and Variance Mean = 0.99847Standard Deviation = 1.3156 Kurtosis = 2.5933 Skewness = -0.12198 Non-Stationary (Sinusoidal) Mean Mean = 0.17438 Standard Deviation = 1.2058 Kurtosis = 2.904 Skewness = -0.042752Non-Stationary (Sinusoidal) Variance Mean = -0.0043818 Standard Deviation = 0.6804 Kurtosis = 4.6055 Skewness = 0.063442 Sine Wave Mean = 6.6818e-06 Standard Deviation = 0.707 Kurtosis = 1.5006Skewness = -2.8338e-05

Stationary, Ergodic Mean and Variance Mean = 0.0050475 Standard Deviation = 0.99947 Kurtosis = 3.0485Skewness = 0.0147Stationary, Non-Ergodic Mean and Variance Mean = 0.99337Standard Deviation = 1.3262 Kurtosis = 2.6395 Skewness = -0.18208 Non-Stationary (Sinusoidal) Mean Mean = 0.18366 Standard Deviation = 1.1833 Kurtosis = 2.83Skewness = -0.10543Non-Stationary (Sinusoidal) Variance Mean = 0.0072196Standard Deviation = 0.71168 Kurtosis = 5.0192 Skewness = -0.05492Sine Wave Mean = 6.6818e-06 Standard Deviation = 0.707 Kurtosis = 1.5006 Skewness = -2.8338e-05

Sampled Sine Wave Statistics

Sample-Length Effect on Estimate of Sine Wave Autocorrelation Function

Autocorrelation function estimate becomes inaccurate when number of lags > ~10% of the number of sample points

Frequency Folding and Aliasing


```
	au: Sampling interval, sec \omega_D = \omega_C \tau, rad/sec \omega_C = \frac{\pi}{\tau} = Folding frequency
```

- Discrete Fourier transform is periodic in frequency increments of $\Delta \omega_D = 2\pi$
- Relationship of discrete Fourier transform to continuous Fourier transform

$$X_D(\omega_C) = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} X_C \left(\omega + \frac{2\pi n}{\tau} \right)$$

 Distortion of signal and spectrum is called aliasing

93

Propagation Program