Networks II: Market Design—Lecture 20 Information and Networked Behavior

ARPITA GHOSH

Dept. Of Information Science, Cornell University

Logistics

- Reminder: Midterm next week, Thursday April 18th, in-class
 - Reminder (yet again!): No alternate exams available, so make sure to be there
 - Location: 155 Olin Hall (our usual classroom)
 - Time: 2:55-4:10pm; please arrive early to get settled down
 - Syllabus: Everything covered in class upto (and including) today's class
 - Closed-book exam:
 - No materials except 1-page cheat sheet allowed
 - Yes, you can write on both sides of the (standard-sized) sheet, in any font you like, including your own handwriting

Recap: Information and networked behavior

- Information asymmetry in markets:
 - Some subset of agents in market have more information about goods or services exchanged
 - Information asymmetries arise in many important markets
 - Markets for lending and mortgages
 - Markets for insurance: Health, life, vehicle, property, fire, ...
 - Labor markets: Traditional jobs; online labor markets (oDesk, crowdwork platforms, . . .)
 - Online platforms: E-commerce(eBay, Amazon), P2P markets, ...,
- Specific setting: Matching markets with money

Recap: Last time

- Markets with money; valuations v_{ij} : Market-clearing prices and welfare maximization
- Modifying the model towards studying information asymmetry:
 - Make buyers identical
 - Introduce seller with value s_j for item j: Sellers choose whether to sell (bring item to market)
- Two questions:
- 'What should happen'? (Last time)
- What does happen: Equilibrium concept (today)

Recap: Last time

'What should happen?': The basics of trade

- The meaning of value: Buyer value v_b , seller value v_s
 - Buyer: Prefer to buy for prices $p < v_b$, not for $p > v_b$
 - Seller: Prefer to not sell for prices $p < v_s$, sell for $p > v_s$
- Trade is (Pareto-)efficient outcome if $v_s \leq v_b$
- ullet Strictly better than (Pareto-dominates) no trade if $v_s < v_b$

Information asymmetry: Basic features

Markets with information asymmetries ('Hidden information')

- Market has items of different qualities
- Sellers know quality of item they sell; buyers do not
 - Sellers are 'informed' side of market
 - Buyers are 'uninformed' side
- Buyers know that sellers are better informed

A preview: The 'adverse selection' phenomenon

- What we'll see: Information asymmetry can substantially affect equilibrium outcome
 - Buyers value items more than sellers: Market would clear with full information
 - Yet no trade occurs in market in equilibrium!
 - Asymmetry endogenously determines which items are offered for sale in market: No common price supporting trade

Towards understanding adverse selection

(The Market for Lemons: Akerlof, 1970)

- Market for used cars
 - Assume more buyers than sellers
 - Two types of cars, good and bad
 - ullet Say all buyers value good cars at b_H and bad cars at b_L
 - Sellers value good cars at s_H , bad cars at s_L
- Two questions:
 - 1. What 'should' happen?
 - 2. What happens with asymmetric information?

Part 1: What should happen?

- Efficient outcome: If $s_H < b_H$ and $s_L < b_L$, all cars sold
- What happens with complete information?
 - Complete information: All agents (buyers and sellers) in market can identify good and bad cars pre-purchase
- Outcomes with complete information: An example
 - n buyers and m sellers: n > m
 - Sellers of good cars value car at 10, of bad cars at 4
 - Buyers value good cars at 12, bad cars at 6

What happens if sellers and buyers can both identify car quality?

- A Good cars sold at price 10, bad cars sold at price 4
- B Good cars sold at price 12, bad cars sold at price 4
- C Good cars sold at price 12, bad cars sold at price 6
- D Good cars sold at price 12, bad cars unsold

Let's go on: Towards understanding adverse selection

(The Market for Lemons: Akerlof, 1970)

- Market for used cars
 - Assume more buyers than sellers
 - Two types of cars, good and bad
 - ullet Say all buyers value good cars at b_H and bad cars at b_L
 - Sellers value good cars at s_H , bad cars at s_L
- Two questions:
 - 1. What 'should' happen?
 - 2. What does happen with asymmetric information?
 - Sellers know quality of item they sell; buyers do not
 - Buyers know that sellers are better informed
- Remember: We're seeking the elements of a model to explore the consequences of information asymmetry

The used car market with asymmetric information

How would you reason about 'what happens' in markets with such asymmetric information?

- 'What happens': What items are traded, and at what price
- Two components to this question:
 - Given prices in market, what do buyers and sellers choose to do?
 - What prices might we expect to see?

The used car market with asymmetric information

- Prices of cars: How many different levels of prices can we have with asymmetric information?
 - Good and bad cars are indistinguishable to buyers
 - Uniform price for all cars!
- How do sellers act?
 - Compare value and price to decide whether to sell or not
- How do buyers in the market act?
 - No information about quality pre-purchase: Evaluate expected value of car and compare with price
 - (Assume buyers are risk-neutral)

Information asymmetry: Towards a model

- A toy model: Market for used cars (Akerlof, 1970)
 - n buyers, m sellers: Assume n > m
 - Each seller sells one car, each buyer wants (at most) one car
 - Matching market; unit supply and unit demand for each agent
 - Two types of cars, good and bad
 - ullet Say all buyers value good cars at b_H and bad cars at b_L
 - Sellers value good cars at s_H , bad cars at s_L
- Remaining ingredient of model (to address incomplete information): Distribution of qualities of cars

'What happens' in markets with asymmetric information?

- g: Fraction of sellers in population with good cars
 - Assumption: All agents (buyers and sellers) know g
- What is expected value of cars on market to buyers in our example?

A
$$12 * g + 6 * (1 - g)$$

B
$$10*g + 4*(1-g)$$

- C That's not an easy question
- Indeed, it's not an easy question!

Equilibrium outcomes in the used car market

- Fundamental point: Expectation over what distribution of qualities?
- g: Fraction of cars in **population** that are good
- h: Fraction of cars for sale in market that are good
- Why would h be different from g?
 - Outcome in market depends on all traders' decisions: Buyers' choices about buying, but also sellers' willingness to sell!
 - Endogeneity in participation: Who comes to market

Equilibrium outcomes in the used car market

- Buyers cannot distinguish quality: Uniform price p for both types of cars
- Key idea: Sellers who find it profitable to sell at price p depends on p!
 - Sellers want to sell iff $p \ge v_s$
 - Not all used car owners may be willing to sell at price p that buyers are willing to pay!
- Endogenous fraction h of good cars in market need not be same as exogenous fraction g of good cars in population
- What h—namely the extent of good cars traded—might we see?

Reasoning about outcomes: Self-fulfilling expectations

What outcome (distribution of car qualities in *market*) can arise *in equilibrium*?

- Recall: Uniform prices since cars are indistinguishable
- Sellers who find it profitable to sell at price p depends on p
- Price p that buyers are willing to offer depends on which sellers sell!

Self-fulfilling expectations equilibrium: A distribution of qualities (here h) such that:

 If buyers 'expect' this distribution (here, fraction h of cars for sale that are good), then the offered (i.e., market-clearing) price induces that distribution of sellers in market (here, a fraction h of cars offered for sale will indeed be good)

Equilibrium outcomes

- When is *h* a self-fulfilling expectations equilibrium (SFEE)?
- h is an SFEE if there is a (market-clearing) price p*
 'supporting' fraction h, i.e., p* is such that
 - Sellers willing to sell at p^* , *i.e.*, with $v_s \le p^*$, is such that fraction h of cars for sale are good
 - Expected value of cars to buyers with 'distribution' h is no smaller than price:

$$h \cdot b_H + (1-h) \cdot b_L \geq \rho^*$$

- To put it another way:
 - Buyers do not want to change decision (price offered) given sellers' decisions
 - No seller wants to change decision—either to sell or not sell—given buyers' decision

Equilibrium outcomes in the used car market

- Recall: With complete information, efficient outcome with all cars sold is realized
 - What 'should happen' happens: h = g
- Our question: 'What does happen' with information asymmetry?
 - Distribution of qualities of cars on market is endogenously determined by strategic choices of traders
 - How does asymmetry affect efficiency: What is extent of trade h with asymmetry?
 - To find out: Solve for SFEE (self-fulfilling expectations equilibrium)!

Understanding equilibrium outcomes in the used-car market

- Consider market M with n buyers and m sellers, n > m and asymmetric information
 - Seller values for good and bad cars: $s_H, s_L (s_H > s_L)$
 - Buyer values for good and bad cars: b_H , b_L ($b_H > b_L$)
 - ullet Fraction of good car sellers in population g < 1
 - Recall: h is fraction of cars in market that are good
- ([A] True [B] False) There can be equilibria where only good cars are for sale (i.e., h=1) for some market M
 - No: This is precisely the 'adverse selection' idea!
 - Asymmetric information: Uniform price p for all cars
 - If good sellers are willing to sell, $p \ge s_H$ must hold
 - $s_H > s_L \Rightarrow p > s_L$: Bad sellers also willing to sell!
 - So h cannot be greater than g in any equilibrium

Identifying SFEE: An example

- Consider market with n buyers and m sellers, n > m
 - Seller values: $s_H = 10$, $s_L = 4$
 - Buyer values: $b_H = 12$, $b_L = 6$
 - Fraction of good car sellers in population $g=\frac{4}{5}$
- Which of the following is true?

(Recall: h is fraction of cars for sale that are good)

- $h = \frac{4}{5}$ is an SFEE
- $h = \frac{3}{4}$ is an SFEE
- Both $h = \frac{4}{5}$ and $h = \frac{3}{4}$ are SFEE
- None of the above