Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2018/19
Information und Quellencodierung
Huffman-/Fano-Algorithmus

Überblick

- Code-Bäume
- Huffman-Algorithmus
- Fano-Algorithmus

Code-Bäume (1)

- Zielsetzung
 - Erzeugung eines Codes mit variabler Wortlänge
 - bei einem gegebenen Alphabet von Zeichen
 - mit bekannten Auftrittswahrscheinlichkeiten
- Mögliche Vorgehensweise
 - Bestimmung der Wortlänge aus den ganzzahlig aufgerundeten Informationsgehalten
 - Anordnung der Code-Wörter als Endknoten (Blätter) eines Code-Baums

Code-Bäume (2)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

- Beispiel Code-Erzeugung
 - 6 Buchstaben {c,v,w,u,r,z} sollen mit möglichst geringer Redundanz binär kodiert werden
 - Auftrittswahrscheinlichkeiten

$$p(c) = 0.1643$$

 $p(v) = 0.0455$
 $p(w) = 0.0874$
 $p(u) = 0.1963$
 $p(r) = 0.4191$

p(z) = 0.0874

Code-Bäume (3)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel Code-Erzeugung

Berechnung der Informationsgehalte der jeweiligen Zeichen

$$p(c) = 0.1643$$
 $I(c) = 2.6056 \, \text{Bit}$
 $p(v) = 0.0455$ $I(v) = 4.4580 \, \text{Bit}$
 $p(w) = 0.0874$ $I(w) = 3.5162 \, \text{Bit}$
 $p(u) = 0.1963$ $I(u) = 2.3489 \, \text{Bit}$
 $p(r) = 0.4191$ $I(r) = 1.2546 \, \text{Bit}$
 $p(z) = 0.0874$ $I(z) = 3.5162 \, \text{Bit}$

Code-Bäume (4)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel Code-Erzeugung

 Berechnung der Informationsgehalte der jeweiligen Zeichen und Ableitung der Wortlänge

$$I(c) = 2.6056 \text{ Bit } \rightarrow l(c) = 3 \text{ Bit }$$
 $I(v) = 4.4580 \text{ Bit } \rightarrow l(v) = 5 \text{ Bit }$
 $I(w) = 3.5162 \text{ Bit } \rightarrow l(w) = 4 \text{ Bit }$
 $I(u) = 2.3489 \text{ Bit } \rightarrow l(u) = 3 \text{ Bit }$
 $I(r) = 1.2546 \text{ Bit } \rightarrow l(r) = 2 \text{ Bit }$
 $I(z) = 3.5162 \text{ Bit } \rightarrow l(z) = 4 \text{ Bit }$

Code-Bäume (5)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel Code-Erzeugung

 Berechnung der Informationsgehalte der jeweiligen Zeichen und Ableitung der Wortlänge mit anschließender Kodierung

$$I(c) = 2.6056 \, \text{Bit} \implies l(c) = 3 \, \text{Bit}$$
 001
 $I(v) = 4.4580 \, \text{Bit} \implies l(v) = 5 \, \text{Bit}$ 10111
 $I(w) = 3.5162 \, \text{Bit} \implies l(w) = 4 \, \text{Bit}$ 0001
 $I(u) = 2.3489 \, \text{Bit} \implies l(u) = 3 \, \text{Bit}$ 011
 $I(r) = 1.2546 \, \text{Bit} \implies l(r) = 2 \, \text{Bit}$ 11
 $I(z) = 3.5162 \, \text{Bit} \implies l(z) = 4 \, \text{Bit}$ 0000

Code-Bäume (6)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Nun: Bestimmung der Redundanz dieses Codes

Zeichen	p(c)	I(c)	l(c)
С	0.1643	2.6056	3
ν	0.0455	4.4580	5
W	0.0874	3.5162	4
и	0.1963	2.3489	3
r	0.4191	1.2546	2
Z	0.0874	3.5162	4

Code-Bäume (7)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Entropie dieser Nachrichtenquelle

$$H = p(c)I(c) + p(v)I(v) + p(w)I(w) + p(u)I(u) + p(r)I(r) + p(z)I(z)$$

 $\approx 0.4282 + 0.2028 + 0.3073 + 0.4611 + 0.5260 + 0.3073$
 $= 2.2327$ Bit/Zeichen

 maximale Entropie dieser Nachrichtenquelle

$$H_0 = 1d 6 = 2.5850$$

Zeichen	p(c)	I(c)	l(c)
c	0.1643	2.6056	3
v	0.0455	4.4580	5
w	0.0874	3.5162	4
и	0.1963	2.3489	3
r	0.4191	1.2546	2
Z	0.0874	3.5162	4

Mittlere Wortlänge

$$L = p(c)l(c) + p(v)l(v) + p(w)l(w) + p(u)l(u) + p(r)l(r) + p(z)l(z)$$

= 0.4929 + 0.2275 + 0.3496 + 0.5889 + 0.8382 + 0.3496
= 2.8467 Bit/Zeichen

Redundanz

$$R_C = L - H$$

 $\approx 2.8467 - 2.2327$
 $= 0.6140$ Bit/Zeichen

$$R_Q = H_0 - H$$

 $\approx 2.5850 - 2.2327$
 $= 0.3523$ Bit/Zeichen

Code-Bäume (8)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Visualisierung der Kodierung

Code-Bäume (9)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Visualisierung der Kodierung

- Unbesetzte Blätter (Endknoten) sind vorhanden, die näher an der Wurzel liegen
- Kein optimaler Code: kürzere Codewörter wären möglich

Code-Bäume (10)

- Verbesserungen im Code-Baum
 - Freie Blätter werden mit Zeichen besetzt,
 - deren Wortlänge größer ist als die zu dem freien Blatt gehörende Wortlänge
 - Beachte!
 - Ein Code für ein Zeichen mit geringerer Auftrittswahrscheinlichkeit muss länger sein als der Code für ein Zeichen mit höherer Auftrittswahrscheinlichkeit

Code-Bäume (11)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Verbesserter Code-Baum

Zeichen	Code	Länge
c	10	2
v	0001	4
w	001	3
и	01	2
r	11	2
Z	0000	4

Code-Bäume (13)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Aufgabe

Bestimmen Sie die Redundanz des verbesserten Codes!

Zeichen	p(c)	I(c)	l(c)
C	0.1643	2.6056	2
ν	0.0455	4.4580	4
W	0.0874	3.5162	3
И	0.1963	2.3489	2
r	0.4191	1.2546	2
Z	0.0874	3.5162	4

Code-Bäume (14)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Ergebnisse der Optimierung

Mittlere Wortlänge des verbesserten Codes

$$L = (0.4131 + 0.1963 + 0.1643) \cdot 2 + 0.0874 \cdot 3 + (0.6874 + 0.0455) \cdot 4$$

Redundanz

$$R \approx 2.3523 - 2.2327$$

- Redundanz wurde reduziert
 - von 0.6140 Bit/Zeichen auf 0.1205 Bit/Zeichen

Zeichen	<i>p</i> (<i>c</i>)	I(c)	l(c)
С	0.1643	2.6056	2
v	0.0455	4.4580	4
w	0.0874	3.5162	3
и	0.1963	2.3489	2
r	0.4191	1.2546	2
Z.	0.0874	3.5162	4

= 2.3532 Bit/Zeichen

= 0.1205 Bit/Zeichen

Aufgabe

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Konstruieren Sie ein Mobile!

 Gegeben: 7 verschiedene Weihnachtskugeln mit jeweils folgenden Gewichten in Gramm

Gesucht: Bestmöglich ausbalanciertes Mobile
 (also mit möglichst kleiner mittlerer Differenz zwischen linker und rechter Seite)

Aufgabe

Huffman-Algorithmus (1)

- Allgemeines Verfahren
 - zur Erzeugung von optimalen Codes
 - bzgl. des Kriteriums Redundanzminimierung
- 1952 vom amerikanischen Mathematiker
 David A. Huffman formuliert

Huffman-Algorithmus (2)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Vorgehen

- Ordne alle Zeichen nach ihren Auftrittswahrscheinlichkeiten (Knoten)
- 2. Fasse die beiden Zeichen mit den geringsten Wahrscheinlichkeiten p_1 und p_2 zu einem Knoten zusammen
 - Wahrscheinlichkeit = $p_1 + p_2$
 - Ergebnis: Neue Folge von Wahrscheinlichkeiten
- Fasse die beiden Elemente (Zeichen oder Knoten) mit den geringsten Wahrscheinlichkeiten zu einem neuen Knoten zusammen
- 4. Wiederhole 3. solange bis nur noch ein Baum übrig ist (Huffman-Baum)

Huffman-Algorithmus (3)

- Schrittweiser Aufbau des Huffman-Baum und Huffman-Code
 - Gegeben 6 Buchstaben {c,v,w,u,r,z} mit den Auftrittswahrscheinlichkeiten

$$p(c) = 0.1643$$
 $p(v) = 0.0455$
 $p(w) = 0.0874$
 $p(u) = 0.1963$
 $p(r) = 0.4191$
 $p(z) = 0.0874$

Huffman-Algorithmus (4)

Kapitel 3: Information und Quellencodierung - Huffman/Fano

 Schrittweiser Aufbau des Huffman-Baums und Huffman-Codes

0.1643

0.0455 V 0.0874

0.1963 u 0.4191 r 0.0874 Z

Schritt 1

0.0455

V

0.0874

W

0.0874

Z

0.1643

c

0.1963

u

0.4191

r

Huffman-Algorithmus (5)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

 Schrittweiser Aufbau des Huffman-Baum und Huffman-Code

Huffman-Algorithmus (6)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

 Schrittweiser Aufbau des Huffman-Baum und Huffman-Code

Huffman-Algorithmus (7)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

 Schrittweiser Aufbau des Huffman-Baum und Huffman-Code

Huffman-Algorithmus (8)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

 Schrittweiser Aufbau des Huffman-Baum und Huffman-Code

Huffman-Algorithmus (9)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

 Schrittweiser Aufbau des Huffman-Baum und Huffman-Code

Huffman-Algorithmus (10)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Nun: Bestimmung der Redundanz des Huffman-Codes

Zeichen	p(c)	I(c)	l(c)
С	0.1643	2.6056	3
v	0.0455	4.4580	4
W	0.0874	3.5162	4
и	0.1963	2.3489	3
r	0.4191	1.2546	1
Z	0.0874	3.5162	3

Huffman-Algorithmus (11)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Charakterisierung des erzeugten Codes:

•
$$L = 0.4191 + (0.1963 + 0.1643 + 0.0874) \cdot 3 + (0.0874 + 0.0455) \cdot 4 = 2.2947$$
 Bit/Zeichen

Redundanz

$$R = 2.2947 - 2.2327$$
 = 0.0620 Bit/Zeichen

- Vergleich mit vorherigen Codes
 - Erst wurde Redundanz von 0.6140 Bit/Zeichen auf 0.1205 Bit/Zeichen reduziert
 - Nun weitere Reduzierung der Redundanz auf 0.062 Bit/Zeichen

Dekodierung (1)

- Wesentliche Forderung an einen Code
 - Eindeutige Dekodierung
- Fano-Bedingung (auch: Präfixcode)
 - Code mit variabler Wortlänge muss so generiert werden, dass kein Code-Wort eines Zeichens mit dem Anfang des Code-Wortes irgendeines anderen Zeichens übereinstimmt
 - Code-Wörter dürfen nur an den Blättern (Endknoten) des Code-Baums stehen

Dekodierung (2)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Vorgehensweise

- Die zu interpretierenden Zeichen werden Bit für Bit in einem Puffer gesammelt und laufend mit den tabellierten Codes verglichen
- Sobald der Pufferinhalt mit einem tabellierten Code-Wort übereinstimmt, wird Dekodierung durchgeführt.
- Dann wird Puffer gelöscht und der Dekodier-Vorgang beginnt von neuem für das nächste Zeichen.

Dekodierung (3)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Aufgabe

 Dekodiere die Zeichenkette 1011001011000100110 mithilfe des vorherigen Huffman-Codes

Zeichen	Code	Länge
С	101	3
v	1111	4
W	1110	4
и	100	3
r	0	1
Z	110	3

Lösung:

Fano-Algorithmus (1)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Vorgehensweise

- 1. Anordnung der zu kodierenden Zeichen x_i und die zugehörigen Auftrittswahrscheinlichkeiten $p(x_i)$ in einer Tabelle nach fallenden Auftrittswahrscheinlichkeiten
- Eintragen der Teilsummen (beginnend mit der kleinsten Wahrscheinlichkeit) aus den Auftrittswahrscheinlichkeiten in die dritte Spalte

Fano-Algorithmus (2)

- Vorgehensweise
 - Unterteilung der Teilsummen in zwei Intervalle (möglichst nahe bei der Hälfte der jeweiligen Teilsumme)
 - 4. Für alle Zeichen oberhalb des Schnitts wird für das Code-Wort eine 0 eingetragen, sowie für alle Zeichen unterhalb des Schnitts eine 1 (oder umgekehrt)

Fano-Algorithmus (3)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Vorgehensweise

- 5. Alle entstandenen Intervalle werden analog zu Schritt 3 wieder halbiert und die nächste Binärstelle wird analog zu Schritt 4 eingetragen
- Enthält ein Intervall nur noch ein Zeichen, so endet das Verfahren für dieses Zeichen (Code des Zeichens ist komplett)

Fano-Algorithmus (4)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

 Ausgangssituation: 6 Buchstaben {c,v,w,u,r,z} mit den Auftrittswahrscheinlichkeiten

$$p(c) = 0.1643$$
 $p(v) = 0.0455$
 $p(w) = 0.0874$
 $p(u) = 0.1963$
 $p(r) = 0.4191$
 $p(z) = 0.0874$

Fano-Algorithmus (5)

Kapitel 3: Information und Quellencodierung - Huffman/Fano

Beispiel

Schritt 1

Zeichen c	p(c)
r	0.4191
и	0.1963
С	0.1643
Z	0.0874
W	0.0874
v	0.0455

Anordnung der zu kodierenden Zeichen x_i und die zugehörigen Auftrittswahrscheinlichkeiten $w(x_i)$ in einer Tabelle nach fallenden Auftrittswahrscheinlichkeiten

Fano-Algorithmus (6)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

Schritt 2

Zeichen c	p(c)	$\sum p(c)$
r	0.4191	1.0000
и	0.1963	0.5809
С	0.1643	0.3847
Z	0.0874	0.2203
W	0.0874	0.1329
v	0.0455	0.0455

Eintragen der Teilsummen (beginnend mit der kleinsten Wahrscheinlichkeit) aus den Auftrittswahrscheinlichkeiten in die dritte Spalte

Fano-Algorithmus (7)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

Schritt 3

Unterteilung der Teilsummen in zwei Intervalle (möglichst nahe bei der Hälfte der jeweiligen Teilsumme)

Zeichen c	p(c)	$\sum p(c)$
r	0.4191	1.0000
и	0.1963	0.5809
c	0.1643	0.3847
\mathcal{Z}	0.0874	0.2203
W	0.0874	0.1329
v	0.0455	0.0455

Fano-Algorithmus (8)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

Schritt 4

Für alle Zeichen oberhalb des Schnitts wird für das Code-Wort eine 0 eingetragen, sowie für alle Zeichen unterhalb des Schnitts eine 1 (oder umgekehrt)

Zeichen c	p(c)	$\sum p(c)$	Code
r	0.4191	1.0000	0
и	0.1963	0.5809	1
c	0.1643	0.3847	1
Z	0.0874	0.2203	1
W	0.0874	0.1329	1
ν	0.0455	0.0455	1

Fano-Algorithmus (9)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

Schritt 3,4 (Wdh.)

Zeichen c	p(c)	$\sum p(c)$	Code
r	0.4191	1.0000	0
и	0.1963	0.5809	10
c	0.1643	0.3847	10
Z	0.0874	0.2203	11
W	0.0874	0.1329	11
v	0.0455	0.0455	11

Fano-Algorithmus (10)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

Schritt 3,4 (Wdh.)

Zeichen c	p(c)	$\sum p(c)$	Code
r	0.4191	1.0000	0
и	0.1963	0.5809	100
c	0.1643	0.3847	101
Z	0.0874	0.2203	11
W	0.0874	0.1329	11
v	0.0455	0.0455	11

Fano-Algorithmus (11)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

Schritt 3,4 (Wdh.)

Zeichen c	p(c)	$\sum p(c)$	Code
r	0.4191	1.0000	0
и	0.1963	0.5809	100
С	0.1643	0.3847	101
z	0.0874	0.2203	110
w	0.0874	0.1329	111
v	0.0455	0.0455	111

Fano-Algorithmus (12)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Beispiel

Schritt 3,4 (Wdh.)

Zeichen c	p(c)	$\sum p(c)$	Code
r	0.4191	1.0000	0
и	0.1963	0.5809	100
c	0.1643	0.3847	101
Z	0.0874	0.2203	110
W	0.0874	0.1329	1110
ν	0.0455	0.0455	1111

Fano-Algorithmus (11)

Kapitel 3: Information und Quellencodierung – Huffman/Fano

Charakterisierung des erzeugten Codes:

•
$$L = 0.4191$$

+ $(0.1963 + 0.1643 + 0.0874) \cdot 3$
+ $(0.0874 + 0.0455) \cdot 4 = 2.2947$ [Bit/Zeichen]

Redundanz

$$R = 2.2947 - 2.2327$$
 = 0.0620 [Bit/Zeichen]

- Vergleich mit vorherigen Codes
 - Huffman-Code und Fano-Code sind im Beispiel identisch
 - Dies ist aber nicht immer der Fall!
 - Fano-Algorithmus liefert nicht immer optimalen Code bzgl.
 Redundanzminimierung

Zusammenfassung

- Huffman-Codes sind immer optimal
 - im Sinn einer möglichst kurzen mittleren Wortlänge bei
 - separater Kodierung von Einzelzeichen,
 - ganzzahliger Anzahl Bit pro Zeichen.
 - und damit einer möglichst kleinen Redundanz
 - optimal heißt: es gibt keinen besseren Code im o.g. Sinne!
- Fano-Codes sind nicht garantiert optimal
 - in der Praxis ist der Unterschied zu Huffman-Codes jedoch meist gering
 - dennoch werden sie kaum verwendet, da Huffman ähnlich einfach implementiert werden kann

