

Universidad de Buenos Aires Facultad de Ingeniería Año 2012 - 1^{er} Cuatrimestre

SISTEMA DE PROGRAMACIÓN NO CONVENCIONAL DE ROBOTS (75.70)

Trabajo Práctico Final El juego Ta-Te-Ti

Integrantes

Apellido, Nombre	Nro. Padrón	E-mail
Bukaczewski, Verónica	86954	vero13@gmail.com
Rivero, Hernán	88455	riverohernanj@gmail.com

${\bf \acute{I}ndice}$

٨	Apendice	4
5 .	Conclusiones	4
	4.2. Entrenando la Red Neuronal	4 4 4
	Soluciones propuestas	4
2.	El juego Ta-Te-Ti	3
1.	Objetivo	3

1. Objetivo

El objetivo del presente trabajo práctico es entrenar una red neuronal para que juegue al Ta-Te-Ti. Se utilizará una red neuronal de tipo backpropagation, para generar un método de aprendizaje a medida que se desarrollan las partidas de Ta-Te-Ti.

2. El juego Ta-Te-Ti

Por lo general, el Ta-Te-Ti se juega en una cuadrícula de tres por tres (ver Figura [1]). Cada jugador, a su vez se mueve mediante la colocación de un marcador en un casillero vacío. El marcador de un jugador es "X"(cruz) y el del otro es "O"(círculo). El juego termina tan pronto como un jugador tiene tres marcadores en una fila: horizontalmente, verticalmente, o en diagonal (un ejemplo se muestra en la Figura [2]). El juego puede también terminan en empate (ver Figura [3]), si no hay posibilidad de ganar para alguno de los jugadores.

Figura 1: Grilla vacía TaTeTi.

Figura 2: El jugador cruz gana la partida.

Figura 3: La partida terminó empatada.

3. Soluciones propuestas

4. Solución elegida

4.1. Estructura de la Red Neuronal

Para el armado de la red neural, se tuvo en cuenta que la cantidad de casilleros del tablero de Ta-Te-Ti es 9 y que por cada uno se tiene la posibilidad de encontrar tres tipos de elementos (cruz, círculo y vacío). Entonces, como primera capa oculta se decidió utilizar 27 (9x3) filas. Para las siguientes capas ocultas se decidieron utilizar 9 y 3 filas, en función de la cantidad de casilleros y elementos posibles.

4.2. Entrenando la Red Neuronal

4.3. Resultados

5. Conclusiones

A. Apendice

Referencias

[1] Documentación Joone
http://sourceforge.net/projects/joone/files/Documentation/DTE/
JooneDTEGuide.pdf

[2] Tutorial Básico Joone http://ubuntuone.com/p/1dB/

[3] Training an artificial neuronal network to play tic-tac-toe http://users.auth.gr/kehagiat/GameTheory/12CombBiblio/TicTacToe.pdf

[4] How to code an artificial neural network (Tic-tac-toe)? http://stackoverflow.com/questions/761216/how-to-code-an-artificial-neural-network-tic-tac-toe

[5] Neural Net Training for Tic-Tac-Toe www.cs.virginia.edu/~bmb5v/cs660/Project.doc

[6] TD Learning of Game Evaluation Functions with Hierarchical Neural Architectures

http://webber.physik.uni-freiburg.de/~hon/vorlss02/Literatur/reinforcement/GameEvaluationWithNeuronal.pdf