Ordinary Differential Equations - 10413181

Homework No. 1

1. Given the following 6 graphs of direction fields (a) - (f), which show y(t) plotted on the vertical axis and t on the horizontal axis, find the associated differential equation among 1. - 10. below.

1.
$$y' = y(y+3)$$

2.
$$y' = y - 2$$

3.
$$y' = 2y - 1$$

4.
$$y' = y(y-3)$$

5.
$$y' = y(3 - y)$$

6.
$$y' = 1 + 2y$$

7.
$$y' = 2 - y$$

8.
$$y' = 1 - 2y$$

9.
$$y' = -2 - y$$

10.
$$y' = 2 + y$$

2. For the following equations, determine the order of the differential equation, and state whether the equation is linear or nonlinear.

(a)
$$\frac{dy}{dt} + ty^2 = 0$$

(b)
$$\frac{d^4y}{dt^4} + \frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 1$$

(c)
$$t^2 \frac{d^2 y}{dt^2} + t \frac{dy}{dt} + 3y = \sin(t)$$

(d)
$$\frac{d^2y}{dt^2} + \cos(t+y) = \sin(t)$$

(e)
$$(1+y^2)\frac{d^2y}{dt^2} + t\frac{dy}{dt} + y = e^t$$

(f)
$$t \frac{dy}{dt} + y \cos^2(t) + \frac{d^3y}{dt^3} = t^3$$

3. Solve

(a)
$$y' - \frac{2}{x^3}y = 0$$
.

(b)
$$y' + \frac{2}{x^3}y = 0$$
, $y(2) = 3$.

(c)
$$y' + \frac{2}{x^3}y = 0$$
, $y(0) = 3$.

(d)
$$y' + \frac{2}{x}y = \frac{\cos x}{x^2}$$
.