MATEMATIKA DISKRIT

Matematika Komputasi

C. Kuntoro Adi, S.J. - 2020

:

MATERI

- I. Dasar-dasar penghitungan
- 2. Relasi
- 3. Fungsi
- 4. Graph

01 DASAR_DASAR PENGHITUNGAN

Referensi:

- 1. Rinaldi Munir (2016), Matematika Diskrit, Bab 6
- 2. Jong Jek Siang (202), Matematika Diskrit dan Aplikasinya pada Ilmu Komputer, Bab 7

3

AGENDA

- I. Pengantar
- 2. Percobaan
- 3. Kaidah dasar menghitung
- 4. Perluasan kaidah menghitung
- 5. Prinsip inklusi-eksklusi

KOMBINATORIAL (LANJUTAN)

- 6. Kombinasi
- 7. Permutasi
- 8. Koefisien Binomial
- 9. Peluang diskrit

5

1 PENGANTAR

 Kombinasi nomor plat mobil (5 angka, 2 huruf): 12345-AB

Cara paling sederhana: mencacah

- 12345AB
- 12345AC
- 12345AD
- ..
- 23456AB
- 23456AB
- 23456AB
- dan seterusnya...

0

2 PERCOBAAN

Penghitungan, enumerasi bertolak dari hasil suatu percobaan/eksperimen

No	Percobaan/event	Hasil
1	Melempar dadu	1, 2, 3, 4, 5, atau 6
2	Melempar koin Rp 500	Gambar garuda, atau angka
3	Memilih 5 orang wakil dari 100 orang mahasiswa	banyak
4	Menyusun kata yang panjangnya 5 huruf, tidak boleh berulang	Banyak abcde, abced, abecd

3 KAIDAH DASAR MENGHITUNG

- Kaidah perkalian (rule of product): "dan"
- Kaidah penjumlahan (rule of sum): "atau"

11

CONTOH 1

(tripadvisor.com)

Menu di restoran

- Makanan : nasi goreng, sate, soto, bakso, ikan bakar
- Minuman: jeruk, kopi, teh
- Satu orang boleh pesan I makanan, dan I minuman.
- Pertanyaan: berapa banyak pasangan makanan-minuman yang bisa dipesan?

KEMUNGKINAN:					
Makanan	Minuman	Kombinasi			
1. Nasi goreng	→ 1. Jeruk	Nasi goreng, jeruk	1		
	2. Kopi	Nasi goreng, kopi	2		
	3. Teh	Nasi goreng, teh	3		
2. Sate	→ 1. Jeruk	Sate, jeruk	4		
_	2. Kopi	Sate, kopi	5		
	3. Teh	Sate, teh	6		
3. Soto	→ 1. Jeruk	Soto, jeruk	7		
_	2. Kopi	Soto, kopi	8		
	3. Teh	Soto, teh	9		
4. Bakso	→ 1. Jeruk	Bakso, jeruk	10		
	2. Kopi	Bakso, kopi	11		
	3. Teh	Bakso, teh	12		
5. Ikan bakar	1. Jeruk	Ikan bakar, jeruk	13		
	2. Kopi	Ikan bakar, kopi	14		
	3. Teh	Ikan bakar, teh	15		

CONTOH 2

Sekelompok mahasiswa Informatika (10 pria 5 wanita)

- I. Berapa jumlah cara memilih satu orang pria dan satu orang wanita yang akan mewakili kelompok untuk pertemuan dengan Kaprodi?
- 2. Berapa jumlah cara memilih satu orang (tidak peduli pria/wanita) yang mewakili kelompok tersebut?

CONTOH 3

Kursi di auditorium akan diberi nomor dengan kombinasi huruf, diikuti bilangan bulat positip tidak lebih dari 100 (Misal A-34, C-60 dst.)

Berapa jumlah kursi yang bisa diberi nomor?

Jumlah huruf alphabet = 26 Jumlah bilangan bulat = 100 Jumlah nomor = 26 x 100 = 2600

15

4 PERLUASAN KAIDAH MENGHITUNG

Perluasan kaidah untuk lebih dari dua percobaan:

- n percobaan
- $p_1, p_2, p_3, ... p_n$ hasil

Jumlah kemungkinan hasil percobaan

- Kaidah perkalian: $p_1 \times p_2 \times p_3 \dots \times p_n$
- Kaidah penjumlahan: $p_1 + p_2 + p_3 \dots + p_n$

CONTOH 4

- 1. Berapa banyak jumlah kata 5-huruf yang bisa dibentuk dari huruf (P, Q, R, S,T), dan tidak boleh ada huruf berulang dalam kata
- 2. Berapa banyak jumlah kata 5-huruf yang bisa dibentuk dari huruf (P, Q, R, S, T), dan boleh ada huruf berulang dalam kata
- 3. Berapa jumlah kata di nomor I yang diawali dengan huruf P?
- 4. Berapa jumlah kata di nomor I yang tidak diawali dengan huruf P?

17

 Berapa banyak jumlah kata 5-huruf yang bisa dibentuk dari huruf (P, Q, R, S,T), dan tidak boleh ada huruf berulang dalam kata

2. Berapa banyak jumlah kata 5-huruf yang bisa dibentuk dari huruf (P, Q, R, S, T), dan boleh ada huruf berulang dalam kata

19

3. Berapa jumlah kata di nomor I yang diawali dengan huruf P?

4. Berapa jumlah kata di nomor I yang tidak diawali dengan huruf P?

P, Q, R, S, T

Jumlah kata yang bisa dibentuk = 4 x 4 x 3 x 2 x I = 96

Atau:

$$(1) - (3) = 120-24$$

= 96

21

5 PRINSIP INKLUSI EKSKLUSI

Diagram Venn

https://ibumei.files.wordpress.com/2011/03/diagram-ven.jpg

5 PRINSIP INKLUSI EKSKLUSI

$$|A \cup B| = |A| + |B| - |A \cap B|$$

23

CONTOH 5

Memory computer menyimpan informasi terkecil dalam bentuk **byte**. Setiap byte tersusun atas 8-bit (0 l). Pertanyaannya: berapa banyak jumlah byte yang dimulai dengan 'll' atau berakhir dengan 'll'

Misalkan:

A = himpunan byte yang dimulai dengan 'I I'

B = himpunan byte yang diakhiri dengan 'I I'

A∩B = himpunan byte yang berawal **dan** berakhir dengan 'II'

Maka:

 $A \cup B = \text{himpunan byte yang berawal dengan 'II'}$ atau berakhir dengan 'II'

9/7/2020

• A = jumlah byte yang berawal dengan 'I I' = $2^6 = 64$; |A| = 64

• B = jumlah byte yang berakhir dengan 'I I' = $2^6 = 64$; |B| = 64

25

• A \cap B = jumlah byte yang berawal dan berakhir dengan 'I I'

• $|A \cap B| = |x|x^2x^2x^2x^2x^2 = 16$

5 PRINSIP INKLUSI EKSKLUSI

$$|A \cup B| = |A| + |B| - |A \cap B|$$

= $2^6 + 2^6 - 2^4$
= $64 + 64 - 16 = 112$

27

6 KOMBINASI PERMUTASI

FAKTORIAL

```
n = bilangan bulat positip

n! = 1.2.3.... (n-1)n = hasil kali semua bilangan bulat antara I dan n

0! = I

n! = 1.2.3.... (n-1)n

(n-1)! = 1.2.3.... (n-2)(n-1)

Sehingga: \frac{n!}{(n-1)!} = n
Atau n! = n(n-1)!
```

CONTOH FAKTORIAL

Hitunglah

1.
$$\frac{9!}{8!}$$

2.
$$\frac{6!}{2! \, 4!}$$

$$3. \frac{1}{2! \, 4!} + \frac{1}{3! \, 3!}$$

4.
$$\frac{n!}{(n-3)!}$$

5.
$$\frac{(n-1)!}{(n+1)!}$$

4.
$$\frac{n!}{(n-3)!}$$
5. $\frac{(n-1)!}{(n+1)!}$
6. $\frac{((n+1)!)^2}{(n!)^2}$

KOMBINASI

- Himpunan |S| memiliki n anggota atau elemen
- Himpunan bagian S yang memiliki r elemen dengan $(r \le n)$ merupakan kombinasi dari n obyek, diambil r obyek sekaligus. Diungkapkan dalam persamaan:

$$\binom{n}{r} = C(n,r) = nCr$$

• Banyaknya kombinasi:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

CONTOH KOMBINASI

- I. Hitung a. $\binom{10}{9}$ b. $\binom{10}{1}$
- 2. Jika n dan r adalah bilangan-bilangan bulat positip dan $r \le n$ buktikan bahwa $\binom{n}{r} = \binom{n}{n-r}$
- 3. Seorang pelatih futsal akan memilih komposisi pemain yang akan diturunkan dalam pertandingan. Ada 12 orang pemain yang dapat dipilih. Berapa macam tim yang bisa dia bentuk?

3

CONTOH KOMBINASI

- 4. Suatu start-up game company memiliki 7 personel laki-laki dan 5 personel wanita. Akan dipilih 5 orang sebagai satu tim untuk mengerjakan suatu proyek. Berapa tim yang bisa dibentuk jika dalam tim tersebut:
 - a. Terdiri dari 3 personel wanita dan 2 personel laki-laki
 - b. Paling sedikit I personel laki-laki
 - c. Paling banyak terdapat I personel laki-laki

PERMUTASI

Persoalan I:

- Ada 20 mahasiswa/wi TI di kelas Matematika Diskrit. Akan dipilih I ketua dan I bendahara. Berapa cara dimungkinkan?
- Pemilihan ketua = 20 cara
- Pemilihan bendahara = 19 cara
- Pemilihan ketua dan bendahara = 20*19 = 380 cara

33

PERMUTASI

Persoalan 2:

- Ada 20 mahasiswa/wi TI di kelas Matematika Diskrit. Akan dipilih 2 orang sebagai perwakilan kelas untuk Forum Dialog Prodi. Berapa cara dimungkinkan?
- Banyaknya cara = $\binom{20}{2}$ = $\frac{20!}{2!(18)!}$ = $\frac{20.19.(18)!}{2!(18)!}$ = $\frac{20.19}{2!}$ = 190 cara
- Perbedaan persoalan 1 dan persoalan 2 ?!

PERMUTASI

- Misal ada 6 bola dengan warna berbeda-beda, akan dimasukkan ke dalam 3 kotak (masing-masing kotak hanya berisi 1 bola). Urutan?
- Perhitungan:

Kotak I: diisi salah satu dari 6 bola (6 pilihan)

Kotak 2: diisi salah satu dari 5 bola (5 pilihan)

Kotak 3: diisi salah satu dari 4 bola (4 pilihan)

• So:

Jumlah urutan berbeda = (6)(5)(4) = 120

35

PERMUTASI

- Permutasi mempertimbangkan urutan cara
- Tidak boleh ada perulangan

• P(n,r) =
$$\frac{n!}{(n-r)!}$$

• Jika n = r

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{(0)!} = n!$$

CONTOH PERMUTASI

- I. Tuliskan semua permutasi 4 obyek (PQRS)
- 2. Suatu undian dilakukan dengan menggunakan angka yang terdiri dari 6 digit. Jika digit dalam nomor undian diharuskan berbeda satu dengan yang lain, ada berapa kemungkinan nomor undian?

3

KOMBINASI DAN PERMUTASI ELEMEN BERULANG

CATATAN: KOMBINASI ATAU PERMUTASI?!

- Check: penjumlahan atau perkalian (ATAU, DAN)
- 2. Perhatikan "kata kunci":
- Jika urutan tidak penting kombinasi (AB = BA)
- \circ Jika urutan penting permutasi (AB ≠ BA)

39

TIGA CIRI KOEFIEN KOMBINATORIAL

I.
$${}^{n}Cn = {}^{n}C0 = I$$

$$2. \quad {}^{n}C_{(n-r)} = {}^{n}C_{r}$$

3.
$${}^{n}C_{r} + {}^{n}C_{(r+1)} = {}^{(n+1)}C_{(r+1)}$$