Remise en route : fonctions et intégrales

Pratique de la dérivation

- ▶ Domaines de définition recherche de « valeurs interdites », composabilité
- ▶ Formules de dérivation (not' « chain rule ») $(e^u)' = u' e^u$, $(u^n)' = nu'u^{n-1}$, $(\ln(u))' = \frac{u'}{u}$
- ▶ Classe des fonctions numériques $C^0, C^1, C^2, ..., C^\infty$
- *) Définition : (on n'oublie pas que $f^{(n)}$ doit être continue!)
- *) Justifications de routine : Fonctions de référence et opérations usuelles
- $\star)$ Calculs simples de dérivées successives : par récurrence

Études de fonctions

- ▶ Tableaux de variations Recherche d'extrema, et application aux inégalités
- ▶ Représentations graphiques de fonctions simples

On commence par tracer • des tangentes bien choisies (horizontales, d'inflexion, en 0 ...)

- les asymptotes
- ▶ Vocabulaire des limites (on en reparlera un peu plus tard cette année)
 - *) Problèmes de recollement : étude de continuité de fonctions définies « par des cas »
- *) Formes indéterminées : notamment : taux d'accroissement et nombre dérivé
- *) Croissances comparées : principe et applications directes
- ▶ Théorème des valeurs intermédiaires savoir l'illustrer graphiquement (voir fiche-TD)
- ▶ Théorème de la bijection

interprétation en terme d'équation numérique $f(x) = y_0 \iff existence$ et unicité de la solution)

Pratique de la démonstration par récurrence

▶ Énoncé de l'hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : (énoncé de l'hyp. de rec.) (H_n)

▶ Initialisation

On vérifie que l'on a bien (H_0) (le plus souvent, c'est une formalité)

Hérédité

Soit $n \in \mathbb{N}$ un entier (fixé!)

On suppose (H_n) et on montre (H_{n+1}) .

Conclusion

L'hypothèse de récurrence (H_n) est initialisée et héréditaire.

Par récurrence, on a donc : $\forall n \in \mathbb{N}$, (énoncé de l'hyp. de rec.) (H_n)

Pratique de l'intégration

▶ Intégrale d'une fonction continue sur un segment

Interprétation comme une aire, calcul par primitivation

- ▶ Intégration par parties pour u, v de classe $C^1 : \int_a^b u'v = [uv]_a^b \int_a^b uv'$
- ▶ Majoration, minoration, signe d'une intégrale par l'étude de la fonction intégrée.