

Machine Learning: Processes

Akitaka Matsuo Essex IADS

Machine learning steps

University of Essex

- 1. Define the problem
- 2. Split the data to train and test set
- 3. Data wrangling
- 4. Build the model (including cross-validation)
- 5. Evaluate the model
- 6. Apply the model (prediction)

Define the problem

- What kind of the insight do you want to get from the data
 - In supervised learning, the ultimate goal is to construct a model that closely approximates the generation of the outputs.
- Mathematically, it can be formulated as:

$$Y \sim f(X)$$

-f(X) is the function to generate the outcome Y

Motivation for learning f(X)?

- We want to estimate f(X), but what for?
 - Inference: Want to explain the relationship between X and Y.
 - Find key predictors
 - Effect of key predictors on outcome
 - Functional form
 - **Prediction**: Get the output from f(X) as close as Y

$$\widehat{Y} = \widehat{f}(X)$$

The fundamental question then to ask is "Do we need to explain the effect of X on Y?"

- Sometimes it doesn't matter (e.g. spam filter, weather forecasting)
- But often times it does matter in social science

Model estimation

There are two essentially different strategies:

- Parametric methods
 - Steps
 - 1. Decide functional form
 - 2. Estimate the parameter
- Non-parametric methods
 - make the estimated f as close to the data points as possible
 - e.g. KNN Regression

Example: KNN Regression

- KNN: K Nearest Neighbor
- KNN regression: Predict based on the mean of y values nearest k data points.
 - small k: prediction is very sensitive to local values
 - large *k*: prediciton is not so sensitive

See next slides for various k values

Example: KNN Regression

KNN regression

- From the figure, we learned k matters
- But, how to objectively evaluate the model
- For continuous output model it is typically Mean Squared Error (MSE) or Root MSE :

$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{f}(x_i))^2$$

- If the model is flexible, MSE gets smaller.
 - But is it always good?
 - · No!

Train-test split

- If the model gets more flexible, the MSE for the data used for estimating the data will gets smaller
- But this does not guarantee the accuracy when the model applied to the new data.
- Here I split the data into Train set and Test set
 - Train set: use for estimating the model
 - Test set: use for evaluating the model

KNN Example again with Train-Test split

- For smaller k,
 - train-MSE is smaller
 - but not the case for test-MSE

Bias-Variance tradeff

- The previous example illustrates the issue of how flexible the model should be.
- This problem can be formulated in the following equation:

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- $Var(\hat{f}(x_0))$: Variance of a model, how much estimates change across different splits of train-test
 - Increases with model complexity/flexibility
- $[Bias(\hat{f}(x_0))]^2$: Caused by the oversimplification of the model
- $Var(\epsilon)$: Irreducible error

$Var[\hat{f}(X)]$	$Bias[\hat{f}(X)]$	Implication
High	Low	Overfitting
High	High	Underfitting
Low	High	Underfitting
Low	Low	Optimal

Interpretability-Accuracy tradeoff

Data wrangling

- We have already seen enough for how to wrangle the data in Python
- Sometimes, further data work has to be conducted after train-test split.
 - For data wrangling, as well as model fitting and evaluations, we can use scikit-learn package
- If you manipulate the data, you have to do it first with train data, then apply the same procedure with test set
 - normalizing
 - create dummy variable using the distribution of data (e.g. 1st quartile)

Build the model

- Basically, it means you estimate the model using the train set
- Sometime, you need to tune parameters (e.g. k in KNN regression)
 - Parameters are tuned through multiple trials of different candidate values
 - The best values are usually done through cross-validation in training set

Evaluating the model

- Models are evaluated with some measure, which is usually a function of errors
 - For continuous outcomes, errors are difference between the prediction and actual values
 - Measures:
 - Mean absolute error (MAE)
 - Mean squared error (MSE)
 - Root mean squared error (RMSE)
 - For categorical outcomes, errors are the misclassification (see next)
- The evaluation is conducted with test data