TM1638 Message

Display 10 digits "1234567890", start at C0 (Sequential address mode 0x40)

Notes:

Data is LSb first
Data latched on clock rising edge
Data valid when STB = Low

For 10 digits display, Common Anode 7-seg LED's are used, connected with Segment bus to the 8 Grid pins & Digit commons connected to 10 Segment pins. This requires the segments to be transposed, ie. Digit 1 segments go into bit 0 of all even registers, Digit 2 segments go into bit 1 of all even registers... up to Digit 8

Digit 9 segments go into bit 0 of all odd registers, Digit 10 segments go into bit 1 of all odd registers (see Digit -> Register table page 2)

TM1638 with Common Anode display

Digit bits transposed

Program	
Code	

Disp Buffer Digits										
Digit ->	1	2	3	4	5	6	7	8	9	10
bit 0 ->	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	4	4	4
	5	5	5	5	5	5	5	5	5	5
	6	6	6	6	6	6	6	6	6	6
bit 7 ->	7	7	7	7	7	7	7	7	7	7

TM1638.

Addr -

			Display Reg	gisters	(showing w	p)		
Addr ->	C0	C2	C4	C6	C8	CA	CC	CE
Digit 1	0	1	2	3	4	5	6	7
2	0	1	2	3	4	5	6	7
3	0	1	2	3	4	5	6	7
4	0	1	2	3	4	5	6	7
5	0	1	2	3	4	5	6	7
6	0	1	2	3	4	5	6	7
7	0	1	2	3	4	5	6	7
8	0	1	2	3	4	5	6	7

->	C1	C3	C5	C7	C9	СВ	CD	CF
9	0	1	2	3	4	5	6	7
10	0	1	2	3	4	5	6	7
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-

```
#Ifdef Com Anode
 Dim BitCnt, Tmp_2, AddrN, Rpt, RegPtr, RegBitIdx as byte
 Dim RegBuf(16+1) as Byte ' TM1638 register buffer for ComAnode display
  For BufIndx = 1 to 16 : RegBuf(BufIndx) = 0 : Next ' ClrRegbuf
      get each bit from digit buffer byte & transpose to reg buffer bytes.
  For BufIndx = 1 to TM DispLen '< Digits to process</pre>
       If BufIndx < 9 then RegBitIdx = BufIndx -1 Else RegBitIdx = BufIndx -1 -8</pre>
       BitCnt = 0 ': Tmp 2 = 0
       Tmp_1 = DBuf(BufIndx) '< each buf byte</pre>
                             '< 8 bits to transpose
     Repeat 8
       If BufIndx < 9 then AddrN = (BitCnt*2) +1 Else AddrN = (BitCnt*2) +2 :</pre>
       Tmp_2 = RegBuf(AddrN)
       RegBuf(AddrN) = Tmp 2
       BitCnt++
     End Repeat
  Next
     Send reg buffer
     set TM1638 STB 0
       TM1638_WrVal (TMcmd1) ' Seq. address mode 40h
     set TM1638 STB 1
       Wait TMdly us
     set TM1638_STB 0
       TM1638 WrVal TMaddr
                                        ' COh First Reg addr
                                       ' send all registers
  For BufIndx = 1 to 16
       TM1638_WrVal (RegBuf(BufIndx))
                                      ' Digit data
  Next
     set TM1638 STB 1
       Wait TMdly us
 #endif
```