# CSCI E-82a Probabilistic Programming and AI Lecture 13 Overview of Deep Learning

Steve Elston



Copyright 2019, Stephen F Elston. All rights reserved.

# Building Blocks of Deep Learning

- Forward propagation and linear networks
- The perceptron
- Deep representations
- Nonlinearity and activation functions
- Learning with backpropagation
- Loss function
- Computing gradients with the chain rule
- Regularization for deep learning
- Optimization for deep learning

# Function Approximation with Deep Neural Networks

Deep neural networks are powerful function approximators

$$y = f(x)$$

- X are the feature values
- Y the labels
- Most deep neural networks use supervised learning
  - Labelled cases used to learn f(x)
  - f(x) is nonlinear and can be quite complex
  - Complexity leads to problems with generalization

# A Better Deep Representation

- By mid-1980s need for architecture with hidden layers for greater model capacity was recognized
  - Input layer
  - Multiple hidden layers
  - Output layer
- Apply nonlinear activations in hidden units
- Can fully connect between layers
- Learn weights for complex function approximation
- Can solve XOR problem and much more

# A Better Deep Representation



# A Better Deep Representation

- What is the output of the simple network?
- Process called forward propagation
- Start with the output of the hidden layer:

$$S_1 = \sigma(\Sigma_i x_i * W_{1i}^1)$$
  
 $S_2 = \sigma(\Sigma_i x_i * W_{2i}^1)$ 

Next, compute the output of the output layer

$$S_3 = \Sigma_j W_j^2 * \sigma(\Sigma_i x_i * W_{ji}^1)$$

- The universal approximation theorem, Hornik (1991), tells us that an infinitely wide hidden layer can represent any function
- Usefulness limited:
  - It's nice to know we can represent complex functions
  - But, completely infeasible in practice
- What can we do?
  - Trade depth for breath

- Model capacity is fundamentally related to the bias-variance tradeoff of machine learning
  - Low capacity models have high bias but low variance
  - High capacity models have low bias but high variance
- High capacity models have a tendency to be overfit
- We have more to say about this problem in another lesson

For a study of model capacity of extremely deep networks see He et. al.



Model capacity with increasing depth. From Goodfellow et. al. 2014.



**Model capacity vs. number of parameters.** From Goodfellow et. al. 2014.

### **Activation functions**

- Nonlinear activation is key to achieving good function approximation.
- Many activation functions have been tried, here are a few:

| Function | How Used?                      | Comments                   |
|----------|--------------------------------|----------------------------|
| Sigmoid  | Binary classifier output layer | Historically the most used |

### Activation functions

### Sigmoid has vanishing gradients



### **Activation functions**

Rectilinear function has constant gradient for positive values



# The Backpropagation Algorithm

- To find function approximation, f(x), we need to **learn model weights**
- The primary algorithm we use to learn model weights is known as backpropagation
  - Backpropagation was applied to learning (system identification) for control problems as early as 1960 by Henry Kelly and 1961 by Arthur Bryson for dynamic programming
  - First applied to neural networks by Paul Werbos in 1974
  - In 1986 by Rumelhart, Hinton and Williams showed that backpropagation was effective for learning the weights of hidden layers

# The Backpropagation Algorithm



# The Backpropagation Algorithm

To **learn model weight tensor** we must **minimize the loss function** using the **gradient**:

$$W_{t+1} = W_t + \alpha \nabla_W J(W_t)$$

### Where:

 $W_t$  = the tensor of weights or model parameters at step t J(W) = loss function given the weights

 $\nabla_W J(W) = \text{gradient of } J \text{ with respect to the weights } W$   $\alpha = \text{step size or learning rate}$ 

# The Back Propagation Algorithm

- Backpropagation is a gradient decent algorithm
- Weight updates are taken as small steps in the direction of the gradient of the loss function

$$\alpha \nabla_W J(W_t)$$

Backpropagation converges when the gradient is approximately 0

- What are some choices for a loss function, J(W), given the weight tensor?
- For regression problems use MSE
- Which loss function should we use for classification problems?
  - Cross entropy is a good choice, but is a bit abstract

### What is **Shannon Entropy**?

$$\mathbb{H}(I) = E[I(X)]$$

Where: E[X] = the expectation of X.

I(X) = the information content of X.

But, we work with probability distributions, so:

$$\mathbb{H}(I) = E[-ln_b(P(X))] = -\sum_{i=1}^{n} P(x_i) ln_b(P(x_i))$$

Where: P(X) = probability of X.

b =base of the logarithm.

- We need to measure the difference between the distribution of our function approximation and the distribution of the data
- The Kullback-Leibler divergence between two distributions P(X) and Q(X) is such a measure:

$$\mathbb{D}_{KL}(P \parallel Q) = -\sum_{i=1}^{n} p(x_i) \ln_b \frac{p(x_i)}{q(x_i)}$$

- How do we compute KL divergence?
- If we knew P(X) we would not need to compute KL divergence
- We can expand KL divergence as:

$$\mathbb{D}_{KL}(P \parallel Q) = \sum_{i=1}^{n} p(x_i) \ln_b p(x_i) - \sum_{i=1}^{n} p(x_i) \ln_b q(x_i)$$

$$\mathbb{D}_{KL}(P \parallel Q) = \mathbb{H}(P) + \mathbb{H}(P, Q)$$

$$\mathbb{D}_{KL}(P \parallel Q) = Entropy(P) + Cross\ Entropy(P, Q)$$

Given: 
$$\mathbb{D}_{KL}(P \parallel Q) = \mathbb{H}(P) + \mathbb{H}(P, Q)$$

The term  $\mathbb{H}(P)$  is constant

So, we only need the **cross entropy** term:

$$\mathbb{H}(P,Q) = -\sum_{i=1}^{n} p(x_i) \ln_b q(x_i)$$

How can we compute cross entropy when we don't know P(X):

$$\mathbb{H}(P,Q) = -\sum_{i=1}^{n} p(x_i) \ln_b q(x_i)$$

Since we don't know P(X), use the approximation:

$$\mathbb{H}(P,Q) = -\frac{1}{N} \sum_{i=1}^{n} \ln_b q(x_i)$$

### The Chain Rule of Calculus

- In order to compute the gradients of the loss function though the layers of a deep neural network we need to apply the chain rule of calculus
- To consider a function z = f(y), where y = g(x); then z = f(g(x)). Then the derivative of z with respect to x is:

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

### The Chain Rule of Calculus

- We need the gradient of real-valued loss function, J, given a
   M dimensional weight tensor, W
- This leads to the general form of the chain rule:

$$\frac{\partial z}{\partial x} = \sum_{j \in M} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

Or,

$$\nabla_x z = \left(\frac{\partial x}{\partial y}\right)^T \nabla_y z$$

Where,  $\frac{\partial x}{\partial y}$  = is the nxm **Jacobian matrix** of partial derivatives

 $\nabla_y z$  = the gradient of z with respect to y

# Regularization for Deep Learning

- Deep learning models have very large numbers of parameters which must be learned.
  - Even with large training datasets there may only be a few samples per parameters
- Large number of parameters leads to high chance of overfitting deep learning models
  - Over-fit models do not generalize
  - Over-fit models have poor response to input noise
- To prevent over-fitting we apply regularization methods

- High capacity models fit training data well
  - Exhibit high variance
  - Do not generalize well; exhibit brittle behavior
  - Error<sub>training</sub> << Error<sub>test</sub>
- Low capacity models have high bias
  - Generalize well
  - Do not fit data well
- Regularization adds bias
  - Strong regularization adds significant bias
  - Weak regularization leads to high variance

- How can we understand the bias-variance trade-off?
- We start with the error:

$$\Delta y = E[Y - \hat{f}(X)]$$

### Where:

Y = the label vector.

X =the feature matrix.

 $\hat{f}(x)$  = the trained model.

We can expand the error term

$$\Delta x = \left( E[\hat{f}(X)] - \hat{f}(X) \right)^2 + E\left[ (\hat{f}(X) - E[\hat{f}(X)])^2 \right] + \sigma^2$$

$$\Delta x = Bias^2 + Variance + Irreducible Error$$

- Increasing bias decreases variance
- Notice that even if the bias and variance are 0 there is still irreducible error



- Over-fit models tend to have parameters (weights) with extreme values
- One way to regularize models is to limit the values of the parameters
- We add a small bias term to (greatly) reduce the variance

 One way to limit the size of the model parameters is to constrain the I2 or Euclidian norm:

$$||W||^2 = \left(w_1^2 + w_2^2 + \dots + w_n^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^n w_i^2\right)^{\frac{1}{2}}$$

The regularized loss function is then:

$$J(W) = J_{MLE}(W) + \lambda ||W||^2$$

- Where  $\lambda$  is the regularization hyperparameter
  - Large  $\lambda$  increases bias but reduces variance
  - Small λ decreases bias and increases variance

- 12 regularization goes by many names
- Is called Euclidian norm regularization
- First published by Andrey Tikhonov regularization, in late 1940s
  - Only published in English in 1977
  - Is known as Tikhonov regularization
- In the statistics literature the method is often called ridge regression
- In the engineering literature is referred to as pre-whitening

- Regularization can be performed with other norms
- The **I1** (min-max) norm is another common choice
- Conceptually, I1 norm limits the sum of the absolute values of the weights:

$$||W||^{1} = (|w_{1}| + |w_{2}| + \dots + |w_{n}|) = (\sum_{i=1}^{n} |w_{i}|)^{1}$$

 The I1 norm is also known as the Manhattan distance or taxi cab distance, since it is the distance traveled on a grid between two points.

Given the I1 norm of the weights, the loss function becomes:

$$J(W) = J_{MLE}(W) + \alpha ||W||^{1}$$

- Where  $\alpha$  is the regularization hyperparameter
  - Large  $\alpha$  increases bias but reduces variance
  - ullet Small lpha decreases bias and increases variance
- The I1 constraint drives some weights to exactly 0
  - This behavior leads to the term lasso regularization

# **Early Stopping**

- Early stopping is an old and simple idea
- Stop updating the model weights before the model becomes overfit
- Early stopping is analogous to l2 regularization
- We can formulate the regularized loss function as:

$$argmin_W J(W) = J(W)_{MLE} + \alpha ||W||^2$$

• Where  $\alpha$  is the regularization hyperparameter

# **Early Stopping**

Early stopping has a simple geometric interpretation



- Overfit deep network models tend to suffer from a problem of coadaptation
  - With limited training data weight tensors become adapted to the training data
  - Such a model is unlikely to generalize
- We need a way to break the co-adaptation of the weight tensor

- Dropout regularization is a conceptually simple method unique to deep learning
  - At each step of the gradient decent some fraction, p, of the weights are dropped-out of each layer
  - The result is a series of models trained for each dropout sample
  - The final model is a **geometric mean** of the individual models
- Weight values are clipped in a small range as a further regularization
- For full details see the readable paper by Srivastava et. al., 2014 <a href="http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf">http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf</a>

 Let's look at a simple example of a network with one hidden layer:



• For p = 0.5 here are six of the possible samples:



#### **Batch Normalization**

- In deep neural networks there is a high chance that units in a hidden layer have a large range of output values
  - Causes shifts in the covariance of the output values
  - Leads to difficulty computing the gradient
  - Slows convergence
- A solution is to normalize the output of the hidden layers in the network as a batch
- This simple idea can be really effective
- For more details see Sergey and Szegedy,
   2015: <a href="https://arxiv.org/pdf/1502.03167.pdf">https://arxiv.org/pdf/1502.03167.pdf</a>

#### Optimization for Deep Neural Networks

- Training deep neural networks requires learning a large number parameters
- Parameters are learned by gradient descent
  - Is an optimization method
  - Must be executed on a large scale
- The optimization problem is ill-posed
  - Can have slow convergence
  - May not have unique solution
  - But, a good solution is often good enough

#### Optimization for Deep Neural Networks

- Neural networks learn weights using the backpropagation algorithm
- Weights are learned using the gradient descent method:

$$W_{t+1} = W_t + \alpha \nabla_W J(W_t)$$

#### Where:

 $W_t$  = the tensor of weights or model parameters at step t

J(W) = loss function given the weights

 $\nabla_W J(W) = \text{gradient of } J \text{ with respect to the weights } W$ 

 $\alpha$  = step size or learning rate

## Local Convergence of Gradient Descent

• Ideally, the loss function, J(W), is convex with respect to the

weights



- Convex loss function has one unique minimum
- Convergence for convex loss function is guaranteed

#### Local Convergence of Gradient Descent

- Real-world loss functions are typically not convex
- There can be multiple minimums and maximums; a multi-modal loss function
- Finding the globally optimal solution is hard!
- The minimum reached by an optimizer depends on the starting value of W
- In practice, we are happy with a **good local solution**, if not, the globally optimal solution
- First order optimization found to perform as well, or better, than second order

#### The Nature of Gradients

• Example of well-conditioned and ill-conditioned gradients:





well-conditioned gradient

ill-conditioned gradient

## Vanishing and Exploding Gradient Problems

- There is no guarantee that the gradient of the loss function is well behaved
- The gradient can vanish
  - Flat spots in the gradient
  - Imagine a loss function with a long narrow valley
  - Slow convergence
- The gradient can explode
  - Sudden changes in the gradient; falling off a cliff!
  - Very large step; optimizer over-shoots the minimum point

## Vanishing and Exploding Gradient Problems

- What can be done about extreme gradient problems?
- Dealing with vanishing gradient can be difficult
  - Normalization of input values
  - Regularization is essential!
- Dealing with exploding gradients is easy
  - Gradient clipping prevents extreme values

## Convex vs. Non-Convex Optimization



Gradient descent is well-behaved with convex loss function

- Only 1 global minimum
- From any starting point the gradient leads to global minimum

**Convex loss**Poorly conditioned

#### Convex vs. Non-Convex Optimization



**Nonconvex loss** 

Gradient descent can be problematic with **nonconvex loss function** 

- There is a global minimum
- Possibly many local minimums
- Minimum found with gradient descent depends on starting point
- A good minimum may be good enough

#### Convex vs. Non-Convex Optimization



**Nonconvex loss** 

Gradient descent can be problematic with **nonconvex loss function** 

- Can get stuck at saddle point!
- Gradient is ambiguous at saddle point

#### Stochastic Gradient Descent

- We need a more scalable way to apply gradient descent
- Stochastic gradient descent is just such a method
- The weight tensor update for stochastic gradient descent follows this relationship:

$$W_{t+1} = W_t + \alpha E_{\hat{p}data} \left[ \nabla_W J(W_t) \right]$$

#### Where:

 $\hat{p}data$  is the Bernoulli sampled mini-batch

 $E_{\hat{p}data}$  [] is the expected value of the gradient given the Bernoulli sample

#### Stochastic Gradient Descent

- Stochastic gradient descent is known to converge well in practice
- Empirically, using mini-batch samples provide a better exploration of the loss function space
  - Can help solution escape from small local gradient problems
  - Sampling is dependent on mini-batch size

#### Stochastic Gradient Descent

Stochastic gradient descent algorithm

```
Random_sort(cases)
while(grad > stopping_criteria):
    mini-batch = sample_next_n(cases)
    grad = compute_expected_grad(mini_batch)
    weights = update_weights(weights, grad)
```

- Notice that the addition rounds repeat the samples
  - In practice this does not create much bias
  - For large samples this may not happen

#### Stochastic Gradient Descent with Momentum

- The stochastic gradient descent algorithm can be slow to converge if flat spots in the gradient are encountered
- What is a solution?
- Add **momentum** to the gradient;  $momentum = m \cdot v$ 
  - Analogy with Newtonian mechanics;
  - Where:

*m* is the mass *v* is the velocity

#### Stochastic Gradient Descent with Momentum

Letting the mass be 1.0 update of the weight tensor is:

$$v^{(l)} = momentum \cdot v^{(l-1)} + lr \cdot \nabla_W J(W^{(l)})$$
  
 $W^{(l+1)} = W^{(l)} + v^{(l)}$ 

Where:

 $v^{(l)}$  is the velocity at step l momentum is the momentum multiplier lr is the learning rate

Notice there are now two hyperparameters

#### Adaptive Stochastic Gradient Descent

- A single learning rate is not likely to be optimal
  - Far from the minimum, a large learning rate speeds convergence
  - Near the minimum a small learning rate presents over-shooting the minimum
- What can improve the convergence
- Use a manually created learning schedule
  - Introduces additional hyperparameters
- Use an adaptive algorithm
  - Learning rate is adjusted based on the estimates of the gradient

## Selecting Initial Weight Values

- To prevent weights from becoming linearly dependent the initial values must be randomly selected
  - Otherwise, some weight values are never learned
- Simple truncated Gaussian or Uniform distributed values work well in practice
  - This process is referred as adding fuzz to the initial values