МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЛАБОРАТОРНАЯ РАБОТА №2

Отчёт о практике

стулента 2 курса 251 группы

Jr - TJ	
направления 09.03.04 — Программная инженерия	
факультета КНиИТ	
Тюменцева Радомира Александровича	
Проверено:	
Старший преподаватель	Е. М. Черноусова

1 Задание 2

Сначала программы должны печатать фамилию, имя и номер группы студента и переходить на новую строку. Затем аналогично рассмотренному упражнению выполните следующие задания:

1.1 Задание 2.1

Первая цифра задана в АХ, вторая цифра задана в ВХ. Написать программу, которая выводит в одну строку первую цифру, пробел, вторую цифру.

1.2 Задание 2.2

Первая цифра задана в АХ, вторая цифра задана в ВХ. Написать программу, которая выводит в одну строку первую цифру (АХ), пробел, вторую цифру (ВХ). Далее совершает обмен значений регистров АХ и ВХ и снова в новой строке на экране выводит в одну строку первую цифру (АХ), пробел, вторую цифру (ВХ). Обмен совершить без использования дополнительной памяти, регистров. Структура программы должна обязательно содержать одну или более вспомогательных процедур.

1.3 Тексты программ на языке ассемблера с комментариями

```
.model tiny
.code
org 100h
start:
  ; Вывод фамилии, имени и номера группы
  mov DX, offset my name
  call out string
  call new line
 mov AX, 1 ; Занесение первой цифры в регистр АХ
 mov BX, 2
              ; Занесение второй цифры в регистр ВХ
  ; Перевод цифр в коды соответствующих символов ASCII с помощью
команды add
  add AX, 30h
  add BX, 30h
  ; Вывод первой цифры
  mov DX, AX
  call out char
```

```
; Вывод пробела
call out_space
; Вывод второй цифры
mov DX, BX
call out_char
; Завершение программы
mov AX, 4C00h
int 21h
; Процедура вывода строки
out_string proc
 mov AH, 09h
  int 21h
  ret
out_string endp
; Процедура вывода символа
out_char proc
  mov AH, 02h
  int 21h
  ret
out char endp
; Процедура вывода пробела
out_space proc
 mov DL, 00h ; Код пробела в ASCII
  mov AH, 02h
  int 21h
  ret
out_space endp
; Процедура перехода на новую строку
new_line proc
  mov DX, offset end_line
 mov AH, 09h
  int 21h
  ret
```

new_line endp ;===== Data ===== my_name db 'Tyumentsev Radomir, 251\$' end_line db 0Dh, 0Ah, '\$' ; Строка с символами перехода на новую строку end start

Текст программы 1

```
.model tiny
.code
org 100h
start:
      Вывод фамилии, имени и номера группы
 mov DX, offset my_name
 call out string
 call new_line
 mov AX, 1; Занесение первой цифры в регистр АХ
 mov BX, 2; Занесение второй цифры в регистр BX
  ; Перевод цифр в коды соответствующих символов ASCII с помощью
команды add
 add AX, 30h
 add BX, 30h
      Сохранение значения регистра АХ в стек
      так как затем в него будут записываться номера функций DOS
  push AX
     Вывод первой цифры
 mov DX, AX
  call out_char
     Вывод пробела
  call out space
     Вывод второй цифры
  mov DX, BX
  call out char
  рор АХ; Восстановление значения регистра АХ из стека
 xchg AX, BX; Обмен значениями регистров АХ и ВХ
 call new line; Переход на новую строку
     Вывод первой цифры
 mov DX, AX
```

```
call out char
; Вывод пробела
call out space
   Вывод второй цифры
mov DX, BX
call out_char
; Завершение программы
mov AX, 4C00h
int 21h
   Процедура вывода строки
out_string proc
 mov AH, 09h
  int 21h
  ret
out_string endp
; Процедура вывода символа
out_char proc
 mov AH, 02h
  int 21h
  ret
out_char endp
; Процедура вывода пробела
out space proc
  mov DL, 00h; Код пробела в ASCII
  mov AH, 02h
  int 21h
  ret
out_space endp
; Процедура перехода на новую строку
new_line proc
 mov DX, offset end_line
  mov AH, 09h
  int 21h
```

```
ret
new_line endp

;===== Data =====

my_name db 'Tyumentsev Radomir, 251$'
end_line db 0Dh, 0Ah, '$' ; Строка с символами перехода на новую строку
end start
```

Текст программы 2

1.4 Скриншоты запуска программ

```
DOSBox 0.74-3-3, Cpu speed: 3000 cycles, Frameskip 0, Program: DOSBOX

C:\>tasm.exe 1.asm
Turbo Assembler Uersion 2.0 Copyright (c) 1988, 1990 Borland International

Assembling file: 1.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 491k

C:\>tlink.exe /× /t 1.obj
Turbo Link Uersion 3.0 Copyright (c) 1987, 1990 Borland International

C:\>1
Tyumentsev Radomir, 251
1 2
C:\>_
```

Запуск программы 1

```
DOSBox 0.74-3-3, Cpu speed: 3000 cycles, Frameskip 0, Program: DOSBOX

C:\>tasm.exe 2.asm
Turbo Assembler Version 2.0 Copyright (c) 1988, 1990 Borland International

Assembling file: 2.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 491k

C:\>tlink.exe /× /t 2.obj
Turbo Link Version 3.0 Copyright (c) 1987, 1990 Borland International

C:\>2
Tyumentsev Radomir, 251
12
2 1
C:\>_
```

Запуск программы 2

1.5 Таблицы трассировки программ

Таблица 1 – Таблица трассировки программы 1

Шаг	Машинный код	Команда		Регистры									
			AX	BX	CX	DX	SP	DS	SS	CS	IP	CZSOPAID	
1	BA4001	mov dx, 0140	0000	0000	0000	0000	FFFE	489D	489D	489D	0100	00000010	
2	E82100	call 0127	0000	0000	0000	0140	FFFE	489D	489D	489D	0103	00000010	
3	B409	mov ah, 09	0000	0000	0000	0000	FFFC	489D	489D	489D	0127	00000010	
4	CD21	int 21	0900	0000	0000	0000	FFFC	489D	489D	489D	0129	00000010	
5	С3	ret	0900	0000	0000	0000	FFFC	489D	489D	489D	012B	00000010	
6	E82F00	call 0138	0900	0000	0000	0000	FFFE	489D	489D	489D	0106	00000010	
7	BA5801	mov dx, 0158	0900	0000	0000	0000	FFFC	489D	489D	489D	0138	00000010	
8	B409	mov ah, 09	0900	0000	0000	0158	FFFC	489D	489D	489D	013B	00000010	
9	CD21	int 21	0900	0000	0000	0158	FFFC	489D	489D	489D	013D	00000010	
10	C3	ret	0900	0000	0000	0158	FFFC	489D	489D	489D	013F	00000010	
11	B80100	mov ax, 0001	0900	0000	0000	0158	FFFE	489D	489D	489D	0109	00000010	
12	BB0200	mov bx, 0002	0001	0000	0000	0158	FFFE	489D	489D	489D	010C	00000010	
13	053000	add ax, 0030	0001	0002	0000	0158	FFFE	489D	489D	489D	010F	00000010	
14	83C330	add bx, 0030	0031	0002	0000	0158	FFFE	489D	489D	489D	0112	00000010	
15	8BD0	mov dx, ax	0031	0032	0000	0158	FFFE	489D	489D	489D	0115	00000010	
16	E81200	call 012C	0031	0032	0000	0031	FFFE	489D	489D	489D	0117	00000010	
17	B402	mov ah, 02	0031	0032	0000	0031	FFFC	489D	489D	489D	012C	00000010	

Шаг	Машинный код	Команда	Регистры									Флаги
			AX	BX	CX	DX	SP	DS	SS	CS	IP	CZSOPAID
18	CD21	int 21	0231	0032	0000	0031	FFFC	489D	489D	489D	012E	00000010
19	C3	ret	0231	0032	0000	0031	FFFC	489D	489D	489D	0130	00000010
20	E81400	call 0131	0231	0032	0000	0031	FFFE	489D	489D	489D	011A	00000010
21	B200	mov dl, 00	0231	0032	0000	0031	FFFC	489D	489D	489D	0131	00000010
22	B402	mov ah, 02	0231	0032	0000	0000	FFFC	489D	489D	489D	0133	00000010
23	CD21	int 21	0231	0032	0000	0000	FFFC	489D	489D	489D	0135	00000010
24	C3	ret	0200	0032	0000	0000	FFFC	489D	489D	489D	0137	00000010
25	8BD3	mov dx, bx	0200	0032	0000	0000	FFFE	489D	489D	489D	011D	00000010
26	E80A00	call 012C	0200	0032	0000	0032	FFFE	489D	489D	489D	011F	00000010
27	B402	mov ah, 02	0200	0032	0000	0032	FFFC	489D	489D	489D	012C	00000010
28	CD21	int 21	0200	0032	0000	0032	FFFC	489D	489D	489D	012E	00000010
29	C3	ret	0232	0032	0000	0032	FFFC	489D	489D	489D	0130	00000010
30	B8004C	mov ax, 4C00	0232	0032	0000	0032	FFFE	489D	489D	489D	0122	00000010
31	CD21	int 21	4C00	0032	0000	0032	FFFE	489D	489D	489D	0125	00000010

Таблица 2 – Таблица трассировки программы 2

Шаг	Машинный код	Команда		Регистры									
			AX	BX	CX	DX	SP	DS	SS	CS	IP	CZSOPAID	
1	BA5301	mov dx, 0153	0000	0000	0000	0000	FFFE	489D	489D	489D	0100	00000010	
2	E83400	call 013A	0000	0000	0000	0153	FFFE	489D	489D	489D	0103	00000010	
3	B409	mov ah, 09	0000	0000	0000	0000	FFFC	489D	489D	489D	013A	00000010	
4	CD21	int 21	0900	0000	0000	0000	FFFC	489D	489D	489D	013C	00000010	
5	C3	ret	0900	0000	0000	0000	FFFC	489D	489D	489D	013E	00000010	
6	E84200	call 014B	0900	0000	0000	0000	FFFE	489D	489D	489D	0106	00000010	
7	BA6B01	mov dx, 016B	0900	0000	0000	0000	FFFC	489D	489D	489D	014B	00000010	
8	B409	mov ah, 09	0900	0000	0000	016B	FFFC	489D	489D	489D	014E	00000010	
9	CD21	int 21	0900	0000	0000	016B	FFFC	489D	489D	489D	0150	00000010	
10	C3	ret	0900	0000	0000	016B	FFFC	489D	489D	489D	0152	00000010	
11	B80100	mov ax, 0001	0900	0000	0000	016B	FFFE	489D	489D	489D	0109	00000010	
12	BB0200	mov bx, 0002	0001	0000	0000	016B	FFFE	489D	489D	489D	010C	00000010	
13	053000	add ax, 0030	0001	0002	0000	016B	FFFE	489D	489D	489D	010F	00000010	
14	83C330	add bx, 0030	0031	0002	0000	016B	FFFE	489D	489D	489D	0112	00000010	
15	50	push ax	0031	0032	0000	016B	FFFE	489D	489D	489D	0115	00000010	
16	8BD0	mov dx, ax	0031	0032	0000	016B	FFFC	489D	489D	489D	0116	00000010	
17	E82400	call 013F	0031	0032	0000	0031	FFFC	489D	489D	489D	0118	00000010	
18	B402	mov ah, 02	0031	0032	0000	0031	FFFA	489D	489D	489D	013F	00000010	
19	CD21	int 21	0231	0032	0000	0031	FFFA	489D	489D	489D	0141	00000010	
20	C3	ret	0231	0032	0000	0031	FFFA	489D	489D	489D	0143	00000010	
21	E82600	call 0144	0231	0032	0000	0031	FFFC	489D	489D	489D	011B	00000010	
22	B200	mov dl, 00	0231	0032	0000	0031	FFFA	489D	489D	489D	0144	00000010	
23	B402	mov ah, 02	0231	0032	0000	0000	FFFA	489D	489D	489D	0146	00000010	
24	CD21	int 21	0231	0032	0000	0000	FFFA	489D	489D	489D	0148	00000010	
25	C3	ret	0200	0032	0000	0000	FFFA	489D	489D	489D	014A	00000010	
26	8BD3	mov dx, bx	0200	0032	0000	0000	FFFC	489D	489D	489D	011E	00000010	
27	E81C00	call 013F	0200	0032	0000	0032	FFFC	489D	489D	489D	0120	00000010	

Шаг	Машинный код	Команда		Флаги								
			AX	BX	CX	DX	SP	DS	SS	CS	IP	CZSOPAID
28	B402	mov ah, 02	0200	0032	0000	0032	FFFA	489D	489D	489D	013F	00000010
29	CD21	int 21	0200	0032	0000	0032	FFFA	489D	489D	489D	0141	00000010
30	C3	ret	0232	0032	0000	0032	FFFA	489D	489D	489D	0143	00000010
31	58	pop ax	0232	0032	0000	0032	FFFC	489D	489D	489D	0123	00000010
32	93	xchg bx, ax	0031	0032	0000	0032	FFFE	489D	489D	489D	0124	00000010
33	E82300	call 014B	0032	0031	0000	0032	FFFE	489D	489D	489D	0125	00000010
34	BA6B01	mov dx, 016B	0032	0031	0000	0032	FFFC	489D	489D	489D	014B	00000010
35	B409	mov ah, 09	0032	0031	0000	016B	FFFC	489D	489D	489D	014E	00000010
36	CD21	int 21	0932	0031	0000	016B	FFFC	489D	489D	489D	0150	00000010
37	C3	ret	0932	0031	0000	016B	FFFC	489D	489D	489D	0152	00000010
38	8BD0	mov dx, ax	0932	0031	0000	016B	FFFE	489D	489D	489D	0128	00000010
39	E81200	call 013F	0932	0031	0000	0932	FFFE	489D	489D	489D	012A	00000010
40	B402	mov ah, 02	0932	0031	0000	0932	FFFC	489D	489D	489D	013F	00000010
41	CD21	int 21	0232	0031	0000	0932	FFFC	489D	489D	489D	0141	00000010
42	C3	ret	0232	0031	0000	0932	FFFC	489D	489D	489D	0143	00000010
43	E81400	call 0144	0232	0031	0000	0932	FFFE	489D	489D	489D	012D	00000010
44	B200	mov dl, 00	0232	0031	0000	0932	FFFC	489D	489D	489D	0144	00000010
45	B402	mov ah, 02	0232	0031	0000	0900	FFFC	489D	489D	489D	0146	00000010
46	CD21	int 21	0232	0031	0000	0900	FFFC	489D	489D	489D	0148	00000010
47	C3	ret	0200	0031	0000	0900	FFFC	489D	489D	489D	014A	00000010
48	8BD3	mov dx, bx	0200	0031	0000	0900	FFFE	489D	489D	489D	0130	00000010
49	E80A00	call 013F	0200	0031	0000	0031	FFFE	489D	489D	489D	0132	00000010
50	B402	mov ah, 02	0200	0031	0000	0031	FFFC	489D	489D	489D	013F	00000010
51	CD21	int 21	0200	0031	0000	0031	FFFC	489D	489D	489D	0141	00000010
52	C3	ret	0231	0031	0000	0031	FFFC	489D	489D	489D	0143	00000010
53	B8004C	mov ax, 4C00	0231	0031	0000	0031	FFFE	489D	489D	489D	0135	00000010
54	CD21	int 21	4C00	0031	0000	0031	FFFE	489D	489D	489D	0138	00000010

2 Ответы на контрольные вопросы

1. В какой регистр надо поместить код выводимого символа? Какой код Dos-функции используется для вывода отдельного символа на экран?

В регистр DL заносится номер используемой для операции вывода функции. Для вывода символа на экран используется функция DOS 02h, которая заносится в регистр АН. Затем используется прерывание при помощи команды int 21h

```
mov DL, 00h ; Символ пробела mov AH, 02h int 21h
```

2. Какая операция позволяет получить для цифры её код в кодовой таблице?

Для вывода на экран цифры необходимо сначала преобразовать её в символьную форму. То есть, для получения символьной формы необходимо заменить цифру кодом ASCII её изображения. Для этого к цифре, хранящейся в регистре, необходимо прибавить командой ADD число 30h — шестнадцатеричный код цифры 0 в ASCII.

```
add AX, 30h
```

3. Объясните назначение процедуры. Как определяются начало и конец процедуры?

Практически все современные программы состоят из одной главной программы и небольших частей, то есть подпрограмм (или **процедур**). (Главная программа вызывает эти процедуры на выполнение, передавая им управление процессором. После завершения работы процедуры возвращают управление главной программе и выполнение продолжается с команды, следующей за командой вызова подпрограммы) Достоинством такого метода является возможность разработки программ значительно большего объема небольшими функционально законченными частями.

Директива PROC процедулы MAIN имеет атрибут FAR, который связан с выполнением программы, а именно когда вы запрашиваете выполнение программы, загрузчик использует эту процедуру, как начальную точку для определения первой подлежащей исполнению команды.

Директива ENDP указывает на конец процедуры и содержит то же имя, что и предложение PROC, чтобы позволить ассемблеру соотнести конец процедуры и

ее начало. Поскольку процедура должна полностью содержаться в одном сегменте, ENDP завершает процедуру перед тем, как ENDS определяет конец сегмента.

4. Ваша программа состоит из главной процедуры и процедур-подпрограмм. Каким может быть взаимное расположение главной процедуры и подпрограмм?

Язык программирования ассемблера поддерживает применение процедур двух типов – ближнего (near) и дальнего (far).

Процедуры ближнего типа должны находиться в том же сегменте, что и вызывающая программа. Дальний тип процедуры означает, что к ней можно обращаться из любого другого кодового сегмента.

Подпрограмму в теле программы стоит размещать либо в конце сегмента кода, после команд завершения программы, либо в самом начале сегмента кода, перед точкой входа в программу, чтобы процедура не выполнялась без её вызова. В больших программах подпрограммы часто размещают в отдельном кодовом сегменте.

5. Как процессор использует стек при работе с любой процедурой?

При вызове процедуры в стеке сохраняется адрес возврата в вызывающую программу:

- при вызове ближней процедуры слово, содержащее смещение точки возврата относительно текущего кодового сегмента;
- при вызове дальней процедуры слово, содержащее адрес сегмента, в котором расположена точка возврата, и слово, содержащее смещение точки возврата в этом сегменте

6. С помощью какой команды вызывается процедура? Как меняется значение регистра SP после вызова процедуры? Приведите пример из вашей таблицы трассировки.

Процедура вызыввается с помощью команды call. При вызове процедуры в стеке сохраняется адрес возврата в вызывающую программу.

Пример из трассировки первой программы: до вызова процедуры out_string SP = FFFE, а после вызова SP = FFFC, после завершения процедры SP становится вновь равен FFFE. SP уменьшается ровно на 2 байта во время вызова процедуры из-за сохранения адреса возврата в стеке.

7. После какой команды процедуры из стека извлекается адрес возврата?

Адрес возврата извлекается из стека после завершение работы процедуры командой ret.