```
* Announcement:

① Ouiz 11: Thu (12/2) 9:00 AM

~ Fri (12/3) 9:00 AM

"30 winutes"
```

Chil.2 ~ (his.2

- Three estimators:
$$\begin{cases} T_1 \\ T_2 \end{cases}$$
 to estimate the parameter (Chil.2)

- Least squares regression. (chil.3)

- Correlatin (chil.4): $r(extb, c7td) = \langle r(x, 7) \rangle \alpha (70)$

- Exp. var of residual $D = T \cdot T$,

other properties (Chil.5)

- Review Exercus II.6.8/11.6.11

STAT 88: Lecture 39

(ch12-1, 12.2)

Contents

Section 12.2: The Distribution of the Estimated Slope

Section 12.3: Towards Multiple Regression

Warm up: (Related to Exercise 11.6.8) Assume R and S are normal. The correlation between R and S is 0.6, i.e. r(R,S) = 0.6.

- (a) If R is 90th percentile, estimate the percentile rank of S.
- (b) If R is 10th percentile, estimate the percentile rank of S.

$$\frac{\Phi(R^{-}MR)}{GR} = \Phi(R^{*}) = 0.9$$

$$\Rightarrow R^{*} = \Phi^{-1}(0.9)$$

$$\Rightarrow \hat{S}^{*} = r \cdot R^{*} = 0.6 \cdot \Phi^{-1}(0.9)$$
((ecture 36, Page 5)
$$\Rightarrow \Phi(\hat{S}^{*}) = \Phi(0.6 \cdot \Phi^{-1}(0.9))$$

$$\Rightarrow \overline{C}(S_k) = \overline{\Delta}(r(\cdot \overline{D}_{-1}(\sigma)))$$

$$\Rightarrow \overline{C}_k = k \cdot K_k = \sigma \cdot \theta \cdot \overline{D}_{-1}(\sigma)$$

$$K_k = \overline{D}_{-1}(\sigma)$$

R750th percentile
$$\Rightarrow$$
 percentile of R7 " of S
R<50th percentile \Rightarrow " $<$ "

Last time
$$(x_{i_1}Y_i), (x_{i_2}Y_i), \cdots, (x_{i_k}Y_i)$$

$$\Rightarrow \widehat{A}_i = \frac{\sum_{i=1}^{n} (x_{i_1} - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_{i_1} - \overline{x})^2}$$

The distribution of the estimated slope

$$\widehat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right).$$

 σ is unknown so we estimate it with the SD of the residuals. Since

$$\mathrm{SD}(\widehat{\beta}_1) = \frac{\sigma}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}},$$
 "Constant"

we have

$$\mathrm{SE}(\widehat{eta}_1) = rac{\widehat{\sigma}}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2}},$$
 "random"

where $\hat{\sigma}$ is the SD of residuals. Therefore, when n is large,

$$T = \frac{\widehat{eta}_1 - eta_1}{\operatorname{SE}(\widehat{eta}_1)} \sim \mathcal{N}(0, 1).$$
Approximate (anty when n is large)

12.2. The Distribution of the Estimated Slope

Pulse Rates

We wish to predict active pulse rates from resting pulse rates.

$$n = 232$$
 is large so

$$T = \frac{\widehat{\beta}_1 - \beta_1}{\mathrm{SE}(\widehat{\beta}_1)} \sim \mathcal{N}(0, 1).$$

$$P(-2 \leq \frac{\widehat{\beta}_1 - \beta_1}{\mathrm{SE}(\widehat{\beta}_1)} \leq 2) = 95\%$$

$$\beta \in (\widehat{\beta}_1 \pm 2.5 \text{SE}(\widehat{\beta}_1))$$

A 95% CI for β_1 is

$$(\widehat{\beta}_1 \pm 2 \cdot SE(\widehat{\beta}_1)) = (0.944, 1.342).$$

A fundamentally important question is whether the true slope β_1 is 0. If it is 0, then the resting pulse rate isn't involved in the prediction of the active pulse rate, according to the regression model. Our testing problem is

$$H_0: \beta_1 = 0 \text{ vs } H_A: \beta_1 \neq 0.$$

T is our test statistic. Under H_0 ,

$$T = \frac{\widehat{\beta}_1}{\operatorname{SE}(\widehat{\beta}_1)} \sim \mathcal{N}(0, 1).$$

The observed value of the test statistic is 11.5. So the p-value is

p-value =
$$P(T \ge 11.5) + P(T \le -11.5) \approx 0$$
.

We reject H_0 at 5% level.

t Statistic

Above we assume that n is large so

so
$$\operatorname{SE}(\widehat{\beta}_1) \approx \operatorname{SD}(\widehat{\beta}_1).$$

If n is small, this approximation is not good and T has a t-distribution with n-2 as a parameter (called degrees of freedom).

t-distribution: The family of t-distributions is indexed by the positive integers: there's the t-distribution(1), the t-distribution(2), and so on.

The t density looks like the standard normal curve, except that it has fatter tails.

"fact"
$$t(4) \rightarrow N(0,1) \text{ as df } \Rightarrow \infty$$

The n is because there are n independent observations and the -2 is because there are two parameter estimates we need to make.

Example: (Exercise 12.4.3) Refer to the regression of active pulse rate on resting pulse rate in Section 12.2. Here are the estimated values again, along with some additional data.

```
(1.142879681904831,
13.182572776013345,
0.6041870881060092,
1.7861044071652305e-24,
0.09938884436389145)

mean_active, sd_active = np.mean(active), np.std(active)
mean_active, sd_active
(1)
(91.29741379310344, 18.779629284683832)

mean_resting, sd_resting = np.mean(resting), np.std(resting)
mean_resting, sd_resting
(68.34913793103448, 9.927912546587986)
```

c) Find the SD of the residuals.

$$SE(\hat{\beta}_{1}) = \frac{3}{\sqrt{\sum_{i=1}^{n}(x_{i}-x_{i})^{2}}}$$

$$\Rightarrow \hat{\sigma} = SE(\hat{\beta}_{1}) \cdot \sqrt{\sum_{i=1}^{n}(x_{i}-x_{i})^{2}}$$

$$= 0.09938 \cdot \sqrt{282} \cdot 9.9277$$

$$\approx 14.97$$

$$\delta = SD \text{ of residuals.}$$

$$Sd-residuals.$$

$$g = \sqrt{1 + \sum_{i=1}^{n}(x_{i}-x_{i})^{2}}$$

$$= \sqrt{1 + \sum_{i=1}^{n}(x_{i}-x_{i})^{2}}$$

Example: Restricting the pulse regression data to male smokers. The sample size $\overline{\text{reduces } n} = 17.$

You get the

	133	4		A CONTRACT		
	coef	std err	t	P> t	[0.025	0.975]
nst	9.9360	16.345	0.608	0.552	-24.903	44.775
est	1.1591	0.222	5.224	0.000	0.686	1.632
				est 1.1591 0.222 5.224	est 1.1591 0.222 5.224 0.000	est 1.1591 0.222 5.224 0.000 0.686

SE(B)

What can you conclude from this?

- > Reject Hb at 5% level.

Given

2.131449545559323

Verify the 95% CI for β_1 is [0.686, 1.632].

$$\hat{\beta}_{1} \pm 2.13 \cdot SE(\hat{\beta}_{1})$$
= [.1591 \pm 2.13 \cdot 0.222]

$$T = \frac{\beta_1 - \beta_1}{s \varepsilon(\beta_1)} \sim t(15)$$

$$\frac{1}{2.15} \qquad density = f t(15)$$

$$\frac{2.15}{2.15}$$

$$\Rightarrow p(-2.13 \leq \frac{\beta_1 - \beta_1}{56(\beta_1^2)} \leq 2.15) = 95\%$$

$$\beta_1 \in \mathbb{C}[\beta_1 \pm 2.15 \cdot SE(\beta_1^2)]$$

12.3. Towards Multiple Regression

Below is data on a random sample of Hodgkin cancer patients.

Simple Regression

We predict difference from base:

hodgkins			(Health before chemo muse (bisser means healthy)		
height	rad	chemo	base	month15	difference	
164	679	180	160.57	87.77	-72.8	
168	311	180	98.24	67.62	-30.62	
173	388	239	129.04	133.33	4.29	
157	370	168	85.41	81.28	-4.13	
160	468	151	67.94	79.26	11.32	
170	341	96	150.51	80.97	-69.54	
163	453	134	129.88	69.24	-60.64	
175	529	264	87.45	56.48	-30.97	
185	392	240	149.84	106.99	-42.85	
178	479	216	92.24	73.43	-18.81	

... (12 rows omitted)

n=22

OLS Regression Results

Dep. Variable: difference	R-squared:	0.397
---------------------------	------------	-------

	coef	std err	t	P> t	[0.025	0.975]
const	32.1721	17.151	1.876	0.075	-3.604	67.949
base	-0.5447	0.150	-3.630	0.002	-0.858	-0.232

What difference do you predict if you have base health 100?

Multiple Regression

What if we want to regress on both base and chemo? Here chemo is very uncorrelated with base.

	height	rad	chemo	base	month1
height	1.000000	-0.305206	0.576825	0.354229	0.39052
rad	-0.305206	1.000000	-0.003739	0.096432	0.04061
chemo	0.576825	-0.003739	1.000000	0.062187	0.44578
base	0.354229	0.096432	0.062187	1.000000	0.56137
month15	0.390527	0.040616	0.445788	0.561371	1.00000
difference	-0.043394	-0.073453	0.346310	-0.630183	0.28879

Conceptual picture:

1= β0 + β1 ×1; + β2×1 + ε1, ε1~ ν(0,0)

Figure 3-5 The deviation of the observed value of Y from the mean of all values of Y, $\{Y-Y\}$, can be separated into two components: the deviation of the observed value of Y from the value on the regression plane $\{Y-\hat{y}\}$ at the associated values of the independent variables X_1 and X_2 , and the deviation of the regression plane from the observed mean value of \overline{Y} ($\overline{y}-\overline{Y}$) (compare with Fig. 2-7).

OLS Regression Results

	•		
Dep. Variable:	difference	R-squared:	0.546

	coef	std err	t	P> t	[0.025	0.975]
const	-0.9992	20.227	-0.049	0.961	-43.335	41.336
base	-0.5655	0.134	-4.226	0.000	-0.846	-0.285
chemo	0.1898	0.076	2.500	0.022	0.031	0.349

What can you conclude here about the fit and $\beta_0, \beta_1, \beta_2$?

What if we include all features?

	height	rad	chemo	base	month1
height	1.000000	-0.305206	0.576825	0.354229	0.39052
rad	-0.305206	1.000000	-0.003739	0.096432	0.04061
chemo	0.576825	-0.003739	1.000000	0.062187	0.44578
base	0.354229	0.096432	0.062187	1.000000	0.56137
month15	0.390527	0.040616	0.445788	0.561371	1.00000
difference	-0.043394	-0.073453	0.346310	-0.630183	0.28879

Note that we have multi-collinearity (i.e. some features are highly correlated with each other).

	a very minor improvement			
Dep. Variable:	difference	R-squared:	0.550	
				-

	coef	std err	t	P> t	[0.025	0.975]
const	33.5226	101.061	0.332	0.744	-179.698	246.743
base	-0.5393	0.160	-3.378	0.004	-0.876	-0.202
chemo	0.2124	0.103	2.053	0.056	-0.006	0.431
rad	-0.0062	0.031	-0.203	0.841	-0.071	0.059
height	-0.2274	0.658	-0.346	0.734	-1.615	1.160