2.1.4 graphisch bei klassierten Daten

Angenommen bei einer Erhebung wurde die monatliche Absatzmenge einer bestimmten Brötchensorte in 30 Filialen eines Bäckereibetriebs erhoben. Die Beobachtungswerte lauten:

37176	29901	15144	20112	25432	18320	32770	38696	17160	8524
22138	13007	20556	24748	27936	28791	37322	19207	21086	21316
12941	44981	36180	18428	51525	12601	5588	39070	41004	47688

Häufigkeitsverteilung – Absatzmengen von Brötchen (in Tausend)

j	Klasse k_j	n_j	f_j
	Klasse k_j von $(c_{j-1}, c_j]$		
1	(0, 10]		
2	(10, 20]		
3	(20, 30]		
4	(30, 40]		
5	(40, 50]		
6	(50, 60]		

Die linken Klassengrenzen notieren wir mit c_{j-1} die rechte Grenze mit c_j . Demnach gilt $c_0=0$, $c_1=10$, $c_2=20$ usw.

Die jeweils runden Klammern der linken Grenzen bedeuten, dass die entsprechenden Werte jeweils nicht mehr zu diesen Klammern gezählt werden (ausschließend). Die jeweils eckigen Klammern der rechten Grenzen bedeuten, dass entsprechende Werte noch zu den Klassen gehören (einschließend). Der Wert 10 zählt also zur ersten und nicht etwa zur zweiten Klasse.

- \rightarrow Bestimmen Sie die absoluten Klassenhäufigkeiten n_i und die relativen Klassenhäufigkeiten f_i .
- → Zeichnen Sie ein passendes Säulendiagramm.