

Welcome to Advanced Data Engineering with Databricks

Learning Objectives

Advanced Data Engineering with Databricks

- 1. Design databases and pipelines optimized for the Databricks Lakehouse Platform.
- 2. Implement efficient incremental data processing to validate and enrich data driving business decisions and applications.
- 3. Leverage Databricks-native features for managing access to sensitive data and fulfilling right-to-be-forgotten requests.
- 4. Manage code promotion, task orchestration, and production job monitoring using Databricks tools.

Course Prerequisites

Advanced Data Engineering with Databricks

- 1. Design databases and pipelines optimized for the Databricks Lakehouse Platform.
- 2. Implement efficient incremental data processing to validate and enrich data driving business decisions and applications.
- 3. Leverage Databricks-native features for managing access to sensitive data and fulfilling right-to-be-forgotten requests.
- 4. Manage code promotion, task orchestration, and production job monitoring using Databricks tools.

Course Overview

Advanced Data Engineering with Databricks

Module 1: Incremental Processing with Spark Structured Streaming and Delta Lake

Module 2: Streaming Architecture Patterns with DLT

Module 3: Data Privacy and Governance

Module 4: Performance Optimization with Spark and Delta Lake

Module 5: CI/CD Workflows with DLT Pipelines

Module 6: Automate Production Jobs

Data Overview

Case Study

Health Tracker Device Company

Data Sources

Heart rate (bpm)

- BPM measurements collected by user devices
- Largest volume of data

Workouts

- When users start and complete series of exercises within our application
- Much lower volume of data
- Users complete workouts a few times per month to a few times per day

User information

- Mostly static
- New users processed after device activation and registration
- Includes confidential PII

Gym visitors

daily-stream (Kafka)

streams records for 3 topics: bpm, workout, user_info

field	type	description
key	BINARY	
value	BINARY	
topic	STRING	bpm, workout, user_info
partition	LONG	
offset	LONG	
timestamp	LONG	

bronze (source: Kafka)

key, value, topic, partition, offset, timestamp, date, week_part

field	type	description
key	BINARY	
value	BINARY	
topic	STRING	bpm, workout, user_info
partition	LONG	
offset	LONG	
timestamp	LONG	
date	DATE	
week_part	STRING	₩ -

gym_mac_logs (source: JSON)

first_timestamp, gym, last_timestamp, mac

field	type	description
first_timestamp	double	
gym	long	
last_timestamp	double	
mac	string	

registered_users (source: JSON)

device_id, mac_address, registration_timestamp, user_id

field	type	description
device_id	long	
mac_address	string	
registration_timestamp	double	
user_id	long	

user_lookup

Pseudonymization, hashing -- alt_id, device_id, mac_address, user_id

field	type	description
alt_id		sha2(concat(user_id,'BEANS'), 256)
device_id	LONG	Table Content
mac_address	STRING	Table Content
user_id	LONG	

databricks