PRVI MEĐUISPIT IZ ELEKTRONIKE 1

19.10.2009.

PRVA SKUPINA ZADATAKA

1. Za mrežu na slici 1 treba odrediti izlazni napon u stacionarnom stanju ako je na ulaz priključen napon na slici 2. Zadano je $R=10k\Omega$, C=1nF.

b)

0 1 2 t ms

Slika 1. Mreža za 1. zadatak

Slika 2. Ulazni napon

c)

2. Ako se u mreži iz prošlog zadatka kondenzator zamjeni sa novim iznosa C=100 μ F kako će onda izgledati izlazni napon?

d)

e)

- 3. Uzorak silicija je na sobnoj temperaturi, a Fermijeva energija se nalazi 0,2 eV iznad sredine zabranjenog pojasa. Ako se temperatura povisi za 100° C koji tip primjesa treba dodati da $E_F E_{Fi}$ ostane nepromijenjen? Ako se nakon dodavanja druge primjese temperatura dodatno povisi za 100° C, što se dogodi s Fermijevom energijom.
 - a) treba dodati donore, E_F se približi sredini zabranjenog pojasa;***
 - b) treba dodati donore, E_F se približi vodljivom pojasu;
 - c) treba dodati akceptore, E_F se ne mijenja;
 - d) treba dodati akceptore, E_F se približi sredini zabranjenog pojasa;
 - e) treba dodati akceptore, E_F se približi vodljivom pojasu;
- 4. Uzorak silicija je na sobnoj temperaturi, a Fermijeva energija se nalazi 0.2 eV iznad vrha valentnog pojasa. Koji nosioci dominiraju u driftnoj struji u opisanom uzorku? Što se dogodi sa specifičnom vodljivosti ako se uzorku dodatno dodaju jednake koncentracije donora i akceptora?
 - a) elektroni, specifična vodljivost se ne mijenja;
 - b) elektroni, specifična vodljivost poraste;
 - c) šupljine, specifična vodljivost se smanji.***
 - d) šupljine, specifična vodljivost poraste;
 - e) šupljine, specifična vodljivost se ne mijenja;
- 5. Poluvodič je dopiran donorima koncentracije N_D i akceptorima koncentracije N_A . Vrijedi da je $N_D > N_A$. Točna je sljedeća tvrdnja:
 - a) Poluvodič je p-tip i vrijedi $p=N_A-N_D$,
 - b) Poluvodič je intrinzičan i vrijedi $n=p=n_i$,
 - c) Poluvodič je *n*-tip i vrijedi $n-p=N_D-N_A$,***
 - d) Poluvodič je *n*-tip i vrijedi $n=N_D-N_A$,
 - e) Poluvodič je *n*-tip i vrijedi $p \cdot n = (N_D N_A) \cdot n_i$
- 6. Za koncentracije primjesa silicijskog pn-spoja s jednako širokim p i n stranama vrijedi N_D =10 N_A . Za taj pn spoj vrijedi (1 bod):
 - a) struja je dominantno šupljinska i osiromašeno područje se dominantno širi na p-stranu,
 - b)struja je dominantno elektronska i osiromašeno područje se dominantno širi na *n*-stranu,
 - c)struja je dominantno šupljinska i osiromašeno područje se dominantno širi na *n*-stranu,
 - d)struja je dominantno elektronska i osiromašeno područje se dominantno širi na p-stranu,***
 - e)ne može se utvrditi na temelju danih podataka
- 7. Ako na diodu na sobnoj temperaturi (U_I =25 mV) priključimo napon opisan izrazom u_D = U_D +5sin ω t, mV kroz diodu poteče struja i_D = I_D +1sin ω t, mA. Koliki je iznos struje I_D na sobnoj temperaturi. Što se događa sa strujom I_D ako temperatura poraste, a priključeni napon ostane nepromijenjen?
- a) I_D =0,2 mA, struja raste s temperaturom
- c) I_D =5 mA, struja pada s temperaturom
- e) I_D =2,5 mA, struja se ne mijenja s temperaturom
- b) I_D =0,2 mA, struja pada s temperaturom,
- d) I_D =5 mA, struja raste s temperaturom,***

- 8. Za silicijski pn-spoj priključen na vanjski napon U = 0.55 V s koncentracijama primjesa iznosa $N_A = 10^{15} \,\mathrm{cm}^{-3}$ i $N_D = 10^{17} \,\mathrm{cm}^{-3}$, te širokom p i uskom n stranom (za koje vrijedi da je širina n strane 40 puta manja od difuzijske duljine manjinskih nosilaca na p strani), uz pokretljivosti nosilaca $\mu_n = 2\mu_p$ T=300K, vrijedi (1 bod):
 - a) Difuzijska struja elektrona veća je 2 puta od difuzijske struje šupljina.
 - b) Difuzijska struja elektrona veća je 5 puta od difuzijske struje šupljina.***
 - c) Difuzijska struja elektrona jednaka je difuzijskoj struji šupljina.
 - d) Difuzijska struja elektrona manja je 2 puta od difuzijske struje šupljina.
 - e) Difuzijska struja elektrona manja je 5 puta od difuzijske struje šupljina
- 9. Za valnu duljinu λ na koju reagira fotodektorska dioda, te za polarizaciju diode pri detekciji, vrijedi:
- a) $\lambda \leq hc/E_G$ propusna polarizacija;
- b) $\lambda \leq hc/E_G$, zaporna polarizacija;*
- c) $\lambda \ge hc/E_G$, propusna polarizacija;

- d) $\lambda \ge hc/E_G$, zaporna polarizacija;
- e) $\lambda \leq hc/E_G$, polarizacija nije bitna.

DRUGA SKUPINA ZADATAKA

Zadatak 1. Na slici je zadana RC mreža i napon koji je priključen na njezin ulaz.

- **1.1.** Izračunati vrijednost izlaznog napona u t = 0ms (1 bod).
- **1.2.** Izračunati vrijednost izlaznog napona u t = 1 ms (1 bod).
- **1.3.** Izračunati vrijednost izlaznog napona u t = 2 ms (1 bod).
- **1.4.** Izračunati vrijednost izlaznog napona u t = 4 ms (1 bod).
- **1.5.** Izračunati vrijednost izlaznog napona u t = 5 ms (1 bod).

1.1. (a)
$$u_{iz}$$
 (0 ms) = 1,235 V

(b)
$$u_{iz}$$
 (0 ms) = -1,5 V

(b)
$$u_{iz}$$
 (0 IIIS) = -1,5 V

(c)
$$u_{iz}$$
 (0 ms) = 1,5 V *

(d)
$$u_{iz}$$
 (0 ms) = 0,265 V

(e)
$$u_{iz}$$
 (0 ms) = 1 V

1.2. (a)
$$u_{iz}$$
 (1 ms) = 0,252 V

(b)
$$u_{iz}$$
 (1 ms) = 0,36 mV

(c)
$$u_{iz}$$
 (1 ms) = -0,345 V

(d)
$$u_{iz}$$
 (1 ms) = 0,345 V*

(e)
$$u_{iz}$$
 (1 ms) = 1,345 V

(e)
$$u_{iz}$$
 (1 ms) = 1,345 V

1.3. (a)
$$u_{iz}$$
 (2 ms) = 1,381 V

(b)
$$u_{iz}$$
 (2 ms) = 0,965 V

(c)
$$u_{iz}$$
 (2 ms) = 0,849 V*

(d)
$$u_{iz}$$
 (2 ms) = 1,079 V

(e)
$$u_{iz}$$
 (2 ms) = 1,619 V

1.4. (a)
$$u_{iz}$$
 (4 ms) = -0.902 V*

(b)
$$u_{iz}$$
 (4 ms) = -0,575 V

(c)
$$u_{iz}$$
 (4 ms) = -0.018 V

(d)
$$u_{iz}$$
 (4 ms) = -0,994 V

(e)
$$u_{iz}$$
 (4 ms) = -0,148 V

1.5. (a)
$$u_{iz}$$
 (5 ms) = -0.208 V *

(b)
$$u_{iz}$$
 (5 ms) = -0,58 mV

(c)
$$u_{iz}$$
 (5 ms) = -0,132 V

(d)
$$u_{iz}$$
 (5 ms) = -4,1 mV

(e)
$$u_{iz}$$
 (5 ms) = -0,230 V

Zadatak 2. Silicij je dopiran donorima koncentracije 10¹⁶ cm⁻³. Pokretljivosti elektrona i šupljina na 300 K su 800 cm²/Vs i 300 cm²/Vs. Odrediti:

- **2.1**.Intrinzičnu koncentraciju slobodnih nosilaca ako je silicij doveden na temperaturu pri kojoj je širina zabranjenog pojasa 1,11 eV.
- 2.2. Specifičnu vodljivost na 300 K.
- **2.3.**iznos napona spojenog na silicijski otpornik načinjen od ovako dopiranog silicija oblika kvadra duljine L = 1 cm i površine presjeka S = 1 mm² ako struja koja teče kroz otpornik iznosi 76,9 mA (električno polje u poluvodiču je homogeno; T = 300 K).
- **2.4**.Koncentraciju slobodnih nosilaca u siliciju pri temperaturama T = 300 K i T = 400 K.
- **2.5**.Položaj Fermijeve energije pri temperaturi 300 K prije i poslije dodatnog dopiranja s akceptorima koncentracije 5·10¹⁶ cm⁻³.

2.1.	2.2.	2.3.
a) $n_i = 1.2 \cdot 10^{10} \text{ cm}^{-3}$	a) $\sigma = 1.76 \text{ S/cm}$	a) <i>U</i> =16 V
b) $n_i = 1.4 \cdot 10^{10} \text{ cm}^{-3}$	b) $\sigma = 1.28 \text{ S/m}$	b) <i>U</i> =0,06 V
c) $n_i = 5.1 \cdot 10^{10} \text{ cm}^{-3}$	c) $\sigma = 0.48 \text{ S/cm}$	c) <i>U</i> =0,6 V
d) $n_i = 9.7 \cdot 10^{11} \text{ cm}^{-3}$	d) $\sigma = 1.28 \text{ S/cm}^{***}$	d) <i>U</i> =0,16 V
e) $n_i = 2.2 \cdot 10^{11} \text{ cm}^{-3} ***$	e) $\sigma = 0.48 \text{ S/m}$	e) <i>U</i> =6 V***

2.4.

```
a) n(300\text{K}) = 10^{16} \text{ cm}^{-3}, p(300\text{K}) = 2.1 \cdot 10^4 \text{ cm}^{-3}; n(400\text{K}) = 10^{15} \text{ cm}^{-3}, p(400\text{K}) = 5.2 \cdot 10^{10} \text{ cm}^{-3}
b) n(300\text{K}) = 10^{16} \text{ cm}^{-3}, p(300\text{K}) = 2.1 \cdot 10^4 \text{ cm}^{-3}; n(400\text{K}) = 10^{16} \text{ cm}^{-3}, p(400\text{K}) = 1.3 \cdot 10^7 \text{ cm}^{-3}
c) n(300\text{K}) = 10^{15} \text{ cm}^{-3}, p(300\text{K}) = 2.1 \cdot 10^5 \text{ cm}^{-3}; n(400\text{K}) = 10^{15} \text{ cm}^{-3}, p(400\text{K}) = 5.2 \cdot 10^{10} \text{ cm}^{-3}
d) n(300\text{K}) = 10^{16} \text{ cm}^{-3}, p(300\text{K}) = 2.1 \cdot 10^4 \text{ cm}^{-3}; n(400\text{K}) = 10^{16} \text{ cm}^{-3}, p(400\text{K}) = 5.2 \cdot 10^9 \text{ cm}^{-3} ***
e) n(300\text{K}) = 10^{16} \text{ cm}^{-3}, p(300\text{K}) = 1.1 \cdot 10^3 \text{ cm}^{-3}; n(400\text{K}) = 10^{16} \text{ cm}^{-3}, p(400\text{K}) = 2.8 \cdot 10^8 \text{ cm}^{-3}
```

2.5

- a) prije dodatnog dopiranja: $E_c 0.139$ eV; poslije dodatnog dopiranja: $E_v + 0.103$ eV
- b) prije dodatnog dopiranja: $E_v + 0.212$ eV; poslije dodatnog dopiranja: $E_c 0.176$ eV
- c) prije dodatnog dopiranja: $E_v + 0.177$ eV; poslije dodatnog dopiranja: $E_c 0.141$ eV
- d) prije dodatnog dopiranja: $E_v + 0.139$ eV; poslije dodatnog dopiranja: $E_c 0.103$ eV
- e) prije dodatnog dopiranja: E_c 0,212 eV; poslije dodatnog dopiranja: E_v + 0,176 eV ***

Zadatak 3. Silicijska pn dioda na p strani ima koncentraciju akceptora N_A =10¹⁷ cm⁻³. Pokretljivost elektrona na p strani iznosi 900 cm²/Vs, a šupljina na n strani 350 cm²/Vs. Vrijeme života manjinskih nosilaca na p i n strani je jednako i iznosi 1 μs. Širine p i n strana su puno veće od difuzijskih duljina. Površina presjeka pn spoja iznosi 1 mm², a temperatura T=300 K.

- **3.1**. Ako je koncentracija donora na n strani jednaka koncentraciji akceptora na p strani i iznosi $N_D=10^{17}$ cm⁻³ kako se odnose elektronska i šupljinska komponenta struje zasićenja I_S ?
- **3.2.** Koliko treba iznositi koncentracija donora na n strani N_D da bi elektronska i šupljinska komponenta struje zasićenja I_S bile jednake?
- **3.3**. Izračunati struju kroz diodu ako je na njoj priključen napon U=0,7 V. Koncentracija donora N_D je kao pod b).
- **3.4**. Koliki je dinamički otpor diode za napon U=0,7 V? Koncentracije donora N_D na n strani je jednaka koncentraciji akceptora N_A na p strani (N_D = N_A =10¹⁷ cm⁻³ kao u 3.1. dijelu zadatka).
- **3.5**. Izračunati koncentraciju manjinskih elektrona na granici osiromašenog sloja i kvazineutralnog područja p strane ako je priključeni napon na diodi U=0,7 V.

3.1.	3.2.	3.3.	3.4.	3.5.
a) 1,604*	a) $N_D = 0.388 \cdot 10^{16} \text{ cm}^{-3}$	a) $I_D = 1250 \text{ mA}$	a) r_d =0,5 Ω	a) $n_{p0}=1,196\cdot10^{15} \text{ cm}^{-3}*$
b) 4,123	b) $N_D = 2,425 \cdot 10^{10} \text{ cm}^{-3}$	b) $I_D = 10 \text{ mA}$	b) r_d =1,72m Ω *	b) n_{p0} =2,102·10 ³ cm ⁻³
c) 17,00	c) $N_D = 6.24 \cdot 10^{16} \text{ cm}^{-3} *$	c) I_D = 1,85 nA	c) r_d =10,1 Ω	c) n_{p0} =2,102·10 ⁻³ cm ⁻³
d) N_A/N_D	d) $N_D = 0.6236 \cdot 10^{16} \text{ cm}^{-3}$	d) I_D = 18,5 mA*	d) r_d =1,4 Ω	d) $n_{p0}=1\cdot10^{15} \text{ cm}^{-3}$
e) 2,571	e) $N_D = 1.2 \cdot 10^{15} \text{ cm}^{-3}$	e) $I_D = 200 \mu A$	e) <i>r_d</i> =beskonačan	e) $n_{p0} = n_{0p}$