

Contents

- 1 Definición del problema
- Modelo Two-Tower
- 3 Implementación
- 4 Resultados y conclusiones

Definición del problema

La industria cinematográfica ofrece una gran cantidad de opciones

Cómo escoger la mejor?

Definición del problema

Las nuevas herramientas de Machine Learning ofrecen una solucion

Modelo Two-Tower

X

Una red neuronal ("torre") para cada entidad

Una representación (embedding) para cada entidad

Un puntaje que nos permite hacer predicciones

Modelo Two-Tower

×

Entrenamos el modelo para escoger un subconjunto de candidatos de todas las películas

Modelo Two-Tower

Embeddings

$$u: \mathcal{X} \times \mathbb{R}^d \mapsto \mathbb{R}^k, v: \overline{\mathcal{Y}} \times \mathbb{R}^d \mapsto \mathbb{R}^k$$

Puntuación

$$s(x, y; \theta) = \langle u(x, \theta), v(y, \theta) \rangle$$

Base de datos de 100 mil datos

Non-commercial, personalized movie recommendations.

sign up now

or <u>sign in</u>

recommendations

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.

Base de datos de 100 mil datos

$$dim(\mathbb{R}^k) = 32$$

X

30208 parámetros para el embedding de usuarios

53280 parámetros para el embedding de peliculas

Base de datos de 100 mil datos

$$\mathcal{L}(u, v) = -\log(\sigma(\langle u, v \rangle)) + \sum_{v' \notin S} \log(1 - \sigma(\langle u, v' \rangle))$$

- ullet u es el embedding del usuario.
- \bullet v es el embedding de la película que el usuario ha visto.
- v' representa los embeddings de las películas que el usuario no ha visto (negativas).
- \bullet $\langle u, v \rangle$ denota el producto punto entre los embeddings del usuario y de la película.
- σ es la función sigmoide.
- \blacksquare S es el conjunto de películas que el usuario ha calificado positivamente.

La tarea es maximizar recuperación top k

Resultados y conclusiones

Resultados

Figura 3: Recuperación top-1
0.0412
0.0411
0.0408
0.0406
0.0404
0.0402
0.04
0.0398
-1 0 1 2 3 4 5 6 7 8 9 10

Figura 4: Recuperación top-5

A mayor k, mayor probabilidad de encontrar la película

Algunas posibles mejoras

Transfer Learning

Conclusiones

- El modelo Two-Tower es útil para generar una lista de posibles películas a recomendar
- Es robusto ante grandes conjuntos de datos
- Se puede extender su funcionalidad con mas tareas
- Se puede complementar con modelos de clasificación

Gracias!