École Supérieure Privée d'Ingénierie et de Technologies

Série d'exercices 5 : MATHÉMATIQUES DE BASE 3

Niveau : 2^{ème} année Année universitaire : 2021-2022

Exercice 1 1) Etudier les limites en (0,0) des fonctions suivantes :

a)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$

b)
$$g(x,y) = \frac{xy^2}{x^2 + y^4}$$

a)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
 b) $g(x,y) = \frac{xy^2}{x^2 + y^4}$ c) $h(x,y) = \frac{\sin(xy)}{\sqrt{x^2 + y^2}}$

2) Soit
$$f(x,y) = \begin{cases} y^2 sin(\frac{x}{y}) & si \quad y \neq 0 \\ 0 & si \quad y = 0 \end{cases}$$

Etudier la continuité de la fonction f.

Exercice 2 On considère la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = (x^2 + y^2) \exp(-x)$$

On admet que f est de classe C^2 sur \mathbb{R}^2 .

- 1. Trouver les extremums locaux de f sur \mathbb{R}^2 .
- 2. Montrer que f possède un minimum global sur \mathbb{R}^2 et quelle ne possède pas de maximum global sur \mathbb{R}^2 .

On considère la fonction f définie sur \mathbb{R}^2 par : Exercice 3

$$f(x,y) = -x^2y + \frac{1}{2}y^2 + y$$

- 1. Calculer les points critiques de f et donner leurs natures locales.
- 2. Préciser si les extremums locaux trouvés dans la question précédante sont globaux ou non.
- 3. Soit la fonction g définie sur \mathbb{R}^2 par $g(x,y)=x^2+y^2$. On cherche maintenant à optimiser f sous la contrainte g(x,y) = 1, en utilisant la méthode de Lagrange.
- a) Chercher les points critiques de f sous la contrainte g(x,y)=1.
- b) Donner les extremums de f sous la contrainte q(x,y) = 1 et préciser leurs natures.

Exercice 4 Soit la fonction f définie par :

$$f(x,y) = \frac{1}{x} + \frac{1}{y}$$

- 1. Chercher les points critiques de f sous la contrainte g(x,y) = 9 en utilisant la méthode de substitution.
- 2. Chercher les points critiques de f sous la contrainte g(x,y) = 9 en utilisant la méthode de Lagrange. avec,

$$g(x,y) = xy$$

Exercice 5 On considère la fonction f définie par :

$$\frac{x^2y^2}{x^2+y^2}$$

- $1.\ Déterminer\ le\ domaine\ de\ définition\ de\ f.$
- 2. Calculer les dérivées partielles de f.
- 3. Déterminer les points critiques de f sur

$$E = \{(x, y) \in \mathbb{R}^2, \text{ tel que } x^2 + y^2 = 2\}$$

et préciser leurs natures.