The Interaction of Light and Matter

Outline

- (1) Motivation: Why spectral lines?
 - the Birth of Spectroscopy
 - Kirchoff's Laws
- (2) Photons the particle nature of light
 - Blackbody radiation (Planck introduces quantum of light)
 - Photoelectric Effect
 - Compton Scattering
- (3) The Bohr Model of the Atom
 - a theory to describe spectral lines,
- (4) Quantum Mechanics and the Wave-Particle Duality (SKIP on ExamI)
 - De Broglie wavelength
 - Schrodinger's probability waves.

Spectroscopy - history

- Trogg (50 million BC) rainbow
- Newton (1642-1727) decomposes light into spectrum and back again
- W. Herschel (1800) discovers infrared
- J. W. Ritter (1801) discovers ultraviolet
- W. Wollaston (1802) discovers absorption lines in solar spectrum

Spectroscopy - history

- J. Herschel, Wheatstone, Alter, Talbot and Angstrom studied spectra of terrestrial things (flames, arcs and sparks) ~1810
- Joseph Fraunhofer
 - Cataloged ~475 dark lines of the solar spectrum by 1814
 - Identifies sodium in the Sun from flame spectra in the lab!
 - Looks at other stars (connects telescope to spectroscope)
- Foucault (1848) sees absorption lines in sodium flame with bright arc behind it.

There was no accepted explanation for the absorption lines. *New physics* needed!

Kirchhoff's laws (1859):

Kirchhoff worked with Bunsen on flame spectra

Developed a prism spectroscope

- Hot solid or dense gas, \rightarrow continuous spectrum (eg Blackbody)
- Cool diffuse gas in front of a blackbody → absorption lines

• Hot diffuse gas → emission lines

Spectroscope for typical atomic physics lab

Neon Tube

High Voltage Supply

Diffraction Grating

 $d \sin \theta = n\lambda$

Eyepiece

Doppler shift (see also Ch. 4)

- Spectral lines allow for the measurement of radial velocities
- At low velocities, $v_r << c$
 - Classical Doppler effect
 - Radial velocity, v_r
 - Heliocentric correction for Earth's motion, up to 29.8 km/s, depending on direction.
- Example: H_{α} is 6562.80 Å
 - Vega is measured to be 6562.50 Å
 - Coupled with the proper motion
 - Can determine total velocity

$$\frac{\lambda_{\text{obs}} - \lambda_{\text{rest}}}{\lambda_{\text{rst}}} = \frac{\Delta \lambda}{\lambda_{\text{rest}}} = \frac{v_{\text{r}}}{c}$$

$$\Delta \lambda = \frac{v_{\text{r}}}{c} \lambda_{\text{rest}}$$

$$v_r = c \frac{\Delta \lambda}{\lambda_{rest}} = -14 \frac{km}{sec}$$

$$v_{\theta} = r\mu = 13 \frac{km}{s}$$

$$\mathbf{v} = \sqrt{\mathbf{v}_{\mathrm{r}}^2 + \mathbf{v}_{\theta}^2} = \mathbf{19} \frac{\mathrm{km}}{\mathrm{s}}$$

Doppler shift

• Since most galaxies are moving away, astronomers call the Doppler shift a *redshift*, z.

$$z = \frac{\Delta \lambda}{\lambda_{rest}}$$

- At high velocities, $v_r <\sim c$
 - Relativistic redshift parameter (Ch. 4):

$$z = \sqrt{\frac{1 + v_r/c}{1 - v_r/c}} - 1$$

- Example: Prob. 4.8.

(should get: $v_r = 0.9337c$)

Particle/Wave Duality - Part 1

PART 1

- Electrons as discrete Particles
 - Measurement of e/m (CRT) and e (oil-drop expt.)
- Photons as discrete Particles
 - Blackbody Radiation: Temp. Relations & Spectral Distribution
 - Photoelectric Effect: Photon "kicks out" Electron
 - Compton Effect: Photon "scatters" off Electron

PART 2

- Wave Behavior: Diffraction and Interference
- Photons as Waves: λ = hc / E
 - X-ray Diffraction (Bragg's Law)
- <u>Electrons</u> as <u>Waves</u>: λ = h / p
 - Low-Energy Electron Diffraction (LEED)

Photons: Quantized Energy Particle

Light comes in discrete energy "packets" called photons

$$E = hv = \frac{hc}{\lambda}$$

From Relativity:
$$E^2 = (pc)^2 + (mc^2)^2$$
 Rest mass

For a Photon (m = 0):
$$E^2 =$$

For a Photon (m = 0):
$$E^2 = (pc)^2 + 0 \Rightarrow E = pc$$

$$p = \frac{E}{c} = \frac{hc}{\lambda c} = \frac{h}{\lambda}$$

Blackbody Radiation: First clues to quantization

Recall Wien's Law:

$$\lambda_{\text{max}} = \frac{0.029}{T} \text{cm} \cdot \text{K}$$

 $F = \sigma T^4$

and the Stefan-Boltzmann Law:

Spectral
Distribution
depends only
on Temperature

Blackbody Radiation: Rayleigh-Jeans Equation

Classical physics led to a prediction for the spectrum of cavity (blackbody) radiation whereby $B_{\lambda}(T) = \frac{2c\mathbf{k}T}{\lambda^4}$

This was derived by assuming each mode of oscillation in the cavity

would have an energy $E_{avg} = kT$ ($k = 1.38 \times 10^{-23}$ J/K is Boltzmann's constant)

The number of modes per wavelength interval increased as lambda decreased leading to excess energy at small λ s.

Rayleigh-Jeans Equation 1.4 1.2 -5000 K classical theory (5000 K)1.0 ntensity (arb.) 8.0 0.6 4000 K 0.4 -0.2 -3000 K 0 500 2500 1000 1500 2000 3000nm wavelength (nm)

UV Catastrophe! (B explodes for small λ)

Spectral Blackbody: Planck's Law

- Planck's Law was found empirically (trial and error!)
- Quantize the E&M radiation so that the minimum energy for light at a given wavelength is:

$$E_v = hv = hc/\lambda$$

where h = Planck's Constant = $6.266 \times 10^{-27} \text{ erg} \cdot \text{s}$.

Then
$$E_v = nhv, n = 0, 1, 2, 3$$

can be used in replacing the classical kT expression for the average energy in a mode.

Now the entire hot object may not have enough energy to emit one photon of light at very small wavelengths, so n=0, and the UV catastrophe can be avoided.

Photons: Electromagnetic Spectrum

Photoelectric Effect: "Particle Behavior" of Photon

- Shows quantum nature of light (Theory by Einstein & Expt. by Millikan).
- Photons hit metal cathode and instantaneously eject electrons (requires minimum energy = work function).
- Electrons travel from cathode to anode against $\underline{retarding\ voltage}\ V_R$

- Electrons collected as "photoelectric" current at anode.
- Photocurrent becomes zero when retarding voltage V_R equals the stopping voltage V_{stop} , i.e. $eV_{stop} = K_e$

Photoelectric Effect - equation

- PHOTON IN ⇒ ELECTRON OUT
 - e- kinetic energy = Total photon energy — e- ejection energy

$$K_{max} = hv - \varphi$$

- where hv = photon energy, ϕ = work function, and K_{max} = kinetic energy
- $K_{max} = eV_{stop} = stopping energy$
- Special Case: No kinetic energy (V_o = 0)
 - Minimum frequency v to eject electron

$$hv_{min} = \varphi$$

Photoelectric Effect

 In order to make electrons reach the collector plate, the light has to be "blue enough"; the intensity doesn't matter if light is red!

Photoelectric Effect: V_{stop} vs. Frequency

Photoelectric Effect Problem

If the work function of a metal is 2.0 eV,

- a) find the maximum wavelength $\lambda_{_{m}}$ capable of causing the photoelectric effect, and,
- b) find the stopping potential if $\lambda = \lambda_m/2$

Compton Scattering: "Particle-like" Behavior of Photon

Concept: Photon scatters off electron losing energy and momentum to the electron. The λ_f of scattered photon depends on $\theta \square$

- Conservation of relativistic momentum and Energy!
- •No mass for the photon but it has momentum!!!

Compton Scattering: Equation

- Limiting Values
 - No scattering: $\theta = 0^{\circ} \rightarrow \cos 0^{\circ} = 1 \rightarrow \Delta \lambda = 0$
 - "Bounce Back": $\theta = 180^{\circ} \rightarrow \cos 180^{\circ} = -1 \rightarrow \Delta \lambda = 2\lambda_{c}$
- Difficult to observe unless λ is small (i.e. $\Delta \lambda / \lambda > 0.01$)

Atomic Spectra

- 1885 Balmer observed Hydrogen Spectrum
 - Found empirical formula for discrete wavelengths
 - Later generalized by Rydberg for simple ionized atoms

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right) with 2 < n$$

Atomic Spectra: Rydberg Formula

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right) with m < n$$

- Gives λ for any lower level m and upper level n of Hydrogren.
- Rydberg constant $R_H \sim 1.097 \times 10^7 \text{ m}^{-1}$
- m = 1 (Lyman), 2 (Balmer), 3 (Paschen)
- Example for n = 2 to m = 1 transition:

$$\frac{1}{\lambda} = R_{H} \left(\frac{1}{1^{2}} - \frac{1}{2^{2}} \right) = \frac{3}{4} \left(1.097 \times 10^{7} \,\mathrm{m}^{-1} \right)$$

$$\Rightarrow \lambda = 121.6$$
 nm Ultraviolet

Atomic Spectra: Hydrogen Energy Levels

Bohr Model

- 1913 Bohr proposed quantized model of the H atom to predict the observed spectrum.
- Problem: Classical model of the electron "orbiting" nucleus is unstable. Why unstable?
 - Electron experiences (centripetal) acceleration.
 - Accelerated electron emits radiation.
 - Radiation leads to energy loss.
 - Electron quickly "crashes" into nucleus.

Bohr Model: Quantization

- Solution: Bohr proposed two "quantum" postulates
 - Electrons exist in stationary orbits (no radiation) with <u>quantized</u> <u>angular momentum</u>.

$$L_n = mvr = n \hbar \qquad \left(\hbar = \frac{h}{2\pi} = 6.58X10^{-16} \text{ eV} \cdot \text{s} \right)$$

- Atom radiates with <u>quantized frequency v (or energy E)</u> only when the electron makes a transition between two stationary states.

$$hv = \frac{hc}{\lambda} = E_i - E_f$$

Planetary Mechanics Applied to the H Atom

Consider the attractive electrostatic force and circular motion

$$\vec{F} = \frac{q_1 q_2}{r^2} \hat{r} = \mu \frac{v^2}{r} \hat{r}$$

Note: in cgs, $e = 4.803x10^{-10}$ esu

$$\frac{q_1 q_2}{r^2} = -\mu \frac{v^2}{r}$$

$$\frac{-e^2}{r^2} = -\mu \frac{v^2}{r}$$

$$\frac{1}{2} \mu v^2 = \frac{1}{2} \frac{e^2}{r} = K$$

$$U = -2K = -\frac{e^2}{r}$$

Kinetic energy Potential energy

Planetary Mechanics Applied to the H Atom

Introduce Bohr's quantized angular momentum

$$L = \mu vr = n \hbar$$
 (wrong)

$$K = \frac{1}{2} \frac{e^2}{r} = \frac{1}{2} \mu v^2 = \frac{1}{2} \frac{(\mu v r)^2}{\mu r^2} = \frac{1}{2} \frac{(n \hbar)^2}{\mu r^2}$$

• Solving for *r*

$$r_n = \frac{\hbar^2}{\mu e^2} n^2 = a_0 n^2$$
 a_0 is the Bohr radius

• Get the Total Energy in terms of *n*. (Recall $E_{tot} = \langle U \rangle / 2$)

$$E_n = -\frac{1}{2} \frac{e^2}{r} = -\frac{\mu e^4}{2 \hbar^2} \frac{1}{n^2} = \frac{-13.6 \text{ eV}}{n^2} = \frac{-E_0}{n^2}$$

• Principle quantum number, n = 1, 2, 3, ...

Bohr Model: Transitions

Transitions predicted by Bohr yield general Rydberg formula

Bohr Model Problem: Unknown Transition

If the wavelength of a transition in the Balmer series for a He⁺ atom is 121 nm, then find the corresponding transition, i.e. initial and final n values.

$$\frac{1}{\lambda} = RZ^{2} \begin{bmatrix} \frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \end{bmatrix} = R(2)^{2} \begin{bmatrix} \frac{1}{n_{i}^{2}} - \frac{1}{n_{i}^{2}} \end{bmatrix}$$

where Z = 2 for He and $n_f = 2$ for Balmer

$$\frac{1}{4R\lambda} = \begin{bmatrix} \frac{1}{4} - \frac{1}{n_i^2} \end{bmatrix}$$

$$n_i = \begin{bmatrix} \frac{1}{4} - \frac{1}{4R\lambda} \end{bmatrix}^{-1/2} = \begin{bmatrix} \frac{1}{4} - \frac{1}{4(1.1 \times 10^7 \, m^{-1})(121 \times 10^{-9} \, m)} \end{bmatrix}^{-1/2} = \underline{4}$$

Bohr Model Problem: Ionization Energy

Suppose that a He atom (Z=2) in its ground state (n = 1) absorbs a photon whose wavelength is $\lambda = 41.3$ nm. Will the atom be ionized?

Find the energy of the incoming photon and compare it to the ground state ionization energy of helium, or E_0 from n=1 to ∞ .

$$E = \frac{hc}{\lambda} = \frac{1240 \ eV \ nm}{41.3 \ nm} = \frac{30 \ eV}{41.3 \ nm}$$

$$E_0(He) = Z^2 \times E_0(H) = (2^2)(13.6 \ eV) = 54.4 \ eV$$

The photon energy (30 eV) is less than the ionization energy (54 eV), so the electron will NOT be ionized.

Bohr Model Problem: Series Limit (book)

Find the shortest wavelength that can be emitted by the Li + + ion.

The shortest λ (or highest energy) transition occurs for the highest initial state $(n_i = \infty)$ to the lowest final state $(n_f = 1)$.

$$\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right]$$

where Z = 3 for Li, $n_i = \infty$, and $n_f = 1$ for shortest λ

$$\frac{1}{\lambda} = (1.1 \times 10^7 \, m^{-1})(3)^2 \left[\frac{1}{(1)^2} - \frac{1}{(\infty)^2} \right] = 10.1 \, nm$$

Particle/Wave Duality - Part 2

PART 1

Electrons as discrete **Particles**

- Measurement of e/m (CRT) and e (oil-drop expt.)
- **Photons** as discrete **Particles**
 - Blackbody Radiation: Temp. Relations & Spectral Distribution
 - Photoelectric Effect: Photon "kicks out" Electron
 - Compton Effect: Photon "scatters" off Electron

PART 2

- Wave Behavior: Diffraction and Interference
- Photons as Waves: λ = hc / E
 - X-ray Diffraction (Bragg's Law)
- <u>Electrons</u> as <u>Waves</u>: λ = h / p
 - Low-Energy Electron Diffraction (LEED)

Wave Property: Single-Slit Diffraction

Minima: $n\lambda = a \sin \theta$

Diffraction Pattern of Electron Waves

Electrons: Wave-like Behavior

• Every particle has a wavelength given by:

$$\lambda = \frac{h}{p}$$

- Question: Why don't we observe effects of particle waves (i.e., diffraction and interference) in day-to-day life?
- <u>Answer</u>: Wavelengths of most macroscopic objects are <u>too small</u> to interact with slits, BUT atomic-sized objects DO behave like waves!

Macroscopic – ping pong ball

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \,\text{J} \cdot \text{s}}{(2 \times 10^{-3} \,\text{kg})(5 \,\text{m/s})} = 6.6 \times 10^{-32} \,\text{m} \, (\text{immeasurably small!})$$

Microscopic – "slow electron" (1% speed of light)

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \,\text{J} \cdot \text{s}}{(9.1 \times 10^{-31} \,\text{kg})(10^6 \,\text{m/s})} = 7.3 \times 10^{-10} \,\text{m(atomic dimension)}$$

Electron Diffraction: Wave-like Behavior

- 1927 Davisson and Germer studied the <u>diffraction</u> of an electron beam from a nickel crystal <u>surface</u> and observed discrete spots (maxima).
- Modern day technique now: <u>Low Energy Electron Diffraction</u> (LEED).

Electron Diffraction: LEED Equation

Concept: Use Bragg's Law for X-ray scattering and then substitute appropriate angles, where λ is now the <u>electron</u> wavelength.

$$n\lambda = 2 \underbrace{d\sin \theta}_{\text{Dsin}\alpha \cos \alpha} = 2 \underbrace{D\sin \alpha \cos \alpha}_{\text{2sin}2\alpha \text{ by trig}} = 0 \underbrace{\sin 2\alpha}_{\text{2sin}2\alpha \text{ by trig}}$$

$$n\lambda = D \sin 2\alpha = D \sin \varphi$$

Wave/Particle Duality

- The particle wavefunction, ψ , is the "probability amplitude" (see figure "Z"), a complex number.
- Probability density = $|\Psi|^2$ gives the probability of where we might find the particle. (this must be positive)
- Can have destructive and constructive interference

Wave/Particle Duality

 This picture shows some of the possible electron probability densities for different quantum states of the H atom.

Electron "clouds"

Probability "clouds"

kind of the opposite of the "Plum Pudding" model

