Analyse de la variance à trois facteurs

Effets combinés de l'origine géographique, du traitement thermique et de la concentration en CO₂ sur l'absorption chez les plantes

Réalisé et présenté par :

DAHOUI Pinel Baudelaire

CIPMA CHAIRE-UNESCO

Master Recherche Statistiques Appliquées aux vivants

Chargé du cours: Dr Nicodème ATCHADE

17 Avril 2025

Plan de la présentation

- Introduction
- 2 Méthodologie
- Résultats
- 4 Conclusion

Contexte scientifique

Importance de l'étude

- La fixation du CO₂ est un processus clé de la photosynthèse
- Comprendre les facteurs d'influence aide à prédire les réponses aux changements climatiques
- Données CO₂ : mesures standardisées pour la recherche

Variables étudiées

- Origine géographique :
 - Québec (froid)
 - Mississippi (chaud)

- Traitement thermique :
 - Nonchilled (25°C)
 - Chilled (7°C)
- Concentration CO₂:
 - 7 niveaux (95-1000 mL/L)

Problématique et objectifs

Questions de recherche

- Comment l'origine géographique influence-t-elle la réponse au froid?
- La concentration en CO₂ module-t-elle l'effet du stress thermique?
- Existe-t-il des interactions complexes entre ces trois facteurs?

Hypothèses

- Les plantes du Québec résistent mieux au froid
- L'effet du froid est atténué à haute concentration de CO₂
- Interaction triple significative entre les facteurs

Modèle statistique

$$\begin{array}{c}
\mu & \gamma_{k} (\beta \gamma)_{jk} \\
 & \downarrow \\
 & \alpha_{i} (\alpha \beta)_{ij} \rightarrow Y_{ijkl} \leftarrow \varepsilon_{ijkl}
\end{array}$$

$$Y_{ijkl} = \mu + \alpha_{i} + \beta_{j} + \gamma_{k} + (\alpha \beta)_{ij} + (\alpha \gamma)_{ik} + (\beta \gamma)_{jk} + (\alpha \beta \gamma)_{ijk} + \varepsilon_{ijkl}$$

$$\beta_{j} (\alpha \gamma)_{ik} (\alpha \beta \gamma)_{ijk}$$

- ullet μ : moyenne générale
- α_i : effet principal du Type (i=1,2)
- β_j : effet principal du Treatment (j=1,2)
- γ_k : effet principal de la concentration (k=1..7)
- Termes d'interaction : 3 doubles + 1 triple

Plan expérimental

Structure factorielle

- Plan complet équilibré
- $2 \times 2 \times 7 = 28$ combinaisons
- 3 répétitions par combinaison
- N = 84 observations

Variables

- VD : uptake $(\mu mol/m^2s)$
- VI : Type, Treatment, conc

Exemple de combinaisons

Туре	Treatment	conc
Québec Québec Mississippi	nonchilled chilled nonchilled	95 mL/L 250 mL/L 500 mL/L

Analyse

- ANOVA à trois facteurs
- Comparaisons post-hoc
- Visualisations interactives

Vérification des hypothèses

Homogénéité des variances

- Test de Levene
- p = 1 > 0.05
- Hypothèse validée

Normalité des résidus

- Test de Shapiro-Wilk
- W = 0.947, p = 0.0017
- Légère déviation

ANOVA robuste à cette légère non-normalité grâce à :

- Effectifs modérés
- Plan équilibré

Analyse de variance

Source	ddl	SC	CM	F	р
Type (A)	1	3366	3366	399.76	< 0.001
Treatment (B)	1	988	988	117.37	< 0.001
conc (C)	6	4069	678	80.55	< 0.001
$A \times B$	1	226	226	26.81	< 0.001
$A{ imes}C$	6	374	62	7.41	< 0.001
$B{ imes}C$	6	101	17	2.00	0.081
$A \times B \times C$	6	112	19	2.22	0.055
Résidus	56	471	8		

- Effets principaux tous significatifs (p < 0.001)
- Interactions $A \times B$ et $A \times C$ très significatives
- \bullet Interaction triple marginalement significative (p = 0.055)

Effets principaux

Origine géographique F = 399.76, p < 0.001 $\Delta = 10.6 \ \mu mol/m^2 s$

Traitement thermique F = 117.37, p < 0.001
$$\Delta$$
 = 6.9 μ mol/m²s

Concentration CO₂ F = 80.55, p < 0.001 Relation dose-réponse

Interactions significatives

Type × Treatment F = 26.81, p < 0.001 Effet du froid plus marqué au Mississippi

 $\label{eq:first-position} \begin{aligned} & \text{Type} \, \times \, \text{Concentration} \\ & \text{F} = 7.41, \, \text{p} < 0.001 \\ & \text{Plantes du Québec profitent plus} \\ & \text{du } CO_2 \end{aligned}$

Interaction triple

- Pattern complexe (p = 0.055)
- Québec : Effet modéré du froid, surtout aux concentrations moyennes
- Mississippi : Fort effet du froid à toutes concentrations
- Nonchilled : Performance similaire aux hautes concentrations

Comparaisons post-hoc

Origine géographique

Δ	р
+9.4	< 0.001
+15.9	< 0.001
	+9.4

Traitement thermique

Région	Δ	р
Québec	+3.5	0.002
Mississippi	+10.2	<0.001

Interprétation

- Avantage Québec dans les deux conditions
- Écart amplifié sous stress froid

Concentration

- Différences significatives entre 95-250 vs 350-1000 mL/L
- Plateau à partir de 350 mL/L

Synthèse des résultats

Principaux résultats

- Origine géographique : effet majeur (F=399.8)
- Traitement : réduction de 22% sous froid
- CO₂ : réponse saturante à >350 mL/L
- Interactions :
 - Origine × Traitement
 - Origine × Concentration
 - Interaction triple marginale

Implications

- Adaptation des plantes du Québec au froid
- Sensibilité accrue du Mississippi
- Seuil critique à 350 mL/L

Validation des hypothèses

- Hypothèses 1 et 2 confirmées
- Hypothèse 3 partiellement validée (p=0.055)

Perspectives

Limitations

- Données de laboratoire
- Une seule espèce végétale
- Concentrations discrètes

Pistes futures

- Étendre à d'autres espèces
- Mesures physiologiques complémentaires
- Études in situ
- Modélisation prédictive

Merci pour votre attention!

Questions et discussions

Annexes techniques

Code R utilisé

```
Vérification des hypothèses library(car)
leveneTest(uptake Type*Treatment*conc, data = CO2)
shapiro.test(residuals(model))
Analyses post-hoc library(emmeans) emmeans(model, pairwise
Type | Treatment) emmeans(model, pairwise Type | conc)
emmip(model, Treatment conc | Type, CIs = TRUE)
```

Références bibliographiques

- Lenth, R. V. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1.
- R Core Team (2021). *R* : *A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria.
- Cotton, P. A. (2003). *Analyse de variance à plusieurs facteurs*. Presses Universitaires de France.