# Engineering Analytics (ESE1007) Seminar 4

Normalization



### **Normalization Transformation**

- In statistics and applications of statistics, normalization can have a range of meanings.
- In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging.
- In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.

### **Normalization Transformation**

• Standardization transforms data to have a mean of zero and a standard deviation of 1. This standardization is called a z-score, and data points can be standardized with the following formula:

$$z_i = \frac{x_i - \bar{x}}{s}$$

• **Rescaling data** to have values between 0 and 1. This is usually called feature scaling. One possible formula to achieve this is:

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

### **How to Normalize Data?**



https://www.youtube.com/watch?v=7DQMAXaiXmk&gl=SG&hl=en-GB



### **Example 1: Fictional Sale of an Ice-cream Shop**

| Day | Sale | Temp |
|-----|------|------|
| 1   | 1000 | 26   |
| 2   | 1200 | 28   |
| 3   | 1800 | 30   |
| 4   | 2500 | 31   |
| 5   | 1700 | 28   |
| 6   | 1700 | 27   |
| 7   | 1050 | 25   |
| 8   | 1100 | 27   |
| 9   | 1700 | 31   |
| 10  | 2600 | 32   |
| 11  | 1500 | 27   |
| 12  | 1800 | 26   |
| 13  | 1000 | 26   |
| 14  | 1200 | 28   |
| 15  | 1800 | 30   |
| 16  | 2500 | 31   |
| 17  | 1700 | 28   |



Want to find answer to the question:

- What is the relationship of sale vs temperature?
- Due to difference in magnitude, temperature appears to be a straight line



# Rescaling the data



$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Rescale the sale and the temperature data by the scaling formulae to scale both data to 0 to 1.

# Rescaling the data

| Day | Sale | Temp | N Sale  | N Temp   |
|-----|------|------|---------|----------|
| 1   |      | 26   |         | 0.142857 |
| 2   | 1200 | 28   | 0.125   | 0.428571 |
| 3   | 1800 | 30   | 0.5     | 0.714286 |
| 4   | 2500 | 31   | 0.9375  | 0.857143 |
| 5   | 1700 | 28   | 0.4375  | 0.428571 |
| 6   | 1700 | 27   | 0.4375  | 0.285714 |
|     |      |      |         |          |
| 7   | 1050 | 25   | 0.03125 | 0        |
| 8   | 1100 | 27   | 0.0625  | 0.285714 |
| 9   | 1700 | 31   | 0.4375  | 0.857143 |
| 10  | 2600 | 32   | 1       | 1        |
| 11  | 1500 | 27   | 0.3125  | 0.285714 |
| 12  | 1800 | 26   | 0.5     | 0.142857 |
| 13  | 1000 | 26   | 0       | 0.142857 |
| 14  | 1200 | 28   | 0.125   | 0.428571 |
| 15  | 1800 | 30   | 0.5     | 0.714286 |
| 16  | 2500 | 31   | 0.9375  | 0.857143 |
| 17  | 1700 | 28   | 0.4375  | 0.428571 |



- By applying scaling, we are able to see the relationship between sale and temperature.
- The two attributes are positively correlated (i.e. when temperature goes up, sale also goes up)



### **Example 2: Indoor Location Detection**





- Each room was scanned by a mobile app.
- Different locations with different AP (Access Point) would have different power.
- Different mobile phone would have different gain.
- The power value obtained cannot be compared with different AP and different mobile phone.

### **Normalization**

- Normalization is the pre-processing of capture power to a standard scale regardless of AP gain and mobile phone RF gain
- In reality, the users would be using mobile phone from various manufacturers (even the same manufacturer and model do not guarantee the same gain)
- A standard score normalization method is deployed:

$$P_n = (P - \mu)/\sigma$$

Where  $P_n$  is the normalization power, P is the captured power,  $\mu$  is the mean of the power and  $\sigma$  is the standard deviation at the location .

- With this, the bias cause by AP gain+ Mobile Phone RF gain would be remove
- Only the different cause by distance from the AP would remain

### Briefing on Lab 4 Exercise on RemoteEye



Article in Straits Times on 10 April 2016: 'When I die, I want someone to know': Fear of dying alone increases among elderly folk

- Motivation: Elderly people who live alone are at risk of passing on without neighbours knowing. An article in the Straits Times on 10 April 2016 highlighted this social issue (Figure 1).
- Scope: In this proposed project, non-image based sensors shall be used to monitor the activities of these elderly people. Data collected from sensors can be used to facilitate activity-aware IoT applications. These applications can enable family members or neighbours to look out for their loved ones or their elderly neighbours.

# RemoteEye: System Block Diagram



# RemoteEye: Hardware Implementation



## RemoteEye: Deployment for Test Run



To test run the system, the RemoteEye was installed in one of the labs in EN15-7 to monitor the movement in the lab.



