ECSE-211

Lecture 3 11 January 2016 Design II

Labs - pre-lab 19th) -> Groups
Design Methods Java + Eclipse - W/F. *
Lob1-Theory M/W Design - Engineering -> Problem Solving Exercise

Design

- Engineering involves solving a presented problem – could be design, could be diagnosis
- Problem solving requires a formal process...

Design

- Engineering involves solving a presented problem – could be design, could be diagnosis
- Problem solving requires a formal process...
 - This does not mean removing creativity..
 - It does mean managing the process to have the best chance of reaching a solution..
 - So

Design

- Engineering involves solving a presented problem
 - could be design, could be diagnosis
- Problem solving requires a formal process...
 - This does not mean removing creativity..
 - It does mean managing the process to have the best chance of reaching a solution..
 - So
 - A series of steps need to be defined
 - Each step should be completed before the next one can occur
 - The output of each step is the input of the next one..

Design

- Design is a process
- The process needs to be managed
- By controlling what is happening,
 - the probability of success is increased 🖊
 - The cost of creating a design can be controlled.
 - The current state and estimated time to finish is always available...
- But is it not infallible...

The Design Process

- Back to the maze...
 - How do you find your way to the end of the maze?
 - How do you continue if you make a mistake?

The Design Process

- Back to the maze...
 - How do you find your way to the end of the maze?
 - How do you continue if you make a mistake?
 - How do you know where to start?

Design – A Set of Questions

- How do you start?
- Where does creativity come in? /
- What is creativity?

Design – How do you start?

- OK so what is the problem?
- What are we given?

Design – How do you start?

- OK so what is the problem?
- What are we given?
 - A set of requirements
 - What is this?

Design – How do you start?

- OK so what is the problem?
- · What are we given?
 - A set of requirements
 - What is this?
 - A description, in some form, of the desired product/system

Design – How do you Start?

• Let's consider a design problem (last semester's):

"Design an autonomous robot capable of finding and manipulating Styrofoam blocks while navigating within an enclosed area populated with known obstacles randomly placed...."

Design – How do you Start?

 Let's consider a design problem (last semester's):

"Design an autonomous robot capable of finding and manipulating Styrofoam blocks while navigating within an enclosed area populated with known obstacles randomly placed...."

Now what?

Design – How do you Start?

- Now what?
 - The first issue is to UNDERSTAND the requirement
 - What does it mean? —
 - What is really required?
 - **–** ...?

Design – How do you Start?

- Now what?
 - The first issue is to UNDERSTAND the requirement
 - What does it mean?
 - What is really required?
 - ...?

Write out everything – make a list – <u>Document!</u> Create a Set of User Requirements

Design – How do you Start?

- Make a list of questions...
 - Where do the questions come from?

The Research and Development Phase

- It is unlikely that you have all the information to solve the design problem
- The questions lead to a need for research
 - Documents, books, papers, web

Experiments –

- What is possible?
- What are the sources of error?
- Design the laboratories...

The Research and Development Phase

- The Labs...
 - Investigate the capabilities of Mindstorms
 - Understand the theory behind the processes needed to solve the problem...
 - Implement some experiments to gain knowledge...

