

Fondamenti di Data Science e Machine Learning Decision Trees (Chapter 6 Geron's Book)

Aurelien Geron: «Hands on Machine Learning with Scikit Learn and TensorFlow, O'Reilly ed. Prof. Giuseppe Polese, aa 2024-25

Outline

Decision Trees

- Training and Visualizing a Decision Tree
- Making Predictions
- Estimating Class Probabilities
- Algorithms for constructing Decision Trees
- Computational Complexity
- Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Decision Trees

- ▶ Like SVMs, *Decision Trees* are versatile Machine Learning algorithms that can perform
 - classification tasks
 - regression tasks
 - multi-output tasks
- They are very powerful algorithms, capable of fitting complex datasets
- Decision Trees are also the fundamental components of Random Forests, which are among the most powerful Machine Learning algorithms available today

Outline

- Decision Trees
 - Training and Visualizing a Decision Tree
 - Making Predictions
 - Estimating Class Probabilities
 - Algorithms for constructing Decision Trees
 - Computational Complexity
 - Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Training and Visualizing a Decision Tree

Let's just build one and take a look at how it makes predictions. The following code trains a *DecisionTreeClassifier* on the iris dataset:

```
from sklearn.datasets import load iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export graphviz
from graphviz import Source
iris = load iris() #Load iris dataset
#Petal length and width
X = iris.data[:, 2:]
y = iris.target
#Application of the Decision Trees classification
tree clf = DecisionTreeClassifier(max depth=2, random state=42)
tree clf.fit(X, y)
#Costruction of .dot file for plotting graphic
export graphviz (tree clf, out file="decisiontree.dot",
class names=iris.target names,
     feature names=iris.feature names[2:], rounded= True, filled=True)
#Source of .dot file
path = 'folder-containing-the-file/decisiontree.dot'
s = Source.from file(path)
s.view()
```

Training and Visualizing a Decision Tree

Outline

Decision Trees

- Training and Visualizing a Decision Tree
- Making Predictions
- Estimating Class Probabilities
- Algorithms for constructing Decision Trees
- Computational Complexity
- Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Making Predictions (1)

- Suppose you find an iris flower and you want to classify it
- You start at the root node (depth 0, at the top)
 - this node asks whether the flower's petal length is smaller than 2.45 cm
- If it is, then you move down to the root's left child node (depth 1, left)
 - it is a *leaf node*, so it does not ask any questions
 - the Decision Tree predicts that your flower is an Iris-Setosa

Making Predictions (2)

- Now suppose you find another flower, but this time the petal length is greater than 2.45 cm
- You must move down to the root's right child node (depth 1, right)
 - it asks another question: is the petal width smaller than 1.75 cm?
- If it is
 - your flower is most likely an Iris-Versicolor (depth 2, left)
- If not
 - it is likely an Iris-Virginica (depth 2, right).

Making Predictions (3)

- ▶ A **node's samples** attribute counts how many training instances it applies to.
 - For example, 100 training instances have a petal length greater than 2.45 cm (depth 1, right), among which 54 have a petal width smaller than 1.75 cm (depth 2, left)
- A node's value attribute tells you how many training instances of each class this node applies to
 - For example, the bottom-right node applies to 0 Iris-Setosa,
 1 Iris- Versicolor, and 45 Iris-Virginica

Making Predictions (4)

- A node's gini attribute measures its impurity
 - ▶ a node is "pure" (gini=0) if all training instances it applies to belong to the same class
 - ▶ For example, since the depth-1 left node applies only to Iris-Setosa training instances, it is pure and its gini score is 0
- The following equation shows how the training algorithm computes the Gini score of the ith node
 - $G_i = 1 \sum_{k=1}^n p_{i,k}^2$
 - $p_{i\ k}$ is the ratio of class K instances among the training instances in the $i^{th'}$ node
- For example, the depth-2 left node has a **gini** score equal to $1 (0/54)^2 (49/54)^2 (5/54)^2 \approx 0.168$

Recursive Formulation of Gini

- Like other split indices, Gini's index measures the quality of alternative split criteria for an attribute
- Given a dataset T with examples belonging to n classes, with p_i frequence of class i in T
- If T is subdivided in T₁ with examples belonging to n₁ classes and T₂ with examples belonging to n₂ classes:
- Splits with lower indices are better ones

Decision Boundaries (1)

This Figure shows the Decision Tree's decision boundaries

Decision Boundaries (6)

- The thick vertical line represents the decision boundary of the root node (depth 0)
 - petal length = 2.45 cm
- Since the left area is pure (only Iris-Setosa), it cannot be split any further
- The right area is impure
 - the depth-1 right node splits it at petal width = 1.75 cm
 - represented by the dashed line
- Since max_depth was set to 2, the Decision Tree stops here
 - ▶ However, if you set max_depth to 3, then the two depth-2 nodes would each add another decision boundary
 - represented by the dotted lines

Outline

Decision Trees

- Training and Visualizing a Decision Tree
- Making Predictions
- Estimating Class Probabilities
- Algorithms for constructing Decision Trees
- Computational Complexity
- Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Estimating Class Probabilities

- A Decision Tree can also estimate the probability that an instance belongs to a particular class k
 - first it traverses the tree to find the leaf node for this instance, then it returns the ratio of training instances of class *k* in this node
- Suppose you have found a flower whose petals are 5cm long and 1.5cm wide
 - ▶ The corresponding leaf node is the depth-2 left node
- The Decision Tree should output the following probabilities
 - 0% for Iris-Setosa (0/54)
 - ▶ 90.7% for Iris-Versicolor (49/54)
 - 9.3% for Iris-Virginica (5/54)
- If you ask it to predict the class, it should output Iris-Versicolor (class 1) since it has the highest probability

Estimating Class Probabilities: Example Code

```
from sklearn.datasets import load iris
from sklearn.tree import DecisionTreeClassifier
#Load iris dataset
iris = load iris()
#Petal length and width
"""iris.data is a matrix from which we take all rows (:,), and 2
out of 4 columns, from index 2 on"""
X = iris.data[:, 2:]
y = iris.target
#Application of the Decision Trees classification
tree clf = DecisionTreeClassifier(max depth=2, random state=42)
tree clf.fit(X, y)
#Probability
prob = tree \ clf.predict \ proba([[5,1.5]])
print ("Prob: {}".format(prob))
                                          Prob: [[0.
                                                      0.90740741 0.0925925911
#Prediction
                                          Pred: [1]
pred = tree \ clf.predict([[5,1.5]])
print ("Pred: {}".format(pred))
                                          Process finished with exit code 0
```

Outline

Decision Trees

- Training and Visualizing a Decision Tree
- Making Predictions
- Estimating Class Probabilities
- Algorithms for constructing Decision Trees
- Computational Complexity
- Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Constructing Decision Trees: Example

A Decision Tree for deciding whether to wait for a seat at a restaurant

A sample Training Dataset

Let us consider a training dataset, which should allow us to decide whether to wait outside of a restaurant

	Predictive Attributes									Dependent	
Instance ID	Alternatives Nearby	Comfort Bar Inside	Fri-Sat	Hungry	Patrons (Crowded)	Price	Rains Out	Have Reservation	Туре	Estimated Wait(Waiter)	Attribute (Will Wait)
Xı	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X ₃	F	Т	F	F	Some	\$			Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	T	Т	Italian	0-10	Т
X ₇	F	Т	F	F	None	\$	T	F	Burger	0-10	F
X ₈	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X 9	F	T	T	F	Full	\$	Т	F	Burger	>60	F
X10	Т	Т	T	T	Full	\$\$\$	F	Т	Italian	10-30	F
XII	F	F	F	F	None	\$	F	F	Thai	0-10	F
X ₁₂	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

Expressiveness

▶ Decision trees can express any function of predictive attributes (for Boolean functions, a truth table row \rightarrow path to leaf):

A	В	A xor B
F	F	F
F	Т	Т
T	F	Т
Т	Т	F

- There is a consistent decision tree for any training set: one path to leaf for each example (unless f nondeterministic in x)
- But it probably won't generalize to new examples
- Prefer to find more compact decision trees

Hypothesis Spaces

- How many distinct decision trees with n Boolean attributes??
- = number of Boolean functions
- \triangleright = number of distinct truth tables with 2^n rows = 2^{2^n}
- ▶ E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Decision Tree Learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classication then return the classification
else if attributes is empty then return Majority-Value(examples)
else
best ← Choose-Attribute(attributes, examples)
tree ← a new decision tree with root test best
for each value v₁ of best do
examples₁ {elements of examples with best = vi}
subtree ← DTL(examples₁; attributes - best, Majority-Value(examples))
add a branch to tree with label v₁ and subtree subtree
return tree
```

Choosing most significant attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice

Information

- Information answers questions
- The more clueless I am about the answer initially, the more information is contained in the answer
- Scale: 1 bit = answer to Boolean question with prior <0:5; 0:5>
- ▶ Information in an answer when prior is <P₁;....; P_n> is
 - $H(\langle P_1;....; Pn \rangle) = -\sum_{i=1}^n P_i \log_2 P_i$
 - Also called entropy of the prior

Choosing Best Attribute with Entropy

- p positive and n negative examples at the root, then $H(\langle p/(p+n), n/(p+n)\rangle)$ bits to classify a new example
 - ▶ E.g., for 12 restaurant examples, p=n=6 so we need 1 bit
- An attribute splits examples E into subsets E_i , each of which hopefully needs less information to complete the classification
- Let E_i have p_i positive and n_i negative examples, then $H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits to classify a new example
- Expected number of bits per example over all branches is
 - $\sum_{i} \frac{p_{i}+ni}{p+n} H(\langle pi_{/(}pi+ni), ni/(pi+ni) \rangle)$
 - For *Patrons?*, this is 0.459 bits, for *Type* is (still) 1 bit
 - Choose the attribute minimizing remaining information needed!

Learned Decision Tree

Decision tree learned from the 12 examples:

The CART Training Algorithm (1)

- Scikit-Learn uses the Classification And Regression Tree (CART) algorithm to train Decision Trees (also called "growing" trees)
 - ▶ The algorithm first splits the training set in two subsets using a single feature k and a threshold t_k (e.g., "petal length ≤ 2.45 cm")
- ▶ How does it choose k and t_k ?
 - It searches for the pair (k, t_k) that produces the purest subsets (weighted by their size)
- The cost function that the algorithm tries to minimize is:

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$

- where
 - $ightharpoonup G_{\text{left/right}}$ measures the impurity of the left/right subset
 - $m{m}_{\mathrm{left/right}}$ is the number of instances in the left/right subset

The CART Training Algorithm (2)

- Once it has successfully split the training set in two, it splits the subsets using the same logic, then the subsubsets and so on, recursively.
 - It stops recursing once it reaches the maximum depth (defined by the max_depth hyperparameter), or if it cannot find a split that will reduce impurity
- Unfortunately, finding the optimal tree is known to be an NP-Complete problem
 - It requires $O(\exp(m))$ time, making the problem intractable even for fairly small training sets

Gini Impurity or Entropy?

- By default, the Gini impurity measure is used
- You can select the entropy impurity measure instead by setting the criterion hyperparameter to "entropy"
 - In Information Theory entropy measures the average information content of a message, it is zero when all messages are identical
 - In ML entropy is frequently used as an impurity measure: a set's entropy is zero when it contains instances of only one class
- Equation Entropy:
 - $H_{i} = -\sum_{\substack{k=1 \ p_{i,k} \neq 0}}^{n} p_{i,k} \log(p_{i,k})$
- For example, the depth-2 left node in the Iris Decision Tree has an entropy equal to

$$-\frac{49}{54}\log\left(\frac{49}{54}\right) - \frac{5}{54}\log\left(\frac{5}{54}\right) \approx 0.31$$

Gini's example

AGE	CAR TYPE	RISK
40	Station wagon	low
65	Sport	high
20	Economy	high
25	Sport	high
50	Station wagon	low
48	Economy	high

- Two classes, n = 2
- Let us consider the candidate split AGE <= 25</p>
- T1= $\{t3, t4\}$, $n_1 = 1$, T2= $\{t1, t2, t5, t6\}$, $n_2 = 2$
- gini_split(T) = 1/2(1-1) + 2/2(1-(1/4+1/4)) = 1/2
- Best splits are those with low Gini's index

Split Algorithms

- Given an attribute A, they determine the best split predicate for it:
 - Two problems:
 - Selection of the predicate
 - Evaluating the quality of the chosen predicate
- Selection of the predicate:
 - Depends on the type of attribute
- Optimality:
 - A good predicate allows to achieve:
 - Less rules (less splits, tree nodes with lower con fan-out)
 - Higher support and confidence values

Split Predicates

- Splits can be
 - binary
 - multiple
- For numerical attributes
 - Binary split: A <= v, A > v
 - Multiple split: A <= v1, v1 < A <= v2, ..., vn-1 < A <= vn</p>
- For categorical attributes, if domain of A is S:
 - ▶ Binary split: $A \in S'$, $A \in S S'$ con $S' \subset S$
 - Multiple split: $A \in S1$, ..., $A \in Sn$

with S1 U ... U Sn = S, Si
$$\cap$$
 Sj = {}

Outline

Decision Trees

- Training and Visualizing a Decision Tree
- Making Predictions
- Estimating Class Probabilities
- Algorithms for constructing Decision Trees
- Computational Complexity
- Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Computational Complexity

- Making predictions requires traversing the Decision Tree from the root to a leaf
 - Decision Trees are generally approximately balanced, so traversing the Decision Tree requires going through roughly $O(\log_2(m))$ nodes
 - Since each node only requires checking the value of one feature, the overall prediction complexity is just $O(\log_2(m))$, independent of the number of features
- However, the training algorithm compares all features (or less if max_features is set) on all samples at each node
 - ▶ This results in a training complexity of $O(n \times m \log(m))$

Outline

Decision Trees

- Training and Visualizing a Decision Tree
- Making Predictions
- Estimating Class Probabilities
- Algorithms for constructing Decision Trees
- Computational Complexity
- Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Regularization Hyperparameters (1)

- Decision Trees make very few assumptions about the training data
 - If left unconstrained, the tree structure will adapt to training data, fitting it very closely, and most likely overfitting it
- Such a model is often called a nonparametric model
 - ▶ The number of parameters is not determined prior to training, so the model structure is free to stick closely to the data
- ▶ To avoid overfitting the training data, we need to restrict the Decision Tree's freedom during training

Regularization Hyperparameters (2)

- The regularization hyperparameters depend on the algorithm used
 - generally we can at least restrict the maximum depth of the Decision Tree
- In Scikit-Learn, this is controlled by the max_depth hyperparameter
 - the default value is None, which means unlimited
- Reducing max_depth will regularize the model and thus reduce the risk of overfitting

Regularization Hyperparameters (3)

- DecisionTreeClassifier class has a few other parameters to restrict the shape of the Decision Tree:
 - min_samples_split (the minimum number of samples a node must have before it can be split)
 - min_samples_leaf (the minimum number of samples a leaf node must have)
 - min_weight_fraction_leaf (same as min_samples_leaf but expressed as a fraction of the total number of weighted instances)
 - max_leaf_nodes (maximum number of leaf nodes)
 - max_features (maximum number of features that are evaluated for splitting at each node)

Outline

- Decision Trees
 - Training and Visualizing a Decision Tree
 - Making Predictions
 - Estimating Class Probabilities
 - Algorithms for constructing Decision Trees
 - Computational Complexity
 - Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Decision Trees Regression (1)

Decision Trees can also perform regression tasks. The following is an ad-hoc example code on noisy quadratic dataset with max_depth = 2:

```
import numpy as np
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import export graphviz
from graphviz import Source
# Quadratic training set + noise
np.random.seed(42)
m = 200
X = np.random.rand(m, 1)
v = 4 * (X - 0.5) ** 2
y = y + np.random.randn(m, 1) / 10
print("X:{}".format(X.shape))
print("y:{}".format(y.shape))
#Application of the Decision Trees Regressor
tree reg = DecisionTreeRegressor(max depth=2, random state=42)
tree reg.fit(X, y)
#Costruction of .dot file for plotting graphic
export graphviz (tree reg, out file="noisy.dot", feature names=["x1"], rounded= True,
filled=True)
#Source of .dot file
path = 'folder-containing-the-file/noisy.dot'
s = Source.from file(path)
s.view()
```

Decision Trees Regression (2)

Decision Trees Regression: An example (1)

- ▶ The main difference with respect to *Decision Tree Classification* is that instead of predicting a class in each node, it predicts a value
 - Suppose we want to make a prediction for a new instance with $x_1 = 0.6$
 - We traverse the tree starting at the root, and eventually reach the leaf node that predicts value=0.1106
- This prediction is simply the average target value of the 110 training instances associated to this leaf node
 - This prediction results in a Mean Squared Error (MSE) equal to 0.0151 over these 110 instances

Decision Trees Regression: An example (2)

- This model's predictions are represented on the left figure
- ▶ The model on the right has max_depth=3 set
- Notice how the predicted value for each region is always the average target value of the instances in that region
 - ▶ The algorithm splits each region by making most training instances as close as possible to that predicted value

CART Algorithm for Regression

- Instead of splitting the training set aiming to minimize impurity, the CART algorithm now aims to minimize MSE
- ▶ The cost function that the algorithm tries to minimize is:

$$J(k, t_k) = \frac{m_{\text{left}}}{m} \text{MSE}_{\text{left}} + \frac{m_{\text{right}}}{m} \text{MSE}_{\text{right}} \quad \text{where} \begin{cases} \text{MSE}_{\text{node}} = \sum_{i \in \text{node}} (\hat{y}_{\text{node}} - y^{(i)})^2 \\ \hat{y}_{\text{node}} = \frac{1}{m_{\text{node}}} \sum_{i \in \text{node}} y^{(i)} \end{cases}$$

- Decision Trees are prone to overfitting when dealing with regression tasks
 - Setting min_samples_leaf=10 in the previous example will result in much a more reasonable model (right figure next slide)

Regularizing a Decision Tree Regressor

Outline

- Decision Trees
 - Training and Visualizing a Decision Tree
 - Making Predictions
 - Estimating Class Probabilities
 - Algorithms for constructing Decision Trees
 - Computational Complexity
 - Regularization Hyperparameters
- Decision Trees Regression
 - Instability

Instability (1)

- Decision Trees have a few limitations
 - ▶ They love orthogonal decision boundaries (splits are perpendicular to an axis), making them sensitive to training set rotation
- Figure shows a simple linearly separable dataset
 - on the left, a Decision Tree can split it easily, while on the right, after a 45° dataset rotation the decision boundary looks convoluted

Although both fit the training set well, It is likely that the model on the right will not generalize well

Instability (2)

- The main issue with Decision Trees is that they are very sensitive to small variations in the training data
- For example, if we remove the widest Iris-Versicolor from the iris training set and train a new Decision Tree, we may get the model represented in Figure
 - since the training algorithm used by Scikit-Learn is stochastic you may get very different models even on the same training data

Random Forests can limit this instability by averaging predictions over many trees

