Devoir Maison n°4

Exercice 1:

Étudier l'injectivité et la surjectivité des applications suivantes.

1. Applications numériques.

(a)
$$f_1 = \operatorname{sh} \circ \operatorname{th} : \mathbb{R} \to \mathbb{R}$$
.

(b)
$$f_2 = \cos \circ \sin : \mathbb{R} \to [-1; 1].$$

2. Applications sur des n-uplets.

(a)
$$h_1: \mathbb{R}^3 \to \mathbb{R}^3, (a, b, c) \mapsto (b, a, -c).$$

(c)
$$h_3: \mathbb{R}^3 \to \mathbb{R}^3, (a, b, c) \mapsto (a^2, b^3, c^4).$$

(b)
$$h_2: \mathbb{R}^2 \to \mathbb{R}^3, (a, b) \mapsto (1, a + b, a).$$

(d)
$$h_4: \mathbb{R}^2 \to \mathbb{R}^3, (a,b) \mapsto (a^3, b^3, a^3).$$

3. Applications sur les parties d'un ensemble. Soient E un ensemble non vide et $A \subset E$.

(a)
$$i: \mathscr{P}(E) \to \mathscr{P}(E), X \mapsto A \cap X$$
.

(b)
$$j: \mathscr{P}(E)^2 \to \mathscr{P}(E), (X,Y) \mapsto X \setminus Y.$$

Problème (facultatif) - Unicité des mesures bornées

On se donne dans ce problème un ensemble non vide Ω .

• Un ensemble C de parties de Ω est appelée un π -système si C est stable par intersection finie, c'est-à-dire :

$$\forall n \geq 1, \forall (A_1, \dots, A_n) \in C^n, \bigcap_{i=1}^n A_i \in C$$

- Une suite $(S_n)_{n\geq 1}$ de parties de Ω est dite croissante (pour l'inclusion) si : $\forall n\geq 1, S_n\subset S_{n+1}$.
- Un ensemble S de parties de Ω est appelée un λ -système si :
 - \star S est stable par union croissante, c'est-à-dire : pour toute suite croissante $(S_n)_{n\geq 1}$ d'éléments de S :

$$\bigcup_{n\geq 1} S_n \in S$$

- \star S est stable par différence : pour tous éléments A et B de S tels que $A \subset B$, $B \setminus A \in S$.
- Enfin, un ensemble T de parties de Ω est appelée une tribu si :
 - $\star \ \Omega \in T.$
 - * T est stable par passage au complémentaire : $\forall A \in T, \overline{A} \in T$.
 - \star T est stable par union dénombrable (pas forcément croissante) : pour toute suite $(A_n)_{n\geq 1}$ d'éléments de T :

$$\bigcup_{n\geq 1}A_n\in T$$

On fera attention au fait qu'une suite est constituée d'un nombre infini d'éléments : on ne prendra donc pas un nombre fini d'éléments (A_1, \ldots, A_n) pour montrer qu'un ensemble est stable par union dénombrable par exemple (ou par union croissante pour un λ -système).

Partie I - Autour des tribus

- 1. (a) Montrer que $\mathscr{P}(\Omega)$ est une tribu, ainsi que $\{\varnothing;\Omega\}$. En déduire que si T est une tribu, si $A\in T$ et si $B\subset A$, on n'a pas forcément $B\in T$.
 - (b) L'ensemble des intervalles de $\mathbb R$ est-il une tribu (de $\mathbb R$)?
- 2. Soit T une tribu. Montrer les résultats suivants :
 - (a) $\varnothing \in T$.
 - (b) T est stable par union finie (dont la définition est analogue à celle d'une intersection finie).

Page 1/3 2023/2024

MP2I Lycée Faidherbe

- (c) T est stable par intersection finie.
- (d) T est stable par intersection dénombrable (dont la définition est analogue à celle d'une union dénombrable).
- 3. (a) Montrer qu'une intersection quelconque de tribus est une tribu, c'est-à-dire que si $(T_i)_{i\in I}$ est une famille de tribus (pas forcément finie ou dénombrable), alors $\bigcap_{i\in I} T_i$ est une tribu.
 - (b) Soit F un sous-ensemble de $\mathscr{P}(\Omega)$, et soit A_F l'ensemble des tribus T telles que $F \subset T$. Justifier que A_F est non vide, et montrer que $I = \bigcap_{T \in A_F} T$ est la plus petite tribu au sens de l'inclusion qui contient F, c'est-à-dire que I est bien une tribu, et que si T est une tribu contenant F, alors $I \subset T$. I est appelée tribu engendrée par F et est notée $\sigma(F)$.
 - (c) Montrer que si A est une partie de Ω , $\sigma(\{A\}) = \{\emptyset; A; \overline{A}; \Omega\}$.
- 4. On appelle tribu des boréliens la tribu B engendrée par tous les intervalles de la forme $]-\infty;a]$, pour $a\in\mathbb{R}$.
 - (a) Montrer que pour tout $b \in \mathbb{R}$, $b : +\infty \in \mathbb{R}$.
 - (b) Justifier que pour tous $a < b, |a;b| \in B$.
 - (c) Soit $a \in \mathbb{R}$. Justifier que

$$]-\infty; a \left[= \bigcup_{n=1}^{+\infty} \right] -\infty; a - \frac{1}{n} \right]$$

En déduire que $]-\infty; a [\in B.$

(d) Montrer que pour tous $a \leq b$, les ensembles $[b; +\infty[, [a;b[,]a;b[$ et [a;b] appartiennent à B. B contient donc tous les intervalles.

Partie II - Autour des λ -systèmes

- 1. Justifier qu'une tribu est un λ -système.
- 2. Soit S un λ -système qui contient Ω . Montrer les résultats suivants :
 - (a) $\varnothing \in S$.
 - (b) S est stable par complémentaire.
 - (c) S est stable par intersection décroissante (dont la définition est analogue à celle d'une union croissante).
- 3. Justifier qu'une intersection quelconque de λ -système est un λ -système.
- 4. Soit F un sous-ensemble de $\mathscr{P}(\Omega)$, justifier qu'il existe un plus petit λ -système au sens de l'inclusion qui contient F, qu'on appelle λ -système engendré par F et qu'on note m(F). Justifier enfin que $m(F) \subset \sigma(F)$.

Partie III - Lemme $\lambda - \pi$ de Dynkin

On souhaite montrer que, avec deux conditions supplémentaires sur F, $m(F) = \sigma(F)$. On suppose donc que $\Omega \in F$ et que F est un π -système.

1. Soit $A \in m(F)$. On définit :

$$m_A = \{ B \in m(F) \mid B \cap A \in m(F) \}$$

Montrer que m_A est un λ -système. On pourra, le moment venu, montrer que si $C\subset B$, alors :

$$(B \backslash C) \cap A = (B \cap A) \backslash (C \cap A)$$

- 2. Soit $C \in F$. Justifier que $F \subset m_C$ puis que $m_C = m(F)$, ce qu'on écrit : $\forall C \in F, \forall B \in m(F), B \cap C \in m(F)$. On rappelle que m(F) est le plus petit λ -système contenant F (au sens de l'inclusion), c'est-à-dire que si un λ -système contient F, alors il contient m(F).
- 3. En intervertissant les deux quantificateurs ci-dessus, montrer que, pour tout $A \in m(F)$, $m_A = m(F)$.
- 4. En déduire que :
 - (a) m(F) est un π -système. On pourra commencer par justifier que l'intersection de deux éléments de m(F) est encore dans m(F).
 - (b) m(F) est stable par union finie.

Page 2/3 2023/2024

MP2I Lycée Faidherbe

5. Montrer finalement que $m(F) = \sigma(F)$. On pourra utiliser l'exercice 9 du chapitre sur les ensembles.

Partie IV - Théorème d'unicité des mesures bornées

On se donne dans la suite une mesure (positive) bornée sur une tribu T, c'est-à-dire une application $\mu: T \to \mathbb{R}_+$ majorée telle que, pour toute famille $(A_n)_{n\geq 1}$ d'éléments deux à deux disjoints de T, on ait :

$$\mu\left(\bigcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} \mu(A_n)$$

Il n'y aura aucun problème de convergence dans ce sujet, et donc il ne sera soulevé aucune difficulté autour de la notation $\sum_{n=1}^{+\infty}$, qui est somme toute assez intuitive et que nous reverrons aux chapitres 25 et 35, et donc on pourra l'utiliser comme une somme normale.

- 1. Justifier que $\mu(\varnothing) = 0$. On pourra écrire sans état d'âme (cf. chapitre 35) que $\sum_{n=1}^{+\infty} \lambda = +\infty$ si $\lambda > 0$.
- 2. Montrer que pour tout $(A, B) \in T^2$, si $A \subset B$, alors $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 3. Soit $(A_n)_{n\geq 1}$ une suite croissante d'éléments de T. On définit la suite $(B_n)_{n\geq 1}$ par $B_1=A_1$ et, pour tout $n\geq 2$, $B_n=A_n\backslash A_{n-1}$. Sur le dessin ci-dessous, les A_n sont les « patates pleines » et les B_n sont les « couronnes ».

- (a) Montrer que les B_n sont deux à deux disjoints.
- (b) Justifier que $\bigcup_{n=1}^{+\infty} B_n \subset \bigcup_{n=1}^{+\infty} A_n$.
- (c) Soit $x \in \bigcup_{n=1}^{\infty} A_n$. Justifier l'existence de $n_0 = \min\{n \mid x \in A_n\}$. Montrer que, si $n_0 \neq 1$, $x \notin A_{n_0-1}$. Prouver finalement l'inclusion réciproque de la question précédente.
- (d) En déduire que, si μ et ν sont deux mesures bornées, alors $\{A \in T \mid \mu(A) = \nu(A)\}$ est un λ -système.
- 4. Montrer, à l'aide de la partie précédente, que si μ et ν sont deux mesures bornées qui coïncident sur un π -système C contenant Ω , alors $\mu = \nu$ sur $\sigma(C)$.
- 5. Soient μ et ν deux mesures bornées sur B la tribu des boréliens de \mathbb{R} . On suppose que :

$$\forall x \in \mathbb{R}, \mu(]-\infty; x]) = \nu(]-\infty; x])$$

- (a) Justifier que, pour tout $n \ge 1$, $\mu([n; n+1]) = \nu([n; n+1])$.
- (b) Prouver que

$$\mathbb{R} =]-\infty;1] \cup \left(\bigcup_{n=1}^{+\infty}]n;n+1]\right)$$

Il est immédiat (et donc on l'admettra) que cette union est disjointe.

- (c) Montrer que $\mu(\mathbb{R}) = \nu(\mathbb{R})$.
- (d) Conclure que $\mu = \nu$.

Page 3/3 2023/2024