Algebra and Number Theory Team (5 problems)

1) Let S_n be the group of permutations of $\{1, 2, ..., n\}$. Let $\sigma \in S_n$ be the permutation

$$(1,n)(2,n-1)\cdots(k,n-k+1)\cdots$$
.

Prove that the centraliser $Z_{S_n}(\sigma)$ is isomorphic to $S_{\left[\frac{n}{2}\right]} \ltimes (\mathbb{Z}/2\mathbb{Z})^{\left[\frac{n}{2}\right]}$.

 Recall that the algebra of regular functions on a vector space W is the symmetric algebra of linear forms on W.

Let $V = \mathbb{C}^2$. Let $\mathbb{C}[\operatorname{End}_{\mathbb{C}}(V)]$ be the algebra of regular functions on $\operatorname{End}_{\mathbb{C}}(V)$. The natural action of the group $G = SL_2(\mathbb{C})$ on V induces an action of $G \times G$ on $\operatorname{End}_{\mathbb{C}}(V)$ by left and right multiplication. Thus we get an action of $G \times G$ on $\mathbb{C}[\operatorname{End}_{\mathbb{C}}(V)]$.

Compute the algebra of fixed points $\mathbb{C}[\operatorname{End}_{\mathbb{C}}(V)]^{G \times G}$.

3) Let R be a Noetherian ring and $I \subset R$ be an ideal. Define the Rees algebra as

$$Rees(I,R):=\bigoplus_{n\geqslant 1}I^nt^n\subset R[t].$$

Prove that Rees(I, R) is Noetherian.

- 4) Let p be a odd prime. Let Φ_p be the p-th cyclotomic field, i.e., $\Phi_p = \mathbb{Q}(\zeta_p)$ where ζ_p is a primitive p-th root of unity.
 - 1. Show that Φ_p/\mathbb{Q} is a Galois extension with Galois group $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
 - 2. Deduce that Φ_p contains a unique quadratic extension of \mathbb{Q} .
 - 3. Write g_p for the Gauss sum $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta_p^a$. Show that
 - $\overline{g_p} = \left(\frac{-1}{p}\right)g_p$,
 - $|g_p|^2 = p$.
 - 4. Determine the unique quadratic extension of \mathbb{Q} contained in Φ_p .
- 5) 1. Let E/F be a finite Galois extension. Assume that the Galois group Gal(E/F) is generated by a single element σ . Let x be an element of E such that $tr_{E/F}(x) = 0$. Show that there exists $y \in E$ such that $x = \sigma(y) y$.
 - 2. Let F be a field of characteristic p, and let E/F be a Galois extension of degree p. Show that there exists $x \in F$ such that $E \cong F[T]/(T^p T x)$.