Search for squarks and gluinos in final states with jets and missing transverse momentum using 139/fb of $\sqrt{s} = 13$ TeV pp collision data with the ATLAS detector, atlas_conf_2019_040

February 12, 2020

1 Summary

This is an implementation of a search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum. Events with an electron or muon are vetoed. The analysis is performed using data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb⁻¹ [1]. The results are interpreted in the context of various R-parity-conserving models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.35 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, the results exclude at 95% confidence level squark masses below 1.94 TeV are excluded if the lightest neutralino is massless. This is CheckMATE implementation validated for version 2 [2, 3].

2 Validation

Processes analyzed for validation:

- $pp \to \tilde{g} \, \tilde{g} \to q \, \bar{q} \, \tilde{\chi}_1^0 \, q \, \bar{q} \, \tilde{\chi}_1^0$ squarks decoupled Events generated with MG5_aMC 2.6.0 [4] interfaced to Pythia8 [5] with up to two extra partons (CKKW-L).
- $p p \to \tilde{g} \, \tilde{g} \to q \, \bar{q}' \, \tilde{\chi}_1^{\pm} \, q \, \bar{q}' \, \tilde{\chi}_1^{\pm};$ $\tilde{\chi}_1^{\pm} \to W^{\pm} \, \tilde{\chi}_1^{0}$ squarks decoupled Events generated with MG5_aMC 2.6.0 [4] interfaced to Pythia8 [5] with up to two extra partons (CKKW-L).
- $pp \to \tilde{q} \, \tilde{q} \to q \, \tilde{\chi}_1^0 q \, \tilde{\chi}_1^0$ gluinos decoupled
 Events generated with MG5_aMC 2.6.0 [4] interfaced to Pythia8 [5] with up to two extra partons (CKKW-L).
- $p p \to \tilde{q} \, \tilde{q} \to q' \, \tilde{\chi}_1^{\pm} \, q' \, \tilde{\chi}_1^{\pm};$ $\tilde{\chi}_1^{\pm} \to W^{\pm} \, \tilde{\chi}_1^{0}$ gluinos decoupled Events generated with MG5_aMC 2.6.0 [4] interfaced to Pythia8 [5] with up to two extra partons (CKKW-L).

	Selection	$\begin{array}{c c} m_{\tilde{q}} = 12\\ m_{\tilde{\chi}_1^0} = 6 \end{array}$				$m_{\tilde{q}} = 1600 \text{ GeV} m_{\tilde{\chi}_1^0} = 400 \text{ GeV}$	
		ATLAS	CM	ATLAS	CM	ATLAS	CM
Generated MC events		10000	10000	6000	10000	6000	10000
Common Requirements		1763 1763 1746	1780 1780 -	541 541 535	546 546 –	174 174 173	176 176 –
SR-2j-1600	$\begin{array}{l} \Delta\phi(j_{1,2,(3)}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.8 \\ \Delta\phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.4 \\ p_{T}(j_{2}) > 250 \; \mathrm{GeV} \\ \eta(j_{1,2}) < 2.0 \\ E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}} > 16 \; \mathrm{GeV}^{1/2} \\ m_{\mathrm{eff}}(\mathrm{incl.}) > 1600 \; \mathrm{GeV} \end{array}$	1433 1377 853 836 568 366	1434 1353 850 832 554 362	431 411 311 306 228 202	433 410 310 305 227 195	136 129 111 109 86.4 83.5	139 130 112 110 87.3 84.2
SR-2j-2200	$\begin{array}{l} \Delta\phi(j_{1,2,(3)},E_{\mathrm{T}}^{\mathrm{miss}}) > 0.4 \\ \Delta\phi(j_{i>3},E_{\mathrm{T}}^{\mathrm{miss}}) > 0.2 \\ p_{T}(j_{1}) > 600 \; \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}} > 16 \; \mathrm{GeV^{1/2}} \\ m_{\mathrm{eff}}(\mathrm{incl.}) > 2200 \; \mathrm{GeV} \end{array}$	1603 1567 509 337 101	1619 1566 514 339 96	483 470 269 201 108	492 476 259 188 101	156 151 120 94.6 76.1	158 153 121 95.7 76.4
SR-2j-2800	$\begin{array}{l} \Delta\phi(j_{1,2,(3)},E_{\mathrm{T}}^{\mathrm{miss}}) > 0.8 \\ \Delta\phi(j_{i>3},E_{\mathrm{T}}^{\mathrm{miss}}) > 0.4 \\ p_{T}(j_{2}) > 250 \; \mathrm{GeV} \\ \eta(j_{1,2}) < 1.2 \\ E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}} > 16 \; \mathrm{GeV}^{1/2} \\ m_{\mathrm{eff}}(\mathrm{incl.}) > 2800 \; \mathrm{GeV} \end{array}$	1433 1377 853 655 439 15.6	1434 1352 850 653 433 10.5	431 411 311 235 173 18.8	433 410 311 239 178 15.1	136 129 111 82.3 64.6 29.1	138 130 112 84.3 66.4 27.0

Table 1: Events normalized to the nominal cross section at NNLO-NNLL and 139 ${\rm fb}^{-1}$.

	Selection	$\begin{array}{c c} m_{\tilde{g}} = 14 \\ m_{\tilde{\chi}_1^0} = 10 \end{array}$		$m_{\tilde{q}} = 1800 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 1000 \text{ GeV}$		$m_{\tilde{q}} = 2200 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 600 \text{ GeV}$	
		ATLAS	CM	ATLAS	CM	ATLAS	CM
Generated MC	ted MC events		60000	60000	10000	50000	5000
Common Requirements	Preselection, $E_{\rm T}^{\rm miss} > 300~{\rm GeV}$, $p_T(j_1) > 200~{\rm GeV}$, $m_{\rm eff} > 800~{\rm GeV}$ jet multiplicity ≥ 2	$2562 \\ 2562$	2561 2561	467 467	467 467	57.6 57.6	57.7 57.7
	Cleaning cuts	2532	_	461	-	56.8	_
SR4j-1000		1931 1718 1583 661	1991 1778 1629 697	410 357 322 234	421 365 330 234	53.5 44.7 39.8 35.3	54.4 45.6 40.2 34.9
	$ \eta(j_{1,2,3,4}) < 2.0$ Aplanarity > 0.04 $E_{\rm T}^{\rm miss}/\sqrt{H_T} > 16~{\rm GeV}^{1/2}$ $m_{\rm eff}({\rm incl.}) > 1000~{\rm GeV}$	574 429 149 149	600 484 164 163	214 159 82.7 82.7	215 168 86.0 86.0	32.1 22.3 13.9 13.9	31.9 22.7 14.0 14.0
SR4j-2200	$ \text{ jet multiplicity } \geq 4 $ $ \Delta \phi(j_{1,2,(3)}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.4 $ $ \Delta \phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.2 $ $ p_{T}(j_{4}) > 100 \text{ GeV} $ $ \eta(j_{1,2,3,4}) < 2.0 $ $ \mathrm{Aplanarity} > 0.04 $ $ E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{T}} > 16 \text{ GeV}^{1/2} $ $ m_{\mathrm{eff}}(\mathrm{incl.}) > 2200 \text{ GeV} $	1931 1718 1583 661 574 429 149 13.7	1991 1778 1629 697 600 484 164 13.4	410 357 322 234 214 159 82.7 34.9	421 365 330 233 215 168 86.0 37.6	53.5 44.7 39.8 35.3 32.1 22.3 13.9 13.6	54.4 45.6 40.2 34.9 31.9 22.7 14.0 13.7
SR4j-3400		1931 1718 1583 661 574 429 398 0.279	1991 1778 1629 697 600 484 446 0	410 357 322 234 214 159 142 1.43	421 365 330 233 215 168 151 2.52	53.5 44.7 39.8 35.3 32.1 22.3 19.6 8.04	54.4 45.6 40.2 34.9 31.9 22.7 20.0 7.6

Table 2: ATLAS cross section normalization seems to be wrong. Events for CheckMATE normalized to ATLAS preselection row. The $\Delta\phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}})$ cut in Table 17 of [1] does not match Table 8: $\Delta\phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.2$ vs. $\Delta\phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.4$. The numbers here were produced according to prescription in this table, ie. not with the cut implemented in the final version.

	Selection		100 GeV		500 GeV		$200~{ m GeV}$
		ATLAS	CM	ATLAS	CM	ATLAS	CM
Generated MC	events	30000	30000	30000	20000	000 30000 5000	
Common	Preselection, $E_{\rm T}^{\rm miss} > 300 \text{ GeV},$						
Requirements	$p_T(j_1) > 200 \text{ GeV}, m_{\text{eff}} > 800 \text{ GeV}$	1160	1131	64.3	64.0	25.4	26.0
	jet multiplicity ≥ 2	1160	1131	64.3	64.0	25.4	26.0
	Cleaning cuts	1147	_	63.5	_	25.1	_
$\mathrm{SR5j}\text{-}1600$	jet multiplicity ≥ 5	1022	1026	60.2	60.1	24.2	25.4
	$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4$	895	892	52.0	52.5	20.4	21.2
	$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.2$	783	765	43.6	43.3	16.5	16.9
	$p_T(j_1) > 600 \text{ GeV}$	46.2	43.1	10.7	9.9	13.1	13.4
	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_T} > 16 \mathrm{~GeV^{1/2}}$	18.6	15.4	4.86	4.27	6.38	6.33
	$m_{\text{eff}}(\text{incl.}) > 1600 \text{ GeV}$	18.4	15.2	4.86	4.27	6.38	6.33
SR6j-1000	$ $ jet multiplicity ≥ 6	798	824	50.7	52.4	21.7	23.0
	$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4$	700	717	43.6	45.3	18.1	19.2
	$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.2$	600	604	35.9	36.7	14.4	15.2
	$p_T(j_6) > 75 \text{ GeV}$	313	329	25.7	26.0	12.3	13.0
	$ \eta(j_{1,2,3,4,5,6}) < 2.0$	260	277	22.6	22.6	10.5	11.1
	Aplanarity > 0.08	171	199	16.0	16.8	7.28	7.80
	$E_{\rm T}^{\rm miss} / \sqrt{H_T} > 16 \text{ GeV}^{1/2}$	42.8	47.1	6.91	6.7	3.58	3.74
	$m_{\text{eff}}(\text{incl.}) > 1000 \text{ GeV}$	42.8	47.1	6.91	6.7	3.58	3.74
SR6j-2200	$ $ jet multiplicity ≥ 6	798	823	50.7	52.4	21.7	23.0
	$\begin{array}{l} \Delta\phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4\\ \Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.2 \end{array}$	700	717	43.6	45.3	18.1	19.2
	$\Delta\phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.2$	600	604	35.9	36.7	14.4	15.2
	$p_T(j_6) > 75 \text{ GeV}$	313	329	25.7	26.0	12.3	13.0
	$ \eta(j_{1,2,3,4,5,6}) < 2.0$	260	277	22.6	22.6	10.5	11.1
	Aplanarity > 0.08	171	199	16.0	16.8	7.28	7.80
	$E_{\rm T}^{\rm miss}/\sqrt{H_T} > 16 \text{ GeV}^{1/2}$	42.8	47.1	6.91	6.7	3.58	3.74
	$m_{\text{eff}}(\text{incl.}) > 2200 \text{ GeV}$	4.96	5.6	4.87	4.6	3.57	3.73
SR6j-3400	jet multiplicity ≥ 6	798	823	50.7	52.4	21.7	23.0
	$\Delta \phi(j_{1,2,(3)}, E_{\text{miss}}^{\text{miss}}) > 0.4$	700	717	43.6	45.3	18.1	19.2
	$\Delta \phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.2$ $p_T(j_6) > 75 \text{ GeV}$	600 313	$\frac{604}{329}$	$\begin{vmatrix} 35.9 \\ 25.7 \end{vmatrix}$	$\begin{vmatrix} 36.7 \\ 26.0 \end{vmatrix}$	$\begin{array}{ c c c }\hline 14.4 \\ 12.3 \end{array}$	$15.2 \\ 13.0$
	$ p_T(j_6) > 15 \text{ GeV}$ $ \eta(j_{1,2,3,4,5,6}) < 2.0$	260	$\begin{array}{c} 329 \\ 277 \end{array}$	$\begin{array}{ c c c }\hline 25.7\\22.6\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 12.3 \\ 10.5 \end{vmatrix}$	13.0 11.1
	$ \eta(J_{1,2,3,4,5,6}) < 2.0$ Aplanarity > 0.08	171	199	16.0	16.8	7.28	7.80
	$E_{\mathrm{T}}^{\mathrm{misi}}/\sqrt{H_T} > 10 \; \mathrm{GeV}^{1/2}$	143	165	13.5	14.1	$\begin{bmatrix} 7.28 \\ 6.03 \end{bmatrix}$	6.44
	$m_{\text{eff}}(\text{incl.}) > 3400 \text{ GeV}$	0.152	0	0.260	0.294	$\begin{vmatrix} 0.03 \\ 3.56 \end{vmatrix}$	$\frac{0.44}{3.53}$
	mett (met.) > 3400 GeV	0.104	0	0.200	0.494	0.00	ა.აა

Table 3: Events normalized to the nominal cross section at NNLO-NNLL and 139 ${\rm fb}^{-1}$.

		1		
	Selection	$m_{\tilde{q}} = 80$	00 GeV	
		$m_{\tilde{\chi}_1^{\pm}} = 6$	00 GeV	
		$m_{\tilde{\chi}_1^0} = 400 \text{ GeV}$		
		ATLAS	CM	
Generated MC events		30000	50000	
Common	Preselection, $E_{\rm T}^{\rm miss} > 300 \text{ GeV}$,			
Requirements	$p_T(j_1) > 200 \text{ GeV}, m_{\text{eff}} > 800 \text{ GeV}$	6101	6095	
•	$ $ jet multiplicity ≥ 2	6101	6095	
	Cleaning cuts	6039	_	
SR5j-1600	$ $ jet multiplicity ≥ 5	3513	3914	
·	$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4$	2985	3280	
	$\Delta\phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.2$	2669	2887	
	$p_T(j_1) > 600 \text{ GeV}$	240	284	
	$E_{\rm T}^{\rm miss} / \sqrt{H_T} > 16 {\rm ~GeV^{1/2}}$	68.4	101	
	$m_{\text{eff}}(\text{incl.}) > 1600 \text{ GeV}$	68.4	101	
SR6j-1000	$ $ jet multiplicity ≥ 6	1752	2311	
ū	$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4$	1448	1910	
	$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.2$	1252	1608	
	$p_T(j_6) > 75 \text{ GeV}$	388	561	
	$ \eta(j_{1,2,3,4,5,6}) < 2.0$	250	411	
	Aplanarity > 0.08	123	216	
	$E_{\rm T}^{\rm miss} / \sqrt{H_T} > 16 \; {\rm GeV^{1/2}}$	10.4	16.3	
	$m_{\text{eff}}(\text{incl.}) > 1000 \text{ GeV}$	10.4	16.3	
SR6j-2200	$ $ jet multiplicity ≥ 6	1752	2311	
	$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4$	1448	1910	
	$\Delta\phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.2$	1252	1608	
	$p_T(j_6) > 75 \text{ GeV}$	388	561	
	$ \eta(j_{1,2,3,4,5,6}) < 2.0$	250	411	
	Aplanarity > 0.08	123	216	
	$E_{\rm T}^{\rm miss} / \sqrt{H_T} > 16 \; {\rm GeV}^{1/2}$	10.4	16.3	
	$m_{\text{eff}}(\text{incl.}) > 2200 \text{ GeV}$	3.31	1.22	
SR6j-3400	$ $ jet multiplicity ≥ 6	1752	2311	
	$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4$	1448	1910	
	$\Delta \phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.2$	1252	1608	
	$p_T(j_6) > 75 \text{ GeV}$	388	561	
	$ \eta(j_{1,2,3,4,5,6}) < 2.0$	250	411	
	Aplanarity > 0.08	123	216	
	$E_{\rm T}^{\rm miss} / \sqrt{H_T} > 10 \; { m GeV^{1/2}}$	84.6	177	
	$m_{\text{eff}}(\text{incl.}) > 3400 \text{ GeV}$	0	2.4	

Table 4: Events normalized to the nominal cross section at NNLO-NNLL and 139 fb⁻¹. This does not seem to fit well. With other cutflows in agreement this might be due to modeling problems.

References

- [1] The ATLAS collaboration [ATLAS Collaboration], "Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb⁻¹ of \sqrt{s} =13 TeV pp collision data with the ATLAS detector," ATLAS-CONF-2019-040.
- [2] J. S. Kim, D. Schmeier, J. Tattersall and K. Rolbiecki, "A framework to create customised LHC analyses within CheckMATE," Comput. Phys. Commun. 196 (2015) 535 [arXiv:1503.01123 [hep-ph]].

- [3] D. Dercks, N. Desai, J. S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, "CheckMATE 2: From the model to the limit," Comput. Phys. Commun. 221 (2017) 383 [arXiv:1611.09856 [hep-ph]].
- [4] J. Alwall *et al.*, "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations," JHEP **1407** (2014) 079 [arXiv:1405.0301 [hep-ph]].
- [5] T. Sjostrand, S. Mrenna and P. Z. Skands, "A Brief Introduction to PYTHIA 8.1," Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820 [hep-ph]].