CISC 2210 Discrete Structures - Noson S. Yanofsky

Student: Ruslan Pantaev

March 10, 2018

2.2

1.

Give the converse and contrapositive for each of the following propositions:

(a)

$$p \to (q \wedge r)$$

converse: $(q \land r) \to p$ contrapositive: $\neg (q \land r) \to \neg p$

(b)

if
$$x + y = 1$$
, then $x^2 + y^2 \ge 1$

converse: if $x^2 + y^2 \ge 1$, then x + y = 1 contrapositive: if $x^2 + y^2 \ngeq 1$, then $x + y \ne 1$

(c)

if
$$2 + 2 = 4$$
, then $3 + 3 = 8$

converse: if3 + 3 = 8, then2 + 2 = 4contrapositive: $if3 + 3 \neq 8, then2 + 2 \neq 4$

3.

Consider the following propositions:

(a)

Which proposition is the converse of $p \to q$?

$$q \to p$$

(b)

Which proposition is the contrapositive of $p \to q$?

$$\neg q \to \neg p$$

(c)

Which propositions are logically equivalent to $p \to q$?

$$\neg p \lor q$$
$$\neg q \to \neg p$$
$$\neg (p \land \neg q)$$

9.

Construct the truth table for $[(p \lor q) \land r] \to (p \land \neg q)$

p	q	r	$[(p \vee q)$	$\wedge r$]	\rightarrow	$(p \land$	$\neg q)$
0	0	0	0	0	1	0	1
0	0	1	0	0	1	0	1
0	1	0	1	0	1	0	0
0	1	1	1	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	1	1	1	1	1
1	1	0	1	0	1	0	0
1	1	1	1	1	0	0	0

11.

Construct truth tables for:

(a)

$$\neg(p \lor q) \to r$$

p	q	r	_	$(p \lor q)$	$\rightarrow r$
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	0	1	1

12.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)