Challenges and opportunities in personal sensing for mood disorders

Filippo Corponi

MD, MSc, PhD Student in Biomedical AI

A new paradigm?

Present

Some months later...

A new paradigm?

Present

Some months later...

A new paradigm?

Present

Some months later...

<u>Unlabelled</u> data is easier to source

<u>Labelling</u> data is very resource-intensive

Unlabelled data is easier to source

data not collected for other purposes

Is it possible to learn from unlabelled data something useful towards our goals?

<u>Labelling</u> data is very resource-intensive

<u>Unlabelled</u> data is easier to source

data not collected for other purposes

Is it possible to learn from unlabelled data something useful towards our goals?

Self-Supervised Learning

Global prevalence: depression 4.4%, bipolar disorder 2.4%

Global prevalence: depression 4.4%, bipolar disorder 2.4%

Depression is the second leading cause of chronic disease burden

(Years Lived with Disability)

Global prevalence: depression 4.4%, bipolar disorder 2.4%

Depression is the second leading cause of chronic disease burden

(Years Lived with Disability)

Population-level economic burden: £6.43 billion

(UK-based estimate for 2018-2019)

Relapsing remitting course

Relapsing remitting course

Relapsing remitting course

Relapsing remitting course

Binary classification as the simplest yet useful scenario

Personal Sensing

Mood disorders' symptoms translate into changes in physiological parameters

Personal Sensing

Mood disorders' symptoms translate into changes in physiological parameters

Wearable technology and AI

→ near-continuous, passive, ecological monitoring → early interventions

Personal Sensing

Mood disorders' symptoms translate into changes in physiological parameters

Wearable technology and AI

hear-continuous, passive, ecological monitoring hearly interventions

Annotation* is resource-intensive

Annotation* is resource-intensive

Studies have limited sample size (dozens)

Annotation* is resource-intensive

Studies have limited sample size (dozens)

Several unlabelled open access datasets

Self-Supervised Learning

Pre-train model with **unlabelled data** on **surrogate task**

Step 1

Self-Supervised Learning

Pre-train model with **unlabelled data** on **surrogate task**

Step 1

Model learns about the data

Self-Supervised Learning

Pre-train model with **unlabelled data** on **surrogate task**

Step 1

Model learns about the data

Fine-tune model on target task with labelled data

Step 2

E4 Self Learning

Analyses Pipeline

Analyses Pipeline

Surrogate Tasks

Masked Prediction

Surrogate Tasks

Transformation Prediction

INTREPIBD Cohort

	AGE	FEMALES	DIAGNOSIS	HDRS	YMRS
	MEAN (STD)	N (PERCENTAGE)		MEAN (STD)	MEAN (STD)
EUTHYMIA	47.22 (16.06)	14 (43.75%)	BD (N=26)	2.93 (1.73)	1.3 (1.61)
N=32			MDD (N=6)	3.14 (1.95)	0.29(0.76)
ACUTE EPISODE	50.56 (13.05)	15 (46.88%)	MDE-BD (N=9)	20.22 (6.34)	2.56 (3.94)
N=32			MDE-MDD (N=7)	25.14 (4.78)	1.86 (2.41)
			ME (N=14)	5.67 (4.37)	20.13 (6.28)
			MX (N=2)	16 (4.24)	13.5 (4.95)

Recording

Pre-processing

Pre-processing

Pre-processing

E4mer

	Model	ACC		PRECISION		RECALL		F_1 SCORE		AUROC	
	WIODEL	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT
SL	XGBoost	72.02	82.81	71.33	83	72.11	81.1	71.72	82.03	72.44	83.17

XGBoost: traditional machine learning with extracted features

Model		ACC		PRECISION		RECALL		F_1 SCORE		AUROC	
	WODEL	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT
SL	XGBoost E4mer	72.02 75.35	82.81 81.25	71.33 73.46	83 80.55	72.11 75.34	81.1 82.14	71.72 74.39	82.03 81.33	72.44 75.68	83.17 82.22

XGBoost and a modern deep learning pipeline perform on a similar level

Model		ACC		PRECISION		RECALL		F_1 SCORE		AUROC	
	WIODEL		SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT
SL	XGBoost E4mer	72.02 75.35	82.81 81.25	71.33 73.46	83 80.55	72.11 75.34	81.1 82.14	71.72 74.39	82.03 81.33	72.44 75.68	83.17 82.22
SSL	MP (LR) MP (FT)			Part 1411 41 41 41 41 41 41 41 41 41 41 41 4						78.02 82.02	

Self-supervised learning confidently outperforms baselines on all metrics

Model		ACC		PRECISION		RECALL		F_1 SCORE		AUROC	
		SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT	SEGMENT	SUBJECT
SL	XGBoost E4mer		82.81 81.25	71.33 73.46		72.11 75.34	81.1 82.14		82.03 81.33	72.44 75.68	
SSL	MP (LR) MP (FT) TP (LR) TP (FT)	77.53 81.23 71.16 75.69	87.50 90.63 81.25 84.38	80.91 72.12	90.11 82.44	82.00	82.31		82.37	71.89	89.2 93.11 84.12 84.32

Surrogate task makes a difference

Embeddings

Ablation analysis

Is euthymia vs acute episode the whole story?

Mood disorders are highly heterogeneous

Mood disorders are highly heterogeneous Generalization across subjects and within subject

Mood disorders are highly heterogeneous

Generalization across subjects and within subject

Mood disorders are highly heterogeneous

Personal sensing data is noisy

Mood disorders are highly heterogeneous

Personal sensing data is noisy

More variability in the signal down to physiological rather than illness-related factors

Mood disorders are highly heterogeneous

Personal sensing data is noisy

More variability in the signal down to physiological rather than illness-related factors

Mood disorders are highly heterogeneous

Personal sensing data is noisy

Optimal windowing

Mood disorders are highly heterogeneous

Personal sensing data is noisy

Optimal windowing

Explainability

Mood disorders are highly heterogeneous

Personal sensing data is noisy

Optimal windowing

Mood disorders are highly heterogeneous

Personal sensing data is noisy

Optimal windowing

Explainability

Action policy and uncertainty

Thanks for your attention

Bipolar Disorders Unit, Hospital clinic, Barcelona

Antonio Vergari, PhD

Bryan Li, MSc

Diego Hidalgo-Mazzei, MD, PhD