Group#9

Xuan, Megha, Jianhao, Guangyan September 29, 2018

Readme

We are using the data from:

```
head(read.csv("SARStats.csv") )
```

##		${\tt Year.Month}$	State Countym						Indi	Industry	
##	1	2018	${\tt California}$	${\tt Alameda}$	Coun	ity, C	A Depo	ositor	y Institu	ıtion	
##	2	2018	${\tt California}$	${\tt Alameda}$	Coun	ity, C	A Depo	ositor	y Institu	ıtion	
##	3	2018	${\tt California}$	${\tt Alameda}$	Coun	ity, C	A Depo	ositor	y Institu	ıtion	
##	4	2018	${\tt California}$	${\tt Alameda}$	Coun	ity, C	A Depo	ositor	y Institu	ıtion	
##	5	2018	${\tt California}$	${\tt Alameda}$	Coun	ity, C	A Depo	ositor	y Institu	ıtion	
##	6	2018	${\tt California}$	${\tt Alameda}$	Coun	ity, C	A Depo	ositor	y Institu	ıtion	
##			Suspicion	ıs.Activi	ity	Pro	oduct	Ir	strument	Count	
##	1			I	ACH C	Credit	Card	U.S.	${\tt Currency}$	6	
##	2			Che	eck C	Credit	Card	U.S.	${\tt Currency}$	10	
##	3	Consumer Lo	oan (see ins	struction	ns) C	Credit	Card	U.S.	${\tt Currency}$	2	
##	4		Credit/	Debit Ca	ard C	Credit	Card	U.S.	${\tt Currency}$	27	
##	5			Ma	ail C	Credit	Card	U.S.	${\tt Currency}$	2	
##	6		Mass	s-Market	ing C	Credit	Card	U.S.	${\tt Currency}$	6	

This is how we generated the dataset:

Filter

Jianhao's Plot

Xuan's plot

As we get a lot of regions here, it is hard to put all the information on the same plot. So I randomly picked 4 counties: ("Los Angeles County, CA", "Santa Clara County, CA", "Orange County, CA", "Santa Barbara County, CA").

I don't want the text to be overlapped with each other, so I switch the direction of x-axis and y-axis. Now the x-axis becomes vertical and the y-axis becomes horizontal.

Position = "dodge" places overlapping objects directly beside one another. This makes it easier to compare individual values.

```
SARStats <- read_csv("~/Desktop/SARStats.csv")
```


Discussion & Conclusion

Jianhao's plot

```
data_new<-SARStats %>%
  group_by(Countym,Industry) %>%
  summarise(n=sum(Count))%>%
  filter(Countym!='[Total]')%>%
  filter(Industry!='[Total]')%>%
  arrange(desc(n))
ggplot(data_new, aes(x = Countym,y =n, group = factor(1))) +
```


Discussion & Conclusion

##From this graph, we can find that the Los Angeles County, CA has the most financial frauds, and these