

Компьютерная лингвистика и информационные технологии

Архитектура трансформер (на основе материалов Jay Alammar и Е. Артемовой)

BERT

- BERT (Devlin et al., 2019);
- На основе архитектуры трансформер (Vaswani et al., 2017) для NMT;
- Новая парадигма: обучение большой языковой модели с использованием training objectives -> дообучение на целевой задаче;
- Прорыв в области АОЕЯ
- http://jalammar.github.io/illustrated-transformer/

Трансформер

Энкодер-декодер на основе трансформера

The encoders are all identical in structure (yet they do not share weights). Each one is broken down into two sublayers:

Блок энкодера

- Для простоты на вход
 получаем предобученные
 пословные эмбеддинги
- Хотим, чтобы эмбеддинги z_i
 хорошо кодировали контекст

Блок энкодера

- К каждому входному
 элементу после
 self-attention независимо
 применяется FFN
- Каждый блок применяется последовательно

- Для каждого элемента последовательности можем определить "значимость" других элементов в контексте
- Attention как метод интерпретации
- Хотим распространить "значимость"
 элементов последовательности вверх по сети

- Для каждого входного вектора
 хотим получить ключ, запрос и
 значение (key, value and query)
- Имеем три обучаемые матрицы: W^Q, W^K, W^V
- Умножаем входные векторы на эти матрицы, получаем векторы q, k и v (линейное преобразование)

- Воспринимаем элемент
 последовательности как запрос (q)
- Перебираем все комбинации q_i * k_j
 и считаем промежуточные скоры,
 включая сам элемент

- Скоры (результаты скалярных произведений на шаге 2) делим на корень из d_k
- d_k гиперпараметр (возьмем за данность)
- Берем софтмакс по вектору скоров,
 чтобы получить веса внимания

- Умножаем все векторы v_i на полученные веса внимания
- Все полученные значения

складываем

The self-attention calculation in matrix form

Змей Горыныч

- Имеем к голов, для каждой і-ой головы получаем вектор z_i
- Голова отдельный механизм
 self-attention (набор из 3-х матриц)
- Считаем self-attention для каждой головы независимо
- Ширина и глубина модели

With multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in different Q/K/V matrices. As we did before, we multiply X by the WQ/WK/WV matrices to produce Q/K/V matrices.

512

Змей Горыныч

LINEFIR (d)

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Змей Горыныч

Scaled Dot-Product Attn vs Multi-Head Attn

Scaled Dot-Product Attention

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_{\text{h}}) W^O \\ \text{where head}_{\text{i}} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

- Encoder-Decoder Attention:

 декодер получает выход с

 последнего блока энкодера
- k, v (enc), q (dec)
- Хотим сформировать вектор контекста (по аналогии с RNN)

- Верим, что выход 6-ого блока
 энкодера есть хорошая
 репрезентация контекста
- Матрицы Kencdec и Vencdec
 обучаются, чтобы получить
 векторы к и v для декодера
 (общие для каждого блока
 декодера)

Linear + Softmax Vencdec **DECODERS ENCODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** étudiant student suis am **INPUT OUTPUTS**

OUTPUT

a student <end of sentence>

Decoding time step: 1 2 3 4 5 6

- Декодер генерирует элементы последовательности друг за другом (как ЯМ)
- Энкодер может видеть все
 элементы последовательности,
 в то время как декодер в
 момент времени видит
 подмножество элементов
 (маска)

Linear + Softmax Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS PREVIOUS** étudiant student am **INPUT OUTPUTS**

OUTPUT

am a student <end of sentence>

Decoding time step: 1 2 3 4 5 6

 Для каждого предсказываемого элемента последовательности после линейного преобразования получаем набор чиселок – logits (по самому правому элементу в момент времени)

• Берем софтмакс

This figure starts from the bottom with the vector produced as the output of the decoder stack. It is then turned into an output word.

Трансформер

- Non-sequential: обрабатываем элементы входа одновременно
- Информация о позиции элемента: позиционное кодирование
- Можно распараллелить вычисления
- Self-attention
- Кодирование длинных последовательностей и отношений между их элементами

RNN

- Sequential: обрабатываем элементы входа последовательно
- Информация о позиции элемента: последовательная обработка
- Нельзя распараллелить вычисления
- Кодирование элемента в момент времени имеет большое влияние на кодирование следующих элементов