Lecture 3: Polynomial interpolation, Linear systems

Jamie Haddock

Table of contents

1	Poly	ynomial Interpolation	1
	1.1	Interpolation as a linear system]

1 Polynomial Interpolation

Often we encounter data to which we hope to fit a function – see e.g., most of machine learning! One of the most fundamental such problems is to find a polynomial function that passes through all data points. This problem is known as **polynomial interpolation**.

Definition: Polynomial interpolation

Given n points $(t_1, y_1), \dots, (t_n, y_n)$, where the t_i are all distinct, the **polynomial interpolation** problem is to find a polynomial p of degree less than n such that $p(t_i) = y_i$ for all i.

1.1 Interpolation as a linear system

The polynomial interpolation problem in the definition above seeks a polynomial of the form

$$p(t) = c_1 + c_2 t + c_3 t^2 + \dots + c_n t^{n-1}$$

such that $y_i = p(t_i)$ for all i. We can rewrite this as

These equations can be written succinctly in our usual linear system form

$$\begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-2} & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-2} & t_2^{n-1} \\ 1 & t_3 & \cdots & t_3^{n-2} & t_3^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & t_n & \cdots & t_n^{n-2} & t_n^{n-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix},$$

which we denote $\mathbf{Vc} = \mathbf{y}$.

This is special type of matrix!

Definition: Vandermonde matrix

Given distinct values t_1, \cdots, t_n , a Vandermonde matrix for these values is the $n \times n$ matrix appearing above.