第五章 習題解答

10. 試說明 EWMA 管制圖與修華特管制圖之間的關係。

【解】:

修華特管制圖其實只是 EWMA 管制圖的特例。假如我們認為最近的一個樣本統計量很重要,而之前的所有樣本統計量則認為不重要,則我們可以將最近的一個樣本統計量分派最大的權數(即r=1),而將其餘較早之前的樣本統計量分派為零的權數,如此就形成修華特管制圖。

12. 試利用下列抽樣資料,利用r=0.2,L=3來建構 EWMA 管制圖。

124 1.					
樣本	\mathcal{X}_1	x_2	x_3	\mathcal{X}_4	x_5
組					
1	263	259	252	261	257
2	268	266	265	259	262
3	253	255	247	248	248
4	255	248	254	260	258
5	255	263	268	248	259
6	267	266	262	250	249
7	244	248	254	263	256
8	254	259	258	261	251
9	248	249	258	260	254
10	257	260	249	255	248
11	250	252	263	258	261
12	257	252	253	259	242
13	253	257	243	255	249
14	251	256	265	248	264
15	249	241	250	247	243
16	261	258	248	260	254
17	262	255	263	257	260
18	244	257	254	262	247

19	242	242	243	247	248
20	261	245	266	242	246
21	260	254	259	248	252
22	259	255	260	261	267
23	263	256	249	251	252
24	243	242	256	240	248
25	261	265	249	253	254

【解】:

本題中,每組樣本數n=5,且標準差未知,因此可用全距來估計標準差。

因此,必須先估計
$$\sigma$$
,而由前面的章節可知: $\hat{\sigma} = \frac{\overline{R}}{d_2}$

依照先前的步驟建立 EWMA 管制圖:

1.計算各組樣本平均數及全距:

各組平均數
$$\bar{x}_i = \frac{\sum_{j=1}^{n} x_{ij}}{n}$$

各組全距 $R_i = \max(x_{i1}, x_{i2}, \dots, x_{in}) - \min(x_{i1}, x_{i2}, \dots, x_{in})$ 將各組資料計算之後,整理如下表 5-12:

表 5-12

樣本號碼i	樣本平均數 \bar{x}_i	樣本全距 R_i	$EWMAW_i$	UCL	LCL
1	258.4	11	255.264	256.0489	252.9111
2	264	9	257.0112	256.4892	252.4708
3	250.2	8	255.649	256.7261	252.2339
4	255	12	255.5192	256.8654	252.0946
5	258.6	20	256.1353	256.9505	252.0095
6	258.8	18	256.6683	257.0034	251.9566
7	253	19	255.9346	257.0367	251.9233
8	256.6	10	256.0677	257.0578	251.9022
9	253.8	12	255.6142	257.0712	251.8888
10	253.8	12	255.2513	257.0797	251.8803

11	256.8	13	255.5611 257.0852 251.8748
12	252.6	17	254.9688 257.0886 251.8713
13	251.4	14	254.2551 257.0909 251.8691
14	256.8	17	254.7641 257.0923 251.8677
15	246	9	253.0112 257.0932 251.8668
16	256.2	13	253.649 257.0938 251.8662
17	259.4	8	254.7992 257.0942 251.8658
18	252.8	18	254.3994 257.0944 251.8656
19	244.4	6	252.3995 257.0946 251.8654
20	252	24	252.3196 257.0947 251.8653
21	254.6	12	252.7757 257.0947 251.8653
22	260.4	12	254.3005 257.0948 251.8652
23	254.2	14	254.2804 257.0948 251.8652
24	245.8	16	252.5843 257.0948 251.8652
25	256.4	16	253.3475 257.0948 251.8652

因此:
$$\bar{x} = \frac{\sum_{i=1}^{k} \bar{x}_{i}}{k} = \frac{\sum_{i=1}^{25} \bar{x}_{i}}{25} = \frac{6362}{25} = 254.48$$

$$\bar{R} = \frac{\sum_{i=1}^{k} R_{i}}{k} = \frac{\sum_{i=1}^{25} R_{i}}{25} = \frac{340}{25} = 13.6$$

2.估計製程標準差:

由附表 8 中,可以查出當 n=5 時, $d_2=2.326$

因此,
$$\hat{\sigma} = \frac{\overline{R}}{d_2} = \frac{13.6}{2.326} = 5.8469$$

3.計算指數加權移動平均值:

初始值:
$$W_0 = \overline{\overline{x}} = \frac{\sum_{i=1}^{25} \overline{x}_i}{25} = \frac{6362}{25} = 254.48$$

由式子(5.10),我們知道 $W_k = r\overline{X}_k + (1-r)W_{k-1}$

因此, $W_1 = 0.2 \times 258.4 + (1-0.2) \times 254.48 = 255.264$

依此類推,即可依序計算出 $W_1 \sim W_{25}$,見表 5-12。

4.計算 EWMA 管制圖之上下管制界限及中心線:第一期(k=1)之管制界限為

上管制界限:

$$UCL = \overline{\overline{X}} + L\hat{\sigma}\sqrt{\frac{r}{n(2-r)}} \left[1 - (1-r)^{2k}\right]$$
$$= 254.48 + 3 \times 5.8469 \times \sqrt{\frac{0.2}{5 \times (2-0.2)}} \left[1 - (1-0.2)^{2(1)}\right] = 256.0489$$

中心線: $CL = \overline{\overline{X}} = 254.48$

下管制界限:

$$LCL = \overline{\overline{X}} - L\hat{\sigma}\sqrt{\frac{r}{n(2-r)} \left[1 - (1-r)^{2k}\right]}$$
$$= 254.48 - 3 \times 5.8469 \times \sqrt{\frac{0.2}{5 \times (2-0.2)} \left[1 - (1-0.2)^{2(1)}\right]} = 252.9111$$

第二期(k=2)之管制界限為

上管制界限:

$$UCL = \overline{\overline{X}} + L\hat{\sigma}\sqrt{\frac{r}{n(2-r)} \left[1 - (1-r)^{2k}\right]}$$

$$= 254.48 + 3 \times 5.8469 \times \sqrt{\frac{0.2}{5 \times (2-0.2)} \left[1 - (1-0.2)^{2(2)}\right]} = 256.4892$$

中心線: $CL = \overline{\overline{X}} = 254.48$

下管制界限:

$$LCL = \overline{\overline{X}} - L\hat{\sigma}\sqrt{\frac{r}{n(2-r)} \left[1 - (1-r)^{2k}\right]}$$

$$= 254.48 - 3 \times 5.8469 \times \sqrt{\frac{0.2}{5 \times (2-0.2)} \left[1 - (1-0.2)^{2(1)}\right]} = 252.4708$$

其餘依此類推。當 $i \ge 20$ 時,各期對應的管制界限如表 5-12 所示,即 UCL = 257.0948 , LCL = 251.8652 。

4.將所有計算出來的加權移動平均值畫在管制圖上,並決定是否製程的 變異及目標值都在管制狀態下。

指數加權移動平均管制圖:

由圖中可以看出第二組的樣本已經超出管制界限,表示製程已經不在管制狀態下,應該立即著手找出可能造成製程異常的原因,並採取矯正行動,消除異常原因,使製程恢復到管制狀態。