A Bottom-Up Approach to Safe Low-Level Programming

Adam Chlipala Harvard University MLPA 2010

Verified Software Stacks

A Flexible Architecture

Set of programming language features, with a verification methodology

....

Traditional manual verification with tactics

Verification conditions

Implemented entirely as **Coq libraries**, as **productive** as classical verification, & **not part of the trusted base**!

Parametrized proof automation

A definition of **Certified Assembly Code Packages** (based on the CAP work of Zhong Shao, et al.)

Code for Linked List Reverse

```
Definition linkedList := bfunction "rev" / [st ~>
 / Ex ls, ExX, ![ ^!{llist ls st#R0} * ![Var VO] ] st
 /\ st#Rret @@ (st' ~> [< st'#Rsp = st#Rsp >]
   /\ ![ ^!{llist (rev ls) st'#R0} /
                                       Precondition
        <u>* !</u>[Var (VS VO)] ] st')] {
 R1 <- 0;; _ _ _
 /[st ~> ExX, Ex ls1, Ex ls2,
 ![ ^!{llist ls1 st#R1} * ^!{llist ls2 st#R0}
      * ![Var VO] | st
   /\ st#Rret @@ (st' ~> [< st'#Rsp = st#Rsp >]
   /\ ![ ^!{llist (rev ls2 ++ ls1) st'#R0}
     While (R0 != 0) {
                                     Loop Invariant
 R2 < -\$[R0+1];;
  | $[R0+1] <- R1;; /
   R1 <- R0;;
  R0 <- R2 Structured Control Flow
 /};; /
 R0 <- R1;;
 JumpI Rret
```

} .

Proof of Correctness

```
Hint Extern 1 ( ===> ) => progress unfold llist.
Hint Resolve lseg nil fwd lseg cons fwd
    llist app nil fwd : Forward.
Hint Extern 1 ( ===> lseg nil ) =>
    apply lseg nil bwd : Backward.
                                             Rules for
Hint Extern 1 ( ===> lseg 0 0) =>
                                            quantifier
    apply lseg nil bwd : Backward.
                                            instantiation
/Hint Extern 1 ( ===> lseg ?ls ?h ) =>
    ensureUnif ls; ensureNotUnif h;
    apply lseg cons bwd : Backward.
Theorem linkedListOk : package linkedList langs.
  structuredSep. Correctness proof, via domain-specific tactic
Oed.
```

Outline

- The definition of certified assembly packages
- Verification frontends as libraries
 - Parsing
 - Code generation
 - Verification condition generation
- Full automation of correctness proofs
 - ...using triggers for quantifier instantiation
- Some case studies

Modular Verification

 $\phi = 19 = 19$

Ra	ocata	h	Δ	COd	Δ
חט	lucala	U		CUU	U

Precondition for entry point

Operational Semantics $S \rightarrow S'$

= "Register R points to safe code" ∧

Correctness theorem (?)

 $\forall S, S'. \phi(S) \land S \rightarrow^* S' \Rightarrow \exists S''. S' \rightarrow S''$

jmp __

L1:

jmp __ L2:

ret

call f

g:

jmp _

Certified Assembly Packages

Correctness Condition

Correctness proofs quantify over a program specification Φ , containing at least this module's preconditions.

Basic blocks with preconditions

S	L1 : φ ₁	L2 : φ ₂	3 83.	Ln: φ _n
7	'1	1 1 2		1 'n
			/	
CI				
S'	jmp e	/ jmp		jmp
(D)				
720			<u> </u>	<u> </u>
φ(S')	<u>inal program correctı</u>	<u> 1ess</u>	<u>theorem:</u>

Final program correctness theorem:

- 1. Execution never gets stuck.
- 2. Whenever we enter a basic block, its precondition is satisfied.

Modules from Structured Programs

Sequencing

Precondition: * Inputs Exit label: 7 inr(L2) Local label type: τ1 Entry label: L1 inl(L1) Precondition uts Verif. Condition: P1 Exit label: ? **Postcondition: ?** Local label type: $\tau 1 + \tau 2$ **Entry label: inl(L1)** Precondition: ? Verif. Condition: P1 ∧ P2 **Postcondition: ?** Local label type: τ 2 Entry label: L2 inr(L2) Verif. Condition: P2 Postcondition: ?

Loops

[I] while (b) {

Precondition: P

Exit label: L

Local label type: Test + Body(τ)

Entry label: inl(L1)

Verif. Condition: P1 \land (P \Rightarrow I) \land (P' \Rightarrow I)

Postcondition: I ∧ ¬b

Precondition: ? I \ b

Exit label: ? Test

Local label type: τ

Entry label: L1 Body(L1)

Verif. Condition; P1

Postcondition: ? P'

Concrete Syntax

```
[...]
While (R0 < 10) {
    If (R1 == R2) {
        R0 <- R1 * 10
    } else {
        R1 <- R1 + R2;;
        R0 <- R1
    }
}</pre>
```

```
Coercion single : instr >-> scode.
Infix ";;" := seq
  (right associativity, at level 95) : SP_scope.
Notation "'If' c { b1 } 'else' { b2 }" :=
  (If_ (Code c) (Rval1 c) (Rval2 c) b1 b2)
  (no associativity, at level 95, c at level 0) : SP_scope.
Notation "[ p ] 'While' c { b }" :=
  (While_ p (Code c) (Rval1 c) (Rval2 c) b)
  (no associativity, at level 95, c at level 0) : SP_scope. 16
```

Separation Logic

p ==> n

n

P1 * P2

emp

The heap is empty.

[P]

The heap is empty and pure fact P is true.

allocated(p, 0) = emp allocated(p, n) = $(\exists v, p ==> v)$ * allocated(p+1, n-1)

Abstract Predicates

Swap (inputs p and q):

Precondition: p ==> a * q ==> b

Postcondition: p ==> b * q ==> a

malloc (input sz, output p):

Precondition: mallocHeap

Postcondition: mallocHeap * [p <> 0] * allocated(p, sz)

Add an element to a linked list (inputs p and v, output p'):

Postcondition: mallocHeap * llist(v :: ls, p') (* llist(ls', q)

The Frame Rule:

It is always legal to add the same formula to pre- and postconditions, using *.

Adapting to Assembly Code

```
Add an element to a linked list (inputs p, v, and R; output p'): Precondition: mallocHeap * llist(ls, p) Return pointer * [R @ mallocHeap * llist(v :: ls, p')]
```

```
"Fitsengthened precenditional Parallockeap * llist(ls, p) * P * [R @ mallocHeap * llist(v :: ls, p') * P]
```

A Full Precondition for malloc

```
Quantifies over
            Binders for machine state Before and after versions
                                of machine registers
st ~> ExX, ![ ^!{mallocHeap/st#R0}
              * ![Var V0] ] st
  /\ st#Rret @@ (st' ~>
     [< st'#R0 <> 0 /\ st'#Rsp = st#Rsp >]
    /\ ![ ^!{allocated st'#R0 (st#R1+2)}
         * ^!{mallocHeap st#R0}
         * ![Var (VS VO)] ] st')
```

Proof Obligations

Verification Condition:

P1 ∧ P2 ∧ P3 ∧ P4

An Extensible Prover

x:nat

11, I2 : list nat

tl:ptr

Proof Context

In state S:

Iseg (x :: I1) R0 tl * Ilist I2 tl

Pre-state

Mem[R0] < -y;

R1 <- Mem[R0+1]

Straightline Code

In state S[Mem[R0] := y, R1 := Mem[R0+1]]:

R0 ==> y * R0+1 ==> R1 * Ilist (I1 ++ I2) R1

Post-state

Normalize State Accesses

x:nat

11, I2 : list nat

tl:ptr

Proof Context

In state S:

Iseg (x :: I1) S.R0 tl * Ilist I2 tl

Pre-state

Mem[R0] < - y; R1 <- Mem[R0+1] Straightline Code

In state S[Mem[R0] := y, R1 := Mem[R0+1]]: S.R0 ==> y * S.R0+1 ==> S.Mem[R0+1]* Ilist (I1 ++ I2) S.Mem[R0+1]

Post-state

23

Unfold Predicates in Pre-State

```
x:nat
                     >p : ptr
p <> 0 ≪
                                                                 Proof
  11, 12 : list nat
                                                                Context
  tl:ptr
   In state S:
  Iseg (x :: I1) S.R0 tl* llist I2 tl
                                                               Pre-state
\exists p. [p <> 0] * S.R0 ==> x * S.R0+1 ==> p * lseg | 1 p t |
   Mem[R0] < -y;
                                                               Straightline
                                                                  Code
   R1 < -Mem[R0+1]
   In state S[Mem[R0] := y, R1 := Mem[R0+1]]:
                                                               Post-state
   S.R0 ==> y * S.R0+1 ==> S.Mem[R0+1]
      * Ilist (I1 ++ I2) S.Mem[R0+1]
                                                                       24
```

Simplify Memory Reads

x:nat p:ptr

I1, I2 : list nat p <> 0

tl:ptr

Proof Context

In state S:

S.R0 ==> x * S(R0+1)==> p * lseg | 11 p t | 11 t | 12 t | 12 t | 13 t | 14 t | 15 t

Pre-state

Mem[R0] < -y;

R1 <- Mem[R0+1]

Straightline Code

In state S[Mem[R0] := y, R1 := Mem[R0+1]]:

S.R0 ==> y * S.R0+1 ==> S.MontR0+11) p

* Ilist (I1 ++ I2) S.Mem[R0+1]

Post-state

25

Execute Memory Writes

x:nat p:ptr

I1, I2 : list nat p <> 0

tl:ptr

Proof Context

In state S:

S.R0 ==> x * S.R0+1 ==> p * lseg | 1 p t | * llist | 2 t |

Pre-state

Mem[RQ] < -y;

R1 < -Mem[R0+1]

Straightline Code

In state S(Mem[R0]) := y, R1 := Mem[R0+1]]:

S.R0 ==> y * S.R0+1 ==> p * Ilist (I1 ++ I2) p

Post-state

Unfold Predicates in Post-State

x:nat

p:ptr

11, 12 : list nat

X: ptr

tl:ptr

Unification variable

Proof

In state S[Mem[R0] := y, R1 := Mem[R0+1]]: S.R0 ==> y * S.R0+1 ==> p * Iseg I1 p tI * Ilist I2 tI

tl

Mem[R0] < -y;

R1 <- Mem[R0+1]

Straightline Code

Pre-state

In state S[Mem[R0] := y, R1 := Mem[R0+1]]:

S.R0 ==> y * S.R0+1 ==> p * Ilist (I1 ++ I2) p

∃p'. Iseg I1 p p' * Ilist I2 p'

Post-state

27

Cancel Equal Terms and Finish

x:nat p:ptr

I1, I2 : list nat p <> 0

tl:ptr X:ptr

Proof Context

```
In state S[Mem[R0] := y, R1 := Mem[R0+1]]:

S.Ro \Longrightarrow y * S.Ro+1 \Longrightarrow p * Iseg 11 p tl * Jlist 12 tl
```

Pre-state

```
Mem[R0] < - y;
R1 <- Mem[R0+1]
```

Straightline Code

In state
$$S[Mem[R0] := y, R1 := Mem[R0+1]]$$
:
S.R0 $\Longrightarrow y$ * S.R0+1 $\Longrightarrow p$ * IsegHp X * Jlist 12 X

Post-state

Unfolding Hints Goals

Library A Unfolding hints

Library B Unfolding hints

Library C Unfolding hints

Separation Logic tactic, implemented in Coq's **Ltac** language

▼ Proofs

Proving an Unfolding Lemma

```
Theorem freeList_nonempty_fwd : forall fl flh flt,
  flh <> flt
  -> freeList fl flh flt
  ===> Ex p', Ex sz, Ex fl', [< fl = flh :: fl' >]
    * flh ==> p' * (flh+1) ==> sz
    * !{allocated (flh+2) sz} * !{freeList fl' p' flt}.
  destruct fl; sepLemma.
    Proof script
Qed.
```

Hint Resolve freeList_nonempty_fwd : Forward.

Registering this lemma to use in unfolding hypotheses

A Lemma with an Inductive Proof

```
Lemma freeList_middle : forall fl2 flt p sz fl1 flh,
flt <> 0
-> !{freeList fl1 flh flt}
 * flt ==> p * (flt+1) ==> sz
 * !{allocated (flt+2) sz} * !{freeList fl2 p 0}
 ===> freeList (fl1 ++ flt :: fl2) flh 0.
 induction fl1; sepLemma.
Qed.
```

More Complicated Hints

Case Studies

Library	Total Lines	Lines of Proof Script
malloc/free	322	89
Linked list lemmas	128	22
Linked list free and reverse (copying)	109	34
Linked list reverse (in-place)	33	6
Linked list append (in-place, in continuation-passing style, with explicit closures)*	135	17

^{*} Based on the most involved example from the XCAP paper by Ni and Shao, which took about 1500 lines of proof

Coding and Debugging Proofs

34

Conclusion

Classical Verification

Structured programs
Automated proofs

Interactive Theorem-Proving

Small proof checker Flexibility Higher-order reasoning

Hint Databases in Coq

```
Theorem plus cong : forall n m n' m',
   n = n'
   \rightarrow m = m'
   \rightarrow n + m = n' + m'.
   (* ...proof... *)
Oed.
Theorem plus comm : forall n m,
   n + m = m + n.
   (* ...proof... *)
Oed.
Hint Resolve plus cong plus comm : Arith.
Goal forall i j k, (i + j) + k = (j + i) + k.
   auto with Arith.
Oed.
```