

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ CAMPUS FORTALEZA

APRENDIZADO DE MÁQUINA

RAIANE ROCHA REIS

RELATÓRIO: MÉTODOS DE CLASSIFICAÇÃO

SUMÁRIO

1	INTRODUÇÃO	2
2	REFERENCIAL TEÓRICO	3
2.1	MLP (Perceptron Multicamadas)	3
2.2	Naive Bayes	3
2.3	SVM com kernel RBF	3
2.4	SVM com kernel Polinomial	3
2.5	SVM com kernel Linear	3
3	JUSTIFICATIVA	4
4	OBJETIVOS	5
4.1	Objetivo Geral	5
4.2	Objetivos Específicos	5
5	METODOLOGIA	6
5.1	Seção 1	6
5.2	Seção 2	6
5.3	Seção 3	6
6	RESULTADOS E DISCUSSÃO	7
6.1	Seção 1	7
6.2	Seção 2	7
6.3	Seção 3	7
7	CONCLUSÃO	8
	REFERÊNCIAS	9

1 INTRODUÇÃO

2 REFERENCIAL TEÓRICO

2.1 MLP (Perceptron Multicamadas)

Como é mostrado na Figura 1a, uma Rede Neural Multicamadas (MLP – *MultiLayer Perceptron*) é formada por um conjunto de neurônios, também conhecidos como Perceptrons. Uma MLP consiste em uma camada de entrada, juntamente com uma ou mais camadas ocultas. No processo de treinamento, é empregada uma técnica chamada retropropagação (*backpropagation*), que ocorre em duas fases distintas: a propagação para frente (*forward*) e a retropropagação propriamente dita (*backward*), assim como ilustra a Figura 1b. Durante a propagação para frente, os dados são passados pela rede, camada por camada, permitindo que as saídas da rede sejam calculadas. Em seguida, durante a fase de retropropagação, os erros entre as saídas previstas e os valores reais são calculados e propagados de volta através da rede, ajustando os pesos das conexões para minimizar esses erros. Esse processo iterativo é fundamental para o treinamento eficaz de uma MLP, permitindo que ela aprenda e se adapte (ORRù *et al.*, 2020).

(a) Camadas de uma MLP.

(b) Forward e backward em uma rede MLP.

Figura 1 – Estrutura e atividade de uma rede MLP, imagem de (ORRù et al., 2020).

- 2.2 Naive Bayes
- 2.3 SVM com kernel RBF
- 2.4 SVM com kernel Polinomial
- 2.5 SVM com kernel Linear

3 JUSTIFICATIVA

4 OBJETIVOS

4.1 Objetivo Geral

• Objetivo Geral.

4.2 Objetivos Específicos

- Objetivo específico 1;
- Objetivo específico 2.

5 METODOLOGIA

- 5.1 Seção 1
- 5.2 Seção 2
- 5.3 Seção 3

6 RESULTADOS E DISCUSSÃO

- 6.1 Seção 1
- 6.2 Seção 2
- 6.3 Seção 3

7 CONCLUSÃO

REFERÊNCIAS

ORRù, P. F.; ZOCCHEDDU, A.; SASSU, L.; MATTIA, C.; COZZA, R.; ARENA, S. Machine learning approach using mlp and svm algorithms for the fault prediction of a centrifugal pump in the oil and gas industry. **Sustainability**, v. 12, n. 11, 2020. ISSN 2071-1050. Disponível em: https://www.mdpi.com/2071-1050/12/11/4776.