

TV shows on Netflix, Prime Video, Hulu and Disney+

Cristian Pérez Díaz Github

Table of contents

Dataset

Model Selection

Conclusion

Dataset

• 12 atributes in total:

- 5 numerical
- 5 binary
- 1 categorical
 - Age_all
 - Age_7+
 - Age_13
 - Age_16
 - Age_18

- Unnamed: 0 : Row ID
- ID : Unique TV show ID
- Title : Title of Movie/Show
- Year: The year in which the tv show was produced
- Age : Target age group
- IMDb : IMDb rating
- Rotten Tomatoes : Rotten Tomatoes rating
- Netflix: Whether the tv show is found on Netflix
- Hulu: Whether the tv show is found on Hulu
- Prime Video: Whether the tv show is found on Prime Video
- Disney+: Whether the tv show is found on Disney+
- Type: Movie or TV Show

- Unnamed: 0 : Row ID
- ID : Unique TV show ID
- Title : Title of Movie/Show
- Year: The year in which the tv show was produced
- Age : Target age group
- IMDb : IMDb rating
- Rotten Tomatoes : Rotten Tomatoes rating
- Netflix: Whether the tv show is found on Netflix
- Hulu: Whether the tv show is found on Hulu
- Prime Video: Whether the tv show is found on Prime Video
- Disney+: Whether the tv show is found on Disney+
- Type : Movie or TV Show

• Columns Age & IMDb with nulls

	Total missing values	Percentage
Unnamed: 0	0	0.00
ID	0	0.00
Title	0	0.00
Year	0	0.00
Age	2127	39.62
IMDb	962	17.92
Rotten Tomatoes	0	0.00
Netflix	0	0.00
Hulu	0	0.00
Prime Video	0	0.00
Disney+	0	0.00
Туре	0	0.00

IMDb	False	True
Age		
False	3207	34
True	1199	928

• Columns IMDb & Rotten Tomatoes

IMDb '6/10'

Rotten Tomatoes '60/100'

• Columns IMDb & Rotten Tomatoes

IMDb Rotten Tomatoes 6

- Columns Age converted to numeric:
 - Age_all ->1
 - Age_7 ->10
 - Age_13 ->10000
 - Age_16 -> 1000
 - Age_18 -> 100

Correlation Matrix

- High interesting correlations:
 - Rotten Tomatoes & IMDb
 - Year & Netflix

Histograms

IMDb

Model selection

LazyPredict

• Library that allows you to test many algorithms to see which ones might be the best.

- Targets tested:
 - Age
 - Netflix
 - Rotten Tomatoes
 - Year

LazyPredict

• Target atribute -> Rotten Tomatoes

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
GradientBoostingRegressor	0.43	0.43	1.03	0.26
XGBRegressor	0.43	0.43	1.03	0.16
LGBMRegressor	0.40	0.40	1.06	0.08
HistGradientBoostingRegressor	0.39	0.40	1.06	1.82
AdaBoostRegressor	0.37	0.37	1.09	0.21
RandomForestRegressor	0.35	0.36	1.10	0.53

LazyPredict

• Target atribute -> Rotten Tomatoes

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
GradientBoostingRegressor	0.43	0.43	1.03	0.26
XGBRegressor	0.43	0.43	1.03	0.16
LGBMRegressor	0.40	0.40	1.06	0.08
HistGradientBoostingRegressor	0.39	0.40	1.06	1.82
AdaBoostRegressor	0.37	0.37	1.09	0.21
RandomForestRegressor	0.35	0.36	1.10	0.53

Validation with Train set

- Default parameters for every model
- R2 & MSE for measuring performance

	R2	MSE
GradientBoostingRegressor	0.514	0.932
AdaBoostRegressor	0.412	1.126
RandomForestRegressor	0.837	0.311

Validation with Train set

AdaBoostRegressor

RandomForestRegressor

Validation with Test set

- Default parameters for every model
- R2 & MSE for measuring performance

	R2	MSE
GradientBoostingRegressor	0.432	1.063
AdaBoostRegressor	0.376	1.169
RandomForestRegressor	0.351	1.215

Validation with Test set

• GradientBoostingRegressor

AdaBoostRegressor

• RandomForestRegressor

Comparison

	R2	MSE
GradientBoostingRegressor	0.514	0.932
AdaBoostRegressor	0.412	1.126
RandomForestRegressor	0.837	0.311

Test set validation

	R2	MSE
GradientBoostingRegressor	0.432	1.063
AdaBoostRegressor	0.376	1.169
RandomForestRegressor	0.351	1.215

Crossvalidation

- With Crossvalidation worst results obtained in each of the 3 algorithms we tested.
 - Worse R2
 - Worse MSE

Hyperparameters search

- GridSearch for every algorithm
- Best parameters:
 - GradientBoostingRegressor:
 - {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 500, 'subsample': 0.5}
 - AdaBoostRegressor:
 - {'learning_rate': 0.04, 'n_estimators': 100}
 - RandomForestRegressor:
 - {'max_depth': 6, 'min_samples_split': 2, 'n_estimators': 100}

Final models

• GridSearch for every algorithm

	R2	MSE
GradientBoostingRegressor	0.434	1.060
AdaBoostRegressor	0.374	1.173
RandomForestRegressor	0.424	1.079

Final models

• GradientBoostingRegressor

AdaBoostRegressor

RandomForestRegressor

Comparison

• Tuned hyperparameters

• Default Hyperparameters

		R2	MSE	 	R2	MSE
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	GradientBoostingRegressor	0.434	1.060	GradientBoostingRegressor	0.432	1.063
	AdaBoostRegressor	0.374	1.173	 AdaBoostRegressor	0.376	1.169
	RandomForestRegressor	0.424	1.079	RandomForestRegressor	0.351	1.215

Conclusions

- Best Model
 - GradientBoostingRegressor
- CrossValidation has not helped
- Possibilty to expand Dataset with IMDb & Rotting Tomatoes APIs

