Exercice1: (4pts) Soit l'espace probabilisé (Ω, Λ, P) .

Les quatre parties de cet exercice sont indépendantes.

- **A).** Soit A et B deux évènements aléatoires tels que $P(A) = \frac{2}{3}$ et $P(B) = \frac{1}{2}$.
 - i) les évènements A et B peuvent-ils être incompatibles ?
 - ii) l'un des deux évènements peut-il impliquer l'autre ? Si oui, lequel ?

- **B).** Soit A et B deux évènements aléatoires, montrer que les évènements A, $\overline{A} \cap B$, $\overline{A \cup B}$ forment un système complet d'évènements de Ω .

Les évènements A , $A\cap B$, $A\cup B$ forment un système complet d'évènement de Ω car :

• A , $\overline{A} \cap B$ et $\overline{A \cup B}$ sont deux à deux incompatibles car :

$$\begin{cases} A \cap (\overline{A} \cap B) = (A \cap \overline{A}) \cap B = \phi \cap B = \phi \\ A \cap (\overline{A \cup B}) = A \cap (\overline{A} \cap \overline{B}) = (A \cap \overline{A}) \cap \overline{B} = \phi \cap \overline{B} = \phi \\ (\overline{A} \cap B) \cap (\overline{A \cup B}) = (\overline{A} \cap B) \cap (\overline{A} \cap \overline{B}) = (\overline{A} \cap A) \cap (B \cap \overline{B}) = \phi \cap \phi = \phi \end{cases}$$

$$(A \cap B) \cap (A \cup B) = (A \cap B) \cap (A \cap B) = (A \cap A) \cap (B \cap B) = \phi \cap \phi = \phi$$

• Et on a:

$$A \cup (\overline{A} \cap B) \cup (\overline{A \cup B}) = A \cup ((\overline{A} \cap B) \cup (\overline{A} \cap \overline{B})) = A \cup (\overline{A} \cap (B \cup \overline{B}))$$

$$= A \cup (\overline{A} \cap \Omega)) = A \cup \overline{A} = \Omega$$

$$O,5pts$$

C). Soit A, B et C trois évènements aléatoires indépendants, prouver que : A-B et C sont indépendants ?

D). A un évènement aléatoire de probabilité égale à 1 (ce n'est pas nécessairement Ω).

Montrer que $\forall B \in \Lambda$,

i)
$$P(B-A) = 0$$
. ii) $P(A \cup B) = 1$. iii) $P(A \cap B) = P(B)$.

ii)
$$P(A \cup B) = 1$$
.

iii)
$$P(A \cap B) = P(B)$$

i)
$$B - A = B \cap \overline{A} \subset \overline{A}$$
 d'où $0 \le P(B - A) \le P(\overline{A}) = 1 - P(A) = 0$ d'où $P(A - B) = 0$... 0,5pts

iii) Comme
$$B = B \cap \Omega = B \cap (A \cup \overline{A}) = (B \cap A) \cup (B \cap \overline{A})$$
 avec $B \cap \overline{A}$ et $B \cap A$ sont incompatibles, on aura :

$$P(B) = P[(B \cap A) \cup (B \cap \overline{A})]$$

$$= P(B \cap \overline{A}) + P(B \cap A) \quad or P(B \cap \overline{A}) = 0 \quad d'aprés(i)$$

$$= P(A \cap B)$$
0,5pts

Exercice2: (8pts)

Soit la fonction f définie par: $f(x) = \frac{x^2}{\Omega} I_{[0,3[}(x))$.

a) Montrer que f est une densité de probabilité d'une v.a.continue qu'on notera X et déterminer sa fonction de répartition F_{χ} .

a)
$$rac{1}{2}$$
 f est bien une densité de probabilité dune v.a.continue f car :

•
$$f$$
 est continue sur $IR - \{3\}$ et on a : $\lim_{\substack{ensble \\ fini}} f = 0$ et $\lim_{\substack{\longleftarrow \\ \longrightarrow 3}} f = 1$ existent 0.25

Soit
$$F_X$$
 sa fonction de répartition: $\forall x \in IR, F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$.

b) Calculer la variance de la v.a $\frac{1}{x}$.

- c) On définie la v.a.r. Y = [X] où [.] designe la partie entière. Calculer :
 - La loi de probabilité de Y, sa fonction de répartition F_{Y} , son espérance et sa variance.

a) La loi de probabilité de Y:

et on a : (puisque $P(X < x) = P(X \le x) = F_X(x)$ car X est continue)

•
$$P_Y(2) = (1 - P_Y(0) - P_Y(1))$$
 ou $P(2 \le X < 3) = F_X(3) - F_X(2) = 1 - \frac{8}{27} = \frac{19}{27}$

On résume par le tableau suivant :

у	0	1	2	\sum
$P_{Y}(y)$	1/27	7/27	19/27	1

- $ightharpoonup F_{Y}$ sa fonction de répartition : $\forall y \in IR, F_{Y}(y) = P(Y \le y)$.
- $E(Y^2) = 0^2 \times (\frac{1}{27}) + 1^2 \times (\frac{7}{27}) + 2^2 \times (\frac{19}{27}) = \frac{83}{27}$ d'où $V(Y) = E(Y^2) (E(Y))^2 = ...$
- II. La fonction génératrice des moments $G_Y de Y$.

$$\forall t \in IR, G_Y(t) = E(e^{t.Y}) = \sum_{y=0}^{2} e^{t.y} P_Y(y) = e^{0.t} \frac{1}{27} + e^{1.t} \frac{7}{27} + e^{2.t} \frac{19}{27} = \frac{1}{27} \left(1 + 7e^t + 19e^{2.t} \right)$$

III. Donner le moment non centré d'ordre1, le moment non centré d'ordre2, le moment centré d'ordre1 et le moment centré d'ordre2 de Y .

Le moment non centré d'ordre 1 de Y :	Le moment non centré d'ordre 2 de Y :		
$M_1(Y) = E(Y)$ (déjacalculé)	<i>O,25</i>	$M_2(Y) = E(Y^2)$ (déjacalculé) 0,25	
Le moment centré d'ordre1 de Y : 0,25		Le moment centré d'ordre 2 de Y :	
$\mu_1(Y) = 0$ (nulle quelque soit la var	$\mu_2(Y) = V(Y)$ (déjacalculé) 0,25		

Exercice3: (8pts)

La durée de vie X en années d'une télévision suit une loi exponentielle de densité :

$$f(x) = ae^{-\frac{1}{8}x} I_{IR^+}(x)$$
.

1) Déterminer a.

<u>Remarque</u>: C'est la densité de la v.a.r suivant la loi exponentielle de paramètre $\lambda = \frac{1}{2}$.

f est une densité de probabilité donc on déduit $\begin{cases} a \ge 0 & et \\ \int\limits_{IR} f(x) dx = 1 \end{cases}$

1pt

or $\int_{IR} f(x)dx = a \int e^{-\frac{x}{8}} dx = \frac{8}{a} \quad d'où \quad \frac{8}{a} = 1 \implies a = \frac{1}{8}$

2) Calculer la fonction de répartition F de X.

 $F_X \text{ la fonction de répartition on a }: \ \forall x \in IR, \quad F_X(x) = \int_{-\infty}^x f(x) dx = \begin{cases} 0 & \text{si } x < 0 \\ \int_{-\infty}^x \frac{1}{8} e^{-\frac{x}{8}} dx = \left(1 - e^{-\frac{x}{8}}\right) \end{cases}$

3) Calculer la fonction génératrice des moments G de X et déduire E(X) et V(X).

Voir le chapitre4 du cours : Calcul de la fonction génératrice de la loi exponentielle de paramètre λ et déduction de ses moments d'ordre k). On trouve :

$$\begin{cases} G_X(t) = \frac{1}{1 - 8.t} & t < \frac{1}{8} \\ E(X) = 8 & \end{cases}$$

(respectivement : 1pt+0.5pt +0.5pt)

4) Montrer que X satisfait la propriété donnée par l'égalité :

$$P(X > t_1 + t_2/X > t_1) = P(X > t_2), t_1, t_2 \ge 0$$

Démontrée en TD, dans la série d'exercice(4)

• Donner l'appellation de cette propriété.

Cette propriété est dite « absence de mémoire » 1pt

5) Calculer la probabilité que la télévision que vous venez d'acheter ait une durée de vie supérieure à 8 ans.

On cherche $P(X > 8) = 1 - P(X \le 8) = 1 - F_X(8) = e^{-1}$ (d'après (2))

6) Vous possédez une telle télévision depuis 2 ans. Quelle est la probabilité que sa durée de vie soit encore de 8 ans à partir de maintenant ?

On cherche $P(X > 2 + 8/X > 2) = P(X > 8) = 1 - F_X(8) = e^{-1}$ (d'après (4) et (2))