Towards Structure-Aware Neural Representations of Agda Programs

Konstantinos Kogkalidis, Orestis Melkonian, Jean-Philippe Bernardy

Theorem Proving and Machine Learning in the age of LLMs April 2025, Edinburgh

Publication : Learning Structure-Aware Representations of Dependent Types @ NeurIPS 2024

ACK : Funds from **EuroProofNet CA2011** (2 STSMs in 2023)

ı

Mandatory (?) Redundant Intro Slide

Automated Theorem Proving

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.

Automated Theorem Proving in the Times of ML

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Proving stuff (in Agda): what you write

open import Relation.Binary.PropositionalEquality using (= ; refl; cong; trans) data IN: Set where zero: IN $suc : \mathbb{N} \to \mathbb{N}$ $+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ zero + n = nsuc m + n = suc (m + n)+-comm : $(m \ n : \mathbb{N}) \to m + n \equiv n + m$ +-comm zero zero = refl +-comm zero (suc n) = cong suc (+-comm zero n) +-comm (suc m) zero = cong suc (+-comm m zero) +-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n)) where +-suc : $\forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)$ +-suc zero n = refl+-suc (suc m) n = cong suc (+-suc m n)

... what Agda shows you

open import Relation.Binary.PropositionalEquality using (= ; refl; cong; trans) data N: Set where zero: N $suc : \mathbb{N} \to \mathbb{N}$ $+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ zero + n = nsuc m + n = suc (m + n)+-comm: $(m n : \mathbb{N}) \to m + n \equiv n + m$ +-comm zero zero = refl +-comm zero (suc n) = cong suc (+-comm zero n)+-comm (suc m) zero = cong suc (+-comm m zero) +-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n)) where +-suc : $\forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)$ +-suc zero n = refl+-suc (suc m) n = cong suc (+-suc m n)

... what Agda really sees

... what you show the LLM

Where did all the colors go?

Doing things "right"

Doing things right

Contributions:

- Structured Machine Learning Data for Agda.
- Learning to Represent (the Shapes of) Dependent Types.

```
open import Relation.Binary.PropositionalEquality using ( = ; refl; cong; trans)
data N: Set where
  zero: N
  suc : \mathbb{N} \to \mathbb{N}
                                                                     1. We go through all definitions.
+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = suc (m + n)
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
  where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
         +-suc zero n = refl
         +-suc (suc m) n = cong suc (+-suc m n)
```

open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans)

1. We go through all definitions.

```
_+_: \mathbb{N} \to \mathbb{N} \to \mathbb{N} 1. We go

zero + n = n

suc m + n = \operatorname{suc}(m + n)

+-comm : (m n : \mathbb{N}) \to m + n \equiv n + m

+-comm zero zero = refl

+-comm (suc m) zero = cong suc (+-comm zero n)

+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))

where +-suc: \mathbb{V} m n \to m + \operatorname{suc} n \equiv \operatorname{suc}(m + n)

+-suc zero n = \operatorname{refl}

+-suc (suc m) n = \operatorname{cong} \operatorname{suc}(+-\operatorname{suc} m n)
```

```
1. We go through all definitions.
 +: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
\operatorname{suc} m + n = \operatorname{suc} (m + n)
  where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
```

```
1. We go through all definitions.
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
 where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
                       n = refl
         +-suc zero
         +-suc (suc m) n = cong suc (+-suc m n)
```

open import Relation.Binary.PropositionalEquality using ($_\equiv_$; refl; cong; trans)

```
zero: \mathbb{N}

suc: \mathbb{N} \to \mathbb{N}

+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
```

```
[-+]: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = \operatorname{suc}(m + n)
```

- +-comm: $(m n : \mathbb{N})$ → $m + n \equiv n + m$ +-comm zero zero = refl +-comm zero (suc n) = cong suc (+-comm zero n) +-comm (suc m) zero = cong suc (+-comm m zero) +-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) where +-suc: $\forall m n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)$ +-suc zero n = refl
- We go through all definitions.
 For each definition, we record:
 - its name

open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans)

```
data \mathbb{N}: Set where zero : \mathbb{N} suc : \mathbb{N} \to \mathbb{N}
```

```
-+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = \text{suc}(m + n)
```

- +-comm : $(m n : \mathbb{N}) \to m + n \equiv n + m$
- +-comm zero zero = rei
- +-comm zero (suc n) = cong suc (+-comm zero n)
- +-comm (suc m) zero = cong suc (+-comm m zero
- +-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n)
 - where +-suc : $\forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)$
 - +-suc zero n = ref
 - +-suc (suc m) n = cong suc (+-suc m n)

- 1. We go through **all definitions**. For each definition, we record:
 - its name
 - its type

open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans)

```
zero : \mathbb{N} suc : \mathbb{N} \to \mathbb{N}
```

```
\begin{bmatrix} -+ : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{zero} + n = n \\ \text{suc } m + n = \text{suc } (m + n) \end{bmatrix}
```

- +-comm : $(m \ n : \mathbb{N}) \rightarrow m + n \equiv n + m$
- +-comm zero zero = ref
- +-comm zero (suc n) = cong suc (+-comm zero n)
- +-comm (suc m) zero = cong suc (+-comm m zero
- +-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n)
 - where +-suc : $\forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)$

```
+-suc zero n = ref
```

+-suc (suc m) n = cong suc (+-suc m n)

- 1. We go through **all definitions**. For each definition, we record:
 - its name
 - its type
 - its term (/proof)

```
open import Relation.Binary.PropositionalEquality using ( = ; refl; cong; trans)
data N: Set where
  zero: N
  suc : \mathbb{N} \to \mathbb{N}
                                                                    2. We go through all subterms.
+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = suc (m + n)
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
  where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
         +-suc zero n = refl
         +-suc (suc m) n = cong suc (+-suc m n)
```

```
open import Relation.Binary.PropositionalEquality using ( = ; refl; cong; trans)
data N: Set where
  zero: N
  suc : \mathbb{N} \to \mathbb{N}
                                                                    2. We go through all subterms.
+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = suc (m + n)
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = ?
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
  where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
         +-suc zero n = refl
         +-suc (suc m) n = cong suc (+-suc m n)
```

```
open import Relation.Binary.PropositionalEquality using ( = ; refl; cong; trans)
data N: Set where
  zero: N
  suc : \mathbb{N} \to \mathbb{N}
                                                                    2. We go through all subterms.
+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = suc (m + n)
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero ?)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
  where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
         +-suc zero n = refl
         +-suc (suc m) n = cong suc (+-suc m n)
```

```
open import Relation.Binary.PropositionalEquality using ( = ; refl; cong; trans)
data N: Set where
  zero: N
  suc : \mathbb{N} \to \mathbb{N}
                                                                    2. We go through all subterms.
+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = suc (m + n)
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm ? n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
  where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
         +-suc zero n = refl
         +-suc (suc m) n = cong suc (+-suc m n)
```

```
open import Relation.Binary.PropositionalEquality using ( = ; refl; cong; trans)
data N: Set where
  zero: N
  suc : \mathbb{N} \to \mathbb{N}
                                                                     2. We go through all subterms.
+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
zero + n = n
suc m + n = suc (m + n)
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc ?
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
  where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
         +-suc zero n = refl
         +-suc (suc m) n = cong suc (+-suc m n)
```

```
open import Relation.Binary.PropositionalEquality using ( = ; refl; cong; trans)
data N: Set where
 zero: N
 suc : \mathbb{N} \to \mathbb{N}
                                                                   2. We go through all subterms.
+: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
                                                                       For each subterm, we record:
zero + n = n
                                                                        • its type (/the goal)
suc m + n = suc (m + n)
+-comm: (m n : \mathbb{N}) \to m + n \equiv n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc ?
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
 where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
         +-suc zero n = refl
         +-suc (suc m) n = cong suc (+-suc m n)
goal: n \equiv (n + zero)
```

open import Relation. Binary. Propositional Equality using (= : refl; cong; trans) data N . Set where 2. We go through all subterms. + $: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ For each subterm, we record: • its type (/the goal) • its scope +-comm: $(m n : \mathbb{N}) \to m + n \equiv n + m$ +-comm zero (suc n) = cong suc ?where +-suc : $\forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)$

```
2. We go through all subterms.
                                                                       For each subterm, we record:
                                                                         • its type (/the goal)
                                                                         • its scope

    its context

+-comm zero (suc n) = cong suc ?
 where +-suc : \forall m \ n \rightarrow m + \text{suc } n \equiv \text{suc } (m + n)
```

3. Each term & type is recorded as both:a pretty string

goal: $n \equiv (n + zero)$

- 3. Each term & type is recorded as both:
 - a pretty string
 - ullet the underlying AST

goal: $n \equiv (n + zero)$

Data: TL;DR

Niceties:

- · among first ML datasets for Agda
- ullet subterm iteration \Longrightarrow type-checked data augmentation for free
- extraction explicitly preserving type-structure

Data: TL;DR

Niceties:

- · among first ML datasets for Agda
- subterm iteration \implies type-checked data augmentation for free
- · extraction explicitly preserving type-structure

Numerical¹:

- 800 modules
- 11.751 definitions
- 67.255 "holes" read: data points

1: passing extracts from agda-stdlib 1.7.2

What's to represent?

A sequence of ASTs

What's to represent?

A sequence of ASTs, where nodes are:

• TT primitives

A sequence of ASTs, where nodes are:

- TT primitives
- references to (other) lemmas (inter-AST)

A sequence of ASTs, where nodes are:

- TT primitives
- references to (other) lemmas (inter-AST)

A sequence of ASTs, where nodes are:

- TT primitives
- references to (other) lemmas (inter-AST)
- references to bound variables (intra-AST)

How to represent it?

Candidate Architectures:

• LLMs -- just no

• GNNs -- too generic, oversmoothing

• Tree (R)NNs -- too slow, generally under-performing

• Full Attention [?] -- no structural biases $--\left(\sum_{t}^{T}n(t)\right)^{2}$ scaling

Amending self-attention

• Treewise Linear (Taylor Series) Attention -- $\#T \times \max_{t}^{T} n(t)$ scaling

(IN) (IN)

Amending self-attention

- Treewise Linear (Taylor Series) Attention -- $\#T \times \max_{t=0}^{T} n(t)$ scaling
- Dependency-Level Batching
 -- explicit scope referencing

Amending self-attention

- Treewise Linear (Taylor Series) Attention -- $\#T \times \max_{t=1}^{T} n(t)$ scaling
- Dependency-Level Batching
 -- explicit scope referencing

- Treewise Linear (Taylor Series) Attention $-- \#T \times \max_{t=0}^{T} n(t)$ scaling
- Dependency-Level Batching
 -- explicit scope referencing

Amending self-attention

- Treewise Linear (Taylor Series) Attention -- $\#T \times \max_{t=1}^{T} n(t)$ scaling
- Dependency-Level Batching

-- explicit scope referencing

Relative Tree-PE

-- proper inductive biases

Amending self-attention

- Treewise Linear (Taylor Series) Attention -- $\#T \times \max_{t}^{T} n(t)$ scaling
- · Dependency-Level Batching
- Relative Tree-PE

- -- explicit scope referencing
- -- proper inductive biases
- -- & dynamic variable indexing

Representations informed by type shapes alone:

- invariance to α -renaming, scope permutations, syntactic distractions, etc.
- ...but a few things get lost in translation

Experimental Setup

Premise Selection

Contextually rank scope entries by their relevance to the current goal.

Quill 🦠

Tiny PoC model (6L \times 8H \times 256D; 1 mil. params; 25MB@FP32) trained for ~8h on a V100

Data

- train on random holes from 85% of agda-stdlib (ignoring size outliers)
- eval on unseen proofs from:
 - remaining 15% (split between ID and OOD on the basis of size)
 - Unimath & TypeTopology (distant domains)

... but does it work?

Mandatory table with numbers

	Average / R-Precision			
Model	stdlib:ıD	stdlib:ooD	Unimath	ТуреТоро
Quill	50.2 / 40.3	38.7 / 31.1	27.0 / 17.4	22.5 / 15.4
: Transformer Baseline ¹	10.9 / 3.7	8.5 / 4.5	9.4 / 3.9	5.8 / 0.9

^{1:} no Tree-PE, no variable indexing resolution, no Taylor expansion in linear attention

... but does it work?

Less obscure visualization

Empirical distribution of selection scores of relevant (green) vs irrelevant (red) lemmas (stdlib:ID).

... but does it work?

Findings, TL;DR

- high performance despite limited expressivity & no term exposition
- structure preservation outweights architectural optimizations
- baseline encoder collapses

Suggested takehome messages

Thank you

- PAPER openreview.net/forum?id=e397soEZh8
 Published manuscript & reviews.
- AGDA2TRAIN github.com/omelkonian/agda2train
 Data extraction as an Agda compilation backend (in Haskell).
- AGDA-QUILL github.com/konstantinoskokos/quill
 ML model; ML-facing Python interface for dataset reading & processing.

open import Data.List.Relation.Binary.Permutation.Propositional.Properties
open PermutationReasoning

```
private variable

--ℓ: Level
A B: Set ℓ
x y: A
xs ys zs ws: List A
xss yss: List (List A)

--concat* = 100

--concat* = 100

--concat* (prep xs p) = ++*1 xs (--concat* p)

--concat* (prep xs p) = ++*1 xs (--concat* p)

--concat* (prep xs p) = ++*1 xs (--concat* p)

--concat* (rone xs p) = ++*1 xs (--concat* p)

--concat* (xss = _ :: _ :: xss|_1 :: _ :: yss|_1 sws px ys p) = begin
xs ++y s ++ concat xss -( *+** ys (++** xs (--concat* p)) )
ys ++x s ++ concat xss -( *+** ys (++** xs (--concat* p)) )
ys ++x s ++ concat xss -( *+** ys (++** xs (--concat* p)) )
--concat* (trans xs-ys ys-zs) = trans (--concat* xs-ys) (--concat* ys-zs)
```

```
4 Data.List.Relation.Binary.Permutation.Propositional.Properties.++*1
  5 Data.List.Relation.Binary.Permutation.Propositional.....trans
  6 Data.List.Relation.Binary.Permutation.Propositional. -- sym
  7 Data.List.Relation.Binary.Permutation.Propositional.Properties.zoom
  8 Data.List.Relation.Binary.Permutation.Propositional.Properties.↔-sym-invo
  lutive
  9 Data.List.Relation.Binary.Permutation.Propositional.Properties.shift
 10 Data List Relation Binary Permutation Propositional . ..
 11 Data List Relation Binary Permutation Propositional Properties ++--*++
 12 Data.List.Base._++_
 13 Data List Base *++
 14 Data List Base reverseAcc
 15 Data.List.Relation.Binary.Permutation.Propositional.Properties.drop-mid
 16 Data.List.Relation.Binary.Permutation.Propositional.Properties.drop-::
 17 Data List Relation Binary Permutation Propositional Properties drop-mid-
 18 Data.List.Base.intercalate
 19 Data.List.Relation.Binary.Permutation.Propositional.Properties.++*
 20 Data.List.Relation.Binary.Permutation.Propositional.Properties.inject
 21 Data List Base man
 22 Agda. Builtin. List. List
 23 Data.List.Base.concatMap
 24 Data List Relation Binary Permutation Propositional PermutationReasoning.
    sten-prep
 25 Data.List.Relation.Binary.Permutation.Propositional._⊸_.prep
 26 Data.List.Relation.Binary.Permutation.Propositional.↔-reflexive
 27 Data List Relation Binary Permutation Propositional Properties --- singleto
    n-inv
 28 Data.List.Base.tails
 29 Data List Base inits
 30 Data List Base concat
 31 Agda.Builtin.List.List._::_
 32 Data List Base an
 33 Data.List.Base.reverse
 34 Data.List.Relation.Binary.Permutation.Propositional.Properties.⇔-reverse
 35 Agda.Builtin.List.List.
 36 Data.List.Relation.Binary.Permutation.Propositional.PermutationReasoning.

    step-swap

 37 Data List Relation Binary Permutation Propositional ... swap
 38 Data List Relation Binary Permutation Propositional Properties --- empty-ine
```

2 Data.List.Relation.Binary.Permutation.Propositional.Properties.shifts
3 Data.List.Relation.Binary.Permutation.Propositional.Properties.+++*

1 REPL. -- concat*