JETSON-PI

${\it DUDEKULA~USENI-AHILAN~R} \\ {\it r171099@rguktrkv.ac.in-ra1atcuk@gmail.com} \\ {\it FWC22098-FWC22090-IITH~Future~Wireless~Communication~(FWC)} \\$

February 23, 2023

1 Abstract

Time series autocorrelation

We would like to experiment and see Can raspberry pi and/or nano do time series autocorrelation for large data sets. Data set usually will contain about 40e6 to 1.5 e8 points and will be sampled uniformly

2 Perfomance Comparision Tables Of PI And JETSON

METHOD-1 PYTHON IMPLEMENTATION				
SAMPLES	PI	JETSON		
50K	36 minutes	9 minutes		
100K	2.69 hrs	52.67 minutes		
200K	limit time exceed	limit time exceed		

METHOD-2 STATSMODEL				
SAMPLES	PI	JETSON		
50K	1.58 sec	$9.69 \sec$		
100K	2.06 sec	28.90 sec		
200K	2.29 sec	1.88 minutes		
1M	$3.57 \sec$	51.58 minutes		
10M	$26.03 \; { m sec}$	limit time exceed		
20M	Killed	killed		

METHOD-3 NUMPY.CORRELATE				
SAMPLES	PI	JETSON		
50K	$4.701 \ \mathrm{sec}$	$6.80 \sec$		
100K	11.37 sec	27.18 sec		
200K	1.89 minutes	1.89 minutes		
1M	1.90 minutes	52.96 minutes		
10M	limit time exceed	limit time exceed		
20M	Killed	killed		

METHOD-4 FOURIER TRANSFORM				
SAMPLES	PI	JETSON		
50K	0.08 sec	1.49 sec		
100K	0.16 sec	2.70 sec		
200K	$0.39 \; \mathrm{sec}$	$5.27 \sec$		
1M	$0.51 \mathrm{sec}$	24.98 sec		
10M	44.20 sec	52.19 sec		
20M	Killed	killed		

3 conclusion

Overall, RaspberryPi is faster to execute the autocorrelation than Jetson Nano. However, both have limitaions depending on the number of samples taken and the method of implementation. For example, when 20 million samples were taken both output produced "killed".

4 Software

Download the following code

 $\mathtt{https://\,github.com/dudekulauseni123/FWC0982022}$