Marked Exercises for Algorithms for Big Data 2022 Spring

Due 27 March 2022 at 23:59

Exercise 1 10 points

Let $\sum_{i=1}^r \sigma_i u_i v_i^{\hat{T}}$ be the SVD of A, where $A \in \mathbb{R}^{n \times d}$. Show that $|u_1^T A| = \sigma_1$ and $|u_1^T A| = \max_{\|u\|=1} \|u^T A\|$, where $\|x\| = \sqrt{\sum_{i=1}^d x_i^2}$ for a vector $x \in \mathbb{R}^d$.

Exercise 2 20 points

Let $\sum_{i=1}^{r} \sigma_i u_i v_i^{\hat{T}}$ be the SVD of a rank r matrix A. Let $A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T$ be a rank k-approximation to A for some k < r. Express the following quantities in terms of the singular values $\{\sigma_i, 1 \le i \le r\}$.

- (a) $||A_k||_F^2$
- (b) $||A_k||_2^2$
- (c) $||A A_k||_F^2$
- (d) $||A A_k||_2^2$

Exercise 3 15 points

Let k < d. Let $U \in \mathbb{R}^{d \times k}$ be a random matrix such that its (i, j)-th entry is denoted as u_{ij} , where $\{u_{ij}\}$ are independent random variables such that

$$u_{ij} = \begin{cases} 1 & \text{with probability } \frac{1}{2}, \\ -1 & \text{with probability } \frac{1}{2} \end{cases}$$

Now we use matrix U as a random projection matrix. That is, for a (row) vector $a \in \mathbb{R}^d$, we map it to

$$f(a) = \frac{1}{\sqrt{k}}aU$$

For each j such that $1 \le j \le k$, define $b_j = [f(a)]_j$, i.e., b_j is the j-th entry of f(a).

- What is the expectation $E[b_i]$?
- What is $E[b_i^2]$?
- What is $E[||f(a)||^2]$?

Exercise 4 15 points

In the class, we have seen an algorithm, denoted by \mathcal{A} , for the (c, r)-ANN problem with success probability at least 0.6. That is, upon a queried vertex x such that there exists a point a^* in the set \mathcal{P} with $d(x, a^*) \leq r$, the algorithm \mathcal{A} outputs some $a \in \mathcal{P}$ with $d(x, a) < c \cdot r$ with probability at least 0.6.

Let $\delta \in (0,1)$. Using the above \mathcal{A} as a subroutine, give a new algorithm \mathcal{B} with success probability at least $1-\delta$. That is, for the above query vertex x, the algorithm \mathcal{B} outputs some $a \in \mathcal{P}$ with $d(x,a) \leq c \cdot r$ with probability at least $1-\delta$. Your algorithm should use as little query time as possible. Explain the correctness of your algorithm and state its query time, assuming the query time of \mathcal{A} is $T_{\mathcal{A}}$.

Exercise 5 20 points

Let $\alpha \in (0,1]$. Suppose we change the (basic) Morris algorithm to the following:

- (a) Initialize $X \leftarrow 0$
- (b) For each update, increment X by 1 with probability $\frac{1}{(1+\alpha)^X}$
- (c) For a query, output $\tilde{n} = \frac{(1+\alpha)^X 1}{\alpha}$.

Let X_n denote X in the above algorithm after n updates. Let $\tilde{n} = \frac{(1+\alpha)^{X_n}-1}{\alpha}$.

- Calculate $E[\tilde{n}]$ and upper bound $Var[\tilde{n}]$.
- Let $\epsilon, \delta \in (0,1)$. Based upon the above algorithm, give a new algorithm such that with probability at least $1-\delta$, it outputs an estimator \tilde{n} such that $|\tilde{n}-n| \leq \epsilon n$. Explain the correctness and the space complexity (i.e., the number of used bits) of your algorithm. It suffices to give an algorithm with space complexity that is a polynomial function of $1/\delta$.

Exercise 6 20 points

Consider a stream of m integers a_1, a_2, \ldots, a_m such that each $a_i \in [n] = \{1, 2, \ldots, n\}$. We would like to estimate the *median* of these numbers using small space. Formally, let $S = \{a_1, a_2, \ldots, a_m\}$, and define rank $(b) = |\{a \in S : a \leq b\}|$. For simplicity, suppose elements in S are distinct, and m is known to the algorithm. Given $\varepsilon, \delta \in (0, 1)$, our goal is to find a number b such that

$$\Pr[|\operatorname{rank}(b) - \frac{m}{2}| > \varepsilon m] < \delta. \tag{1}$$

Consider the following algorithm:

- Maintain t uniform samples from S (e.g., by using Reservoir sampling)
- Output the median of these t samples

Choose the smallest possible t so that inequality (1) holds. Give an explanation of the correctness of the resulting algorithm and state its space complexity.

Hint: You can partition S into 3 groups: $S_L = \{a \in S : \operatorname{rank}(a) \leq m/2 - \varepsilon m\}$, $S_M = \{a \in S : m/2 - \varepsilon m \leq \operatorname{rank}(a) \leq m/2 + \varepsilon m\}$, and $S_H = \{a \in S : \operatorname{rank}(a) \geq m/2 + \varepsilon m\}$. Note that if less than t/2 elements from both S_L and S_H are present in the sample, then the median of the samples is a "good" estimator.