# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

## ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

#### Отчет

#### по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПТ2

Выполнил: Нафтаев Е. П.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 1 в соответствии с вариантом 21.



Рисунок 1 — 17 вариант задания (сигнал)

Таблица 1 — 17 вариант задания

| $f_{	ext{MIN}}$ ÷ $f_{	ext{MAX}}$ , к $\Gamma$ п | Вид линейного кода | Вид сигнала |
|--------------------------------------------------|--------------------|-------------|
| 0,4÷4,9                                          | NRZ                | Рис. 17     |

#### 3 Выполнение работы.

### 3.1 В соответствии с вариантом задания были определены:

- 
$$U_{MAX} = 1,5 B$$
 и  $U_{MIN} = -1,5 B$ ;

- 
$$U_{O\Gamma P} = U_{MAX} = 1,5 B;$$

- 
$$f_{\text{MIN}}$$
 = 0,4 кГц и  $f_{\text{MAX}}$  = 4,9 кГц;

- 
$$\Delta_{\rm ugon} = 0.25 {\rm B};$$

Было расчитано минимальное число уровней квантования  $N_{\text{MIN}}$  по формуле ( $U_{\text{MAX}}$ - $U_{\text{MIN}}$ )/ $\Delta_{\text{идоп}}$ .  $N_{\text{MIN}}$  = 3 / 0,25 = 12

Было определено число уровней  $N_{\text{KB}}$  из условия  $N_{\text{KB}} > N_{\text{MIN}}$ .  $N_{\text{KB}} = 16$ .

Было определено количество разрядов n в коде.  $n = log_2 16 = 4$  бит.

Было расчитан шаг квантования по формуле  $\delta = U_{O\Gamma P}/2^n = 1,5/2^4 = 0,093$  В.

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени  $T_{\rm A} \!\! \leq \! 1/2F_{\rm B}$ ) должна удовлетворять условию  $F_{\rm A} \!\! \geq \! 2F_{\rm B}$ ).  $F_{\rm A} = F_{\rm MAX} * 2 = 9.8 \ \mbox{к} \Gamma_{\rm I}$ 

3.2 При частоте дескритизации 9,8 кГц ширина одного отсчета будет равна 1с / 9,8 кГц = 0,1мс  $\rightarrow$  количесвто отсчетов за 1мс будет равно 1мс / 0,1мс  $\approx 10$  отсчетов, для 6мс количество отсчетов равняется 60. Было определено Ubx(t), Ukb(t),  $\Delta_{\text{KB}}(t)$  и N. Результат представлен в таблице 2.

Таблица 2 — Результаты измерений

| Отсчет сигнала                        | UBX(t), B | UKB(t),B | ΔKB(t) | Ν  | Двоичный код |
|---------------------------------------|-----------|----------|--------|----|--------------|
| 1                                     | 0,36      | 0,37     | -0,01  | 4  | 0100         |
| 2                                     | 0,52      | 0,56     | -0,04  | 6  | 0110         |
| 3                                     | 0,67      | 0,74     | -0,07  | 8  | 1000         |
| 4                                     | 0,83      | 0,84     | 0,00   | 9  | 1001         |
| 5                                     | 0,95      | 1,02     | -0,08  | 11 | 1011         |
| 6                                     | 1,05      | 1,12     | -0,06  | 12 | 1100         |
| 7                                     | 1,13      | 1,21     | -0,08  | 13 | 1101         |
| 8                                     | 1,19      | 1,21     | -0,02  | 13 | 1101         |
| 9                                     | 1,21      | 1,30     | -0,09  | 14 | 1110         |
| 10                                    | 1,22      | 1,30     | -0,09  | 14 | 1110         |
| 11                                    | 1,20      | 1,21     | -0,01  | 13 | 1101         |
| 12                                    | 1,15      | 1,21     | -0,06  | 13 | 1101         |
| 13                                    | 1,09      | 1,12     | -0,03  | 12 | 1100         |
| 14                                    | 1,02      | 1,02     | -0,01  | 11 | 1011         |
| 15                                    | 0,93      | 0,93     | 0,00   | 10 | 1010         |
| 16                                    | 0,81      | 0,84     | -0,02  | 9  | 1001         |
| 17                                    | 0,70      | 0,74     | -0,04  | 8  | 1000         |
| 18                                    | 0,59      | 0,65     | -0,06  | 7  | 0111         |
| 19                                    | 0,49      | 0,56     | -0,07  | 6  | 0110         |
| 20                                    | 0,38      | 0,46     | -0,09  | 5  | 0101         |
| 21                                    | 0,28      | 0,28     | 0,00   | 3  | 0011         |
| 22                                    | 0,20      | 0,28     | -0,08  | 3  | 0011         |
| 23                                    | 0,13      | 0,19     | -0,06  | 2  | 0010         |
| 24                                    | 0,07      | 0,09     | -0,02  | 1  | 0001         |
| · · · · · · · · · · · · · · · · · · · |           |          |        |    |              |

| 25 | 0,04 | 0,09 | -0,05 | 1  | 0001 |
|----|------|------|-------|----|------|
| 26 | 0,03 | 0,09 | -0,07 | 1  | 0001 |
| 27 | 0,03 | 0,09 | -0,06 | 1  | 0001 |
| 28 | 0,04 | 0,09 | -0,05 | 1  | 0001 |
| 29 | 0,07 | 0,09 | -0,02 | 1  | 0001 |
| 30 | 0,10 | 0,19 | -0,08 | 2  | 0010 |
| 31 | 0,15 | 0,19 | -0,04 | 2  | 0010 |
| 32 | 0,18 | 0,19 | 0,00  | 2  | 0010 |
| 33 | 0,22 | 0,28 | -0,06 | 3  | 0011 |
| 34 | 0,25 | 0,28 | -0,03 | 3  | 0011 |
| 35 | 0,28 | 0,28 | 0,00  | 3  | 0011 |
| 36 | 0,28 | 0,28 | 0,00  | 3  | 0011 |
| 37 | 0,27 | 0,28 | -0,01 | 3  | 0011 |
| 38 | 0,24 | 0,28 | -0,04 | 3  | 0011 |
| 39 | 0,19 | 0,28 | -0,09 | 3  | 0011 |
| 40 | 0,13 | 0,19 | -0,06 | 2  | 0010 |
| 41 | 0,06 | 0,09 | -0,03 | 1  | 0001 |
| 42 | 0,05 | 0,09 | -0,05 | 1  | 0001 |
| 43 | 0,17 | 0,19 | -0,01 | 2  | 0010 |
| 44 | 0,30 | 0,37 | -0,08 | 4  | 0100 |
| 45 | 0,44 | 0,46 | -0,03 | 5  | 0101 |
| 46 | 0,59 | 0,65 | -0,06 | 7  | 0111 |
| 47 | 0,74 | 0,74 | -0,01 | 8  | 1000 |
| 48 | 0,87 | 0,93 | -0,06 | 10 | 1010 |
| 49 | 1,01 | 1,02 | -0,01 | 11 | 1011 |
| 50 | 1,14 | 1,21 | -0,06 | 13 | 1101 |
| 51 | 1,24 | 1,30 | -0,06 | 14 | 1110 |
| 52 | 1,33 | 1,40 | -0,06 | 15 | 1111 |
| 53 | 1,39 | 1,40 | -0,01 | 15 | 1111 |
| 54 | 1,35 | 1,40 | -0,04 | 15 | 1111 |
| 55 | 1,35 | 1,40 | -0,04 | 15 | 1111 |
| 56 | 1,35 | 1,40 | -0,05 | 15 | 1111 |
| 57 | 1,29 | 1,30 | -0,02 | 14 | 1110 |
| 58 | 1,18 | 1,21 | -0,03 | 13 | 1101 |
| 59 | 1,05 | 1,12 | -0,07 | 12 | 1100 |
| 60 | 0,89 | 0,93 | -0,04 | 10 | 1010 |
|    |      |      |       |    |      |

3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью кода NRZ. Результат приведен на рисунках 2 — 5.



Рисунок 5 — Коды с 49 по 60

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.