

성균관대학교 민무홍

정보보호 개요 – 정보보호 개념

• 정보보호는 정보 자산을 공개·노출·변조·파괴·지체 등의 위협으로부터 보호하여 정보의 기밀성, 무결성, 가용성을 확보하는 것

정보보호 개요 – 정보보호 목표

• 기밀성

• 무결성

• 가용성

정보보호 관리 – 정보보호 정책

■정보보호 정책, 표준, 지침, 절차 ■

구분	정의 및 특성
정책 (Policy)	 정보보호에 대한 상위 수준의 목표 및 방향을 제시 조직의 경영목표를 반영하고 정보보호 관련 상위 정책과 일관성을 유지 정보보호를 위해 관련된 모든 사람이 반드시 지켜야 할 요구사항을 전반적이며 개략적으로 규정
표준 (Standard)	• 정보보호 정책과 마찬가지로 반드시 지켜야 하는 요구사항에 대한 규정이지만, 정책의 만 족을 위해 반드시 준수해야 할 구체적인 사항이나 양식을 규정 • 조직의 환경 또는 요구사항에 따라 관련된 모든 사용자들이 준수하도록 요구되어지는 규정
지침 (Guidelines)	 반드시 지켜야 하는 것이 아니라 선택 가능하거나 권고적인 내용이며 융통성 있게 적용할수 있는 사항을 설명 정보보호 정책에 따라 특정 시스템 또는 특정 분야별로 정보보호 활동에 필요하거나 도움이 되는 세부 정보를 설명
절차 (Procedure)	• 정책을 만족하기 위하여 수행하여야 하는 사항을 순서에 따라 단계적으로 설명 • 정보보호 활동의 구체적 적용을 위해 필요한 적용 절차 등의 구체적이고 세부적인 방법을 기술

정보보호 관리 – 정보보호 정책

■정보보호 정책, 표준, 지침, 절차 ■ * 보안정책 --> 보호정책

정보보호 관리 – 정보보호 관련 위협과 취약성

• 위협(Threat)은 정보시스템에 손상을 입히거나 정보의 기밀성, 무결성, 가용성에 피해를 줄 수 있는 모든 사건

• 위협은 일반적으로 자산이 지니고 있는 취약성(Vulnerability)을 이용하여 자산에 손상을 입히게 됨

정보보호 관리 – 정보보호 관련 위협과 취약성

- 위협의 종류
 - 환경(자연)에 의한 위협
 - 인간과 관련된 위협

정보보호 관리 - 정보보호 관련 위협과 취약성

• 취약성(Vulnerability)은 위협에 의해 이용될 수 있는 자산의 약점으로 자산이 잠재적으로 갖고 있는 약점

- 취약성의 종류
 - 물리적 취약성
 - 자연적 취약성
 - 환경적 취약성
 - 하드웨어 취약성

- 소프트웨어 취약성
- 매체 취약성
- 전자파 취약성
- 통신 취약성
- 인적 취약성

정보보호 관리 – 정보보호 대책

• 예방통제(Preventive Controls)

• 탐지통제(Detective Controls)

• 교정통제(Corrective Controls)

정보보호 관리 – 접근통제

• ① 강제적 접근통제(Mandatory Access Control, MAC)

MAC의 예 I

정보보호 관리 – 접근통제

• ② 임의적 접근통제(Discretionary Access Control, DAC)

【DAC의 예Ⅰ

정보보호 관리 – 접근통제

• ③ 비임의적 접근통제(Non-Discretionary Access Control, Non-DAC)

최소 권한 정책과 직무분리의 원칙 원칙

- 최소 권한 정책(Least Privilege Policy):
 최소 권한 정책은 Need To Know 원칙으로 사용자들은 자신의 업무를 수행하기 위해 꼭 필요한 권한 만을 갖도록 접근 권한을 부여하는 것이다. 즉, 사용자에게 최소의 권한 만을 허용하여 권한의 남용을 방지하고 해킹 등으로부터 시스템을 보호할 수 있다.
- 직무분리의 원칙(Separation of Duty): 직무분리의 원칙은 업무의 발생에서부터 배포에 이르기까지 모든 업무의 프로세스가 한 사람에 의해 처리될 수 없도록 하는 강제적 보안정책이다. 즉, 시스템 상에서 오용을 일으킬 정도의 충분한 특권을 가진 사용자를 없게 하는 것이다.

암호의 이해

▮암호 방식▮

암호 알고리즘 - 암호 알고리즘의 분류

- ① 대칭키 암호 방식
- ② 공개키 암호 방식

▋공개키 암호 방식▮

암호 알고리즘 - 대칭키 암호 알고리즘

• 대칭키 암호 방식 알고리즘으로는 DES(Data Encryption Standard), AES(Advanced Encryption Standard), SEED, ARIA, SKIPJACK, IDEA(International Data Encryption Algorithm), RC5(Ron's Code 5) 등이 있다.

암호 알고리즘 - 공개키 암호 알고리즘

▮ 안전한 암호 알고리즘(예시)(2016년9월 기준)▮

구분	공공기관	민간부문(법인·단체·개인)
대칭키 암호 알고리즘	SEED, LEA, HIGHT, ARIA-128/192/256	SEED ARIA-128/192/256 AE-128/192-256 Blowfish Camela-128/192/256 MISTY1 KASUMI 등
공개키 암호 알고리즘 (메시지 암·복호화)	RSAES-OAEP	RSA RSAES-OAEP RSAES-PKCS1 등
일방향 암호 알고리즘	SHA-224/226/384/512	RHA-224/245/384/512 whirlpool등

암호화 구현 및 키 관리 – 전송 시 암호화

Ⅰ 웹서버와 웹브라우저 간 전송시 암호화 방식 비교 Ⅰ

방식	데이터 부분암호화	개발비용
SSL 방식	지원하지 않음	낮음
응용프로그램 방식	지원함	높음

개인정보처리시스템 간 암호화

방식	VPN 서버부하	NAT 통과
IPSec VPN	낮음	어려움
SSL VPN	다소 높음	쉬움
SSH VPN	다소 높음	쉬움

암호화 구현 및 키 관리 – 전송 시 암호화

개인정보 취급자 간 암호화

방	식	공인인증서 필요 여부	표준형식
이메일	PGP	필요하지 않음	PGP 자체정의
암호화	S/MIME	필요함	X509, PKCS#7
이메일 첨부문서 암호화		필요하지 않음	없음

암호화 구현 및 키 관리 – 저장 시 암호화

【모듈·위치별 암호화 방식 】

• ① 개인정보처리시스템 암호화 방식

암호화 방식	암·복호화 모듈 위치	암·복호화 요청 위치	설 명
응용프로그램 자체 암호화	어플리케이션 서버	응용프로그램	 암·복호화 모듈이 API 라이브러리 형태로 어플리케이션 서버에 설치되고, 응용프로그램에서 해당 암·복호화 모듈을 호출하는 방식 DB 서버에 영향을 주지 않아 DB 서버의 성능 저하가 적은 편이지만 구축 시 응용프로그램 전체 또는 일부 수정 필요 기존 API 방식과 유사
DB서버 암호화	DB서버	응용프로그램	 암·복호화 모듈이 DB서버에 설치되고 DB서버에서 암·복호화 모듈을 호출하는 방식 구축 시 응용프로그램의 수정을 최소화할 수 있으나, DB서버에 부하가 발생하며 DB스키마의 추가 필요 기존 Plug-In 방식과 유사
DBMS 자체 암호화	DB서버	DB서버	- DB서버의 DBMS 커널이 자체적으로 암·복호화 기능을 수행하는 방식 - 구축 시에 응용프로그램 수정이 거의 없으나, DBMS에서 DB스키마의 지정 필요 - 기존 커널 방식(TDE)과 유사
DBMS 암호화 기능 호출	DB서버	응용프로그램	- 응용프로그램에서 DB서버의 DBMS 커널이 제공하는 암복호화 API를 호출하는 방식 - 구축 시에 암·복호화 API를 사용하는 응용프로그램의 수정이 필요 - 기존 커널 방식(DBMS 함수 호출)과 유사
운영체제 암호화	파일 서버	운영체제 (OS)	 OS에서 발생하는 물리적인 입출력(I/O)을 이용한 암·복호화 방식으로 DBMS의 데이터파일 암호화 DB서버의 성능 저하가 상대적으로 적으나 OS, DBMS, 저장장치와의 호환성 검토 필요 기존 DB 파일암호화 방식과 유사

암호화 구현 및 키 관리 – 저장 시 암호화

• ① 개인정보처리시스템 암호화 방식

분류	고려사항
	구현 용이성, 구축 비용, 기술지원 및 유지보수 여부
일반적 고려사항	암호화 성능 및 안정성
	공공기관의 경우, 국가정보원 인증 또는 검증 여부
기스코 그리기회	암·복호화 위치(어플리케이션 서버, DB서버, 파일서버 등)
기술적 고려사항	색인검색 가능 유무, 매치처리 가능 여부

암호화 구현 및 키 관리 – 저장 시 암호화

• ② 업무용 컴퓨터 및 보조저장매체 암호화 방식

분류	특성
문서도구 자체 암호화	 업무용 컴퓨터에서 사용하는 문서도구의 자체 암호화 기능을 통하여 개인정보 파일 암호화
암호 유틸리티를 이용한 암호화	- 업무용 컴퓨터의 OS에서 제공하는 파일 암호 유틸리티 또는 파일 암호 전용 유틸리티를 이용한 개인정보 파일, 디렉토리의 암호화
DRM (Digital Right Management)	- DRM을 이용하여 다양한 종류의 파일 및 개인정보 파일의 암호화 - 암호화 파일의 안전한 외부 전송이 가능
디스크 암호화	 디스크에 데이터를 기록할 때 자동으로 암호화하고, 읽을 때 자동으로 복호화하는 기능을 제공 디스크 전체 또는 일부 디렉터리를 인가되지 않은 사용자에게 보이지 않게 설정하여 암호화 여부와 관계없이 특정 디렉터리 보호 가능

암호화 구현 및 키 관리 – 암호키 관리

• ① 암호키 수명주기

암호의 응용

- (1) 전자 서명
- (2) 해쉬 함수

※ 자료 출처 : 국가공인 산업보안관리사 교안 - 케듀아이