Описание автоматизируемых функций платформы "Центральный Пульт"

2019

1.	Исходные данные	2
1.1	Материалы и документы, используемые при разработке функциональной части АС	3
1.2	Особенности объекта управления	3
1.3	Системы управления, взаимосвязанные с разрабатываемой АС	3
1.4	Описание информационной модели объекта	4
2.	Цели АС и автоматизируемые функции	5
3.	Характеристика функциональной структуры	7
3.1	Перечень подсистем АС	8
3.2		
3.3	•	
4.	Типовые решения	13

1 Исходные данные

1.1 Материалы и документы, используемые при разработке функциональной части AC

При разработке функциональной части проекта были использованы следующие материалы и документы:

- концепция АС «Центральный Пульт»;
- техническое задание по разработке пилотного проекта AC «Центральный Пульт»;
- бизнес-требования от потенциальных пользователей;
- данные, полученные в результате опроса лиц, ответственных за разработку системы;
- схема функциональной структуры.

1.2 Особенности объекта управления

При разработке АС «Центральный Пульт» учитывался ряд особенностей, которые повлияли на проектные решения. К этим особенностям относится увеличение партнёров из различных сфер деятельности, что влечёт за собой регулярное усовершенствование функционала, интеграцию с локальными и вспомогательными АС партнёров, введение в эксплуатацию новых способов сбора данных. В связи с этим закладываемые в АС «Центральный Пульт» проектные решения должны обладать достаточной степенью гибкости и масштабируемости.

1.3 Системы управления, взаимосвязанные с разрабатываемой **AC**

В качестве подсистем, взаимосвязанных с АС «Центральный Пульт», могут выступать следующие подсистемы:

- SAYMON-Server;
- СУБД (MongoDB, OpenTSDB);
- SAYMON Agent;

• Клиент (Web, Android, IOS).

1.4 Описание информационной модели объекта

Информационное обеспечение АС «Центральный Пульт» включает в себя внутримашинное и внемашинное информационное обеспечение.

В состав внемашинного информационного обеспечения входит система документации.

В состав внутримашинного информационного обеспечения входят:

- центральное хранилище данных;
- центр обработки запросов клиента;
- набор NodeJS-приложений;
- сетевое журналируемое хранилище данных «Redis»;
- система управления базами данных «МопgoDB»;
- база данных временных рядов «OpenTSD».

2 Цели АС и автоматизируемые функции

Цели создания платформы:

- 1. Упростить сбор и анализ информации;
- 2. Ускорить процесс обработки данных и сделать его автоматизированным;
- 3. Визуализировать полученные и обработанные данные;
- 4. Обеспечить беспрерывное хранение информации;
- 5. Автоматически уведомлять пользователей о состояниях объектов удобным для них способом;
- 6. Автоматически исправлять аварийные ситуации;
- 7. Управлять объектами мониторинга.

Перечень автоматизируемых функций включает в себя:

- 1. Представление практически любого объекта окружающего мира в качестве объекта мониторинга;
- 2. Смена состояния объекта в соответствии с заданными условиями;
- 3. Хранение оригинальных значений показателей за промежутки времени;
- 4. Обеспечение анализа в табличной и графической формах;
- 5. Быстрое реагирование на изменение статуса объекта;
- 6. Представление объектов, согласно их географическому месторасположению;
- 7. Использование гибкого механизма оповещений;
- 8. Группировка объектов по заданным общим критериям;
- 9. Импорт объектов и метрик из Zabbix;
- 10. Экспорт метрик в Grafana;
- 11. Преобразование данных от агента в компактный вид и их экспорт;
- 12. Прикрепление контекстной документации и отображение свойств объектов.

Характеристика функциональной структуры

3 Характеристика функциональной структуры

Программное обеспечение платформы «Центральный Пульт» имеют открытые API-интерфейсы, которые обеспечивают информационную совместимость системы и возможность интеграции с другими автоматизированными системами.

3.1 Перечень подсистем АС

Система состоит из следующих логических подсистем:

1. SAYMON-Server

Подсистема обеспечивает выполнение следующих функций:

- получение уведомлений об ошибках передачи данных;
- настройка и контроль доступа к объектам системы;
- контроль целостности данных;
- управление работой других подсистем;
- реагирование на возникновение аварийных ситуаций;
- преобразование данных в требуемый системой формат;

2. СУБД (MongoDB, OpenTSDB)

Подсистема обеспечивает выполнение следующих функций:

- хранение данных;
- журналирование переданной и полученной информации от сервера к клиенту и наоборот;
- загрузку полученных данных в систему;
- резервное копирование;
- восстановление базы данных после сбоев.

3. SAYMON Agent

Подсистема обеспечивает выполнение следующих функций:

• сбор информации на выбранном объекте мониторинга;

- анализ полученной информации;
- выполнение пользовательских скриптов;
- осуществление как пассивного, так и активного мониторинга;
- отправка обработанных данных серверу.
- 4. Клиент (Web, Android, IOS)

Подсистема обеспечивает выполнение следующих функций:

- настройка условий мониторинга;
- создание и выбор объектов;
- настройка объектов мониторинга;
- управление пользователями;
- кастомизация интерфейса;
- просмотр и изменение текущих состояний;
- построение графиков.

3.2 Пояснения к разделению автоматизированных функций

3.2.1 Подсистема SAYMON-Server

SAYMON-Server — набор NodeJS-приложений, которые взаимодействуют между собой и со всеми остальными компонентами.

Выделяются следующие составляющие подсистемы:

- Веб-сервер это HTTP-сервер, обслуживающий запросы клиента. В качестве Веб-сервера используется Nginx.
- REST-сервер серверный компонент, обрабатывающий REST-запросы от JavaScript-компонентов на тонком клиенте. Через REST-API пользователь получает всю информацию об инфраструктуре, а также производит манипуляции с ней. REST-сервер реализован в виде набора NodeJS-приложений.
- Сервер данных производит анализ данных, поступивших от агентов.
 В частности, управляет логикой смены состояний у объектов и связей.
 Сервер данных реализован в виде набора NodeJS-приложений.

• Кэш в памяти или In-Memory кэш — хранит базу данных оперативной памяти. В качестве In-Memory кэша используется Redis.

3.2.2 Подсистема СУБД

Данная подсистема отвечает за хранение и передачу данных между участниками обмена и включает в себя два компонента:

- 1. MongoDB система управления базами данных, классифицированная как NoSQL;
- 2. OpenTSBD база данных временных рядов (Time series).

3.2.3 Подсистема SAYMON-Agent

«SAYMON-Agent» - компонент системы, осуществляющий мониторинг на выбранном узле и расположенных на нём объектах, а также связей данного узла. Данные, собранные агентом, периодически отправляются в In-Метогу кэш и затем анализируются сервером. Агент реализован в виде набора Java-приложений.

3.2.4 Подсистема Клиент

Данная подсистема является основным инструментов конечного пользователя и может быть представлена двумя способами:

- 1. Web-Client работа осуществляется внутри браузера Chrome версии не ниже 58.0.
- 2. Мобильное приложение на Android и IOS.

3.3 Требования к временному регламенту и характеристикам

Требования к временному регламенту и характеристикам процесса реализации автоматизированных функций соответствует общим требованиям к автоматизированной системе, изложенным ниже.

При проектировании и разработке подсистем учитывались следующие общие требования:

- работа с программным обеспечением должна осуществляться пользователями и администраторами системы. Доступ к функциям должен осуществляться в соответствии с выделенными правами и уровнем доступа пользователей;
- происходящие события должны фиксироваться в системном журнале с указанием типа событий, времени его выполнения и имени учётной записи пользователя, инициировавшего его.

При выполнении проектирования программного обеспечения учитывалась теоретическая нагрузка, приведённая в Таблице 1.

Тестируемый процесс	Показатель	Средняя величина
SNMP-трапы	Максимальная пропускная способность агента	12 300/sec
	Максимальная пропускная способность сервера	3800/sec
	Задержка	12 ms
Запись пришедших данных	Максимальная пропускная способность	45 000/sec
	Задержка	1 ms
Уведомления о данных датчиков на	Максимальная пропускная способность	2150/sec
удаленный агент	Задержка	12 ms
Исторические данные	Пропускная способность	50 000 metrics/sec
	Скорость отображения данных	83 000

Тестируемый процесс	Показатель	Средняя величина
		metrics/sec
	Среднее время отклика при записи данных	201 ms
	Среднее время отклика при отображении данных	2 ms
	Размер записи	6 bytes
	Объём исторических данных за один год по одной метрике	3 MB
	Объём использованной памяти агента	55 MB
Rest-сервер	Скорость отображения данных	700 requests/sec
	Среднее время отклика	2 ms

Таблица 1

4 Типовые решения

В процессе разработки системы были использованы следующие типовые решения:

- использование архитектуры Клиент-Сервер-Агент для построения системы мониторинга;
- использование архитектуры MVC (Model-View-Controller) для построение Web-приложения;
- использование формата JSON для передачи данных между клиентом, сервером и агентом;
- использование шаблона проектирования Message Bus для обмена сообщениями между модулями сервера.

POCCUHHO
www.rossinno.net
2019