MP-1 TUTORIAL-9

1. Demonstrate the Initial Basic Solution in Transshipment problem in Linear Programming., Post optimality analysis.

			Tuta	ial-	9	190031210				
			-			PNVKrishnaTeja				
	21	.52	5.3	54	DI	DZ	supply			
51	0	6	24	7	24	10	200			
52	10	0	6	12	5	20	210			
53	17	20	o	&	45	7	300			
34	18	u	10	0	30	6	410			
DI	15	20	60	16	0	10	1			
DZ	10	य	य	23	ч	0				
Demand 600 600 [1200] B										
Steps to solve transhipment auchlasia										
steps to solve transhipment problem:										
Mep-1: theck whether the problem is balanced										
or unbalanced										
B =) tupply = Demand										
B = 1200										
87ep-2	: A	dd tr	ne va	luc	of B	to a	u the nows			
	on	ام له	umns							
	S ₁	SZ.	53 10	4 1	סו ו)2	supply			
51	0	6	24	7	24	10	200+1200 =1400			
52	10	O	6	12	5	ಬ	1450			
53	15	20	D	8	45	7	1500			
54	18	25	OI	0	30	6	1620			
DI	15	20	60	LC.	0	10	1200			
D2	10	25	25	23	4	O	1200			
Demand	1200	1200	1200	1200	1600	1800	1200 8			

step-3: Find out total transportation cost by using vogel's Approximation method

	12	52	23	54	DI	D2_	supply	R	οω	diff		
12	1100	6	24	4	24	16	1400	6	6	1	1	4
S2	10	000)	6	12	5	26	14500	5	5	5	5	5
23	15	10	100)	8	45	4	15000	7	7	7	١	13
14	18	25	18	1100/	36	16	16950	6	6	6	6	19
DI	15	26	66	K	1200	10	1200	10	-	-	-	-
D2	16	25	es	23	110)	1010	1200	4	4	4	4	14
_	1200	1200	1200	12/00	660	600		1	1	1	١	I
column	10	6	6	7	4	6						
diff -	10	6	6	7	1	6						
	-	6	6	7	t	6						
	_	6	-	7	ι	G						
	-	6	_	-	١	6						

Transportation cost = 200 x 6 + 450 x 5 + 300 x 7 + 400 x 6 + 150 x 4

Transportation cost = 8,850

The allocations in the main diagonal cells are ignored

shipping pattern :-

2) past optimality Analysis:

sensitivity of the solution towards changes in the techno-economic changes, composition in profit composition and addition of new constraints. If these changes have no effect on the optimal solution, the solution is said to be insensitive. The post optimality analysis mainly focuses on

- 1. changes effecting feasibility.
- 2 changes affecting optimality.

procedure:

- 1. compute the dual prices vector $4 = c_B B^{-1}$.

 using the new vector c_B , it has been changed.
- 2. compute zj-cj = 4pj-cj for all current non-basic 2j
- -) If optimality condition is satisfied the current solution will remain same, but at a new optimum value of Objective function. If CB is unchanged, the optimal objective value will remain same.
- -> If optimality condition is not satisfied, we apply the (primal) timplex method to recover optimality.

Maximize $2 = 3x_1 + 5x_2$ Subject To $x_1 + x_2 \le 1$ $2x_1 + 2x_2 \le 1$ $x_1, x_2 \ge 0$

obtain variations in (j (j:1,2) which are permitted without changing the optimum

First convert the inequalities into equalities by adding slack variables 5120 and 5220 and then solve the LPP by simplex method

$$C_{j}^{2}$$
 3 5 0 0
 X_{j}^{2} X_{1} X_{2} S_{1} S_{2} X_{B} Y_{B} C_{B}
 V_{3} 0 1 - V_{3} V_{3} V_{3} V_{4} V_{5} V_{7} V_{7}

case-1: Variation in Ci

when c_K is not in c_B (c_2 f c_B), the current solution results in the same optimum solution i.e. $\Delta c_1 \le z_1 - c_1$ (or) $\Delta c_1 \le 1/3$ i.e.

cose-2: variation in C_2 when C_k is in $C_B(C_2 \in C_B)$ the range of ΔC_2

is given by:

Max
$$\left\{ -\frac{(z_{j}-c_{j})}{Y_{2j}} \right\} \leq c_{2} \quad \text{Min} \quad \left\{ -\frac{(z_{j}-c_{j})}{Y_{2j}} \right\}$$

i.e
$$\max \left\{ \frac{-1/3}{2/3}, \frac{-5/3}{1/3} \right\} \subseteq \Delta c_2 \leq \infty$$

the range over which c_2 can vary maintaining the condition of optimally is given by $c_2 \leq c_2 + \Delta c_2$