DASHBOARD / I MIEI CORSI / CALCOLO NUMERICO / SEZIONI / ESAME 30 GENNAIO / QUIZ STUDENTI 22-23 TURNO 2

Iniziato	lunedì, 30 gennaio 2023, 09:40
Stato	Completato
Terminato	lunedì, 30 gennaio 2023, 10:12
Tempo impiegato	32 min. 43 secondi
Punteggio	20,00/23,00
Valutazione	8,70 su un massimo di 10,00 (87 %)
Domanda 1	
Risposta errata	
Punteggio ottenuto 0,00 s	ı 1,00

Se A è una matrice $n \times n$, quale delle seguenti affermazioni è errata ?

- o a. Nessuna delle precedenti.
- $\ \, 0 \ \, {\rm b.} \ \, K(A) = ||A||||A^{-1}||.$
- \odot c. $K(A) \geq 1$.

La risposta corretta è: Nessuna delle precedenti.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

$$A = egin{bmatrix} 6 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & -4 \end{bmatrix}$$

Allora:

- \bigcirc a. $K_2(A)=-3$.
- \bigcirc b. $K_2(A) = -6$.
- lacksquare c. $K_2(A) = 3$.

La risposta corretta è: $K_2(A)=3$.

Domanda 3

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se il vettore $v=(10^6,1)^T$ è approssimato dal vettore $\tilde{v}=(999996,1)^T$, allora in $||\cdot||_\infty$ l'errore relativo tra v e \tilde{v} è:

- \odot a. $4\cdot 10^{-6}$.
- O b. 4.
- o. Nessuna delle precedenti.

La risposta corretta è: $4 \cdot 10^{-6}$.

Domanda 4	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	

L'errore inerente è dovuto:

- a. Al propagarsi degli errori di arrotondamento delle singole operazioni.
- O b. Alle imperfezioni dello strumento di misura dei dati del problema.
- oc. All'uso dei <u>numeri finiti</u> per rappresentare i dati.

Le risposte corrette sono: All'uso dei <u>numeri finiti</u> per rappresentare i dati., Al propagarsi degli errori di arrotondamento delle singole operazioni.

Domanda **5**Risposta corretta
Punteggio ottenuto 1,00 su 1,00

Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di n+1 punti sono:

- a. Nessuna delle precedenti.
- lacksquare b. Polinomi di grado n.

La risposta corretta è: Polinomi di grado n.

Domanda **6**Risposta errata
Punteggio ottenuto 0,00 su 1,00

Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di n+1 punti sono:

- oa. Nessuna delle precedenti.
- \bigcirc b. Polinomi di grado $\geq n$.
- oc. Polinomi lineari a tratti.

~

La risposta corretta è: Nessuna delle precedenti.

Domanda **7**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^n o\mathbb{R}$ funzione convessa . Vale:

- igcup a. f ha un solo punto di minimo glogale.
- b. Ogni punto di minimo locale è globale.
- c. Nessuna delle precedenti

La risposta corretta è: Ogni punto di minimo locale è globale.

Domanda **8**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^n ightarrow \mathbb{R}\,$ differenziabile. Vale:

- igcup a. Se $abla f(x^*)=0$ allora x^* è un punto di massimo o minimo locale.
- lacksquare b. Se $abla f(x^*) = 0$ allora x^* è un punto stazionario.
- igcup c. Se $abla f(x^*)=0$ allora x^* è un punto di minimo locale.

La risposta corretta è: Se $abla f(x^*) = 0 \,$ allora x^* è un punto stazionario.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Allora:

- igcup a. A è simmetrica ma non definita positiva.
- \odot b. A è simmetrica e definita positiva.

La risposta corretta è: A è simmetrica e definita positiva.

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Una matrice $U \ n \times n$ è ortogonale se:

- a. Le sue colonne sono vettori ortonormali.
- b. Le sue righe sono vettori ortonormali.
- oc. Le sue colonne sono vettori ortogonali.

La risposta corretta è: Le sue colonne sono vettori ortonormali.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Data la matrice:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ -4 & 0 & 3 \\ 0 & 1 & -3 \end{bmatrix}$$

La norma di Frobenius di A:

- \bigcirc b. $||A||_F=8$.
- o. Nessuna delle precedenti.

La risposta corretta è: $||A||_F=7$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

Allora:

- \bigcirc a. La norma-2 di A è $||A||_2=1$.
- $\ \ \,$ b. La norma-2 di A è $||A||_2=3$.
- $\quad \bigcirc \ \, \text{c.} \quad \text{La norma-2 di } A \models ||A||_2 = 0.$

La risposta corretta è: La norma-2 di A è $||A||_2=3$.

Domanda 13

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Siano x=3.89167 e y=0.45678.

Quanto vale e z=x-y in $\mathcal{F}(10,4,-5,5)$?

- a. 3.4343.
- $\ \bigcirc$ b. $0.3434\times 10^{0}.$
- © c. 3.434.

La risposta corretta è: 3.434.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi$, w=e, e z=fl(x)*fl(w), allora:

- \circ a. $fl(z) = 0.837 \times 10^1$.
- b. $fl(z) = 0.84 \times 10^1$.
- \circ c. $fl(z) = 0.0837 \times 10^2$.

La risposta corretta è: $fl(z) = 0.84 \times 10^{1}$.

Domanda 15

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $lpha=rac{1}{2}$, allora:

- $x^{(1)} = (1 + \frac{e}{2}, 1 + \frac{e}{2})^T$.
- lacksquare b. $x^{(1)} = (1 rac{e}{2}, 1 rac{e}{2})^T$.
- \circ c. $x^{(1)} = (\frac{1}{2} \frac{e}{2}, \frac{1}{2} \frac{e}{2})^T$.

La risposta corretta è: $x^{(1)} = (1 - \frac{e}{2}, 1 - \frac{e}{2})^T.$

Domanda **16**Risposta corretta
Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^n o \mathbb{R}$ una funzione strettamente convessa, allora un metodo di discesa convergente:

- a. Converge al minimo globale.
- b. Converge al minimo locale.
- oc. Sono entrambe esatte.

La risposta corretta è: Sono entrambe esatte.

Domanda 17

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ con m>n, ha almeno una soluzione se:

- a. Entrambe le precedenti.
- \bigcirc b. rg(A) = n.
- \bigcirc c. $rg(A) \leq n$.

La risposta corretta è: Entrambe le precedenti.

Domanda **18**Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A matrice $m \times n$ con (m>n) e rg(A)=k=n, allora la soluzione del problema lineare ai minimi quadrati $min||Ax-b||_2^2$:

- igcup a. è soluzione del sistema $AA^Tx=A^Tb$.
- lacksquare b. è soluzione del sistema $A^TAx=A^Tb$.
- igcup c. è soluzione del sistema $A^TAx=Ab$.

La risposta corretta è: è soluzione del sistema $A^TAx = A^Tb$.

Domanda 19

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Ogni matrice $A\ n imes n$ non singolare è fattorizabile come PA=LR,

- igcup a. con P matrice di permutazione, L matrice con tutti 0 sulla diagonale e R triangolare inferiore non singolare.
- b. entrambe sono corrette.
- \odot c. con P matrice di permutazione, L matrice triangolare inferiore con tutti 1 sulla diagonale e R triangolare superiore non singolare.

La risposta corretta è: con P matrice di permutazione, L matrice triangolare inferiore con tutti 1 sulla diagonale e R triangolare superiore non singolare.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A $n \times n$ non singolare, con PA = LR la fattorizzazione di <u>Gauss</u> con pivoting, allora la soluzione del sistema Ax = b si ottiene risolvendo:

- $\bigcirc \ \, \text{a.} \quad \left\{ \begin{aligned} Lx &= P^{-1}b \\ Rb &= y \end{aligned} \right.$
- \bigcirc b. $\begin{cases} Ly = b \\ Rx = y \end{cases}$
- \odot c. $\begin{cases} Ly = P^{-1}b \\ Rx = y \end{cases}$

La risposta corretta è: $\left\{ egin{aligned} Ly &= P^{-1}b \\ Rx &= y \end{aligned}
ight.$

Domanda 21

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia

$$A = \begin{bmatrix} -5 & 1 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & -1 \end{bmatrix}$$

- o a. Il metodo di Jacobi è convergente per ogni termine noto b.
- o b. Il metodo di Jacobi è convergente solo per alcuni termini noti b.
- oc. Il metodo di Jacobi non converge per ogni termine noto b.

La risposta corretta è: Il metodo di Jacobi non converge per ogni termine noto b.

×

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

I valori singolari di una matrice A sono uguali: .

- \bigcirc a. Agli autovalori di A^TA .
- igcup b. Agli autovalori di $A^{-1}A$ al quadrato.

La risposta corretta è: Agli autovalori di A^TA al quadrato.

Domanda 23

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A matrice m imes n con (m>n) e rg(A)=k < n, Sia $A=U\Sigma V^T$ la decomposizione SVD di A con:

$$U=(u_1,u_2,\ldots,u_m) \quad V=(v_1,v_2,\ldots,v_n) \quad \Sigma=(\sigma_1,\sigma_2,\ldots,\sigma_m)$$

Allora una soluzione del problema ai minimi quadrati $min ||Ax-b||_2^2$:

- igcirc a. è il vettore $x^* = \sum_{i=1}^n rac{v_i^T b}{\sigma_i} v_i$.
- Ob. Nessuna delle precedenti.
- $^{\odot}$ C. è il vettore $x^* = \sum_{i=1}^k rac{u_i^T b}{\sigma_i} v_i$.

La risposta corretta è: è il vettore $x^* = \sum_{i=1}^k rac{u_i^T b}{\sigma_i} v_i.$

quiz studenti 22-23 tempo 30

Vai a...

python studenti 21-22 >