Rudarenje podataka LoRaWAN mreže

Ante Lojić Kapetanović

September 10, 2019

FESB, Sveučilište u Splitu

Sadržaj

- 1. Uvod i motivacija
- 2. Prediktivne metode
- 3. Predloženi RNN model
- 4. Rezultati
- 5. Zaključak

Uvod i motivacija

LoRaWAN - Long Range Wide Area Network

LoRaWAN - dalekosežna mreža širokog područja definirana je kao protokol kontrole pristupa mediju (MAC) za mreže širokog područja (WAN).

Dizajnirana je tako da zadovoljava ključna svojstva uređaja u IoT mreži:

- dalekosežno povezivanje
- skalabilnost
- energetska učinkovitost

Arhitekturni pregled mreže

Svebølle mrežna topologija

Komunikacijski model za Svebølle implementaciju

Cilj projekta

Je primjena prediktivnih statističkih metoda na mjerene podatke sa bazne stanice u Svebølleu i ispitivanje mogućnosti predviđanja uspješno transmitiranih LoRa poruka za dani interval vremena u budućnosti.

Motivacija

Uspješnom predikcijom aktivnosti krajnjih uređaja za blisku budućnost osigurao bi se prostor definiranju učinkovitijih pristupnih protokola što bi posljedično rezultiralo boljom mrežnom propusnošćuu i pouzdanošću same mreže ali i energetskom efikasnošću.

Prediktivne metode

Struktura mjerenih podataka

- Podaci su prikupljeni kroz 5 mjeseci
- 689k mjerenja su snimljene na jednoj baznoj stanici
- Mjerene značajke
 - Time
 - DevAddr
 - Freq, Chan, BW, CR, DR
 - RSSI, SNR
 - crcStatus, mType,macPayload

Transformacija snimljenih podataka u vremensku seriju

Vremenska serija je niz sukcesivno raspoređenih elemenata indeksiranih u vremenskom redoslijedu pri čemu su elementi vremenski jednako razmaknuti.

Kako bismo kreirali vremensku seriju, jedina bitna značajka podatkovnog seta je aktivnost uređaja u promatranom prošlom trenutku. Za svaki trenutak, gdje je trenutak u rezoluciji sekunde, zastavica aktivnosti je dodijeljenja na način:

- 1 uređaj je bio aktivan u promatranom trenutak
- 0 uređaj nije bio aktivan u promatranom trenutku

Prediktivni modeli

- Moving average / weighted moving average
- Autoregressive integrated moving average (ARIMA)
- Holt's winter method
- Vector auto regression (VAR)
- Recurrent neural network (RNN)
- Reinforcement learning (RL)

Predloženi RNN model

Umjetna neuralna mreža

Prepoznaju regularnosti i uzorke promatranog seta podataka, uče iz prošlog iskustva i osiguravaju mogućnost zaključivanja na temelju izlaznih podataka.

Jednostavne neuralne mreže nisu namjenjene za prognoziranje vremenskih serija jer su limitirane s mogućnošću pamćenja historijskih podataka.

RNN mreža (Reccurent Neural Network)

RNN sadrži petlje (povratne veze) koje osiguravaju ustrajnost informacije.

Raspakirana RNN mreža

Problem kratkoročne memorije

Ako je sekvenca podataka preduga, RNN mreža će imati problem pri prenošenju informacija iz historijskih momenata u kasnije momente. Razlog je jer tijekom povratne propagacije (back propagation), RNN mreže pate od problema nestajućeg gradijenta (gradijent se smanjuje tijekom vremena povratne propagacije).

nova težina = težina - stopa učenja imes gradijent gradijent = 0 o nova težina = težina o RNN mreža prestaje učiti

LSTM mreže (Long Short-Term Memory) u pomoć!

Promjena unutrašnje strukture RNN ćelije osigura se regulacija protočnosti informacije.

Unutrašnjost svake LSTM ćelije je realizirana s mehanizmima zvanim vrata koja kroz treniranje uče koji podaci sekvence su bitni a koji mogu biti odbačeni.

'Forget' vrata

određuju koju informaciju odbaciti iz *stanja ćelije* koristeći sigmoidnu funkciju koja na izlazu daje rezultate između 0 (u potpunosti odbaciti) i 1 (u potpunosti prihvati)

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

gdje je

 x_t trenutni ulazni vektor podataka;

 h_{t-1} prethodna vrijednosti izlaza ćelije;

 W_f pridružena težinska vrijednost;

 b_f je dodani bias.

Ulazna vrata

određuju koja nova informacija će biti upisana u stanje ćelije.

Prvo, sigmoidna funkcija odlučuje koju vrijednost ažurirati:

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

gdje je

 x_t trenutni ulazni vektor podataka;

 h_{t-1} prethodna vrijednosti izlaza ćelije;

W_i pridružena težinska vrijednost;

b_i je dodani bias.

Stanje ćelije

...nakon toga, *tanh* sloj kreira vektor kandidata za trenutno stanje ćelije:

$$\tilde{C}_t = tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

gdje je

 x_t trenutni ulazni vektor podataka;

 h_{t-1} prethodna vrijednosti izlaza ćelije;

 W_C pridružena težinska vrijednost;

 b_C je dodani *bias*.

Izlazna vrata

određuju što ide na izlaz promatrane ćelije.

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$

where

 x_t trenutni ulazni vektor podataka;

 h_{t-1} prethodna vrijednosti izlaza ćelije;

W_o pridružena težinska vrijednost;

bo je dodani bias.

Izlaz je baziran na filtriranoj verziji stanja ćelije.

$$h_t = o_t * tanh(C_t)$$

gdje je C_t novo stanje dobiveno kroz: $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

Rezultati

Predprocesiranje

- 1. čišćenje
- 2. čisti podatkovni set ightarrow vremenska serija
- 3. kreiranje sekvenca
- 4. randomiziranje sekvenca
- 5. podjela podatkovnog seta na set za trening i set za validaciju rezultata

Validacijski rezultati

Pogreške

Validacija rezultata

Za MAE=2s, 0.35% pogrešnih predikcija.

Procjena vjerojatnosti transmisije za proizvoljni budući vremenski period

Za dani vremenski period (**n** sekunda) vjerojatnost uspješne transmisije LoRa poruke s krajnjeg uređaja na baznu stanicu bi trebala rasti kako se povećava vremenski period (**n** postaje veći).

$$n = 0 \Rightarrow p_{st} = 0$$
 $n \in <0, +\infty> \Rightarrow p_{st} \in <0, 1>$ $n = \infty \Rightarrow p_{st} = 1$

Zaključak

Budući rad

- Multivarijatna vremenska serija umjesto jednostavne vremenske serije: promatrati ne samo prethodne historijske događaje za specifični uređaj nego i za ostale uređaje
- Veće sekvence za treniranje modela
- Sekvencne predikcije umjesto od-točke-do-toče predikcije

Pitanja