NE 155/255, Class 2

Types of Equations in the Engineering Fields August 30, 2019

Introduction

In science and engineering in general, and nuclear engineering and reactor analysis in specific, we encounter a wide range of mathematical physics equations. In today's lecture we will introduce some of them.

- Ordinary differential equations (ODEs)
- Partial differential equations (PDEs)
 - Elliptic PDEs
 - Parabolic PDEs
 - Hyperbolic PDEs
- Integro-differential equations
- Integral equations

1 ODEs

The most general form of an n^{th} order linear ordinary differential equation is

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_2(x)y^{(2)}(x) + a_1(x)y'(x) + a_0(x)y(x) = f(x)$$

where

- a_n are coefficients
- $y^{(n)}$ is the nth derivative of y.

Boundary conditions:

- 1. Initial Value Problem (**IVP**): if y and its derivatives are given at one end of the domain (e.g. time zero if we're considering time or the spatial starting point if we're considering space, etc.)
- 2. Boundary Value Problem (**BVP**): if y and/or its derivatives are given at <u>each</u> end of the interval

Linear 1st order ODEs

Reminders

- 1st order means that n=1. The coefficients a_1 and a_0 may depend on y or y'.
- Linear means each coefficient only depends on x (i.e., not on y or derivatives of y).

Linear 1st order ODE Example:

$$\frac{dy}{dx} + 3y(x) = \sin(x) \qquad x \in [0, 1]$$

- IVP if boundary conditions are y(0) = 1; y'(0) = 2
- BVP if boundary conditions are y(0)=-1, y(1)=3

In this case, the general solution is obtained through the use of an integrating factor.

Relevant linear first-order ODE examples in nuclear engineering include point kinetics analysis of a nuclear reactor (IVP, linear first-order ODE) and radioactive decay described by the Batemann equation(s) (IVP, linear first-order ODE[s]).

2nd order ODE Example:

$$-\frac{d}{dx}p(x)\frac{d}{dx}\phi(x)+q(x)\phi(x)=S(x), \qquad \text{defined for } a\leq x\leq b$$

$$\mathrm{BC} \colon \alpha(x)\frac{d\phi}{dx}+\gamma(x)\phi(x)=\sigma \qquad \text{ at } x=a \text{ and } x=b \text{ (BVP)}$$

This has

• Neumann BCs if $\gamma = 0$ (specifies the values that the *derivative* of a solution is to take on the boundary of the domain)

- **Dirichet** BCs: if $\alpha = 0$ (specifies the values that a *solution* is to take on the boundary of the domain)
- Mixed BCs if $[\gamma \neq 0 \text{ and } \alpha = 0 \text{ at } x = a]$ and $[\alpha \neq 0 \text{ and } \gamma = 0 \text{ at } x = b]$ (the solution is required to satisfy a Dirichlet or a Neumann boundary condition in a mutually exclusive way on disjoint parts of the boundary)
- If S(x) is nonzero at least somewhere over the physical range, a unique solution exists.

2 PDEs

A partial differential equation is an equation containing an unknown function of two or more variables and its derivatives with respect to those variables.

If the PDE is linear in u and all derivatives of u, then we say that the PDE is linear.

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu(x,y) = G$$

This equation is a 2nd order PDE in two variables. It is linear if A through G do not depend on u (they may depend on x and/or y).

Classification of PDEs

Just as one classifies conic sections and quadratic forms into parabolic, hyperbolic, and elliptic based on the discriminant $B^2 - 4AC$, the same can be done for a second-order PDE at a given point.

[To think about classification, think about replacing ∂x by x and ∂y by y (formally this is done via Fourier transform). This converts the PDE into a polynomial of the same degree.]

Note: these classifications only apply to second order PDEs.

The reason we care about this in the context of the Transport Equation:

- In a void, the transport equation is like a hyperbolic wave equation.
- For highly-scattering regions where Σ_s is close to Σ , the equation becomes elliptic for the steady-state case.

- If the scattering is forward-peaked then the equation is parabolic.
- **Elliptic** if $B^2 4AC < 0$.

Some famous elliptic PDEs:

$$\begin{split} \nabla^2 u &= 0 \qquad \text{Laplace's eqn.} \\ \nabla^2 u &= f(x) \qquad \text{Poisson's eqn.} \\ -\frac{\partial}{\partial x} D(x,y) \frac{\partial}{\partial x} \phi(x,y) - \frac{\partial}{\partial y} D(x,y) \frac{\partial}{\partial y} \phi(x,y) + \left(\Sigma_a(x,y) - \frac{1}{k} \nu \Sigma_f(x,y) \right) \phi(x,y) &= 0 \end{split}$$

For each of these there's no B term, so -4AC < 0 (in the diffusion equation case since D(x,y) is positive).

One property of constant coefficient elliptic equations is that their solutions can be studied using the Fourier transform.

• Parabolic if $B^2 - 4AC = 0$, e.g.

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \qquad \text{1-D heat eqn.}$$

$$\frac{1}{v} \frac{\partial \phi(x,t)}{\partial t} = \frac{\partial}{\partial x} D(x,t) \frac{\partial}{\partial x} \phi(x,t) + \left(\nu \Sigma_f(x,t) - \Sigma_a(x,t)\right) \phi(x,t) + S(x,t)$$

There aren't B or C terms, so -4AC = 0

Equations that are parabolic at every point can be transformed into a form analogous to the heat equation by a change of independent variables. Solutions smooth out as the transformed time variable increases.

A perturbation of the initial (or boundary) data of an *elliptic or parabolic* equation is felt at once by essentially all points in the domain.

• Hyperbolic if $B^2 - 4AC > 0$, e.g.

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \qquad \text{1-D wave eqn.}$$

There's no B term, and the C term is negative so -4AC > 0

- if u and its first t derivative are arbitrarily specified with initial data on the initial line t = 0 (with sufficient smoothness properties), then there exists a solution for all of t.
- The solutions of hyperbolic equations are "wave-like." If a disturbance is made in the
 initial data of a hyperbolic differential equation, then not every point of space feels the
 disturbance at once.
- Relative to a fixed time coordinate, disturbances have a finite propagation speed. They
 travel along the characteristics of the equation.

Higher-order PDE classification

If there are n independent variables x_1, x_2, \ldots, x_n , a general linear partial differential equation of second order has the form

$$Lu = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} \frac{\partial^{2} u}{\partial x_{i} x_{j}} + \text{Lower Order Terms } = 0$$

The classification depends upon the signature of the eigenvalues of the coefficient matrix $a_{i,j}$.

- 1. Elliptic: The eigenvalues are all positive or all negative.
- 2. Parabolic: The eigenvalues are all positive or all negative, save one that is zero.
- 3. <u>Hyperbolic</u>: There is only one negative eigenvalue and all the rest are positive, or there is only one positive eigenvalue and all the rest are negative.
- 4. <u>Ultrahyperbolic</u>: There is more than one positive eigenvalue and more than one negative eigenvalue, and there are no zero eigenvalues. There is only limited theory for ultrahyperbolic equations (Courant and Hilbert, 1962).

Nuclear Engineering Examples

It is important to connect the types of equations that exist with the types of problems that you are interested in solving. This way, you give yourself the opportunity to learn about methods which exist in other fields that employ the same or similar types of equations.

Poisson's equation (stationary heat conduction with a volumetric source) is an elliptic equation.

- Transient heat conduction in a slab is expressed as a parabolic equation.
- The time-dependent, 1-group neutron diffusion equation is a hyperbolic equation.
- The wave equation is a hyperbolic equation.