

# Cyclone V SoC 开发板 产品手册



重庆海云捷迅科技有限公司



#### 修订记录

| 日期         | 版本    | 修改说明                      | 修订人 | 审核人 | 批准人 |
|------------|-------|---------------------------|-----|-----|-----|
| 2020-02-07 | V1.0  | 创建文档                      | 彭诗翰 |     |     |
| 2020-06-16 | V1. 1 | 添加 Cyclone V SoC 核心板结构尺寸图 | 彭诗翰 |     |     |
|            |       |                           |     |     |     |
|            |       |                           |     |     |     |

#### 英文简写

| 英文简写   | 英文全称                                    | 中文翻译         |
|--------|-----------------------------------------|--------------|
| I/0    | Input/Output                            | 输入/输出        |
| EEPROM | Electrically Erasable Programmable Read | 带电可擦可编程只读存储器 |
|        | Only Memory                             |              |
| UART   | Universal Asynchronous                  | 通用异步收发传输器    |
|        | Receiver/Transmitter                    |              |
| JTAG   | Joint Test Action Group                 | 联合测试工作组      |
| OLED   | Organic Light Emitting Diode            | 有机发光二极管      |
| OTG    | On-The-Go                               | 正在进行中        |
| RTC    | Real Time Clock                         | 实时时钟         |
| UXGA   | Ultra Extended Graphics Array           | 极速扩展图形阵列     |
| FPGA   | Field Programmable Gate Array           | 现场可编辑逻辑门阵列   |
| HPS    | Hard Processor System                   | 硬核处理器系统      |
| I2C    | Inter-Integrated Circuit                | 两线式串行总线      |
| PL     | Processing System                       | 可编程逻辑        |
| PS     | Programmable Logic                      | 处理系统         |
| SoC    | System on Chip                          | 片上系统         |



# 目录

| 1 | 概述    | 5                     |
|---|-------|-----------------------|
| 2 | 部件名   | <b>6</b> 称及功能6        |
| 3 | 详细功   | ]能定义9                 |
|   | 3. 1  | 时钟电路9                 |
|   | 3.2   | 电源电路10                |
|   | 3.    | 2.1 5V DC 电源电路        |
|   | 3.    | 2.2 5V 转 3.3V 输出电路 12 |
|   | 3.    | 2.3 预留 5V 输出电路 12     |
|   | 3. 3  | HDMI 输出接口14           |
|   | 3.4   | UART 转 USB 接口         |
|   | 3. 5  | 以太网接口                 |
|   | 3.6   | JTAG 接口               |
|   | 3. 7  | 核心板连接器20              |
|   | 3.8   | 7 位数码显示管 27           |
|   | 3.9   | 摄像头接口28               |
|   | 3.10  | 蜂鸣器29                 |
|   | 3. 11 | TF 卡连接器               |
|   | 3. 12 | 开关电路31                |
|   | 3.    | 12.1 拨动开关31           |
|   | 3.    | 12.2 启动开关             |
|   | 3.    | 12.3 电源开关             |
|   | 3. 13 | 按键电路34                |
|   | 3.    | 13.1 用户按键34           |
|   | 3.    | 13.2 复位按键35           |
|   | 3. 14 | USB OTG 接口35          |
|   | 3. 15 | LED 电路                |
|   | 3. 16 | I2C 总线电路38            |
|   | 3.    | 16.1 OLED 屏           |



|   | 3. 16. 2 | RTC 电路    | 38 |
|---|----------|-----------|----|
|   | 3. 16. 3 | EEPROM 电路 | 39 |
| 4 | 结构尺寸图    |           | 40 |



# 1 概述

Cyclone V SoC 开发板是由重庆海云捷迅科技有限公司开发的一款围绕英特尔 SoC FPGA 构建的性能强大且功能齐全的硬件设计平台。该平台采用核心板加扩展板的方式,方便用户对核心板的二次开发利用。核心板以英特尔 Cyclone V SoC 芯片为核心,该芯片不仅仅将双核 Cortex—A9 嵌入式内核与 FPGA 可编程逻辑相结合,还具有与高性能、低功耗处理器系统相结合的强大的可重新配置能力。英特尔的 SoC 集成了一个基于 ARM 的 HPS,该系统由处理器、外设和内存接口组成,并通过一个高带宽的互联网络与 FPGA 结构进行无缝连接。另外核心板上板载 4 片 512MB 的高速 DDR3 SDRAM 芯片、1 片干兆以太网 PHY 以及 1 片 USB2.0 PHY。其扩展板则是为用户提供了丰富的外设接口,例如 1 个千兆以太网接口、1 个 UART 转 USB接口、一个 TF 卡连接器、1 个 HDMI 输出接口、1 个 JTAG 接口、1 个摄像头接口、1 个 USB OTG接口、1 个 7 位数码显示管、1 个蜂鸣器、0LED 屏、4 个用户拨动开关、1 个启动开关、4 个用户按键、1 个复位按键、8 个用户黄绿色 LED 灯、RTC 模块以及 EEPROM 模块。可以满足用户各种高速数据交换、数据存储、视频传输处理以及工业控制的需求。为高速数据传输和交换、数据处理的前期验证和后期应用提供了可能,也为学生的开发教学、工程师的深度开发等提供了适用性。



海云捷迅专有和保密信息





Cyclone V SoC 开发板背面图

Cyclone V SoC 开发板支持实验列表

| FPGA 侧    | HPS 侧      |
|-----------|------------|
| LED 实验    | OLED 屏实验   |
| 拨动开关实验    | 七段数码管实验    |
| 按键实验      | 摄像头实验      |
| 串口收发实验    | RTC 实验     |
| HDMI 实验   | HDMI 实验    |
| DDR3 实验   | EEPROM 实验  |
| RTC 实验    | Linux 基础实验 |
| EEPROM 实验 | _          |
| OLED 屏实验  | _          |

# 2 部件名称及功能



#### Cyclone V SoC 开发板部件名称与功能

| 部件名称          | 器件编号      | 功能描述                                   |
|---------------|-----------|----------------------------------------|
| 电源开关          | SW1       | Cyclone V SoC 开发板电源总开关                 |
| 5V DC 电源接口    | Ј1        | 1 个外部直流电源供电接口,供电电压为 5V                 |
| USB OTG 接口    | Ј6        | 1个 USB2.0接口,可用于各种不同设备或者移动设备            |
|               |           | 间的连接并进行数据交换                            |
| UART 转 USB 接口 | Ј3        | 1个用于串口收发的接口,可用于系统调试                    |
| 用户开关          | SW6、SW7、  | 4个拨动开关,可用于用户实验和测试                      |
|               | SW8, SW9  |                                        |
| 拨码开关          | SW11      | 1个3位拨码开关,可用于配置系统启动模式                   |
| 复位按键          | SW10      | 1 个复位按键                                |
| 用户按键          | SW2、SW3、  | 4个用户按键,可用于用户实验和测试                      |
|               | SW4、SW5   |                                        |
| OLED 屏幕       | Ј9        | 1 个电流型的有机发光器件                          |
| 蜂鸣器           | LS1       | 1 个采用直流供电的发声器件                         |
| HDMI 接口       | U5        | 1个用于连接 HDMI 的接口,兼容 DVI 1.0 和 HDCP v1.4 |
| 以太网接口         | Ј2        | 1 个千兆以太网 RJ45 连接器                      |
| 摄像头接口         | J5        | 1 个用于连接摄像头的接口                          |
| 7 位数码显示管      | U8        | 1个通过对不同管脚输入相对电流能显示出7位数字                |
|               |           | 的器件                                    |
| LED 指示灯       | D12, D13, | 8个黄绿色用户 LED,可用于用户实验和测试                 |
|               | D14、D15、  |                                        |
|               | D16、D17、  |                                        |
|               | D18, D19  |                                        |
| JTAG 接口       | Ј7        | 1 个标准 JTAG 接口,可进行仿真测试及程序下载             |
| 核心板连接器        | J11       | 1 个 200 引脚的 SODIMM 连接器,可用于与 C5MB 核心卡   |
|               |           | 进行连接                                   |
| 电池供电接口        | CR1       | 可插入纽扣电池提供 3V 供电输入,可用于 RTC 实验电          |



|         |     | 路供电                         |
|---------|-----|-----------------------------|
| TF 卡连接器 | U10 | 1 个用于插入微型 SD 卡的插槽,可用于数据存储与读 |
|         |     | 取                           |
| EEPROM  | U12 | 1 个掉电后数据不丢失的存储芯片            |

# AIGO\_C5MB\_V11 Block Diagram



Cyclone V SoC 开发板框图



#### JTAG Blaster JTAG Blaster Pin9(TDI) JTAG Blaster Pin3(TDO) JTAG CONN Pin9(TDI) JTAG CONN Pin3(TDO) JTAG JTAG TDI JTAG TDO **DIMM 200** Socket Pin36 Socket Pin34 AIGO\_C5MB **DIMM 200** Finger Pin36 Finger Pin34 JTAG TDI JTAG TDO HPS TDI FPGA TDO **FPGA FPGA** HPS HPS TDO FPGA TDI

#### AIGO\_C5CB&MB JTAG Flow

Cyclone V SoC 开发板 JTAG 流程图

# 3 详细功能定义

AIGO\_C5CB

### 3.1 时钟电路

Cyclone V SoC 开发板上分别为 HPS 系统端、FPGA 逻辑端以及千兆以太网收发器提供了参考时钟。所有的参考时钟均是由同一个 50MHz 晶体振荡器提供。其中为 FPGA 逻辑端提供了 1 个 50MHz 时钟输入用作用户逻辑的时钟源。3 个 25MHz 的时钟信号连接了 2 个到 HPS 系统端的时钟输入端,还有 1 个连接到千兆以太网收发器的时钟输入端。





时钟电路原理图

#### PL 端时钟引脚分配

| 信号名称         | 引脚号 | 描述             | I/0 标准 |
|--------------|-----|----------------|--------|
| CLK_FPGA_50M | E11 | FPGA侧50MHz时钟输入 | 3. 3V  |

#### PS 端时钟引脚分配

| 信号名称     | 引脚号 | 描述                 | I/0 标准 |
|----------|-----|--------------------|--------|
| HPS_CLK1 | E20 | HPS 侧 25MHz 时钟输入 1 | 3. 3V  |
| HPS_CLK2 | D20 | HPS 侧 25MHz 时钟输入 2 | 3. 3V  |

#### 千兆以太网收发器时钟引脚分配

| 信号名称        | 引脚号 | 描述                  | I/0 标准 |
|-------------|-----|---------------------|--------|
| ETH_CLK_25M | _   | 千兆以太网收发器 25MHz 时钟输入 | 3. 3V  |

### 3.2 电源电路

Cyclone V SoC 开发板的供电方式为依靠外部电源输入插座,可以通过使用外部直流电源接到插座进行供电,外部供电电压为 5V。





外部电源输入插座实物图

#### 外部电源输入插座引脚列表

| 引脚号 | 功能描述       |
|-----|------------|
| 1   | 电源正极       |
| 2   | 负极静触点 (接地) |
| 3   | 负极动触点 (接地) |

# 3.2.1 5V DC 电源电路



5V DC 电源电路原理图

上图描述的是完整的 5V DC 电源电路。当外部+5V 电压接入电路后,通过电源开关以及一系列提供稳压和保护的器件,可输出稳定的+5V 电压。



# 3.2.2 5V 转 3.3V 输出电路



5V 转 3. 3V 输出电路原理图

上图描述的是完整的 5V 转 3. 3V 输出电压电路。输入的 5V 电源电压通过 DC-DC 电源芯片 SY8105ADC 可转换成 3. 3V 的输出电压,其输出电流为 5A (MAX)。该芯片可通过调整 R1 (如图 R7) 以及 R2 (如图 R8+R9) 的数值来达到期望的输出电压数值。其公式为 Vout=(0.6\*R1)/R2+0.6。

### 3.2.3 预留 5V 输出电路



预留 5V 输出电路原理图

上图描述的是预留的 5V 输出电压电路。该电路的主要目的是应对不同于 5V 的输入电源电压情况(例如 12V)来转化为 5V 的输出电压。



当输入电源电压为5V时,选择不焊接DC-DC电源芯片SY8105ADC,可通过120欧姆的磁珠直接将5V输入电源电压转化为5V输出电压。当输入电源电压为12V时,选择焊接DC-DC电源芯片SY8105ADC和不焊接120欧姆的磁珠,输入的12V电源电压通过DC-DC电源芯片SY8105ADC可转换成5V的输出电压。与上面描述的5V转3.3V输出电路同样,该芯片可通过调整R1(如图R10)以及R2(如图R11+R12)的数值来达到期望的输出电压数值。其公式为Vout=(0.6\*R1)/R2+0.6。

# AIGO\_C5MB\_V11 PowerRail

#### Power Gen



Cyclone V SoC 开发板电源导轨图

Cyclone V SoC 开发板电源功能分配表

| 电源         | 供电功能                                      |
|------------|-------------------------------------------|
| +5V        | USB OTG, HDMI PHY                         |
| +3. 3V     | RTC、LED、数码管、摄像头、TF 卡、蜂鸣器、HDMI、UART 转 USB、 |
|            | 以太网、按键、开关、JTAG、OLED 屏幕、EEPROM             |
| +1.8V      | HDMI PHY                                  |
| +2.5V      | HDMI PHY                                  |
| 外部电池供电(3V) | RTC                                       |

结合上面的 Cyclone V SoC 开发板电源导轨图和 Cyclone V SoC 开发板电源功能分配表,



可知整个 Cyclone V SoC 开发板的电压分布情况以及所有外设所需电压的情况。其中+1.8V,+1.2V,+2.5V,+1.5V 电压是由 Cyclone V SoC 核心板输出。

#### 3.3 HDMI 输出接口



HDMI 接口实物图

Cyclone V SoC 开发板上设计了 1 个高性能 HDMI 接口,可用于 HDMI 输出。该接口使用的型号为 HDMI-019S。开发板选用了 ANALOG DEVICE 公司的 ADV7513BSWZ 视频音频接口芯片来集成 HDMI v1.4 的功能,其中包括支持 165MHZ,并且支持所有高到 1080P 和 UXGA 的所有视频格式,同时也支持 3D。ADV7513BSWZ 的视频、音频、配置接口和 Cyclone V FPGA 逻辑端的 Bank 3B IO 和 Bank 5B IO 相连,Cyclone V 系统可通过 I2C 管脚来对 ADV7513BSWZ 视频音频接口芯片进行初始化和控制操作。 此外,其中信号 CEC,DDCSCL,DDCSDA,HDMI\_HPD还将分别通过肖特基二极管是为了保护带电插拔造成 HDMI 接口的损坏。





HDMI 输出接口原理图



#### HDMI 输出接口引脚对应列表

| 信号名称        | 引脚号  | 描述             | I/0 标准 |
|-------------|------|----------------|--------|
| HDMI_TX_DO  | AD12 | HDMI 视频信号数据 0  | 2. 5V  |
| HDMI_TX_D1  | AE12 | HDMI 视频信号数据 1  | 2.5V   |
| HDMI_TX_D2  | Y24  | HDMI 视频信号数据 2  | 2. 5V  |
| HDMI_TX_D3  | W24  | HDMI 视频信号数据 3  | 2. 5V  |
| HDMI_TX_D4  | AD11 | HDMI 视频信号数据 4  | 2.5V   |
| HDMI_TX_D5  | AD10 | HDMI 视频信号数据 5  | 2. 5V  |
| HDMI_TX_D6  | AE11 | HDMI 视频信号数据 6  | 2.5V   |
| HDMI_TX_D7  | W21  | HDMI 视频信号数据 7  | 2.5V   |
| HDMI_TX_D8  | AF10 | HDMI 视频信号数据 8  | 2. 5V  |
| HDMI_TX_D9  | W20  | HDMI 视频信号数据 9  | 2.5V   |
| HDMI_TX_D10 | AE9  | HDMI 视频信号数据 10 | 2.5V   |
| HDMI_TX_D11 | AF4  | HDMI 视频信号数据 11 | 2. 5V  |
| HDMI_TX_D12 | AE7  | HDMI 视频信号数据 12 | 2. 5V  |
| HDMI_TX_D13 | AF6  | HDMI 视频信号数据 13 | 2. 5V  |
| HDMI_TX_D14 | AF8  | HDMI 视频信号数据 14 | 2. 5V  |
| HDMI_TX_D15 | AF5  | HDMI 视频信号数据 15 | 2. 5V  |
| HDMI_TX_D16 | AE4  | HDMI 视频信号数据 16 | 2. 5V  |
| HDMI_TX_D17 | AH2  | HDMI 视频信号数据 17 | 2. 5V  |
| HDMI_TX_D18 | AH4  | HDMI 视频信号数据 18 | 2. 5V  |
| HDMI_TX_D19 | AH5  | HDMI 视频信号数据 19 | 2. 5V  |
| HDMI_TX_D20 | AH6  | HDMI 视频信号数据 20 | 2.5V   |
| HDMI_TX_D21 | AG6  | HDMI 视频信号数据 21 | 2.5V   |
| HDMI_TX_D22 | AF9  | HDMI 视频信号数据 22 | 2. 5V  |
| HDMI_TX_D23 | AE8  | HDMI 视频信号数据 23 | 2. 5V  |
| HDMI_TX_CLK | AG5  | HDMI 视频信号时钟    | 2. 5V  |
| HDMI_TX_DE  | AF11 | HDMI 视频信号有效    | 2. 5V  |



| HDMI_TX_HS  | АНЗ  | HDMI 视频信号行同步       | 2.5V |
|-------------|------|--------------------|------|
| HDMI_TX_VS  | AF7  | HDMI 视频信号列同步       | 2.5V |
| HDMI_MCLK   | T11  | HDMI 视频信号主时钟       | 2.5V |
| HDMI_I2SO   | AB26 | HDMI 视频信号 I2S 总线 0 | 2.5V |
| HDMI_SCLK   | AA26 | HDMI 视频信号系统时钟      | 2.5V |
| HDMI_LRCLK  | AB25 | HDMI 视频信号左右时钟      | 2.5V |
| HDMI_SCL    | T12  | HDMI I2C 控制时钟线     | 2.5V |
| HDMI_SDA    | T13  | HDMI I2C 控制数据线     | 2.5V |
| HDMI_TX_INT | U11  | HDMI 中断信号          | 2.5V |
| TMDS_TX_p2  | _    | HDMI 输出信号 p 端 2    | _    |
| TMDS_TX_n2  | _    | HDMI 输出信号 n 端 2    | _    |
| TMDS_TX_p1  | _    | HDMI 输出信号 p 端 1    | _    |
| TMDS_TX_n1  | _    | HDMI 输出信号 n 端 1    | =    |
| TMDS_TX_p0  | _    | HDMI 输出信号 p 端 0    | _    |
| TMDS_TX_n0  | _    | HDMI 输出信号 n 端 0    | =    |
| TMDS_TXC_p  | =    | HDMI 输出信号 p 端      | _    |
| TMDS_TXC_n  | _    | HDMI 输出信号 n 端      | =    |
| CEC         | _    | 用户电子控制通道           | 5V   |
| DDCSCL      | _    | 显示数据通道 I2C 控制时     | 5V   |
|             |      | 钟线                 |      |
| DDCSDA      | -    | 显示数据通道 I2C 控制数     | 5V   |
|             |      | 据线                 |      |
| HDMI_HPD    | =    | HDMI 视频信号热插拔检测     | 5V   |
|             |      | •                  | -    |

# 3.4 UART 转 USB 接口

Cyclone V SoC 开发板上设计了 1 个 UART 转 USB 接口,可用于系统调试以及串口收发实验的验证。转换芯片采用的是 SILICON LABS 的 USB 芯片,其型号为 CP2102。USB 接口则是采用的是 MINI USB2.0 接口,可以用一根 USB 数据线将它连接到 PC 端后进行串口数据通



信。此外,该部分电路还设计了1个2x3插针,可用于根据情况使用跳线帽选择与HPS端/FPGA端中任何一端进行通信。



UART 转 USB 接口原理图

UART 转 USB 接口引脚对应列表

| 信号名称          | 引脚号 | 描述               | I/0 标准 |
|---------------|-----|------------------|--------|
| FPGA_UART_TXD | U10 | FPGA 端 UART 数据输出 | 3. 3V  |
| FPGA_UART_RXD | V10 | FPGA 端 UART 数据输入 | 3. 3V  |

### 3.5 以太网接口

Cyclone V SoC 开发板上设计了 1 个千兆以太网接口,通过外部以太网芯片和 HPS 以太 网 MAC 功能进行千兆以太网传输。以太网芯片采用的是 MICROCHIP 公司型号为 KSZ9031RNX 以太网 PHY,可为用户提供网络通信服务,并且集成了 10/100/1000Mbps 千兆以太网收发器的该芯片也支持 RGMII MAC 接口。此外,该以太网接口是和 Cyclone V HPS 系统端相连。





以太网接口原理图

#### 3.6 JTAG 接口

Cyclone V SoC 开发板上设计了 1 个 JTAG 接口。可通过使用 USB-Blaster 下载器连接 PC 和该接口,下载程序或者固化程序到 Flash 然后对系统进行调试与测试。注意 JTAG 线插拔的时候不要热插拔。



JTAG 接口原理图



# 3.7 核心板连接器

Cyclone V SoC 开发板上设计有 1 个核心板连接器,用于连接 Cyclone V SoC 核心板。

核心卡连接器引脚对应列表

| 引脚位置 | 信号名称             | 引脚号 | 描述            | I/0 标准 |
|------|------------------|-----|---------------|--------|
| 1    | VCC_3V3          | _   | +3.3V 电压(输出)  | _      |
| 2    | VCC_3V3          | _   | +3.3V 电压 (输出) | _      |
| 3    | VCC_3V3          | -   | +3.3V 电压(输出)  | _      |
| 4    | VCC_3V3          | _   | +3.3V 电压 (输出) | _      |
| 5    | VCC_3V3          | _   | +3.3V 电压 (输出) | _      |
| 6    | VCC_3V3          | _   | +3.3V 电压(输出)  | _      |
| 7    | GND              | _   | 接地            | _      |
| 8    | GND              | _   | 接地            | _      |
| 9    | ETH_P0           | _   | 以太网接口p端0      | 3. 3V  |
| 10   | _                | _   | _             | =      |
| 11   | ETH_NO           | _   | 以太网接口n端0      | 3. 3V  |
| 12   | -                | _   | _             | _      |
| 13   | GND              | _   | 接地            | _      |
| 14   | GND              | _   | 接地            | -      |
| 15   | ETH_P1           | _   | 以太网接口p端1      | 3. 3V  |
| 16   | HPS_nRST         | _   | HPS 端复位       | 3. 3V  |
| 17   | ETH_N1           | _   | 以太网接口n端1      | 3. 3V  |
| 18   | HPS_COLD_RESET_N | _   | HPS 端复位按键     | 3. 3V  |
| 19   | GND              | =   | 接地            | -      |
| 20   | GND              | _   | 接地            | _      |
| 21   | ETH_LED1         | _   | 以太网接口 LED 灯 1 | 3. 3V  |
| 22   | ETH_P2           | _   | 以太网接口 p 端 2   | 3. 3V  |
| 23   | ETH_P3           | _   | 以太网接口p端3      | 3.3V   |



| 24 | ETH_N2           | -      | 以太网接口 n 端 2            | 3.3V  |
|----|------------------|--------|------------------------|-------|
| 25 | ETH_N3           | _      | 以太网接口n端3               | 3. 3V |
| 26 | USB_CPEN         | _      | USB 外部启动电源(5V)         | _     |
| 27 | ETH_LED2         | _      | 以太网接口 LED 灯 2          | 3. 3V |
| 28 | USB_EXTVBUS      | -      | USB 扩展延长电源线            | 5V    |
| 29 | GND              | _      | 接地                     | _     |
| 30 | GND              | _      | 接地                     | _     |
| 31 | VCC_1V8          | _      | +1.8V 电压(输入)           | _     |
| 32 | VCC_1V8          | -      | +1.8V 电压(输入)           | _     |
| 33 | GND              | -      | 接地                     | -     |
| 34 | GND              | -      | 接地                     | _     |
| 35 | VCC_1V2          | -      | +1.2V 电压(输入)           | _     |
| 36 | VCC_1V2          | _      | +1.2V 电压(输入)           | _     |
| 37 | GND              | -      | 接地                     | -     |
| 38 | GND              | -      | 接地                     | -     |
| 39 | VCC_2V5          | -      | +2.5V 电压(输入)           | -     |
| 40 | VCC_2V5          | -      | +2.5V 电压(输入)           | -     |
| 41 | VCC_BAT          | -      | 外接电池电压                 | _     |
| 42 | USB_VBUS         | -      | USB 电源线(5V)            | 5V    |
| 43 | HPS_GPI028_BSEL2 | GP1028 | HPS 端 GPIO 28 BSEL 口 2 | 3.3V  |
| 44 | USB_ID           | -      | USB 识别线                | -     |
| 45 | HPS_GPI033_BSEL1 | GP1033 | HPS 端 GPIO 33 BSEL 口 1 | 3. 3V |
| 46 | USB_DP           | -      | USB 数据线正               | -     |
| 47 | SEL6             | GP1060 | 发光二极管 S6               | 3.3V  |
| 48 | USB_DM           | -      | USB 数据线负               | _     |
| 49 | GND              | -      | 接地                     | _     |
| 50 | GND              | -      | 接地                     | -     |
| 51 | JTAG_TCK         | -      | JTAG 时钟                | 3.3V  |



| 52 | JTAG_TDO     | -      | JTAG 数据输出        | 3.3V  |
|----|--------------|--------|------------------|-------|
| 53 | JTAG_TMS     | -      | JTAG 模式选择        | 3. 3V |
| 54 | JTAG_TDI     | -      | JTAG 数据输入        | 3. 3V |
| 55 | MSEL3        | -      | MSEL □ 3         | -     |
| 56 | GND          | -      | 接地               | -     |
| 57 | MSEL4        | -      | MSEL □ 4         | -     |
| 58 | SD_CLK       | =      | SD 时钟信号          | 3. 3V |
| 59 | HPS_EMMC_SEL | =      | HPS 端 EMMC SEL 口 | -     |
| 60 | SD_CMD       | -      | SD 命令信号          | 3. 3V |
| 61 | GND          | _      | 接地               | -     |
| 62 | GND          | _      | 接地               | -     |
| 63 | HPS_UART_TXD | _      | HPS 端 UART 数据输出  | -     |
| 64 | SD_DATA0     | _      | SD 数据 0          | 3. 3V |
| 65 | HPS_UART_RXD | -      | HPS 端 UART 数据输入  | -     |
| 66 | SD_DATA1     | _      | SD 数据 1          | 3.3V  |
| 67 | HPS_SW0      | GPI029 | HPS 端开关 0        | 3.3V  |
| 68 | SD_DATA2     | _      | SD 数据 2          | 3. 3V |
| 69 | GND          | -      | 接地               | -     |
| 70 | GND          | _      | 接地               | -     |
| 71 | HPS_SW1      | GPI030 | HPS 端开关 1        | 3. 3V |
| 72 | SD_DATA3     | _      | SD 数据 3          | 3. 3V |
| 73 | HPS_KEYO     | GPI031 | HPS 端按键 0        | 3.3V  |
| 74 | HPS_LED0     | GPI056 | HPS 端 LED 灯 0    | 3. 3V |
| 75 | HPS_KEY1     | GPI032 | HPS 端按键 1        | 3.3V  |
| 76 | HPS_LED1     | GP1057 | HPS 端 LED 灯 1    | 3.3V  |
| 77 | GND          | _      | 接地               | _     |
| 78 | GND          | -      | 接地               | _     |
| 79 | SEL1         | GPI034 | 发光二极管 S1         | 3. 3V |



| 80  | HPS_LED2  | GPI058       | HPS 端 LED 灯 2  | 3. 3V |
|-----|-----------|--------------|----------------|-------|
| 81  | SEL2      | GPI048       | 发光二极管 S2       | 3. 3V |
| 82  | HPS_LED3  | GPI059       | HPS 端 LED 灯 3  | 3. 3V |
| 83  | SEL3      | GPI051       | 发光二极管 S3       | 3. 3V |
| 84  | DIG_DP    | GPI061       | 发光二极管 DP       | 3. 3V |
| 85  | GND       | _            | 接地             | _     |
| 86  | GND       | -            | 接地             | -     |
| 87  | DIG_A     | GP1052       | 发光二极管 A        | 3. 3V |
| 88  | SEL4      | GPI062_CSEL1 | 发光二极管 S4       | 3. 3V |
| 89  | DIG_B     | GP1053       | 发光二极管 B        | 3. 3V |
| 90  | DIG_F     | GP1063       | 发光二极管F         | 3. 3V |
| 91  | DIG_C     | GP1054       | 发光二极管 C        | 3. 3V |
| 92  | DIG_G     | GPI064       | 发光二极管 G        | 3. 3V |
| 93  | GND       | _            | 接地             | _     |
| 94  | GND       | -            | 接地             | -     |
| 95  | DIG_D     | GP1055       | 发光二极管 D        | 3. 3V |
| 96  | DIG_E     | GP1065       | 发光二极管 E        | 3. 3V |
| 97  | CMOS_SCL  | E8           | 摄像头 I2C 控制时钟线  | 3. 3V |
| 98  | SEL5      | GPI066_CSEL0 | 发光二极管 S5       | 3. 3V |
| 99  | CMOS_SDA  | D8           | 摄像头 I2C 控制数据线  | 3. 3V |
| 100 | RTC_RST   | D11          | RTC 复位         | 3. 3V |
| 101 | GND       | -            | 接地             | _     |
| 102 | GND       | _            | 接地             | _     |
| 103 | CMOS_PWDN | U9           | 摄像头掉电/省电模式     | 3. 3V |
| 104 | CMOS_PCLK | D12          | 摄像头像素时钟        | 3. 3V |
| 105 | CMOS_XCLK | Т8           | 摄像头驱动时钟        | 3. 3V |
| 106 | FPGA_SDA  | C12          | FPGA I2C 控制数据线 | _     |
| 107 | GND       | -            | 接地             | -     |



| 108 | GND            | _    | 接地               | _     |
|-----|----------------|------|------------------|-------|
| 109 | FPGA_UART_TXD  | U10  | FPGA 端 UART 数据输出 | 3. 3V |
| 110 | HDMI_SDA       | T13  | HDMI I2C 控制数据线   | 2.5V  |
| 111 | FPGA _UART_RXD | V10  | FPGA 端 UART 数据输入 | 3. 3V |
| 112 | HDMI_SCL       | T12  | HDMI I2C 控制时钟线   | 2.5V  |
| 113 | GND            | -    | 接地               | _     |
| 114 | GND            | -    | 接地               | _     |
| 115 | VCC_3V3        | -    | +3.3V 电压(输出)     | _     |
| 116 | HDMI_MCLK      | T11  | HDMI 视频信号主时钟     | 2.5V  |
| 117 | VCC_3V3        | _    | +3.3V 电压 (输出)    | _     |
| 118 | HDMI_TX_INT    | U11  | HDMI 中断信号        | 2.5V  |
| 119 | GND            | _    | 接地               | _     |
| 120 | GND            | _    | 接地               | _     |
| 121 | CMOS_DO        | W8   | 摄像头数据线 0         | 3. 3V |
| 122 | FPGA_SWO       | V11  | FPGA 端开关 0       | 2.5V  |
| 123 | CMOS_D1        | Ү8   | 摄像头数据线1          | 3. 3V |
| 124 | FPGA_SW1       | W11  | FPGA 端开关 1       | 2.5V  |
| 125 | GND            | _    | 接地               | -     |
| 126 | GND            | _    | 接地               | _     |
| 127 | CMOS_D2        | Y11  | 摄像头数据线 2         | 3. 3V |
| 128 | FPGA_KEYO      | V12  | FPGA 端按键 0       | 2.5V  |
| 129 | CMOS_D3        | AA11 | 摄像头数据线3          | 3. 3V |
| 130 | FPGA_KEY1      | W12  | FPGA 端按键 1       | 2.5V  |
| 131 | GND            | _    | 接地               | _     |
| 132 | GND            |      | 接地               | _     |
| 133 | CMOS_RESET     | AD5  | 摄像头复位模块          | 3.3V  |
| 134 | CMOS_D4        | Y5   | 摄像头数据线 4         | 3. 3V |
| 135 | FPGA_SCL       | AE6  | FPGA I2C 控制时钟线   | _     |



| 136 | CMOS_D5     | Y4   | 摄像头数据线 5       | 3. 3V |
|-----|-------------|------|----------------|-------|
| 137 | GND         | -    | 接地             | -     |
| 138 | VCC_3V3     | -    | +3.3V 电压(输出)   | -     |
| 139 | CMOS_VSYNC  | AA4  | 摄像头帧同步信号       | 3. 3V |
| 140 | CMOS_D6     | AC4  | 摄像头数据线 6       | 3. 3V |
| 141 | CMOS_HREF   | AB4  | 摄像头行同步信号       | 3. 3V |
| 142 | CMOS_D7     | AD4  | 摄像头数据线 7       | 3. 3V |
| 143 | GND         | -    | 接地             | _     |
| 144 | GND         | -    | 接地             | _     |
| 145 | BUZZER      | Y13  | 蜂鸣器            | 1.5V  |
| 146 | HDMI_TX_D19 | AH5  | HDMI 视频信号数据 19 | 2.5V  |
| 147 | FPGA_LED3   | AA13 | FPGA端 LED 灯 3  | 1.5V  |
| 148 | HDMI_TX_D20 | АН6  | HDMI 视频信号数据 20 | 2.5V  |
| 149 | GND         | -    | 接地             | _     |
| 150 | GND         | -    | 接地             | _     |
| 151 | HDMI_TX_D22 | AF9  | HDMI 视频信号数据 22 | 2.5V  |
| 152 | HDMI_TX_D16 | AE4  | HDMI 视频信号数据 16 | 2.5V  |
| 153 | HDMI_TX_D23 | AE8  | HDMI 视频信号数据 23 | 2.5V  |
| 154 | HDMI_TX_D11 | AF4  | HDMI 视频信号数据 11 | 2.5V  |
| 155 | VCC_2V5     | -    | +2.5V 电压 (输入)  | _     |
| 156 | VCC_2V5     | _    | +2.5V 电压(输入)   | _     |
| 157 | HDMI_TX_D5  | AD10 | HDMI 视频信号数据 5  | 2.5V  |
| 158 | HDMI_TX_D17 | AH2  | HDMI 视频信号数据 17 | 2.5V  |
| 159 | HDMI_TX_D10 | AE9  | HDMI 视频信号数据 10 | 2.5V  |
| 160 | HDMI_TX_HS  | АН3  | HDMI 视频信号行同步   | 2.5V  |
| 161 | GND         | _    | 接地             | _     |
| 162 | GND         | _    | 接地             | _     |
| 163 | HDMI_TX_D4  | AD11 | HDMI 视频信号数据 4  | 2.5V  |



|     | ī           | T    | Т                  | Т    |
|-----|-------------|------|--------------------|------|
| 164 | HDMI_TX_VS  | AF7  | HDMI 视频信号列同步       | 2.5V |
| 165 | HDMI_TX_D6  | AE11 | HDMI 视频信号数据 6      | 2.5V |
| 166 | HDMI_TX_D21 | AG6  | HDMI 视频信号数据 21     | 2.5V |
| 167 | GND         | _    | 接地                 | _    |
| 168 | GND         | _    | 接地                 | _    |
| 169 | HDMI_TX_D1  | AE12 | HDMI 视频信号数据 1      | 2.5V |
| 170 | HDMI_TX_D15 | AF5  | HDMI 视频信号数据 15     | 2.5V |
| 171 | HDMI_TX_DO  | AD12 | HDMI 视频信号数据 0      | 2.5V |
| 172 | HDMI_TX_D13 | AF6  | HDMI 视频信号数据 13     | 2.5V |
| 173 | GND         | _    | 接地                 | _    |
| 174 | GND         | _    | 接地                 | _    |
| 175 | HDMI_TX_D2  | Y24  | HDMI 视频信号数据 2      | 2.5V |
| 176 | HDMI_TX_CLK | AG5  | HDMI 视频信号时钟        | 2.5V |
| 177 | HDMI_TX_D3  | W24  | HDMI 视频信号数据 3      | 2.5V |
| 178 | HDMI_TX_D18 | AH4  | HDMI 视频信号数据 18     | 2.5V |
| 179 | GND         | _    | 接地                 | _    |
| 180 | GND         | _    | 接地                 | _    |
| 181 | HDMI_TX_D7  | W21  | HDMI 视频信号数据 7      | 2.5V |
| 182 | HDMI_TX_DE  | AF11 | HDMI 视频信号有效        | 2.5V |
| 183 | HDMI_TX_D9  | W20  | HDMI 视频信号数据 9      | 2.5V |
| 184 | HDMI_TX_D8  | AF10 | HDMI 视频信号数据 8      | 2.5V |
| 185 | VCC_2V5     | -    | +2.5V 电压(输入)       | _    |
| 186 | VCC_2V5     | _    | +2.5V 电压(输入)       | _    |
| 187 | HDMI_I2SO   | AB26 | HDMI 视频信号 I2S 总线 0 | 2.5V |
| 188 | HDMI_TX_D12 | AE7  | HDMI 视频信号数据 12     | 2.5V |
| 189 | HDMI_SCLK   | AA26 | HDMI 视频信号系统时钟      | 2.5V |
| 190 | HDMI_TX_D14 | AF8  | HDMI 视频信号数据 14     | 2.5V |
| 191 | GND         | -    | 接地                 | -    |



| 192 | GND        | _    | 接地            | _    |
|-----|------------|------|---------------|------|
| 193 | HDMI_LRCLK | AB25 | HDMI 视频信号左右时钟 | 2.5V |
| 194 | FPGA_LEDO  | AC24 | FPGA端 LED 灯 0 | 1.5V |
| 195 | FPGA_LED2  | Y15  | FPGA端 LED 灯 2 | 1.5V |
| 196 | FPGA_LED1  | AB23 | FPGA端 LED 灯 1 | 1.5V |
| 197 | GND        | _    | 接地            | _    |
| 198 | GND        | _    | 接地            | _    |
| 199 | GND        | _    | 接地            | _    |
| 200 | GND        | _    | 接地            | _    |

#### 3.87位数码显示管

Cyclone V SoC 开发板设计有 1 个 7 位数码显示管。这种半导体发光器件主要是由发光二极管(LED)组成的。7 位数码显示管每 1 位都由 8 个发光二极管组成,在这里被分别定义为: A, B, C, D, E, F, G, DP。这 8 个发光二极管均与 Cyclone V SoC HPS 系统端的管脚连接。通过驱动每 1 个发光二极管为逻辑高电平或者逻辑低电平,即可使其发亮或者熄灭从而通过组合显示出理想的数字,也可用于数码管实验的验证。



7位数码管原理图

7位数码管引脚对应列表



| 信号名称            | 引脚号          | 描述       | I/0 标准 |
|-----------------|--------------|----------|--------|
| LED_S1 (SEL1)   | GPI034       | 发光二极管 S1 | 3. 3V  |
| LED_S2 (SEL2)   | GPI048       | 发光二极管 S2 | 3. 3V  |
| LED_S3 (SEL3)   | GPI051       | 发光二极管 S3 | 3. 3V  |
| LED_S4 (SEL4)   | GPI062_CSEL1 | 发光二极管 S4 | 3. 3V  |
| LED_S5 (SEL5)   | GPI066_CSEL0 | 发光二极管 S5 | 3. 3V  |
| LED_S6 (SEL6)   | GPI060       | 发光二极管 S6 | 3. 3V  |
| LED_A (DIG_A)   | GPI052       | 发光二极管 A  | 3. 3V  |
| LED_B (DIG_B)   | GPI053       | 发光二极管 B  | 3. 3V  |
| LED_C (DIG_C)   | GPI054       | 发光二极管 C  | 3. 3V  |
| LED_D (DIG_D)   | GP1055       | 发光二极管 D  | 3. 3V  |
| LED_E (DIG_E)   | GPI065       | 发光二极管 E  | 3. 3V  |
| LED_F (DIG_F)   | GPI063       | 发光二极管 F  | 3. 3V  |
| LED_G (DIG_G)   | GPI064       | 发光二极管 G  | 3. 3V  |
| LED_DP (DIG_DP) | GPI061       | 发光二极管 DP | 3. 3V  |

# 3.9 摄像头接口

Cyclone V SoC 开发板设计有 1 个摄像头接口,可用于连接摄像头进行车牌识别以及手写体的实验。该摄像头接口部分是与 Cyclone V FPGA 逻辑端的 Bank 3A IO 和 Bank 8A IO 相连。



摄像头接口原理图



#### 摄像头接口引脚对应列表

| 信号名称       | 引脚号  | 描述            | I/0 标准 |
|------------|------|---------------|--------|
| CMOS_DO    | W8   | 摄像头数据线 0      | 3. 3V  |
| CMOS_D1    | Y8   | 摄像头数据线 1      | 3. 3V  |
| CMOS_D2    | Y11  | 摄像头数据线 2      | 3. 3V  |
| CMOS_D3    | AA11 | 摄像头数据线 3      | 3. 3V  |
| CMOS_D4    | Y5   | 摄像头数据线 4      | 3. 3V  |
| CMOS_D5    | Y4   | 摄像头数据线 5      | 3. 3V  |
| CMOS_D6    | AC4  | 摄像头数据线 6      | 3. 3V  |
| CMOS_D7    | AD4  | 摄像头数据线7       | 3. 3V  |
| CMOS_SCL   | E8   | 摄像头 I2C 控制时钟线 | 3. 3V  |
| CMOS_SDA   | D8   | 摄像头 I2C 控制数据线 | 3. 3V  |
| CMOS_PWDN  | U9   | 摄像头掉电/省电模式    | 3. 3V  |
| CMOS_HREF  | AB4  | 摄像头行同步信号      | 3. 3V  |
| CMOS_VSYNC | AA4  | 摄像头帧同步信号      | 3. 3V  |
| CMOS_RESET | AD5  | 摄像头复位模块       | 3. 3V  |
| CMOS_XCLK  | T8   | 摄像头驱动时钟       | 3. 3V  |
| CMOS_PCLK  | D12  | 摄像头像素时钟       | 3. 3V  |

# 3.10 蜂鸣器

Cyclone V SoC 开发板上设计有 1 个蜂鸣器,可用于发声以及蜂鸣器实验的验证。蜂鸣器部分是与 Cyclone V FPGA 逻辑端的 Bank 4A IO 相连。





蜂鸣器原理图

蜂鸣器引脚对应列表

| 信号名称   | 引脚号 | 描述  | I/0 标准 |
|--------|-----|-----|--------|
| BUZZER | Y13 | 蜂鸣器 | 1.5V   |

#### 3.11 TF 卡连接器

Cyclone V SoC 开发板上设计了 1 个 TF 卡连接器,可用于插入 1 张 TF 卡,为 HPS 提供外部存储以及提供用户访问 TF 卡存储器。该存储器可存储例如下载的程序,操作系统内核,文件系统以及其他的用户数据文件。该 TF 卡连接器与 Cyclone V HPS 系统端相连。





TF 卡连接器原理图

#### 3.12 开关电路

#### 3.12.1 拨动开关

Cyclone V SoC 开发板上设计有 4 个拨动开关。这四个开关均为用户开关,可用于用户进行开关实验的验证和调试。其中 SW6 和 SW7 为 FPGA 端开关,与 Cyclone V FPGA 逻辑端的 Bank 3B IO 相连; SW8 和 SW9 则为 HPS 端开关,与 Cyclone V HPS 系统端相连。



拨动开关原理图



| 信号名称     | 引脚号    | 描述         | I/0 标准 |
|----------|--------|------------|--------|
| FPGA_SWO | V11    | FPGA 端开关 0 | 2.5V   |
| FPGA_SW1 | W11    | FPGA 端开关 1 | 2. 5V  |
| HPS_SWO  | GPI029 | HPS 端开关 0  | 3. 3V  |
| HPS_SW1  | GPI030 | HPS 端开关 1  | 3. 3V  |

#### 3.12.2 启动开关

Cyclone V SoC 开发板上设计有 1 个启动开关。这是一个 3 位的拨码开关,可以用来配置系统的启动模式。这些启动模式则是通过改变不同的拨码位置来进行配置。启动模式主要有从 SD 卡和从 eMMC 启动两种方式。



启动配置开关原理图

下面介绍两种启动开关模式配置方式,其中黑色填充方框部分代表拨码方向:



启动开关模式配置图(从TF卡中启动)





启动开关模式配置图(从 eMMC Flash 中启动)

# 3.12.3 电源开关

Cyclone V SoC 开发板上设计有 1 个电源开关,可用于控制电源的开关状态。此开关为单刀双掷开关。



电源开关实物图

#### 电源开关引脚列表

| 引脚号 | 功能描述 |
|-----|------|
| 1   | 接地   |
| 2   | 电源负极 |
| 3   | 电源正极 |



| 拨动方向 | 电源开关状态 |
|------|--------|
| 拨向1  | 关      |
| 拨向 3 | 开      |

### 3.13 按键电路

### 3.13.1用户按键

Cyclone V SoC 开发板上设计有 4 个用户按键,可用于用户进行按键实验的验证和调试。 其中 SW2 和 SW3 为 FPGA 端按键,与 Cyclone V FPGA 逻辑端的 Bank 3B IO 相连; SW4 和 SW5 则为 HPS 端按键,与 Cyclone V HPS 系统端相连。



用户按键原理图

用户按键引脚对应列表

| 信号名称      | 引脚号    | 描述         | I/0 标准 |
|-----------|--------|------------|--------|
| FPGA_KEYO | V12    | FPGA 端按键 0 | 2. 5V  |
| FPGA_KEY1 | W12    | FPGA 端按键 1 | 2.5V   |
| HPS_KEYO  | GPI031 | HPS 端按键 0  | 3. 3V  |
| HPS_KEY1  | GPI032 | HPS 端按键 1  | 3. 3V  |



### 3.13.2 复位按键

Cyclone V SoC 开发板上设计有 1 个复位按键。复位信号连接到核心板的复位芯片输入,用户可通过使用这个复位按键来复位整个核心板,复位按键同样也是低电平有效。



复位按键原理图

### 3.14 USB OTG 接口

Cyclone V SoC 开发板上设计有 1 个 USB OTG 接口。其 USB 连接器采用的是 MINI USB 并且+5V 电压会提供在接口上。 USB2. 0 收发器采用的是 3. 3V 供电的高速的并且支持 ULPI 标准接口的 USB3300EZK 芯片。 Cyclone V 的 USB 总线接口和 USB3300EZK 收发器相连接,可以实现高速 USB2. 0 HOST 模式的数据通信。USB3300EZK 的数据和控制信号接口均是与 Cyclone V HPS 系统端相连。此外,一枚由 TEXAS INSTRUMENTS 生产的型号为 TPS2553DBVR 的功率开关芯片被运用在该接口电路上,其作用为过流保护。此外,根据 OTG 模式的定义,PHY 可以在主机或者设备模式下工作。在主机模式下工作时,接口可通过 USB 接口为设备供电。





USB OTG 接口原理图

#### 3.15 LED 电路

Cyclone V SoC 开发板上设计有 8 个用户 LED, 其中包含 4 个 FPGA 端 LED 灯和 4 个 HPS 端 LED 灯。4 个 FPGA 端 LED 灯与 Cyclone V FPGA 逻辑端的 Bank 4A IO 和 Bank 5A IO 相连。4 个 HPS 端 LED 灯则是与 Cyclone V HPS 系统端相连。每一个用户 LED 灯,均为黄绿色贴片 LED 灯,且用户均可以通过程序来控制亮与灭。当连接用户 LED 灯的 IO 电压为低时,用户 LED 灯熄灭,反之当连接用户 LED 灯的 IO 电压为高时,用户 LED 灯亮起。





用户 LED 原理图

用户 LED 引脚对应列表

| 信号名称      | 引脚号    | 描述            | I/0 标准 |
|-----------|--------|---------------|--------|
| FPGA_LEDO | AC24   | FPGA端 LED 灯 0 | 1.5V   |
| FPGA_LED1 | AB23   | FPGA端 LED 灯 1 | 1.5V   |
| FPGA_LED2 | Y15    | FPGA端 LED 灯 2 | 1.5V   |
| FPGA_LED3 | AA13   | FPGA端 LED 灯 3 | 1.5V   |
| HPS _LEDO | GPI056 | HPS 端 LED 灯 0 | 3. 3V  |
| HPS _LED1 | GPI057 | HPS 端 LED 灯 1 | 3. 3V  |
| HPS _LED2 | GPI058 | HPS 端 LED 灯 2 | 3. 3V  |
| HPS_LED3  | GPI059 | HPS 端 LED 灯 3 | 3. 3V  |



### 3.16 I2C 总线电路

I2C 总线是一种简单、双向二线制同步串行总线。它只需要两根线即可在连接于总线上的器件之间传送信息。这两根线分别是 SDA (串行数据线)和 SCL (串行时钟线),它们都是双向 I/O 线。I2C 总线的优势主要是在于简化了硬件电路 PCB 布线,降低了系统成本,提高了系统可靠性。在 Cyclone V SoC 开发板上有 3 个模块涉及到了 I2C 总线的运用,它们分别是: OLED 屏、RTC 电路以及 EEPROM 电路。

| 信号名称 | 引脚号 | 描述        | I/0 标准 |
|------|-----|-----------|--------|
| SCL  | -   | I2C 控制时钟线 | 3. 3V  |
| SDA  | -   | I2C 控制数据线 | 3. 3V  |

I2C 总线电路引脚对应列表

# 3.16.1 OLED 屏

Cyclone V SoC 开发板上设计有 1 个 OLED 屏。OLED 屏是由有机发光二极管组成的屏幕。 当电流通过时,有机材料发光从而可以显示出图像或者数字。该 OLED 屏是与 Cyclone V HPS 系统端相连。



OLED 屏幕原理图

#### 3.16.2 RTC 电路

Cyclone V SoC 开发板上设计有 1 个 RTC 电路,可用于 RTC 实验的验证。RTC 电路所用



到的实时时钟芯片是由 MAXIM 公司生产的,其型号为 DS1302Z。可选择+3.3V 电压或外部电池+3V 对该芯片进行供电。此外,RTC I2C 电路部分也设计了一个 2x3 插针,可用于根据情况使用跳线帽选择与 HPS 端/FPGA 端中任何一端连接。



RTC 电路原理图

RTC 电路引脚对应列表

| 信号名称             | 引脚号    | 描述                     | I/0 标准 |
|------------------|--------|------------------------|--------|
| FPGA_SCL         | AE6    | FPGA I2C 控制时钟线         | 3. 3V  |
| FPGA_SDA         | C12    | FPGA I2C 控制数据线         | 3. 3V  |
| HPS_GPI028_BSEL2 | GPI028 | HPS端GPIO 28 BSEL口2     | 3. 3V  |
| HPS_GPI033_BSEL1 | GPI033 | HPS 端 GPIO 33 BSEL 口 1 | 3. 3V  |
| RTC_RST          | D11    | RTC 复位                 | 3. 3V  |

#### 3.16.3 EEPROM 电路

Cyclone V SoC 开发板上设计有 1 个 EEPROM 电路。该电路所使用的芯片为 MICROCHIP 公司生产的存储器,其型号为 24LC04。其接口类型为 I2C,其存储容量为 4kb(512\*8)。使用 EEPROM 存储芯片最大的好处是系统掉电后,防止数据丢失。





EEPROM 电路原理图

# 4 结构尺寸图



Cyclone V SoC 开发板结构尺寸图

Cyclone V SoC 开发板的尺寸为 13\*9cm。





Cyclone V SoC 核心板结构尺寸图

Cyclone V SoC 核心板的尺寸为 6.76\*5cm。