Numerical Formulation of IFV for Unstructured Grids

For a partial differential equation of the general form

$$\frac{\partial A}{\partial t} + \nabla \cdot \mathbf{F} = \mathcal{S},\tag{1}$$

with accumulation term A, source/sink term \mathcal{S} , and flux term F of the form

$$F = q\rho X - \phi D\rho \nabla X \tag{2}$$

the discretized finite volume equations can be derived that can be solved numerically.

Figure 1: General unstructured grid showing control volume and interfacial fluxes.

Partitioning the computational domain into a set of finite volumes V_n (see Figure 1) and integrating the partial differential equations over each volume yields a discretized form of the mass conservation equations. The following results are obtained for the accumulation, source, and flux terms:

$$\int_{V_n} \frac{\partial}{\partial t} A \, dV \simeq \frac{A_n^{t+\Delta t} - A_n^t}{\Delta t} V_n,\tag{3}$$

for the accumulation term,

$$\int_{V_n} \mathcal{S} \, dV \simeq \mathcal{S}_n V_n,\tag{4}$$

for the source term, and

$$\int_{V_n} \nabla \cdot \boldsymbol{F} \, dV = \int_{\partial V_n} \boldsymbol{F} \cdot \boldsymbol{dS} = \sum_{n'} F_{nn'} A_{nn'}, \tag{5}$$

for the flux term, where ∂V_n denotes the surface of V_n , and the sum is over the neighboring volumes connected to V_n with the flux $F_{nn'}$ across the n-n' interface connecting volumes V_n and $V_{n'}$ given by

$$F_{nn'} = (q\rho)_{nn'} X_{nn'} - (\phi D\rho)_{nn'} \frac{X_n - X_{n'}}{d_n + d_{n'}}, \tag{6}$$

where the subscript nn' indicates that the quantity is evaluated at the interface, the quantities d_n , $d_{n'}$ denote the distances from the centers of the control volumes V_n , $V_{n'}$ to the their common interface with interfacial area $A_{nn'}$. Combining these results gives the residual equation

for the discretized form of the partial differential equations

$$R_{n} = \left(A_{n}^{k} - A_{n}^{k+1}\right) \frac{V_{n}}{\Delta t} + \sum_{n'} F_{nn'} A_{nn'} - \mathcal{S}_{n} V_{n}, \tag{7}$$

where, in general, R_n is a nonlinear function of the independent field variables. These equations may be solved using a Newton-Raphson iteration technique in which the discretized equations are first linearized resulting in the Newton-Raphson equations

$$\sum_{n'} J_{nn'}^k \delta x_{n'}^{k+1} = -R_n^k, \tag{8}$$

with the Jacobian matrix $J_{nn'}$ defined by

$$J_{nn'} = \frac{\partial R_n}{\partial x_{n'}}. (9)$$

An explicit method is used to solve the mineral mass transfer equations given by:

$$\phi_m(\mathbf{r}, t + \Delta t) = \phi_m(\mathbf{r}, t) + \Delta t \overline{V}_m I_m(\mathbf{r}, t), \tag{10}$$

where the mineral reaction rate $I_m(\mathbf{r}, t)$ is taken from the previous time step.

Pseudo code illustrating implementation of the IFV method. Pseudo is given below for the flow equation

$$\frac{\partial}{\partial t}\varphi\rho + \nabla \cdot \rho \mathbf{u} = 0, \tag{11}$$

with \boldsymbol{u} given by Darcy's law

$$\boldsymbol{u} = -\frac{k}{\mu} \nabla (p - \rho g z). \tag{12}$$

```
!accumulation term
  do n = 1, grid%nlmax ! For each local node do...
    ng = grid%nL2G(n) ! corresponding ghost index
    voldt = porosity_loc_p(ng) * volume_p(n) / grid%dt
    r_p(jn) = (ddensity_loc_p(ng) - density_p(n)) * voldt
  enddo

!flux terms
  do nc = 1, grid%nconn ! For each interior connection...
    m1 = grid%nd1(nc) ! node indices other either side of face nc
    m2 = grid%nd2(nc)

    n1 = grid%nG2L(m1) ! local node indices
    n2 = grid%nG2L(m2)

    dd1 = grid%dist1(nc) ! distances to interface
    dd2 = grid%dist2(nc)
```

```
ip1 = grid%iperm1(nc)
ip2 = grid%iperm2(nc)
if (ip1 == 1) then
 perm1 = perm_xx_loc_p(m1)
else if (ip1 == 2) then
 perm1 = perm_yy_loc_p(m1)
 perm1 = perm_zz_loc_p(m1)
endif
if (ip2 == 1) then
 perm2 = perm_xx_loc_p(m2)
else if (ip2 == 2) then
 perm2 = perm_yy_loc_p(m2)
 perm2 = perm_zz_loc_p(m2)
endif
dd = dd1 + dd2
f1 = dd1/dd
f2 = dd2/dd
gravity = grid%fmwh2o * grid%gravity * grid%delz(nc)
D1 = perm1 / viscosity_loc_p(m1)
D2 = perm2 / viscosity_loc_p(m2)
D = (D1 * D2) / (dd2*D1 + dd1*D2)
density_ave = f2 * ddensity_loc_p(m1) + f1* ddensity_loc_p(m2)
v_darcy = -D * (ppressure_loc_p(m2) - ppressure_loc_p(m1) &
            - gravity * density_ave)
q = v_darcy * grid%area(nc)
flux = density_ave * q
  ! Now add the flux contributions for this phase.
  ! Note that fluxes through a downstream face should be added to the
  ! residual component at the cell, while fluxes through an upstream face
  ! should be subtracted. (The divergence gives the net OUTFLOW rate per
  ! unit volume.) Thus, when working with pressure differences,
  ! (ppressure(jm2) - ppressure(jm1)) should be *subtracted* at the
  ! upstream node n1 because q = -D*div(P).
if (n1 > 0) then ! If the upstream node is not a ghost node...
   r_p(n1) = r_p(n1) + flux
```

```
endif  \begin{tabular}{ll} if $(n2>0)$ then ! If the downstream node is not a ghost node...\\ $r_p(n2)=r_p(n2)$ - flux\\ endif\\ enddo \end{tabular}
```