Álgebra II

CP4: Bases y dimensión de los espacios vectoriales

Lic. David Balbuena Cruz

Objetivos

Esta clase práctica tiene como objetivos principales:

- Determinar si un sistema de vectores constituye una base de cierto espacio vectorial.
- Construir una base a partir de un sistema linealmente independiente.
- Reducir un sistema de vectores generador a una base.

Le recomendamos consultar el libro Álgebra Tomo I de Teresita Noriega. Sección 1.12.

Ejercicios

- 1. Determine si el sistema de vectores S dado constituye una base del espacio vectorial E correspondiente. Justifique su respuesta. Si S es generador y no es base, extraiga de él una base. Por otra parte, si S no es generador, obtenga una base a partir de un subsistema de S linealmente independiente maximal del mismo.
 - (a) $E = \mathbb{R}^3$, $S = \{(1, 5, -6), (2, 1, 8), (3, -1, 4), (2, 1, 1)\}$
 - (b) $E = \mathbb{R}^3$, $S = \{(1,3,4), (1,4,-3), (2,3,11)\}$
 - (c) $E = \mathbb{R}^4$, $S = \{(1, 2, -1, -2), (2, 3, 0, -1), (1, 2, 1, 4), (1, 3, -1, 0)\}$
 - (d) $E = \mathbb{R}^n$, $S = \{x_1, x_2, \dots, x_n\}$ donde

$$x_1 = (1, 2, 3, \dots, n)$$
 $x_3 = (0, 0, 3, \dots, n)$
 \vdots
 $x_2 = (0, 2, 3, \dots, n)$ $x_n = (0, 0, 0, \dots, n)$

- (e) $E = \text{subespacio de } \mathbb{R}^3$ generado por los vectores: $a_1 = (\sqrt{2}, -1, -1)$ y $a_2 = (2, -3, 2)$ $S = \{(4 - \sqrt{2}, -5, 5), (2, 3\sqrt{2} - 5, -2\sqrt{2})\}$
- 2. Considere el espacio vectorial $K_n[x]$ de todos los polinomios de grado menor estricto que n con coeficientes en K.

- (a) Demuestre que el sistema $S = \{1, (x-a), (x-a)^2, \dots, (x-a)^{n-1}\}$ es una base de dicho espacio vectorial.
- (b) Demuestre que el sistema $S = \{f_0(x), f_1(x), \dots, f_{n-1}(x)\}$ tal que **grd** $f_k(x) = k$, para $k = 0, 1, \dots, n-1$ es una base de $K_n[x]$
- 3. Determine cómo deben ser tomados los parámetros a y b reales para exista una base de $K_4[x]$ cuyos primeros vectores sean los polinomios:

$$p_1(x) = ax^3 + bx^2 + 2x + 1$$

$$p_2(x) = ax^3 + (2b - 1)x^2 + 3x + 1$$

$$p_3(x) = ax^3 + bx^2 + (b + 3)x + (2b - 1)$$

De los valores encontrados, selecione uno fijo para a y otro para b. Construya una base de $K_4[x]$ a partir del sistema $\{p_1, p_2, p_3\}$.

- 4. Encuentre una base y la dimensión de los espacios vectoriales que se indican:
 - (a) E =subespacio de (\mathbb{C}^2 , \mathbb{C} , +, *) generado por (i, 2) y (5, -2).
 - (b) E =subespacio de $(\mathbb{C}^2, \mathbb{R}, +, *)$ generado por (i, 2) y (5, -2).
 - (c) E =subespacio de de las matrices de traza nula de $M_n(\mathbb{C})$.
 - (d) E =subespacio de de las matrices de traza nula de $(M_n(\mathbb{C}), \mathbb{R}, +, *)$.
 - (e) En general, si $(E, \mathbb{C}, +, *)$ es un e.v de dimensión n, ¿cuál es la dimensión de $(E, \mathbb{R}, +, *)$. Justifique su respuesta.