ANDERSON CAN CTR

Research Portfolio Online Reporting Tools (RePORT)

STUDY CLONAL EVOLUTION IN GLIOBLASTO

Project Information @

1R01CA190121-01

DESCRIPTION DETAILS RESULTS HISTORY SUBPROJECTS

 Project Number:
 1R01CA190121-01
 Contact PI / Project Leader:
 VERHAAK, ROELAND

 Title:
 (PQ #4) SINGLE CELL BARCODING FOR STUDIES OF
 Awardee Organization:
 UNIVERSITY OF TX MD

Abstract Text:

DESCRIPTION (provided by applicant): Glioblastomas (GBM) are the most common and aggressive type of adult brain tumors. Despite the standard of care, concomitant radiation and temozolomide based chemotherapy treatment, disease relapse typically occurs within a year for most patients. The complexity of the disease is underlined by recent discoveries of regional differences within the tumor that may contribute to therapy resistance. Through high throughput sequencing and tagging of individual GBM cells using shRNA barcodes, the heterogeneity of the tumor cell mix can be investigated under variable circumstances. The first goal of this grant is to apply this methodology when growing GBMs in mice, to evaluate the degree of complexity after proliferation in absence of therapeutic challenges. To study whether the heterogeneity of the tumor cell mix contributes to the sensitivity to chemoand radio-therapy, we will apply standard treatment protocols to mouse xenografts and analyze the cellular diversity of the resulting tumors. The second aim of this grant is to evaluate whether tumor complexity can be modulated using therapeutics and whether this property plays a role in developing treatment resistance. Through computational and mathematical approaches, the genomic abnormality profile can be analyzed to infer clonal and subclonal cell populations. When applied to multiple related genomic profiles, such as from diagnostic tumors and matching post-treatment tumor biopsies, patterns of clonal evolution can be uncovered. These can be related to patient features such as outcome, but also to tumor biology characteristics such as the presence of specific genomic alterations. The final aim of this grant is to construct the evolutionary path tha GBM take to escape treatment and result in recurrence. In summary, by evaluating the patterns of clonal evolution of single cells under normal growth properties, under the stress of treatment and in patient tumors, this proposal aims to improve our understanding of why GBM are so resistant to the toxic effects of therapy.

Public Health Relevance Statement:

PUBLIC HEALTH RELEVANCE: This proposal investigates the evolution of individual glioblastoma (GBM) cells during progression under stress conditions in model systems and patient tumors. The goal of this study is to trace clonal evolution in GBM, to evaluate the genomic properties of dominant, therapy resistant clones relative to therapy sensitive cells and to compare findings in model systems with observations from clinical tumors. We propose to study how GBM cells progress under variable circumstances to improve our understanding of how tumor cell heterogeneity relates to treatment sensitivity.

NIH Spending Category:

Biotechnology; Brain Cancer; Brain Disorders; Cancer; Genetics; Human Genome; Neurosciences; Rare Diseases

Program Official

Fiscal Year: 2014 Award Notice Date: 17-SEP-2014

Project Terms:

Address; Adult; Aftercare; base; Behavior; Biological Markers; Biological Models; Biopsy; Blood - brain barrier anatomy; BRAF gene; Brain Neoplasms; Case Study; Cells; Characteristics; chemotherapy; Clinical; Clinical Trials; Clonal Evolution; Data; Development; Diagnostic; Disease; Disease Resistance; Engraftment; Epidermal Growth Factor Receptor; Equilibrium; Erlotinib; Evaluation; Event; Evolution; Excision; fluidity; Gene Mutation; Genetic; Genome; Genomics; Glioblastoma; Glioma; Goals; Grant; Growth; Heterogeneity; High-Throughput Nucleotide Sequencing; improved; Individual; Knowledge; Malignant neoplasm of lung; Malignant Neoplasms; mathematical methods; Measures; melanoma; Methodology; Methods; Microscopic; Mus; mutant; Mutate; Nature; neoplastic cell; Newly Diagnosed; novel; novel diagnostics; novel therapeutics; oncology; Operative Surgical Procedures; Outcome; Pathway interactions; Patients; Pattern; Phylogenetic Analysis; Play; Population; Process; Property; public health relevance; Radiation; Radiation therapy, Radio; Recurrence; Recurrent disease; regional difference; Relapse; Relative (related person); Residual state; Resistance; Role; Sampling; small hairpin RNA; Solid Neoplasm; standard care; standard of care; Stress; Structure; System; Techniques; temozolomide; The Cancer Genome Atlas; Therapeutic; Therapeutic Uses; therapy resistant; Toxic effect; Transplantation; Treatment Protocols; treatment response; Trees; tumor; Tumor Biology; Tumor Debulking; tumor progression; Tumor-Derived; United States; Xenograft Model; Xenograft procedure

Contact PI Information:	Information:		Other PI Information	on:		
Name: VERHAAK, ROELAND Email: Click to view contact PI email address	Name: MIETZ, JU Email: Click to vie address		SULMAN, ERIK			
Title: ASSISTANT PROFESSOR						
Organization:		Department / Educational Institution Type:			Congressional District:	
Name: UNIVERSITY OF TX MD ANDE City: HOUSTON Country: UNITED STA			RNAL MEDICINE/ME PITALS	DICINE	State Code: TX District: 09	
Other Information:						
FOA: RFA-CA-13-018 Study Section: Special Emphasis Pan M (A1))	el (ZCA1-RPRB-	Project Star	er: 800772139 Date: 17-SEP-2014 Date: 17-SEP-2014	Projec	ct End Date: 31-AUG-2018 et End Date: 31-AUG-2015	

Project Number	r Sub:	# Project Title	Contact Principal Investigator	Organization	F	/ Admin IO	FY Total Cost
Subprojects:							
1R01CA190121- 01		(PQ #4) SINGLE CELL BARCODING FOR STUDIES OF STUDY CLONAL EVOLUTION IN GLIOBLASTO	VERHAAK, ROELAND et al.	UNIVERSITY OF TX MD ANDERSON CAN 20 CTR	014 NCI	NCI \$	332,000
History: Project Number	Sub#	Project Title	Contact Principal Investigator	Organization F	Y Admin	IC Funding	FY Total Cost by IC
Categorical Spe	ending b	y IC: •	Clid	ck here for more informa	ation on NIH	Categorical	Spending
2014	NATIONAL CANCER INSTITUTE		STITUTE	\$332,000			
Year		Funding IC		FY Total Cost by	y IC		
Total Funding: \$332,000		Direct Costs: \$207,500		Indirect Costs: \$124,500			
Project Fundir	ng Infor	mation for 2014:					
NATIONAL CA	NCER II	NSTITUTE					

Page Last Updated on June 13, 2015
This site is best viewed with Internet Explorer (8.0 or higher) or Mozilla Firefox (11.0 or higher).

NIH...Turning Discovery Into Health®

RePORTER2N