Algebra II: Introduction to Module Theory

Arjun Vardhan

† Created: 23rd February 2022 Last updated: 24th March 2022

1 Basic Definitions

- Let R be a ring. Let M be an abelian group with respect to an operation +. M is a left-module on R if there exists an action of R on M, i.e, a map $R \times M \to M$, denoted rm, such that:
 - 1. (r+s)m = rm + sm, for all $r, s \in R$ and all $m \in M$.
 - 2. (rs)m = r(sm), for all $r, s \in R$ and all $m \in M$.
 - 3. r(m+n) = rm + rn, for all $r \in R$ and all $m, n \in M$.
 - 4. If R has unity, then 1m = m for all $m \in M$.

A right-module on R can be defined analogously.

- Modules over a field \mathbb{F} and vector spaces over \mathbb{F} are the same thing.
- Let R be a ring and M be an R-module. An R-submodule of M is a subgroup N of M which is closed under the action of ring elements, i.e, $rn \in N$ for all $r \in R$ and all $n \in N$. A submodule of M thus just a subset of M which is itself a module with the same operations.
- \bullet If R is a field, then submodules are the same thing as subspaces.
- Every R-module M has at least two submodules: M itself, and {0}, the trivial submodule.
- Let R be any commutative ring. Then R is a module on itself, where the action is simply regular multiplication in R. In this case the submodules of R would simply be the ideals of R.
- If M is an R-module and S is a subring of R with $1_S = 1_R$, then M is also an S-module.
- Let \mathbb{F} be a field and let $n \in \mathbb{Z}^+$. The affine n-space over \mathbb{F} is $\mathbb{F}^n = \{(a_1, a_2, ..., a_n) : a_i \in \mathbb{F}\}$. It is a module/vector space over \mathbb{F} , with addition and scalar multiplication defined componentwise.
- Let R be a ring with unity and let $n \in \mathbb{Z}^+$. Define $R^n = \{(a_1, a_2, ..., a_n) : a_i \in R\}$. This is an R-module with componentwise operations. It is called the free module of rank n over R.
- If M is an R-module and if I is an ideal of R, and if am = 0 for all $a \in I$, and all $m \in M$, then we say that M is annihilated by I. Here, M can be made into an (R/I)-module with the operation (r+I)m = rm. Since am = 0 for all $a \in I$, this is well defined. When I is a maximal ideal, then M is a vector space over the field R/I.
- Let A be an abelian group. For any $n \in \mathbb{Z}$ and $a \in A$, define na = a + a + ... + a (n times) if n > 0, na = 0 if n = 0, and na = -a a ... a (n times) if n < 0. This makes A into a \mathbb{Z} -module, and shows that every abelian group is a \mathbb{Z} -module. Additionally, \mathbb{Z} -submodules are just subgroups of A.
- Submodule Criterion: Let R be a ring and M be an R-module. Then, $N \subseteq M$ is a submodule of M if and only if $N \neq \emptyset$ and $x+ry \in N$ for all $r \in R$ and all $x,y \in N$. Proof: Suppose N is a submodule. Then $0 \in N$ so $N \neq \emptyset$. Additionally, N is closed under addition and $rn \in N$ for all $r \in R$, $n \in N$. Conversely, suppose $N \neq \emptyset$ and $x+ry \in N$ for all $x,y \in N$ and all $r \in R$. Let r = -1. Then by the subgroup criterion, N is an (additive) subgroup of M. So $0 \in N$. Let x = 0. Then N is closed under the action of ring elements and is therefore a submodule.
- Let M be an R-module. $m \in M$ is called a torsion element if rm = 0 for some nonzero element $r \in R$. Tor(M) denotes the set of all torsion elements in M.

2 Quotient Modules and Module Homomorphisms

- Let R be a ring and M,N be R-modules. A map $\Phi:M\to N$ is an R-module homomorphism if $\Phi(x+y)=\Phi(x)+\Phi(y)$ for all $x,y\in M$ and $\Phi(rx)=r\Phi(x)$ for all $r\in R, x\in M$.
- $\bullet \ \operatorname{Hom}(M,N)$ denotes the set of all module homomorphisms from M to N.
- \bullet $\mathbb{Z}\text{-module}$ homomorphisms are the same as abelian group homomorphisms.

•

- 3 Generation of Modules, Direct Sums, Free Modules
- 4 Tensor Products of Modules
- 5 Exact Sequences; Projective, Injective and Flat Modules