Hardware Libre: Clasificación y desarrollo de hardware reconfigurable en entornos GNU/Linux

Iván González, Juan González, Francisco Gómez-Arribas

Escuela Politécnica Superior Universidad Autónoma de Madrid

ÍNDICE

- INTRODUCCIÓN
- PARTE I: Hardware estático
- PARTE II: Hardare reconfigurable
- APLICACIONES
- CONCLUSIONES

¿Qué es el hardware Libre?

- Paralelismo con Software Libre
- Software Libre: Ofrece 4 libertades
 - Libertad de uso
 - Libertad de compartir (distribuir)
 - Libertad de modificación (Fuentes)
 - Libertad de distribución de las modificaciones
- Hardware libre: Aspira a ofrecer esas mismas 4 libertades, pero aparecen problemas.

El objetivo del hardware libre es aplicar las mismas 4 libertades del software libre, en su propio campo

Clasificación del hardware

Según su naturaleza, encontramos dos grandes grupos:

HARDWARE ESTÁTICO,

conjunto de materiales de los sistemas electrónicos.

Existencia física

HARDWARE RECONFIGURABLE, el que viene descrito mediante lenguajes de descripción hardware (HDL)

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity cont8 is
  port (clk : in std_logic; -- Reloj
        clear : in std_logic;
        q : out std_logic_vector (7 downto 0)); --
Salida
  end cont8;

architecture beh of cont8 is
signal cuenta : std_logic_vector (7 downto 0);
```

Es "código"

Siempre hay que especificar de qué tipo de hardware estamos hablando

ÍNDICE

- INTRODUCCIÓN
- PARTE I: Hardware estático
- PARTE II: Hardare reconfigurable
- APLICACIONES
- CONCLUSIONES

Problemas del hardware libre

- Queremos aplicar las 4 libertades, pero surgen problemas:
 - 1. **Un diseño físico es único.** Para compartir mi placa con otra persona, bien le dejo la mía o bien se la tiene que fabricar. La compartición tal cual la conocemos en el mundo del software no es posible.
 - 2. La compartición tiene asociado un coste. Para compartir hardware libre hay que FABRICAR y comprar componentes. Además hay que verificar su correcto funcionamiento.
 - 3. Disponibilidad de los componentes. ¿Están disponibles los chips?

Problemas derivados de su Existencia Física

Definición de hardware libre (I)

- No hay una definición clara
- Una propuesta:

El hardware libre (o abierto) ofrece las mismas 4 libertades que el software libre, pero aplicadas a los **PLANOS** del hardware.

- En el software se habla de fuentes, en el hardware de planos
- Los planos se pueden compartir igual que el software. Es la fabricación la que tiene un coste.

Tipos de planos en electrónica

Esquemático

Circuito Impreso (PCB)

- Fichero para fabricación (GERBER)
 - Sólo en placas industriales

Definición hardware libre (II)

Un diseño se considera hardware libre si ofrece las 4 libertades del software libre en el **esquemático**, **PCB** y **fichero para fabricación**

Formato de los planos (I)

■ Fichero de fabricación: GERBER, estándar industrial

Esquemático y PCB: Cada aplicación su propio formato X

No hay formato estándar

- Lo ideal: Herramientas de desarrollo (EDA) Libres
- La realidad: Software propietario, con formatos propietarios

El formato impone restricciones a la compartición de los planos

¿Es hardware libre si el formato de alguno de sus planos es propietario?

Formato de los planos (II)

Nuestra propuesta:

Que sea el **autor el que decida**, con independencia de la aplicación empleada para su diseño

- Herramientas de desarrollo Libres: Proyecto gEDA. Prometedor, pero en desarrollo
- Software propietario todavía muy por delante, Orcad, Tango, Eagle, Protel,...

La aplicación utilizada impone restricciones a la compartición. En base a esas restricciones clasificaremos el hardware libre

Clasificación del hardware libre (I)

- Clasificación de los diseños en función de los planos y el tipo de programas usados para generarlos
 - Tres componentes
 - Cada una asociada a un tipo de plano

- L = Programa libre
- M = Programa propietario, Multiplataforma, siendo alguna un Sistema operativo Libre
- P = Programa propietario, que se ejecuta sobre un Sistema Operativo propietario

Clasificación del hardware libre (II)

- Se pueden tener diseños LLL, PPL, PML...
- Existen tres tipos a destacar:

■ Diseños LLL

 Ninguna restricción. Cualquiera los puede ver, modificar y fabricar. Diseños "Pura Sangre"

Diseños MML

Lo más práctico para el diseñador, al día de hoy.
 Necesaria una licencia, pero al menos se puede usar un sistema operativo libre

Diseños PPX

 Es lo más restrictivo. Necesarias licencias de las herraminetas y del sistema operativo. No hay fichero de fabricación

Clasificación del hardware libre (III)

- Lo ideal: Diseños LLL
 - ¿Existe algún diseño LLL?

- Lo práctico: Diseños MML
 - Programa de diseño Eagle (CadSoft)
 - Descarga gratuita (Freeware)
 - Ejemplo: Tarjeta JPS

- Lo más restrictivo: Diseños PPX
 - Ej. Tarjeta CT6811, Tarjeta CT293
 - Orcad y Tango (Windows)

Un ejemplo: La Tarjeta JPS

- Hardware libre. Tipo MML.
 - Herramienta de diseño: Eagle
 - Distribución Linux: Debian/Sarge
- Cualquiera la puede fabricar
- Cualquiera la puede modificar
- Cualquier empresa la puede comercializar
- Cualquier Universidad la puede adaptar

Presentada en Hispabot 2003

La aplicación EAGLE (No libre)

La aplicación EAGLE (No libre)

ÍNDICE

- INTRODUCCIÓN
- PARTE I: Hardware estático
- PARTE II: Hardare reconfigurable
- APLICACIONES
- CONCLUSIONES

Introducción

- Hardware Reconfigurable: Viene descrito mediante un lenguaje de descripción hardware (HDL) y se puede sintetizar en una FPGA
- Los diseños son "Código Fuente"
- Para hacer que sean libres, sólo hay que aplicar la licencia GPL o similar.

Lenguajes de descripción hardware (I)

- El hardware se puede describir utilizando un lenguaje HDL, como VHDL, Verilog, Handel C...
- Los diseños son ficheros de texto ("Código fuente"), que describen tanto la estructura del diseño como el comportamiento de las partes integrantes

Lenguajes de descripción hardware (II)

Se pueden realizar simulaciones

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity cont8 is
port (clk: in std_logic; -- Reloj
clear: in std_logic;
q: out std_logic_vector (7 downto 0)); --Salida
end cont8;

architecture beh of cont8 is
signal cuenta: std_logic_vector (7 downto 0);
```

Se pueden tener librerías de componentes, igual que con el software

FPGAs (I)

- Dispositivos electrónicos que nos permiten implementar circuitos digitales
- Compuestas por bloques iguales configurables (CLBs) que se unen dinámicamente según se especifica en una memoria de configuración

FPGA sin configurar

FPGAs (II)

- Cambiando el contenido de la memoria de configuración, la FPGA se convierte en un Dispositivo u otro.
- El fichero que contiene la configuración se llama Bitstream

■ ¡¡Dispositivos universales!! Se pueden "convertir" en cualquier circuito digital, según la configuración que se le cargue

Hardware Reconfigurable (I)

- HDL+FPGA = Hardware reconfigurable
- ¡¡El hardware es ahora un software!!
- Hardware libre = Ficheros HDL con licencia GPL

Hardware Reconfigurable (II)

- El hardware reconfigurable se puede compartir
- Se pueden ofrecer las mismas 4 libertadas a los diseños en HDL (Licencia GPL)
- Nuevas comunidades Hardware que comparten información (Ejemplo: OpenCores)
- Repositorios con Hardware para que cualquiera los use
- Necesaria una plataforma en la que descargar los diseños
 - Muchas entrenadoras en el mercado
 - La JPS es una de ellas, que además libre.

Hardware Reconfigurable

- Simulación en GNU/Linux
- Síntesis/Implementación en GNU/Linux

Simulación en GNU/LINUX

- Lenguaje empleado: VHDL
- Herramienta para Analizar/simular: GHDL
 - Proyecto prometedor
 - Basado en el GCC

■ Para visualizar el resultado de la simulación: GTKWAVE

Demo de Simulación en GNU/LINUX (I)

Contador binario de 8 bits

■ Para probarlo hay que conectarlo a una señal de reloj y hacer un reset : Banco de pruebas, tb_cont8.vhdl

Demo de Simulación en GNU/LINUX (II)

```
Library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;
entity cont8 is
 port (clk : in std_logic; -- Reloj
     clear: in std logic;
        : out std logic vector (7 downto 0)); --Salida
end cont8:
architecture beh of cont8 is
signal cuenta: std_logic_vector (7 downto 0);
begin
 output: process(clk,clear)
 begin
  if (clear='0') then
   q<="00000000";
   cuenta<="00000000";
  elsif (clk'event and clk='1') then
   cuenta<=(cuenta+1);
   q<=cuenta;
  end if;
 end process;
end beh:
```

cont8.vhdl

Demo de Simulación en GNU/LINUX (II)

\$ ghdl -a -ieee=synopsys *.vhdl

Cont8.0 tb cont8.0

\$ ghdl -e -ieee=synopsys tb_cont8

tb cont8 (Ejecutable)

\$./tb_cont8 -vcd=simulacion.vcd -stop-time=200ns

Simulacion.vcd

\$ gtkwave simulacion.vcd

Elaboración

Simulación

Visualización

Visualización con GTKWAVE

Hardware Reconfigurable

- Simulación en GNU/Linux
- Síntesis/Implementación en GNU/Linux

Introducción

- Fase de síntesis: A partir del código en VHDL se obtiene un fichero netlist en el formato EDIF
- Fase de implementación: A partir del netlist se genera el bitstream
- Fase de descarga: Finalmente se descarga el Bitstream en la FPGA

Síntesis en FPGA

- No hay herramientas libres, pero podría haberlas.
 - Se podrían realizar
 - Es dependiente de la tecnología, pero el fabricante aporta la información necesaria
 - El formato EDIF está documentado
- Existen herramientas propietarias, que corren bajo linux (Ej. Synplify Pro)
- Existen herramientas que corren bien bajo WINE (Ej. ISE)

Síntesis V

Implementación en FPGA

Se obtiene el Bitstream a partir del fichero EDIF

Implementación

- La tecnología de los dispositivos FPGA se considera secreto industrial
 - No es posible conocer toda la información de configuración

No es posible el diseño de herramientas libres

Herramientas

- Actualmente los fabricantes más importantes no tienen herramientas para Linux
- Xilinx ha anunciado que estarán disponibles en 6 meses

Cerrando el ciclo de diseño de FPGAs en Linux

- Existen herramientas de edición libres
- Existen herramientas de simulación libres 🗸
- Existen herramientas de síntesis pero no son libres X
 - Al menos están disponibles para Linux
- No hay herramientas libres para la implementación, ni x puede haberlas

Solución que hemos empleado:

Simulación: GHDL + GTKWAVE

Síntesis/implementación: ISE 4.2 + WINE

Cerrando el ciclo de diseño de FPGAs en Linux

Y para muestra un botón...

ÍNDICE

- INTRODUCCIÓN
- PARTE I: Hardware estático
- PARTE II: Hardare reconfigurable
- APLICACIONES
- Conclusiones

Aplicación I: Robot de Docencia

- Robot seguidor de línea
- CPU PandaBear en VHDL
 - Risc, 16 Bits
 - 8 instrucciones

- Ocupación: 147 CLBs (75%)
- Frecuencia 12MHZ

Aplicación II: Robot gusano

- Robot ápodo que se desplaza mediante ondas sinusoidales
- Controlador hardware en una FPGA. Presentado en el JCRA 2003.

ÍNDICE

- INTRODUCCIÓN
- PARTE I: Hardware estático
- PARTE II: Hardare reconfigurable
- APLICACIONES
- Conclusiones

Conclusiones (I)

Al hablar de hardware libre hay que distinguir entre hardware estático y hardware reconfigurable

Hardware estático

- Propuesta una definición
- Establecida clasificación según las restricciones impuestas por las aplicaciones de diseño
- Es el autor es que decide la libertad, no la aplicación

Hardware reconfigurable

- Es libre si se aplica licencia GPL o similar
- Herramientas libres para la simulacion: GHDL, GTKWAVE
- No hay sintetizadores libres, pero podría haberlos
- No puede haber un entorno completamente libre. Los detalles internos de las FPGAs son secreto industrial

Conclusiones (II)

- Hemos cerrado el ciclo de diseño en una máquina GNU/Linux
 - Tarjeta JPS
 - Entorno ISE 4.2 de Xilinx, usando Wine

Hardware Libre tiene mucho futuro, sobre todo el **hardware reconfigurable** por su similitud con el software libre. La limitación viene impuesta por las herramientas de los Fabricantes de FPGAs

El hardware estático libre está más limitado, y su difusión es mucho más lenta, debido a que hay que "Fabricar". Tiene especial interés en su aplicación docente, donde las universidades y centros de investigación los podrían fabricar

Conclusiones (III)

SOLUCIONES:

- Utilizar Laboratorios Virtuales, donde hay un servidor con el programa propietario que permite hacer la síntesis e implementación: GRANJAS DE SINTESIS
- Proyectos Europeos a gran escala: ¿Open FPGA?

En cualquier caso, el hardware libre es un nuevo frente de batalla hacia una sociedad del conocimiento libre

Referencias:

■ Tarjeta JPS :

- http://www.iearobotics.com/personal/juan/doctorado/jps-xpc84/jps-xpc84.html
- http://www.iearobotics.com, google interno: "Tarjeta JPS"
- LABOWEB: Laboratorio Virtual
 - http://www.ii.uam.es/~laboweb/

PROYECTO HARDWARE ABIERTO DE MICROBOTICA S.L:

http://www.microbotica.com/ha.htm

■ TARJETA CT6811:

- http://www.iearobotics.com/proyectos/ct6811/ct6811.html
- http://www.iearobotics.com, google interno: "Tarjeta CT6811"
- OPENCORES: Comunidad de hardware reconfigurable
 - http://www.opencores.org/

Hardware Libre: Clasificación y desarrollo de hardware reconfigurable en entornos GNU/Linux

Juan González, Iván González, Francisco Gómez-Arribas

Escuela Politécnica Superior Universidad Autónoma de Madrid