Project Detective V2

Deepfake Evidence Tracking and Evaluation for Content Transparency and Integrity Verification Efforts

Fondamenti di Visione Artificiale e Biometria

Anno accademico 2024/2025

Prof. Michele Nappi **Tutor** Dott. Matteo Polsinelli

Che cos'è il DeepFake

- La manipolazione di immagini e video è una pratica esistente da diversi anni.
- Tuttavia, l'utilizzo dell'intelligenza artificiale introduce un nuovo aspetto: il realismo. I contenuti multimediali sintetici generati sono convincenti perché verosimili.
- I nuovi metodi di creazione di informazione possono sicuramente essere utilizzata per nobili scopi: migliorare l'offerta formativa, creare nuove forme di intrattenimento o migliorare quelle già esistenti etc.
- Allo stesso tempo, possono essere utilizzare, ad esempio, per creare frodi o fake news in quanto le persone possono essere facilmente ingannate.

Motivazioni del Progetto

1) Grande interesse da parte della comunità scientifica

2) Riscontro pratico nella vita di tutti i giorni, per via delle implicazioni pratiche

^{*} Juefei-Xu, F. et al., 2022. Countering malicious deepfakes: Survey, battleground, and horizon. International journal of computer vision, 130(7), pp.1678-1734.

^{**} Nguyen, T.T., et al. 2022. Deep learning for deepfakes creation and detection: A survey. Computer Vision and Image Understanding, 223, p.103525.

Conosci il tuo avversario: il «falsario»

- 1. Vuole generare immagini con il minimo contenuto di artefatti nel dominio spaziale.
- Non vuole lasciare impronte di qualsiasi tipo nell'immagine generata che siano la prova che si tratta di un fake. Se è costretto a lasciare delle impronte, vuole cancellarle in una fase di post-processing.

Falsificatore: strumenti utilizzati

- Tra i metodi più utilizzati per la generazione di DeepFake, come suggerisce la parola stessa, ci sono quelli di Deep Learning.
- In particolare le GAN hanno dimostrato di essere tra i metodi che meglio soddisfano il primo requisito del falsificatore: minimo contenuto di artefatti nel dominio spaziale.*
- Inoltre, questi metodi sono facilmente reperibili online e pronti all'uso. *

^{*} Nguyen, T.T., et al. 2022. Deep learning for deepfakes creation and detection: A survey. Computer Vision and Image Understanding, 223, p.103525.

Summary of notable deepfake tools.		
Tools	Links	Key features
Faceswap	https://github.com/deepfakes/faceswap	 Using two encoder-decoder pairs. Parameters of the encoder are shared.
Faceswap-GAN	https://github.com/shaoanlu/faceswap-GAN	Adversarial loss and perceptual loss (VGGface) are added to an auto-encoder architecture.
Few-Shot Face Translation	https://github.com/shaoanlu/fewshot-face-translation-GAN	 Use a pre-trained face recognition model to extract latent embeddings for GAN processing. Incorporate semantic priors obtained by modules from FUNIT (Liu et al., 2019) and SPADE (Park et al., 2019).
DeepFaceLab	https://github.com/iperov/DeepFaceLab	 Expand from the Faceswap method with new models, e.g. H64, H128, LIAEF128, SAE (DeepFaceLab, 2022a). Support multiple face extraction modes, e.g. S3FD, MTCNN, dlib, or manual (DeepFaceLab, 2022a).
DFaker	https://github.com/dfaker/df	 DSSIM loss function (DSSIM, 2022) is used to reconstruct face. Implemented based on Keras library.
DeepFake_tf	https://github.com/StromWine/DeepFake_tf	Similar to DFaker but implemented based on tensorflow.
AvatarMe	https://github.com/lattas/AvatarMe	- Reconstruct 3D faces from arbitrary "in-the-wild" images Can reconstruct authentic 4K by 6K-resolution 3D faces from a
MarioNETte	https://hyperconnect.github.io/MarioNETte	single low-resolution image (Lattas et al., 2020). - A few-shot face reenactment framework that preserves the target identity. - No additional fine-tuning phase is needed for identity adaptation
DiscoFaceGAN	https://github.com/microsoft/DiscoFaceGAN	(Ha et al., 2020). - Generate face images of virtual people with independent latent variables of identity, expression, pose, and illumination. - Embed 3D priors into adversarial learning (Deng et al., 2020).
StyleRig	https://gvv.mpi-inf.mpg.de/projects/StyleRig	Create portrait images of faces with a rig-like control over a pretrained and fixed StyleGAN via 3D morphable face models. Self-supervised without manual annotations (Tewari et al., 2020).
FaceShifter	https://lingzhili.com/FaceShifterPage	 Face swapping in high-fidelity by exploiting and integrating the target attributes. Can be applied to any new face pairs without requiring subject specific training (Li et al., 2019a).
FSGAN	https://github.com/YuvalNirkin/fsgan	A face swapping and renactment model that can be applied to pairs of faces without requiring training on those faces. Adjust to both pose and expression variations (Nirkin et al., 2019).
StyleGAN	https://github.com/NVlabs/stylegan	 A new generator architecture for GANs is proposed based on style transfer literature. The new architecture leads to automatic, unsupervised separation of high-level attributes and enables intuitive, scale-specific control
Face2Face	https://justusthies.github.io/posts/face2face/	of the synthesis of images (Karras et al., 2019). Real-time facial reenactment of monocular target video sequence, e.g. Youtube video. Animate the facial expressions of the target video by a source actor and re-render the manipulated output video in a
Neural Textures	https://github.com/SSRSGJYD/NeuralTexture	photo-realistic fashion (Thies et al., 2016). - Feature maps that are learned as part of the scene capture process and stored as maps on top of 3D mesh proxies. - Can coherently re-render or manipulate existing video content in both static and dynamic environments at real-time rates (Thies et al., 2019).
Transformable Bottleneck Networks	https://github.com/kyleolsz/TB-Networks	 A method for fine-grained 3D manipulation of image content. Apply spatial transformations in CNN models using a transformable bottleneck framework (Olszewski et al., 2019).
"Do as I Do" Motion Transfer	https://github.com/carolineec/EverybodyDanceNow	 - Automatically transfer the motion from a source to a target person by learning a video-to-video translation. - Can create a motion-synchronized dancing video with multiple subjects (Chan et al., 2019).
Neural Voice Puppetry	https://justusthies.github.io/posts/neural-voice-puppetry	 A method for audio-driven facial video synthesis. Synthesize videos of a talking head from an audio sequence of another person using 3D face representation. (Thies et al., 2020).

GAN fingerprint

Le GAN aggiungono una fingerprint ben visibile (generalmente da un metodo automatico) sia nel dominio spaziale che nel dominio delle frequenze: il secondo requisito del falsificatore non è rispettato *.

^{*} Gragnaniello, D., Cozzolino, D., Marra, F., Poggi, G. and Verdoliva, L., 2021, July. Are GAN generated images easy to detect? A critical analysis of the state-of-the-art. In 2021 IEEE international conference on multimedia and expo (ICME) (pp. 1-6). IEEE.

Visualizzare la fingerprint nel dominio spaziale con tecniche forensi già note

- Ciascun dispositivo di acquisizione di immagini, a causa di imperfezioni di produzione, lascia un'impronta unica e stabile su ciascuna foto acquisita, nota come photo-response nonuniformity (PRNU) pattern
- Il PRNU può essere stimato ed e trattato come una vera e propria device fingerprint
- Tale fingerprint può essere autilizzata per attribuire un immagine ad un particolare device, riconoscere e localizzare eventuali manipolazioni ed è uno dei metodi più utilizzati nell'analisi forense.

Stima della fingerprint nel dominio spaziale *

1)
$$\widehat{X}_i = f(X_i)$$

2)
$$R_i = X_i - f(X_i)$$

3)
$$R_i = F + W_i$$
non-zero random noise deterministic component component

4)
$$\widehat{F} = \frac{1}{N} \sum_{i=1}^{N} R_i$$

^{*} Marra, F., Gragnaniello, D., Verdoliva, L., & Poggi, G. (2019, March). Do gans leave artificial fingerprints?. In 2019 IEEE conference on multimedia information processing and retrieval (MIPR) (pp. 506-511). IEEE.

Visualizzare la Fingerprint nel Dominio Delle Frequenze (1)

- Previous work has already linked upsampling operations (deconvolution o transposed-convolution) to causing grid-like patterns in the image domain *
- Recognizing this, the architecture of both the generator-network and the discriminator-network shifted from using strided transposed convolution (DCGAN, CramerGAN, CycleGAN, MMDGAN, and SNDCGAN to using traditional upsampling methods—like nearest neighbor or bilinear upsampling followed by a convolutional layer (ProGAN, BigGAN, and StyleGAN)
- While these changes addressed the problem in the spatial domain, the results show that the artifacts are still detectable in the frequency domain **

^{*}Odena, A., Dumoulin, V. and Olah, C., 2016. Deconvolution and checkerboard artifacts. *Distill*, 1(10), p.e3.

^{**}Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D. and Holz, T., 2020, November. Leveraging frequency analysis for deep fake image recognition. In *International conference on machine learning* (pp. 3247-3258). PMLR.

Visualizzare la Fingerprint nel Dominio Delle Frequenze (2)

- Il motivo principale del successo di questi metodi sta nel fatto che le fingerprint sono "direttamente" ben visibili nel domino delle frequenze e quindi è più semplice fare la detection
- Le anomalie che si riscontrano nel dominio delle frequenze sono di due tipi: "patterns anormali" e discrepanze nella Power Distribution.

Visualizzare la Finger nel Dominio Delle Frequenze (3)

• Esempi di pattern anormali, come ad esempio linee e punti, sono più frequenti nello spettro delle immagini generate da CycleGAN [47] and StarGAN [13].

 Nello spettro delle frequence delle immagini generate con la BigGAN [10], si riscontra nelle un blurry delle alte frequenze.

E i metodi basati su latent diffusion e stable diffusion?

• Considerazioni simili valgono anche per questi nuovi strumenti, anche se nelle reti più evoluto come DALLE i pattern della fingerprint sono notevolmente più difficili da visualizzare *

^{*} Corvi, Riccardo, et al. "On the detection of synthetic images generated by diffusion models." ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

Siamese Neural Network (1)

Think about the differences

Siamese Neural Network (2)

(2) Distance Based Test

Siamese Neural Network (3)

Nuovi obiettivi in Detective V2

- Ci focalizzeremo su 3 nuovi punti fondamentali:
 - 1. Strategie avanzate per la scelta delle triplette;
 - 2. Strategie avanzate per la classificazione dei vettori di embeddings;
 - 3. Nuovi modelli DL (ad esempio i Transformers) per la costruzione dell'architettura SNN.

Detectives: strumenti

- A tutti i gruppi che sceglieranno questo progetto, verrà fornito un Dataset di immagini Real e Fakes così strutturato:
 - 1. Immagini di Training
 - 2. Immagini di Test
- Tutti i gruppi si cimenteranno con le stesse immagini e i loro scripts verranno valutati in base a diverse metriche (Accuracy, Specificity, Sensitivity etc).
- Gli script dovranno essere sviluppati in liguaggio Python utilizzando il framework Pytorch.

Quali sono gli elementi per la valutazione progetto?

- 1. Codice sorgente: deve essere leggibile, commentato e ben organizzato;
- 2. Lista dei requirements: bisogna utilizzare conda per la gestione del progetto, come visto a lezione;
- 3. Il progetto deve funzionare su qualsiasi PC: il progetto deve avere un main eseguibile che eventualmente accetti parametri da riga di comando;
- **4. Report del progetto:** Una documentazione esaustiva, redatta nello stile di un articolo scientifico, che descriva dettagliatamente i tentativi effettuati e i risultati conseguiti.
- **5. Logica di sviluppo:** non si ottengono i risultati sperati...non è un problema! L'importante è aver lavorato bene, seguendo un filo logico di prove successive.

Grazie per l'attenzione

Per ulteriori informazioni: mpolsinelli@unisa.it