```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests
import datetime
from google.colab import data_table
from IPython.core.display import display, HTML
import yfinance as yf
from google.colab import drive
drive.mount('/content/drive')
57 Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=Tr
# link to the monte carlo data folder <a href="https://drive.google.com/drive/folders/10G">https://drive.google.com/drive/folders/10G</a>U2YP8ijheI8hR6IYnzU2F7A8b1Mgiu?usp=drive_link --
#julia filepath
#file_path = '/content/drive/My Drive/MSDS 460/Tennessee Redistricting/data/'
# paul filepath
file_path = '/content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/'
#graham filepath
#file_path = "/content/drive/My Drive/"
# sue filepath
#file_path = '/content/drive/My Drive/MSDS 460/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/each_ticker_as_
Part 1: Calculate the buy and hold returns for the 10 stocks compared to the market
# this code takes in the seperate price history for all ten tickers since the example from https://github.com/bryancwh/algo-tradi
# I assume we have $100,000 to start and invest 10,000 in each ticker
# import data. each ticker's df seperately
tickers = ["XOM", "CVX", "COP", "EOG", "EPD", "WMB", "OKE", "LNG", "OXY", "HES"]
stock_dfs = {}
for ticker in tickers:
  csv_path = f"{file_path}{ticker}_data.csv"
  print(csv_path)
  stock_dfs[ticker] = pd.read_csv(csv_path)
/content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/CVX_data.csv
   /content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/COP_data.csv
   /content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/EOG_data.csv
   /content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/EPD_data.csv
   /content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/WMB_data.csv
   /content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/OKE_data.csv
   /content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/LNG_data.csv
   /content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/OXY_data.csv
```

/content/drive/My Drive/shared_folders/MSDS 460/Monte Carlo/monte_carlo_data/each_ticker_as_a_separate_csv/HES_data.csv

```
print(stock_dfs['XOM'].head())
\overline{2}
             date
                        close
                                    high
                                                low
                                                          open
                                                                 volume
       1999-01-04
                   16.089716
                                         16.006637
                              16.422034
                                                     16.117409
                                                                8853600
       1999-01-05
                   15.951257
                               16.158955
                                          15.882024
                                                     16.062029
                                                                6652800
     2 1999-01-06
                              16.795900
                   16.588202
                                          16.103571
                                                     16.200497
                                                                9965600
       1999-01-07
                   16.560503
                              16.602043
                                          16.338958
                                                     16.491270
                                                                7417200
     4 1999-01-08
                   16.463579
                              16.546659
                                          16.158955
                                                     16.449733
                                                                6343400
print(stock_dfs['CVX'].tail())
→
                 date
                            close
                                         high
                                                      low
                                                                 open
                                                                        volume
     6284 2023-12-22
                       143.222809
                                  144.493368
                                              142.938352
                                                           143.877056
                                                                       6394600
     6285
                                  145.081214
                                                                       5165600
          2023-12-26
                       144.512314
                                               144.028732
                                                           144.189936
     6286
          2023-12-27
                       144.038223
                                  145.043293
                                               143.497753
                                                           144.379569
                                                                       5337200
    6287
          2023-12-28
                     142.009109 144.142517
                                               141.658273
                                                           143.346034
                                                                       8148000
     6288 2023-12-29 141.430710 142.445256
                                              140.966096
                                                           142.255623
                                                                       7653800
# calculating buy and hold return - buy on the first date (open price) and sell on the last row close price
stock_dfs["XOM"]['open'].iloc[0]
→ 16.11740910042584
stock_dfs["XOM"]['close'].iloc[-1]
→ 95.82491302490234
# https://www.investopedia.com/articles/basics/10/guide-to-calculating-roi.asp#:~:text=Return%20on%20investment%20(ROI)%20is%20a
# return = (sell price - buy price) / buy price
# e.g. buy at $100, sell at $1000
\# (1000 - 100) / 100 = 9
XOM_return = (95.82491302490234 - 16.11740910042584) / 16.11740910042584
print(XOM_return)
4.94542909644023
# 10,000 invested in XOM on 1/1/1999 would be worth 10,000 * 4.94542909644023 = $ 49,454
buy_and_hold_return_dict = {}
for ticker in tickers:
    df = stock_dfs[ticker]
    first_open = df['open'].iloc[0]
    last_close = df['close'].iloc[-1]
    buy_and_hold_return = ((last_close - first_open )/ first_open)
    buy_and_hold_return_dict[ticker] = buy_and_hold_return
print(buy_and_hold_return_dict)
₹ ('XOM': 4.94542909644023, 'CVX': 7.908235098670692, 'COP': 14.887227633417485, 'EOG': 38.53016571767444, 'EPD': 36.283392191
total_buy_and_hold_returns_energy_stocks = 0
for ticker, buy_hold_return in buy_and_hold_return_dict.items():
  final_value = 10000 * buy_hold_return
  total_buy_and_hold_returns_energy_stocks += final_value
print(f'{total_buy_and_hold_returns_energy_stocks:.2f}')
→ 2559286.20
```

return on initial 100k spread across all ten stocks

overall_energy_return = total_buy_and_hold_returns_energy_stocks / 100000
print(f'{overall_energy_return:.2f}')

→ 25.59

 ${\tt spy_df = yf.download("SPY", start="1999-01-01", end = "2024-01-01", multi_level_index = False)}$

spy_df.head()

	Close	High	Low	0pen	Volume	
Date						
1999-01-04	77.577950	78.957288	76.750346	77.794703	9450400	
1999-01-05	78.464668	78.740536	77.518836	77.518836	8031000	
1999-01-06	80.356316	80.553364	79.292255	79.331664	7737700	
1999-01-07	79.962227	80.218390	79.311967	79.686359	5504900	
1999-01-08	80.553391	81.026307	79.430215	80.829258	6224400	

spy_df.tail()

	Close	High	Low	0pen	Volume
Date					
2023-12-22	467.651306	469.359407	465.726021	467.858638	67126600
2023-12-26	469.625977	470.544191	467.986997	468.066000	55387000
2023-12-27	470.475098	470.623192	468.875619	469.418642	68000300
2023-12-28	470.652802	471.501895	470.228255	470.840398	77158100
2023-12-29	469.290283	470.988501	467.305730	470.455331	122234100

spy_df['Open'][0]

<ipython-input-18-58fec3316e36>:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future v
spy_df['0pen'][0]
77.79470274840207

spy_df['Close'][-1]

calculating market returs using SPY index for the S&P 500

spy_open = spy_df['Open'].iloc[0]
spy_close = spy_df['Close'].iloc[-1]

sp500_return = (spy_close - spy_open) / spy_open
print(sp500_return)

→ 5.032419517314299

buying and holding the basket of 10 energy stocks returned ~2500% while S&P 500 returned ~500%

```
Part 2: Applies a moving average strategy using the moving average, bollinger and r
                           uses a 200 day moving average, calculates the bollinger band (a band \pm 2 standara
                           and the relative strength index over a 6 day period.
                           Sells when rsi is > 70 and price is > than the upper threshold, buys when rsi < 30
# starting with the first buy when the stock price and rsi move below the thresholds, we invest all of the amount (initially $10,
# rsi explanation https://www.investopedia.com/terms/r/rsi.asp
# bollinger explanation https://www.investopedia.com/terms/b/bollingerbands.asp
              ------example from https://github.com/bryancwh/algo-trading-mean-reversion/blob/main/Mean%20Rev
# applying the transformation from https://github.com/bryancwh/algo-trading-mean-reversion/blob/main/Mean%20Reversion.ipynb to e
# changed the function to take in periods and thresholds as arguments so we can experiment with differnt strategies
# https://medium.com/@redsword 23261/bollinger-bands-and-rsi-crossover-trading-strategy-85246fc52379
# 20 day ma is standard for bollinger bands, 2 std dev is also standard
# rsi period of 6-14 is standard, 30 and 70 are common threshholds
def gain(value):
   if value < 0:
     return 0
   else:
      return value
def loss(value):
   if value > 0:
      return 0
   else:
      return abs(value)
def apply mean reversion strategy(stock df dict, ma period = 200, bollinger period = 20, rsi period = 6, bollinger std = 2, rsi
 updated_stock_df_dict = {}
 for ticker, df in stock_df_dict.items():
   df = df \cdot copy()
   df['date'] = pd.to datetime(df['date'])
   # moving average
   df['ma_200'] = df['close'].rolling(ma_period).mean()
   #Bollinger
   bollinger_period = bollinger_period
   ma_period_column = f'ma_{bollinger_period}'
   df[ma_period_column] = df['close'].rolling(bollinger_period).mean()
   df['std'] = df['close'].rolling(bollinger_period).std()
   df['upper_bollinger'] = df[ma_period_column] + (bollinger_std * df['std'])
   df['lower_bollinger'] = df[ma_period_column] - (bollinger_std * df['std'])
```

```
# rsi
    rsi_period = rsi_period
    df['delta'] = df['close'].diff()
    df['gain'] = df['delta'].apply(lambda x: gain(x))
    df['loss'] = df['delta'].apply(lambda x: loss(x))
    df['ema_gain'] = df['gain'].ewm(span=rsi_period, adjust=False).mean()
    df['ema_loss'] = df['loss'].ewm(span=rsi_period, adjust=False).mean()
    df['rs'] = df['ema_gain'] / df['ema_loss']
    df['rsi'] = df['rs'].apply(lambda x: 100 - (100/(x+1)))
    # buv
    df['signal'] = np.where(
        (df['rsi'] < rsi_low_threshold) & (df['close'] < df['lower_bollinger']),</pre>
    )
    # sell
    df['signal'] = np.where(
        (df['rsi'] > rsi_high_threshold) & (df['close'] > df['upper_bollinger']),
        -1, df['signal']
    #buy/sell next trading day
    df['signal'] = df['signal'].shift()
    df['signal'] = df['signal'].fillna(0)
    updated_stock_df_dict[ticker] = df
return updated_stock_df_dict
```

making dfs with various valus for testing

stock_dfs_original = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, bollinger_period = 20, rsi_period = 6, bollinger_stock_dfs_bollinger_period_20_rsi_period_14_rsilower_30_rsi_upper_70 = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, stock_dfs_bollinger_period_20_rsi_period_14_rsilower_20_rsi_upper_80 = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, stock_dfs_bollinger_period_30_rsi_period_6_rsilower_30_rsi_upper_70 = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, stock_dfs_bollinger_period_50_rsi_period_6_rsilower_30_rsi_upper_70 = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, stock_dfs_bollinger_period_20_not_using_rsi = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, bollinger_period = 20, r stock_dfs_bollinger_period_50_not_using_rsi = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, bollinger_period = 50, r display(stock_dfs_bollinger_period_20_not_using_rsi = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, bollinger_period = 50, r display(stock_dfs_bollinger_period_20_not_using_rsi = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, bollinger_period = 50, r display(stock_dfs_bollinger_period_20_not_using_rsi = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, bollinger_period = 50, r display(stock_dfs_bollinger_period_20_not_using_rsi = apply_mean_reversion_strategy(stock_dfs, ma_period = 200, bollinger_period = 50, r display(stock_dfs_bollinger_period_20_not_using_rsi = apply_mean_reversion_strategy(stock_dfs_bollinger_period_20_not_using_rsi = apply_mean_r

→* std upper_bollinger lower_bollinger date close high low open volume ma_200 ma_20 de 2000-500 20.482729 20.540549 20.077989 20.077989 5580600 19.174942 20.226871 0.486072 21.199015 19.254726 0.404 12-26

20.294815 20.656190 20.164720 20.540550 10437800 19.188477 20.165437 0.379542

display(stock_dfs_bollinger_period_50_not_using_rsi["XOM"][500:502])

₹		date	close	high	low	open	volume	ma_200	ma_50	std	upper_bollinger	lower_bollinger	de
	500	2000- 12-26	20.482729	20.540549	20.077989	20.077989	5580600	19.174942	20.484620	0.557019	21.598658	19.370581	0.404
	501	2000- 12-27	20.294815	20.656190	20.164720	20.540550	10437800	19.188477	20.486301	0.556302	21.598905	19.373698	-0.187

plot showing XOM 200 day moving avg

```
plt.figure(figsize=(12,5))
```

2000-

12-27

501

19 406353 -0 187

20 924522

```
plt.xticks(rotation=45)
```

plt.plot(stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['date'], stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['close']
plt.plot(stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['date'], stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['ma_200'

plt.title('XOM 200 day moving average chart')
plt.legend()
plt.show()

plot showing XOM 50 day moving avg

```
plt.figure(figsize=(12,5))
plt.xticks(rotation=45)
```

plt.plot(stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['date'], stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['close']
plt.plot(stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['date'], stock_dfs_bollinger_period_50_not_using_rsi["XOM"]['ma_50']

plt.title('XOM 50 day moving average chart')
plt.legend()
plt.show()

XOM 50 day moving average chart

plot showing XOM 50 day moving avg

```
plt.figure(figsize=(12,5))
plt.xticks(rotation=45)

plt.plot(stock_dfs_bollinger_period_20_not_using_rsi["XOM"]['date'], stock_dfs_bollinger_period_20_not_using_rsi["XOM"]['close']
plt.plot(stock_dfs_bollinger_period_20_not_using_rsi["XOM"]['date'], stock_dfs_bollinger_period_20_not_using_rsi["XOM"]['ma_20']

plt.title('XOM 20 day moving average chart')
plt.legend()
plt.show()
```



```
# XOM bollinger plot using 2x std dev of 20 day ma

plt.figure(figsize=(12,5))
plt.xticks(rotation=45)

x_axis = stock_dfs_bollinger_period_20_not_using_rsi['XOM']['date']

plt.plot(x_axis, stock_dfs_bollinger_period_20_not_using_rsi['XOM']['close'], label = 'Close')
plt.plot(stock_dfs_bollinger_period_20_not_using_rsi['XOM']['date'], stock_dfs_bollinger_period_20_not_using_rsi['XOM']['ma_20']
plt.fill_between(x_axis, stock_dfs_bollinger_period_20_not_using_rsi['XOM']['upper_bollinger'], stock_dfs_bollinger_period_20_nc

plt.title('XOM Price Chart with 2x 20 day MA std dev boolinger bands', fontweight="bold")
plt.legend()
plt.show()
```


XOM Price Chart with 2x 20 day MA std dev boolinger bands

XOM bollinger plot using 2x std dev of 20 day ma. using just 2010 to 2014 to show more detail

```
XOM_df = stock_dfs_bollinger_period_20_not_using_rsi['XOM']
XOM_truncated = XOM_df[(XOM_df['date'] > '2010-01-01') & (XOM_df['date'] < '2014-01-01')]
plt.figure(figsize=(12,5))
plt.xticks(rotation=45)

x_axis = XOM_truncated['date']
plt.plot(x_axis, XOM_truncated['close'], label = 'Close')
plt.plot(XOM_truncated['date'], XOM_truncated['ma_20'], label = '20 ma')
plt.fill_between(x_axis, XOM_truncated['upper_bollinger'], XOM_truncated['lower_bollinger'], label = 'Bollinger Bands', color='l
plt.title('XOM Price Chart with 2x 20 day MA std dev boolinger bands', fontweight="bold")
plt.legend()
plt.show()</pre>
```


XOM Price Chart with 2x 20 day MA std dev boolinger bands

define backtesting function from https://github.com/bryancwh/algo-trading-mean-reversion/blob/main/back_testing.py

```
def backtest_dataframe(df):
    position = 0
```

```
net_profit = 0
percentage_change = []
df['buy_date'] = ''
df['sell_date'] = ''
for i in df.index:
    close = df["close"][i]
    date = df['date'][i]
    # Buy action
    if df["signal"][i] == 1:
        if(position == 0):
            buy_price = close
            position = 1
            df.at[i, 'buy_date'] = date
            print(f"Buying at {str(buy_price)} on {str(date)}")
    # Sell action
    elif (df["signal"][i] == -1):
        if(position == 1):
            sell_price = close
            bought = 0
            position = 0
            df.at[i, 'sell_date'] = date
            print(f"Selling at {str(sell_price)} on {str(date)}")
            # Get percentage change of trade
            pc = (sell_price/buy_price-1)*100
            percentage_change.append(pc)
            net_profit += (sell_price - buy_price)
# Calculate trade statistics
gains = 0
ng = 0
losses = 0
nl = 0
totalR = 1
for i in percentage_change:
    if(i > 0):
        gains += i
        ng += 1
    else:
        losses += i
        nl += 1
    totalR = totalR * ((i/100)+1)
totalR = round((totalR-1)*100, 2)
if(ng > 0):
    avgGain = round(gains/ng, 2)
    maxR = round(max(percentage_change), 2)
else:
    avgGain = 0
    maxR = "undefined"
if(nl > 0):
    avgLoss = round(losses/nl, 2)
    maxL = round(min(percentage_change), 2)
else:
    avgLoss = 0
    maxL = "undefined"
if(ng > 0 or nl > 0):
    win_rate = round((ng/(ng+nl))*100, 2)
else:
    win_rate = 0
print()
print('Evaluation Metrics:')
print('-
print(f"Number of Trades: {ng+nl}")
print(f"Number of Gains: {ng}")
print(f"Number of Losses: {nl}")
print(f"Total Returns: {totalR}%")
print(f"Win Rate: {win_rate}%")
print(f"Average Gain: {avgGain}%")
```

```
print(f"Average Loss: {avgLoss}%")
print(f"Max Return: {maxR}%")
print(f"Max Loss: {maxL}%")
print()
```

backtest_dataframe(stock_dfs_original["XOM"])

Buying at 53.249290466308594 on 2013-10-01 00:00:00 ∑₹ Selling at 56.95816421508789 on 2013-11-05 00:00:00 Buying at 59.12861633300781 on 2014-01-24 00:00:00 Selling at 61.3240852355957 on 2014-03-31 00:00:00 Buying at 63.45336532592773 on 2014-06-03 00:00:00 Selling at 65.052490234375 on 2014-06-16 00:00:00 Buying at 62.4483757019043 on 2014-08-01 00:00:00 Selling at 56.89017105102539 on 2015-04-15 00:00:00 Buying at 55.42656707763672 on 2015-05-27 00:00:00 Selling at 50.48932266235352 on 2015-10-05 00:00:00 Buying at 49.48398971557617 on 2015-12-08 00:00:00 Selling at 53.0976791381836 on 2016-02-05 00:00:00 Buying at 60.85784912109375 on 2016-07-28 00:00:00 Selling at 59.09048080444336 on 2016-09-09 00:00:00 Buying at 57.56629180908203 on 2016-09-14 00:00:00 Selling at 62.45574951171875 on 2016-12-12 00:00:00 Buying at 58.98904037475586 on 2017-01-10 00:00:00 Selling at 56.8128547668457 on 2017-03-31 00:00:00 Buying at 56.120079040527344 on 2017-04-20 00:00:00 Selling at 57.72695541381836 on 2017-05-12 00:00:00 Buying at 56.43326187133789 on 2017-06-01 00:00:00 Selling at 61.78324508666992 on 2018-01-03 00:00:00 Buying at 56.80925369262695 on 2018-02-05 00:00:00 Selling at 53.89866256713867 on 2018-04-06 00:00:00 Buying at 58.11003494262695 on 2018-08-02 00:00:00 Selling at 61.075103759765625 on 2018-09-12 00:00:00 Buying at 59.78940963745117 on 2018-10-12 00:00:00 Selling at 55.52707290649414 on 2019-02-04 00:00:00 Buying at 57.99696731567383 on 2019-05-02 00:00:00 Selling at 58.40369415283203 on 2019-06-24 00:00:00 Buying at 56.91609954833984 on 2019-07-19 00:00:00 Selling at 55.3800048828125 on 2019-09-10 00:00:00 Buying at 51.59937286376953 on 2019-10-02 00:00:00 Selling at 56.16377258300781 on 2019-11-05 00:00:00 Buying at 52.252777099609375 on 2020-01-22 00:00:00 Selling at 34.02315902709961 on 2020-04-09 00:00:00 Buying at 34.296852111816406 on 2020-07-10 00:00:00 Selling at 30.954837799072266 on 2020-11-10 00:00:00 Buying at 47.9606819152832 on 2021-07-19 00:00:00 Selling at 50.65692901611328 on 2021-09-24 00:00:00 Buying at 54.83214569091797 on 2021-11-22 00:00:00 Selling at 58.77228164672852 on 2022-01-04 00:00:00 Buying at 83.29706573486328 on 2022-06-21 00:00:00 Selling at 84.3532943725586 on 2022-07-28 00:00:00 Buying at 77.21092987060547 on 2022-09-26 00:00:00 Selling at 104.8672103881836 on 2023-01-13 00:00:00 Buying at 94.35489654541016 on 2023-03-16 00:00:00 Selling at 107.42057037353516 on 2023-04-04 00:00:00 Buying at 100.79901123046876 on 2023-05-03 00:00:00 Selling at 101.91862487792967 on 2023-06-08 00:00:00 Buying at 95.5033721923828 on 2023-07-17 00:00:00 Selling at 105.43241119384766 on 2023-08-14 00:00:00 Buying at 103.51390075683594 on 2023-10-05 00:00:00 Evaluation Metrics:

```
Number of Trades: 62
Number of Gains: 42
Number of Laccock 20
```

same function as above but removed the print staements and made it just return the total return for the strategy

from https://github.com/bryancwh/algo-trading-mean-reversion/blob/main/back_testing.py

```
def backtest_dataframe_return_just_total_return(df):
    position = 0
    net_profit = 0
    percentage_change = []
    df['buy_date'] = ''
    df['sell_date'] = ''
    for i in df.index:
        close = df["close"][i]
```

```
date = df['date'][i]
        # Buy action
        if df["signal"][i] == 1:
            if(position == 0):
                buy_price = close
                position = 1
                df.at[i, 'buy_date'] = date
                #print(f"Buying at {str(buy_price)} on {str(date)}")
        # Sell action
       elif (df["signal"][i] == -1):
            if(position == 1):
                sell_price = close
                bought = 0
                position = 0
                df.at[i, 'sell_date'] = date
                #print(f"Selling at {str(sell_price)} on {str(date)}")
                # Get percentage change of trade
                pc = (sell_price/buy_price-1)*100
                percentage_change.append(pc)
                net_profit += (sell_price - buy_price)
   # Calculate trade statistics
   gains = 0
   ng = 0
   losses = 0
   nl = 0
   totalR = 1
    for i in percentage_change:
       if(i > 0):
            gains += i
            ng += 1
       else:
            losses += i
           nl += 1
        totalR = totalR * ((i/100)+1)
    totalR = round((totalR-1), 2)
    if(ng > 0):
       avgGain = round(gains/ng, 2)
       maxR = round(max(percentage_change), 2)
    else:
        avgGain = 0
       maxR = "undefined"
    if(nl > 0):
       avgLoss = round(losses/nl, 2)
       maxL = round(min(percentage_change), 2)
   else:
       avgLoss = 0
       maxL = "undefined"
    if(ng > 0 or nl > 0):
       win_rate = round((ng/(ng+nl))*100, 2)
    else:
       win_rate = 0
    return totalR
# return on individual stocks using default ma strategy
ma_strategy_return = {}
for ticker in tickers:
   df = stock_dfs_original[ticker]
    total_return = backtest_dataframe_return_just_total_return(df)
   ma_strategy_return[ticker] = total_return
```

```
print(ma_strategy_return)
₹ ('XOM': 2.4, 'CVX': 3.93, 'COP': 2.07, 'EOG': 3.09, 'EPD': 3.28, 'WMB': -0.83, 'OKE': 1.47, 'LNG': -0.63, 'OXY': 1.31, 'HES'
total_ma_strategy_returns_energy_stocks = 0
for ticker, ma_returns in ma_strategy_return.items():
 final_value = 10000 * ma_returns
 total_ma_strategy_returns_energy_stocks += final_value
print(f'{total_ma_strategy_returns_energy_stocks:.2f}')
→ 185800.00
# return on 100k using default ma strategy
overall_ma_energy_return = total_ma_strategy_returns_energy_stocks / 100000
print(f'{overall_ma_energy_return:.2f}')
→ 1.86
Part 2b: trying different values for moving average and rsi periods / rsi threshold
strategies = {
  "original": stock_dfs_original,
  "bollinger20_rsi14_30_70": stock_dfs_bollinger_period_20_rsi_period_14_rsilower_30_rsi_upper_70,
  "bollinger20_rsi14_20_80": stock_dfs_bollinger_period_20_rsi_period_14_rsilower_20_rsi_upper_80,
  "bollinger30_rsi6_30_70": stock_dfs_bollinger_period_30_rsi_period_6_rsilower_30_rsi_upper_70,
  "bollinger50_rsi6_30_70": stock_dfs_bollinger_period_50_rsi_period_6_rsilower_30_rsi_upper_70,
  "bollinger20_no_rsi": stock_dfs_bollinger_period_20_not_using_rsi,
  "bollinger50_no_rsi": stock_dfs_bollinger_period_50_not_using_rsi,
}
strategy_returns = {}
for strategy, stock_dict in strategies.items():
  ma_strategy_return = {}
  for ticker in tickers:
    df = stock_dict[ticker]
    total_return = backtest_dataframe_return_just_total_return(df)
    ma_strategy_return[ticker] = total_return
  total_ma_strategy_returns = 0
  for ticker, return_multiplier in ma_strategy_return.items():
    final_value = 10000 * return_multiplier
    total_ma_strategy_returns += final_value
  print(f"Strategy: {strategy}")
  print()
```

print(f"Total return on 100k: {total_ma_strategy_returns:.2f}")

print(ma_strategy_return)

```
overall_return = total_ma_strategy_returns / 100000
   print(f"Overall return : {overall_return:.2f}")
   print("-
   print()
   strategy returns[strategy] = overall return
→ Strategy: original
    {'XOM': 2.4, 'CVX': 3.93, 'COP': 2.07, 'EOG': 3.09, 'EPD': 3.28, 'WMB': -0.83, 'OKE': 1.47, 'LNG': -0.63, 'OXY': 1.31, 'HES'
    Total return on 100k: 185800.00
    Overall return: 1.86
    Strategy: bollinger20_rsi14_30_70
    {'XOM': 2.92, 'CVX': 2.64, 'COP': 1.59, 'EOG': 3.0, 'EPD': 6.56, 'WMB': -0.86, 'OKE': 1.51, 'LNG': -0.73, 'OXY': 1.95, 'HES'
    Total return on 100k: 210800.00
    Overall return : 2.11
    Strategy: bollinger20_rsi14_20_80
    {'XOM': 6.33, 'CVX': 2.13, 'COP': 2.82, 'EOG': 4.85, 'EPD': 5.1, 'WMB': -0.39, 'OKE': 2.42, 'LNG': 0.48, 'OXY': 3.41, 'HES':
    Total return on 100k: 271200.00
    Overall return: 2.71
    Strategy: bollinger30_rsi6_30_70
    {'XOM': 4.24, 'CVX': 4.87, 'COP': 1.04, 'EOG': 5.09, 'EPD': 3.9, 'WMB': -0.34, 'OKE': 1.86, 'LNG': -0.51, 'OXY': 1.2, 'HES':
    Total return on 100k: 220600.00
    Overall return : 2.21
    Strategy: bollinger50_rsi6_30_70
    {'XOM': 5.33, 'CVX': 2.97, 'COP': 0.74, 'EOG': 1.82, 'EPD': 2.69, 'WMB': -0.3, 'OKE': 2.55, 'LNG': 1.8, 'OXY': 3.68, 'HES':
    Total return on 100k: 221600.00
    Overall return: 2.22
    Strategy: bollinger20_no_rsi
    {'XOM': 2.42, 'CVX': 3.94, 'COP': 2.07, 'EOG': 3.11, 'EPD': 3.28, 'WMB': -0.83, 'OKE': 1.49, 'LNG': -0.63, 'OXY': 1.3, 'HES'
    Total return on 100k: 186400.00
    Overall return : 1.86
    Strategy: bollinger50_no_rsi
    {'XOM': 5.33, 'CVX': 2.97, 'COP': 0.74, 'EOG': 1.82, 'EPD': 2.69, 'WMB': -0.3, 'OKE': 2.55, 'LNG': 1.8, 'OXY': 3.5, 'HES': 0
    Total return on 100k: 219800.00
    Overall return : 2.20
df_best_stock_in_best_strategy = stock_dfs_bollinger_period_20_rsi_period_14_rsilower_20_rsi_upper_80['XOM']
df worst stock in best strategy = stock dfs bollinger_period 20_rsi_period_14_rsilower_20_rsi_upper_80['WMB']
df_best_stock_in_best_strategy.head()
```

•	date	close	high	low	open	volume	ma_200	ma_20	std	upper_bollinger	 delta	gain	loss	er
	1999- 01-04	16.089716	16.422034	16.006637	16.117409	8853600	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
	1 1999- 01-05	15.951257	16.158955	15.882024	16.062029	6652800	NaN	NaN	NaN	NaN	 -0.138459	0.000000	0.138459	(
	1999- 01-06	16.588202	16.795900	16.103571	16.200497	9965600	NaN	NaN	NaN	NaN	 0.636945	0.636945	0.000000	(
;	3 1999- 01-07	16.560503	16.602043	16.338958	16.491270	7417200	NaN	NaN	NaN	NaN	 -0.027699	0.000000	0.027699	(
	1999- 01-08	16.463579	16.546659	16.158955	16.449733	6343400	NaN	NaN	NaN	NaN	 -0.096924	0.000000	0.096924	(

5 rows × 21 columns

df_worst_stock_in_best_strategy.head()

₹		date	close	high	low	open	volume	ma_200	ma_20	std	upper_bollinger	 delta	gain	loss	ema_ga
	0	1999- 01-04	8.717077	8.969746	8.608791	8.951699	2419311	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	N
	1	1999- 01-05	8.626838	8.771220	8.590742	8.662933	2414634	NaN	NaN	NaN	NaN	 -0.090240	0.000000	0.09024	0.0000
	2	1999- 01-06	8.897552	8.933647	8.753170	8.807313	2392051	NaN	NaN	NaN	NaN	 0.270714	0.270714	0.00000	0.0360
	3	1999- 01-07	8.897552	8.933647	8.680978	8.771217	1840173	NaN	NaN	NaN	NaN	 0.000000	0.000000	0.00000	0.0312
	4	1999- 01-08	8.897552	8.987790	8.771217	8.879504	1381299	NaN	NaN	NaN	NaN	 0.000000	0.000000	0.00000	0.0271

5 rows × 21 columns

plt.figure(figsize=(12,5))

plt.xticks(rotation=45)

```
plt.plot(df_best_stock_in_best_strategy['date'], df_best_stock_in_best_strategy['close'])
plt.scatter(df_best_stock_in_best_strategy[(df_best_stock_in_best_strategy['signal'] == 1)]['buy_date'], df_best_stock_in_best_st
plt.scatter(df_best_stock_in_best_strategy[(df_best_stock_in_best_strategy['signal'] == -1)]['sell_date'], df_best_stock_in_best_
```

plt.title('XOM Price & Trades Using the Best Strategy: Bollinger 20 day MA / RSI 14 day MA / 20-80 RSI Threshold', fontweight="bo plt.legend()

plt.show()

[#] best strategy was stock_dfs_bollinger_period_20_rsi_period_14_rsilower_20_rsi_upper_80 with 2.71x return

[#] plotting the best performing stock (XOM 6.33x returns) in the basket based on the best strategy

XOM Price & Trades Using the Best Strategy: Bollinger 20 day MA / RSI 14 day MA / 20-80 RSI Threshold

best strategy was stock_dfs_bollinger_period_20_rsi_period_14_rsilower_20_rsi_upper_80 with 2.71x return

plotting the worst performing stock (WMB -0.39x returns) in the basket based on the best strategy

plt.figure(figsize=(12,5))
plt.xticks(rotation=45)

plt.plot(df_worst_stock_in_best_strategy['date'], df_worst_stock_in_best_strategy['close'])
plt.scatter(df_worst_stock_in_best_strategy[(df_worst_stock_in_best_strategy['signal'] == 1)]['buy_date'], df_worst_stock_in_best_strategy['signal'] == -1)]['sell_date'], df_worst_stock_in_best_strategy['signal'] == -1)['sell_date'], df_worst_stock_in_best_strategy['signal'] == -1)['sell_date'], df_worst_stock_in_best_strategy['signal'] == -1)['sell_date'].

plt.title('WMB Price & Trades Using the Best Strategy: Bollinger 20 day MA / RSI 14 day MA / 20-80 RSI Threshold', fontweight="bo
plt.legend()
plt.show()

WMB Price & Trades Using the Best Strategy: Bollinger 20 day MA / RSI 14 day MA / 20-80 RSI Threshold


```
Part 3: Monte carlo simulation
#-
import numpy as np
import pandas as pd
from scipy.stats import skew, skewnorm
\tt def generate\_synthetic\_data(stock\_dfs, start\_date='1999-01-04', end\_date='2023-12-22'): \\
   synthetic_dfs = {}
   for ticker, df in stock_dfs.items():
     df['date'] = pd.to_datetime(df['date'])
     df = df.sort_values('date')
     # Calculate historical daily returns
     df['return'] = (df['close'].pct_change()) #/100 # *** use log returns intead? if we stick with pct change I don't thir
     historical_returns = df['return'].dropna()
     # Calculate parameters of the historical returns
     mean_return = historical_returns.mean()
      volatility = historical_returns.std()
     historical_skew = skew(historical_returns)
     # print(f"{ticker} - Mean: {mean_return:.4f}, Volatility: {volatility:.4f}, Skewness: {historical_skew:.4f}")
     # Generate date range for the synthetic data
      synthetic_dates = pd.bdate_range(start=start_date, end=end_date, freq='B')
     num_days = len(synthetic_dates)
      # Generate synthetic returns with skewness
     volatility = max(abs(volatility), 0.001)
      synthetic_returns = skewnorm.rvs(a=historical_skew,
                             loc=mean_return,
                              scale=volatility,
                              size=num_days)
     # Generate synthetic price series
      initial_price = df['close'].iloc[0] # Start from the first known price
      synthetic_prices = [initial_price]
      for ret in synthetic_returns:
        synthetic\_prices.append(synthetic\_prices[-1] * (1 + ret))
     # Create a synthetic dataframe
      synthetic_df = pd.DataFrame({
         'date': synthetic_dates,
         'close': synthetic_prices[:-1] # Match dates length
     })
      synthetic_dfs[ticker] = synthetic_df
   return synthetic_dfs
def apply_mean_reversion_strategy(data):
 def gain(value):
    if value < 0:
       return 0
    else:
       return value
 def loss(value):
    if value > 0:
       return 0
    else:
```

return abs(value)

```
for ticker, df in data.items():
     df['date'] = pd.to_datetime(df['date'])
     # moving average
     df['ma_200'] = df['close'].rolling(200).mean()
     #Bollinger
     bollinger_period = 20
     df['ma_20'] = df['close'].rolling(bollinger_period).mean()
     df['std'] = df['close'].rolling(bollinger_period).std()
     df['upper_bollinger'] = df['ma_20'] + (2 * df['std'])
     df['lower_bollinger'] = df['ma_20'] - (2 * df['std'])
     # rsi
                       # *** changed from 6 to 14 to match best historical strategy
     rsi_period = 14
     df['delta'] = df['close'].diff()
     df['gain'] = df['delta'].apply(lambda x: gain(x))
     df['loss'] = df['delta'].apply(lambda x: loss(x))
     df['ema_gain'] = df['gain'].ewm(span=rsi_period, adjust=False).mean()
     df['ema_loss'] = df['loss'].ewm(span=rsi_period, adjust=False).mean()
     df['rs'] = df['ema gain'] / df['ema loss']
     df['rsi'] = df['rs'].apply(lambda x: 100 - (100/(x+1)))
     df['signal'] = np.where(
          (df['rsi'] < 20) & (df['close'] < df['lower_bollinger']),</pre>
                                                                           # *** changed from < 30 to < 20 to match best histo</pre>
          1, np.nan
     # sell
     df['signal'] = np.where(
          (df['rsi'] > 80) & (df['close'] > df['upper_bollinger']),
                                                                         # *** changed from > 70 to > 80 to match best histori
          -1, df['signal']
     )
     #buy/sell next trading day
     df['signal'] = df['signal'].shift()
     df['signal'] = df['signal'].fillna(0)
     stock_dfs[ticker] = df
  return stock_dfs
def backtest_dataframe_return_just_total_return(df):
   position = 0
   net_profit = 0
   percentage_change = []
    df['buy_date'] = '
   df['sell_date'] = ''
    for i in df.index:
       close = df["close"][i]
       date = df['date'][i]
       # Buy action
       if df["signal"][i] == 1:
           if(position == 0):
               buy_price = close
               position = 1
               df.at[i, 'buy_date'] = date
               #print(f"Buying at {str(buy_price)} on {str(date)}")
       # Sell action
       elif (df["signal"][i] == -1):
           if(position == 1):
               sell_price = close
               bought = 0
               position = 0
               df.at[i, 'sell_date'] = date
               #print(f"Selling at {str(sell_price)} on {str(date)}")
               # Get percentage change of trade
               pc = (sell_price/buy_price-1)*100
               percentage change.append(pc)
               net_profit += (sell_price - buy_price)
```

```
# Calculate trade statistics
   qains = 0
   ng = 0
   losses = 0
   nl = 0
    totalR = 1
    for i in percentage_change:
       if(i > 0):
           gains += i
           ng += 1
       else:
           losses += i
           nl += 1
       totalR = totalR * ((i/100)+1)
    totalR = round((totalR-1), 2)
    if(ng > 0):
       avgGain = round(gains/ng, 2)
       maxR = round(max(percentage_change), 2)
       avgGain = 0
       maxR = "undefined"
    if(nl > 0):
       avgLoss = round(losses/nl, 2)
       maxL = round(min(percentage_change), 2)
    else:
       avgLoss = 0
       maxL = "undefined"
    if(ng > 0 or nl > 0):
       win_rate = round((ng/(ng+nl))*100, 2)
    else:
       win_rate = 0
    return totalR
def monte_carlo_simulation(stock_dfs, num_simulations=20):
    simulation_results = []
    for sim in range(num_simulations):
       print(f"\nRunning simulation {sim + 1}/{num\_simulations}...")
       # Generate random data
       synthetic_data = generate_synthetic_data(stock_dfs)
       # Apply the mean reversion strategy to generate trading signals
       simulated_data = apply_mean_reversion_strategy(synthetic_data)
       # Backtest the strategy
        for ticker, df in simulated_data.items():
         total_return = backtest_dataframe_return_just_total_return(df)
       # Collect results
         simulation_results.append({
             'simulation': sim + 1,
              'ticker': ticker,
             'total_return': total_return
         })
   # Convert results to a DataFrame for analysis
    results_df = pd.DataFrame(simulation_results)
    return results_df
# Run the Monte Carlo simulation with 1000 simulations
# simulation_results = monte_carlo_simulation(stock_dfs)
print(monte_carlo_simulation(stock_dfs))
```


Running simulation 1/20...

Running simulation 2/20...