

Tutorial 3 Syntax Analysis

1 Syntax Analysis

Question 1.

Given the grammar

assign \rightarrow id "=" expr id \rightarrow "A" | "B" | "C" expr \rightarrow expr "+" term | term term \rightarrow term "*" factor | factor factor \rightarrow "(" expr ")" | id

Show a parse tree and a leftmost derivation for each of the following statements:

a.
$$A = A * (B + C)$$

b. $A = A * B + C$
c. $A = (A + C) * (A + B)$

Question 2.

Write grammar for the Boolean expressions of Java, including following operators with precedence in descending order and associativity in this table:

Precedence	Operator	Description	Kind
1 (highest)	!	Logical NOT	Unary-Prefix-Right
2	== !=	Relational "equal to" and "not equal to"	Binary-Infix-None
3	< <= > >=	Relational "less than", "less than or equal to", "greater than" and "greater than or equal to"	Binary-Infix-None
4		Logical conditional-OR	Binary-Infix-Left
5 (lowest)	&&	Logical conditional-AND	Binary-Infix-Left

Explanation:

• Unary/Binary: Number of operands: one or two

• Prefix/Infix: Position of operator: before or in between its operands

• Right/None/Left: Association

Question 3.

Convert the following EBNF to BNF

Question 4.

a) Prove that the following grammar is ambiguous:

```
\begin{array}{ccc} s & \rightarrow & a \\ a & \rightarrow & a+a \mid id \\ id & \rightarrow & A \mid B \mid C \end{array}
```

b) Find out what "Left recursion removal" means and perform the left recursion elimination for the above grammar

Question 5.

```
Find out what "Left factoring" means and perform left factoring for the following grammar stmt \rightarrow IF expr THEN { stmt } ELSE { stmt } | IF expr THEN { stmt } | other expr \rightarrow TRUE | FALSE
```

Question 6.

Convert the BNF in Question 4 and 5 to EBNF