

Formação Desenvolvedor Moderno Módulo: Banco de Dados

Capítulo: Modelo lógico relacional - nível de design

https://devsuperior.com.br

1

Agenda

- Modelo relacional
 - Tabelas
 - Chaves candidatas, primária e alternativas
 - Chaves estrangeiras
- Integridade referencial
- Modelo conceitual para modelo relacional
 - Relacionamento 1-N
 - Relacionamento 1-1
 - Relacionamento N-N
 - Herança

Modelo relacional (Edgar F. Codd, 1970)

- Os dados são armazenados em TABELAS.
- Tabela possui o nome técnico de RELAÇÃO.
- Uma tabela é um conjunto de REGISTROS. Cada registro corresponde a uma linha da tabela.
- Cada coluna da tabela recebe o nome de CAMPO ou ATRIBUTO.
- O termo BASE DE DADOS é tipicamente usado como sinônimo de BANCO DE DADOS.
- Uma base de dados pode conter várias tabelas relacionadas por meio de RELACIONAMENTOS.
- Uma base de dados também contém várias REGRAS ou CONSTRAINTS.
- A estrutura de uma base de dados (composta de tabelas relacionadas e de regras) é chamada de ESQUEMA DE DADOS.

	name	price	category_id
1	PC Gamer	4000	1
2	Microfone	300	2

850

1200

5500

tb product

3 Cadeira

5 Macbook

4 Mesa

tb_category				
id		name		
	1	Computadores		
	2	Acessórios		
	3	Móveis		

3

Tabela

- É um conjunto não ordenado de registros exclusivos.
- Composta por registros (linhas) e campos (colunas).
- Cada registro (linha) é identificado por uma chave primária.
- Tabelas são relacionadas entre si por meio de chaves estrangeiras.
- O valor de cada campo deve conter um valor:
 - Simples e não divisível (não pode ser composto)
 - Monovalorado (não pode conter vários valores)

tb product

id	name	price	category_id
1	PC Gamer	4000	1
2	Microfone	300	2
3	Cadeira	850	3
4	Mesa	1200	3
5	Macbook	5500	1

tb_category			
id		name	
	1	Computadores	
	2	Acessórios	
	3	Móveis	

Chaves candidatas, primária, alternativas

- Chave candidata: coluna (ou combinação de colunas) que identifica unicamente um registro de uma tabela.
- Chave primária: é uma dentre as chaves candidatas, escolhida para ser a maneira "padrão" de se identificar um registro na tabela.
- Chaves alternativas: é o conjunto das chaves candidatas, menos a chave primária.

5

Chaves candidatas, primária, alternativas

tb clientes

id	nome	cpf	agencia	conta	email	fone
1	João da Silva	494847394-84	1004	8855	joao@gmail.com	95858595
2	Maria Brown	938449463-45	5605	4322	maria@gmail.com	95858595
3	Ana Carla	234985633-98	1004	9123	ana@gmail.com	81647464
4	João da Silva	648374644-89	1004	1934	silva@gmail.com	86223644
5	Teresa Ribeiro	984534382-12	5605	8855	teresa@gmail.com	92667334

• Chaves candidatas:

(id) *
(cpf)
(agencia, conta)
(email)

- Uma chave deve ser:
 - Única (o valor não pode repetir)
 - Obrigatória (valor não nulo)
 - Mínima (não deve existir outra chave candidata contida nela)

Chave estrangeira

- Coluna (ou combinação de colunas) que corresponde à chave primária de "outra" tabela.
- Serve para fazer **relacionamentos**, fazendo referência ao registro de "outra" tabela.

tb_product				
id	name	price	category_id	
1	PC Gamer	4000	1	
2	Microfone	300	2	
3	Cadeira	850	3	
4	Mesa	1200	3	
5	Macbook	5500	1	

tb_category				
id	name			
1	Computadores			
2	Acessórios			
3	Móveis			

7

Integridade referencial

- Integridade referencial refere-se à consistência dos dados de uma chave estrangeira.
- Se há um valor em uma chave estrangeira, então DEVE existir o valor correspondente na chave primária da tabela referenciada.

tb_product				
id	name	price	category_id	
1	PC Gamer	4000	1	
2	Microfone	300	2	
3	Cadeira	850	3	
4	Mesa	1200	3	
5	Macbook	5500	1	

tb_category				
id	name			
1	Computadores			
2	Acessórios			
3	Móveis			

Outros tipos de integridade

- Nota: integridade é um tema amplo. Há outros tipos de integridade, tais como:
 - Integridade de domínio (tipos de dados corretos)
 - Integridade de vazio (campo que não aceita valor nulo)
 - Integridade de chave (campos de valores únicos)

q

Modelo conceitual para MR

Ferramentas para especificar o MR

Estrutura:

- Diagrama (há vários)
- Especificação textual

tb_cliente					
PK	<u>id</u>				
	nome				
	email				

tb_cliente (<u>id</u>, nome, email)

Instância:

 Desenho livre de uma tabela com os dados

tb_cliente

id	nome	email
1	Maria Silva	maria@gmail.com
2	Joaquim Minho	joaquim@gmail.com
3	Ana Terra	ana@gmail.com

Especificação textual para um esquema de dados

A especificação (ou notação) textual de um esquema de dados, usando o Modelo Relacional, é feita como uma **listagem de tabelas**, onde cada tabela tem a seguinte sintaxe:

Nota: os campos que compõe a chave primária são destacados sublinhados.

```
tb_pedido (id, data)

tb_produto (id, descricao, preco)

tb_item_pedido (pedido id, produto id, quantidade, desconto)
    pedido_id referencia tb_pedido(id)
    produto_id referencia tb_produto(id)
```


(MC → MR) Relacionamento 1-1 Pagamento dataVencimento = 27/03/2022 dataPagamento = 26/03/20 Pagamento Pedido Pagamento Pedido - id : Integer - estado : EstadoPagamento - dataVencimento : Date - dataPagamento : Date id = 2 estado = VENCIDO dataVencimento = 30/03/2022 pedido - pagamento estado : EstadoPedido estado = AGUARDANDO dataPagamento = null Pedido estado = ABERTO dataVencimento = 31/03/2022 dataPagamento = null data = 29/03/2022 tb pedido estado_pagamento data_vencimento data_pagamento tb_pedido (id, data, estado, 26/03/2022 25/03/2022 ENTREGUE 27/03/2022 PAGO estado_pagamento, data_vencimento, 28/03/2022 AGUARDANDO VENCIDO 30/03/2022 data_pagamento) 29/03/2022 SOLICITADO ABERTO 31/03/2022 null

(MC → MR) Relacionamento N-N com classe de associação Produto Pedido - produtos - <<oid>> id : Integer - descricao : String - preco : Double ItemPedido quantidade : Integer desconto : Double : Produto temPedido descrição = Mouse Pedido quantidade = 1 desconto = 200.0 Pedido <u>ItemPedido</u> quantidade = 1 desconto = 0.0 descricao = Tablet

(MC → MR) Herança Pagamento Bônus desta EstadoPagamento - id : Integer - estado : EstadoPagamento aula: mapear PENDENTE : int - QUITADO : int - CANCELADO : int enumeração PagamentoComBoleto PagamentoComCartao dataVencimento: Date dataPagamento: Date numeroDeParcelas: Integer estado = QUITADO estado = PENDENTE estado = QUITADO dataVencimento = 20/10/2017 dataPagamento = null dataVencimento = 22/10/2017 dataPagamento = 21/10/2017

tb_pagamento

i	d	estado	data_vencimento	data_pagamento	numero_de_parcelas	tipo
1	1	1	null	null	6	1
1	2	0	20/10/2017	null	null	0
3	3	1	22/10/2017	21/10/2017	null	0

Vantagens: simplicidade, velocidade Desvantagem: muito "espaço ocioso" com null

<enum>>
EstadoPagamento
- PENDENTE : int
- QUITADO : int
- CANCELADO : int

tb_pagamento (id, estado, data_vencimento,
data_pagamento, numero_de_parcelas, tipo)

