3.2 光滑向量场的积分曲线

3.2.1 积分曲线

¶ 积分曲线

在微积分和常微分方程中学过,在欧氏区域上给定一个光滑向量场,就可以过每点得到一条积分曲线。根据定义,积分曲线是一条参数化曲线,表达了由向量场所给出的常微分方程的解.从几何上看,该参数曲线每点处的切向量恰好是给定的向量场在这一点处的向量.下面是一个绘制了许多积分曲线的向量场的例子:

积分曲线的概念可以轻易地被推广到光滑流形:

定义 3.2.1. (积分曲线)

令 $X \in \Gamma^{\infty}(TM)$ 为 M 上的光滑向量场. 若光滑曲线 $\gamma: I \to M$ 满足

$$\dot{\gamma}(t) = X_{\gamma(t)}, \quad \forall t \in I,$$

则称 γ 为 X 的积分曲线.

若 $0 \in I$ 且 $\gamma(0) = p$,则称 γ 是 X 的<u>从点 p 出发的积分曲线</u>。 下面给出几个简单积分曲线的例子:

例 3.2.2. 考虑 \mathbb{R}^n 上的坐标向量场 $X = \frac{\partial}{\partial x^1}$. 那么 X 的积分曲线是平行于 x^1 -轴的直线. 特别地,对于任意 $(c_1, \dots, c_n) \in \mathbb{R}^n$,曲线

$$\gamma(t) = (c_1 + t, c_2, \cdots, c_n)$$

是 X 的积分曲线。更一般地,向量场 $\widetilde{X} = a_1 \frac{\partial}{\partial x^1} + \dots + a_n \frac{\partial}{\partial x^n}$ 的积分曲线为

$$\tilde{\gamma}(t) = (c_1 + a_1 t, c_2 + a_2 t, \cdots, c_n + a_n t)$$

注 3.2.3. 虽然曲线

$$\bar{\gamma}(t) = (c_1 + 2t, c_2, \cdots, c_n)$$

和 γ 有完全相同的图像 (即都是经过点 (c_1, \cdots, c_n) 的 "水平线"), 但它并不是 X 的积分曲线, 因为 $\dot{\gamma}(t) = 2\frac{\partial}{\partial x^1} \neq X_{\gamma(t)}$.

例 3.2.4. 考虑 \mathbb{R}^2 上的向量场 $X = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$. 记其积分曲线为 $\gamma(t) = (x(t), y(t))$, 则

$$x'(t)\frac{\partial}{\partial x} + y'(t)\frac{\partial}{\partial y} = \dot{\gamma}(t) = X_{\gamma(t)} = x(t)\frac{\partial}{\partial y} - y(t)\frac{\partial}{\partial x},$$

即

$$x'(t) = -y(t), \quad y'(t) = x(t).$$

该方程组的满足初值条件 $\gamma(0) = (a,b)$ 解是

$$x(t) = a\cos t - b\sin t$$
, $y(t) = a\sin t + b\cos t$.

它们是以原点为圆心的圆周,通过角度给出参数化(逆时针方向).

例 3.2.5. 若 $X_q = 0$, 则 M 上的"常曲线"

$$\gamma_a: \mathbb{R} \to M, \quad \gamma_a(t) \equiv q.$$

是 X 的经过 q 的积分曲线, 因为它满足 $\dot{\gamma}_q(t)=0=X_q=X_{\gamma_q(t)}$.

¶ 局部坐标卡中的常微分方程:存在性,唯一性和光滑性

为了研究积分曲线更为深入的性质,需要将有关流形上切向量的方程 $\dot{\gamma}(t) = X_{\gamma(t)}$ 转化为有关欧氏区域上函数的常微分方程组. 为了做到这一点,首先注意到以下关于向量场的非常简洁的局部公式,其证明留作练习:

引理 3.2.6

令 X 为 M 上的光滑向量场. 那么在局部坐标卡 (φ,U,V) 上有 $X=\sum X(x^i)\partial_i,$ 其中 $x^i:U\to\mathbb{R}$ 是由 φ 定义的第 i 个坐标函数.

令 $\gamma:I\to M$ 为 X 的积分曲线. 为了研究在给定点 $\gamma(t)$ 处的方程 $\dot{\gamma}(t)=X_{\gamma(t)}$,不失一般性,可以假设 $\gamma(t)\in U$,其中 (φ,U,V) 是坐标卡. 通过使用局部坐标卡映射 φ ,可以将点 $\gamma(t)\in U$ 转化成

$$\varphi(\gamma(t)) = (x^1(\gamma(t)), \cdots, x^n(\gamma(t))) \in \mathbb{R}^n.$$

如果记 $y^i=x^i\circ\gamma:I\to\mathbb{R}$, 那么能把定义积分曲线的方程转化为关于单变量函数 y^i 的方程. 具体而言,根据之前的引理,有

$$\dot{\gamma}(t) = (d\gamma)_t(\frac{d}{dt}) = \sum_i (d\gamma)_t(\frac{d}{dt})(x^i)\partial_i = \sum_i (x^i \circ \gamma)'(t)\partial_i = \sum_i \dot{y}^i(t)\partial_i.$$

因此积分曲线方程 $\dot{\gamma}(t) = X_{\gamma(t)}$ 变为

$$\sum_{i} \dot{y}^{i}(t)\partial_{i} = \sum_{i} X^{i}(\gamma(t))\partial_{i} = \sum_{i} X^{i} \circ \varphi^{-1}(y^{1}(t), \cdots, y^{n}(t))\partial_{i}, \quad \forall t \in I.$$

于是,积分曲线方程被转化为以下关于单变量函数 y^i 的常微分方程组:

$$\dot{y}^i(t) = X^i \circ \varphi^{-1}(y^1, \dots, y^n), \quad \forall t \in I, \ \forall 1 \le i \le n.$$

这是关于 (单变量) 函数 $y^i = x^i \circ \gamma : \mathbb{R} \to \mathbb{R}$ 的一阶常微分方程组. 反过来,这个常微分方程组的任意解都定义了向量场 X 在开集 U 上的积分曲线.

回顾常微分方程组的基本定理(参见[5],附录D):

定理 3.2.7. (一阶常微分方程组的基本定理)

假设 $V \subset \mathbb{R}^n$ 是开集, 且 $F = (F^1, \dots, F^n) : V \to \mathbb{R}^n$ 光滑. 考虑初值问题

$$\begin{cases} \dot{y}^{i}(t) = F^{i}(y^{1}(t), \dots, y^{n}(t)), & i = 1, \dots, n \\ y^{i}(t_{0}) = c^{i}, & i = 1, \dots, n \end{cases}$$
(3.2.1)

那么

- (1) (**存在性**) 对于任意 $t_0 \in \mathbb{R}$ 和 $c_0 \in V$, 存在开区间 $I_0 \ni t_0$ 和开集 $V_0 \ni c_0$ 使得对于任意 $c = (c^1, \dots, c^n) \in V_0$, 常微分方程组 (3.2.1) 在 $t \in I_0$ 上有光滑解 $y_c(t) = (y^1(t), \dots, y^n(t)) \in V$.
- (2) (唯一性) 如果 y_1 是常微分方程组 (3.2.1) 在 $t \in I_0$ 上的解, y_2 是常微分方程组 (3.2.1) 在 $t \in J_0$ 上的解, 那么在 $t \in I_0 \cap J_0$ 上有 $y_1 = y_2$.
- (3) (光滑性)(1) 中的解函数 $Y(c,t) := y_c(t)$ 在 $(c,t) \in V_0 \times I_0$ 上光滑.

由此可得

定理 3.2.8. (积分曲线局部存在性,唯一性和光滑性)

假设 X 是 M 上的光滑向量场. 那么对于任意 $p \in M$, 存在 p 的邻域 U_p , 正数 $\varepsilon_n > 0$ 和光滑映射

$$\Gamma: (-\varepsilon_p, \varepsilon_p) \times U_p \to M$$

使得对于任意 $q \in U$, 曲线

$$\gamma_q: (-\varepsilon_p, \varepsilon_p) \to M, \quad \gamma_q(t) := \Gamma(t, q)$$

是 X 的满足 $\gamma(0) = q$ 的积分曲线. 此外, 这个积分曲线在以下意义上是唯一的: 如果 $\sigma: I \to M$ 是 X 的另一条满足 $\sigma(0) = q$ 的积分曲线, 那么

$$\sigma(t) = \gamma_q(t), \quad \forall t \in I \cap (-\varepsilon_p, \varepsilon_p).$$

¶ 重新参数化

注意积分曲线都是指"参数曲线".参数化是定义中的一部分."相同几何图像"的不同参数化代表了不同的曲线.一般地,积分曲线的重参数化不再是积分曲线.然而,正如注3.2.3所见的一样,线性重参数化生成了积分曲线:

引理 3.2.9. (线性重参数化)

如果 $\gamma:I\to M$ 是向量场 X 的积分曲线, 那么

(1) \diamondsuit $I_a = \{t \mid t + a \in I\}$, ⋈

$$\gamma_a: I_a \to M, \quad \gamma_a(t) := \gamma(t+a)$$

是 X 的积分曲线.

(2) $\diamondsuit I^a = \{t \mid at \in I\} \ (a \neq 0), \ \mathbb{N}$

$$\gamma^a: I^a \to M, \quad \gamma^a(t) := \gamma(at)$$

是 $X^a = aX$ 的积分曲线.

该引理的证明比较容易,因而省略.

作为唯一性和平移重参数化的推论,对于任意 $p \in M$,从 p 出发的积分曲线有一个最大存在区间 J_p ,从而有极大积分曲线

$$\gamma_p: J_p \to M$$
.

例如,前面几个例子中积分曲线的最大定义区间均为 \mathbb{R} ,而下面的例3.2.13则给出了一个最大存在区间不是 \mathbb{R} 的积分曲线。

再次利用唯一性和平移重参数化, 可得

命题 3.2.10. (局部流的加性)

对于 M 上光滑向量场 X, 若 $t,s,t+s\in J_p$,则 $\gamma_{\gamma_p(s)}(t)=\gamma_p(t+s)$.

证明 固定s,则两条曲线

$$\gamma_1(t) = \gamma_{\gamma_p(s)}(t)$$
 $\approx \gamma_2(t) = \gamma_p(t+s)$

都是从同一点 $\gamma_n(s)$ 出发的 X 的积分曲线,由积分曲线的唯一性可知它们相同.

¶ 流映射

把所有的积分曲线放在一起考虑, 可以得到映射

$$\Phi: \mathcal{M} = \{(t,p) \mid p \in M, t \in J_p\} \longrightarrow M, \quad (t,p) \mapsto \Phi(t,p) := \gamma_p(t),$$

其中 $\gamma_p(t)$ 是从 p 出发的极大积分曲线. 于是, 命题3.2.10可被写成

$$\Phi(t, \Phi(s, p)) = \Phi(t + s, p).$$

根据定理3.2.8,对于任意 $p \in M$,存在 p 的邻域 U_p 和区间 $I_p = (-\varepsilon_p, \varepsilon_p)$ 使得 $I_p \times U_p \subset M$,且 Φ 在 $I_p \times U_p$ 上是光滑映射。下面证明 Φ 在整个 M 上是光滑映射(特别地,由证明可见 M 是开集)。需要做的是对于任意 p 以及 "不太小"的 t_0 ,证明 Φ 在 $(t_0,p) \in M$ 附近的光滑性。证明的基本想法是利用加法性质即 $\gamma_p(t_0+t) = \gamma_{\gamma_p(t_0)}(t)$,将点 (p,t_0) 附近的光滑性转化为 $(\gamma_p(t_0),0)$ 附近的光滑性。为此,需要将从 $p = \gamma_p(0)$ 到 $\gamma_p(t_0)$ 的这一段积分曲线分为很多段"短"积分曲线,短到使得光滑性可以对一致的 t 区间成立,从而利用平移重参数化把光滑性传递到所需要的点。

定理 3.2.11. (流映射的光滑性)

对于任意完备向量场 X, 流 $\Phi: \mathbb{R} \times M \to M$ 是光滑的.

证明 设 $(t_0,p) \in \mathcal{M}$,则 $t_0 \in J_p$,于是存在充分小的正数 $\varepsilon > 0$ 使得 $[-\varepsilon,t_0+\varepsilon] \in J_p$. 考虑 $K = \gamma_p([-\varepsilon,t_0+\varepsilon])$. 对于任意 $q \in M$,存在邻域 $U_q \ni q$ 和区间 $I_q = (-\varepsilon_q,\varepsilon_p)$ 使得

$$\Phi|_{I_q \times U_q} : I_q \times U_q \to M$$

是光滑的. 由 K 的紧性, 在 K 中存在点 p_1, \dots, p_m 使得开集 U_{p_1}, \dots, U_{p_m} 覆盖 K. 记

$$U := U_{p_1} \cup \cdots \cup U_{p_m}$$
 以及 $I = (-\varepsilon_0, \varepsilon_0) := I_{p_1} \cap \cdots \cap I_{p_m}$.

则 $U \in K$ 的开邻域, I 是包含 0 的开区间, 而映射

$$\Phi|_{I\times U}:I\times U\to M$$

是光滑的. 特别地,对于任意 $s_0 \in I$,映射 $\phi_{s_0} = \Phi(s_0, \cdot) : U \to M$ 是光滑的.

现在取 N 充分大使得 $s_0 := t_0/N \in I$. 令 $U_1 = U$, 然后迭代地定义

$$U_{k+1} := \phi_{s_0}^{-1}(U_k) \cap U, \qquad k = 1, \dots, N.$$

那么对于任意 $k=1,\cdots,N+1,U_k$ 是开集,并且 $\phi_{s_0}:U_k\to U_{k-1}$ 是光滑的. 最后,考虑开集 $\Phi|_{I\times U}^{-1}(U_{N+1})$. 因为

$$\Phi(s_0, \Phi(s_0, \dots, \Phi(s_0, \Phi(0, p)) \dots)) = \Phi(t_0, p) = \gamma_p(t_0) \in K \subset U,$$

所以 $(0,p) \in \Phi|_{I \times U}^{-1}(U_{N+1})$. 因此存在 (0,p) 的邻域 $I_0 \times U_0 \subset \Phi|_{I \times U}^{-1}(U_{N+1})$, 即 $\Phi|_{I_0 \times U_0}$: $I_0 \times U_0 \to U_{N+1}$ 是光滑的. 由于以下光滑映射的复合

$$(t_0 + I_0) \times U_0 \longrightarrow I_0 \times U_0 \stackrel{\Phi}{\longrightarrow} U_{N+1} \stackrel{\phi_{s_0}}{\longrightarrow} U_N \stackrel{\phi_{s_0}}{\longrightarrow} \cdots \stackrel{\phi_{s_0}}{\longrightarrow} U_1$$
$$(t, p) \mapsto (t - t_0, p) \mapsto \Phi(t - t_0, p) \mapsto \cdots \mapsto \Phi(t, p)$$

恰好就是 Φ , 故 Φ 在 $(t_0 + I_0) \times U_0$ 上光滑 (特别地, $(t_0 + I_0) \times U_0 \subset \mathcal{M}$, 从而 \mathcal{M} 是开集),从 而完成了证明.

3.2.2 完备向量场

¶ 完备/不完备向量场

定义 3.2.12. (完备向量场)

设 X 是 M 上的光滑向量场。若对于任意 $p\in M$,满足 $\gamma(0)=p$ 的积分曲线 γ 的最大定义区间均为 \mathbb{R} ,则称 X 是完备向量场.

下面的例子表明不是所有光滑向量场都是完备的.

例 3.2.13. 考虑 \mathbb{R} 上的向量场 $X = t^2 \frac{d}{dt}$. 令 $\gamma(t) = (x(t))$ 为它的积分曲线. 那么

$$x'(t)\frac{d}{dt} = X_{\gamma(t)} = x(t)^2 \frac{d}{dt} \implies x'(t) = x(t)^2.$$

在初值条件 x(0) = c 下,该常微分方程的解为

$$x_c(t) = \begin{cases} \frac{1}{-t+1/c}, & \text{if } c \neq 0, \\ 0, & \text{if } c = 0. \end{cases}$$

于是, $\gamma_c(t)$ 的最大存在区间为

$$J_c = \begin{cases} (-\infty, 1/c), & \text{\textit{\vec{z}}$} c > 0, \\ \mathbb{R}, & \text{\textit{\vec{z}}$} c = 0, \\ (1/c, +\infty), & \text{\textit{\vec{z}}$} c < 0. \end{cases}$$

因此从任意 $c \neq 0$ 出发的积分曲线的最大存在区间都不是 \mathbb{R} , 从而 X 不完备.

设 X 是 M 上的完备向量场,则 $M=\mathbb{R}\times M$,且 $\Phi:\mathbb{R}\times M\to M$ 是光滑映射。于是对于任意 $t\in\mathbb{R}$,映射

$$\phi_t: M \to M, \quad \phi_t(p) := \Phi(t, p) = \gamma_p(t)$$

是光滑映射,且由定义以及命题3.2.10易得

命题 3.2.14. (流的群性质)

若 X 是流形 M 上的完备向量场,则光滑映射族 $\{\phi_t\}_{t\in\mathbb{R}}$ 满足

- (1) $\phi_0 = \mathrm{Id}_M$,
- (2) 对于任意 $t, s \in \mathbb{R}$, $\phi_t \circ \phi_s = \phi_{t+s}$,
- (3) 对于任意 $t \in \mathbb{R}$, ϕ_t 可逆且 $(\phi_t)^{-1} = \phi_{-t}$.

于是完备向量场生成了流形到自身的一族微分同胚,下一节将进一步研究它们。

¶ 紧支向量场是完备的

一个自然的问题是: 什么时候向量场是完备的? 根据积分曲线的局部存在性定理,在积分曲线的任意一点 $\gamma(t)$ 处都可以将 γ 的定义域"向前延伸一点点"至某个 $t+\varepsilon$ 处。那么,为什么还会存在不完备的向量场呢? 原因在于每一点处"能向前延伸的幅度"可能会越来越小。换而言之,如果有一个一致的常数 $\varepsilon_0 > 0$,使得任意点处的积分曲线都能"向前延伸 ε_0 ",那么向量场就完备了。问题是在什么条件下,从每点处的常数能够给出全局的一致常数?答案是显然的: 紧性!

下面证明紧流形上任意向量场都是完备的。事实上,还可以证明一个稍微更一般的结果:根据例3.2.5,在向量场的零点处的积分曲线都是完备的,于是只需要在向量场的非零点处讨论向量场的完备性。类比于函数的情况,定义**向量场的支集**为

$$\operatorname{supp}(X) = \overline{\{p \in M \mid X(p) \neq 0\}}.$$

若一个向量场的支集为紧集,则称它是紧支向量场。

定理 3.2.15. (紧支向量场完备)

光滑流形 M 上任意具有紧支集的光滑向量场 X 是完备的.

证明 令 $C = \operatorname{supp}(X)$. 根据例3.2.5,X 的经过任意 $q \in M \setminus C$ 的积分曲线都是常数曲线 γ_q ,从而其最大存在区间为 \mathbb{R} . 下面假设 $q \in C$,则从 q 出发的积分曲线都会一直保持在 C 中. 由定理3.2.8,存在区间 $I_q = (-\varepsilon_q, \varepsilon_q)$,q 的邻域 U_q 和光滑映射 $\Gamma: I_q \times U_q \to C$ 使得对于所有 $p \in U_q$, $\gamma_p(t) = \Gamma(t,p)$ 是 X 的从 p 出发的积分曲线. 由于 $\cup_q U_q \supset C$,且 C 是紧集,故可以在 C 中找到有限多个点 $q_1, \cdots q_N$ 使得 $\{U_{q_1}, \cdots, U_{q_N}\}$ 覆盖 C. 令

$$I = \bigcap_{k} I_{q_k} = (-\varepsilon_0, \varepsilon_0),$$

则对于任意 $q \in C$, 存在从 q 出发的积分曲线 $\gamma_q : I \to C$.

记从 $p \in C$ 点出发的积分曲线的最大存在区间为 J_p . 如果 $J_p \neq \mathbb{R}$, 不失一般性,可假设 $\sup J_p = c < \infty$. 对于 $q = \gamma_p(c - \frac{\omega}{2})$,存在从 q 出发的积分曲线 $\gamma_q : (-\varepsilon_0, \varepsilon_0) \to M$. 由唯一性, $\gamma_q(t) = \gamma_p(t + c - \frac{\omega}{2})$. 于是 γ_p 的定义区间可以被延伸到 $c + \frac{\omega}{2} > c$, 矛盾. \square

显然,紧流形上的任意光滑向量场都是紧支向量场,故

推论 3.2.16

紧流形上任意光滑向量场是完备的.