Team Kernel of Truth – Influenza Forecasting Discussion

Evan Ray

Department of Biostatistics and Epidemiology University of Massachusetts - Amherst

August 31 - September 1 2016

Summary of Results for National Predictions

		Peak	Peak	Combined	Exp						Combined	Exp
	Onset	Week	Week %	target	Combined		1wk	2wk	3wk	4wk	target	Combined
A	-5.61193	-5.78944	-0.58974	-3.99704	1.8	A	-1.38183	-1.31384	-1.40009	-1.53934	-1.40878	24.
В	-3.59949	-1.38075	-0.58941	-1.85655	15.6	В	-0.44044	-0.5662	-0.65333	-0.72242	-0.59560	55.
C	-2.76998	-3.669	-1.19191	-2.54363	7.9	С	-0.41802	-0.84522	-1.21178	-1.47449	-0.98738	37.
D	-2.69239	-3.02018	-1.10988	-2.27415	10.3	D	-0.18399	-0.38742	-0.69879	-0.91415	-0.54609	57.
E	-2.48957	-2.2959	-0.3909	-1.72546	17.8	E	-0.41499	-0.49524	-0.57115	-0.64528	-0.53167	58.
F	-2.95212	-2.27653	-0.3788	-1.86915	15.4	F	-0.17807	-0.32362	-0.43757	-0.63008	-0.39233	67.
G	-2.2877	-1.91221	-0.47389	-1.55794	21.1	G	-0.23845	-0.37888	-0.4748	-0.55298	-0.41128	66.
Н	-5.53289	-5.52674	-5.10347	-5.38770	0.5	H	-4.35103	-4.45316	-4.6123	-4.77534	-4.54796	1.
	-8.11462	-1.73125	-1.77745	-3.87444	2.1	I	-0.47669	-0.71313	-0.86633	-1.13026	-0.79660	45.
	-2.26622	-3.05179	-2.57078	-2.62959	7.2		-1.8355	-1.86009	-1.90443	-1.94016	-1.88504	15.
Kemel of Truth	-1.55756	-1.55858	-1.06941	-1.39518	24.8	Kemel of Truth	-0.83017	-0.76615	-0.92935	-1.18107	-0.92668	39.
	-3.89439	-3.34374	-1.10202	-2.78005	6.2	L	-0.50116	-0.86639	-1.63725	-1.57596	-1.14519	31
М	-6.22494	-5.35493	-5.01637	-5.53208	0.4	М	-4.94675	-5.06935	-5.68862	-5.67702	-5.34544	0
N	-3.29722	-6.66888	-2.50142	-4.15584	1.6	N	-2.62992	-2.01352	-2.74985	-3.04177	-2.60877	7

Overview of Method

- 1. Use kernel conditional density estimation (KCDE) to obtain separate predictive distributions for incidence in each future week.
- 2. Use copulas to combine these individual distributions to get joint predictive distribution for the trajectory of incidence over the rest of the season.
- 3. Obtain predictive distributions for onset week, peak ILI, and peak week from this joint predictive distribution.

Article under review, draft pdf at http://tinyurl.com/j5o7uf7

More detail about KCDE

Curves

Points

Weighted

Kernel Function Combined

Density Estimate

Observed Value of Y

Motivation for Copulas

▶ We need to capture dependence in incidence across different horizons to get at things like onset timing, peak timing.

(Slightly) more detail about copulas

▶ Sklar's Theorem: For any random vector $(X_1, ..., X_D)$, there exists a function C such that

$$F_{X_1,...,X_D}(x_1,...,x_D) = C\{F_{X_1}(x_1),...,F_{X_D}(x_d)\}$$

▶ We have used the parametric specification for C that arises in a multivariate normal distribution

Observed and Simulated Trajectories of Influenza-like Illness Incidence

Simulated Trajectories: KCDE with Copula

Simulated Trajectories: KCDE with Independence Across Horizons

A Weakness: The Christmas Effect

▶ Our method did not capture the Christmas effect:

Future Directions

- Participate fully (all regions, consistent model formulation throughout)
- ► Ensembles to combine models with varying strength at different points in the season
 - (Unconditional) KDE near the beginning of the season?
 - SARIMA near Christmas?
 - KCDE+copulas elsewhere?
- We have some other ideas, but won't get to them by the start of the next round...