Nome: Matrícula:	1.
3 <u>a</u> Prova - MTM1049 - T 10	2.
14 de Dezembro de 2016	3.
	4.
Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Res-	5.

Questão 1. (2pts) Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ uma transformação linear.

- (i) Defina o núcleo de T, denotado por $\mathcal{N}(T)$;
- (ii) Determine a matriz da transformação $[T] = [T]_{\tilde{\varepsilon} \leftarrow \varepsilon}$ (em relação as bases canônicas) quando temos $T \colon \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear que satisfaz

$$T(3,2,1) = (1,1),$$
 $T(0,1,1) = (0,-2),$ $T(3,0,0) = (3,6);$

 \sum

(iii) Determine uma base para o núcleo $\mathcal{N}(T)$, onde T é a transformação do item (ii) acima;

postas sem justificativas ou que não incluam os cálculos necessários não serão consi-

(iv) Poderia existir uma transformação linear injetiva $T: \mathbb{R}^3 \to \mathbb{R}^2$? (Sugestão: O que diria o Teorema da dimensão do núcleo e da imagem para T injetiva? Note que a imagem está contida em \mathbb{R}^2 , o que limita a dimensão da imagem).

Questão 2. (2pts) Prove que se $T: \mathbb{R}^n \to \mathbb{R}^m$ é uma transformação linear com núcleo $\mathcal{N}(T) = \{\bar{0}\}$, então T é injetiva.

Questão 3. (2pts) A matriz

deradas.

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 2 & 2 & -2 \\ 1 & 0 & 1 \end{array} \right]$$

é diagonalizável? Para tanto, calcule o polinômio característico e todos os autovalores. Para cada um dos autovalores encontre uma base para o autoespaço correspondente.

Se A for diagonalizável, encontre as matrizes P invertível e D diagonal tais que $P^{-1}AP = D$.

Questão 4. (2pts) Encontre a matriz mudança de base $[I]_{\mathcal{C}\leftarrow\mathcal{B}}$ de \mathcal{B} para \mathcal{C} (ou $[I]_{\mathcal{B}}^{\mathcal{C}}$ na notação do livro), onde

$$\mathcal{B} = \{(\frac{\sqrt{3}}{2}, -\frac{1}{2}), (\frac{1}{2}, \frac{\sqrt{3}}{2})\} \qquad \mathcal{C} = \{(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})\}$$

(Sugestão: Note que as bases são ortonormais (ON), se souber usar os coeficientes de projeção poderá resolver mais rápido).

Questão 5. (2pts) Considere o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por

$$T(x,y) = (9x + 12y, 12x + 16y).$$

Encontre uma base ortonormal \mathcal{C} tal que $[T]_{\mathcal{C}\leftarrow\mathcal{C}}$ seja diagonal.