COL106 - Data Structures and Algorithms

Hashtables Contd), other related ADTs

Compression Maps h(K) = K (mod m) (Simple division) choosing m = be (bad!) Typicalls m is chosen to be prime - gives a unifirm distribution.

not close to a power of 2. (2) h (k) = [m (k A mod 1)] where 0 2 A < 1 $\frac{E_9}{2}$ $A = \frac{\sqrt{5} - 1}{2}$ (Fibonacci hashing) (Knuth TAOCP vol.2)

Open addressing: (In chaining all elements were stored outside

the hash table.

(a) = 1 - Put all the clements in the table > () = 1 - Have a systematic way to probe dements of the table. - Modify hash function; h: Ux follownil) > fortion; - Probe sequence: 72 (h (k,0), h(k,1), --- h(k,m-1)). - (h) gives a sequence of slots examined for a given key.

			Linear Probing							Cases less memory than								
		_								Chaining, but stower								
	Exam	plei		hCx) =	X	mod	13)	Ca	uses	C	luste	long				
-			<i>V</i> .											η	_			
\	de		In	sert.	(18) 49	, 22	, 44	, 59	, 32	, 31	73		•				
1	115				2	' '												
 	ſ			41			18	44	59	32	22	31	72					
		Ð	1	2	3	4	5	C	7	8	9	10	11	12				
									<u></u>					ノ				

		<u>_</u>	inea	r F	roben	J_								
Example	-	h Cx) =	×	mod	13								
	In	sert.	18	, 49	1, 22	, 44	L, 59	, 32	, 31	72				
		1							22	-	7-3			
0	1	41	3	4	18	44						12		
						1	Jι	Ι)						
	Velu	be 3	<u>م</u>											
0	1	2.	3		5	6	7	æ	9	10	(1	12	L	
	<u>ــ</u>		٥	4	3	U	7	_	•	10	(1			

Quadratic probing? Double Hashing- $(h(k)+i^2) \mod M$ h(K) Use two functions: primary hash secondary hash 5 handles collision by placing item in Cannot take 0 k - table size (m) must be prime. first available cell (i+idex) mod m DoubleHash Incert (6) JE EO,1, .-. m-14 if (table is full) expor (probe = (hck)) offet = d(k) while (table (prope) o carpied) Probe = (probe + offset) mod m) talde [probe] = K

