Tomographische Rekonstruktion

Fabian Fäßler – 12. November 2012

Das Ziel

Das Ziel

Das Ziel

Lösung: Parallelstrahlen

I = iradon(R, theta) - reconstructs the image I from projection data in the two-dimensional array R. The columns of R are parallel beam projection data.

Lösung: Parallelstrahlen

I = iradon(R, theta) - reconstructs the image I from projection data in the two-dimensional array R. The columns of R are parallel beam projection data.

```
[b,c] = radon(original_img,0:360);
reconstructed_img = iradon(b,0:360);
image(reconstructed_img);
```

Lösung: Fächerstrahlen

I = ifanbeam(F,D) - reconstructs the image I from projection data in the two-dimensional array F. Each column of F contains fan-beam projection data at one rotation angle.

Lösung: Fächerstrahlen

I = ifanbeam(F,D) - reconstructs the image I from projection data in the two-dimensional array F. Each column of F contains fan-beam projection data at one rotation angle.

Vergleich

Demo...

WARNING: sliders incoming!

Code

https://github.com/Samuirai/matlab

Referenz

• http://www.mathworks.de/de/help/images/examples/reconstructing-an-image-from-projection-data.htm