Nelson-Aalen & Kaplan-Meier

Basic Relations

$$S(t) = \exp(-\int_0^t \alpha(s)ds) \qquad A(t) = \int_0^t \alpha(s)ds \qquad -S'(t) = \alpha(t)S(t) \qquad f(t) = \alpha(t)S(t) \qquad P(T > x|T > y) = \frac{P(T > x)}{P(T > y)} = \frac{S(x)}{S(y)}$$

Nelson-Aalen Non-parametric estimator of the cumulative hazard rate. $A(t) = \int_0^t \alpha(u) du$ where $\alpha(t)$ is the hazard rate at time t.

Formulas
$$\hat{A}(t) = \sum_{T_i < t} \Delta \hat{A}(T_j)$$

No ties
$$\Delta \hat{A}(T_j) = \frac{1}{Y(T_j)}$$
 Rounded Ties $\Delta \hat{A}(T_j) = \sum_{k=1}^{d_j-1} \frac{1}{Y(T_j)-k}$ True Ties $\Delta \hat{A}(T_j) = \frac{d_j}{Y(T_j)}$ $\hat{\sigma}_{N-A}^2(t) = \sum_{T_j \leq t} \Delta \hat{\sigma}^2(T_j)$

No ties
$$\Delta \hat{\sigma}^2(T_j) = \frac{1}{Y(T_j)^2}$$
 Rounded Ties $\Delta \hat{\sigma}^2(T_j) = \sum_{k=1}^{d_j-1} \frac{1}{(Y(T_j)-k)^2}$ True Ties $\Delta \hat{\sigma}^2(T_j) = \frac{(Y(T_j)-d_j)d_j}{Y(T_j)^3}$

Derivation of the Nelson-Aalen Estimator. M(t) is a mean-zero m.g. $H(t) = \frac{J(t)}{Y(t)}$ is predictable where $J(t) = \mathbf{1}(Y(t) > 0)$. We then get $\hat{A}(t) = \int_0^t H(s)dN(s) = \int_0^t \alpha(s)J(s)ds + \int_0^t \frac{J(s)}{Y(s)}dM(s)$. As M(t) is mean-zero m.g. we then get that the Nelson-Aalen estimator is a unbiased estimator of $A^*(t) = \int_0^t \alpha(s)J(s)ds$ since $\mathbb{E}\left[\hat{A}(t) - A^*(t)\right] = 0$. $\hat{A}(t)$ is however a biased estimator of A(t) since $\mathbb{E}[J(s)] = \mathbb{P}(Y(s) > 0)$. This bias is however very small.

Derivation of variance of Nelson-Aalen Estimator. Recall that
$$\left[\int HdM\right](t) = \int H(s)^2 dN(s)$$
 where we have $H(s) = \frac{J(s)}{Y(s)} \Longrightarrow \left[\int HdM\right](t) = \int \left(\frac{J(s)}{Y(s)}\right)^2 dN(s) = \left[\hat{A} - A^*\right](t) \Longrightarrow \hat{\sigma}_{N-A}^2 = \sum_{T_j \leq t} \frac{1}{Y(T_j)}$

Delta Method CI Nelson-Aalen We have that $\hat{A}(t) \overset{\text{approx}}{\sim} N(A(t), \hat{\sigma}^2(t))$

$$g(\hat{A}(t)) \approx g(A(t)) + g'(A(t)) \underbrace{(\hat{A}(t) - A(t))}_{\mathbb{E}[\dots] = 0} \implies \mathbb{E}[g(\hat{A}(t))] \approx g(A(t)) \text{ and } \mathbb{E}[(g(\hat{A}(t)) - g(A(t))^2] \approx g'(\hat{A}(t))^2 \underbrace{\mathbb{E}[(\hat{A}(t) - A(t))^2]}_{\hat{\sigma}^2}$$

$$\implies g(\hat{A}(t)) \overset{\text{approx}}{\sim} N(g(A(t), |g'(\hat{A}(t)|\hat{\sigma})))$$

Let $g(x) = \log(x)$ which then gives us $g^{-1}(x) = e^x$ and $g'(x) = \frac{1}{x}$. The interval then becomes as follows.

$$g^{-1}(CI) = \exp\left\{\log(\hat{A}(t)) \pm z_{1-\alpha/2} \frac{\hat{\sigma}}{\hat{A}(t)}\right\} = \hat{A}(t) \exp\left\{\pm z_{1-\alpha/2} \frac{\hat{\sigma}}{\hat{A}(t)}\right\}$$

Kaplan-Meier Non-parametric estimator of the survival function. $S(t) = e^{-A(t)}$ where A(t) is the cumulative hazard rate at time t.

Formulas
$$\hat{S}(t) = \prod_{T_j \le t} \left(1 - \frac{1}{Y(T_j)} \right) = \prod_{T_j \le t} (1 - \Delta \hat{A}(T_j))$$

 $\hat{\tau}^2(t) = \hat{S}(t)^2 \sum_{T_j \le t} \frac{1}{Y(T_j)^2} = \hat{S}(t)^2 \hat{\sigma}_{N-A}^2 \quad \hat{\tau}^2(t) = \hat{S}(t)^2 \sum_{T_j \le t} \frac{d_j}{Y(T_j)(Y(T_j) - d_j)}$ (Greenwood)

Derivation of the Kaplan-Meier Estimator Recall $\mathbb{P}(T > t) \implies S(t_k|t_{k-1}) = \mathbb{P}(T > t_k|T > t_{k-1}) = \frac{S(t_k)}{S(t_{k-1})}$. Let $0 = t_0 < t_1 < \ldots < t_n$ and note that $\mathbb{P}(T > t_0) = 1$ which gives us $S(t_n) = \prod_{k=1}^n \frac{S(t_k)}{S(t_{k-1})}$. We formally we define the survival function as $S(t) = \prod_{u \leq t} (1 - dA(u))$ since $\frac{S(t_k)}{S(t_{k-1})} = dA(t_k)$ when $t_k - t_{k-1} < 1$. This gives us the estimator $\hat{S}(t) = \prod_{T_j \leq t} (1 - \Delta \hat{A}(T_j))$ as $\Delta \hat{A}(t)$ serves as an estimator for dA(t).

Kaplan Meier CI $\hat{S}(t) \pm z_{1-\alpha/2}\hat{\tau}(t)$. Log-transforms (using same method as for Nelson-Aalen above) etc.

Derivation of variance of Kaplan-Meier Estimator Let $S^*(t) = \iint_{u \le t} (1 - dA^*(t))$ where $A^*(t) = \int_0^t J(u) dA(u)$. If $\mathbb{P}(J(s) = 0) << 1$ then S^* and S are close. We measure this closeness by $\frac{\hat{S}(t)}{S^*(t)} - 1 = -\int_0^t \frac{\hat{S}(u-)}{S^*(u)} d(\hat{A} - A^*)(u)$. We then have that $\mathbb{E}\left[\frac{\hat{S}(t)}{S^*(t)}\right] = 1$. We can

then repat the arguments as we do for the variance of the Nelson-Aalen estimator above.
$$\left[\frac{\hat{S}}{S^*} - 1\right] = \left[\int \frac{-\hat{S}}{S^*} \underbrace{d(\hat{A} - A^*)}_{dM}\right] = \{\text{Theorem}\} = \{0\}$$

 $\int \left(\frac{\hat{S}}{S^*}\right)^2 d[M]. \text{ Note that } M \text{ is the same mean-zero m.g. as in the Nelson-Aalen case which gives us } d[M](t) = \frac{J(t)}{Y(t)} dN(t). \text{ This does in turn give us that } \left[\frac{\hat{S}}{S^*} - 1\right] = \int \left(\frac{\hat{S}}{S^*}\right)^2 \frac{J}{Y^2} dN. \text{ Now by assuming } S^* = S \text{ and } \hat{S}(u) \approx \hat{S}(u-) \text{ we get that } \text{Var}\left(\frac{\hat{S}(t)}{S(t)} - 1\right) = \hat{\sigma}_{\hat{S}/S-1}^2(t) = \int_0^t \frac{J}{Y^2} dN = \hat{\sigma}_{\text{N-A}}^2(t) \implies \hat{\sigma}_{\hat{S}}^2(t) \approx \hat{S}^2(t) \int_0^t \frac{J}{Y^2} dN = \hat{S}^2(t) \hat{\sigma}_{\text{N-A}}^2(t)$

Martingales

Definition of Martingales M is a Martingale if $E[M_t|\mathcal{F}_s] = M_s$, $t \geq s$ and $E[|M_t|] < \infty$.

Formulas

$$(H \bullet M)_n = H_0 M_0 + H_1 (M_1 - M_0) + \dots + H_n (M_n - M_{n-1})$$

$$\langle H \bullet M \rangle_n = \sum_{i=1}^n H_i^2 \Delta \langle M \rangle_i \text{ where } \Delta \langle M \rangle_i = [(M_i - M_{i-1})^2 | \mathcal{F}_{i-1}]$$

$$\langle H \bullet M \rangle = H^2 \bullet \langle M \rangle$$

$$\langle M \rangle_n = \sum_{i=1}^n \operatorname{Var}(\Delta M_i | \mathcal{F}_{i-1}) = \sum_{i=1}^n \mathbb{E}[(M_i - M_{i-1})^2 | \mathcal{F}_{i-1}]$$

$$\langle \int H dM \rangle = \int H^2(s) d\langle M \rangle(s) = \int H^2(s) \lambda(s) ds$$

$$Cov(M_s, M_t - M_s) = 0$$

$$M^2 - \langle M \rangle \text{ and } M^2 - [M] \text{ are zero mean m.g.s.}$$

$$Var(M(t)) = E(M(t))^2 = E\langle M \rangle(t) = E[M](t)$$

$$\Delta M_t = M_t - M_{t-1} \text{ called m.g. difference}$$

$$[H \bullet M]_n = \sum_{i=1}^n H_i^2 \Delta[M]_i \text{ where } \Delta[M]_i = (M_i - M_{i-1})^2$$

$$[H \bullet M] = H^2 \bullet [M]$$

$$[M]_n = \sum_{i=1}^n (\Delta M_i)^2 = \sum_{i=1}^n (M_i - M_{i-1})^2$$

$$\left[\int H dM\right] = \int H^2(s) d[M]s) = \int H^2(s) dN(s)$$

$$E[M_t - M_s | \mathcal{F}_s] = E[M_t | \mathcal{F}_s] - M_s = 0$$

$$E[\Delta M_t | \mathcal{F}_{t-1}] = 0$$

Doob decomposition Let X with X_0 be a general discrete time proc. and let M be def. by $M_0 = X_0 = 0$ and $M_n - M_{n-1} = X_n - E[X_n|\mathcal{F}_{n-1}] \implies E[\Delta M_n|\mathcal{F}_{n-1}] = 0 \implies X_n = E[X_n|\mathcal{F}_{n-1}] + \Delta M_n = \underbrace{E[X_n|\mathcal{F}_{n-1}]}_{pred} + \underbrace{(X_n - E[X_n|\mathcal{F}_{n-1}])}_{noise}$

Frailty

Basic Relations $A(t|Z) = \int_0^t \alpha(s|Z)ds$ if proportional frailty (i.e. $\alpha(t|Z) = \alpha(t)Z$ we have $A(t|Z) = ZA(t) \implies S(t) = \exp\{-ZA(t)\}$. Consequently the piopulation survival is given by $S(t) = \mathbb{E}[S(t|Z)] = \mathbb{E}[\exp\{-A(t|Z)\}] = \mathcal{L}_Z(A(t))$ where $\mathcal{L}_Z(c)$ is the Laplace transform (i.e. $\Psi_Z(-c)$).

 $\textbf{Hazard Ratio} \ \frac{\alpha(t|\mathbf{x}_1)}{\alpha(t|\mathbf{x}_2)} \ \text{e.g.} \ \frac{\alpha(t|\mathbf{x}=(1,0))}{\alpha(t|\mathbf{x}=(0,1))} = \frac{r(\beta,(1,0))}{r(\beta,(0,1))}$

Population Hazard Rate $\mu(t) = \frac{-S'(t)}{S(t)} = \alpha(t) \frac{\mathcal{L}'(A(t))}{\mathcal{L}(A(t))}$ assuming proportional frailty $(\alpha(t|Z) = \alpha(t)Z)$

Modelling Frailty as Power Variance Function We let $Z \sim \text{PVF}(\varphi, \nu, m)$ for $\nu, m+1, m\varphi > 0$. This gives us $\mathbb{E}[Z] = \frac{\varphi m}{\nu}$ and

$$\operatorname{Var}(Z) = \frac{\varphi m}{\nu} \frac{m+1}{\nu}. \text{ For a PVF it holds that } S(t) = \exp\left\{-\varphi\left(1 - \left(\frac{1}{1 + \frac{A(t)}{\nu}}\right)^2\right)\right\} \text{ and } \mu(t) = \underbrace{\frac{\varphi m}{\nu}}_{\mathbb{E}[Z]} \frac{\alpha(t)}{\left(1 + \frac{A(t)}{\nu}\right)^{m+1}}.$$

Modelling Frailty as a Gamma distribution We have that $Z \sim \Gamma(\nu, \eta), \nu, \eta > 0$. We then have $\mathbb{E}[Z]$ and $\Phi_Z(c) = \left(\frac{\nu}{\nu-c}\right)^{\eta}$ (see **Distriubtions** on page 6). This gives us that $\mathcal{L}_Z(c) = \frac{1}{(1+\frac{c}{\nu})^{\eta}}$. Common to use $\mathbb{E}[Z] = 1 \implies \nu = \eta$. This then gives us $\mathcal{L}_Z(c) = \frac{1}{(1+\frac{c}{\nu})}$. If we let $\delta = \frac{1}{\nu} = \text{Var}(Z)$ which implies $\mathcal{L}_Z(c) = \frac{1}{(1+\delta c)^{1/\delta}}$. Finally (if we assume a proportional frailty model) we get that the population survival $S(t) = \mathcal{L}_Z(A(t)) = \mathcal{L}_Z(c) = \frac{1}{(1+\delta A(t))^{1/\delta}}$ and the population hazard $\mu(t) = \frac{-S'(t)}{S(t)} = \frac{\alpha(t)}{1+\delta A(t)}$

Testing

Breslow-Estimator $\hat{A}_0(t) = \hat{A}_0(t; \hat{\beta})$ where $\hat{A}_0(t; \hat{\beta}) = \int_0^t \frac{dN_{\bullet}(u)}{\sum_{l=1}^n Y_l(u)r(\beta, \mathbf{x}_l)}$, Cox prop. haz. model $\implies \alpha(t|\mathbf{x}) = \alpha_0(t)r(\beta\mathbf{x}) \implies A(t|\mathbf{x}) = A_0(t)r(\beta\mathbf{x})$

Gehan-Breslow Test $U(t_0) = \frac{Z_1(t_0)}{\sqrt{V_{11}}} \sim N(0,1)$ where $Z_1(t_0) = \int_0^{t_0} Y_2(t) dN_1(t) - \int_0^{t_0} Y_1(t) dN_2(t)$ and $V_{11}(t_0) = \int_0^{t_0} Y_1(t) Y_2(t) dN_{\bullet}(t)$

Cox regression Multiplicative model: $\alpha(t|x_1,...,x_p) = \alpha_0(t) \exp(\beta_1 x_1 + ... + \beta_p x_p)$. Additive model: $\alpha(t|x_1,...,x_p) = \underbrace{\beta_0(t)}_{baselinehaz} + \beta_1 x_1 + + \beta_p x_p$. Cox partial likelihood: $L(\beta) = \prod_{T_j} \frac{r(\beta_j x_j)}{\sum_{i \in \mathcal{R}_j} r(\beta_j x_j)}$ where \mathcal{R}_j is the risk set just before event j.

LR test: $\chi_{LR}^2 = 2(\log(L(\hat{\beta}) - \log(\beta_0)) \sim \chi^2(1)$

Misc

Accelerated failure time models: $\log U_i = \beta^T \mathbf{x}_i + \varepsilon_i$ where $E[\varepsilon_i] = 0$ iid. $\Longrightarrow S_{U_i}(u) = P(U_i > u) = P(e^{\beta^T \mathbf{x}_i + \varepsilon_i} > u) = P(\underbrace{\varepsilon_i} > ue^{-\beta^T \mathbf{x}_i} = S_{w_i}(ue^{-\beta^T \mathbf{x}_i}), \text{ (change of time)}, \implies S'_{U_i}(u) = S'_{w_i}(ue^{-\beta^T \mathbf{x}_i})e^{-\beta^T \mathbf{x}_i} \implies \alpha_{U_i}(u) = \frac{-S'_{U_i}(u)}{S_{U_i}(u)} = \alpha_{w_i}(ue^{-\beta^T \mathbf{x}_i})ue^{-\beta^T \mathbf{x}_i}$

Likelihood With censored observations we can express the likelihood as follows. $L(\theta; t_1, ..., t_n) \prod_{i=1}^n \mathbb{P}(T = t_i)_i^{\delta} \mathbb{P}(T \ge t_i)^{1-\delta_i}$ where δ_i is the indicator of t_i being censored. See example below under **Examples**

Likelihood in terms of hazard rate $L(\theta) = \prod_{i \in \mathcal{D}_i} \mathbb{P}(T \in [t_i, t_i + dt; \theta)) \prod_{i \notin \mathcal{D}_i} \mathbb{P}(T \geq t_i; \theta) \approx \prod_{i \in \mathcal{D}_i} f(t_i; \theta) dt \prod_{i \notin \mathcal{D}} S(t_i; \theta) \propto \prod_{i \in \mathcal{D}_i} \alpha(t_i; \theta) S(t_i; \theta) \prod_{i \notin \mathcal{D}_i} S(t_i; \theta) = \prod_{i=1}^n \alpha(t_i, \theta)^{\delta_i} S(t_i; \theta)$ where individuals with $\delta_i = 1$ belong to \mathcal{D}_i .

Problems, solutions and examples

 $\begin{aligned} \mathbf{Problem \ 1a \ Show} \ \hat{A}(t) &= \int_0^t \frac{I(Y(s)>0)}{Y(s)} dN(s) \text{ is an unbiased estimator of } A^*(t) = \int_0^t I(Y(s)>0) \alpha(s) ds. \\ \mathbf{Solution} \ \hat{A}(t) &= A^*(t) = \int_0^t \frac{I(Y(s)>0)}{Y(s)} dN(s) - \int_0^t I(Y(s)>0) \alpha(s) ds = \int_0^t \frac{I(Y(s)>0)}{Y(s)} dN(s) - \int_0^t \frac{I(Y(s)>0)}{Y(s)} Y(s) \alpha(s) ds = \int_0^t \frac{I(Y(s)>0)}{Y(s)} dN(s) - \int_0^t \frac{I(Y(s)>0)}{Y(s)} Y(s) \alpha(s) ds = \int_0^t \frac{I(Y(s)>0)}{Y(s)} dN(s) - Y(s) \alpha(s) ds = \int_0^t \frac{I(Y(s)>0)}{Y(s)} \frac{dM(s)}{Y(s)} dN(s) - I(s) \alpha(s) ds = \int_0^t \frac{I(Y(s)>0)}{Y(s)} dN(s) ds = \int_0^t \frac{I(Y(s)>0)$

Problem 1b Show $A^*(t)$ is a biased estimator of $A(t) = \int_0^t \alpha(s) ds$.

Solution $E[A^*(t)] = E[\int_0^t I(Y(s) > 0)\alpha(s)ds] \le E[\int_0^t 1 \cdot \alpha(s)ds] = A(t).$

Problem 1c Calculate the optional variation of $\hat{A}(t)A^*(t)$, i.e. $[\hat{A}(t)A^*(t)]$ and write this expression as a sum.

Solution $[\hat{A}(t)A^*(t)] = [\int \frac{1}{Y} dM](t) = \int_0^t \left(\frac{I(Y(s)>0)}{Y(s)}\right)^2 dN(s) = \int_0^t \frac{I(Y(s)>0)}{Y(s)^2} dN(s).$

We also have that $Var(\hat{A}(t) - A^*(t)) = E([\hat{A}(t) - A^*(t)](t))$ and thus $\hat{A}(t) - A^*(t)](t)$ is an unbiased est. of the variance.

Morover, assuming no ties $[\hat{A}(t) - A^*(t)](t) = \int_0^t \frac{I(Y(s)>0)}{Y(s)^2} dN(s) = \sum_{T_j \le t} \frac{1}{Y(T_j)}$, which is the Nelson-Aalen estimator.

Problem 2 Let X_n be discrete time m.g. Show that $E[X_n^2]$ is non-decreasing in n.

Solution First show $M_{n+1} = X_n(X_{n+1} - X_n)$ has zero mean. $E[X_n(X_{n+1} - X_n)|\mathcal{F}_n] = X_nE[X_{n+1} - X_n|\mathcal{F}_n] = 0$. Now note that $(X_{n+1} - X_n)^2 = (X_{n+1} - X_n)(X_{n+1} - X_n) = X_{n+1}(X_n + 1 - X_n) - M_n$. We get that $E[(X_{n+1} - X_n)^2] = E[X_{n+1}(X_n + 1 - X_n) - M_n] = E[X_{n+1}(X_n + 1 - X_n)] = E[X_{n+1}^2] - E[X_{n+1}^2] - E[X_{n+1}^2] - E[X_{n+1}^2] - E[X_{n+1}^2] = 0$.

Problem 3 Let $T_1, ..., T_n$ i.i.d. $\operatorname{Exp}(\nu)$. Let $c_1, ..., c_n$ be non-random censoring times and $\tilde{T}_i = \min(T_i, c_i)$. Let $D_i = 1$ if $\tilde{T}_i = T_i$. Construct the likelihood for this situation.

Solution Contribution for an observed event is $\alpha(\tilde{t}_i;\nu) \exp\{\int_0^{\tilde{t}_i} \alpha(s;\nu) ds\} = \nu \exp\{-\tilde{t}_i\nu\}$, since $\alpha(t;\nu) = \nu$. A censored event contributes to the likelihood with $S(\tilde{t}_i;\nu) = \exp\{\int_0^{\tilde{t}_i} \alpha(s;\nu) ds\} = \exp\{-\tilde{t}_i\nu\}$.

By combining these we get $L(\nu) = \prod_{i=1}^{n} (\alpha(\tilde{t}_i; \nu) \exp\{\int_0^{\tilde{t}_i} \alpha(s; \nu) ds\})^{D_i} (\exp\{\int_0^{\tilde{t}_i} \alpha(s; \nu) ds\})^{1-D_i} = \nu^d \exp\{-\nu r\}$, where $d = \sum_i D_i$ and $r = \sum_i \tilde{t}_i$.

Problem 4a Let N(t) be a Poisson process with intensity function $\lambda(t)$. Show that $M(t) = N(t) - \int_0^t \lambda(s) ds$ is a mean zero m.g.

Solution From def. of the Po-process we know $E[N(t) - N(s)|\mathcal{F}_s] = \int_s^t \lambda(s)ds$ which follows from indep. increments property. Thus, $E[N(t) - \int_0^t \lambda(s)ds|\mathcal{F}_s] = E[N(t) - \int_0^t \lambda(s)ds - N(s)|\mathcal{F}_s] = E[N(t) - N(s)] - \int_0^t \lambda(s)ds + N(s) = \int_s^t \lambda(s)ds - \int_0^t \lambda(s)ds - \int_0^t \lambda(s)ds$.

Problem 4b For M(t) above, it holds that $M(t)^2 - \int_0^t \lambda(s) ds$ is a mean-zero m.g. Use this with a) to show $\lim_{h\to 0^+} \frac{1}{h} E[(M(t+h) - M(t))^2 | \mathcal{F}_t] = \lambda(t)$. (i.e. $d\langle M \rangle(t) = \lambda(t)$.)

Solution $E[(M(t+h)-M(t))^2|\mathcal{F}_t] = E[(M(t+h)^2|\mathcal{F}_t] - 2E[M(t+h)|\mathcal{F}_t]M(t) + M(t)^2 = E[(M(t+h)^2|\mathcal{F}_t] - M(t)]$. Now using that $E[(M(t+h)^2-\int_0^{t+h}\lambda(u)du|\mathcal{F}_t] = M(t)^2-\int_0^t\lambda(u)du$ it follows that $E[(M(t+h)-M(t))^2|\mathcal{F}_t] = M(t)^2-\int_0^t\lambda(u)du + \int_0^{t+h}\lambda(u)du - M(t)^2 = \int_t^{t+h}\lambda(u)du$. Desired result follows from standard calculus.

Examples

Example of Nelso-Aalen Calculations (different types of ties, A_1 uses true ties whilst A_2 uses rounded ties)

t	Y(t)	d(t)	$\Delta \hat{A}_1(t)$	$\Delta \hat{\sigma}_1^2(t)$	$\Delta\hat{A}_2(t)$	$\Delta \hat{\sigma}_2^2(t)$
0.2	16	1	$\frac{1}{16}$	$\frac{(16-1)\cdot 1}{16^3}$	$\frac{1}{16}$	$\frac{1}{16^2}$
0.5	15	3	$\frac{16}{\frac{3}{15}}$	$\frac{(15-3)\cdot 3}{15^3}$	$\frac{1}{15} + \frac{1}{14} + \frac{1}{13}$	$\frac{1}{15^2} + \frac{1}{14^2} + \frac{1}{13^2}$
0.7	12	1	$\frac{1}{12}$	$\frac{(12-1)\cdot 1}{12^3}$	$\frac{1}{12}$	$\frac{1}{12^2}$
1.1	11	1	$\frac{1}{11}$	$\frac{(11-1)\cdot 1}{11^3}$	$\frac{1}{11}$	$\frac{1}{11^2}$

Example Population Hazard Rate

Let $\alpha(t|Z) = \alpha(t)Z$ where $\mathcal{L}_Z(s) = \mathbb{E}[\exp\{-sZ\}] = (1+\delta s)^{-1/\delta}$. We get that $\mathcal{L}'(s)\big|_{s=0} = -\mathbb{E}[Z] = -\frac{\mathcal{L}_Z(s)}{1+\delta}\big|_{s=0} = -1 \implies \mathbb{E}[Z] = 1$ by derivating both sides with regards to s. We can obtain the population hazard rate $\mu(t) = \alpha(t)\frac{-\mathcal{L}_Z'(A(t))}{\mathcal{L}_Z(A(t))} = \frac{\alpha(t)}{1+\delta A(t)}$. By assuming some form of $\alpha(t)$ (or A(t)) we can then examine the population hazard rate as $t \to \infty$.

Example of Likelihood Derivations We have $(i, t_i, \delta_i) = \{(1, 1.23, 0), (2, 1.97, 1), (3, 1.17, 0)\}$. If we assume that the times are $\text{Exp}(\nu)$ then we get $L(\nu; t_1, t_2, t_3) = \nu^2 e^{-\nu(t_1 + t_2)} e^{-t_3}$.

Example of LR-test using Cox partial likelihood We have $\alpha(t;x) = \alpha_0(t)e^{\beta x}$ and $\{(T_i, \delta_i, x_i)\}_{i=1...5} = \{(1,1,1), (3,1,0), (4,0,1), (7,0,0)\}$ then $L(\beta) = \frac{e^{\beta}}{e^{\beta+1}+e^{\beta}+1+e^{\beta}} \cdot \frac{1}{1+e^{\beta}+1+e^{\beta}} \cdot \frac{e^{\beta}}{e^{\beta}}$. We then perform the likelihood ratio test as described under **Testing** using $\hat{\beta}$ (which we obtain using regular likelihood theory) and β_0 .