

25.11.2019

Network Compression

---- Zhuo Su

What is network compression?

Why we need to compress the network?

How to compress network?

What is network compression?

What is network?

What is compression?

Deep Neural Network

Deep Neural Network

- 1. Limited computation power
- 2. Limited storage and memory
- 3. Limited battery capacity

- What is network compression?
 - ✓ What is network?
 - ✓ What is compression?
- Why we need to compress the network?

How to compress the deep network?

Outline

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

- Networks are typically over-parameterized (there is significant redundant weights or neurons)
- Prune them!

Optimal Brain Damage Yann Le Cun, John S. Denker and Sara A. Solla AT&T Bell Laboratories, Holmdel, N. J. 07733

Synaptic Density

Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015.

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	$12\times$
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	$12 \times$
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	$9 \times$
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	$13 \times$

Experiments on ImageNet

Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, ICLR 2016.

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	$40 \times$
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39 imes
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	$35 \times$
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	$49 \times$

Experiments on ImageNet

Weight pruning

The network architecture becomes irregular.

Hard to implement, hard to speedup

Weight pruning

https://arxiv.org/pdf/1608.03665.pdf

ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression, ICCV 2017

Prune the whole filter

ThiNet

ThiNet

Model	Top-1	Top-5	#Param.	#FLOPs1	f./b. (ms)
Original ²	68.34%	88.44%	138.34M	30.94B	189.92/407.56
ThiNet-Conv	69.80%	89.53%	131.44M	9.58B	76.71/152.05
Train from scratch	67.00%	87.45%	131.44M	9.58B	76.71/152.05
ThiNet-GAP	67.34%	87.92%	8.32M	9.34B	71.73/145.51

Experiments on ImageNet based VGG-16

Rethinking the Value of Network Pruning, ICLR 2019

Scratch-E: the same number of epochs as the large network

Scratch-B: double the number of epochs

Dataset	Unpruned	Strategy		Pruned Model
	VGG-16		VGG-Conv	VGG-GAP
ImageNet	71.03	Fine-tuned	-1.23	-3.67
	71.51	Scratch-E	-2.75	-4.66
		Scratch-B	+0.21	-2.85
	ResNet-50		ResNet50-30%	ResNet50-50%
	75.15	Fine-tuned	-6.72	-4.13
	76.13	Scratch-E	-5.21	-2.82
		Scratch-B	-4.56	-2.23

Compare with ThiNet

Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy, ICLR 2018

Distilling the Knowledge in a Neural Network, arXiv 2015

System	Test Frame Accuracy
Baseline	58.9%
10xEnsemble	61.1%
Distilled Single model	60.8%

Experiments on speech recognition

Weight clustering

Multiplication -> Adding or subtraction

Less memory and faster! $\approx 1/32$ of the original model size

Multiplication -> Bit operation: $\mathbf{x} \cdot \mathbf{y} = \text{bitcount}(\text{and}(\mathbf{x}, \mathbf{y})), x_i, y_i \in \{0, 1\} \forall i$.

Less memory and faster!! $\approx 1/32$ of the original memory needed

Parameters are discrete

How to train this binary network end to end?

https://arxiv.org/abs/1602.02830

Parameter Quantization

Parameter Quantization

Fully connected layer...

Number of parameters:

$$N \times M$$

$$K \times (N + M)$$
 Less parameters

MACC (Multiply-accumulate, how many multiplication operations):

$$N \times M$$

$$K \times (N + M)$$
 Less MACC

Convolutional layer...

Input feature map

2 channels

$$3 \times 3 \times 2 \times 4 = 72$$
 parameters

1. Depthwise Convolution

$$3 \times 3 \times 2 = 18$$

2. Pointwise Convolution

$$2 \times 4 = 8$$

Convolutional layer...

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

#FLOPS=2*#MACC

Parameters

MACC (Multiply-accumulate)

 $1 K \times K \times C_{in} \times C_{out}$

 $K \times K \times C_{in} \times C_{out} \times W \times H$

(a) Standard Convolution Filters

 $K \times K \times 1 \times C_{in}$

 $K \times K \times 1 \times C_{out} \times W \times H$

(b) Depthwise Convolution Filters

 $1 \times 1 \times C_{in} \times C_{out}$

 $1 \times 1 \times C_{in} \times C_{out} \times W \times H$

(c) Pointwise Convolution Filters

Compression rate:

$$\frac{1}{C_{out}} + \frac{1}{K \times K}$$

$$\frac{1}{C_{out}} + \frac{1}{K \times K}$$
43

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

Table 1. MobileNet Body Architecture

Table 1. Modific Net Body 1 Heintecture							
Type / Stride	Filter Shape	Input Size					
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$					
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$					
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$					
Conv dw / s2	$3 \times 3 \times 64 \mathrm{dw}$	$112 \times 112 \times 64$					
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$					
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$					
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$					
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$					
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$					
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$					
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$					
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$					
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$					
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$					
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$					
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$					
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$					
Conv dw / s2	$3 \times 3 \times 1024 \mathrm{dw}$	$7 \times 7 \times 1024$					
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$					
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$					
FC / s1	1024×1000	$1 \times 1 \times 1024$					
Softmax / s1	Classifier	$1 \times 1 \times 1000$					

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Experiments on ImageNet

https://zhuogege1943.com/2019/06/16/Going-with-small-and-fast-networks-1/ for more information.

Automatically architecture search...

Neural Architecture Search with Reinforcement Learning, ICLR 2017

Architecture Design Softmax Neural Architecture Search with Reinforcement Learning, ICLR 2017 FH: 7 FW: 5 N: 48 FH: 7 FW: 5 N: 48 FH: 7 FW: 5 N: 48 FH: 7 FW: 7 N: 48 FH: 5 FW: 7 N: 36 FH: 7 FW: 7 N: 36 FH: 7 FW: 1 N: 36 FH: 7 FW: 3 N: 36 FH: 7 FW: 7 N: 48 FH: 7 FW: 7 N: 48 FH: 3 FW: 7 N: 48 FH: 5 FW: 5 N: 36 FH: 3 FW: 3 N: 36 FH: 3 FW: 3 N: 48 FH: 3 FW: 3 N: 36

Image

Neural Architecture Search with Reinforcement Learning, ICLR 2017

Model	Depth	Parameters	Error rate (%)
Network in Network (Lin et al., 2013)	_	-	8.81
All-CNN (Springenberg et al., 2014)	-	-	7.25
Deeply Supervised Net (Lee et al., 2015)	-	-	7.97
Highway Network (Srivastava et al., 2015)	-	-	7.72
Scalable Bayesian Optimization (Snoek et al., 2015)	-	-	6.37
FractalNet (Larsson et al., 2016)	21	38.6M	5.22
with Dropout/Drop-path	21	38.6M	4.60
ResNet (He et al., 2016a)	110	1.7M	6.61
ResNet (reported by Huang et al. (2016c))	110	1.7M	6.41
ResNet with Stochastic Depth (Huang et al., 2016c)	110	1.7M	5.23
	1202	10.2M	4.91
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24
DenseNet($L = 100, k = 12$) Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
DenseNet-BC $(L = 100, k = 40)$ Huang et al. (2016b)	190	25.6M	3.46
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65

Experiments on CIFAR-10

Learn more from the Survey paper:

https://arxiv.org/pdf/1808.05377

BlockDrop: Dynamic Inference Paths in Residual Networks, CVPR 2018

Block-wise dynamic pruning

Easier samples use fewer blocks

BlockDrop: Dynamic Inference Paths in Residual Networks, CVPR 2018

Dynamic Channel Pruning: Feature Boosting and Suppression, ICLR 2019

Channel-wise dynamic pruning

Why?

End to end optimization

Method	Dynamic	$rac{\Delta ext{ top}}{3 imes}$	o-5 erroi 4×	rs (%) 5×
Filter Pruning (Li et al. (2017), reproduced by He et al. (2017)))		8.6	14.6
Perforated CNNs (Figurnov et al., 2016)	,	3.7	5.5	
Network Slimming (Liu et al. (2017), our implementation)		1.37	3.26	5.18
Runtime Neural Pruning (Lin et al., 2017)	✓	2.32	3.23	3.58
Channel Pruning (He et al., 2017)		0.0	1.0	1.7
AutoML for Model Compression (He et al., 2018b)				1.4
ThiNet-Conv (Luo et al., 2017)		0.37		
Feature Boosting and Suppression (FBS)	✓	0.04	0.52	0.59

Experiments on ImageNet

Conclusion Remarks

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

zhuo.su@oulu.fi

Next session:

RNN, LSTM and Applications

