

Funções Inorgânicas: Bases

Resumo

Bases

I - Definição

Segundo Arrhenius, são substâncias inorgânicas que quando colocadas em presença de água sofrem dissociação iônica, liberando como único ânion a hidroxila (OH⁻).

$$XOH \xrightarrow{H_2O} X^+ + OH^-$$

II - Classificação

a) Quanto ao número de hidroxilas

Em função do número de hidroxilas(OH) liberadas quando sofrem dissociação iônica, uma base pode ser classificada como:

- Monobase - libera uma ânion OH

Ex.: NaOH
$$\xrightarrow{H_2O}$$
 Na⁺ + OH⁻

- Dibase - libera dois ânions OH-

Ex.:
$$Mg(OH)_2 \xrightarrow{H_2O} Mg^{+2} + 2 OH^{-1}$$

- Tribase - libera três ânions OH-

Ex.: Al(OH)₃
$$\xrightarrow{H_2O}$$
 Al⁺³ + OH⁻

- Tetrabase - libera quatro ânions OH-

Ex.:
$$Pb(OH)_4 \xrightarrow{H_2O} Pb^{+4} + OH^{-1}$$

b) Quanto à solubilidade em água

Solubilidade de uma base é a propriedade que indica o quanto uma base é capaz de se dissolver em água, ela pode ser classificada como:

- Solúvel - Possui grande capacidade de se dissolver em água. São as bases formadas por elementos da família IA e NH₄⁺.

- Parcialmente solúvel Pouco capaz de se dissolver em água. São as bases formadas por elementos da família IIA.
- Insolúvel Não é capaz de se dissolver em água. São as bases formadas pelos demais elementos.

c) Quanto a força

A força de uma base é dada pela sua capacidade de liberar OH⁻ (sofrer dissociação iônica) quando colocadas em presença de água, quanto maior a quantidade de OH- liberados, maior será a força da base.

- Forte São as bases formadas por elementos do grupo 1 e 2
- Fraca São as bases formadas pelos demais elementos.

IMPORTANTE: As bases formadas por $Mg(OH)_2$ e $Be(OH)_2$, que são elementos do grupo 2, são consideradas insolúveis e fracas.

III - Nomenclatura

- Elementos com NOX fixo:

Família IA, IIA, Ag⁺¹, Zn⁺², Cd⁺², Al⁺³ e NH₄⁺.

Hidróxido de nome do elemento

Ex.:

NaOH - Hidróxido de sódio

Mg(OH)₂ - Hidróxido de magnésio

Al(OH)₃ - Hidróxido de alumínio

- Elementos com NOX variável:

Fe, Co, Ni = +2 ou +3

Cu, Hg = +1 ou +2

Au = +1 ou +3

Pb, Pt, Sn = +2 ou +4

Hidróxido de <u>nome do elemento</u> + NOX(em romanos)

ou

Hidróxido de nome do elemento + sufixo OSO (menor NOX) / sufixo ICO (maior NOX)

Ex.:

CuOH - Cu com nox +1 - Hidróxido de cobre I ou Hidróxido cuproso

Cu(OH)₂- Cu com nox +2 - Hidróxido de cobre II ou Hidróxido cúprico

 $Pb(OH)_2$ - Pb com nox +2 - Hidróxido de chumbo II ou Hidróxido plumboso $Pb(OH)_4$ - Pb com nox +4 - Hidróxido de chumbo IV ou Hidróxido plúmbico

IV - Formulação das bases

Quando precisamos montar a fórmula de uma base a partir de seu nome, basta unir o cátion desejado ao ânion OH⁻.

Note que a carga total do OH- deverá anular a carga total do cátion.

Ex.

Hidróxido de cálcio

Ca⁺² e OH⁻

logo para anular a carga +2 do cálcio precisamos de 2 ânions OH-

 $Ca^{+2} + 2OH^{-} \rightarrow Ca(OH)_{2}$

Hidróxido férrico

Fe⁺³ e OH⁻

logo para anular a carga +3 do ferro precisamos de 3 ânions OH-

 $Fe^{+3} + 3OH^{-} \rightarrow Fe(OH)_{3}$

Quer ver este material pelo Dex? Clique aqui

Exercícios

- 1. Para desentupir um cano de cozinha e para combater a acidez estomacal, necessita-se respectivamente, de uma base forte e solúvel e de uma base fraca e parcialmente solúvel. Conclui-se que as fórmulas dessas bases podem ser:
 - a) $Ba(OH)_2 e Fe(OH)_3$.
 - **b)** Al(OH)₃ e NaOH.
 - c) KOH e Ba(OH)₂.
 - d) $Cu(OH)_2 e Mg(OH)_3$.
 - e) NaOH e Mg(OH)₂.
- 2. O hidróxido de sódio é um sólido iônico branco, altamente higroscópico. Sendo uma base muito forte, possui efeito altamente corrosivo sobre a pele. A fórmula química do hidróxido de sódio é ________ e, quanto à força podemos classificá-la como uma base ______.
 - a) NaOH e forte.
 - b) NaOH e fraco.
 - c) KOH e forte.
 - d) KOH e fraco.
 - e) $Ca(OH)_2$ e forte.
- **3.** Os hidróxidos de sódio, cálcio, alumínio e magnésio são bases utilizadas com diferentes números de hidroxilas (OH). Assinale a alternativa que define corretamente estas bases na sequência indicada.
 - a) Monobase, dibase e monobase.
 - b) Monobase, monobase, tribase e dibase.
 - c) Dibase, dibase, tribase e dibase.
 - d) Tribase, monobase, monobase e monobase.
 - e) Monobase, dibase, tribase e dibase.
- **4.** Entre as bases KOH, Mg(OH)₂, NaOH, Al(OH)₃, Fe(OH)₂, LiOH, indique quais são praticamente insolúveis em água:
 - a) Fe(OH)₂ e LiOH
 - **b)** Al(OH)₃ e LiOH
 - c) Mg(OH)₂, NaOH, Al(OH)₃
 - **d)** Mg(OH)₂, Al(OH)₃, Fe(OH)₂
 - e) KOH, NaOH, LiOH

- **5.** Assinale a alternativa que enuncia as nomenclaturas corretas das seguintes bases, respectivamente: NaOH, Mg(OH)₂, Ca(OH)₂ e Al(OH)₃:
 - a) Mono-hidróxido de sódio, Di-hidróxido de magnésio, Di-hidróxido de cálcio, Tri-hidróxido de alumínio.
 - b) Hidróxido de sódio, hidróxido de magnésio, hidróxido de cálcio, hidróxido de alumínio.
 - c) Hidróxido de sódio, hidróxido de magnésio II, hidróxido de cálcio II, hidróxido de alumínio III.
 - d) Hidróxido sódico, hidróxido magnésico, hidróxido cálcico, hidróxido alumínico.
 - e) Hidróxido de sódio, hidróxido de magnésio I, hidróxido de cálcio, hidróxido de alumínio.
- **6.** Na decomposição térmica do calcário (CaCO₃), obtêm-se um gás e um sólido branco chamado de cal viva ou virgem, que, por sua vez, ao reagir com água, forma a CAL EXTINTA, cuja fórmula é:
 - a) CaC₂
 - **b)** $Ca(OH)_2$
 - **c)** CaO
 - **d)** CO₂
 - **e)** H₂CO₃
- 7. A soda cáustica pode ser usada no desentupimento de encanamentos domésticos e tem, em sua composição, o hidróxido de sódio como principal componente, além de algumas impurezas. A soda normalmente é comercializada na forma sólida, mas que apresenta aspecto "derretido" quando exposta ao ar por certo período.
 - O fenômeno de "derretimento" decorre da
 - a) absorção da umidade presente no ar atmosférico.
 - b) fusão do hidróxido pela troca de calor com o ambiente.
 - c) reação das impurezas do produto com o oxigênio do ar.
 - d) adsorção de gases atmosféricos na superfície do sólido.
 - e) reação do hidróxido de sódio com o gás nitrogênio presente no ar.
- 8. A dissolução de uma certa substância em água é representada pela equação:

$$M(OH)_2 + n H_2O \rightarrow M^{+2} + 2 OH^{-1}$$

- a base que pode representar a dissolução é a de:
- a) hidróxido de amônio
- b) hidróxido de alumínio
- c) hidróxido de sódio
- d) hidróxido de cálcio
- e) hidróxido plúmbico

- **9.** Com relação às propriedades das bases de Arrhenius, assinale a alternativa correta:
 - a) O hidróxido de amônio é uma base não metálica, insolúvel em água.
 - b) Os metais alcalinos formam monobases com baixo grau de dissociação.
 - c) As bases formadas pelos metais alcalinos terrosos são fortes, visto que são moleculares por natureza.
 - d) Os hidróxidos dos metais alcalinos terrosos são pouco solúveis em água.
 - e) Uma base é tanto mais forte quanto sua quantidade de OH em sua fórmula.
- **10.** A dissolução de uma certa substância em água é representada pela equação abaixo:

$$H_2O$$

M(OH)₃(s) \rightarrow M³⁺(aq) + 3 OH⁻(aq)

Pode representar a dissolução de:

- a) amônia.
- b) hidróxido de cálcio.
- c) hidróxido de sódio.
- d) hidróxido de alumínio.
- e) brometo de hidrogênio.

Gabarito

1. E

Necessita-se respectivamente, de uma base forte e solúvel (NaOH- Na é um metal alcalino) e de uma base fraca e parcialmente solúvel (MgOH₂ -o hidróxido de magnésio é uma base fraca e parcialmente solúvel mesmo sendo um proveniente de um metal alcalino terroso)

2. A

Todas as bases formadas por metais alcalinos (grupo 1) serão classificadas como bases fortes e são solúveis em meio aquoso.

3. E

Hidróxidos de sódio - NaOH; hidróxido de cálcio-Ca(OH) $_2$; hidróxido de alumínio Al(OH) $_3$ e hidróxido de magnésio Mg(OH) $_2$

4. D

Para resolução desta questão bastava se lembrar que as bases formadas por metais do Grupo 1 serão solúveis.

5. B

Para se nomear uma base basta escrever hidróxido + de + nome do elemento (para casos de nox não variado)

6. B

```
CaCO_3 \rightarrow CO_2 + CaO

CaO + H_2O \rightarrow Ca(OH)_2
```

7. A

Ocorre a reação da base com a água presente no ar. Vale lembrar que bases do grupo 1 são solúveis.

8. D

$$Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}$$

9. D

Erros em vermelho

- a) O hidróxido de amônio é uma base não metálica, insolúvel em água.
- b) Os metais alcalinos formam monobases com baixo grau de dissociação.
- c) As bases formadas pelos metais alcalinos terrosos são fortes, visto que são moleculares por natureza.
- As bases formadas por $Mg(OH)_2$ e $Be(OH)_2$, que são elementos da família IIA, são consideradas insolúveis e fracas.
- d) Os hidróxidos dos metais alcalinos terrosos são pouco solúveis em água.

e) Uma base é tanto mais forte quanto sua quantidade de OH em sua fórmula. Não, a força se da pelo seu grau de dissociação.

10. D