Bayes Classifiers

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"Science is the systematic classification of experience" -George Henry Lewes

What is the simplest classifier?

*This lesson refers to chapter 8 of the GIDS book

Content of this lesson

- Bayes Classifiers
 - Motivation
 - Naive Bayes classifiers
 - Full Bayes classifiers
 - Naive vs. Full Bayes classifiers

Datasets

- Datasets used : adult dataset
- Example Workflows:
 - "Naive Bayes" https://kni.me/w/0oyhMdWYK5w19xGj
 - Naive Bayes classifier

Bayes Classifiers

Motivation

Given data $\mathcal{D} = \{(x_i, Y_i) | i = 1, 2, ..., n\}$ x_i : Object description Y_i : Target attribute

- Instead of finding structure in a data set, let's focus on (unknow) dependency among attributes
- Bayes classifiers express their model as simple probabilities
- Can be used as a gold standard for evaluating other learning methods
- → Any model should perform the same or better than a Naïve Bayes classifier

Bayes Theorem

- The conditional probability P(h|E), hypothesis h is true given event E

$$P(h|E) = \frac{P(E|h) \cdot P(h)}{P(E)}$$

- -P(h): Probability of hypothesis h
- -P(E): Probability of event E
- -P(E|h): Conditional probability of event E given hypothesis h

Choosing Hypotheses

- We want the most probable hypothesis $h \in H$ for a given event E
- → Maximum a posteriori hypothesis (MAP):

$$h_{MAP} = \arg \max_{h \in H} P(h|E)$$

$$= \arg \max_{h \in H} \frac{P(E|h) \cdot P(h)}{P(E)} = \arg \max_{h \in H} P(E|h) \cdot P(h)$$

Maximum Likelihood Hypothesis

- If we can assume that every hypothesis $h \in H$ is equally likely

- In other words,
$$P(h_i) = P(h_j)$$
 for all $h_i, h_j \in H$

Then we can get the maximum likelihood hypothesis

$$h_{ML} = \arg\max_{h \in H} P(E|h)$$

Naïve Bayes Classifiers

Bayes Classifiers

- Probability P(h) can be estimated based given data \mathcal{D}

$$P(h) = \frac{\# \ class \ h}{\# \ total}$$

- Probability P(E|h) can be determined based on attributes A_1, A_2, \cdots, A_m being $E = (a_1, a_2, \cdots, a_m)$

$$P(E|h) = \frac{\# \ class \ h \ with \ attributes(a_1, a_2, \cdots, a_m)}{\# \ class \ h}$$

Bayes Classifiers

Problem:

- Not all combinations of A_1 , A_2 , \cdots , A_m may be observed
 - For 10 nominal attributes with 3 possible values for each attribute, there are $3^{10} = 59049$ possible combinations!

Solution:

Naïve, unrealistic assumption that attributes are independent given the class

$$P(E = (a_1, a_2, \dots, a_m)|h) = P(a_1|h) \cdot \dots \cdot P(a_1|h) = \prod_{a_i \in E} P(a_i|h)$$

- Where $P(a_i|h)$ can be computed easily as

$$P(a_i|h) = \frac{\# class \ h \ with \ A_i = a_i}{\# class \ h}$$

Naïve Bayes Classifiers

Given a data set with only *nominal* attributes

For attributes $E = (a_1, a_2, \dots, a_m)$, the predicted class $h \in H$ is derived:

- Compute the likelihood L(h|E) under the assumption that A_1, A_2, \cdots, A_m are independent given the class

$$L(h|E) = \prod_{a_i \in E} P(a_i|h) \cdot P(h)$$

- Assign E to the class $h \in H$ with the highest likelihood

$$pred(E) = arg \max_{h \in H} L(E|h)$$

Naïve Bayes Classifiers

- This classifier is called <u>naïve</u> because of the conditional independence assumption among A_1, A_2, \cdots, A_m
- Needless to say, this is an unrealistic assumption in most cases
- But a naïve Bayes classifier often yields good results
- Especially when not too many attributes are correlated

Example

Given the dataset \mathcal{D} :

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	I	У	f
3	t	h	n	m
4	S	n	У	f
5	t	n	У	f
6	S	I	n	f
7	S	h	n	m
8	m	n	n	f
9	m		У	f
10	t	n	n	m

we want to predict the sex $(\underline{male} \text{ or } \underline{female})$ of a person $\mathbf x$ with the following attribute values:

$$\mathbf{x} = (\mathsf{Height} = \underline{t}all, \mathsf{Weight} = \underline{l}ow, \mathsf{Long} \; \mathsf{hair} = yes)$$

Example

We need to calculate

$$\begin{split} L(\mathsf{Sex} = m | \mathsf{Height} = t, \mathsf{Weight} = l, \ \mathsf{Long} \ \mathsf{hair} = y) \\ &= P(\mathsf{Height} = t | \mathsf{Sex} = m) \cdot \\ P(\mathsf{Weight} = l | \mathsf{Sex} = m) \cdot \\ P(\mathsf{Long} \ \mathsf{hair} = y | \mathsf{Sex} = m) \cdot \\ P(\mathsf{Sex} = m) \end{split}$$

and

$$\begin{split} L(\mathsf{Sex} = f | \mathsf{Height} = t, \mathsf{Weight} = l, \ \mathsf{Long} \ \mathsf{hair} = y) \\ &= P(\mathsf{Height} = t | \mathsf{Sex} = f) \cdot \\ P(\mathsf{Weight} = l | \mathsf{Sex} = f) \cdot \\ P(\mathsf{Long} \ \mathsf{hair} = y | \mathsf{Sex} = f) \cdot \\ P(\mathsf{Sex} = f). \end{split}$$

$$P(\mathsf{Sex} = m) = 4/10 = 2/5$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	1	У	f
3	t	h	n	m
4	S	n	У	f
5	t	n	У	f
6	S	1	n	f
7	S	h	n	m
8	m	n	n	f
9	m	I	у	f
10	t	n	n	m

$$P(\mathsf{Height} = t | \mathsf{Sex} = m) = 2/4 = 1/2$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	I	у	f
3	t	h	n	m
4	S	n	у	f
5	t	n	У	f
6	S	I	n	f
7	S	h	n	m
8	m	n	n	f
9	m	I	у	f
10	t	n	n	m

$$P(\mathsf{Weight} = l | \mathsf{Sex} = m) = 0/4 = 0$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	I	У	f
3	t	h	n	m
4	S	n	У	f
5	t	n	У	f
6	S	I	n	f
7	S	h	n	m
8	m	n	n	f
9	m	I	У	f
10	t	n	n	m

$$P(\mathsf{Long\ hair} = y | \mathsf{Sex} = m) = 0/4 = 0$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	1	У	f
3	t	h	n	m
4	S	n	у	f
5	t	n	у	f
6	S	1	n	f
7	S	h	n	m
8	m	n	n	f
9	m	1	у	f
10	t	n	n	m

Example

$$L(\mathsf{Sex} = m | \mathsf{Height} = t, \mathsf{Weight} = l, \; \mathsf{Long} \; \mathsf{hair} = y)$$

$$= \frac{2}{4} \cdot \frac{0}{4} \cdot \frac{0}{4} \cdot \frac{4}{10} = \frac{1}{2} \cdot 0 \cdot 0 \cdot \frac{2}{5} = 0$$

 \Rightarrow the likelihood of person x being a men is 0.

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
3	t	h	n	m
4	S	n	у	f
5	t	n	у	f
6	S		n	f
7	S	h	n	m
8	m	n	n	f
9	m		у	f
10	t	n	n	m

$$P(Sex = f) = 6/10 = 3/5$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	1	У	f
3	t	h	n	m
4	S	n	у	f
5	t	n	у	f
6	S	1	n	f
7	S	h	n	m
8	m	n	n	f
9	m	1	у	f
10	t	n	n	m

$$P(\mathsf{Height} = t | \mathsf{Sex} = f) = 1/6$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	1	У	f
3	t	h	n	m
4	S	n	y	f
5	t	n	y	f
6	S	1	n	f
7	S	h	n	m
8	m	n	n	f
9	m	1	y	f
10	t	n	n	m

$$P(\mathsf{Weight} = l | \mathsf{Sex} = f) = 3/6 = 1/2$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	1	y	f
3	t	h	n	m
4	S	n	y	f
5	t	n	y	f
6	S	1	n	f
7	S	h	n	m
8	m	n	n	f
9	m	1	y	f
10	g	n	n	m

$$P(\text{Long hair} = y | \text{Sex} = f) = 4/6 = 2/3$$

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	1	У	f
3	t	h	n	m
4	S	n	y	f
5	t	n	у	f
6	S	1	n	f
7	S	h	n	m
8	m	n	n	f
9	m	1	у	f
10	t	n	n	m

Example

$$\begin{split} L(\text{Sex} &= f|\text{Height} = t, \text{Weight} = l, \text{ Long hair} = y) \\ &= \frac{1}{6} \cdot \frac{3}{6} \cdot \frac{4}{6} \cdot \frac{6}{10} = \frac{1}{6} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{5} = \frac{1}{30} > 0 \end{split}$$

 \Rightarrow the likelihood of person x being a female is $\frac{1}{30}$.

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	I	У	f
3	t	h	n	m
4	S	n	У	f
5	t	n	У	f
6	S	I	n	f
7	S	h	n	m
8	m	n	n	f
9	m		У	f
10	t	n	n	m

Example

$$L(\mathsf{Sex} = f | \mathsf{Height} = t, \mathsf{Weight} = l, \mathsf{Long hair} = y) = \frac{1}{30}$$

$$L(Sex = m|Height = t, Weight = l, Long hair = y) = 0$$

Classification of person

$$\mathbf{x} = (\mathsf{Height} = \underline{t}all, \mathsf{Weight} = \underline{l}ow, \mathsf{Long} \; \mathsf{hair} = \underline{y}es)$$

as female (f).

Notice

The data set \mathcal{D} does not contain any object with this combination of values.

 \Rightarrow A full Bayes classifier would not be able to classify this object.

- The object (m, n, n) is classified as m although the data sets contains two such objects, one from class m and one from class f.
- The main impact comes from the attribute $Long\ hair = n$, having probability 1 in class m, but a low probability in class f.

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S	I	У	f
3	t	h	n	m
4	S	n	у	f
5	t	n	у	f
6	S		n	f
7	S	h	n	m
8	m	n	n	f
9	m	I	У	f
10	t	n	n	m

Input	$L(m \ldots)$	$L(f \ldots)$	Class
(m,n,n)	$\frac{1}{4} \cdot \frac{2}{4} \cdot \frac{4}{4} \cdot \frac{4}{10} = \frac{1}{20}$	$\frac{2}{6} \cdot \frac{3}{6} \cdot \frac{2}{6} \cdot \frac{6}{10} = \frac{1}{30}$	m

- The object (t, h, y) cannot be classified since the likelihood is zero for both classes

ID	Height	Weight	Long hair	Sex
1	m	n	n	m
2	S		У	f
3	t	h	n	m
4	S	n	У	f
5	t	n	у	f
6	S		n	f
7	S	h	n	m
8	m	n	n	f
9	m		y	f
10	t	n	n	m

Input	$L(m \ldots)$	$L(f \ldots)$	Class
(t,h,n)	$\frac{2}{4} \cdot \frac{2}{4} \cdot \frac{4}{4} \cdot \frac{4}{10} = \frac{1}{10}$	$\frac{1}{6} \cdot \frac{0}{6} \cdot \frac{2}{6} \cdot \frac{6}{10} = 0$	m
(t,h,y)	$\frac{2}{4} \cdot \frac{2}{4} \cdot \frac{0}{4} \cdot \frac{4}{10} = 0$	$\frac{1}{6} \cdot \frac{0}{6} \cdot \frac{4}{6} \cdot \frac{6}{10} = 0$?

Laplace Correction

 If a single likelihood is zero, then the overall likelihood is zero automatically, even then when the other likelihoods are high

Input	$L(m \ldots)$	$L(f \ldots)$	Class
(t,h,y)	$\frac{2}{4} \cdot \frac{2}{4} \cdot \frac{0}{4} \cdot \frac{4}{10} = 0$	$\frac{1}{6} \cdot \frac{0}{6} \cdot \frac{4}{6} \cdot \frac{6}{10} = 0$?

Solution: Laplace correction γ

$$P(y) = \frac{n_y}{n} \Longrightarrow \widehat{P}(y) = \frac{\gamma + n_y}{\gamma \cdot |dom(Y)| + n}$$

$$P(x|y) = \frac{n_{yx}}{n_y} \Longrightarrow \widehat{P}(x|y) = \frac{\gamma + n_{yx}}{\gamma \cdot |dom(X)| + n_y}$$

$$P(y) = \frac{n_y}{n} \quad \Rightarrow \quad$$

$$r|y) = \frac{n_{hx}}{n_y} \Rightarrow$$

n no. of data

 n_{ν} no of data from class y

 n_{yx} no. of data from class y with value x for attribute X

dom(X) no. of distinct values in X

Laplace Correction

Example

Laplace correction for $P(\mathsf{Height} = \dots | \mathsf{Sex} = m)$ with $\gamma = 1$

$$\hat{P}(s|m) = \frac{\gamma + n_{ms}}{\gamma \cdot |dom(Height)| + n_m} = \frac{1+1}{1 \cdot 3 + 4} = \frac{2}{7}$$

Height	#	$\#_{Laplace}$	P	\hat{P}
S	1	2	1/4	2/7
m	1	2	1/4	2/7
t	2	3	2/4	3/7

Notice

- $\gamma = 0$: Maximum likelihood estimation
- Common choices: $\gamma = 1$ or $\gamma = \frac{1}{2}$

Naïve Bayes Classifier: Implementation

- Frequency tables are generated when constructing a naïve Bayes classifier
- Probability distribution of each attribute can be obtained from the frequency table
- To learn from a naïve Bayes classifier, corresponding frequencies are multiplied from the tables

Treatment of Missing Values

- <u>During learning</u>: The missing values are simply not counted for the frequencies of the corresponding attribute.
- <u>During classification</u>: Only the probabilities (likelihoods) of those attributes are multiplied for which a value is available.

Numerical Attributes

- Assume a normal distribution for a numerical attribute X

$$f(x|y) = \frac{1}{\sqrt{2\pi}\sigma_{X|y}} \exp\left(-\frac{\left(x - \mu_{X|y}\right)^2}{2\sigma_{X|y}^2}\right)$$

Estimation of the mean value

$$\widehat{\mu}_{X|y} = \frac{1}{n_v} \sum_{i=1}^n \tau(y_i = y) \cdot \boldsymbol{x}_i[X]$$

Estimation of the variance

$$\hat{\sigma}_{X|y}^{2} = \frac{1}{n'_{y}} \sum_{i=1}^{n} \tau(y_{i} = y) \cdot (\mathbf{x}_{i}[X] - \hat{\mu}_{X|y})^{2}$$

 $n'_y = n_y$: Maximum likelihood estimation

 $n_y' = n_y - 1$: Unbiased estimation

 $\tau(y_i = y) = \begin{cases} 1 & if \ true \\ 0 & else \end{cases}$

Example: Numerical Attributes

- 100 data points, 2 classes
- Small squares: class mean
- Inner ellipses: 1 s.d. from the mean
- Outer ellipses: 2 s.d. from the mean
- Classes overlap → classification is not perfect

Naïve Bayes classifier

Naïve Bayes Classifier: Iris Data

- 150 data points, 3 classes
 - Iris setosa (red)
 - Iris versicolor (green)
 - Iris virginica (blue)
- 4 numerical attributes
 - Sepal length
 - Sepal width
 - Petal length (shown on x-axis)
 - Petal width (shown on y-axis)
- 6 mis-classification on the training data

Naïve Bayes classifier

Example: Numerical Attributes

- 20 data points, 2 classes
- Small squares: class mean
- Inner ellipses: 1 s.d. from the mean
- Outer ellipses: 2 s.d. from the mean
- Attributes are not conditionally independent given the class

Naïve Bayes classifier

- Restricted to numeric or metric attributes only the target is nominal
- Each class can be described by a multivariate normal distribution:

$$f(\boldsymbol{x}_{M}|\boldsymbol{y}) = \frac{1}{\sqrt{(2\pi)^{m} |\boldsymbol{\Sigma}_{X_{M}|\boldsymbol{y}}|}} \exp\left(-\frac{(\boldsymbol{x}_{M} - \mu_{X_{M}|\boldsymbol{y}})^{\mathrm{T}} \boldsymbol{\Sigma}_{X_{M}|\boldsymbol{y}}^{-1} (\boldsymbol{x}_{M} - \mu_{X_{M}|\boldsymbol{y}})}{2}\right)$$

 X_M : set of metric attributes

 x_M : attribute vector

 $\mu_{X_M|y}$: mean value vector for class y

 $\Sigma_{X_M|y}$: covariance matrix for class y

Joint distribution with covariance among attributes

→ Conditional independence no longer holds

Estimation of the (class-conditional) mean value vector

$$\widehat{\mu}_{X|y} = \frac{1}{n_y} \sum_{i=1}^{n} \tau(y_i = y) \cdot x_i[X_M]$$

Estimation of the (class-conditional) covariance matrix

$$\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}_{M}|\boldsymbol{y}} = \frac{1}{n'_{\boldsymbol{y}}} \sum_{i=1}^{n} \tau(\boldsymbol{y}_{i} = \boldsymbol{y}) \times (\boldsymbol{x}_{i}[\boldsymbol{X}_{M}] - \widehat{\mu}_{\boldsymbol{X}_{M}|\boldsymbol{y}}) (\boldsymbol{x}_{i}[\boldsymbol{X}_{M}] - \widehat{\mu}_{\boldsymbol{X}_{M}|\boldsymbol{y}})^{T}$$

 $n_y' = n_y$: Maximum likelihood estimation

 $n_y' = n_y - 1$: Unbiased estimation

Iris data revisited

- 150 data points, 3 classes
 - Iris setosa (red)
 - Iris versicolor (green)
 - Iris virginica (blue)
- 4 numerical attributes
 - Sepal length
 - Sepal width
 - Petal length (shown on x-axis)
 - Petal width (shown on y-axis)
- 2 mis-classification on the training data

Full Bayes classifier

Naive vs. Full Bayes Classifiers

Naïve vs. Full Bayes Classifiers

 Naïve Bayes classifiers for numerical data → full Bayes classifiers with diagonal covariance matrices

Naïve Bayes classifier

Full Bayes classifier

Naïve vs. Full Bayes Classifiers

Iris data

Naïve Bayes classifier

Full Bayes classifier

Summary

Pros:

- Gold standard for comparison with other classifiers
- High classification accuracy in many applications
- Classifier can easily be adapted to new training objects
- Integration of domain knowledge

Cons:

- The conditional probabilities my not be available
- Independence assumptions might not hold for data set

Practical Examples with KNIME Analytics Platform

Naïve Bayes classification of the income on the adult data

 Naïve Bayes Learner node showing conditional probabilities and distributions involved in the decision process

Thank you

For any questions please contact: education@knime.com