마<u>이크로컴퓨터 응용 STM32F407 SP</u>I

STM32F407 SPI

한국산업기술대학교 메카트로닉스공학과 마이크로컴퓨터응용 담당교수: 남윤석 마<u>이크로컴퓨터 응용 STM32F407 SP</u>I

1. SPI(Serial Peripheral Interface) 개요

- MCU(CPU)와 MCU(CPU), MCU(CPU)와 ADC 또는 EEPROM 같은 주변 소자와의 직렬 데이터 통신을 위해 개발한 근거리용 통신 규격
- CS(Chip Select), CLK, Data_In, Data_Out의 4개의 신호선을 이용하여 고속의 동기식 직렬 통신(20 Mbps 이상의 고속 전송)

마이크로컴퓨터 응용 <u>STM32F407 SP</u>I

2. STM32F407의 SPI 주요 사양

- 총 3개 모듈(SPI1, SPI2, SPI3) 내장
- 3라인(DO,DI,CLK)으로 Full-duplex 동기식 전송
- 전송프레임 형식 선택: 8 or 16bit
- 마스터 또는 슬레이브로 동작 설정 가능
- 8가지 전송속도 선택 가능(마스터모드 보레이트 프리스케일러 (fPCLK/2 max))
- 슬레이브 모드 주파수 (fPCLK/2 max)
- 마스터가 데이터를 송신 또는 수신을 하더라도 클럭은 항상 마스터에서 발생
- 하나의 문자를 전송할 때, LSB 우선 또는 MSB 우선으로 선택적 전송이 가능
- Clock polarity and phase 선택 가능
- 전송 완료를 알리는 인터럽트 플래그와 쓰기 충돌 방지를 위한 플 래그가 내장

Event: 'TX empty' and 'RX full' 등 flag (인터럽트 가능)
'SPI bus busy' status flag

마이크로컴퓨터 응용 <u>STM32F407 SP</u>I

- Hardware CRC (에러 체크) 기능
- CRC 값은 Tx mode시 마지막 byte로 전송
- Rx 시 자동으로 CRC error checking
- Error/Fault: Master mode fault, overrun, CRC error flags (인터럽 트가능)
- NSS management by hardware or software for both master and slave: dynamic change of master/slave operations

마이크로컴퓨터 응용 STM32F407 SPI

3. STM32F407의 SPI 구성과 동작

마<u>이크로컴퓨터 응용 STM32F407 SP</u>I

3.2 SPI 모듈의 핀 구성

•MISO: Master In(RX) / Slave Out(TX) data

•MOSI: Master Out(TX) / Slave In(RX) data

•SCK: Serial Clock (SPI masters 에서 출력, SPI slaves로 입력)

•NSS: Slave select

- Optional pin to select a slave device

- SPI master가 각 slave와 개별적으로 통신하기 위한 'Chip Select'

- NSS 핀은 software모드로 사용 시 사용 안 함

SPI 핀	마스터 모드	슬레이브 모드
MOSI	출력(사용자 설정)	입력
MISO	입력	출력(사용자 설정)
SCK	출력(사용자 설정)	입력
/SS	출력(사용자 설정)	입력

마이크로컴퓨터 응용

STM32F407 SPI

3.3 SPI 동작

- MOSI(MASTER) ←→ MOSI(SLAVE) MISO(MASTER) ←→ MISO(SLAVE)
- 통신은 항상 마스터가 시작
 - :마스터가 MOSI 를 통해 슬레이브에 데이터 송신, 슬레이브는

MISO를 통해 마스터에 데이터를 송신(SCK 클럭을 가진 동기 full-duplex 통신)

4. Slave select (NSS) pin management

- Management bit : SPI→CR1.SSM
- Software NSS management (SSM = 1)
- : SPI→CR1.SSI에 의해 slave chip select 신호 발생 (이때 NSS pin은 free)

Slave MCU에서는 SPI→CR1.SSI=0 로 설정 Master MCU에서는 SPI→CR1.SSI=1 로 설정

- Hardware NSS management (SSM = 0) SPI→CR1.SSOE 에 따른 2가지 방법
 - (1) NSS output enabled (SSM = 0, SSOE = 1)
 - 디바이스가 마스터 모드일 때 사용
- 마스터가 통신시작시 NSS은 'low', SPI가 disable될 때까지 'low' 유지 (즉, SPI 송신명령 실행시 자동으로 NSS 핀이 'low')
- (2) \overrightarrow{NSS} output disabled ($\overrightarrow{SSM} = 0$, $\overrightarrow{SSOE} = 0$)
 - 마스터 모드에서 'multi-master 기능' 가능
 - 슬레이브 모드에서 NSS 핀은 'chip select' 기능으로 사용: NSS가 low이면 디바이스(슬레이브) 선택됨

NSS가 high이면 디바이스(슬레이브) 선택안됨

5. SPI Clock phase and Clock polarity

- SPI→CR1.CPOL 0:CK to 0 when idle 1:CK to 1 when idle
- SPI→CR1.CPHA
 0:1st CK transition에서
 data capture
 1: 2nd CK transition에서
 data capture
- SPI→CR1.LSBFIRST : MSB-first or LSB-first 선택
- · SPI→CR1.DFF : 8 or 16 bits 선택

마<u>이크로컴퓨터 응용 STM32F407 SPI</u>

● CPOL (clock polarity)과 CPHA (clock phase) bit 결합으로 'data capture clock edge'를 선택 (4가지)

- · CPOL 비트
 - 0 : clock의 기본 상태가 0
 - 1: clock의 기본 상태는 1
- · CPHA 비트
 - 0 : 매 Clock 의 첫 번째 edge에서 데이터가 샘플링
 - -1: 두 번째 edge 에서 데이터가 샘플링

마<u>이크로컴퓨터 응용 STM32F407 SP</u>I

6. SPI Master mode 설정

- ① SPIx→CR1.BR [2:0] 비트를 선택하여 <u>클럭 속도</u>정의
- ② CPOL 및 CPHA 비트를 선택하여 데이터 전송과 클럭 간의 네 가지 관계 중 하나를 정의
- ③ SPIx→CR1.DFF 비트를 설정하여 8 비트 또는 16 비트 데이터 프 레임 형식을 정의
- ④ 프레임 포맷을 정의하기 위해 SPIx→CR1.LSBFIRST 비트 설정
- ⑤ NSS pin: Input mode 인 경우
 - H/W mode인 경우: NSS 핀을 'H'에 연결
 - S/W mode인 경우: SPIx→CR1.SSM 및 SSI 비트 설정
 - NSS pin: Output mode인 경우
 - SPIx→CR1.SSOE 설정
- ⑥ SPIx→CR1.MSTR(Master/Slave selection) 및 SPIx→CR1. SPE (SPI enable/disable) 비트 설정
- * MOSI 핀은 데이터 출력, MISO 핀은 데이터 입력

마<u>이크로컴퓨터 응용 STM32F407 SP</u>I

Transmit sequence

- ① 데이터(1 byte)가 Tx Buffer(SPIx→DR)에 write (coding)
- ② 데이터는 Tx Buffer에서 shift register로 이동
 - SPI $x \rightarrow$ SR.TXE = 0
 - Interrupt 발생 if SPI→CR2.TXEIE is set
- ③ 직렬로 MOSI pin을 통해 출력

Receive sequence

- ① 상대방(slave)이 보낸 데이터가 MISO pin을 통해 shift register에 도착
- ② Shift register 에 있는 데이터는 RX Buffer(SPIx→DR)에 이동
 - SPI $x \rightarrow$ SR.RXNE = 1
 - Interrupt 발생 if SPIx→CR2.RXNEIE = 1
- ③ Reading SPIx→DR (coding)
 - SPI $x \rightarrow$ SR.RXNE = 0

마이크로컴퓨터 응용

- 종합하면, Start sequence in master mode
- : In full-duplex (BIDIMODE=0 and RXONLY=0)
- $Tx_data(1 byte) \rightarrow SPIx \rightarrow DR(Tx buffer) \rightarrow Shift register \rightarrow$
- **MOSI** pin
- -동시에, Rx_data(1 byte)→ MISO pin → Shift register → SPIx→DR (Rx buffer)
- Event 발생
- TXE flag (Tx buffer empty) = 1 이 됨
 when SPIx→DR(Tx buffer) → Shift register (Interrupt 발생 if SPIx→CR2.TXEIE = 0)
- BSY flag can be used during the last data transfer to wait until the completion of the transfer

마이크로컴퓨터 응용 <u>STM32F407 SP</u>I

- •Full-duplex transmit and receive procedure in master (BIDIMODE=0 and RXONLY=0)
- 1. $SPIx \rightarrow CR1.SPE = 1$ to enable SPIx
- 2. $SPIx \rightarrow DR = 1^{st} Tx data (this clears the TXE flag)$
- 3. Wait until TXE=1 & SPIx→DR = 2nd Tx data
 Wait until RXNE=1 & Reading SPIx→DR to get 1st Rx data (this clears the RXNE bit)

Repeat this operation for each data item to be transmitted /received until the n-1 received data

- 4. Wait until RXNE=1 and read the last Rx data
- 5. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI (SPIx \rightarrow CR1.SPE=0)
- * 처음 보내는 Tx data(명령)는 그것에 대한 답변이 없고, 두번째 data를 보내면 그 때서야 첫번째 Tx data(명령)에 대한 Rx data(답변) 가 수신됨

Example in Master mode with CPOL=1, CPHA=1

Selecting an Alternate function

Selecting an alternate function on STM32F405xx/07xx and STM32F415xx/17xx

For pins 0 to 7, the GPIOx_AFRL[31:0] register selects the dedicated alternate function

For pins 8 to 15, the GPIOx_AFRH[31:0] register selects the dedicated alternate function

7. SPI 레지스터 7.1 Register Map

Table 127. SPI register map and reset values

Table I	Zi. SPilegis	ster map and reset values																
Offset	Register	31 30 30 28 28 28 27 27 27 27 28 29 20 21 19 19 19	15	14	13	12	7	10	6	8	7	9	5	4	ဗ	2	-	0
0x00	SPI_CR1	Reserved	BIDIMODE	BIDIOE	CRCEN	CRCNEXT	DFF	RXONLY	SSM		3	SPE	BF	R [2:	0]	MSTR	CPOL	СРНА
	Reset value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x04	SPI_CR2	Reserved					•				TXEIE	RXNEIE	ERRIE	FRF	Reserved	SSOE	TXDMAEN	O RXDMAEN
	Reset value									Ī	0	0	0	0	_	0	0	0
0x08	SPI_SR	Reserved							Ĺ	H.	BSY	OVR	MODE	CRCERR	UDB	CHSIDE	TXE	RXNE
	Reset value								ı	0	0	0	0	0	0	0	1	0
0x0C	SPI_DR	Reserved							Ď	R[1	5:0							╗
0,00	Reset value	116361764	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	SPI_CRCPR Reset value	Reserved	0	0	0	0	0	0	RC 0	POI 0	0 LY[15:0 0	0	0	0	1	1	1
0x14	SPI_RXCRCR	Reserved							RxC	RC	[15	5:0]						
OX11	Reset value	Ticocirca	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x18	SPI_TXCRCR	Reserved	Ļ	_	_		_	_			[15]				_	_	_	
	Reset value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1C	SPI_I2SCFGR	Reserved					ISSMOD	ISSE	12SCFG		PCMSYNC	Reserved	DSSTD		CKPOL	DATLEN		CHEN
'	Reset value					t	0	0	0	0	0	ш.	0	0	0	0	0	0
0x20	SPI_I2SPR	Reserved							≥	ODD		•	-	125[DIV		_	
	Reset value								0	0	0	0	0	0	0	0	1	0

CPOL

W

CPHA

rw

MSTR

IW

7.2 SPI 주요 레지스터

NEXT

SPI Control register 1 (SPIx_CR1): Reset value: 0x0000 0000

ΕN

MODE

ſW

0E

bidirectional mode

15 14 BIDI BIDI CRC CRC RXLSB

SSM

ſW

SS

SPE

FIRST

BR [2:0]

IW

W

D'4 1		DE	D. 1.	4 •		4	1	
					1			 _

DFF

Bit 15 BIDIMODE: Bidirectional data mode enable

0: 2-line unidirectional data mode selected (full-duflex)

ONLY

1: 1-line bidirectional data mode selected (half-duflex)

Bit 14 BIDIOE: Output enable in bidirectional mode

This bit combined with the BIDImode bit selects the direction of transfer in

- **0:** Output disabled (receive-only mode)
- 1: Output enabled (transmit-only mode)

Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used. Bit 11 DFF: Data frame format

- 0: 8-bit data frame format is selected for transmission/reception
- 1: 16-bit data frame format is selected for transmission/reception

Note: This bit should be written only when SPI is disabled (SPE = '0') for correct operation

마이크로컴퓨터 응용 STM32F407 SPI

Bit 10 RXONLY: Receive only

This bit combined with the BIDImode bit selects the direction of transfer in 2-line unidirectional mode. This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted.

0: Full duplex (Transmit and receive)

1: Output disabled (Receive-only mode)

Bit 9 SSM: Software slave management

When the SSM bit is set, the NSS pin input is replaced with the value from SSI bit.

0: Software slave management disabled

1: Software slave management enabled

Bit 8 SSI: Internal slave select

This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the IO value of the NSS pin is ignored.

마<u>이크로컴퓨터 응용 STM32F407 SPI</u>

Bit 7 LSBFIRST: Frame format

0: MSB transmitted first 1: LSB transmitted first

Bit 6 SPE: SPI enable

0: Peripheral disabled 1: Peripheral enabled

Bits 5:3 BR[2:0]: Baud rate control

000: fPCLK/2 100: fPCLK/32 001: fPCLK/4 101: fPCLK/64

010: fPCLK/8 110: fPCLK/128 011: fPCLK/16 111: fPCLK/256

Bit 2 MSTR: Master selection

0: Slave configuration **1:** Master configuration

Bit1 CPOL: Clock polarity

0: CK to 0 when idle 1: CK to 1 when idle

Bit 0 CPHA: Clock phase

0: The first clock transition is the first data capture edge

1: The second clock transition is the first data capture edge

ľW

W

W

W

W

W

STM32F407 SPI

rw

Bit 7 TXEIE: Tx buffer empty interrupt enable

0: TXE interrupt masked

마이크로컴퓨터 응용

1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.

Bit 6 RXNEIE: RX buffer not empty interrupt enable

0: RXNE interrupt masked

1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is set.

Bit 2 SSOE: SS output enable

- 0: SS output is disabled in master mode and the cell can work in multimaster configuration
- 1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work in a multimaster environment.

Bit 7 BSY: Busy flag

0: SPI (or I2S) not busy

1: SPI (or I2S) is busy in communication or Tx buffer is not empty

This flag is set and cleared by hardware.

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty

1: Tx buffer empty

Bit 0 RXNE: Receive buffer not empty

0: Rx buffer empty

1: Rx buffer not empty

W

rw

TW

W

W

W

IW

STM32F407 SPI

rw

W

Bits 15:0 DR[15:0]: Data register

W

W

TW

rw

ſW

Data received or to be transmitted.

The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for reading (Receive buffer). A write to the data register will write into the Tx buffer and a read from the data register will return the value held in the Rx buffer.

Notes for the SPI mode:

마이크로컴퓨터 응용

TW

W

Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data sent or received is either 8-bit or 16-bit. This selection has to be made before enabling the SPI to ensure correct operation.

For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register (SPI_DR[7:0]) is used for transmission /reception. When in reception mode, the MSB of the register (SPI_DR[15:8]) is forced to 0.

For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is used for transmission/reception.

마이크로컴퓨터 응용 STM32F407 USART

7.3 NVIC Parameter 및 INT Handler Function

(NVIC Parameter 및 INT Handler Function)
SPIx_IRQn
SPIx_IRQHandler (x=1~3)

RCC clock enable 레지스터 구조

•RCC_AHB1ENR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser- ved	OTGHS ULPIEN	OTGHS EN	ETHMA CPTPE N		ETHMA CTXEN	ETHMA CEN	Rese		DMA2EN	DMA1EN	CCMDATA RAMEN	Res.	BKPSR AMEN	Rese	erved
	rw	rw	rw	rw	rw	rw			rw	rw			rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved	i	CRCEN		Reserved	t	GPIOIE N	GPIOH EN	GPIOGE N	GPIOFE N	GPIOEEN	GPIOD EN	GPIOC EN	GPIOB EN	GPIOA EN
			rw				rw	rw	rw	rw	rw	rw	rw	rw	rw

GPIO

•RCC APB1ENR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	DAC EN	PWR EN	Reser-	CAN2 EN	CAN1 EN	Reser-	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USART2 EN	Reser- ved
		rw	rw	veu	rw	rw	veu	rw	rw	rw	rw	rw	rw	rw	veu
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Rese	erved	WWDG EN	Rese	erved	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
rw	rw			rw				rw	rw	rw	rw	rw	rw	rw	rw

USART:2~5

Timer:2~7, 12~14

•RCC_APB2ENR

Timer:9~11

Timer:1,8

SYSCFG SPI1 EN

ADC

USART:1,6

●인터럽트 벡터 테이블- Interrupts (29~43)

1			I	i i	ı
29	36	settable	TIM3	TIM3 global interrupt	0x0000 00B4
30	37	settable	TIM4	TIM4 global interrupt	0x0000 00B8
31	38	settable	I2C1_EV	I ² C1 event interrupt	0x0000 00BC
32	39	settable	I2C1_ER	I ² C1 error interrupt	0x0000 00C0
33	40	settable	I2C2_EV	I ² C2 event interrupt	0x0000 00C4
34	41	settable	I2C2_ER	I ² C2 error interrupt	0x0000 00C8
35	42	settable	SPI1	SPI1 global interrupt	0x0000 00CC
36	43	settable	SPI2	SPI2 global interrupt	0x0000 00D0
37	44	settable	USART1	USART1 global interrupt	0x0000 00D4
38	45	settable	USART2	USART2 global interrupt	0x0000 00D8
39	46	settable	USART3	USART3 global interrupt	0x0000 00DC
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000 00E0
41	48	settable	RTC_Alarm	RTC Alarms (A and B) through EXTI line interrupt	0x0000 00E4
42	49	settable	OTG_FS WKUP	USB On-The-Go FS Wakeup through EXTI line interrupt	0x0000 00E8
43	50	settable	TIM8_BRK_TIM12	TIM8 Break interrupt and TIM12 global interrupt	0x0000 00EC

●인터럽트 벡터 테이블- Interrupts (44~56)

Position	Priority	Type of priority	Acronym	Description	Offset
44	51	settable	TIM8_UP_TIM13	TIM8 Update interrupt and TIM13 global interrupt	0x0000 00F0
45	52	settable	TIM8_TRG_COM_TIM14	TIM8 Trigger and Commutation interrupts and TIM14 global interrupt	0x0000 00F4
46	53	settable	TIM8_CC	TIM8 Capture Compare interrupt	0x0000 00F8
47	54	settable	DMA1_Stream7	DMA1 Stream7 global interrupt	0x0000 00FC
48	55	settable	FSMC	FSMC global interrupt	0x0000 0100
49	56	settable	SDIO	SDIO global interrupt	0x0000 0104
50	57	settable	TIM5	TIM5 global interrupt	0x0000 0108
51	58	settable	SPI3	SPI3 global interrupt	0x0000 010C
52	59	settable	UART4	UART4 global interrupt	0x0000 0110
53	60	settable	UART5	UART5 global interrupt	0x0000 0114
54	61	settable	TIM6_DAC	TIM6 global interrupt, DAC1 and DAC2 underrun error interrupts	0x0000 0118
55	62	settable	TIM7	TIM7 global interrupt	0x0000 011C
56	63	settable DMA2_Stream0		DMA2 Stream0 global interrupt	0x0000 0120

8. STM32F407의 SPI 프로그래밍 실습

7.1 프로그램에서의 SPIx set-up 과정 및 레지스터 설정

- RCC → AHB1ENR(GPIOy Clock Enable)
- RCC→APBzENR(SPIx Clock Enable)

INT Enable

• NVIC→ISER[]

SPIx 초기 설정 • SPIx→CR1, CR2

• SPIx_IRQHandler()

7.2 STM32F407의 SPI의 Address(Memory map)

	084001 0400 - 084001 0711	Nescived
	0x4001 3000 - 0x4001 33FF	SPI1
APB2	0x4001 2C00 - 0x4001 2FFF	SDIO
APB1	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2

7.3 STM32F407의 SPI관련 header file(stm32f4xx.h)주요 부분

```
#define PERIPH_BASE ((uint32_t)0x4000000) /* Peripheral base address */
#define APB1PERIPH BASE
                               PERIPH BASE
#define APB2PERIPH BASE
                               (PERIPH\_BASE + 0x00010000)
#define SPI1_BASE
                         (APB2PERIPH\_BASE + 0x3000)
                         (APB1PERIPH\_BASE + 0x3800)
#define SPI2_BASE
                         (APB1PERIPH_BASE + 0x3C00)
#define SPI3 BASE
#define SPI1
                    ((SPI_TypeDef *) SPI1_BASE)
#define SPI2
                    ((SPI TypeDef *) SPI2 BASE)
#define SPI3
                    ((SPI TypeDef *) SPI3 BASE)
typedef struct
   _IO uint16_t CR1; //SPI control register 1, offset: 0x00
   IO uint16_t CR2; // SPI control register 2, offset: 0x04
   _IO uint16_t SR; // SPI status register, offset: 0x08
   IO uint16_t DR; // SPI data register, offset: 0x0C
   _IO uint16_t CRCPR; // SPI CRC polynomial register, offset: 0x10
   IO uint16 t RXCRCR; // SPI RX CRC register, offset: 0x14
   _IO uint16_t TXCRCR; // SPI TX CRC register, offset: 0x18
   _IO uint16_t I2SCFGR; // SPI_I2S configuration register, offset: 0x1C
   IO uint16_t I2SPR; // SPI_I2S prescaler register, offset: 0x20
} SPI_TypeDef;
```

9. 부록: 3-AXIS accelerometer (LIS2HH12)

마이크로컴퓨터 응용 STM32F407 SPI

9.1 3-AXIS accelerometer SPI 9.1.1. Read and Write protocol

CPOL = 1 (**High**) **CPHA** = 1 (**2edge**)

• SPI read (MSB first)

- SPI 읽기 명령(Master에서 보낸 read 명령)은 16 clock pulse로 수행
 - -bit $0 : \mathbb{R}/\mathbb{W}$ bit = 1 (read)
 - -bit 1-7 : AD(6:0) (Address)
 - -bit 8-15 : DO(7:0) (Date Out)

마이크로컴퓨터 응용

• SPI write (MSB first)

- SPI 쓰기 명령 (Master에서 보낸 write 명령) 은 16 clock pulse로 수행
- -bit $0 : \mathbb{R}/\underline{W}$ bit = 0 (write)
- -bit 1-7 : **AD**(6:0) (Address)
- -bit 8-15 : DI(7:0) (Date In)

Comment

Interrupt generator 1
threshold Y

Interrupt generator 1
threshold Z

Interrupt generator 1
duration

Interrupt generator 2
configuration

Interrupt generator 2
status register

Interrupt generator 2
threshold

Interrupt generator 2
threshold

Interrupt generator 2
threshold

Interrupt generator 2
Reference X low

Reference X high

Reference Y low

Reference Y high

Reference Z low

Reference Z high

9.2 레지스터 9.2.1 레지스터 맵

		Register	r address					Registe	r address		Г
Name	Type	Hex	Binary	Default	Comment	Name	Туре	Hex	Binary	Default	
RESERVED	r	00-0A		-	RESERVED	IG_THS_Y1	r/w	33	00110011	00000000	
TEMP_L	r	0B	00001011	output					20442422		\vdash
TEMP_H	r	0C	00001100	output		IG_THS_Z1	r/w	34	00110100	00000000	
RESERVED	r	0E		-	RESERVED	IG_DUR1	r/w	35	00110101	00000000	
WHO_AM_I	r	0F	00001111	01000001	Who I am ID		_				\vdash
ACT_THS	r/w	1E	00011110	00000000		IG_CFG2	r/w	36	00110110	00000000	
ACT_DUR	r/w	1F	00011111	00000000		IG_SRC2	r	37	00110111	output	
CTRL1	r/w	20	00100000	00000111]					\vdash
CTRL2	r/w	21	00100001	00000000		IG_THS2	r/w	38	00111000	00000000	
CTRL3	r/w	22	00100010	00000000		IG_DUR2	r/w	39	00111001	00000000	
CTRL4	r/w	23	00100011	00000100	Control registers	XL_					\vdash
CTRL5	r/w	24	00100100	00000000		REFERENCE	r/w	3A	00111010	00000000	
CTRL6	r/w	25	00100101	00000000		XH_	r/w	3B	00111011	00000000	
CTRL7	r/w	26	00100110	00000000		REFERENCE			55111511	00000000	_
STATUS	r	27	00100111	output	Status data register	YL_ REFERENCE	r/w	3C	00111100	00000000	
OUT_X_L	r	28	00101000			YH_					\vdash
OUT_X_H	r	29	00101001			REFERENCE	r/w	3D	00111101	00000000	
OUT_Y_L	r	2A	00101010	output	Output registers	ZL_	r/w	3E	00111110	00000000	Г
OUT_Y_H	r	2B	00101011	output	Output registers	REFERENCE					\vdash
OUT_Z_L	r	2C	00101100			ZH_ REFERENCE	r/w	3F	00111111	00000000	
OUT_Z_H	r	2D	00101101								_
FIFO_CTRL	r/w	2E	00101110	00000000	FIFO registers						
FIFO_SRC	r	2F	00101111	output	FIFO legisters						
IG_CFG1	r/w	30	00110000	00000000	Interrupt generator 1 configuration						
IG_SRC1	r	31	00110001	output	Interrupt generator 1 status register						
IG_THS_X1	r/w	32	00110010	00000000	Interrupt generator 1 threshold X]					

<u>마이크로컴퓨터 응용</u> STM32F407 SPI

9.2.2 레지스터 설정

CTRL1 (20h)

Control register 1(r/w)

Table 22. Control register 1

Table 23. Control register 1 description

HR	High resolution bit. Default value: 0 0: normal mode, 1: high resolution (see <i>Table</i>)
ODR [2:0]	Output data rate & power mode selection. Default value: 000 (see Table)
BDU	Block data update. Default value: 0 0: continuous update; 1:output registers not updated until MSB and LSB read)
ZEN	Z-axis enable. Default value: 1 (0: Z-axis disabled; 1: Z-axis enabled)
YEN	Y-axis enable. Default value: 1 (0: Y-axis disabled; 1: Y-axis enabled)
XEN	X-axis enable. Default value: 1 (0: X-axis disabled; 1: X-axis enabled)

- HR : high resolution (Value:1)
- ODR[2:0]: 800Hz (Value:110)
- ZEN: Z-axis enabled (Value:1)
- YEN: Y-axis enabled (Value:1)
- XEN: X-axis enabled (Value:1)

마이크로컴퓨터 응용 STM32F407 SPI

CTRL2 (21h)

Control register 2 (r/w)

Table 26. Control register 2

0 ⁽¹⁾ DFC1 DFC0	HPM1	HPM0	FDS	HPIS1	HPIS2
----------------------------	------	------	-----	-------	-------

1. This bit must be set to '0' for the correct operation of the device.

Table 27. Control register 2 description

DFC1 [1:0]	High-pass filter cutoff frequency selection: the bandwidth of the high-pass filter depends on the selected ODR and on the settings of the DFC [1:0] bits	
HPM [1:0]	High-pass filter mode selection. Default value: 00 "00" or "10" = Normal mode; "01" = Reference signal for filtering; "11" = Not available	
FDS	High-pass filter data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)	
HPIS1	High-pass filter enabled for interrupt generator function on Interrupt 1. Default value: 0 (0: filter bypassed; 1: filter enabled)	
HPIS2	High-pass filter enabled for interrupt generator function on Interrupt 2. Default value: 0 (0: filter bypassed; 1: filter enabled)	

• DFC[1:0] : ODR 9 (Value:10)

<u>마이크로컴퓨터 응용</u> STM32F407 SPI

CTRL4 (23h)

Control register 4 (r/w)

Table 30. Control register 4

BW2	BW1	FS1	FS0	BW_SCALE_ODR	IF_ADD_INC	I2C_DISABLE	SIM
-----	-----	-----	-----	--------------	------------	-------------	-----

Table 31. Control register 4 description

BW [2:1]	Anti-aliasing filter bandwidth. Default value: 00 (00: 400 Hz; 01: 200 Hz; 10: 100 Hz; 11: 50 Hz)
FS [1:0]	Full-scale selection. Default value: 00 (00: ±2 g; 01: Not available; 10: ±4 g; 11: ±8 g)
BW_SCALE_ODR	If '0', bandwidth is automatically selected as follows: BW = 400 Hz when ODR = 800 Hz, 50 Hz, 10 Hz; BW = 200 Hz when ODR = 400 Hz; BW = 100 Hz when ODR = 200 Hz; BW = 50 Hz when ODR = 100 Hz; If '1', bandwidth is selected according to BW [2:1] excluding ODR = 50 Hz, 10 Hz, BW = 400 Hz
IF_ADD_INC	Register address automatically incremented during multiple byte access with a serial interface (I ² C or SPI). (0: disabled; 1: enabled)
I2C_DISABLE	Disable I ² C interface. Default value: 0 (0: I ² C enabled; 1: I ² C disabled)
SIM	SPI serial interface mode selection. Default value: 0 0: 4-wire interface; 1: 3-wire interface

- BW[2:1] : 400Hz (Value:00) FS : +/-2g (Value:00)
- BW_SCALE_ODR : automatically(Value:0) · IF_ADD_INC : enabled (Value:1)
- I2C_DISABLE : Disabled (Value:1) SIM : 4-wire interface (Value:0)

<u>마이크로컴퓨터 응용</u> <u>STM32F407</u> SPI

• OUTPUT Resister

X-axis output register (r)

Y-axis output register (r)

Z-axis output register (r)