Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMID52996
Project Name	Project – Digital Naturalist AI Enabled Tool for Biodiversity Researchers
Maximum Marks	10 Marks

Model Performance Testing:

Model	Performance	lesting:	
S.No	Parameter	Values	Screenshots
1.	Model	-	
	Summary		
2.	Accuracy	Training Accuracy –	
۷.	Accuracy	71%	
		Validation Accuracy – 76%	
		7070	
			Attached as separate sheet below

```
In [28]: #printing the keys we have for the stores values print(h.history.keys()) #appendind the data for each epoch in a arr, and for each batch size histories_acc.append(h.history['accuracy']) histories_val_acc.append(h.history['val_accuracy']) histories_loss.append(h.history['val_loss']) #converting into numpy arrays histories_acc = np.array(histories_acc) histories_val_accenp.array(histories_val_acc) histories_val_acc=np.array(histories_val_acc) histories_val_loss = np.array(histories_val_loss) histories_val_loss = np.array(histories_val_loss)

#here we have 3 columns and 6 rows each, ever row represetns differnt bath size, #every column represent different epoch scores. print('histories_acc', histories_acc, 'histories_acc', histories_loss, 'histories_loss', histories_loss', histories_val_acc', histories_val_acc, 'histories_val_acc', histories_val_acc, 'histories_val_acc', histories_val_acc, 'histories_val_acc', histories_val_acc, 'histories_val_acc', histories_val_acc, 'histories_val_acc', histories_val_acc, 'histories_val_acc', histories_val_acc', 'val_accuracy']) histories_acc [[0.49351853]] histories_loss [[1.2544775]] histories_val_acc [[0.71496564]] histories_val_loss [[0.76086265]]
```

473/473 [=============] - 2275s 5s/step - loss: 1.2545 - accuracy: 0.4935 - val_loss: 0.7609 - val_accuracy: 0.7150 Model: "sequential"

Layer (type)	Output Shape	Param #
dropout (Dropout)	(None, 224, 224, 3)	0
conv2d (Conv2D)	(None, 220, 220, 256)	19456
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 110, 110, 256)	Ø
conv2d_1 (Conv2D)	(None, 108, 108, 128)	295040
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 54, 54, 128)	0
conv2d_2 (Conv2D)	(None, 52, 52, 64)	73792
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 26, 26, 64)	0
flatten (Flatten)	(None, 43264)	0
dense (Dense)	(None, 512)	22151680
dropout_1 (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 256)	131328
dropout_2 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 128)	32896
dropout_3 (Dropout)	(None, 128)	0

dropout_3 (Dropout) (None, 128) 0
dense_3 (Dense) (None, 6) 774

Total params: 22,704,966
Trainable params: 22,704,966
Non-trainable params: 0

Table Risk Assessment

S.NO	Project Name	NFT Test approach	NFR - Met	Test Outcome	GO/N O-GO decisi on	Recom mendati on	Identified Defects (Detected/Closed/Open)	Approval s/signoff
1	Digital Naturalist - AI enabled tool for biodiversity researchers	Load Change	Yes	Load change Testing Response time - 90ms CPU Usage - 8% GPU Usage - 4%	Go	-	Closed	Vinu Abinayaa
2		Functional Change	Yes	Functional Testing Response time - 140ms CPU Usage - 17% GPU Usage - 8%	Go	-	Closed	Rakshaa Madhuri